Effect of faba bean-based diets on the meat quality and fatty acids composition in breast muscles of broiler chickens

Joanna Kuźniacka, Miroslaw Banaszak, Jakub Biesek, Giuseppe Maiorano & Marek Adamski

The aim of the study was to evaluate the effect of feed containing faba bean on the physicochemical properties of breast and leg muscles. The study was conducted on 340 Ross 308 broiler chickens reared for 6 weeks. The control group received feed based on soybean meal. The treatment group received a feed mixture with faba bean as the source of protein. Different sources of protein in the diet were also associated with changes in the content of n-6 fatty acids (C16:0, C22:4) and the n-6/n-3 ratio in breast muscles, which was higher (P < 0.05) in treatment group. The collagen content was higher (P < 0.05) in breast muscles from control group. The study revealed that the use of faba bean as a substitute for soybean meal had no significant effect (P > 0.05) on water holding capacity, drip loss, or major chemical components of breast and leg muscles. The P/S ratio, AI and TI, and the content of cholesterol in breast muscles were comparable (P > 0.05) in both groups. The values of lightness (L*) for leg muscles were lower (P < 0.05) in treatment group. The use of faba bean instead to soybean meal in diets for broiler chickens had positive effects on meat quality traits.

Consumers consider the safety and high quality of products to be essential aspects of poultry production. Diet, in addition to genotype, age and sex of birds and their management system, is one of the most important factors determining the quality of poultry meat. The use of an appropriate compound feed allows for the proper growth of birds, which is also associated with more and more frequently assessed welfare. Not only the genotype used for intensive broiler production plays a role. An important element is the adaptation of production technology, which includes the environment, maintenance time, nutrition. It all consists of welfare. In most countries imported soybean meal, usually produced from genetically modified plants, is the main source of protein in feeds for broiler chickens. This considerably increases the cost of broiler chicken production, where expenditure on feed may comprise as much as 70% of the total costs. Moreover, consumers are often concerned about GMO products.

Chicken meat has excellent nutritional value since it is rich in highly digestible protein, which includes all exogenous amino acids. It is low in fat and has excellent taste properties. Chicken meat is cheap compared to other meat types, it is easily portioned, and is quick and easy to cook. Other aspects of meat quality include its safety for human health, nutritional value, functional properties and sensory properties.

The improvement of feed mixtures is in mainstream research into the cost-effectiveness of broiler chicken production. The profitability of production of all poultry species largely depends on soybean meal. The use of genetically modified soybean in Poland is allowed under the Animal Feed Act, which in the near future is expected to ban the import and distribution of feed from genetically modified plants. Soybean is a plant with specific climatic requirements, and its cultivation is possible and profitable only in certain regions, which is why countries with an unsustainable climate are dependent on imported SBM. Because of this, legume plants, and their nutritional value and potential use for the formulation of poultry feed have attracted growing interest in recent years.

Faba bean is high-protein plant. New cultivars characterized by low content of tannins. The authors concluded that faba bean seeds are good source of protein. No negative effect on carcass traits of turkeys were found by...
Przywitowski et al. Even 31% of faba beans in diet had no negative effect on broiler growth performance and meat quality.

The testes hypothesis is: The use of faba bean seeds in diets for broiler chicken has an effect on the quality of chicken meat and fatty acids profile in breast muscles.

The aim of the study was to analyze the physicochemical properties, major chemical components, and fatty acids composition of meat from broiler chickens fed faba bean as a source of protein alternative to soybean meal.

