A REFINEMENT OF THE BEREZIN-LI-YAU TYPE INEQUALITY FOR NONLOCAL ELLIPTIC OPERATORS

YONG-CHEOL KIM

Abstract. In this paper, we prove a refinement of the Berezin-Li-Yau type inequality for a wider class of nonlocal elliptic operators including the fractional Laplacians $-(-\Delta^{\sigma/2})$ restricted to a bounded domain $D \subset \mathbb{R}^n$ for $n \geq 2$ and $\sigma \in (0, 2]$, which is optimal when $\sigma = 2$ in view of Weyl’s asymptotic formula. In addition, we describe the Berezin-Li-Yau inequality for the Laplacian Δ as the limit case of our result as $\sigma \to 2^-$.

1. Introduction

Let K_σ be the class of all positive symmetric kernels K satisfying the uniformly ellipticity assumption
\begin{equation}
K(y) = K(-y) \geq \frac{\lambda c_{n, \sigma}}{|y|^{n+\sigma}}, \quad 0 < \sigma < 2,
\end{equation}
for all $y \in \mathbb{R}^n \setminus \{0\}$ and $mK \in L^1(\mathbb{R}^n)$, where $m(y) = \min\{1, |y|^2\}$ and $c_{n, \sigma}$ is the constant given by
\begin{equation}
c_{n, \sigma} = \left(\int_{\mathbb{R}^n} \frac{1 - \cos(\xi_1)}{|\xi|^{n+\sigma}} d\xi \right)^{-1}.
\end{equation}
Then we consider the corresponding nonlocal elliptic operator L_K given by
\begin{equation}
L_K u(x) = \frac{1}{2} \text{p.v.} \int_{\mathbb{R}^n} \mu(u, x, y)K(y) dy
\end{equation}
where $\mu(u, x, y) = u(x + y) + u(x - y) - 2u(x)$. In this paper, we consider the following eigenvalue problem
\begin{equation}
\begin{cases}
-L_K u = \nu u & \text{in } D \\
u = 0 & \text{in } \mathbb{R}^n \setminus D,
\end{cases}
\end{equation}
where $\sigma \in (0, 2)$, $n \geq 2$, $K \in K_\sigma$ and $D \subset \mathbb{R}^n$ is an open bounded set.

Let X be the normed linear space of all Lebesgue measurable functions v on \mathbb{R}^n with the norm
\begin{equation}
\|v\|_X = \|v\|_{L^2(D)} + \left(\int_{C^0_D} |v(x) - v(y)|^2 K(x - y) dx dy \right)^{\frac{1}{2}} < \infty
\end{equation}
where $C^0_D = \mathbb{R}^{2n} \setminus (H^\infty \times H^\infty)$ for $H \subset \mathbb{R}^n$. Set $X_0 = \{ v \in X : v = 0 \text{ a.e. in } \mathbb{R}^n \setminus D \}$. Since $C^0_D(D) \subset X_0$, we see that X and X_0 are not empty. By [9], there is a constant $c > 1$ depending only on n, λ, σ and D such that
\begin{equation}
\int_{C^0_D} |v(x) - v(y)|^2 K(x - y) dx dy \leq \|v\|_X^2 \leq c \int_{C^0_D} |v(x) - v(y)|^2 K(x - y) dx dy
\end{equation}

2000 Mathematics Subject Classification: 35P15, 47G20.
for any $v \in X_0$; that is, $\|v\|_{X_0} := \left(\int_{C_0^D} |v(x) - v(y)|^2 K(x-y) \ dx \ dy \right)^{1/2}$ is a norm on X_0 equivalent to (1.4). Moreover it is known [9] that $(X_0, \|\cdot\|_{X_0})$ is a Hilbert space with inner product

\[
\langle u, v \rangle_{X_0} := \int_{C_0^D} (u(x) - u(y))(v(x) - v(y))K(x-y) \ dx \ dy.
\]

From simple computation, we note that $\langle u, v \rangle_{X_0} = -\langle L_K u, v \rangle_{L^2(D)}$ for all $u, v \in X_0$.

