1. Introduction

In this paper we consider the connection between the Szegö kernel of certain unbounded domains of \(\mathbb{C}^2 \) and the Bergman kernels of weighted spaces of entire functions of one complex variable.

Let \(p : \mathbb{C} \longrightarrow \mathbb{R}_+ \) denote a \(C^1 \)-function and define \(\Omega_p \subseteq \mathbb{C}^2 \) by

\[
\Omega_p = \{(z_1, z_2) \in \mathbb{C}^2 : \Re(z_2) > p(z_1)\}.
\]

Weakly pseudoconvex domains of this kind were investigated by Nagel, Rosay, Stein and Wainger [10,11], where estimates for the Szegö and the Bergman kernel of the domain were made in terms of the nonisotropic pseudometric defined in [12,13]. For the case where \(p(z) = |z|^k, k \in \mathbb{N} \), Greiner and Stein [5] found an explicit expression for the Szegö kernel of \(\Omega_p \), in which one can recognize the form of the pseudometric used for the nonisotropic estimates (see [2,8]). If \(p \) is a subharmonic function, which depends only on the real or only on the imaginary part of \(z \), then one can find analogous expressions and estimates in [9].

Let \(H^2(\partial \Omega_p) \) denote the space of all functions \(f \in L^2(\partial \Omega_p) \), which are holomorphic in \(\Omega_p \) and such that

\[
\sup_{y > 0} \int_{\mathbb{C}} \int_{\mathbb{R}} |f(z, t + iy) + ip(z) + iy)|^2 d\lambda(z) dt < \infty,
\]

where \(d\lambda \) denotes the Lebesgue measure on \(\mathbb{C} \). We identify \(\partial \Omega_p \) with \(\mathbb{C} \times \mathbb{R} \), and denote by \(S((z, t), (w, s)) \), \(z, w \in \mathbb{C} \), \(s, t \in \mathbb{R} \), the Szegö kernel of \(H^2(\partial \Omega_p) \).

We use the tangential Cauchy–Riemann operator on \(\partial \Omega_p \) to get an expression for the Bergman kernel \(K_\tau(z, w) \) in the space \(H_\tau \) of all entire functions \(f \) such that

\[
\int |f(z)|^2 \exp(-2\tau p(z)) d\lambda(z) < \infty,
\]
where $\tau > 0$; in this connection we suppose that the weight functions p have a reasonable growth behavior so that the corresponding spaces of entire functions are nontrivial, for example if $p(z)$ is a polynomial in $\Re z$ and $\Im z$.

On the other hand, if one integrates the Bergman kernels with respect to the parameter τ, one obtains a formula for the Szegö kernel of $H^2(\partial \Omega_p)$.

We apply the main result for special functions p to get generalizations of results in [5,8,9]. In [7] one can find another approach to get explicit expressions for the Szegö kernel. Finally the Bergman kernels for the spaces H_{τ}, where p is a function of $\Re z$, are investigated, especially their asymptotic behavior, which leads to sharp estimates and applications to problems considered in [7] concerning a duality problem in functional analysis.

Proposition 1. Let $\tau > 0$. Then

\[(1) \quad K_{\tau}(z,w) = e^{\tau(p(z)+p(w))} \int_{\Re} \int_{\Re} S((z,t),(w,s)) \frac{e^{i\tau(s-t)}}{p(w) - is} ds dt,\]

where the integrals are to be understood in the sense of the Plancherel theorem, i.e. in general one has only L^2–convergence of the integrals.

The fact that the above formula (1) is not symmetric in z and w is due to the L^2–convergence of the integrals.

Proposition 2.

\[(2) \quad S((z,t),(w,s)) = \int_0^\infty K_{\tau}(z,w)e^{-\tau(p(z)+p(w))}e^{-i\tau(s-t)} d\tau.\]

2. **Proofs of Proposition 1. and 2.**

For the proof we consider the tangential Cauchy–Riemann operator

\[L = \frac{\partial}{\partial z_1} - 2i \frac{\partial p}{\partial z_1}(z_1) \frac{\partial}{\partial z_2}\]

on $\partial \Omega_p$. Then (see [8]) L is a global tangential antiholomorphic vector field, and

\[H^2(\partial \Omega_p) = \{ f \in L^2(\partial \Omega_p) : L(f) = 0 \text{ as distribution} \}.\]

