Local approximation of arbitrary functions by solutions of nonlocal equations

Serena Dipierro1,2, Ovidiu Savin3, and Enrico Valdinoci1,2,4,5

1School of Mathematics and Statistics, University of Melbourne, Richard Berry Building, Parkville VIC 3010, Australia
2Dipartimento di Matematica, Università degli studi di Milano, Via Saldini 50, 20133 Milan, Italy
3Department of Mathematics, Columbia University, 2990 Broadway, New York NY 10027, USA
4Weierstraß Institut für Angewandte Analysis und Stochastik, Hausvogteiplatz 5/7, 10117 Berlin, Germany
5Istituto di Matematica Applicata e Tecnologie Informatiche, Consiglio Nazionale delle Ricerche, Via Ferrata 1, 27100 Pavia, Italy

Abstract

We show that any function can be locally approximated by solutions of prescribed linear equations of nonlocal type. In particular, we show that every function is locally \(s\)-caloric, up to a small error. The case of non-elliptic and non-parabolic operators is taken into account as well.

2010 Mathematics Subject Classification: 35R11, 60G22, 35A35, 34A08.
Key words and phrases: Density properties, approximation, \(s\)-caloric functions.

1 Introduction

In this paper, we will show that an arbitrary function can be locally approximated, in the smooth sense, by \(s\)-caloric functions, i.e. by solutions of the fractional heat equation in which the diffusion is due to the \(s\)-power of the Laplacian, with \(s \in (0, 1)\).

The precise result obtained is the following:

\textbf{Theorem 1.} Let \(B_1 \subset \mathbb{R}^n\) be the unit ball, \(s \in (0, 1)\), \(k \in \mathbb{N}\) and \(f : B_1 \times (-1, 1) \to \mathbb{R}\), with \(f \in C^k(B_1 \times [-1, 1])\).

Fix \(\varepsilon > 0\). Then there exists \(u_\varepsilon = u \in C^\infty(B_1 \times (-1, 1)) \cap C(\mathbb{R}^{n+1})\) which is compactly supported in \(\mathbb{R}^{n+1}\) and such that the following properties hold true:

\[
\partial_t u + (-\Delta)^s u = 0 \quad \text{in} \quad B_1 \times (-1, 1) \quad (1)
\]

\[
\|u - f\|_{C^k(B_1 \times (-1, 1))} \leq \varepsilon. \quad (2)
\]

*It is a pleasure to thank Xavier Cabré for his interesting comments on a preliminary version of this manuscript. The first author has been supported by Alexander von Humboldt Foundation. The second author has been supported by NSF grant DMS-1200701. The third author has been supported by ERC grant 277749 “EPSILON Elliptic Pdes and Symmetry of Interfaces and Layers for Odd Nonlinearities” and PRIN grant 201274FYK7 “Aspetti variazionali e perturbativi nei problemi differenziali nonlineari”. Emails: serydipierro@yahoo.it, savin@math.columbia.edu, enrico@mat.uniroma3.it
We remark that the approximation result in Theorem 1 reflects a purely nonlocal phenomenon, since in the local case the solutions of the classical heat equation are particularly “rigid”. For example, solutions of the classical heat equation (i.e. solutions of equation (1) when \(s = 1 \)) satisfy a local Harnack inequality which prevents arbitrary oscillations (in particular, these solutions cannot approximate a given function which does not satisfy these oscillation constraints).

On the contrary, in the nonlocal setting, solutions of linear equations are flexible enough to approximate any given function, and this approximation results hold true in a very general context. As a matter of fact, in our setting, Theorem 1 is just a particular case of a much more general result that we provide in the forthcoming Theorem 2.

To state this general theorem, we introduce now some specific notation. We will often use small fonts to denote “local variables”, capital fonts to denote “nonlocal variables”, and Greek fonts to denote the set of local and nonlocal variables altogether, namely: given \(d \in \mathbb{N} \), with \(d \geq 0 \), and \(N \in \mathbb{N} \), with \(N \geq 1 \), we consider \(x := (x_1, \ldots, x_d) \in \mathbb{R}^d \) and \(X := (X_1, \ldots, X_N) \in \mathbb{R}^{n_1} \times \cdots \times \mathbb{R}^{n_N} \) and we let \((x, X) \in \mathbb{R}^\nu \), with \(\nu := d + n_1 + \cdots + n_N \). To avoid confusions, when necessary, the \(k \)-dimensional unit ball will be denoted by \(B_1^k \) (of course, when no confusion is possible, we will adopt the usual notation \(B_1 \)).

Given \(m = (m_1, \ldots, m_d) \in \mathbb{N}^d \) and \((a_1, \ldots, a_d) \in \mathbb{R}^d \setminus \{0\} \), we consider the local operator

\[
\ell := \sum_{j=1}^d a_j \partial_{x_j}^{m_j}. \tag{3}
\]

Also, given \(s = (s_1, \ldots, s_N) \in (0,1)^N \) and \(A = (A_1, \ldots, A_N) \in \mathbb{R}^N \setminus \{0\} \), we consider the nonlocal operator

\[
\mathcal{L} := \sum_{j=1}^N A_j (-\Delta_{X_j})^{s_j}, \tag{4}
\]

where we denoted by \((-\Delta_{X_j})^{s_j}\) the fractional Laplacian of order \(s_j \in (0,1) \) in the set of variables \(X_j \in \mathbb{R}^{n_j} \), namely

\[
(-\Delta_{X_j})^{s_j} u(x, X_1, \ldots, X_j, \ldots, X_N) := C(n_j, s_j) \lim_{\epsilon \searrow 0} \int_{Y \in \mathbb{R}^{n_j} \setminus B_\epsilon^{n_j}} \frac{u(x, X_1, \ldots, X_j, \ldots, X_N) - u(x, X_1, \ldots, X_j + Y, \ldots, X_N)}{|Y|^{n_j + 2 s_j}} dY,
\]

where we used the normalized constant

\[
C(n_j, s_j) := \frac{4^{s_j} s_j \Gamma \left(\frac{n_j}{2} + s_j \right)}{\pi^{n_j/2} \Gamma(1 - s_j)},
\]

being \(\Gamma \) the Euler’s \(\Gamma \)-function.

Then, we deal with the superposition\(^2\) of the local and the nonlocal operators, given by

\[
\Lambda := \ell + \mathcal{L}. \tag{5}
\]

and we establish that all functions are locally \(\Lambda \)-harmonic up to a small error, i.e. the functions in the kernel of the operator \(\Lambda \) are locally dense in \(C^k \). The precise result goes as follows:

Theorem 2. Let \(k \in \mathbb{N} \) and \(f : \mathbb{R}^\nu \to \mathbb{R} \), with \(f \in C^k(B_1^\nu) \). Fix \(\epsilon > 0 \). Then there exist \(u \in C^\infty(B_1^\nu) \cap C(\mathbb{R}^\nu) \) and \(R > 1 \) such that the following properties hold true:

\[
\Lambda u = 0 \quad \text{in} \quad B_1^\nu, \tag{6}
\]

\[
\|u - f\|_{C^k(B_1^\nu)} \leq \epsilon \tag{7}
\]

and

\[
u = 0 \quad \text{in} \quad \mathbb{R}^\nu \setminus B_R^\nu. \tag{8}
\]

\(^1\)If \(d = 0 \), simply there are no “local variables” \((x_1, \ldots, x_d)\) to take into account and \(\nu = n_1 + \cdots + n_N \).

\(^2\)Of course, if \(d = 0 \), i.e. if there are no “local variables”, the operator \(\Lambda \) in \(\text{[3]} \) coincides with the purely nonlocal operator \(\mathcal{L} \).
It is interesting to remark that not only Theorem 2 immediately implies Theorem 1 as a particular case, but also that Theorem 2 does not require any ellipticity or parabolicity on the operator, which is perhaps a rather surprising fact. Indeed, we stress that Theorem 2 is valid also for operators with hyperbolic structures, and comprises the cases when

\[\Lambda = \sum_{j=1}^{d} \partial_{x_j}^2 + (-\Delta_{X_1})^{s_1} \]

and when

\[\Lambda = (-\Delta_{X_1})^{s_1} - (-\Delta_{X_2})^{s_2} \]

with \(s_1, s_2 \in (0, 1) \). In this sense, the nonlocal features of the fractional Laplacian in some variables dominate the possible elliptic/parabolic/hyperbolic structure of the operator.

The first result in the direction of Theorem 2 has been recently obtained in [4], where Theorem 2 was proved in the special case in which \(d = 0 \) and \(N = 1 \) (that is, when there are no “local variables” and only one “nonlocal variable”). Results related to that in [4] have been obtained in [2] for other types of nonlocal operators, such as the ones driven by the Caputo derivative.

We also observe that these “abstract” approximation results have also “concrete” applications, for instance in mathematical biology: for example, they show that biological species with nonlocal strategies can better plan their distribution in order to exhaust a given resource in a strategic region, thus avoiding any unnecessary waste of resource, see e.g. [3, 5].

In this sense, we mention the following application of Theorem 1:

Theorem 3. Let \(s \in (0, 1) \) and \(k \in \mathbb{N} \). Fix \(\varepsilon > 0 \). Let \(\sigma \in C^k(B_1 \times [-1, 1], (0, +\infty)) \). Then, there exist \(u_\varepsilon, \sigma_\varepsilon \in C^\infty(B_1 \times (-1, 1), (0, +\infty)) \cap C(\mathbb{R}^{n+1}) \) which are compactly supported and such that

\[\partial_t u_\varepsilon + (-\Delta)^s u_\varepsilon = (\sigma_\varepsilon - u_\varepsilon) u_\varepsilon \quad \text{in } B_1 \times (-1, 1), \]

\[u_\varepsilon = \sigma_\varepsilon \quad \text{in } B_1 \times (-1, 1) \]

and

\[\| \sigma - \sigma_\varepsilon \|_{C^k(B_1 \times (-1, 1))} \leq \varepsilon. \]

The biological interpretation of Theorem 3 is that \(u_\varepsilon \) represents the distribution of a population, which satisfies a logistic equation as given in (9). The function \(\sigma \) can be thought as a resource (which in turn produces a birth rate proportional to it). The meaning of Theorem 3 is that, possibly replacing the original resource with a slightly different one (as prescribed quantitatively by (11)), the population can consume all the resource (as given by (10)).

