Abstract

Some new di(indolyl)thiazolylpyrazoles were prepared from the synthetic intermediate E-1,3-di(1H-indol-3-yl)-prop-2-en-1-one under ultrasonication and studied their cytotoxic and antioxidant activities. All the compounds were screened for in vitro cytotoxic activity on three cancer cell lines. The compound 7e displayed appreciable anticancer activity on NCI-H1299, HCT-166 p53 and PC-3 cancer cell lines. The binding conformation of the target molecules was predicted by docking methodology to explain the biological activities. In fact, the docking studies indicated that could be used as possible leads for therapies against cancers. Amongst all the tested compounds dimethoxy substituted di(indolyl)thiazolylpyrazole (7i) displayed significant radical scavenging activity.

Keywords: Indole; Pyrazole; Thiazole; Molecular docking; Cytotoxic activity; Antioxidant activity

Introduction

Indole and their derivatives constitute an important class of heterocyclic compounds with a varied biological activities such as antidepressant [1], antihypertensive [2], antimicrobial [3,4], anti-inflammatory [5,6], anticancer [7], antioxidant [8], anti-inflammatory and anti-HIV [9,10] and also play vital role in the immune system [11,12]. Indole nucleus is present in many natural products, and widely used as a scaffold in agricultural and medicinal chemistry. For example, indole-3- acetic acid, a key plant growth hormone [13]; tryptophan, an essential amino acid; indomethacin, a nonsteroidal anti-inflammatory drug [14]; reserpine, an antipsychotic and antihypertensive drug [15], and vinblastine, an antimitotubule drug [16]. In fact some indole derivatives such as serotonin, melatonin and indoleamines are reported as the most potent scavenger of free radicals [17-19]. Besides medicinal properties of pyrazole containing compounds include antioxidant, anti-inflammatory [20], antimicrobial, analgesic [21], antitumor, and cytotoxic activities [26-29]. Some antibiotic drugs like penicillin, micrococcin [30] and antitumoragent, bleomycin [31-33] possess thiazole motif. The synthesis of biologically active heterocycles accelerates the reactivity and many synthetically useful reactions were successfully accomplished [34-38]. Recently we reported the synthesis of 3',5'-dihydro-3',5'-di(1H-indol-3-yl)pyrazole-1'-carbothioamide (4a-c): A mixture of compound (3 mmol), thiocarbazide (1 mmol), sodium hydroxide (1.5 mmol) and ethanol (3 ml) was sonicated for 50-60 min at room temperature. After completion of the reaction (monitored by TLC), the contents of the flask were poured onto crushed iced. The separated solid was filtered, dried and recrystallized from 2-propanol.

General procedure for the synthesis of 4',5'-dihydro-3',5'-di(1H-indol-3-yl)pyrazole-1'-carbothioamide (4a-c): A mixture of compound (3 mmol), thiocarbazide (1 mmol), sodium hydroxide (1.5 mmol) and ethanol (3 ml) was sonicated for 50-60 min at room temperature. After completion of the reaction (monitored by TLC), the contents of the flask were poured onto crushed iced. The separated solid was filtered, dried and recrystallized from 2-propanol.

Experimental Section

Chemistry and chemical methods

All the chemicals were purchased from commercial sources and used without further purification. Ultrasonication was performed in a BandelinSonorex RK 102H ultrasonic bath operating at frequency of 35 kHz. Melting points were determined in open capillaries on a Mel-Temp apparatus and are uncorrected. The homogeneity of the compounds was checked by TLC (silica gel H, BDH, hexane/ethyl acetate, 3:1). The IR spectra were recorded on a Thermo Nicolet IR 200 FT-IR spectrometer as KBr pellets and the wave numbers are given in cm⁻¹. The ¹H NMR spectra were recorded in DMSO-d₆ on a Jeol JNM λ-400 MHz spectrometer. The ¹³C NMR spectra were recorded in DMSO-d₆ on a Jeol JNM spectrometer operating at λ=100 MHz. High-resolution mass spectra were recorded on Micromass Q-TOF micromass spectrometer using electrospray ionization. All chemical shifts are reported in δ (ppm) using TMS as an internal standard. The microanalyses were performed on a Perkin-Elmer 240C elemental analyzer. The temperature was measured by flexible probe throughout the reaction. The Micheal acceptor E-3(1H-indol-3-yl)-1-arylprop-2-en-1-one (3) was prepared as per the literature procedure [42].

Results and discussion

Synthesis, Characterization, Molecular Docking, Cytotoxic and Antioxidant Activities of Di(indolyl)thiazolylpyrazoles

Nagarjuna U, Madhusekhar M, Trinath D, Kumaraswamy Naidu C, Suneetha Y, Padmavathi V and Padmaja A

1Department of Chemistry, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
2Department of Zoology, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
3School of Medicine, University of South Carolina, SC, USA

Received October 25, 2017; Accepted October 28, 2017; Published November 04, 2017

Citation: Nagarjuna U, Madhusekhar M, Trinath D, Kumaraswamy Naidu C, Suneetha Y, et al. (2017) Synthesis, Characterization, Molecular Docking, Cytotoxic and Antioxidant Activities of Di(indolyl)thiazolylpyrazoles. Med Chem 7: 329-339. doi: 10.4172/2161-0444.1000477

Copyright: © 2017 Shirmohammadi, Assistant Professor in Liver and Gastrointestinal Disease, Department of Internal Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, East Azerbaijan, Iran, Tel: 04133371319; E-mail: shirmohammadi@ttbmed.ac.ir
5'-5'-dicarbothioamide (5b):

\[\text{[M+Na]}\]. Anal. Calcd. for C_{25}H_{19}BrN_{5}O_{2}S: C, 51.00; H, 3.76; N, 19.48%; Found: C, 51.64; H, 3.80; N, 19.26.

