FtsK-Dependent Dimer Resolution on Multiple Chromosomes in the Pathogen *Vibrio cholerae*

Marie-Eve Val1,2,3, Sean P. Kennedy1,2,3, Meriem El Karoui4, Laetitia Bonné1,2,3, Fabien Chevalier1,2,3, François-Xavier Barre1,2,3*

1 CNRS, Centre de Génétique Moléculaire, UPR 2167, Gif-sur-Yvette, France, 2 Université Paris-Sud, Orsay, France, 3 Université Pierre et Marie Curie, Paris 6, Paris, France, 4 INRA, Unité des Bactéries Lactiques et Pathogènes Opportunistes, UR888, Jouy en Josas, France

Abstract

Unlike most bacteria, *Vibrio cholerae* harbors two distinct, nonhomologous circular chromosomes (chromosome I and II). Many features of chromosome II are plasmid-like, which raised questions concerning its chromosomal nature. Plasmid replication and segregation are generally not coordinated with the bacterial cell cycle, further calling into question the mechanisms ensuring the synchronous management of chromosome I and II. Maintenance of circular replicons requires the resolution of dimers created by homologous recombination events. In *Escherichia coli*, chromosome dimers are resolved by the addition of a crossover at a specific site, *dif*, by two tyrosine recombinases, XerC and XerD. The process is coordinated with cell division through the activity of a DNA translocase, FtsK. Many *E. coli* plasmids also use XerCD for dimer resolution. However, the process is FtsK-independent. The two chromosomes of the *V. cholerae* N16961 strain carry divergent dimer resolution sites, *dif1* and *dif2*. Here, we show that *V. cholerae* FtsK controls the addition of a crossover at *dif1* and *dif2* by a common pair of Xer recombinases. In addition, we show that specific DNA motifs dictate its orientation of translocation, the distribution of these motifs on chromosome I and chromosome II supporting the idea that FtsK translocation serves to bring together the resolution sites carried by a dimer at the time of cell division. Taken together, these results suggest that the same FtsK-dependent mechanism coordinates dimer resolution with cell division for each of the two *V. cholerae* chromosomes. Chromosome II dimer resolution thus stands as a bona fide chromosomal process.

Introduction

Vibrio cholerae, the causative agent of cholera, harbors two nonhomologous circular chromosomes [1]. The majority of genes believed to be necessary for the basic life processes of *V. cholerae* are carried on the 2.96 Mbp chromosome I, whereas the 1.07 Mbp chromosome II only harbors a few essential genes [1]. The preferential transcription of genes from chromosome II during colon colonization [2] suggests that this genomic organization is important for pathogenicity. Likewise, other bacteria with multiple chromosomes can adopt several different life cycles [3], which led to the idea that multipartite genomes offer a selective advantage for the adaptation to very different environmental conditions.

Nevertheless, most bacteria harbor a single chromosome. In contrast, there is no apparent limit to the size and numbers of chromosomes harbored by eukaryotic cells. An important difference between bacteria and eukaryotes is that specific machineries appear to exist for the coordinated maintenance of each chromosome of a given bacterium, whereas eukaryotic cells possess a single global system for all chromosomes [4–12]. For instance, the two *V. cholerae* chromosomes harbor different partition systems [4,7] and initiation of their replication is governed by different mechanisms [6,8,9]. In addition, many features of *V. cholerae* chromosome II, such as its partition system, are plasmid-like, which raised questions concerning its chromosomal nature [1,10,13]. Plasmid replication and segregation are generally not coordinated with the bacterial cell cycle [14], further raising questions on the mechanisms ensuring the synchronous management of chromosome I and II.

A second major difference between bacteria and eukaryotes is intrinsic to the structure of chromosomes: in bacteria, chromosomes are generally covalently closed circular DNA molecules while they are linear in eukaryotes. DNA circularity can result in the formation of chromosome dimers by homologous recombination [15], which poses a barrier to the segregation of genetic information if they are not resolved before cell division (Figure 1A). Indeed, inactivation of chromosome dimer resolution (CDR) in *Escherichia coli* results in ~1.5% cell death per generation under laboratory growth conditions [16], which corresponds to the estimated rate of chromosome dimers formed at each cell generation [17]. This prompted us to study how dimer resolution is achieved on each of the two *V. cholerae* chromosomes.

The mechanism of CDR was originally elucidated in *E. coli*. In this organism, it depends on the addition of a crossover at *dif*, a 28bp site located at the opposite of the origin of replication on the chromosome, by two related tyrosine recombinases, XerC and XerD (Figure 1A; see [18] for a review). In addition, CDR depends on two activities of a cell division protein, FtsK. First,
Streptococci and coordination of CDR with the last stage of cell division [26]. In different site-specific recombination systems to avoid multimerization, XerS, for CDR [27]. Plasmid and viruses have also adopted the larger chromosome of the pathway, [18]). In this case, however, recombination requires their host [29,30]. In the later case, XerC-catalysis initiates recombinase [28], while others use the two Xer recombinases of recombinases, such as phage P1, which encodes the Cre tyrosine recombinase at FtsK translocation (Figure 1A). Second, FtsK serves to activate recombination at dif via a direct interaction with XerD [24,25]. dif contains two 11bp binding sites for XerC and XerD, separated by a central region at the outer boundary of which recombination occurs. The interaction between XerD and FtsK allows XerD to perform a first pair of strand exchanges [20], resulting in the formation of a Holliday junction [HJ]. This HJ is converted to a crossover by a second pair of strand exchanges, which is catalyzed by XerC independently of FtsK (Figure 1B, chromosomal pathway). Thus, in E. coli, the requirement for FtsK to bring dif sites together and to activate the catalytic activity of XerD permits coordination of CDR with the last stage of cell division [26].

