With the rise of Wikipedia as a first-stop source for scientific information, it is important to understand whether Wikipedia draws upon the research that scientists value most. Here we identify the 250 most heavily used journals in each of 26 research fields (4,721 journals, 19.4M articles) indexed by the Scopus database, and test whether topic, academic status, and accessibility make articles from these journals more or less likely to be referenced on Wikipedia. We find that a journal’s academic status (impact factor) and accessibility (open access policy) both strongly increase the probability of it being referenced on Wikipedia. Controlling for field and impact factor, the odds that an open access journal is referenced on the English Wikipedia are 47% higher compared to paywall journals. These findings provide evidence is that a major consequence of open access policies is to significantly amplify the diffusion of science, through an intermediary like Wikipedia, to a broad audience.

Introduction

Wikipedia, one of the most visited websites in the world,¹ has become a destination for information of all kinds, including information about science (Heilman & West, 2015; Laurent & Vickers, 2009; Okoli, Mehdi, Mesgari, Nielsen, & Lanamäki, 2014; Spoerri, 2007). Given that so many people rely on Wikipedia for scientific information, it is important to ask whether Wikipedia’s coverage of science is a balanced, high quality representation of the knowledge within the academic literature. One approach to asking this question involves looking at references used in Wikipedia articles. Wikipedia requires all claims to be substantiated by reliable references,² but what, in practice, are “reliable references?”

An intuitive approach is to compare the sources Wikipedia editors use to the sources scientists value most. In particular, within the scientific literature, a journal’s status is often associated, albeit problematically (Seglen, 1997), with its impact factor. If status within the academic literature is taken as a “gold standard,” Wikipedia’s failure to cite high impact journals of certain fields would constitute a failure of coverage (Samoilenko & Yasseri, 2014), whereas a high correspondence between journals’ impact factors and citations in Wikipedia would indicate that Wikipedia does indeed use reputable sources (Evans & Krauthammer, 2011; Nielsen, 2007; Shuai, Jiang, Liu, & Bollen, 2013).

Yet high impact journals often require expensive subscriptions (Björk & Solomon, 2012). The costs are, in fact, so prohibitive that even Harvard University has urged its faculty to “resign from publications that keep articles behind paywalls” because the library “can no longer afford the price hikes imposed by many large journal publishers” (Sample, 2012). Consequently, many within the scientific community advocate journals that provide free access to research - “open access” (OA) journals. (Van Noorden, 2013). A lively debate has arisen on the impact of OA on the scientific
literature, with some studies showing a citation advantage to publishing in OA versus paywall journals (Eysenbach, 2006a,b; Gargouri et al., 2010; “The Open Access Citation Advantage Service”) whereas others find none (Davis, 2011; Davis, Lewenstein, Simon, Booth, & Connolly, 2008; Gauclé & Maystre, 2011; Moed, 2007).

Regardless of their impact on the scientific literature, OA journals may have a tremendous impact on the diffusion of scientific knowledge beyond this literature. To date, this potential of OA policies has been a matter chiefly of speculation (Heilman & West, 2015; Trench, 2008). Previous research has found that OA articles are downloaded more often and by more people than closed access articles (Davis, 2010, 2011), but it is currently unclear by whom, and to what extent open access affects the use of science by the general public (Davis & Walters, 2011). We hypothesize that Wikipedia, with more than 8.5 million page views per hour, is a new but crucial pathway through which the public consumes science and this diffusion of science may relate to its accessibility in two ways. By referencing findings from paywall journals that may be prohibitively expensive, Wikipedia distills and diffuses these findings to the general public. On the other hand, Wikipedia editors may be unable to access expensive paywall journals, and consequently reference the easily accessible articles instead. For example, Luyt and Tan’s (2010) study found accessibility to drive the selection of references in a sample of Wikipedia’s history articles. In this case Wikipedia “amplifies” open access science by broadcasting its (already freely accessible) findings to millions. This “amplifier” effect may thus constitute one of the chief effects of open access.

Correspondence Between Academic and Wikipedia Statuses

This article tests both the distillation and amplifier hypotheses by evaluating which references Wikipedia editors use and do not use. In particular we study how a journal’s status within the scientific community (impact factor) and accessibility (open access policy) relates to its status within Wikipedia (percent of its articles referenced on Wikipedia). It is important to note that an observed correspondence may be driven by a variety of mechanisms besides accessibility. First, the status ordering of academic journals as measured with impact factors may have only a tenuous relationship with the importance and notability—considerations of special relevance to Wikipedia—and of the published research. Citations, and therefore impact factors, are in part a function of the research field (Seglen, 1997), and may be affected by factors as circumstantial as whether a paper’s title contains a colon (Jamali & Nikzad, 2011; Seglen, 1997). Second, the academic status ordering results from the objectives of millions of scientists and institutions, and may be irrelevant to the unique objectives of Wikipedia. Wikipedia’s key objective is to serve as an encyclopedia, not a medium through which scientists communicate original research. Relative to the decentralization of the scientific literature, Wikipedia is governed by explicit, if flexible, policies and a hierarchical power structure (Butler, Joyce, & Pike, 2008; Shaw & Hill, 2014). Apart from a remark that review papers serve Wikipedia’s objectives better than primary research articles, Wikipedia’s referencing policies generally pass no judgment over which items within the scientific literature constitute “the best” evidence in support of a claim. Wikipedia’s objectives and explicit, centrally accessible, policies differ from the decentralized decisions that produce status orderings within the scientific literature and do not imply that the two status orderings should correspond. Indeed, if editors are not scientists themselves they need not even be aware that journal impact factors exist. On the other hand, despite the well-worn caveats, prestigious, high-impact journals may publish findings that are more important to both academics and Wikipedia’s audience. In fact, a Wikipedia editor’s expectation that the truly important research resides within high-impact journals may be enough to predispose them to want to reference such journals. Second, little is known about editors of science-related articles (West, Weber, & Castillo, 2012); they may be professional scientists with access to these high-impact journals, resulting in both the motivation and opportunity to reference them.

