Research Article

New Non-Invasive Technologies for Optimal Management of Chronic Heart Failure

Emmanuel Andrès1,2,*, Samy Talha2,3, Abrar-Ahmad Zulfiqar1,2, Noel Lorenzo Villalba1, Mohamed Hajjam4, Bernard Gény2,3 and Amir Hajjam El Hassan1

1Service de Médecine Interne, Diabète et Maladies Métaboliques de la Clinique Médicale B, Hôpitaux Universitaires de Strasbourg, 1, porte de l’Hôpital, 67091 Strasbourg cedex France
2Equipe de recherche EA 3072 "Mitochondrie, Stress oxydant et Protection musculaire", Faculté de Médecine de Strasbourg, Université de Strasbourg (Unistra), Strasbourg, France
3Equipe de recherche EA 4662 "Nanomédecine, Imagerie, Thérapeutiques", Université de Technologie de Belfort-Montbéliard (UTBM), Belfort-Montbéliard, France
4Predimed Technology, Schiltigheim, France

© 2019 Emmanuel Andrès. Hosting by Science Repository. All rights reserved

ARTICLE INFO

Article history:
Received: 31 December, 2019
Accepted: 15 January, 2020
Published: 27 January, 2020

Keywords:
Chronic heart failure
chronic disease
non-invasive sensors
telemedicine
telemonitoring
artificial intelligence
big data

ABSTRACT

In recent years, several technological innovations have become part of the daily lives of patients suffering from chronic diseases. It is the case for chronic heart failure with non-invasive sensors, telemedicine, and artificial intelligence. A review of the literature dedicated to these technologies and tools supports the efficacy of these latter. Mainly, these technologies have shown a beneficial effect on chronic heart failure management with an improvement of: patient ownership of the disease; patient adherence to therapeutic and hygiene-dietary measures; the management of co-morbidities (hypertension, weight, dyslipidemia); and at least, good patient receptivity and accountability. Especially, the emergence of these technologies in the daily lives of these patients suffering from chronic disease, as chronic heart failure, has led to an improvement of the quality of life for patients. Nevertheless, the magnitude of its effects remains to date debatable or to be consolidated, especially with the variation in patients’ characteristics, methods of experimentation, and in terms of medical and economic objectives.

Introduction

According to the World Health Organization (WHO), “chronic disease” is defined as a long-term condition that changes over time, e.g.: high blood pressure, diabetes mellitus, chronic heart failure or chronic obstructive pulmonary disorders, cancer, chronic kidney diseases, cognitive impairment and deterioration, etc. [1, 2]. In France, it is estimated that 15 million people (about 20% of the population) are estimated to have a chronic disease compared to 30% of the population in Canada [2].

To date, despite major therapeutic advances, most chronic diseases remain serious in terms of functional or survival prognosis, with high morbidity and mortality rates [1]. Yet, this type of disease is responsible for 17 million deaths worldwide each year. A 5-year mortality rate of 30 to 50% has been reported in patients with NYHA stage III-IV chronic heart failure [3]. In this setting, patients also frequently present for emergency hospitalization and re-hospitalization, with long hospital stays, resulting in impaired quality of life [1, 3]. In France, acute and chronic heart failure is thus responsible for over 210,000 hospitalizations per year, accounting for 5% of all hospitalizations and being the main cause of hospitalization among elderly subjects [1, 2].

*Correspondence to: Emmanuel Andrès, Service de Médecine Interne, Diabète et Maladies Métaboliques de la Clinique Médicale B, Hôpitaux Universitaires de Strasbourg, 1, porte de l’Hôpital, 67091 Strasbourg cedex France; E-mail: emmanuel.andres@chru-strasbourg.fr

© 2019 Emmanuel Andrès. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Hosting by Science Repository. All rights reserved.
http://dx.doi.org/10.31487/j.CDM.2019.01.03
The management of these chronic diseases proves very challenging for healthcare professionals. In this setting, chronic diseases benefit from both the contributions of molecular biology and innovative therapies, e.g. new drugs, cellular therapy, etc. [3-5]. They also benefit from major advances in technologies (e.g.: sensors, infusion systems, connected objects, etc.) and in artificial intelligence (AI) (e.g.: big data analysis, deep learning, etc.) [6-24]. Combined with the information and communication technologies (ICT) and the social and educational sciences, these technological advances and derived tools will probably revolutionize the care of chronic diseases with an optimization of the management [7].

