Insecticidal effect of powder and ethanolic extract of *Cnidoscolus aconitifolius* (Euphorbiaceae) on adults of *Callosobruchus maculatus* F. (Coleoptera: Bruchidae)

Lydia Hangnilo*, Haffizou Ganda and Élisabeth T. Zannou

1Laboratory of Agricultural Entomology (LEAg), Faculty of Agronomic Sciences, University of Abomey-Calavi, 03 BP 2819 Cotonou, Republic of Benin. E-mail: baloulydia@yahoo.fr
2Laboratory of Agricultural Entomology (LEAg), Faculty of Agronomic Sciences, University of Abomey-Calavi, 03 BP 2819 Cotonou, Republic of Benin. E-mail: gandahaffiz@gmail.com
3Laboratory of Agricultural Entomology (LEAg), Faculty of Agronomic Sciences, University of Abomey-Calavi, 03 BP 2819 Cotonou, Republic of Benin. E-mail: ezannou2@yahoo.fr

Abstract

Plants with insecticide effect is the main recourse to control cowpea weevil (*Callosobruchus maculatus*). This study assessed in laboratory, insecticidal effect of various doses of powder (125, 250, 375, 500, 625, 750 and 875 g of powder/kg of cowpea) and ethanolic extract (10%, 15%, 20% and 25% w/v) of *Cnidoscolus aconitifolius* on adults of the weevil. 10 adult couples of newly emerged weevil were introduced into each jar containing powder-seed or extract-seed mixture at a rate of 16 g healthy cowpea per treatment and per replication. The results revealed that the mortality rate was positively correlated with dose of powder (22.43 to 69.46%) and concentration of ethanolic extract (11.65 to 44.95%) of *C. aconitifolius*. Emergence rate decreased with dose of powder (12.31 to 5.13%) and concentration of ethanolic extract (19.24 to 8.44%). Infestation and oviposition rate were significantly reduced (Prob. < 0.001) by both extracts of *C. aconitifolius*. The different results revealed the potential of this plant to reduce the damage of *C. maculatus* in cowpea in storage. It is therefore possible to consider the use of extracts of this plant for the control of *C. maculatus*.

Keywords: Cowpea, *C. maculatus*, *C. aconitifolius*, Toxicity, Storage

1. Introduction

Growing food legumes constitute the best and least expensive solutions for feeding people in developing countries (Stoilova and Perreira, 2013). These ones produce nearly 90% of human consumption of legumes (Gordon, 2002). Among these legumes, cowpea (*Vigna unguiculata* F.) is one of the most important and the main source of protein for rural populations in Africa (Makanur et al., 2013; and CBDD, 2000). However, it is a host for pests of crops and stocks. Bruchids are insects that depredate cowpea stocks. They attack cowpea seed stocks, leading to quick crop damage. The losses caused by these ones in large cowpea storage systems...
are considerable. They are estimated at about 2.4% annual loss per ton of pods in storage (Kpatinvoh et al., 2016; Houinsou et al., 2014; and Zannou et al., 2000). Synthetic insecticides are the most use as control methods against these pests (Haubruge et al., 1988; and Relinger et al., 1988). Unluckily, this method has many drawbacks. In this perspective, plant-based pesticides are nowadays the recourse in integrated pest management (Isman, 1994; Regnault-Roger, 2002; and Ketoh et al., 2004). Many researchers have been done on the use of essential oils for the control of legumes pests (Johnson et al., 2006; and Kongue et al., 2018). Other plants that are still little studied are increasingly attracting the attention of researchers. This is the case of Cnidoscolus aconitifolius whose acaricidal effect of extracts on Tetranychus urticaeKoch was proved by Numa et al. (2015). Faced with the need to protect cowpea stocks from bruchids, insecticidal properties of this plant could be explored. This justified this survey whose objective was to assess in laboratory, insecticidal effect of its extracts.

