Separating principles below WKL_0

Stephen Flood1* and Henry Towsner2,**

1 Department of Mathematics, Bridgewater State University, 131 Summer Street, Bridgewater, MA 02325, United States of America

2 Department of Mathematics, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104-6395, United States of America

Received 4 January 2015, revised 22 June 2015, accepted 23 June 2015
Published online 28 December 2016

In this paper, we study the Ramsey-type weak König’s Lemma, written $RWKL$, using a technique introduced by Lerman, Solomon, and the second author. This technique uses iterated forcing to construct an ω-model satisfying one principle T_1 but not another T_2. The technique often allows one to translate a “one step” construction (building an instance of T_2 along with a collection of solutions to each computable instance of T_1) into an ω-model separation (building a computable instance of T_2 together with a Turing ideal where T_1 holds but this instance has no solution). We illustrate this translation by separating d-DNR from DNR (reproving a result of Ambos-Spies, Kjos-Hanssen, Lempp, and Slaman), and then apply this technique to separate $RWKL$ from DNR (which has been shown separately by Bienvenu, Patey, and Shafer).

© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

Weak König’s Lemma (WKL_0), one of the “Big 5” systems of Reverse Mathematics, has developed a reputation for being a “robust” system—tweaking the statement tends to either leave its strength unchanged, or end up equivalent to one of a small handful of other systems. This behavior is in sharp contrast to the much-studied Ramsey’s Theorem for Pairs, where each small variant seems to produce some different system.

A few distinct weakenings are known: the weak weak König’s lemma ($WWKL$) is strictly weaker [13], and the existence of diagonally non-recursive functions (DNR) is weaker still [1]. The first author introduced another principle, $RWKL$ [3]1 which is strictly weaker than WKL, and asked how it compares to $WWKL$ and DNR. In Section 4 we show that $RWKL$ is strictly stronger than DNR. (This result has been separately shown by Bienvenu, Patey, and Shafer [2] using very different methods; their method gives the stronger separation, that $WWKL$ does not imply $RWKL$.)

The method we use is based on a technique introduced by Lerman, Solomon, and the second author [7] which uses iterated forcing to construct an ω-model satisfying one principle but not a second; we discuss this method in more detail below. This method has a precursor in the literature—the separation of $WWKL$ from DNR by Ambos-Spies, Kjos-Hanssen, Lempp, and Slaman [1]. In Section 3 we also give another proof of this result, using the same iterated forcing framework. This technique is excessive for this result (cf. the short proof recently given in [5]), but helps illustrate both the method used in the later part of the paper and the clear line of development from previous forcing results, especially [1], and the more recent iterated forcing techniques as in [7, 10, 11].

We also prove two related positive implications. First, since $RWKL$ and $WWKL$ represent distinct weakenings of WKL, it is natural to ask about combining them, into a “$RWWKL$”. We show in Section 5 principle is equivalent to DNR. (This was also shown by Bienvenu, Patey, and Shafer [2] using other methods.)

The relationship between Ramsey’s Theorem for Pairs and WKL_0 was open until Liu’s recent proof [8] that Ramsey’s Theorem for Pairs does not imply WKL_0. One of the motivations for the study of this problem is that all proofs2 of Ramsey’s Theorem for Pairs appear to make use of WKL_0, suggesting that Ramsey’s Theorem for Pairs

* e-mail: stephen.flood@bridgew.edu
** Corresponding author; e-mail: htowsner@math.upenn.edu
1 This principle was originally named $RWKL$. Here we follow the notation of [2].
2 Surprisingly, this even includes the proof in [8].
should imply WKL\textsubscript{0}. The principal RWKL resolves this mystery: both WKL\textsubscript{0} and Ramsey’s Theorem for Pairs imply RWKL, and RWKL suffices to carry out the proof of Ramsey’s Theorem for pairs. EM is a weakening of Ramsey’s Theorem for pairs, and its proof similarly makes use of RWKL; in Section 5 we show that this is indeed necessary: EM also implies RWKL. (This has been independently shown by Bienvenu, Patey, and Shafer [2].)

2 Principles and definitions

Throughout this paper our base theory is always the theory RCA\textsubscript{0} of Reverse Mathematics as described in [12].

We write \(2^\omega\) for the collection of functions from \(\mathbb{N}\) to \(\{0, 1\}\) and \(2^{\omega\omega}\) for the set of functions from some initial segment \([0, n]\) to \([0, 1]\). If \(\sigma \in 2^{\omega\omega}\) we write \(|\sigma|\) as an abbreviation for \(|\text{dom}(\sigma)|\), the length of \(\sigma\).

A tree \(T \subseteq 2^{\omega\omega}\) such that for every \(\sigma \in T\) and every \(n < |\sigma|\), \(\sigma[0, n] \in T\); we write \(|T|\) for the set of \(\Lambda \in 2^{\omega}\) such that for every \(n, \Lambda \upharpoonright n \in T\). We write \(T_n\) for the set of \(\sigma \in T\) with \(|\sigma| = n\) and \(|T| = \max\{|\sigma|\mid \sigma \in T\}\) (and \(|T| = \infty\) if \(T\) contains infinitely many elements). We say \(n = |T|\) if \(T\) is the length of the longest sequence in \(T\). (That we use \(|T|\) for the height of \(T\) will not cause confusion since we will never be interested in the cardinality of \(T\).) We define the measure of \(T\): for each \(n\), \(\mu_n(T) = |T_n|2^{-n}\), and \(\mu(T) = \lim_{n \to \infty} \mu_n(T)\).

We write \(\tau \subseteq \sigma\) if \(\tau = \sigma \upharpoonright [0, n]\) for some \(n < |\sigma|\). We say \(T\) end-extends \(T\) if \(T \subseteq T'\) and whenever \(\sigma \in T' \setminus T\) there is a \(\tau \supset \sigma\) with \(\tau \in T\) and \(|\tau| = |T|\).

Weak König’s Lemma, WKL, states that whenever a tree \(T \subseteq 2^{\omega\omega}\) is infinite, \(|T|\) is non-empty. Weak Weak König’s Lemma, WWWKL, states that whenever \(T \subseteq 2^{\omega\omega}\) has positive measure, \(|T|\) is non-empty—that is, there is an infinite path through \(T\). The Ramseyan Weak König’s Lemma, RWKL, states that whenever a tree \(T \subseteq 2^{\omega\omega}\) is infinite, there exists an infinite set \(H\) so that for every \(n\), there is a \(\sigma \in T_n\) such that \(\sigma \upharpoonright H\) is constant. The Ramseyan Weak Weak König’s Lemma, RWWKL, states that whenever \(T \subseteq 2^{\omega\omega}\) has positive measure, there exists an infinite set \(H\) so that for every \(n\), there is a \(\sigma \in T_n\) such that \(\sigma \upharpoonright H\) is constant. The Diagonal Non-recursive principle, DNR, states that for every set \(X\) there exists a total function \(f\) such for every \(e\) such that \(\Phi^X_e(e) \downarrow\), \(f(e) \neq \Phi^X_e(e)\). When \(d\) is a total function, \(d\)-DNR states that for every set \(X\) there exists a total function \(f\) such for every \(e\) such that \(\Phi^X_e(e) \downarrow\), \(f(e) \neq \Phi^X_e(e)\), and \(f(e) < d(e)\) for all \(e\). It is well known that \(2 - \text{DNR}\) is equivalent to WKL\textsubscript{0}, and by [4], there is a computable \(d\) such that WWWKL implies \(d\)-DNR.

3 The principle DNR does not imply \(d\)-DNR

In this section we give a proof that DNR does not imply WWWKL. This was originally shown in [1], and our proof has the same underlying structure: We show that, for any computable \(d\), DNR does not imply \(d\)-DNR. We show this in an iterative construction, beginning with a well-chosen instance of \(d\)-DNR and successively adding sets resolving instances of DNR in such a way that we never solve our chosen instance of \(d\)-DNR. We include this proof here to illustrate the connection between the iterated forcing method of [7] and the proof in [1], and to introduce some of the ideas we use in the next section.

3.1 Families of extensions

We will work with finite approximations to DNR functions. We write \(\omega^{<\omega}\) for the set of partial functions from \(\omega\) to \(\omega\) with finite domain. We say \(f \in \omega^{<\omega}\) is DNR3 if for every \(e \in \text{dom}(f)\) such that \(\Phi^e_X(e) \downarrow\), \(\Phi^e_X(e) \neq f(e)\). If \(d : \omega \to \omega\), we say \(f\) is DNR3 if \(f\) is DNR3 and \(f(x) < d(x)\) for all \(x \in \text{dom}(f)\).

When we want to extend a DNR3 partial function \(f\) with finite domain, we generally want many extensions of \(f\) to choose from. Specifically, we generally want to fix some \(x \not\in \text{dom}(f)\) and have \(n\) choices for the value of the extension at \(x\). Furthermore, for each such choice, we should have some \(x' \not\in \text{dom}(f) \cup \{x\}\) and \(n\) choices for the value of the extension at \(x'\), and so on. We formalize this with the notion of an \(n\)-branching set of extensions of \(f\) of length \(k\). The length is the number of new values which will be added to the partial function’s domain. The length is only specifically referenced in the recursive definition and a few easy lemmas which are shown by induction on the length.

© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

www.mlq-journal.org
Let \(f \in \omega^{<\omega} \). We define an \(n \)-branching set of extensions of \(f \) of length \(k \) by induction on \(k \):

1. An \(n \)-branching set of extensions of length 1 is a set \(U \) of \(n \) functions so that for some fixed \(x \not\in \text{dom}(f) \), each \(g \in U \) satisfies \(f \subseteq g \) and \(\text{dom}(g) = \text{dom}(f) \cup \{x\} \).
2. If \(U_0 \) is an \(n \)-branching set of extensions of \(f \) of length \(k \) and if \((\forall g \in U_0)[|U_g| = n] \) is an \(n \)-branching set of extensions of \(g \) of length \(1 \), then \(\bigcup_{g \in U_0} U_g \) is an \(n \)-branching set of extensions of \(f \) of length \(k + 1 \).

Our notion of an \(n \)-branching set of extensions is very similar to the notion of an \(n/m \)-good tree from [1].

Lemma 3.1 If \(f \) is DNR\(^3\) and \(U \) is a 2-branching set of extensions of \(f \) then there is a \(g \in U \) which is DNR\(^3\).

Importantly, \(n \)-branching sets of extensions satisfy a pigeonhole principle:

Lemma 3.2 Suppose \(U \) is an \(n + m - 1 \)-branching set of extensions of \(f \) and let \(R \subseteq U \). Then either there is an \(n \)-branching set of extensions \(U_R \subseteq R \) or there is an \(m \)-branching set of extensions \(U_B \subseteq U \setminus R \).

Proof. By induction on the length of \(U \). For convenience, let \(B = U \setminus R \). If \(U \) has length 1, this is immediate—either \(|R| \geq n \), in which case any \(n \) element subset of \(R \) suffices, or \(|R| < n \), so \(|B| \geq m \), and any \(m \) element subset of \(B \) suffices.

Suppose \(U \) has length \(k + 1 \). Then there is some \(U_0 \) which is an \(n + m - 1 \)-branching set of extensions of \(f \) of length \(k \) and for each \(g \in U_0 \) there is some \(U_g \) which is an \(n + m - 1 \)-branching set of extensions of \(g \) of length 1 such that \(U = \bigcup_{g \in U_0} U_g \). By the previous paragraph, for each \(g \in U_0 \) there is some \(U'_g \) where either \(|U'_g| = n \) and \(U'_g \subseteq R \) or \(|U'_g| = m \) and \(U'_g \subseteq B \). Let \(t_g = R \) in the former case and \(t_g = B \) in the latter case. Define \(R_0 \subseteq U_0 \) to be those \(g \in U_0 \) such that \(t_g \). By the inductive hypothesis, either we have an \(n \)-branching \(U_R \subseteq R_0 \), and so \(\bigcup_{g \in U_0} U'_g \) suffices, or an \(m \)-branching \(U_B \subseteq (U_0 \setminus R_0) \), in which case \(\bigcup_{g \in U_B} U'_g \) suffices. \(\square \)

We also need the corresponding iterated version:

Lemma 3.3 Suppose \(U \) is a \(k(n-1)+1 \)-branching set of extensions of \(f \) and \(U = \bigcup_{i<k} U_i \). Then there is some \(U_i \) which contains an \(n \)-branching set of extensions of \(f \).

3.2 Families of completions

If \(f \in \omega^{<\omega} \), a family of completions of \(f \) is a set \(\Xi \subseteq \omega^{<\omega} \) such that

1. if \(g \in \Xi \) then \(f \subseteq g \), and
2. if \(g \in \Xi \) and \(f \subseteq h \subseteq g \) then \(h \in \Xi \).

We say \(\Xi \) blocks at width \(n \) if every \(n \)-branching set of extensions of \(f \) has non-empty intersection with \(\Xi \).

A family of completions \(\Xi \) naturally defines a (possibly empty) collection of total extensions of \(f \), namely those total functions \(f^{\infty} \) such that for all finite \(g \subset f^{\infty} \), \(g \in \Xi \). Note that for any given \(g \subset f^{\infty} \), it is likely that \(g \) is not an initial segment of \(f \).

When the family is blocking, we know that this collection is actually non-empty. Note that there may still be branches in \(\Xi \) which are dead ends— which have no further extensions—but we will see in Lemma 3.4 that blocking families also contain many elements which are not dead ends.

If \(\Xi \) is a family of completions of \(f \) and \(g \in \Xi \), we write \(\Xi\mid g \) for the set of \(h \in \Xi \) such that \(g \subseteq h \).

Lemma 3.4 Let \(\Xi \) be a family of completions of \(f \) which blocks at width \(n \) and let \(U \) be a \(2n \)-branching set of extensions of \(f \). Then there is a 2-branching set \(U^* \subseteq U \cap \Xi \) such that for every \(g \in U^* \), \(\Xi\mid g \) blocks at width \(n \).

Proof. By Lemma 3.2, either there is an \(n \)-branching set of extensions of \(f \), \(U' \subseteq U \cap \Xi \), or there is an \(n \)-branching set of extensions \(U' \subseteq U \) with \(U' \cap \Xi = \emptyset \). Since the latter violates the assumption that \(\Xi \) blocks at width \(n \), we have a \(n \)-branching set of extensions of \(f \), \(U' \subseteq U \cap \Xi \).

Consider those \(g \in U' \) such that there is a \(n \)-branching set of extensions of \(g \), \(U_g \), disjoint from \(\Xi \). These \(g \) cannot contain an \(n \)-branching subset so by the same argument as above, we have \(U^* \subseteq U' \) which is 2-branching and such that whenever \(g \in U^* \), \(\Xi\mid g \) blocks at width \(n \). \(\square \)
Example 3.5 Suppose that Ξ is a family of completions blocking at width 3. By definition, if any U is at least 3-branching, then one element of U is in Ξ. Lemma 3.4 shows that if U is at least 6-branching, then there are two elements $g_0, g_1 \in U$ in Ξ with the stronger property that each $\Xi \downarrow g_i$ is also blocking at width 3.

Note that because each 6-branching set is automatically 3-branching, the property of U being n-branching becomes more restrictive as n grows. Therefore, the property of Ξ blocking at width n becomes less restrictive as n grows. For example, $\Xi = \omega^{\omega\omega}$ is a family of completions of λ blocking at width 1. During the construction, we will be able to thin out Ξ in exchange for permitting it to block at larger n_Ξ.

3.3 The one step case

The full proof requires an iterated forcing argument, but the main idea is conveyed in the “one step” case. In other words, we will solve only a single instance of DNR rather than iteratively creating a model of DNR. In sections 3.4 and 3.5, this is extended to a full separation of DNR and WWKL.

Let d be a computable function. We wish to construct a set V^∞ and a DNR$^V^\infty$ function f^∞ so that no function computable from $V^\infty \oplus f^\infty$ is d-DNR$^V^\infty$. (The existence of such V^∞ and f^∞, with V^∞ computable, is [1, Theorem 2.1], based on essentially the same result from [6]; the argument here is based on theirs.)

