Optimal Approximation Algorithms for Multi-agent Combinatorial Problems with Discounted Price Functions

Gagan Goel, Pushkar Tripathi and Lei Wang

Abstract

Submodular functions are an important class of functions in combinatorial optimization which satisfy the natural properties of decreasing marginal costs. The study of these functions has led to strong structural properties with applications in many areas. Recently, there has been significant interest in extending the theory of algorithms for optimizing combinatorial problems (such as network design problem of spanning tree) over submodular functions. Unfortunately, the lower bounds under the general class of submodular functions are known to be very high for many of the classical problems.

In this paper, we introduce and study an important subclass of submodular functions, which we call discounted price functions. These functions are succinctly representable and generalize linear cost functions. In this paper we study the following fundamental combinatorial optimization problems: Edge Cover, Spanning Tree, Perfect Matching and Shortest Path, and obtain tight upper and lower bounds for these problems.

The main technical contribution of this paper is designing novel adaptive greedy algorithms for the above problems. These algorithms greedily build the solution whilst rectifying mistakes made in the previous steps.

Introduction

Combinatorial optimization problems such as matching, shortest path and spanning tree have been extensively studied in operations research and computer science. In these problems we are given a ground set E and a collection Ω of subsets of the ground set that is usually implicitly defined by some combinatorial property. We are also given the cost of each element in E and the price of a subset in Ω is defined to be the sum of costs of its constituents. The objective is to find a subset in Ω with the minimum price. This framework with linear cost functions has served as the simplified model for many practical problems.

However, linear cost functions do not always model the complex dependencies of the prices in a real-world setting. Often, they only serve as approximations to the original functions. Hence solutions to these problems are rarely useful in the practical realm where these simplifying assumptions breakdown.

Another feature that is observed in a real-world scenarios is the presence of multiple agents, with different price functions, who wish to collaborate to build a single combinatorial structure. For linear cost functions, it is easy to see that having multiple agents doesn’t change the complexity of the original problem. This is not the case for more general cost functions.

Submodular functions provide a natural way to model the non-linear dependencies between prices. These functions are the discrete analog of convexity and exhibit well known economic properties such as economy of scale and decreasing marginal cost. There has been some recent work [18, 9, 11] to study the approximability of combinatorial problems under such functions and tight upper and lower bounds are known for many problems in this very general framework.

However, the submodular setting suffers from a major drawback. Although in real world applications an agent’s cost function is not necessarily as simple as a linear function, it is often not as complicated as a general submodular function either. i.e. submodular functions seem to tackle the problem in too much generality which often makes problems harder than required. As a result most of the bounds presented in previous work in this area are weak and have little practical applicability. A barrier in designing efficient algorithms for submodular cost functions arises from difficulty in representing them succinctly. Since a general submodular function is defined over an exponentially sized domain it is customary to assume that the function can be accessed by an oracle which can be queried polynomial number of times. This limits our ability to design efficient algorithms for these problems owing to the incomplete information about the functions, resulting in information theretic lower bounds.

In this paper we study an important subclass of succinctly representable submodular functions called discounted price functions in the multi-agent setting. These functions are motivated by the observation that often in practical settings agents offer discounts based on the amount of goods being purchased from them i.e. purchasing more goods from a single agent results in higher discounts. Apart from such practical considerations discount functions have strong theoretical motivation too. Recent work [10] pertaining to learning...
submodular functions has lead to succinct representations for submodular functions. These representations also behave like discounted price functions.

Discounted Price Model

We define a function $d : \mathbb{R}^+ \rightarrow \mathbb{R}^+$ to be a discounted price function if it satisfies the following properties: (1) $d(0) = 0$; (2) d is increasing; (3) $d(x) \leq x$ for all x; (4) d is concave.

We study combinatorial problems in the following general setting. We are given a set of elements, E, a collection Ω of its subsets. We are also given a set \mathcal{A} of k agents where each agent, $a \in \mathcal{A}$ specifies a cost function $c_a : E \rightarrow \mathbb{R}^+$ where $c_a(e)$ indicates her cost for the element e. Each agent also declares a discounted price function, d_a. If an agent a is assigned a set of elements T, then her total price is specified by $d_a(\sum_{e \in T} c_a(e))$. This is called her discounted price. The objective is to select a subset S from Ω and a partition S_1, S_2, \ldots, S_k of S, such that $\sum_{a \in \mathcal{A}} d_a(\sum_{e \in S_a} c_a(e))$ is minimized.

