Pathologies in Lovelock AdS black branes and AdS/CFT

Tomohiro Takahashi and Jiro Soda

Department of Physics, Kyoto University, Kyoto 606-8502, Japan

E-mail: takahashi@tap.scphys.kyoto-u.ac.jp and jiro@tap.scphys.kyoto-u.ac.jp

Received 21 September 2011, in final form 2 November 2011
Published 17 January 2012
Online at stacks.iop.org/CQG/29/035008

Abstract

We study pathologies in AdS black branes in Lovelock theory. More precisely, we examine the conditions that AdS black branes have a naked singularity, ghost instability and dynamical instability. From the point of view of the AdS/CFT correspondence, pathologies in AdS black branes indicate pathologies in the corresponding CFT. Hence, in Lovelock theory, we need to be careful when we apply AdS/CFT to various phenomena such as the shear viscosity to entropy ratio in strongly coupled quantum field theory.

PACS number: 04.50.–h

1. Introduction

It is well known that AdS black branes play a central role in the application of the AdS/CFT correspondence to various phenomena such as condensed matter physics and fluid dynamics [1–3]. Remarkably, the AdS/CFT correspondence holds in any dimensions. In higher dimensions, however, a natural theory of gravity is not general relativity but Lovelock theory [4, 5]. Thus, it is natural to consider the AdS/CFT correspondence in the context of Lovelock theory.

The AdS/CFT correspondence in Lovelock theory has already been discussed in the context of the shear viscosity to entropy ratio. It is conjectured that the shear viscosity to entropy ratio \(\eta/s \) is larger than \(1/4\pi \), which is called the Kovtun–Son–Starinets (KSS) bound [6]. Recently, in the case that the dual gravitational theory is Lovelock theory, this ratio has been calculated as

\[
\frac{\eta}{s} = \frac{1 - 2\alpha_2}{4\pi},
\]

where \(\alpha_2 \) is an appropriately normalized second-order Lovelock coefficient [7]. It seems that the KSS bound is violated for a positive \(\alpha_2 \). However, when we take into account pathologies in AdS black branes, \(\alpha_2 \) must be somewhat restricted.

Indeed, there are several works on the causality violation of AdS black branes in conjunction with the KSS bound [8–10]. Clearly, it is important to clarify pathologies in AdS black branes.

In this paper, we consider pathologies in AdS black brane solutions in Lovelock theory. First, we explain our method using analytically tractable cases in five and six dimensions.
other dimensions, we have to resort to numerical analysis. As typical examples, we numerically study pathologies in AdS black branes in 10 and 11 dimensions. In recent work, this issue has been investigated in [11] based on the master equations derived by us [12]. They used near horizon analysis in the most part of their work and alluded to the importance of the bulk geometry based on numerical results. However, they have never given general conditions for the occurrence of pathologies. In this paper, we explicitly present the conditions for the occurrence of pathologies. Using the conditions, we will give a detailed analysis of pathologies in Lovelock AdS black branes and discuss its implications in AdS/CFT.

The organization of this paper is as follows. In section 2, we review Lovelock theory and explain a graphical method for constructing black brane solutions. In section 3, we clarify the conditions for avoiding a naked singularity, ghost instability and dynamical instability. In section 4, we analytically study pathologies in AdS black branes in five and six dimensions. In section 5, we numerically examine pathologies in AdS black branes in 10 and 11 dimensions. In section 6, based on the analytical and numerical results, we discuss implications of our findings in the AdS/CFT correspondence. Section 7 is devoted to conclusion.

2. Lovelock AdS black branes

In this section, we review Lovelock theory and introduce a graphical method for constructing AdS black brane solutions.

