Research Paper:
Effect of Toe Only Rocker at 10 and 15 Degrees on Balance and Walking Speed in Elderly Adults

Hoda Hashemi1, *Mahmoud Bahramizadeh1, Mokhtar Arazpour1, Atefe Aboutorabi1

1. Department of Orthotics and Prosthetics, School of Rehabilitation Sciences, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.

Objective
Balance is one of the indicators to determine independence in performing daily activities in the elderly. One of the influential factors in postural control and balance is walking speed. This study aims to evaluate the effect of rocker soles at two degrees of 10 and 15 on the walking speed and balance of the elderly.

Materials & Methods
The study participants were 19 older adults aged 60 years or older (13 women and 6 men; mean age=66.1 years, mean height=1.63 m, mean weight=70.3 kg). Three models of shoes were used: shoes with a 10-degree rocker sole angle, shoes with a 15-degree rocker sole angle, and control shoes. Walking speed was evaluated with 10-m walking test, while balance and dynamic postural control were assessed with the Berg balance Scale (BBS) and Star Excursion balance test, respectively. The Shapiro-Wilks test was used to examine the normality of data distribution, and repeated-measures ANOVA and Wilcoxon test were used to compare the effects of different rocker angles on balance and walking speed. The obtained data were analyzed in SPSS v. 22.

Results
There was no significant difference in walking speed (P= 0.993), dynamic postural balance at anterior (P= 0.835), posterolateral (P= 0.86), and posteromedial (P= 0.598) directions and balance obtained from BBS (P= 0.625) among the groups using three shoe models.

Conclusion
It seems that the use of rocker sole shoes does not affect the balance and walking speed of the elderly. This study supports the administration of shoes with toe-only rocker soles to the elderly.

ABSTRACT
Objective Balance is one of the indicators to determine independence in performing daily activities in the elderly. One of the influential factors in postural control and balance is walking speed. This study aims to evaluate the effect of rocker soles at two degrees of 10 and 15 on the walking speed and balance of the elderly.

Materials & Method The study participants were 19 older adults aged 60 years or older (13 women and 6 men; mean age=66.1 years, mean height=1.63 m, mean weight=70.3 kg). Three models of shoes were used: shoes with a 10-degree rocker sole angle, shoes with a 15-degree rocker sole angle, and control shoes. Walking speed was evaluated with 10-m walking test, while balance and dynamic postural control were assessed with the Berg balance Scale (BBS) and Star Excursion balance test, respectively. The Shapiro-Wilks test was used to examine the normality of data distribution, and repeated-measures ANOVA and Wilcoxon test were used to compare the effects of different rocker angles on balance and walking speed. The obtained data were analyzed in SPSS v. 22.

Results
There was no significant difference in walking speed (P= 0.993), dynamic postural balance at anterior (P= 0.835), posterolateral (P= 0.86), and posteromedial (P= 0.598) directions and balance obtained from BBS (P= 0.625) among the groups using three shoe models.

Conclusion
It seems that the use of rocker sole shoes does not affect the balance and walking speed of the elderly. This study supports the administration of shoes with toe-only rocker soles to the elderly.

Keywords:
Balance, Walking speed, Elderly, Rocker sole, Toe-only rocker

Extended Abstract

Introduction

The world’s elderly population has grown significantly over the past few decades [1-3] and is expected to increase in the future [2]. With aging, all factors involved in balance, including walking speed [1], are affected [4]. About 27%-65% of the elderly experience falls at least once a year [5, 6]. Fear of falling is the most common fear among the elderly [7, 8]. Several interventions have been used to maintain and improve walking speed and balance in the elderly. These interventions include vestibular neurosurgery, physiotherapy, exercise therapy, orthosis interventions, and using special shoes [11-15]. Since the feet have direct contact with the ground during walking, any change in the space between the sole and the ground can affect the postural stability of people [9, 10]. Many features in shoe design can affect balance and walking speed [11-13]. In assessing the characteristics of the sole of the shoes, one of the common interventions used for a wide range of problems...
and target groups is the addition of rocker soles to the shoes [14, 15]. Other rockers have various therapeutic effects on the target groups [19]. The geometric characteristics of toe rockers in the anterior part are determined by three variables of apex angle, apex position, and rocker angle [21]. The rise and function of the apex change the rate of movement of the lower extremity joints, especially the ankle, walking speed, kinematic gait, and the patterns of rocker during the gait cycle. In this way, a change in the apex angle and position can improve or weaken these variables [21, 22] and, thus, affect people’s balance and walking speed.

In examining the characteristics of the toe rocker, Chapman’s study showed that the use of a rocker with an apex angle of 95-90 degrees had good equilibrium effects on the study groups [16]. Meyer et al. and van Schie et al.’s studies showed that, for optimal balance performance, the most effective apex position is at 55%-65% of the shoe length [17, 18]. In another study, the effect of rocker angles on the degree of dorsiflexion and toe clearance was investigated. The results showed that, regardless of the ground inclination, shoes with toe rockers at angles of 10-15 degrees compared to other rockers significantly increased toe clearance in the elderly and consequently reduced the risk of falling [19].

Given the growing rate of the aging population and the increasing injuries caused by poor postural balance, a study in the field of balance and walking speed of the elderly can be of great value to this group. The use of rocker sole shoe is one of the common interventions for increasing muscle strength in the elderly and young people. Despite the few studies on the effect of rockers in the elderly population, some have concluded that adding a rocker to the sole of the shoe can improve muscle strength in the long term and, thereby, improve postural stability. Achieving the desired effects on muscle strength requires rocker use on the sole for at least 6 months [20-22]. However, there is a concern that during this 6-month period, older people may have balance problems and slow walking. Thus, the present study aims to evaluate the short-term effect of toe rockers with specific angles on walking speed and postural control of the elderly.

