ON IRREDUCIBLE REPRESENTATIONS OF A CLASS OF QUANTUM SPHERES

FRANCESCO D’ANDREA AND GIOVANNI LANDI

1. INTRODUCTION

Throughout the paper we shall let $0 < q < 1$ be a deformation parameter and n be a positive integer. We denote by $\mathcal{A}(S_q^{4n-1})$ the complex unital $*$-algebra generated by elements $\{x_i, y_i\}_{i=1}^n$ and their adjoints, subject to the relations in Definition 1 below. This sphere is a comodule algebra for the quantum symplectic group $\mathcal{A}(\text{Sp}_q(n))$, with coaction $\mathcal{A}(S_q^{4n-1}) \to \mathcal{A}(\text{Sp}_q(n)) \otimes \mathcal{A}(S_q^{4n-1})$. In fact this is a quantum homogeneous space and the algebra $\mathcal{A}(S_q^{4n-1})$ sits as a subalgebra of the algebra $\mathcal{A}(\text{Sp}_q(n))$. Representations of $\mathcal{A}(S_q^{4n-1})$ can be obtained as restrictions of representations of $\mathcal{A}(\text{Sp}_q(n))$, see e.g. [3].

Let $\mathcal{A}(\Sigma_q^{2n+1})$ be the quotient of $\mathcal{A}(S_q^{4n-1})$ by the two-sided $*$-ideal generated by the elements $\{x_i\}_{i=1}^n$. As customary, we interpret a quotient algebra as consisting of “functions” on a quantum subspace and think of Σ_q^{2n+1} as a quantum subsphere of S_q^{4n-1}. If we further quotient by the ideal generated by the coordinate x_n, we get a $(2n-1)$-dimensional Vaksman-Soibelman quantum sphere [4], whose representation theory is well known (see e.g. [11]). In this short letter we give an independent derivation of the bounded irreducible $*$-representations of the algebra $\mathcal{A}(\Sigma_q^{2n+1})$ that do not annihilate the generator x_n.

Definition 1. We denote by $\mathcal{A}(S_q^{4n-1})$ the complex unital $*$-algebra generated by elements $\{x_i, y_i\}_{i=1}^n$ and their adjoints, subject to the following relations. Firstly, one has:

$$x_ix_j = q^{-1}x_jx_i \quad (i < j), \quad y_iy_j = q^{-1}y_jy_i \quad (i > j), \quad x_ix_j = q^{-1}y_jx_i \quad (i \neq j),$$

(1)

$$y_ix_i = q^2x_iy_i + (q^2 - 1) \sum_{k=1}^{i-1} q^{i-k} x_k y_k,$$

Next, one has

$$x_i^2 = x_i\{x_i, x_i\} + (1 - q^2) \sum_{k=1}^{i-1} x_k^2 x_k$$

(3)

$$y_i^2 = y_i\{y_i, y_i\} + (1 - q^2) \left\{ q^{2(n+1-i)} x_i^2 + \sum_{k=1}^n x_k^2 x_k + \sum_{k=i+1}^n y_k^2 y_k \right\}$$

(4)

$$x_ix_i^* = q^2 y_i^* x_i$$

(5)

$$x_ix_i^* = q x_i^* x_i \quad (i \neq j)$$

(6)

$$y_iy_i^* = q y_i^* y_i - (q^2 - 1) q^{2n+2-i} x_i^* x_j \quad (i \neq j)$$

(7)

$$x_iy_i^* = q x_i^* y_i \quad (i < j)$$

(8)

Date: May 2022.
2010 Mathematics Subject Classification. Primary: 20G42; Secondary: 58B32; 58B34.
Key words and phrases. Quantum symplectic groups, quantum symplectic spheres, representation theory.
\[
x_i y_j^* = q y_j^* x_i + (q^2 - 1) q^{1-j} y_i^* x_j \quad (i > j)
\]

Finally, one has the sphere relation:

\[
\sum_{i=1}^{n} (x_i^* x_i + y_i^* y_i) = 1.
\]

One passes to the notations of [2] by setting \(y_i = x_{2n+1-i} \) and replacing \(q \) by \(q^{-1} \).

