Supplemental files for

Association of maternal folate and vitamin B\textsubscript{12} in early pregnancy with gestational diabetes mellitus: a prospective cohort study

Xiaotian Chen1, Yi Zhang1, Hongyan Chen1, Yuan Jiang1, Yin Wang1, Dingmei Wang1, Mengru Li1, Yalan Dou1, Xupeng Sun1, Guoying Huang1,2*, Weili Yan1,2*

Running title: Folate, vitamin B\textsubscript{12} and gestational diabetes

Affiliations
1. Department of Clinical Epidemiology & Clinical Trial Unit, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
2. Shanghai Key Laboratory of Birth Defect, Shanghai, China

Corresponding authors:
Weili Yan, PhD, yanwl@fudan.edu.cn
Department of Clinical Epidemiology & Clinical Trial Unit, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China & Shanghai Key Laboratory of Birth Defect, Shanghai, China;
Address: 399 Wan Yuan Road, Shanghai 201102, People’s Republic of China
Tel: 86-21-64931215;
Fax: 86-21-64931215;

Guoying Huang, MD, gyhuang@shmu.edu.cn
Pediatric Heart Center, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China & Shanghai Key Laboratory of Birth Defect, Shanghai, China;
Address: 399 Wan Yuan Road, Shanghai 201102, People’s Republic of China
Tel: 86-21-64931928
Fax: 86-21-64931002
Supplemental Figure S1. The distribution RBC folate (ng/mL), serum folate (ng/mL) and serum vitamin B\textsubscript{12} (pg/mL) concentration.
Supplemental Figure S2. Comparison of RBC folate, serum folate and vitamin B\textsubscript{12} between GDM and non-GDM. RBC folate and vitamin B\textsubscript{12} levels of GDM were significantly higher than that of non-GDM [426.44 (293.15, 587.61) vs 380.95 (291.44, 528.53) (ng/mL), \(P=0.045\); 421.00 (312.00, 546.00) vs 364.00 (277.00, 503.00) (pg/mL), \(P=0.002\)].
Supplemental Figure S3. The comparison of GGT at early pregnancy between GDM and non-GDM is based on a subgroup of study subjects (n=458). To explore the potential mechanisms of how higher vitamin B$_{12}$ associated with an increased risk of GDM, the γ-glutamyl transferase level (GGT), one of impaired liver function markers measured in routine antenatal care, was analyzed with GDM risk. Figure a showed the GGT level in GDM was significantly higher than non-GDM [2.7 (2.3, 3.1) vs 2.4 (2.1, 2.7), $P<0.001$]; Figure b depicted the probability of GDM fitted by logistical regression, high GGT concentration was significantly associated with GDM risk, OR(95% CI)=2.65(1.59-4.39), $P<0.001$.
Supplemental Table S1. Association of folate/vitamin B_{12} in early pregnancy with GDM risk

Variables	Group	GDM/Total (%)	OR	95% CI	P	OR	95% CI	P
RBC folate/vitamin B_{12}	Q1(<0.69)	47/257(18.2)	Ref	Ref		Ref	Ref	
	Q2(0.69-1.55)	88/538(16.3)	0.87	0.59-1.29	0.49	0.83	0.55-1.24	0.36
	Q3(≥1.55)	45/263(17.1)	0.92	0.58-1.44	0.72	0.80	0.50-1.28	0.37
	Trend test		0.72					
Serum folate/vitamin B_{12}	Q1(<28.98)	62/310(20.0)	Ref	Ref		Ref	Ref	
	Q2(28.98-48.23)	73/444(16.4)	0.78	0.54-1.14	0.21	0.76	0.52-1.13	0.18
	Q3(≥48.23)	45/304(14.8)	0.69	0.45-1.05	0.09	0.63	0.41-0.98	0.042
	Trend test		0.08					

* the ratio of serum folate to vitamin B_{12} concentrations was determined by dividing folate concentrations (ng/mL) by vitamin B_{12} concentrations (pg/mL) and multiplying by 1000; † univariate model; ‡ adjusted for age, preconceptional-BMI, family history of diabetes, smoking exposure and drinking status;
Table S2. Association of maternal serum folate levels at mid-gestation with GDM risk (N=458)

Variable	Group	GDM (%)	Model 1†	Model 2‡	
Serum folate (ng/ml)			OR	95% CI	P
	Q1(<5.1)	16/138 (11.5)	1.08	1.03-1.13	0.001
	Q2(5.1-10.7)	23/140 (16.4)	1.49	0.75-2.39	0.24
	Q3(≥10.7)	34/136 (25.0)	2.81	1.32-4.87	0.005
Serum folate change*			0.94	0.90-0.98	0.017

This analysis was conducted based on a subgroup of our study subjects (n=458);

* The levels at early pregnancy minus the levels at mid-gestation;
† Univariate model;
‡ Adjusted for age, preconceptional-BMI, family history of diabetes, smoking exposure and drinking status.