ENERGY PROPERTIES OF CRITICAL KIRCHHOFF PROBLEMS WITH APPLICATIONS
FRANCESCA FARACI, CSABA FARKAS, AND ALEXANDRU KRISTÁLY

Abstract. In this paper we fully characterize the sequentially weakly lower semicontinuity of the parameter-depending energy functional associated with the critical Kirchhoff problem. We also establish sufficient criteria with respect to the parameters for the convexity and validity of the Palais-Smale condition of the same energy functional. We then apply these regularity properties in the study of some elliptic problems involving the critical Kirchhoff term.

1. Introduction

The time-depending state of a stretched string is given by the solution of the nonlocal equation

\[u_{tt} - \left(a + b \int_{\Omega} |\nabla u|^2 \, dx \right) \Delta u = h(t, x, u), \quad (t, x) \in (0, +\infty) \times \Omega, \]

proposed first by Kirchhoff [16] in 1883. In (1.1), \(\Omega \subset \mathbb{R}^d \) is an open bounded domain, the solution \(u : (0, \infty) \times \Omega \rightarrow \mathbb{R} \) denotes the displacement of the string, \(h : (0, \infty) \times \Omega \times \mathbb{R} \rightarrow \mathbb{R} \) is a Carathéodory function representing the external force, \(a \) is the initial tension, while \(b \) is related to the intrinsic properties of the string (such as Young’s modulus of the material). Other nonlocal equations similar to (1.1) appear also in biological systems, where \(u \) describes a process depending on its average (over a given set), like population density, see e.g. Chipot and Lovat [5].

Let \(\Omega \subset \mathbb{R}^d \) be an open bounded domain, \(d \geq 4 \). The primary aim of the present paper is to establish basic properties of the energy functional associated with the stationary form of (1.1), involving a critical term and subject to the Dirichlet boundary condition, namely,

\[
\begin{aligned}
- \left(a + b \int_{\Omega} |\nabla u|^2 \right) \Delta u &= |u|^{2^* - 2} u \quad \text{in} \quad \Omega, \\
\quad u &= 0 \quad \text{on} \quad \partial \Omega,
\end{aligned}
\]

where \(a, b > 0 \) and \(2^* = \frac{2d}{d - 2} \) is the critical Sobolev exponent. In spite of the competing effect of the nonlocal term \(\int_{\Omega} |\nabla u|^2 \, dx \Delta u \) with the critical nonlinearity \(|u|^{2^* - 2} u \) as well as the lack of compactness of the Sobolev embedding \(H^1_0(\Omega) \hookrightarrow L^{2^*}(\Omega) \), there are several contributions concerning existence and multiplicity of solutions for problem \((P_{a,b})\), by using fine arguments both from variational analysis (see e.g. Autuori, Fiscella and Pucci [3], Chen, Kuo and Wu [4], Corrêa and Figueiredo [6], Figueiredo [11], Perera and Zhang[20, 21]) and topological methods (see e.g. Fan [9], Figueiredo and Santos [12]). It is also worth mentioning that the Palais-Smale compactness condition combined with the Lions concentration compactness principle [18] are still the most popular tools to deal with elliptic problems involving critical terms. We note that problem \((P_{a,b})\) is sensitive with respect to the size of the space dimension \(d \). Indeed, different arguments/results are applied/obtained for the lower dimensional case \(d \in \{3, 4\} \) (see e.g. Alves, Corrêa and Figueiredo [1], Deng and Shuai [8], Lei, Liu and Guo [17] and Naimen [19]) and for the higher dimensional case \(d > 4 \) (see Alves, Corrêa and Ma [2], Hebey [13, 14], Yao and Mu [26]); moreover, the parameters \(a \) and \(b \) should satisfy suitable constraints in order to employ the aforementioned principles.

2000 Mathematics Subject Classification. Primary: 35A15; Secondary: 35B38.

The research of C. Farkas and A. Kristály is supported by the National Research, Development and Innovation Fund of Hungary, financed under the K_18 funding scheme, Project No. 127926.
Moreover, as a formal observation, we notice that

\[E \text{ of } E \]

which will play crucial roles in the lower semicontinuity, validity of the PS-condition and convexity in (1.2) but never achieved except when \(\omega \) being the volume of the unit ball in \(\mathbb{R}^d \). Note that for every \(\omega \) is sharp in (1.2) but never achieved except when \(\Omega = \mathbb{R}^d \), see e.g. Willem [28]. The energy functional \(E_{a,b} : H^1_0(\Omega) \to \mathbb{R} \) associated with problem \((\mathcal{P}_{a,b}) \) is defined by

\[
E_{a,b}(u) = \frac{a}{2} \|u\|^2 + \frac{b}{4} \|u\|^4 - \frac{1}{2^*} \|u\|_{2^*}^{2^*}.
\]

For a fixed \(d \geq 4 \), we introduce the constants

\[
L_d = \begin{cases}
\frac{4(d - 4)^{d-4}}{d^{d-2} S_d^d}, & d > 4 \\
\frac{1}{S_4^2}, & d = 4,
\end{cases} \quad \text{PS}_d = \begin{cases}
\frac{2(d - 4)^{d-4}}{(d - 2)^{d-2} S_d^d}, & d > 4 \\
\frac{1}{S_4^2}, & d = 4,
\end{cases}
\]

and

\[
C_d = \begin{cases}
\frac{2(d - 4)^{d-4} (d + 2)^{d-2}}{(d - 2)^{d-2} S_d^2}, & d > 4 \\
\frac{3}{S_4^2}, & d = 4,
\end{cases}
\]

which will play crucial roles in the lower semicontinuity, validity of the PS-condition and convexity of \(E_{a,b} \), respectively. Note that for every \(d \geq 4 \), we have

\[
L_d \leq \text{PS}_d \leq C_d.
\]

Moreover, as a formal observation, we notice that

\[
\lim_{d \to 4} L_d = L_4; \quad \lim_{d \to 4} \text{PS}_d = \text{PS}_4; \quad \lim_{d \to 4} C_d = C_4.
\]

Our main result reads as follows:

Theorem 1.1. Let \(\Omega \subset \mathbb{R}^d \) be an open bounded domain \((d \geq 4) \), \(a, b > 0 \) two fixed numbers, and \(E_{a,b} \) be the energy functional associated with problem \((\mathcal{P}_{a,b}) \). Then the following statements hold:

(i) \(E_{a,b} \) is sequentially weakly lower semicontinuous on \(H^1_0(\Omega) \) if and only if \(a \frac{d-4}{2} b \geq L_d \);

(ii) \(E_{a,b} \) satisfies the Palais-Smale condition on \(H^1_0(\Omega) \) whenever \(a \frac{d-4}{2} b > \text{PS}_d \);

(iii) \(E_{a,b} \) is convex on \(H^1_0(\Omega) \) whenever \(a \frac{d-4}{2} b \geq C_d \). In addition, \(E_{a,b} \) is strictly convex on \(H^1_0(\Omega) \) whenever \(a \frac{d-4}{2} b > C_d \).
ENERGY PROPERTIES OF CRITICAL KIRCHHOFF PROBLEMS WITH APPLICATIONS

Figure 1.1. Curves $a \frac{d-4}{2} b = L_d$ and PS_d and C_d for $d > 4$ (case (i)) and $d = 4$ (case (ii)).

