Spintharus flavidus in the Caribbean - a 30 million year biogeographical history and radiation of a ‘widespread species’

Austin Dziki, Greta Binford, Jonathan A Coddington, Ingi Agnarsson

The Caribbean island biota is characterized by high levels of endemism, the result of an interplay between colonization opportunities on islands and effective oceanic barriers among them. A relatively small percentage of the biota is represented by ‘widespread species’, presumably taxa for which oceanic barriers are ineffective. Few studies have explored in detail the genetic structure of widespread Caribbean taxa. The cobweb spider Spintharus flavidus Hentz, 1850 (Theridiidae) is one of two described Spintharus species and is unique in being widely distributed from northern N. America to Brazil and throughout the Caribbean. As a taxonomic hypothesis, Spintharus “flavidus” predicts maintenance of gene flow among Caribbean islands, a prediction that seems contradicted by known S. flavidus biology, which suggests limited dispersal ability. As part of an extensive survey of Caribbean arachnids (project CarBio), we conducted the first molecular phylogenetic analysis of S. flavidus with the primary goal of testing the ‘widespread species’ hypothesis. Our results, while limited to three molecular loci, reject the hypothesis of a single widespread species. Instead this lineage seems to represent a radiation with at least 16 species in the Caribbean region. Nearly all are short range endemics with several distinct mainland groups and others are single island endemics. While limited taxon sampling, with a single specimen from S. America, constrains what we can infer about the biogeographical history of the lineage, clear patterns still emerge. Consistent with limited overwater dispersal, we find evidence for a single colonization of the Caribbean about 30 million years ago, coinciding with the timing of the GAARLandia landbridge hypothesis. In sum, S. “flavidus” is not a single species capable of frequent overwater dispersal, but rather a 30 my old radiation of single island endemics that provides preliminary support for a complex and contested geological hypothesis. 0,"p祂祂{d1Ed.
Spintharus flavidus in the Caribbean – a 30 million year biogeographical history and radiation of a ‘widespread species’

Austin Dziki¹, Greta Binford², Jonathan A. Coddington³, and Ingi Agnarsson¹³

¹Department of Biology, University of Vermont, Burlington, VT, USA
²Department of Biology, Lewis and Clark College, Portland, OR, USA,
³Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA

ABSTRACT

The Caribbean island biota is characterized by high levels of endemism, the result of an interplay between colonization opportunities on islands and effective oceanic barriers among them. A relatively small percentage of the biota is represented by ‘widespread species’, presumably taxa for which oceanic barriers are ineffective. Few studies have explored in detail the genetic structure of widespread Caribbean taxa. The cobweb spider Spintharus flavidus Hentz, 1850 (Theridiidae) is one of two described Spintharus species and is unique in being widely distributed from northern N. America to Brazil and throughout the Caribbean. As a taxonomic hypothesis, Spintharus “flavidus” predicts maintenance of gene flow among Caribbean islands, a prediction that seems contradicted by known S. flavidus biology, which suggests limited dispersal ability. As part of an extensive survey of Caribbean arachnids (project CarBio), we conducted the first molecular phylogenetic analysis of S. flavidus with the primary goal of testing the ‘widespread species’ hypothesis. Our results, while limited to three molecular loci, reject the hypothesis of a single widespread species. Instead this lineage seems to represent a radiation with at least 16 species in the Caribbean region. Nearly all are short range endemics with several distinct mainland groups and others are single island endemics. While limited taxon sampling, with a single specimen from S. America, constrains what we can infer about the biogeographical history of the lineage, clear patterns still emerge. Consistent with limited overwater dispersal, we find evidence for a single colonization of the Caribbean about 30 million years ago, coinciding with the timing of the GAARLandia landbridge hypothesis. In sum, S. “flavidus” is not a single species capable of frequent overwater dispersal, but rather a 30 my old radiation of single island endemics that provides preliminary support for a complex and contested geological hypothesis.

INTRODUCTION
Archipelagos represent unique conditions to study gene flow and diversification (Agnarsson & Kuntner 2012; Gillespie & Roderick 2002; Losos & Ricklefs 2010; Ricklefs & Bermingham 2008; Warren et al. 2015). Islands are situated within a matrix of oceanic barriers that restrict gene flow in proportion to the geographic isolation of an island and the dispersal ability of a given taxon (Agnarsson et al. 2014; Claramunt et al. 2012; Diamond et al. 1976; Warren et al. 2015). They also provide opportunity for adaptive radiations within islands, particularly for dispersal-limited taxa.

Among archipelagos, the Caribbean is particularly rich as an arena for biogeographic analyses. The region is composed of a range of old continental fragments (Greater Antilles, ~40 million years (my)) and relatively recent volcanic islands (Lesser Antilles, <10 my) (Iturralde-Vinent & MacPhee 1999; Iturralde-Vinent 2006), and features rich biodiversity and high levels of endemism (Hedges 1996a; Hedges & Heinicke 2007; Losos & DeQueiroz 1997; Myers et al. 2000; Ricklefs & Bermingham 2008). The proximity of these islands to ancient continents (N. and S. America), creates potential for a dynamic interchange of taxa between continents and islands (Bellemain & Ricklefs 2008; Heaney 2007). The geological history of the islands has created unique conditions for colonization and speciation. Over the last 40 my, the Greater Antilles landmasses have emerged, moved, sometimes amalgamated, and perhaps, connected to South America via a former land bridge; the Greater Antilles and Aves Ridge Land Bridge hypothesis (GAARLandia) (Iturralde-Vinent & MacPhee 1999). Ricklefs & Bermingham (2008) portrayed the Caribbean as “a laboratory of biogeography and evolution” ideally suited to study replicate patterns of allopatric speciation and evolutionary radiations.

Arthropods can strongly test biogeographical patterns (Gillespie & Roderick 2002). They can be abundant enough to be easily sampled without deleterious population effects, and they have short generation times, compared to vertebrates and many plants. Short generation times and large brood sizes allow them to evolve and diversify quickly. Like vertebrates and plants, arthropods span the spectrum of dispersal abilities from extremely poor to excellent dispersers. Widespread species may be regarded as good dispersers and for a ‘naturally’ widespread species to persist in the Caribbean, gene flow among islands must be sufficient. Thus, for lineages with relatively poor dispersal ability, widespread species are improbable taxonomic hypotheses.

