TOI–1278 B: SPIRou unveils a rare Brown Dwarf Companion in Close-In Orbit around an M dwarf

Étienne Artigau 1,2, Guillaume Hébrard 3, Charles Cadieux 1, Thomas Vandal 1, Neil J. Cook 1, René Doyon 1,2, Jonathan Gagné 4,5, Claire Moutou 6, Eder Martioli 1,3,7, Antonio Frasca 8, Farbod Jahandar 1, David Lafrenière 1, Lison Malo 1,2, Jean-François Donati 6, Pia Cortes-Zúleta 9, Isabelle Boisse 1, Xavier Delfosse 10, André Carmona 10, Pascal Fouqué 11,6, Julien Morin 12, Jason Rowe 13, Giuseppe Marino 14,8,15, Riccardo Papini 14,16,17, David R. Ciardi 18, Michael B. Lund 18, Jorge H. C. Martins 19, Stefan Pelletier 1, Luc Arnold 11, François Bouchy 20, Thibery Forveille 10, Nuno C. Santos 21,22, Xavier Bonfils 10, Pedro Figueira 23,24, Michael Faussaud 25, George Ricker 26,27, David W. Latham 28, Sara Seager 26,29,30, Joshua N. Winn 31, Jon M. Jenkins 32, Eric B. Ting 32, Guillermo Torres 32 AND João Gomes da Silva 21-

1 Université de Montréal, Département de Physique, IREX, Montréal, QC H3C 3J7, Canada
2 Observatoire du Mont-Mégantic, Université de Montréal, Montréal H3C 3J7, Canada
3 Sorbonne Université, CNRS, UMR 7095, Institut d’Astrophysique de Paris, 98 bis bd Arago, 75014 Paris, France
4 Planétarium Rio Tinto Alcan, Espace pour la Vie, 4801 av. Pierre-de-Coubertin, Montréal, Québec, Canada
5 Institute for Research on Exoplanets, Université de Montréal, Département de Physique, C.P. 6128 Succ. Centre-ville, Montréal, QC H3C 3J7, Canada
6 Univ. de Toulouse, CNRS, IRAP, 14 Avenue Belin, 31400 Toulouse, France
7 Laboratório Nacional de Astrofísica, Rua Estados Unidos 154, Itajubá, MG 37504-364, Brazil
8 INAF - Osservatorio Astrofisico di Catania, Via S. Sofia 78, 95123 Catania, Italy
9 Aix Marseille Univ, CNRS, CNES, LAM, Marseille, France
10 Univ. Grenoble Alpes, CNRS, IPAG, 38000 Grenoble, France
11 Canada-France-Hawaii Telescope, CNRS, Kamuela, HI 96743, USA
12 Université de Montpellier, CNRS, LUMP, 34095 Montpellier, France
13 Bishops University, 2600 College Street, Sherbrooke, QC J1M 1Z7, Canada
14 Wild Boar Remote Observatory, San Casciano in val di Pesa, Firenze, 50026 Italy
15 Gruppo Astrofili Catanesi - Catania - 95128 Italy
16 American Association of Variable Star Observers, 49 Bay State Road, Cambridge, MA 02138, USA
17 Gruppo Astrofili Catanesi, Catania, 95128, Italy
18 NASA Exoplanet Science Institute-Caltech/IPAC 1200 E. California Blvd, Pasadena CA, 91125, USA
19 Instituto de Astrofísica e Ciências Espaciais, Universidade de Porto, Rua das Estrelas, Porto, Portugal
20 Département d’astronomie, Université de Genève, Chemin des Maillettes 51, CH-1290 Versoix, Switzerland
21 Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, 4150-762 Porto, Portugal
22 Departamento de Física y Astronomía, Facultad de Ciencias, Universidad do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
23 European Southern Observatory, Alonso de Córdova 3107, Vitacura, Santiago, Chile
24 Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, 4150-762 Porto, Portugal
25 Department of Physics and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
26 MIT Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
27 MIT Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
28 Center for Astrophysics | Harvard & Smithsonian, 60 Garden Street, Cambridge, MA 02138, USA
29 Earth and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
30 Department of Aeronautics and Astronautics, MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
31 Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton, NJ 08544, USA
32 NASA Ames Research Center, Moffett Field, CA 94035, USA

ABSTRACT

Corresponding author: Étienne Artigau
etienne.artigau@umontreal.ca
We present the discovery of an $18.5 \pm 0.5 \, M_{\text{Jup}}$ brown dwarf (BD) companion to the M0V star TOI–1278. The system was first identified through a percent-deep transit in TESS photometry; further analysis showed it to be a grazing transit of a Jupiter-sized object. Radial velocity (RV) follow-up with the SPIRou near-infrared high-resolution velocimeter and spectropolarimeter in the framework of the 300-night SPIRou Legacy Survey (SLS) carried out at the Canada-France-Hawaii Telescope (CFHT) led to the detection of a Keplerian RV signal with a semi-amplitude of $2306 \pm 10 \, m/s$ in phase with the 14.5-day transit period, having a slight but non-zero eccentricity. The intermediate-mass ratio $(M_\star/M_{\text{comp}} \sim 31)$ is unique for having such a short separation $(0.095 \pm 0.001 \, \text{AU})$ among known M-dwarf systems. Interestingly, M dwarf-brown dwarf systems with similar mass ratios exist with separations of tens to thousands of AU.

Keywords: near-infrared velocimetry, low-mass stars, brown dwarf

1. **INTRODUCTION**

Over the past 25 years, the search for and characterization of planets around other stars has moved from speculative to one of the most active fields in astronomy. Among planetary systems, those orbiting the coolest stars, M dwarfs, are of particular interest for a number of reasons. They provide insight into planetary formation in a regime of host star mass that differs significantly from our own Solar System, with some systems more reminiscent in their architecture and scale to the Galilean moon system. Furthermore, as M dwarfs have radii and masses that are significantly smaller than that of our Sun (M0V to M9V dwarfs ranging respectively from 0.6 to 0.1 R_\odot and 0.6 to 0.1 M_\odot), planets are generally easier to discover and characterize through transits than similarly sized planets around Sun-like stars. This is particularly true for older, slowly rotating M dwarfs; activity being a limiting factor for a number of low-mass stars. Furthermore, the lower luminosity of M dwarfs (0.1 to $10^{-3.5} \, L_\odot$; Veeder 1974; Faherty et al. 2016), implies that the habitable zone (HZ) is much closer to the host star than in our Solar System, implying that the orbits of planets in the HZ can be sampled on timescales of days. Given that M dwarfs make up the majority of stars among nearby stellar systems (being five times more numerous than FGK stars) it is likely that most of the HZ planets within 10 pc are found around M dwarfs (Figueira et al. 2016). This is exemplified by our closest stellar neighbor, the M5.5V Proxima Centauri, having a terrestrial planet in the HZ (Anglada-Escudé et al. 2016).

As they provide an easier path to the characterization of HZ terrestrial planets, planets around M dwarfs have been the subject of considerable efforts. Transit searches dedicated to or optimized for M dwarfs (Irwin et al. 2008) have been successful in identifying systems such as the 7 Earth-sized planets around TRAPPIST-1 (Gillon et al. 2017), and the ongoing TESS mission has a top-level requirement of uncovering 1000 small $(R_p < 4 \, R_\oplus)$ planets and measuring the masses of 50 such planets (Ricker et al. 2014). This requirement is not restricted to M dwarfs, but the TESS bandpass was designed to extend significantly to the red to maximise its sensitivity to planets around M dwarfs, compared to the Kepler mission that had a bluer bandpass better matched to Sun-like stars. While Earth-sized HZ planets receive significant attention, a number of statistical properties of the M dwarf planets have emerged recently regarding more massive companions to M dwarfs.

Jupiter-mass planets are remarkably rare around M dwarfs at short separations. While $0.4 \sim 1\%$ of Sun-like stars host a hot Jupiter (occurrence rate estimates differ depending on detection method considered; Wang et al. 2015), they are rarer around M dwarfs (Meyer et al. 2017), although a few systems have recently been discovered (e.g., Bayliss et al. 2018). This is most unlikely to be an observational bias as a hot Jupiter around an M dwarf would induce a $> 100 \, m/s$ radial-velocity signal (from Kepler’s laws combining a $1 \, M_{\text{Jup}}$ on a $4 \, \text{days}$ orbit around a $0.1\sim0.5 \, M_\odot$ host) and a readily detectable transit ($\sim 4\%$ to $\sim 100\%$ deep for M0V to M9V; from radius relations in Boyajian et al. 2012; Filippazzo et al. 2015).

Here, we report the discovery of an $18.5 \, M_{\text{Jup}}$ transiting brown dwarf (BD) companion on a 14.5–day orbit around the M0V star TOI–1278, above the maximum mass expected to form through a protoplanetary disk; typically $< 1 \, M_{\text{Jup}}$ with only a few objects between 1 and 10 M_{Jup} in the 90-star sample by Ansdell et al. (2016). It occupies a nearly empty part of the mass distribution of close-in companion of M dwarfs, between the Jupiter population and the massive brown-dwarfs companions. In Section 2 we present discovery and follow-up observations of the system; in Section 3 we assess the properties of the host star and in Section 4 we detail the data analysis. Finally, in Section 5 we discuss the properties of the system in
2. OBSERVATIONS

We present below the TESS discovery data of TOI–1278, as well as its ground-based follow-up observations in photometry, high-resolution imaging, low-resolution spectroscopy, and precise near-infrared velocimetry, all required to establish the nature of the transiting object TOI–1278 B.

