Radiotherapy for 65 patients with advanced unresectable hepatocellular carcinoma

Yeon Seok Seo, Jin Nam Kim, Bora Keum, Sanghoon Park, Yong Dae Kwon, Yong Sik Kim, Yoon Tae Jeen, Hoon Jai Chun, Chul Yong Kim, Chang Duck Kim, Ho Sang Ryu, Soon Ho Um

AIM: To evaluate the efficacy of radiotherapy (RT) in patients with advanced unresectable hepatocellular carcinoma (HCC).

METHODS: A total of 65 patients were treated with RT in the Korea University Medical Center. The median age of the patients was 60 years, and 86.2% were men. 18.5% and 81.5% of the patients were diagnosed as TNM stage III and IV-A, respectively. Treatment response was assessed 4 mo after initiation of RT. Tumor regression rate 1 mo after initiation of RT (TRR\textsubscript{1m}) was also assessed. Duration of survival was calculated from the initiation of RT.

RESULTS: The objective treatment response was 56.9%. The 12 mo survival rate was 34.7%. Predictive factors for survival were Child-Pugh grade, α-fetoprotein level and treatment response. An objective response was achieved more frequently in patients with TRR\textsubscript{1m} ≥ 20% than in those with TRR\textsubscript{1m} < 20% (P < 0.001).

CONCLUSION: RT is effective in treating advanced HCC with a tumor response rate of 56.9%.

Key words: Hepatocellular carcinoma; Radiotherapy; Treatment response; Survival
with unresectable HCC\cite{17-20}. Therefore, this study was performed to evaluate the treatment responses of RT and survival in patients who underwent RT for unresectable HCC.

MATERIALS AND METHODS

Patients

This study was performed with patients who underwent RT for unresectable advanced HCC without distant metastases. Between July 2003 and June 2006, 80 patients with unresectable HCC underwent local RT to the liver at the Korea University Medical Center. Fifteen of these patients were excluded due to the presence of distant metastases prior to RT.

Diagnosis of HCC was based on either the identification of hypervascular masses by two imaging studies or by one imaging study combined with a serum alphafetoprotein (AFP) level > 400 ng/mL. If the vascular profile by dynamic imaging was not characteristic of HCC and the AFP was less than 400 ng/mL a biopsy was performed\cite{21}. Unresectability was determined using accepted surgical criteria\cite{3}.

The baseline characteristics of the 65 patients are presented in Table 1. Fifty-six patients (86.2%) were male and 9 were female. The median age was 60 years (range, 42-83) years. Underlying liver diseases included chronic Hepatitis B virus (HBV) infection in 49 patients (75.4%), alcoholic liver cirrhosis in 13 patients (20%) and chronic Hepatitis C virus (HCV) infection in two patients (3.1%). In one patient (1.5%), co-infection with HBV and HCV was noted. Liver cirrhosis was present in 50 patients (76.9%). According to the Child-Pugh classification, 43 patients (66.2%) were classified as grade A and 22 patients (33.8%) were classified as grade B. Patients in class C were not included. Baseline tumor size was 10.8 ± 4.7 cm (median, 9.9 cm). In 31 patients (47.7%), the tumor size was larger than 10 cm. Based on the types of HCC described by Eggel\cite{22}, the most frequent tumor type was massive (58.5%), followed by multinodular (36.9%) and single nodular (4.6%). Prior to RT, portal vein thrombosis was observed in 45 patients (69.2%); this was confirmed by CT and/or angiogram. Among these 45 patients, thrombosis was observed in the main portal vein in 20 patients (30.8%), at the first branch level in 23 (35.4%), and at the second branch level in 2 (3.1%). The hepatic vein and bile duct were involved in 8 and 6 patients, respectively. No patients showed evidence of extrahepatic metastasis prior to RT. According to the TNM staging system of the Liver Cancer Study Group of Japan\cite{23}, 53 patients (81.5%) fell into stage IV-A, and 12 (18.5%) fell into stage III.

