SHARC-II 350 \(\mu m \) OBSERVATIONS OF THERMAL EMISSION FROM WARM DUST IN \(z \geq 5 \) QUASARS

Ran Wang\(^1\), Jeff Wagg\(^2\), Chris L. Carilli\(^2\), Dominic J. Benford\(^3\), C. Darren Dowell\(^4\), Frank Bertoldi\(^5\), Fabian Walter\(^6\), Karl M. Menten\(^7\), Alain Omont\(^8\), Pierre Cox\(^5\), Benoit Guiderdoni\(^9\), Michael A. Strauss\(^10\), Xiaohui Fan\(^11\), and Linhua Jiang\(^11\)

\(^1\) Department of Astronomy, Peking University, Beijing 100871, People’s Republic of China
\(^2\) National Radio Astronomy Observatory, P.O. Box 0, Socorro, NM 87801, USA
\(^3\) NASA/Goddard Space Flight Center, Code 665—Observational Cosmology Lab, Greenbelt, MD 20771, USA
\(^4\) Jet Propulsion Laboratory, Mail Code 169-506, Pasadena, CA 91109, USA
\(^5\) Argelander-Institut für Astronomie, University of Bonn, Auf dem Hügel 71, 53121 Bonn, Germany
\(^6\) Max-Planck-Institute für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany
\(^7\) Max-Planck-Institute für Radioastronomie, Auf dem Hügel 71, 53121 Bonn, Germany
\(^8\) Institut d’Astrophysique de Paris, CNRS and Université Pierre et Marie Curie, Paris, France
\(^9\) Institut de Radioastronomie Millimétrique, St. Martin d’Hères, F-38406, France
\(^10\) Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA
\(^11\) Steward Observatory, The University of Arizona, Tucson, AZ 85721, USA

Received 2007 August 14; accepted 2007 December 9; published 2008 March 4

ABSTRACT

We present observations of four \(z \geq 5 \) SDSS quasars at 350 \(\mu m \) with the SHARC-II bolometer camera on the Caltech Submillimeter Observatory. These are among the deepest observations that have been made by SHARC-II at 350 \(\mu m \), and three quasars are detected at \(\geq 3 \sigma \) significance, greatly increasing the sample of 350 \(\mu m \) (corresponds to rest frame wavelengths of \(< 60 \mu m \) at \(z \geq 5 \)), detected high-redshift quasars. The derived rest frame far-infrared (FIR) emission in the three detected sources is about five to ten times stronger than that expected from the average spectral energy distribution (SED) of the local quasars given the same 1450 Å luminosity. Combining the previous submillimeter and millimeter observations at longer wavelengths, the temperatures of the FIR-emitting warm dust from the three quasar detections are estimated to be in the range of 39–52 K. Additionally, the FIR-to-radio SEDs of the three 350 \(\mu m \) detections are consistent with the emission from typical star-forming galaxies. The FIR luminosities are \(\sim 10^{13} L_\odot \) and the dust masses are \(\geq 10^8 M_\odot \). These results confirm that huge amounts of warm dust can exist in the host galaxies of optically bright quasars as early as \(z \sim 6 \). The universe is so young at these epochs (\(\sim 1 \) Gyr) that a rapid dust-formation mechanism is required. We estimate the size of the FIR dust-emission region to be about a few kpc, and further provide a comparison of the SEDs among different kinds of dust-emitting sources to investigate the dominant dust-heating mechanism.

Key words: galaxies: high-redshift – galaxies: starburst – infrared: galaxies – quasars: individual (SDSS J033829.31+002156.3, SDSS J075618.14+410408.6, SDSS J092721.82+200123.7, SDSS J104845.05+463718.3) – submillimeter

1. INTRODUCTION

Quasars in the distant universe may be studied as important probes of supermassive black hole (SMBH) and host galaxy formation at early epochs. Universal relationships between the SMBHs and their stellar bulges were found in both active and normal galaxies locally, indicating that the early evolution of the SMBH–bulge systems is tightly correlated (e.g., Marconi & Hunt 2003; Tremaine et al. 2002). How these relationships behaved at an early galaxy evolution stage is a critical question for the studies of the high-\(z \) universe. In particular, if the SMBH forms prior to the stellar bulge, we may expect to see massive star formation coevol with rapid black hole accretion in the quasar sample at the highest redshifts.