The most general divergence free symmetric tensor constructed out of a metric and its first and second derivatives was obtained by Lovelock [4]. The corresponding Lagrangian can be constructed from m-th order Lovelock terms

$$L_m = \frac{1}{2m} g^{\lambda_1 \sigma_1 \cdots \lambda_m \sigma_m} R_{\lambda_1 \sigma_1 \cdots \lambda_m \sigma_m} R_{\mu_1 \sigma_1 \cdots \mu_m \sigma_m} \cdots$$

(1)

where $R_{\lambda \sigma \rho \kappa}$ is the Riemann tensor in D dimensions and $\delta_{\mu_1 \mu_2 \cdots \mu_p}$ is the generalized totally antisymmetric Kronecker delta defined by

$$\delta_{\mu_1 \mu_2 \cdots \mu_p} = \det \left(\begin{array}{cccc}
\tilde{g}^{\mu_1 \nu_1} & \tilde{g}^{\mu_1 \nu_2} & \cdots & \tilde{g}^{\mu_1 \nu_p} \\
\tilde{g}^{\mu_2 \nu_1} & \tilde{g}^{\mu_2 \nu_2} & \cdots & \tilde{g}^{\mu_2 \nu_p} \\
\cdots & \cdots & \cdots & \cdots \\
\tilde{g}^{\mu_p \nu_1} & \tilde{g}^{\mu_p \nu_2} & \cdots & \tilde{g}^{\mu_p \nu_p}
\end{array} \right).$$

By construction, the Lovelock terms vanish for $2m > D$. It is also known that the Lovelock term with $2m = D$ is a topological term. Thus, Lovelock Lagrangian in D dimensions is defined by

$$L = \sum_{m=0}^{k} c_m L_m,$$

(2)

where we defined the maximum order $k \equiv [(D - 1)/2]$ and c_m are arbitrary constants. Here, $[z]$ represents a maximum integer satisfying $[z] \leq z$. Taking variation of the Lagrangian with respect to the metric, we can derive Lovelock equations

$$0 = \sum_{m=0}^{k} c_m g^{\lambda_1 \sigma_1 \cdots \lambda_m \sigma_m} R_{\lambda_1 \sigma_1 \cdots \lambda_m \sigma_m} R_{\mu_1 \sigma_1 \cdots \mu_m \sigma_m} \cdots$$

(3)

Hereafter, we set $c_0 = (D - 1)(D - 2)\lambda$, $c_1 = 1$ and $c_m = \alpha_m \left\{ m! \prod_{p=1}^{m-2} (D - 2 - p) \right\} (m \geq 2)$ for convenience. Note that the coefficients α_m are dimensionless.
It is well known that there exist static exact solutions of the Lovelock equations (3) [13–15]. Let us consider the following metric:

\[ds^2 = r^2 \psi(r) \, dt^2 + \frac{\, dr^2}{-r^2 \psi(r)} + r^2 \delta_{ij} \, dx^i \, dx^j. \]

(4)

We assume that \(\psi(r) \) is negative outside the horizon. Substituting this metric ansatz into equation (3), we can obtain an algebraic equation for \(\psi(r) \):

\[W[\psi] \equiv \sum_{m=2}^{k} \left(\frac{\alpha_m}{m} \psi^m \right) + \psi + 1 = \frac{\mu}{r^{D-1}}, \]

(5)

where \(\mu \) is a constant of integration which is related to the ADM mass and we assume that it is positive. Note that we fixed the scale by setting \(\lambda = 1 \) in equation (5).

Now, we explain how to construct solutions using a graphical method [16, 17]. Apparently, \(W \) must be positive. In general, there are many branches. In figure 1, we depicted \(y = W[\psi] \) and \(y = \mu/r^{D-1} \), with \(r \) being fixed in the \(\psi-y \) plane. The intersection of the curve and the line determines \(\psi \), once \(r \) is given. By varying \(r \), we obtain the solution of equation (5). Taking a look at the metric (4), we see that the horizon corresponds to \(\psi = 0 \). Hence, a black brane corresponds to the branch containing \(\psi = 0 \). Next, consider the asymptotic infinity \(r \to \infty \) or \(y \to \mu/r^{D-1} \to 0 \), the function \(\psi(r) \) in figure 1 approaches \(\psi_a \), which is the largest negative root of \(W[\psi] = 0 \). Thus, the curve between \(\psi = \psi_a \) and \(\psi = 0 \) defines a black brane solution.

