HIBI ALGEBRAS AND REPRESENTATION THEORY

SANGJIB KIM AND VICTOR PROTSAK

Abstract. This paper gives a survey on the relation between Hibi algebras and representation theory. The notion of Hodge algebras or algebras with straightening laws has been proved to be very useful to describe the structure of many important algebras in classical invariant theory and representation theory \cite{2,5,10,33}. In particular, a special type of such algebras introduced by Hibi \cite{12} provides a nice bridge between combinatorics and representation theory of classical groups. We will examine certain poset structures of Young tableaux and affine monoids, Hibi algebras in toric degenerations of flag varieties, and their relations to polynomial representations of the complex general linear group.

1. Young tableaux and Gelfand-Tsetlin poset

In this section, we will define some partially ordered sets and investigate their properties.

1.1. Poset of column tableaux. A Young diagram λ is a collection of boxes arranged in left-justified rows with the row lengths in non-increasing order.

$$
\begin{array}{cccc}
\cdot & \cdot & \cdot & \cdot \\
\end{array}
$$

Writing λ_i for the length of the ith row of λ counting from top to bottom, we will identify λ with a non-increasing sequence of integers

$$\lambda = (\lambda_1, \lambda_2, \ldots) \text{ such that } \lambda_1 \geq \lambda_2 \geq \cdots \geq 0.$$

The transpose (or conjugate) λ' of a Young diagram λ is the Young diagram (d_1, d_2, \ldots) where d_j is the number of boxes in the jth column of λ counting from left to right. The depth of λ is the number of non-empty rows in λ and will be denoted by $d(\lambda)$.

A Young tableau is a filling of the boxes of a Young diagram with positive integers. The content of a Young tableau T is a sequence (c_1, c_2, \ldots) where c_i is the number of boxes containing i in T. A Young tableau is called semistandard if its entries in each row weakly increase from left to right and its entries in each column strictly increase from top to bottom.

From now on, we fix a positive integer n and then consider Young diagrams whose depths are not more than n and Young tableaux whose entries are from $\{1, 2, \ldots, n\}$. For
\[(1^k) = (k)^t = \begin{array}{c} \vdots \\ \vdots \\ \vdots \\ \end{array} \quad \text{and} \quad [i_1, i_2, \ldots, i_k] = \begin{array}{c} i_1 \\ i_2 \\ \vdots \\ i_k \\ \end{array} \]

Figure 1. A Young diagram with a single column having \(k\) boxes and a column tableau of depth \(k\).

Example, when \(n = 6\), the following is a semistandard Young tableau

\[
\begin{array}{cccccccc}
1 & 1 & 1 & 2 & 2 & 3 & 3 & 5 & 6 & 6 \\
2 & 2 & 2 & 3 & 3 & 5 & 5 & 6 & 6 \\
3 & 3 & 3 & 5 & 5 & 6 & 6 \\
5 & 5 & 6 & 6 \\
\end{array}
\]

on a Young diagram \((12, 10, 6, 4, 0, 0)\) with content \((4, 5, 9, 0, 8, 6)\).

For notational convenience, for \(1 \leq k \leq n\), we let \((1^k)\) or \((k)^t\) denote a Young diagram having \(k\) boxes in a single column, and write \([i_1, i_2, ..., i_k]\) for a semistandard tableau on a Young diagram \((1^k)\) whose \(j\)th entry counting from top to bottom is \(i_j\) for \(1 \leq j \leq k\). We will call \([i_1, i_2, ..., i_k]\) a column tableau of depth \(k\). See Figure 1.

Definition 1.1. The poset of column tableaux is the set of column tableaux

\[L_n = \bigcup_{1 \leq k \leq n} \{[i_1, i_2, ..., i_k] : 1 \leq i_1 < i_2 < \cdots < i_k \leq n\}\]

with the following partial order. For \(I, J \in L_n\)
\nwe let \(I \geq_{\text{tab}} J\) if \(a \leq b\) and \(i_\ell \geq j_\ell\) for all \(1 \leq \ell \leq a\).

It is straightforward to check that the poset \((L_n, \geq_{\text{tab}})\) forms a distributive lattice \([10]\). For \(I = [i_1, i_2, ..., i_a]\) and \(J = [j_1, j_2, ..., j_b]\) in \(L_n\) with \(a \leq b\), their join and meet are

\[I \vee J = [x_1, ..., x_a]\quad \text{and}\quad I \wedge J = [y_1, ..., y_b]\]

respectively where

\[x_\ell = \max(i_\ell, j_\ell)\quad \text{for} \quad 1 \leq \ell \leq a,\quad y_\ell = \begin{cases} \min(i_\ell, j_\ell) & \text{for} \quad 1 \leq \ell \leq a, \\ j_\ell & \text{for} \quad a < \ell \leq b. \end{cases}\]

We will call \(L_n\) a distributive lattice of column tableaux. See Figure 2.

We remark that every multichain (i.e., linearly ordered multiset) of \(L_n\) can be identified with a semistandard Young tableau. For every multichain, by concatenating its elements in weakly increasing order, we obtain a semistandard tableau. Conversely, from the definition of semistandard Young tableaux, the columns of every semistandard Young tableau form a multichain of \(L_n\) with respect to the order \(\geq_{\text{tab}}\). See Figure 3.
1.2. GT poset and indicator functions. Usually, a Gelfand-Tsetlin (GT) pattern is defined as a triangular array of integers satisfying certain inequalities \cite{8, 31}. Here, we want to define it using a poset.

Definition 1.2.

1. The GT poset Γ_n is the set
 \[\Gamma_n = \left\{ z^{(i)}_j : 1 \leq j \leq i \leq n \right\} \]
 with the partial order $z^{(i)}_j \geq z^{(i)}_{j+1}$ for all $1 \leq j \leq i \leq n - 1$.

2. A GT pattern is an order-preserving map from Γ_n to non-negative integers, that is, a map $f : \Gamma_n \rightarrow \mathbb{Z}_{\geq 0}$ such that
 \[z^{(a)}_b \geq z^{(c)}_d \text{ in } \Gamma_n \text{ implies that } f(z^{(a)}_b) \geq f(z^{(c)}_d). \]

3. We let S_n denote the set of all GT patterns.

We shall draw Γ_n in the form of an inverted pyramid as in Figure 3. Then, for $f \in S_n$, by placing its values $f(z^{(i)}_j)$ at the positions of $z^{(i)}_j$ in Γ_n, we can identify f with a triangular array of integers as GT patterns are usually defined. We can also identify f with an integral point $(f(z^{(i)}_j))_{1 \leq j \leq i \leq n}$ in $\mathbb{R}^{n(n+1)/2}$ and then S_n can be considered an integral lattice cone in $\mathbb{R}^{n(n+1)/2}$ \cite{16}.

