Synthesis of bis-azobenzene derivatives with reactive bromohexyl unit and carboxylic acid group based on Disperse Yellow 7

Alina Madalina Darabut 1, Olha Hennadiivna Purikova 2 and Yevhenia Volodymyrivna Lobko 1,*

1 Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, Prague, 18000, Czech Republic
2 Institute of Macromolecular Chemistry, National Academy of Sciences of Ukraine, Kharkivske shosse 48, Kyiv, 02160, Ukraine
olhapurikova@gmail.com (O.H.P.)
lobkoeugenia@gmail.com (Y.V.L.)

* Corresponding author at: Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, Prague, 18000, Czech Republic.
e-mail: yevhenia.lobko@mff.cuni.cz (Y.V. Lobko).

ABSTRACT

In this work, two types of azobenzene derivatives based on Disperse Yellow 7 (DY7, 4-[4-(phenylazo)phenylazo]-o-cresol) were synthesized, which are bis-azobenzenes bearing flexible functional 6-bromohexyl chain or carboxylic acid moiety. The first one was synthesized by alkylation of DY7 with an excess of 1,6-dibromohexane in the presence of a mild base (K₂CO₃). The second one (azo dye with carboxylic acid functionality) was obtained by the alkaline hydrolysis of the ester bond of the newly obtained DY7 derivative with the ethoxycarbonyl group. The synthesized compounds were characterized by different spectroscopic analytical techniques such as ¹H NMR, ¹³C NMR, FT-IR, and UV-Vis. They can be employed for the synthesis of a wide variety of azo-based materials, which may be suitable for photochromic systems and molecular electronics applications.

1. Introduction

Azobenzene-based chromophores have been targeted as crucial building blocks of numerous functional smart materials such as photoresponsive molecular switches, molecular shutters, data storage devices, sensors, nonlinear optical systems, and liquid crystals [1-5]. Azobenzenes (AB) are switchable compounds that exhibit reversible E-Z (trans-cis) photoisomerization. Photoisomerization from a cis- (Z-form) to a trans- (E-form) conformation is reversible by photochemical and thermal pathways [6,7]. It is essential that the isomerization of azobenzenes proceeds with a large structural change that affects the dipole moment and geometry (Figure 1a). Thus, azobenzene derivatives can exhibit a photomechanical effect in bulk materials [8-11].

Note that most of the reported azobenzene-containing compounds have only non-conjugated AB units (mono-AB). The different AB derivatives can exist in Z-state for many hours in the dark [6,12]. At the same time, irradiation of photochromic components containing two (or more) AB units leads to a mixture of three isomers E/E, E/Z, and Z/Z at the photostationary state (Figure 1b) [13,14]. Next, systems with multi-AB groups back-isomerize instantaneously [15]. Typically, the organic azo-based chromophores have been incorporated into a polymer backbone (via both covalent and noncovalent binding), the polyhedral oligomeric silsesquioxane core, and others silica-based particles that have better processability and optical properties (i.e. reduced chromophore aggregation) than small molecules [3,12,16-18]. Importantly, that besides photoisomerization, the formation of surface relief gratings in the films, photoinduced orientation, photoactuation are also possible in AB-functionalized polymers [12]. By increasing the number of photochromic groups in bis-AB, such as Disperse Yellow 7 (DY7, 4-[4-(phenylazo)phenylazo]-o-cresol), it is possible to achieve higher and more stable photoinduced birefringence than the corresponding mono-azo-functionalized systems [15,19,20]. Thus, bis-AB-based materials are preferable for photoorientation. Moreover, a high degree of conjugation in para-substituted bis-AB allows conductance, which can be precisely regulated by fast and reversible
light-induced switching [21]. Next, liquid crystal molecules were prepared based on bis-AB having alkyl moieties [22] as well as, for example, bis-AB dyes were applied as cross-links for photoswitching of peptide structure [23]. Thus, the synthesis of new chromophores containing π-conjugated para-azo-benzene units and an appropriate functional group for further synthetic manipulation (attachment/functionalization) is crucial for the development of new azo-based structures with extensive and versatile applications. In this context, flexible aryl-substituted azo dyes, these compounds are widely used for directly incorporating azo bromohexyl unit and highly polar carboxylic acid group are crucial for the development of new azo-based structures with synthetic manipulation (attachment/functionalization) is important. To the best of our knowledge, the bis-azo-benzene containing a functional acetic acid fragment.