2.1. TESS photometry

TOI–1278 was observed by TESS (Ricker et al. 2014) in sector 15 with CCD 4 on Camera 1 from August 15 to September 11, 2019. This target was selected in the Cool Dwarf List (Muirhead et al. 2018), a specially curated list of late-K and M dwarfs included in the TESS Input Catalog (TIC; Stassun et al. 2018, 2019) and the Candidate Target List (CTL) for 2-minute cadence light curve sampling. We used the publicly available1 Presearch Data Conditioning Simple Aperture Photometry (PDCSAP; Smith et al. 2012; Stumpe et al. 2012, 2014) light curve produced by the NASA Ames Science Processing Operations Center (SPOC; Jenkins et al. 2016). The PDCSAP flux values are corrected for long-term systematic trends seen among other stars in the same sector/camera/CCD using Cotrending Basis Vectors. No long-term stellar variability on timescales shorter than the time series considered here are removed. Furthermore, these PDCSAP fluxes account for the dilution caused by nearby stars. The TIC contamination ratio defined as the flux from other sources within the aperture divided by the target star flux (in TESS-band) is 0.326395 for TOI–1278. This dilution correction is important as any other flux contribution would lead to an underestimation of the transiting object radius by an equal-luminosity eclipsing binary, the TESS detection could still be attributed to a nearby eclipsing binary (NEB) located within a few pixels. This is due to TESS’s coarse image sampling (21″ per pixel) hence the need to confirm on-target transit events with arc-second angular resolution ground-based observations. In the case of TOI–1278, additional transit observations were crucial to set stronger constraints on its light curve determination, particularly on the orbital period, the radius of the transiting object, and the impact parameter. Ground-based monitoring was spurred by the TESS discovery and was obtained to further constrain transit properties. We did not obtain a full out-of-transit light curve.

We scheduled two transit observations using the TESS Transit Finder (TTF), a customized version of the Tapir software package (Jensen, Eric 2013). We first observed TOI–1278 at Wild Boar Remote Observatory (WBRO) near Florence, Italy on October 27, 2019 without any filter (clear). A grazing, percent-deep, transit was detected on-target using a 4″7 aperture and was on time given the TTF prediction and uncertainty. The second observation was conducted at M.G. Fracastoro station (Mt. Etna, 1735 m a.s.l.) of the Catania Astrophysical Observatory (CAO), in Italy on November 25, 2019 in I_C with the 0.91-m telescope. Using a 5″3 aperture, a second V-shaped, transit of the same depth was detected at the expected time. Both data sets were consistent with TESS in transit depth, shape, duration and timing. Ground-based photometric follow-ups significantly increased the time baseline of our data set and further constrained the orbital fit. We have thus included these additional photometric observations, together with TESS transits, in our joint model described in Section 4. Calibration and light curve extraction by differential pho-

1 Mikulski Archive for Space Telescopes: archive.stsci.edu/tess/
Figure 1. **Top panel**: TOI–1278 normalized PDCSAP light curve from sector 15. The gap in the middle of the light curve is due to data downlink when TESS is close to perigee. **Lower panels**: TESS, WBRO, and CAO transit light curves. The black points represent binned data (10 min temporal bin). The blue curves are the best-fit transit model, as discussed in Section 4. Only the baseline flux and the limb-darkening coefficients vary between the three data sets. For each instrument, the residuals (Observed - Calculated) are shown below the transit. The TESS data set is phase-folded and covers two transits.

2.3. Ground-based photometry

To constrain the stellar parameters of the host star, in particular the effective temperature, we obtained complementary optical photometry at the CAO as the values reported in the TIC had relatively large uncertainties. Photometric measurements in B, V, R_C, and I_C were obtained on 2020 December 1 (see Table 2). Standard stars in the cluster NGC 7790 (Stetson 2000) were observed just after TOI–1278 to calculate the zero points and the transformation coefficients to the Johnson-Cousins system. The errors on the B, V, R_C, I_C magnitudes include both the photometric uncertainty coming from the photon statistics and the error of standardization based on the NGC 7790 data.

2.4. High-resolution imaging

We searched for sources within a few arcseconds of TOI–1278 with Palomar/PHARO NIR Adaptive Optics imaging on November 9, 2019 in the $Br\gamma$ band. As shown in Figure 2, no companion is detected at 5σ with a contrast ratio $\Delta Br\gamma \leq 7.0$ mag for separation greater than 1″ (76 AU) and $\Delta Br\gamma \leq 6.335$ mag for separation over 0.5″ (38 AU). These contrasts thus exclude a companion brighter than $M_K \sim 11.7$, corresponding to an L4 spectral type and $L_{bol} = 10^{-4.1} L_\odot$ for field objects (using polynomial relations in Faherty et al. 2016). At an age > 1 Gyr (see Section 5), this rules-out stellar companion down to the upper limit of the brown dwarf regime (Phillips et al. 2020 models).

2.5. SPIRou velocimetry

TOI–1278 was observed over 12 epochs from May 31 to November 1, 2020 using SPIRou, the near-infrared ($0.98 - 2.5 \mu m$) spectro-polarimeter installed on the Canada-France-Hawaii telescope (Donati et al. 2018, 2020). The data set was obtained as part of the ongoing SPIRou Legacy Survey (SLS; Donati et al. 2020).

At each epoch, a 4 measurement polarimetric sequence was obtained, each measurement having a 5 min integration, except for June 7 when 8 measurements were obtained due to poorer observing conditions. Per-exposure
Figure 2. Brγ 5σ contrast curve of TOI–1278 from Palomar/PHARO NIR Adaptive Optics imaging. No close companion is detected.

signal-to-noise ratios (SNR) of 20 to 38 were obtained for the middle of H band. These SNR values are for a spectral sampling of the SPIRou data of ~2.2 km/s/pixel. We rejected a handful of observations due to low SNR, resulting in 47 usable precision radial velocity (PRV) measurements at 10 different epochs.

Observations were reduced with the standard data reduction pipeline for SPIRou (APERO, version 0.6.131; Cook et al. in prep). APERO automatically handles all reduction steps necessary for PRV. In brief, the pipeline first corrects detector-related effects (specific to H4RG infrared arrays, i.e. the capacitive coupling between amplifiers, the 1/f noise and the dark current; Artigau et al. 2018b). Then, APERO locates the bad pixel positions, the exact positions of orders on the array and determines the shape of the instrument slicer (Micheau et al. 2018) as well as determining the flat and blaze corrections to apply, using nightly calibration sequences. The calibrated data is then optimally extracted (Horne 1986) in both polarisation channels, simultaneously (AB) and separately (A and B), as well as the simultaneous calibration channel (C). Extracted 2D (E2DS, 49 orders by 4088 pixels) images are produced, and corrected for thermal emission. As the simultaneous Fabry-Perot calibration was used, leakage from the calibration channel into the science channels was also corrected. Nightly wavelength solutions are constructed using a combination of hollow-cathode and Fabry-Perot calibrations (Cersullo et al. 2019, Hobson et al. in press). Barycentric corrections were determined within APERO using the barycorppy package (Kanodia & Wright 2018).

Telluric and night-sky emission correction is also done automatically using APERO. Night-sky emission is corrected using a principal component analysis (PCA) model of OH emission constructed from a library of high-SNR sky observations. Telluric absorption correction is done using a PCA-based approach on residuals after fitting for a basic atmospheric transmission model (TAPAS, Bertaux et al. 2014); the details of the PCA approach are described in (Artigau et al. 2014) and its implementation in APERO (Artigau et al. in prep).

With the telluric-corrected spectrum, we perform an RV measurement using a cross-correlation function (CCF) with a weighted mask of stellar absorption lines. The mask used must be constructed with a star that reasonably matches in temperature TOI–1278. From existing SPIRou Legacy Survey (SLS) data, we have a number of bright, nearby, M dwarfs that have been observed 100 times with an SNR > 150 in H band. The best match to TOI–1278 was found to be the M0.5V Gl 846, and we use the CCF mask constructed from that spectrum through the PRV analysis.

The CCF is computed for each of the 49 SPIRou orders. Even though the spectra are telluric-corrected, parts of the domain between photometric bandpasses are unusable for PRV. We rejected all orders outside of the $YJHK$ bandpasses. The effective domain used is $980 − 1113 \text{ nm}, 1153 − 1354 \text{ nm}, 1462 − 1808 \text{ nm}$ and $1957 − 2400 \text{ nm}$. Per-order CCFs for usable orders were weighted by the SNR combined with their radial velocity contents defined in Bouchy et al. 2001 and combined in a per-integration CCF. We used a cross-correlation of each observation’s CCF with the mean CCF of all observations to measure TOI–1278’s velocity. This resulted in a slightly lower dispersion of RV than fitting a Gaussian model to each individual CCF. No method that was attempted to measure the velocity from the CCF profile (Gaussian fit, bisector mean position, adjustment of the mean CCF to each observation) led to a significant change in the main result: a $K \sim 2300 \text{ m/s}$ signal consistent in phase and with the period of the companion detected through the photometric monitoring (see Figure 3). The per-epoch RV uncertainty was computed by using equations (6) and (13) in Bouchy et al. 2001 for the individual CCFs. The computed uncertainties are consistent with the point-to-point dispersion within each epoch. To prevent any biases related to under-estimated RV errors, we explored the use of an additional jitter term in the RV model described in Section 4. We found that the posterior of the jitter term was consistent with zero with a 1σ upper limit at 8 m/s, and that all other model parameters remained unaffected well within their 1σ uncertainty. We therefore conclude that the reported RV uncertainties are accurate and we do not include the jitter term in the model presented in Section 4.
2.6. Near-infrared spectroscopy

We obtained a low-resolution near-infrared (0.70–2.52 μm) spectrum of TOI–1278 on UT 2020 December 24 with the SpeX spectrograph at the NASA Infrared Telescope Facility (Rayner et al. 2003) to improve the wavelength coverage of our spectral energy distribution and refine the estimated radius of TOI–1278. We used the 0′′.8 slit in prism mode, resulting in a resolving power \(\lambda/\Delta\lambda \approx 75 \).