As a matter of fact, from (9) and (10), one can write that

\[\partial_t u_\varepsilon + (-\Delta)^s u_\varepsilon = 0 \quad \text{in } B_1 \times (-1, 1). \]

Notice that, in our setting, Theorem 3 is a simple consequence of Theorem 1 (by taking there \(f := \sigma \), and defining \(\sigma_\varepsilon := u_\varepsilon \)). More general interactions can also be considered, see e.g. Theorem 1.8 in [3].

The rest of the paper is organized as follows.

Section 2 contains the main argument towards the proof of Theorem 2 that is that solutions of nonlocal equations can span the largest possible space with their derivatives (we remark that this is a purely nonlocal argument, since, for instance, harmonic functions obviously cannot span strictly positive second derivatives). The argument to prove this fact is based on a “separation of variables” method. Namely, we will look for solutions of nonlocal equations in the form of products of functions depending on “local” and “nonlocal variables”. The nonlocal part of the function is built by the eigenfunctions of the nonlocal operators (whose boundary behavior is somehow singular and can be quantified by the estimates of the previous sections),
while the local part of the function is constructed by an ordinary differential equation which is designed to compensate all the coefficients of the operator in the appropriate way.

The proof of Theorem 2 is then discussed step by step, first in Section 3 where \(f \) is supposed to be a monomial, then in Section 4 where \(f \) is supposed to be a polynomial, and finally completed in the general case in Section 5.

In the course of the proof of the main results, we also use a precise boundary behavior of solutions of nonlocal equations: these estimates depend in turn on some technical boundary asymptotics of the Green function of the fractional Laplacian. For the facility of the reader, the technical proofs of these auxiliary results are contained in Appendices A and B.

2 Spanning the whole of the Euclidean space with \(\Lambda \)-harmonic functions

In this section, we show that \(\Lambda \)-harmonic functions span the whole of the Euclidean space (this is a purely nonlocal phenomenon, since, for instance, the second derivatives of harmonic functions have to satisfy a linear equation, and therefore are forced to lie in a proper subspace).

For this, to start with, we give a precise expansion of the first eigenfunction of the fractional Laplacian:

Lemma 4. Let \(e \in \partial B_1 \). Let \(\phi_* \) be the first eigenfunction for \((-\Delta)^s\), normalized to be positive and such that \(\| \phi_* \|_{L^2(B_1)} = 1 \), and let \(\lambda_* > 0 \) be the corresponding eigenvalue.

Let
\[
\kappa_* := 2^s \kappa(n, s) \int_{B_1} \phi_*(z) \left(\frac{1 - |z|^2}{s} \right)^s \frac{dz}{|z|^{n+1}} \in (0, +\infty).
\]

Then
\[
\lim_{e \searrow 0} e^{[\alpha]-s} \partial^n \phi_*(e + e X) = (-1)^{[\alpha]} \kappa_* \lambda_* (s - 1) \ldots (s - |\alpha| + 1) e^{\alpha_1} \ldots e^{\alpha_n} (-e \cdot X)^{s-|\alpha|}
\]
in the sense of distribution, for any \(\alpha \in \mathbb{N}^n \).

Not to interrupt the proof of the main results, we postpone the proof of Lemma 4 in Appendix A. We remark that upper bounds on \(\kappa_* \) follow from the regularity results in [6] (for our purposes, we also need to obtain a precise first order expansion with a nonvanishing order term).

To present the proof of our main result, we introduce some notation. We consider multi-indices \(i = (i_1, \ldots, i_d) \in \mathbb{N}^d \) and \(I = (I_1, \ldots, I_N) \in \mathbb{N}^{n_1} \times \cdots \times \mathbb{N}^{n_N} \). We will write
\[
\iota := (i, I) = (i_1, \ldots, i_d, I_1, \ldots, I_N) \in \mathbb{N}^\nu.
\]

As usual, we set \(|\iota| := i_1 + \cdots + i_d + |I_1| + \cdots + |I_N|\), where \(|I_1| := I_{1,1} + \cdots + I_{1,n_1}\), and so on. We also write
\[
\partial^\iota w := \partial_{x_1}^{i_1} \cdots \partial_{x_d}^{i_d} \partial_{X_1}^{I_1} \cdots \partial_{X_N}^{I_N} w.
\]

We consider the span of the derivatives of \(\Lambda \)-harmonic functions, with derivatives up to order \(K \). For this, we denote by \(\partial^K w \) the vector field collecting in its entry all the derivatives of the form \(\partial^\iota w \) with \(|\iota| \leq K\) (in some prescribed order). Notice that \(\partial^K w \) is a vector field on the Euclidean space \(\mathbb{R}^{K'} \) for some \(K' \in \mathbb{N} \) (of course, \(K' \) depends on \(K \)).

Then we denote by \(\mathcal{H} \) the family of all functions \(w \in C(\mathbb{R}^\nu) \) that are compactly supported in \(\mathbb{R}^\nu \) and for which there exists a neighborhood \(\mathcal{N} \) of the origin in \(\mathbb{R}^\nu \) such that \(w \in C^\infty(\mathcal{N}) \) and \(\Lambda w = 0 \) in \(\mathcal{N} \).

Finally, we define the set
\[
\mathcal{V}_K := \{ \partial^K w(0) \text{ for all } w \in \mathcal{H} \}.
\]

By construction \(\mathcal{V}_K \subseteq \mathbb{R}^{K'} \), and we have:
Lemma 5. It holds that $V_K = \mathbb{R}^{K'}$.

Proof. First, we consider the case in which $d \neq 0$ (hence, we are taking into account the case in which the ambient space possesses both “local” and “nonlocal variables”; the case $d = 0$ will be then discussed at the end of the proof).

Since Λ is a linear operator, we have that V_K is a vector space, hence a linear subspace of $\mathbb{R}^{K'}$. So, we argue by contradiction: if V_K does not exhaust the whole of $\mathbb{R}^{K'}$, then it must lie in a proper subspace. Accordingly, there exists $\vartheta \in \partial B_{K'}^1$ such that

$$V_K \subseteq \{ \zeta \in \mathbb{R}^{K'} \text{ s.t. } \vartheta \cdot \zeta = 0 \}. \tag{16}$$

Now, for any $j \in \{1, \ldots, N\}$ we denote by $\tilde{\varphi}_{\ast,j} \in C(\mathbb{R}^n_j)$ the first eigenfunction of $(-\Delta)^j_{s_j}$ in $B_{1}^{n_j}$ with Dirichlet datum outside $B_{r_j}^{n_j}$ (and normalized to have unit norm in $L^2(\mathbb{R}^{n_j})$). The corresponding eigenvalue will be denoted by $\lambda_{\ast,j} > 0$.

We also fix a set of free parameters $t_1, \ldots, t_d \in \mathbb{R}$. We recall that a_j and A_j are the coefficients of the local and nonlocal parts of the operator, respectively, as introduced in (3) and (4). Up to reordering the variables and possibly taking the operators to the other side of the equation, we suppose that $A_N > 0$ and we set

$$\lambda_j := \lambda_{\ast,j} \text{ for any } j \in \{1, \ldots, N-1\} \text{ and } \lambda_N := \frac{1}{A_N} \left(\sum_{j=1}^{d} |a_j| t_j^{m_j} - \sum_{j=1}^{N-1} A_j \lambda_j \right).$$

We also consider the set

$$\mathcal{P} := \left\{ t = (t_1, \ldots, t_d) \in \mathbb{R}^d \text{ s.t. } \sum_{j=1}^{d} |a_j| t_j^{m_j} - \sum_{j=1}^{N-1} A_j \lambda_j > 0 \right\}.$$

Notice that \mathcal{P} is open and nonvoid (since it contains any point t with large coordinates t_1, \ldots, t_d). We also remark that for any $t \in \mathcal{P}$ we have $\lambda_N > 0$.

Moreover, by construction

$$\sum_{j=1}^{d} |a_j| t_j^{m_j} - \sum_{j=1}^{N} A_j \lambda_j = 0. \tag{17}$$

We also set

$$r_j := \frac{\lambda_j^{1/2 s_j}}{\lambda_{\ast,j}^{1/2 s_j}}.$$

We notice that, since $\lambda_{\ast,j} = \lambda_j$ unless $j = N$, we have that $r_j = 1$ for all $j \in \{1, \ldots, N-1\}$. Also, for any $j \in \{1, \ldots, N\}$, the function

$$\phi_j(X_j) := \tilde{\varphi}_{\ast,j} \left(\frac{X_j}{r_j} \right) = \tilde{\varphi}_{\ast,j} \left(\frac{\lambda_j^{1/2 s_j} X_j}{\lambda_{\ast,j}^{1/2 s_j}} \right) \tag{18}$$

is an eigenfunction of $(-\Delta)^j_{s_j}$ in $B_{r_j}^{n_j}$, with Dirichlet datum outside $B_{r_j}^{n_j}$ and eigenfunction equal to λ_j, that is

$$(-\Delta)^j_{s_j} \phi_j = \lambda_j \phi_j \text{ in } B_{r_j}^{n_j}. \tag{19}$$
Now, we define, for any \(j \in \{1, \ldots, d\} \),
\[
\bar{a}_j := \begin{cases} \frac{a_j}{|a_j|} & \text{if } a_j \neq 0, \\ 1 & \text{if } a_j = 0. \end{cases}
\]

