Dendritic cells in IBD pathogenesis: an area of therapeutic opportunity?

Jennifer Bates and Lauri Diehl*

Genentech, Inc, South San Francisco, CA 94080, USA

*Correspondence to: Lauri Diehl, 1 DNA Way, South San Francisco, CA 94080, USA. e-mail: ldiehl@gene.com

Abstract

Dysfunction of the mucosal immune system plays an important role in inflammatory bowel disease (IBD) pathogenesis. Dendritic cells are emerging as central players based on both our increasing understanding of how genetic susceptibility impacts the mucosal immune system and the key role of dendritic cells in regulating response to gut microflora. We discuss areas of therapeutic opportunity in this evolving landscape.

© 2013 The Authors. Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.

Keywords: inflammatory bowel disease; dendritic cell; mucosal immunity; colitis; Crohn’s disease; inflammation

Received 3 September 2013; Revised 3 September 2013; Accepted 22 September 2013

Conflict of interest statement: Both authors are full-time employees of Genentech.

Introduction

The inflammatory bowel diseases (IBDs) are a heterogeneous group of disorders which have two major phenotypic forms, Crohn’s disease and ulcerative colitis, characterized by chronic relapsing and remitting intestinal inflammation [1–4]. Ulcerative colitis is the most common of the IBDs [5] and is characterized by a continuous pattern of inflammation beginning in the rectum and extending progressively further into the colon with increasing disease severity. By contrast, Crohn’s disease patients frequently develop a discontinuous pattern of inflammation which can occur anywhere in the gastrointestinal tract, although the distal small intestine and colon are the most common locations [6].

In ulcerative colitis, inflammatory infiltrates are confined to the mucosa and consist primarily of lymphocytes and plasma cells plus granulocytes in crypt abscesses and present in the mucosa during disease flares. Ulceration is common during active disease and colonic epithelial cell changes such as goblet cell depletion, distorted crypt architecture, and epithelial dysplasia are associated with chronic disease [7]. Transmural inflammation is a characteristic feature of Crohn’s disease and this deeper tissue involvement in the inflammatory process appears to be responsible for many of the serious complications associated with Crohn’s disease such as fibrostenotic disease, abscesses, and fistula formation [8,9]. Epithelioid granulomas are also associated with Crohn’s disease and provide diagnostic differentiation from ulcerative colitis when identified histologically. Epithelioid cells, so named for a resemblance to epithelial cells, are activated histiocytes with homogeneous eosinophilic cytoplasm, and a working definition of an epithelioid granuloma is a collection of at least five epithelioid cells with or without accompanying multinucleate giant cells [10]. However, these granulomas are found in only about 20–40% of biopsies and 60% of surgical resection specimens [11] and, when present, must be differentiated from those associated with infectious diseases such as tuberculosis.

When Crohn’s disease inflammation is confined to the mucosa and no granulomatous lesions are present, it cannot be definitively differentiated from ulcerative colitis by histological evaluation. A subset of patients present with clinical and histological features of disease which do not clearly segregate into one of the established phenotypic forms. These patients are often diagnosed as having indeterminate colitis [12,13]. Some of these patients will eventually develop lesions more characteristic of one of the major forms of IBD.

Accurately determining the prevalence of inflammatory bowel disease is a challenging proposition given that IBD is not a reportable disease and that patients can have a multi-decade disease course. Prevalence estimates have been drawn based on either in-depth regional data [14] or administrative data from health plan databases [15,16]. Based on these data, there are between 1 and 1.5 million individuals with ulcerative colitis or Crohn’s disease in the United States alone. Clinical manifestations of disease develop during childhood in up to 25% of patients [2], and disease prevalence in children under 20 years of age is 43 per 100 000 for Crohn’s disease and 28 per 100 000 for ulcerative colitis [16]. As expected with a chronic disease, the prevalence increases with age to about 201 per 100 000.
for Crohn’s disease and 238 per 100 000 for ulcerative colitis. The incidence of Crohn’s disease and ulcerative colitis in the United States increased after 1940; however, those rates appear to have stabilized over the past few decades [14]. Despite some uncertainty about the total number of IBD patients, it is clear that large numbers of patients exist and that many of these patients can anticipate the need for treatment over a span of decades. While the advent of biological therapies has improved the clinical situation, IBD remains a major unmet medical need.

Current models hypothesize that IBD arises from and is sustained by interactions between genetically susceptible hosts and the gut microflora as well as, potentially, other environmental triggers. While the pathogenesis of IBD remains incompletely understood, it is clear that dysfunction of the mucosal immune system plays an important role. Dendritic cells are a key player in the mucosal immune system, serving as a bridge between the innate and the adaptive immune response [17]. In this review, we will discuss the evidence for dendritic cells in IBD pathogenesis with emphasis on genetics and microbial interactions. The innate immune system is emerging as a potentially attractive therapeutic target in IBD and we will review some of the current information in this area.

