FACTORIZATION OF COMPLETE INTERSECTIONS IN \mathbb{P}^5.

DIMITRA KOSTA

Abstract. Let X be a complete intersection of two hypersurfaces F_n and F_k in \mathbb{P}^5 of degree n and k respectively with $n \geq k$, such that the singularities of X are nodal and F_k is smooth. We prove that if the threefold X has at most $(n + k - 2)(n - 1) - 1$ singular points, then it is factorial.

1. Introduction

In this paper we shall extend to the complete intersection setting a recent theorem of Cheltsov [4], in which he obtained a sharp bound for the number of nodes a threefold hypersurface can have and still be factorial.

Suppose that X is the complete intersection of two hypersurfaces F_n and F_k in \mathbb{P}^5 of degree n and k respectively with $n \geq k$, such that X is a nodal threefold. We will prove the following.

Theorem 1.1. Suppose that F_k is smooth. Then the threefold X is \mathbb{Q}-factorial, when

$$|Sing(X)| \leq (n + k - 2)(n - 1) - 1.$$

The next example of a non-factorial nodal complete intersection threefold suggests that the number of nodes, that a hypersurface can have while being factorial, should be strictly less than $(n + k - 2)^2$.

Example 1.2. Let X be the complete intersection in \mathbb{P}^5 of two smooth hypersurfaces

$$F = x_3f_1(x_0, x_1, x_2, x_3, x_4, x_5) + x_4f_2(x_0, x_1, x_2, x_3, x_4, x_5) + x_5f_3(x_0, x_1, x_2, x_3, x_4, x_5) = 0$$

$$G = x_3g_1(x_0, x_1, x_2, x_3, x_4, x_5) + x_4g_2(x_0, x_1, x_2, x_3, x_4, x_5) + x_5g_3(x_0, x_1, x_2, x_3, x_4, x_5) = 0$$

where f_1, f_2, f_3 are general hypersurfaces of degree $n - 1$ and g_1, g_2, g_3 general hypersurfaces of degree $k - 1$. Then the singular locus $Sing(X)$, which is given by the vanishing of the polynomials

$$x_3 = x_4 = x_5 = f_1g_2 - f_2g_1 = f_1g_3 - f_3g_1 = 0,$$

consists of exactly $(n + k - 2)^2$ nodal points and the threefold X is not factorial.

Therefore, we can expect the following stated in [3] to be true.

Conjecture 1.3. Suppose that F_k is smooth. Then the threefold X is \mathbb{Q}-factorial, when

$$|Sing(X)| \leq (n + k - 2)(n + k - 2) - 1.$$

The assumption of Theorem 1.1 about the smoothness of F_k is essential, as Example 28 in [3] suggests.

In the case of a nodal threefold hypersurface in \mathbb{P}^4, namely when $k = 1$, several attempts where made towards proving Theorem 1.1 as one can see in [5] and [12]. However, a complete proof for $k = 1$ was given in [4].

2. Preliminaries

Let Σ be a finite subset in \mathbb{P}^N. The points of Σ impose independent linear conditions on homogeneous forms in \mathbb{P}^N of degree ξ, if for every point P of the set Σ there is a homogeneous form on \mathbb{P}^N of degree ξ that vanishes at every point of the set $\Sigma \setminus P$ and does not vanish at the point P.

The following result, which relates the notion of \mathbb{Q}-factoriality with that of independent linear conditions, is due to [6] and was stated in the present form in [3].

I would like to thank Ivan Cheltsov for suggesting the problem to me and for useful comments.
Theorem 2.1. The threefold X is \mathbb{Q}-factorial in the case when its singular points impose independent linear conditions on the sections of $H^0(\mathcal{O}_{\mathbb{P}^5}(2n + k - 6)|_G)$.

The following result was proved in [11] and follows from a result of J.Edmonds [9].

Theorem 2.2. The points of Σ impose independent linear conditions on homogeneous forms of degree $\xi \geq 2$ if at most $\xi k + 1$ points of Σ lie in a k-dimensional linear subspace of \mathbb{P}^N.

By [1] and [7] we also know the following.

