Macroscopeal and Microscopeal Changes of Body Organs after *E. coli* O157:H7 Inoculation in Puppies

Mustafa Salah Hasan1*, Afaf Abdulrahman Yousif2, Mohammed J. Alwan2

1 Department of Internal and Preventive Vet. Medicine, College of Vet. Med., University of Fallujah, Iraq
2 Department of Internal and Preventive Vet. Medicine, College of Vet. Med., University of Baghdad, Iraq

*Corresponding author: dr.mustafa.salah@uofallujah.edu.iq.

Doi: https://doi.org/10.37394/AJVS.2020.13.1.5

This article is licensed under a CC BY (Creative Commons Attribution 4.0) http://creativecommons.org/licenses/by/4.0/.

Abstract

E. coli O157:H7 are an important pathogen of human and animals. The puppies were divided into two groups randomly, infected group: (15 puppies) were drenched once orally with 5 ml bacterial suspension of PBS containing \(5 \times 10^7\) CFU, and control group: (5 puppies) drenched 5 ml PBS, then specimens from internal organs including: kidney, intestine, liver, spleen, brain and lung after sacrificed puppies at (24hrs, 48hrs, 72hrs, 6 days, 12days, 24days, and 36days) from infected and control groups were used for histopathological examination. After inoculation, all animals were examined for presence or absence of signs. The shedding patterns of *E. coli* O157:H7 in feces were started after 24hrs. after inoculation and ceased at day 14th. The results of gross lesions of internal organs revealed no gross lesions in the intestine, kidney, lung and spleen at 24, 48 and 72 hours. While at days 6, 12, 24, 36 the intestine showed congestion and hemorrhage. Also the kidneys were swollen and showed congestion. The lung showed sever hemorrhages at day 12 post infection, also the spleen showed enlargement at day 24 post infection. The results of histopathological changes showed that *E. coli* O157:H7 infection caused thrombus development, necrosis, vescular degeneration of epithelial lining cells and congestion of blood vessels of kidney and intestine with superficial sloughing of epithelial mucosa of intestine at 24hrs and 48hrs. post-infection at 48hrs post-infection. Also the result revealed infiltration of inflammatory cells, vescular degeneration appeared in the examined organs at 72hrs. At 6-day post infection the infiltration of inflammatory cells became more prominent with severe congestion of blood vessels in examined organs. At day 12 post infection, there was mucus attachment in the epithelium of intestine, congestion of blood vessels, necrosis, with infiltration of the inflammatory cells in the examined organs. The most important event at day 24 post infection is the presence of regeneration in the intestine which became more prominent at day 36 post infection. This study aimed to highlighting the gross and histopathological effect of *E. coli* O157:H7 in different organs post inoculation in puppies. In conclusion, the shiga toxin can cause damage in many body organs like liver, spleen, kidney, lung, brain and intestine.

Keywords: *E. coli*, Histopathology, Puppies, Inflammatory cells, Organs.

التغيرات العيانية والمجهرية لأعضاء الجسم بعد الإصابة بالأشريشيا القولونية O157:H7

الخلاصة

الأشريشيا القولونية O157:H7 هي أحد المسببات المهمة للإنسان والحيوانات. تم تقسيم الجراء عشوائيا إلى مجموعتين: مجموعة إصابة (15 جرو) حيث جرعت مرة واحدة عن طريق الفم من محلول البكتيريا يحتوي على \(5 \times 10^7\) CFU، ومجموعة سيطرة (5 جرو) : اعطيت محلول الملحي الفسيولوجي 5 مل فقط . ثم لوحظت الاعلامات السريرية يوميا لفترة 36 أيام. وتم أخذ نماذج البراز مرتين أسبوعيا من مجموعة الإصابة والسيطرة للفحص الجرثومي. وأخيرا اختُنت عينات من الأعضاء الداخلية بما في ذلك: الكلى والأمعاء والأذن والجلد والدماغ والرئة بعد قتل الجراء في الأوقات التالية (24 ساعه، و 48 ساعه، و 72 ساعه، و 6 أيام، 12 يوما، 24 يوما، و 36 يوم) من المجموعات المصابة والسيطرة لفحص التغيرات النسيجية.
Introduction

Escherichia coli O157:H7 is a closely an etiology of diarrhea in dogs and puppies (1,2,3). dogs, bats and avian species (4,5,6). Transmission pathways of STEC were the direct contact between humans and pet animals as well as fecal and urine contamination (7,8). Diarrhoeal and nondiarrheal dogs of all ages may be a possible human-borne source of the STEC O157:H7 multidrug resistant (9).

E. coli O157: H7 sources was obtained and analyzed in feedlots and farms in the northwest of the United States, 65 dog samples and 33 cat samples for the presence of E. ColiO157: H7. Results were negative and 3,1% tested positive for all cat samples. The possible source of the bacterium for the dogs on these farms may be the cattle via the rivers (10). E. coli has been isolated from environment (11), while (12) diagnosed the hemolytic uremic syndrome in a dog with signs of acute onset of anorexia, vomiting and hemorrhagic diarrhea, the results show that these signs were typical to the signs caused by shiga toxin producing *E. coli* (STEC).

