Fermi- to non-Fermi-liquid crossover and Kondo behavior in two-dimensional (Cu$_{2/3}$V$_{1/3}$)V$_2$S$_4$

A Gauzzi1, H Moutaabbid1, Y Klein1, G Loupias1 and V Hardy2

1 Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC) UMR7590, Sorbonne Université/CNRS/Museum National d’Histoire Naturelle, 4 place Jussieu, 75005 Paris, France
2 Laboratoire CRISMAT UMR 6508, CNRS/ENSICAEN/UNICAEN, Caen, France

E-mail: andrea.gauzzi@upmc.fr

Received 1 February 2019, revised 7 April 2019
Accepted for publication 29 April 2019
Published 23 May 2019

Abstract

By means of a specific heat (C) and electrical resistivity (ρ) study, we give evidence of a pronounced Fermi liquid (FL) behavior with sizable mass renormalization, $m^*/m = 30$, up to unusually high temperatures ~ 70 K in the layered system (Cu$_{2/3}$V$_{1/3}$)V$_2$S$_4$. At low temperature, a marked upturn of both C and ρ is suppressed by magnetic field, which suggests a picture of Kondo coupling between conduction electrons in the VS$_2$ layers and impurity spins of the V$^{3+}$ ions located between layers. This picture opens the possibility of controlling electronic correlations and the FL to non-FL crossover in simple layered materials. For instance, we envisage that the coupling between layers provided by the impurity spins may realize a two-channel Kondo state.

Keywords: Fermi liquids, Kondo effect, specific heat, transport properties, layered transition metal dichalcogenides

(Some figures may appear in colour only in the online journal)
has been established that Mott localisation controls the stability of a complex sequence of CDW and SC transitions [2, 9], as originally proposed by Fazekas and Tosatti [10] and confirmed experimentally by various authors [11, 12]. However, in spite of an intense research effort for more than forty years, the microscopic mechanism of these transitions remains elusive due to a complex interplay between electronic and lattice degrees of freedom [13].

Here, we report on the observation of Fermi-liquid (FL) behavior with sizeable mass renormalization preceding a Kondo effect [14, 15] in the LTMC system (Cu2/3V1/3)V2S4 (CVS). To the best of our knowledge, this result has never been observed before in LTMCs. As shown in figure 1, CVS is characterized by a defected NiAs structure consisting of a stacking of 1T-VS2 layers and of chains of edge-sharing (Cu1−xVx) S6 octahedra [16]. As compared to previous LTMCs, CVS displays no CDW or SC instabilities and no indications of strong electron-lattice coupling, which may explain why the FL to non-FL (NFL) crossover is clearly observed experimentally.

The present finding is attributed to the peculiar properties of the above crystal structure enabling a coupling between conduction electrons in the layers and magnetic (S = 1) V3+ impurities in the chains. This coupling is the essential ingredient of the Kondo effect [14] which gives rise to a singlet state with NFL properties. If confirmed, the picture proposed here would open the possibility of tuning the FL to NFL crossover with room temperature resistivity $\varrho(000) = 0.44 \, \text{mflcm}$ and a modest residual resistivity ratio, $RRR = \varrho(000) / \varrho(2K) \sim 2$; (ii) a pronounced upturn below $\sim 20 \, \text{K}$ completely suppressed by a magnetic field of 9 T. Feature (i) is characteristic of bad metals and common in 2D sulfides, such as V5S8 [17, 18], which shares with CVS a similar layered structure except it contains only 1/2-instead of one-interstitial metal atom per VS2 layer. (iii) In the temperature region between the upturn and 70 K, the $\varrho(T)$ curve displays a marked quadratic dependence, a signature of Fermi-liquid behavior arising from electron-electron scattering.

A quadratic dependence of $\varrho(T)$ has been previously reported in transition metals [19], intermetallic compounds, such as A15 superconductors [20], TM oxides like V2O3 [21], SrTiO3 [22] and Sr2RuO4 [23], and heavy-fermions [15, 24, 25], but never in LTMCs. A caveat concerns a similar dependence reported in Ti1−xS2 [26], which shares with CVS a 1T-type layered structure with x interstitial Ti atoms between TiS2 layers. A subsequent study showed that the power-law of $\varrho(T)$ strongly varies with x—hence with carrier concentration—and that the dominant scattering mechanism is phononic [27]. It is not common that this quadratic dependence extends to high temperatures, as observed here.

