Microarray analysis of the effect of Cowpea (*Vigna unguiculata*) phenolic extract in bovine peripheral blood

Sarah Adjei-Fremah\(^a\), Louis E. N. Jackaib\(^b\), Keith Schimmela\(^a\) and Mulumebet Workuc\(^c\)

\(^a\)Department of Energy and Environmental Systems, North Carolina Agricultural and Technical State University, Greensboro, NC, USA; \(^b\)Department of Natural Resources and Environmental Design, North Carolina Agricultural and Technical State University, Greensboro, NC, USA; \(^c\)Department of Animal Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC, USA

ABSTRACT

In this study, the effect of polyphenolic extracts from cowpea (*Vigna unguiculata*) on global gene expression in bovine peripheral blood was investigated. Blood collected from Holstein-Friesian cows (*n* = 10) was treated with 10 µg/mL of cowpea phenolic extract (CPE) and subsequently used for transcriptional profiling using the Agilent bovine (v2) 4 × 44 K array. Calculation of fold change in gene expression and pathway analysis was conducted using the GeneSpring GX software 13.0. Real-time quantitative PCR was performed to validate the microarray data. Phenolic extracts of cowpea impacted global gene expression and resulted in 3170 differentially expressed genes (*p* < .05); 1716 genes were upregulated and 1454 genes were downregulated. Exposure to CPE impacted 66 pathways (*p* < .05) including the Wnt signalling pathway, Toll-like receptor pathway, inflammation response pathway, MAPK cascade pathway, prostaglandin synthesis and regulation pathway, cell cycle pathway, insulin signalling pathway, and the adipogenesis pathway. Expression of immune markers such as CD40, CD68, Toll-like receptors, and Wnt signalling changed. Exposure to CPE modulated expression of genes associated with immunity and homeostasis. Transcriptional profiles of the response to polyphenols may aid in the design of targeted diets to influence animal production and health and thus requires further study.

1. Introduction

Dietary nutrient and non-nutrient constituents in animal feed are essential for enhancing ruminant productivity and health (Dawson 2006). Non-nutrient components in animal feed include flavonoids and non-flavonoids such as phenolic acids and Proanthocyanidins (Tsao 2010). These anti-nutritional phe- nolic constituents in animal diets affect biological processes via activation and regulation of multilcalar pathways and have antioxidant properties (Tarapore et al. 2012). Consumption of antioxidant-rich feed prevents the damaging effect of free radicals and their metabolic by-products (Surai 2014) and stimulates an immune response in animals (Karasawa et al. 2011). The impact of diet and secondary dietary bioactive substances on gene expression termed nutrigenomics examines nutrient-gene interactions (Müller & Kersten 2003). Nutrients and non-nutrient components such as flavonoids impact the transcriptome, and subsequently affect the proteome, metabolome, and epigenome (Afman & Muller 2006).

Cowpea (*Vigna unguiculata* [L.] Walp), a legume predominately cultivated and consumed as food for humans and feed for animals, is rich in proteins and phenolic compounds (Zia-Ul-Haq et al. 2010, 2013). The nutritional and phenolic composition of cowpea seeds has been characterized (Cai et al. 2003; Gupta et al. 2010). Phenolic constituents in cowpea include phenolic acids such as protocatechuic acid, p-hydroxybenzoic acid, caffeic acid, p-coumaric acid, ferulic acid, 2,4-dimethoxybenzoic acid and cinnamic acid (Cai et al. 2003); flavonoids including quer cetin, myricetin, and kaempferol glycosides (Ojwang et al. 2012); anthocyanins and proanthocya- nidin predominantly catechin-O-glucoside (Ojwang et al. 2013). Polyphenols within cowpea have antioxidant (Siddhuraju & Becker 2007), anti-inflammatory (Ojwang et al. 2015), and antican cer (Gutiérrez-Uribe et al. 2011) properties. Cowpea research has focused on varietal selection for traits of interest (Hall 2004), and studies focused on the benefits of cowpea diet and pheno- lic constituents on health are increasing. With advances in bio- technology and the advent of various ‘omics’ technologies, new opportunities in cowpea research are possible to aid our understanding of the role and impact of cowpea on nutrition and health in both man and animals. Studies pertaining to the effect of a cowpea-based diet and its polyphenols on livestock health are inadequate. It is important to elucidate the molecular effect of polyphenols from cowpea on animals to enhance our understanding and utilization of cowpea in livestock production. The present study evaluated the effect of cowpea phe- nolic extracts (CPEs) on the bovine transcriptome in peripheral blood using microarray analysis. The *in vitro* effect of cowpea polyphenols extract on global gene expression was examined using the Agilent bovine v2.4 × 44 k array in a one-colour microarray experiment. The microarray experiment compared two...
groups; cowpea polyphenol extract treated blood to untreated control samples.