Materials and Methods

This research is a quasi-experimental study with a pretest-posttest design. The inclusion criteria were being healthy and older than 60 years, while the exclusion criteria were having neuromuscular diseases, peripheral neuropathy, diabetes, acute musculoskeletal injuries, acute pain in the lower limbs and lower back, using walking aids, balance problems, and acute heart or lung diseases. To determine the sample size, first, a pilot study was performed on five older people. Assuming an effect size of 0.5, the minimum sample size was 19 to achieve a test power of 0.86. The participants’ dynamic postural stability was assessed by the Star Excursion Balance Test (SEBT). It is a reliable test with an intraclass correlation coefficient of 0.89-0.93 and a coefficient of variation of 0.3-4.6 [23]. To normalize the data, the SEBT results were divided by the leg length, and their mean values were used in the analysis [24]. The balance of participants was evaluated using the Persian version of the Berg Balance Scale (BBS), whose psychometric properties have been evaluated in a previous study [25]. The total score of BBS is 56, which shows the highest balance ability. The internal and external reliabilities of this test in the elderly are 0.98 and 0.99, respectively [26]. The walking speed was assessed using the 10-m walking test where the participant walks a distance of 20 m at a safe speed. The test was repeated 3 times, and the best record was set as the test score [27].

Ethyl vinyl acetate rubber was used to prepare the toe rocker in shoes with similar insoles and soles. The location of the rocker head was at 65% of the shoe length [28]. To maintain a safe environment for the elderly, the rocker angles were set at the maximum values, which did not increase the risk of falls in the elderly in previous studies [19, 29]. In the first test model, the rocker angle was 10 degrees (Figure 1), and in the second test model, it was 15 degrees (Figure 2). The shoe’s sole was completely thick at the heel, at 65% of the shoe length. A shoe model similar to the test shoes, but different only in type and thickness of the sole, was used as the control shoe (Figure 3). To analyze the data,
first, the normality of their distribution was examined using the Shapiro-Wilk test, whose results showed a normal distribution for all data (P=0.2) except for the BBS data (P<0.001). Therefore, ANOVA and the Wilcoxon test were used to analyze the collected data.

Results

Out of 19 participants, 6 (31.6%) were men, and 13 (68.4%) were women. Their age ranges, mean of height, weight, Body Mass Index (BMI), and lower limb length ranges are presented in tables 1, 2, and 3. The Mean±SD BBS score in the control shoe group was 55.46±0.96, ranging from 52 to 56. This score was 55.21±0.98 in the shoe group with a 10-degree toe rocker and 55.26±1.05 in the shoe group with a 15-degree toe rocker; both ranged from 52 to 56. The result of the Wilcoxon test showed no statistically significant difference between the three groups regarding this variable (P=0.625). The Mean±SD score of the 10-m walking test in the control group was 1.14±0.24 m/s, ranging from 0.59 to 1.6 m/s. This score was 1.15±0.18 m/s in the shoe group with 10-degree toe rocker (range: 0.83 to 1.38 m/s) and 1.15(0.22) m/s in the shoe group with 15-degree toe rocker (range: 0.73 to 1.72 m/s). The result of the Wilcoxon test showed no statistically significant difference between the three groups regarding this variable (P=0.993). The result of the Wilcoxon test showed no statistically significant difference in SEBT score between the three groups (Table 4).

Discussion and Conclusion

The present study revealed that adding a toe rocker with angles of 10 or 15 degrees had no adverse effect on the balance and the walking speed of the elderly. The use of two rocker angles with certain values was based on previous studies, which showed that these rocker angles positively affected toe clearance during the swing phase in the elderly [19, 29]. Wearing rocker shoes reduces the person’s awareness of foot conditions by affecting the movement of the ankle joints and reducing the level of reliance [30]. Thus, due to compensatory mechanisms and caution, the travel distance in SEBT might be reduced after using rocker shoes compared to control shoes. However, the participants traveled relatively the same distance with all three shoe models. One of the reasons for the lack of significant differences in the results can be an increase in the person’s muscle activity to achieve a stable condition. Ghomian et al. [25], in a study on 17 patients with diabetic neuropathy, stated that when wearing rocker shoes, muscular strength increases in response to anterior and posterior stimuli to reach a stable condition.

Table 1. Average age distribution of the participants

Age Range (y)	N	%	Cumulative %
60-69	15	78.9	78.9
70-79	3	15.8	94.7
≥80	1	5.3	100
Total	19	100	

Table 2. Mean±SD values of height, weight, and Body Mass Index (BMI) in the participants

Variables	Mean±SD	Min.	Max.
Height (m)	1.63±0.09	1.5	1.85
Weight (kg)	70.3±11.5	45	85
BMI (kg/m²)	26.41±3.08	18.73	31.25
condition. In other words, the lack of change in postural stability while wearing rocker shoes can be due to increased muscle activity and the person’s effort to maintain a stable posture. In their study, no significant difference was observed between shoes with toe rockers and control shoes regarding postural stability [31]. Brenton-Rule et al. evaluated the walking footwear on the postural stability of 21 healthy older adults. They also found no significant difference between the use of rocker shoes and regular walking shoes [32]. Ramstrand’s study of 31 women over the age of 50 showed that eight weeks of wearing MBT (Masai Barefoot Technology) shoes had no significant effect on the static stability of participants [21]. At the same time, the results of Albright et al. [44], Demura et al. [45], and Arazpour et al. [46] are contrary to our results. Albright et al. used shoes with rocker bottom soles, Demura et al. used shoes with rounded soft soles, and Arazpour et al. used shoes with heel-to-toe rocker soles. The discrepancy in results may also be due to the difference in the postural stability system between the elderly and young people. In all three studies, the participants were 20-25 years old, while the participants in our study were 66 years or older.

