Bionic women and men - Part 1: Cardiovascular lessons from heart failure patients implanted with left ventricular assist devices

Eric J. Stöhr1,2 | William K. Cornwell III3 | Manreet Kanwar4 | John R. Cockcroft1 | Barry J. McDonnell1

1School of Sport & Health Sciences, Cardiff Metropolitan University, Cardiff, CF5 2YB, UK
2Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, New York, NY, USA
3Department of Medicine-Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
4Cardiovascular Institute, Allegheny Health Network, Pittsburgh, PA, USA

Correspondence
Eric J. Stöhr, School of Sport & Health Sciences, Cardiff Metropolitan University, Cardiff, CF5 2YB, UK.
Email: estohr@cardiffmet.ac.uk

Edited by: Jeremy Ward

Funding information
European Union’s Horizon 2020, Grant/Award Number: 705219; NIH/NHLBI, Grant/Award Number: 1K23HL132048-01; NIH/NCATS, Grant/Award Number: UL1TR002535

Abstract
Some humans with chronic, advanced heart failure are surgically implanted with a left ventricular assist device (LVAD). Because the LVAD produces a continuous flow, a palpable pulse is often absent in these patients. This allows for a unique investigation of the human circulation and has created a controversy around the ‘need’ for a pulse. The medical debate has also generated a more generic, fundamental discussion into what is ‘normal’ arterial physiology and health. The comprehensive study and understanding of the arterial responses to drastically altered haemodynamics due to continuous-flow LVADs, at rest and during activity, presents an opportunity to significantly increase our current understanding of the fundamental components of arterial regulation (flow, blood pressure, sympathetic activity, endothelial function, pulsatility) in a way that could never have been studied previously. In a series of four articles, we summarize the talks presented at the symposium entitled ‘Bionic women and men – Physiology lessons from implantable cardiac devices’ presented at the 2019 Annual Meeting of The Physiological Society in Aberdeen, UK. The articles highlight the novel questions generated by physiological phenomena observed in LVAD patients and propose future areas of interest within the field of cardiovascular physiology.

KEYWORDS
arterial function, bionic, heart failure, LVAD, mechanical circulatory support

1 | INTRODUCTION

Whilst knowledge of the human circulation has increased substantially over the past centuries, our understanding of the interdependence of the heart and arteries in health and disease warrants ongoing study. The staggering prevalence of hypertension further emphasizes the need to advance our current knowledge of the factors that govern the interaction between the heart and local arterial flow (McDonnell et al., 2019). For most of human history, attempts to comprehend the impact of drastically altered flow characteristics in vivo have been limited because manipulation of the source of flow dynamics, the heart, is challenging. However, the recent advent of left ventricular assist devices (LVADs) as a therapy for advanced heart failure patients has created new opportunities for investigation. In this first article in a series of four, we introduce ‘LVAD patients’ and their remarkable, unique physiology, discuss the current knowledge surrounding the
presence of a non-physiological pulse, and postulate new hypotheses in cardiovascular science that arise from the special insight these bionic women and men gift us.

2 | WHO ARE THE ‘BIONIC WOMEN AND MEN’?

In some heart failure patients, the disease progresses unfavourably with conventional medical therapy. Although the preferred next step would be a heart transplant, in most countries there are not enough donor hearts available. For these patients, the surgical implantation of an LVAD is the best option, and the positive results in recent clinical trials are testimony to the success of this medical feat (see Figure 1; Colombo et al., 2019; Mehra et al., 2018; Mehra et al., 2019). These patients not only are ‘bionic’ because they walk around with a metal pump in their hearts, the continuous flow produced by the mechanical pumps also changes the flow characteristics typically produced by the native heart – LVAD patients live ‘without a pulse’ (Purohit, Cornwell, Pal, Lindenhof, & Ambardekar, 2018). This unique physiological state can be detected in large and medium-sized arteries and varies between patients as shown in more detail in Figure 2 (Castagna et al., 2017). Accordingly, there has been much debate around the role of the arterial pulse (Cornwell, Tarumi, Lawley, & Ambardekar, 2019; Cornwell, Urey, Drazner, & Levine, 2015; Floras, Rao, & Billia, 2015; Stöhr, McDonnell, Colombo, & Willey, 2019). The fact that the overall health of LVAD patients continues to improve suggests that humans may not need a pulse to live. Conversely, other data indicate that the complications LVAD patients experience may be linked to the low pulse, and that the reduced pulsatility may be as detrimental as the increased pulsatility in hypertensive patients (Ambardekar et al., 2015; Cornwell et al., 2015). The following section discusses the clinical complications that LVAD patients experience that may be attributable to the absent pulse.