Observing conditions were clear with a 0′′.5 atmospheric seeing. We obtained four 60–second exposures of TOI–1278 in an ABBA dither pattern along the slit at an airmass of 1.56, followed by standard SpeX prism calibrations. This was immediately followed by the observation of the A0V-type spectral standard HD 203470 to correct for telluric absorption. We obtained thirty short exposures of HD 203470 in ABBA patterns along the slit at an average airmass of 1.64. We used exposure times in the range 0.5–5 seconds to maximize signal-to-noise ratio while ensuring that we would obtain at least one set of exposures inside the linear range of the improved detector response of the recently upgraded SpeX detector (no sequence reached the nonlinear detector regime).

All data were reduced using SpexTool v4.1 (Cushing et al. 2004): Two-dimensional traces were first extracted using an optimal extraction algorithm, and each resulting one-dimensional raw spectrum were visually inspected to remove bad pixel clusters that randomly occur in the two-dimensional frames during long exposures. The raw spectra are then combined in a signal-to-noise-weighted average, and the raw science target is corrected for telluric absorption using the standard xtellcor procedure (Vacca et al. 2003).

3. STELLAR CHARACTERIZATION

Other than for the presence of a transiting companion (see sections below), TOI–1278 is an unremarkable M dwarf at a distance of 75.46 ± 0.07 pc (Gaia Collaboration et al. 2020). In the local-neighborhood HR diagram (see Figure 4), TOI–1278 falls onto the main sequence of low-mass star, suggestive that it is not an equal-luminosity binary nor particularly inflated due to youth. Also notable is the relatively low level of photometric activity of the star; it displayed a flat light curve, other than for the companion transits, at the part-per-thousand level over the month-long monitoring by TESS (see Figure 1). This argues against a young star that would have frequent flaring; such variability on timescales of hours to days would have been preserved by the PDCSAP photometry.

3.1. Spectral Energy Distribution and Radius

We used the method of Filippazzo et al. (2015) to estimate the bolometric luminosity of TOI–1278. We used the updated trigonometric parallax from Gaia eDR3 to calibrate all available broadband photometry (listed in Table 2), and our SpeX near-infrared spectrum was normalized to an error-weighted combination of the predicted absolute fluxes from the broadband photometric measurements that overlap with the spectrum, following Filippazzo et al. (2015). We adopted the effective temperature determined in Section 3.2 (3799 ± 42 K) and assigned a Rayleigh-Jeans and Wien tails of the appropriate blackbody temperature. Linear interpolation in logarithm space was used to construct the spectral energy distribution outside of the SpeX spectrum and between available broadband photometric measurements. Our resulting spectral energy distribution, shown in Figure 5, allowed us to measure a bolometric luminosity of 0.0614 ± 0.0001 L⊙. This bolometric luminosity measurement is semi-empirical; one only needs to assume a temperature to set the shape of the Wien tail. Considering that it accounts for a small fraction of the overall flux, the impact of the uncertainty on the effective temperature is much smaller than the uncertainties propagated from photometry and parallax measurements.
Regarding the Rayleigh-Jeans regime, the only assumptions is that the two reddest photometric data points are well past the peak of the the Plank function, free of strong molecular absorption and not significantly affected by a circumstellar disk. Considering that the SED peaks at $\sim 1 \mu m$ and that the reddest bandpasses are at 4.6 and 11.6 μm, this assumption is justified. Combining this measurement with our model-dependent T_{eff} allows us to derive a semi-empirical radius measurement of $0.573 \pm 0.012 R_\odot$. This measurement is marginally larger (by $5 \pm 4\%$) than predictions from the solar-metallicity models of Baraffe et al. (1998), and only $1 \pm 3\%$ larger than empirical spectral type to radius relations for field stars (Pecaut & Mamajek 2013)2. This radius measurement is also consistent with interferometric measurements for nearby M dwarfs (Demory et al. 2009), which tend to be marginally inflated compared with solar-metallicity models, by about $0-2\%$. This is in stark contrast with young M dwarfs, which tend to be significantly inflated (by 150–250% at 20–40 Myr) compared with theoretical models and older M dwarfs, likely because of their faster rotation rates that drive strong magnetic fields which in turn affect the hydrostatic balance of young M dwarfs (Malo et al. 2014). This indicates that TOI–1278 is likely not a young M dwarf, consistent with our small $v \sin i$ measurement (see Section 3.2).

Our SpeX low-resolution near-infrared spectrum indicates an M0 spectral type when compared with spectral type standards in the IRTF spectral library (Cushing et al. 2005; Rayner et al. 2009), consistent with our best-matching CCF mask from the M0.5V-type template Gl846. Constraining the age of the TOI–1278 is key for further analysis of its properties; a young M0V would have an inflated radius and lower mass compared to Gyr-old objects. This would impact both the derived mass from radial velocity measurements and radius estimate from transit properties. Also, uncovering a young transiting brown dwarf would be interesting to constrain evolution models.

Rare objects such as the young (93$^{+61}_{-29}$ Myr) inflated transiting brown dwarf TOI-811 b provide complementary constraints to brown dwarf evolutionary models (Carmichael et al. 2020). This provides a complementary constraint compared to objects of similar mass and ages in young moving groups for which the radius is constrained through bolometric properties (Filippazzo et al. 2015).

2 See also pas.rochester.edu/~emamajek/EEM_dwarf_UBVIJHK_colors_Teff.txt

Figure 4. Position of TOI–1278 for the < 100 pc volume-limited sample based on GAIA parallax and photometric measurements. TOI–1278 falls on the main sequence, and it is significantly offset from empirical tracks for young associations that are < 600 Myr-old. The position on the HR diagram also rules-out a near-equal luminosity binary, which would be offset from the main sequence by 0.75 mag (roughly the position of the 45 Myr isochrone). Empirical isochrones are from Gagné et al. (2018) and Gagné et al. (in prep). and are based on the Upper Scorpion, Lower Centaurus Crux and Upper Centaurus associations (10–15 Myr), the β Pictoris and 32 Ori associations (23 Myr), TW Hydra, Columba and Carina associations (45 Myr), the Pleiades (110 Myr) and Coma Berenices cluster (600 Myr).

Young brown dwarfs have a significant self-luminosity, and a young system would be significantly easier to detect as a double-lined spectroscopic binary. Furthermore, the TOI–1278 system could consist of an unresolved binary system with the transiting companion around one of the two components. While there are a number of well established tools to rule out a number of scenarios for transiting companions (see Sections 2.1 and 2.4), simple color-magnitude diagram analysis can already exclude a number of configurations.

3.2. Stellar parameters from SPIRou spectra

The determination of the atmospheric parameters (T_{eff} and log g) and projected rotational velocity ($v \sin i$) was accomplished through the code ROTFIT (e.g., Frasca et al. 2017).

We adopted a grid of synthetic BT-Settl spectra as templates (Allard et al. 2010) at [Fe/H] = −0.5, 0.0 and 0.3, and effective temperature in the range 3000–4500 K (in steps of 100 K) and log g from 5.5 to 2.5 dex (in steps of 0.5 dex).

ROTFIT finds the best values of atmospheric parameters and $v \sin i$ by minimizing the χ^2 of the differ-
Figure 5. Spectral energy distribution of TOI–1278. Absolute fluxes estimated using photometry from various surveys are displayed as separate symbols, as indicated in the legend. Our near-infrared SpeX spectrum normalized with absolute fluxes from overlapping photometry is shown as a red solid line. Linear interpolation in logarithm space, and Rayleigh-Jeans and Wien tails of the appropriate effective temperature are shown as dashed lines to complete the spectral energy distribution used in our calculation of the bolometric luminosity.

Table 1. Basic data of TOI–1278

Quantity	Value
Designations	
WISEA J211254.86+353855.3	
Gaia EDR3 1867491607542113536	
2MASS J21125495+3538557	
TIC 163539739	
TOI–1278	
RA	320.47842885720°
DEC	+35.64861839399°
Parallax	13.25 ± 0.01°
μα [mas/yr]	−89.474 ± 0.010°
μδ [mas/yr]	−46.944 ± 0.011°

Galactic kinematics

X	10.208 ± 0.009 pc
Y	73.58 ± 0.07 pc
Z	−13.26 ± 0.01 pc
U	30.29 ± 0.04 km/s
V	−31.9 ± 0.2 km/s
W	16.28 ± 0.04 km/s

Table 2. Bulk properties of TOI–1278

Quantity	Value
Stellar parameters	
Mass (M⊙)	0.55 ± 0.02*
Radius (R⊙)	0.573 ± 0.012†
log g	4.68 ± 0.10†
Luminosity (L⊙)	0.0614 ± 0.0001†
T eff (K)	3799 ± 42†
v sin i (km/s)	1.10 ± 0.86†
A V (mag)	−0.01 ± 0.10†
[Fe/H]	−0.01 ± 0.28†
Spectral type	M0V†

Photometry

B	15.07 ± 0.05†		
V	13.51 ± 0.03†		
R c	12.60 ± 0.04†		
I c	11.70 ± 0.04†		
G	12.740 ± 0.003†		
g	14.078 ± 0.007§		
r	12.898 ± 0.001§		
i	12.30 ± 0.04§		
z	12.5 ± 0.4§		
y	12.07 ± 0.05§		
J 2M	10.601 ± 0.025×		
H 2M	9.393 ± 0.021×		
K s,2M	9.735 ± 0.012×		
W1	9.629 ± 0.022		
W2	9.591 ± 0.020		
W3	9.443 ± 0.033		

Note—*Stassun et al. 2018, †this work, §Gaia EDR3 (Gaia Collaboration et al. 2020), ¶Pan-STARRS1 (Chambers et al. 2019), ‡2MASS (Skrutskie et al. 2006), ||ABWISE (Cutri, R. M.; et al. 2014).

Note—*Gaia EDR3 (Gaia Collaboration et al. 2020), †this work, combining GAIA astrometry and SPIRou velocimetry.

