Ablation Versus Medical Therapy for Atrial Fibrillation in the Elderly: A Propensity Score-Matched Comparison

Background: Whether ablation therapy reduces the risk of death and embolic events in elderly patients with atrial fibrillation (AF) remains unclear.

Material/Methods: AF patients ≥65 years old receiving either catheter ablation or non-ablation therapy at 2 tertiary and 2 non-tertiary hospitals in Beijing from November 2009 to December 2012 were enrolled. Patients were followed up every 6 months for information on treatment and clinical event occurrence. A propensity score matching algorithm produced comparable 2 groups of patients treated with ablation or non-ablation. Rates of a composite of all-cause death, non-fatal stroke, and peripheral embolism were the primary outcomes. Each composite component and major bleeding were the secondary outcomes.

Results: There were 596 ablated patients and 1144 patients with non-ablation therapy enrolled. Propensity score algorithm matched 347 comparable pairs of patients. Patient characteristics variables were well balanced. During 523.5 and 497.5 patient-years follow-up, respectively, ablation therapy was associated with a significant lower risk of experiencing the primary composite outcome (hazard ratio [HR]=0.40; 95% confidence interval [CI]: 0.19–0.85), all-cause death (HR=0.13 95% CI: 0.04–0.43), and major bleeding (HR=0.23; 95% CI: 0.12–0.67), without apparent heterogeneity by age, sex, and AF type, and for risk score subgroups.

Conclusions: In this propensity-matched elderly sample, ablation therapy was associated with lower risk of composite outcome consisting of all-cause death, non-fatal stroke, and peripheral embolism, and therefore might be an alternative to conservative therapy.

MeSH Keywords: Atrial Fibrillation • Catheter Ablation • China • Propensity Score

Full-text PDF: https://www.medscimonit.com/abstract/index/idArt/917755
Background

Atrial fibrillation (AF), presenting predominantly among the elderly, is a known risk factor for stroke and accounts for up to 15% of all strokes [1]. By 2050, as stated in recent reports, Asia would have more than 2 million AF patients, thus putting 2.9 million patients at risk of AF-associated stroke [2]. China was estimated to have 5.2 million men and 3.1 million women older than 60 years suffering from AF according to recent reported age-adjusted AF prevalence rates [3]. Asia has a much higher overall disease burden because of its proportionally larger aged population [3].

Catheter ablation is increasingly used for atrial fibrillation treatment, and its effectiveness and safety are a subject of active research [4–10]. However, patients recruited in most studies have been relatively young without structural heart disease. A clinical decision is more complicated, as compared to relatively younger patients, in the elderly by their increased susceptibility to side effects on antiarrhythmic drug treatment due to reduced metabolic ability, comorbidities and multiple drug treatment [11,12], and a much higher risk of complications and recurrence with ablation therapy [13].

This prospective observational study aims to compare the effectiveness of ablation and medical therapy in terms of a composite primary outcome of total mortality, non-fatal stroke and peripheral embolism in atrial fibrillation elderly patients matched by propensity score.

Material and Methods

Participating hospitals and patients

Two typical tertiary hospitals (i.e., highly specialized hospitals: Beijing Anzhen Hospital, Capital Medical University, and Peking Union Medical College Hospital) and 2 non-tertiary hospitals without invasive electrophysiology (EP) treatment capabilities (Beijing Luhe Hospital and Beijing Fangshan Hospital) in Beijing urban and suburban areas participated in this study.

All patients aged ≥65 years with evidence of AF episode on electrocardiogram (ECG), Holter monitoring or any other electronic recording methods, were referred to the cardiology departments at the participating hospitals for AF treatment were eligible and consecutively enrolled at each participating center. De-identified data, including patient demographic characteristics, initial assessment and diagnosis, investigations, comorbidity, and final diagnosis and treatment, were entered into a web-based case report form. Data were collected and entered by trained investigators, who were cardiologists and taking care of AF patients as part of their routine clinical work.

Data of 10% of randomly selected patients were validated with their clinical medical record.

Catheter ablation and periprocedural management

Catheter ablation procedures were performed at electrophysiologist’s discretion, namely, pulmonary vein isolation (PVI) for paroxysmal AF, and 3 additional linear ablations at the left atrial roof, mitral isthmus between the mitral annulus and left inferior PV and cavotricuspid isthmus for persistent AF [14]. All patients underwent transesophageal echocardiography before the procedure to rule out intra-cardiac thrombus. All patients were anticoagulated for at least 3 months after the procedure, although it could be discontinued when the patient was free from AF.