Theorem 2.3. Let $\pi : Y \to \mathbb{P}^2$ be a blow up of distinct points P_1, \ldots, P_5 on \mathbb{P}^2. Then the linear system $|\pi^*(\mathcal{O}_{\mathbb{P}^2}(\xi)) - \sum_{i=1}^5 E_i|$ is base-point-free for all $\xi \leq \max (m(\xi + 3 - m) - 1, m^2)$, where $E_i = \pi^{-1}(P_i)$, $\xi \geq 3$, and $m = \lfloor \frac{\xi + 3}{2} \rfloor$, if at most $k(\xi + 3 - k) - 2$ points of the set P_1, P_2, \ldots, P_5 lie on a possibly reducible curve of degree $1 \leq k \leq m$.

What is next is an application, as stated in [12], of the modern Cayley-Bacharach theorem (see [10] or [5]).

Theorem 2.4. Let Σ be a subset of a zero-dimensional complete intersection of the hypersurfaces X_1, X_2, \ldots, X_N in \mathbb{P}^N of degrees d_1, \ldots, d_N respectively. Then the points of Σ impose dependent linear conditions on homogeneous forms of degree $\sum_{i=1}^N \deg(X_i) - N - 1$ if and only if the equality $|\Sigma| = \prod_{i=1}^N d_i$ holds.

Again due to [1] we have the following.

Theorem 2.5. Let $\Lambda \subseteq \Sigma$ be a subset, let $\phi : \mathbb{P}^r \to \mathbb{P}^m$ be a general projection and let $\mathcal{M} \subset |\mathcal{O}_{\mathbb{P}^m}(t)|$ be a linear subsystem that contains all hypersurfaces of degree t that pass through Λ. Suppose that

- the inequality $|\Lambda| \geq (n + k - 2)t + 1$ holds,
- the set $\phi(\Lambda)$ is contained in an irreducible reduced curve of degree t,

where $r > m \geq 2$. Then \mathcal{M} has no base curves and either $m = 2$ or $t > n + k - 2$.

Finally, next is one of our basic tools, a proof of which can be found in [2].

Theorem 2.6. Let Σ be a finite subset in \mathbb{P}^N that is a disjoint union of finite subsets Λ and Δ, and P be a point in Σ. Suppose that there is a hypersurface in \mathbb{P}^N of degree $\alpha \geq 1$ that contains all points of the set $\Lambda \setminus P$ and does not contain P, and for every point Q in the set Δ there is a hypersurface in \mathbb{P}^N of degree $\beta \geq 1$ that contains all points of the set $\Sigma \setminus Q$ and does not contain the point Q. Then there is a hypersurface in \mathbb{P}^N of degree γ that contains the set $\Sigma \setminus P$ and does not contain the point P, where γ is a natural number such that $\gamma \geq \max(\alpha, \beta)$.

3. Proof of Theorem 2.1

Let us consider the complete intersection X of two hypersurfaces F_n and F_k in \mathbb{P}^5 of degrees n and k respectively, with $n \geq k$, such that X is a nodal threefold. Suppose, furthermore, that F_k is smooth and X has at most $(n + k - 2)(n - 1) - 1$ singular points. We denote now by $\Sigma \subset \mathbb{P}^5$ the set of singular points of X.

Definition 3.1. We say that the points of a subset $\Gamma \subset \mathbb{P}^r$ have property \star if at most $t(n + k - 2)$ points of the set Γ lie on a curve in \mathbb{P}^r of degree $t \in \mathbb{N}$.

For a proof of the following we refer the reader to [3].

Lemma 3.2. The points of the set $\Sigma \subset \mathbb{P}^5$ have property \star.

According to Theorem 2.1 for any point $P \in \Sigma$ we need to prove that there is a hypersurface of degree $2n + k - 6$, that passes through all the points of the set $\Sigma \setminus P$, but not through the point P.

Remark 3.3. As we mentioned, the claim of Theorem 2.1 is true, when $k = 1$ and thus we need only consider the case $k \geq 2$. Furthermore, taking into account the following Lemma, we can assume that $n \geq 5$.

2
Lemma 3.4. The threefold X is \mathbb{Q}-factorial, when

$$|\text{Sing}(X)| \leq (n+k-2)(n-1) - 1 \text{ and } k \leq n \leq 4.$$

Proof. Indeed, we consider the projection

$$\psi : \mathbb{P}^5 \dashrightarrow \Pi \cong \mathbb{P}^2,$$

from a general plane Γ of \mathbb{P}^5 to another general plane $\Pi \cong \mathbb{P}^2$, that sends the set Σ to $\psi(\Sigma) = \Sigma'$. Choose a point $P \in \Sigma$ and put $P' = \psi(P)$. We have the following cases.

