Thermal expansion coefficient of few-layer MoS$_2$ studied by temperature-dependent Raman spectroscopy

Zhongtao Lin1,2, Wuguo Liu1,3, Shibing Tian1, Ke Zhu1, Yuan Huang1,2*, Yang Yang1,2*

The thermal expansion coefficient is an important thermal parameter that influences the performance of nanodevices based on two-dimensional materials. To obtain the thermal expansion coefficient of few-layer MoS$_2$, suspended MoS$_2$ and supported MoS$_2$ were systematically investigated using Raman spectroscopy in the temperature range from 77 to 557 K. The temperature-dependent evolution of the Raman frequency shift for suspended MoS$_2$ exhibited prominent differences from that for supported MoS$_2$, obviously demonstrating the effect due to the thermal expansion coefficient mismatch between MoS$_2$ and the substrate. The intrinsic thermal expansion coefficients of MoS$_2$ with different numbers of layers were calculated. Interestingly, negative thermal expansion coefficients were obtained below 175 K, which was attributed to the bending vibrations in the MoS$_2$ layer during cooling. Our results demonstrate that Raman spectroscopy is a feasible tool for investigating the thermal properties of few-layer MoS$_2$ and will provide useful information for its further application in photoelectronic devices.

Two-dimensional (2D) transition metal dichalcogenides (TMDs), especially monolayer 2D TMDs, have attracted enormous attention in the past decade because of not only their striking physical properties1,2 but also their potential applications in electronic, photonic and thermoelectric devices$^{3-6}$. However, obtaining large-area single crystalline monolayer 2D TMDs is still challenging, hindering their applications in devices. Compared with monolayer 2D TMDs, few-layer 2D TMDs are much easier to achieve by physical or chemical methods. In recent years, few-layer 2D TMDs have received increasing attention due to their interesting physical properties and applications in electronic and optoelectronic devices$^{7-11}$. Neri and coauthors reported the strain induced semiconductor-metal transition in few-layer MoS$_2$7. High-speed vertical photodiodes based on few-layer MoS$_2$ have been fabricated using asymmetric metal contacts, exhibiting an external quantum efficiency of up to 7%9. A simple few-layer MoS$_2$-based photodetector employing vertical Schottky junctions of Au-MoS$_2$-indium tin oxide (ITO) was proposed by Gong et al.11. It has been demonstrated that the physical properties of MoS$_2$ can be significantly affected by the interactions between MoS$_2$ and the substrate, which causes strain, doping and defects$^{12-16}$. One of the prominent substrate effects is the strain created on the MoS$_2$ layer due to the difference in binding energies and the lattice mismatch between the substrate and MoS$_2$. Additionally, the electronic structure of MoS$_2$ can be modulated by external strain, and the PL emission of MoS$_2$ will change as a result$^{16-18}$. The self-heating effect occurs while a device is working under a current flow or light irradiation, so the thermal properties of few-layer MoS$_2$ are important criteria that affect the performance of related electronic and optical devices. For example, the thermoelectric energy conversion ability of MoS$_2$ is related to the low thermal conductivity19, whereas high performance of electronic devices requires high thermal conductivity20. Alongside the thermal conductivity and thermal transport properties, the thermal expansion coefficient is another important thermal property of MoS$_2$. The thermal expansion coefficient (TEC) mismatch between the substrate and MoS$_2$ introduces additional internal strain to the MoS$_2$ layer. Consequently, the optical and electronic performances of MoS$_2$ devices supposedly change due to the thermal strain. Therefore, clear insight into the TEC of

1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P.O Box 603, Beijing 100190, People’s Republic of China. 2Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, People’s Republic of China. 3Department of Materials Science and Engineering, and State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum Beijing, No. 18 Fuxue Rd., Beijing 102249, People’s Republic of China. *email: yhuang01@iphy.ac.cn; yang.yang@iphy.ac.cn
MoS₂, especially the TEC mismatch between MoS₂ and the substrate, is a key for studying the thermal stability and intrinsic optical properties of few-layer MoS₂-based devices.

Raman spectroscopy has been demonstrated to be a versatile tool for investigating 2D TMDs. In the past decade, the temperature effects on the Raman modes of 2D TMDs have been widely investigated. However, the temperature behaviors of the Raman peaks of TMDs are still controversial. Some researchers reported that the peak positions varied linearly with increasing temperature. Late et al. reported that both monolayer and few-layer MoSe₂ and WSe₂ exhibit a linear temperature dependence. A linear temperature dependence of Raman modes was also observed in monolayer Mo₁₋ₓWₓS₂. In recent years, some studies have demonstrated that the temperature dependence of the Raman peak positions for TMDs can be fitted by a nonlinear function.