The results obtained from the 10-m walking test showed that the use of shoes with a 10- or 15-degree toe rocker did not cause a significant change in the walking speed of the elderly. Adding a rocker to the sole of the shoe increases the activity of ankle plantar flexors. If the rocker material is hard, it will prevent metatarsal joint movement, and, hence, the so-called metatarsal bone fracture will not occur. This status will increase the moment arm of plantar flexor muscles and eventually needs extra effort to lift the heel off the ground [36, 37]. On the other hand, the addition of a toe rocker increases the angle of hip extension in the middle and end of the static phase; as a result, the step length decreases [38]. At a certain distance, if the step length decreases and the cadence increases, the walking speed will not change. Forgani et al. and Arazpour et al. reported the same walking speed of the participants using control shoes and rocker

Table 3. The average length of the lower limbs of the participant

Lower Limb Length (cm)	N	%	Cumulative %
70-75	10	52.7	52.7
76-80	5	26.3	78.5
81-85	2	10.5	89.5
86-90	2	10.5	100
Total	19	100	-

Table 4. Mean±SD scores of the Star Excursion Balance Test (SEBT) at three directions

Control Shoe Group	Shoe Group With a 10-Degree Toe Rocker	Shoe Group With a 15-Degree Toe Rocker	Test Results	
SEBT at the anterior direction	Mean±SD 0.78±0.12	0.79±0.09	0.8±0.07	P=0.826
	Min. 0.6	0.66	0.69	1
	Max. 1.04	0.98		
SEBT at the postero-medial direction	Mean±SD 0.82±0.08	0.83±0.11	0.82±0.1	P=0.835
	Min 0.69	0.62	0.71	1
	Max 0.97	1.09		1.04
SEBT at the postero-lateral direction	Mean±SD 0.66±0.14	0.65±0.1	0.69±0.11	P=0.598
	Min 0.41	0.44	0.49	1
	Max 0.97	0.92		0.88
shoes [35, 39]. Similar results were also observed in studies by Meyer et al. and Van Bogart [15, 38]. However, they suggested that the reason for the same speed when walking with rocker shoes was the increase of cadence and the decrease of stride length. One of the confounding variables and limitations of this study was the difference in the sole thickness in rocker-soled and control shoes. Although the effect of increasing the sole thickness on the weight of the shoes is statistically insignificant, the difference in the effect of the sole thickness on the balance is still debated. Since the results of clinical trials depend on the carefulness of the examiner and the location of the tests, all tests were performed in a place with standard conditions provided by an orthotist. It is recommended that other temporal and spatial parameters of walking in the elderly be evaluated in future studies by using rocker shoes.

Ethical Considerations

Compliance with ethical guidelines

All ethical principles are considered in this article. The participants were informed about the purpose of the research and its implementation stages. They were also assured about the confidentiality of their information and were free to leave the study whenever they wished, and if desired, the research results would be available to them.

Funding

This research did not receive any grant from funding agencies in the public, commercial, or non-profit sectors.

Authors’ contributions

Conceptualization, methodology, software, validation, formal analysis, investigation, resources, data curation, writing – original draft preparation, writing – review & editing, visualization: All authors; Supervision: Mahmoud Bahramizadeh, Mokhtar Arazpour, Atefe Aboutorabi.

Conflict of interest

The authors declared no conflict of interest.
مقاله پژوهشی:
تأثیر راکر پنجه با زوایای ۱۰ و ۱۵ درجه بر تعادل و سرعت راه رفتن افراد سالمند

هدی حامیه، محمود بهرامی‌زاده، عاطفه ابرازیور، عاطفه ابرازیور

۱. گروه‌بندی و یافته‌ها: مطالعه بر اساس مدل تحقیقاتی و سالمندی توانبخشی و سلامت اجتماعی تهران، ایران.

۲. مقدمه:
در طول چند دهه گذشته جمعیت افراد سالمند در دنیا به طور قابل ملاحظه‌ای رو به افزایش بوده است و در آینده انتظار می‌رود این روند تسریع یابد. با افزایش سن، به‌طور فعالیت‌های اجرایی و استقراری در زمینه تعادل و سرعت راه رفتن و ثبات راه رفتن و ایستادن کاهش می‌یابد. نیاز به ایجاد بهترین مداخلات برای حفظ فعالیت و حفظ تعادل افراد سالمند بله.

۳. مجموعه‌دهنده:
چهار بحث اصلی اصلی این مطالعه مورد بررسی قرار گرفتند: افراد سالمند، افراد سالمند، افراد سالمند و افراد سالمند. در این مطالعه، افراد سالمند به عنوان مورد بررسی قرار گرفتن و بررسی شدند.

۴. با بررسی مسائل مربوط به تعادل و سرعت راه رفتن، به‌طور کلی این مطالعه می‌تواند به بهبود وضعیت سلامت اجتماعی در مرحله سالمندی کمک نماید.
زیره کفش یکی از مداخلا ت رایج است که امروزه جهت افزایش قدرت عضلات برای سالمندان و جوانان تجویز می‌شود. با وجود کم بودن تعداد مطالعات درباره سالمندان، تعدادی به این نتیجه رسیدند که افزودن راکر به زیره کفش در بلندمدت باعث بهبود قدرت عضلانی و به دنبال آن بهبود ثبات پاسچرال سالمندان می‌شود و رسیدن به تأثیرات مطلوب نیازمند استفاده حداقل شش ماه است. حال همچنان این نگرانی وجود دارد که تا رسیدن به تقویت عضلانی در دوره بلندمدت، افراد سالمند در دوره کوتاه مدت در معرض بی تعادلی و کاهش سرعت راه رفتن قرار بگیرند. درواقع سوال اصلی این است که در دوره کوتاه مدت که هنوز قدرت عضلات تقویت نشده، راکر باعث بر هم خوردن تعادل می‌شود یا خیر. در جستجوی مشخصی مشخصی، این مطابق با دسته‌بندی رأس راکر مشخص و زاویه راکر هستند.

در بررسی ویژگی‌های راکر پنجه، مطالعه چپمن نشان داد که نمی‌توان برای همه افراد ترکیب ثابتی از این متغیرها را اعمال درجه بر تعادل و سرعت راه رفتن افراد را منتشر کرد، اما استفاده از راکری با زاویه رأس راکر و سمت و محل قرارگیری رأس راکر دو گروه مطالعه او تأثیرات تعادلی مطلوبی داشته است. مطالعات مییر و همچنین ون شی نشان دادند برای داشتن عملکرد تعادلی مطلوب، مؤثرترین محل برای قرارگیری رأس راکر درصد طول کفش از محل پاشنه است.