2.2. Azo dyes synthesis

2.2.1. Synthesis of 1-(4-((6-bromohexyl)oxy)-3-methyl phenyl)-2-(4-(phenylazo)phenyl)diazene (2)

A 50 cm³ three-necked flask equipped with an oil bath, a mechanical stirrer, a cold-water condenser, an argon inlet/outlet, and a thermometer was charged with compound D7 (Dye 1, 4-[4-(phenylazo)phenylazo]-o-cresol) (1.00 g, 3.16 mmol), 6-dibromohexane (3.85 g, 15.8 mmol), potassium carbonate (0.66 g, 4.74 mmol) and acetone (15 cm³). The mixture was cooled to room temperature and the inorganic salt was removed via filtration. The filtrate was poured dropwise into ice water to precipitate the product. The resulting orange solid was purified by precipitation from chloroform solution into hexane (Scheme 1). Yield: 75%. M.p.: 89-92 °C. 1H NMR (CDCl3, 500 MHz, δ, ppm): 5.55 (s, 4H, -CH2-), 1.87-1.93 (m, 4H, -CH2-), 4.07 (t, 2H, J1= 8.3 Hz, Ph), 7.48-7.55 (m, 3H, Ph), 7.84 (m, 2Н, Ph), 7.95 (d, 2Н, J2= 6.2 Hz, -CH2-), 6.93 (d, 1H, J = 8.3 Hz, Ph), 7.48-7.55 (m, 3H, Ph), 7.81-7.84 (m, 2H, Ph), 7.95 (d, 2H, J = 8.3 Hz, Ph), 8.00-8.06 (m, 4H, Ph). 13C NMR (CDCl3, 125 MHz, δ, ppm): 164.11 (-CH), 25.76, 28.17, 29.09 (-CH2-), 38.93 (-CHBr), 68.06 (-OCH2-), 110.46, 122.98, 123.32, 123.73, 123.80, 124.57 (Ar C),127.63 (C-CH3), 129.09, 131.21 (Ar-C), 146.50, 152.70, 153.13, 153.98 (Ar-C-N), 160.26 (Ar-C=O).

Figure 1. Photochemical isomerization of mono-azo-benzene (a) and bis-azo-benzene (b) with conjugated AB units derivatives. The trans (E)- and cis (Z)-forms are very different in shape, size, and polarity (D - Dipole moment).

2. Experimental

2.1. Materials and measurements

Disperse Yellow 7 (95%), 1,6-dibromohexane (96%), ethyl chloroacetate (99%) were purchased from Sigma-Aldrich and used as received. The other reagents and solvents were purified by well-established techniques. NMR spectra were recorded on a Bruker Avance DRX 500 MHz spectrometer at room temperature in deuterated solvents (CDCl3) or DMSO-d6. Chemical shifts are reported relative to chloroform (δ = 7.25 ppm for H NMR) or DMSO-d6 (δ = 2.50 ppm for H NMR). Fourier transform infrared (FT-IR) spectra (4000-400 cm⁻¹) of synthesized compounds were measured on a Tensor 37 spectrometer using KBr pellets. The UV/Vis spectra were recorded on Shimadzu UV-2450 spectrophotometer.

