Complete genome sequence of *Arcobacter nitrofigilis* type strain (CI¹)

Amrita Pati¹, Sabine Gronow³, Alla Lapidus¹, Alex Copeland¹, Tijana Glavina Del Rio¹, Matt Nolan¹, Susan Lucas¹, Hope Tice¹, Jan-Fang Cheng¹, Cliff Han¹,², Olga Chertkov¹,², David Bruce¹,², Roxanne Tapia¹,², Lynne Goodwin¹,², Sam Pitluck¹, Konstantinos Liolios¹, Natalia Ivanova¹, Konstantinos Mavromatis¹, Amy Chen¹, Krishna Palaniappan¹, Miriam Land¹,³, Loren Hauser¹,⁵, Yun-Juan Chang¹,³, Cynthia D. Jeffries¹,⁵, John C. Detter¹,², Manfred Rohde⁶, Markus Göker³, James Bristow¹, Jonathan A. Eisen¹,², Victor Markowitz⁴, Philip Hugenholtz¹, Hans-Peter Klenk³, and Nikos C. Kyrpides¹

1 DOE Joint Genome Institute, Walnut Creek, California, USA
2 Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
3 DSMZ – German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
4 Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA
5 Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
6 HZI – Helmholtz Centre for Infection Research, Braunschweig, Germany
7 University of California Davis Genome Center, Davis, California, USA

*Corresponding author: Nikos C. Kyrpides

Keywords: symbiotic, *Spartina alterniflora* Loisel, nitrogen fixation, micro-anaerophilic, motile, *Campylobacteraceae*, GBEA

Arcobacter nitrofigilis (McClung et al. 1983) Vandamme et al. 1991 is the type species of the genus *Arcobacter* in the family *Campylobacteraceae* within the *Epsilonproteobacteria*. The species was first described in 1983 as *Campylobacter nitrofigilis* [1] after its detection as a free-living, nitrogen-fixing *Campylobacter* species associated with *Spartina alterniflora* Loisel roots [2]. It is of phylogenetic interest because of its lifestyle as a symbiotic organism in a marine environment in contrast to many other *Arcobacter* species which are associated with warm-blooded animals and tend to be pathogenic. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of a type stain of the genus *Arcobacter*. The 3,192,235 bp genome with its 3,154 protein-coding and 70 RNA genes is part of the *Genomic Encyclopedia of Bacteria and Archaea* project.

Introduction

Strain CI¹ (= DSM 7299 = ATCC 33309 = CCUG 15893) is the type strain of the species *Arcobacter nitrofigilis*, which is the type species of the genus *Arcobacter* [1]. Strain CI¹ was isolated from roots of *Spartina alterniflora* Loisel (cordgrass) growing in salty marshes at the East coast of Canada. It was the first description of an organism in this kind of habitat that belonged to the genus *Campylobacter*, as described based on phenotypic and biochemical traits [2]. The species epithet *nitrofigilis* means 'nitrogen-fixing' and is based on the outstanding characteristic of this species [3]. The new genus *Arcobacter*, meaning 'bow-shaped rod', was introduced in 1991 and its separation from the genus *Campylobacter* was based on DNA-DNA and DNA-rRNA hybridization [1]. Up to now, the genus *Arcobacter* comprises nine species, some of which are associated with warm-blooded animals whereas others are found in marine environments.

Within the *Campylobacteraceae* several whole-genome sequences have already been deciphered: *A. butzleri* strain RM4018 [4] (non type strain) is
the only member of the genus *Arcobacter*, as well as genomes from seven species of the genus *Campylobacter*, and *Sulfurospirillum deleyianum* [5].

