Morphological Phylogenetic Analysis of Seven Varieties of *Ficus deltoidea* Jack from the Malay Peninsula of Malaysia

Hasan N. N. Fatihah¹, Nashriyah Mat¹, Abdul R. N. Zaimah¹, Mazlan N. Zuhailah¹, Haron Norhaslinda¹, Mahmud Khairil¹, Abdul Y. Ghani¹, Abdul M. Ali²

¹ Department of Agricultural Science, Faculty of Agriculture and Biotechnology, Universiti Sultan Zainal Abidin, Gong Badak Campus, Terengganu, Malaysia, ² Department of Biotechnology, Faculty of Agriculture and Biotechnology, Universiti Sultan Zainal Abidin, Gong Badak Campus, Terengganu, Malaysia

Abstract

This study is the first report to suggest a morphological phylogenetic framework for the seven varieties of *Ficus deltoidea* Jack (*Ficus*: Moraceae) from the Malay Peninsula of Malaysia. Several molecular-based classifications on the genus *Ficus* had been proposed, but neither had discussed the relationship between seven varieties of *F. deltoidea* to its allies nor within the varieties. The relationship between seven varieties of *F. deltoidea* is still debated due to the extreme morphological variabilities and ambiguous boundaries between taxa. Thus, the correct identification of these varieties is important as several morphological characters are variety-specific. To test the monophyly and further resolved the relationship in *F. deltoidea*, a morphological phylogenetic analysis was conducted based on herbarium specimens representing the seven varieties of *F. deltoidea* that were collected from the Malay Peninsula of Malaysia, by using related species of the genus *Ficus*; *F. grossularioides*, *F. ischnopoda* and *F. oleifolia* as the outgroups. Parsimony and neighbour-joining analyses indicated that *F. deltoidea* is monophyletic, in that the seven varieties of *F. deltoidea* nested into two clades; clade subspecies *motleyana* (var. *deltoidea*, var. *bilobata*, var. *angustifolia*, var. *kunstleri* and var. *trengganuensis*) and clade subspecies *motleyana* (var. *intermedia* and var. *motleyana*).

Citation: Fatihah HNN, Mat N, Zaimah ARN, Zuhailah MN, Norhaslinda H, et al. (2012) Morphological Phylogenetic Analysis of Seven Varieties of *Ficus deltoidea* Jack from the Malay Peninsula of Malaysia. PLoS ONE 7(12): e52441. doi:10.1371/journal.pone.0052441

Introduction

Ficus deltoidea Jack (*Ficus*: Moraceae) is a diverse species of subgenus *Ficus*, section *Ficus* and subsection *Frutescentiae* [1]; which contains 25–30 species found in the Sino-Himalayan and western Malesian region [2]. *Ficus deltoidea* is a native and widely distributed throughout Malaysia, Thailand, Sumatra, Java, Kalimantan, Sulawesi and Moluccas [3]. This plant is a small shrub up to 3 m tall, sometimes occurring as an epiphyte [4]. It can be found in abundance along the beaches, peat soils and in hilly forest up to 3000 m above sea level [5]. The Malays called *F. deltoidea* as ‘*Mas Cotok*’ due to the presence of golden dots on the upper surface of its lamina [5]. The seven varieties of *F. deltoidea*; namely var. *deltoidea*, var. *bilobata* Corner, var. *angustifolia* (Miq.) Corner, var. *intermedia* Corner, var. *kunstleri* (King) Corner, var. *motleyana* (Miq.) Corner and var. *trengganuensis* Corner that were found in the Malay Peninsula were described by Kochummen [6]. The plants are often recognized by the presence of golden dots on the upper surface of the lamina, dichotomous midrib, unique fig (syconia) with flowers hidden inside the syconia, leafy twigs and the milky juice [4], [7].

Ficus deltoidea is commonly cultivated as a houseplant for decorative purposes and traditional medicinal uses by the local people [4]. The var. *bilobata*, var. *angustifolia*, var. *intermedia*, var. *kunstleri*, var. *motleyana* and var. *trengganuensis* are commonly used in the Malay traditional medicine [8]. The dried leaves, stems and roots are often commercialized as herbal tea [9]. The decoction of the leaves is traditionally used by women after childbirth to help strengthen the uterus [5]. It is also believed to improve blood circulation, regain energy and enhance fertility naturally for both men and women [10,11]. These claims were supported by previous bioassay studies, demonstrating that the aqueous extract of the leaves contains anti diabetic [12,13] and antiinociceptive activities [10]. The leaf extracts were reported to be rich of phenolic and flavonoid compounds which are comparable with black and green teas as well as fruit juices [11]. The flavan-3-ols and flavones were the main compounds that contributed to the total antioxidant activity [11], whereas isovetexin and vetexin were reported to be responsible for the anti diabetic activity [14].