Su and coauthors employed temperature-dependent Raman spectroscopy to study the substrate bonding effects on MoS₂ and WS₂ and expressed the temperature dependence of Raman modes using a third-order polynomial function. Although the reported temperature dependences of Raman modes for 2D TMDs differ, the TEC mismatch between TMDs and substrates is widely accepted to play an important role in the temperature evolution of Raman modes. To eliminate the substrate effects, suspended TMDs have been used to study the intrinsic properties of TMDs in recent years. Two-ten times improvement of the mobility and on/off ratio was observed in suspended monolayer MoS₂. The elastic coefficients, including the 2D elastic modulus and Young's modulus, were obtained for suspended multilayer WSe₂. Moreover, the intrinsic thermal conductivity has been investigated for monolayer and few-layer MoS₂. However, to our knowledge, the TEC mismatch effect in few-layer MoS₂ has not been systematically studied, and the intrinsic TEC of few-layer MoS₂ has not yet been obtained.

In this work, suspended MoS₂ and supported few-layer (2–6 layer) MoS₂ was comprehensively investigated using Raman spectroscopy in the temperature range from 77 to 557 K. The temperature dependence of suspended MoS₂ exhibited different trends from that of supported few-layer MoS₂, which could be attributed to the TEC mismatch between MoS₂ and the substrate. Moreover, the temperature dependence of the Raman modes varied with the number of layers. Removing the substrate effect by adopting suspended MoS₂ as a freestanding MoS₂, the intrinsic TECs of few-layer MoS₂ was obtained. Prominent differences between our results and previous reports were observed and discussed in detail.

Results and discussion

The suspended and supported samples were fabricated by transferring MoS₂ with 2–6 layers onto microholes, which were prepared using a modified mechanical exfoliation method (see "Methods"). Figure 1a presents the optical microscopy image of suspended 2-layer MoS₂ as an example.

Raman spectra were collected using a confocal micro-Raman spectrometer (Horiba Evolution) under back-scattering geometry, as exhibited in Fig. 1b. Figure 2 presents the room-temperature Raman spectra of suspended and supported few-layer MoS₂, which exhibit the typical spectral features of MoS₂ previously reported. Two high frequency peaks appear at approximately 380 cm⁻¹ and 405 cm⁻¹, originating from the lattice vibration of bulk MoS₂. Due to the crystalline symmetry changes between bulk, monolayer and few-layer MoS₂, the symmetric representations of these two Raman modes are different. For convenience, these two modes are identified as the E₁₆ and A₁₅ modes, respectively, following the assignments for bulk MoS₂. The bulk-vibrational Raman modes shift to higher positions with increasing number of layers. In recent years, ultraslow frequency (ULF) Raman spectroscopy has attracted the interest of more researchers because of its demonstrated to be a feasible tool for investigating the interlayer vibrational modes of TMDs. The ULF Raman peaks originate from the in-plane (shear) and out-of-plane (breathing) vibrations of MoS₂, which have been used to identify the number of MoS₂ layers. The sharp peak is denoted as a shear mode (S₁), while the broad peak is assigned as a breathing mode (B₁). As shown in Fig. 2. Notably, the signal-to-noise ratio (SNR) of the Raman peaks, especially the ULF Raman peaks, of suspended MoS₂ is much better than that of supported MoS₂, and more detailed spectral information can be clearly seen. Both the S₁ and B₁ modes are clearly observed on suspended MoS₂, whereas only the S₁ mode is detected on supported MoS₂. The MoS₂ layer is pinned on the substrate through van der Waals forces. The dielectric environment created from by the substrate may have effect on the local electromagnetic field due to the multiple reflection inside the monolayer. The enhanced Raman signal of the suspended MoS₂ can be attributed to the isolation from the substrate effect. Moreover, the E₁₆ mode for the supported 2L MoS₂ is asymmetric, as shown in Fig. 2b. As Mignuzzi et al. reported, defects could induce not only an asymmetric line shape but also...
Raman peaks arising from zone-edge phonon modes. In our work, no additional peak was observed in the spectrum for supported 2L MoS$_2$, suggesting that the strain is the dominant effect rather than defects. The E$_{2g}$ mode of monolayer MoS$_2$ has been demonstrated to split into two singlets as the external strain is increased. As presented in Fig. S1b, the E$_{2g}$ mode can be well fitted using two peaks, which can be attributed to the strain introduced by the substrate-MoS$_2$ interaction. We assume that the substrate-induced strain is the same for all the supported MoS$_2$ flakes. Therefore, the strain effect on the supported 2L MoS$_2$ is the most obvious because 2L MoS$_2$ is thinner than the other samples.

To deeply investigate the substrate effect, supported MoS$_2$ and suspended few-layer MoS$_2$ were studied in the temperature range of 77 K–557 K, and the results are displayed in Fig. 3. Prominent redshift and broadening of Raman peaks are noted for both suspended and supported MoS$_2$ with increasing temperature, as exhibited in Fig. 3. These phenomena can be attributed to the thermal expansion of the crystal lattice of MoS$_2$.

To obtain deeper insight into the difference between suspended and supported MoS$_2$, the Raman spectra were deconvoluted using a Lorentz/Gaussian mixed function. The peak positions of the E$_{2g}$ and A$_{1g}$ modes are plotted as a function of temperature in one figure for comparison. Figure 4 exhibits the fitting results for supported and suspended MoS$_2$, in which several remarkable phenomena should be addressed, as discussed below.

