Proper Functors and their Rational Fixed Point

Stefan Milius†,1

1 Lehrstuhl für Theoretische Informatik
Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

Abstract
The rational fixed point of a set functor is well-known to capture the behaviour of finite coalgebras. In this paper we consider functors on algebraic categories. For them the rational fixed point may no longer be a subcoalgebra of the final coalgebra. Inspired by Ésik and Maletti’s notion of proper semiring, we introduce the notion of a proper functor. We show that for proper functors the rational fixed point is determined as the colimit of all coalgebras with a free finitely generated algebra as carrier and it is a subcoalgebra of the final coalgebra. Moreover, we prove that a functor is proper if and only if that colimit is a subcoalgebra of the final coalgebra. These results serve as technical tools for soundness and completeness proofs for coalgebraic regular expression calculi, e.g. for weighted automata.

1998 ACM Subject Classification F.3.2 Semantics of Programming Languages

Keywords and phrases proper functor, proper semiring, coalgebra, rational fixed point

Digital Object Identifier 10.4230/LIPIcs...

1 Introduction
Coalgebras allow to model many types of systems within a uniform and conceptually clear mathematical framework [27]. One of the key features of this framework is final semantics; the final coalgebra provides a fully abstract domain of system behaviour (i.e. it identifies precisely the behaviourally equivalent states). For example, the standard coalgebraic modelling of deterministic automata (without restricting to finite state sets) yields the set of formal languages as final coalgebra. Restricting to finite automata, one obtains precisely the regular languages [26]. It is well-known that this correspondence can be generalized to locally finitely presentable (lfp) categories [5], where finitely presentable objects play the role of finite sets. For a finitary functor \(F \) (modelling a coalgebraic system type) one then obtains the rational fixed point \(\varrho F \), which provides final semantics to all coalgebras with a finitely presentable carrier [20]. Moreover, the rational fixed point is fully abstract whenever the classes of finitely presentable and finitely generated objects agree in the base category and \(F \) preserves monomorphisms [9, Proposition 3.12]. While the latter assumption on \(F \) is very mild (and is not even needed in the case of a lifted set functor), the former one on the base category is more restrictive. However, it is still true for many categories used in the construction of coalgebraic system models (e.g. sets, posets, graphs, vector spaces, commutative monoids, nominal sets and convex sets).

In this paper we will consider rational fixed points in algebraic categories (a.k.a. finitary varieties), i.e. categories of algebras specified by a finitary signature of operation symbols and
a set of equations (equivalently, these are precisely the Eilenberg-Moore categories for finitary monads on sets). Being the target of generalized determinization [30], these categories provide a paradigmatic setting for coalgebraic modelling beyond sets. For example, non-deterministic automata, weighted or probabilistic ones [18], or context-free grammars [35] are coalgebraically modelled over the categories of join-semilattices, modules for a semiring, convex sets, and idempotent semirings, respectively. In algebraic categories one would like that the rational fixed point, in addition to being fully abstract, is determined already by those coalgebras carried by free finitely generated algebras, i.e. precisely those coalgebras arising by generalized determinization. In particular, this feature is used in completeness proofs for generalized regular expressions calculi [9,30,31]; there one proves that the quotient of syntactic expressions modulo axioms of the calculus is (isomorphic to) the rational fixed point by establishing its universal property as a final object for that quotient. A key feature of the settings in loc. cit. is that it suffices to verify the finality only w.r.t. coalgebras with a free finitely generated carrier.

The purpose of the present paper is to provide sufficient conditions on the algebraic base category and coalgebraic type functor that ensure such finality proofs are sound. More precisely, inspired by Ésik and Maletti’s notion of a proper semiring (which is in fact a notion concerning weighted automata), we introduce proper functors (Definition 3.11), and we prove that for a proper functor on an algebraic category the rational fixed point is determined by the coalgebras with a free finitely presentable carrier. More precisely, let $T : \text{Set} \to \text{Set}$ be a finitary monad on sets and $F : \text{Set}^T \to \text{Set}^T$ be a finitary endofunctor preserving surjective T-algebra morphisms (note that the last assumption always holds if F is lifted from some endofunctor on Set). If F is proper, then the rational fixed point is the colimit φF of the inclusion functor of the full subcategory $\text{Coalg}_{\text{free}} F$ formed by all F-coalgebras of the form $TX \to FTX$, where X is a finite set (Theorem 3.15). Moreover, we show that a functor F is proper if and only if φF is a subcoalgebra of the final coalgebra νF (Theorem 3.14). As a consequence we also obtain that for a proper functor F finality of a given locally finitely presentable coalgebra can be established by only verifying that property for all coalgebras from $\text{Coalg}_{\text{free}} F$ (Corollary 3.17).

We also provide more easily established sufficient conditions on Set^T and F that ensure properness: F is proper if finitely generated algebras of Set^T are closed under kernel pairs and F maps kernel pairs to weak pullbacks in Set. For a lifting F this holds whenever the lifted functor on sets preserves weak pullbacks; in fact, in this case the above conditions were shown to entail Corollary 3.17 in previous work [9, Corollary 3.36]. However, the type functor (on the category of commutative monoids) of weighted automata with weights drawn from the semiring of natural numbers provides an example of a proper functor for which the above condition on Set^T fails.

Another recent related work concerns the so-called locally finite fixed point ϑF [21]; this provides a fully abstract behavioural domain whenever F is a finitary endofunctor on an lfp category preserving monomorphisms. In loc. cit. it was shown that ϑF captures a number of instances that cannot be captured by the rational fixed point, e.g. context free languages [35], constructively algebraic formal power-series [24,36], Courcelle’s algebraic trees [8,10], and the behaviour of stack machines [17]. However, as far as we know, ϑF is not amenable to the simplified finality check mentioned above unless F is proper.

Putting everything together, in an algebraic category we obtain the following picture of fixed points of F (where \twoheadrightarrow denotes quotient coalgebras and \hookrightarrow a subcoalgebra):

$$\varphi F \twoheadrightarrow \vartheta F \twoheadrightarrow \vartheta F \hookrightarrow \nu F.$$

We exhibit an example, where all four fixed points are different. However, if F is proper and
preserves monomorphisms, then \(\varphi F, \rho F \) and \(\vartheta F \) are isomorphic and fully abstract, i.e. they collapse to a subcoalgebra of the final one: \(\varphi F \cong \rho F \cong \vartheta F \implies \nu F \).

The rest of the paper is structured as follows: in Section 2 we collect some technical preliminaries and recall the rational and locally finite fixed points more in detail. Section 3 introduces proper functors and presents all our results while in Section 4 we present the proof of our main result Theorem 3.14. Finally, Section 5 concludes the paper.

For the convenience of the reader we quote in the appendix a number of technical lemmas from [9] that are needed for our proofs.

2 Preliminaries

In this section we recall a few preliminaries needed for the subsequent development. We assume that readers are familiar with basic concepts of category theory.

We denote the coproduct of two object \(X \) and \(Y \) of a category \(A \) by \(X + Y \) with injections \(\text{inl} : X \to X + Y \) and \(\text{inr} : Y \to X + Y \).

Remark 2.1. Recall that a strong epimorphism in a category \(\mathcal{A} \) is an epimorphism \(e : A \to B \) of \(\mathcal{A} \) that has the unique diagonal property w.r.t. any monomorphism. More precisely, whenever we have a commutative square

\[
\begin{array}{ccc}
A & \xrightarrow{e} & B \\
\downarrow f & & \downarrow g \\
C & \xrightarrow{m} & D
\end{array}
\]

where \(m : C \to D \) is a monomorphism, then there exists a unique diagonalization \(d : B \to C \) with \(d \cdot e = f \) and \(m \cdot d = g \).

Similarly, a jointly epimorphic family \(e_i : A_i \to B, i \in I, \) is strong if it has the similar diagonalization property: for every monomorphism \(m : C \to D \) and morphisms \(g : B \to D \) and \(f_i : A_i \to C, i \in I, \) such that \(m \cdot f_i = g \cdot e_i \) holds for all \(i \in I, \) there exists a unique \(d : C \to D \) such that \(m \cdot d = g \) and \(d \cdot e_i = f_i \) for all \(i \in I. \)

On several occasions we will make use of the following fact.

Lemma 2.2. Let \(D : \mathcal{D} \to \mathcal{C} \) be a diagram with a colimit cocone \(\text{in}_d : Dd \to C. \) Then the colimit injections \(\text{in}_d \) form a strongly epimorphic family.

Proof. First, it is easy to see that the \(\text{in}_d \) form a jointly epimorphic family. To see that it is strong, suppose we have a monomorphism \(m : M \to N \) and morphisms \(g : C \to N \) and \(f_d : Dd \to M \) for every object \(d \) in \(\mathcal{D} \) such that \(m \cdot f_d = g \cdot \text{in}_d. \) Then the \(f_d : Dd \to M \) form a cocone of \(D. \) Indeed, for every morphism \(h : d \to d' \) of \(\mathcal{D} \) we have

\[
m \cdot f_{d'} \cdot Dh = g \cdot \text{in}_{d'} \cdot Dh = g \cdot \text{in}_d = m \cdot f_d,
\]

which implies that \(f_{d'} \cdot Dh = f_d \) since \(m \) is a monomorphism. Therefore there exists a unique \(i : C \to M \) such that \(f_d = i \cdot \text{in}_d \) for every \(d \) in \(\mathcal{D}. \) It follows that also \(m \cdot i = g \) since this equation holds when extended by every \(\text{in}_d; \) then use that the \(\text{in}_d \) form an epimorphic family.

2.1 Algebras and Coalgebras

We assume that readers are familiar with algebras and coalgebras for an endofunctor. Given an endofunctor \(F \) on some category \(\mathcal{A} \) we write \((\nu F, t) \) for the final \(F \)-coalgebra (if it exists).
Recall, that the final F-coalgebra exists under mild assumptions on \mathcal{A} and F, e.g. whenever \mathcal{A} is locally presentable and F an accessible functor (see [5]). For any coalgebra $c : C \to FC$ we will write $\varepsilon : C \to vF$ for the unique coalgebra morphism.

If \mathcal{A} is a concrete category, i.e. equipped with a faithful functor $| \cdot | : \mathcal{A} \to \text{Set}$, one defines *behavioural equivalence* as the following relation \sim: given two F-coalgebras (X, c) and (Y, d) then $x \sim y$ holds for $x \in |X|$ and $y \in |Y|$ if there is another F-coalgebra (Z, e) and F-coalgebra morphisms $f : X \to Z$ and $g : Y \to Z$ with $|f|(x) = |g|(y)$.

The base categories \mathcal{A} of interest in this paper are the *algebraic categories*, i.e. categories of Eilenberg-Moore algebras (or T-algebras, for short) for a finitary monad T on Set. Equivalently, those categories are precisely the finitary varieties, i.e. category of Σ-algebras for a finitary signature Σ satisfying the a set of equations (e.g. the categories of monoids, groups, vector spaces, join-semilattices).

Given a monad T with unit $\eta : \text{id} \to T$ and multiplication $\mu : TT \to T$, we will sometimes make use of its *Kleisli extension*, i.e. the operation $(-)^* : T$ that takes any morphism $f : X \to TY$ to $f^* = \mu_Y \cdot T\tilde{f} : TX \to TY$. Note that f^* is the unique T-algebra morphism from (TX, μ_X) to (TY, μ_Y) such that $f^* \circ \eta_X = f$.