We stress that \(\bar{a}_j \neq 0. \) (20)

Now we consider, for any \(j \in \{1, \ldots, d\} \), the solution of the Cauchy problem
\[
\begin{aligned}
\frac{\partial_{x_j}^m}{\partial \tau} v_j &= -\bar{a}_j v_j, \\
\partial_{x_j}^m v_j(0) &= 1 \text{ for every } i \in \{0, \ldots, m_j - 1\}.
\end{aligned}
\] (21)

Notice that the solution \(v_j \) is well defined at least in an interval of the form \([-\rho_j, \rho_j]\) for a suitable \(\rho_j > 0 \), and we define
\[
\rho := \min_{j \in \{1, \ldots, d\}} \rho_j.
\]

We take \(\bar{\tau} \in C^\infty_0(B^d_0) \), with \(\bar{\tau} = 1 \) in \(B^d_{\rho/2} \), and we set \(\tau(x) = \tau(x_1, \ldots, x_d) := \bar{\tau}(t_1 x_1, \ldots, t_d x_d) \). Moreover, we introduce the function
\[
v_j(x_j) := v_j(t_j x_j).
\]

Notice that
\[
a_j \frac{\partial_{x_j}^m}{\partial \tau} v_j = -|a_j| t_j^{m_j} v_j.
\] (22)

Now, we take \(e_1, \ldots, e_N \), with
\[
e_j \in \partial B^m_{\rho_j} = \partial B^m_{\lambda_j^{1/2s_j}} \lambda_j^{1/2s_j},
\] (23)

We introduce an additional set of free parameters \(Y_1, \ldots, Y_N \), with \(Y_j \in \mathbb{R}^{n_j} \) and \(e_j \cdot Y_j < 0 \). We also take \(\varepsilon > 0 \) (to be taken as small as we wish in the sequel, possibly in dependence of \(e_1, \ldots, e_N \) and \(Y_1, \ldots, Y_N \)), and we define
\[
w(x, X) := \tau(x) v_1(x_1) \ldots v_d(x_d) \phi_1(X_1 + e_1 + \varepsilon Y_1) \ldots \phi_N(X_N + e_N + \varepsilon Y_N)
\]
\[
= \tau(x) v(x) \phi(X),
\]

where \(v(x) := v_1(x_1) \ldots v_d(x_d) \)

and \(\phi(X) := \phi_1(X_1 + e_1 + \varepsilon Y_1) \ldots \phi_N(X_N + e_N + \varepsilon Y_N) \).

Notice that \(w \) is compactly supported in \(\mathbb{R}^N \). Moreover, in light of (19) and (22), if \((x, X) \) is sufficiently close to the origin, we have that
\[
\ell w(x, X) = \sum_{j=1}^{d} a_j \frac{\partial_{x_j}^m}{\partial \tau} \left(\tau(x) v(x) \phi(X) \right) = -\sum_{j=1}^{d} |a_j| t_j^{m_j} \tau(x) v(x) \phi(X)
\]

and
\[
\mathcal{L} w(x, X) = \sum_{j=1}^{N} A_j (-\Delta X_j^{s_j}) \left(\tau(x) v(x) \phi(X) \right) = \sum_{j=1}^{N} A_j \lambda_j \tau(x) v(x) \phi(X).
\]

Hence, by (17),
\[
\Lambda w(x, X) = \ell w(x, X) + \mathcal{L} w(x, X) = 0
\]

if \((x, X) \) is sufficiently close to the origin. Consequently, \(w \in \mathcal{H} \). Thus, in view of (14) and (16), we have that
\[
0 = \partial \cdot \partial^K w(0) = \sum_{|i| \leq K} \partial_i \partial^i w(0)
\]
\[
= \sum_{|i_1| + \cdots + |i_d| + |I_1| + \cdots + |I_N| \leq K} \partial_{i_1} \cdots \partial_{i_d} \partial^{I_1} \cdots \partial^{I_N} X_{X_N} w(0).
\] (24)
We claim that, for any \(i \in \mathbb{N} \),
\[
\varpi_{ij} := \partial x_j \bar{v}_j(0) \neq 0.
\] (25)

The proof of this can be done by induction. Indeed, if \(i \in \{0, \ldots, m_j - 1\} \), then (25) is true, thanks to the initial condition in (21). Suppose now that the claim in (25) holds true for all \(i \in \{0, \ldots, i_o \} \), for some \(i_o \geq m_j - 1 \). (26)

Then, using the equation in (21) we have that
\[
\partial x_j^{i_o+1-m_j} \bar{v}_j = \partial x_j^{i_o+1-m_j} \partial s_j \bar{v}_j = -a_j \partial x_j^{i_o+1-m_j} \bar{v}_j.
\] (27)

By (26), we know that \(\partial x_j^{i_o+1-m_j} \bar{v}_j(0) \neq 0 \). This, (20) and (27) imply that \(\partial x_j^{i_o+1} \bar{v}_j(0) \neq 0 \). This proves (25).

Now, from (25) we have that
\[
\partial x_j^{i_o+1} v(0) = t_j^{i_o+1} \varpi_{ij} \neq 0.
\]

Hence, we write (24) as
\[
0 = \sum_{|i_1| + \cdots + |i_d| + |I_1| + \cdots + |I_N| \leq K} \partial t_{i_1, \ldots, i_d, 1} \times \varpi_{i_1} \bar{v}_1 \cdots \varpi_{i_d} \bar{v}_d t_1^{i_1} \cdots t_d^{i_d} \partial x_1^{I_1} \cdots \partial x_N^{I_N} \phi(0)
\] (28)

where a multi-index notation has been adopted, and if \(i = (i_1, \ldots, i_d) \), \(\varpi_i := \varpi_{i_1} \cdots \varpi_{i_d} \). We stress that
\[
\varpi_i \neq 0
\] (29)

thanks to (25).

Recalling (18), we write (28) as
\[
0 = \sum_{|i| + |I| \leq K} \partial t_{i,I} \varpi_i t_I^{N} \prod_{j=1}^{N} \left(\frac{\lambda_j^{1/2s_j}}{\lambda_{s,j}} \right)^{|I_j|/2s_j} \partial x_j^{I_j} \phi^{i_j,\varphi}(e_j + eY_j).
\] (30)

We remark that, in light of (15),
\[
\partial t_{i,I} \text{ are not all equal to zero.}
\] (31)

Now, by Lemma 4 applied to \(s := s_j \), \(\alpha := I_j \), \(e := \frac{1/2s_j}{\lambda_{s,j}} e_j \) and \(X := \frac{1/2s_j}{\lambda_{s,j}} Y_j \), we see that, for any \(j \in \{1, \ldots, N\} \),
\[
\lim_{\varepsilon \to 0} \varepsilon^{l_{I_j}} \partial x_j^{l_{I_j}} \phi^{i_j,\varphi}(e_j + \varepsilon Y_j)
\]
\[
= (-1)^{|I_j|} \kappa_{s_j} \lambda_{s,j} s_j (s_j - 1) \cdots (s_j - |I_j| + 1) \left(\frac{\lambda_j^{1/2s_j}}{\lambda_{s,j}} \right)^{|I_j|/2s_j} \lambda_{s,j} \left(\frac{\lambda_j^{1/2s_j}}{\lambda_{s,j}} \right)^{|I_j|/2s_j} \lambda_{s,j}.
\] (32)

Now we consider the multi-index \(\bar{I} \), with the property that \(|\bar{I}| \) is the biggest such that \(|i| + |I| \leq K \), and, for such \(\bar{I} \), we define
\[
\Xi := \sum_{j=1}^{N} (|I_j| - s_j) = |\bar{I}| - \sum_{j=1}^{N} s_j.
\]
Notice that \(\tilde{I} \) is well-defined, thanks to (15) and (29). As a consequence of (32),
\[
\lim_{\varepsilon \downarrow 0} \varepsilon \Xi \prod_{j=1}^{N} \left(\frac{\lambda_j}{\lambda_{*,j}} \right)^{\frac{|I_j|}{s_j}} \partial_{\tilde{X}_j} \phi_{*,j} \left(\frac{\lambda_j^{1/2s_j}}{\lambda_{*,j}^{1/2s_j}} (e_j + \varepsilon Y_j) \right) = \lim_{\varepsilon \downarrow 0} \varepsilon \Xi \prod_{j=1}^{N} e^{\varepsilon |I_j| - s_j} \left(\frac{\lambda_j}{\lambda_{*,j}} \right)^{\frac{|I_j|}{s_j}} \partial_{\tilde{X}_j} \phi_{*,j} \left(\frac{\lambda_j^{1/2s_j}}{\lambda_{*,j}^{1/2s_j}} (e_j + \varepsilon Y_j) \right) = \prod_{j=1}^{N} \left(\frac{\lambda_j}{\lambda_{*,j}} \right)^{\frac{|I_j|}{s_j}} (-1)^{|\tilde{I}_j|} \kappa_* \lambda_* s_j (s_j - 1) \ldots (s_j - |\tilde{I}_j| + 1) e_j \left(-\frac{\lambda_j^{1/2s_j} e_j}{\lambda_{*,j}^{1/2s_j}} \cdot \frac{\lambda_j^{1/2s_j} Y_j}{\lambda_{*,j}^{1/2s_j}} \right)^{s_j - |\tilde{I}_j|}.
\]
On the other hand, using again (32), we conclude that, for any multi-index \(I \), with \(|I| < |\tilde{I}| \),
\[
\lim_{\varepsilon \downarrow 0} \varepsilon \Xi \prod_{j=1}^{N} \left(\frac{\lambda_j}{\lambda_{*,j}} \right)^{\frac{|I_j|}{s_j}} \partial_{\tilde{X}_j} \phi_{*,j} \left(\frac{\lambda_j^{1/2s_j}}{\lambda_{*,j}^{1/2s_j}} (e_j + \varepsilon Y_j) \right) = \lim_{\varepsilon \downarrow 0} \varepsilon |\tilde{I}| - |I| \prod_{j=1}^{N} e^{\varepsilon |\tilde{I}| - s_j} \left(\frac{\lambda_j}{\lambda_{*,j}} \right)^{\frac{|I_j|}{s_j}} \partial_{\tilde{X}_j} \phi_{*,j} \left(\frac{\lambda_j^{1/2s_j}}{\lambda_{*,j}^{1/2s_j}} (e_j + \varepsilon Y_j) \right) = 0.
\]
In consequence of this and (33), after multiplying (30) by \(\varepsilon \Xi \) \((0, +\infty) \) and sending \(\varepsilon \downarrow 0 \), we obtain
\[
0 = \sum_{|i| \leq K - |\tilde{I}|} \partial_{\tilde{I},i} \Xi \prod_{j=1}^{N} \left(\frac{\lambda_j}{\lambda_{*,j}} \right)^{\frac{|I_j|}{s_j}} (-1)^{|\tilde{I}_j|} \kappa_* \lambda_* s_j (s_j - 1) \ldots (s_j - |\tilde{I}_j| + 1) e_j \left(-\frac{\lambda_j^{1/2s_j} e_j}{\lambda_{*,j}^{1/2s_j}} \cdot \frac{\lambda_j^{1/2s_j} Y_j}{\lambda_{*,j}^{1/2s_j}} \right)^{s_j - |\tilde{I}_j|}.
\]
That is, collecting and simplifying some terms, we find that
\[
0 = \sum_{|i| \leq K - |\tilde{I}|} \partial_{\tilde{I},i} \Xi \prod_{j=1}^{N} \left(-e_j \cdot Y_j \right)^{-|\tilde{I}_j|},
\]
with
\[
\partial_{\tilde{I},i} := \partial_{\tilde{I},i} \prod_{j=1}^{N} \left(s_j (s_j - 1) \ldots (s_j - |\tilde{I}_j| + 1) \right).
\]
Then, formula (34) becomes
\[\sum_{|i| \leq K - |\tilde{I}|} \tilde{\vartheta}_{i,\tilde{I}} \varpi_i t^i T^{\tilde{I}} = 0. \]