Our framework generalizes the classical single-agent linear cost setting. On the other hand, (4) implies that discounted price functions satisfy the decreasing marginal cost property. Moreover, since any concave function can be well approximated by a piecewise linear function, discounted price functions can be viewed as a class of succinctly represented submodular functions.

We study the following four problems over an undirected complete graph $G = (V, E)$.

- **Discounted Edge Cover**: In this problem, Ω is chosen to be the collection of edge covers.
- **Discounted Spanning Tree**: In this problem, Ω is the collection of spanning trees of the graph.
- **Discounted Perfect Matching**: In this problem, we assume the graph has an even number of vertices. Ω is chosen to be the collection of perfect matchings of the graph.
- **Discounted Shortest Path**: In this problem, we are given two fixed vertices s and t. Ω consists of all paths connecting s and t.

Our Results

We summarize our results in the following theorem:

Theorem 1.1. There is an $O(\log n)$ approximate algorithm for each of the following problems: discounted edge cover, spanning tree, perfect matching and shortest path, where n is the number of vertices in their instances. Moreover, it is hard to approximate any of them within factor $(1 - o(1)) \log n$ unless $\mathsf{NP} = \mathsf{DTIME}(n^{O(\log \log n)})$.

Our main technical contribution is the introduction of a new algorithmic technique called *adaptive greedy algorithms*. In traditional greedy algorithms like set cover, we make
the most 'efficient' decision at every step to inch closer to the objective. However, these
decision are irreversible and cannot be modified in subsequent iterations. For example in
the greedy set cover algorithm, if a set is chosen in a particular iteration it will surely be
included in the solution. This approach works well for problems where the solution does
not need to satisfy combinatorial properties, but fails in the combinatorial setting. This is
because, choosing a particular set may preclude the choice of other efficient sets in future
iterations owing to the combinatorial constraints. To rectify this problem we allow our
algorithm to undo some of the decisions taken during previous iterations. We call such
algorithms adaptive greedy algorithms. Another important contribution of the paper is to
link the shortest path problem to the minimum weight perfect matching problem by a factor
preserving reduction.

From the hardness perspective, we consider the discounted reverse auction problem in
which the collection is devoid of any combinatorial constraints. Using a factor preserving
reduction from the set cover problem we prove that it is hard to approximate the discounted
reverse auction within factor \((1 - o(1))\log n\) unless \(NP=DTIME(n^{O(\log \log n)})\). We use
discounted reverse auction as a starting point to prove the hardness of all the combinatorial
problems considered in this paper.

From the above argument, one would expect that our combinatorially structured prob-
lems might have weaker lower bounds than discounted reverse auction. However, interest-
ingly, we find it is not the case, as shown by the log approximate algorithms in the section

Related work

The classical versions of edge cover, spanning tree, perfect matching and shortest path
are well studied and polynomial time algorithms are known for all these problems, see
\cite{17, 13, 2, 6, 5, 3}. These have served as part of the most fundamental combinatorial
optimization model in the development of computer science and operation research.

Recently, Svitkina and Fleischer \cite{18} generalized the linear cost settings of some com-
binatorial optimization problems such as sparsest cut, load balancing and knapsack to a
submodular cost setting. They gave \(\sqrt{n/\log n}\) upper and lower bounds for all these prob-
lems. \cite{11} also studied combinatorial optimization problems in the single agent setting.

Multi-agent setting was first introduced in \cite{9}. In their model of combinatorial problems
with multi-agent submodular cost functions they gave \(\Omega(n)\) lower bounds for the problems
of submodular spanning tree and perfect matching, and gave a \(\Omega(n^{2/3})\) lower bound for
submodular shortest path. They also gave the matching upper bounds for all these problems.
We remark that the lower bounds presented in \cite{18, 9} are information theoretic and not
computational.

