Synthetic Studies of Ambruticin: Preparation of the C1-C8 Tetrahydropyran and the C17-C24 Dihydropyran Segments

Luping Liu 1, Julie L. Wondergem (nee Lukesh) 1,2, and William A. Donaldson 1,*

1 Department of Chemistry, Marquette University, P. O. Box 1881, Milwaukee, WI 53201-1881 USA
2 Present address: Division of Natural & Applied Sciences, University of Wisconsin-Green Bay, 2420 Nicolet Drive, Green Bay, WI 54311, USA

Abstract: The C1-C8 tetrahydropyran and the C17-C24 dihydropyran segments of ambruticin were prepared from L-arabinose in 11 steps, 7.6% overall yield and from (S)-ethyl lactate in 8 steps, 22.2% overall yield respectively.

Keywords: Natural products; C-glucosides; Oxonium ion; Cyclocondensation.

Introduction

Ambruticin (1, Fig. 1) is a structurally unique carboxylic acid isolated from Polyanthium cellulosum var. fulvum which exhibits potent oral antifungal activity against Coccidioides immitis, Histoplasma capsulatum, and Blastomyces dermatitidis 1. Extensive spectral analysis revealed that the structure of 1 consists of a tetrahydropyran ring, a dihydropyran ring, and a divinylcyclopropane ring. More recently the jerangolids A and D (2a, b), isolated from a strain of Sorangium cellulosum (So ce 307), were found to exhibit antifungal activity similar to 1 2. The structure of 2 from C6-C17 is identical with the C13-C24 segment of ambruticin, and the similar antibiotic spectrum of 1 and 2 suggests that these segments are responsible for their biological activity. More over, the first four genes encoding for the polyketide synthase for 1 and 2 are >90% identical 3. The complex array of diverse functionality present in both 1 and 2 has generated considerable synthetic interest 4, including total syntheses of 1 by the groups of Kende 5, Jacobsen 6, Martin 7, Lee 8, and Hanessian 9, and of 2b by Marko 10 and 2a by Hanessian 11.

![Figure 1. Structures of ambruticin (1) and the jerangolides (2a/b).](image)

Our retrosynthetic analysis of 1 dissected the molecule at the C8-C9 and C16-C17 olefins into a cis-tetrahydropyran segment 3 and a cis-dihydropyran segment 4 (Fig. 2). Notably, Just and Potvin confirmed the absolute configuration of ambruticin by preparation of 3 in optically active form, which they could compare to a sample obtained by degradation of 1 12. Addition syntheses of 3 are reported by the groups of Martin 7, Lee 8 and Michelet 6. Furthermore, Martin 7, Marko 10, and Hanessian 9,11 have prepared segment 4 as part of their syntheses of 1 and 2. We have previously reported the preparation of segments 3 and 4 in communication form 12. We herein report the full experimental details for these syntheses.

*Corresponding author: William A. Donaldson
E-mail address: william.donaldson@marquette.edu
DOI: http://dx.doi.org/10.13171/mjc.4.4.2015.07.01.13.37/donaldson
Results and Discussion

We envisioned segments 3 and 4 arising via C-glycosylation of an *in-situ* generated oxonium cation with an appropriate weak carbon nucleophile (Fig. 3). These reactions are known to generally result in the formation of a trans-2,6-disubstituted tetrahydro- or dihydropyran due to the propensity for axial nucleophilic attack on the oxonium cation. We rationalized that the trans-disubstituted products could subsequently be converted into the more thermodynamically stable cis-stereoisomers by epimerization.

2,3-Di-O-benzyl-4,5-isopropylidene-l-arabinose 7 was prepared from L-arabinose 5 in 4 steps, 55% overall yield, via the literature procedure. Attempted Wittig olefination of 7 with (methoxymethyl)triphenylphosphonium chloride using NaH/DMSO was unsuccessful and resulted in products which appear to arise from elimination. Alternatively, olefination of 7 with the ylide prepared using lithium diisopropylamine (LDA) proceeded in good yield to give 8 as a nearly equimolar mixture of *E* - and Z-isomers (Scheme 1).

Attempted hydrolysis of the enol ether 8 with aqueous acetic acid/p-TsOH gave an enal, due to elimination of a molecule of benzyl alcohol. Alternatively, cleavage of the 5,6-acetonide group of 8 with BBr3 proceeded with cyclization to the methyl glucoside (-)-9.

Ionization of the α-methoxy group with BF3•Et2O and subsequent nucleophilic attack with allyl trimethylsilane proceeded to give the tetrahydropyran (-)-10 (Scheme 2).