First, the temperature-dependent evolutions of the supported MoS$_2$ samples are similar, varying approximately linearly with increasing temperature at first sight. This suggests that the substrate effect is exerted on the MoS$_2$ flakes as a whole, although the substrate is only in direct contact with the bottom layer of a MoS$_2$ flake. The mechanically exfoliated MoS$_2$ layer is transferred and pinned on the substrate by the van der Waals force. As the temperature changes, the biaxial tensile or compressive stress induced by the TEC mismatch increases and becomes a prominent factor that modulates the frequency shift of Raman peaks. In addition to TEC mismatch, charge transfer between the film and the substrate or through interfacial states can impact the temperature evolution of Raman peak. As Su et al. discussed that accelerated redshift of A$_{1g}$ mode with increasing temperature is associated with the enhanced charge injection from the substrate into the film and decomposition of adsorbed contaminants.

Second, the temperature-dependent evolutions of suspended MoS$_2$ are very different from those of supported MoS$_2$, exhibiting nonlinear behavior with increasing temperature. Moreover, the temperature dependence trends for the different suspended MoS$_2$ samples differ. As discussed previously, the TEC mismatch gives rise to a Raman shift with increasing temperature. However, suspended MoS$_2$ at least the part on the hole, is free of the substrate effect, suggesting that its Raman shift only originates from lattice expansion. Compared with the temperature dependence of supported MoS$_2$, suspended few-layer MoS$_2$ exhibits the intrinsic thermal properties of MoS$_2$, as expected.

Third, the peak positions of supported MoS$_2$ are higher than those of suspended MoS$_2$ at each temperature, suggesting that the TEC mismatch induced compression of the crystalline lattice in supported MoS$_2$. That the larger attached area of supported MoS$_2$ compared with suspended MoS$_2$ would introduce more strain into the

![Figure 2: Raman spectra of (a) supported and (b) suspended MoS$_2$ with different numbers of layers collected at room temperature.](image-url)
MoS₂ layer is easy to explicate. As demonstrated previously, the strain in the MoS₂ layer is due to the TEC mismatch between the SiO₂ substrate and MoS₂.

The results shown in Fig. 4 demonstrate that the TEC of MoS₂ is strongly correlated with the number of layers, which can only be obviously exhibited after isolating it from the substrate effect.

Then, the peak positions of MoS₂ were fitted as a function of temperature to obtain the regularities of the temperature dependence of the peak positions. First, a linear function was employed to fit temperature evolution Raman peaks for the supported and suspended MoS₂ samples (see Fig. S2). The temperature evolution of Raman peaks for the supported MoS₂ shows a nearly linear behavior as a function of temperature. But there is a small deviation between the experimental results and fitting curve, as exhibited in Fig. S2. On the other hand, the temperature evolution for the suspended MoS₂ cannot be well fitted using a linear function, in which large discrepancies between the linearly fitted curves and experimental results are observed. According to previous literatures, the anharmonic effect caused by the phonon–phonon coupling leads to the nonlinear temperature-dependent behavior of the Raman peaks.

Figure 3. Raman spectra of (a–e) supported and (f–g) suspended few-layer MoS₂ for different temperatures.

Figure 4. Temperature dependence of peak positions of the (a–e) E₂g and (f–j) A₁g modes for the suspended and supported MoS₂ with different numbers of layers. The blue spheres and red spheres represent the experimental results of supported and suspended MoS₂, respectively. The blue lines and red lines are the fitting results obtained using a second-order polynomial function of temperature.
the experimental results for the supported and suspended MoS2, compared with the linear curves. Remarkably, the parameter \(\chi_2 \) shift faster in the low temperature range (< 350 K) than in the high temperature range (> 350 K). Therefore, the ported MoS2 originates from the TEC mismatch between the substrate and MoS2. Taking advantage of the results as a result, the temperature evolutions of the Raman peaks of the suspended and supported 6L MoS2 samples can be commonly attributed to the thermal expansion of the lattice (\(\Delta \omega_{E2g}(T) \)) and the anharmonic effect (\(\Delta \omega_A(T) \)), which changes the phonon self-energy.\(^{41} \) \(\Delta \omega_{MoS2}(T) \) can be expressed as

\[
\Delta \omega_{MoS2}(T) = \Delta \omega_{E2g}(T) + \Delta \omega_A(T)
\]

\(\Delta \omega_{MoS2}(T) \) can be obtained using the peak position at \(T (\omega_{MoS2}(T)) \) subtracted by the peak position at \(T_0 = 300 \) K (\(\omega_{MoS2}(T_0) \)).