3 | CLINICAL PRESENTATION OF LVAD PATIENTS

Historically, patients with advanced heart failure who did not receive a heart transplant were surgically implanted with pulsatile heart pumps. The prognosis of these patients was relatively poor and was only improved when continuous-flow LVADs emerged (Slaughter et al., 2009). The recent MOMENTUM 3 trial shows a further improved survival and a much-reduced rate of stroke in LVAD patients (Colombo et al., 2019; Mehra et al., 2017, 2018, 2019; Uriel et al., 2017). Interestingly, the lower rate of strokes was not attributed to blood pressure (Colombo et al., 2019), suggesting that the contribution of blood pressure to stroke may be different in patients with a continuous-flow circulation (see ‘Bionic Women and Men. Part 4’ by Buchanan et al. 2020). This has implications for the risk factors for stroke in the general population as it is currently believed that increased blood pressure is a major risk factor for stroke (Seshadri et al., 2001).

A second complication in LVAD patients is the high prevalence of gastrointestinal bleeding, which suggests that the continuous-flow circulation impacts clotting factors and/or disruption of the integrity of the arterial wall. The necessary anti-coagulation regimen may contribute to gastrointestinal (GI) bleeding as well as the development of angiodysplasia, although the latter may originate already in heart failure and only manifest itself in GI bleeding during LVAD support (Patel et al., 2018). Additionally, degradation of the von Willebrand factor, which typically ‘mediates platelet adhesion to both the sub-endothelial matrix and endothelial surfaces and acts as a carrier for coagulation factor VIII in the circulation’ (Starke et al., 2011) has been widely reported in LVAD patients (Bartoli et al., 2014, 2018; Nascimbene, Neelamegham, Frazier, Moake, & Dong, 2016). This has been largely attributed to the altered conformation of the high molecular mass multimers caused during the passage of blood through the bearings of the mechanical pumps and may be an important contributor to the increased prevalence of GI bleeding as well as micro-circulatory bleeds in the brain of continuous-flow, second generation LVAD patients (Yoshioka et al., 2017). One study has proposed the intriguing idea that an increased arterial pulsatility can counter the von Willebrand factor degradation caused by the passage of blood through the mechanical bearings of the LVAD (Vincent et al., 2018). Since the HeartMate 3 (HM3) LVAD is generally thought to reduce mechanical shear, the idea by Vincent and colleagues fits the report of a greater preservation of the von Willebrand factor in HM3 patients compared with HeartMate II (HMII) (Netuka et al., 2016). However, the incidence of GI bleeding remains similar between HMII and HM3 patients and the true peripheral pulsatility, including that in the microcirculation, of both HMII and HM3 patients remains to be unveiled. To identify the mechanisms for altered bleeding is thus of great importance and we speculate that the same mechanisms that lead to GI bleeding may also be responsible for non-thrombotic, haemorrhagic strokes in LVAD patients (Lai et al., 2019). Solving this riddle, perhaps via a combination

New Findings

- What is the topic of this review?
 Patients with advanced heart failure who are implanted with left ventricular assist devices (LVADs) present an opportunity to understand the human circulation under extreme conditions.

- What advances does it highlight?
 LVAD patients have a unique circulation that is characterized by a reduced or even absent arterial pulse. The remarkable survival of these patients is accompanied by circulatory complications, including stroke, gastrointestinal bleeding and right-heart failure. Understanding the mechanisms related to the complications in LVAD patients will help the patients and also advance our fundamental understanding of the human circulation in general.
of in vivo and mock-loop investigations similar to the ones reported by Vincent and colleagues (2018), will undoubtedly advance the current understanding of the interaction between arterial flow dynamics and haemostasis, which has implications for numerous medical conditions.