The taxonomic hypothesis *Spintharus flavidus* circumscribes a widespread spider species found throughout the Caribbean and from northern N. America to Brazil (Levi 1954; Levi 1963). This species has been documented ballooning (aerial dispersal on silk threads (Bell et al. 2005)) and might be expected to maintain gene flow across oceanic barriers. However, the single ballooning record was a short distance dispersal, and other information on the distribution and biology of *Spintharus* suggest long distance dispersal is rare. *Spintharus* have a somewhat cryptic habitat, often found in leaf litter or the undersides of low-level leaves. The genus is old; its sister lineage *Episinus* occurs in 45 my Baltic amber (Wunderlich 2004, 2008, 2011, 2012, 2015), but, unlike *Episinus*, *Spintharus* is restricted to the Americas. *Spintharus* includes just two species, the putatively widespread *S. flavidus* and *S. gracilis* restricted to Brazil (Levi 1954; Levi 1963). A third species *S. argenteus* (Dyal 1935) from Pakistan is clearly misplaced in the genus based on its original description (Levi 1954), it’s proper placement is unclear but it may be a tetragnathid (Agnarsson pers. obs.). *Spintharus flavidus* varies greatly in color and genitalia morphology—usually species-specific in spiders—thus hinting at greater species diversity. Levi (1954, 1963), however, did not see clear geographical patterns to this variation. Specimens from a single locality differed so continuously in color and genitalia that he believed it to be one widespread and variable species.
Preliminary analyses of the COI gene indicated high levels of molecular diversity within *S. flavidus* and contested the widespread species hypothesis. Here, we use molecular phylogenetics to study patterns of diversification in a ‘widespread’ spider species, specifically to test the hypothesis that it represents single species capable of frequent dispersal across moderate stretches of ocean. While our taxon sampling is not designed for detailed biogeographical analyses, samples from the continental landmasses (N., C. and S. America) permit preliminary evaluation of the route, number, and timing of colonization events. We also use our data to propose an initial biogeographical hypothesis for *Spintharus* that can readily be tested as more data accumulate, especially from South America.

MATERIALS AND METHODS

Specimen sampling and DNA extraction and assembly

The CarBio team (www.islandbiogeography.org) collected specimens from Cuba, the Dominican Republic, Puerto Rico, Jamaica, the Lesser Antilles, Florida, South Carolina, Costa Rica, Mexico, and Columbia between 2011 and 2015. All specimens were collected under appropriate permits: **Puerto Rico**, DRNA: 2011-IC-035 (O-VS-PVS15-SJ-00474-08042011); **Jamaica**, NEPA, reference number #18/27; **USA**, USDI National Park Service, EVER-2013-SCI-0028; **Costa Rica**, SINAC, pasaporte científico no. 05933, resolución no. 019-2013-SINAC; **Cuba**, Departamento de Recursos Naturales, PE 2012/05, 2012003 and 2012001; **Dominican Republic**, Ministerio de Medio Ambiente y Recursos Naturales, no 0577, **Mexico**, SEMARNAT scientific collector permit FAUT-0175 issued to Dr. Oscar Federico Francke Ballve, Oficio no. SGPA/DGVS/10102/13; **Colombia**, Autoridad Nacional de Licencias Ambientales, 18.497.666 issued to Alexander Gómez Mejia; **Saba**, The Executive Council of the Public Entity Saba, no 112/2013; **Martinique**, Ministère de L’Écologie, du Développement Durable, et de L’Énergie; **Nevis**, Nevis Historical & Conservation Society, no F001; **Barbados**, Ministry of Environment and Drainage, no 8434/56/1 Vol. II. We used standard protocols for aerial search, beating, sifting, and cryptic methods (Coddington et al. 2009; Coddington et al. 1991). Spiders were immediately fixed in 95% ethanol and stored at -20°C (UVM Natural History Museum). Phenotype vouchers will also be deposited at the USNM (Smithsonian Institution).

We chose 195 individuals from the field samples for molecular analyses, representing each collecting locality with several specimens (targeting 4-5), when available (Figure 1). DNA was extracted from 1-4 legs from each individual and isolated using a Qiagen DNeasy Tissue kit using the kit protocol (Qiagen, Valencia, CA, USA). DNA from some specimens was isolated from leg samples at the Smithsonian Institute (SI) in Washington, DC using an Autogenprep965 for an automated phenol chloroform extraction. We initially sequenced a fragment of the mitochondrial cytochrome c oxidase subunit 1 (COI) to establish basic patterns of phylogenetic relationships and obtain an initial estimate of diversification patterns through ‘DNA barcoding’ (Hebert et al. 2003). Upon discovering deep divergences among isolated ‘populations’ with COI, we additionally sequenced the mitochondrial ribosomal 16S rRNA (16S), and the nuclear Internal Transcribed Spacer unit 2 (ITS2) for selected exemplars from each well supported regional clade indicated by COI. These molecular markers have proven successful in similar phylogenetic studies of spiders ranging from low taxonomic levels to divergences as deep as the
To amplify the COI, 16S, and ITS2, we used LCOI-1490 & HCOI-2198, 16S A & 16S B, and ITS 4 & ITS 5.8 primers respectively (Folmer et al. 1994; Simon et al. 1994, White et al. 1990). Standard PCR protocols were used as described in (Agnarsson 2010; Agnarsson et al. 2007). The PCR products were purified using Exosap kits and purified PCR products sequenced at the University of Arizona, Beckman Genomics, or the Smithsonian Institution. All sequences were deposited in GenBank [accession numbers not yet available]. COI, 16S, and ITS2 sequences from *Anelosimus* and *Episinus* species, the latter a closer relative of *Spintharus* (Agnarsson 2004, Arnedo et al. 2004) were downloaded from GenBank and used as outgroups along with a *Chrysso* specimen we sequenced here.

The chromatographs were interpreted with Phred 45 and Phrap (Green 2009; Green & Ewing 2002) using the Chromaseq module (Maddison & Maddison 2011a) implemented in the program Mesquite (Maddison & Maddison 2011b) and edited by hand. The alignments for the COI sequences were trivial with no implied indels, and were done in Mesquite through ClustalW. The 16S and ITS2 sequences were aligned using the program MAFFT (Katoh 2013) through the online server portal http://mafft.cbrc.jp/alignment/server using default settings other than setting the tree building number and maxiterate to the maximum.

Phylogenetic and biogeographical analyses

The aligned sequences for COI, 16S, and ITS2 were tested for the best fitting substitution model using the program Jmodeltest 2.1.7 (Darriba et al. 2012). The best models for each gene, among the 24 models available in MrBayes, were GTR+G for 16S and ITS2 and GTR+I+G for COI.

We used MrBayes V3.2.3 on XSDE (Ronquist et al. 2012) through the online portal CIPRES (Miller et al. 2015), to run a Bayesian analysis for mtDNA (COI plus 16S) and nuDNA (ITS2) separately and for the concatenated three loci. We used Mesquite to concatenate loci and to partition the analysis by locus. The Bayesian analyses ran Metropolis coupled Markov chain Monte Carlo (MC3) (for 50,000,000 generations, sampling every 1,000 generations. We used Tracer (Drummond & Rambaut 2007), to insure proper convergence of runs, sufficient sampling of priors. An analysis partitioned additionally by codons yielded nearly identical results. Maximum likelihood (ML) searches were done in Garli 2.0, (Zwickl 2006) and repeated 100 times and the tree maximizing likelihood of the data was preferred.