Similar generalization from linear objective function to the more general submodular
function was applied to maximization problems in \cite{8, 14, 1}. The multi-agent generalization
of maximization problems which corresponds to combinatorial auction has been extensively
studied both in computer science and economics \cite{4, 10} and tight information lower bounds
2 Algorithms for Discounted Combinatorial Optimization

In this section we present approximation algorithms for the combinatorial problems defined earlier. In each of the problems we are given a complete graph $G = (V, E)$ over n vertices. We are also given a set A, of k agents each of whom specifies a cost $c_a : E \rightarrow \mathbb{R}^+$. Here $c_a(e)$ is the cost for building edge e for agent a. Each agent also specifies a discounted price function given by $d_a : \mathbb{R}^+ \rightarrow \mathbb{R}^+$. The objective is to build a prespecified combinatorial structure using the edges in E, and allocate these edges among the agents such that the sum of discounted prices for the agents is minimized.

2.1 Discounted Edge Cover

In this section, we study the discounted edge cover problem and establish a $\log n$ approximate algorithm for this problem.

Here is the basic idea behind our algorithm. Given a discounted edge cover instance, we construct a set cover instance such that: (1) an optimal edge cover corresponds to a set cover with the same cost and (2) a set cover corresponds to an edge cover with a smaller price. In the set cover instance, we apply the greedy algorithm from [12] to get a set cover whose cost is within $\log n$ of the optimal cost, then the corresponding edge cover gives an $\log n$ approximation of the optimum edge cover. We remark that we will have exponentially many sets in the set cover instance that we construct for our problem. To apply the greedy algorithm, we need to show that in each step, the set with the lowest average cost can be found in polynomial time.

Now we state our algorithm formally. Consider a set cover instance where we have to cover the set of vertices, V, with $k2^n$ subsets which are indexed by $(a, S) \in A \times 2^V$. The cost of the set (a, S), denoted by $cost(a, S)$, is defined as the minimum discounted price of an edge cover for the vertices in S that can be built by agent a. For the instance of set cover described above, we apply the greedy algorithm [12] to get a set cover S. Let U_a be the set of vertices covered by sets of the form $(a, S) \in S$. Let C_a be agent a’s optimal discounted edge cover of the vertices in U_a. We output $\{C_a : a \in A\}$ as our solution.

The correctness of the algorithm follows from the observation that each C_a is a cover of S_a thus their union must form an edge cover of the vertex set V.

Now we show that the running time of the algorithm is polynomial in k and n. Notice that when U_a is given, since agent a’s discounted price function is increasing, C_a can be found in polynomial time. Hence we only need to show that the greedy algorithm on our set cover instance can be done in polynomial time.

Recall that the greedy algorithm from [12] covers the ground set, V, in phases. Let Q be the set of covered vertices in the beginning of a phase and the average cost of a set (a, S) is defined as $\alpha_a(S) = cost(a, S)/|S - Q|$. The algorithm picks the set with the smallest
Lemma 2.1. For any \(Q \subset V \), we can find \(\min \{ \frac{\text{cost}(a, S)}{|S - Q|} : (a, S) \in \mathcal{A} \times 2^V \} \) in polynomial time.

Proof. We can iterate over all choices of agent \(a \in \mathcal{A} \), thus the problem boils down to finding \(\min \{ \frac{\text{cost}(a, S)}{|S - Q|} : S \subseteq V \} \) for each \(a \in \mathcal{A} \).

For each integer \(d \), if we can find \(\min \{ \text{cost}(a, S) : |S - Q| = d \} \) in polynomial time, then we are done since then we can just search over all the possible sizes of \(S - Q \). Unfortunately, it is NP-hard to compute \(\min \{ \text{cost}(a, S) : |S - Q| = d \} \) for all integer \(d \). We will use claim 1 to circumvent this problem.

Claim 1. For any graph \(G = (V, E) \) and \(Q \subseteq V \) and for any positive integer \(d \), we can find the set \((a, S)\) minimizing \(\text{cost}(a, S) \) such that \(|S - Q| \geq d \), in polynomial time.

Proof. Refer to Appendix A1.

By claim 1 above we can generate a collection of subsets \(\{ S_i \subseteq V : 1 \leq i \leq n \} \), such that \((a, S_i)\) has the lowest value of \(\text{cost}(a, S) \) among all sets \(S \) which satisfy \(|S - Q| \geq i \).

