CROSS SECTIONS FOR ELECTRON IMPACT EXCITATION OF
O VI LINES

Haykel Elabidi¹, Sylvie Sahal-Bréchot² and Nébil Ben Nessib³

¹ Groupe de Recherche en Physique Atomique et Astrophysique, Faculté des Sciences de Bizerte, Université de Carthage, Tunisia; haykel.elabidi@fsb.rnu.tn
² LERMA, Observatoire de Paris, CNRS, Université Pierre et Marie Curie, Place Jules Janssen, 92190 Meudon, France; sylvie.sahal-brechot@obspm.fr
³ Groupe de Recherche en Physique Atomique et Astrophysique, INSAT, Université de Carthage, Tunisia; nebil.bennessib@planet.tn

Received: 2011 August 08; accepted: 2011 August 15

Abstract. Radiative atomic data and electron impact excitation cross sections for the 2s − 2p transitions in O VI for transitions among the fine structure levels belonging to the 1s²nl (2 ≤ n ≤ 5) configurations have been calculated. We have extended the calculations of fine structure collision strengths up to 140 Ry and have compared our results at energies below 63 Ry to the R-matrix ones.

Key words: Impact excitation by electrons, cross sections, distorted wave method, plasma diagnostics, oscillator strengths

1. INTRODUCTION

Transitions in O VI have been observed in stellar spectra, in white dwarfs, in the solar corona, and in the solar transition region, where the two resonance lines at 1031.924 Å and 1037.614 Å are among the brightest emitted (Lozano et al. 2001). Excitation cross sections for this ion are very important for the spectroscopic diagnostics. We present in this paper, energy levels, oscillator strengths, electron impact collision strengths and cross sections for the O VI ion. Atomic data are compared to NIST (physics.nist.gov) and to Aggarwal & Keenan (2004) results. Cross sections for energies near the excitation threshold are compared to the experimental results of Lozano et al. (2001). Collision strengths are compared to results of Aggarwal & Keenan (2004) at energies up to 63 Ry. We extend our calculations up to 140 Ry.

2. COMPUTATIONAL PROCEDURE

The atomic structure has been computed using the UCL (University College, London) computer package SUPERSTRUCTURE (SST) of Eissner et al. (1974). This code takes into account configuration interaction. Relativistic corrections (spin-orbit, mass, Darwin and one-body) are introduced according to the Breit-Pauli. The electron scattering calculation has been performed in the distorted wave ap-
3. RESULTS AND DISCUSSIONS

Energies of the 24 fine structure levels belonging to the $1s^2nl$ (2 ≤ n ≤ 5) configurations and oscillator strengths of some allowed transitions are presented in Table 1. Comparison with NIST results and with those of Aggarwal & Keenan (2004) where the authors used the fully relativistic GRASP code of Dally et al. (1989) gives an agreement better than 1% for level energies and does not exceed 2% for oscillator strengths.

The calculated cross sections for energies near the excitation threshold of the $2s-2p$ transition are in good agreement with the experimental results of Lozano et al. (2001) as it is shown in Figure 1. Figures 2. and 3. display collision strengths for some transitions, where the authors adopted the Dirac Atomic R-matrix Code (DARC)

Table 1. O VI energy levels and oscillator strengths of some allowed transitions compared to NIST and GRASP results.