Analyses of divergence times were done in BEAST 1.8 (Drummond et al. 2012). We pruned the matrix to include 2-3 exemplars with minimum missing data from each major clade, and constrained the monophyly of *Spintharus* and that of Dominican *Spintharus*, because prior analyses in MrBayes and ML analyses justified their monophyly. We employed GTR + G + I model for the concatenated matrix with a Yule process tree prior, and a UPGMA starting tree. We used a burnin of 5000 with maximum clade credibility tree target. We also ran separate analysis using a birth-death model (see Condamine et al. 2015 for detail), an analysis partitioned by gene, a dating analysis of COI alone calibrated by estimated rates of evolution for that gene (Bidegaray-Batista and Arnedo (2011), and a coalescent gene tree-species tree analysis in *BEAST. Two chains of 100 million generations were run and, convergence and correct mixing of the chains were monitored using Tracer 1.5. Priors were set to default other than detailed
We estimated node ages using a relaxed exponential clock calibrated with a Dominican amber fossil of *Spintharus* that is dated to about 15-20 mya (Wunderlich 1988). This sets the minimum age of the genus, but more importantly, the colonization of Hispaniola at 15 my ago and was implemented using exponential priors on both nodes with a mean of 5 and offset of 15 my – spanning about 15-35 my. This represents a time span from the estimated age of the fossil until prior to GAARlandia and close to the maximum age of extant Caribbean lineages (Iturralde-Vinent and 1999). Many fossils of the closely related Spintharinae genus *Episinus* s. l. occur in Dominican and Baltic amber (Wunderlich 1988; Wunderlich 2008), the latter dating to approximately 44 my. Hence we constrained the root of Spintharinae (*Spintharus* plus *Episinus*) with an exponential prior with an offset of 44 my and mean of 15, spanning approximately 40-100 my, to the approximate origin of Theridiidae (Bond et al. 2014, Liu et al. resubmitted). A recent study on Theridiidae estimates the origin of Spintharinae between 55-45 mya (Liu et al. resubmitted).

We inferred ancestral ranges using RASP 3.2 (Yu et al. 2015) inputting the preferred Bayesian tree and a set of 100 post-burnin trees. We defined areas as each of the Caribbean islands, and S. America, and N. America (including USA, Costa Rica, and Mexico). S-DIVA, S-DEC and Bayesian Binary ancestral area analyses were run limiting areas to two, as all putative species level clades are restricted to one area, and without dispersal constraints. We exported results as tables and graphics and the latter we touched up in Adobe Illustrator.

Species delimitation, distribution, and photo-documentation

We calculated distances among clades suggested by the barcoding analysis of the COI data using MEGA6 (Table S2, Table 1). The phylogenetic results and genetic distance measures (approximately 5-10+ times greater distance among than within putative species), plus locality information (regionally monophyletic groups) provide initial species hypotheses. Various species delimitation methods were then used to help estimate number of species in this radiation using COI or the three loci dataset/tree depending on the method. We used the species delimitation plugin in Geneious 8.1.5 (Kearse et al. 2012; Masters et al. 2011) to estimate species limits under Rosenberg’s reciprocal monophyly P(AB) (Rosenberg 2007) and Rodrigo’s P(RD) method (Rodrigo et al. 2008). We also estimated the probability of population identification of a hypothetical sample based on the groups being tested (P ID(Strict) and P ID (Liberal)). The genealogical sorting index (gsi) statistic (Cummings et al. 2008) was calculated using the gsi webserver (http://genealogicalsorting.org) on the estimated tree and an assignment file that contained the same user specified groups identified in the Geneious plugin. Finally we used a single locus Bayesian implementation (bPTP) of the Poisson tree processes model (Zhang et al. 2013) to infer putative species boundaries on a given single locus phylogenetic input tree available on the webserver: http://species.hits.org/ptp/. The analysis was run as a rooted tree from the MrBayes analysis, with outgroups removed for 100,000 generations with 10% burnin removed.

For each putative molecular species-level clade, representatives from all localities were chosen for taxonomic photography. The spiders were positioned in Germ-X hand sanitizer (65% ethanol) and covered in 95% ethanol. The photographs were taken with the Visionary Digital BK
Laboratory System, using a Canon 5D camera, a 65 mm macro zoom lens. Photo stacks of 30-50 slices were then compiled using the program Helicon Focus 5.3. The image was then edited in Photoshop CS6 to balance light quality, adjust for brightness, remove background blemishes, and provide a scale.

We used the online program GPS Visualizer (http://www.gpsvisualizer.com) to plot localities (Figure 1).

RESULTS

Specimen sampling and DNA extraction and assembly

Of the 195 individuals chosen for DNA work, 186 yielded quality DNA and 175 were successfully amplified for COI. The subset of 186 taxa that was chosen for additional sequencing yielded 180 16S sequences and 79 ITS2 sequences, representing all major clades. In all, the concatenated matrix contains 1572 nucleotides of which 668 are COI, 682 are 16S, and 312 ITS2.

Phylogenetics

Bayesian analyses reached convergence and appropriate ESS as determined in Tracer. The bayesian inferences of the concatenated COI, 16s, and ITS2 sequences from *S. flavidus* provide a robust and well-resolved phylogenetic hypothesis (Figure 1). Maximum likelihood analyses of the concatenated matrix yield nearly identical results. Independent mDNA and nuDNA were highly congruent with one another and with the concatenated analysis. No strongly supported clades in either gene tree contradict the concatenated tree, rather areas of disagreement reflect lack of resolution in gene trees. Additional sensitivity analyses –Bayesian analyses partitioned by gene and codon done in MrBayes and in BEAST yielded similar results in terms of species relationships and colonization of the Caribbean. Moreover, a species tree analysis in *BEAST resulted in near identical relationships among putative species.

All analyses support the monophyly of *Spintharus* and of the Caribbean taxa. Furthermore, the N. American + Caribbean specimens form a clade and within that the specimens from the Yucatan peninsula are sister to the islands clade. Deep genetic divergences occur within the USA, especially between USA1 (from Genbank) and the remaining specimens. Within the Caribbean two main clades are supported. The first contains two Cuban and one Hispaniolan clade, of three or more species each, and the Hispaniolan clade nests among the Cuban clades. The second contains the remaining islands, Jamaica, Puerto Rico, and the Lesser Antilles. Puerto Rican specimens nest within a Lesser Antilles clade.

Separate analyses of mtDNA and nuDNA markers reveal general congruence among the independent lines of evidence. Both support the monophyly of *Spintharus*, N. America plus the Caribbean, Yucatan plus Caribbean and the Caribbean islands. Both recover the two Cuban clades, one sister to a Hispaniolan clade, and both nest Puerto Rico within the Lesser Antilles.
Both resolve most putative monophyletic species, and all islands are monophyletic (except the two Cuban clades discussed above).