Claim 2. \(\min \{ \text{cost}(a, S) / |S - Q| : S \subseteq V \} = \min \{ \text{cost}(a, S_i) / |S_i - Q| : 1 \leq i \leq n \} \).

Proof. Let \(\tilde{S} \) be the set that has the minimum average cost with respect to agent \(a \). Suppose \(|\tilde{S} - Q| = d \). By our choice of \(S_d \), we have \(|S_d - Q| \geq d = |\tilde{S} - Q| \) and \(\text{cost}(a, S_d) \leq \text{cost}(a, \tilde{S}) \). Therefore we have \(\text{cost}(a, S_d) / |S_d - Q| \leq \text{cost}(a, \tilde{S}) / |\tilde{S} - Q| \), hence they must be equal.

By iterating over all \(a \in \mathcal{A} \), we can find \(\min \{ \text{cost}(a, S) / |S - Q| : (a, S) \in \mathcal{A} \times 2^V \} \) in polynomial time.

Next we show that the approximation factor of our algorithm is \(\log n \). Let \(OPT_{EC} \) and \(OPT_S \) denote the costs of the optimal solutions for the discounted edge cover instance and the corresponding set cover instance respectively. Let \(\{ C_a : a \in \mathcal{A} \} \) be the edge cover reported by our algorithm. For all \(a \in \mathcal{A} \) let \(O_a \) be the set of vertices covered by agent \(a \) in the optimal edge cover. The sets \(\{(a, O^a) : a \in \mathcal{A} \} \) form a solution for the set cover instance. Therefore \(OPT_S \leq OPT_{EC} \).

Since we use the greedy set cover algorithm to approximate \(OPT_S \), we have

\[
\sum_{a \in \mathcal{A}} d_a \left(\sum_{e \in C_a} c_a(e) \right) \leq (\log n)OPT_S \leq (\log n)OPT_{EC}
\]

Thus we have the following theorem.

Theorem 2.2. There is a polynomial time algorithm which finds a \(\log n \)-approximate solution to the discounted edge cover problem for any graph over \(n \) vertices.
2.2 Discounted Spanning Tree

In this section, we study the discounted spanning tree problem and establish a \(\log n \) approximation algorithm for this problem.

Let us first consider a simple \(O(\log^2 n) \)-approximation algorithm. Observe that a spanning tree is an edge cover with the connectivity requirement. If we apply the greedy edge cover algorithm in section 2.1, there is no guarantee that we will end up with a connected edge cover. We may get a collection of connected components. We can subsequently contract these components and run the greedy edge cover algorithm again on the contracted graph. We keep doing this until there is only one connected component. By this method, we will get a connected edge cover, i.e. a spanning tree.

We now analyze the above algorithm. Let \(OPT_{ST} \) be the price of the minimum discounted spanning tree. After each execution of the greedy edge cover algorithm, there is no isolated vertex, hence the contraction decreases the number of vertices by at least a \(1/2 \) factor of half, therefore we will have to run the greedy edge cover algorithm at most \(O(\log n) \) times. Let \(OPT_{EC}^r \) be the price of the minimum edge cover for the graph obtained after the \(r \)-th contraction and let \(C_r \) be the edge cover that we produce for this iteration. Using theorem 2.2, the price of \(C_r \) is at most \((\log n)OPT_{EC}^r \). It is easy to see that \(OPT_{EC}^r \) is at most \(OPT_{ST} \) for every \(r \). Hence the price of \(C_r \) is bounded by \((\log n)OPT_{ST} \). Since there are at most \(O(\log n) \) iterations, the price of the spanning tree produced by the above algorithm is bounded by \(O(\log^2 n)OPT_{ST} \).

We observe that greedy edge cover and contraction are two main steps in the above algorithm. Intuitively, they are used to satisfy the covering and connectivity requirements respectively. The algorithm proceeds by alternately invoking these subroutines. Based on this observation, our idea to get a \(\log n \) approximation algorithm is to apply the following adaptive greedy algorithm: rather than apply contraction after each complete execution of the greedy edge cover, we interleave contraction with the iterations of the greedy edge cover algorithm. After each iteration, we modify the graph and motivate our algorithm to get a connected edge cover at the end.