Let \(A(\Sigma^2_q) \) be the quotient of \(A(S^4_q) \) by the two-sided \(*\)-ideal generated by \(\{x_i\}_{i=1}^{n-1} \).

Let us write down explicitly the relations in this quotient algebra. If we rename \(y_{n+1} := x_n \), it follows from [3] that \(y_{n+1} \) is normal. The remaining relations become:

\[
y_i y_j = q^{-1} y_j y_i \quad (i > j \land (i, j) \neq (n + 1, n)) \quad (11)
\]

\[
y_i^* y_j = q^{-1} y_j^* y_i^* \quad (i > j \land (i, j) \neq (n + 1, n)) \quad (12)
\]

\[
y_{n+1} y_n = q^{-2} y_n y_{n+1} \quad y_{n+1}^* y_n = q^{-2} y_n^* y_{n+1} \quad (13)
\]

\[
[y_i, y_i^*] = (1 - q^2) \sum_{k=1}^{n+1} y_k y_k \quad (i \neq n) \quad (14)
\]

\[
[y_n, y_n^*] = (1 - q^4) y_{n+1}^* y_{n+1} \quad (15)
\]

plus the ones obtained by adjunction and the sphere relation:

\[
\sum_{i=1}^{n+1} y_i^* y_i = 1. \quad (16)
\]

Using these relations, it is straightforward to check the following statement.

Proposition 2. For every \(\lambda \in \mathbb{U}(1) \), an irreducible bounded \(*\)-representation \(\pi_\lambda \) of \(A(\Sigma^2_q) \) on \(\ell^2(\mathbb{N}^n) \) is given by the formulas:

\[
\pi_\lambda(y_i)|_k = q^{k_i} \cdots q^{k_{i-1}} \sqrt{1 - q^{2k_i}} | k - e_i \rangle \quad (1 \leq i \leq n - 1)
\]

\[
\pi_\lambda(y_n)|_k = q^{k_1} \cdots q^{k_{n-1}} \sqrt{1 - q^{4k_n}} | k - e_n \rangle,
\]

\[
\pi_\lambda(y_{n+1})|_k = \lambda q^{k_1 + k_{n-1}} | k \rangle,
\]

where \(k = (k_1, \ldots, k_n) \in \mathbb{N}^n \), \(|k\rangle := k_1 + \ldots + k_n \), \(\{ |k\rangle \}_{k \in \mathbb{N}^n} \) is the canonical orthonormal basis of \(\ell^2(\mathbb{N}^n) \) and \(e_i \) the \(i \)-th row of the identity matrix of order \(n \).

Our aim now is to prove the next proposition.

Proposition 3. Any irreducible bounded \(*\)-representation of \(A(\Sigma^2_q) \) that does not annihilate \(x_n \) is unitarily equivalent to one of the representations in Proposition 2.

We need a few preliminary lemmas.

Lemma 4. For all \(m \geq 1 \) and all \(1 \leq i < n \):

\[
y_i y_i^m = q^{2m} y_i^m + (1 - q^{2m}) y_i^m - 1 \left(\sum_{k=1}^{n} y_k^* y_k \right)
\]

\[
y_n (y_n^*)^m = q^{4m} y_n^m + (1 - q^{4m}) y_n^m - 1 \left(\sum_{k=n}^{n} y_k^* y_k \right)
\]
Proof. When \(m = 1 \), these follow from (14) and (15), and can be rewritten using (16) as:

\[
y_i y_i^* = q^2 y_i^* y_i + (1 - q^2) \left(1 - \sum_{k < i} y_k^* y_k \right) \quad \text{if } i < n
\]

\[
y_n y_n^* = q^4 y_n^* y_n + (1 - q^4) \left(1 - \sum_{k < n} y_k^* y_k \right)
\]

The general result easily follows using the latter relations, induction on \(m \) and the fact that \(y_i^* y_k \) commutes with \(y_i \) for all \(k < i \leq n \).

\[\Box\]

Lemma 5. Let \(A \geq 0 \) and \(B \) be bounded operators on a Hilbert space \(\mathcal{H} \) satisfying

\[
[B, B^*] = (1 - \mu)A \quad A + B^*B = 1
\]

with \(0 < \mu < 1 \). Then, \(\ker(B) = \{0\} \) if and only if \(A = 0 \).