Medical therapy in non-ablation patients

Medical therapy was at treating physician’s discretion. According to current Chinese guidelines for AF management, warfarin use was recommended for all patients with CHADS2 score ≥2 [15], and choice of antiarrhythmic agents included sotalol, amiodarone, or propafenone. For rate control, separate or combined treatments with β-blockers, calcium antagonist, or digitalis were recommended.

Follow-up

Patients were followed up every 6 months until June 30, 2014, by scheduled outpatient clinic visit or, if not possible, by telephone interview by nurses trained on data collection. Clinical information, including stroke and bleeding events, AF episode, AF treatment, and side effects of treatment, were collected at follow-up time points. During follow-up, patients were encouraged to undergo Holter monitoring every month and ECG tracing whenever they felt any symptoms of palpitation or fatigue. We only included patients with complete follow-up data for major clinical events in the analysis. All data collected were entered into the same electronic data capture system.

Outcomes

The primary study outcome was time to event for a composite of all-cause mortality, non-fatal stroke, and peripheral embolism. Incidence rates of each component of the primary outcome and major bleeding were considered as secondary outcomes. We define major bleeding as those requiring transfusion (at least 2 units of whole blood or erythrocytes), those requiring hospitalization or surgery, and those resulting in permanent disability, or involving a critical anatomic site; or any bleeding event that the physician characterizes as “major.”
Statistical analyses

Among recruited patients, we calculated the propensity score for receiving a catheter ablation for each patient by using a multivariable logistic regression model [16]. We included those baseline characteristics, assumed to be associated with the probability of having a catheter ablation, in the model as independent variables, including sex, age, body mass index (BMI), type of insurance coverage, socioeconomic status (SES), smoking status, length of AF history, AF type, history of high blood pressure (HBP), diabetes mellitus (DM), coronary artery disease (CAD), stroke, carotid artery stenosis, intracranial hemorrhage, other hemorrhage, heart failure (HF), and use of aspirin or warfarin.

We matched patients receiving ablation and medical therapy patients on a 1:1 basis by using the propensity scores (with a combination of nearest neighbor algorithm and caliper algorithm). For each patient receiving ablation, another patient receiving medical therapy with the smallest propensity score difference was matched. Patients that were not matched were excluded from the analysis.

We compared patients’ characteristics between 2 treatment arms, including demographics, disease characteristics, socioeconomic status, and medication use variables. The 2-sample t-tests were used for continuous variables and χ² tests for categorical variables in the aforementioned comparison. Patient characteristics were first compared among the entire groups of patients meeting inclusion or exclusion criteria. They were then compared among the propensity-matched sub-sample, to ensure that the matching process resulted in well-balanced groups.

We used the Kaplan-Meier method and the log-rank test to compare the event rates of the composite primary outcome (i.e., the time to the first event of all-cause mortality, stroke or peripheral embolism) between 2 groups. We also calculated event rates for all-cause mortality, stroke, and peripheral embolism, respectively, by dividing total numbers of first events by the total number of patients for each group.

Ethics approval

The centralized Human Research Ethics Committee at Beijing Anzhen Hospital gave ethics approval for the study (approved date June 3, 2010), and other centers acknowledged this approval. All patients provided consent to be contacted for follow-up.

Results

Characteristics of study patients before and after propensity score matching

From November 2009 to December 2012, 596 consecutive catheter ablation patients, and 1144 consecutive medically treated patients that satisfied the inclusion criteria were included in this study. The propensity-matching algorithm produced 347 pairs of patients. Patient characteristics were summarized for both the overall patient population and the propensity-matched sample in Table 1. Significant differences were observed in demographic and clinical characteristics between the ablation and non-ablation cohorts before propensity score matching. Specifically, patients receiving ablation were relatively younger, more males, less likely to be with hypertension, coronary heart disease, stroke, and heart failure history, and hence a lower CHADS² score and CHA²DS²-VASc score, more likely to have paroxysmal atrial fibrillation and total medical insurance coverage. After matching, the 2 treatment groups had no significant difference for any covariate.

