Overexpression of BcHsfA1 transcription factor from Brassica campestris improved heat tolerance of transgenic tobacco

Xiangtao Zhu¹, Yang Wang²*, Yunhui Liu², Wei Zhou², Bin Yan³, Jian Yang⁴*, Yafang Shen²*

¹ College of Jiyang, Zhejiang A&F University, Zhuji, China, ² School of Agriculture and Food Science, Key Laboratory of Agricultural Products Quality Improvement Technology in Zhejiang Province, Zhejiang A&F University, Hangzhou, China, ³ Laboratory of Plant Biotechnology, College of Life and Environment Sciences, Shanghai Normal University, Shanghai, China, ⁴ Institute of Plant Virology, Ningbo University, Ningbo, China

* wangyanght119@126.com (YW); avon-2004@163.com (YS); nather2008@163.com (JY)

Abstract

Heat shock proteins (HSPs) are a type of conserved molecular chaperone. They exist extensively in plants and greatly contribute to their survival under heat stress. The transcriptional regulation factor heat shock factor (HSF) is thought to regulate the expression of Hsps. In this study, a novel gene designated BcHsfA1 was cloned and characterized from Brassica campestris. Bioinformatic analysis implied that BcHsfA1 belongs to the HsfA gene family and is most closely related to HsfA1 from other plants. Constitutive overexpression of BcHsfA1 significantly improved heat tolerance of tobacco seedlings by affecting physiological and biochemical processes. Moreover, the chlorophyll content of transgenic tobacco plants was significantly increased compared with wild type after heat stress, as were the activities of the important enzymatic antioxidants superoxide dismutase and peroxidase. BcHsfA1 overexpression also resulted in decreased malondialdehyde content and comparative electrical conductivity and increased soluble sugar content in transgenic tobacco plants than wild-type plants exposed to heat stress. Furthermore, we identified 11 candidate heat response genes that were significantly up-regulated in the transgenic lines exposed to heat stress. Together, these results suggested that BcHsfA1 is effective in improving heat tolerance of tobacco seedlings, which may be useful in the development of new heat-resistant B. campestris strains by genetic engineering.

Introduction

Changes in the natural environment such as heat, drought, and salinity can cause plant growth retardation and even death [1]. Plants have therefore evolved a series of defense responses to adverse environment, in which the accumulation of heat shock proteins (HSPs) plays an important role in sustaining homeostasis [2]. Heat shock transcription factors (HSFs) have been shown to regulate the expression of HSPs [3] in response to physical and chemical stress, and to co-adjusts other important signaling pathways [4].
HSFs exist extensively in plants, with 21 Hsfs in Arabidopsis thaliana and 34 in soya. They play a critical role in cell homeostasis under various conditions [4], and can be divided into three categories: HsfA, HsfB and HsfC [4–6]. HsfA regulates Hsp expression following exposure to abiotic stress, especially heat [5].

Heat and oxidative stress both induce plants to produce HSPs, and the biosynthesis of these stress proteins can be considered an adaptive mechanism in which mitochondrial protection is essential [7]. Similarly, the chloroplast HSP protein protects the chloroplast against damage caused by oxidative stress and heat stress [8]. Heat stress was shown to induce an oxidative stress reaction in Salmonella typhimurium causing the up-regulation of many antioxidant enzyme genes [9], while the overexpression of catalase (CAT) and superoxide dismutase (SOD) genes increased thermotolerance in Saccharomyces cerevisiae [10]. Furthermore, the heat-shock cis element also contributed partially to the induction of the ascorbate peroxidase (APX) gene under oxidative stress [11].

As a traditional vegetable in many countries worldwide, plants of cabbage family are very sensitive to high temperatures [12], which can severely affect both quality and yield. Therefore, the development of new heat-tolerant cabbage varieties is warranted. In the present study, we cloned a gene designated BcHsfA1 from young seedlings of the traditional non-heading Chinese cabbage Brassica campestris ‘Suzhouqing’, which has comparatively strong heat tolerance [13]. We also identified its biological function. Our findings provide new insights into the breeding of novel cabbage varieties that show resistance to hot temperature by genetic engineering.

Materials and methods

Plant materials

Seeds of B. campestris ‘Suzhouqing’ were germinated for 48 h in darkness at 25˚C in pots filled with a moist substrate of peat moss. After germination, the seedlings were incubated in a green house and regularly irrigated with tap water. Nicotiana tabacum seeds were sterilized and sown on Murashige and Skoog (MS) medium in vitro kept at 4˚C for 2 days before germination [14] at 25˚C. All the photoperiods were 16 h light /8 h dark.

