Search for scalar bottom quarks and third-generation leptoquarks in p\overline{p} collisions at $\sqrt{s} = 1.96$ TeV

V.M. Abazov,36 B. Abbott,74 M. Abolins,63 B.S. Acharya,29 M. Adams,49 T. Adams,47 E. Aguilo,6 G.D. Alexeev,36 G. Alkhazov,40 A. Alton46 G. Alversen,61 G.A. Alves,2 L.S. Ancu,35 M. Aoki,48 Y. Arnoud,14 M. Aron,58 A. Askev,47 B. Åsman,41 O. Atramentov,66 C. Avila,8 J. BackusMases,81 F. Badaun,13 L. Baghy,48 B. Baldin,48 D.V. Bandurin,47 S. Banerjee,29 E. Barberis,61 A.-F. Barfuss,15 P. Baringer,56 J. Barreto,7 J.F. Bartlett,48 U. Bassler,18 S. Beale,6 A. Bean,56 M. Begalli,3 M. Begel,72 C. Belanger-Champagne,41 L. Bellantoni,48 J.A. Benitez,63 S.B. Beri,27 G. Bernardi,17 R. Bernhard,22 I. Bertran,42 M. Besançon,18 R. Beuselinck,43 V.A. Bezzubov,39 P.C. Bhat,48 V. Bhatnagar,27 G. Blazey,50 S. Blessing,7 K. Bloom,65 A. Boehlein,48 D. Boline,71 T.A. Bolton,57 E.E. Boos,48 G. Borissov,44 T. Bose,60 A. Brandt,77 R. Brock,63 G. Broojmans,69 A. Bros,48 D. Brown,19 X.B. Bu,7 D. Buchholz,51 M. Buehler,80 V. Buescher,24 V. Bunichev,38 S. Burdlin,42 T.H. Burnett,81 C.P.Buszello,43 P. Cafayat,29 B. Calpas,15 S. Calvet,16 E. Camacho-Pérez,33 J. Cammin,70 M.A. Carrasco-Lizarraga,33 E. Carrera,47 B.C.K. Casey,48 H. Castilla-Valdez,33 S. Chakrabarti,71 D. Chakraborty,50 K.M. Chan,54 A. Chandra,79 G. Chen,47 S. Chevalier-Théry,18 D.K. Cho,76 S.W. Cho,31 S. Choi,32 B. Choudhary,28 T. Christoudias,43 S. Chigangir,48 D. Claes,65 J. Clutter,56 M. Cooke,48 W.E. Cooper,48 M. Corcoran,59 F. Coudere,15 M.-C. Cousinou,15 A. Croc,43 D. Cutts,76 M. Čwiok,39 A. Das,45 G. Davies,43 K. De,77 S.J. de Jong,35 E. De La Cruz-Burelo,33 F. Deliot,18 M. Demartean,48 R. Demina,70 D. Denisov,48 S.P. Denisov,39 S. Desai,48 K. DeVaughan,65 H.T. Diehl,48 M. Diesburg,48 A. Domínguez,55 T. Dorland,96 A. Dubey,28 L.V. Dudko,38 D. Duggan,51 A. Dupertin,15 S. Dutt,27 A. Dyshkant,59 M. Eads,65 D. Edmunds,53 J. Ellison,49 V.D. Elvira,48 Y. Enari,17 S. Eno,59 H. Evans,12 A. Evdokimov,72 V.N. Evdokimov,39 G. Facini,61 A.V. Ferapontov,76 T. Ferbel,59,70 F. Fiedler,24 F. Filthaut,35 W. Fisher,63 H.E. Fisk,48 M. Fortner,50 H. Fox,42 S. Fuess,48 T. Gadfort,72 A. Garcia-Bellido,70 V. Gavrilov,37 P. Gay,13 W. Geist,19 W. Gong,15 E. Gerbaudo,67 C.E. Gerber,49 Y. Gerstein,66 D. Gillberg,66 G. Giménez,50 G. Golovanov,36 A. Goussiou,81 P.D. Grannis,71 S. Greder,19 H. Greenlee,84 Z.D. Greenwood,58 E.M. Gregores,4 G. Grenier,29 Ph. Gris,13 J.-F. Grivaz,16 A. Grohsjean,18 S. Grünendahl,48 M.W. Grünewald,30 F. Guo,71 J. Guo,71 G. Gutierrez,48 P. Gutierrez,74 A. Haas,69 P. Haefner,25 S. Hagopian,47 J. Haley,61 I. Hall,63 L. Han,7 K. Harder,44 A. Harel,70 J.M. Hauptman,55 J. Hays,43 T. Hebbeker,21 D. Hedlin,50 A.P. Heinson,46 U. Heintz,76 C. Hensel,23 I. Heredia-De La Cruz,13 K. Hernal,62 G. Hesketh,51 M.D. Hildreth,43 R. Hirosky,60 T. Hoang,47 J.D. Hobbs,71 B. Hoeielsen,12 M. Hohlfeld,74 S. Hossian,74 P. Houben,34 Y. Hu,71 Z. Hubacek,10 N. Huske,17 