General procedure for the synthesis of 3'-(5H-indol-3-yl)-1'-(4"-phenylthiazol-2-yl)-1H-pyrazol-3'-yl-1H-indole (7a-i): An equimolar (1 mmol) mixture of compound 5 and p-chlorophenacyl bromide (6) in ethanol (10 ml) was sonicated for 60-80 min at room temperature. After completion of the reaction, the contents of the flask were cooled and filtered on a Buchner funnel. It was purified by column chromatography (silica gel 60-120 mesh) using ethyl acetate / hexane (1:3) as eluent.

\[\text{[M+Na]}\]. Anal. Calcd. for C_{25}H_{19}BrN_{5}O_{2}S: C, 51.00; H, 3.76; N, 19.48%; Found: C, 51.64; H, 3.80; N, 19.26.

General procedure for the synthesis of 3',5'-di(1H-indol-3-yl)-1H-pyrazol-1'-carbothioamide (5a-e): The compound 4 (1 mmol), chloranil (1.2 mmol) in xylene (10ml) were subjected to ultrasonic irradiation for 2-3 h at 60°C. Then it was treated with 5% NaOH solution. The organic layer was separated and repeatedly washed with water. It was dried over an. NaSO_4 and the solvent was removed under reduced pressure. The resultant solid was recrystallized from 2-propanol.

\[\text{[M+Na]}\]. Anal. Calcd. for C_{25}H_{19}BrN_{5}O_{2}S: C, 51.00; H, 3.76; N, 19.48%; Found: C, 51.64; H, 3.80; N, 19.26.

General procedure for the synthesis of 3',5'-di(1H-indol-3-yl)-1H-pyrazol-1'-carbothioamides (5a-e): The compound 4 (1 mmol), chloranil (1.2 mmol) in xylene (10ml) were subjected to ultrasonic irradiation for 2-3 h at 60°C. Then it was treated with 5% NaOH solution. The organic layer was separated and repeatedly washed with water. It was dried over an. NaSO_4 and the solvent was removed under reduced pressure. The resultant solid was recrystallized from 2-propanol.

\[\text{[M+Na]}\]. Anal. Calcd. for C_{25}H_{19}BrN_{5}O_{2}S: C, 51.00; H, 3.76; N, 19.48%; Found: C, 51.64; H, 3.80; N, 19.26.
3'-（5-（Bromo-1-H-indol-3-yl）-1'-（4''-(p-bromophenyl)thiazol-2''-yl）-1H-pyrazol-3''-yl）-1H-indole (7d): mp=189-191 °C; IR (KBr) u max=3235 (NH), 1632 (C=C), 1574 (C=N)

VEGA-QSAR for toxicity prediction

We used VEGA-QSAR model platform (http://www.vega-qsar.eu) for toxicity prediction of synthesized compounds. It includes one or more QSAR models for different end points [43]. Here we accessed CAESAR models for prediction of carcinogenicity, mutagenicity and skin sensitization of synthesized compounds.

Molecular docking

Several reports suggest that molecules with indole nucleus have promising antiproliferative activity by inhibiting tubulin polymerization [44]. We obtained the structural information of tubulin in complex with compound CN2 from protein Data Bank (PDB ID: 1SA0) [45]. Protein and ligands for docking were prepared in Chimera 1.10.2 [46] by removing water molecules, adding hydrogen atoms and Gasteiger partial charges. Molecular docking simulation was performed with AutoDock 4.2 [47] using empirical free energy force field and Lamarckian genetic algorithm conformational search with the default parameters. The grid box was set around the co-chinicine-binding site in α1 tubulin hetero dimer. Previous reports show that and Cys-β241, Lys-β254, Asn-α101, Thr-α224, Gln-α176 are the key interacting residues for anti-tubulin agents in colchicines binding pocket with grid centre X 115.57 Å, Y 89.1142 Å, Z 6.0915 Å and grid point spacing 0.375 Å.

Anticancer assays

Compounds: The compounds 7b, 7e, 7f and 7h were screened for anticancer activity against NCI-H1299 (Human non-small lung cancer cells; ATCC, Manassas, VA, USA), HCT-166 p53 (Human colorectal adenocarcinoma; ATCC, Manassas, VA, USA), and PC-3 (Human prostate cancer cells; ATCC, Manassas, VA, USA) cells by EZ-cytos cell viability assay kit.

Cell cultures: NCI-H1299, HCT-166 p53, cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM) and PC-3 cells were cultured in Roswell Park memorial Institute medium-1640 (RPMI-1640) (Sigma-Aldrich, St. Louis, MO, U.S.A) supplemented with 10% fetal bovine serum (FBS), penicillin 100 U/ml, streptomycin 100 μg/ml, N(2-hydroxyethyl)piperazine-N’-2-ethanesulfonic acid (HEPES) 8 mM, and 1-glutamine 2 mM. Cells were maintained at 37°C in a humidified 5% CO2 incubator.

