EQUIVARIANT HOMOLOGICAL MIRROR SYMMETRY FOR \mathbb{C} AND $\mathbb{C}P^1$

MASAHIRO FUTAKI AND FUMIHKO SANDA

Abstract. In this paper we define an equivariant Floer A_∞ algebra for \mathbb{C} and $\mathbb{C}P^1$ by using Cartan model. We then prove an equivariant homological mirror symmetry, i.e. an equivalence between an A_∞ category of equivariant Lagrangian branes and the category of matrix factorizations of Givental’s equivariant Landau-Ginzburg potential function.

Contents

1. Introduction 2
2. Algebraic preliminaries 3
 2.1. Equivariant cohomology of g-differential spaces 3
 2.2. Preliminaries on gapped filtered A_∞ categories 5
 2.3. g-differential gapped filtered A_∞ categories 6
3. Equivariant Floer theory 9
 3.1. Equivariant cohomology 9
 3.2. Floer theory 10
 3.3. Equivariant Floer theory 11
 3.4. Category of equivariant Lagrangian branes 12
4. Matrix factorizations 14
 4.1. Preliminaries on categories 14
 4.2. Preliminaries on matrix factorizations 15
 4.3. Categories of branes for Givental type potential functions 16
5. Equivariant homological mirror symmetry 17
 5.1. The case of $\mathbb{C}P^1$ 17
 5.2. The case of \mathbb{C} 19
6. Appendix A 20
 6.1. Preliminaries on polyhedrons 20
 6.2. Preliminaries on polyhedral subdomains 21
 6.3. Preliminaries on tropicalizations 23
 6.4. Main theorem 24
7. Appendix B 26
References 27

Date: December 30, 2021.
M. F. is supported by Grant-in-Aid for Scientific Research (C) (18K03269) of the Japan Society for the Promotion of Science. F. S. is partially supported by Grant-in-Aid for Scientific Research (B) (17K17817), (S) (16H06337), (S) (21H04994) of the Japan Society for the Promotion of Science.
1. Introduction

One form of the homological mirror symmetry for a toric Fano manifold X relates the Fukaya category of X to the dg-category of matrix factorizations of its Landau-Ginzburg mirror F_X, e.g. [12]. In this paper we study an equivariant version of this story.

Givental introduced the equivariant Landau-Ginzburg potential F_X mirror to the toric manifold X, e.g. [17]. The potential is of the form

$$F_X = f_X - \lambda_1 \log g_1 - \cdots - \lambda_r \log g_r,$$

where f_X is the non-equivariant Landau-Ginzburg mirror potential of X and $\lambda_1, \ldots, \lambda_r$ are equivariant parameters corresponding to a basis of the Lie algebra of the torus T acting on X, and g_1, \ldots, g_r are some invertible functions.

Cho-Oh [7] defined a potential function by using Floer theory and showed that it coincides with the (nonequivariant) Landau-Ginzburg potential in the case of compact toric Fano manifolds based on the idea of Hori-Vafa [21], cf. [4] [16]. Kim-Lau-Zheng [25] showed that Givental’s equivariant Landau-Ginzburg mirror is recovered from the T-equivariant potential function when X is a semi-projective semi-Fano toric manifold.

The equivariant Fukaya category is yet to be defined, but should consist of the Lagrangians preserved by the group action and of the equivariant Floer A_∞ algebras.

There have been several approaches to the equivariant Floer theory. Zernik [31, 32] defined an equivariant Floer cohomology for possibly nonorientable Lagrangians using the Cartan model, and applied it to the study of the open Gromov-Witten theory of the real projective space inside the complex projective space. Kim-Lau-Zheng mentioned above employed the Morse model to study the disc potential.

In this paper we introduce our version of the equivariant Floer A_∞ algebra using the Cartan model, and prove the following.

Theorem 1.1 (Section 4, Theorems 5.1 and 5.3). Let X be $\mathbb{C}P^1$ or \mathbb{C}^n with the standard S^1 action. We have a cohomologically fully faithful A_∞ functor from \mathcal{F}_X to $\text{Br}(\mathcal{F}_X)$ whose image split-generates the triangulated category $[\text{Br}(\mathcal{F}_X)]$, where \mathcal{F}_X is an equivariant Floer A_∞ category and $\text{Br}(\mathcal{F}_X)$ is the dg-category of matrix factorizations of F_X.

For precise statements, see Section 5.

This paper is organized as follows. In Section 2 we review algebraic notions: g-differential spaces and its A_∞ version, the Cartan models and the gapped filtered A_∞ categories. In Section 3 we review some Floer theory, and then define an equivariant Floer A_∞ algebra and an A_∞ category of equivariant Lagrangian branes. In Section 4 we define the dg-category of matrix factorizations for Givental type potential functions. In Section 5 we formulate and prove the main theorems. In Appendix A, we compute the dimension of the Jacobian ring of the equivariant Landau-Ginzburg mirror of a semi-projective toric manifold (Theorem 6.7). In Appendix B, we introduce another version of categories of branes for equivariant Landau-Ginzburg potentials.

Notations.

- $\Lambda := \{ \sum_{i \geq 0} a_i T^{\lambda_i} | a_i \in \mathbb{C}, \lambda_0 < \lambda_1 < \cdots \in \mathbb{R}, \lim_{i \to \infty} \lambda_i = \infty \}$ the Novikov field over \mathbb{C},
- $\Lambda_0 := \{ \sum_{i \geq 0} a_i T^{\lambda_i} | a \in \Lambda, \lambda_0 \geq 0 \} \subset \Lambda$ the Novikov ring, and
- $\Lambda_+ := \{ \sum_{i \geq 0} a_i T^{\lambda_i} | a \in \Lambda, \lambda_0 > 0 \}$ the maximal ideal of the Novikov ring.

We define the valuation of elements of the Novikov field by its T-exponent of the initial term. Namely, $\text{val}(a) := \lambda_0$ for $a = \sum_{i \geq 0} a_i T^{\lambda_i} \in \Lambda^*$ with $a_0 \neq 0$ and set $\text{val}(0) := \infty$. We also use the following notations:

- $\hat{\otimes}_C : \mathbb{Z}/2\mathbb{Z}$-graded completed tensor product over \mathbb{C}.
- $|x|$: the degree of a homogeneous element of a graded module.
- $|x'| := |x| - 1$: the shifted degree.
Spec : the set of prime ideals with Zariski topology.
Spm : the set of maximal ideals with Zariski or analytic topology.
Sym : the graded symmetric tensor product.
[1] : the degree one shift of a graded module, i.e., for a graded module \(V \), the degree \(k \) part \((V[1])^k \) is \(V^{k+1} \).

2. Algebraic preliminaries

In this section, let \((g, [~,~]) \) be a complex Lie algebra (considered as a \(\mathbb{Z} \)-graded Lie algebra concentrated in degree 0).

2.1. Equivariant cohomology of \(g \)-differential spaces. In this subsection, we recall some basics on de Rham models of equivariant cohomology. See, e.g., [18] for more details. Let \((M, \delta) \) be a cochain complex, i.e., \(M \) is a \(\mathbb{Z} \)-graded vector space over \(\mathbb{C} \) and \(\delta \) is a degree 1 endmorphism of \(M \) with \(\delta^2 = 0 \).

Definition 2.1. Let \((M, \delta) \) be a cochain complex. Suppose that two linear maps \(i \) and \(L \) of degree \(-1\) and \(0 \) respectively are given

\[
g \otimes M \to M : X \otimes x \mapsto iXx \\
g \otimes M \to M : X \otimes x \mapsto LXx
\]

which satisfy the following \((X, Y \in g)\):

\[
\begin{align*}
\delta LX - LX \delta &= 0, \\
\delta iX + iX \delta &= LX, \\
LXL_Y - LYL_X &= L_{[X,Y]}, \\
iXLY - iYLX &= i_{[X,Y]}, \\
iXiY + iyixX &= 0.
\end{align*}
\]

Then \((M, \delta, L, i)\) is called a \(g \)-differential space (we denote it briefly by \(M \)).

For \(g \)-differential spaces \(M, N \), we easily see that \(M \otimes N \) naturally a \(g \)-differential space. For a \(g \)-differential space \(M \), we set

\[
\begin{align*}
M^0 &:= \{ x \in M \mid L_Xx = 0 \text{ for all } X \in g \}, \\
M_{hor} &:= \{ x \in M \mid i_Xx = 0 \text{ for all } X \in g \}, \\
M_{bas} &:= \{ x \in M \mid L_Xx = 0, i_Xx = 0 \text{ for all } X \in g \}.
\end{align*}
\]

Then \(M_{hor} \) is closed under \(L_X \), and \(M^0 \) and \(M_{bas} \) are closed under \(\delta \). For a \(\mathbb{C} \)-linear subspace \(N \subseteq M \), the intersection \(N \cap M^0 \) is also denoted by \(N^0 \).

Let \(\wedge g \) be the (\(\mathbb{Z} \)-graded) symmetric algebra \(\text{Sym}(g[1]) \), \(\wedge g^\vee \) be \(\text{Sym}(g^\vee[-1]) \), and \(Sg^\vee \) be \(\text{Sym}(g^\vee[-2]) \). Choose a basis \(e_1, e_2, \ldots, e_r \) of \(g \) and let \(e^1, e^2, \ldots, e^r \) be the dual basis of \(g^\vee \). Let \(c_{jk} \) be the structure constants of \(g \), i.e., \(c_{jk} := \langle e^i, [e_j, e_k] \rangle \). There exists a natural non-degenerate bilinear paring \(\langle \cdot, \cdot \rangle : \wedge g^\vee \otimes \wedge g \to \mathbb{C} \). For \(X_1, \ldots, X_k \in g, x_1, \ldots, x_k \in g^\vee \), we have

\[
\langle x^1 \wedge \cdots \wedge x^k, X_1 \wedge \cdots \wedge X_k \rangle = \det((\langle x^i, X_j \rangle)_{i,j=1}^k).
\]

The element \(e^i \in g^\vee \) is also denoted by \(\theta^i \) if it is considered as an element of \(\wedge g^\vee \).

We introduce a structure of a \(g \)-differential space on \(\wedge g^\vee \). We define

\[
\delta : \wedge g^\vee \to \wedge g^\vee
\]

by the formula \(\delta(\theta^i) = -\frac{1}{2} \sum_{j,k} c_{jk} \theta^j \theta^k \). (Note that this \(\delta \) comes from the dual of the Lie bracket.)
For \(X, Y \in \mathfrak{g}\) and \(x \in \mathfrak{g}^\vee\), set
\[
\langle L_X x, Y \rangle := -\langle x, [X, Y] \rangle, \quad i_X x = (X, x).
\]
Extending \(L_X\) and \(i_X\) by the Leibniz rule, we obtain two linear maps
\[
L_X, i_X : \wedge \mathfrak{g}^\vee \to \wedge \mathfrak{g}^\vee.
\]
We see that \((\wedge \mathfrak{g}^\vee, \delta, L, i)\) is a \(\mathfrak{g}\)-differential space. We note that \(\delta\) is also written as \(\frac{1}{2} \sum_i \theta^i \circ L_{e_i}\), where \(\theta^i\) is the left multiplication by \(\theta^i\).

We next introduce the Weil algebra. Set \(W_\mathfrak{g} : = S(d\mathfrak{g}^\vee \otimes \wedge \mathfrak{g}^\vee)\), which is naturally a \(\mathbb{Z}\)-graded commutative algebra. For simplicity, \(1 \otimes e^i \in W_\mathfrak{g}\) is also denoted by \(\theta^i\) and \(e^i \otimes 1 \in W_\mathfrak{g}\) is denoted by \(\overline{e}^i\). Set \(F^i : = \overline{e}^i + \frac{1}{2} \sum_{j,k} c_{jk}^i \theta^j \theta^k\), then \(\theta^1, \ldots, \theta^r, F^1, \ldots, F^r\) also generate \(W_\mathfrak{g}\). We note that \(\theta^i = 1, \overline{e}^i = 2\), and \(|F^i| = 2\). We define
\[
\delta_W (\theta^i) = \overline{e}^i = F^i - \frac{1}{2} \sum_{j,k} c_{jk}^i \theta^j \theta^k \in W_\mathfrak{g}, \quad \delta_W (F^i) = 0,
\]
and extend it to \(\delta_W : W_\mathfrak{g} \to W_\mathfrak{g}\) by the Leibniz rule. From the definition, we easily see that \((W_\mathfrak{g}, \delta_W)\) is acyclic. By using the Jacobi identity, we have
\[
\delta_W (F^i) = \sum_{j,k} c_{jk}^i F^j \theta^k.
\]
Similarly, we define two linear maps \(L, i : \mathfrak{g} \otimes W_\mathfrak{g} \to W_\mathfrak{g}\) by
\[
i_{e_j} (\theta^i) := \delta^i_j, \quad i_{e_j} (F^i) := 0, \quad L_{e_j} (\theta^i) := -\sum_k c_{jk}^i \theta^k, \quad L_{e_j} (F^i) := -\sum_k c_{jk}^i F^k.
\]
Then \((W_\mathfrak{g}, \delta_W, L, i)\) gives a \(\mathfrak{g}\)-differential space, which is called a Weil algebra. By definition, we see that \((W_\mathfrak{g})_{\text{hor}} \cong S_\mathfrak{g}^\vee\), which is freely generated by \(F^1, F^2, \ldots, F^r \in (W_\mathfrak{g})_{\text{hor}}\) and closed under \(L_X\).

Let \(M\) be a \(\mathfrak{g}\)-differential space. Then \(\mathfrak{g} \otimes W_\mathfrak{g}\) is also a \(\mathfrak{g}\)-differential space and its differential is also denoted by \(\delta_W\). Set \(C^*_\mathfrak{g}(M) := (\mathfrak{g} \otimes W_\mathfrak{g})_{\text{bas}}\). This is a \(\mathbb{Z}\)-graded \((\mathfrak{g} \otimes W_\mathfrak{g})_{\text{bas}} \cong (S\mathfrak{g}^\vee)^{\mathfrak{g}}\)-module and \(\delta_W\) is compatible with this module structure.

Definition 2.2. The cochain complex \((C^*_\mathfrak{g}(M), \delta_W)\) is called a Weil model and its cohomology is called an equivariant cohomology of \(M\). The equivariant cohomology is an \((S\mathfrak{g}^\vee)^{\mathfrak{g}}\)-module which is denoted by \(H^*_\mathfrak{g}(M)\).

We next define the Cartan model of equivariant cohomology of a \(\mathfrak{g}\)-differential space \(M\). Set \(C^*_\mathfrak{g}(M) := (\mathfrak{g} \otimes (W_\mathfrak{g})_{\text{hor}})^{\mathfrak{g}}\), which is a \(\mathbb{Z}\)-graded \((S\mathfrak{g}^\vee)^{\mathfrak{g}}\)-module. To simplify notation, for \(x \in W_\mathfrak{g}\), the left multiplication by \(x\) is also denoted by \(x\). We define a differential \(\delta_{\text{Car}} : C^*_\mathfrak{g}(M) \to C^*_\mathfrak{g}(M)\) by
\[
\delta_{\text{Car}} := \delta \otimes 1 - \sum_i i_{e_i} \otimes F^i,
\]
which is compatible with the \(\mathbb{Z}\)-graded \((S\mathfrak{g}^\vee)^{\mathfrak{g}}\)-module structure.

Definition 2.3. The cochain complex \((C^*_\mathfrak{g}(M), \delta_{\text{Car}})\) is called a Cartan model.

Set \(\gamma := \sum_j i_{e_j} \otimes \theta^j \in \text{End}(\mathfrak{g} \otimes W_\mathfrak{g})\). This is a degree 0 nilpotent operator and we define an automorphism \(\phi := \exp(\gamma)\) (called a Mathai-Quillen morphism). This morphism \(\phi\) is compatible with the \(\mathbb{Z}\)-graded \(W_\mathfrak{g}\)-module structure on \(\mathfrak{g} \otimes W_\mathfrak{g}\).
Theorem 2.4 (See, e.g., [23] Theorem 3.2 and [18] Chapter 4). The image of the Weil model $C^\infty_W(M)$ by ϕ is $C^\infty_{\text{Cart}}(M)$ and $\delta_{\text{Cart}} \circ \phi = \phi \circ \delta_V$. Hence ϕ gives an isomorphism between the equivariant cohomology $H^*_\mu(M)$ and the cohomology of the Cartan model as $(\mathcal{S}g^\vee)^\#$-modules.

