Abstract

We present a Bayesian sequential decision-making formulation of the information filtering problem, in which an algorithm presents items (news articles, scientific papers, tweets) arriving in a stream, and learns relevance from user feedback on presented items. We model user preferences using a Bayesian linear model, similar in spirit to a Bayesian linear bandit. We compute a computational upper bound on the value of the optimal policy, which allows computing an optimality gap for implementable policies. We then use this analysis as motivation in introducing a pair of new Decompose-Then-Decide (DTD) heuristic policies, DTD-Dynamic-Programming (DTD-DP) and DTD-Upper-Confidence-Bound (DTD-UCB). We compare DTD-DP and DTD-UCB against several benchmarks on real and simulated data, demonstrating significant improvement, and show that the achieved performance is close to the upper bound.

1. INTRODUCTION

Information filtering systems automatically distinguish relevant from irrelevant items (emails, news articles, intelligence information) in large information streams (Foltz & Dumais, 1992). They typically use a classifier trained on relevance feedback from past items. However, when filtering for new users, or when item contents or user interests change, sufficient training data may not be available. In such “cold-start” situations, it may be beneficial to actively explore user interests by forwarding those items whose relevance we wish to learn, but too much exploration degrades short-term performance. This is an example of the so-called exploration vs. exploitation tradeoff (Sutton & Barto, 1998).

In this paper, we present a Bayesian sequential decision-making formulation of this problem, where user interests are described by a Bayesian linear model, similar in spirit to a Bayesian linear bandit (Agrawal & Goyal, 2013). The first contribution of our paper is to construct an instance-specific computational upper bound on the value of a Bayes-optimal strategy, which may be used to bound the optimality gap for implementable heuristic policies. Our upper bound is most naturally applied to items whose features are weights from a topic model (Blei & Lafferty, 2009) or other mixture model, but can also be applied to other linear models. Our second contribution is to use the idea of decomposing the problem into a collection of forwarding problems with one-dimensional feature “vectors”, developed in the construction of the upper bound, to create a pair of heuristic policies, jointly given the name Decompose-Then-Decide (DTD). The first heuristic, called DTD-Dynamic-Programming (DTD-DP), solves each one-dimensional forwarding problem using stochastic dynamic programming, while the second, called DTD-Upper-Confidence-Bound (DTD-UCB), uses the upper confidence bound policy with a learning parameter that is adjusted based on the distribution of feature vectors in the given direction. Finally, we evaluate our upper bound and proposed policies on real and simulated data, and find that our upper bound is typically tight, and that DTD-UCB outperforms a number of benchmarks, including UCB and Linear Thompson Sampling, in all problem instances.

The traditional approach to adaptive information filtering trains on historical feedback and does not actively explore to get the most useful feedback. However, there has been some work on active exploration in information filtering. (Zhang et al., 2003) studies a Bayesian decision-theoretic version of this problem in which a univariate score is observed for each item, and relevance is related to this score via logistic regression. The system does active exploration by valuing the information that results from forwarding, via a one-step lookahead calculation. The multi-step Bayes-
optimal policy is not calculated or characterized. *Zhao & Frazier (2014)* studies another Bayesian decision-theoretic version of this problem in which items are described by a hard clustering scheme, and users have independent heterogeneous preferences for item clusters. A computational procedure for calculating the (multi-step) Bayes-optimal policy is provided. However, the learning scheme used does not allow learning user interest in one category from interactions with other related categories, making it difficult to scale to fine-grained item representations.

A much larger literature on active exploration may be found in work on the multi-armed bandit problem (Herbert, 1952). Indeed, the information filtering problem we study can be seen as a special case of the (Bayesian) contextual linear multi-armed bandit problem (Agrawal & Goyal, 2013; Chu et al., 2011; May et al., 2012; Cesa-Bianchi & Kakade, 2011). The context is the feature vector for the arriving paper, and two arms are available: pulling the first arm corresponds to forwarding the paper, and provides a reward corresponding to the paper’s relevance, minus some cost for the user’s time; pulling the second arm corresponds to discarding the paper, and has known value 0.

While much of the work on multi-armed bandits, including work specifically on linear and contextual bandits, has focused on asymptotic regret guarantees when latent parameters (in our case, the vector of user preferences for features) are chosen by an adversary, we focus on the Bayesian setting, where we assume that latent parameters are drawn from a prior probability distribution.

Our assumption of a Bayesian framework has advantages and disadvantages. The main advantage is that it supports good performance when the amount of feedback received is small (of great importance in the cold-start setting). In contrast, algorithms designed to have regret with an optimal rate in the linear bandit setting, such as the PEGE algorithm in (Rusmevichientong & Tsitsiklis, 2010), typically need a number of interactions at least as large as the dimension of the feature vector, which may be hundreds of dimensions or more. A Bayesian algorithm can do well much sooner than this, by using information embedded in the prior that, for example, most users have little preference for a particular feature, or that users who prefer one feature tend to not prefer another feature.