Only few additional strains belonging to the species *A. nitrofigilis* are known in the literature, with F2176 and F2173 [6] being the closest related ones (99% sequence identity). The type strains of the other species of the genus *Arcobacter* share 93.8-94.6% 16S rRNA sequence identity with strain CIT, whereas the type strains from other genera in the family *Campylobacteraceae* share less than 89% sequence identity with strain CIT [7]. There are plenty of phylotypes (uncultured bacteria) known from marine environments such as the ridges flanking crustal fluids in oceanic crust (AY704399, clone FD118-51B-02, 98.6%), sea water from Ishigaki port in Japan (AB262370/-71, 96.4%), a mangrove of the Danshui river estuary of northern Taiwan (DQ234254, 95.8%) [8], costal water in the Bohai Bay, China, (FJ155005, 95.8%), in Black Sea shelf sediments in Romania (AJ271655, 95.8%), or from activated sludge in New Zealand (EU104146, 95.8%). Environmental screens and marine metagenome libraries do not contain more than a handful of sequences with >93% 16S rRNA gene sequence identity indicating a sparse representation of closely related strains in the habitats analyzed (status March 2010). Here we present a summary classification and a set of features for *A. nitrofigilis* strain CIT, together with the description of the complete genome sequencing and annotation.

Classification and features

Figure 1 shows the phylogenetic neighborhood of *A. nitrofigilis* strain CIT in a 16S rRNA based tree. The four 16S rRNA gene sequences in the genome differ from each other by up to two nucleotides, and differ by up to three nucleotides from the previously published 16S rRNA sequence (L14627) generated from CCUG 15893, which contains nine ambiguous base calls.

Classification and features

Figure 1. Phylogenetic tree highlighting the position of *A. nitrofigilis* strain CIT relative to the type strains of the other genera within the *Epsilonproteobacteria*. The tree was inferred from 1,379 aligned characters [9,10] of the 16S rRNA gene sequence under the maximum likelihood criterion [11,12] and rooted (as far as possible) in accordance with the current taxonomy [13]. The branches are scaled in terms of the expected number of substitutions per site. Numbers above branches are support values from 200 bootstrap replicates [14] if larger than 60%. Lineages with type strain genome sequencing projects registered in GOLD [15] are shown in blue, published genomes [16] in bold, e.g. the recently published GEBA genome from *S. deleyianum* [5].

http://standardsingenomics.org
Arcobacter nitrofigilis type strain (CIT)

A. nitrofigilis cells are Gram-negative, bow-shaped or curved rods of 1–3 µm length and 0.2–0.9 µm width (Figure 2 and Table 1). Motility is based on a single, polar flagellum and results in rapid corkscrew motion. Older cultures also show cocoid cells [2]. The habitat of all known *A. nitrofigilis* isolates is either the roots or the sediment around the roots of *S. alterniflora* Loisel growing in salt marshes [3]. Although no pathogenic association has been described so far, *A. nitrofigilis* was among five *Arcobacter* species that were isolated from food samples such as meat and shellfish varieties [27]. The optimum growth temperature of *A. nitrofigilis* is 30°C, the temperature range is from 10–37°C [28]. Neither spores nor granules are present but a brown pigment is formed from tryptophan [2]. All strains of the species show positive reactions for nitrogenase, catalase and oxidase. Growth occurs under microaerophilic conditions with oxygen as terminal electron acceptor, under anaerobic conditions fumarate or aspartate are necessary, the presence of nitrate is detrimental [2]. Hydrogen is not necessary for growth [1]. Nitrate is reduced to nitrite and sulfide is produced from cysteine [3]. Strain CIT tested positive for urease, other strains of the species do not [3]. The metabolism of *A. nitrofigilis* is chemoorganotrophic; organic acids and amino acids are used as carbon sources but carbohydrates are neither oxidized nor fermented [2]. All strains of the species are halotolerant. They require a minimum of 0.5% NaCl for growth and can tolerate up to 7% NaCl [28]. *A. nitrofigilis* is susceptible to cephalothin and nalidixic acid but resistant to vancomycin [3]. The G+C content of the DNA was determined by thermal denaturation to be 28.0% [3] which is slightly below the 28.4% found in the genome.