3. Pathologies

In this section, we list the pathologies in Lovelock AdS black branes. In particular, we reveal the conditions for the occurrence of pathologies.

3.1. Naked singularity

In the graphical method, it is easy to find singularities. Let us recall the Kretschmann invariant which is calculated as

\[R_{\mu\nu\rho\lambda} R^{\mu\nu\rho\lambda} = (\partial_{\alpha}(r^2 \psi))^2 + 2(D-2) \frac{(\partial_{\alpha}(r^2 \psi))^2}{r^2} + 2(D-2)(D-3) \psi^2. \]

(6)
If this invariant diverges, there exist singularities. This occurs at $r = 0$ and the point where $\partial_r \psi$ diverges in fact. $\partial_r \psi$ diverges when $W[\psi]$ becomes an extremal value because of a relation $\partial_r \psi = -(D-1)W[\psi]/(\partial_\psi W)$ obtained from (5). Since $\partial_\psi W|_{\psi=0} = 1 > 0$, if $W[\psi]$ is a monotonically increasing function in the region $[\psi_a, 0]$, there is no naked singularity. Figure 2(a) corresponds to this case. However, as in figure 2(b), if $W[\psi]$ has an extremal point between ψ_a and 0, there exists a naked singularity. Note that the shape of $W[\psi]$ depends only on the Lovelock coefficients α_m, so whether a branch has a naked singularity or not is determined by these constants. Since we want to avoid a naked singularity, we have to exclude the solutions which have extrema between $\psi = \psi_a$ and $\psi = 0$. Note that there may be exotic cases for which ψ_a does not exist. These solutions should be excluded because they necessarily have a naked singularity.

3.2. Ghost instability

In Lovelock theory, the sign in front of the kinetic term in the action could be negative, namely a ghost instability could occur. In the previous paper [12], we have shown that there exists a ghost instability, when

$$K[\psi] \equiv (D - 3)(\partial_\psi W)^2 - (D - 1)W \partial_\psi^2 W$$

becomes negative. Hence, we need to check the sign of $K[\psi]$ to check if a black brane has a ghost instability or not.

3.3. Dynamical instability

As we have shown in [12], the function $W(\psi)$ determines if a dynamical instability of Lovelock black branes occurs. Using the symmetry of the planar part of the metric, we can classify metric perturbations into the scalar, vector and tensor sectors. In the absence of a ghost instability, we can prove that there is no dynamical instability in the vector sector [12].

There exists a dynamical instability for the tensor sector, when

$$L[\psi] \equiv (D - 3)(D - 4)(\partial_\psi W)^2 - (D - 1)(6 + 2D - 10)\partial_\psi W \partial_\psi^2 W \partial_\psi^3 W$$

$$+ (D - 1)^2 W^2 \{\partial_\psi W \partial_\psi^3 W - (\partial_\psi^2 W)^2\}$$

is negative [12, 16]. Similarly, there exists a dynamical instability for the scalar sector, when

$$M[\psi] \equiv (D - 2)(D - 3)(\partial_\psi W)^2 - 3(D - 2)(D - 1)\partial_\psi^2 W (\partial_\psi W)^2$$

$$+ (D - 1)^2 W^2 \{3(\partial_\psi^2 W)^2 - \partial_\psi W \partial_\psi^3 W\}$$
is negative [12]. In both cases, the square of the effective speed of sound becomes negative. This kind of instability is found in the cosmological context for the first time [18].

In order to find a dynamical instability, what we have to check is the sign of $L[\psi]$ and $M[\psi]$ in the region $\psi_a < \psi < 0$. Note that these functions and ψ_a are independent of μ; hence, whether a dynamical instability exists or not depends only on the Lovelock coefficients α_m.

