Abstract. The aim of this paper is the study of Gorenstein global and weak dimensions of semi-primary rings.

1. Introduction

Throughout the paper, all rings are associative with identity, and all modules are unitary. Let \(R \) be a ring, and let \(M \) be an \(R \)-module. As usual we use \(\text{pd}_R(M), \text{id}_R(M) \) and \(\text{fd}_R(M) \) to denote, respectively, the classical projective dimension, injective dimension and flat dimension of \(M \).

For a two-sided Noetherian ring \(R \), Auslander and Bridger \cite{2} introduced the \(G \)-dimension, \(\text{Gdim}_R(M) \), for every finitely generated \(R \)-module \(M \). They showed that there is an inequality \(\text{Gdim}_R(M) \leq \text{pd}_R(M) \) for all finite \(R \)-modules \(M \), and equality holds if \(\text{pd}_R(M) \) is finite.

Several decades later, Enochs and Jenda \cite{7,8} defined the notion of Gorenstein projective dimension (\(G \)-projective dimension for short), as an extension of \(G \)-dimension to modules that are not necessarily finitely generated, and the Gorenstein injective dimension (\(G \)-injective dimension for short) as a dual notion of Gorenstein projective dimension. Then, to complete the analogy with the classical homological dimension, Enochs, Jenda and Torrecillas \cite{9} introduced the Gorenstein flat dimension. Some references are \cite{3,5,6,7,8,9,11}.

Recall that a left (resp., right) \(R \)-module \(M \) is called Gorenstein projective if, there exists an exact sequence of projective left (resp., right) \(R \)-modules:

\[
P : \ldots \to P_1 \to P_0 \to P_0 \to P_1 \to \ldots
\]
such that \(M \cong \text{Im}(P_0 \to P_0) \) and such that the operator \(\text{Hom}_R(-,Q) \) leaves \(P \) exact whenever \(Q \) is a left (resp., right) projective \(R \)-module. The resolution \(P \) is called a complete projective resolution.

The left and right Gorenstein injective \(R \)-modules are defined dually.

And an \(R \)-module \(M \) is called left (resp., right) Gorenstein flat if, there exists an exact sequence of flat left (resp., right) \(R \)-modules:

\[
F : \ldots \to F_1 \to F_0 \to F_0 \to F_1 \to \ldots
\]
such that $M \cong \text{Im}(P_0 \to P^0)$ and such that the operator $I \otimes_R - \text{ (resp., } - \otimes_R I \text{)}$ leaves F exact whenever I is a right (resp., left) injective R-module. The resolution F is called complete flat resolution.

The Gorenstein projective, injective and flat dimensions are defined in term of resolution and denoted by $\text{Gpd}(-)$, $\text{Gid}(-)$ and $\text{Gfd}(-)$ respectively (please see [9, 10, 11]).

In the rest of this papers, the word R-module will mean left R- module unless explicitly stated otherwise.

In [8], the authors prove the equality

$$\sup \{ \text{Gpd}_R(M) | M \text{ is an } R - \text{ module} \} = \sup \{ \text{Gid}_R(M) | M \text{ is an } R - \text{ module} \}$$

They called the common value of the above quantities the left Gorenstein global dimension of R and denoted it by $l.Gldim(R)$. Similarly, they set

$$l.wGldim(R) = \{ \text{Gfd}_R(M) | M \text{ is an } R - \text{ module} \}$$

which they called the left Gorenstein weak dimension of R.

Recall that a ring R is called semi-primary if there is a two-sided nilpotent ideal N of R, which we call the radical of R, such that R/N is semi-simple. It is clear that if R is semi-primary, its radical is unique (see [12]). Some familiars examples of semi-primary rings are:

\textbf{Example 1.1.} In the following cases the rings R are semi-primary with radical J:

1. $R = \left(\begin{array}{cc} F & F \\ 0 & F \end{array} \right)$ where F is a field, $J = \left(\begin{array}{cc} 0 & F \\ 0 & 0 \end{array} \right)$ with $J^2 = 0$.

2. $R = K[X]/(X^2)$ where K is field, $J = (X)$ and $J^2 = 0$.

3. Camillo Example ([12, Example 2.6]).

For more different examples (non-Noetherian, non-commutative, non self-injective...) of semi-primary rings please see (12).

