Identification of hub genes and small-molecule compounds related to intracerebral hemorrhage with bioinformatics analysis

Zhendong Liu Equal first author, 1, 2, Ruotian Zhang Equal first author, 1, 2, Xin Chen 1, 2, Penglei Yao 1, 2, Tao Yan 1, 2, Wenwu Liu 1, 2, Jiawei Yao 1, 2, Sokhatskii Andrei 3, Gareev F. Ilgiz 3, Shiguang Zhao Corresp. 1, 2

1 the First Affiliated Hospital of Harbin Medical University, Department of Neurosurgery, Harbin, Heilongjiang Province, People’s Republic of China
2 Harbin Medical University, Institute of Brain Science, Harbin, Heilongjiang Province, People’s Republic of China
3 Baskir State Medical University, Ufa, Russia

Corresponding Author: Shiguang Zhao
Email address: guangsz@hotmail.com

Background. Because of the complex mechanisms of injury, conventional surgical treatment and early blood pressure control does not significantly reduce mortality or improve patient prognosis in cases of intracerebral hemorrhage (ICH). We aimed to identify the hub genes associated with intracerebral hemorrhage, to act as therapeutic targets, and to identify potential small-molecule compounds for treating ICH.

Methods. The GSE24265 dataset, consisting of data from 4 perihematomal brain tissues and 7 contralateral brain tissues, was downloaded from the Gene Expression Omnibus (GEO) database and screened for differentially expressed genes (DEGs) in ICH, with a fold change (FC) value of (|log2FC|) > 2 and a P-value of < 0.05 set as cut-offs. The functional annotation of DEGs was performed using Gene Ontology (GO) resources, and the cell signaling pathway analysis of DEGs was performed using the Kyoto Encyclopedia of Genes and Genomes (KEGG), with a P-value of < 0.05 set as the cut-off. We constructed a protein-protein interaction (PPI) network to clarify the interrelationships between the different DEGs and to select the hub genes with significant interactions. Next, the DEGs were analyzed using the CMap tool to identify small-molecule compounds with potential therapeutic effects. Finally, we verified the expression levels of the hub genes by RT-qPCR on the rat ICH model.

Result. A total of 59 up-regulated genes and 8 down-regulated genes associated with ICH were identified. The biological functions of DEGs associated with ICH are mainly involved in the inflammatory response, chemokine activity, and immune response. The KEGG analysis identified several pathways significantly associated with ICH, including but not limited to HIF-1, TNF, toll-like receptor, cytokine-cytokine receptor interaction, and chemokine molecules. A PPI network consisting of 57 nodes and 373 edges was constructed using STRING, and 10 hub genes were identified with Cytoscape software. These hub genes are closely related to secondary brain injury induced by ICH. RT-qPCR results showed that the expression of ten hub genes was significantly increased in the rat model of ICH. In addition, a CMap analysis of three small-molecule compounds revealed their therapeutic potential.

Conclusion. In this study we obtained ten hub genes, such as IL6, TLR2, CXCL1, TIMP1, PLAUR, SERPINE1, SELE, CCL4, CCL20, and CD163, which play an important role in the pathology of ICH. At the same time, the ten hub genes obtained through PPI network analysis were verified in the rat model of ICH. In addition, we obtained three small molecule compounds that will have therapeutic effects on ICH, including Hecogenin, Lidocaine, and NU-1025.
Identification of hub genes and small-molecule compounds related to intracerebral hemorrhage with bioinformatic analysis

Zhendong Liu¹,², Ruotian Zhang¹,², Xin Chen¹,², Penglei Yao¹,², Tao Yan¹,², Wenwu Liu¹,², Jiawei Yao¹,², Sokhatskii Andrei³, Gareev F. Ilgiz³, Shiguang Zhao¹,²*

¹Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People’s Republic of China
²Institute of Brain Science, Harbin Medical University, Harbin, Heilongjiang Province, People’s Republic of China
³Baskir State Medical University, Ufa, Russia

*Zhendong Liu¹,² and Ruotian Zhang¹,² contributed equally to this work.

Corresponding Author:
Shiguang Zhao
No. 23 Youzheng Street, Harbin, Heilongjiang Province, 150001, People’s Republic of China
Email address: guangsz@hotmail.com
Abstract

Background. Because of the complex mechanisms of injury, conventional surgical treatment and early blood pressure control does not significantly reduce mortality or improve patient prognosis in cases of intracerebral hemorrhage (ICH). We aimed to identify the hub genes associated with intracerebral hemorrhage, to act as therapeutic targets, and to identify potential small-molecule compounds for treating ICH.

Methods. The GSE24265 dataset, consisting of data from 4 perihematomal brain tissues and 7 contralateral brain tissues, was downloaded from the Gene Expression Omnibus (GEO) database and screened for differentially expressed genes (DEGs) in ICH, with a fold change (FC) value of (\(|\log2FC|\) > 2) and a P-value of < 0.05 set as cut-offs. The functional annotation of DEGs was performed using Gene Ontology (GO), and the cell signaling pathway analysis of DEGs was performed using the Kyoto Encyclopedia of Genes and Genomes (KEGG), with a P-value of < 0.05 set as the cut-off. We constructed a protein-protein interaction (PPI) network to clarify the interrelationships between the different DEGs and to select the hub genes with significant interactions. Next, the DEGs were analyzed using the CMap tool to identify small-molecule compounds with potential therapeutic effects. Finally, we verified the expression levels of the hub genes by RT-qPCR on the rat ICH model.

Result. A total of 59 up-regulated genes and 8 down-regulated genes associated with ICH were identified. The biological functions of DEGs associated with ICH are mainly involved in the inflammatory response, chemokine activity, and immune response. The KEGG analysis identified several pathways significantly associated with ICH, including but not limited to HIF-1, TNF, toll-like receptor, cytokine-cytokine receptor interaction, and chemokine. A PPI network consisting of 57 nodes and 373 edges was constructed using STRING, and 10 hub genes were identified with Cytoscape software. These hub genes are closely related to secondary brain injury induced by ICH. RT-qPCR results showed that the expression of ten hub genes was significantly increased in the rat model of ICH. In addition, a CMap analysis of three small-molecule compounds revealed their therapeutic potential.

Conclusion. In this study we obtained ten hub genes, such as IL6, TLR2, CXCL1, TIMP1, PLAUR, SERPINE1, SELE, CCL4, CCL20, and CD163, which play an important role in the pathology of ICH. At the same time, the ten hub genes obtained through PPI network analysis
were verified in the rat model of ICH. In addition, we obtained three small molecule compounds that will have therapeutic effects on ICH, including Hecogenin, Lidocaine, and NU-1025.