Treatment

RT was performed as a primary treatment in 40 of the 65 patients (61.5%) due to an overly large tumor size in 20 patients (30.8%), portal vein thrombosis in 12 patients (18.5%), IVC thrombosis in 3 patients (4.6%), bile duct invasion in 3 patients (4.6%), and a massive portosystemic shunt around the tumor in 2 patients (3.1%). In the remaining 25 patients (38.5%), RT was performed as a salvage treatment after ineffective TACE (21 patients, 32.3%) or vascular inaccessibility to the feeding vessel of the HCC (4 patients, 6.2%). External beam RT at a target dose of 61 Gy/34 fractions was planned, using 10 MV of X-rays. The RT strategy was devised using a CT-based 2-D planning system (CT Port, Toshiba, Tokyo, Japan). To account for respiratory-based liver motion, a 1-1.5 cm margin was added in the craniocaudal direction. The full 61-Gy irradiation dose was feasible in 55 of the 65 patients (84.6%).

During and after RT, TACE was also employed in 57 patients (87.7%; 2.9 ± 1.8 sessions; median, three sessions; range, 1-8 sessions). TACE was performed with an emulsion of doxorubicin at a dose of 10-30 mg and 4-12 mL of mixed solution of lipiodol and contrast agent. TACE was usually combined with embolization using gelfoam particles, except in cases with significant portal vein thrombosis. In 16 patients with portal vein invasion (24.6%), HAI with cisplatin and 5-FU was combined with or without TACE (3.3 ± 2.4 cycles; median, 3 cycles; range, 1-8 cycles).

Evaluation of treatment response

Tumor size was measured by computed tomography (CT) and was calculated as the longest diameter multiplied by the longest perpendicular diameter. CT scans were obtained before RT, 1 and 4 mo after the initiation of RT, and then every 2-3 mo. If a patient had multiple nodules, the extent of the tumor was determined by the sum of the extent of all tumors > 2 cm in diameter.

Treatment response was assessed at four months after initiation of RT. A complete response was defined as the complete disappearance of all clinical and radiographic tu-
mor evidence. A partial response was defined as more than a 50% decrease in tumor size from baseline. Stable disease was defined as less than a 50% decrease or a 25% increase in tumor size. The objective treatment response was calculated based on the complete and partial responses. Progressive disease was defined as a greater than 25% increase in extent of the tumor from the nadir extent of the tumor.

To evaluate the efficacy of using the early tumor response to predict the treatment response, the tumor regression rate at one month after initiation of RT (TRR\textsubscript{1m}) was assessed using the following equation: TRR\textsubscript{1m} = \left(\frac{\text{baseline tumor extent - tumor extent at one month after RT}}{\text{baseline tumor extent}}\right) \times 100.

Adverse events were evaluated weekly during RT and one month following the treatment. Adverse hematologic events were evaluated by measuring hemoglobin, white blood cell (WBC) and platelet counts, while hepatic adverse events were evaluated by measuring serum bilirubin, albumin, aspartate aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (ALP) levels. Gastrointestinal (GI) bleeding included any bleeding from the esophagus, stomach, duodenum, or liver. All adverse events were graded according to Common Terminology Criteria for Adverse Events V3.0.

Statistical analysis

All calculations were performed using SPSS 10.0 software for Windows (SPSS, Chicago, IL). Quantitative variables were expressed as mean ± SD or medians. Differences in quantitative and qualitative variables were assessed using the Student’s t-test and chi-square test, respectively. Logistic regression analysis was performed to evaluate predictive factors for tumor response. Survival and progression-free survival were assessed from the initiation of RT according to the Kaplan-Meier method. Differences between variables were assessed using the log-rank test. The Cox regression model was used to detect associations between survival and AFP status, tumor type, the location of tumor thrombi, stage and therapeutic models. For multivariate analysis, variables with \(P < 0.2 \) at univariate analysis were entered. Differences with \(P < 0.05 \) were considered to be statistically significant.