V. Hynek,10 I. Iashvili,68 R. Illingworth,48 A.S. Ito,48 S. Jabeen,76 M. Jaffré,16 S. Jain,68 D. Jamin,15 R. Jesik,43 K. Johns,45 C. Johnson,69 M. Johnson,48 D. Johnston,65 A. Jonckheere,48 P. Jonsson,43 A. Juste,48 K. Kaadze,57 E. Kajfasz,15 D. Karmanov,38 P.A. Kasper,48 I. Katsanos,65 R. Kehoe,78 S. Kerniche,51 N. Khatalayan,48 A. Khanov,75 A. Kharchilava,68 Y.N. Kharcheev,36 D. Khatidze,76 M.H. Kirby,75 M. Kirsch,21 J.M. Kohli,27 A.V. Kozelov,39 J. Kraus,63 A. Kumer,68 A. Kupeko,11 T. Kurca,9 V.A. Kuzmin,38 J. Kvita,9 S. Lammers,62 G. Landsberg,76 P. Lebrun,20 H.S. Lee,31 W.M. Lee,48 J. Lellouch,15 L. Li,61 Q.Z. Li,48 S.M. Lietti,5 J.K. Lim,31 D. Lincoln,48 J. Linnemann,63 V.V. Lipaev,49 R. Lipton,48 Y. Liu,7 Z. Liu,6 A. Lobodzian,10 P. Love,32 H.J. Lubatti,81 R. Luna-García,33 A.L. Lyon,48 A.K.A. Maciel,2 D. Mackin,79 R. Madar,18 R. Maagáñ-Villalba,33 P.K. Mal,45 S. Malik,55 V.L. Malyshev,36 Y. Maravin,57 J. Martínez-Ortega,33 R. McCartney,73 C.L. McGivern,56 M.M. Meijer,35 A. Melnitchouk,64 D. Menezes,50 P.G. Mercadante,4 M. Merkin,38 A. Meyer,21 J. Meyer,23 N.K. Mondal,29 T. Moulik,56 G.S. Munaza,15 M. Murshid,80 E. Nagy,17 M. Naimuddin,28 M. Narain,76 R. Nayyar,28 H.A. Neal,62 J.P. Negret,8 P. Neustroev,40 H. Nihlsen,22 S.F. Novaes,5 T. Numenmann,25 G. Obruant,40 D. Onoprienko,57 J. Orduna,33 N. Osman,43 J. Osta,44 G.J. Otero y Garzón,1 M. Owen,44 M. Padilla,46 M. Pangilinan,76 N. Parashar,53 V. Parihar,76 S.-J. Park,23 S.K. Park,31 J. Parsons,99 R. Partridge,76 N. Parua,52 A. Patwa,72 B. Penning,48 M. Perfilio,48 K. Peters,34 Y. Peters,44 G. Petrollo,70 P. Pétrof,16 R. Piegaia,1 J. Piper,63 M.A. Pileier,72 P.L.M. Podesta-Lerma,47 V.M. Podstavkov,48 M.-E. Pol,2 P. Polozov,37 A.V. Popov,39 M. Prewitt,79 D. Price,52 S. Protopenescu,72 J. Qian,62 A. Quadri,23 B. Quinn,48 M.S. Rangel,16 K. Ranjan,28 P.N. Ratoff,42 I. Razumov,39 P. Renkel,78 P. Rich,44 M. Rijssenbeek,71 I. Ripp-Baudot,19 F. Rizatdinova,73 M. Rominsky,48 C. Royon,18 P. Rubinov,48 R. Ruchti,54 G. Safronov,37 G. Sajot,14 A. Sánchez-Hernández,33 M.P. Sanders,25 B. Sanghi,48 G. Savage,48 L. Sawyer,58 T. Scanlon,43 D. Schaile,25 R.D. Schamberger,71 Y. Scheglov,40 H. Schellman,51 T. Schleipake,28 S. Schlothain,81 C. Schwanenberger,44 R. Schwienhorst,63 J. Sekaric,56 H. Severini,74 E. Shabalina,23 V. Shary,18 A.A. Shchukin,39 R.K. Shivpuri,28 V. Simak,10 V. Sirotenko,48 P. Skubic,74 S. Slattery,70 D. Smirnov,44 G.R. Snow,65 J. Snow,73 S. Snyder,72 S. Söldner-Rebemold,44 L. Sonnenschein,21
A. Sopczak, M. Sosebee, K. Soustruznik, B. Spurlock, J. Stark, V. Stolin, D.A. Stoyanova, M.A. Strang, E. Strauss, M. Strauss, R. Ströhmer, D. Strom, L. Stutte, P. Svoisky, M. Takahashi, A. Tanasijczuk, M. Taylor, B. Tiller, M. Titov, V.V. Tokmenin, D. Tsybichev, B. Tuchming, C. Tully, P.M. Tuts, W. Unalan, L. Uvarov, S. Uvarov, S. Uzunyan, R. Vai Kooten, W.M. van Leeuwen, N. Varelas, D. Vilanova, S.J. Wimpenny, P.M. Tuts, W.-C. Yang, A. Sopczak, 77

