Contrast leakage distant from the hematoma in patients with spontaneous ICH: A 7 T MRI study

Wilmar MT Jolink1, Arjen Lindenholz2, Ellis S van Etten3, Koen M van Nieuwenhuizen1, Floris HBM Schreuder4, Hugo J Kuitt5, Matthias JP van Osch6, Jeroen Hendrikse2, Gabriel JE Rinkel1, Marieke JH Wermer3 and Catharina JM Klijn1,4

Abstract
Disruption of the blood–brain barrier (BBB) might play a role in the pathophysiology of cerebral small vessel disease-related ICH. The aim of this study was to assess presence and extent of contrast agent leakage distant from the hematoma as a marker of BBB disruption in patients with spontaneous ICH. We prospectively performed 7 tesla MRI in adult patients with spontaneous ICH and assessed contrast leakage distant from the hematoma on 3D FLAIR images. Thirty-one patients were included (mean age 60 years, 29% women). Median time between ICH and MRI was 20 days (IQR 9–67 days). Seventeen patients (54%; seven lobar, nine deep, one infratentorial ICH) had contrast leakage, located cortical in 16 and cortical and deep in one patient. Patients with contrast leakage more often had lobar cerebral microbleeds (CMBs; 77%) than those without (36%; RR 2.5, 95% CI 1.1–5.7) and a higher number of lobar CMBs (patients with contrast leakage: median 2, IQR 1–8 versus those without: median 0, IQR 0–2; p = 0.02). This study shows that contrast leakage distant from the hematoma is common in days to weeks after spontaneous ICH. It is located predominantly cortical and related to lobar CMBs and therefore possibly to cerebral amyloid angiopathy.

Keywords
Blood–brain barrier, cerebral microbleeds, intracerebral hemorrhage, magnetic resonance imaging, small vessel disease

Introduction
Intracerebral hemorrhage (ICH) related to cerebral small vessel disease (cSVD) is a detrimental disease resulting in high case-morbidity and -fatality.1,2 Despite ongoing advances in imaging and supportive treatment, incidence has not declined and outcome after ICH has at most marginally improved.2–4 An important contributing factor may be that the underlying pathophysiology is incompletely understood. cSVD-related ICH is mostly attributed to hypertensive vasculopathy or cerebral amyloid angiopathy (CAA),5 but the exact sequence of events and mechanisms that lead to vessel rupture remains unknown. Accumulating evidence suggests that disruption of the blood–brain barrier (BBB) plays a role in cSVD-related ICH.6–8
Contrast agent leakage (further referred to as contrast leakage) on dynamic contrast enhanced (DCE) MRI as a biomarker of BBB disruption has been demonstrated in patients with (lacunar) stroke,\(^9\) mild cognitive impairment and Alzheimer’s disease.\(^{12,13}\) Using dedicated fluid-attenuated inversion recovery (FLAIR) sequences after gadolinium contrast agent injection, hyperintense foci can be found in the normal appearing brain parenchyma or cerebrospinal fluid (CSF) space; the so-called Hyperintense Acute Reperfusion Marker (HARM).\(^{14-17}\) In the acute phase after ICH (median interval between ICH and MRI 11 h), HARM was found in 85% of patients.\(^{16}\) We hypothesized that contrast leakage as a marker of BBB disruption is a marker of the underlying cSVD in patients with ICH. Therefore, we assessed the presence and extent of contrast leakage in normal-appearing brain and CSF distant from the hematoma in patients with spontaneous ICH on 7 tesla (T) MRI in the subacute phase after ICH. Additionally, we related the presence and extent of contrast leakage to classical markers of cSVD.

Materials and methods

Study population

Patients were enrolled from an ongoing multicenter prospective observational cohort study in the Netherlands, the Finding the ETiology in spontaneous Cerebral Hemorrhage (FETCH) study. In this study, we included 31 consecutive adult patients who presented to the University Medical Centers of Utrecht, Leiden or Nijmegen, since 1 October 2013, with spontaneous ICH confirmed by computed tomography (CT) and were able to undergo 3 T and/or 7 T MR imaging. Patients with a known cause of ICH, such as a vascular malformation, tumor or trauma, are excluded. For this study, we included all patients who underwent 7 T MRI with a gadolinium-containing contrast agent within three months of the ICH.

The FETCH study was approved by the Medical Ethics Review Committee of the University Medical Center Utrecht, and by all participating centers. Each patient gave written informed consent for participation in the study. The guidelines according to the Declaration of Helsinki were followed.

