A review of the mosquito species (Diptera: Culicidae) of Bangladesh

Seth R. Irish1*, Hasan Mohammad Al-Amin2, Mohammad Shafiul Alam2 and Ralph E. Harbach3

Abstract

Background: Diseases caused by mosquito-borne pathogens remain an important source of morbidity and mortality in Bangladesh. To better control the vectors that transmit the agents of disease, and hence the diseases they cause, and to appreciate the diversity of the family Culicidae, it is important to have an up-to-date list of the species present in the country. Original records were collected from a literature review to compile a list of the species recorded in Bangladesh.

Results: Records for 123 species were collected, although some species had only a single record. This is an increase of ten species over the most recent complete list, compiled nearly 30 years ago. Collection records of three additional species are included here: Anopheles pseudowillmori, Armigeres malayi and Mimomyia luzonensis.

Conclusions: While this work constitutes the most complete list of mosquito species collected in Bangladesh, further work is needed to refine this list and understand the distributions of those species within the country. Improved morphological and molecular methods of identification will allow the refinement of this list in years to come.

Keywords: Species list, Mosquitoes, Bangladesh, Culicidae

Background

Several diseases in Bangladesh are caused by mosquito-borne pathogens. Malaria remains an important cause of morbidity and mortality, particularly in the Chittagong Hill tracts and in the border belt areas [1]. Lymphatic filariasis continues to be a problem, despite multiple rounds of mass drug administration [2]. Dengue, Japanese encephalitis, and chikungunya viruses are also transmitted by mosquitoes in Bangladesh [3]. As knowledge of faunal diversity and vector control is often an important component of disease control, it is important to correctly identify and understand the biomics of the species involved in transmission.

To this end, previous authors have worked to compile lists of the mosquito species present in Bangladesh, by compiling species records from the country. The mosquitoes of Bangladesh have been recorded in several such lists over the past century. James [4], Covell [5, 6], Christophers [7], Barraud [8] and Puri [9, 10] described the mosquito fauna of British India, from which some records for locations in present-day Bangladesh can be extracted. After the separation of Pakistan and India in 1947, Aslamkhan [11] published checklists for mosquito species, indicating which were found in East Pakistan (Bangladesh). After the independence of Bangladesh in 1971, Ahmed [12] published an updated checklist in 1987, including many new records. More recently, Bashar et al. [13] published a checklist for the Anopheles mosquitoes of Bangladesh, but no comprehensive list of all species of mosquitoes present in the country has been published for nearly 30 years. Over the decades, deforestation and increased agricultural practices may have altered the diversity and abundance of mosquitoes throughout the country [14–16]. Therefore, the aim of this work was to produce an updated list of all mosquito species reportedly present in Bangladesh, with information on their collection.

Methods

PubMed and the US Armed Forces Pest Management Board Literature Retrieval Service (before it was terminated), were searched using the terms “mosquito” and “Bangladesh.” Articles found were searched for the descriptions of the original collections of mosquitoes identified to species. Articles only citing another article’s collections (second-hand accounts) were not included. The reference list of collected articles was searched for additional articles.
National libraries of Bangladesh were also searched for articles. All articles were entered onto a spreadsheet to facilitate calculation of the number of species and the number of records for each species.

Additionally, one of us (HMA) provided records from studies that included the use of light traps (CDC miniature light trap, model 512, John W. Hock Co., Gainesville, Florida, USA), resting collections and BG-Sentinel traps (Biogents AG, Regensburg, Germany) (publications in preparation). The descriptions of the collection sites are provided in the discussion below.

Results
Records were found for 123 species of Culicidae reported from Bangladesh. The records ranged in date from 1908 to 2016. These species are listed below, alphabetically by genus, subgenus, and species. *Aedes* species follow the classification provided by Wilkerson et al. [17], whereas all other genera follow the classification provided by the Mosquito Taxonomic Inventory [18]. In accordance with Article 51.3 of the *International Code of Zoological Nomenclature*, the authorship and date of species names enclosed in parentheses indicate that the species was originally described as a member of a genus other than the one in which it is currently placed, e.g. *Aedes aegypti* (Linnaeus, 1762) was originally described as *Culex aegypti* Linnaeus, 1762. The numbers following species names refer to articles where the records were published.