Proof. If \(A = 0 \), from (17) it follows that \(B \) is unitary, so that \(\ker(B) = \{0\} \). We have to prove the opposite implication. From (17) we deduce that \(\|A\| \leq 1 \) and:

\[
BB^* = B^*B + (1 - \mu)A = 1 - \mu A.
\]

Since \(\|\mu A\| < 1 \), the operator \(BB^* \) has bounded inverse. Therefore \(U := (BB^*)^{-1/2}B \) is well defined. Notice that \(UU^* = 1 \) and \(\ker(B) = \ker(U) \). From (18), it follows that

\[
\mu A = 1 - BB^* = U(1 - B^*B)U^* = UAU^*.
\]

Assume that \(\ker(U) = \{0\} \). The identity \(U(1 - U^*U) = 0 \) implies \(U(1 - U^*U)v = 0 \) for all \(v \in \mathcal{H} \). Therefore \(U^*U = 1 \) and \(U \) is a unitary operator.

Let \(\lambda \in \mathbb{C} \) and suppose \(A - \mu^{-1}\lambda \) has bounded inverse. Then

\[
A - \lambda = \mu U^*(A - \mu^{-1}\lambda)U
\]

has bounded inverse as well. Thus, \(\lambda \in \sigma(A) \) implies that \(\mu^{-1}\lambda \in \sigma(A) \) and hence, by induction, that \(\mu^{-k}\lambda \in \sigma(A) \) for all \(k \geq 0 \). Since \(A \) is bounded and the sequence \(\{\mu^{-k}\lambda\}_{k \geq 0} \) is divergent when \(\lambda \neq 0 \), it follows that \(\sigma(A) = \{0\} \). Hence \(A = 0 \).

\[\Box\]

Lemma 6. Let \(\pi \) be an irreducible bounded \(*\)-representation of \(A(\Sigma q^{2n+1}) \) with \(\pi(y_{n+1}) \neq 0 \). Then:

(i) \(\pi(y_{n+1}) \) is injective;

(ii) there exists a vector \(\xi \neq 0 \) such that \(\pi(y_i)\xi = 0 \) for all \(i \neq n + 1 \).

Proof. (i) If \(a \) is any generator other than \(y_{n+1} \), since \(y_{n+1}a \) is a scalar multiple of \(ay_{n+1} \), the operator \(\pi(a) \) maps the kernel of \(\pi(y_{n+1}) \) to itself. Hence, \(\ker\pi(y_{n+1}) \) carries a subrepresentation of the irreducible representation \(\pi \), so that either \(\ker\pi(y_{n+1}) = \{0\} \) or \(\ker\pi(y_{n+1}) = \mathcal{H} \). The latter implies \(\pi(y_{n+1}) = 0 \), contradicting the hypothesis, so that the former must hold.

(ii) Given \(1 \leq k \leq n \), let \(\mathcal{H}_k := \cap_{i=1}^k \ker\pi(y_i) \). We prove by induction on \(k \) that \(\mathcal{H}_k \neq \{0\} \). When \(k = 1 \), this follows from Lemma 5 applied to the operators \(A = \sum_{i=1}^{n+1} \pi(y_i^*y_i) \) and \(B = \pi(y_1) \). Since \(\pi(y_{n+1}) \neq 0 \), it follows that \(A \neq 0 \), and hence \(\ker(B) \neq \{0\} \).

