A compendium and comparative epigenomics analysis of cis-regulatory elements in the pig genome

Yunxia Zhao1,5, Ye Hou1,5, Yueyuan Xu1,5, Yu Luan1, Huanhuan Zhou1, Xiaolong Qi1, Mingyang Hu1, Daoyuan Wang1, Zhangxu Wang1, Yuhua Fu1, Jingjin Li1, Saixian Zhang1, Jianhai Chen1, Jianlin Han2,3, Xinyun Li1,4✉ & Shuhong Zhao1,4✉

Although major advances in genomics have initiated an exciting new era of research, a lack of information regarding cis-regulatory elements has limited the genetic improvement or manipulation of pigs as a meat source and biomedical model. Here, we systematically characterize cis-regulatory elements and their functions in 12 diverse tissues from four pig breeds by adopting similar strategies as the ENCODE and Roadmap Epigenomics projects, which include RNA-seq, ATAC-seq, and ChIP-seq. In total, we generate 199 datasets and identify more than 220,000 cis-regulatory elements in the pig genome. Surprisingly, we find higher conservation of cis-regulatory elements between human and pig genomes than those between human and mouse genomes. Furthermore, the differences of topologically associating domains between the pig and human genomes are associated with morphological evolution of the head and face. Beyond generating a major new benchmark resource for pig epigenetics, our study provides basic comparative epigenetic data relevant to using pigs as models in human biomedical research.
The Encyclopedia of DNA Elements (ENCODE) project, which aims to systematically improve the understanding of gene regulation, chromatin accessibility, histone modification, and chromatin structure, has examined humans, as well as classic model organisms including Caenorhabditis elegans, Drosophila melanogaster, and mouse. Moreover, the NIH Roadmap Epigenomics Consortium has comprehensively collected human epigenomes for tissues, providing a resource for interpreting the molecular mechanisms of human biology and diseases. However, the continuation of ENCODE and Roadmap Epigenomics projects had not extended to the domestic pig (Sus scrofa), which not only serves as a major meat source worldwide but is also frequently used as an animal model for human diseases and as a donor for xenotransplantation.

In recent years, transgenic pig models have become available for research on human diseases such as Huntington's disease, human type II diabetes, Duchenne muscular dystrophy, and Hutchinson–Gilford Progeria Syndrome. The pig also represents an attractive model for the study of human breast cancer and lung cancer. Moreover, xenotransplantation using pigs as donors has advanced rapidly in recent years, as evidenced by the success of porcine-to-baboon heart transplantation, in which genetically modified pig hearts can function for up to 195 days. Furthermore, the overall medical importance of pigs necessitates the exploration of its genomics and epigenomics to aid our understanding of human diseases and the development of new therapies.

On top of the immeasurable medical potential of this species, commercial pig farming is of great economic importance, which is reflected in a long breeding history. Large White (LW) and Duroc pigs, which are commonly used in Western commercial breeds, have been subjected to intense selection for major economic traits including higher growth rates, muscle mass, and feed efficiency. On the contrary, the Chinese local pig breeds like Meishan (MS) and Enshi Black (ES) possess relatively poor performance in various tissues (e.g., subcutaneous adipose and skeletal muscle). To date, the determination of genotype-phenotype relationships has been limited by using only genomic sequence or gene expression profiling. Thus, the characterization of differences among cis-regulatory elements in diverse tissues between different pig breeds represents a timely and relevant scientific need.

In this work, we follow the guidelines of the previous ENCODE and Roadmap Epigenomics projects and design RNA sequencing (RNA-seq), chromatin immunoprecipitation followed by sequencing (ChIP-seq), an assay for transposase-accessible chromatin using sequencing (ATAC-seq), and high-throughput chromosome conformation capture (Hi-C) methodologies to identify and characterize the function of cis-regulatory elements in the pig genome. Here, our study fundamentally enriches cis-regulatory element annotation in the pig genome, which also lays a foundation for pig and human biology studies and, especially, extends ENCODE and Roadmap Epigenomics projects in the research field of large animals.

Results

Overview of cis-regulatory elements and 3D genome architecture of the pig genome. In this study, we generated a new benchmark resource of transcriptomics and epigenomics data for domestic pigs, comprising a total of 61 samples of 12 tissues from two-week-old piglets of two Western commercial (LW and Duroc) and two Chinese local (MS and ES) breeds (Fig. 1a). We identified the genomic localization of histone H3 lysine 4 trimethylation (H3K4me3) and H3 lysine 27 acetylation (H3K27ac) by ChIP-seq and also characterized open chromatin regions using ATAC-seq methods (Supplementary Tables 1–3 and Supplementary Data 1). The saturation plots of both ChIP-seq and ATAC-seq data from different samples indicated that their sequencing depths were saturated (Supplementary Fig. 1a–b) or nearly saturated (Supplementary Fig. 1c). Furthermore, all ATAC-seq samples had over 76 million effective reads (after removing low MAPQ reads, unmapped reads, mate unmapped reads, not primary alignments, reads failing platform, duplicates, and mitochondrial reads; Supplementary Table 1), which surpassed the ENCODE project standard of 50 million effective reads for ATAC-seq data (https://www.encodeproject.org/atac-seq/).

In addition to the values of cross-correlation, the fraction of reads in peaks (FRIP), transcription start site (TSS) enrichment analyses, and Principal Component Analysis (PCA), showed that our ChIP-seq data and ATAC-seq data were of sufficient quality for further analyses (Supplementary Fig. 1d–i, Supplementary Tables 2–3, and Supplementary Data 1). The datasets, which passed quality control procedures, were used to identify cis-regulatory sequences following the ENCODE guidelines (https://www.encodeproject.org/). In total, 220,723 non-redundant cis-regulatory sequences were identified, including 37,838 putative promoters, 146,399 potential enhancers, and 137,838 open chromatin regions mapped to the susScr11 genome assembly (Fig. 1a and Supplementary Fig. 2a). AGL and FRS5 genes located on pig Chr4 and MYOG on Chr9 were chosen as examples to illustrate the signal distributions of ChIP-seq and ATAC-seq around their TSSs along with their transcriptional expression (Fig. 1b and Supplementary Fig. 2b). Note that similar numbers of these cis-regulatory element sequences were also detected based on susScr3 genome assembly (Supplementary Table 4). The combined length of these non-redundant cis-regulatory sequences was approximately 434.92 million base pairs, accounting for 17.38% of the susScr11 genome assembly (Fig. 1c).

To assess the mapping accuracy of the above-identified cis-regulatory sequences, putative enhancers and promoters were compared with TSSs annotated by the University of California, Santa Cruz (UCSC) pig project and previously published ChIP-seq data (Supplementary Table 5) from pig pluripotent stem cells and liver tissue. The results showed that approximately 50% of our putative promoters overlapped with promoters identified from published data or coincided with TSSs (Fig. 1d). Moreover, over 65% of the enhancers and known promoters identified from previously published studies can be recovered in our data (Supplementary Fig. 2c). Specifically, approximately 74% of enhancers and 98% of promoters from liver tissues were also identified in our liver tissue data (Supplementary Fig. 2d). These results indicate the high sensitivity of the methods used in this study. Notably, in liver tissue, over 53% and 36% of enhancers and promoters, respectively, were newly identified by this study (Supplementary Fig. 2e). Furthermore, in total, more than 86% of the enhancers and 50% of the promoters we identified have not been previously reported in the pig genome (Fig. 1d).

The 3D structure of the pig genome was assessed using in-situ Hi-C data where the skeletal muscle of one LW pig was used as a representative tissue. In total, 1,189,583,975 paired-end reads were sequenced, yielding more than 21x coverage of the pig genome. After filtering potentially artificial reads using the HiC-Pro pipeline, 408,546,465 unique valid contacts were obtained, among which 290,325,259 were cis-contacts. Based on these contact data, chromatin conformation was plotted as the chromatin interaction frequency (Fig. 1e, left). Moreover, a 3D genome structural...
modeling method27,28 using these data clearly showed the spatial relationships between pig genomic regions (Fig. 1e, right).

The transcriptome of the pig genome. RNA-seq was used to analyze the transcriptomic features of 52 samples of 11 pig tissues from the four pig breeds (Supplementary Table 6 and Supplementary Fig. 3a). The RNA expression in each tissue showed distinct patterns, which were grouped into 20 clusters via the kmeans function in R (Fig. 2a and Supplementary Fig. 3b). Genes that were highly expressed in all samples were presented in the p20 cluster and were primarily involved in fundamental biological processes as revealed by the DAVID29,30 GO enrichment terms, indicating them to be housekeeping genes (Fig. 2a and Supplementary Fig. 3b–c). Tissue-specific expression trends were evident for more than half of these clusters (Fig. 2a and Supplementary Fig. 3b). We further identified 4510 tissue-specific genes as determined by the \(\bar{Z} \) score matrix, where tissue-specificity was determined by at least 3-fold higher expression than other tissues in all breeds (Supplementary Data 3). Analysis of the DAVID29,30 GO terms showed that tissue-specific genes were significantly enriched for specific functions of various tissues (Supplementary Data 4). The typical examples and validations of these tissue-specific genes revealed a high consistency between RNA-seq and RT-PCR results, supporting the accuracy of our analysis (Fig. 2b, c, Supplementary Fig. 3d, and Supplementary Table 7).

