On a conjecture of Braverman and Kazhdan

S. Cheng, B. C. Ngô

Abstract

In this paper a proof of Conjecture 9.12 of Braverman–Kazhdan in their article γ-functions of representations and lifting on the acyclicity of their ℓ-adic γ-sheaves over certain affine spaces is given for $GL(n)$.

Introduction

Classical Fourier transforms on vector spaces over local fields and adelic rings have found remarkable connections with the standard L-functions $L(s, \pi, \text{std})$ of $GL(n)$ since Tate [T50] for $n = 1$ and Godement–Jacquet [GJ72] for general n.

More generally, for each reductive group G which is quasi-split over a nonarchimedean local field F_v and each representation ρ of its dual group L^G satisfying some mild technical conditions, there exists a ρ-analogue of the Fourier transform which is essentially the operator of convolution by an invariant distribution $\Phi_{\psi, \rho}$ on $G(F_v)$ where ψ is a fixed additive character of F_v, whose operator-valued Mellin transform $M(\Phi_{\psi, \rho} * (\bullet))$ is the scalar operator of multiplication by the γ-function $\gamma_{\psi, \rho}(\pi_v)$ investigated by Braverman–Kazhdan in [BK00]. Similar ideas have been developed further by L. Lafforgue, see for example [L13].

Incarnations $\Phi_{\psi, \rho}$ of $\Phi_{\psi, \rho}$ as ℓ-adic perverse sheaves over finite fields have been constructed and studied by Braverman–Kazhdan in the last section of [BK00] and subsequently in [BK02]. The purpose of this paper is to establish Conjecture 9.12 in [BK00] for $GL(n)$. The argument generalizes that of Braverman–Kazhdan in [BK02] for $GL(2)$. Following the classical paradigm the generalization from $GL(2)$ to $GL(n)$ involves mirabolic groups as an essential ingredient.

Conventions In this paper k is an algebraic closure of a finite field k_0 with q elements of characteristic p. Let ℓ be a prime number which is distinct from p, let \overline{Q}_ℓ be an algebraic closure of the field of ℓ-adic numbers.
If \(X \) is a \(k \)-scheme, let \(D^b_c(X) \) denote the derived category of complexes of \(\overline{\mathbb{Q}}_\ell \)-étale sheaves on \(X \) with bounded constructible cohomology, let \([d] \) denote the \(d \)th translation functor on \(D^b_c(X) \). If \(f \) is a \(k \)-linear morphism of \(k \)-schemes, the six functors \(f^*, f_*, f^!, f_!, \otimes_X \) and \(\mathcal{H}om_X \) are understood in the derived sense. If \(j \) is the morphism of inclusion of an open \(k \)-subscheme, let \(j_\ast \) denote the intermediate extension functor of Goresky–MacPherson for \(\overline{\mathbb{Q}}_\ell \)-perverse sheaves (see [BBD82]).

We will denote by \(\mathbb{G}_a \) the additive group defined over \(k \). It has the Artin–Schreier covering, which is a torsor under the finite group \(k_0 \), given by the Lang isogeny \(L_{\mathbb{G}_a} : \mathbb{G}_a \to \mathbb{G}_a \) with \(L_{\mathbb{G}_a}(t) = t^q - t \). We fix a nontrivial character \(\psi : k_0 \to \overline{\mathbb{Q}}_\ell^\times \) and denote by \(L_\psi \) the rank one \(\overline{\mathbb{Q}}_\ell \)-local system attached to \(\psi \) obtained by pushing out the Artin–Schreier covering.

Similarly, we denote by \(L_c \) the the rank one \(\overline{\mathbb{Q}}_\ell \)-local system on the multiplicative group \(\mathbb{G}_m \) obtained by pushing out the Kummer covering \(L_{\mathbb{G}_m} : \mathbb{G}_m \to \mathbb{G}_m \) with \(L_{\mathbb{G}_m}(t) = t^{q-1} \).

Contents

Introduction \hfill 1

1 Katz’s hypergeometric sheaves \hfill 3

2 Braverman–Kazhdan’s \(\gamma \)-sheaves \hfill 4

3 Conjugation action of the mirabolic group \hfill 9

4 Action of \(U_Q \) by left translation \hfill 13

5 Proof of Theorem 2.4 \hfill 15

A The case of parabolic subgroups \hfill 18

B Positive hypergeometric sheaves \hfill 19

References \hfill 21
1 Katz’s hypergeometric sheaves

Let T be a torus defined over k and $\lambda : \mathbb{G}_m \to T$ a nontrivial cocharacter. We note that λ is then necessarily a finite morphism so that we have

$$\Psi(\lambda) = \lambda_*(j^*L_\psi[1]) = \lambda_*(j^*L_\psi[1]).$$

where $j : \mathbb{G}_m \to \mathbb{G}_a$ is the inclusion morphism from the multiplicative group into the additive group. We will call $\Psi(\lambda)$ the hypergeometric sheaf attached to $\lambda : \mathbb{G}_m \to T$. They are perverse sheaves on T.

Following Katz [K90, Chapter 8], we construct general hypergeometric sheaves on T by convolving the $\Psi(\lambda)$. We recall that convolution products on T are constructed as direct images with respect to the multiplication morphism $\mu : T \times T \to T$ with $\mu(t_1, t_2) = t_1 t_2$. There are two convolution products attached to the direct image functors with or without the compact support condition: for every $F, G \in D^b_c(T)$ we define

$$F \star G = \mu_!(F \boxtimes G)$$
$$F \bullet G = \mu_*(F \boxtimes G)$$

related by the morphism of functors

$$F \star G \to F \bullet G$$

that consists in forgetting the compact support condition. For every collection of possibly repeated nontrivial cocharacters $\underline{\lambda} = (\lambda_1, \ldots, \lambda_r)$, we consider the convolution products

$$\Psi_{\underline{\lambda}} = \Psi(\lambda_1) \cdots \Psi(\lambda_r)$$
$$\Psi^*_{\underline{\lambda}} = \Psi(\lambda_1) \cdots \Psi(\lambda_r)$$

and the forget support morphism

$$\Psi_{\underline{\lambda}} \to \Psi^*_{\underline{\lambda}}. \quad (1)$$

If we denote by $p_{\underline{\lambda}} : \mathbb{G}_m^r \to T$ the homomorphism given by

$$p_{\underline{\lambda}}(t_1, \ldots, t_r) = \prod_{i=1}^r \lambda_i(t_i)$$

and by $\text{tr} : \mathbb{G}_m^r \to \mathbb{G}_a$ the addition morphism $\text{tr}(t_1, \ldots, t_r) = \sum_{i=1}^r t_i$, then

$$\Psi_{\underline{\lambda}} = p_{\underline{\lambda}} \cdot \text{tr}^* L_\psi[r]$$
$$\Psi^*_{\underline{\lambda}} = p_{\underline{\lambda}}^* \cdot \text{tr}^* L_\psi[r].$$
For $T = \mathbb{G}_m$ and $\lambda_i : \mathbb{G}_m \to \mathbb{G}_m$ being the identity for all i, Ψ_Δ is the r-fold Kloosterman sheaf considered by Deligne in [D77s]. In general, this is what Braverman and Kazhdan have called γ-sheaves on tori in [BK02].

