Review Article

On Strongly $b – \theta$-Continuous Mappings in Fuzzifying Topology

Ting Yang1 and Ahmed Mostafa Khalil2

1Hunan University of Arts and Science, Changde, Hunan, China
2Department of Mathematics, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt

Correspondence should be addressed to Ahmed Mostafa Khalil; a.khalil@azhar.edu.eg

Received 18 April 2021; Accepted 11 May 2021; Published 4 June 2021

Academic Editor: Lazim Abdullah

Copyright © 2021 Ting Yang and Ahmed Mostafa Khalil. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this article, we will define the new notions (e.g., $b - \theta$-neighborhood system of point, $b - \theta$-closure (interior) of a set, and $b - \theta$-closed (open) set) based on fuzzy logic (i.e., fuzzifying topology). Then, we will explain the interesting properties of the above five notions in detail. Several basic results (for instance, Definition 7, Theorem 3 (iii), (v), and (vi), Theorem 5, Theorem 9, and Theorem 4.6) in classical topology are generalized in fuzzy logic. In addition to, we will show that every fuzzifying $b – \theta$-closed set is fuzzifying y-closed set (by Theorem 3 (vi)). Further, we will study the notion of fuzzifying $b – \theta$-derived set and fuzzifying $b – \theta$-boundary set and discuss several of their fundamental basic relations and properties. Also, we will present a new type of fuzzifying strongly $b – \theta$-continuous mapping between two fuzzifying topological spaces. Finally, several characterizations of fuzzifying strongly $b – \theta$-continuous mapping, fuzzifying strongly $b – \theta$-irresolute mapping, and fuzzifying weakly $b – \theta$-irresolute mapping along with different conditions for their existence are obtained.

1. Introduction and Preliminaries

In classical topology, the notions of b-open set, b-closed set, and strongly $\theta – b$-continuous mapping are presented in [1, 2]. After that, Hanafy [3] used the term y-open sets instead of b-open sets and studied the notions of y-open sets and y-continuous mapping in fuzzy topology [4]. Benchalli and Karnel [5] presented a novel form of fuzzy subset named fuzzy b-open (closed) set, and some basic properties are proved and also their relations with different fuzzy sets in fuzzy topological spaces are investigated. In 2017, Dutta and Tripathy [6] introduced a new kind of open set named fuzzy $b – \theta$ open set (i.e., which is a generalization of $b – \theta$ open set). Ying [7] extended the basic notions in classical topology to fuzzifying topology based on fuzzy logic (i.e., as considered a novel approach of fuzzy topology, which depends on the various basic relations of topological spaces and the logical analysis of topological axioms). Many researchers are interested in fuzzifying topology (such as fuzzifying semi-open sets [8], fuzzifying preopen sets [9], fuzzifying α-open sets [10], fuzzifying β-open sets [11], and fuzzifying γ-open sets [12]). Therefore, in this article, we will extend the notions of $b – \theta$-neighborhood system of a point, $b – \theta$-closure (interior) of a set, $b – \theta$-open (closed) set, $b – \theta$-derived sets, and $b – \theta$-boundary sets in fuzzifying topology. Also, we introduce the notion of fuzzifying strongly $b – \theta$-continuous mapping, fuzzifying strongly $b – \theta$-irresolute mapping, and fuzzifying weakly $b – \theta$-irresolute mapping between two fuzzifying topological spaces.

The rest of this article is arranged as follows. In this section, we briefly recall several notions: closed (open) set, closure (interior) of a set, neighborhood system of point, y-closed (open) set, y-closure (interior) of a set, y-neighborhood system of point, continuous mapping, and y-continuous mapping in fuzzifying topology which are used in the sequel. In Section 2, we define the notions of $b – \theta$-neighborhood system of a point, $b – \theta$-closure (interior) of a set, and $b – \theta$-derived set in fuzzifying topology. The interesting relation properties of the above notions are explained in detail. In Section 3, we present the notions of $b – \theta$-derived set and $b – \theta$-boundary set in fuzzifying topology and introduce the characterizations of interesting properties between fuzzifying $b – \theta$-derived set and fuzzifying $b – \theta$-closure of a set. In Section 4, we define the
fuzzifying strongly $b - \theta$-continuous mapping, fuzzifying strongly $b - \theta$-irresolve mapping, and fuzzifying weakly $b - \theta$-irresolve mapping between two fuzzifying topological spaces and investigate some properties of them.

Firstly, we give the notions of a fuzzy logical [7, 13] as follows:

\[\phi \rightarrow \psi \]

\[\phi \land \psi \]

\[\phi \lor \psi \]

where ϕ, ψ are fuzzy predicates.

(1) We give the symbol [8] which is the truth value of ϕ (i.e., the set of truth values means the unit interval $[0, 1]$).

(2) We can write $\phi \equiv \psi = 1$ (i.e., ϕ is valid).

(3) For $\phi, \psi \in [0,1]^X$ (i.e., $[0,1]^X$ means the whole of fuzzy subsets of a set X) have the following for $x \in X$:

\[\phi \equiv \psi \]

\[\phi \land \psi \]

\[\phi \lor \psi \]

\[\phi \rightarrow \psi \]

\[\phi \land \psi \]

\[\phi \lor \psi \]

\[\phi \rightarrow \psi \]

\[\phi \land \psi \]

\[\phi \lor \psi \]

\[\phi \rightarrow \psi \]

\[\phi \land \psi \]

\[\phi \lor \psi \]

\[\phi \rightarrow \psi \]

\[\phi \land \psi \]

\[\phi \lor \psi \]

\[\phi \rightarrow \psi \]

\[\phi \land \psi \]

\[\phi \lor \psi \]

\[\phi \rightarrow \psi \]

\[\phi \land \psi \]

\[\phi \lor \psi \]

\[\phi \rightarrow \psi \]

\[\phi \land \psi \]

\[\phi \lor \psi \]

\[\phi \rightarrow \psi \]

\[\phi \land \psi \]

\[\phi \lor \psi \]

\[\phi \rightarrow \psi \]

\[\phi \land \psi \]

\[\phi \lor \psi \]

\[\phi \rightarrow \psi \]

\[\phi \land \psi \]

\[\phi \lor \psi \]

\[\phi \rightarrow \psi \]

\[\phi \land \psi \]

\[\phi \lor \psi \]

\[\phi \rightarrow \psi \]

\[\phi \land \psi \]

\[\phi \lor \psi \]

\[\phi \rightarrow \psi \]

\[\phi \land \psi \]

\[\phi \lor \psi \]

\[\phi \rightarrow \psi \]

\[\phi \land \psi \]

\[\phi \lor \psi \]

\[\phi \rightarrow \psi \]

\[\phi \land \psi \]

\[\phi \lor \psi \]

\[\phi \rightarrow \psi \]

\[\phi \land \psi \]

\[\phi \lor \psi \]

\[\phi \rightarrow \psi \]

\[\phi \land \psi \]

\[\phi \lor \psi \]

\[\phi \rightarrow \psi \]

\[\phi \land \psi \]

\[\phi \lor \psi \]

\[\phi \rightarrow \psi \]

\[\phi \land \psi \]

\[\phi \lor \psi \]

\[\phi \rightarrow \psi \]

\[\phi \land \psi \]

\[\phi \lor \psi \]

\[\phi \rightarrow \psi \]

\[\phi \land \psi \]

\[\phi \lor \psi \]

\[\phi \rightarrow \psi \]

\[\phi \land \psi \]

\[\phi \lor \psi \]

\[\phi \rightarrow \psi \]

\[\phi \land \psi \]

\[\phi \lor \psi \]

\[\phi \rightarrow \psi \]

\[\phi \land \psi \]

\[\phi \lor \psi \]

\[\phi \rightarrow \psi \]

\[\phi \land \psi \]

\[\phi \lor \psi \]

\[\phi \rightarrow \psi \]
\[C_{op}(\psi) = (\forall O \in \varphi \rightarrow \psi^{-1}(O) \in \tau), \quad (6) \]

\[\left[C_{op}(\psi) \right] = \inf_{O \in \varphi} \min\left(1, 1 - \varphi(O) + \tau_{\psi^{-1}(O)}\right). \quad (7) \]

2. On Fuzzifying \(b - \theta \)-Neighborhood System

Definition 6. \(N^b_\theta \) (i.e., \(N^b_\theta \subseteq \mathcal{F}(2^X) \), \(x \in X \)) is called a fuzzifying \(b - \theta \)-neighborhood system of \(x \) if

\[A^b_\theta(\Phi) = \sup_{\theta \in 2^X} \max\left(0, A^\tau_\theta(\Psi) + \inf_{y \in \Phi} A^\tau_\theta(\Psi) - 1\right), \quad (8) \]

Theorem 1. Let \(N^b_\theta \) be a mapping from \(X \) to \(\mathcal{F}^N(2^X) \) s.t.