Remark 1.1. (i) By the proof of Theorem 1.1/(i) we observe that the sequentially weakly lower semicontinuity of $\mathcal{E}_{a,b}$ holds on any open domain $\Omega \subseteq \mathbb{R}^d$ (not necessary bounded). However, the optimality of the constant L_d requires that $\Omega \neq \mathbb{R}^d$, see Section 2.

(ii) Note that a similar result as Theorem 1.1/(ii) (with the same assumption $a \frac{d-4}{2} b > \text{PS}_d$) has been proved by Hebey [14] on compact Riemannian manifolds. We provide here a genuinely different proof than in [14] based on the second concentration compactness lemma of Lions [18].

In the sequel, we provide two applications of Theorem 1.1. First, we consider the model Poisson type problem

\[
- \left(a + b \int_{\Omega} |\nabla u|^2 \right) \Delta u = |u|^{2^* - 2} u + h(x) \quad \text{in} \quad \Omega,
\]
\[
u = 0 \quad \text{on} \quad \partial \Omega,
\]

where $h \in L^\infty(\Omega)$ is a positive function.

Theorem 1.2. Let $\Omega \subseteq \mathbb{R}^d$ be an open bounded domain ($d \geq 4$), $a, b > 0$ be fixed numbers. Then

(i) if $a \frac{d-4}{2} b \geq L_d$, problem $(\mathcal{P}_{a,b}^h)$ has at least a weak solution in $H^1_0(\Omega)$;

(ii) if $a \frac{d-4}{2} b > C_d$, problem $(\mathcal{P}_{a,b}^h)$ has a unique weak solution in $H^1_0(\Omega)$.

As a second application we consider the double-perturbed problem of $(\mathcal{P}_{a,b})$ of the form

\[
- \left(a + b \int_{\Omega} |\nabla u|^2 \right) \Delta u = |u|^{2^* - 2} u + \lambda |u|^{p-2} u + \mu g(x,u) \quad \text{in} \quad \Omega,
\]
\[
u = 0 \quad \text{on} \quad \partial \Omega,
\]

where a, b, λ, μ are positive parameters, $1 < p < 2^*$ and $g : \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is Carathéodory function belonging to the class \mathcal{A} which contains functions $\varphi : \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ such that

\[
\sup_{(x,t) \in \Omega \times \mathbb{R}} \frac{|\varphi(x,t)|}{1 + |t|^{q-1}} < +\infty
\]

for some $1 < q < 2^*$.

The single-perturbed problem $(\mathcal{P}_{a,b}^{p,0})$ (i.e., $g \equiv 0$) is of particular interest. Indeed, when $\lambda > 0$ is small enough and $d = 4$, Naimen [19] proved that $(\mathcal{P}_{a,b}^{p,0})$ has a positive solution if and only if $b < S_4^{-2}$; when $d > 4$, there are also some sufficient conditions for guaranteeing the existence of positive solutions for $(\mathcal{P}_{a,b}^{p,0})$. In addition, if $p \in (2,4)$ and $b > S_4^{-2} = L_4 = \text{PS}_4$, one can easily prove that any weak solution $u \in H^1_0(\Omega)$ of $(\mathcal{P}_{a,b}^{p,0})$ fulfills the a priori estimate

\[
\|u\| \leq \left(\frac{\lambda S_4^{-2} - \mu}{bS_4^{-2} - 1} \right) \frac{1}{p}.
\]
The following result is twofold. First, it complements the result of Naïmen [19] (i.e., we consider $b > S_d^{-2}$ for $d = 4$); second, having in our mind the global estimate (1.6), it shows that the weak solutions of the perturbed problem ($\mathcal{P}_{a,b}^p$) by means of any subcritical function will be stable with respect to the H^1_0-norm (whenever $\lambda > 0$ is large enough).

Theorem 1.3. Let $\Omega \subset \mathbb{R}^d$ be an open bounded domain $(d \geq 4)$, $a, b > 0$ two fixed numbers such that $a \frac{d-4}{2} > S_d^{-2}$ and $p \in (2, 2^*)$. Then there exists $\lambda^* > 0$ such that for each compact interval $[\alpha, \beta] \subset (\lambda^*, +\infty)$, there exists $r > 0$ with the following property: for every $\lambda \in [\alpha, \beta]$, and for every $g \in \mathcal{A}$, there exists $\mu^* > 0$ such that for each $\mu \in [0, \mu^*]$, problem $\mathcal{P}_{a,b}^p(\mu)$ has at least three weak solutions whose norms are less than r.

In fact, instead of Theorem 1.3 a slightly more general result will be given in Section 3, replacing the term $u \mapsto |u|^{p-2}u$ by a function $f \in \mathcal{A}$ verifying some mild hypotheses.

2. PROOF OF THEOREM 1.1

Proof of Theorem 1.1(i). We divide the proof into two parts.

Step 1. Assume first that $a \frac{d-4}{2} \geq L_d$; we are going to prove that the energy functional $\mathcal{E}_{a,b}$ is sequentially weakly lower semicontinuous on $H^1_0(\Omega)$. To see this, let $u_n \in H^1_0(\Omega)$ be an arbitrary sequence such that $u_n \rightarrow u$ in $H^1_0(\Omega)$. Thus, up to a subsequence, we have for every $p < 2^*$ that $u_n \rightarrow u$ in $L^p(\Omega)$ and $\nabla u_n \rightharpoonup \nabla u$ in $L^2(\Omega)$ as $n \rightarrow \infty$.