The E. coli pathway of CDR is not universal. For instance, Streptococci and Lactococci possess only a single tyrosine recombinase, XerS, for CDR [27]. Plasmid and viruses have also adopted different site-specific recombination systems to avoid multimerization of their genome. In E. coli, some of them depend on their own recombinases, such as phage P1, which encodes the Cre tyrosine recombinase [28], while others use the two Xer recombinases of their host [29,30]. In the later case, XerC-catalysis initiates recombination independently of FtsK (Figure 1B, plasmid pathway, [18]). In this case, however, recombination requires ~200bp of accessory sequences flanking the plasmid sites and which are bound by accessory proteins.

Orthologues of E. coli xerC, xerD and ftsK are readily identified on the larger chromosome of the V. cholerae strain N16961 (xerCVc, xerDVc, ftsKVc, Figure S1) whereas its second chromosome does not encode any site-specific recombination system that could be implicated in CDR apart from the superintegron integrase [IntIA, Figure S1]. N16961 chromosome I and II both carry dif-like sequences, dif1 and dif2, which were originally identified as integration sites for the cholera toxin phage, CTX\textphi [31]. The weak filamentous phenotype of V. cholerae cells deleted for xerC or dif1 fits with a defect in CDR [31]. However, two features of the V. cholerae Xer recombination system, which could be linked to the coexistence of distinct, non-homologous chromosomes inside the same bacterium, were intriguing. First, dif2 differs from the dif consensus of \gamma-Proteobacteria by 3 bases, four of which belong to the central region (Figure 1B). Such a divergence is only found on plasmid sites, which, coupled with the other plasmid-like features of chromosome II, suggested that chromosome II dimer resolution might follow a plasmid pathway. Second, it was reported that the position of cleavage of XerDVVc on dif1 might differ from the one of its E. coli orthologue on dif [32], even if dif1 differs from the dif consensus of \gamma-Proteobacteria by only 2 bases (Figure 1B), further raising questions on the exact mechanisms coordinating CDR of chromosome I and II with the cell cycle.

Here, we present the first formal study of CDR in V. cholerae and measure the rate of chromosome dimer formation on its two chromosomes under laboratory growth conditions. We show that the cell division protein FtsKVVc is required for recombination by XerCVVc and XerDVVc at dif1 and dif2. In addition, we show that the activity of FtsKVVc is directed by specific DNA motifs, which display the same skewed distribution on the two chromosomes, dif1 and dif2 being located at the junction of their polarity. Taken together, these results suggest that the same FtsK-dependent mechanism coordinates dimer resolution on each of the two V. cholerae chromosomes with cell division. Chromosome II dimer resolution thus stands as a bona fide chromosomal process.

Results

Chromosome Dimer Formation in V. cholerae

The growth of V. cholerae strains deficient in CDR was directly compared to the growth of their parental strain in competition experiments in rich media (Figure 2). These experiments revealed a defect of 5.8% and 3% per cell per generation for Δdif1 and Δdif2 cells, respectively, compared to their wild type counterparts. Since these growth defects were entirely suppressed in a recA background (Figure 2), they directly reflect the rates of dimer formation on chromosome I and II. \(I_{\text{dimer}}^\text{chr1} \) and \(I_{\text{dimer}}^\text{chr2} \) (See Material and Methods). The 8.6% growth defect of xerCVc cells, which was also suppressed in a recA background, reflects the total rate of chromosome dimer formation in V. cholerae, \(I_{\text{dimer}}^\text{chr1+chr2} \) (Figure 2). Interestingly, \(I_{\text{dimer}}^\text{chr1+chr2} \) equals \(1 - (1 - I_{\text{dimer}}^\text{chr1}) (1 - I_{\text{dimer}}^\text{chr2}) \), indicating that dimer formation on the two V. cholerae chromosomes is independent.

In Vitro Cleavage by the V. cholerae recombinases on dif1 and dif2

Recombinase-mediated strand cleavage can be assayed in vitro using suicide substrates that contain a nick opposite of the position of cleavage (Figure 3A). Cleavage of the continuous strand of a suicide substrate generates a double strand break that prevents re-ligation (Figure 3B). This leads to (i) the accumulation of covalent protein/DNA complexes between the attacking recombinase and the 5’-end fragment of the continuous strand and (ii) the accumulation of free 3’-end fragments of the continuous strand (Figure 3B). XerCVVc and XerDVVc each cleave a specific strand on difVc. The strand cleaved by XerCVVc is termed Top strand. The strand cleaved by XerDVVc is termed Bottom strand. Following this convention, suicide substrates in which the continuous strand is expected to be cleaved by XerCVVc are called Top strand suicide substrates and suicide substrates in which the continuous strand is expected to be cleaved by XerDVVc are called Bottom strand suicide substrates (Figure 3A).

Labeling the 5’-end of the continuous strand of suicide substrates allows the detection of covalent recombinase/DNA.
complexes (Figure 3C). The molecular weight of XerCVc and XerDVc being very similar, we used a maltose binding protein fusion of XerCVc (MBPXerCVc) in conjunction with XerDVc to avoid any confusion between the two possible covalent complexes. For both \(\text{dif} \text{1} \) and \(\text{dif} \text{2} \), MBPXerCVc-DNA covalent complexes accumulated when Top strand suicide substrates were used (Figure 3C, T1 and T2, respectively), indicating that XerC Vc cleaves the Top strands of \(\text{dif} \text{1} \) and \(\text{dif} \text{2} \). Furthermore, XerDVc-DNA covalent complexes accumulated when Bottom strand suicide substrates were used (Figure 3C, B1 and B2), indicating that XerD cleaves the bottom strands of \(\text{dif} \text{1} \) and \(\text{dif} \text{2} \).

