Exact controllability of stochastic differential equations with multiplicative noise

V. Barbu

Al.I. Cuza University and Romanian Academy, Iasi, Romania

L. Tubaro

University of Trento, Italy

Abstract

One proves that the n-D stochastic controlled equation $dX + A(t)X dt = \sigma(X) dW + B(t)u dt$, where $\sigma \in \text{Lip}((\mathbb{R}^n, L(\mathbb{R}^d, \mathbb{R}^n)))$, $A(t) \in L(\mathbb{R}^n)$ and $B(t) \in L(\mathbb{R}^m, \mathbb{R}^n)$ is invertible, is exactly controllable with high probability in each $y \in \mathbb{R}^n$, $\sigma(y) = 0$ on each finite interval $(0, T)$. An application to approximate controllability to stochastic heat equation is given. The case where $B \in L(\mathbb{R}^m, \mathbb{R}^n)$, $1 \leq m < n$ and the pair (A, B) satisfies the Kalman rank condition is also studied.

Keywords: stochastic equation, controllability, feedback controller

2010 MSC: 60H10, 60H15, 93B05, 93B52

1. Introduction

Consider the stochastic n-D differential equation

$$dX + A(t)X dt = \sigma(X) dW + B(t)u dt, \quad t \geq 0$$

$$X(0) = x \in \mathbb{R}^n,$$ (1)

where $\sigma: \mathbb{R}^n \to L(\mathbb{R}^d, \mathbb{R}^n)$; $A(t) \in L(\mathbb{R}^n)$, $B(t) \in L(\mathbb{R}^m, \mathbb{R}^n)$, $t \in [0, T]$, are assumed to satisfy the following hypotheses

(i) $y \in \mathbb{R}^n$, $\sigma \in \text{Lip}(\mathbb{R}^n, L(\mathbb{R}^d, \mathbb{R}^n))$, $\sigma(y) = 0$.

(ii) $A, B \in C(\mathbb{R}^+; L(\mathbb{R}^n, \mathbb{R}^n))$ and for some $\gamma > 0$

$$B(t)B^\ast(t) \geq \gamma^2 I, \quad \forall t \in [0, \infty).$$ (2)

(iii) $\sigma(X) dW(t) = \sum_{j=1}^d \sigma_j(X) d\beta_j(t)$, $t \geq 0$ where $\{\beta_j\}_{j=1}^d$ is a system of independent Brownian motions in the probability space $\{\Omega, \mathcal{F}, \mathbb{P}\}$.

We denote by $\{\mathcal{F}_t\}_{t \geq 0}$ the filtration corresponding to $\{\beta_j\}_{j=1}^d$ and by X^u the solution to (1).

The problem we address here is the following

Problem 1. Given $x, y \in \mathbb{R}^n$ find an $(\mathcal{F}_t)_{t \geq 0}$-adapted controller $u \in L^2((0, T) \times \Omega; \mathbb{R}^m)$ such that

$$X^u(0) = x, \quad X^u(T) = y.$$ (3)

The main result of this work, Theorem 2.1 below, amounts to saying that, under hypotheses (i)–(iii), Problem 1 has a solution u^\ast in a sense to be made precise later on and moreover the controller u^\ast can be found in a feedback form $u^\ast = \Phi^\ast(X)$.

As regards the literature on exact controllability of equation (1), the works [10] should be primarily cited. In particular, in the recent work [10], it is solved the above exact controllability problem in the special case where σ is linear and $B \equiv B(t)$ satisfies the condition (2).

With respect to above mentioned papers the main novelty of this work is the exact controllability of equation via a new controllability approach to (1) by designing a
feedback controller \(u^*\) of relay type which steers with high probability \(x\) in \(y\) in the time \(T\). This constructive approach allowed to solve the controllability problem for control systems \(\textbf{[1]}\) with Lipschitzian volatility term \(\sigma\).