For the thermal behavior of the supported MoS2, both common thermal effects and strains induced by the TEC mismatch between the substrate and MoS2 must be considered. As a result, the frequency shifts of supported MoS2 can be written as

\[
\Delta \omega^S_{MoS2}(T) = \Delta \omega_{E2g}(T) + \Delta \omega_A(T) + \Delta \omega^S(T)
\]

E2g mode	A1g mode						
\(\omega_0 \)	\(\chi_1 \)	\(\chi_2 \)	\(\omega_0 \)	\(\chi_1 \)	\(\chi_2 \)		
2L	Sus	383.835	-0.024	2.249 \(\times 10^{-3} \)	406.271	-0.020	1.490 \(\times 10^{-5} \)
	Sup	384.812	-0.003	-1.153 \(\times 10^{-5} \)	406.550	-0.006	-6.557 \(\times 10^{-6} \)
3L	Sus	385.948	-0.029	2.622 \(\times 10^{-3} \)	409.181	-0.026	2.334 \(\times 10^{-5} \)
	Sup	384.995	-0.006	-8.833 \(\times 10^{-4} \)	408.843	-0.008	-5.139 \(\times 10^{-6} \)
4L	Sus	386.710	-0.033	2.280 \(\times 10^{-3} \)	410.519	-0.025	1.168 \(\times 10^{-5} \)
	Sup	384.884	-0.007	-7.127 \(\times 10^{-4} \)	409.096	-0.008	-4.157 \(\times 10^{-5} \)
5L	Sus	384.990	-0.019	5.616 \(\times 10^{-4} \)	408.667	-0.020	1.236 \(\times 10^{-5} \)
	Sup	384.214	-0.008	-1.384 \(\times 10^{-4} \)	409.105	-0.011	-5.266 \(\times 10^{-6} \)
6L	Sus	384.935	-0.013	-9.845 \(\times 10^{-4} \)	409.585	-0.012	-6.340 \(\times 10^{-5} \)
	Sup	385.099	-0.006	-8.738 \(\times 10^{-4} \)	409.719	-0.007	-5.627 \(\times 10^{-6} \)

Table 1. Temperature coefficients of the suspended and supported few-layer MoS2 samples with polynomial fitting to the second order.

Therefore, the polynomial function was adopted to fit the experimental results for the supported and suspended MoS2 samples instead of the linear function. All the temperature dependence trends of the E2g and A1g modes were fitted using a second-order polynomial function of temperature \(T \):

\[
\omega(T) = \omega_0 + \chi_1 T + \chi_2 T^2
\]

where \(\omega_0 \) is the frequency at 0 K and \(\chi_1 \) and \(\chi_2 \) are the first- and second-order temperature coefficients, respectively. The fitting results for supported and suspended MoS2 with the same thickness are plotted in Fig. 4 for comparison, and the fitting parameters are listed in Table 1. As shown in Fig. 4, the polynomial curves better fit the experimental results for the supported and suspended MoS2 compared with the linear curves. Remarkably, for the supported MoS2, the residual sum of square (RSS) for the polynomial fitting is much smaller than that for the linear fitting (see Table S1 in the Supplementary Information). This implies that the polynomial function is a better and more reasonable choice for fitting the temperature-evolution of the Raman shifts for the supported MoS2, although it exhibits an approximate linear trace.

As exhibited in Table 1, the fitting parameters for suspended MoS2 are very different from those for supported MoS2. The fitting parameter \(\chi_1 \) for suspended MoS2 is one order of magnitude larger than that for supported MoS2. Moreover, the fitting parameters exhibit a layer number dependence. As exhibited in Table 1, for the 2L–5L MoS2 samples, the \(\chi_2 \) of suspended MoS2 is positive, whereas the \(\chi_2 \) of supported MoS2 is negative. Interestingly, \(\chi_1 \) is negative for both suspended and supported 6L MoS2. This occurs because of the different temperature evolutions of 6L MoS2 and thinner MoS2. One can see in Fig. 4e and j that the peak positions for the 6L suspended MoS2 linearly shift to low frequency, similar as the peak evolution for the supported MoS2. Therefore, the fitting parameters for the curves are all negative. In contrast, the shift rates of the peak positions for the 2L–5L suspended MoS2 vary in different temperature ranges. As exhibited in Fig. 4a–d, the peak positions shift faster in the low temperature range (< 350 K) than in the high temperature range (> 350 K). Therefore, the parameter \(\chi_2 \) is positive to better fit the experimental results. The thermal stability of MoS2 strongly depends on the competition between the energy barriers introduced by the MoS2–substrate interface and by the MoS2–MoS2 interlayer interface.\(^{41} \) The few-layer MoS2 flake as a whole changes with increasing temperature, the influence of the intrinsic thermal expansion of MoS2 on the frequency shift increases as the number of layers increases. As a result, the temperature evolutions of the Raman peaks of the suspended and supported 6L MoS2 samples become similar. These results suggest that the thermal behavior of few-layer MoS2 become similar as that of bulk MoS2 with increasing thickness.

The results in Table 1 indicate that the discrepancy in the frequency shifts between the suspended and supported MoS2 originates from the TEC mismatch between the substrate and MoS2. Taking advantage of the results shown in Figs. 3, 4 and 5, the TEC of few-layer MoS2 can be obtained, and the details for the calculation of the TEC of few-layer MoS2 will be discussed in the following section.