4. Pathology inspection: analytic results

In this section, we analytically investigate pathologies in five and six dimensions for which we have $k = 2$. In these cases, W is given by

$$W[\psi] = \frac{\alpha_2}{2} \psi^2 + \psi + 1, \quad \alpha_2 \neq 0.$$ \hspace{1cm} (10)

This can be written as

$$W = \frac{\alpha_2}{2} \left(\psi + \frac{1}{\alpha_2} \right)^2 + 1 - \frac{1}{2\alpha_2,$$ \hspace{1cm} (11)

from which we see that there is no solution for $W = 0$ if $\alpha_2 > 1/2$. Since there is an extremum in the region $\psi < 0$, we have a naked singularity in these cases. Thus, only the range $\alpha_2 \leq 1/2$ is allowed.

For $\alpha_2 \leq 1/2$, there are solutions for $W = 0$:

$$\psi_W = -1 \pm \sqrt{1 - 2\alpha_2}.$$ \hspace{1cm} (12)

We have defined ψ_a as the largest negative root. In the cases $0 < \alpha_2 \leq 1/2$, the largest negative root should be

$$\psi_a = -1 + \frac{\sqrt{1 - 2\alpha_2}}{\alpha_2}.$$ \hspace{1cm} (13)

In the cases $\alpha_2 < 0$, that becomes

$$\psi_a = \frac{-1 + \sqrt{1 - 2\alpha_2}}{\alpha_2} = 1 - \frac{\sqrt{1 + 2|\alpha_2|}}{|\alpha_2|}.$$ \hspace{1cm} (14)

In any case, the plus sign in (12) corresponds to ψ_a. Thus, we do not have any naked singularity as long as $\alpha_2 \leq 1/2$.

Next, let us see if we have ghosts. With this aim, we need to look at the sign of $K[\psi]$. In five or six dimensions, we obtain

$$K = \begin{cases}
2(1 - 2\alpha_2) & \text{(for } D = 5) \\
(\alpha_2 \psi + 1)^2/2 + 5(1 - 2\alpha_2)/2 & \text{(for } D = 6).
\end{cases}$$ \hspace{1cm} (15)

Apparently, the condition for no naked singularity $\alpha_2 \leq 1/2$ guarantees $K \geq 0$. Hence, we do not have ghosts as long as we do not have naked singularities in six dimensions. In five dimensions, for $\alpha_2 = 1/2$, K vanishes, which is singular. Hence, we have the condition $\alpha_2 < 1/2$ in five dimensions.

From now on, we check the stability of black branes in the tensor and scalar sectors. The analysis depends on the dimensions. Hence, we discuss the stability in five and six dimensions, separately.
4.1. Five dimensions

First, we discuss the stability in the tensor sector by looking at the sign of L. From the definition (8), L can be calculated as

$$L = 2(1 - 2\alpha_2)\left\{3\alpha_2^2\psi^2 + 6\alpha_2\psi + (1 + 4\alpha_2)\right\}.$$ \hfill (16)

We see that there exists an instability for $\alpha_2 < -1/4$ because $L[0] < 0$ in this range. Then, we consider the remaining range $-1/4 \leq \alpha_2 < 1/2$. In this case, $L = 0$ has solutions

$$\psi_{L\pm} = \frac{-1 \pm \sqrt{1 - 2\alpha_2}}{\alpha_2}.$$ \hfill (17)

Comparing these solutions with ψ_a, we see $\psi_a > \psi_{L\pm}$ in the range $0 < \alpha_2 < 1/2$ and $\psi_a < \psi_{L\pm}$ in the range $-1/4 < \alpha_2 < 0$. Thus, in the range $[\psi_0, 0]$, we always have $L > 0$ for $0 < \alpha_2 < 1/2$ and $-1/4 < \alpha_2 < 0$.