2. Materials and methods

2.1. Preparation of crude CPE
The procedure used for the preparation of crude CPE was as previously described by Adjei-Fremah et al. (2015). Briefly, methanolic extracts were prepared from leaves of Mississippi silver, a dual-purpose cowpea variety commonly used in the southern USA. The extracted crude CPE was concentrated and dried with a vacufuge (Eppendorf) to evaporate the methanol. The actual dry weight of the crude extract was determined (6.7 mg). The crude CPE extract was dissolved in phosphate buffered saline (PBS, pH 7.4).

2.2. Blood sampling

Age-matched, female, Holstein-Friesian cows at mid-lactation (n = 10; Body weight = 1653 ± kg) were selected from cattle housed at the North Carolina Agricultural and Technical State University dairy farm. Whole blood was collected aseptically from the jugular vein into vacutainer tubes (BD Biosciences, San Jose, CA, USA) containing the anticoagulant Acid Citrate Dextrose. All experimental procedures used were approved by the Institutional Animal Care and Use Committee of North Carolina Agricultural and Technical State University. All solvents and diluents used in this study were tested for endotoxin with the ToxinSensorTM Chromogenic LAL Endotoxin Assay Kit following the manufacturer’s protocol (GenScript, Piscataway, NJ, USA) as previously described by Adjei-Fremah et al. (2016).

2.3. Treatment of bovine blood with CPE

The procedure used for stimulation of whole blood with CPE was as previously described by Adjei-Fremah et al. (2015). Bovine whole blood (10⁷ viable cells/mL) was treated with 10 μg/mL CPE, and untreated control samples were maintained in PBS. Treatment conditions used were as described by Worku and Morris (2009). Treated and control samples were incubated for 30 min at 37°C, 95% humidity and 5% CO₂. After incubation, the samples were centrifuged at 700 g for 5 min at 4°C to obtain the cell pellet. Tri-reagent (Sigma-Aldrich, St Louis, MO, USA) was added to the cell pellet for total RNA isolation.

2.4. Extraction of total RNA

Total RNA was extracted using the ZR whole blood RNA mini-prep kit (ZYMO RESEARCH, Irvine, CA, USA) following the manufacturer’s recommendations. The concentration and purity of the isolated RNA were quantified using a NanoDrop-1000 spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA). Total RNA integrity number (RIN) was determined with the Agilent 2100 Bioanalyzer using the RNA 6000 Nano chip. All samples were stored at −80°C until used for microarray analysis and real-time PCR analysis.

2.5. Microarray analysis

All procedures and reagents used for the microarray experiment were as recommended by the manufacturer (Agilent Technologies, Santa Clara, CA, USA). Pooled RNA 0.5 μg (RIN > 7) was used to prepare Cyanine-3 (Cy3)-labelled cRNA, which were purified using RNAeasy columns (QIAGEN, Valencia, CA, USA). A NanoDrop ND-1000 Spectrophotometer (Thermo-Scientific, Waltham, MA, USA) was used to check for dye incorporation and cRNA yield. The Cy3-labelled cRNA was fragmented and hybridized to bovine (v2) 4 × 44 k Oligo arrays (G2519F) for 17 h at 65°C in a rotating hybridization oven. The microarray used had 44,000 (44 k) cow genes represented on the array. After hybridization, the arrays were washed at room temperature and then dried immediately. The slides were scanned on the DNA Microarray Scanner (G2505B) using the one-colour scan default settings for 4 × 44 k array slides.

2.6. Normalization and analysis of microarray data

Feature extraction software version 10.10.1.1 (Agilent Technologies, Santa Clara, CA, USA) was used to obtain process signal intensity values using default parameters (GE1-v5.95_Feb07). Data normalization and statistical analysis were performed using GeneSpring GX software version 13.0 (Agilent Technologies, Santa Clara, CA, USA) to generate fold changes (FC) in gene expression and hierarchical cluster analysis. Fold changes in gene expression calculated were filtered at a cut-off of ≥2 (p < .05) to obtain a list of significantly upregulated and downregulated genes. Hierarchical cluster analysis was generated using differentially expressed genes data with a cut-off of twofold change and statistically significant difference in expression (p < .05). GeneSpring Pathway Analysis software version 13.0 was used to conduct single experiment pathway analysis of the results with a fold change cut-off of ≥2, p < .05.

2.7. Microarray GEO accession number

The data from this experiment have been deposited at the NCBI Gene Expression Omnibus (GEO) database under accession no. GSE75239. http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE75239.