### Genus Aedeomyia Theobald, 1901

#### Subgenus Aedeomyia Theobald, 1901

1. *Ad. (Ady.) catastica* Knab, 1909 [11, 19]

#### Genus Aedes Meigen, 1818

#### Subgenus Aedimorphus Theobald, 1903

2. *Ae. (Adm.) caecus* (Theobald, 1901) [12, 20–22]

3. *Ae. (Adm.) pallidostriatus* (Theobald, 1907) [12, 20, 21]

4. *Ae. (Adm.) punctiferous* (Ludlow, 1921) [12, 20–23]

5. *Ae. (Adm.) vexans* (Meigen, 1830) [12, 19, 24; 25]

#### Subgenus Christophersiomyia Barraud, 1923

6. *Ae. (Chr.) thomsoni* (Theobald, 1905) [21]

#### Subgenus Collessius Reinert, Harbach & Kitching, 2006

7. *Ae. (Col.) pseudotaeniatus* (Giles, 1901) [26]

#### Subgenus Dendroskusea Edwards, 1929

8. *Ae. (Dsk.) reginae* Edwards, 1922 [26]

#### Subgenus Downskusea Vargas, 1950

9. *Ae. (Dow.) albolateralis* (Theobald, 1908) [27]

10. *Ae. (Dow.) niveus* (Ludlow, 1903) [12, 24, 28; 29]

#### Subgenus Edwardsaedes Belkin, 1962

11. *Ae. (Edw.) imprimens* (Walker, 1861) [30]

(Continued)
Genus Coquillettidia Dyar, 1905

Subgenus Coquillettidia Dyar, 1905

75. Cq. (Coq.) crassipes (van der Wulp, 1881) [12, 19, 20, 24, 27, 31, 48, 104]

76. Cq. (Coq.) ochracea (Theobald, 1903) [12, 104]

Genus Culex Linnaeus, 1758

Subgenus Culex Linnaeus, 1758

77. Cx. (Cux.) annulatus Theobald, 1901 [35, 47, 48]

78. Cx. (Cux.) fuscecephalus Theobald, 1907 [12, 19–21, 24–26, 31, 35–37, 41, 42, 44, 45, 48, 50, 51, 65–67, 86, 105–108]

79. Cx. (Cux.) gelidus Theobald, 1901 [12, 19–21, 24, 25, 27, 31, 34–37, 40–42, 50, 51, 55, 65–67, 86, 106, 109]

80. Cx. (Cux.) hutchinsoni Barraud, 1924 [12, 19, 34, 35, 47, 48, 50]

81. Cx. (Cux.) minimus Edwards, 1915 [12, 35, 66, 108, 109]

82. Cx. (Cux.) pseudovishnui Calless, 1957 [12, 19, 20, 34, 108]

83. Cx. (Cux.) quinquefasciatus Say, 1823 [12, 19–21, 24–28, 31, 34–37, 40–42, 44–48, 50, 51, 55, 57, 65–67, 108, 110–114]

84. Cx. (Cux.) sitiens Wiedemann, 1828 [27, 34, 47]

85. Cx. (Cux.) theileni Theobald, 1903 [21]

86. Cx. (Cux.) tritaeniorynchus Giles, 1901 [12, 19–21, 24, 25, 31, 34–37, 40–42, 45, 50, 51, 55, 65–67, 86, 108, 109, 115]