Measurement of cancer viability: Cell viability and proliferation were determined with EZ-cytos cell viability assay kit based on the cleavage of the tetrazolium salt to water-soluble formazan by succinate-tetrazolium reductase system, which belongs to the respiratory chain of the mitochondria and is active only in the viable cells. Therefore the amount of formazan dye increased with an increase in cell viability [48]. Initially, the cells were seeded into 96-well culture plates at 1 × 104 cells/ml and NCI-H1299 and HCT-166 p53 cells were cultured in DMEM and PC-3 cells were cultured in RPMI-1640 media containing 10% FBS at 37°C. When cells reached 70% confluence, the medium was replaced with DMEM or RPMI-1640 containing 10% FBS and each 100 μM of compounds for 24 h. EZ-cytos cell viability kit reagents were added to the medium, and the cells were incubated for 1 h. The index of cell viability was determined by measuring formazan production with a microplate reader at an absorbance of 450 nm. Cells in fresh medium without any test compound were used as the control. The % cell viability was calculated by the formula:

\[
\text{% Cell viability} = \left(\frac{\text{Abs}_{\text{test well}} - \text{Abs}_{\text{control well}}}{\text{Abs}_{\text{control well}}} \right) \times 100
\]

As the % cell viability decreases the % inhibition increases.
The % inhibition was calculated by the formula:

\[\text{Inhibition} = \frac{\text{Absorbance}_{\text{control}} - \text{Absorbance}_{\text{sample}}}{\text{Absorbance}_{\text{control}}} \times 100 \]

The higher the value of % inhibition indicates the more potentiality of the drug. The inhibitory concentration (IC_{50}) of the compound was assessed by Graph pad prism Software.

In vitro antioxidant activity

The compounds 7a-7i were tested for antioxidant activity by DPPH, NO and H_2O_2 methods.

DPPH radical scavenging activity: The hydrogen atom or electron donation ability of the compounds was measured from the bleaching of the purple colored methanol solution of 2,2-diphenyl-1-picrylhydrazyl radical (DPPH). This property makes it suitable for spectrophotometric studies. 1 mL of various concentrations of the test compounds (25, 50, 75 and 100 μg/mL) was added to 4 mL of 0.004% (w/v) methanol solution of DPPH. After a 30 min incubation period at room temperature, the absorbance was read against blank at 517 nm. Ascorbic acid was used as the standard. Tests were carried out in triplicate. The percent inhibition (1%) of free radical production from DPPH was calculated by the following equation.

\[I\% = \left(\frac{A_{\text{control}} - A_{\text{sample}}}{A_{\text{control}}} \right) \times 100 \]

Where \(A_{\text{control}} \) was the absorbance of the control reaction (containing all reagents except the test compound), \(A_{\text{sample}} \) was the absorbance of the test compound (containing methanolic DPPH and test compound). IC_{50} value of each compound was considered as the concentration (μg/mL) of the compound at which 50% of DPPH reduction was observed [49,50].

\[IC_{50} = (50/\% \text{ scavenging activity of the compound nearer to 50}) \times \text{concentration of the test compound} \]

Hydrogen peroxide (H_2O_2) scavenging activity: The H_2O_2 scavenging ability of the test compounds was determined according to the method [44]. A solution of H_2O_2 (40 mM) was prepared in phosphate buffer (pH 7.4). The different concentrations 25, 50, 75 and 100 μg/mL of the test compounds in 3.4 mL phosphate buffer were added to H_2O_2 solution (0.6 mL, 40 mM). The absorbance value of the reaction mixture was recorded at 230 nm. Ascorbic acid was used as the standard. Tests were carried out in triplicate. The percent of scavenging of H_2O_2 was calculated by the following equation.

\[I\% = \left(\frac{A_{\text{control}} - A_{\text{sample}}}{A_{\text{control}}} \right) \times 100 \]

Where \(A_{\text{control}} \) was the absorbance of the control reaction (containing all reagents except the test compound), \(A_{\text{sample}} \) was the absorbance of the test compound (containing all reagents and test compound).

Nitric oxide (NO) scavenging activity: Nitric oxide scavenging activity was measured by slightly modified methods [51-53]. Nitric oxide radicals (NO) were generated from sodium nitroprusside, 1 mL of sodium nitroprusside (10 mM) and 1.5 mL of phosphate buffer saline (0.2 M, pH 7.4) were added to different concentrations (25, 50, 75 and 100 μg/mL) of the test compounds and incubated for 150 min at 25°C. After incubation 1 mL of the reaction mixture was treated with 1mL of Griess reagent (1% sulfanilamide, 2% H_3PO_4 and 0.1% naphthylethylenediaminedihydrochloride). The absorbance of the chromatophore was measured at 546 nm. Ascorbic acid was used as the standard. Tests were carried out in triplicate. Nitric oxide scavenging activity was calculated by the following equation.

\[I\% = \left(\frac{A_{\text{control}} - A_{\text{sample}}}{A_{\text{control}}} \right) \times 100 \]

Where \(A_{\text{control}} \) was the absorbance of the control reaction (containing all reagents except the test compound). A_{sample} was the absorbance of the test compound (containing all reagents and test compound).

