Abstract

The Zoetrope Genetic Programming (ZGP) algorithm is based on an original representation for mathematical expressions, targeting evolutionary symbolic regression. The zoetropic representation uses repeated fusion operations between partial expressions, starting from the terminal set. Repeated fusions within an individual gradually generate more complex expressions, ending up in what can be viewed as new features. These features are then linearly combined to best fit the training data. ZGP individuals then undergo specific crossover and mutation operators, and selection takes place between parents and offspring. ZGP is validated using a large number of public domain regression datasets, and compared to other symbolic regression algorithms, as well as to traditional machine learning algorithms. ZGP reaches state-of-the-art performance with respect to both types of algorithms, and demonstrates a low computational time compared to other symbolic regression approaches.

1 Introduction

Symbolic Regression (SR) is a supervised learning approach that consists in searching through a vast space of predictive models. This space encompasses the rigid linear and polynomial models by enabling other transformations such as trigonometric and logarithmic, as well as the generalized additive models by allowing (linear and) nonlinear combinations of the transformed variables (see [37] and references therein). SR models are often represented via expression trees, and may include decision tree models if we consider equality and inequality operators instead of functions (see e.g. the Boolean multiplexer in [16]). Models can also be unravelled through mathematical formulae, which make them much more interpretable than other tree or network-based machine learning algorithms such as random forests [6] or neural networks where, with few recent exceptions [14], the relationships among the variables remain hidden. SR thus offers a good tradeoff between flexibility and interpretability. Moreover, it does not need large numbers of observations as in deep neural networks, and can be applied to smaller datasets (typically from several dozens to tens of thousands).

The history of SR is closely related to that of Genetic Programming (GP), starting with the early works of Koza [16, 20]. Indeed, most of the approaches for SR are GP algorithms (often denoted GPSR), as these offer a nice framework with expression trees representing the potential models. GPSR algorithms start with a pool of initial models, which are then iteratively and randomly perturbed to create new ones, until the one that fits the data best is finally selected. Variants to this scheme are discussed in [34], whereas newer approaches are enlisted in [55]. On the contrary, ”standard” machine learning algorithms are not well suited for the complex task of optimizing both parameters and model shape at the same time [28, 36]. Several exceptions are worth noting, combining the idea of expression trees with classical ML [22] or with neural networks [14].

While SR is very present in the field of Evolutionary Algorithms (EA) [22], it is almost completely absent in Machine Learning (ML) reference books [12, 5] and toolboxes [27]. Possible reasons could be the following: first, there are many SR algorithms in the literature, each offering various advantages [36], and it might be difficult to know which one to use and how to tune their often large number of parameters; second, these algorithms are often slower than most ML algorithms, with performance that did not match those of e.g. random forests up until recently; finally, earlier works mostly tested symbolic regression on synthetic data with a known equation involving few input variables, with the aim of recovering exactly this equation [15], and not often on real datasets with more than 5 variables. For a critical view on SR benchmarks we refer the reader to [23, 25] and references therein.

These limitations have been overcome in the last decade, at least partially. The issue of computational time has been treated by Geometric Semantic Genetic Programming (GSGP) 2.0 [17] with the proposition of a very efficient algorithm. However, this efficiency comes at the
cost of interpretability, as the use of geometric semantic variation operators results in exponentially growing trees. The performance of GPSR has been increased for instance by the combination of GP with more standard ML approaches \cite{2}. Finally, novel benchmarks were established lately that also compare SR and classical ML algorithms on real datasets \cite{26,39,1}. These benchmarks show that the performance of random forests can be matched by increasing the number of individuals and generations, considerably slowing down the computations. So the issue remains for GPSR to get good performance in a reasonable time without losing its characteristic interpretability. A recent and promising work has been proposed in that sense \cite{18}, as well as our own work that we present here.

In this article we present a new GP algorithm called Zoetrope Genetic Programming (ZGP), which brings the following main contributions: (1) a new and unseen representation of models, allowing fast computation and feature engineering, while keeping the interpretability advantage of most SR methods through the explicit model formula; (2) novel mutation and crossover processes, leading to improvement of models over the generations; (3) performance that is comparable to the best ML (Gradient Boosting) and SR algorithms. While ZGP can handle the three main supervised learning tasks, namely regression, binary classification and multiclass classification, we focus here only on the regression one.