The main disadvantage of the Bayesian framework is that choosing a reasonable prior typically requires work and assumptions. However, in the specific application context that we study, personalized information filtering, there is a natural way to build a prior from historical interaction data with other users. We explain and illustrate this method in Section 4.1 using the Yelp academic dataset (Yelp) and Section 4.2 using the arXiv (arXiv) condensed matter dataset. Our upper bound is an instance-specific computational upper bound on the performance of the optimal policy. It can be used to compute how far DTD-DP, DTD-UCB, or any other policy is from optimal for any given problem instance by computing the value of the heuristic with simulation, computing the upper bound, and subtracting the value from the bound. In industry, where one must allocate engineering and data science effort across projects, and one typically has a collection of concrete problems with business impact, this supports deciding whether the improvements that will be seen from continued algorithmic development are worthwhile, or whether the best existing heuristic is good enough. While our upper bound does not determine whether a proposed algorithm attains the optimal asymptotic rate, nor does it allow computing the worst-case bounds over all problem instances, we argue that knowing distance from the optimal finite-time performance for specific problem instances with business impact is often more useful.

This paper is structured as follows. In Section 2, we formulate the Bayesian information filtering problem. In Section 3, we develop a computationally tractable upper bound on the value of an optimal policy (Section 3.1), use this analysis to motivate development of DTD-DP (Section 3.2) and DTD-UCB (Section 3.3). In Section 4 we compare DTD-DP and DTD-UCB’s performance against benchmarks on both real and simulated data, show a significant improvement over the best of these benchmarks, tuned UCB, and show that its performance is close to the computational upper bound across a range of problems.

2. Problem formulation

We consider information filtering for a single user. Items arrive to the information filtering system following a Poisson distribution with rate Γ. The n^{th} arriving item is described by a k-dimensional feature vector $X_n = (x_{1,n}, \ldots, x_{k,n})$. We assume that $x_{i,n} \geq 0$ for all i and n (If $x_{i,n}$ are bounded below, then this is without loss of generality). The vector X_n is observable to the system when the item becomes available for forwarding, and we assume that the system also knows the distribution of X_n. This distribution can typically be estimated from historical data. In this paper, we denote the density function of the feature vectors’ distribution as $f(X_n)$.

Let $\theta = (\theta_1, \ldots, \theta_k)$ denote the single user’s latent preference vector for the k different features. Here we model θ as having been drawn from a multivariate normal distribution with mean $\mu_0 = (\mu_{1,0}, \ldots, \mu_{k,0})$ and covariance matrix Σ_0, which represents our Bayesian prior distribution about the latent preference vector. Usually this initial belief can be obtained using the historical data from other users and we give examples of how this may be accomplished in
Section 4.1 and Section 4.2. Further, we use μ_n and Σ_n to denote our Bayesian posterior distribution about the user’s reward vector after the arrival of the first n items.

Upon each item’s arrival, the system decides whether to forward this item to the user or not. We let $U_n \in \{0, 1\}$ represent this decision for the n^{th} item, where 1 means to forward and 0 means not to forward. If the system decides not to forward, then the item is discarded. Each time the system forwards, it pays a constant cost c and receives the item’s relevance Y_n as a reward. This relevance is modeled as the inner product between the user’s unobservable vector of preferences for features θ and the item’s feature vector X_n, perturbed by independent normal noise ϵ_n with variance $I(X_n)\lambda^2$, where $I(X_n)$ denotes the number of non-zero elements in X_n. The system only observes Y_n if it forwards the item. Except for the fact that some Y_n are unobserved, this statistical model is Bayesian linear regression (see (Gelman et al., 2003), Chapter 14).

In many applications, $I(X_n) = k$ with probability 1, making our assumed observational variance of $I(X_n)\lambda^2$ equivalent to assuming homogeneous variance $k\lambda^2$. Even when $I(X_n)$ varies, we may modify our problem by perturbing each component of X_n by some arbitrarily small $\epsilon > 0$ to make $I(X_n) = k$ without substantially affecting the value of any particular policy.

The decision of whether or not to forward the n^{th} item can only depend on the previous information $H_{n-1} = (U_m, X_m, U_m, Y_m : m \leq n - 1)$ as well as our current X_n. A policy π is a sequence of functions $\pi = (\pi_1, \pi_2, \cdots)$ such that $\pi_n = (\mathbb{R}^k_+ \times \{0, 1\})^{n-1} \times \mathbb{R}^k_+ \mapsto \{0, 1\}$ and we use Π to denote the set of all such policies.

Suppose that the (random) lifetime of the user in the system is T, and let N be the total number of items that arrive to the system before T. Then our goal is to maximize:

$$\sup_{\pi \in \Pi} E^{\pi} \left[\sum_{n=1}^{N} U_n(Y_n - c) \right]$$

where E^{π} denotes the expected reward using policy π.