87. Cx. (Cux.) vagans Wiedemann, 1828 [21]

88. Cx. (Cux.) vishnui Theobald, 1901 [12, 19, 20, 24–27, 31, 34, 35, 41, 42, 50, 65, 67, 83, 86, 108, 109]

89. Cx. (Cux.) whitei Barraud, 1923 [36, 37, 108]

90. Cx. (Cux.) whitmorei (Giles, 1904) [12, 19–21, 24, 31, 34–37, 86, 108]

Subgenus Culiciomyia Theobald, 1907

91. Cx. (Cui.) fragilis Ludlow, 1903

92. Cx. (Cui.) nigropunctatus Edwards, 1926 [8, 12]

93. Cx. (Cui.) pallidothorax Theobald, 1905 [12, 24, 116]

94. Cx. (Cui.) pullus Theobald, 1905 [116]

Subgenus Eumelanomyia Theobald, 1909

95. Cx. (Eum.) brevipalpis (Giles, 1902) [12, 24, 26, 28, 117]

96. Cx. (Eum.) malayi (Leicester, 1908) [12, 24]

Subgenus Lophoceraomyia Theobald, 1905

97. Cx. (Lop.) minitissimus (Theobald, 1907) [12]

Subgenus Oculeomyia Theobald, 1907

98. Cx. (Ocu.) bitaeniorynchus Giles, 1901 [12, 19–21, 24, 27, 31, 34–37, 41, 42, 45, 51, 55, 65–67, 86, 108, 109]

99. Cx. (Ocu.) epidæmus (Theobald, 1910) [12, 19–21, 24, 31, 34, 35, 47, 48, 108]

100. Cx. (Ocu.) infusa Theobald, 1901 [19, 27, 108, 118]

101. Cx. (Ocu.) sinensis Theobald, 1903 [12, 19–21, 24, 31, 34, 35, 66, 86]

Genus Ficalbia Theobald, 1903

102. Fi. minima (Theobald, 1901) [8, 12, 27, 33, 34, 36, 37, 119]

Genus Heizmannia Ludlow, 1905

Subgenus Heizmannia Ludlow, 1905

103. H. (Hez.) covelli Barraud, 1929 [26]
cases the names of species have been changed or subspecies elevated to species status. In several cases, new collections have resulted in species representing new country records being added to the list. Among the listed mosquitoes, Anopheles species complexes that are worthy of note here include the Subpictus, Culicifacies, Sundaicus, Annularis, Barbirostris, Fluviatilis, Maculatus, Minimus, and Dirus Complexes. The Subpictus Complex includes four sibling species (informally designated species A, B, C, and D), which are distinguishable based on morphological, chromosomal, and molecular differences [129, 130]. As of yet, no determination has been made of which species of the Subpictus Complex are present in Bangladesh. Anopheles culicifacies is an important malaria vector in the Indian Sub-continent, but its importance in Bangladesh appears to be limited. The Culicifacies Complex is comprised of species A, B, C, D, and E [131]. Little is known of the species present in Bangladesh, particularly as very few specimens have been found in the past 20 years [22, 63], but recently species B, C, and E were found in Kuhlalong, near Bandarban town [14]. The Sundaicus Complex comprises four coastal species: An. sundicus, An. epiroticus, An. sundicus D, and An. sundicus E [132]. While it would appear that An. epiroticus is most likely the species present in coastal areas of Bangladesh, due to the limited geographic provenance of the other species, this awaits confirmation using molecular methods [132]. Anopheles annularis is a complex of two species, A and B [133], which can be distinguished using chromosomal or molecular methods [134]. The Fluvatilis Complex is composed of four sibling species, S, T, U, and V [135], but it is not known which species are present in Bangladesh. The Maculatus Complex (a.k.a. Maculatus Group) consists of nine species, but Anopheles maculatus is comprised of chromosomal forms B and E [136, 137]. Rongnoparat et al. [138] stated that chromosomal form B is found north of 13°N, but further work on the group is necessary to know which members are present in Bangladesh. The Barbirostris Complex is composed of seven formally named species, but it seems more species will be added [139, 140]. Only An. barbirostris (s.l.) has been reported from Bangladesh, but it is clear that more work is needed to know which species of the complex are present in the country. The Minimus Complex includes three species: An. harrisoni, An. minimus and An. yacymaensis (known only from Japan). Anopheles minimus (s.l.) has been found in Bangladesh [14], but further work is needed to know if An. harrisoni (previously known as species C) is present in the country [141]. Finally, the Dirus Complex comprises seven species, of which it appears An. baimaii is the species present in Bangladesh [14, 92, 142].

