Abstract—Recent progress in superconductor electronics fabrication has enabled single-flux-quantum (SFQ) digital circuits with close to one million Josephson junctions (JJs) on 1-cm² chips. Increasing the integration scale further is challenging because of the large area of SFQ logic cells, mainly determined by the area of resistively shunted Nb/AlOₓ-Al/Nb JJs and geometrical inductors utilizing multiple layers of Nb. To overcome these challenges, we are developing a fabrication process with self-shunted high-\(J_c\) JJs and compact thin-film Mo\(\text{N}_x\) kinetic inductors instead of geometrical inductors.

We present fabrication details and properties of Mo\(\text{N}_x\) films with a wide range of \(T_c\), including residual stress, electrical resistivity, critical current, and magnetic field penetration depth \(\lambda_0\). As kinetic inductors, we implemented Mo\(\text{N}_x\) films with \(T_c\) about 8 K, \(\lambda_0\) about 0.51 \(\mu\)m, and inductance adjustable in the range from 2 to 8 pH/sq.

We also present data on fabrication and electrical characterization of Nb-based self-shunted JJs with AlO\(_x\) tunnel barriers and \(J_c = 0.6 \text{ mA/\mu m}^2\), and with 10-nm thick Si\(_{1-x}\)N\(_x\)Nb barriers, with \(x\) from 0.03 to 0.15, fabricated on 200-nm wafers by co-sputtering. We demonstrate that the electron transport mechanism in Si\(_{1-x}\)N\(_x\)Nb barriers at \(x < 0.08\) is inelastic resonant tunneling via chains of multiple localized states. At larger \(x\), their Josephson characteristics are strongly dependent on \(x\) and residual stress in Nb electrodes, and in general are inferior to AlO\(_x\) tunnel barriers.

Index Terms—Josephson junctions, kinetic inductors, London penetration depth, superconducting Mo\(\text{N}_x\), Nb/AlO\(_x\)/Nb junctions, Nb/Si\(_{1-x}\)N\(_x\)/Nb junctions, resonant tunneling, superconductor electronics fabrication, superconducting integrated circuit

I. INTRODUCTION

There has been a continuing progress in superconductor electronics fabrication towards increasing the number of superconducting layers and reducing the minimum size of circuit features [1]-[5]. A breakthrough into a very large scale integration (VLSI) of superconducting digital circuits has recently been made as a result. For instance, single flux quantum (SFQ) circuits containing close to one million Josephson junctions (JJs) and having circuit density over 1.3×10⁶ JJs per cm² have been demonstrated [6],[7] using the 350-nm fabrication process SFQ5ee developed at MIT Lincoln Laboratory (MIT LL) [2]. This process utilizes resistively shunted Nb/AlO\(_x\)-Al/Nb Josephson junctions with critical current density \(J_c = 0.1 \text{ mA/\mu m}^2\) and geometrical inductors formed on multiple superconducting wiring layers of niobium. Currently it is perhaps the most advanced fabrication process for superconductor electronics, with a theoretical maximum circuit density of about 4×10⁶ JJs per cm² [8],[9]. However, further increase of the integration scale of SFQ circuits is challenging because of the large area of individual SFQ cells, mainly determined by the area of JJ shunt resistors and geometrical inductors [8].

There are a few fabrication technology development paths for growing the SFQ integration scale. For instance, staying with resistively shunted JJs and geometrical inductors, we can continue to decrease the minimum feature size and to increase the number of superconducting layers and layers of Josephson junctions. Transitioning to a 250-nm process for resistors, inductors, and interlayer vias would give a theoretical maximum circuit density of about 10² JJs per cm² with a single layer of junctions and proportionally higher with two layers of active devices [9]. On this route, no significant increase in the density of geometrical inductors is possible below about 250-nm linewidth and spacing because of a nearly exponential growth in the mutual inductance and cross talk between the inductors. Also, no further increase in JJ density is possible without increasing the \(J_c\) of the junctions, which is required in order to reduce their area.

A more promising way is to replace externally shunted junctions with self-shunted junctions and replace geometrical inductors with kinetic inductors, and then continue to decrease the minimum feature size and increase the number of junction layers. In kinetic inductors, most of the energy is stored in kinetic energy of the supercurrent, not in the magnetic field around the inductor. Therefore, the mutual inductance between kinetic inductors remains much lower than their self-inductance even at deep submicron spacings and linewidths.

This research is based upon work supported by the Office of the Director of National Intelligence, Intelligence Advanced Research Projects Activity, via Air Force Contract FA872105C0002.

All authors are with Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA 02421 (e-mail: sergey.tolpygo@ll.mit.edu).

Submitted to IEEE Trans. Appl. Supercond. on Sept. 13, 2017, revised version on Dec. 29, 2017.
The goal of this work is to develop a superconductor electronics fabrication process utilizing kinetic inductors and high-J_c self-shunted Josephson junctions. We mainly concentrate here on high-J_c Nb/AIO$_x$-Al/Nb junctions because so far they have shown better characteristics for SFQ digital circuits than other potential types of self-shunted JJs, e.g., Nb/Si$_{1-x}$Nbx/Nb [10]-[12]. For kinetic inductors, in this paper we concentrate only on MoN$_x$ thin films, leaving other potential materials, e.g., NbN and NbTiN for another publication.

II. KINETIC INDUCTORS FOR SFQ CIRCUITS

A. Thin Films or Josephson Junctions?

There are two options for replacing geometrical inductors by more compact inductors with low cross talk: use the kinetic inductance of the supercurrent in a thin, $d \ll \lambda$, superconducting film $L_k = \mu_0 \lambda^2 / d$; or use the kinetic inductance of the Josephson current through a junction $L_J = \Phi_0 / (2 \pi I_c \cos \phi)$, a so-called Josephson inductance. Here, λ is London magnetic-field penetration depth, d the film thickness, I_c the junction critical current, ϕ the Josephson phase difference, and Φ_0 the flux quantum. Being the same in nature, these two types of inductors utilize different structures. The former is a planar thin-film device whereas the latter is formed by a vertical stack of multiple layers. The difference practically disappears in microbridge-type thin-film JJs. So the choice of kinetic inductors should be based on technological considerations.

For a process with the minimum feature size F, the smallest area of a planar inductor that can be made is F^2. Forming an SFQ cell inductor L_{cell} from a film with inductance per square L_k requires L_{cell}/L_k squares of the film. The area occupied by a thin kinetic inductor is $A_k = (L_{cell}/L_k) F^2$ if $L_k < L_{cell}$, and $A_k = (L_k/L_{cell}) F^2$ if $L_k > L_{cell}$. The density of inductors is maximized when $L_k \approx L_{cell}$. Typically, $L_{cell} \approx \Phi_0 / I_c$ is about 20 pH, where $I_c \sim 100 \mu$A is the typical critical current of the cell junction. The latter value is set from the cell bit error rate considerations. Therefore, the practical upper value of L_k above which there is little benefit for circuit density is about 20 pH/sq and, respectively, $\lambda^2 / d \sim 17 \mu$m.