For analytic tractability, we assume that T is exponentially distributed, and let its rate parameter be $\tau > 0$. Then, one can show that N follows a geometric distribution with parameter $\gamma = \frac{1}{\Gamma \tau}$, and the random finite horizon problem (1) can be transformed to a discounted infinite horizon problem:

$$E^{\pi} \left[\sum_{n=1}^{N} U_n(Y_n - c) \right] = \gamma E^{\pi} \left[\sum_{n=1}^{\infty} \gamma^{n-1} U_n(Y_n - c) \right],$$

where $\gamma = \frac{1}{\Gamma \tau}$. Details of this computation may be found in the supplement.

3. Main Results

The problem described in section 2 is a partially observable Markov decision process, and can, in theory, be solved using stochastic dynamic programming, see (Lovejoy, 1991) and (Monahan, 1982). However, the state space of this dynamic program on the belief state is in high dimension (k dimensions are required to represent the posterior mean, and $O(k^2)$ dimensions are required for the posterior covariance matrix), which makes solving it computationally intractable.

Instead, we provide in this section a computational upper bound of this problem (in Section 3.1) and develop two implementable policies DTD-DP and DTD-UCB based on this upper bound in Section 3.2 and Section 3.3. When DTD-DP and DTD-UCB, or any other implementable policy, gives us a result close to the upper bound, then we are reassured that this policy is nearly optimal.

3.1. Upper bound

In this section, we provide a computational upper bound on the value of the solution to (1). This upper bound is based on the idea of dividing (1) into k different “single-feature” subproblems, then performing an information relaxation (similar in spirit to (Brown et al., 2010)) in which we give the policy assigned to each single-feature subproblem additional information, which allows us to compute their value efficiently.

Define $Y_{i,n} = \theta_i + \epsilon_{i,n}$. Here $\epsilon_{i,n} \sim N(0, \frac{\lambda^2 X_{i,n}^2}{\sigma_{i,n}^2})$ if $x_{i,n} > 0$ and $\epsilon_{i,n} = 0$ if $x_{i,n} = 0$ for $i = 1, 2, \cdots, k$, independently distributed across i and n. We may think of $Y_{i,n}$ as the reward that we would have seen if X_n were equal to e_i, where e_i is a unit vector with the i^{th} element 1 and other elements 0. Later, we will use that $Y_n = \sum_{i=1}^{k} x_{i,n} \theta_i + \epsilon_n = \sum_{i=1}^{k} x_{i,n} (\theta_i + \epsilon_{i,n}^n) = \sum_{i=1}^{k} x_{i,n} Y_{i,n}$.

We will generalize the original problem (1) by introducing notation that allows for separate forwarding decisions to be made for each feature. Define $U_{j,n}$ to be decision made for the j^{th} feature of the n^{th} item. The original problem (1) can be recovered if we require that $U_{j,n}$ is identical across j for each n.

For each feature j, we now introduce a new set of policies Π_j, which will govern the forwarding decisions $U_{j,n}$ for feature j, and under which these decisions can depend upon information not available in the original problem: they may depend on $\theta_i e_i$ for all $i \neq j$. Formally, the decision of whether or not to forward the j^{th} feature of the n^{th} item depends on the history $H_{n-1}^j = (U_{j,m}, X_{j,m}, U_{j,m} Y_{j,m} : m \leq n - 1)$, our current $X_{j,n}$, and $\theta_{-j} = (\theta_1, \cdots, \theta_{j-1}, \theta_{j+1}, \cdots, \theta_k)$.

Using these definitions, we may now state the computational upper bound, which constitutes the main theoretical result of this work. It bounds the value of the optimal policy for our original problem of interest (1), on the left-hand side, by the sum of a collection of values of single-feature problems, each of which have been given additional information. Efficient computation of this right-hand side is discussed below, and summarized in Algorithm 1.

Theorem 1. For any X_n that are bounded over all n, we have

$$
\sup_{\pi \in \Pi} E^\pi \left[\sum_{n=1}^{N} U_n(Y_n - c) \right]
\leq \sum_{j=1}^{k} \sup_{\pi'' \in \Pi_j} E^{\pi''} \left[\sum_{n=1}^{N} U_{j,n}(x_{j,n}Y_{j,n} - x_{j,n}c) \right],
$$

where $\|X_n\|$ is the L_1 norm. When $\sum_{i=1}^{k} x_{i,n} = 1$, then this theorem becomes:

$$
\sup_{\pi \in \Pi} E^\pi \left[\sum_{n=1}^{N} U_n(Y_n - c) \right]
\leq \sum_{j=1}^{k} \sup_{\pi'' \in \Pi_j} E^{\pi''} \left[\sum_{n=1}^{N} U_{j,n}(x_{j,n}Y_{j,n} - x_{j,n}c) \right].
$$