Now let us focus on GT patterns $f \in S_n$ whose images are contained in $\{0, 1\}$, or equivalently, the points in the lattice cone $S_n \subseteq \mathbb{R}^{n(n+1)/2}$ whose coordinates are either 1 or 0. Since f is order-preserving, its support

\[\text{Supp}(f) = \{ x \in \Gamma_n : f(x) \neq 0 \} \]

is an order-increasing subset of Γ_n, i.e., for $x, y \in \Gamma_n$, if $x \in \text{Supp}(f)$ and $y \geq x$, then $y \in \text{Supp}(f)$. In fact, for every order-increasing subset A of Γ_n, its indicator function

\[\rho_{\Gamma_n}(A) = \sum_{x \in A} 1_{x} \]

is a GT pattern with $f(z^{(i)}_j) = \rho_{\Gamma_n}(\{z^{(i)}_j\})$.

Figure 2. The Hasse diagram of L_4. The elements decrease along the lines from left to right.

\[
\begin{array}{cccc}
[1] & [1, 2] & [1, 2, 3] \\
[4] & [2] & [1, 4] & [1, 2] & [1, 2, 3] \\
& [3] & [2, 4] & [1, 3] & [1, 2, 4] \\
& & [3, 4] & [2, 3] & [1, 3, 4] \\
& & & [2, 3, 4] & \\
\end{array}
\]

Figure 3. A multichain of L_4 and a semistandard Young tableau.
Figure 4. The Hasse diagram of the GT poset Γ_4. The elements decrease along the lines from left to right.

1. $A : \Gamma_n \to \{0, 1\}$ belongs to S_n where
\[
A(x) = \begin{cases}
1 & \text{if } x \in A, \\
0 & \text{if } x \notin A.
\end{cases}
\]

Definition 1.3. The poset of indicator functions is the set
\[
\Lambda_n = \{ A \in S_n : A \text{ is a non-empty order-increasing subset of } \Gamma_n \}
\]
with the reverse inclusion order on the order-increasing subsets of Γ_n, that is,
\[
A \geq_{\text{ind}} B \text{ if and only if } A \subseteq B.
\]

Then, with the following join and meet
\[
1_A \lor 1_B = 1_{A \cup B} \quad \text{and} \quad 1_A \land 1_B = 1_{A \cap B}
\]
respectively, the poset $(\Lambda_n, \geq_{\text{ind}})$ is a distributive lattice.

Theorem 1.4. The poset (L_n, \geq_{tab}) of column tableaux is order-isomorphic to the poset $(\Lambda_n, \geq_{\text{ind}})$ of indicator functions.

Proof. Let $I = [i_1, i_2, \ldots, i_k] \in L_n$. For each $1 \leq a \leq n$, we let ℓ_a be the number of the entries i_j in I which are not more than a. Then, we consider an order-preserving map $f_I : \Gamma_n \to \{0, 1\}$ such that for each a, the number of $z_b^{(a)}$ for $1 \leq b \leq a$ such that $f_I(z_b^{(a)}) = 1$ is ℓ_a. Since we know that
\[
f_I(z_1^{(a)}) \geq f_I(z_2^{(a)}) \geq \cdots \geq f_I(z_{a-1}^{(a)}) \geq f_I(z_a^{(a)})
\]
for $1 \leq a \leq n$, the numbers ℓ_a can completely determine f_I. Then, it is straightforward to check that the map sending I to f_I gives an order-isomorphism from L_n to Λ_n. See [21 §3.3].

For $I \in L_n$, if we write A for the support of the corresponding map $f_I \in \Lambda_n$, then f_I is the indicator function of the order-increasing subset A of Γ_n
\[
f_I = 1_A \quad \text{where } A = \text{Supp}(f_I).
\]

With the dual relation between order-decreasing subsets (also called order ideals) and order-increasing subsets, Theorem 1.4 is basically Birkhoff’s representation theorem for distributive lattices (also known as the fundamental theorem for finite distributive lattices [34 §3.4]) applied to the distributive lattice L_n. Recall that an element in a lattice is join-irreducible, if it is neither the least element of the lattice nor the join of any two smaller elements. Then, Theorem 1.4 tells us that the GT poset Γ_n can be identified
with the set \(J(L_n) \) of join-irreducible elements of \(L_n \) with an additional greatest element \(z_1^{(n)} \). See Figure 5 and compare it with Figure 4.

With Birkhoff’s theorem, the greatest column tableau \([n]\) in \(L_n \) corresponds to the largest order ideal of \(J(L_n) \), which is itself. Then, by taking its complement in \(J(L_n) \), the order-increasing subset of \(J(L_n) \) corresponding to \([n]\) is the empty set. For us, the column tableau \([n]\) corresponds to the indicator function of the singleton set \(\{z_1^{(n)}\} = \Gamma_n \setminus J(L_n) \). By considering the GT poset \(\Gamma_n \) rather than \(J(L_n) \), we can reserve the indicator function of the empty set defined on \(\Gamma_n \) for the identity in the monoid \(S_n \) we will study in the following section.

Example 1.5. The following gives an order isomorphism between \(L_3 \) and \(\Lambda_3 \).

```
1 0 0  1 0 0  1 0 0
1 0 0  1 0 0  0 0 0

1 2 3  1 0 0  1 1 0
1 1 0  1 1 0  1 1 0
1 1 1  1 1 0  0 0 0
```

2. **Affine monoid of GT patterns and Hibi algebra**

In this section, we study the monoid structure of \(S_n \), the Hibi algebra on \(L_n \), and their properties.

2.1. **Affine monoid of GT patterns.** The sum of any two order-preserving maps is again order-preserving, and therefore the set \(S_n \) of all GT patterns can be considered an affine semigroup with respect to the usual addition of functions. The zero map is its identity.

Definition 2.1. The affine monoid of GT patterns is the set of all GT patterns

\[
S_n = \{ f : \Gamma_n \to \mathbb{Z}_{\geq 0} \mid f \text{ is order-preserving} \}.
\]
with the usual addition of functions.

