Role of multi-parametric magnetic resonance imaging fusion biopsy in active surveillance of prostate cancer: a systematic review

Elizabeth E. Ellis and Thomas P. Frye

Abstract
Background: Our goal is to review current literature regarding the role of multi-parametric magnetic resonance imaging (mpMRI) in the active surveillance (AS) of prostate cancer (PCa) and identify trends in rate of reclassification of risk category, performance of fusion biopsy (FB) versus systematic biopsy (SB), and progression-free survival.

Methods: We performed a comprehensive literature search in PubMed and identified 121 articles. A narrative summary was performed.

Results: Thirty-two articles were chosen to be featured in this review. SB and FB are complementary in detecting higher-grade disease in follow-up. While FB was more likely than SB to detect clinically significant disease, FB missed 6.4–11% of clinically significant disease. Imaging factors that predicted upgrading include number of lesions on magnetic resonance imaging (MRI), lesion density, and MRI suspicion level.

Conclusion: Incorporating mpMRI FB in conjunction with SB should be part of contemporary AS protocols. mpMRI should additionally be used routinely for follow-up; however, mpMRI is not currently sensitive enough in detecting disease progression to replace biopsy in the surveillance protocol.

Keywords: active surveillance, fusion biopsy, MRI, prostate cancer

Received: 31 December 2021; revised manuscript accepted: 23 May 2022.

Introduction
Active surveillance (AS) has become the recommended management strategy for very-low-risk and low-risk prostate cancer (PCa) to minimize overtreatment and subsequent morbidity from radical prostatectomy (RP) or radiation therapy. The utilization of AS has increased overtime, but there continues to be wide practice variation in implementation.1,2 The American Urological Association (AUA) and European Association of Urology (EAU) guidelines have both endorsed AS as the preferred management option for low-risk PCa.3,4 Accuracy of the initial prostate biopsy is essential in appropriately selecting patients for AS. The widely adopted 12-core systematic biopsy (SB), may miss clinically significant cancers, especially in the anterior zone, while extended or saturation biopsies improve detection; however, this must be balanced with the risks associated with over-diagnosis of clinically insignificant cancers.5,6 With the use of multi-parametric magnetic resonance imaging (mpMRI) fusion biopsies (FBs), detection of clinically significant PCa has been improved, although its role in AS protocols is currently a topic of debate.3,7 We seek to evaluate the literature to define the role of mpMRI and FB in AS, and identify trends in rate of reclassification of risk category, performance of FB versus SB, and progression-free survival.

Therapeutic Advances in Urology
2022, Vol. 14: 1–15
DOI: 10.1177/17562872221106883
© The Author(s), 2022. Article reuse guidelines: sagepub.com/journals-permissions

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
Methods

Search strategy and selection
A comprehensive literature search was performed on 2 December 2021 using the database PubMed. Articles were queried from the search criteria ([multiparametric MRI] AND [fusion biopsy] AND [active surveillance] AND [prostate cancer]).

Articles were reviewed independently by the authors and selected for inclusion based on Cochrane standard methodological procedures.8 Primary endpoints were number of lesions in MRI, total number of biopsy cores, rate of upgrading to clinically significant prostate cancer (csPCa), predictive factors of upstaging and progression-free survival. Inclusion criteria based on participants included all ages, all races, all co-morbidities, all life expectancies, with very-low-risk to low-risk PCa diagnosed with biopsy, with or without prior imaging. Exclusion criteria included higher risk disease, genetic syndromes predisposing to more aggressive disease, and patients undergoing other treatment modalities. All study designs – non-randomized, prospective, and retrospective studies – were included, given the paucity of prospective and randomized controlled trials on this topic. We excluded case reports, other review articles, non-English language manuscripts and manuscripts that were irrelevant to answering our primary endpoints. AS criteria included any participant enrolled in an AS protocol as defined by their institution; details for the average values for each study can be reviewed in Table 1.

Synthesis of results of individual studies

Clinical variables. Table 1 displays patient demographics for each study. For all combined studies, the median age was 64.4 (IQR 63–66), median prostate-specific antigen (PSA) 5.6 (IQR 5.2–6.0), median PSA density (PSA-D) 0.12 (IQR 0.10–0.13), median prostate volume 50 cm³ (IQR 44–51), median number of lesions on mpMRI 2.2 (IQR 1.7–2.3), median lesion size on mpMRI 10 mm (IQR 9–11), and median number of biopsy cores obtained 16.9 (IQR 15.0–17.7). Most studies utilized MRI/ultrasound (US) as their FB technique, with the exception that one study specified using the cognitive technique.11,12