Introduction

On account of its high morbidity and mortality, intracerebral hemorrhage (ICH) is a worldwide public health concern (Qureshi et al. 2001). About 2 million people experience ICH every year, and its incidence is still rising (Labovitz et al. 2005; Qureshi et al. 2007). Half of patients die within a year, and two-third of the survivors become permanently disabled (Fogelholm et al. 2005). The poor prognosis of patients with ICH is mainly related to its complex pathogenesis. The pathological process of ICH can be divided into primary injury, which consists of mechanical compression caused by hematoma, and secondary injury, which is caused by various factors such as cytotoxicity of blood, hypermetabolism, excitotoxicity, oxidative stress and inflammation (Aronowski & Zhao 2011). Several studies have shown that treatments targeting the ICH-induced cellular processes and their downstream molecules may be effective (Morioka & Orito 2017).

According to previous reports, the cytokines released by various inflammatory cells such as leukocytes, macrophages, and microglia after the onset of ICH were involved in the formation of secondary brain injury caused by ICH (Wang & Dore 2007). For example, microglia/macrophages activated after the ICH event can cause an increase in the expression levels of TNF-α and IL-1β, which can aggravate brain damage (Aronowski & Hall 2005; Wagner 2007). In the ICH model constructed by animals, the expression of TNF-α was significantly increased, which promoted the formation of cerebral edema (Hua et al. 2006). Toll-like receptors (TLRs) play an irreplaceable role in the regulation of immune responses and inflammatory responses (Akira & Takeda 2004; Takeda & Akira 2004). TLRs are a family of transmembrane proteins, and it has been reported in the literature that the significant increase in expression levels of TLR2 and TLR4 in peripheral monocytes of ICH patients is significantly associated with poor prognosis in patients (Rodriguez-Yanez et al. 2012). In addition, the increased expression levels of proinflammatory genes such as CD36, iNOS, and MMP-9 all aggravated the pathological progression of ICH (Zhao et al. 2009; Zhao et al. 2007). Therefore, we have reason to speculate that there should be many potential genes in the pathological process of ICH that may play
important regulatory roles. However, the expression profile and function of mRNAs in the course of ICH have not yet been fully explained.

Presently, research on ICH treatment has mostly focused on the clinical aspects of therapeutic interventions, and investigations into the molecular mechanisms underlying the pathology of ICH remain scarce (Yin et al. 2017). Therefore, identifying the therapeutic targets for ICH at the molecular level may improve the existing treatment strategies for ICH. Although previous reports by Russell et al. on the expression profile of mRNAs have revealed the differentially expressed genes (DEGs) in the pathology of ICH, the main focus of the study was on the top ten up-regulated genes and ten down-regulated genes with the difference of the largest fold change. However, their research ignores the interaction between DEGs, which is crucial to understanding the biological significance of DEGs.

Our current research goal is to explore the expression profiles of mRNAs in ICH patients to screen for hub genes through the PPI network and subsequently analyze their functions. Furthermore, the rat model of ICH has been established to verify the expression level of hub genes by RT-qPCR. In addition, the DEGs were analyzed using the CMap tool to identify small-molecule compounds with potential therapeutic effects on ICH.

Materials & Methods

Data collection

The gene expression profiles of patients with ICH were obtained from the GEO database (https://www.ncbi.nlm.nih.gov/geo/) (Clough & Barrett 2016), a public database for researchers. GSE24265, which includes the data from four spontaneous cases of intracerebral hemorrhage, relied on the Agilent GPL570 platform (Affymetrix Human Genome U133 Plus 2.0 Array). All brain tissue samples were from four patients with spontaneous intracerebral hemorrhage who were diagnosed within the previous four days, including two men and two women, with a median age of 79 years (68-92 years), and all samples were obtained within 5 hours of the patients’ death. Perihematomal areas were used for the disease groups, while the contralateral grey and white matter were used as controls (Rosell et al. 2011).

Screening results of DEGs
We downloaded the series matrix file dataset of GSE24265, and subsequently transformed the gene probes of the platform to gene names by referencing the GPL570 platform. Both the normalization of the data and screening of the DEGs were performed using the limma package in the R language (version 3.5.1) (Guo et al. 2017). To identify the genes with significant differences in the fold change of expression, we set the screening criteria to filter genes with a fold change (FC) value of (|log2FC|) > 2 and a P-value of < 0.05.

GO and KEGG pathway analyses for identification of DEGs

To enable better recognition of the biological functions of DEGs, we used online tools to perform GO enrichment and KEGG analyses. Based on the description of the GO analysis, the gene function annotations were identified as biological processes (BP), cellular components (CC), or molecular functions (MF). DAVID (https://david.ncifcrf.gov/) and KOBAS (version 3.0; http://kobas.cbi.pku.edu.cn/) are considered versatile bioinformatics tools; their main functions include gene annotation, visualization, identification of signaling pathways, and integrated functional discovery. Functional annotation analysis of the DEGs was performed using DAVID, and the KEGG-assisted cell signaling pathway analysis of the DEGs was carried out using KOBAS (Tang et al. 2018). P-values of < 0.05 were considered to be statistically significant.

Construction of the PPI network and identification of hub genes

STRING is a public database that contains interactions between known and predicted proteins (https://string-db.org/) (Szklarczyk et al. 2019). PPI is essential for studying protein function since it can help elucidate the function of regulation among proteins. We uploaded the DEGs obtained from the GSE24265 dataset onto STRING's official website to obtain the interrelationships between proteins and to set the minimum required interaction score to 0.15 to visualize the interaction networks with Cytoscape (version 3.2.1) (Shannon et al. 2003). The screening of hub genes was based on the degree of connectivity between DEGs and genes; the DEGs featuring the ten highest degrees were recognized as hub genes.
Obtaining small-molecule compounds for the treatment of ICH by CMap analysis

CMap is a gene-expression-based drug development system that explains associations among genes, drugs, and diseases by integrating the effects of thousands of small-molecule drugs on various human cells (Lamb et al. 2006). In this study, we converted the DEGs into probes and subsequently uploaded them onto the official website of CMap to obtain corresponding small-molecule compounds. The negatively related drugs (P < 0.01 and enrichment < 0) were considered to be therapeutically effective for treating ICH.

Rat model of ICH

All animals used in this study were tested according to the Guide for Animal Experimentation of Harbin Medical University, and the animal study approved by the Institutional Animal Care and Use Committee at Harbin Medical University. Six adult male Sprague-Dawley rats, weighing 200-250 g, aged 8 weeks, provided by the Animal Experimental Center, Harbin Medical University, were used in the present study. The animals, fixed using a stereotaxic frame, were intraperitoneally injected with sodium pentobarbital (50 mg/kg), and, using a skull drill (about 1 mm in diameter), holes were drilled near the right coronal suture, 3.5 mm outside the midline. Autologous whole blood (50 µL) was collected from the tail vein using a sterile disposable syringe, and, using the same syringe, the collected autologous blood was slowly injected into the right basal ganglia at a rate of 10 µl/min (He et al. 2018). After ten minutes, the syringe was pulled out and the skin was sutured. Six rats were equally divided into experimental and control groups, but the control group only received a needle insertion. All rats were intraperitoneally injected with a lethal dose of sodium pentobarbital 24 hours after the surgery, and 2-mm thick brain tissue surrounding the path of the injection needle was collected and stored at −80°C until use. All animal experiments conformed to the European Parliament Directive (2010/63/EU) and were approved by the Institutional Animal Care and Use Committee at Harbin Medical University (No. HMUIRB-2008-06).

Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis

Total RNA from the brain tissue of rats was extracted using Tri®-Reagent (Sigma, USA) according to the manufacturer’s instructions. The quality and quantity of the RNA was detected using a NanoDrop One spectrophotometer (Thermo Fisher Scientific, USA). Reverse
transcription of the extracted total RNA into cDNA was performed using the Transcriptor First Stand cDNA Synthesis Kit (Roche, USA). RT-qPCR was performed using the FastStart Universal SYBR® Green Master (ROX) (Roche, Germany) and quantified using the QuantStudio software (Thermo Fisher Scientific, USA) according the manufacturer’s instructions. GAPDH was used as the endogenous reference gene. The sequence of all primers used in this study is provided in supplementary Table 1. The expression level of all mRNAs was determined using the $2^{-\Delta CT}$ method. A meaningful analysis between the two groups was performed by a paired t-test, and a P-value <0.05 was considered statistically significant.

Results

Identification of DEGs in ICH

The gene expression profile of the GSE24265 dataset contained data obtained from four perihematomal tissues and seven contralateral tissues (Table 1). The result of the normalization of data among the arrays of the series matrix files of the GSE24265 dataset is shown in Supplementary Figure 1. Using a P-value of < 0.05 and a [logFC] of > 2 as the cut-off, a total of 67 DEGs, including 59 up-regulated and 8 down-regulated genes, were obtained on comparison of the expression profiles between the cerebral hemorrhage and control groups (Table 2). Volcano plots and heat maps for the distribution of DEGs were generated using R software (Figures 1A and B).

Functional annotation analysis of DEGs using GO

On GO analysis, the three most significant processes identified among the annotations of BP were inflammatory response, neutrophil chemotaxis, and immune response. In parallel, the three most significant processes identified among the annotations of MF were chemokine activity, CXCR chemokine receptor binding, and growth factor activity. Finally, the three most significant processes identified among the annotations of CC were extracellular space, extracellular region, and plasma membrane. According to the criteria, the results of all meaningful functional annotation analyses are summarized in Table 3 and Figure 2.

KEGG pathway analysis of DEGs
The results of the cell signaling pathway enrichment analysis of the DEGs identified a total of 29 meaningful pathways which were analyzed. The cellular signaling pathways clearly associated with brain damage included those for HIF-1, TNF, toll-like receptor, the NF-kappa B signaling pathway, cytokine-cytokine receptor interaction, and chemokine signaling pathways. The specific enriched pathways obtained from the analysis of the DEGs are summarized in Table 4 and Figure 3.

PPI network construction and hub gene identification

We uploaded 67 DEGs to the string online database to obtain the PPI network. A total of 57 DEGs were consequently extracted among the 67 DEGs uploaded when the interaction score was set to 0.15. The resulting PPI network contained a total of 57 nodes and 373 edges. Figure 4A presents the visualization of the network generated using Cytoscape software; Figure 4B represents the ten selected hub genes with the highest degrees of connectivity that were selected as the hub genes. Prior reports indicate that the identified hub genes are closely related to ICH and brain damage. The subsequent GO function annotation analysis and KEGG pathway analysis results for hub genes are summarized in Table 5 and Table 6.

CMap analysis

We used CMap to analyze the previously selected DEGs and to identify small-molecule compounds with potential therapeutic application in ICH cases. Nine small-molecule compounds which exhibited high correlation with ICH are shown in Table 7. The 3-dimensional chemical structures of the small-molecule compounds hecogenin, lidocaine, and NU-1025, previously reported to be significantly associated with brain damage, are shown in Figure 5.

Corroboration of ten hub genes using RT-qPCR

RT-qPCR was performed with the total RNA extracted from the brain tissue of three pairs of rats used for the ICH model to confirm the expression levels of ten hub genes. According to the PPI network analysis, the ten core genes screened were *IL6, TLR2, CXCL1, TIMP1, PLAUR, SERPINE1, SELE, CCL4, CCL20*, and *CD163*. The expression levels of the ten hub genes were increased as part of the pathophysiological process of ICH. The results of the RT-qPCR experiment showed a significant increase in the expression of the hub genes (Figure 6).
Discussion

The present study uses the GEO database to obtain gene expression profiles from patients with ICH and screens for DEGs. We perform functional enrichment analyses on the obtained DEGs to understand their biological functions. Meanwhile, we report meaningful enrichment, by KEGG analysis, of pathways involved in triggering the regulatory pathway associated with secondary brain injury induced by ICH. Next, PPI analyses were carried out to identify the hub genes that may play a crucial regulatory role in the pathophysiology of ICH. At the same time, we established a rat model of ICH, and confirmed that the expression level of hub genes were consistent with the results of our analyses by RT-qPCR. In addition, several potential small-molecule compounds, related to ICH, were identified by CMap analysis. These may become effective drugs for treating ICH in future.

From the GSE24265 dataset, after comparing the gene expression data obtained from ICH tissue with that obtained from the contralateral brain tissues, we obtained 67 DEGs. GO analysis indicated that the main functional annotation results were consistent with those obtained by previous reports, i.e., a significant increase in inflammatory response promotes ICH-induced brain injury, which may be one of the main factors contributing to the poor prognosis in patients with ICH (Boehme et al. 2018; Fu et al. 2018). The immune response can antagonize the inflammatory response, induced after an episode of cerebral hemorrhage, to reduce the secondary damage to brain tissue, and thereby improve the recovery of nerve function (Klebe et al. 2015; Lu et al. 2014). Previous reports have indicated that the cellular signaling pathways identified in this study using a KEGG analysis were closely related to cerebral hemorrhage; those activated within a few hours after cerebral hemorrhage, including the TNF signaling pathway, which participates in the secondary inflammatory reactions and formation of cerebral edema around the hematoma (Testai & Aiyagari 2008) and the HIF-1 signaling pathway, which contributes to the recovery of neural function after ICH by regulating the proliferation and differentiation of neural stem cells (Yu et al. 2013). The NF-kappa B signaling pathway, which is closely related to the death of cells surrounding the hematoma in the animal ICH model, and the activation of which is associated with deficiencies in neurological function (Zhou et al. 2014), was activated several minutes after the ICH event. The Toll-like receptor signaling pathway is significantly associated with a poor prognosis after ICH because it promotes the inflammatory response of ICH-induced
brain injury (Wang et al. 2014b). Therefore, prior reports have been able to verify the accuracy of our results.