Observations at submillimeter and millimeter (sub/mm) wavelengths were performed to study the thermal emission from warm dust in the quasar host galaxies at high redshifts. These studies yield important information on the mass and temperature of the FIR-emitting dust, and thus provide key constraints on the related galaxy evolution activities. Samples of optically bright quasars from \(z \sim 2 \) to 6 have been observed at (sub/mm) wavelengths (Omont et al. 1996, 2001, 2003; Carilli et al. 2001; Beelen et al. 2006; Bertoldi et al. 2003a; Priddey et al. 2003a; Robson et al. 2004; Wang et al. 2007), using the Max Planck Millimeter Bolometer (MAMBO) on the IRAM-30m Telescope and the Submillimeter Common-User Bolometer Array (SCUBA) on the James Clerk Maxwell Telescope. The detection rate is about 30% at mJy sensitivity for these samples, indicating the existence of a population of FIR luminous objects within the high-\(z \) optically selected quasar sample.

Important results were obtained from deep 350 \(\mu m \) observations of these strong (sub)mm quasars (Benford et al. 1999; Beelen et al. 2006) made by the SHARC-II bolometer camera (Dowell et al. 2003) on the Caltech Submillimeter Observatory (CSO). The 350 \(\mu m \) observations confirm the existence, and constrain the properties of the warm dust with a typical temperature of 30–50 K in the host galaxies of these quasars (Benford et al. 1999; Beelen et al. 2006). Fits of the FIR (SEDs) imply FIR luminosities of about \(\sim 10^{13} L_\odot \) and FIR-to-radio luminosity ratios following the trend defined by star-forming galaxies (Beelen et al. 2006). These properties are all comparable to the FIR emission found in the submillimeter detected galaxies (SMGs) at \(z \sim 1 \) to 3, i.e. thermal emission from \(> 10 \) K to 70 K warm dust heated by star formation at a rate of a few \(10^3 M_\odot \) yr\(^{-1} \) (e.g., Chapman et al. 2005; Kovács et al. 2006b). The SHARC-II detected quasars also tend to have highly excited molecular CO emission from the host galaxies (i.e. peak at \(J = 6 \)–5 or higher, Carilli et al. 2002, 2007; Solomon & Vanden Bout 2005), exhibiting FIR-to-CO emission ratios similar to that of
the star-forming galaxies at low and high redshifts (Solomon & Vanden Bout 2005; Riechers et al. 2006; Carilli et al. 2007).

One instrumental finding among these observations is the SHARC-II detection of SDSS J114816.64+525150.3 at $z = 5.03$ (hereafter J1148+5251, Beelen et al. 2006). This is the first 350 μm dust continuum detection beyond $z = 5$. The 4.5 × 10^10 M_☉ of ~55 K warm dust discovered in this source implies a similar evolution stage as was found in other (sub)mm detected quasars at lower redshifts, but exist at an epoch when the age of the universe is only ~870 Myr. Probing the warm dust emission at such an epoch is critical as it constrains the timescale of dust formation in addition to the questions of dust emission at such an epoch is critical as it constrains the timescale of dust formation in addition to the questions of dust heating and black hole–bulge evolution. The detection of dust continuum detection beyond $z = 5$ is of critical importance as they imply a similar evolution stage as was found in other (sub)mm detected quasars at lower redshifts (Solomon & Vanden Bout 2005; Riechers et al. 2006; Carilli et al. 2007).