We will restrict ourselves in a setting where the morphism (1) is an isomorphism. Let $\sigma : T \to \mathbb{G}_m$ be a character. A cocharacter $\lambda : \mathbb{G}_m \to T$ is said to be σ-positive if the composition $\sigma \circ \lambda : \mathbb{G}_m \to \mathbb{G}_m$ is of the form $t \mapsto t^n$ where n is a positive integer.

Proposition 1.1. Assume that $\lambda_1, \ldots, \lambda_n$ are σ-positive. Then the forget-support morphism $\Psi_\Delta \to \Psi_\Delta^*$ is an isomorphism. Moreover, Ψ_Δ is a perverse local system over the image of p_Δ, which is a subtorus of T.

Proof. See Appendix B.

Let Σ_Δ denote the subgroup of the symmetric group \mathfrak{S}_r consisting of permutations $\tau \in \mathfrak{S}_r$ such that for all $i \in \{1, \ldots, r\}$, we have $\lambda_{r(i)} = \lambda_i$. This subgroup is of the form $\Sigma_\Delta = \mathfrak{S}_{r_1} \times \cdots \times \mathfrak{S}_{r_m}$ where (r_1, \ldots, r_m) is the partition of r corresponding to positive number of occurrences in $\{\lambda_1, \ldots, \lambda_r\}$.

Proposition 1.2. The group Σ_Δ acts on Ψ_Δ via the sign character.

Proof. This is [D77s, Proposition 7.20].

Proposition 1.3. Let \mathcal{L} be a Kummer local system on T. Then if $\lambda_1, \ldots, \lambda_n$ are σ-positive, we have

$$H^i_c(\Psi_\Delta \star \mathcal{L}) = 0$$

for $i \neq 0$ and $\dim H^0_c(\Psi_\Delta \star \mathcal{L}) = 1$. Moreover, there is a canonical isomorphism

$$\Psi_\Delta \star \mathcal{L} = H^0_c(\Psi_\Delta \star \mathcal{L}) \otimes \mathcal{L}.$$

Proof. This is [BK02, Theorem 4.8].

2 Braverman–Kazhdan’s γ-sheaves

Let G be a reductive group over k. Let T be a maximal torus of G, B a Borel subgroup containing T and U the unipotent radical of B. Let $W = \text{Nor}_G(T)/T$ denote the Weyl group of G, $\text{Nor}_G(T)$ being the normalizer of T in G. The group of cocharacters $\Lambda = \text{Hom}(\mathbb{G}_m, T)$ is a free abelian group of finite type equipped with an action of W. The complex dual group \hat{G} is equipped with a maximal torus \hat{T} and a Borel subgroup \hat{B} containing \hat{T}. We have $\Lambda = \text{Hom}(\hat{T}, \mathbb{C}^\times)$.
We will recall the construction, due to Braverman and Kazhdan, of the γ-sheaf attached to a representation of the dual group \hat{G}. Let $\rho : \hat{G} \to \text{GL}(V_\rho)$ be an r-dimensional representation of \hat{G}. The restriction of ρ to \hat{T} is diagonalizable i.e. there exists a finite set of weights

$$\{\lambda_1, \ldots, \lambda_m\} \subset \Lambda = \text{Hom}(\hat{T}, \mathbb{C}^\times)$$

such that there is a decomposition into direct sum of eigenspaces

$$V_\rho = \bigoplus_{i=1}^m V_{\lambda_i},$$

with \hat{T} acting on V_{λ_i} by the character λ_i. The integers $r_i = \dim(V_{\lambda_i})$ define a partition $r = r_1 + \cdots + r_m$. We will denote

$$\underline{\lambda} = (\underbrace{\lambda_1, \ldots, \lambda_1}_{r_1}, \ldots, \underbrace{\lambda_m, \ldots, \lambda_m}_{r_m}) \in \Lambda^r$$

where $\lambda_1, \ldots, \lambda_m$ appear in $\underline{\lambda}$ with multiplicity r_1, \ldots, r_m respectively.

By choosing a basis $A_i = \{v_{i,j}, 1 \leq j \leq r_i\}$ of each V_{λ_i}, we obtain a basis $A = A_1 \sqcup \ldots \sqcup A_m$ of V_ρ. The Weyl group of $\text{GL}(V_\rho)$ can be identified with the symmetric group $\text{Perm}(A) = \mathfrak{S}_r$ of permutations of the finite set A. Let

$$\Sigma_{\underline{\lambda}} = \mathfrak{S}_{r_1} \times \cdots \times \mathfrak{S}_{r_m} \subset \mathfrak{S}_r$$

denote the subgroup consisting of $\tau \in \text{Perm}(A)$ such that $\tau(A_i) = A_i$.

Let $\Sigma'_{\underline{\lambda}}$ denote the subgroup of $\text{Perm}(A)$ consisting of permutations τ such that there exists a permutation $\xi \in \mathfrak{S}_r$ such that $\tau(A_i) = A_{\xi(i)}$ for all $i \in \{1, \ldots, m\}$. The application $\tau \mapsto \xi$ defines a homomorphism $\Sigma'_{\underline{\lambda}} \to \mathfrak{S}_m$ whose kernel is $\Sigma_{\underline{\lambda}}$. Its image consists of permutations $\xi \in \mathfrak{S}_m$ preserving the function $i \mapsto r_i$.

The Weyl group W operates on Λ and its action preserves the subset $\{\lambda_1, \ldots, \lambda_m\}$ of Λ. It induces a homomorphism $W \to \mathfrak{S}_m$. Its image is contained in the subgroup of \mathfrak{S}_m of permutations preserving the function $i \mapsto r_i$ so that there is a canonical homomorphism

$$\rho_W : W \to \Sigma'_{\underline{\lambda}}/\Sigma_{\underline{\lambda}}.$$
We derive an extension W' of W by Σ_λ fitting into the diagram

$$
\begin{array}{cccc}
1 & \rightarrow & \Sigma_\lambda & \rightarrow & W' & \rightarrow & W & \rightarrow & 1 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \downarrow \\
1 & \rightarrow & \Sigma_\lambda & \rightarrow & \Sigma'_\lambda & \rightarrow & \Sigma'_\lambda/\Sigma_\lambda & \rightarrow & 1
\end{array}
$$

where an element $w' \in W'$ consists of a pair (w, ξ) with $w \in W$ and $\xi \in \Sigma'_\lambda$ such that $\rho_W(w) = \xi \mod \Sigma_\lambda$. One can check that the homomorphism $p_\lambda : \mathbb{G}_m^r \to T$, and its dual $\rho_{|T'} : \check{\mathbb{T}} \to (\mathbb{C}^\times)^r$, are W'-equivariant.

As in Section 1, the finite sequence of σ-positive weights $\Delta \in \Lambda^r$ gives rise to a hypergeometric sheaf Ψ_λ on T, equipped with an action of Σ_λ. This hypergeometric sheaf is well behaved under certain positivity condition that can be phrased in the present circumstance as follows. Let $\sigma : G \to \mathbb{G}_m$ be a character of G, we also denote $\sigma : \mathbb{C}^\times \to \hat{G}$ the dual cocharacter. A representation $\rho : \check{\mathbb{G}} \to \text{GL}(V_\rho)$ is said to be σ-positive if for every weight λ_i occurring in V_ρ, $\lambda_i \circ \sigma : \mathbb{C}^\times \to \mathbb{C}^\times$ is of the form $t \mapsto t^n$ where n is a positive integer. We will assume that ρ is σ-positive. We will also assume that the homomorphism $p_\lambda : \mathbb{G}_m^r \to T$ is surjective. Under these assumptions, we know that Ψ_λ is a local system on T with the degree shift $[\dim(T)]$.