Use at diagnosis. Appropriate patient selection and most accurately characterizing the cancer are paramount for enrolling patients on AS. In a prospective open-enrollment AS cohort at a tertiary institution, Tosoian et al. evaluated 1818 men with median follow-up of 5 years. While 40% of men underwent grade reclassification overall, the 537 men that had pre-enrollment mpMRI had a decreased risk of grade reclassification [hazard ratio (HR) 0.66, 95% confidence interval (CI), 0.46–0.95, \(p = 0.03 \)].13 The role of mpMRI in AS (ROMAS) trial randomized 62 patients to obtain mpMRI and FB if mpMRI was positive 3 months after AS enrollment and 62 patients to standard of care AS without mpMRI. Both groups underwent SB at 12 months. At confirmatory FB in the study group, 17.7% of patients had grade-group reclassifications; however, at the 12-month SB, the mpMRI group had a significantly lower rate of reclassification compared to the control group, with rates of 6.5% and 29% (\(p < 0.001 \)), respectively.14 A non-randomized prospective study of men electively enrolling in AS after initial FB versus initial SB underwent both FB and SB (median 26 cores) at 1, 2, and 4 years after initial diagnosis. The authors found men who had an initial FB had a lower disqualification rate from AS based on histopathologic upgrading (19% for initial FB vs 59% for initial SB, HR 2.56, 95% CI 1.70–3.85). Furthermore, at 4-year follow-up, men in...
Study	Country	Study design	Number of subjects	Median age (IQR)	Median PSA, ng/mL (IQR)	Median prostate volume (cm³)	Median PSA density, ng/mL cm³, (IQR)	Median number of lesions on MRI	Median lesion size (mm)	Median total number of biopsy cores	Median core positive volume
Stamatakis et al.	United States of America	Serious Retrospective	15	Mean (range): 60.2 ± 7.4 (40–79)	Mean (range): 4.8 (2.6–6.3)	51.5 ± 18.9 (24–161)	Mean (range): 0.08 (0.05–0.10)	Mean (range): 2.1–2	Mean: 10.5 ± 4.3	Mean: 16 (4–32)	Mean: 16 (4–32)
Siddiqui et al.	Canada	Low Prospective single institution, single blind	81	Mean: 63 (58–68)	4.2 (2.6–3.8)	50 (11–17.6)	Mean (range): 0.09 (0.03–0.15)	Mean: 2.1	Mean: 10.5 ± 4.3	Mean: 16 (4–32)	Mean: 16 (4–32)
Hu et al.	USA	Low Prospective single institution, single blind	113	Mean (range): 60.2 ± 7.4 (40–79)	Mean (range): 4.8 (2.6–6.3)	51.5 ± 18.9 (24–161)	Mean (range): 0.08 (0.05–0.10)	Mean (range): 2.1–2	Mean: 10.5 ± 4.3	Mean: 16 (4–32)	Mean: 16 (4–32)
Abdi et al.	Canada	Serious Retrospective	111	Mean (range): 60.2 ± 7.4 (40–79)	Mean (range): 4.8 (2.6–6.3)	51.5 ± 18.9 (24–161)	Mean (range): 0.08 (0.05–0.10)	Mean (range): 2.1–2	Mean: 10.5 ± 4.3	Mean: 16 (4–32)	Mean: 16 (4–32)
Akiyama et al.	USA	Serious Retrospective	245	Mean: 64 (60–68)	4.2 (2.6–6.3)	51.5 ± 18.9 (24–161)	Mean (range): 0.08 (0.05–0.10)	Mean (range): 2.1–2	Mean: 10.5 ± 4.3	Mean: 16 (4–32)	Mean: 16 (4–32)
Akiyama et al.	USA	Serious Retrospective	103	Mean (range): 64 (60–68)	4.2 (2.6–6.3)	51.5 ± 18.9 (24–161)	Mean (range): 0.08 (0.05–0.10)	Mean (range): 2.1–2	Mean: 10.5 ± 4.3	Mean: 16 (4–32)	Mean: 16 (4–32)
Dias et al.	USA	Moderate Retrospective	152	Mean (range): 61.4 ± 7.1 (40–79)	Mean (range): 5.2 ± 3.2 (0.2–23.3)	58 ± 28 (23–161)	Mean (range): 0.09 ± 0.03 (0.01–0.15)	Mean (range): 2.3 ± 1.2 (1–9)			
Kamrava et al.	USA	Low Prospective, single institution	245	Mean: 64 ± 7.4	4.8 ± 3.65	6 (1–4)	Mean: 1.5 ± 0.15				
Ma et al.	USA	Moderate Retrospective	103	Mean (range): 64 (60–68)	4.2 (2.6–6.3)	51.5 ± 18.9 (24–161)	Mean (range): 0.08 (0.05–0.10)	Mean (range): 2.1–2	Mean: 10.5 ± 4.3	Mean: 16 (4–32)	Mean: 16 (4–32)
Tran et al.	USA	Moderate Retrospective	207	Mean: 64 ± 7.4	4.2 (2.6–6.3)	31–57	Mean: 1.5 (0.9–2.1)				
Frye et al.	USA	Low Prospective single institution	166	Low-risk mean: 61.7 ± 6.6; intermediate risk mean: 65.7 ± 6.7	Low-risk mean: 5.69 ± 4.19; intermediate risk mean: 6.16 ± 3.54	NA	Low-risk mean: 0.12 ± 0.09; intermediate risk mean: 0.13 ± 0.08	NA	NA	NA	NA
Ma et al.	USA	Moderate Retrospective	103	Mean (range): 64 (60–68)	4.2 (2.6–6.3)	51.5 ± 18.9 (24–161)	Mean (range): 0.08 (0.05–0.10)	Mean (range): 2.1–2	Mean: 10.5 ± 4.3	Mean: 16 (4–32)	Mean: 16 (4–32)
Pepe et al.	Italy	Serious Prospective, single institution, single blind	100	Mean: 66.0 (63.0–68.0)	7.5 (7.3–8.45)	0.16 ± 0.15 (0.10–0.18)	NA	NA	NA	NA	NA
Borkowetz et al.	Germany	Serious Retrospective single institution, single blind	83	Mean: 64 (63–72)	4.2 (2.6–6.3)	31–57	Mean: 1.5 (0.9–2.1)				
Blonska et al.	USA	Moderate Retrospective	542	Mean ± FB: 62 ± 7; Mean – FB: 60 ± 6	Mean ± FB: 62 ± 7; Mean – FB: 60 ± 6	Mean ± FB: 62 ± 7; Mean – FB: 60 ± 6	Mean ± FB: 62 ± 7; Mean – FB: 60 ± 6	Mean ± FB: 62 ± 7; Mean – FB: 60 ± 6	Mean ± FB: 62 ± 7; Mean – FB: 60 ± 6	Mean ± FB: 62 ± 7; Mean – FB: 60 ± 6	Mean ± FB: 62 ± 7; Mean – FB: 60 ± 6