As usual, a solution to d-DNR$^V^\infty$ is a d-bounded total function g such that for each e, if $\Phi_{e}^{V^\infty}(e) \downarrow$ then $g(e) \neq \Phi_{e}^{V^\infty}(e)$. This definition is not ideal for the forcing construction. To simplify matters, we will work with another sense of “diagonalization” which is a consequence of d-DNR$^V^\infty$.

Definition 3.6 Let V^∞ be a partial function such that whenever $V^\infty(x)$ is defined, $V^\infty(x) = (i, n)$ with $i < d(x)$; for each x such that $V^\infty(x) = (i, n)$ is defined, we set $V_0^\infty(x) = i$ and $V_1^\infty(x) = n$. We say a total function r diagonalizes against V^∞ if whenever $V_0^\infty(x)$ is defined, $r(x) \neq V_0^\infty(x)$.

Proposition 3.7 There is a computable function s so that any d-DNR$^V^\infty$ function computes a $d \circ s$-bounded total function r which diagonalizes against V^∞.

Proof. By the s-m-n theorem, there is a total computable function s such that for each y and each x, $\Phi_{s(x)}^{V^\infty}(y) = i$ if there is some n s.t. $V^\infty(x) = (i, n)$. Note that $V_0^\infty(x) = \Phi_{s(x)}^{V^\infty}(y)$ for every input y.

Let g be any d-DNR$^V^\infty$ function. Then $g(s(x)) \neq \Phi_{s(x)}^{V^\infty}(s(x))$ whenever the computation halts. Finally, define $r(x) = g(s(x))$ for each x. Then whenever $V_0^\infty(x) = \Phi_{s(x)}^{V^\infty}(s(x))$ is defined, $r(x) \neq V_0^\infty(x)$ as desired. \hfill \Box

For the rest of this section, we assume we have fixed the function $d : \mathbb{N} \to \mathbb{N}$. We write $\hat{d}(x) = d(s(x))$. Therefore it suffices to construct V^∞ and a DNR$^V^\infty$ function f^∞ so that no function computable from $V^\infty \oplus f^\infty$ diagonalizes against V^∞. The second coordinate V_1^∞ will be used in the forcing construction to allow us to define $V_0^\infty(x)$ at any stage without injuring any computations previously performed with oracle V^∞.

To build these sets by forcing, our conditions will need to record some additional information. To build V^∞, we will use a number m to record the use of the longest computation used so far, and a finite set R to record the inputs where we promise that V^∞ will be undefined.

To build f^∞, we will use a function Ξ from finite sets V' to a family of completions $\Xi(V')$ that represents the possible options for $g \geq f$ in the case we extend V to V'. The ability to define different sets of completions for different future V' will be used in the case where we force $\Phi_{e}^{V^\infty \oplus g}(x)$ to diverge or be greater than or equal to $\hat{d}(x)$ for all future V'' and g.

When building f^∞, we will also use a number n_Ξ to record the fixed amount of blocking satisfied by every element of the range of Ξ. As the construction proceeds n_Ξ may increase (e.g., when we force $\Phi_{e}^{V^\infty \oplus f^\infty}$ to diverge or exceed $\hat{d}(x)$), but it will always remain a finite number.
Formally, we will construct the desired pair \(V^\infty, f^\infty \) by forcing with tuples \((m, V, R, f, n^\infty, \Xi)\) where

1. the second element, \(V \), is a finite partial function on \([0, m]\) such that when \(x \in \text{dom}(V) \), \(V(x) = (i, n) \) for some \(i < d(x) \) and \(n \leq m \),
2. the third element, \(R \), is a finite set with \(R \cap \text{dom}(V) = \emptyset \),
3. the fourth element, \(f \), is an element of \(\omega^{\omega} \) which is DNR \(V \) for all \(V' \supseteq V \) with \(V \cap \text{dom}(R) = \emptyset \), and
4. the fifth element, \(\Xi \), is a function so that
 a) when \(V' \supseteq V \) with \(\text{dom}(V') \cap R = \emptyset \), \(\Xi(V') \) is a family of completions of \(f \) blocking at width \(n^\infty \), and
 b) if \(V \subseteq V' \subseteq V'' \) then \(\Xi(V'') \subseteq \Xi(V') \).

When we formalize this more carefully for the full construction, we will need \(\Xi(V) \) to be precisely \(\{ f \mid \forall n \ C(n, f, V) \} \) for some computable relation \(C \). When formalized this way, being a condition is a \(\Pi^0_1 \) statement. Therefore, because failing to be a condition is a \(\Sigma^0_1 \) question, we can assume something is a condition until we find a witness that it isn’t. We will take this further in the iterated forcing, where we will force statements to hold for all conditions by considering each “pre-condition” and either demonstrating that the statement holds, or forcing a witness that the pre-condition is not a condition.

We say \((m', V', R', f', n^\infty, \Xi') \preceq (m, V, R, f, n^\infty, \Xi)\) if

1. both \(V \subseteq V' \) and \(R \subseteq R' \),
2. the bound \(m \leq m' \), and if \(x \in \text{dom}(V') \setminus \text{dom}(V) \) with \(V'(x) = (i, n) \) then \(n > m \),
3. the string \(f \subseteq f' \), and
4. for every \(V'' \supseteq V' \), \(\Xi(V'') \subseteq \Xi(V') \setminus f' \).

The last two conditions together imply that \(f' \in \Xi(V') \). Note that we can avoid the apparent \(\Pi^0_2 \) character of the last clause by only considering extensions which witness the extension syntactically (that is, in an immediate extension, \(\Xi(V'') \) should have the form
\[
\{ f \mid \forall n \ C'(n, f, V'') \land C(n, f, V') \land C_0(n, f, V') \land \cdots \land C_k(n, f, V') \}
\]
where \(C_0 \) through \(C_k \) are the relations corresponding to previous conditions).

Note that \(V' \) and \(R' \) both potentially grow. The set \(V \) is an encoding of a partial function, while \(R \) is the set of places where \(V \) is undefined. As we force, we extend both the places where \(V \) is defined and also the places where \(V \) is forced to be undefined.

Given \(V \), we write \(V_0, V_1 \) for the functions with \(\text{dom}(V_0) = \text{dom}(V_1) = \text{dom}(V) \) so that \(V(x) = (V_0(x), V_1(x)) \) for all \(x \in \text{dom}(V) \). Because the definition of extending conditions requires that \(V_1(x) > m \), extending to a condition with \(V_0(x) = i \) will not not injure any previously referenced computation (which will all have use at most \(m \)). We write \(|V| \) for the smallest \(m \) such that \(\text{dom}(V) \subseteq [0, m] \) and for each \(x \in \text{dom}(V) \), \(V_1(x) \leq m \).

It is convenient to write \(V' \subseteq (m, V, R) \) if \(V \subseteq V', \text{dom}(V') \cap R = \emptyset \), and for each \(x \in \text{dom}(V') \setminus \text{dom}(V) \), \(V'_1(x) > m \). Note that because \(V'(x) > V'_1(x) > m \) for all \(x \in \text{dom}(V') \setminus \text{dom}(V) \), and because \(m \) is the use of the longest computations performed so far, then extending to \(V' \) does not injure any computations which converged with oracle \(V \).

We begin with the trivial condition and will construct an infinite sequence
\[
(0, \emptyset, \emptyset, \emptyset, 1, \omega^\omega) = (m^0, V^0, R^0, f^0, n^\infty_0, \Xi^0) \supseteq \cdots,
\]
and we will let \(V^\infty = \bigcup V^n \) and \(f^\infty = \bigcup f^n \). We speak of a condition \((m, V, R, f, n^\infty, \Xi)\) forcing some statement regarding \(V^\infty \) and \(f^\infty \) if the statement will be true of every \(V^n, f^n \) coming from such a sequence which includes \((m, V, R, f, n^\infty, \Xi)\).

The main requirement we must satisfy is that for each \(e \), we should force that \(\Phi_{e}^{V^n \cup f^n} \) is not a total \(\tilde{d} \)-bounded function which diagonalizes against \(V^n \).

Lemma 3.8 Given any \((m, V, R, f, n^\infty, \Xi)\) and any \(e \in \mathbb{N} \), there is an \(x \) and a \((m', V', R', f', n^\infty', \Xi') \preceq (m, V, R, f, n^\infty, \Xi)\) such that either
(1) we have \(\Phi_v^{\emptyset \emptyset}(x) = V_0(x) \), or
(2) whenever \(V'' \preceq (m', V'', R') \) and \(g \in \mathcal{Z}(V'') \), if \(\Phi_v^{\emptyset \emptyset}(x) \downarrow \) then \(\Phi_{v'}^{\emptyset \emptyset}(x) \geq \tilde{d}(x) \).

Proof. Let \((m, V, R, f, n_\mathbb{Z}, \mathcal{Z})\) be given; choose a value \(x \notin R \cup \text{dom}(V) \cup [0, m] \). We ask:

Is there a \(V' \preceq (m, V, R \cup \{x\}) \) and a \(\tilde{d}(x)(2n_\mathbb{Z} - 1) + 1 \)-branching set of extensions \(U \) of \(f \) so that for every \(g \in U \), \(\Phi_v^{\emptyset \emptyset}(x) \downarrow \) and \(\Phi_{v'}^{\emptyset \emptyset}(x) < \tilde{d}(x) \)?

Suppose not. Then we can restrict to a family of completions \(\mathcal{Z}' \) which will allow us to force the second case. For each \(V' \preceq (m, V, R \cup \{x\}) \), we define \(\mathcal{Z}'(V') = \{ g \in \mathcal{Z}(V') | \Phi_v^{\emptyset \emptyset}(x) \uparrow \text{ or } \Phi_{v'}^{\emptyset \emptyset}(x) \geq \tilde{d}(x) \} \). By assumption, every \(\tilde{d}(x)(2n_\mathbb{Z} - 1) + 1 \)-branching set of extensions \(U \) of \(f \) contains an element of \(\mathcal{Z}'(V') \), so \(\mathcal{Z}'(V') \) satisfies the definition of blocking at width \(\tilde{d}(x)(2n_\mathbb{Z} - 1) + 1 \). We now extend to the condition

\[
(x, V, R \cup \{x\}, f, \tilde{d}(x)(2n_\mathbb{Z} - 1) + 1, \mathcal{Z}') \preceq (m, V, R, f, n_\mathbb{Z}, \mathcal{Z}).
\]

Note that for any \(V'' \preceq (x, V, R \cup \{x\}) \) and any \(g \in \mathcal{Z}(V'') \), either \(\Phi_v^{\emptyset \emptyset}(x) \uparrow \) or \(\Phi_{v'}^{\emptyset \emptyset}(x) \geq \tilde{d}(x) \), so the second case is forced.

Suppose instead that we find such a \(V' \) and such a \(U \). We color \(g \in U \) by \(i = \tilde{d}(x) \) based on the value of \(\Phi_v^{\emptyset \emptyset}(x) \). There is a \(2n_\mathbb{Z} \)-branching \(U' \subseteq U \) and an \(i < \tilde{d}(x) \) so that for each \(g \in U' \), \(\Phi_v^{\emptyset \emptyset}(x) = i \). Now we consider the extension \(V'' = V' \cup \{(x, i, v)\} \) where \(v \) is sufficiently large (larger than any element of the domain or range of \(V' \), and larger than \(m \)) and let \(m' \) be larger than any value in \(V'' \), so \((m', V'', R) \) is a valid partial condition.

All that remains is picking a particular \(g \in U' \) to extend \(f \) to. This requires a bit of care, because it could be that there is some \(g \in U' \cap \mathcal{Z}(V'') \), but for some \(V'' \preceq (m', V'', R) \), \(g \notin \mathcal{Z}(V'') \). Suppose there were such a \(g \); then we could replace \(V'' \) with this \(V'^* \), changing \(m' \) accordingly. Each time we do this we cause \(|U' \cap \mathcal{Z}(V'')| \) to decrease. However, the level of blocking of \(\mathcal{Z} \) and the branching of \(U' \) remains constant, so we do this only finitely many times.

Therefore, without loss of generality, we may assume that this never happens—that for every \(V^* \preceq (m', V'', R) \), \(U \cap \mathcal{Z}(V'') = U \cap \mathcal{Z}(V^*) \).

Similarly, we know from Lemma 3.4 that for each \(V^* \preceq (m', V'', R) \) there is some \(g \in U' \) such that \(\mathcal{Z}[g] \) blocks at width \(n_\mathbb{Z} \). Again, however, the choice of \(g \) could depend upon \(V^* \). We may use the same process: if there is a \(g \in U' \) and a \(V^* \), we replace \(V'' \) with \(V'^* \); each time we do this, the set of \(g \) blocking at width \(n_\mathbb{Z} \) decreases, so without loss of generality, we may assume that for every \(V^* \preceq (m', V'', R) \), \(\mathcal{Z}(V'') \mid |g| \) blocks at width \(n_\mathbb{Z} \) then \(\mathcal{Z}(V^*) \) blocks as well.

By Lemma 3.4, we obtain a \(2 \)-branching set \(U^* \subseteq U' \cap \mathcal{Z}(V'') \) so that for every \(g \in U^* \), \(\mathcal{Z}[g] \) blocks at width \(n_\mathbb{Z} \). We now show, by induction on the length of \(U^* \), that there is a \(V^* \preceq (m', V'', R) \) and a \(g \in U^* \) so that whenever \(V'' \preceq (m', V'', R) \), \(g \) is \(\text{DNR}^{\emptyset \emptyset} \).

If the length of \(U^* \) is \(1 \), there is an \(x \notin \text{dom}(f) \) so that for each \(g \in U^* \), \(\text{dom}(g) = \text{dom}(f) \cup \{x\} \). If there is any \(V^* \preceq (m', V'', R) \) such that \(\Phi_v^{\emptyset \emptyset}(x) \downarrow \), we choose this \(V^* \) and we may choose \(g \) to be whichever element of \(U^* \) is \(\text{DNR}^{\emptyset \emptyset} \). If there is no such \(V^* \), we may take \(V^* = V_0 \) and choose any element of \(U^* \).

Suppose the length of \(U^* \) is \(k + 1 \); then there is an \(2 \)-branching set \(U_0 \) of extensions of \(f \) of length \(k \) and 1-branching sets \(U_g \) so that \(U^* = \bigcup_{g \in U_0} U_g \). By the inductive hypothesis, we pass to \(V_0 \preceq V'' \) and choose a \(g \in U_0 \) so that whenever \(V'' \preceq (m_0^*, V_0^*, R) \), \(g \) is \(\text{DNR}^{\emptyset \emptyset} \). We then apply the same argument as in the length 1 case to \(U_g \).

We then pass to the condition \((m^*, V^*, R, g, n_\mathbb{Z}, \mathcal{Z}[g]) \); our choice of \(V^* \) and \(g \) ensures that this is a requirement. We have \(\Phi_v^{\emptyset \emptyset}(x) = i = V_0(x) \), so we have forced that \(\Phi_{v'}^{\emptyset \emptyset}(x) \) does not diagonalize against \(V^* \).

We must also show that we can force \(f \) to be total; this is more easily done: given a condition \((m, V, R, f, n_\mathbb{Z}, \mathcal{Z})\) and an \(x \notin \text{dom}(f) \), we may assume (by extending \(V \) or \(R \) if needed) that \(x \in \text{dom}(V) \cup R \). Consider the extensions of \(f \) of the form \(f_i = f \cup \{(x, i)\} \) where \(i \neq V_0(x) \) (possibly because \(V_0(x) \uparrow \)); there are infinitely many such extensions, so we may choose \(n_\mathbb{Z} \) of them, and there must be some \(f_i \) in \(\mathcal{Z}(V) \). We take the extension

3 For example, if we forced divergence at a previous stage, strings might leave \(\mathcal{Z}(V'') \) once \(V'' \) is long enough to cause the relevant computation to converge.
We will next adapt this “one step” construction to produce an \(\omega \)-model separation. Towards this end, we will separate Lemma 3.8 into two parts: one concerned with extending the function \(f \) (the iterated forcing), and one concerned with extending the set \(V \) (the ground forcing).