By the latter relation, it is clear that

$$\|u_n\|^2 - \|u\|^2 = \|u_n - u\|^2 + 2\int_\Omega \nabla(u_n - u) \nabla u = \|u_n - u\|^2 + o(1), \quad n \rightarrow \infty.$$

We also have that

$$\|u_n\|^4 - \|u\|^4 = (\|u_n\|^2 - \|u\|^2)(\|u_n\|^2 + \|u\|^2)$$

$$= (\|u_n - u\|^2 + o(1)) \left(\|u_n - u\|^2 + 2\int_\Omega \nabla(u_n - u) \nabla u + 2\|u\|^2\right)$$

$$= (\|u_n - u\|^2 + o(1)) \left(\|u_n - u\|^2 + 2\|u\|^2 + o(1)\right), \quad n \rightarrow \infty.$$

On the other hand, by the Brézis-Lieb Lemma (see e.g. Willem [28]), one has

$$\|u_n\|_{2^*} - \|u\|_{2^*} = \|u_n - u\|_{2^*} + o(1), \quad n \rightarrow \infty.$$

Combining the above estimates, it yields

$$\mathcal{E}_{a,b}(u_n) - \mathcal{E}_{a,b}(u) = \frac{a}{2}\left(\|u_n\|^2 - \|u\|^2\right) + \frac{b}{4}\left(\|u_n\|^4 - \|u\|^4\right) - \frac{1}{2^{*}}\left(\|u_n\|_{2^*}^2 - \|u\|_{2^*}^2\right)$$

$$= \frac{a}{2}\|u_n - u\|^2 + \frac{b}{4}\left(\|u_n - u\|^4 + 2\|u\|^2\|u_n - u\|^2\right) - \frac{1}{2^{*}}\|u_n - u\|_{2^*}^2 + o(1)$$

$$\geq \frac{a}{2}\|u_n - u\|^2 + \frac{b}{4}\|u_n - u\|^4 + S_d^{-\frac{2^{*}}{2^*}}\|u_n - u\|^{2^{*}} + o(1)$$

$$\geq \frac{a}{2}\|u_n - u\|^2 + \frac{b}{4}\|u_n - u\|^4 - S_d^{-\frac{2^{*}}{2^*}}\|u_n - u\|^{2^{*}} + o(1)$$

$$= \|u_n - u\|^2 \left(\frac{a}{2} + \frac{b}{4}\|u_n - u\|^2 - S_d^{-\frac{2^{*}}{2^*}}\|u_n - u\|^{2^{*} - 2}\right) + o(1), \quad n \rightarrow \infty.$$

Let us consider the function $f_d : [0, \infty) \rightarrow \mathbb{R}$ defined by

$$f_d(x) = \frac{a}{2} + \frac{b}{4}x^2 - S_d^{-\frac{2^{*}}{2^*}}x^{2^{*} - 2}, \quad x \geq 0.$$

We claim that the function f_d is positive for all $x \geq 0$.

(2.1)
Case 1: \(d = 4 \). If follows that \(2^* = 4 \), thus by the hypothesis \(b \geq L_d \) – which is equivalent to \(bS_4^2 \geq 1 \) – it directly follows that

\[
f_4(x) = \frac{a}{2} + \frac{b - S_4^{-2}}{4} x^2 \geq 0, \ \forall x \geq 0.
\]

Case 2: \(d > 4 \). The minimum of the function \(f_d \) is at \(m_d > 0 \), where

\[
m_d = \left(\frac{2^* b}{2(2^* - 2) S_d^2} \right)^{\frac{1}{2 - \frac{4}{d}}}. \tag{2.2}
\]

A simple algebraic computation shows that

\[
a d^{\frac{4}{d - 4}} b \geq L_d \iff f_d(m_d) = \frac{1}{2} \left(a - b - \frac{2}{d - 4} L_d \right) \geq 0,
\]

which proves the claim.

Summing up the above estimates, we have that

\[
\liminf_{n \to \infty} (E_{a,b}(u_n) - E_{a,b}(u)) \geq \liminf_{n \to \infty} \| u_n - u \| f_d(\| u_n - u \|) \geq 0, \tag{2.3}
\]

which proves the sequentially weakly lower semicontinuity of \(E_{a,b} \) on \(H^1_0(\Omega) \).

Step 2. Now, we prove that the constant \(L_d \) in Theorem 1.1 is sharp. Assume the contrary, i.e., \(E_{a,b} \) is still sequentially weakly lower semicontinuous on \(H^1_0(\Omega) \) for some \(a, b > 0 \) with the property that

\[
a d^{\frac{4}{d - 4}} b < L_d. \tag{2.4}
\]

Case 1: \(d = 4 \). Fix a minimizing sequence \(\{ u_n \} \subset H^1_0(\Omega) \) for \(S_4 \) in (1.2); by its boundedness it is clear that there exists \(u \in H^1_0(\Omega) \setminus \{ 0 \} \) such that, up to a subsequence, \(u_n \rightharpoonup u \) in \(H^1_0(\Omega) \). Moreover, the sequentially weakly lower semicontinuity of the norm \(\| \cdot \| \) implies that \(\| u \| \geq \liminf_{n \to \infty} \| u_n \| =: L \) and there exists a subsequence \(\{ u_{n_j} \} \) of \(\{ u_n \} \) such that \(L = \lim_{j \to \infty} \| u_{n_j} \| \); in particular, \(L > 0 \).

By recalling the function \(f_4 \) from (2.1), due to (2.4), it is clear that on \((x_0, \infty) \) the function \(f_4 \) is decreasing and negative, where

\[
x_0 = \left(\frac{2aS_4^2}{1 - S_4^2 b} \right)^{\frac{1}{2}} \text{ is the unique solution of } f_4(x) = 0, \ x \geq 0.
\]

Figure 2.1. Shape of the function \(x \mapsto f_4(x), \ x \geq 0 \), when (2.4) holds.
Let \(c > 0 \) be such that \(cL \geq c\|u\| > x_0 \). It is also clear that \(\{cu_n\} \) is a minimizing sequence for \(S_4 \) and \(cu_n \rightharpoonup cu \) in \(H_0^1(\Omega) \) as \(j \to \infty \). Consequently, since \(f_4 \) is continuous, we have that
\[
\liminf_{n \to \infty} E_{a,b}(cu_n) \leq \liminf_{j \to \infty} E_{a,b}(cu_{n_j}) \leq \liminf_{j \to \infty} \left(\frac{a}{2} \|cu_{n_j}\|^2 + \frac{b}{4} \|cu_{n_j}\|^4 - \frac{S_4^{-2}}{4} \|cu_{n_j}\|^4 \right) = (cL)^2 f_4(cL). \tag{2.5}
\]
Since \(cL \geq c\|u\| > x_0 \), we have that \(f_4(cL) \leq f_4(\|cu\|) < 0 \), thus by (2.5), we get that
\[
\liminf_{n \to \infty} E_{a,b}(cu_n) \leq \|cu\|^2 f_4(\|cu\|).
\]
On the other hand, by (1.3) we have
\[
\|cu\|^2 f_4(\|cu\|) = \frac{a}{2} \|cu\|^2 + \frac{b}{4} \|cu\|^4 - \frac{S_4^{-2}}{4} \|cu\|^4 \leq \frac{a}{2} \|cu\|^2 + \frac{b}{4} \|cu\|^4 - \frac{1}{4} \int_{\Omega} \|cu\|^4 = E_{a,b}(cu). \tag{2.6}
\]
By the above estimates we have that \(\liminf_{n \to \infty} E_{a,b}(cu_n) \leq E_{a,b}(cu) \). In fact, we have strict inequality in the latter relation; indeed, otherwise we would have \(S_4^{-2}\|cu\|^4 = \|cu\|^4 \), i.e., \(u \) would be an extremal function in (1.2). However, since \(\Omega \neq \mathbb{R}^d \), no extremal function exists in (1.2), see Willem [28, Proposition 1.43]. Thus, we indeed have
\[
\liminf_{n \to \infty} E_{a,b}(cu_n) < E_{a,b}(cu),
\]
which contradicts the sequentially weakly lower semicontinuity of \(E_{a,b} \) on \(H_0^1(\Omega) \). Accordingly, it yields that (2.4) cannot hold whenever the sequentially weakly lower semicontinuity of \(E_{a,b} \) on \(H_0^1(\Omega) \) is assumed, which proves the optimality of the constant \(L_d \) in the case when \(d = 4 \).