More precisely, we study the weak formulation of the problem (1.3) given by

\[
\begin{cases}
\langle u, v \rangle_{X_0} = \nu(u, v)_{L^2(D)}, \forall v \in X_0, \\
u \in X_0.
\end{cases}
\]

Then it is well-known [10] that there is a sequence $\{\nu_i^n(D)\}_{i \in \mathbb{N}}$ of eigenvalues of (1.6) with $0 < \nu_1^n(D) \leq \nu_2^n(D) \leq \cdots \leq \nu_i^n(D) \leq \cdots$ and $\lim_{n \to \infty} \nu_i^n(D) = \infty$ such that the set $\{e_i\}_{i \in \mathbb{N}}$ of eigenfunctions e_i corresponding to $\nu_i^n(D)$ is an orthonormal basis of $L^2(D)$ and an orthogonal basis of X_0. Moreover, it turns out that $e_{i+1} \in P_{i+1}$ and

\[
\nu_i^n(D) = \|e_i\|_{X_0}^2 \quad \text{and} \quad \nu_i^{n+1}(D) = \|e_{i+1}\|_{X_0}^2
\]

for any $i \in \mathbb{N}$, where $P_{i+1} = \{u \in X_0 : \langle u, e_j \rangle_{X_0} = 0, \forall j = 1, 2, \cdots, i\}$.

Originally, Weyl’s asymptotic formula [12] for the Dirichlet eigenvalue problem of the Laplacian

\[
\begin{cases}
-\Delta u = \mu u \quad \text{in } D \\
u = 0 \quad \text{in } \partial D
\end{cases}
\]

asserts that

\[
\mu_k(D) \sim \frac{4\pi^2}{(|D| |B_1|)^{2/\pi}} k^\frac{\pi}{2} \quad \text{as } k \to \infty,
\]

where $|D|$ and $|B_1|$ denote the volumes of D and the unit ball B_1 in \mathbb{R}^n, respectively. The relevant study on the eigenvalue problem for the Laplacian has been done along this line by Pólya [7] and Lieb [4]. P. Li and S. T. Yau [3] proved the following lower bound on the averages on the finite sums of eigenvalues

\[
\frac{1}{k} \sum_{j=1}^k \mu_j(D) \geq \frac{4n \pi^2}{(n+2)(|D| |B_1|)^{2/\pi}} k^\frac{\pi}{2}
\]

for any domain $D \subset \mathbb{R}^n$, which is sharp in terms of (1.10). P. Kröger [2] obtained an upper bound for the sums of the eigenvalues depending on geometric properties of D. A. Melas [5] improved their lower bound by using the moment of inertia of D. Using the method based on his argument, we obtain a lower bound on the averages on the finite sums of eigenvalues $\nu_i^n(D)$ of the eigenvalue problem (1.6).

Theorem 1.1. Let $D \subset \mathbb{R}^n$ be a bounded open set and $\sigma \in (0, 2)$. If $\{\nu_i^n(D)\}_{i \in \mathbb{N}}$ be the sequence of eigenvalues of the above eigenvalue problem (1.6) for the nonlocal elliptic operators L_K with $K \in \mathcal{K}_\sigma$, then we have the estimate

\[
\frac{1}{k} \sum_{j=1}^k \nu_j^n(D) \geq \frac{\lambda n(2\pi)^{\sigma}}{(n+\sigma)(|B_1| |D|)^{2/\pi}} k^\frac{\pi}{2} + \frac{\lambda \sigma(2\pi)^{-\sigma-2}}{48(n+\sigma)(|B_1| |D|)^{2/\pi}} \frac{|D|}{k^{\frac{n-\sigma}{2}}} |D|
\]

where $|D| = \int_D |x|^2 \ dx$ is the moment of inertia of D with mass center $0 \in \mathbb{R}^n$.
In particular, if $K_0(y) = c_{n,\sigma}|y|^{-n-\sigma}$ with $\sigma \in (0, 2)$, then $L_{K_0} = -(\Delta^{\sigma/2})$ is the fractional Laplacian and it is well-known [6] that
\begin{equation}
\lim_{\sigma \to 2^{-}} - (\Delta^{\sigma/2}) u = \Delta u \quad \text{and} \quad \lim_{\sigma \to 0^+} - (\Delta^{\sigma/2}) u = u
\end{equation}
for any function u in the Schwartz space $\mathcal{S}(\mathbb{R}^n)$. Also, the constant $c_{n,\sigma}$ satisfies the following property [6]:

\[\lim_{\sigma \to 2^{-}} \frac{c_{n,\sigma}}{\sigma(2-\sigma)} = \frac{1}{|B_1|} \quad \text{and} \quad \lim_{\sigma \to 0^+} \frac{c_{n,\sigma}}{\sigma(2-\sigma)} = \frac{1}{2n|B_1|}. \]

If we consider the nonlocal operator L_{K_0} corresponding to $K_0(y) = c_{n,\sigma}|y|^{-n-\sigma}$ with $\sigma \in (0, 2)$, our result makes it possible to recover the result obtained by S. Yildirim Yolcu and T. Yolcu [13] as follows.