We next identified 3316 new transcripts, including 1713 lncRNAs (based on the susScr11 assembly, see "Methods" section;
Fig. 2d and Supplementary Data 5), which had not been annotated previously. We detected roughly equal numbers of new transcripts in all tissues, suggesting that early investigations into pig transcriptomes possessed limited power to detect these particular transcripts (Supplementary Fig. 3e). Furthermore, we found enriched H3K4me3 signals in the vicinities of the TSSs of these newly identified transcripts (Fig. 2d, e and Supplementary Fig. 3f), providing plausible support for their transcription. Such robust identification further confirmed the advantage of using rRNA depleted RNA and constructing strand-specific libraries, which were rarely used in early studies of pigs. Our results also showed that the tissue specificity index of our newly identified
transcripts was higher than that of annotated genes using the Tau method\(^{31,32}\) in R (Supplementary Fig. 3g).

Analysis of cis-regulatory elements in the pig genome. Enhancer sequences are fundamental regulators for tissue-specific gene expression and have major functional impacts on the establishment of distinct gene expression patterns\(^{33,34}\). We cataloged such tissue-specific patterns associated with putative enhancers in various pig tissues (Fig. 2f and Supplementary Fig. 4a) and identified 15,753 tissue-specific enhancers with high confidence (see “Methods” section; Supplementary Data 6). The HOMER\(^{34}\) analysis revealed that the motifs of known transcription factors with tissue-specific expressions from other species\(^{35,36}\) were also significantly \((P < 10^{-10})\) enriched in the tissue-specific enhancers of pigs, supporting the tissue-specific functions of these enhancers (Supplementary Table 8). Results from GO analysis with the Genomic Regions Enrichment of Annotations Tool (GREAT\(^{37}\)) indicated the enrichment for corresponding tissue-specific functional processes (e.g., nervous system development in the cerebrum, Supplementary Data 7), further supporting that these identified sequences do indeed function as tissue-specific cis-regulatory elements.

The concept of super-enhancer elements is well-established—these elements typically comprise enhancer elements and represent major drivers of transcriptional activation\(^{38,39}\). In this study, 414–1306 super-enhancers were separately identified in each tissue of each breed using the ROSE algorithm\(^{38,40}\) (Supplementary Table 9 and Supplementary Fig. 4b). As expected, the expressions of super-enhancer-associated genes were significantly higher than those of typical enhancer-associated genes (Fig. 2g). Moreover, the H3K27ac intensities with super-enhancer loci also exhibited tissue-specific patterns (Supplementary Fig. 4c). Indeed, the GO enrichment analysis using GREAT\(^{37}\) indicated that the super-enhancers could largely define the identities of the respective tissue types (Supplementary Fig. 4d).

The broad H3K4me3 peaks and H3K27ac enriched active promoters were reported to induce increased gene transcriptional activation\(^{41,42}\). Results from our separate analysis revealed 418–1899 broad H3K4me3 peaks (i.e., those H3K4me3 peaks exceeding 5 kb in size) in each tissue of each breed (Supplementary Table 10). Similar to our data for the super-enhancers, the expression of genes near broad H3K4me3 peaks was significantly higher than randomly selected genes (Fig. 2g). We also separately identified 13,971–20,138 active promoters in each tissue of each breed (Supplementary Table 10). In addition, the expression of genes with active promoters was also significantly higher than the genes without H3K27ac promoters (Supplementary Fig. 5a–b). Similar to the super-enhancers, the H3K27ac intensities of active promoters also revealed tissue-specific patterns indicating their roles in driving tissue-specific gene expressions (Supplementary Fig. 5c).

To confirm the reliability and accuracy of our method, we randomly selected 15 predicted non-tissue-specific enhancers and 18 promoter sequences for validation in pig 3D4/21 cells based on the Dual-Luciferase Reporter Assay System in pig 3D4/21 cells. Data shown are means ± SD \((n = 3)\). * indicates \(P < 0.05\), ** indicates \(P < 0.01\), ** indicates \(P < 0.001\), which was calculated with a two-sided Student’s \(t\)-test without multiple comparisons.

The 3D genome structure of the pig genome. The Hi-C-based 3D structure of the pig genome was partitioned into either the active “A” compartments or the inactive “B” compartments following principal component analysis using the runHiCpca.pl script of HOMER\(^{34}\) (Fig. 3a). Our data illustrated that the “A” compartments were highly enriched in actively transcribed genes, active histone modifications, and open chromatin signals (Fig. 3b). Further analysis revealed distinct topologically associating domain (TAD) structures at 40 kb resolution (Fig. 3c). In total, 2364 boundaries were identified at this resolution, and collectively 2305 TADs were defined in the susScr11 genome assembly using the insulation score method\(^{44,45}\). Notably, our further comparisons revealed very little difference in the span lengths of TADs between human and pig genomes (Supplementary Fig. 6a). Moreover, sub-domains present in the TADs based on the insulation scores were also further characterized by the directionality index (DI)\(^{47}\) and TopDom analysis\(^{48}\) (Fig. 3c, bottom).

**Cis-regulatory elements in different TADs could be insulated by boundaries\(^{49}\), and it is possible that a significant fraction of enhancers may not interact with their nearest genes, but rather with specific long-range genes\(^{50}\). Thus, we adopted the Spearman correlation coefficients (SCCs) analysis to reveal the enhancer/gene organizations of the pig genome. The results showed that SCCs of enhancer-gene pairs in the same TADs were significantly higher than those of enhancers and genes spanning the two nearest adjacent TADs (Fig. 3d), and also those of corresponding enhancer-enhancer pairs and gene-gene pairs (Supplementary Fig. 6b, c). Thus, significant enhancer-enhancer pairs \((R > 0.5)\), gene-gene pairs \((R > 0.8)\), and enhancer-gene pairs \((R > 0.5)\).
embedded in the same TAD were identified based on their SCC values (Fig. 3d and Supplementary Fig. 6b, c).

We next identified the chromatin loops via Hi-C matrix analysis. Here, 15,485 loops at 25 kb resolution and 11,838 loops at 40 kb resolution were identified by the modified HiCCUPS algorithm (Fig. 3e and Supplementary Fig. 6d). An integrative analysis of Hi-C and cis-regulatory element datasets revealed that, at the 25 kb resolution level, 79.74% (12,347) of the loops were associated with cis-regulatory elements, and 44.47% of the loops were validated by the significantly correlated cis-regulatory elements (Fig. 3e, f). Similar statistical results were obtained at the resolution of 40 kb (Supplementary Fig. 6d). A subsequent

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-22448-x

6 NATURE COMMUNICATIONS | (2021) 12:2217 | https://doi.org/10.1038/s41467-021-22448-x | www.nature.com/naturecommunications
analysis that integrated the loop data with open chromatin regions based on the ATAC-seq data revealed significant enrichments for CTCF-binding motifs in the anchors of these loops (Fig. 3g). These results further support that the role of CTCF binding in mediating the 3D structure of mammalian genomes is strongly conserved.47,51

To investigate the global nature of enhancers in the regulation of complex traits in pigs, we collected published genome-wide association studies (GWASs) significantly-associated SNPs and investigated the enrichment of enhancers around them. In total, 7238 published GWAS significantly-associated SNPs were collected, and 3445 of them were non-redundant. Our results found that enhancers were significantly enriched around the GWAS significantly-associated SNPs compared with random genomic regions at different extended distances (Fig. 3h). Previous studies reported that the PLCB4 gene represents one of the candidate genes for pig growth and average daily gain traits.52,53 Our results extend this finding by showing the significantly-associated SNPs that were associated with an average daily gain in pigs54,55 were located near the significantly correlated enhancers of the PLCB4 gene (Fig. 3i). Furthermore, the PLCB4 gene was highly expressed in the cerebellum, and its expression was also detected in muscle tissue. These results indicated that the enhancers around the GWAS significantly-associated SNPs were potentially associated with the related pig complex traits.

Comparison of histone changes and genome sequence variants across different pig breeds. It is known that major economic traits including backfat thickness and growth rate differ between Western commercial and Chinese local pig breeds. We identified 7708 non-redundant differentially expressed (DE) genes at FDR < 0.05, of which 4469 showed \(\log_{2} FC \geq 1 \) (Supplementary Data 9), using the DEseq2 R package and based on the gene expressions in skeletal muscle, fat, spleen, liver, and heart among the four pig breeds. In addition, more DE genes were identified through the comparison between Western commercial pig and Chinese local pig breeds than those between LW and Duroc in most tissues (Fig. 4a, b, Supplementary Fig. 7a and Supplementary Data 9).