By the Identity Principle of Polynomials, this gives that each \(\tilde{\vartheta}_{i,\tilde{I}} \varpi_i \) is equal to zero. Hence, by (29), each \(\tilde{\vartheta}_{i,\tilde{I}} \) is equal to zero. Therefore, recalling (35), we conclude that each \(\vartheta_{i,\tilde{I}} \) is equal to zero.

Plugging this information into (30), we obtain that
\[0 = \sum_{|i| + |\tilde{I}| \leq K} \vartheta_{i,\tilde{I}} \varpi_i t^i \prod_{j=1}^{N} \left(\frac{\lambda_j}{\lambda_{s,j}} \right)^{|\tilde{I}|} \partial^{\tilde{I}}_{\lambda_{s,j}} \partial_{s,j} \left(\frac{1/2s_j}{\lambda_{s,j}} (e_j + \varepsilon Y_j) \right). \]

Now we choose a multi-index \(\tilde{I} \), with the property that \(|\tilde{I}| \) is the biggest such that \(|i| + |\tilde{I}| \leq K \) and \(|\tilde{I}| < |\tilde{I}| \).

And, for such \(\tilde{I} \), we define
\[\bar{\Xi} := \sum_{j=1}^{N} (|\tilde{I}|_j - s_j) = |\tilde{I}| - \sum_{j=1}^{N} s_j. \]

Notice again that \(\tilde{I} \) is well-defined, in virtue of (13) and (29).

Thus, we repeat the same argument as above, with \(\tilde{I} \) and \(\bar{\Xi} \) in place of \(\tilde{I} \) and \(\bar{\Xi} \), respectively, and we conclude that each \(\vartheta_{i,\tilde{I}} \) is equal to zero.

Iterating this procedure, we obtain that each \(\vartheta_{i,\tilde{I}} \) is equal to zero. This is in contradiction with (31) and so the desired result is established (when \(d \neq 0 \)).

Now we consider the case in which \(d = 0 \), i.e. when only “nonlocal variables” are present. For this, we argue recursively on \(N \) (i.e. on the number of the “nonlocal variables”). When \(N = 1 \), that is when there is only one set of “nonlocal variables”, the result is true, thanks to Theorem 3.1 in [4].

Now we suppose that the result is true for \(N - 1 \) and we prove it for \(N \). We set
\[L' := \sum_{j=1}^{N-1} A_j (-\Delta X_j)^{s_j} \quad \text{and} \quad L_N := A_N (-\Delta X_N)^{s_N}. \]

We denote by \(\mathcal{H}' \) the family of all functions \(w' \in C(\mathbb{R}^{n_1+\cdots+n_{N-1}}) \) that are compactly supported and for which there exists a neighborhood of the origin on which \(w' \) is smooth and \(L' w' = 0 \).

Similarly, we call \(\mathcal{H}_N \) the family of all functions \(w_N \in C(\mathbb{R}^{n_N}) \) that are compactly supported and for which there exists a neighborhood of the origin on which \(w_N \) is smooth and \(L_N w_N = 0 \).

We also use the notation \(X = (X', X_N) \in \mathbb{R}^{n_1+\cdots+n_{N-1}} \times \mathbb{R}^{n_N} \) to distinguish the last set of variables.

Given any \(w' \in \mathcal{H}' \) and any \(w_N \in \mathcal{H}_N \), we set
\[W_{w',w_N}(X) = W_{w',w_N}(X', X_N) := w'(X') w_N(X_N). \]

Notice that
\[L W_{w',w_N}(X) = \left(L' w'(X') \right) w_N(X_N) + w'(X') \left(L_N w_N(X_N) \right). \]

Thus, if \(w' \in \mathcal{H}' \) and \(w_N \in \mathcal{H}_N \), then \(W_{w',w_N} \in \mathcal{H} \).

Again, we argue by contradiction and we suppose that the claim in Lemma 5 is not true, hence there exists a unit vector \(\vartheta \) such that
\[V_K \text{ lies in the orthogonal space of } \vartheta. \]

Notice that each component of \(\vartheta \) can be written as \(\vartheta_{I} \), with \(I = (I_1, \ldots, I_N) \) and \(|I| \leq K \). To distinguish the last component we write \(I' := (I_1, \ldots, I_{N-1}) \) and so \(\vartheta_I = \vartheta_{(I',I_N)} \) with \(|I'| + |I_N| \leq K \).
In particular, by (36) and (37), for any \(w' \in \mathcal{H}' \) and any \(w_N \in \mathcal{H}_N \) we have that
\[
0 = \sum_{|I| \leq K} \partial_I \partial_N^I \mathcal{W}_{w',w_N}(0) = \sum_{|I'| + |I_N| \leq K} \partial_{(I',I_N)} \partial_N^{I'} w'(0) \partial^{I_N}_{X_N} w_N(0)
\]
\[
= \sum_{|I_N| \leq K} \left[\sum_{|I'| \leq K - |I_N|} \partial_{(I',I_N)} \partial_N^{I'} w'(0) \right] \partial^{I_N}_{X_N} w_N(0) = \sum_{|I_N| \leq K} \partial^{I_N}_{X_N} w_N(0),
\]
where
\[
\partial^{I_N}_{X_N} := \sum_{|I'| \leq K - |I_N|} \partial_{(I',I_N)} \partial_N^{I'} w'(0).
\]
That is, all functions in \(\mathcal{H}_N \) lie in the orthogonal of the vector with entries \(\partial^{I_N}_{X_N} \). From Theorem 3.1 in [4] this implies that each \(\partial^{I_N}_{X_N} \) must vanish, that is
\[
\sum_{|I'| \leq K - |I_N|} \partial_{(I',I_N)} \partial_N^{I'} w'(0) = 0
\]
for any multi-index \(I_N \) with \(|I_N| \leq K \) and any \(w' \in \mathcal{H}' \). Since \(\mathcal{H}' \) contains \(N - 1 \) “nonlocal variables”, we can now use the inductive hypothesis and conclude that each \(\partial_{(I',I_N)} \) must vanish. This is a contradiction with the fact that \(\partial \) was supposed to be of unit length and so the proof of Lemma 5 is complete. \(\square \)

3 Proof of Theorem 2 when \(f \) is a monomial

Now we prove Theorem 2 under the additional assumption that \(f \) is of monomial type, namely that
\[
f(x, X) = \frac{x_1^{i_1} \cdots x_d^{i_d} X_1^{I_1} \cdots X_N^{I_N}}{i!} = \frac{x^I}{i!}, \quad (38)
\]
for some \((i_1, \ldots, i_d) \in \mathbb{N}^d \) and \((I_1, \ldots, I_N) \in \mathbb{N}^{n_1} \times \mathbb{N}^{n_N} \). Of course, we used here the standard notation for powers of multi-indices: namely if \(X_1 := (X_{1,1}, \ldots, X_{1,n_1}) \in \mathbb{R}^{n_1} \) and \(I_1 := (I_{1,1}, \ldots, I_{1,n_1}) \in \mathbb{N}^{n_1} \), the notation \(X_1^{I_1} \) is short for \(X_{1,1}^{I_{1,1}} \cdots X_{1,n_1}^{I_{1,n_1}} \). Also, \(i \) is as in (13) and, as customary, we used the multi-index factorial
\[
i! := i_1! \cdots i_d! i_1! \cdots i_N!,
\]
where, once again \(i_1! := I_{1,1}! \cdots I_{1,n_1}! \) and so on.