The paper is organized as follows. Section 2 briefly presents the general context and introduces GPSR state-of-the-art frameworks which are related to our work. Section 3 describes the entire ZGP algorithm, with its uncommon representation of individuals and variation operators, as well as the choices for fitness and cost. Section 4 presents and discusses the results of our benchmark against state-of-the-art SR frameworks and ML algorithms on 98 regression datasets. Finally, we conclude on our main contributions in Section 5 and suggest potential future work.

2 Background

2.1 Context

Given a dataset \mathcal{D} made of i.i.d. observations $(X_i, y_i) \in \mathbb{R}^d \times \mathbb{R}$ with $X_i = (X_{i1}, \ldots, X_{id})$, the goal of regression algorithms is to find a function $M : \mathbb{R}^d \rightarrow \mathbb{R}$ modelling the link between y and X, such that it generalizes well on unseen data from the same distribution.

As common in regression problems, as performance measure for M on dataset \mathcal{D} we use the Mean Squared Error (MSE) defined by:

$$MSE(\mathcal{M}, \mathcal{D}) = \frac{1}{|\mathcal{D}|} \sum_{(X_i, y_i) \in \mathcal{D}} (y_i - M(X_i))^2 . \quad (1)$$

Any dataset \mathcal{D} used in this work will be divided into training (\mathcal{D}_T), validation (\mathcal{D}_V) and test, or holdout (\mathcal{D}_H) sets. The holdout set \mathcal{D}_H is never to be seen during the learning procedure, and is only used to assess the final performance of the model. The uses of the training and validation sets is detailed in Section 3.2.

2.2 Related work

As mentioned above, several SR frameworks have been recently proposed and already compared to classical ML algorithms. First, some SR techniques are not based on evolutionary process. For example, Fast Function Extraction (FFX) \cite{22} only generates a large set of linear and non linear features and then fits a linear model on the features using elastic net \cite{39}. While the deterministic part can be attractive to avoid getting different models from one run to another, it turns out that FFX often results in much larger models than conventional GP. Evolutionary Feature Synthesis (EFS) \cite{3} uses a similar idea, but avoids building the basis entirely by randomly generating them. It is however not a GP algorithm. The idea of linearly combining branches of a tree is also very present in GP, as it allows the construction of new features. Multiple Regression Genetic Programming (MRGP) \cite{2} combines all the possible subtrees of a tree through LASSO \cite{33}, thereby decoupling the linear regression from the construction of a tree. More recently, La Cava et al. developed Feature Engineering Automation Tool (FEAT) \cite{18}, which trades conciseness for accuracy. It is a stochastic optimization providing a succinct syntactic representation with variable dependencies explicitly shown (in contrast to the semantic approach \cite{29}). Another related recent work is the Interaction-Transformation Evolutionary Algorithm (ITEA) \cite{9}, which builds generalized additive models including interactions between variables.

The efficiency of GP has been another direction of study. Geometric Semantic Genetic Programming (GSGP) \cite{24} is a technique combining trees to get new individuals and adds semantic methods for crossover and mutation in order to introduce a degree of ‘awareness’. However, in GSGP the generated individuals are larger than their parents, resulting in large bloat, and longer computing times. This is addressed by using a practical development environment, GSGP-C++ \cite{7} with operators in native C++. Finally, other frameworks propose efficient selection techniques. Age-Fitness Pareto Optimization (AFP) \cite{31} is meant to prevent premature convergence in evolutionary algorithms by including age as an optimization criterion using a Pareto front between
age and fitness. This allows younger individuals to com-
pete with older and fitter ones. Also, ϵ-lexicase selection
(EPLEX) [19] performs parent selection according to their
fitness on few random training examples, dropping all the
population individuals with error higher than the best er-
ror. This selection technique is used in FEAT.

With respect to the above works, ZGP proposes two
novelties. First, ZGP uses a parametric representation
for its models. Second, within its complex genotype-to-
phenotype mapping, ZGP borrows to Geometric Semi-
tastic Crossover [24], and thus compensates the could-be
limitations of a fixed representation by creating a richer
set of smoother trajectories in the space of all possible
analytical expressions / programs. Furthermore, this pro-
cess sets a strict bound on the complexity of the resulting
expressions, and thus limits the bloat.