Remark 3.9 (Ground forcing) In both the one step forcing and the ground forcing, we ask “what can I force the strings \(f \) to do as oracles” and then we define \(V_0(x) \) accordingly. Because of this similarity, the first step of Lemma 3.8 where we break into cases and find \(V' \) and \(U \) is essentially repeated in the ground-forcing Lemma 3.25. The two main changes are that (1) the particular requirement concerning \(d \)-DNR\(^V \) is replaced with the more general requirement \(K \), and (2) we will merely be guaranteeing density of \(K \) rather than actually selecting \(g \).

Remark 3.10 (Avoiding dead ends when forcing \(g \)) Note that before we chose which \(g \in U' \) that we extended \(f \) to, we needed to avoid potential dead ends. This means that whenever it was possible, we extended \(V \) to \(V^+ \) so that \((g, n, z, \Xi) \) was not a valid condition. We were able to use the constant amount of blocking in \(\Xi \) to verify that this process had to stop: we could not prevent all the \(g \) from being valid choices. This idea is incorporated into the Ground Forcing Lemma 3.25.

In the iteration forcing, we are given a fixed \(V_0 \), and we ‘hope’ that we have enough density of strings in \(\Xi \) to permit us to force \(f \) to do the right thing as an oracle. Thus, although ideas and themes from Lemma 3.8 do appear in the iteration forcing Lemma 3.17, there is a much weaker resemblance.

Remark 3.11 (Iteration forcing) In the iteration forcing, we will introduce generalized “requirements” which will consist of a family of strings that have/give the “correct” response to the given values of \(V_0(x) \). We will say that a requirement is “uniformly dense” if it can either be strongly avoided (we will call these requirements “not essential”) or if it is sufficiently blocking so that there are enough strings in \(\Xi \) so that we can satisfy the requirement and continue the construction.

The main work of the iterated construction is to determine the amount of density required for us to satisfy conditions \(K^X \) and to show that there are already specific conditions \(R^X \) which, when satisfied by a total function \(f \), guarantee that the general conditions \(K^{X \oplus f} \) remain sufficiently dense.

Remark 3.12 (Essential requirements) In the above construction, we used the fact that either you can define \(V_0(x) \) by finding a \(\hat{d}(x) (2n - 1) + 1 \)-branching set of strings yielding convergent computations that are not too big, or you can restrict yourself to strings that yield computations that diverge or are too big. In the iteration construction, this combinatorial idea becomes a dichotomy; the requirements satisfying the convergent case will be called “essential”.

3.4 Forcing solutions of DNR

We now turn to the general iterated forcing. Our setting in this subsection is that we have already constructed \(X = V^\infty \oplus f_0^\infty \oplus \cdots \oplus f_m^\infty \). The ground forcing in the next section will show how to build \(V^\infty \). Without loss of generality, we may assume that functions \(f_i^\infty \) have already been built by iterating the construction in this section.

We now wish to construct a DNR\(^X \) function \(f^\infty \) such that no \(X \oplus f^\infty \)-computable function “diagonalizes against \(V^\infty \)” (recall Definition 3.6). Because \(V^\infty \leq_T X \oplus f^\infty \), it follows that that no \(X \oplus f^\infty \)-computable function solves \(d \)-DNR\(^V^\infty \).

We will construct \(f^\infty \) using Mathias forcing. As in the one step construction, we will write \(V_0(x) \) to represent the Turing computation with oracle \(V^\infty \) that outputs \(i \) if \(V^\infty(x) = (i, n) \) for some \(n \in \mathbb{N} \).

As in the one step construction, it suffices to construct a DNR\(^X \) function \(f^\infty \) such that for each \(e \), either \(\Phi^X_{e \oplus f^\infty} \) is not total or \(d \)-bounded, or such that \(\Phi^X_{e \oplus f^\infty}(x) \downarrow = i = V_0(x) \) for some \(x \) and some \(i < \hat{d}(x) \). Notice that the set \(V^\infty \), which we will build once in the ground forcing section, will remain the single witness that \(X \oplus f^\infty \) does not compute a solution to \(d \)-DNR\(^V^\infty \) no matter how many times we iterate this construction to add new functions to \(X \).
Definition 3.13 We define \mathbb{P}^X to be the set of triples (f, n, Ξ) such that f is DNRX and Ξ is a family of extensions of f which blocks at width n. We say $(f', n', 2n)$ $\preceq (f, n, \Xi)$ if $\Xi \subseteq \Xi'$.

We say that a pair of Σ^0_1 families of strings

$$K^X_-(x) = \{ f \in \omega^{<\omega} | \exists y R^X_-(x, y, f) \} = \{ f \in \omega^{<\omega} | \exists \Phi_{x,y}^1(x, y, f) \}$$

$$K^X_+(x, i) = \{ f \in \omega^{<\omega} | \exists y R^X_+(x, y, i, f) \} = \{ f \in \omega^{<\omega} | \exists \Phi_{x,i}^1(x, y, i, f) \}$$

is a requirement if R^X_- and R^X_+ are X-computable relations such that

- if $R^X_-(x, y, f)$, there is an $i \leq \hat{d}(x)$ such that $R^X_+(x, i, y, f)$.

In particular, requirements satisfy that $K^X_-(x) \subseteq \bigcup_{i \leq \hat{d}(x)} K^X_+(x, i)$.

We also define

$$K^X_+(x) = \begin{cases} K^X_+(x, i) & \text{if } V_0(x) = i < \hat{d}(x) \\ K^X_+(x, \hat{d}(x)) & \text{if } V_0(x) \geq \hat{d}(x) \text{ or } V_0(x) \uparrow. \end{cases}$$

In order to force a requirement “negatively”, we must arrange that all extensions avoid $K^X_-(x)$ while in order to force a requirement “positively” we must place an extension in $K^X_+(x)$.

Note that we also refer to K^X_+, with no parameter, when we want to discuss the requirement itself, rather than the set of conditions it picks out.

We write $K^X_{\alpha, e}$ for the potential requirement where R^X_- is $\Phi_{\alpha, e}^1$, R^X_+ is $\Phi_{\alpha, e}^1$.

Example 3.14 The main example is the diagonalization requirement (whose definition depends on the function d).

1. The family of strings $D^X_{\alpha, d}(x)$ consists of those f such that $\Phi_{\alpha, d}^1(f) \downarrow$.
2. For $i < \hat{d}(x)$, $D^X_{\alpha, d}(x, i)$ is the set of f such that $\Phi_{\alpha, d}^1(f) \downarrow = i$.
3. If $i = \hat{d}(x)$, $D^X_{\alpha, d}(x, \hat{d}(x))$ is the set of f such that $\Phi_{\alpha, d}^1(f) \downarrow \geq \hat{d}(x)$.
4. The family of strings $D^X_{\alpha, d}(x) = \begin{cases} D^X_{\alpha, d}(x, i) & \text{if } V_0(x) \downarrow = i < \hat{d}(x) \\ D^X_{\alpha, d}(x, \hat{d}(x)) & \text{if } V_0(x) \geq \hat{d}(x) \text{ or } V_0(x) \uparrow. \end{cases}$

Therefore, if $V_0(x) \downarrow = i < \hat{d}(x)$, then $D^X_{\alpha, d}(x)$ is the set of f such that $\Phi_{\alpha, d}^1(f) = i$. Otherwise, when $V_0(x)$ diverges or is at least $\hat{d}(x)$, then $D^X_{\alpha, d}(x)$ is the set of f such that $\Phi_{\alpha, d}^1(f) \geq \hat{d}(x)$.

We say that a total function $f^\infty : \omega \to \omega$ settles K^X if there is some x such that either there is a finite $f \subset f^\infty$ with $f \in K^X_+(x)$, or for every finite $f \subset f^\infty$, $f \notin K^X_-(x)$. (Note that f need not be an initial segment of f^∞).

Our eventual goal is to build f^∞ to settle all “essential” requirements K^X (as defined in Definition 3.16). First, we verify that settling each D^X_e is enough to avoid solving d-DNRY.

Lemma 3.15 Suppose f^∞ settles $D^X_{e, d}$ for every e. Then $X \oplus f^\infty$ does not compute any d-DNRY function.

Proof. It suffices to show that for each e, $\Phi_e^{X \oplus f}$ does not diagonalize against V^∞. Since f^∞ settles $D^X_{e, d}$, we let x be as in the definition of “settles,” and we consider the two cases.

If there is some $f \subset f^\infty$ with $f \in D^X_{e, d}(x)$, we must have $\Phi_e^{X \oplus f} \downarrow$ at some stage t. Examining the definition of $D^X_{e, d}$, we see there are two subcases. If $V_0(x)$ is at least $\hat{d}(x)$, or diverges, then $\Phi_e^{X \oplus f} \geq \hat{d}(x)$. If $V_0(x) < \hat{d}(x)$, then $\Phi_e^{X \oplus f} = V_0(x)$. Either way, $\Phi_e^{X \oplus f}$ is either not \hat{d} bounded or it does not diagonalize against $V_0(x)$.

On the other hand if every $f \subset f^\infty$ avoids $K^X_-(x)$, it must be that $\Phi_e^{X \oplus f^\infty} \uparrow$, so $\Phi_e^{X \oplus f^\infty}$ is not total. □

In the one step construction, we saw that if you could not find a $\hat{d}(x)(2n - 1) + 1$-branching set of one strings to force one outcome, then we can restrict to conditions that force the other outcome. A similar idea works if there is any limit on the amount of branching in the sets which yield the first outcome. This suggests the following definition of which requirements “essential.”
Definition 3.16 The requirement \mathcal{K}^X is essential below $(f, n_\mathbb{Z}, \Xi)$ if for every x and every m there is an m-branching set of extensions of f, $U \subseteq \mathcal{K}^{X,-}(x)$. The requirement \mathcal{K}^X is uniformly dense if whenever \mathcal{K}^X is essential below $(f, n_\mathbb{Z}, \Xi)$, there is some x and some $2n_\mathbb{Z}$-branching set of extensions of f, $U \subseteq \mathcal{K}^{X,+}(x)$.

Note that saying that $U \subseteq \mathcal{K}^{X,+}(x)$ is stronger than “there is some i such that $U \subseteq \mathcal{K}^{X,+}(x, i)$,” because the correct i depends on $V_0(x)$.

Intuitively, “\mathcal{K}^X is uniformly dense below q” means “whenever you have many options to extend q so that $\mathcal{K}^{X,-}$ holds, you will have one extension which allows you to force the stronger condition $\mathcal{K}^{X,+}$ to hold.” In Theorem 3.20, we will show that uniform density of a requirement \mathcal{K}^X allows you to force either $\neg \mathcal{K}^{X,-}$ or $\mathcal{K}^{X,+}$.

Lemma 3.17 Suppose \mathcal{K}^X is uniformly dense. Then for every $(f, n_\mathbb{Z}, \Xi)$, there is an $(f', n'_\mathbb{Z}, \Xi') \not\subseteq (f, n_\mathbb{Z}, \Xi)$ and an x such that either $f' \in \mathcal{K}^{X,-}(x)$ or $\Xi' \cap \mathcal{K}^{X,-}(x) = \emptyset$.

Proof. If \mathcal{K}^X is not essential below $(f, n_\mathbb{Z}, \Xi)$ then for some x and some m, whenever U is an m-branching set of extensions of f, there is a $g \in U$ with $g \not\in \mathcal{K}^{X,-}(x)$. Let $\Xi' \subseteq \Xi$ consist of those g such that $g \in \Xi$ and $g \not\in \mathcal{K}^{X,-}(x)$. Then by Lemma 3.2 and the assumption, any $m + n_\mathbb{Z} - 1$-branching set contains an $n_\mathbb{Z}$-branching set disjoint from $\mathcal{K}^{X,-}(x)$. Because Ξ is blocking at width $n_\mathbb{Z}$, it follows that Ξ' is blocking at width $m + n_\mathbb{Z} - 1$. In particular, $(f, m + n_\mathbb{Z} - 1, \Xi') \not\subseteq (f, n_\mathbb{Z}, \Xi)$ satisfies the second case.

Otherwise, \mathcal{K}^X is essential below $(f, n_\mathbb{Z}, \Xi)$, so by uniform density, we may find some particular x and some $2n_\mathbb{Z}$-branching set of extensions $f, U \subseteq \mathcal{K}^{X,+}(x)$. By Lemma 3.4 we find a 2-branching set of $g \in U \cap \mathcal{K}^{X,+}(x)$ such that $\Xi|g$ blocks at width $n_\mathbb{Z}$, and by Lemma 3.1 we may find a g so that $(g, n_\mathbb{Z}, \Xi|g)$ is a condition below $(f, n_\mathbb{Z}, \Xi)$.

□

We need requirements which ensure the totality of f^ω:

(1) The family of strings $\mathcal{T}^{X,-}_e(x) = \omega e^{\omega}$, and

(2) The family of strings $\mathcal{T}^{X,+}_e(x, i)$ consists of those f such that $f(e)$ is defined.

Lemma 3.18 The requirement \mathcal{T}^X_e is uniformly dense.

Proof. The requirement \mathcal{T}^X_e is trivially essential below any $(f, n_\mathbb{Z}, \Xi)$. If $e \in \text{dom}(f)$ then any $2n_\mathbb{Z}$-branching set of extensions of f suffices. If $e \not\in \text{dom}(f)$, we may take the extensions $f' \cup \{(e, i)\}$ where $i < 2n_\mathbb{Z}$.□

Lemma 3.19 Suppose f^ω settles \mathcal{T}^X_e for every e. Then f^ω is total.

Proof. For each e, since every $f \subseteq f^\omega$ belongs to every $\mathcal{T}^{X,-}_e(x)$, there must be some x and some finite $f \subseteq f^\omega$ so that $f \in \mathcal{T}^{X,-}_e(x)$. Therefore $f(e)$ is defined, so $f^\omega(e)$ is defined.

Theorem 3.20 Fix any countable collection of uniformly dense requirements \mathcal{K}^X_k. Then there is a DNRX function f^ω settling every \mathcal{K}^X_k.

Proof. Enumerate the uniformly dense requirements $\mathcal{K}^X_0, \mathcal{K}^X_1, \cdots$. Construct a sequence of conditions $(\emptyset, 1, \omega^{\omega}) = (f^0, n^0_\mathbb{Z}, \Xi^0) \supseteq (f^1, n^1_\mathbb{Z}, \Xi^1) \supseteq \cdots$ by repeatedly applying the previous lemma so that for each k, there is an x such that either $f^k \in \mathcal{K}^{X,-}_k(x)$ or $\Xi^k \cap \mathcal{K}^{X,-}_k(x) = \emptyset$. Then letting $f^\omega = \bigcup_k f^k$, f^ω is DNRX by the definition of \mathcal{P}^X and settles each \mathcal{K}^X_k. Since f^ω settles each \mathcal{T}^X_e, f^ω is total. □

In summary, we have seen that settling each D^X ensures we avoid solving d-DNRV, and that all \mathcal{K}^X being uniformly dense will allow us to settle each \mathcal{K}^X. In the ground forcing construction, we will build V^ω so that all the requirements \mathcal{K}^V are uniformly dense.

We next define requirements which, when satisfied, will ensure that requirements will remain uniformly dense with respect to $X \oplus f^\omega$. This guarantees that the construction can be iterated to form a Turing ideal.