\(X \rightarrow N^b_\theta \) and \(\mathcal{F}^N(2^X) \) is a family of \(N \)-fuzzy (Normal fuzzy) subsets of \(2^X \) having the following three properties

\(\forall x \in X, \forall \Phi, \Psi \in 2^X): \]

(i) \(\Phi \subseteq N^b_\theta \rightarrow x \in \Phi \)

(ii) \(\Phi \subseteq \Psi \rightarrow (\Phi \in N^b_\theta \rightarrow \Psi \in N^b_\theta) \)

(iii) \((\Phi \in N^b_\theta) \land (\Psi \in N^b_\theta) \rightarrow \Phi \cap \Psi \in N^b_\theta \)

\[\left[\tilde{\mathcal{F}}_\theta(\Omega) \cap \Phi \cap \Psi \right] = \forall x \left(x \in \tilde{\mathcal{F}}_\theta(\Omega) \rightarrow x \in \Phi \cap \Psi \right) = \inf_{x \in X} \min\left(1, 1 - \tilde{\mathcal{F}}_\theta(\Omega)(x) + [\Phi \cap \Psi](x)\right) \]

\[= \inf_{x \in X} \left(1 - \tilde{\mathcal{F}}_\theta(\Omega)(x)\right) = \inf_{x \in X} \left(1 - \tilde{\mathcal{F}}_\theta(\Omega)(x)\right) \land \inf_{x \in X} \left(1 - \tilde{\mathcal{F}}_\theta(\Omega)(x)\right) \]

\[= \left[\tilde{\mathcal{F}}_\theta(\Omega) \subseteq \Phi \} \land \left[\tilde{\mathcal{F}}_\theta(\Omega) \subseteq \Psi \} \right. \]

Thus,

\[A^b_\theta(\Phi \cap \Psi) = \sup_{\Omega \in 2^X} \max\left(0, A^\tau_\theta(\Omega) + \left[\tilde{\mathcal{F}}_\theta(\Omega) \subseteq \Phi \cap \Psi \right] - 1\right) \]

\[= \sup_{\Omega \in 2^X} \max\left(0, A^\tau_\theta(\Omega) + \left[\tilde{\mathcal{F}}_\theta(\Omega) \subseteq \Phi \right] \land \left[\tilde{\mathcal{F}}_\theta(\Omega) \subseteq \Psi \right] - 1\right) \]

\[= \sup_{\Omega \in 2^X} \max\left(0, A^\tau_\theta(\Omega) + \left[\tilde{\mathcal{F}}_\theta(\Omega) \subseteq \Phi \right] \land \left[\tilde{\mathcal{F}}_\theta(\Omega) \subseteq \Psi \right] - 1\right) \]

\[= \left(\sup_{\Omega \in 2^X} \max\left(0, A^\tau_\theta(\Omega) + \left[\tilde{\mathcal{F}}_\theta(\Omega) \subseteq \Phi \right] - 1\right) \right) \land \left(\sup_{\Omega \in 2^X} \max\left(0, A^\tau_\theta(\Omega) + \left[\tilde{\mathcal{F}}_\theta(\Omega) \subseteq \Psi \right] - 1\right) \right) \]

\[= A^b_\theta(\Phi) \land A^b_\theta(\Psi). \]

Proof

(i) Case 1: if \(\Phi \in A^b_\theta(x) = 0 \), then \(\Phi \in A^b_\theta(x) \leq [x \in \Phi] \).

Case 2: if \(\Phi \in A^b_\theta(x) > 0 \), then \(\sup_\Phi \in 2^X \max(0, A^\tau_\theta(\Omega) + \left[\tilde{\mathcal{F}}_\theta(\Omega) \subseteq \Psi \right] - 1) > 0 \). There exists \(\Omega \in 2^X \) such that \(A^\tau_\theta(\Omega) + \left[\tilde{\mathcal{F}}_\theta(\Omega) \subseteq \Phi \right] - 1 > 0 \). From Theorems 4.2 (1) and 5.2 (3) in [12], we obtain Consequently,

\[\left[\tilde{\mathcal{F}}_\theta(\Omega) \subseteq \Phi \right] = \inf_\Phi \theta \Phi(1 - \tilde{\mathcal{F}}_\theta(\Omega)(y)) > 1 - \tilde{\mathcal{F}}_\theta(\Omega)(x) \), and so \(x \in \Phi \). If \(x \notin \Phi \), then we have \(\inf_{y \in \Phi} (1 - \tilde{\mathcal{F}}_\theta(\Omega)(y)) > 1 - \tilde{\mathcal{F}}_\theta(\Omega)(x) \); it is contradiction. Thus, \([x \in \Phi] = 1 \), and hence, \([\Phi \in A^b_\theta(\Phi) \leq [x \in \Phi] \).

(ii) Case 1: if \([\Phi \subseteq \Psi] = 0 \), then \(A^b_\theta(\Phi) \leq A^b_\theta(\Psi) \).

Case 2: if \([\Phi \subseteq \Psi] = 1 \), then and so \(A^\tau_\theta(\Omega) + \left[\tilde{\mathcal{F}}_\theta(\Omega) \subseteq \Psi \right] - 1 \geq A^\tau_\theta(\Omega) + \left[\tilde{\mathcal{F}}_\theta(\Omega) \subseteq \Phi \right] - 1 \). Thus, \(\sup_\Phi \in 2^X \max(0, A^\tau_\theta(\Omega) + \left[\tilde{\mathcal{F}}_\theta(\Omega) \subseteq \Psi \right] - 1) \geq \sup_\Phi \in 2^X \max(0, A^\tau_\theta(\Omega) + \left[\tilde{\mathcal{F}}_\theta(\Omega) \subseteq \Phi \right] - 1) \). Hence, \(A^b_\theta(\Phi) \leq A^b_\theta(\Psi) \).

(iii) \([\Phi \cap \Psi \in A^b_\theta] = \sup_{\Omega \in 2^X} \max(0, A^\tau_\theta(\Omega) \cap A^\tau_\theta(\Psi)) - 1 \). Since
Next, we will generalize the notion of $b - \theta$-closure [2] in $\mathcal{I}(X, \tau)$ as follows.

Definition 7. $\overline{\mathcal{T}}_{b\theta}(\Phi)$ $(\Phi \in 2^X)$ is called a fuzzifying $b - \theta$-closure of Φ if

$$x \in \overline{\mathcal{T}}_{b\theta}(\Phi) := \left(\forall \psi \in 2^X \right) \left(\psi \in \mathcal{N}_x \implies \left(\Phi \cap \overline{\psi} (\psi) \equiv \emptyset \right) \right).$$

(11)

Theorem 2. The following relation is holding in $\mathcal{I}(X, \tau)$:

$$\overline{\mathcal{T}}_{b\theta}(\Phi)(x) := \inf_{\psi \in 2^X} \min \left(1, 1 - \mathcal{N}_x^\psi (\psi) + \sup_{y \in \Phi} \overline{\psi} (\psi) \right).$$

(12)

Proof.

\[
\begin{align*}
[\forall \psi \left(\mathcal{N}_x^\psi (\psi) \implies \left(\Phi \cap \overline{\psi} (\psi) \equiv \emptyset \right) \right)]
&= \inf_{\psi \in 2^X} \min \left(1, 1 - \mathcal{N}_x^\psi (\psi) + \left[\left(\Phi \cap \overline{\psi} (\psi) \equiv \emptyset \right) \right] \right) \\
&= \inf_{\psi \in 2^X} \min \left(1, 1 - \mathcal{N}_x^\psi (\psi) + 1 - \left[\Phi \cap \overline{\psi} (\psi) \equiv \emptyset \right] \right) \\
&= \inf_{\psi \in 2^X} \min \left(1, 1 - \mathcal{N}_x^\psi (\psi) + 1 - \inf_{y \in \Phi} \min \left(1, 1 - \left(\Phi \cap \overline{\psi} (\psi) (y) + 0 \right) \right) \right) \\
&= \inf_{\psi \in 2^X} \min \left(1, 1 - \mathcal{N}_x^\psi (\psi) + \sup_{y \in \Phi} \max \left(0, \left(\Phi \cap \overline{\psi} (\psi) (y) \right) \right) \right) \\
&= \inf_{\psi \in 2^X} \min \left(1, 1 - \mathcal{N}_x^\psi (\psi) + \sup_{y \in \Phi} \left(\Phi (y), \overline{\psi} (\psi) (y) \right) \right) \\
&= \inf_{\psi \in 2^X} \min \left(1, 1 - \mathcal{N}_x^\psi (\psi) + \sup_{y \in \Phi} \overline{\psi} (\psi) (y) \right).
\end{align*}
\]

Theorem 3. The following relations are holding in $\mathcal{I}(X, \tau)$:

(i) $\overline{\mathcal{T}}_{b\theta}(\Phi)(x) = 1 - \mathcal{N}_x^{\overline{\Phi}} (\Phi^c)$

(ii) $\overline{\mathcal{T}}_{b\theta}(\emptyset) \equiv \emptyset$

(iii) $\overline{\mathcal{T}}_{b\theta}(\Phi) (\Phi)$

(iv) $x \in \overline{\mathcal{T}}_{b\theta}(\Phi) \iff \left(\forall \psi \left(\psi \in \mathcal{N}_x \implies \left(\Phi \cap \overline{\psi} (\psi) \equiv \emptyset \right) \right) \right)$

Proof. (i)
Lemma 1. \[\Phi \in \mathcal{N} \rightarrow \Phi \in \mathcal{N}_\tau \]

Proof. It follows from Theorem 3 (vi).

