Carbon monoxide interacting with free-electron-laser pulses

H I B Banks, A Hadjipittas and A Emmanouilidou

Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom

E-mail: a.emmanouilidou@ucl.ac.uk

Received 24 April 2020, revised 27 June 2020
Accepted for publication 16 July 2020
Published 22 October 2020

Abstract
We study the interaction of a heteronuclear diatomic molecule, carbon monoxide, with a free-electron laser (FEL) pulse. We compute the ion yields and the intermediate states by which the ion yields are populated. We do so using rate equations, computing all relevant molecular and atomic photo-ionisation cross-sections and Auger rates. We find that the charge distribution of the carbon and oxygen ion yields differ. By varying the photon energy, we demonstrate how to control higher-charged states being populated mostly by carbon or oxygen. Moreover, we identify the differences in the resulting ion yields and pathways populating these yields between a homonuclear molecule, molecular nitrogen, and a heteronuclear molecule, carbon monoxide, interacting with an FEL pulse. These two molecules have similar electronic structure. We also identify the proportion of each ion yield which accesses a two-site double-core-hole state and tailor pulse parameters to maximise this proportion.

Keywords: molecules interacting with free-electron lasers, homonuclear versus heteronuclear molecules interacting with free electron lasers, double core hole states

1. Introduction

X-ray free-electron lasers [1–3] have introduced new tools and techniques for the investigation and imaging of atoms and molecules [4, 5]. The x-ray energy of the photons and high intensity of the FEL pulses allow for high-resolution images of large biomolecules [6–8]. These x-ray photons are also more likely to ionise inner-shell electrons than valence electrons, resulting in the creation of core holes. If another core hole is created, before the atom or molecule has time to relax via Auger processes, a double-core-hole (DCH) state is formed. In molecules, there are two types of DCH states, those where both core holes are on the same atomic site, i.e. single-site double-core-hole (SSDCH) states, and those where the core holes are on different atomic sites, i.e. two-site double-core-hole (TSDCH) states. These TSDCH states are particularly interesting due to their sensitivity to their chemical environment [9–13]. DCH states are short-lived, as they decay via Auger processes. This process involves a core hole being filled in by a valence electron, while the released energy results in the ejection of another valence electron. There has been a significant amount of both experimental [14–18] and theoretical [19, 20] work regarding these states.

We investigate the influence of TSDCH states during the interaction of an FEL pulse with a heteronuclear diatomic molecule. Specifically, we identify the set of pulse parameters that maximise the production of TSDCH states during the interaction of carbon monoxide (CO) with an FEL pulse. The interaction of CO with an FEL pulse has been the focus of several studies, as it pertains to biomolecules [21, 22]. The formation of TSDCH states in CO has been detected experimentally through photoelectron spectra [14], with supporting theoretical energy calculations [11]. In the current study, we investigate the effect of the photon energy, pulse duration and intensity of the pulse on the contribution of TSDCHs in the formation of the final ion yields. As a result, we identify
the most appropriate FEL pulse parameters for maximising the proportion of the final ion yields that accesses a TSDCH. In addition, we investigate the role of TSDCH states during the interaction of an FEL pulse with a homonuclear versus a heteronuclear diatomic molecule. We do so in the context of molecular nitrogen (N₂) versus CO, two diatomic molecules of similar electronic structure.

Moreover, we investigate whether carbon or oxygen populate more highly-charged states during the interaction of CO with an FEL pulse. That is, by varying the photon energy as well as the duration and intensity of the FEL pulse we identify which pulse parameters favour higher-charged states being populated by carbon or oxygen. In addition, for the same FEL pulse parameters we compare the resulting carbon and oxygen ion yields with the atomic nitrogen yields resulting from the FEL pulses interacting with N₂. This allows us to identify additional differences in the interaction of homonuclear and heteronuclear molecules with FEL pulses.

2. Method

2.1. Rate equations

We use rate equations to model the interaction of Gaussian FEL pulses with CO. Every energetically accessible state of CO is denoted by its electronic configuration, (1σᵃ, 2σᵇ, 3σᶜ, 4σᵈ, 1π⁰, 1π⁺, 1π⁻, 5σ⁰), where a, b, c, d, e, f and g are the number of electrons occupying a molecular orbital. This occupancy is 0, 1 or 2. These rate equations were discussed in detail in previous work in the context of the homonuclear molecule N₂ (1σ⁺, 2σ⁺, 2σ⁻, 2σ⁻, 1π⁺, 1π⁻, 1σ₀, 3σ⁻) interacting with FEL pulses [23]. In the rate equations describing the interaction of CO with an FEL pulse we employ the single-photon ionisation cross-section and Auger rates for all energetically allowed transitions in CO as well as its atomic fragments. Atomic units are used in this work, unless otherwise stated. To obtain these cross sections and rates we need to compute the bound and the continuum atomic and molecular orbitals for all energetically accessible states. To simplify the computations involved for the photo-ionisation cross-section and Auger rates, we express these orbitals in terms of a single-centre expansion (SCE) [24].

