INTRODUCTION

Infective Keratitis (Microbial Keratitis) is infection of the cornea caused by a wide spectrum of microbial agents which is a potentially sight threatening condition [1,2]. According to World health organization (WHO), corneal diseases are among the major causes of vision loss and blindness in the world today, second only to cataract in overall importance. Aim: To isolate and identify the pathogenic organism Method: The study was conducted in 45 patients diagnosed with corneal ulcer attending Ophthalmology OPD, MKCG Medical College and Hospital, Berhampur over a period of 2 months. The material was scraped from the leading edge and base of the ulcer and was inoculated onto Blood agar, Mac conkey agar and Sabouraud Dextrose agar for culture and onto 2 slides for Gram’s stain and 10% KOH wet mount. The susceptibility testing was done by Kirby Bauer’s disc diffusion method. Results: Out of total 45 patients, 35 were males. Majority of the patients belonged to age group of 50-60 years. Pain, Redness, Hypopyon was most commonly seen in Bacterial keratitis. In Fungal Keratitis, Redness (80%), Blurred vision (80%) was seen. Most common occupation was Farmers (66.6%). Trauma was the most common risk factor (23 isolates). Majority were bacterial isolates (29 isolates, 64.4%) followed by fungal (5 isolates, 11.1%). Predominant isolate was Staphylococcus aureus (68.9%). All the gram-positive isolates showed 100% sensitivity to Linezolid and Vancomycin. Conclusion: Knowledge of local prevalence of etiological agents of IK and their susceptibility patterns helps in guiding ophthalmologists to select appropriate antibiotic for empirical therapy.

Keywords: Keratitis; Bacterial keratitis; Staphylococcus aureus; MRSA.
was instilled without preservative. Consent was taken for collection of corneal scrapings.

The material was scraped from the leading edge and base of the ulcer and was inoculated onto Blood agar, Mac Conkey agar and Sabouraud Dextrose agar for culture and onto two slides for Gram’s stain and 10% KOH wet mount [4]. All the inoculated Bacteriological media were incubated at 37°C.

Identification of the organisms was done by following standard protocols. The susceptibility testing was done by Kirby Bauer’s [5] disc diffusion methods as per Clinical and Laboratory Standards Institute guidelines. Cefoxitin (30 microgram disk) was also given to study Methicillin Resistance Staphylococcus aureus by disk diffusion method according to CLSI guidelines [6].

Inoculated Sabouraud Dextrose Agar (SDA) was incubated at 27 °C and were examined daily until three weeks for growth. Fungi were identified by their colony characteristic on Sabouraud dextrose agar and morphological character on Lactophenol cotton blue mount.

RESULTS

Out of a total of 45 patients, 35(77.7%) were males, and 10(22.2%) were females. The most common occupation was Farmers (66.6%) followed by labourers (22.2%), Housewife (11.1%).

Majority of the patients belonged to age group of 50-60 years (33.3%).

Age group (years)	Number of patients (%)
10-20	2 (4.4)
21-30	3 (6.6)
31-40	4 (8.8)
41-50	6 (13.3)
51-60	15 (33.3)
61-70	7 (15.5)
71-80	8 (17.7)

Majority of the patients belonged to age group of 50-60 years (33.3%).

Symptom	Bacterial keratitis (N=29)	Fungal keratitis (N=5)	
Redness	26/29(89.6%)	4/5(80%)	
Pain	27/29(93.1%)	3/5(60%)	
Larcimation	25/29(86.2%)	3/5(60%)	
Photophobia	27/29(93.1%)	2/5(40%)	
Blurred/Diminished vision	20/29(68.9%)	4/5(80%)	
Signs	Lid oedema	20/29(68.9%)	1/5(50%)
Hypopyon		21/29(72.4%)	2/5(40%)
Conjunctival congestion	16/24(66.6%)	3/5(60%)	
Irregular feathery margins	12/24(50%)	4/5(80%)	

Organism isolated	Number of isolates (%)
Bacterial	29 (64.4)
Fungal	5 (11.1)
Sterile	11 (24.4)

Trauma was the most common risk factor (23 isolates, 51.1%) followed by History of Prior surgery (13.3%).