2. The main result

Theorem 2.1. Assume that hypotheses (i)–(iii) hold. Let \(x, y \in \mathbb{R}^n\) and \(T > 0\) be arbitrary but fixed. Then, for each \(\rho > 0\), there is an \((\mathcal{F}_t)_{t \geq 0}\)-adapted controller \(u^* \in L^\infty((0,T] \times \Omega; \mathbb{R}^m)\) such that if

\[
\tau = \inf\{t \geq 0 : |X^u(t) - y| = 0\},
\]

we have

\[\mathbb{P}(\tau \leq T) \geq 1 - (\rho y)^{-1} (|y| + (1 - e^{-C^*T})^{-1} |x-y|)\] (5)

for some \(\eta, C^* > 0\) independent of \(\rho, x\) and \(y\). Moreover, the controller \(u^*\) is expressed in the feedback form

\[u^*(t) \in -\rho \text{sign}(B^*(t)(X(t) - y)), \quad t \in (0, T).\] (6)

Here \(\text{sign} : \mathbb{R}^n \to \mathbb{R}^n\) is the multivalued mapping

\[
\text{sign} y = \begin{cases} \frac{y}{|y|} & \text{if } y \neq 0 \\ \{ \theta \in \mathbb{R}^n : |\theta| \leq 1 \} & \text{if } y = 0. \end{cases}
\] (7)

In a few words the idea of the proof is to show that the corresponding closed loop stochastic system

\[dX(t) + A(t)X(t)dt + \rho B(t)\text{sign}(B^*(t)(X(t) - y))dt \geq \sigma(X)dW,\]

\[X(0) = x\] (8)

is well posed that is, it has a unique absolutely continuous solution, and that if \(\tau\) is the stopping time defined by \(\textbf{[1]}\) then \(\textbf{[3]}\) holds. By \(\textbf{[3]} - \textbf{[4]}\) we see that \(u^*\) is a relay controller given by

\[
\begin{cases}
 u^*(t) = -\rho U(X(t)) |U(X(t))| & \text{on } \{(t, \omega) | U(X(t)) \neq 0\} \\
 |u^*(t)| \leq \rho & \text{on } \{(t, \omega) | U(X(t)) = 0\}
\end{cases}
\]

where \(U(X(t)) = B^*(t)(X(t) - y)\). Though \(u^*\) is not explicitly defined on \(G = \{(t, \omega) | U(X(t)) = 0\}\), it is however an \(\mathcal{F}_t\)-adapted controller multivalued process which is uniquely defined on \(G^c\), i.e. the complement of \(G\).

Theorem 2.1 amounts to saying that under assumptions (i)–(iii), system \(\textbf{[1]}\) is exactly controllable to each \(y \in \sigma^{-1}(0)\) with high probability for \(\rho\) large enough. In particular one has exact null controllability if \(\sigma(0) = 0\).

We shall denote by the same symbol \(|\cdot|\) the norm in the Euclidean spaces \(\mathbb{R}^n\) and \(L(\mathbb{R}^n, \mathbb{R}^m) = \mathbb{R}^{nm}\). For \(n = m\) we simply write \(L(\mathbb{R}^n, \mathbb{R}^n) = L(\mathbb{R}^n)\).

3. Proof of Theorem 2.1

We have

Proposition 3.1. Let \(0 < T < \infty\). There is a unique strong solution \(X \in L^2(\Omega; C([0,T]; \mathcal{L}(\mathbb{R}^n)))\) to \(\textbf{[8]}\). More precisely, there are \(X \in L^2(\Omega; C([0,T]; \mathcal{L}(\mathbb{R}^n)))\) and an \((\mathcal{F}_t)_{t \geq 0}\)-adapted process \(\xi : [0, T] \to \mathcal{L}(\mathbb{R}^n)\) such that \(\xi \in L^\infty((0,T) \times \Omega; \mathcal{L}(\mathbb{R}^n))\) and

\[\xi(t) \in \text{B}(t)(\text{sign}(B^*(t)(X(t) - y))), \quad \text{a.e. in } (0,T) \times \Omega\] (9)

\[dX(t) + A(t)X(t)dt + \rho \xi(t)dt = \sigma(X)dW,\]

\[X(0) = x\] (10)

We shall prove Proposition \(\textbf{3.1}\) at the end of this section and now we use it to prove Theorem \(\textbf{2.1}\). The proof is based on some extinction type arguments already developed in a different context in \(\textbf{[2]}\) and \(\textbf{[3]}\), pag. 68]. (In the following we shall write \(A\) instead of \(A(t)\).)