Results

There were no significant differences (P > 0.05) in the values of pH₁₅ for breast muscles between chickens fed soybean meal and faba bean (Table 1). However, pH₁₅ measured for breast muscles from group 2 (diet based on faba bean) was significantly higher compared to group 1 (soybean meal) (5.96 vs 5.76). Values of colour parameters for breast muscles (L*, a*, b*) and water holding capacity (water holding capacity (%)) were comparable in both groups. Regardless of the source of protein in chicken diet, breast muscles did not differ significantly for the content of protein (24.23–24.26%), fat (1.39–1.86%) or water (73.74–73.89%) (Table 2). The analysis of the chemical composition of leg muscles also showed no significant differences in the content of protein, fat or water (Table 3). However, the lightness of leg muscles (L*) differed depending on the source of protein in feed mixtures. The value of lightness

Table 1. Physicochemical parameters (means, SEM) of breast muscles from 6-week-old chickens. 1 – 1 = feed based on soybean meal, 2 = feed based on faba bean (*Vicia faba* var. minor), n – number of birds taken to analysis. a, b… – means in columns marked with different letters differ significantly between groups, p-value < 0.05; NS – no significant.

Group¹ n = 10	pH₁₅	pH₂₄	Colour	Water holding capacity (%)	Drip loss (%)	Protein (%)	Fat (%)	Water (%)
L*	a*	b*						
1	5.76^a	5.88	50.06	2.10	7.70	35.91	0.85	24.26
2	5.96^b	5.93	49.71	2.90	7.37	34.03	0.82	24.23
SEM	0.04	0.02	0.65	0.25	0.28	1.01	0.14	0.00
P-value	0.005	0.286	0.792	0.109	0.677	0.370	0.908	NS

Table 2. Fatty acids composition (% of total fatty acids) in breast muscles from 6-week-old chickens. 1 – 1 = feed based on soybean meal, 2 = feed based on faba bean (*Vicia faba* var. minor), n – number of samples taken to analysis. 2 – SFA = saturated fatty acids, MUFA = monounsaturated fatty acids, PUFA = polyunsaturated fatty acids, P/S = PUFA/SFA ratio, AI = atherogenic index; TI = thrombogenic index. a, b… – mean values marked in columns with different letters differ significantly between groups, P-value < 0.05; A, B… – mean values marked in columns with different letters differ significantly between groups, P-value < 0.01.

Fatty acid²	Group¹ n = 10	SEM	P-value	
	1	2		
C14:0	0.35	0.28	0.02	0.032
C16:0	20.97^a	22.46^A	0.25	0.001
C16:1n-7	1.91	1.48	0.14	0.129
C18:0	10.03	10.66	0.51	0.549
C18:1n-9	27.12	28.94	0.88	0.317
C18:2 n-6	28.23	23.84	0.77	0.002
C18:3 n-3	1.97	1.52	0.14	0.118
C20:1n-9	0.83	0.36	0.06	0.000
C20:4 n-6	5.56	8.50	0.60	0.010
C20:5 n-3	0.22	0.24	0.02	0.733
C22:4 n-6	0.34^a	0.69^A	0.06	0.001
C22:5 n-3	1.18	0.69	0.09	0.003
C22:6 n-3	0.56	0.35	0.05	0.037
ΣSFA	31.35	33.40	0.62	0.098
ΣMUFA	29.86	30.78	0.97	0.648
ΣPUFA	38.05	35.82	0.68	0.102
Total n-6	34.13	33.03	0.58	0.358
Total n-3	3.93	2.79	0.17	0.000
n-6/n-3	8.74^a	12.43^A	0.70	0.005
P/S	1.21	1.08	0.03	0.008
AI	0.33	0.35	0.01	0.041
ALI	0.72	0.83	0.02	0.012

Table 3. Physicochemical parameters (means, SEM) of breast muscles from 6-week-old chickens. 1 – 1 = feed based on soybean meal, 2 = feed based on faba bean (*Vicia faba* var. minor), n – number of birds taken to analysis. a, b… – means in columns marked with different letters differ significantly between groups, p-value < 0.05; NS – no significant.
but a significant difference was found in the content of collagen in breast muscles (P < 0.05, NS – no significant).