Although *F. deltoidea* has been exploited in many different ways, the taxonomy of this species is still controversial at the varietal level. Historically, several botanical names of *F. deltoidea* have been reported; namely *F. diversifolia* Blume, *F. motleyana* Miq. and *F. oleifolia* King [4–15]. The extreme morphological variations and unclear boundaries between varieties create misleading identification of *F. deltoidea* varieties. The leaf characters are probably the most variable and showed heterophyly in the species [16]. Nevertheless, the young plant and the matured plant of the same...
variety often displayed different states of leaf characteristics. In this study, seven varieties collected from the Malay Peninsula of Malaysia, as mentioned by Kochummen [6], were selected, to investigate the monophyly of *F. deltoidea* and to differentiate intra-specific variation based on information contributed by overall morphological characters.

Materials and Methods

1. **Herbarium Specimens**

Morphological data were scored from 108 herbarium specimens, with prior permissions from four different herbaria: the Herbarium of the Universiti Kebangsaan Malaysia (UKMB), Herbarium of the Forest Research Institute of Malaysia (FRIM), Herbarium of Sarawak (SAN) and the National Herbarium of Singapore (SING). All measurements and observations were taken from the herbarium specimens except data for flowers, which were gathered from the literatures [2], [4–7], due to limited number of syconium presents on each herbarium sample.

No.	Characters	Character states
1	Leaf length	0: more than 5 cm, 1: equal or less than 5 cm.
2	Leaf width	0: more than 5 cm, 1: equal or less than 5 cm.
3	Midrib	0: not forked to forked near the apex, 1: forked near the middle of the lamina.
4	Angle of the forked midrib	0: not forked or forked less than 45 degrees, 1: forked more than 45 degrees.
5	Leaf apex	0: acute to acuminate, 1: rounded to truncate and minutely emarginate to form bilobed.
6	Leaf base	0: obtuse, 1: acute.
7	Leaf shape	0: oblanceolate, 1: obovate, 2: spatulate.
8	Leaf margin when dried	0: serrate, 1: entire, 2: wavy.
9	Leaf surface	0: veins deeply impressed, 1: plane or veins slightly impressed.
10	Leaf venation	0: open venation, 1: close venation.
11	Waxy gland beneath the lamina	0: two, 1: equal or more than three.
12	Gland at the forked midrib	0: absent, 1: present.
13	Gland at the subsequent dichotomies of the midrib	0: absent or rarely seen, 1: commonly seen.
14	Petiole length	0: more than 1.5 cm, 1: equal or less than 1.5 cm.
15	Petiole indument at tip	0: puberulous, 1: glabrous.
16	Stipule length	0: more than 0.5 cm, 1: equal or less than 0.5 cm.
17	Periderm persistent	0: present, 1: absent.
18	Peduncle length	0: equal or less than 1 cm, 1: more than 1 cm.
19	Fig type	0: in pairs, 1: solitary.
20	Fig indumenta	0: puberulous, 1: glabrous.
21	Fig shape	0: globose, 1: oblong.
22	Fig length	0: equal or less than 1 cm, 1: more than 1 cm.
23	Fig width	0: more than 0.5 cm, 1: equal or less than 0.5 cm.
24	Fig base	0: cupulate, 1: cuneate.
25	Fig apex	0: concave, 1: protracted.
26	Ratio of fig length/width	0: more than 1, 1: less than 1.
27	Ostiole diameter	0:1.5–2.5 mm, 1: less than 1.5 mm.
28	Color of ripening figs	0: yellow to orange to brownish red, 1: rose red to dark purple.
29	Tepals long over ovary	0: shorter than ovary, 1: as long as ovary, 2: longer than ovary.
30	Tepals color	0: red to dark purple, 1: yellowish red.
31	Ovary shape	0: rugose-angular, 1: smooth or slightly angular.
32	Ovary exocarp	0: crustaceous, 1: fleshy.