The purpose of this papers is to characterize the left Gorenstein global and weak dimensions of semi-primary rings.

2. \textbf{Main results}

We begin with the first main result which give a characterization of the left Gorenstein global dimension of semi-primary rings.

Recall that the word R-module will mean left R- module unless explicitly stated otherwise.

\textbf{Theorem 2.1.} Let R be a semi-primary ring with radical N. Then,

\begin{align*}
\text{(a)} & \quad l.Gldim(R) = \text{Gpd}_R(R/N) \\
\text{(b)} & \quad = \text{Gid}_R(R/N) \\
\text{(c)} & \quad = \sup_C \text{Gpd}_R(C) \\
\text{(d)} & \quad = \sup_C \text{Gid}_R(C)
\end{align*}

where C ranges ranges over all simple left R-modules.

If therefore R is not quasi-Frobenius ring then,

\begin{align*}
\text{(e)} & \quad l.Gldim(R) = 1 + \text{Gpd}_R(N)
\end{align*}

To prove this theorem, we need the following Lemma.
Lemma 2.2. Let $0 \to N \to N' \to N'' \to 0$ be an exact sequence of R-modules. Then,

1. $\text{Gpd}_R(N') \leq \max\{\text{Gpd}_R(N), \text{Gpd}_R(N'')\}$ with equality if $\text{Gpd}_R(N'') \neq \text{Gpd}_R(N) + 1$.
2. $\text{Gpd}_R(N'') \leq \max\{\text{Gpd}_R(N'), \text{Gpd}_R(N) + 1\}$ with equality if $\text{Gpd}_R(N') \neq \text{Gpd}_R(N)$.

Proof. Using [11, Theorems 2.20 and 2.24] the argument is analogous to the one of [3, Corollary 2, p. 135].

Proof of Theorem 2.7. (a). Obviously, by definition, we have $lG.n.gldim(R) \geq \text{Gpd}_R(R/N)$. Then, only the other inequality need a proof and we may assume $\text{Gpd}_R(R/N) < \infty$. We claim $\text{Gpd}_R(M) \leq \text{Gpd}_R(R/N)$ for each R-module M. Firstly, let M be a R-module such that $NM = 0$. Note that M can be considered a left module over the semi-simple ring R/N by setting $\bar{x}m = x.m$, for each $m \in M$ and $x \in R$. Clearly this modulation is well defined since $\bar{x} = \bar{y} \implies x - y \in N \implies (x - y).m = 0$

Then, M is a left projective R/N-module (recall that R/N is semi-simple). Therefore, it is a direct summand of a left free R/N-module $(R/N)^{(1)}$. Since $NM = 0$, we can consider M as a direct summand of $(R/N)^{(1)}$ as an R-modules. Then, from [11, Proposition 2.19], $\text{Gpd}_R(M) \leq \text{Gpd}_R((R/N)^{(1)}) = \text{Gpd}_R(R/N)$. Now, let M be an arbitrary R-module and let k be the smaller positive integer such that $N^kM = 0$ (such integer exists since N is nilpotent). Consider the family of short exact sequences of R-modules:

$$0 \to N^{k-i+1}M \to N^{k-i}M \to N^{k-i}M/N^{k-i+1}M \to 0$$

where $0 < i \leq k$. Then, by Lemma 2.2(1) we have

$$\text{Gpd}_R(N^{k-i}M) \leq \sup\{\text{Gpd}_R(N^{k-i+1}M), \text{Gpd}_R(N^{k-i}M/N^{k-i+1}M)\}$$

But, $\text{Gpd}_R(N^{k-i}M/N^{k-i+1}M) \leq \text{Gpd}_R(R/N)$ since $N(N^{k-i}M/N^{k-i+1}M) = 0$. Thus, $\text{Gpd}_R(N^{k-i}M) \leq \sup\{\text{Gpd}_R(N^{k-i+1}M), \text{Gpd}_R(R/N)\}$. So, we conclude that $\text{Gpd}_R(M) \leq \sup\{\text{Gpd}_R(N^{k-i}M, \text{Gpd}_R(R/N)\}$. Again we have $\text{Gpd}_R(N^{k-i}M) \leq \text{Gpd}_R(R/N)$ since $N(N^{k-i}M) = 0$. Hence, $\text{Gpd}_R(M) \leq \text{Gpd}_R(R/N)$, as desired.

