Hybrid-MST: A Hybrid Active Sampling Strategy for Pairwise Preference Aggregation

Jing Li, Rafal K. Mantiuk, Junle Wang, Suiyi Ling, Patrick Le Callet
Preference aggregation

• Application:
 Recommendation system
 Social networks
 Sports race, chess
 Online games

• Objective:
 Infer the underlying rating or ranking of the test candidates according to annotator’s label.
Preference aggregation

• Sometimes discovering the rating (true score) is more important

- Game players matching system
 - e.g., MSR’s TrueSkill system

- Friends-making website
 - e.g., Facebook, Meetup

- Subjective image/video quality assessment
Pairwise comparison

• Advantage:
 – “human response to comparison questions is more stable in the sense that it is not easily affected by irrelevant alternatives” [Ailon, NIPS2009]

• Drawback:
 – $O(n^2)$ time complexity [ITU-R BT.500]

• Solutions:
 – Optimization on parameter estimation (deal with sparse data)
 – Novel model
 – **Pairwise sampling**
Outline

• The state of the art pairwise sampling strategy
• Proposed Methodology
• Experiment
• Results
• Conclusion
The state of the art

• Random sampling
 – Random Graph [Xu, TMM2012]
 – Subset Balanced design [Dykstra, 1960]

• Empirical sampling
 – Sorting based sampling [Silverstein, 1998]
 – Adaptive/Optimized Rectangular Design (ARD/ORD) [Li 2012][IEEEP3333.1.1][ITU-T P.915]

• Active sampling
Active sampling

- Active learning process
- Learn which pair could generate the maximum information gain (EIG)
- Bayesian theory (prior and posterior)
Active sampling

- [Pfeiffer, AAAI 2012] Thurstone model + Bayesian framework
- [Chen, WSDM 2013] Crowd-BT Bradley-Terry model + annotator’s malicious behavior + Bayesian framework
- [Xu, AAAI 2018] Hodge-active HodgeRank model + Bayesian framework
Drawbacks

• Sampling procedure is sequential
• Focusing on ranking aggregation, not accurate for rating
• Annotator’s unreliability is not considered
• High computational cost
The proposed method: Hybrid-MST

Preliminary

• n objects: A_1, A_2, \ldots, A_n
• True quality: $s = (s_1, s_2, \ldots, s_n)$
• Observed score: $r = (r_1, r_2, \ldots, r_n)$

$$r_i = s_i + \varepsilon_i$$

• Noise term: $\varepsilon_i \sim N(0, \sigma_i^2)$

In an observation:

If $r_i > r_j$, observer select $A_i \rightarrow y_{ij} = 1$

If $r_i < r_j$, observer select $A_j \rightarrow y_{ij} = 0$
The Bradley-Terry model [Bradley1952] is used to model the probability that object A_i is preferred over object A_j.

$$Pr(A_i > A_j) \triangleq \pi_{ij} = \frac{\pi_i}{\pi_i + \pi_j}, \quad \pi_i \geq 0, \quad \sum_{i=1}^{t} \pi_i = 1$$

π_i is the merit of the object A_i.

Thus, we obtain:

$$\pi_{ij} = \frac{e^{s_i}}{e^{s_i} + e^{s_j}} = \frac{1}{1 + e^{-(s_i-s_j)}}$$

Likelihood function:

$$L(s|M) = \prod_{i<j} \pi_{ij}^{m_{ij}} (1 - \pi_{ij})^{m_{ji}}$$

m_{ij} represents the total number of trial outcomes $A_i > A_j$.
Active learning

• Gain information from the observations

\[s \sim \mathcal{N}(\hat{s}, \hat{\Sigma}) \]

• Utility function:
 – Fisher Information
 \[I(\theta) = -\mathbb{E} \left[\frac{\partial^2}{\partial \theta^2} \log f(X; \theta) \right] \]
 – Kullback-Leibler Divergence (KLD)
 \[D_{KL}(P \parallel Q) = \sum_i P(i) \log \left(\frac{P(i)}{Q(i)} \right) \]
Active learning