Genetics of IBD

It is well established that host genetic susceptibility plays an important role in IBD pathogenesis. The first Crohn’s disease susceptibility gene, nucleotide oligomerization domain receptor 2 (NOD2), which is encoded by the CARD15 gene, was identified in 2001 [18,19]. In the intervening years, tremendous progress has been made using genome-wide linkage and association studies to reveal additional genetic polymorphisms associated with susceptibility to ulcerative colitis or Crohn’s disease. Currently there are more than 160 IBD susceptibility genes or loci recognized [20]. A number of susceptibility genes are shared between ulcerative colitis and Crohn’s disease [21,22], suggesting the presence of shared or interlinking pathways in inflammatory bowel disease pathogenesis. While the functional role of many loci or specific single nucleotide polymorphisms (SNPs) is incompletely understood, many of the genes are associated with aspects of mucosal immunity including innate immune response to microbial pathogens [20] (Figure 1).

The importance of microbial recognition and the response of the innate immune system is underscored by the association between Crohn’s disease and NOD2, which is a member of the NLR (NOD, leucine-rich repeat-containing protein) family of intracellular pathogen-associated molecular recognition receptors (PRRs) [23,24]. This association includes three NOD2 polymorphisms which occur with greatest frequency in individuals of European descent but are not found in Asian populations [25]. Approximately 30% of patients of European ancestry will have one or more of these mutations and these patients are at increased risk for ileal involvement and fibrostenotic disease [26]. Individuals heterozygous for a NOD2 polymorphism have an increased Crohn’s disease risk of 2.4-fold, while homozygous individuals have a 17.1-fold increase [25]. These are the highest relative risks associated with any IBD-risk gene.

NOD2 is expressed by a variety of immune and non-immune cell types including dendritic cells and is upstream of the nuclear factor-κB (NF-κB) and mitogen-activated protein (MAP) kinase signalling pathways which drive pro-inflammatory cytokine production [27]. It encodes an intracellular sensor of peptidoglycan, a component of bacterial cell walls, and Crohn’s disease-associated mutations are mainly located in the leucine-rich repeat region which interacts with the peptidoglycan muramyl dipeptide (MDP) motif, leading to altered bacterial recognition [28,29]. How NOD2 polymorphisms predispose to Crohn’s disease development remains incompletely understood, despite significant research effort in this field. Because the intestinal tract has continuous bacterial exposure, chronic activation of NOD2 signalling should result in immune cell hyporesponsiveness to subsequent NOD2 or Toll-like receptor (TLR) ligand stimulation [30,31]. While the NOD2-mediated mechanisms which down-regulate pro-inflammatory cytokines during exposure to commensal bacteria are not fully characterized, it is clear that the process is defective in patients with Crohn’s disease-associated NOD polymorphisms [31]. One hypothesis is that NOD2 normally acts to attenuate TLR signalling, resulting in reduced activation of NF-κB, and thereby prevents excessive activation of dendritic cells and subsequent pathogenic T-cell response [32].

There is increasing evidence that PRR signals intersect with other pathways that coordinate bacterial responses. For example, NOD2 interaction with autophagy pathways has recently been recognized [33,34]. Autophagy is the process by which cytoplasmic components are sequestered into double membrane vacuoles which then fuse with lysosomes, and this process is important in microbial defence processes such as capture of intracellular bacteria during phagocytosis, antigen presentation, and inflammasome activation [35]. ATG16L1 encodes an autophagy protein which is part of a complex responsible for proper subcellular localization of the autophagy machinery [36,37]. The ATG16L1 polymorphism is associated with an increased risk of Crohn’s disease [38] and similar to NOD2, shows an association with terminal ileal disease [38,39]. Interestingly, the affected domain of ATG16L1 is non-conserved and is not required for all of its functions [40].

In human dendritic cells, autophagy is induced through NOD2 stimulation, and dendritic cells isolated from Crohn’s disease patients with ATG16L1 and/or NOD2 polymorphisms have defective autophagy.
Figure 1. Impact of IBD genetic polymorphisms on dendritic cell function. Polymorphisms in IBD susceptibility genes in dendritic cells can be broadly categorized as either inhibiting the ability to effectively clear pathogens or contributing to excessive immune response. Dendritic cells play an important role in autophagy and presentation of bacterial antigens. SNPs associated with this pathway, including Nod2 and ATG16L1, can contribute to failure to deal with pathogens. Additionally, dectin-1 is important for the clearance of fungal pathogens by enabling dendritic cell recognition of β-1,3-glucans in fungal cell walls. A number of IBD susceptibility genes are linked to the excessive immune response which is characteristic of both Crohn’s disease and ulcerative colitis. Nod2 in dendritic cells is upstream of MAPK and NF-κB, which are important regulators of pro-inflammatory cytokines. Impaired regulation of the inflammatory response caused by polymorphisms in Nod2, IL12B or TNFSF15 may result in excessive and prolonged pro-inflammatory T-cell responses. In addition, dendritic cells regulate the immune response through production of the anti-inflammatory cytokine IL-10. SNPs in IL-10 may result in loss of regulatory T cells, leading to excessive immune response.

induction in addition to altered antigen presentation and bacterial handling [33] (Figure 1). Interestingly, promoter polymorphism in the autophagy gene IRGM has also been associated with increased risk of developing Crohn’s disease [41], although characterization of the specific effects on dendritic cells is still preliminary. In aggregate, these data suggest that autophagy may be an attractive drug target area for modifying dendritic cell function in the treatment of Crohn’s disease. Preliminary evidence in support of this concept has been generated using rapamycin, an antibiotic which triggers autophagy by forming a complex with FKB12, which then inhibits mTOR and is commonly used to up-regulate autophagy in cell culture [42]. Rapamycin has been used successfully to treat a patient with severe refractory Crohn’s disease and has also shown protection in a murine colitis model, suggesting that this therapeutic approach may be promising [43,44].

