Learn to speak and to write, learn to use your mind
The relevance of automatic text generation research for people

Michael Zock
LIMSI-CNRS, B.P.133,
91403 Orsay, France
zock@limsi.fr

Abstract
The aim of this talk is to show to what extent the work on text generation by computer (TGBC) does not address some of the fundamental problems people struggle with when generating language (TGBP). We will substantiate this claim by taking two tasks on which a lot of research has been carried out during the last 15 years: discourse planning and lexicalisation.

1 Discourse planning
While a tremendous amount of work has been done on the generation of coherent discourse, little if any has been devoted to writing. As a result, many fundamental problems have been overlooked or have been dealt with on the basis of wrong assumptions. Also, little, if any of the results achieved in the TGBC framework can be reused in the classroom or in the context of an intelligent writing-aid (tools for assisting the writer to structure her/his thoughts: outline planning). Let us consider some of the reasons why this is so.

• Top-down processing: in the TGBC-community texts are generally processed top to bottom. Given some goal one looks for data (messages) and structures which integrate them. While this is a clever way to handle the problem, it does not give a precise reflection of the writers’ situation. First of all, it is not true that content and structure are always determined simultaneously, an assumption accepted since Moore & Paris (1993). Secondly, writers generally switch between data-driven (brain-storming) and structure-driven processing (outlining). Thirdly, there is a triangular relationship between messages, structures and goals (or effects), changing any of them can affect the others. Yet, at present we do not have the faintest idea what effect(s) a specific propositional or conceptual configuration (order of messages) might produce.

• Lack of a Conceptual Structure Theory (CST): messages tend come to our mind in any order and without exhibiting their potential links. We have to discover these later, and to reorganize the former in order to reveal the structure to the reader. Writing is thinking. These last three points are crucial, yet none of the existing theories (schema, RST) is really able to take them into account. Just imagine how complex it is to recognize the fact that there is a causal link between two events. We don’t have a solid theory of causality, leave alone a method of operationalizing it (i.e. infer this kind of link solely on the basis of the intrinsic features of the events involved).

• Interaction: As we all know, texts have structure. This latter is generally the result of discourse planning (schemata or RST-based) or reasoning (chain of inferencing), in which case the structure emerges as a side effect. The major shortcoming of all these techniques is that they do not model the interaction between the conceptual data (ideas, messages), the text structure and the rhetorical effects: (all) the data to be communicated and the global discourse
goal are generally given with the input.\footnote{While in Moore & Paris (1993), the messages are not given, the goal is: it cannot emerge as a side effect.} The problem of reconciling mismatches between data and structure,\footnote{What shall we do if not all the data can be integrated, or if we lack data for filling all the slots of a chosen structure? Shall we keep the structure and look for more data, or use a different structure as it integrates more of the data?} and the problem of variable rhetorical effects/goals as a function of various linearization strategies is not addressed at all.\footnote{One of the reasons for this is that we do not have a clear understanding concerning the mapping between different conceptual configurations and their corresponding rhetorical effect(s). If we did, we could use them bidirectionally (for analysis and generation).}

2 Lexicalisation

Lexicalisation amounts mainly to searching and choosing: one has to find lemmata, matching a given conceptual chunk, and then one has to choose among them. While much emphasis has been given to the notion of choice, far less attention has been paid to the search mechanisms (or access strategies). I will present during my talk some preliminary results concerning a system that is meant to help people to overcome the tip-of-the-tongue problem, a well known stumbling block in real-time processing: we know what we want to say, we know that we do know the word, yet we cannot access it (Brown and Mc Neill, 1966).

If the fundamental role of a dictionary in NLG is obvious, it is less evident as to the principles governing its compilation. A good dictionary is a place with a lot of information, structured in such a way that the relevant information is easily accessible when needed. In other words, what counts is ‘what is in the dictionary’ (content) and ‘how the information is organized’ (meaning, form, sound). These two factors are not sufficient though: access depends not only on the structure of the lexicon (organisation), but also on the efficiency of search strategies, an issue not addressed at all by the generation community. As a matter of fact, from a strict computational linguistic point of view, the whole matter may be a non-issue. However, the problem does become relevant when we look at generation as a machine-mediated process (people using a word processor for writing) or from a psycholinguistic point of view: word access in writing or spontaneous discourse.

- **The speaker’s problem:** choosing words, finding them or both? Obviously, there is more to lexicalisation than just choosing words: one has to find them to begin with. No matter how rich a lexical database may be, it is of little use if one cannot access the relevant information in time. Access is probably THE major problem that we have to cope with when trying to produce language in real-time (in spoken or written form). As I will show during my talk, this is precisely a point where computers can be of considerable help.

Work on memory has shown that access depends crucially on the way information is organized, yet the latter can vary to a great extent. From speech error literature we learn, that ease of access depends not only on meaning relations,—, i.e. the way words are organized in our mind),— but also on linguistic form (letters, phonemes). Researchers collecting speech errors have offered countless examples of phonological errors in which segments (phonemes, syllables or words) are added, deleted, anticipated or exchanged (Fromkin, 1993). The data clearly show that knowing the meaning of words does not guarantee their access.

The work on speech errors also reveals that words are stored in at least two modes, by meaning and by form (written, spoken), and it is often this latter which inhibits finding the right token: having inadvertently recombined the components of a given word (syllable scrambling), one may end up producing a word, which either does not exist or is simply different from the one in mind. This kind of recombination, resulting from bookkeeping problems (due to time pressure), parallel processing and information overload, may disturb or prevent the
access of the right word. Hence the usefulness of a tool which allows the process to be reversed. In order to allow this to be done, it is necessary to represent words not only in terms of their meaning, but also in terms of their written and spoken form. The fact that words are indexed both by meaning and by sound could now be used to our advantage. The phonetic coding of words allows the recombination of their segments (syllables), hence the presentation of new candidates, among which the user should find the one s/he is looking for. The fact that words are coded semantically keeps the number of candidates to be presented small.

Conclusion

I have tried to illustrate briefly to what extent we have neglected the human factor in our work. I have also attempted to show how a simple computational method (combinatorics and filtering) can be used to bridge (one of) the gap(s) between TGBC and TGBP: text generation by people.

References

Roger Brown and David Mc Neill. 1966. The tip of the tongue phenomenon. Journal of Verbal Learning and Verbal Behavior, 5, 325-337

Viktoria Fromkin. 1993. Speech Production. In Psycholinguistics edited by Jean Berko-Gleason & Nan Bernstein Ratner. Fort Worth, TX: Harcourt, Brace, Jovanovich

Johanna Moore and Cecile Paris. 1993. Planning text for advisory dialogues: capturing intentional and rhetorical information. Computational Linguistics, 19(4).

4 The assumption is that speakers produce words that formwise are reasonably close to the target word. A fact that is supported by psycholinguistic evidence.