Clearly, \(\mathcal{N}_\tau \{ \{v\} \} = 0 \leq \mathcal{N}_u \{ \{v\} \} = 1 \) if we consider \(X = \{u, v\} \) and \(\tau(X) = \tau(\emptyset) = \tau([u]) = 1 \), \(\tau([u]) = 0 \) in \(\mathcal{F}_\mathcal{S}(X, \tau) \).

Definition 8

(i) \(\mathcal{F}_\mathcal{S}(\Phi) \) (i.e., \(\mathcal{F}_\mathcal{S} \subset \mathcal{F}(2^X) \)) is called the set of all fuzzifying \(b - \theta \)-closed sets if

\[\Phi \in \mathcal{F}_\mathcal{S} = \Phi = \mathcal{C}_b(\Phi), \]

i.e.,

\[\mathcal{F}_\mathcal{S}(\Phi) = \inf_{x \in \Phi} (1 - \mathcal{C}_b(\Phi)(x)). \]

(ii) \(\tau_\mathcal{S}(\Phi) \) (i.e., \(\tau_\mathcal{S} \subset \mathcal{F}(2^X) \)) is called the set of all fuzzifying \(b - \theta \)-open sets if \(\Phi \in \tau_\mathcal{S} = \Phi^c \in \mathcal{F}_\mathcal{S} \), where \(\Phi^c \) is the complement of \(\Phi \).

By Definition 8, we can conclude \(\mathcal{A}^{bd}_x(\Phi) = \sup_{x \in \Psi \subset \Phi} \tau_\mathcal{S}(\Psi) \).

Definition 9. \(\mathcal{C}_b(\Phi)(\Phi \in 2^X) \) is called a fuzzifying \(b - \theta \)-interior of \(\Phi \) if

\[\mathcal{C}_b(\Phi)(\Phi \in 2^X) \]

Case 2: if \([\Phi \subset \Psi] = 1 \), then \(\mathcal{C}_b(\Phi)(\Phi) = \mathcal{C}_b(\Psi)(\Phi) \).

(vi) From Theorems 5.2 (3) and 5.3 (2) in [12], we have

\[\begin{align*}
\mathcal{F}(\Phi)(x) = \inf_{y \in \Phi} \min(1, 1 - \mathcal{N}_x(\Phi) + \sup_{y \in \Psi} \mathcal{F}(\Psi)(y)) = \inf_{y \in \Phi} \min(1, 1 - \mathcal{N}_x(\Phi) + \sup_{y \in \Psi} \mathcal{F}(\Psi)(y)) = \mathcal{C}_b(\Phi)(\Phi).
\end{align*} \]

(vii) It is easy to get \(\mathcal{C}_b(\Phi) \subset \mathcal{C}_b(\Psi) \subset \mathcal{C}_b(\Phi(\Psi)) \). Conversely, for every \(x \in X \),

\[x \in \mathcal{C}_b(\Phi) = \Phi \in \mathcal{A}^{bd}_x, \]
The following two relations are holding in $\mathcal{F}_T \mathcal{S}(X, r)$:

(i) $\forall \Phi \in \tau_{bd}(X) \Rightarrow \Phi \equiv \mathcal{F}_{bd}(\Phi)$

(ii) $\forall \Phi \in \mathcal{F}_{bd}(X) \Rightarrow \Phi \equiv \mathcal{F}_{bd}(\Phi)$

Proof

(i) $\Phi \in \tau_{bd} = [\Phi \subseteq \mathcal{F}_{bd}(\Phi)]$

(ii) Similar to (i).
(iii) By Theorem 4 (v), we obtain
\[
\tau_{\phi} \left(\bigcup_{\lambda \in \Lambda} \phi_\lambda \right) = \inf_{x \in \bigcup_{\lambda \in \Lambda} \phi_\lambda} \mathcal{F}_{t_\phi} \left(\bigcup_{\lambda \in \Lambda} \phi_\lambda \right)(x)
\]
\[
= \inf_{\lambda \in \Lambda} \inf_{x \in \phi_\lambda} \mathcal{F}_{t_\phi} (\phi_\lambda)(x)
\geq \inf_{\lambda \in \Lambda} \inf_{x \in \phi_\lambda} \mathcal{F}_{t_\phi} (\phi_\lambda)(x) = \inf_{\lambda \in \Lambda} \tau_{\phi}(\phi_\lambda).
\]

This completes the proof. \(\square\)

Theorem 7. The following two relations are holding in \(\mathcal{F} \mathcal{T} \delta (X, r)\):

(i) \(\forall \phi \in \mathcal{T}_\phi \rightarrow \forall X (x \in \phi \rightarrow \exists \psi (\psi \in \mathcal{T}_\phi \land x \in \psi \in \Phi))\)

(ii) \(\forall \phi \in \mathcal{T}_\phi \rightarrow \forall X (x \in \phi \rightarrow \exists \psi (\psi \in \mathcal{M}^\phi_x \land x \in \psi \in \Phi))\)

Proof

(i) \(\forall x (x \in \phi \rightarrow \exists \psi (\psi \in \mathcal{T}_\phi \land x \in \psi \in \Phi))\) = \(\inf_{\psi \in \Phi} \sup_{x \in \psi} \tau_{t_\phi}(\psi)\). Firstly, we obtain \(\inf_{\psi \in \Phi} \sup_{x \in \psi} \tau_{t_\phi}(\psi) \geq \tau_{t_\phi}(\phi)\). Further, assume that \(\psi_x [\psi : x \in \Phi] \neq [\psi : x \in \Phi]\). Hence, \(\sup_{x \in \psi} \tau_{t_\phi}(f(x)) \geq \tau_{t_\phi}(f(x))\) and \(\tau_{t_\phi}(\phi) \geq \sup_{f \in \prod_{x \in \psi} \inf_{x \in \psi} \tau_{t_\phi}(f(x)) = \inf_{\psi \in \Phi} \sup_{x \in \psi} \tau_{t_\phi}(\psi)\).

(ii) By (i) we obtain
\[
\left[\forall X (x \in \phi \rightarrow \exists \psi (\psi \in \mathcal{M}^\phi_x \land x \in \psi \in \Phi)) \right] = \inf_{\psi \in \Phi} \sup_{x \in \psi} \mathcal{M}^\phi_x (\psi)
\]
\[
= \inf_{x \in \Phi} \sup_{\psi \in \Phi} \mathcal{M}^\phi_x (\psi) = \inf_{x \in \Phi} \tau_{t_\phi}(\Omega) = \tau_{t_\phi}(\Omega)
\]
\[\square\]

Theorem 8. The following two relations are holding in \(\mathcal{F} \mathcal{T} \delta (X, r)\):

(i) \(\forall \phi \in \mathcal{T}_\phi \rightarrow \mathcal{T}_\phi \subseteq \mathcal{T}_\phi\)

(ii) \(\forall \phi \in \mathcal{T}_\phi \rightarrow \mathcal{F}_{t_\phi} \subseteq \mathcal{F}_{t_\phi}\)

Proof

(i) By Corollary 4.1 in [12] and Theorem 3 (vi), we obtain \(\forall \phi \in \mathcal{T}_\phi \rightarrow \mathcal{T}_\phi \subseteq \mathcal{T}_\phi\).

(ii) Follows from (i) above. \(\square\)

Next, we will generalize Theorem 3.8 (a) in [2] in \(\mathcal{F} \mathcal{T} \delta (X, r)\) by following the following theorem.

