Some remarks on relations between the μ-parameters of regular graphs

N.N. Davtyan1, R.R. Kamalian2

1Ijevan Branch of Yerevan State University, e-mail: nndavtyan@gmail.com,
2The Institute for Informatics and Automation Problems of NAS RA, e-mail: rrkamalian@yahoo.com

Abstract

For an undirected, simple, finite, connected graph G, we denote by $V(G)$ and $E(G)$ the sets of its vertices and edges, respectively. A function $\varphi : E(G) \to \{1, \ldots, t\}$ is called a proper edge t-coloring of a graph G, if adjacent edges are colored differently and each of t colors is used. The least value of t for which there exists a proper edge t-coloring of a graph G is denoted by $\chi'(G)$. For any graph G, and for any integer t satisfying the inequality $\chi'(G) \leq t \leq |E(G)|$, we denote by $\alpha(G,t)$ the set of all proper edge t-colorings of G. Let us also define a set $\alpha(G)$ of all proper edge colorings of a graph G:

$$\alpha(G) \equiv \bigcup_{t=\chi'(G)}^{|E(G)|} \alpha(G,t).$$

An arbitrary nonempty finite subset of consecutive integers is called an interval. If $\varphi \in \alpha(G)$ and $x \in V(G)$, then the set of colors of edges of G which are incident with x is denoted by $S_G(x, \varphi)$ and is called a spectrum of the vertex x of the graph G at the proper edge coloring φ. If G is a graph and $\varphi \in \alpha(G)$, then define $f_G(\varphi) \equiv |\{x \in V(G) : S_G(x, \varphi) \text{ is an interval}\}|$.

For a graph G and any integer t, satisfying the inequality $\chi'(G) \leq t \leq |E(G)|$, we define:

$$\mu_1(G,t) \equiv \min_{\varphi \in \alpha(G,t)} f_G(\varphi), \quad \mu_2(G,t) \equiv \max_{\varphi \in \alpha(G,t)} f_G(\varphi).$$

For any graph G, we set:

$$\mu_{11}(G) \equiv \min_{\chi'(G) \leq t \leq |E(G)|} \mu_1(G,t), \quad \mu_{12}(G) \equiv \max_{\chi'(G) \leq t \leq |E(G)|} \mu_1(G,t),$$

$$\mu_{21}(G) \equiv \min_{\chi'(G) \leq t \leq |E(G)|} \mu_2(G,t), \quad \mu_{22}(G) \equiv \max_{\chi'(G) \leq t \leq |E(G)|} \mu_2(G,t).$$

For regular graphs, some relations between the μ-parameters are obtained.

Keywords: regular graph, proper edge coloring, interval spectrum, μ-parameters, game.

Math. Classification: 05C15
We consider finite, undirected, connected graphs without loops and multiple edges containing at least one edge. For any graph G, we denote by $V(G)$ and $E(G)$ the sets of vertices and edges of G, respectively. For any $x \in V(G)$, $d_G(x)$ denotes the degree of the vertex x in G. For a graph G, $\delta(G)$ and $\Delta(G)$ denote the minimum and maximum degrees of vertices in G, respectively.

An arbitrary nonempty finite subset of consecutive integers is called an interval. An interval $\{a, b\}$ for any integer a with the minimum element a and the maximum element b is denoted by $[a, b]$.

A function $\varphi : E(G) \to [1, t]$ is called a proper edge t-coloring of a graph G, if each of t colors is used, and adjacent edges are colored differently.

The minimum value of t for which there exists a proper edge t-coloring of a graph G is denoted by $\chi'(G)$ \[1\].

For any graph G, and for any $t \in [\chi'(G), |E(G)|]$, we denote by $\alpha(G,t)$ the set of all proper edge t-colorings of G.

Let us also define a set $\alpha(G)$ of all proper edge colorings of a graph G:

$$\alpha(G) \equiv \bigcup_{t=\chi'(G)}^{\left|E(G)\right|} \alpha(G,t).$$

If $\varphi \in \alpha(G)$ and $x \in V(G)$, then the set $\{\varphi(e)/e \in E(G), e$ is incident with $x\}$ is called a spectrum of the vertex x of the graph G at the proper edge coloring φ and is denoted by $S_G(x, \varphi)$.