2. **Specific Taxa Analyzed (Relevant Herbarium Specimens Examined are Listed in Alphabetical Order by Locality, Collector Names and Numbers)**

Ficus grossularioides Burm. f. (Selangor: Anuar 115670 UKMB; *Ficus ischnopoda* Miq. (Kelantan: Zainudin 5726 UKMB; *Ficus oleifolia* King (Sarawak: Jamre 31953 SAN); *Ficus deltoidea* var. *angustifolia* (Miq.) Corner (Kelantan: Khairudin 31953 FRIM, Latiff 1042, 1785 UKMB, Whitmore 4186 SING; Terengganu: Burkill 804 FRIM, Latiff 2772 UKMB, Lam 5462 FRIM, Shah 3823 FRIM, Shah 3313 SING; Pahang: Henderson 21994 SING, Shah 2694 SING, Syed 23374 SING, Whitmore 4824 FRIM, Zainudin 2001 UKMB, Zainudin 5199 UKMB; Penang: Ogata 13358 FRIM, Ng 27351 FRIM; Perak: Borges 3404 SING, Chan 17503 FRIM, Henderson 10239 SING, Ridley 3036 SING, Ridley 10235 SING; Selangor: Henderson 10489 SING, Hume 9937 SING, Nur 34359 FRIM, Zainudin 5199 UKMB; Penang: Ogata 13358 FRIM, Ng 27351 FRIM; Perak: Borges 3404 SING, Chan 17503 FRIM, Henderson 10239 SING, Ridley 3036 SING, Ridley 10235 SING; Selangor: Henderson 10489 SING, Hume 9937 SING, Nur 34359 FRIM, Sygmont 18164 FRIM, SING; *F. deltoidea* var. *bilobata* Corner (Kelantan: Whitmore 4258 SING; Pahang: Chew 868 FRIM, Henderson 11077 SING, Latiff 3131...
Figure 1. Neighbour-joining tree of *F. deltoidea* resulting from the morphological data. Terminal taxa: GRO = *F. grossularioides*, ISC = *F. ischnopoda*, OLE = *F. oleifolia*, DEL = var. *deltoidea*, BIL = var. *bilobata*, ANG = var. *angustifolia*, KUN = var. *kunstleri*, TRE = var. *trengganuensis*, MOT = var. *motleyana*.

Collapses in the strict consensus
Results

The resultant data matrix is shown in Table S1. The analysis of the data matrix, containing nine terminal taxa and 32 characters, produced two shortest maximum parsimony (MP) trees with a minimum length of 68 steps, a consistency index (CI) of 0.5147 and a retention index (RI) of 0.5976. A total of 31 parsimony-informative characters and only one parsimony-uninformative character were found in the dataset. The only difference between the two trees topologies is the position of var. motleyana and var. deltoidea, which was supported and characterized by tepals longer than ovary (#29) and a synapomorphy of smooth and slightly angular ovary (#31). There was no character found to support this group, thus collapsed into polytomy in the other tree. Other character transformation series within the whole tree were found to be almost identical in both trees. The results were then compared with the neighbour-joining (NJ) tree (Figure 1). Noted that the topology was similar in MP and NJ trees, but the bootstrap supports (BS) of NJ tree were generally improved compared with the neighbour-joining tree.

Ficus deltoidea formed a weakly-modestly supported clade with bootstrap support of 70% and 92% in the MP and NJ trees, respectively. The group was characterized by the important characters of leaf base acute (#6), stipule length more than 1.5 cm (#14), glabrous at the tip (#15), midrib forked near the middle of the lamina (#3), leaf apex rounded to truncate and #5), leaf spatulate (#7), waxy gland beneath the lamina is equal or more than three (#12) and commonly seen at midrib (#13). The placement of clade subspecies deltoidea was moderately supported with 75% and 79% bootstrap values in the MP and NJ analyses, respectively. It was defined by the following characters; leaf length equal or less than 5 cm (#1), midrib forked near the middle of the lamina (#3), leaf apex rounded to truncate and minutely emarginate to form bilobed (#5), leaf spatulate (#7), waxy gland beneath the lamina is equal or more than three (#11), gland present at the forked midrib (#12) and commonly seen at midrib (#13). Within subspecies deltoidea, var. kunstleri and var. trengganuensis formed a strongly supported clade, 90% and 91% in the MP and NJ trees, respectively. They were described by having obtuse leaf base (#6), peduncle length more than 1 cm (#18), fig borne in pairs (#19), fig length more than 1 cm (#22), fig cuneate at the base (#24), ostiole diameter between 1.3–2.5 mm (#27) and flowers with yellowish-red tepals (#30). However, var. kunstleri was discriminated from its ally by having leaf length and width that is more than 5 cm each (#1), (#2), veins are deeply impressed (#9), petiole length more than 1.5 cm (#14), glabrous at the tip (#15) and glabrous fig (#20), whereas var. trengganuensis was identified by having midrib forked less than 45 degrees (#4), stipule length more than 0.5 cm (#16) and tepals longer than ovary (#29). The positions of var. deltoidea, var. bilobata and var.
Table 2. Fluctuation of taxonomic rank in *F. deltoidea* based on geographic regions.