Table 1
Summary of the Previous Observations

SDSS name	z	$m_{1450\AA}$	S$_{450 \mu m}$ (mJy)	S$_{850 \mu m}$ (mJy)	S$_{1.2 \text{mm}}$ (mJy)	S$_{2.5 \text{mm}}$ (mJy)	S$_{1.4 \text{GHz}}$ (μJy)
J033829.31+002156.3	5.03	20.01a	5 ± 16b	11.9 ± 2.0c	3.7 ± 0.3c	...	37 ± 25c
J075618.14+410408.6	5.09	20.15d	16 ± 5e	13.4 ± 1.0f	5.5 ± 0.5f	...	65 ± 17f
J092721.82+200123.7	5.77	19.87g	5.0 ± 0.8h	0.12 ± 0.03h	45 ± 14h
J104845.05+463718.3	6.20	19.25i	7.6 ± 11.7i	2.3 ± 2.2i	3.0 ± 0.4i	...	6 ± 11i

References. a Fan et al. (1999). b Priddey et al. (2003b). c Carilli et al. (2001). d Anderson et al. (2001). e Priddey et al. (2008). f Petric et al. (2003). g Fan et al. (2006). h Wang et al. (2007). i Carilli et al. (2007). j Fan et al. (2003). k Robson et al. (2004). l Bertoldi et al. (2003a).

During standard observing, the position of the secondary mirror is updated frequently to compensate for sag as the telescope elevation changes. Unfortunately, a telescope configuration problem on the last three nights resulted in only infrequent updates. The effects of this problem are a drift in the focus and a small drift in pointing. We carefully studied the effects of the mirror position errors on the data using the position encoders and images of the calibrators. About half of the data were dropped due to bad focus. For the remaining data, we made small ($<3''$) adjustments to the pointing with an uncertainty of $<1''$.

We completed data reduction using the SHARC-II data reduction package CRUSH version 1.52 (Kovács 2006a). The total integration time for each source is about 6 to 8 h after excluding the bad scans, and the rms noise level for the final maps is about 5 to 6 mJy beam$^{-1}$. The final maps were smoothed to a FWHM of 12.4'', for optimal signal-to-noise in the case of point-source detection, and the peak surface brightness is adopted as the total flux density of the source.

3. RESULTS

Three out of the four $z \geq 5$ quasars observed are detected at the $\geq 3\sigma$ level with SHARC-II. We list basic information and previous (sub)mm and radio continuum results of the four targets in Table 1, and the results of the SHARC-II observations are presented in the first four columns of Table 2, including the source name, 350 μm peak surface brightness, peak offset from the optical quasar, and the integration time. The final SHARC-II maps of the four targets are presented in Figure 1. The 1σ position uncertainty on the map is $\sigma_{\text{pos}} \sim \text{FWHM}/(S/N) \sim 4''$ for 3σ detections (considering the smoothed beam size of FWHM = 12.4''). Thus the 350 μm peak positions of the three detections are consistent with the optical quasars given this position uncertainty (see Column 3 in Table 2). The details for the individual sources are presented in the following.

J033829.31+002156.3 (hereafter J0338+0021) is a $z = 5.03$ quasar discovered by Fan et al. (1999). It is one of the strongest MAMBO detections among a sample of $z \geq 4$ SDSS quasars from Carilli et al. (2001) with $S_{1.2 \text{mm}} = 3.7 \pm 0.3$ mJy. The dust continuum is also detected by SCUBA at 850 μm (Priddey et al. 2003b). Moreover, Maiolino et al. (2007) detected CO(5–4) line emission in this source, with a molecular gas mass of $2.4 \times 10^{10} M_☉$.

This source is detected by our SHARC-II observation at the ~4σ level, with a peak surface brightness of...
No. 4, 2008 SHARC-II OBSERVATIONS OF z ≥ 5 QUASARS 1203

Figure 1. The SHARC-II maps of the four z ≥ 5 quasars at 350 µm, smoothing to a beam size of FWHM = 12.4′. The contour levels are (2, 3, 4) × 4.0 mJy beam$^{-1}$ for each of the four maps. The crosses mark the positions of the optical quasars.