DNA sequence analysis

Coding sequences were predicted using the opening reading frame (ORF) finder. The nucleotide sequence and deduced protein amino acid sequence were submitted to NCBI and the latter was analyzed with online ExPAsy Proteomics Tools (http://au.expasy.org/tools/); multipe sequence alignments were performed using ClustalX software [15]. A phylogenetic tree was compiled using MEGA5.0 software combined with CLUSTAL W alignments [16].

Expression pattern of BcHsfA1 under heat stress

Heat stress was administered by exposing B. campestris seedlings to 42˚C for 0, 0.5, 1, 2, 3, 4 and 5h. Leaves were then harvested for RNA extraction using the TRIzol reagent (Invitrogen, Waltham, MA) and treated with DNaseI (Promega, Madison, WI) according to the manufacturers’ protocols. Purified RNAs were used for real-time quantitative (RT-q) PCR analysis. Quantification of gene expression was performed using the comparative Ct method [17–18]. Data represented the average of three independent experiments.
Construction of BcHsfA1 overexpression vectors

Single-strand cDNAs were synthesized from 5μg of total RNA with an oligo (dT) 17 primer through reverse transcription reactions according to the manufacturer’s protocols (Power-Script™, Clontech, Palo Alto, CA). PCR was performed using the primer pairs BcHsfA1-ORF F and BcHsfA1-ORF R (S1 Table). PCR products was inserted into the cloning vector pMD18-T (TaKaRa, Bio, Shiga, Japan) for sequencing as described before [19–20]. The vectors pMD18T-BcHsfA1 and pCAMBIA2300+ were double-digested with NcoI and BstE II. After purification, the gus gene from pCAMBIA2300+ was replaced by the BcHsfA1 coding region to construct the recombinant pCAMBIA2300+ -BcHsfA1 (S1 Fig). BcHsfA1 gene was regulated by the cauliflower mosaic virus (CMV) 35S promoter. The blank vector pCAMBIA2300+ lacking BcHsfA1 was used as a control. Each of the above-constructed plasmids and the disarmed Agrobacterium tumefaciens strain EHA105 harboring the pCAMBIA2300+ -BcHsfA1 plasmid were used for plant genetic transformation.

Plant transformation and PCR assay of transgenic plants

Tobacco transformation was carried out as previously described [21]. Transgenic plants were selected on 1/2 MS medium supplemented with 100 μM kanamycin [21–22]. Genomic DNA was extracted from seedlings of transgenic plants using the modified CTAB method [23]. Prime pairs BcHsfA1-35S-F23 and BcHsfA1-QR were used for PCR detection of the transgenic tobaccos (S1 Table).

Expression profile analysis of transgenic plants by RT-qPCR

Expression profiles of BcHsfA1 in the transgenic tobacco were analyzed by RT-qPCR using total RNA extracted from the leaves of transformants and wild-type tobacco plants [20, 24]. The primer pair BcHsfA1-real-F/BcHsfA1-real-R was used to examine the transcription of BcHsfA1, and NtActin-real-F and NtActin-real-R amplified the reference gene (S1 Table).

Heat tolerance profile in transgenic tobacco

Transgenic tobaccos and wild-type (WT) seedlings grown in a greenhouse were exposed to 42°C as described previously [25], then leaves were harvested at 0, 1, 2 and 3h to determine physiological and biochemical indexes. Leaves treated with heat stress for 3h were collected to detect the expression profiles of two antioxidative-related genes, SOD and peroxidase gene (POD), three heat stress defense genes, late embryogenis abundant protein 5 (LEA5), and early response to drought 10C and 10D (ERD10C and NtERD10D), and six heat stress marker genes (NtHSP17.6, NtHSP18.2, NtHSP70, NtHSP82, NtHSP90 and NtHSP101) using RT-qPCR as described above.

The amount of chlorophyll (Chl) was determined according to the method of Wang et al. [26]. Total soluble sugar was extracted from leaves by using 80% hot ethanol and the content was determined as reported by Irigoyen et al. [27–28]. MDA concentrations were measured by the thiobarbituric acid (TBA) reaction according to Wang et al. [29]. For the analysis of POD and SOD enzyme activities, the crude enzyme extract were prepared as reported by Zhang and Kirkham [30]. SOD and POD enzyme activity was measured as described previously [31–32]. Determination of the comparative electrical conductivity was conducted by the deflation method [33].
Statistical analysis
Each experiment was repeated three times, and standard deviation was reported. Statistical significance was analyzed by the one sample t test with SPSS software version 11.5 (SPSS Inc, Chicago, IL).