2.2. Preliminaries on gapped filtered A_∞ categories. Let G be a discrete submonoid of $2\mathbb{Z} \times \mathbb{R}_{\geq 0}$. We denote by $\mu: G \to 2\mathbb{Z}$ the first projection and by $\omega: G \to \mathbb{R}_{\geq 0}$ the second projection. Suppose that for each $E \in \mathbb{R}_{\geq 0}$

$$\# \{ \beta \in G \mid \omega(\beta) \leq E \} < \infty.$$ Let R be a \mathbb{Z}-graded commutative algebra over \mathbb{C}. We first recall the notion of an A_∞ category (over R).

Definition 2.5. A \mathbb{Z}-graded unital A_∞ category $(\mathcal{A}, \{m_k^\mathcal{A}\})$ over R consists of the following data (the first three data is simply denoted by \mathcal{A}):

- $\text{Ob} \mathcal{A}$: a set of objects,
- $\mathcal{A}(A, B)$: \mathbb{Z}-graded modules over R for pairs $(A, B) \in (\text{Ob} \mathcal{A})^2$,
- 1_A: degree 0 elements of $\mathcal{A}(A, A)$ for $A \in \text{Ob} \mathcal{A}$,
- R-module maps $m_k^\mathcal{A}$ ($k \geq 1$) of degree 1 for $(k + 1)$-tuples $(A_0, ..., A_k) \in (\text{Ob} \mathcal{A})^{k+1}$,

$$m_k^\mathcal{A}: \mathcal{A}(A_0, A_1)[1] \otimes \cdots \otimes \mathcal{A}(A_{k-1}, A_k)[1] \to \mathcal{A}(A_0, A_k)[1]$$

such that they satisfy the following relations:

- A_∞ relations:

$$\sum_{k_1 + k_2 = k+1 \atop 1 \leq k_1, k_2 \leq k \atop 0 \leq i < k_1 + k_2 \leq k} (-1)^{|x_i|} m_{k_1}^\mathcal{A}(x_1, ..., x_{i+k_1}, m_{k_2}^\mathcal{A}(x_{i+1}, ..., x_{i+k_2}), x_{i+k_2+1}, ..., x_k) = 0$$

where x_i are homogeneous elements of $\mathcal{A}(A_{i-1}, A_i)$ and $\# = |x_1'| + \cdots + |x_i'|$.

- Unitality:

$$m_2^\mathcal{A}(1_A, x) = (-1)^{|x|} m_2^\mathcal{A}(x, 1_A) = x \text{ if } k = 2,$$

$$m_k^\mathcal{A}(..., 1_A, ...) = 0 \text{ if } k \neq 2.$$ For simplification, a \mathbb{Z}-graded unital A_∞ category $(\mathcal{A}, \{m_k^\mathcal{A}\})$ is also denoted by \mathcal{A}.

The morphisms $m_k^\mathcal{A}$ naturally induce degree $2 - k$ morphisms

$$\mathcal{A}(A_0, A_1) \otimes \cdots \otimes \mathcal{A}(A_{k-1}, A_k) \to \mathcal{A}(A_0, A_k)$$

which are also denoted by $m_k^\mathcal{A}$.

We next recall the notion of a unital G-gapped filtered A_∞ category.

Definition 2.6 (cf. [13]). A unital G-gapped filtered A_∞ category $(\mathcal{A}, \{m_k, \beta\})$ consists of the following data:

- \mathcal{A}: a unital \mathbb{Z}-graded A_∞ category over R.
- R-module morphisms of degree $1 - \mu(\beta)$ with $m_{k, 0} = m_k$ (especially $m_{0, 0} = 0$) for $A_0, ..., A_k \in \text{Ob} \mathcal{A}, k \in \mathbb{Z}_{\geq 0}, \beta \in G$:

$$m_{k, \beta}: \mathcal{A}(A_0, A_1)[1] \otimes \cdots \otimes \mathcal{A}(A_{k-1}, A_k)[1] \to \mathcal{A}(A_0, A_k)[1],$$

which naturally induce degree $2 - k - \mu(\beta)$ morphisms $m_{k, \beta}$ similar to (1), such that they satisfy the following relations:
For \(A_0, \ldots, A_k \in \text{Ob} \mathcal{A} \) and homogeneous elements \(x_i \in \mathcal{A}(A_{i-1}, A_i) \), the morphisms \(m_{k,\beta} \) satisfy the \(A_\infty \) relations for \((k, \beta) \in \mathbb{Z}_{\geq 0} \times G\):

\[
\sum_{k_1 + k_2 = k+1, \ 0 \leq k_1, k_2, \ 0 \leq k - k_2, \ \beta_1 + \beta_2 = \beta} (-1)^{\#} m_{k_1, \beta_1}(x_1, \ldots, x_{i_1}, m_{k_2, \beta_2}(x_{i_1+1}, \ldots, x_{i_1+k_2}), x_{i_1+k_2+1}, \ldots, x_k) = 0
\]

where \(\# = |x_1'| + \cdots + |x_i'| \).

- The units \(1_A \) satisfy

\[
m_{k,\beta}(\cdots, 1_A, \cdots) = 0 \quad \text{if} \ (k, \beta) \neq (2, 0), \tag{2}
\]

\[
m_{2,0}(1_A, x) = (-1)^{|x|} m_{2,0}(x, 1_A) = x \quad \text{if} \ (k, \beta) = (2, 0). \tag{3}
\]

We simply say an unital gapped filtered \(A_\infty \) category when we don’t specify \(G \).

To simplify notation \(m_{1,0} \) is also denoted by \(\delta \), then we have \(\delta^2 = 0 \).

Remark 2.7. We obtain a \(\mathbb{Z}/2\mathbb{Z} \)-graded unital curved \(A_\infty \) category \((A, \{m_k\})\) over \(\Lambda \) from a gapped filtered \(A_\infty \) category \((\mathcal{A}, \{m_{k,\beta}\})\) over \(\mathbb{C} \) by taking

\[
\text{Ob} A := \text{Ob} \mathcal{A},
\]

\[
A(A, B) := \mathcal{A}(A, B) \otimes_{\mathcal{C}} \Lambda,
\]

\[
1_A := 1_A \in A(A, A),
\]

\[
m_k := \sum_{\beta \in G} \frac{\omega(\beta)}{2\pi} m_{k,\beta}.
\]

2.3. \(\mathfrak{g} \)-differential gapped filtered \(A_\infty \) categories

Let \(\mathfrak{g} \) be a complex Lie algebra.

Definition 2.8. Let \((\mathcal{A}, \{m_{k,\beta}\})\) be a unital \(G \)-gapped filtered \(A_\infty \) category over \(\mathbb{C} \). Suppose that \(\mathcal{A}(A, B) \) is a \(\mathfrak{g} \)-differential space with the differential \(\delta = m_{1,0} \) for each \(A, B \in \text{Ob} \mathcal{A} \). These data is called a \(\mathfrak{g} \)-differential unital \(G \)-gapped filtered \(A_\infty \) category over \(\mathbb{C} \) if they satisfy the following equation for each \(k \in \mathbb{Z}_{\geq 0} \) and \(\beta \in G \) with \((k, \beta) \neq (1, 0)\):

\[
i_X m_{k,\beta}(x_1, \ldots, x_k) + \sum_{i=1}^{k} (-1)^{|x_1'|+\cdots+|x_{i-1}'|} m_{1,\beta}(x_1, \ldots, i_X x_i, \ldots, x_k) = 0. \tag{4}
\]

Here \(X \in \mathfrak{g} \) and \(x_i \in \mathcal{A}(A_{i-1}, A_i) \) are homogeneous elements.

Proposition 2.9. For \(k \in \mathbb{Z}_{\geq 0}, \beta \in G, X \in \mathfrak{g}, \) and homogeneous elements \(x_i \in \mathcal{A}(A_{i-1}, A_i) \) \((i = 1, 2, \ldots, k)\), we have

\[
L_X m_{k,\beta}(x_1, \ldots, x_k) = \sum_{i=1}^{k} m_{k,\beta}(x_1, \ldots, L_X x_i, \ldots, x_k). \tag{5}
\]

Proof. For \((k, \beta) = (1, 0)\), this proposition follows from the definition of \(\mathfrak{g} \)-differential space. We assume \((k, \beta) \neq (1, 0)\). Set

\[
\delta(x_1 \otimes \cdots \otimes x_k) := \sum_{i=1}^{k} (-1)^{|x_1'|+\cdots+|x_{i-1}'|} x_1 \otimes \cdots \otimes \delta x_i \otimes \cdots \otimes x_k
\]

\[
i_X(x_1 \otimes \cdots \otimes x_k) := \sum_{i=1}^{k} (-1)^{|x_1'|+\cdots+|x_{i-1}'|} x_1 \otimes \cdots \otimes i_X x_i \otimes \cdots \otimes x_k
\]
We also set
\[
\hat{m}_{k,\beta}^2(x_1 \otimes \cdots \otimes x_k) := \sum (-1)^{|x_1|+\cdots+|x_k|} m_{k,\beta_1} (x_1 \otimes \cdots \otimes m_{k_2,\beta_2} (x_{i+1} \otimes \cdots \otimes x_{i+k_2}) \otimes \cdots \otimes x_k),
\]
where the sum is taken over the set
\[
\{(k_1, k_2, \beta_1, \beta_2, i) \mid k_1+k_2=k+1, \beta_1+\beta_2=\beta, 0 \leq i \leq k-k_2, (k_1, \beta_1) \neq (1,0), (k_2, \beta_2) \neq (0,1)\}.
\]
By definition, we have \(\delta \circ m_{k,\beta} + m_{k,\beta} \circ \delta + \hat{m}_k^2 = 0\). Then we see that
\[
d_i X m_{k,\beta} = -\delta m_{k,\beta} i_X = m_{k,\beta} \delta i_X + \hat{m}_k^2 i_X,
\]
\[
i_X \delta m_{k,\beta} = -i_X m_{k,\beta} \delta - i_X \hat{m}_k^2 = m_{k,\beta} \delta i_X - \hat{m}_k^2 i_X.
\]
Hence we have \(L_X m_{k,\beta} = m_{k,\beta} (\delta i_X + i_X \delta)\). Combined with the equation
\[
(\delta i_X + i_X \delta) (x_1 \otimes \cdots \otimes x_k) = \sum_{i=1}^k x_1 \otimes \cdots \otimes L_X x_i \otimes \cdots \otimes x_k,
\]
we obtain the desired equation. \(\square\)

Since \(i_X \circ m_{2,0} + m_{2,0} \circ (i_X \otimes \text{id} + \text{id} \otimes i_X) = 0\) for \(X \in \mathfrak{g}\), we have
\[
i_X (1_A) = 0, \quad L_X (1_A) = (\delta \circ i_X + i_X \circ \delta) (1_A) = 0. \tag{6}
\]

Let \((\overline{A}, \{m_{k,\beta}\})\) be a \(\mathfrak{g}\)-differential unital G-gapped filtered \(A_{\infty}\) category over \(\mathbb{C}\). Let \(\bullet\) be \(\text{W}\) or \(\text{Car}\). By Equations (5), we have \(1_A \in C^0_\bullet (\overline{A}, A, A)\).

For \(A_0, A_1, \ldots, A_k \in \text{Ob} \overline{A}\) and \((k, \beta) \neq (1,0)\), let \(m_{k,\beta}^\bullet\) be the trivial extension of \(m_{k,\beta}\) to
\[
\begin{align*}
C_\bullet (\overline{A}(A_0, A_1))[1] \otimes \cdots \otimes C^\bullet (\overline{A}(A_{k-1}, A_k))[1],
\end{align*}
\]
\(\text{i.e., for homogeneous elements } x_i \in \overline{A}(A_{i-1}, A_i) \text{ and } f_j \in W \mathfrak{g}\)
\[
m_{k,\beta}^\bullet (x_1 \otimes f_1, \ldots, x_k \otimes f_k) := (-1)^{\sum_{i<j} f_j |x_i|} m_{k,\beta} (x_1, \ldots, x_k) \otimes (f_1 \cdots f_k)
\]
and set \(m_{1,0}^\bullet := \delta_\bullet\).

Then \(C_\bullet (\overline{A})\) consists of the following data:
- a set of objects \(\text{Ob} C_\bullet (\overline{A}) := \text{Ob} \overline{A}\)
- \(\mathbb{Z}\)-graded \((S^0 \mathfrak{g})^\theta\)-modules \(C_\bullet (\overline{A})(A, B) := C^\bullet (\overline{A}(A, B))\) for \(A, B \in \text{Ob} \overline{A}\)
- degree 0 morphisms \(1_A \in C_0 (\overline{A}(A, A))\) for \(A \in \text{Ob} \overline{A}\)
- the homomorphisms \(m_{k,\beta}^\bullet\).

By using Equations (4), (5), and (6), we easily see that \(m_{k,\beta}^\bullet\) give a unital G-gapped filtered \(A_{\infty}\) algebra structure over \((S^0 \mathfrak{g})^\theta\) on \(C_\bullet (\overline{A})\). Moreover the Mathai-Quillen morphism \(\phi\) satisfies
\[
\phi \circ m_{k,\beta}^W = m_{k,\beta}^{\text{Car}} \circ (\phi \otimes \cdots \otimes \phi)
\]
i.e., \(\phi\) gives an \(A_{\infty}\) functor.

Suppose that \(\mathfrak{g}\) is abelian. Let \(\lambda\) be a \(\mathbb{C}\)-algebra homomorphism from \((W \mathfrak{g})_{\text{her}} \cong S^0 \mathfrak{g}^\vee\) to \(A_0\), which is called an equivariant parameter. By evaluating \(m_{k,\beta}^{\text{Car}}\) at \(\lambda\), we will define a \(\mathbb{Z}/2\mathbb{Z}\)-graded unital curved \(A_{\infty}\) category \((A^\theta, \{m_{k,\lambda}^\theta\})\) over \(A\). We define \(\overline{A}^\theta\) by
- a set of objects \(\text{Ob} \overline{A}^\theta := \text{Ob} \overline{A}\)
- \(\mathbb{Z}\)-graded modules \(\overline{A}^\theta(A, B) := \overline{A}(A, B)^\theta\)
- degree 0 elements \(1_A \in \overline{A}^\theta(A, A)\) (recall Equations (6)).
By Equation (4), the restrictions of \(m_{k,\beta} \) to the \(g \)-invariant part give a unital \(G \)-gapped filtered \(A_\infty \) structure \(m_{k,\beta}^g \) on \(\mathcal{A} \). This unital \(G \)-gapped filtered \(A_\infty \) algebra induces a \(\mathbb{Z}/2\mathbb{Z} \)-graded unital curved \(A_\infty \) structure \(m_{k,\beta}^g \) on \(\mathcal{A}^\theta \), where \(\mathcal{A}^\theta(A, B) := \overline{\mathcal{A}}(A, B) \otimes \Lambda \) and \(m_{k,\beta}^g := \sum_{\beta \in G} T^{(\beta)}_{m_{k,\beta}} \). Set

\[
m_k^\lambda := \begin{cases} m_k^g & \text{if } k \neq 1 \\ m_k^g - \sum_{i=1}^r \lambda(F^i) i_{e_i} & \text{if } k = 1.
\end{cases}
\]

By Equations (11) and (5), we see that \((\mathcal{A}^\theta, \{m_k^\lambda\}) \) is a \(\mathbb{Z}/2\mathbb{Z} \)-graded unital curved \(A_\infty \) category over \(\Lambda \). We note that this \(\mathbb{Z}/2\mathbb{Z} \)-graded curved \(A_\infty \) category is induced from a \((\mathbb{Z}-\text{graded}) \) \(G' \)-gapped filtered \(A_\infty \) category \((\overline{\mathcal{A}}, \{m_{k,\beta}^g\}) \) over \(\mathbb{C} \) for some \(G' \supseteq G \).