Based on these findings, we questioned how changes in histone modifications altered differential gene expression between breeds. Taking the skeletal muscle as a representative tissue, Pearson correlation coefficients of H3K27ac signals within ±500 kb (5 kb window size) ranges of DE genes were higher between LW and Duroc than those between Western commercial (LW or Duroc) and Chinese local (ES or MS) breeds (Fig. 4c). We further investigated the fold-changes of H3K27ac intensities of enhancers, which were significantly correlated with the DE genes based on our Hi-C TADs and cis-regulatory elements correlation results, between different breeds using the edgeR R package. Our results showed that the changes in H3K27ac intensities of enhancers were consistent with their significantly correlated DE genes, but were different from those of the enhancers significantly correlated with randomly selected non-DE genes (Fig. 4d). Concordant results were also observed from the comparison of active promoters of DE genes (Fig. 4e). These results indicated that gene expression differences between the four breeds were associated with the differential enrichment of H3K27ac at enhancers or active promoters.

In our study, 251,361 SNPs with differential allele frequencies were localized in active promoters or enhancers based on the comparison of Western commercial pigs with Chinese local pigs. Using LW and ES pigs as a representative comparison, there was a T/C SNP (Chr1:190035161) with a difference in allele frequency \((\Delta \text{AF} = 0.63) \) located in the ATAC-seq footprint in the H3K27ac strongly-enriched enhancers \((R > 0.66) \) of muscle DE transcription factors SIX1 and SIX4 (Fig. 4f). In addition, a G/C SNP (Chr12:5451199) with \(\Delta \text{AF} = 0.64 \) was identified in the ATAC-seq footprint of the active promoter of another muscle DE gene, ACOX1 (Supplementary Fig. 7b). Moreover, there was a possibility that the T/C SNP and the G/C SNP had a disruptive effect on the motif of muscle expressed transcription factors ZNF341 (Fig. 4f) and PLAG1 in pigs (Supplementary Fig. 7b), respectively. These results suggested that these two SNPs with differential allele frequencies may be related to the activities of cis-regulatory elements in the DE genes SIX1, SIX4, and ACOX1.

We further investigated how genomic variants contributed to a histone modification and gene expression differences. We calculated the Fixation index value \((F_{ST})^{35} \) between LW \((n = 20) \) and MS \((n = 16) \) pigs using SNPs and small indels (2–50 bp) from WGS data. The differences in genomic sequences between LW and MS were well represented in the top 10% of the changes (Supplementary Fig. 7c). When all five tissues were combined, 92.36% of the top 10% of \(F_{ST} \) regions overlapped with the cis-regulatory elements (promoters or enhancers), and 51.44% of them additionally
overlapped with significantly differential cis-regulatory elements (H3K27ac densities, \(FDR < 0.05 \), and \(\log_{2}\text{FC} > 1 \)) between LW and MS (Supplementary Table 11). In each tissue, 11.40–29.85\% of the top 10\% of \(F_{ST} \) regions overlapped with significantly differential cis-regulatory elements (Fig. 4g and Supplementary Fig. 7d). These ratios were obviously or significantly higher than that of the middle 10\% of \(F_{ST} \) regions and the bottom 10\% of \(F_{ST} \) regions (Fig. 4f and Supplementary Table 11).

Moreover, combining the significantly correlated enhancer-enhancer and enhancer-gene pairs in the same TADs,
Fig. 4 Differentially expressed genes and variable histone intensity of cis-regulatory elements among pig breeds. a The FDR distribution from a comparison of differential gene expression in muscle tissue of LW compared with ES pigs. b The FDR distribution from a comparison of differential gene expression in muscle tissue between LW and Duroc pigs. The red dots indicate upregulated genes, and blue dots indicate downregulated genes. c Pearson correlation heatmap of H3K27ac intensities at ±500 kb around all differentially expressed genes (FDR < 0.05) in muscle tissue of four pig breeds. d Boxplot of fold change (FC) in H3K27ac intensities of the enhancers (Up n = 2161; Down n = 3762; Stable n = 6079) of differentially expressed genes (FDR < 0.05 and |log2FC| ≥ 1) between different pig breeds in each tissue. e Boxplots showing fold changes in the H3K27ac intensities of active promoters (Up n = 2925; Down n = 5175; Stable n = 11,711) of differentially expressed genes (FDR < 0.05 and |log2FC| ≥ 1) between different pig breeds. f An example of a T/C SNP (Chr:190035161) with allele frequency difference (ΔAF = 0.63) between LW and ES located in the enhancer correlated with the expression of transcription factors of SIX1 and SIX4. Yellow shading indicates the region harboring the SNP, and black circles indicate Hi-C contact maps. g The different 10% quantile FDR regions associated with cis-regulatory elements. * in the left panel indicate P < 0.01 (P = 0.0042, P = 0.0020) and was calculated by two-sided paired t-test (n = 5). *** in the right panel indicates P < 0.001 (P = 0.00018, P = 0.00037) and was calculated by a two-sided paired t-test (n = 5). h Left: distribution of FDR values and log FC in histone modifications (H3K27ac) of cis-regulatory elements in liver tissue of LW and MS pigs. Right: example of histone modification signal of enhancers and promoters near the differentially expressed UGT8 gene. Yellow shading indicates the top 10% of the FDR genome region. P-values in d and e were calculated by the two-side unpaired Wilcoxon test. The bounds of boxplots represent the 25th percentile, median, and 75th percentile. The minima and maxima values of boxplots were defined after excluding outliers. The numbers in brackets located in the tracks of ChiP-seq, ATAC-seq, and RNA-seq indicate signal intensities.

18.09–50.28% of DE genes were associated with regions with differences in genome sequence and histone modification or only differences in the histone modification (Supplementary Table 12). In conclusion, our results indicated that variations in genome sequence and changes in histone modifications might both be associated with differences in gene expression between different breeds, but changes in histone modification were likely more closely related to differential expression of genes.

The conservation of cis-regulatory elements among mammalian genomes. Given that a high level of sequence conservation is frequently used as evidence of conservation of functional elements, we compared the cis-regulatory elements between the pig, human, and mouse genomes based on human Roadmap Epigenomics6 and mouse ENCODE4,5 data using the LiftOver58 tool (length = 1 kb and minMatch = 0.5). We found that 77.32% of enhancers and 88.94% of promoters in the pig genome were sequence conserved in the human genome (Fig. 5a and Supplementary Table 13). Furthermore, 23.45% and 53.08% of the pig enhancers and promoters, respectively, were sequenced and usage conserved with the human enhancers in various tissues. The remaining ~40% of pig enhancers, which were the only sequences conserved with the human genome, were also enhancers in the corresponding human tissues. The remaining ~40% of pig enhancers were confirmed to be conserved in both sequence and usage with human enhancers in various tissues. The remaining ~40% of pig candidate regulatory elements were not conserved in human genomic sequences or usages. Similar results were observed in the comparison of cis-regulatory elements between the mouse1,4,3 and human genomes1 and in the comparison of liver cis-regulatory elements across 20 mammalian species25. However, our reporter assay results showed that pig-specific enhancers and promoters exhibited activities in human HEK-293T cells and mouse C2C12 cells (Supplementary Fig. 9b–g). Thus, these results indicated that non-conserved elements could arise as species-specific events, which may play a crucial role in species characteristics.

Comparison based on a gene expression matrix showed similar expression patterns of pig-human orthologous genes (one-to-one) within each of nine pig and human concordant tissues (Supplementary Fig. 10a). Further, SCCs for gene expressions of these orthologous gene pairs were significantly higher than those between the non-orthologous genes (Supplementary Fig. 10b). We observed both conserved and non-conserved enhancers near the pig and human orthologous genes of LGR4 and TTR, where similar H3K27ac histone modification patterns were observed (Fig. 5b and Supplementary Fig. 10c). Between the nine pig and human corresponding tissues, SCCs of H3K27ac intensities in the vicinity of the pig-human orthologous gene pairs (±500 kb) were significantly higher than those between the non-orthologous genes (Fig. 5c). In conclusion, we speculate that enhancers conserved in the pig and human genomes, as well as enhancers with lineage-specific sequences but similar histone (H3K27ac) modification patterns, both contributed to the similar gene expression patterns observed between pig and human concordant tissues.

