Multi-agent Communication meets Natural Language: Synergies between Functional and Structural Language Learning

Angeliki Lazaridou*, Anna Potapenko*, Olivier Tieleman*
DeepMind, London, UK
{angeliki,apotapenko,tieleman}@google.com

Abstract

We present a method for combining multi-agent communication and traditional data-driven approaches to natural language learning, with an end goal of teaching agents to communicate with humans in natural language. Our starting point is a language model that has been trained on generic, not task-specific language data. We then place this model in a multi-agent self-play environment that generates task-specific rewards used to adapt or modulate the model, turning it into a task-conditional language model. We introduce a new way for combining the two types of learning based on the idea of reranking language model samples, and show that this method outperforms others in communicating with humans in a visual referential communication task. Finally, we present a taxonomy of different types of language drift that can occur alongside a set of measures to detect them.

1 Introduction

In this work, we aim at making agents communicate with humans in natural language. Our starting point is a language model that has been trained on generic, not task-specific language data. We then place this model in a multi-agent communication environment that generates task-specific rewards, which are used to adapt or modulate the model, making it task-conditional. We thus propose to decompose the problem of learning language use into two components: learning “what” to say based on a given situation, and learning “how” to say it. The “what” is the essence of communication that underlies our intentions and is chosen by maximizing any given utility, making it a functional, utility-driven process. On the other hand, the “how” is a surface realization of our intentions, i.e., the words we use to communicate this “what” successfully. This factorization into content planning (here, “what”) and surface realization (here, “how”) moves us away from end-to-end neural generation systems and is in line with traditional methods of natural language generation (Reiter and Dale, 1997). More importantly, it enables us to bring together two different strands of research: traditional data-driven natural language learning and multi-agent communication.

Traditional approaches to natural language learning (Kneser and Ney, 1995; Mikolov et al., 2010; Sutskever et al., 2014; Vinyals and Le, 2015; Radford et al., 2019) are based on inferring structural properties of language from text corpora, often in a passive regime, dissociated from communication. While this type of learning is great for learning general statistical associations between symbols (e.g., adjectives come before nouns) and even inferring semantic relations, it ignores the functional aspects of communication, i.e., the fact that people use words to coordinate with others and make things happen in the world (Wittgenstein, 1953; Austin, 1975; Clark, 1996).

On the other hand, multi-agent communication research (Foerster et al., 2016; Lazaridou et al., 2017; Havrylov and Titov, 2017; Evtimova et al., 2017; Lee et al., 2019) puts communication at the heart of agents’ (language) learning. Implemented within a multi-agent reinforcement learning setup, agents start tabula rasa and form communication protocols that maximize task rewards. While this purely utilitarian framework results in agents that successfully learn to solve the task by creating a communication protocol, these emergent communication protocols do not bear core properties of natural language. Chaabouni et al. (2019) show that protocols found through emergent communication, unlike natural language, do not conform to Zipf’s Law of Abbreviation; Kottur et al. (2017) find that communication protocols do not follow composi-
tionality patterns of natural language, and Lazari-
dou et al. (2018) find emerged protocols to be sen-
titive to different experimental conditions. This
growing set of alarming results on emergent com-
unication raises doubts about the use of this type of functional learning as a viable alternative to lan-
guage learning.

Concluding that neither approach on its own is ade-
quate for learning language use, we propose a method for combining the best of both worlds.
Generic language data can be used effectively as a
good prior model of language, encapsulating its
intrinsic structural properties, i.e., are only used for
the “how” in the form of generic language models.
Conversely, multi-agent interactions, that provide
rewards specific to the task of interest, now only
need to be used for the functional learning of lan-
guage use, i.e., learning the “what”.

The contributions of this paper are as follows.
First, we propose a general research program of
language learning that combines two learning sig-
als coming from multi-agent communication and
traditional data-driven natural language learning
techniques. We present a concrete study in the con-
text of a referential communication game (see Sec-
tion 2) between a speaker and a listener, where the
traditional data-driven language learning takes the
form of image captioning, and the functional learn-
ing takes the form of agent self-play (see Section 3).
We then present a new approach for combining the
two learning signals, i.e., reward-learned rerankers
(see Section 4), and compare this to existing ap-
proaches using a human study (see Section 5). We
discuss shortcomings of this program with respect
to different types of language drift that can occur,
and introduce a number of automatic measures to
detect them (see Section 6). Finally, we show how
such a program under oracle rewards can be a vi-
able approach moving towards learning language
use from human rewards (see Section 7).

