Environmental Impacts Analysis of Stationary Fuel Cell Combined Heat and Power Generation Systems

Shota TOCHIGI† and Kiyoshi DOWAKI

(Received January 5, 2021)

The use of stationary fuel cell power systems for residential applications has been expanding owing to the characteristics of energy saving and environmental friendliness. Technical Committee 105 Working Group 14 (TC105 WG14) in the International Electrotechnical Commission (IEC) proposed assessment procedures for environmental impacts of stationary fuel cell systems using the life cycle assessment (LCA) methodology. In this study, the impact of the 700 W scale of a polymer electrolyte fuel cell combined heat and power generation system (PEFC-CGS) was tested based on the proposal document of the IEC TC105 WG14. In the estimation, the aurum (Au) in the circuit board, which is a precious metal, as well as platinum (Pt) contained in the cell stack, and differences in the hydrogen fuel production paths were considered. According to our results, the factors that contributed to the environmental impact were revealed. Therefore, to improve these factors for product differentiation from environmental aspects, differences in cell performance due to the cell manufacturing method were investigated. Then, it was confirmed that the multilayer electrode reduced the abiotic depletion potential (ADP) at manufacturing by 6 or 12%, and differentiation between products could be achieved by manufacturing the catalyst layers.

Key Words
Stationary fuel cell, LCA, Circuit board, Electrospray Deposition

1. Introduction

Recently, the use of the stationary fuel cell system for residential applications has been expanding. This system is known in Japan as "Ene-farm." As of November 2019, there were 0.3 million of these systems. Based on the increased use of this system, in the International Electrotechnical Commission (IEC) Technical Committee 105 Working Group 14 (TC105 WG14), the impact assessment procedure regarding general fuel cell combined heat and power generation system (FC-CGS) using the life cycle assessment (LCA) methodology is currently under consideration. The assessment procedure is a simplified evaluation method that focuses on global warming potential (GWP) and abiotic depletion potential (ADP), which are attributed to the operating performance and the component elements,
respectively.

Sato et al. 3) pointed out that, during the manufacturing stage, the use of platinum (Pt) as a catalyst in the cells had the greatest impact on ADP. However, the current consumption of Pt (mg/cm²) in the electrodes has been greatly reduced while maintaining or improving the current density of the cell 4). Consequently, it was reported that the use in circuit boards of aurum (Au), which is a rare metal like Pt, has a significant impact on ADP 5). However, the amount of Au in the manufacture of circuit boards cannot be determined from the system specification. For instance, in previous studies, the amount could be roughly estimated using other electrical devices. However, it is not clear whether these are adequate for FC-CGS. Therefore, the proposed procedure for the current environmental impact assessment of FC-CGS may not be adequate.

Considering the recent development of pure H₂ type polymer electrolyte fuel cell combined heat and power generation systems (PEFC-CGSes) 6), it needs to be shown that the same assessment procedure can be performed for this novel type of system. That is, the environmental impacts including the interaction of the operating performance for various fuel types and the content of rare metals attributed to that should be clarified. In this study, we first evaluated the environmental impacts of PEFC-CGS in terms of ADP and GWP, following the method proposed by TC105 WG14. The aspects that had not yet been evaluated, such as a novel pure H₂ type PEFC-CGS and materials other than platinum, were considered. Finally, we indicate that various PEFC-CGSs can be differentiated due to the environmental impacts of GWP and ADP.

2. Methodology

2.1 Target PEFC-CGS and energy demand data

In this study, the impacts of three types of 700 W-scale PEFC-CGSs were estimated. Natural gas (Scenario 1), pure H₂ derived from natural gas steam reforming (NGSR) plants (Scenario 2), and pure H₂ derived from electrolysis with wind power (Scenario 3) were considered as the input fuel scenarios.

Table 1 shows the specifications of the FC-CGS evaluated in this study 3), 5), and Fig. 1 shows the system boundary. The functional unit (FU) is defined as the total demand for electricity and heat in a typical household for 10 years, including seasonal variations. For the electricity demand and hot water demand data, we referred to JISC 8851 8). These data target a standard Japanese household (a family of four). Fig. 2 shows the electricity and hot water demand patterns. Based on these energy patterns, the adequate operating condition of PEFC-CGS was selected. In this case, the FC-CGS was operated by the electric load-following method. Shortages against the demands was compensated for by the grid power and the supplementary heat generator (fueled by natural gas in all scenarios).

2.2 Inventory analysis

The inventory data of the FC-CGS were based on the annual project report of New Energy and Industrial Technology Development Organization (NEDO) 3). The inventory of the inverter, including Au in the circuit board, was based on the study by Nordelöf 9). Note that the inventory data of the inverter in the FC-CGS were assumed to be proportional to the weight of the electric vehicle parts. Regarding the GHG emission intensity of pure H₂, the document analyzed by Cetinkaya et al. was referred to 7).