Results
Cloning and sequence analysis of $BcHsfA1$

$BcHsfA1$ cDNA (1464bp) was cloned using the homologous primer pairs $BcHsfA1$-ORF F and $BcHsfA1$-ORF R. It encoded a protein of 487 amino acids, with a deduced molecular mass of 73.2 kDa and an isoelectric point of 5.54. BLAST search in the GenBank database showed that $BcHsfA1$ shared high homology sequences from $B.napus$ and $B.rapa$.

Sequence domain prediction revealed that $BcHsfA1$ protein contained conserved domains including a DNA-bind domain, an oligomerization domain consisted of hydrophobic repeat regions A/B indispensable for oligomerization, a nuclear localization signal (NLS) recognized by the NLS receptor, an activator motif characterized by aromatic, hydrophobic and acidic amino acid residues associated with transcriptional activation and a leucine-rich nuclear export signal (NES) for receptor-mediated nuclear export in complex with the NES receptor [4–6] (S2 Fig).

A phylogenetic tree was constructed based on the deduced amino acid sequences of $BcHsfA1$ and other HSF proteins. As showed in Fig 1, HSF proteins were divided into three groups: A, B and C types, and $BcHsfA1$ was classified into A family.

$BcHsfA1$ responses to heat stress

To determine the transcription characteristics of $BcHsfA1$ exposed to heat stress, seedlings of $B.campestris$ were incubated at 42˚C for heat treatment with 0, 0.5, 1, 2, 3, 4 or 5 h. $BcHsfA1$ expression was rapidly triggered at 0.5h and peaked at 1 h with a 22.5-fold increase (Fig 2). The accumulation of $BcHsfA1$ then reduced sharply, and stabilized 4h later.

Overexpression of $BcHsfA1$ improved the growth of transgenic plants under heat stress

To study the biological function of $BcHsfA1$, pCAMBIA2300$^+$-BcHsfA1 was overexpressed in $N.tobacum$ to produce T_0 transgenic tobacco plants. PCR analysis identified a clear band at 1464bp for transgenic but not non-transgenic plants (S3 Fig). This suggested that $BcHsfA1$ had been successfully introduced into the transformants.

RT-qPCR analysis was conducted to determine the transcription of $BcHsfA1$ in transgenic plants. Total RNA was extracted from transgenic seedlings (line 1, 2, 3, 6, 7, 8 and 11) and was subjected to RT-qPCR using the transcription level of line 3 as a reference. $BcHsfA1$ exhibited a varied expression pattern in different transgenic plants (Fig 3). Line 11 showed the highest $BcHsfA1$ transcription, whereas line 3 showed the lowest. Line 1, 2, 6, 7 and 8 showed moderate $BcHsfA1$ transcription.

Three transgenetic tabocco lines (2, 7 and 11) showing high $BcHsfA1$ expression were selected for subsequent heat stress analysis. Under heat stress (42˚C), the transgenic tobacco lines showed more growth and less damage than WT (S4 Fig), suggesting that $BcHsfA1$ overexpression improve the heat tolerance of transgenic plants.
Overexpression of \textit{BcHsfA1} transcription factor enhanced heat tolerance of tobacco

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{Phylogenetic tree derived from Hsf amino acid sequences. The dendrogram was generated using the neighbor-joining method with MEGA5.0 software. The following Hsf sequences were included: \textit{BcHsfA1}, \textit{Brassica campestris}; \textit{AtHsfA1}, \textit{Arabidopsis thaliana}, NCBI amino acid accession number NP_193510.1; \textit{AlHsfA1}, \textit{Arabidopsis lyrata}, XP_020873200.1; \textit{CsHsfA1}, \textit{Camelina sativa}, XP_010434623.1; \textit{BnHsfA1}, \textit{Brassica napus}, XP_013711617.1; \textit{CrHsfA1}, \textit{Capsella rubella}, XP_006283759.1; \textit{BrHsfA1}, \textit{Brassica rapa}, XP_009130935.1; \textit{AtHsfB1}, \textit{Arabidopsis thaliana}, NP_195416.1; \textit{AlHsfB1}, \textit{Arabidopsis lyrata}, AIXP_020874746.1; \textit{CsHsfB1}, \textit{Camelina sativa}, XP_00628426.1; \textit{BnHsfB1}, \textit{Brassica napus}, XP_022550139.1; \textit{AtHsfC1}, \textit{Arabidopsis thaliana}, XP_189095.1; \textit{CsHsfC1}, \textit{Camelina sativa}, XP_010466868.1; \textit{AlHsfC1}, \textit{Arabidopsis lyrata}, XP_020889030.1; \textit{CrHsfC1}, \textit{Capsella rubella}, XP_006296716.1; \textit{BnHsfC1}, \textit{Brassica napus}, XP_022562701.1.

