0. Introduction.

This short Note falls within the context of the references [1], [2], [3] and [4] cited below and establishes that the counter-example provided in [4] to the second inequality of Corollary (19.10) in the Clay Institute Monograph by J. Morgan and G. Tian [1] entitled "Ricci Flow and the Poincare Conjecture" still stands after the correction published in [2]. The constant C_1 in Lemma 0.4 of [2] can be taken to be zero.

The problem lies deeper.

1. Preliminaries.

We assume in the sequel that the curve-shortening flow, starting from a given curve, defines a piece of (immersed) surface Σ. This happens for example when $k(c(x_0, 0))$, the norm of the curve-shortening flow deformation vector $H(c(x, 0))$ as in eq [1], is non-zero at a given point x_0 of a smooth immersed curve $c(x, 0)$. Extending in section to the curve-shortening flow, we find that an open set U in M is parameterized as $\{c_\mu(x, t)\}$, μ an extra-parameter, with $\frac{\partial c_\mu(x,t)}{\partial t} = H((c_\mu(x, t)) = \nabla^{g(t)}_S S(c_\mu(x, t)), S$ is the unit vector of $x \rightarrow c_\mu(x, t)$, (t, μ) frozen) for the metric $g(t)$ evolving as in [1] through the Ricci flow.

U is now mapped into $M \times [0, \epsilon)$ through the map $c_\mu(x, t) \rightarrow (c_\mu(x, t), t), t \in [0, \epsilon)$.

This is the framework of [2], with the metric \hat{g} on $M \times [0, \epsilon)$. The image of M through this map will be denoted M_1 in the sequel.

2. C_1 of [2] is zero.

a. The estimate $(\nabla^{\hat{g}}_H H, H)_{(c(x,t),t)} = -Ric^{g(t)}(H, H) = O(k^2)$.

Consider the identity:

$$(\nabla^{\hat{g}}_H H, H) = (\nabla^{g(t)}_H H, H)_{g(t)} - Ric^{g(t)}(H, H)$$

This identity is derived from the two ways to compute $\frac{\partial^2}{\partial t^2}$, the first one using the metric and connection over $M \times [0, \epsilon)$, see [2], the second one by differentiating directly as in (19.1) of [1] and using the connection of the metric $g(t)$. The proof of (19.1) is repeated in section 3, below, for the sake of completeness.

$\nabla^{\hat{g}}_H H$ above is viewed as covariant differentiation along the curve $(c(x, t), t)$ of M_1 (see section 1). Along this curve, $H = \nabla^{g(t)}_S S$, with $S = \frac{\partial c(t)}{\partial x} |_{g(t)}$. Since this quantity depends only on the value of H along the curve $(c(x, t), t)$, H can be extended in this subsection to the $(c(x, t), s)$s as $H(c(x, t), s) = \nabla^{g(t)}_S S, S = \frac{\partial c(t,s)}{\partial x} |_{g(t)}$. This is understood as covariant differentiation of S along the curve parametrized in the variable x as $(c(x, t), s)$, with t and s frozen, hence as covariant differentiation along S.

With $H = \nabla^{g(t)}_S S, S = \frac{\partial c(t)}{\partial x} |_{g(t)}$, the expression above $(\nabla^{g(t)}_H H, H)_{g(t)},$ at $t = t_0$, is in fact $[\nabla^{g(t_0)}_H H, H]_{g(t_0)}|_{t=t_0}$, see the proof below in section 3.

Observe now that, since H is horizontal:

$$\{[\nabla^{g(t_0)}_H H, H]_{g(t_0)}|_{(c(x,t))}\}_{t=t_0} = (\nabla^{\hat{g}}_H H, H)_{(c(x,t_0),t_0)}$$

C_1 IN [2] IS ZERO

ABBAS BAHRI
We use now the fact that \(\dot{H} = \frac{\partial}{\partial s} + H \). We can then split \(\nabla_{\dot{H}} \) into \(\nabla_H + \nabla_{\frac{\partial}{\partial s}} \) in the derivation formula above. Using this splitting, we derive that
\[
(\nabla_{\frac{\partial}{\partial s}} H, H)_{(c(x,t),t)} = -Ricg(t)(H, H) = O(k^2)
\]