Theorem 9. The following relation is holding in \(\mathcal{F} \mathcal{T} \delta (X, r)\):

\(\forall \phi \in \mathcal{T}_\phi \rightarrow \mathcal{T}_\phi \subseteq \mathcal{T}_\phi\)

Proof. Firstly, we prove that \(\forall \phi \in \mathcal{T}_\phi \rightarrow \mathcal{T}_\phi \subseteq \mathcal{T}_\phi\).

\[\square\]

\[
\tau_\phi (\phi) \wedge \left[(\phi \cap \mathcal{O}) \equiv \mathcal{O} \right] = \max \left(0, \inf_{x \in \phi} \mathcal{M}^\phi_x (\phi) + \sup_{y \in \phi} \mathcal{O}_\phi (\phi) \right) - 1
\]
\[
= \max \left(0, \sup_{y \in \phi} \mathcal{O}_\phi (\phi) - 1 \right)
\]
\[
\leq \max \left(0, \sup_{x \in \phi} \mathcal{O}_\phi (\phi) \right)
\]
\[
= \max \left(0, \sup_{x \in \phi} \left(\mathcal{O}_\phi (\phi) \right) \right)
\]
\[
= \max \left(0, \sup_{x \in \phi} \left(\mathcal{O}_\phi (\phi) \right) \right)
\]
\[
\square\]

Case 1: if \(x \in \Psi\), then...
\[
\tau_\gamma(\Phi \Delta_1[\Phi \cap \overline{\Theta}_\gamma(\Psi) \equiv \emptyset]) = \max \left(0, \sup_{x \in \Phi} \{\Psi(x) - 1 + \mathcal{M}_x^\gamma(\Phi)\}\right)
\]
\[
\leq \sup_{x \in \Phi} \mathcal{M}_x^\gamma(\Phi)(x) \leq \sup_{x \in \Phi} \Phi(x) \leq \sup_{x \in \Phi} (\Phi(x) \land \Psi(x)) = ([\Phi \cap \Psi \equiv \emptyset]).
\]

(28)

Case 2: if \(x \notin \Psi\), then

\[
\tau_\gamma(\Phi \Delta_1[\Phi \cap \overline{\Theta}_\gamma(\Psi) \equiv \emptyset]) = \max \left(0, \sup_{x \in \Phi} \left(D_\gamma(\Psi)(x) - 1 + \mathcal{M}_x^\gamma(\Phi)\right)\right)
\]
\[
= \max \left(0, \sup_{x \in \Phi} \left(\inf_{\Omega \in 2^\mathcal{X}} \min \left(1, 1 - \mathcal{M}_x^\gamma(\Omega) + \sup_{y \in \Omega} (\Omega - \{x\})(y) - 1 + \mathcal{M}_x^\gamma(\Phi)\right)\right)\right)
\]
\[
\leq \max \left(0, \sup_{x \in \Phi} \left(1 - \mathcal{M}_x^\gamma(\Omega) + \sup_{y \in \Phi} (\Psi - \{x\})(y) - 1 + \mathcal{M}_x^\gamma(\Phi)\right)\right)
\]
\[
= \sup_{y \in \Phi} (\Psi - \{x\})(y) = \sup_{y \in \Phi} \Psi(y) = [(\Phi \cap \Psi \equiv \emptyset)].
\]

Consequently, \([\Phi \cap \overline{\Theta}_\gamma(\Psi) \equiv \emptyset] \longrightarrow (\Phi \cap \Psi \equiv \emptyset)] \geq [\tau_\gamma(\Phi)].

Thus,

\[
\boxed{\left[\Theta_{bd}(\Phi) \equiv \overline{\Theta}_\gamma(\Phi)\right] = \left[\Theta_{bd}(\Phi) \equiv \overline{\Theta}_\gamma(\Phi)\right] \land \left[\overline{\Theta}_\gamma(\Phi) \equiv \Theta_{bd}(\Phi)\right]
\]
\[
\geq (\forall \Psi)(\exists \mathcal{M}_x^\gamma \longrightarrow (\Phi \cap \overline{\Theta}_\gamma(\Psi) \equiv \emptyset) \longrightarrow (\Psi \in \mathcal{M}_x^\gamma \longrightarrow (\Phi \cap \Psi \equiv \emptyset)))
\]
\[
= (\forall \Psi)(\exists \mathcal{M}_x^\gamma \longrightarrow (\Phi \cap \overline{\Theta}_\gamma(\Psi) \equiv \emptyset) \longrightarrow (\Phi \cap \Psi \equiv \emptyset)) \geq \inf_{\mathcal{M}_x^\gamma} \tau_\gamma(\Phi) = \tau_\gamma(\Phi).
\]

(30)

This completes the proof.

\[\square\]

\textbf{Theorem 10.} The following relation is holding in \(\mathcal{T} \mathcal{S}(X, \tau)\):

\[\vdash \Phi \in \mathcal{T}_{bd} \longrightarrow (\Theta_{bd}(\Phi) \equiv \overline{\Theta}_\gamma(\Phi)).\]

(32)

Proof.

\[
\boxed{\left[\Theta_{bd}(\Phi) \equiv \overline{\Theta}_\gamma(\Phi)\right] = \min_{x \in \Phi} (1 - \Theta_{bd}(\Phi)(x) + \overline{\Theta}_\gamma(\Phi)(x)) = \inf_{x \in \Phi} \min_{x \in \Phi} (1 - \Theta_{bd}(\Phi)(x) + \mathcal{M}_x^\gamma(\Phi^\gamma))
\]
\[
= \inf_{x \in \Phi} \min_{x \in \Phi} (1 - \Theta_{bd}(\Phi)(x) + \mathcal{M}_x^\gamma(\Phi^\gamma))
\]
\[
\geq \inf_{x \in \Phi} \min_{x \in \Phi} (1 - \Theta_{bd}(\Phi)(x)) = \inf_{x \in \Phi} \min_{x \in \Phi} (1 - \Theta_{bd}(\Phi)(x)) = [\Phi \in \Theta_{bd}].
\]

(33)

\[\square\]

\section*{3. Fuzzifying \(b - \theta\)-Derived Sets and Fuzzifying \(b - \theta\)-Boundary Sets}

\textit{Definition 10.} \(\mathcal{D}_{bd}(\Phi)(\Phi \in 2^X)\) is called a fuzzifying \(b - \theta\)-derived set of \(\Phi\) if

\[x \in \mathcal{D}_{bd}(\Phi)
\]
\[
= (\forall \Psi)(\exists \mathcal{M}_x^\gamma \longrightarrow \Psi \cap \Phi(x) \equiv \emptyset),
\]

i.e.,
\[D_{\text{bd}}(\Phi)(x) = \inf_{\Phi \in \mathcal{P}(\{1,\ldots,n\})} \left(1 - \mathcal{N}_{\mathcal{A}}^{\text{bd}}(\Phi) \right). \] (35)

Theorem 11. The following two relations are holding in \(\mathcal{F} \mathcal{S}^2(X, \tau) \):

(i) \(\models D_{\text{bd}}(\Phi)(x) = 1 - \mathcal{N}_{\mathcal{A}}^{\text{bd}}(\Phi) \cup \{x\} \)

(ii) \(\models D_{\text{bd}}(\emptyset) \equiv \emptyset \)

(iii) \(\models \Phi \subseteq \Psi \quad \rightarrow \quad D_{\text{bd}}(\Phi) \subseteq D_{\text{bd}}(\Psi) \)

Proof.

(i) \(D_{\text{bd}}(\Phi)(x) = \inf_{\Psi \subseteq \mathcal{P}(\{1,\ldots,n\})} \left(1 - \mathcal{N}_{\mathcal{A}}^{\text{bd}}(\Phi) \cup \{x\} \right) = 1 - \sup_{\Psi \subseteq \mathcal{P}(\{1,\ldots,n\})} \mathcal{N}_{\mathcal{A}}^{\text{bd}}(\Phi) \subseteq \{x\} = 1 - \mathcal{N}_{\mathcal{A}}^{\text{bd}}(\Phi) \cup \{x\} = D_{\text{bd}}(\Phi)(x) \).

(ii) By (i) above, we obtain \(D_{\text{bd}}(\emptyset)(x) = 1 - \mathcal{N}_{\mathcal{A}}^{\text{bd}}(\emptyset) \cup \{x\} = 1 - \mathcal{N}_{\mathcal{A}}^{\text{bd}}(X) = 1 - 0 = 0 \) (i.e., \(\mathcal{N}_{\mathcal{A}}^{\text{bd}}(X) \) is normal).

(iii) Case 1: \(\Phi \subseteq \Psi \), then \(D_{\text{bd}}(\Phi) \subseteq D_{\text{bd}}(\Psi) \).

Case 2: if \(\Phi \subseteq \Psi \), then \(D_{\text{bd}}(\Phi) \subseteq D_{\text{bd}}(\Psi) \).