Results and Discussion

Chemistry

The Michael acceptor, E-1,3-di((1H-indol-3-yl)prop-2-en-1-one (3) was used as synthon to synthesize a new class of heterocycles- di(indolyl)thiazolylpyrazoles (Schemes 1 and 2). The compound 3 was obtained with the reaction of indole-3-carboxaldehyde (1) and indole ketone (2) in the presence of piperidine in ethanol under ultrasonication. The 1^H NMR spectra of 3a exhibited two doublets at δ 8.06 and 7.66 ppm due to olefin protons, H_3 and H_4 respectively. The coupling constant value J_{oA}=16.2 Hz indicated their trans geometry. The enone functionality in 3 was exploited to develop pyrazole ring. The cyclocondensation of 3 with thiosemicarbazide in the presence of sodium hydroxide in ethanol under ultrasonication afforded 4,5-di(hydroxy)-2,3-di((1H-indol-3-yl)pyrazole-1-carbothioamide). The 1^H NMR spectrum of 4a exhibited an AMX splitting pattern due to methylene and methine protons of pyrazoline ring. The three doublets present at δ 5.16, 3.87, 3.18 ppm were attributed to H_8, H_9, H_10 respectively. The coupling constant values J_{oA}=12.7, J_{oX}=10.4 and J_{1A}=6.7 Hz indicated that H_8, H_9 are cis; H_10, H_x are trans and H_8, H_10 are geminal. Moreover, two broad singlets observed at δ 10.08, 5.45 ppm were assigned to NH and NH, which disappeared when D_2O was added. The oxidation of compound 4 with chloroform in xylene was performed under ultrasonication to obtain 3',5'-di-(1H-indol-3-yl)-1H-pyrazole-1-carbothioamide (5). The 1^H NMR spectrum of 5a displayed three singlets at δ 6.79 (C_H), 10.21 (NH) and 5.51 (NH) ppm besides the signals of aromatic protons. The signals due to NH and NH disappeared on deuteration. Furthermore, the thioamide group in compound 5 was used to build thiazole ring. Thus, 3-(5-((1H-indol-3-yl)-1-(4-phenylthiazol-2-yl)-1H-pyrazol-3-yl)-1H-indole (7) was prepared by the nuleophilic reaction of 5 with phenacnyl bromide (6) followed by intramolecular cyclization and elimination of water.

In the 1^H NMR spectrum of 7a the absence of signal due to NH and presence of a singlet due to C_1=H at downfield region confirms its formation. Besides, a broad singlet at δ 10.37 ppm was attributed to NH which disappeared on deuteration. The structures of all the compounds were further established by IR, ^13C NMR, mass spectra and microanalyses.

Biology

VEGA-QSAR for toxicity prediction: The toxicity of compounds 7a-7i predicted for selected endpoints are shown in Table 1 and the results revealed that all the tested compounds are non-mutagens, non-carcinogens and non-skin sensitizers.

Molecular docking: The compounds 7a-7i were subjected to energy minimization using open Babel module in Pyrx program [54]. The docking protocol was validated using redocking experiment by removing CN2 from the co-crystal structure and allowed it for docking into the same binding pocket with specified docking parameters in AutoDock 4.2. CN2 interacted with the same residues that are involved in interaction with CN2 in co-crystallized structure and the RMSD value obtained from redocking experiment for the top ranked pose was 1.56 Å. It indicated that these parameters are good enough for docking process. Molecular docking results revealed that the compounds 7a-7i tend to bind with colchicine binding site with good binding free energies ranging from -9.66 Kcal/mol to -12.21 Kcal/mol. Docking results are summarized in Table 2. Figure 1 exhibited the PyMOL visualization of the interactions of these compounds 7a-7i within the...
Scheme 1: Synthesis of new class of heterocycles—di(indoly)thiazolylpyrazoles.

Scheme 2: Nucleophilic reaction of (5) with phenacyl bromide (6) followed by intramolecular cyclization and elimination of water.
Table 1: Toxicity of compounds 7a-7i predicted by VEGA platform.

Compound	Mutagenicity (Ames test) model (CAESAR) - prediction	Carcinogenicity model (CAESAR) - prediction	Skin Sensitisation model (CAESAR) - prediction
7a	NON-Mutagen	NON-Carcinogen	NON-Sensitizer
7b	NON-Mutagen	NON-Carcinogen	NON-Sensitizer
7c	NON-Mutagen	NON-Carcinogen	NON-Sensitizer
7d	NON-Mutagen	NON-Carcinogen	NON-Sensitizer
7e	NON-Mutagen	NON-Carcinogen	NON-Sensitizer
7f	NON-Mutagen	NON-Carcinogen	NON-Sensitizer
7g	NON-Mutagen	NON-Carcinogen	NON-Sensitizer
7h	NON-Mutagen	NON-Carcinogen	NON-Sensitizer
7i	NON-Mutagen	NON-Carcinogen	NON-Sensitizer

Table 2: The best binding free energies (ΔG_b) and inhibition constants (K) among the docked poses of compounds 7a-7i.