This estimate can also be derived directly, without comparing the two formulae, but with working on \(M \times [0, \epsilon) \), with the connection \(\nabla \) and a suitable coordinate frame, using \(\frac{\partial}{\partial s}, \frac{\partial x(t)}{\partial x} \), \(H(c(x,t), s) = \nabla_S^{g(t)} S \), with \(S(c(x,t), s) = \frac{\partial c(x,t)}{\partial x} |_{g(t)} \) and an additional suitable vector-field which adds the parameter \(\mu \) of section 1. We may assume that, with this additional vector-field, we find a frame that is orthogonal (not orthonormal) at \((c(x,t_0), t_0) \). The computation at \((c(x,t_0), t_0) \) becomes straightforward: \(H \) has a component on itself equal to 1; any derivative of this component is zero. Then, \((\nabla_{\frac{\partial}{\partial s}} H, H)_{(c(x,t_0), t_0)} = \Gamma^H_{\frac{\partial}{\partial s}H} (c(x,t_0), t_0)(H, H)_{g(t_0,c(x,t_0))} \). The Lie bracket \([\frac{\partial}{\partial s}, H] \) is zero\(^1\); furthermore, the base point \(c(x,t) \) for the computation of the dot-products in \(g(t) \) does not move under the action of the one-parameter group of \(\frac{\partial}{\partial s} \). The only parameter that changes under the action of the one parameter group of \(\frac{\partial}{\partial s} \) is the second parameter \(s \) in \((c(x,t), s) \); over a time equal to \(\tau \), this involves a change of the metric from \(g(t, c(x,t)) \) into \(g(t+\tau, c(x,t)) \). \(H \) is unchanged. Thus, we find that as above:
\[
(\nabla_{\frac{\partial}{\partial s}} H, H)_{(c(x,t_0), t_0)} = -Ricg(t)(H, H) = O(k^2)
\]

Since \(t_0 \) is arbitrary, this new direct computation confirms the former one. We have skipped some details in this construction and in this computation; they do not present any real difficulty.

Observe that the estimate above \(O(k^2) \) does not depend on \(\Sigma \). It depends only on the ambient metric and on the value of \(k \) of course.

b. \(C_1 \) in Lemma 0.4 of [2] can be taken to be zero.

Coming back to the formula of the correction [2], we focus on the addition of the two terms (observe the change of order in \(S \) and \(H \) for the two last arguments in \(Rm \) with respect to [2] in our notation. This is only a matter of notation: the content, which is derived through the formula using the curvature operator \((R(A,B,C,D)) = \tilde{Rm}(A,B,C,D) \) in our notations and \((R(A,B,C,D)) = \tilde{Rm}(A,B,D,C) \) in the notations of [1] and [2] is unchanged) \(\tilde{Rm}(H, S, S, H) + (\nabla_S \nabla_S \frac{\partial}{\partial s}, H) \). These are the two terms (multiplied by \(2 \)) contributing to the constant \(C_1 \) of Lemma 0.4 of [2]\(^2\).

We need to be careful with the definition of \(S \): \(S \), within the framework of the metric \(\tilde{g} \) of [2], is equal to \(S_2(c(x,t), s) = \frac{\partial c(x,t)}{\partial x} |_{g(t)} \). We will modify, without loss of generality for the computation, its definition in the expression for \(\tilde{Rm} \) below.

Observe that the one parameter group of \(\frac{\partial}{\partial s} \), used over the time \(\tau \), maps \((c(x,t), s) \) into \((c(x,t), s + \tau) \). It follows that commutation of \(\frac{\partial}{\partial s} \) with \(X = \frac{\partial c(x,t)}{\partial x} \) does occur, so that \([\frac{\partial}{\partial s}, X] = 0 \).

We now replace \(S_2 \), in \(\tilde{Rm} \) only, by \(S(c(x,t), s) = \frac{\partial c(x,t)}{\partial x} |_{g(t)} \), over \(M \times [0, \epsilon) \); since we are completing this computation at points of \(M_1 \), where the value of \(S_2 \) is indeed \(\frac{\partial c(x,t)}{\partial x} |_{g(t)} \), this modification is legitimate in \(\tilde{Rm} \):

\(^1\)This follows from the action of the one parameter group of \(\frac{\partial}{\partial s} \); this action is only on the second factor of the couple \((c(x,t), s) \), observe that \(H(c(x,t), s) = \nabla_S^{g(t)} S \), the value of \(S \) being \(S(c(x,t), s) = \frac{\partial c(x,t)}{\partial x} |_{g(t)} \), does not depend on \(s \). This is the framework, which we defined above, for our computation.

\(^2\)The other terms displayed in [2] which could contribute to \(C_1 \) in Lemma 0.4, such as \(2(\nabla_S [Ricg(S,S)\frac{\partial}{\partial s}, H])_{g} \), are in fact \(O(k^2) \). For example, for this latter term, we know that \(H \) and \(\frac{\partial}{\partial s} \) are orthogonal and we know that \(\nabla_S \frac{\partial}{\partial s} \) is zero. \(\bar{H} \) can be broken into \(\frac{\partial}{\partial s} + H \). The contribution of \(\frac{\partial}{\partial s} \) in the expression above is zero using our observations and the contribution of \(H \) is then \(O(k^2) \) since there is an additional dot product with \(H \) in this expression.
value of \(\hat{R}m(\hat{H}, S_2, S_2, H) \) at a point of \(M_1 \) is the same than the value of \(\hat{R}m(\hat{H}, S, S, H) \), \(S_2 \) and \(S \) as above, at the same point. This follows from the tensor properties of \(\hat{R}m \).