\(\square \)

Theorem 12. The following relation is holding in \(\mathcal{F} \mathcal{S}^2(X, \tau) \):

\(\models \Phi \in D_{\text{bd}} \quad \rightarrow \quad \Phi \subseteq \Phi. \) (36)

Proof. By Theorem 7, we obtain

\[[D_{\text{bd}}(\Phi)] \subseteq [\Psi] = \inf_{\Phi \in \mathcal{P}(\{1,\ldots,n\})} \left(1 - D_{\text{bd}}(\Phi)(x) + \{x \in \Phi\} \right) \]

\[= \inf_{\Phi \in \mathcal{P}(\{1,\ldots,n\})} \left(1 - \sup_{\Psi \subseteq \Phi} D_{\text{bd}}(\Phi) \right) \]

\[= \inf_{\Phi \in \mathcal{P}(\{1,\ldots,n\})} \left(1 - \left(1 - \mathcal{N}_{\mathcal{A}}^{\text{bd}}(\Phi) \cup \{x\} \right) \right) \]

\[= \inf_{\Phi \in \mathcal{P}(\{1,\ldots,n\})} \left(1 - \mathcal{N}_{\mathcal{A}}^{\text{bd}}(\Phi) \cup \{x\} \right) \]

\[= \inf_{\Phi \in \mathcal{P}(\{1,\ldots,n\})} \left(\mathcal{N}_{\mathcal{A}}^{\text{bd}}(\Phi) \cup \{x\} \right) \]

\[= \inf_{x \in \Phi} \sup_{\Psi \subseteq \Phi} \tau_{\text{bd}}(\Psi) = \tau_{\text{bd}}(\Phi) = [\Phi \in D_{\text{bd}}]. \] (37)

Theorem 13. The following two relations are holding in \(\mathcal{F} \mathcal{S}^2(X, \tau) \):

(i) \(\models D_{\text{bd}}(\Phi) \cup D_{\text{bd}}(\Psi) = D_{\text{bd}}(\Phi \cup \Psi) \)

(ii) \(\models x \in D_{\text{bd}}(\Phi) \quad \rightarrow \quad (x \in \Phi) \cup (x \in (D_{\text{bd}}(\Phi)^c)^c) \)

Proof.

(i) By Theorem 11 (i) and Theorem 1 (iii), we obtain

\(\models D_{\text{bd}}(\Phi)(x) = 1 - \mathcal{N}_{\mathcal{A}}^{\text{bd}}(\Phi \cup \{x\}) \).

\(\models D_{\text{bd}}(\Phi \cup \Psi)(x) = 1 - \mathcal{N}_{\mathcal{A}}^{\text{bd}}(\Phi \cup \Psi \cup \{x\}) \).

\(\models D_{\text{bd}}(\Phi)(x) \cup D_{\text{bd}}(\Psi)(x) = 1 - \mathcal{N}_{\mathcal{A}}^{\text{bd}}(\Phi \cup \Psi) \).

\(\models D_{\text{bd}}(\Phi)(x) \cup D_{\text{bd}}(\Psi)(x) = D_{\text{bd}}(\Phi \cup \Psi)(x). \)

\(\square \)

(ii) Case 1: if \(x \notin \Phi \), then by Theorem 1 (i), \(\mathcal{N}_{\mathcal{A}}^{\text{bd}}(\Phi) = 0 \). Hence, \([x \in D_{\text{bd}}(\Phi)] = 0 \) if \(x \notin \Phi \).

Case 2: if \(x \in \Phi \), then \([x \in D_{\text{bd}}(\Phi)] = 1 \) if \(x \in \Phi \).

\(\square \)

Theorem 14. The following two relations are holding in \(\mathcal{F} \mathcal{S}^2(X, \tau) \):

(i) \(\models \overline{D}_{\text{bd}}(\Phi) \equiv \Phi \cup \overline{D}_{\text{bd}}(\Phi) \)

(ii) \(\models \Phi \in \overline{D}_{\text{bd}}(\Phi) \quad \rightarrow \quad \Phi \in \overline{\Phi} \)

Proof.

(i) Case 1: if \(x \in \Phi \), \(\Phi \cup \overline{D}_{\text{bd}}(\Phi) \cup \{x\} \)

Case 2: if \(x \notin \Phi \), then \(\overline{D}_{\text{bd}}(\Phi)(x) = 0 \) if \(x \notin \Phi \).

\(\square \)

Definition 11. \(\overline{D}_{\text{bd}}(\Phi) (\Phi \in 2^X) \) is called a fuzzifying \(b - \delta \)-boundary set of \(\Phi \) if

\[x \in \overline{D}_{\text{bd}}(\Phi) = x \in \overline{D}_{\text{bd}}(\Phi) \subseteq \overline{D}_{\text{bd}}(\Phi), \] (39)
\[\mathcal{B}_{\theta}^{(\Phi)}(x) = \min \left(\mathcal{B}_{\theta}^{(\Phi)}(x), \mathcal{B}_{\theta}^{(\Phi^c)}(x) \right). \] (40)

Theorem 15. The following relation is holding in \(\mathcal{F}\mathcal{T}\mathcal{S}(X, \tau) \):

\[\forall x \in \mathcal{B}_{\theta}^{(\Phi)}(x) \rightarrow (\forall \psi \in \mathcal{A}_x^{\theta} (x) \rightarrow (\psi \cap \mathcal{B}_{\theta}^{(\Phi^c)}(x) \cap (\psi \cap \mathcal{B}_{\theta}^{(\Phi^c)}(x))) \]. (41)

Proof. Similar to Lemma 2.1 in [13]. \(\square \)

Theorem 16. The following two relations are holding in \(\mathcal{F}\mathcal{T}\mathcal{S}(X, \tau) \):

(i) \(\forall \mathcal{B}_{\theta}^{(\Phi)}(x) = \Phi \cup \mathcal{B}_{\theta}^{(\Phi)}(x) \) and so \(\forall \mathcal{B}_{\theta}^{(\Phi^c)}(x) \)

(ii) \(\forall \mathcal{B}_{\theta}^{(\Phi^c)}(x) = \Phi \cap \mathcal{B}_{\theta}^{(\Phi^c)}(x) \) and so \(\forall \mathcal{B}_{\theta}^{(\Phi^c)}(x) \)

Proof.

(i) Case 1: if \(x \in \Phi \), then \(\mathcal{B}_{\theta}^{(\Phi^c)}(x) = \Phi \cup \mathcal{B}_{\theta}^{(\Phi^c)}(x) = 1 \) (by Theorem 3 (iii)). Case 2: if \(x \notin \Phi \), then \(\mathcal{B}_{\theta}^{(\Phi^c)}(x) = \Phi \cup \mathcal{B}_{\theta}^{(\Phi^c)}(x) = \Phi \cap \mathcal{B}_{\theta}^{(\Phi^c)}(x) \).

By Theorem 4 (i) and (ii) above, we get \(\mathcal{B}_{\theta}^{(\Phi^c)}(x) = \Phi \cup \mathcal{B}_{\theta}^{(\Phi^c)}(x) = \Phi \cap \mathcal{B}_{\theta}^{(\Phi^c)}(x) \).

Also, from Theorem 5 (i), we obtain \(\forall \mathcal{B}_{\theta}^{(\Phi^c)}(x) \), \(\mathcal{B}_{\theta}^{(\Phi^c)}(x) = \mathcal{B}_{\theta}^{(\Phi^c)}(x) \).

\[\mathcal{B}_{\theta}^{(\Phi^c)}(x) \triangleq \mathcal{B}_{\theta}^{(\Phi^c)}(x) \]

\(\square \)

4. **Fuzzifying Strongly \(b - \theta \)-Continuous Mapping, Fuzzifying Strongly \(b - \theta \)-Irresolute Mapping, and Fuzzifying Weakly \(b - \theta \)-Irresolute Mapping**

In the following section, we define a fuzzifying strongly \(b - \theta \)-continuous mapping, fuzzifying strongly \(b - \theta \)-irresolute mapping, and fuzzifying weakly \(b - \theta \)-irresolute mapping between \(\mathcal{F}\mathcal{T}\mathcal{S}(X, \tau) \) and \(\mathcal{F}\mathcal{T}\mathcal{S}(Y, \psi) \).

Definition 12. \(SC_{\theta}^{b, \psi}(\mathcal{A}) \) (i.e., \(SC_{\theta}^{b, \psi}(\mathcal{F})(X^Y) \)) is called fuzzifying strongly \(b - \theta \)-continuous mappings between \(\mathcal{F}\mathcal{T}\mathcal{S}(X, \tau) \) and \(\mathcal{F}\mathcal{T}\mathcal{S}(Y, \psi) \) if

\[SC_{\theta}^{b, \psi}(\mathcal{A}) := (\mathcal{V}(\mathcal{O})(x \in \mathcal{O} \rightarrow \psi^{-1}(O) \in \mathcal{B}_{\theta}^{(\Phi)})). \] (42)

i.e.,

\[SC_{\theta}^{b, \psi}(\mathcal{A}) := \inf_{O \in \mathcal{O}} \min \{1, 1 - \psi(O) + \mathcal{B}_{\theta}^{(\Phi^c)}(\psi^{-1}(O))\}. \] (43)

Theorem 17. \(\forall \psi \in SC_{\theta}^{b, \psi} \rightarrow \psi \in \zeta_k, k = 1, \ldots, 6. \)

Proof.