1 About the terminology: by ‘traditional data-driven natural
language learning’, we mean language modelling of the next-
word-prediction variety. This type of learning does not involve
any use of the language or other context, and as such only
focuses on word statistics. Since the structure of the language
is a large part of those statistics, and the role of the generic
language models in our proposed combined systems is to
provide structural knowledge of language, we also use the term
‘structural learning’. We contrast this with the purely usage-
driven, reward-based learning of the type seen in emergent
communication research. Since the function, rather than the
structure or statistics, is the only thing that matters for such a
learner, we also use the term ‘functional learning’.

2 Research framing

Our research can be framed in the following sce-
nario. An agent needs to perform a functional com-
munication task in a natural language (in this work,
English). However, examples of linguistic com-
munication about this functional task are not avail-
ble - the only natural language data that can be
used consist of examples of generic natural lan-
guage, which are not grounded in the functional
task. Recasting the task as a multi-agent language
game provides a way to obtain a reward that judges
whether an utterance elicited the correct behaviour
by a listener.

2.1 Experimental setup

In this work, we instantiate the research in the fol-
lowing way: the functional task is a visual referen-
tial communication game for a target image in the
context of a distractor, the reward is based on suc-
cess in referential communication where a listener
is tasked to pick the correct image within distrac-
tors guided by the speaker’s description, and the
generic natural language data are captioning data.

Visual referential communication game.
There are two players, the speaker and the listener.
The speaker sees a target object and needs to
communicate an utterance about it in the context
of distractors; both target and distractors are
represented as images. The listener is presented
with the same set of images, but without the
knowledge of which is the target, and needs to
identify the target image relying on the utterance
being communicated by the speaker. The utterance
takes the form of sequences of word-like units. If
the listener’s choice is correct they both receive a
positive reward, else they receive the same negative
reward.

Dataset and referential splits. For playing the
visual referential communication game, we use a
multi-modal dataset, the Abstract Scenes (Zitnick
and Parikh, 2013) which contains 10k synthetic
images accompanied with descriptive captions (on
average 6 per image) (see Figure 1). The cap-

2 The task we consider is essentially discriminative image
captioning (Vedantam et al., 2017; Dai and Lin, 2017; Andreas
and Klein, 2016). Here we are using it as a placeholder of a
communication task to illustrate our general framework. Thus,
we are not incorporating any explicit bias in the model about
this particular task. The only task-specific information we use
is communicated via the reward.

3 Other multi-modal datasets like MSCOCO (Lin et al.,
2014) or Flickr (Thomee et al., 2016), while providing com-
Jenny is scared of the bear
Mike is scared of the bear
Jenny and Mike sit by a fire
A bear is scaring mike and jenny

Figure 1: Example image and ground-truth captions from the Abstract Scenes dataset used in this study.

speaker (human)	easy	difficult
random	0.92	0.81
discriminative	1.0	0.97

Table 1: Accuracy performance of a human listener with a human speaker producing either random or discriminative caption on the easy and difficult splits.

...of games and present results in Table 1. We see that the task-specific condition outperforms the first condition, indicating that in our current setup there is enough space to improve upon models based on structural-only learning (i.e., captioning models). Moreover, the good performance of discriminative caption speaker demonstrates that (in principle) the captioning data can be used in a successful communication with a human for this task.

3 Multi-agent communication setup

3.1 Speaker

The speaker is the primary learner in this research, aiming at creating a model that is able to use natural language in a communicative scenario, and consists of standard visual and language modules. To convert images to embeddings u, we use a pre-trained ResNet (He et al., 2016) (parametrized by θ_{resnet}) and feed its last layer output into a one-layer MLP (parametrized by θ_{MLP}). To generate a message m, we use a one-layer LSTM (Hochreiter and Schmidhuber, 1997) (parametrized by θ_{LSTM}), adding embeddings u at each time step as additional context. Section 4 presents different speaker models consisting of these modules.

We also design two oracle speakers (with no weights) that have direct access to ground-truth captions of images at test time. The random caption speaker outputs one of the ground-truth captions for the target image at random. Since this speaker is not aware of the functional goal, their performance will indicate whether having only good grounded language skills is enough for communication success in our setup. We also build an oracle speaker that is task-aware; discriminative caption speaker uses a simple word-overlap heuristic to pick the target’s caption that has the least word overlap with any of the distractor’s captions (the score is normalized by the captions’ length excluding stop-words).