The *trans*-stereochemical assignment for 10 was based on its 1H NMR spectral data. In particular, the signals H-4ax and H-4eq appear at δ 1.74 and 2.01 ppm with a geminal coupling of 14.0 Hz. However, the absence of a large coupling between H-4ax and H-3 indicates that H-3 occupies an equatorial position. Ozonolysis of 10 in methanol, followed by reductive workup with dimethyl sulfide gave the corresponding aldehyde (-)-11. Notably, use of CH2Cl2 for solvent in this ozonolysis proceeded in poor yields. Aldehyde 11 underwent oxidation to the carboxylic acid slowly under a stream of air; this oxidation was more rapid in diethyl ether/methanol containing a catalytic amount of sodium methoxide. Due to difficulties in purification of the corresponding carboxylic acid, an alternative route utilized pyridinium dichromate in DMF containing 2.5% methanol to afford the ester 12 in high yield,
presumably via the hemiacetal. Treatment of 12 with sodium methoxide in methanol/water/toluene proceeded to afford the cis-tetrahydropyran carboxylic acid 13. This product arises via an elimination/addition reaction to equilibrate the less stable 12 to the more stable 3, followed by saponification (Scheme 3). Diimide mediated coupling of 13 with methanol gave the C1-C8 tetrahydropyran segment (-)-3. The cis-stereochemical assignment for 3 was based on its 1H NMR spectral data. In particular, the signals H-4ax appears as a quartet ($J = 12.5$ Hz) at $\delta = 1.42$ ppm. The large magnitude of these couplings are attributed to geminal coupling to H-4eq, as well as trans-diaxial couplings to H-3 and H-5. By this route, the C1-C8 segment (-)-3 was prepared from L-arabinose in 11 steps and 7.6% overall yield.

Construction of dihydropyran 4 was envisioned by means of a Lewis acid catalyzed diene-aldehyde cyclocondensation reaction 15. To this end, 2(S)-benzylxypropanal (14) was prepared from (S)-ethyl lactate (6) in two steps, 73% overall yield, by the literature procedure 16. Reaction of 14 with 1-methoxy-2-methyl-3-(trimethylsilyloxy)-1,3-butadiene (15) 17 in the presence of BF$_3$•Et$_2$O, followed by work-up with trifluoroacetic acid gave an inseparable mixture of diastereomeric dihydropyrones 16 and 17 in a 1.6:1 ratio (Scheme 4). The structural assignments of 16 and 17 were based on comparison of their 1H NMR spectral data. In particular, the signals for H-17 and H-19eq (ambruticin numbering) of 17 ($\delta = 3.69$ and 2.36 ppm respectively) appear upfield of the corresponding signals for 16 ($\delta = 3.81$ and 2.56 ppm respectively). These relative chemical shifts are quite characteristic of diastereomeric dihydropyrones with an α-benzyloxy group (Figure 4) 18. Use of MgBr$_2$ as Lewis acid (instead of BF$_3$•Et$_2$O) in the cyclocondensation reaction gave only 17 after acidic workup. The exclusive formation of 17 under MgBr$_2$ mediated conditions is the result of approach of the diene in an exo sense on the less hindered face of a Mg$^{2+}$ chelated form of aldehyde 14 (see insert, Scheme 3).

Scheme 4. Aldehyde-silyloxy diene cyclocondensation.
Pyranone 17 underwent reduction with DIBAL via axial addition of hydride to give the pseudoglycal (+)-20 as a single diastereomer (Scheme 5). Reaction of pseudoglycal 20 with the weak nucleophile triethylaluminum, in the presence of BF$_3$•Et$_2$O, gave a mixture of trans- and cis-dihydropyrans (8:1 ratio). The major diastereomer (-)-21, was obtained in good yield after column chromatography, and its structure was tentatively based on previous results from our laboratory as well as others on C-glycosidation reactions with trialkylaluminum 19. Eventual transformation of 21 into known (+)-4 corroborated this tentative assignment. Removal of the benzyl protecting group under dissolving metal conditions, followed by oxidation gave (-)-23. Base-catalyzed epimerization of the trans-ketone, in benzene, gave a separable mixture of 23 and 4 (1:2 ratio). Two equilibration/separation cycles gave pure (+)-4 in 83% combined yield. By this route, the C17-C24 segment (+)-4 was prepared from (S)-ethyl lactate in 8 steps and 22.2% overall yield.

Conclusion

The synthesis of the tetrahydropyran and dihydropyran segments of ambruticin were prepared from chiral pool precursors. The C1-C8 segment, (-)-3, was prepared from L-arabinose in 11 steps, 7.6% overall yield and the C17-C24 segment, (+)-4, was prepared from (S)-ethyl lactate in 8 steps, 22.2% overall yield. In both cases, the synthetic strategy relied on C-glycosylation followed by epimerization to the more stable cis-stereoisomers.