(continued)
Study	Risk of bias	Study design	Country performed	Number of subjects	Median age (IQR)	Median PSA, ng/mL (IQR)	Median prostate volume (cm³)	Median PSA density, ng/mL cm³, (IQR)	Median number of lesions on MRI	Median lesion size (mm)	Median total number of biopsy cores	Median core positive volume
Dieffenbacher et al.	Serious	Retrospective, single institution	Germany, United Kingdom	273	66 (64–75)	6.2 (4.7–7.7)	5.8 (4.5–7.0)	0.15 (0.09–0.22)	NA	NA	Initial SB: 12 (10–12) Initial FB: 26 (24–28) NA	
Bloom et al.	Moderate	Retrospective study of prospective database	USA, Germany	AA: 84 Non-AA: 431	58.9 (63.0)	6.3 (6.0 ± 6.8)	5.8 (4.5–7.8)	0.15 (0.11–0.16)	NA	AA: 0.1 ± 0.1 Non-AA: 0.12 ± 0.1	NA	
Hsiang et al.	Serious	Retrospective study	USA	122	63 (57–68)	5.6 (4.1–7.6)	4.9 (4.0–6.5)	0.11 (0.07–0.15)	NA	NA	NA	
Pepe et al.	Moderate	Prospective	Italy	125	66.0 (63.0–68.0)	NA	NA	NA	NA	NA	NA	
Tosoian et al.	Moderate	Prospective	USA	1818	VLR: 66 (61–69); LR: 67 (62–71)	VLR: 4.6 (3.5–5.8); LR: 5.9 (4.5–7.8)	NA	VLR: 0.09 (0.07–0.12); LR: 0.17 (0.12–0.21)	NA	NA	NA	
Liss et al.	Moderate	Prospective, multi-institutional	USA, Canada	361	65 (59–69)	5.6 (3.9–8.2)	43.8 (32.1–60.3)	0.12 (0.08–0.16)	NA	NA	8.3% (7.1–17.4)	
Roscigno et al.	Moderate	Retrospective, multi-institutional	Italy	389	Mean: 66.7	Mean: 6.50	Mean: 53.9	NA	NA	NA	18	
Ulrich et al.	Serious	Retrospective	Germany, USA	55	66 ± 7	7.3 (6.9–9.7)	41 (30–54)	0.15 (0.11–0.27)	NA	NA	NA	
Röthlin et al.	Moderate	Prospective	Switzerland	47	64 (60–68)	5.67 (3.9–7.7)	50 (33–58)	0.13 (0.10–0.16)	NA	NA	NA	
Schiavina et al.	Low	Multi-institutional, randomized controlled trial	Italy	62 in each group	Study: 65 (59–69); Control: 65 (62–71)	Study: 5.86 (4.65–7.16); Control: 6.3 (4.66–7.33)	NA	Study: 0.12 (0.11–0.16); Control: 0.11 (0.08–0.12)	NA	NA	Study: 12 (12–14) SB: 13 (12–14) FB: 4 (4–6) SB: 5% (2–19%) FB: 26% (4–40%)	
Caglic et al.	Low	Prospective, single institution	UK, Russia	295	66 (61–69)	5.4 (4.7–7.9)	50 (34.9–71.0)	0.10 (0.1–0.2)	NA	9 (7–12)	NA	
Roscigno et al.	Moderate	Prospective, multi-institutional	Italy	389	NA	NA	NA	NA	NA	NA	NA	
O’Connor et al.	Moderate	Prospective study	USA	391	63 (58–68)	5.38 (3.95–7.87)	51 (38–72)	0.10 (0.07–0.16)	2 (IQR 1–3)	10 (7–14)	NA	

(continued)
Table 1. (Continued)

Study	Risk of bias	Study design	Country, performed	Median age (IQR)	Median PSA, ng/mL (IQR)	Median prostate volume (cm³) (IQR)	Median PSA density, ng/mL cm³, (IQR)	Median number of lesions on MRI	Median lesion size (mm)	Median total number of biopsy cores	Median core positive volume
Williams et al.	Serious	Prospective, single institution	USA, Canada	66 (62–68)	5.6 (5.0–6.0)	64.4 (62.8–66)	11.7 (10.2–13.2)	NA	NA	NA	NA
Oberoi et al.26	Moderate	Prospective single institution	USA	61.4 ± 2.7	5.34 ± 2.6	66 (62–68)	11.7 (10.2–13.2)	NA	NA	NA	NA
Eure et al.30	Serious	Prospective	USA	66 (62–68)	5.9 (4.9–6.4)	64.4 (62.8–66)	11.7 (10.2–13.2)	NA	NA	NA	NA
Median of all studies [IRR]	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

AA, African American; FB, fusion biopsy; IQR, interquartile range; MRI, magnetic resonance imaging; NA, not available; PSA, prostate-specific antigen; SB, systematic biopsy; TB, Targeted Biopsy.

Having a negative FB while on AS is a predictor of favorable AS outcomes. In a prospective study of 182 men who continued AS after initial FB, 122 had a positive FB, and 60 had a negative FB. Progression-free survival (PFS) was longer in the negative FB group compared to the positive FB group (74.3 vs. 44.6 months, respectively, \(p < 0.01 \)).

Rate of upgrading histology. FB and SB are complementary in detecting clinically significant disease. While the use of FB after enrollment in AS based on SB results does identify higher risk disease in an average 15–47% of patients, FB alone, without SB misses in an average of 5–11% of clinically significant disease. The Canary Prostate Cancer Active Surveillance Study (PASS), a prospective multi-institutional study of 361 patients undergoing AS, found, at median follow-up of 4.1 years (IQR 2.9–7.6), 27% of patients were upgraded from grade-group 1 (GG1) to grade-group 2 (GG2) or higher. Of patients who had a negative mpMRI, 17% were upgraded to GG2, and the negative predictive value (NPV) of mpMRI was 83% (95% CI 76–90). Further supporting the need for continued SB, 11% of FB’s found csPCa, while 13% of csPCa were found by SB alone. Although higher Prostate Image Reporting and Data System (PI-RADS) scores were associated with higher risk of csPCa, a negative mpMRI did not ensure the absence of csPCa. Thus, the authors determined FB should be performed adjunctively with SB.

Table 2 depicts the rate of upgrading to csPCa by FB and SB further demonstrating that forgoing either FB or SB would under-detect csPCa. Several studies further supporting the continued use of SB are worth mentioning. Hu et al. identified 113 men enrolled in AS who underwent confirmatory mpMRI FB and a simultaneous 12-core SB. They found a higher MRI suspicion score of 4–5 significantly increased the likelihood of grade reclassification [odds ratio (OR) 3.2, 95% CI 1.4–7.1, \(p = 0.006 \)]; however, in men with a negative FB, 11% had csPCa on SB. Similar findings were reported by Tran et al. in which 9% of men on AS that had a negative FB...
had major upgrading to Gleason score \(\geq 4 + 3 \) on simultaneous SB. In the same study, 24% of patients experienced upgrading on SB, and 14% experienced upgrading on FB.\(^2\)\(^3\)

One confounding factor in these studies is the number of biopsy cores obtained. In several of the studies comparing FB and SB detection, saturation biopsies were performed with an average number of cores obtained of 17 (range 12–30); thus, the higher sampling volume skews the results enabling the non-targeted biopsy to perform better than a standard 12-core biopsy presumably would. In a prospective study comparing results of 100 men who underwent simultaneous mpMRI FB, a 20-core extended biopsy and 30-core transperineal biopsy 6 months into AS, the extended systematic biopsies detected more csPCa compared to the FB cores (75% vs 68.8% respectively, \(p = 0.001 \)).\(^1\)\(^1\) Clinicians must balance the benefit of extended sampling templates improving PCa detection rates with the risk of over-diagnosis and the risk of biopsy complications.