For a semistandard Young tableau T, let I_j be its jth column counting from left to right. Then they form a multichain of L_n as we remarked at the end of §1.1

$$I_1 \leq_{tab} I_2 \leq_{tab} \cdots \leq_{tab} I_k.$$

If we let $1_{A_j} = f_{I_j}$ be the indicator functions corresponding to the column tableaux I_j given in Theorem 1.4, then they form a multichain of Λ_n and their sum

$$1_{A_1} + 1_{A_2} + \cdots + 1_{A_k} \quad \text{with } A_1 \supseteq A_2 \supseteq \cdots \supseteq A_k$$

is again an order-preserving map. This is an extension of the bijection in Theorem 1.4, and it gives a correspondence between the multichains of L_n and the elements in S_n.

Proposition 2.2. There is a bijection between semistandard Young tableaux and GT patterns.

Proof. With the above discussion, it is enough to show that every GT pattern can be expressed as a sum of linearly ordered elements in Λ_n. Let $f \in S_n$ and its image be $\{i_1, \ldots, i_m\}$ with $0 \leq i_1 < i_2 < \cdots < i_m$. If we write A_k for the inverse image of $\{y \in \mathbb{Z} : y \geq i_k\}$ under f, then they are order-increasing subsets of Γ_n and satisfy $A_1 \supseteq A_2 \supseteq \cdots \supseteq A_m$. Therefore, their indicator functions 1_{A_k} form a multichain of Λ_n. Now f can be expressed as

$$(2.1) \quad f = c_1 1_{A_1} + c_2 1_{A_2} + \cdots + c_m 1_{A_m}$$

where $c_1 = i_1$ and $c_k = i_k - i_{k-1}$ for $2 \leq k \leq m$. See Example 2.3. \qed

We remark that there is a well-known bijection between semistandard Young tableaux and GT patterns which does not refer to these poset structures. For a semistandard Young tableau T, we define $f_T : \Gamma_n \to \mathbb{Z}$ by

$$(2.2) \quad f_T(z_j^{(i)}) = \text{the number of entries in the } j\text{th row of } T \text{ which are less than or equal to } i$$

for all $1 \leq j \leq i \leq n$. Then, the correspondence $T \mapsto f_T$ gives a bijection between semistandard Young tableaux and GT patterns. This bijection is the same as the one given in Proposition 2.2 in terms of multichains in the posets L_n and Λ_n.

Example 2.3. Using the formula (2.1), we can express

\[
\begin{array}{cccccccccccc}
10 & 7 & 3 & 2 & 2 & 2 & 2 & 1 & 1 & 1 & 1 & 0 \\
7 & 7 & 2 & 2 & 2 & 2 & 1 & 1 & 1 & 0 \\
7 & 3 & 2 & 2 & 1 & 1 & 1 & 0 \\
3 & 2 & 2 & 2 & 1 & 1 & 0 \\
3 & 2 & 2 & 2 & 1 & 1 & 0 \\
\end{array}
\]
Then, this GT pattern corresponds to the following multichain of L_4

\[
1 \leq_{\text{tab}} 2 \leq_{\text{tab}} 3 \leq_{\text{tab}} 4 \leq_{\text{tab}} 2 \leq_{\text{tab}} 3 \leq_{\text{tab}} 2 \leq_{\text{tab}} 4 \leq_{\text{tab}} 4
\]

or equivalently the semistandard Young tableau

\[
\begin{array}{cccccccc}
1 & 1 & 1 & 2 & 2 & 2 & 4 & 4 \\
2 & 2 & 2 & 3 & 3 & 3 & 4 & 4 \\
3 & 3 & 4 & & & & & \\
4 & 4 & & & & & & \\
\end{array}
\]

2.2. Hibi algebra and affine monoid algebra. In [12], Hibi introduced an algebra H_L attached to a finite lattice L, now called the Hibi algebra on L. It is the quotient of the polynomial ring with variables x_{α} indexed by $\alpha \in L$ by the ideal I_L generated by the binomials $x_{\alpha}x_{\beta} - x_{\alpha \wedge \beta}x_{\alpha \vee \beta}$ for all incomparable pairs (α, β) in L.

Among many others, it is shown that if L is a distributive lattice then H_L is an algebra with straightening laws on L and therefore all the monomials which are not divisible by $x_{\alpha}x_{\beta}$ for any incomparable pairs (α, β) in L form a C-basis for H_L. We would like to study the Hibi algebra on the distributive lattice L_n of column tableaux

$$H_n = \mathbb{C}[x_I : I \in L_n]/I_{L_n}.$$

On the other hand, we have the affine monoid algebra $\mathbb{C}[S_n]$ of the monoid S_n of GT patterns. Note that the following identities hold

$$1_A + 1_B = 1_{A \cup B} + 1_{A \cap B}$$

for all pairs (A, B) of incomparable order-increasing subsets of Γ_n, and therefore, with (1.1), the map

$$\psi : H_n \rightarrow \mathbb{C}[S_n]$$

sending x_I to f_I for all $I \in L_n$ is well-defined. Indeed it gives an algebra isomorphism. See [12, §2]. See also [16, §3.3] and [21, §2.3].

Proposition 2.4. The affine monoid algebra $\mathbb{C}[S_n]$ of S_n is isomorphic to the Hibi algebra on L_n.

For a Young diagram $\lambda = (\lambda_1, ..., \lambda_n)$, let $\mathbb{C}[S_n]_{\lambda}$ denote the set of all formal linear combinations of GT patterns f such that

$$f(z_j^{(n)}) = \lambda_j \quad \text{for all} \ 1 \leq j \leq n.$$

Then, the affine monoid algebra $\mathbb{C}[S_n]$ is multigraded by Young diagrams

$$\mathbb{C}[S_n] = \bigoplus_{\lambda} \mathbb{C}[S_n]_{\lambda}$$

with $\mathbb{C}[S_n]_{\lambda} \cdot \mathbb{C}[S_n]_{\mu} \subseteq \mathbb{C}[S_n]_{\lambda + \mu}$. Similarly, H_n is multigraded by Young diagrams

$$H_n = \bigoplus_{\lambda} (H_n)_{\lambda}$$

and in this case, once monomials $\prod_{j=1}^{r} x_{I_j}$ are identified with multisubsets $\{I_1, ..., I_r\}$ of L_n, by Proposition 2.2, the space $(H_n)_{\lambda}$ consists of all formal linear combinations of semistandard Young tableaux on the Young diagram λ.
We remark that for each Young diagram \(\lambda \), there is a finite dimensional irreducible representation \(V_\lambda^n \) of the general linear group \(GL_n(\mathbb{C}) \). Such a representation has a \(\mathbb{C} \)-basis which can be labeled by GT patterns satisfying (2.3), or equivalently, by semistandard Young tableaux on the Young diagram \(\lambda \). Therefore, we can think of \(\mathbb{C}[S_n]_\lambda \) and \((H_n)_\lambda \) as combinatorial models of the representation space \(V_\lambda^n \). We will be more precise about it in the next section.

