Fetal life is a critical step in the development of male reproductive functions. Indeed, the two major functions of the testis, gametogenesis and steroidogenesis, take place during this period. In humans, testis formation begins by the migration of primordial germ cells (PGCs) from extraembryonic areas to the genital ridge during the fifth week of gestation (Wartenberg 1989). Sertoli cells then differentiate in the gonadal ridge and surround the germ cells to form the semiferous cords between the sixth and seventh weeks (Gondos 1980; Wartenberg 1989). At this time, the PGCs are called gonocytes. In parallel, Leydig cells differentiate from mesenchymal cells in the interstitial compartment (Habert et al. 2001). These steroidogenic cells are morphologically discernible at 8 weeks of gestation (Huhtaniemi and Pelliniemi 1992), whereas in organ culture, testosterone secretion is detected from 6 weeks (Lambrot et al. 2006). The appropriate onset of gametogenesis and steroidogenesis is fundamental for the function of reproduction in the adult. Indeed, the number of germ cells formed during fetal life is essential for adult fertility. In mutant, germ-cell–deficient (gdf−/−) mice characterized by a reduced number of PGCs, as in mice lacking the POG (proliferation of germ cells) gene, the number of fetal germ cells is reduced and adult fertility is altered (Li and Bishop 2003). In the same way, androgens and insulin-like factor 3 (Ins3) produced by fetal Leydig cells control the masculinization of the reproductive tract and genitalia (Jost et al. 1973; Kubota et al. 2002).

Several studies have described an increasing frequency of male reproductive disorders in humans, such as a low sperm count and a resulting decline in fertility, thought that TDS is probably caused by changes in the development of the fetal testis and may result from the effect of genetic and/or environmental factors. Thus, TDS could result from exposure to contaminating blood or food products

Background: Several studies have described an increasing frequency of male reproductive disorders, which may have a common origin in fetal life and which are hypothesized to be caused by endocrine disruptors. Phthalate esters represent a class of environmental endocrine-active chemicals known to disrupt development of the male reproductive tract by decreasing testosterone production in the fetal rat.

Objectives: Using the organ culture system we developed previously, we investigated the effects on the development of human fetal testis of one phthalate—mono-2-ethylhexyl phthalate (MEHP)—an industrial chemical found in many products, which has been incriminated as a disruptor of male reproductive function.

Methods: Human fetal testes were recovered during the first trimester (7–12 weeks) of gestation, a critical period for testicular differentiation, and cultured for 3 days with or without MEHP in basal conditions or stimulated with luteinizing hormone (LH).

Results: Whatever the dose, MEHP treatment had no effect on basal or LH-stimulated testosterone production by the human fetal testis in vitro, although testosterone production can be modulated in our culture system. MEHP (10−6 M) did not affect proliferation or apoptosis of Sertoli cells, but it reduced the mRNA expression of anti-Müllerian hormone. MEHP (10−6 M) reduced the number of germ cells by increasing their apoptosis, measured by the detection of caspase-3–positive germ cells, without modification of their proliferation.

Conclusions: This is the first experimental demonstration that phthalates alter the development of the germ cell lineage in humans. However, in contrast to results observed in the rat, phthalates did not affect steroidogenesis.

Phthalates Impair Germ Cell Development in the Human Fetal Testis in Vitro without Change in Testosterone Production

Romain Lambrot,1,2,3 Vincent Muczynski,1,2,3 Charlotte Lecureuil,1,2,3 Gaëlle Angenard,1,2,3 Hervé Coffignon,1,2 Catherine Pairault,1,2,3 Delphine Molson,1,2,3 René Habert,1,2,3 and Virginie Rouiller-Fabre1,2,3

1Laboratory of Differentiation and Radiobiology of the Gonads, Unit of Gametogenesis and Genotoxicity, Commissariat à l’Énergie Atomique, Direction des Sciences du Vivant, Institute of Cellular and Molecular Radiation Biology, Stem Cells and Radiation Department, Fontenay aux Roses, France; 2Université Paris-Diderot-Paris, Fontenay aux Roses, France; 3Unité 566, INSERM, Fontenay aux Roses, France; 4Service de Gynécologie-Obstétrique, Université Paris Sud, Hôpital Antoine Béclère, Clamart, France; 5Unité 782, INSERM, Clamart, France