We categorized the ICH according to location as lobar, deep or infratentorial. Patients with possible or probable CAA were identified using the modified Boston criteria.\(^{19}\) Hypertension was defined as use of antihypertensive medication, a systolic blood pressure greater than 140 mm Hg, a diastolic blood pressure greater than 90 mm Hg on two documented independent measurements prior to the ICH or left ventricular hypertrophy on ECG.

Imaging protocol and analysis

On admission CT, we assessed hematoma volume using an in-house developed tool,\(^{20}\) and ICH location. Lobar ICH was defined as ICH isolated to the cortex (with or without involvement of subcortical white matter) and non-lobar ICH as deep (thalamus and basal ganglia) or infratentorial (brainstem and cerebellum) ICH. We used 7 T MRI to assess presence of contrast leakage, CMBs and white matter hyperintensities (WMH). Presence of enlarged perivascular spaces (EPVS) and diffusion weighted imaging (DWI) lesions was assessed on 3 T MRI.

7 T MRI (Philips, Best, The Netherlands) scans were acquired by a standardized protocol; 3D T2-weighted (repetition time (TR)/equivalent echo time (TE) = 3158/60 ms; voxel size = acquired: 0.70 × 0.70 × 0.70 mm\(^3\), reconstructed: 0.35 × 0.35 × 0.35 mm\(^3\)), 3D T1-weighted (TR/TE = 4.8/2.2 ms; voxel size = acquired: 1.00 × 1.01 × 1.00 mm\(^3\), reconstructed: 0.66 × 0.66 × 0.50 mm\(^3\)), dual echo 3D T2*-weighted (TR/first TE/second TE = 20/6.9/15.8 ms; voxel size = acquired: 0.50 × 0.50 × 0.70 mm\(^3\), reconstructed: 0.39 × 0.39 × 0.35 mm\(^3\)) and 3D FLAIR images were acquired (TR/TE/inversion time (TI) = 8000/300/2325 ms; voxel size = acquired: 0.80 × 0.82 × 0.80 mm\(^3\), reconstructed: 0.49 × 0.49 × 0.40 mm\(^3\)). A gadolinium-containing contrast agent was administered in a single intravenous injection of 0.1 mL Gadovist/kg body weight with a maximum of 10 mL Gadovist or 0.2 mL Dotarem/kg body weight with a maximum of 30 mL Dotarem. Postgadolinium FLAIR images were acquired at least 10 min after contrast injection.

3 T unenhanced MRI (Philips, Best, The Netherlands) scans were acquired by a standardized protocol including DWI with apparent diffusion coefficient (ADC) map, an axial T2*, T2-proton density-weighted sequence, inversion recovery and FLAIR, all with 48 contiguous slices and 0.96 × 0.95 × 3.00 mm\(^3\) voxels. Also, a 3D T1-weighted sequence was acquired.

Contrast leakage, CMBs, EPVS, WMH and DWI lesions were annotated by two trained readers (WMTJ and AL) independently and blinded for patient information. Discrepancies were resolved in a consensus meeting with an experienced neuroradiologist (JH) and neurologist (CJMk). Contrast leakage was defined as a hyperintense signal in normal-appearing brain or CSF on delayed postgadolinium FLAIR images, while absent on precontrast images. The signal had to be visually distinct and anatomically non-contiguous with the hematoma. We used the 5-point HARM rating scale to rate the extent of the contrast leakage as HARM 0: no contrast leakage, HARM 1: punctate lesions of contrast leakage, HARM 2: multiple punctate lesions of contrast leakage, HARM 3: focal sulcal contrast enhancement, and HARM 4: bilateral and
Possible CAA.18 of the 11 patients with lobar ICH fulfilled the modified Boston criteria (36%; RR 2.5 (95% confidence interval (CI) 0.7–8.8)), a low proportion of patients with a history of atrial fibrillation (0; RR 0.4 (95% CI 0.2–0.6)) and a high mean diastolic blood pressure at admission (95 mm Hg; p = 0.12), although these differences were not all statistically significant. All other patient characteristics were comparable in patients with and without contrast leakage (Table 1). There was no difference in time interval between ICH and 7T MRI in patients with (median 20 days; IQR 11–70 days) and without (median 22 days; IQR 5–67 days) contrast leakage (p = 0.55).

Patients with contrast leakage more often had lobar CMBs (77%) than those without contrast leakage (36%; RR 2.5 (95% CI 1.1–5.7, Table 1)) as well as a higher number of lobar CMBs (patients with contrast leakage: median 2, IQR 1–8 versus those without contrast leakage: median 0, IQR 0–2; p = 0.02, Table 1). Seven out of 17 patients with contrast leakage had a lobar ICH of which five fulfilled the modified Boston criteria for probable (n = 4) or possible CAA (n = 1). The other two patients (44 and 51 years old) with lobar ICH had lobar CMBs or superficial siderosis but did not fulfill the modified Boston criteria for probable CAA, because they were younger than 55 years.

