ABELIAN 1-CALABI-YAU CATEGORIES

ADAM-CHRISTIAAN VAN ROOSMALEN

Abstract. In this paper, we show all \(k\)-linear abelian 1-Calabi-Yau categories over an algebraically closed field \(k\) are derived equivalent to either the category of coherent sheaves on an elliptic curve, or to the finite dimensional representations of \(k[[t]]\). Since all abelian categories derived equivalent with these two are known, we obtain a classification of all \(k\)-linear abelian 1-Calabi-Yau categories up to equivalence.

1. Introduction

In this paper, we classify abelian 1-Calabi-Yau categories over an algebraically closed field \(k\). Recall that an abelian 1-Calabi-Yau category is a \(k\)-linear Hom/Ext-finite abelian category together with natural isomorphisms \(\text{Hom}(X,Y) \cong \text{Ext}(Y,X)^*\) for \(X,Y \in A\).

Our main result (reformulated in the body of the text as Theorem 4.7) is the following.

Theorem 1.1. Let \(A\) be an indecomposable abelian 1-Calabi-Yau category. Then \(A\) is derived equivalent to one of the following two categories.

1. Finite dimensional representations of \(k[[t]]\).
2. The category of coherent sheaves on an elliptic curve.

There is a general interest in the classification of categories which are homologically small in some sense (see e.g. [6], [8], [12], [15]). The above theorem represents an enhancement of our knowledge in this area.

Besides this general motivation we mention the following particular application. Recently Polishchuk and Schwartz [11] constructed a category \(\mathcal{C}\) of holomorphic vector bundles on a non-commutative 2-torus. Polishchuk subsequently showed that \(\mathcal{C}\) is derived equivalent to the category of coherent sheaves on an elliptic curve [11]. Part of Polishchuk’s proof amounts to establishing the highly non-trivial fact that \(\mathcal{C}\) is 1-Calabi-Yau [11, Cor 2.12]. Once one knows this, one could now finish the proof by simply invoking Theorem 1.1 (with \(A\) being a suitable abelian hull of \(\mathcal{C}\)).

We briefly outline some steps in the proof of Theorem 1.1. Some of our tools come from representation theory of algebras and non-commutative algebraic geometry. Other tools were already employed by Polishchuk, but are now used in a more abstract setting.

Fix a connected abelian 1-Calabi-Yau category \(A\). First, we prove the existence of endo-simple objects in \(A\), i.e. objects \(X \in A\) such that \(\text{End} X \cong k\). Associated to such objects there are twist functors \([14] T_A, T_A^*\). These functors are mutually inverse auto-equivalences of \(D^b(A)\) which on objects take the values \(T_X Y = \text{cone}(X \otimes \text{RHom}(X,Y) \to Y)\) and \(T_X^* Y = \text{cone}(Y[-1] \to X[-1] \otimes \text{RHom}(Y,X)^*)\).

Using twist functors we establish various useful facts. Most notably, we prove that the subcategory of endo-simple objects in \(A\) has no cycles of non-zero maps (Proposition 3.3) and hence is ordered. We also show that all Auslander-Reiten components of \(A\) are homogeneous tubes based on endo-simple objects (Proposition 3.5).

We may assume that \(A\) has at least two non-isomorphic endo-simple objects as the remaining case is easily disposed with. Using connectedness and the results mentioned in the previous paragraph we may in fact select non-isomorphic endo-simple objects \(E\) and \(B\) such that \(\text{Hom}(E,B) \neq 0\). After doing so we consider the sequence of objects \(\mathcal{E} = (T^n_B E)_{n \in \mathbb{Z}}\) in \(D^b A\). We construct a certain associated \(t\)-structure on \(D^b(A)\) with heart \(\mathcal{H}\) such that \(\mathcal{E}\) is an ample sequence in the sense of [10] in \(\mathcal{H}\). Hence \(\mathcal{E}\) defines a finitely presented graded coherent algebra \(A\) such that \(\mathcal{H}\) is equivalent to the category \(\text{qgr}(A)\) of finitely presented graded \(A\)-modules modulo finite dimensional ones.
We then show that A is a domain of Gelfand-Kirillov dimension two and we invoke the celebrated Artin and Stafford classification theorem \cite{ArtinStafford} which shows that $\text{qgr}(A)$ is of the form $\text{coh}(X)$ for a projective curve X. Since \mathcal{H} is 1-Calabi-Yau this implies that X must be an elliptic curve, finishing the proof.

It is not hard to describe the abelian 1-Calabi-Yau categories that occur within the derived equivalence classes in Theorem \cite{1Calabi} (see e.g. \cite{Calabi}). We discuss this using the language of this paper in \cite{1Calabi}

Acknowledgment. The author thanks Michel Van den Bergh for useful discussions as well as for contributing some ideas.

2. Preliminaries

Throughout this paper, fix an algebraically closed field k of arbitrary characteristic. All algebras and categories are assumed to be k-linear.

We will also assume all abelian categories are connected in the sense that between two indecomposable objects there is an unoriented path of non-zero maps between indecomposables.

If \mathcal{A} is abelian, we write $D^b \mathcal{A}$ for the bounded derived category of \mathcal{A}. The category $D^b \mathcal{A}$ has the structure of a triangulated category. Whenever we use the word "triangle" we mean "distinguished triangle".

An abelian or triangulated category \mathcal{A} is Ext-finite if for all objects $X, Y \in \text{Ob}(\mathcal{A})$ one has that $\dim_k \text{Ext}^i(X, Y) < \infty$ for all $i \in \mathbb{N}$. We say that \mathcal{A} is hereditary if $\text{Ext}^i(X, Y) = 0$ for all $i \geq 2$.

2.1. Serre duality. If \mathcal{C} is triangulated category, we will say that \mathcal{C} satisfies Serre duality if there exists an auto-equivalence $F : \mathcal{C} \to \mathcal{C}$, called the Serre functor, such that, for all $X, Y \in \text{Ob}\mathcal{C}$, there is an isomorphism

$$\text{Hom}_\mathcal{C}(X, Y) \cong \text{Hom}_\mathcal{C}(Y, FX)^*$$

which is natural in X and Y and where $(-)^*$ denotes the vector space dual.

We will say an abelian category \mathcal{A} has Serre duality if the category $D^b \mathcal{A}$ has a Serre functor. It has been proven in \cite{Calabi} that an abelian category \mathcal{A} without non-zero projectives has a Serre functor if and only if the category $D^b \mathcal{A}$ has Auslander-Reiten triangles. In this case the action of the Serre functor on objects coincides with $\tau[1]$, where τ is the Auslander-Reiten translation.