Comparison of TAD structures between the pig and human genomes. TAD boundaries can be conserved between different species47. The comparison of 3D genome structures between pig skeletal muscle and human embryonic stem cells (hESCs)46 revealed that 1871 TAD boundaries were usage conserved between pigs (79.15%) and humans (67.28%) (Fig. 5d and Supplementary Fig. 11a). Recently, a growing body of studies has reported that the changes in 3D genome structure can help explain regulatory evolution, with especially pronounced effects on the reorganization of TADS59,60. By comparing the TAD structures of pigs and humans, we found that the boundaries of each of the 14 human TADs were rearranged, resulting in localization on different pig chromosomes (see “Methods” section; Supplementary Data 10). In the nine pig and human concordant tissues, SCCs of expression of genes located in the same human TADs, but on different pig chromosomes, were significantly increased in humans (Fig. 5e), a finding which indicated that the rearrangements of TADs contributed to the changes in the regulation of gene expressions between pigs and humans. Genes completely contained in the aforementioned pig-human rearranged TADs were linked to human phenotypes in the Human Phenotype Ontology (HPO) database using TopGene61. Nine out of the top 20 most significant enrichments of human phenotypes (P < 0.05 and gene count >2) were associated with human head and face
phenotypes (Fig. 5f and Supplementary Data 11). Nevertheless, we did not observe any similar HPO enriched terms from the same analysis using 14 randomly selected pig and human conserved TADs (Supplementary Fig. 11b).

Moreover, there were 19 genes linked to the human head and face phenotypes in the HPO database, which were also fully contained within eight out of the 14 TADs rearranged between pigs and humans (Fig. 5g and Supplementary Data 10). We next compared the chromosomal positions of these eight human TADs in more than 20 species to view their rearrangements. These TADs were clustered into three categories (Supplementary Fig. 11c–e and Supplementary Data 10): (i) Two TADs were...
rearranged between pigs and humans, containing IGFIR and SEC23A in each, bearing enriched functional annotations associated with lip and nose related phenotypes; (ii) Four TADs shared their rearrangements in 2–4 non-primate mammalian genomes and harbored a total of 11 genes, including GORAB and PRRX1 with functional annotations relating to the skull, malar, and nose phenotypes; (iii) Two TADs were rearranged between primate and other mammalian genomes, and these involved six genes, including PHOX2A, XPA, and TDRD7 that were linked primarily to the vision and face-related traits. It is worth noting that the vision of humans is better than most mammalian species.

Furthermore, among the above-mentioned 19 human head and face phenotype-related genes, 12 were associated with abnormalities in the head and facial phenotypes caused by gene mutations in other species including the mouse (mutant mouse models), Zebrafish, and Xenopus. (Supplementary Data 10). In conclusion, these results suggested that pig-human inter-chromosome TAD rearrangements have likely contributed to the evolution of nose, mouth, and other craniofacial phenotypes (Fig. 5b).

Discussion

In this study, we performed analyses of transcriptional activities, chromatin accessibility, chromatin landscapes, and 3D architectures of the pig genome. Collectively, these analyses have significantly improved our understanding of the functional elements in the pig genome. Furthermore, our study adds another map of cis-regulatory elements for large mammals alongside the human ENCODE and Roadmap Epigenomics projects. In particular, we conducted epigenetic comparisons among different pig breeds and also three mammalian species, providing critical contextualization and analysis that will facilitate improvements in both livestock (pig) breeding and human disease and biological research.

When repeat elements in an organism genome cause a small fraction of signal-artifact regions in ChIP-seq peak calling, they are termed “blacklists.” However, the accurate identification of blacklists among the human, mouse, Caenorhabditis elegans, and Drosophila melanogaster genomes have been determined by more than 200 or even over 1000 input datasets. In this study, only 61 input datasets of obvious small sample size were present, limiting our ability to accurately identify blacklists in the pig genome. However, it is likely that additional collection of epigenetic data will increase over time, leading to accurate identification of blacklists of the pig genome in the future.

Based on the fundamental epigenetics data from the human genome, disease-associated genetic variants were previously identified with high enrichment in specific regulatory chromatin states, tissue-specific histone marks, and open chromatin regions. Through our study, we identified tissue-specific genes and enhancers in the pig genome and revealed that cis-regulatory elements were highly conserved between human and pig genomes. These datasets will represent a valuable resource for both the ongoing and future development of pigs as an animal model for human disease.

Previous studies based on ENCODE and Roadmap Epigenomics data have provided strong examples for the characterization of potential roles of causal mutations in cis-regulatory elements in gene regulation. As such, we investigated the enhancer enrichment around pig phenotype-associated SNPs that were identified by previously published GWAS in different pig populations. Our results showed the enhancers were significantly enriched around such SNPs, indicating the potential regulatory function of these enhancers in the genetic regulation of pig complex traits.

Based on the comparison of the genomic variants between LW and MS, we discovered that over half of the genomic regions with sequence differences (top 10% FST regions) were embodied by their differential histone modification levels. Further integration of the enhancer/gene interaction data, the regions bearing sequence variants and histone modification changes, or differing in the histone modification alone, reflect the ongoing and future development of pigs as an animal model for human disease.

Moreover, it bears emphasizing that, compared with previous studies of genome sequence variants, gene expression differences between Western commercial and Chinese local pig breeds or identification of phenotype-associated SNPs using GWAS, our study possesses enhanced utility as we combined datasets from WGS, Hi-C, histone modification, and gene expression. Collectively, this study provides a rich data resource and supports informative approaches for the interpretation of genome mutation information, such as selection sweeps and GWAS.
ChIP-seq as well. The frozen tissues were ground to a powder in liquid nitrogen. All experiment protocols were approved by the Ethics Committee of Huazhong Agricultural University (HZAUSW-2018-008).

RNA-seq library construction and sequencing. Total RNA from skeletal muscle, spleen, heart, liver, and fat of two individuals from MS, ES, and Duroc pigs and total RNA from skeletal muscle, spleen, heart, kidney, liver, fat, lung, thymus, cerebrum, cerebellum, and duodenum of two LW pigs was extracted using TRIzol reagent (Thermo Scientific, 15596026). The RNA samples were of high quality with RIN values of 6.10–9.90 and 90% of them had a RIN higher than 7.00 (Supplementary Table 6). The high-quality RNA samples were further purified by the rRNA-depletion method and used to construct strand-specific RNA-seq libraries according to the protocol provided by Illumina (Illumina, San Diego, CA). The libraries were sequenced using the Illumina HiSeq X Ten (PE150) platform.

ChIP-seq library construction and sequencing. The tissues used for ChIP-seq analysis included skeletal muscle, spleen, heart, liver, and fat from MS, ES, LW, and Duroc pigs (n = 2 per breed). Tissues of the kidney, lung, thymus, pancreas, cerebrum, cerebellum, and duodenum from two LW and one ES pigs were used for ChIP-seq. Ten million 150 bp sequencing reads were generated.

ATAC-seq library construction and sequencing. Approximately 5 mg of tissue from each of the skeletal muscle, spleen, heart, liver, and fat samples was crushed into a fine powder in liquid nitrogen (Supplementary Table 1). Pulverized tissues were suspended in 1 mL of ice-cold PBS and then gently spun down. The cell pellet was resuspended in 1 mL lysis buffer (50 mM HEPES with pH 7.5 [Life technologies, 15630-080], 140 mM NaCl [Ambion, AM9260], 1 mM EDTA with pH 8.0 [Ambion, AM9260], 7.5% glycerol [Sigma-Alrich, G7757], 0.5% NP-40 [Roche, 1175459901], 0.25% sodium deoxycholate [Sigma, D8670]) and incubated by sonication with a high-intensity focused ultrasound processor (Cell disruption system, Sonics Vibra Cell, USA) for 10 min. The sonicated DNA was sheared to a size of 300 μm by sonication with three cycles of 10 s on and 10 s off. The sonicated DNA was purified by the QIAquick MinElute PCR Purification Kit (QIAGEN, 28006). The purified DNA fragments were amplified with the appropriate number of cycles as determined by qPCR. Size selection of the amplified PCR products (100–600 bp fragments) was performed by gel-purification informing previously studies38,41. Products from the size selection step were quantified and sequenced using an Illumina HiSeq X Ten PE150 platform.

In situ Hi-C library construction and sequencing. Skeletal muscle tissue from one LW pig was selected to do in situ HiC experiment51. The sample was crushed into a fine powder in liquid nitrogen and then fixed with 3% formaldehyde at room temperature for 20 min. A final concentration of 0.2 M glycine was added to quench the fixation. Nuclear lysates were fragmented by Covaris S220 (Adaptive Focused Acoustics®). For each tissue, 3 μg of H3K4me3 (Millipore Cat #04-745, RRID: AB_1163444) or 3 μg of H3K27ac (Abcam Cat #ab4729, RRID: AB_2118291) antibodies were mixed with 11 μL M-280 sheep anti-rabbit IgG Dynabeads (ThermoFisher, 11203D), with rotation at 4 °C for 4 h. For per immunoprecipitation, approximately 30 μg of chromatin was incubated with antibody–beads complexes overnight at 4 °C. ChIP-seq libraries were constructed following Illumina protocols for Illumina HiSeq X Ten PE150 platform.