Species delimitation, distribution, and photo-documentation

Bayesian inferences of the concatenated COI, 16S, and ITS2 yield 22 distinct and well supported lineages. Most are independently recovered in the mtDNA and ITS2 datasets (Supplementary Materials). We accepted these 22 lineages, of which 20 include multiple specimens and two single specimens as initial species hypotheses (Table 1). Most putative species lineages show genetic distances >5%, and nearly all are separated by a ‘barcoding gap’ (Table 1). Shallow divergences, between 1.9-4% are found between clades Cuba 1 and 2 versus Cuba 3, and between USA 1 and 2, and between St. Lucia and Grenada (Table 1). The results of various methods of species delimitation reject the single widespread species hypothesis. The bPTP analysis estimated between 17-31 species, including all the initial 22 species hypotheses but supported one USA species. The ML and the Bayesian tree supported 17-19 species, congruent with the minimum estimate from the bPTP analyses. Other species delimitation methods yielded similar results. Eighteen putative species had P ID (liberal) of 89 or higher, 19 had significant Rosenberg values and 18 had GSI values of >82, and 14 = 100. In general methods were congruent and supported at least the 16 putative species, circled in Figure 1. These represent 11 of the 22 initial species hypotheses, and five species whose delimitation is broader than the original hypotheses (Table 1, Figure 1).

All 16 species are narrow range endemics without any range overlap suggesting allopatric speciation. All are either restricted to continents or are single island endemics, except species 7, with distinct populations on St. Kitts, Nevis and Puerto Rico, and species 5, with distinct populations on Grenada and St. Lucia. The only islands that share haplotypes are St. Kitts and Nevis, small keys separated by less than 30 km of shallow ocean. The sister clade to the St. Kitts and Nevis clade is, in contrast, Puerto Rico separated by over 250 km. The largest Greater Antilles islands, Cuba and Hispaniola, harbor minor within-island radiations resulting in multiple species-level clades.

Biogeographical patterns

The dating analysis in BEAST suggests that the N. American plus Caribbean clade diverged from the sister clade represented by the Colombian taxon, between 37-29 mya, a time window consistent with GAARlndia (Figure 2). The Caribbean and the N. American clades diverged between 27-29 my ago. Divergences corresponding to Greater Antilles island clades are old (> 20my ago), except Puerto Rico that appears to contain a recent lineage. Some Lesser Antilles islands contain lineages estimated to be older than the currently hypothesized age of the islands. Sensitivity analyses including analysis partitioned by gene and an analysis using uniform rather than exponential priors on fossils showed general congruence. Age of the Caribbean colonization events ranged between about 25-38 my ago, and in all cases the age of the Lesser Antilles clade was older than any of its islands. In these analyses the estimated rate of COI substitutions ranged from 0.006-0.018, encompassing the rate estimated from independent studies (0.0112, see Bidegaray-Batista and Arnedo (2011) and Kuntner et al. (2013). A dating analysis based on COI alone calibrated only with rates (no fossil information) yielded younger estimates across the tree that were inconsistent with the available fossil record.
The RASP analyses of ancestral areas is consistent with the single colonization of N. America plus the Caribbean, and the single colonization of the islands though inferential power is limited due to only a single specimen from S. America. The common ancestor of the islands is reconstructed to have occurred on mainland and islands (Cuba), consistent with the GAARlandia hypothesis, and Hispaniola is reconstructed to have been colonized from Cuba. The colonization of Puerto Rico is supported as a relatively recent (~6 my ago) event via ancestors in the Lesser Antilles.

DISCUSSION

Island archipelagos, terrestrial habitat surrounded by aquatic barriers, have long offered unique insight into processes of diversification (Baldwin & Sanderson 1998; Darwin 1859; Gillespie & Roderick 2002; Losos et al. 1998). Widespread species on archipelagos represent taxonomic hypotheses that predict ongoing gene flow. Such hypotheses are plausible for excellent dispersers but are rendered less and less probable as dispersal ability of organisms decreases, until finally ocean barriers become completely effective (Agnarsson et al. 2014; Agnarsson & Kuntner 2012; Claramunt et al. 2012; Diamond et al. 1976). Our molecular analyses refute the current taxonomy of *Spintharus flavidus* as a single widespread species in the Caribbean. Phylogenetic and species delimitation analyses of both mitochondrial and nuclear genes, independently and combined, strongly reject the single-species hypothesis and suggest that *S. flavidus* is a radiation of short-range endemics (Harvey 2002) in the Caribbean. Morphological evidence supports the multiple species hypothesis (Figure 3) with some highly distinct forms and, though polymorphic, consistent color patterns within islands. This finding is consistent with the limited dispersal ability of this lineage as suggested by its biology and habitat. Furthermore, despite the relatively old age of the *flavidus* clade, it is restricted to the Americas (unlike its sister taxon *Episinus*), shows small scale genetic structuring of populations, and some limited evidence for long distance dispersal (colonization of the Lesser Antilles and Puerto Rico across water).

Other work supports the notion that widespread Caribbean spiders may actually be single island endemics. The CarBio project (islandbiogeography.org) has found evidence of other multiple single island endemics among hypothetical ‘widespread species’ of putatively poor dispersers (e.g. McHugh et al. 2014, Esposito et al. 2015, also unpublished data for *Loxosceles, Scytodes*, and *Argiope*). In other groups of animals and plants, dispersal limited taxa also tend to form island endemics rather than widespread species (Ricklefs & Bermingham 2008). In contrast, some other spider lineages with a long history in the Caribbean seem to be excellent dispersers and truly widespread, such as the garden spider (*Argiope*, LeQuier et al. in review), several tetragnathid species, and others (Agnarsson et al. unpublished data). Dispersal ability is a key parameter in biogeography, and as the Intermediate Dispersal Model predicts (Agnarsson et al. 2014; Claramunt et al. 2012; Diamond et al. 1976), can have profound impact on both distribution and diversity of organisms. Mechanisms and routes of colonization in the Caribbean are diverse across different organisms (Ricklefs & Bermingham 2008). Among relatively poor dispersers, however, evidence mounts for an important, temporary (~34 my ago) overland dispersal route (Alonso et al. 2012), the GAARlandia landbridge that was proposed by Manuel Iturralde-Vinent and Ross MacPhee (e.g. Iturralde-Vinent 1998; Iturralde-Vinent & MacPhee 1999; Iturralde-Vinent 2006, see also Houben et al. 2012).
However, others have criticized the GAARlandia landbridge (Ali 2012; Hedges 1996b; Hedges 2006). These authors point out that the Caribbean biota is represented by a highly restricted sample of American biota that often has radiated into unoccupied niches, suggesting effective barriers, and that evidence of a massive synchronous colonization of the islands by multiple lineages of organisms at 34 mya is weak because estimates of arrival times of different lineages are rarely identical (Ali 2012).