Genome-wide association studies (GWAS) have shown strong associations of polymorphisms in the IL23R and IL12B gene loci with Crohn’s disease and ulcerative colitis [45,46]. IL12B encodes the IL-12p40 subunit, which is a component of both the IL-12 and the IL-23 cytokines, while IL23R encodes one of two subunits of the IL-23R [47]. IL-23 is induced in dendritic cells (DCs) by PPR stimulation and can promote a wide range of pathological responses in the intestine, mediated either through T cells or through excessive innate immune cell activation [48,49] (Figure 1). DC IL-23 production, which is augmented under conditions of endoplasmic reticulum stress and activation of the unfolded protein response (UPR), is an important component of anti-microbial defence linking innate and adaptive immune responses [50]. However, excessive or inappropriate DC IL-23 production favours pro-inflammatory T-cell responses including enhanced proliferation of effector T cells, reduced differentiation of
Targeting dendritic cells in IBD therapy

Recently, an association has been identified between polymorphism in the CLEC7A gene and severe ulcerative colitis [79]. The risk haplotype was strongly associated with the development of medically refractory ulcerative colitis and overrepresented in patients requiring colectomy. Dectin-1 is a C-type lectin receptor expressed by dendritic cells and macrophages which recognizes β-1,3-glucans found in fungal cell walls [80]. Dectin-1 deficiency had previously been associated with increased susceptibility to fungal disease in humans and mice [81,82]. The mechanisms by which dectin-1 influences fungal control and IBD pathogenesis are still being delineated, but evidence is emerging that it may be necessary to enable dendritic cell antigen presentation to T cells [83]. Therapeutic strategies for enhancing the control of microflora in IBD, except for antibiotics and probiotics, are largely unexplored.

Microbiota in IBD

Intestinal microbes represent the largest microbial community in the body, where up to 100 trillion (10^{14}) microbes may exist in a commensal relationship with the human host [84–86]. This relationship is facilitated by the intestinal mucus layer which creates a physical boundary between the host and microbe, by specific characteristics of the microbial community which reduce their immune cell-activating properties, and by direct influence on the immune cells. The intestinal microbiota develops in early life and then the composition remains largely stable under healthy conditions [87–90]. Despite the large number of individual organisms, the number of bacterial species is estimated to be about 1000 per individual and represents only a small fraction of the existing phyla, which supports the idea that the commensal relationship is the product of a tight co-evolutionary history between the host and microbiota [86].

Shifts in the bacterial makeup on human intestinal microbiota have been documented in IBD using 16S rRNA sequencing. These studies show that a subset of Crohn’s disease and ulcerative colitis patients have depletion of commensal bacteria, especially members of the phyla Firmicutes and Bacteroidetes [91]. Overall bacterial burden is typically lower in patients with Crohn’s disease than in those with ulcerative colitis but both are lower than healthy control individuals [92]. Even within the same patient, bacterial diversity is reduced in inflamed regions when compared with non-inflamed regions. These data suggest that not only is the host inflammatory response likely contributing to the loss of diversity characteristic of IBD patients but it is also providing a selective advantage to the subset of microbiota which have an increased presence in the disease state [93].

A role for microflora in IBD pathogenesis is supported by studies showing that exposure to the faecal...
stream is required for endoscopic and histological disease manifestations [94–96] and that faecal transplants from healthy individuals can also have therapeutic benefit [97,98]. In addition, antibiotic therapy has shown some efficacy in clinical trials, with predominantly symptomatic improvement but also some endoscopic improvement and induction of remission, depending on the antibiotic and on the trial design [99–101]. Experimental colitis models also support the contention that microflora is a key component, as most mouse models of IBD require the presence of intestinal microbiota for colitis to develop [102,103].

Enteric flora plays an important role in intestinal immune cell development including dendritic cells. Dendritic cells discriminate between pathogenic and commensal bacteria by utilizing PRRs which recognize specific pathogen-associated molecular patterns. These include the toll-like receptors (TLRs) and C-type lectins such as mannose receptor and dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN) [104]. The microbial environment encountered by an immature dendritic cell can determine the ability of the mature dendritic cell to drive T-cell differentiation towards T helper 1 (TH1), T helper 2 (TH2) or regulatory polarization [105–110]. This makes the dendritic cell a key player in determining whether a tolerant or protective immune response is mounted at the mucosal surface in response to specific microflora [111].