3 The ZGP algorithm

The Zoetrope Genetic Programming[ZGP] algorithm is
based on the original Zoetropic representation for pro-
grams, together with the corresponding variation op-
erators (crossover and mutation). However, the "natu-
ral selection" components of all evolutionary algorithms
are here directly incorporated into the variation opera-
tors (i.e., selection takes place between the parents and
their offspring only). Furthermore, ZGP uses evolution-
ary components to build possible branches of a regression
tree, and standard ML techniques to optimize the combi-
nation of those branches.

3.1 The Zoetropic Representation

This section describes both the genotype and the
genotype-to-phenotype mapping of ZGP individuals. As
in standard tree-based GP [16 4], ZGP individuals are
built from a set of unary or binary operators O and a set
of terminals T, variables of the problem and ephemeral
constants. The genotype of a ZGP individual is built us-
ing elements (partial expressions built on T and O) and
fusion operations (see below). Two parameters control
the size of the genotype as well as the derivation of the
corresponding phenotype (the final expression used to
evaluate the fitness of the individual): the number of ini-
tial elements ne and the number of maturation stages nm.
An individual is built as follows:

Overview and notations The elements used during the
process can be seen as organized in nm levels, one per
maturation step. The ne elements of level k, denoted
(E1k, . . . , Enkek), are constructed by maturation step k from
the elements of level k −1. However, due to boundary

1ZGP is a proprietary algorithm with patent pending. An open
source version is currently under development.

conditions depending on the parity of ne, it is more con-
venient to visualize all the elements in a circle (reminding
the original zoetrope mechanism[1]). Figure 1 illustrates
the creation process, but for the sake of simplicity, the el-
ements of levels 0, 1, 2, 3 are denoted Ei, E′i, E′′i and Zi
respectively (explanations below).

Initialization The ne elements (E0, . . . , Em) are ran-
domly drawn in T, being a uniformly chosen variable
with 90% probability, or an ephemeral constant with
10% probability. The latter are uniformly drawn in
[Cmin, Cmax], for some user-defined parameters Cmin and
Cmax.

Fusion The fusion operation F transforms a pair (Ei, Ej)
of elements into a new pair (E′i, E′j) = F(Ei, Ej). It starts
by computing

\[f(Ei, Ej) = r \cdot op_1(Ei, Ej) + (1 − r) \cdot op_2(Ei, Ej) \] (2)

where op1, i = 1, 2 are operators uniformly chosen in O,
and r = U[0, 1] (in case op1 or op2 is unary, only Ei is
taken into account). Elements E′i and E′j are then defined by

\[E′i = b \cdot Ei + (1 − b) \cdot f(Ei, Ej) \]
\[E′j = (1 − b) \cdot Ej + b \cdot f(Ei, Ej) \]

where b = U[0, 1], i.e., one new element is equal to one
randomly chosen original element, while the other is de-
efined by Eq. 2. The fusion F is defined by (op1, op2, r, b).

Note that these fusion operations, and in particular
Equation 2, are somehow similar to the Geometric Se-
matic Crossover [24]. But the linear combination with
random weight is done here at the level of simple opera-
tors, not subtree, and during the genotype-to-phenotype
mapping, not during crossover. In both situation, this
results in a smoother landscape than only allowing blunt
choices between one or the other argument, offering
more transitional states to the evolutionary process.

Maturation The kth maturation step, or stage, consists of
the sequence of \(\lceil ne/2 \rceil \) fusions defining elements Eki
from pairs of elements Eki−1.

The Zoetrope model After nm maturation steps, the ne
elements of level nm, called "Zoetropes", are linearly com-
bined to obtain the final model (see Section 3.2.1).

Complexity analysis There are \(n_f = nm \cdot \lceil ne/2 \rceil \) + ne%2
fusions in total. At each fusion, the size of the elements
increases by the application of Eq. 2. In terms of stan-
ard GP indicators (though we never express the ZGP
models as trees), the depth of F(Ei, Ej) is three more
than the maximum depth of Ei and Ej. Hence the depth

2The term zoetrope historically defines one of the first animation
devices before the camera, consisting of a cylinder with images inside,
that seem to be moving as the cylinder is turned.
of the zoetropes is at most 3 \(n_m + 1 \). The linear combination applied to the zoetropes using the \(n_2 \)-ary addition operator can be viewed as adding two more levels of depth. In particular, because all created individuals use the same template, the complexity of any ZGP model remains bounded. Therefore, ZGP individuals are not subject to uncontrolled bloat.