Factors significant for grade-group progression. Table 3 demonstrates predictive factors for upgrading while on AS. The factors demonstrating consistent, statistically significant predictive utility across multiple studies in order of significance include higher PI-RADS score (or more

Figure 1. PRISMA diagram of study selection.
Table 2. Rate of upgrading, predictive factors, follow-up, and progression for all relevant included studies.

Study	n upgraded by FB (%)	n upgraded by SB (%)	n upgraded by SB and FB (%)	Predictive factors
Stamatakis et al.	25/85 (29)			# lesions on MRI, lesion density % of total volume, and MRI suspicion score
Hu et al.	3/90 (3)	10/90 (11)	41 (36.3)	NA
Siddiqui et al.	7 (37)	2 (11)	10 (53)	mpMRI suspicion level, PSA
Abdi et al.	10 (16.1)	4 (6.4)	19 (30.6)	NA
Diaz et al.	12/34 (35.3)	10/34 (29)	34 (22.4)	More lesions on mpMRI
Kamrava et al.	31	52	63 (26)	Prostate volume, ROI category 5, PSA
Ma et al.	NA	NA	25/103 (24.3)	higher PI-RADS score (4 vs 3 OR 2.00, p=0.04; 5 vs 3 OR 4.74, p=0.02), right sided lesion
Tran et al.	34	39/77 (51%) negative FB; >=4 + 3: 7/77 (9%)	NA	Older age (OR 1.10)
Frye et al.	22/49 (44.9)	15/49 (30), p=0.03	24.5	mpMRI progression
Lai et al.	20/76 (26.3)	NA	NA	MRI suspicion score, PSAD, total lesion density on MRI, duration between biopsies
Pepe et al.	11/16 (69)	12/16 (75)	16	NA
Borkowetz et al.	32/83 (39)	31/83 (37)	40/83 (48)	NA
Bloom et al.	NA	224/542 (41.3)	NA	All groups: Age, PSA density were positively correlated, negative fusion biopsy is negatively correlated, positive FB group: age, PSA density and largest lesion diameter
Dieffenbacher et al.	NA	NA	SB: 59%; FB: 19%	PRECISE score 4–5
Bloom et al.	AA: 13/32 (40.6)	NA	NA	NA
	non-AA: 87/258 (33.7)			
Hsiang et al.	11 (38)	11 (38)	7 (24)	Older age, higher PI-RADS score on initial mpMRI, higher number of positive systematic cores on initial biopsy, higher maximum percent of targeted core tumor involvement on initial biopsy
Pepe et al.	NA	saturation biopsy: 9/45 [20]	NA	NA
Tosoian et al.	NA	NA	NA	pre-enrollment mpMRI had reduced risk of grade reclassification (HR 0.66) 95% CI 0.46–0.95, p=0.03; higher risk of reclassification in: older age, AA race, higher PSAD, number of positive cores, maximum core involvement, having a + mpMRI
Liss et al.	284	111	NA	NA
Roscigno et al.	97/308 (30.8)	NA	Total reclassified to GG3 [8]. mpMRI negative: [1.6]; PI-RADS 3: [4], PI-RADS 4: [11], PI-RADS 5: [22]; negative mpMRI or PI-RADS 3 + PSAD ≥ 0.20: [9]	NA

(continued)
suspicious lesions in studies prior to the adoption of PI-RADS scoring), PSA-D, older age, and the size of lesion on imaging or the volume of disease on biopsy. The presence of bilateral disease has also been shown to increase the risk of progression on AS (HR = 3.06; 95% CI = 1.31–7.13), and combined FB and SB improve detection of bilateral disease than either method alone.38

Models and nomograms. Several nomograms have been developed to identify patients at risk of pathologic progression while on AS and eliminate the need for routine follow-up biopsies in patients at lower risk of progression. The Prostate Cancer Radiologic Estimation of Change in Sequential Evaluation (PRECISE) score (Table 4) is a Likert-type-based grading system developed to rate follow-up mpMRI’s. PRECISE scores of 1–3 are considered stable, and scores of 4–5 are considered progression on mpMRI. In a prospective study of 391, AS men who underwent interval mpMRI after a median of 22 months, the NPV of a PRECISE score of 1–3 for upgrading from GG1 to GG2; PSAD was the only risk factor for progression from GG1 to GG3.

Study	n upgraded by FB (%)	n upgraded by SB (%)	n upgraded by SB and FB (%)	Predictive factors
Ullrich et al.33	NA	NA	44 (80); 29 had progression	NA
Rothlin et al.34	upgraded in 2/47 (4)	missed 5/10 csPCA	NA	No factors predicted missed PCA at FB
Schiavina et al.16	11 (17) at 3 month	2 (3.2%) at 12 month	NA	NA
Caglic et al.35	NA	NA	NA	Higher PSA-D, index lesion size, Likert-type score, lower gland volume
Roscigno et al.34	NA	NA	mpMRI negative: (17);	Older age, PSAD, number of positive cores at baseline, PIRADS 3, 4, and 5
O’Connor et al.37	170/621 [27.3] of imaging intervals	NA	163/391 [41.7]	Stable MRI: change in PSA, PSAD, and the size of index lesion risk for progression from GG1 to GG2; PSAD was the only risk factor for progression from GG1 to GG3
Williams et al.38	49/103 [47]	NA	FB + SB detected 16%	NA
Okoro et al.39	NA	NA	NA	Highest percentage core involvement on FB
Eure et al.40	NA	NA	NA	NA
Median of all studies (IQR):	26.6% [15.0–47.6]	41.5% [36.3–46.8]	30.6% [24.3–41.7]	NA

CI, confidence interval; FB, fusion biopsy; GG, grade group; HR, hazard ratio; IQR, interquartile range; mpMRI, multi-parametric magnetic resonance imaging; MRI, magnetic resonance imaging; NA, not available; OR, odds ratio; PI-RADS, Prostate Image Reporting and Data System; PRECISE, Prostate Cancer Radiologic Estimation of Change in Sequential Evaluation; PSA, prostate-specific antigen; PSA-D, PSA density; SB, systematic biopsy, ROI, Region of Interest.
Table 3. List of factors found to be significant predictors of upgrading on single variable or multivariate analysis, and number of studies confirming these findings.

Predictive factors for upgrading	Number of studies confirming
PI-RADS score or suspicious lesion on mpMRI	9
PSA-D	6
Older age	5
Lesion size or density on mpMRI	4
% of total volume on initial biopsy, or number of positive cores	4
Gland volume	3
PSA	3
Number of lesions on mpMRI	2
Right-sided lesion	1
mpMRI progression	1
AA race	1
Having a positive mpMRI	1

mpMRI, multi-parametric magnetic resonance imaging; PI-RADS, Prostate Image Reporting and Data System; PSA, prostate-specific antigen; PSA-D, PSA density.