Follow-up

The patients receiving ablation had a total of 523.5 patient-years follow-ups, and 497.5 patient-years in the non-ablation group. During follow-up, 231 out of 293 patients (78.8%), 149 out of 217 patients (68.7%), 127 out of 195 patients (65.1%), 83 out of 139 patients (59.7%), 51 out of 92 patients (55.4%), and 25 out of 44 patients (56.8%) patients in the ablation group were in sinus rhythm at 6, 12, 18, 24, 30, and 36 months, respectively. Compared to non-ablation patients, those patients receiving ablation were less likely to use warfarin. The proportion of patients receiving warfarin in the ablation group were 21.7%, 18.9%, 15.5%, 16.7%, 15.2%, and 22.7% of patients at each follow up time point, while the corresponding proportions were 23.0%, 40.1%, 43.3%, 39.6%, 30.6%, and 26.3% in the non-ablation group. The proportions of patients on anti-arrhythmia therapy at every 6 months of follow up were comparable between the 2 groups. The corresponding proportions were 13.0%, 17.4%, 15.6%, 16.0%, 8.7%, and 0% in the ablation group and 12.0%, 16.7%, 17.4%, 19.5%, 10.6%, and 5.3% in the non-ablation group.

Outcomes for matched patients

Figure 1 and Table 2 showed the long-term event rates according to the treatment groups in the matched patients. Patients in the ablation group were at significantly lower risk for the primary outcome composite of all-cause death, non-fatal stroke, and peripheral embolism compared with those treated conservatively (11 over 523.5 patient-years versus 32 over 497.5 patient-years; hazard ratio [HR]=0.40; 95% confidence interval
Ablation patients experienced a significantly lower incidence of all-cause death (HR=0.13; 95% CI: 0.04–0.43, \(P = 0.001 \)) and major bleeding (HR=0.23; 95% CI: 0.12–0.67; \(P = 0.004 \)) during follow up, while difference of non-fatal stroke (HR=0.54; 95% CI: 0.23–1.29; \(P = 0.166 \)) and peripheral embolism incidence did not reach statistical significance (HR=1.83; 95% CI: 0.17–20.13; \(P = 0.623 \)) (Table 2).

Outcomes for different subgroups

As shown in Figure 2, for different age groups (age <75 years or age 65–75 years), different sex, paroxysmal or persistent, higher or lower CHADS\(_2\) score, on or off warfarin therapy, ablation therapy was favored over non-ablation therapy in reducing

Table 1. Patient baseline characteristics before and after propensity score matching.

Variables	Before matching	After matching	\(P \)	Before matching	After matching	\(P \)
	Ablation therapy	Non-ablation therapy		Ablation therapy	Non-ablation therapy	
Age, years	70.8 (4.3)	73.6 (5.5)	0.000	71.3 (4.3)	71.3 (4.2)	0.871
BMI, kg/m\(^2\)	25.7 (3.5)	24.7 (4.5)	<0.001	25.4 (3.2)	25.7 (4.5)	0.432
AF history, years	6.9 (6.8)	7.7 (7.1)	0.030	7.0 (7.1)	7.0 (6.2)	0.964
Female gender	225 (39.7%)	522 (46.1%)	0.012	142 (41.6%)	151 (44.3%)	0.486
Type of insurance coverage						
1	318 (66.4%)	882 (85.1%)	<0.001	252 (73.9%)	259 (76.0%)	0.536
2	161 (33.6%)	154 (14.9%)		89 (26.1%)	82 (24.0%)	
Socioeconomic status						
Low	390 (70.8%)	700 (67.4%)	0.164	236 (69.2%)	236 (69.2%)	1.000
High	161 (29.2%)	339 (32.6%)		105 (30.8%)	105 (30.8%)	
Current smoker	90 (16.1%)	100 (9.5%)	<0.001	38 (11.1%)	40 (11.7%)	0.810
AF type						
Paroxysmal	376 (66.2%)	598 (52.7%)	<0.001	217 (63.6%)	222 (65.1%)	0.689
Persistent	192 (33.8%)	536 (47.3%)		124 (36.4%)	119 (34.9%)	
History of HBP	365 (64.8%)	787 (70.5%)	0.019	230 (67.4%)	236 (69.2%)	0.621
History of DM	106 (18.7%)	233 (20.9%)	0.287	59 (17.3%)	70 (20.5%)	0.282
History of CAD	79 (14.0%)	226 (20.3%)	0.002	57 (16.7%)	50 (14.7%)	0.461
History of ICH	68 (12.0%)	250 (22.5%)	<0.001	44 (12.9%)	49 (14.4%)	0.577
History of other hemorrhage	4 (0.7%)	15 (1.4%)	0.242	3 (0.9%)	5 (1.5%)	0.477
History of stroke	3 (0.5%)	21 (1.9%)	0.026	3 (0.9%)	2 (0.6%)	0.654
History of HF	27 (4.8%)	121 (10.9%)	<0.001	21 (6.2%)	18 (5.3%)	0.621
Aspirin use	265 (48.0%)	656 (57.8%)	<0.001	180 (52.8%)	185 (54.3%)	0.701
Warfarin use	188 (33.7%)	268 (23.6%)	<0.001	99 (29.0%)	98 (28.7%)	0.933
CHA\(_2\)DS\(_2\)-VASc						
0 or 1	78 (13.7%)	83 (7.3%)	<0.001	40 (11.7%)	32 (9.4%)	0.319
≥2	490 (86.3%)	1051 (92.7%)		301 (88.3%)	309 (90.6%)	