2. Materials and methods

The animal material consisted of adults of Callosobruchus maculatus (F.). Adults of this species were collected on cowpea seeds from a local market. These insects were maintained under laboratory conditions (T = 28.5 ± 2°C; RH = 70-77%) in mass rearing on cowpea seeds in glass jars of 1 litre capacity. The plant material consisted of cowpea seeds (Vigna unguiculata F.) and dry leaves of C. aconitifolius. These ones were collected in Abomey-Calavi in subequatorial climate zone and certified under number YH 504/ HNB at the National Herbarium of Benin. An electric grinder (Binatone®, Model BLG 402, China) was used to grind the dried leaves into powder. Weighing was done on sensitive balance of precision 0.01 and brand AMPUT.

The ethanolic extract was obtained by maceration of the products of leaf grinding after drying under shade. Thus, 200 g of powder were weighed with a Sartorius® analytical balance and introduced into an Erlen-meyer flask to which two liters of ethanol were added. The mixture was mechanically shaken (cold) and brought to maceration. The macerate was filtered at the end of each 24 h for 72 h. The deposit is each time put back in maceration until the end of the 72 h. The filtrate obtained is evaporated with the rotavapor at 40°C. The recovered extracts were placed in the oven at 45°C for drying. After complete drying, the extract obtained was stored in sterile, hermetically sealed glass vials.

2.1. Toxicity test

The powder obtained from dry leaves of C. aconitifolius plant was mixed with 16 g of cowpea contained in glass jars, at doses of 2 g, 4 g, 6 g, 8 g, 10 g, 12 g and 14 g respectively. The contents of each jar were mixed so that all the seeds were covered by the powder. Under the same conditions, seeds received different concentrations of ethanolic extract (10%, 15%, 20% and 25%). One (1) ml of each concentration of ethanolic extract was added to 16 g of cowpea. These were thoroughly mixed by shaking to ensure uniform coating. The treated seeds were air-dried in shade for 30 min. Then 10 adult couples of newly emerged C. maculatus were introduced into each jar containing different doses of powder and different concentrations of ethanolic extract. Regular monitoring was done until death of the introduced couples of insects. Biological parameters such as mortality rate, infestation, oviposition and emergence rate were assessed. Mortality percentages of C. maculatus adults were calculated and corrected according to Abbott formula (Abbott, 1925).

3. Statistical analysis

A survival analysis was performed to study survival of insects over seven days according to dose of powder or ethanolic extract. Semi-parametric Cox model was then used to estimate effect of different formulations on insect mortality. Survival package (Terry, 2020) of R was used to implement Cox model. Beta regression was performed on infestation and emergence rates. Number of eggs was subjected to a simple linear regression. Threshold of significance is 5%. An analysis of variance (ANOVA) with two fixed factors is done on each of measured parameters to assess the insecticidal property.

4. Results

4.1. Effect of C. aconitifolius powder on mortality of C. maculatus

The Table 1 shows a significant influence of treatment on insects’ mortality. Indeed, mortality rates recorded with treatments T2, T3, T4, T5, T6 and T7 were significantly lower than that of control lot (Prob. < 0.001).
Figure 1 indicates insect mortality rate is positively correlated with dose of *C. aconitifolius* powder and exposure time. The median survival time of *C. maculatus* under treatments T5, T6 and T7 was four days, while it is five days for insects under treatments T4, T3 and T2. Half of the insects in control lot (T0) were still alive on day six and half of those under T1 treatment were still alive on day five.

![Survival curves of insects according to different treatments of *C. aconitifolius* powder](image)

Figure 1: Survival curves of insects according to different treatments of *C. aconitifolius* powder.

Table 1: Result of cox model applied to mortality rate of *C. maculatus* under the effect of powder of *C. aconitifolius*

| Modality | Coef | HR | Se(Coef) | HRinf | HRsup | Prob.(>|z|) |
|-------------------|------|-----|----------|-------|-------|------------|
| *C. aconitifolius* (Reference = T0; Wald Test = 261.9 df = 7; Prob = < 0.001) |
Treatments T1	0.22	1.25	0.11	1.01	1.56	0.04
Treatments T2	0.54	1.71	0.11	1.37	2.13	< 0.001
Treatments T3	0.55	1.73	0.11	1.39	2.15	< 0.001
Treatments T4	1.10	3.00	0.11	2.40	3.75	< 0.001
Treatments T5	1.18	3.25	0.12	2.59	4.08	< 0.001
Treatments T6	1.41	4.09	0.12	3.26	5.14	< 0.001
Treatments T7	1.20	3.32	0.11	2.66	4.14	< 0.001