7 Simon Fraser University, Vancouver, British Columbia, and York University, Toronto, Ontario, Canada

7 University of Science and Technology of China, Hefei, People’s Republic of China

8 Universidad de los Andes, Bogotá, Colombia

9 Charles University, Faculty of Mathematics and Physics, Center for Particle Physics, Prague, Czech Republic

10 Czech Technical University in Prague, Prague, Czech Republic

11 Center for Particle Physics, Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic

12 Universidad San Francisco de Quito, Quito, Ecuador

13 LPC, Université Blaise Pascal, CNRS/IN2P3, Clermont, France

14 LPSC, Université Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut National Polytechnique de Grenoble, Grenoble, France

15 CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France

16 LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France

17 LPNHE, Universités Paris VI and VII, CNRS/IN2P3, Paris, France

18 CEA, Ifre, Saclay, France

19 IPHC, Université de Strasbourg, CNRS/IN2P3, Strasbourg, France

20 IPNL, Université Lyon 1, CNRS/IN2P3, Villeurbanne, France and Université de Lyon, Lyon, France

21 III. Physikalisches Institut A, RWTH Aachen University, Aachen, Germany

22 Physikalisches Institut, Universität Freiburg, Freiburg, Germany

23 II. Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen, Germany

24 Institut für Physik, Universität Mainz, Mainz, Germany

25 Ludwig-Maximilians-Universität München, München, Germany

26 Fachbereich Physik, Bergische Universität Wuppertal, Wuppertal, Germany

27 Panjab University, Chandigarh, India

28 Delhi University, Delhi, India

29 Tata Institute of Fundamental Research, Mumbai, India

30 University College Dublin, Dublin, Ireland

31 Korea Detector Laboratory, Korea University, Seoul, Korea

32 SungKyunKwan University, Suwon, Korea

33 CINVESTAV, Mexico City, Mexico

34 FOM-Institute NIKHEF and University of Amsterdam/NIKHEF, Amsterdam, The Netherlands

35 Radboud University Nijmegen/NIKHEF, Nijmegen, The Netherlands

36 Joint Institute for Nuclear Research, Dubna, Russia

37 Institute for Theoretical and Experimental Physics, Moscow, Russia

38 Moscow State University, Moscow, Russia

39 Institute for High Energy Physics, Protvino, Russia

40 Petersburg Nuclear Physics Institute, St. Petersburg, Russia

41 Stockholm University, Stockholm and Uppsala University, Uppsala, Sweden

42 Lancaster University, Lancaster LA1 4YB, United Kingdom

43 Imperial College London, London SW7 2AZ, United Kingdom

44 The University of Manchester, Manchester M13 9PL, United Kingdom

45 University of Arizona, Tucson, Arizona 85721, USA

46 University of California Riverside, Riverside, California 92521, USA

47 Florida State University, Tallahassee, Florida 32306, USA

(The D0 Collaboration)
Supersymmetric (SUSY) models provide an extension of the SM that resolves the “hierarchy problem” by introducing supersymmetric partners to the known fermions and bosons \(^1\). The supersymmetric quarks (squarks) are mixtures of the states \(\tilde{q}_L\) and \(\tilde{q}_R\), the superpartners of the SM quark helicity states. The theory permits a mass difference between the squark mass eigenstates, \(\tilde{q}_L\) and \(\tilde{q}_R\), and allows the possibility that the lighter states of top and bottom squarks have masses smaller than the squarks of the first two generations. In this analysis we consider the region of SUSY parameter space where the only decay of the lighter bottom squark is \(b_1 \rightarrow b \tilde{\chi}_1^0\), with \(m_{b_1} < m_{\tilde{b}_1} < m_b + m_{\tilde{\chi}_1^0}\), and the neutralino \(\tilde{\chi}_1^0\) and chargino \(\tilde{\chi}_1^\pm\) are the lightest SUSY partners of the electroweak and Higgs bosons. This analysis is inter-