3.2 Listener

Throughout the experiments, we need a way to estimate performance on the functional communication task, either for evaluation or to provide rewards during training acting as a scaffolding to learn the speaker model. Ideally, this performance signal should be provided by a human who is interacting online with the speaker agent. While we do so for evaluation reasons, for training we approximate this quantity with a learned component, an agent listener.
4 Methods for learning language use

We describe ways to estimate the speaker’s generative model \(p_{\theta_S}(m|u, t) \) for message \(m \), conditioned on target and distractor embeddings \(u = [u_t; u_d] \) and target image index \(t \in \{0, 1\} \).

4.1 Functional-only learning

This type of learning language use is identical to experiments commonly conducted in the literature of emergent communication (Lazaridou et al., 2017; Havrylov and Titov, 2017; Bouchacourt and Baroni, 2018; Evtimova et al., 2017; Graesser et al., 2019), i.e., the speaker learns to emit communication utterances \(m \) in order to maximize the communication task reward (see Section 3.2 for a discussion on how this reward is computed). Concretely, the weights \(\theta_S = \{\theta^{MLP}_S, \theta^{STM}_S\} \) of the speaker policy \(\pi_{\theta_S}(m|u, t) \) are updated via the REINFORCE update rule (Williams, 1992) using rewards \(r^L \) provided by the listener, i.e., we optimize \(L_{\text{functional}} = -r^L(m, u, t) \sum_{i=1}^{I} \log p_{\theta^{STM}_S}(m^i|m^{<i}, u) \), where \(u = [u_t; u_d], m^i \in V, \) vocabulary size \(|V| = 100 \), and message length \(I = 10.4 \). Note, that while this type of learning results in a language that is maximally functionally correct for the given task reward, this language is not natural language, i.e., the symbols are not grounded to natural language.

4.2 Structural-only learning

This type of learning ignores the functional aspect of communication and communicates utterances that reflect intrinsic structural properties of language, i.e., that are fluent, grammatical and related to the target. Here, we used paired data in the form \((u, c) \), where \(u \) is a visual embedding and \(c \) is the associated caption, and learn an image captioning model. The speaker’s parameters \(\theta_S = \{\theta^{MLP}_S, \theta^{STM}_S\} \) are optimized using cross-entropy, i.e.,

\[
L_{\text{structural}} = -\sum_{i=1}^{I} \log p_{\theta^{STM}_S}(c^i|c^{<i}, u),
\]

where \(u = u_t, c^i \in V, |V| = 2685 \) (the vocabulary size) and \(I = 25 \), i.e., the longest caption in the dataset. We approximate the speaker model \(p_{\theta_S}(m|u, t) \) with the captioning one, which ignores distractor, thus the communication task. We construct two speakers with different decoding schemes: greedy uses greedy decoding, while sample picks the highest probability message among \(k = 20 \) stochastic samples (temperature \(\tau=2.0 \)).

4.3 Structural and functional learning

We now describe several ways in which both types of learning are used to learn language use. In all cases, we equip the speaker with a base image captioning model similar to the one presented in Section 4.2, which is used to calculate \(p_{\theta^{STM}_S}(c^i|c^{<i}, u_t) \). The functional part is learned via the REINFORCE update rule optimizing the task reward (i.e., listener’s accuracy in the referential task). However, speakers differ in how they parametrize \(p_{\theta_S}(m|u, t) \) and whether the task reward is used to update the weights \(\{\theta^{MLP}_S, \theta^{STM}_S\} \) of the base captioning model.

4.3.1 Reward finetuning

The simplest approach is to first use existing pretrained components for which we have available corpora in order to learn the statistical properties.
of language, and then steer the language use to be functionally appropriate using reward finetuning for the given task. We use paired data in the form \((u, c)\) to learn the weights \(\theta_S = \{\theta_S^{MLP}, \theta_S^{LSTM}\}\) of a base image captioning model following Section 4.2, and then we perform functional learning by using the listener’s reward to optimize the weights \(\theta_S\) as in Section 4.1. While this method is conceptually simple, it becomes challenging when the task requires extending the conditioning part of the base model. Here, we need to change the conditioning of the base captioning model from \(u = u_t\) to \(u = [u_t; u_d]\), to allow conditioning on the distractor. Since this is not trivial (the base image captioning model has been learned by conditioning only on one image embedding), we keep the conditioning \(u = u_t\) also during finetuning with REINFORCE. Thus, similar to the image captioning model, we approximate \(p_{\theta_S}(m|u, t)\) with \(p_{\theta_S^{LSTM}}(m|u_t)\).

However, unlike image captioning, the information about distractors flows into the policy, since the weights \(\theta_S\) are optimized using the listener’s reward which considers distractors.

Since the gradients from optimizing the functional task are sent all the way into the base captioning model, this causes catastrophic forgetting of the core knowledge of language, leading to language drift. Thus, we use a language regularizer term in the form of Kullback-Leibler divergence between pre-trained and fine-tuned language modeling distributions (Havrylov and Titov, 2017).