Case 2: \(d > 4 \). Since \(0 < 2^* - 2 < 2 \), it is clear that \(f_d(+\infty) = +\infty \) and the assumption (2.4) together with the equivalence (2.2) ensures that the function \(f_d \) has its global minimum point at \(m_d > 0 \) with \(f_d(m_d) < 0 \).

Consider a minimizing sequence \(\{u_n\} \subset H_0^1(\Omega) \) for \(S_d \), and let \(\{u_{n_j}\} \) be a subsequence of \(\{u_n\} \), \(L > 0 \) and \(u \in H_0^1(\Omega) \) as in Case 1. Let \(c = \frac{m_d}{L} > 0 \). Since \(\|u\| \leq L \) and the minimum has the

Figure 2.2. Shape of the function \(x \mapsto f_d(x), \ x \geq 0 \), when \(d > 4 \) and (2.4) holds.
property that \(f_d(m_d) < 0 \), it follows, similarly as before, that

\[
\liminf_{n \to \infty} \mathcal{E}_{a,b}(cu_n) \leq \liminf_{j \to \infty} \mathcal{E}_{a,b}(cu_{n_j})
\]

\[
= \liminf_{j \to \infty} \left\{ \frac{a}{2} \|cu_{n_j}\|^2 + \frac{b}{4} \|cu_{n_j}\|^4 - \frac{S_d}{2^*} \|cu_{n_j}\|^{2^*} \right\}
\]

\[
= \liminf_{j \to \infty} \|cu_{n_j}\|^2 f_d(\|cu_{n_j}\|)
\]

\[
= (cL)^2 f_d(cL) = (cL)^2 f_d(m_d)
\]

\[
\leq \|cu\|^2 f_d(m_d)
\]

\[
\leq \|cu\|^2 f_d(\|cu\|).
\]

Similarly as in (2.6) and using Willem [28, Proposition 1.43], we have that \(\|cu\|^2 f_d(\|cu\|) < \mathcal{E}_{a,b}(cu) \), i.e., \(\mathcal{E}_{a,b} \) is not sequentially weakly lower semicontinuous on \(H_0^1(\Omega) \), a contradiction. \(\square \)

Proof of Theorem 1.1/(ii). Let \(\{u_n\} \subset H_0^1(\Omega) \) be a PS-sequence for \(\mathcal{E}_{a,b} \), i.e., for some \(c \in \mathbb{R} \),

\[
\begin{cases}
\mathcal{E}_{a,b}(u_n) \to c \\
\mathcal{E}_{a,b}'(u_n) \to 0
\end{cases} \quad \text{as } n \to \infty.
\]

One can prove that \(\mathcal{E}_{a,b} \) is of class \(C^2 \) on \(H_0^1(\Omega) \); in particular, a direct calculation yields (see also Willem [28, Proposition 1.12]) that

\[
\langle \mathcal{E}_{a,b}'(u), v \rangle = (a + b\|u\|^2) \int_{\Omega} \nabla u \nabla v - \int_{\Omega} |u|^{2^* - 2} uv, \quad \forall u, v \in H_0^1(\Omega).
\]

(2.7)

Note that \(\mathcal{E}_{a,b} \) is coercive on \(H_0^1(\Omega) \); indeed, the claim follows by (1.3) together with the facts that if \(d > 4 \) then \(4 > 2^* \), while if \(d = 4 \) then \(b > \text{PS}_4 = S_4^{-2} \). In particular, it follows that \(\{u_n\} \) is bounded in \(H_0^1(\Omega) \), thus there exists \(u \in H_0^1(\Omega) \) such that (up to a subsequence),

\[
\begin{align*}
&u_n \to u \quad \text{in } H_0^1(\Omega), \\
&u_n \to u \quad \text{in } L^p(\Omega), \quad p \in [1, 2^*), \\
&u_n \to u \quad \text{a.e. in } \Omega.
\end{align*}
\]

By using the second concentration compactness lemma of Lions [18], there exist an at most countable index set \(J \), a set of points \(\{x_j\}_{j \in J} \subset \Omega \) and two families of positive numbers \(\{\eta_j\}_{j \in J} \), \(\{\nu_j\}_{j \in J} \) such that

\[
\begin{align*}
|\nabla u_n|² \to d\eta &\geq |\nabla u|^2 + \sum_{j \in J} \eta_j \delta_{x_j}, \quad (2.8) \\
|u_n|^{2^*} \to dv &\geq |u|^{2^*} + \sum_{j \in J} \nu_j \delta_{x_j}, \quad (2.9)
\end{align*}
\]

in the sense of measures, where \(\delta_{x_j} \) is the Dirac mass concentrated at \(x_j \) and such that

\[
S_d^n \frac{\eta_j}{\nu_j} \leq \eta_j, \quad \forall j \in J. \quad (10.10)
\]

We are going to prove that the index set \(J \) is empty. Arguing by contradiction, we may assume that there exists a \(j_0 \) such that \(\nu_{j_0} \neq 0 \) at \(x_0 \). For a sufficiently small \(\varepsilon > 0 \) we consider a non-negative cut-off function \(\phi_\varepsilon \) such that