Author	Corner (1960)	Corner (1969)	Kochummen (1978)	Kochummen (1998)	Kamarudin and Latiff (2002)	Berg (2003); Berg and Corner (2005)
Geographic Regions	South East Asia	South East Asia	Peninsular Malaysia	Malaysia and Borneo	Malaysia	Malesia
v. angustifolia	–	v. angustifolia	v. angustifolia	v. angustifolia	v. angustifolia	–
f. angustissima	f. angustissima	–	–	–	f. angustissima	–
v. arenaria	v. arenaria	–	–	–	v. arenaria	–
v. bilobata						
v. borneensis	v. borneensis	–	–	–	v. borneensis	–
f. subhirsuta	f. subhirsuta	–	v. subhirsuta	v. subhirsuta	–	f. subhirsuta
v. intermedia	–					
Taxa	v. kunstleri	–				
v. lutescens	v. lutescens	–	–	–	v. lutescens	–
f. longipedunculata	f. longipedunculata	–	–	–	f. longipedunculata	–
f. subsessilis	f. subsessilis	–	–	–	f. subsessilis	–
v. peltata	v. peltata	–	–	–	v. peltata	–
v. trengganuensis	–					
v. deltoidea	–	–				
–	v. kinarbaliensis	–	–	–	v. recurvata	–
–	–	v. recurvata	–	v. recurvata	–	–
v. motleyana						
v. oligoneura	v. oligoneura	–	–	–	v. oligoneura	–

v. is referred to variety and “f.” is form.
“−” means not found and not described.
doi:10.1371/journal.pone.0052441.t002

Ficus deltoidea were defined by extremely low confidence in the MP analysis and therefore, relationship between these varieties were not certain. However, the NJ analysis support their relationship by 70% bootstrap support and they share the peduncle length that is equal or less than 1 cm (70% bootstrap support and they share the peduncle length that is not certain. However, the NJ analysis support their relationship by analysis and therefore, relationship between these varieties were.

Discussion

Most of the previous classifications (Table 2) were based on intuitive morphology. The number of varieties was easily increased or reduced based on its morphological variation and locality [27]. Different authors had their own opinion in discriminating taxon, such as Corner [28] who divided the South East Asian species of *F. deltoidea* into twelve varieties and four form, namely, var. deltoidea, var. angustifolia f. angustissima Corner, var. arenaria Corner, var. bilobata, var. borneensis Corner f. subhirsuta Corner, var. intermedia, var. kunstleri, var. lutescens (Desf.) Corner f. longipedunculata Corner, var. subsessilis (Miq.) Corner, var. motleyana, var. oligoneura (Miq.) Corner, var. peltata Corner and var. trengganuensis. Later, he introduced a new variety, var. kinarbaliensis Stapf which probably is a synonym of var. intermedia of Borneo with larger peduncle and leaves [4]. On the other hand, Kochummen [4] has divided *F. deltoidea* into seven varieties namely, var. deltoidea, var. bilobata, var. angustifolia, var. intermedia, var. kunstleri, var. motleyana and var. trengganuensis, which were available in the Malay Peninsula of Malaysia or formerly known as Malaya, and described them. Later on, two endemic varieties of Borneo, namely var. subhirsuta Kochummen and var. recurvata Kochummen were added [27]. Berg [2] and Berg and Corner [7] recently subdivided the species into two major morphological entities (subspecies *deltoidea* and subspecies *motleyana*) which seems to be more practical and satisfactory in handling the variation. They further mentioned that as strong phytogeographical and ecological support is lacking, the rank of variety proposed by others might be more correct, but the chosen rank allows recognition of varieties for regional use. Therefore, the sampling of this study focused on the earlier classification scheme of Kochummen [6] who studied seven varieties from Peninsular Malaysia.
relationships, however, continue to require explicit examination and did not get any bootstrap support (Figure 1). Their F. ischnopoda and F. oleifolia this study showed that the relationship between var. ranging from spatulate to obovate to oblanceolate [2,7]. However, var. intermedia subspecies based on the forked and non-forked midrib. Noted that Berg [2], and Berg and Corner [7] that proposed the two molecular studies. The second, subspecies motleyana comprised var. intermedia and var. motleyana. Our results showed an agreement with Berg [2], and Berg and Corner [7] that proposed the two subspecies based on the forked and non-forked midrib. Noted that var. intermedia was excluded in their classifications and then was transferred to F. oleifolia subspecies intermedia, because of mixture in characters of forked and non-forked midrib, and leaf shapes ranging from spatulate to obovate to oblanceolate [2,7]. However, this study showed that the relationship between var. intermedia and var. motleyana was constantly supported and defined in both the MP and NJ analyses.