117:32–37 (2009). doi:10.1289/ehp.11146 available via http://dx.doi.org/ [Online 9 September 2008]
and can be ingested. In an epidemiologic study, 75% of the 289 human subjects tested were positive for the presence of four different types of phthalates in their urine samples (Blount et al. 2000). In rodents, both in vivo and in vitro approaches have been used to determine the effects on testicular functions of exposure to phthalates (reviewed by Sharpe 2006). Several studies have shown that fetal exposure to di-(α-n-butyyl) phthalate (DIBP) induced by gavage of pregnant rats induces TDS-like effects (Baehrle and Foster 2003; Fisher et al. 2003; Mlfkareet et al. 2000). However, despite the growing body of literature on phthalate reproductive toxicity and data demonstrating extensive human exposure, very few studies have examined the effects of these chemicals on human reproductive development. Recently, an inverse correlation has been shown between the maternal urinary phthalate concentration at the end of pregnancy and the anogenital distance at birth (Swan et al. 2005). In the same way, a dose-dependent association between phthalates in breast milk and levels of reproductive hormones in boys at 3 months of age has also been reported (Main et al. 2006). These findings are particularly important because they are the unique epidemiologic studies exhibiting negative effects of phthalates at environmental concentrations. Until now, no experimental study has succeeded in demonstrating a deleterious effect of phthalates on human testis functions or development. In this study, we focused on phthalate effects specifically on the testis. We used the organ culture system of human fetal testes that we developed previously (Lambrot et al. 2006), coupled with morphologic, functional, and molecular methods (Lambrot et al. 2006, 2007), to analyze the effects of MEHP on the development of testicular somatic and germ cells during the first trimester of pregnancy (7–12 weeks of gestation). This early developmental period of the testes has been shown to be a critical window for the determination of the reproductive tract (Wells et al. 2008).

Materials and Methods

Collection of human fetal testis. Human fetal testes were obtained from pregnant women referred to the Department of Obstetrics and Gynecology at the Antoine Béclère Hospital for legally induced abortion in the first trimester of pregnancy, that is, from the seventeenth until the twelfth week of gestation, as previously described (Lambrot et al. 2006). None of the terminations was for reasons of fetal abnormality, and all fetuses appeared morphologically normal. The sex of the fetus was determined by the morphology of the gonads, and the fetal age was evaluated by measuring the length of limbs and feet (Evtouchenko et al. 1996). The fetuses were dissected under a binocular microscope; testes were removed aseptically and immediately explanted in vitro. We found testes within the abortive material in only 12% of cases. The Antoine Béclère Hospital Ethics Committee approved this study.

Organ cultures. We cultured testes on Millicell-CM Biopore membranes (pore size, 0.4 μm; Millipore, Billerica, MA, USA) as previously described (Habert et al. 1991; Lambrot et al. 2006). We used phenol red-free Dulbecco’s modified Eagle’s medium (Ham F12:1:1 (Gibco, Grand Island, NY, USA) supplemented with 80 μg/mL gentamycin (Sigma, St. Louis, MO, USA) and devoid of hormones, growth factors, and serum. We obtained MEHP from TCI Europe (Antwerp, Belgium).

Each human testis was cut into small pieces, and all pieces from the same testis were placed on Millicell membranes floating on 320 μL culture medium in tissue culture dishes. Tissues were cultured for 4 days at 37°C in a humidified atmosphere containing 95% air/5% carbon dioxide, and the medium was changed every 24 hr. We measured the responses to MEHP (10−6, 10−5, and 10−4 M) by comparing one testis cultured in medium containing the tested factor and with the other tests from the same fetus cultured in control medium. We added histotonic hormone (LH, 100 ng/mL) from human pituitary (± 5,000 IU/mg; Sigma) or ketal-4-1,4-cholesterol (KTZ, 4 μM; Sigma) every 24 hr to the culture medium. Bromodeoxyuridine (BrDU 50 μg/mL; Amersham Biosciences, Little Chalfont, UK) was added during the last 3 hr of culture for the measurement of proliferating index. At the end of the culture period, explants were frozen in RLT buffer (Qiagen, Valencia, CA, USA) at −20°C for RNA analyses, or dry frozen with liquid nitrogen for protein analyses. For cellular analyses, the explants were fixed for 2 hr in Bouin’s fluid, embedded in paraffin, and cut into 5-μm sections.