2.2. Calabi-Yau categories. Let \mathcal{A} be an Ext-finite abelian category with Serre duality. We will say \mathcal{A} is Calabi-Yau of dimension n or shorter that \mathcal{A} is n-Calabi-Yau if $F \cong [n]$ for a certain $n \in \mathbb{N}$, thus if the n^{th} shift is a Serre functor. We write $\text{CYdim} \mathcal{A} = n$.

The following well-known property relates the Calabi-Yau dimension and the homological dimension.

Proposition 2.1. Let \mathcal{A} be an abelian Calabi-Yau category. Then $\text{CYdim} \mathcal{A} = \text{gl dim} \mathcal{A}$.

Proof. Let $n = \text{CYdim} \mathcal{A}$, then for every $X \in \text{Ob} \mathcal{A}$ we have $\text{Hom}(X, X) \cong \text{Ext}^n(X, X)^*$. Since the former is non-zero, we see $\text{CYdim} \mathcal{A} \leq \text{gl dim} \mathcal{A}$.

Let $i \in \mathbb{N}$ and $X, Y \in \text{Ob} \mathcal{A}$ be chosen such that $\text{Ext}^i(X, Y) \neq 0$. Using the Calabi-Yau property, we find $\text{Ext}^i(X, Y) \cong \text{Ext}^{n-i}(Y, X)$, hence $n \geq i$. We find $\text{CYdim} \mathcal{A} \geq \text{gl dim} \mathcal{A}$.

In particular, if \mathcal{A} is a 1-Calabi-Yau category, then \mathcal{A} is hereditary. Since $F \cong [1]$ and F coincides with $\tau[1]$ on indecomposables of \mathcal{A}, it follows that τ is naturally isomorphic to the identity functor on \mathcal{A} and hence $\text{Hom}_\mathcal{A}(X, Y) \cong \text{Ext}_\mathcal{A}(Y, X)^*$, for all objects $X, Y \in \mathcal{A}$.

2.3. Twist functors. Let \mathcal{A} be an abelian 1-Calabi-Yau category. For an object $A \in D^b \mathcal{A}$, we may consider the twist functors, T_A and T^*_A, in $D^b \mathcal{A}$ whose values on objects are up to isomorphism characterized by the following triangles

$$T_A X[-1] \to A \otimes \text{RHom}(A, X) \overset{\epsilon}{\to} X \to T_A X$$

and

$$T^*_A X \to X \overset{\epsilon^*}{\to} A \otimes \text{RHom}(X, A)^* \to T^*_A X[1]$$

where $\epsilon : A \otimes \text{RHom}(A, X) \to X$ and $\epsilon^* : X \to A \otimes \text{RHom}(X, A)^*$ are the canonical morphisms.
Let S be an endo-simple object, i.e. $\text{End}(S) \cong k$. Since \mathcal{A} is 1-Calabi-Yau, we know from [14, Proposition 2.10] that T_S and T_S^* are inverses. In particular, they are autoequivalences.

2.4. Ample sequences. For the benefit of the reader, we will recall some definitions and results from [10] which will be used in the rest of this paper. Throughout, let \mathcal{A} be a Hom-finite abelian category.

We begin with the definition of ample sequences.

(1) A sequence $\mathcal{E} = (E_i)_{i \in \mathbb{Z}}$ is called projective if for every epimorphism $X \to Y$ in \mathcal{A} there is an $n \in \mathbb{Z}$ such that $\text{Hom}(E_i, X) \to \text{Hom}(E_i, Y)$ is surjective for $i < n$.

(2) A projective sequence $\mathcal{E} = (E_i)_{i \in \mathbb{Z}}$ is called coherent if for every $X \in \text{Ob}\mathcal{A}$ and $n \in \mathbb{Z}$, there are integers $i_1, \ldots, i_s \leq n$ such that the canonical map

$$\bigoplus_{j=1}^s \text{Hom}(E_{i_j}, \text{Hom}(E_{i_j}, X)) \to \text{Hom}(E_i, X)$$

is surjective for $i < 0$.

(3) A coherent sequence $\mathcal{E} = (E_i)_{i \in \mathbb{Z}}$ is ample if for all $X \in \mathcal{A}$ the map $\text{Hom}(E_i, X) \neq 0$ for $i < 0$.

Let $A_{ij} = \text{Hom}(E_i, E_j)$ for $i \leq j$. We may define an algebra $A = A(\mathcal{E}) = \oplus_{i \leq j} A_{ij}$ in a natural way. If $A_{ii} \cong k$, then A is a coherent \mathbb{Z}-algebra in the sense of [10] (see [10, Proposition 2.3]).

We will refer to the right A-modules having a resolution by finitely generated projectives as coherent modules. These modules form an abelian category, $\text{coh} A$, and the finite dimensional modules form a Serre subcategory denoted by $\text{coh}^b A$. We define the quotient

$$\text{cohproj} A \cong \text{coh} A/\text{coh}^b A.$$

We may use this to give a description of Ext-finite abelian categories with an ample sequence.

Theorem 2.2. [10, Theorem 2.4] Let $\mathcal{E} = (E_i)$ be an ample sequence, $A = A(\mathcal{E})$ the corresponding \mathbb{Z}-algebra, then there is an equivalence of categories $\mathcal{A} \cong \text{cohproj} A$.

We will be interested in the special case where there is an automorphism $t : D^b \mathcal{A} \to D^b \mathcal{A}$ such that $E_i \cong t^i E$. We let $R = R(\mathcal{E}) = \oplus_{i \in \mathbb{N}} R_i$ where $R_i = \text{Hom}(E_i, t^i E)$ and make it into a \mathbb{Z}-graded algebra in an obvious way.

If R is noetherian then the coherent R-modules correspond to the finitely generated ones and $\text{cohproj} R$ corresponds to $\text{qgr} R$, the finitely generated modules modulo the finite dimensional ones.

We will use following corollary of Theorem 2.2.

Corollary 2.3. Let A be a Hom-finite abelian category, t be an autoequivalence of \mathcal{A} and E an object of \mathcal{A}. If $\mathcal{E} = (t^i E)$ is an ample sequence and the corresponding graded algebra $R = R(\mathcal{E})$ is noetherian, then $\mathcal{A} \cong \text{qgr} R$.

2.5. t-structures. In order to find derived equivalent categories, we will use the theory of t-structures [3].