The third major complication encountered by LVAD patients is right-heart failure (see ‘Bionic Women and Men, Part 3’ by Kanwar et al. 2020). This typically occurs early following LVAD implantation and is associated with a particularly poor prognosis. Although numerous determinants for this phenomenon have been proposed, the true cause of right-heart failure in LVAD patients remains to be determined. As such, this phenomenon directly links to a number of other fundamental (patho-)physiological phenomena such as pulmonary hypertension, exercise-induced right heart problems and venous congestion in advanced heart failure. Interestingly, increased suction from the LVAD does not seem to impact pulmonary artery pressures as much as it affects right ventricular volume, as elegant data by Addetia et al. (2018) show. Consequently, it is possible that the occurrence of right heart failure may be reduced by a more gradual increase in LVAD speed to slowly accustom the right ventricle to the increased volumetric load. In general, the insight from the sudden improvement in left sided output because of the LVAD with the simultaneous impact on the right ventricle provides new knowledge into the regulation of right heart function and pulmonary artery pressures beyond the specific LVAD condition.

4 | THE ROLE OF PULSATILITY

Many of the factors discussed above can be related to the reduction of even total absence of pulsatility. Whilst an increased pulse pressure has been associated with an increased risk of morbidity and mortality, it is also known that low arterial flow pulsatility disrupts normal arterial processes. As reported previously, ‘Pulsatility of flow causes cyclical stretch of the arterial wall that is a critical contributor to endothelial production of nitric oxide and cardiovascular health (Hahn & Schwartz, 2009). The high occurrence of bleeding events, such as GI bleeding and haemorrhagic strokes, indicates a primary problem with endothelial integrity (Stöhr et al., 2019). In other words, pulsatility may not just be important because it is the natural state of the human cardiovascular system – a fait accompli argument that is often read in articles or heard at conferences. Rather, studies on the physiology show that there are clear biological processes that depend on a minimum amount of pulsatility to optimize arterial function and health. For example, pulsatility releases the vasoactive nitric oxide, thus contributing to the ability of the artery to respond adequately to circulatory changes (Nakano, Tominaga, Nagano, Okabe, & Yasui, 2000). Equally, too much pulsatility has been associated with a greater risk of cardiovascular disease (Chuang et al., 2016). Although the impact of the ‘artificial pulse’ in HM3 patients it not known, it is possible that some of the clinical and functional improvements in these patients may be attributed to an overall improved biology because of a moderately increased pulsatility. That said, it is unknown at this time whether the automated modulations in the HM3 pump speed translate into any meaningful pulse throughout the circulation. Of course, in the context of a continuous-flow circulation that constantly pushes blood forward through the system, a normal pulsatility may also not be beneficial, since too much pulsatility may be transported into the microcirculation of end-organs (Stöhr et al., 2018; Webb et al., 2012). This effect may be even worse in LVAD patients with increased arterial stiffness (see ‘Bionic Women and Men, Part 4’ by McDonnell et al. 2020, Patel et al., 2017; Rosenblum et al., 2018), likely impacting on the brain and GI tract as well as the right heart. It can be expected that the study of the complex interactions between the heart, arterial blood pressure, pulsatility and stiffness in LVAD patients will reveal new insight into the mechanisms that impact cardiovascular health in all humans.

5 | LINKS TO FURTHER MATERIAL

- An open access podcast of a conversation with an LVAD patient and a researcher can be listened to here: https://www.buzzsprout.com/582022/1919024.
Circulation

Blood pressure	Common carotid artery	Middle cerebral artery
(a) Healthy (b) HeartMate II (moderate pulsatility)	![Graph](image1)	![Graph](image2)
(c) HeartMate II (low pulsatility)	![Graph](image3)	![Graph](image4)
(d) Jarvik 2000	![Graph](image5)	![Graph](image6)
(e) HeartMate 3	![Graph](image7)	![Graph](image8)

FIGURE 2 Haemodynamics in the healthy circulation and in patients with different left ventricular assist devices (LVADs). The different flow profiles depend on the type of LVAD and whether the patient’s aortic valve opens during contraction of the left ventricle. Pulsatility in the whole circulation is in part caused by the volume added by the native heart (if the valve opens), but some pulsatility is also generated through the continuous-flow pump itself because of fluctuations in intra-ventricular pressure that alter the pressure-gradient between the LVAD inflow and outflow graft (see Pagani, 2008 for more details). A similar version of this figure created by the same author (E.J.S.) was previously published in ‘The unique blood pressures and pulsatility of LVAD patients: Current challenges and future opportunities’ from Castagna et al. (2017), Current Hypertension Reports 19, 85, https://doi.org/10.1007/s11906-017-0782-6, and is under the Creative Commons Attribution 4.0 International Licence.