3. Flag algebra and representations of \(GL_n \)

Let us consider the complex general linear group \(GL_n = GL_n(\mathbb{C}) \), that is, the group of complex \(n \times n \) invertible matrices with matrix multiplication. We will construct algebras carrying polynomial representations of \(GL_n \).

3.1. Representations of \(GL_n \). Let us begin with some basic concepts of representation theory. For more details, we refer the reader to [11] especially, §1.5, §2.1, and §3.2.

A representation of a group \(G \) on a vector space \(V \) (over \(\mathbb{C} \) in this paper) is a group homomorphism \(\phi \) from \(G \) to the group of all automorphisms of \(V \). Then, \(G \) acts on \(V \) by

\[
g \cdot v = \phi(g)v \quad \text{for } g \in G \text{ and } v \in V.
\]

When such an action is understood, we often say \(V \) is a representation of \(G \). A representation \(V \) is irreducible if it is a nonzero representation that has no proper subrepresentation closed under the action of \(G \). We will focus on the polynomial representation of \(GL_n \), which means that the matrix coefficients of \(\phi(g) \) of a typical element \(g = (g_{ij}) \in GL_n \) are polynomials generated by \(g_{ij} \).

We let \(A_n \) be the maximal torus of \(GL_n \) consisting of all invertible diagonal matrices. A character of \(A_n \) is a regular homomorphism

\[
\psi_n^\kappa : A_n \rightarrow \mathbb{C}^\times \text{ defined by } \psi_n^\kappa(a) = a_1^{\kappa_1}a_2^{\kappa_2}\cdots a_n^{\kappa_n}
\]

for some \(\kappa = (\kappa_1, \kappa_2, \ldots, \kappa_n) \in \mathbb{Z}^n \). Here, \(a = \text{diag}(a_{11}, \ldots, a_{nn}) \in A_n \) is the diagonal matrix with diagonal entries \(a_{11}, a_{22}, \ldots, a_{nn} \). We call \(\psi_n^\kappa \) a polynomial dominant character, if \(\kappa_1 \geq \kappa_2 \geq \cdots \geq \kappa_n \geq 0 \). Note that the set of all polynomial dominant characters form a semigroup

\[
\hat{A}_n^+ = \{ \psi_n^\kappa : \kappa_1 \geq \kappa_2 \geq \cdots \geq \kappa_n \geq 0 \} \quad \text{with} \quad \psi_n^\alpha \cdot \psi_n^\beta = \psi_n^{\alpha + \beta}.
\]

Every polynomial representation of \(GL_n \) has a \(\mathbb{C} \)-basis, called weight basis, consisting of vectors \(v \) satisfying

\[
a \cdot v = \psi_n^\kappa(a)v \quad \text{for all } a \in A_n
\]

for some \(\kappa = (\kappa_1, \kappa_2, \ldots, \kappa_n) \in \mathbb{Z}^n \) such that \(\kappa_i \geq 0 \) for all \(i \). Such a vector \(v \) is called a weight vector of weight \(\psi_n^\kappa \).

Now we let \(U_n \) be the maximal unipotent subgroup of \(GL_n \) consisting of all upper triangular matrices with 1’s on the diagonal. Let us write \(V^{U_n} \) for the subspace of a polynomial representation \(V \) of \(GL_n \) consisting of all vectors invariant under the action of \(U_n \). Since \(A_n \) normalizes \(U_n \), the action of \(A_n \) will leave \(V^{U_n} \) invariant. Moreover, if \(V \) is irreducible, then Theorem of the Highest Weight shows that \(V^{U_n} \) is a one-dimensional subspace of \(V \) spanned by a weight vector of weight \(\psi_n^\kappa \in \hat{A}_n^+ \) and determines the representation \(V \) up to equivalence. In this case, we call a vector \(v \in V^{U_n} \) a highest weight vector for \(V \) and \(\psi_n^\kappa \) the highest weight of \(V \). Characters of \(A_n \) occurring as the highest
weights of irreducible polynomial representations of GL_n are exactly polynomial dominant characters.

Therefore, we can associate each irreducible polynomial representation of GL_n with a polynomial dominant character ψ^κ_n or equivalently a sequence κ of non-increasing non-negative integers. We can further identify such a sequence κ with a Young diagram as given in §11 and this establishes a one-to-one correspondence between irreducible polynomial representations of GL_n and Young diagrams with not more than n rows. From now on, for a Young diagram λ with $d(\lambda) \leq n$, we let V^λ_n denote the irreducible polynomial representation with highest weight ψ^κ_n.

3.2. Weight basis and GT patterns. There is a nice labeling system for weight basis elements for V^λ_n. First, we recall a simple branching rule. See [11 §8].

Lemma 3.1. For a Young diagrams $\mu = (\mu_1, ..., \mu_k)$, the irreducible representation V^μ_k of GL_k, under the restriction of GL_k down to its block diagonal subgroup $GL_{k-1} \times GL_1$, decomposes in a multiplicity-free fashion

$$V^\mu_k = \bigoplus_\nu V^\nu_{k-1} \otimes V^{(r)}_1$$

where the sum is over Young diagrams $\nu = (\nu_1, ..., \nu_{k-1})$ interlacing μ, i.e.

$$\mu_1 \geq \nu_1 \geq \mu_2 \geq \nu_2 \geq \cdots \geq \nu_{k-1} \geq \mu_k$$

and $r = \sum_{j=1}^k \mu_j - \sum_{j=1}^{k-1} \nu_j$.