If we select a material with λ of about 0.5 μm, we can get $(w/\lambda)^2 \sim 0.5$ using $w = F$ in the current $F = 350$ nm technology node, where w is the film width. Then, the typical inductor area $A_k \approx (\Phi_0 / I_c) (w/\lambda)^2$ in μm2 can be less than 10d^2, where d is in micrometers, and getting $A_k \sim 1 \mu$m2 and inductor density over 10^6 cm$^{-2}$ would require only modestly thin films with d less than about 100 nm. There are many suitable amorphous and crystalline materials, e.g., NbN, NbTiN, MoN$_x$, and such thin-film inductors can be fabricated with very high uniformity, yield, and repeatability.

The critical current of the inductor film, I_{cl}, has to be much larger than the cell junction $I_c \sim 100 \mu$A. This constrains the film’s width, inductance per square L_k, and the ultimate circuit density. Indeed, the fundamental critical current of superconductors is the pair breaking, Ginzburg-Landau (GL) depairing critical current [13],[14] $I_{cl} = w d \Phi_0 / (3 \sqrt{3} \lambda_0 \xi_k)$, where ξ is the GL coherence length, and the current distribution in the film is assumed to be uniform. Hence, the depairing critical current and the kinetic inductance are inversely proportional to each other. Their product is $I_{cl} L_k = \Phi_0 w / (3 \sqrt{3} \lambda_0)$.

In real films with $w/\xi > 1$, the critical current is smaller than the I_{cl} and determined by the entry and motion of Abrikosov vortices from the film edges, which depend on the edge defects and current distribution. Setting $L_k = a I_{cl}$ with $a < 1$, the I_{cl}/I_c requirement results in a restriction on the film width $w > (3 \sqrt{3} \lambda_0 / 2 \pi) L_k / a$, where L_k is in pH/sq. That is, the larger L_k the wider film we need to use. Assuming $a \sim 0.1$ and $\xi \sim 10$ nm, this condition becomes $w/L_k > 25$ nm/pH. If we use $w = F$ to maximize the circuit density, the film kinetic inductance should be $L_k < 14$ pH/sq at $F = 350$ nm and < 10 pH/sq if we transition to $F = 250$ nm process node. If, to be on the safe side, we use a material with $L_k = 4$ pH/sq, the inductor area at $F = 350$ nm can be made as low as $L_k \sim 0.6 \mu$m2.

For thin-film inductors, $L_k I_{cl}$ is adjustable by w. Therefore, the condition $L_k I_{cl} > 1$ required for making quantizing kinetic inductors can be easily satisfied. However, this is not the case for junction-based inductors. Making a quantizing loop comprised of only usual Josephson junctions requires more than four serially connected JJs, $N > 4$, in order to satisfy the flux quantization condition $\Sigma \phi_i = 2\pi$ before reaching the critical current of the JJs, i.e., $\phi_i < \pi/2$, where ϕ_i is the phase difference across the i-th junction. It would be more practical to use $N = 6$ nearly identical JJs, e.g., in a vertical stack, so that $\phi_i \approx \pi/3$ and the loop current $I_{cl} = \sin(\pi/3) \approx 0.87I_c$ is sufficiently lower than the critical current. However, even for a 6-JJ loop, the $L_k I_{cl}$ product (parameter β_k) is only about $20\Phi_0$, a much lower value than can be obtained by using thin-film kinetic inductors. Replacing the passive JJs with the so-called π-junctions, providing a π phase shift across their ferromagnetic barrier, can dramatically reduce the number of required JJs [15], but creates additional technological difficulties for integrated circuit fabrication.

The Josephson critical current of the inductor JJs must be larger than the I_c of the active (switching) JJs. An example of a possible fabrication process was described in [8]. There is no advantage in using a JJ stack from the point of view of the circuit density unless its area can be made smaller than the area of the thin-film inductor. From a fabrication standpoint, fabrication of thin-film inductors is much simpler and expected to have a much higher yield than fabrication of multi-junction stacks of submicron Josephson junctions. For these reasons, we concentrated in this work on the development of thin-film kinetic inductors.

Table I

Deposition Parameters and Nitrogen Content in MoN$_x$ Films

Wafer #	Power (kW)	Dep. Temp. (°C)	N$_2$/Ar (%)	N content in MoN$_x$ (at. %)
1	1	35	3	28.6
2	1	35	4	33.3
3	1	100	4	27.3
4	1	100	4	29.0
5	1	300	4	26.3
B. Fabrication of MoNx Thin-Film Kinetic Inductors

NbN and NbTiN films, typically used for kinetic inductance detectors, have magnetic field penetration depth values about 200 nm in thick films, increasing to ~ 500 nm as the thickness decreases to 3 nm; see [16]-[18] and references therein. In this work, we studied the fabrication and properties of MoNx films. Our rationale for using MoNx films was explained in [2]. It is the convenience of using the same material and deposition equipment for making both high sheet resistance films for circuit resistors and kinetic inductors by using films with different concentration of nitrogen. Previously, MoNx shunt resistors were used in superconducting circuit fabrication in [19]. In our previous work [2] we introduced MoNx kinetic inductors into our SFQ5ee process for use in SFQ circuit biasing network as large choke inductors with $L > 100 \, \text{pH}$ required for ERSFQ biasing scheme [20]. These inductors just need to have large L, but the exact value and variations are not very critical. In this work, we want to implement kinetic inductors in SFQ cells where accurate targeting of the value and small parameter spread within the circuit and on wafers are very important. Therefore, we performed a careful optimization of MoNx fabrication process and characterization of MoNx inductors.

MoNx films were deposited on 200-mm wafers in a Con nexus cluster tool using reactive sputtering of a Mo target in Ar/N₂ mixture. For process optimization, we used a fixed sputtering power, fixed Ar flow, and varied the N₂ flow to study a range of N₂/Ar ratios from 0.01 to 0.15 in order to obtain films with different nitrogen content, critical temperature T_c, and resistivity. A few nanometers of titanium were used as an adhesion layer. The range of sputtering powers from 0.5 kW to 3 kW was studied. We also varied the substrate temperature from 35 °C to 400 °C. For simplicity, we targeted approximately the same film thickness, about 40 nm, for all depositions. The actual thickness was measured, and the sheet resistance data were corrected for the actual thickness.

The obtained films were studied by x-ray diffraction and secondary ion mass spectrometry (SIMS) to determine nitrogen content. Films deposited at 35 °C were found to be amorphous with a very small amount of a cubic phase with crystallite size about 2.6 nm, likely inclusions of highly disordered molybdenum and/or cubic γ-Mo₂N phase. The sharpness, position, and intensity of the observed x-ray diffraction lines move closer to elemental Mo, and the crystallite size increased to about 3.7 nm and about 5.1 nm with increasing deposition temperature to 200 °C and 400 °C, respectively. The results of the SIMS measurements of nitrogen content in the deposited films are given in Table I. The composition of films with the highest $T_c \approx 8$ K obtained in this work is close to Mo₂N, apparently corresponding to an amorphous, or a very small grain size, version of the cubic γ-Mo₂N phase. Increasing the deposition temperature decreases nitrogen content in the films and decreases T_c and electrical resistivity of the films. Therefore, room temperature depositions were mostly used to obtain more uniform amorphous films.