- If $2 = n \geq k = 2$, then $|\Sigma| \leq 1$ and the result holds according to Theorem 2.1.
- If $3 = n \geq k = 2$, then $|\Sigma| \leq 5$ and it imposes independent linear conditions on forms of degree 2.
- If $3 = n \geq k = 3$, then $|\Sigma| \leq 7$ and it imposes independent linear conditions on forms of degree 3.
- If $4 = n \geq k = 2$, then $|\Sigma| \leq 11$ and at most $4t$ points lie on a curve in \mathbb{P}^5 of degree t. So, the 11 points of Σ impose independent linear conditions on forms of degree 4.
- If $4 = n \geq k = 3$, then $|\Sigma| \leq 14$ and at most $5t$ points lie on a curve in \mathbb{P}^5 of degree t.

If the points of $\Sigma' \subset \Pi$ satisfy property \star, then the set $\Sigma' \setminus P'$ satisfies the requirements of Theorem 2.3 for $\xi = 5$ and this implies that the set Σ imposes independent linear conditions on forms of degree 5.

Suppose on the contrary that the points Σ' do not satisfy Theorem 2.3 for $\xi = 5$. In this case there is a curve C_2 of degree 2 in Π that passes through at least 11 points of Σ'. If we take the cone over C_2 with vertex Γ, we obtain a hypersurface f_2 in \mathbb{P}^5. Denote by Λ_2 the points of Σ that lie on f_2. From Theorem 2.4 it follows that the points of Λ_2 impose independent linear conditions on homogeneous forms of degree 5($2-1$) = 4, since Λ_2 is a subset of the complete intersection of hypersurfaces of degree 2 in \mathbb{P}^5.

The set $|\Sigma \setminus \Lambda_2| \leq 3$ imposes independent linear conditions on forms of degree 2 and, by applying Theorem 2.6 to the two disjoint sets Λ_2 and $\Sigma \setminus \Lambda_2$, we get that the points of Σ impose independent linear conditions on forms of degree 5.

- $4 = n \geq k = 4$. Then $|\Sigma| \leq 17$ and at most $6t$ points lie on a curve $C_t \in \mathbb{P}^5$ of degree t.

If the points of $\Sigma' \subset \Pi$ satisfy property \star, then the set $\Sigma' \setminus P'$ satisfies the requirements of Theorem 2.3 for $\xi = 6$ and this implies that the set Σ imposes independent linear conditions on forms of degree 6.

Suppose on the contrary that the points Σ' do not satisfy Theorem 2.3 for $\xi = 6$. In this case there is a curve C_2 of degree 2 in Π that passes through at least 13 points of Σ'. If we take the cone over C_2 with vertex Γ, we obtain a hypersurface f_2 in \mathbb{P}^5. Denote by Λ_2 the points of Σ that lie on f_2. From Theorem 2.4 it follows that the points of Λ_2 impose independent linear conditions on homogeneous forms of degree 5($2-1$) = 4, since Λ_2 is a subset of the complete intersection of hypersurfaces of degree 2 in \mathbb{P}^5.

The set $|\Sigma \setminus \Lambda_2| \leq 4$ imposes independent linear conditions on forms of degree 2 and, by applying Theorem 2.6 to the two disjoint sets Λ_2 and $\Sigma \setminus \Lambda_2$, we get that the points of Σ impose independent linear conditions on forms of degree 6.

As we saw above, for $3 \leq n \leq 5$ the points of Σ impose independent linear conditions on forms of degree $2n+k-6$, and thus, by Theorem 2.1 the threefold X is \mathbb{Q}-factorial. \qed

Lemma 3.5. Suppose that all the singularities of X lie on a plane $\Pi \subset \mathbb{P}^5$. Then for any point $P \in \Sigma$ there is hypersurface of degree $(2n+k-6)$ that contains $\Sigma \setminus P$, but does not contain the point P.