Shiga toxin (Stx) producing *E. coli* (STEC) is responsible for bloody diarrhea (hemorrhagic colitis) and the hemolytic uremic syndrome (HUS) (13). Hemolytic uremic syndrome caused by STEC is characterized by low platelet count, hemolytic anemia, and kidney failure (14,15). *Escherichia coli* O157:H7 were isolated from dogs fecal sample which has class 1 integrons and they conclude that the presence of class 1 integrons serving as reservoirs of antibiotic resistance genes (16). (17) isolated *E. coli* O157 with different H types from dogs, and their results showed That dogs can harbor pathogenic *E. Coli* O157 that do not correspond to Shiga toxin-producing strains and should not be underestimated. Pets can act as a reservoirs of STEC strains, a study of (18) was conducted to examine nine strains belonging to several serotypes which previously recovered from cats or dogs. The findings showed that animals could play a major role in human infection by STEC, which is likely to act as a vector for bovine strains in the human disease cycle and thus is essential to the health risk of owners and their families.

Shiga toxin C. E. Coli (STEC) O157: H7 was found in diarrhoeal and non-diarrhoeal faeces. E. Coli O157: H7 was found in 5 (16.1%) of 31, 17 (26.9%) of 63 non-diarrheal dogs, and the researcher concluded that most isolates were multi-drug resistant, also concluded that diarrhoeic and non-diarrhoeic dogs may serve as
potential sources of STEC O157:H7 transmissible to humans (9). It can also reported to cause diarrhea in dogs (19), Calves (20,21), sheep (22) and Buffalo (23).

The aim of this study was to explore the gross and pathological lesions in puppies at a different time post E. coli O157:H7 inoculation.

Materials and methods

1. Bacterial isolates: virulent E. coli O157:H7 isolates were obtained from University of Baghdad/ College of Veterinary Medicine /Department of internal and preventive medicine, these were isolated from diarrheic and non-diarrheic dogs found in Baghdad Province. These isolates confirmed in a previous study by (2) , which possess five virulence gene (rbfO157, flicH7, Stx1, Stx2 and eaeA), these genes confirmed by conventional and real time PCR by (1).

2. Preparation of E. coli O157:H7 infective dose:To prepare the bacterial suspension of E. coli O157:H7 , the bacteria inoculated in 10 ml of brain heart infusion broth at 37 °C for 18 hours, then centrifuged in cold centrifuge at 8000 rpm (round per minute) for 15 minutes, the sediment washed three times with phosphate buffer saline (PBS) (pH=7.2) and re-suspended with 5 ml of PBS, then this suspension drenched once orally, which containing 5×10^7 CFU according to (24). The infective dose of bacteria was made according to (25). The infective dose was experimented on 3 puppies for insurance of the dose before using in experimental puppies.

3. Experimental animals: Total number of (20) puppies, aged between (35-45) days, were adjusted two weeks before starting the pumping experiment in clean and disinfected cages, fecal crops for E. Coli O157: H7 was made to remove natural pathogens and carriers from inoculation. Ad libitum milk was fed, then gradually adapted to chicken meat, rice and clean water.. These dogs were divided randomly into two groups as follows:

a. Infected group: Fifteen puppies were used as infected group and drenched 5 ml suspension containing (5×10^7) CFU of E. coli O157:H7 according to (24).

b. Control group: Five puppies were drenched orally by plastic syringe with PBS dose 5 ml.

4. Examination of the puppies:- All puppies were examined for the following:-

a. Daily observation of clinical signs: The puppies were daily monitored for presence or absence of abnormal clinical signs.

b. Fecal examination: Fecal swabs were taken twice weekly from all animals for confirming the presence or absence of E. coli O157:H7.

c. Post mortem examination:

Two puppies were killed after 24hrs, 48hrs, 72hrs, 6 days, 12days, 24days, and 36 days. The post mortem includes:

1. Macroscopic examination were done for all animals.

2. Microscopical Examination: Specimens taken from intestine, both kidneys, spleen, liver, lungs as well as brain at 24hrs, 48hrs, 72hrs, 6 days, 12days, 24days and 36days from all animals for histopathology which was done according to (26).

Results and discussion

Before inoculation, all puppies showed a normal body temperature, heart rates and respiration rates. Post inoculation, the peak of infected group increased after 24, 48 and 72 hours and returned to normal at 4th and 5th days as compared with control group (Table 1) (Figure 1).

Post inoculation, the infected group showed an increase in heart rate after 24 , 48 , 72 hours in contrast to the control group which showed normal ranges within the five days Table(1) (Fig. 2). Also, Post inoculation the puppies showed an increase in the respiration rates, the infected group gave higher means of respiration rates during 24, 48 and 72 hours, while the
control group didn't show any change in respiration rates (Table 1; Figure 3). The puppies were monitored daily for development of other clinical signs such as diarrhea, dehydration and other signs. Before inoculation, all twenty puppies showed normal clinical signs, while post inoculation, after 24hrs all 15 puppies of infected group showed diarrhea (Figure 4) which persisted for 4 days post inoculation. Also puppies appeared dehydrated with varying degree (Figure 5), 6 puppies showed congested mucous membrane, also, 4 puppies showed bloody urine after 3 days post infection.