Note: Coef = Dose coefficient; HR = Hazard Ratio; Se: Standard error; HRinf and HRsup = lower and upper limits of the 95% confidence interval of the Hazard Ratio; Prob = probability.
4.2. Effect of ethanolic extract on mortality rate of C. maculatus

The Table 2 shows that treatment significantly reduced insect mortality (Prob = <0.001).

| Modality | Coef | HR | Se(Coef) | HRinf | HRsup | Prob(>|z|) |
|-------------------|------|-----|----------|-------|-------|-----------|
| C. aconitifolius (Reference = T0; Wald Test = 43.53; df = 5; Prob = < 0.001) | | | | | | |
| Treatments T1 | 0.14 | 1.15| 0.16 | 0.84 | 1.58 | 0.38 |
| Treatments T2 | 0.17 | 1.18| 0.16 | 0.86 | 1.62 | 0.29 |
| Treatments T3 | 0.59 | 1.81| 0.16 | 1.32 | 2.48 | 0.001 |
| Treatments T4 | 0.84 | 2.32| 0.16 | 1.69 | 3.18 | < 0.001 |
| Treatments TR | 0.07 | 1.08| 0.16 | 0.79 | 1.48 | < 0.001 |

Note: Coef = Dose coefficient; HR = Hazard Ratio; Se: Standard error; HRinf and HRsup = lower and upper limits of the 95% confidence interval of the Hazard Ratio; Prob = probability.

Figure 2 shows median survival time under treatments T3 and T4 was four days and five days for insects subjected to treatments T0, TR, T1 and T2.

4.3. Effect of treatments on the infestation rate of C. maculatus

The analyses of variance indicated that treatments had a significant effect (p < 0.05) on infestation rate of cowpea seeds. However, there was no significant difference between the infestation rates obtained with the control treatment and doses 2 g, 4 g and 6 g of powder (Table 3).

The Table 4 indicates that treatment with ethanolic extract significantly reduced the infestation rate (Prob < 0.05).
Table 3: Result of beta regression applied to infestation rate of C. maculatus under the effect of powder of C. aconitifolius

Powder (Infestation rate)	C. aconitifolius	Pseudo R² = 0.876		
Treatment	Average (Standard deviation)	Prob (>	z)
T0 (Reference)	0.98(0.01)d	<0.001		
T1	0.98(0.01)d	0.99		
T2	0.97(0.01)d	0.28		
T3	0.95(0.01)cd	0.01		
T4	0.91(0.01)bc	<0.001		
T5	0.84(0.02)ab	<0.002		
T6	0.83(0.02)a	<0.003		
T7	0.83(0.02)a	<0.004		

Note: Values with the same letters in indices are not significantly different from each other for the same type of powder. Prob = probability of significance.

Table 4: Result of beta regression applied to infestation rate of C. maculatus under the effect of ethanol extract of C. aconitifolius

Ethanol extract (Infestation rate)	C. aconitifolius	Pseudo R² = 0.99		
Treatment	Average (Standard deviation)	Prob (>	z)
TR (Reference)	0.99(0.001)e	<0.001		
T0	0.99(0.001)e	0.99		
T1	0.58(0.005)d	<0.001		
T2	0.55(0.005)c	<0.001		
T3	0.48(0.005)b	<0.001		
T4	0.41(0.005)a	<0.001		

Note: Values with the same letters in indices are not significantly different from each other for the same type of powder. Prob = probability of significance.

4.4. Effect of treatments on fecundity of C. maculatus

The Table 5 shows that average number of eggs decreased with increasing powder dose. Powder dose statistically influenced the number of eggs (Prob < 0.05). It is the same analysis for treatments with the ethanolic extract (Table 6).