BMI – body mass index; SES – socioeconomic status; AF – atrial fibrillation; HBP – high blood pressure; DM – diabetes mellitus; CAD – coronary artery disease; ICH – intracranial hemorrhage; HF – heart failure.

[CI]: 0.19–0.85; \(P = 0.016 \). Ablation patients experienced a significantly lower incidence of all-cause death (HR=0.13; 95% CI: 0.04–0.43; \(P = 0.001 \)) and major bleeding (HR=0.23; 95% CI: 0.12–0.67; \(P = 0.004 \)) during follow up, while difference of non-fatal stroke (HR=0.54; 95% CI: 0.23–1.29; \(P = 0.166 \)) and peripheral embolism incidence did not reach statistical significance (HR=1.83; 95% CI: 0.17–20.13; \(P = 0.623 \)) (Table 2).
composite outcome of all-cause death, stroke and peripheral embolism (P for heterogeneity all >0.1).

Discussion

In this study, we compared the long-term outcomes of ablation therapy and non-ablation therapy in the present propensity-matched groups. This study showed that elderly AF patients receiving ablation therapy were associated with significantly lower risk in a composite outcome of death, non-fatal stroke, and peripheral embolism compared with those treated with non-ablation therapy, while an insignificant difference of non-fatal stroke and peripheral embolism incidence between the aforementioned 2 treatment strategies. The results were consistent across different subgroups, including patients 75 years or older or patients between 65–75 years old, male or female patients, paroxysmal or persistent AF, higher or lower CHADS2 score, off or on warfarin therapy.

Our study was in line with previous studies, showing that sinus rhythm maintenance achieved by ablation strategy in AF patients is associated with a lower risk of stroke and death [17,18]. Ablation therapy wasn’t more effective, as recently shown in the CABANA trial, in reducing composite events of death, disabling stroke, serious bleeding, or cardiac arrest, both in the main results and subgroup analysis of elderly patients, however, the CABANA trial failed to detect the difference between ablation and non-ablation in the elderly population [9]. Compared with previous studies, this study provided valuable information in several ways: First, this was a direct comparison between 2 treatment strategies rather than indirect comparison using administrative data or simulation study. Data reliability was strengthened by the more balanced comparison between

Event-free survival	Month	Ablation group	Non-ablation group
	3	332	347
	6	332	327
	9	253	232
	12	200	184
	15	135	140
	18	87	90
	21	40	18

Table 2. Incidence of all-cause death, stroke, peripheral embolism, and major bleeding during follow-up.

	Ablation	Non-ablation	Hazard ratio	P
Composite outcome	11 (3.1%)	32 (9.2%)	0.40 [0.19–0.85]	0.016
All-cause death	4 (1.2%)	20 (5.8%)	0.13 [0.04–0.43]	0.001
Stroke	8 (2.4%)	19 (5.6%)	0.54 [0.23–1.29]	0.166
Peripheral embolism	2 (0.6%)	4 (1.2%)	1.83 [0.17–20.13]	0.623
Major bleeding	7 (2.1%)	30 (8.6%)	0.23 [0.12–0.67]	0.004

Figure 1. Composite event-free survival in the ablation group and non-ablation group. P-value was calculated using a univariate Cox model.