Definition 2.4. A t-structure on a triangulated category \mathcal{C} is a pair $(D^{\geq 0}, D^{\leq 0})$ of non-zero full subcategories of \mathcal{C} satisfying the following conditions, where we denote $D^{\leq n} = D^{\leq 0}[-n]$ and $D^{\geq n} = D^{\geq 0}[-n]$

(1) $D^{\leq 0} \subseteq D^{\leq 1}$ and $D^{\geq 1} \subseteq D^{\geq 0}$

(2) $\text{Hom}(D^{\leq 0}, D^{\geq 1}) = 0$

(3) $\forall Y \in \mathcal{C}$, there exists a triangle $X \to Y \to Z \to X[1]$ with $X \in D^{\leq 0}$ and $Z \in D^{\geq 1}$.

Furthermore, we will say the t-structure is bounded if $\bigcap_{n} D^{\leq n} = \bigcap_{n} D^{\geq n} = \{0\}$.

We will say a t-structure is split if all triangles in [3] are split, or equivalently, if $\text{ind} \mathcal{C} = \text{ind} D^{\geq 1} \cup \text{ind} D^{\leq 0}$. We have following result.

Theorem 2.5. [3] Let \mathcal{A} be an abelian category and let $(D^{\geq 0}, D^{\leq 0})$ be a bounded t-structure on $D^b \mathcal{A}$. Then the heart \mathcal{H} is hereditary if and only if $(D^{\geq 0}, D^{\leq 0})$ is a split t-structure. In this case, \mathcal{A} and \mathcal{H} are derived equivalent.
2.6. **Elliptic curves.** For the benefit of the reader, we recall certain properties of the category of coherent sheaves on an elliptic curve X. This category has first been described in [2].

An elliptic curve is a curve of genus 1 and thus, in particular, $\mathcal{A} = \text{coh}\, X$ is a 1-Calabi-Yau category.

Let \mathcal{O} be the structure sheaf and, for a point P, let $k(P)$ be a torsion sheaf. For a coherent sheaf \mathcal{E} the degree and rank may be defined as

$$
\text{deg} \, \mathcal{E} = \chi(\mathcal{O}, \mathcal{E})
$$

$$
\text{rk} \, \mathcal{E} = \chi(\mathcal{E}, k(P)),
$$

respectively. It follows from the Riemann-Roch theorem that

$$(1) \quad \chi(\mathcal{E}, \mathcal{F}) = \text{deg} \, \mathcal{F} \, \text{rk} \, \mathcal{E} - \text{deg} \, \mathcal{E} \, \text{rk} \, \mathcal{F}.$$

Furthermore, the *slope* of \mathcal{E} is defined as $\mu(\mathcal{E}) = \frac{\text{deg} \, \mathcal{E}}{\text{rk} \, \mathcal{E}} \in \mathbb{Q} \cup \{\infty\}$. A coherent sheaf \mathcal{F} is called *stable* or *semi-stable* if for every short exact sequence $0 \rightarrow \mathcal{E} \rightarrow \mathcal{F} \rightarrow \mathcal{G} \rightarrow 0$ we have $\mu(\mathcal{E}) \leq \mu(\mathcal{F})$ or $\mu(\mathcal{E}) < \mu(\mathcal{F})$, respectively.

It is well-known that all indecomposable coherent sheaves are semi-stable. For stable sheaves, we have the following equivalent conditions

(1) \mathcal{E} is stable,

(2) \mathcal{E} is endo-simple, i.e. $\text{End}(\mathcal{E}) \cong k$,

(3) $\text{rk} \, \mathcal{E}$ and $\text{deg} \, \mathcal{E}$ are coprime.

Every semi-stable sheaf is a finite extension of an endo-simple one with itself. We may visualise this via the Auslander-Reiten quiver of $\text{coh}\, X$. All Auslander-Reiten components are homogeneous tubes, i.e. components of the form $\mathbb{Z}A_\infty/(\tau)$, cfr. Figure 1, where the bottom element is a stable sheaf.

Every such tube corresponds to an abelian subcategory of $\text{coh}\, X$ equivalent to $\text{Mod}^{fd} k[[t]]$ and all indecomposable objects in the same homogeneous tube have the same slope. Thus the full subcategory of $\text{coh}\, X$ spanned by all indecomposable objects of a given slope is an abelian subcategory of $\text{coh}\, X$ and is of the form $\oplus \text{Mod}^{fd} k[[t]]$, where the sum is indexed over the stable objects with the given slope.

Finally, it follows directly from (1) that, for non-isomorphic stable sheaves, \mathcal{E} and \mathcal{F}, we have $\text{Hom}(\mathcal{E}, \mathcal{F}) \neq 0$ if and only if $\mu(\mathcal{E}) < \mu(\mathcal{F})$. Thus for semi-stable sheaves \mathcal{E}' and \mathcal{F}' we have $\text{Hom}(\mathcal{E}', \mathcal{F}') \neq 0$ if and only if $\mu(\mathcal{E}') < \mu(\mathcal{F}')$ or \mathcal{E}' and \mathcal{F}' lie in the same tube.

3. **Endo-simple objects**

Let \mathcal{A} be a connected k-linear abelian 1-Calabi-Yau category. It will turn out that the endo-simple objects are the building blocks of \mathcal{A}. Therefore, in this section, we will give some properties of endo-simple objects. Recall that X is an endo-simple object if $\text{End} \, X \cong k$. It follows from the Calabi-Yau property that every endo-simple object is 1-spherical in the sense of [14].
Proposition 3.1. Let C be a Hom-finite abelian category. For every object $X \in \text{Ob}_C$ there exists an endo-simple object occurring both as subobject and quotient object of X. In particular, C has an endo-simple object.

Proof. Assume X is not endo-simple and let $f : X \to X$ be a non-invertible endomorphism. We show that $\dim \text{End} I < \dim \text{End} X$ where $I = \text{im} f$.

Indeed, since we have an epimorphism $X \to I$ and monomorphism $I \to X$, we get a composition of monomorphisms $\text{Hom}(I, I) \to \text{Hom}(X, I) \to \text{Hom}(X, X)$. Since the image of this composition has to be in $\text{rad}(X, X)$, we know $\dim \text{Hom}(I, I) < \dim \text{Hom}(X, X)$. Iteration finishes the proof. □

Proposition 3.2. Let S be an endo-simple object and $X \in \text{ind} \mathcal{A}$. Each of the canonical maps $S \otimes \text{Hom}(S, X) \to X$ and $X \to S \otimes \text{Hom}(X, S)^*$ is either a monomorphism or an epimorphism. If $\text{Hom}(X, S) \neq 0$, then the first map is a monomorphism. If $\text{Hom}(S, X) \neq 0$, then the latter is an epimorphism.