Example 2.3. The leading example in this paper are weighted automata considered as coalgebras. Let $(S, +, 0, 1)$ be a semiring, i.e. $(S, +, 0)$ is a commutative monoid, $(S, \cdot, 1)$ a monoid and the usual distributive laws hold: $r \cdot 0 = 0 = 0 \cdot r$, $r \cdot (s + t) = r \cdot s + r \cdot t$ and $(r + s) \cdot t = r \cdot t + s \cdot t$. We just write S to denote a semiring. As base category \mathcal{A} we consider the category S-Mod of S-semimodules; recall that a (left) S-semimodule is a commutative monoid $(M, +, 0)$ together with an action $S \times M \to M$, written as juxtaposition sm for $s \in S$ and $m \in M$, such that for every $r, s, l \in S$ and every $m, n \in M$ the following laws hold:

\[
\begin{align*}
(r + s)m &= rm + sm & 0m &= 0 & 1m &= m \\
rm + m &= rm + rn & r0 &= 0 & rs &= (r \cdot s)m
\end{align*}
\]

An S-semimodule morphism is a monoid homomorphism $h : M_1 \to M_2$ such that $h(rm) = rh(m)$ for each $r \in S$ and $m \in M_1$.

Now consider the functor $FX = S \times X^A$ on S-Mod, where A is an input alphabet. Then it is easy to see that an S-weighted automaton with n states is precisely a coalgebra on the free S-semimodule on n generators, i.e. $S^n \to S \times (S^n)^A$. The final S-coalgebra is carried by the set S^A of all formal power series (or weighted languages) over A with the obvious (coordinatewise) S-semimodule structure and with the F-coalgebra structure given by $\langle o, t \rangle : S^A \to S \times (S^A)^A$ with $o(L) = L(\varepsilon)$ and $t(L)(a) = \lambda w. L(aw)$; it is straightforward to verify that o and t are S-semimodule morphisms and form a final coalgebra.

An important special case of S-weighted automata are ordinary nondeterministic automata. One takes $S = \{0, 1\}$ the Boolean semiring for which the category of S-semimodules is (isomorphic to) the category of join-semilattices. Then $FX = \{0, 1\} \times X^A$ is the coalgebraic type functor of deterministic automata with input alphabet A, and there is a bijective correspondence between an F-coalgebra on a free join-semilattice and non-deterministic automata. In fact in one direction one restricts $P_f X \to \{0, 1\} \times (P_f X)^A$ to the set X of generators, and in the other direction one performs the well-known subset construction. The final coalgebra is carried by the set of all formal languages on A in this case.

Another special case is where S is a field. In this case, S-semimodules are precisely the vector spaces over the field S. Moreover, since every field is freely generated by its basis, it follows that the S-weighted automata are precisely those F-coalgebras whose carrier is a finite dimensional vector space over S.

XX:4 Proper Functors

- The final F-coalgebra exists under mild assumptions on \mathcal{A} and F.
- For any coalgebra $c : C \to FC$ we write $\varepsilon : C \to vF$.
- **Example 2.3.** Weighted automata as coalgebras on S-semimodules.
- S-weighted automata are a special case of weighted automata.
- Field S gives finite dimensional vector spaces.

We will now recall a few properties of algebraic categories Set^T, where T is a finitary set monad, needed for our proofs.

Remark 2.4.

1. Recall that every strong epimorphisms e in Set^T is regular, i.e. e is the coequalizer of some pair of T-algebra morphisms. It follows that the classes of strong and regular epimorphisms coincide, and these are precisely the surjective T-algebra morphisms. Similarly, jointly strongly epimorphic families of morphisms are precisely the jointly surjective families.

2. We will later use that every free T-algebra TX is (regular) projective, i.e. given any surjective T-algebra morphism $q: A \to B$ then for every T-algebra morphism $h: TX \to B$ there exists a T-algebra morphism $g: TX \to A$ such that $q \cdot g = h$:

3. Furthermore, note that every finitely presentable T-algebra A is a regular quotient of a free T-algebra TX with a finite set X of generators. Indeed, A is presented by finitely many generators and relations. So by taking X as a finite set of generators of A, the unique extension of the embedding $X \hookrightarrow A$ yields a surjective T-algebra morphism $TX \twoheadrightarrow A$.

2.2 The Rational Fixed Point

As we mentioned in the introduction the canonical domain of behaviour of ‘finite’ coalgebras is the rational fixed point of an endofunctor on F. Its theory can be developed for every finitary endofunctor on a locally finitely presentable category. We will now recall the necessary background material.

A filtered colimit is the colimit of a diagram $\mathcal{D} \to \mathcal{C}$ where \mathcal{D} is a filtered category (i.e. every finite subdiagram has a cocone in \mathcal{D}), and a directed colimit is a colimit whose diagram scheme \mathcal{D} is a directed poset. A functor is called finitary if it preserves filtered (equivalently directed) colimits. An object C is called finitely presentable (fp) if the hom-functor $\mathcal{C}(C, -)$ preserves filtered (equivalently directed) colimits, and finitely generated (fg) if $\mathcal{C}(C, -)$ preserves directed colimits of monos (i.e. colimits of directed diagrams $D : \mathcal{D} \to \mathcal{C}$ where all connecting morphisms Df are monic in \mathcal{C}). Clearly any fp object is fg, but the converse fails in general. In addition, fg objects are closed under strong epis (quotients), which fails for fp objects in general.

A cocomplete category \mathcal{C} is called locally finitely presentable (lfp) if there is a set of finitely presentable objects in \mathcal{C} such that every object of \mathcal{C} is a filtered colimit of objects from that set. We refer to [5] for further details.

Examples of lfp categories are the categories of sets, posets and graphs, with finitely presentable objects precisely the finite sets, posets, and graphs, respectively. The category of vector spaces over the field k is lfp with finite-dimensional spaces being the fp-objects. Every algebraic category is lfp. The finitely generated objects are precisely the finitely generated algebras (in the sense of general algebra), and finitely presentable objects are precisely those algebras specified by finitely many generators and finitely many relations.

Assumptions 2.5. For the rest of this section we assume that F denotes a finitary endofunctor on the lfp category \mathcal{A}.
Proper Functors

The rational fixed point is a fully abstract model of behaviour for all F-coalgebras whose carrier is an fp-object. We now recall its construction \[2\].

\begin{definition}
Denote by Coalg_F the full subcategory of all F-coalgebras on fp carriers, and let (ϱ_F, ρ) be the colimit of the inclusion functor of $\text{Coalg}_{fp} F$ into $\text{Coalg} F$:

$$(\varrho_F, \rho) = \text{colim}(\text{Coalg}_{fp} F \hookrightarrow \text{Coalg} F)$$

with the colimit injections $a^\sharp : A \to \varrho F$ for every coalgebra $a : A \to FA$ in $\text{Coalg}_{fp} F$.

We call (ϱ_F, ρ) the rational fixed point of F; indeed, it is a fixed point:

\begin{proposition} \[2\]
The coalgebra structure $\rho : \varrho F \to F(\varrho F)$ is an isomorphism.
\end{proposition}

The rational fixed point can be characterized by a universal property both as a coalgebra and as an algebra for F: as a coalgebra ϱF is the \textit{final locally finitely presentable coalgebra} \[20\], and as an algebra it is the \textit{initial iterative algebra} \[2\]. We will not recall the latter notion as it is not needed for the technical development in this paper. Locally finitely presentable (lfp, for short) coalgebras for F can be characterized as precisely those F-coalgebra obtained as a filtered colimit of a diagram of coalgebras from $\text{Coalg}_{fp} F$:

\begin{proposition} \[20\], Corollary III.13 \]
An F-coalgebra is lfp if and only if it is a colimit of some filtered diagram $D \to \text{Coalg}_{fp} F \hookrightarrow \text{Coalg} F$.
\end{proposition}

For $\mathcal{A} = \text{Set}$ an F-coalgebra (X, c) is lfp iff it is \textit{locally finite}, i.e. every element of X is contained in a finite subcoalgebra. Analogously, for \mathcal{A} the category of vector spaces over the field k an F-coalgebra (X, c) is lfp iff it is \textit{locally finite dimensional}, i.e. every element of X is contained in a finite dimensional subcoalgebra.

Of course, there is a unique coalgebra morphism $\varrho F \to \nu F$. Moreover, in many cases ϱF is \textit{fully abstract} for lfp coalgebras, i.e. besides being the final lfp coalgebra the above coalgebra morphism is monic; more precisely, if the classes of fp- and fg-objects coincide and F preserves monos, then ϱF is fully abstract (see Proposition \[X.1\]). The assumption that the two object classes coincide is often true:

\begin{example}
1. In the category of sets, posets, and graphs, fg-objects are fp and those are precisely the finite sets, posets, and graphs, respectively.
2. A \textit{locally finite variety} is a variety of algebras, where every free algebra on a finite set of generators is finite. It follows that fp- and fg-objects coincide and are precisely the finite algebras. Concrete examples are the categories of Boolean algebras, distributive lattices and join-semilattices.
3. In the category of S-semimodules for a semiring S the fp- and fg-objects need not coincide in general. However, if the semiring S is \textit{Noetherian} in the sense of Ésik and Maletti \[13\], i.e. every subsemimodule of a finitely generated S-semimodule is itself finitely generated, then fg- and fp-semimodules coincide. Examples of Noetherian semirings are: every finite semiring, every field, every principal ideal domain such as the ring of integers and therefore every finitely generated commutative ring by Hilbert’s Basis Theorem. The tropical semiring $(N \cup \{\infty\}, \min, +, \infty, 0)$ is not Noetherian \[12\]. The usual semiring of natural numbers is also not Noetherian: the \mathbb{N}-semimodule $\mathbb{N} \times \mathbb{N}$ is finitely generated but its subsemimodule generated by the infinite set $\{(n, n+1) \mid n \geq 1\}$ is not. However, \mathbb{N}-semimodules are precisely the commutative monoids, and for them fg- and fp-objects coincide (this is known as Redei’s theorem \[25\]; see Freyd \[15\] for a very short proof).
4. Recently, it was established by Sokolova and Woracek \[32\] that in the category of convex sets, i.e. the Eilenberg-Moore category for the (sub)distribution monad on sets, the classes of fp- and fg-objects coincide.
\end{example}
Example 2.10. We list a number of examples of rational fixed points for cases where they do form subcoalgebras of the final coalgebra.

1. For the functor \(FX = \{0, 1\} \times X^A \) on \(\text{Set} \) the finite coalgebras are deterministic automata, and the rational fixed point is carried by the set of regular languages on the alphabet \(A \).

2. For any signature \(\Sigma = (\Sigma_n)_{n<\omega} \) of operation symbols with prescribed arity we have the associated polynomial endofunctor on sets given by \(F_\Sigma X = \bigsqcup_{n<\omega} \Sigma_n \times X^n \). Its final coalgebra is carried by the set of all (finite and infinite) \(\Sigma \)-trees, i.e. rooted and ordered trees where each node with \(n \)-children is labelled by an \(n \)-ary operation symbol. The rational fixed point is the subcoalgebra given by rational (or regular) \(\Sigma \)-trees, i.e. those \(\Sigma \)-trees that have only finitely many different subtrees (up to isomorphism) – this characterization is due to Ginali \[16\]. For example, for the signature \(\Sigma \) with a binary operation symbol \(* \) and a constant \(c \) the following infinite \(\Sigma \)-tree (here written as an infinite term) is rational:

\[
c * (c * (c * \cdots));
\]

in fact, its only subtrees are the whole tree and the single node tree labelled by \(c \).