4.3.2 Multi-task learning

An alternative is to conduct both types of learning (i.e., image captioning and functional learning) at the same time (Lazaridou et al., 2017; Lee et al., 2019). This takes the form of multi-task learning optimizing \(\lambda_F L^{functional} + \lambda_s L^{structural}\), where \(\lambda_f = 1\). Like in reward finetuning, the gradients of the reward learning flow into the weights of a base captioning model, leaving us with questions about a trade-off between task success and quality of language. Therefore, we introduce two variants of this model depending on the importance of the language component, i.e., one variant with \(\lambda_s = 0.1\) and a language-regularized one with \(\lambda_s = 1\).

4.3.3 Reward-learned rerankers

Finally, we introduce a new way of learning language use in the multi-agent communication setup. As before, we train the core language capabilities of a speaker using the image captioning task object-
Noisy channel reranker. Following Bayes rule, we factorize the speaker’s policy as follows:
\[\pi_{\theta_{s}}(s|u) \propto p(t|s,u)p(s|u), \] where \(u = [u_{d}; u_{d}]. \) We omit the distractor vector \(u_{d} \) in the conditioning of the prior, arriving to \(p(s|u_{d}) \) from the PoE reranker above. The crucial difference is that the first term now represents the speaker’s approximation of the listener’s behaviour. As before, we represent samples with the transformed bag-of-words, but then compute their dot-product similarities with each image separately and normalize with softmax across the images to obtain the probability of the target \(p(t|s,u) \). This reranker model is closely related to pragmatic speakers in Rational Speech Act (RSA) framework (Andreas and Klein, 2016; Monroe and Potts, 2015; Cohn-Gordon et al., 2018; Fried et al., 2018). However, while the RSA model assumes a given and fixed listener model, here we are learning the model of the listener that the speaker is using by optimizing end-to-end the listener’s reward. Thus, when doing multi-agent communication using the noisy channel model, there exist two components that produce probability distributions of the same type \(p(t|s,u) \): one belongs to the listener, thus the speaker has no access to it (e.g., this listener in the future could be a human sending rewards), while the other belongs to the speaker corresponding to their model of the listener.

5 Speakers trained jointly with listeners

Table 2 presents referential success when speakers are trained with rewards from a joint listener, i.e., a listener being learned jointly with the speaker.

Functional-only learning	Easy split	Difficult split
emergent (§4.1)	0.99	0.98
Structural-only learning		
image captioning (§4.2)		
sample	0.92	0.78
greedy	0.91	0.77

Structural & functional learning

Gradients from reward affect base captioning model

reward finetuning (§4.3.1) as being regularized towards producing

Oracle speakers, no weights learned (§4.3.1)

no KL-term

| λ_s = 0 | 0.95 | 0.82 | 0.63 | 0.62 |
| λ_s = 1 | 0.93 | 0.79 | 0.77 | 0.69 |

multi-task learning (§4.3.2)

Δ_s = 0.1

| λ_s = 0 | 0.98 | 0.94 | 0.71 | 0.71 |
| λ_s = 1 | 0.96 | 0.90 | 0.69 | 0.69 |

Reranking (§4.3.3), base captioning model unchanged

PoE, λ_s = 0

| 0.99 | 0.92 | 0.81 | 0.81 |
| PoE, λ_s = 1 | 0.98 | 0.91 | 0.83 | 0.78 |

noisy channel

| 0.96 | 0.83 | 0.84 | 0.86* |

Utilizing ground-truth captions from the dataset

Oracle speakers, no weights learned (§3.1)

random

| 0.87 | 0.74 | 0.72 | 0.81 |
| discriminitive | 0.87 | 0.73 | 0.82 | 0.87* |

Reranking (§4.3.3) ground-truth captions

PoE (§4.3.3)

| 0.95 | 0.88 | 0.85 | 0.93* |
| noisy channel (§4.3.3) | 0.95 | 0.78 | 0.83 | 0.88* |

Table 2: Referential success of speakers (by rows) trained with joint listener and then tested with joint, fixed and human listener (by columns). * indicates significance over the image captioning (greedy) when tested with humans (p < 0.005, bootstraping test).