Let \(\varphi \in C^2(\mathbb{R}^+)\) be such that \(\varphi_r(x) = \frac{x}{r}\) for \(0 \leq r \leq \epsilon, \varphi_r(x) = 1 + \epsilon\) for \(r \geq 2\epsilon\) and \(|\varphi''(r)| \leq \frac{C}{\epsilon}, \forall r \in \mathbb{R}^+\). We set \(\Phi_r(x) = \varphi_r(|X|), \forall X \in \mathbb{R}^n\). We have \(\nabla \Phi_r(x) = \varphi''(|X|) \text{sign} X, \nabla^2 \Phi_r(x) = 0\) for \(|X| \leq \epsilon\) and \(|X| \geq 2\epsilon, |\nabla^2 \Phi_r(x)| \leq \frac{C}{\epsilon}\). We apply Itô’s formula in \(\textbf{[10]}\) to func-
tion \(t \to \Phi_{t}(X(t) - y) \). We get
\[
\begin{align*}
 & d\Phi_{t}(X(t) - y) \\
 & + \langle A(X(t)) - A(y), \nabla\Phi_{t}(X(t) - y) \rangle dt \\
 & + \rho \langle \xi(t), B^{*}(t)\nabla\Phi_{t}(X(t) - y) \rangle dt \\
 & + \frac{1}{2} \sum_{i,j=1}^{n} \alpha_{ij}(\nabla^{2}\Phi_{t}(X(t) - y)_{ij}) dt \\
 & + \langle \sigma(X(t)) dW, \nabla\Phi_{t}(X(t) - y) \rangle
\end{align*}
\]
where \(\alpha_{ij} = \sum_{l=1}^{d} \sigma_{il}\sigma_{lj} \). We note that for \(\varepsilon \to 0 \)
\(\Phi_{t}(X(t) - y) \to |X(t) - y|, \nabla\Phi_{t}(X(t) - y) \to \eta(t) \in \text{sign}(X(t) - y), |\nabla\Phi_{t}(X(t) - y)| \leq 1 + \varepsilon, \) and because \(\sigma(y) = 0 \) we have also \(|\alpha_{ij}(\nabla^{2}\Phi_{t}(X(t) - y)_{ij})| \leq C_{2} \varepsilon \) for all \(t \geq 0 \).

On the other hand, by (2) it follows that there is \(\gamma > 0 \) such that
\[
|B^{*}(t)(X(t) - y)| \geq \gamma |X(t) - y|
\]
(11)
We note also that
\[
|\alpha_{ij}(t)| \leq C_{2} |X(t) - y|^{2}.
\]
Integrating on \((s, t) \subset (0, \infty) \) we get
\[
\Phi_{t}(X(t) - y) + \rho \int_{s}^{t} \langle \xi(r), B^{*}(t)\nabla\Phi_{t}(X(r) - y) \rangle dr \\
\Phi_{s}(X(s) - y) + |A|(1 + \varepsilon) \int_{s}^{t} (|y| + |X(r) - y|) dr \\
+ C_{2} \varepsilon + \int_{s}^{t} (\sigma(X(r)) dW, \nabla\Phi_{t}(X(r) - y)).
\]
Taking into account that
\[
B^{*}(t) \nabla\Phi_{t}(X(r) - y) \to B^{*}(t)\eta(r),
\]
with \(\eta(r) \in \text{sign}(X(r) - y) \) and that
\[
\langle \xi(r), B^{*}(t)\eta(r) \rangle = |B^{*}(t)(X(r) - y)| |X(r) - y|^{-1} \mathbb{1}_{|X(r) - y| \neq 0},
\]
by (11) we get for \(\varepsilon \to 0 \)
\[
|X(t) - y| + \rho \gamma \int_{s}^{t} \mathbb{1}_{|X(r) - y| \neq 0} dr
\leq |X(s) - y| + C^{*} \int_{s}^{t} |X(r) - y| dr + C^{*}(t - s) |y| \\
+ \int_{s}^{t} (\sigma(X(r)) dW, \text{sign}(X(r) - y))).
\]
where \(C^{*} \) is independent of \(x, y \) and \(\rho \). Hence
\[
e^{-C^{*} t}|X(t) - y| + \rho \gamma \int_{s}^{t} e^{-C^{*} r} 1_{|X(r) - y| \neq 0} dr
\leq e^{-C^{*} s}|X(s) - y| + (1 - e^{-C^{*}(t-s)}) |y|
+ \int_{s}^{t} e^{-C^{*} r} (|\sigma(X(r)) dW|, \text{sign}(X(r) - y))), \quad 0 \leq s \leq t < \infty
\]
(12)
In particular, (12) implies that the process
\[
t \to e^{-C^{*} t}|X(t) - y|
\]
is a \(\mathcal{F}_{t} \geq 0 \)-supermartingale that is,
\[
\mathbb{E}(e^{-C^{*} t}|X(t) - y| | \mathcal{F}_{s}) \leq e^{-C^{*} s}|X(s) - y|, \quad \forall t \geq s.
\]
This yields \(|X(t) - y| = 0, \forall t \geq \tau \), where \(\tau \) is defined by (1).

