Estimates for the higher order buckling eigenvalues in the unit sphere

Guangyue Huang, Xingxiao Li † Xuerong Qi
Department of Mathematics, Henan Normal University
Xinxiang 453007, Henan, P.R. China

August 12, 2009

Abstract. We consider the higher order buckling eigenvalues of the following Dirichlet poly-Laplacian in the unit sphere \((-\Delta)^p u = \Lambda(-\Delta)u\) with order \(p \geq 2\). We obtain universal bounds on the \((k+1)\)th eigenvalue in terms of the first \(k\)th eigenvalues independent of the domains. In particular, for \(p = 2\), our result is sharper than estimates on eigenvalues of the buckling problem obtained by Wang and Xia in [19].

Keywords: eigenvalue, poly-Laplacian, buckling problem, unit sphere.
Mathematics Subject Classification: Primary 35P15, Secondary 53C20.

1 Introduction

Let \(\Omega\) be a connected bounded domain in an \(n\)-dimensional complete Riemannian manifold \(M\).

Assume that \(\lambda_i\) is the \(i\)th eigenvalue of the Dirichlet poly-Laplacian with order \(p\):

\[
\begin{align*}
\begin{cases}
(-\Delta)^p u = \lambda u & \text{in } \Omega, \\
\frac{\partial u}{\partial \nu} = \cdots = \frac{\partial^{p-1} u}{\partial \nu^{p-1}} = 0 & \text{on } \partial \Omega,
\end{cases}
\end{align*}
\]

(1.1)

where \(\Delta\) is the Laplacian in \(M\) and \(\nu\) denotes the outward unit normal vector field of \(\partial \Omega\). Let \(0 < \lambda_1 \leq \lambda_2 \leq \lambda_3 \leq \cdots \to +\infty\) denote the successive eigenvalues for (1.1), where each eigenvalue is repeated according to its multiplicity. When \(p = 1\), it is well known that the eigenvalue problem (1.1) is called a fixed membrane problem and it is called a clamped plate problem when \(p = 2\). For any \(p\) and \(M = \mathbb{R}^n\), Cheng-Ichikawa-Mametsuka proved in [5] the following inequality of the type of Yang:

\[
\sum_{i=1}^{k} (\lambda_{k+1} - \lambda_i)^2 \leq \frac{4p(2p + n - 2)}{n^2} \sum_{i=1}^{k} (\lambda_{k+1} - \lambda_i)\lambda_i.
\]

(1.2)

*This research is supported by NSFC of China (No. 10671181), Project of Henan Provincial department of Sciences and Technology (No. 092300410143), and NSF of Henan Provincial Education department (No. 2009A110010).

†The corresponding author. Email: xxl@henannu.edu.cn
In particular, when \(p = 1 \), the inequality \((1.2)\) becomes the following inequality of Yang in [22]:

\[
\sum_{i=1}^{k} (\lambda_{k+1} - \lambda_i)^2 \leq \frac{4}{n} \sum_{i=1}^{k} (\lambda_{k+1} - \lambda_i) \lambda_i.
\]

In an excellent paper of Cheng-Ichikawa-Mametsuka [4], by introducing functions \(a_i \) and \(b_i \), they considered the eigenvalue problem \((1.1)\) with any order \(p \) and \(M = S^n(1) \). They proved that

\[
\sum_{i=1}^{k} (\lambda_{k+1} - \lambda_i)^2 \leq \frac{4}{n^2} \sum_{i=1}^{k} (\lambda_{k+1} - \lambda_i) \left\{ \left(\frac{1}{\lambda_i^p} + n \right)^p - \lambda_i \right\} + 4 \left(2^p - (p + 1) \right) \lambda_i^p \left(\frac{1}{\lambda_i^p} + n \right)^{p-2} \left(\frac{\lambda_i^p + n^2}{4} \right).
\]

We remark that the inequality (2.19) in [6] of Cheng-Yang and inequality (4.16) in [18] of Wang-Xia are included in the inequality (1.3). For the related research and important improvement in eigenvalue problem \((1.1)\), we refer to [1–3, 7, 8, 10, 11, 14–17, 20, 21] and the references therein.

Now assume that \(\Lambda_i \) is the \(i \)th eigenvalue of the following Dirichlet poly-Laplacian with order \(p \) (\(\geq 2 \)):

\[
\begin{aligned}
(-\Delta)^p u &= \Lambda (-\Delta) u & \text{in } \Omega, \\
u &= \frac{\partial u}{\partial \nu} = \cdots = \frac{\partial^{p-1} u}{\partial \nu^{p-1}} = 0 & \text{on } \partial \Omega.
\end{aligned}
\]

It is well known that this problem has a discrete spectrum \(0 < \Lambda_1 \leq \Lambda_2 \leq \Lambda_3 \leq \cdots \rightarrow +\infty \), where each eigenvalue is repeated according to its multiplicity. When \(p = 2 \), the eigenvalue problem \((1.4)\) is called a buckling problem. By introducing a new method to construct nice trial functions, Cheng-Yang obtained in [9] that, for \(p = 2 \) and \(M = \mathbb{R}^n \),

\[
\sum_{i=1}^{k} (\Lambda_{k+1} - \Lambda_i)^2 \leq \frac{4(n + 2)}{n^2} \sum_{i=1}^{k} (\Lambda_{k+1} - \Lambda_i) \Lambda_i.
\]

As a generalization of inequality \((1.5)\), Huang-Li [12] considered the problem \((1.4)\) with any order \(p \). In fact, for \(M = \mathbb{R}^n \), they proved that

\[
\sum_{i=1}^{k} (\Lambda_{k+1} - \Lambda_i)^2 \leq \frac{4(p - 1)(n + 2p - 2)}{n^2} \sum_{i=1}^{k} (\Lambda_{k+1} - \Lambda_i) \frac{2p-2}{\Lambda_i^{p-1}}.
\]