\[
0 \leq \phi_\varepsilon \leq 1 \quad \text{in } \Omega, \\
\phi_\varepsilon \equiv 1 \quad \text{in } B(x_0, \varepsilon), \\
\phi_\varepsilon = 0 \quad \text{in } \Omega \setminus B(x_0, 2\varepsilon), \\
|\nabla \phi_\varepsilon| \leq \frac{2}{\varepsilon}.
\]
where \(B(x_0, r) = \{ x \in \mathbb{R}^d : |x - x_0| < r \} \) for \(r > 0 \). It is clear that the sequence \(\{ u_n \phi_\varepsilon \} \) is bounded in \(H^1_0(\Omega) \), thus
\[
\lim_{n \to \infty} \mathcal{E}_{a,b}'(u_n)(u_n \phi_\varepsilon) = 0.
\]
In particular, by (2.7) it turns out that when \(n \to \infty \), one has
\[
o(1) = \mathcal{E}_{a,b}'(u_n)(u_n \phi_\varepsilon)
= (a + b\|u_n\|^2) \int_\Omega \nabla u_n \nabla (u_n \phi_\varepsilon) - \int_\Omega |u_n|^{2^*} \phi_\varepsilon
= (a + b\|u_n\|^2) \left(\int_\Omega |\nabla u_n|^2 \phi_\varepsilon + \int_\Omega u_n \nabla u_n \nabla \phi_\varepsilon \right) - \int_\Omega |u_n|^{2^*} \phi_\varepsilon.
\]
First, by Hölder’s inequality, there exists \(C > 0 \) (not depending on \(n \)) such that
\[
\left| \int_\Omega u_n \nabla u_n \nabla \phi_\varepsilon \right| = \left| \int_{B(x_0, 2\varepsilon)} u_n \nabla u_n \nabla \phi_\varepsilon \right| \leq \left(\int_{B(x_0, 2\varepsilon)} |\nabla u_n|^2 \right)^{\frac{1}{2}} \left(\int_{B(x_0, 2\varepsilon)} |u_n \nabla \phi_\varepsilon|^2 \right)^{\frac{1}{2}} \\
\leq C \left(\int_{B(x_0, 2\varepsilon)} |u_n \nabla \phi_\varepsilon|^2 \right)^{\frac{1}{2}}.
\]
The Lebesgue dominated convergence theorem implies that
\[
\lim_{n \to \infty} \int_{B(x_0, 2\varepsilon)} |u_n \nabla \phi_\varepsilon|^2 = \int_{B(x_0, 2\varepsilon)} |u \nabla \phi_\varepsilon|^2,
\]
and by
\[
\left(\int_{B(x_0, 2\varepsilon)} |u \nabla \phi_\varepsilon|^2 \right)^{\frac{1}{2}} \leq \left(\int_{B(x_0, 2\varepsilon)} |u|^{2^*} \right)^{\frac{1}{2^*}} \left(\int_{B(x_0, 2\varepsilon)} |\nabla \phi_\varepsilon|^d \right)^{\frac{1}{d}} \\
\leq C \left(\int_{B(x_0, 2\varepsilon)} |u|^{2^*} \right)^{\frac{1}{2^*}},
\]
for some \(C > 0 \), we obtain
\[
\lim_{\varepsilon \to 0, n \to \infty} (a + b\|u_n\|^2) \left| \int_\Omega u_n \nabla u_n \nabla \phi_\varepsilon \right| = 0.
\]
Second, by (2.8) it follows that
\[
\lim_{n \to \infty} (a + b\|u_n\|^2) \int_\Omega |\nabla u_n|^2 \phi_\varepsilon \geq \lim_{n \to \infty} \left[a \int_{B(x_0, 2\varepsilon)} |\nabla u_n|^2 \phi_\varepsilon + b \left(\int_\Omega |\nabla u_n|^2 \phi_\varepsilon \right)^2 \right] \\
\geq a \int_{B(x_0, 2\varepsilon)} |\nabla u_n|^2 \phi_\varepsilon + b \left(\int_\Omega |\nabla u_n|^2 \phi_\varepsilon \right)^2 + a \eta_{j_0} + b \eta_{j_0}^2,
\]
thus
\[
\lim_{\varepsilon \to 0, n \to \infty} (a + b\|u_n\|^2) \int_\Omega |\nabla u_n|^2 \phi_\varepsilon \geq a \eta_{j_0} + b \eta_{j_0}^2.
\]
Third, by (2.9) one has that
\[
\lim_{\varepsilon \to 0, n \to \infty} \int_\Omega |u_n|^{2^*} \phi_\varepsilon = \lim_{\varepsilon \to 0} \int_\Omega |u|^{2^*} \phi_\varepsilon + \nu_{j_0} = \lim_{\varepsilon \to 0, n \to \infty} \int_{B(x_0, 2\varepsilon)} |u|^2 \phi_\varepsilon + \nu_{j_0} = \nu_{j_0}.
\]
Summing up the above estimates, one obtains
\[
0 \geq a \eta_{j_0} + b \eta_{j_0}^2 - \nu_{j_0} \geq a \eta_{j_0} + b \eta_{j_0}^2 - S_d^{\frac{2^*}{2}} \eta_{j_0}^{\frac{2^*}{2}} \\
= \eta_{j_0} \left(a + b \eta_{j_0} - S_d^{\frac{2^*}{2}} \eta_{j_0}^{\frac{2^*}{2} - 1} \right). \tag{2.11}
\]
Let \(\tilde{f}_d : [0, \infty) \to \mathbb{R} \) be the function defined by
\[
\tilde{f}_d(x) = a + bx - S_d^{-\frac{2}{d}} x^{\frac{2}{d}-1}, \quad x \geq 0.
\]
One can see that the assumption \(a \frac{d-4}{d} b > \mathcal{P}_d \) implies that \(\tilde{f}_d(x) > 0 \) for all \(x \geq 0 \). In particular, it follows that \(a + b\eta_{j_0} - S_d^{-\frac{2}{d}} \eta_{j_0}^{\frac{2}{d}-1} > 0 \), therefore by (2.11) we necessarily have that \(\eta_{j_0} = 0 \), contradicting \(\nu_{j_0} \neq 0 \) and (2.10). The latter fact implies that \(J \) is empty. In particular, by (2.9) and Brezis-Lieb lemma it follows that \(u_n \to u \) in \(L^{2^*}(\Omega) \) as \(n \to \infty \); thus
\[
\lim_{n \to \infty} \int_{\Omega} |u_n|^{2^*-2} u_n (u - u_n) = 0. \tag{2.12}
\]
Since \(\mathcal{E}_{a,b}'(u_n) \to 0 \) as \(n \to \infty \), we have by (2.7) and (2.12) that
\[
0 = \lim_{n \to \infty} \mathcal{E}_{a,b}'(u_n)(u_n - u) = \lim_{n \to \infty} \left((a + b\|u_n\|^2) \int_{\Omega} \nabla u_n (\nabla u - \nabla u_n) + \int_{\Omega} |u_n|^{2^*-2} u_n (u - u_n) \right)
= \lim_{n \to \infty} \left((a + b\|u_n\|^2) \int_{\Omega} \nabla u_n \nabla (u - u_n) \right).
\]
By the boundedness of \(\{u_n\} \subset H^1_0(\Omega) \), the latter relation and the fact that \(u_n \to u \) in \(H^1_0(\Omega) \), i.e., \(\int_{\Omega} \nabla u \nabla (u - u_n) \to 0 \) as \(n \to \infty \), we obtain at once that \(\|u_n - u\|^2 \to 0 \) as \(n \to \infty \), which concludes the proof. \(\square \)