The presented study showed that infected animals exhibit different signs after 24hrs of E. coli O157:H7 inoculation. These results are in agreement with those recorded by (24) who showed that on the second day after E inoculation, both dogs experienced acute watery or mucoid diarrhoea. Coli O157:H7 with slightly bloody stool have also been observed reducing appetite, nausea and vomiting. Dogs also exhibit drastic loss of weight and mild to extreme exhaustion, fatigue and lethargy. In addition, 14 inoculated EPEC pups have been confirmed to have pasty-to-liquid diarrhea, without vomiting 72 hours after infecting (27). Also, (28) showed that beagle dogs had slight to severe diarrhea after inoculation with E. coli O157:H7. (29) concluded that both types of E. coli AEEC or ETEC could be considered a relevant cause of diarrhea in dogs and pups.

Shedding of E. coli O157:H7:

The fecal swabs were taken twice weekly from all animals. These swabs were cultured on EMB, MacConkey, Chrom and CT-SMAC agars, then the isolates were serotyped by latex agglutination test. The shedding patterns of E. coli O157:H7 in feces were started after 24hrs. From inoculation and ceased within two weeks (day 14th) (Table 3). The internal organs of puppies infected orally with E. coli O157:H7 which examined at these times (24hrs, 48hrs, 72hrs, 6, 12, 24 and 36 days post infection), the 2 puppies were killed in each time showed the following:- No gross lesions in the intestine, kidney, lung and spleen of the puppies at 24, 48 and 72 hours after inoculation.

While at days 6, 12, 24, 36, the intestine showed congestion and hemorrhage. Also the kidneys were swollen and showed varying levels of congestion. The lung showed sever hemorrhages at day 12 post infection, also the spleen showed enlargement at day 24 post infection (Figures 6, 7, 8, 9).

B. Histopathological lesions:

The results of histopathological changes showed that E. coli O157:H7 infection caused thrombus development, vacuolar degeneration of epithelial lining cells and congestion of blood vessels of kidney(Figure:10) and intestine with superficial sloughing of epithelial mucosa of intestine (Figure:11) at 24hrs post-infection. Severe necrosis, hemorrhage, inflammation were noticed with bacterial colonization in large intestine at 48hrs post-infection(Figure:12), while the kidney revealed large necrotic area with acute cellular degeneration (Figure:13). Also the result revealed infiltration of inflammatory cells, vacuolar degeneration appeared in the intestine and kidney at 72hrs (Figures:14, 15). At 6 day post infection the infiltration of inflammatory cells became more prominent with severe congestion of blood vessels in kidney, intestine, liver, brain, spleen (Figures:16, 17, 18, 19, 20, 21, 22). At day 12 post infection, there was mucus attachment in the epithelium of intestine, congestion of blood vessels, necrosis, with infiltration of the inflammatory cells in the examined organs (Figures:23, 24). The most important event at day 24 post infection is the presence of regeneration in the intestine which became more prominent at day 36 post infection in examined organs, while the other organs showed a mild regeneration especially at day 36 (figures: 25, 26, 27). This study showed different histopathological changes in different organs at different times (figures: 24hrs, 48hrs, 72hrs, 6days, 12days, 24days and 36days).
The inflammatory reaction in the intestine in the current study may indicate that this strain can survive in gastrointestinal environment, attachment, colonization of intestinal epithelial cells and stimulate the phagocytic cells to produce pro inflammatory cytokines that were responsible for inflammatory reaction, this investigation is agreed with (32) who explained that STEC can survive in GIT environment and they colonized in the intestinal tissues.

The current study showed moderate pathological changes in the kidney during 24hrs post infection, this result may indicate that the local isolated strain of E. coli O157:H7 can survive and colonize the intestine and disseminate to main target organs especially the kidney post secret the toxins during these period through overcome the cellular and humoral innate immune system. This observation is in agreement with (33) who found that E. coli produced StcE that play an important role in regulating classical complement pathway via destroying serpinC1 esterase which are encoded on PO17 plasmid.

The result of this study revealed neutrophils infiltration in the kidney, this result may indicate that Stxs may reach the kidney from the intestine and stimulate production of IL 8 that attracted the neutrophils to injury site, this evidence is agreed with (34) who found that the inflammatory reaction induced impair function of intestinal barrier that facilitated the cross of Stxs from intestinal lumen to sub mucosa and systemically disseminated.

