Parp1 hyperactivity couples DNA breaks to aberrant neuronal calcium signalling and lethal seizures

Komulainen, Emilia, Badman, Jack, Rey, Stephanie, Rulten, Stuart, Ju, Limei, Fennell, Kate, Kalasova, Ilona, Ilievova, Kristyna, McKinnon, Peter J, Hanzlikova, Hana, Staras, Kevin and Caldecott, Keith W (2021) Parp1 hyperactivity couples DNA breaks to aberrant neuronal calcium signalling and lethal seizures. EMBO Reports, 22 (5). a51851 1-12. ISSN 1469-221X

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/101631/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.
Parp1 hyperactivity couples DNA breaks to aberrant neuronal calcium signalling and lethal seizures

Emilia Komulainen1, Jack Badman1,2, Stephanie Rey2, Stuart Rulten1, Limei Ju1, Kate Fennell2, Ilona Kalasova3, Kristyna Ilievova3, Peter J McKinnon4, Hana Hanzlikova1,3, Kevin Staras2,4 \& Keith W Caldecott1,3, ***

Abstract

Defects in DNA single-strand break repair (SSBR) are linked with neurological dysfunction but the underlying mechanisms remain poorly understood. Here, we show that hyperactivity of the DNA strand break sensor protein Parp1 in mice in which the central SSBR protein Xrcc1 is conditionally deleted (Xrcc1Nes-Cre) results in lethal seizures and shortened lifespan. Using electrophysiological recording and synaptic imaging approaches, we demonstrate that aberrant Parp1 activation triggers seizure-like activity in Xrcc1-defective hippocampus ex vivo and deregulated presynaptic calcium signalling in isolated hippocampal neurons in vitro. Moreover, we show that these defects are prevented by Parp1 inhibition or deletion and, in the case of Parp1 deletion, that the lifespan of Xrcc1Nes-Cre mice is greatly extended. This is the first demonstration that lethal seizures can be triggered by aberrant Parp1 activity at unreppaired SSBs, highlighting PARP inhibition as a possible therapeutic approach in hereditary neurological disease.

Keywords DNA strand break; neurodegeneration; poly(ADP-ribose) polymerase; seizures; XRCC1

Subject Categories DNA Replication, Recombination & Repair; Molecular Biology of Disease; Neuroscience

DOI 10.15252/embr.202051851 | Received 6 October 2020 | Revised 4 March 2021 | Accepted 5 March 2021
EMBO Reports (2021) 22: e51851

Introduction

DNA single-strand breaks (SSBs) are the commonest DNA lesions arising in cells and are rapidly detected by poly(ADP-ribose) polymerase-1 (PARP1) and/or poly(ADP-ribose) polymerase-2 (PARP2), enzymes that are activated at DNA breaks and modify themselves and other proteins with mono-ADP-ribose and/or poly-ADP-ribose (Benjamin & Gill, 1980; Chaudhuri & Nussenzweig, 2017; Hanzlikova et al, 2017; Azarm & Smith, 2020). Poly(ADP-ribose) triggers recruitment of the DNA single-strand break repair (SSBR) scaffold protein XRCC1 and its protein partners to facilitate the repair of SSBs (Breslin et al, 2015; Hanzlikova et al, 2017; Caldecott, 2019). If not repaired rapidly, SSBs can result in replication fork stalling and/or collapse and can block the progression of RNA polymerases during gene transcription (Hsiang et al, 1989; Ryan et al, 1991; Zhou & Doetsch, 1993; Kuzminov, 2001; Kathe et al, 2004). Notably, mutations in proteins involved in SSBR in humans are associated with cerebellar ataxia, neurodevelopmental defects and episodic seizures (Caldecott, 2008; Yoon & Caldecott, 2018). To date, all identified SSBR-defective human diseases are mutated in either XRCC1 or one of its protein partners (Caldecott, 2019).

Recently, we demonstrated using an Xrcc1-defective mouse model (Xrcc1Nes-Cre) that SSBR-defective cerebellum possesses elevated steady-state levels of poly(ADP-ribose) resulting from the hyperactivation of Parp1, leading to the loss of cerebellar interneurons and cerebellar ataxia (Lee et al, 2009; Hoch et al, 2017). PARP1 hyperactivity can trigger cellular dysfunction and/or cytotoxicity by several mechanisms including excessive depletion of NAD+/ATP and/or by generating excessive amounts of poly(ADP-ribose) (Zhang et al, 1994; Andrabi et al, 2006; Yu et al, 2006; Andrabi et al, 2014). However, the extent to which Parp1 hyperactivation might account for the spectrum of neurological pathology induced by unrepaired endogenous SSBs is unknown. Here, we have addressed this question. We show that aberrant Parp1 activity extends beyond the cerebellum in Xrcc1Nes-Cre mice and is evident across the brain, resulting in deregulated neuronal presynaptic calcium signalling, lethal seizures and shortened lifespan. Importantly, we demonstrate that Parp1 inhibition or deletion prevents the Ca2+ signalling defects and elevated seizure-like activity in Xrcc1Nes-Cre hippocampus and that Parp1 deletion prolongs the

1 Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
2 Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK
3 Department of Genome Dynamics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
4 Department of Genetics, St Jude Children’s Research Hospital, Memphis, TN, USA
*Corresponding author. Tel: +44 01273 678478; E-mail: k.staras@sussex.ac.uk
**Corresponding author. Tel: +44 01273 877519; E-mail: k.w.caldecott@sussex.ac.uk

© 2021 The Authors. Published under the terms of the CC BY 4.0 license
lifespan of Xrcc1	extsuperscript{Nes-Cre} mice. These findings highlight the potential of Parp1 as a target in the therapeutic treatment of XRCC1-defective disease.

Results

Parp1 is hyperactive throughout Xrcc1	extsuperscript{Nes-Cre} brain

We reported previously that Parp1 is hyperactive in the cerebellum of Xrcc1	extsuperscript{Nes-Cre} mice, resulting in cerebellar ataxia (Hoch et al., 2017). Here, to extend this, we measured the steady-state level of pan-ADP-ribose signal across Xrcc1-defective brain by immunohistochemistry. We detected increased levels of ADP-ribose throughout Xrcc1	extsuperscript{Nes-Cre} brain, including the cortex, with particularly strong immunostaining in the cerebellum and hippocampus (Fig 1A). In contrast, we did not detect elevated levels of ATM protein, an unrelated DNA repair-associated antigen, ruling out that the elevated anti-ADP-ribose signal was a non-specific artefact (Fig EV1). Indeed, we confirmed that the elevated ADP-ribose signal was the product of endogenous Parp1 activity, because Parp1 deletion in Xrcc1	extsuperscript{Nes-Cre} mice reduced this signal to levels below those in wild-type brain (Fig 1A; Parp1	extsuperscript{+/+}/Xrcc1	extsuperscript{Nes-Cre}). Consistent with this, the elevated ADP-ribose signal in Xrcc1	extsuperscript{Nes-Cre} brain was also detected if we employed antibody specific for poly(ADP-ribose), which is the primary ADP-ribosylation product of Parp1 activity (Fig EV1).

