Small Support Approximate Equilibria in Large Games

Yakov Babichenko†

May 22, 2013

Abstract

In this note we provide a new proof for the results of Lipton et al. [3] on the existence of an approximate Nash equilibrium with logarithmic support size. Besides its simplicity, the new proof leads to the following contributions:

1. For n-player games, we improve the bound on the size of the support of an approximate Nash equilibrium.

2. We generalize the result of Daskalakis and Papadimitriou [4] on small probability games from the two-player case to the general n-player case.

3. We provide a logarithmic bound on the size of the support of an approximate Nash equilibrium in the case of graphical games.

*Center for the Mathematics of Information, Department of Computing and Mathematical Sciences, California Institute of Technology. e-mail: babich@caltech.edu.

†The author wishes to thank Constantinos Daskalakis and Siddarth Barman for useful discussions and comments. The author gratefully acknowledges support from a Walter S. Baer and Jeri Weiss fellowship.
1 Introduction

The problem of the existence of a small-support approximate equilibrium (i.e., every player randomizes among small set of his actions) has been studied in the literature for the past two decades. Althofer [1] considered two-player zero-sum games and showed existence of approximately optimal strategies with support of size $O(\log m)$, where m is the number of actions. Lipton, Markakis, and Mehta [3] later generalized this result to all two-player games; i.e., they showed existence of an approximate equilibrium with support of size $O(\log m)$. This result yields an exhaustive search algorithm for computing an approximate Nash equilibrium with a quasi-polynomial running time $(m^{\log m})$. This is the best-known bound today for computing an approximate Nash equilibrium. Daskalakis and Papadimitriou [4] generalized the technique of Lipton et al. [3] to prove that in two-player games an approximate Nash equilibrium can be computed in polynomial time in games that possess a small-probabilities Nash equilibrium (see definition in Section 4).

The related problem of the existence of a pure Nash equilibrium (an equilibrium with the minimal support) in subclasses of games has been studied in the literature for much longer; see, e.g., Rosenthal [7] and Shmeidler [8]. A recent paper by Azrieli and Shmaya [2] analyzes the relation between the influence that a player has on the payoffs of other players and the existence of an approximate Nash equilibrium. They show that if the influence is small enough, then such a game has an approximate pure Nash equilibrium.

In this note we provide a new proof for the results of Lipton et al. [3] and Daskalakis and Papadimitriou [4] using similar techniques to those developed by Azrieli and Shmaya [2]. Besides its simplicity, the new proof leads to the following contributions:

1. For n-player games we improve the bound on the size of the support
of an approximate Nash equilibrium from $O(n^2 \log m)$ (see Lipton et. al. \[3\]) to $O(n \log m)$ (see Corollary \[1\]).

2. We generalize the result of Daskalakis and Papadimitriou \[4\] from two-player games case to all n-player game cases (see Corollary \[3\]).

3. We provide a logarithmic bound $(O(\log n + \log m))$ on the size of the support of approximate Nash equilibrium in the case of graphical games. This bound is novel (see Theorem \[1\]).

The note is organized as follows. In Section \[2\] we present the notations and preliminaries that will be useful in our new proof. In Section \[3\] we state and prove the a result on graphical games; this result generalizes Lipton et al. \[3\]. In Section \[4\] we state and prove the result that generalizes the result of Daskalakis and Papadimitriou. Section \[5\] is a discussion.

2 Preliminaries

We consider n-player games where every player i has a large number of actions. For simplicity, we will consider the case where all players have the same number of actions m. We will use the following standard notations. We denote by $A_i = \{1, 2, ..., m\}$ the actions set of player i, and by $A = \times_i A_i$ the actions profile set. The simplex $\Delta(A_i)$ is the set of mixed strategies of player i. We will assume that the payoffs of all players are in $[0, 1]$, and $u_i : A \to [0, 1]$ will denote the payoff function of player i. The payoff function u_i can be multilinearly extended to $u_i : \Delta(A) \to [0, 1]$. The payoff functions profile is $u = (u_i)_{i=1}^n$, which is also called the game. A mixed action profile $x = (x_1, x_2, ..., x_n)$ is an Nash ε-equilibrium if for every action $a_i \in A_i$, it

\[Given a game where player i has m_i actions, we can consider an equivalent game where every player has $m = \max_i m_i$ actions. This can be done by adding $m - m_i$ strictly dominated actions to every player i.\]
holds that \(u_i(x) \geq u_i(a_i, x_{-i}) - \varepsilon \).