Theorem 1.2. Let $D \subset \mathbb{R}^n$ be a bounded open set and $\sigma \in (0, 2)$. If $\{\nu_{0k}(D)\}_{k \in \mathbb{N}}$ be the sequence of eigenvalues of the above eigenvalue problem (1.6) for the fractional Laplacians $-(\Delta^{\sigma/2})$, then we have the estimate

\[\frac{1}{k} \sum_{j=1}^{k} \nu_{0j}(D) \geq \frac{n(2\pi)^{\sigma}}{(n+\sigma)(|B_1||D|)^{\frac{\sigma}{2}}} k^{\frac{n}{\sigma}} + \frac{\sigma(2\pi)^{\sigma-2}}{48(n+\sigma)(|B_1||D|)^{\frac{\sigma}{2}}} \frac{|D|}{|D|^{1-\sigma}} \]

where $[D] = \int_D |x|^2 \, dx$ is the moment of inertia of D with mass center $0 \in \mathbb{R}^n$.

As in (1.10), we could look on the Laplacian Δ as the limit of the fractional Laplacian $-(\Delta^{\sigma/2})$ as $\sigma \to 2^-$. Then our result implies an improvement (see A. D. Melas [5]) of the results proved by F. A. Berezin [1] and P. Li and S.-T. Yau [3] as follows.

Theorem 1.3. Let $D \subset \mathbb{R}^n$ be a bounded open domain. If $\{\mu_k(D)\}_{k \in \mathbb{N}}$ be the sequence of eigenvalues of the above eigenvalue problem (1.8) for the Laplacian Δ, then we have the estimate

\[\frac{1}{k} \sum_{j=1}^{k} \mu_j(D) \geq \frac{n(2\pi)^{2}}{(n+2)(|B_1||D|)^{\frac{2}{2}}} k^{\frac{n}{2}} + \frac{1}{24(n+2)} \frac{|D|}{|D|} \]

where $[D] = \int_D |x|^2 \, dx$ is the moment of inertia of D with mass center $0 \in \mathbb{R}^n$.

2. Preliminaries

First of all, we furnish several fundamental lemmas which are useful in proving our main theorem. Our proof follows in part the argument of Melas [5], Li and Yau [3], and S. Yildirim Yolcu and T. Yolcu [13].

Lemma 2.1. If $\phi : [0, \infty) \to [0, 1]$ is a Lebesgue measurable function satisfying
\[\int_{0}^{\infty} \phi(t) \, dt = 1 \quad \text{and} \quad 0 < \sigma < 2, \]
then there exists some $\eta > 0$ such that

\begin{equation}
\int_{\eta}^{\eta+1} t^{\sigma} \, dt = \int_{0}^{\infty} t^{\sigma} \phi(t) \, dt \quad \text{and} \quad \int_{\eta}^{\eta+1} t^{n+\sigma} \, dt \leq \int_{0}^{\infty} t^{n+\sigma} \phi(t) \, dt.
\end{equation}

Proof. First of all, we claim that $\int_{0}^{\infty} t^{\sigma} \phi(t) \, dt < \infty$. Indeed, if $\int_{0}^{\infty} t^{n+\sigma} \phi(t) \, dt < \infty$, then we easily obtain that $\int_{\eta}^{\eta+1} t^{\sigma} \phi(t) \, dt < \infty$ because $\int_{0}^{\infty} \phi(t) \, dt = 1$. In case that $\int_{0}^{\infty} t^{n+\sigma} \phi(t) \, dt = \infty$, we can derive that $\int_{\eta}^{\eta+1} t^{n+\sigma} \phi(t) \, dt = \infty$. We note that the
set $H = \{ t \in [2, \infty) : \phi(t) > 0 \}$ must not be Lebesgue measure zero; otherwise, it must be true that $\int_{2}^{\infty} t^{n+\sigma} \phi(t) \, dt = 0$, which is a contradiction. So we see that
\[
\int_{2}^{\infty} t^n \phi(t) \, dt = \int_{H} t^n \phi(t) \, dt < \int_{H} t^{n+\sigma} \phi(t) \, dt = \int_{2}^{\infty} t^{n+\sigma} \phi(t) \, dt = \infty.
\]
This implies that $\int_{0}^{\infty} t^n \phi(t) \, dt < \infty$.

Since $(t^n - 1)(\phi(t) - \mathbb{1}_{[0,1]}(t)) \geq 0$ for any $t \in [0, \infty)$, it follows from integrating the inequality on $[0, \infty)$ that $\int_{0}^{1} t^n \, dt \leq \int_{0}^{\infty} t^n \phi(t) \, dt < \infty$. We note that $g(s) = \int_{s}^{s+1} t^n \, dt$ is increasing on $[0, \infty)$ and $\lim_{s \to \infty} g(s) = \infty$. Thus there is an $\eta > 0$ such that $g(\eta) = \int_{0}^{\infty} t^n \phi(t) \, dt$.