Nevertheless, a number of studies support “GAARlandia” because multiple monophyletic Caribbean clades approximately date to this narrow time window, such as: several spiders and scorpions (Binford et al. 2008; Crews & Gillespie 2010; McHugh et al. 2014) (Esposito et al. in review); toads (Alonso et al. 2012), mammals (Davalos 2004) (but see (Fabre et al. 2014)); cichlid fishes (Rican et al. 2013); butterflies (Matos-Maravi et al. 2014; Peña et al. 2010), spurge plants (Euphorbiaceae) (van Ee et al. 2008), and others (Ricklefs & Bermingham 2008).

Although we emphasize the preliminary nature of these biogeographical analyses for *Spintharus*, these spiders also support colonization via GAARlandia (Figures 2-3). The Caribbean *Spintharus* form a clade and the Caribbean plus N. America a more inclusive clade, and the estimated timing of colonization of the Caribbean plus N. America at about 32 my ago agrees with the hypothesized age of the land bridge (Figure 2). Ancestral area reconstruction also supports a single origin on a mix of mainland and islands, consistent with GAARlandia (Figure 3). These results are necessarily preliminary due to lack of sampling of S. America other than a specimen from Colombia. We expect that *S. flavidus* in S. America also will be found to represent multiple species. However, available morphological evidence suggests that S. American specimens are more similar to the sampled Colombian specimen than the Caribbean + N. American clade (Levi 1963). Furthermore, the other known *Spintharus* species is restricted to S. America (although it, too, may be a species complex). With the strength of this combined evidence, further sampling of S. American taxa seems unlikely to refute the Caribbean + N. American monophyly.

The sister relationship between the Caribbean clade and specimens from the Yucatan peninsula is intriguing (Figure 1). The Yucatan peninsula has remained the closest continental landmass to any of the Greater Antilles Islands (Cuba) ever since the GAARlandia period and could have been colonized prior to other areas in N. America. The sister relationship between N. America and the archipelago is, in turn, frequently observed in other taxa, such as other lineages of spiders (Binford et al. 2008).

Two main lineages occur in the Caribbean (Figure 1). The first comprises Cuban and Hispaniolan taxa. These islands are not only adjacent, but stayed connected for a time even after GAARlandia broke up, and lineages on these islands are often close relatives (Iturralde-Vinent & MacPhee 1999; Iturralde-Vinent 2006). Furthermore, both islands include geological subunits that were separate islands during the formation of the Caribbean. Hispaniola is composed of two islands that eventually fused, and Cuba has four highland regions that were all islands at some point. Our findings agree with this geology; one Cuban lineage is sister to Hispaniolan taxa rather than the other Cuban clade, and their ages predate the Cuba-Hispaniola separation (The Cuban Hispaniola node dates to 17.8 mya).

The other main Caribbean clade comprises Jamaican, Puerto Rican, and Lesser Antillean species. Several patterns are noteworthy. Jamaica was colonized early on, consistent with its old age. However, the colonization of the Lesser Antilles is estimated at around 18-19 my ago, long
before the age of existing islands (Figure 2). Endemic island taxa can predate the islands they
currently occur on (Heads 2011). Such lineages may have occupied older, now submerged,
islands or they could have gone extinct from the mainland or other older islands. The latter
absences could also be false due to sparse sampling. Other taxa, like Lesser Antillean geckos
dating back some 13-14 my ago, also significantly predate their islands and are thought to have
colonized islands now long gone (Thorpe et al. 2008). An alternative, and perhaps simpler
explanation, is error in divergence time estimation. Indeed, an analysis of divergence times
relying only on a priori estimated rates of mtDNA substitution (e.g. Kuntner et al. 2013) resulted
in younger estimates of all clades, but these results (not shown) were inconsistent with the fossil
record. More detailed biogeographical analyses including a greater sampling of as yet unsampled
areas (importantly, S. America) may improve accuracy and will serve to test the unexpectedly
old age of the Lesser Antilles group.

Puerto Rico evidently was colonized relatively recently via the Lesser Antilles (6-7 my ago, Figs.
1, 3). The results suggest “island hopping” from Grenada and St. Lucia in the south, through
Dominica and then St. Kitts and Nevis in the north. Puerto Rican taxa are usually related to other
Greater Antillean groups. Spintharus are probably capable of overwater dispersal over short
distances. Additional sampling in the Lesser Antilles may reveal more evidence for stepping
stone-like colonization. Thus, we can predict the approximate phylogenetic placement of as yet
unsampled areas such as Barbados, Martinique, Guadalupe, Anguilla, and the Virgin Islands,
forming a grade in among the Lesser Antilles taxa sampled here.

Interestingly the southern Lesser Antilles islands in many taxa are S. American in origin, and not
a part of Caribbean clades (e.g. Esposito et al. in review). Further sampling of Spintharus in
Central America and the Lesser Antilles, with focus on the southernmost islands of Trinidad and
Tobago as well as the neighboring regions of Venezuela and Columbia are priorities.

The implications of our findings for conservation are profound. Instead of a common,
widespread species unlikely to rank highly in conservation priorities, multiple, narrowly endemic
species exist that merit independent conservation evaluation and effort. As congruent evidence
from multiple lineages for small endemic areas accumulates, the basic units of conservation
strategy both multiply and shrink in size.

In sum, our findings reject the hypothesis of S. flavidus as a single widespread species but rather
suggest it is a radiation of at least 16 short-range endemics that colonized the Caribbean over 30
my ago.

ACKNOWLEDGEMENTS

We would like to thank all the members of the CarBio team, especially those involved in
expeditions in Puerto Rico (2011), the Dominican Republic (2012), Cuba (2012), the Lesser
Antilles (2013) and North America (2013) including Mexico (2014). We are especially grateful
to the following for help with organizing fieldwork Alexander Sanchez (Cuba), Lauren Esposito,
Gabriel de los Santos, Solanly Carrero, and Kelvin Guerrero (Dominican Republic). Oscar
Francke and Alejandro Valdez (Mexico), Lauren Esposito (Jamaica and the Lesser Antilles). Our
sincere thanks to all our CarBio collaborators for participation in these fieldtrips and research,
including Carlos Viquez, Abel González, Giraldo Alayon, Franklyn Cala-Riquelme, Aylin
Alegre, RenHanna Madden, Rodrigo Monjaraz, Nadine Duperre, Bernhard Huber, Matjaz
Kuntner, and many more (see islandbiogeography.org). Many current and graduated members of
the Agnarsson and the Binford labs were also instrumental in organizing and executing fieldwork
including Anne McHugh, Zamira Yusseff-Vanegas, Gigi Veve, Lisa Chamberland, Federico
Lopez-Osorio, Carol Yablonsky, Sarah Kechejian, Laura Caicedo-Quiroga, Jose Sanchez,
Angela Alicea, Trevor Bloom, Ian Petersen, Alex Nishita, Katy Loubet-Senear, Sasha Bishop,
Charlotte Francisco, Eva Ramey, Ian Voorhees, Angela Chuang, Micah Machina and many
more. Maxwell Stuart helped with photography and DNA work. All material was collected under
appropriate collection permits and approved guidelines. Additional logistic support was provided
by Fideicomiso de Conservación de Puerto Rico, Universidad Interamericana de Puerto Rico,
and Casa Verde, Maunabo. Comments from Fabian Condamine, Miquel Arnedo and Jason Ali
greatly improved the manuscript.