3. For the functor \(FX = \mathbb{R} \times X \) on \(\text{Set} \) the final coalgebra is carried by the set \(\mathbb{R}^\omega \) of real streams, and the rational fixed point is carried by its subset of eventually periodic streams (or lassos). Considered as a functor on the category of vector spaces over \(\mathbb{R} \), the final coalgebra \(\nu F \) remains the same, but the rational fixed point \(\varrho F \) consists of all rational streams \[28\].

4. For the functor \(FX = S \times X^A \) on the category \(S\text{-Mod} \) of \(S \)-semimodules for the semiring \(S \) we already mentioned that \(\nu F = S^A^* \) consists of all formal power-series. Whenever the classes of fg- and fp-semimodules coincide, e.g. for every Noetherian semiring \(S \) or the semiring of natural numbers, then \(gF \) is formed by the recognizable formal power-series; from the Kleene-Schützenberger theorem \[29\] (see also \[8\]) it follows that these are, equivalently, the rational formal power-series.

5. On the category of presheaves \(\text{Set}^F \), where \(F \) is the category of all finite sets and maps between them, consider the functor \(FX = V + X \times X + \delta(X) \), where \(V : F \rightarrow \text{Set} \) is the embedding and \(\delta(X)(n) = X(n+1) \). This is a paradigmatic example of a functor arising from a binding signature for which initial semantics was studied by Fiore et al. \[14\]. The final coalgebra \(\nu F \) is carried by the presheaf of all \(\lambda \)-trees modulo \(\alpha \)-equivalence: \(\nu F(n) \) is the set of (finite and infinite) \(\lambda \)-trees in \(n \) free variables (note that such a tree may have infinitely many bound variables). And \(gF \) is carried by the rational \(\lambda \)-trees, where an \(\alpha \)-equivalence class is called rational if it contains at least one \(\lambda \)-tree which has (up to isomorphism) only finitely many different subtrees (see \[4\]). Rational \(\lambda \)-trees also appear as the rational fixed point of a very similar functor on the category of nominal sets \[23\]. Similarly, for any functor on nominal sets arising from a binding signature \[22\].

As we mentioned previously, whether fg- and fp-objects coincide is currently unknown in some base categories used in the coalgebraic modelling of systems, for example, in idempotent semirings (used in the treatment of context-free grammars \[35\]), in algebras for the stack monad (used for modelling configurations of stack machines \[17\]); or it even fails, for example in the category of finitary monads on sets (used in the categorical study of algebraic trees \[3\]) or in Eilenberg-Moore categories for a monad in general (the target categories of generalized determinization \[30\]).

As a remedy, in recent joint work with Pattinson and Wissmann \[21\], we have introduced the locally finite fixed point which provides a fully abstract model of finitely generated behaviour. Its construction is very similar to that of the rational fixed point but based on
Proper Functors

fg- in lieu of fp-objects. In more detail, one considers the full subcategory $\text{Coalg}_{\text{fg}} F$ of all F-coalgebras carried by an fg-object and takes the colimit of its inclusion functor:

$$(\vartheta F, \ell) = \text{colim}(\text{Coalg}_{\text{fg}} F \rightharpoonup \text{Coalg } F).$$

Theorem 2.11 ([21], Theorems 3.10 and 3.12). Suppose that the finitary functor $F : \mathcal{A} \to \mathcal{A}$ preserves monos. Then $(\vartheta F, \ell)$ is a fixed point for F, and it is a subcoalgebra of νF.

Furthermore, like its brother, the rational fixed point, ϑF is characterized by a universal property both as a coalgebra and as an algebra: it is the final locally finitely generated coalgebra and the initial fg-iterative algebra ([21], Theorems 3.8 and Corollary 3.18).

Under additional assumptions, which all hold in any algebraic category, we have a close relation between ϑF and ϑF; in fact, the following is a consequence of ([21], Theorem 3.22):

Theorem 2.12. Suppose that \mathcal{A} is an algebraic category and that the finitary functor $F : \mathcal{A} \to \mathcal{A}$ preserves monos. Then ϑF is the image of gF in the final coalgebra.

More precisely, taking the (strong-epi, mono)-factorization of the unique F-coalgebra morphism $gF \to \nu F$ yields ϑF, i.e. for F preserving monos on an algebraic category we have the following picture:

$$\vartheta F \to \vartheta F \Rightarrow \nu F.$$

If furthermore, fg- and fp-objects coincide, then $\vartheta F \cong gF$, i.e. the left-hand morphism is an isomorphism.

In the introduction we briefly mentioned a number of interesting instances of ϑF that are not (known to be) instances of the rational fixed point; see [21] for details.

A concrete example, where gF is not a subcoalgebra of νF (and hence not isomorphic to ϑF) was given in [9] Example 3.15. We present a new, simpler example based on similar ideas:

Example 2.13. 1. Let \mathcal{A} be the category of algebras for the signature Σ with two unary operation symbols u and v. The natural numbers \mathbb{N} with the successor function as both operations $u^\mathbb{N}$ and $v^\mathbb{N}$ form an object of \mathcal{A}. We consider the functor $FX = \mathbb{N} \times X$ on \mathcal{A}. Coalgebras for F are automata carried by an algebra A in \mathcal{A} equipped with two Σ-algebra morphisms: an output morphism $A \to \mathbb{N}$ and a next state morphism $A \to A$. The final coalgebra is carried by the set \mathbb{N}^ω of streams of naturals with the coordinate-wise algebra operations and with the coalgebra structure given by the usual head and tail functions.

Note that the free Σ-algebra on a set X of generators is $TX \cong \{u, v\}^* \times X$; we denote its elements by $w(x)$ for $w \in \{u, v\}^*$ and $x \in X$. The operations are given by prefixing words by the letters u and v, respectively: $sTX : w(x) \mapsto sw(x)$ for $s = u$ or v.

Now one considers the F-coalgebra $a : A \to FA$, where $A = T\{x\}$ is free Σ-algebra on one generator x and a is determined by $a(x) = (0, u(x))$. Clearly, $\uparrow a(x)$ is the stream $(0, 1, 2, 3, \cdots)$ of all natural numbers, and since $\uparrow a$ is a Σ-algebra morphism we have

$$\uparrow a(u(x)) = \uparrow a(v(x)) = (1, 2, 3, 4, \cdots).$$

Since A is (free) finitely generated, it is of course, finitely presentable as well. Thus, (A, a) is a coalgebra in $\text{Coalg}_{\text{fg}} F$. However, we shall now prove that the (unique) F-coalgebra morphism $a^\uparrow : A \to gF$ does not merge $u(x)$ and $v(x)$.
We prove this by contradiction. So suppose that \(a^\#(u(x)) = a^\#(v(x)) \). By the construction of \(qF \) as a filtered colimit (see Notation 2.6) we know that there exists a coalgebra \(b : B \to FB \) in \(\text{Coalg}_FP \) and an \(F \)-coalgebra morphism \(h : A \to B \) with \(h(u(x)) = h(v(x)) \). Since \(B \) is a finitely presented \(\Sigma \)-algebra it is the quotient in \(\mathcal{A} \) of a free algebra \(A' \) via some quotient \(\Sigma \)-algebra morphism \(q : A' \to B \), say. Next observe, that there is a coalgebra structure \(a' : A' \to FA' \) such that \(q \) is an \(F \)-coalgebra morphism from \((A', a') \) to \((B, b) \): for \(Fq \) is a surjective \(\Sigma \)-algebra morphism and so we obtain \(q' \) by using projectivity of \(A' \) w.r.t. \(b \cdot q : A' \to FB \) (cf. Remark 2.4.2).

Now choose a term \(t_2 \) in \(A' \) with \(q(t_2) = h(t_2) \). This implies that \(q(u(t_2)) = q(v(t_2)) \) since \(q \) is an \(\Sigma \)-algebra morphism. Since \(h \) is an \(F \)-coalgebra morphism, it merges the right-hand components of \(a(u(x)) \) and \(a(v(x)) \), in symbols: \(h(uu(x)) = h(vu(x)) \). It follows that \(q \) satisfies:
\[
q(u^{n+1}(t_2)) = q(vu^n(t_2)) \quad \text{for } n \in \mathbb{N}. \tag{2.1}
\]

We need to prove that there exists no finite set of relations \(E \subseteq A' \times A' \) generating the above congruence \(q : A' \to B \). So suppose the contrary, and let \(A_0' \) be the \(\Sigma \)-subalgebra of \(A' \) generated by \(\{t_2\} \), i.e. \(A_0' \cong \{u, v\}^\ast \times \{t_2\} \). Since \(q(t_2) = h(x) \) and \(q \) and \(h \) are both coalgebra morphisms we know that \(\triangleright a' = \triangleright b \cdot q \) and \(\triangleright b \cdot h = \triangleright a \) and therefore
\[
\triangleright a'(t_2) = \triangleright b(q(x)) = \triangleright b(h(x)) = \triangleright a(x) = (0, 1, 2, 3, \ldots).
\]

Since \(\triangleright a' \) is a \(\Sigma \)-algebra morphism it follows that for a word \(w \in \{u, v\}^\ast \) of length \(n \) we have
\[
\triangleright a'(w(t_2)) = (n, n + 1, n + 2, n + 3, \ldots).
\]

Thus, when \(w, w' \in \{u, v\}^\ast \) of different length, then the pair \((w(t_2), w'(t_2)) \) cannot be in the congruence generated by \(E \) (otherwise we would have \(q(w(t_2)) = q(w'(t_2)) \)) which implies \(\triangleright a'(w(t_2)) = \triangleright a'(w'(t_2)) \).

Now let \(\ell \) be the maximum length of words from \(\{u, v\}^\ast \) occurring in any pair contained in the finite set \(E \). Then the pair \((w^{\ell+1}(t_2), vu^{\ell+1}(t_2)) \) obtained from the \(\ell + 1 \)-st equation in (2.1) is not in the congruence generated by \(E \); for if any pair of terms of height greater then \(\ell \) are related by that congruence, these two terms must have the same head symbol. Thus we arrive at a contradiction as desired.

2. In this example we also have that \(\partial F \) and \(\nu F \) do not coincide. To see this we use that \(\partial F \) is the union of images of all \(\triangleright a : TX \to \nu F \) where \((TX, a)\) ranges over those \(F \)-coalgebras whose carrier \(TX \) is free finitely generated (i.e. \(TX \) is a term algebra over some finite set \(X \)) [21, Theorem 4.4].