Table 5: Result of linear regression applied to fecundity of C. maculatus under the effect of powder of C. aconitifolius

Powdeed (Fertility)	C. aconitifolius	Pseudo R² = 0.42		
Treatment	Average (Standard deviation)	Prob (>	z)
T0 (Reference)	56.76(2.491)c	<0.001		
T1	54.85(2.491)c	0.58936		
Table 5 (cont.)

Powder (Fertility)	C. aconitifolius	Pseudo R² = 0.42		
Treatment	Average (Standard deviation)	Prob (>	z)
T2	52.46(2.491)bc	0.22735		
T3	50.3(2.491)abc	0.07190		
T4	47.2(2.491)abc	0.00881		
T5	41.79(2.491)ab	<0.001		
T6	39.43(2.491)a	<0.001		
T7	39.94(2.491)a	<0.001		

Note: Values with the same letters in indices are not significantly different from each other for the same type of powder. Prob = probability of significance.

Table 6: Result of linear regression applied to fecundity of C. maculatus under the effect of ethanolic extract of C. aconitifolius

Ethanolic extract (Fertility)	C. aconitifolius	Pseudo R² = 0.94		
Treatment	Average (Standard deviation)	Prob (>	z)
TR (Reference)	57.25(0.96)c	<0.001		
T0	56.88(0.96)c	0.78		
T1	21.75(0.96)b	<0.001		
T2	15.65(0.96)a	<0.001		
T3	14.23(0.96)a	<0.001		
T4	13.6(0.96)a	<0.001		

Note: Values with the same letters in subscripts are not significantly different from each other for the same type of extract. Prob = probability of significance.

4.5. Effect of treatments on emergence of adults of C. maculatus

The Table 7 indicates that powder dose statistically influenced emergence rate (Prob < 0.05). It is the same analysis for treatments with ethanolic extract (Prob < 0.05) Table 8.

Table 7: Result of beta regression applied to emergence of C. maculatus under the effect of powder of C. aconitifolius

Powder (Emergence rate)	C. aconitifolius	Pseudo R² = 0.95		
Treatment	Average (Standard deviation)	Prob (>	z)
T0 (Reference)	0.99(0.002)d	<0.001		
T1	0.99(0.002)d	0.99		
T2	0.99(0.002)d	0.54032		
T3	0.98(0.003)d	0.00784		
Table 7 (Cont.)

Powder (Emergence rate)	C. aconitifolius	Pseudo R² = 0.95		
Treatment	Average (Standard deviation)	Prob (>	z)
T4	0.93(0.005)c	<0.001		
T5	0.9(0.006)b	<0.001		
T6	0.9(0.006)b	<0.001		
T7	0.74(0.009)a	<0.001		

Note: Values with the same letters in indices are not significantly different from each other for the same type of powder. Prob = probability of significance.

Table 8: Result of beta regression applied to emergence of C. maculatus under the effect of ethanolic extract of C. aconitifolius

Ethanolic extract (Emergence rate)	C. aconitifolius	Pseudo R² = 0.94		
Treatment	Average (Standard deviation)	Prob (>	z)
TR (Référence)	0.26(0.01)d	<0.001		
T0	0.27(0.01)d	0.61		
T1	0.19(0.009)c	<0.001		
T2	0.14(0.008)b	<0.001		
T3	0.1(0.007)a	<0.001		
T4	0.08(0.006)a	<0.001		

Note: Values with the same letters in indices are not significantly different from each other for the same type of powder. Prob = probability of significance

5. Discussion

Prior to this work, no studies tested the insecticidal effect of C. aconitifolius extracts on C. maculatus adults. Indeed, studies have tested the acaricidal effect of C. aconitifolius on Tetranychus urticae (Numa et al., 2015). According to these authors, ethanolic extract of C. aconitifolius has remarkable acaricidal properties on Tetranychus urticae females.

