NOTES ON KODAIRA ENERGIES OF POLARIZED VARIETIES

TAKAO FUJITA

In this note we propose a couple of conjectures concerning Kodaira energies of polarized varieties and give a few partial answers.

§1. Conjectures

Let \(V \) be a variety over \(\mathbb{C} \) and let \(B = \sum b_i B_i \) be an effective \(\mathbb{Q} \)-Weil divisor on \(V \) such that \(b_i \leq 1 \) for any \(i \). Such a pair \((V, B)\) will be called a log variety. It is said to be log terminal if it has only weak log terminal singularities in the sense of [KMM]. In this case, the \(\mathbb{Q} \)-bundle \(K_V + B \) is called the log canonical bundle of \((V, B) \) and will be denoted by \(K(V, B) \).

A \(\mathbb{Q} \)-bundle \(L \) on a log terminal variety \((V, B)\) is said to be log ample if there is an effective \(\mathbb{Q} \)-divisor \(E \) such that \((V, B + E)\) is log terminal and \(L - \epsilon E \) is ample for any \(0 < \epsilon \leq 1 \). Note that “log ample” implies “nef big”, and the converse is also true if \(b_i < 1 \) for all \(i \).

For a big \(\mathbb{Q} \)-bundle \(L \) on a log terminal variety \((V, B)\), we define

\[
\kappa(V, B, L) = -\inf \{ t \in \mathbb{Q} | \kappa(K(V, B) + tL) \geq 0 \},
\]

which will be called the Kodaira energy of \((V, B, L)\). When \(B = 0 \), we write simply \(\kappa(V, L) \).

Clearly \(\kappa(V, B, L) < 0 \) if and only if \(K(V, B) \) is not pseudo-effective. We conjecture that \(\kappa(V, B, L) \in \mathbb{Q} \) in this case (cf. [Ba]). This will be derived from the following

Fibration Conjecture. Let \(L \) be a big \(\mathbb{Q} \)-bundle on a log terminal variety \((V, B)\) such that \(k = \kappa(V, B, L) < 0 \) and \(K(V, B) + tL \) is log ample for many \(t > 0 \). Then there is a birational model \((V', B')\) of \((V, B)\) together with a morphism \(\Phi : V' \to W \) such that \(\dim W < \dim V \), \(\Phi_* \mathcal{O}_{V'} = \mathcal{O}_W \), the relative Picard number \(\rho(V'/W) = 1 \), and \(K(V', B') - kL' = \Phi^* A \) for some ample \(\mathbb{Q} \)-bundle \(A \) on \(W \), where \(L' \) is the proper transform (as a Weil divisor) of \(L \) on \(V' \).

The birational map \(V \to V' \) will be obtained by applying the Log Minimal Model Programm, and will be a composite of elementary divisorial contractions and flips. Note that \(L' \) may not be nef even if \(L \) is ample.

Any way, we have \(K(F, B'_F) = kL'_F \) for any general fiber \(F \) of \(\Phi \), and \(L'_F \) is ample since \(\rho(V'/W) = 1 \). Hence, by a certain conjectural boundedness of \(\mathbb{Q} \)-Fano varieties, we shall obtain the following

Spectrum Conjecture. Let \(S_n \) be the Kodaira spectrum of polarized \(n \)-folds, namely, the set of all the possible Kodaira energies of \((V, L)\), where \(V \) is a variety with \(\dim V = n \) having only terminal singularities and \(L \) is an ample line bundle on \(V \). Then \(\{ t \in S_n | t < -\delta \} \) is a finite subset of \(\mathbb{Q} \) for any \(\delta > 0 \).
If we allow V to have log terminal singularities, the assertion of the Spectrum Conjecture is false.

