Influence of roughness on operational properties of details

I I Khafizov¹ and I G Nurullin¹
¹Kazan Federal University, 18 Kremlyovskaya street, Kazan, 420008, Russian Federation
khafizov@kpfu.ru, opros16@yandex.ru

Abstract. The roughness has significant effect on operational properties of details. For increase in wear resistance and durability of cars and mechanisms, it is necessary to provide appropriate roughness of a surface of details. In this article influence of roughness on some properties of details is considered: on contact deformation, stability against corrosion, wear resistance and on other indicators.

Shows results of long-term operation of production of the machine-building industry of different function that, parameters of a condition of a blanket strongly affects reliability and durability of details of cars and, respectively, products in general. This results from the fact that the majority of operational characteristics of details substantially depend on quality of a surface.

The surface quality of parts is a complex indicator determined by such characteristics as macrogeometry, surface roughness and waviness, the state of the surface layer.

On the finished and machined surface of the part there are always irregularities of different types and sizes, depending on the methods of machining, in contrast to the surface depicted in the drawing [1].

During the cutting process, the metal layer is deformed and the structure changes [2]. The degree of hardening and depth of the hardened layer depend on the processing methods, modes and cutting speed, the geometry of the working edge of the tool and the properties of the starting metal [3].

Deviations from the theoretical form can be of three groups: macrogeometric-deviations from the correct geometric shape; waviness – as a result of vibrations and unevenness of the cutting process; microgeometric, formed as a result of the impact of the cutting edge of the tool on the treated surface.

For increase in wear resistance and durability, it is necessary to provide appropriate roughness of a surface of details. The details with a surface having big roughness are exposed to bigger wear during operation, than the details having a plain surface. It can be explained with the fact that the area of a support of a rough surface is less, than equal as surfaces adjoin among themselves only combs [4].

Also, the details of roughness which are available on a surface and defects promote further concentration of tension which can exceed the strength of metal and be a cause of destruction of a detail [5].

The roughness step taken as a roughness must be very small, relative to the base length of the entire surface. There are three types of object roughness:

1) Initial-occurs as a result of the technological sequence of processing of the product by various abrasives.
2) Operational (ES) - acquired roughness during operation of the part, as a result of wear and working friction.
3) Equilibrium is a type of ES that can be reproduced in stationary friction conditions.

Despite their small size, such irregularities have a significant impact on the performance properties of parts (ESD). The results of the study of the effect of surface roughness on some ESD can be seen in table 1.

Table 1 - Influence of Roughness on Operational Properties of Details

№	Operational properties of details	Influence of roughness on operational properties of details
1	The corrosion firmness	Has a considerable impact. Corrosion of details in atmospheric conditions are formed easier and go quicker on roughly processed surfaces. As a rule, on purely processed surfaces, the corrosion resistance is higher.
2	Contact deformation	Strongly affects contact rigidity of joints of the interfaced details. Reducing roughness and waviness, increase bearing detail surfaces for 80 – 90% is possible and by that to increase contact rigidity.
3	Friction and wear	The value of working wear increases. Wear is affected by the shape of micro-irregularities and their direction. Peaked wear faster than flat-topped.
4	Fatigue strength (up)	Irregularities affect the stress concentration and the formation of fatigue cracks. Insufficient up will lead to rapid breakage, causing failure of the machines.
5	The stability of the stationary landings	When pressing parts is smoothing of asperities leading to a decrease of the actual tensioning. In this regard, a decrease in the strength of the connection of parts is detected with more rough surfaces.
6	Thermal conductivity	There is a decrease in the thermal conductivity of the joints.
7	Tightness of joints (HS)	There is a decrease in contact stiffness and HS, due to a decrease in the actual contact area.

But, also it is necessary to remember that not in all cases the purely processed surface is the most wear-resistant, as the retention of lubricant under different friction conditions depends on the micro-roughness available on the surface. And therefore, depending on specific conditions of friction, it is necessary to pick up optimum roughness of a surface. Parameters of roughness are determined in GOST 2789-73 "Roughness of a surface. Parameters, characteristics and designations" [6].

