研究の背景と経緯

小児期には年齢依存性の特徴的なてんかん症候群がいくつも存在する。中でも特発性部分てんかんは頻度が高く、幼児期にはPanayiotopoulos症候群（PS）、学童期には中心・側頭部に棘波を示す良性てんかん（BECTS）が知られている。BECTSでは中心・側頭部を、PSでは主に後頭部に機能性棘波と呼ばれる特徴的な形態の棘波を示し、PSではこれが他部位に移動する症例もある。BECTSとPSでは臨床・脳波学的に両症候群の特徴を併有する症例もあり、何らかの共通性も想定されている。BECTSではシルビウス発作と呼ばれる片側顔面間代けいれんに、口部の異常体性感覚、流涎、構音障害を伴う焦点性運動発作が主体で、発作症状と棘波の焦点が密接に関連している。一方PSでは、発作は嘔吐などの自律神経症状が主体で、棘波の焦点との関連性ははっきりしない。

脳波における80Hz以上の波は高周波活動（HFA）と呼ばれ、中心・側頭部の高周波振動を示す特徴的な形態の棘波を示す。HFAはHFOsではなくHFAとしている。HFAはHFOsよりもてんかん原性との関係が密でないと言われているが、時間周波数分析のより弱い活動でも検出することが可能である。

我々は棘波の焦点部位によってHFAの検出率が異なるのではないかと予想した。BECTSとPSの患者で棘波を焦点ごとに分類し、HFAの検出率を比較することで、焦点ごとのてんかん原性の強さの違いがあるのではないかと予想した。さらにこれが小児特発性部分てんかんの病態解明の一助になるのではないかと考え、今回の研究を行った。

研究成果の内容

1. 小児特発性部分てんかんの頭皮脳波からもHFAは高率に検出される

今回は各症例で発作から半年以内のてんかんが活発な時期の脳波のみを対象として分析した。睡眠中の焦点性棘波を解析ソフトRevealを用いて、棘波の発生部位、形状などを元にクラスター分類し、各症例で最大3群を分析対象とした。各棘波群ごとに時間-周波数分析を行いHFAを検出した（図）。その結果、BECTS
では73/96棘波群（76.0%）、PSでは37/63棘波群（58.7%）でHFAが検出され、BECTSの方がより高率であっ
た。両群とも多くのHFAが検出され、小児の特発性部分てんかんにおいても、頭皮脳波でHFAの分析が
可能であることが改めて確認された。

2. BECTSではローランド領域に双極子が推定され
る棘波にHFAが高率に検出される

それぞれの棘波発生源は、標準脳に基づく頭蓋形
状モデルによる単一双極子電流発生源解析で推定し
た。推定された双極子の解剖学的位置は標準脳上で解
析ソフトFreeSurferを用いて決定した。BECTSでは
双極子がローランド溝周辺の中心前回および中心後回
に推定された群の方が、それ以外の位置に双極子が推
定された群（多くは側頭葉もしくは線条回）に比べ有意
にHFAを伴う割合が高かった。BECTSは定義上、その棘波は中心・側頭部に出現し、その双極子はロー
ランド領域に限局していると報告されていた。しかし、
今回の結果からはBECTSのローランド棘波は均一な
集団ではなく、ローランド溝周辺の皮質から出現する
棘波はその周辺の皮質部位由来の棘波に比較して有意
に高率にHFAを伴い、高いてんかん原性を持つことが
明らかになった。

3. PSでは後頭葉に出現する棘波の方がHFAを高率
に伴う

PSでは後頭葉に双極子が推定された棘波の方が、そ
の他の部位に双極子が推定された棘波よりもHFAを
伴う割合が高かった。つまり、PSでは後頭葉に出現す
る棘波の方が他の部位に出現する棘波よりもてんかん
原性が高いと言え、PSの発作とより深い関係があると
考えられた。このことから、PSではてんかん発射は多
焦点性であっても、最もてんかん原性が高い場所は後
頭葉であると示唆された。

4. HFAやHFOsの有無と発作頻度の間には一定の
関係はみられなかった

各症例で棘波に伴うHFAやHFOs（HFOsは低周
波遮断フィルタ処理により目視で確認）の有無と発作
頻度の関係について検討を行った。BECTSではHFA
が検出された患者の方が発作回数が多く、HFOsの有
無は発作頻度との関係がみられなかった。逆にPSで
はHFAの有無は発作頻度との関係がみられなかった
が、HFOsが検出された患者の方が発作回数が多いと
いう一定しない結果になった。