PPI networks are essential in most biological processes, play an important role in the development of many diseases and are very useful for the identification of drug targets, therefore demonstrating great potential for drug discovery (Rabbani et al. 2018). Compared to the original article which identified ICH related genes only by multiple gene expression analyses (Rosell et al. 2011), hub genes screened by constructing PPI networks are more relevant to the pathological processes of ICH and are more likely to be potential therapeutic targets. Therefore, we uploaded the DEGs to the STRING database to build a PPI network and further identify the hub genes that influence regulatory processes in the pathophysiology of ICH-induced brain injury. For instance, IL-6 was significantly elevated in the serum of patients with ICH, and its levels were clearly associated with Glasgow Coma Scale scores (Dziedzic et al. 2002). During brain injury, IL-6 signaling may not only induce the chemotactic migration of inflammatory cells to the site of lesion but may also promote T-cell polarization (Chaudhry et al. 2017). The inflammatory response plays a key role in ICH-induced brain injury, and hemoglobin causes toll-like receptors 2 and 4 to heterodimerize and aggravate brain damage (Wang et al. 2014b). Within 24 hours of having a stroke, the expression level of CXCL1 in the cerebrospinal fluid of patients positively correlates with the ischemic area, indicating that CXCL1 may participate in the regulation of brain tissue damage (Losy et al. 2005). The abnormal expression of TIMP1 can disrupt the integrity of the blood-brain barrier and this disruption may be involved in the regulation of the pathological process of ICH (Wang et al. 2014a). The urokinase-type plasminogen activator, encoded by the PLAU gene, is involved in the development of the neural circuit of the cortex and in brain tissue remodeling after a brain injury (Levi et al. 2001). A few hours after the onset of ICH, because of red blood cell fragmentation, some products released by the lysed red blood cells around the site of the hematoma were involved in secondary brain damage. In this process, CD163 and hemoglobin form a complex which participates in the pathological process of secondary brain injury induced by ICH (Lieber & Mocco 2018). SERPINE1, CCL4, and CCL20 have not yet been reported in cases of IHC, but, on review of the literature, we found that these genes are associated with nerve injury, such as sterile inflammatory reaction and traumatic brain injury, which are pathologically similar to ICH, such as sterility inflammatory reaction (Graber...
et al. 2015; Kwiecien 2018; Leonardo et al. 2012). These hub genes, therefore, feature as potential prognostic or diagnostic markers, as well as potential therapeutic targets.

CMap is a database that covers the interactions among diseases, gene expression patterns, and small-molecule compounds. It is often used to screen for small-molecule compounds with therapeutic effects on some diseases (Lamb et al. 2006). Using CMap analysis, we identified nine small molecule drugs, two of which were lidocaine and NU-1025, both previously reported to have a salutary effect in cases of brain injury. Lidocaine is commonly used as a local anesthetic and has been shown to have significant anti-inflammatory effects. A recent study demonstrated that lidocaine inhibited the release of inflammatory factors and alleviated microglial damage (Jeong et al. 2012). Moreover, lidocaine is considered to have a therapeutic effect in cases of nerve damage induced by cerebral hemorrhage. Recent studies have found that NU-1025, a poly (ADP-ribose) polymerase inhibitors, can attenuate neurological damage in animal models of ischemic stroke and traumatic brain injury; moreover, rats treated with NU1025 exhibited reduced infarction, significantly reduced edema volume, and significantly ameliorated neurological impairment (Kaundal et al. 2006). Thus, NU-1025 can both mitigate the damage inflicted in the early stages of nerve injury and reduce the degree of subsequent neuroinflammation (Curtin & Szabo 2013). Although the two aforementioned drugs have been reported to be associated with the treatment of ICH, the mechanisms underlying their therapeutic actions still require further research. In addition, we found that hecogenin has an anti-inflammatory effect that may contribute to the treatment of ICH (Ingawale et al. 2019; Ingawale & Patel 2016; Ingawale & Patel 2018).

However, this study had several limitations. First, the mechanisms of several hub genes in the pathological process of ICH remain unclear, warranting further study. Moreover, the effectiveness of our small molecule compound screening in reducing ICH-induced brain injury remains to be assessed.

Conclusions

The hub genes identified by constructing a PPI network have potential in the development of new targets in the treatment of ICH and as prognostic markers in patients with ICH. The hub genes may be involved in the pathological process of ICH and ultimately affect their prognosis through TNF signaling pathway, HIF-1 signaling pathway, NF-kappa B signaling pathway, Toll-
like receptor signaling pathway and Chemokine signaling pathway. In addition, this study identified small-molecule compounds that may be efficacious in the treatment of secondary brain injury induced by ICH.

Acknowledgements

This work was supported China Postdoctoral Science Foundation (2017M620119); Heilongjiang Postdoctoral Fund (LBH-Z17108) and the Scientific Research Project of Heilongjiang Provincial Department of Health (Nos.2013030).

References

Akira S, and Takeda K. 2004. Toll-like receptor signalling. *Nat Rev Immunol* 4:499-511. 10.1038/nri1391

Aronowski J, and Hall CE. 2005. New horizons for primary intracerebral hemorrhage treatment: experience from preclinical studies. *Neuro Res* 27:268-279. 10.1179/016164105X25225

Aronowski J, and Zhao X. 2011. Molecular pathophysiology of cerebral hemorrhage: secondary brain injury. *Stroke* 42:1781-1786. 10.1161/STROKEAHA.110.596718

Boehme AK, Comeau ME, Langefeld CD, Lord A, Moomaw CJ, Osborne J, James ML, Martini S, Testai FD, Woo D, and Elkind MSV. 2018. Systemic inflammatory response syndrome, infection, and outcome in intracerebral hemorrhage. *Neurology Neuroimmunol Neuroinflamm* 5:e428. 10.1212/NXI.0000000000000428

Chaudhry SR, Stoffel-Wagner B, Kinfe TM, Guresir E, Vatter H, Dietrich D, Lamprecht A, and Muhammad S. 2017. Elevated Systemic IL-6 Levels in Patients with Aneurysmal Subarachnoid Hemorrhage Is an Unspecific Marker for Post-SAH Complications. *Int J Mol Sci* 18. 10.3390/ijms18122580

Clough E, and Barrett T. 2016. The Gene Expression Omnibus Database. *Methods Mol Biol* 1418:93-110. 10.1007/978-1-4939-3578-9_5

Curtin NJ, and Szabo C. 2013. Therapeutic applications of PARP inhibitors: anticancer therapy and beyond. *Mol Aspects Med* 34:1217-1256. 10.1016/j.mam.2013.01.006

Dziedzic T, Bartus S, Klimkowicz A, Motyl M, Slowik A, and Szczudlik A. 2002. Intracerebral hemorrhage triggers interleukin-6 and interleukin-10 release in blood. *Stroke* 33:2334-2335.

