Approach-avoidance tendencies in depression and childhood trauma: No effect of noradrenergic stimulation

Christian Eric Deuter a, *, Janna Smit a, Michael Kaczmarczyk a, b, Katja Wingenfeld a, Christian Otte a, Linn Kristina Kuehl c

a Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, And Berlin Institute of Health, Klinik für Psychiatrie und Psychotherapie, Campus Benjamin Franklin, Berlin, Germany
b Berlin Institute of Health (BII), Berlin, Germany
c MSB Medical School Berlin, Germany

ARTICLE INFO

Keywords:
Approach-avoidance
Emotional processing
Major depressive disorder
Adverse childhood experience
Yohimbine
Locus coeruleus
Noradrenaline
Norepinephrine

ABSTRACT

Adverse childhood experiences (ACE) are a major risk factor for major depressive disorder (MDD) in later life. Both conditions are characterized by dysregulations in the noradrenergic system related which again could represent a mediating mechanism for deficits in affective processing and behavioral functioning. In this double-blind, placebo-controlled study we tested the hypothesis that ACE and MDD are characterized by aberrant approach-avoidance (AA) tendencies and that these are mitigated after noradrenergic stimulation with yohimbine. In a mixed-measures, fully crossed design, participants (N = 131, 73 women) with/without MDD and with/without ACE received a single-dose of yohimbine or placebo on different days, followed by an AA task. We found modulation of AA tendencies by the emotional valence of target images, yet there were no effects of group or treatment. From these results, we conclude that AA tendencies are not critically affected by MDD or ACE and that the noradrenergic system is not substantially involved in this behavior.

1. Introduction

Motivated behavior is severely altered in patients with MDD, as expressed in social withdrawal, diminished approach to rewarding goals and lack of volition to evade unpleasant conditions. In typical behavioral paradigms for experimental assessment of approach-avoidance (AA) tendencies, participants are either required to pull/push a lever or joystick to increase/decrease the size of affective stimuli on a computer screen, usually words or images of facial expression, or to move a manikin or avatar on the screen towards (approach) or away (avoidance) from those target stimuli [10, 12]. Healthy participants exhibit characteristic behavior, i.e. faster responses and lower error rates when approaching positive and avoiding negative stimuli. Previous studies found reduced approach behavior in MDD [1] or generally diminished AA tendencies [14], potentially reflecting a motivational process that could contribute to the pathogenesis of MDD. Adverse childhood experiences (ACE) are an important risk factor for MDD in later life [17] and contribute to aberrant AA tendencies as well [7]. ACE seems to generally increase avoidance tendencies, primarily to negative stimuli [8].

Patients suffering from MDD often report ACE, yet many studies conflate both.

Of note, both MDD and ACE are characterized by dysregulations of the locus coeruleus-noradrenergic system, which is also evident as a result of ACE [2, 15]. While the pathophysiological mechanism behind these dysregulations is not fully understood yet, chronic stress during due to ACE could be a contributing developmental factor [15, 17]. It has been shown that noradrenergic signaling and α-adrenergic receptor activity play a role for MDD patients’ cognitive and affective response patterns in different situations and paradigms [13, 19]. However, to our knowledge, no study so far has investigated the role of noradrenaline for AA behavior in MDD and ACE. Therefore, we systematically varied these factors by including participants with/without MDD and with/without ACE and assessed the effect of a single-dose of yohimbine – a α2 adrenoceptor antagonist that increases central availability of noradrenaline – on AA tendencies.

In the absence of our treatment and when compared to healthy controls, we predicted lower approach tendencies to positive stimuli in depressed patients. Further, we expected higher avoidance of negative
stimuli in participants with ACE, when compared to those without ACE. These aberrant AA tendencies should both be present in the group that combined MDD and ACE. We hypothesized that these characteristic response patterns in MDD and ACE should be reduced following the administration of yohimbine, i.e. we expected significant between-group effects for the placebo condition which should have been reduced or absent after our treatment.

2. Methods

We subjected 138 participants to this double-blind, placebo-controlled design, seven participants did not provide full data sets or were excluded for technical reasons. All participants provided informed written consent, the study was approved of by the local ethical commission. Participants received a single dose of 10 mg yohimbine and placebo on two separate days in quasi-randomized order. Patients fulfilled the criteria for an acute episode of MDD; ACE was defined as repeated physical or sexual abuse at least once a month over one year or more until the age of 18. Both were assessed in structured clinical interviews. The AA task was part of an extended study setup; the results of other tasks and the general methods (participant and demographic characteristics, general procedure, assessment and analysis of blood pressure and salivary alpha-amylase) have been reported in detail elsewhere [4, 11, 16].