Tolerogenic properties of dendritic cells are potentially attractive in a therapeutic setting. This is one of the mechanistic tenants underlying the interest in probiotic therapy. For example, probiotics might help to restore normal microbial populations in the intestine [112]; however, to date, these efforts have not generated consistently promising results in IBD, particularly in Crohn’s disease [113–115]. Therefore, many investigators have turned to investigating the immunomodulatory effects of specific bacteria or bacterial components in murine models to identify promising candidates. There is emerging evidence that alterations of cell surface components of lactobacilli can alter the immunoregulatory responses of dendritic cells, and this might provide a better defined therapeutic pathway in inflammatory diseases of the gastrointestinal tract [116]. The feasibility of utilizing genetically modified bacteria as a therapeutic agent has been established [117].

Mucosal dendritic cells and IBD

The innate immune system exists to provide a rapid initial response to pathogens but it must also identify and minimize immune response to commensal microflora. Initiation of the gut mucosal immune response takes place following antigen uptake by dendritic cells and presentation to adaptive immune effector cells. However, in the absence of pathogen recognition, mucosal dendritic cells primarily function to regulate immune responsiveness [118]. While there is general consensus that dendritic cells from a healthy intestinal tract are hyporesponsive to commensal bacterial components, the mechanisms by which this is achieved are not fully understood. In fact, the scientific literature surrounding this phenomenon is becoming increasingly more complex. One example of this is the evolving understanding of the role of CD103+ dendritic cells in mucosal homeostasis.

Dendritic cell subsets are typically defined based on expression of surface markers, especially CD11b (integrin αM) and CD103 (αE integrin). The majority of this work has been done in mice and dendritic cell subsets are not identical between mice and humans. CD103+ dendritic cells comprise a substantial subset of murine mucosal dendritic cells and develop from classical precursors [119,120]. These have been considered ‘tolerogenic’ DCs in mice [121], which are believed to be important in initiating T-cell responses including induction of FOXP3+ regulatory T cells (Tregs), and in the establishment of oral tolerance [122].

While CD103+ dendritic cells have been credited with a major role in the maintenance of mucosal hyporesponsiveness, in part due to their ability to produce retinoic acid necessary for the development of FoxP3+ Tregs [123], there remains some controversy on this point. Recently, Batf3 KO mice that lack a CD103+ DC subset have been reported to have normal Treg populations in the lamina propria [124], suggesting that other dendritic subsets have the potential to support Treg development. Also, recent work has shown that CD103+ dendritic cells are capable of directly sampling, transporting, and presenting luminal antigens, and therefore are not restricted to a purely immunoregulatory role in the mucosa [125,126]. Moreover, CD103+ mucosal dendritic cell populations are heterogeneous and can be further subdivided into two major populations of CD11b+ and CD11b– subsets, which vary in terms of transcription factors required for their development as well as in geographical distribution within the intestinal mucosa [127,128].

Substantially less is known about the origin and function of human intestinal dendritic cells. CD103+ dendritic cells have been identified in the human colon [129] but, unlike in mice, these cells do not constitute the dominant mucosal subset. This suggests that other distinct dendritic cell subsets may contribute to the tolerogenic intestinal mucosal environment. Therefore, although the data suggest that a subset of CD103+ dendritic cells may be very important for maintaining mucosal immune hyporesponsiveness in normal individuals, the scientific understanding of these aspects of dendritic cell biology is still evolving.

As noted previously, dendritic cells are implicated in IBD pathogenesis by both genetics and their central role in the control of microbial interactions. Activated dendritic cells accumulate at sites of intestinal inflammation in human IBD and in murine models
of intestinal inflammation [130–132]. These cells express increased levels of a variety of activation markers, enhanced TLR responsiveness, and are phenotypically distinct from the hyposensitive dendritic cells which help to mediate mucosal homeostasis [119,120,133–135]. These activated dendritic cells likely contribute to intestinal pathology and may prove to be valuable therapeutic targets in IBD. As our understanding of dendritic cell biology continues to grow and with increasing definition of mechanistic pathways, we expect to see the emergence of new dendritic cell-related drug targets.

Author contribution statement

Both authors contributed to the conceptualization and writing of this review paper.