Germ cell counting. We mounted serial sections on slides, removed the paraffin, and rehydrated the sections. We then carried out immunohistochemical assays for anti-Müllerian hormone (AMH) as previously described (Lambrot et al. 2006) using an anti-AMH polyclonal antibody (1:2,000; generously provided by N. Di Clemente, INSERM U782, Clamart, France). We visualized peroxidase activity using 3,3′-diaminobenzidine as substrate. Germ cells were identified as AMH-negative cells within the seminiferous cords, whereas Sertoli cells were AMH positive. Counting was performed as previously described and validated for rodents (Livers et al. 2006; Olaso et al. 1998) and humans (Lambrot et al. 2006, 2007). Briefly, we counted germ cells in 1 of 10 sections for

Environmental Health Perspectives • volume 117 • issue 1 • January 2009 33
by real-time polymerase chain reaction (PCR) as previously described (Lambrot et al. 2007). Primers and probes were designed by Applied Biosystems: β-Actin primer, GenBank accession no. NM_001010.2 [National Center for Biotechnology Information (NCBI) 2008a]; AMH, Probe accession no. Hs00174915_m1 (NCBI 2008b); Il13, Hs01394273_m1; P450scc, (cytochrome P450 c17a), Hs00164375_m1; P450scc (cytochrome P450 11A1), Hs00167948_m1; RPLPO (large ribosomal protein P0), NM_053275.3; βAR (beta-agonstic acute regulatory protein), Hs00264912_m1; and Wt1 (Wilms tumor 1), Hs01183799_m1. Reactions were carried out in triplicate, and negative controls were run for every primer/probe combination. The measured amount of each cDNA was normalized using β-actin and RPLPO or Wt1 for AMH.

Protein extraction and Western Blotting. One testis was lysed in 20 mM Tris (pH 7.5), 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1% Triton X-100, 2.5 mM Na4VO4, and 1 μg/mL leupeptin. Protein in total cell lysates (5 μg) was resolved by sodium dodecyl sulfate polyacrylamide gel electrophoresis, electrophoretically transferred to a polyvinylidene difluoride membrane (Amersham Biosciences), and probed with antibodies for AMH (same as for immunohistochemistry) and β-Actin (Sigma).

We used Cy5-coupled anti-rabbit and Cy3-coupled anti-mouse secondary antibodies (Amersham Biosciences), and the blot was revealed under fluorescence in a Typhoon 9400 scanner (Molecular Dynamics, Sunnyvale, CA, USA).

Statistical analysis. All values are expressed as mean ± SEM. For all mRNA expression analysis and studies on proliferation or apoptosis, we evaluated the significance of the differences between mean values for the treated and untreated tissues from the same fetus using Wilcoxon’s nonparametric paired test (for small samples). For total germ cell number counting, we used Student’s paired t-test because of the high variability in the number of germ cell between ages. Concerning testosterone secretion analysis, we used one-way analysis of variance (ANOVA) to assess the significance of the differences for secretion evolution between control and treated tissues during the 3 days of culture.

Results

Effect of MEHP on Leydig cell function. We cultured testes from fetuses at 7–12 weeks of development with or without 10–4, 10–5, or 10–6 M MEHP for 4 days. Daily testosterone production was unaffected by the addition of MEHP to the medium (Figure 1A). To check the lack of effect of MEHP, we analyzed the mRNA expression of various enzymes involved in steroidogenesis. MEHP treatment did not affect the mRNA expression of P450scc, P450scc, or StAR (Figure 1B). MEHP did not modify mRNA expression of Il13 produced by fetal Leydig cells, which is known to be involved in testicular descent (Figure 1C).