Reverse transcription PCR (RT-PCR). Total RNA from the spleen, skeletal muscle, liver, heart, fat, thymus, lung, kidney, duodenum, cerebrum, and cerebellum of LW pigs was extracted using TRIzol reagent (Thermo Scientific, 15596026). Then 1μg RNA was performed to do reverse-transcription with ReverTra Aid First Strand cDNA synthesis kit (K1621, Thermo Scientific, USA) following the instruction. Next, four folds diluted cDNA was used for PCR amplification, and primer information was listed in Supplementary Table 7.

RNA-seq Mapping and assembly. The reads were mapped to susScr1 (Sus scrofa 11.1) reference genome assemblies using TopHat v2.1.15. The transcript assembly of each sample was performed separately by using a BAM file as the input file for Cufflinks v2.2.184. The resulting individual transcript assemblies were merged further to a single transcript assembly using the Cuffcompare utility, which was included with the Cufflinks package v2.2.184. The new GTF file for the pig genome. At first, we selected the transcripts that were assembled in two replicates in the transcript assembly file of each sample. Second, the filtered transcript assembly files were merged using the Cuffmerge program of Cufflinks v2.2.184. Then, the Cuffcompare utility of Cufflinks v2.2.184 was applied again to integrate the merged transcript assembly file and the IncRNA GTF file. The new GTF file was used to calculate transcript expression levels using RSEM v1.3.079. The last step was to filter the transcripts to identify new transcripts by the following criteria: (i) transcripts on the same strand of known transcripts and exons overlapped with any known transcripts were omitted; (ii) In cDNAs which were identified before were removed; (iii) transcripts with class code “x”, “i”, or “u” and with FPKM ≥ 5 at least in any two replicates.

We further calculated the H3K4me3 intensities near to IncRNAs and other types of newly identified transcripts via the computeMatrix function of deepTools v2.2.080, and created a profile plot by using the plotProfile function of deepTools v2.0. The ChIP-seq data were processed using the procedures described below in the “ChIP-seq” section. Then, the newly identified transcripts with protein-coding capacity were selected by CPC v2.081 and compared with the NCBI Reference protein database of humans (taxid:9606) using BLAST v2.2.29. The cutoff of BLAST results was set as EXPECT threshold <1.e-5.

Calculating gene expression and identifying tissue-specific genes. The GTF file of IncRNAs and other types of newly identified transcripts was integrated with the
was calculated according to a previous Tau method31,32 with a custom R script in R by following four steps: (i) narrow peaks with failing platform, and duplicates using SAMTools v1.993 and Picard v1.126 (https://broadinstitute.github.io/picard). Also, sequenced reads in the filtered BAM files were defined as effective reads for Chip-seq datasets. Narrow peaks and bdg signal tracks were generated with MACS2 v2.1.094 (-g genome.size -p 0.01 --nomodel --shift 0 --extsize n --keep-dup 1 -B --SPMR). The Input reads were aligned to susScr111 and susScr3 genome assemblies using BWA v0.7.1595. The filtered BAM files were generated by removing low MAPQ reads (<25), unmapped reads, mate unmapped reads, not primary alignments, reads on failed platform, and reads using SAMTools v1.990 and Picard v1.126 (https://broadinstitute.github.io/picard). Quality control. The cross-correlation values, including normalized strand coefficients (NSC) and relative strand correlations (RSC), were calculated for each sample via the ENCODE Chip-seq pipeline as well. The fraction of reads in peaks (FRIP) scores were calculated based on read counts (FRIP = reads falling into peak regions/total mapped reads). Samples with NSC > 1.05, RSC > 0.8, and FRIP > 1% were considered to be qualified.90 For saturation analysis, we ranked all 61 H3K27ac Chip-seq samples by their numbers of effective reads. Then, one sample of each condition was chosen randomly from the 25% quantile, the 25–75% quantile, and the 75% quantile, respectively, to evaluate the saturation of sequencing depth. The narrow peaks for a series of sub-samples (10%, 20%, 30%, …, 80%, 90%) down-sampled from the effective reads for each Chip-seq sample were calculated using the aforementioned ENCODE pipeline. The same Input samples, which was down-sampled (equal to the minimum size of chosen samples) from the effective reads for each Input sample, was used as a control for total sub-samples of the same Chip sample. The saturation plot was generated based on the significant peak number ($P < 10^{-6}$) and the fraction of effective reads. Moreover, the saturation analysis for H3K4me3 Chip-seq samples was processed by the same method as in the above description. TSS enrichment scores for each sample were calculated and plotted by using the ENCODE script (https://github.com/ENCODE-DCG/chip-seq-pipeline/2/rob/ master/src/encode_task_tss_enrich.py). The cutoff value of the TSS enrichment score (−5) referred to the ATAC-seq standard of ENCODE (https://www.encodeproject.org/atac-seq). Data reproducibility and peak calling. Read coverage of genomic regions for filtered BAM files was computed to assess the genome-wide similarities of replicate BAM files with 2 kb bin size by multiBamSummary bins function in deepTools v2.096. The read coverage matrix was depth normalized (RPM, reads per million mapped reads) followed by quantile normalization with the normalize.quantiles function of pre-processCore package v1.40.096 in R v3.4.3. The resultant matrix was then used to perform principal components analysis with pcorpc function in R v3.4.3. In addition, the Pearson correlation coefficients between any two replicates were estimated based on the read coverage matrix resulting from the above multiBamsummary step. If the Pearson correlation coefficients of read coverage were >0.83, the replicate BAM files were merged as one Chip BAM file or Input BAM file for peak calling with the aforementioned ENCODE pipeline as well. Peaks were further processed by following four steps: (i) narrow peaks with $P < 10^{-5}$ were filtered out; (ii) read coverage of 2 kb region centered at the midpoint of peaks was calculated with multiBamSummary BED-file function in deepTools v2.096 and normalized with read depth ($IP_{\text{norm}} = IP_{\text{peak region total}}/\text{IP(total mapped reads per million INPUTRPM)}$), ($IP_{\text{Input}} = IP_{\text{Input region total}}/\text{IP(total mapped reads per million INPUTRPM)}$), (iii) the merged enriched regions for H3K4me3 and H3K27ac were defined with more than a two-fold change of normalized read coverage ($IP_{\text{norm}} > 2 \times \text{INPUTRPM}$) and with normalized read coverage change ($IP_{\text{Input}} - \text{INPUTRPM}$) > 1; and (iv) the overlap of enriched regions were merged, and then the 2 kb regions centered at the midpoint of merged regions were acquired to identify enhancers and promoters. Identification of cis-regulatory elements. The cis-regulatory elements, including enhancers and promoters, were identified in each tissue based on the above-enriched regions. The enriched regions for H3K4me3 were defined as potential promoters. The enriched regions for H3K27ac overlapped with extended regions (2.5 kb upstream and 1 kb downstream) of a gene transcription start site (TSS), which was downloaded from UCSC Table Browser and had miRNA removed nor the enriched regions of H3K4me3 were finally designated as enhancers. Super-enhancers of each breed and tissue were identified in accordance with ROSE default parameters from the Young Lab. Moreover, the enriched regions of H3K27ac, which overlapped with a flanked TSS region (upstream 2.5 kb and downstream 1 kb) or a potential promoter, were identified as active promoters. The broad H3K4me3 peaks were identified by referring to Chen’s method41 based on H3K4me3 broad-peaks detected with MACS2 v2.1.094 (-g genome.size -p 0.01 --nomodel --shift 0 --keep-dup 1 --broad) and with minor threshold modification including: (i) the cutoff for $P < 10^{-8}$, fold change >4, and peak width >5 kb were adopted to filter peaks; and (ii) the filtered peaks that overlapped with TSS extended regions, including UCSC-annotated genes and newly identified transcripts in our RNA-seq analysis, were identified as the broad H3K4me3 peaks. For each tissue and breed, identification of all cis-regulatory elements was performed independently. Comparison with previous studies. The H3K27ac/H3K4me3 Chip-seq data of pig liver and induced pluripotent stem cells were downloaded from the NCBI dataset (Supplementary Table 5) and processed using the same methods as described above to identify enhancers and promoters. Moreover, the enriched regions from these data and extended regions of the TSS site as described above were used as the known promoters. The intersect command of BEDTools v2.26.097 was used to detect the overlap of cis-regulatory elements from the previous and present research with the parameter “-f 0.1 -r”. Identification of tissue-specific enhancers. The 2 kb enhancers from different tissues of each breed were merged and extended around their center into a 2 kb region. These whole regions were defined as total enhancers. For the total enhancer regions, Chip (H3K27ac) reads counts and Input reads counts were counted with multiBamSummary BED-file function in deepTools v2.096, and normalized read coverage changes ($IP_{\text{norm}}/\text{INPUTRPM}$) were calculated as described above. Then, the matrix of normalized read coverage changes for total enhancers in each tissue from each breed was normalized with the normalize.quantiles function of pre-processCore package v1.40.096 in R v3.4.3. The enhancers with greater than 1 quantile-normalized read coverage change in the same tissue from different breeds but less than 0.5 in any other tissues were defined as tissue-specific enhancers. Gene ontology enrichment analysis of tissue-specific enhancers. The cis-regulatory element positions were converted to those corresponding to the human genome (hg19) using LiftOver102 utility from UCSC with “minMatch = 0.1” and other default parameters. The enrichment analysis of GO Biological Process for these converted cis-regulatory element regions was performed using the Genomic Regions Enrichment of Annotations Tool (GREAT v.3.0.093). Motif analysis in the tissue-specific enhancer regions. The motif analysis of enhancers was performed using the following steps: (i) the total H3K27ac narrow peaks of each tissue for total enhancers were merged using BEDTools v2.26.097 and used to find motifs with HOMER’s findMotifGenome v4.10.334 (ii) the enhancer matrix of normalized read coverage change (without quantile-normalized), which was calculated as described in the “Identification of tissue-specific enhancers” section, was sorted according to the average value of the same tissue across all pigs; (iii) for each tissue, the corresponding H3K27ac Chip narrow peaks of the top 5000 narrow peaks were further sorted based on P-value and then the top 3000 narrow peaks were used to find motifs with HOMER’s findMotifGenome v4.10.334; (iv) the total enhancer motifs with $P < 10^{-10}$ in at least one tissue and their corresponding transcription expressed in corresponding tissue (TPM > 1) were considered significantly enriched motifs, and similar motifs were merged by TOMTOM v4.11.229 with $P < 10^{-5}$. Analysis of H3K27ac intensity patterns at super-enhancer regions across different tissues of four pig breeds. The analysis of H3K27ac modification patterns of super-enhancers across different tissues was performed using the following steps: (i) the super-enhancers from different tissues of the four pig breeds were merged as total super-enhancers; (ii) the read coverage of H3K27ac per total super-enhancer in each tissue of each pig breed was calculated using the multiBamSummary BED-file...
function of deepTools v2.088; (iii) the normalized matrix of H3K27ac intensity was

