The Weierstrass semigroups on double covers of genus two curves

Takeshi Harui∗
Academic Support Center, Kogakuin University
Hachioji, 192-0015, Japan

Jiryo Komeda†
Department of Mathematics, Center for Basic Education and Integrated Learning
Kanagawa Institute of Technology, Atsugi, 243-0292, Japan

and

Akira Ohbuchi‡
Department of Mathematics, Faculty of Integrated Arts and Sciences
Tokushima University, Tokushima, 770-8502, Japan

We show that three numerical semigroups $\langle 5, 6, 7, 8 \rangle$, $\langle 3, 7, 8 \rangle$ and $\langle 3, 5 \rangle$ are of double covering type, i.e., the Weierstrass semigroups of ramification points on double covers of curves. Combining the result with [5] and [2] we can determine the Weierstrass semigroups of the ramification points on double covers of genus two curves.

2010 Mathematics Subject Classification: 14H55, 14H45, 20M14

Key words: Numerical semigroup, Weierstrass semigroup, Double cover of a curve, Curve of genus two

1 Introduction

Let C be a complete nonsingular irreducible curve over an algebraically closed field k of characteristic 0, which is called a curve in this paper. For a point P of C, we set

$$H(P) = \{ \alpha \in \mathbb{N}_0 | \exists \text{ a rational function } f \text{ on } C \text{ with } (f)_{\infty} = \alpha P \},$$

∗E-mail: takeshi@cwo.zaq.ne.jp, kt13459@ns.kogakuin.ac.jp
†E-mail: komeda@gen.kanagawa-it.ac.jp
‡E-mail: ohbuchi@tokushima-u.ac.jp

The second author is partially supported by Grant-in-Aid for Scientific Research (24540057), Japan Society for the Promotion Science. The third author is partially supported by Grant-in-Aid for Scientific Research (24540042), Japan Society for the Promotion Science.
which is called the Weierstrass semigroup of \(P \) where \(\mathbb{N}_0 \) denotes the additive monoid of non-negative integers. A submonoid \(H \) of \(\mathbb{N}_0 \) is called a numerical semigroup if its complement \(\mathbb{N}_0 \setminus H \) is a finite set. The cardinality of \(\mathbb{N}_0 \setminus H \) is called the genus of \(H \), which is denoted by \(g(H) \). It is known that the Weierstrass semigroup of a point on a curve of genus \(g \) is a numerical semigroup of genus \(g \). For a numerical semigroup \(H \) we denote by \(d_2(H) \) the set of consisting of the elements \(h/2 \) with even \(h \in H \), which becomes a numerical semigroup. A numerical semigroup \(\hat{H} \) is said to be of double covering type if there exists a double covering \(\pi : \tilde{C} \rightarrow C \) of a curve with a ramification point \(\tilde{P} \) over \(P \) satisfying \(H(\tilde{P}) = \hat{H} \). In this case we have \(d_2(H(\tilde{P})) = H(P) \).

We are interested in numerical semigroups of double covering type. Let \(\hat{H} \) be a numerical semigroup of genus \(\hat{g} \) with \(d_2(\hat{H}) = \mathbb{N}_0 \) whose genus is 0. Then the semigroup \(\hat{H} \) is \(\langle 2, 2\hat{g} + 1 \rangle \), where for any positive integers \(a_1, a_2, \ldots, a_n \) we denote by \(\langle a_1, a_2, \ldots, a_n \rangle \) the additive monoid generated by \(a_1, a_2, \ldots, a_n \). In this case \(\hat{H} \) is the Weierstrass semigroup of a ramification point \(\tilde{P} \) on a double cover of the projective line which is of genus \(\hat{g} \). Hence, \(\hat{H} \) is of double covering type.

Let \(\hat{H} \) be a numerical semigroup of genus \(\hat{g} \) with \(d_2(\hat{H}) = \langle 2, 3 \rangle \) which is the only one numerical semigroup of genus 1. Then the semigroup \(\hat{H} \) is either \(\langle 3, 4, 5 \rangle \) or \(\langle 3, 4 \rangle \) or \(\langle 4, 5, 6, 7 \rangle \) or \(\langle 4, 6, 2\hat{g} - 3 \rangle \) with \(\hat{g} \geq 4 \) or \(\langle 4, 6, 2\hat{g} - 1, 2\hat{g} + 1 \rangle \) with \(\hat{g} \geq 4 \). We can show that there is a double covering of an elliptic curve with a ramification point whose Weierstrass semigroup is any semigroup in the above ones (for example, see [1], [2]).