In 2007, Wang and Xia [19] considered this problem when \(p = 2 \) and \(M = S^n(1) \). They proved that, for any \(\delta > 0 \),

\[
2 \sum_{i=1}^{k} (\Lambda_{k+1} - \Lambda_i)^2 \leq \sum_{i=1}^{k} (\Lambda_{k+1} - \Lambda_i)^2 \left(\delta \Lambda_i + \frac{\delta^2(\Lambda_i - (n-2))}{4(\delta \Lambda_i + n - 2)} \right)
+ \frac{1}{\delta} \sum_{i=1}^{k} (\Lambda_{k+1} - \Lambda_i) \left(\Lambda_i + \frac{(n-2)^2}{4} \right).
\]
We remark that the right hand side of inequality (1.7) depends on δ. In a recent paper, by introducing a new parameter and using Cauchy inequality, Huang-Li-Cao [13] obtain the following stronger inequality than (1.7) which is independent of δ:

$$
\sum_{i=1}^{k} (\Lambda_{k+1} - \Lambda_i)^2 \left(2 + \frac{n-2}{\Lambda_i - (n-2)} \right)
\leq 2 \left\{ \sum_{i=1}^{k} (\Lambda_{k+1} - \Lambda_i)^2 \left(\Lambda_i - \frac{n-2}{\Lambda_i - (n-2)} \right) \right\}^{\frac{1}{2}}
\times \left\{ \sum_{i=1}^{k} (\Lambda_{k+1} - \Lambda_i) \left(\Lambda_i + \frac{(n-2)^2}{4} \right) \right\}^{\frac{1}{2}},
$$

(1.8)

Motivated by the idea used in [4], we consider in this paper the eigenvalue problem (1.4) for any integer $p \geq 2$ when M is $S^n(1)$. We obtain the following results:

Theorem 1.1. Let Ω be a connected bounded domain in an n-dimensional unit sphere $S^n(1)$. Assume that Λ_i is the ith eigenvalue of the eigenvalue problem (1.4) with $p \geq 2$. Then, we have

$$
\sum_{i=1}^{k} (\Lambda_{k+1} - \Lambda_i)^2 \left(2 + \frac{n-2}{\Lambda_i - (n-2)} \right)
\leq 2 \left\{ \sum_{i=1}^{k} (\Lambda_{k+1} - \Lambda_i)^2 \left(f(\Lambda_i, n) - \frac{\Lambda_i}{\Lambda_i - (n-2)} \right) \right\}^{\frac{1}{2}}
\times \left\{ \sum_{i=1}^{k} (\Lambda_{k+1} - \Lambda_i) \left(\Lambda_i + \frac{(n-2)^2}{4} \right) \right\}^{\frac{1}{2}},
$$

(1.9)

where

$$
f(\Lambda_i, n) = \frac{1}{2(n-1)} \left(\left(\Lambda_i^{\frac{p-1}{p}} + n \right)^{p-1} - \left(\Lambda_i^{\frac{p-1}{p}} - n + 2 \right)^{p-1} \right)
+ \frac{n}{(n-1)\Lambda_i^{\frac{p-1}{p}}} \left(\Lambda_i^{\frac{1}{p}} + n \right)^{p-2} - \frac{1}{n-1} \Lambda_i^{\frac{p-3}{p}} \left(\Lambda_i^{\frac{1}{p}} - n + 2 \right)^{p-2}
+ 2 (2^{p-1} - p) \Lambda_i^{\frac{1}{p}} \left(\Lambda_i^{\frac{1}{p}} + n \right)^{p-3}
+ 4 (2^{p-2} - (p-1)) \Lambda_i^{\frac{2}{p-1}} \left(\Lambda_i^{\frac{1}{p-1}} + n \right)^{p-4}.
$$

Corollary 1.2. Under the assumptions of Theorem 1.1, we have

$$
\sum_{i=1}^{k} (\Lambda_{k+1} - \Lambda_i)^2 \leq \sum_{i=1}^{k} (\Lambda_{k+1} - \Lambda_i) \left(f(\Lambda_i, n) - \frac{\Lambda_i}{\Lambda_i - (n-2)} \right)
\times \left(\Lambda_i + \frac{(n-2)^2}{4} \right),
$$

(1.10)
Estimates for the higher order buckling eigenvalues

\[\Lambda_{k+1} \leq S_{k+1} + \sqrt{S_{k+1}^2 - T_{k+1}}, \]
(1.11)

and

\[\Lambda_{k+1} - \Lambda_k \leq 2\sqrt{S_{k+1}^2 - T_{k+1}}, \]
(1.12)

where

\[S_{k+1} = \frac{1}{k} \sum_{i=1}^{k} \Lambda_i + \frac{1}{2k} \sum_{i=1}^{k} \left(f(\Lambda_i, n) - \frac{\Lambda_i}{\Lambda_i - (n-2)} \right) \left(\Lambda_i + \frac{(n-2)^2}{4} \right), \]

\[T_{k+1} = \frac{1}{k} \sum_{i=1}^{k} \Lambda_i^2 + \frac{1}{k} \sum_{i=1}^{k} \Lambda_i \left(f(\Lambda_i, n) - \frac{\Lambda_i}{\Lambda_i - (n-2)} \right) \left(\Lambda_i + \frac{(n-2)^2}{4} \right). \]

Remark 1.1. When \(p = 2 \), we have \(f(\Lambda_i, n) = \Lambda_i + 1 \) and

\[f(\Lambda_i, n) - \frac{\Lambda_i}{\Lambda_i - (n-2)} = \Lambda_i - \frac{n-2}{\Lambda_i - (n-2)}. \]

Hence, for \(p = 2 \), our inequality (1.9) becomes the inequality (1.8) of Huang-Li-Cao. Moreover, the inequality (1.9) is sharp than the inequality (1.7) of Wang and Xia in [19].