Then, to prove Theorem 2 in this case, we argue as follows. We define
\[
\gamma := \sum_{j=1}^d \frac{i_j}{m_j} + \sum_{j=1}^n \frac{|I_j|}{2s_j}, \quad (39)
\]
and
\[
\mu := \min \left\{ \frac{1}{m_1}, \ldots, \frac{1}{m_d}, \frac{1}{2s_1}, \ldots, \frac{1}{2s_N} \right\}. \quad (40)
\]
We also take \(K_0 \in \mathbb{N} \) with
\[
K_0 \geq \frac{\gamma + 1}{\mu} \quad (41)
\]
and we let
\[
K := K_0 + |i| + |I| + k, \quad (42)
\]
where \(k \) is the fixed integer given by the statement of Theorem 2. By Lemma 5 there exist a neighborhood \(\mathcal{N} \) of the origin in \(\mathbb{R}^\nu \) and a function \(w \in C(\mathbb{R}^\nu) \), compactly supported in \(\mathbb{R}^\nu \), such that \(w \in C^\infty(\mathcal{N}) \), \(\Lambda w = 0 \).
in \(\mathcal{N} \), and such that all the derivatives of \(w \) in 0 of order up to \(K \) vanish, with the exception of \(\partial^k w(0) \), which is equal to 1. In this way, setting

\[g := w - f, \quad (43) \]

we have that

\[\partial^\alpha g(0) = 0 \text{ for any } \alpha \in \mathbb{N}^r \text{ with } |\alpha| \leq K. \]

Accordingly, in \(\mathcal{N} \) we can write

\[g(x, X) = \sum_{|\tau| \geq K+1} x^\tau X^T h_\tau(x, X), \quad (44) \]

for functions \(h_\tau \) that are smooth in \(\mathcal{N} \), where the multi-index notation \(\tau = (t, T) \) has been used.

Now, we fix \(\eta \in (0, 1) \) (to be taken suitably small with respect to the fixed \(\varepsilon > 0 \) given by the statement of Theorem\([2]\)). We define

\[u(x, X) := \frac{1}{\eta^r} w\left(\eta^m x_1, \ldots, \eta^{md} x_d, \eta^{\frac{1}{m^2}} X_1, \ldots, \eta^{\frac{1}{m^2 N}} X_N \right). \]

Notice that \(u \) is compactly supported in \(\mathbb{R}^r \) and smooth in a neighborhood of the origin (which is large for \(\eta \) small, hence we may suppose that it includes \(B_1 \)), and in this neighborhood we have

\[\eta^r \Lambda u(x, X) = \eta \left[\sum_{j=1}^d a_j \frac{\partial^m x_j}{\partial x^j} w\left(\eta^m x_1, \ldots, \eta^{md} x_d, \eta^{\frac{1}{m^2}} X_1, \ldots, \eta^{\frac{1}{m^2 N}} X_N \right) \right. \]

\[+ \left. \sum_{j=1}^N A_j (-\Delta X_j)^{s_j} w\left(\eta^m x_1, \ldots, \eta^{md} x_d, \eta^{\frac{1}{m^2}} X_1, \ldots, \eta^{\frac{1}{m^2 N}} X_N \right) \right] = 0. \]

These observations establish (6) and (8). Now we prove (7). To this aim, we observe that the monomial

\[\frac{1}{\eta^r} f\left(\eta^m x_1, \ldots, \eta^{md} x_d, \eta^{\frac{1}{m^2}} X_1, \ldots, \eta^{\frac{1}{m^2 N}} X_N \right) = f(x, X). \]

Consequently, by (43) and (44),

\[u(x, X) - f(x, X) = \frac{1}{\eta^r} g\left(\eta^m x_1, \ldots, \eta^{md} x_d, \eta^{\frac{1}{m^2}} X_1, \ldots, \eta^{\frac{1}{m^2 N}} X_N \right) \]

\[= \sum_{|\tau| \geq K+1} \eta^{m|\tau|+|T|} x^\tau X^T h_\tau\left(\eta^m x, \eta^T X \right) \]

where the multi-index notation has been used.

Therefore, for any multi-index \(\beta = (b, B) \) with \(|\beta| \leq k \),

\[\partial^\beta \left(u(x, X) - f(x, X) \right) = \partial_b^h \partial_B^\beta \left(u(x, X) - f(x, X) \right) \]

\[= \sum_{|\beta'|+|\beta''|=|\beta|} c_{\tau, \beta} \eta^{|\tau|+|B|} x^\tau X^T \partial_x^{b', \beta'} \partial_x^{B''} h_\tau\left(\eta^m x, \eta^T X \right), \quad (45) \]

for suitable coefficients \(c_{\tau, \beta} \). Thus, to prove (7), we need to show that this quantity is small if so is \(\eta \). To this aim, we use (40), (41) and (42) to see that

\[\left| \frac{t}{m} \right| + \left| \frac{T}{2s} \right| - \gamma + \left| \frac{b'}{m} \right| + \left| \frac{B''}{2s} \right| \geq \left| \frac{t}{m} \right| + \left| \frac{T}{2s} \right| - \gamma \]

\[\geq \mu \left(\left| t + T \right| - \gamma \right) \geq K \mu - \gamma \geq K_\mu - \gamma \geq 1. \]

Consequently, we deduce from (45) that \(\| u - f \|_{C^k(B_1^\mu)} \leq C \eta \), for some \(C > 0 \). By choosing \(\eta \) sufficiently small with respect to \(\varepsilon \), this implies (7). The proof of Theorem\([2]\) when \(f \) is a monomial is thus complete.
4 Proof of Theorem 2 when f is a polynomial

If f is a polynomial, we can write f as a finite sum of monomials, say

$$f(x, X) = \sum_{j=1}^{J} c_j f_j(x, X),$$

where each f_j is a monomial as in (38), $c_j \in \mathbb{R}$ and $J \in \mathbb{N}$. Let $c := \max_{j \in J} |c_j|$. Then, we know that Theorem 2 holds for each f_j, in view of the proof given in Section 3 and so we find $u_j \in C^\infty(B^*_1) \cap C(\mathbb{R}^\nu)$ and $R_j > 1$ such that $\Lambda u_j = 0$ in B^*_1, $\|u_j - f_j\|_{C^k(B^*_1)} \leq \varepsilon$ and $u = 0$ in $\mathbb{R}^\nu \setminus B^*_R$. Hence, we set

$$u(x, X) = \sum_{j=1}^{J} c_j u_j(x, X),$$

and we see that

$$\|u - f\|_{C^k(B^*_1)} \leq \sum_{j=1}^{J} |c_j| \|u_j - f_j\|_{C^k(B^*_1)} \leq c J \varepsilon.$$

Also, since Λ is linear, we have that $\Lambda u = 0$ in B^*_1. Finally, u is supported in B^*_R, being $R := \max_{j \in J} R_j$. This establishes Theorem 2 for polynomials (up to replacing ε with $c J \varepsilon$).

5 Completion of the proof of Theorem 2

Let f be as in the statement of Theorem 2. By a version of the Stone-Weierstrass Theorem (see e.g. Lemma 2.1 in [4]), we know that there exists a polynomial \tilde{f} such that $\|\tilde{f} - f\|_{C^k(B^*_1)} \leq \varepsilon$. Then, we know that Theorem 2 holds for \tilde{f}, in view of the proof given in Section 4 and so we find $u \in C^\infty(B^*_1) \cap C(\mathbb{R}^\nu)$ and $R > 1$ such that $\Lambda u = 0$ in B^*_1, $\|u - \tilde{f}\|_{C^k(B^*_1)} \leq \varepsilon$ and $u = 0$ in $\mathbb{R}^\nu \setminus B^*_R$. Then, we see that $\|u - f\|_{C^k(B^*_1)} \leq \|u - \tilde{f}\|_{C^k(B^*_1)} + \|\tilde{f} - f\|_{C^k(B^*_1)} \leq 2\varepsilon$, hence Theorem 2 is proved (up to replacing ε with 2ε).

Appendix A – Boundary behavior of solutions of fractional Laplace equations and proof of Lemma 4

In this section, we detect the exact boundary behavior of solutions of fractional Laplace equations in a ball with Dirichlet data, in order to prove Lemma 4. For estimates in general domains, see e.g. [6] and the references therein. Let us remark that, in our context, we do not only obtain bounds from above and below, but also a precise asymptotics in the limits which approach the boundary.

In order to obtain our bounds, we make use of the fractional Green function, whose setting goes as follows. Given $s \in (0, 1)$ and x, $z \in B_1$, we consider the function

$$G(x, z) := |z - x|^{2s-n} \int_0^{r_0(x, z)} t^{s-1} \frac{dt}{(t + 1)^{1-s}},$$

with

$$r_0(x, z) := \frac{(1 - |x|^2)(1 - |z|^2)}{|z - x|^2}. \quad (47)$$

Though we will not use this, it is interesting to point out that when $n = 2s$, i.e. when $n = 1$ and $s = \frac{1}{2}$, the function G can be
Up to normalization factors, the function G plays the role of a Green function in the fractional setting, as discussed for instance in [1] and in the references therein.

If x lies in an ε-neighborhood of ∂B_1, then G is of order ε^s, as stated precisely in the next result:

Lemma 6. Let $e \in \partial B_1$, $\varepsilon_0 > 0$ and $\omega \in \partial B_1$. Assume that $e + \varepsilon \omega \in B_1$ for all $\varepsilon \in (0, \varepsilon_0]$. Let $f \in C^\alpha(\mathbb{R}^d)$ for some $\alpha \in (0, 1)$, with $f = 0$ outside B_1.