interpreted within the framework of the minimal supersymmetric standard model (MSSM) with R-parity conservation, and under the hypothesis that the lightest, and consequently stable, SUSY particle is the χ^0_1. We therefore search for $p\bar{p} \to \tilde{b}_1 \tilde{b}_1 \to b\chi^0_1\chi^0_1$.

Leptoquarks are hypothesized fundamental particles that have color, electric charge, and both lepton and baryon quantum numbers. They appear in many extensions of the SM including extended gauge theories, composite models, and SUSY with R-parity violation. Current models suggest that leptoquarks of each of the three generations should decay to the corresponding generation of SM leptons and quarks to avoid introducing unwanted flavor changing neutral currents. Charge-1/3 third-generation leptoquarks would decay to $b\nu$ with branching fraction B or to $t\tau$ with branching fraction $1 - B$.

We report on a search for the production of pairs of bottom squarks and third-generation scalar leptoquarks in data collected by the D0 Collaboration at the Fermilab Tevatron Collider. For both searches, the signature is defined to be two b-jets and missing transverse energy (E_T) from the escaping neutrinos or neutralinos. This topology is identical to that for $p\bar{p} \to ZH \to \nu\bar{\nu} + b\bar{b}$ production, and the two analyses are based on the same data and selection criteria. Bottom squark or leptoquark pairs are expected to be produced mainly through qq annihilation or gg fusion, with identical leading order QCD production cross sections. We use the next-to-leading order (NLO) cross sections calculated by PROSPINO 2.1 for both bottom squark and leptoquark pair production, and found them to agree to better than 3%. Previous measurements excluded bottom squark masses $m_{b_1} < 222$ GeV for a massless neutralino, as well as charge-1/3 third-generation scalar leptoquark masses $m_{LQ} < 229$ GeV for $B = 1$. The D0 detector consists of layered systems surrounding the interaction point. The momenta of charged particles and the location of the interaction vertices are determined using a silicon microstrip tracker and a central fiber tracker immersed in the magnetic field of a 2 T solenoid. Jets, electrons, and tau leptons are reconstructed using the tracking information and the pattern of energy deposits in three uranium/liquid-argon calorimeters located outside the tracking system with a central calorimeter covering pseudorapidity $|\eta| < 1.1$, and two end calorimeters housed in separate cryostats covering the regions up to $|\eta| \approx 4.2$. Jet reconstruction uses a cone algorithm with radius $R = \sqrt{(\Delta y)^2 + (\Delta \phi)^2} = 0.5$ in rapidity (y) and azimuth (ϕ). Muons are identified through the association of tracks with hits in the muon system, which is outside of the calorimeter and consists of drift tubes and scintillation counters before and after 1.8 T iron toroids. The E_T is determined from the negative of the vector sum of the transverse components of the energy deposited in the calorimeter and the transverse momenta p_T of detected muons. The jet energies are calibrated using transverse energy balance in events with photons and jets and this calibration is propagated to the value of E_T.