Oliveira and Pimentel [5] studied the semigroup \(\hat{H} = \langle 6, 8, 10, n \rangle \) with an odd number \(n \geq 11 \). They showed that the semigroup \(\hat{H} \) is of double covering type. In this case we have \(d_2(\hat{H}) = \langle 3, 4, 5 \rangle \), which is of genus 2. Moreover, in [2] we proved that any numerical semigroup \(\tilde{H} \) with \(d_2(\hat{H}) = \langle 3, 4, 5 \rangle \) except \(\langle 5, 6, 7, 8 \rangle \), \(\langle 3, 7, 8 \rangle \), \(\langle 3, 5 \rangle \) and \(\langle 3, 5, 7 \rangle \) is of double covering type. In view of the fact that \(g(\langle 3, 5, 7 \rangle) = 3 < 2 \cdot 2 \) the semigroup \(\langle 3, 5, 7 \rangle \) is not of double covering type. There is another numerical semigroup of genus 2, which is \(\langle 2, 5 \rangle \). Using the result of Main Theorem in [4] every numerical semigroup \(\tilde{H} \) with \(d_2(\tilde{H}) = \langle 2, 5 \rangle \) is of double covering type. In this paper we will study the remaining three numerical semigroups. Namely we prove the following:

Theorem 1 The three numerical semigroups \(\langle 5, 6, 7, 8 \rangle \), \(\langle 3, 7, 8 \rangle \) and \(\langle 3, 5 \rangle \) are of double covering type.

Combining this theorem with the results in [5] and [2], we have the following conclusion:

Theorem 2 Let \(\hat{H} \) be a numerical semigroup with \(g(d_2(\hat{H})) = 2 \). If \(\hat{H} \neq \langle 3, 5, 7 \rangle \), then it is of double covering type.
2 The proof of Theorem

To prove that the three numerical semigroups are of double covering type we use the following remark which is stated in Theorem 2.2 of [3].

Remark 1. Let \(\tilde{H} \) be a numerical semigroup. We set

\[
n = \min \{ \tilde{h} \in \tilde{H} \mid \tilde{h} \text{ is odd} \} \quad \text{and} \quad g(\tilde{H}) = 2g(d_2(\tilde{H})) + \frac{n-1}{2} - r
\]

with some non-negative integer \(r \). Assume that \(H = d_2(\tilde{H}) \) is Weierstrass. Take a pointed curve \((C, P) \) with \(H(P) = H \). Let \(Q_1, \ldots, Q_r \) be points of \(C \) different from \(P \) with \(h^0(Q_1 + \cdots + Q_r) = 1 \). Moreover, assume that \(H \) has an expression

\[
\tilde{H} = 2H + \langle n, n + 2l_1, \ldots, n + 2l_s \rangle
\]

of generators with positive integers \(l_1, \ldots, l_s \) such that

\[
h^0(l_iP + Q_1 + \cdots + Q_r) = h^0((l_i - 1)P + Q_1 + \cdots + Q_r) + 1
\]

for all \(i \). If the divisor \(nP - 2Q_1 - \cdots - 2Q_r \) is linearly equivalent to some reduced divisor not containing \(P \), then there is a double covering \(\pi : \tilde{C} \longrightarrow C \) with a ramification point \(\tilde{P} \) over \(P \) satisfying \(H(\tilde{P}) = \tilde{H} \), hence \(\tilde{H} \) is of double covering type.

By seeing the proof of Theorem 2.2 in [3] we may replace the assumption in Theorem 2.2 in [3] that the complete linear system \(|nP - 2Q_1 - \cdots - 2Q_r| \) is base point free by the above assumption that the divisor \(nP - 2Q_1 - \cdots - 2Q_r \) is linearly equivalent to some reduced divisor not containing \(P \).

Case 1. Let \(\tilde{H} = \langle 5, 6, 7, 8 \rangle \). Then we have \(H = d_2(\tilde{H}) = \langle 3, 4, 5 \rangle \) and \(g(\tilde{H}) = 5 = 2 \cdot 2 + \frac{5-1}{2} - 1 \). Moreover, we have \(\tilde{H} = 2H + \langle 5, 5 + 2 \cdot 1 \rangle \). Let \(C \) be a curve of genus 2 and \(\iota \) the hyperelliptic involution on \(C \). Let us take a point \(P \) of \(C \) with \(H(P) = \langle 3, 4, 5 \rangle \) and \(3(P - \iota(P)) \neq 0 \). Then we get \(h^0(P + \iota(P)) = 2 = h^0(\iota(P)) + 1 \). Moreover, we have \(R \neq P \) if the complete linear system \(|5P - 2\iota(P)| \) has a base point \(R \). Indeed, we assume that \(R = P \). Then we have

\[
h^0(5P - 2\iota(P) - P) = h^0(5P - 2\iota(P)) = 3 + 1 - 2 = 2,
\]

which implies that

\[
4P - 2\iota(P) \sim g_2^1 \sim P + \iota(P).
\]

Hence, we get \(3(P - \iota(P)) \sim 0 \). This is a contradiction.

We assume that \(|5P - 2\iota(P)| \) has a base point \(R \). Then we get \(5P - 2\iota(P) \sim R + E \), where \(E \) is an effective divisor of degree 2 with projective dimension 1. In this case the complete linear system \(|E| \) is base point free. Therefore, the divisor \(5P - 2\iota(P) \) is linearly equivalent to some reduced divisor not containing \(P \). If
$|5P - 2\iota(P)|$ is base point free, then the divisor $5P - 2\iota(P)$ satisfies the above condition. By Remark 1 the semigroup $\tilde{H} = \langle 5, 6, 7, 8 \rangle$ is of double covering type.