After the usual identification of $\partial \Omega_p$ with $\mathbb{C} \times \Re$ the tangential Cauchy–Riemann operator has the form

\[L = \frac{\partial}{\partial z} - \frac{\partial p}{\partial z} \frac{\partial}{\partial t}.\]

For a function $f \in L^2(d\lambda(z)dt)$ let \mathcal{F} denote the Fourier transform with respect to the variable $t \in \Re$:

\[(\mathcal{F}f)(z,\tau) = \int f(z,t)e^{-it\tau} dt.\]
Then
\[\mathcal{F}L\mathcal{F}^{-1} = \frac{\partial}{\partial z} + \tau \frac{\partial p}{\partial z}. \]

\(\mathcal{F} \) and \(\mathcal{F}^{-1} \) are to be taken in the sense of the Plancherel theorem.

Now let \(M \) denote the multiplication operator
\[M : L^2(d\lambda(z)dt) \rightarrow L^2(e^{-2\tau p(z)}d\lambda(z)dt) \]
defined by
\[(Mf)(z, \tau) = e^{\tau p(z)}f(z, \tau), \]
for \(f \in L^2(d\lambda(z)dt) \). Then one has
\[(3) \quad \mathcal{F}L\mathcal{F}^{-1} = M^{-1} \frac{\partial}{\partial z} M. \]

Let \(\mathcal{P} \) denote the orthogonal projection
\[\mathcal{P} : L^2(d\lambda(z)dt) \rightarrow \text{Ker}L, \]
and let \(P \) be the orthogonal projection
\[P : L^2(e^{-2\tau p(z)}d\lambda(z)dt) \rightarrow \text{Ker} \frac{\partial}{\partial z}. \]

For fixed \(\tau > 0 \), let \(P_\tau \) be the orthogonal projection
\[P_\tau : L^2(e^{-2\tau p(z)}d\lambda(z)) \rightarrow \text{Ker} \frac{\partial}{\partial z}. \]

Now we claim that
\[(Pf)(z, \tau) = \begin{cases} (P_\tau f_\tau)(z), & \tau > 0 \\ 0, & \tau \leq 0 \end{cases}, \]
where \(f_\tau(z) = f(z, \tau) \), for \(f \in L^2(e^{-2\tau p(z)}d\lambda(z)dt) \). In order to see this it is enough to observe that a function \(f \in L^2(e^{-2\tau p(z)}d\lambda(z)dt) \) holomorphic with respect to the variable \(z \) has the property \(f(z, t) = 0 \), for almost all \(t \leq 0 \), which is a consequence of our assumption on the weight function \(p \).

The next step is to show that
\[(4) \quad P = M\mathcal{F}\mathcal{P}\mathcal{F}^{-1}M^{-1}. \]

Denote the right side of (4) by \(Q \). We have to show that \(Q^2 = Q \) and that
\[\text{Ker} \frac{\partial}{\partial z} \subseteq L^2(e^{-2\tau p(z)}d\lambda(z)dt) \]
coincides with the image of \(Q \). The first assertion follows directly from the definition of \(Q \). For the second assertion take a function \(f \in L^2(e^{-2\tau p(z)}d\lambda(z)dt) \) and use (3) to prove that
\[\frac{\partial}{\partial z} Qf = M\mathcal{F}\mathcal{P}\mathcal{F}^{-1}M^{-1}f. \]
the last expression is zero, since $\mathcal{P}_f^{-1}M^{-1}f \in \text{Ker} L$, which implies that the image of Q is contained in $\text{Ker} \frac{\partial}{\partial z}$. To prove the opposite inclusion set $g = Qf$ for $f \in \text{Ker} \frac{\partial}{\partial z}$. We are finish, if we can show that $Qg = f$. From (3) we get now

$$L\mathcal{F}^{-1}M^{-1}f = \mathcal{F}^{-1}M^{-1}\frac{\partial}{\partial z}f,$$

which is zero by the assumption on f, hence $\mathcal{F}^{-1}M^{-1}f \in \text{Ker} L$ and therefore

$$\mathcal{P}\mathcal{F}^{-1}M^{-1}f = \mathcal{F}^{-1}M^{-1}f.$$

The last equality yields

$$Qg = M\mathcal{F}\mathcal{P}\mathcal{F}^{-1}M^{-1}f = M\mathcal{F}\mathcal{F}^{-1}M^{-1}f = f,$$

which proves formula (4).