2 Proof of the main theorem

Let \(u_i \) be the \(i \)th orthonormal eigenfunction of the problem (1.4) corresponding to the eigenvalue \(\Lambda_i \), that is, \(u_i \) satisfies

\[\begin{cases} (-\Delta)^p u_i = \Lambda_i (-\Delta) u_i & \text{in } \Omega, \\ u_i = \frac{\partial u_i}{\partial \nu} = \cdots = \frac{\partial^{p-1} u_i}{\partial \nu^{p-1}} = 0 & \text{on } \partial \Omega, \\ \int_{\Omega} \langle \nabla u_i, \nabla u_j \rangle = \delta_{ij}. \end{cases} \]

(2.1)

Let \(x_1, x_2, \ldots, x_{n+1} \) be the standard Euclidean coordinate functions of \(\mathbb{R}^{n+1} \). Then the unit sphere is defined by

\[S^n(1) = \left\{ (x_1, x_2, \ldots, x_{n+1}) \in \mathbb{R}^{n+1} : \sum_{a=1}^{n+1} x_a^2 = 1 \right\}. \]

Then by a rather long computation and a careful analysis, we are able to derive a sequence of inequalities which can be successfully used to prove the following key proposition of the present paper:
Proposition 2.1.

\[
\sum_{\alpha=1}^{n+1} \int_{\Omega} ((\nabla x_{\alpha}, \nabla u_i) + x_{\alpha} \Delta u_i) (-\Delta)^{p-2} ((\nabla x_{\alpha}, \nabla u_i) + x_{\alpha} \Delta u_i) \\
\leq \frac{1}{2(n-1)} \left(\left(\Lambda^\frac{1}{p-1} + n \right)^{p-1} - \left(\Lambda^\frac{1}{p-1} - n + 2 \right)^{p-1} \right) \\
+ \frac{n}{(n-1)} \Lambda^\frac{1}{p-1} \left(\Lambda^\frac{1}{p-1} + n \right)^{p-2} - \frac{1}{n-1} \Lambda^\frac{1}{p-1} \left(\Lambda^\frac{1}{p-1} - n + 2 \right)^{p-2} \\
+ 2 \left(2^{p-1} - p \right) \Lambda^\frac{1}{p-1} \left(\Lambda^\frac{1}{p-1} + n \right)^{p-3} \\
+ 4(2^{p-2} - (p-1)) \Lambda^\frac{2}{p-1} \left(\Lambda^\frac{1}{p-1} + n \right)^{p-4}.
\]

(2.2)

We should remark that the main idea in proving Proposition 2.1 is similar to that in reference [4]. However, here in our case, it seems a little more complicated than in the case they considered.

For functions \(f \) and \(g \) defined on \(\Omega \), we define the Dirichlet inner product \((f, g)_D\) by

\[
(f, g)_D = \int_{\Omega} (\nabla f, \nabla g)
\]

and the Dirichlet norm of \(f \) by

\[
\|f\|_D = ((f, g)_D)^{1/2} = \left(\int_{\Omega} |\nabla f|^2 \right)^{1/2}.
\]

Define \(H^2_p(\Omega) \) by

\[
H^2_p(\Omega) = \{ f : f, |\nabla f|, \ldots, |\nabla^p f| \in L^2(\Omega) \},
\]

where

\[
|\nabla^p f|^2 = \sum_{i_1, \ldots, i_p=1}^{n} |\nabla_{i_1} \nabla_{i_2} \cdots \nabla_{i_p} f|^2.
\]

Then \(H^2_p(\Omega) \) is a Hilbert space with respect to the norm \(\| \cdot \|_p \):

\[
\|f\|_p = \left(\int_{\Omega} \left(f^2 + |\nabla f|^2 + \cdots + |\nabla^p f|^2 \right) \right)^{1/2}.
\]

Consider the subspace \(H^2_{p,D}(\Omega) \) of \(H^2_p(\Omega) \) defined by

\[
H^2_{p,D}(\Omega) = \left\{ f \in H^2_p(\Omega) : f = \frac{\partial f}{\partial n} = \cdots = \frac{\partial^{p-1} f}{\partial n^{p-1}} = 0 \text{ on } \partial \Omega \right\}.
\]

Then the operator \((-\Delta)^p\) defines a self-adjoint operator acting on \(H^2_{p,D}(\Omega) \) for the eigenvalue problem \((1.4)\) and eigenfunctions \(\{u_i\}_{i=1}^{\infty} \) defined in \((2.1)\) form a complete orthonormal basis for the Hilbert space \(H^2_{p,D}(\Omega) \). For vector-valued functions

\[
F = (f_1, f_2, \ldots, f_{n+1}), \quad G = (g_1, g_2, \ldots, g_{n+1}) : \Omega \to \mathbb{R}^{n+1},
\]
we define the inner product \((F, G)\) by

\[
(F, G) = \int_{\Omega} \langle F, G \rangle = \int_{\Omega} \sum_{\alpha=1}^{n+1} f_\alpha g_\alpha.
\]

The norm of \(F\) is given by

\[
\|F\| = (F, F)^{\frac{1}{2}} = \left(\int_{\Omega} \sum_{\alpha=1}^{n+1} f_\alpha g_\alpha \right)^{\frac{1}{2}}.
\]

Let \(H^2_{p-1}(\Omega)\) be the Hilbert space of vector-valued functions given by

\[
H^2_{p-1}(\Omega) = \left\{ F = (f_1, f_2, \ldots, f_{n+1}) : f_\alpha, |\nabla f_\alpha|, \ldots, |\nabla^{p-1} f_\alpha| \in L^2(\Omega), \right. \\
\text{for } \alpha = 1, \ldots, n+1 \}
\]

with norm

\[
\|F\|_{p-1} = \left\{ \|F\|^2 + \int_{\Omega} \left(\sum_{\alpha=1}^{n+1} |\nabla f_\alpha|^2 + \cdots + \sum_{\alpha=1}^{n+1} |\nabla^{p-1} f_\alpha|^2 \right) \right\}^{\frac{1}{2}}.
\]