References

1. Abraham C, Cho JH. Inflammatory bowel disease. N Engl J Med 2009; 361: 2066–2078.
2. Levine A, Griffiths A, Markowitz J, et al. Pediatric modification of the Montreal classification for inflammatory bowel disease: the Paris classification. Inflamm Bowel Dis 2011; 17: 1314–1321.
3. Kaser A, Zeisig S, Blumberg RS. Inflammatory bowel disease. Annu Rev Immunol 2010; 28: 573–621.
4. Xavier RJ, Podolsky DK. Unravelling the pathogenesis of inflammatory bowel disease. Nature 2007; 448: 427–434.
5. Danese S, Fiocchi C. Ulcerative colitis. N Engl J Med 2011; 365: 1713–1725.
6. Farmer RG, Hawk WA, Turnbull RB. Clinical patterns in Crohn’s disease: a statistical study of 615 cases. Gastroenterology 1975; 68: 627–635.
7. Gramlich T, Petras RE. Pathology of inflammatory bowel disease. Semin Pediatr Surg 2007; 16: 154–163.
8. Keighley MRB, Eastwood D, Ambrose NS. Incidence and microbiology of abdominal and pelvic abscess in Crohn’s disease. Gastroenterology 1982; 83: 1271–1275.
9. Maeda K, Okada M, Yao T, et al. Intestinal and extraintestinal complications of Crohn’s disease: predictors and cumulative probability of complications. J Gastroenterol 1994; 29: 577–582.
10. Jenkins D, Balisits M, Gallivan S, et al. Guidelines for the initial biopsy diagnosis of suspected chronic idiopathic inflammatory bowel disease. The British Society of Gastroenterology Initiative. J Clin Pathol 1997; 50: 93–105.
11. Scholmerich J, Warren B. Differential diagnosis and other forms of inflammatory bowel disease. In Inflammatory Bowel Diseases, Satangi J, Sutherland LR (eds). Churchill Livingstone: London, 2003. pp. 199–215.
12. Guindi M, Riddell RH. Indeterminante colitis. J Clin Pathol 2004; 57: 1233–1244.
13. Tremaine WJ. Diagnosis and treatment of indeterminate colitis. Gastroenterol Hepatol 2011; 7: 826–828.
14. Loftus CG, Loftus EVJ, Harmsen SW, et al. Update on the incidence and prevalence of Crohn’s disease and ulcerative colitis in Olmsted County, Minnesota, 1940–2000. Inflamm Bowel Dis 2007; 13: 254–261.
15. Herrinton LJ, Liu L, Lafata JE, et al. Estimation of the period prevalence of inflammatory bowel disease among nine health plans using computerized diagnoses and outpatient pharmacy dispensings. Inflamm Bowel Dis 2007; 13; 451–461.
38. Rioux JD, Xavier RJ, Taylor KD, et al. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nature Genet 2007; 39: 596–604.

39. Hampe J, Franke A, Rosenstiel P, et al. A genome-wide association scan of non-synonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nature Genet 2006; 39: 207–211.

40. K budding P, Huet A, Rioux JD, et al. Impaired autophagy of an intracellular pathogen induced by a Crohn’s disease associated ATG16L1 variant. PLoS One 2008; 3: e391.

41. McCarroll SA, Huet A, Kuballa P, et al. Deletion polymorphism upstream of IRGM associated with altered IRGM expression and Crohn’s disease. Nature Genet 2008; 40: 1107–1112.

42. Sabers CJ, Martin MM, Brunn GI, et al. Isolation of a protein target of the FKBPF2–rapamycin complex in mammalian cells. J Biol Chem 1995; 270: 815–822.

43. Massey DCO, Bredin F, Parkes M. Use of sirolimus (rapamycin) to treat refractory Crohn’s disease. Gut 2008; 57: 1294–1296.

44. Yin H, Li X, Zhang B, et al. Sirolimus ameliorates inflammatory responses by switching the regulatory T/T helper type 17 profile in murine colitis. Immunology 2013; 139: 494–502.

45. Duerten RH, Taylor KD, Brunt SR, et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 2006; 314: 1461–1463.

46. Wang K, Zhang H, Kugathasan S, et al. Diverse genome-wide association studies associate the IL12/IL23 pathway with Crohn disease. Am J Hum Genet 2009; 84: 399–405.

47. Parham C, Chirica M, Timans J, et al. A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rβ1 and a novel cytokine receptor subunit, IL-23R. J Immunol 2002; 168: 5699–5708.

48. Maloy KJ, Kullberg MC. IL-23 and Th17 cytokines in intestinal homeostasis. Mucosal Immunol 2008; 1: 339–349.

49. Ahern PP, Schiering C, Buonocore S, et al. Interleukin-23 drives intestinal inflammation through direct activity on T cells. Immunity 2010; 33: 279–288.

50. Goodall JC, Wu C, Zhang Y, et al. Endoluminal reticulum-stress-induced transcription factor, CHOP, is crucial for dendritic cell IL-23 expression. Proc Natl Acad Sci U S A 2010; 107: 17698–17703.

51. Di Meglio P, Di Cesare A, Laggner U, et al. Inflammatory bowel disease protective R381Q gene variant protects against immune-mediated diseases. PLoS One 2011; 6: e17160.

52. Sarin R, Wu X, Abraham C. Inflammatory disease protective R381Q IL23 receptor polymorphism results in decreased primary CD4+ and CD8+ human T-cell functional responses. Proc Natl Acad Sci U S A 2011; 108: 9560–9565.

53. Pidasheva S, Trifari S, Phillips A, et al. Functional studies on the IBD susceptibility gene IL23R implicate reduced receptor function in the protective genetic variant R381Q. PLoS One 2011; 6: e25038.

54. Maloy KJ, Kullberg MC. IL-23 and Th17 cytokines in intestinal homeostasis. Mucosal Immunol 2008; 1: 339–349.

55. Sandborn WJ, Gaskin C, Gao LL, et al. Ustekinumab induction and maintenance therapy in refractory Crohn’s disease. N Engl J Med 2012; 367: 1519–1528.

56. Fitzpatrick LR. Novel pharmacological approaches for inflammatory bowel disease: targeting key intracellular pathways and the IL-23/IL-17 axis. Int J Inflamm 2012; 2012: 389404.

57. Meylan F, Richard AG, Siegel RM. TL1A and DR3, a TNF family ligand-receptor pair that promotes lymphocyte costimulation, mucosal hyperplasia, and autoimmune inflammation. Immunol Lett 2011; 124: 188–196.