If take expectation \(\mathbb{E} \) in (12), we obtain, for \(s = 0 \),
\[
e^{-C^{*} t}|X(t) - y| + \rho \gamma \int_{0}^{t} e^{-C^{*} r} \mathbb{P}(\tau > r) dr
\leq |x - y| + (1 - e^{-C^{*} t}) |y|.
\]
Hence, for \(t = T \) we get
\[
\mathbb{P}(\tau > T)
\leq C^{*} \rho \gamma ((1 - e^{-C^{*} T})^{-1}|x - y| + |y|)
\]
(13)

Proof of Proposition [4]

Let \(F_{\lambda}(t) \in C([0, T]; \mathbb{R}^{n}) \) be the Yosida approximation of \(F(t, X) = \rho B(t)\text{sign}(B^{*}(t)(X - y)) \), that is (see [1, pag. 97])
\[
F_{\lambda}(t) = \frac{1}{\lambda} (I - (I + \lambda F(t))^{-1}), \quad \lambda > 0
\]
(14)
We note that the operator \(F(t) \) is \(m \)-accretive in the space \(\mathbb{R}^{n} \times \mathbb{R}^{n} \). Since the \(F_{\lambda}(t) \) are Lipschitz for \(t \in [0, T] \), the equation
\[
dX_{\lambda} + A(t) X_{\lambda} dt + F_{\lambda}(t, X_{\lambda}) dt = \sigma(X_{\lambda}) dW
\]
(15)
has for each \(T > 0 \) a unique solution
\[
X_{\lambda} \in L^{2}(\Omega; C([0, T]; \mathbb{R}^{n})).
\]
Taking into account that for each \(\lambda > 0 \)
\[
F_{\lambda}(t, X) \in F(t, I + \lambda F(t))^{-1} X, \quad \forall X \in \mathbb{R}^{n}
\]
(16)
\[
|F_{\lambda}(t, X)| \leq C \rho, \quad \forall X \in \mathbb{R}^{n}, \quad \lambda > 0
\]
(17)
and that $X \to F(t, X)$ is monotone in \mathbb{R}^n, we get, via
the Burkholder-Gundy-Davis inequality, the estimate
\[
\mathbb{E} \sup_{t \in [0, T]} |X_\lambda(t)|^2 \leq C, \forall \lambda > 0
\]
and
\[
\mathbb{E} \sup_{t \in [0, T]} |X_\lambda(t) - X_\mu(t)| \leq C \mathbb{E} \int_0^t (\lambda F_\lambda(r, X_\lambda(r))^2 + \mu |F_\mu(r, X_\mu(r))|^2) \, dr
\leq C (\lambda + \mu), \forall \lambda, \mu > 0.
\]
Hence, there is
\[
X = \lim_{\lambda \to 0} X_\lambda \text{ in } L^2(\Omega; C([0, T]; \mathbb{R}^n))
\] (18)
and
\[
\xi = \lim_{\lambda \to 0} F_\lambda(t, x_\lambda) \text{ in } L^\infty((0, T) \times \Omega; \mathbb{R}^n)
\] (19)
Since by (11) and (15)
\[
(I + \lambda F(t))^{-1} X_\lambda(t) \to X(t) \text{ in } L^2(\Omega; C([0, T]; \mathbb{R}^n)),
\]
for $\lambda \to 0$, it follows by (10), (17) and the maximal monotonicity of $F(t): \mathbb{R}^n \to \mathbb{R}^n$ that
\[
\xi(t) \in F(t, x(t)), \text{ a.e. in } (0, T) \times \Omega.
\]
Hence X is a solution to (9)-(10) as claimed. The uniqueness is immediate by monotonicity of the mapping $F(t)$ but we omit the details.