Observe that a vector field on \(\Omega\) can be regarded as a vector-valued function from \(\Omega\) to \(\mathbb{R}^{n+1}\). Let \(H^2_{p-1,D}(\Omega)\) be a subspace of \(H^2_{p-1}(\Omega)\) spanned by the vector-valued functions \(\{\nabla u_i\}_{i=1}^{\infty}\) which form a complete orthonormal basis of \(H^2_{p-1,D}(\Omega)\). For any \(f \in H^2_{p,D}(\Omega)\), we have \(\nabla f \in H^2_{p-1,D}(\Omega)\) and for any \(X \in H^2_{p-1,D}(\Omega)\), there exists a function \(f \in H^2_{p,D}(\Omega)\) such that \(X = \nabla f\).

Let \(x_1, x_2, \ldots, x_{n+1}\) be the standard Euclidean coordinate functions of \(\mathbb{R}^{n+1}\), and \(u_i\) be the \(i\)-th orthonormal eigenfunction of the problem \((1.4)\) corresponding to the eigenvalue \(\Lambda_i\) (see \((2.1)\)). For any \(\alpha = 1, 2, \ldots, n+1\) and each \(i = 1, \ldots, k\), we decompose the vector-valued functions \(x_\alpha \nabla u_i\) as

\[
x_\alpha \nabla u_i = \nabla h_{\alpha i} + W_{\alpha i}, \tag{2.3}
\]

where \(h_{\alpha i} \in H^2_{p,D}(\Omega)\), \(\nabla h_{\alpha i}\) is the projection of \(x_\alpha \nabla u_i\) in \(H^2_{p-1,D}(\Omega)\), \(W_{\alpha i} \perp H^2_{p-1,D}(\Omega)\). Thus we have

\[
(W_{\alpha i}, \nabla u) = \int_{\Omega} \langle W_{\alpha i}, \nabla u \rangle = 0, \text{ for any } u \in H^2_{p,D}(\Omega). \tag{2.4}
\]

By the denseness of \(H^2_{p,D}(\Omega)\) in \(L^2(\Omega)\) and \(C^1(\Omega)\) is dense in \(L^2(\Omega)\), we conclude that

\[
(W_{\alpha i}, \nabla h) = 0, \forall h \in C^1(\Omega) \cap L^2(\Omega), \tag{2.5}
\]

which implies from the divergence theorem that

\[
\int_{\Omega} h \text{ div}(W_{\alpha i}) = 0,
\]

where \(\text{div}(Z)\) denotes the divergence of \(Z\). Consequently, we get

\[
\text{div}(W_{\alpha i}) = 0. \tag{2.6}
\]
Define $\phi_{\alpha i}$ by

$$
\phi_{\alpha i} = h_{\alpha i} - \sum_{j=1}^{k} b_{\alpha ij} u_j,
$$

(2.7)

where

$$
b_{\alpha ij} = \int_{\Omega} x_{\alpha} \langle \nabla u_i, \nabla u_j \rangle = b_{\alpha ji}.
$$

Then we have

$$
\phi_{\alpha i} = \partial \phi_{\alpha i} / \partial \nu = \cdots = \partial^{p-1} \phi_{\alpha i} / \partial \nu^{p-1} = 0
$$

and

$$
(\phi_{\alpha i}, u_j)_D = \int_{\Omega} \langle \nabla \phi_{\alpha i}, \nabla u_j \rangle = 0, \quad \text{for any } j = 1, \ldots, k.
$$

(2.8)

It follows from the Rayleigh-Ritz inequality that

$$
\Lambda_{k+1} \leq \int_{\Omega} \phi_{\alpha i} (-\Delta)^p \phi_{\alpha i} \frac{\|\nabla \phi_{\alpha i}\|^2}{\|x_{\alpha} \nabla u_i\|^2},
$$

(2.9)

where $\|f\|^2 = \int_{\Omega} |f|^2$. It is easy to see from (2.7) and (2.8) that

$$
\int_{\Omega} \phi_{\alpha i} (-\Delta)^p \phi_{\alpha i} = \int_{\Omega} \phi_{\alpha i} \left((-\Delta)^p h_{\alpha i} - \sum_{j=1}^{k} b_{\alpha ij} \Lambda_j (-\Delta) u_j \right)
$$

$$
= \int_{\Omega} \phi_{\alpha i} (-\Delta)^p h_{\alpha i}
$$

$$
= \int_{\Omega} \left(h_{\alpha i} - \sum_{j=1}^{k} b_{\alpha ij} u_j \right) (-\Delta)^p h_{\alpha i}
$$

$$
= \int_{\Omega} h_{\alpha i} (-\Delta)^p h_{\alpha i} - \sum_{j=1}^{k} b_{\alpha ij} \int_{\Omega} u_j (-\Delta)^p h_{\alpha i}
$$

$$
= \int_{\Omega} h_{\alpha i} (-\Delta)^p h_{\alpha i} - \sum_{j=1}^{k} b_{\alpha ij} \int_{\Omega} h_{\alpha i} (-\Delta)^p u_j
$$

$$
= \int_{\Omega} h_{\alpha i} (-\Delta)^p h_{\alpha i} - \sum_{j=1}^{k} \Lambda_j b_{\alpha ij}^2.
$$

(2.10)

Since

$$
\|x_{\alpha} \nabla u_i\|^2 = \int_{\Omega} x_{\alpha}^2 |\nabla u_i|^2 = \|\nabla h_{\alpha i}\|^2 + \|W_{\alpha i}\|^2,
$$

(2.11)

$$
\|\nabla h_{\alpha i}\|^2 = \|\nabla \Phi_{\alpha i}\|^2 + \sum_{j=1}^{k} b_{\alpha ij}^2.
$$

(2.12)