Acknowledgements

Partial financial support for this research was provided by the National Institutes of Health (GM-42641), the Department of Education (P200A000228), and the Marquette University Graduate School Committee on Research. High resolution mass spectral data were obtained at the Washington University Resource for Mass Spectrometry.
lithium disopropylamine (1.5 mL, 2.0 M in benzene/THF, 3.0 mmol). The mixture was stirred for 30 min. A solution of 7 (0.477 g, 1.29 mmol) in anhydrous THF (5 mL), pre-cooled to -78 °C, was added over a period of 10 min. After completion of the addition, the reaction mixture was warmed to room temperature and stirred for 20 min. The reaction mixture was diluted with ice-water, extracted several times with diethyl ether, and the combined extracts were washed with water, followed by brine, dried (MgSO₄) and concentrated. The residue was purified by column chromatography (SiO₂, hexanes-acetone = 9:1) to give a mixture of E/Z-isomers 8 (0.37 g, 72%) as a light yellow oil: [α]D²³ = -21 (c = 0.91, CHCl₃). IR (neat): 2979, 2958, 2916, 2870, 1609, 1598, 1465, 1443, 1330, 1259, 1098, 967 cm⁻¹. ¹H NMR (CDCl₃): δ = 7.27-7.39 (m, 10H), 6.47 (d, J = 13.0 Hz, 0.58H), C=CH(OMe)), 6.10 (d, J = 6.0 Hz, 0.42H, C=CH(OMe)), 3.73-4.84 (m, 9H), 3.62 (s, 1.38H, OMe), 3.53 (s, 1.7H, OMe), 1.42 (s, 3H), 1.34 (s, 3H). MS (FAB/KI) m/z 437 (calcd for C₅H₁₀O₅K [M+K⁺] m/z 437).

Methyl 2-deoxy-3,4-bis-O-(phenylmethyl)-α-L-arabinofuranopyranoside (+-). To a solution of 8 (2.52 g, 6.33 mmol) in CH₂Cl₂ (50 mL) at -78 °C was slowly added a solution of BF₃·Et₂O (0.65 mL, 1.0 M in CH₂Cl₂, 0.65 mmol). The color of the reaction solution immediately changed from light yellow to darkness and heat was released when the BF₃·Et₂O was added. After completion of addition, the reaction solution was gradually warmed to room temperature and stirred for 30 min. The reaction mixture was diluted with diethyl ether and washed with saturated aqueous NaHCO₃, followed by water, and brine, dried (MgSO₄), and concentrated. The residue was purified by column chromatography (SiO₂, hexanes-acetone = 9:1) to give (-)-9 (1.72 g, 76%) as a pale oil: [α]D²³ = -54.0 (c = 0.78, CHCl₃). [For d-enantiomer lit.²⁰ [α]D³⁰ = +69 (c 0.43, CHCl₃)]. IR (neat): 3600-3200, 3085, 3060, 3035, 2983, 2910, 1720, 1454, 1365, 1207, 1127, 1098, 1050, 1028, 987 cm⁻¹. ¹H NMR (CDCl₃): δ = 7.39-7.27 (m, 10H), 4.95 (d, J = 11.0 Hz, 1H), 4.80 (d, J = 3.0 Hz, 1H), 4.71-4.62 (m, 3H), 4.04-3.94 (m, 1H), 3.83-3.71 (m, 2H), 3.64 (dt, J = 10.0, 4.0 Hz, 1H), 3.50 (s, J = 12.0 Hz, 1H), 3.31 (s, 3H), 2.30 (ddd, J = 12.0, 4.5, 1.5 Hz, 1H), 1.78 (dd, J = 7.5, 6.0 Hz, 1H), 1.65 (ddd, J = 12.0, 10.0, 4.0 Hz, 1H). ¹H NMR spectral data for this compound was consistent with the literature values for the D-enantiomer;²⁰ MS (DCI/NH₃) m/z 376 (calcd for C₁₃H₂₁O₅N⁺[M+NH₄⁺] m/z 376).

4,8-Anhydro-1,2,3,5-tetradeoxy-6,7-bis-O-(phenylmethyl)-L-manno-non-1-enitol (+-). A solution of 9 (1.01 g, 2.82 mmol) and allyl trimethylsilane (1.00 g, 8.76 mmol) in CH₂Cl₂ (30 mL) at 0 °C was treated with BF₃·Et₂O (0.85 mL, 0.98 g, 6.96 mmol). The color of the reaction mixture changed from light yellow to darkness immediately after adding the Lewis acid. The reaction solution was stirred at 0 °C for 30 min under nitrogen. The mixture was diluted with diethyl ether, followed by slow addition of saturated aqueous NaHCO₃. The organic layer was separated and washed with saturated aqueous NaHCO₃, followed by water, and brine, dried (MgSO₄), and concentrated. The residue was purified by column chromatography (SiO₂, hexanes-acetone = 9:1) to give (-)-10 an oil (0.552 g, 53%); [α]D²⁰ = -3.64 (c = 0.87, CHCl₃). IR (neat): 3600-3200, 3065, 3030, 2926, 2874, 1454, 1365, 1209, 1099, 1048, 1028, 999 cm⁻¹. ¹H NMR (CDCl₃): δ = 7.27-7.39 (m, 10H), 5.82-5.67 (m, 1H), 5.18-5.01 (m, 2H), 4.85 (d, J = 11.0 Hz, 1H), 4.65-4.41 (m, 3H), 3.59-3.86 (m, 4H), 4.08-3.99 (m, 1H), 3.43 (t, J = 7.0 Hz, 1H), 2.46 (pent d of J = 7.0 Hz, 1H), 2.11 (pent, J = 7.0 Hz, 1H), 2.01 (dt, J = 14.0, 4.5 Hz, 1H), 1.92 (t, J = 7.0 Hz, 1H), 1.80-1.69 (m, 1H). ¹³C NMR (CDCl₃): δ = 138.3, 138.2, 134.4, 128.4, 128.0, 127.8, 127.7, 117.3, 77.6, 76.5, 74.3, 73.2, 71.4, 70.7, 62.3, 36.6, 32.7. FAB-HRMS m/z 369.2065 (calcd for C₁₃H₂₁O₅ [M+H⁺] m/z 369.2066).