We assessed AA tendencies using a task developed by Ref. [3] and later validated by Krieglmeyer et al.(2010). Image stimuli were obtained from the FACES database [5]. In this task, participants had to move a manikin either towards (approach) or away (avoid) from a target image depicting an angry or happy facial expression by pressing the up- or down arrow keys on a standard keyboard. They were instructed to imagine that they themselves were the manikin and to respond as fast and accurately as possible. Two blocked conditions were implemented: in the congruent response condition, participants had to approach happy and avoid angry faces; this pattern was reversed in the incongruent condition. The order of blocks was counterbalanced between participants. Emotional expression varied trial-wise (see Fig. 1).

Reactions times (time from image onset to final manikin position), response latency (image onset to first button press) and accuracy (percent of correct responses) were taken as outcome measures. Data were analyzed by conducting mixed-measures ANOVAS, with the within-subject factors ‘emotion’, ‘AA’ and ‘drug’, or the between-subjects factors MDD and ACE. p < .05 was considered to indicate statistical significance. Data analyses were carried out using SPSS 22.0.

3. Results

We found an interaction between ‘Emotion x AA’ for all outcome measures: in the congruent condition (approaching positive and avoiding negative stimuli), participants made more correct and faster responses, i.e. these were initiated at shorter latency and reached the final position faster, compared to the incongruent condition. However, we found no main effects or interactions for any outcome that included the experimental manipulation ‘drug’, or the group factors ’MDD’ or ‘ACE’: yohimbine did not affect reaction times, response latency or accuracy and we also did not find significant group effects in these measures (all p > .05, see Table 1).

4. Discussion

We could replicate the basic AA effect, with facilitated approach to positive and avoidance of negative stimuli, and could therefore confirm the validity of the paradigm. In contrast to our hypotheses, the results could not demonstrate an effect of yohimbine on AA tendencies in MDD and ACE. In fact, these groups did not deviate from healthy controls, irrespective of our intervention.

Possible explanations for the divergent findings in previous studies could be both in different paradigms and differences in recruitment.

Fig. 1. (A) Sample trial from the congruent condition. In this case, the manikin had to be moved towards a happy face by three consecutive button presses of the arrow key. After full approach, the slide remained for 500 ms. The manikin could appear above or below the face picture in random order. For avoidance, the manikin had to be moved away from the face to the upper or lower edge of the screen. Responses in the wrong direction and no responses for 1500 ms were considered errors. (B) The manikin (left) and sample pictures of happy and angry, male and female faces. Each model appeared in both expressions. The order of valence and sex was randomized.
Table 1
Mean scores and standard deviations (SD) for each group and results of statistical analysis. Abbr.: Emo = Emotion (happy vs. angry), AA = Approach vs. Avoidance, MDD = Major depressive disorder, ACE = Adverse childhood experience, * - indicates statistical significance.

	MDD+/ACE+ (n = 27)	MDD+/ACE- (n = 30)	MDD-/ACE+ (n = 48)	F	df	p	etap²
Reaction Time							
Statistics							
Emo x AA	85.33	1.127	<.001	0.400			
Emo x AA x MDD	0.08	1.127	.78	0.001			
Emo x AA x ACE	0.14	1.127	.71	0.001			
Emo x AA x MDD x ACE	1.20	1.127	.28	0.009			
Emo x AA x Drug	0.26	1.127	.61	0.002			
Emo x AA x Drug x MDD	0.85	1.127	.36	0.007			
Emo x AA x Drug x ACE	<0.01	1.127	.97	<0.001			
Emo x AA x Drug x MDD x ACE	0.45	1.127	.50	0.004			
Time in ms, Mean (SD)							
Placebo							
happy	2970.42	2840.07	2769.89	2702.79			
avoid	(541.57)	(600.40)	(555.26)	(560.50)			
happy	3246.78	3099.48	3109.12	2940.57			
avoid	(584.05)	(648.81)	(600.24)	(552.88)			
approach	3111.57	3014.73	3015.09	2836.39			
angry	(602.09)	(662.95)	(639.51)	(575.87)			
avoid	3138.63	2901.73	2946.29	2802.87			
angry	(484.19)	(549.43)	(530.81)	(497.16)			
Yohimbine							
happy	2970.42	2840.07	2769.89	2702.79			
avoid	(541.57)	(600.40)	(555.26)	(560.50)			
happy	3246.78	3099.48	3109.12	2940.57			
avoid	(584.05)	(648.81)	(600.24)	(552.88)			
approach	3111.57	3014.73	3015.09	2836.39			
angry	(602.09)	(662.95)	(639.51)	(575.87)			
avoid	3138.63	2901.73	2946.29	2802.87			
angry	(484.19)	(549.43)	(530.81)	(497.16)			
Response delay							
Statistics							
Emo x AA	83.65	1.127	<.001	0.397			
Emo x AA x MDD	0.09	1.127	.76	0.001			
Emo x AA x ACE	0.25	1.127	.62	0.002			
Emo x AA x MDD x ACE	0.61	1.127	.44	0.005			
Emo x AA x Drug	0.20	1.127	.66	0.005			
Emo x AA x Drug x MDD	0.30	1.127	.59	0.002			
Emo x AA x Drug x ACE	<0.01	1.127	.97	<0.001			
Emo x AA x Drug x MDD x ACE	0.57	1.127	.45	0.004			
Time in ms, Mean (SD)							
Placebo							
happy	784.61	748.15	728.46	709.85			
avoid	(161.53)	(182.10)	(168.45)	(176.30)			
happy	877.52	831.50	836.38	786.21			
avoid	(180.04)	(190.98)	(184.82)	(170.43)			
approach	836.85	806.48	804.19	752.65			
angry	(191.96)	(197.82)	(201.60)	(179.36)			
avoid	840.08	768.46	783.76	741.78			
angry	(144.97)	(156.32)	(156.18)	(151.49)			
Yohimbine							
happy	762.78	733.56	736.75	706.27			
avoid	(168.31)	(153.78)	(178.30)	(173.13)			
happy	863.47	809.05	818.97	784.59			
avoid	(162.84)	(172.44)	(159.13)	(171.52)			
approach	829.06	802.19	792.61	758.49			
angry	(171.56)	(193.12)	(167.55)	(176.51)			
avoid	824.39	769.09	776.15	754.26			
angry	(145.05)	(150.33)	(162.08)	(153.61)			
Percent correct responses							
Statistics							
Emo x AA	24.93	1.127	<.001	0.160			
Emo x AA x MDD	3.35	1.127	.07	0.026			
Emo x AA x ACE	2.69	1.127	.10	0.021			
Emo x AA x MDD x ACE	1.16	1.127	.28	0.009			
Emo x AA x Drug	0.88	1.127	.35	0.007			
Emo x AA x Drug x MDD	1.49	1.127	.22	0.012			
Emo x AA x Drug x ACE	0.19	1.127	.66	0.002			