In the rate equations, the photon flux, J(t), is used to compute the photo-ionisation rates. For a monochromatic pulse of photon energy ω, we consider J(t) to have a Gaussian temporal form that is given by

\[J(t) = \frac{I_0}{\omega} \exp \left\{ -4 \ln 2 \left(\frac{t - \tau}{\tau} \right)^2 \right\}, \]

where \(I_0 \) is the peak intensity of the FEL pulse, and \(\tau \) is the full-width half-maximum (FWHM) of the pulse. In what follows, intensity refers to the peak intensity in equation (1).

2.2. Bound and continuum orbitals

We obtain the molecular and atomic bound wavefunctions \(\psi_i \) using the Hartree–Fock technique in Molpro [25], a quantum chemistry package. We use the cc-pVTZ basis set to obtain the bound wavefunctions for CO with the nuclei fixed at an equilibrium distance of 1.128 Å [26]. In the single-centre expansion the bound and continuum wavefunctions, \(\psi_i \) and \(\psi_c \), respectively, are expressed as [24]

\[\psi_{i/c}(r) = \sum_{lm} P_{lm}(r) Y_{lm}^{\iota}(\theta, \phi), \]

with \(r = (r, \theta, \phi) \) denoting the position of the electron, with respect to the centre of mass of the molecule. We denote by \(Y_{lm} \), a spherical harmonic with quantum numbers \(l \) and \(m \) while \(P_{lm}(r) \) denotes the single centre expansion coefficients for the orbital \(\iota \). The index \(i \) refers to the \(i \th \) bound orbital, while \(\iota \) refers to a continuum orbital with energy \(\epsilon \). Since CO is a linear molecule, it has rotational symmetry and hence only one \(m \) value is involved in the summation in equation (2). For a heteronuclear molecule, like CO, the wavefunctions have no gerade or ungerade symmetry and therefore both even and odd values of \(l \) have to be included in equation (2). This is unlike a homonuclear molecule, like N₂, where only odd or even values of \(l \) are included in the summation in equation (2) depending on whether the wavefunction has gerade or ungerade symmetry.

The continuum wavefunctions, \(\psi_c \), are calculated by solving the following Hartree–Fock equations [23, 24, 27]:

\[
\begin{aligned}
-\frac{1}{2} \nabla^2 \psi_c(r) &+ \sum_n \frac{-Z_n}{|r - \mathbf{R}_n|} \psi_c(r) \\
&+ \sum_i a_i \int dp \frac{\psi_i^*(r)p \psi_i(r)p}{|r - \mathbf{R}_i|} \psi_c(r) \\
&- \sum_i b_i \int dp \frac{\psi_i^*(r)p \psi_i(r)}{|r - \mathbf{R}_i|} \psi_c(r) = \epsilon \psi_c(r),
\end{aligned}
\]

where \(\psi_i \) is the wavefunction of the \(i \th \) bound molecular orbital, \(a_i \) is the occupation of orbital \(i \) and \(b_i \) is a coefficient associated with the \(i \th \) orbital, whose values are determined by the symmetry of the state. For more details, see our previous work [23], \(\mathbf{R}_n \) and \(Z_n \) are the position with respect to the centre of mass, and the charge of nucleus \(n \), respectively. In order to compute the continuum orbitals \(\psi_c \), we substitute \(\psi_i \) and \(\psi_c \) using equation (2) and use the non-iterative method [23, 24] to solve for the \(P_{lm} \) coefficients.

2.3. Photo-ionisation

The photo-ionisation cross-section for an electron transitioning from an initial molecular orbital \(\psi_i \) to a final continuum molecular orbital \(\psi \) is given by [28]

\[\sigma_{\text{π-ω}} = \frac{4}{3} \alpha \pi^2 \omega N_i \sum_{\mu = -1,0,1} |D_{\mu i}^{\psi}|^2, \]

where \(\sigma_{\text{π-ω}} \) is the photo-ionisation cross-section for photodetachment, \(\alpha \) is the fine-structure constant, \(\omega \) is the photon energy, \(\omega \) is the occupation number of orbital \(i \) by \(N_i \) and the magnetic quantum number of the photon by \(M \). In the length gauge,
using equation (2), the matrix element $D_{i\epsilon}^M$ is given by

$$
D_{i\epsilon}^M = \frac{4\pi}{3} \sum_{l_m,f_{m'}} \int_0^\infty dr P_{f_{m'}l}(r)P_{lml}(r) \times \int d\Omega Y_{f_{m'}l}(\theta, \phi)Y_{lml}(\theta, \phi) = \sum_{l_m,f_{m'}} (-1)^{m}\sqrt{(2l+1)(2f+1)} \\
\times \left(\begin{array}{ccc} l & l & 1 \\ 0 & 0 & 1 \end{array} \right) \left(\begin{array}{ccc} l & l & 1 \\ -m' & m & 1 \end{array} \right) \int_0^\infty dr P_{f_{m'}l}(r)P_{lml}(r).
$$