The difference between the observed and synthetic spectra in specific spectral segments. We used the H band (eight 40 nm-wide segments) as well as regions centered on strong lines within J and K (1290-1330 nm and 1960-2000 nm) for the ROTFIT analysis. These domains avoid the stronger telluric absorption bands between photometric bandpasses that may display significant correction residuals, avoids the increased thermal noise on the red side of K band. Some regions within Y and J are relatively clean of tellurics, but have fewer strong and sharp spectroscopic features than the regions selected for the analysis; this manifest itself in the very poor radial-
was obtained for $[{\text{Fe}}/H] = 0.0$. The uncertainty of each parameter is the largest between the standard error of the weighted mean and the weighted standard deviation. The value of $v \sin i$ is significantly smaller than the spectral resolution of SPIRou (~ 4.3 km/s), and is sensitive to other broadening effects, such as the macro-turbulence, that are not distinguishable from rotation at low $v \sin i$ values. The $v \sin i$ should therefore be taken as a very approximate value.

3.3. Refining metallicity measurements

The high-resolution spectra of TOI–1278 let us determine the metallicity of the star with comprehensive examinations of individual Fe I lines in all Y, J_{2M}, H_{2M} and K_{2M} bands. BT-Settl and ACES models (Allard et al. 2011; Husser et al. 2013) are available at varying resolution over the SPIRou domain. The sampling of BT-Settl models is not uniform; it is typically 0.20 Å, but it can be as low as 0.05 Å, which is comparable with that of SPIRou, inside strong spectral lines. The determination of T_{eff} and $\log g$ discussed in the section above is not strongly sensitive to the resolution, but in contrast, metallicity measurements are more strongly sensitive to the data resolution. We therefore decided to use PHOENIX ACES models, available at a resolution higher than that of SPIRou, for metallicity measurements of all identified individual Fe I absorption lines. To do this we generated multiple synthetic spectra for the fixed effective temperature and $\log g$. For T_{eff}, the standard error of the weighted mean is significantly smaller than the spectral resolution of SPIRou (~ 3 km/s), and is 3 km/s, and is sensitive to other broadening effects, such as the macro-turbulence, that are not distinguishable from rotation at low $v \sin i$ values. The $v \sin i$ should therefore be taken as a very approximate value.

To do this we generated multiple synthetic spectra for the fixed effective temperature and $\log g$. For T_{eff}, the standard error of the weighted mean is significantly smaller than the spectral resolution of SPIRou (~ 3 km/s), and is 3 km/s, and is sensitive to other broadening effects, such as the macro-turbulence, that are not distinguishable from rotation at low $v \sin i$ values. The $v \sin i$ should therefore be taken as a very approximate value.

3.4. Spectropolarimetry with SPIRou

Given that each visit to TOI–1278 is composed of a polarimetric sequence, it is possible to combine the indi-

![Figure 6](image-url)

Figure 6. Left panels: continuum-normalized co-added SPIRou spectrum of TOI–1278 in three regions (black full lines) with the best fitting synthetic spectrum over-plotted (red dotted lines). Right panels: χ^2 contour maps in the T_{eff}-$\log g$ plane. In each panel, the 1σ confidence level is denoted by the red contour. The best values and error bars on T_{eff} and $\log g$ are also indicated.
SPIRou RV data along with the TESS and ground-based observations of TOI–1278 B, we performed a joint analysis of the data set. The noise level in the Stokes V profile corresponds to a few 10^{-4} of the intensity spectrum, with no significant detection in the available time series. Using the relationship between the mean Landé factor, the mean wavelength and the Stokes V and I profiles as introduced in Donati et al. (1997), one can find a 1-σ upper limit of 22 to 35 Gauss for the longitudinal field.

Figure 7. Stokes I (left) and Stokes V (right) of all polarization sequences obtained on TOI–1278. The error bars close to Stokes V profiles show the mean uncertainty on each data point. The green curves on the right plot show the Null check profiles. Superimposed to the intensity profiles is a gaussian fit.

Individual spectra of each beam to have access to the circular polarization of the stellar surface (Donati et al. 1997, 2020). Using Least-Square Deconvolution and a line list, a mean profile is obtained for the intensity spectrum (Stokes I profile) as well as for the polarized spectrum (Stokes V profile). The line list used for TOI–1278 is based on VALD database for an effective temperature of 3750 K and minimum line depth of 0.15 of the continuum; it contains 500 atomic lines. The description of the data analysis method as included in the APERO pipeline is given in Martioli et al. (2020). Figure 7 shows the resulting Stokes I and Stokes V profiles for the whole data set. The noise level in the Stokes V profile corresponds to a few 10^{-4} of the intensity spectrum, with no significant detection in the available time series. Using the relationship between the mean Landé factor, the mean wavelength and the Stokes V and I profiles as introduced in Donati et al. (1997), one can find a 1-σ upper limit of 22 to 35 Gauss for the longitudinal field on these visits.

4. DATA ANALYSIS & RESULTS

To constrain the orbital and physical parameters of TOI–1278 B, we performed a joint analysis of the SPIRou RV data along with the TESS and ground-based transits. We used the Python package `exoplanet` (Foreman-Mackey et al. 2020), which computes analytical transit models using `starry` (Luger et al. 2019) and solves the Kepler equation with a built-in solver. The `exoplanet` framework uses `PyMC3` (Salvatier et al. 2015) to generate Bayesian models and perform gradient-based Markov Chain Monte Carlo (MCMC). Models in `PyMC3` are built with the `Theano` (Al-Rfou et al. 2016) numerical infrastructure.

With this framework, we modeled the four transits (two from TESS, one from WBRO and one from CAO) and the full SPIRou RV time series simultaneously. We included a separate baseline flux f_b and quadratic limb-darkening coefficients $\{u_1, u_2\}$ for each instrument. For TESS, the coefficients are determined by interpolating Table 5 of Claret (2018) given T_{eff} and $\log g$ from Table 2, and are held fixed to $\{0.2336, 0.3710\}$. For CAO, we used EXOFAST (Eastman et al. 2013) to interpolate tables from Claret & Bloemen (2011). We assumed $[\text{Fe/H}] = 0$ (see Section 3.3) and fixed the resulting I_e band-pass coefficients to $\{0.2776, 0.3528\}$. Since the WBRO transit was observed without any filter, we chose to let $\{u_1, u_2\}$ vary following a Gaussian distribution $\mathcal{N}(0.3, 0.1)$.

We used relatively narrow uniform priors on the period P and the time of mid-transit T_0, but their range are still several orders of magnitude larger than the uncertainties from the preliminary analysis by the TESS team (DV: $P = 14.4762 \pm 0.0022 \text{ days}$, $T_0 = 2458711.959717 \pm 0.0015 \text{ BJD}$). We also imposed Gaussian priors on the stellar radius R_* and mass M_* using values from Table 2. We used uniform priors on the orbital eccentricity e and argument of periastron ω, as well as for the systemic velocity γ. For the RV semi-amplitude K, we used a broad log-uniform prior to sample several orders of magnitude uniformly. The transit impact parameter b has a uniform prior between 0 and $1 + R_p/R_*$. Since the transit is grazing, a strong degeneracy exists between b and the planetary radius R_p. To alleviate this degeneracy and assess its importance, we compared three different priors on R_p: a broad uniform prior between 0.0 and 2.5 R_{Jup}, a Gaussian prior based on the latest evolutionary models described in Section 5.3, and a Gaussian prior derived from the confirmed exoplanet population. To construct the latter, we follow an approach similar to Bayliss et al. (2018). We used the Python-based tool `masterfile`[^3], which relies on the exoplanet data set.

[^3]: See also astroutils.astronomy.ohio-state.edu/exofast/limbdark.shtml
[^4]: github.com/AntoineDarveau/masterfile
on data from the NASA Exoplanet Archive5 to obtain the population of transiting exoplanets with \(M_p > 0.5 \) \(M_{\text{Jup}} \) and with an incident flux smaller than 50 times that of the Earth, yielding a sample of 21 planets. We then used the distribution of their radii to derive a Gaussian prior with a mean of 1.010 \(R_{\text{Jup}} \) and a standard deviation of 0.331 \(R_{\text{Jup}} \).

We sampled the joint posterior distribution of the 15 model parameters, \{\(P, T_0, e, \omega, K, R_p, b, M_s, R_s, \gamma, f_0,\text{TESS}, f_0,\text{WBRO}, f_0,\text{CAO}, u_1,\text{WBRO}, u_2,\text{WBRO}\} \), with the No-U-Turn Sampler (NUTS) from PyMC3. We ran four chains with 4000 tuning steps and 4000 draws. The planetary radius posterior distribution for each of the three priors investigated is shown in Figure 8. All priors yield a posterior value for \(R_p \) close to 1 \(R_{\text{Jup}} \), but the width of these distributions varies significantly depending on the strength of the prior. Parameters other than \(R_p \) and \(b \) were not significantly affected by this change of prior. For this reason, in the following, we only report posterior distributions on parameters that used the “Demographics” prior on \(R_p \). This prior provides an insight on reasonable \(R_p \) values without completely excluding the possibility of an inflated radius due to irradiation.

For each parameter, Table 3 report the final prior distribution used and the median posterior value, along with uncertainties corresponding to the 16th and 84th percentile. Figure 1 shows the resulting transit model on each data set. In Figure 3, the full RV time series and the phase-folded RVs are both shown along with the best-fit model and the residuals. The joint posterior distribution is shown in Figure 9.

Along with a planetary mass \(M_p = 18.5 \pm 0.5 \) \(M_{\text{Jup}} \), a radius of 1.09\(^{+0.24}_{-0.20} \) \(R_{\text{Jup}} \) yields a density \(\rho_p = 18^{+14}_{-8} \) g cm\(^{-3} \). We find a slightly eccentric orbit (\(e = 0.013 \pm 0.004 \)). We also test a circular orbit model with \(e = 0 \) and \(\omega = 0 \) following the same modeling procedure as above. All parameters in this circular model are consistent with the values obtained with the eccentric model. However, the eccentric model is strongly favored by the Bayesian information criterion (BIC), with \(\Delta \text{BIC} = 9 \). Using the eccentric model, we constrain the time of secondary eclipse to be \(T_{\text{sec}} = 1719.143 \pm 0.015 \) (BJD - 2 457 000). This corresponds to an orbital phase of 0.496 \(\pm 0.001 \). Orbital evolution and the circularization timescale are discussed in Section 5.2.