RESULTS

Tumor response

Fifty-five of 65 patients (84.6%) completed the RT schedule. Ten patients (15.4%) could not complete RT due to HCC aggravation or deterioration of liver function after RT. Interruption of RT was more frequent in Child-Pugh class B patients (7 of 20 patients, 35%) than in class A patients (3 of 45, 6.7%; \(P = 0.003 \)). Among the 55 patients who completed RT, treatment response was evaluated 4 mo after the initiation of RT. None of our patients had completely responded at this point in the response evaluation, but 37 patients (67.3%) had partially responded. Seventeen patients (30.9%) had stable disease, and 1 (1.8%) had progressive disease. Therefore, the objective treatment response at four months was 67.3%.

Table 2 Baseline characteristics of the 65 patients, according to treatment response
Pts without OTR (\(n = 28 \))
Age (yr)
Gender (M:F)
Hepatitis B
Hepatitis C
Alcohol abuse
WBC (\(/mm^3 \))
Hemoglobin (g/dL)
Platelet (\(\times 10^9/mm^3 \))
AST (IU/L)
ALT (IU/L)
ALP (IU/L)
Bilirubin (mg/dL)
Albumin (g/dL)
Prothrombin time, INR
Creatinine (mg/dL)
Liver cirrhosis
Child-Pugh grade A
Alpha-fetoprotein (ng/dL)
\(\geq 400 \text{ng/dL} \)
Tumor size (mm)
\(\geq 10 \text{ cm} \)
Multiple tumor
Massive type
Main portal vein thrombosis
Tumor stage IV

However, if we label the 10 patients who did not complete RT as non-responders, then the partial response and stable disease rates decreased to 56.9% (37 of 65 patients) and 26.2% (17 of 65 patients), respectively.

Table 2 presents baseline characteristics according to treatment response. Logistic regression analysis was performed to evaluate predictive factors for an objective treatment response. Child-Pugh grade was the only independent predictive factor for an objective treatment response (Child-Pugh grade A vs B; OR, 5.167; 95% CI, 1.643-16.250; \(P = 0.005 \)). Among the 45 patients with Child-Pugh grade A, 31 patients (68.9%) showed a partial response, as did 6 of the 20 grade B patients (30%, \(P = 0.003 \)).

Time to progressive disease

During follow-up, 4 of the 37 patients showing a partial response (10.8%) and 3 of the 25 patients showing stable disease (12%) had progressive disease after a median of 6 (range, 3-9) mo. Among the 65 patients, time to progressive disease was 5 ± 3 mo after initiation of RT (median, 4 mo). Duration without progressive disease was longer in patients who met the objective treatment response (14.8 ± 1.4 mo) than in patients who did not (4.6 ± 0.4 mo, \(P < 0.001 \) (Figure 1).

Survival

All enrolled patients were followed for 8 ± 6 (median,
Overall survival of the 65 patients who underwent radiotherapy for advanced hepatocellular carcinoma according to treatment response. Patients with objective treatment responses (median survival, 346 d) survived longer than those without objective treatment responses (median survival, 212 d; \(P = 0.032 \)). RT: Radiotherapy; TR: Treatment response.

Proportion of patients with objective treatment response (%)

- **Patients with objective TR**
- **Patients without objective TR**

\[P = 0.032 \]

Proportion of patients with objective treatment response (%)

- **Patients with objective TR**
- **Patients without objective TR**

\[P = 0.001 \]

TR at 1 mo after initiation of RT

- **< 20%**
- **≥ 20%**

\[P < 0.001 \]

DISCUSSION

Recently, a number of reports have documented the effect of local RT on HCC. Although fractionation schemes were not identical to each other, local, high-dose RT alone or in combination with another modality such as...
TACE[24,28-31], systemic chemotherapy[25] or intra-arterial chemotherapy[26,27] has achieved a substantial objective response. In this study, RT was performed with or without other treatment modalities and the objective response rate was 56.9%, which was somewhat lower than previous reported[24,28-30]. However, when 10 patients (15.4%) who did not complete the whole RT schedule were excluded, the objective treatment response rate increased to 67.3%. We have no idea how the patients who could not complete RT were treated during these previous studies, because this was not reported. It is possible that all patients completed RT in the previous studies. However, a significant proportion of patients could not complete the RT schedule in the present study. Therefore, selection of appropriate patients for RT may be very important before RT initiation.