The position of cleavage of XerCVc and XerDVc were then determined by comparing of the length of the free DNA fragments liberated by recombinase cleavage to a ladder obtained by chemical cleavage at purine bases of the suicide substrates (Figure 3D). To this aim, the continuous strands of the suicide substrates were labeled on their 3' end. Cleavage by tyrosine recombinases generates a 5'OH DNA extremity whereas chemical cleavage leaves a 5' phosphate. As a consequence, the free DNA fragments had to be first phosphorylated by kinase treatment (Figure 3D, PNK) in order to be compared with the chemical cleavage ladder (Figure 3D, G+A). We thus found that XerCVc and XerDVc cleave DNA at the junction between their respective binding site and the central region of \(\text{dif} \text{Ec} \) (Figure 3D, black arrows).

FtsK-Dependent Recombination at \(\text{dif} \text{1} \) and \(\text{dif} \text{2} \)

Analysis of the DNA sequence immediately upstream and downstream of \(\text{dif} \text{1} \) and \(\text{dif} \text{2} \) in different Vibrio species did not reveal any conserved motifs that could serve to bind accessory proteins (data not shown). FtsKVc was thus left as the most likely candidate for activation of Xer recombination at both sites. To test this possibility, we reconstituted the \(\text{V. cholerae} \) Xer system in \(\text{E. coli} \) cells deleted for their natural FtsK/XerCD system. We used a \(\text{xerC} \) and \(\text{xerD} \) \(\text{E. coli} \) strain, which was also \(\text{ftsK} \text{C}^{-} \). This strain produces

Figure 1. FtsK-dependent and FtsK-independent Xer recombination. A. Chromosome dimer formation and resolution in \(\text{E. coli} \). The two homologous chromosomes are depicted by thick and thin lines, to allow for the visualization of crossovers. B. Link between the central region of XerCD-target sites (right) and the recombination pathway adopted at these sites (left). The XerCD-dif recombination complex is viewed from the C-terminal side of the recombinases, to show the C-terminal interactions of XerC and XerD. Strands cleaved by XerC and XerD in \(\text{E. coli} \) are shown with thick and thin lines, respectively. Positions of strand cleavages by \(\text{E. coli} \) XerC and XerD are indicated by white and black triangles, respectively. The WebLogo was generated using the alignment of putative \(\text{dif} \) sites from the larger chromosome of 27 \(\gamma \)-Proteobacteria (Text S1). The XerC-binding site, XerD-binding site and central region of \(\text{dif} \text{Ec} \) are indicated below the alignment.

doi:10.1371/journal.pgen.1000201.g001
only the N-terminal domain of FtsKEc, essential for viability [33], but lacks production of the C-terminal domain of FtsKEc, which is necessary for recombination at \textit{dyf}Ec [34]. XerCVc was expressed in conjunction with XerDVc from the chromosomal \textit{E. coli} xerC promoter. The production of FtsKVc was controlled by placing the full length \textit{fts}KVc ORF under an arabinose-inducible promoter on a high-copy number plasmid. A low-copy plasmid carrying two recombination sites in direct repeats was used as a reporter. Recombination between the two repeated sites results in the excision of the intervening DNA, which can be monitored by agarose gel electrophoresis. For both \textit{dyf}\textsubscript{1} and \textit{dyf}\textsubscript{2}, the amount of recombination correlated with the amount of arabinose used for induction, indicating that Xer recombination at \textit{dyf}\textsubscript{1} and \textit{dyf}\textsubscript{2} depends on FtsKVc (Figure 4A).

To determine the order of the strand exchanges in the recombination reactions, we monitored plasmid recombination in a set of four strains encoding either wild-type XerCVc and XerDVc or the XerC\textsubscript{Vc} and XerD\textsubscript{Vc} mutants, in which the catalytic tyrosine is replaced by a phenylalanine (Figure 4B). For both \textit{dyf}\textsubscript{1} and \textit{dyf}\textsubscript{2}, no resolution product or \textit{HJ} intermediate were detected in XerD\textsubscript{Vc} cells (Figure 4B, lane 2, 4, 6 and 8). In contrast, we could detect the accumulation of a \textit{HJ} intermediate in XerC\textsubscript{Vc} XerD\textsubscript{Vc} cells (Figure 4B, lane 3 and 7), indicating that XerD\textsubscript{Vc} mediates the first pair of strand exchanges during both \textit{dyf}\textsubscript{1} and \textit{dyf}\textsubscript{2}-recombination. Recombination products were likely still observed in XerC\textsubscript{Vc} XerD\textsubscript{Vc} cells since other cellular processes than Xer recombination are capable of resolving \textit{HJs} [18]. However, the amount of product was considerably decreased, indicating that intermediate \textit{HJs} are preferentially resolved to crossovers by the action of XerC\textsubscript{Vc}.

All together, these results indicate that FtsKVc activates recombination at \textit{dyf}\textsubscript{1} and \textit{dyf}\textsubscript{2} by promoting the exchange of a first pair of strands by XerDVc.

Species-Specificity in Xer Recombination Activation

Several residues implicated in the interaction between \textit{E. coli} XerD and FtsK have been mapped [24,25]. These residues are not entirely conserved between the \textit{V. cholerae} and \textit{E. coli} proteins (Figure 5A), suggesting that the interactions between the translocase and the recombinases might be specific in these two species. Nevertheless, both FtsKEc and FtsKVc could activate recombination by XerC\textsubscript{Dc} and XerC\textsubscript{Vc} at \textit{dyf}Ec, \textit{dyf}\textsubscript{1} and \textit{dyf}\textsubscript{2} (Figure 5B).