The data were recorded using triggers based on jets and the E_T in the event. In addition to requirements on E_T and jet energy, the vector sum of the transverse energies of all jets, defined as $H_T \equiv |\sum_{jets}p_T|$, the scalar sum of the p_T of the jets (H_T), and the angle α between the two leading jets in the transverse plane, are also used for triggering. Typical requirements are $E_T > 25$ GeV, $H_T > 25$ GeV, $H_T > 50$ GeV, and $\alpha < 160^\circ$. After imposing quality requirements, the data correspond to an integrated luminosity of 5.2 fb$^{-1}$. The previous D0 publications used a subset of this data sample, and are superseded by the results obtained in this Letter.

Monte Carlo (MC) samples for $200 < m_{LQ} < 280$ GeV, and for (\tilde{b}_1, χ^0_1) pairs with $80 < m_{b_1} < 260$ GeV and $m_{\chi^0_1} < 120$ GeV, are generated with PYTHIA. Backgrounds from SM processes with significant E_T are estimated using MC. The most important backgrounds are from W/Z bosons produced in association with jets, with leptonic decays such as $Z \to \nu\bar{\nu}$ and $W \to e\nu$, and processes with $t\bar{t}$ and single top quark production. The cross sections used to estimate these contributions to the background are obtained from 12 and 13. At the parton level, vector boson pair production and the single-top quark events are generated with PYTHIA and COMPHEP, respectively, while ALPGEN is used for all other samples. All MC events are then processed with PYTHIA, which performs parton showering and hadronization. The resulting samples are processed using a GEANT simulation of the D0 detector. To model the effects of multiple interactions and detector noise, data from random $p\bar{p}$ crossings are overlaid on MC events. The CTEQ6L1 parameterization is used for all parton density functions (PDF). Instrumental background comes mostly from multijet processes with E_T arising from energy mismeasurement. This background, which we label MJ, dominates the low E_T region and is modeled using data.

A signal sample and a sample used to model the MJ background are selected. We select events with two or three jets with $|\eta| < 2.5$ and $p_T > 20$ GeV, and require that the interaction vertex has at least three tracks and is reconstructed within ± 40 cm of the center of the detector along the beam direction so that the tracks are within the geometric acceptance of the silicon tracker. As the leading highest p_T jets in the signal events are assumed to originate from decays of b quarks, we require that at least two jets, including the leading jet, have at least two tracks pointing to the primary vertex in order to apply b-tagging algorithms. We also require the two leading jets satisfy $\alpha < 165^\circ$. To reduce the contribution from $W \to l\nu$ decays, we veto events with isolated electrons or muons with $p_T > 15$ GeV, as well as tau leptons that decay hadronically to a single charged particle with $p_T > 12$ GeV when there is no associated electromagnetic cluster or $p_T > 10$ GeV if there is such a cluster. To suppress the MJ background, we require $E_T > 40$ GeV.
and E_T significance $S > 5$ \cite{19}. We also remove events when the direction of the E_T overlaps with a jet in ϕ by requiring $E_T/\text{GeV} > 80 - 40 \times \Delta \phi_{\text{min}}(E_T, \text{jets})$, where $\Delta \phi_{\text{min}}(E_T, \text{jets})$ denotes the minimum of the angles between the E_T and any of the selected jets.