To examine whether we could recapitulate the increased ADP-ribosylation in Xrcc1	extsuperscript{Nes-Cre} brain biochemically, we incubated tissue extracts from wild-type and Xrcc1	extsuperscript{Nes-Cre} forebrain, containing cortex and hippocampus, with NAD	extsuperscript{+} to stimulate ADP-ribosylation in vitro. Indeed, wild-type but not Parp1	extsuperscript{+/−}/Xrcc1	extsuperscript{Nes-Cre} forebrain extracts rapidly accumulated ADP-ribosylated proteins when incubated with NAD	extsuperscript{+} (Fig 1B). More importantly, tissue extracts prepared from Xrcc1	extsuperscript{Nes-Cre} forebrain accumulated ADP-ribosylated proteins more rapidly and to a greater extent than did wild-type extracts, and similar results were observed if we employed tissue extracts from cerebellum (Fig 1B and C). Consistent with ongoing Parp1 hyperactivity, the steady-state level of NAD	extsuperscript{+} in Xrcc1	extsuperscript{Nes-Cre} forebrain was half that present in wild-type forebrain and was increased by deletion of even a single Parp1 allele (Fig 1D). Collectively, these data implicate widespread Parp1 hyperactivation in Xrcc1-defective brain, presumably as a result of the underlying defect in SSB repair (Lee et al., 2009). In agreement with this, we did not detect elevated ADP-ribose in brain from Ka70	extsuperscript{−/−} mice in which the primary pathway for DNA double-strand break (DSB) repair in brain is defective, confirming that the elevated ADP-ribose in Xrcc1	extsuperscript{Nes-Cre} brain was the result of unrepaired SSBs, not DSBs (Fig 1A).

Parp1 hyperactivation triggers juvenile seizures and mortality in Xrcc1	extsuperscript{Nes-Cre} mice

Next, we generated Kaplan–Meier survival curves to determine the influence of Xrcc1 on lifespan. As expected (Lee et al., 2009), Xrcc1	extsuperscript{Nes-Cre} animals exhibited greatly reduced longevity when compared to wild-type mice, with the cohort employed in these experiments having a median lifespan of ~3–4 weeks (Fig 2A). Given the widespread Parp1 hyperactivity across the brain in Xrcc1	extsuperscript{Nes-Cre} mice, we examined the impact of Parp1 deletion on lifespan. Remarkably, the median lifespan of Parp1	extsuperscript{+/+}/Xrcc1	extsuperscript{Nes-Cre} and Parp1	extsuperscript{−/−}/Xrcc1	extsuperscript{Nes-Cre} littersmates in which one or both Parp1 alleles were additionally deleted was increased ~25-fold and ~7-fold, to 79 and 23 weeks, respectively (Fig 2A). This result demonstrates that aberrant Parp1 activity in Xrcc1-defective brain is a major contributor to organismal death. It is noteworthy that deletion of one Parp1 allele prolonged the lifespan of Xrcc1	extsuperscript{Nes-Cre} mice to a greater extent than deletion of both Parp1 alleles. This suggests that whilst the loss of a single Parp1 allele is sufficient to suppress Parp1-induced toxicity, the loss of the second allele eradicates an additional role for Parp1 in Xrcc1-defective brain that is important for survival.

Next, to establish the cause of Parp1-dependent death in Xrcc1	extsuperscript{Nes-Cre} mice, we conducted infrared video imaging for a four-day period starting at P15. These experiments revealed that Xrcc1	extsuperscript{Nes-Cre} mice experienced sporadic seizures, culminating ultimately in a lethal seizure from which animals did not recover (Fig 2B). In contrast, we did not observe any seizures in wild-type mice over the same time period. The cause of death induced by the seizures is unclear but, similar to sudden unexpected death during epilepsy (SUDEP) in humans, it is likely to result from the disruption of normal cardiac or respiratory function (Surges et al., 2009). Importantly, we also did not detect seizures in Xrcc1	extsuperscript{Nes-Cre} mice in which one or both alleles of Parp1 were deleted over the time course of the experiment, consistent with the increased lifespan of these mice (Fig 2B). To our knowledge, this is the first demonstration that seizures can be triggered by aberrant Parp1 activity.

Seizure-like activity in Xrcc1	extsuperscript{Nes-Cre} brain slices is corrected by Parp1 deletion

The induction of seizures by Parp1 in Xrcc1	extsuperscript{Nes-Cre} mice is consistent with the strikingly high level of poly(ADP-ribose) in the hippocampus of these animals, because defects in this region of the brain are often associated with seizure activity (Gunn & Baram, 2017). To examine directly whether elevated seizure-like activity is present in Xrcc1	extsuperscript{Nes-Cre} hippocampus, we carried out targeted extracellular electrophysiological recording experiments in brain slices prepared from wild-type mice, Xrcc1	extsuperscript{Nes-Cre} mice and Xrcc1	extsuperscript{Nes-Cre} mice in which Parp1 was additionally deleted. When the brain slices were washed into an epileptogenic solution, the mean cumulative number of seizure-like events in the CA3 region of Xrcc1	extsuperscript{Nes-Cre} hippocampus was ~2.5-fold greater than in wild-type hippocampus (Fig 3A–C). Moreover, strikingly, this elevated seizure-like activity was reduced or prevented if one or both alleles of Parp1 were deleted, respectively (Fig 3A–C), confirming Parp1 as the cause of the elevated seizure activity in Xrcc1	extsuperscript{−/−} hippocampus.

To extend these analyses, we employed a high-density multi-electrode array (HD-MEA) platform (Fig 4A). This approach allowed us to assay the spatial organization of network activity across hippocampal and cortical structures simultaneously and with high temporal resolution. In particular, we recorded the onset and threshold of seizure-like events in the cortex, CA1 and CA3 regions of brain slices perfused into an epileptogenic solution, and plotted the cumulative activity in each. In agreement with the results described above, we found that seizure-like events were significantly higher in Xrcc1	extsuperscript{Nes-Cre} cortex and hippocampus when compared to wild type, with the strongest effects observed in the hippocampal CA3 region (Fig 4B–D).
Given the ability of Parp1 deletion to rescue normal levels of seizure-like activity in Xrcc1Nes-Cre brain, we extended these experiments to examine the impact of PARP1 inhibitor. To do this, we administered PARP1 inhibitor (ABT-888; veliparib) ad libitum in the drinking water from day 10 until their analysis at days 14–17. Strikingly, whereas this application of PARP1 inhibitor had little effect on the seizure-like activity of brain sections prepared from wild-type mice, it ablated the elevated seizure-like activity in Xrcc1Nes-Cre brain slices, in all three regions of the brain tested (Fig 4E). Together, these data confirm that Parp1 hyperactivity in Xrcc1Nes-Cre brain triggers increased seizure-like activity that can be prevented by Parp1 deletion or pharmacological inhibition.