3.2 Fitness and Cost Functions

3.2.1 Combination of zoetropes

As said in previous Section, at the end of all fusions, the zoetropes are combined to obtain the full model as:

\[
\mathcal{M}_\alpha(X) = \sum_{j=1}^{n_2} \alpha_j Z_j(X),
\]

for some weights \(\alpha = (\alpha_1, \ldots, \alpha_{n_2}) \in \mathbb{R}^{n_2} \).

3.2.2 The Fitness Function

The fitness function, used in Darwinian selection, is the MSE of the best linear combination of the zoetropes on the training set, \(\text{MSE}(\mathcal{M}_\alpha, \mathcal{D}_T) \). In ZGP, this fitness function is applied within the variation operators, between parents and offspring. Furthermore, the best individual in the population w.r.t. the MSE on the validation set \(\mathcal{D}_V \) is stored at every generation, and after the algorithm has stopped, the overall best of these best-per-generation is returned (still according to the MSE on the validation set).

3.3 The variation operators

This section introduces the representation-specific variation operators, i.e., crossover and mutation (the initialization has been described in Section 3.1). As said, in ZGP, the selection is made within these variation operators, between parents and their offspring, using the MSE for comparisons. Furthermore, the way these operators are applied is also specific. This section will hence describe the operators as well as the choice of the individuals they are applied to.

3.3.1 The Crossover Operator

The crossover process of ZGP uses two parents, but works one-way: it only propagates components from the fittest parent to the other one, somehow similarly to the InverOver operator for permutations [32]. It starts by selecting \(n_t \) individuals uniformly from the population (as in standard tournament selection). Then, it randomly replaces some of the 'genes' of the weakest parent by the corresponding genes of the fittest parent. The genes to replace are randomly chosen from the initial elements (terminals in \(\mathcal{T} \)) and the fusions, each fusion being considered as a single gene here.

3.3.2 Applying the Crossover

Our GP strategy for applying the crossover amounts to repeat \(\rho_x \cdot P \) times the above procedure (tournament of size \(n_t \), one-way gift of genes from best to worst), for some hyperparameter \(\rho_x \in [0, 1] \). Its actual implementation runs some tournaments in parallel (i.e., without replacement between the tournaments), in order to decrease the overall computational time.

3.3.3 Point Mutation

The point mutation operator considers one parent, and works as expected: it replaces some 'genes' of the parents by random values. However, the fusions are here considered made of four 'genes' here, the four components (\(o_1, o_2, r, b \) (Section 3.1), that can be modified independently. For each point mutation, either one element or one fusion is randomly chosen from the 'genes' and mutated.

When an element is to be mutated, it is replaced by a constant with probability \(\rho_{mut} \), or with a variable uniformly chosen (and different from the current one if the element is a variable). When replacing a variable with a constant, this constant is simply chosen uniformly in \([C_{\min}, C_{\max}]\). When mutating a constant \(C \) to a new constant, an auxiliary constant \(\hat{C} \) is uniformly drawn also in \([C_{\min}, C_{\max}]\), an operator \(o \) is uniformly drawn in \(\{+, -, \text{power}, \text{nil}\} \), and \(C \) is replaced by \(C \circ \hat{C} \) (where \(\text{nil} \hat{C} = C \)).

When a fusion is to be mutated, only one (uniformly drawn) of its four components \(o_1, o_2, r, b \) is modified. In case of an operator, a new operator is chosen uniformly in \(O \). \(r \) is modified by flipping one bit of its binary representation, and \(b \) is simply flipped. Note that in ZGP, each individual designated for mutation is actually mutated twice. A first point mutation is applied to a compo-
4 Experimental Validation

This section describes and analyzes the performance of ZGP on regression tasks with tabular data, and compares them with those of state-of-the-art symbolic regression and classical machine learning algorithms.

4.1 Experimental Setting

The experiment closely follows the benchmark in [26], where the algorithms were run on the Penn Machine Learning Benchmarks (PMLB) database [25], a collection of real-world, synthetic and toy datasets, with a restriction to datasets with less than 3000 observations (small data regime). We compare ZGP with the same SR algorithms as in [26], namely MRGP [2], GSGP [24, 7], EPLEX [19], AFP [31], with the best parameters their authors found by 5-fold cross-validation. To this list, we also added the more recent FEAT [13] and the deterministic FFX [22]. We also chose those algorithms because of the availability of a Python interface (provided by the benchmark’s authors in the case of GSGP and MRGP). Indeed, while many state-of-the-art SR algorithms are open source, their source code comes in different languages (C++, Java, Matlab), hence quite some work is needed to re-implement and run those under the same conditions. As for classical ML approaches, we chose the following algorithms from scikit-learn [27]: gradient boosting, random forests (RF), decision trees, elastic net, kernel ridge and linear SVR, the latter three being optimized by 5-fold cross validation. Finally, we added a multi-layer perceptron with keras [8] as in our experience, the one from scikit-learn does not perform well in general. The parameters for each algorithm are provided in supplementary material.