As has been reported, the temperature-dependent Raman frequency shift (\(\Delta \omega_{MoS2}(T) \)) of freestanding MoS2 can be commonly attributed to the thermal expansion of the lattice (\(\Delta \omega_{E}(T) \)) and the anharmonic effect (\(\Delta \omega_A(T) \)), which changes the phonon self-energy.\(^{41} \) \(\Delta \omega_{MoS2}(T) \) can be expressed as

\[
\Delta \omega_{MoS2}(T) = \Delta \omega_{E}(T) + \Delta \omega_A(T)
\]

Therefore, the polynomial function was adopted to fit the experimental results for the supported and suspended MoS2, compared with the linear curves. Remarkably, the parameter \(\chi_2 \) shift faster in the low temperature range (< 350 K) than in the high temperature range (> 350 K). Therefore, the ported MoS2 originates from the TEC mismatch between the substrate and MoS2. Taking advantage of the results shown in Figs. 3, 4 and 5, the TEC of few-layer MoS2 can be obtained, and the details for the calculation of the TEC of few-layer MoS2 will be discussed in the following section.

As has been reported, the temperature-dependent Raman frequency shift (\(\Delta \omega_{MoS2}(T) \)) of freestanding MoS2 can be commonly attributed to the thermal expansion of the lattice (\(\Delta \omega_{E}(T) \)) and the anharmonic effect (\(\Delta \omega_A(T) \)), which changes the phonon self-energy.\(^{41} \) \(\Delta \omega_{MoS2}(T) \) can be expressed as

\[
\Delta \omega_{MoS2}(T) = \Delta \omega_{E}(T) + \Delta \omega_A(T)
\]

\(\Delta \omega_{MoS2}(T) \) can be obtained using the peak position at \(T (\omega_{MoS2}(T)) \) subtracted by the peak position at \(T_0 = 300 \) K (\(\omega_{MoS2}(T_0) \)).

For the thermal behavior of the supported MoS2, both common thermal effects and strains induced by the TEC mismatch between the substrate and MoS2 must be considered. As a result, the frequency shifts of supported MoS2 can be written as

\[
\Delta \omega^S_{MoS2}(T) = \Delta \omega_{E}(T) + \Delta \omega_A(T) + \Delta \omega^S(T)
\]
of MoS$_2$, the A$_{1g}$ mode not only closely depends on lattice variations, but also is related with the charge transfer from the
substrate to MoS$_2$. The electron doping effect can induce the frequency shifts of A$_{1g}$ mode due to the strong electron–phonon interaction46. Consult to previous literature, the E$_{2g}$ mode is not sensitive to the electron doping effect47,48. So it is assumed that the electron doping effect induced Raman shift of E$_{2g}$ mode did not change with temperature, or the changes can be neglected. For simplicity, the doping effect induced Raman shift of E$_{2g}$ mode is defined as a constant that is independent of temperature in this work. Thus, in the calculation of the temperature-induced lattice expansion/shrinkage of 2D MoS$_2$, the frequency shift induced Raman shift is subtracted as a constant. So that there are still three terms in Eq. (3) when the doping effect induced Raman shift is not taken into consideration. Therefore, the $\Delta \omega_{\text{MoS}_2}(T)$ of E$_{2g}$ mode was calculated and employed in the following equations.

The TEC mismatch-induced frequency shift can be obtained by subtracting the intrinsic frequency shift from the frequency shift of supported MoS$_2$,

$$\Delta \omega^S(T) = \Delta \omega_{\text{MoS}_2}^S(T) - \Delta \omega_{\text{MoS}_2}(T)$$ \hspace{1cm} (4)

To apply Eq. (4), the frequency shift of freestanding MoS$_2$ should be provided. However, real freestanding MoS$_2$ does not exist. Therefore, Raman frequency shifts from theoretical calculations or suspended TMDs have normally been employed as those of freestanding samples31,35. In this work, we assume that the strain induced by the substrate effect can be neglected in the center of the suspended MoS$_2$ layers, as the laser spot (1 μm) in the measurement is much smaller than the size of the hole (5 μm) below the suspended MoS$_2$. Therefore, the Raman shifts of suspended MoS$_2$ is adapt as the intrinsic frequency of freestanding MoS$_2$ in this work.

Based on above discussion, the TEC mismatch-induced frequency shift $\Delta \omega^S(T)$ for the supported MoS$_2$ can be obtained by

$$\Delta \omega^S(T) = \Delta \omega_{\text{sup}}(T) - \Delta \omega_{\text{inst}}(T)$$ \hspace{1cm} (5)

where $\Delta \omega_{\text{sup}}(T)$ and $\Delta \omega_{\text{inst}}(T)$ are the Raman shifts of supported and suspended MoS$_2$, respectively.

In addition, the contribution to the Raman frequency shift from the substrate-induced strain ($\Delta \omega^S(T)$) can be expressed as

$$\Delta \omega^S(T) = \beta \int T \left[\alpha_{\text{SiO}_2}(T) - \alpha_{\text{MoS}_2}(T) \right]$$ \hspace{1cm} (6)

where β is the biaxial strain coefficient of the Raman mode and $\alpha_{\text{SiO}_2}(T)$ and $\alpha_{\text{MoS}_2}(T)$ are the temperature-dependent TECs of SiO$_2$ and MoS$_2$, respectively. As has been reported, β depends on the number of MoS$_2$ layers49.