Previous Research

Wikipedia References and Academic Status

The first large-scale study of Wikipedia’s scientific references was performed by Finn Arup Nielsen (Nielsen, 2007). Nielsen found that the number of Wikipedia references to the top 160 journals, extracted from the citejournal citation templates, correlated modestly with the journal’s Journal Citation Reports impact factor. This implication that Wikipedia preferentially cites high impact journals is delicate in part because the data used in the study included only a subset of journals with references that appear in Wikipedia, not journals that were and were not referenced. It is possible, albeit unlikely, that an even larger number of prestigious journals, made invisible by the methodology, are never referenced on Wikipedia at all, weakening the correlation to an unknown degree, or that the referenced journals are simply those that publish the most articles (see Nielsen 2007: Figure 1). Shuai et al. (2013) also found modest correlations when they investigated a possible correspondence between the academic rank of computer science papers, authors, and topics and their Wikipedia rank.

The altmetrics movement has also explored Wikipedia as a nonacademic venue on which academic literature makes an impact (ALM, Fenner, & Lin, ; “altmetrics,”; Priem, 2015). Evans and Krauthammer (2011) examined the use of Wikipedia as an alternative measure of the scholarly impact of biomedical research. The authors correlated scholarly metrics of biomedical articles, journals, and topics with Wikipedia citations and, in contrast to other studies, included in some of their analyses a random sample of
journals never referenced on Wikipedia. The authors also recorded a journal’s OA policy but, unfortunately, do not appear to have used this information in analyses.

Open Access and the Web

The rather voluminous literature on OA has focused primarily on effects on the academic literature. There is some debate on the size and direction of OA effects. Some evidence demonstrates that OA articles gain a citation advantage (Eysenbach, 2006a, 2006b; Gargouri et al., 2010; “The Open Access Citation Advantage Service”), whereas other evidence shows no such effect (Davis, 2011; Davis et al., 2008; Gaul & Maystre, 2011; Moed, 2007). Regardless of the impacts on scientists in developed nations, increased accessibility through OA does yield benefits to scientists from developing nations (Davis & Walters, 2011; Evans & Reimer, 2009).

The promise of OA for disseminating scientific information to the world at large has gained much less attention (Davis & Walters, 2011; Trench, 2008; for an exception see Heilman & West, 2015). Yet, more and more of the world turns to the web for scientific information. For instance, as early as 1999 a full 20% of American adults sought medical and science information online (Miller, 2001). What’s more, one who actively seeks such information within the academic literature will quickly discover that, despite the paywalls, many important and impactful research articles are made freely available by their authors or third parties (Björk, Laakso, Welling, & Paetau, 2014; Wren, 2005). This is to say nothing of the fact that science may also be disseminated through distillation of its findings into venues like Wikipedia or science-centric websites and blogs so that, here too, the impact of OA may be limited. Although full texts of the most impactful literature are, at least nominally, behind a paywall (Björk & Solomon, 2012), do Wikipedia’s editors consult these texts? If they cite them in Wikipedia, have they consulted the full texts beyond a freely available abstract before referencing? If the academic literature is any guide, referenced material is sometimes consulted rather carelessly (Broadus, 1983; Rekdal, 2014). In short, the current understanding of the relationship between OA and the general public in the literature is limited at best (Davis & Walters, 2011).

Shortcomings and Our Contribution

In addition to the role of accessibility, a number of substantive and methodological shortcomings remain. First, it is unclear if professional scientists edit Wikipedia’s science articles. As we will show, a preponderance of paywall references would suggest, albeit indirectly, this to be the case. The scant existing evidence indicates that science articles are edited by people with general expertise, relative to the more narrow experts of popular culture articles (West et al., 2012). Second, most previous studies have completely ignored the articles that are never referenced on Wikipedia, thus sampling on the dependent variable. The only notable exception, (Evans & Krauthammer, 2011), treated the unreferenced articles outside the main analytic framework. Although the framework treated (referenced) articles or journals as the unit of analysis, the unreferenced articles and journals were treated as a homogeneous group.

This study extends existing work in three chief ways. First, it models the role of accessibility (OA status) on referencing. Second, it covers all major research areas of science by observing rates at which Wikipedia references nearly 5,000 journals, accounting for nearly 20 million articles. Third, it treats unreferenced articles in the same analytic framework as those referenced. Yet the study is not without its own limitations, which will be outlined more fully later in the article. Chief among these are that article-level characteristics are operationalized by the characteristics of the publishing journal. For example, the accessibility of articles is operationalized by their journal’s OA policy, when, in fact, free access to many paywall articles exists through sanctioned or unsanctioned file-sharing (Björk et al., 2014; Wren, 2005). Thus, any observed advantage of OA referencing may be biased downward, that is, an underestimate of the true effect (see the Conclusion for a discussion of measurement error).

Data and Methods

Data Sample

Journal data. Our analysis uses journal-level data from thousands of journals indexed by Scopus. Indexing over 21,000 peer-reviewed journals and with more than 2,800 classified as open access, Scopus is the world’s largest database of scientific literature. We obtained information on the 250 highest-impact journals within each of the following 26 major subject areas: Agricultural Sciences, Arts and Humanities, Biochemistry and General Microbiology, Business Management and Accounting, Chemical Engineering, Chemistry, Computer Science, Decision Sciences, Earth and Planetary Sciences, Economics and Finance, Energy Sciences, Engineering, Environmental Sciences, Immunology and Microbiology, Materials Sciences, Mathematics, Medicine, Neurosciences, Nursing, Pharmacology, Physics, Psychology,
TABLE 1. 15 highest-impact journals within Scopus according to SCImago impact factor (2013).