Definition 3.21 Let e_0, e_1 be indices and let $q = (g, m_{\Pi_1}, \Pi)$ be a triple. Then $R^{X,-}_{e_0, e_1, q}(x)$ is the set of $f \in 2^{\omega_x}$ such that either

(1) the string f forces that $k^{X,\oplus}_0 f$ is not a requirement, i.e.,

$$\exists x, y [\Phi^X_{e_0}(x, y, f) \land (\forall i \leq d(x)) \neg \Phi^X_{e_1}(x, y, i, f)],$$

or

www.mlq-journal.org
(2) the string \(f \) forces that \(q \) is not a condition, or
(3) there is a \((\hat{d}(x) + 1)(2m_\Pi - 1) + 1\)-branching set of extensions of \(g \) contained in \(\mathcal{K}_{e_1}^{X \oplus f,-}(x) \).

The family of strings \(\mathcal{R}^X_{e_0, e_1, q}(x, i) \) is composed of those \(f \) such that either

(1) the string \(f \) forces that \(\mathcal{K}_{e_0, e_1}^{X \oplus f} \) is not a requirement, or
(2) the string \(f \) forces that \(q \) is not a condition, or
(3) there is a \(2m_\Pi \)-branching set of extensions of \(g \) contained in

\[\mathcal{K}_{e_1}^{X \oplus f,+}(x, i). \]

Finally, we define

\[\mathcal{R}^X_{e_0, e_1, q}(x) = \begin{cases}
\mathcal{R}^X_{e_0, e_1, q}(x, i) & \text{if } V_0(x) = i < \hat{d}(x) \\
\mathcal{R}^X_{e_0, e_1, q}(x, \hat{d}(x)) & \text{if } V_0(x) \geq \hat{d}(x) \text{ or } V_0(x) \uparrow.
\end{cases} \]

Note that the definition of \(\mathcal{R}^X \) references the amount of branching used in the one step construction. In the one step construction, we worked inside a \(\hat{d}(x)(2m_\Xi - 1) + 1 \)-branching set to obtain \(2n_\Xi \) branching extensions which forced some computational outcome. Now, we will use the same combinatorial property to a more abstract version of the same idea: that if \(f \in \mathcal{R}^X \), then \(f \in \mathcal{R}^X, (x, i) \) for some \(i \). That is, it shows that the \(\mathcal{R}^X \) are requirements.

Lemma 3.22 The pair \(\mathcal{R}^X_{e_0, e_1, q} \) is a requirement.

Proof. Clearly, \(\mathcal{R}^X_{e_0, e_1, q} \) consists of a pair of \(\Sigma_0^1 \) families of strings. We must show that if \(\Phi_{e_0, e_1, q}^X(x, y, f) \) is true, then there is some \(i \leq \hat{d}(x) \) such that \(\Phi_{e_1, q}(x, y, i, f) \) is true.

Suppose \(f \in \mathcal{R}^X_{e_0, e_1, q}(x) \) holds with existential witness \(y \). We must show that there is some \(i \leq \hat{d}(x) \) such that \(f \in \mathcal{R}^X_{e_0, e_1, q}(x, i) \) with the same existential witness \(y \). If either of the first two cases hold, we trivially have \(f \in \mathcal{R}^X_{e_0, e_1, q}(x, i) \) for all \(i \) as well, and we are done.

Suppose \(f \) is not in the first two cases, so there is a \((\hat{d}(x) + 1)(2m_\Pi - 1) + 1\)-branching set of extensions of \(g \) contained in \(\mathcal{K}_{e_0, e_1}^{X \oplus f,-}(x) \). Since we are not in the first case, \(f \) forces that \(\mathcal{K}_{e_0, e_1}^{X \oplus f,-}(x) \) is essential below \(\mathcal{K}_{e_0, e_1}^{X \oplus f,+}(x, i) \) (with the same existential witness \(y \)). Therefore, by Lemma 3.3, there is an \(i \leq \hat{d}(x) \) and a \(2m_\Pi \)-branching set of extensions of \(g \) contained in \(\mathcal{K}_{e_0, e_1}^{X \oplus f,+}(x, i) \). Consequently, \(f \in \mathcal{R}^X_{e_0, e_1, q}(x, i) \) \(\cap \mathcal{R}^X_{e_0, e_1, q}(x, i) \).

Lemma 3.23 If \(f \) settles \(\mathcal{R}^X_{e_0, e_1, q} \) for every \(q \) and if \(\mathcal{K}_{e_0, e_1}^{X \oplus f,\infty} \) is a requirement, then \(\mathcal{K}_{e_0, e_1}^{X \oplus f,\infty} \) is uniformly dense.

Proof. Let \(q \) be a condition and suppose \(\mathcal{K}_{e_0, e_1}^{X \oplus f,\infty} \) is essential below \(q = (g, m_\Pi, \Pi) \). We must show that there is a \(2m_\Pi \)-branching set of extensions \(g \) contained in \(\mathcal{K}_{e_1}^{X \oplus f,+}(x) \).

Because no \(f \subset f^\infty \) can force \(q \) to be a non-condition or \(\mathcal{K}_{e_0, e_1}^{X \oplus f} \) to be a non-requirement, the definitions of \(\mathcal{R}^X_{e_0, e_1, q}(x, i) \) and \(\mathcal{R}^X_{e_0, e_1, q}(x, \hat{d}(x)) \) show that we have the desired \(2m_\Pi \)-branching set of extensions \(g \) which is contained in \(\mathcal{K}_{e_1}^{X \oplus f,+}(x) \) if and only if \(f \in \mathcal{R}^X_{e_0, e_1, q}(x) \). It therefore suffices to find some \(f \subset f^\infty \) such that \(f \in \mathcal{R}^X_{e_0, e_1, q}(x) \).

Fix some \(x \) witnessing that \(f^\infty \) settles \(\mathcal{R}^X_{e_0, e_1, q} \). Then either there is a finite \(f \subset f^\infty \) with \(f \in \mathcal{R}^X_{e_0, e_1, q}(x) \) and we are done, or for every finite \(f \subset f^\infty \), \(f \notin \mathcal{R}^X_{e_0, e_1, q}(x) \). We will show the first case holds.

By the definition of \(\mathcal{K}_{e_0, e_1}^{X \oplus f,\infty} \) being essential below \(q \), we know that for every \(x \) there is a \((\hat{d}(x) + 1)(2m_\Pi - 1) + 1\)-branching set of extensions of \(g \) in \(\mathcal{K}_{e_0}^{X \oplus f,\infty,-}(x) \). Because \(\mathcal{K} \) has an existential definition, there is a finite \(f \subset f^\infty \) such that there is a \((\hat{d}(x) + 1)(2m_\Pi - 1) + 1\)-branching set of extensions of \(g \) in \(\mathcal{K}_{e_0}^{X \oplus f,-}(x) \). By the definition of \(\mathcal{R}^X_{e_0, e_1, q}(x) \), we see that \(f \in \mathcal{R}^X_{e_0, e_1, q}(x) \).

Theorem 3.24 Suppose \(V^\infty \preceq_T X \) are such that every requirement \(\mathcal{K}_{e_0, e_1}^{X \oplus f} \) is uniformly dense. Then there is a \(\text{DNR}^X \) function \(f^\infty \) such that no \(\Phi_{e_0, e_1}^{X \oplus f} \) is \(d \)-\(\text{DNR}^V \) and every requirement \(\mathcal{K}_{e_0, e_1}^{X \oplus f,\infty} \) is uniformly dense.
3.5 Ground forcing

Fix a computable function \(d \). We now construct a set which can serve as the initial \(X = V^\infty \) in the application of the forcing above. The main goal is to ensure that all requirements \(\mathcal{K}_{V^\infty} \) are uniformly dense. More intuitively, our goal is to construct \(V^\infty \) in such a way as to obstruct the construction of a \(d \)-DNR\(^{-}\) set.

As before, we do this by making \(V^\infty \) a partial function mapping values \(x \) to pairs \((i, n) \) with \(i < d(x) \). Let \(V_0^\infty \) be the partial \(V^\infty \) computable function given by \(V_0^\infty(x) = i \) iff \((\exists n)(V^\infty(x) = (i, n)) \). We will want to refer to reference computations from certain requirements \(\mathcal{K}_{V_0^\infty} \) when selecting the value of \(V_0^\infty \). To avoid circularity, we will define \(V^\infty(x) = (i, n) \), where \(n \) is larger than the use of any computation performed so far, to ensure that our definition of \(V_0^\infty \) does not change the relevant computations involving \(\mathcal{K}_{V_0^\infty} \).

We build \(V^\infty \) by forcing with approximations, which are tuples \((m, V, R) \) such that

1. the second element, \(V \), is a partial function on \([0, m] \) such that when \(x \in \text{dom}(V) \), \(V(x) = (i, n) \) for some \(i < d(x) \) and \(n \leq m \).
2. the third element, \(R \), is a \(R \subseteq [0, m] \), and
3. furthermore \(R \cap \text{dom}(V) = \emptyset \).

Given \(V \), we write \(V_0 \) and \(V_1 \) for the projection functions, so \(\text{dom}(V_0) = \text{dom}(V_1) = \text{dom}(V) \) and \(V(x) = (V_0(x), V_1(x)) \). We say \((m', V', R') \leq (m, V, R) \) if \(m' \geq m \), \(V' \subseteq V \), \(x \in \text{dom}(V') \setminus \text{dom}(V) \) implies \(V_1(x) > m \), and \(R \subseteq R' \). We write \(|V| \) for the smallest \(m \) such that \(\text{dom}(V) \subseteq [0, m] \) and for each \(x \in \text{dom}(V) \), \(V_1(x) \leq m \).

We write \(V' \leq (m, V, R) \) if \((|V'|, V, R) \leq (m, V, R) \).

Lemma 3.25 For any \((m, V, R) \), any \(e_0, e_1 \), and any \(p = (f, n_\mathbb{Z}, \Sigma) \), there is an \((m', V', R') \leq (m, V, R) \) such that either

1. the tuple \((m', V', R') \) forces that \(\mathcal{K}_{e_0, e_1} \) is not a requirement, i.e.,
 \[(\exists x, y)[\Phi_{e_0, e_1}(x, y, f) \land (\forall i \leq d(x) \neg \Phi_{e_1, e_2}(x, y, i, f))] \]
2. the tuple \((m', V', R') \) forces that \(p \) is not a condition, or
3. the tuple \((m', V', R') \) forces that \(\mathcal{K}_{e_0, e_1} \) is uniformly dense below \(p \).

Proof. If any \((m', V', R') \leq (m, V, R) \) forces either of the first two cases, we are finished, so suppose not. We ask:

Is there any \(V' \leq (m + 1, V, R \cup \{m + 1\}) \) such that there is a \(d(x)(2n_\mathbb{Z} - 1) + 1 \)-branching set of extensions of \(f \) in \(\mathcal{K}_{e_0, e_1}^{V_{\infty}}(m + 1) \)?

Suppose not. Then \((m + 1, V, R \cup \{m + 1\}) \) forces that \(\mathcal{K}_{e_0, e_1}^{V_{\infty}}(m + 1) \) is not essential below \(p \).

Otherwise, we may find an appropriate \(V' \leq (m + 1, V, R \cup \{m + 1\}) \) and a set of extensions \(U \subseteq \mathcal{K}_{e_0, e_1}^{V_{\infty}}(m + 1) \). We must show that there is some \(x \) and some \(2n_\mathbb{Z} \)-branching set \(U' \) of extensions of \(f \) which is contained in \(\mathcal{K}_{e_0, e_1}^{V_{\infty}}(x) \). Note that (by the definition of condition) for each \(g \in U \), there is an \(i \leq d(x) \) with \(g \in \mathcal{K}_{e_0, e_1}^{V_{\infty}}(m + 1, i) \). By Lemma 3.3, for some \(i \) there is a \(2n_\mathbb{Z} \)-branching \(U_i \subseteq U \cap \mathcal{K}_{e_0, e_1}^{V_{\infty}}(m + 1, i) \).

We now extend to the condition \((|V'| + 1, V' \cup \{(m + 1, i, |V'| + 1)\}), R \). Notice this forces that \(V_0(m + 1) = i \). If \(i < d(m + 1) \), then the definition of \(\mathcal{K}_{e_0, e_1}^{V_{\infty}}(m + 1, i) \) gives \(\mathcal{K}_{e_0, e_1}^{V_{\infty}}(m + 1, i) \) is \(\mathcal{K}_{e_0, e_1}^{V_{\infty}}(m + 1, d(m + 1)) \). If \(i = d(m + 1) \), then trivially \(V_0(m + 1) = d(m + 1) \), and so \(\mathcal{K}_{e_0, e_1}^{V_{\infty}}(m + 1) = \mathcal{K}_{e_0, e_1}^{V_{\infty}}(m + 1, d(m + 1)) \). Either way, setting \(U' = U_i \subseteq \mathcal{K}_{e_0, e_1}^{V_{\infty}}(m + 1, i) \) see that the uniform density condition holds with respect to the current oracle \(V \).

We wish to show that all extensions of the condition \((|V'| + 1, V' \cup \{(m + 1, i, |V'| + 1)\}), R \) continue to satisfy the uniform density condition for \(\mathcal{K}_{e_0, e_1}^{V_{\infty}} \) below the condition \(p \). To do this, we must show that extending to future conditions will not change any of the computations used to witness the uniform density condition. But recall that all computations used to find the \(2n_\mathbb{Z} \)-branching \(U' \subseteq U \cap \mathcal{K}_{e_0, e_1}^{V_{\infty}}(m + 1, i) \) have had use at most \(|V'| \). By choosing \(m' = |V'| + 1 \) and of \(V_0(m + 1) = i \), \(|V'| + 1 \), we respect restraints from previous stages by defining \(V(m + 1) = i \) at stage \(|V'| + 1 \), and we move the restraint to preserve \(V^\infty \) below \(|V'| + 1 \).
In other words, U' continues to witness the uniform density condition in every extension of V'' of $(|V'| + 1, V' \cup \{(m + 1, (|V'| + 1))\}, R)$.

Theorem 3.26 For any computable d, there is a Turing ideal I satisfying DNR but not d-DNR.

Proof. Applying the previous lemma repeatedly, we may construct a V^∞ so that every requirement K^{V^∞} is uniformly dense. By Theorem 3.24 we may find a DNR V^∞ function f^∞ so that no $\Phi^{V^\infty \oplus f^\infty}$ is d-DNR V^∞ and every requirement $K^{V^\infty \oplus f^\infty}$ is uniformly dense. Iterating this countably many times and closing under computability, we obtain a Turing ideal I containing V^∞, containing no d-DNR V^∞ function, and so that for every $W \in I$, I contains a DNR W function.

Corollary 3.27

1. For any computable d, DNR does not imply d-DNR.
2. The principle DNR does not imply WWKL.

Proof. The former is immediate from the theorem. The later follows from [4, Proposition 3], which shows that there is a computable d so that WWKL implies d-DNR.

4 The principle DNR does not imply RWKL

In this section we give the second main construction, showing that DNR does not imply RWKL. The main ideas are similar to those in the previous section, but we need a different family of requirements to diagonalize against RWKL.

4.1 The one step case

Suppose we wish to construct an infinite $\{0, 1\}$-tree T^∞ and a function f^∞ which is DNR T^∞ so that no W^∞ is a solution to the RWKL instance T^∞. That is, either W^∞ is finite or there is a level n such that whenever $\sigma \in T^\infty$ with $|\sigma| = n$, there are $x, z \in W^\infty$ with $\sigma(x) = 1 - \sigma(z)$.

If σ is a sequence, the reflection of σ above x, written $\sigma_{|x}$, is the unique sequence such that

$$\sigma_{|x}(y) = \begin{cases} \sigma(y) & \text{if } y \leq x \text{ and } y < |\sigma| \\ 1 - \sigma(y) & \text{if } x < y < |\sigma| \end{cases}$$

If T is a finite $\{0, 1\}$-tree of height n and $S \subseteq [0, n]$, we say T is symmetric over S if whenever $\sigma \in T$ and $x \in S$, $\sigma_{|x}$ is in T. That is, $\sigma_{|x}$ has the same length as σ, but reverses the value of every element larger than x.