Table 2 Results and Derived Parameters

SDSS name	S$_{350\mu m}$ (mJy beam$^{-1}$)	Offsets (″)	Int. time (h)	L$_{FIR}$ (1012 L$_{\odot}$)	M$_{dust}$ (106 M$_{\odot}$)	T$_{dust}$ (K)	SFR (103 M$_{\odot}$ yr$^{-1}$)
J033829.31+002156.3	17.7 ± 4.4	3.8	7.2	0.92 ± 0.17	6.1	45.6 ± 3.2	2.2
J075618.14+410408.6	17.1 ± 5.2	4.3	6.3	0.84 ± 0.17	12.1	39.2 ± 2.6	1.9
J092721.82+200123.7	17.7 ± 5.7	3.9	7.3	1.21 ± 0.28	4.6	51.1 ± 4.2	3.2
J104845.05+463718.3	5.3 ± 5.8	8.0	8.0

Notes.
We adopt an emissivity index of β = 1.6 here for all the calculations (Beelen et al. 2006).

* Note that the absolute calibration uncertainty of 20% is not included in the rms.

J075618.14+410408.6 (hereafter J0756+4104) was discovered by Anderson et al. (2001) with a redshift of z = 5.09. It is a strong MAMBO source with S$_{1.2\text{mm}}$ = 5.5 ± 0.5 mJy (Petric et al. 2003), and also is detected at 450 µm and 850 µm by SCUBA (Priddey et al. 2003b, 2008) and at 1.4 GHz by the VLA (Petric et al. 2003).

We detect a 3.3σ peak (S$_{350\mu m}$ = 17.1 ± 5.2 mJy beam$^{-1}$) on the SHARC-II map, 3.8″ away from the position of the optical quasar.

J092721.82+200123.7 (hereafter J0927+2001) is a SDSS quasar at z = 5.77 (Fan et al. 2006; Carilli et al. 2007). This source has a MAMBO flux density of S$_{1.2\text{mm}}$ = 5.0 ± 0.8 mJy, making it one of the most luminous quasars at z ∼ 6 at FIR wavelengths (Wang et al. 2007). The VLA radio continuum observation of this source yields a 3σ detection of S$_{1.4\text{GHz}}$ = 45 ± 14 µJy at 1.4 GHz. CO(5–4) and CO(6–5) line emission has also been detected in this source very recently (Carilli et al. 2007). The CO luminosity indicates molecular gas with a mass of 1.6 × 1010 M$_{\odot}$ in the host galaxy. The CO observations are accompanied with a ∼3σ continuum measurement at 3.5 mm of S$_{3.5\text{mm}}$ = 0.12 ± 0.03 mJy.

With SHARC-II, we measure a brightness for this source of S$_{350\mu m}$ = 17.7 ± 5.7 mJy beam$^{-1}$ with a position offset of 3.9″ from the optical quasar. A second ∼3σ peak is seen in
Figure 2. Optical-to-radio SEDs for the four $z \geq 5$ quasars. The squares represent optical data at 1450 Å, SHARCII data at 350 µm, SCUBA data at 450 µm and 850 µm, MAMBO data at 1.2 mm, PdBI data at 3.5 mm, and VLA data at 1.4 GHz. Arrows denote 3σ upper limits for non-detections. The dashed and solid lines represent the low-z quasar templates from Elvis et al. (1994) and Richards et al. (2006), respectively. All the templates are normalized to 1450 Å. The solid line is the best-fit warm dust model for the three SHARC-II detections, extended to the radio band with the typical radio–FIR correlation of star-forming galaxies, i.e. $q = 2.34$ (Yun et al. 2001). The dotted lines denote factors of 5 excesses above and below this typical q value defined by star-forming galaxies.

the map of this source with $S_{\nu, 350\mu m} = 17.5 \pm 5.6$ mJy beam$^{-1}$, to the southeast of the optical quasar position. The separation between the two peaks is about 14.9″. However, there is no hint of extension towards the secondary peak direction in the CO emission maps of J0927+2001 at 3 mm of Carilli et al. (2007). Further high-resolution mapping at (sub)mm wavelengths is required to understand the nature of this secondary peak. The analysis below only considers the first peak close to the optical quasar position.