![Figure 2. Scanning electron micrograph of *A. nitrofigilis* strain CIT](image)

Genome sequencing and annotation

Genome project history

This organism was selected for sequencing on the basis of its phylogenetic position [29], and is part of the *Genomic Encyclopedia of Bacteria and Archaea* project [30]. The genome project is deposited in the Genomes OnLine Database [15] and the complete genome sequence in GenBank. Sequencing, finishing and annotation were performed by the DOE Joint Genome Institute (JGI). A summary of the project information is shown in Table 2.
Table 1. Classification and general features of *A. nitrofigilis* strain CI according to the MIGS recommendations [17]

MIGS ID	Property	Term	Evidence code
	Domain	*Bacteria*	TAS [18]
	Phylum	‘Proteobacteria’	TAS [19]
	Class	*Epsilonproteobacteria*	TAS [20,21]
	Order	*Campylobacterales*	TAS [20,22]
	Family	*Campylobacteraceae*	TAS [23]
	Genus	*Arcobacter*	TAS [1]
	Species	*Arcobacter nitrofigilis*	TAS [1]
	Type strain	CI	TAS [3]
	Gram stain	negative	TAS [2]
	Cell shape	bow-shaped rods	TAS [2]
	Motility	motile	TAS [2]
	Sporulation	non-sporulating	TAS [2]
	Temperature range	mesophile, 10-37°C	TAS [2]
	Optimum temperature	30°C	TAS [24]
	Salinity	halotolerant up to 7% NaCl	TAS [2]
	Oxygen requirement	microaerophilic	TAS [2]
	Carbon source	organic and amino acids	TAS [1]
	Energy source	chemoorganotroph	TAS [3]
	Habitat	marine	TAS [2]
	Biotic relationship	symbiotic	TAS [2]
	Pathogenicity	none	NAS
	Biosafety level	1	TAS [25]
	Isolation	roots of the marshplant *Spartina alterniflora*	TAS [2]
	Geographic location	Conrads Beach (Dartmouth), Nova Scotia (Canada)	TAS [2]
	Sample collection time	about or before 1980	TAS [2]
	Latitude	44.65	TAS [2]
	Longitude	-63.60	NAS
	Depth	unknown	
	Altitude	sea level	

Evidence codes - IDA: Inferred from Direct Assay (first time in publication); TAS: Traceable Author Statement (i.e., a direct report exists in the literature); NAS: Non-traceable Author Statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence codes are from of the Gene Ontology project [26]. If the evidence code is IDA, then the property was directly observed by one of the authors or an expert mentioned in the acknowledgements.

Chemotaxonomy

The major respiratory quinones are menaquinone 6 and a second atypical menaquinone 6 that has not yet been clearly identified [1]. The major fatty acids in whole cells of *A. nitrofigilis* are hexadecenoic (C16:0), cis-9-hexadecenoic (cis-C16:1ω7c) and cis-9-octadecenoic acid (cis-C18:1ω7c) [24]

Growth conditions and DNA isolation

A. nitrofigilis strain CI, DSM 7299, was grown on DSMZ medium 429 (Columbia agar including 5% horse blood) [31] at 28°C. DNA was isolated from 1-1.5 g of cell paste using Qiagen Genomic 500 DNA Kit (Qiagen, Hilden, Germany) with lysis modification st/LALMP according to Wu et al. [30].