Compound	ΔG_b (kcal/mol)	K_i (nM)	Interacting residues
7a	-9.66	83.50	Lys352B, Asn249B, Leu248B, Lys254B, Ala316B, Met259B, Leu255B, Thr239B, Leu242B, Val238B
7b	-10.53	19.26	Lys352B, Lys254B, Leu248B, Ala250B, Ala316B, Val181A, Lys352B, Met259B, Asn258B, Cys241B, Leu255B
7c	-10.09	40.28	Lys352B, Asn249B, Leu248B, Lys352B, Asn258B, Ala316B, Met359B, Leu255B, Val238B, Thr239B, Leu242B, Val243B
7d	-10.32	27.07	Thr239B, Leu255B, Ala250B, Thr239B, Lys254B, Val181A, Lys352B, Met259B, Val238B, Leu242B, Leu252B
7e	-12.21	1.13	Lys352B, Asn249B, Leu248B, Lys352B, Ala16B, Lys254B, Ala316B, Leu255B, Val238B, Val243B
7f	-11.41	4.35	Lys352B, Lys352B, Ala316B, Leu255B, Thr239B, Val238B, Lys254B
7g	-9.94	51.39	Lys352B, Asn249B, Lys352B, Ala316B, Met259B, Thr239B, Leu242B, Val238B, Lys254B
7h	-11.08	7.52	Glu11A, Lys248B, Asn258B, Lys352B
7i	-10.75	13.28	Lys352B, Asn249B, Leu248B, Lys254B, Lys352B, Ala316B, Met259B, Leu255B, Thr239B, Val238B, Val243B
colchicine binding site. All the compounds showed hydrogen bonding interaction with amino acids in the colchicine binding pocket in addition to hydrophobic interactions except 7d. The most common hydrogen bonding interactions observed in all docked compounds formed between indole NH groups and Asn249(β) and Lys352(β). Compound 7d exhibited only hydrophobic interactions whereas 7b displayed hydrogen bonding with Lys352 only. It can also be inferred that compound 7e in which Br substitution at R, R’ positions of phenyl ring has lowest binding energy and good inhibition constants followed by compounds 7f, 7h for colchicine binding site in tubulin.

In vitro cytotoxic activity: The compounds 7b, 7e, 7f and 7h were screened for in vitro anticancer activity against lung (NCI-H1299), colon (HCT-166 P53) and prostate (PC-3) cancer cell lines by EZ-cytox cell viability assay kit. However, the remaining compounds are inactive at 100 µM. To determine the anticancer activity of the target compounds 7b, 7e, 7f and 7h the cancer cells were treated at a concentration of 100 µM for 24h and measured the cell viability using the EZ-cytox cell viability kit. The inhibition percentage of compound 7e was 82.42 (NCI-H1299), 65.30 (HCT-166 P53), 73.09 (PC-3) (Table 3). Figure 2 evidenced the anticancer effect of compound 7e on NCI-H1299, HCT-166 P53 and PC-3 cancer cell lines. Further it was observed that the anticancer activity of compound 7e (0-200 µM) stimulation for 24h, cancer cells decreased in a dose dependent manner (Figures 3-5). The compound 7e displayed appreciable anticancer activity on NCI-H1299 (IC50 =15.74), HCT-166 P53 (IC50 =26.95) and PC-3 (IC50 =19.02). This infers that the compound 7e pre-treatment was clearly shown to modulate the anticancer activity.

Compound	% Cell viability (% inhibition) ± SD		
	NCI-H1299	HCT-166 P53	PC-3
Control	100(0) ± 1.79	100(0) ± 1.23	100(0) ± 1.63
7b	90.31 (9.69) ± 3.32	95.42 (4.58) ± 2.13	96.14 (3.86) ± 1.42
7e	17.58 (82.42) ± 1.75	34.70 (65.30) ± 1.89	26.91 (73.09) ± 2.68
7f	95.33 (4.67) ± 1.91	97.54 (2.46) ± 1.27	99.24 (0.76) ± 0.54
7h	69.60 (30.40) ± 2.22	85.32 (14.68) ± 1.65	92.36 (7.64) ± 1.37

Table 3: Anticancer activity of compounds 7b, 7e, 7h and 7f on NCI-H1229, HCT-166 P53 and PC-3 cell lines at 100 µM concentration. Cell viability in %.

Statistical analysis: Experiments were performed in triplicate (n=3) and results are expressed as mean ± standard deviation (SD). Two-way ANOVA (MS-Excel) was used for multiple comparisons and it showed that P<0.01 which represent statistically significant differences.

In vitro antioxidant activity: The compounds 7a-7i were tested for antioxidant activity by 2,2-diphenylpicrylhydrazyl (DPPH), hydrogen peroxide (H2O2) and nitric oxide (NO) methods. The experimental data on the antioxidant activity of the compounds 7a-7i and control drug are presented in Tables 4-6 (Figures 6-8). The results revealed that compounds 7a, 7c, 7g and 7i showed good radical scavenging activity in all the three methods when compared with the standard drug Ascorbic acid. On the other hand, the compounds 7b, 7f and 7h...
Figure 2: Effects of di(indolyl)thiazolylpyrazoles on cancer cell lines. Cells were seeded in 96-well culture plates at 1×10^4 cells/ml NCI-H1299 and HCT-166 p53 cells were cultured in DMEM and PC-3 cells were cultured in RPMI-1640 media containing 10% FBS at 37°C. When cells reached 70% confluence, the medium was replaced with DMEM or RPMI-1640 containing 10% FBS and 100 µM of di(indolyl)thiazolyl pyrazoles (7b, 7e, 7f, and 7h) for 24 h. Values represent ± S.E.M. from three different assays. (A) NCI-H1299, (B) HCT-166 p53, and (C) PC-3 cancer cell lines. 1) IC$_{50} = 15.74$.