Therefore, (2.10) can be written as

$$
\int_{\Omega} \phi_{\alpha i} (-\Delta)^p \phi_{\alpha i} = \int_{\Omega} h_{\alpha i} (-\Delta)^p h_{\alpha i} - \Lambda_i \|x_{\alpha} \nabla u_i\|^2
$$

$$
+ \Lambda_i \left(\|\nabla \phi_{\alpha i}\|^2 + \|W_{\alpha i}\|^2 + \sum_{j=1}^{k} b_{\alpha ij}^2 \right) - \sum_{j=1}^{k} \Lambda_j b_{\alpha ij}^2.
$$

(2.13)
Inserting (2.13) into (2.9) yields

\[
(\Lambda_{k+1} - \Lambda_i) \| \nabla \Phi_{\alpha_i} \|^2 \leq \int_\Omega h_{\alpha i} (-\Delta)^p h_{\alpha i} - \Lambda_i \| x_\alpha \nabla u_i \|^2 + \Lambda_i \| W_{\alpha i} \|^2 + \sum_{j=1}^k (\Lambda_i - \Lambda_j) b_{\alpha ij}^2
\]

\[= p_{\alpha i} + \| \langle \nabla x_\alpha, \nabla u_i \rangle \|^2 + \Lambda_i \| W_{\alpha i} \|^2 + \sum_{j=1}^k (\Lambda_i - \Lambda_j) b_{\alpha ij}^2, \tag{2.14}\]

where

\[
p_{\alpha i} = \int_\Omega h_{\alpha i} (-\Delta)^p h_{\alpha i} - \Lambda_i \| x_\alpha \nabla u_i \|^2 - \| \langle \nabla x_\alpha, \nabla u_i \rangle \|^2.
\]

Lemma 2.1. [18] Let

\[
c_{\alpha ij} = \int_\Omega \langle Z_{\alpha i}, u_j \rangle,
\]

where \(Z_{\alpha i} = \nabla \langle x_\alpha, \nabla u_i \rangle - \frac{n-2}{2} x_\alpha \nabla u_i\). Then we have

\[
c_{\alpha ij} = -c_{\alpha ji}.
\]

Note that

\[
-2 \int_\Omega \langle x_\alpha \nabla u_i, Z_{\alpha i} \rangle = -2 \int_\Omega \langle x_\alpha \nabla u_i, \nabla \langle x_\alpha, \nabla u_i \rangle \rangle + (n - 2) \int_\Omega x_\alpha^2 |\nabla u_i|^2
\]

\[= 2 \int_\Omega \langle x_\alpha, \nabla u_i \rangle^2 + \int_\Omega \langle x_\alpha^2, \nabla u_i \rangle \Delta u_i + (n - 2) \int_\Omega x_\alpha^2 |\nabla u_i|^2. \tag{2.15}\]

On the other hand, from (2.3), (2.5) and (2.8), we obtain

\[
-2 \int_\Omega \langle x_\alpha \nabla u_i, Z_{\alpha i} \rangle = -2 \int_\Omega \langle \nabla h_{\alpha i} + W_{\alpha i}, Z_{\alpha i} \rangle
\]

\[= -2 \int_\Omega \langle \nabla h_{\alpha i}, Z_{\alpha i} \rangle + (n - 2) \int_\Omega \langle W_{\alpha i}, x_\alpha \nabla u_i \rangle
\]

\[= -2 \int_\Omega \langle \nabla \phi_{\alpha i} + \sum_{j=1}^k b_{\alpha ij} \nabla u_j, Z_{\alpha i} \rangle + (n - 2) \int_\Omega \langle W_{\alpha i}, x_\alpha \nabla u_i \rangle
\]

\[= -2 \int_\Omega \langle \nabla \phi_{\alpha i}, Z_{\alpha i} \rangle - 2 \sum_{j=1}^k b_{\alpha ij} c_{\alpha ij} + (n - 2) \| W_{\alpha i} \|^2
\]

\[= -2 \int_\Omega \langle \nabla \phi_{\alpha i}, Z_{\alpha i} \rangle - \sum_{j=1}^k c_{\alpha ij} \nabla u_j - 2 \sum_{j=1}^k b_{\alpha ij} c_{\alpha ij}
\]

\[+ (n - 2) \| W_{\alpha i} \|^2. \tag{2.16}\]
From (2.15) and (2.16), we obtain

\[
 r_{\alpha i} + 2 \sum_{j=1}^{k} b_{\alpha ij} c_{\alpha ij} = -2 \int_{\Omega} \langle \nabla \phi_{\alpha i}, Z_{\alpha i} - \sum_{j=1}^{k} c_{\alpha ij} \nabla u_j \rangle + (n - 2) \| W_{\alpha i} \|^2, \quad (2.17)
\]

where

\[
 r_{\alpha i} = 2 \int_{\Omega} \langle x_{\alpha i}, \nabla u_i \rangle^2 + \int_{\Omega} \langle \nabla x_{\alpha i}, \nabla u_i \rangle \Delta u_i + (n - 2) \int_{\Omega} x_{\alpha i}^2 |\nabla u_i|^2.
\]