We introduce a notion of bounding cochains for unital \(g \)-differential gapped filtered \(A_\infty \) categories. Let \((\mathcal{A}, \{m_{k,\beta}\}) \) be a unital \(g \)-differential \(G \)-gapped filtered \(A_\infty \) category over \(\mathbb{C} \) and \(b_{+,i} \) are odd elements of \(\mathcal{A}(A_i, A_i) \otimes \Lambda_+ \) \((A_0, \ldots , A_k) \in \text{Ob} \mathcal{A}\). We recall that the following operators

\[
m_k^{b_+}(x_1, \ldots , x_k) := \sum_{l_0 + \cdots + l_k = l} m_{k+i}(b_{+,0}, \ldots , b_{+,0}, x_1, b_{+,1}, \ldots , b_{+,1}, \ldots , x_k, b_{+,k}, \ldots , b_{+,k})
\]

also satisfy the \(A_\infty \) relations and unitality with units \(1_{A_0}, \ldots , 1_{A_k} \) (cf. [13, Proposition 1.20]). Suppose that

\[
b_{+,i} \in \mathcal{A}(A_i, A_i) \otimes \Lambda_+
\]

and there exist \(c_0, \ldots , c_k \in \text{Hom}_\mathbb{C}(g, \Lambda_+) \) such that

\[
i_X(b_{+,0}) = c_0(X) \cdot 1_{A_0}, \ldots , i_X(b_{+,k}) = c_k(X) \cdot 1_{A_k}
\]

for all \(X \in g \) and \(i = 0, 1, \ldots , k \), where \(\mathcal{A}(A_i, A_i) \) denotes the degree one part of \(\mathcal{A}(A_i, A_i) \). If \(c_0 = c_1 = \cdots = c_k \), then, by using Equations (2) and (3), we easily see that the operators \(m_k^{b_+} \) also satisfy the Equation (4) (for some monoid \(G' \)). Hence, by choosing a finite collection \(\{(A_i, b_{+,i})\} \) \((i = 0, 1, \ldots , k) \) as objects of \(\mathcal{A}^{bc} \) and putting

\[
\mathcal{A}^{bc}((A_i, b_{+,i}),(A_j, b_{+,j})) = \begin{cases} \mathcal{A}(A_i, A_j) & \text{if } c_i = c_j \\ 0 & \text{if } c_i \neq c_j.
\end{cases}
\]

we obtain a unital \(g \)-differential gapped filtered \(A_\infty \) category \((\mathcal{A}^{bc}, \{m_{k,\beta}^{b_+}\}) \).

Definition 2.10. Let \((\mathcal{A}, \{m_{k,\beta}\}) \) be a unital \(g \)-differential \(G \)-gapped filtered \(A_\infty \) category over \(\mathbb{C} \). Let \(A \in \text{Ob} \mathcal{A} \) and \(b_+ \) be an element of \(\mathcal{A}(A, A) \otimes \Lambda_+ \) with \(\delta b_+ = 0 \). Suppose that \(i_X(b_+) \in \Lambda_+ \cdot 1_A \) for all \(X \in g \). The element \(b_+ \) is called a bounding cochain if \(m_0^{b_+}(1) \in \Lambda_+ \cdot 1_A \).

Choose an equivariant parameter \(\lambda \) and suppose that \(b_{+,i} \) are bounding cochains. Then we have \(L_X b_{+,i} = 0 \) and we can deform \((\mathcal{A}^{bc}, \{m_{k,\beta}^{b_+}\}) \) by the same way as Equation (7). Thus we obtain a unital gapped filtered \(A_\infty \) category \((\mathcal{A}^{\theta}, \{m_{k,\beta}^{b_+,\lambda}\}) \) (for some monoid \(G' \)). Let \((\mathcal{A}^\theta, \{m_{k,\beta}^{b_+,\lambda}\}) \) be the associated curved \(A_\infty \) category. By the definition, the curvature term \(m_0^{b_+,\lambda}(1) \in \mathcal{A}^\theta(A_i, A_i) \) is

\[
\sum_{k=0}^{\infty} m_k^\theta(b_{+,i}, \ldots , b_{+,i}) - \sum_{j=1}^r \lambda(F^j) i_{e_j}(b_{+,i}).
\]
Since \(b_{+,i} \) is a bounding cochain, we have

\[m^{b_+,\lambda}_0(1) \in \Lambda_+ \cdot 1_{A_+}. \]

Finally, we obtain a \(\mathbb{Z}/2\mathbb{Z} \)-graded (uncurved) unital \(A_\infty \) category \((\mathcal{A}_\rho, \{ m^{b_+,\lambda}_k \}) \) over \(\Lambda \) by setting

\[
\mathcal{A}_\rho^g((A_i, b_{+,i}), (A_j, b_{+,j})) = \begin{cases}
\mathcal{A}_\rho((A_i, b_{+,i}), (A_j, b_{+,j})) & \text{if } m^{b_+,\lambda}_0(1) = m^{b_+,\lambda}_0(1) \\
0 & \text{if } m^{b_+,\lambda}_0(1) \neq m^{b_+,\lambda}_0(1)
\end{cases}
\]

and

\[
m^{b_+,\lambda}_k(x_1, x_2, \ldots, x_k) = \begin{cases}
m^{b_+,\lambda}_k(x_1, x_2, \ldots, x_k) & \text{if } k \geq 1 \text{ and } x_1 \neq 0, \ldots, x_k \neq 0 \\
0 & \text{if } k = 0 \text{ or } x_i = 0 \text{ for some } i.
\end{cases}
\]

Here \(x_i \) are homogeneous elements of morphism spaces of \(\mathcal{A}_\rho^g \).

3. Equivariant Floer theory

In this section we shall formulate a version of the equivariant Floer theory using the de Rham model. We first review some basics on the equivariant cohomology to fix conventions.

3.1. Equivariant cohomology. Let \(G \) be a compact connected Lie group, \(\text{Lie}(G) \) be its Lie algebra and \(g := \text{Lie}(G) \otimes \mathbb{C} \) be its complexification. We take a basis \(e_1, \ldots, e_r \) of \(\text{Lie}(G) \), regarded also as the basis of \(g \) over \(\mathbb{C} \) and its dual basis \(e^1, \ldots, e^r \) of \(g^* \). Then \(G \) acts on \(g^* \) via \((g \cdot f)(X) := f(g^{-1} \cdot X)\) where \(g \in G \) and \(X \in g \).

Let \(M \) be an \(n \)-dimensional \(G \)-manifold, i.e. \(G \) acts smoothly on \(M \) from the left and let \(\rho \) be a \(\mathbb{C} \)-local system on \(M \). For \(X \in g \), \(X = \Gamma(TM) \) is defined by \(\frac{d}{dt} \exp(tX) \cdot p \) for \(p \in M \).

Definition 3.1. Let \(\Omega^*(M; \rho) \) be the de Rham complex with coefficients in \(\rho \) with the differential locally defined as \(d(\alpha \otimes s) := d\alpha \otimes s \), where \(\alpha \) is a complex valued form and \(s \) is a flat section of \(\rho \). We simply denote by \(\Omega^*(M) \) the de Rham complex of \(\mathbb{C} \)-valued differential forms with the trivial local system of rank 1.

Let \(i_X : \Omega^*(M; \rho) \to \Omega^{*-1}(M; \rho) \) be the interior product locally defined by \(i_X(\alpha \otimes s) := i_X(\alpha) \otimes s \) for \(X \in g \), and let \(L_X : \Omega^*(M; \rho) \to \Omega^*(M; \rho) \) be the Lie derivative \(L_X := di_X + i_X d \). Then the quadruple \((\Omega^*(M; \rho), \delta, L, i)\) forms a \(g \)-differential space, where \(\delta \) is the differential, \(L_X := L_X \) and \(i_X := i_X \).

The equivariant cohomology of \(M \) is defined to be the cohomology of the Weil model of this \(g \)-differential space: \(H^*(G) := H^*(\Omega^*(M; \rho), \delta_W) \). See Atiyah-Bott [1, Theorem 4.13] for the relationship between the equivariant cohomologies defined by the Weil model and by the homotopy quotient \(EG \rtimes G \).

Let \(M \) be a compact manifold with corners. There are several different formulations of manifolds with corners. In this paper we use the formulation by Joyce [23]. We call \(M \) a G-manifold with corners if it is a manifold with corners equipped with a smooth \(G \)-action. When \(M \) is oriented, \(\partial M \) can be equipped with an orientation so that the orientation of the boundary of the sides of the following coincide: \(T_x M = \mathbb{R}v + T_x \partial M \) where \(x' \in \partial M \), \(x = i(x') \) via \(i : \partial M \to M \) and \(v \) is an outward vector at \(x \) (cf. [23, Convention 7.2]). The smooth differential \(r \)-forms on \(M \) with coefficients in \(\rho \) are defined to be the smooth sections \(M \to \bigwedge^r T^* M \otimes \rho \). We denote by \(\eta |_{\partial M} \) the pull-back of a form \(\eta \) on \(M \) via \(i : \partial M \to M \).

Let \(M \) and \(N \) be compact \(G \)-manifolds with corners, \(f : M \to N \) be a smooth \(G \)-equivariant map and \(\rho \) be a \(\mathbb{C} \)-local system on \(N \). Note that \(f^*(i_X \eta) = i_{f^*X}^* f^* \eta \), \(f^*(L_X \eta) = L_{f^*X} f^* \eta \) hold and therefore \(f \) induces a homomorphism of complexes \(\Omega^*(N; \rho)^G \to \Omega^*(M; f^* \rho)^G \) which we also denote by \(f^* \) abusing notation.

Assume further that \(f \) is submersive (i.e. \(f \) restricted to any stratum is submersive, [23, Definition 3.2 (iv)]) and that \(M \) and \(N \) are both oriented. We orient the fibers of \(f \) such that the orientation of \(T_{f(p)} N \oplus T_p \text{fib} M \) coincides with that of \(T_pM \), where \(T_p \text{fib} M \) is the tangent space of the fiber \(f^{-1}(f(p)) \subseteq M \) at \(p \in M \) of \(f \).
Then the integration along the fiber \(f^* \eta \) of the form \(\eta \) on \(M \) with coefficients in \(f^* \rho \) is defined as a form on \(N \) with coefficients in \(\rho \). This is characterized by that the formula

\[
\int_N \omega \wedge f^* \eta = \int_M f^* \omega \wedge \eta
\]

holds for any \(\omega \in \Omega^*(N; \rho^\vee) \) (note that \(\omega \wedge f^* \eta \in \Omega^*(N; \rho^\vee \otimes \rho) \cong \Omega^*(N), f^* \omega \wedge \eta \in \Omega^*(M; f^* \rho^\vee \otimes f^* \rho) \cong \Omega^*(M) \)).

Lemma 3.2. \(i_X (f^* \eta) = f^* (i_X \eta) \).

The proof is based on the local calculation.

This lemma implies that \(L_X f^* \eta = (di_X + i_X d)(f^* \eta) = f^*(L_X \eta) \). Therefore \(f \) induces \(\mathbb{C} \)-linear maps between the spaces of \(g \)-invariant forms \(f^*: \Omega^*(M; f^* \rho)^g \to \Omega^* - \text{dim } M + \text{dim } N (\rho)^g \). The restriction \(f|_{\partial M}: \partial M \to M \) is also submersive when \(f \) is submersive, and the integrations along the fiber both for \(f \) and for \(f|_{\partial M} \) are defined. Then the following holds.

Lemma 3.3.

1. The Stokes formula holds: \(df \eta = f^* d\eta + (-1)^{|\eta| + \text{dim } M} (f|_{\partial M})^* \eta |_{\partial M} \).
2. Let \(L \) be another compact oriented manifold with corners and \(g: N \to L \) be a smooth submersive map. Then the integration along the fiber is compatible with composition, i.e., \((g \circ f)^* \eta = g^* \circ f^* \eta \).
3. \(f^* (f^* \omega \wedge \eta) = \omega \wedge f^* \eta \).

Let \(M, N \) be compact oriented manifolds with corners, \(L \) be a closed oriented manifold with a \(\mathbb{C} \)-local system \(\rho \) and \(f: M \to L, g: N \to L \) be submersions. Recall that we can form the fiber product

\[
\begin{array}{ccc}
N \times M & \xrightarrow{t} & M \\
L & \xleftarrow{s} & \end{array}
\]

so that \(s \) and \(t \) are smooth submersions. The fiber product \(N \times M \) is orientable and we define the orientation of the main stratum as follows: decompose the tangent spaces of \(N \) and \(M \) at interior points as \(T_N = \text{ker } dg \oplus g^* TL \) and \(TM = f^* TL \oplus \text{ker } df \), and define the orientation of the fiber product by the decomposition \(T(N \times M) = t^* \text{ker } dg \oplus t^* g^* TL \oplus s^* \text{ker } df \). Then we have the following formula.

Lemma 3.4. For \(\eta \in \Omega^*(M; f^* \rho) \),

\[
g^* \circ f^* \eta = t^* \circ s^* \eta.
\]

3.2. Floer theory

In this subsection we review some basics on the Floer theory.

Let \((M, \omega)\) be a compact symplectic manifold with \(\text{dim } M = 2n \) and \(L \) be a compact oriented spin Lagrangian submanifold in \(M \). Choose an almost complex structure \(J \) compatible with \(\omega \). For \(k \in \mathbb{Z}_{\geq 0} \) and \(\beta \in H_2(M; \mathbb{Z}) \), we denote by \(u: (D, \partial D; z_0, ..., z_k) \to (M, L) \) a \(J \)-holomorphic map \(u: D \to M \) such that \(u(\partial D) \subset L, u_*([D, \partial D]) = \beta \) with \((k+1)\) boundary marked points \(z_0, ..., z_k \in \partial D \) which have counterclockwise order. We say two such maps \(u: (D, \partial D; z_0, ..., z_k) \to (M, L), u': (D, \partial D; z'_0, ..., z'_k) \to (M, L) \) are equivalent if there exists a biholomorphic map \(\phi: D \to D \) such that \(u' = u \circ \phi \) and \(\phi(z'_i) = z_i \), and denote
by $u \sim u'$. We then define the moduli space of $(k+1)$-pointed J-holomorphic disks bounded by L to be the set of equivalence classes

$$\mathcal{M}_{k+1,\beta}(L) := \{ u : (D, \partial D; z_0, \ldots, z_k) \to (M, L) \} / \sim$$

and denote by $\overline{\mathcal{M}}_{k+1,\beta}(L)$ its compactification consisting of stable maps when $\beta \neq 0$ or $k \geq 2$.

Proposition 3.5 ([14 Proposition 7.1.1]). The moduli space $\overline{\mathcal{M}}_{k+1,\beta}(L)$ has a Kuranishi structure with an orientation of dimension $(n + k + \mu(\beta) - 2)$ where $\mu(\beta)$ denotes the Maslov index of the class β, and we have an isomorphism of the spaces with Kuranishi structures with orientations

$$\partial \overline{\mathcal{M}}_{k+1,\beta}(L) \cong \prod_{k_1 + k_2 = k+1, \beta_1 + \beta_2 = \beta} (-1)^{k_1} \overline{\mathcal{M}}_{k_1,\beta_1}(L)_{ev_1} \times ev_0 \overline{\mathcal{M}}_{k_2,\beta_2}(L)$$

where $z_1 := k_1 k_2 + ik_2 + i + n$ and the sum is taken over (k, β) satisfying $\beta \neq 0$ or $k \geq 2$.

Remark 3.6. The orientation of the moduli space is determined by the orientation and the spin structure of L [15 Chapter 8].

Definition 3.7 (cf. [13 Section 7]). We can define the following operators.

$$m_{k,\beta}(x_1, \ldots, x_k) := (-1)^{\mu(x_1 + \cdots + x_k)} \ev_0 (\ev_1 \times \cdots \times \ev_k)^*(x_1 \times \cdots \times x_k),$$

for $\beta \neq 0$ or $k \geq 2$, and

$$m_{1,0}(x_1) := dx_1$$

for $(k, \beta) = (1, 0)$, where $x_1, \ldots, x_k \in \Omega^*(L)$ and $\Omega_2 := \sum_{i=1}^k i|x_i| + 1$.

Theorem 3.8 ([14 Theorem 7.1]). $(\Omega^*(L), \{m_{k,\beta}\})$ forms a unital G-gapped filtered A_∞ algebra for some G. The constant function $1 \in \Omega^0(L)$ gives the unit.

The pushforward \ev_0, in the right hand side of (10) is defined using the CF perturbation. It can however be calculated using ordinary pullback and pushforward under the following assumption.

Assumption 3.9. All the moduli spaces concerned in the definition of the A_∞ structure are manifolds with corners, and the evaluation maps are submersions.

Remark 3.10. The condition that the resulting form in (10) has nonnegative degree is $\deg x_1 + \cdots + \deg x_k + 2 - \mu(\beta) - k \geq 0$. Therefore only holomorphic disks with Maslov index $\mu(\beta) \leq 2$ contribute the A_∞ structure when $n = 1$. All the holomorphic disks bounded by a moment fiber in a toric manifold are classified by Cho-Oh [7]. In Section 5 we only consider the cases $M = \mathbb{C}P^1$ and \mathbb{C}, and in these cases the disk with Maslov index less than or equal to 2 is either a constant disk (then the Maslov index is 0) or a disk with Maslov index 2. Since there is no nonconstant holomorphic sphere with $c_1 \leq 0$, the moduli space $\overline{\mathcal{M}}_{k+1,\beta}(L)$ compactified with stable disks becomes a compact manifold with corners when $\mu(\beta) \leq 2$, and the evaluation maps are submersions. Hence Assumption 3.9 is satisfied.

We also have the following formula.