Note that being a \(\Sigma \)-algebra morphism any coalgebra structure \(a : TX \to FTX \) is determined by its action on the generators. And from the form of any \(TX \) we know that for any \(x \in X \) there exist \(k, n_i \in \mathbb{N} \), \(w_i \in \{u, v\}^\ast \) and \(x_i \in X \), \(i = 1, \ldots k \), such that \(x = x_0 \) and
\[
a(x_i) = (n_i, w_i(x_{i+1})) \quad \text{for } i = 0, \ldots, k - 1 \quad \text{and}
\]
\[
a(x_k) = (n_k, w_k(x_j)) \quad \text{for some } j \in \{0, \ldots, k\}.
\]
Now let \(m_i = |w_i|, i = 1, \ldots, k \), be the lengths of words. Then it follows that
\[
\dagger a(x_0) = (n_0, m_0 + n_1, m_0 + m_1 + n_2, \ldots, m_0 + \cdots + m_{k-1} + n_k, m_0 + \cdots + m_k + n_j, \cdots).
\]
Let \(m \) be the maximum of all \(n_i \) and \(m_i \). Then it is clear that the \(n \)-th entry of \(\dagger a(x_0) \) can be at most \((n + 1) \cdot m \). It follows that for any \(w \in \{u, v\}^* \) the \(n \)-th entry of \(\dagger a(w(x)) \) is bounded above by \((n + 1) \cdot m + |w| \). Thus, the entries of every stream in \(\vartheta F \) grow at most linearly. However, there are streams in \(\nu F \) for which this is not the case, e.g. the stream \((1, 2, 4, 8, \cdots)\) of powers of 2. Hence \(\vartheta F \) does not coincide with \(\nu F \).

3 Proper Functors and Coalgebras Carried by Free Algebras

The purpose of this section is to study the situation where the rational fixed point for a functor \(F \) on an algebraic category \(\text{Set}^T \) coincides with the locally finite one, and moreover, both can be constructed just from those coalgebras whose carrier is a free finitely generated coalgebra. The latter coalgebras are precisely those coalgebras arising as the results of the generalized determinization [30].

▶ **Assumptions 3.1.** Throughout the rest of the paper we assume that \(\mathcal{A} \) is an algebraic category, i.e. \(\mathcal{A} \) is (equivalent to) the Eilenberg-Moore category \(\text{Set}^T \) for a finitary monad \(T \) on \(\text{Set} \). Furthermore, we assume that \(F : \mathcal{A} \to \mathcal{A} \) is a finitary endofunctor preserving surjective \(T \)-algebra morphisms.

▶ **Remark 3.2.** 1. The most common instance is when \(F \) is a lifting of an endofunctor \(F_0 : \text{Set} \to \text{Set} \), i.e. we have a commutative square

\[
\begin{array}{ccc}
\text{Set}^T & \xrightarrow{F} & \text{Set}^T \\
U \downarrow & & \downarrow U \\
\text{Set} & \xrightarrow{F_0} & \text{Set}
\end{array}
\]

where \(U : \mathcal{A} \to \text{Set} \) is the forgetful functor. Then \(F \) preserves surjective \(T \)-algebra morphisms since every set functor \(F_0 \) preserves surjections (which are split epis in \(\text{Set} \)). In addition, \(F \) is finitary whenever \(F_0 \) is so because filtered colimits in \(\text{Set}^T \) are created by \(U \). Furthermore, observe that the assumption that \(F \) preserves monomorphisms in Theorems 2.11 and 2.12 as well as in Corollary 3.16 is not needed. Indeed, inspection of the proofs in [21] reveals that it suffices to assume that non-empty monomorphisms are preserved, and this holds for every lifted \(F \) since it does for every \(F_0 \) on \(\text{Set} \).

2. It is well known that liftings \(F : \text{Set}^T \to \text{Set}^T \) are in bijective correspondence with distributive laws of the monad \(T \) over the functor \(F_0 \), i.e. natural transformations \(\lambda : TF_0 \to F_0T \) satisfying two obvious axioms w.r.t. the unit and multiplication of \(T \) (see e.g. Johnstone [19]).

Moreover, coalgebras for the lifting \(F \) are precisely the \(\lambda \)-bialgebras, i.e. sets \(X \) equipped with an Eilenberg-Moore algebra structure \(a : TX \to X \) and a coalgebra structure \(c : X \to F_0X \) subject to the following commutativity condition

\[
\begin{array}{ccc}
TX & \xrightarrow{Tc} & TF_0X \\
\downarrow a & & \downarrow \lambda_X \\
X & \xrightarrow{c} & F_0X
\end{array}
\]

which states that \(c \) is a \(T \)-algebra morphism.
3. Let $F : \text{Set} \to \text{Set}$ have a lifting to Set^T (also denoted by F for simplicity). Generalized determinization \cite{8} is the process of turning a given coalgebra $c : X \to FTX$ in Set into the coalgebra $c^*: TX \to FTX$ for the lifting of F on Set^T. For example, for the functor $FX = \{0, 1\} \times X^\Sigma$ on Set and the finite power-set monad $T = \mathcal{P}_ Restoration unchanged.

The colimit of the inclusion functor of $\text{Coalg}_{\text{free}} F$ into the category of all F-coalgebras is denoted by

$$(\varphi F, \zeta) = \text{colim}(\text{Coalg}_{\text{free}} F \hookrightarrow \text{Coalg} F)$$

with the colimit injections $i_c : TX \to \varphi F$ for every $c : TX \to FTX$.

\textbf{Notation 3.3.} We denote by $\text{Coalg}_{\text{free}} F$ the full subcategory of $\text{Coalg} F$ given by all coalgebras $c : TX \to FTX$ whose carrier is a free finitely generated T-algebra, i.e. where X is a finite set X.

The colimit of the inclusion functor of $\text{Coalg}_{\text{free}} F$ into the category of all F-coalgebras is denoted by

$$(\varphi F, \zeta) = \text{colim}(\text{Coalg}_{\text{free}} F \hookrightarrow \text{Coalg} F)$$

with the colimit injections $i_c : TX \to \varphi F$ for every $c : TX \to FTX$.

\textbf{Notation 3.4.} Since $\text{Coalg}_{\text{free}} F$ is a full subcategory of $\text{Coalg}_{\text{fp}} F$, the universal property of the colimit φF induces a coalgebra morphism denoted by $h : \varphi F \to \varphi F$. Furthermore we write $m : \varphi F \to \nu F$ for the unique F-coalgebra morphisms into the final lfp coalgebra and the final coalgebra, respectively.

\textbf{Remark 3.5.} We shall show in Proposition \cite{5} that h is a strong epimorphism. Thus, whenever F preserves monos, we have the picture \{1, 1\} from the introduction.

Urbat \cite{33} shows that φF is always a fixed point of F. However, φF does not have a universal property similar to the coalgebras φF and ϑF. In fact, Urbat gives the following example of a coalgebra $c : TX \to FTX$ where $i_n : TX \to \varphi F$ is not the only F-coalgebra morphism:

\textbf{Example 3.6.} 1. Let \mathcal{A} be the category of algebras for the signature with one unary operation symbol u (and no equations), and let $F = \text{Id}$ be the identity functor on \mathcal{A}. Let A be the free (term) algebra on one generator x, and let B be the free algebra on one generator y (i.e. both A and B are isomorphic to \mathbb{N}). We equip A and B with the F-coalgebra structures $a = \text{id} : A \to A$ and $b : B \to B$ given by $b(y) = u(y)$. Then the mapping $t \mapsto u(t)$ clearly is an F-coalgebra morphism from B to itself, i.e. a morphism in $\text{Coalg}_{\text{free}} F$. Therefore we have $i_n(y) = i_n(u(y))$.

Now define a morphism $g : A \to \varphi F$ in \mathcal{A} by $g(x) = i_n(y)$. Then g is an F-coalgebra morphism since

$$g \cdot a(x) = g(x) = i_n(y) = i_n(u(y)) = i_n(b(y)) = \zeta(i_n(y)) = \zeta(g(x)),$$

where $\zeta : \varphi F \to F(\varphi F)$ is the coalgebra structure on φF.
We prove the following property: for any morphism \(f \) in \(\text{Coalg}_{\text{free}} F \) from \(\alpha : TX \to TX \) to \(\beta : TY \to TY \), any \(t \in TX \) reaches finitely many states iff \(f(t) \) does so, more precisely:

\[
\{ \alpha^n(t) \mid n \in \mathbb{N} \} \text{ is finite } \iff \{ \beta^n(f(t)) \mid n \in \mathbb{N} \} \text{ is finite.}
\]

The 'only if' direction is clear. For the 'if' direction suppose that \(t \) reaches infinitely many states. Since \(f \) is a morphism in \(\mathcal{A} \), we know that if \(\alpha^n(t) = u^k(x) \) for some \(x \in X \) then \(f(\alpha^n(t)) = \beta^n(f(t)) \) must be \(u^l(y) \) with \(l \geq k \) for some \(y \in Y \). Thus, \(f(t) \) must also reach infinitely many states.

We can now conclude that \(g, inu : A \to \varphi F \) are different coalgebra morphisms. Indeed, \(inu(x) \) reaches only itself since \(x \) does so, but \(g(x) = inu(y) \) reaches infinitely many states since \(y \) does so. Thus, \(g(x) \neq inu(x) \).

It follows that \(|\varphi F| \geq 2 \), while \(\varphi F = \partial F = \nu F = 1 \); to see the latter equation use that \(\text{id} : 1 \to 1 \) is a coalgebra in \(\text{Coalg}_{\text{free}} F \) since 1 is the object of \(\mathcal{A} \) presented by one generator \(z \) and one relation \(z = u(z) \).

2. Using similar ideas as in the previous point one can show that, for the category \(\mathcal{A} \) and \(FX = \mathbb{N} \times X \) from Example 2.13 \(\varphi F \) and \(gF \) do not coincide. Consequently, in this example, none of the arrows in (1.1) is an isomorphism.

In order to see that \(\varphi F \) and \(gF \) do not coincide, consider the two coalgebras \(a : A \to FA \) and \(b : B \to FB \) with \(A = T(x) \) and \(B = T(y) \) and with the coalgebra structure given by \(a(x) = (0, u(x)) \) and \(b(y) = (0, v(y)) \). These coalgebras both lie in \(\text{Coalg}_{\text{free}} F \).

Consider also the coalgebra \(p : P \to FP \) where \(P \) is presented by one generator \(z \) and one relation \(u(z) = v(z) \), i.e. \(P = T(z)/\sim \), where \(\sim \) is the smallest congruence with \(u(z) \sim v(z) \). Hence, \(u(z) \sim u'(z) \) for \(w, w' \in \{ u, v \}^* \) iff \(w \) and \(w' \) have the same length.

The coalgebra structure is defined by \(p([w(x)]) = (0, [uw(x)]) \). The coalgebra \((P, p) \) lies in \(\text{Coalg}_{\text{free}} F \). Now \(f : A \to P \) and \(g : B \to P \) determined by \(f(x) = z = g(y) \) are easily seen to be \(F \)-coalgebra morphisms, and therefore \(a^\sharp = p^\sharp \cdot f \) and \(b^\sharp = p^\sharp \cdot g \). Therefore

\[
a^\sharp(x) = p^\sharp(f(x)) = p^\sharp(z) = p^\sharp(g(y)) = b^\sharp(y).
\]

However, we will prove that \(inu(x) \neq inu(x) \). For any \((TX, c) \) in \(\text{Coalg}_{\text{free}} F \) and \(t \in TX \), we say that 't-reachable states are \(u \)-bounded' if there is a natural number \(k \) such that, for any state \(s = w(x) \) reachable from \(t \) via the next state function, the number \(|w|_u \) of \(u \)'s in \(w \) is at most \(k \). Now we prove for any morphism \(f : (TX, c) \to (TY, d) \) in \(\text{Coalg}_{\text{free}} F \) and any \(t \in TX \) the following claim:

't-reachable states are \(u \)-bounded iff \(f(t) \)-reachable states are \(u \)-bounded.'