Discussion
A need for improved knowledge of the mosquito species present in Bangladesh has led to the updated list presented here. In some cases previously known species have been found to be species complexes, while in other
Some of the species included in the most recent previous list published by Ahmed [12] have undergone taxonomic changes. *Anopheles gigas* var. *baileyi* was elevated to species status by Harrison et al. [143] and is now known as *Anopheles baileyi*. Similarly, *Anopheles maculatus* var. *willmori* (as *willmori*) was restored to species status by Rattanarithikul & Green [144] and is now known as *An. willmori*. *Anopheles pseudojamesesi* is the current name (senior synonym) of the formerly accepted *An. ramsayi* [79]. *Culex afridi* was synonymized with *Cx. infusa* [109]. *Culex quinquefasciatus* was listed as “*Culex pipiens quinquefasciatus*” in the list provided by Ahmed, but *Cx. quinquefasciatus* is now accepted as a distinct species [145, 146]. The species formerly known as *Cx. fuscans* and *Cx. halifaxii* are now included in the genus *Lutzia* as *Lt. fuscana* and *Lt. halifaxii*, respectively [147].

There are a number of species that have only been reported in Bangladesh since the list of Ahmed [12]. Larvae of *Ae. gardnerii imitator* were collected from a tree hole in a botanical garden in Dhaka during 2004 [60]. Adults of *Ar. kesseli* were taken in resting collections and light traps in Rajshahi Division [19], and adults of *Ar. theobaldi* were collected in a forested area in Habiganj district (Sylhet Division) [103]. *Culex annulus* has been collected in Habiganj and Moulaibazar districts in Sylhet Division, as well as on St. Martin’s Island, and in the Sundarbans [35, 47, 48]. Two adults of *Ma. annulata* and three of *Ur. rampae* were collected in light traps in Rajshahi Division [19]. *Culex fragilis* was collected in resting catches in Patrokholo tea garden, Moulaibazar (Sylhet Division) [35]. Additionally, one of us (HMA) recently identified three species new to Bangladesh, which will be reported in publications currently in preparation. *Anopheles pseudowillmori* were collected in light traps placed in a room with sleeping people (18:00 to 06:00). Nine specimens were collected in Kuhlalong and Rajbila unions of Bandarban district between 2009 and 2012. Three *Ar. malayi* females were collected in BG-Sentinel traps that were placed indoors in Rajshahi and Chapai Nawabganj districts between November 2014 and September 2015. *Mimomyia luzonensis* was collected using the same method in Dhaka and Chapai Nawabganj districts, and four specimens were collected between September 2014 and September 2015.

Two species listed in Ahmed [12] are excluded from the list. Ahmed [12] listed *Ae. pipersalatus* with reference to Barraud [30]. In the older reference, a record is provided for Madhupur in Bengal, attributed to Charles Paiva, an entomologist educated in Calcutta, who then took up a position at the Indian Museum in Calcutta where he worked until his death in 1919 [148]. There is a sub-district called Madhupur near Dhaka in Bangladesh, however, there is also a Madhupur in West Bengal in India. As we could not find any further evidence to which Madhupur was intended, and as no further records of *Ae. pipersalatus* in Bangladesh were found, we have removed this species from the list of species known to occur in the country. We have also removed the separate listing of *An. gigas* subspecies *simlensis* [149], which has been reported only once, from Rangpur [6], as it is represented by *An. gigas* in the species list.

*Armigeres obturans* has been listed in several records, but it appears that this species was regularly confused with the common *Ar. subalbatus*. Furthermore, Thurman [150] noted that the distribution of *Ar. obturans* is limited to Sulawesi, so it seems likely that the records for *Ar. obturans* in Bangladesh refer to *Ar. subalbatus*. We have therefore removed *Ar. obturans* from the species list for Bangladesh.