Analysis of H3K27ac intensity patterns at active promoters. Genes that were
detected by RNA-seq and with TSS regions or potential promoter regions that
overlapped with H3K27ac enrichment regions were defined as active promoter-
associated genes. The remaining genes detected by RNA-seq were defined as
without H3K27ac promoter-associated genes. The analysis of H3K27ac modifica-
tion patterns at active promoters in each tissue of LW pigs was performed using
the following steps: (i) the active promoters from each tissue of LW pigs were merged
and extended around their center into 2 kb regions which were defined as total
active promoters; (ii) the read coverage of H3K27ac per total active promoter was
calculated using the multiBamSummary BED-file function in deepTools v2.088;
(iii) the normalized matrix of H3K27ac intensity was determined using IPcHIC-
INPUT function, followed by normalization using the normalize-quantiles function in
preprocessCore packages v1.40.096 in R v3.4.3; and (iv) clustering and plotting of
H3K27ac normalized intensity patterns of active promoters were performed using
the kmeans function and the heatmap package v1.0.1291 in R v3.4.3, respectively.

ATAC-seq

Mapping and peak calling. ATAC-seq datasets were processed with reference to
the ENCODE ATAC-seq pipeline (https://github.com/kundajelab/atac_dase_pipelines).
After checking and trimming the adapter with Cutadapt v1.1499, the ATAC-seq reads
were mapped to pig susSc11 and susSc3r reference genome assemblies using Bowtie2
v2.3.4.1600. Low MAQ reads (<25), unmapped reads, unmapped reads not,
primarily aligning, reads failing platform, and duplicates of mapped BAM files were
removed using SAMTools v1.993 and Picard v1.126 (https://broadinstitute.github.io/
picard). The effective reads were generated by further removing mitochondrial reads
using BEDTools v2.26.097 to call peaks. The peak for each replicate was called indi-
vidually with MACS2 v2.1.094 (g genome-size = 0.01 - nonmod mer - shift -75 -
size 150 -B -SPMR -keep-dup all -call-summits) following the guidelines of the ATAC-
seq pipeline from the ENCODE project (https://github.com/kundajelab/atac_dase-
pipelines). The same "genome.size" was used as in ChIP-seq processing.

Quality control. The cross-correlation values were calculated for each sample using
the above ATAC-seq pipeline (https://github.com/kundajelab/
atac_dase_pipelines). The thresholds of NSC and RSC referred to ChIP-seq. The FRP
scores for each sample were calculated with the procedure mentioned pertain-
ing to ChIP-seq. Samples with FRP > 0.2 were considered to be qualified
(https://www.encodeproject.org/atac-seq/).

For saturation analysis, we ranked all 25 ATAC-seq samples by their numbers
of effective reads. Next, we randomly chose one sample from the 25% quantile, the
25–75% quantile, and the 75% quantile, respectively, to evaluate the saturation of
sequencing depth. The narrow peaks for a series of subsamples (10%, 20%, 30%,
80%, 90%) of the effective reads for each sample were called using the aforementioned
ATAC-seq pipeline. The significant peak number (P < 10^-5) was plotted on a fraction of effective reads. TSS enrichment scores for each sample were calculated and plotted by using the ENCODE script (https://github.com/ENCODE-DCC/atac-seq-pipeline/blob/master/src/encode_task_tss_enrich.py).

The CUFFHT (v3.2.0.1601) of enhancers were arranged by the same information of
section) of enhancers were arranged by the same information of

Identification of short variants. In total, we downloaded 491 pig whole genome sequences from public databases which were also collected in our previous
study109. The raw sequencing data were converted to fastq files by using SRA-
Toolkit v2.8.2109, and the fastq files were trimmed by removing adapters and low-
quality bases using Trimmomatic v0.36107. Next, the remaining high-quality reads
were aligned to the Sus scrofa11 reference genome assembly using BWA v0.7.1792.
Finally, the high-quality aligned reads with few mismatches (<6) were used for
short variant detection. The confidently short variants were obtained by applying
the following criteria: (i) “-selectType INDEL -minIndelSize 2 -maxIndelSize 50 -selectSNP”; (ii) “-QD 2.0 | DP > 5 | RF < 0.2 | MQ < 10.0 | QUAL < 20.0 | REQS 25000 | FS > 10.0”.

Finally, both the SNP and small Indel VCF files were then further filtered using
VCFTools v0.1.15108. SNPs with high allele frequencies between different
breeds. Allele frequency differences (∆AF) were calculated from the comparison
of Western commercial pigs (n = 195) with Chinese local pigs (n = 177) and with
a comparison of LW and Doruc pigs (n = 79) with MS and ES pigs (n = 18) using
VCFPAI v1.15109. SNPs with high ∆AF (∆AF > 0.4) between Western commercial
pigs and Chinese local pigs, and between LW and Doruc pigs and MS and ES pigs,
were determined as SNPs with differential allele frequencies.
Comparative analysis between different pig breeds

Analysis of differentially expressed genes and differential cis-regulatory elements among the four breeds. DE genes between breeds were identified separately for each tissue (skeletal muscle, spleen, heart, liver, and fat) and the reads count of the gene expression matrix were used as input in DEseq255 in R v3.4.3. The H3K27ac intensity around (±500 kb) DE genes (FDR < 0.05), between any two breeds of pig muscle, was calculated using changes in muscle normalized H3K27ac read coverage relative to Input (IP raw - INPUT raw) with 5 kb window size by multiBamsummation BED-file function of deepTools v2.0.08. We next calculated the Pearson correlation coefficients between four pig breeds using the above-calculated H3K27ac intensity with cor function in R v3.4.3.

The enhancers between any two breeds for each tissue (skeletal muscle, spleen, heart, liver, and fat) were identified by the following steps: (i) the enhancers with changes in normalized H3K27ac read coverage (IPraw/IPINPUTraw) calculated from "Identification of tissue-specific enhancers" section less than 1 in two breeds were removed; (ii) the enhancers which overlapped with super-enhancers in corresponding breeds were removed; (iii) the remaining enhancers underwent differential analysis using package edgeR56 in R v3.4.3 with H3K27ac reads counts of two replicates from any two breeds as input data, which was computed via the multiBamsummary BED-file function of deepTools58 v2.0; and (iv) the significant cutoff was set at FDR < 0.05 and |log2FC| > 1. Moreover, the differential active promoters between any two breeds for each tissue (skeletal muscle, spleen, heart, liver, and fat) were identified with a similar method except for the super-enhancer filtering step.