Journal	Impact factor (SCImago2013)
CA - A Cancer Journal for Clinicians	45.894
Reviews of Modern Physics	34.830
Annual Review of Immunology	32.612
Cell	28.272
Annual Review of Biochemistry	27.902
Quarterly Journal of Economics	25.168
Nature Genetics	24.052
Nature Reviews Genetics	23.813
Nature Reviews Molecular Cell Biology	23.593
Chemical Reviews	23.543
Nature	21.323
Acta Crystallographica Section D:	20.717
Biological Crystallography	20.349
Advances in Physics	
Annual Review of Cell and Developmental Biology	
Annual Review of Neuroscience	19.662

Social Science, Veterinary Science, Dental, Health Professions. Assignment of journals to these broad subject areas is not exclusive; many journals fall into more than one category. As a result of cross listing, the list of candidate journals was not exclusive; many journals fall into more than one category. Narrow codes were used to identify less than 6,500. The final data consisted of 4,721 unique journals. Assignment of journals to these broad subject areas is Social Science, Veterinary Science, Dental, Health Professions. Assignment of journals to these broad subject areas is not exclusive; many journals fall into more than one category. As a result of cross listing, the list of candidate journals was not exclusive; many journals fall into more than one category.

The list of candidate journals was not exclusive; many journals fall into more than one category. Narrow codes were used to identify less than 6,500. The final data consisted of 4,721 unique journals.

As a result of cross listing, the list of candidate journals was not exclusive; many journals fall into more than one category. Narrow codes were used to identify less than 6,500. The final data consisted of 4,721 unique journals. Assignment of journals to these broad subject areas is

TABLE 2. Descriptive statistics of key variables.

Variable name	Mean	Std.	Min	Max
percent_cited	0.193	0.545	0%	14.7%
impact factor	1.89	2.47	0.100	45.9
ln(impact factor)	0.212	0.909	-2.30	3.83
open access	7.1%	O.A.	0	1
sources are *Billboard*, *National Park Service*, and *Royal Gazette*. However, efforts to match Wikipedia references to Scopus were imperfect, and the list also includes a handful of academic journals, including *The Lancet*.

Journal Versus Article-Level Unit of Analysis

We chose to take journals instead of individual articles as our unit of analysis for several reasons. First and most important, accessibility of articles, the focal point of this study, was measured at the journal level by whether the journal is or is not OA. Switching the unit of analysis to individual articles would have simply assigned the same value of accessibility to all articles from a particular journal. Second, although article-level citations are an attractive, finely grained metric, a journal’s impact factor is also designed to capture citation impact, albeit more coarsely. The general topic of any given article is also well captured by the host journal’s Scopus-assigned topic(s). Lastly, the matching of Wikipedia journal title strings to Scopus required some manual matching and these efforts were more practical at the level of thousands of journals instead of hundreds of thousands of articles.

Percent_Cited and Other Variables

We present some of our results in terms of percent_cited—the percent of a journal’s articles that are referenced.
on Wikipedia. An equivalent interpretation of this journal-level metric is the probability that a given article from a journal is referenced on Wikipedia. Figure 2 illustrates the distribution (kde) of percent_cited.

As Figure 1 demonstrates, the vast majority of journals that scientists use are referenced on the English Wikipedia very little: on average 0.19% of a journal’s articles are referenced. As mentioned, the academic status of journals was measured using (SCImago) impact factors. To limit the influence of the few journals with uncommonly high impact factors the impact factor variable was (natural) log-transformed when used in the models. Figure 2 displays the distribution of impact factor and log-impact factor; to aid visualization only journals with impact factor < 5 are shown.

Table 2 presents the summary statistics for key variables: percent_cited, impact factor, ln (impact factor), and open access. Additionally, analyses use dummies for the 26 subject categories, for example, psychology 0 or 1).

Lastly, Figure 3 displays a scatter plot of the key dependent variable, percent_cited, versus impact factor and open access.

The scatter plots appear to show a modest relationship between a journal’s impact factor and percent_cited, the percent of its articles referenced on Wikipedia, especially when considering journal size (dot size). The next section analyzes these relationships statistically.

Results

We first present results of English Wikipedia’s coverage. We ask, does Wikipedia draw equally on all branches of science? Next we focus on the role played by a journal’s status and accessibility in predicting Wikipedia references. An exploratory analysis of references in the 49 largest non-English Wikipedias can be found in the Appendix.

Coverage

Figure 4 summarizes which branches of the scientific literature the English Wikipedia draws upon. The left panel shows the number of articles published by the top 250 journals in each field. The right panel shows the percent of those articles that are referenced at least once in the English Wikipedia.

Figure 4 indicates that the coverage of science, as measured by the use of references, is very uneven and limited across scientific fields (Samoilenko & Yasseri, 2014). The social sciences represent a relatively small candidate literature but a relatively large portion of this literature is referenced on the English Wikipedia (0.4–0.5%). At the other end of the spectrum, dentistry, also a relatively small literature, is rarely referenced (< 0.05%). The ordering of disciplines by percent_cited does not engender a simple explanation. For example, such an ordering does not appear correlated with traditional distinctions like hard versus soft science, or basic versus applied. This finding is echoed by Nielsen (2007), who found that “computer and Internet-related journals do not get as many