As the homomorphism $p_\lambda : \mathbb{G}_m^r \to T$ is W'-equivariant and the morphism $\text{tr} : \mathbb{G}_m^r \to \mathbb{G}_a$ is invariant under the action of W', we have an action of W' on the hypergeometric sheaf $\Psi_\Delta = p_\Delta^* \text{tr}^* \mathcal{L}_\psi[r]$ compatible with the action of W' on T via $W' \to W$: for every $w' = (w, \xi)$ with $w \in W$ and $\xi \in \Sigma'_\lambda$ having the same image in $\Sigma'_\lambda/\Sigma_\lambda$, by [BK02, Proposition 6.2] we have an isomorphism,

$$
\iota_{w'}^r : w^* \Psi_\Delta \to \Psi_\Delta.
$$

We also know that the restriction of this action to Σ_λ is the sign character i.e. for $w' = (1, \xi)$ with $\xi \in \Sigma_\lambda$, we have $\iota_{w'}^r = \text{sign}(\xi)$, ξ being considered as a permutation of the finite set A. For every $w' = (w, \xi)$ we set

$$
\iota_{w'} = \text{sign}_r(\xi) \text{sign}_W(w) \iota_{w'}^r : w^* \Psi_\Delta \to \Psi_\Delta
$$

where $\text{sign}_r : \mathbb{G}_r \to \{\pm 1\}$ and $\text{sign}_W : W \to \{\pm 1\}$ are the sign characters of \mathbb{G}_r and W respectively. We can then check that $\iota_{w'}$ depends only on w so that we get an action of W on Ψ_λ.

Now we recall the Grothendieck–Springer simultaneous resolution of the
fibers of the Steinberg morphism (see [S65, Section 6]) $c : G \to S = T/W$:

$$
\begin{array}{ccc}
\tilde{G} & \xrightarrow{\tilde{c}} & T \\
\downarrow{\tilde{q}} & & \downarrow{q} \\
G & \xrightarrow{c} & S
\end{array}
$$

where \tilde{G} is the variety of pairs $(g, h) \in G \times G/B$ such that $h^{-1}gh \in B$, the morphism \tilde{c} given by $(g, h) \mapsto h^{-1}gh \mod U$ is smooth, and the morphism \tilde{q} given by $(g, h) \mapsto g$ is proper and small in the sense of Goresky–MacPherson. If T^{rss} is the largest open subset of T where W acts freely and $S^{rss} = T^{rss}/W$, then the diagram is Cartesian over S^{rss}. In particular $\tilde{G}^{rss} \to G^{rss}$ is a W-torsor, where $j^{rss} : G^{rss} \to G$ denotes the base change of the inclusion morphism $S^{rss} \subset S$ to G.

Recall that the induction functor $\text{Ind}^G_T : \text{D}^b_c(T) \to \text{D}^b_c(G)$ is defined by

$$
\text{Ind}^G_T(F) = \tilde{q}^*\tilde{c}^*F[d]
$$

where $d = \text{dim}(G) - \text{dim}(T)$. Because q is a small map and Ψ_λ is a perverse local system on T,

$$
\text{Ind}^G_T(\Psi_\lambda) = \tilde{q}^*\tilde{c}^*\Psi_\lambda[d]
$$

is a perverse sheaf isomorphic to the intermediate extension of its restriction to G^{rss}:

$$
\text{Ind}^G_T(\Psi_\lambda) = j^{rss!*}\text{Ind}^G_T(\Psi_\lambda).
$$

For $\tilde{G}^{rss} \to G^{rss}$ is a W-torsor and Ψ_λ is W-equivariant, W operates on $j^{rss!*}\text{Ind}^G_T(\Psi_\lambda)$. By functoriality of the intermediate extension functor, this action of W can be extended to the perverse sheaf $\text{Ind}^G_T(\Psi_\lambda)$.

Definition 2.1. The γ-sheaf attached to ρ is the W-invariant direct factor of the perverse sheaf $\text{Ind}^G_T(\Psi_\lambda)$

$$
\Phi_\rho = \text{Ind}^G_T(\Psi_\lambda)^W.
$$

As a direct factor of $\text{Ind}^G_T(\Psi_\lambda)$, Φ_ρ is also isomorphic to the intermediate extension of its restriction to G^{rss}. There is thus a slightly different way to construct it: we start by descending the restriction of Ψ_λ to T^{rss}, which is a W-equivariant perverse local system on T^{rss}, to a perverse local system $\Phi_{\lambda,S^{rss}}$ on S^{rss}. Then we have

$$
\Phi_\rho = j^{rss!*}c^{rss!*}\Phi_{\lambda,S^{rss}}[d].
$$
The induction functor admits a left adjoint \(\text{Res}_G^T : D^b_c(G) \to D^b_c(T) \), the restriction functor, defined by
\[
\text{Res}_G^T(F) = \pi_! i^*(F) \quad (3)
\]
where \(\pi : B \to B/U = T \) and \(i : B \to G \) denote the quotient and inclusion morphisms. More generally \(\text{Res}_M^G : D^b_c(G) \to D^b_c(M) \) could be defined if we replace \(B \) by a standard parabolic subgroup \(P \) of \(G \) and \(T \) by the Levi component \(M \) of \(P \) in (3). The adjunction between restriction and induction and Frobenius reciprocity imply the following

Proposition 2.2. Let \(\Phi_{\rho,M} \) denote the perverse sheaf \(\Phi_{\rho'} \) on \(M \) where \(\rho' \) denotes the restriction of \(\rho \) from \(\hat{G} \) to \(\hat{M} \), then
\[
\Phi_{\rho,M} \simeq \text{Res}_M^G(\Phi_{\rho}).
\]

Proof. This is the first statement of [BK02, Theorem 6.6]. \(\square \)

In [BK00, Conjecture 9.2] Braverman and Kazhdan have conjectured the following vanishing property of \(\Phi_\rho \).

Conjecture 2.3. Let \(\pi_U : G \to G/U \) denote the quotient map. For every \(\sigma \)-positive representation \(\rho \) of \(\hat{G} \), \(\pi_U_* \Phi_\rho \) is supported on the closed subset \(T = B/U \) of \(G/U \).

The conjecture can be reformulated as follows. For every geometric point \(g \in G - B \), we conjecture that
\[
H^*_c(gU, i^* \Phi_\rho) = 0
\]
where \(i : gU \to G \) denotes the inclusion map.

Braverman and Kazhdan have verified their conjecture for groups of semisimple rank one, and for \(G = \text{GL}(n) \), \(\sigma = \det \) and \(\rho \) the standard representation of \(\text{GL}_n(\mathbb{C}) \).

Theorem 2.4. The above conjecture holds for \(G = \text{GL}(n) \), \(\sigma = \det \) and an arbitrary \(\sigma \)-positive representation of \(\rho \) of \(\text{GL}_n(\mathbb{C}) \).