To the best of our knowledge, a similar finding concerns a few other d-electron systems like the aforementioned SrTiO3 and Sr2RuO4. This unusual feature is ascribed to the small carrier density of CVS and/or to a large electron-electron scattering cross-section, so that the quadratic term dominates the other (e.g. electron-phonon) terms. The observation of a FL-like quadratic term up to high temperatures $\sim 70 \, \text{K}$ further indicates that coherent quasiparticles survive at these temperatures [28]. A high coherence temperature for the quasiparticles in CVS is compatible with the comparatively weak electron-electron correlations in d-electron systems, as compared to f-electron heavy fermions, where the quadratic term is rarely observed and, in any case, limited to much lower temperatures $\sim 0.1–1 \, \text{K}$ [15, 25].

Figure 1. Left: layered crystal structure of (Cu2/3V1/3)V2S4 showing the stacking of 1T-type VS2 layers (red octahedra) and of (Cu2/3V1/3) S chains. Yellow and red/blue spheres indicate the S and Cu/V atoms, respectively. Right: schematic representation of the structure showing the presence of magnetic (S = 1) V3+ and nonmagnetic (S = 0) Cu1+ ions in the chains between metallic VS2 layers.

Figure 2 summarises the results of the in-plane resistivity measurements. Note the following: (i) a metallic behaviour with room temperature resistivity $\varrho(000) = 0.44 \, \text{mflcm}$ and a modest residual resistivity ratio, $RRR = \varrho(000) / \varrho(2K) \sim 2$; (ii) a pronounced upturn below $\sim 20 \, \text{K}$ completely suppressed by a magnetic field of 9 T. Feature (i) is characteristic of bad metals and common in 2D sulfides, such as V5S8 [17, 18], which shares with CVS a similar layered structure except it contains only 1/2-instead of one-interstitial metal atom per VS2 layer. (iii) In the temperature region between the upturn and 70 K, the $\varrho(T)$ curve displays a marked quadratic dependence, a signature of Fermi-liquid behavior arising from electron-electron scattering.

A quadratic dependence of $\varrho(T)$ has been previously reported in transition metals [19], intermetallic compounds, such as A15 superconductors [20], TM oxides like V2O3 [21], SrTiO3 [22] and Sr2RuO4 [23], and heavy-fermions [15, 24, 25], but never in LTMCs. A caveat concerns a similar dependence reported in Ti1−xS2 [26], which shares with CVS a 1T-type layered structure with x interstitial Ti atoms between TiS2 layers. A subsequent study showed that the power-law of $\varrho(T)$ strongly varies with x—hence with carrier concentration—and that the dominant scattering mechanism is phononic [27]. It is not common that this quadratic dependence extends to high temperatures, as observed here.

To the best of our knowledge, a similar finding concerns a few other d-electron systems like the aforementioned SrTiO3 and Sr2RuO4. This unusual feature is ascribed to the small carrier density of CVS and/or to a large electron-electron scattering cross-section, so that the quadratic term dominates the other (e.g. electron-phonon) terms. The observation of a FL-like quadratic term up to high temperatures $\sim 70 \, \text{K}$ further indicates that coherent quasiparticles survive at these temperatures [28]. A high coherence temperature for the quasiparticles in CVS is compatible with the comparatively weak electron-electron correlations in d-electron systems, as compared to f-electron heavy fermions, where the quadratic term is rarely observed and, in any case, limited to much lower temperatures $\sim 0.1–1 \, \text{K}$ [15, 25].
Figure 2. In-plane resistivity curves of a representative (Cu2/3V1/3)V2S4 single crystal taken at zero-field and at 9 T. Top inset: enlarged view of the minimum at ~20 K suppressed by the field. Bottom inset: the linearity of the ρ against T^2 plot in the 30–70 K range gives evidence of Fermi-liquid behaviour. The red solid line is a linear fit in this range. The results of the fit are given in the text.