Variable	Odds ratio	Std err of coeff	p-value
open_access	1.471	0.023	0.000
log_sjr2013	1.879	0.007	0.000
ag_bio_sciences	2.291	0.018	0.000
artis_hum	1.836	0.043	0.000
biochem_gen_mbio	1.059	0.014	0.000
bus_man_acct	0.714	0.057	0.000
chem	1.004	0.022	0.863
cheme	0.968	0.030	0.282
cs	0.991	0.041	0.831
decision_sci	0.957	0.064	0.489
dental	0.520	0.107	0.000
earth_plan_sci	1.515	0.024	0.000
econ_fin	1.106	0.046	0.030
energy	0.551	0.064	0.000
engineering	0.507	0.037	0.000
envi_sci	0.743	0.029	0.000
healthpro	0.787	0.063	0.000
immu_micro_bio	1.114	0.023	0.000
materials	0.640	0.035	0.000
math	0.716	0.039	0.000
medicine	0.660	0.014	0.000
neuro	1.033	0.023	0.168
nursing	1.206	0.045	0.000
pharm	1.481	0.025	0.000
phys	0.629	0.025	0.000
psych	2.628	0.025	0.000
socialsci	1.357	0.029	0.000
vet	0.898	0.054	0.048

FIG. 5. Observed (dots) and predicted (solid lines) English Wikipedia references. Red squares designate OA journals. The marker size is proportional to the number of articles the journal published.
[references] as one would expect if Wikipedia showed bias towards fields for the ‘Internet-savvy.’” The highly uneven referencing across disciplines suggests that discipline should be controlled for in any statistical model, as is done below.

Status and Accessibility

We now present results from an intuitive statistical model that predicts the probability p that an article from a given journal will be referenced given that journal’s characteristics. The data-generating process is assumed to be binomial each journal i publishes n_i articles and each of these articles is at risk p_i of being referenced in Wikipedia, where p_i depends on the journal. The probability that a journal i has k of its n_i articles referenced in Wikipedia is thus:

$$Pr(y_i = k | n_i, p_i) \sim \binom{n_i}{k} p_i^k (1 - p_i)^{n_i - k}.$$ p_i is assumed to be a (logistic) function of the journal characteristics x_i’s (e.g., impact factor): $\ln \left(\frac{p_i}{1 - p_i} \right) = \beta x_i$, where β are the parameters to be estimated. The model just described is commonly used for proportional outcomes; it embeds the familiar logistic regression within a binomial process and is known as a generalized linear model (GLM) of the binomial-logit family (Hardin & Hilbe, 2012: 153-4).

Table 3 displays estimates from this model of how journal characteristics are related to its p, probability of referencing, fitted to the English Wikipedia.

The column of odds ratios indicates how the odds of referencing change with unit changes in the independent variables. For indicator variables, for example, OA, these ratios are interpreted as the increase in odds when the indicator is true. For example, the odds that an article is referenced on Wikipedia increase by 47% if the article is published in an OA journal.

To interpret these results in terms of probabilities rather than odds ratios we must evaluate the model at particular values of the variables. Figure 5 displays the observed and predicted references for a range of values of impact factor and open_access. The indicator variables designating particular disciplines are set at their modes (0).

The figure demonstrates that a journal’s impact factor has positive and asymptotic effect on the percent of its contents referenced in the English Wikipedia (percent_cited). Open access journals (red dots) are relatively uncommon, but these journals are referenced more often than paywall journals of similar impact factor. For example, in our sample of psychology journals, OA journals have an average impact factor of 1.59, whereas closed access journals have an average impact factor of 1.77. Yet in the English Wikipedia, editors reference an average of 0.49% of OA journals’ articles but only 0.35% of closed access journals’ articles, despite the higher impact factors.

Conclusion

This article examined in unprecedented detail and scale how the English language Wikipedia references the scientific literature. (The appendix contains an exploratory analysis of scientific referencing in Wikipedias of 49 other languages.) Of central interest was the relationship between a journal’s academic status and accessibility on its probability of being referenced in Wikipedia. Previous studies have focused only on the role of academic status on referencing in the English Wikipedia and have often ignored unreferenced articles. In contrast, we began with a large (4,721 journals, 19.4M articles) corpus of scientific literature that scientists use, and estimated a statistical model to identify the features of journals that predict how much Wikipedia editors use them as sources.

We found that a journal’s academic status (impact factor) routinely predicts its appearance on Wikipedia. We also demonstrated, for the first time, that a journal’s accessibility (OA policy) generally increases probability of referencing on Wikipedia as well, albeit less consistently than its impact factor. The odds that an OA journal is referenced on the English Wikipedia are about 47% higher compared to closed access, paywall journals. Moreover, of closed access journals, those with high impact factors are also significantly more likely to appear in the English Wikipedia. Therefore, editors of the English Wikipedia act as “distillers” of high quality science by interpreting and distributing otherwise closed access knowledge to a broad public audience, free of charge. Moreover, the English Wikipedia, as a platform, acts as an “amplifier” for the (already freely available) OA literature by preferentially broadcasting its findings to millions.

Limitations and Directions for Future Research

Our findings are not without limitations. First and foremost, it bears emphasis that this study did not investigate the nature of Wikipedia’s sources as a whole (see Ford, Sen, Musciant, & Miller, 2013 for an excellent examination of sources). Only a fraction of Wikipedia’s references use the scientific literature, and this is the subset on which we focused. Consequently the present study cannot address the concern expressed by others, for example, (Luyt & Tan, 2010), that sources outside the scientific literature are used too heavily in scientific articles. Second, the study was cross-sectional in nature; it is conceivable that OA articles differ from closed access, paywall articles in their relevance to Wikipedia. Future work can test the potential confounding factor of unmeasured relevance by observing reference rates for articles which have been experimentally assigned to open and closed-access statuses, as has been done by some psychology journals (Davis et al., 2008).

Third, the study measured accessibility of articles by the OA policy of the publishing journals. However, many articles in paywall journals are made freely available by their authors or third parties (Björk et al., 2014; Wren, 2005). The resulting error in the measurement of accessibility may bias the observed advantage of OA in either direction: if OA articles from paywall journals, erroneously
coded as closed access, are referenced at higher rates than the journals’ truly closed access articles (Gargouri et al., 2010; Harnad & Brody, 2004), the true advantage of OA will be even higher than we observed. In the (unlikely) case that OA articles in paywall journals are referenced less than closed access articles, the observed open access advantage will be an overestimate. The academic status of articles is also operationalized by a journal characteristic—its impact factor. In fact, many articles out- or under-perform their journal’s impact factor. Although this measurement error likely adds noise to the data, it probably does so without biasing the estimated effect of impact factor on referencing in one direction or another.