However, the efficiency of recombination varied for each site and for each pairing of translocase/recombinases. XerC\textsubscript{Dc}-recombination at \textit{dyf}Ec and \textit{dyf}\textsubscript{1} reached 80% of efficiency whether FtsKEc or FtsKVc were produced (Figure 5B, XerC\textsubscript{Dc}, \textit{dyf}\textsubscript{1} and \textit{dyf}\textsubscript{2}). In contrast, XerC\textsubscript{Dc}-recombination at \textit{dyf}\textsubscript{2} was more efficient when activated by FtsKEc than FtsKVc (Figure 5B, XerC\textsubscript{Dc}, \textit{dyf}\textsubscript{2}). In addition, it did not reach 80% efficiency, even in the presence of the cognate partner translocase, FtsKEc. XerC\textsubscript{Dc}-recombination at \textit{dyf}\textsubscript{10}, \textit{dyf}\textsubscript{1} and \textit{dyf}\textsubscript{2} reached 80% of efficiency (Figure 5B, XerC\textsubscript{Dc}). However, this required the presence of FtsKVc. XerC\textsubscript{Dc}-recombination at \textit{dyf}\textsubscript{2} even fell below 20% when activated by FtsKVc. Thus, the effect of species-specificity is more pronounced on \textit{dyf}\textsubscript{2} than on \textit{dyf}\textsubscript{1}.

Importance of the Sequence of the Resolution Sites for the Stringent Control of Xer Recombination

We noticed that the \textit{V. cholerae} recombinases could promote recombination between \textit{dyf}\textsubscript{1} sites in the absence of FtsK production, albeit to a very low level (Figure 5B, XerC\textsubscript{Dc}, \textit{dyf}\textsubscript{1}, No FtsK). This was further exemplified on \textit{dyf}Ec substrates, in which 53% of recombination was observed without FtsK expression (Figure 5B, XerC\textsubscript{Dc}, \textit{dyf}Ec, No FtsK). Resolution products were detected in the absence of XerC catalysis (Figure 5C, XerC\textsubscript{Vc} strains) but not in the absence of XerD catalysis (Figure 5C, XerD\textsubscript{Vc} strains), signifying that XerD\textsubscript{Vc} catalysis initiated recombination. \textit{dyf}\textsubscript{2} differs from the \textit{γ}-Proteobacteria consensus by only 2 bp, the substitution of \textit{A}\textsubscript{17} by \textit{G} and the substitution of \textit{A}\textsubscript{10} by \textit{T} (Figure 5D). We therefore analyzed FtsK-independent XerC\textsubscript{Dc} recombination at hybrid sites between \textit{dyf}\textsubscript{1} and \textit{dyf}\textsubscript{2} to identify residues important for the above observation (Figure 5D). A site carrying the single [\textit{G-A}]17 substitution promoted a much higher level of FtsK-independent recombination at \textit{dyf}\textsubscript{2}, while recombination at sites carrying the [\textit{T-A}]10 and [\textit{G-A}]17 substitutions was not altered ([\textit{G-A}]13). In addition, when \textit{T}10 was altered to \textit{A} in \textit{dyf}\textsubscript{2}, we observed a faint recombination product ([\textit{G-A}]23), which was significant since FtsK-independent recombination was never observed at \textit{dyf}\textsubscript{2}. Thus, \textit{G}17 in the central region of \textit{dyf}\textsubscript{1} and \textit{T}10 in the XerC-binding site of \textit{dyf}\textsubscript{1} and \textit{dyf}\textsubscript{2} appear to have an important role in maintaining Xer recombination under the tight control of FtsK in \textit{V. cholerae}.
Figure 3. In vitro cleavage of dif1 and dif2 by the V. cholerae recombinases. A. Putative XerCVc and XerDVc cleavage sites on dif1 and dif2 and scheme of the suicide substrates used in this study. The top and bottom strands of dif1 and dif2 are depicted as black and grey strands. Their equivalents in dif1\textsubscript{Ec} and dif2\textsubscript{Ec} are cleaved by XerCEc and XerDEc, respectively. Grey triangles further indicate the positions equivalent to these where XerCVc and XerDVc cleave dif\textsubscript{Vc}. A white triangle indicates the XerDVc-cleavage position reported for dif1Vc [32]. Top and bottom strand suicide substrates contain a nick opposite the position expected to be cleaved by XerCVc and XerDVc if the E. coli paradigm is followed, respectively. T1, B1, T2, B2: suicide substrates on dif1 and dif2, respectively. B. Scheme of a XerC-suicide cleavage reaction. C. Covalent complex formation by MBPMBPXerCVc and XerDVc on suicide substrates. Schemes of substrates and products are shown on the top and on the right of the gel, respectively. Suicide substrates were labeled on the 5' side of the continuous strand, as indicated (5'*). D. Cleavage sites of XerCVc and XerDVc on dif1 and dif2. Schemes of substrates are shown on the top of the gels. Suicide substrates were labeled on the 3' side of the continuous strand, as indicated (3'*). PNK: phosphorylation with T4 polynucleotide kinase; G+A: chemical cleavage ladder. Sequences resulting from the chemical cleavage are indicated beside the gels. Bases of the central region and of the XerCD-binding sites are indicated in black and grey, respectively. The deduced cleavage points are indicated by black triangles.