2.8. Real-time PCR

The microarray data were validated using real-time quantitative PCR which was performed with a CFX Connect real-time system (Bio-Rad, Hercules, CA, USA). Primers for 10 differentially expressed genes observed from the microarray results, TLR2, TLR4, IL6ST, SLC11AI, C3, CSF1, TNFSF4, NFKB1A, STAT1, and CCL3, as well as the reference gene GAPDH, as listed in Table 1 were designed using Primer3 software version 0.4.0 (Untergasser et al. 2012) and were commercially sequenced by Eurofins MWG Operon (Louisville, KY, USA). Table 1 shows information on primers and primer sequences used. Total RNA of the individual samples (0.5 μg each, RIN > 7) was reverse transcribed to cDNA using oligoDT primers (Ambion, Austin, TX, USA). Samples were prepared for real-time PCR amplification reaction in a final volume of 20 μl including
200 ng template, 250 nM primer, and 10 ul SsoAdvance SYBR green Mastermix (Bio-Rad, Hercules, CA, USA). The polymerase chain reaction was performed as follows: denaturation at 95°C for 3 min, followed by 40 cycles of 95°C for 15 s, 60°C for 30 s, and 72°C for 30 s. All reactions were performed in triplicate. For data analysis, normalization was performed with the housekeeping gene glyceraldehyde-3-phosphate dehydrogenase.

3. Results

3.1. Change in transcriptional profile in blood in response to CPE

Global gene expression analysis identified 3170 genes that were differentially expressed out of 44 k transcripts. Of these, 1716 genes were upregulated and 1454 genes were downregulated. Differentially expressed genes were considered with a fold change cut-off of ≥2, p < .05. Figure 1 depicts a hierarchical cluster analysis of the differentially expressed genes (with a cut-off of twofold change, FC, p < .05). Treatment with CPE increased the expression of genes associated with innate and adaptive immunity such as cytokines and chemokines, Toll-like receptors (TLRs), and stress-related signalling molecules that are relevant for inflammation response and maintaining homeostasis. Tables 2 and 3 show a list of selected genes upregulated and downregulated in expression, respectively. TLRs regulated and downregulated in expression, respectively. TLRs like receptors (TLRs), and stress-related signalling molecules associated with adaptive immunity such as cytokines and chemokines, Toll-like receptors (TLRs), and stress-related signalling molecules that are relevant for inflammation response and maintaining homeostasis. Tables 2 and 3 show a list of selected genes upregulated and downregulated in expression, respectively. TLRs expressed included TLR2 (FC = 18.0), TLR10 (FC = 4.5), TLR4 (FC = −3.9), and TLR3 (FC = −5.45). Cowpea polyphenol treatment inhibited the expression of NOD (Nucleotide oligomerization domain)-like receptor-associated genes such as NOD1 and NOD2 and increased expression of immune markers such as CD40 (FC = 302.16), CD68 (FC = 19.33), CD151 (FC = 86.95), and CD19 (FC = 110.19).

Furthermore, expression of cytokines and cytokine receptor genes such as IL4R (FC = 5.87), IL10RB (FC = 79.05), IL2RA (FC = 11.23), and IL6ST (FC = 6.57) increased. However, the expression of genes such as IL1B (FC = −9.73), IL21 (FC = −8.20), IL32 (FC = −3.53), and IL1B (FC = −3.0) decreased. Chemokine coding genes including CXCL2 (FC = −4.03) and CCL3 (FC = −3.20) had decreased expression, whereas increased expression of CCL4 (FC = 5.05) gene was recorded. Modulation of expression of the genes NFKB1A (FC = 45.32), JAK1 (FC = 151.77), MAPK14 (FC = 59.90), MAPKAP1(FC = 13.79), MAPKAPK3(FC = 2.16), MAP2K1 (FC = 33.72), CSF1 (FC = −13.62), WNT1 (FC = −9.88), LRPS (FC = −4.84), LEF1 (FC = 17.88), TCF7 (FC = 142.54), PRIL2E2 (FC = −18.58), NCF1 (FC = 69.87), VANG1L1 (FC = 3.49), and SELB (FC = 16.08) was also observed. Some proinflammatory genes including SELB (FC = 16.08), LY2Z (FC = 78.42), and IL1B were upregulated in expression.

3.2. Pathway analysis

Pathway analysis results generated using the GeneSpring Pathway Analysis software identified 66 bovine pathways significantly (p < .05) associated with CPE exposure (Table 4). These pathways included the Wnt signalling pathway, TLR pathway, inflammation response pathway, prostaglandin synthesis and regulation pathway, and mRNA transcription initiation pathway. Three receptor pathways including TLR, T-cell receptor signalling, and TGF (Transforming growth factor) beta receptor signalling pathways were significantly associated with CPE pretreatment of cow blood. Pathways such as cell cycle, G1-to-S cell cycle control, apoptosis, and Wnt signalling pathways were identified in cow blood following treatment with CPE. Pathways associated with biological processes such as adipogenesis, glycogen metabolism, fatty acid beta-oxidation, and calcium regulation in the cardiac cell were also identified.