Electrical resistivity ρ of the deposited films increases sharply with increasing N₂ content in the sputtering gas mix-
ture above ~ 2%. It changes from values ~ 30 μΩ-cm, typical for a polycrystalline molybdenum with impurities, to values ~ 120 μΩ-cm typical for amorphous metals with very short mean free path, indicating a sharp onset of amorphization; see Fig. 1(a). The resistance ratio R_{300}/R_{10} also drops in the same range of N₂ contents from about 3 in films with no nitrogen to about 1 above 3% N₂ in the flow, also indicating a transition to amorphous films.

The critical temperature of MoNx films also increases sharply in the same range of N₂ concentrations as does the sheet resistance R_s; see Fig. 1(b). The T_c increases to about 8 K at approximately 4% N₂ and then remains nearly constant, slightly above 7 K, in a very broad range of N₂ contents in the sputtering gas mixture. At a fixed power and N₂ flow, both the T_c and R_s (film resistivity) decrease with increasing deposition temperature, as shown by a few points in Fig. 1(b).

The critical temperature of MoNx films correlates very well with their electrical resistivity, or sheet resistance, as shown in Fig. 1(c). The T_c increases nearly linearly with ρ and plateaus at the highest value in the range from about 100 μΩ-cm (25 Ω/sq) to about 120 μΩ-cm (30 Ω/sq). This range was set as the process target range for kinetic inductors due to a weak sensitivity of T_c to small changes in the deposition parameters.

At a fixed N₂ content, the film resistivity decreased with increasing the sputtering power, as shown in Fig. 2; T_c decreased accordingly, as summarized in Fig. 1(c). Additional optimization of the deposition parameters was done to minimize the residual film stress. The main trends are shown in Fig. 3. At a fixed sputtering power and N₂/Ar flow ratio, the residual stress in MoNx films changes with deposition pressure from compressive stress at low pressures to tensile stress at high pressures. At fixed power and deposition pressure, the stress changes from tensile at low N₂/Ar ratios to compressive with increasing the N₂/Ar ratio. Optimized films had compressive stress less than 100 MPa.

Wafers were rotated during the deposition to improve the film thickness and sheet resistance uniformity to about 2% (one standard deviation), measured at 49 points across 200-mm wafers. Fine adjustments of film thickness were made based on measurements of kinetic inductance in unpatterned and patterned films and their critical currents.

Thermal stability of the MoNx films and their suitability for integration into a multilayer process stack with PECVD SiO₂ interlayer dielectric was verified by depositing 200 nm of SiO₂ at 150 °C on top of the MoNx films with a 5-nm Ti adhesion layer. This sandwich was then annealed at 200 °C for 30 and 60 minutes in N₂ at 2.5 Torr, and electrical characteristics were remeasured; see Fig. 4. We will refer to the films prepared this way as “annealed”. The annealing temperature was set a bit higher than the maximum temperature of 190 °C used in our SFQ fabrication processes. The annealing time was also longer than the maximum cumulative exposure time to 190 °C temperature in our 9-metal layer process of about 40 min.

Amorphous Mo₂N films in the optimum range of resistivity corresponding to the T_c plateau in Fig. 1(c) were stable at 200 °C and showed very small, less than 2%, change (increase) in resistivity. We attribute this increase to an interac-
tion of Mo$_2$N films with Ti adhesion layer. Mo$_N$ films with resistivities below $\sim 100\ \mu\Omega\cdot\text{cm}$ showed a progressive decrease of resistivity with annealing time, up to $\sim 10\%$, which was larger for lower-ρ films, possibly a result of partial recrystallization.

C. Microwave Measurements of $\lambda(T)$ in Mo$_N$ films

Magnetic field penetration depth and its temperature dependence $\lambda(T)$ of unpatterned Mo$_N$ films were measured using a dielectric-resonator technique shown schematically in Fig. 5; see, e.g., [21]-[23]. For these measurements, 200-mm wafers with deposited Mo$_N$ films were diced into multiple octagonal-shaped wafers with 2-inch inscribed diameter. These smaller wafers were attached to the flat sides of a sapphire cylindrical resonator with 6.35-mm height and 12.7-mm diameter. The resonator quality factor and the resonant frequency f_r were measured in the T-range from $T_0 = 4.24$ K to T_c. The dielectric resonator TE$_{011}$ mode was used with the resonance frequency about 10.7 GHz and quality factor Q over 34,000. The inductance of the superconducting films shifts the resonant frequency down, and microwave losses in the film reduce the Q-factor. The relative change of the resonance frequency with temperature is proportional to the change in the inductance of two films $L(T) = \frac{2\mu_0}{\lambda_{\text{eff}}(T)}$ and, since the frequency shifts are very small, can be expressed as

$$\frac{f(T)}{f(T_0)} = 1 - g^{-1}[\lambda_{\text{eff}}(T) - \lambda_{\text{eff}}(T_0)],$$

where g is a geometric factor of the resonator and $\lambda_{\text{eff}}(T)$ is the effective penetration depth. In general, $\lambda_{\text{eff}} = \lambda\coth(d/\lambda)$, which gives $\lambda_{\text{eff}} = \lambda^2/d$ for a very thin $d << \lambda$ and $\lambda_{\text{eff}} = \lambda$ in the opposite case. In the simplest two-fluid model, the T-dependence of the penetration depth is

$$\lambda(T) = \lambda_0[1 - (T/T_c)^4]^{1/2}.$$

Then, the $f(T)$ change with respect to the f_0 at the liquid He temperature, $f(T_0)$, is given by

$$f(T)/f(T_0) = 1 - g^{-1}\lambda_0\{[1 - (T/T_c)^4]^{1/2} - [1 - (T_0/T_c)^4]^{1/2}\}.$$

Fig. 6. (a) Dielectric resonator measurements of a 200-nm niobium film. Solid curve is the fit to (3) giving $\lambda_0 = 81$ nm. (b) Dielectric resonator measurements of the typical as-prepared Mo$_N$ film. Fit to (4) is shown by the solid black curve, giving $T_c = 7.95$ K and $\lambda_0 = 576$ nm. The film was also measured after annealing in N$_2$ at $200\ ^\circ\text{C}$ for 30 min, resulting in $T_c = 7.68$ K and $\lambda_0 = 567$ nm (blue dashed curve), and 60 minutes, resulting in $T_c = 7.63$ K and $\lambda_0 = 563$ nm (red dotted curve).
in the thick film $\lambda(T) << d$ limit, and

$$f_2(T)f_1(T_0) = 1 - g^{-1}(\lambda_0^2/d)\left[1 - (T/T_c)^4\right] - \left[1 - (T_0/T_c)^4\right]^{-1}$$

(4)

in the thin-film $\lambda(T) >> d$ limit.

The geometrical factor of the resonator was calculated, and an additional calibration was done using deposited 200-nm Nb films. The zero-T penetration depth $\lambda_0 = \lambda(0)$ and T_c were determined by fitting the experimental data to (3) or (4). Thus obtained T_c values agreed within ±0.1 K with the values obtained from the dc resistive transitions measured on the same films.

Fig. 6 shows the typical results of the measurements on Nb films and on the typical MoNx films. The 200-nm Nb films are in the thick-film regime, except for very near to T_c, and (3) fits the T-dependence of the resonance frequency exceptionally well, as shown in Fig. 6(a). In contrast, thin MoNx films with large λ_0 are in the thin-film regime in the entire temperature range, and (4) fits the experimental data very well as shown in Fig. 6(b).