Proof. Consider in the derived category $D^b \mathcal{A}$ the twist functor T_S characterized by

$$T_S X[-1] \to S \otimes R\text{Hom}(S, X) \to X \to T_S X.$$

It is shown in [14] that this is an equivalence. Applying the homological functor H^0 gives the long exact sequence

$$0 \to H^{-1}(T_S X) \to S \otimes \text{Hom}(S, X) \xrightarrow{H^0} X \to H^0(T_S X) \to S \otimes \text{Ext}(S, X) \to 0.$$

Since X is indecomposable and T_S is an equivalence, either $H^{-1}(T_S X)$ or $H^0(T_S X)$ is zero, hence H^0 is a monomorphism or an epimorphism, respectively.

If we assume furthermore $\text{Hom}(X, S) \neq 0$, and hence by the Calabi-Yau property $\text{Ext}(S, X) \neq 0$, we find $H^0(T_S X) \neq 0$. Hence $H^{-1}(T_S X) = 0$ and the canonical map $S \otimes \text{Hom}(S, X) \to X$ is a monomorphism.

The other case is dual. □

Proposition 3.3. The subcategory of endo-simples is a directed category.

Proof. Let $S_0 \to S_1 \to \cdots \to S_n \to S_0$ be a cycle of non-zero non-isomorphisms between endo-simple objects. We will assume n is minimal with the property that such a cycle exists.

By Proposition 3.2 we know the canonical map $\epsilon : S_0 \otimes \text{Hom}(S_0, S_1) \to S_1$ is either a monomorphism or an epimorphism. If ϵ is a monomorphism, then we know the composition

$$S_n \otimes \text{Hom}(S_0, S_1) \to S_0 \otimes \text{Hom}(S_0, S_1) \xrightarrow{\epsilon} S_1$$

is non-zero. This induces a non-zero morphism $f : S_n \to S_1$. Since f factors through $S_0 \otimes \text{Hom}(S_0, S_1)$, we know f is not invertible.

Likewise, if ϵ is an epimorphism, we find a non-zero non-invertible morphism $S_0 \to S_2$. In both cases we have found a shorter cycle, contradicting with the minimality of n. □

We now wish to show that every object has a composition series with endo-simple quotients. Even more so, every indecomposable object has a composition series in which only one isomorphism class of endo-simple objects occur. We start with a lemma.

Lemma 3.4. Let $X \in \text{ind} \mathcal{A}$ such that the endo-simple object S occurs both as subobject and quotient object of X. If $C = \text{coker}(S \otimes \text{Hom}(S, X) \to X)$ is not zero, then S occurs as both subobject and quotient object of every direct summand of C.

Proof. Assume $C \neq 0$. Consider the exact sequence

$$0 \to S \otimes \text{Hom}(S, X) \to X \to H^0(T_S X) \to S \otimes \text{Ext}(S, X) \to 0.$$

from the proof of Proposition 3.2. We may splice this as

$$0 \to S \otimes \text{Hom}(S, X) \to X \to C \to 0$$

and

$$0 \to C \to H^0(T_S X) \to S \otimes \text{Ext}(S, X) \to 0.$$
Since T_S is an automorphism and X is indecomposable, we know $H^0(T_S X)$ is indecomposable. It now follows directly from [13, Lemma 2*] that $\text{Hom}(S, C_1) \cong \text{Ext}(C_1, S)^* \neq 0$ and $\text{Hom}(C_1, S) \cong \text{Ext}(S, C_1)^* \neq 0$ for every direct summand C_1 of C. Proposition 3.2 now yields that S is both a subobject and quotient object of every direct summand of C. \hfill \Box

Proposition 3.5. Every indecomposable object is obtained by repeatedly extending a given endo-simple with itself.

Proof. Let S be an endo-simple object and denote by A_S the full subcategory of A spanned by the objects Z which can be obtained from S by taking a finite amount of extensions with itself. The number of such extensions needed, will be denoted by $l_S(Z)$, and we will refer to it as the length of Z.

Since A_S is a hereditary category with a unique simple S such that $\dim \text{Ext}(S, S) = 1$, it follows easily that A_S is equivalent to the finite dimensional representations of $k[[t]]$.

We will prove that if X is an indecomposable object of A such that S occurs both as quotient and subobject, then $X \in A_S$. Note that by Proposition 3.1 we may assume such an S exists.

For every subobject A of X in A_S and quotient object B of X in A_S, we have

$$\dim \text{End}_A X \geq \min(l_S(A), l_S(B)),$$

thus we may deduce either the length of such subobjects or the length of such quotient objects is bounded. Assume that the length of A is bounded, the other case is dual.

We will now construct in A_S an ascending sequence of subobjects of X. Let $A_0 = S \otimes \text{Hom}(S, X)$ and denote $C_0 = \text{coker}(S \otimes \text{Hom}(S, X) \rightarrow X)$. We will assume $C_0 \neq 0$.

We choose a decomposition $C_0 \cong X_1 \oplus C_0'$ where X_1 is indecomposable, hence by Lemma 3.4 we know S occurs both as subobject and as quotient object of X_1 and of every direct summand of C_0'. Consider the following diagram with exact rows and columns

$$\begin{array}{ccccccc}
0 & & 0 & & & & \\
0 & \rightarrow & A_0 & \rightarrow & A_1 & \rightarrow & S \otimes \text{Hom}(S, X_1) & \rightarrow & 0 \\
0 & \rightarrow & X & \rightarrow & X_1 \oplus C_0' & \rightarrow & 0 \\
& & C_1 \oplus C_0' & & C_1 \oplus C_0' & & \\
& & 0 & \rightarrow & 0 & \rightarrow & 0 \\
\end{array}$$

It follows from Lemma 3.4 that S occurs both as subobject and quotient of every indecomposable of $C_1 \oplus C_0'$ where $C_1 = \text{coker}(S \otimes \text{Hom}(S, X_1) \rightarrow X_1)$. Hence, using $C_0 \neq 0$, we have found a subobject $A_1 \in A_S$ of X such that $l_S(A_0) < l_S(A_1)$. Iteration and using that the length is bounded, we see that $X \in A_S$. \hfill \Box

Remark 3.6. It follows from previous proposition that all Auslander-Reiten components of A are homogeneous tubes, i.e. they are of the form $\mathbb{Z}A_\infty/\langle \tau \rangle$, cfr. Figure 1 were the bottom element is endo-simple.