Aberrant Parp1 activity deregulates presynaptic calcium signalling in Xrcc1Nes-Cre neurons

It is currently unclear how aberrant Parp1 activity at unrepaired SSBs might trigger seizures. However, it is known that Parp1
activity can affect the expression of many genes that might influence seizure activity, including those affecting Ca\(^{2+}\) homeostasis (Stoyas et al., 2019). Consequently, we examined whether the seizure-like activity in Xrcc1\(^{Nes-Cre}\) mice reflects a defect in Ca\(^{2+}\) signalling at the level of single synapses in isolated hippocampal neurons. Similar to whole brain sections, we detected elevated endogenous levels of ADP-ribosylation in isolated Xrcc1\(^{Nes-Cre}\) neurons, although as observed previously in other cultured cell types (Hanzlíková et al., 2018) the detection of endogenous poly(ADP-ribose) required incubation for 1 h with an inhibitor of poly(ADP-ribose) glycohydrolase.
(PARGi), the enzyme primarily responsible for poly(ADP-ribose) catabolism (Fig 5A and B). To confirm that the elevated poly(ADP-ribose) detected here was nascent polymer resulting from hyperactive Parp1, rather than pre-existing poly(ADP-ribose), we co-incubated the neurons with an inhibitor of PARP1 (PARPi). Indeed, the presence of PARPi ablated the appearance of poly(ADP-ribose) in the Xrcc1Nes-Cre neurons (Fig 5A and B). This result demonstrates that Parp1 hyperactivation occurs continuously in Xrcc1Nes-Cre hippocampal neurons, presumably as a result of the elevated steady-state level of unrepaired SSBs.

Next, to measure presynaptic calcium signalling, we transduced dissociated hippocampal cultures from different genotypes with SyGCaMP6f, a presynaptically targeted optical Ca$^{2+}$ reporter (Fig 6A and B) (Dreosti et al., 2009). We then carried out time-lapse imaging at DIV15–17 to assess Ca$^{2+}$ dynamics in response to electrical stimulation. We found that with repeated presentations of 10 Hz stimulus trains, SyGCaMP6f-positive puncta in wild-type mouse cultures showed characteristic transient increases in fluorescence consistent with activity-evoked Ca$^{2+}$ influx at the presynaptic terminal (Fig 6C). Strikingly, however, the amplitude of these responses was ~2-fold higher in Xrcc1Nes-Cre neurons, indicating that Xrcc1 loss results in excessive activity-evoked synaptic Ca$^{2+}$ influx (Fig 6C and D). Moreover, this defect was partially or fully suppressed by deletion of one or both alleles of Parp1, respectively, suggesting that the excessive activity-evoked synaptic Ca$^{2+}$ influx was a result of Parp1 hyperactivity (Fig 6C, E and G). To confirm this, we incubated cultures with PARP1 inhibitor (PARPi) continuously for 9–11 days prior to recording. Strikingly, this treatment fully suppressed the aberrant Ca$^{2+}$ response in Xrcc1Nes-Cre neurons (Fig 6C, F and G). To our knowledge, this is the first demonstration...
that aberrant Parp1 activity deregulates synaptic Ca\(^{2+}\) signalling, providing a compelling explanation for the elevated seizures and, consequently, shortened lifespan in Xrcc1\(^{Nes-Cre}\) mice.

Discussion

DNA single-strand breaks (SSBs) are the commonest DNA lesions arising in cells and can block the progression of DNA and RNA polymerases (Hsiang et al., 1989; Zhou & Doetsch, 1993, 1994; Tsao et al., 1993; Kathe et al., 2004; Caldecott, 2008). The collision of DNA polymerases with SSBs can also result in DNA replication fork collapse and the formation of DSBs (Ryan et al., 1991; Strumberg et al., 2000; Kuzminov, 2001). However, proliferating cells possess effective and accurate homologous recombination mechanisms by which replication-associated DSBs can be repaired using an intact sister chromatid (Haber, 1999; Arnaudeau et al., 2001; Costes & Lambert, 2012), perhaps explaining why human diseases in which SSBR is attenuated do not result in markedly elevated genome instability and cancer (Caldecott, 2008; Yoon & Caldecott, 2018). Consistent with this idea, proliferating cells from individuals with genetic defects in SSBR possess elevated levels of sister chromatid exchange, a hallmark of homologous sister chromatid recombination (El-Khamisy et al., 2005; Hoch et al., 2017).

In contrast to proliferating cells, post-mitotic cells lack sister chromatid recombination and so are more reliant on SSBR, perhaps explaining why defects in the latter pathway are primarily associated with neurological dysfunction (McKinnon & Caldecott, 2007; Caldecott, 2008; Yoon & Caldecott, 2018). In addition, SSBs may arise in neurons at higher frequencies than other cell types, for example as a result of glutamate excitotoxicity (Mandir et al., 2000) and/or as a result of processes associated with gene transcription. As an example of the latter, topoisomerase I activity can induce protein-linked SSBs during gene transcription and these have been implicated previously in SSBR-defective neurodegenerative diseases (Takashima et al., 2002; El-Khamisy et al., 2005; Katyal et al., 2014; Kalasova et al., 2020). In addition, the modified base 5'-hydroxymethylcytosine is highly enriched in brain and may generate SSBs as an obligate intermediate of DNA base excision repair, during epigenetic reprogramming (Kriaucionis & Heintz, 2009; Li & Liu, 2011).