This chapter focuses on current and new technologies and non-invasive sensors and tools used in clinical routine at the service of the patients with chronic disease, especially chronic heart failure.

Telemedicine for Chronic Heart Failure

Over the last ten years, several new generation telemedicine projects and trials has emerged in the era of chronic heart failure, particularly in Europe [25]. These projects have for main objectives: the prevention and treatment of heart failure exacerbations and the promotion of self-empowerment. Main projects are listed in (Table 1).

Name of the study	Results
The Trans-European Network – Home-Care Management System (n=426)	Compared to standard care alone, mortality and re-hospitalization rates were shown lower in the groups receiving either telemonitoring or nurse telephone support, without any statistically significant differences between both intervention groups.
The BEAT-HF study (n=437)	All-cause readmissions within 180 days post-discharge occurred in 50.8% (363 of 715) patients from the intervention group versus 49.2% (355 of 722) of those from the control group (adjusted hazard ratio: 1.03 [95%CI: 0.88-1.20]; p=0.74)
The TIM-HF (n=710)	All-cause mortality rate (primary end point) was 8.4 per 100 patient-years of follow-up in the telemedicine group and 8.7 per 100 patient-years of follow-up in the standard care group, without significant difference (OR: 0.97 [95%CI: 0.67-1.41]; p=0.87)
The Telemedical Interventional Management in Heart Failure II (TIM-HF2) (n=1,570)	The percentage of days lost due to unplanned cardiovascular hospital admissions and all-cause death was 4.88% (95% CI 4.55-5.23) in the remote patient management group versus 6.64% (6.19-7.13) in the standard care group (ratio 0.80, 95%CI: 0.65-1; p=0.0460)

In this setting, the number and variety of physiologic sensors and the useful clinical parameters derived from those sensors is likely to continue to increase rapidly [25]. For example, in addition to the capabilities described above, future devices may include additional sensors to track respiration parameters (including rate, minute ventilation and perhaps apnea and dyspnea detection), tissue perfusion (via optical sensors), cardiac output and stroke volume (via impedance, acute ischemia or myocardial infarction via S-T segment monitoring), electrical alternant and heart rate turbulence. Indeed, some recently released devices already contain some of these fascinating capabilities. To date, several projects include BNP monitoring, ECG monitoring, and even a video-call [25-27].

Recently, the TIM-HF2 study is the first to well document the interest of telemedicine in the chronic heart disease field, resulting in clinically relevant outcomes with statistical significance [28]. In fact, the percentage of days lost due to unplanned cardiovascular hospital admissions and all-cause death was 4.88% (95% CI 4.55-5.23) in the remote patient management group versus 6.64% (6.19-7.13) in the standard care group (ratio 0.80, 95%CI: 0.65-1; p=0.0460). Patients hospitalizations, the role of non-invasive methods for the remote monitoring of chronic heart failure patients is still under debate.
assigned to remote patient management lost a mean of 17.8 days (95% CI: 16.6–19.1) per year compared with 24.2 days (95% CI: 22.6–26) per year for patients assigned to standard care. The all-cause death rate was 7.86 (95% CI: 6.14–10.10) per 100 person-years of follow-up in the remote patient management group versus 11.34 (95% CI: 9.21–13.95) per 100 person-years of follow-up in the standard care group (hazard ratio [HR] 0.70, 95% CI: 0.5–0.96; p=0.0260) (Figure 1) [28].

Cardiovascular mortality did not significantly differ between both groups (HR 0.671, 95% CI: 0.45–1.01; p=0.056).