Level designation	Energy (Ry)	Transition	f_{ij}				
i Conf. level	Present NIST	GRASP	Present NIST	GRASP			
1 $1s^22s$ $2S_{1/2}$	0.000000	0.000000	0.000000	1 - 2	0.0067	0.0061	0.0073
2 $1s^22p$ $2P_{3/2}$	8.80409	8.7872	8.8628	1 - 3	0.1342	0.1327	0.1355
3 $1s^22p$ $2P_{1/2}$	8.85222	8.8831	8.9103	1 - 5	0.0893	0.0885	0.0873
4 $1s^23s$ $2S_{1/2}$	5.82350	5.8325	5.8251	1 - 6	0.1782	0.1770	0.1704
5 $1s^3p$ $2P_{1/2}$	6.05983	6.0701	6.0646	1 - 10	0.0263	0.0247	0.0244
6 $1s^3p$ $2P_{3/2}$	6.06122	6.0715	6.0660	1 - 11	0.0526	0.0494	0.0488
7 $1s^23d$ $2D_{3/2}$	6.14632	6.1476	6.1391	2 - 4	0.0289	0.0289	0.0287
8 $1s^3d$ $2D_{5/2}$	6.15656	6.1481	6.1395	2 - 7	0.0659	0.0657	0.0659
9 $1s^24s$ $2S_{1/2}$	7.75864	7.7703	7.7615	2 - 9	0.0658	0.0657	0.0556
10 $1s^24p$ $2P_{1/2}$	7.83449	7.8673	7.8591	3 - 4	0.0290	0.0290	0.0288
11 $1s^24p$ $2P_{3/2}$	7.85080	7.8679	7.8596	3 - 7	0.0660	0.0656	0.0660
12 $1s^34d$ $2D_{3/2}$	7.86581	7.8996	7.8902	3 - 8	0.5904	0.5915	0.5940
13 $1s^34d$ $2D_{5/2}$	7.88569	7.8988	7.8904	3 - 9	0.0058	0.0057	0.0057
14 $1s^24f$ $2P_{1/2}$	7.88710	7.9014	7.8915	4 - 5	0.1106	0.1114	0.1122
15 $1s^24f$ $2P_{3/2}$	7.88719	7.9015	7.8916	4 - 6	0.2226	0.2239	0.2259
16 $1s^25s$ $2S_{1/2}$	8.63249	8.6451	8.6359	4 - 10	0.0946	0.0922	0.0917
17 $1s^25p$ $2P_{1/2}$	8.68047	8.6942	8.6850	4 - 11	0.1886	0.1849	0.1827
18 $1s^25p$ $2P_{3/2}$	8.68077	8.6942	8.6831	5 - 7	0.0473	0.0492	0.0470
19 $1s^25d$ $2D_{3/2}$	8.69644	8.7104	8.7009	5 - 9	0.0644	0.0637	0.0641
20 $1s^25d$ $2D_{5/2}$	8.69653	8.7104	8.7010	6 - 7	0.0046	0.0048	0.0046
21 $1s^25f$ $2P_{1/2}$	8.69716	8.7115	8.7013	6 - 8	0.0420	0.0435	0.0418
22 $1s^25f$ $2P_{3/2}$	8.69721	8.7115	8.7018	6 - 9	0.0647	0.0638	0.0643
23 $1s^25g$ $2G_{7/2}$	8.69722	8.7116	8.7016	7 - 10	0.0127	0.0127	0.0127
24 $1s^25g$ $2G_{9/2}$	8.69724	8.7116	8.7017	7 - 11	0.0026	0.0025	0.0025

proximation using the DISTORTED WAVE code (Eissner 1998). Fine structure collision parameters have been obtained by the JAJOM code (Saraph 1978) for low partial wave l of the incoming electron ($l=29$). This code transforms the transition matrix elements from LS into LSJ coupling using Term Coupling Coefficients given by the SST code. Contributions to collision strengths for 30 ≤ l ≤ 50 have been taken into account through the Coulomb-Bethe approximation for the dipole transitions and a geometric series for the non-dipole ones.
of Norrington & Grant (Private communication), but for other transitions, they have the same behavior with energy but they are not in good agreement with the R-matrix results. Figure 4. shows also that for some other transitions, present collision strengths are not in agreement with the R-matrix calculations. In Table 2 are presented our collision strengths for three energies above thresholds and compared to DARC results. The two calculations agree within about 24%, 11% and 12% respectively for 15, 45 and 63 Ry. We have extended in the present work our fine structure collision strengths for electron energies up to 140 Ry.

Since collision parameters are used in our ab initio calculations of line broadening (Elabidi et al. 2008, 2009, Elabidi & Sahal-Bréchot 2011), comparison with experimental and other theoretical results of these parameters can be a powerful tool to check our line broadening calculations.

ACKNOWLEDGMENTS. This work has been supported by the Tunisian research unit 05/UR/12-04, the French one UMR 8112 and the bilateral cooperation agreement between the Tunisian DGRS and the French CNRS (project code 09/R 13-03, project No. 22637). The authors are indebted to J. Dubau and M. Cornille for their invaluable help in the use of the SST/DW/JAJOM computer codes.

REFERENCES
Aggarwal K. M. and Keenan F. P. 2004, Phys. Scr., 70, 222
Dally K. G., Grant I. P., Johnson, C. T. et al. 1989, Comput. Phys. Comm., 55, 424
Eissner W., Jones M. and Nussbaumer H. 1974, Comput. Phys. Comm., 8, 270
Eissner W. 1998, Comput. Phys. Comm., 114, 295
Elabidi H., Ben Nessib N., Cornille M. et al. 2008, J. Phys. B.: Atom. Mol. Opt. Phys., 41, n 025702
Elabidi H., Sahal-Bréchot S. and Ben Nessib N. 2009, EPJD, 54, 51
Fig. 3. Present collision strengths (open symbols) as a function of electron energy compared to R-matrix DARC results (solid symbols) for the two transitions: $2s^{2}S_{1/2} - 2p^{2}P_{3/2}^{o}$ (circles) and $2s^{2}S_{1/2} - 2p^{2}P_{3/2}^{o}$ (triangles).