The Impact of Open Access Science

The chief finding of this study bears emphasis. We believe the existing discussion of open access has focused too narrowly on the academic literature. Early results showing that open access improves scientific outcomes such as citations have been tempered by newer experimental evidence showing small to null causal effects, and a lively debate has ensued. Our research shifts focus to diffusion, showing that open access policies have a tremendous impact on the diffusion of science to the broader general public through an intermediary like Wikipedia. This effect, previously a matter primarily of speculation, has empirical support. As millions of people search for scientific information on Wikipedia, the science they find distilled and referenced in its articles consists of a disproportionate quantity of open access science.

Acknowledgments

This research was enabled by grant 39147 to the Knowledge Network by the John Templeton Foundation. An earlier version of this work was presented at the Wikipedia Workshop of the 9th International Conference on Web and Social Media, Oxford, UK. We thank the reviewers for perceptive comments that greatly improved this article.

Endnotes

1. http://www.alexa.com/siteinfo.wikipedia.org
2. https://en.wikipedia.org/wiki/Wikipedia:Verifiability. Accessed 2015-06-15.
3. http://stats.wikimedia.org/EN/TablesPageViewsMonthly.htm. Accessed 2015-06-16.
4. Wikipedia has recently partnered with major publishers to provide editors access to some paywall literature: http://en.wikipedia.org/wiki/Wikipedia:The_Wikipedia_Library. Accessed 2015-09-02.
5. http://en.wikipedia.org/wiki/Wikipedia:Notability. Accessed 2015-06-11.
6. http://en.wikipedia.org/wiki/Wikipedia:Five_pillars. Accessed 2015-05-29.
7. http://en.wikipedia.org/wiki/Wikipedia:Identifying_reliable_sources#Scholarship. Accessed 2015-05-29.
8. Citation metrics often influence the ranking of academic search results and may thus promote high impact journals without searchers’ knowledge.
9. This literature has grown to thousands of items and is impossible to summarize fully, See (Craig, Plume, McVeigh, Pringle, & Amin, 2007; Davis & Walters, 2011) for two reviews of parts of this literature.
10. As corroborating evidence consider the list of Wikipedia editors by [self-reported] degree lists more than 1000 users with PhDs: http://en.wikipedia.org/wiki/Category:Wikipedians_with_PhD_degrees. Accessed 2015-09-02.
11. http://www.elsevier.com/online-tools/scopus/content-overview. Accessed 2015-01-24.
12. The subject area “general” was excluded because it contained only four journals, all of which were cross-listed with other top-level categories.
13. http://info.sciencedirect.com/scopus/scopus-in-detail/content-coverage-guide/journalclassification. Accessed 2015-06-03.
14. Editors may also reference articles in other ways, for example by providing in-line links. We focus on the “cite-journal” template for three reasons. First, it shows clear intent to reference. Second, it has been used in previous research. Lastly, Ford and colleagues (Ford, Sen, Musicant, & Miller, 2013) found that “<ref>” tags were used most often to reference sources, and the “cite-journal” templates on which we focus are nested within such <ref> tags.
15. 2,005 (out of 4,721) journals are never referenced at all (percent cited = 0).