We may also choose some $a, b \in (0, \infty)$ so that the function
\[h(t) = t^{n+\sigma} - at^n + b \]
satisfies $h(\eta) = h(\eta + 1) = 0$. Indeed, the equation $h'(t) = 0$ has a unique solution $(\frac{a}{n+\sigma})^{1/\sigma}$ in $[0, \infty)$ at which h has the minimum value $-\frac{n}{n+\sigma} (\frac{a}{n+\sigma})^{-n/\sigma} + b$. Since h is convex in $[0, \infty)$, we can select such $a, b \in (0, \infty)$ satisfying the condition $h(\eta) = h(\eta + 1) = 0$. Thus we conclude that $h(t) < 0$ for any $t \in (\eta, \eta + 1)$ and $h(t) > 0$ for any $t \in [0, \infty) \setminus (\eta, \eta + 1)$, and hence $h(t) \phi(t) - \mathbb{1}_{(0, \eta+1)}(t)) \geq 0$ for any $t \in [0, \infty)$.

Integrating this inequality on $[0, \infty)$, we easily obtain the second result.

Lemma 2.2. The following inequality
\[
nt^{n+\sigma} - (n + \sigma) t^n s^\sigma + \sigma s^{n+\sigma} \geq \sigma s^{n+\sigma - 2} (t - s)^2
\]
always holds for any $s, t \in (0, \infty)$, $n \in \mathbb{N} + 1$ and $\sigma \in (0, 2]$.

Proof. If we set $\tau = t/s \in (0, \infty)$, then the inequality (2.2) becomes
\[
n\tau^{n+\sigma} - (n + \sigma) \tau^n + \sigma \geq \sigma (\tau - 1)^2.
\]
Consider the function $p(\tau) = n\tau^{n+\sigma} - (n + \sigma) \tau^n + \sigma - \sigma(\tau - 1)^2$. We write
\[p(\tau) = \tau (n\tau^{n+\sigma-1} - (n + \sigma) \tau^{n-1} - \sigma \tau + 2\sigma) := \tau q(\tau).
\]
Then we have that $q'(\tau) = n(n + \sigma - 1)\tau^{n+\sigma - 2} - (n + \sigma)(n - 1)\tau^{n-2} - \sigma$ and
\[q''(\tau) = \tau^{n-3} n(n + \sigma - 1)(n + \sigma - 2) (\tau^{\sigma} - \tau_0^{\sigma})
\]
where $\tau_0 := \left(\frac{-(n + \sigma)(n - 1)(n - 2)}{n(n + \sigma - 1)(n + \sigma - 2)}\right)^{1/\sigma}$. The equation $q''(\tau) = 0$ has a unique solution τ_0 in $(0, \infty)$ at which the function $q'(\tau)$ has the minimum value
\[q'(\tau_0) = -\frac{\sigma (n + \sigma)(n - 1)}{n + \sigma - 2} \left(\frac{n + \sigma}{n(n + \sigma - 1)(n + \sigma - 2)}\right)^{n-2} - \sigma < -\sigma < 0.
\]
Since $\lim_{\tau \to 0^+} q'(\tau) = -\sigma$ and $q'(1) = 0$, we see that the graph of $q'(\tau)$ is convex in $(0, \infty)$. Observing that $\lim_{\tau \to 0^+} q(\tau) = 2\sigma$ and $q(1) = 0$, this implies that the graph of $q(\tau)$ is starting at the point $(0, 2\sigma)$ and going down to the point $(1, 0)$ convexly, and going up convexly right after touching down to the point $(1, 0)$. Hence we conclude that $q(\tau) \geq 0$, and so $p(\tau) \geq 0$ for any $\tau \in (0, \infty)$.

Lemma 2.3. Let $n \in \mathbb{N} + 1$, $\varrho, \beta \in (0, \infty)$ and $\sigma \in (0, 2]$. If $\varphi : [0, \infty) \to (0, \infty)$ is a decreasing absolutely continuous function such that
\[
-\varrho \leq \varphi'(t) \leq 0 \quad \text{and} \quad \int_{0}^{\infty} t^{n-1} \varphi(t) \, dt := \beta,
\]
then for any $T > 0$ and $T' > 0$, we have
\[
\int_{0}^{T} t^n \varphi(t) \, dt \leq \int_{T'}^{\infty} t^n \varphi(t) \, dt = \beta.
\]
then we have that
\[
\int_0^\infty t^{n+\sigma-1}\varphi(t)\,dt \geq \frac{1}{n+\sigma} (n\beta)^{\frac{n+\sigma}{n}} \varphi(0)^{-\frac{\sigma}{n}} + \frac{\sigma}{12n(n+\sigma)\rho^2} (n\beta)^{\frac{n+\sigma-2}{n}} \varphi(0)^{\frac{2n-\sigma+2}{n}}.
\]
(2.4)