We measured films deposited at different conditions and annealed films. We have found that MoNx films with the maximum T_c, corresponding to films with composition Mo$_2$N and electrical resistivity around 110 $\mu\Omega\cdot$cm in Fig. 1(c), have the lowest penetration depth $\lambda_0 \approx 0.54 \mu$m. The λ_0 increases as T_c decreases on both sides of the maximum, i.e., either with increasing electrical resistivity to higher values or decreasing the resistivity. This indicates that the concentration of superconducting electrons n_s is maximized in Mo$_2$N films with the maximum T_c since the London magnetic field penetration depth λ_L scales inversely with the Cooper pair density $\lambda_L^2 = m/(\mu n_s a^2)$. Apparently, n_s decreases on both sides of the optimum independent of whether the resistivity of the films increases or decreases.

The resonator quality factor Q at $T = 4.24$ K decreased strongly with decreasing T_c of the films, as shown in Fig. 7, likely a result of an exponential growth in concentration of normal quasiparticles with increasing T/T_c ratio. The low Q values were making measurements of λ in lower-T_c films less accurate than in the films with the highest T_c and Q.

In order to compare the penetration depth data in different MoNx films, we recall that λ_0 in the microscopic theory of superconductivity is given by $\lambda_0^2 \approx \lambda_L^2(0)(\zeta_0/l)$ in the dirty limit $l << \zeta_0$, which is certainly applicable to our amorphous superconducting films. Here, l is the mean free path and $\zeta_0 = \hbar v_F/\pi a_0$ is the Bardeen-Cooper-Schrieffer (BCS) coherence length, and λ_0 the energy gap; see, e.g., [24]. Then, simple transformations and the BCS relationship $\Delta_0 = 1.76k_B T_c$ give

$$\lambda_0 = (\hbar/\pi\mu a_0)^{1/2} \approx 0.105(\rho/T_c)^{1/2}$$

where λ_0 is in micrometers, ρ in $\mu\Omega\cdot$cm, and T_c in Kelvin.

The measured values of λ_0 are shown in Fig. 8 as a function of $(\rho/T_c)^{1/2}$ for the as-prepared and annealed films with various T_c values. Surprisingly, we observe the opposite dependence of λ_0 on $(\rho/T_c)^{1/2}$ to the BCS relationship (5) shown by the dashed line. The penetration depth λ_0 decreases with increasing $(\rho/T_c)^{1/2}$ instead of increasing. Because T_c grows approximately linearly with ρ, $T_c = \alpha \rho$ with $\alpha \sim 0.08$ K$/\mu\Omega\cdot$cm, as shown in Fig. 1c, we would expect λ_0 to be the same in all films $\lambda_0 \approx 105/\alpha$, and independent of $(\rho/T_c)^{1/2}$ since T_c independence cancels out. This is clearly not the case. For the films with the optimum value $\rho = 110$ $\mu\Omega\cdot$cm and $T_c = 8$ K, we get $\lambda_0 = 390$ nm from (5), a value about 30% lower than the measured. This may indicate that n_s is almost a factor of two lower than the normal electron number density entering into ρ, e.g., due to some pair breaking effects.
A reduction in the superfluid density with respect to the BCS values was also observed in polycrystalline MoN films obtained by atomic layer deposition, using terahertz frequency-domain spectroscopy [25]. Usually, increased values of the penetration depth in thin films are attributed to formation of a Josephson network of weakly coupled grains; see, e.g., [26] and references therein. In this case, the effective penetration depth and kinetic inductance are determined by the Josephson penetration depth \(\lambda_J = \Phi_0/(2\pi\mu_0 I_c) \) between the grains and Josephson inductance, respectively.

Josephson junction networks are usually formed in thin films because of the columnar growth, e.g., in transition-metal films and their nitrides such as Nb and NbN, and/or grain boundary oxidation, e.g., in Nb and Al films, and high-\(T_c \) superconductors; see [27] for a review and references. The evidence for Josephson network behavior in granular MoNx films deposited by thermal evaporation was presented in [28]. However, critical currents in MoNx films formed by reactive sputtering, see below and [29], and our SEM data partially presented in [9] do not indicate granular structure in our MoNx films, although do show it in NbN films. However, further discussion of these issues goes beyond the scope of this paper.

D. \(L_k \) and Critical Current of Patterned MoNx Films

Mo2N films with the target thickness of 40 nm were incorporated into SFQ5see process stack with eight Nb metal layers [2]. The films were patterned using 248-nm photolithography and etched using SF6/O2 mixture with 60/40 sccm flow at 10 mTorr in a high-density plasma etcher at 600 W rf power and 60 W bias power.

For inductance measurements, a dc-SQUID based technique described in [30] was used. Patterned Mo2N strips of various widths from 0.5 to 2 \(\mu \)m and various lengths formed inductors of dc SQUIDs. The film inductance was calculated from the period of SQUID modulation. We verified that unshielded films of different width and length, as well as films placed under a Nb ground plane to form inverted microstrips, gave nearly the same inductance per square \(L_k \), indicating negligible contribution of the geometrical inductance of the films. The average sheet inductance obtained on 40-nm films at 4.2 K was 8.2 pH/sq, corresponding to \(\lambda(4.2 \text{ K}) = 511 \text{ nm} \) and \(\lambda_0 = 490 \text{ nm} \), about 10\% lower value than the one we obtained from microwave measurements on unpatterned films; see II.C.

The average \(L_k \) values obtained on wafers fabricated during the two-year period since the launch of the SFQ5see process are shown in Fig. 9. In the actual process stack, Mo2N film thickness was adjusted to get the required sheet inductance value. The observed run-to-run variations of \(L_k \) are about 4\% (one standard deviation) and apparently represent a cumulative effect of run-to-run variations of the Mo2N films thickness and
composition.

The critical current of patterned MoNx films, \(I_{c} \), was measured on the same chips as used for SQUID measurements of \(L_{k} \). The films were patterned as meanders with length to width ratios \(N_{w} \) from about 100 to 500 squares. The typical \(I_{c} \) versus width dependencies are shown in Fig. 10. From the linear slopes we determined the critical current density per unit width \(J_{c} \) shown in Fig. 11.

From a circuit design standpoint, the important characteristic of a kinetic inductor is the \(L_{k}J_{c} \) product, which for the inductor with length \(\ell \) is \(L_{k}J_{c} = \ell L_{W}J_{c} \). From II.A, we expect the \(L_{W}J_{c} \) product to be the film material property independent of the film thickness and width

\[
L_{W}J_{c} = \frac{\alpha \Phi_{0}}{3 \sqrt{3} \xi},
\]

where \(\alpha < 1 \) characterizes reduction of the critical current with respect to the Ginzburg-Landau depairing current. We have found the product \(L_{W}J_{c} = 4.4 \Phi_{0}/\mu \text{m} \) for our films and indeed independent of \(L_{k} \). This value gives \(\xi/\alpha = 44 \text{ nm} \). Hence, a 1-\(\mu \text{m} \) square of Mo2N film provides a factor of two larger product of inductance and critical current than a stack of six JJs.

The critical current of the films correlates with \(T_{c} \), as shown in Fig. 11, and reaches a maximum in the same range of film resistivities as does the \(T_{c} \). However, the maximum critical current density observed in Mo2N films is a factor of 10 lower than in Nb films with the same thickness. This difference is caused by a much lower concentration of Cooper pairs \(n \) in Mo2N than in Nb as indicated by a much larger penetration depth \(\lambda_{0} \).