The experiment consisted in 20 runs of each algorithm, on the same splits of training and test sets (70-30%) for all algorithms. All datasets were standardized with scikit-learn’s StandardScaler. We computed the Normalized Root Mean Squared Error (NRMSE), i.e., the square-root of the MSE divided by the range of target values, the R2-score (computed with scikit-learn), and the computational time for each algorithm and each run. Note that in [26], only 10 independent runs were run for each algorithm, with random train-test splits. However, given the variability of symbolic regression approaches, we believe it is more robust to increase the number of runs, and fairer to compare them on exactly the same data.

All experiments were performed on a HP Z8 server with 40 cores. All runs end when the maximum number of generation G is reached, or when the standard deviation of the best fitness over a window of size L reaches some user-defined threshold τ, whichever comes first. The code to replicate the comparison experiments will be provided together with the final paper. A file containing the results for all the algorithms, runs and datasets is provided in CSV format in the supplementary material.

4.2 Hyperparameters

ZGP has quite a large number of hyperparameters. On the one hand, this allows a great flexibility when tuning the algorithm. But on the other hand, it makes its use time-consuming. Hence some default values have been fixed by intensive trial-and-error experiments, which are reported in Table 1. The optimization of these hyperparameters by some automatic Hyper Parameter Optimization (HPO) procedure, like SMAC [13], AutoSkLearn [10] or HyperBand [21] will be the subject of further work.

4.3 Results and Discussion

As in [26], we report the median values for R2 and NRMSE over the 20 runs, for each algorithm and each dataset.

Figure 2 compares the distribution of these median R2 scores and NRMSE across all datasets, while the red dots show the average of the median R2/NRMSE scores over all datasets ("average R2/NRMSE" in the sequel). The algorithms are ordered by decreasing average R2 and increasing average NRMSE, the best one being on the left. Table 2 gives the average rank for each algorithm, based on the median R2 scores (middle column) and median NRMSE (right column) for each dataset. Standard deviations of the ranks are given in parenthesis.

Figure 2 and Table 2 show that gradient boosting attains the best performance, closely followed by random forests, FEAT and ZGP, and less closely by MRGP. Note that ZGP has lower average R2 than FEAT and better average rank in R2 and NRMSE. This fact comes from a few worse estimations for ZGP on some datasets (lower outliers in R2, Figure 2), and better ones for other datasets.

Note that some of the algorithms, including ZGP, further split the training set into training and validation, the rate of which was let to each algorithm’s default parameters.

3Note that some of the algorithms, including ZGP, further split the training set into training and validation, the rate of which was let to each algorithm’s default parameters.

4CPU Intel(R) Xeon(R) Silver 4114, 2.20GHz, 64 GigaBytes of RAM.
Table 1: Hyperparameters and default values used in ZGP

Hyperparameter name	Symbol	Value
Operator set	O	$\{+,-,*,/,$ abs, sqrt, sin, cos, $[,]$, \lceil, int, mod $\}$
# elements	n_e	7
# maturation stages	n_m	3
Interval for constants	$[C_{\text{min}}, C_{\text{max}}]$	$[-3, 3]$
Proba. of constants	ρ_{cst}	0.1
Xover tournament size	n_t	12
Xover param.	ρ_X	0.1
Mutation param.	m_{mut}	4
Threshold mut. regime	r_{lim}	0.1
Population size	P	500
Max. # of generations	G	100
Stopping criterion*	L, τ_σ	30, $1e^{-3}$

*The algorithm is stopped if either one of the two following criterion is reached: $g = G$ (the number of generations reaches the maximum) or the standard deviation of the best fitness over L generations goes below a threshold τ_σ (inspired by [30]).

(higher first and third quartiles in R2). The remaining algorithms display lower performance with a much higher variance, especially on the R2 scores.

