Isolation of *Shigella* species and their resistance patterns to a panel of fifteen antibiotics in mid and far western region of Nepal

Salman Khan, Priti Singh, Mukhtar Ansari, Ashish Asthana

1. Introduction

Shigellosis remains a public–health problem in most developing countries where communities are ravaged by poverty, war, poor sanitation, personal hygiene, and water supplies[1]. Epidemiologic reports show that about 140 million people suffer from shigellosis with estimated 600000 deaths per year worldwide[2–3]. There are four major O antigen groups, *viz.* group A as *Shigella dysenteriae* (*S. dysenteriae*), group B as *Shigella flexneri* (*S. flexneri*), group C as *Shigella boydii* (*S. boydii*) and *Shigella sonnei*[4]. It is a major cause of dysentery/diarrhea in children and others. Many of them are hospitalized immediately after the onset of the disease. Though, oral rehydration is the principal means of management, as the enteroinvasiveness antibacterial treatment may be necessary[5].

Objective: To determine the antimicrobial resistance patterns of *Shigella* species to the most commonly used antibiotics in mid and far western part of Nepal.

Methods: Stool samples were collected from 438 patients who came from mid and far western region of Nepal, attending OPD & IPD departments of Nepalgunj Medical College, Nepal, between the periods of September 2011 to March 2013. Standard microbiological procedures were used for isolation and identification of *Shigella* species while the disc diffusion test was used to determine the antimicrobial resistance patterns of the recovered isolates.

Results: A total of 65 isolates were identified as *Shigella* species. *Shigella flexneri, Shigella dysenteriae, Shigella boydii* and *Shigella sonnei* were accounted respectively for 43.07%, 27.69%, 21.53% and 7.69% of the total number of *Shigella* isolated. Resistances to nalidixic acid (95.38%), ampicillin (84.62%), co-trimoxazole (81.54%) and ciprofloxacin (46.15%) were observed. Greater number of isolates (38.46%) was recovered from those aged 1–10 years. This was statistically significant (*P* < 0.05), compared to the other age groups.

Conclusions: The study revealed the endemicity of shigellosis with *Shigella flexneri* as the predominant serogroup. Children were at a higher risk of severe shigellosis. The results also suggest that nalidixic acid, ampicillin, co-trimoxazole and ciprofloxacin should not be used empirically as the first line drugs in the treatment of shigellosis. Periodic analysis of resistance patterns is necessary for the appropriate selection of empirical antimicrobial therapy.
emergence of antimicrobial resistance to members of the Enterobacteriaceae family is posing serious problems in the treatment of outbreaks of infections. Since its first report in studies conducted in the 1950s, multiple-drug resistance transmitted by plasmids among Shigella species has been reported from many countries[6–8]. Moreover, an increase in resistance against many different drugs has been observed in the last two decades. In one study, a significant decrease was observed in the susceptibility of the species to ampicillin and cotrimoxazole from 1988–89 to 1991–92[9]. In another report, it was shown that co-trimoxazole resistance of Shigella increased from 3% to 40% within ten years[10]. Another study showed that the percentage of resistant Shigella strains in Madrid (Spain) increased from 39.6% to 97.9% for ampicillin, from 34.4% to 96.9% for co-trimoxazole, from 6.3% to 18.0% for tetracycline, and from 1.6% to 15.1% for chloramphenicol[11]. In Ethiopia, strains of Shigella that were resistant to many commonly used drugs have been reported in different parts of the country by several studies[12–14]. Belay et al. have reported a strain that was resistant to eight drugs out of the nine antimicrobials they used[14]. In India, over 70% of Shigella isolates were resistant to two or more drugs including ampicillin and co-trimoxazole during 2002 to 2007[15]. Reports from Indonesia, Bangladesh, Malaysia, and Nepal showed increasing frequency of Shigella with multiple resistance to ampicillin, trimethoprim–sulphamethoxazole, tetracycline, and nalidixic acid[16–19]. Similar resistance profiles were reported from Africa[20], Central America[21], Europe[22–24], and South America[25,26]. Besides the temporal changes in the antibiogram of Shigella species, it is well known that antibiotic susceptibility patterns in Shigella may differ between geographical areas. Such differences are never stable and may change rapidly, especially in places where antibiotics are used excessively (particularly in developing countries)[27]. This warrants for frequent observation on the change in the pattern of antibiogram for this organism. To our best knowledge, no report exists regarding the antibiotic resistance pattern of Shigella species in mid and far western region of Nepal. This study was thus carried out to determine the antimicrobial resistance patterns of Shigella species to the most commonly used antibiotics in mid and far western part of Nepal.