Indeed, a state \(s = w(x) \) is reachable from \(t \) iff \(f(s) = w(f(x)) \) is reachable from \(f(t) \).

Then the 'only if' direction is clear: if \(t \)-reachable states are not \(u \)-bounded, then neither are \(f(t) \)-reachable states. For the 'if' direction suppose \(t \)-reachable states are \(u \)-bounded by \(k \), then \(f(t) \)-reachable states are bounded by \(k + \max\{ |f(x)|_u \mid x \in X \} \).

In this section we are going to investigate when the first three fixed points in (1.1) collapse to one, i.e. \(\varphi F \cong gF \cong \partial F \). As a consequence, it follows that finality of a given lfp coalgebra for \(F \) can be established by checking the universal property only for the coalgebras in \(\text{Coalg}_{\text{free}} F \) (Corollary 3.17).

Lemma 3.7. The category \(\text{Coalg}_{\text{free}} F \) is closed under finite coproducts.

Proof. The empty map \(0 \to FT0 \) extends uniquely to a \(T \)-algebra morphism \(T0 \to FT0 \), i.e. an \(F \)-coalgebra, and this coalgebra is the initial object of \(\text{Coalg}_{\text{free}} F \).
Given coalgebras \(c : TX \to FTX \) and \(d : TY \to FTY \) one uses that \(T(X + Y) \) together with the injections \(T\text{in} : TX \to T(X + Y) \) and \(T\text{inr} : TY \to T(X + Y) \) form a coproduct in \(\text{Set}^T \). This implies that forming the coproduct of \((TX, c) \) and \((TY, d) \) in \(\text{Coalg} F \) we obtain an \(F \)-coalgebra on \(T(X + Y) \), and this is an object of \(\text{Coalg}_{\text{free}} F \) since \(X + Y \) is finite.

Remark 3.8. We will use later that the colimit \(\varphi F \) is a sifted colimit.

1. Recall that a small category \(\mathcal{D} \) is called **sifted** \([6, \text{Proposition 2.5}]\) if finite products commute with colimits over \(\mathcal{D} \) in \(\text{Set} \). More precisely, \(\mathcal{D} \) is sifted iff given any diagram \(D : \mathcal{D} \times \mathcal{J} \to \text{Set} \), where \(\mathcal{J} \) is a finite discrete category, the canonical map

\[
\colim_{d \in \mathcal{D}} \left(\prod_{j \in \mathcal{J}} D(d, j) \right) \to \prod_{j \in \mathcal{J}} \left(\colim_{d \in \mathcal{D}} D(d, j) \right)
\]

is an isomorphism. A **sifted colimit** is a colimit of a diagram with a sifted diagram scheme.

2. It is well-known that the forgetful functor \(\text{Set}^T \to \text{Set} \) preserves sifted colimits; this follows from \([6, \text{Proposition 2.5}]\).

3. Further recall \([6, \text{Example 2.16}]\) that every small category \(\mathcal{D} \) with finite coproducts is sifted. Thus, following Lemma \(3.7 \quad \mathcal{D} = \text{Coalg}_{\text{free}} F \) is sifted, and \(\varphi F \) is a sifted colimit.

Proposition 3.9. The above morphism \(h : \varphi F \to qF \) is a strong epimorphism in \(\mathcal{A} \).

Proof. Note first that for every \(c : TX \to FTX \) in \(\text{Coalg}_{\text{fp}} F \) we clearly have

\[
\bar{c} = (TX \xrightarrow{\text{in}} \varphi F \xrightarrow{h} qF)
\]

by the finality of \(qF \). Recall that for strong epis the following cancellation law holds: if \(c \cdot c' \) and \(c' \) are strong epis, then so is \(c \); a similar law holds for strongly epimorphic families.

From Lemma \(2.2 \) we know that the colimit injections \(\text{in}_c \) form a jointly strongly epimorphic family. Hence, we are done if we show that the \(\bar{c} \) where \(c : TX \to FTX \) ranges over \(\text{Coalg}_{\text{free}} F \) forms a jointly strongly epimorphic family, too. This is done by using that the \(a^2 \), where \(a : A \to FA \) ranges over \(\text{Coalg}_{\text{fp}} F \), form a strongly epimorphic family (to see this use Lemma \(2.2 \) once again).

The key observation is as follows: given any \(a : A \to FA \) in \(\text{Coalg}_{\text{fp}} F \) we know that its carrier is a regular quotient of some free \(T \)-algebra \(TX \) with \(X \) finite, via \(q : TX \to A \), say. Since \(F \) preserves regular epis (= surjections) we can use projectivity of \(TX \) (see Remark \(2.4 \) \(2 \)) to obtain a coalgebra structure \(c \) on \(TX \) making \(q \) an \(F \)-coalgebra morphism:

\[
\begin{array}{ccc}
TX & \xrightarrow{c} & FTX \\
q \downarrow & & \downarrow \rho \phi \\
A & \xrightarrow{a} & FA
\end{array}
\]

This implies that we have \(c^2 = a^2 \cdot q \).

Now suppose that we have two parallel morphisms \(f, g \) such that for every \(c : TX \to FTX \) in \(\text{Coalg}_{\text{free}} F \) we have \(f \cdot c^2 = g \cdot c^2 \). Then for every \(a : A \to FA \) in \(\text{Coalg}_{\text{fp}} F \) we obtain

\[
f \cdot a^2 \cdot q = f \cdot c^2 = g \cdot c^2 = g \cdot a^2 \cdot q,
\]

which implies that \(f \cdot a^2 = g \cdot a^2 \) since \(q \) is epimorphic. Hence \(f = g \) since the \(a^2 \) form a jointly epimorphic family. This proves that the \(c^2 \) form a jointly epimorphic family.
Proper Functors

To see that they form a strongly jointly epimorphic family, assume that we are given a monomorphism \(m : M \to N \) and morphisms \(g : gF \to N \) and \(f_c : TX \to M \) for every \(c : TX \to FTX \) in \(\text{Coalg}_{\text{free}} F \) such that \(m \cdot f_c = g \cdot c^\sharp \). We extend the family \((f_c) \) to one indexed by all \(a : A \to FA \) in \(\text{Coalg}_{\text{fp}} F \) as follows. We have that any such \((A, a)\) is a quotient coalgebra of some \((TX, c)\) via \(q : TX \to A \), which is the coequalizer of some parallel pair \(k_1, k_2 : K \to TX \) in \(\mathcal{A} \). Thus we have

\[
m \cdot f_c \cdot k_1 = g \cdot c^\sharp \cdot k_1
\]

\[
= g \cdot a^\sharp \cdot q \cdot k_1
\]

\[
= g \cdot a^\sharp \cdot q \cdot k_2
\]

\[
= g \cdot c^\sharp \cdot k_2
\]

\[
= m \cdot f_c \cdot k_2,
\]

which implies that \(f_c \cdot k_1 = f_c \cdot k_2 \) since \(m \) is monomorphic. Therefore we obtain a unique \(f_a : A \to M \) such that \(f_a \cdot q = f_c \) using the universal property of the coequalizer \(q \). Hence we can compute

\[
m \cdot f_a \cdot q = m \cdot f_c = g \cdot c^\sharp = g \cdot a^\sharp \cdot q,
\]

which implies \(m \cdot f_a = g \cdot a^\sharp \) since \(q \) is epimorphic. Now we use that the \(a^\sharp \) are jointly strongly epimorphic to obtain a unique morphism \(d : gF \to M \) with \(d \cdot a^\sharp = f_a \) and \(m \cdot d = g \) for all \(a : A \to FA \) in \(\text{Coalg}_{\text{free}} F \). In particular, \(d \) is the desired fill-in since \(\text{Coalg}_{\text{free}} F \) is a full subcategory of \(\text{Coalg}_{\text{fp}} F \). As for the uniqueness of the fill-in \(d \) we still need to check that any \(d \) with \(d \cdot a^\sharp = f_c \) for all \(c : TX \to FTX \) in \(\text{Coalg}_{\text{free}} F \) and \(m \cdot d = g \) also fulfills \(d \cdot a^\sharp = f_a \) for every \(a : A \to FA \) in \(\text{Coalg}_{\text{fp}} F \). Indeed, this follows from

\[
d \cdot a^\sharp \cdot q = d \cdot c^\sharp = f_c = f_a \cdot q
\]

using that \(q \) is epimorphic.

\[\blacktriangleleft\]

Remark 3.10. 1. Recall that a zig-zag in a category \(\mathcal{A} \) is a diagram of the form

\[
\begin{array}{ccccccc}
Z_0 & \rightarrow & Z_1 & \rightarrow & Z_2 & \rightarrow & \cdots & \rightarrow & Z_n \\
f_0 & & f_1 & & f_2 & & \cdots & & f_n \end{array}
\]

For \(\mathcal{A} = \text{Set}^F \), we say that the zig-zag relates \(z_0 \in Z_0 \) and \(z_n \in Z_n \) if there exist \(z_i \in Z_i \), \(i = 1, \ldots, n-1 \) such that \(f_i(z_i) = z_{i+1} \) for \(i \) even and \(f_i(z_{i+1}) = z_i \) for \(i \) odd.

2. Ésik and Maletti [12] introduced the notion of a proper semiring in order to obtain the decidability of the (language) equivalence of weighted automata. A semiring \(S \) is called proper if, whenever we have two \(S \)-weighted automata \(A \) and \(B \) and two states \(x \) in \(A \) and \(y \) in \(B \) that accept the same weighted language, then there exists a zig-zag

\[
A = M_0 \rightarrow M_1 \rightarrow M_2 \rightarrow \cdots \rightarrow M_n = B
\]

of simulations that relates \(x \) and \(y \). They show that every Noetherian semiring is proper as well as the semiring \(\mathbb{N} \) of natural numbers, which is not Noetherian. However, the tropical semiring \((\mathbb{N} \cup \{\infty\}, \min, +, \infty, 0) \) is not proper.
Recall from Example 2.3 that S-weighted automata with input alphabet \(\Sigma \) are equivalently coalgebras with carrier \(S^n \), for some \(n \geq 1 \), for the functor \(FX = S \times X^\Sigma \) on the category \(S\text{-}Mod \). Thus, since simulations are precisely the \(F \)-coalgebra morphisms, one easily generalizes the notion of a proper semiring as follows. Recall that \(\eta_X : X \to TX \) denotes the unit of the monad \(T \).

Definition 3.11. We call the functor \(F : \mathcal{A} \to \mathcal{A} \) proper whenever for every pair of coalgebras \(c : TX \to FTX \) and \(d : TY \to FTY \) in \(\text{Coalg}_{\text{free}} F \) and every \(x \in X \) and \(y \in Y \) such that \(\eta_X(x) \sim \eta_Y(y) \) are behaviourally equivalent there exists a zig-zag in \(\text{Coalg}_{\text{free}} F \) relating \(\eta_X(x) \) and \(\eta_Y(y) \).

Example 3.12. A semiring \(S \) is proper iff the functor \(FX = S \times X^\Sigma \) on \(S\text{-}Mod \) is proper.

Example 3.13. Constant functors are always proper. Indeed, suppose that \(F \) is the constant functor on some algebra \(A \). Then we have \(\nu F = A \), and for any \(F \)-coalgebra \(B \) its coalgebra structure \(c : B \to FB = A \) is also the unique \(F \)-coalgebra morphism from \(B \) to \(\nu F = A \).