Proof of Theorem 1.1 (iii). It is well known that the energy functional \(\mathcal{E}_{a,b} : H^1_0(\Omega) \to \mathbb{R} \) is convex if and only if \(\mathcal{E}_{a,b}' \) is monotone, or equivalently,
\[
\langle \mathcal{E}_{a,b}''(u), v \rangle \geq 0, \quad \forall u, v \in H^1_0(\Omega).
\]

By using (2.7), we have
\[
\langle \mathcal{E}_{a,b}''(u), v \rangle = a\|v\|^2 + b\|u\|^2\|v\|^2 + 2b \left(\int_{\Omega} \nabla u \nabla v \right)^2 - (2^*-1) \int_{\Omega} |u|^{2^*-2} v^2.
\]
Moreover, by Hölder and Sobolev inequalities, one can see that
\[
\langle \mathcal{E}_{a,b}''(u), v \rangle \geq a\|v\|^2 + b\|u\|^2\|v\|^2 - (2^*-1) S_d^{-\frac{2}{d}} \|u\|^{2^*-2} \|v\|^2
= \|v\|^2 \left[a + b\|u\|^2 - (2^*-1) S_d^{-\frac{2}{d}} \|u\|^{2^*-2} \right].
\]

Let us consider the function \(\overline{f}_d : [0, \infty) \to \mathbb{R} \) given by
\[
\overline{f}_d(x) = a + bx^2 - (2^*-1) S_d^{-\frac{2}{d}} x^{2^*-2}, \quad x \geq 0.
\]
We claim that the function \(\overline{f}_d \) is positive on \([0, \infty)\).

Case 1: \(d = 4 \). Since \(2^* = 4 \), the hypothesis \(b \geq C_d \) (which is equivalent to \(b S_d^2 \geq 3 \)) implies that
\[
\overline{f}_d(x) = a + bx^2 - 3S_d^{-2} x^2 = a + x^2 (b - 3S_d^{-2}) \geq 0, \quad \forall x \geq 0.
\]

Case 2: \(d > 4 \). The global minimum of the function \(\overline{f}_d \) is at \(m_d > 0 \), where
\[
m_d = \left[\frac{2b S_d^2}{(2^*-1)(2^*-2)} \right]^{\frac{1}{2^*-2}}.
\]
It turns out that
\[
a \frac{d-4}{d} b \geq C_d \iff \overline{f}_d(m_d) \geq 0,
\]
which proves the claim. The strict convexity of \(\mathcal{E}_{a,b} \) similarly follows whenever \(a \frac{d-4}{d} b > C_d \) is assumed. \(\square \)
3. Applications: proof of Theorems 1.2 & 1.3

Proof of Theorem 1.2. We consider the energy functional associated with problem \((P_{a,b}^h)\), i.e.,
\[
E(u) = E_{a,b}(u) - \int_\Omega h(x)u(x)dx, \quad u \in H^1_0(\Omega).
\]
It is easy to prove that \(E\) belongs to \(C^1(H^1_0(\Omega), \mathbb{R})\) and its critical points are exactly the weak solutions of problem \((P_{a,b}^h)\). Moreover, \(E\) is bounded from below and coercive on \(H^1_0(\Omega)\), i.e., \(E(u) \to +\infty\) whenever \(||u|| \to +\infty\).

(i) If \(a \frac{d-4}{2} b \geq L_d\), by Theorem 1.1/(i) and the fact that \(u \mapsto \int_\Omega h(x)u(x)dx\) is sequentially weakly continuous on \(H^1_0(\Omega)\) (due to the boundedness of \(\Omega\) and the compactness of the embedding \(H^1_0(\Omega) \hookrightarrow L^p(\Omega), p \in [1, 2^*)\)), \(E\) turns to be sequentially weakly lower semicontinuous on \(H^1_0(\Omega)\). Thus the basic result of the calculus of variations implies that \(E\) has a global minimum point \(u \in H^1_0(\Omega)\), see Zeidler [27, Proposition 38.15], which is also a critical point of \(E\).

(ii) If \(a \frac{d-4}{2} b > C_d\), Theorem 1.1/(iii) implies that \(E\) is strictly convex on \(H^1_0(\Omega)\). By Zeidler [27, Theorem 38.C] it follows that \(E\) has at most one minimum/critical point. The inequality (1.5) and (i) conclude the proof. \(\Box\)

For \(f \in A\), let us denote by \(F(x, t) = \int_0^t f(x, s)ds\). We now prove the following result which directly implies Theorem 1.3.

Theorem 3.1. Let \(\Omega \subset \mathbb{R}^d\) be an open bounded domain \((d \geq 4)\), let \(f \in A\), and \(a, b > 0\) two fixed numbers such that \(a \frac{d-4}{4} b > PS_d\). Assume also that
\[
\begin{align*}
H_1) & \quad \lim_{t \to 0} \frac{\sup_{x \in \Omega} F(x, t)}{t^2} \leq 0; \\
H_2) & \quad \sup_{u \in H^1_0(\Omega)} \int_\Omega F(x, u) > 0.
\end{align*}
\]
Set
\[
\lambda^* = \inf \left\{ \frac{a \|u\|^2 + b \|u\|^4 - \frac{1}{2^*} \|u\|^{2^*}}{\int_\Omega F(x, u)} : u \in H^1_0(\Omega), \int_\Omega F(x, u) > 0 \right\}.
\]
Then, for each compact interval \([\alpha, \beta] \subset (\lambda^*, +\infty)\), there exists \(r > 0\) with the following property: for every \(\lambda \in [\alpha, \beta]\), and for every \(g \in A\), there exists \(\mu^* > 0\) such that for each \(\mu \in [0, \mu^*]\), the problem \((P_{a,b}^g)\) has at least three weak solutions whose norms are less than \(r\).

Proof. Denote by \(J_f : H^1_0(\Omega) \to \mathbb{R}\) the functional defined by
\[
J_f(u) = \int_\Omega F(x, u),
\]
and consider as before the functional
\[
E_{a,b}(u) = \frac{a}{2} \|u\|^2 + \frac{b}{2} \|u\|^4 - \frac{1}{2^*} \|u\|^{2^*},
\]
From Theorem 1.1/(i), \(E_{a,b}\) is sequentially weakly lower semicontinuous (see (1.5)), and if \(\{u_n\}\) weakly converges to \(u\) and \(\liminf_{n \to \infty} E_{a,b}(u_n) \leq E_{a,b}(u)\), then \(\{u_n\}\) has a subsequence strongly convergent to \(u\), see (2.3). Moreover it is of class \(C^1\) on \(H^1_0(\Omega)\). Since \(f\) has a subcritical growth, \(J_f\) is sequentially weakly continuous in \(H^1_0(\Omega)\), of class \(C^1\) too and bounded on bounded sets.