3.3. Validation of microarray data

The results of microarray analysis were validated using real-time PCR on 10 selected genes TLR2, TLR4, ILST, SLC11A1, C3, CSF1,
Table 2. List of selected upregulated (25 out of 1716) genes in bovine peripheral blood in response to treatment with phenolic extract from cowpea (Vigna unguiculata) leaves. All GeneBank ID are specific for Bos taurus.

Gene ID	Genes	Description	Fold change	p-value
NM_001077900	STAT1	Signal transducer and activator of transcription 1	5.62	.0021
NM_001205743	VANGL1	VANGL Planar Cell Polarity Protein 1	3.5	.0036
NM_001045868	NFKBIA	Nuclear factor of kappa inhibitor, alpha (NFKBIA)	45.0	.000023
NM_174358	IL2RA	Interleukin 2 receptor, alpha	11.1	.0024
NM_001099186	TCF7	Transcription Factor 7 (T-Cell Specific, HMG-Box)	142.5	.000017
NM_001076918	TLR10	Toll-like receptor 10	4.5	.0018
NM_174197	TLR2	Toll-like receptor 2	18.0	.001
NM_001075142	IL4R	Interleukin 4 receptor	6.0	.0006
NM_001076975	IL10R	Interleukin 10 receptor, beta	79.0	.000027
ENSBTAT00000002395	PRICKLE2	Prickle Homolog 2	60.0	.000021
NM_001066295	IL6ST	Interleukin 6 signal transducer	6.5	.00075
NM_001206495	ILF3	Interleukin enhancer binding factor 3	10.0	.00042
NM_0010105611	CD40	CD40 molecule	302.2	.0000028
NM_001045902	CD68	CD68 molecule	19.3	.00048
NM_001245998	CD19	CD19 molecule	110.2	.000021
NM_001075147	CCL4	Chemokine (C-C motif) ligand 4	5.1	.002
NM_001062634	JAK1	Janus kinase 1	151.7	.0000028
NM_001130752	MAP2K1	Mitogen-activated protein kinase kinase 1	33.7	.0000059
NM_00102174	MAPK14	Mitogen-activated protein kinase kinase 14	59.9	.000033
NM_174119	NCF1	Neutrophyl cytotoxic factor	60.7	.00092
NM_174182	SELL	Selectin	16.1	.000093
NM_174652	SLC11A1	Solute carrier family 11 (Proton coupled metal ion transporter)	19.3	.00013
NM_001081603	MAPKAP1	Mitogen-activated protein kinase associated protein 1	13.7	.002195
BC11137	LRF1	Lymphoid enhancer binding factor 1	17.88	.0184
NB_180999	LYZ2	Lysozyme c-2	78.4	.003203
NM_001035347	CD151	CD151 molecule	86.9	.03168

*Fold change presented are significant, p < .05.

Table 3. List of selected downregulated (15 out of 1454) genes in bovine peripheral blood in response to treatment with a phenolic extract from cowpea (Vigna unguiculata) leaves. All GeneBank ID are specific for Bos taurus.

Gene ID	Genes	Description	Fold change	p-value
NM_001008664	TLR3	Toll-like receptor 3	−5.5	.0022
NM_174198	TLR4	Toll-like receptor 4	−3.9	.0016
NM_001205757	IL10RA	Interleukin 10 receptor alpha	−4	.00017
NM_198832	IL21	Interleukin 21	−8.2	.00043
XM_002703050	IL32	Interleukin 32	−3.5	.0034
NM_174093	IL1B	Interleukin 1, beta	−3.0	.001
NM_001034735	CD74	CD74 molecule, major histocompatibility complex, class II invariant chain (CD74)	−3.13	.00015
NM_174511	CCL3	Chemokine (C-C motif) ligand 3	−3.2	.0022
NM_174299	CCL2	Chemokine(C-X-C motif) ligand 2	−4.0	.00052
NM_001040469	C3	Complement component 3	−4.1	.00081
AY181987	CSF1	macrophage colony-stimulating factor	−3.0	.001
NM_001114191	WNT1	wingless-type MMTV integration site family, member 1	−10.0	.00026
XM_6144220	LRPS	low density lipoprotein receptor-related protein 5	−4.8	.001
ENSBTAT000000029105	PRICKLE2	Prickle Homolog 2	−18.6	.0014
NM_00103477	MAPKAPK3	Mitogen-activated protein kinase-activated protein kinase 3	−2.16	.03275

*Fold change presented are significant, p < .05.

TNFSF4, NFKB1A, CCL3, and STAT1. The expression of TLR2, IL6ST, SLC11A1, NFKB1A, and STAT1 genes was upregulated, whereas TLR4, C3, CCL3, CSF1, and TNFSF4 were downregulated. The gene expression patterns observed in the RT-PCR analysis were consistent with the microarray data as shown in Figure 2. The expression of Wnt signalling pathway genes such as LRPS (FC = 4.00), LEF1 (FC = 1.00), TCF7 (FC = 1.00), and VANGL2 (FC = 16.00) has also been confirmed in a previous study by Adjei-Fremah et al. (2016) and their results were consistent with microarray analysis in this study.