Proof. By considering the function \(\varphi(0)^{-1}\varphi(t)\), we may assume that \(\varphi = 1\) and \(\varphi(0) = 1\). Without loss of generality, we assume that \(\alpha := \int_0^\infty t^{n+\sigma-1}\varphi(t)\,dt < \infty\); otherwise, we have already done. Set \(\phi(t) = -\varphi'(t)\) for \(t \in [0, \infty)\). Then we have that \(0 \leq \phi(t) \leq 1\) and \(\int_0^\infty \phi(t)\,dt = \varphi(0) = 1\), and moreover Lemma 2.1 and the integration by parts leads us to obtain
\[
\int_{\eta}^{\eta+1} t^{n+\sigma}\,dt \leq \int_0^\infty t^{n+\sigma} \phi(t)\,dt
\]
(2.5)

Applying the integration by parts again, by (2.5) we see that
\[
0 \leq \lim_{t \to \infty} \left(-t^{n+\sigma}\varphi(t)\right) + (n+\sigma) \int_0^\infty t^{n+\sigma-1}\varphi(t)\,dt
\]
(2.6)

Then we claim that \(\lim_{t \to \infty} t^{n+\sigma}\varphi(t) = 0\); indeed, if \(\gamma := \lim_{t \to \infty} t^{n+\sigma}\varphi(t) > 0\), then given any \(\varepsilon \in (0, \gamma)\) there is some large \(T > 0\) such that \(\gamma - \varepsilon < t^{n+\sigma}\varphi(t) < \gamma + \varepsilon\) for all \(t > T\), and thus we get that
\[
\infty = \int_T^\infty \frac{\gamma - \varepsilon}{t} \,dt \leq \int_0^\infty t^{n+\sigma-1}\varphi(t)\,dt < \infty,
\]
which gives a contradiction. Hence, it follows from Lemma 2.1 and the integration by parts that
\[
\int_\eta^{\eta+1} t^n\,dt = \int_0^\infty t^n \phi(t)\,dt = n \int_0^\infty t^{n-1}\varphi(t)\,dt = n\beta.
\]
(2.7)

Integrating the inequality (2.2) on \([\eta, \eta+1]\], it follows from (2.6) and (2.7) that
\[
n(n+\sigma)\alpha - n(n+\sigma)s^\sigma \beta + \sigma s^{n+\sigma} \geq \sigma s^{n+\sigma-2} \int_\eta^{\eta+1} (t-s)^2\,dt
\]
\[
\geq \sigma s^{n+\sigma-2} \int_{-1/2}^{1/2} t^2\,dt = \frac{\sigma}{2} s^{n+\sigma-2}.
\]

Selecting \(s = (n\beta)^{1/n}\), we obtain that
\[
\alpha \geq \frac{1}{n+\sigma} (n\beta)^{\frac{n+\sigma}{n}} + \frac{\sigma}{12n(n+\sigma)(n\beta)^{\frac{n+\sigma-2}{n}}},
\]

Therefore we complete the proof. \(\square\)
3. Proof of Theorem 1.1

In this section, we shall prove Theorem 1.1 by applying lemmas obtained in the previous section.

Let $D \subset \mathbb{R}^n$ be a bounded open domain and D^* be its symmetric rearrangement given by

$$D^* = \{ x \in \mathbb{R}^n : |x| < (|D|/|B_1|)^{1/n} \}.$$

That is, D^* is the open ball with the same volume as D and center $0 \in \mathbb{R}^n$. Since $|x|^2$ is radial and increasing, the moment of inertia of D with mass center $0 \in \mathbb{R}^n$ has the lower bound as follows:

$$\int_D |x|^2 \, dx \geq \int_{D^*} |x|^2 \, dx = \frac{n|D|}{n+2} \left(\frac{|D|}{|B_1|} \right)^\frac{2}{n}. \quad (3.1)$$

Let $\{e_i\}_{i \in \mathbb{N}}$ be the set of eigenfunctions e_i of (1.7) corresponding to eigenvalues $\nu_i^2(D)$ which is an orthonormal basis of $L^2(D)$ and an orthogonal basis of X_0. Then we consider the Fourier transform of each eigenfunction $e_i(x)$ given by

$$\hat{e}_i(\xi) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} e^{i\langle x, \xi \rangle} e_i(x) \, dx = \langle e_i, e_i \rangle_{L^2(D)}$$

where $\xi = (2\pi)^{-n/2} e^{i\langle x, \xi \rangle}$. By Parseval’s formula and Plancherel theorem, we see that the set $\{\hat{e}_i\}_{i \in \mathbb{N}}$ is orthonormal in $L^2(\mathbb{R}^n)$. Since $\{e_i\}_{i \in \mathbb{N}}$ is an orthonormal basis of $L^2(D)$, it follows from Bessel’s inequality that