Child-Pugh grade was the only significant predictive factor for treatment response. This seems to be associated with the higher proportion of Child-Pugh grade B patients (35%) who could not complete the RT schedule compared with those with grade A (6.7%; P = 0.003). This speculation is supported by the fact that no variable was significantly associated with treatment response when the logistic analysis was performed on the 55 patients who completed RT (data was not shown). These results suggest that a circumscriptive decision was required in considering RT for patients with Child-Pugh grade B. Previously, tumor size was the one significant factor affecting treatment response[25]. Similarly, a treatment response was more frequently seen in patients with a smaller HCC (23 of 32 patients, 69.7%) than in patients with a larger HCC (14 of 32 patients, 43.8%; P = 0.035). However, when multivariate analysis was performed, the significance disappeared.

Our results suggest RT may improve prognosis in patients who achieved an objective treatment response. RT appears to be associated with prolonged survival as well as prolonged suppression of HCC progression in patients who show an objective treatment response. After the effects of other prognostic factors were corrected for, patients who achieved objective treatment responses survived longer than those who did not, as determined by multivariate analysis. In addition, time to progression was significantly longer in patients who met the objective treatment response than in patients who did not. However, several limitations should be discussed. First, 10 patients who could not complete the RT schedule were included in this analysis. However, even though these 10 patients were later excluded, patient survival still differed according to treatment response (P = 0.002; data not shown). Second, most patients were treated with not only radiotherapy, but also with TACE or HAI, and these combined treatments may affect patients’ survival. To ideally assess the effect of RT on patient prognosis, RT should be the only treatment modality. However, considering the limitations of dose and field of RT, it seems unwise to use RT as the only treatment modality for advanced HCC.

In this study, the one-year survival rate was 34.7%, which was lower than in previous studies[24,28-31]. It may be the patients enrolled in this study had more advanced disease than those in previous studies[24,28-31]. In the present study, tumors were larger than 10 cm in 47.7% of patients, 69.2% of the cases had thrombi in portal vein, and 81.5% of the patients had stage IV-A disease. In addition, 10 patients (15.4%) who could not complete RT schedule were included in this study; none of these patients survived more than four months after initiation of RT. By contrast, most of the previous studies included patients who completed the RT schedule[24,28-31], which may have led to the observed discrepancies with the present study.

In recent studies, PVT was the one prognostic factor for survival[25,32]. Similarly, in this study, the presence of tumor thrombi in main portal vein as well as Child-Pugh grade and tumor size were independent prognostic factors for survival when multivariate analysis was performed with variables of baseline characteristics. However, when treatment response was included in the analysis, Child-Pugh grade, AFP level and treatment response were associated with survival. This result suggests that even if tumor thrombi are present in main portal vein before RT, RT may still improve survival when an objective treatment response is achieved.

In all of our patients, CT was performed at one month after initiation of RT. Tumor response at one month after initiation of RT was a useful predictor for RT response. In addition, grade 3 or 4 adverse hepatic events were more frequent in patients with TRR = ≤ 20%. These results suggest if the mass does not decrease to 20% from baseline after one month of RT, interruption of RT can be considered due to the likelihood of a low objective treatment response rate and a high rate of severe adverse hepatic events.

In conclusion, RT was effective for the treatment of HCC with an objective tumor response rate of 56.9%; moreover, patients who met the objective treatment response survived longer than those who did not. Tumor regression at one month after the initiation of RT may be a useful predictor for RT response as well as severe adverse hepatic events.

Table 3 Multivariate analysis of the mortality of patients who underwent radiotherapy for advanced hepatocellular carcinoma

	P value	β	Odd ratio	95% CI	
Tumor size	0 < 10 cm	0.012	0.954	2.597	1.232-5.473
	≥ 10 cm				
Child-Pugh grade	0 = Grade A; 1 = Grade B	0.001	1.336	3.802	1.867-8.568
Combined with TACE	0 = Yes; 1 = No	0.001	1.671	5.315	2.015-14.018
Objective treatment response	0 = Yes; 1 = No	0.006	1.194	3.300	1.414-7.699

Table 4 Adverse events in the 65 patients who underwent radiotherapy for unresectable hepatocellular carcinoma n (%)
This is an interesting article, which may offer new insights in the treatment of hepatocellular carcinoma (HCC). The paper is well organized and the results are clearly described and commented.