Based on DEseq2 results, we classified genes into three categories, which included upregulated genes (log2FoldChange ≥ 1 and FDR < 0.05), downregulated genes (log2FoldChange ≤ −1 and FDR < 0.05), and stable enhancers. Enancers associated with enhancers with genes were filtered based on our significantly correlated enhancer-gene pairs within the same TAD. The accumulated logFoldChange values of enhancers and active promoters from the edgeR results above, which were associated with upregulated genes, downregulated genes, or random selected stable genes, were used for plotting boxplots.

FDR value calculation. The FDR value between LW (n = 20) and MS (n = 16) was calculated by VCTools v0.1.1508 with parameters "--f-window-size 150000 --f-window-step 15000".

Human Roadmap Epigenomics and mouse ENCODE data. Human ChIP-seq data for H3K27ac, H3K4me1, and H3K4me3 of 11 tissues (heart, liver, spleen, kidney, lung, thymus, intestine, brain, fat, skeletal muscle, and pancreas) were downloaded from the Roadmap Epigenomics project. The processing of ChIP-seq data and identification of cis-regulatory elements on the hg19 genome were consistent with the methods described above for pigs, except that the identifi cation of enhancers was based on signaling of either H3K27ac or H3K4me1, in agreement with the identification of enhancers in the mouse ENCODE project. Mouse promoters and enhancers on the mm9 genome from nine tissues (heart, liver, spleen, kidney, lung, thymus, intestine, cerebellum) were downloaded from the YUE lab at Penn State (http://promoter.bx.psu.edu/). The public ChIP-seq data of pig liver and induced pluripotent stem cells were downloaded from PRJNA512995 and PRJEB6906; the details are available in Supplementary Table 5. Source data are provided with this paper.

Conservation analysis of cis-regulatory elements across mammals. The centered 1 kb of each predicted promoter and enhancer were converted from pig/mouse genomic locations (susScr1/mm9) to human genomic locations (hg19) by using the LiftOver tool from the UCSC genome browser with the parameter "minMatch = 0.5". The enhancers (promoters) that could be converted to human genomic locations were considered as sequence conserved enhancers (promoters). Furthermore, the enhancers (promoters) were considered usage conserved if the corresponding human homologous sequence was covered by human enhancers (promoters).

The pig enhancers which were conserved in sequences but not in usage with human enhancers were further overlapped with human chromatin states downloaded from the Roadmap Epigenomics project (https://egg2.wustl.edu/roadmap/data/byFileType/chromhmmSegmentations/ChmmModels/impud12/marks/jointModel final/). Total enhancers from 12 pig tissues that converted to the hg19 genome were compared with enhancers from the VISTA Enhancer Browser.31 The overlapped enhancers were considered experimentally validated human enhancers.

The TAD conservation analysis between pig and human genomes. The pig TAD boundaries were converted from pig genomic locations (susScr11) to human genomic locations (hg19) by using the LiftOver tool with the parameter "minMatch = 0.5". The converted pig boundary locations on hg19, which overlapped with extended human TAD boundaries (±100 kb) using the BEDTools v2.26.0 septed intersect command with the parameters "-i f 0.1 -r", were defined as pig-human conserved boundaries. On the basis of our statistics results in Supplementary Fig. 11a, the converted pig boundary locations on hg19 were further defined as pig-human conserved boundaries because they were located within 500 kb of their nearest human boundaries and without other conserved pig-human boundaries.

The human TADs with the following criteria were defined as pig-human rearranged TADs: the boundaries on each side of a human TAD were conserved with pig boundaries from two different chromosomes.

The comparison of chromosome locations at the pig-human rearranged TAD regions was performed using the data from UCSC multiple alignments of the following assemblies to the human genome, which was downloaded from http://hgdownload.cse.ucsc.edu/goldenPath/hg19/multiz10way/.

The conservation analysis of pig and human orthologous genes. The orthologous genes between pigs and humans were downloaded from Ensembl BioMart, and one-to-one pig-human orthologous genes were used for further analysis. The TPM expression matrix of human tissues of these orthologous genes was downloaded from GTEx Database109. Then, we plotted the heatmaps of the expression patterns of these orthologous genes in each tissue of pigs and humans using the previous pig cluster results from the K-means cluster analysis.

The expression profiles of these orthologous genes in various pig and human concurrent tissues were processed separately by qsmo package v1.40.09 in R v 3.6.3. The positions of orthologous genes were expanded to ±500 kb, and H3K27ac intensity of each pig and human concurrent tissue around the expanded regions was calculated by multiBamsummary BED-file function in deepTools v2.08. The expression and H3K27ac intensity profiles of orthologous genes were used to calculate SCs of one-to-one orthologous and non-orthologous gene pairs using program pearson3 https://github.com/chphill25/Pearson with parameters "--s = 0", "--o = 0", and the SOCs between all combinations of non-orthologous genes, the same number of non-orthologous gene pairs as the orthologous gene pairs were random selected as a negative control. The wilcox.test function in R v 3.4.3 was used to compare the two categories of SCs.

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability

Raw sequence data that support the findings of this study have been deposited in the NCBI Sequence Read Archive (SRA) under accession accession number PRJNA597497. Processed data files are available in the Gene Expression Omnibus (GEO) under accession GSE43288. Human ChIP-seq data for HK37ac, HK3K4me1, and HK3K4me3 were downloaded from the Roadmap Epigenomics project https://egg2.wustl.edu/roadmap_web_portal/processed_data.html. Mouse promoters and enhancers on the mm9 genome were downloaded from the YUE lab at Penn State (http://promoter.bx.psu.edu/). The public ChIP-seq data of pig liver and induced pluripotent stem cells were downloaded from PRJNA512995 and PRJEB6906; the details are available in Supplementary Table 5. Source data are provided with this paper.

Code availability

The scripts for cis-regulatory identification in this study are available at https://github.com/hzhao-lab/pig-encode.

Received: 18 February 2020; Accepted: 15 March 2021; Published online: 13 April 2021

