Tadpole Resummations in String Theory

首都大学東京 北澤敬章
E-mail: kitazawa@phys.metro-u.ac.jp

弦理論に基づいた素粒子モデルにおいて、弦の張力のエネルギーケースケールが低く、電弱対称性の破れが弦の one-loop 補正の効果によって起こるシナリオは否定できない可能性である。この可能性は D-brane を用いる模型に特有のものである。Higgs の質量に対する補正がゼロでないためには、超対称性がない系（"brane supersymmetry breaking" の系など）を考えなければならない。しかし、超対称性がない系についてはほとんど必ず存在する NS-NS タドポール問題を引き起こす。

NS-NS タドポールの存在は、考えている背景時空（例えば flat metric）や dilaton の配位（例えば constant）が「弦理論の解でない」、すなわちそれが「偽の真空」であることを意味すると解釈されている。背景時空を変更してタドポールをなくそうという処方は Fishler と Susskind によって提案されているが、それを実際に実行することは難しい。

NS-NS タドポールが存在することの実際上の問題は、それによって one-loop 補正の計算ができないことである。開いた弦についての one-loop の効果には、open-closed string duality によって開いた弦の tree-level での 1 粒子伝播の寄与が含まれており、massless の dilaton や graviton にタドポールがあると処理できない赤外発散が起きてしまう。

そこで、閉じた弦のタドポールを摂動として扱って、タドポールによって D-brane から生成されたり吸収されたりする効果を足し上げることによって発散を処理し、「偽の真空」にいながら未知の「真の真空」での物理量を計算するというアイデアがある (tadpole resummations)。研究会ではこの手法が boundary state formalism を用いて実現可能であることを示し、それを bosonic string theory における D-brane 上の真空のエネルギーに対する補正の計算に応用した。

\[\Lambda_p = \Lambda_p^{cl} + \ldots \]

ここで \(\Lambda_p^{cl} \) は Dp-brane tension で決まる "classical level" の真空のエネルギーで、図はそれに対応する補正を表している。計算の結果、補正は \(\Lambda_p^{cl} \) を完全に相殺し、\(\Lambda_p = 0 \) という結果が得られた。これは Dp-brane が存在しないこと、すなわち tachyon condensation によって Dp-brane がなくなることと矛盾しない。

この計算の詳細については N.K., Phys. Lett. B660 (2008) 415、さらに scalar field の質量補正の計算への応用については N.K., JHEP 09 (2008) 049 を参照してください。

NII-Electronic Library Service