58. Shih DQ, Kwan LY, Chavez V, et al. Microbial induction of inflammatory bowel disease associated gene TL1A (TNFSF15) in antigen presenting cells. Eur J Immunol 2009; 39: 3239–3250.

59. Yamazaki K, McGovern D, Ragoussis J, et al. Single nucleotide polymorphisms in TNFSF15 confer susceptibility to Crohn’s disease. Hum Mol Genet 2005; 14: 3499–3506.

60. Kakuta Y, Kinouchi Y, Negoro K, et al. Association study of TNFSF15 polymorphisms in Japanese patients with inflammatory bowel disease. Gut 2006; 55: 1527–1528.

61. Shih DQ, Targan SR. Insights into IBD pathogenesis.Curr Gastroenterol Rep 2009; 11: 473–480.

62. Takedatsu H, Michelsen KS, Wei B, et al. TL1A (TNFSF15) regulates the development of chronic colitis by modulating both T-helper 1 and T-helper 17 activation. Gastroenterology 2008; 135: 552–567.

63. Meylan F, Song YJ, Fuss I, et al. The TNF-family cytokine TL1A drives IL-13-dependent small intestinal inflammation. Mucosal Immunol 2011; 4: 172–185.

64. Taraban VY, Sleighbia TJ, Willoughby JE, et al. Sustained TL1A expression modulates effector and regulatory T-cell responses and drives intestinal goblet cell hyperplasia. Mucosal Immunol 2011; 4: 186–196.

65. Spencer SD, DiMarco F, Hooley J, et al. The orphan receptor CRF2-4 is an essential subunit of the interleukin 10 receptor. J Exp Med 1998; 187: 571–578.

66. Kühn R, Löhler J, Rennick D, et al. Interleukin-10-deficient mice develop chronic enterocolitis. Cell 1993; 75: 263–274.

67. Kotlarz D, Beier R, Muragan D, et al. Loss of interleukin-10 signaling and infantile inflammatory bowel disease: implications for diagnosis and therapy. Gastroenterology 2012; 143: 347–355.

68. Glocker E-O, Kotlarz D, Boztug K, et al. Inflammatory bowel disease and mutations affecting the interleukin-10 receptor. N Engl J Med 2009; 361: 2033–2045.

69. Glocker E-O, Frede N, Perro M, et al. Infant colitis – it’s in the genes. Lancet 2010; 376: 1272.

70. Engelhardt KR, Shah N, Faizura-Yeso I, et al. Clinical outcome in IL-10- and IL-10 receptor-deficient mice with or without hematopoietic stem cell transplantation. J Allergy Clin Immunol 2013; 131: 825–830.

71. Franke A, Balschun T, Karlsen TH, et al. Sequence variants in IL-10, ARPC2 and multiple other loci contribute to ulcerative colitis susceptibility. Nature Genet 2008; 40: 1319–1323.

72. Amre DK, Mack DR, Morgan K, et al. Interleukin 10 (IL-10) gene variants and susceptibility for paediatric onset Crohn’s disease. Aliment Pharmacol Ther 2009; 29: 1025–1031.

73. Noguchi E, Homma Y, Kang X, et al. A Crohn’s disease-associated NOD2 mutation suppresses transcription of human IL10 by inhibiting activity of the nuclear ribonucleoprotein hnRNP-A1. Nature Immunol 2009; 10: 471–479.

74. Moore KW, de Waal Malefyt R, Coffman RL, et al. Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 2001; 19: 683–765.

75. Chaudhry A, Samstein RM, Treuting P, et al. Interleukin-10 signaling in regulatory T cells is required for suppression of Th17 cell-mediated inflammation. Immunity 2011; 34: 566–578.

76. Grütz G. New insights into the molecular mechanism of interleukin-10-mediated immunosuppression. J Leukoc Biol 2005; 77: 3–15.

77. Braat H, Peppelenbosch MP, Hommes DW. Interleukin-10-based therapy for inflammatory bowel disease. Expert Opin Biol Ther 2003; 3: 725–731.

78. Martin R, Miqueu S, Ulmer J, et al. Role of commensal and probiotic bacteria in human health: a focus on inflammatory bowel disease. Microb Cell Fact 2013; 12: 71.
Targeting dendritic cells in IBD therapy

79. Iliev ID, Funari VA, Taylor KD, et al. Interactions between commensal fungi and C-type lectin receptor dectin-1 influence colitis. Science 2012; 336: 1314–1317.

80. Brown GD, Gordon S. Immune recognition: a new receptor for β-glucans. Nature 2001; 413: 36–37.

81. Ferwerda B, Ferwerda G, Plantinga TS, et al. Human dendin-1 deficiency and mucocutaneous fungal infections. N Engl J Med 2009; 361: 1760–1767.

82. Taylor PR, Tsoni SV, Willment JA, et al. Dectin-1 is required for β-glucan recognition and control of fungal infection. Nature Immunol 2006; 8: 31–38.

83. Ma J, Becker C, Lowell CA, et al. Dectin-1 triggered recruitment of light chain 3 protein to phagosomes facilitates major histocompatibility complex class II presentation of fungal-derived antigens. J Biol Chem 2012; 287: 34149–34156.