Figure 3: The dose-response curve of 7e measured by MTT assay on NCI-H1299. X-axis shows the concentration of the compound, and Y-axis, the cell viability. 2) IC$_{50} = 26.95$.

Figure 4: The dose-response curve of 7e measured by MTT assay on HCT-166 p53. X-axis shows the concentration of the compound, and Y-axis, the cell viability. 3) IC$_{50} = 19.02$.

Figure 5: The dose-response curve of 7e measured by MTT assay on PC-3. X-axis shows the concentration of the compound, and Y-axis, the cell viability.

Figure 6: % Scavenging activity of compounds 7a-7f and standard Ascorbic acid by DPPH method.

displayed moderate activity while 7d and 7e exhibited least activity. It was observed that the compounds containing electron donating substituent (OCH$_3$) on the phenyl ring enhances the activity when compared with those having electron withdrawing substituent (Br). Moreover it was noticed that compounds with more number of electron donating groups displayed higher radical scavenging activity. This was exemplified that 7i exhibited excellent radical scavenging activity.

Statistical analysis: All experiments were performed in triplicate (n=3), and an two way ANOVA test (MS-Excel) was used for multiple comparisons and it showed that $P<0.01$ which represent statistically significant differences.
Citation: Nagarjuna U, Madhusekhar M, Trinath D, Kumaraswamy Naidu C, Suneetha Y, et al. (2017) Synthesis, Characterization, Molecular Docking, Cytotoxic and Antioxidant Activities of Di(indolyl)thiazolylpyrazoles. Med Chem 7: 329-339. doi: 10.4172/2161-0444.1000477

Figure 7: % Scavenging activity of compounds 7a-7f and standard Ascorbic acid by \(\text{H}_2\text{O}_2 \) method.

Figure 8: % Scavenging activity of compounds 7a-7f and standard Ascorbic acid by NO method.

Table 4: The in vitro antioxidant activity of compounds 7a-7i by DPPH method.

Compound	Concentration (µg/ml)	IC\(_{50}\) (µg/ml)			
	25 Mean ± SD	50 Mean ± SD	75 Mean ± SD	100 Mean ± SD	Mean ± SD
7a	40.01 ± 1.83	60.37 ± 0.66	71.11 ± 0.27	74.67 ± 0.41	51.59 ± 1.17
7b	31.52 ± 0.51	45.26 ± 0.42	52.22 ± 0.92	61.84 ± 1.29	47.67 ± 1.26
7c	29.25 ± 1.41	38.43 ± 0.24	47.13 ± 0.36	59.15 ± 0.43	79.56 ± 0.35
7d	26.70 ± 1.34	34.81 ± 0.56	43.17 ± 1.07	56.27 ± 1.02	88.51 ± 1.42
7f	37.75 ± 0.56	42.48 ± 0.28	54.13 ± 1.27	65.75 ± 0.56	69.27 ± 0.64
7g	49.15 ± 0.68	55.85 ± 0.49	66.24 ± 0.75	76.28 ± 0.51	25.43 ± 0.95
7h	38.46 ± 0.69	46.39 ± 0.31	58.37 ± 0.83	68.26 ± 0.67	53.89 ± 0.83
7i	54.73 ± 0.42	59.34 ± 0.43	69.42 ± 0.23	78.42 ± 0.25	22.83 ± 0.58

Ascorbic acid: 57.30 ± 0.75, 64.13 ± 0.92, 73.18 ± 0.71, 82.52 ± 0.60, 21.81 ± 0.72

Blank: (-) No activity

Table 5: The in vitro antioxidant activity of compounds 7a-7i by \(\text{H}_2\text{O}_2 \) method.

Compound	Concentration (µg/ml)	Mean ± SD			
	25 Mean ± SD	50 Mean ± SD	75 Mean ± SD	100 Mean ± SD	Mean ± SD
7a	34.56 ± 0.45	42.05 ± 0.36	53.46 ± 0.38	62.71 ± 0.70	62.71 ± 0.70
7b	26.97 ± 0.18	33.62 ± 0.46	44.70 ± 1.73	52.38 ± 0.27	52.38 ± 0.27
7c	41.24 ± 0.18	48.72 ± 0.52	58.19 ± 0.66	64.18 ± 0.72	64.18 ± 0.72
7d	23.16 ± 1.23	27.23 ± 1.30	40.46 ± 0.77	47.34 ± 0.64	47.34 ± 0.64
7f	28.14 ± 0.97	36.47 ± 1.69	47.89 ± 0.85	55.17 ± 0.55	55.17 ± 0.55
7g	44.87 ± 1.03	52.32 ± 0.93	60.25 ± 1.18	69.85 ± 0.43	69.85 ± 0.43
7h	31.42 ± 0.70	39.35 ± 0.91	50.23 ± 0.57	59.46 ± 1.64	59.46 ± 1.64
7i	46.12 ± 0.22	56.59 ± 0.30	63.89 ± 0.26	71.56 ± 0.58	71.56 ± 0.58

Ascorbic acid: 48.46 ± 0.60, 59.58 ± 0.27, 67.59 ± 0.33, 74.38 ± 0.47, Blank: (-) No activity

Table 6: The in vitro antioxidant activity of compounds 7a-7i by NO method.