Table 1. Summary of species delimitation. Species hypotheses (first column) represent colored
and numbered clades on Figure 1. The various measures of distance and other of isolation and
exclusivity metrics of these clades follow including: genetic distance within putative species (D
intra), genetic distance to the nearest putative species (D inter) the probability of population
identification of a hypothetical sample based on the groups being tested (P ID(Strict) and P ID
(Liberal)), Rosenberg’s reciprocal monophyly (P(AB)), the genealogical sorting index (gsi), and
a single locus Bayesian implementation of the Poisson tree processes model (bPTP). Sp congru.
refers to species hypothesis that are congruent with all methods, and Sp cons. is our conservative
estimate of actual species richness based on agreement among all methods and GSI>85 and >2%
mtDNA sequence divergence.

Agnarsson I. 2010. The utility of ITS2 in spider phylogenetics: notes on prior work and an
example from Anelosimus. Journal of Arachnology 38:377-382.
Agnarsson I, Cheng RC, and Kuntner M. 2014. A Multi-Clade Test Supports the Intermediate
Dispersal Model of Biogeography. Plos One 9.
Agnarsson I, and Kuntner M. 2012. The Generation of a Biodiversity Hotspot: Biogeography and
Phylogeography of the Western Indian Ocean Islands. In: Anamthawat-Jonsson K, ed.
Current Topics in Phylogenetics and Phylogeography of Terrestrial and Aquatic Systems.
Rijeka: In Tech Publishers, 33-82.
Agnarsson I, Maddison WP, and Aviles L. 2007. The phylogeny of the social Anelosimus spiders
(Araneae : Theridiidae) inferred from six molecular loci and morphology. Molecular
Phylogenetics and Evolution 43:833-851.
Agnarsson I, and Rayor LS. 2013. A molecular phylogeny of the Australian huntsman spiders
(Sparassidae, Deleninae): Implications for taxonomy and social behaviour. Molecular
Phylogenetics and Evolution 69:895-905.
Ali JR. 2012. Colonizing the Caribbean: is the GAARlandia land-bridge hypothesis gaining a
foothold? Journal of Biogeography 39:431-433.
Alonso R, Crawford AJ, and Bermingham E. 2012. Molecular phylogeny of an endemic
radiation of Cuban toads (Bufonidae: Peltophryne) based on mitochondrial and nuclear
genes. Journal of Biogeography 39:434-451.
Baldwin BG, and Sanderson MJ. 1998. Age and rate of diversification of the Hawaiian
silversword alliance (Compositae). Proceedings of the National Academy of Sciences of
the United States of America 95:9402-9406.
Bell JR, Bohan DA, Shaw EM, and Weyman GS. 2005. Ballooning dispersal using silk: world fauna, phylogenies, genetics and models. *Bull Entomol Res* 95:69-114.

Bellemain E, and Ricklefs RE. 2008. Are islands the end of the colonization road? *Trends in Ecology & Evolution* 23:461-468.

Bidegaray-Batista L and Arnedo MA. 2011. Gone with the plate: the opening of the Western Mediterranean basin drove the diversification of ground-dweller spiders. *BMC Evolutionary Biology* 11, 317

Binford GJ, Callahan MS, Bodner MR, Rynerson MR, Nunez PB, Ellison CE, and Duncan RP. 2008. Phylogenetic relationships of Loxosceles and Sicarius spiders are consistent with Western Gondwanan vicariance. *Molecular Phylogenetics and Evolution* 49:538-553.

Bond JE, Garrison NL, Hamilton CA, Godwin RL, Hedin M, and Agnarsson I. 2014. Phylogenomics resolves a spider backbone phylogeny and rejects a prevailing paradigm for orb web evolution. *Current Biology* 24:1-6

Claramunt S, Derryberry EP, Remsen JV, Jr., and Brumfield RT. 2012. High dispersal ability inhibits speciation in a continental radiation of passerine birds. *Proceedings of the Royal Society B-Biological Sciences* 279:1567-1574.

Coddington JA, Agnarsson I, Miller JA, Kuntner M, and Hormiga G. 2009. Undersampling bias: the null hypothesis for singleton species in tropical arthropod surveys. *Journal of Animal Ecology* 78:573-584.

Coddington JA, Griswold CE, Davila DS, Penaranda E, and Larcher SF. 1991. *Designing and testing sampling protocols to estimate biodiversity in tropical ecosystems*.

Condamine FL, Nagalingum NS, Marshall CR, and Morlon H. 2015. Origin and diversification of living cycads: a cautionary tale on the impact of the branching process prior in Bayesian molecular dating. *BMC Evolutionary Biology* 15:65.

Crews SC, and Gillespie RG. 2010. Molecular systematics of Selenops spiders (Araneae: Selenopidae) from North and Central America: implications for Caribbean biogeography. *Biological Journal of the Linnean Society* 101:288-322.

Cummings MP, Neel MC, and Shaw KL. 2008. A genealogical approach to quantifying lineage divergence. *Evolution* 62:2411-2422.

Darriba D, Taboada GL, Doallo R, and Posada D. 2012. jModelTest 2: more models, new heuristics and parallel computing. *Nature Methods* 9:772-772.

Darwin C. 1859. *On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life*, 1st edition. London: John Murray.

Davalos LM. 2004. Phylogeny and biogeography of Caribbean mammals. *Biological Journal of the Linnean Society* 81:373-394.

Diamond JM, Gilpin ME, and Mayr E. 1976. Species-Distance Relation for Birds of Solomon Archipelago, and Paradox of Great Speciators. *Proceedings of the National Academy of Sciences of the United States of America* 73:2160-2164.

Drummond AJ, Suchard MA, Xie D, Rambaut A. 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29:1969-1973

Drummond AJ, and Rambaut A. 2007. BEAST: Bayesian evolutionary analysis by sampling trees. *Bmc Evolutionary Biology* 7.

Fabre P-H, Vilstrup JT, Raghavan M, Sarkissian CD, Willerslev E, Douzery EJP, and Orlando L. 2014. Rodents of the Caribbean: origin and diversification of hutias unravelled by next-generation museomics. *Biology Letters* 10.
Folmer O, Black M, Hoeh W, Lutz R, and Vrijenhoek R. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidases subunit I from diverse metazoan invertebrates. *Molecular Marine Biology and Biotechnology* 3:294-299.