\url{https://doi.org/10.1371/journal.pone.0207277.g001}
\end{figure}

\textbf{Overexpression of \textit{BcHsfA1} improved the Chl biosynthesis capacity in transgenic plants under heat stress}

The plant Chl content is representative of its photosynthetic efficiency. In this study, total Chl, Chl a and Chl b decreased both in \textit{BcHsfA1} transgenic lines and WT under elongated heat stress (42° C) from 0 to 3 h (Fig 4). However, \textit{BcHsfA1} transgenic lines showed higher contents of total Chl, Chl a and Chl b than the controls, and the extent of Chl decrease was slower than in WT.

\textbf{Overexpression of \textit{BcHsfA1} increased antioxidative enzyme levels and alleviated cell damage under heat stress}

WT plants showed higher foundation levels of MDA in their leaves than transformants at 0h under heat stress (Fig 5A). In general, the MDA content increased in leaves of both transgenic and WT plants following heat treatment. However, there was no significant difference between transformants and WT after 1h of treatment (P<0.05). After 2h of heat stress, transgenic line 7 and 11 showed significant lower MDA content than WT, and all three transgenic lines (2, 7 and 11) had significant lower MDA level than WT after 3h of heat stress (P<0.05). This implies that \textit{BcHsfA1} improved the tolerance to heat stress in transgenic tobacco plants.

The MDA content reduction in transgenic plants could be explained by the activation of antioxidant enzymes. Therefore, we next determined the activities of SOD and POD.
Fig 2. Expression profile of **BcHsfA1** under heat stress. Seedlings of *B. campestris* were under heat treatment at 42˚C for 0, 0.5, 1, 2, 3, 4 and 5h. The *BcActin* gene was used as an internal control. Error bars indicate standard errors of the mean. Asterisks show significant differences based on the t test (*p<0.05). The experiment was repeated three times.

https://doi.org/10.1371/journal.pone.0207277.g002

Fig 3. Real-time quantitative PCR analysis of transgenic tobacco. Horizontal line indicates the threshold value. The 2^(-ΔΔCT) values (normalized to the endogenous β-actin control) were averaged for each transgenic tobacco (lines 1, 2, 3, 6, 7, 8, and 11). The expression level of line 3 was considered the reference.

https://doi.org/10.1371/journal.pone.0207277.g003
Transgenic plants showed significantly higher SOD activity than WT at both basal levels (0h) and under heat stress (1, 2, and 3h) (Fig 5B). SOD activity also increased from 0 to 2h heat treatment in both transgenic plants and WT, then declined. All three transformants (line 2, 7 and 11) showed significant higher POD activity than WT from 0 to 3h heat treatment (Fig 5C), and the activity level increased in transformants and WT plants after heat stress although there was no significant difference among 1, 2 and 3h in transgenic plants. These results suggested that BcHsfA1 overexpression conferred higher SOD and POD activities to protect plants by reducing the lipid peroxidation.

The content of soluble sugar and comparative electrical conductivity are effective indicators of plant heat tolerance. We observed that soluble sugar contents increased significantly in leaves of both WT and transgenic plants from 0 to 3h of heat stress (42 °C) (Fig 6A). Prior to heat stress, only line 11 had a significantly higher soluble sugar content than WT. However,
after heat stress (1, 2, and 3h), the soluble sugar content was significantly higher in all transgenic lines than WT. As shown in Fig 6B, the comparative electrical conductivity also increased significantly from 0 to 3h heat treatment in both WT and transformants. Moreover, the comparative electrical conductivity of all transgenic lines (lines 2, 7 and 11) was significantly lower than that of WT both before (0h) and after heat stress (1, 2, and 3h), suggesting that less cell membrane damage occurred in transgenic tobacco plants than WT after heat stress.

Overexpression of BcHsfA1 upregulated the expression of heat stress responsive genes

Next, we used RT-qPCR to examine the expression of antioxidative-related genes including NtSOD and NtPOD. Heat stress was found to upregulate NtSOD and NtPOD expression in all tobacco plant tested, but the three transgenic tobacco lines 2, 7, and 11 showed significantly higher ($P<0.05$) NtSOD and NtPOD expression than WT (Fig 7A and 7B). These expression profiles were consistent with the enzyme activity of SOD and POD in transgenic tobacco lines.