Proposition 3.11 (Divisor axiom. [5 Proposition 6.3], see also [10 Proof of Lemma 11.8]). Let $\theta \in \Omega^1(L)$ such that $d\theta = 0$, then

$$\sum_{i=1}^k m_{k,\beta}(x_1, \ldots, x_{i-1}, \theta, x_i, \ldots, x_{k-1}) = (\partial \beta, \theta)m_{k-1,\beta}(x_1, \ldots, x_{k-1})$$

if $\beta \neq 0$ or $k \geq 2$.
3.3. Equivariant Floer theory. We now proceed to the construction of an equivariant Floer A_∞ algebra. Let M be a compact smooth G-manifold with a G-invariant symplectic structure ω and a G-invariant ω-compatible almost complex structure, L be its compact oriented spin Lagrangian submanifold preserved by the G-action. From now on we assume Assumption 3.9. We first see the following.

Proposition 3.12. Under Assumption 3.9 we have the following formulae for $k \geq 2$ or $\beta \neq 0$.

\[i_X m_{k,\beta}(x_1, \ldots, x_k) + \sum_{i=1}^{k} (-1)^{|x_i|+\cdots+|x_{i-1}|} m_{k,\beta}(x_1, \ldots, i_X x_i, \ldots, x_k) = 0 \]

Proof.

\[
i_X m_{k,\beta}(x_1, \ldots, x_k) = (-1)^{2^k} ev_0(\omega x_1 \times \cdots \times \omega x_k) (i_X(x_1 \times \cdots x_k))
\]

\[
= \sum_{i=1}^{k} (-1)^{2^k+|x_i|+\cdots+|x_{i-1}|} ev_0(\omega x_1 \times \cdots \times \omega x_k) (x_1 \times \cdots \times i_X x_i \times \cdots x_k)
\]

\[
= \sum_{i=1}^{k} (-1)^{2^k+|x_i|+\cdots+|x_{i-1}|+2^{i-1}} m_{k,\beta}(x_1, \ldots, i_X x_i, \ldots, x_k)
\]

\[
= - \sum_{i=1}^{k} (-1)^{|x_1|+\cdots+|x_{i-1}|} m_{k,\beta}(x_1, \ldots, i_X x_i, \ldots, x_k).
\]

\[\square\]

Corollary 3.13. $\Omega^*(L)$ with the Floer A_∞ structure $\{m_{k,\beta}\}$ becomes a unital g-differential gapped A_∞ algebra over \mathbb{C} in the sense of Definition 2.8.

As discussed in Section 2 its Cartan model $(\Omega^*_{\mathcal{C}^*}(L), \{m_{k,\beta}^{\mathcal{C}^*}\})$ becomes a unital gapped filtered A_∞ algebra.

The last step is to define the $\mathbb{Z}/2\mathbb{Z}$-graded filtered A_∞ algebra over the Novikov field by substituting equivariant parameters. From now on we assume that G is a compact torus of dimension r.

Definition 3.14. Let $\lambda: S g \to \Lambda_0$ be an equivariant parameter. We call $(\Omega^*_{\mathcal{C}^*}(L), \{m_{k,\beta}^{\mathcal{C}^*}\})$ the equivariant Floer A_∞ algebra of L, where $\otimes_{\mathcal{C}}$ denotes the $\mathbb{Z}/2\mathbb{Z}$-graded completed tensor. This is a unital $\mathbb{Z}/2\mathbb{Z}$-graded gapped filtered A_∞ algebra over Λ with the unit $1 \in \mathbb{C} \subseteq \Omega^0(L)^g$.

Lastly we introduce the deformation of an equivariant Floer A_∞ algebra by a bounding cocycle, slightly generalizing the construction of Section 2 (see also [16] Section 4).

Definition 3.15. Take $b = b_0 + b_+$ with $b_0 \in \Omega^1(L; \mathbb{C})$ and $b_+ \in \Omega^1(L; \mathbb{C}) \otimes_{\mathbb{C}} \Lambda_+$ satisfying $db = 0$, and set $\rho: \pi_1(L) \to \mathbb{C}^*$ to be $\rho(\gamma) := e^{(b_0, \gamma)}$ for $\gamma \in \pi_1(L)$. We define the operators $m_{k,\lambda}^{b}$ deformed by b by the following formula:

\[
m_{k,\lambda}^{b}(x_1, \ldots, x_k) := \sum_{\beta} \rho(\beta) T^{\omega(\beta)/2\pi} \sum_{l_0 + \cdots + l_k = l} m_{k+l,\lambda}(b_+, \ldots, x_1, \ldots, x_k, b_+, \ldots, b_+)
\]

\[
= \begin{cases}
0 & k \neq 0, 1 \\
\sum_{j=1}^{r} \lambda(F^j) i_{\epsilon_j}(x_1) & k = 1 \\
\sum_{j=1}^{r} \lambda(F^j) i_{\epsilon_j}(b) & k = 0
\end{cases}
\]

(12)

We call $b = b_0 + b_+$ a bounding cocycle of L if it satisfies the following:

\[i_X b = i_X b_0 + i_X b_+ \in \Lambda_0 \cdot 1, \quad m_{0,\lambda}^{b}(1) \in \Lambda_0 \cdot 1.\]

(13)
The second equation is called the weak Maurer‐Cartan equation.

If \(b = b_0 + b_+ \) is a bounding cochain, \(\{ m^{b,\lambda}_k \} \) gives a structure of a unital gapped filtered \(A_\infty \) algebra on \(\Omega^*(L)\otimes_{\mathbb{C}} \Lambda \) which satisfies \(m^{b,\lambda}_1 \circ m^{b,\lambda}_1 = 0 \), i.e. we can define its cohomology with respect to the differential \(m^{b,\lambda}_1 \).

Using \(\square \) the curvature of this deformed \(A_\infty \) structure is calculated as
\[
\text{curv}(1) = \sum_{\beta \neq 0} T\omega(\beta)/2\pi e^{(b,\partial\beta)}m^{b,\lambda}_0(1) - \sum_{j=1}^r \lambda(F^j)i_{e_j}(b).
\]

Take \(\rho \) a \(\mathbb{C} \)-local system of rank 1 on \(L \) which is expressed as \(\rho(\gamma) = e^{(b_0,\gamma)} \) for all \(\gamma \in \pi_1(L) \) with some closed 1-form \(b_0 \in \Omega^1(L;\mathbb{C}) \), and \(b_+ \in \Omega^1(L;\mathbb{C})\otimes \Lambda_+ \), such that \(b = b_0 + b_+ \) is a bounding cochain. Then \(b_0 \) can be regarded as a choice of branch associated to \(\rho \) which affects the curvature term of the \(A_\infty \) structure only. Therefore we may regard \(\rho \) instead of \(b_0 \) as part of the relevant data consisting of an object of a Fukaya category.

Definition 3.16. We call the triple \(\mathcal{L} = (L,\rho,b_+) \) an equivariant Lagrangian brane, where \(\rho \) is a \(\mathbb{C} \)-local system of rank 1 on \(L \) such that there exists a closed 1-form \(b_0 \in \Omega^1(L;\mathbb{C}) \) satisfying \(\rho(\gamma) = e^{(b_0,\gamma)} \) for all \(\gamma \in \pi_1(L) \) and \(b := b_0 + b_+ \) is a bounding cochain in the sense of Definition 3.15.

As we only use equivariant Lagrangian branes, we sometimes call them Lagrangian branes for short hereafter. We also call \(L \) the underlying Lagrangian submanifold of \(\mathcal{L} \).

3.4 Category of equivariant Lagrangian branes.

Let \(G \) be a compact connected Lie group and \(\mathfrak{g} := \text{Lie}(G) \otimes_{\mathbb{R}} \mathbb{C} \) be its complexified Lie algebra, \(M \) be a compact \(G \)-manifold equipped with a \(G \)-invariant symplectic form \(\omega \) and a \(G \)-invariant \(\omega \)-compatible almost complex structure. In this section we first introduce the \(\mathfrak{g} \)-differential gapped filtered \(A_\infty \) category of equivariant Lagrangian branes and then deform it with bounded cochains to get a Fukaya \(A_\infty \) category over \(\Lambda \).

Take a finite collection of pairs of compact oriented spin Lagrangian submanifolds preserved by the \(G \)-action and a \(\mathbb{C} \)-local system of rank 1 on it \(\mathcal{L} = \{ (L,\rho) \} \), such that (i) each \(L \) satisfies Assumption 3.9 (ii) any pair \(L \) and \(L' \) either coincide or do not intersect, and (iii) each \(\rho \) can be expressed as \(\rho(\gamma) = e^{(b_0,\gamma)} \) for some closed 1-form \(b_0 \in \Omega^1(L;\mathbb{C}) \). We first construct a unital \(\mathfrak{g} \)-differential gapped filtered \(A_\infty \) category \(\mathcal{F}_L \) with the set of objects \(\mathbb{L} \) as follows.

Set
\[
\mathcal{F}_L((L,\rho),(L',\rho')) := \begin{cases}
\Omega^*(L;\text{Hom}(\rho,\rho')) & \text{if } L = L', \\
0 & \text{otherwise}
\end{cases}
\]

Then this \(\mathcal{F}_L((L,\rho),(L',\rho')) \) is a \(\mathfrak{g} \)-differential space with the operators \(L \) and \(i \).

Take a sequence of \((k+1) \) objects \((L_0,\rho_0),\ldots,(L_k,\rho_k) \) such that \(L_0 = \cdots = L_k =: L \). Recall the evaluation maps from the compactified moduli space of holomorphic disks
\[
L^k \xrightarrow{ev_1 \times \cdots \times ev_k} \mathcal{M}_{k,\beta}(L) \xrightarrow{ev_0} L.
\]

Denote \(\rho_{j-1,j} := \text{Hom}(\rho_{j-1},\rho_j) \) and \(\rho_{0,k} := \text{Hom}(\rho_0,\rho_k) \). Consider 1-parameter families of evaluation maps \(ev_{j,t} \) along the \(j \)-th boundary arc \(\partial_j \) connecting the \(j \)-th marked point to the \((j+1) \)-th marked point for \(0 \leq j \leq k \) and \(\partial_k \) connecting the \(k \)-th marked point to the 0-th marked point, and define \(P_j \) to be the bundle isomorphism \(ev_{j+1}^* \rho_{j-1,j'} \rightarrow ev_{j+1}^* \rho_{j'-1,j'} \) between the pull back of local systems along \(ev_{j,t} \) obtained by parallel transport (where \(ev_{k+1} := ev_0 \)). \(P_j \)'s are independent of the choices of \(ev_{j,t} \), and we define
\[
\text{ev}_{j,t} \circ (P_k \circ P_{k-1}(s_{k-1}) \circ \cdots \circ (P_k \circ \cdots \circ P_1)(s_1))
\]
for $\beta \neq 0$ or $k \geq 2$ where $# = \sum_{i=1}^{k} i|x_{i}|' + 1$, and

$$m_{1,0}(x_{1}) := dx_{1}$$

for $x_{1} = \alpha_{1} \otimes s_{1} \in \Omega^{*}(L; \mathcal{H}om(\rho_{0}, \rho_{1})), \ldots, x_{k} = \alpha_{k} \otimes s_{k} \in \Omega^{*}(L; \mathcal{H}om(\rho_{k-1}, \rho_{k})).$

It is easy to see that these $m_{k,\beta}$'s satisfy A_{∞} relations by carrying out the proof of Theorem 4.8 with local systems. They also satisfy the compatibility with the interior product,

$$i_{X}m_{k,\beta}(x_{1}, \ldots, x_{k}) + \sum_{i=1}^{k} (-1)^{i|x_{1}|'+\cdots+|x_{i-1}|'}m_{k,\beta}(x_{1}, \ldots, i_{X}x_{i}, \ldots, x_{k}) = 0.$$

These operators satisfy gapping conditions and the quadruple $(\mathcal{F}_{L}, \{m_{k,\beta}\}, L, i)$ forms a g-differential gapped filtered A_{∞} category.

Next, take a finite set of equivariant Lagrangian branes $\{L_{\alpha} = (L, \rho_{\alpha}, b_{+,\alpha})\}$ with $(L, \rho_{\alpha}) \in \mathcal{L}$ and choose for each L_{α} a closed 1-form $b_{0,\alpha} \in \Omega^{1}(L; \mathbb{C})$ of the local system ρ_{α} such that $\rho_{\alpha}(\gamma) = e^{(b_{0,\alpha}, \gamma)}$ and that $b_{\alpha} := b_{0,\alpha} + b_{+,\alpha}$ is a bounding cochain. We denote by \mathcal{L} the set of such pairs (L, b_{α}).

We're going to construct an uncurved A_{∞} category $\mathcal{F}_{\mathcal{L}}$ with the set of objects \mathcal{L}. For each (L, b_{α}) we define its curvature $c_{\alpha} \in \Lambda_{+}$ by $m_{0}^{\beta,\alpha}(1) = c_{\alpha} \cdot 1_{L_{\alpha}}$.

Definition 3.17. $\mathcal{F}_{\mathcal{L}}$ is a $\mathbb{Z}/2\mathbb{Z}$-graded uncurved A_{∞} category over Λ with $Ob \mathcal{F}_{\mathcal{L}} = \mathcal{L}$,

$$\mathcal{F}_{\mathcal{L}}((L, b_{\alpha}), (L', b_{\alpha'})) := \left\{\begin{array}{ll}
\mathcal{T}_{L}(L, \rho_{\alpha}, (L', \rho_{\alpha'}))^0 \otimes \Lambda & \text{if } L = L', i_{X}(b_{\alpha}) = i_{X}(b_{\alpha'}) \\
0 & \text{for all } X \in g \text{ and } c_{\alpha} = c_{\alpha'}
\end{array}\right.$$

with operators $m_{0} := 0$ and

$$m_{k}(x_{1}, \ldots, x_{k}) := m_{k}^{b}(x_{1}, \ldots, x_{k}) - \left\{\begin{array}{ll}
0 & k \neq 0, 1 \\
\sum_{j=1}^{r} \lambda(F_{j})i_{e_{j}}(x_{1}) & k = 1
\end{array}\right.$$

for $k \geq 1$, where

$$m_{k}^{b}(x_{1}, \ldots, x_{k}) := \sum_{\beta} T^{\omega(\beta)/2\pi} \sum_{l_{0} + \cdots + l_{t} = t} m_{k+l_{0}, \beta} \underbrace{b_{+,\alpha}, \ldots, b_{+,\alpha}}_{l_{0}}, x_{1}, \ldots, x_{k}, \underbrace{b_{+,k}, \ldots, b_{+,k}}_{l_{k}}$$

whenever the spaces of morphisms concerned are nonzero.

Note that the $m_{k,\beta}$'s appeared in the above are the operators defined in this subsection. It is easy to check that m_{k}'s satisfy the A_{∞} relations.

4. Matrix factorizations

4.1. Preliminaries on categories. In §4.1 we recall some basic definitions on derived categories. See [10], §5 for more details.

Let k be an algebraically closed field of characteristic zero. For a triangulated category \mathcal{T}, the idempotent completion of \mathcal{T} is denoted by $\hat{\mathcal{T}}$ and \mathcal{T} is said to be idempotent complete if \mathcal{T} is naturally equivalent to $\hat{\mathcal{T}}$ (see, e.g., [2]).

In this section, a differential $\mathbb{Z}/2\mathbb{Z}$-graded category over k is briefly called a dg-category. Let T be a dg-category. The k-linear category $[T]$ is defined by taking even cohomology H^{0} of T. Let T^{op}-mod be the k-linear category of right T-modules, i.e., a category of dg-functors from T^{op} to the dg-category of $\mathbb{Z}/2\mathbb{Z}$-graded complexes over k. We denote by $D(T^{op})$ the localization of T^{op}-mod with respect to the set of objectwise quasi-isomorphisms. Then $D(T^{op})$ is an idempotent complete triangulated category which admits arbitrary coproducts. By the Yoneda embedding, $[T]$ is considered as a full subcategory of $D(T^{op})$. Let $[\hat{T}_{pe}]$
be the full subcategory of compact objects in $D(T^{\text{op}})$. Then $[\mathcal{T}_{pc}]$ is the smallest triangulated subcategory of $D(T^{\text{op}})$ containing $[T]$ and closed under direct summands.