5.1 Referential success of joint listeners

All models perform quite similarly in the easy split, whereas we observe larger gaps in the difficult split. In terms of joint accuracy results in the difficult split, reward finetuning has the lowest performance among models that are optimizing rewards, perhaps due to its large action space (i.e., the vocabulary size |V| = 2685), making it a hard RL exploration problem. multi-task, despite having the same action space performs better, probably due to the captioning objective being optimized concurrently facilitating the learning dynamics. Finally, the best results in both splits are obtained by the emergent communication model, that achieves near perfect performance. We believe this is the case since this speaker is the least constrained of all, since we can think of all other speakers (i.e., the ones that combine both types of learning) as being regularized towards producing natural language.

Group 1: image captioning (greedy/sample), noisy channel, PoE; Group 2: multi-task, reward finetuning. Group 3: random, discriminative, PoE and noisy channel with ground-truth captions.
5.2 Referential success of human listeners

Somewhat alarmingly, we observe the joint performance is not predictive of the human’s one across the board, hinting to issues regarding pragmatic drift (we will further discuss this in Section 6). In the most extreme case, while the emergent communication speaker achieved the highest results when playing against a listener jointly learned with the speaker, this comes in the expense of human performance: functional learning alone results in maximally uninterpretable protocols, and as such humans are at random when playing against such a model.

Speakers that combine both types of learning achieve good human performance, with reward-learned reranker models, i.e., noisy channel and PoE being the best. In their case, they outperform the image captioning baselines, even approaching the discriminative oracle speaker based on ground-truth captions. This indicates their effectiveness in extending the conditioning of the underlying image captioning to the distractor image with the reward coming from the listener, turning like this the base image-captioning model into a task-specific referential captioning model. Moreover, when giving the rankers a perfect captioning model in the form of ground-truth captions of target images, performance of noisy channel and PoE surpass the oracles’ (see last two columns of Table 2); as the community improves the base language models, we should expect this to also result in net improvement in the reranker models.

Finally, we also observe that the fixed grounded listener is significantly predictive of the human performance ($p < 0.005$, t-test).6 This is encouraging, since as we will show in Section 7, we can use this listener as a fixed model that provides rewards to the speaker model.

6 Language drift and how to detect it

We show that the multi-agent communication framework is prone to language drift (Lee et al., 2019), i.e., when protocols diverge from human language. We present a taxonomy of different types that occur in this framework, alongside a set of automatic measures to detect it.

6.1 Structural drift: Definition and measures

The most basic type of drift that manifests in the emergent communication setup relates to the core structural properties of the generated language, i.e., its fluency and grammaticality with respect to natural language (this is also referred to by Lee et al. (2019) as “syntactic”). Looking at Table 3, a clear example of this type of drift happens when models update the base captioning model. Reward finetuning (no KL-term) does not produce at all grammatical sentences, while multi-task ($\lambda_s = 0.1$) appears to suffer less, only occasionally producing slightly ungrammatical sentences by repeating consecutive words. We term this structural drift and we quantify it as the log probability of the generated message under a pre-trained unconditional language model (column log $p(m)$ in Table 4).

6.2 Semantic drift: Definition and measures

The second type of drift is the semantic drift. This relates to whether the generated message is grounded with regards to the target object, i.e., its adequacy with respect to the literal semantics of the target (this is also referenced by Lee et al. (2019) as “semantic”). We have qualitatively observed instances of this type of drift in the PoE, which occasionally shifts the semantics of words, e.g., using the word tree to refer to ground as seen in Table 3. To measure it, we use a pre-trained image-conditional language model and compute the target-image conditional log probability of the generated

6 All t-tests are conducted between two distributions of scores dichotomized on human performance.
Table 4: Language drift measures, lower scores mean higher drift. *indicates that the measure was significantly predictive of the human listener performance on the referential task (p<0.005, t-test).

| Message (column log p(m|i)) in Table 4) |
|---------------------------------------|
| These two log probability-based measures do not assume access to language data for the target objects, and as such can be computed from general unconditional and domain-specific conditional language models. In this particular case though, since we also have access to language data for the target images (i.e., captions in English), and assuming that these data describe everything that is true about the target, we can use simple n-gram statistics as proxies of semantic drift (i.e., in this case 1-gram word overlap ignoring stop word and 3-gram word overlap between the ground-truth captions and the speaker-generated message). Moreover, all these measures do not take into account the specific communication task the speaker has to perform, i.e., our measures do not consider any information about the distractor object, making them easily adaptable to other tasks.

6.3 Structural and semantic drift results

In Table 4 we report performance of different models under these automatic measures. The structural score log p(m) reflects the qualitative observations made from Table 3, i.e., multi-task and reward fine-tuning, have the highest structural drift, with the latter performing significantly worse than all the models. In contrast, the reranker models that do not update the base captioning model, i.e., PoE and noisy channel, perform the best on the semantic score by construction; both models directly incorporate in their models a component associated with the semantic score (i.e., the samples taken from the image-conditional model alongside the associated probabilities). Moreover, they also perform well on all other measures, indicating their robustness against language drift. Finally, all the model-specific language regularizers (KL-term for reward finetuning, λs = 1 for multi-task and λs = 1 for PoE) we introduced were effective in limiting both types of language drift (as also seen in Table 3).