doi:10.1371/journal.pgen.1000201.g003
V. cholerae FtsK Orienting Polar Sequences

We next investigated if FtsKVc could serve to bring together the CDR sites carried by dimers of chromosome I or by dimers of chromosome II. Several key residues implicated in KOPS recognition have been identified in the \(\gamma \) domain of FtsKEc (Figure 5A; N1296; R1300; E1303; [35]). The conservation of these residues in FtsKVc suggested that it could recognize the same motifs (Figure 5A; N926, R930 and E933). If this was indeed the case, replacing the C-terminal domain of FtsKEc with the one of FtsKVc (Figure 5A; N926; R930; E933). We conclude that FtsKVc directly recognizes the GGGCAGGG motif and that recognition engages amino acids N926, R930 and E933. We decided therefore to analyze the skew and frequency of the GGGCAGGG motif on chromosome I and II. GGGCAGGG is highly polarized on both chromosomes with statistically significant skews (Figure 6C). On chromosome I, the skew switches precisely at dif\(1 \) whereas on chromosome II one motif is present on the reverse orientation a few kb before dif\(2 \) (Figure 6C). However, it has been shown in \(E. coli \) that a single non-permissive KOPS motif in the vicinity of dif is not sufficient to impair recombination [23]. The frequency of GGGCAGGG is low on both \(V. cholerae \) chromosomes (Figure 6C), suggesting that this motif is not sufficient by itself to provide polar orientation of FtsKVc. We therefore analyzed the distribution of all octamers motif families with one degenerated position on both chromosomes. We ranked potential candidates according to their skew significance keeping only families that had a skew of at least 80\% and a frequency of at least once every 30 kb. Only one family (GGGNAGGG) was among the 10 best candidates of both chromosomes. This family is highly skewed, frequent (Figure 6C) and contains the experimentally active GGGCAGGG motif. Taken together, these results suggest that the GGGNAGGG motifs might function as KOPS in \(V. cholerae \).

Discussion

A Common Cell Division-Coordination Mechanism for Dimer Resolution of the Two \(V. cholerae \) Chromosomes

The strand exchanges catalyzed by XerCVc and XerDVc occur at the junction between their respective binding site and the central region of dif\(1 \) and dif\(2 \), as previously reported for the \(E. coli \) recombinases on dif (Figure 3). FtsKVc promotes recombination at both sites by activating a first pair of strand exchanges mediated by XerDVc (Figure 4), thanks to a species-specific interaction with the recombinases (Figure 5). In addition, GGGNAGGG motifs seem to function as FtsKVc-Orienting Polar Sequences, their frequency and distribution on the two \(V. cholerae \) chromosomes suggesting that the FtsKVc-translocase activity helps bring CDR sites together when dimers are formed on chromosome I or on chromosome II (Figure 6). We conclude that the same FtsK-dependent mechanism controls dimer resolution on each of the two \(V. cholerae \) chromosomes. We have previously shown in \(E. coli \) that the requirement for FtsK to activate Xer recombination delays CDR to the time of septum closure [26], which is likely to also hold true in \(V. cholerae \). Thus, the study of CDR provides the first example of a cell cycle coordination mechanism shared by the two \(V. cholerae \) chromosomes, which is similar to the way chromosomal maintenance processes are coordinated within the cell cycle of eukaryotes.

Dimer Formation Is Linked to Replicon Size

Many bacteria harbor multiple chromosomes, which seems an important determinant of their individual life styles. A few bacterial...
species harbor linear replicons in addition to circular, such as Agrobacterium tumefaciens and the Borrelia species [3]. In the vast majority of cases, however, the multiple chromosomes harbored within a bacterium are circular. Maintenance of circular replicons requires the resolution of dimers created by homologous recombination events. In V. cholerae, 5.8% of dimers per cell per generation are formed on the 2.96 Mbp chromosome I and 3% of dimers are created on the 1.07 Mbp chromosome II (Figure 2). Under similar growth conditions, 15.6% of dimers are generated on the 4.6Mbp E. coli chromosome (Figure 6). These results suggest that dimer formation increases with replicon size, possibly reaching a theoretical upper limit of 50% for very large replicons. In addition, the rate of dimer formation seems to vary exponentially with replicon size for small replicons. Based on this hypothesis, the frequency of chromosome dimer formation in V. cholerae would be 11% per cell generation if it carried a single circular chromosome of 4.03Mbp. Instead, we measured a total rate of 8.6% for the two chromosomes (Figure 2). Thus, the particular genomic organization of the Vibrios seems to minimize chances for chromosome dimer formation, which is theoretically beneficial.

Generalization to Other Bacteria with Multiple Chromosomes

Putative dif sites were readily identified on each of the two chromosomes harbored by 7 additional γ-Proteobacteria (Figure 7 and Figure S2). To determine dif sites in β- and α-Proteobacteria, we generated a profile Hidden Markov Model (HMM) based on the alignment of the putative CDR sites found in the larger chromosome of 27 γ-Proteobacteria using the program HHMER. We then compared each sequence by hand to ensure the proper 6 bp spacing between the putative XerC and XerD binding sites. Putative dif sites were thus identified on each of the multiple chromosomes harbored by 10 β-Proteobacteria species and 5 α-Proteobacteria species (Figure 7 and Figure S3 and S4). A single pair of recombinases orthologous to XerC and XerD was found in each of the 22 additional γ-, β- and α-Proteobacteria harboring multiple chromosomes, suggesting that a single pair of recombinases ensures dimer resolution of each of their non-homologous chromosomes. FtsK orthologues were also found. In addition, putative dif sites fell within 10 kb of the GC-skew inflection point (data not shown), suggesting that dimer resolution is under the
Figure 6. *V. cholerae* FtsK Orienting Polar Sequences.

A. Growth competition of *E. coli* cells encoding FtsK hybrids. N: cells carrying a complete deletion of the C-terminal domain and linker region of FtsKEc; NLCEc: cells carrying full length FtsKEc; NLCVc and NLCHi: cells in which the C-terminal domain FtsKEc was replaced by the one of FtsKVc and FtsKHi, respectively. f: frequency of cells that the parental N strain fails to produce at each generation compared to the FtsK hybrids.