To further the comparison for symbolic regression, Figure 3 displays the performance in R2 against the computational time for all SR algorithms (top), and for the top three SR algorithms (bottom), namely ZGP, FEAT and MRGP. A ‘good’ algorithm should be in the upper left corner of these graphs (high performance and low computational time). Note that this comparison of runtime is somewhat qualitative because the algorithms rely on different programming languages (ZGP and FEAT are in C++ with a Python interface, while MRGP is in Java). In order to make the comparison as fair as possible, we provided FEAT and MRGP with the maximum execution time as run by ZGP, because both FEAT and MRGP require an upper limit in their input time parameter.

These figures show that ZGP and FEAT share the best performance. Moreover, while all SR algorithms have scattered computational time, GSGP is the fastest SR algorithm, complying with its claim. However, it has a large variance in performance, as does FFX. Among the best three, ZGP thus shows the highest performance and the shortest computational time. Also, we note that the algorithms with the lowest performance, GSGP, AFP and EPLEX, are those relying on the smallest operator set $O = \{+,-,*,/\}$. On the contrary, the best performance is obtained by algorithms with a wider operator set, including trigonometric functions and square roots among others (the full list of operators for each algorithm is provided in supplementary material). The choice of the operator set appears to be an important one: we investigated it further by expanding it for EPLEX and AFP to $\{+,-,*,/,$ sin, cos, sqrt $\}$, and their performance was indeed greatly improved, but still far from those of ZGP and FEAT; we therefore decided to keep the default set in the results presented here to be consistent with the benchmark in [26], and to report the corresponding metrics in supplementary material. Note also that EPLEX and AFP are selection methods, and not full GPSR algorithm, and that EPLEX is used as a selection mechanism for FEAT. As for the deterministic FFX, it turns out that both performance and computational time are widely scattered,
Table 2: Average (and standard deviation) of the ranks in median R2-scores and NRMSE on test set.

Algorithm	R2 avg rank (std)	NRMSE avg rank (std)
GradBoost	3.7 (2.9)	3.7 (2.9)
ZGP	**4.9 (3.0)**	**5.0 (3.0)**
RF	5.0 (2.7)	5.1 (2.7)
FEAT	5.6 (2.7)	5.4 (2.8)
KernelRidge	6.0 (3.5)	6.1 (3.5)
MRGP	7.2 (3.4)	7.2 (3.3)
FFX	7.5 (5.1)	7.5 (5.2)
MLP	7.9 (4.3)	7.9 (4.2)
AFP	8.4 (2.0)	8.4 (1.9)
EnetCV	8.4 (4.0)	8.4 (4.0)
LinearSVR	9.2 (3.9)	9.1 (4.1)
Tree	9.6 (2.9)	9.6 (3.0)
EPLEX	10.3 (3.4)	10.2 (3.4)
GSGP	11.5 (2.8)	11.5 (2.8)

ranging from very good R2 and low computational time for some datasets, to the worst R2 or computational time on others. It is also worth noting that FFX is the only algorithm that cannot be parametrized directly to run on one thread only and it actually spans all 40 cores of our server, while all the other algorithms were limited to one core per run.

We are aware of the limitations of the datasets utilized. Despite their number, as mentioned in this section and in the introduction, a good portion (62 of them) consists of simulated data from the Friedman collection of artificial datasets, that follow a known nonlinear function with only 3 relevant variables, as described in [11]. Hence, the chosen database may be a favorable setting for symbolic regression approaches that tend to select few variables in the final model (among which ZGP).

5 Conclusion and future work

ZGP, a novel GPSR algorithm, is presented and its inner working explained in detail. The algorithm has been validated on regression tasks, in comparison with several state-of-the-art algorithms, both from classic ML tools and from existing GP-based SR frameworks.

The performance of ZGP is comparable or better than the state-of-the-art SR algorithms, in terms of accuracy of the resulting model (measured both by the RMSE or the R2), and of computational time. It is also comparable to state-of-the-art classic ML algorithms, but performs somewhat worse than the most advanced ML algorithms like gradient boosting. However, the comparison of the computational time is semi-quantitative as it is difficult to guarantee conditions that are fully equivalent for all.