(i) We show that \(\forall \psi \in SC_{\theta}^{b, \psi} \rightarrow \psi \in \zeta_1. \)

\[\psi \in \zeta_1 \triangleq \inf_{x \in \mathcal{O}} \min \{1, 1 - \mathcal{B}_{\theta}^{(\Phi^c)}(\Phi) + \mathcal{B}_{\theta}^{(\Phi^c)}(\psi^{-1}(\Psi))\} \]

\[= \inf_{x \in \mathcal{O}} \min \{1, 1 - \psi(Y - \Phi) + \mathcal{B}_{\theta}^{(\Phi^c)}(\Phi)\} \]

\[= \inf_{x \in \mathcal{O}} \min \{1, 1 - \psi(Y - \Phi) + \mathcal{B}_{\theta}^{(\Phi^c)}(\Phi)\} \]

\[= \inf_{x \in \mathcal{O}} \min \{1, 1 - \psi(O) + \mathcal{B}_{\theta}^{(\Phi^c)}(\psi^{-1}(O))\} \]

\[\triangleq [SC_{\theta}^{b, \psi}(\mathcal{A})]. \] (44)

(ii) We prove that \(\forall \psi \in SC_{\theta}^{b, \psi} \rightarrow \psi \in \zeta_2. \) Firstly, we show that \(\psi \in \zeta_2 \triangleq \psi \in SC_{\theta}^{b, \psi}. \) If \(\psi \leq \psi \in \mathcal{A}(\psi^{-1}(O)) \), then \(\min \{1, 1 - \psi(O) + \mathcal{B}_{\theta}^{(\Phi^c)}(\psi^{-1}(O))\} \) = \(\geq \psi \in SC_{\theta}^{b, \psi}. \) Assume that \(\psi \in \mathcal{A}(\psi^{-1}(O)) \).

Thus, if \(\psi \in \Phi \subseteq \mathcal{O} \), then \(x \in \psi^{-1}(\Phi) \subseteq \psi^{-1}(O) \).

Hence,

\[\mathcal{A}^{-1}(\psi^{-1}(O)) - \psi^{-1}(O) \triangleq \sup_{x \in \mathcal{O}} \psi(\Phi) \leq \sup_{x \in \mathcal{O}} \psi^{-1}(O) \]

\[\sup_{x \in \mathcal{O}} \psi(\Phi) \leq \sup_{x \in \mathcal{O}} \psi^{-1}(O) \leq \sup_{x \in \mathcal{O}} \psi(\Phi - \tau_{\theta}(\psi^{-1}(O))). \] (45)
Consequently,
\[1 - \mathcal{N}_{\psi(x)}(O) + \mathcal{M}_{\chi}^{\theta}(\psi^{-1}(O)) \geq \sup_{x \in \Phi \in O} (1 - \phi(\Phi) + \tau_{\phi}(\psi^{-1}(\Phi))). \]
Thus,

\[
\min\left(1, 1 - \mathcal{N}_{\psi(x)}(O) + \mathcal{M}_{\chi}^{\theta}(\psi^{-1}(O))\right) \geq \inf_{\psi(x) \in \Phi \in O} \left(1 - \phi(\Phi) + \tau_{\phi}(\psi^{-1}(\Phi))\right)
\]

\[
\geq \inf_{\Phi \in O} \min\left(1 - \phi(\Phi) + \tau_{\phi}(\psi^{-1}(\Phi))\right) = [\psi \in \mathcal{S}_{\psi}^{\phi}].
\]

Therefore,
\[
\inf_{\psi(x) \in \Phi \in \mathcal{O}^{2^{\mathbb{R}}}} \min (1 - \phi(O) + \tau_{\phi}(\psi^{-1}(O))) \geq [\psi \in \mathcal{S}_{\psi}^{\phi}].
\]

Secondly, we show that $[\psi \in \mathcal{S}_{\psi}^{\phi}] \geq [\psi \in \alpha_2]$. From Corollary 4.1 in [12] and Theorem 4 (iv), we have

\[
\left[\psi \in \mathcal{S}_{\psi}^{\phi}\right] = \inf_{\Phi \in O^{2^{\mathbb{R}}}} \min\left(1, 1 - \phi(O) + \tau_{\phi}(\psi^{-1}(O))\right)
\]

\[
\geq \inf_{O^{2^{\mathbb{R}}}} \min\left(1, 1 - \inf_{\psi(x) \in \Phi \in O} \mathcal{N}_{\psi(x)}(O) + \inf_{x \in \psi^{-1}(O)} \mathcal{M}_{\chi}^{\theta}(\psi^{-1}(O))\right)
\]

\[
\geq \inf_{O^{2^{\mathbb{R}}}} \min\left(1, 1 - \inf_{x \in \psi^{-1}(O)} \mathcal{N}_{\psi(x)}(O) + \inf_{x \in \psi^{-1}(O)} \mathcal{M}_{\chi}^{\theta}(\psi^{-1}(O))\right)
\]

\[
\geq \inf_{x \in \mathcal{O}^{2^{\mathbb{R}}}} \inf \min\left(1 - \mathcal{N}_{\psi(x)}(O) + \mathcal{M}_{\chi}^{\theta}(\psi^{-1}(O))\right)
\]

\[
= [\psi \in \alpha_2].
\]

(iii) We show that $\triangledown x \in \zeta_2 \downarrow \psi \in \zeta_3$. By Theorem 1 (ii), we obtain

\[
\sup_{\Phi \in \mathcal{O}^{2^{\mathbb{R}}}} \mathcal{M}_{\chi}^{\theta}(P) = \sup_{\Phi \in \mathcal{O}^{2^{\mathbb{R}}}} \mathcal{M}_{\chi}^{\theta}(\psi^{-1}(O)).
\]

Thus,

\[
\left[\psi \in \alpha_3\right] = \inf_{x \in \mathcal{O}^{2^{\mathbb{R}}}} \min\left(1 - \mathcal{N}_{\psi(x)}(O) + \mathcal{M}_{\chi}^{\theta}(P)\right)
\]

\[
= \inf_{x \in \mathcal{O}^{2^{\mathbb{R}}}} \min\left(1 - \mathcal{N}_{\psi(x)}(O) + \mathcal{M}_{\chi}^{\theta}(\psi^{-1}(O))\right)
\]

\[
= [\psi \in \zeta_2].
\]

(iv) We show that $\triangledown x \in \zeta_3 \downarrow \psi \in \zeta_2$. First, we prove that $[\psi \in \zeta_4] \leq [\psi \in \zeta_5]$. For every $\psi \in \mathcal{O}^{2^{\mathbb{R}}}$, we have that $[\psi^{-1}(\psi(\mathcal{O}^{2^{\mathbb{R}}}) \cup \psi^{-1}(\mathcal{O}^{2^{\mathbb{R}}})) \cup \mathcal{O}^{2^{\mathbb{R}}}(\psi^{-1}(\mathcal{O}^{2^{\mathbb{R}}}))] = 1$,

\[
\left[\mathcal{O}^{2^{\mathbb{R}}}(\psi^{-1}(\mathcal{O}^{2^{\mathbb{R}}})) \cup \mathcal{O}^{2^{\mathbb{R}}}(\psi^{-1}(\mathcal{O}^{2^{\mathbb{R}}})) \cup \mathcal{O}^{2^{\mathbb{R}}}(\psi^{-1}(\mathcal{O}^{2^{\mathbb{R}}}))\right] = 1.
\]

By Lemma 1.2 (2) in [14], we obtain

\[
\left[\mathcal{O}^{2^{\mathbb{R}}}(\psi^{-1}(\mathcal{O}^{2^{\mathbb{R}}})) \cup \mathcal{O}^{2^{\mathbb{R}}}(\psi^{-1}(\mathcal{O}^{2^{\mathbb{R}}})) \cup \mathcal{O}^{2^{\mathbb{R}}}(\psi^{-1}(\mathcal{O}^{2^{\mathbb{R}}}))\right] = 1.
\]

Thus,

\[
\left[\mathcal{O}^{2^{\mathbb{R}}}(\psi^{-1}(\mathcal{O}^{2^{\mathbb{R}}})) \cup \mathcal{O}^{2^{\mathbb{R}}}(\psi^{-1}(\mathcal{O}^{2^{\mathbb{R}}})) \cup \mathcal{O}^{2^{\mathbb{R}}}(\psi^{-1}(\mathcal{O}^{2^{\mathbb{R}}}))\right] = 1.
\]
Thus,

\[
\begin{align*}
\psi \in \zeta_5 & = \inf_{\psi \in \mathbb{Y}} \left[\mathcal{B}(\psi^{-1}(\Psi)) \subseteq \mathcal{Y}(\Psi) \right] \\
& \geq \inf_{\psi \in \mathbb{Y}} \left[\psi(\mathcal{B}(\psi^{-1}(\Psi))) \subseteq \mathcal{Y}(\psi^{-1}(\Psi)) \right] \\
& \geq \inf_{\psi \in \mathbb{Y}} \left[\psi(\mathcal{B}(\phi)) \subseteq \mathcal{Y}(\phi) \right] = [\psi \in \zeta_4].
\end{align*}
\]