Risk factor	No. of isolates
Trauma	23 (51.1)
H/O antibiotic intake	5 (11.1)
Prior surgery	6 (13.3)
H/O Diabetes mellitus	4 (8.8)
Contact lens wear	3 (6.6)
Pre-existing ocular disease	4 (8.8)

Majority were Bacterial isolates (29 isolates,64.4%) followed by fungal (5 isolates,11.1%).

Organism isolated	Number of isolates (%)
Bacteria	
Staphylococcus aureus	20 (68.9)
Enterococcus spp.	3 (10.3)
Pseudomonas aeruginosa	4 (13.7)
Acinetobacter baumanii	2 (6.8)

Predominant isolate was *Staphylococcus aureus* (68.9%) followed by *Pseudomonas aeruginosa*. (13.7%).

Fungus isolated	Number (%)
Fonsacea pedrosi	1 (20)
Fusarium	2 (40)
Aspergillus fumigatus	1 (20)
Candida albicans	1(20)

Majority of the isolates were filamentous fungi (80%).

Bacterial isolate	Staphylococcus aureus	Enterococcus spp.
Linezolid	20/20 (100%)	3/3 (100%)
Vancomycin (30 µg)	20/20 (100%)	3/3 (100%)
Ciprofloxacin (5 µg)	11/20 (55%)	2/3 (66%)
Cefoxitin (30 µg)	10/20 (50%)	
Gentamycin (10µg)	13/20 (65%)	1/3 (33%)
Moxifloxin (5 µg)	14/20 (70%)	2/3 (66%)

All the gram- positive isolates showed 100% sensitivity to Linezolid and Vancomycin. Out of 20 isolates of *Staphylococcus aureus* 14 isolates were sensitive to Moxifloxin (70%) followed by Gentamycin (13 isolates,65%),Ciprofloxacin(11 isolates,55%).

Bacterial isolate	Acinetobacter baumanii	Pseudomonas aeruginosa
Ciprofloxacin (5 mcg)	1/2 (50%)	1/4 (25%)
Gentamycin (10 mcg)	2/2 (100%)	2/4 (50%)
Piperacillin tazobactam (100/10 mcg)	-	3/4 (75%)
Levofloxacin (5 mcg)	2/2 (100%)	1/4 (25%)
Moxifloxin (5 mcg)	1/2 (50%)	3/4 (75%)
Tobramycin (10 mcg)	1/2 (50%)	2/4 (50%)

Table 1: Age group of the patients (n=45)

Table 2: Clinical features

Table 3: Risk factors (n=45)

Table 4: Types of isolate (n=45)

Table 5: Bacterial isolates (n=29)

Table 6: Fungal isolates (n=5)

Table 7: Sensitivity Pattern of Gram-positive cocci

Table 8: Sensitivity pattern of Gram-negative bacilli
The incidence of gram-positive cocci (79%) coincides with the study done by Tewari et al [18]. Predominance of Staphylococcus aureus was seen which is similar to a study done from Gangetic West Bengal [19]. However, Streptococcus pneumoniae was the predominant species in the study done by Bharathi et al. [20].

P. aeruginosa is the predominant gram-negative bacteria that causes Corneal ulceration. In our study P. aeruginosa accounted for 13.7% of bacterial isolates which matches with the results of Kaliamurthy et al [21] (9.7%). but G. Singh et al [22], Asbell PA et al. [23], Huang E et al [24] isolated higher number of Pseudomonas aeruginosa isolates which may be due to climatic conditions difference.

Fungal growth was seen in 11% of total corneal ulcers. Filamentous fungi are the major fungal pathogens in corneal ulcer in our study. Yeast like fungi have low predominance in fungal corneal ulcers. Fusarium species was the predominant fungal isolate in our study similar to the study done by Sirisha et al [17]. However, Laspina et al [25] found that Acremonium species was the most commonly identified fungi (40%) followed by Fusarium species (15%) which can be attributed to difference in geographic location and environmental factors between India and Paraguay.