We found no differences between patients with and without contrast leakage in the proportion of patients with Fazekas score ≥ 2, categories of EPVS or the proportion of patients with DWI lesions (Table 1). We found no spatial relationship between the location of the DWI lesions and the location of the contrast leakage.

Discussion

This study shows that over 50% of the patients with spontaneous ICH have contrast leakage distant from the hematoma as evidenced by high field 7T MRI in the subacute phase, up to 70 days after ICH. It occurs both in patients with lobar and in those with deep and infratentorial ICH, with a predominantly cortical location. In half of the patients, contrast leakage is moderate or severe (HARM 3 and 4) and presence of contrast leakage is associated with presence and number of lobar CMBs.

The proportion of patients with contrast leakage in our cohort (54%) is higher than that in a recent study using 3T MRI delayed postgadolinium FLAIR images in healthy elderly subjects (mean age 73 years; 19% with contrast leakage), in patients with mild cognitive impairment (mean age 69 years; 30%) and in patients with Alzheimer’s disease (mean age 72 years; 40%).19 In
Table 1. Baseline characteristics of patients with and without contrast leakage.

Characteristics	All N = 31	Contrast leakage N = 17 (55%)	No contrast leakage N = 14 (45%)	Risk ratio (95% CI)	p-value
Patient characteristics					
Mean age, years (SD)	60 (12)	61 (13)	59 (12)	0.55*	
Female sex, n (%)	9 (29)	7 (41)	2 (14)	2.5 (0.7–8.8)	0.10**
GCS at presentation, median (IQR)	15 (13–15)	15 (12–15)	14 (13–15)	0.53^	
NIHSS at presentation, median (IQR)	5 (2–9)	6 (3–9)	4 (1–8)	0.31^	
Mean systolic BP at admission, mm Hg (SD)	166 (33)	174 (36)	158 (28)	0.28*	
History of hypertension, n (%)	19 (61)	9 (53)	10 (71)	0.7 (0.3–1.5)	0.38**
History of TIA, n (%)	4 (13)	3 (18)	1 (7)	1.9 (0.4–11.0)	0.39**
History of ischemic stroke, n (%)	3 (10)	2 (12)	1 (7)	1.4 (0.3–7.2)	0.67**
History of cardiac disease, n (%)	1 (3)	0 (0)	1 (7)	0.4 (0.3–0.7)	0.26**
Diabetes mellitus, n (%)	2 (7)	1 (6)	1 (7)	0.9 (0.2–3.8)	0.89**
Atrial fibrillation, n (%)	3 (10)	0 (0)	3 (21)	0.4 (0.2–0.6)	0.045***
Smoking (current or past), n (%)	13 (42)	5 (31)	8 (57)	0.6 (0.3–1.2)	0.15***
Anticoagulants, n (%)	5 (16)	2 (12)	3 (21)	0.7 (0.3–1.6)	0.47**
Antiplaletes, n (%)	6 (19)	4 (24)	2 (14)	1.4 (0.4–4.8)	0.52**
Hematoma characteristics					
Lobar ICH location, n (%)	11 (36)	7 (41)	4 (29)	1.4 (0.6–3.4)	0.47**
Median hematoma volume, mL (IQR)	14 (4–30)	14 (5–30)	11 (4–32)	0.74*	
Subarachnoid extension, n (%)	5 (16)	3 (18)	2 (14)	1.2 (0.4–3.6)	0.80**
Intraventricular extension, n (%)	9 (29)	3 (18)	6 (43)	0.5 (0.3–1.1)	0.12**
Presence of CMBs					
CMBs (yes, %)	23 (74)	14 (82)	9 (64)	1.6 (0.8–3.3)	0.25**
0–1	12 (39)	6 (35)	6 (43)	ref	
2–5	8 (26)	3 (18)	5 (36)	0.58@	
6–10	5 (16)	2 (12)	3 (21)	0.07@	
> 10	6 (19)	6 (35)	0 (0)	0.09@	
Any lobar CMBs (yes, %)	18 (58)	13 (77)	5 (36)	2.5 (1.1–5.7)	0.02**
Strictly lobar CMBs (yes, %)	5 (16)	4 (24)	1 (7)	2.5 (0.4–15.0)	0.22**
Number of CMBs by location, median (IQR)					
Number of lobar CMBs	1 (0–4)	2 (1–8)	0 (0–2)	0.02*	
Number of non-lobar CMBs	1 (0–4)	1 (0–10)	1 (0–1)	0.57*	
Total number of CMBs	3 (0–9)	3 (1–23)	3 (0–5)	0.15^	
White matter hyperintensities					
Fazekas score ≥ 2, n (%)	16 (52)	9 (53)	7 (50)	1.6 (0.7–3.4)	0.24**
DWI lesions					
Presence, n (%)	4 (13)	3 (18)	1 (7)	2.0 (0.3–11.5)	0.36**
EPVS					
Basal ganglia%					
< 10	12 (39)	6 (35)	6 (43)	ref	
11–20	13 (42)	8 (47)	5 (36)	0.85	
21–40	1 (3)	0 (0)	1 (7)	0.56	
> 40	0 (0)	0 (0)	0 (0)	1.00	
Centrum semiovale%					
< 10	3 (10)	0 (0)	3 (21)	ref	