References

Altmetrics: a manifesto - altmetrics.org. Retrieved from http://altmetrics.org/manifesto
Björk, B.-C., Laakso, M., Welling, P., & Paetan, P. (2014). Anatomy of green open access. Journal of the Association for Information Science and Technology, 65(2), 237–250. http://doi.org/10.1002/asi.22963
Björk, B.-C., & Solomon, D. (2012). Open access versus subscription journals: A comparison of scientific impact. BMC Medicine, 10(1), 73. http://doi.org/10.1186/1741-7015-10-73
Broadus, R.N. (1983). An investigation of the validity of bibliographic citations. Journal of the American Society for Information Science, 34(2), 132–135. http://doi.org/10.1002/asi.463040206
Butler, B., Joyce, E., & Pike, J. (2008). Don’t look now, but we’ve created a bureaucracy: The nature and roles of policies and rules in Wikipedia. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 1101–1110). New York, NY: ACM. http://doi.org/10.1145/1357054.1357227
Davis, P.M. (2010). Does open access lead to increased readership and citations? A randomized controlled trial of articles published in APS journals. The Physiologist, 53(6), 197, 200–201.
Davis, P.M. (2011). Open access, readership, citations: A randomized controlled trial of scientific journal publishing. The FASEB Journal, 25(7), 2129–2134. http://doi.org/10.1096/fj.11-183988
Davis, P.M., Lewenstein, B.V., Simon, D.H., Booth, J.G., & Connolly, M.J.L. (2008). Open access publishing, article downloads, and citations: Randomised controlled trial. BMJ, 337, a568. http://doi.org/10.1136/bmj.a568
Davis, P.M., & Walters, W.H. (2011). The impact of free access to the scientific literature: A review of recent research. Journal of the Medical Library Association: JMLA, 99(3), 208–217. http://doi.org/10.3163/1536-5050.99.3.008
Evans, P., & Krauthammer, M. (2011). Exploring the use of social media to measure journal article impact. AMIA Annual Symposium Proceedings, 2011, 374–381.
Evans, J.A., & Reimer, J. (2009). Open access and global participation in science. Science, 323, 1025.
Eysenbach, G. (2006a). Citation advantage of open access articles. PLoS Biol, 4(5), e157. http://doi.org/10.1371/journal.pbio.0040157
Eysenbach, G. (2006b). The open access advantage. Journal of Medical Internet Research, 8(2), e8. http://doi.org/10.2196/jmir.8.2.e8
Ford, H., Sen, S., Musicant, D.R., & Miller, N. (2013). Getting to the source: Where does Wikipedia get its information from? In
Proceedings of the ninth International Symposium on Open Collabora-
(9:1–9:10). New York, NY: ACM. http://doi.org/10.1145/
2491055.2491064
Gargouri, Y., Hajjem, C., Larivière, V., Gingras, Y., Carr, L., Brody, T., &
Harnad, S. (2010). Self-selected or mandated, open access increases
citation impact for higher quality research. PLoS One, 5(10), e13636.
http://doi.org/10.1371/journal.pone.0013636
Gaulé, P., & Maystre, N. (2011). Getting cited: Does open access help?
Research Policy, 40(10), 1332–1338. http://doi.org/10.1016/j.respol.
2011.05.025
González-Pereira, B., Guerrero-Bote, V.P., & Moyà-Anegón, F. (2010).
A new approach to the metric of journals’ scientific prestige: The SJR
indicator. Journal of Informetrics, 4(3), 379–391. http://doi.org/
10.1016/j.joi.2010.03.002
Hardin, J.W. & Hilbe, J.M. (2012). Generalized Linear Models and
Extensions. 3rd ed. College Station: Statia Press.
Harnad, S., & Brody, T. (2004). Comparing the impact of open access
(OA) vs. non-OA articles in the same journals. D-Lib Magazine, 10(6).
Retrieved from http://eprints.soton.ac.uk/260207/
Heilman, J.M., & West, A.G. (2015). Wikipedia and medicine: Quantify-
ing readership, editors, and the significance of natural language.
Journal of Medical Internet Research, 17(3), e62. http://doi.org/10.
2196/jmir.4069
Jamali, H.R., & Nikzad, M. (2011). Article title type and its relation
with the number of downloads and citations. Scientometrics, 88(2),
653–661. http://doi.org/10.1007/s11192-011-0412-z
Jervell, E.E. (2014). For this author, 10,000 Wikipedia articles is a good
day’s work. Wall Street Journal. Retrieved from http://www.wsj.com/
articles/for-this-author-10-000-wikipedia-articles-is-a-good-days-work-
1405305001. Published 2014-6-13. Last accessed 2016-1-20.
Joe, W. (2015). Real-time stream of DOIs being cited in Wikipedia.
Retrieved from http://crosstech.crosref.org/2015/03/real-time-stream-
of-dois-being-cited-in-the-wikipedia.html Published 2015-3-3. Last
accessed 2016-1-20.
Laurent, M.R., & Vickers, T.J. (2009). Seeking health information
online: Does Wikipedia matter? Journal of the American Medical
Informatics Association, 16(4), 471–479. http://doi.org/10.1197/jamia.
M3059
Leydesdorff, L. (2009). How are new citation-based journal indicators
adding to the bibliometric toolbox? Journal of the American Society
for Information Science and Technology, 60(7), 1327–1336. http://
doi.org/10.1002/asi.21024
Lin, J. & Fennier, M., (2014). An analysis of Wikipedia references
across PLOS publications. Retrieved from http://figshare.com/articles/
An_analysis_of_Wikipedia_references_across_PLOS_publications/
104991
Luyt, B., & Tan, D. (2010). Improving Wikipedia’s credibility: Referen-
ces and citations in a sample of history articles. Journal of the Ameri-
can Society for Information Science and Technology, 61(4), 715–722.
http://doi.org/10.1002/asi.21304
Mesgari, M., Okoli, C., Mehdi, M., Nielsen, F.A., & Lanamäki, A.
(2015). “The sum of all human knowledge”: A systematic review of
scholarly research on the content of Wikipedia. Journal of the Associ-
ation for Information Science and Technology, 66(2), 219–245.
Miller, J.D. (2001). Who is using the web for science and health infor-
mation? Science Communication, 22(3), 256–273. http://doi.org/10.
17710/073270250102203003
Moed, H.F. (2007). The effect of “open access” on citation impact: An
analysis of ArXiv’s condensed matter section. Journal of the Ameri-
can Society for Information Science and Technology, 58(13), 2047–
2054. http://doi.org/10.1002/asi.20663
Nissen, F.A. (2007). Scientific citations in Wikipedia. First Monday, 12(8).
Retrieved from http://firstmonday.org/ojs/index.php/fm/article/view/1997
Okoli, C., Mehdi, M., Mesgari, M., Nielsen, F.A., & Lanamäki, A.
(2014). Wikipedia in the eyes of its beholders: A systematic review of
scholarly research on Wikipedia readers and readership. Journal of the
Association for Information Science and Technology, 65(12),
2381–2403. http://doi.org/10.1002/asi.23162
Priem, J. (2015). Altmetrics (Chapter from Beyond Bibliometrics: Har-
nessing Multidimensional Indicators of Scholarly Impact). arXiv:
1507.01338. Retrieved from http://arxiv.org/abs/1507.01328
Rekdal, O.B. (2014). Academic urban legends. Social Studies of
Science, 44(4), 638–654. http://doi.org/10.1177/0306312714535679
Samoilenko, A., & Yasseri, T. (2014). The distorted mirror of Wikipe-
dia: A quantitative analysis of Wikipedia coverage of academics. EPJ
Data Science, 3(1). http://doi.org/10.1140/epjds20
Sample, I. (2012). Harvard University says it can’t afford journal pub-
lishers’ prices. Retrieved from http://www.theguardian.com/science/
2012/apr/24/harvard-university-journal-publishers-prices
Schoeder, R., & Taylor, L. (2015). Big data and Wikipedia research:
Social science knowledge across disciplinary divides. Information,
Communication & Society, 18(9), 1039–1056. http://doi.org/10.1080/
1369118X.2015.1008538
Seglen, P.O. (1997). Why the impact factor of journals should not be
used for evaluating research. BMJ, 314(7079), 497. http://doi.org/10.
1136/bmj.314.7079.497
Shaw, A., & Hill, B.M. (2014). Laboratories of oligarchy: How the iron
law extends to peer production. Journal of Communication, 64(2),
215–238. http://doi.org/10.1111/jcom.12082
Shuai, X., Jiang, Z., Liu, X., & Bollen, J. (2013). A comparative study
of academic and Wikipedia ranking. In Proceedings of the 13th
ACM/IEEE-CS Joint Conference on Digital Libraries (pp. 25–28).
New York, NY: ACM. http://doi.org/10.1145/2467696.2467746
Sporerri, A. (2007). What is popular on Wikipedia and why? First Mon-
day, 12(4), http://doi.org/10.5219/fm.v124.i1765
Steiner, T. (2014). Bots vs. Wikipedians, Anons vs. Logged-Ins (Redux):
A global study of edit activity on Wikipedia and Wikidata. In
Proceedings of the International Symposium on Open Collaboration
(pp. 25:1–25:7). New York, NY: ACM. http://doi.org/10.1145/
2641580.2641613
The Open Access Citation Advantage Service. (n.d.). Retrieved from
http://spareurope.org/oaac/
Trench, B. (2008). Internet: Turning science communication inside-out?
In M. Bucchi & B. Trench (Eds.), Handbook of public communica-
tion of science and technology. London and New York: Routledge.
Retrieved from http://www.routledgescience.com/books/Handbook-
of-Public-Communication-of-Science-and-Technology-
isbn9780415386173
Van Noorden, R. (2013). Open access: The true cost of science publish-
ing. Nature, 495(7442), 426–429. http://doi.org/10.1038/495426a
West, R., Weber, I., & Castillo, C. (2012). Drawing a data-driven portrait
of Wikipedia editors. In Proceedings of the Eighth Annual International
Symposium on Wikis and Open Collaboration (pp. 3:1–3:10). New
York, NY: ACM. http://doi.org/10.1145/2462932.2462937
Wren, J.D. (2005). Open access and openly accessible: A study of scient-
fic publications shared via the internet. BMJ, 330(7500), 1128.
http://doi.org/10.1136/bmj.38422.611736.E0