To assay the ability of testosterone secretion to be modulated in our organotypic culture system, we performed cultures with LH for testosterone stimulation and with KTZ for testosterone inhibition. With 100 ng/mL LH, the relative testosterone secretion was increased 5-fold at day 3 (Figure 2B). On the other hand, treatment with 4 μM KTZ (a cytochrome P450 inhibitor), which we have determined to be a nontoxic concentration for the tests (Figure 2A), induced very strong inhibition of testosterone production from day 2. Using one-way ANOVA, the change in testosterone secretion with both LH and KTZ treatments differed significantly from their respective controls. These results strengthen the validity of testosterone measurement in this model.

To investigate the effect of MEHP on stimulated testosterone secretion, we were
cultured in the presence of LH (100 ng/mL) with or without 10^{-6} M MEHP. Relative LH-stimulated testosterone production was unaffected by the addition of MEHP to the medium (Figure 3).

Effect of MEHP on Sertoli cell development. We studied the ratio of proliferative (BrDU positive; Figure 4A) and apoptotic (cleaved caspase-3 positive; Figure 4B) Sertoli cells after MEHP treatment for 3 days and observed that MEHP had no significant effect on these two activities.

We also analyzed the effect of MEHP on AMH expression by real-time RT-PCR (Figure 5A) and by fluorescent Western blotting (Figure 5B). Regardless of the housekeeping gene (β-actin or RPLPO) or specific Sertoli cell marker (Wt1), which is not significantly different in control and treated samples if standardized to β-actin, MEHP significantly decreased the mRNA level of AMH. However, the level of AMH protein standardized to β-actin was not modified by MEHP treatment.

Effect of MEHP on fetal germ cell development. Addition of 10^{-6}, 10^{-5}, or 10^{-4} M MEHP for 3 days had no effect on the organization of the testsis at the end of the culture (data not shown). Interestingly, regardless of the age of the fetus at explantation (from 7 to 12 gestational weeks), the higher dose of MEHP (10^{-4} M) significantly reduced the number of germ cells. Therefore, we expressed the results as a percentage of control and pooled the results from different ages (Figure 6A). However, the 10^{-6} M concentration had no effect.

Treatment with 10^{-4} M MEHP significantly increased the number of cleaved caspase-3-positive germ cells (Figure 6C,D) without altering their proliferation (Figure 6B). Treatment with 10^{-5} M MEHP increased, but not significantly, the number of cleaved caspase-3-positive germ cells (3.4% in the treated vs. 2% in the control testes) (Figure 6D).

Discussion

In this study, we investigated the effect of one metabolite of phthalate ester, MEHP, on the development of human fetal testes, using our previously developed and validated organ culture system (Lambrot et al. 2006, 2007). In this organ culture system, the testicular architecture and intercellular communications are preserved enough to allow the development of the main fetal testicular cell types in vitro, without any added factor (Livera et al. 2006). This approach allowed us to present here the first experimental demonstration that phthalates impair the development of the male fetal germ cell lineage in the human species. After 3 days of treatment, MEHP reduced by 40% the number of germ cells in cultured human fetal testis. This effect was due to a large increase in their apoptosis without modification of their proliferation. A negative effect of phthalates on gonocyte number has also been reported in rodents both in vivo, after gavage (Ferrara et al. 2006), and in vitro, in organ culture (Chauvigné F, Menuet A, Chapagain M-C, Leond L, Jégou B, unpublished data; Lebrun A, Szenker J, Habert R, Letacher C, unpublished data; Li and Kim 2003). It is interesting to note, in rodents, the androgen pathway does not seem to be involved in germ cell number, because phthalates are distinct from flutamide in their ability to induce PGC degeneration (Mylchreest et al. 1999).

Phthalates induce the appearance of multinucleated gonocytes in rodents (Ferrara et al. 2006; Klymenova et al. 2005). In the present study, we observed no multinucleated gonocytes in response to MEHP treatment. This may be due to a species characteristic: appearance of multinucleated gonocytes in rodents depends on the age of the fetus. For example, Ferrara et al. (2006) observed multinucleated gonocytes after DBP gavage only from day 19.5 postconception. Thus, the sensitive window in humans may occur later than the period studied here.