Similarly to the majority of the SR algorithms, ZGP’s interpretability is attained through a tight selection of variables, and the output of an analytical formula, linking the selected variables to the target. However, and different from most other SR algorithms, ZGP is "bloat-adverse by design": the zoetrope representation, and the genotype-to-phenotype mapping give an upper bound for the complexity of all ZGP models. Last but not least, ZGP performs feature construction and selection: the "zoetropes", the elements obtained on the last layer of the development process, are simply combined by linear regression. Therefore, they do represent useful features, being a by-product of the algorithm rather than a separate pre-processing step. These features offer yet another insight on the interpretation of the model.
One of the specifics of ZGP is the use of the fusion operation during the genotype-to-phenotype mapping (see Section 3.1, and in particular Equation 2). No operator is applied alone, and smooth transitions from one operator to the other are possible through modifications by mutation of the random weight \(r \), in a way similar to that of Geometric Semantic Crossover [24]. However, the linear combination is limited here to simple operators, and is only performed \(n_m \) times, thus does not result in uncontrollable bloat: instead of increasing the search space by augmenting the complexity of the trees, as in traditional GP, the search space is extended in ZGP by replacing the discrete set of operators by the continuous family obtained by their linear combinations. On-going ablation studies are investigating this hypothesis. In contrast to algorithms designed for big data, ZGP, like all GP-based SR algorithms, can attain its results by handling datasets with less than a few thousands of observations (less than 3000 in the present experiments), a context often loosely referred to today as “small data”. Whereas emphasis has been put on Big Data in the recent years due to impressive results in image recognition and Natural Language Processing, to name a few, for many more companies out there the available data does not qualify as “Big”.

As mentioned in the introduction, ZGP can also be applied to classification and benchmarking in both binary, and multi-class tasks is the subject of on-going work. Furthermore, an extension of the benchmark to a database including more real-world datasets for all three tasks will provide a fuller assessment for those algorithms. Even though the inner mechanism of the ZGP algorithm does limit the bloat, a major effort for future work is the quantitative assessment of the model complexity. Several measures may capture the complexity of symbolic regression models, and we plan to assess it as an additional level for model selection. Finally, hyperparameter tuning is often performed ad-hoc, whereas a systematic treatment may help, in particular to select the number of elements and stages, which can be constraining at present.

References

[1] M. Affenzeller, B. Burlacu, V. Dorfer, S. Dorl, G. Halmerbauer, T. Königswieser, M. Kommenda, J. Vetter, and S. Winkler. White box vs. black box modeling: On the performance of deep learning, random forests, and symbolic regression in solving regression problems. In International Conference on Computer Aided Systems Theory, pages 288–295. Springer, 2019.

[2] I. Arnaldo, K. Krawiec, and U.-M. O’Reilly. Multiple regression genetic programming. In Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation, pages 879–886, 2014.

[3] I. Arnaldo, U.-M. O’Reilly, and K. Veeramachaneni. Building predictive models via feature synthesis. In Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, pages 983–990, 2015.

[4] W. Banzhaf, F. Nordin, R. E. Keller, and F. D. Francone. Genetic programming. Springer, 1998.

[5] C. M. Bishop. Pattern recognition and machine learning. Information science and statistics. Springer, New York, NY, 2006. Softcover published in 2016.

[6] L. Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[7] M. Castelli and L. Manzoni. Gsgp-c++ 2.0: A geometric semantic genetic programming framework. SoftwareX, 10:100313, 2019.

[8] F. Chollet et al. Keras. https://keras.io, 2015.

[9] F. O. de França and G. S. I. Aldeia. Interaction-transformation evolutionary algorithm for symbolic regression. Evolutionary Computation, pages 1–25, 2020.

[10] M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum, and F. Hutter. Efficient and robust automated machine learning. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 28, pages 2962–2970. Curran Associates, Inc., 2015.

[11] J. H. Friedman. Greedy function approximation: a gradient boosting machine. Annals of statistics, pages 1189–1232, 2001.

[12] T. Hastie, R. Tibshirani, and J. Friedman. The elements of statistical learning: data mining, inference, and prediction. Springer Science & Business Media, 2009.

[13] F. Hutter, H. H. Hoo, and K. Leyton-Brown. Sequential Model-based Optimization for General Algorithm Configuration. In Proceedings of the 5th International Conference on Learning and Intelligent Optimization, LION’05, pages 507–523, Berlin, Heidelberg, 2011. Springer-Verlag. event-place: Rome, Italy.