Table 4. Definition of PRECISE criteria, O’Connor et al.35

PRECISE criteria	Definition
1	Resolution of features (no visible lesions)
2	Reduction in size/conspicuity of lesions
3	Stable MRI appearance; no new lesions
4	Increase in size/conspicuity of lesions
5	Definitive radiologic stage progression

MRI, magnetic resonance imaging; PRECISE, Prostate Cancer Radiologic Estimation of Change in Sequential Evaluation.

Of the 41 patients that progressed, 19.5% had a PRECISE score of 3, 56.1% had PRECISE score of 4, and 19.5% had PRECISE score of 5. The sensitivity for progression on mpMRI (PRECISE score ≥4) at detecting histologic progression was 75.6%, and specificity was 86.8%. The use of the PRECISE scoring system may reduce need for repeat biopsy in patients with scores of 1–3, and scores ≥4 may trigger closer monitoring.

Two other nomograms that decrease the risk of needing an initial FB after SB have been published. The first, factors mpMRI features of number of lesions, highest PCA suspicion scores, and total lesion volume divided by the total prostate volume (lesion density). Of note, this study was performed prior to the adoption of PI-RADS; however, the mpMRI suspicion scores are correlated with PI-RADS scoring. This nomogram was evaluated in a retrospective review of an AS clinical trial. The initial mpMRI of 85 patients was scored and correlated to repeat biopsy outcomes, 25 of which had grade group progression on repeat biopsy. The use of this nomogram could spare 27–68% of AS patients a routine surveillance biopsy with a 71–97% sensitivity and 81–91% NPV. Another research team evaluated a similar nomogram to decrease the need for initial FB, which factored MRI suspicion scores, PSA-D, total lesion density, and number of days between biopsies. This test was compared to and outperformed the predictive power of PSA alone.25

Adjunctive studies. It is evident that patients with negative mpMRI’s and negative FB’s remain at risk of grade reclassification. Two adjunctive data points that have been associated with increased probability of upgrading include higher PSA-D and the urine biomarker SelectMDx. A retrospective study of 389 patients who underwent AS and had at least one follow-up biopsy evaluated the ability of PI-RADS score and PSA-D to predict grade reclassification. The authors reported PSAD ≥ 0.20 ng/mL2 had OR = 2.45 (p=0.007) for predicting risk of reclassification, including patients with both negative and positive mpMRI. A prospective study of 125 men undergoing AS underwent mpMRI FB, transperineal saturation biopsy (30 cores), and post-digital rectal exam (DRE) urine collection for SelectMDx analysis. Abnormal SelectMDx improved the ability of mpMRI alone to predict grade reclassification; however, together, they did not perform as well as FB + saturation biopsy in identifying
Radiologic progression has been defined as increased suspicion score, lesion diameter, intensity of diffusion restriction of the lesion or number of lesions on mpMRI.20,24,37 Table 5 depicts median follow-up and PFS for all relevant studies. The studies in this review suggest radiologic progression is not predictive of grade-group progression. Hsiang \textit{et al.} performed a retrospective analysis on 122 patients undergoing AS to evaluate the ability of serial mpMRI’s to predict pathological upgrading. Patients had at least two consecutive mpMRI’s obtained annually (median time between biopsies 13.5 months) followed by FB plus SB. About 44.3\% of men demonstrated radiologic progression including doubling of volume of the index lesion, increase in PI-RADS score, and/or increase in number of lesions. Only 12 of 54 with radiological progression had pathological progression, of which 17\% were found on SB only. The reported sensitivity and specificity for the ability of mpMRI to predict pathological progression were 41.3\% and 54.8\%, respectively.30 Another retrospective study of 58 men undergoing AS who had initial SB and FB and underwent subsequent mpMRI with SB and FB (median follow-up 16.1 months), 29.3\% had radiological progression and 9 of 17 had pathological progression, resulting in a similar sensitivity and specificity to the prior mentioned study of 53\% (95\% CI: 0.28–0.77) and 80\% (95\% CI: 0.65–0.91), respectively. Of the 41 stable mpMRI’s, 33 had a stable grade group on SB plus FB, with 20\% of men with stable mpMRI’s having pathological progression. The number needed to biopsy to detect 1 Gleason progression if only patients who had radiological progression underwent biopsy was 2.9 for FB and 8.74 for SB (\(p < 0.02\)).20 Using the PRECISE scoring system, however, improves the ability to avoid repeat biopsies in patients with PRECISE score \(\leq 3\); eliminating repeat biopsy in the 109 patients who had stable mpMRI’s, only 3.7\% would have missed pathological progression to \(\geq GG3\) disease at 2 years follow-up.37 Of note, there were no reported differences in the power of the magnet used, presence of endorectal coil, and experience of the centralized genitourinary radiologists between the latter two studies.

\textbf{Discussion}

This review demonstrates mpMRI with FB at time of AS enrollment significantly reduces the rate of upgrading and subsequently the rate of disqualification from AS. mpMRI also improves PFS on AS. Approximately 50\% of men can expect to be upgraded with the use of FB after diagnosis with SB.42,43 Multiple studies strongly suggest an imperative role of mpMRI plus FB at time of AS enrollment and should be performed in all men who are AS candidates. This is further confirmed by examining the AS failure rate at a 2-year follow-up period of the ASIST trial, a prospective multicenter trial randomizing men eligible for AS to confirmatory biopsy with SB versus mpMRI plus FB. Klotz \textit{et al.}44 reports that compared to the SB group, the mpMRI plus FB group had a 50\% reduction in the rate of AS failure. The majority of csPCa missed on prior SB are located in anterior or apical regions.45 Furthermore, in patients eligible for AS undergoing RP, apical involvement of the tumor increased the risk of upstaging on final pathology.46 mpMRI mitigates this risk by identifying apical lesions that otherwise would have been missed on SB.47 In addition, the number of biopsy cores obtained at confirmatory and repeated evaluations has been shown to improve selection of men with very-low-risk PCa. Pepe \textit{et al.} performed a prospective AS trial performing both saturation biopsy (range 24–32 cores) and FB (if indicated) during confirmatory and repeat biopsies and cite a reclassification rate of only 5.4\% 3 years from diagnosis.48 Clearly increasing the area of sampling increases the likelihood of finding clinically significant disease.
Table 5. Radiologic and pathologic progression cited for all relevant studies.