$$\sum_{i=1}^k |\hat{e}_i(\xi)|^2 \leq \|e_\xi\|_{L^2(D)} = \frac{|D|}{(2\pi)^n} \quad (3.2)$$

for any $\xi \in \mathbb{R}^n$ and $k \in \mathbb{N}$. From standard analysis, we have that

$$\nabla \hat{e}_i(\xi) = \langle ix e_\xi, e_i \rangle_{L^2(D)} := \langle \{ix_1 e_\xi, e_i\}_{L^2(D)}, \cdots, \{ix_n e_\xi, e_i\}_{L^2(D)} \rangle.$$

Applying Bessel’s inequality again, we obtain that

$$\sum_{i=1}^k |\nabla \hat{e}_i(\xi)|^2 \leq \|ix e_\xi\|_{L^2(D)} = \frac{|D|}{(2\pi)^n} \quad (3.3)$$

for any $\xi \in \mathbb{R}^n$ and $k \in \mathbb{N}$. From (1.7) and Parseval’s formula, we have the estimate

$$\nu_i^2(D) = \|e_i\|^2_{X_0} = \langle -L_K e_i, e_i \rangle_{L^2(D)}$$

$$= \langle \hat{e}_i, \hat{e}_i \rangle_{L^2(D)} = \int_{\mathbb{R}^n} s(\xi)|\hat{e}_i(\xi)|^2 \, d\xi \quad (3.4)$$

where $s(\xi) = \int_{\mathbb{R}^n} (1 - \cos\langle y, \xi \rangle) K(y) \, dy$. Here we note that $1 - \cos\langle y, \xi \rangle \geq 0$. If we choose a matrix $M \in \mathcal{O}(n)$ such that $Me_1 = \xi/|\xi|$ where $e_1 = (1, 0, \cdots, 0) \in \mathbb{R}^n$, then by (1.1) we get the estimate

$$s(\xi) \geq \lambda c_{n, \sigma} \int_{\mathbb{R}^n} \frac{1 - \cos \langle |y| \xi, \xi/|\xi| \rangle}{|y|^{n+\sigma}} \, dy$$

$$= \lambda c_{n, \sigma} |\xi|^\sigma \int_{\mathbb{R}^n} \frac{1 - \cos \langle \zeta, Me_1 \rangle}{|\zeta|^{n+\sigma}} \, d\zeta \quad (3.5)$$

$$= \lambda c_{n, \sigma} |\xi|^\sigma \int_{\mathbb{R}^n} \frac{1 - \cos \langle \zeta, e_1 \rangle}{|\zeta|^{n+\sigma}} \, d\zeta = \lambda |\xi|^\sigma.$$
If we set \(G_k(\xi) = \sum_{i=1}^{k} |\mathcal{F}_i(\xi)|^2 \), then by (3.2), (3.3) and Schwarz inequality, we have that \(0 \leq G_k(\xi) \leq (2\pi)^{-n} |D| \). Also we observe that \(x^a e_i \in L^1(\mathbb{R}^n) \) for any \(i = 1, \cdots, k \) and multi-index \(a = (a_1, \cdots, a_n) \in (\mathbb{N} \cup \{0\})^n \), where \(x^a := x_1^{a_1} \cdots x_n^{a_n} \).

By Riemann-Lebesgue lemma and standard analysis, we see that \(\mathcal{F}_i \in C_0^\infty(\mathbb{R}^n) \) for any \(i = 1, \cdots, k \), and \(G_k \in C_0^\infty(\mathbb{R}^n) \). Thus we get that

\[
(3.6) \quad |\nabla G_k(\xi)| \leq 2 \left(\sum_{i=1}^{k} |\mathcal{F}_i(\xi)|^2 \right)^{\frac{1}{2}} \left(\sum_{i=1}^{k} |\nabla \mathcal{F}_i(\xi)|^2 \right)^{\frac{1}{2}} \leq \frac{2\sqrt{|D||D'|}}{(2\pi)^n}
\]

for any \(\xi \in \mathbb{R}^n \), and moreover \(\int_{\mathbb{R}^n} G_k(\xi) \, d\xi = k \) by Plancherel theorem and

\[
(3.7) \quad \sum_{i=1}^{k} \nu_i^2(D) \geq \lambda \int_{\mathbb{R}^n} |\xi|^\sigma G_k(\xi) \, d\xi
\]

by (3.4) and (3.5). Let \(G_k^*(\xi) = \varphi(|\xi|) \) be the symmetric decreasing arrangement of \(G_k \). Then it follows from Lemma 1.E. in [11] that \(\varphi \) is absolutely continuous in \([0, \infty)\). For \(\tau \geq 0 \), we set \(\omega(\tau) = |\{ \xi \in \mathbb{R}^n : G_k^*(\xi) \geq \tau \}| = |\{ \xi \in \mathbb{R}^n : G_k(\xi) \geq \tau \}|.