Arguably the most severe pathology observed in SSBR-defective disease is neurological seizures. However, the molecular mechanisms by which unrepaired SSBs trigger these potentially lethal events are unknown. Here, we have identified one such mechanism. We found that genetic deletion of Parp1 greatly suppressed the increased seizures in Xrcc1\(^{Nes-Cre}\) mice, demonstrating for the first time a causal impact of excessive/aberrant Parp1 activity on these events. Consistent with this, we found that poly(ADP-ribose) levels are elevated across Xrcc1\(^{Nes-Cre}\) brain and are particularly high in the hippocampus, a region of the brain commonly associated with seizure activity. We also detected elevated levels of poly(ADP-ribose) in dissociated Xrcc1\(^{Nes-Cre}\) hippocampal neurons, which we confirmed was the result of ongoing Parp activity. The presence of elevated poly(ADP-ribose) is consistent with the SSBR defect in Xrcc1\(^{Nes-Cre}\) mice, because the synthesis of this polymer is triggered by endogenous SSBs (Benjamin & Gill, 1980; Ikejima et al., 1990; Eustermann et al., 2015; Hanzlikova et al., 2018). Nevertheless, that the level of endogenous poly(ADP-ribose) was high enough to detect in Xrcc1\(^{Nes-Cre}\) brain slices was surprising, and is consistent with the idea discussed above that SSB levels are particularly elevated in brain.
To our knowledge, these data are the first to demonstrate a molecular mechanism by which unrepaired DNA strand breaks trigger neurological seizures. Seizures are potentially lethal events, associated with a condition denoted sudden unexpected death in epilepsy (SUDEP) (Smithson et al., 2014; Buchhalter & Cascino, 2017). Indeed, Xrcc1Nes-Cre mice exhibit a dramatically shortened lifespan, which by video imaging we established here is due to episodic epilepsy leading ultimately to a fatal seizure. The cause of death in Xrcc1Nes-Cre mice during seizure is unclear but, similar to SUDEP, is likely to result from the disruption of normal cardiac or respiratory function (Glasscock, 2014). The discovery that deletion of one Parp1 allele prolonged the lifespan of Xrcc1Nes-Cre mice to a greater extent (~25-fold) than did deletion of both Parp1 alleles (~7-fold) is surprising. This indicates that whilst loss of one allele of Parp1 is sufficient to suppress Parp1-induced lethality, additional loss of the second allele eradicates an as yet unidentified role for Parp1 in Xrcc1-defective brain that is important for long-term survival. This role likely involves the signalling and/or processing of SSBs, because it is required for longevity only in the absence of Xrcc1. The cause of the shortened lifespan in Xrcc1Nes-Cre mice lacking both Parp1 alleles is unclear, but is unlikely to involve seizures because we failed to detect elevated seizure-like activity in brain sections from these mice, ex vivo.

PARP1 hyperactivity can trigger cell death via excessive depletion of NAD+, inhibition of glycolysis, and/or by a specialized type of apoptosis known as parthanatos (Zhang et al., 1994; Eliasson et al., 1997; Andrabhi et al., 2006; Yu et al., 2006; Aredia & Scovassi, 2014; Fouquerel et al., 2014). However, our discovery that aberrant

Figure 6. Aberrant presynaptic calcium signalling in Xrcc1^{–/+} hippocampal neurons is rescued by Parp1 deletion or inhibition.

A) Representative image of DIV15 dissociated cultured neurons used. Scale bar: 100 μm.

B) (Top) Cartoon schematic illustrates SyGCaMP6f targeting and action. (Bottom) Image shows typical punctate SyGCaMP6f expression at DIV15. Scale bar, 20 μm.

C) Representative images of fluorescence responses in synaptic terminals expressing SyGCaMP6f to a train of 10 stimuli at 10 Hz in dissociated hippocampal neurons derived from wild-type and mutant mice. Scale bar: 5 μm.

D, E) Mean SyGCaMP6f responses to three rounds of 10 action potentials stimulation from mice of the following genotypes: WT (n = 1,946 synapses, nine coverslips, three animals), Xrcc1Nes-Cre (n = 3,313, 12, 4), Parp1^{–/+}/Xrcc1Nes-Cre (n = 2,272, 9, 3) and Parp1^{–/–}/Xrcc1Nes-Cre (n = 2,122, 11, 3).

F) Response to chronic treatment with the PARP inhibitor, KU 005894 Hydrochloride (1 μM) for 9–11 days prior to imaging for Xrcc1^{–/+} (n = 1,264 synapses, eight coverslips, three animals) and Xrcc1Nes-Cre (n = 2,231, 10, 4) mice.

G) Summary histogram of the mean (± SEM) of the integrated fluorescence responses for all individual synapses for each condition. Synapse number is the same as in (D–F). Responses are significantly higher in Xrcc1Nes-Cre synapses versus both WT and Parp1^{–/+}/Xrcc1Nes-Cre (one-way ANOVA, *P < 0.0033 and pairwise Student’s t-tests).

Data information: (D–F) Data are from three or more independent experiments per genotype/treatment type, combined into one experimental data set and plotted on three separate graphs for clarity. Dashed lines in panels E and F are the three separate graphs for clarity. Dashed lines in panels E and F are the three separate graphs for clarity.
Parp1 activity resulted in aberrant Ca\(^{2+}\) signalling at presynaptic terminals in viable neurons in culture suggests that Parp1 impacts on synaptic function, directly. It will now be important to identify how Parp1 hyperactivity leads to deregulated calcium homeostasis and to understand the downstream consequences of this deregulation on the propagation of information through neural circuits. It is possible that Parp1 hyperactivity affects Ca\(^{2+}\) signalling, in part at least, as a result of NAD\(^+\) depletion. Consistent with this possibility, we discovered in the current work that NAD\(^+\) levels are reduced by \(~50\%\) in Xrcc1\(^{Nes-Cre}\) brain. This is because this enzyme co-factor is required for the synthesis of second messengers involved in calcium mobilization and release (Guse, 2015). In addition, reduced levels of NAD\(^+\) can affect the expression of genes encoding regulators of calcium homeostasis, as has been reported in the neurodegenerative disease spinocerebellar ataxia type 7 (Stoyas et al, 2019). Alternatively, or in addition, Parp1 hyperactivity might deregulate calcium signalling more directly, via inappropriate ADP-ribosylation of itself or other proteins that regulate gene expression, for example.

It is worth noting that the defects reported here in Parp1 hyperactivity, NAD\(^+\) levels and calcium signalling likely extend beyond the hippocampus and seizure phenotypes to other neurological pathologies. Indeed, we have shown previously that Parp1 hyperactivation accounts for the cerebellar dysfunction and ataxia that is observed in Xrcc1\(^{Nes-Cre}\) mice (Hoch et al, 2017). It will now be of interest to investigate the impact of NAD\(^+\) depletion and/or deregulated calcium homeostasis on these pathologies too. In addition, although speculative, our data may also be relevant to other ageing-related neurodegenerative conditions, and perhaps even normal human ageing, in which altered levels of PARP1 activity, NAD\(^+\) metabolism and calcium homeostasis are features (Maynard et al, 2015; Stoyas et al, 2019).