Equation (4) clearly shows that, by adapting the SCE for the bound and continuum wavefunctions, we significantly simplify the computation of the cross-section. Namely, the result of the angular integrals is expressed in terms of the Wigner-3j symbols [29] and we only have to solve a 1D integral numerically, which involves the single-centre expansion coefficients, $P_{f_{m'}l}$. The computation of the matrix element $D_{i\epsilon}^M$ is more intensive for the heteronuclear molecule, CO, than the homonuclear N2 as it involves both odd and even values for the l and l' numbers.

2.4. Auger decay

Auger decay rates have been calculated with a variety of different methods in existing work [30–40]. The general expression for the Auger rate, Γ, is given by [41]:

$$
\Gamma = \sum |M|^2 \equiv \sum_2 |\langle \Psi_{\text{ini}} | H_1 | \Psi_{\text{fin}} \rangle|^2,
$$

where \sum denotes a summation over the final states and an average over the initial states, $|\Psi_{\text{ini}}\rangle$ and $|\Psi_{\text{fin}}\rangle$ are the wavefunctions of all electrons in the initial and final molecular state, respectively. H_1 is the interaction Hamiltonian. In the m_a, m_b, S, M_S scheme, the Auger rate is given by [23]

$$
\Gamma_{h,a-n_a\zeta} = \sum_{m_a,m_b,n_a} \pi N_{ab} N_{\zeta} \sum_L |M|^{2},
$$

with N_{ζ} being the number of holes in the orbital to be filled, a, b refer to the valence orbitals, s to the core orbital which is filled in and ζ refers to the continuum orbitals. S and M_S are the total spin and its orientation before the transition and S' and M'_S are the total spin and its orientation afterwards. As the CO orbitals have well-defined m, the summations over m will take only a single value. N_{ab} is the weighting factor related to the occupation of the valence orbitals which fill the hole given by

$$
N_{ab} = \begin{cases}
\frac{N_a N_b}{2 \times 2} & \text{for different orbitals} \\
\frac{N_a (N_a - 1)}{2 \times 2 \times 1} & \text{for same orbital}.
\end{cases}
$$

Here, N_a and N_b are the occupations of orbitals a and b, respectively. The matrix element, M, is given by

$$
M = \delta_S^a \delta_{M_S} \sqrt{(2l_a + 1)(2l_b + 1)(2l_c + 1)(2l_{\zeta} + 1)} \times \sum k \sum q \sum \sum (-1)^{m_a + q + m_{\zeta}} \int dr_1 \times \int dr_2 P_{f_{m_a}l}(r_1)P_{lml}(r_2) \frac{k}{r_{<1}^2} P_{l_{\zeta}l_{\zeta}}^p(r_1)P_{l_{\zeta}l_{\zeta}}^p(r_2) \times \left(\begin{array}{ccc} l_a & k & l_a \\ 0 & 0 & 0 \end{array} \right) \left(\begin{array}{ccc} l_a & k & l_a \\ -m_a & q & m_a \end{array} \right) \left(\begin{array}{ccc} k & l_c & l_{\zeta} \\ 0 & 0 & 0 \end{array} \right) \times \left(\begin{array}{ccc} k & l_c & l_{\zeta} \\ -q & -m_{\zeta} & m_b \end{array} \right) + (-1)^{l_a} \sum k \sum (-1)^{m_a + q + m_{\zeta}} \times \int dr_1 \int dr_2 P_{f_{m_a}l}(r_1)P_{lml}(r_2) \frac{k}{r_{<1}^2} P_{l_{\zeta}l_{\zeta}}^p(r_1)P_{l_{\zeta}l_{\zeta}}^p(r_2) \times \left(\begin{array}{ccc} l_a & k & l_a \\ 0 & 0 & 0 \end{array} \right) \left(\begin{array}{ccc} l_a & k & l_a \\ -m_a & q & m_a \end{array} \right) \left(\begin{array}{ccc} k & l_c & l_{\zeta} \\ 0 & 0 & 0 \end{array} \right) \times \left(\begin{array}{ccc} k & l_c & l_{\zeta} \\ -q & -m_{\zeta} & m_b \end{array} \right)
$$

where $r_1 = \min(r_1, r_2)$ and $r_2 = \max(r_1, r_2)$. Due to rotational symmetry, each orbital has a single well-defined m number. This calculation is more computationally intensive in the heteronuclear case than in the homonuclear case, as the wavefunctions do not have gerade or ungerade symmetry and therefore will involve both odd and even values of l.