3,7-Anhydro-2,4-dideoxy-5,6-bis-O-(phenylmethyl)-L-manno-octose (+-). A solution of 10 (0.552 g, 1.50 mmol) in methanol (10 mL) was cooled to -78 °C in a dry ice/acetone bath. The system was purged with carrier gas (compressed air) for 20 min and then ozone (generated from compressed air with a Welsbach apparatus) was bubbled through the solution until a blue color persisted. The system was purged with carrier gas until the blue color disappeared. Dimethyl sulfide (0.5 mL) and water (0.2 mL) were added to the reaction mixture and this was stirred for 3 h. After concentration in vacuo, the reaction mixture was diluted with diethyl ether and water. The organic layer was separated and washed with water, followed by brine, dried (MgSO₄) and concentrated. The residue was purified by column chromatography (SiO₂, hexane-acetone = 13:7), to give (-)-11 (0.455 g, 82%) as an oil; [α]D²⁰ = -10.5 (c = 1.27, CHCl₃). IR (neat): 3600-3200, 3085, 3060, 3035, 2926, 2876, 1723, 1497, 1454, 1365, 1314, 1270, 1208, 1097, 1028 cm⁻¹. ¹H NMR (CDCl₃): δ = 9.76 (t, J = 1.0 Hz, 1H, CHO), 7.39-7.26 (m, 10H), 4.72 (d, J = 12.0 Hz, 1H), 4.62 (d, J = 12.0 Hz, 1H), 4.66-4.53 (m, 3H), 4.04 (dd, J = 12.0, 7.0 Hz, 1H), 3.81-3.73 (m, 2H), 3.59 (dd, J = 12.0, 4.0 Hz, 1H), 3.39 (t, J = 6.0 Hz, 1H) 2.84 (ddd, J = 17.0, 9.0, 2.0 Hz, 1H), 2.52 (ddd, J = 17.0, 4.5, 1.0 Hz, 1H), 2.00-1.91 (m, 1H), 1.83-1.73 (m, 1H), signal for OH not observed. ¹³C NMR (CDCl₃): δ = 200.0, 138.0, 128.5, 127.9, 127.8, 127.6, 74.90, 74.85, 73.3, 73.1, 63.5, 61.0, 47.2, 32.4. MS (DCI/NH₃) m/z 388 (calcd for C₁₃H₂₁O₅N⁺[M+H⁺] m/z 388).
Methyl 3,7-anhydro-2,4-dideoxy-5,6-bis-O-(phenylmethyl)-L-manno-octanoate (12).

To a solution of 11 (0.386 g, 1.04 mmol) in DMSO (4 mL) containing methanol (0.1 mL) was added pyridinium dichromate (0.453 g, 2.20 mmol). The mixture was stirred at room temperature for 2 h, and then heated at 50 °C overnight. After cooling, the mixture was diluted with diethyl ether and water. The organic layer was separated and washed with 1 N aqueous HCl, followed by saturated aqueous NaHCO₃, water, and brine, dried (MgSO₄) and concentrated. The residue was purified by column chromatography (SiO₂, hexanes-acetone = 13:7), to give 12 (0.381 g, 91%) as a colorless oil. ¹H NMR (CDCl₃): δ = 7.39-7.27 (m, 10H), 4.71 (d, J = 12.0 Hz, 1H), 4.61 (d, J = 12.0 Hz, 1H), 4.55-4.39 (m, 3H), 4.08 (dd, J = 12.0, 7.5, 4.0 Hz, 1H), 3.88-3.74 (m, 2H), 3.69(s, 3H), 3.53 (dd, J = 12.0, 9.0, 3.0 Hz, 1H), 3.34 (t, J = 5.0 Hz, 1H), 2.68 (dd, J = 16.5, 10.0 Hz, 1H), 2.43 (dd, J = 16.5, 7.5 Hz, 1H), 2.01-1.91 (m, 1H), 1.81-1.72 (m, 1H); signal for OH not observed. ¹³C NMR (CDCl₃): δ = 193.5, 138.0, 128.6, 127.9, 127.8, 126.7, 75.1, 74.9, 73.1, 71.5, 65.1, 60.8, 52.0, 38.3, 32.2. FAB-HRMS m/z 401.1963 (calcd for C₂₃H₂₉O₅ [M+H⁺] m/z 401.1964).

Methyl 3,7-anhydro-2,4-dideoxy-5,6-bis-O-(phenylmethyl)-L-gluc-octanoate ((-)-3).

