Geometrical splitting and reduction of Feynman diagrams

Andrei I Davydychev

Université de Montréal, 110 Schlumberger Drive, Sugar Land, Texas 77478, USA

Institute for Nuclear Physics, Moscow State University, 119992 Moscow, Russia

E-mail: davyd@theory.sinp.msu.ru

Abstract. A geometrical approach to the calculation of \(N\)-point Feynman diagrams is reviewed. It is shown that the geometrical splitting yields useful connections between Feynman integrals with different momenta and masses. It is demonstrated how these results can be used to reduce the number of variables in the occurring functions.

1. Introduction

A geometrical interpretation of kinematic invariants and other quantities related to \(N\)-point Feynman diagrams (shown in figure 1) helps us to understand the analytical structure of the results for these diagrams. As an example, singularities of the general three-point function can be described pictorially through a tetrahedron constructed out of the external momenta and internal masses. Such a geometrical visualization can be used to derive Landau equations defining the positions of possible singularities [1] (see also in [2]).

In general the one-loop \(N\)-point diagrams (as shown in figure 1) depend on \(\frac{1}{2}N(N-1)\) momentum invariants \(k^2_{ji} = (p_j - p_i)^2\) and \(N\) masses of the internal particles \(m_i\). Here and below we follow the notation used in [3]; in particular, the powers of the internal scalar propagators are denoted as \(\nu_i\), and the space-time dimension is denoted as \(n\), so that we can also deal with the dimensionally-regulated integrals with \(n = 4 - 2\varepsilon\) [4]. Below we will mainly consider the cases when all \(\nu_i = 1\).

In [5, 6, 7] it was demonstrated how such geometrical ideas could be used for an analytical calculation of one-loop \(N\)-point diagrams. For the geometrical interpretation, a “basic simplex” in \(N\)-dimensional Euclidean space is employed (a triangle for \(N = 2\), a tetrahedron for \(N = 3\), etc.), and the obtained results can be expressed in terms of an integral over a \((N-1)\)-dimensional

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{N-point_diagram.png}
\caption{\(N\)-point diagram}
\end{figure}
spherical (or hyperbolic) simplex, which corresponds to the intersection of the basic simplex and the unit hypersphere (or the corresponding hyperbolic hypersurface), with a weight function depending on the angular distance \(\theta \) between the integration point and the point 0, corresponding to the height of the basic simplex (see in [5]). For \(N = 3 \) this weight function is equal to 1, and the results simplify: for the case \(N = 3 \) see in [8], and for the case \(N = 4 \) see in [9, 10]. Other interesting examples of using the geometrical approach can be found, e.g., in [11].

In this paper we will show that the natural way of splitting the basic simplex, as prescribed within the geometrical approach discussed above, leads to a reduction of the effective number of independent variables in separate contributions obtained as a result of such splitting.

2. Two-point function

For the two-point function, there is only one external momentum invariant \(k_{12}^2 \), and the sides of the corresponding basic triangle are \(m_1, m_2 \) and \(K_{12} \equiv \sqrt{k_{12}^2} \), as shown in figure 2a. The angle \(\tau_{12} \) between the sides \(m_1 \) and \(m_2 \) is defined through \(\cos \tau_{12} = c_{12} = (m_1^2 + m_2^2 - k_{12}^2)/(2m_1m_2) \), and (in the spherical case) the integration goes over the arc \(\tau_{12} \) of the unit circle, as shown in figure 2b.