With respect to intergeneric relationship between F. deltoidea, F. ischnopoda Miq., F. oleifolia King and F. grossularioides Burm.f., F. oleifolia was found to be the closest ally to F. deltoidea, whilst F. ischnopoda and F. grossularioides were placed at the base of trees and did not get any bootstrap support (Figure 1). Their relationships, however, continue to require explicit examination using a combination of molecular and developmental data. It is interesting to note that Ronsted et al., [29] groups F. deltoidea var. bomensis and F. oleifolia together with F. adenopappa Miq., F. oshcholiana Ridl., F. dammato Bals., F. puella L., F. erecta Thumb., and placed F. ischnopoda at the base of section Ficus/Adenosperma on the basis of several molecular datasets. Furthermore, Ronsted et al., [30] recently found that F. oleifolia and F. ischnopoda were the closer relatives to F. deltoidea var. bomensis in subsection Frutescentiae, whilst F. grossularioides more remotely in section Eriosycea. The sampling of subsection Frutescentiae and F. deltoidea varieties has been very limited in the previous phylogenetic studies, which makes it difficult to know what would be the close relatives and appropriate outgroup. Therefore, it is not possible at this stage to compared F. deltoidea to its allies because there is no comprehensive phylogenetic classification available for comparison.

This study was the first attempt to suggest a morphological phylogenetic framework for the seven varieties of Ficus deltoidea from the Malay Peninsula, which will provide a basis for future molecular, cytological or phytochemical as well as pharmaceutical investigations. Deeper understanding of the systematic relationships between the varieties will help to promote expeditious exploitation and sustainable uses of this plant as a whole.

Supporting Information

Table S1 Data matrix for 32 morphological characters. “0” represents the plesiomorphic state, and “1” or “2” represents the apomorphic state. Missing data are indicated by “?”. (DOC)

Acknowledgments

The authors would like to express special thanks to the Herbarium of the Universiti Kebangsaan Malaysia (UKMB), Herbarium of the Forest Research Institute of Malaysia (FRIM), Herbarium of Sarawak (SAN) and the National Herbarium of Singapore (SING) for the loans of their herbarium specimens.

Author Contributions

Conceived and designed the experiments: AMA NM AVY HNNF. Performed the experiments: HNNF ARNZ MNZ HH. Analyzed the data: HNNF MNZ MK. Contributed reagents/materials/analysis tools: NM. Wrote the paper: HNNF NM AMA.