To a solution of 12 (0.381 g, 0.9953 mmol) in toluene (2 mL) was added 25% methanolic NaOMe (0.2 mL). The color of the reaction mixture changed from colorless to yellow immediately upon addition. The reaction mixture was stirred at 60 °C for 6 h in an open flask. Half of the solvent was evaporated during the reaction and some white precipitate was observed. The reaction mixture was partitioned between ethyl acetate and 1N HCl. The organic layer was separated, and the aqueous layer was extracted several times with ethyl acetate. The combined organic layers were washed with 1N HCl, then water, followed by brine, dried (MgSO₄) and concentrated to give 13 as an oil (0.301 g, 82%). This compound was used in the next step without further characterization. To a solution of 13 (0.155 g, 0.040 mmol) in CH₂Cl₂ (1 mL) at room temperature was added methanol (0.2 mL), ethyl dimethyloxosilylpropamide hydrochloride (0.211 g, 0.11 mmol) and 1-hydroxybenzotriazole hydrate (0.058 g, 0.043 mmol) and the mixture was stirred overnight. The reaction mixture was diluted with diethyl ether and water, the layers were separated and the aqueous layer was extracted several times with diethyl ether. The combined organic layers were washed with water, followed by brine, dried (MgSO₄) and concentrated. The residue was purified by column chromatography (SiO₂, hexanes-acetone = 9:1), to give ((-)-3 (0.124 g, 77%) as an oil. [α]D₂¹⁰⁻²¹.5 = -9.6 (c = 0.73, CHCl₃); +3.27 (c = 0.98, 95% ethanol); ¹H NMR (500 MHz, CDCl₃): δ = 7.39-7.28 (m, 10H), 4.95 (d, J = 11.0 Hz, 1H), 4.71 (d, J = 12.0 Hz, 1H), 4.68 (d, J = 11.0 Hz, 1H), 4.64 (d, J = 11.0 Hz, 1H), 3.93-3.85 (m, 1H), 3.83 (dd, J = 12.0, 3.0 Hz, 1H), 3.70 (s, 3H), 3.75-3.65 (m, 2H), 3.44 (t, J = 10.0 Hz, 1H), 3.36-3.31 (m, 1H), 2.62 (dd, J = 16.0, 7.0 Hz, 1H), 2.46 (dd, J = 16.0, 6.0 Hz, 1H), 2.24 (dd, J = 12.5, 6.0, 3.0 Hz, 1H), 1.42 (q, J = 12.5 Hz, 1H); signal for OH not observed. ¹³C NMR (CDCl₃): δ = 171.1, 138.4, 138.3, 128.4, 128.0, 127.7, 127.6, 80.5, 79.0, 78.2, 75.0, 71.8, 71.5, 62.4, 51.7, 40.4, 36.6. FAB-HRMS m/z 401.1963 (calcd for C₂₃H₂₉O₅ [M+H⁺] m/z 401.1964).

(2S)-2,3-Dihydro-5-methyl-2-[(1S)-1-(phenylmethoxy)ethyl]-4H-pyran-4-one (17).

To a solution of 14 (1.27 g, 7.74 mmol) in dry THF (30 mL) at 0 °C was added a freshly prepared ethereal solution of MgBr₂ (4.0 mL, 2.2 M, prepared from 1,2-dibromoethane and magnesium turnings). This solution was stirred at 0 °C for 10 min and then a solution of 15 (3.04 g, 15.3 mmol) in dry THF (30 mL) was added. The reaction mixture was slowly warmed to room temperature. After 14 h the reaction mixture was washed with saturated aqueous NaHCO₃ and the combined aqueous layers were extracted several times with ether. The combined extracts were dried (MgSO₄) and concentrated. The black residue was dissolved in CH₂Cl₂ (75 mL) and treated with trifluoroacetic acid (4 mL). The reaction mixture was stirred at room temperature in air for 3 h and then washed with saturated aqueous NaHCO₃ and the combined aqueous layers were extracted several times with CH₂Cl₂. The organic layers were dried (MgSO₄), concentrated, and the residue was purified by column chromatography (SiO₂, hexanes-acetone = 9:1) to give (17 (1.64 g, 86%) as a yellow oil: [α]D₂¹⁰ = +120 (c 0.330, CHCl₃), IR (neat): 2976, 2928, 2893, 1668, 1621, 1455, 1379, 1299, 1165, 1104 cm⁻¹. ¹H NMR (CDCl₃): δ = 7.39-7.28 (m, 6H), 4.70 (d, J = 11.7 Hz, 1H), 4.53 (d, J = 11.7 Hz, 1H), 4.34 (dd, J = 14.7, 3.8, 3.6 Hz, 1H), 3.69 (qd, J = 6.5, 4.7 Hz, 1H), 2.79 (dd, J = 16.4, 14.7 Hz, 1H), 2.36 (dd, J = 16.7, 3.2 Hz, 1H), 1.68 (d, J = 1.2 Hz, 3H), 1.30 (d, J = 6.5 Hz, 3H). ¹³C NMR (d₆-acetone): δ = 193.1, 160.3, 140.3, 129.6, 129.0, 128.8, 114.6, 78.2, 76.3, 72.5, 38.9, 16.1, 11.3; FAB-HRMS m/z 253.1428 (calcd for C₁₆H₁₈O₃Li [M+Li⁺] m/z 253.1416).