Analyzing results, it is possible to draw a conclusion that the roughness has significant effect on various properties. Also it is necessary to remember that influence of roughness it is essential also to economy as repair and restoration of worn-out details can be quite often more expensive, than production of the new car. It is possible for this reason, exact determination of value of roughness - one of important problems of metrology.

References
[1] Regov B A and Below P C 2012 Study of the effect of cutting conditions at fine turning on the surface quality Vestnik RUDN. Series: Engineering research No 4
[2] Khafizov I I 2013 Ways to reduce the consumption of materials when they are separated by combined methods Bulletin of Kazan technological University (Kazan: Kazan State Technical University) No 1 p 208-11
[3] Morandin I O and Volkov R S 2012 Surface quality after cutting Successes of modern natural science No 6 pp 76-79
[4] Khafizov I I, Nurullin I G and Sadykov Z B 2018 Application of the method of electroerosion treatment to improve the quality of the treated surface Materials of IX conference «IMCOM-2018» vol 432
[5] Khafizov I I, Nurullin I G and Sadykov Z B 2018 Problems of development of electrochemical
production of Russia and possibility of their decision *IOP Conference Series: Materials Science and Engineering* vol 412 012042

[6] Khafizov I I and Nurullin I G 2017 Product quality as the main factor of increase of competitiveness (on the example of JSC «Kazan helicopter plant») *IOP Conference Series: Materials Science and Engineering* vol 240 012039

[7] Gil'manshin I R and Kashapov N F 2014 Energy service contracts in regional engineering center for small and medium businesses *IOP Conference Series: Materials Science and Engineering*

[8] Nurullin I G and Khafizov I I 2016 The impact of innovation implementation and certification on the company's activities and reputation Modern technologies: topical issues, achievements and innovations: collection of articles of the winners of the IV international. science.- practical Conf. (Penza: ICSU " Science and education») p 44-6

[9] Akhmetov I D, Zakirova A R and Sadykov Z B 2017 New electrode-tool for the combined kerf of electrically conductive materials *IOP Conference Series: Materials Science and Engineering* vol 240 012003

[10] Khafizov I I and Galimov A N 2017 IT-strategy and major aspects of quality management on the market of goods and services *IOP Conference Series: Materials Science and Engineering* vol 240 012038

[11] Khafizov I I, Saveleva T N and Lyubtsov V S 2017 Estimation of parameters of charge carriers in dielectric materials by CELIV method *IOP Conference Series: Materials Science and Engineering* vol 240 012040

[12] Khafizov I I 2017 Ways of decrease in the material consumption in case of their separation by the combined methods *IOP Conference Series: Materials Science and Engineering* vol 240 012037

[13] Khafizov I I 2016 Economic efficiency and effectiveness of ways of separating materials electro diamond processing *IOP Conference Series: Materials Science and Engineering* vol 134 012014

[14] Kashapov N F, Khafizov I I and Nurullin I G 2018 Influence of introduction of robotics on increase in efficiency of electrochemical production *IOP Conference Series: Materials Science and Engineering* vol 412 012034

[15] Fazlyyyakhmatov M G and Kashapov N F 2014 Corona discharge in the process of spraying protective powder coatings on piezoceramic materials *High Temperature Material Processes* vol 18 pp 273-79

[16] Kashapov N F and Sharifullin S N 2015 Hardening of the surface plasma jet high-frequency induction discharge of low pressure *IOP Conference Series: Materials Science and Engineering* vol 86 012021

[17] Kashapov N F, Gil'manshin I R and Konahina I A 2014 System analysis of the energy complex of engineering enterprise as a basic tool of effective energy management *IOP Conference Series: Materials Science and Engineering* (Bristol-UK) vol 69

[18] Gubaiddullin D A, Kashapov N F and Zaripov R G 2017 Experimental studies for flow velocities of oscillations gas when transiting through resonance in the area of an open end of pipe *IOP Conference Series: Journal of Physics: Conference Series. vol 789 012017

[19] Gil'manshin I R, Kashapov N F, Gil'manshina S I and Galeeva A I 2016 Landfill energy complex based on the renewable energy installations *IOP Conference Series: Materials Science and Engineering* vol 134