Genome sequencing and assembly

The genome was sequenced using a combination of Illumina and 454 technologies. An Illumina GAii shotgun library with reads of 50 Mb, a 454 Titanium draft library with average read length of 243 bases, and a paired end 454 library with average insert size
of 24 kb were generated for this genome. All general aspects of library construction and sequencing can be found at http://www.jgi.doe.gov/. Draft assembly was based on 138 Mb 454 standard and 454 paired end data (498,215 reads). Newbler (Roch, version 2.0.0-PostRelease-10/28/2008) parameters are -consed -a 50 -l 350 -g -m -ml 20. The initial Newbler assembly contained 42 contigs in 3 scaffolds. It was converted into a phrap assembly by making fake reads from the consensus and collecting the read pairs in the 454 paired end library. Illumina sequencing data was assembled with Velvet [32], and the consensus sequences were shredded into 1.5 kb overlapped fake reads and assembled together with the 454 data. The Phred/Phrap/Consed software package was used for sequence assembly and quality assessment in the following finishing process. After the shotgun stage, reads were assembled with parallel phrap (High Performance Software, LLC). Possible mis-assemblies were corrected with gapResolution, Dupfinisher, or sequencing cloned bridging PCR fragments with subcloning or transposon bombing [33]. Gaps between contigs were closed by editing in Consed, by PCR and by Bubble PCR primer walks (J-F.Cheng, unpublished). A total of 480 additional Sanger reactions were necessary to close gaps and to raise the quality of the finished sequence. Illumina reads were also used to improve the final consensus quality using an in-house developed tool (the Polisher). The error rate of the completed genome sequence is less than 1 in 100,000.

MIGS ID	Property	Term
MIGS-31	Finishing quality	Finished
	Libraries used	Three genomic libraries: 454 pyro-sequence standard library, 454 pyro-sequence 24 kb PE library, and Illumina standard library
MIGS-28	Libraries used	Three genomic libraries: 454 pyro-sequence standard library, 454 pyro-sequence 24 kb PE library, and Illumina standard library
MIGS-29	Sequencing platforms	454 GS FLX, Illumina GAii
MIGS-31.2	Sequencing coverage	43.5x pyrosequence, 15.7x Illumina
MIGS-30	Assemblers	Newbler version 2.0.0-PostRelease-10/28/2008, phrap
MIGS-32	Gene calling method	Prodigal 1.4, GenePRIMP
	INSDC ID	CP001999
	Genbank Date of Release	May 18, 2010
	GOLD ID	Gc01280
	NCBI project ID	32593
	Database: IMG-GEBA	2502545034
MIGS-13	Source material identifier	DSM 7299
	Project relevance	Tree of Life, GEBA

Genome annotation

Genes were identified using Prodigal [34] as part of the Oak Ridge National Laboratory genome annotation pipeline, followed by a round of manual curation using the JGI GenePRIMP pipeline [35]. The predicted CDSs were translated and used to search the National Center for Biotechnology Information (NCBI) nonredundant database, UniProt, TIGR-Fam, Pfam, PRIAM, KEGG, COG, and InterPro databases. Additional gene prediction analysis and functional annotation was performed within the Integrated Microbial Genomes - Expert Review (IMG-ER) platform [36].

Genome properties

The genome is 3,192,235 bp long and comprises one main circular chromosome with an overall G+C content of 28.4% (Table 3 and Figure 3). Of the 3,224 genes predicted, 3,154 were protein-coding genes, and 70 RNAs; 28 pseudogenes were also identified. The majority of the protein-coding genes (72.1%) were assigned a putative function while those remaining were annotated as hypothetical proteins. The distribution of genes into COGs functional categories is presented in Table 4.
Table 3. Genome Statistics

Attribute	Value	% of Total
Genome size (bp)	3,192,235	100.00%
DNA coding region (bp)	3,009,967	94.29%
DNA G+C content (bp)	905,345	28.36%
Number of replicons	1	
Extrachromosomal elements	0	
Total genes	3,224	100.00%
RNA genes	70	2.17%
rRNA operons	4	
Protein-coding genes	3,154	97.83%
Pseudo genes	70	2.17%
Genes with function prediction	2,324	72.08%
Genes in paralog clusters	454	14.08%
Genes assigned to COGs	2,363	73.29%
Genes assigned Pfam domains	2,480	76.92%
Genes with signal peptides	597	18.52%
Genes with transmembrane helices	838	25.99%
CRISPR repeats	1	

Figure 3. Graphical circular map of the chromosome. From outside to the center: Genes on forward strand (color by COG categories), Genes on reverse strand (color by COG categories), RNA genes (tRNAs green, rRNAs red, other RNAs black), GC content, GC skew.
Table 4. Number of genes associated with the general COG functional categories