Proof. Since $\|X_n\| = x_{1,n} + \cdots + x_{k,n}$, we know

$$
\sup_{\pi \in \Pi} E^\pi \left[\sum_{n=1}^{N} U_n(Y_n - c) \right] = \sup_{\pi \in \Pi} E^\pi \left[\sum_{n=1}^{N} U_n(x_{1,n}Y_{1,n} + \cdots + x_{k,n}Y_{k,n} - c) \right]
\leq \sup_{\pi \in \Pi} E^\pi \left[\sum_{n=1}^{N} k \sum_{j=1}^{k} U_{j,n}(x_{j,n}Y_{j,n} - x_{j,n}c) \right].
$$

Now we introduce two new policy sets Π_0 and Π', which allow different features can make their own decisions $U_{j,n}$ for the n^{th} item. Further, Π_0 has an additional restriction that $U_{1,n} = \cdots = U_{j,n}$. Based on the definition, we have

$$
(3) = \sup_{\pi'' \in \Pi_0'} E^{\pi''} \left[\sum_{n=1}^{N} k \sum_{j=1}^{k} U_{j,n}(x_{j,n}Y_{j,n} - x_{j,n}c) \right]
\leq \sup_{\pi'' \in \Pi'} E^{\pi''} \left[\sum_{n=1}^{N} k \sum_{j=1}^{k} U_{j,n}(x_{j,n}Y_{j,n} - x_{j,n}c) \right].
$$

Since the supremum of a summation is less or equal to the summation of a supremum, we have

$$
(4) \leq \sum_{j=1}^{k} \sup_{\pi'' \in \Pi_j} E^{\pi''} \left[\sum_{n=1}^{N} U_{j,n}(x_{j,n}Y_{j,n} - x_{j,n}c) \right].
$$

Then based on the definition of our policy set Π_j, for $j = 1, 2, \ldots, k$, we know

$$
(5) \leq \sum_{j=1}^{k} \sup_{\pi'' \in \Pi_j} E^{\pi''} \left[\sum_{n=1}^{N} U_{j,n}(x_{j,n}Y_{j,n} - x_{j,n}c) \right],
$$

which concludes the proof of the theorem.

We emphasize that this computational upper bound holds true in general, even when the different components of X_n are correlated. Numerical experiments in Section 4.3 and Section 4.1 suggest that the optimality gap between this upper bound and the best heuristic policy is typically small.

For simplicity, in this paper we focus on the special case where $\sum_{i=1}^{k} x_{i,n} = 1$. We now discuss computation of the upper bound in Theorem 1. To compute this quantity, we must solve these k subproblems:

$$
\sup_{\pi \in \Pi_j} E^\pi \left[\sum_{n=1}^{N} U_{j,n}(x_{j,n}Y_{j,n} - x_{j,n}c) \right], j = 1, 2, \ldots, k.
$$

where $Y_{j,n|\theta_j} \sim N(\theta_j, \lambda^2)$ and $\theta_j \sim N(\mu_{j,n}, \sigma^2_{j,n})$. Here $\theta_j \sim N(\mu_{j,n}, \sigma^2_{j,n})$ represents our belief of θ_j after the first n items.

Therefore for each subproblem, after the arrival of the n^{th} item, we can update our parameters as the following:

$$
\mu_{j,n} = \begin{cases}
\lambda^2 \beta_{j,n-1} + \mu_{j,n-1} + x_{j,n-1}^2 & \text{if } U_{j,n-1} = 1; \\
\frac{\mu_{j,n-1} + x_{j,n-1}^2}{\beta_{j,n-1} + x_{j,n-1}} & \text{if } U_{j,n-1} = 0.
\end{cases}
$$

The precision of our beliefs is updated as follows:

$$
\beta_{j,n} = \begin{cases}
\beta_{j,n-1} + \frac{\beta_{j,n-1}}{\lambda^2} & \text{if } U_{j,n-1} = 1; \\
\frac{\beta_{j,n-1}}{\lambda^2} & \text{if } U_{j,n-1} = 0.
\end{cases}
$$

The j^{th} single-feature subproblem can be solved using dynamic programming with a three-dimensional state space $(\mu_{j,n}, \sigma_{j,n}, x_{j,n})$, where $\mu_{j,n}$ and $\sigma_{j,n}$ are the mean and variance of our current belief about θ_j and $x_{j,n}$ is the current item’s j^{th} feature. Initially, $\mu_{j,0}$ and $\sigma_{j,0}$ are given by the conditional distribution of θ_j given θ_{-j} and the prior
distribution $\theta \sim N(\mu, \Sigma)$. Upon each item’s arrival, we move to another state based on the updating formula described above. Define $Q_j(\mu, \sigma, x, 0)$ and $Q_j(\mu, \sigma, x, 1)$ be the total reward of this optimal policy is the total reward to go if you decided to discard the item and forward the item respectively.

$$Q_j(\mu, \sigma, x, U) = \sup_{\pi'' \in \Pi_j} E^{\pi''} \left[\sum_{n=1}^{\infty} \gamma^{n-1} U_{j,x}(x_{j,n}Y_{j,n} - x_{j,n}c) \right]$$

Then the Bellman equation for this problem is:

$$V_j(\mu, \sigma, x) = \max_{U=0,1} Q_j(\mu, \sigma, x, U). \quad (7)$$

This calculation is summarized as Algorithm 1.