Case 2. Let $\tilde{H} = \langle 3, 7, 8 \rangle$. Then we have $H = d_2(\tilde{H}) = \langle 3, 4, 5 \rangle$ and $g(\tilde{H}) = 4 = 2 \cdot 2 + \frac{3 - 1}{2} - 1$. Moreover, we have $\tilde{H} = 2H + \langle 3, 3 + 2 \cdot 2 \rangle$. Let C be a curve of genus 2 and ι the hyperelliptic involution on C. We take a point P of C with $H(P) = \langle 3, 4, 5 \rangle$. Let $\varphi : C \to \mathbb{P}^1$ be a covering of degree 3 corresponding to the complete linear system $|3P|$. We may take the pointed curve (C, P) such that φ has a simple ramification point Q. Then there is another simple ramification point of φ by Riemann-Hurwitz formula. Hence, we may assume that $\iota P \neq Q$, which implies that $P + Q \not\sim g_2^1$. Thus, we get $h^0(2P + Q) = 2 = h^0(P + Q) + 1$. Let R be the point satisfying $2Q + R \sim 3P$. Then we have $R \neq P$ and $3P - 2Q \sim R$. By Remark 1 the semigroup $\tilde{H} = \langle 3, 7, 8 \rangle$ is of double covering type.

Case 3. Let $\tilde{H} = \langle 3, 5 \rangle$. Then we have $H = d_2(\tilde{H}) = \langle 3, 4, 5 \rangle$ and $g(\tilde{H}) = 4 = 2 \cdot 2 + \frac{3 - 1}{2} - 1$. Moreover, we have $\tilde{H} = 2H + \langle 3, 3 + 2 \cdot 1 \rangle$. Let C be a curve whose function field is $k(x, y)$ with an equation $y^3 = (x - c_1)(x - c_2)(x - c_3)^2$, where c_1, c_2 and c_3 are distinct elements of k. Let $\pi : C \to \mathbb{P}^1$ be the morphism corresponding to the inclusion $k(x) \subset k(x, y)$. Then C is of genus 2. Let $P = P_1$, P_2, P_3 and P_4 be the ramification points of π. Since π is a cyclic covering, it induces an automorphism σ of C with $C/\langle \sigma \rangle \cong \mathbb{P}^1$. Let ι be the hyperelliptic involution on C. Then we have $\sigma \circ \iota = \iota \circ \sigma$. Indeed, we have

$$(\sigma \circ \iota \circ \sigma^{-1}) \circ (\sigma \circ \iota \circ \sigma^{-1}) = \sigma \circ \iota \circ \sigma = \sigma \circ \sigma^{-1} = \text{id}.$$

Hence, the automorphism $\sigma \circ \iota \circ \sigma^{-1}$ is an involution. Moreover, we have a bijective correspondence between the sets $\text{Fix}(\iota)$ and $\text{Fix}(\sigma \circ \iota \circ \sigma^{-1})$ sending Q to $\sigma(Q)$, where $\text{Fix}(\iota)$ and $\text{Fix}(\sigma \circ \iota \circ \sigma^{-1})$ are the sets of the fixed points by ι and $\sigma \circ \iota \circ \sigma^{-1}$ respectively. Hence, $\sigma \circ \iota \circ \sigma^{-1}$ is also the hyperelliptic involution. Thus, we have $\sigma \circ \iota \circ \sigma^{-1} = \iota$. Since $\sigma(\iota(P)) = \iota(\sigma(P)) = \iota(P)$, the point $\iota(P)$ is a fixed point of σ. Hence, we may assume that $\iota(P) = P_2$. Then we obtain $h^0(P + P_2) = 2 = h^0(P_2) + 1$. Moreover, we have

$$3P - 2P_2 \sim 3P_2 - 2P_2 = P_2.$$

By Remark 1 the semigroup $\langle 3, 5 \rangle$ is of double covering type. \hfill \Box

References

[1] Komeda, J.: On Weierstrass points whose first non-gaps are four, J. reine angew. Math. 341, 68–86 (1983).

[2] Komeda, J.: A numerical semigroup from which the semigroup gained by dividing by two is either \mathbb{N}_0 or a 2-semigroup or $\langle 3, 4, 5 \rangle$, Research Reports of Kanagawa Institute of Technology B-33, 37–42 (2009).
[3] Komeda, J.: On Weierstrass semigroups of double coverings of genus three curves, Semigroup Forum 83, 479-488 (2011).

[4] Komeda, J., Ohbuchi, A.: Weierstrass points with first non-gap four on a double covering of a hyperelliptic curve II, Serdica Math. J. 34, 771–782 (2008).

[5] Oliveira, G., Pimentel, F. L. R.: On Weierstrass semigroups of double covering of genus two curves, Semigroup Forum 77, 152–162 (2008).