The present study tested the insecticidal effect of the powder and ethanolic extract of C. aconitifolius on adults of C. maculatus under laboratory conditions. This study showed that powder and ethanolic extract of C. aconitifolius reduced seed infestation, life span, fecundity and emergence rate of C. maculatus. This reduction was much greater at higher doses. The most effective treatment was the ethanolic extract, for which values of the studied parameters were very low. The results recorded were comparable to those of Dabiré (1993), Nuto (1995), Kétoh (1996) and Johnson (2006) whose researches showed that certain plant species reduce the life span of adults and the fecundity of female C. maculatus. They also agree with Gakuru and Foua-Bi (1995) who report that plant species are very effective in reducing the life span of C. maculatus and Sitophilus orizae. Thus, the decrease in insect fecundity would be due to early death caused by respiratory intoxication related to the volatile compounds contained in powder and ethanolic extract of the plant (Schmidt et al., 1991; Koumaglo et al., 1996; Glitho et al., 1997; Mazibur and Gerhard, 1999; and Séri-Kouassi, 2004).

6. Conclusion

The powder and ethanolic extract of C. aconitifolius have significantly reduced the life span of C. maculatus. Different treatments reduced seed infestation, fecundity, and insect emergence rate. The different trials revealed
that ethanolic extract is more effective than the powder. Extracts of C. aconitifolius can be used in the control of C. maculatus, in cowpea stocks in Benin.

Ethical opinion
The execution of this research work has received the favorable opinion of scientific committee of Doctoral School (FA.ST/ UAC) under thenumber (UAC/ FA.ST/ EDSVT/ 574601).

References
Abbot, W. (1925). A method of computing the effectiveness of an insecticide Journal of Economy and Entomology, 18, 265-267.

CBDD. (2000). Revue bimestrielle n° 11, juillet, août 2000, 7 p.

Dabire, C. (1993). Méthodes traditionnelles de conservation du niébé (Vigna unguiculata) au Burkina-Faso. In : Thiam (A.) et Ducorn (G.) (éditeur) Protection naturelle des végétaux en Afrique. Dakar : Enda, 45-56.

Gakuru, S. and Foua-Bi, K. (1995). Effet comparé des huiles essentielles de quatre espèces végétales contre la bruche du niébé (C. maculatus Fab) et le charançon du riz (S. oryzae L). Agriculture, 13 (4), 143-146.

Glitho, I.A., Ketho, K.G. and Koundam, H.K. (1997). Effets de quelques huiles essentielles sur l'activité reproductrice de C. maculatus Fab. “Annales de l'Université de Ouagadougou” Série B, 5, 174-185.

Gordon, M. (2002). Les légumineuses au Moyen-Orient et en Afrique du Nord. Le Bulletin bimensuel, 22 mars 2002, 15, 5. A agriculture et A gro-alimentaire Canada. 4p.

Haubrue, E., Shiffers, B., Gabriel, E. and Verstraeten, C. (1988). Étude de la relation dose-efficacité de six insecticides à l’égard de S. granarius L., S. oryzae L., S. zeamais (Col., Curculionidae). M ed. Fac. Landbouw Rijksuniv. Gent. 53/2b, 719-726.

Houinsou, F.R.L., Adjou, S.E., Ahoussou, E.D., Sohounlhoun, C.K.D. and Soumanou, M.M. (2014). Bioactivity of essential oil from fresh leaves of Lantana camara against fungi isolated from stored cowpea in southern Benin. International Journal of Biosciences, 5(1), 365-372.

Isman, M.B. (1994). Botanical insecticides. Pesticides Outlook, 26-3.

Jackai, L.E.N. and Daoust, R.A. (1986). Insect pest of cowpeas. Annual Review of Entomology, 31, 95-119.

Johnson, F., Seri-Kouassi, B., Aboua, L.R.N. and Foua-Bi, K. (2006). Utilisation de poudres et d’extraits totaux issus de plantes locales des genres O cimum sp. et M entha sp. comme biopesticides dans la lutte contre C. maculatus fab. A gronomie A fricaine, 18(3), 221-233.

Ketho, K.G. (1998). Utilisation des huiles essentielles de quelques plantes aromatiques du Togo comme biopesticides dans la gestion des stades de développement de C. maculatus F. (Coleoptera : Bruchidae). Thèse de Doctorat Univ. Du Bénin Lomé-Togo, 136 p.