2.2. Azo dyes synthesis

2.2.1. Synthesis of 1-(4-((6-bromohexyl)oxy)-3-methyl phenyl)-2-(4-(phenylazo)phenyl)diazene (2)

A 50 cm³ three-necked flask equipped with an oil bath, a mechanical stirrer, a cold-water condenser, an argon inlet/outlet, and a thermometer was charged with compound D7 (Dye 1, 4-[4-(phenylazo)phenylazo]-o-cresol) (1.00 g, 3.16 mmol), 6-dibromohexane (3.85 g, 15.8 mmol), potassium carbonate (0.66 g, 4.74 mmol) and acetone (15 cm³). The mixture was stirred and heated under reflux for 24 h. Then, the mixture was cooled to room temperature and the inorganic salt was removed via filtration. The filtrate was poured dropwise into ice water to precipitate the product. The resulting orange solid was purified by precipitation from chloroform solution into hexane (Scheme 1). Yield: 75%. M.p.: 89-92 °C. 1H NMR (CDCl3, 500 MHz, δ, ppm): 5.55 (s, 4H, -CH2-), 1.87-1.93 (m, 4H, -CH2-), 4.07 (t, 2H, J1= 8.3 Hz, Ph), 7.48-7.55 (m, 3H, Ph), 7.84 (m, 2Н, Ph), 7.95 (d, 1H, J = 8.3 Hz, Ph), 7.48-7.55 (m, 3H, Ph), 7.81-7.84 (m, 2H, Ph), 7.95 (d, 2H, J = 8.3 Hz, Ph), 8.00-8.06 (m, 4H, Ph). 13C NMR (CDCl3, 125 MHz, δ, ppm): 164.11 (-CH), 25.76, 28.17, 29.09 (-CH2-), 38.93 (-CHBr), 68.06 (-OCH2-), 110.46, 122.98, 123.32, 123.73, 123.80, 124.57 (Ar C),127.63 (C-CH3), 129.09, 131.21 (Ar-C), 146.50, 152.70, 153.13, 153.98 (Ar-C-N), 160.26 (Ar-C=O).
The attachment of the bromohexyl substituent into the structure of DY7 was achieved by the reaction of a 5-fold excess of 1,6-dibromohexane with dye 1 in the presence of K$_2$CO$_3$ in acetone. The excess of the 1,6-dibromohexane was used to ensure the formation of the mono-substitution product 2 [28]. The developed method of synthesis of dye 4 containing the carboxylic group is based on etherification of compound 1 with ethyl chloroacetate followed by the alkaline hydrolysis of the ester group of the newly obtained scaffold 3. The hydrolysis was performed in ethyl alcohol-water solvent. Importantly, that compounds with aliphatic carboxylic acid-based units are more reactive than compounds with aromatic carboxylic acid-based units [29]. This might facilitate the later conjugation of the obtained dye 4 with polymers or other scaffolds in subsequent applications. The yield of products was 75-90%. The bis-AB dyes 2, 3 and 4 are orange or brown in color. The dyes 2 and 3 are readily soluble in common organic solvents such as CHCl$_3$, tetrahydrofuran, dimethylformamide (DMF), dimethylacetamide (DMAC) and dimethyl sulfoxide (DMSO). The azo dye 4, due to the presence in its structure of the highly polar carboxylic acid group, is soluble only in polar aprotic solvents such as DMF, DMAC and DMSO. The ‘H NMR spectra of the synthesized dyes 2, 3, and 4 correspond to the proposed structures (Figures 2-4).

The conjugation of bromohexyl substituent to DY7 was confirmed by the presence of both sets of signals from the corresponding AB fragment (the resonance peaks from aromatic protons in the range of 6 6.9-8.0 ppm as well as a singlet at δ 2.31 ppm for the methyl group) and alkyl unit (four methylene proton signals in the range of δ 1.5 to 4.1 ppm) (Figure 2). Note that the signal from central CH$_2$ - (protons at δ 1.31 ppm) in Figure 2) at δ ~1.55 ppm of the alkyl group overlaps with the signal given by the trace water in deuterated chloroform. Next, the ethyl proton signals at δ 1.31 and 4.28 ppm (Figure 3), originating from the ethoxycarbonyl group of dye 3, fully disappeared after alkaline hydrolysis of the ester bond in the ‘H NMR spectrum of carboxylic acid derivative 4, as shown in Figure 4. The COOH signal of dye 4 is not seen because of the exchange of the OH protons with at least protons of the residual water in DMSO-d_6 solution. Similar to the ‘H NMR spectra of dyes 2 and 3, the 1’H NMR spectra of dye 4 are readily soluble in common organic solvents such as CHCl$_3$ and DMSO. The characteristic chemical shifts and peak integrations of all the protons in the azo chromophores are in excellent agreement with their expected structures.