The inclusion of certain species in previous lists was the result of single records. This was the case for *Ae. thomsoni*, *Ae. pseudotaeniatus*, *Ae. reginae*, *Ar. albolarteralis*, *Ae. imprimens*, *Ae. vittatus*, *Ae. iyengari*, *Ae. desmotes*, *Ae. gardnerii imitator*, *Ar. barbumbrosus*, *Ar. kesseli*, *Ar. theobaldi*, *Ar. annulitarsis*, *Ar. dentatus*, *Ar. inchoatus*, *Ar. omissus*, *Cx. fragilis*, *Cx. theileri*, *Cx. vagans*, *Cx. pullus*, *Cx. minutissimus* *Hz. covelli*, *Ml. jacobsani*, *Ma. annulata*, *Tx. bengalensis*, *Ur. novobscura*, and *Ur. rampae*. While several of these species represent recent records for Bangladesh, others, such as *Ar. pseudotaeniatus*, *Ae. reginae*, *Ar. albolarteralis*, *Ae. imprimens*, *Ae. vittatus*, *Ae. iyengari*, *Cx. pullus*, *Hz. covelli*, and *Ml. jacobsani*, have not been found in Bangladesh in the past 50 years. Further collections, particularly of culicines, would be helpful in improving our knowledge of the species that are present in the country.

Conclusions
The list provided here is the most complete list compiled since the work of Ahmed [12], nearly 30 years ago. The up-dated list will serve as a basis for the development of identification keys and will hopefully spur on research on the bionomics of these species. These tools will be important for the reduction of diseases in Bangladesh caused by mosquito-borne pathogens.

Acknowledgements
Not applicable.

Funding
International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b) is grateful to the Governments of Bangladesh, Canada, Sweden and the UK for providing core/unrestricted support. The publishing costs for this manuscript were paid by the President’s Malaria Initiative (USAID/CDC).

Availability of data and material
Not applicable.
Authors’ contributions
SRI conceived the study; SRI and HMA drafted the manuscript; MSA and REH critically revised the manuscript for intellectual and taxonomic content. SRI is the guarantor of the paper. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Author details
1Entomology Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, 1600 Clifton Rd NE, Atlanta, GA 30329, USA. 2International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), 68 Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka 1212, Bangladesh. 3Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK.