The contribution from multijet processes is determined using the techniques described in \cite{14}. For signal events, the direction of E_T tends to be aligned with the missing track transverse momentum, p_T, defined as the negative of the vectorial sum of the p_T of the charged particles. A strong correlation of this kind is not expected in multijet events, where E_T originates mainly from mismeasurement of jet energies in the calorimeter. We exploit this difference by requiring $D < \pi/2$ for signal, where D is the azimuthal distance between E_T and p_T, $\Delta \phi(E_T, p_T)$, and use events with $D > \pi/2$ to model the kinematic distributions of the MJ background in the signal sample after subtracting the contribution from SM processes. The MJ background is normalized before b-tagging by requiring the number of observed events in data to equal the sum of SM and MJ contributions in the $D < \pi/2$ region. The signal contribution is assumed to be zero. Figure \ref{fig:1} shows the E_T distribution and the background contributions from SM and MJ sources after these selections.

![Figure 1](image1.png)

FIG. 1: (color online). The E_T distribution before b-tagging. The points with the error bars represent data while the shaded histograms show the contributions from background processes. Signal distributions with $(m_{b_1}, m_{\chi_1})=(130, 85)$ GeV and $m_{LQ} = 240$ GeV are shown as solid and dashed lines, respectively.

A neural network (NN) b-tagging algorithm \cite{20} is used to identify heavy-flavor jets, and reduce the SM and MJ backgrounds that are dominated by light flavor jets. We apply b-tagging and use the requirements on the NN output that give one jet to be tagged with an average efficiency of $\approx 70\%$ and the other with an average efficiency of $\approx 50\%$, where the corresponding probabilities of a light-flavored jet to be wrongly identified as a b-jet are $\approx 6.5\%$ and $\approx 0.5\%$, respectively. These conditions are designed to optimize the discovery reach for a b_1 and LQ_3.

Additional selections reduce the remaining number of events with poorly measured E_T. We require $\Delta \phi_{\text{min}}(E_T, \text{jets}) > 0.6$ rad, and define an asymmetry \(A = (E_T - H_T)/(E_T + H_T) \) and require $-0.1 < A < 0.2$ \cite{21}. The E_T and H_T distributions after imposing b-tagging and the requirements on $\Delta \phi_{\text{min}}(E_T, \text{jets})$ and A are shown in Fig. \ref{fig:2} along with the expectations for two possible signals which show the kinematic variation for different masses.

![Figure 2](image2.png)

FIG. 2: (color online). The (a) E_T and (b) H_T distributions after b-tagging and additional selections. The points with the error bars represent data while the shaded histograms show the contributions from background processes. Signal distributions with $(m_{b_1}, m_{\chi_1})=(130, 85)$ GeV and $m_{LQ} = 240$ GeV are shown as solid and dashed lines, respectively.

We then apply final selections to improve the sensitivity. As our signals consist of two high-p_T b-jets, we use $X_{ij} = (p_{T^{\text{jet1}}} + p_{T^{\text{jet2}}})/H_T$ as a discriminant against top-quark processes. We optimize selections on $p_{T^{\text{jet1}}}$, E_T, $
TABLE I: Predicted and observed numbers of events before and after b-tagging and additional event selections. The number of background events after pretag selection is normalized to the number of data events. Signal acceptances and the predicted number of events are given for two ($m_{LQ}, m_{\tilde{\chi}^0_1}$) mass points. The uncertainties on total background and the signals include all statistical and systematic uncertainties.

Process	Pretag	b-tag	$0.1 < A < 0.2$	$X_{jj} > 0.75$	$X_{jj} > 0.9$
			$\Delta \phi(E_T, \text{jets}) > 0.6$	$p_T^{\text{jet}} > 20 \text{ GeV}$	$p_T^{\text{jet}} > 50 \text{ GeV}$
Diboson	2,060	38	35	31	0.3
$W(\rightarrow \ell\nu) + \text{light jets}$	49,250	130	119	105	0.5
$Wc\bar{c}, Wbb$	7,792	253	325	261	1.9
$Z(\rightarrow \ell\ell) + \text{light jets}$	17,663	11	9	8	0
$Zc\bar{c}, Zbb$	4,526	256	247	217	1.9
Top	2,019	348	301	190	2.2
MJ	30,243	444	205	157	0
Total background	113,553	1,242	1,242	971	6.9
# data events	113,553	1,463	1,463	1,131	901