Proof. By Remark 3.3 we can see that $\xi = 2n+k-6 \geq 6$. Also, we have

$$|\Sigma \setminus P| \leq \max \left\{ \left\lfloor \frac{2n+k-3}{2} \right\rfloor (2n+k-3 - \left\lfloor \frac{2n+k-3}{2} \right\rfloor) - 1, \left\lfloor \frac{2n+k-3}{2} \right\rfloor^2 \right\},$$

for $k \geq 2$ and $n \geq 5$. In order to show that at most $t(2n+k-3-t) - 2$ points of Σ lie on a curve of degree t in Π, it is enough to show that

$$t(2n+k-3-t) - 2 \geq t(n+k-2) \iff t(n-t-1) \geq 2, \text{ for all } t \leq \frac{2n+k-3}{2}.$$
For $t = 1$ the inequality holds, since $n \geq 5$, and we can assume that $t \geq 2$. It remains to show that $t < n - 1$. Suppose on the contrary that $t \geq n - 1$. The quantity $t(2n + k - 3 - t) - 2$ rises for all $n - 1 \leq t \leq \lfloor \frac{2n+k-3}{2} \rfloor$ and we have

$$|\Sigma \setminus P| \leq (n - 1)(n + k - 2) - 2 \leq t(2n + k - 3 - t) - 2.$$

Therefore we see that the requirement of Theorem 2.3 that at most t of Σ lie on a curve of degree t in Π is satisfied by the set $\Sigma \setminus P$ for all $t \leq \lfloor \frac{2n+k-3}{2} \rfloor$. So there is a hypersurface of degree $(2n + k - 6)$ that contains $\Sigma \setminus P$, but does not contain point P. □

Taking into account Theorem 2.3 we can reduce to the case Σ is a finite set in \mathbb{P}^3, such that at most $(n + k - 2)t$ of its points are contained in a curve in \mathbb{P}^3 of degree $t \in \mathbb{N}$. Now fix a general plane $\Pi \in \mathbb{P}^3$ and let

$$\phi: \mathbb{P}^3 \longrightarrow \Pi \cong \mathbb{P}^2$$

be a projection from a sufficiently general point $O \in \mathbb{P}^3$. Denote by $\Sigma' = \phi(\Sigma)$ and $P' = \phi(P)$.

Lemma 3.6. Suppose that the points of $\Sigma' \subseteq \Pi$ have the property \star. Then there is a hypersurface of degree $2n + k - 6$ that contains $\Sigma \setminus P$ and does not contain P.

Proof. The points of the set Σ' satisfy the requirements of Theorem 2.3, following the proof of Lemma 3.5. Thus, there is a curve C in Π of degree $2n + k - 6$, that passes through all the points of the set $\Sigma' \setminus P'$, but not through the point P'. By taking the cone in \mathbb{P}^3 over the curve C with vertex O, we obtain the required hypersurface. □

We may assume then, that the points of the set $\Sigma' \subseteq \Pi$ do not have property \star. Then there is a subset $\Lambda_1^r \subseteq \Sigma$ with $|\Lambda_1^r| > r(n + k - 2)$, but after projection the points

$$\phi(\Lambda_1^r) \subseteq \Sigma' \subseteq \Pi \cong \mathbb{P}^2$$

are contained in a curve $C_r \subseteq \Pi$ of degree r. Moreover, we may assume that r is the smallest natural number, such that at least $(n + k - 2)r + 1$ points of Σ' lie on a curve of degree r, which implies that the curve C_r is irreducible and reduced.

By repeating how we constructed Λ_1^r, we obtain a non-empty disjoint union of subsets

$$\Lambda = \bigcup_{j=r}^{l} \bigcup_{i=1}^{c_j} \Lambda_j^i \subseteq \Sigma,$$

such that $|\Lambda_j^i| > j(n + k - 2)$, the points of the set

$$\phi(\Lambda_j^i) \subseteq \Sigma'$$

are contained in an irreducible curve in Π of degree j, and the points of the subset

$$\phi(\Sigma \setminus \Lambda) \subseteq \Sigma' \subseteq \Pi \cong \mathbb{P}^2$$

have property \star, where $c_j \geq 0$. Let Ξ_j^i be the base locus of the linear subsystem in $|O_{P_1}(j)|$ of all surfaces of degree j passing through the set Λ_j^i. Then according to Theorem 2.3 the base locus Ξ_j^i is a finite set of points and we have $c_r > 0$ and

$$|\Sigma \setminus \Lambda| < (n - 1)(n + k - 2) - \sum_{i=r}^{l} i(n + k - 2)c_i = (n + k - 2) \left(n - 1 - \sum_{i=r}^{l} ic_i \right).$$

Corollary 3.7. The inequality $\sum_{i=r}^{l} ic_i \leq n - 2$ holds.

