A review in high early strength concrete and local materials potential

A K Yasin¹, R Bayuaji¹, T E Susanto ²

¹ Department of Civil Infrastructure Engineering, Institut Teknologi Sepuluh Nopember, JL. Menur 127, Surabaya, Indonesia
² Department of Research and Product Application, PT Semen Indonesia (persero) Tbk, JL. Veteran, Gresik, Indonesia

E-mail: abdul.karim13@mhs.ce.its.ac.id

Abstract. High early strength concrete is one of the type in high performance concrete. A high early strength concrete means that the compressive strength of the concrete at the first 24 hours after site-pouring could achieve structural concrete quality (compressive strength > 21 MPa). There are 4 (four) important factors that must be considered in the making process, those factors including: portland cement type, cement content, water to cement ratio, and admixture. In accordance with its high performance, the production cost is estimated to be 25 to 30% higher than conventional concrete. One effort to cut the production cost is to utilize local materials. This paper will also explain about the local materials which were abundantly available, cheap, and located in strategic coast area of East Java Province, that is: Gresik, Tuban and Bojonegoro city. In addition, the application of this study is not limited only to a large building project, but also for a small scale building which has one to three-story. The performance of this concrete was apparently able to achieve the quality of compressive strength of 27 MPa at the age of 24 hours, which qualified enough to support building structurally.

1. Introduction
High early strength concrete was created to solve the setting time problems that occur in the world of buildings and infrastructures construction. Generally, it takes 7 to 14 days to achieve the full concrete hardening and reach the minimum compressive strength of 0.7 to 0.85 fc'³. This setting time generated on concrete was generally not fast enough to achieve the minimum quality required. This circumstances might concern public on cost production, time spent and efficiency [8]. To solve this problem, some research on concrete technology were conducted to produce high strength concrete in early age with several approach, such as: use several types of cement (type I cement, type III cement, rapid set cement); high cement content (410 to 740 kg/m³); use several types of admixture (calcium chloride and polycarboxylate ether-PCE); low water to cement ratio (0.2 to 0.4). Thus, the result of compressive strength may reach 39 to 66 MPa at 24 hours [1,2,3,8]. In accordance with its high performance, the production cost is estimated to be 25 to 30% higher than conventional concrete. One effort to cut the production cost is to utilize local materials. With these innovations, the cost of making high early strength concrete can be cheaper, so people do not have to worry about spending a lot of

¹ Corresponding author. Tel.: +62 8 5815377227, +62 8 970592080
Email: abdul.karim13@mhs.ce.its.ac.id (A K Yasin), a3ridho@gmail.com (R Bayuaji),

² Corresponding author. Tel.: +62 8 155205317
Email: tri.susanto@semenindonesia.com (T E Susanto)
money to buy it. Then, another benefit is to improve the community economy around the area of materials resources [8].

2. Definition
High early strength concrete is one of the type in high performance concrete. A high early strength concrete means that the compressive strength of the concrete at the first 24 hours after site-pouring could achieve structural concrete quality (compressive strength > 21 MPa) [4]. Furthermore, high early strength concrete is a concrete that is capable of reaching 50% f'_{c} at 24 hours of age, with water to cement ratio ranging from 0.3 to 0.4 [1].

3. Previous research on high early strength concrete
The following are brief data from some previous research:

3.1 High Early Strength Concrete by Strategic Highway Research Program (1993)
In 1993, Strategic Highway Research Program provided some data on material specifications, mix designs, and mechanical properties from 4 (four) different regions origin of concrete aggregates in America: Crushed Granite (CG), Marina Marl (MM), Rounded Gravel (RG), and Dense Crushed Limestone (DL) [1]. Its composition and strength properties are presented in the (Tab. 1) below:

Table 1. High Early Strength Concrete Mix Designs by Strategic Highway Research Program [1].
Materials
Type III Cement (Kg/m3)
Coarse Aggregate (Kg/m3)
Fine Aggregate (Kg/m3)
W/C Ratio
HRWR (Naphtalene Based) (mL/100 Kg) cementitious materials
Calcium Nitrite (gr/m3)
Air Entraining Agent (mL/100 Kg) cementitious materials
Slump (cm)
Compressive strength-1day (MPa)

3.2 High Early Strength Concrete by Federal Highway Administration (2001)
In 2001, Federal highway administration has conducted various experiments in making high early strength concrete with several types of mix designs [2]. Its composition and other information are presented in the (Tab. 2) below:

Table 2. High Early Strength Concrete Mix Designs by Federal Highway Administration [2].
Materials
Cement (Kg/m3)
Fly ash (Kg/m3)
Coarse Aggregate (Kg/m3)
Fine Aggregate (Kg/m3)
W/C Ratio
Water Reducer
Air Entraining Agent
In 2015, Research of Product Application PT. Semen Indonesia, developed a high early strength concrete that called *Rapid Strength Concrete*. In this study, the variables studied is the effect of adding doses of admixture type F which is a HRWR (High Range Water Reducer)-based on polycarboxylate ether [3]. Its composition and strength properties are presented in the (Tab.3) below:

Table 3. High Early Strength Concrete Mix design by R&D Department of Product Application PT. Semen Indonesia [3].