Remark 4.1. For a dg-category T, an associated $\mathbb{Z}/2\mathbb{Z}$-graded A_∞ category T_∞ is defined as follows: The set of objects of T_∞ is the same as T. For objects X and Y, the morphism space $T_\infty(X, Y) = T(Y, X)$ where $T(Y, X)$ is the morphism space of the dg category T. The A_∞ structure $\{m_k\}$ are defined by

$$m_1(x_1) := dx_1, \quad m_2(x_1, x_2) := (-1)^{|x_1|}x_1 \cdot x_2, \quad m_k = 0 \quad (k \geq 3).$$

4.2. **Preliminaries on matrix factorizations.** Let R be a commutative regular k-algebra with finite Krull dimension n. Take $w \in R \setminus k$. We define a matrix factorization of w by the pair (P, d_P), where $P = P^0 \oplus P^1$ is a $\mathbb{Z}/2\mathbb{Z}$-graded finitely generated projective R-module and $d_P \in \text{End}^{\text{odd}}(P)$ is an R-linear morphism of odd degree with $d_P^2 = w \cdot \text{id}_P$. Then d_P consists of $\varphi \in \text{Hom}_R(P^1, P^0)$ and $\psi \in \text{Hom}_R(P^0, P^1)$ with $\varphi \circ \psi = w \cdot \text{id}_{P_0}$, $\psi \circ \varphi = w \cdot \text{id}_{P_1}$. For matrix factorizations (P, d_P) and $(P', d_{P'})$, the $\mathbb{Z}/2\mathbb{Z}$-graded module of R-linear morphisms from P to P' with a differential

$$d(f) := d_{P'} \circ f - (-1)^{|f|}f \circ d_P$$

is denoted by $\text{MF}(P, P')$. Here f is a homogeneous R-linear morphism and $|f| \in \mathbb{Z}/2\mathbb{Z}$ is the degree of f. These data define a dg-category $\text{MF}(w)$, where compositions of morphisms are naturally defined. Then $[\text{MF}(w)]$ is a triangulated category.

Set $S := R/w$. Let $D^b(S)$ be the derived category of complexes of S-modules with finitely generated total cohomology. A complex of S-modules is called perfect if it is quasi-isomorphic to a bounded complex of finitely generated projective S-modules. We denote by $D^b_{\text{perf}}(S)$ the subcategory of perfect complexes in $D^b(S)$. Then $D^b_{\text{perf}}(S)$ is a thick subcategory of $D^b(S)$ and the Verdier quotient $D^b(S)/D^b_{\text{perf}}(S)$ is denoted by $D^b(S)$, which is called a stabilized derived category of S. In some references, a stabilized derived category is also called a triangulated category of singularity. There exists a triangulated functor

$$\text{cok} : [\text{MF}(w)] \to D^b(S),$$

(14)

which sends a matrix factorization (P, d_P) to $\text{cok}(\varphi)$. Moreover, this functor gives an equivalence of triangulated categories.

Let L be a finitely generated S-module. Then L is naturally considered as an object of $D^b(S)$. A matrix factorization L^stab is defined by $\text{cok}(L^\text{stab}) = L$, which is called a stabilization of L.

Let f_1, f_2, \ldots, f_m be a regular sequence in R and let $I \neq R$ be the ideal generated by f_1, f_2, \ldots, f_m. We assume that I contains w. Take $w_1, w_2, \ldots, w_m \in R$ with $w = w_1f_1 + w_2f_2 + \cdots + w_m f_m$. Let $V \cong R^m$ be the free R-module of rank m with a basis e_1, e_2, \ldots, e_m and let $e_1^*, e_2^*, \ldots, e_m^*$ be the dual basis. The contraction by e_i^* is denoted by $\iota_i \in \text{End}(V)$. We define $s_0, s_1 \in \text{End}(V)$ by

$$s_0 := f_1\iota_1 + f_2\iota_2 + \cdots + f_m\iota_m,$$

$$s_1 := w_1e_1 \wedge + w_2e_2 \wedge + \cdots + w_m e_m \wedge.$$

Then we easily see that the $\mathbb{Z}/2\mathbb{Z}$-graded R-module V equipped with the odd degree morphism $s_0 + s_1$ is a matrix factorization of w. By [10 COROLLARY 2.7], this matrix factorization is a stabilization of the S-module R/I. If R is a local ring with the maximal ideal \mathfrak{m} and $I = \mathfrak{m}$, then this stabilization is denoted by k^stab.

Let $\text{Crit}(w)$ be the critical locus of w, i.e., the scheme-theoretic zero locus of dw. Set

$$\text{Sing}(S) := \text{Crit}(w) \cap \text{Spec}(S),$$

which is the singular locus of $\text{Spec}(S)$. If $\text{Crit}(w)$ (resp. $\text{Sing}(S)$) is zero-dimensional, then we say that w (resp. S) has isolated singularities.
Let \(m \) be a maximal ideal of \(R \) and let \(\hat{R}_m \) be the completion of the local ring \(R_m \) with respect to the \(m \)-adic topology. The element of \(\hat{R}_m \) corresponding to \(w \) is denoted by \(\hat{w}_m \). By \cite[THEOREM 5.7]{10}, it follows that \(\text{MF}(\hat{w}_m) \) is idempotent complete if \(w \in m \) and \(\hat{w}_m \) has isolated singularities. There exists a restriction functor from \(\text{MF}(w) \) to \(\text{MF}(\hat{w}_m) \). By the equivalence \cite[Theorem 2.10]{14} (see also \cite[Proposition 3.4]{28}), we see that these restriction functors give an equivalence between triangulated categories

\[
\text{MF}(w) \cong \prod_{m \in \text{Sing}(S)} \text{MF}(\hat{w}_m)
\]

if \(S \) has isolated singularities. By \cite[THEOREM 5.2, COROLLARY 5.3 and THEOREM 5.7]{10}, we have the following:

Theorem 4.2. Suppose that \((R, m)\) is a local \(k\)-algebra and \(w \in m \) has isolated singularities. Then \(k^{\text{stab}} \) split-generates \(\text{MF}(\hat{w}_m) \), i.e., the smallest triangulated subcategory of \(\text{MF}(\hat{w}_m) \) containing \(k^{\text{stab}} \) and closed under direct summand is \(\text{MF}(\hat{w}_m) \). Set \(A := \text{MF}(k^{\text{stab}}, k^{\text{stab}}) \), which is considered as a dg-category with one object. Then, the Yoneda embedding gives an equivalence between triangulated categories

\[
\text{MF}(\hat{w}_m) \cong [\hat{A}_{\text{pe}}].
\]

Let \(W := \text{Hom}_k(m/m^2, k) \) be the Zariski tangent space of \((R, m)\). A Hessian matrix of \(w \) gives a quadratic form on \(W \) and let \(Cl(w) \) be the corresponding Clifford algebra. If \(m \) is a non-degenerate critical point of \(w \), i.e., Hessian is non-degenerate, then we have a natural inclusion \(Cl(-w) \subseteq \text{MF}(k^{\text{stab}}, k^{\text{stab}}) \) which gives a quasi-isomorphism (see, e.g., \cite[§5.5]{10}).

We define a dg-category of branes \(\text{Br}(w) \) by

\[
\text{Br}(w) := \prod_{c \in k} \text{MF}(w - c),
\]

then \(\text{Br}(w) \) is a triangulated category. Moreover, if \(w \) has isolated singularities, then we have

\[
[\text{Br}(w)] \cong \prod_{m \in \text{Crit}(w)} [\text{MF}(\hat{w}_m)].
\]

4.3. Categories of branes for Givental type potential functions.

Let \(R \) be a commutative regular \(k \)-algebra with finite Krull dimension \(n \). Choose \(f, g_1, \ldots, g_r \in R \) and \(\lambda_1, \lambda_2, \ldots, \lambda_r \in k \). Assume that \(g_1, \ldots, g_r \) are invertible. For abbreviation, these data is denoted by \(f = -\lambda_1 \log g_1 - \cdots - \lambda_r \log g_r \) or simply by \(F \), which is called a Givental type potential function. Although \(F \) is not well-defined as a single-valued function, its differential can be defined as:

\[
dF = df - \lambda_1 \frac{dg_1}{g_1} - \cdots - \lambda_r \frac{dg_r}{g_r}.
\]

We define \(\text{Crit}(F) \) as the scheme theoretic zero-locus of \(dF \). We assume that \(F \) has isolated singularities, i.e., \(\text{Crit}(F) \) is zero-dimensional.

Let \(m \in \text{Spm}(R) \) be a maximal ideal of \(R \) and \(\hat{R}_m, \hat{m} \) be the completion with respect to the \(\hat{m} \)-adic topology, where \(\hat{m} \) is the maximal ideal. For \(h \in \hat{R}_m \), the corresponding element in \(\hat{R}_m \) is denoted by \(\hat{h}_m \). For an invertible element \(h \in \hat{R}_m \), we define \(\log h \in \hat{m} \) by

\[
\log h = \sum_{k=1}^{\infty} (-1)^{k-1} \frac{1}{k} \left(\frac{h - h(0)}{h(0)} \right)^k,
\]

where \(h(0) \neq 0 \) is the value of \(h \) at \(\hat{m} \). Then \(\hat{F}_m \) at \(m \in \text{Spm}(R) \) can be defined as

\[
\hat{F}_m := \hat{f}_m - \hat{f}_m(0) - \lambda_1 \log \hat{g}_{1,m} - \cdots - \lambda_r \log \hat{g}_{r,m} \in \hat{m}.
\]
Definition 4.3. The dg-category of matrix factorizations of the Givental type potential F is defined to be

$$\Br(F) := \prod_{m \in \Crit(F)} \MF(\hat{F}_m).$$

The idempotent complete triangulated category $[\Br(F)]$ is also called the category of matrix factorizations of F.

For $m \in \Crit(F)$, the matrix factorization $(R/m)_{\text{stab}} \in \Br(F)$ (or $[\Br(F)]$) is simply denoted by e_m^{stab}. Then these matrix factorizations split generate $[\Br(F)]$.

5. Equivariant Homological Mirror Symmetry

In this section we study the cases $M = \mathbb{C}P^{1}$ and \mathbb{C}. As explained in the introduction, we consider the equivariant Floer A_{∞} algebras of moment fiber Lagrangians of M, following the study in the non-equivariant case by Fukaya-Oh-Ohta-Ono [10].

5.1. The case of $\mathbb{C}P^{1}$. Let $\mathbb{C}P^{1}$ be equipped with the $S^1 = U(1)$-action $[z_0 : z_1] \mapsto [z_0 : \zeta z_1]$ $(\zeta \in U(1))$, an S^1-invariant symplectic form ω with $\omega(\mathbb{C}P^{1}) = 2\pi$. Let $\mu : \mathbb{C}P^{1} \to [0, 1]$ be the associated moment map and let $L_u := \mu^{-1}(u) \subset \mathbb{C}P^{1}$ be the moment fiber Lagrangian over an interior point $u \in (0, 1)$. By identifying L_u with S^1 via the S^1-action, we choose an orientation of L_u such that it is compatible with that of S^1. We choose the standard spin structure of L_u ([3 Section 8]).

Let $\mathfrak{g} := \text{Lie}(S^1) \otimes \mathbb{C}$. Take a basis e_1 of \mathfrak{g} consistent with the orientation of S^1 and an integral basis $e^1 \in \Omega^1(L_u)^{\mathbb{Z}} \cong H^1(L_u)$, such that e^1 coincides with the dual basis $e_1 \in \mathfrak{g}^\vee$ via the identification $S^1 \to L_u$ given by the S^1-action.

As we saw in Remark [4,10] only constant disks and holomorphic disks with Maslov index 2 contribute the equivariant Floer A_{∞} algebras of L_u. There are two holomorphic disks of Maslov index 2 up to automorphisms: the one which projects onto $[0, u] \subset [0, 1]$ via μ and the other one which projects onto $[u, 1] \subset [0, 1]$, see [7]. We denote their relative homology classes by $\beta_1, \beta_2 \in H_2(\mathbb{C}P^{1}, L_u; \mathbb{Z})$ respectively. Then $(e^1, \partial \beta_1) = 1$, $\omega(\beta_1) = 2\pi u$, $\omega(\beta_2) = 2\pi(1 - u)$ and $\partial \beta_2 = -\partial \beta_1$.

Take a closed S^1-invariant 1-form $b = b_0 + b_+$ where $b_0 \in \Omega^1(L_u)$, $b_+ \in \Omega^1(L_u) \otimes \Lambda_+$ and put

$$e_0 := e^{(b_0, \partial \beta_1)} \in \mathbb{C}, \quad 1 + c_+ := e^{(b_+, \partial \beta_1)} \in \Lambda_+. \quad (15)$$

Take $\lambda \in \Lambda_0$ and take an equivariant parameter $\lambda : S\mathfrak{g}^\vee \cong \mathbb{C}[e^1] \to \Lambda_0$ which sends e^1 to λ. Recall that the curvature term of the equivariant Floer A_{∞} algebra evaluated at λ and deformed by b is given by

$$m_0^{b, \lambda}(1) = T^{\omega(b_1)/2\pi} e^{(b_0, \partial \beta_1)} + T^{\omega(b_2)/2\pi} e^{(b_0, \partial \beta_2)} - \lambda e_1(b) = T^u c_0 (1 + c_+) + T^{1-u} c_0^{-1} (1 + c_+)^{-1} - \lambda(b, e_1).$$

The differential is calculated as

$$m_1^{b, \lambda}(e^1) = \sum_{\beta} T^{\omega(\beta)/2\pi} e^{(b_0, \partial \beta)} \sum_{l_0 + l_1 = l} m_{l_0 + l_1}^{\beta, \lambda} (b_+, e^1) e^{(b_0, \partial \beta)} - \lambda e_1(e^1) = T^u c_0 (1 + c_+) - T^{1-u} c_0^{-1} (1 + c_+)^{-1} - \lambda$$

by using the divisor axiom. Givental’s potential function for $\mathbb{C}P^{1}$

$$F = T^u x + T^{1-u} x^{-1} - \lambda \log x = X + \frac{T}{X} - \lambda \log X + \text{const}.$$
is recovered from the curvature term $m_{0}^{b,\lambda}(1)$ by introducing the variables $x := c_{0}(1 + c_{+})$ and $X := T^{u}x$. The condition that the differential $m_{1}^{b,\lambda}$ vanishes coincides with the equation for the critical points

$$\partial F = X - T/X - \lambda = 0,$$

where $\partial := X \frac{\partial}{\partial X}$.

In the following we assume $\lambda \neq \pm 2\sqrt{-1}T^{\frac{1}{2}}$ so that (16) does not have a double root, which implies the equivariant Landau-Ginzburg mirror potential F does not have a degenerate critical point. The case $\lambda = \pm 2\sqrt{-1}T^{\frac{1}{2}}$ can be treated similarly, see Remark 5.2.

We associate an equivariant Lagrangian brane to a solution X of (16) satisfying $0 < \text{val}(X) < 1$ as follows. Take the moment fiber $L := Lu$ where $u := \text{val}(X)$, take $c_{0} \in \mathbb{C}^*$ and $c_{+} \in \Lambda^+$ such that $X = T^{u}c_{0}(1 + c_{+})$. The positive valuation part of the bounding cochain ∂_{+} is given by $\partial_{+} = \log(1 + c_{+})e^{1}$ where $\log(1 + c_{+}) := \sum_{k \geq 1}(-1)^{k-1} \frac{c_{+}^{k}}{k}$. The leading term $b_{0} = b_{0}e^{1}$ is taken such that $e^{b_{0}} = c_{0}$, and gives a local system ρ on Lu with the monodromy c_{0} (ρ is independent of the choice of b_{0}). Then $b = b_{0} + b_{+}$ gives a bounding cochain since e^{1} is an invariant form, and we obtain an equivariant Lagrangian brane (Lu, ρ, b_{+}). This construction gives a one-to-one correspondence between the solutions of (16) with $\text{val}(X) \in (0, 1)$ and Lagrangian branes (with standard spin structures) whose equivariant Floer A_{∞} algebra is not quasi-isomorphic to 0. This is compatible with (15).

Next we study the solutions of (16). It has two solutions X_{1}, X_{2}. Then

1. if $\text{val}(\lambda) \geq \frac{1}{2}$, both solutions have valuation $u_{1} = u_{2} = \frac{1}{2}$, i.e. we consider two Lagrangian branes with the same underlying Lagrangian submanifold L_{λ} but with different bounding cochains, and

2. if $0 \leq \text{val}(\lambda) < \frac{1}{2}$, the solutions have valuations $u_{1} = \text{val}(\lambda)$ and $u_{2} = 1 - \text{val}(\lambda)$ respectively and therefore we have two disjoint underlying Lagrangians Lu_{1} and Lu_{2}. We only consider the case $\text{val}(\lambda) > 0$ because the Lagrangians collapse to points when $\text{val}(\lambda) = 0$.

Let us denote the corresponding maximal ideals by $m_{1}, m_{2} \in \text{Crit} F$ and the corresponding bounding cochains by $b_{i} = b_{0,i} + b_{+,i}$ ($i = 1, 2$). Since $m_{1}^{b_{+,\lambda}} = 0$,

$$H(\Omega^{*}(Lu_{i})^{\otimes C} \Lambda, m_{1}^{b_{+,\lambda}}) \cong H^{*}(Lu_{i}) \otimes \Lambda$$

as $\mathbb{Z}/2\mathbb{Z}$-graded Λ-vector spaces.