REFERENCES

1. Statistics of cancer/incidence of cancer and cancer-related mortality in National Cancer Information Center. Available from: URL: http://www.cancer.go.kr
2. Cause of mortality in Korean Statistical Information Service. Available from: URL: http://www.kosis.kr
3. Chen MF, Hwang TL, Jeong JB, Jan YY, Wang CS, Chou FF. Hepatic resection in 120 patients with hepatocellular carcinoma. Arch Surg 1989; 124: 1025-1028
4. Tsuzuki T, Sugita A, Ueda M, Iida S, Kanai T, Yoshii H, Nakayasu K. Hepatic resection for hepatocellular carcinoma. Surgery 1990; 107: 511-520
5. Nagorney DM, van Heerden JA, Ilstrup DM, Adson MA. Primary hepatic malignancy: surgical management and determinants of survival. Surgery 1989; 106: 740-748; discussion 748-749
6. Bruix J, Sherman M. Management of hepatocellular carcinoma. Hepatology 2003; 42: 1208-1226
7. Sasaki Y, Imaoka S, Kasugai H, Fujita M, Kawamoto S, Ishiguro S, Koijima J, Ishikawa O, Ohigashi H, Furukawa H. A new approach to chemoeMBOLization therapy for hepatoma using ethiodized oil, cisplatin, and gelatin sponge. Cancer 1987; 60: 1194-1203
8. Yu YQ, Xu DB, Zhou XD, Lu JZ, Tang ZY, Mack P. Experience with liver resection after hepatic arterial chemoeMBOLization for hepatocellular carcinoma. Cancer 1995; 71: 62-65
9. Ohto M, Yoshikawa M, Saihso H, Ebara M, Sugio N. Nonsurgical treatment of hepatocellular carcinoma in cirrhotic patients. World J Surg 1995; 19: 42-46
10. Ikeda K, Kumada H, Saitoh S, Arase Y, Chayama K. Effect of
11. repeated transcatheter arterial embolization on the survival time in patients with hepatocellular carcinoma. An analysis by the Cox proportional hazard model. Cancer 1991; 68: 2150-2154
12. Wellwood JM, Cady B, Oberfield RA. Treatment of primary liver cancer: response to regional chemotheraphy. Clin Oncol 1979; 5: 25-31
13. Atiq OT, Kemeny N, Niedzwiecki D, Botet J. Treatment of unresectable primary liver cancer with intrahepatic fluorodeoxyuridine and mitomycin C through an implantable pump. Cancer 1992; 69: 920-924
14. Patt YZ, Charmsangavej C, Yoffe B, Smith R, Lawrence D, Chuang V, Carrasco H, Roh M, Chase J, Fischer H. Hepatic arterial infusion of fluorouracil, leucovorin, doxorubicin, and cisplatin for hepatocellular carcinoma: effects of hepatitis B and C viral infection on drug toxicity and patient survival. J Clin Oncol 1994; 12: 1204-1211
15. Ingold JA, Reed GB, Kaplan HS, Bagshaw MA. Radiation hepatitis. Am J Roentgenol Radium Ther Nucl Med 1963; 93: 200-208
16. Austin-Seymour MM, Chen GT, Castro JR, Saunders WM, Pflluck S, Woodruff KH, Kessler M. Dose volume histogram analysis of liver radiation tolerance. Int J Radiat Oncol Biol Phys 1986; 12: 31-35
17. Lawrence TS, Robertson JM, Ansher MS, Jirtle RL, Ensminger WD, Fajardo LF. Hepatic toxicity resulting from cancer treatment. Int J Radiat Oncol Biol Phys 1995; 31: 1237-1248
18. Matsuizaki Y. Powerful radiotherapy for hepatocellular carcinoma. J Gastroenterol Hepatol 1999; 14: 941-945
19. Tokuyue Y, Sumi M, Kajani Y, Murayama S, Kawashima M, Ikeda H, Ueno H, Okusaka T, Okada S. Radiotherapy for hepatocellular carcinoma. Strahlenlter Hepatol 2000; 176: 406-410