Gillespie RG, and Roderick GK. 2002. Arthropods on islands: Colonization, speciation, and conservation. *Annual Review of Entomology* 47:595-632.

Green P. 2009. Phrap. 1.090518 ed.

Green P, and Ewing B. 2002. PHRED. 0.020425c ed: Available at http://phrap.org/.

Harvey MS. 2002. Short-range endemism amongst the Australian fauna: some examples from non-marine environments. *Invertebrate Systematics* 16(4) 555 - 570

Heads M. 2011. Old Taxa on Young Islands: A Critique of the Use of Island Age to Date Island-Endemic Clades and Calibrate Phylogenies. *Systematic Biology* 60:204-U142.

Heaney LR. 2007. Is a new paradigm emerging for oceanic island biogeography? *Journal of Biogeography* 34:753-757.

Hebert PDN, Cywinska A, Ball SL, and DeWaard JR. 2003. Biological identifications through DNA barcodes. *Proceedings of the Royal Society of London Series B-Biological Sciences* 270:313-321.

Hedges SB. 1996a. Historical biogeography of West Indian vertebrates. *Annual Review of Ecology and Systematics* 27:163-196.

Hedges SB. 1996b. Vicariance and dispersal in Caribbean biogeography. *Herpetologica* 52:466-473.

Hedges SB. 2006. Paleogeography of the Antilles and origin of West Indian terrestrial vertebrates. *Annals of the Missouri Botanical Garden* 93:231-244.

Hedges SB, and Heinicke MP. 2007. Molecular phylogeny and biogeography of west Indian frogs of the genus Leptodactylus (Anura, Leptodactylidae). *Molecular Phylogenetics and Evolution* 44:308-314.

Houbena, A.J.P., van Mourik C.A., Montanari, A., Coccioni, R. & Brinkhuism H. 2012. Cenozoic Evolution of Antarctic Climates, Oceans and Ice Sheets. Palaeogeography, Palaeoclimatology, Palaeoecology 335–336:75–83.

Iturralde-Vinent M. 1998. Proposed IGCP project on Caribbean plate tectonics. *Episodes* 21:201-201.

Iturralde-Vinent M, and MacPhee R. 1999. Paleogeography of the Caribbean region: implications for cenozoic biogeography. *Bulletin of the American Museum of Natural History* 238:1-95.

Iturralde-Vinent MA. 2006. Meso-Cenozoic Caribbean Paleogeography: Implications for the Historical Biogeography of the Region. *International Geology Review* 48.

Katoh S. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. *Molecular Biology and Evolution* 30:772-780.

Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, and Drummond A. 2012. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. *Bioinformatics* 28:1647-1649.

Kuntner M, and Agnarsson I. 2011a. Biogeography and diversification of hermit spiders on Indian Ocean islands (Nephilidae: Nephilengys). *Molecular Phylogenetics and Evolution* 59:477-488.

Kuntner M, and Agnarsson I. 2011b. Phylogeography of a successful aerial disperser: the golden orb spider Nephila on Indian Ocean islands. *Bmc Evolutionary Biology* 11.
Kuntner M, Arnedo MA, Trontelj P, Lokovšun T, and Agnarsson I. 2013. A molecular phylogeny of nephilid spiders: Evolutionary history of a model lineage.

Levi HW. 1954. The spider genera Episinus and Spintharus from North America, Central America and the West Indies (Araneae: Theridiidae). J NY Ent Soc 52:65-90.

Levi HW. 1963. The American spider genera Spintharus and Thwaitesia (Araneae: Theridiidae). Psyche (Cambridge) 70:223-234.

Losos J, and Ricklefs R. 2010. The Theory of Island Biogeography Revisited. Princeton: Princeton Univ Press.

Losos JB, and DeQueiroz K. 1997. Evolutionary consequences of ecological release in Caribbean Anolis lizards. Biological Journal of the Linnean Society 61:459-483.

Losos JB, Jackman TR, Larson A, de Queiroz K, and Rodriguez-Schettino L. 1998. Contingency and determinism in replicated adaptive radiations of island lizards. Science 279:2115-2118.

Maddison DR, and Maddison WP. 2011a. Chromaseq: a Mesquite module for analyzing sequence chromatograms, version 1.0. 1.0 ed.

Maddison W, and Maddison D. 2011b. Mesquite: a modular system for evolutionary analysis. 2.75 (build 566) ed: http://mesquiteproject.org.

Masters BC, Fan V, and Ross HA. 2011. Species delimitation - a geneous plugin for the exploration of species boundaries. Molecular Ecology Resources 11:154-157.

Matos-Maravi P, Aguila RN, Pena C, Miller JY, Sourakov A, and Wahlberg N. 2014. Causes of endemic radiation in the Caribbean: evidence from the historical biogeography and diversification of the butterfly genus Calisto (Nymphalidae: Satyrinae: Satyrini). Bmc Evolutionary Biology 14:199.

McHugh A, Yablonsky C, Binford G, and Agnarsson I. 2014. Molecular phylogenetics of Caribbean Micrathena (Araneae : Araneidae) suggests multiple colonisation events and single island endemism. Invertebrate Systematics 28:337-349.

Miller MA, Schwartz T, Pickett BE, He S, Klem HB, Scheuermann RH, Passarotti M, Kaufman S, and O’Leary MA. 2015. A RESTful API for Access to Phylogenetic Tools via the CIPRES Science Gateway. Evolutionary Bioinformatics 11, 43-48.DOI: 10.4137/EBO.S21501.

Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, and Kent J. 2000. Biodiversity hotspots for conservation priorities. Nature 403:853-858.

Pena C, Nylin S, Freitas AVL, and Wahlberg N. 2010. Biogeographic history of the butterfly subtribe Euptychiina (Lepidoptera, Nymphalidae, Satyrinae). Zoologica Scripta 39:243-258.

Rican O, Pialek L, Zardoys R, Doadrio I, and Zrzavy J. 2013. Biogeography of the Mesoamerican Cichlidae (Teleostei: Heroini): colonization through the GAARlandia land bridge and early diversification. Journal of Biogeography 40:579-593.

Ricklefs R, and Bermingham E. 2008. The West Indies as a laboratory of biogeography and evolution. Philosophical Transactions of the Royal Society B-Biological Sciences 363:2393-2413.

Rodrigo A, Bertels F, Heled J, Noder R, Shearman H, and Tsai P. 2008. The perils of plenty: what are we going to do with all these genes? Philosophical Transactions of the Royal Society B-Biological Sciences 363:3893-3902.
Figure legends

Figure 1. Results of a bayesian analysis of the three concatenated loci summarized in terms of region and clade uniqueness. Outgroups are omitted for clarity. Color coded and numbered clades represent our initial species hypotheses based on this tree and barcoding gaps. Encircled numbers on nodes refer to our ‘conservative’ estimates of actual species richness (see Table 1). Numbers below nodes are posterior probability values, bold indicate clades recovered in the Bayesian analysis of the small nuDNA dataset alone. Results from maximum likelihood analyses...
of the same dataset are largely congruent, numbers above clades are ML bootstraps. For details of specimens in each clade see supplementary Nexus file and Table S1. Inset map shows collecting sites for this study.