B. 5’-GGGCAGGG-3’ inhibits recombination activation by FtsKVc. Plasmid recombination at *E. coli* dif by XerCDEc was induced with 0.5% arabinose. Ec[NRE]: FtsK50C Ec[NRE]; Vc[NRE]: FtsKVc[NRE]. KOPS-0: substrate without GGGCAGGG sequences; KOPS-2: substrate with GGGCAGGG sequences.

C.

Substrate	KOPS-0	KOPS-2						
FtsK	Ec	Ec[NRE]	Vc	Vc[NRE]				
% recombination	74	62	80	72	51	66	55	73

Substrate	KOPS-0	KOPS-2								
FtsK	Ec[NRE]	Ec								
% recombination	0.00	0.06	0.12	0.18	0.24	0.30	0.36	0.42	0.48	0.54

KOPS-2 / KOPS-0 ratio of recombination

Substrate	KOPS-0	KOPS-2								
FtsK	Ec	Ec[NRE]	Vc	Vc[NRE]						
% recombination	0.00	0.06	0.12	0.18	0.24	0.30	0.36	0.42	0.48	0.54

KOPS-2 / KOPS-0 ratio of recombination

ggggcaggg

Chromosome I	Chromosome II			
Number	Frequency (1/ Xkb)	Skew	p-skew	
Chromosome I	44	67	0.86	1.4 10-4
Chromosome II	24	39	0.96	3.3 10-3

ggggnaggg

Chromosome I	Chromosome II			
Number	Frequency (1/ Xkb)	Skew	p-skew	
Chromosome I	108	27	0.80	2.30 10-7
Chromosome II	51	19	0.89	2.11 10-6

motifs: ○ dif1, ○ dif2, □ prophages (CTX & TLC), □ superintegron, ■ VPI
control of an FtsK-like homologue in all these species. Thus, the adoption of an FtsK-dependent dimer resolution system could be a key evolutionary step in the maintenance of large circular replicons.

Tuning of V. cholerae CDR to Achieve Efficient Recombination on Divergent dif Sites

The sequence of Xer target sites, and especially of their central region, is a crucial determinant in the outcome of recombination [36,37]. Indeed, the central region of dif sites found in Proteobacteria with a single chromosome showed a high degree of conservation, most β- and γ-Proteobacteria harboring a ‘canonical’ 5′-TGTATA-3′ motif (Figure 7 and Figure S2 and S3), suggesting that there is a selective pressure on the sequence of the dif central region. This is further illustrated by the lower recombination efficiency of the E. coli system on dif2 compared to dif1 (Figure 5). In this regard, the V. cholerae Xer recombination system is remarkable since identical recombination efficiencies were obtained with the same pair of recombinases on dif1 and dif2 (Figure 4 and 5). However, XerCDVc-mediated recombination at dif2 required a tighter interaction between the recombinases and their partner transpose than at dif1, since FtsKEc promoted 50% of recombination at dif1 but less than 20% at dif2 (Figure 5B, XerCDVc, FtsKEc). In addition, a few alterations in the sequence of dif1 and dif2 decreased the stringency of the control exerted by FtsKEc (Figure 5D), highlighting the extremely fine tuning of the different components of the V. cholerae CDR system.

Non-Homologous Chromosomes Carry dif Sites with Divergent Central Regions

We observed that in Proteobacteria with multiple chromosomes, the central regions of dif sites from non-homologous chromosomes are divergent, as in V. cholerae (Figure 7 and Figure S2, S3, S4). A single exception was found in Burkholderia xenovarans, in which two of the three chromosomes of the bacterium harbor a resolution site with an identical central region. We reasoned therefore that some selective pressure imposes the divergence of the central regions of CDR sites carried by the different, non-homologous chromosomes of bacteria with multipartite genomes, which competes with the selective pressure for dif central regions to adopt the preferential 5′-TGTATA-3′ motif. Indeed, the presence of dif sites with identical central regions on two non-homologous chromosomes could lead to the formation of chromosome fusions by Xer recombination, which would disrupt the selective advantage brought by the multipartite genomic organization. In support of this hypothesis, preliminary experiments indicate that harmonization of the two V. cholerae dif sites leads to chromosomal fusions (Val and Barre, unpublished observations). We are currently investigating how these fusions are formed and the consequences of harboring identical dif sites on separate chromosomes.

Materials and Methods

Strains, Plasmids, and Media

All growth experiments were done in LB-Lennox. Strains and plasmids are listed in Text S1. Briefly, V. cholerae strains were derived from N16961 [1] by allele exchange using pDS132 derivatives [38] and E. coli B2163 as a donor strain [39]. E. coli strains used for in vivo plasmid resolution assays and for growth competition were engineered as previously described in [25,40]. Mutations were confirmed by PCR and sequencing.

Growth Competition Assay

For growth competitions, E. coli cells were grown at 37°C with a 1000× dilution in fresh media every 12h [40]. Because of their higher growth rate, V. cholerae cells were grown at 30°C with a 10000× dilution every 12h. The numbers of CFU of mutated and parental cells in the cultures were determined by plating on cognate antibiotic plates every 12 or 24h, depending on the mutant growth defect. These numbers were used to calculate the number of generation of the parent cells between each time points.
and the CFU ratio of mutated versus parent cells at each time point. This ratio varies exponentially with the number of generations. The proportion of cells that the mutant strain fails to produce at each doubling time of its parent is deduced from the coefficient of this exponential. This ratio is a good estimation of the rate of dimer formation (Text S1).