Materials	Mix 1	Mix 2	Mix 3	Mix 4
Cement (Kg/m³)	740	740	740	740
Coarse Aggregate (Kg/m³)	1007.50	1007.50	1007.50	1007.50
Fine Aggregate (Kg/m³)	542.50	542.50	542.50	542.50
W/C Ratio	0.2	0.25	0.2	0.25
Polycarboxylate Ether (%) from Cement Weight	0.6	0.6	0.8	0.8
Compressive Strength (Kg/cm²):				
- 8 Hours	229.28	223.49	255.63	183.45
- 24 Hours	600.59	593.712	663.93	654.57
Slump flow (cm)	50	56	56	60

4. Factors to be considered in making high early strength concrete

From some of the studies described in the previous chapter, there are several factors that influence the high initial strength mechanisms in concrete:

4.1 Types of Portland Cement

The following are some types of portland cement commonly used in making high early strength concrete:

4.1.1 Portland cement type III

This type of portland cement quickly hardened, commonly used in the application of concrete structures that require high initial strength and also concretion at low temperatures. The mechanism in the cement can accelerate the hydration process, followed by acceleration of hardening and strength development are: C3S and C3A content of a higher portland cement type I, and also the finess value with the blaine tool which is higher than portland cement type I [1,2]. The following are some of compressive strength results on high early strength concrete in previous research that used portland cement type III:

Table 4. Compressive strength and the age test of high early strength concrete using portland cement type III [1,2].

Researcher	Compressive strength	Age
SHRP 1993	36.5 MPa – 39 MPa	24 hours
FHWA 2001	Min. 13.5 MPa	24 hours
4.1.2 Portland cement type I (Ordinary Portland Cement)
This type of cement is a hydraulic cement. It widely used for general construction, such as building construction that do not require special requirements for: sulphate resistance, hydration heat, and high initial strength [2,3]. The following are the compressive strength results on high early strength concrete in previous research that used portland cement type I:

Table 5. Compressive strength and the age test of high early strength concrete using portland cement type I [2,3].

Researcher	Compressive strength	Age
FHWA 2001	Min. 13.5 MPa	4 hours
Research of Product Department PT. Semen Indonesia	18.35 MPa – 25.56 MPa	8 hours
	59.37 MPa – 66.39 MPa	24 hours

4.1.3 Rapid Set Cement (RSC)
This type is a type of hydraulic cement or hydraulic blend cement that has a rapid strength advantage over the first 24 hours during the hydration process. The cement has been simultaneously milled specifically with non-chloride accelerator materials, so it is safe for reinforced concrete structures. This type has a very fast final setting time of 15 to 35 minute, and can achieve structural strength within 1 hour. In its application, rapid set cement is used for: improvement and creation of structural elements. The concrete price is more expensive than other type of cement [2]. The following are some of compressive strength results on high early strength concrete in previous research that use rapid set cement:

Table 6. Compressive strength and the age test of high early strength concrete using rapid set cement [2].

Researcher	Compressive strength	Age
FHWA 2001	Min. 13.5 MPa	4 to 6 hours

4.2 Cement Content
Each concrete grade has different cement content levels. The following are the cluster of cement content based on it levels and applications:

Table 7. Several type of content cement based on levels and applications [5].

Content cement (Kg/m3)	Levels	Application
200 – 400	Medium cement content	Normal concrete
> 400 – 600	High cement content	High strength concrete
> 600	Very high Cement Content	Very high strength concrete

According to (Tab.7) above, it can be seen that in the manufacture of high strength concrete, the cement content used ranges from 400 Kg/m3 to 600 Kg/m3. For very high strength concrete, it used more than 600 Kg/m3. But, in application of high strength concrete in field, high and very high strength concrete do not use more than 600 Kg/m3 of cement content. The following table is previous research data of cement content that used in high strength concrete, very high strength concrete and high early strength concrete:
Table 8. Cement content that used in several “high strength” concrete manufacturing projects [6].