We will force with tuples (T, S, f, n, Ξ) where

1. the first element, T, is a finite tree,
2. the second element, S, is a finite set such that T is symmetric over S,
3. the third element, f, is an element of $\omega \cup \omega$ which is DNR T for all T' end-extending T,
4. the fifth element, Ξ, is a function so that when T' end-extends T and is symmetric over S, then $\Xi(T')$ is a set of extensions of f blocking at width n, and
5. if T'' end-extends T' and T'' end-extends T then $\Xi(T'') \subseteq \Xi(T')$.

We say $(T', S', f', n', \Xi') \leq (T, S, f, n, \Xi)$ if

1. the tree T' end-extends T,
2. the set $S \subseteq S'$, and
3. the triple f, n, and Ξ extend $f', n',$ and Ξ' as in the previous section.

We write $T' \leq (T, S)$ if T' end-extends T and is symmetric over S.

© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

www.mlq-journal.org
Let \((T, S, f, n_\mathcal{Z}, \mathcal{Z})\) be given and suppose we wish to force that \(W_{e}^{T^*\oplus f^*}\) is not a solution to \(T^*\). We proceed in two steps. First we want to force \(W_{e}^{T^*\oplus f^*}\) to either enumerate an element greater than any element of \(S\) or be finite. We fix a value \(x\) larger than \(|T|\) and larger than any value in \(S\). We ask:

Is there some \(T' \preceq (T, S \cup \{x\})\) and some \(6n_\mathcal{Z} - 2\)-branching set of extensions \(U\) of \(f\) such that for each \(g \in U\), \(W_{e}^{T^*\oplus f^*} \cap (x, |T'|) \neq \emptyset\)?

Suppose not. Then for each \(T' \preceq (T, S \cup \{x\})\), let \(\mathcal{Z}(T')\) be the set of \(g \in \mathcal{Z}(T)\) such that \(W_{e}^{T^*\oplus f^*} \cap (x, |T'|) = \emptyset\). By choosing all future \(g \in \mathcal{Z}(T')\), it follows that \(W_{e}^{T^*\oplus f^*} \subseteq [0, x]\), and is therefore finite. We claim that

\[
(T, S, f, 7n_\mathcal{Z} - 3, \mathcal{Z}) \preceq (T, S, f, n_\mathcal{Z}, \mathcal{Z}).
\]

To see that \(\mathcal{Z}(T')\) is blocking at width \(7n_\mathcal{Z} - 3\), recall by Lemma 3.2 that any \(6n_\mathcal{Z} - 2 + n_\mathcal{Z} - 1\)-branching set \(U\) of strings either has a \(6n_\mathcal{Z} - 2\)-branching subset of \(U\) such that for each \(g \in U\), \(W_{e}^{T^*\oplus f^*} \cap (x, |T'|) \neq \emptyset\) or a \(n_\mathcal{Z}\)-branching subset of \(\{g : W_{e}^{T^*\oplus f^*} \cap (x, |T'|) = \emptyset\}\).

So suppose we find \(T'\) and \(U\). We pick a \(z\) larger than \(x\) and larger than \(|T'|\) and ask:

Is there some \(T'' \preceq (T', S \cup \{x, z\})\) and some \(4n_\mathcal{Z} - 1\)-branching set of extensions \(U' \subseteq U\) of \(f\) such that for each \(g \in U'\), \(W_{e}^{T^*\oplus f^*} \cap (x, z) \neq \emptyset\) and \(W_{e}^{T^*\oplus f^*} \cap (z, |T'|) \neq \emptyset\)?

Suppose not. By Lemma 3.2, because \(U\) is \((4n_\mathcal{Z} - 1) + (2n_\mathcal{Z}) - 1\)-branching, if it does not (for some \(T''\)) contain a \(4n_\mathcal{Z} - 1\)-branching subset of such extensions, then it contains (for that \(T''\)) a \(2n_\mathcal{Z}\)-branching subset of \(g\) s.t. either \(W_{e}^{T^*\oplus f^*} \cap (x, z) = \emptyset\) or \(W_{e}^{T^*\oplus f^*} \cap (z, |T'|) = \emptyset\). By our choice of \(T', U\), and \(z\), \(W_{e}^{T^*\oplus f^*} \cap (x, |T'|) \subseteq W_{e}^{T^*\oplus f^*} \cap (z, |T'|)\) is non-empty, so we are in fact guaranteed for each \(T''\) a \(2n_\mathcal{Z}\)-branching set \(U_{f}^{T''}\) such that \(W_{e}^{T^*\oplus f^*} \cap (z, |T''|) = \emptyset\) for each \(g \in U_{f}^{T''}\). As in Subsection 3.3, without loss of generality we may assume that if \(T'' \preceq (T', S \cup \{x, z\})\) and \(g \in U \setminus U_{f}^{T''}\), then \(g \in U \setminus U_{f}^{T''}\). (When this is not the case, we extend \(T'\) finitely many times to obtain \(T'\) for which this is true.) Then by Lemma 3.4 (possibly extending \(T'\) finitely many times again) there is a \(g \in U_{f}^{T''}\) so that \((T', S \cup \{x, z\}, g, n_\mathcal{Z}, \mathcal{Z}|g)\) is a condition (where \(\mathcal{Z}|g\) is the function \(T'' \mapsto \mathcal{Z}(T'')|g\)). Finally, for every \(T'' \preceq (T', S \cup \{x, z\})\) we set \(\mathcal{Z}(T'')\) to be those \(h \in \mathcal{Z}(T'')\) such that \(W_{e}^{T^*\oplus f^*} \cap (z, |T''|) = \emptyset\). Since \(g \in U_{f}^{T''} = U_{f}^{T''}\), and since by assumption no \(4n_\mathcal{Z} - 1\)-branching set \(V\) avoids \(U_{f}^{T''}\), each \((4n_\mathcal{Z} - 1) + (n_\mathcal{Z}) - 1\)-branching set contains a \(n_\mathcal{Z}\)-branching subset of \(V \setminus U_{f}^{T''}\) and so \(\mathcal{Z}(T'')|g\) contains some element of \(V\). In other words, \(\mathcal{Z}(T'')\) blocks at width \((4n_\mathcal{Z} - 1) + (n_\mathcal{Z}) - 1\), so \((T', S \cup \{x, z\}, g, 5n_\mathcal{Z} - 2, \mathcal{Z})\) forces that \(W_{e}^{T^*\oplus f^*} \subseteq [0, z]\).

So suppose we find \(T''\) and \(U'\). This is the main case, and where symmetry becomes essential. Consider some \(\sigma \in T''\) with \(|\sigma| = |T''|\). Since we have symmetry in \(T''\) over both \(x\) and \(z\), there are four obvious reflections of \(\sigma\) in \(T''\)—\(\sigma\) itself, \(\sigma_{|x}|_{x}\), and \(\sigma_{|z}|_{z}\). We wish to find a symmetric pair of these four strings witnessing that \(W_{e}^{T^*\oplus f^*}\) is not homogeneous for either of our chosen strings.

By our choice of \(T''\) and \(U'\), for each \(g \in U'\) we have values \(a \in W_{e}^{T^*\oplus f^*} \cap (x, z)\) and \(c \in W_{e}^{T^*\oplus f^*} \cap (z, |T''|)\). Because \(x < a \leq z < c\), we either have that \(\sigma(a) \neq \sigma(c)\) and \(\sigma_{|x}|_{x}(a) \neq \sigma_{|z}|_{z}(c)\) or we have that \(\sigma(a) = \sigma(c)\) and hence both \(\sigma_{|x}|_{x}(a) = \sigma_{|z}|_{z}(c)\) and \(\sigma_{|z}|_{z}(a) = \sigma_{|x}|_{x}(c)\). In either case, we preserve exactly the correct two of these reflections, allowing us to preserve the symmetry over \(x\) while satisfying the requirement that \(W_{e}^{T^*\oplus f^*}\) fails to be homogeneous for the chosen reflections.

For the full construction, we will need to express this argument in terms of requirements \(K\). For each \(a \in D_0 = (x, z)\) we will define a set \(Y_a\) which consists of possible values for \(c \in D_1 = (z, |T'|)\). Then \(K(Y_a)\) will consist of those \(g\) such that for some \(c \in W_{e}^{T^*\oplus f^*} \cap (z, |T''|)\), \(c \in Y_a\). The full requirement (quantifying over all the possible \(a \in D_0\)) will be \(K(Y_a)_{a \in D_0}\). In other words, the full requirement \(K(Y_a)_{a \in D_0}\) consists of the \(g\) such that for some \(c \in W_{e}^{T^*\oplus f^*} \cap (z, |T''|)\) and some \(a \in W_{e}^{T^*\oplus f^*} \cap (x, z)\), \(c \in Y_a\).

The next lemma proves that as long as \(K\) satisfies a reasonable property, then we can always find a \(2n_\mathcal{Z}\)-branching refinement \(U^*\) of \(U\) so that for any \(g^* \in U^*\), then \(W_{e}^{T^*\oplus f^*}\) is not homogeneous for any string of length \(\sigma\) in \(T''\). In the more abstract language of \(K\), this means that \(U^*\) must be a subset of \(K([c \in D_1 \mid \sigma(c) \neq \sigma(a)])_{a \in D_0}\).

Lemma 4.1 Suppose \(T\) is symmetric over \(S \cup \{x, z\}\) with \(s < x < z\) for all \(s \in S\). Let \(D_0 = (x, z)\) and \(D_1 = (z, |T'|)\). Let \(U\) be a \(4n_\mathcal{Z} - 1\)-branching set of extensions. Furthermore, assume, for each \(g \in U\), that if there are two sequences of sets \(\{Y_{a,i}\}_{i \in D_0}\) s.t. \(Y_{a,0} \cup Y_{a,1} = D_1\) for each \(a\), then \(g \in K([Y_{a,0}])\) or \(g \in K([Y_{a,1}])\).
Then there is a $T^* \preceq (T, S \cup \{x\})$ and a $2n_\mathbb{Z}$-branching $U^* \subseteq U$ such that for every $\sigma \in T^*$ with $|\sigma| = |T^*|$, $U^* \subseteq \mathcal{K}(\{c \in D_1 | \sigma(c) \neq \sigma(a)\}_{a \in D_0})$.

Proof. Fix some $\sigma \in T$ with $|\sigma| = |T|$, and let $\tau_i = \sigma | D_i$ for $i \in \{0, 1\}$. Without loss of generality, we may assume that for every $\varrho \in T$ with $|\varrho| = |T|$, and for each $i \in \{0, 1\}$, $\varrho | D_i \in \{\tau_i, 1 - \tau_i\}$. (Otherwise, we can extend $|T|$ by one, extending exactly those σ satisfying this property.) By our choice of σ, we know that there are at least four strings in T: $\sigma, \sigma/\tau, \sigma/\tau$ and σ/τ.

For each $a \in D_0$, let $Y_{a,0} = \{c \in D_1 | \tau_1(c) = \tau_0(a)\}$ and $Y_{a,1} = D_1 \setminus Y_{a,0} = \{c \in D_1 | \tau_1(c) \neq \tau_0(a)\}$. Clearly $Y_{a,0} \cup Y_{a,1} = D_1$ for each a, so by our assumption about \mathcal{K}, for each $g \in U$ we have either $g \in \mathcal{K}(\{Y_{a,0}\})$ or $g \in \mathcal{K}(\{Y_{a,1}\})$. By Lemma 3.3, it follows that there is a $j \in \{0, 1\}$ and a $2n_\mathbb{Z}$-branching $U^* \subseteq U$ with $U^* \subseteq \mathcal{K}(\{Y_{a,j}\})$. It remains to extend T to T^* so that if $\sigma^* \in T^*$ then $Y_{a,j} = \{c \in D_1 | \sigma^*(c) \neq \sigma^*(a)\}$ for each a.

If $j = 0$, we define $T^* \preceq (T, S \cup \{x\})$ so that $\sigma^*(b) \in T^*$ if $|\sigma| = |T|$, $\sigma \in T$, $b \in \{0, 1\}$, and either

1. $\sigma^* | D_0 = \tau_0$ and $\sigma | D_1 = 1 - \tau_1$, or
2. $\sigma^* | D_0 = 1 - \tau_0$ and $\sigma | D_1 = \tau_1$.

Then if $\sigma^* \in T^*$, $a \in D_0$, and $c \in D_1$, $\sigma^*(a) = \tau_0(a)$ iff $\sigma^*(c) = 1 - \tau_1$, so $\sigma^*(a) \neq \sigma^*(c)$ iff $c \in Y_{a,0}$, so $Y_{a,0} = \{c \in D_1 | \sigma^*(c) \neq \sigma^*(a)\}$.

If $j = 1$, we similarly define $T^* \preceq (T, S \cup \{x\})$ so that $|T^*| = |T| + 1$ and $\sigma^*(b) \in T^*$ if $|\sigma| = |T|$, $\sigma \in T$, $b \in \{0, 1\}$, and either

1. $\sigma | D_0 = \tau_0$ and $\sigma | D_1 = \tau_1$, or
2. $\sigma | D_0 = 1 - \tau_0$ and $\sigma | D_1 = 1 - \tau_1$.

In this case, when $\sigma^* \in T^*$, $a \in D_0$, and $c \in D_1$, $\sigma^*(a) = \tau_0(a)$ iff $\sigma^*(c) = \tau_1(c)$, so $\sigma^*(a) \neq \sigma^*(c)$ iff $c \in Y_{a,1}$, so $Y_{a,1} = \{c \in D_1 | \sigma^*(c) \neq \sigma^*(a)\}$.

In the one step case, recall that $\mathcal{K}(\{Y_{a}\}_{a \in D_0})$ is the set of g such that there is some $c \in W^T_{\varphi, g} \cap (\{z\}, |T^*|)$ and some $a \in W^T_{\varphi, g} \cap (x, z)$ with $c \in Y_a$. Therefore, \mathcal{K} satisfies the conditions of the lemma because each $c \in Y_{a,0} \cup Y_{a,1}$. Applying the lemma to T'' and U', we obtain T^* and U^*. The set U^* is $2n_\mathbb{Z}$-branching, so, by Lemma 3.4 (possibly extending T^* finitely many times), we may find a $g \in U^*$ so that $(T^*, S, g, n_\mathbb{Z}, \mathbb{Z}[g])$ is a condition. Then for every $\sigma \in T^*$ with $|\sigma| = |T^*|$, there are $a, c \in W^T_{\varphi, g}$ so that $\sigma(c) \neq \sigma(a)$, and therefore $W^T_{\varphi, g}$ is not a solution to T^*.

4.2 Forcing solutions of DNR

We turn to the iterated forcing case for RWKL. Our setting is that we have constructed a set $T^\infty \preceq_T X$ and wish to construct a DNR X function which does not compute a solution to T^∞.

The set of conditions P^X is the same as in Definition 3.13 of the previous section: we force with triples $(f, n_\mathbb{Z}, \mathbb{Z})$ where f is DNR X and \mathbb{Z} is a family of extensions of f which blocks at width $n_\mathbb{Z}$.

Our requirements, however, are different. As illustrated in the one step case, we need to force in two phases in order to accommodate the diagonalization requirement, which requires that we first enumerate an element into $W^X_{\varphi, f}$ and then enumerate a second element.

The requirement $\mathcal{K}^{X,0}(x)$ corresponds to enumerating an element greater than x into $W^X_{\varphi, f}$, and $\mathcal{K}^{X,0}(x, z)$ corresponds to enumerating an element greater than z into $W^X_{\varphi, f}$ after already enumerating an element in (x, z) into $W^X_{\varphi, f}$.

We first give the formal definitions, and then define the more intuitive basic requirement in Example 4.3.