(2R)-2,3-Dihydro-5-methyl-2-[(1S)-1-(phenylmethoxy)ethyl]-4H-pyran-4-one (16) and (2S)-2,3-Dihydro-5-methyl-2-[(1S)-1-(phenylmethoxy)ethyl]-4H-pyran-4-one ((+)-17).

To a solution of 14 (0.932 g, 5.67 mmol) in anhydrous CH₂Cl₂ (10 mL) at -78 °C was added a solution of BF₃·Et₂O (1.10 mL, 9.07 mmol) in anhydrous CH₂Cl₂ (60 mL) was added. After 10 min, a solution of 15 (1.631 g, 8.505 mmol) in anhydrous CH₂Cl₂ (10 mL) was added. The reaction mixture was slowly allowed to warm to room temperature over 18 h and then worked up with TFA.
in a fashion similar to the preparation of 17. The residue was purified by column chromatography (SiO₂, hexanes-ethyl acetate = 3:1), to afford an inseparable mixture of 16 and 17 (1.6:1) as determined by ¹H NMR spectroscopy. ¹H NMR (CDCl₃) (in addition to the signals reported above for 17, the following signals were assigned to 16) δ 7.39-7.27 (m, 6H), 4.67 (d, J = 11.7 Hz, 1H), 4.59 (d, J = 12.0 Hz, 1H), 4.33 (ddd, J = 14.4, 3.8, 3.8 Hz, 1H), 3.81 (qd, J = 6.5, 4.1 Hz, 1H), 2.68 (dd, J = 16.7, 14.4 Hz, 1H), 2.56 (dd, J = 16.7, 3.5 Hz, 1H), 1.70 (d, J = 1.2 Hz, 3H), 1.27 (d, J = 6.5 Hz, 3H). ¹³C NMR (CDCl₃) δ 192.3, 158.7, 137.7, 128.1, 127.5, 127.3, 113.7, 82.1, 75.2, 71.7, 37.6, 16.4, 11.3.

3,7-Anhydro-1,4,6-trideoxy-6-methyl-2-O-(phenylmethyl)-D-xylo-hept-6-enitol ((+)-20). To a solution of 17 (6.190 g, 25.16 mmol) in benzene (370 mL) cooled to 0 °C was added an solution of DIBAL (50.0 mL, 1.0 M in hexanes, 50 mmol). The reaction mixture was stirred for 3 h at 0 °C and then was quenched by the dropwise addition of saturated aqueous NaHCO₃ solution (200 mL). The layers were separated and the aqueous layers were extracted several times with ethyl acetate. The organic layers were dried (MgSO₄), filtered through celite in a sintered glass funnel, and concentrated. The residue was purified by chromatography (SiO₂, hexanes-ethyl acetate = 4:1) to give (+)-20 (5.48 g, 88%) as a colorless solid: mp 48-50 °C; [α]D²⁻¹ +18 (c 0.214 CHCl₃). IR (KBr): 3231, 2955, 2880, 1667, 1497, 1454, 1372, 1350, 1057, 981 cm⁻¹. ¹H NMR (CDCl₃): δ = 7.36-7.27 (m, 5H), 6.19 (s, 1H), 4.66 (d, J = 12.0 Hz, 1H), 4.54 (d, J = 12.0 Hz, 1H), 4.27 (dd, J = 13.2, 7.6 Hz, 1H), 3.94 (ddd, J = 11.1, 4.7, 2.4 Hz, 1H), 3.64 (qd, J = 6.3, 4.7 Hz, 1H), 2.19 (ddd, J = 13.2, 6.5, 2.4 Hz, 1H), 1.82 (ddd, J = 13.2, 11.0, 8.9 Hz, 1H), 1.61 (s, 3H), 1.52 (d, J = 7.3 Hz, 1H), 1.23 (d, J = 6.5 Hz, 3H); ¹³C NMR (CDCl₃): δ = 140.3, 138.5, 128.5, 127.9, 127.7, 111.6, 77.2, 75.5, 71.5, 66.0, 33.9, 15.6, 14.1. Anal. calcd for C₁₉H₁₆O₂: C, 72.55; H, 8.12. Found: C, 72.29; H, 7.87%.