Appendix: Non-English Wikipedias
Non-English Wikipedias have been noticeably neglected by the research community (Mesgari, Okoli, Mehdi, Nielsen, & Lanamäki, 2015; Schroeder & Taylor, 2015). It is thus important to test whether any of the findings of this article extend to the millions of articles in non-English Wikipedias. Here, we present an exploratory analysis of scientific references in the 49 largest non-English Wikipedias.

Data
Database dumps of the 49 largest non-English Wikipedias were downloaded on October 5, 2015. For each of
these, we extracted tags containing “journal” or “doi.” Thus the process for obtaining scientific references in non-English Wikipedias did not take into account language-specific tags. Non-English Wikipedias may also reference domestic scientific journals that are not indexed by Scopus. Thus, this exploratory approach surely undercounts scientific references to non-English Wikipedias.

The English Wikipedia referenced by far the greatest number of unique articles. Figure 1 displays the number of unique articles referenced in other Wikipedias, sorted by size (total articles).

Empirical Strategy

Certainly not all findings published in the academic literature belong on Wikipedia. Only small subsets of published findings are important and notable enough to be referenced in Wikipedia. Ideally, studies of how Wikipedia editors reference sources should explain which items in this smaller subset are and are not referenced. Nevertheless, previous studies have struggled to distinguish the candidate articles that are at risk for reference from those that do not belong on Wikipedia. Yet, to model referencing decisions with all articles—including the dozens of millions of articles never referenced on Wikipedia—is likely to result in a model that predicts that no article will ever be referenced. Consequently most studies have voluntarily hobbled themselves by simply modeling only on the subset of referenced articles.

Here we propose a compromise strategy based on “demonstrated demand.” The idea is simple: Articles are at risk for reference if other articles on the same topic are referenced. Topical reference indicates that there is demand from Wikipedia editors for literature on the topic...
and that an article’s characteristics (e.g., accessibility, status) may determine which of the candidate articles an editor finds and references. Conversely, if articles on a given topic are never referenced, it is likely that Wikipedia editors do not “demand” literature on this topic, no matter the accessibility or status of the supply. Demonstrated demand exists at the level of topics and, like accessibility and status, we identify an article’s topic at the journal level. Demonstrable demand is also a language-dependent metric: Some Wikipedias may lack editors with expertise or interest in, for example, dentistry, thereby consigning all dentistry journals to irrelevance with regards to referencing decisions (but not irrelevant for analysis of coverage, of course). To calculate demonstrated demand we identify for each journal its topical “neighbors” and assign demand of 0 if none of these neighbors are ever referenced in a particular Wikipedia.

We calculate demonstrated demand for a journal through its topical neighbors, which are defined as other journals that share at least one narrow (ASJC) subject code. Only one journal, *Prevenzione & Assistenza Dentale*, had no neighbors while the mean neighborhood size was 144.8. Figure 4 displays the distribution (kde) of neighborhood size.

Table A2 contains the percentages of journals that were excluded from estimating models in each language. This percentage varies widely. For example, only 0.17% of journals were not used for the English Wikipedia model, 49.87% for Slovak, and a 100% for Volapuk. These numbers correspond directly to demonstrable demand for various research literatures by the editors of each Wikipedia. While the English Wikipedia references ~32,000 articles from top journals, the Slovak Wikipedia references only 108 and Volapuk references 0.