4. The case of linear multiplicative noise

Consider here the equation
\[
dX + A(t)X \, dt = \sum_{i=1}^d \sigma_i(X) \, d\beta_i + B(t) u(t) \, dt
\]
(20)
with the final target $X(T) = y$, where $B(t)$ satisfies assumption (ii) and $\sigma_i \in L(\mathbb{R}^n)$.

Let $\Gamma \in C([0, T]; L(\mathbb{R}^n))$ be the solution to equation
\[
d\Gamma(t) = \sum_{i=1}^d \sigma_i \Gamma(t) \, d\beta_i, \quad t \geq 0, \quad \Gamma(0) = I.
\]
(21)
By the substitution $X(t) = \Gamma(t)y(t)$ one transforms via
Itô’s formula equation (20) into random differential equation
\[
\frac{dy}{dt}(t) + \Gamma^{-1}(t)A(t)\Gamma(t) y(t) = \Gamma^{-1}(t)B(t)u(t).
\]
(22)
In (22) we take u the feedback controller
\[
u(t) = -\hat{\rho} \text{sign} \left((B(t)\Gamma^{-1}(t))^\ast(y(t) - y_T) \right), \quad t \geq 0
\]
(23)
where $y_T = \Gamma^{-1}(T)X_T$. Arguing as in the proof of Proposition 3.1 it follows that (22) has (for each $\omega \in \Omega$) unique absolutely continuous solution y with $\frac{dy}{dt} \in L^2(0, T; \mathbb{R}^n)$.

We note that if y is an $(\mathcal{F}_t)_{t \geq 0}$-adapted solution to (22)-(23) then $X = \Gamma(t)y(t)$ is the solution to closed loop system (20) with feedback control
\[
u(t) = -\hat{\rho} \text{sign} \left((B(t)\Gamma^{-1}(t))^\ast(\Gamma^{-1}(t)X(t) - \Gamma(t)\Gamma^{-1}(T)X_T) \right).
\]
(24)
We have

Theorem 4.1. Let $T > 0$, $x \in \mathbb{R}^n$ and $X_T \in \mathcal{F}_T \cap L^2(\Omega)$ be arbitrary but fixed. Then there is $\hat{\rho} \in \mathcal{F}_T \cap L^2(\Omega)$ such that the feedback controller (23) steers x in y_T, in time T, with probability one.

Proof. If multiply equations (22)-(23) by $y(t) - y_T$ we get by (2) that
\[
\frac{1}{2} \frac{d}{dt} |y(t) - y_T|^2 + \hat{\rho} \gamma C_1^\ast |y(t) - y_T| \leq C_2^\ast (|y(t) - y_T| + |y_T|) |y(t) - y_T|,
\]
(25)
a.e. $t \in (0, T)$, where
\[
(C_1^\ast)^{-1} = \sup\{||\Gamma(t)||^{-1}|_{L(\mathbb{R}^n)}: t \in [0, T]\}, \quad C_2^\ast = \sup\{||\Gamma^{-1}(t)A(t)\Gamma(t)||_{L(\mathbb{R}^n)}: t \in [0, T]\}.
\]
By (25) it follows that if $\hat{\rho} \gamma C_1^\ast > C_2^\ast|y_T|$ then the function
\[
t \to e^{-C_2^\ast t} |y(t) - y_T| + (\hat{\rho} \gamma C_1^\ast - C_2^\ast|y_T|)(C_2^\ast)^{-1}(1 - e^{-C_2^\ast t})
\]
is monotonically decreasing and so $y(T) - y_T = 0$ if $\hat{\rho}$ is taken in such a way that
\[
(\hat{\rho} \gamma C_1^\ast - C_2^\ast|y_T|)(C_2^\ast)^{-1}(1 - e^{-C_2^\ast T}) \geq |x - y_T|.
\]
Then Theorem 3.1 follows for
\[
\hat{\rho} = (\gamma C_1^\ast)^{-1}(\gamma C_1^\ast|y_T| + |x - y_T|).
\]
It should be noted that since \(\hat{\rho} \) is not \(F_0 \)-measurable, the solution \(y \) to system (22)–(25) is not \((\mathcal{F}_t)_{t \geq 0}\) adapted and so it is not equivalent with (20)–(22). This happens however if \(A(t) \) and \(B(t) \) commute with \(\sigma_i \), because in this case \(C^*_i \), \(i = 1, 2 \) are deterministic and so can be chose \(\hat{\rho} \).

