September 22, 2018

A GENERALIZED ENUMERATION OF LABELED TREES
AND REVERSE PRÜFER ALGORITHM

SEUNGHYUN SEO AND HEESUNG SHIN

Abstract. A leader of a tree T on $[n]$ is a vertex which has no smaller
descendants in T. Gessel and Seo showed
\[\sum_{T \in \mathcal{T}_n} u^{(\text{# of leaders in } T)} c^{(\text{degree of 1 in } T)} = u P_{n-1}(1, u, cu),\]
which is a generalization of Cayley formula, where \mathcal{T}_n is the set of trees on $[n]$ and
\[P_n(a, b, c) = c^{n-1} \prod_{i=1}^{n-1} (ia + (n-i)b + c).\]
Using a variation of Prüfer code which is called a RP-code, we give a
simple bijective proof of Gessel and Seo’s formula.

1. Introduction

A tree on V is an acyclic connected graph with vertex set V. In 1889, Cayley \footnote{1} showed that $|\mathcal{T}_n| = n^{n-2}$ ($n \geq 1$), called Cayley formula, where \mathcal{T}_n is the set of trees on $[n] = \{1, 2, \ldots, n\}$. Later, in 1918, Prüfer \footnote{2} made the
Prüfer code which is a bijection between \mathcal{T}_n and $[n]^{n-2}$. Assume that edges are directed toward the vertex 1 and $\text{indeg}_T(i)$ is the indegree of i in T. By Prüfer code, we have
\[\sum_{T \in \mathcal{T}_n} \prod_{i \in [n]} x_i^{\text{indeg}_T(i)} = x_1(x_1 + \cdots + x_n)^{n-2},\]
which is a generalization of Cayley formula.

A tree is called a rooted tree if one vertex has been designated the root. A vertex v in a rooted tree is a descendant of u if u lies on the unique path from the root to v. By convention, we consider that (unrooted) trees are rooted at the smallest vertex. A vertex v of a rooted tree is called a leader if v is minimal among its descendants. Note that ‘leader’ is the new terminology of ‘proper vertex’ which was introduced by Seo \footnote{3}.

Recently, Gessel and Seo \footnote{5} showed that
\[\sum_{T \in \mathcal{T}_n} u^{\text{lead}(T)} c^{\text{deg}_T(1)} = u P_{n-1}(1, u, cu),\] (1)
already selected. newly selected.
\[\sigma_i \text{ parent of newly selected vertex.} \]

Figure 1. Rooted Tree \(T \) to RP-code \(\varphi(T) = (3, 3, 6, 1, 6) \)

where \(\text{lead}(T) \) is the number of leaders in \(T \) and the homogeneous polynomial \(P_n(a, b, c) \) is defined by

\[P_n(a, b, c) = c \prod_{i=1}^{n-1} (ia + (n - i)b + c). \]

To prove the equation, they used generating functions methods.

In this paper, we prove the equation by giving an algorithm which produces a code with length \(n - 1 \) from a tree with \(n \) vertices.

2. Reverse Prüfer Algorithm

The reverse Prüfer code (RP-code) \(\varphi(T) = (\sigma_1, \ldots, \sigma_{n-1}) \) of a rooted tree \(T \) on \([n]\) is generated by successively selecting the unselected vertex of \(T \) having the smallest descendants including itself. If several vertices have the same smallest descendant, we choose the vertex which is the closest to the root. Because the root is selected above all, we assume that the root was already selected. To obtain the code from \(T \), we select such a vertex in each step, recording its parent \(\sigma_i \), from the tree, until all the vertices are selected. We call this process a reverse Prüfer algorithm (RP-algorithm).

The inverse of \(\varphi \) is described as follows: Let \(\sigma = (\sigma_1, \ldots, \sigma_{n-1}) \) be a sequence of positive integers with \(\sigma_i \in [n] \) for all \(i \). We can find the tree \(T \) whose code is \(\sigma \) as building up labeled trees \(T_i \) with \(i + 1 \) vertices, except one leaf is unlabeled, by reading the code \(\sigma \) forward. Before reading the code, we consider the rooted tree \(T_0 \) with only one vertex. This root of \(T_0 \) is
unlabeled. Assume that T_{i-1} is the labeled tree which corresponds to initial $i-1$ code $(\sigma_1, \ldots, \sigma_{i-1})$ for $i = 1, \ldots, n-1$. We make T_i as follows: We label σ_i to the unlabeled leaf of T_{i-1}. But if σ_i is belong to labels of T_{i-1}, use the minimum of unused labels instead of σ_i as new label number. And then add an unlabeled vertex and an edge between σ_i and the just added vertex.