Lemma 3.1. If \(\varphi \) is differentiable at \(t \in (0, \infty) \), then \(\omega \) is differentiable at \(\varphi(t) \) and moreover \(\omega'(\varphi(t)) \varphi'(t) = n|B_1|t^{n-1} \).

Proof. Take any \(t \in (0, \infty) \) at which \(\varphi \) is differentiable. Then we have two possible cases; (i) there is an open interval \(I \subset (0, \infty) \) such that \(t \in I \) and \(\varphi' = 0 \) in \(I \), and (ii) there is an interval \(I \subset (0, \infty) \) such that \(t \in I \) and \(\varphi' < 0 \) in \(I \).

In case of (i), it is easy to check that \(\omega'(\varphi(t)) = 0 \). In case of (ii), by the property of the distribution function, we see that \(\omega \) is continuous at \(\varphi(t) \). We note that \(\omega(\varphi(t)) = |B_1|t^n \).

Write \(\Delta s = \varphi(t + \Delta t) - \varphi(t) \). Then we have that

\[
\frac{\omega(\varphi(t + \Delta s) - \omega(\varphi(t))}{\Delta s} = \frac{\omega(\varphi(t + \Delta t)) - \omega(\varphi(t))}{\Delta t} = |B_1| \sum_{i=0}^{n-1} (t + \Delta t)^{n-1-i}(\Delta t)^i.
\]

Taking the limit in the above because \(\varphi \) is continuous at \(t \), this implies the required result.

We continue the proof of Theorem 1.1. As in the above, there is nothing to prove it, because \(\varphi' = 0 \) in \(I \) in case of (i). So, without loss of generality, we may assume that we are now in the case (ii). By (3.1) and (3.7), we have that

\[
(3.8) \quad k = \int_{\mathbb{R}^n} G_k(\xi) \, d\xi = \int_{\mathbb{R}^n} G_k^*(\xi) \, d\xi = n|B_1| \int_0^\infty t^{n-1} \varphi(t) \, dt
\]

and

\[
(3.9) \quad \sum_{i=1}^{k} \nu_i^2(D) \geq \lambda \int_{\mathbb{R}^n} |\xi|^\sigma G_k(\xi) \, d\xi \geq \lambda \int_{\mathbb{R}^n} |\xi|^\sigma G_k^*(\xi) \, d\xi = \lambda n|B_1| \int_0^\infty t^{n+\sigma-1} \varphi(t) \, dt.
\]

Since \(\varphi : [0, \infty) \to [0, (2\pi)^{-n} |D|] \) is decreasing by (3.2), it follows from the coarea formula that

\[
(3.10) \quad \omega(\tau) = \int_\tau^{(2\pi)^{-n} |D|} \int_{S_t} \frac{1}{|\nabla G_k(\xi)|} \, d\sigma_s(\xi) \, ds
\]
where \(S_s = \{ \xi \in \mathbb{R}^n : G_k(\xi) = s \} \) and \(d\sigma_s \) is the surface measure on \(S_s \). Thus by (3.10) and Lemma 3.1, we obtain that

\[
-n|B_1|t^{n-1} = -\omega'(\phi(t))\phi'(t) = \left(\int_{S_{\phi(t)}} \frac{1}{|V G_k(\xi)|} d\sigma(\phi(t)) \right) \phi'(t) \\
\leq \frac{1}{\varrho} \sigma(\phi(t))(S_{\phi(t)}) \phi'(t) = \frac{1}{\varrho} n|B_1|t^{n-1} \phi'(t) \leq 0,
\]

where \(\varrho = 2(2\pi)^{-n} \sqrt{|D||D|} \). Thus this implies that \(-\varrho \leq \phi'(t) \leq 0\) for any \(t \geq 0 \).