Now we describe our adaptive greedy algorithm. For every agent \(a \) and subset of vertices \(S \) we define \(cost(a, S) \) as the cost of the optimal edge cover for \(S \). We define the average cost of a set \((a, S) \) as \(\alpha^S_a = cost(a, S)/|S| \). The algorithm proceeds in phases and in each phase we have two steps, search and contraction. In each phase \(r \), during the search step we find the set \((a_r, S_r) \) with the lowest average cost and set the potential of each vertex \(v \in S_r \) as \(p(v) = \alpha^S_{a_r} \). The search step is followed by a contraction step, where we modify the graph by contracting every connected component in the induced subgraph of agent \(a_r \)'s optimal edge cover for the set \(S_r \). After this we begin the next phase. The algorithm terminates when we have contracted the original graph to a single vertex. For every agent, we find the set of all edges assigned to her across all the search steps declare this as her bundle of assigned edges. Finally remove unnecessary edges from the set of assigned edges to get a spanning tree.

It is easy to see that we get a connected edge cover at the end of the algorithm, which proves the correctness of the algorithm. To analyze the running time, we observe that there
can be at most \(n \) phases and by Lemma 2.1, each phase can be implemented in polynomial time. Hence the algorithm runs in polynomial time.

Next, we prove that the approximation factor of the algorithm is \(O(\log n) \). Let \(\text{OPT}_{\text{ST}} \) be the price of the optimal solution of the discounted spanning tree instance and let \(\{T_a : a \in \mathcal{A}\} \) be our solution. Let \(V' \) be the set of contracted vertices we produced during the algorithm. Number the elements of \(V \) and \(V' \) in the order in which they were covered by the algorithm, resolving ties arbitrarily. Suppose \(V = \{v_1, ..., v_n\} \) and \(V' = \{z_1, ..., z_{n'}\} \). Obviously, \(n' \leq n \).

It is easy to verify that \(\sum_a \delta_a(T_a) \leq \sum_i p(v_i) + \sum_j p(z_j) \). Therefore we only need to bound the potentials of the vertices in \(V \cup V' \).

Claim 3. \(p(v_i) \leq \frac{\text{OPT}_{\text{ST}}}{n-i+1} \) for any \(i \in \{1 \cdots n\} \) and \(p(z_j) \leq \frac{\text{OPT}_{\text{ST}}}{n'-j} \) for any \(j \in \{1 \cdots n'\} \).

Proof. Refer to Appendix A3. \(\square \)

From the above claim, we have

\[
\sum_a \delta_a(T_a) \leq \sum_{1 \leq i \leq n} \frac{OPT_{\text{ST}}}{n-i+1} + \sum_{1 \leq j \leq n'} \frac{OPT_{\text{ST}}}{n'-j} \leq (\log n + \log n')OPT_{\text{ST}} \leq O(\log n)OPT_{\text{ST}}
\]

Therefore we have the following:

Theorem 2.3. There is a polynomial time algorithm which finds an \(O(\log n) \)-approximate solution to the discounted spanning tree problem for any graph with \(n \) vertices.

2.3 Discounted Perfect Matching

In this section we provide a \(\log n \) approximate algorithm for the discounted (minimum) perfect matching problem.

The main difficulty in tackling matching is that unlike spanning tree or edge cover, the union of perfect matchings for two overlapping subsets of vertices may not contain perfect matching over their union. So a greedy algorithm which iteratively matches unmatched vertices cannot be used to solve this problem.

Here we provide an adaptive greedy algorithm for solving this problem. In our algorithm we successively match unmatched vertices. Once a vertex gets matched, it remains matched through the course of the algorithm. However unlike traditional greedy algorithms, we provide the algorithm the ability to change the underlying matching for previously matched vertices. The algorithm is adaptive in the sense that it alters some of the decisions taken in previous phases to reduce the price incurred in the current phase.