We also performed a sequential analysis where the transits were modeled first, and the resulting \(P \) and \(T_0 \) posterior distributions were used as priors in the RV Keplerian model. This approach has the disadvantage of not accounting for possible impacts of the eccentricity (which is better constrained by the RV data in this case) on the transit model. However, we note that results from both approaches are in excellent agreement, yielding similar posterior distributions with median values consistent within 1\(\sigma \). This is notable as the sequential analysis does not rely on the stellar parameters as inputs.

Combining the proper motion and parallax from Gaia eDR3 with the systemic radial velocity measurement (\(\gamma = -29.334 \pm 0.007 \) km s\(^{-1} \)) derived in this section makes it possible to determine the UVW space velocities of TOI–1278 with an unprecedented precision (the Gaia eDR3 radial velocity for TOI–1278 is \(-29.6 \pm 1.1\) km s\(^{-1} \)). However, doing so requires correcting two systematic effects that become important with meter-per-level instrumental precision: gravitational reddening (Einstein 1917) and convective blueshift (e.g., Meunier et al. 2017). Our mass and radius estimations allow us to calculate the expected gravitational redshift of 0.63 \(\pm 0.03 \) km s\(^{-1} \). Estimating the effect of convective blueshift with a high accuracy is much harder, as empirical data on that subject is sparse, especially for M dwarfs. Löhrer-Böttcher et al. (2019) estimated that this effect blueshifts the perceived radial velocity of the

\begin{table}[h]
\centering
\begin{tabular}{lccc}
\hline
Quantity & Prior & Posterior & \\
\hline
\(P \) [day] & \(U(13.476, 15.476) \) & 14.47567 \(\pm 0.00021 \) & \\
\(T_0 \) [BJD - 2457000] & \(U(1711, 1713) \) & 1711.9595 \(\pm 0.0013 \) & \\
\(R_p \) [\(R_{\text{Jup}} \)] & \(U(1.010, 0.331) \) & 1.09\(^{+0.24}_{-0.20} \) & \\
\(b \) & \(U(0, 1 + R_p/R_s) \) & 1.04\(^{+0.05}_{-0.06} \) & \\
\(M_s \) [\(M_{\odot} \)] & \(U(0.55, 0.02) \) & 0.54 \(\pm 0.02 \) & \\
\(R_s \) [\(R_{\odot} \)] & \(U(0.573, 0.012) \) & 0.57 \(\pm 0.01 \) & \\
\(e \) & \(U(0, 1) \) & 0.013 \(\pm 0.004 \) & \\
\(\omega \) [rad] & \(U(0, 2\pi) \) & 4.29\(^{+0.15}_{-0.21} \) & \\
\(K \) [m s\(^{-1} \)] & \(\log U(10^{-4}, 10^{4}) \) & 2306 \(\pm 10 \) & \\
\(\varphi_{\text{sec}} \) & & 0.496 \(\pm 0.001 \) & \\
\(M_p \) [\(M_{\text{Jup}} \)] & & 18.5 \(\pm 0.5 \) & \\
\(i \) [deg] & & 88.3 \(\pm 0.1 \) & \\
\(a \) [AU] & & 0.095 \(\pm 0.001 \) & \\
\(\rho_p \) [g cm\(^{-3} \)] & & \(18^{+14}_{-8} \) & \\
\(\gamma \) [km s\(^{-1} \)] & \(U(-35, -25) \) & \(-29.334 \pm 0.007 \) & \\
\(f_0,\text{TESS} \times 10^4 \) & \(U(0, 10000) \) & 0.02 \(\pm 0.04 \) & \\
\(f_0,\text{WBRO} \times 10^3 \) & \(U(0, 10000) \) & \(-0.08 \pm 0.46 \) & \\
\(f_0,\text{CAO} \times 10^5 \) & \(U(0, 10000) \) & \(-0.02 \pm 0.12 \) & \\
\(u_1,\text{WBRO} \) & \(U(0.3, 0.1) \) & 0.25 \(\pm 0.09 \) & \\
\(u_2,\text{WBRO} \) & \(U(0.3, 0.1) \) & 0.26 \(\pm 0.09 \) & \\
\hline
\end{tabular}
\caption{Model parameters for the TOI–1278 system}
\end{table}

5 exoplanetarchive.ipac.caltech.edu
The number of known brown dwarf companions in close-in orbit around main-sequence stars is relatively small (see full compilation by Mireles et al. (2020), table 4) although they are easier to find in general than planetary companions. This is expected from a formation point of view, with close-in binaries having mass ratios tending toward unity (Bate 2000). While most such companions orbit Sun-like stars, TOI–1278 combines relatively rare properties; there are few close-in (<1 AU) companions to M dwarfs that are more massive than Saturn (see Figure 10 and Table 4 for a compilation of 0.5–78 M\textsubscript{Jup} companions to M dwarfs).

An order-of-magnitude upper limit on the abundance of TOI–1278-like systems can be determined from the fact that RV surveys of the solar neighborhood have failed to uncovered similar systems, even though it would have been well above their detection thresholds. The HARPS survey of southern M dwarfs (Bonfils et al. 2013) surveyed 102 stars with the most massive planet in the sample (Gl876 b; Delfosse et al. (1998)) has a mass of 2.64 M\textsubscript{Jup}, ~7 times lighter than TOI–1278 B. The CARMENES search for exoplanets around M dwarfs (Reiners et al. 2018) surveyed 324 nearby stars (with some overlap between samples) and did not report any such massive companion. Overall, one can safely say that the occurrence of such systems is well below 1%.

NGTS-1 b is the most massive transiting planetary companion to an M dwarf (Bayliss et al. 2018). It is ~ 20 times less massive (0.8 M\textsubscript{Jup}) and orbits on a shorter 2.647 d period. There are a number of comparable (10–15 M\textsubscript{Jup}) companions to M dwarfs on distant orbits uncovered through direct imaging (e.g., GU Psc b, 2M J2126-81 b, CHXR 73 b, DH Tau b, 2M 0103-55(AB)b; Naud et al. 2014; Luhman et al. 2006; Deacon et al. 2016; Itoh et al. 2005; Delorme et al. 2013). These companions form well outside the extent of protoplanetary disks around M dwarfs, and the statistical properties in terms of orbital separation and mass suggest a different formation mechanism than for close-in planetary companions (Baron et al. 2019). The mass ratio of the TOI–1278 system (~ 31) cannot be explained through a process involving a planetary disk; the mass involved is larger than the total gas mass in planetary disks, which has a plateau around 10 M\textsubscript{Jup} (Bergin & Williams 2018). As M dwarfs luminosity falls rapidly with decreasing mass (L ∝ M3), uncovering companions with small q values is challenging due to the contrast ratio involved and there are significant biases against the discovery of low-q binaries. Detecting TOI–1278-like systems requires RV follow-ups, as Gyr-old 1 M\textsubscript{Jup} to 0.1 M\textsubscript{\odot} companions all have radii in the 0.8 – 1.0 R\textsubscript{Jup}; transit alone does not set a significant constraint on the
nature of the companion. Conversely, the radial velocity signal of such a companion will be huge, from 100 m/s to many km/s, implying that the companions to faint host stars can be monitored. The paucity of 10^{-30} M$_{\text{Jup}}$ may also be arising from a bias in the follow-up strategy by community members; with an impact parameter slightly lower, TOI–1278 B’s transit would have a relative depth of $\sim 4\%$ and flagged as a likely eclipsing binary. A dedicated search for similar objects within the TESS data set complemented with a follow-up of a statistically representative set of objects will be needed to assess the abundance of objects similar to TOI–1278 B. Current follow-ups, focusing on smaller-radius planets around relatively bright and nearby M dwarfs and avoiding possible eclipsing binaries, are naturally biased against the discovery.
of objects similar to TOI–1278 B. The true abundance of such systems therefore remains to be established.

Among transiting companions to M dwarfs, only a handful are in the brown dwarf mass regime. The LHS 6343 system is composed of a visual binary of two mid-Ms, (0’55 apart; 0.358 and 0.292 M⊙), one component being itself orbited by a close-in brown dwarf (Johnson et al. 2011). LHS 6343 C orbits on a 12.71 day orbit around LHS 6343 A, and has a kinematically derived mass of 62.7±2.4 Mjup. It has a mass ratio of only ∼6 with its host star. The LP 261-75 b system (Irwin et al. 2018) consists of a much tighter orbit (∼1.8-day orbit) by a brown dwarf close to the stellar/substellar limit at 65 Mjup, and a mass ratio of ∼4.6.

5.2. Eccentricity and circularization timescale

As discussed in Section 4, we find that a slightly eccentric orbit (e = 0.013 ± 0.004) is preferred over a circular one. We compute the expected timescale for tidal orbital circularization of TOI–1278 B by using equation (25) of Goldreich & Soter (1966) as rewritten by Patra et al. (2017):

\[\tau_e = \frac{e}{de/dt} = \frac{2Q_p}{63\pi M_p} \left(\frac{a}{R_p} \right)^5 P_{\text{orb}} \]

\(Q_p \) being the tidal dissipation parameter of the companion, depending on its internal structure. We assume here that \(Q_p = 10^{3.5} \) as determined by Heller et al. (2010) for the brown dwarf. We find \(\tau_e \) of a similar comparable to the age of the Universe (\(\tau_e \sim 16 \times 10^9 \) yr), suggesting that the orbit has not had time to fully circularize. This further implies that eccentric orbit does not require the presence of an external exciting companion to be explained. We note that \(\tau_e \) scales as the fifth power of \(R_p \), and that this radius is currently only constrained by models for M and brown dwarfs.