Finally, we will formulate a useful corollary.

Corollary 3.7. Every cycle $X_0 \rightarrow X_1 \rightarrow \cdots \rightarrow X_n \rightarrow X_0$ of non-zero non-isomorphisms between indecomposable objects belongs to a single homogeneous tube.

Proof. Directly from Propositions 3.3 and 3.5 \hfill \Box
Remark 3.8. It follows that the set of homogeneous tubes of the category \mathcal{A} are directed, thus there can be no cycle containing two objects from different homogeneous tubes.

4. Classification

Let \mathcal{A} be a connected k-linear abelian Ext-finite 1-Calabi-Yau category. In this section, we wish to classify all such categories up to derived equivalence. If every two endo-simples of \mathcal{A} are isomorphic, then \mathcal{A} is equivalent to the finite dimensional nilpotent representations of the one loop quiver.

So, assume there are at least two non-isomorphic endo-simples, E and B. By connectedness and Proposition 3.5, we assume $\text{Hom}(E, B) \neq 0$. First, we will find a t-structure in $D^b \mathcal{A}$ such that the heart \mathcal{H} admits an ample sequence \mathcal{E}. Then we will use Theorem 2.2 to show $\mathcal{A} \cong \text{qgr } R(\mathcal{E})$. A discussion of $R(\mathcal{E})$ will then complete the classification of abelian 1-Calabi-Yau categories up to derived equivalence.

From here on, we will always denote $\text{Hom}(E, B)$ by V and its dimension by d.

4.1. The sequence \mathcal{E} and a t-structure in $D^b \mathcal{A}$. With E and B as above, associate the autoequivalence $t = T_B : D^b \mathcal{A} \to D^b \mathcal{A}$ and the sequence $\mathcal{E} = (E_i)$ where $E_i = t^i E$.

The following will define a t-structure in \mathcal{C} with a hereditary heart \mathcal{H}.

\[
\text{ind } D^{\leq 0} = \{X \in \text{ind } \mathcal{C} \mid \text{there is a path from } E_i \text{ to } X, \text{ for an } i \in \mathbb{Z}\}
\]
\[
\text{ind } D^{> 1} = \text{ind } \mathcal{C} \setminus \text{ind } D^{\leq 0}
\]

If it follows directly from this definition that t restricts to an autoequivalence on \mathcal{H}, which we will also denote by t. Note that this implies $E_i \in \text{Ob } \mathcal{H}$, for all $i \in \mathbb{Z}$. Also, since $\text{Hom}(B[-1], E_i) \neq 0$, there is no path from E_i to $B[-1]$ and hence we have $B \in \text{Ob } \mathcal{H}$.

It follows from Theorem 2.2 that \mathcal{H} is hereditary and $D^b \mathcal{H} \cong D^b \mathcal{A}$. Since \mathcal{H} is a 1-Calabi-Yau category, the results we have proved about \mathcal{A} apply to \mathcal{H} as well.

Note that, since $t^i B \cong B$, we find there is a natural isomorphism $\text{Hom}(E, B) \cong \text{Hom}(E_i, B)$ and as such, we get triangles of the form $B[-1] \otimes V^* \to E_{i-1} \to E_i \to B \otimes V^*$. Such a triangle in $D^b \mathcal{A}$ gives rise to an exact sequence

\[
0 \to E_{i-1} \to E_i \to B \otimes V^* \to 0
\]

in \mathcal{H}, which is the universal extension of E_{i-1} with B and all these exact sequences lie in the same t-orbit.

Using Proposition 3.3, we may prove following easy lemma.

Lemma 4.1. Let $\mathcal{E} = (E_i)_{i \in I}$ and B as above, then

1. $\text{Hom}(E_i, E_j) = \text{Ext}(E_j, E_i) = 0$ for $i > j$,
2. $\text{Hom}(B, E_i) = \text{Ext}(B, E_i) = 0$ for all $i \in I$.

If \mathcal{H} is of the form coh X for an elliptic curve X (which we will show below to be the case) one may verify that E corresponds to a stable vector bundle of rank $\dim V$ and B to the structure sheaf $k(P)$ of a point P. The E_i are equal to $E(-iP)$.

4.2. \mathcal{E} is an ample sequence in \mathcal{H}. We now wish to show the sequence $\mathcal{E} = (E_i)_{i \in \mathbb{Z}}$ is ample. The following lemma will be useful.

Lemma 4.2. If $\text{Hom}(E_i, X) \neq 0$, then $\text{Hom}(E_j, X) \neq 0$ for all $j \leq i$.

Proof. It suffices to show that $\text{Hom}(E_{i-1}, X) \neq 0$. Since $\text{Hom}(E_i, X) \neq 0$ and t is an autoequivalence, we know $\text{Hom}(E_{i-1}, t^{-1} X) \neq 0$. Applying the functor $\text{Hom}(E_{i-1}, -)$ to the exact sequence

\[
0 \to t^{-1} X \to X \to B \otimes \text{Hom}(X, B)^* \to 0
\]

yields $\text{Hom}(E_{i-1}, X) \neq 0$. \hfill \Box

Proposition 4.3. In \mathcal{H} the sequence $\mathcal{E} = (E_i)$ is ample.
Proof. First, we will show \mathcal{E} is projective. Therefore, let $X \to Y$ be an epimorphism and let K be the kernel. By the construction of \mathcal{H} in [4.1] we know there are paths from the sequence \mathcal{E} to every direct summand of K. Hence, by Corollary [3.7] we know $\text{Hom}(K, E_i) = 0$ for $i < 0$ and, by the Calabi-Yau property, $\text{Ext}(E_i, K) = 0$. Thus $\text{Hom}(E_i, X) \to \text{Hom}(E_i, Y)$ is surjective for $i < n$.

Next, we will show \mathcal{E} is coherent. Thus we consider an object $X \in \mathcal{H}$ and we may assume there is a $j \in \mathbb{Z}$ such that $\text{Hom}(E_{j+2}, X) \neq 0$, and hence by Lemma [3.2] that $\text{Hom}(E_i, X) \neq 0$ for all $i < j + 2$. Fix an $i < j$, we will prove that $f : E_{i-1} \to X$ factors through $E_i \oplus E_j$. Iteration then implies f factors through a number of copies of $E_{j-1} \oplus E_j$, and hence \mathcal{E} is coherent.