We also measured the expression profiles of three heat stress defense genes (NtLEA5, NtERD10C, and NtERD10D), and six HSP genes (NtHSP17.6, NtHSP18.2, NtHSP70, NtHSP82, NtHSP90, and NtHSP101). Compared with controls, the expression of all genes was

![Fig 6. Determination of comparative electrical conductivity and soluble sugar content in leaves of BcHsfA1 transgenic and control tobacco plants under 42°C heat stress. (A) comparative electrical conductivity. (B) soluble sugar content.](https://doi.org/10.1371/journal.pone.0207277.g006)

![Fig 7. Expression profile of heat-response-related genes. (A) Superoxide dismutase, SOD; (B) Peroxidase, POD; (C) Late embryogenesis abundant protein 5, LEA5; (D) Early response to drought 10C, ERD10C; (E) Early response to drought 10C, ERD10D; (F-K) Heat-shock protein, HSP. Asterisks show significant differences based on the t test ($^* P<0.05$). The experiment was repeated three times.](https://doi.org/10.1371/journal.pone.0207277.g007)
significantly up-regulated in the three transgenic tobacco lines 2, 7, and 11 under heat stress (Fig 7C–7K), indicating that BcHsfA1 acts as a positive regulator in response to heat stress.

Discussion

In this study, we cloned and characterized a novel Hsf gene from *B. campestris*. Sequence analysis revealed that the predicted amino acid sequence of BcHsfA1 is very similar to that of other plant HsfA1s, in particular *AtHsfA1*. The deduced BcHsfA1 protein exhibited motifs and domains that are conserved with HsfA1s from other plants such as *A. thaliana* and *B. napus* [34–35], suggesting that those domains play important roles in maintaining the HSF function [36–38]. Additionally, BcHsfA1 contained a NLS at its C-terminal [36, 39–40], indicating that it might be located in the nucleus.

The analysis of BcHsfA1 transcription showed that it responded to heat stress, which is in accordance with earlier findings in other plants [41–42], and implied that BcHsfA1 may be involved in heat resistance of *B. Campestris*. Previous reports also suggested that HSFs could be induced under thermal or other abiotic stresses [43], while Hsf overexpression conferred tolerance to heat and other abiotic stresses in plants [3, 37, 42, 44]. To understand the function of BcHsfA1, we overexpressed it in tobacco under the control of the 35S CMV promoter and measured various physiological and biochemical indexes.

Environmental stress such as heat and cold damage can affect Chl biosynthesis, resulting in a lower accumulation [45]; therefore, the Chl content can be used as a heat tolerance indicator. In this study, Chl a, Chl b and total Chl was significantly increased in transformants compared with WT after heat stress (Fig 4), suggesting that the higher Chl content might play a vital function in heat tolerance. These results were similar to those of other studies in wheat, fine fescue and *Arabidopsis* [46–48].

Membranes are the site of primary physiological injury in the plant response to heat stress [49], and damage to membranes causes leakage which induced Chl spillage and degradation in the stoma. Hence, the extent of membrane damage can be evaluated by determining solute leakage [48, 50–51]. In the present study, electrolyte leakage was reduced in transgenic tobacco plants (Fig 6B), which was consistent with previous reports on sweet potato, yeast, *Arabidopsis*, and potato [52–54]. Moreover, the soluble sugar content was also significant higher in transformants than in WT. This could maintain the osmotic pressure of the cell to avoid excessive water loss under heat stress [55].

When plants were exposed to detrimental environmental conditions such as heat, cold, salt, or drought, reactive oxygen species (ROS) including superoxide (O$_2^-$), hydrogen peroxide (H$_2$O$_2$) and the hydroxyl radical are produced and accumulate [45, 56]. Plants ROS cytotoxicity occurs through enzyme deactivation, the breakage of important cellular components such as cell membranes through oxidative damage, and inhibition of photosynthesis [57]. To prevent this, ROS accumulation is alleviated by inducing activities of ROS-scavenging enzymes [58]. SOD is a key enzyme of the antioxidant defense system, forming the first defense level against superoxide radicals. SOD-catalyzed O$_2^-$ dismutation renders H$_2$O$_2$ as a reaction product, which in turn is removed by POD, CAT and APX activities [58]. In this study, BcHsfA1-overexpressing lines showed much higher SOD and POD activities when exposed to high temperatures (Fig 5). Moreover, as an indicator of membrane peroxidation, the MDA content of transgenic tobacco was lower than that of WT. These increased SOD and POD activities of transformants reflect an active and effective antioxidant response that might be involved in maintaining a lower MDA content, therefore helping plants to cope with the heat stress [59–61].
In conclusion, this study indicated that \textit{BcHsfA1} plays an important role in improving the heat resistance of transgenic tobacco plants. These results will be useful in understanding how plants respond to environmental stresses, and how tolerance to these abiotic stresses can be enhanced by genetic manipulation.