2.5. Dissociation

We treat the dissociation of the molecule phenomenologically, with rates based on FEL experiments with N2 [20, 42]. This approximation is justified by the similarity between CO and N2, particularly with respect to their dissociative transitions [43]. We assume that, as for N2, CO dissociates at its equilibrium distance. The molecular ion CO2+ is treated as dissociating with a lifetime of 100 fs [42]. The final products of this dissociation, according to the experimental work in reference [44], are C+ and O+ with 85% probability, C2+ and O with 9% probability, and C and O2+ with 6% probability. States of CO2+ without core holes are treated as instantaneously dissociating to C+ and O2+ or C2+ and O+ with equal probability, as is the case for N2 [20, 23]. All states of CO2+ are treated as dissociating instantaneously to C2+ and O2+ [20, 23]. To determine which atomic orbitals are unoccupied after dissociation, we determine how the molecular orbitals with missing electrons map to atomic orbitals by calculating overlaps between molecular and atomic orbitals. Specifically, we calculate the overlap $\langle \psi_{\text{CO}}^{CM} | \psi_{\text{CO}}^{C+} \rangle$ of each molecular orbital of neutral CO with each atomic orbital of neutral C and O, where a corresponds to a molecular orbital and a to an atomic orbital. We find that $\langle \psi_{\text{CO}}^{CM} | \psi_{\text{CO}}^{C+} \rangle \approx 1$, which means that the $1s$ CO orbital with energy 542 eV corresponds to a $1s$ O orbital with energy 544 eV. Moreover, we find $\langle \psi_{2s}^{C+} | \psi_{1s}^{C} \rangle \approx 1$, which means that the $2s$ CO orbital with energy 296 eV corresponds to a $1s$ C.
Figure 1. Carbon and oxygen ion yields, as a function of intensity, produced by CO interacting with FEL pulses with (a) 1100 eV and 4 fs FWHM (b) 1100 eV and 80 fs FWHM (c) 350 eV and 4 fs FWHM (d) 350 eV and 80 fs FWHM.

3. Results

3.1. Ion yields

3.1.1. Ion yield dependence on FEL pulse parameters. In what follows, we identify how the C and O ion yields depend on different FEL pulses interacting with CO. In figure 1, we show the atomic ion yields of C and O produced by FEL pulses interacting with CO. These ion yields are obtained as a function of intensity for FEL pulses of photon energy 1100 eV and pulse duration 4 fs figures 1(a) and 80 fs figure 1(b) as well as of photon energy 350 eV and pulse duration 4 fs figures 1(c) and 80 fs figure 1(d). The photon energy 1100 eV is sufficient to ionise an electron from the 1σ orbital, the innermost orbital of CO, while 350 eV allows for an electron to be removed from the 2σ orbital. Therefore, the photon energy of 350 eV does not allow for an electron to be removed from the O site of CO. An 80 fs duration FEL pulse allows for more photoionisations transitions to take place compared to a 4 fs duration pulse.

At a given intensity, for 1100 eV photon energy, comparing figure 1(a) with figure 1(b) and for 350 eV photon energy, comparing figure 1(c) with figure 1(d), we find that as expected the longer 80 fs pulse results in larger yields for the higher-charged states compared to the shorter 4 fs pulse. This is due to a larger number of photons being absorbed during the longer duration pulse. Moreover, we identify the effect of the photon energy, for a given pulse duration, by comparing the ion yields
of the 350 eV pulses with the ion yields of the 1100 eV pulses. That is, we compare figure 1(a) with figure 1(c) and figure 1(b) with figure 1(d). We find that, at a given intensity, the ion yields for the higher-charged states are larger for the smaller 350 eV photon energy pulse. This is attributed to two factors. For a given intensity, a lower photon energy corresponds to a higher photon flux. In addition, the photo-ionisation cross-sections are higher for the lower 350 eV photon energy compared to the higher 1100 eV photon energy, resulting in more photo-ionisation processes.

3.1.2. C versus O atomic ion yields. For a given charge state, the C and O atomic ion yields as a function of intensity are generally different, see figure 1. For both 1100 eV and 350 eV photon energies and 4 fs and 80 fs pulse durations, we compare C with O, C$^+$ with O$^+$ and C$^{2+}$ with O$^{2+}$. We find these ion yields to be similar, since they are created mostly by the dissociation of CO$^{2+}$. Specifically, C$^+$ and O$^+$ are created in equal amounts, see equation (11). For small intensities, the atomic ion C$^{2+}$ has a slightly higher ion yield than O$^{2+}$, since C$^{2+}$ is produced with a dissociation rate of 0.09 \times $\Gamma_{CO^2+}^{2+}$ (equation (10)), while O$^{3+}$ is produced with a rate of 0.06 \times $\Gamma_{CO^2+}^{3+}$ (equation (12)). For higher intensities, the biggest difference between C$^{2+}$ and O$^{2+}$ ion yields, occurs for pulse parameters 350 eV photon energy and 80 fs pulse duration. The reason is that significantly more atomic photo-ionisation transitions after dissociation lead to the formation
of O$^{2+}$ compared to C$^{2+}$. This is shown in figure 2(d). Note, in figures 2(a)–(d), we plot, as a function of intensity, the average number of atomic single-photon ionisation transitions that lead to the formation of each atomic ion state.