The excellent solubility in the organic solvents of azo dye 2 with alkyl chain and reactive bromine makes it possible additionally to investigate the structure of the dye by 13C NMR spectroscopy (Figure 5). The corresponding 13C NMR spectrum of bis-AB 2 indicated that the hydrogen atom from the hydroxyl group of the initial dye 1 was substituted by the alkyl chain such as the 6-bromohexyl unit. The structures of the prepared bis-AB dyes were further confirmed by FT-IR spectroscopy (Figure 6).
The FT-IR spectra of all dyes show the characteristic absorptions in the regions 1248-1250, 1489-1601 (at least two bands in each spectrum in this region) and 2800-3100 cm\(^{-1}\), which correspond to C-O-C, C=O, and CH groups \([30,31]\). The absence of intense bands of ethyl groups connected with oxygen (-O-C-C) of the ester intermediate 3 in the FT-IR spectrum of the obtained dye 4 at the 1032 cm\(^{-1}\) indicates that these groups have been removed during the hydrolysis reaction. According to Figure 6, the comparison between the two spectra of dye 3 and dye 4 shows a chemical shift at a wavelength of 1728 cm\(^{-1}\), which refers to C=O group in ester-based dye 3 to a wavelength of 1745 cm\(^{-1}\) of C=O group in acid-based dye 4. The FT-IR spectrum of dye 4 also has a very broad band with a developed structure (due to the overlap with CH absorption bands) in the region 3300-2500 cm\(^{-1}\). This band is associated with OH stretching vibrations of COOH group.
The great breadth of this band resulting from the intramolecular and intermolecular hydrogen bond interactions of dye 4 with carboxylic acid functionality [32]. Figure 7 presents the UV-visible spectra of dyes 2, 3, and 4 in CHCl₃. The spectra of these bis-AB chromophores show absorption maxima, corresponding to the π-π* transition, at about 387 nm, being red-shifted ∼40 nm as compared to the
absorption maximum of mono-azobenzene dyes with similar structures. Thus, mainly, mono-azobenzene dyes have a typical azobenzene absorbance with a strong π→π* band at 348 nm and a weaker n→π* transition at around 430 nm [25,33]. The π→π* transition for azo dyes 2, 3, and 4 appears as a shoulder of a main peak at around 470 nm (Figure 7).

Overall, the structural design of the bis-azobenzenes 3 and 4 extends the possibility of using such compounds to build up functional azobenzene-based polymer systems. The detailed synthesis and properties of different azo-containing systems based on the obtained bis-AB chromophores will be reported in due course.

4. Conclusion

In summary, the Br-terminated bis-azo dyes comprising flexible hexenyloxy fragments as well as bis-azobenzene with COOH functionality were synthesized. For the synthesis of dye with the carboxylic acid group, bis-azobenzene intermediate with the ethoxycarbonyl moieties was firstly obtained. All dyes were synthesized from commercially available Disperse Yellow 7 possessing the π-conjugation between the two AB units. The structures of the synthesized compounds were indicated by FT-IR, 1H and 13C NMR, and UV/vis spectrometry techniques. The presence of functional groups and bis-AB functionality in such chromophores opens the possibility of their further chemical modification and their use in macro- and supramolecular chemistry for the synthesis of a wide range of new photochromic materials with targeted optical properties.

Disclosure statement

Conflict of interests: The authors declare that they have no conflict of interest.

Author contributions: All authors contributed equally to this work.

Ethical approval: All ethical guidelines have been adhered.

Sample availability: Samples of the compounds are available from the author.

ORCID

Alina Madalina Darabut http://orcid.org/0000-0002-1595-6094
Olha Hennadiivna Purikova http://orcid.org/0000-0002-4606-8815
Yevhenia Volodymyrivna Lobko http://orcid.org/0000-0003-1796-7691