In general it follows for system (20)–(25) with \(\hat{\rho} = \rho \) and \(y_T \) deterministic, a result similar to that in Theorem 2.1.

Namely, by (25) it follows as above (see (12)) that

\[
\mathbb{E}(e^{-C^*_T t}|y(t) - y_T]) + \rho \gamma \mathbb{E} \int_0^t e^{-C^*_T r} \mathbb{P}(r > \tau) \, dr \leq \mathbb{E}|x - y_T| + (1 - e^{-C^*_T T}) |y_T|
\]

and therefore \(\mathbb{P}(\tau > T) \leq 1 - (\rho \gamma)^{-1}(|x - y_T| + |y_T|) \) for some \(\eta > 0 \).

Remark 4.2. Clearly Theorem 1.1 extends to Lipschitzian mappings \(A(t): \mathbb{R}^n \to \mathbb{R}^n \).

Consider now system (1) where \(A \in \mathcal{L}(\mathbb{R}^n) \), \(B \in \mathcal{L}(\mathbb{R}^m, \mathbb{R}^n) \), \(1 \leq m < n \) is time dependent and is satisfied the Kalman rank condition

\[
\text{rank}||B, AB, \ldots, A^{n-1}B|| = n
\]

Assume also that \(d = 1 \), \(\sigma_1 = \sigma \) and

\[
\sigma^k = \sigma, \quad \forall k \geq 2
\]

\[
\sigma(\mathbb{R}^d) \subset B(\mathbb{R}^m)
\]

for some \(\sigma \in \mathbb{R} \).

We have

Theorem 4.3. Let \(T > 0 \) and \(x \in \mathbb{R}^n \) be arbitrary but fixed. Then under hypotheses (27)–(29) there is an \((\mathcal{F}_t)_{t \geq 0}\)-adapted controller \(u \in L^2((0, T) \times \Omega; \mathbb{R}^n) \) which steers \(x \) in origin, in time \(T \), with probability one.

Proof. By the transformation \(X(t) = \Gamma(t)y(t) \) one reduces (1) to the random system (22), that is

\[
\frac{dy}{dt}(t) + \exp(-\beta(t) \sigma + \eta \frac{1}{2} \sigma^2) A \exp(\beta(t) \sigma - \eta \frac{1}{2} \sigma^2) = B u(t)
\]

\[
y(0) = x
\]

because \(\Gamma(t) = \exp(\beta(t) \sigma - \eta \frac{1}{2} \sigma^2) \).

Taking into account hypothesis (27), we can rewrite (29) as

\[
\frac{dy}{dt} + A y = B u - \sigma D(t) y + \sigma D_1(t) u
\]

\[
y(0) = x.
\]

where \(D_1(t) = \sum_{k=1}^{\infty} \frac{1}{k!} (\beta(t) - \frac{m a^2}{2})^k \sigma^{k-1} \) and

\[
D(t) = \sum_{k=1}^{\infty} \frac{1}{k!} (-\beta(t) + \frac{1}{2} t a^2)^k \sigma^{k-1} A \sum_{k=1}^{\infty} \frac{1}{k!} (\beta(t) - \frac{1}{2} t a^2) \sigma^k
\]

Now by Kalman’s condition (20), we know that there is a deterministic controller \(\bar{u} \in L^2(0, T; \mathbb{R}^m) \) such that

\[
\frac{d\bar{y}}{dt} + A \bar{y} = B \bar{u}, \quad t \in (0, T)
\]

\[
\bar{y}(0) = x, \quad \bar{y}(T) = 0.
\]

Since \(B^{-1} \in (B(\mathbb{R}^m), \mathbb{R}^n) \), it follows by (29) that

\[
\frac{d\bar{y}}{dt} + \Gamma^{-1} A \Gamma \bar{y} = \Gamma^{-1} B \bar{u}(t) + \sigma D_1(t) \bar{y}(t) + \sigma D_1(t) \bar{\bar{u}}
\]

\[
\Gamma^{-1} B \bar{u}(t) + B^{-1} (\sigma D(t) \bar{y}(t) + \sigma D_1(t) \bar{\bar{u}}) = \Gamma^{-1} B \bar{u}(t)
\]

\[
\bar{y}(0) = x, \quad \bar{y}(T) = 0.
\]

This means that \((\bar{y}, u = \bar{u}(t) + B^{-1}(\sigma D(t) \bar{y}(t) + D_1(t) \bar{\bar{u}}))\) satisfies system (30) and \(\bar{y}(T) = 0 \). The controller \(u \) is obviously \((\mathcal{F}_t)_{t \geq 0}\)-adapted and so \((X(t) = \Gamma^{-1}(t)\bar{y}(t), u(t))\) satisfies system (11) and \(X(T) = 0 \) \(\mathcal{P} \)-a.s.