2. Materials and methods

2.1. Study background and subjects

This was a prospective study conducted on 458 patients of diarrheal/dysenteric stool samples screened, Shigella strains were identified in 65 (14.19%) samples, 36 (55.38%) in male and 29 (44.62%) in female (Table 1). Shigella spp. were isolated from patients with ages ranging between 1 to >60 years. Of these, 38.46% (n=25) were from children from 1–10 years age groups, which was statistically significant (P<0.05) compared to the other age groups. However, there was no significant difference in the overall number of isolates recovered in the study based on sex (P>0.05).

2.2. Sample collection and processing

Stool specimens were collected and processed following the standard microbiological methods at the central Laboratory of Microbiology[28]. The specimens were inoculated on plates of Hektoen enteric agar, Salmonella–Shigella agar and deoxycholate citrate agar (Himedia Lab. Pvt Ltd.). The plates were incubated at 37 °C for 24 h. The Shigella isolates were speciated biochemically as outlined by Cowan and confirmed by the slide agglutination test using polyvalent and monovalent antisera (Denka Seiken, Japan) [29].

2.3. Antibiotic susceptibility testing

Antimicrobial sensitivity testing was determined by the Kirby–Bauer disc diffusion method on Mueller Hinton agar using the antimicrobial agents including amikacin, ampicillin, amoxyclav, cefotaxime, cefazidime, ceftriaxone, chloramphenicol, ciprofloxacin, cotrimoxazole, doxycycline, gentamicin, imipenem, nalidixic acid, norfloxacin, and ofloxacin[30]. The plates were incubated at 37 °C for 24 h, and the diameters of zone of inhibition were compared with recorded diameters of the reference isolate (Escherichia coli ATCC 25922) in order to determine susceptibility or resistance.

2.4. Statistical analysis

Data obtained were analyzed using the SPSS software for windows version 18. Comparison of data in respect of Shigella, sex, and age–groups were performed by Chi-square. P<0.05 was consider to be statistically significant.

3. Results

Of the 458 diarrheal/dysenteric stool samples screened, Shigella strains were identified in 65 (14.19%) samples, 36 (55.38%) in male and 29 (44.62%) in female (Table 1). Shigella spp. were isolated from patients with ages ranging between 1 to >60 years. Of these, 38.46% (n=25) were from children from 1–10 years age groups, which was statistically significant (P<0.05) compared to the other age groups. However, there was no significant difference in the overall number of isolates recovered in the study based on sex (P>0.05).

S. flexneri strains were identified in 28 (43.07%) Shigella positive cultures, while S. dysenteriae accounted for 18 (27.69%), S. boydii in 14 (21.53%) and S. sonnei in 5 (7.69%) of the total number of isolates (Table 2). S. flexneri has been the predominant isolate during the period of the study.

Table 1	Sex distribution of all positive cases in different species of Shigella.		
Shigella species	Male	Female	Total No (%)
S. flexneri	16	12	28 (43.07)
S. dysenteriae	9	9	18 (27.69)
S. boydii	8	6	14 (21.53)
S. sonnei	3	2	5 (7.69)
Total No. (%)	36 (55.38)	29 (44.62)	65 (100)

The resistance pattern of Shigella spp. isolated between September 2011 to march 2013 is shown in Table 3. Over 80% of Shigella isolates were resistant to two or more drugs including ampicillin, nalidixic acid and co-trimoxazole. Resistance rate of nalidixic acid was 95.38%, ampicillin 84.62%, co-trimoxazole 81.54%, ciprofloxacin 46.15%, gentamicin, 24.62%, norfloxacin 24.62%, ceftriaxone 24.62%, ofloxacin 21.54%, ceftazidime 20%, amikacin 16.92%,

Note: Table 3 is not included in the provided text.
serotypes have been reported from time to time[33-36]. The showed the highest resistance to nalidixic acid (94.44%), and co-trimoxazole species were isolated from children aged 1-10 years, trimoxazole, norfloxacin and nalidixic acid.