研究成果の意義

今回の研究からBECTSでは、頭皮脳波上は同じ部
位から出現して見える棘波でも、ローランド領域に双
極子が推定される棘波の方が高いてんかん原性を有す
ることが判明し、棘波の起源とそのてんかん原性の密
接な関係をこれまで以上に明確にすることができた。

PSは当初は後頭部に突発波をもつ特発性てんかん
の一つとして報告されていたが、その後の研究では棘
波は多焦点性で、その発作症状も後頭葉てんかんで見
られる視覚症状は認めず、嘔気や嘔吐を中心とする自
律神経発作が主体であることから、後頭葉てんかんの
範疇に入れることへの疑念が示されていた2)。しかし、
今回の研究から後頭葉の棘波の方が他の部位の棘波よりHFAを伴う率が高く、棘波が多焦点性であってもHFAやHFOsの分析は以前は頭蓋内電極脳波記録による検出に限られていたが、頭皮脳波でも検出できことが報告されて以降、その応用範囲も広がっている。また既に頭皮電極と頭蓋内電極の同時記録により、頭皮脳波のHFOsは頭蓋内のHFOsを反映することが報告されている3)。頭蓋内電極脳波は侵襲的であることから、その適応はてんかん外科症例などに限られている。一方で、頭皮脳波は非侵襲的であり、手術を受ける特発性てんかんの症例にも応用することができ、また、乳幼児においても安全かつ簡便に行うことが可能である。今回の研究結果から、一見同じように見える棘波でも出現部位によってHFAの検出率が異なっており、HFAやHFOsの分析を行うことで通常の脳波解析に比べより多くの情報が得られることが判明した。つまり、HFAやHFOsの分析が病態の解明のために有用であること、そしてそれが頭皮脳波で可能であることを示すことができたことに大きな意義があると思われる。

今後の展開や展望

BECTSもPSも基本的には予後良好なてんかんであるが、中には治療抵抗性であったり、脳波の悪化に伴い認知や行動などに障害を認めたりすることがある。特に非定型良性部分てんかんや、Landau-Kleffner症候群、徐波睡眠時に持続性棘徐波（CSWS）を示すてんかんなどへ移行する一部の非典型群ではその程度が強い。しかし、初期の段階では脳波などから予後を予測することは困難と言われている。BECTSやPSでは経過が良い例が多いことから、必ずしも治療を必要としない。初期の段階で非典型群への移行を予測して、早急かつ積極的な治療を行うことができれば、言語や認知面、行動面などへの影響を最小限に抑えることが可能になるかもしれない。ローランズ棘波を認める症例で、HFOsが検出された症例の方が発作頻度が多かったとの報告もあり4)。HFOsの有無は経過の予測因子にならないかと期待されている。残念ながら今回の研究ではHFAやHFOsの有無と発作頻度の間に一定の関係性は見られなかった。今回は発作が活発な時期の脳波しか検討していないため、経過を追って脳波を解析していくことで関係性がみえてくる可能性がある。

またHFOsにはてんかん性活動だけではなく、生理的なものもあり、認知など高次脳機能に関与すると考えられている5)。異常なHFOsが生理的なHFOsに干渉して認知機能などに障害を来たしている可能性もあり、今後の検討課題である。

文献

1) Kobayashi K, Watanabe Y, Inoue T, Oka M, Yoshinaga H, et al.:Scalp-recorded high-frequency oscillations in childhood sleep-induced electrical status epilepticus. Epilepsia (2010) 51, 2190-2194.
2) Oguni H, Hayashi K, Imai K, Hirano Y, Mutoh A, et al.:Study on the early-onset variant of benign childhood epilepsy with occipital paroxysms otherwise described as early-onset benign occipital seizure susceptibility syndrome. Epilepsia (1999) 40, 1020-1030.
3) Zelmann R, Lina JM, Schulze-Bonhage A, Gotman J, et al.:Scalp EEG is not a blur: it can see high frequency oscillations although their generators are small. Brain Topogr (2014) 27, 683-704.
4) van Klink NE, van’t Klooster MA, Leijten FS, Jacobs J, Braun KP, et al.:Ripples on rolandic spikes: A marker of epilepsy severity. Epilepsia (2016) 57, 1179-1189.
5) Ueda K, Brown EC, Kojima K, Juhász C, Asano E: Mapping mental calculation systems with electrocorticography. Clin Neurophysiol (2015) 126, 39-46.