Group1 n = 10	Colour	Water holding capacity (%)	Protein (%)	Fat (%)	Water (%)
	L* a* b*				
1	48.38 3.81 7.88	53.33	20.82	5.72	72.28
2	50.22 5.64 6.18	57.71	19.92	6.17	72.29
SEM	0.48 0.78 0.81	1.28	0.12	0.06	0.00
P-value	0.050 0.253 0.311	0.086	NS	NS	NS

Table 3. Physicochemical parameters (means, SEM) of leg muscles from 6-week-old chickens. 1 = feed based on soybean meal, 2 = feed based on faba bean (Vicia faba var. minor), n – number of birds taken to analysis. a, b… – means in columns marked with different letters differ significantly between groups, p-value < 0.05, NS – no significant.

Content of	Group1 n = 10	SEM	P-value
Cholesterol	55.44 54.01	1.23	0.467
Collagen	28.95 20.27	1.37	<0.001

Table 4. Content of cholesterol (mg/100 g) and collagen (µg/mg of lyophilized muscle tissue) in breast muscles from 6-week-old chickens. 1 = feed based on soybean meal, 2 = feed based on faba bean (Vicia faba var. minor), n – number of samples taken to analysis. A, B… – mean values marked in columns with different letters differ significantly between groups, P-value < 0.01.

(L*) of leg muscles from birds fed faba bean was significantly higher compared to birds fed soybean meal (50.22 vs 48.38).

Data in Table 2 indicate that the use of different sources of protein in the diet of broiler chickens influenced the content of C16:0 fatty acid in breast muscles, which was significantly higher (P < 0.01) in group 2 fed faba bean than in group 1 fed SBM (22.46% vs 20.97% of total fatty acids). Muscles from group 2 were characterised by significantly higher (P < 0.01) content of C22:4 n-6 fatty acid (0.69%) and higher (P < 0.05) n-6/n-3 ratio (12.43) compared to group 1, where these values were 0.34% and 8.74, respectively. The ratio of polyunsaturated fatty acids to saturated fatty acids (P/S) was comparable in both groups (1.08 in group 1 vs 1.21 in group 2). The values of atherogenic index (AI) were also similar (0.33 in group 1 vs 0.35 in group 2). The thrombogenic index (TI) was slightly higher in chickens fed faba bean (0.83) than in chickens fed soybean meal (0.72), but the difference was not significant.

There was no significant difference in the content of cholesterol in breast muscles from both groups (Table 4), but a significant difference was found in the content of collagen in breast muscles (P < 0.01). The content of collagen was significantly higher in breast muscles from group 1 (28.95%) compared to group 2 (20.27%).

Discussion

Similar to other studies, we found no significant effect of faba bean used as a substitute for soybean meal on the values of pH24 measured in breast and leg muscles. Conversely to our study, Laudadio et al. reported that the change of protein source in the diet influenced the colour of breast muscles. They found significantly lower values of lightness (L*) for breast muscles from chickens fed diet based on faba bean. In our study, the redness (a*) of breast muscles did not differ between the analysed feeding groups. As with the colour of leg muscles, Laudadio et al. reported differences in the values of redness (a*) and yellowness (b*), which were higher in chickens fed a diet with the inclusion of faba bean compared to chickens fed soybean meal. This was not confirmed in our study. Laudadio et al. suggested that higher values of yellowness (b*) in leg muscles could be attributed to different fatty acids composition and the S/P ratio in these muscles. A trend towards higher yellowness (b*) of leg muscles was also reported by Milczarek et al., who investigated the effect of various levels of low- and high-tannin faba bean on chicken meat. In our study we found significantly lower values of lightness (L*) for leg muscles from chickens fed a diet based on faba bean. This was not consistent with findings by Laudadio et al. and Milczarek et al. On the other hand, Dal Bosco et al. investigated the effect of faba bean (16% of ration), and reported, similar to our study, no significant influence of this feed component on the value of yellowness (b*) of leg muscles from chickens.