4. Discussion

Polyphenols found in animal feed are beneficial for health (Landete 2012). Forages rich in phenolic constituents have immunoregulatory effects in ruminants and thus are considered useful for enhanced animal health and wellbeing. In the present study, the effect of crude CPEs on the global transcriptional profile in bovine peripheral blood was evaluated using microarray analysis. In vitro studies provide a window to study the possible effect of supplementation with cowpea feed on livestock. Our results demonstrated activation and influence of CPE on transcription in cow blood. Treatment with CPE impacted global gene expression and modulated the expression of genes associated with cellular processes, biological activities, and the immune response. Other studies using bovine blood neutrophils have shown the effect of plant natural product such as citrus-derived oil (Garcia et al. 2015) and tomato polyphenols (Gyenai et al. 2012) on gene expression. The impact of forages rich in polyphenol such as Sericea lespedeza on gene expression has been studied in goats (Worku et al. 2016; Asiamah et al. 2016).

Pathway analysis was performed to provide mechanistic insights into the underlying biology of the effect of CPE on
the bovine transcriptome. Exposure to CPE was associated with activation of multiple cellular pathways in cow blood. These included the ruminant immune response, cellular processes, and biological processes such as adipogenesis, insulin signalling, glycogen metabolism, acid beta-oxidation, and calcium regulation in the cardiac cell pathways.

Increased understanding of the bovine innate immune response is needed to aid in control of inflammatory diseases. In the present study, cowpea polyphenols modulated the expression of innate immune response genes. Plant-derived polyphenols regulate innate immune response gene and inflammation biomarkers (Gyenai et al. 2012). Pattern recognition receptors recognize microbial components referred to as pathogen-associated molecular patterns (PAMPs) to initiate host defense against infection. TLRs link pathogen recognition with induction of innate and adaptive immunity. In cattle, 10 TLRs are expressed which have also been detected in bovine peripheral blood (Menzies & Ingham 2006). The current study identified TLRs are expressed which have also been detected in bovine peripheral blood cells’ exposure to treatment with phenolic extract from cowpea (Vigna unguiculata) leaves.

Table 4. Summary of selected bovine pathways (35 out of 66) associated with cowpea peripheral blood cells’ exposure to treatment with phenolic extract from cowpea (Vigna unguiculata) leaves.

Bovine pathway	p-Value
Bt_Cytosplasmic_Ribosomal_Proteins	0.00000002
Bt_mRNA_processing	0.00000008
Bt_IL-6_Signalling_Pathway	0.00000017
Bt_T_Cell_Receptor_Signalling_Pathway	0.000069
Bt_TGF-beta_Receptor_Signalling_Pathway	0.00014
Bt_Translation_Factors	0.000034
Bt_Insulin_Signalling	0.000087
Bt_TNF-alpha_NF-kB_Signalling_Pathway	0.000071
Bt_Glycolysis_and_Glucogenogenesis	0.00039
Bt_Cell_cycle	0.00075
Bt_Delta-Notch_Signalling_Pathway	0.00065
Bt_Toll-like_receptor_singalling_pathway	0.00048
Bt_Calcium_Regulation_in_the_Cardiac_Cell	0.00001
Bt_IL-2_Signalling_Pathway	0.00048
Bt_MAPK CASCADE_WP1009_71415	0.00079
Bt_Type_Il_interferon_singalling_IFNG	0.00043
Bt_IL-4_Signalling_Pathway	0.00054
Bt_G1_to_S_cell_cycle_control_WP1078_7625	0.0001
Bt_Adipogenesis_WP87_79147	0.0056
Bt_IL-3_Signalling_Pathway	0.0020
Bt_Oxidative_phosphorylation_WP994_63467	0.0082
Bt_TGF_Beta_Signalling_Pathway	0.0010
Bt_Eicosanoid_Synthesis_WP792_78598	0.017
Bt_Notch_Signalling_Pathway	0.0013
Bt_Apoptosis_WP1018_67048	0.061
Bt_Glycogen_Metabolism_WP1073_71850	0.049
Bt_IL-9_Signalling_Pathway	0.039
Bt_IL-5_Signalling_Pathway	0.026
Bt_IL-7_Signalling_Pathway	0.008
Bt_Inflammatory_Response_Pathway	0.016
Bt_Fatty_Acid_Beta_Oxidation_WP1061_79782	0.1
Bt_Eukaryotic_Transcription_Initiation_WP1066_79155	0.23
Bt_Wnt_Signalling_Pathway_NetPath	0.23
Bt_Prostaglandin_Synthesis_and_Regulation_WP995_71430	0.05
Bt_p38_MAPK_Signalling_Pathway	0.05