Definition 4.2 We say that three families of sets

\[
\mathcal{K}^{X,0}(x) = \{ f | \exists y \exists f' \subseteq f \ R^{X,0}(x, y, f') \},
\]

\[
\mathcal{K}^{X,0}(x, z) = \{ f | \exists y \exists f' \subseteq f \ R^{X,0}(x, y, f') \}.
\]
\[
K^{-1}(x, z) = \{ f \mid \exists y f' \subseteq f \ R^{-1}(x, z, y, f') \}, \quad \text{and}
\]
\[
K^+(x, z, \{ Y_a \}_{a \in (x, z)}) = \{ f \mid \exists y f' \subseteq f \forall a \subseteq Y_a \ R^+(x, z, y, \{ Y_a \}, f') \}
\]

and a partial computable function \(z^X \) define an RKL-requirement if the following conditions hold:

1. The relations \(R^0, R^{-1}, R^+ \) are \(X \)-computable and always terminate in at most \(y \) steps.
2. If \(f' \subseteq f \) and \(z^X(f') \downarrow \) then \(z^X(f) = z^X(f') \).
3. If \(R^0(x, y, f) \) then \(z^X(f) \) converges in \(\leq y \) steps.
4. Suppose that \(R^0(x, y, f), \) that \(z^X(f) \), that \(R^{-1}(x, z, y', f) \), and that for each \(a \in (x, z) \), \(Y_a, 0 \cup Y_{a, 1} \) is a partition of \((z, y')\). Then there is a \(j \in \{0, 1\} \) so that \(R^+(x, z, y', \{ Y_{a, j} \}, f) \).

The first three properties guarantee uniformity. The last property ensures we will be able to apply Lemma 4.1 to the condition \(K^+(x, z, \{ Y_a \}_{a \in (x, z)}) \).

In the simplest case \(z^X(f) \) will be a uniformly chosen element of \(W_0^X \). The assertion \(z \geq z^X(f) > x \) is an abstraction of the assertion \(W_0^X \cap (x, z) \neq \emptyset \), and is more appropriate for use in a general condition.

We set \(K^{-1}(x, z) \) to be those \(f \in K^{-0}(x) \) such that either \(z < z^X(f) \) or \(f \in K^{-1}(x, z) \).

Note that \(f \notin K^{-0}(x, z) \) implies that either \(f \notin K^{-0}(x) \), or \(z \geq z^X(f) \) and \(f \notin K^{-1}(x, z) \). This is used in the second half of Lemma 4.4, where we examine both cases to show that \(f^\infty \) strongly avoiding a certain \(K^{-1}(x, z) \) (defined in Example 4.3) guarantees that \(W_0^X \subseteq [0, z] \).

Of course, we are most interested in strings in \(K^{-1}(x, z) \) that are also in \(K^{-1}(x, z) \). We formalize this in Definition 4.5, where a requirement is only “essential” if a reasonable number of strings can be bootstrapped from \(K^{-0}(x) \) to \(K^{-1}(x, z) \).

When the \(Y_a \) are (possibly) infinite sets, we write

\[
K^+ (x, z, \{ Y_a \}_{a \in (x, z)}) = \bigcup K^+(x, z, \{ Y_a \}_{a \in (x, z)})
\]

where the union ranges of choices of finite \(Y_a \subseteq Y_a \). Given \(z \), we define

\[
Y_a(T^\infty) = \{ c > z : \text{ whenever } \Lambda \text{ is an infinite path in } T^\infty, \Lambda(c) \neq \Lambda(a) \}.
\]

When (and only when) \(z \geq z^X(f) \) we set

\[
K^+(x, z) = \{ f \in K^0(x) : f \in K^+(x, z, \{ Y_a(T^\infty) \}_{a \in (x, z)}) \}
\]

We see in the ground forcing Lemma 4.11 that we can move from not avoiding \(K^{-1}(x, z) \) to being inside \(K^+(x, z) \). More formally, Lemma 4.11 will show that we can force all requirements to be “uniformly dense.” This will be possible because in the ground forcing, we can choose \(z \) as large as needed.

To understand the use of \(Y_a \) in the definition of \(K^+(x, z) \), recall that we need the definition of a requirement to be \(\Sigma^0_1 \), so that we can easily force whether something is a requirement during the ground forcing. The definition of \(K^+(x, z) \) highlights that we will, during the ground forcing, compute \(\{ Y_a(T^\infty) \}_{a \in (x, z)} \) directly, and then provide it via the parameter \(\{ Y_a \} \) to obtain the correct \(\Sigma^0_1 \) class defined by \(K^+(x, z, \{ Y_a \}) \).

Example 4.3 The requirement \(W_0^X \) is given by:

1. the family of strings \(W_0^{X, 0}(x) = \{ f : W_0^{X, 0} \text{ contains an element } > x \} \),
2. the bound \(z_{W_0}(f) \) is the first value \(> x \) enumerated into \(W_0^{X, 0} \),
3. the family of strings \(W_0^{X, 0}(x, z) = \{ f : z_{W_0}(f) \text{ witnesses that } W_0^{X, 0} \cap (x, z) \neq \emptyset \text{ and } W_0^{X, 0} \text{ contains an element } > z \} \), and
4. the family of strings \(W_0^{X, 0}(x, z, \{ Y_a \}) \) consists of those \(f \) such that there is some \(a \in W_0^{X, 0} \cap (x, z) \) such that there is a \(c \in W_0^{X, 0} \cap Y_a \) with \(c > z \).

Then \(W_0^{X, 0}(x, z) \) is the set of \(f \) such that \(W_0^{X, 0} \) contains an element greater than \(x \) where either \(z \) is smaller than the first value \(> x \) enumerated into \(W_0^{X, 0} \) or \(W_0^{X, 0} \cap (x, z) \neq \emptyset \) and \(W_0^{X, 0} \) contains an element \(> z \).
In particular, as long as there is some element \(x \) in \(W_e^{X \Theta f} \), then \(f \not\in W(X, -)(x, z) \) means that \(z_{W_e}^A(f) \) is a uniform witness that \(W_e^{X \Theta f} \cap (x, z) \neq 0 \) and that \(W_e^{X \Theta f} \subseteq [0, z] \). This is the main use of \(z_{W_e}^A \); it provides an abstract way to say \(W_e^{X \Theta f} \cap (x, z) \neq \emptyset \).

Finally, \(W(X, -)(x, z) \) is the set of those \(f \) such that there is some \(a \in W_e^{X \Theta f} \cap (x, z) \) and some \(c \in W_e^{X \Theta f} \cap (z, \infty) \) where \((\forall A \in [\infty^n])\Lambda(c) \neq \Lambda(a)\). In other words, \(W(X, -)(x, z) \) is not a solution to \(T^\infty \) for any \(f^\infty \supseteq f \).

Note that in both \(W(X^+, x, z)(Y_1) \) and \(W(X, -)(x, z) \), we also require that \(W_e^{X \Theta f} \cap (x, z) \neq \emptyset \) be witnessed by observing that \(z_{W_e}^A(f) \in W_e^{X \Theta f} \cap (x, z) \).

We say \(f^\infty : \omega \to \omega \) settles \(K^X \) if there is some pair \((x, z)\) such that either there is a finite \(f \subset f^\infty \) with \(f \in K^X(x, z) \) or for every finite \(f \subset f^\infty \), \(f \not\in K^X(x, z) \).

The next lemma unpacks and applies the definitions of \(W(X, -) \) and \(W(X^+) \).

Lemma 4.4 Suppose \(f^\infty \) settles \(W_e^X \) for every \(e \). Then \(f^\infty \) does not compute any solution to \(T^\infty \).

Proof. We must show that for each \(e \), \(W_e^{X f^\infty} \) is not a solution to \(T^\infty \). Since \(f^\infty \) settles \(W_e^X \), there must be some \((x, z)\) demonstrating this.

If there is any \(f \subset f^\infty \) with \(f \in W_e^{X^+}(x, z) \) then there is some \(a \in W_e^{X \Theta f} \cap (x, z) \) and some \(c \in W_e^{X \Theta f} \cap Y_a(T^\infty) \) with \(c > z \). Therefore \([a, c] \subseteq W_e^{X \Theta f} \) but there is no infinite path \(\Lambda \) through \(T^\infty \) with \(\Lambda(a) = \Lambda(c) \), so \(W_e^{X \Theta f} \) does not solve \(T^\infty \).

Therefore, suppose that there is no \(f \subset f^\infty \) in \(W_e^{X^+}(x, z) \), and therefore no \(f \subset f^\infty \) in \(W_e^{X, -(x, z)} \). If there is no \(f \subset f^\infty \) in \(W(X^-, 0)(x) \) then \(W_e^{X \Theta f} \subseteq [0, x] \) for each \(f \subset f^\infty \), so \(W_e^{X f^\infty} \) is finite.

Otherwise there is some \(f \subset f^\infty \) in \(W(X^-, -(x)) \). Then \(z_{W_e}^A(f) \leq z \) (otherwise we would have \(f \in W(X^-, -(x, z)) \). If there were any \(f^\prime \) with \(f \subseteq f^\prime \subset f^\infty \) such that \(W_e^{X \Theta f} \) contains an element \(> z \) then we would have \(f^\prime \in W_e^{X^+}(x, z) \), and so there is no such \(f^\prime \). Therefore \(W_e^{X f^\infty} \subseteq [0, z] \), and is therefore finite. \(\square \)

Definition 4.5 The requirement \(K^X \) is essential below \((f, n_z, \Xi)\) if for every \(x \) both (1) there is a \(6n_z - 2 \)-branching set of extensions of \(f \) contained in \(K^X, -(x) \), and (2) letting \(U \) be the first such set enumerated, for every \(z \geq \max_{f \in U} z_{X^+}^A(f) \) there is a \(4n_z - 1 \)-branching \(U' \subseteq U \) such that for each \(g \in U' \), there is a \(4n_z - 1 \)-branching set of extensions of \(g, U_g \subseteq K^X, -(x, z) \).

The requirement \(K^X \) is uniformly dense below \((f, n_z, \Xi)\) if either \(K^X \) is not essential below \((f, n_z, \Xi)\) or there is an \(x \), a \(2n_z \)-branching set of extensions \(U \) of \(f \), and \(z \geq \max_{f \in U} z_{X^+}^A(f) \), such that \(U \subseteq K^X, -(x, z) \). The requirement \(K^X \) is uniformly dense if it is uniformly dense below every \((f, n_z, \Xi)\).

The quantifier alternation in the definition of the essential requirements reflects the need to resolve the two parts of the requirement simultaneously, without allowing new \(\Pi_1 \) commitments on \(T^\infty \) to show up. (Compare to the approach used to separate ADS from CAC in [7].)

Lemma 4.6 Suppose \(K^X \) is uniformly dense. Then for every \((f, n_z, \Xi)\), there is an \((f', n'_z, \Xi') \subseteq (f, n_z, \Xi) \) and an \((x, z)\) such that either \(f' \in K^X, -(x, z) \) or \(\Xi' \cap K^X, -(x, z) = \emptyset \).

Proof. First, suppose that for some \(x \), whenever \(U \) is an \(6n_z - 2 \)-branching set of extensions of \(f \), there is a \(g \in U \) with \(g \not\in K^X, -(x) \). Let \(\Xi' \subseteq \Xi \) consist of those \(g \) such that \(g \not\in \Xi \setminus K^X, -(x) \). We claim that \(\Xi' \) is blocking at width \(6n_z - 2 + n_z - 1 \), so \(f, 7n_z - 3, \Xi' \) satisfies the second case. To see this, recall by Lemma 3.2 that any \(6n_z - 2 + n_z - 1 \)-branching set \(U' \) of strings either has a \(6n_z - 2 \)-branching subset of \(K^X, -(x) \) or a \(n_z \)-branching subset of \(U' \setminus K^X, -(x) \). Because no \(6n_z - 2 \)-branching set can be contained in \(K^X, -(x) \), it follows that there is an \(n_z \)-branching subset \(U'' \) of \(U' \) contained in \(U' \setminus K^X, -(x) \). Furthermore, because \(\Xi \) blocks at width \(n_z \), there is some \(g \in \Xi \cap U'' \subseteq \Xi \setminus K^X, -(x) = \Xi' \), as desired.

Otherwise, for every \(x \) we may find a \(6n_z - 2 \)-branching set \(U_x \) of extensions of \(f \) with \(U_x \subseteq K^X, -(x) \). For each \(g \in U_x \) and each \(z \geq \max_{f \in U} z_{X^+}^A(f) \), we ask whether there is a \(4n_z - 1 \)-branching set of extensions \(U_{g, z} \subseteq K^X, -(x, z) \). Let \(U_{0, z}^0 \subseteq U_x \) be the set of \(g \in U_x \) such that there exists such a \(U_{g, z} \).

Suppose that for some \(x \) and some \(z \), \(z \geq \max_{f \in U} z_{X^+}^A(f) \), that \(U_{0, z}^0 \) does not contain a \(4n_z - 1 \)-branching set of extensions. Then \(U_x \setminus U_{0, z}^0 \) does contain a \(2n_z \)-branching set of extensions. By Lemma 3.4, there is a \(g \in (U_x \setminus U_{0, z}^0) \cap \Xi \) such that \((g, n_z, \Xi | g) \subseteq (f, n_z, \Xi) \) is a condition. Let \(\Xi' \subseteq \Xi | g \) consist of those \(g \not\in K^X, -(x, z) \).
Since there is no $4n_{\mathbb{Z}} - 1$-branching $U_{m,z} \subseteq K_{X^{-1}}(x, z)$ and because $z \geq z_{k}^{X}(g)$, $(g, 5n_{\mathbb{Z}} - 2, \mathbb{Z}) \leq (f, n_{\mathbb{Z}}, \mathbb{Z})$ is a condition and $\mathbb{Z} \cap K_{X^{-1}}(x, z) = \varnothing$.

Otherwise the sets U_{i} witness that K_{X} is essential below $(f, n_{\mathbb{Z}}, \mathbb{Z})$. By the definition of uniform density, there is a $2n_{\mathbb{Z}}$-branching set of extensions of f, $U \subseteq K_{X^{+}}(x, z)$, and therefore $(g, n_{\mathbb{Z}}, \mathbb{Z}) \leq (f, n_{\mathbb{Z}}, \mathbb{Z})$ such that $g \in K_{X^{+}}(x, z)$.

Theorem 4.7 Fix any countable collection of uniformly dense requirements K_{k}^{X}. Then there is a DNR X function f^{∞} settling every K_{k}^{X}.

Proof. Enumerate the uniformly dense requirements $K_{0}^{X}, K_{1}^{X}, \ldots$. Construct a sequence of conditions $(f^{0}, n_{0}^{X}, \mathbb{Z}), (f^{1}, n_{1}^{X}, \mathbb{Z}) \leq \cdots$ by repeatedly applying the previous lemma so that for each k, there are x, z such that either $f^{k} \in K_{k}^{X^{+}}(x, z)$ or $\mathbb{Z} \cap K_{k}^{X^{-}}(x, z) = \varnothing$. Then letting $f^{\infty} = \bigcup_{k} f^{k}, f^{\infty}$ is DNR X by the definition of P^{X} and settles each K_{k}^{X}. □

In summary, we have seen that settling each \mathcal{W}_{X}^{s} ensures we avoid solving the instance T^{∞} of RWKL, and that we can settle each uniformly dense K_{X}. In the ground forcing construction, we will build T^{∞} so that all the requirements $K^{T^{\infty}}$ are uniformly dense.

We now define the iteration requirements. When satisfied, these requirements will ensure that other requirements remain uniformly dense with respect to $X \oplus f^{\infty}$. This guarantees that the construction can be iterated to form a Turing ideal.

As before, the focus will be on moving from $R_{X^{-1}}(x, z)$ to $R_{X^{+}}(x, z)$ (satisfying essential requirements), not on moving from $R_{X^{-1}}(0)$ to $R_{X^{-1}}(1)$ (determining if a requirement is essential).

Given $e_{0}, e_{1}, e_{2}, e_{3}$, we define $K_{e_{0},e_{1},e_{2},e_{3}}^{X}$ to be the potential requirement with $R_{e_{0},e_{1},e_{2},e_{3}}^{X} = \Phi_{e_{0}}^{X}, R_{e_{0},e_{1},e_{2},e_{3}}^{X^{+}} = \Phi_{e_{3}}^{X}, R_{e_{0},e_{1},e_{2},e_{3}}^{X^{-}} = \Phi_{e_{1}}^{X}$, and $z_{e_{0},e_{1},e_{2},e_{3}}^{X}$.