Jolink et al. 1005

(continued)
a retrospective cohort study of 46 spontaneous ICH patients, contrast leakage was found distant from the hematoma in 85% of patients with conventional 1.5 T and 3 T MRI performed in the acute phase (median 11 hours) after hemorrhage onset. In that study, a possible but not significant association was found with a higher National Institutes of Health Stroke Scale score (NIHSS) at baseline and shorter time to MRI. Location of the hematoma, however, was not reported in that study. Our patients were scanned in the subacute phase (median 20 days), which may explain the smaller proportion of patients with contrast enhancement, despite higher field MRI. The smaller proportion in our study might also be explained by another potential mechanism of the BBB disruption. In the acute study, the BBB disruption may be due to direct injury of the hematoma. The persisting contrast leakage that we found might still be related to the direct effect of the hematoma but could also be an indicator of BBB disruption as a result of cSVD. A previous study described contrast leakage in 2 of 19 patients with probable CAA, presenting with either atypical or multiple hemorrhages or superficial siderosis, on postgadolinium T1-weighted sequences on 1.5 T MRI. That study did not report the time interval between symptom onset and MRI. In 51 patients with lacunar stroke who underwent MRI in the subacute phase (mean 64 days, SD±12), BBB permeability was present more generalized in most of the sulci and EPVS, in contrast to the areas of focal enhancement in our study of ICH patients. In that study, BBB permeability was visualized using pre- and postgadolinium T1-weighted MR sequences and two image processing methods.

We found no association of contrast leakage with DWI lesions on 3 T MRI. A possible explanation might be the variable time interval between 3 T and 7 T MRI with a median time interval of 7 days (IQR 1–56 days), and DWI lesions may start to disappear after approximately 7 to 10 days.

The results of our study suggest that increased permeability of the BBB might play a role in cSVD-related ICH, in particular in the presence of lobar CMBs. A potential mechanism explaining contrast leakage is the cascade of events that follow the direct injury and mass effect of ICH, consisting of a release of clot-derived factors, cortical spreading depression and an inflammatory response, including leukocyte infiltration, microglia activation, cytokine and chemokine elevation and glutamate neurotoxicity. These lead to additional brain injury and BBB disruption, supporting the hypothesis that contrast leakage may be a consequence of ICH. This might also explain why contrast leakage can be found in a different lobe than the hematoma or the contralateral hemisphere.

Another hypothesis based on animal studies is that BBB disruption may in fact precede ICH. This hypothesis is supported by our previous observation of a patient with multiple lobar ICHs who showed focal contrast enhancement before appearance of a CMB exactly at the site of that contrast enhancement. As we assessed patients only after they had experienced the ICH, our study cannot draw conclusions on causal inference. MRI contrast leakage indicative of BBB disruption may be another marker of the underlying cSVD pathology next to the ICH and classic MRI markers of cSVD, including WMH, lacunes, EPVS, CMBs, recent small subcortical infarcts and brain atrophy. To date, it remains unclear why in some patients cSVD manifests as ischemia, whereas in others cSVD causes hemorrhage. Even in the cSVD that is related to hypertension and not CAA, some patients appear to be more prone to hemorrhage than others as suggested by the fact that new CMBs are found more frequently in those who already had CMBs before, than in those who did not.