Projects	Compressive strength (MPa)	Cement content (Kg/m³)
Ens, Cachan Prancis	80	449
LCPC University of Sher Brooke Canada	120	505
Bridge PLN, ASG	75	424
Arche De La Depense	60	425
Pretviset Bridge	86	430
Hassan Li’s Mosque in Cassablanca	95	465
Kwang Tong By Pass, Bridge	80	500
Two Union Square, Seattle	119	555
ITS Concrete Lab. 1	100	578.25
ITS Concrete Lab. 2	90	589.24
Typical Concrete in French	89.55	584.73
PPC Concrete of PT. Semen Gresik	41.5	487
Average compressive strength (MPa)	86.34	499.35
Range cement content (MPa)	424 – 589.24	

According to (Tab.8) above, it is explained that the range of cement content for high strength concrete and very high strength concrete in applications in the field ranges from 424 Kg/m³ to 589.25 Kg/m³.

In the (Tab.9) below is the level of cement content used in previous research on high early strength concrete:

Table 9. Cement content levels of high early strength concrete in several past research [1,2,3].

Researcher	Compressive strength at 24 hours (MPa)	Cement content (Kg/m³)	Level of cement content
SHRP 1993	39	522	High
FHWA 2001	Min. 13.5	410	High
Research of Product Application Department PT. Semen Indonesia 2015	66.39	740	Very High

According to (Tab.9) above, the average cement level of content used in high early strength concrete is included in high level of cement content.

4.3 Water to Cement Ratio

By reducing the water to cement ratio, it reduces the volume of the air cavity and increases the density of the concrete. This transformation contributes significantly to the strength and durability of the concrete [5]. The following table is classifications of water to cement ratio levels and several results from the concrete:

Table 10. Classifications of water to cement ratio [5].

Water to cement ratio	Classification
> 0.45	Conventional Concrete
0.45 – 0.30	High Strength Concrete
< 0.3	Very High Strength Concrete
Table 11. Classifications of water to cement ratio of high early strength concrete in several past research [1,2,3].

Researcher	Water to cement ratio	Classification
SHRP 1993	0.32	High Strength
FHWA 2001	0.40	High Strength
Research of Product Application	0.20	Very High Strength
PT. Semen Indonesia 2015		

According to (Tab.11) above, the water to cement ratio used in ranges 0.2 to 0.4 (high to very high strength classification).

4.4 Types of Admixtures
In high early strength concrete manufacturing, there are several types of admixture used for different purposes: accelerating and water reducing admixture and high range water reducing admixture. The following table is several types of chemical admixture that used in making high early strength concrete:

Table 12. Typical of chemical admixture in making high early strength concrete [4].

Admixture types	Function	Based on	Type
Accelerating admixture and Water Reducing	1. Accelerate cement hydration process.	Calcium Chloride	E
	2. Reducing water content by 5 to 10%.	Aluminum Chloride	(1st Generation)
		Sodium Sulphate	
		Aluminum Sulphate	
		Calcium Nitrite	
High Range Water Reducing	1. Accelerate cement hydration process.	Ligno Sulphonate	F
	2. Reducing water content by 20% (generation 2)	Gluconate	(2nd Generation)
	3. Reducing water content by 40% (generation 3)	Naphtalene Sulphonate	
		Melamine	
		Vinyl Copolymers	
		Polycarboxylate Ether	F
		Modified Polycarboxylate	(3rd Generation)

Table 13. Admixtures are used depend on water to cement ratio [5].

Water to cement ratio	Admixture
0.3 < w/c ≤ 0.45	Water Reducing Admixture
w/c < 0.3	High Range Water Reducing Admixture
Table 14. Type of admixtures that used in several past research [1,2,3].

Researcher	W/C	Strength at 24 hours (MPa)	Chemical compounds base	Admixtures type
SHRP 1993	0.32	39	Naphtalene	High Range Water Reducing Admixture (2nd Generation)
FHWA 2001	0.40	Min 13.5	Calcium Chloride, CaCl₂	Water Reducing Admixture (1st Generation)
Research of Product Application Department PT. Semen Indonesia 2015	0.20	66.39	Polycarboxylate Ether	High Range Water Reducing Admixture (3rd Generation)

5. High early strength concrete using local materials

In some areas in northern coast (Pantura) of east java province, namely: Tuban, Bojonegoro, and Gresik proved to have a potential source of high early strength concrete materials. These materials are: kethak (calcite) stone in Merakurak-Tuban and Ujung Pangkah-Gresik, then Bengawan Solo river sand in Bojonegoro. With the formation of the strategic material source location, the concrete can be implemented. In 2016, Institut Teknologi Sepuluh Nopember (ITS) and PT. Semen Indonesia has conducted research on high early strength concrete with utilizing the local materials [8]. The following table is brief several specifications of the material and the performance of the concrete:

5.1 Specification of “kethak” (calcite) stone and Bengawan Solo river sand

Table 15. Material testing results of kethak (calcite) stone from Tuban and Gresik [8].