Received: 22 July 2016 Accepted: 13 October 2016

Published online: 22 October 2016

References
1. Haque U, Overgaard HJ, Clements AC, Norris DE, Isalan N, Kaim J, et al. Malaria burden and control in Bangladesh and prospects for elimination: an epidemiological and economic assessment. Lancet Glob Health. 2014;2:e98–105.
2. Hafiz I, Graves P, Haq R, Flora MS, Kelly-Hope LA. Clinical case estimates of lymphatic filariasis in an endemic district of Bangladesh after a decade of mass drug administration. T Roy Soc Trop Med Hyg. 2015;109:700–9.
3. WHO. Bibliography of scientific publications on vector-borne diseases from WHO south-east Asia region 2009–2013. New Delhi: World Health Organization; 2014.
4. James SP. Notes on mosquitoes. Paludism (Smila). 1910;3:33–8.
5. Covell G. The distribution of anopheline mosquitoes in India and Ceylon. Ind Med Res Mem. 1927;5:1–85.
6. Covell G. The distribution of anopheline mosquitoes in India and Ceylon. Additional records, 1926–1930. Rec Mal Surv Ind. 1931:2:225–68.
7. Christophers SR. The fauna of British India, including Ceylon and Burma. Diptera Vol. 4, Family Culicidae. Tribe Anophellini. London: Taylor & Francis; 1933.
8. Banaraj PJ. The fauna of British India, including Ceylon and Burma, Diptera Vol. 5, family Culicidae. Tribes megarhinini and culicini. London: Taylor & Francis; 1934.
9. Puri IM. The distribution of anopheline mosquitoes in India: additional records, 1931–1935. Rec Mal Surv Ind. 1936:6:177–211.
10. Puri IM. The distribution of anopheline mosquitoes in India, Pakistan, Ceylon and Burma. Part V: additional records 1936–1947. Ind J Malarol. 1948;6:67–107.
11. Aslamkhan M. The mosquitoes of Pakistan. I A Checklist Mosq News. 1971;3:147–59.
12. Ahmed TU. Checklist of the mosquitoes of Bangladesh. Mosq Syst. 1987;19:187–200.
13. Bashar K, Mahmud KH, Reza MS, Goda P, Rain FF, Jesmin M, et al. Revised checklist and distribution maps of Anopheles (Insecta: Diptera: Culicidae: Anophelinae) mosquitoes of Bangladesh. Check List. 2013;9:211–24.
14. Alam MS, Chakma S, Khan WA. Glass GE, Mohon AN, Elahi R, et al. Diversity of anopheles species and their Plasmodium infection status in rural Bandarban, Bangladesh. Parasit Vectors. 2012;5:150.
15. Al-Amin HM, Elahi R, Mohon AN, Kafi MA, Chakma S, Lord JS, et al. Role of undrappreciated vectors in malaria transmission in an endemic region of Bangladesh-India border. Parasit Vectors. 2015;8:195.
16. Elias M, Bar MA. Faroquie MMAS. A note on entomological studies in malariaous areas of southwestern districts of Bangladesh. J Prevent Soc Med. 1982;159:64.
17. Wilkerson RC, Linton YM, Fonseca DM, Schultz TR, Price DC, Strickman DA. Making mosquito taxonomy useful: a stable classification of tribe aedini that balances utility with current knowledge of evolutionary relationships. PLoS One. 2015;10:e0133602.
18. Mosquito Taxonomic Inventory [http://mosquito-taxonomic-inventory.info/]. Accessed 15 Aug 2016.
19. Lord JS, Al-Amin HM, Chakma S, Alam MS, Gurley ES, Pulliam JR. Sampling design influences the observed dominance of Culex tritaeniorhynchus: considerations for future studies of Japanese encephalitis virus transmission. PLoS Negl Trop Dis. 2016;10:e0004249.
20. Ahmed TU, Janatt KN, Akhter S, Ahmed RU, Dewan ZU, Khoda ME. Studies on mosquitoes of Thakurgaon district, Bangladesh. Bangladesh J Entomol. 2004;14:47–62.
21. Aslamkhan M, Wolfe MS. Bancroftian filariasis in two villages in Dinajpur District, East Pakistan. II. Entomological investigations. Am J Trop Med Hyg. 1972;21:30–7.
22. Reinert JF. Contributions to the mosquito fauna of southeast Asia XVI. Genus Aedes Meigen, subgenus Aedimorphus Theobald in southeast Asia. Contrib Am Entomol Inst. 1973;9:1–218.
23. Aslamkhan M. A redescription of Aedes (Aedimorphus) punctiferonisi (Ludlow) from Pakistan. Biologia. 1971;1:765.
24. Ahmed TU, Joshi GP, Ahmed RU, Akhter S, Hakim MA, Bhuiyan MRK, et al. On observation of the abundance of mosquitoes in a teagarden area of Bangladesh. J Zool. 1991;16:119–34.