To be precise, let $\text{Lim}(X)$ denote the set of limit points of X, namely, $p \in \text{Lim}(X)$ if and only if $U \cap X$ is an infinite set for any neighborhood U of p. Let $\text{Lim}^k(X) = \text{Lim}(\text{Lim}^{k-1}(X))$, let $X \cup Y$ denote $(X - Y) \cup (Y - X) = (X \cup Y) - (X \cap Y)$ and let S'_n be the set of all the possible Kodaira energies of (V, B, L) such that (V, B) is log terminal, $\dim V = n$, B is a Z-Weil divisor (or equivalently, $b_i = 1$ for any i; possibly $B = 0$), and L is ample on V. Then we have the following

Log Spectrum Conjecture. For any $k \leq n$, let $S'_{n,k}$ be the set $\{t|t - k \in S'_n \text{ and } -1 < t \leq 0\}$. Then $\text{Lim}^{n-k}(S'_{n,k}) = \{0\}$ and $\text{Lim}^{n-k}(S'_{n,k} \cup S'_{n+1,k+1}) = \text{Lim}^{n-k}(S'_{n,k} \cup \text{Lim}(S'_{n,k-1})) = \emptyset$. Moreover, for any $s < 0$, there exists $\delta > 0$ such that $\{t \in S'_n |s < t < s + \delta\}$ is a finite set.

The conclusion cannot be simplified even if (V, B) is assumed to be smooth, or if we assume $B = 0$ allowing V to have log terminal singularities.

§2. Results

The preceding conjectures are verified if $\dim V \leq 3$ under mild additional assumptions.

Theorem 1. Let (V, B, L) be as in the Fibration Conjecture. Suppose that $n = \dim V \leq 3$ and that V is \mathbb{Q}-factorial, namely, every Weil divisor on V is \mathbb{Q}-Cartier. Then the assertion of the conjecture is true.

Theorem 2. The Spectrum Conjecture is true for the Kodaira spectrum of polarized 3-folds such that V is \mathbb{Q}-factorial.

Remark. The \mathbb{Q}-factoriality is needed to apply the theory [Sho], [Ka2], [Ka1].

Outline of proof of Theorem 1. Set $\tau = \inf \{t \in \mathbb{Q} | K(V, B) + tL \text{ is nef}\}$. Then we see $\tau \in \mathbb{Q}$ by using Cone Theorem (cf. [KMM]). Next, by using the Base-Point-Free Theorem, we get a fibration $f : V \rightarrow X$ and an ample \mathbb{Q}-bundle A on X such that $K(V, B) + \tau L = f^*A$.

Now we let the Log Minimal Model Programm (cf. [KMM], [Sho], [Ka2]) run over X. By several elementary divisorial contractions and log flips, (V, B, L) is transformed to a pair (V_1, B_1) satisfying one of the following conditions:

1. There is an extremal ray R on V_1 over X such that its contraction morphism $\rho : V_1 \rightarrow W$ is of fibration type.
2. $K(V_1, B_1)$ is relatively nef over X.

During the process, L is transformed to a \mathbb{Q}-bundle L_1 on V_1 as Weil divisors. It is easy to see that the bigness is preserved, and that the Kodaira energy does not change. Thus, in case (1), we are done by setting $V' = V_1$.

In case (2), we can show that A_{V_1} is log ample on (V_1, B_1). This is easy to prove when $b_i < 1$ for all i, but the proof is a little complicated in general.

Thus, (V_1, B_1, L_1) satisfies the same condition as (V, B, L). Note also that $\tau_2 = \inf \{t \in \mathbb{Q} | K(V_1, B_1) + tL_1 \text{ is nef}\} < \tau$. By the same process as above we get another triple (V_2, B_2, L_2), and continue as long as necessary. By the termination theorem, we reach the above situation (1) after finite steps.

For the proof of Theorem 2, [Ka1] is essential.

§3. Classification

By the same method as in [F2], we can classify smooth polarized 3-folds (M, L) with $\kappa(M, L) < -\frac{1}{2}$ as follows.
(3.1) $K + 3L$ is nef and $\kappa\epsilon(M, L) \geq -3$ unless $(M, L) \cong (\mathbb{P}^3, \mathcal{O}(1))$.