Algorithm 1 Calculation of the j^{th} subproblem

Solve the dynamic program using backward induction (discretizing and truncating), with state space $(\mu_{j,n}, \sigma_{j,n}, x_{j,n}) \in \mathbb{R} \times \mathbb{R}^+ \times [0, 1]$, infinite horizon and value function $V_j(\mu, \sigma, x)$.

for $i = 1; i < M; i + +$

 Generate $\theta \sim N(\mu, \Sigma)$;
 Calculate the conditional distribution of $\theta_j \sim N(\mu_{j,0}, \sigma_{j,0})$, given $\theta \sim N(\mu, \Sigma)$ and θ_{-j}.
 Generate $x_{j,0}$ from the distribution of X_n.
 Find the optimal value of state $(\mu_{j,0}, \sigma_{j,0}, x_{j,0})$ and denote it as V_i.

end for

Calculate $V = \frac{1}{M} \sum_{i=1}^{M} V_i$ and use (2) to get the optimal value for the j^{th} subproblem, where M is the number of simulation.

We may improve our upper bound by taking its minimum with a hindsight upper bound, derived in the following way. We first consider a larger class of policies that may additionally base their decisions on full knowledge of θ. An optimal policy among this larger class of policies forwards the n^{th} item to the user only if $\theta \cdot X_n > c$, and the expected total reward of this optimal policy is

$$E \left[\sum_{n=1}^{N} (\theta \cdot X_n - c)^+ \right] = \frac{\gamma}{1 - \gamma} E \left[(\theta \cdot X_1 - c)^+ \right]. \quad (8)$$

Since (8) is the supremum of the same objective as (2), but over a larger set of policies, it forms an upper bound. This style of analysis was also applied in (Chick & Frazier, 2012). In Section 4, we use the minimum of the computational upper bound in Theorem 1 and the hindsight upper bound (8) as our theoretical upper bound.

3.2. The DTD-DP policy

The analysis in Section 3.1 provides a way to bound the performance of any policy, and is derived by decomposing the original multi-feature problem into many single-feature subproblems. In this section, we build on this same idea to develop an implementable policy, called DTD-DP, and in Section 3.3 we build on this idea further to create a second implementable policy, called DTD-UCB.

In DTD-DP, as each item arrives, we consider the decomposition from Section 3.1 taking the incoming feature vector X_n and choosing a basis for which X_n is a unit vector in the basis. (This basis may change with each n.)

We then consider the decomposed problem studied in Section 3.1, in which we may make separate forwarding decisions for each direction in the basis, and compute the value of exploration corresponding to X_n in this decomposed problem.

To compute this value of exploration, we first compute the distribution of the magnitude x of the projection of future feature vector X along direction X_n, $x = \frac{X \cdot X_n}{X_n X_n^T}$, by using the distribution of future feature vectors $f(X)$. Denote this distribution by $G(x|X_n)$. We then solve the corresponding single-feature subproblem using (7) as described in Section 3.1.

From this solution, we derive Q factors, $Q(\mu_{1,0}, \sigma_{1,0}, x_0, 0)$ and $Q(\mu_{1,0}, \sigma_{1,0}, x_0, 1)$ corresponding to the value of discarding and forwarding the current item in the single feature subproblem, given that the current feature vector has magnitude $x_0 = 1$ and given that our current prior mean and variance for the subproblem are

$$\mu_{1,0} = X_n \cdot \mu_n,$$

$$\sigma_{j,0}^2 = X_n \Sigma_n X_n^T.$$

We then define the “exploration benefit” $E(\mu_{1,0}, \sigma_{1,0})$ from forwarding the current item as the overall benefit of forwarding, minus the myopic benefit of forwarding $\mu_{1,0} - c$ and the benefit of discarding:

$$E(\mu_{1,0}, \sigma_{1,0}) = Q(\mu_{1,0}, \sigma_{1,0}, 1, 1) - Q(\mu_{1,0}, \sigma_{1,0}, 1, 0) - \mu_{1,0} + c.$$

In DTD-DP, we add a scalar tuning parameter α, mirroring the tuning parameter used in UCB, to scale up or down the exploration benefit. The default value for α is $\alpha = 1$. Then, returning to the original multi-dimensional problem, we consider the net benefit of forwarding to be the myopic benefit $X_n \cdot \mu_n - c$ plus the exploration benefit $\alpha E(\mu_{1,0}, \sigma_{1,0})$, and forward when this is strictly positive. This is summarized in Algorithm 2.