Our argument applies in the case when \(p_{\Delta} : G^\vee_n \to T \) is surjective, however for \(\sigma \)-positive \(\rho \) the only other possibility is when \(\rho \) factors through \(\det : \text{GL}_n(\mathbb{C}) \to \mathbb{C}^\times \), which implies that \(\Phi_\rho \) is supported on the center of \(\text{GL}(n) \), so the theorem holds trivially in this case as well.
3 Conjugation action of the mirabolic group

Our proof of the Braverman–Kazhdan conjecture for $G = \text{GL}(n)$ is based on the geometry of the conjugation action of the mirabolic. This geometry has been described by Bernstein in [B84, 4.1-4.2]. What we aim for here is to put Bernstein’s description into a form suitable for our purpose. For consistency of notations with [B84] we will follow Bernstein and consider left group actions and left quotients for the rest of this paper. In particular our version of Theorem 2.4 applies to $U\backslash G$ instead of G/U.

Let V be the standard n-dimension k-vector space with the standard basis e_1, \ldots, e_n. We consider the filtration $0 \subset F_1 \subset F_2 \subset \cdots \subset F_n = V$ where F_i is the subvector space generated by e_1, \ldots, e_i. We will denote $E_i = V/F_i$.

We denote by Q the mirabolic subgroup of $G = \text{GL}(V)$ consisting of elements $g \in G$ fixing the line generated by e_1, and Q_1 the subgroup consisting of elements $g \in G$ fixing the vector e_1. We consider the Q-equivariant stratification of G

$$G = \bigsqcup_{m=1}^{n} X_m$$

where X_m is the locally closed subset of V consisting of $g \in G$ such that the subspace F_x of V generated by the vectors v, xv, x^2v, \ldots is of dimension m. We will prove that $[Q_1 \backslash X_m]$ “looks like” a similar quotient $[Q_1 \backslash G]$ in lower rank. This statement can be made precise as follows.

Theorem 3.1. There exists a smooth surjective morphism

$$\phi_m : [\text{GL}(n-m) \backslash (A^m \times \text{GL}(n-m) \times A^{n-m})] \to [Q_1 \backslash X_m]$$

where $g \in \text{GL}_{n-m}$ acts on $(a, x', v) \in A^m \times \text{GL}(n-m) \times A^{n-m}$ by the formula

$$g(a, x', v) = (a, gx'g^{-1}, vg^{-1}).$$

Moreover, if $\phi_m(a, x', v) = x$ then

$$c(x) = a_t c(x')$$

where $c(x)$ and $c(x')$ are the characteristic polynomials of x and x' respectively, written with the formal variable t, and where a_t is the polynomial

$$a_t = t^m + a_1 t^{m-1} + \cdots + a_m$$

for every $a = (a_1, \ldots, a_m) \in A^m$.
Theorem 3.1 implies, through an induction on the rank n, that the mirabolic group acts on the space of matrices $x \in G$ of a given characteristic polynomial with finitely many orbits.

Proof. For each m, we have a fibration

$$
\pi_m : X_m \to \text{Gr}_m
$$

where Gr_m is the Grassmannian of m-dimensional subspaces F_x of V containing v. It maps $x \in X_m$ to the subspace F_x of V generated by the vectors v, xv, x^2v, \ldots which is of dimension m.

For each m we also have the subspace F_m and the quotient space E_m of V. When there is no possible confusion on m, we will drop the index m and write simply F for F_m, E for E_m. We consider the parabolic subgroup P of G consisting of elements $g \in G$ such that $gF_m = F_m$. An element $g \in P$ can be described as a block matrix

$$
g = \begin{bmatrix} g_F & v \\ 0 & g_E \end{bmatrix}
$$

where $g_F \in \text{GL}(F)$ and $g_E \in \text{GL}(E)$. The group Q_1 acts transitively on Gr_m and its stabilizer at a point $F \in \text{Gr}_m$ is $P \cap Q_1$. The intersection $P \cap Q_1$ can be described by the condition $g_F \in Q_{F,1}$ where $Q_{F,1}$ is the subgroup of $\text{GL}(F)$ defined by $g_F e_1 = e_1$.

The fiber $\pi_m^{-1}(F)$ is the open subset of P consisting of block matrices

$$
x = \begin{bmatrix} x_F & y \\ 0 & x_E \end{bmatrix}
$$

such that v is a cyclic vector of F with respect to the action of x_F. The group $P \cap Q_1$ acts on $\pi_m^{-1}(F)$ by conjugation and we have

$$
X_m = \pi_m^{-1}(F) \times^{P \cap Q_1} Q_1.
$$

For x_F as above, $v, x_F v, \ldots, x_F^{m-1} v$ form a basis of F. It follows that there exists a unique $g_F \in Q_{F,1}$ such that $g_F^{-1} x_F g_F$ has the form of a companion matrix

$$
\begin{bmatrix}
0 & \cdots & 0 & -a_m \\
\vdots & & \ddots & \vdots \\
I_{m-1} & & & -a_1
\end{bmatrix}
$$

(5)
where I_{m-1} is the identity matrix of size $m-1$, and a_1, \ldots, a_m are the coefficients of the characteristic polynomial of x_F. It follows that

$$X_m = Y_m \times^{H_m} Q_1$$

where Y_m is the space of matrices of the form

$$x = \begin{bmatrix} x_F & y \\ 0 & x_E \end{bmatrix}$$ \hspace{1cm} (6)$$

where x_F is a companion matrix as in (5). H_m is the subgroup of P of matrices of the form

$$h = \begin{bmatrix} I_F & v \\ 0 & g_E \end{bmatrix}$$

acting on Y_m by conjugation. The group H_m has the structure of a semidirect product

$$H_m = U_P \rtimes GL(E)$$

where U_P, the unipotent radical of P, consists of matrices of the form

$$u = \begin{bmatrix} I_F & v \\ 0 & I_E \end{bmatrix}.$$

It will be convenient to regard $u - I_V$ as a linear application $v \in \text{Hom}(E,F)$. The action of U_P on X_F can be written down as follows

$$\begin{bmatrix} I_F & -v \\ 0 & I_E \end{bmatrix} \begin{bmatrix} x_F & y \\ 0 & x_E \end{bmatrix} \begin{bmatrix} I_F & v \\ 0 & I_E \end{bmatrix} = \begin{bmatrix} x_F & y + x_Fv - vx_E \\ 0 & x_E \end{bmatrix}.$$

In other words, the action of $v \in \text{Hom}(E,F)$ on the variable y consists in a translation by $x_Fv - vx_E$.

Now, the rank of the linear transformation of $\text{Hom}(E,F)$ given by

$$v \mapsto x_Fv - vx_E$$

depends on the number of common eigenvalues of x_F and x_E, in particular it is an isomorphism if x_F and x_E have no common eigenvalues. Thus if x_F and x_E have no common eigenvalues, U_P acts simply transitively on the fiber of Y_m over (x_F, x_E) by conjugation. However, for our purpose, we will need a statement uniform with respect to (x_F, x_E), no matter whether they have common eigenvalues or not.
Lemma 3.2. Let $0 = F_0 \subset F_1 \subset F_2 \subset \cdots \subset F_{m-1} \subset F$ be a filtration of F with $\dim(F_j) = j$. Let $x_F \in \text{GL}(F)$ be a linear transformation such that $x_F(F_j) \subset F_{j+1}$ and the induced application $F_j/F_{j-1} \to F_{j+1}/F_j$ is an isomorphism for every j in the range $1 \leq j \leq m - 1$. Let $x_E \in \text{GL}(E)$ be an arbitrary linear transformation.