J104845.05+463718.3 (hereafter J1048+4637) is a broad absorption line quasar at $z = 6.20$ from Fan et al. (2003). The MAMBO flux density for this source is $S_{\nu, 1.2\text{ mm}} = 3.0 \pm 0.4$ mJy (Bertoldi et al. 2003a, 2003b). However, it has not been detected by SCUBA (Robson et al. 2004), or by the VLA (Wang et al. 2007).

Our SHARC-II observation did not detect this source. The pixel flux density value at the optical quasar position is 5.3 mJy beam$^{-1}$, with a 1σ rms of 5.8 mJy beam$^{-1}$ on the final map. Thus we adopt 17.4 mJy beam$^{-1}$ (3σ rms) as an upper limit to the 350 µm flux density.

The optical-to-radio SEDs of the four quasars are plotted in Figure 2, displaying the photometric data listed in Tables 1 and 2. Template SEDs of local quasars from Elvis et al. (1994) and Richards et al. (2006) are plotted for comparison, normalized to 1450 Å. For J1048+4637, the measurements at (sub)mm, and radio wavelengths are all consistent with the templates, i.e. the average SED emission of the typical type-I quasar in the local universe. However, strong FIR emission is seen in the other three sources, which exceed the templates by nearly an order of magnitude. This is similar to the FIR excess from warm dust shown in the SED of J1148+5251 by Beelen et al. (2006).

We fit the FIR bumps of the three sources with an optically thin gray body, namely

$$S_{\nu} = S_0 \cdot \left(\frac{\nu}{1 \text{ GHz}} \right)^{3+\beta} \frac{1}{\exp(h\nu/kT_d) - 1},$$ \hspace{1cm} (1)

where β is the emissivity index, T_d is the dust temperature in K, S_0 is the amplitude factor, and S_{ν} is the rest frame flux density in mJy. Since there are only two or three data points available for each source, we fix the β value to 1.6 (Beelen et al. 2006), and then fit S_0 and T_d for the three sources. A Levenberg–Marquardt least-squares fit is performed with the IDL package MPFIT. The best-fitting dust temperatures range from 39 to 52 K with 1σ fitting errors of 3–4 K. In Figure 2, we also extend the fitted FIR SED to radio for the three detections, using a radio spectral index of -0.75 and an average FIR-to-radio emission ratio of $q \equiv \log(L_{FIR}/3.75 \times 10^{12} \text{ W}) - \log(L_{1.4 \text{ GHz}}/\text{W Hz}^{-1}) = 2.34$ found in typical star-forming galaxies (Yun et al. 2001). The observed radio emission/upper limit of the three objects are all consistent with the model SED, i.e. within the range of FIR-to-radio emission ratios five times above or below the average value of star-forming galaxies, but the detected flux densities in J0756+4104 and J0927+2001 are 0.2 to 0.4 index higher than the value derived with $q = 2.34$.

The FIR luminosity is calculated from the fitted SED, integrating rest frame $42.5 \mu m$ to $122.5 \mu m$, namely
\[
L_{\text{FIR}} = 2.49 \times 10^{-11} \cdot 4\pi D_L^2 \int S_\nu d\nu
\]
where D_L is the luminosity distance in Mpc and L_{FIR} is in L_\odot. We calculate the dust masses using
\[
M_{\text{dust}} = \frac{L_{\text{FIR}}}{4\pi \kappa_\nu B_\nu d\nu} = 8.33 \times 10^{14} \frac{S_0 D_L^2}{\kappa_0} M_\odot
\]
where B_ν is the Planck function and $\kappa_\nu = \kappa_0 (\nu/\nu_0)^\beta$ is the dust absorption coefficient. We adopt $\kappa_0 = 18.75 \text{ cm}^2 \text{ g}^{-1}$ at $125 \mu m$ (Hildebrand 1983). The derived parameters for the three SHARC-II detected sources are listed in the last four columns in Table 2.