III. Self-Shunted Josephson Junctions

A. High-\(J_{c} \) Nb/AlO\(_{x}\)-Al/Nb Junctions

It is well known that the most commonly used Nb/AlO\(_{x}\)-Al/Nb Josephson junctions become self-shunted at sufficiently high values of \(J_{c} \sim 1 \text{ mA/\mu m}^{2} \) [31]. This self-shunting is caused by a greatly enhanced subgap conductance by multiple Andreev reflections via defects in the tunnel barrier [32]. The \(J_{c} \) required to achieve self-shunting is fabrication dependent. In [33] we investigated a range of \(J_{c} \) from 0.1 to 1 mA/\mu m\(^{2} \) for our technology. We selected a \(J_{c} \approx 0.6 \text{ mA/\mu m}^{2} \) as the process target. This \(J_{c} \) is high enough to provide sufficient self-shunting with McCumber-Stewart parameter \(\beta_{c} \) from about 2 to 3, but still gives JJs with sufficiently low parameter spreads and good uniformity on 200-mm wafers to be suitable for VLSI circuits. The typical current-voltage (\(I-V \)) characteristics are shown in Fig. 12; see also [33]. More detailed results will be published elsewhere.

B. Nb/Si:Nb/Nb Josephson Junctions

Another group of self-shunted JJs are junctions of an SNS or SSmS type using a normal-metal or semiconductor barrier. In order to get \(I_{R}R_{N} \) product values high enough to be suitable for high-speed SFQ circuits, highly disordered metals or doped semiconductors are used as a barrier, usually with compositions close to the metal-insulator transition [11],[12]. Some promise was shown by Nb-based JJs with amorphous Si (a-Si) barriers doped by Nb, W, or other dopants forming deep impurity levels close to the middle of Si band gap. They were proposed and investigated a long time ago; see, e.g., [10],[34], and references therein to even earlier work. Recently, JJs with a-Si:Nb barriers [35],[36] found applications in programmable Josephson voltage standards and waveform synthesizers developed at NIST USA and PTB Germany. These applications require very large-area junctions with critical currents over 1 mA and low \(I_{R}R_{N} \) products ~ 0.1 mV, JJ counts in only a few hundred thousand range, and do not require fabrication on large-size wafers.

The requirements for superconducting digital circuits are quite different: submicron-size junctions with \(L_{c} \sim 0.1 \text{ mA and lower, I}_{R}R_{N} \) products over 1 mV, low JJ parameters spread, JJ counts over a million, and good uniformity over large-size wafers. Therefore, we investigated fabrication of JJs with doped-Si barrier on 200-mm wafers in order to evaluate their uniformity and suitability of their parameters to VLSI SFQ circuits.

Nb/Si\(_{1-x}\)Nb\(_{x}\)/Nb trilayers were deposited on 200-mm oxidized Si wafers in-situ in a Canon-Anelva deposition system. Nb-doped Si barriers were deposited using co-sputtering of Si and Nb targets with 100-mm diameters. Wafers were rotating during the deposition; the obtained thickness uniformity was better than 1%. The obtained uniformity of Nb and Si\(_{1-x}\)Nb\(_{x}\) sheet resistance \(\rho/d \) was in the range from 0.4% to 0.9% depending on Nb film stress, and 1.7% and 1.4% for Si\(_{1-x}\)Nb\(_{x}\) films with \(x = 0.09 \) and 0.1, respectively. Full optimization of JJs’ deposition requires optimization of the barrier thickness and Nb content because the critical current of SSmS and SNS
junctions exponentially depends on the barrier thickness \(d \) and coherence length of the barrier material \(\xi_n \), which in turn depends on the doping level and temperature. Instead, we set the barrier thickness at 10 nm, because it was estimated as the lowest thickness that could provide better than 2\% run-to-run reproducibility of the barrier thickness on 200-mm wafers. The amount of Nb doping \(x \) in Si was varied from 3 to 15 atomic percent, based on the results of the prior work [11],[12],[34]-[37].

After deep-UV photolithography, junctions were etched using Cl₂-based chemistry and planarized using CMP of a PECVD SiO₂ interlayer dielectric as described in [1]. Circular junctions with design diameters from 350 nm to a few micrometers were fabricated and studied. The junction resistance uniformity was characterized at room temperature using a wafer prober, measuring resistance of 440 JJs with diameters 0.5, 0.7, 1, and 1.4 \(\mu \text{m} \) per 5-mm chip, and from 9 to 45 chips per wafer. A much smaller subset of JJs was characterized at 4.2 K by \(I-V \) measurements.

\(\text{Nb/Si}_{1-x}\text{N}_x/\text{Nb} \) junctions with Nb concentration in the barrier of 8 at. \% and below do not show any signs of Josephson current at 10 nm barrier thickness and 4.24 K. Instead, current-voltage \(I(V) \) characteristics of the junctions are highly nonlinear, as shown in Fig. 13.

The observed \(I(V) \) characteristics are indicative of electron transport by resonant tunneling via chains of localized states, so-called Lifshitz’ resonance-percolation trajectories [41]-[44]. For instance, at \(x = 0.05 \) and 4.24 K, the \(I(V) \)s are very well described by a polynomial form

\[
I = G_0V + G_2V^{7/3} \tag{7}
\]

in the range of voltages \(|V| < 40 \text{ mV} \) studied; see Fig. 13. The second term in (7), which dominates at \(V > 10 \text{ mV} \), is due to inelastic tunneling via chains consisting of two localized states as had been predicted a long time ago [44] and since then observed experimentally in numerous types of junctions with disordered insulators, including metal-insulator-metal structures with a-Si [45]. Fits to (7) give the specific tunneling conductance \(G_0 A^{-1} \) of about 7 mS/\(\mu \text{cm}^2 \), close to the value in \(\text{Nb/AlO}_x/\text{Al/Nb} \) tunnel junctions with \(J_c \sim 10 \mu \text{A}/\mu \text{m}^2 \) and \(\sim 1-1.5 \text{ nm} \) thick barriers, where \(A \) is the junction area.

Junctions with \(x = 0.03 \) display a much stronger nonlinearity than (7). Their \(I(V) \) dependences at 4.24 K can be described well by

\[
I = G_0V + G_2V^{7/3} + G_3V^{2/3} \tag{8}
\]

where the third term, which becomes dominant at \(V > 25 \text{ mV} \), represents a contribution of inelastic resonant tunneling via chains with three localized states [44]. Due to a larger average distance between Nb impurities, the first term in (8) becomes almost negligible at \(x = 0.03 \), \(G_0 A^{-1} \sim 7 \text{ mS/\mu cm}^2 \). The two-impurity chains contribution \(G_3 A^{-3} \) also decreases from about 3 A \(V^{-7/3} \mu \text{m}^{-2} \) at \(x = 0.05 \) to about 0.05 A \(V^{-7/3} \mu \text{m}^{-2} \) at \(x = 0.03 \). That is, with decreasing doping, electron transport through a-Si barrier favors chains with larger number of resonant impurities. More details on the current transport through a-Si:Nb barriers at low doping will be given elsewhere.

TheAmount of Nb doping \(x \) in Si barriers at low Nb doping will be given elsewhere.