We consider two subgroups of $U_P = \text{Hom}(E,F)$:

- $U_1 = \text{Hom}(E,F_1)$.
- $U_{m-1} = \text{Hom}(E,F_{m-1})$.

Then the action of $U_1 \times U_{m-1}$ on the space of matrices of the form

$$x = \begin{bmatrix} x_F & y \\ 0 & x_E \end{bmatrix}$$

given by

$$(u_1, u_{m-1})x = u_1u_{m-1}x u_{m-1}^{-1}$$

is simply transitive.

Proof. We write

$$u_1 = \begin{bmatrix} I_F & v_1 \\ 0 & I_E \end{bmatrix} \quad \text{and} \quad u_{m-1} = \begin{bmatrix} I_F & v_{m-1} \\ 0 & I_E \end{bmatrix}$$

with $u_1 \in \text{Hom}(E,F_1)$ and $u_{m-1} \in \text{Hom}(E,F_{m-1})$. Then we have

$$u_1u_{m-1}x u_{m-1}^{-1} = \begin{bmatrix} x_F & y + v_1 + v_{m-1}x_E - x_Fv_{m-1} \\ 0 & x_E \end{bmatrix}$$

The lemma is now equivalent to saying that the linear application

$$\text{Hom}(E,F_1) \times \text{Hom}(E,F_{m-1}) \to \text{Hom}(E,F)$$

given by $(v_1, v_{m-1}) \mapsto v_1 + v_{m-1}x_E - x_Fv_{m-1}$ is an isomorphism. This is equivalent to proving that the map

$$A = \text{Hom}(E,F_{m-1}) \to \text{Hom}(E,F/E_1) = B$$

given by

$$\phi(v_{m-1}) = v_{m-1}x_E - x_Fv_{m-1} \mod \text{Hom}(E,F_1)$$

is an isomorphism.
We consider the filtration \(0 \subset A_1 \subset \cdots \subset A_{m-1} = A\) with \(A_j = \text{Hom}(E, F_j)\) and the filtration \(0 \subset B_1 \subset \cdots \subset B_{m-1} = B\) with \(B_j = \text{Hom}(E, F_{j+1}/F_1)\). We observe that \(\phi(A_j) \subset B_j\) for all \(j\) and the induced map on the associated graded \(A_j/A_{j-1} \to B_j/B_{j-1}\) is an isomorphism. Indeed the linear application \(\phi_E : v_{m-1} \mapsto v_{m-1} x_E\) satisfies \(\phi_E(A_j) \subset B_{j-1}\) and hence induces the zero map on the associated graded \(A_j/A_{j-1} \to B_j/B_{j-1}\). On the other hand, \(\phi_F : v_{m-1} \mapsto x_F v_{m-1}\) satisfies \(\phi_F(A_j) \subset B_j\) and induces an isomorphism on the associated graded \(A_j/A_{j-1} \to B_j/B_{j-1}\) by assumption on \(x_F\). It follows that \(\phi\) is an isomorphism.

We infer from the lemma the existence of a canonical isomorphism
\[
Y_m = A^m \times \text{GL}(E) \times \text{Hom}(E, F_1) \times \text{Hom}(E, F_{m-1})
\]
mapping \(x \mapsto (x_F, x_E, v_1, v_{m-1})\) with \(x_F\) a companion matrix as in [5], \(x_E \in \text{GL}(E)\), \(v_1 \in \text{Hom}(E, F_1)\) and \(v_{m-1} \in \text{Hom}(E, F_{m-1})\) such that
\[
x = \begin{bmatrix}
I_F & v_1 \\
0 & I_E
\end{bmatrix}
\begin{bmatrix}
I_F & v_{m-1} \\
0 & I_E
\end{bmatrix}
\begin{bmatrix}
x_E & 0 \\
0 & x_E
\end{bmatrix}
\begin{bmatrix}
I_F & -v_{m-1} \\
0 & I_E
\end{bmatrix}.
\]

In these new coordinates, the action of the subgroup \(U_{m-1} \rtimes \text{GL}(E)\) of \(H_m = U_P \rtimes \text{GL}(E)\) can be described as follows: the action \((v'_{m-1}, g_E) \in \text{Hom}(E, F_{m-1}) \rtimes \text{GL}(E)\) on \(x = (x_F, x_E, v_1, v_{m-1})\) is given by:
\[
(v'_{m-1}, g_E) x = (x_F, g_E x_E g_E^{-1}, v_1 g_E^{-1}, v_{m-1} + v'_{m-1}).
\]

One should note that \(U_{m-1} \rtimes \text{GL}(E)\) is not a normal subgroup of \(U_P \rtimes \text{GL}(E)\) and the action of the full \(U_P\) is unfortunately very complicated in these coordinates. Nevertheless, we have a smooth surjective morphism
\[
[(U_{m-1} \rtimes \text{GL}(E)\backslash Y_m) \to [H_m \backslash Y_m].
\]

This completes the proof of Theorem 3.1.

4 Action of \(U_Q\) by left translation

The unipotent radical \(U_Q\) of the mirabolic group \(Q\) consists of matrices of the form
\[
u = \begin{bmatrix}
1 & v \\
0 & I_{n-1}
\end{bmatrix}
\]
where \(v \in \text{Hom}(E_1, F_1)\). The action of \(U_Q\) on \(G\) by left translation \(g \mapsto u g\) respects the stratification \(G = \bigsqcup_m X_m\). In this section, we will pay
particular attention to the evaluation of the characteristic polynomial on
left cosets of \(U_Q \) i.e. the function \(u \mapsto c(ux) \) for \(x \) in each stratum \(X_m \).

The characteristic polynomial \(c(x) \) of \(x \in G \), with formal variable \(t \), is
of the form \(c(ux) = t^n + a_1 t^{n-1} + \cdots + a_n \) where \(a_1, \ldots, a_n \) are \(G \)-invariant
functions of \(x \). It can be regarded as a morphism \(c : G \to \mathbb{A}^n \) with \(c(ux) = (a_1, \ldots, a_n) \).

Proposition 4.1. For every \(x \in G \), the morphism \(l_x : U_Q = \text{Hom}(E_1, F_1) \to \mathbb{A}^n \) given by \(l_x(u) = c(ux) - c(x) \) is linear. If \(x \in X_m \), the linear application \(l_x \) is of rank \(m - 1 \).

For every \(x \in X_m \) is \(Q \)-conjugate to a matrix of the form \((6)\) with \(x_F \)
being a companion matrix as in \((5)\), we can assume that the matrix \(x \) is of
this special form. In particular we have \(x \in P \) where \(P \) the parabolic group
which preserves the subspace \(F_m \). Let \(U_P \) and \(L_P \) denote respectively its
unipotent radical and the standard Levi component. Every element \(u \in U_Q \)
can be written uniquely in the form \(u = u_L u_U \) where \(u_L \in U_Q \cap L_P \) and
\(u_U \in U_Q \cap U_P \) where \(u_L \) is a matrix of the form

\[
\begin{bmatrix}
1 & v & 0 \\
0 & I_{m-1} & 0 \\
0 & 0 & I_{n-m}
\end{bmatrix}
\]

where \(v = (v_1, \ldots, v_{m-1}) \in \mathbb{A}^{m-1} \) is a row vector. The proposition can now
be derived from a matrix calculation.