Multiplying (2.17) by \((\Lambda_{k+1} - \Lambda_i)^2\), one obtains from the Schwarz inequality and (2.14) that

\[
(\Lambda_{k+1} - \Lambda_i)^2 \left(r_{\alpha i} + 2 \sum_{j=1}^{k} b_{\alpha ij} c_{\alpha ij} \right) \\
= (\Lambda_{k+1} - \Lambda_i)^2 \left(-2 \int_{\Omega} \langle \nabla \phi_{\alpha i}, Z_{\alpha i} - \sum_{j=1}^{k} c_{\alpha ij} \nabla u_j \rangle + (n - 2) \| W_{\alpha i} \|^2 \right) \\
\leq \delta (\Lambda_{k+1} - \Lambda_i)^3 \| \nabla \phi_{\alpha i} \|^2 + \frac{1}{\delta} (\Lambda_{k+1} - \Lambda_i) \left\| Z_{\alpha i} - \sum_{j=1}^{k} c_{\alpha ij} \nabla u_j \right\|^2 \\
+ (n - 2) (\Lambda_{k+1} - \Lambda_i)^2 \| W_{\alpha i} \|^2 \\
\leq \delta (\Lambda_{k+1} - \Lambda_i)^2 \left(p_{\alpha i} + \| \langle \nabla x_{\alpha i}, \nabla u_i \rangle \|^2 + \Lambda_i \| W_{\alpha i} \|^2 + \sum_{j=1}^{k} (\Lambda_i - \Lambda_j) b_{\alpha ij}^2 \right) \\
+ \frac{1}{\delta} (\Lambda_{k+1} - \Lambda_i) \left(\| Z_{\alpha i} \|^2 - \sum_{j=1}^{k} c_{\alpha ij}^2 \right) + (n - 2) (\Lambda_{k+1} - \Lambda_i)^2 \| W_{\alpha i} \|^2. \quad (2.18)
\]

Since \(b_{\alpha ij} = b_{\alpha ji}\) and \(c_{\alpha ij} = -c_{\alpha ji}\), summing over \(i\) from 1 to \(k\) for (2.18) yields

\[
\sum_{i=1}^{k} (\Lambda_{k+1} - \Lambda_i)^2 r_{\alpha i} \\
\leq \sum_{i=1}^{k} (\Lambda_{k+1} - \Lambda_i)^2 \left(\delta p_{\alpha i} + \delta \| \langle \nabla x_{\alpha i}, \nabla u_i \rangle \|^2 + (\delta \Lambda_i + n - 2) \| W_{\alpha i} \|^2 \right) \\
+ \frac{1}{\delta} \sum_{i=1}^{k} (\Lambda_{k+1} - \Lambda_i) \| Z_{\alpha i} \|^2. \quad (2.19)
\]

Guangyue Huang, Xingxiao Li, Xuerong Qi
Let ρ be a positive constant. Then we have

\[
\rho\|\langle \nabla x_\alpha, \nabla u_i \rangle\|^2 = \rho \int_\Omega \langle \nabla x_\alpha, \nabla u_i \rangle^2 \\
= -\rho \int_\Omega x_\alpha \text{div}(\langle \nabla x_\alpha, \nabla u_i \rangle \nabla u_i) \\
= -\rho \int_\Omega \langle x_\alpha \nabla u_i, \nabla \langle \nabla x_\alpha, \nabla u_i \rangle \rangle - \rho \int_\Omega \langle \nabla x_\alpha, \nabla u_i \rangle x_\alpha \Delta u_i \\
= -\rho \int_\Omega \langle \nabla h_{\alpha i}, \nabla \langle \nabla x_\alpha, \nabla u_i \rangle \rangle - \frac{\rho}{2} \int_\Omega \langle \nabla x_{\alpha}^2, \nabla u_i \rangle \Delta u_i \\
\leq (\delta \Lambda_i + n - 2)\|\nabla h_{\alpha i}\|^2 + \frac{\rho^2}{4(\delta \Lambda_i + n - 2)}\|\nabla \langle \nabla x_\alpha, \nabla u_i \rangle\|^2 \\
- \frac{\rho}{2} \int_\Omega \langle \nabla x_{\alpha}^2, \nabla u_i \rangle \Delta u_i. \tag{2.20}
\]

Applying (2.20) to (2.19) yields

\[
\sum_{i=1}^{k}(\Lambda_{k+1} - \Lambda_i)^2 r_{\alpha i} \leq \sum_{i=1}^{k}(\Lambda_{k+1} - \Lambda_i)^2 \left(\delta p_{\alpha i} + (\delta \Lambda_i + n - 2)\|W_{\alpha i}\|^2 + (\delta - \rho)\|\langle \nabla x_\alpha, \nabla u_i \rangle\|^2 + \rho\|\langle \nabla x_\alpha, \nabla u_i \rangle\|^2\right) \\
+ \frac{1}{\delta} \sum_{i=1}^{k}(\Lambda_{k+1} - \Lambda_i)\|Z_{\alpha i}\|^2 \\
\leq \sum_{i=1}^{k}(\Lambda_{k+1} - \Lambda_i)^2 \left(\delta p_{\alpha i} + (\delta \Lambda_i + n - 2)(\|W_{\alpha i}\|^2 + \|\nabla h_{\alpha i}\|^2) \\
+ (\delta - \rho)\|\langle \nabla x_\alpha, \nabla u_i \rangle\|^2 + \frac{\rho^2}{4(\delta \Lambda_i + n - 2)}\|\nabla \langle \nabla x_\alpha, \nabla u_i \rangle\|^2 \\
- \frac{\rho}{2} \int_\Omega \langle \nabla x_{\alpha}^2, \nabla u_i \rangle \Delta u_i \right) + \frac{1}{\delta} \sum_{i=1}^{k}(\Lambda_{k+1} - \Lambda_i)\|Z_{\alpha i}\|^2 \\
= \sum_{i=1}^{k}(\Lambda_{k+1} - \Lambda_i)^2 \left(\delta p_{\alpha i} + (\delta \Lambda_i + n - 2)\|x_\alpha \nabla u_i\|^2 \\
+ (\delta - \rho)\|\langle \nabla x_\alpha, \nabla u_i \rangle\|^2 + \frac{\rho^2}{4(\delta \Lambda_i + n - 2)}\|\nabla \langle \nabla x_\alpha, \nabla u_i \rangle\|^2 \\
- \frac{\rho}{2} \int_\Omega \langle \nabla x_{\alpha}^2, \nabla u_i \rangle \Delta u_i \right) + \frac{1}{\delta} \sum_{i=1}^{k}(\Lambda_{k+1} - \Lambda_i)\|Z_{\alpha i}\|^2. \tag{2.21}
\]