From assumption \(H_1\) it follows that
\[
\limsup_{u \to 0} \frac{J_f(u)}{E_{a,b}(u)} \leq 0,
\]
therefore \(E_{a,b} - \lambda J_f\) has a (strong) local minimum at zero for every \(\lambda > 0\). By Ricceri [24, Theorem C], zero turns out to be a local minimizer of \(E_{a,b} - \lambda J_f\) in the weak topology of \(H^1_0(\Omega)\).
It is also clear that $E_{a,b} - \lambda J_f$ is coercive for every λ and, if $\lambda > \lambda^*$, its global minimum is different to zero.

To proceed, fix $[\alpha, \beta] \subset (\lambda^*, +\infty)$ and choose $\sigma > 0$. By the coercivity of $E_{a,b} - \lambda J_f$ it follows that the set $(E_{a,b} - \lambda J_f)^{-1}((\infty, \sigma))$ is compact and metrizable with respect to the weak topology. Also,

$$
\bigcup_{\lambda \in [\alpha, \beta]} (E_{a,b} - \lambda J_f)^{-1}((\infty, \sigma)) \subseteq B_\eta,
$$

for some positive radius η, where $B_\eta = \{ u \in H^1_0(\Omega) : \| u \| < \eta\}$. Let $c^* = \sup_{B_\eta} E_{a,b} + \beta \sup_{B_\eta} |J_f|$ and let $\tau > \eta$ be such that

$$
\bigcup_{\lambda \in [\alpha, \beta]} (E_{a,b} - \lambda J_f)^{-1}((\infty, c^* + 2)) \subseteq B_\tau.
$$

(3.2)

Let $\lambda \in [\alpha, \beta]$ and fix $g \in A$. Thus, if $J_g : H^1_0(\Omega) \to \mathbb{R}$ is the functional defined by

$$
J_g(u) = \int_{\Omega} G(x, u) \quad \text{where} \quad G(x, t) = \int_0^t g(x, s)ds,
$$

then, J_g is of class C^1, with compact derivative. Choose a function $h \in C^1(\mathbb{R})$, bounded, such that $h(t) = t$ for every t such that $|t| \leq \sup_{B_\tau} |J_g|$. Define $\tilde{J}_g = h \circ J_g$. Then, \tilde{J}_g has compact derivative and $\tilde{J}_g(u) = J_g(u)$ for every $u \in B_\tau$.

Applying Ricceri [23, Theorem 4] with $P = E_{a,b} - \lambda J_f$, $Q = \tilde{J}_g$, τ the weak topology of $H^1_0(\Omega)$, we deduce the existence of some $\delta > 0$ such that for every $u \in [0, \delta]$, $E_{a,b} - \lambda J_f - \mu \tilde{J}_g$ has two local minimizers in the $\tau_{E_{a,b} - \lambda J_f}$ topology (the smallest topology containing both the weak topology and the sets $\{ (E_{a,b} - \lambda J_f)^{-1}((\infty, s)) \}_{s \in \mathbb{R}}$), say u_1, u_2, such that

$$
u_1, u_2 \in (E_{a,b} - \lambda J_f)^{-1}((\infty, \sigma)) \subseteq B_\eta \subseteq B_\tau.
$$

(3.3)

Since the topology $\tau_{E_{a,b} - \lambda J_f}$ is weaker than the strong topology, u_1 and u_2 turn out to be local minimizers of the functional $E_{a,b} - \lambda J_f - \mu \tilde{J}_g$. Define now $\mu^* = \min \left\{ \delta, \frac{1}{\sup_{B_\tau} h} \right\}$. One can see that $E_{a,b} - \lambda J_f - \mu \tilde{J}_g$ satisfies the Palais-Smale condition as in the Theorem 1.1/(ii) (Palais-Smale for $E_{a,b}$), thus from Pucci and Serrin [22, Theorem 1] there exists a critical point of $E_{a,b} - \lambda J_f - \mu \tilde{J}_g$, say u_3, such that

$$
(E_{a,b} - \lambda J_f - \mu \tilde{J}_g)(u_3) = \inf_{\gamma \in S} \sup_{t \in [0,1]} \gamma(t),
$$

where

$$
S = \{ \gamma \in C^0([0,1], H^1_0(\Omega)) : \gamma(0) = u_1, \ \gamma(1) = u_2 \}.
$$

In particular, if $\gamma(t) = t u_1 + (1 - t)u_2$, $t \in [0,1]$, then $\gamma \in S$ and

$$
\gamma(t) \in B_\eta, \quad \text{for all} \ t \in [0,1].
$$

Recall that $u_1, u_2 \in B_\eta$, see (3.3). So, by the definition of c^* and μ^*, one has

$$
(E_{a,b} - \lambda J_f - \mu \tilde{J}_g)(u_3) \leq \sup_{t \in [0,1]} (E_{a,b} - \lambda J_f - \mu \tilde{J}_g)(\gamma(t))
$$

$$
\leq c^* + \mu^* \sup_{\mathbb{R}} h \leq c^* + 1.
$$

Therefore,

$$
(E_{a,b} - \lambda J_f)(u_3) \leq c^* + 1 + \mu^* \sup_{\mathbb{R}} h \leq c^* + 2,
$$

and from (3.2) one has

$$
u_3 \in B_\tau.
$$

Accordingly, we conclude that $J_g(u_i) = J_g(u_i), \ i = 1, 2, 3$, so that u_1, u_2, u_3 are critical points of $E_{a,b} - \lambda J_f - \mu J_g$, i.e., weak solutions to problem $(P_{a,b}^{I_g})$. \qed
Remark 3.1. We conclude the paper by giving an upper estimate of λ^\ast (see (3.1)) when

$$f(x, t) = \alpha(x)h(t),$$

where $\alpha \in L^\infty(\Omega)$ and $h : \mathbb{R} \to \mathbb{R}$ is a continuous function with $H(t_0) > 0$ for some $t_0 > 0$,

$$\lim_{t \to t_0} \frac{H(t)}{t} = 0$$

and $\text{essinf}_{x \in \Omega} \alpha =: \alpha_0 > 0$; hereafter, $H(t) = \int_0^t h(s)ds$. Assumption H_1 is trivially verified. In order to verify H_2, we consider the function

$$u_\sigma(x) = \begin{cases} 0 & \text{if } x \in \Omega \setminus B(x_0, R); \\ t_0 (R - |x - x_0|) & \text{if } x \in B(x_0, R) \setminus B(x_0, \sigma R); \\ t_0 & \text{if } x \in B(x_0, \sigma R), \end{cases}$$

where $x_0 \in \Omega$, $\sigma \in (0, 1)$, and $R > 0$ is chosen in such a way that $R < \text{dist}(x_0, \partial \Omega)$. It is clear that

$$\|u_\sigma\|^2 = t_0^2(1 - \sigma)^{-2}(1 - \sigma^d)R^d - 2\omega_d;$$

$$\int_\Omega u_\sigma^2 \geq t_0^2\sigma^d R^d \omega_d;$$

$$\int_\Omega H(u_\sigma) \geq H(t_0)\sigma^d - \max_{|t| \leq t_0} H(t)(1 - \sigma^d) \geq R^d \omega_d.$$