Resistant to ciprofloxacin, showed a trend towards an increased incidence of resistance, especially in S. dysenteriae and S. flexneri during the study period. Although fluoroquinolones are recommended as the drugs of choice for shigellosis by World Health Organization[47], emergence of fluoroquinolone resistance among Shigella spp. has been documented in many countries[48-50]. In addition, these isolates, resistant to ciprofloxacin, showed a trend towards an increased incidence of resistance, especially in S. dysenteriae and S. flexneri.

4. Discussion

Shigellosis still accounts for a significant proportion of morbidity and mortality, especially in developing countries[31]. In this study, the majority of the Shigella species were isolated from children aged 1-10 years, which is similar to other studies[15,31-33]. The changing patterns in the distribution of Shigella serogroups and serotypes have been reported from time to time[33-36]. The shift in the prevalence of serogroups and the changing patterns in antimicrobial susceptibilities among Shigella isolates pose a major difficulty in the determination of an appropriate drug for the treatment of shigellosis[34,35]. In the present study, S. flexneri has been the predominant isolates among Shigella species, which was more similar to recent studies[15,37], but dissimilar to other studies[32,38-40]. This could be attributed to geographic variation and to changing patterns of serogroup, and serotypes of Shigella species from time to time. To the best of our knowledge, this study is the first to define the isolation of Shigella species and their resistance patterns to a panel of 15 antibiotics in mid and far western region of Nepal. Over the past decades, a significant number of Shigella isolates resistant to commonly-prescribed antimicrobials have been reported[41]. In early 1990s, many isolates were susceptible to nalidixic acid, norfloxacin, furazolidone, and gentamicin[33,35,39,40]. In the late 1990s, most isolates showed an increased resistance to the antimicrobials[42,34], but most were susceptible to ciprofloxacin[19,43,44]. In the present study, the overall increased resistance was observed for ampicillin, nalidixic acid acid and co-trimoxazole in Shigella species, which was more or less similar to some recently studies conducted in India, Iran, Ethiopia, and Nigeria[15,27,37,45,46]. In addition, these isolates, resistant to ciprofloxacin, showed a trend towards an increased incidence of resistance, especially in S. dysenteriae and S. flexneri during the study period. Although fluoroquinolones are recommended as the drugs of choice for shigellosis by World Health Organization[47], emergence of fluoroquinolone resistance among Shigella spp. has been documented in many countries[48-50]. At present, alternate drugs like the third generation cephaplorins are being used commonly. The present study shows that Shigella strains are rapidly acquiring resistance (cefotaxime 24.62%, cefazidime 20%, and cefotaxime 15.38%) to these drugs as well. The emergence of plasmid borne resistance to these cephaplorins further reduces the choice of drugs for the treatment of shigellosis. The genetic

Table 2

Distribution of Shigella species recovered from different age groups.

Shigella species	1-10 No. (%)	11-20 No. (%)	21-30 No. (%)	31-40 No. (%)	41-50 No. (%)	51-60 No. (%)	>60 No. (%)	Total No. (%)
S. flexneri	13	5	6	2	1	-	1	28 (43.07)
S. dysenteriae	8	4	5	-	1	-	-	18 (27.69)
S. boydii	4	2	4	3	-	-	1	14 (21.53)
S. sonnei	-	1	1	1	1	1	-	5 (7.69)
Total	25 (38.46)	12 (18.46)	16 (24.61)	6 (9.23)	3 (4.61)	1 (1.53)	2 (3.07)	65 (14.19)

Table 3

The resistance patterns of the recovered bacteria isolates from diarrhoeal/dysenteric patients in mid and far western region of Nepal expressed in percentage to a panel of fifteen antibiotics.