(3.2) $K + 2L$ is nef and $\kappa\epsilon \geq -2$ unless (M, L) is a smooth scroll over a curve or a hyperquadric in \mathbb{P}^2, $\kappa\epsilon = -3$ in these cases.

(3.3) From now on, $K + 2L$ is assumed to be nef. If there is a divisor E such that $(E, E_0) \cong (\mathbb{P}^2, \mathcal{O}(1))$ and $[E]_E = \mathcal{O}(-1)$, we have $\pi : M -\to M_1$ be the blow down of E to a smooth point. Then the push-down L_1 of L is ample on M_1 and $\pi^*(K_1 + 2L_1) = K + 2L$ for the canonical bundle K_1 of M_1. If there is a similar divisor on M_1, we blow it down again. After several steps, we get a polarized manifold (M', L') such that $(K' + 2L')_M = K + 2L$, $\kappa\epsilon(M', L') = \kappa\epsilon(M, L) \geq -2$ on which there is no divisor of the above type. This model (M', L') is called the (first) reduction of (M, L).

(3.4) $\kappa\epsilon(M, L) = -2$ if and only if $K + 2L$ is not big. In this case, according to the value of $\kappa(K + 2L)$, (M, L) is classified as follows:

(3.4.0) $K + 2L = 0$, i.e., (M, L) is a Del Pezzo 3-fold.

(3.4.1) (M, L) is a hyperquadric fibration over a curve.

(3.4.2) (M, L) is a scroll over a surface.

Remark: In the cases (3.4.1) and (3.4.2), we have $M = M'$ by the ampleness of L.

(3.5) $K + 2L$ is nef and big if and only if $K' + 2L'$ is ample. Moreover, in this case, $K' + L'$ is nef except the following cases:

(3.5.1) M' is a \mathbb{P}^2-bundle over a curve and $L'_F = \mathcal{O}(2)$ for any fiber F, $\kappa\epsilon = -3/2$.

(3.5.2) M' is a hyperquadric in \mathbb{P}^4 and $L' = \mathcal{O}(2)$. $\kappa\epsilon = -3/2$.

(3.5.3) $(M', L') \cong (\mathbb{P}^3, \mathcal{O}(3))$, $\kappa\epsilon = -4/3$.

(3.6) From now on, $K' + L'$ is assumed to be nef. Then it is not big if and only if $\kappa\epsilon(M, L) = -1$. These cases are classified as follows:

(3.6.0) $K' + L' = 0$.

(3.6.1) (M', L') is a Del Pezzo fibration over a curve.

(3.6.2) (M', L') is a conic bundle over a surface.

(3.7) To study the case in which $K' + L'$ is nef big, we use the theory of second reduction as in [BS]. We have a birational morphism $\varphi : M' -\to M''$, such that $K' + L' = \varphi^* A$ for some ample line bundle A on M'', and this pair (M'', A) is called the second reduction of (M, L). However, unlike the case of first reduction, M'' may have singularities, $L'' = \varphi, L'$ may not be invertible, may not be nef. By a careful analysis of the map φ using Mori theory, we see that the singularity of M'' is of very special type. It is a hypersurface singularity of the type $\{x^2 + y^2 + z^2 + u^2 = 0\}$ $(k = 2, 3)$, or the quotient singularity isomorphic to the vertex of the cone over the Veronese surface $(\mathbb{P}^2, \mathcal{O}(2))$. In particular L'' is invertible except at quotient singularities and $2L''$ is invertible everywhere.

The cases $-1 < \kappa\epsilon < -1/2$ can be classified according to the type of the second reduction (M'', A) as follows.

(3.8) $\kappa\epsilon = -4/5$. $(M'', A) \cong (\mathbb{P}^3, \mathcal{O}(1))$ and $L'' = \mathcal{O}(5)$.

(3.9.0) $\kappa\epsilon = -3/4$. M'' is a hyperquadric in \mathbb{P}^4 and $L'' = \mathcal{O}(4)$.

(3.9.1) $\kappa\epsilon = -3/4$. (M'', A) is a scroll over a curve, $L'_F = \mathcal{O}(4)$ for any fiber F.