- The ‘HIT-LVAD’ project has material on its ResearchGate website: https://www.researchgate.net/project/HIT-LVAD-Project.
- An open access article can be found here: https://cdn2.researchfeatures.com/wp-content/uploads/2018/10/Eric-Stohr.pdf.

ACKNOWLEDGEMENTS

This article is dedicated to Steve Griffith, an LVAD patient from Cardiff in Wales, who is an inspiration to other patients, researchers, clinicians and the general public. Thank you, Steve. The authors thank The Physiological Society for the opportunity to present this symposium at the Society’s annual meeting of 2019 in Aberdeen, UK, and for the invitation to write the reports from the meeting in *Experiment Physiology*.

COMPETING INTERESTS

W.K.C. has received funding from Medtronic Inc. M.K. has received Research funding from Abbott Inc., but none relevant to this submission.

AUTHOR CONTRIBUTIONS

All authors have read and approved the final version of this manuscript and agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. All persons designated as authors qualify for authorship, and all those who qualify for authorship are listed.

FUNDING INFORMATION

B.J.M. and E.J.S. received funding from the European Union’s Horizon 2020. Their project has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement no. 705219. W.K.C. has received funding by an NIH/NHLBI Mentored Patient-33 Oriented Research Career Development Award (No. 1K23HL132048-01), as well as the 34 NIH/NCATS (No. UL1TR002535), Susie and Kurt Lochmiller Distinguished Heart Transplant 35 Fund, the Clinical Translational Science Institute at the University of Colorado Anschutz Medical Campus, and Medtronic Inc.

ORCID

Eric J. Stöhr https://orcid.org/0000-0002-8005-285X

Manreet Kanwar https://orcid.org/0000-0002-7280-5268

Barry J. McDonnell https://orcid.org/0000-0001-5912-1278

REFERENCES

Addetia, K., Uriel, N., Maffessanti, F., Sayer, G., Adatya, S., Kim, G. H., … Lang, R. M. (2018). 3D morphological changes in LV and RV during LVAD ramp studies. *JACC Cardiovascular Imaging*, 11, 159–169.
Amardekar, A. V., Hunter, K. S., Babu, A. N., Tudor, R. M., Dodson, R. B., & Lindenfeld, J. (2015). Changes in aortic wall structure, composition, and stiffness with continuous-flow left ventricular assist devices: A pilot study. *Circulation: Heart Failure*, 8, 944–952.

Bartoli, C. R., Dassanayaka, S., Brittain, K. R., Luckett, A., Sithu, S., Siess, T., ... D’Souza, S. E. (2014). Insights into the mechanism(s) of von Willebrand factor degradation during mechanical circulatory support. *Journal of Thoracic and Cardiovascular Surgery*, 147, 1634–1643.

Bartoli, C. R., Zhang, D. M., Hennessy-Strahs, S., Kang, J., Restle, D. J., Bermudez, C., ... Acker, M. A. (2018). Clinical and in vitro evidence that left ventricular assist device-induced von Willebrand factor degradation alters angiogenesis. *Circulation: Heart Failure*, 11, e004638.

Buchanan, C., Kanwar, M., Cockcroft, J. R., McDonnell, B., Stöhr, E. J., Cornwell, W. K. (2020) Bioncicwomen andmen part 4 – cardiovascular, cerebrovascular and exercise responses among patients supported with left ventricular assist devices. *Experimental Physiology*, 105, 763–766.

Castagna, F., Stöhr, E. J., Pinsino, A., Cockcroft, J. R., Willey, J., Reshad Garan, A., ... McDonnell, B. J. (2017). The unique blood pressures and pulsatility of LVAD patients: Current challenges and future opportunities. *Current Hypertension Reports*, 19, 85.

Chuang, S. Y., Cheng, H. M., Bai, C. H., Yeh, W. T., Chen, J. R., & Pan, W. H. (2016). Blood pressure, carotid flow pulsatility, and the risk of stroke: A community-based study. *Stroke*, 47, 2262–2268.

Colombo, P. C., Mehra, M. R., Goldstein, D. J., Estep, J. D., Salerno, C., Jorde, U. P., ... Horstmannshof, D. A. (2019). Comprehensive analysis of stroke in the long-term cohort of the MOMENTUM 3 study: A randomized controlled trial of the heartmate 3 versus the heartmate II cardiac pump. *Circulation*, 139, 155–168.

