Functional Measure for Lattice Gravity

Myron Bander

Department of Physics, University of California, Irvine, California 92717

(Received 11 April 1986)

A procedure is developed for transcription of any measure for the integration over metric fields in the continuum to the Regge-calculus lattice.

PACS numbers: 04.60.+n

A discrete version of Riemannian geometry and its application to classical Einstein gravity has existed for more than twenty years in the form of Regge calculus. Because of its own intrinsic interest and as a result of its connection with the study of random lattices, this subject has had a revival of interest. Such a discrete formulation of gravity theories permits us to consider numerical studies of their quantum counterparts. In addition to a discrete form of the action for such theories we still need a measure for the functional integrals appearing in the Feynman quantization procedure. It is the purpose of this Letter to provide a transcription of a given continuum measure for quantum gravity to the discrete case. The numerical studies referred to previously used ad hoc measures. A prescription for the transferring of an integration measure from the continuum to the discrete case will likewise permit a lattice formulation of the Polyakov string theory.

In d space-time dimensions quantum theory is obtained by integrating over the $[d(d+1)/2]$ independent components of the metric tensor $g_{\mu \nu}(x)$. For example the vacuum-to-vacuum amplitude is

$$Z = \int \prod_{x} \mu(g) \prod_{\mu \leq \nu} dg_{\mu \nu} \exp \{ iS[g_{\mu \nu}] \},$$

(1)

where $S[g_{\mu \nu}]$ is an action for gravity and $\mu(g)$ is a continuum measure. Gauge-fixing terms and integrations over ghosts are implied in $\mu(g)$. The reason we have emphasized that what will be presented in this work is a transcription of a given continuum measure to the discrete form is that there exist various prescriptions for the continuum measure $\mu(g)$.

(a) DeWitt-Fujikawa measure.—A metric on the deformations of the space-time metric is chosen as

$$||dg_{\mu \nu}|| = \int d^{d}x \sqrt{-g} G^{\mu \nu \lambda \sigma} \delta g_{\mu \lambda} \delta g_{\nu \sigma},$$

$$G^{\mu \nu \lambda \sigma} = [g^{\mu \lambda} g^{\nu \sigma} + g^{\mu \sigma} g^{\nu \lambda} - (2/d - C) g^{\mu \nu} g^{\lambda \sigma}],$$

(2)

$$C \neq 0.$$

Such a metric implies the functional measure

$$\mu(g) = [\det \sqrt{-g} G]^{1/2}$$

$$= \prod \{ -g \}^{(d - 4)(d + 1)/8},$$

(3)

This is also the measure used by Polyakov in his transformation of the bosonic string theory into the conformally invariant quantum Liouville theory.

(b) Konopleva and Popov measure.—This is a scale-invariant measure

$$\mu(g) = [\det G]^{1/2} \approx \prod \{ -g \}^{-(d+1)/2}.$$

(4)

(c) Leutwyler-Fradkin and Vilkovisky measure.—This measure follows from a canonical treatment of the gravity problem. It strongly depends on the action to be quantized. For $S[g_{\mu \nu}] = \int d^{d}x \sqrt{-g} [\Lambda - \kappa R]$ the vacuum-to-vacuum amplitude in harmonic coordinates is

$$Z = \int \exp \{ iS[g_{\mu \nu}] \delta(\partial_{\mu} \sqrt{-g} g^{\mu \nu}) \} \det \{ \partial_{\mu} \sqrt{-g} g^{\mu \nu} \delta_{\nu} \delta_{\rho} + \cdots \} \prod_{x} \mu(g) \prod_{\mu \leq \nu} dg_{\mu \nu},$$

(5)

with

$$\mu(g) = (g^{00})^{d(d-3)/4} \{ -g \}^{(d^2 + 5d - 8)/8}.$$

(6)

An integration over an orbit, under coordinate transformations of a fixed metric $g_{\mu \nu}$, eliminates the coordinate-fixing δ function and the associated Fade'ev-Popov determinant. As on the lattice we do not have to fix further a coordinate system, it is only the $\mu(g)$ of Eq. (6) we wish to transcribe.