For each GT pattern $f \in S_n$, let us write

$$\lambda[k] = (f(z_1^{(k)}), f(z_2^{(k)}), ..., f(z_i^{(k)}))$$

for $1 \leq k \leq n$ and $\lambda = \lambda[n]$. Then, f can encode the successive applications of Lemma 3.1 for $k = n, n-1, ..., 2$. Since every irreducible polynomial representation of GL_1 is one-dimensional, we can find a vector v_f in the chain of spaces

$$V^{\lambda[n]}_n \supset \left(V^{\lambda[n-1]}_{n-1} \otimes V^{(\kappa_1)}_1 \right) \supset \left(V^{\lambda[n-2]}_{n-2} \otimes V^{(\kappa_2)}_1 \otimes V^{(\kappa_1)}_1 \right) \supset \cdots \supset \left(V^{(\kappa_1)}_1 \otimes \cdots \otimes V^{(\kappa_1)}_1 \right)$$

where

$$\kappa_1 = \sum_{j=1}^i f(z_j^{(i)}) - \sum_{j=1}^{i-1} f(z_j^{(i-1)})$$

for $2 \leq i \leq n$ and $\kappa_1 = f(z_1^{(1)})$.

and therefore $(\kappa_1) = \lambda[1]$. The vector v_f is stable under the action of $A_n \cong GL_1 \times \cdots \times GL_1$ (n times) with weight ψ^κ_n where $\kappa = (\kappa_1, ..., \kappa_n)$.

This gives a one-to-one correspondence between the set of GT patterns satisfying (2.4) and a weight basis for V^λ_n. See [8 §31] for more details. With the correspondence (2.2), we can also label weight basis elements with semistandard Young tableaux. In this case, semistandard Young tableaux on a Young diagram λ with content κ corresponds to weight basis elements in V^λ_n with weight ψ^κ_n. We refer the reader to [11 §8.1].
3.3. Flag algebra for GL_n. To construct an algebra carrying irreducible representations of GL_n, we recall the GL_n-GL_m duality (see [11, §9.2] and [15]). Let us write $\mathbb{C}[M_{n,m}]$ for the ring of polynomials on the space $M_{n,m}$ of $n \times m$ complex matrices. We use the coordinates x_{ab} to write a typical element $X \in M_{n,m}$

$$X = \begin{bmatrix}
 x_{11} & x_{12} & \cdots & x_{1m} \\
 x_{21} & x_{22} & \cdots & x_{2m} \\
 \vdots & \vdots & \ddots & \vdots \\
 x_{n1} & x_{n2} & \cdots & x_{nm}
\end{bmatrix}$$

and let the group $GL_n \times GL_m$ act on $h \in \mathbb{C}[M_{n,m}]$ by

$$((g_1, g_2) \cdot h)(X) = h(g_1^t X g_2)$$

for $(g_1, g_2) \in GL_n \times GL_m$ and $X \in M_{n,m}$. Then, as a $GL_n \times GL_m$ representation, the algebra $\mathbb{C}[M_{n,m}]$ decomposes as

$$\mathbb{C}[M_{n,m}] \cong \bigoplus_{\lambda} V^\lambda_n \otimes V^\lambda_m$$

where the summation runs over Young diagrams λ with not more than $\min(n, m)$ rows.

Now we let $n \geq m$ and consider the subring $\mathcal{R}_{n,m}$ of $\mathbb{C}[M_{n,m}]$ consisting of all polynomials invariant under the action of $1 \times U_m$,

$$\mathcal{R}_{n,m} = \{ h \in \mathbb{C}[M_{n,m}] : h(Xu) = h(X) \text{ for all } u \in U_m \} \cong \bigoplus_{d(\lambda) \leq m} V^\lambda_n \otimes (V^\lambda_m)^{U_m}.$$

We will call $\mathcal{R}_{n,m}$ the *flag algebra* for GL_n. Since V^λ_m is irreducible, $(V^\lambda_m)^{U_m}$ is one-dimensional. Therefore, $\mathcal{R}_{n,m}$ contains exactly one copy of every polynomial representation V^λ_n of GL_n for λ with $d(\lambda) \leq m$.

Let us write $\mathcal{R}^\lambda_{n,m}$ for the space of weight vectors in $\mathcal{R}_{n,m}$ with weight ψ^λ_n under the right action of A_m. Then we obtain the graded algebra structure of $\mathcal{R}_{n,m}$ with respect to the semigroup \hat{A}_m^+

$$\mathcal{R}_{n,m} = \bigoplus_{\psi_n^\lambda \in \hat{A}_m^+} \mathcal{R}^\lambda_{n,m}$$

where $\mathcal{R}^\lambda_{n,m} \cong V^\lambda_n$ as a representation of GL_n and $\mathcal{R}^\lambda_{n,m} \cdot \mathcal{R}^\mu_{n,m} \subseteq \mathcal{R}^{\lambda+\mu}_{n,m}$.

3.4. Standard monomial basis. Let us review a presentation of the flag algebra $\mathcal{R}_{n,m}$. We are particularly interested in weight bases for the individual homogeneous spaces $\mathcal{R}^\lambda_{n,m}$ of $\mathcal{R}_{n,m}$ under the left action of A_n. Let us consider the subposet $L_{n,m}$ of L_n consisting of all column tableaux of depth at most m

$$L_{n,m} = \{ I \in L_n : \text{the depth of } I \text{ is not more than } m \}.$$

For a column tableau $I = [i_1, i_2, \ldots, i_k] \in L_{n,m}$, we define a function δ_I on $M_{n,m}$ by the determinant of the submatrix of $X = (x_{ab}) \in M_{n,m}$ obtained by selecting the rows
i_1, i_2, \ldots, i_k and columns $1, 2, \ldots, k$ of X

\[
\delta_I(X) = \det \begin{bmatrix}
x_{i_11} & x_{i_12} & \cdots & x_{i_1k} \\
x_{i_21} & x_{i_22} & \cdots & x_{i_2k} \\
\vdots & \vdots & \ddots & \vdots \\
x_{i_k1} & x_{i_k2} & \cdots & x_{i_kk}
\end{bmatrix}.
\] (3.1)

It is easy to check that $\delta_I \in \mathbb{C}[M_{n,m}]$ are invariant under the action of $1 \times U_m$ and therefore the product $\prod_j \delta_{I_j}$ of any finite number of such elements belong to $R_{n,m}$.

Definition 3.2. Let $\{I_1, \ldots, I_r\}$ be a multisubset of $L_{n,m}$ such that the depth of I_j is d_j and $d_1 \geq d_2 \geq \cdots \geq d_r$. Then, the initial monomial in λ Δ in $R_{n,m}$ in lexicographic order \geq it is easy to check that

\[
(3.1)
\]

Let $\Delta = \prod_j \delta_{I_j}$ is called a standard monomial if it is not divisible by $\delta_I \delta_J$ for any incomparable pairs (I, J) in $L_{n,m}$. Therefore, its indices form a multi-chain of the poset $L_{n,m}$ and we write Δ_T for $\prod_{j=1}^r \delta_{I_j}$ where $T = (I_1 \leq_{tab} I_2 \leq_{tab} \cdots \leq_{tab} I_r)$.