To prove previous claim, it will be convenient to work in the derived category. The following two triangles in $\text{D}^b \mathcal{H}$ will be used

\begin{equation}
B \otimes V^*[-1] \xrightarrow{\theta} E_{i-1} \to E_i \to B \otimes V^*
\end{equation}

and

\begin{equation}
B \otimes V^*[-1] \xrightarrow{\varphi} E_j \to E_{j+1} \to B \otimes V^*
\end{equation}

where $V = \text{Hom}(E_i, B) \cong \text{Hom}(E_{j+1}, B)$. We may assume $f : E_{i-1} \to X$ does not factor though E_i, hence from triangle (2) it follows that the composition $f \circ \theta \neq 0$.

Note that, since $\text{Hom}(E_{j+1}, X) \neq 0$, we may use Corollary [3.7] to see $\text{Hom}(X, E_{j+1}) = 0$, and hence also $\text{Ext}(E_{j+1}, X) = 0$.

Applying the functor $\text{Hom}(-, X)$ on triangle (3) and using $\text{Ext}(E_{j+1}, X) = 0$, shows that every map $B \otimes V^*[-1] \to X$ factors though φ. Hence there is a morphism $g : E_j \to X$ such that the following diagram commutes.

\begin{equation}
\begin{array}{ccc}
B \otimes V^*[-1] & \xrightarrow{\theta} & E_{i-1} \\
\downarrow \varphi & & \downarrow f \\
E_j & \xrightarrow{g} & X
\end{array}
\end{equation}

Furthermore, applying $\text{Hom}(-, E_j)$ to triangle (2) yields that φ factors through θ, hence there is a map $h : E_{i-1} \to E_j$ such that $g \circ h \circ \theta = f \circ \theta$, or $(g \circ h - f) \circ \theta = 0$.

Summarizing, $f = g \circ h + f ' $, where $f ' : E_{i-1} \to X$ lies in $\text{ker}(\theta, X)$ and as such factors through E_i. The map f factors though $E_i \oplus E_j$ and we may conclude the sequence \mathcal{E} is coherent.

Finally, we show the sequence \mathcal{E} is ample. Let X be an indecomposable object. Due to the construction of \mathcal{H}, we know that there is an oriented path from E_n to X, for a certain $n \in \mathbb{Z}$. Thus it suffices to prove that if $\text{Hom}(E_n, X) \neq 0$, then there is a finite set $I \subset \mathbb{Z}$ such that $\bigoplus_{i \in I} E_i \otimes \text{Hom}(E_i, X) \to X$ is an epimorphism.

Let $i_1, \ldots, i_m \in \mathbb{Z}$ be as in the definition of coherence. Consider the map

\begin{equation}
\theta : \bigoplus_{j=1}^m E_{i_j} \otimes \text{Hom}(E_{i_j}, X) \to X
\end{equation}

and let $C = \text{coker} \theta$. To ease notation, we will refer to the domain of θ by $\text{dom} \theta$.

There is an exact sequence $0 \to \text{im} \theta \to X \to C \to 0$. Using the Calabi-Yau property, we see $\text{Hom}(\text{im} \theta, C) \neq 0$, and since $\text{im} \theta$ is a quotient object of $\text{dom} \theta$, this yields $\text{Hom}(\text{dom} \theta, C) \neq 0$. Hence we may assume there is an i_j such that $\text{Hom}(E_{i_j}, C) \neq 0$.

Since \mathcal{E} is projective, there is an $l << 0$ such that the induced map in $\text{Hom}(E_l, C)$ lifts to a map in $\text{Hom}(E_l, X)$. Again using coherence, this map should factor through $\text{dom} \theta$. We may conclude $C = 0$, and hence θ is an epimorphism. \qed
4.3. Description of \(R = R(\mathcal{E}) \). Having shown in Proposition 4.3 that \(\mathcal{E} \) is an ample sequence, we may invoke Proposition 2.2 to see the that \(\mathcal{H} \cong \text{cohproj} A(\mathcal{E}) \).

We will now proceed to discuss the graded algebra \(R = R(\mathcal{E}) \). In particular, we wish to show \(R \) is a finitely generated domain of Gelfand-Kirillov dimension 2 which admits a Veronese subalgebra generated in degree one. It would then follow from [1] that \(R \) is noetherian and that \(qgr R \) is equivalent to \(\text{coh} X \) where \(X \) is a curve, while it would follow from Corollary 2.3 that \(\mathcal{H} \cong qgr R \).

We start by showing \(\text{GKdim} R = 2 \).

Lemma 4.4. Let \(\mathcal{E} = (E_i)_{i \in I} \) and \(B \) be as before. If \(j > i \), then
\[
\dim \text{Hom}(E_i, E_j) = (j - i)d^2
\]
where \(d = \dim \text{Hom}(E_0, B) \).

Proof. We apply \(\text{Hom}(E_i, -) \) to the short exact sequence
\[
0 \rightarrow E_{j-1} \rightarrow E_j \rightarrow B \otimes \text{Hom}(E_0, B)^* \rightarrow 0.
\]
We will proceed by induction on \(j > i \). Note that \(\dim \text{Hom}(E_i, B) = \dim \text{Hom}(E_0, B)^* = d \) and Lemma 4.1 implies that \(\text{Ext}(E_i, E_i) = 0 \).

If \(j = i+1 \), then it follows from \(\dim \text{Hom}(E_i, E_i) = \dim \text{Ext}(E_i, E_i) = 1 \) that \(\dim \text{Hom}(E_i, E_j) = d^2 \). For higher \(j \), we find by induction \(\dim \text{Hom}(E_i, E_j) = (j - i)d^2 \).

Lemma 4.5. Assume \(E \) and \(B \) are non-isomorphic endo-simple objects of \(\text{D}^b A \) chosen such that \(d = \dim \text{Hom}_{\text{D}^b A}(E, B) \) is minimal and \(d \neq 0 \). Then \(R \) is a domain.

Proof. It suffices to show every non-zero non-isomorphism \(f : E_0 \rightarrow E_i \) is a monomorphism. We will prove this by induction on \(i \). The case \(i = 0 \) is trivial. So let \(i \geq 1 \).

Since \(f \) is a quotient object of \(E_0 \) and \(\dim \text{Hom}(E, B) = d \), we see that \(\dim \text{Hom}(\text{im} f, B) \leq d \), and due to the minimality of \(d \), we know that either \(\dim \text{Hom}(\text{im} f, B) = 0 \), or \(\dim \text{Hom}(\text{im} f, B) = d \) and \(\text{im} f \) is an endo-simple object.