Next, we study the stability in the scalar sector. From the definition (9), $M[\psi]$ is given by

$$M[\psi] = 6(1 - 2\alpha_2)\left(\alpha_2 \psi^2 - 2\alpha_2\psi + (1 - 4\alpha_2)\right).$$ \hfill (18)

For $1/4 < \alpha_2 < 1/2$, we have $M[0] < 0$ and there is an instability. Thus, we need to check the range $\alpha_2 \leq 1/4$ in the following. It is easy to see that $M = 0$ has solutions

$$\psi_{M\pm} = \frac{-1 \pm \sqrt{\alpha_2} - 2\alpha_2}{\alpha_2}.$$ \hfill (19)

Comparing these solutions with ψ_a, we find $\psi_- < \psi_a < 0 < \psi_+$ for $0 < \alpha_2 \leq 1/4$ and $\psi_+ < \psi_a < 0 < \psi_-$ for $\alpha_2 < 0$. Therefore, in the range $[\psi_0, 0]$, we conclude $M \geq 0$ for $0 < \alpha_2 < 1/4$ and $\alpha_2 < 0$.

Combining the above results, we found that black branes in five dimensions have no pathology for the range $-1/4 \leq \alpha_2 \leq 1/4$, where the trivial case $\alpha_2 = 0$ is included.

4.2. Six dimensions

Now, we investigate pathologies in AdS black branes in six dimensions. First, we check the stability in the tensor sector. In six dimensions, $L[\psi]$ becomes

$$L[\psi] = -\frac{\alpha_2^2}{4}\psi^4 - \alpha_2^3\psi^3 + (11 - 25\alpha_2)\alpha_2^2\psi^2 + 24\alpha_2\psi - 50\alpha_2^2\psi + (6 - 25\alpha_2^2).$$ \hfill (20)

From this expression, we can conclude $L[0] < 0$ for $\alpha_2 < -\sqrt{\frac{2}{5}}$. $\frac{\sqrt{2}}{5} < \alpha_2 \leq \frac{1}{2}$. Hence, in order not to have an instability in the tensor sector, we have to choose a parameter in the range $-\sqrt{6}/5 \leq \alpha_2 \leq \sqrt{6}/5$, where $\alpha_2 = 0$ is a trivial case. Note that the equation $L = 0$ has four solutions

$$\psi_{L\pm\pm} = -\frac{1}{\alpha_2} \pm \frac{\sqrt{\alpha_2} - 2\alpha_2}{\alpha_2} (\sqrt{15} \pm \sqrt{10}).$$ \hfill (21)

Here, $\psi_{L\pm\pm}$ distinguish four possible solutions. Comparing these solutions with ψ_a, we find

$$\psi_{L++} < \psi_{L--} < \psi_{L+-} < \psi_a < 0 < \psi_{L-+}$$ \hfill (22)

for $0 < \alpha_2 < \sqrt{6}/5$, and we have

$$\psi_{L--+} < \psi_a < 0 < \psi_{L++} < \psi_{L--} < \psi_{L-+}$$ \hfill (23)

for $-\sqrt{6}/5 < \alpha_2 < 0$. Thus, we see $L > 0$ in the range $[\psi_a, 0]$.

Remarkably, $M[\psi]$ can be written as

$$M[\psi] = \frac{1}{4}(-4 + 10\alpha_2 + 2\alpha_2\psi + \alpha_2^2\psi^2)^2.$$ \hfill (24)

Hence, there exists no instability in the scalar sector.

To conclude, there exists no pathology in AdS black branes in six dimensions as long as we take a parameter in the range $-\sqrt{6}/5 \leq \alpha_2 \leq \sqrt{6}/5$.

5. Pathology inspection: numerical approach

Now, we are in a position to examine the pathologies in AdS black branes numerically. In this paper, we consider 10 and 11 dimensions because the analysis and the results in other dimensions are similar. Our strategy is very simple. For each coefficient α_m, we search for ψ_a and check the sign of $\partial_\psi W$, $K[\psi]$, $L[\psi]$ and $M[\psi]$ in the region $\psi_a < \psi < 0$. The mesh size of this calculation is $\Delta \alpha_m = 0.05$. We have checked that our numerical method can reproduce the analytical results in five and six dimensions.