Fogelholm R, Murros K, Rissanen A, and Avikainen S. 2005. Long term survival after primary intracerebral haemorrhage: a retrospective population based study. *J Neurol Neurosurg Psychiatry* 76:1534-1538. 10.1136/jnnp.2004.055145

Fu G, Wang H, Cai Y, Zhao H, and Fu W. 2018. Theaflavin alleviates inflammatory response and brain injury induced by cerebral hemorrhage via inhibiting the nuclear transcription factor kappa beta-related pathway in rats. *Drug Des Devel Ther* 12:1609-1619. 10.2147/DDDT.S164324

Graber DJ, Costine BA, and Hickey WF. 2015. Early inflammatory mediator gene expression in two models of traumatic brain injury: ex vivo cortical slice in mice and in vivo cortical impact in piglets. *J Neuroinflammation* 12:76. 10.1186/s12974-015-0298-4

Guo W, Zhang B, Li Y, Duan HQ, Sun C, Xu YQ, and Feng SQ. 2017. Gene expression profile identifies potential biomarkers for human intervertebral disc degeneration. *Mol Med Rep* 16:8665-8672. 10.3892/mmr.2017.7741
He M, Wang Y, Shen J, Duan C, Lu X, and Li J. 2018. Bex1 attenuates neuronal apoptosis in rat intracerebral hemorrhage model. *Pathol Res Pract* 214:527-535.

Hua Y, Wu J, Keep RF, Nakamura T, Hoff JT, and Xi G. 2006. Tumor necrosis factor-alpha increases in the brain after intracerebral hemorrhage and thrombin stimulation. *Neurosurgery* 58:542-550; discussion 542-550. 10.1227/01.NEU.0000197333.55473.AD

Ingawale DK, Mandlik SK, and Patel SS. 2019. Anti-inflammatory potential of hecogenin on atopic dermatitis and airway hyper-responsiveness by regulation of pro-inflammatory cytokines. *Immunopharmacol Immunotoxicol* 41:327-336. 10.1080/08923973.2019.1608445

Ingawale DK, and Patel SS. 2016. Anti-inflammatory Potential of Hecogenin in Experimental Animals: Possible Involvement of Inflammatory Cytokines and Myeloperoxidase. *Drug Res (Stuttg)* 66:644-656. 10.1055/s-0042-113184

Ingawale DK, and Patel SS. 2018. Hecogenin exhibits anti-arthritis activity in rats through suppression of pro-inflammatory cytokines in Complete Freund's adjuvant-induced arthritis. *Immunopharmacol Immunotoxicol* 40:59-71. 10.1080/08923973.2017.1405439

Jeong HJ, Lin D, Li L, and Zuo Z. 2012. Delayed treatment with lidocaine reduces mouse microglial cell injury and cytokine production after stimulation with lipopolysaccharide and interferon gamma. *Anesth Analg* 114:856-861. 10.1213/ANE.0b013e3182460ab5

Kaundal RK, Shah KK, and Sharma SS. 2006. Neuroprotective effects of NU1025, a PARP inhibitor in cerebral ischemia are mediated through reduction in NAD depletion and DNA fragmentation. *Life Sci* 79:2293-2302. 10.1016/j.lfs.2006.07.034

Klebe D, McBride D, Flores JJ, Zhang JH, and Tang J. 2015. Modulating the Immune Response Towards a Neuroregenerative Peri-injury Milieu After Cerebral Hemorrhage. *J Neuroimmune Pharmacol* 10:576-586. 10.1007/s11481-015-9613-1

Kwiecien JM. 2018. Methods for Assessing Serpins as Neuroprotective Therapeutics. *Methods Mol Biol* 1826:223-235. 10.1007/978-1-4939-8645-3_15

Labovitz DL, Halim A, Boden-Albala B, Hauser WA, and Sacco RL. 2005. The incidence of deep and lobar intracerebral hemorrhage in whites, blacks, and Hispanics. *Neurology* 65:518-522. 10.1212/01.wnl.0000172915.71933.00

Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, Lerner J, Brunet JP, Subramanian A, Ross KN, Reich M, Hieronymus H, Wei G, Armstrong SA, Haggarty SJ, Clemens PA, Wei R, Carr SA, Lander ES, and Golub TR. 2006. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. *Science* 313:1929-1935. 10.1126/science.1132939

Leonardo CC, Musso J, Das M, Rowe DD, Collier LA, Mohapatra S, and Pennypacker KR. 2012. CCL20 Is Associated with Neurodegeneration Following Experimental Traumatic Brain Injury and Promotes Cellular Toxicity In Vitro. *Transl Stroke Res* 3:357-363. 10.1007/s12975-012-0203-8

Levi M, Moons L, Bouche A, Shapiro SD, Collen D, and Carmeliet P. 2001. Deficiency of urokinase-type plasminogen activator-mediated plasmin generation impairs vascular remodeling during hypoxia-induced pulmonary hypertension in mice. *Circulation* 103:2014-2020.

Lieber AC, and Mocco J. 2018. CD163, Hemoglobin, and Secondary Brain Injury After Intracerebral Hemorrhage. *World Neurosurg* 117:459. 10.1016/j.wneu.2018.07.111

Losy J, Zaremba J, and Skrobanski P. 2005. CXCL1 (GRO-alpha) chemokine in acute ischaemic stroke patients. *Folia Neuropathol* 43:97-102.

Lu Q, Gao L, Huang L, Ruan L, Yang J, Huang W, Li Z, Zhang Y, Jin K, and Zhuge Q. 2014. Inhibition of mammalian target of rapamycin improves neurobehavioral deficit and modulates immune response after intracerebral hemorrhage in rat. *J Neuroinflammation* 11:44. 10.1186/1742-2094-11-44
Morioka M, and Orito K. 2017. Management of Spontaneous Intracerebral Hematoma. *Neurol Med Chir*(Tokyo) 57:563-574. 10.2176/nmc.ra.2016-0327

Qureshi AI, Suri MF, Nasar A, Kirmani JF, Ezzeddine MA, Divani AA, and Giles WH. 2007. Changes in cost and outcome among US patients with stroke hospitalized in 1990 to 1991 and those hospitalized in 2000 to 2001. *Stroke* 38:2180-2184.

Qureshi AI, Tuhrim S, Broderick JP, Batjer HH, Hondo H, and Hanley DF. 2001. Spontaneous intracerebral hemorrhage. *N Engl J Med* 344:1450-1460.

Rabbani G, Baig MH, Ahmad K, and Choi I. 2018. Protein-protein Interactions and their Role in Various Diseases and their Prediction Techniques. *Curr Protein Pept Sci* 19:948-957.