(continued on next page)
Table 1 (continued)

Emo x AA x Drug x MDD x ACE	Placebo	Yohimbine
Percent, Mean (SD)		
Emo x AA x Drug x MDD x ACE		
Placebo	96.22 (5.51)	96.22 (4.44)
happy approach	96.55 (4.25)	96.39 (5.39)
avoid	95.83 (6.66)	96.74 (5.09)
happy	95.52 (4.72)	94.37 (7.46)
angry approach	92.07 (12.35)	94.31 (6.73)
angry	90.38 (13.30)	97.76 (5.06)
avoid	95.35 (6.15)	97.76 (5.06)
angry	95.29 (8.55)	94.03 (8.36)
happy	96.11 (5.52)	94.44 (7.95)
avoid	96.72 (4.05)	97.53 (3.43)
happy	96.92 (4.05)	97.53 (3.43)
angry	95.29 (8.55)	94.44 (7.95)
avoid	96.72 (4.05)	97.53 (3.43)

Acknowledgments

The study was approved by the ethical committee of the German Psychological Society (Deutsche Gesellschaft für Psychologie; protocol number LK092012) to adhere to the Declaration of Helsinki (World Medical Association, 2013). Linn Kuehl, Katja Wingenfeld and Christian Otte were supported by the grant “Effects of increased noradrenergic activity by yohimbine administration on learning and attention in patients with major depression disorder”, funded by the German Research Foundation (Deutsche Forschungsgemeinschaft/DFG), project KU 3106/2-1.