Consistently with our study, Milczarek et al. found no effect of faba bean (low- and high tannin, at various levels per feed ration) on the water holding capacity (WHC) of leg muscles. Laudadio et al. reported, unlike in our study, that the water holding capacity of breast and leg muscles differed depending on diet, and was higher in chickens fed faba bean. Nevertheless, different sources of protein in diets had no effect on drip loss from breast muscles, which was also confirmed in our study. Findings from studies investigating the effect of diets with faba bean on the chemical composition of muscles from broiler chickens are inconsistent. For example, Osek et al. and Laudadio et al. reported that the dietary inclusion of faba bean as a source of protein had no effect on the content of protein and fat in chicken breast and leg muscles. This was confirmed in our study. On the other hand, Meluzzi et al., Dal Bosco et al. and Osek et al. reported significantly lower content of fat in leg muscles from chickens fed balanced feed mixtures containing faba bean.
In our study breast muscles from broiler chickens fed a diet with the inclusion of faba bean contained more C16:0 fatty acid. Similar conclusions were reached by Laudadio et al., who found a higher content of palmitic acid and higher total content of saturated fatty acids (SFA) in breast muscles. They also reported higher total content of n-3 fatty acids in muscles from chickens fed faba bean compared to chickens fed soybean meal. This was associated with a significant increase in the content of n-3 fatty acids, including eicosapentaenoic acid (C20:5n-3), docosapentaenoic acid (C22:5n-3) and docosahexaenoic acid (C22:6n-3) in breast and leg muscles. The authors of the cited study suggested that the dietary inclusion of faba bean significantly reduced the content of monounsaturated fatty acids in breast and leg muscles. They also reported a reduced n-6 to n-3 ratio in breast and leg muscles from chickens fed faba bean. Our study did not confirm this, since the analysis of breast muscles revealed a significantly higher n-6 to n-3 ratio in chickens fed faba bean (12.43) compared to chickens fed soybean meal (8.74). The increase in this ratio could be attributed to significantly higher (P < 0.01) content of C22:4 n-6 fatty acid in chickens from group 2. In our study the dietary inclusion of faba bean as the source of protein had no effect on the values of AI and TI in breast muscles from broiler chickens. Similar conclusions were reached by Laudadio et al., but Milczarek et al. found lower values of AI and TI in chickens fed with different levels of high- and low-tannin varieties of faba bean. Ulbricht & Southgate suggested that lower values of AI and TI in muscles indicate a more beneficial effect of chicken meat on consumer health.

In our study the replacement of soybean meal with faba bean did not increase the content of cholesterol in chicken breast muscles, but was associated with reduced content of collagen in these muscles. Laudadio et al. also demonstrated that different sources of protein (soybean meal, faba bean) influenced the total content of collagen in breast and leg muscles. Conversely, our study revealed a higher total content of collagen in muscles from chickens fed faba bean compared to chickens fed SBM. Some differences between our study and cited authors could be caused by the other genotype of chickens that was used in experiments, or even various species (chickens, turkeys). The maintain conditions could be different, as well as the method of feed preparing, including cultivar of faba bean seeds.

The use of faba bean as a substitute for soybean meal had no significant effect on most physicochemical parameters and chemical composition (content of protein, fat and water) of breast and leg muscles from 6-week-old broiler chickens. Different sources of protein in feed mixtures for chickens had a slight effect on fatty acids composition and content of collagen in breast muscles. Nevertheless, dietary inclusion of faba bean did not increase the content of cholesterol, or values of AI and TI in breast muscles that would be important for consumer health. Overall, the use of faba bean as an alternative to soybean meal in the diet of broiler chickens had positive effects on meat quality. It is important, because it could be an alternative for small-scale farms, where feed for animals are from own crops.

Methods

The slaughter of birds was carried out in accordance with the applicable rules on the handling of animals at the time of slaughter, including humane treatment. Also the methods used in the meat quality tests were carried out in accordance with the current and commonly used methodology described in the Material and methods section. Accordingly to the directive no. 2010/63/EU the approval of Ethics Committee was not required. The directive states that the requirements for the protection of animals used for experimental purposes. There it is described that these rules do not apply to agricultural activities and animal husbandry. The experiment was conducted in commercial conditions, so farmers were responsible for rearing. In addition, there is resolution 13/2016 of the National Ethics Committee for Animal Experiments of June 17, 2016 where: Collecting material from animals in breeding for genotyping and marking these animals are not procedures within the meaning of the Act on the protection of animals used for scientific or educational purposes and you do not need to obtain the consent of the Local Ethics Committee.