Secondly, \(\forall \phi \in \mathbb{X},\) there exists \(\psi \in \mathbb{Y}\) s.t. \(\psi(\phi) = \Psi \text{ and } \psi^{-1}(\Psi) \supseteq \Phi.\) By Lemma 1.2 (1) in [14], we obtain

\[
\begin{align*}
\psi \in \alpha_4 & = \inf_{\psi \in \mathbb{Y}} \left[\psi(\mathcal{B}(\phi)) \subseteq \mathcal{Y}(\phi) \right] \\
& \geq \inf_{\psi \in \mathbb{Y}} \left[\psi(\mathcal{B}(\phi)) \subseteq \mathcal{Y}(\psi(\phi)) \right] \\
& \geq \inf_{\psi \in \mathbb{Y}} \left[\psi(\mathcal{B}(\psi^{-1}(\Psi))) \subseteq \mathcal{Y}(\psi^{-1}(\Psi)) \right] = [\psi \in \zeta_5].
\end{align*}
\]

(v) We show that \(\forall \psi \in \zeta_2 \Rightarrow \psi \in \zeta_5.\) Thus,

\[
\begin{align*}
\psi \in \zeta_5 & = \inf_{\psi \in \mathbb{Y}} \left[\mathcal{B}(\psi^{-1}(\Psi)) \subseteq \mathcal{Y}(\Psi) \right] \\
& = \inf_{\psi \in \mathbb{Y}} \inf_{x \in \mathbb{X}} \min \left(1, 1 - \mathcal{F}(\psi(x)) \right) \\
& = \inf_{\psi \in \mathbb{Y}} \inf_{x \in \mathbb{X}} \min \left(1, 1 - \mathcal{F}(\psi(x)) + \mathcal{A}_x(\psi^{-1}(\Psi)) \right) \\
& = \inf_{\psi \in \mathbb{Y}} \inf_{x \in \mathbb{X}} \min \left(1, 1 - \mathcal{F}(\psi(x)) + \mathcal{A}_x(\psi^{-1}(\Psi)) \right) \\
& = [\psi \in \zeta_2].
\end{align*}
\]

(vi) We prove that \(\forall \psi \in \zeta_6 \Rightarrow \psi \in \zeta_2.\) Thus,

\[
\begin{align*}
\psi \in \zeta_6 & = \inf_{\phi \in \mathbb{Y}} \min \left(1, 1 - \mathcal{F}(\phi) + \mathcal{A}_x(\psi^{-1}(\phi)) \right) \\
& = \inf_{\phi \in \mathbb{Y}} \min \left(1, 1 - \mathcal{F}(\phi) + \mathcal{A}_x(\psi^{-1}(\phi)) \right) \\
& = [\psi \in \zeta_2].
\end{align*}
\]

This completes the proof. \(\square\)
Remark 1. The following relation $∀ψ \in SC_{ibd} \implies ψ \in C_{op}$ is holding in crisp setting, while in $\mathcal{FTD}(X, r)$ does not hold by the next example.

Example 1. If we consider $X = [u, v, w]$ and $τ(X) = τ(∅) = τ(\{u, v\}) = 1, τ(\{v\}) = τ(\{u, v, w\}) = 1/6$ in $\mathcal{FTD}(X, r)$ and defined the identity mapping between $\mathcal{FTD}(X, r)$ and $\mathcal{FTD}(X, φ)$ by

$$φ(Φ) = \begin{cases} 1, & Φ ∈ \{X, ∅, [u, v]\}, \\ 0, & \text{otherwise} \end{cases} \quad (55)$$

Thus, $|SC_{ibd}^φ(ψ)| = 1 > (5/6) = |C_{op}(ψ)|$.

Definition 14. SL_{ibd} (i.e., $SL_{ibd} ∈ \mathcal{FT}(Y^X)$) (a unary fuzzy predicate) is called fuzzifying strongly $b - θ$-irresolute mapping between $\mathcal{FTD}(X, r)$ and $\mathcal{FTD}(Y, φ)$ if

$$SL_{ibd}^φ(ψ) = (∀O)(O \in φ_{ibd} ⟷ ψ^{-1}(O) ∈ τ_{ibd}), \quad (56)$$

i.e.,

$$[SL_{ibd}^φ(ψ)] = \inf_{O \in 2^Y} \min\{1, 1 - φ_1(ψ) + τ_{ibd}(ψ^{-1}(O))\}. \quad (57)$$

Definition 15. Assuming that $\mathcal{FTD}(X, r)$ and $\mathcal{FTD}(Y, φ)$ and $∀ψ ∈ Y^X$, we put

(i) $e_1(ψ) = (∀Y)(ψ ∈ Y^X \implies ψ^{-1}(ψ) ∈ Y^X)$, where Y^X is a family of fuzzifying Y-closed subset of Y and Y^X_{ibd} is a family of fuzzifying $b - θ$-closed subset of X

(ii) $e_2(ψ) = (∀x)(∀O)(O ∈ M^Y_{ibd}(ψ(x)) ⟷ ψ^{-1}(O) ∈ M^Y_{ibd}(x))$, where $M^Y_{ibd}(ψ(x))$ is a fuzzifying Y-neighborhood system of $ψ(x)$ of Y and $M^Y_{ibd}(x)$ is a fuzzifying $b - θ$-neighborhood system of x of X

(iii) $e_3(ψ) = (∀x)(∀O)(O ∈ M^Y_{ibd}(ψ(x)) ⟷ (∀P)((ψ(P) ∈ O) ∧ (P ∈ M^Y_{ibd}(ψ)))$

(iv) $e_4(ψ) = (∀O)(ψ(ψ^{-1}(O)) = Y)(ψ(ψ^{-1}(O)))$

(v) $e_5(ψ) = (∀ψ)(ψ(ψ^{-1}(ψ)) = ψ^{-1}(ψ(ψ)))$

(vi) $e_6(ψ) = (∀ψ)(ψ^{-1}(ψ) = ψ^{-1}(ψ))$

Theorem 18. $∀ψ ∈ SL_{ibd}^φ ⟷ ψ ∈ e_k, k = i, \ldots, 6$

Proof. Similar to Theorem 17.

Definition 16. $WT_{ibd}^φ$ (i.e., $WT_{ibd}^φ ∈ \mathcal{FT}(Y^X)$) (a unary fuzzy predicate) is called fuzzifying weakly $e - θ$-irresolute mapping between $\mathcal{FTD}(X, r)$ and $\mathcal{FTD}(Y, φ)$ if

$$WT_{ibd}^φ(ψ) = (∀O)(O ∈ φ_{ibd} ⟷ ψ^{-1}(O) ∈ τ_{ibd}), \quad (58)$$

i.e.,

$$[WT_{ibd}^φ(ψ)] = \inf_{O \in 2^Y} \min\{1, 1 - φ_{ibd}(ψ) + τ_{ibd}(ψ^{-1}(O))\}. \quad (59)$$

Definition 17. Assuming that $\mathcal{FTD}(X, r)$ and $\mathcal{FTD}(Y, φ)$ and $∀ψ ∈ Y^X$, we put

(i) $η_1(ψ) = (∀ψ)(ψ ∈ Y^X \implies ψ^{-1}(ψ) ∈ Y^X)$, where Y^X_{ibd} is a family of fuzzifying $b - θ$-closed subset of Y and Y^X_{ibd} is a family of fuzzifying $b - θ$-closed subset of X

(ii) $η_2(ψ) = (∀x)(∀O)(O ∈ M^Y_{ibd}(ψ(x)) ⟷ ψ^{-1}(O) ∈ M^Y_{ibd}(x))$, where $M^Y_{ibd}(ψ(x))$ is a fuzzifying $b - θ$-neighborhood system of $ψ(x)$ of Y and $M^Y_{ibd}(x)$ is a fuzzifying $b - θ$-neighborhood system of x of X

(iii) $η_3(ψ) = (∀x)(∀O)(O ∈ M^Y_{ibd}(ψ(x)) ⟷ (∀P)((ψ(P) ∈ O) ∧ (P ∈ M^Y_{ibd}(ψ)))$

(iv) $η_4(ψ) = (∀ψ)(ψ(ψ^{-1}(ψ)) = Y)(ψ(ψ^{-1}(ψ)))$

(v) $η_5(ψ) = (∀ψ)(ψ(ψ^{-1}(ψ)) = ψ^{-1}(ψ(ψ)))$

(vi) $η_6(ψ) = (∀ψ)(ψ^{-1}(ψ) = ψ^{-1}(ψ))$

Theorem 19. $∀ψ ∈ WT_{ibd}^φ ⟷ ψ ∈ e_k, k = i, \ldots, 6$. □

Proof. Similar to Theorem 17.