![Figure 2. Two-point case: (a) the basic triangle and (b) the arc \(\tau_{12} \).](image)

![Figure 3. Two-point function: reduction to equal-mass integrals.](image)

For splitting we use the height of the basic triangle, \(m_0 \), and obtain two triangles with the sides \((m_1, m_0, K_{01} \equiv \sqrt{k_{01}^2}) \) and \((m_2, m_0, K_{02} \equiv \sqrt{k_{02}^2}) \), respectively. Here \(m_0 = m_1m_2 \sin \tau_{12}/\sqrt{k_{12}^2} \), \(k_{01}^2 = (k_{12}^2 + m_1^2 - m_2^2)^2/(4k_{12}^2) \) and \(k_{02}^2 = (k_{12}^2 - m_1^2 + m_2^2)^2/(4k_{12}^2) \) (note that \(k_{01}^2 = m_1^2 - m_0^2 \) and \(k_{02}^2 = m_2^2 - m_0^2 \)). Each of the resulting integrals can be associated with a two-point function, and we arrive at the following decomposition:

\[
J^{(2)} \left(n; 1, 1|k_{12}^2; m_1, m_2 \right) = \frac{1}{2k_{12}^2} \left\{ \left(k_{12}^2 + m_1^2 - m_2^2 \right) J^{(2)} \left(n; 1, 1|k_{01}^2; m_1, m_0 \right) \right. \\
+ \left. \left(k_{12}^2 - m_1^2 + m_2^2 \right) J^{(2)} \left(n; 1, 1|k_{02}^2; m_2, m_0 \right) \right\}. \quad (1)
\]

This is an example of a functional relation between integrals with different momenta and masses, similar to those described in [12]. Moreover, using the geometrical relation shown in figure 3, we can represent the right-hand side in terms of the equal-mass integrals:

\[
J^{(2)} \left(n; 1, 1|k_{12}^2; m_1, m_2 \right) = \frac{1}{4k_{12}^2} \left\{ \left(k_{12}^2 + m_1^2 - m_2^2 \right) J^{(2)} \left(n; 1, 1|4k_{01}^2; m_1, m_1 \right) \right. \\
+ \left. \left(k_{12}^2 - m_1^2 + m_2^2 \right) J^{(2)} \left(n; 1, 1|4k_{02}^2; m_2, m_2 \right) \right\}. \quad (2)
\]

Let us look at the number of variables. In the original integral \(J^{(2)} \left(n; 1, 1|k_{12}^2; m_1, m_2 \right) \) we have three independent variables: two masses and one momentum invariant (out of them we
can construct two dimensionless variables). In the integral \(J^{(2)} (n; 1, 1 | k^2_{01}, m_1, m_0) \) we have one extra condition on the variables, \(k^2_{01} = m_1^2 - m_0^2 \), so that we get two independent variables (i.e., one dimensionless variable). The same is valid for \(J^{(2)} (n; 1, 1 | 4k^2_{01}, m_1, m_0) \), where the extra condition is due to two equal masses. Therefore, the result for the two-point function in arbitrary dimension can be expressed in terms of a combination of functions of a single dimensionless variable: indeed, we know that it can be presented in terms of the Gauss hypergeometric function \(_2F_1 \) (see, e.g., in [5, 13]) whose \(\varepsilon \)-expansion is known to any order [14, 15].

3. Three-point function

For the three-point function, there are three external momentum invariants, \(k^2_{12}, k^2_{13} \) and \(k^2_{23} \), and the sides of the corresponding basic tetrahedron are \(m_1, m_2, m_3, K_{12} \equiv \sqrt{k^2_{12}} \), \(K_{13} \equiv \sqrt{k^2_{13}} \) and \(K_{23} \equiv \sqrt{k^2_{23}} \), as shown in figure 4a. The angles \(\tau_{12}, \tau_{13}, \) and \(\tau_{23} \) between the sides \(m_1, m_2 \) and \(m_3 \) are defined through \(\cos \tau_{ij} \equiv c_{ij} = (m_i^2 + m_j^2 - k^2_{ij})/(2m_im_j) \), and (in the spherical case) the integration extends over the spherical triangle 123 of the unit sphere, see in figure 4b.

Figure 4. Three-point case: (a) the basic tetrahedron and (b) the solid angle.

For the splitting we use the height of the basic tetrahedron, \(m_0 \), and obtain three tetrahedra, as shown in figure 5a. One of them has the sides \(m_1, m_2, m_0, K_{12} \equiv \sqrt{k^2_{12}}, K_{01} \equiv \sqrt{k^2_{01}} \) and \(K_{02} \equiv \sqrt{k^2_{02}} \), and the sides for the others can be obtained by permutation of the indices.