4. DISCUSSION

We have detected three high-redshift quasars with SHARC-II at $350 \mu m$. These are among the most sensitive observations made by SHARC-II, and increase the number of $350 \mu m$ detected optical quasars at $z \geq 5$ to four. These quasars are all strong detections in previous MAMBO and SCUBA observations at longer wavelengths (Carilli et al. 2001; Petric et al. 2003; Robson et al. 2004; Wang et al. 2007), and the measurements given by SHARC-II are close to the FIR emission peak from warm dust. By sampling over the dust peak, we provide reliable measurements of temperature, mass, and FIR luminosity of the FIR-emitting warm dust. As with J1148+5251 (Bertoldi et al. 2003a, 2003b; Beelen et al. 2006), the three newly detected sources show that excess emission from huge amounts of warm dust can exist in some optically bright quasars at extreme redshifts.

The derived dust masses are all $\geq 10^8 M_\odot$. This result confirms the high heavy element abundance and rapid dust formation in massive quasar hosts at $z \geq 5$ (Priddey et al. 2003b; Bertoldi et al. 2003a) when the age of the universe was $\leq 1.2 \text{ Gyr}$. At this epoch, the standard mechanism of interstellar medium (ISM) dust formation, i.e., stellar winds from evolved low-mass stars, is inefficient as it requires very long timescales ($\geq 1 \text{ Gyr}$). A process associated with the evolution of massive stars (with a much shorter timescale) is likely required (e.g., Morgan & Edmunds 2003; Schneider et al. 2004; Maiolino et al. 2004).

All of the SHARC-II detected $z \geq 5$ quasars exhibit FIR luminosities of $\sim 10^{13} L_\odot$. Under the optically thin assumption (i.e. the optical depth $\tau_\nu \ll 1$ at FIR wavelengths), the size of the dust emission region can be roughly estimated as
\[
R_{\text{dust}} \sim \left(\frac{L_{\text{FIR}}}{4\pi \tau_\nu B_\nu (T_\nu \sim 50 \text{ K}) d\nu}\right)^{0.5}
\]
where the emissivity index $\beta = 1.6$, $\nu_c = (\nu/\nu_0)^\beta$, and ν_c is the critical frequency with $\tau_\nu = 1$. To satisfy the optically thin assumption, we adopt $\nu_c = 30 \text{ THz}$ (i.e. $\lambda_c = 10 \mu m$). The derived R_{dust} is $\sim 5 \text{ kpc}$, which suggests that the FIR-emitting warm dust emission region is on kpc scales in the quasar host. This is consistent with the scales of CO emission and [C II] $158 \mu m$ emission found in J1148+5251 (Walter et al. 2004, in preparation).

The dust temperatures derived from these $z \geq 5$ quasars are in the range from 39 to 55 K, which is comparable to the values found in the bright (sub)mm quasars at lower redshifts (Benford et al. 1999; Beelen et al. 2006). They are also within the range of about 11–72 K found in samples of submillimeter selected galaxies at $z \sim 1$ to 3.5, but a little higher than the mean value of $\sim 35 \text{ K}$ (Chapman et al. 2005; Kovács et al. 2006b). We combine the infrared to radio data of all four SHARC-II detected $z \geq 5$ quasars and plot them in Figure 3. The combined SED is compared to that of another two sources, the $z = 3.9$ quasar APM 08279+5255 (Irwin et al. 1998; Lewis et al. 1998, 2002; Downes et al. 1999; Egami et al. 2000; Beelen et al. 2006).
Wagg et al. 2005; Weiß et al. 2007) and the local starburst galaxy M82 (Telesco & Harper 1980; Klein et al. 1988; Hughes et al. 1990; Smith et al. 1990; Krügel et al. 1990). The FIR emission from APM 0827+5255 is suggested to be dominated by a ~200 K dust component on scales of a few hundred pc, i.e. a typical AGN-heated dust torus (Weiβ et al. 2007), while the FIR emission in the starburst galaxy M82 is clearly from starburst-heated warm dust with a temperature of ~45 K (Klein et al. 1988). The combined FIR-to-radio emission of the four quasars can be probed by the SED of M82 very well, but is quite different from the dusty AGN emission from APM 0827+5255, which peaks at a shorter wavelength (~20 µm) and shows a much steeper infrared slope. Among the four z > 5 SHARC-II detections, only J1148+5251 have Spitzer measurements at near-IR wavelengths (Charmandaris et al. 2004; Jiang et al. 2006), and the flux densities are all much lower compared to the near-IR emission of APM 0827+5255.