Put $\Delta = \Sigma \cap (\bigcup_{j=r}^{l} \bigcup_{i=1}^{c_j} \Xi_j^i)$. Then $\Lambda \subseteq \Delta \subseteq \Sigma$.

Lemma 3.8. The points of the set Δ impose independent linear conditions on forms of degree $2n + k - 6$.

4
Proof. We have the exact sequence
\[0 \rightarrow \mathcal{I}_\Delta \otimes \mathcal{O}_{\mathbb{P}^3}(2n + k - 6) \rightarrow \mathcal{O}_{\mathbb{P}^3}(2n + k - 6) \rightarrow \mathcal{O}_\Delta \rightarrow 0 , \]
where \(\mathcal{I}_\Delta \) is the ideal sheaf of the closed subscheme \(\Delta \) of \(\mathbb{P}^3 \). Then the points of \(\Delta \) impose independent linear conditions on forms of degree \(2n + k - 6 \), if and only if
\[h^1 \left(\mathcal{I}_\Delta \otimes \mathcal{O}_{\mathbb{P}^3}(2n + k - 6) \right) = 0 . \]
We assume on the contrary that \(h^1 \left(\mathcal{I}_\Delta \otimes \mathcal{O}_{\mathbb{P}^3}(2n + k - 6) \right) \neq 0 \). Let \(\mathcal{M} \) be a linear subsystem in \(|\mathcal{O}_{\mathbb{P}^3}(n - 2)| \) that contains all surfaces that pass through all points of the set \(\Delta \). Then the base locus of \(\mathcal{M} \) is zero-dimensional, since \(\sum_{i=r}^l ic_i \leq n - 2 \) and
\[\Delta \subseteq \bigcup_{i=r}^l \bigcup_{j=1}^{c_i} \Xi^i_j , \]
but \(\Xi^i_j \) is a zero-dimensional base locus of a linear subsystem of \(|\mathcal{O}_{\mathbb{P}^3}(j)| \). Let \(\Gamma \) be the complete intersection
\[\Gamma = M_1 \cdot M_2 \cdot M_3 , \]
of three general surfaces \(M_1, M_2, M_3 \) in \(\mathcal{M} \). Then \(\Gamma \) is zero-dimensional and \(\Delta \) is closed subscheme of \(\Gamma \). Let
\[\mathcal{I}_\Gamma = \text{Ann} \left(\mathcal{I}_\Delta / \mathcal{I}_\Gamma \right) . \]
Then
\[0 \neq h^1 \left(\mathcal{I}_\Delta \otimes \mathcal{O}_{\mathbb{P}^3}(2n + k - 6) \right) = h^0 \left(\mathcal{I}_\Gamma \otimes \mathcal{O}_{\mathbb{P}^3}(n - k - 4) \right) - h^0 \left(\mathcal{I}_\Gamma \otimes \mathcal{O}_{\mathbb{P}^3}(n - k - 4) \right) . \]
Therefore \(h^0 \left(\mathcal{I}_\Gamma \otimes \mathcal{O}_{\mathbb{P}^3}(n - k - 4) \right) \neq 0 \) and there is a surface \(F \in |\mathcal{I}_\Gamma \otimes \mathcal{O}_{\mathbb{P}^3}(n - k - 4)| \). We have
\[(n - k - 4)(n - 2)^2 = F \cdot M_2 \cdot M_3 \geq h^0(\mathcal{O}_{\mathcal{I}_\Gamma}) = h^0(\mathcal{O}_{\mathcal{I}_\Gamma}) - h^0(\mathcal{O}_{\mathcal{I}_\Delta}) = (n - 2)^3 - |\Delta| , \]
which implies \(|\Delta| \geq (k + 2)(n - 2)^2 \). But \(|\Delta| \leq |\Sigma| < (n - 1)(n + k - 2) \), which is impossible since \(k \geq 2 \) and \(n \geq 5 \). \(\square \)

We see that \(\Delta \nsubseteq \Sigma \). Put \(\Gamma = \Sigma \setminus \Delta \) and \(d = 2n + k - 6 - \sum_{i=r}^l ic_i \).