Fig. 13. The typical current-voltage characteristics of 0.7-\(\mu \text{m} \)-diameter junctions with 10-nm thick \(\text{Si}_{1-x}\text{N}_x \) barriers at low levels of Nb doping: \(x = 0.03 \) (blue open circles) and 0.05 (black solid points). Note the scale difference: current was multiplied by 10x to show the \(I(V) \) for \(x=0.03 \) in this scale. Solid red curve is the best fit to (7), which is indistinguishable from the data points. The dashed line shows the cumulative contribution of direct tunneling and elastic resonant tunneling, \(G_0V \) term in (7). Dotted blue curve is the best fit to (8) for the junction with \(x=0.03 \); see text. Note a much stronger \(I(V) \) nonlinearity in the junction with lower doping level.

\(\text{Si}_{1-x}\text{N}_x \) barriers with Nb concentration of 9 at. \% resulted in \(J_c \sim 0.6 \text{ mA/\mu cm}^2 \). Higher doping levels, \(x > 0.1 \), resulted in \(J_c \) too high and not suitable for SFQ circuits. Using the sheet resistance of deposited \(\text{Si}_{1-x}\text{N}_x \) films, we determined in-plane resistivity \(\rho = R_d d \) to be 4.27 mΩ cm and 3.14 mΩ cm at 0.09 and 0.1, respectively. Hence, the specific barrier resistance (in the direction perpendicular to the junction plane) \(R_{\text{sq}} = R_d d^2 \) was expected to be about 0.43 and 0.31 Ω \(\mu \text{m}^2 \), respectively, i.e., a factor of 10 lower than for AlO\(_x \)-based tunnel barriers at \(J_c = 0.6 \text{ mA/\mu m}^2 \). The fabricated junctions showed a factor of 2x higher specific resistances of 0.78 and 0.7 Ω \(\mu \text{m}^2 \) for \(x = 0.09 \) and 0.1, respectively. The on-chip and on-wafer resistance uniformities were found to be nearly the same and equal to 1.2\% and 1.5\% for 0.7-\(\mu \text{m} \) and 1-\(\mu \text{m} \) JJs, respectively.

Despite relatively small changes in junction resistance with doping at these levels of \(x \), the Josephson critical current density \(J_c \) was found to strongly depend on the composition \(x \) and the residual stress in Nb electrodes. The \(J_c \) changes from 0.62±0.05 mA/\(\mu \text{m}^2 \) to 1.42±0.07 mA/\(\mu \text{m}^2 \) with \(x \) increasing from 0.09 to 0.10.

We have found that residual stress in Nb films has a profound effect on \(J_c \) of \(\text{Nb/Si}_{1-x}\text{N}_x/\text{Nb} \) junctions. For instance, a change in residual stress of Nb films from about −100 MPa to −700 MPa resulted in the \(J_c \) reduction from 1.12 to 0.62 mA/\(\mu \text{m}^2 \) at \(x = 0.09 \) and from 2.07 to 1.42 mA/\(\mu \text{m}^2 \) at \(x = 0.10 \), a 60\% reduction on average. A similar change in the stress results in only about 10\% change in the \(J_c \) of Nb-based junctions with AlO\(_x \) tunnel barriers. These results indicate that accurate \(J_c \) targeting and reproducibility needed for a stable VLSI process with \(\text{Nb/Si}_{1-x}\text{N}_x/\text{Nb} \) junctions require a very
precise process control over both Nb doping within a 0.1% or better level and over Nb film deposition parameters.

The typical I-V characteristics of a 0.7-μm-diameter JJ with 9% doping is shown in Fig. 12 for a comparison with AlOx-based tunnel junctions with about the same J_c. The characteristic voltage $V_c = I_c R_N$ is only 0.2 mV, which is a factor of 8 less than in Nb/AlOx-Al/Nb JJs. This indicates that the maximum clock frequency of SFQ circuits utilizing JJs with Si1-xNbx barrier will be much lower than in circuits with Nb/AlOx-Al/Nb JJs.

By inspecting the published I-V characteristics of junctions with doped Si barriers, we noted that $I_c R_N$ products reported for nonhysteretic JJs with various barrier thicknesses, doping types and levels in [10]-[12],[34]-[37] and other publications do not exceed 0.36 mV, the same value as the $I_c R_N$ of critically damped Nb/AlOx-Al/Nb junctions at $J_c = 10 \mu A/\mu m^2$. Therefore, it appears to be not possible to optimize junctions with doped Si barriers by varying d and x to produce nonhysteretic junctions with values of J_c in the practical range, $J_c \leq 2 mA/\mu m^2$, and $I_c R_N$ products comparable to values obtained in self-shunted tunnel junctions, about πΔ_N/2 \approx 2 mV.

Indeed, getting close to the latter value requires barriers with $d < \xi_N$. At $x = 0.09$, $\xi_N \approx 5.6$ nm according to our estimate. Making barriers thinner than that would increase J_c to unpractically high values requiring nanoscale junctions. Their properties would be similar to nano-constrictions considered in [38]-[40], which by the way do not require any barrier. Thinning the barrier would also dramatically compromise JJ uniformity and reproducibility. Reducing the doping level would decrease ξ_N to the resonant tunneling length in Si, about $1 - 2$ nm, driving JJs towards the tunneling regime realized in AlOx barriers, and making them hysteretic. Moreover, nm-thick deposited Si barriers are expected to be less uniform and reproducible than AlOx grown by self-limiting oxidation.

Note also the presence of a large excess current, I_{ex}, in I-V characteristics, as indicated by dashed lines in Fig. 12. The excess current in SSmS junctions also follows from a current transport mechanism by resonant tunneling via chains of localized impurity centers [42],[46]. Fluctuations in the number of these resonant centers and transparency of these trajectories due to compositional fluctuations are responsible for sample-to-sample variations of the junction conductance and Josephson critical current.

The I_c variation of 0.7-μm and 1-μm junctions with deposited Si1-xNbx barriers on-chip and on-wafer have been found so far to be a factor of about 3x larger than for Nb/AlOx-Al/Nb JJs with the same sizes and the same average J_c of 0.6 mA/μm². Similarly, the run-to-run repeatability of I_c was inferior to AlOx-based junctions. A more detailed description of the results on Nb/Si1-xNbx/Nb junction fabrication and characterization will be published elsewhere, whereas we also plan to do more experiments with submicron JJs with doped Si barriers. For the process integration with kinetic inductors, we concentrated on using Nb/AlOx-Al/Nb due to their superior characteristics.

To conclude, we note that there are other types of junctions which exhibit self-shunting, have sufficiently high J_c, and relatively high $I_c R_N$ values, e.g., SINIS [47], SnSIS [48],[49], etc., see a recent review [50]. However, discussion of their pros and cons goes beyond the scope of this manuscript because we are not considering them for the use in our fabrication processes.

IV. PROCESS INTEGRATION

A. Mo2N Kinetic Inductor Layer Placement

In the SFQ5ee process, kinetic inductors are used for circuit biasing and, as a result, are placed as the first layer in the process stack and interconnected by the first layer of Nb [2]. In our new process we want to use kinetic inductors as SFQ cell inductors. This requires placing them as close to JJs as possible in order to minimize parasitic inductance of interlayer vias. Therefore, we are completely changing the process stack and layer sequence, as shown in Fig. 14, while preserving planarization and other features of the SFQ5ee process.