(3.10) $\kappa\epsilon = -5/7$. (M'', A) is a cone over $(\mathbb{P}^2, \mathcal{O}(2))$. Compare [F2; (4.8.0)].

(3.11) $\kappa\epsilon = -2/3$. (M'', A) is a Del Pezzo 3-fold, i.e., $K'' = -2A$.

(3.11.1) $\kappa\epsilon = -2/3$. (M'', A) is a hyperquadric fibration over a curve.

(3.11.2) $\kappa\epsilon = -2/3$. (M'', A) is a scroll over a surface.

In the following cases, (M'', A) may need to be further blow down to another model (M', A^b). But this pair has no worse singularities than (M', A).

(3.12.0.0) $\kappa \epsilon = -3/5$. M^p is a hyperquadric in \mathbb{P}^4 and $A^b = \mathcal{O}(2)$.

(3.12.0.1) $\kappa \epsilon = -3/5$. M^p has exactly one quotient singularity, and the blow-up $M^\#$ at this point is isomorphic to the blow-up of \mathbb{P}^3 along a smooth plane cubic C. $A^b_{M^\#}$ is $3H - E_C$, where H is the pull-back of $\mathcal{O}(1)$ of \mathbb{P}^3 and E_C is the exceptional divisor over C. Compare \[\text{F2};\{4.6.0.1.0\}\].

(3.12.0.2) $\kappa \epsilon = -3/5$. $M^\#$ has exactly one quotient singularity, and the blow-up $M^\#$ at this point is isomorphic to the blow-up of \mathbb{P}^3 along a smooth plane cubic C. $A^b_{M^\#}$ is $3H - E_C$, where H is the pull-back of $\mathcal{O}(1)$ of \mathbb{P}^3 and E_C is the exceptional divisor over C. Compare \[\text{F2};\{4.6.0.2.1\}\].

(3.12.1) $\kappa \epsilon = -3/5$. M^p is a \mathbb{P}^2-fibration over a curve and $A^b_F = \mathcal{O}(2)$ for any general fiber F.

(3.13) $\kappa \epsilon = -4/7$. $(M^p, A^p) \cong (\mathbb{P}^3, \mathcal{O}(3))$ and $L^b = \mathcal{O}(7)$.

(3.14) $\kappa \epsilon = -5/9$. (M^p, B) is a cone over $(\mathbb{P}^2, \mathcal{O}(2))$ for some line bundle B such that $A^b = 2B$.

(3.15) When $\kappa \epsilon \geq -1/2$, we can reduce the problem to the case in which $K^b + A^b$ is nef, where K^b is the canonical \mathbb{Q}-bundle of M^p.

Note that M^p is obtained from M without using flips.

References

[Ba] Batyrev, The cone of effective divisors of threefolds, preprint.

[BSS] Beltrametti and A. J. Sommese, On the adjunction theoretic classification of polarized varieties, preprint.

[F1] Fujita, On polarized manifolds whose adjoint bundles are not semipositive, Algebraic Geometry; Sendai 1985, Advanced Studies in Pure Math., 10, 1987, pp. 167–178.

[F2] On Kodaira energy and adjoint reduction of polarized manifolds, preprint.

[Ka1] Kawamata, Boundedness of \mathbb{Q}-Fano threefolds, preprint.

[Ka2] Terminations of log flips for algebraic 3-folds, preprint.

[KMM] Kawamata, K. Matsuda and K. Matsuki, Introduction to the minimal model problem, Algebraic Geometry; Sendai 1985, Advanced Studies in Pure Math., 10, 1987, pp. 283–360.

[Ko] Kollar, Flips, flops, minimal models etc., Surveys in Differential Geometry 1 (1991), 113–199.

[M61] Threefolds whose canonical bundles are not numerically effective, Ann. of Math. 116 (1982), 133–176.

[M02] Flip theorem and the existence of minimal models for 3-folds, Journal of AMS 1 (1988), 117–253.

[Sh] Shokurov, 3-fold log flips, preprint.