We now focus on the higher-charged states C$^{n+}$ and O$^{n+}$, where $n = 3, 4, 5$. At a given intensity, we find that for the 1100 eV photon energy, both for the 4 fs and 80 fs pulses, the yield of the O$^{n+}$ ion is higher than the yield of the C$^{n+}$ ion. The reason is that the single-photon ionisation cross-section to remove an electron from the 1σ molecular orbital or from the 1s orbital in oxygen is higher than the cross-section to remove an electron from the 2σ molecular orbital or from the 1s orbital in carbon. Figures 2(a) and (b) show that atomic photo-ionisation transitions play a more important role for the formation of C$^{5+}$ and O$^{5+}$, roughly two transitions, compared to one or less atomic transitions leading to the formation of C$^{n+}$ and O$^{n+}$ with $n = 3, 4$. At a given intensity, we find that for the 350 eV photon energy, both for the 4 fs and 80 fs pulses, the yield of the C$^{n+}$ ion is higher than the yield of the O$^{n+}$ ion where $n = 3$ or 4. The reason is that a photon energy of 350 eV is insufficient to ionise a core electron corresponding to the oxygen atomic site in CO or to ionise a 1s electron from an oxygen atomic ion. Hence, while C$^{5+}$ is formed by an inner-shell atomic photo-ionisation from C$^{2+}$ followed by an Auger process, O$^{5+}$ is formed by two valence atomic photo-ionisation transitions from O$^{3+}$. Indeed, comparing figures 2(c) and (d) with figures 2(a) and (b), we find that the number of atomic transitions to form C$^{5+}$ remains roughly equal to one both for 1100 eV and 350 eV. However, for O$^{5+}$ the number of photo-ionisations increases to two in the 350 eV case compared to one in the 1100 eV case. Finally, for the 350 eV case, C$^{5+}$ and O$^{5+}$ are both created by three valence atomic photo-ionisation transitions, resulting in similar ion yields.

3.1.3. Pathways for the formation of C and O atomic ions.

Next, we discuss the prevalent pathways leading to the formation of C$^{n+}$ and O$^{n+}$, with $n = 1, 2, 3, 4$, when CO interacts with an FEL pulse of 1016 W cm$^{-2}$ intensity, and 1100 eV and 350 eV photon energies and for FWHM equal to 4 fs and 80 fs. For the FEL pulse of photon energy 1100 eV and FWHM 4 fs and 80 fs we find that the main pathways leading to the formation of ions up to C$^{2+}$ and O$^{3+}$ do not involve any atomic processes, see tables 1 and 2. Moreover, we find that the main pathway involves a single-photon absorption from a 1σ orbital and an Auger decay filling in the 1σ hole. For both pulses, we find that the main pathway leading to the formation of C$^{3+}$ and O$^{4+}$ involves a single-photon ionisation from the 1σ molecular orbital and an Auger decay filling in the 1σ hole, while it involves an atomic single-photon ionisation of a core electron and an Auger decay. Regarding C$^{4+}$ and O$^{5+}$, one of the main pathways leading to their formation involves two single-photon ionisation processes from the 1σ orbital and two Auger decays filling in the 1σ core hole as well as an atomic single-photon ionisation of a core electron and an Auger decay. For the FEL pulse of photon energy 350 eV and FWHM 4 fs and 80 fs, we find that the main pathways leading to the formation of ions up to C$^{2+}$ and O$^{2+}$ do not involve any atomic processes, see tables 3 and 4. This is similar to the respective pathways for the FEL pulse of photon energy 1100 eV. The difference between the 350 eV and the 1100 eV FEL pulses, is that for the former (latter) the main pathways involve a single-photon absorption from a 1σ (1σ) orbital and an Auger decay filling in the 2σ (1σ) core hole. Another difference between the 350 eV and 1100 eV FEL pulses is that the formation of O$^{3+}$ and O$^{5+}$ involves single-photon absorptions of valence energy.
3.1.4. Comparison of C, O and N atomic ion yields.