The first superconducting layer in the process is a Nb ground plane. It is followed by a Nb/AlOx-Al/Nb trilayer. For placing and interconnecting kinetic inductors, we are investigating two options: a) right below the trilayer base electrode (BE) and using BE interconnections, shown as layer KO; b) above JJs with interconnections by the next Nb layer, shown as layer K1. In the SFQ5ee process, the latter place is occupied by the shunt resistors, but it is available in this newer process node due to the use of self-shunted JJs. Depending on the circuit design requirements, we could implement two layers of kinetic inductors KO and K1. Alternatively, we can use a layer of resistors instead of KO to facilitate additional JJ shunting if required. For circuit biasing, we implement the regular layer of resistors, R4 in Fig. 13, which is identical to the SFQ5ee process, but placed differently in the stack. Finally, if bias kinetic inductors are required, they will be placed above the shown stack and two more Nb layers will be added to interconnect them and provide a sky plane (top ground plane) for circuits. All layers in our process are fully planarized. This allowed us successfully fabricate two fully independent layers of Josephson junctions, similar to the double-JJ-layer process.
demonstrated in [51]. Availability of multiple junction layers should enable increasing the integration scale of superconductor electronic circuits in a 3D manner.

B. Kinetic Inductance Target

Since many components of SFQ circuits may use relatively low inductances, e.g., about 2 pH in Josephson transmission lines (JTLs), implementing 8-pH-per-square kinetic inductors would not make much sense. Therefore, we increased the target thickness of our Mo2N films to 120 nm in order to decrease L_k below 3 pH/sq and, accordingly, increase J_c by a factor of 3x to about 3 mA/μm. This should allow us to use 0.35-μm-wide inductors and have enough margin in their critical current.

V. CONCLUSION

We presented a detailed investigation of the superconducting properties of thin MoNx films, such as critical temperature, critical current, magnetic-field penetration depth and its T_c dependence, as well as a detailed optimization of the fabrication parameters in order to implement amorphous Mo2N kinetic inductors in superconducting integrated circuits. We have found that the product of kinetic inductance and critical current of a 1-μm2 Mo2N film is about 4.4Φ0, which is a factor of 28 larger than the L_k product for Josephson junctions, $\Phi_0/2\pi$. This makes thin Mo2N films more attractive for integration into VLSI circuits as kinetic inductors than stacked Josephson junctions requiring a much more complex fabrication process.

We investigated Nb/Si1-xNbx/Nb junctions with 10-nm thick barriers deposited by co-sputtering and x in the range from 0.03 to 0.15. We showed that electron transport through Si1-xNbx barriers at low doping levels x and low temperatures is due to inelastic resonant tunneling via chains of localized states with two and three localized states. At x above about 0.08, Nb/Si1-xNbx/Nb junctions become non hysteretic Josephson junctions with relatively low I_{RN} products, a few times lower than in Nb/AlOx-Al/Nb Josephson junctions at the same critical current density J_c. Strong dependence of J_c on Nb doping level x and residual stress in Nb electrodes was also observed.

We compared Nb/Si1-xNbx/Nb junctions to self-shunted Nb/AlOx-Al/Nb Josephson junctions at the same I_{RN} value used in our current SFQ5vhs process node [33], about 0.6 mA/μm2. Based on a limited set of Josephson junctions with deposited amorphous Si1-xNbx barriers studied thus far (about a dozen 200-mm wafers) with 10-nm thickness and $x = 0.09$ and 0.1, we concluded that AlOx-based tunnel junctions have superior parameters, at the same J_c, for applications in high-speed SFQ digital circuits.

We developed an integration scheme and a process stack to implement Mo2N kinetic inductors in SFQ logic/memory cells along with up to eight planarized Nb layers.

ACKNOWLEDGMENT

We are very grateful to Corey Stull for his help in developing deposition of MoNx films, and to Mr. Hideki Fujii and many colleagues at Canon-Anelva for depositing Nb-doped Si films and Nb/Si1-xNbx/Nb trilayers used in this work. We would also like to thank Eric Dauler, Marc Manheimer, and Scott D. Holmes for their interest in and support of this work.

The views and conclusions contained in this publication are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the ODNI, IARPA, or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright annotation thereon.

REFERENCES

[1] S.K. Tolpygo, V. Bolkhovsky, T.J. Weir, L.M. Johnson, M.A. Gouker, and W.D. Oliver, “Fabrication process and properties of fully-planarized deep-submicron Nb/AlOx/Nb Josephson junctions for VLSI circuits,” IEEE Trans. Appl. Supercond., vol. 25, No. 3, June 2015, Art. No. 1101312.
[2] S.K. Tolpygo, V. Bolkhovsky, T.J. Weir, A. Wynn, D.E. Oates, L.M. Johnson, and M.A. Gouker, “Advanced fabrication processes for superconducting very large scale integrated circuits,” IEEE Trans. Appl. Supercond., vol. 26, No. 3, Apr. 2016, Art. No. 1100110.
[3] S.K. Tolpygo, V. Bolkhovsky, T. Weir, L. Johnson, W.D. Oliver, and M.A. Gouker, “Deep sub-micron stud-via technology of superconductor VLSI circuits,” Supercond. Sci. Technol., vol. 27, 025016, Jan. 2014.
[4] S. Nagasawa, K. Hinode, T. Satoh, M. Hidaka, H. Akaike, A. Fujimaki, N. Yoshikawa, K. Takagi, and N. Takagi, “Nb 9-layer fabrication process for superconducting large-scale SFQ circuits and its process evaluation,” IEICE Trans. Electron., vol. E97-C, No. 3, pp. 132-140, Mar. 2014.
[5] S. Nagasawa and M. Hidaka, “Run-to-run yield evaluation of improved Nb 9-layer advanced process using single flux quantum shift register chip with 68,990 Josephson junctions,” J. Phys. Conf. Ser., vol. 871, 012065, 2017.
[6] V.K. Semenov, Y.A. Polyakov, S.K. Tolpygo, “AC-biased shift registers as fabrication process benchmark circuits and flux trapping diagnostic tool,” IEEE Trans. Appl. Supercond., vol. 27, No. 4, June 2017, Art. No. 1301409.
[7] V.K. Semenov, Y.A. Polyakov, and S.K. Tolpygo, “New AC-powered SFQ digital circuits,” IEEE Trans. Appl. Supercond., vol. 25, No. 3, June 2015, Art. No. 1301507.
[8] S.K. Tolpygo, “Superconductor digital electronics: Scalability and energy efficiency issues (Review Article),” Low Temp. Phys., vol. 42, No. 5, pp. 361-379, May 2016.
[9] S.K. Tolpygo, V. Bolkhovsky, R. Rastogi, S. Zarr, A.L. Day, T. Weir, A. Wynn, and L.M. Johnson, “Developments toward a 250-nm, fully planarized fabrication process with ten superconducting layers and self-shunted Josephson junctions,” Arxiv: 1704.07683. [Online] Available: https://arxiv.org/abs/1704.07683.
[10] H. Kroger, C.N. Potter, D.W. Jillie, “Niobium Josephson junctions with doped amorphous silicon barriers,” IEEE Trans. Mag., vol. 15, No. 1, pp. 488-489, Jan. 1979.
[11] D. Olaya, B. Baek, P. Dresselhaus, and S. Benz, “High-speed Nb/Nb/Si/Nb Josephson junctions for superconductive digital electronics,” IEEE Trans. Appl. Supercond., vol. 18, No. 4, pp. 1797-1800, 2008.
[12] D. Olaya, P. Dresselhaus, S. Benz et al., “Digital circuits using self-shunted Nb/Nb/Si1-x/Nb Josephson junctions,” Appl. Phys. Lett., vol. 96, p. 213510, 2010.
[13] V.L. Ginzburg and L.D. Landau, “On the theory of superconductivity,” Zh. Experim. i Teor. Fiz., vol. 20 p. 1064, 1950 (in Russian). V.L. Ginzburg and L.D. Landau, “On the theory of superconductivity.” In: On Superconductivity and Superfluidity. Springer, Berlin, Heidelberg, 2009, pp. 113-137.
[14] M. Tinkham, Introduction to Superconductivity. McGraw-Hill, New York, 2nd ed. 1996, p. 124.
A. V. Ustinov and V. K. Kaplunenko, “Rapid single-flux quantum logic using x-shifters,” J. Appl. Phys., vol. 94, No. 8, pp. 5405-5407, Oct. 2003.