20. Cheng JC, Chuang VP, Cheng SH, Huang AT, Lin YM, Cheng TI, Yang PS, You DL, Tian JF, Tsai SY, Sung JL, Horng CF. Local radiotherapy with or without transcatheter arterial chemoeMBOLization for patients with unresectable hepatocellular carcinoma. Int J Radiat Oncol Biol Phys 2000; 47: 435-442
21. Qian J, Feng GS, Vogl T. Combined interventional therapies of hepatocellular carcinoma. World J Gastroenterol 2003; 9: 1885-1891
22. Bruix J, Sherman M, Llovet JM, Beaugrand M, Lencioni R, Burroughs AK, Christensen E, Paliagro L, Colombo M, Rodes J. Clinical management of hepatocellular carcinoma. Conclusions of the Barcelona-2000 EASL conference. European Association for the Study of the Liver. J Hepatol 2001; 35: 421-430
23. Eggel H. Ueber das primare carcinom der leber. Beitr Pathol Anat 1901; 30: 506-604
24. Liver Cancer Study Group of Japan. The general rules for the clinical and pathologic study of primary liver cancer, 3rd ed, Tokyo: Kanehara Co Ltd, 1992
25. Seong J, Keum KC, Han KH, Lee DY, Lee JT, Chon CY, Moon YM, Suh CO, Kim GE. Combined transcatheter arterial chemoeMBOLization and local radiotherapy of unresectable hepatocellular carcinoma. Int J Radiat Oncol Biol Phys 1999; 43: 393-397
26. Abrams RA, Cardinale RM, Enger C, Haultk TL, Hurwitz H, Osterman F, Sitzmann JV. Influence of prognostic groupings and treatment results in the management of unresectable hepatoma: experience with Cisplatinum-based chemoradiotherapy in 76 patients. Int J Radiat Oncol Biol Phys 1997; 39: 1077-1085
27. Dawson LA, McGinn CJ, Normolle D, Ten Haken RK, Walker S, Ensminger W, Lawrence TS. Escalated focal liver radiation and concurrent hepatic artery fluorodeoxyuridine for unresectable intrahepatic malignancies. J Clin Oncol 2000; 18: 2210-2218
28. Robertson JM, Lawrence TS, Dworzazin LM, Andrews JC, Walker S, Kessler ML, DuRoss DJ, Ensminger WD. Treatment of primary hepatobiliary cancers with conformal radiation therapy and regional chemotheraphy. J Clin Oncol 1993; 11: 1286-1293
29. Seong J, Park HC, Han KH, Lee DY, Lee JT, Chon CY, Moon YM, Suh CO. Local radiotherapy for unresectable hepatocellular carcinoma patients who failed with transcatheter...
arterial chemoembolization. *Int J Radiat Oncol Biol Phys* 2000; 47: 1331-1335

29 Park W, Lim DH, Paik SW, Koh KC, Choi MS, Park CK, Yoo BC, Lee JE, Kang MK, Park YJ, Nam HR, Ahn YC, Huh SJ. Local radiotherapy for patients with unresectable hepatocellular carcinoma. *Int J Radiat Oncol Biol Phys* 2005; 61: 1143-1150

30 Seong J, Park HC, Han KH, Chon CY. Clinical results and prognostic factors in radiotherapy for unresectable hepatocellular carcinoma: a retrospective study of 158 patients. *Int J Radiat Oncol Biol Phys* 2003; 55: 329-336

31 Park HC, Seong J, Han KH, Chon CY, Moon YM, Suh CO. Dose-response relationship in local radiotherapy for hepatocellular carcinoma. *Int J Radiat Oncol Biol Phys* 2002; 54: 150-155

32 Leung TK, Lee CM, Shen LK, Chen HC, Kuo YC, Chiu LF. Post-radiation survival time in hepatocellular carcinoma based on predictors for CT-determined, transarterial embolization and various other parameters. *World J Gastroenterol* 2005; 11: 1697-1699

S- Editor Ma L, L- Editor MacGowan D, E- Editor Liu Y