If G is a graph, $\varphi \in \alpha(G)$, then set $V_{\text{int}}(G, \varphi) \equiv \{x \in V(G)/S_G(x, \varphi) \text{ is an interval}\}$ and $f_G(\varphi) \equiv |V_{\text{int}}(G, \varphi)|$. A proper edge coloring $\varphi \in \alpha(G)$ is called an interval edge coloring \[2\] of the graph G iff $f_G(\varphi) = |V(G)|$. The set of all graphs having an interval edge coloring is denoted by \mathcal{I}. The terms and concepts which are not defined can be found in \[5\].

For a graph G, and for any $t \in [\chi'(G), |E(G)|]$, we set \[6\]:

$$\mu_1(G,t) \equiv \min_{\varphi \in \alpha(G,t)} f_G(\varphi), \quad \mu_2(G,t) \equiv \max_{\varphi \in \alpha(G,t)} f_G(\varphi).$$

For any graph G, we set \[6\]:

$$\mu_{11}(G) \equiv \min_{\chi'(G) \leq t \leq \left|E(G)\right|} \mu_1(G,t), \quad \mu_{12}(G) \equiv \max_{\chi'(G) \leq t \leq \left|E(G)\right|} \mu_1(G,t),$$

$$\mu_{21}(G) \equiv \min_{\chi'(G) \leq t \leq \left|E(G)\right|} \mu_2(G,t), \quad \mu_{22}(G) \equiv \max_{\chi'(G) \leq t \leq \left|E(G)\right|} \mu_2(G,t).$$

Clearly, the μ-parameters are correctly defined for an arbitrary graph. Some remarks on their interpretations in games are given in \[7\,8\].

The exact values of the parameters μ_{11}, μ_{12}, μ_{21} and μ_{22} are found for simple paths, simple cycles and simple cycles with a chord \[9\,10\], "Möbius ladders" \[6\,11\], complete graphs \[12\], complete bipartite graphs \[13\,14\], prisms \[11\,15\], n-dimensional cubes \[7\,15\,16\] and the Petersen graph \[8\]. The exact values of μ_{11} and μ_{22} for trees are found in \[17\]. The exact value of μ_{12} for an arbitrary tree is found in \[18\] (see also \[19\,20\]).

In this paper some relations between the μ-parameters of regular graphs are obtained.

In the rest part of this paper we admit an additional condition: an arbitrary graph G satisfies the inequality $\delta(G) \geq 2$.

Theorem 1. \[9\,10\] For any integer $k \geq 2$, the following equalities hold:

1) $\mu_{12}(C_{2k}) = \mu_{22}(C_{2k}) = 2k$,

2) $\mu_{21}(C_{2k}) = \mu_{11}(C_{2k}) = 2k - 1$.

3) $\mu_{11}(C_{2k+1}) = \mu_{22}(C_{2k+1}) = k$.

4) $\mu_{21}(C_{2k+1}) = \mu_{11}(C_{2k+1}) = k$.
2) \(\mu_{21}(C_{2k}) = 2k - 1 \),

3) \(\mu_{11}(C_{2k}) = \begin{cases} 1, & \text{if } k = 2 \\ 0, & \text{if } k \geq 3 \end{cases} \)

Theorem 2. [9,10] For any positive integer \(k \), the following equalities hold:

1) \(\mu_{12}(C_{2k+1}) = 2 \),

2) \(\mu_{21}(C_{2k+1}) = \mu_{22}(C_{2k+1}) = 2k \),

3) \(\mu_{11}(C_{2k+1}) = \begin{cases} 2, & \text{if } k = 1 \\ 0, & \text{if } k \geq 2 \end{cases} \)

Corollary 1. [9,10] For any integer \(k \geq 2 \), the inequalities \(\mu_{21}(C_{2k}) < \mu_{12}(C_{2k}) \) and \(\mu_{12}(C_{2k}) < \mu_{21}(C_{2k+1}) \) hold.

Theorem 3. [9,10] For any graph \(G \), the inequalities \(\mu_{11}(G) \leq \mu_{12}(G) \leq \mu_{22}(G) \), \(\mu_{11}(G) \leq \mu_{21}(G) \leq \mu_{22}(G) \) hold.