Animals and diets.

The study was conducted on 340 Ross broiler chickens divided into two subgroups, into 5 replications with 34 birds per each. Group 1 (control) received soybean meal as a source of protein, and group 2 (treatment) received faba bean. There were two feeding phases: days 1–14 and days 15–42 (Table 5). The content of concentrate in the diet during two feeding phases is presented in Table 5. Group 1 received concentrate with 78.89 to 76.37% content of soybean meal. Protein in the diet of group 2 was mainly sourced from faba bean, and its content was in the range of 51.22–52.13% (Table 6). Content of crude protein (CP) was at 170–230 g/kg dry matter feed and metabolic energy (ME) was at 12.60–13.45 MJ/kg of feed, according to recommendations by Smulikowska & Rutkowski. Chickens were kept in pens on litter. Birds received feed and water ad libitum, and were reared for 6 weeks. The rearing period was conducted according to the commonly use recommendations of broiler chickens’ production technology.

Days 1–14	CONCENTRATE	CORN
Control group (1)	43%	57%
Treatment group (2)	63%	37%

Days 15–42	CONCENTRATE	CORN
Control group (1)	43%	57%
Treatment group (2)	62%	38%

Table 5. Proportion of concentrate and corn in feed mixture for chickens. 1 – feed based on soybean meal, 2 - feed based on faba bean (Vicia faba var. minor).
The description of collagen content in breast muscle was done according to Maiorano et al. Muscle samples were thawed at room temperature, trimmed of fat and epimysium, lyophilized for 48 h, and hydrolyzed in Duran glass tubes (Schott AG, Mainz, Germany) in 5 ml of 6N HCl at 110°C for 18 to 20 h for the determination of hydroxyproline. The analyses were carried out in duplicate. Intramuscular collagen

Components (%)2	Starter group 1	Starter group 2	Grower group 1	Grower group 2
Faba bean	—	51.22	—	52.13
Potato protein	11.11	10.63	13.72	12.58
Yeast	4.18	2.33	4.05	2.23
RSM	1.00	0.76	1.05	0.71
Soybean oil	0.89	0.41	0.72	0.26
Premix 1%	0.38	0.16	0.28	0.08
Monocalcium phosphate	0.22	0.14	0.12	0.03
Fodder salt	0.22	0.14	0.12	0.03
L-tryptophan	—	0.06	—	0.05

Table 6. Composition of starter and grower concentrates for chickens. Feed rations were based on recommendations by Smulikowska and Rutkowski (2018). Crude protein (CP): 170–230 g/kg DM (dry matter) of feed, ME (metabolic energy): 12.60–13.45 MJ/kg of feed. 1 – 1 - feed based on soybean meal, 2 - feed based on faba bean (Vicia faba var. minor). 3RSM – rapeseed meal, SBM – soybean meal.

Slaughter and meat quality. After 6 weeks of rearing, 20 birds (10 from each group), of body weight close to the mean for the whole group, were slaughtered. The slaughter was carried out by cutting off the head (cutting the neck artery) and rapid bleeding, previously causing loss of bird awareness using an electric current method. Breast and leg muscles were dissected and analysed for quality traits. The pH value of breast muscles was measured 15 minutes post-mortem (pH15) and after 24 h cold storage at 2°C (pH24). Both measurements were taken with a CX-701 pH-meter with a knife electrode (Elmetron, Poland). The colour of breast and leg muscles was analysed with a colorimeter (Konica Minolta, model CR400, Japan), calibrated using the white calibration plate.