Phthalates are known as Sertoli cell toxicants in rodents. Some studies have reported a decrease in Sertoli cell number or proliferation (Hutchison et al. 2008; Li and Kim 2003). In this study, we observed that MEHP did not affect the proliferation or apoptosis rate of Sertoli cells. On the other hand, MEHP

Figure 5. Effect of 10^{-4} M MEHP on AMH expression in cultured human fetal testes. (A) Results of quantitative RT-PCR with AMH-specific primers (mean ± SEM of three independent samples), normalized to β-actin, RPLPO, Wt1 (Sertoli endogenous control), expressed as a percentage of control. (B) Representative fluorescent Western blot revealing AMH protein (green) and β-actin (red). DMDSO, dimethyl sulfoxide.

*p < 0.05 in the paired comparison with the corresponding control values (Wilcoxon paired test)."
decreased the mRNA expression of AMH which corresponds to about 10^{-5} M to 10^{-6} M for MEHP. In our study, we observed no effect at the lower concentration, either on steroidogenesis or on gametogenesis. However, the mother and thus the fetus are exposed to a combination of multiple phthalates (Swan et al. 2005), which could explain the need for a greater dose of MEHP to show a potent effect in vitro. Second, in our study we focused on the effect of MEHP specifically on testis, so we cannot rule out that the observed effects in epidemiologic studies (cryptorchidism and anogenital distance) are due to a direct effect of phthalates on the reproductive tract.

In the human fetus, intrabdominal testicular descent to the inner inguinal ring is initiated at about 10-14 weeks of gestation (Burtincco and Jacob 2000; Klionschmidt et al. 2004). A role for Insl3 secreted by differentiated Leydig cells in development of the gubernaculum and this first phase of testicular descent has emerged after analysis of mice genetically modified for Insl3 expression (Adham et al. 2002; Icver and Barget 2002; Nef and Parada 1999; Zimmerman et al. 1999). Moreover, underdeveloped gubernaculum (Bathon and Foster 2003) and reduced Insl3 expression has been observed after fetal exposure to several different phthalates in male rats (Lehmann et al. 2004; McKinnell et al. 2005; Wilson et al. 2004). We observed no effect of 10^{-10} M to 10^{-4} M MEHP (highest concentration) on the Insl3 mRNA in human testis culture, even though we took our study place during the setup of the testicular descent. Lapiz and Tremblay (2008) have recently demonstrated that MEHP represses Insl3 transcription by antagonizing testosteronetection in Leydig cells. Thus, the absence of effect on Insl3 expression observed here can be explained by the lack of effect of MEHP on testosteronestation in our model. Nevertheless, androgen receptor antagonists seem to have no effect on Insl3 expression (McKinnell et al. 2005; Woon et al. 2004).

In conclusion, this is the first experimental demonstration that phthalates, a family of compounds known as endocrine disrupters, widely distributed in the environment, are able to alter the development of male germ cell lineages in humans. This effect is not mediated by a decrease in the testosteronestation by the Leydig cells, which is unchanged. Furthermore, this study shows the efficiency of our organ culture system in investigating the effects and mechanisms of action of environmental disrupters on the development of the human fetal testis. Lastly, our work provides important insight into the potential role of exposure to environmental pollutants during fetal testicular development and their potential deleterious effects on male fertility in adulthood.

References

Abernethy M. 1996. Estimation of nuclear population from micronucleus assays. Annu Rev Pharmacol Toxicol 36:293–308.

Adham IM, Shawl S, Thorne T, Rickard DR, Schaeble C, Pagliarini L, et al. 2002. The expression of the Insl3 gene in male human cryptorchid testes of the rhesus. Mol Endocrinol 16:249–253.

Ahnfelt-Rothe J, Foster PM. 2003. Pathogenesis of male reproductive tract lesions from gestation through adulthood following in vivo exposure to the phthalate, di(2-ethylhexyl) phthalate. Toxicol Pathol 31:109–115.