• Gain information from the observations

\[s \sim \mathcal{N}(\hat{s}, \Sigma) \]

Multivariate Gaussian

• A straightforward way: **Global** KLD

\[
D_{KL}(\mathcal{N}(\hat{s}^{ij}, \hat{\Sigma}^{ij}) \| \mathcal{N}(\hat{s}^{e}, \hat{\Sigma}^{e})) = \frac{1}{2} \left[\text{tr} \left(\hat{\Sigma}^{e}^{-1} \hat{\Sigma}^{ij} \right) + \left(\hat{s}^{e} - \hat{s}^{ij} \right)^{T} \hat{\Sigma}^{e}^{-1} \left(\hat{s}^{e} - \hat{s}^{ij} \right) \right]
\]

posterior prior

Maybe singular
Active learning

• Gain information from the observations

\[s \sim \mathcal{N}(\hat{s}, \hat{\Sigma}) \]

• Our proposal: Local Gain

\[s_{ij} \sim \mathcal{N}(\hat{s}_i - \hat{s}_j, \sigma_{ij}^2) \]

\[\sigma_{ij}^2 = \hat{\Sigma}(i, i) + \hat{\Sigma}(j, j) - 2\hat{\Sigma}(i, j) \]

\[U_{ij} = \int \sum_{y_{ij}} \log \left\{ \frac{p(s_{ij}|y_{ij})}{p(s_{ij})} \right\} p(s_{ij}|y_{ij}) p(y_{ij}) ds_{ij} \]
Utility function:

\[U_{ij} = \int \sum_{y_{ij}} \log \left\{ \frac{p(s_{ij} | y_{ij})}{p(s_{ij})} \right\} p(s_{ij} | y_{ij}) p(y_{ij}) ds_{ij} \]

A tractable form:

\[U_{ij} = E(p_{ij} \log(p_{ij})) + E(q_{ij} \log(q_{ij})) - E(p_{ij}) \log E(p_{ij}) - E(q_{ij}) \log E(q_{ij}) \]

\[E(p_{ij} \log(p_{ij})) = \int p_{ij} \log(p_{ij}) p(s_{ij}) ds_{ij} = \int \frac{1}{1 + e^{-x}} \log\left(\frac{1}{1 + e^{-x}}\right) \frac{1}{\sqrt{2\pi \sigma_{ij}}} e^{-\frac{(x - \mu_j)^2}{2\sigma_{ij}^2}} dx \]

With Gaussian-Hermite quadrature

\[\int_{-\infty}^{+\infty} e^{-x^2} f(x) \, dx \approx \sum_{i=1}^{n} w_i f(x_i) \]

In our model, \(n=30 \)

Reduce the computational complexity!

Note that this \(n \) is sample points in Gaussian-Hermite quadrature, which is different from the number of test objects.
Relationship between MLE estimates and EIG

The pairs which have similar scores or the score differences have higher uncertainties would generate more information.
Pair selection strategy

• Global maximum (GM) method

\[\{A_i, A_j\} = \arg\max_{i \neq j} U_{ij} \]
Pair selection strategy

- Global maximum (GM) method

\[\{A_i, A_j\} = \arg\max_{i \neq j} U_{ij} \]

- Minimum Spanning Tree (MST) method

 Test objects as the vertices
 EIG as the edges
 - n-1 edges
 - All the vertices are connected
 - Unique

Traditional method
Determination of strategy

• When to use GM? When to use MST?