For a fixed $\tau > 0$ take a function $F \in L^2(e^{-2\tau p(z)}d\lambda(z))$ and define

$$f(z,t) = \begin{cases} \chi(z)F(z), & t \geq \tau \\ 0, & t < \tau \end{cases},$$

where χ is a nonnegative, smooth function with the properties $(\chi(z))^2 = p(z)$, for $|z| \leq 1$ and $\chi(z) = 1$, for $|z| \geq 2$.

Since

$$\int_{C} \int_{\mathbb{R}} |f(z,t)|^2e^{-2tp(z)} dtd\lambda(z) = \int_{C} \int_{\tau}^{\infty} |\chi(z)F(z)|^2e^{-2tp(z)} dtd\lambda(z)$$

$$= \int_{C} \frac{1}{2p(z)}|\chi(z)F(z)|^2e^{-2\tau p(z)} d\lambda(z) \leq \text{Const.} \int_{C} |F(z)|^2e^{-2\tau p(z)} d\lambda(z),$$

it follows that

$$f \in L^2(e^{-2\tau p(z)}d\lambda(z)dt).$$

Now we use formula (4) to obtain (1): application of the operators M^{-1} and \mathcal{F}^{-1} to the function f from above yields

$$\mathcal{F}^{-1}M^{-1}f(w,t) = \int_{\tau}^{\infty} \chi(w)F(w)e^{t(i\sigma - p(w))} dt$$

$$= \frac{\chi(w)F(w)e^{-\tau(p(w)-i\sigma)}}{p(w) - i\sigma},$$

which is a function in $L^2(d\lambda(w)d\sigma)$, by the properties of the function χ.

The next operator in (4) is now \mathcal{P}, which is the Szegö projection, hence an application of this operator can be expressed by integration over the Szegö kernel $S((z,t),(w,\sigma))$. Finally we carry out the action of the operators \mathcal{F} and M and recall the properties of the operator P on the left side of (4), which imply that this operator is for a fixed τ the Bergman projection in a weighted space of entire functions in one variable. The function χ appears on both sides and hence cancels out. In this way we get formula (1). In order to prove (2) one writes (4) in the form

$$\mathcal{P} = \mathcal{F}^{-1}M^{-1}PMF,$$

and applies an analogous procedure as above.
3. Examples

(a) Let $\alpha \in \mathbb{R}$, $\alpha > 0$. We consider the function $p(z) = |z|^\alpha$ and get from [6] the following expression for the Bergman kernel $K_\tau(z, w)$ in the space H_τ:

$$K_\tau(z, w) = \frac{2\pi}{\alpha} \sum_{k=0}^{\infty} (2\tau)^{2(k+1)/\alpha} \left(\Gamma\left(\frac{2(k+1)}{\alpha}\right)\right)^{-1} z^k w^k.$$

Now we apply formula (2) to this sum and get

$$S((z, t), (w, s)) = \frac{2\pi}{\alpha} \sum_{k=0}^{\infty} \frac{(2\tau)^{2(k+1)/\alpha}}{\Gamma\left(\frac{2(k+1)}{\alpha}\right)} z^k w^k \int_0^{\infty} 2^{2(k+1)/\alpha} e^{-\tau(|z|^\alpha+|w|^\alpha)} e^{-i\tau(s-t)} d\tau,$$

evaluation of the last integral gives

$$\Gamma\left(\frac{2(k+1)}{\alpha} + 1\right) \left[|z|^\alpha + |w|^\alpha + i(s-t)\right]^{-2(k+1)/\alpha-1},$$

by the functional equation of the Γ-function we have

$$\Gamma\left(\frac{2(k+1)}{\alpha} + 1\right) = \frac{2(k+1)}{\alpha} \Gamma\left(\frac{2(k+1)}{\alpha}\right),$$

hence

$$S((z, t), (w, s)) = \frac{2\pi}{\alpha} \sum_{k=0}^{\infty} \frac{2(k+1)}{\alpha} 2^{2(k+1)/\alpha} z^k w^k \left[|z|^\alpha + |w|^\alpha + i(s-t)\right]^{-2(k+1)/\alpha-1}.$$

Now we set

$$A = \frac{1}{2}(|z|^\alpha + |w|^\alpha + i(s-t))$$

and carry out the summation over k with the result

$$S((z, t), (w, s)) = \frac{2\pi}{\alpha^2} A^{-1-2/\alpha} \left(1 - \frac{z\overline{w}}{A^{2/\alpha}}\right)^{-2}.$$

This generalizes a result of Greiner and Stein [5], where the same formula appears for $\alpha \in \mathbb{N}$ (see also [2,8]).