In Vitro Xer Assays

V. cholerae MBP-XerD and MBP-XerC recombinases were purified using nickel, amylase and heparin columns. The MBP tag was removed by thrombin digestion. \(dyfI \) and \(dyf2 \) synthetic suicide substrates (Text S1) were obtained by annealing synthetic oligonucleotides purified by PAGE. 5'-end labeling of oligonucleotides was performed using T4 DNA polynucleotide kinase and \(^{32}P\) γ-ATP and 3’-end labeling using terminal transferase and \(^{32}P\) ddATP. Reactions were performed in 20 mM Tris-HCl (pH 7.5), 50 mM NaCl, 0.1mM EDTA, 1 μg/ml of BSA, 40% glycerol and 0.2 pmol of radio labeled probe for 2 hours at 37°C. Covalent complexes were analyzed by 12% SDS-PAGE and cleavage sites by 12% urea-PAGE. Radioactivity was detected on a STORM (GE Healthcare).

In Vivo Plasmid Resolution Assays

E. coli strains were transformed with the FtsK expression vector and then with the Xer recombination reporter plasmid, as described in [25]. 10 transformant colonies were pooled in 1 ml of LB and diluted 100X in LB and grown to 0.6 OD at 37°C. Cells were then grown for an extra 2 hours at 37°C in the presence of 0.5% arabinose to induce FtsK production, unless otherwise indicated. Plasmid DNA was hydrolyzed with \(\Phi X174 \) I (single cutter). Recombination efficiency was computed as the amount of replicative product, which were separated by agarose gel electrophoresis and detected with SybrGreen staining using a LAS-3000 (Fuji Life Science).

Bioinformatics Analysis of Motifs Distribution

Leading strands were defined as the DNA strand reported in Genbank files downstream of the replication origin up to the terminus and the reverse complement strand from the terminus to the origin. The terminus position was chosen as the first nucleotide of the CDR site. Skew statistical significance was assessed by calculating the probability that the observed skew occurred by chance taking into account the fact that G-rich motifs are likely to be more frequent on the leading strand because of GC skew, as previously described [41]. Analysis on chromosome II was performed on a chimeric chromosome where the superintegron has been removed because this element carries more than 100 repetitions of the \(attC \) integration site, which hides the signal provided by octamer motifs.

Supporting Information

Figure S1 XerCD and FtsK tree. Found at: doi:10.1371/journal.pgen.1000201.s001 (2.80 MB TIF)

Figure S2 \(dif \) sites in gamma-Proteobacteria. Found at: doi:10.1371/journal.pgen.1000201.s002 (6.03 MB TIF)

Figure S3 \(dif \) sites in beta-Proteobacteria. Found at: doi:10.1371/journal.pgen.1000201.s003 (5.50 MB TIF)

Figure S4 \(dif \) sites in alpha-Proteobacteria. Found at: doi:10.1371/journal.pgen.1000201.s004 (3.18 MB TIF)

Text S1 Supplementary methods. Found at: doi:10.1371/journal.pgen.1000201.s005 (0.12 MB DOC)

Acknowledgments

We thank D. Chattoraj, D. Mazel, V. Sivanathan and D. Sherratt for the kind gift of plasmids and strains, G. Balavoine, N. Dubarry, B. Michel and C. Pouzo for helpful comments. We are grateful to the MIGALE bioinformatics platform (INRA) for providing technical support and computational resources.

Author Contributions

Conceived and designed the experiments: FXB. Performed the experiments: MEV SPK MEK LB FC. Analyzed the data: MEV SPK MEK FXB. Wrote the paper: FXB.

References

1. Heidelberg JF, Eisen JA, Nelson WC, Clayton RA, Gwinn ML, et al. (2000) DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature: 406: 477–483.
2. Xu Q, Dziejman M, Mckalanos JJ (2003) Determination of the transcriptome of Vibrio cholerae during intraenternal growth and midexponential phase in vitro. Proc Natl Acad Sci U S A 100: 1296–1297.
3. Casjens S (1998) The diverse and dynamic structure of bacterial genomes. Annu Rev Genet 32: 339–377.
4. Yamaichi Y, Fogel MA, Waldor MK (2007) par genes and the pathology of chromosome loss in Vibrio cholerae. Proc Natl Acad Sci U S A 104: 630–635.
5. Srivastava P, Chattoraj DK (2007) Selective chromosome amplification in Vibrio cholerae. Mol Microbiol 66: 1016–1029.
6. Rasmussen C, Jensen RB, Skovgaard O (2007) Independent control of replication initiation of the two Vibrio cholerae chromosomes by DnaA and RctB. J Bacteriol 188: 6419–6424.
7. Mcclintock B (1932) A correlation of ring-shaped chromosomes with segregation in Zea mays. PNAS 18: 677–681.
8. Barre FX, Sherratt DJs (2002) Xer Site-Specific Recombination: Promoting Chromosome Segregation. In: Craig NL, Craigie R, Gellert M, Lambowitz A, ed. Mobile DNA II. Washington, D.C.: ASM Press. pp 149–161.
9. Massey TH, Mercogliano CP, Yates J, Sherratt DJ, Lowe J (2006) In vivo XerC and XerD dimer resolution only when located between long stretches of opposite polarity. Mol Microbiol 56: 33–43.
10. Peralis K, Cornet F, Melet Y, Delon I, Louarn JM (2000) Functional polarization of the Escherichia coli chromosome terminus: the \(dif \) site acts in chromosome dimer resolution only when located between long stretches of opposite polarity. Mol Microbiol 36: 33–43.
11. Perals K, Cornet F, Melet Y, Delon I, Louarn JM (2000) Functional polarization of the Escherichia coli chromosome terminus: the \(dif \) site acts in chromosome dimer resolution only when located between long stretches of opposite polarity. Mol Microbiol 36: 33–43.
12. Massey TH, Mercogliano CP, Yates J, Sherratt DJ, Lowe J (2006) Double-stranded DNA translocation: structure and mechanism of hexameric FtsK. Mol Cell 23: 457–469.
13. Levy O, Ptacin JL, Pease PJ, Gore J, Eisen MB, et al. (2005) Identification of oligonucleotide sequences that direct the movement of the Escherichia coli FtsK translocase. Proc Natl Acad Sci U S A 102: 17618–17623.
14. Levy O, Ptacin JL, Pease PJ, Gore J, Eisen MB, et al. (2005) Identification of oligonucleotide sequences that direct the movement of the Escherichia coli FtsK translocase. Proc Natl Acad Sci U S A 102: 17618–17623.
15. McClintock B (1932) A correlation of ring-shaped chromosomes with segregation in Zea mays. PNAS 18: 677–681.
16. Perals K, Cornet F, Melet Y, Delon I, Louarn JM (2000) Functional polarization of the Escherichia coli chromosome terminus: the \(dif \) site acts in chromosome dimer resolution only when located between long stretches of opposite polarity. Mol Microbiol 36: 33–43.
17. Mcclintock B (1932) A correlation of ring-shaped chromosomes with segregation in Zea mays. PNAS 18: 677–681.
18. Barre FX, Sherratt DJs (2002) Xer Site-Specific Recombination: Promoting Chromosome Segregation. In: Craig NL, Craigie R, Gellert M, Lambowitz A, ed. Mobile DNA II. Washington, D.C.: ASM Press. pp 149–161.
23. Bigot S, Saleh OA, Lesterlin C, Pages C, El Karoui M, et al. (2005) KOPS: DNA motifs that control E. coli chromosome segregation by orienting the FtsK translocase. *Embo J* 24: 3770–3780.