References

1. The ENCODE Projects Consortium. et al. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).
2. Gerstein, M. B. et al. Integrative analysis of the Caenorhabditis elegans genome by the modENCODE project. Science 330, 1775–1787 (2010).
3. The modENCODE Consortium. et al. Identification of functional elements and regulatory circuits by Drosophila modENCODE. Science 330, 1787–1797 (2010).
4. Yue, F. et al. A comparative encyclopedia of DNA elements in the mouse genome. Nature 515, 353–364, https://doi.org/10.1038/nature13992 (2014).
5. Shen, Y. et al. A map of the cis-regulatory sequences in the mouse genome. Nature 488, 116–120 (2012).
6. Roadmap Epigenomics Consortium et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330 (2015).
7. Yan, S. et al. A Huntington knockin pig model recapitulates features of selective neurodegeneration in Huntington’s Disease. Cell 173, 989–1002 e1013 (2018).
8. Langin, M. et al. Consistent success in life-supporting porcine cardiac xenotransplantation. Nature 564, 430–433 (2018).
9. Renner, S. et al. Permanent neonatal diabetes in INS(C94Y) transgenic pigs. Diabetes 62, 1505–1511 (2013).
10. Xie, J. et al. Efficient base editing for multiple genes and loci in pigs using base editors. Nat. Commun. 10, 2852 (2019).
11. Luo, Y. et al. High efficiency of BRCAlA1 knockout using rAAV-mediated gene targeting; developing a pig model for breast cancer. Transgenic Res. 20, 975–988 (2011).
12. Wang, K. et al. Cre-dependent Cas9-expressing pigs enable efficient in vivo genome editing. Genome Res. 27, 2061–2071 (2017).
13. Ekser, B., Li, P. & Cooper, D. K. C. Xenotransplantation: past, present, and future. Curr. Opin. Organ. Transplant. 22, 513–521 (2017).
14. Yang, L. et al. Genome-wide inactivation of porcine endogenous retroviruses (PERVs). Science 350, 1101–1104 (2015).
15. Yue, Y. et al. Extensive mammalian germline genome engineering. bioRxiv https://doi.org/10.1101/2019.12.786862 (2019).
16. Young, L. D. Survival, body weights, feed efficiency, and carcass traits of 7/8 White Composite and 1/8 Duroc, 1/8 Meishan, 1/8 Fengjing, or 1/8 Minipigs pigs. J. Anim. Sci. 76, 1550–1558 (1998).
17. Wang, L. et al. Animal genetic resources in China: pigs. China Agric. Ture Press 5, 25–29 (2011).
18. White, B. R. et al. Growth and body composition of Meishan and Yorkshire barrows and gilts. J. Anim. Sci. 73, 738–749 (1995).
19. Mourot, J. & Koubâ, M. Development of intra- and intermuscular adipose tissue in growing large white and Meishan pigs. Reprod. Nutr. Dev. 39, 125–132 (1999).
20. Zhao, P. et al. Evidence of evolutionary history and selective sweeps in the genome of Meishan pig reveals its genetic and phenotypic characterization. Gigasource 7, https://doi.org/10.1093/gigasource/giy058 (2018).
21. M. et al. Comprehensive variation discovery and recovery of missing sequence in the pig genome using multiple de novo assemblies. Genome Res. 27, 865–874 (2017).
22. Tang, Z. et al. LongSAGE analysis of skeletal muscle at three prenatal stages in Tongcheng and Landrace pigs. Genome Biol. 8, R115 (2007).
23. Kojima, M. et al. Differences in gene expression profiles of subcutaneous adipose, liver, and skeletal muscle tissues between Meishan and Landrace pigs with different backfat thicknesses. PLoS ONE 13, e0204135 (2018).
24. Xiao, S. et al. Comparative epigenomic annotation of regulatory DNA. Cell 149, 1381–1392 (2012).
25. Villar, D. et al. Enhancer evolution across 20 mammalian species. Cell 160, 534–566 (2015).
26. Servant, N. et al. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol. 16, 259 (2015).
27. Trieu, T. & Cheng, J. 3D genome structure modeling by Lorentzian objective function. Nucleic Acids Res. 45, 1049–1058 (2017).
28. Trieu, T., Oluwadare, O., Wopata, J. & Cheng, J. GenomeFlow: a comprehensive graphical tool for modeling and analyzing 3D genome structure. Bioinformatics 35, 1416–1418 (2019).
29. Huang da, W., Sherman, B. T. & Lempicki, R. A. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37, 1–13 (2009).
30. Huang da, W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).
31. Yanai, I. et al. Genome-wide midrange transcription profiles reveal expression level relationships in human tissue specification. Bioinformatics 21, 650–659 (2005).
32. Kryachkova-Mostacci, N. & Robinson-Rechavi, M. A benchmark of gene expression tissue-specificity metrics. Brief. Bioinform. 18, 205–214 (2017).
33. Ong, C. T. & Corces, V. G. Enhancer function: new insights into the regulation of tissue-specific gene expression. Nat. Rev. Genet. 12, 283–293 (2011).
34. Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).
35. Liu, X., Yu, X., Zack, D. J., Zhu, H. & Qian, J. TiGER: a database for tissue-specific gene expression and regulation. BMC Bioinform. 9, 271 (2008).
36. Xiao, S. J., Zhang, C., Zou, Q. & Ji, Z. L. TiSGeD: a database for tissue-specific genes. Bioinformatics 26, 1273–1275 (2010).
37. Mclean, C. Y. et al. GREAT improves functional interpretation of cis-regulatory regions. Nat. Biotechnol. 28, 495–501 (2010).
38. Lovén, J. et al. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell 153, 320–334 (2013).
39. Hnisz, D. et al. Super-enhancers in the control of cell identity and disease. Cell 155, 934–947 (2013).
40. Whyte, W. A. et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 153, 307–319 (2013).
41. Chen, K. et al. Broad H3K4me3 is associated with increased transcription elongation and enhancer activity at tumor-suppressor genes. Nat. Genet. 47, 1149–1157 (2015).
42. Yang, L. K. et al. Evolutionary genomics. Evolutionary changes in promoter and enhancer activity during human corticogenesis. Science 347, 1155–1159 (2015).
75. Mifsud, B. et al. Mapping long-range promoter contacts in human cells with high-resolution capture Hi-C. Nat. Genet. 47, 598–606 (2015).
76. Jung, J. I. et al. A compendium of promoter-centered long-range chromatin interactions in the human genome. Nat. Genet. 51, 1442–1449 (2019).
77. Zhang, Y. et al. Chromatin connectivity maps reveal dynamic promoter-enhancer long-range associations. Nature 504, 306–310 (2013).
78. Ai, H. et al. Adaptation and possible ancient interspecies introgression in pigs identifiable by whole-genome sequencing. Nat. Genet. 47, 217–225 (2015).
79. Buenrostro, J. D., Wu, B., Chang, H. Y. & Greenleaf, W. J. ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr. Protoc. Mol. Biol. 109, 21–29 (2015).
80. Bright, A. R. & Veenstra, G. J. C. Assay for transposase-accessible chromatin-sequencing using Xenopus embryos. Cold Spring Harb. Protoc. 2019, https://doi.org/10.1101/pdb.prot098327 (2019).
81. Lai, B. et al. Trac-looping measures genome structure and chromatin accessibility. Nat. Methods 15, 741–747 (2018).
82. Heintzman, N. D. et al. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat. Genet. 39, 311–318 (2007).
83. Trapnell, C., Pachter, L. & Salzberg, S. L. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25, 1105–1115 (2009).
84. Trapnell, C. et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7, 562–578 (2012).
85. Sun, L. et al. Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts. Nucleic Acids Res. 41, e166 (2013).
86. Kang, Y. J. et al. CPC2: a fast and accurate coding potential calculator based on sequence intrinsic features. Nucleic Acids Res. 45, W12–W16 (2017).
87. Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 12, 323 (2011).
88. Ramirez, F., Dundar, F., Diehl, S., Gruning, B. A. & Manke, T. deepTools: a flexible platform for exploring deep-seq data. Nucleic Acids Res. 42, W187–W191 (2014).
89. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Local basic alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
90. Hicks, S. C. et al. Smooth quantile normalization. Biostatistics 19, 185–198 (2018).
91. Kolde, R. pheatmap: Pretty heatmaps. https://cran.r-project.org/package=pheatmap (2019).
92. Li, H., Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
93. Li, H. et al. The Sequence Alignment/Map format and Samtools. BioinformaZ 25, 2078–2079 (2009).
94. Feng, J., Liu, T., Qin, B., Zhang, Y. & Liu, X. S. Identifying ChIP-seq enrichment using MACS. Nat. Protoc. 7, 1728–1740 (2012).
95. Landt, S. G. et al. ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res. 22, 1813–1831 (2012).
96. Bolstad, B. M. & Bolstad, B. preprocessingCore: A collection of pre-processing functions. (2015).
97. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).
98. Gupta, S., Stamatoyannopoulos, J. A., Bailey, T. L. & Noble, W. S. Quantifying similarity between motifs. Genome Biol. 8, R24 (2007).
99. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 10–12 (2011).
100. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
101. Bentsen, M. et al. ATAC-seq footprinting unravels kinetics of transcription factor binding during zygotic genome activation. Nat. Commun. 11, 4267 (2020).
102. Durand, N. C. et al. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst. 3, 95–98 (2016).
103. Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011).
104. Imakaev, M. et al. Iterative correction of Hi-C data reveals hallmarks of chromosome organization. Nat. Methods 9, 999–1003 (2012).
105. Fu, Y. et al. A gene prioritization method based on a swine multi-omics knowledgebase and a deep learning model. Commun. Biol. 3, 502 (2020).
106. Kodama, Y., Shumway, M. & Leinonen, R. on behalf of the International Nucleotide Sequence Database Collaboration. The sequence read archive: explosive growth of sequencing data. Nucleic Acids Res. 40, D54–D56 (2011).
107. Bolger, A. M., Lohse, M. & Usadel, B. Trimmmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
108. Danecek, P. et al. The variant call format and VCFTools. Bioinformatics 27, 2158–2158 (2011).
109. The GTEx Consortium. et al. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348, 648–660 (2015).

Acknowledgements

This research was supported by the National Natural Science Foundation of China (31701414), the National Key Research and Development Project (2019YFE0115400), the Chinese National Major Special Projects on New Varieties Cultivation for Transgenic Organisms (2016ZX08006003-004), and the Fund of Modern Industrial Technology System of Pig (CARS-35). We thank Dr. Guoliang Li (guoliang.li@mail.hzau.edu.cn) from the National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China. Dr. Xiaolet Xu (xiaoleitu@mail.hzau.edu.cn) from Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China, and Dr. Thomas A. Gavin (Professor Emeritus) from Cornell University for valuable suggestions to our work.

Author contributions

S. Zhao and X.L. designed this study, Y.Z., Y.H., H.Z., X.Q., D.W., and Z.W. performed the experiments. Y.Z., Y.X., Y.L., M.H., Y.F., J.L., and S. Zhang analyzed the data. Y.Z., Y.H., and Y.K. wrote this paper by collecting input from other authors. S. Zhao and X.L. guided the writing and revised this paper. J.C. and J.H. helped with data analysis and revised the draft manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-021-22448-x.

Correspondence and requests for materials should be addressed to X.L. or S.Z.

Peer review information Nature Communications thanks Haibo Liu, Christopher Tuggle and the other, anonymous, reviewers for their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021