(b) If the weight function p depends only on the real part of z and satisfies

$$\int_{\mathbb{R}} e^{-2p(x)+2yx} dx < \infty,$$

for each $y \in \mathbb{R}$, then the Bergman kernel of H_τ is given by

$$K_\tau(z, w) = \frac{1}{2\pi} \int_0^{2\pi} \frac{\exp(\eta(z + \overline{w}))}{\exp(2\eta(x - \overline{x}(\alpha)))} d\eta,$$

(6)
This follows by a modification of methods developed in [9]. To show (6) we proceed in the following way:

In sake of simplicity we set $\tau = 1$. Similar to the proofs of Proposition 1 and 2 we consider the multiplication operator

$$M_p : L^2(d\lambda(z)) \longrightarrow L^2(e^{-2p(x)}d\lambda(z)),$$

defined by $(M_p f)(z) = e^{p(x)} f(z)$, $f \in L^2(d\lambda(z))$. Now a computation shows that

$$\frac{\partial}{\partial \bar{z}} \left(e^{p(x)} f(z) \right) = e^{p(x)} \left(\frac{1}{2} \frac{\partial p}{\partial x} f + \frac{\partial f}{\partial \bar{z}} \right),$$

which can be expressed by the operator identity

$$L(f) := \left(M_{-p} \frac{\partial}{\partial \bar{z}} M_p \right)(f) = \frac{1}{2} \frac{\partial p}{\partial x} f + \frac{\partial f}{\partial \bar{z}}.$$

Let \mathcal{F} denote the Fourier transform with respect to y:

$$\mathcal{F} f(x, \eta) = \int_{-\infty}^{\infty} f(x, y)e^{-iy\eta} dy.$$

Then in the sense of distributions we have

$$\mathcal{F} L(f)(x, \eta) = \frac{1}{2} \left(e^{-p(x)+\eta x} \frac{\partial}{\partial x} \left(e^{p(x)-\eta x} \mathcal{F} f(x, \eta) \right) \right).$$

We set $\psi(x, \eta) = e^{p(x)-\eta x}$ and define the multiplication operator

$$\mathcal{M}_\psi : L^2(d\lambda(z)) \longrightarrow L^2(e^{-2p(x)+2yx}d\lambda(z))$$

by $(\mathcal{M}_\psi g)(x, \eta) = \psi(x, \eta) g(x, \eta)$, for $g \in L^2(d\lambda(z))$. Combining this with the last results we get

$$L = \frac{1}{2} \mathcal{F}^{-1} \mathcal{M}_{-\psi} \frac{\partial}{\partial x} \mathcal{M}_\psi \mathcal{F},$$

and finally

$$\frac{\partial}{\partial \bar{z}} = \frac{1}{2} M_p \mathcal{F}^{-1} \mathcal{M}_{-\psi} \frac{\partial}{\partial x} \mathcal{M}_\psi \mathcal{F} M_p.$$

In this context we consider differentiation with respect to x as an operator

$$\frac{\partial}{\partial x} : L^2(e^{-2p(x)+2yx}d\lambda(z)) \longrightarrow L^2(e^{-2p(x)+2yx}d\lambda(z)),$$

in the sense of distributions.

Further we remark that $\text{Ker} \frac{\partial}{\partial x}$ consists of all functions $g \in L^2(e^{-2p(x)+2yx}d\lambda(z))$, which are constant in x.

By our assumption on the weight function p the space $L^2(e^{-2p(x)+2yx}dx)$ contains the constants for each $y \in \mathbb{R}$. Let P_y denote the orthogonal projection of $L^2(e^{-2p(x)+2yx}dx)$ onto the constants and P the orthogonal projection of $L^2(e^{-2p(x)+2yx}d\lambda(z))$ onto $\text{Ker} \frac{\partial}{\partial x}$. Then it is easily seen that

$$(Pg)(x, y) = P_y g_y(x),$$

for $g \in L^2(e^{-2p(x)+2yx}d\lambda(z))$, where $g_y(x) = g(x, y)$.