References

[1] Merino, E. Chem. Soc. Rev. 2011, 40, 3835-3853.
[2] Beharry, A. A.; Woolley, G. A. Chem. Soc. Rev. 2011, 40, 4422-4437.
[3] Filby, A.; Perrier, A.; Browne, W. R.; Jacquemin, D. Chem. Soc. Rev. 2015, 44, 3719-3759.
[4] Lu, X.; Guo, S.; Tong, X.; Xia, H.; Zhao, Y. Adv. Mater. 2017, 29, 1606467.
[5] Iman, H.; Xiaosan, S.; Denis, F.; Frederic, L.; Jean-Christophe, L. Nanoscale 2019, 11, 23042-23048.
[6] Bandara, H. D.; Burdette, S. C. Chem. Soc. Rev. 2012, 41, 1809-1825.
[7] Sin, S. L.; Gan, L. H.; Hu, X.; Tam, K. C.; Gan, Y. Y. Macromolecules 2005, 38, 3943-3948.
[8] Mähimwalla, Z.; Yager, K. G.; Mamiya, J. I.; Shishido, A.; Priimagi, A.; Barrett, C.J. Polym. Bull. 2012, 69, 967-1006.
[9] Barrett, E. J.; Mamiya, J. I.; Yager, K. G.; Ildefonse, T. Soft Mater. 2007, 3, 1249-1261.
[10] Ferrer, V.; Elbing, M.; Pace, G.; Dickey, M. D.; Zharnikov, M.; Samorí, P.; Mayer, M.; Rampi, M. A. Angew. Chem. Int. Ed. 2007, 46, 3407-3409.
[11] Oscurato, S. L.; Salvatore, M.; Maddalena, P.; Ambrosio, A. Nanophotonics-Berlin 2018, 7, 1387-1422.
[12] Sun, S.; Liang, S.; Xu, W. C.; Xu, G.; Wu, W. Pol. J. Chem. 2019, 10, 4389-4401.
[13] Cocetti, F.; Ballardini, R.; Credi, A.; Gandolfi, M. T.; Maniero, S.; Negri, F.; Pieraccini, S.; Spada, G. P. Chem. Mater. 2016, 28, 3835-3841.
[14] Homocianu, M.; Serbezeanu, D.; Carja, I. D.; Maccim, A. M.; Vlad-Bubulac, T.; Airinei, A. RSC Adv. 2016, 6, 49980-49987.
[15] Sheng, C.; Norwood, R. A.; Wang, J.; Thomas, J.; Wu, Y.; Zheng, Z.; Tahitian, N.; Steeves, D. M.; Kimball, B. R.; Peghambarian, N. Appl. Optics 2008, 47, 5074-5077.
[16] Vapaavuori, J.; Baxou, C. G.; Priimagi, A. J. Mater. Chem. C 2018, 6, 2168-2180.
[17] Barrio, J.; Sanchez-Somolinos, C. Adv. Opt. Mater. 2019, 7, 1900598.
[18] Dudziak, B.; Zak, P.; Marciniacz, B. Polymers-Based 2019, 11, 504.
[19] Vapaavuori, J.; Goutet-Hannesz, A.; Heikinheimo, I. T.; Barrett, C. J.; Priimagi, A. Chem. Mater. 2014, 26, 5089-5096.
[20] Koskela, J.; Vapaavuori, J.; Hautala, J.; Priimagi, A.; Paul, C. F.; Kaivola, M.; Ras, R. H. J. Phys. Chem. C 2012, 116, 2363-2370.
[21] Slavov, C.; Yang, C.; Schwieghausen, L.; Bouwmﬂak, C.; Drewow, A.; Wegner, H. A.; Wachtveitl, J. Phys. Chem. Chem. Phys. 2016, 18, 14795-14804.
[22] Salisu, A. A.; Ab Rahman, M. Z.; Silong, S.; Lotusir, M. R.; Ahmad, M. B. Liq. Cryst. 2011, 39, 423-433.
[23] Samanta, S.; Woolley, G. A. ChemBioChem 2011, 12, 1712-1723.
[24] Zhang, Y.; Pei, S.; Wang, Y.; Cui, L.; Ni, N.; Zhu, Y.; Zhang, H. J. Dyes Pigments 2013, 99, 1117-1123.
[25] Tkachenko, I. M.; Kohrav, Ya. L.; Purikova, O. G.; Tolstov, A. L.; Shekera, O. V.; Shevchenko, V. V. T. Vetrohodn Let. 2016, 57, 5555-5570.
[26] Galanti, A.; Santoro, J.; Mannancherry, R.; Duce, Q.; Biez-Caban, V.; Valasek, M.; De Winter, J.; Cornill, J.; Gerbaux, P.; Mayor, M.; Samorí, P. J. Am. Chem. Soc. 2019, 141, 9273-9283.
[27] Teclila, P.; Bonifazi, D. ChemistryOpen 2020. 9, 5291.
[28] Baek, J. B.; Chien, L. C. J. Polym. Sci. Polym. Chem. 2004, 42, 3587-3603.
[29] Wal, S.; Kaul, J.; Valentinij, A. R. P. M.; Leeunen, W. F. B. Dyes Pigments 2016, 132, 7-19.
[30] Tkachenko, I. M.; Belov, N. A.; Kohrav, Ya. L.; Dorkhlin, A. V.; Shekera, O. V.; Shantarovich, V. P.; Besheshev, V. G.; Shevchenko, V. V. J. Fluorine Chem. 2017, 195, 1-12.
[31] Yazici, A.; Dalbul, N.; Sahil, B. J. Chem. Soc. Pakistan 2014, 36, 767-711.
[32] Abdulla, H. A.; Minor, E. C.; Diao, R. F.; Hatcher, P. G. Geochim. Cosmochim. Acta 2010, 74, 3815-3838.
[33] Ledin, P. A.; Tkachenko, I. M.; Xu, W.; Choi, I.; Shevchenko, V. V.; Tsukruk, V. V. Langmuir 2014, 30, 8856-8865.