6.4 Pragmatic drift

Finally, we identify a novel type of drift, i.e., pragmatic drift, which relates to the divergence between a human’s interpretation of the message from the interpretation a speaker will assume. Unfortunately, this type of drift is perhaps the most difficult to capture in an automatic way as it is task specific and requires access to the exact interpretation that the human would ascribe to the message. As a proxy of pragmatic drift, we use the difference between the agent- and human-listener referential success; if the joint referential success is higher than the human’s one, then the speaker assumes an interpretation of the message that is different from the human’s one, resulting in lower human performance. An extreme example of this drift manifests when the joint listener achieves almost perfect referential success whereas a human listener is at random, as in the case of emergent communication. However, in this case the messages are maximally uninterpretable with the lowest possible performance in both structural and semantic scores.

Hence, a natural question to ask is to what degree (if at all possible) pragmatic drift can manifest in the absence of the other two types of language drift. Or, put differently, does the emergent communication for learning language use hide any other pathological behaviour for models that do not suffer a lot from structural and semantic drift, as in the case of PoE and noisy channel? To study this, we create a setup where PoE is guaranteed to have a perfect knowledge of (grounded) language. Namely, it uses the reward to rerank ground-truth captions associated with the target image (note, our dataset provides up to five captions per image). Moreover, we perform several ablations where we allow the updating of different parameters in the speaker’s and listener’s model by unfreezing components.

Table 5 presents the results of the joint and human referential success. The main finding is that
by increasing the number of components that get updated using the joint reward, the margin between the referential success of the two types of listeners increases. Despite the fact that the speaker is using human language that is perfectly fluent and accurate with respect to the target image (since the reranker operates on captions associated with the target image), while the joint listener is able to communicate with the agent speaker, the human listener achieves significantly lower performance.

In one test example, the speaker said *Mike has a hat*, which was equally true for both images making the human pick at random. So, how could the listener pick correctly? The speaker had reached a pact with the listener that the interpretation of this message will be something beyond what the phrase means (e.g., *Mike has a yellow hat* or the intensity of the pixels in the target image is lower). Since speaker and listener learn together, they co-adapt, forming conventions (or conceptual pacts (Brennan and Clark, 1996)) that differ from humans’, even in the presence of fluent and grounded language.

7 Speakers trained using fixed listener

In the previous section we showed that learning a speaker using a learned reward module as a scaffolding (i.e., the joint listener) can lead to pragmatic drift. In this section, we use a grounded reward as scaffolding. In the absence of a human listener to provide rewards for learning, we use the oracle fixed listener, which was found in Section 5 to be predictive of human referential success. It is pre-trained, stays fixed and just provides rewards for training the speaker. As speakers, we use the models that scored the highest in Table 2 and retrain them against fixed. Table 6 presents the results of referential success against fixed and human listeners. Using a grounded reward results in better performance for the weaker models. The small gap between the rerankers in the two experimental setups points that using a learned reward module (joint) holds promise, despite the different types of language drift. Moreover, we show that our models for learning language can be used against fixed reward models, potentially learning directly from human rewards (Ziegler et al., 2019).

8 Discussion and Limitations

We presented a method for teaching agents to communicate with humans in natural language, by combining two learning signals coming from multi-agent communication and traditional data-driven natural language learning techniques, which adds on recent efforts of blending emergent communication with natural language (Lowe et al., 2020; Lu et al., 2020).

Self-play between speakers and listeners can result in language drift, the most severe of which being pragmatic drift. Since speakers and listeners are learning concurrently, they can co-adapt to pair-specific policies that deviate from the policies that humans learn. This pathological behaviour of self-play is not specific to language and extends to other policies (Carroll et al., 2019).

Finally, we introduced the reward-learned reranker approach which alleviates language drift and achieves the highest human performance, by constraining the functional learning to happen on the level of utterances generated by a pre-trained language model. However, since the functional signal is not currently influencing the sampling from the language model, this will lead to poor performance when using more general language models with weaker conditioning (e.g. GPT-2 (Radford et al., 2019)) whose samples potentially do not fit the functional context. Moving towards integrating our findings into more realistic applications of self-play, e.g., user simulation in dialogue (Schatzmann et al., 2006; Shah et al., 2008), these shortcomings need to be addressed.