In the previous section, it was shown that, for the 350 eV photon energy, the ion yields of C$_3$ and O$_3$ are significantly higher than the ion yields of O$_4$. Specifically, we compare the N, C and O atomic ion yields produced when the same FEL pulse interacts with CO. We can see that, for the 350 eV photon energy and an intensity of 10^{16} W cm$^{-2}$, the ion yields are P_{CA} for C$_3$ and P_{CA} for O$_3$. The proportions of each atomic ion yield that are formed via the Mol/Atom pathways are given in Table 3.

Ion	Mol pathway	Atom pathway	Proportion (%)
C	P_{CA}	D	91
C$^+$	P_{CA}	D	90
C$^{2+}$	P_{CA}	D	57
C$^{3+}$	{P$_{CA}$, P$_{PV}$}	D	21
C$^{4+}$	P_{CA}	D	37
O	P_{CA}	D	92
O$^+$	P_{CA}	D	90
O$^{2+}$	P_{CA}	D	37
O$^{3+}$	{P$_{CA}$, P$_{PV}$}	D	30
O$^{4+}$	P_{CA}	D	42
O$^{5+}$	{P$_{CA}$, P$_{PV}$}	D	35
O$^{6+}$	P_{CA}	D	40
O$^{7+}$	P_{CA}	D	38

Table 3. Same as for Table 1 for an FEL pulse of 4 fs FWHM, 350 eV photon energy and an intensity of 10^{16} W cm$^{-2}$.

3.2. DCH contributions

We are interested in the proportion of each atomic ion yield that is formed via different DCH states. The proportions of each atomic ion yield that are formed via different DCH states are shown in Figure 4 for a 4 fs pulse duration with intensity of 10^{18} W cm$^{-2}$. We can see that the pulse parameters as they favour the production of DCH states. Indeed, FEL pulses of short duration and high intensity favour more single-photon ionisation transitions occurring in a certain time interval compared to longer and lower intensity FEL pulses. Moreover, in addition to the 1100 eV photon energy, we consider a photon energy of 700 eV. The reason is that 700 eV is sufficient to photionise both the 1σ and 2σ molecular orbitals in CO, as well as the 1σ^* and 1σ^* orbitals in N$_2$ and at the same time these cross-sections are higher than the 1100 eV case.

Examining Figure 4, we see that the proportion of the yields which access a DCH generally increases at higher-charged ion yields. This is expected as transition pathways which involve a pair of two core photo-ionisations typically lead to higher-charged ions. For this high-intensity and short-duration FEL pulse, we can see that the O and C ions with charges 2, 3 and 4 are mainly produced by the dissociation of CO$^{2+}$. We can see that almost all of the C$^{3+}$ and O$^{4+}$ yields are produced via pathways involving TSDCH states. The reason is that when CO$^{+}$ breaks to C$^{2+}$ and O$^{+}$, each doubly-charged ion is created with a core hole. Each core hole is then filled in by an Auger decay leading to the production of C$^{2+}$ and O$^{2+}$. A large proportion of the O$^{4+}$ yield accesses an SSDCH state with the core holes localised on the oxygen. Regarding the O$^{5+}$ ion, it is formed by dissociation of CO$^{4+}$ to O$^{2+}$ with two 1s core holes, which are then filled in by two Auger transitions. Hence, O$^{5+}$ is mostly formed by accessing an SSDCH state of CO. In addition, we find that C$^{2+}$ and O$^{2+}$ are formed after the dissociation of CO$^{4+}$ with no core holes. However, CO$^{2+}$ before dissociation, accesses mostly SSDCH states on the oxygen side. This is due to the much higher photo-ionisation cross-section to transition from the 1σ orbital compared to transitioning from the 2σ orbital.

Comparing Figure 4(d) with Figure 4(a) and Figure 4(c) with Figure 4(b), we find that, for the 700 eV case, higher-charged ion states are produced with a higher proportion of these ion states accessing a TSDCH state. This is in accord with higher photo-ionisation cross-sections from both the 1σ and 1σ^* orbitals.
Carbon and oxygen ion yields, as a function of intensity, produced by CO interacting with an FEL pulse of 1100 eV photon energy and 4 fs (a) and 80 fs (b) FWHM contrasted with nitrogen ion yields produced by N$_2$ interacting the same pulses.

Atomic ion yields produced by FEL pulses with 1100 eV or 700 eV photon energy, 4 fs FWHM and 10^{18} W cm$^{-2}$ intensity interacting with CO ((a), (b), (d) and (e)) or N$_2$ ((c) and (f)). For each ion yield, we show the proportion of this ion yield that is reached by accessing a certain type of DCH state.