Lemma 4.2. For \(x \in X_m \) of the form \((6)\) with \(x_F \) being a companion matrix
as in \((5)\) and \(u \in U_Q \) with \(u = u_L u_U \) as above, we have

\[
c(ux) = c(u_L x_F) c(x_F).
\]

Moreover, if we write \(u_L \) in coordinates \((v_1, \ldots, v_{m-1}) \in V = \mathbb{A}^{m-1} \) as
above, and write \(c(u_L x_F) - c_L(x_F) \) in coordinates \((a_1, \ldots, a_m) \in A = \mathbb{A}^m \)
that are coefficients of the characteristic polynomials, then the application
\(u_L \mapsto c(u_L x_F) - c_L(x_F) \) induces an linear isomorphism between \(V \) and the
subspace of \(A \) defined by the equation \(a_m = 0 \).

Proof. By direct calculation, we find the following formula for the characteristic polynomial of

\[
u_L x_F = \begin{bmatrix}
1 & -v_1 & \cdots & -v_{m-1} \\
0 & I_{m-1} & & \\
\vdots & & & \\
0 & & & I_{m-1}
\end{bmatrix}
\begin{bmatrix}
0 & \cdots & 0 & -a_m \\
& & & -a_{m-1} \\
& & & \vdots \\
& & & -a_1
\end{bmatrix}.
\]
We have
\[c(u L x F) = t^m + b_1 t^{m-1} + \cdots + b_{m-1} t + b_m \]
where \(a_m = b_m \) and for \(1 \leq r \leq m - 1 \)
\[b_r = a_r + \sum_{i=1}^{r-1} a_i v_{r-i} + v_r. \]
The lemma follows.

5 Proof of Theorem 2.4

We will deduce Theorem 2.4 from the analogous statement for the mirabolic subgroup \(Q \) that \((\dagger)\) if \(g \in G - Q \), then \(H_c^*(U_Q g, \Phi_\rho|_{U_Q g}) = 0 \).

To this end take \(g \in G - B \), there are two cases: \(g \in Q \) or \(g \notin Q \).

If \(g \notin Q \), by \((\dagger)\) we know that \(H_c^*(U_Q g, \Phi_\rho|_{U_Q g}) = 0 \). In fact for all \(u \in U_B \), \(ug \notin Q \) so that more generally we have \(H_c^*(U_Q ug, \Phi_\rho|_{U_Q ug}) = 0 \) for all \(u \in U_B \). Now one can establish the vanishing of \(H_c^*(U_B g, i^* \Phi_\rho) \) by using the Leray spectral sequence associated with the morphism \(U_B g \to U_Q \setminus (U_B g) \).

Now we consider the case \(g \in Q \). Let \(L_Q \) denote the standard Levi factor of \(Q \), \(g_L \) the image of \(g \) in \(L_Q \). We have \(g_L \notin B \cap L_Q \). Using the definition of the restriction functor, we have
\[H_c^*(U_B g, i^* \Phi_\rho) = H_c^*((U_B \cap L) g_L, \text{Res}_L^G(\Phi_\rho)|_{(U_B \cap L) g_L}) \]
where \(\text{Res}_L^G(\Phi_\rho) = \Phi_{L \rho|_L} \) by Proposition 2.2. At this point we can conclude by an induction argument.

It remains to establish \((\dagger)\). For convenience of induction we will prove the following equivalent proposition:

Proposition 5.1. Let \(G \) be a direct product of general linear groups and \(Q \) a mirabolic subgroup of \(G \) of the form
\[Q = \prod_{i \neq j} \text{GL}(n_i) \times Q_j \subset \prod_i \text{GL}(n_i) = G, \]
let \(\rho \) be a \(\sigma \)-positive representation of \(\tilde{G} \) where \(\sigma \) denotes the product of the characters \(\det_i : \text{GL}_{n_i}(\mathbb{C}) \to \mathbb{C}^\times \). If \(x \) is a geometric point of \(G - Q \), then
\[H_c^*(U_Q x, i^* \Phi_\rho) = 0 \]
where \(i : U_Q x \to G \) denotes the inclusion map.
Proof. Argue by induction on the semisimple rank of G. In the base case G is a torus, hence the proposition holds vacuously.

Otherwise $n_j \geq 2$, consider the stratification induced by (4) on $\text{GL}(n_j)$:

$$G = \bigsqcup_m X_m = \bigsqcup_{m=1}^{n_j} \left(\prod_{i \neq j} \text{GL}(n_i) \times X_{j,m} \right).$$

For $x \notin Q$ with $Q = X_1$, we have $x \in X_m$ for $2 \leq m \leq n_j$.

We first consider the case $x \in X_{n_j}$. For X_{j,n_j} is contained in the open subset $\text{GL}(n_j)^{\text{reg}}$ of $\text{GL}(n_j)$ (see [S65]), we have a Cartesian diagram

$$
\begin{array}{ccc}
X_{n_j} & \xrightarrow{\tilde{c}} & \prod_{i \neq j} \text{GL}(n_i) \times T_j \\
\downarrow q & & \downarrow q \\
\hat{X}_{n_j} & \xrightarrow{c} & \prod_{i \neq j} \text{GL}(n_i) \times T_j/W_j
\end{array}
$$

where c is smooth and q is finite. It follows that the restriction of the γ-sheaf Φ_{ρ} to X_{n_j} can be identified with a pullback by the characteristic polynomial map

$$\Phi_{\rho}|_{X_{n_j}} = c^* q_* \Phi_{\rho'} W_j$$

where ρ' denotes the restriction of ρ to the subgroup

$$\prod_{i \neq j} \text{GL}(n_i)(\mathbb{C}) \times \tilde{T}_j \subset \tilde{G}.$$

We recall that the coordinate ring $T_j/W_j = k^{n_j-1} \times \mathbb{G}_m$ is the ring of $\text{GL}(n_j)$-invariant functions on $\text{GL}(n_j)$, the projection $\sigma_{W_j} : T_j/W_j \rightarrow \mathbb{G}_m$ corresponds to the determinant function. By Lemma (4.2), the restriction of c to $U_Q x$ induces an isomorphism between $U_Q x$ and the fiber of the determinant map on the jth component

$$\sigma_{W_j} : \prod_{i \neq j} \text{GL}(n_i) \times T_j/W_j \rightarrow \prod_{i \neq j} \text{GL}(n_i) \times \mathbb{G}_m$$

over the image of x. Thus, to prove the proposition, it is enough to prove that

$$\sigma|\Phi_{\rho'} W_j = \sigma_{W_j} q_* \Phi_{\rho'} W_j = 0$$

where

$$\sigma : \prod_{i \neq j} \text{GL}(n_i) \times T_j \rightarrow \prod_{i \neq j} \text{GL}(n_i) \times \mathbb{G}_m$$

16
is the determinant map on the jth component.

Now recall the definition of the hypergeometric sheaf $\Psi_\Lambda = p_\Lambda^! \text{tr}^* L_\psi$ with homorphism $p_\Lambda : \mathbb{P}^r \to T$ given by

$$p_\Lambda(t_1, \ldots, t_r) = \prod_{i=1}^r \lambda_i(t_i).$$

We have

$$\sigma_1 \Phi_{\rho'} = \sigma_1 \text{Ind}^G_T \Psi_\Lambda \prod_{i \neq j} W_i$$

where $G' = \prod_{i \neq j} \text{GL}(n_i) \times T_j$.