Figure 2. Validation of expression of selected genes from the microarray data using real-time PCR. Ten differentially expressed genes in bovine peripheral blood in response to treatment with 10 µg/mL of phenolic extracts from cowpea (Vigna unguiculata). Five genes upregulated in expression included TLR2, SLC11A1, NFKB1, STAT1, IL6ST, and genes downregulated in expression were TLR4, C3, CSF1, TNFSF4, and CCL3.

rich in flavonoids have an effect on TLR gene expression and protein expression (Pérez-Cano et al. 2014). Oral treatment of Wistar rats with a hydroalcoholic extract of Achyrocline satureoides, a rich source of quercetin and luteolin, decreased TLR4 expression on neutrophils (Barioni et al. 2013). In a similar study, a cocoa diet, a rich source of procyanidins among other flavonoids, induced an upregulation of TLR2 and TLR7 and downregulation of TLR4 and TLR9 in small intestine tissues (Pérez-Berezo et al. 2012). Exposure to CPE resulted in increased expression of a nuclear factor of kappa inhibitor, alpha (NFKB1A), and MAPK14 and MAP2K1 genes. Thus, recognition of CPE by a TLR-dependent mechanism may be associated with the observed effect.

Cell cycle, cell proliferation, apoptosis pathways, and the Wnt signalling pathway were also responsive to CPE treatment. In cow blood, pretreatment with CPE activated these pathways and modulated the expression of associated genes. These pathways are present and function in normal cow blood as expected. The Wnt signalling pathway functions in cellular processes including cell fate determination, motility, polarity, primary axis formation and organogenesis, and stem cell renewal (Yamaguchi 2001). In cancer studies, the anti-proliferative effect, induction of cell cycle arrests, or apoptosis potential of polyphenols has been identified as chemopreventive mechanisms (Garcia-Lafuente et al. 2009). The observed results indicate that CPE can be used to modulate cell proliferation to control disease associated with inflammation and cancer, warranting further study using cancer cell lines.

In the human diet, cowpea food is considered as low glycemic index (GI) food (Foster-Powell & Miller 1995). Low GI foods reduce post-prandial blood glucose and insulin responses in normal and diabetic patients (Collier et al. 1998). Studies have shown that cowpea food and its polyphenols may have an anti-diabetic effect. The anti-diabetic potential of plant polyphenols (Rizvi et al. 2005) has been suggested to be via inhibition of glucose absorption in the gut or its uptake by peripheral tissues (Matsui et al. 2002). Results from the present study identified insulin signalling and glycogen metabolism pathways to be significantly associated with CPE.
pretreatment of cow blood. Studies have shown that cowpea peptides have the ability to activate insulin signalling in skeletal muscle cells (Barnes et al. 2015). Venâncio et al. (2003) suggested that a protein with similar molecular mass and amino acid sequence homologous to bovine insulin is present in the cowpea plant.

Polyphenols in animal diets may also be capable of modulating genes associated with biological processes that impact animal products such as meat and milk (Waghorn & McNabb 2003; Vasta & Luciano 2011). Phenolic compounds have been shown to influence the expression of genes associated with adipogenesis (Hsu & Yen 2007). In this study, although the effect of CPE was examined in blood, pathway analysis revealed a possible effect of treatment on the adipogenesis pathway. Our study may provide a molecular basis for the effect of cowpea-based diets on marbling in cows. The Wnt antagonist SFRP4 gene expression was observed in response to CPE. Studies by Jeong et al. (2013), associated with SFRP4 gene expression to increased intramuscular fat deposition in the longissimus dorsi muscle. On the other hand, cowpeas use as feed sources have also been reported to promote marbling and is associated with desirable meat quality in taste panels (Schmidt et al. 2013). The wingless pathway has also been shown to affect bovine marbling and adipogenesis (Du et al. 2010). Thus, by looking at the effect of CPE in blood this study provides an approach to help elucidate CPE effect on early gene expression with possible implications for downstream effects on marbling. Much study is therefore required to ascertain the possible connection between cowpea feed, meat quality, and Wnt signalling via in vivo and in vitro studies using mesenchymal cells.

5. Conclusion

Microarray analysis of the effect of CPE on bovine blood shows that exposure to CPE in blood, as may result during supplementation with cowpea in animal feed, has potential benefits for modulation of pathways associated with activation of innate immunity, adipogenesis, and homeostasis. These results contribute to the mechanistic understanding of the molecular impact of polyphenols such as CPE in animal feed and offer avenues for the development of functional feed supplements to promote animal health and product quality.

Acknowledgements

We appreciate the assistance of Corey Burgess, Hamid Ismail, Emmanuel Asiamah, and Kingsley Ekwmehalor in this project. All studies were approved by the Institutional Animal Care and Use committee.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by USDA project NCX-271-5-13-120-1, Modulation of Receptor Cross-Talk for Cattle, Sheep, and Goat Innate Immunity; National Institute of Food and Agriculture.