Testing Parameters	Unit	Kethak (calcite) Stone	Bengawan Solo River Sand
Physical Properties			
Specific gravity	ton/m³	2.72	2.84
Moisture content	%	2.63	2.08
Absorption	%	4.24	0.27
Bulk density	kg/m³	1330.00	1626.80
Materials finer than 75-μm (No.200)	%	1.13	4
Organic impurities index	Color Index	-	2
Abrasion	%	32.00	-
Grading Zone	Max. 20 mm	3	-
Fines modulus	-	7.5	3
XRD Analysis			
Andesite	%	Up to 50	
Calcite	%	Up to 90.28	

5.2 High Range Water Reducer

Table 16. Technical specification of High range water reducer based on Polycarboxylate ether [8].

Chemical compound	color	Dosage
Modified polycarboxylate Turbid white 0.3-0.8% (soft plastic) Copolymer liquid 0.8 – 2% (SCC)

5.3 Performance of high early strength concrete with utilizing local materials

Table 17. High Early Strength Concrete using local materials test results [8].

No.	Testing Parameters	Units	Results
1.	Initial Slump (T₀ minutes)	cm	30.00
2.	Slump (T₆₀ minutes)	cm	8.00
	Ages		1 day 28 day
3.	Average of compressive strength	MPa	27.73 64.03
4.	Ultrasonic Pulse Velocity (UPV)	Km/s	3.80 4.30

According to the (Tab.17) above, the concrete produces a compressive strength value that qualifies for high early strength concrete, which has a structural compressive strength (above 210 Kg/cm²) at 1 day [4]. In addition, from the UPV test parameters, it produces a good index of V values between 3.5 – 4.5 Km/s according to IS 13311-1-1992 [7].

6. Conclusions

From some of the explanations in this paper, we can get a conclusion:

a) High early strength concrete was created to solve the setting time problems that occur in the world of buildings and infrastructures construction. Generally, it takes 7 to 14 days to achieve the full concrete hardening and reach the minimum compressive strength of 0.7 to 0.85 f’c’. High early strength concrete means that the compressive strength of the concrete at the first 24 hours after site-pouring could achieve structural concrete quality (compressive strength > 21 MPa)

b) There are 4 (four) important factors that must be considered, those factors including: portland cement type, cement content, water to cement ratio, and admixture type.

c) The performance of high early strength concrete with local materials (kethak or calcite stone from Merakurak-Tuban and Ujung Pangkah-Gresik, then Bengawan Solo river sand from Bojonegoro) was apparently able to achieve the quality of compressive strength of 27 MPa at the age of 24 hours, which qualified enough for the structural compressive strength > 210 MPa.

7. References:

[1] P. Zia, S. H.Ahmad, J. J. Schemmel and R. P. Ellion, "Mechanical Behavior of High Performance Concrete, Volume 4, High Early Strength Concrete," Strategic Highway and Research Program, National Academy of Sciences, Washington DC, 1993.

[2] Federal Highway Administarion, "PCC Pavement Evaluation and Rehabilitation," Federal Highway Administration, Washington DC, 2001.

[3] Research and Development Department of Products Application PT Semen Indonesia (persero) Tbkg, "Rapid Strength Concrete," Research and Development Department of Products Application PT Semen Indonesia (persero) Tbkg, Gresik, 2015.

[4] Sika Services AG, Sika Concrete Handbook, Zurich: Sika Services AG, 2013.

[5] Portland Cement Association, "Concrete Technology Today : High-Strength Concrete," High Strength Concrete, vol. 15, no. 1, pp. 1-8, 1994.
[6] A. Subakti, B. Picesa and M. Irawan, Teknologi Beton dalam Praktik, Surabaya: ITS Press, 2012.

[7] Indian Standards, "Non-Destructive Testing of Concrete-Methods of Test, Part 1: Ultrasonic Pulse Velocity," Indian Standards, New Delhi, 1992.

[8] A. K. Yasin, A. B. K. Suharso, R. Bayuaji and T. E. Susanto, "Engineering on High Early Strength Concrete with Utilizing Kethak (Calcite) Stone Tuban-Gresik and Bengawan Solo River Sand," Institut Teknologi Sepuluh Nopemner, Surabaya, 2016.