Figure 2. Results of a dated BEAST analysis. Numbers on scale and nodes are in my ago. Stars indicate calibration points of the analysis. Blue bar represents the span of the GAARLandia landbridge and the arrow points to the timing of colonization of the Caribbean plus N. America. The age of the Caribbean island clade is estimated between 33-19 my ago.

Figure 3. Results of a preliminary RASP biogeographical analysis of ancestral areas under the Bayesian binary model. The results indicate colonization of the N. American + Caribbean clade from S America, and subsequently the Caribbean from N. America (Yucatan). The ancestral state for the Caribbean is a mixture of islands and continent. Hispaniola was colonized from Cuba and the results indicate the colonization of Puerto Rico via the Lesser Antilles. Inset photographs are of adult females from the corresponding area on the cladogram, showing a part of the diversity of external morphology, especially coloration, in this clade.
Table 1 (on next page)

results of species delimitation analyses

Summary of species delimitation. Species hypotheses (first column) represent colored and numbered clades on Figure 1. The various measures of distance and other of isolation and exclusivity metrics of these clades follow including: distance (D), the probability of population identification of a hypothetical sample based on the groups being tested (P ID(Strict) and P ID (Liberal)), Rosenberg’s reciprocal monophyly (P(AB)), the genealogical sorting index (gsi), and a single locus Bayesian implementation of the Poisson tree processes model (bPTP). Sp congru. refers to species hypothesis that are congruent with all methods, and Sp cons. is our conservative estimate of actual species richness based on agreement among all methods and >2% mtDNA sequence divergence.
Sp Hyp.	Mono	D Intra	D Inter	Dtra/Dter	P ID(Straight)	P ID(Liberal)	P(AB) GSI	bPTP	Sp congru.	Sp cons.
Mex 1	yes	0.008	0.080	0.1	0.66 (0.49, 0.84)	0.96 (0.83, 1.0)	0.02	1	Y	1
USA 1	yes	n/a	0.080	n/a	n/a	0.96 (0.83, 1.0)	0.06	1	N	2
USA 3	yes	0.001	0.025	0.04	0.71 (0.54, 0.89)	0.94 (0.80, 1.0)	0.17	1	N	1
USA 2	no	0.005	0.025	0.2	0.33 (0.22, 0.44)	0.68 (0.61, 0.74)	NA	0.83	N	0
Mex 2	yes	0.002	0.083	0.02	0.58 (0.43, 0.73)	0.97 (0.82, 1.0)	1.60E-05	1	Y	3
Jam	yes	0.0004	0.067	0.005	0.76 (0.58, 0.93)	0.98 (0.84, 1.0)	4.20E-04	1	Y	4
Grenada	yes	0.0036	0.026	0.14	0.52 (0.36, 0.67)	0.89 (0.74, 1.0)	0.05	1	Y	5
St Lucía	yes	0.000	0.026	0	0.66 (0.48, 0.84)	0.90 (0.75, 1.0)	0.05	1	Y	6
St Kitts	yes	0.002	0.015	0.13	0.58 (0.40, 0.75)	0.82 (0.68, 0.97)	0.02	1	Y	7
PR	yes	0.0006	0.015	0.04	0.65 (0.47, 0.83)	0.89 (0.74, 1.0)	0.02	1	Y	8
Dom	yes	n/a	0.062	n/a	0.96 (0.83, 1.0)	0.99 (0.84, 1.0)	5.80E-04	1	Y	9
CU1	yes	0.005	0.041	0.012	0.77 (0.59, 0.94)	0.97 (0.83, 1.0)	1.85E-03	1	Y	10
CU2	yes	0	0.027	0	0.75 (0.57, 0.92)	0.97 (0.83, 1.0)	1.85E-03	1	Y	11
CU3	yes	0.002	0.027	0.07	0.81 (0.70, 0.91)	0.93 (0.86, 0.99)	1.85E-03	1	Y	12
DR1	yes	0.001	0.032	0.03	0.67 (0.49, 0.85)	0.90 (0.76, 1.0)	1.80E-04	1	Y	13
DR2	yes	0.005	0.026	0.19	0.88 (0.77, 0.99)	0.96 (0.90, 1.0)	4.40E-05	1	Y	14
DR3	yes	0.002	0.026	0.07	0.65 (0.48, 0.83)	0.89 (0.75, 1.0)	0.01	1	Y	15
DR4	yes	0.003	0.031	0.01	0.75 (0.60, 0.89)	0.94 (0.83, 1.0)	0.01	0.83	Y	16
CU4	yes	0.002	0.010	0.2	0.73 (0.61, 0.86)	0.93 (0.83, 1.0)	1.06E-03	1	Y	17
CU5	yes	0.003	0.010	0.3	0.61 (0.47, 0.75)	0.87 (0.76, 0.98)	1.06E-03	1	Y	18
CU6	yes	0	0.024	0	0.73 (0.56, 0.91)	0.96 (0.81, 1.0)	0.01	0.92	Y	19
CU7	yes	0.003	0.026	0.2	0.74 (0.59, 0.88)	0.93 (0.83, 1.0)	0.01	1	Y	20
phylogenetic tree

Figure 1. Results of a bayesian analysis of the three concatenated loci summarized in terms of region and clade uniqueness. Outgroups are omitted for clarity. Color coded and numbered clades represent our initial species hypotheses based on this tree and barcoding gaps. Encircled numbers on nodes refer to our ‘conservative’ estimates of actual species richness (see Table 1). Numbers below nodes are posterior probability values. Results from maximum likelihood analyses of the same dataset are largely congruent. For details of specimens in each clade see supplementary Nexus file and Table S1. Inset map shows collecting sites for this study.
2

dated phylogenetic tree

Figure 2. Results of a dated BEAST analysis. Numbers on scale and nodes are in mya. Stars indicate calibration points of the analysis. Blue bar represents the span of the GAARLandia landbridge and the arrow points to the timing of colonizaiton of the Caribbean plus N. America. The age of the Caribbean island clade is estimated between 33-19 mya.
biogeographical analysis

Figure 3. Results of a preliminary RASP biogeographical analysis of ancestral areas under the Bayesian binary model. The results indicate colonization of the N. American + Caribbean clade from S America, and subsequently the Caribbean from N. America (Yucatan). The ancestral state for the Caribbean is a mixture of islands and continent. Hispaniola was colonized from Cuba and the results indicate the colonization of Puerto Rico via the Lesser Antilles. Inset photographs are of adult females from the corresponding area on the cladogram, showing a part of the diversity of external morphology, especially coloration, in this clade.