If \(\dim \text{Hom}(\text{im} f, B) = 0 \), the inclusion \(\text{im} f \hookrightarrow E_i \) has to factor through a map \(j : \text{im} f \rightarrow E_{i-1} \).

Composition gives a non-zero map \(E_0 \rightarrow E_{i-1} \) which is a monomorphism by the induction hypothesis. We conclude that \(f \) is a monomorphism.

We are left with \(\dim \text{Hom}(\text{im} f, B) = d \), and hence \(\dim \text{Hom}(K, B) = 0 \) where \(K = \ker f \). With \(\mathcal{E} \) being ample, we may assume there is a \(k \in \mathbb{Z} \), such that \(E_k \) maps non-zero to every direct summand of \(K \). Using the exact sequence \(0 \rightarrow E_k \rightarrow E_{k+1} \rightarrow B \otimes \text{Hom}(E_{k+1}, B)^* \rightarrow 0 \), we find that for every \(l \in \mathbb{Z}, E_l \) maps non-zero to every direct summand of \(K \). Hence \(\text{Hom}(K, E_l) = 0 \) and thus \(K = 0 \). We conclude that \(f \) is a monomorphism.

In general, however, \(R \) will not be generated in degree 1. We show that the Veronese subalgebra \(R(3) = \oplus_k R_{3k} \) of \(R \) is generated in degree 1.

Lemma 4.6. The sequence \(\mathcal{E}^{(3)} = (E_{3k})_{k \in \mathbb{Z}} \) is an ample sequence. Furthermore \(R(3) = R(\mathcal{E}^{(3)}) \) is generated in degree 1.

Proof. The sequence \(\mathcal{E}^{(3)} \) is projective and ample since \(\mathcal{E} \) is. Coherence of \(\mathcal{E}^{(3)} \) may be shown as in the proof of Proposition 4.3.
Next, we prove $R^{(3)}$ is generated in degree one. Therefore, it suffices to show that for every $k > 1$ every map $E_0 \to E_{3k}$ factors through the canonical map $\theta : E_0 \to E_3 \otimes \Hom(E_0, E_3)^*$. We write $V = \Hom(E_0, E_3)$ and we consider the triangle

$$\begin{array}{ccc}
C & \xrightarrow{a} & E_3 \otimes V^* \\
\downarrow & & \downarrow \\
E_0 & \xrightarrow{\theta} & C[1]
\end{array}$$

where $C = T_{E_3}E_0$ is an endo-simple object since T_{E_3} is an automorphism. Applying the functor $\Hom(-, E_{3k})$ to this triangle gives the exact sequence

$$0 \to \Hom(C[1], E_{3k}) \to \Hom(E_3 \otimes V^*, E_{3k}) \to \Hom(E_0, E_{3k}) \to \Hom(C, E_{3k}) \to 0.$$

We now consider the dimensions of these vector spaces. Since

$$\dim \Hom(E_0, E_{3k}) = (3k)d^2 < \dim \Hom(E_3 \otimes V^*, E_{3k}) = 9(k-1)d^4$$

we may see $\Hom(C[1], E_{3k}) \neq 0$ and $\dim \Hom(C, E_{3k}) \neq \dim \Hom(C[1], E_{3k})$, hence $E_{3k} \neq C[1]$.

Using Proposition 3.3 we obtain $\Hom(C, E_{3k}) = 0$, hence every map $E_0 \to E_{3k}$ lifts through θ and the algebra $R^{(3)}$ is generated in degree one.

4.4. **Classification up to derived equivalence.** We are now ready to prove the main result of this article.

Theorem 4.7. Let \mathcal{A} be a connected k-linear abelian Ext-finite 1-Calabi-Yau category, then \mathcal{A} is derived equivalent to either

1. the category of finite dimensional representations of $k[[t]]$, or
2. the category of coherent sheaves on an elliptic curve X.

Proof. By Proposition 3.1 we know there are endo-simple objects. First, assume all endo-simple objects are isomorphic. Using Proposition 3.3 we easily see that \mathcal{A} is equivalent to $\Mod_k k[[t]]$.

Next, assume there are at least two non-isomorphic endo-simples, E and B, such that $\Hom(E, B) \neq 0$, yet with a minimal dimension. Let \mathcal{H} be the abelian category constructed in 3.4. By Lemmas 4.3 and 4.6 we know $R^{(3)} = R(\mathcal{E}^{(3)})$ is a domain of GK-dimension 2 which is finitely generated by elements of degree one, hence by [1] we find that $R^{(3)}$ is noetherian and $\qgr R^{(3)}$ is equivalent to the coherent sheaves on a curve X.

Since R is noetherian, it follows from 2.2 that \mathcal{H} is equivalent to $\qgr R^{(3)}$.

The structure sheaf \mathcal{O}_X of X is an endo-simple object. Since the genus of X is $\dim H^1(\mathcal{O}_X) = \dim \Ext(\mathcal{O}_X, \mathcal{O}_X) = \dim \Hom(\mathcal{O}_X, \mathcal{O}_X) = 1$, we know X is an elliptic curve. □

4.5. **Classification of abelian categories.** We will now combine Theorem 4.7 with [5] Proposition 5.1 to obtain a description of all abelian 1-Calabi-Yau categories. First, we recall some results from [7].

Let \mathcal{A} be any hereditary abelian category. A torsion theory on \mathcal{A}, $(\mathcal{T}, \mathcal{F})$, is a pair of full additive subcategories of \mathcal{A}, such that $\Hom(\mathcal{T}, \mathcal{F}) = 0$ and having the additional property that for every $X \in \Ob \mathcal{A}$ there is a short exact sequence

$$0 \to T \to X \to F \to 0$$

with $F \in \mathcal{F}$ and $T \in \mathcal{T}$.

We will say the torsion theory $(\mathcal{T}, \mathcal{F})$ is split if $\Ext(\mathcal{F}, \mathcal{T}) = 0$. In case of a split torsion theory we obtain, by tilting, a hereditary category \mathcal{H} derived equivalent to \mathcal{A} with an induced split torsion theory $(\mathcal{T}, \mathcal{F}[1])$. Furthermore, the category \mathcal{H} will only be hereditary if and only if $(\mathcal{F}, \mathcal{T})$ is a split torsion theory.

We now discuss all possible torsion theories when \mathcal{A} is equivalent to $\coh X$. Note that, since \mathcal{H} will be 1-Calabi-Yau and hence hereditary, all torsion theories on \mathcal{A} will be split.