24. Yates J, Zhekov I, Baker R, Ekland B, Sherratt DJ, et al. (2006) Dissection of a functional interaction between the DNA translocase, FtsK, and the XerD recombinase. *Mol Microbiol* 59: 1754–1766.

25. Yates J, Aroyo M, Sherratt DJ, Barre FX (2003) Species specificity in the activation of Xer recombination at dif by FtsK. *Mol Microbiol* 49: 241–249.

26. Kennedy SP, Chevalier F, Barre FX (2008) Delayed activation of Xer recombination at dif by FtsK during septum assembly in Escherichia coli. *Mol Microbiol*.

27. Le Bourgeois P, Bugarel M,Campo N, Doveryan-Mingot ML, Labonte J, et al. (2007) The Unconventional Xer Recombination Machinery of Streptococci/ Lactococci. *PLoS Genet* 3: e117.

28. Abremski K, Hoess R, Sternberg N (1983) Studies on the properties of P1 site-specific recombination: evidence for topologically unlinked products following recombination. *Cell* 32: 1301–1311.

29. Cornet F, Mortier I, Patte J, Losarn JM (1994) Plasmid pSC101 harbors a recombination site, psi, which is able to resolve plasmid multimers and to substitute for the analogous chromosomal *Escherichia coli* dif site. *J Bacteriol* 176: 3188–3195.

30. Blakely G, May G, McCulloch R, Arciszewska LK, Burke M, et al. (1993) Two related recombinases are required for site-specific recombination at *dif* and *cer* in *E. coli K12*. *Cell* 75: 351–361.

31. Huber KE, Waldor MK (2002) Filamentous phage integration requires the host recombinases XerC and XerD. *Nature* 417: 656–659.

32. McLeod SM, Waldor MK (2004) Characterization of XerC- and XerD-dependent CTX phage integration in *Vibrio cholerae*. *Mol Microbiol* 54: 915–947.

33. Draper GC, McLennan N, Begg K, Masters M, Donachie WD (1998) Only the N-terminal domain of FtsK functions in cell division. *J Bacteriol* 180: 4621–4627.

34. Barre FX, Aroyo M, Colomos SD, Heffrich A, Cornet F, et al. (2000) FtsK functions in the processing of a Holliday junction intermediate during bacterial chromosome segregation. *Genes Dev* 14: 2976–2988.

35. Sivanathan V, Allen MD, de Bekker C, Baker R, Arciszewska LK, et al. (2006) The FtsK gamma domain directs oriented DNA translocation by interacting with KOPS. *Nat Struct Mol Biol* 13: 963–972.

36. Recchia GD, Aroyo M, Wolf D, Blakely G, Sherratt DJ (1999) FtsK-dependent and -independent pathways of Xer site-specific recombination. *EMBO J* 18: 5724–5734.

37. Capiaux H, Lesterlin C, Perals K, Losarn JM, Cornet F (2002) A dual role for the FtsK protein in *Escherichia coli* chromosome segregation. *EMBO Rep* 3: 532–536.

38. Philippe N, Alcaraz JP, Coursange E, Geiselmann J, Schneider D (2004) Improvement of pCVD412, a suicide plasmid for gene allele exchange in bacteria. *Plasmid* 51: 246–255.

39. Demarre G, Guerout AM, Matsumoto-Mashimo C, Rowe-Magnus DA, Marlière P, et al. (2005) A new family of mobilizable suicide plasmids based on the broad host range R388 plasmid (IncW) or RP4 plasmid (IncPa) conjugative machineries and their cognate *E.coli* host strains. *Research in Microbiology*. In press.

40. Bigot S, Corre J, Losarn JM, Cornet F, Barre FX (2004) FtsK activities in Xer recombination, DNA mobilization and cell division involve overlapping and separate domains of the protein. *Mol Microbiol* 54: 876–886.

41. Halpern D, Chiapello H, Schbath S, Robin S, Hennequet-Antier C, et al. (2007) Identification of DNA motifs implicated in maintenance of bacterial core genomes by predictive modeling. *PLoS Genet* 3: e1614–e1621.