The pathological changes increased in the intensity with progressive time, at 48hr post infection, it was reported severe lesions in the intestine characterized by the presence of bacterial colonies in clear round spaces in the epithelial layer of the large intestine with focal erosion of epithelial cells and inflammatory cells infiltration in the lamina properia, this result may indicate development of attaching and effacing lesions which are the main intestinal lesions inducing by E. coli O157:H7 particularly intimin eaeA positive strain, this observation is in consistency with result of PCR assay in the current study, also the above idea agrees with (35) who demonstrated that eae positive E. coli strain can form AE lesions on epithelial cells of the intestine. The eae positive STEC O157:H7 induced AE lesion may be due to their possessing locus of enterocyte effacement (LEE) which encodes a type III secretion apparatu, outer membrane protein called intimin (eae) (E. coli attaching and effacing protein) and translocated intimin receptor(TIR) (36), in addition to effector protein, this protein transported by secretion apparatus, a syringe molecule extended from inside the bacterial cells through inner and outer membrane to the cytoplasm of the host cells (37). this protein(TIR) acts as a receptor for intimin. TIR and other protein can cause reorganization of cytoskeletal of intestinal epithelial cells lead to accumulated these cytoskeletal protein under the bacteria which were intracellular proliferation and produced Stxs in the AE lesion (38 ; 39). This lesion can protect the bacteria from phagocytic cells and remove the bacteria by diarrhea (40).

The present finding demonstrated that the severe lesions in examined organs were recorded during six to 12 days post infection, the severity of the lesions induced by E. coli O157:H7 was dependent on virulence factors of these pathogens particularly Stxs, however, the severity of the lesions in intestine coincides with marked inflammatory reaction in the intestine, this result may support an idea said that, the inflammatory reaction play roles in exaggerated cytotoxic effects of shiga toxin produced by these bacteria, this idea agrees with (41) reported that Stxs can promote production of IL8 that facilitated pavemement neutrophils to endothelial cells.

At this time, the severe lesions in the intestine are coincident with severe diarrhea expressed by infected animals in the present study, this result is
in agreement with that of (42) who revealed that \textit{E. coli} O157:H7 can induce severe diarrhea and renal failure in infected host (human and animals).

Overproduction of mucin in the intestine at 12 days post infection, may be indicate a defense mechanism against bacterial infection. This result is compatible with (43;44) who showed that mucus secretion is considered one of intestinal barrier against pathogen infection, in addition to acetate in which inhibited transmission of shiga toxin to the tissue from the lumen of infected intestine. Normally mucin can prevent imbalance between intestinal epithelial cells and \textit{E. coli} and other commensal bacteria (45;46).

This results showed a severe hemorrhagic inflammation in the lung. These result may indicate that in the dogs the pulmonary vascular endothelial cells are rich with Stxs receptors (47). (48) mentioned that there are two receptors for shiga toxin include neutral glycolipid globotriosylceramide GB3 and globotetraosylceramide Gb4. (49) demonstrated Stxs receptors in the certain cells including enterocytes, renal, brain and lung endothelial cells as well as platelets and RBCs. However, hemorrhagic pneumonia in the dog experimentally infected with \textit{E. coli} O157:H7 was considered the first observation in this study.

The intestinal lesions in the current study are in agreement with clinical signs that revealed certain infected experimental dogs, showed bloody or no bloody diarrhea, this observation is in consistency with (50) who recorded that the lesion of AE was not frequently associated with bloody diarrhea and HUS in humans and they considered EHEC eae positive strain are a risk for HUS, also these results are in agreement with observation of (51) who demonstrated that, \textit{E. coli} serotype, O157:H7, a non invasive pathogen, can either induce sporadic or outbreaks of diarrhea associated with hemorrhagic colitis and HUS in human. Stxs can bind to vascular endothelial cells of GIT causing destroying these cells (52).

Thrombus formation in the blood vessels of kidney may be due to bacterial LPS and Stxs that may activate platelets and cause damage endothelial cells with inducing deposition of fibrin networks as discussed by (49).

At 24 days post infection, the result investigated that the body immune system started to eradicate the bacterial infection, in this period, low intensity of pathological lesions were recorded, and regeneration processes were initiated in the intestine, this may be due to activate innate immune cells, this idea is in consistency with (53) who recorded that activated innate immunity was considered one important defense mechanism against bacterial infection.

This eradication mechanism was discussed by many researchers like (54) who found that immune responses against bacterial colonization such as \textit{E. coli} started through interaction between bacterial antigen with immune receptors which expressed by intestinal epithelium such as TLRs and activating these receptors leads to recruitment of neutrophils and other phagocytic cells to site of infection and eliminate the bacterial infection, in addition to adapt immune reaction that provided other protective mechanism against invading pathogens.

Conclusion

\textit{E. coli} O157:H7 can causing different signs such as diarrhea, dehydration and other related signs. The shiga toxin can cause damage in many body organs like liver, spleen, kidney, lung, brain and intestine, also, the histopathological examination showed that the regeneration of tissue especially intestine started after 24 days post infection, while the other organs showed regeneration at 36 days post infection.
Table (1). Body temperature, heart rates and respiration rates in the control and infected groups at different periods

Time	Temperature(°C)	Heart rate/M	Respiration/M			
	Control group	Infected group	Control group	Infected group	Control group	Infected group
Zero day	Range (Mean)	Range (Mean)	Range (Mean)	Range (Mean)	Range (Mean)	Range (Mean)
24 hrs.	Range (Mean)	Range (Mean)	Range (Mean)	Range (Mean)	Range (Mean)	Range (Mean)
48 hrs.	Range (Mean)	Range (Mean)	Range (Mean)	Range (Mean)	Range (Mean)	Range (Mean)
72 hrs.	Range (Mean)	Range (Mean)	Range (Mean)	Range (Mean)	Range (Mean)	Range (Mean)
4 days	Range (Mean)	Range (Mean)	Range (Mean)	Range (Mean)	Range (Mean)	Range (Mean)
5 days	Range (Mean)	Range (Mean)	Range (Mean)	Range (Mean)	Range (Mean)	Range (Mean)

Figure (1): Body temperature in the control and infected groups.