Remark 1. [9,10] Corollary 1 means that there are graphs \(G \) for which \(\mu_{21}(G) < \mu_{12}(G) \) and there are also graphs \(G \) for which \(\mu_{12}(G) < \mu_{21}(G) \).

Theorem 4. [9] If \(G \) is a regular graph with \(\chi'(G) = \Delta(G) \), then \(\mu_{12}(G) = |V(G)| \).

Theorem 5. [27] If \(G \) is an \(r \)-regular graph, and \(\varphi \in \alpha(G, |E(G)|) \), then

\[|V_{int}(G, \varphi)| \leq \left\lfloor \frac{r \cdot |V(G)| - 2}{2 \cdot (r - 1)} \right\rfloor. \]

Corollary 2. If \(G \) is an \(r \)-regular graph, then

\[\mu_{2}(G, |E(G)|) \leq \left\lfloor \frac{r \cdot |V(G)| - 2}{2 \cdot (r - 1)} \right\rfloor. \]

Corollary 3. If \(G \) is an \(r \)-regular graph, then

\[\mu_{21}(G) \leq \left\lfloor \frac{r \cdot |V(G)| - 2}{2 \cdot (r - 1)} \right\rfloor. \]

Proposition 1. For arbitrary integers \(r \geq 2 \) and \(n \geq 1 \), the inequality

\[\left\lfloor \frac{r \cdot n - 2}{2 \cdot (r - 1)} \right\rfloor \leq n - 1 \]

holds.

Proof.

\[\left\lfloor \frac{r n - 2}{2 \cdot (r - 1)} \right\rfloor = \left\lfloor \frac{n}{2} + \frac{n - 2}{2 \cdot (r - 1)} \right\rfloor \leq \left\lfloor \frac{n}{2} + \frac{n - 2}{2} \right\rfloor = n - 1. \]

The Proposition is proved.

Corollary 4. If \(G \) is a regular graph, then \(\mu_{21}(G) \leq |V(G)| - 1 \).
From corollary 4 and theorem 4 we obtain

Corollary 5. For an arbitrary regular graph G with $\chi'(G) = \Delta(G)$, the inequality $\mu_{21}(G) < \mu_{12}(G)$ holds.

Theorem 6. For an arbitrary regular graph G, the following four statements are equivalent:

1) $\chi'(G) = \Delta(G)$,
2) $G \in \mathcal{N}$,
3) $\mu_{22}(G) = |V(G)|$,
4) $\mu_{12}(G) = |V(G)|$.

Proof. The equivalence between 1) and 2) was proved in [2, 4]. The equivalence between 2) and 3) is evident.

Let us show the equivalence between 1) and 4).

If $\chi'(G) = \Delta(G)$, then, by theorem 4, we have the equality $\mu_{12}(G) = |V(G)|$. It means that 1) \Rightarrow 4).

Now suppose that $\mu_{12}(G) = |V(G)|$. By theorem 3, we have also the equality $\mu_{22}(G) = |V(G)|$. Consequently, using the equivalence between 2) and 3), we have also the relation $G \in \mathcal{N}$. Finally, using the equivalence between 1) and 2), we have also the equality $\chi'(G) = \Delta(G)$. Thus, 4) \Rightarrow 1).

The Theorem is proved.

References

[1] V.G. Vizing, The chromatic index of a multigraph, Kibernetika 3 (1965), pp. 29–39.

[2] A.S. Asratian, R.R. Kamalian, Interval colorings of edges of a multigraph, Appl. Math. 5 (1987), Yerevan State University, pp. 25–34 (in Russian).

[3] A.S. Asratian, R.R. Kamalian, Investigation of interval edge-colorings of graphs, Journal of Combinatorial Theory. Series B 62 (1994), no.1, pp. 34–43.

[4] R.R. Kamalian, Interval Edge Colorings of Graphs, Doctoral dissertation, the Institute of Mathematics of the Siberian Branch of the Academy of Sciences of USSR, Novosibirsk, 1990 (in Russian).

[5] D.B. West, Introduction to Graph Theory, Prentice-Hall, New Jersey, 1996.