For a fixed $y \in \mathbb{R}$ and a function $h \in L^2(e^{-2p(x)+2yx}dx)$ one has

$$P_y h = \frac{(h, 1)}{(1, 1)} \left(\int_{\mathbb{R}} e^{-2p(x)+2yx} dx \right)^{-1} \int_{\mathbb{R}} h(x)e^{-2p(x)+2yx} dx.$$

Finally let P denote the orthogonal projection of $L^2(e^{-2p(x)}d\lambda(z))$ onto $H_1 = \text{Ker} \frac{\partial}{\partial z}$.

With the help of the above operator identities we readily establish now

$$P = M_pF^{-1}M_{-\psi}P_M\psi FM_p.$$

This identity, together with the above remarks on the orthogonal projection P, implies formula (6).

Using (2) one gets

$$S((z, t), (w, s)) = \frac{1}{2\pi} \int_{0}^{\infty} \int_{\mathbb{R}} \frac{\tau \exp(\tau(\eta(z + w) - p(z) - p(w) - i(s - t)))}{\int_{\mathbb{R}} \exp(2\tau(r\eta - p(r))) dr} d\eta d\tau,$$

which is similar to an expression in [9].

Now we investigate the asymptotic behavior of the integral

$$(7) \int_{\mathbb{R}} \exp(2\tau(r\eta - p(r))) dr,$$

which appears in formula (6), first as a function of η, for $|\eta| \to \infty$.

We restrict our attention to the case where the weight function p is of the form

$$p(r) = \frac{|r|^\alpha}{\alpha}, \quad \alpha > 1, \quad r \in \mathbb{R}.$$

Let p^* denote the Young conjugate of p which is given by

$$(8) \quad p^*(\eta) = \sup_{x \geq 0} [x|\eta| - p(x)] = \frac{|\eta|^{\alpha'}}{\alpha'},$$

where $\frac{1}{\alpha} + \frac{1}{\alpha'} = 1$. Note that $p^{**} = p$. Now we can estimate the integral (7) from above.

$$\int_{\mathbb{R}} \exp(2\tau(r\eta - p(r))) dr = \int_{0}^{\infty} \exp(2\tau(r\eta - p(r))) dr + \int_{0}^{\infty} \exp(2\tau(r\eta - p(r))) dr.$$
Let \(\lambda > 1 \). Then we have for \(\eta \geq 1 \)

\[
\int_0^\infty \exp(2\tau (r\eta - p(r))) \, dr \leq \int_0^\infty \exp(2\tau (r\eta - \lambda \eta r + p^*(\lambda \eta))) \, dr
\]

\[
= \exp(2\tau (p^*(\lambda \eta))) \int_0^\infty \exp(-2\tau (\lambda - 1)\eta r) \, dr
\]

\[
= \frac{\exp(2\tau p^*(\lambda \eta))}{2\tau (\lambda - 1)\eta}
\]

and for the second part of the integral

\[
\int_{-\infty}^0 \exp(2\tau (r\eta - p(r))) \, dr = \int_0^\infty \exp(-2\tau r\eta) \, dr
\]

\[
\leq \int_0^\infty \exp(-2\tau r\eta) \, dr
\]

\[
= \frac{1}{2\tau \eta}.
\]

For \(\eta \leq -1 \) we estimate in the analogous way.

Finally for \(|\eta| < 1 \) we get

\[
\int_0^\infty \exp(2\tau (r\eta - p(r))) \, dr \leq \int_0^\infty \exp(2\tau (r - p(r))) \, dr,
\]

\[
\int_{-\infty}^0 \exp(2\tau (r\eta - p(r))) \, dr = \int_0^\infty \exp(-2\tau (r - p(r))) \, dr
\]

\[
\leq \int_0^\infty \exp(2\tau (r - p(r))) \, dr.
\]

Hence for each \(\eta \in \mathbb{R} \) we obtain

\[
\int_{\mathbb{R}} \exp(2\tau (r\eta - p(r))) \, dr \leq C(\lambda, \tau) \exp(2\tau p^*(\lambda \eta)),
\]

for each \(\lambda > 1 \), where \(C(\lambda, \tau) > 0 \) is a constant depending on \(\lambda \) and \(\tau \).