Study	Median length of follow-up (months) (IQR)	n progression on MRI (%)	n histologic progression (%)	Sensitivity/specificity/NPV/PPV for progression on MRI in f/u	Progression-free survival
Diaz et al.	16.1 (12–56)	17/58	17/58	80% [CI: 0.65–0.91]; 53% [CI: 0.28–0.77]	NA
Frye et al.	Mean: 25.5 [3.2–96.4]	(64.5)	Histologic progression with stable mpMRI: (20.8)	77.6% sensitivity; 40.5% specificity; 81% NPV; 35% PPV	Intermediate risk: 1.5 year (IQR 1.2–2.1); low risk: 2.1 year (IQR 1.2–4.0)
Lai et al.	NA	NA	NA	Sensitivity 80%; specificity 81.25%; NPV 92.86%; PPV 57.1%	NA
Bloom et al.	NA	NA	NA	NA	NA
Dieffenbacher et al.	48	NA	SB: minor upgrading in 60; major upgrading in 17; FB: minor upgrading in 15; major upgrading in 0	NA	NA
Bloom et al.	NA	NA	NA	AA: 59.7 months; Non-AA: 60.5 months (p = 0.26)	NA
Hsiang et al.	NA	54 [44.3]	NA	NA	NA
Pepe et al.	NA	PIRADS ≥ 3 in 4/9 cases [44.4]	NA	66.6% sensitivity; 87.7% specificity; 92.3% NPV, 54.5% PPV	NA
Tosoian et al.	VLR: 68 [31–109]; LR: 37 [14–74]	NA	NA	NA	NA
Liss et al.	4.1 years [2.0–7.6]	NA	NA	Negative mpMRI NPV: 83% [95% CI 76–90]; positive mpMRI PPV: 31% [95% CI 26–37]	NA
Ullrich et al.	NA	NA	NA	100% sensitivity; 42% specificity; 100% NPV; 66% PPV	NA
Caglic et al.	Overall progression: 41 (13.9)	NA	NA	PRECISE SCORE ≥ 4: 75.6% sensitivity; 88.6% specificity	82.2% at 5 years
O’Connor et al.	35.6 [19.7–60.6]	NA	NA	GG1 to GG2: sensitivity 0.53 (0.44–0.61); NPV 0.76 (0.71–0.81); GG1 to GG3: sensitivity 0.65 (0.50–0.80); NPV 0.9 (0.91 to 0.96); GG2 to GG3: sensitivity 0.67 (0.53–0.80); NPV 0.86 (0.78–0.92)	NA

CI, confidence interval; FB, fusion biopsy; GG, grade group; IQR, interquartile range; mpMRI, multi-parametric magnetic resonance imaging; MRI, magnetic resonance imaging; NA, not available; NPV, negative predictive value; PI-RADS, Prostate Image Reporting and Data System; PPV, Positive Predictive Value; PRECISE, Prostate Cancer Radiologic Estimation of Change in Sequential Evaluation; SB, systematic biopsy; VLR, Very Low Risk.

Given the current studies, the use of mpMRI to eliminate the need for follow-up biopsies is not supported. While mpMRI progression is associated with increased risk of pathological progression, and stable mpMRI is associated with a stable grade group, failing to biopsy patients with...
stable mpMRI’s will miss progression in approximately 20% of men. Other reports suggest approximately 10% of negative mpMRI’s harbor csPCa.\(^7\) Factors found to be predictive of upstaging in this study include higher PI-RADS score, PSA-D, older age, the size of lesion on imaging, and the volume of disease on biopsy. The median number of lesions identified on mpMRI was 2 (IQR 1.7–2.3) and the median number of biopsy cores obtained was 16 (IQR 14.7–17.5). Adjunctive nomograms such as the PRECISE score may be beneficial in grading radiological progression. Other nomograms such as PSA-D and SelectMDx have promising results to prevent need for further biopsy; however, they are currently utilized for the initial diagnostic stage, where mpMRI FB has already demonstrated itself to be imperative in the appropriate selection for AS. Further studies and longer follow-up are needed to test nomograms that may prevent the need for repeat surveillance biopsies and decrease the likelihood of missing pathological progression.

Further hindering use of serial mpMRI’s is cost. In a cost-analysis, mpMRI-based surveillance every 5 years improved survival by 4.47 quality-adjusted months and was cost-effective. At more frequent intervals, Sathianathen \textit{et al.}\(^4\) reported incremental cost-effectiveness ratios >800,000 USD per quality-adjusted life year. To optimize cost, longer AS protocol follow-up with increased intervals between serial mpMRI’s should be further evaluated.

There is little controversy surrounding the ability of mpMRI FB to increase the detection of csPCa compared to SB alone, and our findings are similar to Schoots \textit{et al.}\(^5\) Data support that mpMRI FB has an imperative role in selecting patients for AS and should be performed at the beginning of enrollment in all patients eligible for AS. More studies are needed in how to best incorporate mpMRI fusion data such as number of cores positive, percent core involvement, and lesion volume into selection criteria. With improved detection of clinically significant cancer, expanding criteria to include low volume GG2 disease would increase the number of men potentially eligible for AS. How to best follow these men and what triggers to use to proceed with definitive treatment remain active topics of study and debate. New imaging technology such as Prostate-Specific Membrane Antigen-targeted positron emission tomography-computed tomography (PSMA PET/CT) scans will undoubtedly be studied to try and enhance detection and progression in men on AS. In fact, one study suggests that PSMA PET/CT standardized uptake values (SUVs) were able to predict adverse pathology at the time of RP, and thus may be useful in determining AS candidacy and detection of disease progression.\(^5\)

Several limitations to this review include the small sample size, retrospective nature of some, and shorter follow-up for many of the studies. Furthermore, many studies were performed prior to the adoption of PI-RADS v2, and while the authors report their scoring systems correlate with the PI-RADS v2 system, the results may not be valid to today’s practice. In addition, the studies may not be generalizable because many report outcomes from tertiary centers, and all radiographic and pathologic analysis were performed by specialized genitourinary radiologists and pathologists, respectively, at centralized locations. Limitations of the review process include only one author extracting data and performing a bias assessment.

Conclusion

mpMRI FB in conjunction with SB more accurately selects patients for AS. mpMRI should additionally be used routinely for follow-up; however, mpMRI is not currently sensitive enough in detecting disease progression to replace biopsy in the surveillance protocol.