(b). Similarly to (a) it suffices to prove that for every left R-module M such that $NM = 0$ we have $\text{Gid}_R(M) \leq \text{Gid}_R(R/N)$. The rest of the proof is the same lines as (a) by using the dual of Lemma 2.2. Let M be such module. Then, M is a direct summand of a left free R/N-module $(R/N)^{(1)}$. If we identify M to a submodule of $(R/N)^{(1)}$ we get

$$M \subseteq (R/N)^{(1)} \subseteq \Pi_I(R/N)$$

Then M is a direct summand of $\Pi_I(R/N)$ (as an R/N-modules and also as an R-modules) since M is an injective R/N-module (since R/N is semi-simple). Then, Using the injective version of [11, Proposition 2.19], we have

$$\text{Gid}_R(M) \leq \text{Gid}_R(\Pi_I(R/N) = \text{Gid}_R(R/N)$$

as desired.

(c). Since R/N is semi-simple, $R/N \cong \oplus C_i$, finite direct sum of simple left R-modules, where the C_i have the property that if C is a left simple R-module,
then $C \cong C_i$ for some i. Therefore, by [11 Proposition 2.19], $\sup_C \{ \text{Gpd}_R(C) \} = l\text{Gpd}_R(R/N) = l\text{Gldim}(R)$, where C ranges over all left simple R-modules.

(d). Since the direct sum $R/N \cong \oplus C_i$ is finite, we can replace the direct sum by the direct product and use the injective version of [11 Proposition 2.19]. Thus, (d) is proved in an analogous fashion to (e).

(e). Suppose that R is not quasi-Frobenius. Then $l\text{Gldim}(R) = \text{Gpd}_R(R/N) > 0$ ([3 Proposition 2.6]). Therefore, from Lemma 2.2(2) we deduce from the exact sequence

$$0 \rightarrow N \rightarrow R \rightarrow R/N \rightarrow 0$$

that $\text{Gpd}_R(R/N) = 1 + \text{Gpd}_R(N)$.

□

The next Proposition give a functorial description of the the left Gorenstein global dimension of semi-primary rings provided this value is finite.

Proposition 2.3. Let R a semi-primary rings with radical N and with finite left Gorenstein global dimension and let $n > 0$ be an integer. The following are equivalent:

1. $l\text{Gldim}(R) < n$,
2. $\text{Ext}^n_R(I, R/N) = 0$ for every injective R-module I,
3. $\text{Ext}^n_R(I, C) = 0$ for every injective R-module I and every simple left R-module C,
4. $\text{Tor}^n_R(R/N, I) = 0$ for every injective R-module I (and R/N is consider as a right R-module),
5. $\text{Tor}^n_R(C, I) = 0$ for every injective R-module I and every simple right R-module C,
6. $\text{Ext}^n_R(R/N, P) = 0$ for every projective R-module P, and
7. $\text{Ext}^n_R(C, P) = 0$ for every projective R-module I and every simple left R-module C.

Proof. By [3 Theorem 1.1], we have

$l\text{Gldim}(R) = \sup \{ \text{Gdim}_R(M) | M \text{ is an } R-\text{module} \}$.

Then, by [11 Theorem 2.22], $l\text{Gldim}(R) < n$ if, and only if, $\text{Ext}^i(I, M) = 0$ for each $i \geq n$ and every R-module M and every injective R-module I. Hence we conclude that

$l\text{Gldim}(R) < n \iff \text{pd}_R(I) < n$ for every injective R-module I.

So, using [11 Proposition 7], we have the equivalence of (1), (2), (3), (4) and (5). Using [3 Lemma 2.1] and [11 Proposition 10] we obtain the equivalence of (1), (6) and (7).

□

Now, we give our second main result which characterize the left Gorenstein weak dimension of coherent semi-primary rings:

Theorem 2.4. Let R be a right coherent semi-primary ring with radical N. Then,

$l\text{wGldim}(R) = \text{Gfd}_R(R/N) = \sup_C \text{Gfd}_R(C)$

where C ranges ranges over all simple left R-modules.

To prove this Theorem we need the following Lemma:
Lemma 2.5. Let $0 \to N \to N' \to N'' \to 0$ be an exact sequence of modules over a right coherent ring R. Then, $Gfd_R(N') \leq \max\{Gfd_R(N), Gfd_R(N')\}$ with equality if $Gfd_R(N'') \neq Gfd_R(N) + 1$.