5.1. Ten dimensions

In ten dimensions, the Lovelock black holes can be characterized by the functional

$$W[\psi] = \frac{\alpha_4}{4} \psi^4 + \frac{\alpha_3}{3} \psi^3 + \frac{\alpha_2}{2} \psi^2 + \psi + 1.$$ \hspace{1cm} (25)

Substituting this expression into $\partial_\psi W[\psi]$, (7)–(9), we can find the forbidden region in three-dimensional parameter space $[\alpha_2, \alpha_3, \alpha_4]$. In figure 3, we plot forbidden regions due to various reasons in the α_2–α_3 plane with $\alpha_4 = -1.5, 0, 0.5$, respectively. Interestingly, there is a region where both scalar and tensor sector instabilities exist. The shaded region represents an allowed region.

In figure 3, when $\alpha_4 = 0$, the border between the allowed region and the unstable region due to the scalar sector instability can be obtained from the condition $M[0] = 0$ as

$$\alpha_3 = \frac{3}{2} \alpha_2^2 - \frac{3(D-2)}{2(D-1)} \alpha_2 + \frac{(D-2)(D-3)}{2(D-1)^2}.$$ \hspace{1cm} (26)

Similarly, the border between the allowed region and the unstable region due to the tensor sector instability can be determined by the condition $L[0] = 0$ as

$$\alpha_3 = \frac{\alpha_2^2}{2} + \frac{D-6}{2(D-1)} \alpha_2 - \frac{(D-3)(D-4)}{2(D-1)^2}.$$ \hspace{1cm} (27)

These analytical results are in good agreement with our numerical results. Thus, we see that these dynamical instabilities occur near the horizon because $\psi = 0$ corresponds to the horizon. These results are consistent with those obtained in [11]. Note that $M[0]$ and $L[0]$ are determined by α_2 and α_3 and so these borders are independent of α_4 if instabilities occur near the horizon. However, comparing three figures in figure 3, the region where black holes are unstable under scalar perturbations for $\alpha_4 = -1.5$ is very different from that for $\alpha_4 = 0$ and 0.5. This suggests that these instabilities occur away from the horizon. Therefore, α_4 affects the behavior of $M[\psi]$ and changes the allowed region in the α_2–α_3 plane. Indeed, this fact can be understood more easily from figure 4. In figure 4, we plot forbidden regions in the α_2–α_4 plane with $\alpha_3 = -0.2, 0$ and 0.5, respectively. In these figures, we see vertical stripes for negative α_4. For example, in figure 4 with $\alpha_3 = 0$, there are three vertical lines: $\alpha_2 \simeq -1.0$, $\alpha_2 \simeq 0.5$ and $\alpha_2 \simeq 0.75$. These lines can be obtained from $L[0] = 0$ as

$$\alpha_2 = -\frac{D-6}{2(D-1)} \pm \sqrt{2 \alpha_3 + \frac{5D^2 - 40D + 84}{4(D-1)^2}}.$$ \hspace{1cm} (28)

and from $K[0] = 0$ as

$$\alpha_2 = \frac{D-3}{D-1}.$$ \hspace{1cm} (29)

This agreement between the analytical and numerical results is remarkable. However, when α_4 becomes large, the stripe structure collapses. This suggests that instabilities do not originate from the near horizon geometry. It turned out that α_4 is a relevant parameter for AdS black branes.
Figure 3. We plot the allowed and forbidden regions in the $\alpha_2-\alpha_3$ plane with $\alpha_4 = -1.5$, 0 and 0.5, respectively. The shaded region represents an allowed region.
Figure 4. We plot the allowed and forbidden regions in the $\alpha_2 - \alpha_4$ plane with $\alpha_3 = -0.2$, 0 and 0.5, respectively. The shaded region represents an allowed region.
Figure 5. We plot the allowed and forbidden regions in the $\alpha_2 - \alpha_5$, $\alpha_3 - \alpha_5$ and $\alpha_4 - \alpha_5$ planes, respectively. The shaded region represents an allowed region. In these figures, we set other Lovelock coefficients to be 0.
5.2. Eleven dimensions