Finally, it is also noteworthy that we were able to ablate the elevated seizure-like activity in Xrc1-defective hippocampal slices by chronic application of PARP inhibitor in the drinking water of the mother. This is an exciting finding, because it supports the possibility that PARP inhibition might provide a therapeutic approach for the treatment of XRCC1-defective, and possibly other, neurological diseases. It should be noted however that currently available inhibitors may not be suitable for this purpose, however, because they "trap" PARP enzymes on unrepaird SSBs and so exacerbate DNA repair defects, thereby increasing DNA replication fork stalling and/or collapse during S phase. Whilst this is not a problem for post-mitotic neurons, proliferating XRCC1-defective cells are hypersensitive to inhibitors that trap PARP in vivo experiments (ABT-888; Veliparib) is a relatively weak "trapper" (Murai et al, 2017). The PARP inhibitor employed here for our in vivo experiments (ABT-888; Veliparib) is a relatively weak "trapper" (Murai et al, 2012), this may explain why we have so far been unable to extend significantly the lifespan of XRCC1\(^{Nes-Cre}\) mice by PARP inhibition.

In summary, we reveal here that aberrant Parp1 activity triggers seizures and shortened lifespan in Xrcc1\(^{Nes-Cre}\) mice. We demonstrate seizure-like activity in Xrcc1-defective hippocampus \textit{ex vivo} and aberrant presynaptic Ca\(^{2+}\) signalling in hippocampal neurons \textit{in vitro}, and we show that these defects are suppressed by Parp1 deletion or inhibition. These data highlight Parp1 inhibition as a possible therapeutic approach for the treatment of XRCC1-defective neurological disease.

Materials and Methods

Animals and animal care

Experiments were carried out in accordance with the UK Animal (Scientific Procedures) Act 1986 and satisfied local institutional regulations at the University of Sussex. Mice were maintained and used under the auspices of UK Home Office project licence number P3CDBCBA8. The generation of Parp1\(^{-/-}\), Xrcc1\(^{Nes-Cre}\) and Ku70\(^{-/-}\) mice was reported previously (Wang et al, 1995; Lee et al, 2009). Intercrosses between Parp1\(^{-/-}\) and Xrcc1\(^{+/loxp}\) mice were maintained in a mixed background C57Bl/6 \times S129 strain and housed on a 12-h light/dark cycle with lights on at 07:00. Temperature and humidity were maintained at 21°C (± 2°C) and 50% (± 10%), respectively. All experiments were performed under the UK Animal (Experimental Procedures) Act, 1986.

Antibodies

Antibodies were used: mouse monoclonal anti-PARP1 (Serotec; MCA1522G), rabbit Fc-fused anti-poly-ADP-ribose binding reagent (Millipore; MABE1031), rabbit Fc-fused anti-pan-ADP-ribose binding reagent (Millipore; MABE1016), rabbit polyclonal anti-poly-ADP-ribose (Trevigen; 4336), rabbit monoclonal anti-ATM [EPR17059] (Abcam; ab199726), mouse monoclonal anti-NeuN (A60, Millipore; MAB337), rabbit polyclonal anti-XRCC1 (Novus Biologicals; NRP1-87154) and rat polyclonal anti-β-tubulin (YL1/2, Abcam; ab6160). Secondary antibodies used for immunofluorescence were goat anti-rabbit Alexa 647 and anti-mouse Alexa 488 (Invitrogen; A21244 and A11001) and for immunohistochemistry Biotin-SP-conjugated Affini-Pure goat anti-rabbit antibody (Jackson ImmunoResearch; 111-065-144).

Immunohistochemistry and microscopy

Mice were anaesthetized using 0.25 mg/g Dolethal (Vetoquinol UK Ltd) and perfused transcardially with PBS followed by 4% formaldehyde. Brains were postfixed in 4% paraformaldehyde for 48 h and stained. Whole tissue sections were imaged in a tiling mode with a Plan-Apochromat 10\(\times\)/0.45 and 20\(\times\)/1.4 Oil DIC M27. The Airyscan super-resolution module was used to obtain high-resolution images. The image stacks were processed for brightness and contrast in ImageJ (Scientific). Immunohistochemistry was conducted as described previously (Hoch et al, 2017). Fluorescent images were acquired using the Zeiss LSM880 confocal microscope, with oil immersion objective (Plan-Apochromat 63×/1.4 Oil DIC M27). The Airyscan super-resolution module was used to obtain high-resolution images. The image stacks were processed for brightness and contrast in ImageJ (1.51j). Images of immunohistochemistry samples were acquired with LSM880 using the wide-field imaging mode (Axiocam 503 Mono, Plan-Apochromat 10×/0.45 and 20×/0.8 M27). Nuclear staining was quantified manually using ImageJ (1.51j). The mean nuclear signal was normalized by subtracting the mean value for background staining. Whole tissue sections were imaged in a tiling mode with 10% overlap and stitched in Zeiss Zen.

ADP-ribosylation assay and Western blotting

Mouse brains were dissected from P15 mouse pups following cervical dislocation. The cerebellum and the forebrain containing cortex and hippocampus were isolated separately. The frozen tissues were
processed in glass Dounce homogenizer on ice in lysis buffer containing 20 mM HEPES pH 7.4, 2 mM EGTA, 1 mM DTT, 1% v/v Triton X-100, 10% v/v glycerol, 1× protease inhibitor cocktail (Roche cOmplete, EDTA-free) and 1% v/v phosphatase inhibitor cocktail (Sigma 003). After 15 min on ice with occasional swirling, unbroken cells were removed at 500 g in a cooled centrifuged for 10 min. The salt concentration of the supernatant was adjusted to 100 mM KCl, 2.5 mM MgCl₂ and protein concentration determined using the BCA assay (Pierce). For the ADP-riboylation assay, DMSO or 10µM PARP (KU0058948, hydrochloride, Axon) as indicated was combined with the tissue lysates 15 min prior to initiation of the reaction by addition of 1 mM β-Nicotinamide adenine dinucleotide (NAD⁺, NEB). Aliquots of each reaction were stopped after 5, 10, 15, 30 and 45 min in 5× Laemmlı buffer (2.5 mM Tris–HCl pH 6.8, 0.5 mM DTT, 1% SDS, 50% glycerol, 0.05% Bromophenol blue). The samples were subjected to SDS–PAGE (7 or 10%), proteins transferred onto nitrocellulose membrane and detected using the poly(ADP-ribose)-specific detection reagent MABE1031, combined with horseradish peroxidase-conjugated secondary antibodies. Peroxidase activity was detected by ECL reagent (Clarity Western ECL Substrate, Bio-Rad) and Medical X-ray Film Blue (Agfa HealthCare).