In the following part of this work it will prove more convenient to work in the vielbein formalism. The vielbein e^{a}_{μ} is related to the metric tensor $g_{\mu \nu}$ by

$$g_{\mu \nu}(x) = e^{a}_{\mu}(x) e^{b}_{\nu}(x) \eta_{ab},$$

(7)

with η_{ab} a flat Minkowski metric. In general, lattice calculations are performed in Euclidean space; we shall, however, present our results for the curved space being locally Minkowski. In part this is due to the fact that the transition between a Minkowski and Euclidean formulation of gravity is not as direct as it is for flat metric field theories. The formal transposition

© 1986 The American Physical Society
of our results to the Euclidean case is straightforward. The relation between the integration over the metric tensor and integrating over the vielbein variables is
\[\prod_{\mu, \nu} dg_{\mu \nu} = \sqrt{-g} \prod_{\mu, \alpha} d\epsilon_{\mu}^\alpha. \]

(8)

In Regge calculus\(^1\) curved \(d\)-dimensional space-time is approximated by \(d\)-dimensional simplices glued together at common \((d-1)\)-dimensional subsimplices. Such a configuration is specified by giving all the edge lengths \(l_{ij}\) between neighboring vertices \(i, j\). These edge lengths are the dynamical variables of this theory. To obtain the functional measure we found it easiest to work in a vielbein formulation. To this end we will develop, within Regge calculus, such formalism.

To each edge \((i,j)\) of a simplex \(S\) we assign a flat \(d\)-dimensional vector \(e^\alpha_{i,j}, \alpha = 1, 2, \ldots, d\), satisfying
\[e^\alpha_{i,j} = (l_{ij})^2, \sum_{(ij) \in \Delta} e^\alpha_{i,j} = 0 \]

(9)

for all triangles \(\Delta\) in the simplex \(S\). Within each simplex \(S\) we may take the \(e_{i,j}^\alpha\)'s emerging from any vertex as the independent set of vielbeins for that simplex. Equation (9) tells us that two vectors \(e^\alpha_{i,j}\) and \(e^\alpha_{i',j'}\) associated with the same edge but with different simplices must be related by a Lorentz transformation depending only on the simplices \(S\) and \(S'\):
\[e^\alpha_{i,j} = (L(S', S))_{\beta}^\alpha e^\beta_{i,j}. \]

(10)

What is the continuum analog of this relation? The continuum vielbeins satisfy
\[D_\mu e^\alpha_{\nu} = - (\omega^\alpha_{\mu})_{\beta} e^\beta_{\nu}, \]

(11)

\((\omega^\alpha_{\mu})_{\beta}\) is the spin connection, an infinitesimal Lorentz transformation and \(D_\mu\) is a vector covariant derivative. Translated to the lattice, this covariant derivative is just the difference of the lattice vielbeins between two neighboring simplices. The translation of Eq. (11) to the lattice is just Eq. (10).

The transcription of a continuum vielbein measure to a lattice is achieved by incorporation of the constraints implied by Eq. (10) and Eq. (11):
\[\prod_{x, \mu, \alpha} d\epsilon_{\mu}^\alpha(x) = \left(\prod_{x, \mu, \alpha} d\epsilon_{\mu}^\alpha(x) \right) \prod_{(ij) \in \Delta} \left(\sum_{(ij) \in \Delta} e^\alpha_{i,j} \right) \left[\sqrt{-g} \prod_{\gamma} \delta(D_\mu e^\gamma_{\nu} + (\omega^\gamma_{\nu})_{\beta} e^\beta_{\nu}) \right]. \]

(12)

The \(\sqrt{-g}\) in the above ensures that the integrations over the spin connections yield a constant independent of the metric.