[14] S. Kim, P. Y. Lu, S. Mukherjee, M. Gilbert, L. Jing, V. Čeperić, and M. Soljačić. Integration of neural network-based symbolic regression in deep learning for scientific discovery. IEEE Transactions on Neural Networks and Learning Systems, 2020.

[15] M. F. Korns. Accuracy in symbolic regression. In Genetic Programming Theory and Practice IX, pages 129–151. Springer, 2011.

[16] J. R. Koza. Genetic programming: on the programming of computers by means of natural selection, volume 1. MIT press, 1992.

[17] W. La Cava, T. Helmuth, L. Spector, and K. Danai. Genetic programming with epigenetic local search. In Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, pages 1055–1062, 2015.

[18] W. La Cava, T. R. Singh, J. Taggart, S. Suri, and J. H. Moore. Learning concise representations for regression by evolving networks of trees. In International Conference on Learning Representations, ICLR, 2019.
[19] W. La Cava, L. Spector, and K. Danai. Epsilon-lexicase selection for regression. In Proceedings of the Genetic and Evolutionary Computation Conference 2016, pages 741–748, 2016.

[20] W. B. Langdon and R. Poli. Foundations of genetic programming. Springer Science & Business Media, 2013.

[21] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar. Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization. Journal of Machine Learning Research, 18(185):1–52, 2018.

[22] T. McConaghy. FFX: Fast, scalable, deterministic symbolic regression technology. In Genetic Programming Theory and Practice IX, pages 235–260. Springer, 2011.

[23] J. McDermott, D. R. White, S. Luke, L. Manzoni, M. Castelli, L. Vanneschi, W. Jaskowski, K. Krawiec, R. Harper, K. De Jong, et al. Genetic programming needs better benchmarks. In Proceedings of the 14th annual conference on Genetic and evolutionary computation, pages 791–798, 2012.

[24] A. Moraglio, K. Krawiec, and C. G. Johnson. Geometric semantic genetic programming. In International Conference on Parallel Problem Solving from Nature, pages 21–31. Springer, 2012.

[25] R. S. Olson, W. La Cava, P. Orzechowski, R. J. Urbanowicz, and J. H. Moore. PMLB: a large benchmark suite for machine learning evaluation and comparison. BioData Mining, 10(1):36, Dec 2017.

[26] P. Orzechowski, W. La Cava, and J. H. Moore. Where are we now? a large benchmark study of recent symbolic regression methods. In Proceedings of the Genetic and Evolutionary Computation Conference, pages 1183–1190, 2018.

[27] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[28] R. Poli, W. B. Langdon, N. F. McPhee, and J. R. Koza. A field guide to genetic programming. Lulu. com, 2008.

[29] M. T. Ribeiro, S. Singh, and C. Guestrin. “why should i trust you?” explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, pages 1135–1144, 2016.

[30] O. Rudenko and M. Schoenauer. A steady performance stopping criterion for pareto-based evolutionary algorithms. In 6th International Multi-Objective Programming and Goal Programming Conference, 2004.

[31] M. Schmidt and H. Lipson. Age-fitness Pareto optimization. In Genetic programming theory and practice VIII, pages 129–146. Springer, 2011.

[32] G. Tao and Z. Michalewicz. Inver-over operator for the tsp. In International Conference on Parallel Problem Solving from Nature, pages 803–812. Springer, 1998.

[33] R. Tibshirani. Regression shrinkage and selection via the lasso: a retrospective. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73(3):273–282, 2011.

[34] L. Vanneschi, M. Castelli, and S. Silva. A survey of semantic methods in genetic programming. Genetic Programming and Evolvable Machines, 15(2):195–214, 2014.

[35] M. Virgolin, T. Alderliesten, C. Witteveen, and P. A. N. Bosman. Improving model-based genetic programming for symbolic regression of small expressions. Evolutionary Computation, page 1–27, Jun 2020.

[36] S. d. Vries. Sensitivity analysis based feature-guided evolution for symbolic regression. Master’s thesis, 2018.

[37] J. Žegklitz and P. Pošík. Symbolic regression algorithms with built-in linear regression. arXiv preprint arXiv:1701.03641, 2017.

[38] J. Žegklitz and P. Pošík. Benchmarking state-of-the-art symbolic regression algorithms. Genetic Programming and Evolvable Machines, pages 1–29, 2020.

[39] H. Zou and T. Hastie. Regularization and variable selection via the elastic net. Journal of the royal statistical society: series B (statistical methodology), 67(2):301–320, 2005.