Code	value	%age	Description
J	143	5.4	Translation, ribosomal structure and biogenesis
A	0	0.0	RNA processing and modification
K	157	5.9	Transcription
L	102	3.9	Replication, recombination and repair
B	0	0.0	Chromatin structure and dynamics
D	16	0.6	Cell cycle control, mitosis and meiosis
Y	0	0.0	Nuclear structure
V	37	1.4	Defense mechanisms
T	267	10.1	Signal transduction mechanisms
M	168	6.3	Cell wall/membrane/envelope biogenesis
N	78	3.0	Cell motility
Z	0	0.0	Cytoskeleton
W	0	0.0	Extracellular structures
U	69	2.6	Intracellular trafficking and secretion
O	103	3.9	Posttranslational modification, protein turnover, chaperones
C	212	8.0	Energy production and conversion
G	114	4.3	Carbohydrate transport and metabolism
E	252	9.5	Amino acid transport and metabolism
F	61	2.3	Nucleotide transport and metabolism
H	128	4.8	Coenzyme transport and metabolism
I	57	2.2	Lipid transport and metabolism
P	159	6.0	Inorganic ion transport and metabolism
Q	38	1.4	Secondary metabolites biosynthesis, transport and catabolism
R	288	10.9	General function prediction only
S	199	7.5	Function unknown
	861	26.1	Not in COGs

Acknowledgements

We would like to gratefully acknowledge the help of Sabine Welnitz for growing the *A. nitrofigilis* cells, and Susanne Schneider for DNA extraction and quality analysis (both at DSMZ). This work was performed under the auspices of the US Department of Energy Office of Science, Biological and Environmental Research Program, and by the University of California, Lawrence Berkeley National Laboratory under contract No. DE-AC02-05CH11231, Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344, Los Alamos National Laboratory under contract No. DE-AC02-06NA25396, and UT-Battelle Oak Ridge National Laboratory under contract DE-AC05-000R22725, as well as German Research Foundation (DFG) INST 599/1-2.

References

1. Vandamme P, Falsen E, Rossau R, Hoste B, Segers P, Tytgat RDE, Ley J. Revision of *Campylobacter, Helicobacter*, and *Wolinella* taxonomy: emendation of generic descriptions and proposal of *Arcobacter* gen. nov. *Int J Syst Bacteriol* 1991; 41:88-103. PubMed doi:10.1099/00207713-41-1-88

2. McClung CR, Patriquin DG. Isolation of a nitrogen-fixing *Campylobacter* species from the roots of *Spartina alterniflora* Loisel. *Can J Microbiol* 1980; 26:881-886. PubMed doi:10.1139/m80-153

3. McClung CR, Patriquin DG, Davis RE. *Campylobacter nitrofigilis* sp. nov. a nitrogen-fixing bacterium associated with roots of *Spartina alterniflora* Loisel. *Int J Syst Bacteriol* 1983; 33:605-612. doi:10.1099/00207713-33-3-605