2R,6S)-2-Ethyl-5,6-dihydro-3-methyl-6-[(1S)-1-phenylmethyl]ethyl]-2H-pyran ((−)-21). To a solution of 20 (2.691 g, 10.85 mmol) in anhydrous CH₂Cl₂ (210 mL), cooled to −40 °C, was added a solution of triethylaluminum (2.2 mL, 1.0 M in hexanes, 0.037 mol), followed by BF₃•Et₂O (1.4 mL, 0.011 mol). The reaction mixture was stirred at −40 °C for 3 h and at 0 °C for 1.5 h and then was quenched with saturated aqueous sodium potassium tartrate solution (100 mL). The biphasic reaction mixture was allowed to warm to room temperature, the layers were separated, and the aqueous layer was extracted several times with CH₂Cl₂. The organic layers were dried (MgSO₄) and concentrated giving the crude material as a 1:8 ratio of cis and trans isomers. Separation of this crude mixture by column chromatography (SiO₂, hexanes-ethyl acetate = 75:1) afforded pure ((−)-21 (2.121 g, 73.7% as a colorless oil; [α]D²⁻¹ -70 (c = 0.26, CHCl₃)). IR (neat): 2973, 2875, 1741, 1497, 1374, 1207, 1101, 1050, 967 cm⁻¹; ¹H NMR (CDCl₃): δ = 7.40-7.22 (m, 5H), 5.46 (ddd, J = 3.5, 1.8, 1.8 Hz, 1H), 4.67 (s, 2H), 3.89 (dd, J = 6.7, 6.7 Hz, 1H), 3.62 (qd, J = 5.6, 3.5 Hz, 1H), 3.53 (ddd, J = 12.0, 6.4, 6.4 Hz, 1H), 2.12 (ddd, J = 17.0, 10.6, 4.7, 2.3 Hz, 1H), 1.86-1.74 (m, 1H), 1.66-1.54 (m, 5H), 1.20 (d, J = 6.5 Hz, 3H), 1.05 (t, J = 7.3 Hz, 3H); ¹³C NMR (CDCl₃): δ = 139.3, 136.5, 128.5, 128.1, 127.6, 119.0, 78.5, 77.9, 72.3, 70.6, 27.5, 24.8, 20.5, 16.5, 11.4; FAB-HRMS m/z 267.1941 (calcd for C₁₀H₁₈O₃Li [M+Li⁺] m/z 267.1936).

(qα₅,2₅,6R)-6-Ethyl-3,6-dihydro-α,5-dimethyl-2H-pyran-2-methanol ((−)-22). In a two necked flask cooled to −78 °C was condensed ammonia (30 mL). A solution of 21 (1.003 g, 3.858 mmol) in THF (15 mL) was added, followed by the careful slow addition of small pieces of sodium metal until the reaction became and remained blue in color (1.495 g, 6.173 mmol). The reaction mixture was stirred under N₂ for 2.5 h. Solid NH₄Cl (4.186 g, 78.26 mmol) was then added portion-wise until the reaction mixture became colorless. The cooling bath was removed and the ammonia was slowly allowed to evaporate under N₂. After the ammonia has completely evaporated, THF (20 mL) was added followed by the drop-wise addition of isopropanol (5 mL) and water (50 mL). The layers were separated and the aqueous layer was extracted several times with ethyl acetate. The organic layers were dried (MgSO₄) and concentrated, and the crude oil was purified by chromatography (SiO₂, ethyl acetate-hexanes = 0 → 20% gradient) affording ((−)-22 (0.528 g, 81%) as a colorless oil; [α]D²⁻¹ +78.4 (c 0.340, CHCl₃). IR (neat): 3465, 2972, 2932, 2875, 1453, 1367, 1261, 1107, 1042, 926, 891 cm⁻¹. ¹H NMR (CDCl₃): δ = 5.46 (ddd, J = 6.2, 2.9, 1.5 Hz, 1H), 3.87 (dd, J = 7.0, 6.5 Hz, 1H), 3.62 (qd, J = 7.2, 6.5 Hz, 1H), 3.36 (ddd, J = 9.1, 7.6, 5.3 Hz, 1H), 1.96-1.88 (m, 2H), 1.67-1.55 (m, 5H), 1.16 (d, J = 6.5 Hz, 3H), 1.03 (t, J = 7.3 Hz, 3H); signal for OH not observed. ¹³C NMR (CDCl₃): δ = 136.2, 118.3, 78.2, 71.5, 70.7, 27.5, 24.5, 20.2, 18.3, 11.3. EI-HRMS m/z 170.1311 (calcd for C₁₀H₁₆O₂ m/z 170.1307).

1-((2R,6S)-6-Ethyl-3,6-dihydro-5-methyl-2H-pyran-2-yl)ethanol ((−)-23). To a solution of 22 (1.222 g, 7.188 mmol) in anhydrous DMF (80 mL) was added pyridinium dichromate (13.491 g, 35.880 mmol). The reaction mixture was stirred at room temperature for 18 h and was then partitioned between ether and water. The layers were separated, the aqueous layer was extracted several times with ether, and the combined organic layers were dried (MgSO₄) and concentrated. The crude oil was adsorbed onto silica and purified.
by chromatography (SiO2, hexanes-ethyl acetate = 8:1) to give (-)-23 (0.971 g, 80%) as a colorless oil; [α]D23 +129.2 (c 0.3320, CHCl3), IR (neat): 2967, 2934, 2876, 1717, 1453, 1355, 1120, 953, 924 cm⁻¹.