Compound	Concentration (µg/ml)	Mean ± SD			
	25 Mean ± SD	50 Mean ± SD	75 Mean ± SD	100 Mean ± SD	Mean ± SD
7a	19.07 ± 0.23	21.89 ± 1.52	27.62 ± 0.51	34.14 ± 0.32	34.14 ± 0.32
7b	13.84 ± 1.40	13.65 ± 0.60	19.23 ± 1.57	25.87 ± 0.61	25.87 ± 0.61
7c	21.19 ± 1.24	24.63 ± 0.39	28.91 ± 0.35	38.12 ± 0.43	38.12 ± 0.43
7d	9.85 ± 0.74	11.26 ± 1.07	16.30 ± 0.62	23.63 ± 0.18	23.63 ± 0.18
7e	8.72 ± 1.92	10.19 ± 0.35	14.91 ± 1.24	20.95 ± 1.27	20.95 ± 1.27
7f	14.81 ± 0.96	15.16 ± 1.83	21.48 ± 0.41	29.45 ± 0.65	29.45 ± 0.65
7g	23.75 ± 0.59	27.21 ± 0.95	31.06 ± 0.29	42.56 ± 0.69	42.56 ± 0.69
7h	16.04 ± 1.08	19.76 ± 0.24	23.27 ± 0.41	31.73 ± 0.29	31.73 ± 0.29
7i	26.15 ± 0.66	30.62 ± 0.19	36.94 ± 0.42	44.52 ± 0.35	44.52 ± 0.35

Ascorbic acid: 28.64 ± 0.52, 33.61 ± 0.13, 38.22 ± 0.92, 47.60 ± 0.43, Blank: (-) No activity
Conclusion

Some new di(indolyl)thiazolylpyrazoles were prepared from the synthetic intermediate E-1,3-di(1H-indol-3-yl)prop-2-en-1-one under ultrasonication and studied their cytotoxic and antioxidant activities. All the compounds were screened for in vitro cytotoxic activity on three cancer cell lines. However, the compound 7e exhibited appreciable anticancer activity on NCI-H1299, HCT-166 p53 and PC-3 cancer cell lines with IC₅₀ values of 15.74, 26.95 and 19.02 µM respectively. The binding conformation of the target molecules was predicted by docking methodology to explain the biological activities. In fact, the docking studies indicated that bromo, dibromo, bromomethoxy and methoxybromo substituted di(indolyl)thiazolylpyrazoles (7b, 7e, 7f and 7h) could be used as possible leads for therapies against cancers. Amongst all the tested compounds dimethoxy substituted di(indolyl) thiazolylpyrazole (7i) displayed significant radical scavenging activity.

Acknowledgments

Two of the authors, U Nagarjuna and M Madhushekar are thankful to University Grants Commission (UGC), New Delhi for the sanction of UGC-BSR and UGC-JRF.