D. E. Oates, A. C. Anderson, C. C. Chin, J. S. Derov, G. Dresselhaus, and M. S. Dresselhaus, “Surface-impedance measurements of superconducting NbN films,” Phys. Rev. B, vol. 43, No. 10, pp. 7655-7663, Apr. 1991.

A. Kamlapure et al., “Measurements of magnetic penetration depth and superconducting energy gap in very thin epitaxial NbN films,” Appl. Phys. Lett., vol. 96, 072509, Feb. 2010.

L. Yu et al., “Fabrication of niobium titanium nitride thin films with high superconducting transition temperatures and short penetration lengths,” IEEE Trans. Appl. Supercond., vol. 15, No.1, pp. 44-48, Mar. 2006.

S. K. Tolpygo, D. Y. Ohanne, R. T. Hunt, J. A. Vivalda, D. Donnelly, D. A. Marboro, and A. F. Kirchenko, “20 kA/cm² process development for superconducting integrated circuits with 80 GHz clock frequency,” IEEE Trans. Appl. Supercond., vol. 17, No. 2, pp. 946-951, June 2007.

D. F. Kirchenko, S. Sarwana, and A. F. Kirchenko, “Zero static power dissipation biasing of RSFQ circuits,” IEEE Trans. Appl. Supercond., vol. 21, No. 3, pp. 776-779, June 2011.

Y. Kobayashi, T. Maia, and H. Kayano, “Microwave measurements of temperature and current dependence of surface impedance for high-Τc superconducting NbN films,” IEEE Trans. Microwave Theor. Tech., vol. 39, No. 9, pp. 1530-1538, Sept. 1991.

Z.-Y. Shen, C. Wilker, P. Pang, W. L. Holstein, D. Face, and D. J. Kountz, “High Τc superconductor-sapphire microwave resonator with extremely high Q-values up to 90 K,” IEEE Trans. Microwave Theor. Tech., vol. 40, No. 12, pp. 2424-2432, Dec. 1992.

A. I. Gubin, K. S. Il’in, S. A. Vitusevich, M. Siegel, and N. Klein, “Dependence of magnetic penetration depth on the thickness of superconducting Nb thin films,” Phys. Rev. B, vol. 72, 064503, June 2006.

M. Tinkham, Introduction to Superconductivity. McGraw-Hill, New York, 2nd ed., 1996, p. 96.

J. Simmenderg et al., “Superconducting energy scales and anomalous dissipative conductivity in thin films of molybdenum nitride,” Phys. Rev. B, vol. 94, 064506, 2016.

A. V. Tartakovskii and M. V. Fistul’, “Quasiparticle current in superconductors,” Sov. Phys. JETP, vol. 29, No. 9, pp. 1423-1425, Dec. 2000.

V. Korneeva, I. Florya, S. Vdovichev, M. Moshkova, N. Simonov, and N. Klein, “Properties of superconducting microbridges in the pure limit,” Fiz. Nizk. Temp., vol. 3, No. 7, pp. 945-948, July 1977.

I. O. Kulik and A. N. Omel’yanchuk, “Josephson effect in superconducting bridges: microscopic theory,” Fiz. Nizk. Temp., vol. 4, No. 3 pp. 296-311, Mar. 1978.

I. M. Lifshitz and V. Ya. Kirpichenkov, “Tunnel transparency of disordered systems,” Sov. Phys. JETP, vol. 50, No. 3, pp. 499-511, Sep. 1979.

L. G. Aslamazov and M. V. Fistul’, “Resonant tunneling in superconductor-semiconductor-superconductor junctions,” Sov. Phys. JETP, vol. 56, No. 3, pp. 666-670, Sep. 1982.

A. I. Larkin and K. A. Matveev, “Current-voltage characteristics of mesoscopic semiconductor contacts,” Sov. Phys. JETP, vol. 33, No. 3, pp. 580-584, Sep. 1971.

L. I. Glazman and K. A. Matveev, “Inelastic tunneling across thin amorphous films,” Sov. Phys. JETP, vol. 67, No. 6, pp. 1276-1282, June 1988.

Y. Xu, D. Ephron, and M. R. Beasley, “Direct inelastic hopping of electrons through metal-insulator-metal tunnel junctions, Phys. Rev. B, vol. 52, No. 2, pp. 2843-2839, July 1995.

A. V. Tartakovskii and M. V. Fistul’, “Quasiparticle current in superconductor-semiconductor-superconductor junctions,” Sov. Phys. JETP, vol. 67, No. 9, pp. 1935-1942, Sep. 1988.

S. K. Tolpygo, A. Brinkman, A. A. Golubov, and M. Y. Kupriyanov, “Nb/AIO/Al/AIO/Nb double-barrier junctions with high critical current densities: influence of barrier asymmetry,” IEEE Trans. Appl. Supercond., vol. 13, No. 2, pp. 138-141, June 2003.

V. Lacquanti, N. De Leo, M. Fretto, A. Sosso, and M. Belogolovskii, “Nb/Ai/AIO-Nb superconducting heterostructures: A promising class of self-shunted Josephson junctions,” J. Appl. Phys., vol. 108, No. 9, 093701, 2010.

P. Felvry, D. Bousi, N. De Leo, M. Fretto, A. Sosso, and V. Lacquanti, “Electrical parameters of niobium-based overdamped superconductor-normal metal-insulator-superconductor Josephson junctions for digital applications,” J. Appl. Phys., vol. 107, No. 10, 103927, July 2010.

M. Belobolovskii, E. Zhitlukhina, V. Lacquanti, N. De Leo, M. Fretto, and A. Sosso, “Intrinsically shunted junctions for electronics applications,” Low Temp. Phys., vol. 43, No. 7, pp. 756-765, July 2017.

T. Ando, S. Nagasawa, N. Takeuchi, N. Tsuji, F. China, M. Yamanishi, and N. Yoshikawa, “Three-dimensional adiabatic quantum-flux-parametron fabricated using a double-active-layered niobium process,” Supercond. Sci. Technol., vol. 30, 075003, June 2017.