References

[1] G. Bartoszek, E.S. Winer, Spider-fearful individuals habitually approach threat, whereas depressed individuals do not persistently approach reward, J. Behav. Ther. Exp. Psychiatr. 46 (2015) 1–7, https://doi.org/10.1016/j.jbtep.2014.07.012.
[2] C. Costingham, Q. Wang, alpha2 adrenergic receptor dysregulation in depressive disorders: implications for the neurobiology of depression and antidepressant therapy, Neurosci. Biobehav. Rev. 36 (10) (2012) 2214–2225, https://doi.org/10.1016/j.neubiorev.2012.07.011.
[3] J. De Houwer, G. Crombez, F. Baevens, D. Hermans, On the generality of the affective Simon effect, Cognit. Emot. 15 (2) (2001) 189–206, https://doi.org/10.1080/026999301258852.
[4] C.E. Deuter, K. Wingenfeld, C. Otte, J. Bustami, M. Kaczmarczyk, L.K. Kuehl, Noradrenergic system and cognitive flexibility: disentangling the effects of depression and childhood trauma, J. Psychiatr. Res. 125 (2020) 136–143, https://doi.org/10.1016/j.jpsychires.2020.03.017.
[5] N.C. Ehne, M. Riediger, U. Lindenberger, FACES–a database of facial expressions in young, middle-aged, and older women and men: development and validation, Behav. Res. Methods 42 (1) (2010) 351–362, https://doi.org/10.3758/brm.42.1.351.
[6] M.C. Eisma, M. Rinck, M.S. Stroebe, H.A. Schut, P.A. Boelen, W. Stroebe, J. van den Bout, Rumination and implicit avoidance following bereavement: an approach avoidance task investigation, J. Behav. Ther. Exp. Psychiatr. 47 (2015) 84–91, https://doi.org/10.1016/j.jbtep.2014.11.010.
[7] P. Fleurkens, A. van Minnen, E.S. Becker, I. van Oostrom, A. Speckens, M. Rinck, J. N. Vrijsen, Automatic approach-avoidance tendencies as a candidate intermediate phenotype for depression: associations with childhood trauma and the 5-HTTLPR transporter polymorphism, PloS One 13 (3) (2018), e0193787, https://doi.org/10.1371/journal.pone.0193787.
[8] K. Fricke, S. Vogel, How interindividual differences shape approach-avoidance behavior: relating self-report and diagnostic measures of interindividual differences to behavioral measurements of approach and avoidance, Neurosci. Biobehav. Rev. 111 (2020) 30–56, https://doi.org/10.1016/j.neubiorev.2020.01.008.
[9] L.H. Goldbl, E. Krasnoperova, D.N. Yue, J. Joormann, Attentional biases for negative interpersonal stimuli in clinical depression, J. Affect. Psychiatr. 113 (1) (2004) 121–135, https://doi.org/10.1007/s00213-004-113.1.121.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
[10] R. Krieglmeyer, R. Deutsch, Comparing measures of approach–avoidance behaviour: the manikin task vs. two versions of the joystick task, Cognit. Emot. 24 (5) (2010) 810–828, https://doi.org/10.1080/0269993090347758.

[11] L.K. Kuehl, C.E. Deuter, J. Hellmann-Regen, M. Kaczmarczyk, C. Otte, K. Wingenfeld, Enhanced noradrenergic activity by yohimbine and differential fear conditioning in patients with major depression with and without adverse childhood experiences, Prog. Neuro-Psychopharmacol. Biol. Psychiatry 96 (2020) 109751, https://doi.org/10.1016/j.pnpbp.2019.109751.

[12] A. Loijen, J.N. Vrijsen, J.M. Egger, E.S. Becker, M. Rinck, Biased approach–avoidance tendencies in psychopathology: a systematic review of their assessment and modification, Clin. Psychol. Rev. 77 (2020) 101825, https://doi.org/10.1016/j.cpr.2020.101825.

[13] V. Maletic, A. Ezamo, K. Gwin, S.J. Offord, R.A. Duffy, The role of norepinephrine and its alpha-adrenergic receptors in the pathophysiology and treatment of major depressive disorder and schizophrenia: a systematic review, Front. Psychiatr. 8 (2017) 42, https://doi.org/10.3389/fpsyt.2017.00042.

[14] S. Radke, F. Guths, J.A. André, B.W. Müller, E.R. de Bruijn, In action or inaction? Social approach-avoidance tendencies in major depression, Psychiatr. Res. 219 (3) (2014) 513–517, https://doi.org/10.1016/j.psychres.2014.07.011.

[15] E. Saboery, M. Ghasemi, N. Mehranfard, Norepinephrine, neurodevelopment and behavior, Neurochem. Int. 135 (2020) 104706, https://doi.org/10.1016/j.neuint.2020.104706.

[16] A. Schulz, C.E. Deuter, I.H. Breden, C. Vogele, K. Wingenfeld, C. Otte, L.K. Kuehl, Noradrenergic activation induced by yohimbine decreases interoceptive accuracy in healthy individuals with childhood adversity, Dev. Psychopathol. (2021) 1–12, https://doi.org/10.1017/s0954579420001613.

[17] R.C. Silva, E. Maffioletti, M. Gennarelli, B.T. Baune, A. Minelli, Biological correlates of early life stressful events in major depressive disorder, Psychoneuroendocrinology 125 (2020) 105103, https://doi.org/10.1016/j.psyneuen.2020.105103.

[18] S.Y. Struijs, F. Lammers, M.S. Vroeling, K. Roelofs, P. Spinhoven, B. Penninx, Approach and avoidance tendencies in depression and anxiety disorders, Psychiatr. Res. 256 (2017) 475–481, https://doi.org/10.1016/j.psychres.2017.07.010.

[19] K. Wingenfeld, A. Kuffel, C. Uhmann, K. Terfehr, J. Schreiner, L.K. Kuehl, C. Spitzer, Effects of noradrenergic stimulation on memory in patients with major depressive disorder, Stress 16 (2) (2013) 191–201, https://doi.org/10.3109/10253890.2012.708951.