For this TIM-HF2 care strategy, the key component was a well-structured telemedical center with physicians and HF nurses (“coordination center”) available 24 hours a day and every day a week, able to act promptly according to the individual patient risk profile [7, 28]. The actions taken by the telemedical center staff included changes in medication and admission to hospital, as needed, in addition to educational activities.

Artificial Intelligence in Chronic Heart Failure Telemedicine

In this setting, the E-care project has been initially developed and designed to optimize home monitoring of chronic heart failure patients by detecting, via a telemonitoring 3.0 platform (Figure 2), including artificial intelligence (AI) via the software MyPredi™ (Predimed Technology, Schiltigheim, France), situations with a risk of cardiac decompensation and re-hospitalization [29-32].

Between February 2014 and April 2015, 175 patients were included into the E-care project [33]. During this period, the E-care platform was used on a daily basis by patients and healthcare professionals, according to a defined protocol of use specific to each patient.

The mean age of these patients was 72 years, and the ratio of men to women 0.7. The patients suffered from multiple concomitant diseases, with a mean Charlson index of 4.1. The five main diseases were: CHF in more than 60% of subjects, anemia in more than 40%, atrial fibrillation in 30%, T2D in 30%, and chronic obstructive pulmonary disease in 30%. During the study, 1,500 measurements were taken in these 175 patients, which resulted in the E-care system generating 700 alerts in 68 patients [33]. Some 107 subjects (61.1%) had no alerts upon follow-up. Follow-up data analysis of these 107 patients revealed that they exhibited no clinically significant events that might eventually have led to hospitalization.

Analysis of the warning alerts showed that the MyPredi™ system automatically and non-intrusively detected any worsening of the patient’s health, particularly heart failure decompensation (between 2 to 9 days), with a sensitivity, specificity, as well as positive and negative predictive values of 100%, 72%, 90% and 100%, respectively. In this study, both the healthcare professionals and patients, even the frailest, used the E-care system without difficulty until the end of the study (Figure 3). For non-autonomous patients, the system was employed by a nurse in addition to her other assigned tasks, such as washing and administering medication, or by close ones and family members [33].

To date, an enhanced version of the E-care platform and the AI (MyPredi™) will be experimented in the homes of CHF patients as part of a project called PRADO-INCADO [7]. PRADO is a French program to support patients returning home after hospital, while PRADO-INCADO will specifically target HF patients in this setting. Over a period of several months, it will follow 300 patients with NYHA Stage I to –IV HF using the PRADO organizational model for CHF patients developed by the national health insurance.

![Figure 1: TIM-HF2 trial (n=1 515). Rate of cumulative events in patients randomly assigned to remote patient management (n=796) or usual care (n=775) (adapted from [28]).](image1)

![Figure 2: Structure of MyPredi™ platform.](image2)

![Figure 3: Schematic illustration of the operation of the MyPredi™ platform (Predimed Technology, Schiltigheim, France). Following hospitalization for cardiac or diabetes decompensation, the patient goes home with connected devices (connected scale, pulse oximeter, blood pressure monitor, glucometer, tablet). Every day, he takes his vitals using the connected devices, and then the measurements are sent to an intelligent platform. Using algorithms, the software detects abnormal measurements and sends an alert to the healthcare professionals in charge of the patient at his or her place of residence. These professionals check the alert with the patient and modify the treatment if necessary.](image3)
Conclusions

This review supports the efficacy of numerous current and new technologies and non-invasive tools for a better management of patients with chronic diseases, particularly patients with chronic heart failure. Nevertheless, in chronic diseases, the magnitude of its effects remains to date debatable or to be consolidated, especially with the variation in patients’ characteristics, methods of experimentation, and in terms of medical and economic objectives.

To our opinion, innovative technologies based on AI (machine learning, Big Data) are going to build the future of chronic disease and they invent the medicine of tomorrow.

Funding

Grants from the Agence Régionale de Santé du Grand-Est (ARS) and the Fondation d’Avenir.