Assuming a FL scenario for CVS, we quantify the strength of the electron–electron scattering by analyzing the curve of figure 2 using the FL expression $\rho(T) = \rho_0 + AT^2$. A linear fit of the curve in the 30–70 K region above the upturn yields $A = 8.4 \times 10^{-5} \mu\Omega \text{cm K}^{-2}$, two orders of magnitude larger than typical values for transition metals [19] and comparable to the values reported on the aforementioned TM oxides V$_2$O$_3$ [21], Sr$_2$RuO$_4$ [23] or LiV$_2$O$_4$ [29], which are established Fermi liquids. We conclude that CVS exhibits intermediate heavy-fermion properties, which is confirmed by the large electronic contribution to the specific heat, C_V, obtained from a C/T against T^2 plot (see figure 3). A linear fit yields $\gamma = 60 \pm 4 \text{ mJ mol}^{-1} \text{K}^{-2}$ and a Debye temperature $\Theta_D = 294 \pm 5 \text{ K}$. Remarkably, figure 4 shows that the experimental γ and γ values nicely fall onto the universal curve $A/\gamma^2 = 1.0 \times 10^{-5} \mu\Omega \text{cm} (\text{mol K m}^{-1})^2$ found by Kadowaki and Woods for heavy fermions [24] in the regime of intermediate mass renormalization, $m^* / m = 30$.

The scenario of correlated metal is confirmed by the universal prediction for the Sommerfeld–Wilson ratio, $R_W = \frac{\gamma}{4 \pi} \frac{\mu_B^2}{Jg^2 \gamma_0 \gamma}$, where g is the gyromagnetic ratio of the electron, μ_B is the Bohr magneton and γ_0 is the Pauli susceptibility. Within a FL picture, both γ_0 and γ are proportional to the density of states at the Fermi level, hence $R_W = 1$. On the other hand, in the Kondo impurity problem, R_W increases up to two according to a robust result of renormalization group theory [33, 34]. In our case, by taking the experimental value $\gamma_0 = 1.02 \times 10^{-3} \text{ cm}^3 \text{ mol}^{-1}$ from [16], we obtain $R_W = 2$ within the experimental error (see figure 4), which surprisingly suggests that CVS is a correlated Kondo metal. Further

1 The statistical uncertainty in the γ and β values arises from the choice of the region of the C/T versus T^2 plot for the linear fit.

2 We consider the γ value per mole of planar V ions because each formula unit contains two V ions in the conducting VS$_2$ planes.

Figure 3. Temperature and magnetic field dependence of the constant-pressure specific heat, C. Measured on a bunch of (Cu$_2$V$_{1/3}$)$_2$V$_2$S$_4$ single-crystals. The main panel shows the zero-field and 9 T curves and a fit of the former curve (red solid line) in the 10–20 K region using the linear dependence, $C/T = \gamma + \beta T^2$, expected from band theory at low temperatures. Note a marked upturn of the zero-field curve suppressed by the 9 T field. Top inset: enlarged view of the low-temperature behavior of the C/T against T^2 curves at various fields in the 0–9 T range. Bottom inset: zero-field C against T curve in the whole temperature range measured.

Kondo signatures are the resistivity upturn at low temperature and a similar upturn of the C/T curve at ~6 K, both suppressed by a 9 T field (see figures 1 and 2). The ~2% increase of the resistivity is comparable with that of AuFe [35] and about ten times smaller than that of CuMn [36].

In order to check the validity of the Kondo picture, we analyse the temperature dependence of the upturn of the resistivity in figure 2. In the limit of diluted impurities, following the well-established result of Kondo’s perturbative theory [14] confirmed by subsequent studies that include a self-consistent treatment by Nagaoka [37], one finds that the excess resistivity $\Delta \rho(T)$ describing the upturn diverges logarithmically as:

$$\Delta \rho(T) = -c \frac{3\pi}{16} m^* J \ln \frac{T}{0.68 T_K}$$

where c is the impurity concentration, m^* and J are the effective mass and density of conduction electrons, respectively and J is the exchange energy between conduction electron and magnetic impurity. J is related to the characteristic Kondo energy, T_K, via the BCS-like expressions $\Delta_0 = 1.14 k_B T_K$ and $\Delta_0 = D\exp[-1/(Jg(\varepsilon_F))]$, where Δ_0 is the zero-temperature Kondo energy, D is the bandwidth and $g(\varepsilon_F)$ is the density of states at the Fermi level, ε_F. This perturbative result is valid only in the high temperature limit, $T \gg T_K$. In the opposite limit, various authors found that the logarithmic divergence is removed as electron–electron interactions become unimportant [33, 37–39]. The system then recovers a FL regime that manifests itself as a saturation of the resistivity described by a Lorentzian dependence [37]:

$$\Delta \rho(T) = \Delta_\infty \left[1 + \frac{\pi^2}{3} \left(\frac{k_B T}{\Delta} \right)^2 \right]^{-1}$$