Figure (2): Heart rates in the control and infected groups.

Figure (3): Respiration rates in the control and infected groups.
Table 2. Other clinical signs of infected group after inoculation

No. of puppies	Diarrhea	Dehydration	Congested mucous membrane	Bloody urine			
	With blood	Without blood	Less than 7%	7%	10%	More than 10%	
1	✔	✔	✔	✔	✔	✔	
2	✔	✔	✔	✔	✔	✔	
3	✔	✔	✔	✔	✔	✔	
4	✔	✔	✔	✔	✔	✔	
5	✔	✔	✔	✔	✔	✔	
6	✔	✔	✔	✔	✔	✔	
7	✔	✔	✔	✔	✔	✔	
8	✔	✔	✔	✔	✔	✔	
9	✔	✔	✔	✔	✔	✔	
10	✔	✔	✔	✔	✔	✔	
11	✔	✔	✔	✔	✔	✔	
12	✔	✔	✔	✔	✔	✔	
13	✔	✔	✔	✔	✔	✔	
14	✔	✔	✔	✔	✔	✔	
15	✔	✔	✔	✔	✔	✔	

Fig. 4 puppy with diarrhea (2 days after inoculation)
Fig. 5 puppy with 10% degree of dehydration (Fourteen days after inoculation)

Table (3) Shedding of *E. coli* O157:H7 at different days of experiment

Times of fecal swab	Positive result	Negative result
Zero day	✔	
24 hrs.	✔	
day 7th	✔	
day 10th	✔	
day 14th		✔
day 17th		✔
day 21st		✔
day 24th		✔
day 28th		✔
day 31st		✔
day 35th		✔
Figure (6) intestine with streaks of hemorrhage after 6 days post infection

Figure (7) kidney with capillary congestion after 6 days post infection

Figure (8) lungs with severe hemorrhages after 12 days post infection

Figure (9) spleen showed enlargement after 24 days post infection

Figure: 10. Histological section in the kidney of animal at 24hr post infection shows focal necrosis and vacuolar degeneration of epithelial cells of renal tubules with neutrophils in the blood vessels (H&E stain 400X)

Figure: 11. Histological section in the large intestine of animal at 24hrs post infection showed inflammatory cells particularly neutrophils in lumen and around of mucosal glands (H&E stain 400X)

Figure: 12. Histopathological section in the large intestine of animal at 48hrs post infection shows bacterial colonies in clear round spaces in the epithelial layer with vacuolation of epithelial cells and the edema in LP (H&E stain 400X)

Figure: 13. Histological section in the kidney of animal at 48hrs post infection shows large necrotic area with acute cellular degeneration in epithelial cells of renal tubules (H&E stain 400X)

Figure: 14. Histological section in the large intestine of animal at 72hrs post infection shows neutrophils in the lumen of hyperplasitc epithelial cells (H&E stain 400X)

Figure: 15. Histopathological section in the kidney of animal at 72hrs post infection shows marked vacuolation, desquamation epithelial lining cells of renal tubules (H&E stain 400X)
Figure 16. Histopathological section in large intestine of animal at day six post infection shows the lumen of dilated mucosal gland filled with neutrophils and cellular debris with edema (H&E stain 400X)

Figure 17. Histological section in the large intestine of animal at six days post infection shows atrophy of vili characterized by rounded, fused together with high cellular of wide LP, in addition to bacterial colonies in clear round space in epithelial cells (H&E stain 400X)

Figure 18. Histological section in these kidney of animal at six days post infection shows vacuolar degeneration and sloughing of epithelial cells of renal tubules (H&E stain 400X)

Figure 19. Histological section in the lung of animal at six days post infection shows accumulation of RBCs with neutrophils in the lumen of the bronchiole (H&E stain 400X)

Figure 20. Section in the brain of infected animal at six days post infection shows congested blood vessels in pia matter (H&E stain 400X)

Figure 21. Section in the liver of infected animal at six days post infection shows pericentral necrosis of hepatocytes and congested central vein (H&E stain 400X)
Figure 22. Histological section in the large intestine of animal at 12 days post infection shows mucous attachment to epithelial cells with PMN cells in congested blood vessels (H&E stain 400X).

Figure 23. Section in the brain of infected animal at 12 days post infection shows proliferation and enlargement of astrocytes, proliferation of oligodendrocytes and microglial cells (H&E stain 400X).