Rodriguez-Yanez M, Brea D, Arias S, Blanco M, Pumar JM, Castillo J, and Sobrino T. 2012. Increased expression of Toll-like receptors 2 and 4 is associated with poor outcome in intracerebral hemorrhage. *J Neuroimmunol* 247:75-80. 10.1016/j.jneuroim.2012.03.019

Rosell A, Villalta A, Garcia-Berrocoso T, Fernandez-Cadenas I, Dominguez-Montanari S, Cuadrado E, Delgado P, Ribo M, Martinez-Saez E, Ortega-Aznar A, and Montaner J. 2011. Brain perihematoma genomic profile following spontaneous human intracerebral hemorrhage. *PLoS One* 6:e16750. 10.1371/journal.pone.0016750

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, and Ideker T. 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. *Genome Res* 13:2498-2504. 10.1101/gr.1239303

Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, Jensen LJ, and Mering CV. 2019. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. *Nucleic Acids Res* 47:D607-D613. 10.1093/nar/gky1131

Takeda K, and Akira S. 2004. TLR signaling pathways. *Semin Immunol* 16:3-9.

Tang X, Xu Y, Lu L, Jiao Y, Liu J, Wang L, and Zhao H. 2018. Identification of key candidate genes and small molecule drugs in cervical cancer by bioinformatics strategy. *Cancer Manag Res* 10:3533-3549. 10.2147/CMAR.S171661

Testai FD, and Aiyagari V. 2008. Acute hemorrhagic stroke pathophysiology and medical interventions: blood pressure control, management of anticoagulant-associated brain hemorrhage and general management principles. *Neuro Clin* 26:963-985, viii-ix.

Wagner KR. 2007. Modeling intracerebral hemorrhage: glutamate, nuclear factor-kappa B signaling and cytokines. *Stroke* 38:753-758. 10.1161/01.STR.0000255033.02904.db

Wang HX, Yang QD, Liu BQ, Zhang L, Ma MM, Hu ZY, Xia J, Xu HW, and Du XP. 2014a. TIMP-1 polymorphisms in a Chinese Han population with intracerebral hemorrhage. *Int J Neurosci* 124:61-67. 10.3109/00207454.2013.823604

Wang J, and Dore S. 2007. Inflammation after intracerebral hemorrhage. *J Cereb Blood Flow Metab* 27:894-908. 10.1038/sj.jcbfm.9600403

Wang YC, Zhou Y, Fang H, Lin S, Wang PF, Xiong RP, Chen J, Xiong XY, Lv FL, Liang QL, and Yang QW. 2014b. Toll-like receptor 2/4 heterodimer mediates inflammatory injury in intracerebral hemorrhage. *Ann Neurol* 75:876-889. 10.1002/ana.24159

Yin Y, Ge H, Zhang JH, and Feng H. 2017. Targeting Vascular Neural Network in Intracerebral Hemorrhage. *Curr Pharm Des* 23:2197-2205. 10.2174/1381612822666161027122821

Yu Z, Chen LF, Tang L, and Hu CL. 2013. Effects of recombinant adenovirus-mediated hypoxia-inducible factor-1alpha gene on proliferation and differentiation of endogenous neural stem cells in rats following intracerebral hemorrhage. *Asian Pac J Trop Med* 6:762-767. 10.1016/S1995-7645(13)60134-0
Zhao X, Grotta J, Gonzales N, and Aronowski J. 2009. Hematoma resolution as a therapeutic target: the role of microglia/macrophages. Stroke 40:S92-94. 10.1161/STROKEAHA.108.533158

Zhao X, Sun G, Zhang J, Strong R, Song W, Gonzales N, Grotta JC, and Aronowski J. 2007. Hematoma resolution as a target for intracerebral hemorrhage treatment: role for peroxisome proliferator-activated receptor gamma in microglia/macrophages. Ann Neurol 61:352-362. 10.1002/ana.21097

Zhou Y, Wang Y, Wang J, Anne Stetler R, and Yang QW. 2014. Inflammation in intracerebral hemorrhage: from mechanisms to clinical translation. Prog Neurobiol 115:25-44. 10.1016/j.pneurobio.2013.11.003
Figure 1

Comparison of DEGs present in ICH and normal samples.

(A) The volcano plot for DEGs in GSE24265 data. X-axes index the -log (P-value) and y-axes index the log fold change. The red dots represent upregulated genes and the green dots represent downregulated genes. The black dots represent genes with no significant difference. FC is the fold change.

(B) The expression data is represented as a data matrix wherein each row represents a gene and each column represents a sample. The blue coded bar above the heat map represents the normal sample set and the red coded bar represents the perihematomal sample. The expression level is described in terms of the color ratio of the upper left corner. Hierarchical clustering is shown by the top tree view, indicating the degree of relatedness in gene expression.

Abbreviations: DEG, differentially expressed genes; ICH, intracerebral hemorrhage; FC, fold change.
Figure 2

Results of GO enrichment.

The abscissa represents the enriched GO, and the ordinate represents the number and ratio of the differentially expressed genes. Different colors represent different GO classes: Molecular function, Biological process, and Cellular component. Abbreviation: GO, gene ontology.
Figure 3

KEGG pathway analysis of the differentially expressed genes in ICH.

Abbreviations: KEGG, Kyoto Encyclopedia of Genes and Genomes; ICH, intracerebral hemorrhage.
Figure 4

PPI network analysis.

(A). Using the STRING online database, a total of 57 DEGs (56 upregulated [red] and one downregulated gene [green]) were filtered into the DEG PPI network. (B) Of the DEGs with more than ten edges in the PPI network, the ten with the highest degrees of connectivity were selected as the hub genes; all are upregulated genes.

Abbreviations: PPI, protein–protein interaction; DEGs, differentially expressed genes.
Figure 5

The 3D conformers of the three compounds that may attenuate secondary injury after hematoma.

The 3D structures of the nine compounds were provided by PubChem (https://pubchem.ncbi.nlm.nih.gov/compound).

A
Hecogenin
Molecular Formula: C_{27}H_{42}O_{4}
PubChem CID: 91453

B
Lidocaine
Molecular Formula: C_{14}H_{22}N_{2}O
PubChem CID: 3676

C
NU-1025
Molecular Formula: C_{9}H_{8}N_{2}O_{2}
PubChem CID: 135398517
Figure 6

Relative expression of the ten hub genes including IL6, TLR2, CXCL1, TIMP1, PLAUR, SERPINE1, SELE, CCL4, CCL20, and CD163 measured by RT-qPCR.
Table 1 (on next page)

Details for GEO ICH data.

PH: perihematomal area. **CW:** contralateral white matter. **CG:** contralateral grey matter
Table 1 Details for GEO ICH data.

Reference	Sample	GEO	Platform	PH	CW	CG
Sophie Domingues (2010)	Brain	GSE24265	GPL570	4	4	3

1 PH: perihematomal area. CW: contralateral white matter. CG: contralateral grey matter
Table 2 (on next page)

Screening DEGs in ICH by integrated microarray.
Table 2 Screening DEGs in ICH by integrated microarray.