Consent and Ethical Approval

None.

Competing Interest

M. Hajjam is the scientific director of Predimed Technology (www.predimed-technology.fr). All other authors have declared that no competing interests exist.

Ethical Approval

None.

REFERENCES

1. http://invs.santepubliquefrance.fr/publications/etat_sante_2017/ESP2017_Ouvrage_complet_vdef.pdf [April 2019].
2. http://www.has-sante.fr/portail/upload/docs/application/pdf/2012-04/guideparcoursdesoinsicweb.pdf [April 2019].
3. Jessup M, Brozena S (2003) Heart failure. N Engl J Med 348: 2007-2018.
4. Nathan DM (2015) Diabetes: Advances in Diagnosis and Treatment. JAMA 314: 1052-1062. [Crossref]
5. Bartlett ST, Markmann JF, Johnson P, et al (2016) Report from IPITA- TTS Opinion Leaders Meeting on the future of B-cell replacement. Transplantation 100: S1-S44. [Crossref]
6. Rjeily CB, Badr G, El Hassani AH, André E (2018) Medical Data Mining for Heart Diseases and the Future of Sequential Mining. Machine Learning Paradigms: Advances in Data Analytics 149: 71-99.
7. André E, Hajjam M, Talha S, et al (2018) Télémédecine dans le domaine de l’insuffisance cardiaque. État des lieux et focus sur le projet de télémédecine 2.0 E-care. Perspectives dans le domaine de la diabétologie. Médecine des Maladies Métaboliques 12: 224-231.
8. Benhamou PY, Lablanche S (2018) Diabète de type 1: perspectives technologiques. MCED 92: 11-16.
9. Rodbard D (2017) Continuous Glucose Monitoring: a review of recent studies demonstrating improved glycemic outcomes. Diabetes Technol Ther 19: S25-S37. [Crossref]
10. Borot S, Benhamou PY, Atlan C, et al. (2018) Société francophone du diabète (SFD), Société française d’endocrinologie (SFE), Evaluation dans le diabète des implants actifs Group (EVAADIAC). Practical implementation, education and interpretation guidelines for continuous glucose monitoring: A French position statement. Diabetes Metab 44: 61-72. [Crossref]
11. Biester T, Kordonouri O, Holder M, Remus K, Kieninger-Baum D et al. (2017) “Let the algorithm do the work”: reduction of hypoglycaemia using sensor-augmented pump therapy with predictive insulin suspension (SmartGuard) in pediatric type 1 diabetes patients. Diabetes Technol Ther 19: 173-182. [Crossref]
12. Barrientos R, Baltrusch S, Sigrist S, Legeay G, Belcourt A et al. (2009) Kinetics of insulin secretion from MIN6 pseudosilts after encapsulation in a prototype device of a bioartificial pancreas. Horm Metab Res 41: 5-9. [Crossref]
13. https://www.defymed.com/mailpan/ [April 27, 2018].
14. Jeandider N, Chaillous L, Franc S, Benhamou PY, Schaepeynick P et al. (2018) DIABEO App Software and Telemedicine Versus Usual Follow-Up in the Treatment of Diabetic Patients: Protocol for the TELESAGE Randomized Controlled Trial. JIMR Res Protoc 7: e66. [Crossref]
15. Castle JR, DeVries JH, Kovatchev B (2017) Future of automated insulin delivery systems. Diabetes Technol Ther 19: S67-S72. [Crossref]
16. Bertachi A, Ramkissoon CM, Bondia J, Vehi J (2018) Automated blood glucose control in type 1 diabetes: A review of progress and challenges. Endocrinol Diabetes Nutr 65: 172-181. [Crossref]
17. Christiansen SC, Fouguer AL, Stavdahl Ø, et al. (2017) A review of the current challenges associated with the development of an artificial pancreas by a double subcutaneous approach. Diabetes Ther 8: 489-506. [Crossref]
18. Renard E, Place J, Cantwell M, Chevassus H, Palerm CC et al. (2010) Closed-loop insulin delivery using a subcutaneous glucose sensor and intraperitoneal insulin delivery: feasibility study testing a new model for the artificial pancreas. Diabetes Care 33: 121-127. [Crossref]
19. Aleppo G, Webb K (2019) Continuous Glucose Monitoring Integration in Clinical Practice: A Steppe Guide to Data Review and Interpretation. J Diabetes Sci Technol 13: 664-673. [Crossref]
20. André E, Talha S, Jeandider N, Meyer L, Hajjam M et al. (2018) Telemedicine in Chronic Diseases: the Time of Maturity with Telemedicine 2.0 in the Setting of Chronic Heart Failure and Diabetes Mellitus! Curr Res Diabetes Obes J 6: 1-4. [Crossref]
21. Lindberg I, Torbjørnsen A, Söderberg S, Ribu L (2017) Telemonitoring and Health Counseling for Self-Management Support of Patients With type 2 Diabetes: A Randomized Controlled Trial. JMIR Diabetes 2: e10. [Crossref]
22. Charpentier G, Benhamou PY, Dardari D, et al. (2011) TeleDiab Study Group. The Diabeo software enabling individualized insulin dose adjustments combined with telemedicine support improves HbA1c in poorly controlled type 1 diabetic patients: a 6-month, randomized, open-label, parallel-group, multicenter trial (TeleDiab 1 Study). Diabetes Care 34: 533-539. [Crossref]
23. Van De Belt TH, Engelen L, Berben S, Schoonhoven L (2010) Definition of Health 2.0 and Medicine 2.0: A Systematic Review. *J Med Internet Res* 12: e18. [Crossref]