In 11 dimensions, the key functional is given by

$$W[\psi] = \frac{\alpha_5}{5} \psi^5 + \frac{\alpha_4}{4} \psi^4 + \frac{\alpha_3}{3} \psi^3 + \frac{\alpha_2}{2} \psi^2 + \psi + 1.$$ \hspace{1cm} (30)

Again, substituting this expression into $\partial_\psi W[\psi]$, (7)–(9), we can find the forbidden region in four-dimensional parameter space $(\alpha_2, \alpha_3, \alpha_4, \alpha_5)$. Of course, it is a formidable task to visualize such a higher dimensional space. Hence, we look at several sections in the parameter space. In figure 5, we plot forbidden regions in the α_2--α_5 plane with $(\alpha_2, \alpha_3) = (0, 0)$, α_3--α_5 plane with $(\alpha_2, \alpha_4) = (0, 0)$ and α_4--α_5 plane with $(\alpha_2, \alpha_3) = (0, 0)$, respectively.

From these figures, we see that α_5 affects the allowed ranges of α_2, α_3 and α_4. In particular, in the case of the α_3--α_5 and α_4--α_5 planes, the allowed region is finite. It indicates that AdS black branes in Lovelock theory are pathological in most cases.

6. Implications in AdS/CFT

Let us discuss the implications of our results in the AdS/CFT correspondence.

With the master equation in [16], the shear viscosity to entropy ratio η/s has been calculated as

$$\frac{\eta}{s} = \frac{1}{4\pi} \left(1 - \frac{D - 1}{D - 3} \alpha_2 \right)$$

through AdS/CFT correspondence [7]. Note that this depends only on α_2. Hence, it seems that α_3, α_4 and α_5 do not affect this value. However, as our numerical calculations have shown, α_3, α_4 and α_5 affect the allowed region of α_2. This fact was also noted in [11]. In five and six dimensions, the KSS bounds are lowered to $\eta/s = 1/8\pi$ and $\eta/s \simeq 0.59/4\pi$, respectively. Interestingly, in ten dimensions, we see from figure 3 that a positive α_2 is not allowed for any α_3 if $\alpha_5 = -1.5$. This means that the bound of η/s must be larger than $1/4\pi$ if $\alpha_4 = -1.5$. As another example, we can take $\alpha_4 = 0$ and $\alpha_3 = 0.5$, then the maximal value of α_2 is about -0.1. While if we take $\alpha_4 = 0.5$, the maximal α_2 becomes 0.15 at which $\alpha_3 = 0.2$. Thus, it turned out that the KSS-like bound is sensitive to Lovelock coefficients.

It is also possible to apply our results to holographic superconductors [19]. There the universality for the ratio between the frequency-dependent conductivity and the critical temperature is found [20]. In Gauss–Bonnet theory, it is pointed out that this universality in holographic superconductors is violated for large α_2 [21]. However, it is probable that this violation is due to the pathologies discussed in this paper. It would be interesting to extend holographic superconductors to Lovelock theory to clarify this point.

7. Conclusion

We have discussed the pathologies in AdS black branes in Lovelock theory, analytically in 5 and 6 dimensions, and numerically in 10 and 11 dimensions. We obtained the general conditions for the Lovelock coefficients α_m that these black branes have naked singularity, ghost instability and dynamical instability. It turned out that the dynamical instability could occur away from the horizon in contrast to a naive expectation. Thus, α_4 and α_5 also control the allowed region of α_2 and consequently change the lower limit of η/s. We have also pointed out that the pathologies we have found could affect the interpretation of higher dimensional holographic superconductors.

In this paper, we did not consider the causality violation discussed in [8–11]. It is easy to take into account the causality violation based on the master equations [12]. Then, we could
further restrict the allowed region for α_2. It is also straightforward to extend our analysis to other dimensions using the master equations [12].