Next we see the multiplicative structure. $m_{2}^{b_{+,\lambda}}$ of the equivariant Floer A_{∞} algebra is calculated as:

$$2m_{2}^{b_{+,\lambda}}(e^{1}, e^{1}) = m_{2}^{b_{+,\lambda}}(e^{1}, e^{1}) + m_{2}^{b_{+,\lambda}}(e^{1}, e^{1})$$

$$= \sum_{\beta} T^{\omega(\beta)/2\pi} e^{(b_{0,i}, \beta)} \sum_{l_{0} + l_{1} + l_{2} = l} \left(m_{l_{0}+2,\beta}(b_{+,i}, ..., b_{+,i}, e^{1}, b_{+,i}, ..., b_{+,i}, e^{1}, b_{+,i}, ..., b_{+,i}) + m_{l_{0}+2,\beta}(b_{+,i}, ..., b_{+,i}, e^{1}, b_{+,i}, ..., b_{+,i}, e^{1}, b_{+,i}, ..., b_{+,i}) \right)$$

$$= \sum_{\beta} T^{\omega(\beta)/2\pi} e^{(b_{0,i}, \beta)} \langle b_{+,i}, \beta \rangle \sum_{l_{0} + l_{1} = l} m_{l_{0}+1,\beta}(b_{+,i}, ..., b_{+,i}, e^{1}, b_{+,i}, ..., b_{+,i})$$

$$= T^{u}c_{0}(1 + c_{+}) + T^{1-u}c_{0}^{-1}(1 + c_{+})^{-1}$$

$$= X + TX^{-1}$$
by applying the divisor axiom twice. Hence we have $2m_2^{b_i, \lambda}(\epsilon^i, \epsilon^1) = \partial^2 F(m_i)$. This is nonzero since we assumed $\lambda \neq \pm 2\sqrt{-1}T^\pm$.

Let $H(\Omega^*(L_{u_i})^g \otimes \Lambda, \Lambda_2^{b_i, \lambda})$ be the cohomology algebra associated with the equivariant Floer A_∞ algebra $(\Omega^*(L_{u_i})^g \otimes \Lambda, \{m_2^{b_i, \lambda}\})$, with the product defined as

$$[x] \cdot [y] := (-1)^{|x|}[m_2^{b_i, \lambda}(x, y)].$$

Then we have an isomorphism of Λ-algebras

$$H(\Omega^*(L_{u_i})^g \otimes \Lambda, \Lambda_2^{b_i, \lambda}) \to Cl(\hat{F}_{m_i})$$

by sending $[\epsilon^i]$ to the generator of the Clifford algebra. By Sheridan’s intrinsic formality for the Clifford algebras \cite{Hoch}, we can lift it to a quasi-isomorphism of A_∞ algebras

$$(\Omega^*(L_{u_i})^g \otimes \Lambda, \{m_2^{b_i, \lambda}\}) \to Cl(\hat{F}_{m_i})$$

(17)

where $Cl(\hat{F}_{m_i})$ is defined in Remark \[\ref{rem:clifford}]

Now let \mathcal{L} be the set of pairs $\{(L_{u_i}, b_1), (L_{u_j}, b_2)\}$ and let $\mathcal{F}_\mathcal{L}$ be the uncurved A_∞ category over Λ as defined in Definition \[\ref{def:uncurved}\]. Since $i \neq j$, we have $\mathcal{F}_\mathcal{L}((L_{u_i}, b_1), (L_{u_j}, b_2)) = 0$ if $i \neq j$. Then by \[\ref{alg}\] and by Dyckerhoff’s result reviewed in Section 4.3, we have an objectwise A_∞ functor

$$\mathcal{F}_\mathcal{L}((L_{u_i}, b_1), (L_{u_i}, b_1)) \to Cl(\hat{F}_{m_i}) \subseteq MF(\Lambda_{m_i}^{\text{stab}}, \Lambda_{m_i}^{\text{stab}}) \infty,$$

where MF denotes the dg-category of matrix factorizations of F. Therefore we have the following.

Theorem 5.1. (Equivariant homological mirror symmetry for CP^1). We have a cohomologically fully-faithful A_∞ functor for $\text{val}(\lambda) > 0$ and $\lambda \neq \pm 2\sqrt{-1}T^\pm$

$$\phi: \mathcal{F}_\mathcal{L} \to \text{Br}(F)$$

by sending (L_{u_i}, b_1) to $\Lambda_{m_i}^{\text{stab}}$, whose image split-generates $[\text{Br}(F)]$.

Remark 5.2. (Degenerate cases). Suppose that $\lambda = \pm 2\sqrt{-1}T^\pm$. Then the potential function F has a unique degenerate critical point m with valuation $\frac{1}{2}$. Let $(L_{u_i}, \rho, b = b_0 + b_+)$ be the equivariant Lagrangian brane with a bounding cochain corresponding to m. By using the divisor axiom, we easily see that

$$k! \cdot m_2^{b_i, \lambda}(\epsilon^i, \epsilon^1, \ldots, \epsilon^1) = \partial^k F(m).$$

(18)

We note that all structure constants of the equivariant Floer algebra are determined by the above equation \[\ref{alg}\]. On the other hand, by \[\ref{alg}\] Theorem 5.8, this unital A_∞ algebra is quasi-isomorphic to the A_∞ algebra $MF(\Lambda_{m_i}^{\text{stab}}, \Lambda_{m_i}^{\text{stab}}) \infty$.

This means that $\mathcal{F}_\mathcal{L}$ and $\text{Br}(F)$ are Morita equivalent.

5.2. **The case of \mathbb{C}**. Let \mathbb{C} be equipped with the $S^1 = U(1)$-action $z \mapsto \zeta z$ ($\zeta \in U(1)$), the standard symplectic form $\omega = dx \wedge dy$ ($z = x + iy$) and the standard complex structure. Let $\mu: \mathbb{C} \to \mathbb{R}_{\geq 0}$: $z \mapsto \frac{1}{2}|z|^2$ be the moment map associated to the S^1-action, and let $L_u := \mu^{-1}(u)$ be the moment fiber Lagrangian brane over $u \in \mathbb{R}_{>0}$. By identifying L_u with S^1 via the S^1-action, we choose an orientation of L_u such that it is compatible with that of S^1. We choose the standard spin structure of L_u (\[\ref{ss}\] Section 8)).

Let $\mathfrak{g} := \text{Lie}(S^1) \otimes \mathbb{C}$. Take a basis ϵ_1 of \mathfrak{g} consistent with the orientation of S^1 and an integral basis $\epsilon^i \in \Omega^1(L_u)^g \cong H^1(L_u)$, such that ϵ^i coincides with the dual basis $\epsilon^1 \in \mathfrak{g}^\vee$ via the identification $S^1 \to L_u$ given by the S^1-action.

Although \mathbb{C} is noncompact, the arguments in Section \[\ref{sec:noncompact}\] applies to this case as well, because all the holomorphic and stable disks bounded by L_u are contained in a compact set thanks to the maximum principle. There is a unique holomorphic disk up to automorphisms of Maslov index 2 bounded by L_u,
which projects onto \([0, u] \subset \mathbb{R}_{\geq 0}\) and whose relative homology class we denote by \(\beta \in H_2(\mathbb{C}P^1, L_u; \mathbb{Z}).\) Then \((e^1, \partial \beta) = 1\) and \(\omega(\beta) = 2\pi u.

Take a closed \(S^1\)-invariant 1-form \(b = b_0 + b_+\) where \(b_0 \in \Omega^1(L_u)\) and \(b_+ \in \Omega^1(L_u) \otimes \Lambda_+\), and put

\[
c_0 := e^{(b_0, \partial \beta)} \in \mathbb{C}, \quad 1 + c_+ := e^{(b_+, \partial \beta)} \in \Lambda_+.
\]

Take \(\lambda \in \Lambda_0\) and take an equivariant parameter \(\lambda: S^1 \cong \mathbb{C}[e^1] \to \Lambda_0\) which sends \(e^1\) to \(\lambda\). The curvature term and the differential of the equivariant \(A_\infty\) algebra are

\[
m_0^{b, \lambda}(1) = T^{\omega(\beta)/2\pi} e^{(b, \partial \beta)} - \lambda i_{e^1}(b) = T^u c_0(1 + c_+) - \lambda(b, e^1),
\]

\[
m_1^{b, \lambda}(e^1) = T^{\omega(\beta)/2\pi} e^{(b_0, \partial \beta)} \sum_{t_0 + t_1 = l} m_{t_0 + 1, \beta}(b_+, \ldots, b_+, e^1, b_+, \ldots, b_+) - \lambda i_{e^1}(e^1) = T^u c_0(1 + c_+) - \lambda.
\]

Givental’s potential function for \(\mathbb{C}\)

\[
F = T^u x - \lambda \log x = X - \lambda \log X + \text{const.}
\]

is recovered by introducing the variables \(x := c_0(1 + c_+)\) and \(X := T^u x\), and the differential \(m_1^{b, \lambda}\) vanishes when the derivative \(\partial F = X - \lambda\) of \(F\) equals zero.

Suppose \(\lambda \neq 0\). Then \(F\) has a unique nondegenerate critical point \(m \in \text{Crit} F\). If \(\text{val}(\lambda) > 0\), \(m\) corresponds to \((L_u, b)\) with nonvanishing equivariant Floer cohomology, where \(u = \text{val}(\lambda), L_u\) is the moment fiber over \(u\), and \(b = b_0 + b_+\) is as in the case of \(\mathbb{C}P^1\).

Then

\[
2m_2^{b, \lambda}(e^1, e^1) = T^u c_0(1 + c_+) = X = \partial^2 F \neq 0.
\]

Let \(\mathcal{F}_L\) be the uncurved \(A_\infty\) category with a single object \(\mathcal{L} = \{(L_u, b = b_0 + b_+)\}\). Then we have the following as in the case of \(\mathbb{C}P^1\).

Theorem 5.3 (Homological mirror symmetry for \(\mathbb{C}\)). Suppose \(\lambda \neq 0\) and \(\text{val}(\lambda) > 0\). Then we have a cohomologically fully faithful \(A_\infty\) functor

\[
\phi: \mathcal{F}_L \to Br(F)_\infty = MF(F_m)_\infty
\]

by sending \((L_u, b)\) to \(\Lambda_m^{\text{stab}}\), whose image split-generates \([Br(F)]\).

6. Appendix A

In this Appendix, we will compute the dimension of the Jacobian ring associated with a Landau-Ginzburg mirror of a smooth semi-projective toric variety (see Theorem 6.7).

6.1. Preliminaries on polyhedrons. In §6.1 we introduce some notions of polyhedron, which is used throughout this appendix. We mainly follow [9].

Let \(N \cong \mathbb{Z}^n\) be a free abelian group of rank \(n\) and \(M := \text{Hom}_\mathbb{Z}(N, \mathbb{Z})\) be the dual lattice. For a commutative ring \(R\), set \(N_R := N \otimes \mathbb{Z} R, M_R := M \otimes \mathbb{Z} R\). For a convex polyhedral cone \(\sigma \in N_R\), the dual cone \(\sigma^\vee\) is defined by

\[
\sigma^\vee = \{u \in M_R \mid \langle u, v \rangle \geq 0 \text{ for all } v \in \sigma\}.
\]

Note that a convex polyhedral cone is full-dimensional if and only if its dual cone is strictly convex. For convex polyhedral cones \(\tau, \sigma \subseteq N_R\), we write \(\tau \prec \sigma\) if \(\tau\) is a face of \(\sigma\).
Let Σ be a fan in $N_\mathbb{R}$ and φ be a strictly convex support function on Σ (see [9] Definitions 3.1.2, 4.2.11, 6.1.12]). In this appendix, we assume that

the support $|\Sigma|$ is a full-dimensional rational polyhedral cone. (20)

Let $v_1, v_2, \ldots, v_m \in N$ be the set of integral generators of rays of Σ.

Let P be a polyhedron in $M_\mathbb{R}$ determined by Σ and φ, i.e.,

$$P = \{ u \in M_\mathbb{R} \mid \ell_i(u) := \langle u, v_i \rangle + \varphi(v_i) \geq 0, \quad i = 1, 2, \ldots, m \}.$$

We call integral affine functions ℓ_i ($i = 1, 2, \ldots, m$) the defining functions of P. For $v \in |\Sigma|$, we note that

$$\min_{u \in P} \langle u, v \rangle = -\varphi(v).$$

Let U_P be the recession cone of P, i.e.,

$$U_P := \{ u \in M_\mathbb{R} \mid \langle u, v_i \rangle \geq 0, \quad i = 1, 2, \ldots, m \}.$$

We note that

$$U_P = |\Sigma| = \mathbb{R}_{\geq 0}v_1 + \mathbb{R}_{\geq 0}v_2 + \cdots + \mathbb{R}_{\geq 0}v_m.$$

Since $|\Sigma|$ is a full-dimensional rational polyhedral cone, the polyhedron P is pointed, i.e., U_P is strictly convex.

6.2. Preliminaries on polyhedral subdomains. We define a Λ-algebra $\Lambda\langle U_P \rangle$ by

$$\Lambda\langle U_P \rangle := \left\{ \sum_{v \in N \cap |\Sigma|} c_v y^v \mid c_v \in \Lambda, \lim_{|v| \to \infty} (\langle u, v \rangle + \text{val}(c_v)) = \infty \text{ for all } u \in P \right\},$$

where $|v|$ is a standard Euclidean norm on $N_\mathbb{R}$. For $f = \sum c_v y^v \in \Lambda\langle U_P \rangle$, set

$$|f| := \exp\left(-\inf_{v \in N \cap U_P} (\langle u, v \rangle + \text{val}(c_v)) \right).$$

We note that $\inf_{u \in P} (\langle u, v \rangle + \text{val}(c_v)) = \text{val}(c_v) - \varphi(v)$ for $v \in |\Sigma| \cap N$. Then $| \cdot |$ gives a complete non-archimedean norm on $\Lambda\langle U_P \rangle$ and the pair $(\Lambda\langle U_P \rangle, | \cdot |)$ is a Λ-Banach algebra ([29, Remark 6.6]). Moreover, we know that $(\Lambda\langle U_P \rangle, | \cdot |)$ is a Λ-affinoid algebra ([29, Proposition 6.9]).

By construction, the affinoid algebra $\Lambda\langle U_P \rangle$ contains the monoid ring $\Lambda[U_P^* \cap N]$, which induces an inclusion

$$\text{Spm}(\Lambda\langle U_P \rangle) \subseteq \text{Spm}(\Lambda[U_P^* \cap N]),$$

where we denote by Spm the maximal spectrums (see [29, Proposition 6.9]).

Let $\mathfrak{m} \in \text{Spm}(\Lambda\langle U_P \rangle)$ and $\mathfrak{m} := \mathfrak{m} \cap \Lambda[U_P^* \cap N]$ be the corresponding maximal ideal of $\Lambda[U_P^* \cap N]$. Then we have an isomorphism between complete local rings

$$\Lambda\langle U_P \rangle_{\mathfrak{m}} \cong \Lambda[U_P^* \cap N]_{\mathfrak{m}}.$$

(See the proof of [29, Proposition 6.9]. See also [9, Proposition 7.3.2.3 and 8, Lemma 5.1.2,].) We note that $\Lambda[U_P^* \cap N]_{\mathfrak{m}}$ is a Cohen-Macaulay ring of Krull dimension n (see, e.g., [20, Theorem 1], [11, §13.1]). Hence $\Lambda\langle U_P \rangle_{\mathfrak{m}}$ is a Cohen-Macaulay ring ([29, Proposition 6.9]) of Krull dimension n. Moreover, $\Lambda\langle U_P \rangle_{\mathfrak{m}}$ is regular if and only if $\Lambda[U_P^* \cap N]_{\mathfrak{m}}$ is regular.

For a Λ-Banach algebra A, set

$$A_0 := \{ f \in A \mid |f| \leq 1 \}, \quad A_+ := \{ f \in A \mid |f| < 1 \}, \quad \overline{A} := A_0/A_+.$$

Then A_0 is a Λ-Banach algebra, A_+ is an ideal of A_0, and \overline{A} is a \mathbb{C}-algebra. For $v \in |\Sigma| \cap N$, let $y^v \in \overline{\Lambda\langle U_P \rangle}$ be the residue class of $T^{\varphi(v)} y^v \in \Lambda\langle U_P \rangle_0$.

For $c = \sum_{i=0}^{\infty} c_i T^{\lambda_i} \in \Lambda \setminus \{0\}$, the leading term coefficient $L(c) \in \mathbb{C}^*$ is defined by the coefficient of $T^{\text{val}(c)}$ and set $\text{Sp}(c) := \{\lambda_i \mid c_i \neq 0\} \subset \mathbb{R}$. For $f = \sum_{v \in |\Sigma| \cap N} c_v y^v \in \Lambda(U_P)$, set $\text{Sp}(f) := \bigcup_{v \in |\Sigma| \cap N} \text{Sp}(T^{-\varphi(v)} c_v)$. Note that $\text{Sp}(c)$ and $\text{Sp}(f)$ are discrete subsets of \mathbb{R}.