3.3. The DTD-UCB algorithm

In this section, we develop a second heuristic, DTD-Upper-Confidence-Bound (DTD-UCB), which builds on the ideas underlying DTD-DP.
In DTD-DP, we considered a single-feature subproblem in which the magnitude of \(x \) of the projection of future feature vectors is given by \(G(x|X_n) \) and in which the prior mean and prior variance were given by \(X_n \mu_n \) and \(X_n \Sigma_n X_n^T \) respectively. We then quantified the value of exploration by solving the single-feature subproblem using stochastic dynamic programming. In this single-feature subproblem, we observe that when future feature vectors are more closely aligned with \(X_n \), so that samples from \(G(x|X_n) \) are large, we are more willing to explore.

In our second heuristic DTD-UCB, we take a similar approach, but quantify the value of exploration using an approach adopted from the literature on upper confidence bound policies, which quantifies the value of exploration in terms of some scalar multiple \(\alpha \) of the standard deviation of the value of an action, obtained from calculating an upper confidence bound and subtracting the center of the confidence region. In DTD-UCB, we quantify the value of information similarly, but add an additional scaling factor to include the fact that those \(X_n \) whose \(G(x|X_n) \) have larger moments should induce more exploration.

To accomplish this, we let \(M(X_n) \) be the mean of the distribution \(G(x|X_n) \). This “mean of the projection” is

\[
M(X_n) = \int X_n X \frac{f(X)}{X_n X_n^T} dX.
\]

We summarize the DTD-UCB algorithm in Algorithm 3.

4. Numerical Experiments

In this section, we compare DTD-DP and DTD-UCB with three different benchmark algorithms and the computational upper bound from Section 3.1 using both real and simulated data. The benchmark algorithms are:

- **Pure Exploitation**: Forward the item if \(X_n \cdot \mu_n \geq c \).
- **Upper Confidence Bound (UCB)**: Forward the item if \(X_n \cdot \mu_n + \alpha \cdot \sqrt{X_n \Sigma_n X_n^T} > c \).
- **Linear Thompson Sampling (LTS)**: For the \(n \)th item \(X_n \), generate \(\theta \sim N(\mu_n, \Sigma_n) \). Forward the item if \(\theta \cdot X_n > c \).

For DTD-DP, DTD-UCB and UCB, there is a tuning parameter \(\alpha \). In our simulation experiments we run these policies with 10 different values of \(\alpha \) ranging from 0.1 to 10 on a log scale, and display the one with the best performance (which requires simulating performance for different values of \(\alpha \) in a Monte Carlo simulation as a pre-processing step) in each instance.

We evaluate our upper bound and proposed policy on real and simulated data, and find that our upper bound is tight enough to be useful (the best policy evaluated is often within 60% of the upper bound and never below 30% of the upper bound), and as tight or tighter than many finite time bounds shown in the literature for Bayesian exploration problems, see, e.g., the 1/(1 - \(\epsilon \)) \(\approx 63\% \) and 1/4 = 25% approximation guarantees on page 3 of Golovin & Krause (2011).

4.1. Yelp academic data

In this section, we compare DTD-DP and DTD-UCB against benchmarks (UCB, pure exploitation and LTS) using the Yelp academic dataset (Yelp).

Our items are businesses, and are described as belonging to one or more of the following six categories: Restaurants, Shopping, Food, Beauty and Spas, Health and Medical and Nightlife. The \(j \)th business object is then described by a 6-dimensional feature vector \(X_j = (x_{1,j}, x_{2,j}, \ldots, x_{6,j}) \) with the \(i \)th element \(x_{i,j} = \frac{1}{\sum_{l=1}^{6} x_{l,j}} \) if the business belongs to category \(i \), and \(x_{i,j} = 0 \) otherwise.

We calculate the prior distribution over new customers’ preferences using historical users’ reviews. For each historical user, we use linear regression to regress his reviews’ ratings on the feature vectors of the business objects that he reviewed. We use the estimated linear regression coefficients as his/her true user preference vector. Then we calculate the empirical distribution for all historical users,
Figure 1. The performance of DTD-DP, DTD-UCB and three benchmark algorithms (UCB, pure exploitation and LTS) relative to the computational instance-specific upper bound. This plot compares performance on the Yelp academic dataset (Section 4.1), and shows that DTD-UCB outperforms all other heuristic policies. DTD-DP performs comparably (and nearly identical to) UCB, and outperforms pure exploitation and LTS. DTD-UCB performs close to the computational upper bound, showing their performance is close to optimal.

Figure 2. The performance of DTD-DP, DTD-UCB and three benchmark algorithms (UCB, pure exploitation and LTS) relative to the computational instance-specific upper bound. This plot compares performance on the 2014 arXiv.org Condensed Matter dataset (Section 4.2), and shows that DTD-UCB outperforms all other heuristic policies.

and set the prior on new users’ preference vectors to be multivariate normal with mean vector and covariance matrix equal to the sample mean and sample covariance of the historical users.