Figure 24. Histological section in the large intestine of animal at 24 days post infection shows inflammatory cells particularly neutrophils and mononuclear cells and congested blood vessels in LP with start regeneration of epithelial cells (H&E stain 400X).

Figure 25. Histological section in the large intestine of animal at thirty six days post infection shows regeneration of epithelial cells with moderate hypercellularity of LP (H&E stain 400X).

Figure 26. Histological section in the kidney of animal at thirty six days post infection shows no clear lesions (H&E stain 400X).

Figure 27. Section in the lung of infected animal at thirty six days post infection shows marked mononuclear cells infiltration in the interstitial tissue leading to narrow of alveolar space (H&E stain 400X).
References

1. Yousif AA, Hasan MS, Alwan MJ. Clinical and molecular study of E. coli O157: H7 isolated from Diarrheic and non-diarrheic dogs. Mirror of Research in Veterinary Sciences and Animals. 2016;5(2):1-0.

2. Hasan MS, Yousif AA, Alwan MJ. Detection of virulent genes in E. coli O157: H7 isolated from puppies and adult dogs by polymerase chain reaction. Res. J. Vet. Pract. 2016;4(1):1-6.

3. Yousif A, Hasan M, Najim T, Hussein M. Detection of virulence and antimicrobial susceptibility testing of Escherichia coli O157:H7 isolated from pets and stray dogs. Journal of Entomology and Zoology Studies. 2017; 5(4):573-578.

4. Ojo OE, Ajuwape AT, Otesile EB, Owode AA. Detection of shiga toxin-producing Escherichia coli in poultry birds in Abeokuta, Nigeria. Tropical Veterinarian. 2010a;28(4):1-0.

5. Ojo OE, Ajuwape AT, Otesile EB, Owode AA, Oyekunle MA, Adetosoye AI. Potentially zoonotic shiga toxin-producing Escherichia coli serogroups in the faeces and meat of food-producing animals in Ibadan, Nigeria. International journal of food microbiology. 2010b 15;142(1-2):214-21.

6. Italia JT, Rovira HG, Masangkay JS, Yoshikawa Y, Perez MT, Reyes AW, Baticados WN. Conventional isolation and polymerase chain reaction assay for detection of Escherichia coli O157: H7 from intestines of philippine bats. Veterinarski arhiv. 2012 Apr 27;82(3):283-94.

7. Johnson JR, Stell AL, Delavari P. Canine feces as a reservoir of extraintestinal pathogenic Escherichia coli. Infection and immunity. 2001 Mar 1;69(3):1306-14.

8. Bentancor A, Rumi MV, Gentilini MV, Sardo Y, Irino K, Agostini A, Cataldi A. Shiga toxin-producing and attaching and effacing Escherichia coli in cats and dogs in a high hemolytic uremic syndrome incidence region in Argentina. FEMS microbiology letters. 2007 Feb 1;267(2):251-6.

9. Ojo O, Bello A, Amosun E, Ajadi R. Multidrug resistant verocytotoxin-producing Escherichia coli O157: H7 in the faeces of diarrhoeic and non-diarrhoeic dogs in Abeokuta, Nigeria. Veterinarski. arhiv. 2014 Feb 13;84(1):63-73.

10. Hancock DD, Besser TE, Rice DH, Ebel ED, Herriott DE, Carpenter LV. Multiple sources of Escherichia coli O157 in feedlots and dairy farms in the northwestern USA. Preventive veterinary medicine. 1998 Apr 16;35(1):11-9.

11. AlMahdawy MMA, Al-Karboly MYA. A Study of sensitive S. aureus, E.coli and Ps. aeruginosa for chlorhexidin and sodium hypochlorite in Ramadi Teaching Hospital. Al-Anbar Journal of Veterinary Sciences, 2015; 8(2):1-19.

12. Dell'Orco M, Bertazzolo W, Pagliaro L, Roccabianca P, Comazzi S. Hemolytic-uremic syndrome in a dog. Veterinary clinical pathology. 2005 Sep;34(3):264-9.

13. Ibarra C, Amaral MM, Palermo MS. Advances in pathogenesis and therapy of hemolytic uremic syndrome caused by shiga toxin-2. IUBMB life. 2013 Oct 1;65(10):827-35.

14. Koohakzadeh A, Badouei MA, Mazandaran E, Madadgar O. Survey on O157: H7 enterohemorrhagic Escherichia coli (EHEC) in cattle in Golestan province, Iran. Iranian journal of microbiology. 2014 Aug;6(4):276.

15. Mahon CR, Lehman DC, Manuselis Jr G. Textbook of diagnostic microbiology-E-Book. Elsevier Health Sciences; 2015: 445.

16. Yang H, Byelashov OA, Geornaras I, Goodridge LD, Nightingale KK, Belk...
KE, Smith GC, Sofos JN. Characterization and transferability of class 1 integrons in commensal bacteria isolated from farm and nonfarm environments. Foodborne pathogens and disease. 2010 Dec 1;7(12):1441-51.