Then

$$\lim_{\varepsilon \searrow 0} \varepsilon^{-s} \int_{B_1} f(z) G(e + \varepsilon \omega, z) \, dz = \int_{B_1} f(z) \left(-2 e \cdot \omega \right)^s (1 - |z|^2)^s \frac{1}{s |z - e|^n} \, dz.$$

(48)

The rather technical proof of Lemma 6 is postponed to Appendix B, for the facility of the reader. Here, we deduce from Lemma 6 the boundary estimates needed to the proof of our main result:

Proposition 7. Let $e \in \partial B_1$, $\varepsilon_0 > 0$ and $\omega \in \partial B_1$. Assume that $e + \varepsilon \omega \in B_1$ for all $\varepsilon \in (0, \varepsilon_0]$. Let $f \in C^\alpha(\mathbb{R}^n)$ for some $\alpha \in (0, 1)$, with $f = 0$ outside B_1.

Let u be a weak solution of

$$\begin{cases}
(\Delta)^su = f & \text{in } B_1, \\
u = 0 & \text{in } \mathbb{R}^n \setminus B_1.
\end{cases}$$

Then

$$\lim_{\varepsilon \searrow 0} \varepsilon^{-s} u(e + \varepsilon \omega) = \kappa(n, s) \left(-2 e \cdot \omega \right)^s \int_{B_1} f(z) \left(\frac{1 - |z|^2}{|z - e|^n} \right)^s \, dz,$$

where

$$\kappa(n, s) := \frac{\Gamma \left(\frac{n}{2} \right)}{4^n \pi^\frac{n}{2} \Gamma^2(s)},$$

being Γ the Euler’s Γ-function.

Proof. We know from Theorems 1 and 2 in [8] that u is actually continuous in \mathbb{R}^n and it is a viscosity solution of the equation. Also, by the fractional Green Representation Theorem (see e.g. Theorem 3.2 in [1] and the references therein), we have that

$$u(e + \varepsilon \omega) = \kappa(n, s) \int_{B_1} f(z) G(e + \varepsilon \omega, z) \, dz,$$

with G as in (46). Hence, the desired result follows from (48).

As a simple consequence, we can characterize the boundary behavior of the first eigenfunction for the fractional Laplacian with Dirichlet data (see e.g. Appendix A in [7] for a discussion on fractional eigenvalues).

Corollary 8. Let $e \in \partial B_1$. Let ϕ_* be the first eigenfunction for $(-\Delta)^s$, normalized to be positive and such that $\|\phi_*\|_{L^2(B_1)} = 1$, and let $\lambda_* > 0$ be the corresponding eigenvalue. Then,

$$\|\phi_*\|_{C^\alpha(\mathbb{R}^n)} \lesssim C,$$

(49)

written explicitly, up to constants, as

$$G(x, z) = \log \frac{1 - xz + \sqrt{(1 - |x|^2)(1 - |z|^2)}}{|z - x|}.$$

This follows by computing the integral

$$\int \frac{dt}{\sqrt{t(t + 1)}} = 2 \log(\sqrt{t} + \sqrt{t + 1}) + \text{const}.$$

13
for some $C > 0$ depending only on n and s, and
\[
\lim_{\varepsilon \to 0} \varepsilon^{-s} \phi_*(e + \varepsilon \omega) = \kappa_* \lambda_* (-e \cdot \omega)^s,
\]
where κ_* is as in (12).

Proof. The idea is that, since $(-\Delta)^s \phi_* = \lambda_* \phi_*$, we can use Proposition 7 and get the desired result. More precisely, we have that ϕ_* is $C^n(B_1)$ (see the proof of Corollary 8 in [8] to obtain the continuity and then Proposition 1.1 in [6] to get the Hölder estimate in (49)).

Notice that, by (49), we have that the quantity κ_* defined in (12) is finite, while the positivity of ϕ_* implies that $\kappa_* > 0$.

Also, the Hölder estimate in (49) allows to use Proposition 7 with $f := \lambda_* \phi_*$. Accordingly, for any $\omega \in \partial B_1$ for which there exists $\varepsilon_0 > 0$ such that $\varepsilon + \varepsilon_0 \in B_1$ for all $\varepsilon \in (0, \varepsilon_0)$, we have that
\[
\lim_{\varepsilon \to 0} \varepsilon^{-s} \phi_*(e + \varepsilon \omega) = \kappa_* \lambda_* (-e \cdot \omega)^s.
\]

Now, we distinguish two cases: if $e \cdot \omega < 0$, then
\[
|e + \varepsilon \omega|^2 = 1 + 2e \cdot \omega + \varepsilon^2 < 1
\]
for small ε, and so $e + \varepsilon \omega \in B_1$ for small ε, hence (50) follows from (51).

If instead $e \cdot \omega \geq 0$, then $e + \varepsilon \omega \in \mathbb{R}^n \setminus B_1$, thus $\phi_*(e + \varepsilon \omega) = 0$, which obviously implies (50) in this case.

From Corollary 8 we can now complete the proof of Lemma 4 by arguing as follows:

Proof of Lemma 4. Let $\psi \in C^\infty_0(\mathbb{R}^n)$. We write $X = \rho \omega$, with $\rho \geq 0$ and $\omega \in S^{n-1}$. Notice that $(\varepsilon \rho)^{-s} |\phi_*(e + \varepsilon \rho \omega)| \leq C$, thanks to (49).

So, we use (51) and the Dominated Convergence Theorem to see that
\[
\lim_{\varepsilon \to 0} \varepsilon^{\alpha} \int_{\mathbb{R}^n} \partial^\alpha \phi_*(e + \varepsilon X) \psi(X) dX = \lim_{\varepsilon \to 0} \int_{\mathbb{R}^n} \partial^\alpha \left(\varepsilon^{-s} \phi_*(e + \varepsilon X)\right) \psi(X) dX
\]
\[
= (-1)^{\alpha} \int_{\mathbb{R}^n} \partial^\alpha \phi_*(e + \varepsilon X) \psi(X) dX
\]
\[
= (-1)^{\alpha} \int_{0}^{+\infty} d\rho \int_{\mathbb{S}^{n-1}} d\omega \rho^{n-1} \rho^s (\varepsilon \rho)^{-s} \phi_*(e + \varepsilon \rho \omega) \partial^\alpha \psi(\rho \omega)
\]
\[
= (-1)^{\alpha} \kappa_* \lambda_* \int_{0}^{+\infty} d\rho \int_{\mathbb{S}^{n-1}} d\omega \rho^{n-1} \rho^s (-e \cdot \omega)^s \partial^\alpha \psi(\rho \omega)
\]
\[
= (-1)^{\alpha} \kappa_* \lambda_* \int_{\mathbb{R}^n} (-e \cdot X)^s \partial^\alpha \psi(X) dX
\]
\[
= \kappa_* \lambda_* \int_{\mathbb{R}^n} \partial^\alpha \left(\varepsilon^{-s} \phi_*(e + \varepsilon \omega)\right) \psi(X) dX
\]
\[
= (-1)^{\alpha} \kappa_* \lambda_* s (s - 1) \ldots (s - |\alpha| + 1) e_1^{\alpha_1} \ldots e_n^{\alpha_n} \int_{\mathbb{R}^n} (-e \cdot X)^s \psi(X) dX,
\]
and this gives the desired result, since ψ is an arbitrary test function.

\[\square\]
Appendix B – Green function computations

Now, we present the proof of Lemma 6. We recall that such result gives some precise asymptotics on the boundary behavior of the Green function of the fractional Laplacian, which in turn have been exploited in Appendix A to obtain precise boundary information on the solutions of fractional Laplace equations.

Proof of Lemma 6. We remark that the condition $e + \varepsilon \omega \in B_1$ for all $\varepsilon \in (0, \varepsilon_0]$ says that

$$1 > |e + \varepsilon \omega|^2 = 1 + \varepsilon^2 + 2\varepsilon e \cdot \omega$$

and so in particular

$$- e \cdot \omega > \frac{\varepsilon}{2} > 0.$$ \hfill (52)

From (47), we have that

$$r_0(e + \varepsilon \omega, z) = \frac{\varepsilon (-\varepsilon - 2 e \cdot \omega) (1 - |z|^2)}{|z - e - \varepsilon \omega|^2}. \hfill (53)$$

In particular,

$$r_0(e + \varepsilon \omega, z) \leq \frac{3\varepsilon}{|z - e + \varepsilon \omega|}.$$ \hfill (54)

Moreover, using a Taylor binomial series,

$$(t + 1)^{-\frac{n}{2}} = \sum_{k=0}^{+\infty} \left(-\frac{n}{2} \right)_k t^k$$

and therefore

$$\frac{t^{s-1}}{(t + 1)^{\frac{n}{2}}} = \sum_{k=0}^{+\infty} \left(-\frac{n}{2} \right)_k t^{k+s-1}.$$ \hfill (55)

Since, by the bounds on the binomial coefficients, we have that

$$\left| \left(-\frac{n}{2} \right)_k \right| \leq C k^{\frac{n}{2}}, \hfill (56)$$

it follows from the root test that the series in (55) is uniformly convergent for any t in a compact subset of $(-1, 1)$. In particular, if we set

$$r_1(x, z) := \min \left\{ r_0(x, z), \frac{1}{2} \right\}, \hfill (57)$$

we can exchange the integration and summation signs and find that

$$\int_0^{r_1(x, z)} \frac{t^{s-1} dt}{(t + 1)^{\frac{n}{2}}} = \sum_{k=0}^{+\infty} c_k \left(r_1(x, z) \right)^{k+s},$$

with

$$c_k := \frac{1}{k + s} \left(-\frac{n}{2} \right)_k.$$ \hfill (58)

Therefore, we have

$$G(x, z) = G(x, z) + g(x, z),$$
with
\[G(x, z) := |z - x|^{2s-n} \sum_{k=0}^{+\infty} c_k \left(r_1(x, z) \right)^{k+s} \]
and
\[g(x, z) := |z - x|^{2s-n} \int_{r_1(x, z)}^{r_0(x, z)} \frac{t^{s-1} dt}{(t + 1)^{\frac{s}{2}}} \. \]