Here \(k^2_{01} = m_1^2 - m_0^2, k^2_{02} = m_2^2 - m_0^2, k^2_{03} = m_3^2 - m_0^2, \) and \(m_0 = m_1m_2m_3\sqrt{D^{(3)}/\Lambda^{(3)}} \), where \(\Lambda^{(3)} = \frac{1}{4} [2k^2_{12}k^2_{13} + 2k^2_{12}k^2_{23} + 2k^2_{13}k^2_{23} - (k^2_{12})^2 - (k^2_{13})^2 - (k^2_{23})^2] \), and \(D^{(3)} = \det |c_{ij}| \) is the Gram determinant, see in [5, 6] for more details. Each of the resulting integrals can be associated with a specific three-point function, and we arrive at the following decomposition:

\[
J^{(3)} (n; 1, 1, 1 | k^2_{23}, k^2_{13}, k^2_{12}, m_1, m_2, m_3) = \frac{m^2_1m^2_2m^2_3}{\Lambda^{(3)}} \left\{ \frac{F^{(3)}_1}{m^2_1} J^{(3)} (n; 1, 1, 1 | k^2_{23}, k^2_{03}, k^2_{02}, m_0, m_2, m_3) \right. \\
+ \frac{F^{(3)}_2}{m^2_2} J^{(3)} (n; 1, 1, 1 | k^2_{13}, k^2_{12}, m_1, m_0, m_3) \\
+ \frac{F^{(3)}_3}{m^2_3} J^{(3)} (n; 1, 1, 1 | k^2_{03}, k^2_{02}, m_1, m_2, m_0) \right\}, \quad (3)
\]

with

\[
F^{(3)}_3 = \frac{1}{4m^2_1m^2_2} \left[k^2_{12} (k^2_{13} + k^2_{23} - k^2_{12} + m^2_1 + m^2_2 - 2m^2_3) - (m^2_1 - m^2_2) (k^2_{13} - k^2_{23}) \right], \quad (4)
\]

eetc., so that \(\sum_{i=1}^{3} (F^{(3)}_i/m^2_i) = \Lambda^{(3)}/(m^2_1m^2_2m^2_3). \)
By dropping perpendiculars onto the sides $K_{12} \equiv \sqrt{k_{12}^2}$, etc., each of the resulting tetrahedra can be split into two, so that in total we get six “birectangular” tetrahedra, as shown in figure 5b. Furthermore, for each of them we can use the geometrical relation similar to one shown in figure 3, reducing them to the integrals with two equal masses:

$$J^{(3)}(n; 1, 1, 1|k_{02}^2, k_{01}^2, k_{12}^2; m_1, m_2, m_0) = \frac{1}{2k_{12}^2} \left\{ (k_{12}^2 + m_1^2 - m_2^2)J^{(3)}(n; 1, 1, 1|k_{01}^2, k_{02}^2, (k_{12}^2 + m_1^2 - m_2^2)^2/k_{12}^2; m_1, m_1, m_0)
ight.$$

$$+ (k_{12}^2 - m_1^2 + m_2^2)J^{(3)}(n; 1, 1, 1|k_{02}^2, k_{01}^2, (k_{12}^2 - m_1^2 + m_2^2)^2/k_{12}^2; m_2, m_2, m_0) \right\}. \quad (5)$$

Let us analyze the number of variables. In the integral $J^{(3)}(n; 1, 1, 1|k_{23}^2, k_{13}^2, k_{12}^2; m_1, m_2, m_3)$ we have six independent variables: three masses and three momentum invariants (out of them we can construct five dimensionless variables). In $J^{(3)}(n; 1, 1, 1|k_{02}^2, k_{01}^2, k_{12}^2; m_1, m_2, m_0)$ we have two extra conditions on the variables, $k_{01}^2 = m_1^2 - m_0^2$ and $k_{02}^2 = m_2^2 - m_0^2$, so that we get four independent variables (i.e., three dimensionless variables). For the integral $J^{(3)}(n; 1, 1, 1|k_{01}^2, k_{02}^2, (k_{12}^2 + m_1^2 - m_2^2)^2/k_{12}^2; m_1, m_1, m_0)$ we have three relations, with an additional condition due to the two equal masses. Therefore, the result for the three-point function in arbitrary dimension should be expressible in terms of a combination of functions of two dimensionless variables: indeed, we know that it can be presented in terms of the Appell hypergeometric function F_1 (see, e.g., in [6, 16, 17]).