84. Eckburg PB, Bik EM, Bernstein CN, et al. Human intestinal microbial flora. Science 2005; 308: 1635–1638.

85. Ley RE, Peterson DA, Gordon JJ. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 2006; 124: 837–848.

86. Lepage P, Leclerc MC, Joossens M, et al. A metagenomic insight into our gut’s microbiome. Gut 2013; 62: 146–158.

87. Koenig JF, Leik FD, Scaife N, et al. Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci U S A 2011; 108 (Suppl 1): 4578–4585.

88. Matamoros S, Gra-Leguen C, Le Vacon F, et al. High-throughput clone library analysis of the mucosa-associated microbiota reveals dysbiosis and differences between inflamed and non-inflamed regions of the intestine in inflammatory bowel disease. Proc Natl Acad Sci U S A 2011; 108 (Suppl 1): 4554–4561.

89. Frank DN, St Amand AL, Feldman RA, et al. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A 2007; 104: 13780–13785.

90. Walker AW, Sanders JG, Churcher C, et al. High-throughput clone library analysis of the mucosa-associated microbiota reveals dysbiosis and differences between inflamed and non-inflamed regions of the intestine in inflammatory bowel disease. BMC Microbiol 2011; 11: 7.

91. Nagalingam NA, Lynch SV. Role of the microbiota in inflammatory bowel diseases. Inflamm Bowel Dis 2012; 18: 968–984.

92. Harper PH, Leck J, Kettlewell MG, et al. Role of the faecal stream in the maintenance of Crohn’s colitis. Gut 1985; 26: 279–284.

93. Rutgeerts P, Goboes K, Peeters M, et al. Effect of faecal stream diversion on recurrence of Crohn’s disease in the neoterminal ileum. Lancet 1991; 338: 711–714.

94. Winslet MC, Allan A, Poxon V, et al. Faecal diversion for Crohn’s colitis: a model to study the role of the faecal stream in the inflammatory process. Gut 1994; 35: 236–242.

95. Bennet JD, Brinkman M. Treatment of ulcerative colitis by implantation of normal colonic flora. Lancet 1989; 1: 164.

96. Borody TJ, Warren EF, Leis S, et al. Treatment of ulcerative colitis using fecal bacteriotherapy. J Clin Gastroenterol 2003; 37: 42–47.

97. Rietijk ST, D’Haens GR. Recent developments in the treatment of inflammatory bowel disease. J Digest Dis 2013; 14: 282–287.

98. Prantera C, Lofo H, Grimaldi M, et al. Rifaximin-extended intestinal release induces remission in patients with moderately active Crohn’s disease. Gastroenterology 2012; 142: 473–481.

99. Giovannetti P, Rizzello F, Ferrieri A, et al. Rifaximin in patients with moderate or severe ulcerative colitis refractory to steroid-treatment: a double-blind, placebo-controlled trial. Dig Dis Sci 1999; 44: 1220–1221.

100. Saleh M, Elson CO. Experimental inflammatory bowel disease: insights into the host–microbiota dialog. Immunology 2011; 134: 293–302.

101. Nell S, Suerbaum S, Josenhans C. The impact of the microbiota on the pathogenesis of IBD: lessons from mouse infection models. Nature Rev Microbiol 2010; 8: 564–577.

102. Gordon S. Pattern recognition receptors: doubling up for the innate immune response. Cell 2002; 111: 927–930.

103. Kalinski P, Hilkens CMU, Wierenga EA, et al. T-cell priming by type-1 and type-2 polarized dendritic cells: the concept of a third signal. Immunol Today 1999; 20: 561–567.

104. de Jong EC, Vieira PL, Kalinski P, et al. Microbial compounds selectively induce Th1 cell-promoting or Th2 cell-promoting dendritic cells in vitro with diverse Th cell-polarizing signals. J Immunol 2002; 168: 1704–1709.

105. Delganiec A, Kodyk Y, Kopsaz A, et al. Hepatitis C virus core and nonstructural protein 3 proteins induce pro- and anti-inflammatory cytokines and inhibit dendritic cell differentiation. J Immunol 2003; 170: 5615–5624.

106. Smits HH, Engering A, van der Kleij D, et al. Selective probiotic bacteria induce IL-10-producing regulatory T cells in vitro by modulating dendritic cell function through dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin. J Allergy Clin Immunol 2005; 115: 1260–1267.

107. Uematsu S, Fujimoto K, Jang MH, et al. Regulation of humoral and cellular gut immunity by lamina propria dendritic cells expressing Toll-like receptor 5. Nature Immunol 2008; 9: 769–776.

108. Slighel M, McGovern N, Teo P, et al. IFR4 transcription factor-dependent CD11b+ dendritic cells in human and mouse control mucosal IL-17 cytokine responses. Immunity 2013; 38: 970–983.

109. Steinman RM, Hawiger D, Nussenzweig MC. Tolerogenic dendritic cells. Annu Rev Immunol 2003; 21: 685–711.

110. Reid G, Younes JA, Van der Mei HC, et al. Microbiota restoration: natural and supplemented recovery of human microbial communities. Nature Rev Microbiol 2011; 9: 27–38.