Concentration of antimicrobial (mcg)	S. flexneri % (No.)	S. dysenteriae % (No.)	S. boydii % (No.)	S. sonnei % (No.)	Total % (No.)
Amikacin (30)	-	16.66 (3)	28.57 (4)	80 (4)	16.92 (11)
Ampicillin (10)	92.85 (26)	72.22 (13)	78.57 (11)	100 (5)	84.62 (55)
Amoxyclyl (30)	14.29 (4)	-	35.71 (5)	-	13.85 (9)
Cefotaxime (30)	14.29 (4)	-	28.57 (4)	40 (2)	15.38 (10)
Cefazidime (30)	46.43 (13)	-	-	-	20 (13)
Ceftriaxone (30)	35.71 (10)	33.33 (6)	-	-	24.62 (16)
Choloramphenicol (30)	-	16.66 (3)	35.71 (5)	40 (2)	15.38 (10)
Ciprofloxacin (5)	60.71 (17)	66.66 (12)	-	20 (1)	46.15 (30)
Co-trimoxazole (25)	67.86 (19)	88.89 (16)	100 (14)	80 (4)	81.54 (53)
Doxycycline (30)	7.14 (2)	-	57.14 (8)	-	15.38 (10)
Gentamicin (10)	14.29 (4)	38.89 (7)	35.71 (5)	-	24.62 (16)
Imipenem (10)	-	-	-	-	-
Nalidixic acid (10)	96.43 (27)	94.44 (17)	100 (14)	80 (4)	95.38 (62)
Norfloxacin (10)	14.29 (4)	-	57.14 (8)	80 (4)	24.62 (16)
Ofloxaclin (5)	39.29 (11)	16.66 (3)	-	-	21.54 (14)
transfer of drug resistance genes may not be of immediate concern for the treating clinicians, but will pose a potential problem in the future. Their presence, plus the potential for plasmid and mediated quinolone resistance, will be sure to create significant therapeutic problems in the future. Widespread selective pressure and efficient dissemination channels for multi and drug resistant organisms are major factors that might have contributed to the rapid emergence and spread of resistant organisms.

The emergence of resistance to several new drugs such as fluoroquinolones and the third generation cephalosporins in Shigella is a cause of great concern not only at local level but also at regional level. The culture of antimicrobial abuse needs to be stopped and continuous surveillance of multidrug resistant strains is very important to know the changing antibiotic susceptibility pattern as well as the cyclical change of the serogroup from time to time as the resistance pattern also changes with the change in the serogroup. Analysis and periodic reporting is important in proper therapy of shigellosis.

Conflict of interest statement

We declare that we have no conflict of interest.

References

[1] Shears P. Shigella infections. Ann Trop Med Parasitol 1996; 90(2): 105–114.
[2] Vaccine research and development: new strategies for accelerating Shigella vaccine development. Wkly Epidemiol Rec 1997; 72: 73–79.
[3] World Health Organization. Diarrhoeal disease due to Shigella disease. In: Vaccines, immunization and biologicals. Geneva: World Health Organization; 1998, p. 1–5.
[4] Willey JM, Sherwood LM, Woolverton CJ. Prescott, Harley, and Klein’s Microbiology. 7th ed. New York: McGraw Hill Inc.; 2008, p. 481.
[5] Iwalokun BA, Ghenle GO, Smith SI, Ogunledun A, Akinsinde KA, Omonigbehin EA. Epidemiology of shigellosis in Lagos, Nigeria: trends in antimicrobial resistance. J Health Popul Nutr 2001; 19(3): 183–190.
[6] Brooks GF, Carroll KJ, Butel JS, Morse SA. Janetz, Melnick, & Adelberg’s Medical Microbiology. 24th ed. New York: McGraw–Hill; 2007, p. 224–226.
[7] Njanda AI, Assob JC, Ngagha DS, Kamga HL, Awafong MP, Weledji EP. Epidemiological, clinical features and susceptibility pattern of shigellosis in the Buea Health District, Cameroon. BMC Res Notes 2012; 5: 54.
[8] Brito-Alayon NE, Blando AM, Monzon–Moreno C. Antibiotic resistance pattern and plasmid profiles for Shigella spp. isolated in Cordoba, Argentina. J Antimicrob Chemother 1994; 34(2): 253–259.
[9] Dan M. Marked decrease in susceptibility of Shigella to ampicillin and cotrimoxazole in Israel. Eur J Clin Microbiol Infect Dis 1993; 12(2): 143–144.
[10] Orrett FA. Prevalence of Shigella serogroups and their antimicrobial resistance patterns in Southern Trinidad. J Health Popul Nutr 2008; 26(4): 456–462.
[11] Lopez–Brea M, Collado L, Vicente F, Perez–Diaz JC. Increasing antimicrobial resistance of Shigella sonnei. J Antimicrob Chemother 1983; 11(6): 598.
[12] Gehre–Yohannes A, Lirneneh Y. Multiple drug resistance within Shigella serogroups. Ethiop Med J 1980; 18(1): 7–14.
[13] Huruy K, Kassu A, Mulu A, Gebretsadik S, Andargie G, Tadesse T, et al. High level of antimicrobial resistance in Shigella species isolated from diarrhoeal patients in University of Gondar Teaching Hospital, Gondar, Ethiopia. Pharmacologyonline 2008; 2: 328–340.
[14] Roma B, Worku S, T’Mariam S, Langeland N. Antimicrobial susceptibility pattern of Shigella isolates in Awassa. Ethiop J Health Dev 2000; 14: 149–154.
[15] Srinivasa H , Baijayanti M, Raksha Y. Magnitude of drug resistant shigellosis: A report from Bangalore, Indian J Med Microbiol 2009; 27(4): 358–360.
[16] Hamata OP, Chinsembu KC. Use of selective media and colony polymerase chain reaction to isolate Shigella from water catchments in Namibia. J Res Microbes 2012; 1(1): 44–50.
[17] Shahid NS, Rahaman MM, Haider K, Banu H, Rahman N. Changing pattern of resistant Shiga bacillus (Shigella dysenteriae type 1) and Shigella flexneri in Bangladesh. J Infect Dis 1985; 152(6): 1114–1119.