Noting that Eq. (10) is the lattice version of Eq. (11), the above result may be transcribed to the lattice:
\[\prod_{x, \mu, \alpha} d\epsilon_{\mu}^\alpha - \prod_{S} \prod_{(ij) \in \Delta} \left(\sum_{(ij) \in \Delta} e^\alpha_{i,j} \right) \left[\sqrt{-g} \prod_{\gamma} \delta(D_\mu e^\gamma_{\nu} + (\omega^\gamma_{\nu})_{\beta} e^\beta_{\nu}) \right] \times \prod_{S, S'} L(S, S')^d \prod_{(ij) \in S \cap S'} \delta(e^\alpha_{ij} - [L(S, S')]_{\beta} e^\beta_{ij}). \]

(13)

The single prime indicates that the product is only over \(d(d-1)/2\) triangles of the simplex \(S\). The product over simplices \(S\) and \(S'\) ranges over pairs having a common \((d-1)\)-dimensional subsimplex. The \((d-1)\)-dimensional hypervolume of this subsimplex is denoted by \(\omega_{SS'}\) and the edge dual to it has length \(l_{SS'}\). The double prime indicates that this product is over \((in\;view\;of\;the\;first\;\delta\;function)\) any \((d-1)\) independent edges \((i,j)\) common to both \(S\) and \(S'\). \(\omega_{SS'}\) is one of the lattice analogs\(^3\) of \(\sqrt{-g}\). There is one factor \(l_{ij}\) for each edge \((i,j)\) in the final product.

The integration over the Lorentz transformations and over the \(\delta\)-function constraints may be performed resulting in
\[\prod_{x, \mu, \alpha} d\epsilon_{\mu}^\alpha = \prod_{S} \prod_{(ij) \in S} \frac{1}{\text{Vol}(S)} \prod_{(ij) \in S} \left(l_{SS'} \omega_{SS'} \right)^{d-1}. \]

(14)

This is the main result of this work.
1T. Regge, Nuovo Cimento 19, 551 (1961).
2N. H. Christ, R. Friedberg, and T. D. Lee, Nucl. Phys. B208, 89 (1982), and B210[FS6], 310, 337 (1982); C. Itzykson, in Progress in Gauge Field Theory, Cargèse, 1983, edited by G. 't Hooft et al., NATO Advanced Science Institutes Vol. 115 (Plenum, New York, 1984).
3R. Friedberg and T. D. Lee, Nucl. Phys. B242, 145 (1984); G. Feinberg, R. Friedberg, T. D. Lee, and M. C. Ren, Nucl. Phys. B245, 343 (1984); M. Rocek and R. M. Williams, Phys. Lett. 104B, 31 (1981), and Z. Phys. C 21, 371 (1984); H. Hamber and R. M. Williams, Nucl. Phys. B248, 392 (1984); M. Bander and C. Itzykson, in Nonlinear Equations in Classical and Quantum Field Theory, edited by N. Sanchez, Lecture Notes in Physics Vol. 336 (Springer-Verlag, Berlin, 1985), and Nucl. Phys. B257 [FS14], 531 (1985); T. Piran and R. M. Williams, Phys. Rev. D 33, 1622 (1986); A. Jevicki and M. Ninomiya, Phys. Lett. 150B, 115 (1985), and Phys. Rev. D 33, 1634 (1986).
4H. Hamber and R. M. Williams, Nucl. Phys. B267, 482 (1986), and B269, 712 (1986).
5A. M. Polyakov, Phys. Lett. 103B, 307 (1981). For a different discretization of this problem, see J. Jurkiewicz, A. Krzywicki, and B. Petersson, Phys. Lett. 168B, 273 (1986).
6H. S. DeWitt, Phys. Rev. 160, 1113 (1967), and 162, 1195, 1239 (1967); K. Fujikawa, Nucl. Phys. B266, 437 (1983), and in Proceedings of the Eighth Kyoto Summer Institute, edited by H. Sato and T. Inami (World Scientific, Singapore, 1985).
7N. P. Konopleva and V. N. Popov, Gauge Fields (Harwood, New York, 1979).
8H. Leutwyler, Phys. Rev. 134, 1155 (1964).
9E. S. Fradkin and G. A. Vilkovisky, Phys. Rev. D 8, 4241 (1973).