Remark 4.4. One might suspect that the controller \(u \) steering \(x \) in origin can be found in feedback form but this problem is open.

5. An example

Consider the controlled \(n \)-order stochastic differential equation

\[
X^{(n)}(t) + \sum_{i=1}^{n} a_i X^{(i-1)}(t)
\]

\[
= \sigma_0(X, X', \ldots, X^{(n-1)}) W + u(t)
\]

\[
\{X^{(k)}(0)\}_{k=0}^{n-1} = x \in \mathbb{R}^n
\]

where \(a_i \in \mathbb{R}, \sigma_0(x_1, x_2, \ldots, x_n) = \sum_{i=1}^{n} b_i x_i \) and \(W \) is a Wiener process in 1-D.
A typical example is the stochastic harmonic oscillator
\[\dot{X} + aX \, dt + bX \, dt = \sigma_0 \, W \]
\[X(0) = X_0, \quad \dot{X}(0) = X_1. \]
Equation (31) is viewed as the stochastic differential system
\[dX + A \, X \, dt = B \, u \, dt + \sigma(X) \, dW \]
where \(X = (X_t)_{t=1}^N, X_t = X^{(i-1)}, X(0) = x, \)
\[\sigma = \begin{pmatrix} 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}, \]
\[A = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ a_1 & a_2 & a_3 & \cdots & a_n \end{pmatrix}, \quad B = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}. \]
Clearly assumptions (26)-(28) hold and so by Theorem 4.3 it follows that, for each \(t \in \mathbb{R}^n \), there is an \((\mathcal{F}_t)_{t \geq 0}\)-adapted feedback controller \(u^*(t) \) such that \(X^{(i-1)}(T) = 0 \) for \(i = 1, 2, \ldots, n - 1 \).

6. Approximate controllability of stochastic heat equation

Consider the stochastic equation
\[dX - \Delta X \, dt = \sum_{j=1}^d X e_j \, d\beta_j + \mathbb{I}_{\Omega_0} \, u \, dt, \]
\[(t, \xi) \in (0, T) \times \Omega \]
\[X(0, \xi) = x(\xi), \quad \xi \in \Omega \]
\[X(t, \xi) = 0, \quad \forall (t, \xi) \in (0, T) \times \partial \Omega. \] (32)
Here \(d \geq 1, \Omega \subset \mathbb{R}^n \) is a bounded and open domain with smooth boundary \(\partial \Omega \), \(\Omega_0 \) is an open subset of \(\Omega \) and \(\{e_j\}_{j=1}^d \) is an orthonormal base in \(L^2(\Omega) \), given by
\[-\Delta e_j = \lambda_j e_j \quad \text{in} \quad \Omega, \quad e_j = 0 \quad \text{on} \quad \partial \Omega. \]
The controller \(u: (0, \infty) \rightarrow L^2(\Omega) \) is an \((\mathcal{F}_t)_{t \geq 0}\)-adapted process.

We set \(X = \sum_{i=1}^N X_i \, e_i, \quad \tilde{u} = \sum_{i=1}^N u_i \, e_i \) and approximate (32) by the \(N \)-D differential equation
\[dX - A \, X \, dt = \sum_{j=1}^d \sigma_j(X) \, d\beta_j + B \, u \, dt, \]
\[X(0) = 0 \]
where
\[X = \{X_i\}_{i=1}^N, \quad u = \{u_i\}_{i=1}^N, \]
\[B = \left(\int_{\Omega_0} e_i \, e_j \, d\xi \right)_{i,j=1}^N, \]
\[A = \text{diag}(\lambda_i)_{i=1}^N, \quad \sigma_j(X) = \left(\sum_{k=1}^N (e_k \, e_j)_2 X_k^N \right)_{i=1}^N, \]
\[(\cdot, \cdot)_2 \] is the scalar product in \(L^2(\Omega) \).