Acknowledgments

We wish to thank Keiju Murata for fruitful discussions. This work was supported in part by Grant-in-Aid for Scientific Research Fund of the Ministry of Education, Science and Culture of Japan (no 22540274), Grant-in-Aid for Scientific Research (A) (nos 21244033 and 22244030), Grant-in-Aid for Scientific Research on Innovative Area (no 21111006), JSPS under the Japan-Russia Research Cooperative Program and Grant-in-Aid for the Global COE Program ‘The Next Generation of Physics, Spun from Universality and Emergence’.

References

[1] Hartnoll S A 2009 (arXiv:0903.3246 [hep-th])
[2] Herzog C P 2009 J. Phys. A: Math. Theor. 42 343001 (arXiv:0904.1975 [hep-th])
[3] Horowitz G T 2010 (arXiv:1002.1722 [hep-th])
[4] Lovelock D 1971 J. Math. Phys. 12 498
[5] Charmousis C 2009 Lecture Notes Phys. 769 299 (arXiv:0810.5056 [gr-qc])
[6] Kovtun P, Son D T and Starinets A O 2005 Phys. Rev. Lett. 94 111601 (arXiv:hep-th/0405231)
[7] Ge X H, Sin S J, Wu S F and Yang G H 2009 Phys. Rev. D 80 104019 (arXiv:0905.2675 [hep-th])
Shu F W 2010 Phys. Lett. B 685 325 (arXiv:0910.0607 [hep-th])
[8] Brigante M, Liu H, Myeess R C, Shenker S and Yaida S 2008 Phys. Rev. Lett. 100 191601 (arXiv:0802.3318 [hep-th])
[9] de Boer J, Kulaxizi M and Paranhese A 2010 J. High Energy Phys. JHEP06(2010)008 (arXiv:0912.1877 [hep-th])
[10] Camanho X O and Edelstein J D 2010 J. High Energy Phys. JHEP06(2010)099 (arXiv:0912.1944 [hep-th])
[11] Camanho X O, Edelstein J D and Paulos M F 2011 J. High Energy Phys. JHEP05(2011)127 (arXiv:1010.1682 [hep-th])
[12] Takahashi T and Soda J 2010 Prog. Theor. Phys. 124 711 (arXiv:1008.1618 [gr-qc])
Takahashi T and Soda J 2010 Prog. Theor. Phys. 124 911 (arXiv:1008.1385 [gr-qc])
[13] Wheeler J T 1986 Nucl. Phys. B 273 732
[14] Cai R G 2002 Phys. Rev. D 65 084014 (arXiv:hep-th/0109133)
[15] Nojiri S and Odintsov S D 2001 Phys. Lett. B 521 87
Nojiri S and Odintsov S D 2002 Phys. Lett. B 542 301 (arXiv:hep-th/0109122) (erratum)
[16] Takahashi T and Soda J 2009 Phys. Rev. D 80 104021 (arXiv:0907.0556 [gr-qc])
Takahashi T and Soda J 2009 Phys. Rev. D 79 104025 (arXiv:0902.2921 [gr-qc])
[17] Camanho X O and Edelstein J D 2011 arXiv:1103.3669 [hep-th]
[18] Kawai S, Sakagami M a and Soda J 1998 Phys. Lett. B 437 284 (arXiv:gr-qc/9802033)
Kawai S and Soda J 1999 Phys. Lett. B 460 41 (arXiv:gr-qc/9903017)
[19] Hartnoll S A, Herzog C P and Horowitz G T 2008 Phys. Rev. Lett. 101 031601 (arXiv:0803.3295 [hep-th])
[20] Horowitz G T and Roberts M M 2008 Phys. Rev. D 78 126008 (arXiv:0810.1077 [hep-th])
[21] Gregory R, Kanno S and Soda J 2009 J. High Energy Phys. JHEP10(2009)010 (arXiv:0907.3203 [hep-th])