5.3. Model-Derived Properties and Characterization

Prospects

Brown dwarfs are ever cooling objects that gradually lose the heat from their initial contraction. In absence of a luminosity measurement, only the combination of age and mass provides some constraint on the BD temperature. While the mass of TOI–1278 B is well constrained at 18.5 ± 0.5 Mjup, its age is not. Its \(\gtrsim 100 \) Myr lower limit is set by the uninflated radius of the parent star, while the thin-disk kinematics sets a limit at \(\lesssim 9 \) Gyr (del Peloso et al. 2005). Considering a formation rate that is uniform through time in the galactic disk, it is unlikely to be at the lower end of this range when the temperature and radius rapidly decrease. Assuming a uniform prior distribution in age for the galactic disk, the corresponding 1-σ confidence level interval for the age of TOI–1278 is therefore 1.4 – 7.6 Gyr (14th and 86th percentiles of the distribution).

We used the latest evolutionary models for cool T and Y dwarfs (Phillips et al. 2020) to determine the range of properties expected for TOI–1278 B. These constraints on the age of the system point toward a cool-down temperature ranging from 600 K to 380 K (1-σ confidence), but as high as 1360 K for the lower end of the age range; these values correspond to a bulk luminosity ranging from \(10^{-4.4} \) to \(10^{-6.8} \) L⊙, to be compared to the host star luminosity of \(5.9 \times 10^{-2} \) L⊙. Expressed in terms of brown dwarf spectral sequence, TOI–1278 B is therefore expected to have a spectral type of L7–L8 if we assume an age of 100 Myr, T8–T9 for an age of 1.5 Gyr or Y1 for an age of 7.6 Gyr (Faherty et al. 2016; Kirkpatrick et al. 2019).

Assuming the 1 σ confidence interval for the age, the radius of TOI–1278 B is remarkably well constrained at 0.975 ± 0.025 Rjup; degeneracy pressure dominates the radius evolution of objects in this age and mass range, implying that the object’s radius is (nearly) constant through time. This provides an important prior for transit light curve fitting; the \(b \sim 1 \) impact parameter implies that the light curve alone sets little constraint on the planetary radius, with a strong degeneracy between \(b \) an \(R_p \) as seen from the diagonal in the corresponding panel of Figure 9. A much larger planet \((up to R_p \sim 2 R_{\text{jup}}) \) with an impact parameter of \(b \sim 1.2 \) would be allowed from transit light curve analysis alone, but is rejected by evolutionary models.

One important output of evolutionary models is the per-band flux, which can be combined with the host star photometry (see Table 5) to derive a flux ratio. While the system is far too close to be directly resolved with instrumentation in the foreseeable future (\(\sim 1 \) mas at elongation), it is more likely to be detected through cross-correlation techniques or eclipse photometry or spectroscopy. In the most optimistic case, the contrast ratio would be at the part-per-thousand level in \(K \) band and, most likely, significantly more challenging (See Table 5). Overall, the prospects for eclipse spectroscopy of TOI–1278 B are poor.

One can estimate the scale height of the atmosphere of TOI–1278 B and the corresponding transit-spectroscopy signal. As its atmosphere is most-likely hydrogen-dominated, one can safely assume a mean-molecular weight of 2 AMU. Assuming a temperature of 380 – 1300 K, which would correspond to the plausible age range, the scale height of the atmosphere would be 5 – 17 km, making it an impractical target for transit spectroscopy.
Table 4. Known transiting 0.5-78 M_{Jup} companions to M dwarfs with P < 100 days.

Host	Mass (M_{Jup})	SpT	Period (days)	References	Comment
TOI–1278 A	0.81 ± 0.07	M0.5 ± 0.5	2.65	Bayliss et al. 2018	Grazing transit, kinematically old host.
TOI–1278 B	0.83 ± 0.03	M4	30.23	Marcy et al. 2001	Non-transiting object, absolute mass estimated from dynamics interaction by Correla et al. 2010
TOI–1278 C	2.64 ± 0.04	M4	61.93	Delfosse et al. 1998	Non-transiting object
TOI–519	< 14	M3.5-1.0	1.26	Parviainen et al. 2020	Upper limit on mass from light curve analysis. 1.07 R_{Jup} consistent with an object as light as 0.5 M_{Jup}.
TOI–1278	18.4 ± 0.5	M0	14.48	This work	Orbiting the M component of a K+M stellar binary. Only M \sin i is known
HD 41004Bb	18.4 ± 0.22	M2	1.32	Santos et al. 2002	Transiting one of the components of a 2\mu 3 binary.
NLTT 41135	33.7 ± 2.8	M5.1 ± 0.5	2.89	Irwin et al. 2010	Transiting one of the components of a 2\mu 3 binary.
AD 3116	54.2 ± 4.3	M3.9	1.98	Gillen et al. 2017	High-probability Praesepe member.
RIK 72	59.2 ± 6.8	M2.5	97.8	David et al. 2019	Member of Upper Scorpius (5-7 Myr); highly inflated.
LHS 6343 A	62.1 ± 1.2	M†	12.71	Johnson et al. 2011; Montet et al. 2015	Transiting one of the components of a 0\mu 55 binary.
LP 261-75	67.6 ± 2.1	M4.5	1.88	Irwin et al. 2018	10% deep transit at low impact parameter.
NLTT 41135	75_+3.9-1.7	M3	0.68	Jackman et al. 2019	Young (55 Myr), active, tidally locked in a decaying orbit (remaining lifetime of 5 – 10 Myr). Eclipsing one of the components of a 1\mu 13 binary.

Note—*The authors explore two scenarios regarding the distance of the NGTS-7 system, leading to significantly different companion masses. The GAIA EDR3 parallax (6.33 ± 0.07 mas) for the host star is consistent with scenario i and rules-out the lighter mass of scenario ii. ^Spectral subtype not specified, but 3431 ± 1 \mu m/s level. This is below the sensitivity of our SPIRou observations and would be challenging on such a faint target with current facilities. Considering that the transit is grazing, the signal is likely to be much smaller if the spin-orbit angle is close to 0°. A handful of hot Jupiters in polar orbits are known (e.g., Addison et al. 2013), but these orbit stars hotter than the Sun. Stars such as TOI–1278 have thicker convective layers that dampen orbital obliquity, suggesting that it is unlikely that this system displays has a strong inclination and that it’s RM effect can be measured considering its transit configuration (Winn et al. 2010).

We note that TOI–1278 B is expected to be among the astrometric detections of substellar companions in Gaia. The semi-major axis of 0.1 AU and 75 pc distance implies that the orbit subtends a 1.3 mas angle and that astrometric orbital motion of the host star is

$\Delta \sim 0.1$ Gyr

$\Delta \sim 1.5$ Gyr

$\Delta \sim 7.9$ Gyr

Table 5. Model properties of TOI–1278 B at different ages for a mass of 18.5 M_{Jup}. These values are interpolated from Phillips et al. (2020) brown dwarf models.

	0.1 Gyr	1.5 Gyr	7.9 Gyr
Temperature	1362 K	601 K	381 K
Luminosity	-4.37 L⊙	-5.93 L⊙	-6.76 L⊙
Gravity	4.55	4.69	4.74
Radius	0.118 R⊙	0.100 R⊙	0.095 R⊙
ΔJ_{MKO}	6.878	10.992	15.285
ΔH_{MKO}	7.330	12.551	16.747
ΔK_{MKO}	7.640	13.113	18.720
$\Delta W1$	7.520	11.768	14.791
$\Delta W2$	6.028	8.275	9.953
$\Delta W3$	5.134	7.620	9.157

50 μas. At $G \sim 12.7$, the per-epoch astrometric accuracy is at the 34.2 μas level (Perryman et al. 2014). The presence of the companion most likely explains
Figure 10. Substellar companion mass as a function of stellar host mass. Close-in companions (red dots) around $<0.5 \, M_\odot$ stars tend to be lighter than $0.1 \, M_{\text{Jup}}$. There are also a handful of massive ($>40 \, M_{\text{Jup}}$) brown dwarfs in close-in orbits to M dwarfs. (Data from http://exoplanet.eu)

the `astrometric_excess_noise_sig` = 9.09 value in the EDR3 catalog. This dimensionless parameter measures the significance of the excess in noise relative to the astrometric uncertainties when fitting a simple parallax models. For good fits of single stars, one would expect half of the targets to have a value of zero as the residuals to the fit will be (slightly) smaller than expected from uncertainties. The remaining targets will have values displaying a cumulative distribution corresponding to a Gaussian with a width of unity. Sources with a value above 2 are considered as likely having a significant noise excess in their parallax solutions. While Gaia does not have the proper time-sampling to probe short periods such as that of TOI–1278, the known orbital period from RV measurements could guide a determination of the actual astrometric orbit.
Figure 11. Radius, temperature and luminosity of TOI–1278 B as a function of age and mass. The derived values are only mildly dependent on the mass, as it is well constrained from the PRV measurements. Unless the system is at the lowest allowed age value, somewhat unlikely but not impossible, the radius, temperature and luminosity are constrained to within ±2.5%, ±110 K and ±0.4 dex respectively.
ACKNOWLEDGMENTS

We dedicate this paper to the memory of France Allard, who until her untimely passing did so much to advance the modeling of brown dwarf atmospheres.

Based on observations obtained at the Canada-France-Hawaii Telescope (CFHT) which is operated from the summit of Maunakea by the National Research Council of Canada, the Institut National des Sciences de l’Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii. The observations at the Canada-France-Hawaii Telescope were performed with care and respect from the summit of Maunakea which is a significant cultural and historic site.

This work has been carried out within the framework of the National Centre of Competence in Research PlanetS supported by the Swiss National Science Foundation.

JFD acknowledges funding from the European Research Council under the H2020 research & innovation programme (grant #740651 NewWorlds).

This work was supported by FCT - Fundação para a Ciência e a Tecnologia through national funds and by FEDER through COMPETE2020 - Programa Operacional Competitividade e Internacionalização by these grants: UID/FIS/04434/2019; UIDB/04434/2020; UIDP/04434/2020; PTDC/FIS-AST/32113/2017 & POCI-01-0145-FEDER-032113; PTDC/FIS-AST/28953/2017 & POCI-01-0145-FEDER-028953.