Table 1	Specification of stationary FC-CGS 5)~7)			
Parameter	Unit	Scenario 1	Scenario 2	Scenario 3
FC type 5)	-	PEFC (Polymer electrolyte fuel cell)		
Rated output W	-	700		
Fuel type	-	Natural gas 5)	Pure H₂ (NGSR plant)	Pure H₂ (Wind power)
			0.0991 kg-CO₂ eq./MJ-H₂ 7)	0.0081 kg-CO₂ eq./MJ-H₂ 7)
Presence of reformer in PEFC-CGS 5)	-	✓	-	-
Rated electric efficiency% (Assuming degradation linearly by 10% in lifecycle)	%	39	55	55
Rated heat recovery efficiency%	%	56	35	35
Overall energy efficiency% (Constant for the entire lifetime)	%	95	90	90
Minimum output W	-	210		
Hot water storage tank volume L	-	140		
Heat recovery efficiency of the supplementary heat generator%	-	95		
Secondary data were based on Ecoinvent 3.6 and the CML-IA baseline, and they were used in the impact assessment method. The LCA software SimaPro 9.1.0.8 was used in this study.

3. Results

Fig. 3 shows the results of the environmental impact assessment. In the manufacturing of each type of FC-CGS, the stack accounted for approximately 18% of the ADP, while the inverter and the supplementary heat generator accounted for approximately 28% and 43%, respectively. The inverter and supplementary heat generator including the circuit board were considered to have a remarkable impact because of the Au consumed by the bonding wires in the integrated circuit (IC) and the Au plating on the connectors. In addition, the ADP of the natural gas reformer in PEFC-CGS (Scenario 1) was 4% and the difference in fuels fed to PEFC-CGSs did not appear.

In terms of ADP (fossil fuels), Scenario 2 had the largest impact, which was 7% higher than that of Scenario 1. Moreover, Scenario 2 showed the largest GWP of the three scenarios, which was 8% higher than that of Scenario 1. Additionally, the use of renewable energy resources in Scenario 3 resulted in the smallest ADP (fossil fuels) and GWP.

4. Discussions

4.1 Issues of differentiation by circuit boards

Although the ADP the circuit boards was significant, it was difficult to quantify this value because of the variation in the amounts of rare metals used. To compare the differences between the literature, Nordelöf’s 9) and
\[M = 6.03 \times P^{0.68} \]

where \(M \) [kg] and \(P \) [kW] are the total mass of the inverter components and the output power through the inverter, respectively.

As shown in Fig. 4, the values were largely different. Thus, the superiority of the products cannot be indicated, because a quantitative comparison cannot be obtained. In addition, it is also difficult to determine the exact amount of Au used in the IC and connectors on circuit boards because of the difficulty in obtaining confidential information from manufacturers. Hence, treating the ADP of circuit boards as an index to differentiate between products from an environmental perspective may not be practical.

4.2 Differentiation by cell stacks manufacturing

Next, based on Section 4.1, we focused on the cells that make up the stack because the stack had the second largest impact on ADP at the manufacturing stage, after the components including the circuit board. In addition, this impact was related to electric efficiency and contributed to GWP. According to Arai et al.\(^{12}\), although the amount of Pt consumption (mg/cm\(^2\)) of the cell is the same, the cell performance can be improved by applying the catalyst ink in a gradation structure in the thickness direction (Fig. 5).

These structures are formed on the catalyst layer of the cathode electrode via electrospray deposition.

In this study, three types of structures were considered and compared: one without a gradient structure (single layer) and two with a gradient structure (two layers and three layers). Although the Pt density of the cell was equal for these three types of structures (0.3 mg/cm\(^2\)), the multilayer structure improved the cell performance by distributing more catalyst particles on the electrolyte membrane (upper part of Fig. 5). Fig. 6 shows a comparison of the I-V curves of the cells with different catalyst layer
Based on the I-V curves shown in Fig. 6, a stack was designed for each catalyst layer structure to match the power output of the PEFC system in this study (Table 2). The minimum operating voltage of a single cell was determined to be 0.65 V from the hearing.

For the three types of stacks shown in Table 2, we evaluated the environmental impacts per functional unit for the natural gas type PEFC-CGS. Fig. 7 shows the environmental impacts of ADP in the manufacturing stage and GWP in the use stage of the three different types of cell stacks. Note that the environmental impact results are normalized (i.e., the result of Case 1 in each category is 1.0). The GWP value did not change because the cell voltages at the same output were almost identical. However, the ADP value of the multilayer stacks decreased with decreasing cell area.

5. Conclusions

In this study, we first followed the method proposed by TC105 WG14 to evaluate the environmental impacts of PEFC-CGSs in terms of ADP and GWP. In terms of ADP at manufacturing stage, the stack accounted for about 18%, while the inverter and the supplementary heat generator accounted for approximately 28% and 43%, respectively. We also evaluated the deviation of ADP in devices that included the circuit boards, based on two studies, and provided an explanation for the difficulty in differentiating products by Au. Therefore, we focused on the stack and confirmed that differentiation between PEFC-CGSs could be achieved in terms of ADP by examining the manufacture of the catalyst layers. That is, three layers cathode electrode type showed 12% lower ADP than conventional single layer electrode.
Acknowledgment

This study was supported by the Japan Electrical Manufacturers Association (JEMA).