If $\sigma \in (0, 1)$ is close enough to 1, the right-hand side of the last estimate becomes strictly positive; let $\sigma_0 \in (0, 1)$ such a value. In particular, one has that

$$\int_\Omega F(x, u_{\sigma_0}) \geq \alpha_0 \left[H(t_0)\sigma^d_0 - \max_{|t| \leq t_0} H(t)(1 - \sigma^d_0) \right] R^d \omega_d > 0,$$

which proves the validity of H_2. Moreover, by the above estimates, it turns out that

$$\lambda^\ast \leq \frac{\alpha_0^2(1 - \sigma^d_0)^{-2}(1 - \sigma^d_0)}{2} + b(t_0^2(1 - \sigma^d_0)^{-2}(1 - \sigma^d_0))^2 R^d - 2\omega_d/4 - t_0^2\sigma_0^d R^d/2^* =: \bar{\lambda}.$$

Therefore, instead of λ^\ast in Theorem 3.1, we can use the more explicit value of $\bar{\lambda} > 0$; the same holds for Theorem 1.3 with the choice $\alpha = \alpha_0 = 1$, $h(t) = |t|^{q-2}t$, $t_0 = 1$ and $\sigma_0 = (3/4)^{1/d}$.

Remark 3.2. We conclude the paper by stating that the regularity results from Theorem 1.1 and the applications in Theorems 1.2&1.3 can be extended to compact Riemannian manifolds with suitable modifications. The most sensitive part of the proof is the equivalence from Theorem 1.1/(i), which explores the non-existence of extremal functions in the critical Sobolev embedding; such a situation is precisely described in the paper of Hebey and Vaugon [15]. The non-compact case requires a careful analysis via appropriate group-theoretical arguments as in Farkas and Kristály [10]. We leave the details for interested readers.

References

[1] C.O. Alves, F.J. Corrêa, G.M. Figueiredo, On a class of nonlinear elliptic problems with critical growth. Differ. Equ. Appl. 2 (2010) 409–417.
[2] C.O. Alves, F.J. Corrêa, T.F. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type. Comput. Math. Appl. 49 (2005) 85–93.
[3] G. Autuori, A. Fiscella, P. Pucci, Stationary Kirchhoff problems involving a fractional elliptic operator and a critical nonlinearity. Nonlinear Anal. 125 (2015), 699–714.
[4] C.Y. Chen, Y.C. Kuo, T.F. Wu, The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions. J. Differential Equations 250 (2011) 1876–1908.
[5] M. Chipot, B. Lovat, Some remarks on nonlinear elliptic and parabolic problems. Nonlinear Anal. 30 (7) (1997) 4619–4627.
[6] F.J. Corrêa, G.M. Figueiredo, On an elliptic equation of p-Kirchhoff type via variational methods. Bull. Austral. Math. Soc. 74 (2006) 263–277.
[7] B. Dacorogna, Direct methods in the calculus of variations. Second edition. Applied Mathematical Sciences, 78. Springer, New York, 2008. xii+619 pp.
[8] Y. Deng, W. Shuai, Sign-changing multi-bump solutions for Kirchhoff-type equations in \mathbb{R}^3. Discrete Contin. Dyn. Syst. 38 (2018), no. 6, 3139–3168.
[9] H. Fan, Multiple positive solutions for a class of Kirchhoff type problems involving critical Sobolev exponents. J. Math. Anal. Appl. 431 (2015) 150–168.
[10] C. Farkas, A. Kristály, Schrödinger-Maxwell systems on non-compact Riemannian manifolds. Nonlinear Anal. Real World Appl. 31 (2016), 473–491.
[11] G.M. Figueiredo, Existence of a positive solution for a Kirchhoff problem type with critical growth via truncation argument. J. Math. Anal. Appl. 401 (2013) 706–713.
[12] G.M. Figueiredo, J.R. Santos, Multiplicity of solutions for a Kirchhoff equation with subcritical or critical growth. Differential Integral Equations 25 (2012) 853–868.
[13] E. Hebey, Compactness and the Palais-Smale property for critical Kirchhoff equations in closed manifolds. Pacific J. Math. 280 (2016) 41–50.
[14] E. Hebey, Multiplicity of solutions for critical Kirchhoff type equations. Comm. Partial Differential Equations 41 (2016) 913–924.
[15] E. Hebey, M. Vaugon, From best constants to critical functions. Math. Z. 237 (2001), no. 4, 737–767.
[16] G. Kirchhoff, Mechanik. Teubner, Leipzig, 1883.
[17] C.Y. Lei, G.S. Liu, L.T. Guo, Multiple positive solutions for a Kirchhoff type problem with a critical nonlinearity. Nonlinear Anal. Real World Appl. 31 (2016) 343–355.
[18] P.L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. I. Rev. Mat. Iberoamericana 1 (1985) 145–201.
[19] D. Naimen, The critical problem of Kirchhoff type elliptic equations in dimension four. J. Differential Equations 257 (2014) 1168–1193.
[20] K. Perera, Z. Zhang, Nontrivial solutions of Kirchhoff-type problems via the Yang index. J. Differential Equations 221 (2006) 246–255.
[21] K. Perera, Z. Zhang, Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow. J. Math. Anal. Appl. 317 (2006) 456–463.
[22] P. Pucci, J. Serrin, A mountain pass theorem. J. Differential Equations 60 (1985) 142–149.
[23] B. Ricceri, Sublevel sets and global minima of coercive functionals and local minima of their perturbation. J. Nonlinear Convex Anal. 5 (2004) 157–168.
[24] B. Ricceri, A further three critical points theorem. Nonlinear Anal. 71 (2009) 4151–4157.
[25] G. Talenti, Best constant in Sobolev inequality. Ann. Mat. Pura Appl. (4), 110, 1976, 353–372.
[26] X. Yao, C. Mu, Multiplicity of solutions for Kirchhoff type equations involving critical Sobolev exponents in high dimension. Math. Methods Appl. Sci. 39 (2016) 3722–3734.
[27] E. Zeidler, Nonlinear functional analysis and its applications. III. Variational methods and optimization. Springer-Verlag, New York, 1985.
[28] M. Willem, Minimax theorems. Progress in Nonlinear Differential Equations and their Applications 24, Birkhauser, Boston, 1996.