By the unique continuation property of eigenfunctions \(e_j \), it follows that \(\text{det} B = 0 \), which implies (33). Then, by Theorem 4.3 for each \(N \in \mathbb{N} \), equation (32) is exactly controllable on \([0, T]\) in the sense of (41)-(42). Taking into account that,
\[|x - \sum_{i=1}^N (x, e_i)_2 e_i|_2 \rightarrow 0 \quad \text{as} \quad N \rightarrow \infty, \]
\[E(\sup\{|X(t)|^2, \quad t \in [0, T]}) \rightarrow 0 \quad \text{as} \quad N \rightarrow \infty, \] we get the following controllability result.

Theorem 6.1. Let \(x \in L^2(\Omega) \) and \(T > 0 \) be arbitrary but fixed. Then for each \(\varepsilon > 0 \) there is an \((\mathcal{F}_t)_{t \geq 0}\)-adapted controller \(u_\varepsilon \in L^2((0, T) \times \Omega; L^2(\Omega)) \) such that
\[P(|X^{u_\varepsilon}(t)|^2 < \varepsilon, \quad \forall t \geq T) \rightarrow 1 - \varepsilon. \] (34)

Remark 6.2. In 1-D a similar result was established by a different method in [8]. It turns out (see [4]) that, under the above assumptions, there is an \((\mathcal{F}_t)_{t \geq 0}\)-adapted controller \(u \) which steers \(x \) into a linear subspace of \(L^2(\Omega; \mathcal{O}) \). However, it remains an open problem the exact null controllability. (For other partial results to exact null controllability, see [3], [10].)

7. Conclusion

Under hypotheses (i)-(iii), the stochastic differential equation (1) is exactly controllable to any \(y \in \sigma^{-1}(0) \).
by a stochastic feedback controller \(u \) which is explicitly designed. In the special case of stochastic equations with linear multiplicative noise the controllability set \(\{ y = X^u(T) \} \) is all \(\mathbb{R}^n \). Moreover if the pair \((A, B)\) satisfies the Kalman rank condition and \(\sigma(R^d) \subset B(R^m) \) then the system (1) is exactly null controllable. As application the approximate controllability of stochastic heat equation with multiplicative Wiener noise was given.

Acknowledgments

The authors thank the Mathematics Department of University of Trento for the financial support. V. Barbu was supported by the grant of Romanian Ministry of Research and Innovation CNCS-UEFISCDI, DN-III-D4-DCE-2016-0011

References

[1] V. Barbu, *Nonlinear Differential Equations of Monotone Type in Banach Spaces*, Springer 2010

[2] V. Barbu, S. Bonaccorsi, L. Tubaro, Stochastic differential equations with variable structure driven by multiplicative Gaussian noise and sliding mode dynamic, *Math. Control Signals Systems* 28 (2016), no. 3, Art. 26, 28 pp.

[3] V. Barbu, G. da Prato, M. Röckner, *Stochastic Porous Media Equations*, Lecture Notes in Mathematics 2163, Springer, 2016

[4] V. Barbu, A. Rascanu, G. Tessitore, Carleman estimates and controllability of stochastic heat equations with multiplicative noise, *Appl. Math. Optim.*, 5 (2003), 1-20.

[5] M. Erhardt, W. Kliemann, Controllability of linear stochastic systems, *Systems & Control Letters* 2 (1982/83), 145-153

[6] D. Goreac, A Kalman type condition for stochastic approximate controllability, *C.R. Math. Acad. Sci. Paris* 346 (2008), 183-188

[7] F. Liu, S. Peng, On controllability for stochastic control systems when the coefficient is time invariant, *J. Systems Sci. Complex* 23 (2010), 270-278

[8] Q. Lü, Some results on the controllability of forward stochastic heat equations with control on the drift, *J. Funct. Anal.*, 260 (2011), 832-851.

[9] S. Tang, X. Zhang, Null controllability for forward and backward stochastic parabolic equations, *SIAM J. Control Opt.*, 48 (2009), 2191-2216.

[10] Y. Wang, D. Yang, J. Yong, Z. Yu, Exact controllability of linear stochastic differential equations and related problems, *Mathematical Control and Related Fields*, 7 (2017), 305-345