4. Miller WG, Parker CT, Rubenfeld M, Mendz GL, Wösten MMS, Ussery DW, Stolz JF, Binnewies TT, Hallin PF, Wang G, *et al*. The complete ge-
lene sequence and analysis of the Epsilonpro-
toeubacterium Arcobacter butzleri. PLoS ONE
2007; 2:e1358. PubMed
doi:10.1371/journal.pone.0001358
5. Sikorski J, Lapidus A, Copeland A, Glavina Del
Rio T, Nolan M, Lucas S, Chen F, Tice H, Cheng
JF, Saunders E, et al. Complete genome of Sulfu-
rospirillum deleyianum type strain (5175°). Stand
Genomic Sci 2010; 2:149-157.
doi:10.4056/sigs.672109
6. Figueras MJ, Collado L, Guarro J. A new 16S
rRNA-RFLP method for the discrimination of the
accepted species of Arcobacter. Diagn Microbiol
Infect Dis 2008; 62:11-15. PubMed
doi:10.1016/j.diagmicrobio.2007.09.019
7. Chun J, Lee JH, Jung Y, Kim M, Kim S, Kim BK,
Lim YW. EzTaxon: a web-based tool for the iden-
tification of prokaryotes based on 16S ribosomal
RNA gene sequences. Int J Syst Evol Microbiol
2007; 57:2259-2261. PubMed
doi:10.1099/ijs.0.04915-0
8. Liao PC, Huang BH, Huang S. Microbial commu-
nity composition of the Danshui river estuary of
northern Taiwan and the practicality of the phy-
logenetic method in microbial barcoding. Microb
Ecol 2007; 54:497-507. PubMed
doi:10.1007/s00248-007-9217-2
9. Castresana J. Selection of conserved blocks from
multiple alignments for their use in phylogenetic
analysis. Mol Biol Evol 2000; 17:540-552. PubMed
10. Lee C, Grasso C, Sharlow MF. Multiple sequence
alignment using partial order graphs. Bioinformat-
ic 2002; 18:452-464. PubMed
doi:10.1093/bioinformatics/18.3.452
11. Stamatakis A, Hoover P, Rougemont J. A Rapid
Bootstrap Algorithm for the RAxML Web Servers.
Syst Biol 2008; 57:758-771. PubMed
doi:10.1080/10635150802429642
12. Felsenstein J. Evolutionary trees from DNA se-
quences: a maximum likelihood approach. J Mol
Evol 1981; 17:368-376. PubMed
doi:10.1007/BF01734359
13. Yarza P, Richter M, Pekleis J, Euzeby JP, Amann
R, Schleifer KH, Ludwig W, Glöckner FO, Rossel-
lo-Mora R. The All-Species Living Tree project: A
16S rRNA-based phylogenetic tree of all se-
quenced type strains. Syst Appl Microbiol 2008;
31:241-250. PubMed
doi:10.1016/j.syapm.2008.07.001
14. Pattengale ND, Alipour M, Bininda-Emonds ORP,
Moret BME, Stamatakis A. How Many Bootstrap
Replicates Are Necessary? Lect Notes Comput Sci
2009; 5541:184-200. doi:10.1007/978-3-642-
02008-7_13
15. Liolios K, Chen IM, Mavromatis K, Tavernarakis
N, Hugenholtz P, Markowitz VM, Kyrpides NC.
The Genomes On Line Database (GOLD) in
2009: status of genomic and metagenomic
projects and their associated metadata. Nucleic
Acids Res 2010; 38:D346-D354. PubMed
doi:10.1093/nar/gkp848
16. Baar C, Eppinger M, Raddatz G, Simon J, Lanz C,
Klimmek O, Nandakumar R, Gross R, Rosinus A,
Keller H, et al. Complete genome sequence and
analysis of Wolinella succinogenes. Proc Natl
Acad Sci USA 2003; 100:11690-11695. PubMed
doi:10.1073/pnas.1932838100
17. Field D, Garrity G, Gray T, Morrison N, Selengut
J, Sterk P, Tatusova T, Thompson N, Allen MJ,
Angiuoli SV, et al. Towards a richer description
of our complete collection of genomes and meta-
genomes: the “Minimum Information about a Ge-
nome Sequence” (MIGS) specification. Nat Bi-
technol 2008; 26:541-547. PubMed
doi:10.1038/nbt1360
18. Woese CR, Kandler O, Wheelis ML. Towards a
natural system of organisms: proposal for the do-
 mains Archaea, Bacteria, and Eucarya. Proc Natl
Acad Sci USA 1990; 87:4576-4579. PubMed
doi:10.1073/pnas.87.12.4576
19. Garrity GM, Holt JG. The Road Map to the Ma-
nual. In: Garrity GM, Boone DR, Castenholz RW
(eds), Bergey’s Manual of Systematic Bacteriology,
Second Edition, Volume 1, Springer, New York,
2001, p. 119-169.
20. Validation List No. 107. List of new names and
new combinations previously effectively, but not
validly, published. Int J Syst Evol Microbiol 2006;
56:1-6. PubMed doi:10.1099/ijs.0.64188-0
21. Garrity GM, Bell JA, Lilburn T. Class V. Epilson-
proteobacteria class. nov. In: Garrity GM, Brenner
DJ, Krieg NR, Staley JT (eds), Bergey’s Manual of
Systematic Bacteriology, Second Edition, Volume 2,
Part C, Springer, New York, 2005, p. 1145.
22. Garrity GM, Bell JA, Lilburn T. Order I. Campylo-
bacteriales ord. nov. In: Garrity GM, Brenner DJ,
Krieg NR, Staley JT (eds), Bergey’s Manual of Sy-
stematic Bacteriology, Second Edition, Volume 2,
Part C, Springer, New York, 2005, p. 1145.
23. Vandamme P, De Ley J. Proposal for a new fami-
ly, Campylobacteraceae. Int J Syst Bacteriol 1991;
41:451-455. doi:10.1099/00207713-41-3-451