17. Bentancor A, Vilte DA, Rumi MV, Carbonari CC, Chinen I, Larzabal M, Cataldi A, Mercado EC. Characterization of non-Shiga toxin-producing Escherichia coli O157 strains isolated from dogs. Revista Argentina de microbiologia. 2010;42(1):46-8.

18. Bentancor A, Rumi MV, Carbonari C, Gerhardt E, Larzábal M, Vilte DA, Pistone-Creydt V, Chinen I, Ibarra C, Cataldi A, Mercado EC. Profile of Shiga toxin-producing Escherichia coli strains isolated from dogs and cats and genetic relationships with isolates from cattle, meat and humans. Veterinary microbiology. 2012 May 4;156(3-4):336-42.

19. AL-Kubaisi SM, Saed OA, Suleiman JM, Hasan MS, Owain MS, Jarad AS. Isolation and Identification of Facultative Anaerobic Bacteria from Feces of Pet Dogs. Medico Legal Update. 2020 Apr 9;20(1):783-7.

20. Suleiman JM, Saed OA, AL-Kubaisi SM, Hasan MS, Owain MS, Hussein MA, Jarad AS. Molecular characterization of Eae and Stxs genes for E. coli O157: H7 isolates from Calves. Medico Legal Update. 2020 Apr 9;20(1):788-91.

21. Hasan MS, Hussein MA, Yousif AA. Confirmatory Detection of Escherichia coli O157: H7 in Diarrhoeic and Non-Diarrhoeic Calves by using real time PCR with Studying the Antimicrobial Susceptibility of these bacteria. Research Journal of Pharmacy and Technology. 2019;12(1):245-50.

22. Jarad AS, AL-Kubaisi SM, Abdulkhalij RJ, Hasan MS. Bacteriological and Pathological Study on Kidneys of Slaughtered Sheep in Fallujah City. Indian Journal of Forensic Medicine & Toxicology. 2020 Jan;14(1):665.

23. Al-Mafrai AM. Detection of E. coli K99 and Rota virus antigens in diarrheic and healthy buffalo of Babil Province, Iraq. Al-Anbar Journal of Veterinary Sciences. 2014;7(1):17-21.

24. Wang JY, Wang SS, Yin PZ. Haemolytic–uraemic syndrome caused by a non-O157: H7 Escherichia coli strain in experimentally inoculated dogs. Journal of medical microbiology. 2006 Jan 1;55(1):23-9.

25. Miles AA, Misra SS, Irwin JO. The estimation of the bactericidal power of the blood. Epidemiology & Infection. 1938 Nov;38(6):732-49.

26. Luna LG. Manual of histologic staining methods of the Armed Forces Institute of Pathology. Blakistion Division, 3rd ed. McGraw-Hill Book Co, New York, NY. 1968: p 38–39.

27. Gouveia EM, Silva IS, Nakazato G, Araujo FR, Chang MR. Experimental infection with enteropathogenic Escherichia coli identified by PCR using enteric-coated capsules in boxer pups. Acta cirurgica brasileira. 2011 Apr;26(2):144-8.

28. Kuribayashi T, Seita T, Matsumoto M, Furuhata K, Tagata K, Yamamoto S. Bovine colostral antibody against verotoxin 2 derived from Escherichia coli O157: H7: resistance to proteases and effects in beagle dogs. Comparative medicine. 2009 Apr 15;59(2):163-7.

29. Drolet R, Fairbrother JM, Harel J, Helie P. Attaching and effacing and enterotoxigenic Escherichia coli associated with enteric colibacillosis in the dog. Canadian Journal of Veterinary Research. 1994 Apr;58(2):87.

30. Jonsson ME, Eriksson E, Boqvist S, Urdahl AM, Aspán A. Experimental infection in calves with a specific subtype of verocytotoxin-producing Escherichia coli O157: H7 of bovine
origin. Acta Veterinaria Scandinavica. 2009 Dec 1;51(1):43.

31. Allen KJ, Rogan D, Finlay BB, Potter AA, Asper DJ. Vaccination with type III secreted proteins leads to decreased shedding in calves after experimental infection with Escherichia coli O157. Canadian journal of veterinary research. 2011 Apr 1;75(2):98-105.

32. Steele M, Ziebell K, Zhang Y, Benson A, Konczy P, Johnson R, Gannon V. Identification of Escherichia coli O157: H7 genomic regions conserved in strains with a genotype associated with human infection. Appl. Environ. Microbiol. 2007 Jan 1;73(1):22-31.

33. Lathem WW, Grys TE, Witowski SE, Torres AG, Kaper JB, Tarr PI, Welch RA. StcE, a metalloprotease secreted by Escherichia coli O157: H7, specifically cleaves C1 esterase inhibitor. Molecular microbiology. 2002 Jul;45(2):277-88.

34. Hurley BP, Thorpe CM, Acheson DW. Shiga toxin translocation across intestinal epithelial cells is enhanced by neutrophil transmigration. Infection and immunity. 2001 Oct 1;69(10):6148-55.