Now assume that \(\mathcal{H}_{k-1} \neq \{0\} \). Let \(A = \sum_{i=k}^{n+1} \pi(y_i^*y_i) \) and \(B = \pi(y_k) \), and note that the operators \(\pi(y_{n+1}), A, B, B^* \) map \(\mathcal{H}_{k-1} \) to itself, since \(y_i y_j \) is a scalar multiple of \(y_j y_k \), and \(y_i y_i^* \) is a scalar multiple of \(y_j^* y_i \) for all \(i \neq j \). It follows from point (i) that \(\pi(y_{n+1})|_{\mathcal{H}_{k-1}} \neq 0 \), so that \(A \) is non-zero on \(\mathcal{H}_{k-1} \). The operator \(A + B^*B \) restricts to the identity on \(\mathcal{H}_{k-1} \) and
\[B, B^* = (1 - \mu)A \] with \(\mu = q^2 \) if \(k < n \) and \(\mu = q^4 \) if \(k = n \). From Lemma 6(ii) applied to the restrictions of \(A, B, B^* \) to \(\mathcal{H}_{k-1} \) it follows that \(\ker(B) \cap \mathcal{H}_{k-1} = \mathcal{H}_k \neq \{0\} \). \[\square \]

Proof of Prop. 3 Let \(\pi \) be a bounded irreducible \(\sigma \)-representation of \(A(\Sigma_q^{2n+1}) \) on a Hilbert space \(\mathcal{H} \) such that \(\pi(y_{n+1}) \neq 0 \). With an abuse of notation, we suppress the map \(\pi \). We know from Lemma 5(ii) that \(V := \bigcap_{i=1}^n \ker(y_i) \neq \{0\} \). From the commutation relations we deduce that \(y_{n+1} V \subset V \), so that \(V \) carries a bounded \(\sigma \)-representation of the commutative \(C^* \)-algebra \(C^*(y_{n+1}, y_{n+1}^*) \) generated by \(y_{n+1} \) and \(y_{n+1}^* \).

Given \(k \in \mathbb{N}^n \) and \(\xi \in \mathcal{V} \) a unit vector, define:

\[
|k\rangle_{\xi} := \frac{1}{\sqrt{(q^2;q^2)_{k_1} \cdots (q^2;q^2)_{k_{n-1}} (q^4;q^4)_{k_n}}} (y_1^{k_1} \cdots (y_n^{k_n})^{k_n} \xi),
\]

where the \(q \)-shifted factorial is given by

\[
(a;b)_\ell := \prod_{i=0}^{\ell-1} (1 - ab^i).
\]

Given \(k \in \mathbb{Z}^n \), set \(|k\rangle_{\xi} := 0 \) if one of the components of \(k \) is negative. From the commutation relations we deduce:

\[
y_i^{\dagger} |k\rangle_{\xi} = q^{k_1 + \ldots + k_{i-1} - 1} \sqrt{1 - q^{2k_i + 2}} |k + e_i\rangle_{\xi}, \quad (i < n), \tag{19a}
\]

\[
y_n^{\dagger} |k\rangle_{\xi} = q^{k_1 + \ldots + k_{n-1} - 1} \sqrt{1 - q^{4k_n + 4}} |k + e_n\rangle_{\xi}, \tag{19b}
\]

\[
y_{n+1} |k\rangle_{\xi} = q^{k_1 + k_n} |k\rangle_{y_{n+1}\xi}.
\]

If \(W \subset V \) carries a subrepresentation of \(C^*(y_{n+1}, y_{n+1}^*) \), the Hilbert subspace of \(\mathcal{H} \) spanned by \(|k\rangle_{\xi} \) for \(\xi \in W \) and \(k \in \mathbb{N}^n \) carries a subrepresentation of \(A(\Sigma_q^{2n+1}) \). Since \(\mathcal{H} \) is irreducible, \(V \) carries an irreducible representation of \(C^*(y_{n+1}, y_{n+1}^*) \). This means that \(V \) is one-dimensional.