Table 1. Continued

Characteristics	All N = 31	Contrast leakage N = 17 (55%)	No contrast leakage N = 14 (45%)	Risk ratio (95% CI)	p-value
11–20	11 (36)	7 (41)	4 (29)	1.00	0.97
21–40	12 (39)	7 (41)	5 (36)	1.00	
>40	0 (0)	0 (0)	0 (0)	1.00	
Cortical superficial siderosis					
Presence, n (%)	3 (10)	3 (18)	0 (0)	0.20*	
Modified Boston criteria					
Probable CAA, n (%)	5 (16)	4 (24)	1 (7)	2.5 (0.4–15.0)	0.17#
Probable CAA (including patients < 55 years), n (%)	8 (26)	6 (35)	2 (14)	2.1 (0.6–7.4)	0.18#

BP: blood pressure; CI: confidence interval; CMB: cerebral microbleed; DWI: diffusion weighted imaging; EPVS: enlarged perivascular spaces; GCS: Glasgow coma scale; ICH: intracerebral hemorrhage; IQR: interquartile range; NIHSS: National Institutes of Health Stroke Scale; SD: standard deviation; TIA: transient ischemic attack.

* t-test, # Chi square, ^ Mann–Whitney U, @@ logistic regression, 9n five patients 3 T MRI was not available.
Figure 1. Examples of patients with different HARM scale scores. HARM 1: Punctate lesion of contrast leakage. Pre- (panel A) and postgadolinium (panel B) FLAIR images of a 41-year-old man with an infratentorial hemorrhage, a right frontal punctate lesions (white arrow) of contrast leakage and no abnormalities at that site on SWI (panel C). HARM 2: Multiple punctate lesions of contrast leakage. Pre- (panels D and E) and postgadolinium (panels G and H) FLAIR images of a 54-year-old man with left deep ICH, right occipital (white arrow) and left frontal lesions (white open arrow) of contrast leakage and no abnormalities at those sites on SWI (panel F and I). HARM 3: Focal sulcal contrast leakage. Pre- (panel J) and postgadolinium (panel K) FLAIR images of a 45-year-old man with a left deep ICH, left parietal focal sulcal contrast leakage (white arrow) and no abnormalities at that site on SWI (panel L). HARM 4: Bilateral and diffuse contrast leakage. Pre- (panel M) and postgadolinium (panel N) FLAIR images of a 67-year-old woman with right deep ICH, extensive bilateral and generalized occipital contrast enhancement (white arrows) and multiple cerebral microbleeds at that site on SWI (panel O).
We found contrast leakage predominantly cortical, even in patients with deep ICH. A potential explanation is that hypertensive vasculopathy not only affects the deep penetrating vessels but also the superficial cortical vessels or that it affects deep penetrating vessels in a different way than superficial cortical vessels.43 Also, it could be that patients with non-lobar ICH have CAA in addition to hypertensive vasculopathy (for example HARM score 4 in Figure 1).44 Other studies describe that contrast leakage or BBB disruption might be caused by cortical spreading depression.31,45–48 The association of contrast leakage with lobar CMBs and that four of the five patients in our study with probable CAA according to the modified Boston criteria had contrast leakage, tentatively supports a relation with CAA. The predilection of contrast leakage in cortical rather than deep areas was also found by others in cognitive healthy elderly subjects, and in patients with mild cognitive impairment or Alzheimer’s disease and ischemic stroke.14–16,18,49,50

We found no association with other cSVD markers than CMBs (i.e. DWI lesions, EPVS and WMH). In a previous cohort of ICH patients, there was also no association of contrast leakage with WMH.18 In the study in cognitively healthy elderly patients, patients with mild cognitive impairment and Alzheimer’s disease, there was also no association of contrast leakage with lacunes or WMH.14 This might indicate that contrast leakage is a marker independent of other cSVD features, and possibly be particularly associated with CAA.

Strengths of our study are that we were able to prospectively collect patients with spontaneous ICH from multiple centers and assess these patients in the 7T MRI scanner in the subacute stage of ICH. Another
strength is that 7 T MRI has a high signal-to-noise ratio with also better contrast-to-noise in FLAIR images than conventional MRI scanners. This allows the use of voxel sizes less than a millimeter and consequently the possibility of a better yield by being able to detect small punctate lesions of contrast leakage, including in deeper areas.51 We used FLAIR images instead of T1-weighted images, because this MR sequence has a better sensitivity in detecting low concentrations of Gadolinium.14,52,53 Furthermore, FLAIR images are less sensitive to the effects of gadolinium contrast in the blood vessels, because of a stronger signal decay due to the effects of blood flow in combination with shortening of the T2 relaxation time at higher concentrations of gadolinium.14,54 Postgadolinium FLAIR enhancement on 3 T MRI is a novel technique which has also been used in cranial nerve imaging for identifying both normal and abnormal cranial nerves.55–57

Our study also has limitations. First, the sample size was small. Second, including severely affected ICH patient for 7 T MR imaging is challenging and this may have resulted in a selection bias in that we included less affected patients with smaller hematomas and a relatively lower NIHSS scores. Third, assessing contrast leakage on postgadolinium FLAIR images may be more rater dependent than techniques such as DCE-MRI and cannot be used to quantify the amount of leakage. Fourth, raters were not blinded for ICH location which might have included detection bias. Finally, there was variation in time interval between ICH and MRI between patients. As the median time interval was similar between patients with and without contrast leakage, this will not have affected the analyses of different cSVD markers in these groups.