12 We estimate the star-formation rate with the empirical relationship from Kennicutt (1998) assuming a standard initial mass function, i.e. SFR ~ 4.5 LIR M⊙yr⁻¹, where LIR is the infrared luminosity (8-1000 µm) in unit of 10⁴⁸ erg s⁻¹, and is ~1.5 LIR for warm dust emission.

We thank Jonathan Bird at the CSO for preparing the opacity data. We thank Colin Borys for helpful advice on SHARC-II data reduction. The CSO is supported by the NSF under AST-0540882. We acknowledge support from the Max Planck Society and the Alexander von Humboldt Foundation through the Max-Planck-Forschungspreis 2005. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

Facilities: CSO (SHARC-II), IRAM (MAMBO), VLA, SDSS.

REFERENCES

Anderson, S. F., et al. 2001, AJ, 122, 503
Beelen, A., Cox, P., Benford, D. J., Dowell, C. D., Kovács, A., Bertoldi, F., Omont, A., & Carilli, C. L. 2006, ApJ, 642, 694
Benford, D. J., Cox, P., Omont, A., Phillips, T. G., & McMahon, R. G. 1999, ApJ, 518, 65
Bertoldi, F., Carilli, C. L., Cox, P., Fan, X., Strauss, M. A., Beelen, A., Omont, A., & Zylka, R. 2003a, A&A, 406, L55
Bertoldi, F., et al. 2003b, A&A, 409, L47
Carilli, C. L., et al. 2001, ApJ, 555, 625
Carilli, C. L., et al. 2002, AJ, 123, 1838