Let us fix a unit vector \(\xi \in \mathcal{V} \). Observe that the vectors

\[
\{ |k\rangle_{\xi} \}_{k \in \mathbb{N}^n}
\]

span \(\mathcal{H} \). Moreover \(y_{n+1}\xi = \lambda\xi \) for some \(\lambda \in \mathbb{R} \), and

\[
y_{n+1} |k\rangle_{\xi} = \lambda q^{k_1 + k_n} |k\rangle_{\xi}.
\]

From now on, instead of \(|k\rangle_{\xi} \) we shall simply write \(|k\rangle \). By (16), it follows that

\[
1 = \langle 0 | 0 \rangle = \langle 0 | \sum_{i=1}^{n+1} y_i y_i^* | 0 \rangle = |\lambda|^2,
\]

hence \(\lambda \in U(1) \). It remains to prove that the set (20) is orthonormal, so that by adjunction from (19) we get the formulas in Prop. 2.

Let \(W_i \) be the span of vectors \(|k\rangle_{\xi} \) with \(k_1 = \ldots = k_i = 0 \). It follows from the commutation relations that \(y_{k_i} \) is zero on \(W_i \) for all \(k \leq i \).

Applying the identities in Lemma 4 to a vector \(|k\rangle \in V_i \) we find that

\[
y_i (y_i^{\dagger})^m |0, \ldots, 0, k_{i+1}, \ldots, k_n\rangle = (1 - q^{2m}) (y_i^{\dagger})^{m-1} |0, \ldots, 0, k_{i+1}, \ldots, k_n\rangle
\]

\[
y_n (y_n^{\dagger})^m |0\rangle = (1 - q^{4m}) (y_n^{\dagger})^{m-1} |0\rangle
\]

for all \(m \geq 1 \) and all \(1 \leq i < n \). Using (19) we find that

\[
y_i |0, \ldots, 0, m-1, k_{i+1}, \ldots, k_n\rangle = \sqrt{1 - q^{2m}} |0, \ldots, 0, m-1, k_{i+1}, \ldots, k_n\rangle
\]
\[y_n |0, \ldots, 0, m - 1\rangle = \sqrt{1 - q^{4m}} |0, \ldots, 0, m - 1\rangle \]

Multiplying from the left by \(\langle j - e_i | \) and using (19) again, we find that
\[\sqrt{1 - q^{2j}} \langle j | k \rangle = \sqrt{1 - q^{2k}} \langle j - e_i, k - e_i \rangle, \]
\[\sqrt{1 - q^{4j}} \langle j_n e_n | k_n e_n \rangle = \sqrt{1 - q^{4k}} \langle (j_n - 1) e_n, (k_n - 1) e_n \rangle, \]
where the former is valid whenever \(j_1, \ldots, j_i = k_1 = \ldots = k_i = 0 \). From these relations, an obvious induction proves that the set (20) is orthonormal provided every vector \(|k\rangle \) with \(k \neq 0 \) is orthogonal to \(|0\rangle \). But this is obvious. If \(k_i \neq 0 \) for some \(i \), then
\[\langle k | 0 \rangle \propto \langle k - e_i | y_i | 0 \rangle = 0 \]
since \(y_i \) annihilates \(\xi \).

\section*{References}

[1] E. Hawkins and G. Landi, Fredholm Modules for Quantum Euclidean Spheres, J. Geom. Phys. 49 (2004) 272–293.
[2] G. Landi, C. Pagani and C. Reina, A Hopf bundle over a quantum four-sphere from the symplectic group, Commun. Math. Phys. 263 (2006) 65–88.
[3] B. Saurabh, Topological invariance of quantum quaternion spheres, Pacific J. Math. 288 (2017), 435–452.
[4] L.L. Vaksman and Y.S. Soibelman, The algebra of functions on quantum SU(\(n + 1 \)) group and odd-dimensional quantum spheres, Leningrad Math. J. 2 (1991) 1023–1042.

(F. D’Andrea) Università di Napoli “Federico II”
and I.N.F.N. Sezione di Napoli, Complesso MSA, Via Cintia, 80126 Napoli, Italy
Email address: francesco.dandrea@unina.it

(G. Landi) Università di Trieste, Via A. Valerio, 12/1, 34127 Trieste, Italy
Institute for Geometry and Physics (IGAP) Trieste, Italy
and INFN, Trieste, Italy
Email address: landi@units.it