References

Adjei-Fremah S, Asiamah Ek, Ekwmehalor K, Jackai L, Schimmel K, Worku M. 2016. Modulation of Bovine Wnt signaling pathway genes by cowpea phenolic extract. J Agric Sci. 8:21–35.

Adjei-Fremah S, Jackai LE, Worku M. 2015. Analysis of phenolic content and antioxidant properties of selected cowpea varieties tested in bovine peripheral blood. Am J Anim Vet Sci. 10:235–245.

Afman L, Müller M. 2006. Nutrigenomics: from molecular nutrition to prevention of disease. J Am Dietetic Ass. 106:569–576.

Asiamah Ek, Adjei-Fremah S, Osei B, Ekwmehalor K, Worku M. 2016. An extract of Sericea Lespedeza modulates production of inflammatory markers in pathogen associated molecular pattern (PAMP) activated ruminant blood. J Agric Sci. 8:1–11.

Barioni ED, Santin JR, Machado ID, Rodrigues SFDP, Ferraz-de-Paula V, Wagner TM, Niero R. 2013. Achyrcrineline satureioides (Lam.) DC hydroalcoholic extract inhibits neutrophil functions related to innate host defense. Evid Based Complementary Altern Med. 2013:1–12.

Barnes MJ, Uruakpa FO, Udenigwe CC. 2015. Influence of cowpea (Vigna unguiculata) peptides on insulin resistance. J Nutr Health Food Sci. 3:1–3.

Cai R, Hettiarachchy NS, Jalaluddin M. 2003. High-performance liquid chromatography determination of phenolic constituents in 17 varieties of cowpeas. J Agric Food Chem. 51:1623–1627.

Collier GR, Giudici S, Kalmsky J. 1988. Low glycemic index starchy foods improve glucose control and lower serum cholesterol in diabetic children. Diab Nutr Metab. 1:11–19.

Dawson KA. 2006. Nutrigenomics: feeding the genes for improved fertility. Anim Rep Sci. 96:312–322.

Du M, Yin J, Zhu MJ. 2010. Cellular signaling pathways regulating the initial stage of adipogenesis and marbling of skeletal muscle. Meat Sci. 86:103–109.

Foster-Powell K, Miller JB. 1995. International tables of glycemic index. Am J Clin Nutr. 62:8715–8905.

Garcia M, Elassser TH, Biswas D, Moyes KM. 2015. The effect of citrus-derived oil on bovine blood neutrophil function and gene expression in vitro. J Dairy Sci. 98:918–926.

Garcia-Lafuente A, Guillamón E, Villares A, Rostagno MA, Martínez JA. 2009. Flavonoids as anti-inflammatory agents: implications in cancer and cardiovascular disease. Inflamm Res. 58:537–552.

Gupta P, Singh R, Malhotra S, Boora KS, Singhal HR. 2010. Characterization of seed storage proteins in high protein genotypes of cowpea [Vigna unguiculata (L) Walp.]. Phys Mol Biol Plants. 16:53–58.

Gutierrez-Urlike JA, Romo-Lopez I, Serna-Saldívar SO. 2011. Phenolic composition and mammary cancer cell inhibition of extracts of whole cowpeas (Vigna unguiculata) and its anatomical parts. J Func Foods. 3:290–297.

Gueinai K, Mikashvili N, Ismail H, Worku M. 2012. Influence of heirloom tomato polyphenol extracts on the expression of inflammation genes in bovine. Am J Anim Vet Sci. 7:126–135.

Hall AE. 2004. Breeding for adaptation to drought and heat in cowpea. Eur J Agron. 21:447–454.

Hsu CL, Yen GC. 2007. Effects of flavonoids and phenolic acids on the inhibition of adipogenesis in 3T3-L1 adipocytes. J Agric Food Chem. 55:8404–8410.

Jeong JY, Kim JS, Nguyen TH, Lee HJ, Baik M. 2013. Wnt/β-catenin signaling and adipogenic genes are associated with intramuscular fat content in the Longissimus dorsi muscle of Korean cattle. Anim Gene. 46:627–635.

Karasawa K, Uzuhashi Y, Hirota M, Otani H. 2011. A matured fruit extract of date palm tree (Phoenix dactylifera L.) stimulates the cellular immune system in mice. J Agric Food Chem. 59:11287–11293.

Kandete JM. 2012. Updated knowledge about polyphenols: functions, bioavailability, metabolism, and health. Crit Rev Food Sci Nutr. 52:936–948.

Liu X, Zheng J, Zhou H. 2011. TLRs as pharmacological targets for plant-derived compounds in infectious and inflammatory diseases. Int Immunopharmacol. 11:1451–1456.

Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 25:402–408.