Our findings need confirmation, preferably in a larger cohort of ICH patients with and without CAA. Furthermore, it would be of interest to study the relation between contrast leakage and outcome. Also, sequential scanning of patients with contrast leakage to follow changes in contrast enhancement over time would be of interest. Further work is needed to determine whether FLAIR contrast enhancement, as a biomarker of BBB disruption, is able to predict recurrent ICH or cognitive deterioration.51

Funding
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: Dr. Klijn is supported by a clinical established investigator grant of the Dutch Heart Foundation (Grant Number 2012T077) and an ASPASIA grant from The Netherlands Organisation for Health Research and Development, ZonMw (grant number 015008048)

Declaration of conflicting interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Authors’ contributions
Wilmari MT Jolink: study concept and design, acquisition of data, rating images, interpretation of the results, drafting the manuscript. Arjen Lindenholz: rating images, interpretation of the results, critical revisions. Ellis S van Etten: acquisition of data, critical revisions. Koen M van Nieuwenhuizen: acquisition of data, critical revisions. Floris HBM Schreuder: acquisition of data, critical revisions. Hugo J Kuijf: imaging analysis, critical revisions, Matthias JP van Osch: acquisition of data, critical revisions. Jeroen Hendrikse: rating images, critical revisions. Gabriel JE Rinkel: interpretation of the results, critical revisions. Marieke JH Wermer: interpretation of the results, critical revisions. Catharina JM Klijn: study concept and design, rating images, interpretation of the results, critical revisions.

ORCID iDs
Arjen Lindenholz https://orcid.org/0000-0002-5333-5723
Koen M van Nieuwenhuizen https://orcid.org/0000-0002-4815-002X
Hugo J Kuijf https://orcid.org/0000-0001-6997-9059
Matthias JP van Osch https://orcid.org/0000-0001-7034-8959

References
1. Qureshi AI, Mendelow AD and Hanley DF. Intracerebral haemorrhage. Lancet 2009; 373: 1632–1644.
2. van Asch CJ, Luitse MJ, Rinkel GJ, et al. Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: a systematic review and meta-analysis. Lancet Neurol 2010; 9: 167–176.
3. Jolink WM, Klijn CJ, Brouwers PJ, et al. Time trends in incidence, case fatality, and mortality of intracerebral hemorrhage. Neurology 2015; 85: 1318–1324.
4. Bejot Y, Grelat M, Delpont B, et al. Temporal trends in early case-fatality rates in patients with intracerebral hemorrhage. Neurology 2017; 88: 985–990.
5. Wilson D, Charidimou A and Werring DJ. Advances in understanding spontaneous intracerebral hemorrhage: insights from neuroimaging. Expert Rev Neurother 2014; 14: 661–678.
6. Freeze WM, Jacobs HIL, Schreuder FHB M, et al. Blood-brain barrier dysfunction in small vessel disease related intracerebral hemorrhage. Front Neurol 2018; 9: 926.
7. Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol 2010; 9: 689–701.
8. Wardlaw JM, Smith C and Dichgans M. Mechanisms of sporadic cerebral small vessel disease: insights from neuroimaging. Lancet Neurol 2013; 12: 483–497.
9. Wardlaw JM, Douhal F, Armitage P, et al. Lacunar stroke is associated with diffuse blood-brain barrier dysfunction. Ann Neurol 2009; 65: 194–202.

10. Villringer K, Sanz Cuesta BE, Ostwaladt AC, et al. DCE-MRI blood-brain barrier assessment in acute ischemic stroke. Neurology 2017; 88: 433–440.

11. Topakian R, Barrick TR, Howe FA, et al. Blood-brain barrier permeability is increased in normal-appearing white matter in patients with lacunar stroke and leukoaraiosis. J Neurol Neurosurg Psychiatry 2010; 81: 192–197.

12. van de Haar HJ, Burgmans S, Jansen JF, et al. Blood-brain barrier leakage in patients with early Alzheimer disease. Radiology 2016; 281: 527–535.

13. Starr JM, Farrall AJ, Armitage P, et al. Blood-brain barrier permeability in Alzheimer’s disease: a case-control MRI study. Psychiatry Res 2009; 171: 232–241.