Lipid extraction from breast muscle was performed. Fatty acids (FA) were quantified as methyl esters (FAME) using a gas chromatograph GC Trace 2000 (ThermoQuest EC Instruments) with a flame ionization detector (260°C) and a fused-silica capillary column (Zebron ZB-88, Phenomenox, Torrance, CA, USA) 100 m × 0.25 mm × 0.20 μm foil thickness. Helium as carrier gas was used. The temperature in oven was set at 100°C for 5 min, then increased at 4°C/min up to 240°C and maintained for 30 min at 240°C. The peaks for each individual fatty acid were identified by comparison of retention times with those of FAME authentic standards run under the same operating conditions. Results were expressed as the percentage of the total FA identified. The ratio of n-6 to n-3 FA (n-6/n-3) and the ratio of PUFA to SFA (P/S) were calculated. Moreover, the atherogenic index (AI) and the thrombogenic index (TI) were calculated. Method used for fatty acid composition were done in the same way as it was described by Tavaniello et al. Cholesterol was extracted and then quantified by HPLC. A Kontron HPLC (Kontron Instruments, Milan, Italy) model 535, with a Kinetex C18 reversed-phase column (150 × 4.6 mm × 5 μm; Phenomenex, Torrance, CA) was used. The HPLC mobile phase consisted of acetonitrile: 2-propanol (55:45, vol/vol) at a flow rate of 1.0 mL/min. The detection wavelength was 210 nm. The quantification of cholesterol content in muscles was based on the external standard method using a pure cholesterol standard (Sigma, St. Louis, MO). This method was also done according to the method of Tavaniello et al. 33.

Collagen content. The description of collagen content in breast muscle was done according to Maiorano et al. Muscle samples were thawed at room temperature, trimmed of fat and epimysium, lyophilized for 48 h, and hydrolyzed in Duran glass tubes (Schott AG, Mainz, Germany) in 5 ml of 6N HCl at 110°C for 18 to 20 h for the determination of hydroxyproline. The analyses were carried out in duplicate. Intramuscular collagen

*This content is a natural text representation of the document, formatted for readability.**
concentration was calculated assuming that collagen weighed 7.25 times the measured hydroxyproline weight and expressed in micrograms of hydroxyproline per milligram of lyophilized tissue.

Statistical evaluation. Numerical data were processed with STATISTICA 10.0 PL software. Means (x) and standard error of measurement (SEM) were calculated for each parameter using one-way analysis of variance (ANOVA). Means were done from each replications for both groups. The significance of differences was verified with the post-hoc Scheffe test, at significance level p-value < 0.05. Differences between groups were statistically significant when p-value was less than 0.05. Each chosen bird was taken as an fundamental unit to calculate mean values from each groups.

Ethics. The research were done with recommendations of directive no. 2010/63/EU. The approval of Ethic Committee was not required. The slaughter of birds was carried out in accordance with the applicable rules on the handling of animals at the time of slaughter, including humane treatment. Also the methods used in the meat quality tests were carried out in accordance with the current and commonly used methodology described in the Material and methods section.

Received: 27 September 2019; Accepted: 11 March 2020;
Published online: 24 March 2020

References

1. Nalle, C. L., Ravindran, V. & Ravindran, G. Evaluation of faba beans, white lupins and peas as protein sources in broiler diets. *Int. J. Poult. Sci.* 9, 567–573 (2010a).

2. Osek, M., Milczarek, A., Kaczmarek, A. Extrusion cooking improves the metabolisable energy of faba bean meal and the amino acid digestibility in broilers. *Ann. Univ. Mariae Curie-Skłodowska. Sect. EE, Zootech.* 61, 31–45 (2016).

3. Diagle, C. L. Incorporating the Philosophy of Technology into Animal Welfare Assessment. *J. Animal Environ. Ethics* 27, 633–647 (2014).

4. Abdoli, A., Murillo, A. C., Yeh, C. C. M., Gerry, A. C. & Keogh, E. J. Time Series Classification to Improve Poultry Welfare. 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA). https://doi.org/10.1109/icmla.2018.00102 (2018).

5. Zdanowska-Sapiadek, Z., Michalczyk, M., Markiewska-Lesiak, M. & Damaziak, K. Factors determining the sensory quality of poultry meat. *Bromatol. Chem. Toksykol.* 46, 343–353 (2013).