Note that every product $\Delta = \prod_{j=1}^r \delta_{I_j}$ is a weight vector under the right action of A_m. The weight of Δ is ψ_{λ}^m (therefore $\Delta \in R^\lambda_{n,m}$) if and only if the shape of Δ is λ. This shows that the space $R^\lambda_{n,m}$ is spanned by the products Δ whose shapes are λ.

Theorem 3.3. For each Young diagram λ with $d(\lambda) \leq m$, standard monomials of shape λ form a \mathbb{C}-basis for the homogeneous component $R^\lambda_{n,m}$ of $R_{n,m}$.

Proof. Let us give a sketch of a proof. For more details or different proofs, we refer the reader to, for example, [2,5,7,10,30,33]. We can begin with a determinantal identity: for each incomparable pair (I, J) in $L_{n,m}$, we have

\[
\delta_I \delta_J = \delta_{I \wedge J} \delta_{I \vee J} + \sum_{E,F} c_{E,F} \delta_E \delta_F
\]

where $E \leq_{tab} (I \wedge J) \leq_{tab} (I \vee J) \leq_{tab} F$. By applying it to a non-standard monomial Δ in $R^\lambda_{n,m}$ as many as possible, we can express Δ as a linear combination of standard monomials of shape λ. Therefore, standard monomials of shape λ span the space $R^\lambda_{n,m}$.

To show that they are linearly independent, we can use a monomial order on the set of all monomials $\prod_{ij} x_{ij}^{r_{ij}}$ in the polynomial ring $\mathbb{C}[M_{n,m}]$. Let us consider the graded lexicographic order \geq_{glex} with respect to the following order on the variables

\[
x_{ab} > x_{cd} \quad \text{if } b < d; \text{ or } b = d \text{ and } a < c.
\]

Then, the initial monomial $in(\delta_I)$ of δ_I, that is, the monomial appearing in the polynomial δ_I which is greater than all other monomials appearing in δ_I with respect to \geq_{glex}, is the product of the diagonal entries in δ_I(3.1)

\[
in(\delta_I) = x_{i_11} x_{i_22} \cdots x_{i_kk}.
\]

From $in(\prod_j \delta_{I_j}) = \prod_j in(\delta_{I_j})$, one can easily compute the initial monomials of standard monomials and show that standard monomials of shape λ have distinct initial monomials with respect to \geq_{glex}. Therefore, they are linearly independent. \square
We note that standard monomials are stable under the left action of A_n, and therefore standard monomials of shape λ form a weight basis for $\mathcal{R}_{\lambda}^{n,m} \cong V_{\lambda}^n$. By identifying multichains in $L_{n,m}$ with semistandard Young tableaux, we obtain the following result.

Corollary 3.4. For a Young diagram λ with $d(\lambda) \leq n$, the dimension of the representation V_{λ}^n is equal to the number of semistandard Young tableaux on the Young diagram λ with entries from $\{1, 2, \ldots, n\}$.

3.5. **Initial algebra and toric degeneration.** Now let us consider the initial algebra of the flag algebra with respect to the monomial order \geq_{glex} in $\mathcal{R}_{n,m} = \{f \in \mathcal{R}_{n,m} : f \in \mathcal{R}_{n,m}\}$.

Theorem 3.5. There is a flat one-parameter family of algebras whose general fiber is isomorphic to $\mathcal{R}_{n,m}$ and special fiber is isomorphic to the initial algebra $\mathcal{R}_{n,m}$.

Proof. From Theorem 3.3, every element $f \in \mathcal{R}_{n,m}$ can be uniquely expressed as a linear combination of standard monomials

$$f = c_1 \Delta_1 + c_2 \Delta_2 + \cdots + c_k \Delta_k.$$

Since standard monomials have distinct initial monomials, $in(f) = in(\Delta_i)$ for some i. Also, Δ_i is the product of some δ_{I_j} and therefore its initial monomial is the product of $in(\delta_{I_j})$. This shows that the initial algebra $in(\mathcal{R}_{n,m})$ is generated by $in(\delta_{I_j})$ for $I_j \in L_{n,m}$ and that the set $\{\delta_{I_j} \in \mathcal{R}_{n,m} : I_j \in L_{n,m}\}$ forms a finite SAGBI basis for the algebra $\mathcal{R}_{n,m}$. This guarantees that there is a flat degeneration from the flag algebra $\mathcal{R}_{n,m}$ to its initial algebra $in(\mathcal{R}_{n,m})$. See [3, 9, 29, 30].

To investigate the structure of the initial algebra $in(\mathcal{R}_{n,m})$, we restrict the bijection from L_n to Λ_n given in Theorem 1.4 to $L_{n,m}$. For $I \in L_{n,m}$, since the depth of I is not more than m, we have $f_I(z_{j}^{(n)}) = 0$ for all $m + 1 \leq j \leq n$. By the order structure of Γ_n, this condition forces $f_I(z_{j}^{(i)}) = 0$ for all $j \geq m + 1$. We define the smallest subposet of Γ_n containing $Supp(f_I)$ for all $I \in L_{n,m}$

$$\Gamma_{n,m} = \{z_{j}^{(i)} \in \Gamma_n : j \leq m \}.$$

See Figure 6. We write $S_{n,m}$ for the submonoid of S_n consisting of all order-preserving maps in S_n whose supports are in $\Gamma_{n,m}$ and let $\Lambda_{n,m} = \Lambda_n \cap S_{n,m}$.

![Figure 6. The Hasse diagram of the poset $\Gamma_{5,3}$. The elements decrease along the lines from left to right.](image-url)
Proposition 3.6. The initial algebra $in(R_{n,m})$ of the flag algebra $R_{n,m}$ is isomorphic to the affine monoid algebra $\mathbb{C}[S_{n,m}]$ of $S_{n,m}$.