This expression is valid in the low-temperature limit, $T < \Delta$, where Δ is the characteristic energy scale of the Kondo effect. The parameter Δ_∞ represents the saturation value of the resistivity at low temperatures.

Further
A straightforward data fit shows that the \(\rho(T) \) curve of figure 2 is very well explained in a wide 2–70 K range by adding the \(\Delta_0(T) \) term of equation (2) to the Fermi liquid contribution \(\rho_0 + A T^2 \). In figure 5, we plot the \(\rho(T) \) curve together with the best fit that yields \(T_K = 27.6 \pm 0.2 \) K, consistent with the rule of thumb that \(T_K \) corresponds to the resistivity minimum. The high quality of the agreement does not even require using equation (1), instead of equation (2), in the high temperature range \(T \gg T_K \), where, in principle, equation (1) would be more suitable. Note that the saturation of the resistivity upturn at low temperature, visible in figure 5 and explained quantitatively by equation (2), rules out a weak-localization scenario, according to which the resistivity should diverge in the \(T \to 0 \) limit. Other Kondo systems like CuFe and CuMn display a similar saturation of the resistivity upturn [40].

The analysis of the specific heat data of figure 3 further supports a picture of Kondo system. We determine the Kondo contribution, \(\Delta C(T) \), associated with the upturn of the experimental \(C/T \) versus \(T^2 \) curve, by subtracting from this curve the conventional dependence \(C_0/\gamma + \beta T^2 \) that describes well the data above the upturn (see linear fit in figure 3). Figure 5 shows that \(\Delta C(T) \) displays a linear increase with decreasing temperature which levels off at \(\approx 2 \) K. This behaviour is again consistent with Nagaoka’s prediction [37] of domelike dependence of \(\Delta C(T) \) for a dilute Kondo system. This dependence, which has no analytic form, is approximated by a linear dependence \(\Delta C(T) = -K(T - T_K) \) for \(T \sim T_K \), where \(K \) is a positive constant, and by \(C(T) \sim T \) in the zero-temperature limit. In the present case, according to the above linear dependence, the linear behaviour of figure 5 yields an estimate of \(T_K \approx 12 \) K, somehow lower than the \(T_K \) estimated from the resistivity. The discrepancy is ascribed to an inaccurate determination of the electronic specific heat from the dominant lattice contribution or to the limitations of current nonperturbative theories of the Kondo effect [41, 42]. A further analysis of this point goes beyond the scope of the present paper.

We should compare the present upturns of the resistivity and of the specific heat at low temperature with similar features previously reported in d- [43, 44] and f-compounds [25]. These upturns have been the object of controversial interpretations and an alternative scenario of Schottky anomaly has been put forward for compounds like the Heusler alloy Fe_{2}VA_{1} [44]. We verified this alternative scenario by analyzing the field-dependence of the excess specific heat, \(\Delta C \), determined as above. According to a Schottky anomaly, Figure 5. Comparison between the experimental resistivity at low temperatures (full black circles) and Nagaoka’s prediction [37] for a dilute Kondo model (red solid line), described by equation (2). Top inset: temperature dependence of the excess specific heat, \(\Delta C \), extracted from the linear fit of the \(C/T \) versus \(T^2 \) plot in figure 3, as explained in the text. The linear dependence of \(\Delta C \) is again consistent with Nagaosa’s theory in the low-temperature limit (see text).
multi-level model [45], the low-temperature dependence of ΔC is expected to exhibit a hump which shifts toward high temperatures with increasing field. This prediction differs markedly from the behavior of figure 3. By noting that the magnetic contribution ΔC depends on the adimensional variable $x = \frac{\mu_B H}{k_B T}$, the model further predicts a hump for the field dependence of ΔC at constant temperature as well. Again, the behavior of figure 6 differs qualitatively from this prediction: at 2 K, the ΔC curve exhibits a linear decrease with field while, at this temperature and for a $S = 1/2$ ($S = 1$) impurity, a hump is predicted at $H = 3.5$ T (2.5 T). Thus, we rule out the Schottky scenario in our case.