Let $(\mathcal{F}, \mathcal{T})$ be a torsion theory on \mathcal{A}, and let \mathcal{E} be an indecomposable of \mathcal{T}. Then every indecomposable \mathcal{F} with slope strictly larger than $\mu(\mathcal{E})$ has to be in \mathcal{T} since $\Hom(\mathcal{E}, \mathcal{F}) \neq 0$. Furthermore, if \mathcal{E} is in \mathcal{T} and there is a path from \mathcal{E} to an indecomposable \mathcal{E}', then $\mathcal{E}' \in \ind \mathcal{T}$.

We may now give a characterization of all possible torsion theories.
Theorem 4.8. [5] Let X be an elliptic curve. Every category \mathcal{H} derived equivalent to $\mathcal{A} = \text{coh} X$ may be obtained by tilting with respect to a torsion theory. Moreover, all torsion theories on $\text{coh} X$ are split and may be described as follows. Let $\theta \in \mathbb{R} \cup \{\infty\}$. Denote by $\mathcal{A}_{\geq \theta}$ and $\mathcal{A}_{> \theta}$ the subcategory of \mathcal{A} generated by all indecomposables E with $\mu(E) > \theta$ and $\mu(E) \geq \theta$, respectively. All full subcategories \mathcal{T} of \mathcal{A} with $\mathcal{A}_{\geq \theta} \subseteq \mathcal{T} \subseteq \mathcal{A}_{> \theta} \subseteq \mathcal{A}$ give rise to a torsion theory $(\mathcal{F}, \mathcal{T})$, with $\text{ind} \mathcal{F} = \text{ind} \mathcal{A} \setminus \text{ind} \mathcal{T}$.

Proof. That these are all possible torsion theories, follows from the above discussion. That all categories \mathcal{H} may be obtained in this way, is shown in [5 Proposition 5.1]. Alternatively, it is straightforward to check these torsion theories generate all bounded t-structures on $D^b \mathcal{A}$ up to shifts.

Example 4.9. We give some examples of torsion theories. In here \mathcal{H} always stands for the category tilted with respect to the described torsion theory.

1. If $\theta \in \mathbb{Q} \cup \{\infty\}$ and $\mathcal{T} = \mathcal{A}_{\geq \theta}$, then the tilted category \mathcal{H} is equivalent to $\text{coh} X$. If $\mathcal{T} = \mathcal{A}_{> \theta}$, then \mathcal{H} is dual to \mathcal{A}.
2. If $\theta \in \mathbb{R} \setminus \mathbb{Q}$ and $\mathcal{T} = \mathcal{A}_{\geq \theta} = \mathcal{A}_{> \theta}$ then \mathcal{H} is equivalent to the category of holomorphic bundles on a noncommutative two-torus [9].

Theorem 4.8 classifies all categories derived equivalent to $\text{coh} X$. We further need to classify all categories derived equivalent to $\mathcal{B} = \text{Mod}^{id} k[[t]]$.

Let \mathcal{H} be such a category derived equivalent to \mathcal{B}. Then \mathcal{H} induces a t-structure $(D^{>0}, D^{\geq 0})$ on $D^b \mathcal{B}$. Since this t-structure is split, we may assume the heart $\mathcal{H} = D^{\leq 0} \cap D^{>0}$ contains the endo-simple object E of $\mathcal{B}[0]$ and, since \mathcal{B} has only one endo-simple object, this is the unique endo-simple object of \mathcal{H}, up to isomorphism.

Moreover, for every $X \in \mathcal{B}$ we have $\text{Hom}(X, B) \neq 0$ and $\text{Hom}(B, X) \neq 0$, thus we have $\mathcal{B} \subseteq D^{\leq 0} \cap D^{>0} = \mathcal{H}$.

Since \mathcal{B} has only one endo-simple object, E is the unique endo-simple object of \mathcal{H}, up to isomorphism. From this we infer $\mathcal{B} = \mathcal{H}$ as subcategories of $D^b \mathcal{B}$.

We conclude that every category derived equivalent to $\text{Mod}^{id} k[[t]]$ is in fact equivalent to $\text{Mod}^{id} k[[t]]$.

References

1. M. Artin and J. T. Stafford, Noncommutative graded domains with quadratic growth, Invent. Math. 122 (1995), no. 2, 231–276.
2. M. F. Atiyah, Vector bundles over an elliptic curve, Proc. London Math. Soc. (3) 7 (1957), 414–452.
3. A. A. Beilinson, J. Bernstein, and P. Deligne, Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981), Astérisque, vol. 100, Soc. Math. France, Paris, 1982, pp. 5–171.
4. Carl-Fredrik Berg and Adam-Christiaan van Roosmalen, Projective components in hereditary abelian categories satisfying Serre duality, in preparation.
5. Igor Burban and Bernd Kreussler, Derived categories of irreducible projective curves of arithmetic genus one, Compositio Math. 142 (2006), 1231–1262.
6. Dieter Happel, A characterization of hereditary categories with tilting object, Invent. Math. 144 (2001), no. 2, 381–398.
7. Dieter Happel, Idun Reiten, and Smale Sverre O., Tilting in abelian categories and quasitilted algebras, Mem. Amer. Math. Soc. 120 (1996), no. 575, viii+ 88.
8. Bernhard Keller and Idun Reiten, Acyclic Calabi-Yau categories, preprint (2006).
9. A. Polishchuk, Classification of holomorphic vector bundles on noncommutative two-tori, Doc. Math. 9 (2004), 163–181.
10. A. Polishchuk, Noncommutative proj and coherent algebras, Math. Res. Lett. 12 (2005), no. 1, 63–74.
11. A. Polishchuk and A. Schwarz, Categories of holomorphic vector bundles on noncommutative two-tori, Comm. Math. Phys. 236 (2003), no. 1, 135–159.
12. I. Reiten and M. Van den Bergh, Noetherian hereditary abelian categories satisfying Serre duality, J. Amer. Math. Soc. 15 (2002), no. 2, 295–366.
13. Claus Michael Ringel, Hereditary triangulated categories, Compos. Math., to appear.
14. Paul Seidel and Richard Thomas, Braid group actions on derived categories of coherent sheaves, Duke Math. J. 108 (2001), no. 1, 37–108.
15. Adam-Christiaan van Roosmalen, Classification of abelian hereditary directed categories satisfying Serre duality, Trans. Amer. Math. Soc. 360 (2008), no. 5, 2467–2503.