Now given any \(c : TX \to FTX = A \) and \(d : TY \to FTY = A \) and \(x \in TX \), \(y \in TY \) as in Definition 3.11. Then \(\eta_X(x) \sim \eta_Y(y) \) is equivalent to \(c(\eta_X(x)) = d(\eta_Y(y)) \). Let \(a \) be this element of \(A \), and extend \(x : 1 \to X \), \(y : 1 \to Y \) and \(a : 1 \to A \) to \(T \)-algebra morphisms \(x^* : T1 \to TX \), \(y^* : T1 \to TY \) and \(a^* : T1 \to A = FT1 \) (the latter yielding an \(F \)-coalgebra). Then

\[
\begin{array}{c}
TX \\
\downarrow x^* \\
T_X \\
\downarrow \downarrow \\
TX \quad T1 \quad TY \\
\uparrow \uparrow \\
y^* \\
T_Y \\
\downarrow \\
TY
\end{array}
\]

is the required zig-zag in \(\text{Coalg}_{\text{free}} F \) relating \(\eta_X(x) \) and \(\eta_Y(y) \).

In general, it seems to be non-trivial to establish that a given functor is proper (even for the identity functor this may fail as we have seen in Example 3.6.1). However, we will provide in Proposition 3.18 sufficient conditions on \(\mathcal{A} \) and \(F \) the entail properness using our main result:

Theorem 3.14. The functor \(F \) is proper iff the coalgebra \(\varphi F \) is a subcoalgebra of \(\nu F \).

The latter condition states that the unique coalgebra morphism \(m : \varphi F \to \nu F \) is a monomorphism in \(\mathcal{A} \).

We present the proof of this theorem Section 4. Here we continue with a discussion of the consequences of this result.

Corollary 3.15. If \(F \) is proper, then \(\varphi F \) is the rational fixed point of \(F \).

Proof. Let \(u : \varphi F \to \nu F \) be the unique \(F \)-coalgebra morphism. Then we have a commutative triangle of \(F \)-coalgebra morphisms due to finality of \(\nu F \):

\[
\begin{array}{c}
\varphi F \\
\downarrow m \\
\varphi F \\
\downarrow h \\
gF \\
\downarrow u \\
\nu F.
\end{array}
\]

Since \(F \) is proper \(m \) is a monomorphism in \(\mathcal{A} \), hence so is \(h \). Since \(h \) is also a strong epimorphism by Proposition 3.9 it is an isomorphism. Thus, \(\varphi F \cong gF \) is the rational fixed point of \(F \).
Corollary 3.16. If finitely generated and finitely presentable algebras coincide in \mathcal{A} and F preserves monos, then F is proper iff $\varphi F \cong \varrho F \cong \vartheta F$.

Indeed, this follows from Corollary 3.15 and Theorem 2.12. Note that this also entails full abstractness of $\varphi F \cong \varrho F$.

A key result for establishing soundness and completeness of coalgebraic regular expression calculi is the following corollary (cf. [9, Corollary 3.36] and its applications in Sections 4 and 5 of loc. cit.).

Corollary 3.17. Suppose that F is proper. Then an F-coalgebra (R, r) is a final lfp coalgebra if and only if (R, r) is lfp and for every coalgebra (TX, c) in $\text{Coalg}_{\text{free}} F$ there exists a unique F-coalgebra morphism from TX to R.

Proof. The implication “\Rightarrow” clearly holds.

For “\Leftarrow” it suffices to prove that for every $a : A \rightarrow FA$ in $\text{Coalg}_{\text{fp}} F$ there exists a unique F-coalgebra morphism from A to R. In fact, it then follows that R is the final lfp coalgebra. To see this write an arbitrary lfp coalgebra A as a filtered colimit of a diagram $D : \mathcal{D} \rightarrow \text{Coalg}_{\text{fp}} F \hookrightarrow \text{Coalg} F$ with colimit injections $h_d : Dd \rightarrow A$ (d an object in \mathcal{D}). Then the unique F-coalgebra morphisms $u_d : Dd \rightarrow R$ form a compatible cocone, and so one obtains a unique $u : A \rightarrow R$ such that $u \cdot h_d = u_d$ holds for every object d of \mathcal{D}. It is now straightforward to prove that u is a unique F-coalgebra morphism from A to R.

Now let $a : A \rightarrow FA$ be a coalgebra in $\text{Coalg}_{\text{fp}} F$. For every (TX, c) in $\text{Coalg}_{\text{free}} F$ denote by $c^\uplus : TX \rightarrow R$ the unique F-coalgebra morphism that exists by assumption. These morphisms c^\uplus form a compatible cocone of the diagram $\text{Coalg}_{\text{free}} F \hookrightarrow \text{Coalg} F$. Thus, we obtain a unique F-coalgebra morphism $m' : \varphi F \cong \varrho F \rightarrow R$ such that the following diagram commutes for every $c : TX \rightarrow FTX$ in $\text{Coalg}_{\text{free}} F$:

Therefore we have an F-coalgebra morphism

$$h = (A \xrightarrow{a^\uplus} \varrho F \xrightarrow{m'} R).$$

To prove it is unique, assume that $g : A \rightarrow R$ is any F-coalgebra morphism. As in the proof of Proposition 3.9 we know that A is the quotient of some TX in $\text{Coalg}_{\text{free}} F$ via $q : TX \rightarrow A$, say. Then we have

$$m' \cdot a^\uplus \cdot q = g \cdot q$$

because there is only one F-coalgebra morphism from TX to R by hypothesis. It follows that $h = m' \cdot a^\uplus = g$ since q is epimorphic.

The next result provides sufficient conditions for properness of F. It can be seen as a category-theoretic generalization of Ésik’s and Maletti’s result [12, Theorem 4.2] that Noetherian semirings are proper. Our proof calls on a number of results from [9]; we include those results with full proofs in Appendix A for the convenience of the reader.

Proposition 3.18. Suppose that finitely generated algebras in \mathcal{A} are closed under kernel pairs and that F maps kernel pairs to weak pullbacks in Set. Then F is proper.
Remark. 1. Note that closure of finitely generated algebras under kernel pairs can equivalently be stated in general algebra terms as follows: every congruence R of a finitely generated algebra A is finitely generated as a subalgebra $R \hookrightarrow A \times A$ (observe that this is not equivalent to stating that R is a finitely generated congruence).

2. For a lifting F of a set functor F_0, the above condition on F holds whenever F preserves weak pullbacks. Hence, all the functors on algebraic categories mentioned in Example 2.10 satisfy this assumption. Moreover, in that special case Proposition 3.18 is an immediate corollary of a result of Winter [54, proposition 7]. The proof in loc. cit. is completely different working with λ-bialgebras (see Example 3.2) and λ-bisimulations (see Bartels [7]). In fact, for two behaviourally equivalent elements x, y of a given λ-bialgebra (X, a, c), where the T-algebra (X, a) is finitely generated, a finite λ-bisimulation $R \subseteq X \times X$ containing x and y is constructed. One easily derives that the lifting F is proper: given two coalgebras (TX, c) and (TY, d) from $\text{Coalg}_{\text{free}} F$, $x \in X$, and $y \in Y$ with $\eta(x) \sim \eta(y)$ one obtains the following zig-zag relating x and y:

$$TX \xrightarrow{T\text{inl}} T(X + Y) \xleftarrow{\pi_1^T} TR \xrightarrow{\pi_1^R} T(X + Y) \xleftarrow{T\text{inr}} TY,$$

where R is the finite λ-bisimulation on $T(X + Y)$ containing the behaviourally equivalent $\text{inl} \cdot \eta_X(x)$ and $\text{inr} \cdot \eta_Y(y)$, and the $\pi_i : R \to T(X + Y)$, $i = 0, 1$, are the projections of the relation R.

Proof. From Proposition A.3 and Corollary A.4 we know that $\varphi F \cong \nu F$. Furthermore, since F maps kernel pairs to weak pullbacks in Set we see that F preserves monomorphisms; indeed, $m : A \to B$ is a mono in \mathcal{C} iff and only if its kernel pair is id_A, id_A. Thus $\text{Fid}_A, \text{Fid}_A$ form a weak pullback in Set, which is in fact a pullback, whence Fm is monomorphic.

By Lemma A.2 it follows that finitely generated objects are finitely presentable. Therefore, by Proposition A.1 νF and thus φF is a subcoalgebra of νF, whence F is proper by Theorem 3.14.

Examples 3.19. 1. The first condition in Proposition 3.18 is not necessary for properness of F. In fact, it fails in the category of semimodules for \mathbb{N}, viz. the category of commutative monoids: the submonoid of $\mathbb{N} \times \mathbb{N}$ infinitely generated by

$$\{(n, n + 1) \mid n \in \mathbb{N}\}$$

is not a finitely generated submonoid. However, as we mentioned in Example 3.12 $FX = \mathbb{N} \times X^\Sigma$ is proper on the category of commutative monoids.

2. In Example 2.9 we mentioned that, in the category of convex sets (i.e. Eilenberg-Moore algebras for the distribution monad), fg- and fp-objects coincide. However, fg-objects are not closed under kernel pairs. In fact, the interval $[0, 1]$ is the free convex set on two generators, but $\{(0, 0), (1, 1)\} \cup \{(0, 1) \times (0, 1)\}$ is a congruence on $[0, 1]$ that is not an fg-object (i.e. a polytope) [32, Example 4.13]. It is an open problem whether coalgebraic type functors of interest on convex sets are proper, e.g. the functor $FX = [0, 1] \times X^\Sigma$.

4 Proof of Theorem 3.14

In this section we will present the proof of our main technical result Theorem 3.14. We start with two technical lemmas.