Lemma 3.9. The inequality \(d \geq 3 \) holds.

Proof. Suppose that \(d \leq 2 \). Since \(\sum_{i=r}^l ic_i \leq n - 2 \) due to Corollary 3.7, we have
\[2 \geq d = 2n + k - 6 - \sum_{i=r}^l ic_i \geq 2n + k - 6 - (n - 2) = n + k - 4 \geq 3 , \]
which is impossible. \(\square \)

For the number of points of the set \(\Gamma' \) we have
\[|\Gamma'| = |\Gamma| \leq |\Sigma \setminus \Delta| \leq (n + k - 2) \left(n - 1 - \sum_{i=r}^l ic_i \right) - 2 , \]
and for \(d = 2n + k - 6 - \sum_{i=r}^l ic_i \), since \(n \geq 5 \) and \(k \geq 2 \), we get
\[|\Gamma'| \leq (n + k - 2) \left(n - 1 - \sum_{i=r}^l ic_i \right) - 2 \leq \max \left\{ \left[\frac{d + 3}{2} \right] \left(d + 3 - \left[\frac{d + 3}{2} \right] \right) - 1, \left[\frac{d + 3}{2} \right]^2 \right\} . \]

Lemma 3.10. If the points of the set \(\Gamma \) impose dependent linear conditions on forms of degree \(d \), then at most \(d \) points of the set \(\Gamma' \) lie on a line in \(\Pi \cong \mathbb{P}^2 \).

Proof. Let us assume on the contrary that there is a line that contains at least \(d + 1 \) points of \(\Gamma \). Since the points of \(\Gamma \) satisfy property \(\star \), at most \(n + k - 2 \) of its points lie on a line, thus
\[n + k - 2 \geq d + 1 = 2n + k - 6 - \sum_{i=r}^l ic_i + 1 , \]
which along with Corollary 3.7 implies that $$n - 3 \leq \sum_{i=r}^{t} ic_i \leq n - 2.$$ If $$\sum_{i=r}^{t} ic_i = n - 2,$$ then $$|\Gamma| \leq n + k - 4$$ and we get a contradiction as no more than $$n + k - 4 < d + 1$$ points can lie on a line. If $$\sum_{i=r}^{t} ic_i = n - 3,$$ then $$|\Gamma| \leq 2(n + k - 3)$$ and according to Theorem 2.2 the points of $$\Gamma$$ impose independent linear conditions on forms of degree $$d = n + k - 3,$$ which contradicts our assumption. By Theorem 2.5 the number of points of $$\Gamma'$$ that can lie on a line $$\Pi \cong \mathbb{P}^2$$ is at most $$d.$$ \[\square\]

Lemma 3.11. At most $$(n + k - 2)t$$ points of the set $$\Gamma'$$ lie on a curve in $$\Pi \cong \mathbb{P}^2$$ of degree $$t,$$ for every $$t \leq \frac{d + 3}{2}.$$

Proof. We need to check the condition that at most $$(n + k - 2)t$$ points of $$\Gamma'$$ lie on a curve of degree $$t$$ only for $$2 \leq t \leq \frac{d + 3}{2},$$ such that

$$t(d + 3 - t) - 2 < |\Gamma'|.$$ Because the set $$\Gamma'$$ satisfies property $$\star,$$ at most $$(n + k - 2)t$$ of its points can lie on a curve of degree $$t$$ and therefore it is enough to prove that

$$t(d + 3 - t) - 2 \geq (n + k - 2)t \iff t \left(n - 1 - \sum_{i=r}^{t} ic_i \right) \geq 2,$$ for all $$2 \leq t \leq \frac{d + 3}{2}.$$ As we saw Lemma 3.10 implies that $$t \geq 2$$ and we only need to show that $$t < n - 1 - \sum_{i=r}^{t} ic_i.$$ Suppose that

$$n - 1 - \sum_{i=r}^{t} ic_i \leq t \leq \frac{d + 3}{2},$$

then

$$(n - 1 - \sum_{i=r}^{t} ic_i)(n + k - 2) = (n - 1 - \sum_{i=r}^{t} ic_i)(d + 3 - (n - 1 - \sum_{i=r}^{t} ic_i)) - 2 \leq t(d + 3 - t) - 2,$$ since the quantity $$t(d + 3 - t) - 2$$ increases, as $$t \leq \frac{d + 3}{2}$$ increases. But then

$$(n - 1 - \sum_{i=r}^{t} ic_i)(n + k - 2) - 2 \leq t(d + 3 - t) - 2 < |\Gamma'| \leq (n - 1 - \sum_{i=r}^{t} ic_i)(n + k - 2) - 2,$$ which is a contradiction. \[\square\]