As the values of α_{SiO_2} and β are already known from previous literatures, the temperature dependence of α_{MoS_2} can be derived from Eqs. (5) and (6). The calculated $\alpha_{\text{MoS}_2}(T)$ can be expressed using a quadratic function, and then, the $\alpha_{\text{MoS}_2}(T)$ values for MoS$_2$ with different numbers of layers are plotted in Fig. 5.

As presented in Fig. 5, the curves of the calculated TECs of MoS$_2$ with different numbers of layers follow similar trends. Notably, the order of magnitude of the TECs is at the same level as those in previous reports28,29, implying the validity of the calculation methods employed in this work. For example, the TEC at room temperature observed in this work is approximately 0.5×10^{-6} K$^{-1}$. Su et al. claimed that the in-plane TEC of MoS$_2$ is 2.48×10^{-6} K$^{-1}$ at room temperature29, whereas Late et al. reported a TEC of 8.2×10^{-6} K$^{-1}$22. The discrepancy in the TECs between our results and previous publications can be attributed to the diversity in β employed in the calculation and whether the substrate effect is considered. Remarkably, the TECs of few-layer MoS$_2$ are very close.
in the temperature range of 150–450 K. These results clearly suggest the feasibility of using Raman spectroscopy in the investigation of the TEC of MoS$_2$, at least in the temperature range of 150–450 K.

In addition, the diversity in the TECs between the MoS$_2$ with different numbers of layers is also obvious. As presented in the inset figure of Fig. 5, the TECs of few-layer MoS$_2$ exhibit remarkable differences in the temperature ranges of 0–150 K and 450–600 K. Strikingly, the TEC becomes negative below 175 K. This is different from most previous reports52,53, in which the TEC is positive in the entire temperature range. In 2015, Wang et al. obtained a negative TEC below 31 K for monolayer MoS$_2$ using first-principles calculation by taking the stiffness and charge transfer effect into consideration52. The ZA bending vibrations (acoustic modes) may cause negative thermal expansion in few-layer MoS$_2$.52,53 The negative value of the Grüneisen parameter for the transverse acoustic mode responds for the negative TEC54. The larger the absolute value of the negative Grüneisen parameter is, the larger the negative TEC. The negative TEC below 175 K observed in our work suggests a larger negative Grüneisen parameter.

Moreover, the TEC of few-layer MoS$_2$ increases gently in the temperature range over 450 K, as shown in Fig. 5. This evolution of the TEC observed in our work is similar to that in previous studies52,53. However, the high-temperature TECs for 4L and 5L MoS$_2$ exhibit a slight difference compared with the other thicknesses. Wang et al. reported that the threshold temperature for etching monolayer MoS$_2$ is lower than 513 K, which is closely related with defects6. The abnormal behavior of the TECs for 4L and 5L MoS$_2$ in the high temperature range can be attributed to the lower thermal stability due to the defects initially existed in these MoS$_2$ samples. Identification of the TEC of few-layer MoS$_2$ requires further experimental and theoretical studies. In the future, the temperature-dependent Raman study carried with controllable electronic doping concentration is called to deeply investigate the doping and dielectric environment effects on the frequency shifts of Raman modes, especially the A$_{1g}$ mode.

Conclusion

In this work, a comprehensive Raman study was carried out on supported and suspended MoS$_2$ with different numbers of layers in the temperature range from 77 to 557 K. Strikingly, the temperature behaviors of the Raman frequency shift for suspended MoS$_2$ are significantly different from those for supported MoS$_2$. The intrinsic TECs of 2–6 layer MoS$_2$ were calculated after eliminating the substrate effect. Strikingly, the TEC becomes negative below 175 K, which can be associated with the bending vibration in the MoS$_2$ layer as the temperature decreases. The TEC curves of MoS$_2$ with different numbers of layers follow similar evolution trends in the temperature range of 150–450 K. Compared with previous reports, the validity of the TEC obtained in this work suggests that Raman spectroscopy is a feasible tool for investigating the TEC of MoS$_2$. Our results provide useful information for understanding the thermal properties of MoS$_2$ and its further application in devices.

Methods

To fabricate suspended MoS$_2$ samples, a periodic hole array was first fabricated on a SiO$_2$ (300 nm)/Si substrate by UV lithography and reactive ion etching technology, in which the holes were 5 μm in diameter and 2 μm in depth. MoS$_2$ flakes with different thicknesses were prepared from a natural MoS$_2$ single crystal using a modified mechanical exfoliation method onto the prepatterned SiO$_2$/Si substrate previously cleaned by oxygen plasma.