Let us explain the algorithm in greater detail now. The algorithm runs in phases and in each phase it augments the set of matched vertices by adding unmatched vertices and rematching some of the previously matched vertices. At the end of each phase let \(Z \) denote the set of matched vertices and let \(M \) be the underlying matching covering \(Z \). For every
\(a \in A\) we define \(c^M_a : E \to \mathbb{R}^+\) which attains value 0 for all edges in \(M\) and takes the value \(c_a(e)\) for all other edges \(e \notin M\). For any \(F \subseteq E\) let \(V(F)\) be the set of vertices in the graph induced by \(F\). For a given matching \(M\), we define the \emph{average cost} of a set \((a, F) \in A \times 2^E\) with respect to \(M\) as
\[
\alpha^M_a(F) = \frac{c^M_a(F)}{|V(F) - Z|}.
\]

In the beginning of every phase we pick the element \((a, F)\) from \(A \times 2^E\) with the lowest average cost such that there exists a perfect matching over \(Z \cup V(F)\) using edges from \(M \cup F\). We defer details of this subroutine until the proof of lemma 2.4. For each vertex \(v \in V(F) - Z\) we define its potential \(p(v) = \alpha^M_a(F)\). Finally we augment the set \(Z\) with vertices in \(V(F)\) and update the underlying matching covering it. The algorithm terminates when all vertices have been matched, i.e. belong to \(Z\).

We will now show that the algorithm can be implemented in polynomial time. For this we will need to prove the following lemma.

Lemma 2.4. Given a matching \(M\) and \(Z = V(M)\), we can find, in polynomial time, the element \((a, F)\) from \(A \times 2^E\) with the lowest average cost with respect to \(M\) such that there exists a perfect matching over \(Z \cup V(F)\) using edges from \(M \cup F\).

Proof. Refer to Appendix A2.

To analyze the approximation factor for the algorithm, we number the vertices in \(V\) in the order in which they are added to \(Z\) and resolve ties arbitrarily. Let \(V = \{v_1, v_2, \ldots, v_n\}\). Let \(OPT\) be the price of the optimal solution. We have the following lemma to bound the potential of every vertex.

Lemma 2.5. For each \(i \in \{1, 2, \ldots, n\}\), \(p(v_i) \leq \frac{OPT}{n - i + 1}\).

Proof. Similar to the proof of Claim 3.

Since the price of our solution is at most the sum of the potentials for the vertices the following theorem follows immediately from lemma 2.5.

Theorem 2.6. There exists a \(\log n\) approximate algorithm for the discounted perfect matching problem.

2.4 Shortest s-t Path

In this section we consider the discounted shortest path problem between two given vertices \(s\) and \(t\). We provide a \(\log n\) approximation algorithm for this problem.

Unlike any of the previous problems, it seems to difficult to design a greedy algorithm for the discounted shortest path problem. However using ideas developed in section 2.3 and by a factor preserving reduction we obtain a \(\log n\) approximate algorithm this problem. Our reduction also implies that the shortest path problem is easier than the minimum weight perfect matching problem, and this technique can be applied to very general models whereby any algorithm for perfect matching problem can be used to solve the shortest path problem while preserving the approximation factor.
First of all, we describe our reduction:

Lemma 2.7. Let A be a β-approximate algorithm for the perfect matching problem, then we can get a β-approximation for the shortest path problem using A as a subroutine

Proof. Suppose we are given a graph $G = (V, E)$. Construct an auxiliary graph \bar{G} in the following way: Replace every vertex $v \in V$ by v' and v'' and add an edge connecting them. The cost of this edge is zero for every agent. For every edge $uv \in E$ where $u, v \notin \{s, t\}$ we replace uv with the gadget shown in figure 1.

![Figure 1: Gadget for edges not incident on s or t](image1)

If $d = c_a(uv)$ was the cost of the edge uv for agent $a \in A$ then two of the edges in our gadget have the same cost as shown above. Rest of the edges have zero cost for all agents. Replace any edge $su \in E$ with the gadget shown in figure 2. Do the same for any edge ut.

![Figure 2: Gadget for edges incident on s or t](image2)

On this graph \bar{G}, use the algorithm A to get the minimum cost matching. Let M be the matching returned. We can interpret M as a $s-t$ path in G in the following way. Let $g(uv)$ be the edges in \bar{G} corresponding to the edge uv for the gadget shown in figure 1. Observe that either one or two edges of every such gadget must belong to M. Let S be the set of edges in G such that two edges in their corresponding gadget belong to M. One can check that every vertex in V is incident with zero or two edges from S, whereas s and t are each incident with exactly one edge in S. Therefore S consists of an $s-t$ path P_S and some other circuits. Now the circuits in S must have cost zero. This is because if a circuit has positive cost then the cost of the matching can be reduced further by pairing up the vertices in the circuit as shown in figure 3.