To estimate the integral in (7) from below we denote by \(\mu \) the inverse function of the derivative \(p' \)

\[
\mu(\eta) := (p')^{-1}(\eta) = |\eta|^{1/(\alpha - 1)}.
\]

First suppose that \(\eta \geq 0 \) and observe that \(p' \) is strictly increasing and that the supremum in formula (8) is attained in the point \(\mu(\eta) \), hence

\[
\int_{\mathbb{R}} \exp(2\tau (r\eta - p(r))) \, dr \geq \int_0^\infty \exp(2\tau (r\eta - p(r))) \, dr
\]

\[
\geq \exp(2\tau (\eta (\mu(\eta) + 1) - p(\mu(\eta) + 1))).
\]

Next we claim that for each \(\lambda, 0 < \lambda < 1 \), the following inequality holds

\[
2\tau (\eta (\mu(\eta) + 1) - p(\mu(\eta) + 1)) > 2\tau (\lambda \eta (\mu(\eta) + 1) - p(\mu(\lambda \eta))) = D(\tau, \lambda)
\]

where

\[
D(\tau, \lambda) := (\lambda^2 - \lambda + 1)\tau - \eta (\lambda^2 - \lambda + 1)\tau.
\]
for each $\eta \geq 0$, where $D(\tau, \lambda) > 0$ is a constant depending on τ and λ.

To see this we remark that

$$
\eta(\mu(\eta) + 1) - p(\mu(\eta) + 1) = \eta^{\alpha/(\alpha - 1)} + \eta - 1/\alpha \left(\eta^{1/(\alpha - 1)} + 1 \right)^\alpha,
$$

and

$$
\lambda \eta \mu(\lambda \eta) - p(\mu(\lambda \eta)) = (1 - 1/\alpha) \lambda^{\alpha/(\alpha - 1)} \eta^{\alpha/(\alpha - 1)}.
$$

It suffices to show that

$$
\left(1 - (1 - 1/\alpha) \lambda^{\alpha/(\alpha - 1)} \right) \eta^{\alpha/(\alpha - 1)} + \eta \geq 1/\alpha \left(\eta^{1/(\alpha - 1)} + 1 \right)^\alpha - D(\lambda),
$$

for each $\eta \geq 0$, where $D(\lambda) > 0$ is a constant depending on λ. But this follows easily from the fact that

$$
1 - (1 - 1/\alpha) \lambda^{\alpha/(\alpha - 1)} > 1/\alpha.
$$

For $\eta < 0$ we argue in a similar way.

On the whole we have now proved that

$$
(10) \quad D(\tau, \lambda) \exp(2\tau p^*(\eta/\lambda)) \leq \int_\mathbb{R} \exp(2\tau(r\eta - p(r))) \, dr \leq C(\lambda, \tau) \exp(2\tau p^*(\lambda \eta)),
$$

for each $\eta \in \mathbb{R}$ and $\lambda > 1$.

For the conjugate function p^* one obtains by the same methods

$$
(11) \quad D_1(\tau, \lambda) \exp(2\tau p(r/\lambda)) \leq \int_\mathbb{R} \exp(2\tau(r\eta - p^*(\eta))) \, d\eta \leq C_1(\lambda, \tau) \exp(2\tau p(\lambda r)),
$$

for each $r \in \mathbb{R}$ and $\lambda > 1$.

The asymptotic behavior of (7) as a function of τ, $\tau \to \infty$, can be derived from [1], pg. 65:

$$
\int_\mathbb{R} \exp(2\tau(r\eta - p(r))) \, dr \approx \left(\frac{\tau p''(\mu(\eta))}{2\pi} \right)^{1/2} \exp(2\tau p^*(\eta)).
$$

Let

$$
\exp(2\tau \varphi^*(\eta)) = \int_\mathbb{R} \exp(2\tau(r\eta - p(r))) \, dr.
$$

Then formula (6') can be written in the form

$$
(12) \quad K_\tau(z, w) = \frac{\tau}{2\pi} \int_\mathbb{R} \exp \left(2\tau(\eta \left(\frac{z + \overline{w}}{2} \right) - \varphi^*(\eta)) \right) \, d\eta.
$$

In view of (10) and (11) this means that the Bergman kernel $K_\tau(z, w)$ is in a certain sense an analytical continuation of the original weight $\exp(2\tau p(r))$, namely in the form

$$
\exp \left(2\tau \varphi \left(\frac{z + \overline{w}}{2} \right) \right).
$$
For \(p(z) = x^2/2 \) everything can be computed explicitly:

\[
\int_{\mathbb{R}} \exp(2\tau(r\eta - r^2/2)) \, dr = (\pi/\tau)^{1/2} \exp(\tau \eta^2),
\]