Declarations

\textit{Ethics approval and consent to participate}
Not applicable.

\textit{Consent for publication}
Not applicable.

\textit{Author contributions}
Elizabeth E. Ellis: Conceptualization; Data curation; Formal analysis; Investigation; Methodology; Writing – original draft; Writing – review & editing.
Thomas P. Frye: Conceptualization; Data curation; Formal analysis; Project administration; Supervision; Validation; Visualization; Writing – review & editing.

\textit{Acknowledgements}
None.
Funding
The authors received no financial support for the research, authorship, and/or publication of this article.

Competing interests
The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Availability of data and materials
Not applicable.

ORCID iD
Elizabeth E. Ellis https://orcid.org/0000-0001-8998-5675

References
1. Auffenberg GB, Lane BR, Linsell S, et al. Practice- vs physician-level variation in use of active surveillance for men with low-risk prostate cancer: implications for collaborative quality improvement. JAMA Surg 2017; 152: 978–980.

2. Klotz L, Loblaw A, Sugar L, et al. Active surveillance magnetic resonance imaging study (ASIST): results of a randomized multicenter prospective trial. Eur Urol 2019; 75: 300–309.

3. Sanda MG, Cadeddu JA, Kirkby E, et al. Clinically localized prostate cancer: AUA/ASTRO/SUO guideline. Part I: risk stratification, shared decision making, and care options. J Urol 2018; 199: 683–690.

4. Mottet N, van den Bergh RC, Briers E, et al. EAU-EANM-ESTRO-ESUR-SIOG guidelines on prostate cancer-2020 update. Part 1: screening, diagnosis, and local treatment with curative intent. Eur Urol 2021; 79: 243–262.

5. Remzi M, Fong YK, Dobrovits M, et al. The Vienna nomogram: validation of a novel biopsy strategy defining the optimal number of cores based on patient age and total prostate volume. J Urol 2005; 174: 1256–1260; discussion 1260–1261; author reply 1261.

6. Ahmed HU, Hu Y, Carter T, et al. Characterizing clinically significant prostate cancer using template prostate mapping biopsy. J Urol 2011; 186: 458–464.

7. Itatani R, Namimoto T, Atsuji S, et al. Negative predictive value of multiparametric MRI for prostate cancer detection: outcome of 5-year follow-up in men with negative findings on initial MRI studies. Eur J Radiol 2014; 83: 1740–1745.

8. Higgins JPT, Thomas J, Chandler J, et al. (eds) Cochrane Handbook for Systematic Reviews of Interventions version 6.1 [updated September 2020]. Cochrane, 2020, www.training.cochrane.org/handbook.

9. Sterne JAC, Hernán MA, Reeves BC, et al. ROBINS-I: a tool for assessing risk of bias in non-randomized studies of interventions. BMJ 2016; 355: i4919.

10. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021; 372: n71.

11. Pepe P, Cimino S, Garufi A, et al. Confirmatory biopsy of men under active surveillance: extended versus saturation versus multiparametric magnetic resonance imaging/transrectal ultrasound fusion prostate biopsy. Scand J Urol 2017; 51: 260–263.

12. Tyson MD, Arora SS, Scarpato KR, et al. Magnetic resonance-ultrasound fusion prostate biopsy in the diagnosis of prostate cancer. Urol Oncol 2016; 34: 326–332.

13. Tosoian JJ, Mamawala M, Epstein JL, et al. Active surveillance of grade group 1 prostate cancer: long-term outcomes from a large prospective cohort. Eur Urol 2020; 77: 675–682.

14. Schiavina R, Droghetti M, Novara G, et al. The role of multiparametric MRI in active surveillance for low-risk prostate cancer: the ROMAS randomized controlled trial. Urol Oncol 2021; 39: 433.e1–433.e7.

15. Stamatakis L, Siddiqui MM, Nix JW, et al. Accuracy of multiparametric magnetic resonance imaging in confirming eligibility for active surveillance for men with prostate cancer. Cancer 2013; 119: 3359–3366.

16. Siddiqui MM, Truong H, Rais-Bahrami S, et al. Clinical implications of a multiparametric magnetic resonance imaging based nomogram applied to prostate cancer active surveillance. J Urol 2015; 193: 1943–1949.

17. Hu JC, Chang E, Natarajan S, et al. Targeted prostate biopsy in select men for active surveillance: do the Epstein criteria still apply? J Urol 2014; 192: 385–390.

18. Da Rosa MR, Milot L, Sugar L, et al. A prospective comparison of MRI-US fused targeted biopsy versus systematic ultrasound-guided biopsy for detecting clinically significant prostate cancer in patients on active surveillance. J Magn Reson Imaging 2015; 41: 220–225.

19. Abdi H, Pourmalek F, Zargar H, et al. Multiparametric magnetic resonance imaging enhances detection of significant tumor in
patients on active surveillance for prostate cancer. *Urology* 2015; 85: 423–428.

20. Walton Diaz A, Shakir NA, George AK, et al. Use of serial multiparametric magnetic resonance imaging in the management of patients with prostate cancer on active surveillance. *Urol Oncol* 2015; 33: 202.e1–202.e7.

21. Kamrava M, Kishan AU, Margolis DJ, et al. Multiparametric magnetic resonance imaging for prostate cancer improves Gleason score assessment in favorable risk prostate cancer. *Pract Radiat Oncol* 2015; 5: 411–416.

22. Ma TM, Tosoian JJ, Schaeffer EM, et al. The role of multiparametric magnetic resonance imaging/ultrasound fusion biopsy in active surveillance. *Eur Urol* 2017; 71: 174–180.

23. Tran GN, Leapman MS, Nguyen HG, et al. Magnetic resonance imaging-ultrasound fusion biopsy during prostate cancer active surveillance. *Eur Urol* 2017; 72: 275–281.

24. Frye TP, George AK, Kilchevsky A, et al. Magnetic resonance imaging-transrectal ultrasound guided fusion biopsy to detect progression in patients with existing lesions on active surveillance for low and intermediate risk prostate cancer. *J Urol* 2017; 197: 640–646.

25. Lai WS, Gordetsky JB, Thomas JV, et al. Factors predicting prostate cancer upgrading on magnetic resonance imaging-targeted biopsy in an active surveillance population. *Cancer* 2017; 123: 1941–1948.

26. Borkowetz A, Renner T, Platzek I, et al. Evaluation of magnetic resonance imaging/ultrasound-fusion biopsy in patients with low-risk prostate cancer under active surveillance undergoing surveillance biopsy. *Urol Int* 2018; 100: 155–163.