The optical image of the suspended few-layer MoS$_2$ was obtained using an Olympus BX41 microscope equipped on the micro-Raman spectrometer, Horiba Evolution HR. In the Raman spectroscopy measurements, a solid-state laser with a 532 nm wavelength was used as the excitation source. The laser beam was focused using a 100 x long-working distance objective with numeric aperture NA = 0.8, and the spot size was approximately a 100 μm. To avoid significant frequency shifts induced by the local heating effect and ensure a sufficient SNR, the laser power was set at ~ 0.9 mW on the surface of the heating stage. To fabricate suspended MoS$_2$, the numbers of layers of MoS$_2$ was 1 μm. The temperature of the sample was measured using a Pt100 thermometer equipped on the micro-Raman spectrometer, Horiba Evolution HR.

To deeply investigate the doping and dielectric environment effects on the frequency shifts of Raman modes, especially the A$_{1g}$ mode. The optical image of the suspended few-layer MoS$_2$ was obtained using an Olympus BX41 microscope equipped on the micro-Raman spectrometer, Horiba Evolution HR. In the Raman spectroscopy measurements, a solid-state laser with a 532 nm wavelength was used as the excitation source. The laser beam was focused using a 100 x long-working distance objective with numeric aperture NA = 0.8, and the spot size was approximately a 100 μm. To avoid significant frequency shifts induced by the local heating effect and ensure a sufficient SNR, the laser power was set at ~ 0.9 mW on the surface of the heating stage. To fabricate suspended MoS$_2$, the numbers of layers of MoS$_2$ was 1 μm. The temperature of the sample was measured using a Pt100 thermometer equipped on the micro-Raman spectrometer, Horiba Evolution HR.

Received: 17 July 2020; Accepted: 4 March 2021
Published online: 29 March 2021

References

1. Wang, J., Deng, S. & Liu, Z. The rare two-dimensional materials with Dirac cones. Nat. Sci. Rev. 2, 22–39 (2015).
2. Pei, J. J., Yang, J. & Zhang, H. Many-body complexes in 2D semiconductors. Adv. Mater. 31, 1706945 (2019).
3. Huang, X., Zeng, Z. & Zhang, H. Metal dichalcogenide nanosheets: Preparation, properties and applications. Chem. Soc. Rev. 42, 1934–1946 (2013).
4. Wang, Q. H., Kourosh, K. Z. & Andras, K. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012).
5. Subbaiah, Y. P. V., Saji, K. J. & Tiwari, A. Atomically thin MoS2: A versatile non-graphene 2D material. Adv. Mater. 26, 2046–2069 (2016).
6. Kaito, K., Iang, P. & Taishi, T. 2D materials for large-area flexible thermoelectric devices. Adv. Energy Mater. 10, 1902842 (2020).
7. Neri, I. & Miquel, L. Electronic transport modulation on suspended few-layer MoS2 under strain. Phys. Rev. B 95, 241408 (2018).
8. Yu, F., Liu, Q. & Gan, X. Ultrasensitive pressure detection of few-layer MoS2. Adv. Mater. 29, 1603266 (2017).
9. Hou, X. et al. Operation mode switchable charge-trap memory based on few-layer MoS2. Semicond. Sci. Technol. 33, 034001 (2018).
10. Li, Z., Chen, J., Dhall, R. & Stephen, B. C. Highly efficient, high speed vertical photodiodes based on few-layer MoS2. 2D Mater. 4, 015004 (2017).
11. Gong, F., Fang, H. H. & Wang, P. Visible to near-infrared photodetectors based on MoS2 vertical Schottky junctions. Nanotechnology 28, 484002 (2017).
12. Liu, Z. et al. Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition. Nat. Commun. 5, 5264 (2014).
29. Su, L., Yu, Y. & Cao, L. Effects of substrate type and material-substrate bonding on high-temperature behavior of monolayer WS2.

27. Chen, Y., Wen, W. & Zhu, Y. Temperature-dependent photoluminescence emission and Raman scattering from Mo1−xWxS2 monolayer, multilayer to bulk material. Chem. Soc. Rev. 44, 2757–2785 (2015).

Nanotechnology 27, 445705 (2016).

46. Dhakal, K. P. et al. Effect of disorder on Raman scattering of single-layer MoS2. Phys. Rev. B 87, 115413 (2013).

30. Su, L., Yu, Y. & Cao, L. In situ monitoring of the thermal-annealing effect in a monolayer of MoS2. Nano Res. 8, 2686–2697 (2015).

13. Wang, Y., Gaspera, E. D. & Carey, B. J. Enhanced quantum efficiency from a mosaic of two dimensional MoS2 formed onto amine-functionalized substrates. Nanoscale 8, 12258–12266 (2016).

6. Najmaei, S., Aliyari, P. M. & Lou, J. Quantitative analysis of the temperature dependency in Raman active vibrational modes of molybdenum disulfide atomic layers. Nano letters 5, 9758–9763 (2015).

5. Late, D. J., Shirodkar, S. N. & Waghmare, U. V. Thermal expansion, anharmonicity and temperature-dependent raman spectra of single- and few-layer MoS2 and WSe2. ChemPhysChem 15, 1592–1598 (2014).

31. Huang, Y., Gao, Y. & Yang, T. Quantitative analysis of temperature dependence of Raman shift of monolayer MoS2. J. Appl. Phys. 116, 034901 (2014).