در مطالعه ای، تأثیر زوایای راکر روی میزان دورسی فلکشن و بررسی شد. نتایج نشان داد صرف ۲ میزان بلند شدن پا از زمین نظر از زاویه شیب زمین، کفش‌هایی با راکر پنجه در زوایای درجه در مقایسه با سایر راکرها، میزان بلند شدن پا از زمین را به طور معناداری افزایش می‌دهند و به دنبال آن خطر میزان خوردن فرد کاهش می‌یابد. خود برای زوایای راکر درجه، مطالعه دیگری به ارزیابی تأثیرات این تغییرات بر عملکرد تعادلی افراد مراجعه نمی‌کند. تأثیر راکر پنجه روی ثبات پاسچرال افراد با نوروپاتی دیابتی حین پوشیدن کفش‌های راکردار پایین می‌آید.

در مطالعه‌ها، تأثیرات راکر روی ثبات پاسچرال هنگام تعیین داشته شد. نتایج مطالعه‌ها نشان دادند تفاوت قابل‌توجهی بین شرایط کفش در جابه‌جایی مرکز نیرو و زمان عکس‌العمل وجود ندارد. درواقع زمانی که تأثیرات فوری و کوتاه مدت مد نظر باشد، کفش‌های راکردار تأثیر منفی روی ثبات پاسچرال افراد با نوروپاتی دیابتی نخواهد داشت.

با توجه به نرخ رو به رشد جمعیت سالمندان و افزایش آسیب‌های ناشی از پاسچر ضعیف، مطالعه در حوزه تعادل و راه رفتن سالمندان می‌تواند کمک‌شایانی به این گروه کند. راکر زیره کفش یکی از مداخلا ت رایج است که امروزه جهت افزایش قدرت عضلات برای سالمندان و جوانان تجویز می‌شود. با وجود کم بودن تعداد مطالعات درباره سالمندان، تعدادی به این نتیجه رسیدند که افزودن راکر به زیره کفش در بلندمدت باعث قدرت عضلات برای سالمندان می‌شود و به دنبال آن خطر میزان خوردن فرد کاهش می‌یابد. خود برای زوایای راکر درجه، مطالعه دیگری به ارزیابی تأثیرات این تغییرات بر عملکرد تعادلی افراد مراجعه نمی‌کند. تأثیر راکر پنجه روی ثبات پاسچرال هنگام تعیین داشته شد. نتایج مطالعه‌ها نشان دادند تفاوت قابل‌توجهی بین شرایط کفش در جابه‌جایی مرکز نیرو و زمان عکس‌العمل وجود ندارد. درواقع زمانی که تأثیرات فوری و کوتاه مدت مد نظر باشد، کفش‌های راکردار تأثیر منفی روی ثبات پاسچرال افراد با نوروپاتی دیابتی نخواهد داشت.
انگک پیشین، خطر زمین خوردن در سالمندان تقویت نکرده است. [۲۲] یک مدل کفش مشابه با کفش‌های آزمون که نتایج از لحاظ نیرو زیره با آن ها متفاوت بوده و ضخامت زیره در سرانجام کلی کم بوده، به عنوان کف‌کشت کنترل استفاده شد.

[تصویر شماره ۱] در مدل اول، یک راکر با خط افقی زاویه ۱۵ درجه (تصویر شماره ۲) داشت. زیره کفش در قسمت پشتی دارای ضخامت کامل بود که تا ۲/۶ دمای کلی کم نیز امنیت داشت. ضخامت زیره در این ناحیه برای گروه کشف راکردار ۲/۹ میلی‌متر و برای کشف کنترل ۲/۲ میلی‌متر بود.

جاهت انجام آزمون های این آزمایش‌های لازم به افراد کشت کنندگان، توسط آزمون‌گر داده شد. یک بار آزمون توسط آزمون‌گر برای شرکت کننده کفش تشکیل داده که رقابت‌کننده‌ها روی پایه ایستاده و یک راکر به صورت نظارتی از افراد گرفته شد. پس از اتمام مرحله کشف، ۵ دقیقه استراحت برای آزمودنی‌ها در نظر گرفته شد. در مرحله اول از اجرای آزمون‌ها به همراه ادامه‌شدن به منظور آمنیت در شرایط مختلف، کفش‌ها را در مرحله ۶/۶ پوشش داده شد و به صورت همکاری، از افراد گرفته شد.

در مرحله دوم از اجرای آزمون‌ها به همراه ادامه‌شدن به منظور آمنیت در شرایط مختلف، کفش‌ها را در مرحله ۶/۶ پوشش داده شد و به صورت همکاری، از افراد گرفته شد.

در مرحله سوم از اجرای آزمون‌ها به همراه ادامه‌شدن به منظور آمنیت در شرایط مختلف، کفش‌ها را در مرحله ۶/۶ پوشش داده شد و به صورت همکاری، از افراد گرفته شد.

برای آمادگی نور و فعالانه از انجام آزمون‌های تخصصی در سالمندان، کفش‌های مختلفی ارائه شده که برای جلوگیری از تفاوت در نتایج، کفش‌های اختصاصی از نکات ذکر شده، توسط آزمون‌گر تهیه شده و برای هرکدام از کشت‌کننده‌ها برنامنه برای راکرهای پنجه داشته است. در بالاترین سطح تعادل، یک راکر باید به صورت نظارتی از افراد گرفته شود و در بالاترین سطح تعادل، یک راکر باید به صورت نظارتی از افراد گرفته شود.

در بالاترین سطح تعادل، یک راکر باید به صورت نظارتی از افراد گرفته شود و در بالاترین سطح تعادل، یک راکر باید به صورت نظارتی از افراد گرفته شود.

برای انجام آزمون‌های تخصصی سالمندان، کفش‌های مختلفی ارائه شده که برای جلوگیری از تفاوت در نتایج، کفش‌های اختصاصی از نکات ذکر شده، توسط آزمون‌گر تهیه شده و برای هرکدام از کشت‌کننده‌ها برنامنه برای راکرهای پنجه داشته است. در بالاترین سطح تعادل، یک راکر باید به صورت نظارتی از افراد گرفته شود و در بالاترین سطح تعادل، یک راکر باید به صورت نظارتی از افراد گرفته شود.