Carilli, C. L., et al. 2004, AJ, 128, 997
Carilli, C. L., et al. 2007, ApJ, 666, 9
Chapman, S. C., Blain, A. W., Smolc, L., & Ivison, R. J. 2005, ApJ, 622, 772
Charmandaris, V., et al. 2004, ApJ, 615, 142
Dowell, C. D., et al. 2003, Proc. SPIE, 4855, 73
Downes, D., Neri, R., Wiklind, T., Wilner, D. J., & Shaver, P. A. 1999, ApJ, 513, L1
Egami, E., Neugebauer, G., Soifer, B. T., & Matthews, K. 2000, ApJ, 535, 561
Elvis, M., et al. 1994, ApJS, 95, 1
Fan, X., et al. 1999, AJ, 118, 1
Fan, X., et al. 2003, AJ, 125, 1649
Fan, X., et al. 2006, AJ, 131, 1203
Fritz, J., Franceschini, A., & Hatziminaoglou, E. 2005, MNRAS, 366, 767
Helou, G., Soifer, B. T., & Rowan-Robinson, M. 1985, ApJ, 298, L7
Hildebrand, R. H. 1983, QJRAS, 24, 267
Hughes, D. H., Gear, W. K., & Robson, E. I. 1990, MNRAS, 244, 759
Irwin, M. J., Ibata, R. A., Lewis, G. F., & Totten, E. J. 1998, ApJ, 505, 529
Jiang, L., et al. 2006, AJ, 132, 2127
Kennicutt, R. C. 1998, ARA&A, 36, 189
Klein, U., Wielebinski, R., & Morsi, H. W. 1988, A&A, 190, 41
Krügel, E., et al. 1990, A&A, 240, 232
Kovács, A. 2006a, PhD thesis, Caltech
Kovács, A., Chapman, S. C., Dowell, C. D., Blain, A. W., Ivison, R. J., Smail, I., & Phillips, T. G. 2006b, ApJ, 650, 592
Leong, M. M. 2005, URSI Conf. Sec., J3-J10, 426
Lewis, G. F., Carilli, C., Papadopoulos, P., & Ivison, R. J. 2002, MNRAS, 330, L15
Lewis, G. F., Chapman, S. C., Ibata, R. A., Irwin, M. J., & Totten, E. J. 1998, ApJ, 505, L1
Maiolino, R., Schneider, R., Oliva, E., Bianchi, S., Ferrara, A., Mannucci, F., Pedani, M., & Roca, S. M. 2004, Nature, 431, 533
Maiolino, R., et al. 2007, A&A, in press
Marconi, A., & Hunt, L. K. 2003, ApJ, 589, L21
Morgan, H. L., & Edmunds, M. G. 2003, MNRAS, 343, 427
Omont, A., Beelen, A., Bertoldi, F., McMahon, R. G., Carilli, C. L., & Isaak, K. G. 2003, A&A, 398, 657
Omont, A., Cox, P., Bertoldi, F., Cox, P., Carilli, C. L., Priddle, R. S., McMahon, R. G., & Isaak, K. G. 2001, A&A, 374, 371
Omont, A., McMahon, R. G., Cox, P., Kreyes, A., Bergeron, J., Pajot, F., & Storrie-Lombardi, L. J. 1996, A&A, 315, 1
Petric, A. O., Carilli, C. L., Bertoldi, F., Fan, X., Cox, P., Strauss, M. A., Omont, A., & Schneider, D. P. 2003, AJ, 126, 15
Priddey, R. S., Isaak, K. G., McMahon, R. G., & Omont, A. 2003a, MNRAS, 339, 1183
Priddey, R. S., Isaak, K. G., McMahon, R. G., Robson, E. I., & Pearson, C. P. 2003b, MNRAS, 344, L74
Priddey, R. S., Ivison, R. J., & Isaak, K. G. 2008, MNRAS, 383, 289
Richards, G. T., et al. 2006, ApJ, 646, 470
Riechers, D. A., et al. 2006, ApJ, 650, 604
Robson, I., Priddey, R. S., Isaak, K. G., & McMahon, R. G. 2004, MNRAS, 351, L29
Sanders, D. B., Phinney, E. S., Neugebauer, G., Soifer, B. T., & Matthews, K. 1989, ApJ, 347, 29
Schneider, R., Ferrara, A., & Salvaterra, R. 2004, MNRAS, 351, 1379
Smith, P. A., Brand, P. W. J., Puxley, P. J., Mountain, C. M., & Nakai, N. 1990, MNRAS, 243, 97
Solomon, P. M., & Vanden Bout, P. A. 2005, ARA&A, 43, 677
Spergel, D. N., et al. 2007, ApJS, 170, 377
Telesco, C. M., & Harper, D. A. 1980, ApJ, 235, 392
Tremaine, S., et al. 2002, ApJ, 574, 740
Wagg, J., Wilner, D. J., Neri, R., Downes, D., & Wiklind, T. 2005, ApJ, 634, L13
Walter, F., Carilli, C. L., Bertoldi, F., Menten, K., Cox, P., Lo, K. Y., Fan, X., & Strauss, M. A. 2004, ApJ, 615, L17
Wang, R., et al. 2007, AJ, 134, 617
Weiβ, J., Downes, D., Neri, R., Walter, F., Henkel, C., Wilner, D. J., Wagg, J., & Wiklind, T. 2007, A&A, 467, 955
Yun, M. S., Reddy, N. A., & Condon, J. J. 2001, ApJ, 554, 803