To gain further understanding into the proportion of the ion states of C, O and N, that is formed by accessing a TSDCH state, we plot in figure 5 these proportions as a function of time. In what follows, for simplicity, we refer to these states as C-TSDCH, O-TSDCH and N-TSDCH. We find that the proportion of an ion state that is formed via a TSDCH state can significantly change with time depending on the atom and on the pulse parameters. For instance, the yield of C$^{2+}$-TSDCH in figure 5(d) reaches a high value in a short time interval, while for large times this yield becomes very small. This means that, in the first few femtoseconds C$^{2+}$-TSDCH
Figure 5. Plot as a function of time of the fraction of the ion yields which is created via a two-site double-core-hole state for C$^+$, O$^+$ and N$^+$, with $n = 2, 3, 4, 5$. The results in the top row refer to the interaction of CO and N$_2$ with an FEL pulse of photon energy 1100 eV, FWHM of 4 fs and intensity of 10^{18} W cm$^{-2}$. The results in the bottom row refer to the interaction of CO and N$_2$ with an FEL pulse of photon energy 700 eV, FWHM of 4 fs and intensity of 10^{18} W cm$^{-2}$. Time zero in the plots corresponds to the time that the atomic ions are formed.

is formed, it has core holes. As time increases, atomic transitions take place leading to higher carbon charged states. As a result, the yield of C$^{2+}$-TSDCH at large times is significantly smaller than the one at small times. For an FEL pulse of photon energy of 1100 eV, FWHM of 4 fs and intensity of 10^{18} W cm$^{-2}$ interacting with CO, we find that in the first few femtoseconds C$^{2+}$-TSDCH and C$^{3+}$-TSDCH (see figure 5(a)) and O$^{2+}$-TSDCH and O$^{3+}$-TSDCH (see figure 5(b)) are created mostly without core holes. This is the reason why the yields of C$^{4+}$-TSDCH and C$^{5+}$-TSDCH (see figure 5(a)) and O$^{4+}$-TSDCH and O$^{5+}$-TSDCH (see figure 5(b)) are small. However, for N$_2$, we find that the proportion of N$^{2+}$-TSDCH and N$^{3+}$-TSDCH that has core holes is larger compared to the respective proportions for the ion states of C and O. As a result, the yields of N$^{4+}$-TSDCH and N$^{5+}$-TSDCH are larger compared to the respective yields for C and O. In contrast, for an FEL pulse of photon energy of 700 eV, FWHM of 4 fs and intensity of 10^{18} W cm$^{-2}$ interacting with CO and N$_2$, we find that in the first few femtoseconds C$^{2+}$-TSDCH and C$^{3+}$-TSDCH (see figure 5(d)) and O$^{2+}$-TSDCH and O$^{3+}$-TSDCH (see figure 5(e)) are created mostly with core holes. As a result,
the yields of C⁺⁺-TSDCH and C⁵⁺-TSDCH (see figure 5(d)) and O⁺⁺-TSDCH and O⁵⁺-TSDCH (see figure 5(e)) and N⁺⁺-TSDCH and N⁵⁺-TSDCH (see figure 5(f)) are significantly larger compared to the respective yields for the case of the 1100 eV FEL pulse.

4. Conclusions

In this work, we have investigated the interaction of FEL pulses with CO, a heteronuclear diatomic molecule. In particular, we have calculated the atomic ion yields produced when neutral CO is exposed to a variety of different FEL pulses. We identify higher yields for oxygen ion states for charges 3, 4 and 5, compared to carbon. We also find this to be the case for a photon energy of 1100 eV, which is sufficient to ionise the 1σ molecular orbital corresponding to the 1s core hole on the O site. However, for a photon energy of 350 eV, which does not access the 1σ molecular orbital, we find that the higher-charged C atomic ions are favoured over the O ions. In addition, we identify the dominant pathways for the formation of these charged ion states. Finally, we find that high-intensity short-duration laser pulses, with a photon energy sufficient to ionise both core orbitals in CO, favour the production of higher-charged states that are mainly formed by accessing TSDCH states.

Acknowledgments

We acknowledge the use of the Legion computational resources at UCL. This work was funded by the Leverhulme Trust Research Project Grant 2017-376.