Lemma 3.12. The points of the set $$\Sigma$$ impose independent linear conditions on homogeneous forms of degree $$2n + k - 6.$$

Proof. According to Lemma 3.9 and Lemma 3.11 all the requirements of Theorem 2.3 for $$\xi = d$$ are satisfied and thus, the points of $$\Gamma$$ impose independent linear conditions on homogeneous forms of degree $$d.$$ Hence, for any point $$Q$$ in $$\Gamma,$$ there is a hypersurface $$G_Q$$ of degree $$d,$$ such that $$G_Q(\Gamma \setminus Q) = 0$$ and $$G_Q(Q) \neq 0.$$ Furthermore, by the way the set $$\Delta$$ was constructed, there is a form $$F$$ of degree $$\sum_{i=r}^{t} ic_i$$ in $$\mathbb{P}^3,$$ that vanishes at every point of the set $$\Delta,$$ but does not vanish at any point of the set $$\Gamma.$$ Therefore, for any point $$Q \in \Gamma$$ we obtain a hypersurface $$FG_Q$$ of degree $$2n + k - 6,$$ such that $$FG_Q(\Sigma) = 0$$ and $$FG_Q(Q) \neq 0.$$ Also, by Lemma 3.8 for any point $$R \in \Delta$$ there is a hypersurface of degree $$2n + k - 6$$ that passes through all points of $$\Delta \setminus R,$$ except for the point $$R.$$ By applying Theorem 2.6 to the two disjoint sets $$\Delta$$ and $$\Gamma,$$ we prove the Lemma. \[\square\]
References

[1] E. Bese, On the spannedness and very ampleness of certain line bundles on the blow-ups of \mathbb{P}^2 and F_r, Math. Ann. 262 (1983), 225-238.
[2] I. Cheltsov, Points in projective spaces and applications, arXiv:math.AG/0511578 v4 (2005).
[3] I. Cheltsov, Factorial threefolds and Shokurov vanishing, Sbornik: Mathematics 197, no 3 (2006), 87-116.
[4] I. Cheltsov, Factorial threefold hypersurfaces, arxiv:math.AG/0803.3301 (2008).
[5] I. Cheltsov, J. Park, Factorial hypersurfaces in \mathbb{P}^4 with nodes, Geometriae Dedicata, 121 (2006), 205-219.
[6] S. Cynk, Defect of a nodal hypersurface, Manuscripta Mathematica 104 (2001), 325-331.
[7] E. Davis, A. Geramita, Birational morphisms to \mathbb{P}^2: an ideal-theoretic perspective, Math. Ann. 279 (1988), 435-448.
[8] E. Davis, A. Geramita, F. Orecchia, Gorenstein algebras and the Cayley-Bacharach theorem, Proc. Amer. Math. Soc. 93, no. 4 (1985), 593-597.
[9] J. Edmonds, Minimum partition of a matroid into independent subsets, Journal of Research of the National Bureau of Standards- B. Mathematics and Mathematical Physics, 69B (1965), 67-72.
[10] D. Eisenbud, M. Green, J. Harris, Higher Castelnuovo Theory, Asterisque 218 (1993), 187-202.
[11] D. Eisenbud, J-H. Koh, Remarks on points in a projective space, Commutative Algebra, Berkeley, CA, (1987), MSRI Publications 15, Springer, New York 157-172.
[12] D. Kosta, Factoriality condition of some nodal threefolds in \mathbb{P}^4, Manuscripta Mathematica (2008), Springer, Berlin/ Heidelberg, (on line).

School of Mathematics
The University of Edinburgh
Kings Buildings, Mayfield Road
Edinburgh EH9 3JZ, UK

D.Kosta@sms.ed.ac.uk