If we set \(\beta = k/(n|B_1|) \) in (3.8), then by (3.9) and Lemma 2.3 we have that

\[
\frac{1}{k} \sum_{i=1}^{k} \nu_i^\sigma(D) \geq \frac{\lambda n}{n+\sigma} \left(\frac{k}{|B_1|} \right)^{\frac{n}{2}} \phi(0)^{-\frac{n}{2}}
\]

\[
+ \frac{\lambda \sigma}{12(n+\sigma)\varrho^2} \left(\frac{k}{|B_1|} \right)^{\frac{n}{2}} \phi(0)^{\frac{2n-\sigma+2}{2}}.
\]

For \(t \in [0, (2\pi)^{-n}|D|] \), we set

\[
h(t) = \frac{\lambda n}{n+\sigma} \left(\frac{k}{|B_1|} \right)^{\frac{n}{2}} t^{-\frac{n}{n+\sigma}} + \frac{\lambda \sigma}{12(n+\sigma)\varrho^2} \left(\frac{k}{|B_1|} \right)^{\frac{n}{2}} t^{-\frac{n-\sigma+2}{2}}.
\]

Differentiating \(h(t) \) once, we get that

\[
h'(t) = \frac{\lambda \sigma}{n+\sigma} \left(\frac{k}{|B_1|} \right)^{\frac{n}{2}} t^{-\frac{n}{n+\sigma} - 1} g(t)
\]

where \(g(t) = -1 + \frac{2n-\sigma+2}{2n(n+\sigma)\varrho^2} \left(\frac{k}{|B_1|} \right)^{-2/n} t^{\frac{n-\sigma+2}{n}} \). Since \(g \) is increasing on \([0, (2\pi)^{-n}|D|]\), we obtain that

\[
g(t) \leq g((2\pi)^{-n}|D|) = -1 + \frac{(n+2)(2n-\sigma+2)|B_1|^{4/n}}{192n^2\pi^2k^{2/n}} \leq -1 + \frac{20}{192} \leq 0
\]

from the fact that \(\sigma \in (0, 2], |B_1| = \frac{2n^{n/2}}{n!(\pi)^{n/2}} \) and \(\Gamma(\frac{3}{2}) \geq \Gamma(\frac{1}{2}) = \sqrt{\pi} \) for all \(n \in \mathbb{N} \). Thus \(h \) is decreasing on \([0, (2\pi)^{-n}|D|]\), a lower bound in (3.12) can be obtained by replacing \(\phi(0) \) by \((2\pi)^{-n}|D|\) as follows;

\[
\frac{1}{k} \sum_{i=1}^{k} \nu_i^\sigma(D) \geq h((2\pi)^{-n}|D|)
\]

\[
= \frac{\lambda n(2\pi)^{\sigma}}{(n+\sigma)(|B_1||D|)^{\frac{n}{2}}} k^{\frac{n}{2}} + \frac{\lambda \sigma(2\pi)^{\sigma-2}}{48(n+\sigma)(|B_1||D|)^{\frac{n-\sigma+2}{2}}} |D|^{\frac{2n-\sigma+2}{2}}.
\]

Therefore we complete the proof. \(\square \)

REFERENCES

[1] F. A. Berezin, Covariant and contravariant symbols of operators, Izv. Akad. Nauk. SSSR Ser. Mat. 36, 1972, 1134–1167.
[2] P. Kröger, Estimates for sums of Eigenvalues of the Laplacian, Jour. Funct. Anal. 126, 1994, 217–227.
[3] P. Li and S. T. Yau, On the Schrödinger equation and the eigenvalue problem, Comm. Math. Phys. 88, 1983, 309–318.
[4] E. Lieb, The number of bound states of one-body Schrödinger operators and the Weyl problem, Proc. Sym. Pure Math. 36, 1980, 241–252.
[5] A. D. Melas, A lower bound for sums of eigenvalues of the Laplacian, Proc. Amer. Math. Soc. 131(2), 2002, 241–252.
[6] E. Di Nezza, G. Palatucci and E. Valdinoci Hitchhiker’s guide to the fractional Sobolev space, Bull. Sci. Math. 136(5), 2012, 521–573.
[7] G. Pólya, On the eigenvalues of vibrating membranes, Proc. London Math. Soc. (3)11(2), 1961, 419–433.
[8] B. Simon, Weak trace ideals and the number of bound states of Schrödinger operators, Trans. Amer. Math. Soc. 224, 1976, 367–380.
[9] R. Servadei and E. Valdinoci, Mountain pass solutions for non-local elliptic operators, J. Math. Anal. Appl. 389, 2012, 887–898.
[10] R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst. 33(5), 2013, 2105–2137.
[11] G. Talenti, Inequalities in rearrangement invariant function spaces, Nonlinear Analysis, Function Spaces and Applications 5, 1994, 177–230.
[12] H. Weyl, Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen, Math. Ann. 71(1), 1911, 441–479.
[13] S. Yildirim Yolcu and T. Yolcu, Estimates for the sums of eigenvalues of the fractional Laplacian on a bounded domain, Commun. Contemp. Math. 15(3), 2013, 1250048-1–15.

• Yong-Cheol Kim : Department of Mathematics Education, Korea University, Seoul 136-701, Korea
 E-mail address: ychkim@korea.ac.kr