14. Freeze WM, Schnerr RS, Palm WM, et al. Pericortical enhancement on delayed postgadolinium fluid-attenuated inversion recovery images in normal aging, mild cognitive impairment, and Alzheimer disease. AJNR Am J Neuroradiol 2017; 38: 1742–1747.

15. Latour LL, Kang DW, Ezzeddine MA, et al. Early blood-brain barrier disruption in human focal brain ischemia. Ann Neurol 2004; 56: 468–477.

16. Lee KM, Kim JH, Kim E, et al. Early stage of hyperintense acute reperfusion marker on contrast-enhanced FLAIR images in patients with acute stroke. AJR Am J Roentgenol 2016; 206: 1272–1275.

17. Kidwell CS, Latour L, Saver JL, et al. Thrombolytic toxicity: blood brain barrier disruption in human ischemic stroke. Cerebrovasc Dis 2008; 25: 338–343.

18. Kidwell CS, Burgess R, Menon R, et al. Hyperacute injury marker (HARM) in primary hemorrhage: a distinct form of CNS barrier disruption. Neurology 2011; 77: 1725–1728.

19. Linn J, Halpin A, Demaerel P, et al. Prevalence of superficial siderosis in patients with cerebral amyloid angiopathy. Neurology 2010; 74: 1346–1350.

20. Kuijf H. Image processing techniques for quantification and assessment of brain MRI. Doctoral Dissertation, Utrecht University, Utrecht, 2013.

21. Wardlaw JM, Smith EE, Biessels GJ, et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurotol 2013; 12: 822–838.

22. Gregoire SM, Chaudhary UJ, Brown MM, et al. The microbleed anatomical rating scale (MARS): reliability of a tool to map brain microbleeds. Neurology 2009; 73: 1759–1766.

23. Fazekas F, Barkhof F, Wahlund LO, et al. CT and MRI rating of white matter lesions. Cerebrovasc Dis 2002; 13(Suppl 2): 31–36.

24. Prabhakaran S, Gupta R, Ouyang B, et al. Acute brain infarcts after spontaneous intracerebral hemorrhage: a diffusion-weighted imaging study. Stroke 2010; 41: 89–94.

25. Charidimou A, Meegahage R, Fox Z, et al. Enlarged perivascular spaces as a marker of underlying arteriopathy in intracerebral haemorrhage: a multicentre MRI cohort study. J Neurol Neurosurg Psychiatry 2013; 84: 624–629.

26. Douhal FN, MacLullich AM, Ferguson KJ, et al. Enlarged perivascular spaces on MRI are a feature of cerebral small vessel disease. Stroke 2010; 41: 450–454.

27. Wardlaw JM, Sandercock PA, Dennis MS, et al. Is breakdown of the blood-brain barrier responsible for lacunar stroke, leukoaraiosis, and dementia? Stroke 2003; 34: 806–812.

28. Hartz AM, Bauer B, Soldner EL, et al. Amyloid-beta contributes to blood-brain barrier leakage in transgenic human amyloid precursor protein mice and in humans with cerebral amyloid angiopathy. Stroke 2012; 43: 514–523.

29. Lansberg MG, Thijs VN, O’Brien MW, et al. Evolution of apparent diffusion coefficient, diffusion-weighted, and T2-weighted signal intensity of acute stroke. AJNR Am J Neuroradiol 2001; 22: 637–644.

30. Xi G, Keep RF and Hoff JT. Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurol 2006; 5: 53–63.

31. Dreier JP. The role of spreading depression, spreading depolarization and spreading ischemia in neurological disease. Nat Med 2011; 17: 439–447.

32. Sharp F, Liu DZ, Zhan X, et al. Intracerebral hemorrhage injury mechanisms: glutamate neurotoxicity, thrombin, and Src. Acta Neurochir Suppl 2008; 105: 43–46.

33. Keep RF, Zhou N, Xiang J, et al. Vascular disruption and blood-brain barrier dysfunction in intracerebral hemorrhage. Fluids Barriers CNS 2014; 11: 18.

34. Aronowski J and Zhao X. Molecular pathophysiology of cerebral hemorrhage: secondary brain injury. Stroke 2011; 42: 1781–1786.

35. Wang J and Dore S. Inflammation after intracerebral hemorrhage. J Cereb Blood Flow Metab 2007; 27: 894–908.

36. Wang J. Preclinical and clinical research on inflammation after intracerebral hemorrhage. Prog Neurobiol 2010; 92: 463–77.