Proposition 6.1. We have
\[
\Lambda(U_P) \cong \bigoplus_{v \in |\Sigma| \cap N} \mathbb{C} y^v
\]
as \mathbb{C}-vector spaces. The ring structure of $\Lambda(U_P)$ is given by
\[
\overline{y^v} \cdot \overline{y^{v'}} = \begin{cases}
\overline{y^{v+v'}} & \text{if } v, v' \in \sigma \text{ for some } \sigma \in \Sigma \\
0 & \text{otherwise}.
\end{cases}
\]

Proof. The isomorphism $\Lambda(U_P) \cong \bigoplus_{v \in |\Sigma| \cap N} \mathbb{C} y^v$ easily follows from the definition. Since φ is strictly convex, we have the desired conclusion on the ring structure. \(\square\)

Let $\text{Sym}(M_\Lambda)$ be the symmetric algebra of the Λ-vector space M_Λ and $\Lambda(M)$ be the completion of the polynomial ring $\text{Sym}(M_\Lambda)$ with respect to the Gauss norm so that $\Lambda(M)$ is a Tate algebra. Then we have $\Lambda(M) \cong \text{Sym}(M_\Lambda)$. We see that $\text{Spm}(\Lambda(M))$ is naturally isomorphic to N_{A_Λ}.

For $f = \sum c_v y^v \in \Lambda(U_P)$ and $m \in M$ we define a derivative $\partial_m f \in \Lambda(U_P)$ by $\partial_m f := \sum c_v (m, v) y^v$. We note that $\text{Sp}(\Lambda(U_P)_0, \Lambda(U_P)_+)$ are closed under ∂_m and ∂_m also acts on $\Lambda(U_P)$. We define a Λ-algebra homomorphism $\psi_f : \Lambda(M) \to \Lambda(U_P)$ by $\psi_f(m) := \partial_m f$. If $f \in \Lambda(U_P)_0$, then we have $\psi_f(\Lambda(M)_0) \subseteq \Lambda(U_P)_0$ and $\psi_f(\Lambda(M)_+) \subseteq \Lambda(U_P)_+$. Hence ψ_f induces a \mathbb{C}-algebra morphism $\overline{\psi_f} : \text{Sym}(M) \to \overline{\Lambda(U_P)}$.

Proposition 6.2. Let $f \in \Lambda(U_P)_0$. Suppose that $\overline{\Lambda(U_P)}$ is finite over $\text{Sym}(M)$. Then $\Lambda(U_P)_0$ is finite over $\Lambda(M)_0$.

Proof. Take $v_1, v_2, \ldots, v_r \in |\Sigma| \cap N$ such that $\overline{y^{v_1}}, \overline{y^{v_2}}, \ldots, \overline{y^{v_r}}$ generate $\overline{\Lambda(U_P)}$ as a $\text{Sym}(M)$-module. Take $g = \sum T^{\varphi(v)} c'_v y^v \in \Lambda(U_P)_0$. Let G be the discrete submonoid of $\mathbb{R}_{\geq 0}$ generated by
\[
\text{Sp}(g) \cup \bigcup_{k \geq 1} \text{Sp}(T^{\varphi(v_i)} f^k y^{v_i}).
\]
We enumerate G by
\[
G = \{c_0, c_1, c_2, \ldots\}, \quad 0 = c_0 < c_1 < c_2 < \cdots.
\]
Let $g = \sum_{\text{val}(c'_v) = 0} L(c'_v) \overline{y^v} \in \overline{\Lambda(U_P)}$ be the residue class of g. Choose $\phi_{1,0}, \ldots, \phi_{r,0} \in \text{Sym}(M)$ such that $g = \sum_{i=1}^r \phi_{i,0} \overline{y^{v_i}}$. Set $g_0 = g$ and $g_1 = g_0 - \sum_{i=1}^r T^{\varphi(v_i)} \phi_{i,0} \overline{y^{v_i}}$, where $\phi_{i,0}$ are considered as elements of $\Lambda(M)_0$. Then we have $\text{Sp}(g_1) \subseteq G \setminus \{c_0\}$. Inductively, we can construct
\[
g_{k+1} = \sum_{i=1}^r T^{c_i + \varphi(v_i)} \phi_{i,k} \overline{y^{v_i}}, \quad \text{Sp}(g_{k+1}) \subseteq G \setminus \{c_0, c_1, \ldots, c_k\}.
\]
with
\[
g_{k+1} = g_k - \sum_{i=1}^r T^{c_i + \varphi(v_i)} \phi_{i,k} \overline{y^{v_i}}, \quad \text{Sp}(g_{k+1}) \subseteq G \setminus \{c_0, c_1, \ldots, c_k\}.
\]
Set $\phi_i := \sum_{j=1}^\infty T^{\varphi(v_j)} \phi_{i,j} \in \Lambda(M)_0$, then we have $g = \sum_{i=1}^r \phi_i T^{\varphi(v_i)} y^{v_i}$. This implies that $T^{\varphi(v_i)} y^{v_i} (i = 1, 2, \ldots, r)$ generate $\Lambda(U_P)_0$ as a $\Lambda(M)_0$-module. \(\square\)

Corollary 6.3. Under the same assumptions of Proposition 6.2. $\Lambda(U_P)$ is flat over $\Lambda(M)$.
Proof. Let m be a maximal ideal of $\Lambda(U_P)$ and set $m' := \psi^{-1}_f(m)$, then m' is a maximal ideal of $\Lambda(M)$. By Proposition 6.2, we easily see that $\Lambda(U_P)$ is finite over $\Lambda(M)$. Combining with the incomparability (e.g., [11] Corollary 4.18, Proposition 9.2), the fiber $\Lambda(U_P)/m\Lambda(U_P)$ over m' has Krull dimension 0. Since $\Lambda(U_P)_m$ is a Cohen-Macaulay local ring of Krull dimension n and $\Lambda(M)_{m'}$ is a regular local ring of Krull dimension n, we see that $\Lambda(U_P)_m$ is flat over $\Lambda(M)_{m'}$ (e.g., [11] Theorem 18.16). Thus $\Lambda(U_P)$ is flat over $\Lambda(M)$. □

In the last of §6.2 we introduce a logarithmic Jacobian ring.

Definition 6.4. Let $f \in \Lambda(U_P)_0$, $\lambda \in N_{\Lambda_0}$, and m_λ be the maximal ideal of $\Lambda(M)$ corresponding to λ. Set $\partial_m f_\lambda := \partial_m f - \langle m, \lambda \rangle$. A logarithmic Jacobian ideal $I_{f, \lambda}$ is defined by

$$I_{f, \lambda} := \langle \partial_m f_\lambda \mid m \in M \rangle,$$

and a logarithmic Jacobian ring $J_{f}(\lambda)$ is defined by $\Lambda(U_P)/I_{f, \lambda}$. We note that $I_{f, \lambda}$ is the ideal generated by $\psi_f(m_\lambda)$ and $\Spec(J_{f}(\lambda))$ is the fiber over λ.

6.3. Preliminaries on tropicalizations. Let \mathbb{R} be the additive monoid $\mathbb{R} \cup \{\infty\}$ and let $\sigma \subseteq N_\mathbb{R}$ be a rational full-dimensional convex polyhedral cone. We define $M_\mathbb{R}(\sigma^\vee)$ by the space of monoid morphisms

$$M_\mathbb{R}(\sigma^\vee) := \Hom_{\mathbb{R}_{\geq 0}}(\sigma, \mathbb{R})$$

respecting multiplication by $\mathbb{R}_{\geq 0}$. Since σ is rational, we easily see that

$$\Hom_{\mathbb{R}_{\geq 0}}(\sigma, \mathbb{R}) \cong \Hom(\sigma \cap N, \mathbb{R}),$$

where \Hom is the space of monoid morphisms. Let τ be a face of σ, $u \in M_\mathbb{R}/\tau^\perp$ and $v \in \sigma$. We define $\iota(u) \in M_\mathbb{R}(\sigma^\vee)$ by

$$\langle \iota(u), v \rangle := \begin{cases} (u, v) & \text{if } v \in \tau \\ \infty & \text{otherwise.} \end{cases}$$

Then this correspondence gives an isomorphism

$$\iota : \prod_{\tau < \sigma} M_\mathbb{R}/\tau^\perp \xrightarrow{\cong} M_\mathbb{R}(\sigma^\vee)$$

(see [24] Proposition 3.4). Since σ is full-dimensional, $M_\mathbb{R}$ is naturally contained in $M_\mathbb{R}(\sigma^\vee)$. For $m \in \Spm(\Lambda[\sigma \cap N])$, by using $\Spm(\Lambda[\sigma \cap N]) \cong \Hom(\sigma \cap N, \Lambda)$, we denote by ϕ_m the corresponding element of $\Hom(\sigma \cap N, \Lambda)$. We define a tropicalization morphism

$$\trop : \Spm(\Lambda[\sigma \cap N]) \to M_\mathbb{R}(\sigma^\vee)$$

by $\trop(m) := \val \circ \phi_m \in M_\mathbb{R}(\sigma^\vee)$.

Recall that $P \subseteq M_\mathbb{R}$ is a polyhedron determined by Σ and φ with a strictly convex recession cone U_P. We define $\overline{P} \subseteq M_\mathbb{R}(U_P)$ as follows: Let τ be a face of U_P° and $u \in M_\mathbb{R}/\tau^\perp$. Then $\iota(u) \in \overline{P}$ if and only if

$$\ell_\tau(u) = \langle u, v_i \rangle + \varphi(v_i) \geq 0 \text{ for all } v_i \in \tau.$$

Set

$$U_P := \{ m \in \Spm(\Lambda[\overline{U_P^\circ} \cap N]) \mid \trop(m) \in \overline{P} \},$$

then we see that $\Spm(\Lambda(U_P)) = U_P \subseteq \Spm(\Lambda[\overline{U_P^\circ} \cap N])$ (24 Proposition 6.9]). The restriction of the tropicalization morphism \trop to U_P is also denoted by \trop.

Definition 6.5. Let a be an ideal of $\Lambda(U_P)$ and set $V(a) := \Spm(\Lambda(U_P)/a) \subseteq U_P$. Then the image $\trop(V(a)) \subseteq \overline{P}$ is called a tropicalization of $V(a)$ and denoted by $\trop(a)$. If a is generated by $f \in \Lambda(U_P)$, $V(a)$ is also denoted by $V(f)$ and its tropicalization is denoted by $\trop(f)$.
For $c \neq 0 \in \Lambda$, recall that the leading term $L(c) \in \mathbb{C}^*$ is the coefficient of $T^\mathrm{val}(c)$. For $f = \sum c_v y^v \in \Lambda(U_P), \tau \prec U_P^\lambda$, and $u \in (M_R/\tau^\perp) \cap \overline{\mathcal{P}}$, set
\[
m := \min_{v \in \tau \cap N} \left(\langle u, v \rangle + \mathrm{val}(c_v)\right).
\]
We define the initial term $\text{in}_u(f)$ by
\[
\text{in}_u(f) := \sum_{v \in \tau \cap N} L(c_v) y^v \in \mathbb{C}[\tau \cap N].
\]
By [29] Lemma 8.4, we have
\[
\text{Trop}(f) = \{ u \in \overline{\mathcal{P}} \mid \text{in}_u(f) \text{ is not a monomial} \}. \tag{21}
\]

Remark 6.6. It is possible that $\text{in}_u(f) = 0$. If $\text{in}_u(f) = 0$, then $\text{in}_u(f)$ is not considered as a monomial.

By the fundamental theorem of tropical geometry [29] Theorem 7.8, we have
\[
\text{Trop}(a) = \bigcap_{f \in a} \text{Trop}(f). \tag{22}
\]

6.4. Main theorem.

In §6.3 we assume that the fan Σ is smooth. Let
\[
\Lambda(Z_1, Z_2, \ldots, Z_m)
\]
be the Tate algebra over Λ with variables Z_1, Z_2, \ldots, Z_m (the affinoid algebra associated with the polyhedron $\mathbb{R}^m_{\geq 0}$). Let
\[
\psi : \Lambda(Z_1, Z_2, \ldots, Z_m) \to \Lambda(U_P)
\]
be the continuous morphism which is defined by $\psi(Z_i) = T^{\sigma(v_i)} y^{v_i}$. Surjectivity of ψ follows from the smoothness of Σ. Let
\[
\overline{f} = c_1 Z_1 + c_2 Z_2 + \cdots + c_m Z_m \in \Lambda(Z_1, Z_2, \ldots, Z_m),
\]
where $c_i \in \mathbb{C}^*$ and let F be an element of $\Lambda(Z_1, Z_2, \ldots, Z_m)$ with $|F - \overline{f}| < 1$. Set $\overline{f} = \psi(F)$ and $f = \psi(F)$. Take $\lambda \in N_{\Lambda_0}$. The next statement is the main theorem of this appendix.

Theorem 6.7. Let Σ be a smooth fan such that the support $|\Sigma|$ is a full dimensional rational polyhedral cone, $\lambda \in N_{\Lambda_0}$, and f is as above. Then $\dim_\Lambda J_\lambda(f) = \dim_\mathbb{C} H^\ast(X_\Sigma; \mathbb{C})$.

To prove this theorem, we first show the next proposition.

Proposition 6.8. $\dim_\Lambda J_\lambda(f)$ is independent of $\lambda \in N_{\Lambda_0}$.

Proof. We recall that f induces a \mathbb{C}-algebra morphism $\overline{\psi}_f : \text{Sym}(M_C) \to \overline{\Lambda(U_P)}$. Using this morphism, we consider $\Lambda(U_P)$ as a module over $\text{Sym}(M_C)$. Set $\overline{y}^{v_i} := c_i \overline{y}^{v_i}$. By definition, for $m \in M_C$, we have $\overline{\psi}_f(m) = \sum_{i=1}^m \langle m, v_i \rangle \overline{y}^{v_i}$. Let X_Σ be the n-dimensional smooth toric variety associated with the fan Σ. Then the torus $T := N \otimes \mathbb{Z} \mathbb{C}^*$ naturally acts on X_Σ. We naturally identify the equivariant cohomology $H_T^\ast(\text{pt})$ with $\text{Sym}(M_C)$ as \mathbb{C}-algebras. We easily see that $\Lambda(U_P)$ is isomorphic to the equivariant cohomology $H_T^\ast(X_\Sigma; \mathbb{C})$ as $\text{Sym}(M_C)$-algebras (see, e.g., [9] §12.4). Since $H_T^\ast(X_\Sigma; \mathbb{C})$ is a free module over $\text{Sym}(M_C)$ of finite rank (e.g., [22] Proposition 2.1 and [9] §7.2), the $\Lambda(M)$-module $\Lambda(U_P)$ is finite and flat by Proposition 6.2 and Corollary 6.3. Hence $\Lambda(U_P)$ is a finite locally free $\Lambda(M)$-module and dimensions of fibers are independent of $\lambda \in N_{\Lambda_0}$. \hfill \square

We next compute $\dim_\Lambda J_\lambda(f)$ at a specific point $\lambda \in N_{\Lambda_0}$ (Theorem 6.10).