Proof. With the correspondence between $L_{n,m}$ and $\Lambda_{n,m}$, we define a map $\phi: in(R_{n,m}) \to \mathbb{C}[S_{n,m}]$ sending $in(\delta_I)$ to f_I for $I \in L_{n,m}$. For $I = [i_1, ..., i_a]$ and $J = [j_1, ..., j_b]$ with $a \leq b \leq m$, we have

$$in(\delta_I)in(\delta_J) = \prod_{k=1}^{a} (x_{i_k,k}x_{j_k,k}) \times \prod_{k=a+1}^{b} x_{i_k,k} = in(\delta_{I\cup J})in(\delta_{I\wedge J}).$$

With (2.3), ϕ is well-defined and it can be extended to the initial monomials of standard monomials to give a semigroup isomorphism between the semigroup of the initial monomials of all $h \in R_{n,m}$ and $S_{n,m}$. □

With Proposition 2.4, this shows that the initial algebra $in(R_{n,m})$ has the structure of the Hibi algebra on $L_{n,m}$. We also remark that its spectrum $Spec(in(R_{n,m}))$ can be understood as an affine toric variety associated with the lattice cone $S_{n,m}$ of GT patterns defined on $\Gamma_{n,m}$.

4. More subposets of L_n and Γ_n

There are some subposets of $L_{n,m}$ and $\Gamma_{n,m}$ whose associated Hibi algebras are closely related to important questions in invariant theory and representation theory of classical groups. In this section, we list some of them and relevant works.

4.1. Grassmannians. For $m \leq n$, let us consider the subposet $G_{n,m}$ of $L_{n,m}$ consisting of all column tableaux of depth m

$$G_{n,m} = \{ I \in L_{n,m} : \text{the depth of } I \text{ is } m \}.$$

Using the argument in §1.2 we can find its associated GT poset. See [21, §3] and Figure 7. The multichains of $G_{n,m}$, the corresponding GT patterns, and the Hibi algebra attached to them can be used to describe the Grassmannian variety of m dimensional subspaces of \mathbb{C}^n, a ring of polynomials in $\mathbb{C}[M_{n,m}]$ invariant under the right action of the special linear group $SL_m(\mathbb{C})$, and finite dimensional representations of the general linear group $GL_n(\mathbb{C})$ labeled by rectangular Young diagrams of depth m. See, for example, [10, 11, 36]. This poset also has an interesting connection with double tableaux or pairs of Young tableaux. See [22].

4.2. Symplectic groups. For $n = 2m$, let us consider the subposet of $L_{n,m}$

$$P_n = \{ I \in L_{n,m} : I \succeq_{tab} [1, 3, 5, ..., 2m - 1] \}.$$

We can find its associated GT poset using the argument in §1.2. See [21] and Figure 8. The multichains of P_n and the GT patterns corresponding to them can be used to label weight basis elements for the rational representations of the symplectic group $Sp_n(\mathbb{C})$. See, for example, [1, 4, 21, 28, 31, 32].
4.3. Branching rules. For $m \leq n$ and $k < n$, let us consider the subposet $B_{n,m,k}$ of $L_{n,m}$ consisting of all column tableaux of the forms

$$\begin{align*}
&[1, 2, ..., p], \quad [i_1, i_2, ..., i_q], \quad [1, 2, ..., r, j_1, j_2, ..., j_s] \\
&\text{where } 1 \leq p, r \leq \min(k, m), \quad 1 \leq q, s \leq \min(n - k, m), \quad 1 \leq r + s \leq m, \quad \text{and } k + 1 \leq i_c, j_d \leq n.
\end{align*}$$

The GT poset associated with $B_{n,m,k}$ can be computed as in §1.2. See Figure 9, Figure 10, and [23].

For each semistandard tableau T obtained from a multichain of $B_{n,m,k}$, by erasing the entry i in the ith row of T for $1 \leq i \leq k$ and replacing the entry j in T with $j - k$ for all $j \geq k + 1$, we can realize T as a semistandard tableau on a skew Young diagram λ/μ with content $\nu = (\nu_1, ..., \nu_{n-k})$. Here, the inner diagram is $\mu = (\mu_1, \mu_2, ...)$ where μ_i is the number of all boxes in the ith row of T containing i for $1 \leq i \leq k$, and ν_j is the number of boxes in T containing $j + k$ for $1 \leq j \leq n - k$.

For example, with $n = 10$, $m = 5$, and $k = 4$, a semistandard Young tableau T on a skew Young diagram $(12, 10, 6, 4, 0)/(8, 5, 3, 0)$ with content $(5, 2, 3, 2, 0)$ where

$$T = \begin{array} {cccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 5 & 5 \\
2 & 2 & 2 & 2 & 5 & 7 & 8 & 9 \\
3 & 3 & 3 & 6 & 7 & 9 \\
5 & 5 & 6 & 8 \\
\end{array} \quad \leftrightarrow \quad T' = \begin{array} {cccc}
1 & 1 & 3 & 4 \\
1 & 3 & 4 & 5 \\
2 & 3 & 5 \\
1 & 1 & 2 & 4 \\
\end{array}.$$

Then, the multichains of $B_{n,m,k}$, the corresponding GT patterns, and the Hibi algebra attached to them can be used to describe branching rules for some pairs (G, H) of classical groups, that is, how a representation of G decomposes into irreducible representations of a subgroup H of G. See [23, 26, 31, 32].

4.4. Tensor product of representations. The tensor product decomposition problem to determine how tensor products of group representations decomposes is an important problem in representation theory with many applications. Recently, Howe and his collaborators have shown that answers to many of these questions can be given nicely in terms of the Hibi algebras associated with some subposets of $\Gamma_{n,m}$ and their variations. We refer the interested reader to [17, 20, 24, 25, 27, 37].

Figure 9. The subposet of $\Gamma_{8,3}$ associated with $B_{8,3,5}$.

Figure 10. The subposet of $\Gamma_{5,3}$ associated with $B_{5,3,2}$.

Acknowledgment. Parts of this article were presented at The Prospects for Commutative Algebra, Osaka, Japan, July 2017. We express our sincere gratitude to the organizers for the wonderful and stimulating conference.