37. Schreiber S, Bueche CZ, Garz C, et al. Blood brain barrier breakdown as the starting point of cerebral small vessel disease? New insights from a rat model. Exp Transl Med 2013; 5: 4.

38. Lee JM, Zhai G, Liu Q, et al. Vascular permeability precedes spontaneous intracerebral hemorrhage in stroke-prone spontaneously hypertensive rats. Stroke 2007; 38: 3292–3291.

39. van Nieuwenhuizen KM, Hendriks J and Klijn CJM. New microbleed after blood-brain barrier leakage in intracerebral haemorrhage. BMJ Case Rep 2017; bcr-2016-218794. DOI: 10.1136/bcr-2016-218794.

40. Gregoire SM, Brown MM, Kallis C, et al. MRI detection of new microbleeds in patients with ischemic stroke: five-year cohort follow-up study. Stroke 2010; 41: 184–186.

41. Lee SH, Lee ST, Kim BJ, et al. Dynamic temporal change of cerebral microbleeds: long-term follow-up MRI study. PLoS One 2011; 6: e25930.

42. van Leijesen EMC, van Uden IWM, Ghafoorian M, et al. Nonlinear temporal dynamics of cerebral small vessel disease: the RUN DMC study. Neurology 2017; 89: 1569–1577.
43. Broderick J, Brott T, Tomsick T, et al. Lobar hemorrhage in the elderly. The undiminning importance of hypertension. *Stroke* 1993; 24: 49–51.
44. Pasi M, Charidimou A, Boulouis G, et al. Mixed-location cerebral hemorrhage/microbleeds: underlying microangiopathy and recurrence risk. *Neurology* 2018; 90: e119–e126.
45. Leira R, Sobrino T, Rodriguez-Yanez M, et al. Mmp-9 immunoreactivity in acute migraine. *Headache* 2007; 47: 698–702.
46. Dreier JP and Reiffurth C. The stroke-migraine depolarization continuum. *Neuron* 2015; 86: 902–922.
47. Jung JE, Kim GS, Chen H, et al. Reperfusion and neurovascular dysfunction in stroke: from basic mechanisms to potential strategies for neuroprotection. *Mol Neurobiol* 2010; 41: 172–179.
48. Gursoy-Ozdemir Y, Qiu J, Matsuoka N, et al. Cortical spreading depression activates and upregulates MMP-9. *J Clin Invest* 2004; 113: 1447–1455.
49. Choi HY, Lee KM, Kim HG, et al. Role of hyperintense acute reperfusion marker for classifying the stroke etiology. *Front Neurol* 2017; 8: 630.
50. Warach S and Latour LL. Evidence of reperfusion injury, exacerbated by thrombolytic therapy, in human focal brain ischemia using a novel imaging marker of early blood-brain barrier disruption. *Stroke* 2004; 35(11 Suppl 1): 2659–2661.
51. Wardlaw JM, Doubl FN, Valdes-Hernandez M, et al. Blood-brain barrier permeability and long-term clinical and imaging outcomes in cerebral small vessel disease. *Stroke* 2013; 44: 525–527.
52. Kohrmann M, Struflert T, Frenzel T, et al. The hyper-intense acute reperfusion marker on fluid-attenuated inversion recovery magnetic resonance imaging is caused by gadolinium in the cerebrospinal fluid. *Stroke* 2012; 43: 259–261.
53. Mathews VP, Caldemeyer KS, Lowe MJ, et al. Brain: gadolinium-enhanced fast fluid-attenuated inversion-recovery MR imaging. *Radiology* 1999; 211: 257–263.
54. Fukuoka H, Hirai T, Okuda T, et al. Comparison of the added value of contrast-enhanced 3D fluid-attenuated inversion recovery and magnetization-prepared rapid acquisition of gradient echo sequences in relation to conventional postcontrast T1-weighted images for the evaluation of leptomeningeal diseases at 3T. *AJNR Am J Neuroradiol* 2010; 31: 868–873.
55. Kuya J, Kuya K, Shinohara Y, et al. Usefulness of high-resolution 3D multi-sequences for peripheral facial palsy: differentiation between Bell’s Palsy and Ramsay Hunt syndrome. *Otol Neurotol* 2017; 38: 1523–1527.
56. Naganawa S, Suzuki K, Yamazaki M, et al. Serial scans in healthy volunteers following intravenous administration of gadoteridol: time course of contrast enhancement in various cranial fluid spaces. *Magn Reson Med Sci* 2014; 13: 7–13.
57. Hong HS, Yi BH, Cha JG, et al. Enhancement pattern of the normal facial nerve at 3.0T temporal MRI. *Br J Radiol* 2010; 83: 118–121.