ORCID iDs

A Emmanouilidou https://orcid.org/0000-0002-6255-9622

References

[1] Pellegrini C 2012 Eur. Phys. J. H 37 659–708
[2] Bostedt C et al 2013 J. Phys. B: At. Mol. Opt. Phys. 46 164003
[3] Emma P et al 2010 Nat. Photon. 4 641–7
[4] Marangos J P 2011 Contemp. Phys. 52 551–69
[5] Ulrich J, Rudenko A and Moshammer R 2012 Annu. Rev. Phys. Chem. 63 635–60
[6] Schlichting I and Miao J 2012 Curr. Opin. Struct. Biol. 22 613–26
[7] Neutze R, Wouters R and van der Spool D 2000 Weckert E and Hajdu J Nature 406 752–7
[8] Redecke L et al 2013 Science 339 227–30
[9] Cederbaum L S, Tarantelli F, Sgamellotti A and Schirmer J 1986 J. Chem. Phys. 85 6513–23
[10] Cederbaum L S, Tarantelli F, Sgamellotti A and Schirmer J 1987 J. Chem. Phys. 86 2168–75
[11] Tashiro M, Ehara M, Fukuzawa H, Ueda K, Buth C, Kryzhevoi N V and Cederbaum L S 2010 J. Chem. Phys. 132 184302
[12] Salén P et al 2012 Phys. Rev. Lett. 108 153003
[13] Piancastelli M N 2013 Eur. Phys. J. Spec. Top. 222 2035–55
[14] Berrah N et al 2011 Proc. Natl Acad. Sci. 108 16912–5
[15] Santra R, Kryzhevoi N V and Cederbaum L S 2009 Phys. Rev. Lett. 103 013002
[16] Fang L et al 2010 Phys. Rev. Lett. 105 083005
[17] Fang L et al 2012 Phys. Rev. Lett. 109 263001
[18] Zhaunerchyk V et al J. Phys. B: At. Mol. Opt. Phys. 48 244003
[19] Buth C, Liu J C, Chen M H, Cryan J P, Fang L, Glownia J M, Hoener M, Coffee R N and Berrah N 2012 J. Chem. Phys. 136 214310
[20] Liu J C, Berrah N, Cederbaum L S, Cryan J P, Głownia J M, Schafer K J and Buth C 2016 J. Phys. B: At. Mol. Opt. Phys. 49 075602
[21] Hill J R, Tokmakoff A, Peterson K A, Sauter B, Zimdars D, Plott D D and Fayer M D 1994 J. Phys. Chem. 98 11213–9
[22] Levantini M et al 2015 Nat. Commun. 6 6772
[23] Banks H I B, Little D A, Tennison J and Emmanouilidou A 2017 Phys. Chem. Chem. Phys. 19 19794–806
[24] Demekhin P V, Ehresmann A and Sukhorukov V L 2011 J. Chem. Phys. 134 024113
[25] Werner H J, Knowles P J, Lindh R, Manby F R, Schütz M et al 2010 MOLPRO a package of ab initio programs see http://molpro.net/
[26] Gilliam O R, Johnson C M and Gordy W 1950 Phys. Rev. 78 140–4
[27] Bransden B H and Joachain C J 2003 Physics of Atoms and Molecules (London, UK: Pearson Education)
[28] Sakurai J J 1994 Modern Quantum Mechanics (Reading, MA: Addison-Wesley)
[29] Shore B W and Menzel D H 1968 Principles of Atomic Spectra (New York: Wiley)
[30] Wallis A O G, Lodi L and Emmanouilidou A 2014 Phys. Rev. A 89 063417
[31] Bhalia C P, Polland N O and Hein M A 1973 Phys. Rev. A 8 649–57
[32] Pullikainen H, Aksela S, Sairanen O P, Hiltunen A and Aksela H 1996 J. Phys. B: At. Mol. Opt. Phys. 29 3033
[33] Lablanquie P, Andric L, Palaudoux J, Becker U, Braune M, Viehhaus J, Eland J and Penent F 2007 J. Electron Spectrosc. Relat. Phenom. 156–158 51–7
[34] Son S K and Santra R 2012 Phys. Rev. A 85 063415
[35] Bolognesi P, Coreno M, Avaldi L, Storchi L and Tarantelli F 2006 J. Chem. Phys. 125 054306
[36] Feyer V, Bolognesi P, Coreno M, Prince K C, Avaldi L, Storchi L and Tarantelli F 2005 J. Chem. Phys. 123 224306
[37] Pütter R, Fukuzawa H, Liu X J, Semenov S K, Cherepkov N A, Tanaka T, Hoshino M, Tanaka H and Ueda K 2008 J. Phys. B: At. Mol. Opt. Phys. 41 141001
[38] Iwayama H et al 2013 J. Chem. Phys. 138 024306
[39] Storchi L, Tarantelli F, Veronese S, Bolognesi P, Fainelli E and Avaldi L 2008 J. Chem. Phys. 129 154309
[40] Griffiths W J, Coelho R, Raimond G, de Brito A N, Svensson S and Karlsson L 1991 J. Phys. B: At. Mol. Opt. Phys. 24 4187
[41] Pauli W 2000 Wave Mechanics: Volume 5 of Pauli Lectures on Physics (New York: Wiley)
[42] Beylerian C and Cornaggia C 2004 J. Phys. B: At. Mol. Opt. Phys. 37 L259
[43] Gaire B, McKenna J, Johnson N G, Sayler A M, Parke E, Carnes K D and Ben-Izhak I 2009 Phys. Rev. A 79 063414
[44] Hitchcock A P, Lablanquie P, Morin P, Lizon E, Lugin A, Simon M, Thiry P and Nemerson S 1989 Phys. Rev. A 37 2448