A mixed strategy \(x_i = (x_i(1), x_i(2), \ldots, x_i(m)) \) of player \(i \) will be called \(k \)-uniform if \(x_i(j) = c_j/k \), where \(c_j \in \mathbb{N} \) for every \(j = 1, 2, \ldots, m \). Note that the support of \(k \)-uniform strategy is of size at most \(k \). A mixed strategy profile \(x = (x_i)_{i=1}^n \) will be called \(k \)-uniform if every \(x_i \) is \(k \)-uniform.

We say that the payoff of player \(i \) depends on player \(j \) if there exists an action profile \(a_{-j} \) and a pair of actions \(a_j, a_j' \) of player \(j \) such that \(u_i(a_j, a_{-j}) \neq u_i(a_j', a_{-j}) \). A game where the payoff of every player depends on at most \(d \) other players will be called a graphical game of degree \(d \). Graphical games, introduced by Kearns et al. [5], express the situation where players are located on vertices of an underlying graph and their payoffs are influenced only by their neighbors’ actions. Note that every \(n \)-player game is a graphical game of degree \(n - 1 \).

2.1 Lipschitz games

Player \(i \) has a \(\lambda \)-Lipschitz payoff function if \(|u_i(a_j, a_{-j}) - u_i(a_j', a_{-j})| \leq \lambda \) for every \(i \neq j \) and every \(a_j, a_j' \in A_j \). The Lipschitz property means that a change of strategy of a single player \(j \neq i \) has little effect on the payoff of player \(i \). Note that player \(i \) can have a big effect on his own payoff. A game will be called \(\lambda \)-Lipschitz if the payoff functions of all players are \(\lambda \)-Lipschitz.

The following proposition is an important property of \(\lambda \)-Lipschitz games.

Proposition 1. If in an \(n \)-player game the payoff of player \(i \) depends on at most \(d \) players, and his payoff function is \(\lambda \)-Lipschitz, then for every pure action \(a_i \in A_i \) and for every mixed action profile of the opponents \(x_{-i} \), it
holds that

\[
x_{-i}(B) \geq 1 - 2\exp\left(-\frac{\delta^2}{d\lambda^2}\right)
\]

where \(B \subset A_{-i}\) is defined by

\[
B = \{a_{-i} : |u_i(a_i, a_{-i}) - u_i(a_i, x_{-i})| \leq \delta\}.
\]

In simple words, Proposition 1 claims that if we randomize an action profile \(a_{-i}\) according to \(x_{-i}\), then probably player \(i\) will have approximately the same outcome if he plays against \(a_{-i}\) or against \(x_{-i}\).

Proposition 1 is based on the concentration of measure phenomena for Lipschitz functions (see Ledoux [6]) and it is derived explicitly in Azrieli and Shmaya [2].

2.2 From general games to Lipschitz games

We present a very natural procedure that constructs for every game a corresponding game with the Lipschitz property.

Fix \(k \in \mathbb{N}\). Given a game \(u\) we construct a new game \(v = v(u, k)\) with \(kn\) players as follows. We “split” every player \(i\) into a population of \(k\) players \(i(1), i(2), ..., i(k)\). Each player \(i(j)\) plays the original game \(u\) against the aggregate behavior of the \(n - 1\) other populations of size \(k\).