DEGs	Gene terms
Upregulated	CXCL8, CCL20, C15orf48, CXCL1, VMP1, AGPAT9, G0S2, CXCL3, PTX3, TFPI2, CYTIP, TNFAIP3, PPBP, HSPA6,
	BCL2A1, TREM1, CCL4, IL18RAP, PMAIP1, SERPINE1, HBD, TGFBI, PNP, SELE, TIMP1, IL6, NCF2, PLAUR,
	LAPTM5, TCIRG1, OLR1, HBB, DUSP5, ISG20, S100P, PROK2, METRN1, CTGF, CD93, HCAR3, ANXA2P2,
	C5AR1, TLR2, FGR, MARCO, HMOX1, TUBB6, CYB5R2, ADM, UPP1, SLC2A3, CD163, BCAT1, CLEC5A, CCL8,
	HLA-DRA, TNFRSF12A, ANXA2, S100A11.
Downregulated	NXPH1, PRRT2, SLITRK5, SOWAHA, CNTN3, CACNA2D3, MUM1L1, ZNRF3.
Table 3 (on next page)

Top 10 of the most significantly enriched GO terms.

GO, Gene Ontology; BP, biological progress; CC, cellular component; MF, molecular function.
Table 3. Top 10 of the most significantly enriched GO terms.

Pathway ID	Terms	Gene count	P-value
BP	inflammatory response	16	5.41E-12
GO:0006954	neutrophil chemotaxis	8	4.33E-09
GO:0006955	immune response	13	3.67E-08
GO:0070098	chemokine-mediated signaling pathway	7	2.35E-07
GO:0006935	chemotaxis	7	5.73E-06
GO:0001525	angiogenesis	8	1.75E-05
GO:0032496	response to lipopolysaccharide	7	3.10E-05
GO:0090023	Positive regulation of neutrophil chemotaxis	4	7.02E-05
GO:0071347	cellular response to interleukin-1	5	1.36E-04
GO:0045765	regulation of angiogenesis	4	2.00E-04
CC	extracellular space	19	5.27E-07
GO:0005576	extracellular region	19	6.79E-06
GO:0005886	plasma membrane	27	9.38E-04
GO:0005604	basement membrane	4	2.70E-03
GO:0005887	integral component of plasma membrane	13	3.43E-03
GO:0070062	extracellular exosome	19	6.75E-03
GO:0009986	cell surface	7	1.18E-02
GO:0031093	platelet alpha granule lumen	3	1.60E-02
GO:0031012	extracellular matrix	5	2.02E-02
GO:0030666	endocytic vesicle membrane	3	2.25E-02
MF	chemokine activity	7	2.25E-02
GO:0045236	CXCR chemokine receptor binding	3	2.25E-02
GO:0008083	growth factor activity	5	2.25E-02
GO:002020	protease binding	4	2.25E-02
GO:004872	receptor activity	5	2.25E-02
GO:0048306	calcpium-dependent protein binding	3	2.25E-02
GO:0008329	signaling pattern recognition receptor activity	2	2.25E-02
GO:0001849	complement component C1q binding	2	2.25E-02
GO:0005102	receptor binding	5	2.25E-02
GO:0004859	phospholipase inhibitor activity	2	2.25E-02

GO, Gene Ontology; BP, biological progress; CC, cellular component; MF, molecular function;
Table 4 (on next page)

Significantly enriched KEGG pathway.

KEGG, Kyoto Encyclopedia of Genes and Genomes.
Table 4. Significantly enriched KEGG pathway.

Pathway ID	Terms	Gene Count	P-Value	Genes
hsa04060	Cytokine-cytokine receptor interaction	10	1.59E-09	**CCL4, CCL8, CXCL8, CCL20, TNFRSF12A, IL18RAP, CXCL3, PPBP, CXCL1, IL6**
hsa05323	Rheumatoid arthritis	7	3.50E-09	**TCIRG1, CXCL8, CCL20, TLR2, CXCL1, HLA-DRA, IL6**
hsa05134	Legionellosis	6	9.62E-09	**CXCL8, TLR2, CXCL3, CXCL1, IL6, HSPA6**
hsa04062	Chemokine signaling pathway	8	3.28E-08	**CCL4, CCL8, CXCL8, CCL20, FGR, CXCL3, PPBP, CXCL1**
hsa04145	Phagosome	7	1.45E-07	**TCIRG1, OLR1, NCF2, TLR2, TUBB6, HLA-DRA, MARCO**
hsa05144	Malaria	5	2.19E-07	**IL6, CXCL8, HBB, SELE, TLR2**
hsa04668	TNF signaling pathway	6	5.37E-07	**TNFAIP3, CCL20, CXCL3, SELE, CXCL1, IL6**
hsa05132	Salmonella infection	5	3.30E-06	**CXCL1, CCL4, IL6, CXCL3, CXCL8**
hsa04621	NOD-like receptor signaling pathway	4	1.78E-05	**CXCL1, IL6, TNFAIP3, UPP1**
hsa05321	Inflammatory bowel disease (IBD)	4	2.43E-05	**HLA-DRA, IL6, IL18RAP, TLR2, HLA-DRA, IL6**
hsa04064	NF-kappa B signaling pathway	4	1.04E-04	**CCL4, TNFAIP3, BCL2A1, CXCL8**
hsa05143	African trypanosomiasis	3	1.09E-04	**IL6, HBB, SELE**
hsa05146	Amoebiasis	4	1.36E-04	**CXCL1, IL6, CXCL8, TLR2**
hsa04933	AGE-RAGE signaling pathway in	4	1.52E-04	**IL6, SERPINE1, SELE, CXCL8**
KEGG ID	Pathway Description	Count	P-value	Gene Symbols
-----------	--	-------	---------------	--
hsa04066	HIF-1 signaling pathway	4	1.63E-04	IL6, SERPINE1, TIMP1, HMOX1
hsa05142	Chagas disease (American trypanosomiasis)	4	1.69E-04	IL6, CXCL8, SERPINE1, TLR2
hsa04620	Toll-like receptor signaling pathway	4	1.81E-04	CCL4, IL6, CXCL8, TLR2
hsa05162	Measles	4	4.47E-04	IL6, TNFAIP3, HSPA6, TLR2
hsa05120	Epithelial cell signaling in Helicobacter pylori infection	3	7.57E-04	CXCL1, TCIRG1, CXCL8
hsa05140	Leishmaniasis	3	8.21E-04	HLA-DRA, NCF2, TLR2
hsa05152	Tuberculosis	4	1.04E-03	TCIRG1, IL6, HLA-DRA, TLR2
hsa05164	Influenza A	4	1.06E-03	HLA-DRA, IL6, HSPA6, CXCL8
hsa04610	Complement and coagulation cascades	3	1.15E-03	C5AR1, PLAUR, SERPINE1
hsa05169	Epstein-Barr virus infection	4	1.85E-03	HLA-DRA, FGR, TNFAIP3, HSPA6
hsa05145	Toxoplasmosis	3	3.57E-03	HLA-DRA, HSPA6, TLR2
hsa05332	Graft-versus-host disease	2	4.53E-03	HLA-DRA, IL6
hsa04672	Intestinal immune network for IgA production	2	6.46E-03	HLA-DRA, IL6
hsa05161	Hepatitis B	3	6.47E-03	IL6, CXCL8, TLR2
hsa05150	Staphylococcus aureus infection	2	8.12E-03	HLA-DRA, C5AR1

2 KEGG, Kyoto Encyclopedia of Genes and Genomes.
Table 5 (on next page)

Table 5. Significantly enriched GO of hub genes.