Both gram-positive and gram-negative isolates showed tried susceptibilities to selected antibiotics. Antibiotic resistance among ocular pathogens is increasing in parallel with the increase seen among systemic pathogens and likewise may have serious consequences such as development of sight-threatening complications of keratitis, endophthalmitis, orbital cellulitis, or panophthalmitis [23]. Our antibiotic sensitivity results were quite comparable to studies done by Sharma et al [26], where the most common effective drug was Ciprofloxacin (75%) followed by Gentamicin. In the present series, only 70% of organisms Staphylococcus aureus were susceptible to moxifloxacin, the 4th generation fluoroquinolone. Researchers have documented significantly increasing resistance rates to moxifloxacin among Staphylococcus aureus. Thirteen (56.5%) of staphylococcal isolates were MRSA. Majority of isolates of P. aeruginosa were sensitive to Moxifloxacin (75%) which is similar with the reports of Kaliamurthy J. et al [27].

Finding of low resistance levels to these newer fluoroquinolones highlights the need to use them for first line monotherapy in BK. However, Moss et al [28] reported 100% sensitivity of moxifloxacin and Gatifloxacin against both gram-positive and gram-negative bacteria.

CONCLUSION

Understanding the geographical pattern of the pathogenic organisms responsible and the identification of risk factors, helps to create a broad strategy for the diagnosis and management of corneal ulcers and helps in guiding ophthalmologists to select appropriate antibiotic for empirical therapy. Confirmation by microbiological diagnosis is very essential in order to limit the ocular morbidity and prevent complications.

Conflict of interest : Nil
REFERENCES

[1] Andrew A. Dahl F. Keratitis: Read about Symptoms and Infection Treatment [Internet]. MedicineNet. 2014 Available from: http://www.medicinenet.com/keratitis/article.htm

[2] Srinivas Jampala, Epidemiological and microbiological profile of infective keratitis in a tertiary care centre south India. Asian Journal of Biomedical and Pharmaceutical Sciences; 2014;4(37): 44-51

[3] Global initiative for the elimination of avoidable blindness. WHO: Geneva; 1997. (unpublished document) WHO/PBL. 97-61

[4] Lily Therese K, Madhavan HN. Microbiological procedures for diagnosis of ocular infections. Indian Journal of Medical Microbiology. 2006:1-47.

[5] Bailey and Scott. Role of microscopy in the diagnosis of infectious diseases. In: Forbes BA, Sahm DF, Weissfeld AS. Diagnostic Microbiology. 11th Edition, Chapter-9, Mosby. 2002;122-23

[6] Milne LJR. Fungi. In: Colle JG, Fraser AG, Marmion BP, Simmons A. Mackie and McCartney Practical Medical Microbiology, 14th Edition, Chapter 41, Churchill Living stone 1996;95-100

[7] CLSI (2019) Performance standards for antimicrobial susceptibility testing; Twenty nine informational supplement CLSI document M100-S23. Clinical and Laboratory Standards Institute, Wayne, PA

[8] Gopinathan U, Garg P, Fernandes M, Sharma S, Athmanathan S, Rao GN. The epidemiological features and laboratory results of fungal keratitis: a 10-year review at a referral eye care centre in south India. Cornea 2002; 21:555-9

[9] Bashir G, Shah A, Thokar MA, Rashid S, Shakeel S. Bacterial and fungal profile of corneal ulcers: A prospective study. Indian J Pathol Microbiol 2005; 48:273-7

[10] Al-Yousuf N. Microbial keratitis in kingdom of Bahrain: clinical and microbiology study. Middle East Afr J Ophthalmol. 2009;16(1):3-7

[11] Kotigadde S, Ballal M, Jyothirlatha null, Kumar A, Srinivasa R, Shivananda PG. Mycotic keratitis: a study in coastal Karnataka. Indian J Ophthalmol. 1992;40(1):31-3

[12] Srinivasaan M, Gonzales CA, George C. Epidemiology and aetiological diagnosis of corneal ulceration in Madurai, south India. Br J Ophthalmol 1997; 81:965-71

[13] Schaefer F, Bruttin O, Zografos L, Crosier YG. Bacterial keratitis: a prospective clinical and microbiological study. Br J Ophthalmol 2001; 85:842-7

[14] Green M, Apel A, Stapleton F. Risk factors and causative organisms in microbial keratitis. Cornea 2008; 27:22-27.