References

1) ENE-FARM Partners, https://www.gas.or.jp/user/comfortable-life/enefarm-partners/common/data/20191121_webpdf (Last access: December 27, 2020) (in Japanese)
2) Hydrogen/Fuel Cell Codes & Standards, http://www.fuelfcellstandards.com/iec62282_9_101.htm (Last access: April 20, 2021) (in Japanese)
3) Sato, K.; Seo, Y.; Dowaki, K., Journal of Japan LCA Society, 14(1), 36-45 (2018) (in Japanese)
4) Uchida, M.; Kakinuma, K.; Watanabe, M., Crushing, 56, 3-11 (2012) (in Japanese)
5) New Energy and Industrial Technology Development Organization, https://www.nedo.go.jp/content/100925942.pdf, (Last access: March 9, 2021) (in Japanese)
6) Hirotsu, M.; Hamada, T.; Kimura S., Japanese J. Multiphase Flow, 25(2), 102-108 (2011) (in Japanese)
7) Cetinkaya, E.; Dincer, I.; Naterer, G. F., International journal of hydrogen energy, 37(3), 2071-2080 (2012)
8) Japanese Industrial Standards, kikakurui.com homepage, https://kikakurui.com/c8/C8851-2013-01.html (Last access: December 27, 2020) (in Japanese)
9) Nordelöf, A. The International Journal of Life Cycle Assessment, 24(4), 694-711 (2019)
10) Tschümperlin, L.; Stolz, P.; Frischknecht, R., Swiss Federal Office of Energy SFOE, (2016)
11) Caduff, M.; Hujibregts, M. A.; Althaus, H. J.; Hendriks, A. J. Environmental science & technology, 45(2), 751-754 (2011)
12) Arai, H.; Irita, M.; Katayama, N., ECS Transactions, 98(9), 333 (2020)
13) Hydrogen and Fuel Cell Handbook Editorial Board, Hydrogen Fuel Cell Handbook, Ohmsha, 2006 (in Japanese)

Appendix

The total global warming potential (GWP) for the target duration (10 years) in the use stage was calculated as follows:

\[
GWP_{\text{total}} = \sum_{i=1}^{10} \left(\frac{\text{NETFC} \times \text{GWP}_{\text{fuel FC}} + \text{NEI} \times \text{GWP}_{\text{el G}} + \text{STED} \times \text{GWP}_{\text{fuel S}}}{\eta_{\text{el FC}} \times \eta_{\text{th S}}} \right)
\]

Where,
- \(i\): number of years of use;
- \(\text{NETFC}\): total annual net electricity production of the fuel cell, FC (kWh electricity per year);
- \(\text{NEI}\): net annual electricity imported from the grid (difference between total electricity demand and electricity generated by the fuel cell) (kWh electricity per year);
- \(\text{STED}\): annual supplementary thermal energy demand in year \(i\) (kWh thermal energy per year);
- \(\eta_{\text{el FC}}\): electric efficiency of the fuel cell, FC, in year \(i\) (kWh electricity generation per kWh inlet fuel);
- \(\eta_{\text{th S}}\): heat recovery efficiency of the supplementary heat generator, S (kWh heat generation per kWh inlet fuel);
- \(\text{GWP}_{\text{fuel FC}}\): GWP of the fuel used in the fuel cell, FC, or the supplementary heat generator, S (kg-CO₂ eq. per kWh-fuel);
- \(\text{GWP}_{\text{el G}}\): GWP of the electricity grid, G, in the geographical region where the stationary fuel cell power system is operated (kg-CO₂ eq. per kWh-electricity);
- \(\text{GWP}_{\text{fuel S}}\): total global warming potential (kg-CO₂ eq.)

The total abiotic depletion potential (ADP) for the target duration (10 years) in the manufacturing stage was calculated as follows:

\[
\text{ADP}_{\text{m}} = \sum_{k} \text{ADP}_{k} \times m_{k}
\]

Where,
- \(\text{ADP}_{\text{m}}\): total abiotic resource depletion potential (ADP) (kg-Sb eq);
- \(\text{ADP}_{k}\): abiotic resource depletion potential of resource \(k\) (kg-Sb eq. per kg-resource);
- \(m_{k}\): the quantity of resource \(k\) extracted (kg).

The total abiotic depletion potential of fossil fuels (ADP [fossil fuels]) for the target duration (10 years) in the manufacturing and use stage was calculated as follows:

\[
\text{ADP (fossil fuels)}_{\text{m+u}} = \sum_{k} \text{ADP}_{k} \times m_{k}
\]

Where,
- \(\text{ADP (fossil fuels)}_{\text{m+u}}\): total abiotic resource depletion potential of fossil fuels (ADP fossil fuel) (MJ);
- \(\text{ADP}_{k}\): abiotic resource depletion potential of resource \(k\) (MJ);
- \(m_{k}\): quantity of resource \(k\) extracted (MJ).