NAD⁺ assay

NAD⁺ levels in mice brain tissue were determined by a chromogenic assay as described before (Baker et al, 2016). Briefly, forebrain tissue containing cortex and hippocampus was dissected from P15 mice. The tissue was washed in PBS and homogenized in lysis buffer [20 mM sodium bicarbonate, 100 mM sodium carbonate, 0.5% Triton X-100, 10 mM nicotinamide, 100 µM PARG inhibitor (PDD00017273, Sigma), 40 µM PARP inhibitor (KU0058948, Axon) and complete protease inhibitors (04693132001, Roche), pH 10.3] using TissueLyser II (Qiagen). The cells were further lysed by two freeze/thaw cycles. Proteins concentrations were measured in samples after centrifugation and normalized, and the lysates then added to a 10,000 MWCO centrifugal filter (UFC501024, Merck) and centrifuged at 14,000 g at 4°C for 30 min. Half of each lysate was incubated at 60°C for 15 min prior to incubation of 1 mM β-Nicotinamide adenine dinucleotide (NAD⁺, NEB). Aliquots of each reaction were stopped after 5, 10, 15, 30 and 45 min in 5× Laemmlı buffer (2.5 mM Tris–HCl pH 6.8, 0.5 mM DTT, 1% SDS, 50% glycerol, 0.05% Bromophenol blue). The samples were subjected to SDS–PAGE (7 or 10%), proteins transferred onto nitrocellulose membrane and detected using the poly(ADP-ribose)-specific detection reagent MABE1031, combined with horseradish peroxidase-conjugated secondary antibodies. Peroxidase activity was detected by ECL reagent (Clarity Western ECL Substrate, Bio-Rad) and Medical X-ray Film Blue (Agfa HealthCare).

Electrophysiology

For targeted extracellular recordings, acute transverse hippocampal slices (300 µm) were prepared from P14-P16 mice using a vibroslicer (VT1200S, Leica Microsystems, Germany) in ice-cold artificial cerebrospinal fluid containing (in mM): 125 NaCl, 2.5 KCl, 25 glucose, 1.25 Na₂HPO₄, 26 NaHCO₃, 1 MgCl₂, 2 CaCl₂ (bubbled with 95% O₂ and 5% CO₂, pH 7.3). All experiments were performed at 23–25°C. During an experiment, an extracellular electrode was placed in the hippocampal CA3 pyramidal region and field voltage recordings made as slices were perfused from ACSF into a modified (epileptogenic) saline containing (in mM) 125 NaCl, 5 KCl, 25 glucose, 1.25 Na₂HPO₄, 26 NaHCO₃, 2 CaCl₂. Signals were amplified using a MultiClamp 700A (Molecular Devices), digitized at 50 kHz with a Digidata 1320 and recorded in pClAMP acquisition software (Molecular Devices) for offline analysis. To quantify seizure-like activity, raw traces were exported and analysed in MATLAB (MathWorks). Root mean square signal envelopes (sliding window length: 400 samples) were calculated for each trace and a peak waveform generated using an automated peak-find search function. This waveform was then enveloped (sliding window length: 1,500 samples) and a peak count analysis used to quantify seizure-like episodes (SLEs) for each sample. To independently verify our automated analysis approach, we also carried out a separate manual count of SLEs, by tallying episodes in 2.5 s time bins. Outputs from both types of quantification were highly significantly positively correlated (Spearman rank, rₛ = 0.833, P < 0.0001).

For MEA recordings, slices were placed onto a high-density Stimulo MEA chip (4096 electrodes: size 21 × 21 µm, pitch 81 µm, 64 × 64 matrix, 3Brain). The slices were immobilized using a custom-made weight under membrane and were constantly perfused with oxygenated (epileptogenic) ACSF (as above) at +34°C. Recordings were acquired with BrainWave v4.2 software in 10-min time windows, digitized at 9.5 kHz and stored for offline analysis. 7-channel arrays from target regions were batch-exported in 3Brain HDF5 format and quantified in MATLAB. Signals were processed first by enveloping (RMS signal envelope, sliding window length: 500 samples) and then by generating a peak waveform to identify seizure-like events. These waveforms were then integrated to provide a collective measure of burst frequency and amplitude at each timepoint and presented as cumulative totals. Where indicated, the PARP inhibitor ABT-888 Hydrochloride (Selleckchem) was administered in drinking water (250 µg/ml, ad libitum) to the mouse dam and pre-weaned pups from their post-natal day 10 (P10) until analysis at P14–17.

Video analysis

Video monitoring was performed using the Noldus PhenoTyper 3000 system, including infrared LED units and a video recording camera for the duration of the experiment [video output CCIR black/white VPP –75 Ohm (PAL) or EIA black/white Vpp-75 Ohm (NTSC)]. Mice were placed in the chamber with floor area 30 cm × 30 cm and were provided with bedding, minimal nesting, food pellets and a water source. Mouse pups of the indicated genotype were housed with mother and a control sibling from P15 up to P20. Video recordings were observed after recording, and the number of running–bouncing seizures was quantified.

Cell culture

P1–2 mouse pups were decapitated, and brains were removed and placed in ice-cold Hank’s buffered saline solution (HBSS), 0.1 M HEPES. Hippocampi were isolated and then washed three times in
warmed 10% FCS, 20 mM glucose and 1% Pen/Strep Minimal Essential Media (MEM) (Gibco). Hippocampi were manually dissociated by trituration and diluted to a density of 50,000 cells/well and plated on poly-D-Lysine (20 µg/ml) coated 15-mm glass coverslips. 2 h after plating, the media was replaced with 2% B27, 1% glutamax and 1% Pen/Strep-supplemented neurobasal A medium (Gibco). Cells were maintained without cytokine arabinoside, typically used to manage glial cell count, to prevent induction of exogenous DNA damage (Zhuo et al., 2018). Cells were maintained in 5% CO2 at 37°C and fed every 3 days through half-exchange of media. Hippocampal cells were taken for ICC experiments at DIV6 and live imaging at DIV15–17. Hippocampal cells treated for PAN immunofluorescence were administered 10 µM PARG inhibitor PDD 00017273 (Tocris) in DMSO for 1 h following pre-treatment with 5 µM PARPi Ku-0058948 or DMSO vehicle. Cells were fixed in 4% paraformaldehyde and permeabilized with 0.2% Triton X-100 for 2 min. Cells were blocked in 10% goat serum and 0.3% Triton X-100 for 30 min prior to incubation with relevant primary antibodies. Cells were incubated with relevant secondary antibodies following PBST washes and counterstained with DAPI prior to mounting.