Let $e_{0}, e_{1}, e_{2}, e_{3}$ be given and let $g = (g, m_{\Pi}, \Pi)$ be a triple. We let \bar{e} be the sequence $e_{0}, e_{1}, e_{2}, e_{3}$.

Then $R_{e_{0},e_{1},e_{2},e_{3}}^{X}(x)$ is the set of f such that either

1. the string f forces that $K_{e_{0},e_{1},e_{2},e_{3}}^{X \oplus f^{\infty}}$ is not a RKL-condition, or
2. the string f forces that g is not a condition, or
3. there is a $4m_{\Pi} - 2$-branching set of extensions of g contained in $K_{e_{0},e_{1},e_{2},e_{3}}^{X \oplus f^{\infty},-0}(x)$.

If $f \in R_{e_{0},e_{1},e_{2},e_{3}}^{X}(x)$ due to either of the first two cases, $z_{R_{e_{0},e_{1},e_{2},e_{3}}^{X}}(f) = 0$.

When $f \in R_{e_{0},e_{1},e_{2},e_{3}}^{X,-0}(x)$ in the third case, we let $U_{R_{e_{0},e_{1},e_{2},e_{3}}^{X}}(x, f, x)$ be the first $6m_{\Pi} - 2$-branching set of extensions of g contained in $K_{e_{0},e_{1},e_{2},e_{3}}^{X \oplus f^{\infty},-0}(x)$ found. In this case we set:

$$
\max_{g' \in U_{R_{e_{0},e_{1},e_{2},e_{3}}^{X}}(x, f, x)} z_{R_{e_{0},e_{1},e_{2},e_{3}}^{X}}(g').
$$

The set $R_{e_{0},e_{1},e_{2},e_{3}}^{X^{-1}}(x, z)$ is composed of those f such that either

1. the string f forces that $K_{e_{0},e_{1},e_{2},e_{3}}^{X \oplus f^{\infty}}$ is not a RKL-condition, or
2. the string f forces that g is not a condition, or
3. there is a $4m_{\Pi} - 1$-branching set of extensions $U'_{e_{0},e_{1},e_{2},e_{3}}^{X^{+}}(x, f, x)$ such that for each $g' \in U'$, there is a $4m_{\Pi} - 1$-branching set of extensions $U'_{g'}$ of g' with $U'_{g'} \subseteq K_{e_{0},e_{1},e_{2},e_{3}}^{X \oplus f^{\infty},-1}(x, z)$.

The set $R_{e_{0},e_{1},e_{2},e_{3}}^{X^{+}}(x, z, \{Y_{a}\}_{a \in \mathbb{X}})$ is composed of those f such that either

1. the string f forces that $K_{e_{0},e_{1},e_{2},e_{3}}^{X \oplus f^{\infty}}$ is not a RKL-condition, or
2. the string f forces that g is not a condition, or
3. there is a $2m_{\Pi}$-branching set of extensions of g,

$$
U' \subseteq K_{e_{0},e_{1},e_{2},e_{3}}^{X \oplus f^{\infty},+}(x, z, \{Y_{a}\}_{a \in \mathbb{X}}).
$$
Lemma 4.8 The pair $R^X_{e,q}$ is a RKL-requirement.

Proof. We wish to show that R satisfies Definition 4.2. The uniformity properties of RKL-requirements, the first three conditions, ensure the uniformity of convergence of the various sets used to define $R^X_{e,q}$. The failure of any of these properties to hold of $R^X_{e,q}$ will therefore imply the failure in the uniformity of the corresponding computations in K^X_{e}, causing f to force K^X_{e} not to be a RKL-requirement.

For the final property, suppose that $f \in R^X_{e,q}(x) \cap R^{X,0}_{e,q}(x, z)$, that $z \geq z_{R^X_{e,q}}$, and that for each $a \in (x, z]$, $Y_{a,0} \cup Y_{a,1}$ is a partition of (z, y') for y' large enough to ensure termination of all computations. We wish to show that there is a $f \in [0, 1]$ such that $f \in R^{X,0}_{e,q}(x, z, \{Y_{a,i}\})$. Because $f \in R^{X,0}_{e,q}(x, z)$, there is a $4m_\Pi - 1$-branching set of extensions U^x_Π such that for each $g' \in U^x_\Pi$, there is a $4m_{\Pi} - 1$-branching set of extensions $U^X_\Pi(x, z)$.

We now use the fact that K^X_{e} is itself a requirement, and thus satisfies (4) of Definition 4.2. By our choice of U^x_Π, for each $g' \in U^x_\Pi$ and each $g'' \in U^X_\Pi(x, z)$, there is a $4m_{\Pi} - 1$-branching subset of $U^X_\Pi(x, z, \{Y_{a,i}\})$. Applying Lemma 3.2 to each $U^X_\Pi(x, z)$, for each $g'' \in U^X_\Pi(x, z)$ there is a $j_{g''}$ so that there is a $2m_{\Pi} - 1$-branching subset of $U^X_\Pi(x, z)$ with $j_{g''} = j_{g''}$. Applying Lemma 3.2 to U^x_Π, there is a j and a $2m_{\Pi} - 1$-branching subset of U^x_Π with $j_{g''} = j_{g''}$.

Examining the definition of $K^{X,+,f_{e,q}}_{e,q}(x, z)$ and $K^{X,+,f_{e,q}}_{e,q}(x, z, \{Y_{a,i}\})$ for the relevant g'' extending g, we see that j witnesses that $f \in R^{X,+,f_{e,q}}_{e,q}(x, z, \{Y_{a,i}\})$. We conclude:

Theorem 4.10 Suppose $T^\infty \leq_T X$ are such that every requirement K^X_{e} is uniformly dense. Then there is a DNRX function f^∞ such that no $\Phi^X_{e,f_{e,q}}$ is a solution to the RWKL instance T^∞ and every requirement $K^X_{e,f_{e,q}}$ is uniformly dense.

4.3 Ground forcing

We now describe a forcing notion for building instances of RWKL. Recall the symmetry notion on trees: $\sigma_{|T}$ is the sequence with $\sigma_{|T}[0, x] = \sigma(0, x)$ and $\sigma_{|T}[x, |T|] = 1 - (\sigma[x, |T|])$, and a tree T is symmetric over S if whenever $\sigma \in T$ and $x \in S$, $\sigma_T \in T$.

We force with pairs (T, S) where S is a finite set and T is a finite $[0, 1]$-tree symmetric over S.

We say $(T', S') \leq (T, S)$ if T' end-extends T and $S \subseteq S'$. We say $T' \leq (T, S)$ if T' end-extends T and is symmetric over S.

Lemma 4.11 For any (T, S), any $\bar{e} = e_0, e_1, e_2, e_3$, and any $p = (f, n, z, \Xi)$, there is a $(T', S') \leq (T, S)$ such that either
(1) the pair \((T', S')\) forces that \(\mathcal{K}_T^{\infty}\) is not an RKL-requirement,
(2) the pair \((T', S')\) forces that \(p\) is not a condition, or
(3) the requirement \(\mathcal{K}_T^{\infty}\) is uniformly dense below \(p\).

Proof. If any \((T', S') \preceq (T, S)\) forces either of the first two cases, we are finished, so assume not. Let \(x\) be the smallest number larger than \(|T|\) and any element in \(S\). We ask:

Is there any \(T' \preceq (T, S \cup \{x\})\) such that there is a \(6n_{\leq} - 2\)-branching set of extensions \(U\) of \(f\) in \(\mathcal{K}_T^{\infty - \{0\}}(x)\)?

Suppose not. Then \((T, S \cup \{x\})\) forces that \(\mathcal{K}_T^{\infty}\) is not essential.

Suppose so, and let \(U\) be the first set enumerated. Without loss of generality, we may assume that \(|T'| \geq \max_{g \in U} z_{\mathcal{K}_T^{\infty}}^T(g)\) for each \(g \in U\). Choosing \(z\) to be larger than \(x\) and \(|T'|\), we ask:

Is there any \(T'' \preceq (T', S \cup \{x, z\})\) such that there is a \(4n_{\leq} - 1\)-branching \(U' \subseteq U\) such that for each \(g \in U'\), there is a \(4n_{\leq} - 1\)-branching set of extensions of \(g\), \(U_g \subseteq \mathcal{K}_T^{\infty - \{1\}}(x, z)\)?

Suppose not, and recall that \(z > |T'| \geq \max_{g \in U} z_{\mathcal{K}_T^{\infty}}^T(g)\). Thus, by Definition 4.5, we see \((T', S \cup \{x, z\})\) forces that \(\mathcal{K}_T^{\infty}\) is not essential.

Suppose so, and let \(y\) be large enough to witness the convergence of all necessary computations. Without loss of generality, we may assume that \(|T'| \geq y\). Then \(U'' = \bigcup_{g \in U'} U_g\) is a \(4n_{\leq}\)-branching set of extensions of \(g\). Because property (4) of the definition of a requirement satisfies the assumptions of Lemma 4.1, we may apply it to obtain a \(T^* \preceq (T'', S \cup \{x\})\) and a \(2n_{\leq}\)-branching \(U^*\) so that for each \(\sigma \in T^*\) with \(|\sigma| = |T^*|, U^* \subseteq \mathcal{K}_T^{\infty - \{1\}}(x, z, \{Y_a(\sigma)\})\) where \(Y_a(\sigma) = \{c > z : \sigma(c) \neq \sigma(a)\}\). This shows that \(\mathcal{K}_T^{\infty}\) is uniformly dense below \(p\).

In this proof, the symmetry over \(x\) is not really important. We need symmetry in extensions above the elements of \(S\), so it is convenient to fix a value \(x\) and assume symmetry over \(x\). The important point is symmetry over \(z\)—we assume this symmetry, and if we find the desired sets \(U_g\), we “spend,” or “sacrifice,” this symmetry to force uniform density.

In other words, \(T''\) contains the four possible configurations \(\tau_0^{-} \tau_1, \tau_0^{-} (1 - \tau_0), (1 - \tau_0)^{-} \tau_1, \) and \((1 - \tau_0)^{-} (1 - \tau_1)\). When we extend to \(T^*\), we kill off two of these configurations and the symmetry over \(z\) while retaining the other two, and therefore retaining symmetry above \(x\) (and also above the values in \(S\), which are all \(\leq x\)).

Theorem 4.12 There is a Turing ideal \(\mathcal{I}\) satisfying DNR but not RWKL.

Proof. Applying the lemma repeatedly, we may construct a \(T^\infty\) so that every requirement \(\mathcal{K}_T^{\infty}\) is uniformly dense. We may ensure \(T^\infty\) is infinite (for instance, by infinitely often extending \(T\) to \(T'\) by extending each maximal branch \(\sigma\) of \(T\) to both extensions \(\sigma^-(b)\), or by taking \(T'\) from the lemma to be a proper end-extension infinitely often). By Theorem 4.10 we may find a DNR\(^{\infty}\) function \(f^\infty\) so that no \(\Phi_e^{\infty\oplus f^\infty}\) is a solution to the RWKL instance \(T^\infty\) and every requirement \(\mathcal{K}_T^{\infty\oplus f^\infty}\) is uniformly dense. Iterating this countably many times and closing under computability, we obtain a Turing ideal \(\mathcal{I}\) containing \(T^\infty\), containing no solution to the RWKL instance \(T^\infty\), and so that for every \(W \in \mathcal{I}\), \(\mathcal{I}\) contains a DNR\(^W\) function.

Corollary 4.13 The principle DNR does not imply RWKL.

4.4 Priority construction for \(T^\infty\)

Above and in [7] the construction of the difficult instance of a problem is given by a forcing argument. As noted in [7], this forcing can be replaced by a priority argument. The argument is slightly more complicated, but has the benefit that it shows that the instance of RWKL can be taken to be computable. For completeness (and to illustrate how the conversion can be done for all arguments of this kind) we illustrate this with the construction of \(T^\infty\).

We take the countably many values of \(e\) and \(p\) and arrange them in a priority list of order type \(\omega_1\); we call the data associated to the \(i\)-th requirement in this list \((\mathcal{K}_{e_i}^{\infty}, f_i, n_i, \Xi_i)\). We construct the tree \(T^\infty\) in infinitely many stages; at the \(n\)-th stage, we have a finite tree \(T_n\). We also maintain, at each stage, a set \(S_n\).
At each stage, a requirement can be in one of four states, which we call $0, 1, 1+, +$; initially all requirements are in the 0 stage. A requirement can move from 0 to 1, from 0 to $1+$; when a requirement changes states it may injure all lower priority requirements, resetting their state to 0.

We will define below what it means for a requirement to need attention at stage n, and what we do when a requirement needs attention. Given T_n and the associated date, we define T_{n+1} by finding the least $i \leq n$ which needs attention and apply the corresponding operations.

A requirement i in state 1 always needs attention. When it receives attention at stage n we define a value x_i to be larger than any value in S_n and let $S_{n+1} = S_n \cup \{x_i\}$. We move this requirement to state 0. All other requirements are untouched. We define T_{n+1} to consist of all $\sigma \vdash (b)$ with $\sigma \in T_n$, $|\sigma| = |T_n|$, and $b \in \{0, 1\}$. (All lower priority requirements are in state 1, so we do not need to worry about injuring them.)

A requirement in state 0 needs attention at stage n if there exists a $6n_i - 2$-branching set of extensions U_i of f_i so that for each $g \in U_i$, g is coded by a value x_i and there is a $y \leq n$ so that $\exists g' \leq gR_{n}^{T_i}(x_i, y, g')$. (That is, $U_i \subseteq K_{n_i}^{T_i}(x_i)$ with all necessary witnesses bounded by n.) We take the first such U_i. We choose a value $z_i \geq \bigcup_{g \in U} z_{K_{n_i}^{T_i}(g)} \cup S_n$. We let $S_{n+1} = S_n \cap [0, x_i] \cup \{z_i\}$. We injure all lower priority requirements. (Any requirement which had $x_i > x_i$ or $z_i > x_i$ would have to be injured; our construction ensures that all such requirements indeed have lower priority.) We move this requirement to state 1.

A requirement in state 1 needs attention at stage n if there exists a $4n_i - 1$-branching $U' \subseteq U_i$ so that for each $g \in U'$ there is a $6n_i - 1$-branching set of extensions $U'_{g'}$ of g' so that for each $g' \in U'$, g' is coded by a value x_i and there is a $y \leq n$ so that $\exists g'' \leq g'R_{n_i}^{T_i}(x_i, z_i, g'')$. As above, we apply Lemma 4.1 to obtain an extension $T_{n+1} = T^*$ of T_n so that there is a $2n_i$-branching U^* so that for each $\sigma \in T_{n+1}$ with $|\sigma| = |T_{n+1}|$, $U^* \subseteq K_{n_i}^{T^*}(x_i, z_i, \{Y_{n}(\sigma)\})$ where $Y_{n}(\sigma) = \{c > z_i : \sigma(c) \neq \sigma(a)\}$. We set $S_{n+1} = S_n \cap [0, x_i]$; this injures all lower priority requirements.

Observe that this is a finite injury construction: a given requirement is only injured when a higher priority requirement moves from 0 to 1 or from 1 to $1+$. By an easy induction, each requirement eventually stabilizes in some stage and eventually receives attention if it needs attention.

We check that the result forces each $K_{n_i}^{T^*}$ to be uniformly dense. If $K_{n_i}^{T^*}$ is essential below p_i then consider the x_i chosen by the requirement i the last time it entered state 0. Being essential means i needed attention at some stage n after the last time it entered state 0, and therefore eventually received attention and moved to state 1. At this time some value z_i was fixed, and being essential means i needed attention again at some later stage. At this stage i was moved to state $1+$, and the construction of T_{n+1} in state $+1$ ensures that $K_{n_i}^{T^*}$ is uniformly dense below p_i. Since each pair \bar{e}, p is \bar{e}, p_i for some i, this completes the claim.