1H NMR (CDCl₃): δ = 5.49 (dd, J = 6.2, 3.5, 1.8 Hz, 1H), 4.06 (dd, J = 7.9, 5.9 Hz, 1H), 4.00 (br d, J = 9.7 Hz, 1H), 2.24 (s, 3H), 2.22-2.14 (m, 2H), 1.70 (s, 3H), 1.74-1.49 (m, 2H), 1.02 (t, J = 7.3 Hz, 3H);

13C NMR (CDCl₃): δ = 209.6, 136.0, 118.1, 78.1, 73.3, 26.8, 26.2, 24.7, 20.1, 10.7; EI-HRMS m/z 168.1150 (calcd for C₉H₁₆O₂ m/z 168.1136).

1-((2R, 6R)-6-Ethyl-3, 6-dihydro-5-methyl-2H-pyran-2-yl)ethanone ((+)-4)

To a solution of 23 (0.911 g, 5.35 mmol) in benzene (50 mL) was added methanolic potassium carbonate (5 mL). The reaction mixture became bright yellow in color and was stirred at room temperature for 63 h. The reaction mixture was then washed with 1.0 M HCl (2 x 100 mL) and extracted several times with ether. The organic layers were dried (MgSO4) and concentrated affording a mixture of diastereomers 4 and 23 (2:1 by 1H NMR integration). Separation of the mixture by column chromatography (SiO2, hexanes-ethyl acetate = 75:1) gave 4 (0.562 g, 62%) followed by 23 (0.330 g, 36%). The recovered 23 isomer was resubjected to the above epimerization-separation procedure. (+)-4: [α]D23 +172 (c 0.248, CHCl3) [lit.9 [α]D0 +191.7 (c 1.57, CHCl3); lit.10 [α]D0 +181 (c 0.257, CDCl3)]; IR (neat): 2966, 2936, 2879, 1721, 1435, 1352, 1229, 1116, 1058, 927 cm⁻¹; 1H NMR (CDCl₃): δ = 5.60-5.33 (m, 1H), 4.13-4.05 (m, 1H), 3.92 (dd, J = 10.4, 4.4 Hz, 1H), 2.25 (s, 3H), 2.21-2.00 (m, 2H), 1.81 (ddq, J = 14.9, 10.9, 3.5 Hz, 1H), 1.60 (dd, J = 2.4, 2.4, 1.4 Hz, 3H), 1.54 (ddq, J = 14.1, 7.0, 7.0 Hz, 1H), 0.95 (t, J = 7.3 Hz, 3H); 13C NMR (CDCl₃): δ = 210.0, 135.7, 119.7, 79.0, 78.5, 27.6, 26.1, 25.9, 19.2, 9.0.

References

1. D. T. Connor, R. C. Greenough and M. von Strandmann, M. J. Org. Chem. 1977, 42, 3664-3669.
2. K. Gerth, P. Washhausen, G. Höftle, H. Irschik and H. Reichenbach, J. Antibiotics 1996, 49, 71-75.
3. B. Julien, Z. Q. Tian, R. Reid and C. D. Reeves, Chemistry & Biology 2006, 13, 1277-1286.
4. a) G. Just and P. Potvin, Can. J. Chem. 1980, 58, 2173-2177; b) N. J. Barnes, A. H. Davidson, L. R. Hughes, G. Procter and V. Rajcoomar, Tetrahedron Lett. 1981, 22, 1751-1754; c) N. J. Barnes, A. H. Davidson, L. R. Hughes and G. Procter, J. Chem. Soc., Chem. Comm. 1985, 1292-1294;

L. Liu et al. 183

Mediterr.J.Chem., 2014,4(4).
14 - For a discussion of the effects of pyranyl substituents on the stereoselectivity of C-glycosylation see: C. G. Lucero and K. A. Woerpel, J. Org. Chem. 2006, 71, 2641-2647.

15 - a) S. Danishefsky and M. T. Bilodeau, Angew. Chem., Int. Ed. 1996, 35, 1380-1419; b) S. J. Danishefsky, Aldrichimica Acta 1986, 19, 59-69.

16 - G. Solladie, E. Arce, C. Bauder and M. C. Carreno, J. Org. Chem. 1998, 63, 2332-2337.

17 - D. C. Myles and M. H. Bigham, Org. Syn. 1992, 70, 231-239.

18 - S. J. Danishefsky, W. H. Pearson, D. F. Harvey, C. J. Maring and J. P. Springer, J. Am. Chem. Soc. 1985, 107, 1256-1268.

19 - a) P. P. Deshpande, K. N. Price and D. C. Baker, J. Org. Chem. 1996, 61, 455-458; b) J. M. Lukesh and W. A. Donaldson, Tetrahedron: Asymmetry, 2003, 14, 757-762; c) S. Xue, L. He, K. Z. Han, X. Q. Zheng and Q. X. Guo, Carbohyd. Res. 2005, 340, 303-307; d) P. Deelertpaiboon, V. Reutrakul, S. Jarussophon, P. Tuchinda, C. Kuhakarn and M. Pohmakotr, Tetrahedron Lett. 2009, 50, 6233-6235.

20 - A. Nowacki, K. Smiataczowa, R. Kasprzykowska, B. Dmochowska and A. Wisniewski, Carbohyd. Res. 2002, 337, 265-272.