Barnette K, Jacob MD. 1982. The testicular descent in the human. Origin, development, and fate of the gubernaculum testis, processus vaginalis, paruclitum, and mesonephros. Advances in Anatomy, Embryology and Cell Biology 125:1–136.

Bay T, Askildt C, Stieglitz NE, Andersen AM. 2006. Testicular dysgenesis syndrome: possible role of endocrine disrupters. Best Pract Res Clin Endocrinol Metab 20:1–17.

Blaustein DC, Elise SV, Caulfield DP, Neelam LS, Prinzi JL, Sampson KA, et al. 2007. Levels of seven urinary phthalate metabolites in a human reference population. Environ Health Perspect 108:193–196.

Bobry M, Miller B, Li X, Wang P, Martinez-Aguilera DO, Berghuis CG, et al. 2008. In vitro exposure to (di-(2-ethylhexyl) phthalate elicits both short- and long-lasting suppression effects on testosterone production in the human in the absence of estrogenic effects. Toxicol Appl Pharmacol 229:265–274.

Ben-Dor M, Lavon Y, Leichter I, Benard Y, Halevy T, Herbst A, et al. 2008. Androgen effects on fetal and neonatal testicular development. Reproduction 136:627–638.

Ben-Dor M, Lavon Y, Panouli E, Racu A, Dupont A, Koa L, et al. 2004. Estrogen receptor {Beta}-mediated inhibition of male germ cell line development in mice by endogenous estrogens during perinatal life. Endocrinology 145:306–314.

Berschuk R, Stieglitz R, Caulfield D, Erdar A, Selim RW. 1996. A mathematical model for the estimation of human sex and total fetal. Cell Transpl 5:179–194.

Bhargava CS, Halabian N, Scott R, Brown M, Mcintire A, Mohan H, et al. 2006. Acute and long-term effects of in utero exposure of rats to (di-(2-ethylhexyl) phthalate on testicular germ cell development and proliferation. Endocrinology 147:1352–1362.

Blount BC, Silva MJ, Caudill SP, Needham LL, Pirkle JL, Sampson EJ, et al. 2000. Levels of seven urinary phthalate metabolites in a human reference population. Environ Health Perspect 108:979–982.

Boksa PJ, Trujillo JF, J. F., Wang Y, Martinez-Aguilera DO. 1998. Effects of di-(2-ethylhexyl) phthalate on testicular development in mice. Toxicol Appl Pharmacol 150:187–192.

Byrne C, Delbes G, Levacher C, Habert R, Hubert R. 2006. Estrogen effects on fetal gonadal-testicular development. Reproduction 134:157–158.

Cao J, Brown R, McKinnell C, Mahood IK, et al. 2006. Acute and long-term effects of in utero exposure of rats to di(n-butyl) phthalate on testicular germ cell development and proliferation. Endocrinology 147:306–314.

Chapin RE, Fisher JS, Macpherson S, Marchetti N, Sharpe RM. 2003. Human ‘testicular dysgenesis syndrome’: a possible model using in-utero exposure of the rat to dibutyl phthalate. Hum Reprod 18:1078–1085.

Chapple VP, Habert R. 2001. Origin, differentiation and fate of the gubernaculum Hunteri, processus vaginalis peritonei, and gonadal ligaments. Advances in Anatomy, Embryology and Cell Biology 156:1–136.

Cowan JN, Foster PM. 2003. Pathogenesis of male reproductive tract lesions from gestation through adulthood following in vivo exposure to the phthalate, di(2-ethylhexyl) phthalate. Toxicol Pathol 31:109–115.

Davison J, Chapin RE. 1989. Inhibition of FSH-stimulated cAMP accumulation by mono(2-ethylhexyl) phthalate in primary rat Sertoli cell cultures. Toxicol Appl Pharmacol 97:377–385.
Effects of phthalates on human fetal testis

Omezzine A, Chater S, Mauduit C, Florin A, Tabone E, Chuzel F, et al. 2003. Long-term apoptotic cell death process with increased expression and activation of caspase-3 and -6 in adult rat germ cells exposed in utero to flutamide. Endocrinology 144(2):648–661.