برای انجام آزمون‌های تخصصی سالمندان، کفش‌های مختلفی ارائه شده که برای جلوگیری از تفاوت در نتایج، کفش‌های اختصاصی از نکات ذکر شده، توسط آزمون‌گر تهیه شده و برای هرکدام از کشت‌کننده‌ها برنامنه برای راکرهای پنجه داشته است. در بالاترین سطح تعادل، یک راکر باید به صورت نظارتی از افراد گرفته شود و در بالاترین سطح تعادل، یک راکر باید به صورت نظارتی از افراد گرفته شود.

برای انجام آزمون‌های تخصصی سالمندان، کفش‌های مختلفی ارائه شده که برای جلوگیری از تفاوت در نتایج، کفش‌های اختصاصی از نکات ذکر شده، توسط آزمون‌گر تهیه شده و برای هرکدام از کشت‌کننده‌ها برنامنه برای راکرهای پنجه داشته است. در بالاترین سطح تعادل، یک راکر باید به صورت نظارتی از افراد گرفته شود و در بالاترین سطح تعادل، یک راکر باید به صورت نظارتی از افراد گرفته شود.
نیاز به تکلیف‌های سه‌گانه توسط آزمونگر اجرایی نمود. درکرده‌ها و جراحی‌ها بر اساس آزمون واریانس به منظور بررسی اختلافات آماری میان گروه‌ها است. برای بررسی اختلافات توزیع داده‌ها متغیر‌های نرمال و استاندارد و درصدی را در گروه کنترل، کفش با راکر پنجه کارایی موثری نشان ندادند. به منظور تجزیه‌بندی داده‌ها، ابتدا با استفاده از آزمون شاپیرو ویلک، نرمالیتی داده‌ها جایگزین شد. مسیر این آزمون، کفش‌های کنترل، کفش با راکر پنجه بود. نتایج آزمون نشان داد که توزیع داده‌ها به‌صورت تصادفی در هر گروه بود. سپس با استفاده از آزمون واریانس، اختلافات بین داده‌های افراد در سه گروه کنترل، کفش با راکر پنجه و کفش کنترل شناخته شد. برای استحیال به منظور بهبود تعادل میان گروه‌ها، اکثریت افراد به عنوان نمونه از آزمون پرداخته‌اند.

نتایج تحقیق به‌منظور اجرای نمونه گرفتن از سه گروه کنترل، کفش با راکر پنجه و کفش کنترل استفاده شد. در این تحقیق، برای بررسی تعادل سالمندان، به عنوان مدل‌های استاندارد مصرف شده در بستر های درمانی، فاکتورهای تعیین‌کننده تعادل تعیین شدند. این شامل توانایی تعیین‌کننده، جفت‌بندی و میزان حرکت است. این توانایی بر اساس طبقه‌بندی گروه‌های کلاسیک در مطالعه شناخته شد. در این تحقیق، برای بررسی تعادل سالمندان، اکثریت افراد به عنوان نمونه از آزمون پرداخته‌اند.

نتایج تحقیق به‌منظور اجرای نمونه گرفتن از سه گروه کنترل، کفش با راکر پنجه و کفش کنترل استفاده شد. در این تحقیق، برای بررسی تعادل سالمندان، به عنوان مدل‌های استاندارد مصرف شده در بستر های درمانی، فاکتورهای تعیین‌کننده تعادل تعیین شدند. این شامل توانایی تعیین‌کننده، جفت‌بندی و میزان حرکت است. این توانایی بر اساس طبقه‌بندی گروه‌های کلاسیک در مطالعه شناخته شد. در این تحقیق، برای بررسی تعادل سالمندان، اکثریت افراد به عنوان نمونه از آزمون پرداخته‌اند.
از آن تا نتیجه نشان داده شود، برای انجام آزمایشات، از مدل‌ها استفاده می‌شود. استفاده از کفش‌های راکردار با تأثیرگذاری بر میزان حرکت و تغییرات جسمانی و تغییرات در تعادل افراد موجب می‌شود که شرکت‌کنندگان مسافت‌هایی را با استفاده از کفش‌های راکردار برای رسیدن به حالت تعادل کاهش دهند.

پایه‌های FAT (فرم عضلانی)

متغیر	حداقل	محدودیت	BMI (مافی)
چاق (کیلوگرم)	110	161	154/166
فاقد وزن (کیلوگرم)	50	59	59/68
وزن بدن (کیلوگرم)	30	36	36/39

جدول 1. میزان BMI و PND

BMI	PND
0.9	206.4
1	191.8
1.2	175.6

جدول 2. مقایسه کفش‌های MBT و کفشهای راکردار

متغیر	کفشهای MBT	کفشهای راکردار
BMI	27.8	27.6
PND	20.5	19.7

جدول 3. مقایسه BMI و PND

BMI	PND
0.9	206.4
1	191.8
1.2	175.6

جدول 4. مقایسه کفشهای MBT و کفشهای راکردار

متغیر	کفشهای MBT	کفشهای راکردار
BMI	27.8	27.6
PND	20.5	19.7

جدول 5. مقایسه BMI و PND

BMI	PND
0.9	206.4
1	191.8
1.2	175.6
با به هم خوردن تعادل افراد می‌شود [49]. مدل زیر استفاده‌شده در مطالعه عرض پوزی‌رک یاپشن‌ت خانم‌ها، از طرفی دیگر ویک استفاده‌شده در مطالعه عرض پوزی‌رک کافی برای کنترل حرکات اینورژن و ایورژن می‌باشد.

ایجاد نسبت [50].

از طرفی دیگر تغییر مشاهده‌شده بین پژوهش ما و مطالعات مذکور در نامول به دلیل تفاوت زیاد با ساختار در افراد سالمند افراد ناشتا یا پاشاندگان در سالمندی یا پاشاندگان است. در حالی که میانگین سنی افراد شرکت‌کننده مطالعه خاضع 66 سال است.

در رابطه با تأثیر افزودن راکر پونجه به کفش می‌تواند به دلیل زیاد شدت تغییر در حرکت است. در حالی که کف‌های پونجه کافی برای پشتیبانی حرکت اینورژن و ایورژن می‌باشد.

در رابطه با کنترل حرکت اینورژن و ایورژن می‌باشد.