References

1. Matzen L, Van Amsterdam C, Rautenberg W, Greiner HE, Hartling J, et al. (2000) 5-HT Reuptake Inhibitors with 5-HT₁A Antagonistic Activity: A New Approach toward Efficient Antidepressant. J Med Chem 43: 1149-1157.
2. Chow CP, Shea KJ, Sparks SM (2002) Type II Intramolecular N-Acylamino Diels–Alder Reaction: Stereoselective Synthesis of Bridged Bicyclic Oxazinoazolinediones. Org Lett 4: 2637-2640.
3. Khan RH, Rastogi RC (1991) Condensed heterocycles: synthesis and antifungal activity of 3,5-difluoropyridine linked with pyrimidine. J Agric Food Chem 39: 2300-2303.
4. Gil C, Schwogler A, Brase S (2004) The Synthesis of 3-Substituted 6-Aryl-3-H-benzo[a][1,2,3]triazoles Using Polymer-Bound Triazene. J Comb Chem 6: 38-42.
5. Chen I, Safe S, Bjeldanes L (1996) Indole-3-carbinol and diindolylmethane as aryl hydrocarbon (Ah) receptor agonists and antagonists in T47D human breast cancer cells. Biochem Pharmacol 51: 1089-1070.
6. Suzen S, Buyukbingol E (2000) Anti-cancer activity studies of indololithiohydantoin (PIT) on certain cancer cell lines. Il Farmaco 55: 245-248.
7. Buyukbingol E, Suzen S, Klopman G (1994) Studies on the synthesis and structure-activity relationships of 5-(3'-indolal)-2-thiohydantoin derivatives as aldose reductase enzyme inhibitors. Il Farmaco 49: 443-447.
8. Suzen S, Buyukbingol E (1998) Evaluation of anti-HIV activity of 5-(2-phenyl-3'-indolal)-2-thiohydantoin. Il Farmaco 53: 525-527.
9. Lieberman PM, Wolff A, Felsner P, Hofer D, Schauenstien K (1997) Melatonin and the Immune System. Int Archergy Allergy Immunol 112: 203-211.
10. Page D, Yang H, Brown W, Walpole C, Fleurent M, et al. (2007) New approaches toward Efficient Antidepressant. J Med Chem 48: 3819-3820.
11. Chen FE, Huang J (2005) Reserpine: A Challenge for Total Synthesis of Natural Products. J Chem Rev 105: 4671-4708.
12. Ishiikawa H, Colby DA, Oger DL (2000) Direct Coupling of Catharanthe and Vindoline to Provide Vinblastine: Total Synthesis of (+)- and ent-(−)-Vinblastine. J Am Chem Soc 130: 420-421.
13. Poon AMS, Liu ZM, Pang CS, Brown GM, Pang, SF (1994) Evidence for a Direct Action of Melatonin on the Immune System. Biol Signals 3: 107-117.
14. Liberman PM, Wolff A, Felsner P, Hofner D, Schauenstien K (1997) Melatonin and the Immune System. Int Archergy Allergy Immunol 112: 203-211.
15. Lezoualch F, Skutella T, Widmann M, Behl C (1996) Melatonin prevents oxidative stress-induced cell death in hippocampal cells. Neuroreport 7: 2071-2077.
16. Sharath V, Kumar V, Naik H (2013) Synthesis of novel indole based scaffolds holding pyrazine ring as anti-inflammatory and antioxidant agents. Journal of Pharmacy Research 6: 785-790.
17. Ragab FA, Gawad NMA, Gregory HH, Said MF (2013) Synthesis of novel 1,3,4-trisubstituted pyrazoles as anti-inflammatory and analgesic agents. Eur J Med Chem 63: 645-654.
18. Alamia R, Wahi D, Singh R, Sinha D, Tandon V, et al. (2016) Design, synthesis, cytotoxicity, HuTopoIIα inhibitory activity and molecular docking studies of pyrazole derivatives as potential anticancer agents. Bio Org Med Chem 69: 77-90.
19. Aziz MA, Rahma GEAA, Hassan AA (2009) Syntheses and Antibacterial Studies of Some 1-Phenyl-3-(4-(2-ethanoloxy) phenyl)-5-aryl-1H-pyrazoles. Eur J Med Chem 44: 3480–3487.
Citation: Nagarjuna U, Madhusekhar M, Trinath D, Kumaraswamy Naidu C, Suneetha Y, et al. (2017) Synthesis, Characterization, Molecular Docking, Cytotoxic and Antioxidant Activities of Di(indolyl)thiazolylpyrazoles. Med Chem 7: 329-339. doi: 10.4172/2161-0444.1000477

40. Padmavathi V, Mohan AVN, Thriveni P, Shazia A (2009) Synthesis and bioassay of a new class of heterocycles pyrroly oxadiazoles/thiadiazoles/triazoles. Eur J Med Chem 44: 2313-2321.
41. Dallakyan S, Olson AJ (2015) Chemical Biology: Methods and Protocols. Methods in Molecular Biology 1263: 243-3250.
42. Kumar D, Kumar NM, Akamastu K, Kusaka E, Harada H, et al. (2010) Synthesis and biological evaluation of indolyl chalcones as antitumor agents. Bioorg Med Chem Lett 20: 3916-3919.
43. Benfenati E, Pardoe S, Martin T, GonellaDiaza R, Lombardo A (2013) Using toxicological evidence from QSAR models in practice. Altex 30: 19-40.
44. El-Nakkady SS, Hanna MM, Roaiah H, Ghannam IA (2012) Synthesis, molecular docking study and antitumor activity of novel 2-phenylindole derivatives. Eur J Med Chem 47: 387-398.
45. Ravelli RBG, Gigant B, Curmi PA, Jourdain I, Lachkar S, et al. (2004) Insight into tubulin regulation from a complex with colchicines and a stathmin-like domain. Nature 428: 198-202.
46. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, et al. (2004) UCSF Chimera-A visualization system for exploratory research and analysis. J Comput Chem 25: 1605-1612.
47. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, et al. (2009) AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem 30: 2785-2791.
48. Kwon HK, Hwang JS, So JS, Lee CG, Sahoo A, et al. (2010) Cinnamon extract induces tumor cell death through inhibition of NFκB and AP1. BMC Cancer 10: 392-401.
49. Kumar VA, Sarala Y, Kumar MVJ, Reddy MS, Reddy AV, et al. (2014) Formulation and Evaluation of Fluconazole Antidandruff Gel. RJPBCS 5: 96-102.
50. Sekhar KC, Syed R, Golla M, Kumar MVJ, Nanda Kumar Y, et al. (2014) Novel heteroaryl phosphonicdiamides PTPs inhibitors as anti-hyperglycemic agents. DARU J Pharm Sci 22: 76-91.
51. Ruch RJ, Cheng SJ, Klaunig JE (1989) Prevention of cytotoxicity by antioxidant catechins isolated from Chinese green tea. Carcinogenesis 10: 1003-1008.
52. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, et al. (1982) Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem 126: 131-138.
53. Marzocchi L, Maguire JJ, Droy-Lefaix MT, Packer L (1994) The nitric oxide-scavenging properties of Ginkgo biloba extract EGb 761. Biochem Biophys Res Commun 201: 748-755.
54. Sekhar MM, Sravya G, Padmavathi V, Padmaja A, Usha R, et al. (2016) Synthesis and antimicrobial activity of 1,3-/1,4-phenylene linked bis(azoles). Res Chem Intermed 42: 7947-7962.