Parks LG, Ostby JS, Lambright CR, Abbott BD, Klinefelter GR, Barlow NJ, et al. 2000. The plasticizer diethylhexyl phthalate induces malformations by decreasing fetal testosterone synthesis during sexual differentiation in the male rat. Toxicol Sci 58(2):339–349.

Sharpe RM. 2003. The ‘oestrogen hypothesis’—where do we stand now? Int J Androl 26(1):2–15.

Sharpe RM. 2006. Pathways of endocrine disruption during male sexual differentiation and masculinization. Best Pract Res Clin Endocrinol Metab 20(1):91–110.

Swan SH, Main KM, Liu F, Stewart SL, Kruse RL, Calafat AM, Wartenberg H. 1989. Differentiation and Development of the Testes. New York:Raven Press.

Livera G, Delbes G, Pairault C, Rouiller-Fabre V, Habert R. 2006. Organotypic culture, a powerful model for studying rat and mouse fetal testis development. Cell Tissue Res 324(3):507–521.

Livera G, Rouiller-Fabre V, Durand P, Habert R. 2000. Multiple effects of retinoids on the development of Sertoli, germ and leydig cells of fetal and neonatal rat testis in culture. Biol Reprod 62:1303–1314.

Lehmann KP, Phillips S, Sar M, Foster PM, Skakkebaek NE. 2004. Dose-dependent alterations in gene expression and testosterone synthesis in the fetal ovaries of male rats exposed to di-(n-butyl) phthalate. Toxicol Sci 79(1):60–68.

Li JL, Kuo KH. 2003. Effects of mono-(2-ethylhexyl) phthalate on fetal and neonatal rat testis organs. Biol Reprod 68(3):964–972.

Li LH, Jaeger WF Jr, Lusted AL, Orth JM. 2003. A single dose of di-(2-ethylhexyl) phthalate in neonatal rat alters gonocytes, reduces Sertoli cell proliferation, and decreases cyclic G2 expression. Toxicol Appl Pharmacol 192(2):223–235.

Li JJ, Sauerbier M, Paizalis C, Roulleau-Fabre V, Habert R. 2006. Organotypic culture, a powerful model for studying rat and mouse fetal testis development. Cell Tissue Res 324(3):507–521.

Li R, Paizalis C, Roulleau-Fabre V, Habert R. 2006. Organotypic culture, a powerful model for studying rat and mouse fetal testis development. Cell Tissue Res 324(3):507–521.

Li C, Sherman J, Libby R, Habert R. 2000. Decreased testicular size in F1 offspring of breeding rats treated with di-n-butyl phthalate during pregnancy. J Appl Toxicol 20(1):25–31.

Li Y, Li S, Liu S, Zhang J, Shi X, Du W, et al. 2006. A single dose of di-n-butyl phthalate alters germ cell proliferation in rat neonatal testis. Toxicol Lett 162(1–3):139–143.

Li Y, Li S, Liu S, Zhang J, Shi X, Du W, et al. 2006. A single dose of di-n-butyl phthalate alters germ cell proliferation in rat neonatal testis. Toxicol Lett 162(1–3):139–143.

Li Y, Li S, Liu S, Zhang J, Shi X, Du W, et al. 2006. A single dose of di-n-butyl phthalate alters germ cell proliferation in rat neonatal testis. Toxicol Lett 162(1–3):139–143.

Hattikudur S, Pedersen E. 2002. Fetal Leydig cells: cellular origin, morphology, size, age, and special functional features. Prog Sex Reprod Biol 11(3):135–146.

Hechtman UR, Scott HM, Walker M, McKinnell C, Ferrara D, Mortensen GK, et al. 2005. Insulin-like factor III protein in the rat testis during fetal and postnatal development and in relation to cryptorchidism induced by in utero exposure to di (n-butyl) phthalate. Endocrinology 146(10):4536–4544.

Kleymenova E, Swanson C, Boekelheide K, Gaido KW. 2005. Increasing apoptosis. Endocrinology 139:733–740.