شاخه‌ی بازی‌ها	راکر 10 هرمه	راکر 10 هرمه	کنترل	گروه	مجموع
میانگین مراتب	0.87	0.89	0.89	0.87	0.88
شانزده‌های اول	0.87	0.89	0.89	0.87	0.88
شانزده‌های دوم	0.87	0.89	0.89	0.87	0.88
شانزده‌های سوم	0.87	0.89	0.89	0.87	0.88
شانزده‌های چهارم	0.87	0.89	0.89	0.87	0.88
شانزده‌های پنجم	0.87	0.89	0.89	0.87	0.88
شانزده‌های ششم	0.87	0.89	0.89	0.87	0.88
شانزده‌های هفتم	0.87	0.89	0.89	0.87	0.88
شانزده‌های هشتادم	0.87	0.89	0.89	0.87	0.88
شانزده‌های نیم‌میله	0.87	0.89	0.89	0.87	0.88
شانزده‌های میله‌ای	0.87	0.89	0.89	0.87	0.88
ضخامت زیره بر تعداد مورد بر حسب انت. از طرفی از آنها که
نتایج آزمون‌های بالینی به دقت آزمون‌های محل انجام آزمون
نیز بستگی دارد و می‌تواند مقدار سود را در مطالعات
بپردازد. از این مطالعه همه آزمون‌های را به ابزاری
استفاده و توسط یک فرد از طرف تغییرات انجام شد. بیشتر بود.

مطالعه قوی‌تر، همچنین مطالعه عراض بر، سرعت راه
رفن افراد شرکت کننده را استفاده از کفش کنترل و کفش
راکدار، یکسان ارزیابی کردن [33، 34]. این نتایج در مطالعه
می‌توان بیان کرد در نتیجه طول قدم کاهش می‌یابد، مسافت در نهایت افراد شرکت کننده را با استفاده از کفش کنترل و کفش
راکدار، یکسان ارزیابی کردن [33، 34]. این نتایج در مطالعه
می‌توان بیان کرد در نتیجه طول قدم کاهش می‌یابد، مسافت در نهایت افراد شرکت کننده را با استفاده از کفش کنترل و کفش
راکدار، یکسان ارزیابی کردن [33، 34]. این نتایج در مطالعه
می‌توان بیان کرد در نتیجه طول قدم کاهش می‌یابد، مسافت در نهایت افراد شرکت کننده را با استفاده از کفش کنترل و کفش
راکدار، یکسان ارزیابی کردن [33، 34]. این نتایج در مطالعه
می‌توان بیان کرد در نتیجه طول قدم کاهش می‌یابد، مسافت در نهایت افراد شرکت کننده را با استفاده از کفش کنترل و کفش
راکدار، یکسان ارزیابی کردن [33، 34]. این نتایج در مطالعه
می‌توان بیان کرد در نتیجه طول قدم کاهش می‌یابد، مسافت در نهایت افراد شرکت کننده را با استفاده از کفش کنترل و کفش
راکدار، یکسان ارزیابی کردن [33، 34]. این نتایج در مطالعه
می‌توان بیان کرد در نتیجه طول قدم کاهش می‌یابد، مسافت در نهایت افراد شرکت کننده را با استفاده از کفش کنترل و کفش
راکدار، یکسان ارزیابی کردن [33، 34]. این نتایج در مطالعه
می‌توان بیان کرد در نتیجه طول قدم کاهش می‌یابد، مسافت در نهایت افراد شرکت کننده را با استفاده از کفش کنترل و کفش
راکدار، یکسان ارزیابی کردن [33، 34]. این نتایج در مطالعه
می‌توان بیان کرد در نتیجه طول قدم کاهش می‌یابد، مسافت در نهایت افراد شرکت کننده را با استفاده از کفش کنترل و کفش
راکدار، یکسان ارزیابی کردن [33، 34]. این نتایج در مطالعه
می‌توان بیان کرد در نتیجه طول قدم کاهش می‌یابد، مسافت در نهایت افراد شرکت کننده را با استفاده از کفش کنترل و کفش
راکدار، یکسان ارزیابی کردن [33، 34]. این نتایج در مطالعه
می‌توان بیان کرد در نتیجه طول قدم کاهش می‌یابد، مسافت در نهایت افراد شرکت کننده را با استفاده از کفش کنترل و کفش
راکدار، یکسان ارزیابی کردن [33، 34]. این نتایج در مطالعه
می‌توان بیان کرد در نتیجه طول قدم کاهش می‌یابد، مسافت در نهایت افراد شرکت کننده را با استفاده از کفش کنترل و کش
References

[1] Mantou KG. Epidemiological, demographic, and social correlates of disability among the elderly. The Milbank Quarterly. 1989; 67(Suppl 2 Pt 1):13-58. [DOI:10.2307/3350235]

[2] Cremmins EM, Saito Y, Reynolds SL. Further evidence on recent trends in the prevalence and incidence of disability among older Americans from two sources: The LSOA and the NHIH. The Journals of Gerontology: Series B. 1997; 52B(2):S59-71. [DOI:10.1093/gerona/52B.2.S59]

[3] Diczfalussy E. The demographic revolution and our common future. Maturitas. 2001; 38(1):5-14. [DOI:10.1016/S0378-5122(00)00187-0]

[4] Benijova N, Melzer I, Kaplanski J. Aging-induced shifts from a reliance on sensory input to muscle cocontraction during balanced standing. The Journals of Gerontology: Series A. 2004; 59(2):M166-71. [DOI:10.1093/gerona/59.2.M166]

[5] Mann R, Birks Y, Hall J, Torgerson D, Watt L. Exploring the relationship between fear of falling and neuroticism: Across-sectional study in community-dwelling women over 70. Age and Ageing. 2006; 35(2):143-7. [DOI:10.1093/ageing/afj013]

[6] Hatch J, Gill-Body KM, Portney LG. Determinants of balance confidence in community-dwelling elderly people. Physical Therapy. 2003; 83(12):1072-9. [DOI:10.1093/ptj/83.12.1072]

[7] Arfken CL, Lach HW, Birge SJ, Miller JP. The prevalence and correlates of fear of falling in elderly persons living in the community. American Journal of Public Health. 1994; 84(4):565-70. [DOI:10.2105/AJPH.84.4.565]