Signal (acceptance, %)

| $(m_{LQ}, m_{\tilde{\chi}^0_1})=(240,0) \text{ GeV}$ | 145 \pm 11 (38.7) | 43.3 \pm 6.4 (11.4) | 42.0 \pm 6.2 (11.1) | - | 10.5 \pm 1.9 (2.8) |
| $(m_{LQ}, m_{\tilde{\chi}^0_1})=(130,85) \text{ GeV}$ | 1928 \pm 158 (10.9) | 544 \pm 85 (3.1) | 529 \pm 77 (3.0) | 481 \pm 66 (2.7) | - |

H_T, and X_{jj} for different ($m_{LQ}, m_{\tilde{\chi}^0_1}$) and m_{LQ} by choosing selections that yield the smallest expected limit on the cross section. These selections are more restrictive for LQ_3 and b_1 signals with larger mass. For regions with small $m_{LQ} - m_{\tilde{\chi}^0_1}$, the average E_T and jet energies are lower, and relaxed requirements are found to be optimal. The results of the selections, and the predicted numbers of events from background processes are listed in Table II including two final signal selection examples. For a signal with high E_T, the largest backgrounds are from $W/Z + bb$ production and top quark processes. There is in addition a significant contribution from multijets for bottom squark signal points with a small value of E_T.

Systematic uncertainties include those on the integrated luminosity (6.1%), trigger efficiency (2%), and jet energy calibration and reconstruction (3% for signal and (2-7)% for background). Uncertainties associated with b-tagging are (6-17)% for signal and (5-11)% for background. Uncertainties on theoretical cross sections for SM processes include 10% on top quark production, and 6% on the total (W/Z)+jets cross section with an additional 20% uncertainty on heavy flavor content. The contribution from the MJ background is assigned a 25% uncertainty which includes the impact of possible signal events contained in the pretag sample.

We obtain limits on the pair production cross section multiplied by the branching fraction squared ($\sigma \times B^2$) using the CL_s approach [22]. In this technique, an ensemble of MC experiments using the expected numbers of signal and background events is compared to the number of events observed in data to derive an exclusion limit. Signal and background contributions are varied within their uncertainties taking into account correlations among their systematic uncertainties. The LQ_3 and b_1 ($m_{\tilde{\chi}^0_1} = 0$) observed and expected cross section limits are given in Table II.

TABLE II: Observed and expected 95% C.L. limits on the cross section for different leptoquark or bottom squark (assuming $m_{\tilde{\chi}^0_1}=0$) masses.

Mass (GeV)	220	240	250	260	280
Observed (pb)	0.077	0.063	0.056	0.052	0.054
Expected (pb)	0.067	0.056	0.049	0.046	0.040

Figure 3(a) shows the 95% C.L. upper limits on the cross section as a function of m_{LQ}, together with the theoretical cross section σ_{th} assuming $B = 1$. The uncertainty on σ_{th} is obtained by varying the renormalization and factorization scales by a factor of two from the nominal choice $\mu = m_{LQ}$ and incorporating the PDF uncertainties [6]. Limits on m_{LQ} are obtained from the intersection of the observed cross section limit with the central σ_{th} and yield a lower mass limit of 247 GeV for $B = 1$ for the production of third-generation leptoquarks. If the 95% C.L. experimental limit is compared with the one standard deviation lower value of σ_{th}, we obtain a mass limit of $m_{LQ} = 238$ GeV. Also shown is the central value of σ_{th} when the coupling to the $t\tau$ channel is identical, yielding $B = 1 - 0.5 \times F_{sp}$ where F_{sp} is a phase space suppression factor for the $t\tau$ channel [8]. The mass limit in this case is 234 GeV.

Figure 3(b) shows the excluded region in the plane of the bottom squark versus neutralino mass obtained using the central σ_{th}. For $m_{\tilde{\chi}^0_1} = 0$, the limit is $m_{b_1} > 247$ GeV. The exclusion region extends to $m_{\tilde{\chi}^0_1} = 110$ GeV for $160 < m_{b_1} < 200$ GeV.