After reading the code σ, we obtain T_{n-1} with n vertices. The unlabeled vertex of T_{n-1} is labeled by the unused label among $[n]$. Then we get the tree T. Note that the map φ^{-1} was already mentioned in [4, pp. 1–2].

The first coordinate of the RP-code of a rooted tree T is always the label of the root of T. In particular, the RP-code of a tree on $[n]$ begins with 1. Cayley formula is reconfirmed by the number of RP-codes.

Figure 3 shows the tree corresponding to the RP-code $(1, 8, 6, 1, 8, 3, 10, 3, 6, 12, 6)$.

3. Statistics of Leader in Trees

Now we trace leaders in T during the RP-algorithm. Let $\sigma = (\sigma_1, \ldots, \sigma_n)$ be a RP-code. For each $i = 2, \ldots, n$, let T_{i-1} is the tree obtained from subcode $\sigma_1, \ldots, \sigma_{i-1}$. Let l be a minimal element in $[n]$ which does not appear in T_{i-1}. To construct T_i from T_{i-1} and σ_i, we should consider the following two cases.

(1) Suppose that σ_i appears in T_{i-1}. Then the unlabeled vertex v in T_{i-1} is labeled by l in T_i. Since the new label l is minimal among unused labels in T_{i-1}, the vertex v is a leader in T.

(2) Suppose that σ_i does not appear in T_{i-1}. Then the unlabeled vertex v in T_{i-1} is labeled by σ_i in T_i.
Figure 3. Example of the tree with root 1

(a) If $\sigma_i = l$, then the vertex v is leader in T like case (1).
(b) If $\sigma_i \neq l$, then the vertex v has a descendent labeled by l. Thus, the vertex v is not leader in T.

So there are exactly i choices of σ_i, case (1) and case (2a), such that the newly labeled vertex v is a leader in T. Because the number of r's ($=\sigma_1$) in a RP-code equals to the degree of the root r in T, $\deg_T(1)$ is the number of 1 in the RP-code of a tree T.

Thus we have the following formula:

$$\sum_{T \in \mathcal{T}_n} u^{\text{lead}(T)} e^{\deg_T(1)} = cu \times ((n-2) + u + cu) \times ((n-3) + 2u + cu) \times \cdots \times (1 + (n-2)u + cu) \times u^{n-1}$$

This completes the bijective proof of equation (1).
4. Remarks

(1) If \((a_1, \ldots, a_{n-2}, 1)\) is a Prüfer code of \(T\) and \(\varphi(T) = (1, \sigma_2, \ldots, \sigma_{n-1})\) is a RP-code of \(T\), then \(a_i = \sigma_{n-i}\) for each \(i\). This justifies the terminology ‘reverse’ Prüfer code.

(2) With a slight variation of the RP-algorithm, we also find a combinatorial proof of the following formulas for \(k\)-ary trees and ordered trees.

\[
\sum_{U} u^{\text{lead}(U)} = P_n(k, (k-1)u, u)
\]
\[
\sum_{V} u^{\text{lead}(V)} = P_n(1, 2u, u)
\]

where \(U\) runs all \(k\)-ary trees and \(V\) runs all ordered trees on \([n]\).

References

1. A. Cayley, A theorem on trees, Quart. J. Math. 23, 376–378, 1889.
2. H. Prüfer, Neuer Beweis eines Satzes über Permutationen, Archiv der Math. (3) 27, 142–144, 1918.
3. S. Seo, A combinatorial proof of Postnikov’s identity and a generalized enumeration of labeled trees, Electron. J. Combin. 11 no. 2, #N3, 2004.
4. M. Cho, D. Kim, S. Seo and H. Shin, Colored Prüfer Codes for \(k\)-Edge Colored Trees, Electron. J. Combin. 11 no. 1, #N10, 2004.
5. Ira M. Gessel and S. Seo, A refinement of Cayley’s formula for trees, arXiv: math.CO/0507497, 2005.

Department of Mathematics, Seoul National University, Seoul, 151-742, Republic of Korea
E-mail address: shseo@snu.ac.kr

Department of Mathematics, Korea Advanced Institute of Science and Technology, Daejeon, 305-701, Republic of Korea
E-mail address: H.Shin@kaist.ac.kr