[8] Sharaf AY, Ibrahim HS. Physical and psychosocial correlates of fear of falling among older adults in assisted living facilities. Journal of Gerontological Nursing. 2008; 34(12):27-35. [DOI:10.3928/00989134-20081201-07]

[9] Kulma J, Silvonen S, Kallinen M, Airen M, Kiviranta I, Sipilä S. Balance confidence and functional balance in relation to older persons with hip fracture history. Journal of Geriatric Physical Therapy. 2007; 30(3):114-20. [DOI:10.1519/10.1016/j.gaitpost.2006.03.006]

[10] Shumway-Cook A, Woollacott MH. Motor control: Translating research into clinical practice. Philadelphia: Lippincott Williams & Wilkins. 2007. https://books.google.com/books?id=BJcL3enz3xMC&dq=Shumway-Cook%20A%2C%20Woollacott%20MH.-%20Motor%20control%3A%20Translating%20research%20into%20clinical%20practice.

[11] Lord SR, Ward JA, Williams Ph. Exercise effect on dynamic stability in older women with hip fracture history. Journal of Geriatric Physical Therapy. 1996; 77:232-6. [DOI:10.1093/ptj/77.3.232]

[12] Thie SB, Jones RK, Kenney LP, Howard D, Baker R. Exercise and shoe orthotics on static and dynamic postural stability in middle-aged females. Gait & Posture. 2008; 27(1):36-42. [DOI:10.1016/j.gaitpost.2006.12.006]

[13] Broen D, Wertsch JJ, Harris GF, Klein J, Janisse D. Effect of rocker soles on plantar pressures. Archives of Physical Medicine and Rehabilitation. 2004; 85(1):81-6. [DOI:10.1016/S0003-9993(03)00374-5]

[14] Xu DQ, Li JX, Hong Y. Effect of regular Tai Chi and jogging exercise on neuromuscular reaction in older people. Age and Ageing. 2005; 34(5):439-44. [DOI:10.1093/ageing/afi114]

[15] Studenski S, Duncan PW, Chandler J. Postural responses and effect factors in persons with unexplained falls: Results and methodologic issues. Journal of the American Geriatrics Society. 1991; 39(3):229-34. [DOI:10.1111/j.1532-5415.1991.tb1642x]

[16] Hjijmans JM, Geertzen JHB, Dijkstra PU, Postema K. A systematic review of the effects of shoes and other ankle or foot appliances on balance in older people and people with peripheral nervous system disorders. Gait & Posture. 2007; 25(2):316-23. [DOI:10.1016/j.gaitpost.2006.03.010]

[17] Perry SD, Radtke A, Goodwin CR. Influence of footwear midsole material hardness on dynamic balance control during unexpected gait termination. Gait & Posture. 2007; 25(1):94-8. [DOI:10.1016/j.gaitpost.2006.01.005]

[18] Wilson MI, Rome K, Hodgson D, Ball P. Effect of textured foot orthotics on static and dynamic postural stability in middle-aged females. Gait & Posture. 2008; 27(1):36-42. [DOI:10.1016/j.gaitpost.2006.12.006]

[19] Myers KA, Long JT, Klein JP, Wertsch JJ, Janisse D, Harris GF. Biomechanical implications of the negative heel rocker sole shoe: Gait kinematics and kinetics. Gait & Posture. 2006; 24(3):323-30. [DOI:10.1016/j.gaitpost.2006.10.006]

[20] van Schie C, Ulbrecht JS, Becker MB, Cavanagh PR. Design criteria for rigid rocker shoes. Foot & Ankle International. 2000; 21(10):833-44. [DOI:10.1017/S0378-5415.1991.tb01642.x]

[21] Hashemi H, et al. Toe Only Rocker at 10 and 15 Degrees on Balance and Walking Speed. RJ. 2021; 22(2):168-181.

[22] Meyer PF, Oddsson LIE, De Luca CJ. The role of plantar cutaneous sensory cues in perturbed stance. Experimental Brain Research. 2004; 156(4):365-12. [DOI:10.1007/s00221-003-1804-x]

[23] Ramstrand N, Thuesen AH, Nielsen DB, Rusaw D. Effects of an unstable shoe construction on balance in women aged over 50 years. Journal of Biomechanics. 2011; 44(15):2679-84. [DOI:10.1016/j.jbiomech.2011.07.027]

[24] Ghomian B, Kamyab M, Jafari H, Khamseh ME, Healy A. Rocker outsole shoe is not a threat to postural stability in patients with diabetic neuropathy. Prosthetics and Orthotics International. 2016; 40(2):224-30. [DOI:10.1177/0309364614533549]

[25] Sousa ASP, Silva A, Macedo R, Santos R, Tavares JMRS. Influence of long-term wearing of unstable shoes on compensatory control of posture: An electromyography-based analysis. Gait & Posture. 2014; 39(1):98-104. [DOI:10.1016/j.gaitpost.2013.06.003]

[26] Ramstrand N, Thuesen AH, Nielsen DR, Ranaw D. Effects of an unstable shoe construction on balance in women aged over 50 years. Clinical Biomechanics. 2010; 25(5):455-60. [DOI:10.1016/j.clinbiomech.2010.01.014]
[28] Landry SC, Nigg BM, Tecumse KE. Standing in an unstable shoe increases postural sway and muscle activity of selected smaller extrinsic foot muscles. Gait & Posture. 2010; 32(2):215-9. [DOI:10.1016/j.gaitpost.2010.04.018]

[29] Gribble PA, Hertel J. Considerations for normalizing measures of the Star Excursion Balance Test. Measurement in Physical Education and Exercise Science. 2003; 7(2):89-100. [DOI:10.1207/S15327841MPEE0702_3]

[30] Hertel J, Miller SJ, Denegar CR. Intratester and intertester reliability during the Star Excursion Balance Tests. Journal of Sport Rehabilitation. 2006; 9(2):104-16. [DOI:10.1123/jsr.9.2.104]

[31] Salavati M, Negahban H, Mazahebi M, Soleimanifar M, Hadadi M, Safidhashi L, et al. The Persian version of the Berg Balance Scale: Inner and intra-rater reliability and construct validity in elderly adults. Disability and Rehabilitation. 2012; 34(20):1695-8. [DOI:10.3109/09639762.2012.660064]