Formally, it will be convenient to present \(A_i\) as the set of vectors \(\{e_1, e_2, ..., e_m\} \subset \mathbb{R}^m\), where \(e_j\) is the \(j - th\) unit vector in \(\mathbb{R}^m\). In such a representation the unit simplex \(\Delta^m := \{(x_j)_{j=1}^m : \sum_j = 1, x_j \geq 0\}\) is the set of mixed strategies \(\Delta(A_i)\). All players \(i(j)\) have the same actions set \(A_i\). The

2By the notation \(x_{-i}(B)\), we refer to \(x_{-i}\) as a probability measure on \(A_{-i}\), and so \(x_{-i}(B)\) is the probability of the event \(B\).
payoff of player \(i_0(j_0)\) is defined by
\[
v_{i_0(j_0)}((a_{i(j)})_{1 \leq i \leq n, 1 \leq j \leq k}) = u_i \left(a_{i_0(j_0)}, \left(\frac{\sum_{j=1}^{k} a_{i(j)}}{k} \right)_{i \neq i_0} \right).
\]
Note that \(\sum_{j=1}^{k} a_{i(j)}/k \in \Delta^m\); therefore, this vector represents the mixed strategy of population \(i\).

Remark 1. The game \(v\) has the following two properties:

(P1) \(v\) is \(1/k\) Lipschitz, because a deviation of a single player \(i(j)\) changes the mixed strategy that is played by population \(i\) only by \(1/k\).

(P2) Every pure Nash \(\varepsilon\)-equilibrium of the game \(v\) corresponds to a \(k\)-uniform mixed Nash \(\varepsilon\)-equilibrium of the game \(u\). The corresponding mixed equilibrium will be the one where player \(i\) plays the aggregated strategy of population \(i\) in the game \(v^3\).

3 General Games and Graphical Games

Theorem 1. Every \(n\)-player graphical game of degree \(d\) with \(m\) actions for every player has a \(k\)-uniform Nash \(\varepsilon\)-equilibrium for \(k = \frac{8}{\varepsilon^2}d(\log n + \log m)\).

Usually graphical game models consider games with a large number of players \(n\) of constant degree \(d\). Theorem proves the existence of a relatively simple approximate Nash equilibrium where every player uses a strategy with a support that is logarithmically small on \(n\) and \(m\).

Lipton et al. \(3\) show that in every \(n\)-player game with \(m\) actions for every player there exists a \(k\)-uniform Nash \(\varepsilon\)-equilibrium for \(k = O(n^2 \log m)\).

\(3\)Moreover, the opposite direction is also true. Every \(k\)-uniform \(\varepsilon\)-equilibrium of \(u\) corresponds to a pure Nash \(\varepsilon\)-equilibrium of \(v\). The corresponding pure equilibrium will be the one where population \(i\) plays a pure profile with aggregated behavior \(x_i\), where \(x_i\) is the \(k\)-uniform strategy of player \(i\) in the \(\varepsilon\)-equilibrium in the game \(u\).
Theorem 1 applied to general games shows that in such games there exists a k-uniform Nash ε-equilibrium for $k = O(n \log m)$.

Corollary 1. Every n-player game of with m actions for every player has a k-uniform Nash ε-equilibrium for $k = \frac{8}{\varepsilon^2} (n - 1)(\log n + \log m)$.

As a straightforward corollary of this result, we derive the following improvement to the oblivious algorithm for computing Nash approximate equilibrium in games with n players.

Corollary 2. Let $k = \frac{8}{\varepsilon^2} (n - 1)(\log n + \log m)$. Then the oblivious algorithm\footnote{The term “oblivious algorithm” is from \cite{4}.} that exhaustively searches over the k-uniform strategies finds an ε-equilibrium in $O(m^2 \log m)$ steps.\footnote{Lipton et al. \cite{3} prove a bound of $O(m^{n^2 \log m})$ on the number of steps.}

Proof of Theorem 1. Let $k = \frac{8}{\varepsilon^2} (n - 1)(\log n + \log m)$. We construct the game $v = v(u, k)$ as presented in Section 2.2. We prove that the game v possesses a pure Nash equilibrium, then, by Remark 1 (P2) this concludes the proof.