In conclusion, in the 5.2 fb$^{-1}$ data sample studied, the observed number of events with the topology of two b-jets plus missing transverse energy is consistent with that
The suppression of σ theory band is shown in grey with an uncertainty range as discussed in the text. The long-dashed line indicates the expected from known SM processes. We set limits on previous results.

We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC and the Royal Society (United Kingdom); MSMT and GACR (Czech Republic); CRC Program and NSERC (Canada); BMBF and DFG (Germany); CAS and CNSF (China).

References:

1. H.E. Haber and G.L. Kane, Phys. Rep. 117, 75 (1985); S. P. Martin, arXiv:hep-ph/9709350
2. P. Fayet, Phys. Rev. Lett. 69, 489 (1977).
3. D. E. Acosta and S. K. Blessing, Ann. Rev. Nucl. Part. Sci. 49, 389 (1999) and references therein; C. Amsler et al., Phys. Lett. B 667, 1 (2008).
4. V.M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. 104, 071801 (2010).
5. W. Beenakker et al., Nucl. Phys. B515, 3 (1998); www.thphys.uni-heidelberg.de/~plehn/prospino/. The calculation used a gluino mass of 609 GeV.
6. M. Kramer, T. Plehn, M. Spira, and P. M. Zerwas, Phys. Rev. Lett. 79, 341 (1997).
7. V.M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. 97, 171806 (2006); V.M. Abazov et al. (D0 Collaboration), Phys. Rev. D 60, R031101 (1999).
8. V.M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. 99, 061801 (2007). Charge-2/3 and 4/3 third-generation leptoquarks have been excluded for $m_{LQ} < 210$ GeV assuming a 100% branching fraction into the br mode, V.M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. 101, 241802 (2008).
9. V.M. Abazov et al. (D0 Collaboration), Nucl. Instrum. Methods in Phys. Res. A 565, 463 (2006); M. Abolins et al., Nucl. Instrum. Methods in Phys. Res. A 584, 75 (2008); R. Angstadt et al., arXiv.org:0911.2522 [phys.ins-det], submitted to Nucl. Instrum. Methods in Phys. Res. A.
10. G.C. Blazey et al., arXiv:hep-ex/0005012
11. T. Sjöstrand, S. Mrenna, and P. Skands, J. High Energy Phys. 05, 026 (2006). We use version 6.323.
12. J.M. Campbell and R.K. Ellis, Phys.Rev. D 60, 113006 (1999); J.M. Campbell and R.K. Ellis, Phys.Rev. D 62, 114012 (2000).
13. M. Cacciari et al., J. High Energy Phys. 4, 068 (2004); N. Kidonakis and R. Vogt, Phys. Rev. D 68, 114014
(2003); N. Kidonakis, Phys. Rev. D 74, 114012 (2006).
[14] E. Boos et al. (CompHEP Collaboration), Nucl. Instrum. Methods in Phys. Res. A 534, 250 (2004). We use version 4.4.
[15] M.L. Mangano et al., J. High Energy Phys. 07, 001 (2003). We use version 2.13.
[16] R. Brun and F. Carminati, CERN Program Library Long Writeup W5013, 1993 (unpublished).
[17] J. Pumplin et al., J. High Energy Phys. 07, 012 (2002); D. Stump et al., J. High Energy Phys. 10, 046 (2003).
[18] V.M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. 102, 251801 (2009).
[19] A. Schwartzman, Ph.D. thesis, Universidad de Buenos Aires, FERMILAB-THESIS-2004-21 (2004). Larger values of S correspond to E_T values that are less likely to be caused by fluctuations in jet energies.
[20] V.M. Abazov et al. (D0 Collaboration), Nucl. Instrum. Methods in Phys. Res. A 620, 490 (2010).
[21] V.M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. 97, 161803 (2006).
[22] T. Junk, Nucl. Instrum. Methods in Phys. Res. A 434, 435 (1999); A. Read, J. Phys. G 28, 2693 (2002).
[23] LEPSUSYWG: ALEPH, DELPHI, L3, and OPAL Collaborations, Report No. LEPSUSYWG/04-02.1.
[24] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 76, 072010 (2007); T. Affolder et al. (CDF Collaboration), Phys. Rev. Lett. 84, 5704 (2000). T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 105, 081802 (2010).