4. Four-point function

For the four-point function, there are six external momentum invariants. Out of them, k_{12}^2, k_{23}^2, k_{34}^2 and k_{14}^2 correspond to the Mandelstam variables s and t. The sides of the corresponding basic four-dimensional simplex are m_1, m_2, m_3, m_4, and six additional sides $K_{jl} \equiv \sqrt{k_{jl}^2}$, as shown in figure 6a. The six angles τ_{jl} between the corresponding sides m_j and m_l are defined through $\cos \tau_{jl} \equiv \tau_{jl} = (m_j^2 + m_l^2 - k_{jl}^2)/(2m_j m_l)$, and in the spherical case the integration extends over the spherical tetrahedron 1234 of the unit hypersphere, as shown in figure 6b (for the hyperbolic case one can use analytic continuation).

Figure 6. Four-point case: (a) the basic simplex and (b) the spherical tetrahedron.

For splitting we use the height of the basic simplex, m_0, and obtain four simplices, as shown in figure 7a. One of them has the sides m_1, m_2, m_3, m_0, $K_{12} \equiv \sqrt{k_{12}^2}$, $K_{13} \equiv \sqrt{k_{13}^2}$,
\[K_{23} \equiv \sqrt{k_{23}^2}, \quad K_{01} \equiv \sqrt{k_{01}^2}, \quad K_{02} \equiv \sqrt{k_{02}^2} \quad \text{and} \quad K_{03} \equiv \sqrt{k_{03}^2}, \] and the sides of the others can be obtained by permutation of the indices. As before, \(k_{0i}^2 = m_i^2 - m_0^2 \) (\(i = 1, 2, 3, 4 \)), whereas \(m_0 = m_1m_2m_3m_4\sqrt{D^{(4)}/\Lambda^{(4)}} \), where \(D^{(4)} = \det \|c_{ij}\| \) and \(\Lambda^{(4)} = \det \| (k_{j4} \cdot k_{i4}) \| \), see in [5] for more details. Each of the four resulting integrals can be associated with a certain four-point function. At the next step, in each of the four tetrahedra (drawn in red) we drop the perpendiculars onto the triangle sides, as shown in figure 7b, splitting each of them into three, and then dividing each of the resulting tetrahedra into two, by dropping perpendiculars onto the \(\sqrt{k_{jl}^2} \) sides, as shown in figure 7c. As a result of this splitting, we get 24 simplices. The corresponding steps of splitting the spherical tetrahedron are shown in figure 8.

![Figure 7](image1.png)

Figure 7. Four-point case: splitting the basic four-dimensional simplex.

![Figure 8](image2.png)

Figure 8. Four-point case: splitting the spherical tetrahedron.

Let us look at the number of variables. In the integral \(J^{(4)}(n;1,1,1,1|\{k_{jl}^2\};\{m_i\}) \) we have ten independent variables: four masses and six momentum invariants (out of them we can construct nine dimensionless variables). After the first step (figure 7a) we have three extra conditions on the variables, \(k_{01}^2 = m_1^2 - m_0^2, k_{02}^2 = m_2^2 - m_0^2 \) and \(k_{03}^2 = m_3^2 - m_0^2 \), so that we get seven independent variables (i.e., six dimensionless variables). After the second step (figure 7b), we get two extra conditions due to the right triangles, and after the third step (figure 7c) we get one more condition. As a result, for each of the 24 resulting four-point functions we have six relations, so that we end up with four independent variables (i.e., three dimensionless variables). Therefore, the result for the four-point function in arbitrary dimension should be expressible in terms of a combination of functions of three dimensionless variables, such as, e.g., Lauricella functions and their generalizations (see, e.g., in [17, 18]).