[18] Thong KL, Hoe CH, Koh YT, Yasim RM. Prevalence of multidrug-resistant Shigella isolated in Malaysia. J Health Popul Nutr 2002; 20(4): 356–358.

[19] Wilson G, Easow JM, Mukhopadhyay C, Shivananda PG. Isolation & antimicrobial susceptibility of Shigella from patients with acute gastroenteritis in Western Nepal. Indian J Med Res 2006; 123(2): 145–150.

[20] Sang WK, Oundo V, Schnabe D. Prevalence and antibiotic resistance of bacterial pathogens isolated from childhood diarrhoea in four provinces of Kenya. J Infect Dev Ctries 2012; 6(7): 572–578.

[21] Mata LJ, Gangarosa EJ Cáceres A, Perera DR, Mejicanos ML. Epidemic Shiga bacillus dysentery in Central America. I. Etiologic investigations in Guatemala, 1969. J Infect Dis 1970; 122(3): 170–180.

[22] Cheasty T, Skinner JA, Rowe B, Threlfall EJ. Increasing incidence of antibiotic resistance in Shigellae from humans in England and Wales: recommendations for therapy. Microb Drug Resist 1998; 4(1): 57–60.

[23] Essers B, Burnens AP, Lanfranchini FM, Somaruga SG, von Vigier RO, Schaad UB, et al. Acute community-acquired diarrhoea requiring hospital admission in Swiss children. Clin Infect Dis 2000; 31(1): 192–196.

[24] Heikkilä E, Siitonen A, Jalokka M, Fling M, Sundström L, Huovinen P. Increase of trimethoprim resistance among Shigella strains: analysis of resistance mechanisms. J Infect Dis 1990; 161(6): 1242–1248.

[25] Hossein MJ, Ranjbar R, Ghasemi H, Jalalian HR. The prevalence and antibiotic resistance of Shigella sp. recovered from patients admitted to Bouali Hospital, Tehran, Iran during 1999–2001. Pak J Biol Sci 2007: 10(16): 2778–2780.

[26] Torres ME, Pirez MC, Schelotto F, Varela G, Parodi V, Allende F, et al. Etiology of children’s diarrhoea in Montevideo, Uruguay: associated pathogens and unusual isolates. J Clin Microbiol 2001; 39(6): 2134–2139.

[27] Yismaw G, Negeri C, Kassu A. A five–year antimicrobial resistance pattern observed in Shigella dysenteriae type 1 and Shigella flexneri in Gondar University Hospital, northwest Ethiopia. J Infect Dis 2012; 20(3): 194–198.

[28] Novyi SK. Shigellosis. Volunteer-to-Volunteer Shigella Transmission Study. 2nd ed. London: Cambridge University Press; 1974, p. 104-105.

[29] Huang L, Tiu LZ, Leung P, et al. Antimicrobial susceptibility of Shigella species isolated from stool samples in Gondar University Hospital, northwest Ethiopia. Ethiop J Health Dev 2006; 20(3): 120–125.

[30] Cowan ST. Manual for identification of medical bacteria: 2nd ed. 1974, p. 104-105.

[31] Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by standard single disc method. Am J Clin Pathol 1966; 45(4): 493–496.

[32] Ranjbar R, Dallal MM, Pourshafie MR. Epidemiology of shigellosis with special reference to hospital distribution of Shigella strains in Tehran. Iran J Clin Infect Dis 2008; 3(1): 35–38.

[33] Bhattacharya S, Khanal B, Bhattacharji NR, Das ML. Prevalence of Shigella species and their antimicrobial resistance patterns in Eastern Nepal. J Health Popul Nutr 2005; 23(4): 339–342.