27. Bloom JB, Hale GR, Gold SA, et al. Predicting Gleason group progression for men on prostate cancer active surveillance: role of a negative confirmatory magnetic resonance imaging-ultrasound fusion biopsy. *J Urol* 2019; 201: 84–90.

28. Dieffenbacher S, Nyarangi-Dix J, Giganti F, et al. Standardized magnetic resonance imaging reporting using the prostate cancer radiological estimation of change in sequential evaluation criteria and magnetic resonance imaging/transrectal ultrasound fusion with transperineal saturation biopsy to select men on active surveillance. *Eur Urol Focus* 2021; 7: 102–110.

29. Bloom JB, Lebastchi AH, Gold SA, et al. Use of multiparametric magnetic resonance imaging and fusion-guided biopsies to properly select and follow African-American men on active surveillance. *BJU Int* 2019; 124: 768–774.

30. Hsiang W, Ghabili K, Syed JS, et al. Outcomes of serial multiparametric magnetic resonance imaging and subsequent biopsy in men with low-risk prostate cancer managed with active surveillance. *Eur Urol Focus* 2021; 7: 47–54.

31. Liss MA, Newcomb LF, Zheng Y, et al. Magnetic resonance imaging for the detection of high grade cancer in the canary prostate active surveillance study. *J Urol* 2020; 204: 701–706.

32. Roscigno M, Stabile A, Lughezzani G, et al. The use of multiparametric magnetic resonance imaging for follow-up of patients included in active surveillance protocol. Can PSA density discriminate patients at different risk of reclassification? *Clin Genitourin Cancer* 2020; 18: e698–e704.

33. Ullrich T, Arsov C, Quentin M, et al. Multiparametric magnetic resonance imaging can exclude prostate cancer progression in patients on active surveillance: a retrospective cohort study. *Eur Radiol* 2020; 30: 6042–6051.

34. Röthlin K, Zamboni S, Moschini M, et al. Multiparametric magnetic resonance imaging ultrasound-guided fusion biopsy during active surveillance: a single-centre study. *Arab J Urol* 2020; 18: 142–147.

35. Caglic I, Sushentsev N, Gnanapragasam VJ, et al. MRI-derived PRECISE scores for predicting pathologically-confirmed radiological progression in prostate cancer patients on active surveillance. *Eur Radiol* 2021; 31: 2696–2705.

36. Roscigno M, Stabile A, Lughezzani G, et al. Multiparametric magnetic resonance imaging and clinical variables: which is the best combination to predict reclassification in active surveillance patients? *Prostate Int* 2020; 8: 167–172.

37. O’Connor LP, Wang AZ, Yerram NK, et al. Changes in magnetic resonance imaging using the prostate cancer radiologic estimation of change in sequential evaluation criteria to detect prostate cancer progression for men on active surveillance. *Eur Urol Oncol* 2021; 4: 227–234.

38. Williams C, Khondakar NR, Daneshvar MA, et al. The risk of prostate cancer progression in active surveillance patients with bilateral disease detected by combined magnetic resonance imaging-fusion and systematic biopsy. *J Urol* 2021; 206: 1157–1165.

39. Okoro C, George AK, Siddiqui MM, et al. Magnetic resonance imaging/transrectal ultrasonography fusion prostate biopsy significantly outperforms systematic 12-core biopsy for prediction of total magnetic resonance imaging.
imaging tumor volume in active surveillance patients. *J Endourol* 2015; 29: 1115–1121.

40. Eure G, Fanney D, Lin J, et al. Comparison of conventional transrectal ultrasound, magnetic resonance imaging, and micro-ultrasound for visualizing prostate cancer in an active surveillance population: a feasibility study. *Can Urol Assoc J* 2019; 13: E70–E77.

41. Pepe P, Dibenedetto G, Pepe L, et al. Multiparametric MRI versus SelectMDx accuracy in the diagnosis of clinically significant PCa in men enrolled in active surveillance. *In Vtico* 2020; 34: 393–396.

42. Wysock JS, Mendhiratta N, Zattoni F, et al. Predictive value of negative 3T multiparametric magnetic resonance imaging of the prostate on 12-core biopsy results. *BJU Int* 2016; 118: 515–520.

43. Pokorny MR, De Rooij M, Duncan E, et al. Prospective study of diagnostic accuracy comparing prostate cancer detection by transrectal ultrasound-guided biopsy versus magnetic resonance (MR) imaging with subsequent MR-guided biopsy in men without previous prostate biopsies. *Eur Urol* 2014; 66: 22–29.

44. Klotz L, Pond G, Loblaw A, et al. Randomized study of systematic biopsy versus magnetic resonance imaging and targeted and systematic biopsy in men on active surveillance (ASIST): 2-year postbiopsy follow-up. *Eur Urol* 2020; 77: 311–317.

45. Boesen L, Nørgaard N, Løgager V, et al. Where do transrectal ultrasound- and magnetic resonance imaging-guided biopsies miss significant prostate cancer? *Urology* 2017; 110: 154–160.

46. Verep S, Erdem S, Ozluk Y, et al. The pathological upgrading after radical prostatectomy in low-risk prostate cancer patients who are eligible for active surveillance: how safe is it to depend on biopsy pathology? *Prostate* 2019; 79: 1523–1529.

47. Nix JW, Turkbey B, Hoang A, et al. Very distal apical prostate tumours: identification on multiparametric MRI at 3 Tesla. *BJU Int* 2012; 110: E694–E700.

48. Pepe P, Pepe L, Pennisi M, et al. Which prostate biopsy in men enrolled in active surveillance? Experience in 110 men submitted to scheduled three-years transperineal saturation biopsy combined with fusion targeted cores. *Clin Genitourin Cancer* 2021; 19: 305–308.

49. Sathianathen NJ, Konety BR, Alarid-Escudero F, et al. Cost-effectiveness analysis of active surveillance strategies for men with low-risk prostate cancer. *Eur Urol* 2019; 75: 910–917.

50. Schoots IG, Petrides N, Giganti F, et al. Magnetic resonance imaging in active surveillance of prostate cancer: a systematic review. *Eur Urol* 2015; 67: 627–636.

51. Roberts MJ, Morton A, Donato P, et al. (68) Ga-PSMA PET/CT tumour intensity pre-operatively predicts adverse pathological outcomes and progression-free survival in localised prostate cancer. *Eur J Nucl Med Mol Imaging* 2021; 48: 477–482.