[6] N.N. Davtyan, R.R. Kamalian, On boundaries of extremums of the number of vertices with an interval spectrum among the set of proper edge colorings of "Möbius ladders" with t colors under variation of t, Proc. of the 3rd Ann. Sci. Conf. (December 5–10, 2008) of the RAU, Yerevan, 2009, pp. 81–84 (in Russian).

[7] A.M. Khachatryan, R.R. Kamalian, On the extremal values of the number of vertices with an interval spectrum on the set of proper edge colorings of the graph of the n-dimensional cube, http://arxiv.org/abs/1307.1389
[8] N.N. Davtyan, *On the \(\mu\)-parameters of the Petersen graph*, http://arxiv.org/abs/1307.2348

[9] N.N. Davtyan, R.R. Kamalian, *On properties of the number of vertices with an interval spectrum in proper edge colorings of some graphs*, the Herald of the RAU, №2, Yerevan, 2009, pp. 33–42.

[10] N.N. Davtyan, R.R. Kamalian, *Some properties of the number of vertices with an interval spectrum in proper edge colorings of graphs*, The Collection "Akuq" of Scientific Papers of Ijevan Branch of Yerevan State University, Yerevan, 2012, pp. 18–27.

[11] N.N. Davtyan, A.M. Khachatryan, R.R. Kamalian, *On Boundaries of Extrema of the Number of Vertices with an Interval Spectrum on the Sets of Proper Edge \(t\)-colorings of Some Cubic Graphs under Variation of \(t\)*, International Mathematical Forum, Vol. 8, 2013, no. 24, pp. 1195–1198, http://dx.doi.org/10.12988/inf.2013.3491.

[12] A.M. Khachatryan, *On boundaries of extremums of the number of vertices with an interval spectrum among the set of proper edge colorings of complete graphs with \(t\) colors under variation of \(t\)*, Proc. of the 5th Ann. Sci. Conf. (December 6–10, 2010) of the RAU, Yerevan, 2011, pp. 268–272 (in Russian).

[13] A.M. Khachatryan, *On the parameters \(\mu_{11}, \mu_{12}\) and \(\mu_{22}\) of complete bipartite graphs*, the Herald of the RAU, №1, Yerevan, 2011, pp. 76–83 (in Russian).

[14] R.R. Kamalian, A.M. Khachatryan, *On the sharp value of the parameter \(\mu_{21}\) of complete bipartite graphs*, the Herald of the RAU, №2, Yerevan, 2011, pp. 19–25 (in Russian).

[15] R.R. Kamalian, A.M. Khachatryan, *On properties of a number of vertices with an interval spectrum among the set of proper edge colorings of some regular graphs*, Proc. of the 6th Ann. Sci. Conf. (December 5–9, 2011) of the RAU, Yerevan, 2012, pp. 62–65 (in Russian).

[16] A.M. Khachatryan, R.R. Kamalian, *On the \(\mu\)-parameters of the graph of the \(n\)-dimensional cube*, Book of abstracts of the International Mathematical Conference on occasion to the 70th year anniversary of Professor Vladimir Kirichenko, June 13–19 (2012), Mykolaiv, Ukraine, pp. 38–39.

[17] N.N. Davtyan, *On the least and the greatest possible numbers of vertices with an interval spectrum on the set of proper edge colorings of a tree*, Math. Problems of Computer Science, Vol. 32, Yerevan, 2009, pp. 107–111 (in Russian).

[18] N.N. Davtyan, R.R. Kamalian, *On the parameter \(\mu_{12}\) of a tree*, Proc. of the 4th Ann. Sci. Conf. (November 30 – December 4, 2009) of the RAU, Yerevan, 2010, pp. 149–151 (in Russian).

[19] N.N. Davtyan, R.R. Kamalian, *On an algorithm of evaluation of the exact value of the parameter \(\mu_{12}\) of an arbitrary tree*, the Herald of the RAU, №1, Yerevan, 2011, pp. 57–63 (in Russian).

[20] N.N. Davtyan, *On a property of the parameter \(\mu_{12}\) of trees of special kind*, the Herald of the RAU, №2, Yerevan, 2010, pp. 77–82 (in Russian).

[21] N.N. Davtyan, R.R. Kamalian, *An inequality for the number of vertices with an interval spectrum in edge labelings of regular graphs*, http://arxiv.org/abs/1307.1392.