As in [2], with new notations \(S_2 \) is a notation which is not used in [2]- \(S_2 \) in the other term \((\nabla_S \nabla_S \frac{\partial}{\partial t}) \) remains \(S_2(\gamma, t, s) = \frac{\partial c(\gamma, t)}{\partial t} \). Observe that \(S_2 = \gamma S, \gamma = 1, S_2, \gamma = 0 \) on \(M_1 \), so that \(\hat{\nabla}_S \hat{\nabla}_S = \nabla_S \nabla_S \) on \(M_1 \), see section 1, above for the definition of \(M_1 \).

We need only to consider the terms which are not \(O(k^2) \) and, therefore, the above expression can be changed into \(\hat{R}m(\frac{\partial}{\partial t}, S, S, H) + (\nabla_{S_2} \nabla_{S_2} \frac{\partial}{\partial t}, H) \).

\(H \) has been extended, without loss of generality, in both terms, over \(M \times [0, \epsilon] \) as \(H(\gamma(x, t), s) = \nabla^{\gamma(t)}_S S \), the covariant derivative along the unit vector \(S \) for \(g(t) \) to the curve \(x \rightarrow (\gamma(x, t), s, (t, s) \) frozen.

Writing the first term with the use of the riemannian tensor on \(\frac{\partial}{\partial t} \) and \(S \), this is \((\nabla_{\frac{\partial}{\partial t}} \nabla_S S - \nabla_S \nabla_{\frac{\partial}{\partial t}} S - \nabla_{\frac{\partial}{\partial t}} \nabla_S S, H) \). This first term is thereby divided itself into three further terms, which we now discuss one by one: We use the fact that \([\frac{\partial}{\partial t}, S] = \theta S \), with \(\theta \) bounded. This allows to see that the term \((\nabla_{\frac{\partial}{\partial t}} S, H) \) is \(O(k^2) \). The second term, after the use of the commutation relation \([\frac{\partial}{\partial t}, S] = \theta S \) and the fact that \(S \) and \(H \) are orthogonal, cancels with \((\nabla_{S_2} \nabla_{S_2} \frac{\partial}{\partial t}, H) \) (use our observation above about \(\gamma, S_2, \gamma \) on \(M_1 \)) leaving \(O(k^2) \).

Using the fact that \(\nabla_{\frac{\partial}{\partial t}} \frac{\partial}{\partial t} = 0 \) and the fact that \(\frac{\partial}{\partial t} \) and \(H \) are orthogonal, we find that the first term is \((\nabla_{\frac{\partial}{\partial t}} H, H) \), which is, from our reasoning above, \(O(k^2) \).

The conclusion follows. \(C_1 \) in [2] can be taken to be zero (we assume that we have a piece of surface \(\Sigma \); the estimate, as pointed out above does not depend on \(\Sigma \). When \(k = 0 \) and there is no immersed \(\Sigma \); locally, the estimate of [2] contains \(C_1 k \) and our argument does not work as is. It is however then clear that \((\nabla_{\frac{\partial}{\partial t}} H, H)_{g(t)} = 0 = O(k^2) \) at such points. It is also clear that \(C_1 k \) is zero at such points and can be forgotten. Using then density and continuity, the assumption that \(\Sigma \) immersed exists can be removed). The additional terms in \(k \) in the correction hide a cancellation.

3. Proof of (19.1) of [1].

For completion, we add here the computation that shows that (19.1) of [1] holds: Let \(\gamma(t) = g(t) - g(t_0) \) be the bilinear symmetric 2-tensor form defined by difference. We write on the image (piece of) surface in \(M \), which we assume to be immersed:

\[
(H, H)_{g(t)} = (H, H)_{g(t_0)} + (H, H)_{\gamma(t)}
\]

\(H \) is here equal to \(H = \nabla^{\gamma(t)}_S S \) the unit vector tangent to the curve \(x \rightarrow c(x, t) \), with respect to the metric \(g(t) \).

Differentiating with the use of the connection along the surface induced by \(g(t_0) \), we find, since \(\frac{\partial}{\partial t} = H \) on the surface:

\[
\left[\frac{\partial k^2}{\partial t} \right]_{t=t_0} = 2(\nabla_H^\Sigma H, H)_{g(t_0)} + \left(\frac{\partial((H, H)_{\gamma(t)})}{\partial t} \right)_{t=t_0}
\]

\(\Sigma \) is our piece of surface.