Proof. Using [11, Theorem 3.15] and [11, Theorem 3.14] the proof is similar to [4, Corollary 2, p. 135]. □

Proof of Theorem 2.4. Using [11, Proposition 3.13] and Lemma 2.5, the proof is the same lines as of proof of the equality (a) and (c) of Theorem 2.1. □

The next Proposition is an application of Theorem 2.1:

Proposition 2.6. Let R be a semi-primary ring such that each simple left R-module is isomorphic to a left ideal in R, then: \{$gldim(R), l.Ggldim(R)$\} $\in \{0, \infty\}$.

Proof. The classical result $gldim(R) \in \{0, \infty\}$ is exactly [1] Proposition 14 and the Gorenstein version is proved by the same way. For exactness we give the proof here. Suppose that $l.G.\text{gldim}(R) = n, 0 < n < \infty$. By Theorem 2.1 we have $l.G.\text{gldim}(R) = Gpd_R(C)$, where C is a simple left R-module. By hypothesis, $C \cong I$, where I is an ideal in R. Thus $Gpd_R(I) = n$. Consider the exact sequence of R-modules:

$$0 \to I \to R \to R/I \to 0$$

Since $n > 0$, R/I is not Gorenstein projective ([11, Theorem 2.5]). Therefore by Lemma 2.2 $Gpd_R(R/I) = 1 + n$. Contradiction with the fact that $Gpd_R(R/I) \leq l.Ggldim(R) = n$. This contradiction finish the proof. □

Remark 2.7 (Proposition 15, [1]). The hypothesis of Proposition 2.6 is satisfied in each of the following cases:

1. R is a direct sum of a finite number of primary rings (a semi-primary ring R is primary if R/N is a simple ring).
2. R is a semi-primary commutative ring.
3. R is a quasi-Frobenius ring (i.e; Noetherian and self-injective ring).

Corollary 2.8. Every commutative semi-primary rings with finite Gorenstein global dimension is quasi-Frobenius.

Proof. This Corollary is a direct consequence of Proposition 2.6 Remark 2.7 and [3, Proposition 2.6]. □

References

1. M. Auslander, On the dimension of modules and algebras (III), global dimension, Nagoya Math. J., 9 (1955), 67-77.
2. M. Auslander and M. Bridger; Stable module theory, Memoirs. Amer. Math. Soc., 94, American Mathematical Society, Providence, R.I., 1969.
3. D. Bennis and N. Mahdou; Global Gorenstein Dimensions, accepted for publication in Proceedings of the American Mathematical Society. Available from math.AC/0611358v4 30 Jun 2009.
4. N. Bourbaki, Algèbre Homologique, Chapitre 10, Masson, Paris, (1980).
5. L. W. Christensen; Gorenstein dimensions, Lecture Notes in Math., Vol. 1747, Springer, Berlin, (2000).
6. L. W. Christensen, A. Frankild, and H. Holm; On Gorenstein projective, injective and flat dimensions - a functorial description with applications, J. Algebra 302 (2006), 231-279.
7. E. Enochs and O. Jenda; On Gorenstein injective modules, Comm. Algebra 21 (1993), no. 10, 3489-3501.
8. E. Enochs and O. Jenda; *Gorenstein injective and projective modules*, Math. Z. 220 (1995), no. 4, 611-633.
9. E. Enochs, O. Jenda and B. Torrecillas; *Gorenstein flat modules*, Nanjing Daxue Xuebao Shuxue Bannian Kan 10 (1) (1993) 1-9.
10. E. E. Enochs and O. M. G. Jenda, *Relative Homological Algebra*, de Gruyter Expositions in Mathematics, Walter de Gruyter and Co., Berlin, 2000.
11. H. Holm; *Gorenstein homological dimensions*, J. Pure Appl. Algebra 189 (2004), 167-193.
12. W. K. Nicholson and M. F. Youssif; *Quasi-Frobenius Rings*, Cambridge University Press, vol. 158, 2003.

Mohammed Tamekkante, Department of Mathematics, Faculty of Science and Technology of Fez, Box 2202, University S.M. Ben Abdellah Fez, Morocco.