With the definition of the action of W on Ψ_Λ given by (2), we see that the induced action of W on $\sigma_1 \Phi_{\rho'}$ is through the character $\text{sign}_{n_j} : W_j \to \{\pm 1\}$. It follows that $\sigma_1 \Phi_{\rho'} W_j = 0$ because for $n_j \geq 2$ the sign character sign_{n_j} is nontrivial. This concludes the case $x \in X_{n_j}$.

We now consider the general case $x \in X_m$ with $2 \leq m \leq n_j$. By Q-conjugation we can assume that the jth component x_j of x is of the form (6) with $x_{j,F}$ being a companion matrix as in (5). Let P denote the standard parabolic of block matrices as in (6), L the standard Levi factor of P and U_P its unipotent radical. By applying the result obtained above in the generic case to $\text{GL}(F)$, we get

$$H^*_c(U_L x_L, \Phi_{L,\rho}|_{U_L x_L}) = 0$$

where x_L is the image of x in L, U_L consists of unipotent matrices of the form (7), and $\Phi_{L,\rho}|_L$ is the γ-sheaf on L associated to the restriction to \tilde{L} of the representation ρ of \tilde{G}.

For $\Phi_{L,\rho}|_L = \text{Res}^L_G(\Phi_{\rho})$ by Proposition 2.2, (8) implies that

$$H^*_c(U_P U_L x, \Phi_{\rho}|_{U_P U_L x}) = 0$$

where U_P and U_L commute. With the help of Lemma 3.2, we see that the morphism

$$U_Q \times U_{m-1} \to U_P U_L x$$

given by

$$(u_{m-1}, u_Q) \mapsto u_{m-1} u_Q x u_{m-1}^{-1}$$

is an isomorphism. Now using the fact that Φ_{ρ} is equivariant under the adjoint action, (9) implies that

$$H^*_c(U_Q x, \Phi_{\rho}|_{U_Q x}) = 0.$$

This concludes the proof of Proposition 5.1 and therefore Theorem 2.4. □
A The case of parabolic subgroups

In this appendix we give a proof for the extension of Theorem 2.4 to arbitrary parabolic subgroups P of $G = \text{GL}(n)$. By a similar argument involving the Leray spectral sequence as in the beginning of the proof of Theorem 2.4, we are reduced to the case when P is a maximal parabolic subgroup.

Proposition A.1. Let P denote the maximal standard parabolic subgroup of $G = \text{GL}(n)$ consisting of block matrices of size (n_1, n_2) where $n_1 + n_2 = n$ and U_P its unipotent radical, let ρ be a σ-positive representation of \hat{G} where $\sigma = \text{det}$. If g is a geometric point of $G - P$, then

$$H^*(U_P g, i^* \Phi_\rho) = 0$$

where $i : U_P g \to G$ denotes the inclusion map.

Proof. Argue by induction on n_1. In the base case when $n_1 = 1$ we are reduced to Proposition 5.1.

Otherwise $n_1 \geq 2$, let P' denote the maximal standard parabolic subgroup of $\text{GL}(n)$ consisting of block matrices of size $(n_1 - 1, n_2 + 1)$ and $U_{P'}$ its unipotent radical. Let

$$g' = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

be a block matrix of size (n_1, n_2) such that the $n_2 \times n_1$-matrix c is of the form

$$b = \begin{bmatrix} * & \cdots & * & 1 \\ * & \cdots & * & 0 \\ \vdots & \ddots & \vdots & \vdots \\ * & \cdots & * & 0 \end{bmatrix},$$

then by an analogous computation as in the proof of Lemma 3.2 and the end of the proof of Proposition 5.1, we see that acyclicity of Φ_ρ over $U_{P'} g'$:

$$H^*_c(U_{P'} g', \Phi_\rho|_{U_{P'} g'}) = 0$$

implies acyclicity over the subcoset $(U_P \cap U_{P'}) g'$:

$$H^*_c((U_P \cap U_{P'}) g', \Phi_\rho|_{(U_P \cap U_{P'}) g'}) = 0,$$

which then implies the proposition by the Levy spectral sequence.

Now it remains to prove (10). To this end it suffices to observe that g is conjugate, under the action of the standard Levi factor L of P, to a matrix of the form g', which is in addition not contained in P'. This follows from the fact that the L-orbits on c are classified by the rank of c. Hence we are done by induction.

\[\square \]
B Positive hypergeometric sheaves

In this appendix we give a proof for Proposition 1.1 concerning hypergeometric sheaves Ψ_λ when λ is σ-positive. The first half of Proposition 1.1 is due to Braverman–Kazhdan in [BK02, Theorem 4.2]:

Proposition B.1. If λ is σ-positive, then the forget support morphism $\Psi_\lambda \to \Psi^*_\lambda$ is an isomorphism.

This is proved by restricting to the smooth neighborhood $p_\lambda : G_m^r \to T$ and then applying the classical Fourier–Deligne transform on G_m^r. The same idea is also crucial in the proof of the second half of Proposition 1.1:

Proposition B.2. If λ is σ-positive, then Ψ_λ is isomorphic to a shift of a local system on the image of $p_\lambda : G_m^r \to T$.

Without loss of generality we can assume that p_λ is surjective. Then we can also factorize p_λ into the product of a homomorphism with connected fibers and an isogeny. Since isogenies preserve local systems under push-forward by proper-smooth base change, without loss of generality we can assume that p_λ has connected fibers.

We will deduce smoothness of Ψ_λ from universal local acyclicity by Théorème 5.3.1 in [D77a] together with the fact that Ψ_λ is a perverse sheaf by Proposition B.1, for this we need a compactification of p_λ.

Let Γ be the normalization of the closure of the graph of p_λ in $(G_m^r)^r \times T \subset (\mathbb{P}^1)^r \times T$, let $j_\lambda : (G_m)^r \to \Gamma$ be the open inclusion and $p_\lambda : \Gamma \to T$ the projection, then p_λ compactifies p_λ.

We are therefore reduced to the following lemma:

Lemma B.3. If λ is σ-positive and p_λ is surjective with connected fibers, then p_λ is universally locally acyclic with respect to $j_\lambda ! \tau^* L_\psi$.

Proof. The following argument is essentially due to Katz–Laumon in [KL85].

Let $\pi : (\mathbb{P}^1)^r \to (\mathbb{P}^1)^r$ be the completed Artin–Schreier covering defined by $[X : Y] \mapsto [X^q - XY^{q-1} : Y^q]$ on the homogeneous coordinates on each factor \mathbb{P}^1 and $\hat{\pi}$ the base change of π along the projection $\Gamma \to (\mathbb{P}^1)^r$.

It follows from the decomposition theorem and total ramification of π at infinity that the l-extension of $\tau^* L_\psi$ to $(\mathbb{P}^1)^r$ is a direct summand of $\pi_* Q_\ell$ over $(\mathbb{P}^1)^r - (0, \ldots, 0)$.

Now by assumption λ is σ-positive, hence the image of Γ in $(\mathbb{P}^1)^r$ is contained in $(\mathbb{P}^1)^r - (0, \ldots, 0)$ which implies that $j_\lambda ! \tau^* L_\psi$ is a direct summand of $\hat{\pi}_* Q_\ell$. Therefore it suffices to show instead that $\hat{p_\lambda}$ is universally locally acyclic with respect to $\hat{\pi}_* Q_\ell$.