35. Kaper JB, Nataro JP, Mobley HL. Pathogenic escherichia coli. Nature reviews microbiology. 2004 Feb;2(2):123-40.

36. Spears KJ, Roe AJ, Gally DL. A comparison of enteropathogenic and enterohaemorrhagic Escherichia coli pathogenesis. FEMS microbiology letters. 2006 Feb 1;255(2):187-202.

37. Barba J, Bustamante VH, Flores-Valdez MA, Deng W, Finlay BB, Puente JL. A positive regulatory loop controls expression of the locus of enterocyte effacement-encoded regulators Ler and GrlA. Journal of bacteriology. 2005 Dec 1;187(23):7918-30.

38. Frankel G, Phillips AD. Attaching effacing Escherichia coli and paradigms of Tir-triggered actin polymerization: getting off the pedestal. Cellular microbiology. 2008 Mar;10(3):549-56.

39. Müller D, Benz I, Liebchen A, Gallitz I, Karch H, Schmidt MA. Comparative analysis of the locus of enterocyte effacement and its flanking regions. Infection and immunity. 2009 Aug 1;77(8):3501-13.

40. DeVinney R, Stein M, Reinscheid D, Abe A, Ruschkowski S, Finlay BB. Enterohemorrhagic Escherichia coli O157: H7 produces Tir, which is translocated to the host cell membrane but is not tyrosine phosphorylated. Infection and immunity. 1999 May 1;67(5):2389-98.

41. Guessous F, Marcinkiewicz M, Polanowska-Grabowska R, Kongkhun S, Heatherly D, Obrig T, Gear AR. Shiga toxin 2 and lipopolysaccharide induce human microvascular endothelial cells to release chemokines and factors that stimulate platelet function. Infection and immunity. 2005 Dec 1;73(12):8306-16.

42. Ibrahim OO. Food borne pathogen Escherichia coli O157: H7 history, sources of transmission, symptoms, detection and prevention. EC Microbiol. 2015;21:2.

43. Fukuda S, Toh H, Hase K, Oshima K, Nakanishi Y, Yoshimura K, Tobe T, Clarke JM, Topping DL, Suzuki T, Taylor TD. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature. 2011 Jan;469(7331):543-7.

44. Fukuda S, Toh H, Taylor TD, Ohno H, Hattori M. Acetate-producing bifidobacteria protect the host from enteropathogenic infection via carbohydrate transporters. Gut microbes. 2012 Sep 20;3(5):449-54.

45. Bergstrom KS, Kissoon-Singh V, Gibson DL, Ma C, Montero M, Sham HP, Ryz N, Huang T, Velcich A, Finlay BB, Chadee K. Muc2 protects against lethal infectious colitis by disassociating pathogenic and commensal bacteria from the colonic mucosa. PLoS pathogens. 2010 May;6(5).
46. Johansson ME, Hansson GC. Preservation of mucus in histological sections, immunostaining of mucins in fixed tissue, and localization of bacteria with FISH. InMucins 2012 (pp. 229-235). Humana Press.

47. Boyd B, Tyrrell G, Maloney M, Gyles C, Brunton J, Lingwood C. Alteration of the glycolipid binding specificity of the pig edema toxin from globotetraosyl to globotriaosyl ceramide alters in vivo tissue targetting and results in a verotoxin 1-like disease in pigs. The Journal of experimental medicine. 1993 Jun 1;177(6):1745-53.

48. Betz J, Bielaszewska M, Thies A, Humpf HU, Dreisewerd K, Karch H, Kim KS, Friedrich AW, Müthing J. Shiga toxin glycosphingolipid receptors in microvascular and macrovascular endothelial cells: differential association with membrane lipid raft microdomains. Journal of lipid research. 2011 Apr 1;52(4):618-34.

49. Meyers KE, Kaplan BS. Many cell types are Shiga toxin targets. Kidney international. 2000 Jun 1;57(6):2650-1.

50. Ethelberg S, Olsen KE, Scheutz F, Jensen C, Schiellerup P, Engberg J, Petersen AM, Olesen B, Gerner-Smidt P, Mølbak K. Virulence factors for hemolytic uremic syndrome, Denmark. Emerging infectious diseases. 2004 May;10(5):842.

51. DuPont HL, Ericsson CD, Farthing MJ, Gorbach S, Pickering LK, Rombo L, Steffen R, Weinke T. Expert review of the evidence base for self-therapy of travelers’ diarrhea. Journal of travel medicine. 2009 May 1;16(3):161-71.

52. Naylor SW, Low JC, Besser TE, Mahajan A, Gunn GJ, Pearce MC, McKendrick JJ, Smith DG, Gally DL. Lymphoid follicle-dense mucosa at the terminal rectum is the principal site of colonization of enterohemorrhagic Escherichia coli O157: H7 in the bovine host. Infection and immunity. 2003 Mar 1;71(3):1505-12.

53. Jones RM, Neish AS. Recognition of bacterial pathogens and mucosal immunity. Cellular microbiology. 2011 May;13(5):670-6.

54. Kamada N, Seo SU, Chen GY, Núñez G. Role of the gut microbiota in immunity and inflammatory disease. Nature Reviews Immunology. 2013 May;13(5):321-35.