Figure 2. The treatment effect of ablation therapy on composite endpoints in different subgroups.
2 propensity score-matched groups. Previous studies had sug-
goested that matching according to the propensity score elimi-
nates a greater proportion of baseline differences between 2
 treatmens than covariate adjustment [20]. Second, this was
 one of the largest case series comparing different strategies
 using real-world practice data. The components of the com-
 posite primary outcome of all-cause death, stroke, and periph-
eral embolism were all clinically relevant. This was an ad-
vantage compared with those studies using the maintenance of
 sinus rhythm per se as the primary endpoint. Third, all partici-
pating patients were Chinese, a subgroup of patients less rep-
resented in clinical trials and might have a different profile of
 stroke and bleeding risk [3]. Previous studies showed that Asian
 patients were at fourfold risk of major bleeding when taking
 oral anticoagulants while relative risk reduction in stroke was
 smaller [21,22]. Fourth, this study focused on elderly patients,
 for whom there were scant data on disease presentation and
 management. Elderly AF patients usually had more significant
 atrial fibrosis, and the success rate of ablation therapy may
differ from that in younger patients [23,24]. Elderly patients
 also had more comorbidities and were less tolerant of antiar-
rhythmic drugs and anticoagulant therapy [11].

Limitations

The study is subject to several limitations. First, the study is
an observational study. Although AF patients treated with
ablation and non-ablation therapy were matched through a
 propensity score, which may minimize the patient selection
biases. We are confident that known variables are well bal-
anced between 2 groups, but unknown confounders can still
affect results. Second, treatment was not optimal, with about
40% of patients in the non-ablation group receiving warfar-
in therapy during the follow-up. However, the underuse of
anticoagulants is a common reality in many countries. For
instance, in registry studies in Japan, anticoagulant therapy
use rate was 53% patients [25] in a Swedish registry, 46% of
AF patients received warfarin therapy [26], while in a world-
wide registry study, which involved 540 sites in 19 countries,
38% of high-risk patients did not receive anticoagulant ther-
apy [27]. Moreover, even in the best practice environment in
clinical trials, as high as 20% of patients cannot tolerate long-
term anticoagulant therapy [28]. Even we assume that all pa-
tients in the non-ablation group received anticoagulant therapy,
the current results are less likely to be reverted because war-
farin therapy reduces mortality by 26% and risk of stroke by
two-thirds [29] while in this study, patients were at 3 times
higher risk of experiencing an event under current treatment.

Conclusions

This study employed the registry method and used propensity
score to match imbalanced groups, which was increasingly
recognized as valuable, given that randomized clinical trials
were cumbersome and onerous to conduct. Our results sug-
gested that ablation therapy seemed to be associated with a
significantly lower risk of composite outcome consisting of all-
cause death, non-fatal stroke and peripheral embolism than
medical therapy in managing elderly AF patients and could be
considered as an alternative to medical therapy.

References:

1. Reiffel JA. Atrial fibrillation and stroke: Epidemiology. Am J Med, 2014; 127:
e15–16
2. Chiang CE, Wang KL, Lip GY. Stroke prevention in atrial fibrillation: An Asian
perspective. Thromb Haemost, 2014; 111: 789–97
3. Tse HF, Wang YJ, Ahmed Ai-Abdullah M et al: Stroke prevention in atrial fi-
brillation – an Asian stroke perspective. Heart rhythm, 2013; 10: 1082–88
4. Piccini JP, Lopes RD, Kong MH et al: Pulmonary vein isolation for the mainte-
ance of sinus rhythm in patients with atrial fibrillation: A meta-analysis
of randomized, controlled trials. Circ Arrhythm Electrophysiol, 2009; 2:
626–33
5. Wilber DJ, Pappone C, Neuzil P et al: Comparison of antiarrhythmic drug
therapy and radiofrequency catheter ablation in patients with paroxysmal
atrial fibrillation: A randomized controlled trial. JAMA, 2010; 303: 333–40
6. Pappone C, Augello G, Sala S et al: A randomized trial of circumferential
pulmonary vein ablation versus antiarrhythmic drug therapy in paroxysmal
atrial fibrillation: The APAF Study. J Am Coll Cardiol, 2006; 48: 2340–47
7. Wazni OM, Marrouche NF, Martin DO et al: Radiofrequency ablation vs.
antiarhythmic drugs as first-line treatment of symptomatic atrial fibrillation:
A randomized trial. JAMA, 2005; 293: 2634–40
8. Jais P, Cauchemez B, Macle L et al: Catheter ablation versus antiarrhythmic
drugs for atrial fibrillation: the A4 study. Circulation, 2008; 118: 2498–505
9. Reynolds MR, Walczak J, White SA et al: Improvements in symptoms and
quality of life in patients with paroxysmal atrial fibrillation treated with
radiofrequency catheter ablation versus antiarrhythmic drugs. Circ Cardiovasc
Qual Outcomes, 2010; 3: 615–23
10. Morillo CA, Verma A, Connolly SJ et al: Radiofrequency ablation vs. anti-
arhythmic drugs as first-line treatment of paroxysmal atrial fibrillation
(RAAFT-2): A randomized trial. JAMA, 2014; 311: 692–700
11. Budnitz DS, Shehab N, Kegler SR et al: Medication use leading to emergen-
ty department visits for adverse drug events in older adults. Ann Intern
Med, 2007; 147: 755–65
12. Juurlink DN, Mamdani M, Kopp A et al: Drug-drug interactions among el-
derly patients hospitalized for drug toxicity. JAMA, 2003; 289: 1652–58
13. Santangeli P, Di Biase L, Mohanty P et al: Catheter ablation of atrial fibril-
lation in octogenarians: safety and outcomes. J Cardiovasc Electrophysiol,
2012; 23: 687–93
14. Ma CS: Strategies of catheter ablation of persistent atrial fibrillation. Chin
Med J (Engl), 201, 126: 2603–6
15. Huang C, Zhang S, Ma Cd et al: [Current knowledge and management rec-
ommendation of atrial fibrillation – 2010.] Chinese Journal of Cardiac
Arrhythmias, 2010, 14: 328–69 [in Chinese]
16. Austin PC, Mamdani MM: A comparison of propensity score methods: A
case-study estimating the effectiveness of post-AMI statin use. Stat Med,
2006; 25: 2084–106
17. Reynolds MR, Gunnarsson CL, Hunter TD et al: Health outcomes with cath-
eter ablation or antiarrhythmic drug therapy in atrial fibrillation: Results of a
propensity-matched analysis. Circ Cardiovasc Qual Outcomes, 2012;
5: 171–81
18. Lin YJ, Chao TF, Tsao HM et al: Successful catheter ablation reduces the risk of cardiovascular events in atrial fibrillation patients with CHA2DS2-VASc risk score of 1 and higher. Europace, 2013; 15: 676–84
19. Packer DL, Mark DB, Robb RA et al: Effect of catheter ablation vs. antiarrhythmic drug therapy on mortality, stroke, bleeding, and cardiac arrest among patients with atrial fibrillation: The CABANA randomized clinical trial. JAMA, 2019; 321(13): 1261–74
20. Austin PC: An introduction to propensity score methods for reducing the effects of confounding in observational studies. Multivariate Behav Res, 2011; 46: 399–424
21. Shen AY, Yao JF, Brar SS et al: Racial/ethnic differences in the risk of intracranial hemorrhage among patients with atrial fibrillation. J Am Coll Cardiol, 2007; 50: 309–15
22. Ma C: Current antithrombotic treatment in East Asia: Some perspectives on anticoagulation and antiplatelet therapy. Thromb Haemost, 2012; 107: 1014–18
23. Traub D, Daubert JP, McNitt S et al: Catheter ablation of atrial fibrillation in the elderly: Where do we stand? Cardiol J, 2009; 16: 113–20
24. Zado E, Callans DJ, Riley M et al: Long-term clinical efficacy and risk of catheter ablation for atrial fibrillation in the elderly. J Cardiovasc Electrophysiol, 2008; 19: 621–26
25. Akao M, Chun YH, Esato M et al: Inappropriate use of oral anticoagulants for patients with atrial fibrillation. Circ J, 2014; 78: 2166–72
26. Bjorck S, Palaszewski B, Friberg L et al: Atrial fibrillation, stroke risk, and warfarin therapy revisited: A population-based study. Stroke, 2013; 44: 3103–8
27. Kakkar AK, Mueller I, Bassand JP et al: Risk profiles and antithrombotic treatment of patients newly diagnosed with atrial fibrillation at risk of stroke: Perspectives from the international, observational, prospective GARFIELD registry. PLoS One, 2013; 8: e63479
28. Connolly SJ, Ezekowitz MD, Yusuf S et al: Dabigatran versus warfarin in patients with atrial fibrillation. N Engl J Med, 2009; 361: 1139–51
29. Risk factors for stroke and efficacy of antithrombotic therapy in atrial fibrillation. Analysis of pooled data from five randomized controlled trials. Arch Intern Med, 1994; 154: 1449–57