(13) \[K_\tau(z, w) = \frac{\tau}{2\pi} \exp \left(\frac{\tau}{4} (z + \overline{w})^2 \right) \]

and

(14) \[S((z, t), (w, s)) = \frac{1}{2\pi} \left(\frac{1}{4}(z + \overline{w})^2 - \frac{1}{8}(z + \overline{z})^2 - \frac{1}{8}(w + \overline{w})^2 - i(s - t) \right)^{2} \]

Applying formula (1) to the expression for the Szegö kernel in (14), we arrive again at (13), now the integral with respect to \(s \) converges only in \(L^2 \).

Results of this type have also been obtained by Gindikin (see [4] or [3]).

Finally we mention an estimate for the Bergman kernel, which plays an important role in the duality problem of [7] and which, in itself, seems to be interesting.

For the Bergman kernel in formula (13) the following condition is satisfied: for each \(\tau_1 > \tau \) there exists \(\tau_0, 0 < \tau_0 < \tau \), such that

\[
\int_{\mathbb{C}} \int_{\mathbb{C}} |K_{\tau}(z, w)|^2 \exp(-2\tau_1 p(z) - 2\tau_0 p(w)) \, d\lambda(z) \, d\lambda(w) < \infty.
\]

This follows by a direct computation using (13). In the general case the integration with respect to the variable \(z \) causes no problems, as the function \(z \mapsto K_{\tau}(z, w) \) belongs to the Hilbertspace \(H_{\tau_1} \), for each fixed \(w \). But, afterwards, the integration with respect to the variable \(w \) makes difficulties, because \(\tau_0 < \tau \).
Acknowledgment. The author would like to express his sincere thanks to A. Nagel for valuable discussions during a conference at the M.S.R.I. in Berkeley.

References

1. N.G. de Bruijn, *Asymptotic methods in analysis*, North-Holland Publishing Co., Amsterdam, 1958.
2. K.P. Diaz, *The Szegö kernel as a singular integral kernel on a family of weakly pseudoconvex domains*, Trans. Amer. Math. Soc. 304 (1987), 147–170.
3. B.A. Fuks, *Introduction to the theory of analytic functions in several complex variables*, (in Russian) M., Fizmatgiz, Moscow, 1962.
4. S.G. Gindikin, *Analytic functions in tubular regions*, Sov. Math.–Doklady 3 (1962), 1178–1182.
5. P.C. Greiner and E.M. Stein, *On the solvability of some differential operators of type \Box_b*, Proc. Internat. Conf., (Cortona, Italy, 1976–1977), Scuola Norm. Sup. Pisa, Pisa, 1978, pp. 106–165.
6. N. Hanges, *Explicit formulas for the Szegö kernel for some domains in \mathbb{C}^2*, J. Functional Analysis 88 (1990), 153–165.
7. F. Haslinger, *The Bergman kernel and duality in weighted spaces of entire functions*, preprint PAM–310, Berkeley, 1986.
8. H. Kang, ∂_b–equations on certain unbounded weakly pseudoconvex domains, Trans. Amer. Math. Soc. 315 (1989), 389–413.
9. A. Nagel, *Vector fields and nonisotropic metrics*, Beijing Lectures in Harmonic Analysis, E.M. Stein, Ed., Princeton Univ. Press, 1986.
10. A. Nagel, J.P. Rosay, E.M. Stein and S. Wainger, *Estimates for the Bergman and Szegö kernels in certain weakly pseudoconvex domains*, Bull. Amer. Math. Soc. 18 (1988), 55–59.
11. A. Nagel, J.P. Rosay, E.M. Stein and S. Wainger, *Estimates for the Bergman and Szegö kernels in \mathbb{C}^2*, Ann. of Math. 129 (1989), 113–149.
12. A. Nagel, E.M. Stein and S. Wainger, *Boundary behavior of functions holomorphic in domains of finite type*, Proc. Nat. Acad. Sci. U.S.A. 78 (1981), 6596–6599.
13. A. Nagel, E.M. Stein and S. Wainger, *Balls and metrics defined by vector fields I: basic properties*, Acta Math. 155 (1985), 103–147.