GO, Gene Ontology; BP, biological progress; CC, cellular component; MF, molecular function;
Table 5. Significantly enriched GO of hub genes.

ID	Description	P-Value	Count	Gene Names
GO:0009611	response to wounding	4.58E-11	9	CXCL1/ IL6/ CCL20/ SERPINE1/ TLR2/ SELE/ CCL4/ PLAUR/ CD163.
GO:0006954	inflammatory response	1.45E-08	7	CXCL1/ IL6/ CCL20/ TLR2/ SELE/ CCL4/ CD163.
GO:0006952	defense response	6.44E-07	7	CXCL1/ IL6/ CCL20/ TLR2/ SELE/ CCL4/ CD163.
GO:0042330	taxis	2.27E-06	5	CXCL1/ IL6/ CCL20/ CCL4/ PLAUR.
GO:0006935	chemotaxis	2.27E-06	5	CXCL1/ IL6/ CCL20/ CCL4/ PLAUR.
GO:0006955	immune response	2.25E-04	4	CXCL1/ IL6/ CCL20/ TLR2/ CCL4.
GO:0007596	blood coagulation	6.88E-04	5	IL6/ SERPINE1/ PLAUR.
GO:0050817	coagulation	0.001396979	3	IL6/ SERPINE1/ PLAUR.
GO:0007599	hemostasis	0.001957914	3	IL6/ SERPINE1/ PLAUR.
GO:0042742	defense response to bacterium	0.001957914	3	IL6/ CCL20/ TLR2.
GO:0006928	cell motion	0.002191691	3	IL6/ SELE/ CCL4/ PLAUR.
GO:0050878	regulation of body fluid levels	0.002354575	3	IL6/ SERPINE1/ PLAUR.
GO:0032101	regulation of response to external stimulus	0.003084628	4	IL6/ SERPINE1/ SELE.
GO:0042060	wound healing	0.003701403	3	IL6/ SERPINE1/ PLAUR.
GO:0032755	positive regulation of interleukin-6 production	0.004681351	3	IL6/ TLR2.
GO:0042127	regulation of cell proliferation	0.006688038	3	CXCL1/ IL6/ SERPINE1/ TIMP1.
GO:0042246	tissue regeneration	0.012573365	2	SERPINE1/ PLAUR.
GO:0032675	regulation of interleukin-6 production	0.012647695	4	IL6/ TLR2.
GO:0006953	acute-phase response	0.02109503	2	IL6/ CD163.
GO:0030162	regulation of proteolysis	0.023703896	2	PLAUR/ TIMP1.
GO:0050900	leukocyte migration	0.02630658	2	IL6/ SELE.
GO:0051091	positive regulation of transcription factor activity	0.034722761	2	IL6/TLR2.
------------	--	--------------	---	------------
GO:0045765	regulation of angiogenesis	0.037299313	2	IL6/SERPINE1.
GO:0031099	regeneration	0.039227714	2	SERPINE1/PLAUR.
GO:0043388	positive regulation of DNA binding	0.04115268	2	IL6/TLR2.
GO:0031349	positive regulation of defense response	0.044992331	2	IL6/TLR2.
GO:0050727	regulation of inflammatory response	0.049454644	2	IL6/SELE.

CC

GO:0009611	extracellular region	2.86E-06	9	CXCL1/IL6/CCL20/SERPINE1/SELE/CCL4/PLAUR/CD163/TIMP1.
GO:0006954	extracellular region part	2.31E-04	6	CXCL1/IL6/CCL20/SELE/CCL4/TIMP1.
GO:0006952	extracellular space	8.30E-04	5	CXCL1/IL6/CCL20/SELE/CCL4.

MF

GO:0005125	cytokine activity	2.62E-04	4	CXCL1/IL6/CCL20/CCL4.
GO:0008009	chemokine activity	4.35E-04	3	CXCL1/CCL20/CCL4.
GO:0042379	chemokine receptor binding	4.94E-04	3	CXCL1/CCL20/CCL4.
GO:0019899	enzyme binding	0.048323907	3	SERPINE1/SELE/PLAUR.

GO, Gene Ontology; BP, biological progress; CC, cellular component; MF, molecular function;
Table 6. Significantly enriched KEGG pathway of hub genes.

KEGG, Kyoto Encyclopedia of Genes and Genomes.
Table 6. Significantly enriched KEGG pathway of hub genes.

Pathway ID	Terms	Gene Count	P-Value	Genes
hsa0466	TNF signaling pathway	4	5.54E-08	CXCL1, CCL20, IL6, SELE
hsa04066	HIF-1 signaling pathway	3	6.38E-06	IL6, SERPINE1, TIMP1
hsa04060	Cytokine-cytokine receptor interaction	3	9.63E-05	CXCL1, CCL20, IL6
hsa04621	NOD-like receptor signaling pathway	2	0.000199993	CXCL1, IL6
hsa04610	Complement and coagulation cascades	2	0.000364662	SERPINE1, PLAUR.
hsa04620	Toll-like receptor signaling pathway	2	0.000671108	IL6, TLR2
hsa04062	Chemokine signaling pathway	2	0.00200085	CXCL1, CCL20
hsa04151	PI3K-Akt signaling pathway	2	0.006358451	IL6, TLR2
hsa04672	Intestinal immune network for IgA production	1	0.016724268	IL6
hsa04623	Cytosolic DNA-sensing pathway	1	0.022711959	IL6
hsa04115	p53 signaling pathway	1	0.02481751	SERPINE1
hsa01521	EGFR tyrosine kinase inhibitor resistance	1	0.029714789	IL6
hsa04068	FoxO signaling pathway	1	0.047713858	IL6

KEGG, Kyoto Encyclopedia of Genes and Genomes.
Table 7 (on next page)

Results of CMap analysis

CMap, Connectivity Map.
Table 7 Results of CMap analysis

Rank	CMap name	Mean	N	Enrichment	P-value
1	hecogenin	-0.613	4	-0.931	0.00002
2	pralidoxime	-0.529	4	-0.872	0.00056
3	metolazone	-0.282	5	-0.779	0.00096
4	lidocaine	-0.258	5	-0.766	0.0013
5	NU-1025	-0.579	2	-0.956	0.00414
6	ambroxol	-0.269	4	-0.774	0.00527
7	pipemidic acid	-0.336	3	-0.846	0.00735
8	yohimbic acid	-0.345	3	-0.845	0.00747
9	chlorphenesin	-0.354	4	-0.74	0.00899

CMap, Connectivity Map.