SyGCaMP6f imaging

Hippocampal neurons were transduced with AAV6_SyGCaMP6f at DIV6/7 at a multiplicity of infection (MOI) of 100. Images were acquired using a 60×/1.0 NA objective on an Olympus BX61WI microscope fitted with an Andor Ixon EM-CCD (40 ms exposure, 20 Hz acquisition frequency and 4 × 4 binning) controlled by custom-written Micromanager routines. Coverslips were placed in a custom-built imaging chamber, and a Grass SDP Stimulator was used to apply field stimulation (voltage: 22.5V, 1 ms pulse width). All experiments were carried out in Extracellular Bath Solution (EBS) containing (in mM): 136 NaCl, 10 HEPES, 10 D-Glucose, 2.5 KCl, 2 CaCl2 and 1.3 MgCl2. EBS was supplemented with 50 µM APV and 20 µM CNQX to inhibit NMDA and AMPA receptors, respectively. Image stacks were analysed using IGOR Pro 8. Stacks were imported via the SARFIA plugin (Dorostkar et al., 10) and corrected for x-y drift using the built-in image registration function (Thevenaz & Unser, 1998). Regions of Interest (ROIs) were detected via image segmentation using a threshold of (−3) × SD of all pixel values in the Laplace operator. Mean background intensity was subtracted to account for alterations to background fluorescence, and ΔF/F values were calculated using the 10 frames prior to stimulation as a baseline. A custom script was used to determine whether ROIs had exceeded a threshold change in fluorescence intensity following stimulation and ROIs that failed to reach threshold intensity were removed from the mask.

Data availability

No large-scale datasets are associated with this work. All raw data and materials associated with the figures are available on request.

References

Ali R, Al-Kawaz A, Toss MS, Green AR, Miligy IM, Mesquita KA, Seedhouse C, Mirza S, Band V, Rakha EA et al (2018) Targeting PARP1 in XRCC1-deficient sporadic invasive breast cancer or preinvasive ductal carcinoma in situ induces synthetic lethality and chemoprevention. Cancer Res 78: 6818–6827

Andrabi SA, Kim NS, Yu S-W, Wang H, Koh DW, Sasaki M, Klaus JA, Otsuka T, Zhang Z, Koehler RC et al (2006) Poly(ADP-ribose) (PAR) polymer is a death signal. Proc Natl Acad Sci USA 103: 18308–18313

Arnaudeau C, Lundin C, Helleday T (2014) DNA double-strand breaks associated with replication forks are predominantly repaired by homologous recombination involving an exchange mechanism in mammalian cells. J Mol Biol 307: 1235–1245

Azarm K, Smith S (2020) Nuclear PARPs and genome integrity. Gene Dev 34: 285–301

Baker J, Faustoffferri R, Quivey R Jr (2016) A Modified chromogenic assay for determination of the ratio of free intracellular NAD+/NADH in Streptococcus mutans. Bio Protoc 6: e1902

Benjamin RC, Gill DM (1980) ADP-ribosylation in mammalian cell ghosts. Dependence of poly(ADP-ribose) synthesis on strand breakage in DNA. J Biol Chem 255: 10493–10501

Breslin C, Hornyak P, Ridley A, Ruiten SL, Hanzlikova H, Oliver AW, Caldecott KW (2015) The XRCC1 phosphate-binding pocket binds poly (ADP-ribose) and is required for XRCC1 function. Nucleic Acids Res 43: 6934–6944

Buckhalter J, Cascino GD (2017) SUDEP: an important cause of premature mortality in epilepsy across the life spectrum. Neurology 89: 114–115

Caldecott KW (2008) Single-strand break repair and genetic disease. Nat Rev Genet 9: 619–631

EMBO reports

Emilia Kumulainen et al

Acknowledgements

We thank Zhao-Qi Wang for the Parp1−/− mouse strain and Tom Baden and Marvin Seifert for their support with the MEA work. This work was funded by an MRC Programme Grant to KW and KS (MR/P010121/1), an ERC Advanced Investigator Award to KWC (SIDSCA; 694996) and BBSRC Project grants to KS (BB/K019015/1; BB/S00310X/1). KWC is the recipient of a Royal Society Wolfson Research Merit Award.