Acknowledgements

We thank Kris Cao, Laura Rimell, Chris Dyer, Phil Blunsom, Aida Nematzadeh and the DeepMind Language Team for useful feedback, Susie Young and Adam Liska for help with annotations.
References

Jacob Andreas and Dan Klein. 2016. Reasoning about pragmatics with neural listeners and speakers. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1173–1182, Austin, Texas. Association for Computational Linguistics.

John Langshaw Austin. 1975. How to do things with words. Oxford university press.

Diane Bouchacourt and Marco Baroni. 2018. How agents see things: On visual representations in an emergent language game. arXiv preprint arXiv:1808.10696.

Susan E Brennan and Herbert H Clark. 1996. Conceptual pacts and lexical choice in conversation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 22(6):1482.

Micah Carroll, Rohin Shah, Mark K Ho, Tom Griffiths, Sanjit Seshia, Pieter Abbeel, and Anca Dragan. 2019. On the utility of learning about humans for human-ai coordination. In Advances in Neural Information Processing Systems, pages 5175–5186.

Rahma Chaabouni, Eugene Kharitonov, Emmanuel Dupoux, and Marco Baroni. 2019. Anti-efficient encoding in emergent communication. arXiv preprint arXiv:1905.12561.

Herbert H Clark. 1996. Using language. Cambridge university press.

Reuben Cohn-Gordon, Noah Goodman, and Christopher Potts. 2018. Pragmatically informative image captioning with character-level inference. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics, volume 2, pages 439–443.

Bo Dai and Dahua Lin. 2017. Contrastive learning for image captioning. In Advances in Neural Information Processing Systems, pages 898–907.

Katrina Evtimova, Andrew Drozdzov, Douwe Kiela, and Kyunghyun Cho. 2017. Emergent communication in a multi-modal, multi-step referential game. arXiv preprint arXiv:1705.10369.

Jakob Foerster, Ioannis Alexandros Assael, Nando de Freitas, and Shimon Whiteson. 2016. Learning to communicate with deep multi-agent reinforcement learning. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural Information Processing Systems 29, pages 2137–2145. Curran Associates, Inc.

Daniel Fried, Ronghang Hu, Volkan Cirik, Anna Rohrbach, Jacob Andreas, Louis-Philippe Morency, Taylor Berg-Kirkpatrick, Kate Saenko, Dan Klein, and Trevor Darrell. 2018. Speaker-follower models for vision-and-language navigation. In Advances in Neural Information Processing Systems, pages 3314–3325.

Laura Graesser, Kyunghyun Cho, and Douwe Kiela. 2019. Emergent linguistic phenomena in multi-agent communication games. arXiv preprint arXiv:1901.08706.

Serhii Havrylov and Ivan Titov. 2017. Emergence of language with multi-agent games: Learning to communicate with sequences of symbols. In Advances in neural information processing systems, pages 2149–2159.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural computation, 9(8):1735–1780.

R. Kneser and H. Ney. 1995. Improved backing-off for n-gram language modeling. In 1995 International Conference on Acoustics, Speech, and Signal Processing, volume 1, pages 181–184 vol.1.

Satwik Kottur, José MF Moura, Stefan Lee, and Dhruv Batra. 2017. Natural language does not emerge naturally in multi-agent dialog. arXiv preprint arXiv:1706.08502.

Angeliki Lazaridou, Karl Moritz Herrmann, Karl Tuyls, and Stephen Clark. 2018. Emergence of linguistic communication from referential games with symbolic and pixel input. ICLR.

Angeliki Lazaridou, Alexander Peysakhovich, and Marco Baroni. 2017. Multi-agent cooperation and the emergence of (natural) language. ICLR.

Jason Lee, Kyunghyun Cho, and Douwe Kiela. 2019. Countering language drift via visual grounding. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 4376–4386.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. 2014. Microsoft coco: Common objects in context. In European conference on computer vision, pages 740–755. Springer.

Ryan Lowe, Abhinav Gupta, Jakob N. Foerster, Douwe Kiela, and Joelle Pineau. 2020. On the interaction between supervision and self-play in emergent communication. ArXiv, abs/2002.01093.

Yuchen Lu, Sounye Singhal, Florian Strub, Olivier Pietquin, and Aaron C. Courville. 2020. Countering language drift with seeded iterated learning. ArXiv, abs/2003.12694.
Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Černocký, and Sanjeev Khudanpur. 2010. Recurrent neural network based language model. In Eleventh annual conference of the international speech communication association.