References

[1] A. Berele, Construction of Sp-modules by tableaux. Linear and Multilinear Algebra 19 (1986), no. 4, 299–307.
[2] W. Bruns and J. Herzog, Cohen-Macaulay rings. Cambridge Studies in Advanced Mathematics, 39. Cambridge University Press, Cambridge, 1993.
[3] A. Conca, J. Herzog, and G. Valla, Sagbi bases with applications to blow-up algebras. J. Reine Angew. Math. 474 (1996), 113–138.
[4] C. De Concini, Symplectic standard tableaux. Adv. in Math. 34 (1979), no. 1, 1–27.
[5] C. De Concini, D. Eisenbud, and C. Procesi, Hodge algebras. Astérisque, 91. Société Mathématique de France, Paris, 1982. 87 pp.
[6] D. Eisenbud, Introduction to algebras with straightening laws. Ring theory and algebra, III (Proc. Third Conf., Univ. Oklahoma, Norman, Okla., 1979), pp. 243–268, Lecture Notes in Pure and Appl. Math., 55, Dekker, New York, 1980.
[7] W. Fulton, Young tableaux. With applications to representation theory and geometry. London Mathematical Society Student Texts, 35. Cambridge University Press, Cambridge, 1997.
[8] I. M. Gelfand and M. L. Tsetlin, Finite-dimensional representations of the group of unimodular matrices. Doklady Akad. Nauk SSSR (N.S.) 71, (1950), 825–828. English translation in Izrail M. Gelfand, Collected papers. Vol. II. Springer-Verlag, Berlin, 1988.
[9] N. Gonciulea and V. Lakshmibai, Degenerations of flag and Schubert varieties to toric varieties. Transform. Groups 1 (1996), no. 3, 215–248.
[10] N. Gonciulea and V. Lakshmibai, Flag varieties, Hermann Éditeurs des Sciences et des Arts, 2001.
[11] R. Goodman and N. R. Wallach, Symmetry, representations, and invariants. Graduate Texts in Mathematics, 255. Springer, Dordrecht, 2009.
[12] T. Hibi, Distributive lattices, affine semigroup rings and algebras with straightening laws. Commutative algebra and combinatorics (Kyoto, 1985), 93–109, Adv. Stud. Pure Math., 11, North-Holland, Amsterdam, 1987.
[13] W. V. D. Hodge, Some enumerative results in the theory of forms. Proc. Cambridge Philos. Soc. 39, (1943). 22–30.
[14] W. V. D. Hodge and D. Pedoe, Methods of algebraic geometry. Vol. II. Reprint of the 1952 original. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 1994.
[15] R. Howe, Perspectives on invariant theory: Schur duality, multiplicity-free actions and beyond. The Schur lectures (1992) (Tel Aviv), 1–182, Israel Math. Conf. Proc., 8, Bar-Ilan Univ., Ramat Gan, 1995.
[16] R. Howe, Weyl Chambers and standard monomial theory for poset lattice cones. Q. J. Pure Appl. Math. 1 (2005), no. 1, 227–239.
[17] R. Howe, Pieri algebras and Hibi algebras in representation theory. Symmetry: representation theory and its applications, 353–384, Progr. Math., 257, Birkhäuser/Springer, New York, 2014.
[18] R. Howe and S. T. Lee, Why should the Littlewood-Richardson rule be true? Bull. Amer. Math. Soc. (N.S.) 49 (2012), no. 2, 187–236.

[19] R. Howe, S. Kim, and S. T. Lee, Double Pieri algebras and iterated Pieri algebras for the classical groups. Amer. J. Math. 139 (2017), no. 2, 347–401.

[20] R. Howe, S. Kim, and S. T. Lee, Standard monomial theory for harmonics in classical invariant theory. Representation Theory, Number Theory and Invariant Theory, 265-302. Progr. Math., 323, Birkhäuser/Springer, New York, 2017.

[21] S. Kim, Standard monomial theory for flag algebras of $GL(n)$ and $Sp(2n)$. J. Algebra 320 (2008), no. 2, 534–568.

[22] S. Kim, The nullcone in the multi-vector representation of the symplectic group and related combinatorics. J. Combin. Theory Ser. A 117 (2010), no. 8, 1231–1247.

[23] S. Kim, Distributive lattices, affine semigroups, and branching rules of the classical groups. J. Combin. Theory Ser. A 119 (2012), 1132–1157.

[24] S. Kim, A presentation of the double Pieri algebra. J. Pure Appl. Algebra 222 (2018), no. 2, 368–381.

[25] S. Kim and S. T. Lee, Pieri algebras for the orthogonal and symplectic groups. Israel J. Math. 195 (2013), no. 1, 215–245.

[26] S. Kim and O. Yacobi, A basis for the symplectic group branching algebra, J. Algebraic Combin. 35 (2012), no. 2, 269–290.

[27] S. Kim and S. Yoo, Pieri and Littlewood-Richardson rules for two rows and cluster algebra structure. J. Algebraic Combin. 45 (2017), no. 3, 887–909.

[28] R. C. King and N. G. I. El-Sharkaway, Standard Young tableaux and weight multiplicities of the classical Lie groups. J. Phys. A 16 (1983), no. 14, 3153–3177.

[29] M. Kogan and E. Miller, Toric degeneration of Schubert varieties and Gelfand-Tsetlin polytopes. Adv. Math. 193 (2005), no. 1, 1–17.

[30] E. Miller and B. Sturmfels, Combinatorial commutative algebra. Graduate Texts in Mathematics, 227. Springer-Verlag, New York, 2005

[31] A. I. Molev, Gelfand-Tsetlin bases for classical Lie algebras. Handbook of algebra. Vol. 4, 109–170, Handb. Algebr., 4, Elsevier/North-Holland, Amsterdam, 2006.

[32] R. A. Proctor, Young tableaux, Gelfand patterns, and branching rules for classical groups. J. Algebra 164 (1994), no. 2, 299–360.

[33] C. S. Seshadri, Introduction to the theory of standard monomials. Texts and Readings in Mathematics, 46. Hindustan Book Agency, New Delhi, 2007.

[34] R. P. Stanley, Enumerative combinatorics. Vol. 1. Second edition. Cambridge Studies in Advanced Mathematics, 49. Cambridge University Press, Cambridge, 2012

[35] R. P. Stanley, Enumerative combinatorics. Vol. 2. Cambridge Studies in Advanced Mathematics, 62. Cambridge University Press, Cambridge, 1999.

[36] B. Sturmfels, Algorithms in invariant theory. Texts and Monographs in Symbolic Computation. Springer-Verlag, Vienna, 1993.

[37] Y. Wang, Sign Hibi cones and the anti-row iterated Pieri algebras for the general linear groups. J. Algebra 410 (2014), 355–392.

E-mail address: sk23@korea.ac.kr

Department of Mathematics, Korea University, Seoul 02841, South Korea

E-mail address: vp35@cornell.edu

Department of Mathematics, Cornell University, Ithaca, NY 14853, USA