We finally propose an intuitive explanation of the Kondo scenario suggested here. This scenario would be unique for a d-system, as the Kondo effect requires either localized magnetic impurities or narrow-bands characteristic of f- rather than d-systems [44]. The peculiarity of the present d-system is the stacking of metallic VS$_2$ layers with (Cu,V)S chains containing one magnetic V$^{3+}$ ion every two nonmagnetic Cu$^{1+}$ ions (see figure 1). We argue that the 3d electrons of these ions are localized due to the reduced dimension of the chain, so the V$^{3+}$ ions behave as diluted $S = 1$ magnetic impurities interacting with the metallic layers. This explanation is supported by a previous analysis of the magnetic susceptibility [16], which indicates that only the V$^{3+}$ ions in the chain contribute to the Curie behaviour. A further argument in favour of the proposed scenario is the evidence of Kondo lattice behaviour reported recently in the parent compound VS_8 [46], which shares with the present compound a similar structure made of a stacking of VS$_2$ layers and of VS chains. The difference between the two structures is that, in the latter case, the chain sites are all occupied by magnetic V$^{3+}$ ions, which may explain the Kondo lattice picture. In our case, these ions occupy only 1/3 of the available sites, which rather suggests a dilute Kondo impurity picture. Suitable probes, such as angular resolved photoemission spectroscopy on both compounds, may confirm experimentally the above scenario of onedimensional band associated with the (Cu,V)S chains.

In conclusion, we have given experimental evidence of a FL to NFL crossover induced by a Kondo interaction in the twodimensional system (Cu$_{2/3}$V$_{1/3}$)VS$_4$ (CVS). To the best of our knowledge, this is a unique example of correlated electron system exhibiting the signatures of both heavy-fermions in a broad 30–70 K temperature range and of Kondo effect. We therefore think that CVS constitutes a playground for studying the above crossover in a regime of intermediate electronic correlations accessible to first-principles calculations. For instance, one interesting possibility may be that CVS and related compounds constitute a simple realisation of the two-channel Kondo state [34, 47, 48]. Indeed, the coupling between adjacent layers is typically very weak in layered transition metal disulfides MS$_2$ owing to the van der Waals gap between them. Hence, it is plausible that, in CVS, each metallic VS$_2$ layer screens independently the impurity spin in the chain site, as schematically illustrated in figure 1. The verification of this scenario awaits further studies at very low temperatures and as a function of the separation between adjacent layers.

Acknowledgment

The authors acknowledge stimulating discussions with M Calandra, M Casula, P Coleman and M Hellgren.

ORCID iDs

A Gauzzi https://orcid.org/0000-0002-4159-1383
Y Klein https://orcid.org/0000-0002-3862-6944