[34] Rahbar M, Deldari M, Haja M. Changing prevalence and antibiotic susceptibility patterns of different shigella species in Tehran, Iran. Internet J Microbiol 2007; 2(2): doi:10.5580/1761.

[35] Jesudason MV. Shigella infection in Vellore, South India (1997–2001). Indian J Med Res 2002; 115: 11–13.

[36] Fischer Walker CL, Sack D, Black RE. Etiology of diarrhea in older children, adolescents and adults: a systematic. PLoS Negl Trop Dis 2010; 4(8): e768.

[37] Bhattacharya D, Sugunan AP, Bhattacharjee H, Thamizhmani R, Sayi DS, Thanesakaran K, et al. Antimicrobial resistance in Shigella—a rapid increase & widening of spectrum in Andaman Islands, India. Indian J Med Res 2012; 135: 365–370.

[38] Urvashi, Saxena S, Dutta R. Antimicrobial resistance pattern of Shigella species over five years at a tertiary–care teaching hospital in north India. J Health Popul Nutr 2011; 29(3): 292–295.

[39] Dutta S, Dutta D, Dutta P, Matsushita S, Bhattacharya SK, Yoshida SI. Shigella dysenteriae serotype 1, Kolkata, India. Emerg Infect Dis 2003; 9(11): 1471–1474.

[40] Thapa BR, Venkateswarlu K, Malik AK, Panigrahi D. Shigellosis in children from north India: a clinicopathological study. J Trop Pediatr 1995; 41(5): 303–307.

[41] Bennish ML, Salam MA, Hassain MA, Muya S, Khan EH, Chakraborthy J, et al. Antimicrobial resistance of Shigella isolates in Bangladesh, 1983–1990: increasing frequency of strains multiply resistant to ampicillin, trimethoprim-sulfamethoxazole, and nalidixic acid. Clin Infect Dis 1992; 14(5): 1055–1060.

[42] Sack BR, Rahman M, Yunus M, Khan EH. Antimicrobial resistance in organisms causing diarrhoeal disease. Clin Infect Dis 1997; 24(Suppl 1): S102–105.

[43] Khan MJ, Huq S, Malek MA, Hassain MI, Muya S, Khan EH, Chakraborthy J, et al. Antimicrobial resistance of Shigella flexneri isolates in Bangladesh, 1983–1990: increasing frequency of strains multiply resistant to ampicillin, trimethoprim-sulfamethoxazole, and nalidixic acid. Clin Infect Dis 1997; 24(Suppl 1): S102–105.

[44] Khan WA, Seas C, Dhar U, Salam MA, Bennish ML. Treatment of shigellosis: V. Comparison of azithromycin and ciprofloxacin. A double-blind, randomized, controlled trial. Ann Intern Med 1997; 126(9): 697–703.

[45] Gharibi A, et al. Increasing antimicrobial resistance among Shigella isolates in the Bushehe, Iran. Pak J Biol Sci 2012; 15(3): 156–159.

[46] Kimang’a AN. A situational analysis of antimicrobial drug resistance in Africa: are we losing the battle? Ethiop J Health Sci 2012; 22(2): 135–143.

[47] World Health Organization. Guidelines for the control of shigellosis, including epidemics due to Shigella dysenteriae type 1. Geneva: World Health Organization; 2005. [Online] Available from: http://whqlibdoc.who.int/publications/2005/9241592330.pdf. [Accessed on 22nd September, 2010]

[48] Naheed A, Kalluri P, Talukder KA, Faruque AS, et al. Fluoroquinolone & resistant Shigella dysenteriae type 1 in northeastern Bangladesh. Lancet Infect Dis 2004; 4(10): 607–608.

[49] Hirose K, Terajima J, Izumiya H, Tamura K, Arakawa E, Takai N, et al. Antimicrobial susceptibility of Shigella sonnei isolates in Japan and molecular analysis of S. sonnei isolates with reduced susceptibility to fluoroquinolones. Antimicrob Agents Chemother 2005; 49(3): 1203–1205.

[50] Roy S, Bhattacharya D, Thanesakaran K, Ghosh AR, Manimunda SP, Bharadwaj AP, et al. Emergence of fluoroquinolone resistance in Shigella isolated from Andaman & Nicobar Islands, India. Indian J Med Res 2010; 131: 720–722.