[32] Bogle Thorbahn LD, Newton RA. Use of the Berg Balance Test to predict falls in elderly persons. Physical Therapy. 1996; 76(6):S76-83. [DOI:10.1093/ptj/76.6.576]

[33] Peters DM, Fritz SL, Krotish DE. Assessing the reliability and validity of a shorter walk test compared with the 10-Meter Walk Test for measurements of gait speed in healthy, older adults. Journal of Geriatric Physical Therapy. 2013; 36(1):24-30. [DOI:10.15119/JPT06013E31824848cD01]

[34] Robbins S, Waked E, Gouw GJ, McClaran J. Athletic footwear affects balance in men. British Journal of Sports Medicine. 1994; 28(2):117-22. [DOI:10.1136/bjsm.28.2.117]

[35] Thies SB, Price C, Kenney LPJ, Baker R. Effects of shoe sole geometry on toe clearance and walking stability in older adults. Gait & Posture. 2015; 42(2):105-9. [DOI:10.1016/j.gaitpost.2015.04.011]

[36] Hadadi M, Mazahebi M, Mousavi ME, Maroufi N, Bahramizadeh M, Fardipour SB. Effects of soft and semi-rigid ankle orthoses on postural sway in people with and without functional ankle instability. Journal of Science and Medicine in Sport. 2011; 14(5):370-5. [DOI:10.1016/j.jsams.2010.12.004]

[37] Wikstrom EA, Arrigenna MA, Tillman MD, Borsa PA. Dynamic postural stability in subjects with braced, functionally unstable ankles. Journal of Athletic Training. 2006; 41(3):245-50. [PMID:PMC1732088]

[38] Kinney SJ, Armstrong CW. The reliability of the star-exursion test in assessing dynamic balance. Journal of Orthopaedic & Sports Physical Therapy. 1998; 27(5):356-60. [DOI:10.2519/jospt.1998.27.5.356]

[39] Hardy L, Hucl K, Braeder J, Nesser T. Prophylactic ankle braces and star excursion balance measures in healthy volunteers. Journal of Athletic Training. 2008; 43(4):347-51. [DOI:10.4085/1062-6050.43.4.347]

[40] Hadadi M, Mousavi ME, Fardipour SB, Varneghi R, Mazahebi M. Effect of soft and semirigid ankle orthoses on Star Excursion Balance Test performance in patients with functional ankle instability. Journal of Science and Medicine in Sport. 2014; 17(4):430-3. [DOI:10.1016/j.jsams.2013.05.017]

[41] Sesma AR, Mattacola CG, Uhl TL, Nitz AJ, McKeon PO. Effect of foot orthoses on single- and double-limb dynamic balance tasks in patients with chronic ankle instability. Foot & Ankle Specialist. 2008; 1(6):330-7. [DOI:10.1177/193864008327516]

[42] Robbins S, Waked E, Allard P, McClaran J, Kroegelof N. Foot position awareness in younger and older men: The influence of footwear sole properties. Journal of the American Geriatrics Society. 1997; 45(1):61-6. [DOI:10.1111/j.1532-5415.1997.tb00979.x]

[43] Brenton-Rule A, Bassett S, Walsh A, Rome K. The evaluation of walking footwear on postural stability in healthy older adults: An exploratory study. Clinical Biomechanics, 2011; 26(8):885-5. [DOI:10.1016/j.clinbiomech.2011.03.012]

[44] Albright BC, Woodhull-Smith WM. Rocker bottom soles alter the postural response to backward translation during stance. Gait & Posture. 2005; 3(1):45-9. [DOI:10.1016/j.gaitpost.2009.02.012]

[45] Demura T, Demura SI, Uchitaya M, Kitabayashi T, Takahashi K. Effect of shoes with rounded soft soles in the anterior-posterior direction on the center of pressure during static standing. The Foot. 2015; 25(2):97-100. [DOI:10.1016/j.foot.2015.02.004]

[46] Azarpour M, Hutchins SW, Ghasemi FE, Shalay F, Kazami MV, Akenson AY. Effects of the heel-to-toe rocker sole on walking in able-bodied persons. Prosthetics and Orthotics International. 2013; 37(6):429-35. [DOI:10.1017/S0309364612474920]

[47] Janisse DJ. Shoes and shoe modifications. In: Hsu JD, Michael JW, Fisk JR, editors. AAO Atlas of Orthoses and Assistive Devices. 4th ed. Philadelphia, PA: Mosby; 2008. pp. 325-334. https://books.google.com/books?id=Q738LYlYeRk&printsec=frontcover

[48] Waked E, Robbins S, McClaran J. The effect of footwear mid-sole hardness and thickness on proprioception and stability in older men. Journal of Testing and Evaluation. 1997; 25(1):143-8. [DOI:10.1520/JTE11353]]

[49] Robbins S, Gouw GJ, McClaran J. Shoe sole thickness and hardness influence balance in older men. Journal of the American Geriatrics Society. 1992; 40(11):1089-94. [DOI:10.1111/j.1532-5415.1992.tb10795.x]

[50] Grundy M, Tosh PA, McLeish RD, Smith L. An investigation of the centres of pressure under the foot while walking. The Journal of Bone and Joint Surgery. 1975; 57-B(1):98-103. [DOI:10.1302/0301-620X.57B1.98]

[51] Harris G, Klein J, Janisse D, Brown D, Shu Y, Wertsch J. Effect of rocker-soles on lower extremity dynamic EMG patterns. Gait Posture. 2000; 11:157-8.

[52] Van Bogart JJ, Long JT, Klein JP, Wertsch JJ, Janisse DJ, Harris GF. Effects of the toe-only rocker on gait kinematics and kinetics in able-bodied persons. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2005; 13(4):542-50. [DOI:10.1109/TNSRE.2005.858460]

[53] Forgany S, Nester CJ, Richards B, Hatton AL, Liu A. Roller footwear affects lower limb biomechanics during walking. Gait & Posture. 2014; 39(1):205-12. [DOI:10.1016/j.gaitpost.2013.07.009]