References

[1] Wang H, Yuan H, Sae Hong S, Li Y and Cui Y 2015 Chem. Soc. Rev. 44 2664–800
[2] Wilson J, Salvo F D and Mahajan S 1975 Adv. Phys. 24 117–201
[3] Morosan E, Zandbergen H W, Dennis B S, Bos J W G, Onose Y, Klimeczuk T, Ramirez A P, Ong N P and Cava R J 2006 Nat. Phys. 2 544
[4] Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805
[5] Guo J, Jin S, Wang G, Wang S, Zhu K, Zhou T, He M and Chen X 2010 Phys. Rev. B 82 180520
[6] Ge J F, Liu Z L, Liu C, Gao C L, Qian D, Xue Q K, Liu Y and Jia J F 2014 Nat. Mater. 14 285
[7] Calandra M and Mauri F 2011 Phys. Rev. Lett. 106 196406
[8] Cercellier H et al 2007 Phys. Rev. Lett. 99 146403
[9] Thomson R E, Burk B, Zettl A and Clarke J 1994 Phys. Rev. B 49 16899–916
[10] Fazekas P and Tosatti E 1979 Phil. Mag. B 39 229–44
[11] Perfetti L, Loukakos P A, Lisowski M, Bovensiepen U, Berger H, Biermann S, Cornaglia P S, Georges A and Wolf M 2006 Phys. Rev. Lett. 97 067402
[12] Sipos B, Kusmartseva A F, Akrap A, Berger H, Forró L and Tatiš E 2008 Nat. Mater. 7 960
[13] Yi S, Zhang Z and Cho J H 2018 Phys. Rev. B 97 041413
[14] Kondo J 1964 Prog. Theor. Phys. 32 37–49
[15] Stewart G R 2001 Rev. Mod. Phys. 73 797–855
[16] Klein Y, Moutaabbid H, Soyer A, D’Astuto M, Rousse G, Vigneron J, Etcheberry A and Gauzzi A 2011 J. Solid State Chem. 154 2333–8
[17] Kawada I, Nakano-Ono M, Ishii M, Saeki M and Nakahira M 1975 J. Solid State Chem. 15 246–52
[18] Nozaki H, Ishizawa Y, Saeki M and Nakahira M 1975 Phys. Lett. A **54** 29–30
[19] Rice M J 1968 Phys. Rev. Lett. **20** 1439–41
[20] Miyake K, Matsuura T and Varma C 1989 Solid State Commun. **71** 1149–53
[21] McWhan D B and Rice T M 1969 Phys. Rev. Lett. **22** 887–90
[22] Tokura Y, Taguchi Y, Okada Y, Fujishima Y, Arima T, Kumagai K and Iye Y 1993 Phys. Rev. Lett. **70** 2126–9
[23] Maeno Y 1997 J. Phys. Soc. Japan **66** 1149–53
[24] McWhan D B and Rice T M 1969 Phys. Rev. Lett. **22** 887–90
[25] Stewart G R 1984 Rev. Mod. Phys. **56** 755–87
[26] Thompson A H 1975 Phys. Rev. Lett. **35** 1786–9
[27] Klipstein P C, Bagnall A G, Liang W Y, Marseglia E A and Friend R H 1981 J. Phys. C: Solid State Phys. **14** 14067
[28] Amaricci A, de’ Medici L, Sordi G, Rozenberg M J and Capone M 2012 Phys. Rev. B **85** 235110
[29] Kondo S et al 1997 Phys. Rev. Lett. **78** 3729–32
[30] Lee P A, Rice T M, Serene J W, Sham L J and Wilkins J W 1986 Comments Condens. Matter Phys. **12** 99–161
[31] Menth A and Remeika J P 1970 Phys. Rev. B **2** 3756–62
[32] Johnston D C, Swenson C A and Kondo S 1999 Phys. Rev. B **59** 2627–41
[33] Wilson K G 1975 Rev. Mod. Phys. **47** 773–840
[34] Nozières P and Blandin A 1980 J. Phys. France **41** 193–211
[35] Ford P J, Whall T E and Loram J W 1970 Phys. Rev. B **2** 1547–53
[36] Haen P, Souletie J and Teixeira J 1976 Chin. J. Low Temp. Phys. **23** 191–224
[37] Nagaoka Y 1965 Phys. Rev. **138** A1112–20
[38] Anderson P W 1970 J. Phys. C: Solid State Phys. **3** 2436
[39] Nozières P 1974 Chin. J. Low Temp. Phys. **17** 31–42
[40] Rizzuto C 1974 Rep. Prog. Phys. **37** 147
[41] Andrei N, Furuya K and Lowenstein J H 1983 Rev. Mod. Phys. **55** 331–402
[42] Tsvelick A and Wiegmann P 1983 Adv. Phys. **32** 453–713
[43] Nishino Y, Kato M, Asano S, Soda K, Hayasaki M and Mizutani U 1997 Phys. Rev. Lett. **79** 1909–12
[44] Lue C S, Ross J H, Chang C F and Yang H D 1999 Phys. Rev. B **60** R13941–5
[45] Falge R L and Wolcott N M 1971 Chin. J. Low Temp. Phys. **5** 617–50
[46] Niu J et al 2018 (arXiv:1809.04213)
[47] Zawadowski A 1980 Phys. Rev. Lett. **45** 211–4
[48] Potok R M, Rau I G, Shtrikman H, Oreg Y and Goldhaber-Gordon D 2007 Nature **446** 167–71

J. Phys.: Condens. Matter 31 (2019) 31LT01