• Monte Carlo simulation
 – Number of test stimuli: 10, 16, 20, 40
 – True score ~ Uniform (1,5)
 – Noise ~ N(0, sigma^2), sigma~ Uniform (0,0.7)
 – Annotator’s error: 10%, 20%, 30%, 40%
 – 100 repetitions

• Evaluation:
 PLCC, Kendall + Student’s t-test
Hybrid strategy

1 standard trial number = \(\frac{n(n-1)}{2} \) comparisons

\[
\{ A_i, A_j \} = \begin{cases}
\underset{i \neq j}{\arg \max} U_{ij} & \text{if } \sum_{i,j} m_{ij} \leq \frac{n(n-1)}{2} \\
E_{mst} & \text{otherwise}
\end{cases}
\]
The whole Hybrid-MST procedure

According to current observations:
1. Calculating EIG for all pairs
2. If total comparison number < 1 standard number:
 - select pair using global Maximum
Otherwise:
 - select pairs using MST
3. Run pairwise comparison
Experimental results

• Simulated data:
 – 60 stimuli ~ Uniform[1,5] + N(0,0.7^2)
 – Observation error: 10, 20, 30, 40%

For better visualization, Kendall and PLCC are rescaled using Fisher transformation
RMSE is rescaled by y’=-1/y
To achieve the same accuracy with FPC of 15 annotators

Saving budget

Method	Kendall	PLCC	RMSE
Hybrid-MST	77.11%	74.89%	74.89%
Hodge-active	84.57%	68.61%	71.65%
Crowd-BT	78.43%	-	-

For better visualization, Kendall and PLCC are rescaled using Fisher transformation. RMSE is rescaled by $y' = -1/y$.
Real-world data

- **Image Quality Assessment (IQA) dataset** [Xu2012TMM]
 - 43266 pairwise comparison data,
 - 15 references from LIVE2008 and IVC2005,
 - 16 distortions
 - 328 annotators from internet

- **Video Quality Assessment (VQA) dataset** [Xu2011ACMMM]
 - 38400 pairwise comparison data
 - 10 references from LIVE database
 - 16 distortions
 - 209 annotators
Experimental results: IQA dataset
Experimental results: VQA dataset
FPC, ARD, HRRG, Hodge-active are the fastest

In learning based method:
- Hodge-active is faster than Crowd-BT and Hybrid-MST
- Hybrid-MST in GM mode is a little bit faster than Crowd-BT
- Hybrid-MST in MST mode is n times faster than Crowd-BT

In most cases, Hybrid-MST is in MST mode…
Considering crowd sourcing

Sequential sampling method: Hodge-active, Crowd-BT

The next pair can only be determined when the previous voting is finished.

To finish **one** pairwise comparison procedure, $T_1 + T_2 + T_2$ seconds are required:
- T_1: presentation time (e.g. 10 seconds)
- T_2: annotator voting time (e.g., 5 seconds)
- T_3: sampling algorithm runtime (according to the used algorithm)
Considering crowd-sourcing

Batch sampling method: Hybrid-MST (MST mode)

To finish $n-1$ pairwise comparison procedure: $T1 + T2 + T3$ seconds
Time cost in real application

Table 2: Time cost (seconds) of comparing $n - 1$ pairs in a typical VQA pair comparison experiment ($T1 + T2 + T3$)

n	Crowd-BT	Hodge-active	Hybrid-MST	Hybrid-MST	
			GM	MST (ideal case)	MST (the worst case)
10	135.8	135.0	135.4	15.1	135.1
20	288.6	285.0	287.8	15.2	285.2
100	1782.0	1485.1	1782.0	17.9	1487.9

For MST:
- The worst case \rightarrow the annotators work one after the other
- The ideal case \rightarrow the annotators work at the same time

The proposed Hybrid-MST is more applicable in Crowd sourcing
Conclusion

• The contribution of our work:
 ✓ local information gain → faster computation
 ✓ Hybrid sampling strategy → reliable results
 ✓ MST → robustness to observation errors
 ✓ Batch mode → applicable in crowd sourcing
Conclusion

• Using Hodge-active [Xu, AAAI2018] when:
 – the test budget is small (< 2 standard trial numbers, i.e., 2n(n-1)/2) and the objective is for ranking aggregation

• Using Hybrid-MST when:
 – for rating aggregation
 – Test budget is large and for ranking aggregation
 – Small time budget
Beyond this...
Thank you so much!

Paper is accepted by NIPS 2018
Code is available in github:
https://github.com/jingnantes/hybrid-mst
Paper is available in arXiv:
http://arxiv.org/pdf/1810.08851