References

1. Sata T (1944) A monographic study of the genus Ficus from the point of view of economic botany. Contr Hort Inst Taihoku Imp Univ 32: 1–405.
2. Berg CC (2003) Flora Malesiana precursor for the treatment of Moraceae 3: Ficus subgenus Ficus. Blumea 48: 529–550.
3. USDA (2007) ARS, National genetic resources program, Germplasm resources information network–(GRIN) database (National germplasm resources laboratory, Beltsville, Maryland) [online]. Available: http://ars-grin.gov/cgi-bin/npgs/html/taxon.pl?16826. Accessed 2010 June 14.
4. USDA (2007) ARS, National genetic resources program, Germplasm resources information network–(GRIN) database (National germplasm resources laboratory, Beltsville, Maryland) [online]. Available: http://ars-grin.gov/cgi-bin/npgs/html/taxon.pl?16826. Accessed 2010 June 14.
5. Berg CC (2003) Flora Malesiana precursor for the treatment of Moraceae 3: Ficus subgenus Ficus. Blumea 48: 529–550.
6. USDA (2007) ARS, National genetic resources program, Germplasm resources information network–(GRIN) database (National germplasm resources laboratory, Beltsville, Maryland) [online]. Available: http://ars-grin.gov/cgi-bin/npgs/html/taxon.pl?16826. Accessed 2010 June 14.
7. Berg CC (2003) Flora Malesiana precursor for the treatment of Moraceae 3: Ficus subgenus Ficus. Blumea 48: 529–550.
8. Berg CC (2003) Flora Malesiana precursor for the treatment of Moraceae 3: Ficus subgenus Ficus. Blumea 48: 529–550.
9. Berg CC, Corner EJH (2005) Flora Malesiana Series I – seed plants: Moraceae. Volume 17 Part 2. Foundation Flora Malesiana.
10. Sulaiman MR, Hussain MK, Zakaria ZA, Somchit MN, Moin S, et al (2008) Evaluation of the antinociceptive activity of Ficus deltoidea aqueous extract. Fitoter 79: 557–561.
11. Noorhaniza A, Sin CY, Chong ES, Nee KL, Remin L (2007) Blood glucose lowering effect of Ficus deltoidea aqueous extract. Malay J Sci 26: 73–78.
12. Adam Z, Tonnal A, Khamis S, Mokhtar MIMH, Hamid M (2011) Anti-hyperglycemic activity of F. deltoidea ethanolic extract in normal rats. Sains Malaysia 40: 5489–5495.
13. Faris E, Shafaei A, Hor SY, Ahamel MBK, Yam MF, et al (2011) Correlation between enzymes inhibitory effects and antioxidant activities of standardized fractions of methanolic extract obtained from Ficus deltoidea leaves. African J Biotech 10: 15184–15194.
14. Bailey LH, Bailey EZ (1976) Hortus. 3rd ed. Macmillan General Reference, New York.
15. Nashriyah M, Nurrul Akmar R, Nor Zaimah AR, Norhaslinda H, Zanariah MN, et al (2012) Leaf morphological variations and heterophylly in Ficus deltoidea. African J Biotech 11: 15184–15194.
16. Farsi E, Shafaei A, Hor SY, Ahamel MBK, Yam MF, et al (2011) Correlation between enzymes inhibitory effects and antioxidant activities of standardized fractions of methanolic extract obtained from Ficus deltoidea leaves. African J Biotech 10: 15184–15194.
17. Bailey LH, Bailey EZ (1976) Hortus. 3rd ed. Macmillan General Reference, New York.
18. Nashriyah M, Nurrul Akmar R, Nor Zaimah AR, Norhaslinda H, Zanariah MN, et al (2012) Leaf morphological variations and heterophylly in Ficus deltoidea. African J Biotech 11: 15184–15194.
19. Watrous LE, Wheeler QD (1981) The out-group comparison method of character analysis. Syst Zool 30: 1–11.
20. Swofford DL (2002) PAUP*. Phylogenetic analysis using parsimony (*and other methods), Version 4. Sinauer Associates, Sunderland, Massachusetts.
21. Felsenstein J (1985) Confidence limit on phylogenies: an approach using the bootstrap. Evol 39: 783–791.
22. Saitou N, Nei M (1987) The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425.
23. Kimura M (1980) A simple method for estimating evolutionary rate of base substitution through comparative studies of nucleotide sequences. J Mol Evol 16: 111–120.
25. Page RDM (1996) TREEVIEW: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12: 357–358.
26. Hoberg EP, Jones A, Bray RA (1999) Phylogenetic analysis among the families of the Cyclophyllidea (Eucestoda) based on comparative morphology, with new hypotheses for co-evolution in vertebrates. Syst Parasitol 42: 51–73.
27. Kochummen KM (1998) New species and varieties of Moraceae from Malaysia. Garden’s Bulletin Singapore 50: 197–219.
28. Corner EJH (1960) Taxonomic notes on Ficus Linn., Asia and Australasia. III. Subgen. Ficus and section Ficus. Garden’s Bulletin Singapore 17: 416–441.
29. Rønsted N, Weihlen GD, Cook JM, Salamin N, Machado CA, et al (2005) 60 million years of co-divergence in the fig-wasp symbiosis. Proc R Soc B 272: 2583–2589.
30. Rønsted N, Weihlen GD, Clement W, Zerega N, Savolainen V (2008) Reconstructing the phylogeny of figs (Ficus, Moraceae) to unravel the origin of fig-wasp mutualisms. Symbiosis 45: 43–56.