Coronal Tomography

Charles Kankelborg

Physics Department, Montana State University

2008 SPD, Fort Lauderdale, FL
Abstract

A simple, yet powerful, algorithm for computed tomography of the solar corona is demonstrated using synthetic EUV data. A minimum of three perspectives are required. These may be obtained from \textit{STEREO}/EUVI plus an instrument near Earth, e.g. \textit{TRACE} or \textit{SOHO}/EIT.
Coronal Tomography (EUV)

1. Background—MOSES sounding rocket
2. Science Goals
3. SMART Algorithm
4. Demonstration (synthetic EUV data)
5. Summary & conclusions
An unlikely introduction...

What does this sounding rocket have to do with *STEREO*?

- **Multi-Order Solar EUV Spectrograph (MOSES)**
- NASA LCAS launch, 2006 Feb 8
- Simultaneous imaging and spectroscopy
- Tomographic inversion → spectrum
- Synergy with *STEREO* few-angle tomography
Science Objectives

A primary science question of STEREO/SECCHI is:

What is the 3-dimensional structure of active regions, coronal loops, helmet streamers, etc?\(^1\)

Approach:

- Adapt Smooth Multiplicative Algebraic Reconstruction Technique (SMART) algorithm developed for MOSES.
- \textit{STEREO/EUVI} + \textit{TRACE} = 3 perspectives

\(^1\)Howard et al. 2007, Space Science Reviews
Problem Statement

Observe volume EM $I(x, y, z)$ at angles θ_i by projection:

$$f_i(x, z) = \int_D \mathcal{R}_z(\theta_i) I \, dy + \text{noise}$$

Given images f_i and initial guess $G(x, y, z)$, iteratively modify G to approximate I.
1. SMART Algorithm
1. Smooth G.
SMART Algorithm

1. Smooth G.

2. Project: $f'_i = \int_D R_z(\theta_i) G \, dy \quad \forall \, i$
 - Evaluate goodness of fit, $\chi^2_{R,i}$
 - Adjust γ_i based on $\chi^2_{R,i}$ and $\Delta \chi^2_{R,i}$
SMART Algorithm

1. Smooth G.

2. Project: $f'_i = \int_D R_z(\theta_i) G \, dy \quad \forall \, i$

 - Evaluate goodness of fit, $\chi^2_{R,i}$
 - Adjust γ_i based on $\chi^2_{R,i}$ and $\Delta \chi^2_{R,i}$

3. Correct: $G \leftarrow G \prod_i C_i^{\gamma_i}$, where

 $C_i(x, y, z) = R_z(-\theta_i) \frac{f_i(x, z)}{f'_i(x, z)}.$
SMART Algorithm

1. Smooth G.

2. Project: $f_i' = \int_D R_z(\theta_i) G \, dy \quad \forall \ i$
 - Evaluate goodness of fit, $\chi^2_{R,i}$
 - Adjust γ_i based on $\chi^2_{R,i}$ and $\Delta \chi^2_{R,i}$

3. Correct: $G \leftarrow G \prod_i C_i^{\gamma_i}$, where

 $$C_i(x, y, z) = R_z(-\theta_i) \frac{f_i(x, z)}{f_i'(x, z)}.$$

Iterate, adjusting γ_i to drive $\chi^2_{R,i} \rightarrow 1$.
Synthetic Data

- Quadrupole potential field
- Coronal null: interesting geometry
- EM along arbitrary field lines
- Random latitude, longitude & clocking
- 3 viewpoints: -40°, 0°, $+40^\circ$
- Imaged with 3000 counts in the brightest pixel
- Note square root scaling

Magnetogram:

Corona (isometric):
Example 1 (E-W pan)

True (left) vs. SMART (right). Square root scaled.
Example 1 (N-S pan)

True (left) vs. SMART (right). Square root scaled.
Example 2 (E-W pan)

True (left) vs. SMART (right). Square root scaled.
Example 2 (N-S pan)

True (left) vs. SMART (right). Square root scaled.
Timing: wide separation

STEREO + TRACE configuration October 23, 2008: $-39^\circ, 0^\circ, 41^\circ$ (comparable to the examples)
Summary & Conclusions

- Full 3D reconstruction of coronal EM
- 3 viewpoints required
- No assumptions (loops, magnetic field, etc.)
- Simple and computationally efficient
 - Examples converged in 15 iterations
 - 3 minutes on my laptop (169^3 voxels)
- Loops parallel to ecliptic—not so good
- Apply to EUVI data hopefully this fall!

Acknowledgment: This work has been funded through the Solar and Heliospheric LCAS Program.