Ketoh, G.K., Glitho, I.A. and Koundaglo, H.K. (2004). Activité insecticide comparée des huiles essentielles de trois espèces du genre Cympogon (Poacées). J. Soc. Ouest-Afr. Chim., 18, 21-34.

Kongne, M.L., Koumany, H., Fameni, T.S. and Tchenguem Fohouo, F.N. (2018). Management of C. maculatus F. (Coleoptera : Bruchidae) using methanol extracts of Carica papaya, Carissa edulis, Securidaca longepedunculata and Vinca rosea and impact of insect pollinators on cowpea types in the Far-North region of Cameroon. Journal of Entomology and Z ology Studies.

Koumago, K.H., Akpagana, K., Glitho, I.A., Garneau, F.X., Gagnon, H. and Jean, F.I. (1996). Germinal and N eral, major constituents of Lipia multiflora Moldenke leaf oil J. Essent. O il Res., 8, 237-240.

Kpatinvoh, B. (2016). Problématique de la conservation du niébé (Vigna unguiculata (L), Walp) en Afrique de l’Ouest : étude d’impact et approche de solution. Journal of Animal & Plant Sciences, 31(1), 4831-4842.

Numa, S., Rodriguez, L., Rodriguez, D. and Coy-Barrera, E. (2015). Susceptibility of T. urticae Koch to an ethanol extract of C. aconitifolius leaves under laboratory conditions. Springer Plus, 4, 338-342.

Nuto, Y. (1995). Synergic action of co-occuring toxin in root bark of Zanthoxylum zanthoxyloides (Routaceae) against the cowpea beetle C. maculatus (Coleoptera : Bruchidae). Thesis of PhD. D.S.U.N.Y. Syracuse, New York, 107 p.
Makanur, B., Deshpande, V.K. and Vyakaranahal, B.S. (2013). Characterisation of cowpea genotypes based on quantitative descriptors. A cademic Journals, 8(4), 1183-1188.

Mazibur, M.R. and Gerhard, H.S. (1999). Effect of Acorus calamus (L) (Araceae) essential oil vapours from various origins on C. phaseoli (Gyllenhal) (Coleoptera : Bruchidae). J.stored Prod. Res., 35, 285-295.

Relinger, L.M., Zettler, J.L., Davis, R. and Simonaitis, R.A. (1988). Evaluation of pirimiphos methyl as a protectant for export grain. Journal of Economic Entomology, 81, 718-721.

Regnault-Roger., C., Bernard, J.R. and Philogene, C.V. (2002). Biopesticides d’origine végétale. Ed. Tec &Doc. Lavoisier, Paris, pp. 20-37.

Schmidt, G.H., Risha, E.M. and El-Nahal A.K.W. (1991). Reduction of progeny of some stored-product Coleoptera by vapours of Acorus calamus. J. stored Prod. Res., 27(2), 121-127.

Seri-Kouassi, B. and PH. (2004). Entomofaune du niébé (V. unguiculata L.) et impact des huiles essentielles extraites de neuf plantes locales sur la reproduction de C. maculatus FAB (Coleoptera :Bruchidae) en Côte d’Ivoire. Thèse de doctorat d’Etat en sciences, spécialité entomologie, Université de Cocody, 199 p.

Stoilova, T. and Pereira, G. (2013). Assessment of the genetic diversity in a germplasm collection of cowpea (V. unguiculata (L.) Walp.) using morphological traits. African Journal of Agricultural Research, 8(2), 208-215.

Terry, M. (2020). Survival analysis. https://CRAN.R-project.org/ package=survival .

Zannou, T.E., Goudgnon, E., Kossou, D.K. and Glitho, I.A. (1997). Colonisation des cultures de niébé (Vigna unguiculata (L) Walp.) par les Coléoptères Bruchidae au sud du Bénin. J. Rech. Sci. Univ.Bénin (Togo), (2), 1-7.

Zannou, T.E., Glitho, I.A., Sanni, A. and Dossou, C. (2000). Mise en évidence de la diapause reproductrice chez les femelles de la forme voilière de C. maculatus F.