26. Huang, X., Gao, Y. & Yang, T. Quantitative analysis of temperature dependence of Raman shift of monolayer MoS2. J. Appl. Phys. 116, 034901 (2014).

22. Lu, X., Luo, X. & Zhang, J. Lattice vibrations and Raman scattering in two-dimensional layered materials beyond graphene. Nano Lett. 16, 3559–3571 (2016).

17. Dai, Z. H., Liu, L. Q. & Zhang, Z. Strain engineering of 2D materials: Issues and opportunities at the interface. Adv. Mater. 31, 1805417 (2019).

20. Peng, B. & Xiao, B. Thermal expansion tensors, Gruneisen parameters and phonon velocities of bulk MT2, (M=W and Mo; T=S). Phys. Rev. Lett. 115, 044003 (2015).

36. Tamulewicz, M. D., Kutrowska-Girzycka, J. & Gajewski, K. R. Layer number dependence of the work function and optical properties of single and few layers MoS2. J. Appl. Phys. 108, 042104 (2010).

15. Bao, W. Z., Cai, X. H., Kim, D. H., Karthik, S. & Michael, S. Fuhrer, High mobility ambipolar MoS2 field-effect transistors: Substrate and dielectric effects. Appl. Phys. Lett. 102, 042104 (2013).

8. Zhang, R., Koutsos, V. & Cheung, R. Elastic properties of suspended multilayer WSe2. Nano Res. 9, 561–571 (2016).

14. Buscema, M., Steele, G. A. & Van, Z. H. S. J. The effect of the substrate on the Raman and photoluminescence emission of single-layer MoS2. Nano Res. 7, 561–571 (2014).

37. Huang, Y., Sutter, E., Shi, N. N. & Zheng, J. Reliable exfoliation of large-area high-quality flakes of graphene and other two-dimensional materials. ACS Nano 9, 10612–10620 (2015).

53. Abdullaev, N. A., Suleimanov, R. A., Aldzhavan, M. A. & Alieva, L. N. On the role played by bending vibrations in heat transfer in layered crystals. Phys. Solid State 44, 1859 (2002).

28. Wang, X. et al. Substrate modified thermal stability of mono- and few-layer MoS2. Nano Lett. 10, 3540 (2018).

50. Ding, Y. & Xiao, B. Thermal expansion tensors, Gruneisen parameters and phonon velocities of bulk MT2, (M=W and Mo; T=S) and Se) from first principles calculations. RSC Adv. 5, 18391–18400 (2015).

47. Matěj, V. et al. Thermal expansion of graphene measured by raman spectroscopy. Nano Lett. 11, 6112–6118 (2020).

25. Late, D. J., Shirodkar, S. N. & Waghmare, U. V. Thermal expansion, anharmonicity and temperature-dependent raman spectra of single- and few-layer MoS2 and WSe2. ChemPhysChem 15, 1592–1598 (2014).

39. Liang, L., Zhang, J. & Sumpter, B. G. Low-frequency shear and layer-breathing modes in Raman scattering of two-dimensional transition metal dichalcogenides. Nanoscale 9, 4920–4927 (2017).

21. Zhang, X., Qiao, X. F. & Shi, W. Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chem. Soc. Rev. 44, 2757–2785 (2015).

12. Wang, Y. H. et al. Evolution of local strain in Ag-deposited monolayer MoS2 modulated by interface interactions. Nanoscale 11, 22432 (2019).

19. Sun, Y. H. et al. Evolution of local strain in Ag-deposited monolayer MoS2 modulated by interface interactions. Nanoscale 11, 22432 (2019).

42. Zhang, X., Qiao, X. F. & Shi, W. Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chem. Soc. Rev. 44, 2757–2785 (2015).

29. Su, L., Yu, Y. & Cao, L. Effects of substrate type and material-substrate bonding on high-temperature behavior of monolayer WS2. Nano Res. 8, 2686–2697 (2015).

32. Zhang, R., Koutsos, V. & Cheung, R. Elastic properties of suspended multilayer WSe2. Appl. Phys. Lett. 108, 042104 (2010).

33. Yan, R., Simpson, J. R. & Bertolazzi, S. Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent raman spectroscopy. ACS Nano 8, 986–993 (2014).

A. L. P. A. (2021) 11:7037 | https://doi.org/10.1038/s41598-021-86479-6

Acknowledgements

The authors acknowledge the financial support received from the National Key Research and Development Program of China (Grant Nos. 2018YFB0703500, 2019YFA0308000, 2018YFA0704201), the National Natural
Science Foundation of China (Grant Nos. 11704401, 11874405), and the Scientific Equipment Development Project of the Chinese Academy of Sciences (Grant No. YJKYYQ20170027).

Author contributions
Z.L. and W.L. did the measurements, data analysis. K. Z. did part of the data analysis. S. T. and Y. H. prepared the samples. Y. Y. supervised the study and wrote the main manuscript text. All authors reviewed the manuscript.

Competing interests
The authors declare no competing interests.

Additional information

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-021-86479-6.

Correspondence and requests for materials should be addressed to Y.H. or Y.Y.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021