In Figure 1a, evaluation is done by taking a collection of real historical users, and for each estimating his true preference vector θ using linear regression on historical data. Evaluation is then performed for each algorithm and user by simulating feedback from the user’s held out θ on items forwarded by the algorithm, and an algorithm’s average performance is calculated by averaging across users. We must simulate user feedback given θ because we do not have historical relevance feedback from all users for all items, and so algorithms may present items that have not been rated. We plot the 95% confidence interval of cumulative reward over 100 items forwarded to the user with discount factor $\lambda = 0.9$.

In Figure 1b, we calculate the optimality gap between each heuristic algorithm and our computational upper bound. A smaller gap suggests the corresponding policy performs better in this problem instance.

The plot in Figure 1 summarizes the results. In this problem instance, DTD-UCB outperforms DTD-DP, UCB, pure exploitation and LTS, with DTD-DP and UCB performing almost identically. Moreover, the optimality gap is relatively small, which shows that DTD-UCB performs close to optimal.
Submission and Formatting Instructions for ICML 2016

(a) Comparison of Different Policies Using Simulated Data

Figure 3. The performance of DTD-DP, DTD-UCB and three benchmark algorithms (UCB, pure exploitation and LTS) relative to the computational instance-specific upper bound using simulated data. This plot compares performance on simulated data (Section 4.3), and shows that DTD-DP and DTD-UCB outperform all the other algorithms and coincides with the theoretical upper bound, showing it is indistinguishable from optimal in this case.

4.2. arXiv.org Condensed Matter Dataset

In this section, we compare DTD-DP and DTD-UCB with benchmarks using readership data from articles submitted in 2014 to the arXiv condensed matter category. We represent each paper submitted in 2014 by a 10 dimensional vector using Latent Dirichlet allocation (LDA) (Blei et al., 2003). For each user, the rating for a paper is 1 if he/she clicks and otherwise the rating is 0. We then calculate the user’s preference vector by linear regression. Similar to Section 4.1, we use the sample mean and sample variance of users’ preference vectors as our prior distribution parameters.

In our simulation, we use true users’ preference vectors calculated using linear regression, as we did in Section 4.1. For each user, we randomly pick 100 papers and make the forwarding decisions using different policies. We evaluate the cumulative reward for these 100 papers with discount factor $\lambda = 0.9$.

The result is summarized in Figure 2. The best of our heuristic policies in this example, DTD-UCB, outperforms all other heuristic policies. In this specific example, DTD-DP does not perform as well as UCB but it outperforms pure exploitation and LTS.

4.3. Simulated Data

In this section, we compare the performance of DTD-DP and DTD-UCB with three benchmark algorithms, as well as our computational upper bound on simulated data. This simulated data is chosen to give insight into situations where UCB can underperform, and where the structure of a policy like DTD-DP and DTD-UCB are needed to provide near-optimal performance. We emphasize that it is chosen to provide insight, and not to show performance on a typical real problem instance — we refer this comparison to Section 4.1 and Section 4.2.

Each item is described by a 100-dimensional feature vector X_n with the following distribution: $P(X_n = e_1) = \frac{100}{199}$, $P(X_n = e_i) = \frac{1}{199}$ for $i = 2, \cdots, 100$. Here, e_x is the unit vector in the xth dimension. The initial belief on the user’s preference for each feature is $N(0.3, 1.0)$ with independence across features. We set $\gamma = 0.9$ and $\lambda = 0.1$.

In estimating the infinite-horizon discounted sum (2), we truncate after $n = 100$.

The results, summarized in Figure 3, show that DTD-DP and DTD-UCB outperform UCB, pure exploitation and LTS. In most cases, UCB performs very well with a properly chosen α. Moreover, DTD-DP and DTD-UCB outperform UCB for several values of the forwarding cost, and nearly coincides with the theoretical upper bound for all values of the forwarding cost, which shows that it is indistinguishable from optimal in this problem instance.

LTS does not perform well in this example because it performs poorly at the initial stages and the (discounted) reward in the later stages cannot make up for the loss at the early stages. As (Russo & Roy, 2014a) and (Russo & Roy, 2014b) pointed out, LTS generally underperforms tuned UCB.

UCB underperforms DTD-DP and DTD-UCB in this example because it cannot account for the frequency with which a feature appears, and thus cannot adjust its level of exploration (encoded as the choice of α) to explore more those features that tend to reoccur frequently, and explore less those features that are unlikely to appear again. In contrast, both DTD-DP and DTD-UCB can adjust its level of exploration, and will explore more those features that will
5. Conclusion

We studied the Bayesian linear information filtering problem, providing an instance-specific computational upper bound and a pair of new Decompose-Then-Decide heuristic policies, DTD-DP and DTD-UCB. Numerical experiments show that the best of these two policies is typically close to the computational upper bound and outperforms several benchmarks on real and simulated data.