Notice that \(g(x, z) = 0 \) if \(r_0(x, z) \leq 1/2 \). Also, if \(r_0(x, z) > 1/2 \),
\[0 \leq g(x, z) \leq |z - x|^{2s-n} \int_{1/2}^{r_0(x, z)} \frac{t^{s-1} dt}{t^{\frac{s}{2}}} \leq \begin{cases} C |z - x|^{2s-n} & \text{if } n > 2s, \\ C \log r_0(x, z) & \text{if } n = 2s, \\ C |z - x|^{2s-n} (r_0(x, z))^{\frac{s}{2}} & \text{if } n < 2s, \end{cases} \]
for some \(C > 0 \). Now we compute this expression in \(x := e + \varepsilon \omega \). Notice that the condition \(r_0(e + \varepsilon \omega, z) = r_0(x, z) > 1/2 \), combined with (58), says that
\[|z - e - \varepsilon \omega|^2 \leq 9\varepsilon. \] (59)

As a consequence
\[\left| \int_{B_1} f(z) g(e + \varepsilon \omega, z) \, dz \right| \leq \int_{B_1} [f(z)] |g(e + \varepsilon \omega, z)| \, dz \leq \begin{cases} C \int_{B_{3\sqrt{\varepsilon}}(e + \varepsilon \omega)} |f(z)| |z - e + \varepsilon \omega|^{2s-n} \, dz & \text{if } n > 2s, \\ C \int_{B_{3\sqrt{\varepsilon}}(e + \varepsilon \omega)} |f(z)| \log r_0(e + \varepsilon \omega, z) \, dz & \text{if } n = 2s, \\ C \int_{B_{3\sqrt{\varepsilon}}(e + \varepsilon \omega)} |f(z)| |z - e + \varepsilon \omega|^{2s-n} (r_0(e + \varepsilon \omega, z))^{\frac{s}{2}} \, dz & \text{if } n < 2s. \end{cases} \] (60)

Now, if \(z \in B_{3\sqrt{\varepsilon}}(e + \varepsilon \omega) \), then \(|z - e| \leq 4\sqrt{\varepsilon} \) and so
\[|f(z)| \leq C \varepsilon^{\frac{s}{2}}. \] (61)
with \(C > 0 \) depending on \(f \). Hence recalling (54), after renaming \(C > 0 \), we deduce from (60) that
\[\left| \int_{B_1} f(z) g(e + \varepsilon \omega, z) \, dz \right| \leq \begin{cases} C \varepsilon^{\frac{s}{2}} \int_{B_{3\sqrt{\varepsilon}}(e + \varepsilon \omega)} |z - e + \varepsilon \omega|^{2s-n} \, dz & \text{if } n > 2s, \\ C \varepsilon^{\frac{s}{2}} \int_{B_{3\sqrt{\varepsilon}}(e + \varepsilon \omega)} \log \frac{3\varepsilon}{|z - e + \varepsilon \omega|^2} \, dz & \text{if } n = 2s, \\ C \varepsilon^{\frac{s}{2}} \int_{B_{3\sqrt{\varepsilon}}(e + \varepsilon \omega)} 1 \, dz & \text{if } n < 2s, \end{cases} \leq C \varepsilon^{\frac{s}{2} + s}. \]

This and (58) give that
\[\int_{B_1} f(z) G(e + \varepsilon \omega, z) \, dz = \int_{B_1} f(z) G(e + \varepsilon \omega, z) \, dz + o(\varepsilon^n). \] (62)

Now we consider the series defining \(G \) and we split the contribution coming from the index \(k = 0 \) from the ones coming from the indices \(k \geq 1 \), namely we write
\[G(x, z) = G_0(x, z) + G_1(x, z) \]
with
\[G_0(x, z) := \frac{|z - x|^{2s-n}}{s} \left(r_1(x, z) \right)^s \]
and
\[G_1(x, z) := |z - x|^{2s-n} \sum_{k=1}^{+\infty} c_k \left(r_1(x, z) \right)^{k+s} \] (63)
So, we use (57) and (61) and obtain that
\[
\left| \int_{B_1 \cap B_{3\sqrt{\varepsilon}}(e + \varepsilon \omega)} f(z) \mathcal{G}_1(e + \varepsilon \omega, z) \, dz \right| \leq \int_{B_{3\sqrt{\varepsilon}}(e + \varepsilon \omega)} |f(z)| \mathcal{G}_1(e + \varepsilon \omega, z) \, dz \\
\leq C\varepsilon^{\frac{3}{2}} \int_{B_{3\sqrt{\varepsilon}}(e + \varepsilon \omega)} |z - e - \varepsilon \omega|^{2s-n} \sum_{k=1}^{\infty} |c_k| (r_1(e + \varepsilon \omega, z))^{k+s} \, dz \\
\leq C\varepsilon^{\frac{3}{2}} \int_{B_{3\sqrt{\varepsilon}}(e + \varepsilon \omega)} |z - e - \varepsilon \omega|^{2s-n} \sum_{k=1}^{\infty} |c_k| (1/2)^{k+s} \, dz \\
\leq C\varepsilon^{\frac{3}{2}} \int_{B_{3\sqrt{\varepsilon}}(e + \varepsilon \omega)} |z - e - \varepsilon \omega|^{2s-n} \, dz \\
\leq C\varepsilon^{\frac{3}{2} + s},
\] (64)
up to renaming $C > 0$. On the other hand,
\[
|z| = |e + \varepsilon \omega + z - e - \varepsilon \omega| \geq |e + \varepsilon \omega| - |z - e - \varepsilon \omega| \geq 1 - \varepsilon - |z - e - \varepsilon \omega|
\]
and therefore
\[
|f(z)| \leq C \left(1 - |z|\right)^{\alpha} \leq C \left(e + |z - e - \varepsilon \omega|\right)^{\alpha}.
\]
In particular, if $|z - e - \varepsilon \omega| > 3\sqrt{\varepsilon}$, then
\[
|f(z)| \leq C |z - e - \varepsilon \omega|^{\alpha}.
\] (65)
Also, using (54) and (57), for any $k \geq 1$
\[
(r_1(e + \varepsilon \omega, z))^{k+s} = (r_1(e + \varepsilon \omega, z))^{s+\frac{3}{4}} (r_1(e + \varepsilon \omega, z))^{k-\frac{3}{4}} \\
\leq \left(r_0(e + \varepsilon \omega, z)\right)^{s+\frac{3}{4}} \left(\frac{1}{2}\right)^{k-\frac{3}{4}} \leq \frac{C \varepsilon^{s+\frac{3}{4}}}{2^k |z - e - \varepsilon \omega|^{2s+\frac{3}{4}}}.\]
This and (65) give that, if $z \in B_1 \setminus B_{3\sqrt{\varepsilon}}(e + \varepsilon \omega)$, then
\[
|f(z) \mathcal{G}_1(e + \varepsilon \omega, z)| \leq C |z - e - \varepsilon \omega|^{\alpha+2s-n} \sum_{k=1}^{\infty} |c_k| (r_1(e + \varepsilon \omega, z))^{k+s} \\
\leq C \varepsilon^{s+\frac{3}{4}} |z - e - \varepsilon \omega|^{\alpha+2s-n} \sum_{k=1}^{\infty} \frac{|c_k|}{2^k},
\]
and the latter series is convergent, thanks to (56). This implies that
\[
\left| \int_{B_1 \setminus B_{3\sqrt{\varepsilon}}(e + \varepsilon \omega)} f(z) \mathcal{G}_1(e + \varepsilon \omega, z) \, dz \right| \leq C\varepsilon^{s+\frac{3}{4}} \int_{B_1 \setminus B_{3\sqrt{\varepsilon}}(e + \varepsilon \omega)} |z - e - \varepsilon \omega|^{\alpha+2s-n} \, dz \\
\leq C\varepsilon^{s+\frac{3}{4}} \int_{B_1} |z - e - \varepsilon \omega|^{\alpha+2s-n} \, dz \leq C\varepsilon^{s+\frac{3}{4}}.
\]
By this and (64), we conclude that
\[
\int_{B_1} f(z) \mathcal{G}_1(e + \varepsilon \omega, z) \, dz = o(\varepsilon^s).
\]
Hence, we insert this information into (62) and, recalling (63), we obtain
\[
\int_{B_1} f(z) G(e + \varepsilon\omega, z) \, dz = \int_{B_1} f(z) G_0(e + \varepsilon\omega, z) \, dz + o(\varepsilon^s). \tag{66}
\]
Now we define
\[
D_1 := \{ z \in B_1 \text{ s.t. } r_0(e + \varepsilon\omega, z) > 1/2 \}
\text{ and } D_2 := \{ z \in B_1 \text{ s.t. } r_0(e + \varepsilon\omega, z) \leq 1/2 \}.
\]
If \(z \in D_1 \), then (59) holds true, and so we can use (61), to find that
\[
|f(z) G_0(e + \varepsilon\omega, z)| \leq C \varepsilon^{2s} |z - e + \varepsilon\omega|^{2s-n}.
\]
Consequently, recalling (59),
\[
\left| \int_{D_1} f(z) G_0(e + \varepsilon\omega, z) \, dz \right| \leq C \varepsilon^{2s} \int_{B_1 \setminus \sigma(e + \varepsilon\omega)} |z - e + \varepsilon\omega|^{2s-n} \, dz = C \varepsilon^{2s+n},
\]
up to renaming \(C > 0 \) once again. In this way, formula (66) reduces to
\[
\int_{B_1} f(z) G(e + \varepsilon\omega, z) \, dz = \int_{D_2} f(z) G_0(e + \varepsilon\omega, z) \, dz + o(\varepsilon^s). \tag{67}
\]
Now, by (57) and (53), if \(z \in D_2 \),
\[
G_0(e + \varepsilon\omega, z) = \frac{|z - e - \varepsilon\omega|^{2s-n}}{s} (r_0(e + \varepsilon\omega, z))^s = \frac{\varepsilon^s (-2 \varepsilon - 2 e \cdot \omega)^s (1 - |z|^2)^s}{s |z - e - \varepsilon\omega|^n}.
\]
Hence, (67) gives that
\[
\lim_{\varepsilon \to 0} \varepsilon^{-s} \int_{B_1} f(z) G(e + \varepsilon\omega, z) \, dz = \lim_{\varepsilon \to 0} \int_{D_2} f(z) \frac{(-\varepsilon - 2 e \cdot \omega)^s (1 - |z|^2)^s}{s |z - e - \varepsilon\omega|^n} \, dz. \tag{68}
\]
Now, we show the following uniform integrability condition: we set
\[
F_\varepsilon(z) := \begin{cases}
\frac{f(z) (-\varepsilon - 2 e \cdot \omega)^s (1 - |z|^2)^s}{s |z - e - \varepsilon\omega|^n} & \text{if } 2\varepsilon (-\varepsilon - 2 e \cdot \omega) (1 - |z|^2) \leq |z - e - \varepsilon\omega|^2, \\
0 & \text{otherwise,}
\end{cases}
\]
and we prove that for any \(\eta > 0 \) there exists \(\delta > 0 \) (depending on \(\eta, e \) and \(\omega \), but independent of \(\varepsilon \)) such that, for any \(E \subset \mathbb{R}^d \) with \(|E| \leq \delta \), we have
\[
\int_{B_1 \cap E} |F_\varepsilon(z)| \, dz \leq \eta. \tag{69}
\]
To this aim, we take \(E \) as above and
\[
\rho := c_* \varepsilon,
\]
with \(c_* \in (0, \frac{1}{10}) \) to be conveniently chosen in the sequel (also in dependence of \(\omega \) and \(e \)), and we set \(E_1 := E \cap B_\rho(e + \varepsilon\omega), E_2 := E \setminus E_1 \).
We claim that