Remark 4.1. Recall [6, Proposition 11.28.2] that every free T-algebra TX is perfectly presentable, i.e. the hom-functor $\text{Set}^T(TX, -)$ preserves sifted colimits. It follows that for
every sifted diagram $D : \mathcal{D} \to \mathbf{Set}^T$ and every T-algebra morphism $h : TX \to \operatorname{colim} D$ there exists some $d \in \mathcal{D}$ and $h' : TX \to Dd$ such that

$$h = (TX \xrightarrow{h'} Dd \xrightarrow{\text{id}_d} \operatorname{colim} D).$$

\textbf{Lemma 4.2.} For every finite set X and map $f : X \to \varphi F$ there exists an object (TY, d) in $\mathbf{Coalg}_{\text{free}} F$ and a map $g : X \to Y$ such that the triangle below commutes:

$\begin{tikzcd}
X \arrow{r}{\eta_Y} \arrow{d}{f} & TY \arrow{d}{g} \arrow{r}{d} & \varphi F
\end{tikzcd}$

\textbf{Proof.} We begin by extending f to a T-algebra morphism $h = f^* : TX \to \varphi F$. By Remark \[4.1\], there exists some $c : TZ \to FTZ$ in $\mathbf{Coalg}_{\text{free}} F$ and a T-algebra morphism $h' : TX \to TZ$ such that $h = \text{in}_c \cdot h'$. Let $f' = h' \cdot \eta_X$, let $Y = X + Z$ and consider the T-algebra morphism $[f', \eta_Z]^* : TY \to TZ$. This is a split epimorphism in \mathbf{Set}^T; we have $T \text{inr} : TZ \to TY$ with

$$[f', \eta_Z]^* \cdot T \text{inr} = \eta_Z^* = \text{id}_{TZ},$$

by the laws of $(-)^*$. We therefore get a coalgebra structure

$$d = (TY \xrightarrow{[f', \eta_Z]^*} TZ \xrightarrow{\text{in}_c} FTZ \xrightarrow{T \text{inr}} FTY)$$

such that $[f', \eta_Z]^*$ is an F-coalgebra morphism from (TY, d) to (TZ, c). Since Y is a finite set, (TY, d) is an F-coalgebra in $\mathbf{Coalg}_{\text{free}} F$, and hence $\text{in}_c \cdot [f', \eta_Z]^* = \text{id}_d$. Thus we see that $g = \text{inl} : X \to Y$ is the desired morphism due to the commutative diagram below:

$\begin{tikzcd}
X \arrow{d}[global]{g = \text{inl}} & \arrow[swap]{l}[swap]{Y} \arrow{r}[swap]{\eta_Y} \arrow{d}{f} & TY \arrow{r}{\text{in}_d} \arrow[swap]{d}[global]{[f', \eta_Z]^*} & TZ \arrow{r}{\text{in}_c} \arrow[swap]{d}[global]{f'} & \varphi F
\end{tikzcd}$

\textbf{Remark 4.3.} Recall that a colimit of a diagram $D : \mathcal{D} \to \mathbf{Set}$ is computed as follows:

$$\operatorname{colim} D = \left(\bigsqcup_{d \in \mathcal{D}} Dd \right) / \sim,$$

where \sim is the least equivalence on the coproduct (i.e. the disjoint union) of all Dd with $x \sim Df(x)$ for every $f : d \to d'$ in \mathcal{D} and every $x \in Dd$. In other words, for every pair of objects c, d of \mathcal{D} and $x, y \in Dc, y \in Dd$ we have $x \sim y$ iff there is a zig-zag in \mathcal{D} whose D-image

$\begin{tikzcd}
Dc = Dz_0 & Dz_2 & \cdots & z_n = Dd
\arrow{r}[swap]{Df_0} & Dz_1 & \arrow{r}[swap]{Df_2} & Dz_3 & \cdots & \arrow{r}[swap]{Df_{n-1}} & Dz_{n-1}
\end{tikzcd}$

relates x and y (cf. Remark \[3.10\]).
Lemma 4.4. Let \((TX, c)\) and \((TY, d)\) be coalgebras in \(\text{Coalg}_{\text{free}} F\), \(x \in TX\), and \(y \in TY\). Then the following are equivalent:
1. \(\text{in}_c(x) = \text{in}_d(y) \in \varphi F\), and
2. there is a zig-zag in \(\text{Coalg}_{\text{free}} F\) relating \(x\) and \(y\).

Proof. By Remark 3.8 \(\varphi F\) is a sifted colimit. Hence, the forgetful functor \(\text{Coalg} F \to \text{Set}^T \to \text{Set}\) preserves this colimit. Thus the colimit \(\varphi F\) is formed as recalled in Remark 4.3:
\[
\varphi F \cong \left(\bigsqcup_c TX_c \right)/\sim,
\]
where \(c : TX_c \to FTX_c\) ranges over the objects of \(\text{Coalg}_{\text{free}} F\). Therefore, we have the desired equivalence.

Proof of Theorem 3.14. “⇒” Suppose that for \(m : \varphi F \to \nu F\) we have \(x, y \in \varphi F\) with \(m(x) = m(y)\). We apply Lemma 4.2 to
\[
1 \xrightarrow{x} \varphi F \quad \text{and} \quad 1 \xrightarrow{y} \varphi F,
\]
respectively, to obtain two objects \(c : TX \to FTX\) and \(d : TY \to FTY\) in \(\text{Coalg}_{\text{free}} F\) with \(x' \in X\) and \(y' \in Y\) such that \(\text{in}_c(\eta_X(x')) = x\) and \(\text{in}_d(\eta_Y(y')) = y\). By the uniqueness of coalgebra morphisms into \(\nu F\) we have
\[
\uparrow c = m \cdot \text{in}_c \quad \text{and} \quad \uparrow d = m \cdot \text{in}_d.
\]
Thus we compute:
\[
\uparrow c(\eta_X(x')) = m \cdot \text{in}_c \cdot \eta_X(x') = m(x) = m(y) = m \cdot \text{in}_d \cdot \eta_Y(y') = \uparrow d(\eta_Y(y')).
\]
Since \(F\) is proper by assumption, we obtain a zig-zag in \(\text{Coalg}_{\text{free}} F\) relating \(\eta_X(x')\) and \(\eta_Y(y')\). Thus, these two elements are merged by the colimit injections, and we have \(x = \text{in}_c(\eta_X(x')) = \text{in}_d(\eta_Y(y')) = y\). We conclude that \(m\) is monomorphic.

“⇐” Suppose that \(m : \varphi F \to \nu F\) is a monomorphism. Let \(c : TX \to FTX\) and \(d : TY \to FTY\) be objects of \(\text{Coalg}_{\text{free}} F\), and let \(x \in X\) and \(y \in Y\) be such that \(\uparrow c(\eta_X(x)) = \uparrow d(\eta_Y(y))\). Using (4.1) and the fact that \(m\) is monomorphic we get \(\text{in}_c(\eta_X(x)) = \text{in}_d(\eta_Y(y))\). By Lemma 4.3, we thus obtain a zig-zag in \(\text{Coalg}_{\text{free}} F\) relating \(\eta_X(x)\) and \(\eta_Y(y)\). This proves that \(F\) is proper.

5 Conclusions and Further Work

Inspired by Ésik and Maletti’s notion of a proper semiring, we have introduced the notion of a proper functor. We have shown that, for a proper endofunctor \(F\) on an algebraic category preserving regular epis and monos, the rational fixed point \(\rho F\) is fully abstract and moreover determined by those coalgebras with a free finitely generated carrier (i.e. the target coalgebras of generalized determinization).

Our main result also shows that properness is necessary for this kind of full abstractness. For categories in which fg-objects are closed under kernel pairs we saw that when \(F\) maps kernel pairs to weak pullbacks in \(\text{Set}\), then it is proper. This provides a number of examples of proper functors. However, in several categories of interest the condition on kernel pairs fails, e.g. in \(\text{N-semimodules}\) (commutative monoids) and convex sets. There can still be proper functors, e.g. \(FX = \mathbb{N} \times X^\Sigma\) on the former. But establishing properness of a functor
without using Proposition 3.18 seems non-trivial, and we leave this task as an open problem for further work.

One immediate consequence of our results is that the soundness and completeness of the expression calculi for weighted automata [9] extend from Noetherian to proper semirings, see Ésik and Kuich [11] for a related result.

In the future, when additional proper functors are known, it will be interesting to study regular expression calculi for their coalgebras and use the technical machinery developed in the present paper for soundness and completeness proofs.

References

1. J. Adámek, S. Milius, and J. Velebil. Free iterative theories: a coalgebraic view. *Math. Structures Comput. Sci.*, 13(2):259–320, 2003.
2. J. Adámek, S. Milius, and J. Velebil. Iterative algebras at work. *Math. Structures Comput. Sci.*, 16(6):1085–1131, 2006.
3. J. Adámek, S. Milius, and J. Velebil. On second-order iterative monads. *Theoret. Comput. Sci.*, 412:4969–4988, 2011. http://dx.doi.org/10.1016/j.tcs.2011.04.027
4. J. Adámek, S. Milius, and J. Velebil. Semantics of higher-order recursion schemes. *Log. Methods Comput. Sci.*, 7(1:15):43 pp., 2011.
5. J. Adámek and J. Rosický. *Locally presentable and accessible categories*. Cambridge University Press, 1994.
6. J. Adámek, J. Rosický, and E. Vitale. *Algebraic Theories*. Cambridge University Press, 2011.
7. F. Bartels. *On generalized coinduction and probabilistic specification formats*. PhD thesis, Vrije Universiteit Amsterdam, 2004.
8. J. Berstel and C. Reutenauer. *Rational Series and Their Languages*. Springer-Verlag, 1988.
9. M. M. Bonsangue, S. Milius, and A. Silva. Sound and complete axiomatizations of coalgebraic language equivalence. *ACM Trans. Comput. Log.*, 14(1:7), 2013.
10. B. Courcelle. Fundamental properties of infinite trees. *Theoret. Comput. Sci.*, 25:95–169, 1983.
11. Z. Ésik and W. Kuich. Free iterative and iteration k-semialgebras. *Algebra Univ.*, 2012. published online March 3, 2012, DOI: 10.1007/s00012-012-0179-y.
12. Z. Ésik and A. Maletti. Simulation vs. equivalence. In H. R. Arabnia, G. A. Gravvanis, and A. M. G. Solo, editors, *Proc. 6th Int. Conf. Foundations of Computer Science*, pages 119–122. CSREA Press, 2010.
13. Z. Ésik and A. Maletti. Simulations of weighted tree automata. In M. Domaratzki and K. Salomaa, editors, *Proc. 15th International Conference on Implementation and Application of Automata (CIAA)*, volume 6482 of *Lecture Notes Comput. Sci.*, pages 321–330. Springer, 2011.
14. M. Fiore, G. D. Plotkin, and D. Turi. Abstract syntax and variable binding. In *Proc. Logic in Computer Science 1999*, pages 193–202. IEEE Press, 1999.
15. P. Freyd. Redei’s finiteness theorem for commutative semigroups. *Proc. Amer. Math. Soc.*, 19(4), 1968.
16. S. Ginali. Regular trees and the free iterative theory. *J. Comput. System Sci.*, 18:228–242, 1979.
17. S. Goncharov, S. Milius, and A. Silva. Towards a coalgebraic Chomsky hierarchy (extended abstract). In J. Diaz, I. Lanese, and D. Sangiorgi, editors, *Proc. 8th IFIP TC 1/WG 2.2 International Conference on Theoretical Computer Science (TCS’14)*, volume 8705 of *Lecture Notes Comput. Sci.*, pages 265–280. Springer, 2014.
18. B. Jacobs, A. Silva, and A. Sokolova. Trace semantics via determinization. *J. Comput. System Sci.*, 2015.
19. P. T. Johnstone. Adjoint lifting theorems for categories of algebras. *Bull. London Math. Soc.*, 7:294–297, 1975.

20. S. Milius. A sound and complete calculus for finite stream circuits. In *Proc. 25th Annual Symposium on Logic in Computer Science (LICS’10)*, pages 449–458. IEEE Computer Society, 2010.

21. S. Milius, D. Pattinson, and T. Wißmann. A new foundation for finitary corecursion: The locally finite fixpoint and its properties. In B. Jacobs and C. Löding, editors, *Proc. Foundations of Software Science and Computation Structures (FoSSaCS)*, volume 9634 of *Lecture Notes Comput. Sci. (ARCoSS)*, pages 107–125. Springer, 2016.

22. S. Milius, L. Schröder, and T. Wißmann. Regular behaviours with names: On rational fixpoints of endofunctors on nominal sets. *Appl. Categ. Structures*, 24(5):663–701, 2016. http://link.springer.com/article/10.1007/s10485-016-9457-8.