6. Obasa, O. A., Oyelueke, A. M., Adeyemi, A. M., Egbeayi, L. T. & Olukomaiya, O. O. Growth performance and cost benefit of broiler chickens raised on mash and pellet diets accessed at different feeding periods. *Mal. J. Anim. Sci.* 20, 95–103 (2017).

7. Sortt, M. & Rekiel, A. Production and use of Fabaceae in feed. *Part 2. Use of Fabaceae in animal diet.* Przegląd Hodowlany 1, 19–25 (In Polish) (2017).

8. Fletcher, D. L. Poultry meat quality. *World Poultry Sci. J.* 58, 131–145 (2002).

9. Qiao, M., Fletcher, D. L., Smith, D. P. & Northcutt, J. K. The Effect of Broiler Breast Meat Colour on pH, Moisture, Water Holding Capacity and Emulsification Capacity. *Poult. Sci.* 80, 676–680 (2001).

10. Bieł, W. Composition and quality of protein from conventional and genetically-modified soybean meal. *Folia Pomeranae Univ Technol Steatinensis, Agric. Pisicara Zootech.* 290, 17–24 (In Polish) (2011).

11. Pomiankowski, J. F. et al. Nutritive value of broiler chicken meat transported over various distances. *Inż. Apar. Chem.* 5, 67–68 (In Polish) (2011).

12. Pietrzk, D. et al. Comparison of selected quality attributes of meat originating from fast- and slow-growing chickens. *Zyn NSData.* Technol. Ja. 2, 30–38 (In Polish) (2013).

13. Orkusz, A. Factors affecting the quality of gallinaceous poultry meat. A review. *Nauki Inż. Technol.* 1, 47–60 (In Polish) (2015).

14. Woźniak, E., Banaszewska, D. & Biesiada-Drzazga, B. Health-promoting properties of poultry meat in the context of diseases of civilization. *Folia Pomeranae Univ Technol Steatinensis, Agric. Pisicara Zootech.* 39, 235–246 (2016).

15. Adamksi, M., Kuźniacka, J. & Milczewska, N. Preferences of consumers for choosing poultry meat. *Polish JNS.* 32, 261–271 (2017).

16. Nalle, C. L., Ravindran, G. & Ravindran, V. Influence of dehulling on the apparent metabolisable energy and ideal amino acids digestibility of grain legumes for broilers. *J. Sci. Food Agr.* 90, 1227–1231 (2010b).

17. Koivunen, E., Tuunanen, P., Valkonen, E. & Valaja, J. Use of semi-leafless peas (*Pisum sativum L.*) in laying hen diets. *Agr. Food Sci.* 24, 81–91 (2015).

18. Tomaszeewska, E. et al. The influence of dietary replacement of soybean meal with high-tannin faba beans on gut-bone axis and metabolic response in broiler chickens. *Ann. Anim. Sci.* 18, 801–824 (2018).

19. Jędrzejczak, M., Kaczmarek, S. A. & Rutkowski, A. Extrusion cooking improves the metabolizable energy of faba beans and the amino acid digestibility in broilers. *Anim. Feed Sci. Technol.* 212, 100–111, https://doi.org/10.1016/j.anifeedsci.2015.12.008 (2016).

20. Skińska, M., Kuźniacka, J. & Milczewska, N. The influence of dietary replacement of soybean meal with high-tannin faba beans on poultry meat characteristics of organic slow-growing chickens. *Ann. Univ. Mariae Curie-Skłodowska. Sect. EE, Zootech.* 21, 207–213 (In Polish) (2003).

21. Meuluzi, A. et al. Influence of genotype and feeding on chemical composition of organic chicken meat. *Ital. J. Anim. Sci.* 8(Suppl. 2), 766–768 (2009).

22. Ulbricht, T. L. & Southgate, D. A. Coronary heart disease: seven dietary factors. *Bromatol. Chem. Toksykol.* 46, 343–353 (2013).