Lemma 6.9. Let $m \in M, \tau \prec |\Sigma|$ and $u \in M_R/\tau^\perp$. Then $u \in \text{Trop}(\partial_m f_\lambda)$ if and only if $u \in \text{Trop}(\partial_m \overline{f}_\lambda)$.
Proof. For $G \in \Lambda(Z_1, Z_2, \ldots, Z_m)$, we set
\[
\partial_m G := \sum_{i=1}^{m} \langle m, v_i \rangle Z_i \frac{\partial G}{\partial Z_i}
\]
Then we see that $\partial_m G \in \Lambda(Z_1, Z_2, \ldots, Z_m)$ and $\psi(\partial_m G) = \partial_m \psi(G)$. Choose a monomial $Z^\lambda := Z_1^{b_1} Z_2^{b_2} \cdots Z_m^{b_m}$, where $b_1, b_2, \ldots, b_m \in \mathbb{Z}_{\geq 0}$. Set
\[
v^\circ := b_1 v_1 + b_2 v_2 + \cdots + b_m v_m, \quad \varphi^\circ := b_1 \varphi(v_1) + b_2 \varphi(v_2) + \cdots + b_m \varphi(v_m).
\]
Then we have
\[
\psi(\partial_m Z^\lambda) = (m, v^\circ) T^{\epsilon} y^\epsilon.
\]
Suppose that $v^\circ \in \tau$ and $\partial_m Z^\lambda \neq 0$, which implies $b_i = 0$ for $v_i \notin \tau$. Then there exists $v_j \in \tau$ with $\langle m, v_j \rangle \neq 0$ and $b_j \neq 0$. We see that
\[
\langle u, v^\circ \rangle + \varphi^\circ = \sum_{v_i \in \tau} b_i \ell_i(u) \geq \ell_j(u).
\]
Since $|F - \mathcal{F}| < 1$, the valuation of each coefficient of $F - \mathcal{F}$ is positive. Hence Z^λ-term of $F - \mathcal{F}$ does not contribute to $\text{Trop}(\partial_m f_\lambda)$. \square

Combining this lemma with Equations (21) and (22), it follows that
\[
\text{Trop}(J_\lambda(f)) \subseteq \bigcap_{m \in M} \text{Trop}(\partial_m f_\lambda).
\]
For each maximal cone $\sigma \in \Sigma(n)$, let $e^\sigma_1, e^\sigma_2, \ldots, e^\sigma_n$ be the integral basis of N which generate σ and let $f^\sigma_1, f^\sigma_2, \ldots, f^\sigma_m$ be the dual basis. Set
\[
\lambda^\sigma := (f^\sigma_1, \lambda) \in \Lambda_0.
\]
For each positive dimensional cone $\tau \in \Sigma \setminus \{\{0\}\}$ and $\epsilon \in \mathbb{R}_{>0}$, set
\[
I_\tau := \{v_i \mid \tau \text{ and } v_i \text{ do not span any cone in } \Sigma\},
\]
\[
P_\tau := \{u \in P \mid \ell_i(u) \leq \ell_j(u) \text{ for all } v_i \in \tau \text{ and } v_j \in I_\tau\},
\]
\[
V_{\tau, \epsilon} := \{u \in P \mid \ell_i(u) \leq \epsilon \text{ for all } v_i \in \tau\}.
\]
For $\tau \in \Sigma \setminus \{\{0\}\}$ with $I_\tau \neq \emptyset$, we also set
\[
\epsilon_\tau := \inf_{v_i \in I_\tau, \epsilon \in P_\tau} \ell_i(u),
\]
\[
\epsilon_\tau := \min\{\epsilon_\tau \mid \tau \in \Sigma \setminus \{\{0\}\} \text{ with } I_\tau \neq \emptyset\}.
\]
We easily see that $\epsilon_\tau > 0$ and $V_{\tau, \epsilon} \subseteq P_\tau$.

Theorem 6.10. Suppose that $\epsilon_\tau > \text{val}(\lambda^\sigma) > 0$ for all $\sigma \in \Sigma(n)$ and i. For $\sigma \in \Sigma(n)$, we define $u^\sigma_\lambda \in \text{int}P$ by $\ell_i(u) = \text{val}(\lambda^\sigma)$ $(v_i \in \sigma)$. Then
\[
\text{Trop}(J_\lambda(f)) = \{u^\sigma_\lambda \mid \sigma \in \Sigma(n)\}
\]
and, for each $\sigma \in \Sigma(n)$, there exists a unique critical point $m^\lambda_\sigma \in \text{Spm}(J_\lambda(f))$ with $\text{trop}(m^\lambda_\sigma) = u^\sigma_\lambda$. Moreover, these critical points m^λ_σ are non-degenerate.

Proof. Let $u \in \text{Trop}(J_\lambda(f))$. We first show that $u \in P$. Suppose that $u \in M_{\mathbb{R}}/\tau^{+}$ for some proper face $\tau \prec |\Sigma|$. Take $m \neq 0 \in \tau^{+}$ with $\langle m, \lambda \rangle \neq 0$. Then only the constant term $\langle m, \lambda \rangle$ contributes to $\text{int}u(\partial_m f_\lambda)$. This contradicts $u \in \text{Trop}(J_\lambda(f))$.

Suppose that $u \in P \cap \text{Trop}(J_\lambda(f))$. Choose v_{i_1} with $\ell_{i_1}(u) \leq \ell_i(u)$ for all $i = 1, 2, \ldots, m$ and let τ_1 be the cone in Σ spanned by v_{i_1}. By considering $\text{Trop}(\partial_{f_1} f_\lambda)$ for some $\sigma \in \Sigma(n)$ and i with $\langle f_1^\sigma, v_{i_1} \rangle = 1$, we see that $\ell_{i_1}(u) \leq \text{val}(\lambda^\sigma) < \epsilon_\tau \leq \ell_{i_1}(u)$, which implies $u \in P_{\tau_1}$. Choose v_{i_2} with $\ell_{i_2}(u) \leq \ell_i(u)$ for all
Hence L where the algebra of h at V with p point x. We denote by \hat{f}^σ, $\hat{v}_j = \delta_{i,j}$ (i, j = 1, 2, ..., n). Then we have
\[
\text{trop}(\partial \hat{f}^\sigma, \hat{T}) = \{ u \in P \mid \ell_i(u) = \text{val}(\lambda_i^\sigma_u) \},
\]
which implies that
\[
\text{Trop}(J_\lambda(f)) \subseteq \{ u_\lambda^\sigma \mid \sigma \in \Sigma(n) \}.
\]
On the other hand, by [29] Theorem 11.7, it follows that for each $\sigma \in \Sigma(n)$ there exists a unique critical point $m \in \text{Spm}(J_\lambda(f))$ with $\text{trop}(m) = u_\lambda^\sigma$ and these critical points are non-degenerate.

Combining Proposition [6.8] and Theorem [6.10] we complete the proof of Theorem 6.7.

7. Appendix B

In §7 we introduce a variant of a category of matrix factorizations of Givental type potentials (Definition [7.1]). In this section, we assume that the base field k is equal to \mathbb{C}. Let $R, f, g_1, g_2, \ldots, g_r$ be the same as §4.3 i.e., R is a commutative regular \mathbb{C}-algebra of Krull dimension n, $f \in R$, and g_1, g_2, \ldots, g_r are invertible elements of R. Set
\[
T := R/(g_1 - 1, g_2 - 1, \ldots, g_r - 1).
\]
Suppose that dg_1, dg_2, \ldots, dg_r are linearly independent at each point of $\text{Spec}(T) \subseteq \text{Spec}(R)$, which implies that T is also regular. We denote by f_T the restriction of f to $\text{Spec}(T)$. We will give a relationship between $[\text{Br}(f_T)]$ and a matrix factorization category for a Givental type potential function.

Let X be the analytification of $\text{Spec}(R)$, $Y \subseteq X$ be the analytification of $\text{Spec}(T)$, and C_X^r be the r-dimensional complex plane with coordinates x_1, x_2, \ldots, x_r. For $\epsilon \in \mathbb{R}_{>0}$, set
\[
U := \{ x \in X \mid |g_1(x) - 1| < \epsilon, |g_2(x) - 1| < \epsilon, \ldots, |g_r(x) - 1| < \epsilon \}.
\]
By taking ϵ enough small, we can choose the branch of $\log g_i$ on U such that $\log g_i = 0$ along Y. We define F^an by
\[
F^\text{an} := f - \lambda_1 \log g_1 - \lambda_1 \log g_2 - \cdots - \lambda_r \log g_r.
\]
This is an element of the ring $O_{U \times C_X^r}$ of holomorphic functions on $U \times C_X^r$. Let pr_1 be the projection from $X \times C_X^r$ to X and i be the inclusion of $X \approx X \times \{ \emptyset \}$ to $X \times C_X^r$. By the method of Lagrange multipliers, for $y \in \text{Crit}(f_T)$, there exists a unique critical point $L(y) \in \text{Crit}(F^\text{an})$ with $\text{pr}_1(L(y)) = y$ and this map L gives an isomorphism $\text{Crit}(f_T) \approx \text{Crit}(F^\text{an})$. For a complex manifold Z with a holomorphic function $h \in O_Z$, a point $p \in Z$, and a coordinate system z_1, z_2, \ldots, z_n near p, we define the Jacobian algebra and the Tyurina algebra of h at p by
\[
J(h)_p := \frac{O_{Z,p}}{(\partial_{z_1} h, \partial_{z_2} h, \ldots, \partial_{z_n} h)},
\]
\[
T(h)_p := \frac{O_{Z,p}}{(h, \partial_{z_1} h, \partial_{z_2} h, \ldots, \partial_{z_n} h)},
\]
where $O_{Z,p}$ is the ring of analytic germs of the holomorphic functions at p. The formal Taylor expansion of h at p is denoted by h_p. This is an element of the formal completion $\hat{O}_{Z,p}$.

For $y \in \text{Crit}(f_T)$, take an open neighborhood $V \subseteq U \subseteq X$ of y and a coordinate system t_1, t_2, \ldots, t_n on V with $t_1 = \log g_1, t_2 = \log g_2, \ldots, t_r = \log g_r$ and $t_1(y) = \cdots = t_n(y) = 0$. Using this coordinate system, we easily see that
\[
J(F^\text{an})_{L(y)} \cong J(f_T)_y.
\]
Hence $L(y)$ is an isolated singular point of F^an if and only if y is an isolated singular point of f_T. For an isolated singular point $y \in \text{Crit}(f_T)$, we will show that
\[
[\text{MF}(f_T, y)] \cong [\text{MF}(F^\text{an}_{L(y)})].
\]
Using the coordinate system t_1, t_2, \ldots, t_n near $y \in \text{Crit}(f_T)$, we define $F_{an}^n \in \mathcal{O}_{V \times \mathbb{C}_y, i(g)}$ by

$$f_T - \lambda_1 t_1 - \lambda_2 t_2 - \cdots - \lambda_r t_r.$$

By easy computation, we see that

$$T(F_{an}^n)_{L_y(\lambda)} \cong T(F_{an}^n)_{L_y(\lambda)} \cong T(f_T)_y.$$

By a theorem of Mather and Yau [27], we see that

$$\mathcal{O}_{V \times \mathbb{C}_y, i(g)}/F_{an}^n \cong \mathcal{O}_{V \times \mathbb{C}_y, i(g)}/F_{an}^n.$$

Combining with [28, Theorem 2.10], we have

$$\text{MF}(\hat{F}_{an}^n) \cong \text{MF}(\hat{F}_{T,i}(g)).$$

On the other hand, by the Knörrer periodicity [26, Theorem 3.1], see also [10, §2.1], we have

$$\text{MF}(\hat{F}_{T,i}(g)) \cong \text{MF}(f_T)_y.$$

Thus we see that

$$\text{MF}(\hat{f}_T,y) \cong \text{MF}(\hat{F}_{an}^n).$$

Definition 7.1. Suppose that f_T has isolated singularities. We define a triangulated category of matrix factorizations of F_{an} by

$$\text{Br}^H(F_{an}) := \prod_{p \in \text{Crit}(F_{an})} \text{MF}(F_{an}^n).$$

Proposition 7.2 (cf. [19, Theorem 1.2]). Suppose that f_T has isolated singularities. Then we have

$$\text{Br}^H(F_{an}) \cong [\text{Br}(f_T)].$$

References

[1] M. F. Atiyah and R. Bott. The moment map and equivariant cohomology. *Topology*, 23(1):1–28, 1984.

[2] Paul Balmer and Marco Schlichting. Idempotent completion of triangulated categories. *J. Algebra*, 236(2):819–834, 2001.

[3] S. Bosch, U. Güntzer, and R. Remmert. *Non-Archimedean analysis*. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, 1984. A systematic approach to rigid analytic geometry.

[4] Cheol-Hyun Cho. Holomorphic discs, spin structures, and Floer cohomology of the Clifford torus. *Int. Math. Res. Not.*, (35):1803–1843, 2004.

[5] Cheol-Hyun Cho. Products of Floer cohomology of torus fibers in toric Fano manifolds. *Comm. Math. Phys.*, 260(3):613–640, 2005.

[6] Cheol-Hyun Cho, Hansol Hong, and Siu-Cheong Lau. Localized mirror functor constructed from a Lagrangian torus. *J. Geom. Phys.*, 136:284–320, 2019.

[7] Cheol-Hyun Cho and Yong-Geun Oh. Floer cohomology and disc instantons of Lagrangian torus fibers in Fano toric manifolds. *Asian J. Math.*, 10(4):773–814, 2006.

[8] Brian Conrad. Irreducible components of rigid spaces. *Ann. Inst. Fourier (Grenoble)*, 49(2):473–541, 1999.

[9] David A. Cox, John B. Little, and Henry K. Schenck. *Toric varieties*. Graduate Studies in Mathematics, volume 124 of *Graduate Studies in Mathematics*. American Mathematical Society, Providence, RI, 2011.

[10] Tobias Dyckerhoff. Compact generators in categories of matrix factorizations. *Duke Math. J.*, 159(2):223–274, 2011.

[11] David Eisenbud. *Commutative algebra*, volume 150 of *Graduate Texts in Mathematics*. Springer-Verlag, New York, 1995. With a view toward algebraic geometry.

[12] Jonathan David Evans and Yankı Lekili. Generating the Fukaya categories of Hamiltonian G-manifolds. *J. Amer. Math. Soc.*, 32(1):119–162, 2019.

[13] Kenji Fukaya. Floer homology and mirror symmetry. II. In *Minimal surfaces, geometric analysis and symplectic geometry (Baltimore, MD, 1999)*, volume 34 of *Adv. Stud. Pure Math.*, pages 31–127. Math. Soc. Japan, Tokyo, 2002.

[14] Kenji Fukaya. Cyclic symmetry and adic convergence in Lagrangian Floer theory. *Kyoto J. Math.*, 50(3):521–590, 2010.

[15] Kenji Fukaya, Yong-Geun Oh, Hiroshi Ohta, and Kaoru Ono. *Lagrangian intersection Floer theory: anomaly and obstruction. Part II*, volume 46 of *AMS/IP Studies in Advanced Mathematics*. American Mathematical Society, Providence, RI; International Press, Somerville, MA, 2009.
[16] Kenji Fukaya, Yong-Geun Oh, Hiroshi Ohta, and Kaoru Ono. Lagrangian Floer theory on compact toric manifolds. I. Duke Math. J., 151(1):23–174, 2010.
[17] Alexander Givental. A mirror theorem for toric complete intersections. In Topological field theory, primitive forms and related topics (Kyoto, 1996), volume 160 of Progr. Math., pages 141–175. Birkhäuser Boston, Boston, MA, 1998.
[18] Victor W. Guillemin and Shlomo Sternberg. Supersymmetry and equivariant de Rham theory. Mathematics Past and Present. Springer-Verlag, Berlin, 1999. With an appendix containing two reprints by Henri Cartan [MR0042426 (13,107e); MR0042427 (13,107f)].
[19] Yuki Hirano. Derived Knörrer periodicity and Orlov’s theorem for gauged Landau-Ginzburg models. Compos. Math., 153(5):973–1007, 2017.
[20] M. Hochster. Rings of invariants of tori, Cohen-Macaulay rings generated by monomials, and polytopes. Ann. of Math. (2), 96:318–337, 1972.
[21] Kentaro Hori and Cumrun Vafa. Mirror symmetry. preprint arXiv:hep-th/0002222, 2000.
[22] Hiroshi Iritani. Shift operators and toric mirror theorem. Geom. Topol., 21(1):315–343, 2017.
[23] Dominic Joyce. On manifolds with corners. In Advances in geometric analysis, volume 21 of Adv. Lect. Math. (ALM), pages 225–258. Int. Press, Somerville, MA, 2012.
[24] Jaap Kalkman. BRST model for equivariant cohomology and representatives for the equivariant Thom class. Comm. Math. Phys., 153(3):447–463, 1993.
[25] Yoosik Kim, Siu-Cheong Lau, and Xiao Zheng. T-equivariant disc potential and SYZ mirror construction. preprint arXiv:1912.11455, 2019.
[26] Horst Knörrer. Cohen-Macaulay modules on hypersurface singularities. I. Invent. Math., 88(1):153–164, 1987.
[27] John N. Mather and Stephen S. T. Yau. Classification of isolated hypersurface singularities by their moduli algebras. Invent. Math., 69(2):243–251, 1982.
[28] Dmitri Orlov. Formal completions and idempotent completions of triangulated categories of singularities. Adv. Math., 226(1):206–217, 2011.
[29] Joseph Rabinoff. Tropical analytic geometry, Newton polygons, and tropical intersections. Adv. Math., 229(6):3192–3255, 2012.
[30] Nick Sheridan. On the Fukaya category of a Fano hypersurface in projective space. Publ. Math. Inst. Hautes Études Sci., 124:165–317, 2016.
[31] Amitai Netser Zernik. Equivariant A-infinity algebras for nonorientable lagrangians. preprint arXiv:1512.04507, 2015.
[32] Amitai Netser Zernik. Fixed-point localization for RP^{2m} C CP^{2m}. preprint arXiv:1703.02950, 2017.