Since

\[
\Delta h_{\alpha i} = \text{div}(\nabla h_{\alpha i}) = \text{div}(x_\alpha \nabla u_i) = \langle \nabla x_\alpha, \nabla u_i \rangle + x_\alpha \Delta u_i,
\]
we get from Proposition 2.1 that
\[
\sum_{\alpha=1}^{n+1} p_{\alpha i} = \sum_{\alpha=1}^{n+1} \left(\int_{\Omega} h_{\alpha i}(-\Delta)^p h_{\alpha i} - \Lambda_i \|x_{\alpha} \nabla u_i\|^2 - \|\langle \nabla x_{\alpha}, \nabla u_i \rangle\|^2 \right)
\]
\[
= \sum_{\alpha=1}^{n+1} \int_{\Omega} h_{\alpha i}(-\Delta)^p h_{\alpha i} - (\Lambda_i + 1)
\]
\[
= \sum_{\alpha=1}^{n+1} \int_{\Omega} \left((\nabla x_{\alpha}, \nabla u_i) + x_{\alpha} \Delta u_i \right) (-\Delta)^p \left((\nabla x_{\alpha}, \nabla u_i) + x_{\alpha} \Delta u_i \right) - (\Lambda_i + 1)
\]
\[
\leq f(\Lambda_i, n) - (\Lambda_i + 1).
\]

A direct calculation yields (see (2.44), (2.45), (2.46) and (2.47) in [18])
\[
\sum_{\alpha=1}^{n+1} r_{\alpha i} = n,
\]
\[
\sum_{\alpha=1}^{n+1} \|x_{\alpha} \nabla u_i\|^2 = \sum_{\alpha=1}^{n+1} \|\langle \nabla x_{\alpha}, \nabla u_i \rangle\|^2 = 1,
\]
\[
\sum_{\alpha=1}^{n+1} \|\nabla (\nabla x_{\alpha}, \nabla u_i)\|^2 = \Lambda_i - (n - 2),
\]
\[
\sum_{\alpha=1}^{n+1} \|Z_{\alpha i}\|^2 = \Lambda_i + \frac{(n - 2)^2}{4}.
\]

Therefore, summing up (2.21) over \(\alpha\) from 1 to \(n + 1\), one gets
\[
\sum_{i=1}^{k} \left(\Lambda_{k+1} - \Lambda_i \right)^2
\]
\[
\leq \sum_{i=1}^{k} \left(\Lambda_{k+1} - \Lambda_i \right)^2 \left(\delta f(\Lambda_i, n) - (\Lambda_i + 1) \right) + (\delta \Lambda_i + n - 2) + (\delta - \rho)
\]
\[
+ \frac{\rho^2}{4(\delta \Lambda_i + n - 2)} (\Lambda_i - (n - 2)) + \frac{1}{\delta} \sum_{i=1}^{k} \left(\Lambda_{k+1} - \Lambda_i \right) \left(\Lambda_i + \frac{(n - 2)^2}{4} \right).
\]

That is,
\[
2 \sum_{i=1}^{k} \left(\Lambda_{k+1} - \Lambda_i \right)^2
\]
\[
\leq \sum_{i=1}^{k} \left(\Lambda_{k+1} - \Lambda_i \right)^2 \left(\delta f(\Lambda_i, n) - \rho + \frac{\rho^2}{4(\delta \Lambda_i + n - 2)} (\Lambda_i - (n - 2)) \right)
\]
\[
+ \frac{1}{\delta} \sum_{i=1}^{k} \left(\Lambda_{k+1} - \Lambda_i \right) \left(\Lambda_i + \frac{(n - 2)^2}{4} \right). \tag{2.22}
\]

Taking
\[
\rho = \frac{2(\delta \Lambda_i + n - 2)}{\Lambda_i - (n - 2)}
\]
Estimates for the higher order buckling eigenvalues

in (2.22) yields

\[2 \sum_{i=1}^{k} (\Lambda_{k+1} - \Lambda_i)^2 \leq \sum_{i=1}^{k} (\Lambda_{k+1} - \Lambda_i)^2 \left(\delta f(\Lambda_i, n) - \frac{\delta \Lambda_i + n - 2}{\Lambda_i - (n - 2)} \right) \]

\[+ \frac{1}{\delta} \sum_{i=1}^{k} (\Lambda_{k+1} - \Lambda_i) \left(\Lambda_i + \frac{(n - 2)^2}{4} \right). \]

Hence, we obtain

\[\sum_{i=1}^{k} (\Lambda_{k+1} - \Lambda_i)^2 \left(2 + \frac{n - 2}{\Lambda_i - (n - 2)} \right) \]

\[\leq \delta \sum_{i=1}^{k} (\Lambda_{k+1} - \Lambda_i)^2 \left(f(\Lambda_i, n) - \frac{\Lambda_i}{\Lambda_i - (n - 2)} \right) \]

\[+ \frac{1}{\delta} \sum_{i=1}^{k} (\Lambda_{k+1} - \Lambda_i) \left(\Lambda_i + \frac{(n - 2)^2}{4} \right). \] \hspace{1cm} (2.23)

Minimizing the right hand side of (2.23) as a function of \(\delta \) by choosing

\[\delta = \left(\frac{\sum_{i=1}^{k} (\Lambda_{k+1} - \Lambda_i) \left(\Lambda_i + \frac{(n - 2)^2}{4} \right)}{\sum_{i=1}^{k} (\Lambda_{k+1} - \Lambda_i)^2 \left(f(\Lambda_i, n) - \frac{\Lambda_i}{\Lambda_i - (n - 2)} \right)} \right)^{\frac{1}{2}} \]

concludes the proof of Theorem 1.1.