Next, we will generalize Theorem 5.8 (a) in [2] in $\mathcal{FTD}(X, r)$ by the following theorem.

Theorem 20. Assume that $\mathcal{FTD}(X, r)$, $\mathcal{FTD}(Y, φ)$, $\mathcal{FTD}(Z, θ)$, $ψ ∈ Y^X$, and $χ ∈ Z^Y$. The following two relations are holding:

(i) $SC_{ibd}^φ(ψ) ⟷ C_o(χ) ⟷ SC_{ibd}^φ(χψ)$

(ii) $C_o(ψ) ⟷ SC_{ibd}^φ(ψ) ⟷ C_o(χψ)$

Proof

(i) We will show that $[SC_{ibd}^φ(ψ)] ≤ [C_o(χ) ⟷ SC_{ibd}^φ(χψ)]$.

Case 1: if $[C_o(χ)] ≤ SC_{ibd}^φ(χψ)$, the results holds.

Case 2: if $[C_o(χ)] ≥ SC_{ibd}^φ(χψ)$, then

$$\begin{align*}
[C_o(χ)] - [SC_{ibd}^φ(χψ)] &= \inf_{P ∈ 2^Z} \min\{1, 1 - θ(P) + χ^{-1}(P))\} - \inf_{P ∈ 2^Z} \min\{1, 1 - θ(P) + τ_{ibd}(χψ^{-1}(P))\} \\
&≤ \sup_{P ∈ 2^Z} (φ(χ^{-1}(P)) - τ_{ibd}(χψ^{-1}(P))) \\
&= \sup_{P ∈ 2^Z} (φ(χ^{-1}(P)) - τ_{ibd}(ψ^{-1}(χ^{-1}(P)))) \\
&≤ \sup_{O ∈ 2^Y} (φ(O) - τ_{ibd}(ψ^{-1}(O))).
\end{align*} \quad (60)$$
Therefore, \([C_o(\chi) \rightarrow SC^{b\theta}_o(\chi \circ \psi)] = \min(1, 1 - [C_o(\chi)] + [SC^{b\theta}_o(\chi \circ \psi)]) \geq \inf_{O \in 2^\psi} \min(1, 1 - \varphi(O) + t_{E\psi}(\psi^{-1}(O))) = [SC^{b\theta}_o(\psi)].\]

\[\]

5. Conclusions

The present paper investigates topological notions when these are planted into the framework of Ying’s fuzzifying topological spaces (in the semantic method of continuous-valued logic). It continues various investigations into fuzzy topology in a legitimate way and extends some fundamental results in general topology to fuzzifying topology. An important virtue of our approach (in which we follow Ying) is that we define topological notions as fuzzy predicates (by formulae of Łukasiewicz fuzzy logic) and prove the validity of fuzzy implications (or equivalences). Unlike the (more widespread) style of defining notions in fuzzy mathematics as crisp predicates of fuzzy sets, fuzzy predicates of fuzzy sets provide a more genuine fuzzification; furthermore, the theorems in the form of valid fuzzy implications are more general than the corresponding theorems on crisp predicates of fuzzy sets.

The main contributions of the present paper are to define fuzzifying \(b - \theta\)-neighborhood system of a point, fuzzifying \(b - \theta\)-closure of a set, fuzzifying \(b - \theta\)-interior of a set, fuzzifying \(b - \theta\)-open sets, fuzzifying \(b - \theta\)-closed sets, fuzzifying \(b - \theta\)-derived sets, and fuzzifying \(b - \theta\)-boundary sets in the setting fuzzifying topological space. Also, we define the concepts of fuzzifying strongly \(b - \theta\)-continuous mapping, fuzzifying strongly \(b - \theta\)-irresolute mapping, and fuzzifying weakly \(b - \theta\)-irresolute mapping of fuzzifying topological spaces and obtain some basic properties of such spaces. There are some problems for further study:

1. One obvious problem is our results are derived in the Łukasiewicz continuous logic. It is possible to generalize them to a more general logic setting, like residuated lattice-valued logic considered in [13, 14].

2. What is the justification for fuzzifying strongly \(b - \theta\)-continuous functions in the setting of \((2, L)\) topologies?

3. Obviously, fuzzifying topological spaces in [15] form a fuzzy category. Perhaps, this will become a motivation for further study of the fuzzy category.

4. What is the justification for fuzzifying strongly \(b - \theta\)-continuous functions in \((M, L)\)-topologies, etc.?

Furthermore, the future possible research of the authors will be to give several new results (e.g., fuzzifying semi-\(\theta\)-open sets and fuzzifying \(a - \theta\)-open sets), which are similar to the results of fuzzifying \(b - \theta\)-open sets, fuzzifying semi-pre-\(\theta\)-open sets [16] and fuzzifying pre-\(\theta\)-open sets [17] based on fuzzifying topology.

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant no. 31660203).

References

[1] D. Andrijević, “On \(b\)-open sets,” Matematički Vesnik, vol. 48, pp. 59–64, 1996.
[2] J. H. Park, “Strongly \(\theta - b\)-continuous functions\(\theta - b\)-continuous functions,” Acta Mathematica Hungarica, vol. 110, no. 4, pp. 347–359, 2006.
[3] I. M. Hanafy, “Fuzzy \(y\)-open sets and fuzzy \(y\)-continuity,” Journal of Fuzzy Mathematics, vol. 7, no. 2, pp. 419–430, 1999.
[4] C. L. Chang, “Fuzzy topological spaces,” Journal of Mathematical Analysis and Applications, vol. 24, no. 1, pp. 182–190, 1968.
[5] S. S. Benchalli and J. J. Karnel, "On fuzzy b-open sets in fuzzy topological spaces," *Journal of Computer and Mathematical Sciences*, vol. 1, no. 2, pp. 127–134, 2010.

[6] A. Dutta and B. C. Tripathy, "On fuzzy b-θ open sets in fuzzy topological space θ open sets in fuzzy topological space," *Journal of Intelligent and Fuzzy Systems*, vol. 32, no. 1, pp. 137–139, 2017.

[7] M. S. Ying, "A new approach for fuzzy topology (I)," *Fuzzy Sets and Systems*, vol. 39, pp. 302–321, 1991.

[8] F. H. Khedr, F. M. Zeyada, and O. R. Sayed, "Fuzzy semi-continuity and fuzzy csemi-continuity in fuzzifying topology," *Journal of Fuzzy Mathematics*, vol. 7, no. 1, pp. 105–124, 1999.

[9] A. El-Hakeim, F. M. Zeyada, and O. R. Sayed, "Pre-continuity and $D(c, p)$-continuity in fuzzifying topology," *Fuzzy Sets and Systems*, vol. 119, pp. 459–471, 2001.

[10] F. H. Khedr, F. M. Zeyada, and O. R. Sayed, "-α-continuity and β-continuity in fuzzifying topology α-continuity in fuzzifying topology," *Fuzzy Sets and Systems*, vol. 116, no. 3, pp. 325–337, 2000.

[11] A. El-Hakeim, F. M. Zeyada, and O. R. Sayed, "β-continuity and $D(c, \beta)$-continuity in fuzzifying topology," *Journal of Fuzzy Mathematics*, vol. 7, no. 3, pp. 547–558, 1999.

[12] T. Noiri and O. R. Sayed, "Fuzzy γ-open sets and fuzzy γ-continuity in fuzzifying topology," *Scientiae Mathematicae Japonicae*, vol. 55, no. 2, pp. 255–263, 2002.

[13] M. Ying, "A new approach for fuzzy topology (II)," *Fuzzy Sets and Systems*, vol. 47, no. 2, pp. 221–232, 1992.

[14] M. Ying, "A new approach for fuzzy topology (III)," *Fuzzy Sets and Systems*, vol. 55, no. 2, pp. 193–207, 1993.

[15] M. Ying, "Fuzzifying topology based on complete residuated lattice-valued logic (I)," *Fuzzy Sets and Systems*, vol. 56, no. 3, pp. 337–373, 1993.

[16] A. M. Khalil, S.-G. Li, F. You, and S.-Q. Ma, "Strong β-irresoluteness and weak β-irresoluteness based on continuous valued logic β-irresoluteness and weak β-irresoluteness based on continuous valued logic," *Journal of Intelligent and Fuzzy Systems*, vol. 35, no. 2, pp. 2137–2148, 2018.

[17] A. M. Khalil, S.-G. Li, F. You, and S.-Q. Ma, "Strongly pre-irresoluteness and weakly pre-irresoluteness based on continuous valued logic," *Bulletin of the Brazilian Mathematical Society, New Series*, vol. 49, no. 4, pp. 933–953, 2018.