We conclude with a slight strengthening of Theorem 4.12:

Theorem 4.14 There is a computable tree T^∞ and a Turing ideal \mathcal{I} satisfying DNR so that \mathcal{I} contains no solution to T^∞ as an RWKL instance.

5 Positive implications

A tournament is a binary relation \rightarrow on $S \subseteq \mathbb{N}$ such that for every pair $x \neq y$, exactly one of $x \rightarrow y$ and $x \leftarrow y$ holds. A tournament \rightarrow is transitive if $x \rightarrow y$ and $y \rightarrow z$ implies $x \rightarrow z$. The Erdős-Moser principle, EM, states that whenever \rightarrow is a tournament there is an infinite set H such that \rightarrow is transitive on H. A tournament is stable if for every x, either $x \rightarrow y$ for cofinitely many y, or $x \leftarrow y$ for cofinitely many y. The Stable Erdős-Moser principle, SEM, states that whenever \rightarrow is a stable tournament there is an infinite set H such that \rightarrow is transitive on H.

Theorem 5.1 The principle SEM implies RWKL.

This was also shown independently in [2].

Proof. Our proof adapts the argument from [3] that \SRT_2^∞ implies RWKL. Let T be an infinite tree of $\{0, 1\}$ sequences—that is, an instance of RWKL. For any y, let σ_y be the lexicographically leftmost sequence in T of length τ. Then for any pair (x, y) with $x < y$, we set $x \leftarrow y$ if $\sigma_y(x) = 0$ and $x \rightarrow y$ if $\sigma_y(x) = 1$. For any x, $\lim_{y \uparrow} \sigma_y(x)$ exists, so the tournament is stable.
By SEM, we have an infinite set S on which \rightarrow is transitive. This has the following consequence: for any finite $S_0 \subseteq S$, there are arbitrarily long $\sigma \in T$ such that $x \leftarrow x'$ with $x, x' \in S_0$ implies $\sigma(x) \leq \sigma(x')$. In other words, viewing \leftarrow as a linear ordering on S, for any finite subset S_0 we find long σ so that $\sigma : S_0 \to \{0, 1\}$ is order preserving.

Let $T' \subseteq T$ consist of those $\sigma \in T$ such that σ is order preserving on $S \cap [0, |\sigma|)$. T' must also contain arbitrarily long sequences and is computable from S.

Let us define $\omega(S)$ to be those $x \in S$ such that there are only finitely many $y \in S$ with $y \leftarrow x$ (that is, those x with finitely many predecessors). Similarly, define $\omega^*(S)$ to be those $x \in S$ so there are only finitely many $y \in S$ with $y \rightarrow x$.

Suppose that for some $x \in S \setminus \omega^*(S) = \omega(S)$ we have $\sigma(x) = 1$ for arbitrarily large $\sigma \in T'$. Then let $S^\omega = \{ y \in S \mid y \rightarrow x \}$; since $x \in \omega(S)$, S^ω is cofinite, so certainly infinite. Whenever $\sigma(x) = 1$ for $\sigma \in T'$, also $\sigma(y) = 1$ for all $y \in S^\omega$, so S^ω is a solution to T' as an instance of RWKL, so also to T. Similarly, if there is an $x \in S \setminus \omega(S) = \omega^*(S)$ so that $\sigma(x) = 0$ for arbitrarily large $\sigma \in T'$ we could similarly use $\{ y \mid y \leftarrow x \}$.

So consider the remaining case. Clearly $S = \omega(S) \cup \omega^*(S)$ and for any $x \in \omega(S)$, every sufficiently long $\sigma \in T'$ makes $\sigma(x) = 0$ while for any $x \in \omega^*(S)$, every sufficiently long $\sigma \in T'$ makes $\sigma(x) = 1$. Then $\omega(S)$ and $\omega^*(S)$ are computable: given $x \in S$, there must be some n and some $b \in \{0, 1\}$ so that for every $\sigma \in T'$ with $|\sigma| = n, \sigma(x) = b$. Then $x \in \omega(S)$ iff $b = 0$. At least one of $\omega(S), \omega^*(S)$ is infinite, and there are arbitrarily long $\sigma \in T'$ so $\sigma(x) = 0$ for $x \in \omega(S)$ and $\sigma(x) = 1$ for $x \in \omega^*(S)$. Therefore whichever of these sets is infinite is a solution to T as an instance of RWKL.

The following result has been shown by Bienvenu, Patey, and Shafer [2]. We give an alternate direct proof:

Theorem 5.2 The principle DNR implies RWKL.

Proof. If $S \subseteq 2^{<\omega}$ is a set of finite sequences, we write $|S| \subseteq 2^\omega$ for the collection of infinite sequences with some initial segment in S.

We are given a tree T so that $|T|$ has measure $\geq \varepsilon$. We will exhibit explicit Turing functionals Ψ^T and Υ^X such that if $f : \omega \to \omega$ is a $\text{DNR}^{2\omega}$ function, Υ^f will compute a solution to T.

We describe Υ^X first, since it is quite explicit, and does not even depend on T. The idea is that we view Υ^X as a map from $f : \omega \to \omega$ to an infinite sequence $n \mapsto \Upsilon^f(n)$ in such a way that it requires many values of f to determine $\Upsilon^f(n)$.

We fix a computable function $r(i)$ which is sufficiently quickly growing. (The exact value can be calculated from the work below.) For $|S| \subseteq 2^\omega$ and $f \subseteq \text{dom}(f)$, we define $a^f_i = \prod_{j \leq r(i)} p^{s(j)}_j$ and $b^f_i = \prod_{j \leq r(i)} p^{s(j)}_j$. We set $\Upsilon^f(i) = b^f_i$.

The main useful feature of these sequences is that if $\tilde{s}^0 = s_0^0, \ldots, s_{r(0)}^0$ and $\tilde{s}^1 = s_0^1, \ldots, s_{r(1)}^1$ are sequences such that for some $i' \leq i$ and some $j \leq r(i')$, $s_j^0 \neq s_j^1$, then $b^f_j \neq b^f_j$. For a given finite sequence $\tilde{s} = s_0, \ldots, s_{r(1)}$, it is natural to focus on the set of numbers which could show up in possible extensions—that is, the set $N^{\tilde{s}} \subseteq \mathbb{N}$ such that $x \in N^{\tilde{s}}$ iff there is some sequence $s^{\tilde{s}}$ extending \tilde{s} so that $x = b^f$. For some i'. There is a natural function $\pi_T : 2^{<\omega} \to 2^{N^{\tilde{s}}}$ given by $\pi_T(A)(i) = \Lambda(i)$ so that $\mu(\pi_T^{-1}(S)) = \mu(S)$ for any measurable set $S \subseteq 2^{<\omega}$. We will use measures of the form $\mu(\pi_T(S))$ because this lets us focus on the contributions of different choices of \tilde{s} without entangling their effects.

For any $\tilde{s} = s_0, \ldots, s_{r(1)}$ and $n > b^f_0$, let us write

$$\langle \tilde{s} \rangle_n = \{ \sigma \in 2^\omega \mid \forall i_0, i_1 \leq i \: \sigma(b^f_{i_0}) = \sigma(b^f_{i_1}) \},$$

so $\mu(\{ \langle \tilde{s} \rangle_n \}) = 2^{1-i}$. Since $\langle \tilde{s} \rangle_n = \langle \tilde{s} \rangle_m$ for $n, m > b^f_0$, we just write $\langle \tilde{s} \rangle$ for this set.

We describe an enumeration algorithm for Ψ^T—that is, a single algorithm which may, at a given stage, output a value $\Psi^T(j) = s$ for some j where a value has not already been set. We will also construct a tree $T' \supseteq T$ at the n-th stage we will specify which sequences of length n belong to T'. We say a sequence $\tilde{s} = s_0, \ldots, s_{r(1)}$ has been killed by stage n if $T \cap \tilde{s}_n = \emptyset$. This means that T has ruled out b^f_i as a possible beginning to an infinite branch.

At the n-th stage, Ψ^T takes notice of the first $\tilde{s} = s_0, \ldots, s_{r(1)}$ which has been killed by stage n but which we have not taken notice of at a previous stage. (The exact ordering used does not matter as long as all sequences eventually get considered; a simple choice is to order sequences first by the earliest stage at which they are killed.
and then order sequences killed at the same stage lexicographically.) A sequence of length n belongs to T' exactly if it extends a sequence of length $n - 1$ in T' and does not belong to $(\tilde{S})_n$.

Let $i' \leq i$ be least such that
\[
\frac{\mu(\pi_{s_0, \ldots, s_{r(i')}}(T'_n \cap \langle s_0, \ldots, s_{r(i')} \rangle_n))}{\mu(\langle s_0, \ldots, s_{r(i')} \rangle_n)} < \varepsilon/2^{i'}.
\]

Such an i' exists since $T'_n \cap (\tilde{S})_n = \emptyset$. If there is any $j \in (r(i' - 1), r(i')]$ such that we have not yet output a value at j, we output $\Psi^T(j) = s_j$; we stop as soon as such a j is found and otherwise we output nothing at this stage. This completes the definition of the algorithm Ψ^T.

We now argue that if there is an i so that $\Psi^T(j)$ is defined for every $j \in (r(i - 1), r(i)]$, then $\mu([T']) < \varepsilon$. Suppose $\Psi^T(j)$ is defined for every $j \in (r(i - 1), r(i)]$; then for each such j we found a sequence \tilde{s}^j of length $r(i) + 1$ so that $\frac{\mu(\pi_{s_{r(i')}}([T'] \cap \tilde{s}^j))}{\mu([\tilde{s}^j])} < \varepsilon/2^{i'}$. We define a coloring c on distinct pairs j, j' by setting $c(j, j') = i$ to be the largest i' such that $s_{r(i')-1} \subseteq s_{r(i')-1}$, or 0 if there is no such i'. By the finite Ramsey’s Theorem there is an $i' < i$ and a subset $H \subseteq (r(i - 1), r(i])$ with
\[
|H| > \frac{\log_2 \varepsilon - i'}{\log_2 [1 - 2^{i - i'} + \varepsilon 2^{i - i'} - 2]} - i
\]
such that for all distinct pairs $j, j' \in H$, $c(j, j') = i'$. (The number $r(i)$ should be chosen large enough to ensure this instance of the finite Ramsey’s Theorem.)

Let \tilde{s}^* be the common initial segment of length $r(i' - 1) + 1$ (which is empty if $i' = 0$). For any $\tilde{s}^j, \tilde{s}^j'$ with $j, j' \in H$, $b\tilde{s}^j = b\tilde{s}^j'$ iff $i'' \leq i'$. Therefore the sets $\langle \tilde{s}^i \rangle$ are all subsets of $\langle \tilde{s}^* \rangle$ and independent as subsets. Observe that $\frac{\mu([\tilde{s}^*])}{\mu([\tilde{s}^0])} = 2^{-i'}$, if $\Lambda \in [T'] \cap \langle \tilde{s}^* \rangle$ then for each j we have either $\Lambda \in \langle \tilde{s}^j \rangle$ or $\Lambda \in \langle \tilde{s}^j \rangle \setminus \langle \tilde{s}^0 \rangle$. Observe that $\frac{\mu([\tilde{s}^*)]}{\mu([\tilde{s}^0])} < \varepsilon/2^{i'}$, so $\mu([T'] \cap [\tilde{s}^j]) < \varepsilon 2^{i - i'}$. On the other hand $\mu([\tilde{s}^j] \setminus [\tilde{s}^i]) = 1 - 2^{-i}$.

Since these sets are independent as subsets of $\langle \tilde{s}^* \rangle$, it follows that $\mu([T'] \cap [\tilde{s}^*]) < (1 - 2^{-i'} + \varepsilon 2^{i - i'}) |H|$. We have chosen H large enough that this is $< \varepsilon 2^{-i}$. Consider the largest $j \in H$ and the stage at which $\Psi^T(j)$ was output. At this stage, we picked the value \tilde{s}^j, and we have seen that
\[
\frac{\mu(\pi_{s_0, \ldots, s_{r(i'-1)}}(T'_n \cap \langle s_0, \ldots, s_{r(i'-1)} \rangle_n))}{\mu(\langle s_0, \ldots, s_{r(i'-1)} \rangle_n)} < \varepsilon/2^{i'}.
\]

If $i' > 0$ then we could only have output some $\Psi^T(j')$ with $j' \leq r(i' - 1)$, and therefore we could not have output $\Psi^T(j)$, which is a contradiction, so we cannot have $i' > 0$. But then $i' = 0$, so $\mu([T']) < \varepsilon$, and since $T \subseteq T'$, we would have $\mu([T]) < \varepsilon$.

So if $\mu([T']) \geq \varepsilon$, for each i there is a $j \in (r(i - 1), r(i)]$ so that $\Phi^T(j) \uparrow$. Now, we show that if f is a total function such that whenever $\Phi^T(n) \downarrow$, $f(n) \neq \Phi^T(n)$, then $\Phi^T\downarrow$ is a solution to T. For suppose not; then there is some i and some level n of T such that $b_{s_0}^i, \ldots, b_{s_i}^i$ is not a homogeneous path through any $\sigma \in T_n$. This means that some initial segment $f(0), \ldots, f(i)$ was killed, and therefore we took note of it at some stage $i' \leq i$ and tried to output $\Phi^T(j) = f(j)$ for some $j \in (r(i' - 1), r(i)]$; since this could not have occurred, it must be that $\mu(T) < \varepsilon$, contradicting the assumption that $\mu(T) \geq \varepsilon$. \hfill \qed

6 Further questions

There is still some room to refine the results here and in [2]. Patey [9] shows that RWKL (and even stronger theories like $RT^2_2 + FS$) do not imply d-DNR for any d. The reverse implication still seems to be open, however.

Question 6.1 For which d does d-DNR imply RWKL?

Acknowledgement The authors are grateful to the anonymous referee for many helpful comments. The paper was partially supported by NSF grant DMS-1340666.
References

[1] K. Ambos-Spies, B. Kjos-Hanssen, S. Lempp, and T. A. Slaman, Comparing DNR and WWKL, J. Symb. Log. 69(4), 1089–1104 (2004).
[2] L. Bienvenu, L. Patey, and P. Shafer, A Ramsey-type König’s lemma and its variants, in preparation.
[3] S. Flood, Reverse mathematics and a Ramsey-type König’s lemma, J. Symb. Log. 77(4), 1272–1280 (2012).
[4] C. G. Jockusch Jr., Degrees of functions with no fixed points, In: Logic, methodology and philosophy of science. VIII. Proceedings of the Eighth International Congress held at Moscow State University, Moscow, August 17–22, 1987, edited by J. E. Fenstad, I. T. Frolov, and R. Hilpinen, Studies in Logic and the Foundations of Mathematics Vol. 126 (North-Holland, 1989), pp. 191–201.
[5] M. Khan and J. S. Miller, Forcing with bushy trees, preprint, 2015 (arXiv: 1503:08870).
[6] M. Kumabe and A. E. M. Lewis, A fixed-point-free minimal degree, J. Lond. Math. Soc. 80(3), 785–797 (2009).
[7] M. Lerman, R. Solomon, and H. Towsner, Separating principles below Ramsey’s theorem for pairs, J. Math. Log. 13(2), 1350007, 44 (2013).
[8] J. Liu, RT; does not imply WKL; J. Symb. Log. 77(2), 609–620 (2012).
[9] L. Patey, On combinatorial weaknesses of Ramseyan principles, unpublished draft, 2014.
[10] L. Patey, Dominating the Erdős-Moser theorem in reverse mathematics, submitted, 2015.
[11] L. Patey, The strength of the tree theorem for pairs in reverse mathematics, to appear in: J. Symb. Log.
[12] S. G. Simpson, Subsystems of Second Order Arithmetic, Perspectives in Logic (Cambridge University Press, 2009).
[13] X. Yu and S. G. Simpson, Measure theory and weak König’s lemma, Arch. Math. Log. 30(3), 171–180 (1990).