Matsumoto T, Kobayashi M, Hayashida S, Matsumoto K. 2002. Luteolin, a flavone, does not suppress postprandial glucose absorption through an inhibition of α-glucosidase action. Biosci Biotech Biochem. 66:689–692.
Menzies M, Ingham A. 2006. Identification and expression of Toll-like receptors 1–10 in selected bovine and ovine tissues. Vet Immun Immunopath. 109:23–30.

Müller M, Kersten S. 2003. Nutrigenomics: goals and strategies. Nature Rev Gen. 4:315–322.

Ojwang LO, Banerjee N, Noratto GD, Angel-Morales G, Hachibamba T, Awika JM, Mertens-Talcott SU. 2015. Polyphenolic extracts from cowpea (Vigna unguiculata) protect colonic myofibroblasts (CCD18Co cells) from lipopolysaccharide (LPS)-induced inflammation—modulation of microRNA 126. Food Funct. 6:145–153.

Ojwang LO, Dykes L, Awika JM. 2012. Ultra performance liquid chromatography-tandem quadrupole mass spectrometry profiling of anthocyanins and flavonols in cowpea (Vigna unguiculata) of varying genotypes. J Agric Food Chem. 60:3735–3744.

Ojwang LO, Yang L, Dykes L, Awika J. 2013. Proanthocyanidin profile of cowpea (Vigna unguiculata) reveals catechin-O-glucoside as the dominant compound. Food Chem. 139:35–43.

Pérez-Berezo T, Franch A, Castellote C, Castell M, Pérez-Cano FJ. 2012. Mechanisms involved in down-regulation of intestinal IgA in rats by high cocoa intake. J Nutr Biochem. 23:838–844.

Pérez-Cano FJ, Massot-Cladera M, Rodríguez-Lagunas MJ, Castell M. 2014. Flavonoids affect host-microbiota crosstalk through TLR modulation. Antioxidants. 3:649–670.

Rizvi SI, Zaid MA, Anis R, Mishra N. 2005. Protective role of tea catechins against oxidation-induced damage of type 2 diabetic erythrocytes. Clin Exp Pharma Phys. 32:70–75.

Schmidt JR, Miller MC, Andrae JG, Ellis SE, Duckett SK. 2013. Effect of summer forage species grazed during finishing on animal performance, carcass quality, and meat quality. J Anim Sci. 91:4451–4461.

Siddharaju P, Becker K. 2007. The antioxidant and free radical scavenging activities of processed cowpea (Vigna unguiculata (L.) Walp.) seed extracts. Food Chem. 101:10–19.

Surai PF. 2014. Polyphenol compounds in the chicken/animal diet: from the past to the future. J Anim Physiol Anim Nutr. 98:19–31.

Tarapore RS, Siddiqui IA, Mukhtar H. 2012. Modulation of Wnt/β-catenin signaling pathway by bioactive food components. Carcinogenesis. 33:483–491.

Tsao R. 2010. Chemistry and biochemistry of dietary polyphenols. Nutrients. 2:1231–1246.

Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG. 2012. Primer3 – new capabilities and interfaces. Nucl Acids Res. 40:e115.

Vasta V, Luciano G. 2011. The effects of dietary consumption of plants secondary compounds on small ruminants’ products quality. Small Ruminant Res. 101:150–159.

Venâncio TM, Oliveira AEA, Silva LB, Machado OLT, Fernandes KVS, Xavier-Filho J. 2003. A protein with amino acid sequence homology to bovine insulin is present in the legume Vigna unguiculata (cowpea). Braz J Med Biol Res. 36:1–7.

Waghorn GC, McNabb WC. 2003. Consequences of plant phenolic compounds for productivity and health of ruminants. Proc Nutr Soc. 62:383–392.

Worku M, Abdalla A, Adjei-Fremah S, Ismail H. 2016. The impact of diet on expression of genes involved in innate immunity in goat blood. J Agric Sci. 8:1–9.

Worku M, Morris A. 2009. Binding of different forms of lipopolysaccharide and gene expression in bovine blood neutrophils. J Dairy Sci. 92:3185–3193.

Yamaguchi TP. 2001. Heads or tails: Wnts and anterior–posterior patterning. Curr Biol. 11:R713–R724.

Yu L, Wang L, Chen S. 2010. Endogenous toll-like receptor ligands and their biological significance. J Cell Mol Med. 14:2592–2603.

Zia-Ul-Haq M, Shakeel Ahmad, Ryszard Amarowicz, Vincenzo De Feo. 2013. Antioxidant activity of the extracts of some cowpea (Vigna unguiculata (L) Walp.) cultivars commonly consumed in Pakistan. Molecules. 18:2005–2017.

Zia-Ul-Haq MS, Ahmad EC, Mehjabeen SA. 2010. Studies of oil from cowpea (Vigna unguiculata (L) Walp.) cultivars commonly grown in Pakistan. Pak J Botany. 42:1333–1341.