Fig. 4. Present collision strengths (open symbols) as a function of electron energy compared to R-matrix DARC results (solid symbols) for the two transitions: $2p^{2}P_{3/2}^{o} - 3s^{2}S_{1/2}^{o}$ (circles) and $2p^{2}P_{1/2}^{o} - 2p^{2}P_{3/2}^{o}$ (triangles).

Table 2. O VI collisions strengths compared to R-matrix DARC results.

Transition	Energy (Ry)	Present	DARC				
i j	15	Energy	45	63	140		
1 2	2.751 - 0	2.846 - 0	3.845 - 0	3.772 - 0	2.557 - 0	4.158 - 0	2.123 - 0
1 3	5.552 - 0	5.685 - 0	5.418 - 0	7.537 - 0	5.122 - 0	8.311 - 0	4.249 - 0
1 4	1.384 - 1	1.982 - 1	1.897 - 1	2.234 - 1	2.000 - 1	2.276 - 1	2.220 - 1
1 5	5.831 - 2	6.395 - 2	1.525 - 1	1.492 - 1	1.850 - 1	1.824 - 1	2.278 - 1
1 6	1.175 - 1	1.272 - 1	3.033 - 1	2.970 - 1	3.681 - 1	3.631 - 1	4.536 - 1
1 7	1.692 - 1	1.618 - 1	2.165 - 1	2.266 - 1	2.271 - 1	2.392 - 1	2.326 - 1
1 8	2.410 - 1	2.427 - 1	3.257 - 1	3.399 - 1	3.415 - 1	3.587 - 1	3.493 - 1
1 9	2.563 - 1	3.383 - 2	3.760 - 2	3.420 - 2	4.056 - 2	4.415 - 2	4.614 - 2
1 10	1.158 - 2	1.697 - 2	3.257 - 2	3.415 - 2	4.054 - 2	4.118 - 2	5.549 - 2
2 3	2.078 - 1	2.793 - 1	1.996 - 1	2.452 - 1	2.039 - 1	2.428 - 1	2.115 - 1
2 4	3.173 - 2	3.725 - 2	7.018 - 2	7.132 - 2	8.295 - 2	8.524 - 2	9.255 - 2
2 5	1.519 - 1	2.361 - 1	1.235 - 1	2.348 - 1	2.007 - 2	2.157 - 1	1.233 - 1
2 6	4.284 - 2	4.496 - 2	4.581 - 2	4.604 - 2	4.672 - 2	4.783 - 2	4.585 - 2
2 7	1.131 - 0	1.159 - 0	2.134 - 0	2.117 - 0	2.430 - 0	2.449 - 0	2.726 - 0
2 8	6.040 - 2	6.556 - 2	4.590 - 2	4.852 - 2	4.649 - 2	4.879 - 2	4.857 - 2
2 9	5.531 - 3	8.699 - 3	1.064 - 2	1.134 - 2	1.282 - 2	1.298 - 2	2.627 - 2
2 10	2.743 - 2	4.177 - 2	3.403 - 2	4.580 - 2	3.626 - 2	4.684 - 2	4.124 - 2
3 4	6.413 - 2	7.493 - 2	1.423 - 1	1.436 - 1	1.670 - 1	1.716 - 1	1.865 - 1
3 5	4.303 - 2	4.516 - 2	4.609 - 2	4.633 - 2	4.703 - 2	4.814 - 2	4.606 - 2
3 6	3.568 - 1	4.775 - 1	4.351 - 1	5.344 - 1	4.570 - 1	5.450 - 1	4.975 - 1
3 7	2.843 - 1	3.113 - 1	4.771 - 1	4.829 - 1	5.385 - 1	5.496 - 1	6.001 - 1
3 8	2.128 - 0	2.145 - 0	3.909 - 0	3.860 - 0	4.427 - 0	4.458 - 0	4.953 - 0
3 9	1.107 - 2	1.745 - 2	2.162 - 2	2.229 - 2	2.598 - 2	2.608 - 2	3.279 - 2
3 10	1.104 - 2	1.412 - 2	9.843 - 3	1.038 - 2	1.066 - 2	1.050 - 2	1.017 - 2

Elabidi H. and Sahal-Bréchot S., 2011, EPJD, 61, 285
Lozano J. M., Niimura M., Smith J. et al. 2001, Phys. Rev. A, 63, 042713
Sarah H. E. 1978, Comput. Phys. Comm., 15, 247