Results

From each Wikipedia’s model, two parameters are of focal interest: the odds ratio (of probability of referencing) when OA is True, and odds ratio when (log of) impact factor increases by 1 unit. Table A3 shows these odds ratios and associated p-values for each Wikipedia. Ratios significant at the 0.05 level are bolded.

While earlier results showed that both accessibility and status increase the odds that a journal will be referenced in the English Wikipedia, the relative strength of these effects varies across languages. Some Wikipedias, like the Turkish, prioritize a journal’s academic status over accessibility; the odds of referencing high status journals are nearly 200% higher than lower status journals. Other Wikipedias, like the Serbian, prioritize accessibility over status; the odds of referencing an OA journals are ~275% higher than a paywall journal.

Intuition and previous work suggest that reliance on OA literature is associated negatively with a country’s level of economic development (Evans & Reimer, 2009), yet this pattern is not apparent in Table A3. For example, India and Ukraine, relatively poor countries naturally associated with the Hindi and Ukrainian Wikipedias, actually exhibit a small preference against OA literature, while a relatively wealthy country like Sweden has a Wikipedia that exhibits a huge preference for OA literature. The unexpected patterns may be because of the influence of bots (Steiner, 2014). For example, about a third of all articles on the Swedish Wikipedia were

Language	Percent excluded (weight = 0)
Chinese	1.28
Russian	1.28
Japanese	1.36
Arabic	1.47
Vietnamese	2.01
Portuguese	2.16
German	2.30
Spanish	2.62
Indonesian	2.95
Hindi	3.62
Hungarian	3.73
Ukrainian	4.17
Slovenian	4.25
Persian	4.40
Serbian	4.92
Greek	4.99
Turkish	5.63
Serbo-Croatian	6.35
Malay	6.85
Bulgarian	7.12
Dutch	7.31
Catalan	7.88
Danish	8.36
Swedish	9.78
Romanian	10.08
Korean	10.08
Estonian	11.73
Galician	12.13
Norwegian (Bokmal)	12.36
Czech	12.84
French	13.68
Croatian	14.52
Hebrew	20.93
Armenian	22.62
Waray-Waray	25.32
Esperanto	26.37
Finnish	26.81
Italian	29.16
Lithuanian	34.00
Norwegian (Nynorsk)	40.01
Latin	43.67
Slovak	49.87
Polish	62.69
Uzbek	78.91
Minangkabau	80.88
Kazakh	81.44
Basque	86.30
Cebuano	86.95
Volapuk	99.98
created by a bot (Jervell, 2014). Idiosyncrasies of the small number of human and nonhuman entities that edit science in non-English Wikipedias may thus play a larger role than gross cross-national patterns.

It bears emphasis that this analysis of references in non-English Wikipedias is exploratory. Further work should extract references in a way that is sensitive to each Wikipedia’s language and conventions. Such analysis may reveal differences in how scientific content found in Wikipedia across languages is differentially embedded in or husbanded by local scientific communities.

TABLE A3. Odds ratios and associated p-values for open access and (log) impact factor for 50 Wikipedias. Statistically significant odds ratios are bolded.

Wikipedia Language	open access odds ratio	open access p-value	Ln (impact factor) odds ratio	Ln (impact factor) p-value
Arabic	0.923	0.258	2.189	0.000
Armenian	1.052	0.802	2.669	0.000
Basque	0.000	1.000	1.059	0.890
Bulgarian	0.936	0.623	2.256	0.000
Catalan	1.452	0.000	1.963	0.000
Cebuano	0.000	1.000	1.989	0.093
Chinese	1.337	0.000	2.257	0.000
Croatian	0.651	0.009	2.230	0.000
Czech	1.247	0.230	2.258	0.000
Danish	0.722	0.120	2.190	0.000
Dutch	1.743	0.000	2.238	0.000
English	1.471	0.000	1.878	0.000
Esperanto	1.114	0.591	1.245	0.001
Estonian	1.221	0.151	2.705	0.000
Finnish	0.666	0.300	1.576	0.000
French	0.850	0.550	2.030	0.000
Galician	1.464	0.000	2.176	0.000
German	1.755	0.000	2.264	0.000
Greek	0.798	0.078	2.008	0.000
Hebrew	1.191	0.531	1.906	0.000
Hindi	0.757	0.029	2.113	0.000
Hungarian	0.749	0.005	1.804	0.000
Indonesian	0.886	0.242	2.467	0.000
Italian	0.638	0.299	2.072	0.000
Japanese	2.577	0.000	1.865	0.000
Kazakh	0.000	1.000	1.759	0.114
Korean	1.246	0.055	1.944	0.000
Latin	0.812	0.637	1.975	0.000
Lithuanian	1.035	0.923	2.345	0.000
Malay	1.211	0.157	2.214	0.000
Minangkabau	2.927	0.314	1.661	0.224
Norwegian(bokmal)	0.866	0.437	2.328	0.000
Norwegian(nynorsk)	0.588	0.109	1.510	0.500
Persian	0.941	0.678	2.210	0.000
Polish	0.588	0.480	2.330	0.000
Portuguese	1.527	0.000	2.076	0.000
Romanian	0.903	0.545	2.178	0.000
Russian	1.419	0.000	2.086	0.000
Serbian	3.824	0.000	1.516	0.000
Serbo-Croatian	3.761	0.000	1.518	0.000
Slovak	1.943	0.157	3.249	0.000
Slovenian	0.926	0.487	2.389	0.000
Spanish	1.913	0.000	1.698	0.000
Swedish	3.745	0.000	2.094	0.000
Turkish	1.262	0.021	2.956	0.000
Ukrainian	0.818	0.030	2.566	0.000
Uzbek	0.000	1.000	2.963	0.012
Vietnamese	0.966	0.682	2.143	0.000
Volapuk	0.588	0.480	2.330	0.000
Waray-Waray	2.104	0.017	2.172	0.000