111. Naidoo K, Gordon M, Fagbemi AO, et al. Probiotics for maintenance of remission in ulcerative colitis. Cochrane Database Syst Rev 2011; 12: CD007443.

112. Butterworth AD, Thomas AG, Akonbeng AK. Probiotics for remission in Crohn’s disease. Cochrane Database Syst Rev 2008;3.

113. De Greef E, Vandenplas Y, Hauser B, et al. Probiotics for maintenance of remission in ulcerative colitis. Cochrane Database Syst Rev 2011; 12: 728–734.

114. Braat H, Rottiers P, Hommes DW, et al. A phase I trial with transgenic bacteria expressing interleukin-10 in Crohn’s disease. Clin Gastroenterol Hepatol 2006; 4: 754–759.

115. Iwasaki A. Mucosal dendritic cells. Annu Rev Immunol 2007; 25: 381–418.

116. Bogunovic M, Ginhoux F, Helft J, et al. Origin of the lamina propria dendritic cell network. J Exp Med 2009; 206: 1420–1433.

117. Viollet C, Vallon-Eberhardt A, Elinav E, et al. Intestinal lamina propria dendritic cell subsets have different origin and functions. Immunity 2009; 31: 502–512.

118. Johansson-Lindbom B, Svensson M, Pabst O, et al. Functional specialization of gut CD103+ dendritic cells in the regulation of tissue-selective T cell homing. J Exp Med 2005; 202: 1063–1073.

119. Scott CL, Aumeneur AM, Mowat AM. Intestinal CD103+ dendritic cells: master regulators of tolerance? Trends Immunol 2011; 32: 412–419.
123. Agace WW, Persson EK. How vitamin A metabolizing dendritic cells are generated in the gut mucosa. *Trends Immunol* 2012; **33**: 42–48.

124. Edelson BT, Wumesh KC, Juang R, *et al.* Peripheral CD103+ dendritic cells form a unified subset developmentally related to CD8α+ conventional dendritic cells. *J Exp Med* 2010; **207**: 823–836.

125. Farache J, Koren I, Milo I, *et al.* Luminal bacteria recruit CD103+ dendritic cells into the intestinal epithelium to sample bacterial antigens for presentation. *Immunity* 2013; **38**: 581–595.

126. Kinnebrew MA, Charlie G, Buffie CG, *et al.* Intestinal CD103+ CD11b+ lamina propria dendritic cells instruct intestinal epithelial cells to express antimicrobial proteins in response to Toll-like receptor 5 activation. *Immunity* 2012; **36**: 276–287.

127. Plantinga M, Guilliems M, Vanheerswynghels M, *et al.* Conventional and monocyte-derived CD11b+ dendritic cells initiate and maintain T helper 2 cell-mediated immunity to house dust mite allergen. *Immunity* 2013; **38**: 322–335.

128. Ohtani M, Takayuki Hoshii T, Fujii H, *et al.* Cutting edge: mTORC1 in intestinal CD11c+CD11b+ dendritic cells regulates intestinal homeostasis by promoting IL-10 production. *J Immunol* 2012; **188**: 4736–4740.

129. Mann ER, Landy JD, Bernardo D, *et al.* Intestinal dendritic cells: their role in intestinal inflammation, manipulation by gut microbiota and differences between mice and men. *Immunol Lett* 1998; **150**: 30–40.

130. Bell SI, Rigby R, English N, *et al.* Migration and maturation of human colonic dendritic cells. *J Immunol* 2001; **166**: 4958–4967.

131. Silva MA. Intestinal dendritic cells and epithelial barrier dysfunction in Crohn’s disease. *Inflamm Bowel Dis* 2009; **15**: 436–453.

132. Varol C, Zigmond E, Jung S. Securing the immune tightrope: mononuclear phagocytes in the intestinal lamina propria. *Nature Rev Immunol* 2010; **10**: 415–426.

133. te Velde AA, van Kooyk Y, Braat H, *et al.* Increased expression of DC-SIGN+IL-12+IL-18+ and CD83+IL-12+IL-18+ dendritic cell populations in the colonic mucosa of patients with Crohn’s disease. *Eur J Immunol* 2003; **33**: 143–151.

134. Hart AL, Al-Hassia HO, Rigby RJ, *et al.* Characteristics of intestinal dendritic cells in inflammatory bowel diseases. *Gastroenterology* 2005; **129**: 50–65.

135. Takenaka S, Safroneeva E, Xing Z, *et al.* Dendritic cells derived from murine colonic mucosa have unique functional and phenotypic characteristics. *J Immunol* 2007; **178**: 7984–7993.

2012 Annual Review Issue in the Journal of Pathology...

WT1 in disease: shifting the epithelial–mesenchymal balance

Eve Miller-Hodges and Peter Hohenstein

The cellular pathology of lysosomal diseases

Timothy M Cox and M Begoña Cachón-González

Autophagy and disease: always two sides to a problem

Sunandini Sridhar, Yair Botbol, Fernando Macian and Ana Maria Cuervo

To view these articles, and more, please visit: www.thejournalofpathology.com

Click ‘ALL ISSUES (1892 - 2011)’, to read articles going right back to Volume 1, Issue 1.