Moreover, we will prove that every nk-player $1/k$-Lipschitz graphical game of degree dk has a pure Nash ε-equilibrium.

Consider a mixed action profile x that is a (possibly mixed) Nash equilibrium of v. For every player i and every action $b \in A_i$ of player i, we define the set of action profiles

$$E_{i,b} := A_i \times \{ a_{-i} : |v_i(b, a_{-i}) - v_i(b, x_{-i})| \leq \varepsilon/2 \} \subset A.$$

Every action $a^* \in \cap_{i,b} E_{i,b} \cap \text{support}(x)$ is a pure Nash ε-equilibrium according to the following inequality:

$$v_i(d, a^*_{-i}) \leq v_i(d, x_{-i}) + \frac{\varepsilon}{2} \leq v_i(a^*_i, x_{-i}) + \frac{\varepsilon}{2} \leq v_i(a^*_i, a^*_{-i}) + \varepsilon,$$
where the first inequality follows from \(a^* \in E_{i,d} \), the second from \(a^*_i \in \text{support}(x^i) \), and the third from \(a^* \in E_{i,a^*_i} \). Therefore it is enough to prove that the above intersection is not empty.

By proposition 1 we have
\[
x(E_{i,b}^c) \leq 2 \exp\left(\frac{-\varepsilon^2 k}{4d}\right).
\]
Putting \(k = \frac{8}{\varepsilon^2} d(\log n + \log m) \) we get \(x(E_{i,b}^c) \leq 1/(2nkm) \). There are \(nk \) players in \(v \), and \(m \) actions for every player. Therefore there are \(nkm \) events \(E_{i,b} \). Therefore, \(x(\cap E_{i,b}) \geq 1/2 > 0 \), which concludes the proof.

4 Small Probability Games

Following the terminology of [4], a profile of mixed actions \(x \) will be called a \(c \)-small probabilities profile if \(x_i(j) \leq c/m \) for every player \(i \) and every \(j \in A^i \). A game \(u \) will be called a \(c \)-small probability game if there exists a Nash equilibrium \(x \) that is a \(c \)-small probability profile.

Daskalakis and Papadimitriou [4] prove that in small probability two-player games the oblivious random algorithm that samples \(k \)-uniform strategies for \(k = \Theta(log m) \) finds an approximate Nash equilibrium in \(O(c^2 m \log c) \) steps, i.e., in polynomial time in \(m \). Here we generalize this result to general \(n \)-player games.

It will be convenient to think of the \(k \)-uniform strategies as a multiset that contains \(k \) ordered actions. In such a case the set of \(k \)-uniform strategy profiles is of size \(m^{kn} \).

Theorem 2. Let \(u \) be an \(n \)-player \(c \)-small probability games with \(m \) actions for every player, and let \(k = \frac{8}{\varepsilon^2} (n - 1)(\log n + \log m) \). Then, among the \(m^{kn} \) \(k \)-uniform strategy profiles in \(u \), the number of strategy profiles that forms
an Nash ε-equilibrium is at least

$$\frac{m^k n}{2(nm)^{\frac{1}{c^2}((n-1)n \ln c)}}.$$

Corollary 3. Fix n and let $k = \frac{8}{\varepsilon^2}(n-1)(\log n + \log m)$. Then the oblivious algorithm that samples at random k-uniform strategies and checks whether it forms an ε-equilibrium finds such an ε-equilibrium in c-small probability games after $(nm)^{\frac{4}{c^2}((n-1)n \ln c)}$ samples in expectation, i.e., after polynomial time in m.

Proof of Theorem 2. Fix $k = \frac{8}{\varepsilon^2}(n-1)(\log n + \log m)$, and let x be a c-small probability equilibrium of u. Consider the game $v = v(u, k)$ that is defined in Section 2.2. Note that the action profile where every player $i(j)$ plays the mixed action x_i is a Nash equilibrium of the game v. Denote this equilibrium by x_v.