Cornwell, W. K., 3rd, Tarumi, T., Lawley, J., & Amardekar, A. V. (2019). CrossTalk opposing view: Blood flow pulsatility in left ventricular assist device patients is not essential to maintain normal brain physiology. *Journal of Physiology*, 597, 357–359.

Cornwell, W. K., 3rd, Urey, M., Drazen, M. H., & Levine, B. D. (2015). Continuous-flow circulatory support. The achilles heel of current-generation left ventricular assist devices? *Circulation: Heart Failure*, 8, 850–852.

Floras, J. S., Rao, V., & Billia, F. (2015). To pulse or not to pulse, is that the question? *Circulation*, 132, 2293–2296.

Hahn, C., & Schwartz, M. A. (2009). Mechanotransduction in vascular physiology and atherogenesis. *Nature Reviews. Molecular Cell Biology*, 10, 53–62.

Kanwar, M., McDonnell, B. J., Rosenblum, H., Cockcroft, J. R., Stöhr, E. J., Cornwell, W. (2020) Bionic Women and Men - Part 3: Right ventricular dysfunction in patients implanted with left ventricular assist devices. *Experimental Physiology*, 105, 759–762.

Lai, G. Y., Devlin, P. J., Kesavabhotla, K., Rich, J. D., Pham, D. T., Potts, M. B., & Jahromi, B. S. (2019). Management and outcome of intracranial hemorrhage in patients with left ventricular assist devices. *Journal of Neurosurgery*, doi: 10.3171/2018.12.JNS182467.

McDonnell, B. J., Keitley, J., Beaneys, T., Tay, T., Brady, A. J. B., Padmanaban, S., ... International Society of Hypertension and British and Irish Hypertension Society. (2019). May Measurement Month 2017: An analysis of blood pressure screening results from the United Kingdom and the Republic of Ireland-Europe. *European Heart Journal Supplement*, 21, D121–D123.

McDonnell, B. J., Rosenblum, H., Cornwell, W., Kanwar, M., Cockcroft, J. R., Stöhr, E. J. (2020) Bionic Women and Men - Part 2: Arterial stiffness in heart failure patients implanted with left ventricular assist devices (LVADs). *Experimental Physiology*, 105, 755–758.

Mehra, M. R., Goldstein, D. J., Uriel, N., Cleveland, J. C., Jr, Yuzefpolskaya, M., Salerno, C., ... MOMENTUM 3 Investigators. (2018). Two-year outcomes with a magnetically levitated cardiac pump in heart failure. *New England Journal of Medicine*, 378, 1386–1395.

Mehra, M. R., Naka, Y., Uriel, N., Goldstein, D. J., Cleveland, J. C., Jr, Colombo, P. C., ... MOMENTUM 3 Investigators. (2017). A fully magnetically levitated circulatory pump for advanced heart failure. *New England Journal of Medicine*, 376, 440–450.

Mehra, M. R., Uriel, N., Naka, Y., Cleveland, J. C., Jr, Yuzefpolskaya, M., Salerno, C. T., ... MOMENTUM 3 Investigators. (2019). A fully magnetically levitated left ventricular assist device – Final report. *New England Journal of Medicine*, 380, 1618–1627.

Nakano, T., Tominaga, R., Nagano, I., Okabe, H., & Yasui, H. (2000). Pulsatile flow enhances endothelium-derived nitric oxide release in the peripheral vasculature. *American Journal of Physiology. Heart and Circulatory Physiology*, 278, H1098–H1104.

Nascimbene, A., Neelamegham, S., Frazier, O. H., Moake, J. L., & Dong, J. F. (2016). Acquired von Willebrand syndrome associated with left ventricular assist device. *Blood*, 127, 3133–3141.

Netuka, I., Kvasnicka, T., Kvasnicka, J., Hrachovinova, I., Ivak, P., Marecek, F., ... Mehra, M. R. (2016). Evaluation of von Willebrand factor with a fully magnetically levitated centrifugal continuous-flow left ventricular assist device in advanced heart failure. *Journal of Heart and Lung Transplantation*, 35, 860–867.

Pagani, F. D. (2008). Continuous-flow rotary left ventricular assist devices with “3rd generation” design. *Seminars in Thoracic and Cardiovascular Surgery*, 20, 255–263.