Since \(H \) is tangent to \(\Sigma \), we may replace \(\nabla^\Sigma \) with \(\nabla^{g(t_0)} \) the connection for \(g(t_0) \) on \(M \). For the derivative of the second term, we use local coordinates on \(\Sigma \) and we find that this is \((H, H)_{g(t_0)} \), which yields the term \(-2 \text{Ric}(H, H) \).

(19.1) follows. Observe that, with \(H_1 = \nabla^{H_{g_1}} S_1, S_1 = \frac{\partial c(x, s)}{\partial t} \):

\[
[\left(\nabla_H^{g(t_0)} \nabla_S^{g(t_0)} S, H \right)_{g(t_0)}]_{t=t_0} = \left[\left(\nabla_H^{g(t_0)} H_1 \right)_{s=t, H} \right]_{t=t_0}
\]
4. The Clay Institute computation [1], p442 for $\frac{\partial k^2}{\partial t}$, slightly modified in order to make it more transparent.

The Clay Institute monograph [1], besides the division by k pointed out in [3] and corrected in [2] (counter-example still standing, see [4]), can be modified so that the computation of $\nabla_H H$, p442, is more elementary and transparent. The final result is unchanged: When computing $\nabla_H H$ as in p442 of [1], it is preferable to take the connection $\nabla^{g(t)}$ at a fixed value of t, $t = t_0$. This can be done, taking H_2 to be $\nabla^{g(t_0)} S$, where S is $\frac{\partial x(t)}{\partial x(t_0)}$. The computation is carried as in [1], except that the Lie bracket $[H_2, S]$ is not θS anymore, since H has been changed into H_2. However, with H_2, $[H_2, S] = \theta S + O(t - t_0)$, where $O(t - t_0)$ is small, as well as all its spatial derivatives as t tends to t_0. There is no t-derivative in the computation of [1]. The result for $\nabla^{g(t_0)} H_2$, p 442, reads $(H_2, S$ as described above):

$$\nabla^{g(t_0)} H_2 = \nabla_S^{g(t_0)} \nabla_S^{g(t_0)} H_2 + 2(k^2 + \text{Ric}(S, S))H + S.(k^2 + \text{Ric}(S, S))S + \text{Riem}^{g(t_0)}(H, S)S + O(t - t_0)$$

In this computation now, H_2 can be replaced by $H = \nabla_S^{g(t)} S$ in the left hand side. The result is unchanged since there is no t-derivative in this formula, the corrective terms are dropped into $O(t - t_0)$. $g(t_0)$ can be replaced by $g(t)$ in the right hand side, where the covariant derivatives are along S. Taking now the dot product with H, for the metric $g(t_0)$ for the left hand side and for the metric $g(t)$ for the right hand side, with $H = H_2$ there, we find ($(S, H_2)_{g(t)} = O(t - t_0))$:

$$(\ast) \quad (\nabla^{g(t)} H, H)_{g(t_0)} = (\nabla_S^{g(t)} \nabla_S^{g(t)} H_2 + 2(k^2 + \text{Ric}(S, S))H + \text{Riem}^{g(t)}(H, S)S + O(t - t_0), H_2)_{g(t)}$$

Understanding $\nabla_S^{g(t)} \nabla_S^{g(t)} H_2$ as covariant differentiation along the curve $c(x, t)$, ie along S, we find that

$$(\nabla_S^{g(t)} \nabla_S^{g(t)} H_2, H_2)_{g(t_0)} = (\nabla_S^{g(t)} \nabla_S^{g(t)} H, H)_{g(t)} + O(t - t_0)$$

Then, after entering this and further replacing H_2 with H in (\ast), taking then this modified identity at $t = t_0$, we find that the computation of [1] for $\frac{\partial k^2}{\partial t}$ holds at $t = t_0$. But t_0 is arbitrary.

5. Conclusion.

In view of the present note and in view of the counter-example in [4], the problem lies deeper.
References

1. J.Morgan and G.Tian, *Ricci Flow and the Poincare Conjecture*, vol. 3, Clay Mathematics Monograph, AMS and Clay Institute, 2007.

2. J.Morgan and G.Tian, *Correction to Section 19.2 of Ricci Flow and the Poincare Conjecture*, arXiv:1512.00699 (2015).

3. A.Bahri, *Five gaps in Mathematics*, Advanced Non-linear Studies *Vol. 15, No. 2* (2015), 289-320.

4. A.Bahri, *A Counterexample to the second inequality of Corollary (19.10) in the monograph Ricci Flow and The Poincare Conjecture by J.Morgan and G.Tian* (2015).