Following the same analysis that was done in the proof of Theorem 1, we define the sets $E_{i,b}$ and we know that $x_v(\cap_i b E_{i,b}) \geq 1/2$. Two different pure action profiles in $\cap_i b E_{i,b} \cap support(x_v)$ correspond to two different k-uniform Nash ε-equilibria in u. Let us show that there are many different action profiles in $\cap_i b E_{i,b} \cap support(x_v)$.

Note that $x_v(a) \leq (c/m)^nk$ because x is a c-small probabilities profile. On the other hand, $x_v(\cap_i b E_{i,b}) \geq 1/2$. Therefore, there must be at least $m^{nk}/2c^{nk}$ different profiles in $\cap_i b E_{i,b} \cap support(x_v)$, which yield that there are at least $m^{nk}/2c^{nk}$ different k-uniform Nash ε-equilibria in u.

It only remains to evaluate the expression c^{nk}:

$$c^{nk} = (c^{n + n m})^{\frac{4}{c^2}((n-1)n)} = (n^{\ln c m \ln c})^{\frac{4}{c^2}((n-1)n)} = (n^m)^{\frac{12}{c^2}((n-1)n \ln c)}.$$
5 Discussion

This note contains a new approach to the problem of an approximate small support Nash equilibrium. Instead of considering the game itself, we can consider a population game where every player is replaced by a population of players and analyze the existence of an approximate pure Nash equilibrium in the population game. I believe that this approach might be useful for analyzing other interesting questions. For example, the question of characterizing the class of two-player games where an approximate Nash equilibrium with constant support exists might have the following interpretation: which two-population games with constant population size has a pure Nash equilibrium? Clearly, characterization of the above class is an important question because for those games there exists a polynomial-time exhaustive search algorithm for computing an approximate Nash equilibrium.

This paper provides an upper bound of $O(n \log m)$ on the size of the support of an approximate Nash equilibrium. It is known that the bound $\log m$ is tight even in two-player games (see Althofer [1]); i.e., there exists a two-player game where no Nash approximate equilibrium with a support smaller than $c \log m$ exists. The question whether the linear dependence on n is also tight remains an open question.

Open problem: Does there exist an n-player n-action game where in every Nash approximate equilibrium at least one of the players plays a mixed action with support of size $f(n)$?

By Althofer [1] the answer to this question for $f(n) = c \log n$ is positive. What about $f(n) = cn^\alpha$ for $\alpha < 1$? What about $f(n) = cn$?
References

[1] Althofer, I. (1994) “On Sparse Approximations to Randomized Strategies and Convex Combinations,” Linear Algebra and its Applications 199, 339-355.

[2] Azrieli, Y. and Shmaya, E. (2013) “Lipschitz Games,” Mathematics of Operations Research, forthcoming.

[3] Lipton, R. J., Markakis, E., and Mehta, A. (2003) “Playing Large Games Using Simple Strategies,” Proceedings of the 4th ACM Conference on Electronic Commerce pp. 36–41.

[4] Daskalakis, C. and Papadimitriou, C. H. (2009) “On Oblivious PTAS’s for Nash Equilibrium,” Proceedings of the 41st Annual ACM Symposium on Theory of Computing, pp. 75–84.

[5] Kearns, M. J., Littman, M. L., and Singh, S. P. (2001) “Graphical Models for Game Theory,” Proceedings of the 17th Conference on Uncertainty in Artificial Intelligence, pp. 253–260.

[6] Ledoux, M. (2001) The Concentration of Measure Phenomenon, American Mathematical Society, Providence, RI.

[7] Rosenthal, R. W. (1973). “A Class of Games Possessing Pure-Strategy Nash Equilibria,” International Journal of Game Theory 2, 65–67.

[8] Shmeidler, D. (1973). “Equilibrium Points of Nonatomic Games,” Journal of Statistical Physics 7, 295–300.