Let K be the kernel of p_Δ which we may assume to be connected, let \overline{K} be the normalization of the closure of K in $\mathbb{P}^1)^r$ and $\overline{\pi} : (\mathbb{G}_m)^r \times \overline{K} \to \overline{\Gamma}$ the morphism which extends the multiplication map from $(\mathbb{G}_m)^r \times K$ to $(\mathbb{G}_m)^r$. Then the diagram

\[
\begin{array}{ccc}
(\mathbb{G}_m)^r \times \overline{K} & \xrightarrow{\overline{\pi}} & \overline{\Gamma} \\
pr \downarrow & & \downarrow pr_\Delta \\
(\mathbb{G}_m)^r & \xrightarrow{pr_\Delta} & T
\end{array}
\]

is Cartesian by the theory of toric varieties (see [F93] for example). Let $\hat{\pi}$ be the base change of $\tilde{\pi}$ along $\overline{\pi}$. We may assume that p_Δ is surjective hence smooth. Since universal local acyclicity is a local property with respect to the smooth topology, it suffices to show that pr is universally locally acyclic with respect to $\hat{\pi}^* \overline{Q}_\ell$. Then by properness of $\hat{\pi}$ we are further reduced to showing that the composite $pr \circ \hat{\pi}$ is universally locally acyclic with respect to the constant sheaf \overline{Q}_ℓ on the source.

Let U be an open subscheme of $(\mathbb{P}^1)^r$ of the form $U = U_1 \times \cdots \times U_r$ where each Cartesian factor U_i is an open subscheme of \mathbb{P}^1 equal to either \mathbb{G}_a or $\mathbb{P}^1 - 0$. Let \tilde{U} be the inverse image of U under $\pi : (\mathbb{P}^1)^r \to (\mathbb{P}^1)^r$ and \overline{K}_U the intersection of \overline{K} with U. We will check universal local acyclicity of $pr \circ \tilde{\pi}$ by restricting to the open subscheme $\tilde{U} \times_U ((\mathbb{G}_m)^r \times \overline{K}_U)$ of the source of $\tilde{\pi}$ and then calculating “by hand” with explicit coordinates.

To this end let t be a coordinate on \mathbb{G}_m, X a coordinate on \mathbb{G}_a and Y^{-1} a coordinate on $\mathbb{P}^1 - 0$, hence $(\ldots, X_i, \ldots, Y_j^{-1}, \ldots)$ are coordinates on U. By slight abuse of notation let $p_\Delta(\ldots, X_i, \ldots, Y_j^{-1}, \ldots) = 1$ denote a system of polynomial equations such that

\[
\overline{K}_U \simeq \operatorname{Spec} \left(\operatorname{Int} \left(\frac{k[X_i, \ldots, Y_j, \ldots]}{(p_\Delta(\ldots, X_i, \ldots, Y_j^{-1}, \ldots) = 1)} \right) \right)
\]

where Int denotes the integral closure, then modulo base change with respect to a normalization, we have that $\tilde{U} \times_U ((\mathbb{G}_m)^r \times \overline{K}_U)$ is isomorphic to

| Spec \left(\frac{k[X_i, \ldots, Y_j, \ldots]}{(\overline{X}_q - X_i = t_i X_i, (1 - Y_j q^{-1})^{-1} Y_j q = t_j^{-1} Y_j, p_\Delta(\ldots, X_i, \ldots, Y_j^{-1}, \ldots) = 1)} \right), |
which by substituting s_j for $(1 - \tilde{Y}_j q^{-1})^{-1} t_j$ becomes isomorphic to

$$\text{Spec} \left(\frac{k[\ldots,t_i,t_i^{-1},\ldots,s_j,s_j^{-1},\ldots,\tilde{X}_i,\ldots,\tilde{Y}_j,(1 - \tilde{Y}_j q^{-1})^{-1},\ldots]}{(p_\Delta(\ldots,t_i^{-1}(\tilde{X}_i q - \tilde{X}_i),\ldots,(s_j \tilde{Y}_j q)^{-1},\ldots) = 1)} \right).$$

The morphism $\tilde{X} \mapsto \tilde{X}^q - \tilde{X}$ is étale and the morphism $\tilde{Y} \mapsto \tilde{Y}^q$ is finite surjective radicial, both are universally locally acyclic with respect to $\overline{\mathbb{Q}}_\ell$ on the source. By Corollaire 2.16 in [D77a] the projection pr from

$$\text{Spec} \left(\frac{k[\ldots,t_n,t_n^{-1},\ldots,X_i,\ldots,Y_j,\ldots]}{(p_\Delta(\ldots,t_i^{-1}X_i,\ldots,(t_j Y_j)^{-1},\ldots) = 1)} \right) \simeq (\mathbb{G}_m)^r \times K_U$$

to $(\mathbb{G}_m)^r$ is universally locally acyclic with respect to $\overline{\mathbb{Q}}_\ell$ on the source. Hence so is their composite, the lemma follows.

References

[BBD82] A. Beilinson, J. Bernstein and P. Deligne, Faisceaux pervers, in Analysis and topology on singular spaces, I (Luminy 1981), Astérisque, 100 (1982), 5-171.

[B84] J. Bernstein, P-invariant distributions on $GL(N)$ and the classification of unitary representations of $GL(N)$ (non-Archimedean case). in Lie group representations, II (College Park, Md., 1982/1983), 50102, Lecture Notes in Math., 1041, Springer, Berlin, 1984.

[BK00] A. Braverman and D. Kazhdan, γ-functions of representations and lifting (with an appendix by V. Vologodsky), Geom. Funct. Anal., Special Volume (2002), Part I, 237-278.

[BK02] A. Braverman and D. Kazhdan, γ-sheaves on reductive groups, in Studies in memory of Issai Schur (Chevaleret/Rehovot 2000), Progr. Math., 210 (2003), 27-47.

[D77a] P. Deligne, Cohomologie étale: les points de départ, in Cohomologie étale (SGA 4 1/2), Lecture Notes in Math., 569 (1977), 4-75.
[D77s] P. Deligne, Applications de la formule des traces aux sommes trigonométriques, in Cohomologie étale (SGA 4 1/2), Lecture Notes in Math., 569 (1977), 168-232.

[D77f] P. Deligne, Théorèmes de finitude en cohomologie ℓ-adique, in Cohomologie étale (SGA 4 1/2), Lecture Notes in Math., 569 (1977), 233-261.

[F93] W. Fulton, Introduction to toric varieties, Ann. of Math. Stud., 131 (1993).

[GJ72] R. Godement and H. Jacquet, Zeta functions of simple algebras, Lecture Notes in Math., 260 (1972).

[KL85] N. Katz and G. Laumon, Transformation de Fourier et majoration de sommes exponentielles, Publ. Math. IHES, 62 (1985), 145-202.

[K90] N. Katz, Exponential sums and differential equations, Ann. of Math. Stud. 124(1900), 1-430.

[L13] L. Lafforgue, Noyaux du transfert automorphe de Langlands et formules de Poisson non linéaires, Preprint, 2013, http://www.ihes.fr/~lafforgue/publications.html.

[T50] J. Tate, Fourier analysis in number fields, and Hecke’s zeta-functions, in Algebraic Number Theory, Academic Press, New York, 1967, 305-347.

[S65] R. Steinberg, Regular elements of semisimple algebraic groups, Publ. Math. IHES, 25 (1965), 49-80.