References

Agrawal, Shipra and Goyal, Navin. Thompson sampling for contextual bandits with linear payoffs. In ICML, 2013.

arXiv. URL http://arxiv.org/.

Blei, David and Lafferty, John. Topic Models. Taylor and Francis, 2009.

Blei, David, Ng, Andrew, and Jordan, Michael. Latent dirichlet allocation. In Journal of Machine Learning Research, 2003.

Brown, David, Smith, James, and Sun, Peng. Information relaxations and duality in stochastic dynamic programs. Operations Research, 2010.

Cesa-Bianchi, Nicolo and Kakade, Sham. An optimal algorithm for linear bandits. arXiv:1110.4322, 2011.

Chick, Stephen and Frazier, Peter. Sequential sampling with economics of selection procedures. Management Science, 2012.

Chu, Wei, Li, Lihong, Reyzin, Lev, and Schapire, Robert E. Contextual bandits with linear payoff functions. In AISTATS, 2011.

Foltz, Peter W. and Dumais, Susan T. Personalized information delivery: An analysis of information filtering methods. In Communications of the ACM, volume 35, 1992.

Gelman, Andrew, Carlin, John B., Stern, Hal S., and Rubin, Donald B. Bayesian Data Analysis. Chapman Hall/CRC, 2003.

Golovin, Daniel and Krause, Andreas. Adaptive submodularity: Theory and applications in active learning and stochastic optimization. Journal of Artificial Intelligence Research, 2011.

Herbert, Robbins. Some aspects of the sequential design of experiments. Bulletin of the American Mathematical Society, 1952.

Lovejoy, William S. A survey of algorithmic methods for partially observed markov decision processes. Annals of Operations Research, 1991.

May, Benedict C., Korda, Nathan, Lee, Anthony, and Leslie, David S. Optimistic bayesian sampling in contextual-bandit problems. In The Journal of Machine Learning Research, volume 13, 2012.

Monahan, George. A survey of partially observable markov decision processes: Theory, models, and algorithms. Management Science, 1982.

Rusmevichientong, Paat and Tsitsiklis, John N. Linearly parameterized bandits. Mathematics of Operations Research, 2010.

Russo, Daniel and Roy, Benjamin. Learning to optimize via information-directed sampling. In NIPS, 2014a.

Russo, Daniel and Roy, Benjamin. Learning to optimize via posterior sampling. Mathematics of Operations Research, 2014b.

Sutton, Richard S. and Barto, Andrew G. Reinforcement Learning: An Introduction. The MIT Press, 1998.

Yelp. Yelp academic dataset. URL https://www.yelp.com/academic_dataset.

Zhang, Yi, Xu, Wei, and Callan, Jamie. Exploration and exploitation in adaptive filtering based on bayesian active learning. In ICML, 2003.

Zhao, Xiaoting and Frazier, Peter. Exploration vs. exploitation in the information filtering problem. arXiv:1407.8186, 2014.
6. Proof of Equation (2)

Lemma 1. For each policy $\pi \in \Pi$, we have

$$E^\pi \left[\sum_{n=1}^{N} U_n(Y_n - c) \right] = \gamma E^\pi \left[\sum_{n=1}^{\infty} \gamma^{n-1} U_n(Y_n - c) \right]$$

(9)

where $\gamma = \frac{\Gamma}{\Gamma+\Gamma r}$.

Proof. The proof is the same as in (Zhao & Frazier, 2014) and we cite the proof as follows. Since

$$E^\pi \left[\sum_{n=1}^{N} U_n(Y_n - c) \right] = E^\pi \left[\sum_{n=1}^{\infty} \mathbb{1}_{n \leq N} U_n(Y_n - c) \right] = \sum_{n=1}^{\infty} E^\pi \left[\mathbb{1}_{n \leq N} U_n(Y_n - c) \right],$$

(10)

where the last equality is due to Fubini’s theorem and $E^\pi[\sum_{n=1}^{\infty} \mathbb{1}_{n \leq N} U_n(Y_n - c)] < \infty$.

For any fixed n, we have

$$E^\pi [E^\pi[\mathbb{1}_{n \leq N} U_n(Y_n - c) | U_n, Y_n]]$$

$$= E^\pi [P^\pi(n \leq N | U_n, Y_n) U_n(Y_n - c)]$$

$$= E^\pi [\gamma^n U_n(Y_n - c)].$$

Thus, plugging this expression in (10) and applying Fubini’s theorem again shows

$$E^\pi \left[\sum_{n=1}^{N} U_n(Y_n - c) \right] = E^\pi \left[\sum_{n=1}^{\infty} \gamma^n U_n(Y_n - c) \right] = \gamma E^\pi \left[\sum_{n=1}^{\infty} \gamma^{n-1} U_n(Y_n - c) \right],$$

which is what we need. □