![Figure 3: Circuits not involving edges in S should have zero costs](image3)
Note that this defines a cost preserving bijection between $s-t$ paths in G to perfect matchings in \bar{G}.

Using the algorithm from section 2.3 by Lemma 2.7 we have:

Theorem 2.8. There exists a $\log n$ approximate algorithm for the discounted shortest path problem.

3 Hardness of Approximation

In this section we present hardness of approximation results for the problems defined earlier. Unlike some of the previous work on combinatorial optimization \[9, 18\] over non-linear cost functions, the bounds presented here are not information theoretic but are contingent on $NP = DTIME(n^{O(\log \log n)})$. It should be noted that the discount functions for the agents are the only part of the input that is not presented explicitly. However it is well known that concave functions that accessible through an oracle can be closely approximated by a piecewise linear function using few queries to the oracle. So, we are not handicapped by the lack of information from solving these problems optimally.

To show the hardness of approximation of the problems stated earlier we consider the following general problem and use a reduction from set cover to establish its hardness of approximation.

Discounted Reverse Auction: We are given a a set E of n items and a set A of agents each of whom specifies a function $c_a : E \rightarrow \mathbb{R}^+$. Here $c_a(e)$ is the cost for procuring item e from agent a. Each agent also specifies a discounted price function given by $d_a: \mathbb{R}^+ \rightarrow \mathbb{R}^+$. The task is to find a partition $P = \{P_1, \ldots, P_k\}$ of E such that $\sum_{a \in A} d_a(\sum_{e \in P_a} c_a(e))$ is minimized.

Lemma 3.1. It is hard to approximate the discounted reverse auction problem within factor $(1 - o(1)) \log n$ unless $NP = DTIME(n^{O(\log \log n)})$.

Proof. Refer to Appendix A4

This reduction can be extended to other combinatorial problems in this setting to give logarithmic hardness of approximation for many combinatorial problems. This can be achieved by considering an instance of the problem where we have just one combinatorial object and our task is the allocate it optimally among the agents. For example for the discounted spanning tree problem we consider the instance when the input graph is itself a tree and we have to optimally allocate its edges among the agents to minimize the total price. Thus, we have the following:

Theorem 3.2. It is hard to approximate any of the problems of the discounted edge cover, spanning tree, perfect matching and shortest path can be approximated within factor $(1 - o(1)) \log n$ on a graph over n vertices unless $NP = DTIME(n^{O(\log \log n)})$.

10
References

[1] Gruia Calinescu, Ra Chekuri, Martin Pl, and Jan Vondrk. Maximizing a submodular set function subject to a matroid constraint. In Proc. of 12 th IPCO, page 2007, 2007.

[2] William Cook and Andr Rohe. Computing minimum-weight perfect matchings. INFORMS Journal on Computing, 11:138–148, 1998.

[3] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms. The MIT Press, 2001.

[4] Sven de Vries and Rakesh V. Vohra. Combinatorial auctions: A survey. INFORMS Journal on Computing, (3):284–309, 2003.

[5] Edsger W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik, 1:269–271, 1959.

[6] Jack Edmoonds. Paths, trees and flowers. Canad J.Math, 17, 1965.

[7] Uriel Feige. A threshold of ln n for approximating set cover. Journal of the ACM, 45:314–318, 1998.

[8] Uriel Feige and Vahab S. Mirrokni. Maximizing non-monotone submodular functions. In In Proceedings of 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS), page 2007, 2007.

[9] Gagan Goel, Chinmay Karande, Pushkar Tripathi, and Lei Wang. Approximability of combinatorial problems with multi-agent submodular cost functions. In FOCS ’09: Proceedings of the 2009 50th Annual IEEE Symposium on Foundations of Computer Science, 2009.

[10] M.X. Goemans, N.J.A. Harvey, S. Iwata, and V. Mirrokni. Approximating submodular functions everywhere. In SODA ’09: Proceedings of the 20th ACM-SIAM Symposium on Discrete Algorithms, 2009.