25. Bashar K. Status and distribution of vectors mosquito fauna in Jahangimargar University (U) campus. Bangladesh J Life Sci. 2006;18:35–44.
26. Nasiruddin M. Mosquitoes breeding in tree-holes and bamboo stumps in Dacca (East Pakistan). Pak J Health. 1952;2:110–2.
27. Theobald FV. First report on the collection of Culicidae and Corethridae in the Indian Museum, Calcutta, with descriptions of new genera and species. Rec Indian Mus. 1908;2:287–302.
28. Ahmed TU, Joshi GP, Ahmed RU, Dewan ZU, Chowdhury MS, Akhter S. Container habitat mosquitoes of Bangladesh. J Zool. 1990;5:7–16.
29. Banaraj PJ. A revision of the culicine mosquitoes of India. Part VI. Some Indian species of the genus Finlayo Theo. Adult stage. Indian J Med Res. 1923;11:480–9.
30. Banaraj PJ. A revision of the culicine mosquitoes of India. Part XXIII. The genus Aedes (sens. lat) and the classification of the subgenera. Descriptions of the Indian species of Aedes (Aedimorphus), Aedes (Chelecoretagus) and Aedes (Banksinata) with notes on Aedes (Stegomyia) variogustus. Indian J Med Res. 1928;15:663–4.
31. Ahmed TU, Joshi GP, Ahmed RU, Begum MN, Akhter S, Khoda ME. Study on seasonal density of common mosquitoes in jungle area of Modhupur, Tangail. J Zool. 1989;4:1–14.
32. Banaraj PJ. A revision of the culicine mosquitoes of India. Part VII. Further descriptions of Indian species of Finlayo Theo. Indian J Med Res. 1924;11:845–65.
33. Banaraj PJ. A revision of the culicine mosquitoes of India. Part XXV. The genera Muicidus, Mimmomyia, Ficatella, Rachionotomyia and Hodgesia. Indian J Med Res. 1929;16:1054–8.
34. Renshaw M, Elias M, Maheshwary NP, Hassan MM, Silver JB, Birley MH. A survey of larval and adult mosquitoes on the flood plains of Bangladesh, in relation to flood-control activities. Ann Trop Med Parasit. 1996;90:321–34.
35. Ahmed TU, Nur J, Naved AF. Mosquito populations, including new record, in the tea gardens of Bangladesh. Bangladesh J Entomol. 2000;19:45–60.
36. Ameen M. A systematic account of the insect fauna of Dacca City and its suburbs. 3. Culicidae. J Asiatic Soc Bangladesh. 1971;16:221–5.
37. Ameen M, Moizuddin M. Bionomics of the common mosquitoes of Dacca. J Nat Hist. 1973;7:1–21.
38. Banaraj PJ. A revision of the culicine mosquitoes of India. Part IV. The larvae of some Indian species of Finlayo Theo. Indian J Med Res. 1923;11:222–3.
39. Banaraj PJ. Some new culicine mosquitoes found in India, and a note on Finlayo assamensis (Theo.). Bull Entomol Res. 1923;13:405–8.
40. Ameen M, Huq MF. A systematic account of the insect fauna of Dacca City and its suburbs. 2. Diptera. J Asiatic Soc Pakistan. 1970;15:217–21.
41. Ameen M, Hossain MI, Khan MDH. Resting behavior, biting activity pattern and host preference of common mosquitoes of Dhaka City. Bangladesh J Entomol. 1982;10:35–48.
42. Ameen M, Hossain MI, Khan MDH. Seasonal prevalence of the common mosquitoes of Dhaka city. Dhaka Univ Stud B. 1984;22:79–89.
43. Ameen M, Moizuddin M. Duration of the various developmental stages of Aedes aegypti (L) (Diptera: Culicidae) in Dacca City. Dacca Univ Stud B. 1973;21:15–25.
145. Belkin JN. The mosquitoes of the South Pacific (Diptera, Culicidae), vol. 1 and 2. Berkeley and Los Angeles: University of California Press; 1962.
146. Harbach RE. *Culex pipiens*: species versus species complex taxonomic history and perspective. J Am Mosq Control Assoc. 2012;28:10–23.
147. Tanaka K. Studies on the pupal mosquitoes of Japan. Genus Lutzia, with establishment of two new subgenera, Metalutzia and Isulalutzia (Diptera, Culicidae). Jpn J Syst Entomol. 2003;9:159–69.
148. Milligan S. Introductory speech by the agricultural adviser. In: Fletcher TB, editor. Proceedings of the fourth entomological meeting held at pusa on the 7th to 12th February 1921. Calcutta: Superintendent Government Printing; 1921. p. 1–13.
149. Harbach RE, Howard TM. Corrections in the status and rank of names used to denote varietal forms of mosquitoes (Diptera: Culicidae). Zootaxa. 2007;1542:35–48.
150. Thurman EB. A contribution to a revision of the Culicidae of northern Thailand. Univ Maryland Agr Exp Sta Bull. 1959;A100:1–182.