5. General remarks and conclusions

Using a geometrical approach, we can relate the one-loop \(N \)-point Feynman diagrams to certain volume integrals in non-Euclidean geometry. Geometrical splitting provides a straightforward
way of reducing general integrals to those with lesser number of independent variables. In this way, we can predict the set and the number of these variables in the resulting integrals. Furthermore, it allows us to derive functional relations between integrals with different momenta and masses.

Numbers of dimensionless variables in separate contributions for N-point diagrams, before and after the splitting, are summarized in the table.

N	total # of dimensionless variables	# of splitting pieces	reduced # of variables
2	3 − 1 = 2	2	1
3	6 − 1 = 5	6	2
4	10 − 1 = 9	24	3
arbitrary N	$\frac{1}{2}(N - 1)(N + 2)$	$N!$	$N - 1$ (?)

Acknowledgements
I am thankful to R Delbourgo and M Yu Kalmykov with whom I started to work on this subject.
I am grateful to the organizers of ACAT-2016 and the University of Bio-Bio for their support and hospitality.

References
[1] Landau L D 1959 Nucl. Phys. 13 181
[2] Källen G and Wightman A 1958 Mat. Fys. Skr. Dan. Vid. Selsk. 1(6) 1
Mandelstam S 1959 Phys. Rev. 115 1741
Cutkosky R E 1960 J. Math. Phys. 1 429
Taylor J C 1960 Phys. Rev. 117 261
[3] Davydychev A I 1991 J. Math. Phys. 32 1052
Davydychev A I 1992 J. Math. Phys. 33 358
[4] 'tHooft G and Veltman M 1972 Nucl. Phys. B 44 189
Bollini C G and Giambiagi J J 1972 Nuovo Cim. 12B 20
Asmone J F 1972 Lett. Nuovo Cim. 4 289
Cicuta G M and Montaldi E 1972 Lett. Nuovo Cim. 4 329
[5] Davydychev A I and Delbourgo R 1998 J. Math. Phys. 39 4299
[6] Davydychev A I 2006 Nucl. Instr. Meth. A 559 293
[7] Davydychev A I 1999 Preprint hep-th/9908032
[8] Nickel B G 1978 J. Math. Phys. 19 542
[9] Ortner N and Wagner P 1995 Ann. Inst. Henri Poincaré (Phys. Théor.) 63 81
[10] Wagner P 1996 Indag. Math. 7 527
[11] Davydychev A I and Delbourgo R 2004 J. Phys. A 37 4871
Gorsky A and Zhiboedov A 2009 J. Phys. A 42 355214
Bloch S and Kreimer D 2010 Commun. Num. Theor. Phys. 4 703
Schnetz O 2010 Preprint arXiv:1010.5334
Mason L and Skinner D 2011 J. Phys. A 44 135401
Nandan D, Paulos M F, Spradlin M and Volovich A 2013 J. High Energy Phys. JHEP05(2013)105
[12] Tarasov O V 2008 Phys. Lett. B 670 67
[13] Berends F A, Davydychev A I and Smirnov V A 1996 Nucl. Phys. B 478 59
[14] Davydychev A I 2000 Phys. Rev. D 61 087701
[15] Davydychev A I and Kalmykov M Yu 2000 Nucl. Phys. B (Proc. Suppl.) 89 283
Davydychev A I and Kalmykov M Yu 2001 Nucl. Phys. B 605 266
[16] Tarasov O V 2000 Nucl. Phys. B (Proc. Suppl.) 89 237
[17] Fleischer J, Jegerlehner F and Tarasov O V 2003 Nucl. Phys. B 672 303
[18] Bytev V V, Kalmykov M Yu and Moch S-O 2014 Comput. Phys. Commun. 185 3041