$$E_1 \text{ is empty.}$$

(70)

For this, we argue by contradiction: if there existed $$z \in E_1$$, then

$$\varepsilon (- e \cdot \omega) (1 - |z|^2) \leq 2 \varepsilon (- \varepsilon - 2 e \cdot \omega) (1 - |z|^2) \leq |z - e - \varepsilon \omega|^2 \leq \rho^2,$$

if $$\varepsilon$$ is small enough in dependence of the fixed $$e$$ and $$\omega$$ (recall (52)), and thus

$$1 - |z|^2 \leq \frac{C \rho^2}{\varepsilon},$$

(71)

with $$C > 0$$ also depending on $$e$$ and $$\omega$$. On the other hand, we have that $$E_1 \subseteq B_\rho(e + \varepsilon \omega)$$, therefore

$$|z| \leq |e + \varepsilon \omega| + |z - e - \varepsilon \omega| \leq \sqrt{1 + \varepsilon^2 + 2 \varepsilon e \cdot \omega + \rho} \leq 1 - \frac{-e \cdot \omega}{10} + C \varepsilon^2 + \rho,$$

and so

$$|z|^2 \leq 1 - \frac{e \cdot \omega}{5} + C \varepsilon^2 + \rho^2.$$

This is a contradiction with (71) if $$c_\ast$$ is appropriately small and so (70) is proved.

So, from now on, $$c_\ast$$ is fixed suitably small. We observe that if $$z \in E_2$$ then

$$|z - e - \varepsilon \omega| \geq \rho = c_\ast \varepsilon,$$

and consequently

$$\int_{B_1 \cap E_2} |F_\varepsilon(z)| \, dz \leq \int_{B_1 \cap E} \frac{C (1 - |z|)^{s+\alpha}}{|z - e - \varepsilon \omega|^n} \, dz.$$

(72)

Now, we distinguish two cases, either $$\delta \leq \varepsilon^2 n$$ or $$\delta > \varepsilon^2 n$$. If $$\delta \leq \varepsilon^2 n$$, we use (72) to get that

$$\int_{B_1 \cap E_2} |F_\varepsilon(z)| \, dz \leq \int_{B_1 \cap E} \frac{C \delta}{\varepsilon^n} \, dz \leq \frac{C \delta}{\varepsilon^n} \leq C \sqrt{\delta}. $$

(73)

If instead

$$\delta > \varepsilon^2 n,$$

(74)

we observe that

$$|z - e - \varepsilon \omega| \geq 1 - |z| - \varepsilon,$$

and so we deduce from (72) that

$$\int_{B_1 \cap E_2} |F_\varepsilon(z)| \, dz \leq \int_{B_1 \cap E} \frac{C (|z - e - \varepsilon \omega| + \varepsilon)^{s+\alpha}}{|z - e - \varepsilon \omega|^{n}} \, dz$$

$$\leq C \int_{B_1 \cap E} \frac{|z - e - \varepsilon \omega|^{s+\alpha}}{|z - e - \varepsilon \omega|^{n}} \, dz + C \int_{B_1 \cap E} \frac{\varepsilon^{s+\alpha}}{|z - e - \varepsilon \omega|^{n}} \, dz$$

(75)

$$=: I_1 + I_2.$$

To estimate $$I_1$$, we split into

$$I_{1,1} := C \int_{\{z \in B_1 \cap E : \varepsilon \leq |z - e - \varepsilon \omega|^{s+\alpha-n} \}} \, dz$$

and

$$I_{1,2} := C \int_{\{|z - e - \varepsilon \omega| > \varepsilon^{1/2n} \}} \, dz.$$
Using polar coordinates, we find that
\[
I_{1,1} \leq C \int_{c_{\epsilon}}^{s/2n} t^{n-1} t^{s+n} dt \leq C \left[(\delta/n)^{s+n} - (c_{\epsilon})^{s+n} \right] \leq C \delta \frac{s+n}{2n}. \tag{76}
\]
In addition,
\[
I_{1,2} \leq C \int_{B_{1} \cap E} |z - e - \epsilon \omega|^{s+n} \leq C \int_{E} \delta^{s+n} \leq C \delta^{\frac{s+n}{2n}} = C \delta^{\frac{s+n}{2n}}.
\]
This and (76) say that
\[
I_{1} \leq C \delta^{\frac{s+n}{2n}} + C \delta \frac{s+n}{2n}.
\] \tag{77}

Moreover,
\[
I_{2} \leq C \delta^{s+n} \int_{c_{\epsilon}}^{2} \frac{t^{n-1}}{t^{n}} dt \leq C \delta^{s+n} |\log \epsilon| \leq C \delta^{s} \leq C \delta \frac{s}{2n},
\]
thanks to (74). Hence, using this and (77), and recalling (75), we obtain that
\[
\int_{B_{1} \cap E_{2}} |F_{\epsilon}(z)| \leq I_{1} + I_{2} \leq C \delta^{\frac{s+n}{2n}} + C \delta \frac{s+n}{2n} + C \delta \frac{s}{2n}.
\]

We now combining this estimate, which is coming from the case in (74), with (73), which was coming from the complementary case, and we see that, in any case,
\[
\int_{B_{1} \cap E_{2}} |F_{\epsilon}(z)| \leq C \delta^{\kappa},
\]
for some \(\kappa > 0 \). From this and (70), we obtain that
\[
\int_{B_{1} \cap E} |F_{\epsilon}(z)| \leq C \delta^{\kappa},
\]

Then, choosing \(\delta \) suitably small with respect to \(\eta \), we establish (69), as desired.

Notice also that \(F_{\epsilon} \) converges pointwise to \(f(z) \frac{(2 \epsilon \omega)^{s} (1 - |z|^{2})^{s}}{s |z - e|^{n}} \). Hence, using (68), (69) and the Vitali Convergence Theorem, we conclude that
\[
\lim_{\epsilon \to 0} \int_{B_{1}} f(z) G(e + \epsilon \omega, z) dz = \int_{B_{1}} f(z) \frac{(2 \epsilon \omega)^{s} (1 - |z|^{2})^{s}}{s |z - e|^{n}} dz,
\]
which establishes (48). \(\square \)

References

[1] Claudia Bucur, Some observations on the Green function for the ball in the fractional Laplace framework, Commun. Pure Appl. Anal. 15 (2016), no. 2, 657–699, DOI 10.3934/cpaa.2016.15.657. MR3461641

[2] ______, Local density of Caputo-stationary functions in the space of smooth functions, To appear in ESAIM Control Optim. Calc. Var.

[3] Luis Caffarelli, Serena Dipierro, and Enrico Valdinoci, A logistic equation with nonlocal interactions, Kinet. Relat. Models 10 (2017), no. 1, 141–170, DOI 10.3934/krm.2017006. MR3579567
[4] Serena Dipierro, Ovidiu Savin, and Enrico Valdinoci, *All functions are locally s-harmonic up to a small error*, J. Eur. Math. Soc. (JEMS) **19** (2017), no. 4, 957–966, DOI 10.4171/JEMS/684. MR3626547

[5] Annalisa Massaccesi and Enrico Valdinoci, *Is a nonlocal diffusion strategy convenient for biological populations in competition?*, J. Math. Biol. **74** (2017), no. 1-2, 113–147, DOI 10.1007/s00285-016-1019-z. MR3590678

[6] Xavier Ros-Oton and Joaquim Serra, *The Dirichlet problem for the fractional Laplacian: regularity up to the boundary*, J. Math. Pures Appl. (9) **101** (2014), no. 3, 275–302, DOI 10.1016/j.matpur.2013.06.003 (English, with English and French summaries). MR3168912

[7] Raffaella Servadei and Enrico Valdinoci, *Variational methods for non-local operators of elliptic type*, Discrete Contin. Dyn. Syst. **33** (2013), no. 5, 2105–2137. MR3002745

[8] ———, *Weak and viscosity solutions of the fractional Laplace equation*, Publ. Mat. **58** (2014), no. 1, 133–154. MR3161511