Proof of Corollary 1.2

It is easy to see from (1.9) that

\[\sum_{i=1}^{k} (\Lambda_{k+1} - \Lambda_i)^2 \leq \left\{ \sum_{i=1}^{k} (\Lambda_{k+1} - \Lambda_i)^2 \left(f(\Lambda_i, n) - \frac{\Lambda_i}{\Lambda_i - (n - 2)} \right) \right\}^{\frac{1}{2}} \]

\[\times \left\{ \sum_{i=1}^{k} (\Lambda_{k+1} - \Lambda_i) \left(\Lambda_i + \frac{(n - 2)^2}{4} \right) \right\}^{\frac{1}{2}}. \] \hspace{1cm} (2.24)

One can check by induction that

\[\left\{ \sum_{i=1}^{k} (\Lambda_{k+1} - \Lambda_i)^2 \left(f(\Lambda_i, n) - \frac{\Lambda_i}{\Lambda_i - (n - 2)} \right) \right\} \left\{ \sum_{i=1}^{k} (\Lambda_{k+1} - \Lambda_i) \left(\Lambda_i + \frac{(n - 2)^2}{4} \right) \right\} \]

\[\leq \left(\sum_{i=1}^{k} (\Lambda_{k+1} - \Lambda_i)^2 \right) \left\{ \sum_{i=1}^{k} (\Lambda_{k+1} - \Lambda_i) \left(f(\Lambda_i, n) - \frac{\Lambda_i}{\Lambda_i - (n - 2)} \right) \left(\Lambda_i + \frac{(n - 2)^2}{4} \right) \right\}, \]

which together with (2.24) yields inequality (1.10).

Solving the quadratic polynomial of \(\Lambda_{k+1} \) in (1.10), we obtain inequality (1.11) and (1.12). It completes the proof of Corollary 1.2.
References

[1] Ashbaugh, M.S.: Isoperimetric and universal inequalities for eigenvalues. In: Davies, E.B., Safarov, Yu(eds.) Spectral theory and geometry(Edinburgh. 1998). London Math. Soc., Lecture Notes, vol 273, pp 95-139. Cambridge University Press, Cambridge (1999)

[2] Ashbaugh, M.S.: Universal eigenvalue bounds of Payne-Polya-Weinberger, Hile-Protter, and H. C. Yang. Proc. Indian Acad. Sci. Math. Sci. 112, 3-30 (2002)

[3] Ashbaugh, M.S., Hermi, L.: A unified approach to universal inequalities for eigenvalues of elliptic operators. Pacific J. Math. 217, 201-219 (2004)

[4] Cheng, Q.-M., Ichikawa, T., Mametsuka, S.: Estimates for eigenvalues of the poly-Laplacian with any order in a unit sphere. Calc. Var.

[5] Cheng, Q.-M., Ichikawa, T., Mametsuka, S.: Inequalities for eigenvalues of Laplacian with any order. Commun. Contemp. Math. (2009)

[6] Cheng, Q.-M., Yang, H.C.: Estimates on eigenvalues of Laplacian. Math. Ann. 331, 445-460 (2005)

[7] Cheng, Q.-M., Yang, H.C.: Inequalities for eigenvalues of a clamped plate problem. Trans. Amer. Math. Soc. 358, 2625-2635 (2006)

[8] Cheng, Q.-M., Ichikawa, T., Mametsuka, S.: Estimates for eigenvalues of a clamped plate problem on Riemannian manifolds. J. Math. Soc. Japan.

[9] Cheng, Q.M., Yang, H.C.: Universal bounds for eigenvalues of a buckling problem. Commun. Math. Phys. 262, 663-675 (2006)

[10] El Soufi, A., Harrell, E.M., Ilias, S.: Universal inequalities for the eigenvalues of Laplace and Schrödinger operators on submanifolds. Trans. Amer. Math. Soc. 361, 2337-2350 (2009)

[11] Hile, G.N., Protter, M.H.: Inequalities for eigenvalues of the Laplacian. Indiana Univ. Math. J. 29, 523-538 (1980)

[12] Huang, G.Y., Li, X.X.: Universal inequalities for eigenvalues of Laplacian with any order. (To appear)

[13] Huang, G.Y., Li, X.X., Cao, L.F.: Universal bounds on eigenvalues of the buckling problem on spherical domains. (To appear)

[14] Huang, G.Y., Chen, W.Y.: Universal bounds for eigenvalues of Laplacian operator with any order. Acta Math. Sci. Ser. B Engl. Ed. (2010)

[15] Huang, G.Y., Li, X.X., Xu, R.W.: Extrinsic estimates for the eigenvalues of Schrödinger operator. Geom. Dedicata DOI 10.1007/s10711-009-9375-0

[16] Hook, S.M.: Domain-independent upper bounds for eigenvalues of elliptic operators. Trans. Amer. Math. Soc. 318, 615-642 (1990)
Estimates for the higher order buckling eigenvalues

[17] Payne, L.E., Pólya, G., Weinberger, H.F.: On the ratio of consecutive eigenvalues. J. Math. Phys. 35, 289-298 (1956)

[18] Wang, Q.L., Xia, C.Y.: Universal bounds for eigenvalues of the biharmonic operator on Riemannian manifolds. J. Funct. Anal. 245, 334-352 (2007)

[19] Wang, Q.L., Xia, C.Y.: Universal inequalities for eigenvalues of the buckling problem on spherical domains. Commun. Math. Phys. 270, 759-775 (2007)

[20] Wang, Q.L., Xia, C.Y.: Universal bounds for eigenvalues of Schrödinger operator on Riemannian manifolds. Ann. Acad. Sci. Fenn. Math. 33, 319-336 (2008)

[21] Wu, F.E., Cao, L.F.: Estimates for eigenvalues of Laplacian operator with any order. Sci. China Ser. A, Math. 50, 1078-1086 (2007)

[22] Yang, H.C.: An estimate of the difference between consecutive eigenvalues. preprint IC/91/60 of ICTP, Trieste (1991)