[15] Ibrahim MM, Vanini R, Ibrahim FM, Fioriti LS, Furlan EMB, Rovinzano LMA, De Castro RS, E Faria E et al., Epidemiologic aspects and clinical outcome of fungal keratitis in southeastern Brazil. E Journal Ophthalmol. 2009; 19(3):355-61

[16] Thomas PA, Leck AK, Myatt M. Characteristic clinical features as an aid to the diagnosis of suppurative keratitis caused by filamentous fungi. Br J Ophthalmol. 2005; 89(2):1554–8

[17] Sirisha T, Jayalakshmi L, Ratnakumari G, Viswamitra P, Microbiological Profile and Their Antimicrobial Susceptibility in Infective Keratitis at Regional Eye Hospital, Visakhapatnam. Scholars J. Appl. Med. Sci., 2015;3(3A): 1083-8

[18] Tewari A, Sood N, Vegad MM, Mehta DC. Epidemiological and microbiological profile of infective keratitis in Ahmedabad. Indian J Ophthalmol 2012; 60:267-72

[19] Basak SK, Basak S, Mohanta A, Bhowmick A. Epidemiological and microbiological diagnosis of suppurative keratitis in ganggetic West Bengal, Eastern India. Indian J Ophthalmol. 2005; 53:17–22

[20] Bharathi MJ, Ramakrishnan R, Vasu S, Meenakshi R, Shivkumar C, Palanirappan R. Epidemiology of bacterial keratitis in a referral centre in south India. Indian J Med Microbiol 2003;21:239-49

[21] Kaliamurthy J, Kalavathy CM, Parmar P, Nelson Jesudasan CA, Thomas PA. Spectrum of Bacterial Keratitis at a Tertiary Eye Care Centre in India. BioMed Research International. 2013:1–8

[22] Singh G, Palanisamy M, Madhavan B, Rajaraman R, Narendran K, Kour A. Multivariate analysis of childhood microbial keratitis in South India. Ann Acad Med Singap. 2006;35(3):185–9

[23] Asbell PA, Colby KA, Deng S. Ocular TRUST: nationwide antimicrobial susceptibility patterns in ocular isolates. American Journal of Ophthalmology. 2008;145(6):951–8

[24] Houang E, Lam D, Fan D, Seal D. Microbial keratitis in Hong Kong: relationship to climate, environment and contact-lens disinfection. Transactions of the Royal Society of Tropical Medicine and Hygiene. 2001;95(4):361–7

[25] Laspina F, Samudio M, Cibils D. Epidemiological characteristics of microbial results on patients with infectious corneal ulcer: a 13 year survey in Paraguay. Graefes Arch Clin Exp Ophthalmol 2004;242(3):204-9

[26] Sharma S, Taneja M, Gupta R. Comparison of clinical and microbiological profiles in smear positive and smear negative cases of suspected microbial keratitis. Ind J Ophthalmol 2007; 55:21-5

[27] Nascimento J, Nelson Jesudasan CA, Geraline P, Parmar P, Kalavathy CM, Thomas PA. Comparison of in vitro susceptibilities of ocular bacterial isolates to gatifloxacin and other topical antibiotics. Ophthalmic Res. 2005;37(3):117–22

[28] Mass JM, Sanislo SR, Ta CN. Antibiotic susceptibility patterns of ocular bacterial flora in patients undergoing intravitreal injections. Ophthalmology. 2010;117(1): 2141–5