Conflict of interest

The authors declare that they have no conflict of interest.
Caldecott K (2019) XRCC1 protein: Form and function. DNA Repair 81: 102664
Chaudhuri AR, Nussenzweig A (2017) The multifaceted roles of PARP1 in DNA repair and chromatin remodeling. Nat Rev Mol Cell Biol 18: 610–621
Costes A, Lambert SAE (2012) Homologous recombination as a replication fork escort: fork-protection and recovery. Biomol 3: 39–71
Dorostkar MM, Dreosti E, Odermatt B, Laguno L (2010) Computational processing of optical measurements of neuronal and synaptic activity in networks. J Neurosci Meth 188: 141–150
Dreosti E, Odermatt B, Dorostkar MM, Laguno L (2009) A genetically encoded reporter of synaptic activity in vivo. Nat Methods 6: 883–889
Eliaison MJ, Sampei K, Mandir AS, Hurn PD, Trastman RJ, Bao J, Pieper A, Wang ZQ, Dawson TM, Snyder SH et al (1997) Poly(ADP-ribose) polymerase gene disruption renders mice resistant to cerebral ischemia. Nat Med 3: 1089–1095
El-khamisy SF, Saifi GM, Weinfield M, Johansson F, Helleday T, Lupski JR, Caldecott KW (2005) Defective DNA single-strand break repair in spinocerebellar ataxia with axonal neuropathy-1. Nature 434: 108–113
Eustermann S, Wu W-F, Langelier M-F, Yang J-C, Easton LE, Riccio AA, Pascal JM, Neuhaus D (2015) Structural basis of detection and signaling of DNA single-strand breaks by human PARP-1. Mol Cell 60: 742–754
Fouquerel E, Goeilner EM, Yu Z, Cagné J-P, de Moura MB, Feinstein T, Wheeler D, Redpath P, Li J, Romero G et al (2014) ARTD1/PARP1 negatively regulates glycolysis by inhibiting hexokinase 1 independent of NAD+ depletion. Cell Rep 8: 1819–1831
Glasscock E (2014) Genomic biomarkers of SUDEP in brain and heart. Epilepsy Behav 38: 172–179
Gunn BG, Baram TZ (2017) Stress and seizures: space, time and hippocampal circuits. Trends Neurosci 40: 667–679
Guse AH (2015) Calcium mobilizing second messengers derived from NAD. Biochim Biophys Acta Proteins & Proteomen 1854: 1132–1137
Haber JE (1999) DNA recombination: the replication connection. Trends Biochem Sci 24: 271–275
Hanzlikova H, Gittens W, Krejciikova K, Zeng Z, Caldecott KW (2017) Overlapping roles for PARP1 and PARP2 in the recruitment of endogenous XRCC1 and PNKP into oxidized chromatin. Nucleic Acids Res 45: 2546–2557
Hanzlikova H, Kalasova I, Demin AA, Pennicott LE, Chilarova Z, Caldecott KW (2018) The importance of poly(ADP-Ribose) polymerase as a sensor of unligated okazaki fragments during DNA replication. Mol Cell 71: 319–331.e3
Hoch NC, Hanzlikova H, Ruiten SL, Tetreault M, Komulainen E, Ju L, Hornyak P, Zeng Z, Gittens W, Rey SA et al (2017) XRCC1 mutation is associated with PARP1 hyperactivation and cerebellar ataxia. Nature 541: 87–91
Hsiang YH, Liou MG, Liu LF (1989) Arrest of replication forks by drug-stabilized topoisomerase I-DNA cleavable complexes as a mechanism of cell killing by camptothecin. Can Res 49: 5077–5082
Ikejima M, Noguchi S, Yamashita R, Ogura T, Sugimura T, Gill DM, Miwa M (1990) The zinc fingers of human poly(ADP-ribose) polymerase II in human tissues. EMBO reports 17: 506–510
Ishizaki T, Hanaoka F, Okumura T, Yamashita R, Ogura T, Sugimura T, Gill DM, Miwa M (1990) The zinc fingers of human poly(ADP-ribose) polymerase II in HeLa cell nuclear extracts. J Biol Chem 279: 18511–18520
Katyal S, Lee Y, Nitiss KC, Downing SM, Li Y, Shimada M, Zhao J, Russell HR, Petrini JH, Nitiss JL et al (2014) Aberrant topoisomerase-I DNA lesions are pathogenic in neurodegenerative disease model. Nat Neurosci 17: 813–821
Kriaucionis S, Heintz N (2009) The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324: 929–930
Kuzminov A (2001) Single-strand interruptions in replicating chromosomes cause double-strand breaks. Proc Natl Acad Sci USA 98: 8241–8246
Lee Y, Katyal S, Li Y, El-Khamisy SF, Russell HR, Caldecott KW, McKinnon PJ (2009) The genesis of cerebellar interneurons and the prevention of neuronal DNA damage require XRCC1. Nat Neurosci 12: 973–980
Li W, Liu M (2011) Distribution of 5-hydroxymethylcytosine in different human tissues. J Nucleic Acids 2011: 870726
Mandir AS, Poitras MF, Berret BA, Chae SC, Guastella DB, Feldman A, Poirier GC, Wang Z-Q, Dawson TM, Dawson VL (2000) NMDA but not non-NMDA excitotoxicity is mediated by Poly(ADP-ribose) polymerase. J Neurosci 20: 8005–8011
Maynard S, Fang EF, Scheibe-Knudsen M, Croteau DL, Bohr VA (2015) DNA damage, DNA repair, aging, and neurodegeneration. Csh Perspect Biol 5: a025130
McKinnon PJ, Caldecott KW (2007) DNA strand break repair and human genetic disease. Annu Rev Genom Hum Genet 8: 37–55
Murai J, Huang SN, Das BB, Renaud A, Zhang Y, Doroshow JH, Ji J, Takeda S, Pommier Y (2012) Trapping of PARP1 and PARP2 by clinical PARP inhibitors. Cancer Res 72: 5588–5599
Neal AJ, Bolotserkovskii BP, Hanawalt PC (2012) Transcription blockage by bulky end termini at single-strand breaks in the DNA template: differential effects of S’ and 3’ adducts. Biochemistry 51: 8964–8970
Ryan AJ, Squires S, Strutt HL, Johnson RT (1991) Camptothecin cytotoxicity in mammalian cells is associated with the induction of persistent double strand breaks in replicating DNA. Nucleic Acids Res 19: 3295–3300
Smithson WH, Colwell B, Hanna J (2014) Sudden unexpected death in epilepsy: addressing the challenges. Curr Neurol Neurosci Rep 14: 502–506
Stoyas CA, Bushman DD, Switonski PM, Ward JM, Alaghatta A, Tang M-B, Niu C, Wadhwa M, Huang H, Savchenko A et al (2019) Nicotinamide pathway-dependent SIRT1 activation restores calcium homeostasis to achieve neuroprotection in spinocerebellar ataxia type 7. Neuron 105: 630–644.e9
Strumberg D, Pilon AA, Smith M, Hickey R, Maiba M, Pommier Y (2000) Conversion of topoisomerase I cleavage complexes on the leading strand of ribosomal DNA into 5’-phosphorylated DNA double-strand breaks by replication runoff. Mol Cell Biol 20: 3977–3987
Surges R, Thijis RD, Tan HL, Sander JW (2009) Sudden unexpected death in epilepsy: risk factors and potential pathomechanisms. Nat Rev Neurol 5: 492–504
Takashima H, Boerkoel CF, John J, Saifi GM, Saifi MAM, Armstrong D, Mao Y, Quiocho FA, Rao BB, Nakagawa M et al (2002) Mutations of TDPL, encoding a topoisomerase I-dependent DNA damage repair enzyme, in spinocerebellar ataxia with axonal neuropathy. Nat Genet 32: 267–272
Thevenaz P, Unser M (1998) An efficient mutual information optimizer for multiseparation image registration. Proc 1998 Int Conf Image Process Icip98 Cat 98ch36269.1 1: 833–837
Tsaop YP, Russo A, Nyamuswa G, Silber R, Liu LF (1993) Interaction between replication forks and topoisomerase I-DNA cleavable complexes: studies in a cell-free SV40 DNA replication system. Can Res 53: 5908–5914
Wang ZQ, Auer B, Stingl L, Berghammer H, Haidacher D, Schweiger M, Wagner EF (1996) Mice lacking ADPRT and poly(ADP-ribose)lation develop normally but are susceptible to skin disease. Genes Dev 9: 509–520
Yoon G, Caldecott KW (2018) Nonsyndromic cerebellar ataxias associated with disorders of DNA single-strand break repair. Handb Clin Neurol 155: 105–115
Yu S-W, Andrabi SA, Wang H, Kim NS, Poirier GC, Dawson TM, Dawson VL (2006) Apoptosis-inducing factor mediates poly(ADP-ribose) (PAR) polymer-induced cell death. Proc Natl Acad Sci USA 103: 18314 – 18319

Zhang J, Dawson VL, Dawson TM, Snyder SH (1994) Nitric oxide activation of poly(ADP-ribose) synthetase in neurotoxicity. Science (New York, NY) 263: 687 – 689

Zhou W, Doetsch PW (1993) Effects of abasic sites and DNA single-strand breaks on prokaryotic RNA polymerases. Proc Natl Acad Sci USA 90: 6601 – 6605

Zhou W, Doetsch PW (1994) Transcription bypass or blockage at single-strand breaks on the DNA template strand: effect of different 3' and 5' flanking groups on the T7 RNA polymerase elongation complex. Biochemistry 33: 14926 – 14934

Zhuo M, Gorgun MF, Englander EW (2018) Neurotoxicity of cytarabine (Ara-C) in dorsal root ganglion neurons originates from impediment of mtDNA synthesis and compromise of mitochondrial function. Free Radic Biol Med 121: 9 – 19

License: This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.