Ishan Misra, C. Zitnick, Margaret Mitchell, and Ross Girshick. 2016. Seeing through the human reporting bias: Visual classifiers from noisy human-centric labels. pages 2930–2939.

Will Monroe and Christopher Potts. 2015. Learning in the rational speech acts model. arXiv preprint arXiv:1510.06807.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. 2019. Language models are unsupervised multitask learners. OpenAI Blog, 1(8).

Ehud Reiter and Robert Dale. 1997. Building applied natural language generation systems. Natural Language Engineering, 3(1):57–87.

Jost Schatzmann, Karl Weihhammer, Matt Stuttle, and Steve Young. 2006. A survey of statistical user simulation techniques for reinforcement-learning of dialogue management strategies. The knowledge engineering review, 21(2):97–126.

Pararth Shah, Dilek Hakkani-Tür, Bing Liu, and Gokhan Tür. 2008. Bootstrapping a neural conversational agent with dialogue self-play, crowdsourcing and on-line reinforcement learning. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 3 (Industry Papers), pages 41–51.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence learning with neural networks. In Advances in neural information processing systems, pages 3104–3112.

Bart Thomee, David A. Shamma, Gerald Friedland, Benjamin Elizalde, Karl Ni, Douglas Poland, Damian Borth, and Li-Jia Li. 2016. Yfcc100m: the new data in multimedia research. Commun. ACM, 59(2):64–73.

Ramakrishna Vedantam, Samy Bengio, Kevin Murphy, Devi Parikh, and Gal Chechik. 2017. Context-aware captions from context-agnostic supervision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 251–260.

Oriol Vinyals and Quoc Le. 2015. A neural conversational model. arXiv preprint arXiv:1506.05869.

Ronald J Williams. 1992. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine learning, 8(3-4):229–256.

Ludwig Wittgenstein. 1953. Philosophical investigations.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul Christiano, and Geoffrey Irving. 2019. Fine-tuning language models from human preferences. arXiv preprint arXiv:1909.08593.

C Lawrence Zitnick and Devi Parikh. 2013. Bringing semantics into focus using visual abstraction. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 3009–3016.

A Appendices

Hyperparameters. The following tables represent our choice of hyper-parameters in the speaker and listener agents. Hyperparameters in Table 7 where chosen in the image captioning task using the validation set. Hyperparameters in Table 8 where chosen in the referential task using the validation set.

Agent	Hyperparameter	Value
listener	LSTM hidden size	512
speaker	LSTM hidden size	512
listener	visual embeddings	512
speaker	visual embeddings	1024

Table 7: Settings shared across all experiments.

Model	Hyperparameter	Value
fine-tuning+++	KL regulation	0.1
multi-task	structural weight	0.1
PoE	structural weight	0
noisy channel / PoE	number of samples	20
noisy channel / PoE	message embedding size	1024
noisy channel / PoE	entropy regularization	0.1

Table 8: Settings for particular speakers.

ResNet module. We use ResNet-50 (He et al., 2016) pre-trained on ImageNet. For image captioning and also for models that use the pre-trained captioning model (i.e. reward finetuning, PoE and noisy channel) we back-propagate gradients into the ResNet module. However, in all rerankers we freeze the ResNet during reward optimization. Moreover, we also keep the ResNet fixed in the jointly learned listener to prevent additional drift, however we back-propagate when we pre-train the fixed listener, grounded though the discriminative caption speaker.

A Appendices

Hyperparameters. The following tables represent our choice of hyper-parameters in the speaker and listener agents. Hyperparameters in Table 7 where chosen in the image captioning task using the validation set. Hyperparameters in Table 8 where chosen in the referential task using the validation set.

Agent	Hyperparameter	Value
listener	LSTM hidden size	512
speaker	LSTM hidden size	512
listener	visual embeddings	512
speaker	visual embeddings	1024

Table 7: Settings shared across all experiments.

Model	Hyperparameter	Value
fine-tuning+++	KL regulation	0.1
multi-task	structural weight	0.1
PoE	structural weight	0
noisy channel / PoE	number of samples	20
noisy channel / PoE	message embedding size	1024
noisy channel / PoE	entropy regularization	0.1

Table 8: Settings for particular speakers.

ResNet module. We use ResNet-50 (He et al., 2016) pre-trained on ImageNet. For image captioning and also for models that use the pre-trained captioning model (i.e. reward finetuning, PoE and noisy channel) we back-propagate gradients into the ResNet module. However, in all rerankers we freeze the ResNet during reward optimization. Moreover, we also keep the ResNet fixed in the jointly learned listener to prevent additional drift, however we back-propagate when we pre-train the fixed listener, grounded though the discriminative caption speaker.