23. Zdanowska-Sapiadek, Z., Michalczyk, M., Markiewska-Lesiak, M. & Damaziak, K. Factors determining the sensory quality of poultry meat. *Bromatol. Chem. Toksykol.* 46, 343–353 (2013).

24. Dal Bosco, A. et al. The influence of dietary replacement of soybean meal with high-tannin faba beans on gut-bone axis and carcass quality in broiler chickens. *Ann. Univ. Mariae Curie-Skłodowska. Sect. EE, Zootech.* 21, 207–213 (In Polish) (2003).

25. Meuluzi, A. et al. Influence of genotype and feeding on chemical composition of organic chicken meat. *Ital. J. Anim. Sci.* 8(Suppl. 2), 766–768 (2009).

26. Ulbricht, T. L. & Southgate, D. A. Coronary heart disease: seven dietary factors. *Bromatol. Chem. Toksykol.* 46, 343–353 (2013).

27. Zdanowska-Sapiadek, Z., Michalczyk, M., Markiewska-Lesiak, M. & Damaziak, K. Factors determining the sensory quality of poultry meat. *Bromatol. Chem. Toksykol.* 46, 343–353 (2013).

28. CIE. Colorimetry. (Publication CIE 15.2.) (Vienna: Central Bureau of CIE, 1986).

29. Honikel, K. O. The water binding of meat. *Fleischwirt* 4, 295–297 (1952).

30. Grau, R. & Hamm, R. Eine einfache Methode zur Bestimmung der Wasserbindung in Fleisch. *Fleischwirt* 4, 295–297 (1952).

31. PN-A-82109:2010. Raw and processed meat – determination of fat, protein and water content. Near InfraRed Transmission (NIT) spectrometry with calibration for artificial neural network (ANN). (In Polish) (2010).
32. Folch, J., Lees, M. & Sloane-Stanley, G. H. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226, 497–509 (1957).
33. Tavaniello, S. et al. Fatty acid composition of meat and genetic mapping of quantitative trait loci in 3 generations of Japanese quail populations. J. Cent. Europ. Agri. 18, 806–822 (2018).
34. Maraschiello, C., Diaz, I. & Garcia Regueiro, J. A. Determination of cholesterol in fat and muscle of pig by HPLC and capillary gas chromatography with solvent venting injection. HRC. J. High. Resolut. Chrom. 19, 165–168 (1996).
35. Maiorano, G. et al. The effect of dietary energy and vitamin E administration on performance and intramuscular collagen properties of lambs. Meat Sci. 76, 182–188 (2007).
36. Etherington, D. J. & Sims, T. J. Detection and estimation of collagen. J. Sci. Food Agr. 32, 539–546 (1981).
37. Woessner, J. F. Jr. The determination of hydroxyproline in tissue and protein samples containing small proportions of this imino acid. Arch. Biochem. Biophys. 93, 440–447 (1961).
38. Eastoe, J. E. & Leach, A. A. A survey of recent work on the amino acid composition of vertebrate collagen and gelatin. Recent Advances in Gelatin and Glue Research. (G. Stainsby ed. Pergamon Press) 173–178 (New York, NY, 1958).
39. STATISTICA PL. Version 10.0, series 1101; (2011).

Acknowledgements

The study was carried out as part of Multiannual Programmes: “Improvement of domestic vegetable protein sources, their production, marketing system and use in feeds” RESOLUTION No. 149/2011 of 9 August 2011, and “Increasing the use of domestic feed protein for the production of high quality animal products under conditions of sustainable development” RESOLUTION NO. 222/2015 of 15 December 2015. This work has been supported by the Polish National Agency for Academic Exchange under Grant No. PPI/APM/2019/1/00003.

Author contributions

All authors took part in meat quality analysis. M.A., J.K., M.B. – designed of experiment, J.K., M.B., J.B., M.A. analyzed physicochemical traits, J.B., G.M. analyzed chemical traits in breast muscles, J.K., M.B., J.B., G.M., M.A. analyzed data, J.K. wrote the paper with cooperation with all of authors. All authors approved the final manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Correspondence and requests for materials should be addressed to J.B.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020