http://standardsingenomics.org
Arcobacter nitrofigilis type strain (CIT)

24. Donachie SP, Bowman JP, On SL, Alam M. Arcobacter halophilus sp. nov., the first obligate halophile in the genus Arcobacter. *Int J Syst Evol Microbiol* 2005; **55**:1271-1277. PubMed doi:10.1099/ijs.0.63581-0

25. Classification of *Bacteria* and *Archaea* in risk groups. www.baua.de TRBA 466.

26. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al. Gene ontology: tool for the unification of biology. *Nat Genet* 2000; **25**:25-29. PubMed doi:10.1038/75556

27. Collado L, Guarro J, Figueras MJ. Prevalence of *Arcobacter* in meat and shellfish. *J Food Prot* 2009; **72**:1102-1106. PubMed

28. Tenover FC, Fennell CL. The genera *Campylobacter* and *Helicobacter*. In: *The Prokaryotes*. Vol. IV, 2nd ed. 1992, Springer-Verlag, New York.

29. Klenk HP, Göker M. *En route* to a genome-based taxonomy of *Archaea* and *Bacteria*? *Syst Appl Microbiol* 2010; **33**:175-182. PubMed doi:10.1016/j.syapm.2010.03.003

30. Wu D, Hugenholtz P, Mavromatis K, Pukall R, Dalin E, Ivanova N, Kunin V, Goodwin L, Wu M, Tindall BJ, et al. A phylogeny-driven genomic encyclopedia of *Bacteria* and *Archaea*. *Nature* 2009; **462**:1056-1060. PubMed doi:10.1038/nature08656

31. List of growth media used at DSMZ: http://www.dsmz.de/microorganisms/media_list.php.

32. Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. *Genome Res* 2008; **18**:821-829. PubMed doi:10.1101/gr.074492.107

33. Sims D, Brettin T, Detter JC, Han C, Lapidus A, Copeland A, Glavina Del Rio T, Nolan M, Chen F, Lucas S, et al. Complete genome of *Kytococcus sedentarius* type strain (541T). *Stand Genomic Sci* 2009; **1**:12-20. doi:10.4056/sigs.761

34. Hyatt D, Chen GL, Locascio PF, Land ML, Larkin FW, Hauser LJ. Prodigal Prokaryotic Dynamic Programming Genefinding Algorithm. *BMC Bioinformatics* 2010; **11**:119. PubMed doi:10.1186/1471-2105-11-119

35. Pati A, Ivanova N, Mikhailova N, Ovchinikova G, Hooper SD, Lykidis A, Kyrpides NC. GenePRIMP: A Gene Prediction Improvement Pipeline for microbial genomes. *Nat Methods* 2010; **7**:455-457. PubMed doi:10.1038/nmeth.1457

36. Markowitz VM, Ivanova NN, Chen IMA, Chu K, Kyrpides NC. IMG ER: a system for microbial genome annotation expert review and curation. *Bioinformatics* 2009; **25**:2271-2278. PubMed doi:10.1093/bioinformatics/btp393