J.H.C.M. is supported in the form of a work contract funded by Fundação para a Ciência e Tecnologia (FCT) with the reference DL 57/2016/CP1364/CT0007; and also supported from FCT through national funds and by FEDER-Fundo Europeu de Desenvolvimento Regional through COMPETE2020-Programa Operacional Competitividade e Internacionalização by these grants UIDB/04434/2020 & UIDP/04434/2020, PTDC/FIS-AST/32113/2017 & POCI-01-0145-FEDER-032113, PTDC/FIS-AST/28953/2017 & POCI-01-0145-FEDER-028953, PTDC/FIS-AST/29942/2017.

XD, TF and I.B. received funding from the French Programme National de Physique Stellaire (PNPS) and the Programme National de Planétologie (PNP) of CNRS (INSU).

XD, TF and IB acknowledge funding from the French National Research Agency (ANR) under contract number ANR-18-CE31-0019 (SPlaSH).

This work has made use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium). Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement.

Funding for the TESS mission is provided by NASA’s Science Mission directorate. We acknowledge the use of public TESS Alert data from pipelines at the TESS Science Office and at the TESS Science Processing Operations Center. This research has made use of the Exoplanet Follow-up Observation Program website, which is operated by the California Institute of Technology, under contract with the National Aeronautics and Space Administration under the Exoplanet Exploration Program. This paper includes data collected by the TESS mission that are publicly available from the Mikulski Archive for Space Telescopes (MAST).

This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France. This research has made use of NASA’s Astrophysics Data System. This research made use of matplotlib, a Python library for publication quality graphics (Hunter 2007). This research made use of SciPy (SciPy 1.0 Contributors et al. 2020). This work made use of the IPython package (Perez & Granger 2007). This research made use of Astropy, a community-developed core Python package for Astronomy (The Astropy Collaboration et al. 2013, 2018). This research made use of NumPy (Harris et al. 2020). This research made use of TOPCAT, an interactive graphical viewer and editor for tabular data (Taylor 2005). This research made use of Astroquery (Ginsburg et al. 2019). This research made use of ds9, a tool for data visualization supported by the Chandra X-ray Science Center (CXC) and the High Energy Astrophysics Science Archive Center (HEASARC) with support from the JWST Mission office at the Space Telescope Science Institute for 3D visualization.

Facilities: CFHT(SPIRou)

Software: astropy (Price-Whelan et al. 2018)
APPENDIX

A. TABLE OF SPIROU RV MEASUREMENTS

Table 1. SPIRou RV measurements binned per epoch

Time	RV	σRV
BJD	[m s\(^{-1}\)]	[m s\(^{-1}\)]
2459000.1000	-28111.4	17.2
2459003.0779	-30822.7	28.5
2459005.0466	-31675.7	15.6
2459006.0240	-31491.6	14.9
2459008.0282	-29992.7	13.3
2459008.9816	-29051.9	18.3
2459010.0464	-28069.4	21.4
2459011.1114	-27299.0	21.5
2459153.7576	-29025.5	17.7
2459154.7451	-28075.8	15.9
REFERENCES

Addison, B. C., Tinney, C. G., Wright, D. J., et al. 2013, The Astrophysical Journal, 774, L9,
doi: 10.1088/2041-8205/774/1/L9

Al-Rfou, R., Alain, G., Almahairi, A., et al. 2016, arXiv:1605.02688 [cs]. http://arxiv.org/abs/1605.02688

Allard, F., Homeier, D., & Freytag, B. 2010, arXiv:1011.5405 [astro-ph].
http://arxiv.org/abs/1011.5405

—. 2011, Proceedings of the International Astronomical Union, 7, 235, doi: 10.1017/S1743921311027438

Anglada-Escudé, G., Amado, P. J., Barnes, J., et al. 2016, Nature, 536, 437, doi: 10.1038/nature19106

Ansdell, M., Williams, J. P., Marel, N. v. d., et al. 2016, The Astrophysical Journal, 828, 46,
doi: 10.3847/0004-637X/828/1/46

Artigau, E., Astudillo-Defru, N., Delfosse, X., et al. 2014, in Observatory Operations: Strategies, Processes, and Systems V, Vol. 9149, eprint: arXiv:1406.6927, 914905,
doi: 10.1117/12.2056385

Artigau, E., Malo, L., Doyon, R., et al. 2018a, The Astronomical Journal, 155, 198,
doi: 10.3847/1538-3881/aab77d

Artigau, E., Saint-Antoine, J., Lévesque, P.-L., et al. 2018b, High Energy, Optical, and Infrared Detectors for Astronomy VIII, 10709, 107091P,
doi: 10.1117/12.2314475

Baraffe, I., Chabrier, G., Allard, F., & Hauschildt, P. 1998, arXiv:astro-ph/9805009.
http://arxiv.org/abs/astro-ph/9805009

Baroch, D., Morales, J. C., Ribas, I., et al. 2020, Astronomy & Astrophysics, 641, A69,
doi: 10.1051/0004-6361/202038213

Baron, F., Lafrenière, D., Artigau, E., et al. 2019, The Astronomical Journal, 158, 187,
doi: 10.3847/1538-3881/ab4130

Bate, M. R. 2000, Monthly Notices of the Royal Astronomical Society, 314, 33,
doi: 10.1046/j.1365-8711.2000.03333.x

Bayliss, D., Gillen, E., Eigmüller, P., et al. 2018, Monthly Notices of the Royal Astronomical Society, 475, 4467,
doi: 10.1093/mnras/stx2778

Bensby, T., Feltzing, S., & Lundström, I. 2003, Astronomy & Astrophysics, 410, 527,
doi: 10.1051/0004-6361:20031213

Bergin, E. A., & Williams, J. P. 2018, arXiv:1807.09631 [astro-ph]. http://arxiv.org/abs/1807.09631

Bertaux, J. L., Lallement, R., Ferron, S., Boonne, C., & Bodichon, R. 2014, Astronomy & Astrophysics, 564, A46,
doi: 10.1051/0004-6361/201322383

Bonfils, X., Delfosse, X., Udry, S., et al. 2013, Astronomy & Astrophysics, 549, A109,
doi: 10.1051/0004-6361/201014704

Bouchy, F., Pepe, F., & Queloz, D. 2001, Astronomy & Astrophysics, 374, 733, doi: 10.1051/0004-6361:20010730

Boyajian, T. S., von Braun, K., van Belle, G., et al. 2012, The Astrophysical Journal, 757, 112,
doi: 10.1088/0004-637X/757/2/112

Carmichael, T. W., Quinn, S. N., Zhou, G., et al. 2020, arXiv:2009.13515 [astro-ph].
http://arxiv.org/abs/2009.13515

Cersullo, F., Coffinet, A., Chazelas, B., Lovis, C., & Pepe, F. 2019, Astronomy & Astrophysics, 624, A122,
doi: 10.1051/0004-6361/201833852

Chambers, K. C., Magnier, E. A., Metcalfe, N., et al. 2019, arXiv:1612.05560 [astro-ph].
http://arxiv.org/abs/1612.05560

Claret, A. 2018, Astronomy & Astrophysics, 618, A20,
doi: 10.1051/0004-6361/201833060

Claret, A., & Bloemen, S. 2011, Astronomy & Astrophysics, 529, A75, doi: 10.1051/0004-6361/201116451

Collins, K. A., Kielkopf, J. F., Stassun, K. G., & Hesser, F. V. 2017, The Astronomical Journal, 153, 77,
doi: 10.3847/1538-3881/153/2/77

Correia, A. C. M., Couetdic, J., Laskar, J., et al. 2010, Astronomy and Astrophysics, 511, A21,
doi: 10.1051/0004-6361/200912700

Cushing, M. C., Rayner, J. T., & Vacca, W. D. 2005, The Astrophysical Journal, 623, 1115, doi: 10.1086/428040

Cushing, M. C., Vacca, W. D., & Rayner, J. T. 2004, The Publications of the Astronomical Society of the Pacific, 116, 362, doi: 10.1086/382907

Cutri, R. M.; et al. 2014, VizieR On-line Data Catalog: II/328. Originally published in: IPAC/Caltech (2013)

Dai, D.-C., Li, Z., & Stojkovic, D. 2018, arXiv:1812.04674 [astro-ph, physics:gr-qc].
http://arxiv.org/abs/1812.04674

David, T. J., Hillenbrand, L. A., Gillen, E., et al. 2019, The Astrophysical Journal, 872, 161,
doi: 10.3847/1538-4357/aafe09

Deacon, N. R., Schlieder, J. E., & Murphy, S. J. 2016, Monthly Notices of the Royal Astronomical Society, 457, 3191,
doi: 10.1093/mnras/stw172

del Peloso, E. F., da Silva, L., & Arany-Prado, L. I. 2005, Astronomy & Astrophysics, 440, 1153,
doi: 10.1051/0004-6361:20053307

Delfosse, X., Forveille, T., Mayor, M., et al. 1998, arXiv:astro-ph/9808026.
http://arxiv.org/abs/astro-ph/9808026
Delorme, P., Gagné, J., Girard, J. H., et al. 2013, Astronomy and Astrophysics, 553, L5, doi: 10.1051/0004-6361/201321169

Demory, B.-O., Ségransan, D., Forveille, T., et al. 2009, Astronomy & Astrophysics, 505, 205, doi: 10.1051/0004-6361/200911976

Donati, J.-F., Semel, M., Carter, B. D., Rees, D. E., & Cameron, A. C. 1997, Monthly Notices of the Royal Astronomical Society, 291, 658, doi: 10.1093/mnras/291.4.658

Donati, J.-F., Kouach, D., Lacombe, M., et al. 2018, in Handbook of Exoplanets, 107, doi: 10.1007/978-3-319-55333-7_107

Donati, J.-F., Kouach, D., Lacombe, M., et al. 2020, Monthly Notices of the Royal Astronomical Society, staa2569, doi: 10.1093/mnras/staa2569