24. Puricel SG, Ruiz J (2014) Le diabète et l’ère de la télémédecine. *Rev Med Suisse* 10: 1246-1248.

25. Andrès E, Talha S, Zulfqar AA, Hajjam M, Ervé S et al. (2018) Current researches and new perspectives of telemedicine in chronic heart failure. *J Clin Med* 7: E544. [Crossref]

26. Ahmed Benyahia A, Hajjam A, Talha S, Hajjam M, Andrès E et al. (2014) E-care: évolution ontologique et amélioration des connaissances pour le suivi des insuffisants cardiaques. *Medecine Thérapeutique* 20: 79-86.

27. Rjeily CB, Badr G, El Hassani AH, Andrès E (2018) Medical Data Mining for Heart Diseases and the Future of Sequential Mining. Machine Learning Paradigms: Advances in Data Analytics 149: 71-99.

28. Koehler F, Koehler K, Deckwart O, Prescher S, Wegscheider K et al. (2018) Efficacy of telemedical interventional management in patients with heart failure (TIM-HF2): a randomised, controlled, parallel-group, unmasked trial. *Lancet* 392: 1047-1057. [Crossref]

29. Rjeily CB, Badr G, El Hassani AH, Andrès E (2018) Medical Data Mining for Heart Diseases and the Future of Sequential Mining. *Circ Cardiovasc Qual Outcomes* 9: 629-640. [Crossref]

30. Mortazavi BI, Downing NS, Bucholz EM, Dharmarajan K, Manhapra A et al. (2016) Analysis of Machine Learning Techniques for Heart Failure Readmissions. *Circ Cardiovasc Qual Outcomes* 9: 629-640. [Crossref]

31. https://www.pedimed-technology.fr/solutions/plateforme-intelligente-my-predi/ [April 27, 2019].

32. Andrès E, Talha S, Hajjam M, Hajjam J, Ervé S et al. (2015) E-care project: a promising e-plateform for the optimizing management of chronic heart failure and other chronic diseases. *Heart Res Open* 1: 39-45.

33. Andrès E, Talha S, Hajjam M, Hajjam J, Ervé S et al. (2018) Experimentation of 2.0 telemedicine in elderly patients with chronic heart failure: A study prospective in 175 patients. *Eur J Intern Med* 51: e11-e12. [Crossref]