[11] Satoru Iwata and Kiyohito Nagano. Submodular function minimization under covering constraints. In FOCS ’09: Proceedings of the 2009 50th Annual IEEE Symposium on Foundations of Computer Science, 2009.

[12] Johnson and David S. Approximation algorithms for combinatorial problems. In STOC ’73: Proceedings of the fifth annual ACM symposium on Theory of computing, pages 38–49, New York, NY, USA, 1973. ACM.

[13] Joseph B. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical Society, 7(1):48–50, February 1956.
Appendix

A1 Proof of Claim

To find the desired set we construct a graph $G' = (V', E')$ as follows: Add a set $X \cup Y$ to the set of vertices in G, where $|X| = |Q|$ and $|Y| = n - d$. Match every vertex X to a vertex Q with an edge of cost 0. Connect each vertex in Y to each vertex in $V - Z$ by an edge of very large cost. Set the cost of each edge $e \in E$ as $c_a(e)$. Find the minimum cost edge cover in G'. Let S^* be such a cover. It is easy to verify that S^* is the desired set.

A2 Proof of Lemma

We may assume that the agent a, and the size of $|V(F) - Z|$ in the formula for $\alpha^M_a(F)$ are fixed by iterating over all values of these parameters. So the above statement may be viewed as one concerning a single agent for a fixed value of $|V(F) - Z|$. Let this agent be $a \in A$ and let $t = |V(F) - Z|$. i.e. We wish to find the minimum discounted weight matching which saturates t new vertices (not in Z) and keeps the vertices in Z saturated. We create an auxiliary graph G' by adding $n - (|Z| + t)$ vertices to V. We add edges connecting each of the newly added vertex with each vertex in $V - Z$. Let E' be the set of newly added edges. We extend c^M_a to \hat{c}^M_a by setting the cost of edges in E' to be 0. Finally we find the minimum weight perfect matching in G' under the cost function \hat{c}^M_a. Let M' be this matching. It is easy to check that $M' - E'$ is the desired matching saturating t new vertices.
A3 Proof of Claim 3

For $i \in \{1 \cdots n\}$, suppose v_i is covered in phase r. Let G^r be the underlying graph at the beginning of phase r. Since $v_i, v_{i+1}, \ldots, v_n$ are not covered before phase r, G^r contains at least $n - i + 1$ vertices. Since the optimal spanning tree can cover the vertices in G^r by a price of OPT_{ST}, by our greedy choice, $p(v_i) \leq \frac{OPT_{ST}}{n - i + 1}$.

Similarly, let $1 \leq j \leq n'$ and assume z_j is covered in phase r. Since we should be able to produce $z_{j+1}, z_{j+2}, \ldots, z_{n'}$ from contraction on vertices of G^r, there are at least $n' - r$ vertices in G^r. Therefore we have $p(z_j) \leq \frac{OPT_{ST}}{n' - j}$.

A4 Proof of Lemma 3.1

We reduce set cover to the discounted reverse auction problem to prove this result.

Consider an instance $I = (U, C, w)$ of set cover where we wish to cover all elements in the universe U using sets from C to minimize the sum of weights under the weight function $w : U \rightarrow \mathbb{R}^+$. We define an instance, I' of our discounted reverse auction problem corresponding to I in the following way. Let U be the set of items. For every set $S \in C$ define an agent a_S, whose cost function c_s assigns the value $w(S)$ for every element $s \in S$ and sets the cost of all other elements in U to be infinity. The discount price function for the agent is shown in figure A1. Here the slope of the second segment is small enough.

![Discount function for agent corresponding to set S](image)

Figure A1: Discount function for agent corresponding to set S

Consider a solution for I' where we procure at least one item from agent a_S; then we can buy all elements in S from a_S without a significant increase in our payment. So the cost of the optimal solution to I can be as close to the price of the optimal solution for I' as we want. By [7], set cover is hard to approximate beyond a factor of $\log n$ unless $NP = DTIME(n^{O(\log \log n)})$. Therefore the discounted reverse auction problem can not be approximated within factor $(1 - o(1)) \log n$ unless $NP = DTIME(n^{O(\log \log n)})$.