23. S. Milius and T. Wißmann. Finitary corecursion for the infinitary lambda calculus. In L. S. Moss and P. Sobocinski, editors, *Proc. Coalgebraic and Algebraic Methods in Computer Science (CALCO’15)*, volume 35 of *LIPIcs*, pages 336–351, 2015.

24. I. Petre and A. Salomaa. Algebraic systems and pushdown automata. In *Handbook of Weighted Automata*, pages 257–289. Springer, 2009.

25. L. Rédei. *The Theory of Finitely Generated Commutative Semigroups*. Pergamon, Oxford-Edinburgh-New York, 1965.

26. J. Rutten. Automata and coinduction (an exercise in coalgebra). In D. Sangiorgi and R. de Simone, editors, *Proc. CONCUR 1998*, volume 1466 of *Lecture Notes Comput. Sci.*, pages 194–218. Springer, 1998.

27. J. J. M. Rutten. Universal coalgebra: a theory of systems. *Theoret. Comput. Sci.*, 249(1):3–80, 2000.

28. J. J. M. Rutten. Rational streams coalgebraically. *Log. Methods Comput. Sci.*, 4(3:9), 2008.

29. M. P. Schützenberger. On the definition of a family of automata. *Inform. and Control*, 4(2–3):275–270, 1961.

30. A. Silva, F. Bonchi, M. M. Bonsangue, and J. J. M. Rutten. Generalizing determinization from automata to coalgebras. *Log. Methods Comput. Sci.*, 9(1:9), 2013.

31. A. Silva, M. M. Bonsangue, and J. J. M. Rutten. Non-deterministic Kleene coalgebras. *Log. Methods Comput. Sci.*, 6(3:23):39 pp., 2010.

32. A. Sokolova and H. Woracek. Congruences of convex algebras. *J. Pure Appl. Algebra*, 219(8):3110–3148, 2015.

33. H. Urbat. Finite behaviours and finitary corecursion. In F. Bonchi and B. König, editors, *Proc. 7th Conference on Algebra and Coalgebra in Computer Science (CALCO 2017)*, volume 72 of *Lecture Notes Comput. Sci.* (LIPIcs), pages 24:1–24:15, 2017.

34. J. Winter. A completeness result for finite λ-bisimulations. In *Proc. Foundations of Software Science and Computation Structures (FoSSaCS)*, volume 9034 of *Lecture Notes Comput. Sci.*, pages 117–132, 2015.

35. J. Winter, M. Bonsangue, and J. Rutten. Coalgebraic Characterizations of Context-Free Languages. *Log. Methods Comput. Sci.*, 9(3), September 2013.

36. J. Winter, M. M. Bonsangue, and J. J. Rutten. Context-free coalgebras. *J. Comput. System Sci.*, 81(5):911–939, 2015.
A Technical Lemmas quoted from [9]

The following proposition follows from [1] Proposition 4.6 and Remark 4.3. This proof has appeared as [9, Proposition 3.12].

Proposition A.1. Suppose that in an lfp category \(\mathcal{A} \) finitely generated objects are finitely presentable, and that \(F \) preserves monomorphisms. Then \(gF \) is the subcoalgebra of \(\nu F \) given by the union of images of all coalgebra homomorphisms \((P,p) \to (\nu t,F) \) where \((P,p) \) ranges over \(\text{Coalg}_{fp} F \).

Proof. Recall that for every coalgebra \(p: P \to FP \), \(\dagger p: P \to \nu F \) denotes the unique coalgebra homomorphism. Let \(R \) be the union from the statement of the proposition:

\[
R = \bigcup \text{im}(\dagger p) \quad \text{where } p: P \to FP \text{ ranges over } \text{Coalg}_{fp} F.
\]

More precisely, for every \((P,p) \) in \(\text{Coalg}_{fp} F \), let \(I = \text{im}(\dagger p) \) be the subobject of \(\nu F \) given by factorizing \(\dagger p \) as a strong epimorphism \(e: P \to I \) followed by a monomorphism \(m: I \to \nu F \).

Since \(\text{Coalg}_{fp} F \) is a filtered category it follows that the subobjects \(\text{im}(\dagger p) \) and their inclusions form a directed diagram \(\mathcal{D} \), and \(R \) is defined as the colimit of this diagram. In addition, since \(F \) preserves monomorphisms, we see that \(I \) carries a coalgebra \(i: I \to FI \) such that \((I,i) \) is a quotient coalgebra of \((P,p) \) via \(e \) and a subcoalgebra of \(\nu F \) via \(m \). Thus, the union \(R \) is a subcoalgebra of \(\nu F \); indeed, being a colimit of a diagram of coalgebras, \(R \) carries a canonical coalgebra structure, and, in addition, the cocone given by all monomorphisms \(m: I \to \nu F \) factors through a monomorphism \(R \to \nu F \) (see [5]).

Furthermore, by assumption, we have that the quotient \(I \) of the finitely presentable object \(P \) is finitely presentable, too. So \(\mathcal{D} \) is actually a full subcategory of \(\text{Coalg}_{fp} F \). Since we have the morphism \(e: (P,p) \to (I,i) \), we see that the inclusion of \(\mathcal{D} \) into \(\text{Coalg}_{fp} F \) is cofinal. It follows that the colimits of \(\mathcal{D} \) and \(\text{Coalg}_{fp} F \) are the same, in symbols: \(R \cong gF \), which completes the proof.

Lemma A.2 ([9, Lemma 3.19]). In an algebraic category, if finitely generated algebras are closed under kernel pairs then they are finitely presentable (and hence the classes of finitely presentable and finitely generated objects coincide).

Proof. Let \(A \) a be finitely generated algebra. So \(A \) is the quotient of some finitely presentable algebra \(B \) via the surjective homomorphism \(q: B \to A \). Then \(q \) is the coequalizer of its kernel pair \(f,g: K \rightrightarrows B \). Since \(A \) and \(B \) are finitely generated so is \(K \). Hence, \(K \) is a quotient of the finitely presentable algebra \(L \) via \(p: L \to K \). As \(p \) is an epimorphism it follows that \(q \) is the coequalizer of \(f \cdot p \) and \(g \cdot p \). Since \(L \) and \(B \) are finitely presentable, and finitely presentable objects are closed under finite colimits, also \(A \) is finitely presentable.

The following proposition and corollary have been stated in [9] for a functor \(F \) being a lifting of a set functor preserving weak pullbacks. However, the proof is the same.

Proposition A.3. Let \(F: \mathcal{A} \to \mathcal{A} \) be a finitary endofunctor on an algebraic category \(\mathcal{A} \) preserving surjective \(T \)-algebra morphisms. Suppose further that \(F \) maps kernel pairs to weak pullbacks in \(\text{Set} \) and that finitely generated algebras in \(\mathcal{A} \) are closed under kernel pairs.

Then every coalgebra in \(\text{Coalg}_{fp} F \) is the coequalizer of a pair of morphisms in \(\text{Coalg}_{\text{free}} F \).

Proof. Let \(a: A \to FA \) be a coalgebra from \(\text{Coalg}_{fp} F \), so \(A \) is a finitely presentable \(T \)-algebra. That means that \(A \) is the coequalizer of some pair \(TX' \rightrightarrows TX \) of \(T \)-algebra morphisms with \(X' \) and \(X \) finite sets via some \(q: TX \to A \). Then \(Fq \) is a surjective \(T \)-algebra
morphism by our assumptions. Now we use that TX is projective to obtain a coalgebra structure $c: TX \to FTX$ as displayed below:

\[
\begin{array}{ccc}
TX & \xrightarrow{c} & FTX \\
q \downarrow & & \downarrow Fq \\
A & \xrightarrow{a} & FA
\end{array}
\quad (A.1)
\]

Now since \mathcal{A} is a category with pullbacks we know that every coequalizer in that category is the coequalizer of its kernel pair. So let $f, g: K \to TX$ be the kernel pair of q in \mathcal{A}. Notice that since TX and A are finitely presentable T-algebras, so is K because finitely presentable (equivalently, finitely generated) T-algebras are closed under taking kernel pairs by assumption. Now F maps the kernel pair f, g to a weak pullback Ff, Fg of Fq along itself in Set. Thus, we have a map $k: K \to FK$ such that the diagram below commutes:

\[
\begin{array}{ccc}
K & \xrightarrow{k} & FK \\
f \downarrow & & \downarrow Ff \\
TX & \xrightarrow{c} & FTX \\
q \downarrow & & \downarrow Fq \\
A & \xrightarrow{a} & FA
\end{array}
\quad (A.2)
\]

Notice that we do not claim that k is a T-algebra homomorphism. However, since K is a finitely presentable T-algebra it is the coequalizer of some pair $TY' \to TY$ of T-algebra morphisms, Y' and Y finite, via $p: TY \to K$. Now we choose some splitting $s: K \to TY$ of p in Set, i.e., s is a map such that $p \cdot s = \text{id}$. Next we extend the map $d_0 = Fs \cdot k \cdot p \cdot \eta_Y$ to a T-algebra homomorphism $d: TY \to FTY$:

\[
\begin{array}{ccc}
Y & \xrightarrow{\eta_Y} & TY' \\
\downarrow & & \downarrow d \\
TY & \xrightarrow{d_0} & FTY \\
p \downarrow & & \downarrow Fp \\
K & \xrightarrow{k} & FK
\end{array}
\quad (A.3)
\]

(Notice that to obtain d we cannot simply use projectivity of TY' similarly as in (A.1) since k is not necessarily a T-algebra homomorphism.)

We do not claim that this makes p a coalgebra morphism (i.e., we do not claim the lower square in (A.3) commutes). However, $f \cdot p$ and $g \cdot p$ are F-coalgebra morphisms from (TY, d) to (TX, c); in fact, to see that

\[c \cdot (f \cdot p) = F(f \cdot p) \cdot d\]

it suffices that this equation of T-algebra morphisms holds when both sides are precomposed with η_Y. To this end we compute

\[
c \cdot f \cdot p \cdot \eta_Y = FF \cdot k \cdot p \cdot \eta_Y \quad \text{see } (A.2),
\]

\[
= FF \cdot Fp \cdot d_0 \quad \text{outside of } (A.3),
\]

\[
= FF \cdot Fp \cdot d \cdot \eta_Y \quad \text{definition of } d.
\]
Similarly, \(g \cdot p \) is a coalgebra morphism. Since \(p \) is an epimorphism in \(\mathcal{A} \) it follows that \(q \) is a coequalizer of \(f \cdot p \) and \(g \cdot p \). Thus \(f \cdot p \) and \(g \cdot p \) form the desired pair of morphisms in \(\text{Coalg}_{\text{free}} F \) such that \((A,a)\) is a coequalizer of them, which completes the proof.

\[\triangleleft \]

Corollary A.4 ([9], Corollary 3.35). Under the assumptions in the previous proposition, the rational fixpoint of \(F \) is the colimit of all coalgebras in \(\text{Coalg}_{\text{free}} F \); in symbols:

\[\varrho F = \text{colim}(\text{Coalg}_{\text{free}} F \hookrightarrow \text{Coalg} F). \]

Proof. It is easy to see that every cocone for the diagram given by \(\text{Coalg}_{\text{free}} F \) extends uniquely to a cocone of the diagram given by \(\text{Coalg}_{\text{fp}} F \) by making use of Proposition A.3. Thus, the colimits of the two diagram coincide, which yields the desired result.

\[\triangleleft \]