Eastman, J., Gaudi, B. S., & Agol, E. 2013, Publications of the Astronomical Society of the Pacific, 125, 83, doi: 10.1086/669497

Einstein, A. 1917, Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften (Berlin, 142

Faherty, J. K., Riedel, A. R., Cruz, K. L., et al. 2016, The Astrophysical Journal Supplement Series, 225, 10, doi: 10.3847/0067-0049/225/1/10

Figueira, P., Adibekian, V. Z., Oshagh, M., et al. 2016, Astronomy & Astrophysics, 586, A101, doi: 10.1051/0004-6361/201526900

Filippazzo, J. C., Rice, E. L., Faherty, J., et al. 2015, The Astrophysical Journal, 810, 158, doi: 10.1088/0004-637X/810/2/158

Foreman-Mackey, D., Luger, R., Czekala, I., et al. 2020, exoplanet-dev/exoplanet: exoplanet v0.4.3, Zenodo, doi: 10.5281/ZENODO.1998447

Frasca, A., Biazzo, K., Alcalá, J. M., et al. 2017, Astronomy & Astrophysics, 602, A33, doi: 10.1051/0004-6361/201630108

Gagné, J., Mamajek, E. E., Malo, L., et al. 2018, The Astrophysical Journal, 856, 23, doi: 10.3847/1538-4357/aaa909

Gaia Collaboration, Smart, R. L., Sarro, L. M., et al. 2020, arXiv e-prints, arXiv:2012.02061. https://arxiv.org/abs/2012.02061

Gillen, E., Hillenbrand, L. A., David, T. J., et al. 2017, The Astrophysical Journal, 849, 11, doi: 10.3847/1538-4357/aa84b3

Gillon, M., Triaud, A. H. M. J., Demory, B.-O., et al. 2017, Nature, 542, 456, doi: 10.1038/nature21360

Ginsburg, A., Sipőcz, B. M., Brassier, C. E., et al. 2019, The Astronomical Journal, 157, 98, doi: 10.3847/1538-3881/aafc33

Goldreich, P., & Soter, S. 1966, Q in the solar system, doi: 10.1016/0019-1035(66)90051-0

Harris, C. R., Millman, K. J., van der Walt, S. J., et al. 2020, Nature, 585, 357, doi: 10.1038/s41586-020-2649-2

Heller, R., Jackson, B., Barnes, R., Greenberg, R., & Homeier, D. 2010, Astronomy and Astrophysics, 514, A22, doi: 10.1051/0004-6361/200912826

Horne, K. 1986, Publications of the Astronomical Society of the Pacific, 98, 609, doi: 10.1086/131801

Hunter, J. D. 2007, Computing in Science & Engineering, 9, 90, doi: 10.1109/MCSE.2007.55

Husser, T.-O., Wende-von Berg, S., Dreizler, S., et al. 2013, Astronomy & Astrophysics, 553, A6, doi: 10.1051/0004-6361/201219058

Irwin, J., Charbonneau, D., Nutzman, P., & Falco, E. 2008, arXiv:0807.1316 [astro-ph], doi: 10.1017/S1743921308026215

Irwin, J., Buchhave, L., Berta, Z. K., et al. 2010, The Astrophysical Journal, 718, 1353, doi: 10.1088/0004-637X/718/2/1353

Irwin, J. M., Charbonneau, D., Esquerdo, G. A., et al. 2018, The Astronomical Journal, 156, 140, doi: 10.3847/1538-3881/aad9a3

Itoh, Y., Hayashi, M., Tamura, M., et al. 2005, The Astrophysical Journal, 620, 984, doi: 10.1086/427086

Jackman, J. A. G., Wheatley, P. J., Bayliss, D., et al. 2019, Monthly Notices of the Royal Astronomical Society, 489, 5146, doi: 10.1093/mnras/stz2496

Jenkins, J. M., Twicken, J. D., McCauliff, S., et al. 2016, in Software and Cyberinfrastructure for Astronomy IV, ed. G. Chiozzi & J. C. Guzman, Edinburgh, United Kingdom, 99133E, doi: 10.1117/12.2233418

Jensen, Eric. 2013, Tapir: A web interface for transit/eclipse observability, Astrophysics Source Code Library, record ascl:1306.007

Johnson, J. A., Apps, K., Gazak, J. Z., et al. 2011, The Astrophysical Journal, 730, 79, doi: 10.1088/0004-637X/730/2/79

Kanodia, S., & Wright, J. 2018, Research Notes of the AAS, 2, 4, doi: 10.3847/2515-5172/aaa4b7

Kirkpatrick, J. D., Martin, E. C., Smart, R. L., et al. 2019, The Astrophysical Journal Supplement Series, 240, 19, doi: 10.3847/1538-4365/aaf6af

Kupka, F. G., Ryabchikova, T. A., Piskunov, N. E., Stempels, H. C., & Weiss, W. W. 2000, Open Astronomy, 9, doi: 10.1515/astro-2000-0420

Li, J., Tenenbaum, P., Twicken, J. D., et al. 2019, Publications of the Astronomical Society of the Pacific, 131, 024506, doi: 10.1088/1538-3873/aaf44d
Luger, R., Agol, E., Foreman-Mackey, D., et al. 2019, The Astronomical Journal, 157, 64, doi: 10.3847/1538-3881/aae8e5
Luhman, K. L., Wilson, J. C., Brandner, W., et al. 2006, The Astrophysical Journal, 649, 894, doi: 10.1086/506517
Löhr-Böttcher, J., Schmidt, W., Schlichenmaier, R., Steinmetz, T., & Holzwarth, R. 2019, Astronomy & Astrophysics, 624, A57, doi: 10.1051/0004-6361/201834925
Malo, L., Doyon, R., Feiden, G. A., et al. 2014, The Astrophysical Journal, 792, 37, doi: 10.1088/0004-637X/792/1/37
Marcy, G. W., Butler, R. P., Fischer, D., et al. 2001, The Astrophysical Journal, 556, 296, doi: 10.1086/321552
Martioli, E., Hébrard, G., Moutou, C., et al. 2020, Astronomy & Astrophysics, 641, L1, doi: 10.1051/0004-6361/202038695
McLaughlin, D. B. 1924, The Astrophysical Journal, 60, 22, doi: 10.1086/142826
Meunier, N., Mignon, L., & Lagrange, A.-M. 2017, Astronomy & Astrophysics, 607, A124, doi: 10.1051/0004-6361/201731017
Meyer, M. R., Amara, A., Reggiani, M., & Quanz, S. P. 2017, arXiv:1707.05256 [astro-ph], doi: 10.1051/0004-6361/201731313
Micheau, Y., Challita, Z., Gallou, G., et al. 2018, in Ground-based and Airborne Instrumentation for Astronomy VII, ed. H. Takami, C. J. Evans, & L. Simard (Austin, United States: SPIE), 210, doi: 10.1117/12.2305937
Mireles, I., Shporer, A., Grieves, N., et al. 2020, The Astronomical Journal, 160, 133, doi: 10.3847/1538-3881/aba526
Montet, B. T., Johnson, J. A., Muirhead, P. S., et al. 2015, The Astrophysical Journal, 800, 134, doi: 10.1088/0004-637X/800/2/134
Muirhead, P. S., Dressing, C. D., Mann, A. W., et al. 2018, The Astronomical Journal, 155, 180, doi: 10.3847/1538-3881/aab710
Naud, M.-E., Artigau, E., Malo, L., et al. 2014, The Astrophysical Journal, 787, 5, doi: 10.1088/0004-637X/787/1/5
Parviainen, H., Palle, E., Zapatero-Osorio, M. R., et al. 2020, arXiv:2011.11458 [astro-ph], http://arxiv.org/abs/2011.11458
Patra, K. C., Winn, J. N., Holman, M. J., et al. 2017, The Astronomical Journal, 154, 4, doi: 10.3847/1538-3881/aa6d75
Stassun, K. G., Oelkers, R. J., Paegert, M., et al. 2019, The Astronomical Journal, 158, 138, doi: 10.3847/1538-3881/ab3467
Stetson, P. 2000, Publications of the Astronomical Society of the Pacific, 112, 925, doi: 10.1086/316595
Stumpe, M. C., Smith, J. C., Catanzarite, J. H., et al. 2014, Publications of the Astronomical Society of the Pacific, 126, 100, doi: 10.1086/674989
Stumpe, M. C., Smith, J. C., Van Cleve, J. E., et al. 2012, Publications of the Astronomical Society of the Pacific, 124, 985, doi: 10.1086/667698
Taylor, M. B. 2005, in Proceedings of the Conference held 24-27 October, 2004 in Pasadena, Vol. 347 (Pasadena, California, USA: P. Shopbell, M. Britton, and R. Ebert. San Francisco: Astronomical Society of the Pacific), 29
The Astropy Collaboration, Robitaille, T. P., Tollerud, E. J., et al. 2013, Astronomy & Astrophysics, 558, A33, doi: 10.1051/0004-6361/201322068
The Astropy Collaboration, Price-Whelan, A. M., Sipőcz, B. M., et al. 2018, The Astronomical Journal, 156, 123, doi: 10.3847/1538-3881/aabc4f
Twicken, J. D., Catanzarite, J. H., Clarke, B. D., et al. 2018, Publications of the Astronomical Society of the Pacific, 130, 064502, doi: 10.1088/1538-3873/aab694
Vacca, W., Cushing, M., & Rayner, J. 2003, Publications of the Astronomical Society of the Pacific, 115, 389, doi: 10.1086/346193
Veeder, G. J. 1974, The Astronomical Journal, 79, 1056, doi: 10.1086/111653
Wang, J., Fischer, D. A., Horch, E. P., & Huang, X. 2015, The Astrophysical Journal, 799, 229, doi: 10.1088/0004-637X/799/2/229
Winn, J. N., Fabrycky, D., Albrecht, S., & Johnson, J. A. 2010, The Astrophysical Journal, 718, L145, doi: 10.1088/2041-8205/718/2/L145