Patel, A. C., Dodson, R. B., Cornwell, W. K., 3rd, Hunter, K. S., Cleveland, J. C., Jr, Brieke, A., ... Amardekar, A. V. (2017). Dynamic changes in aortic vascular stiffness in patients bridged to transplant with continuous-flow left ventricular assist devices. *JACC Heart Failure*, 5, 449–459.

Patel, S. R., Kwah, J., Rosenberg, H., Chinnadurai, T., Saeed, O., Gliber, M., ... Jorde, U. P. (2018). Angiodyplastic lesions in the gastrointestinal tract of heart failure patients predates post LVAD bleeding. *Journal of Heart and Lung Transplantation*, 37, 571–572.

Purohit, S. N., Cornwell, W. K., 3rd, Pal, J. D., Lindenfeld, J., & Amardekar, A. V. (2018). Living without a pulse: The vascular implications of continuous-flow left ventricular assist devices. *Circulation: Heart Failure*, 11, e004670.

Rosenblum, H., Pinsino, A., Demmer, R. T., Colombo, P. C., Yuzefpolskaya, M., Garan, A. R., ... Stöhr, E. J. (2018). Increased aortic stiffness is associated with higher rates of stroke, gastrointestinal bleeding and pump thrombosis in continuous-flow left ventricular assist device patients. *Journal of Heart and Lung Transplantation*, 37, 532.

Seshadri, S., Wolf, P. A., Beiser, A., Vasan, R. S., Wilson, P. W., Kase, C. S., ... D’Agostino, R. B. (2001). Elevated midlife blood pressure increases stroke risk in elderly persons: The Framingham Study. *Archives of Internal Medicine*, 161, 2343–2350.

Slaughter, M. S., Rogers, J. G., Milano, C. A., Russell, S. D., Conte, J. V., Feldman, D., ... HeartMate II Investigators. (2009). Advanced heart failure treated with continuous-flow left ventricular assist device. *New England Journal of Medicine*, 361, 2241–2251.

Starke, R. D., Ferraro, F., Paschalaki, K. E., Dryden, N. H., McKinnon, T. A., Sutton, R. E., ... Randi, A. M. (2011). Endothelial von Willebrand factor regulates angiogenesis. *Blood*, 117, 1071–1080.

Stöhr, E. J., Castagna, F., Pinsino, A., Cockcroft, J. R., Yuzefpolskaya, M., Garan, A. R., ... McDonnell, B. J. (2018). Transmission of pulsatility into the brain of patients with continuous-flow left ventricular assist devices. *Journal of Heart and Lung Transplantation*, 37, S524.

Stöhr, E. J., McDonnell, B. J., Colombo, P. C., & Willey, J. Z. (2019). CrossTalk proposal: Blood flow pulsatility in left ventricular assist device patients is essential to maintain normal brain physiology. *Journal of Physiology*, 597, 353–356.

Uriel, N., Colombo, P. C., Cleveland, J. C., Long, J. W., Salerno, C., Goldstein, D. J., ... Mehra, M. R. (2017). Hemocompatibility-related outcomes in the MOMENTUM 3 trial at 6 months: A randomized controlled study of a fully magnetically levitated pump in advanced heart failure. *Circulation*, 135, 2003–2012.
Vincent, F., Rauch, A., Loobuyck, V., Robin, E., Nix, C., Vincentelli, A., … Susen, S. (2018). Arterial pulsatility and circulating von willebrand factor in patients on mechanical circulatory support. *Journal of the American College of Cardiology, 71*, 2106–2118.

Webb, A. J., Simoni, M., Mazzucco, S., Kuker, W., Schulz, U., & Rothwell, P. M. (2012). Increased cerebral arterial pulsatility in patients with leukoaraiosis: Arterial stiffness enhances transmission of aortic pulsatility. *Stroke, 43*, 2631–2636.

Yoshioka, D., Okazaki, S., Toda, K., Murase, S., Saito, S., Domae, K., … Sawa, Y. (2017). Prevalence of cerebral microbleeds in patients with continuous-flow left ventricular assist devices. *Journal of the American Heart Association, 6*, 10.

How to cite this article: Stöhr EJ, Cornwell W, Kanwar M, Cockcroft JR, McDonnell BJ. Bionic women and men - Part 1: Cardiovascular lessons from heart failure patients implanted with left ventricular assist devices. *Experimental Physiology*. 2020;105:749–754. https://doi.org/10.1113/EP088323