Supporting information

S1 Fig. Schematic of transformation plasmid (\textit{pCAMBIA2300+-BcHsfA1}).

S2 Fig. Multiple alignment of amino acid sequences for \textit{BcHsfA1} and the following other \textit{plantHsfA1} proteins. \textit{AtHsfA-1a} (\textit{Arabidopsis thaliana}, NCBI amino acid accession number NP_193510.1), \textit{AlHsfA-1a} (\textit{Arabidopsis lyrata}, XP_020873200.1), \textit{CsHsfA-1a} (\textit{Camelina sativa}, XP_010434623.1), \textit{BnHsfA-1a} (\textit{Brassica napus}, XP_013711617.1). DBD, DNA-binding domain; HR-A and HR-B, hydrophobic repeat regions A/B; NLS, nuclear localization signal; AHA, activator peptide motifs; NES, nuclear export signal.

S3 Fig. Representative PCR analysis for the presence of the \textit{BcHsfA1} in the transgenic tobaccos. M, size marker; N, untransformed plant (negative control, N); P, p2300\(^\text{-}\text{BcHsfA1}\) (positive control, P).

S4 Fig. Phenotype of transgenic and control tobacco plants under heat stress (42\(^\circ\)C for 3h).

S1 Table. Primers used in this study.

Acknowledgments

This work was supported by National Natural Science Foundation of China (31501394 and 31501604), Startup Project of Talent Introduction in Zhejiang Agriculture and Forestry University (2014FR057), the Biotechnology in Plant Protection of MOA of China and Zhejiang Province, and Fertilizers and Pesticides Reducing and State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control (2010DS700124-KF1607).

Author Contributions

Conceptualization: Bin Yan.

Data curation: Xiangtao Zhu, Yunhui Liu, Wei Zhou, Bin Yan, Jian Yang.

Formal analysis: Yunhui Liu.

Investigation: Wei Zhou, Jian Yang.

Resources: Xiangtao Zhu.

Software: Wei Zhou.

Supervision: Yang Wang.

Visualization: Wei Zhou.

Writing – original draft: Xiangtao Zhu.

Writing – review & editing: Yang Wang, Jian Yang, Yafang Shen.
References

1. Cho EK, Choi YJ. A nuclear-localized HSP70 confers thermoprotective activity and drought-stress tolerance on plants. Biotechnol. Lett. 2009; 31: 597–606. https://doi.org/10.1007/s10529-008-9880-5 PMID: 19034388

2. Wang W, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 2003; 218: 1–14. https://doi.org/10.1007/s00425-003-1105-5 PMID: 14513379

3. Montero-Barrientos M, Hermosa R, Nicolás C, Cardoza RE, Gutiérrez S, Monte E. Overexpression of a Trichoderma HSP70 gene increases fungal resistance to heat and other abiotic stresses. Fungal Genet. Biol. 2008; 45:1506–1513. https://doi.org/10.1016/j.fgb.2008.09.003 PMID: 18824239

4. Wu C. Heat shock transcription factors: structure and regulation. Annu. Rev. Cell Dev. Bi. 1995; 11: 441–469.

5. Nover L, Bharti K, Doring P, Mishra SK, Ganguli A, Scharf KD. Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need? Cell Stress Chaperon. 2001; 6: 177–189.

6. Scharf KD, Heider H, Hohfeld I, Lyck R, Schmidt E, Nover L. The tomato Hsf system: HsfA2 needs interaction with HsfA1 for efficient nuclear import and may be localized in cytoplasmic heat stress granules. Mol. Cell Biol. 1998; 18: 2240–2251. PMID: 9526795

7. Banzet N, Richaud C, Deveaux Y, Kazmaier M, Gagnon J, Triantaphylides C. Accumulation of small heat shock proteins, including mitochondrial Hsp22, induced by oxidative stress and adaptive response in tomato cells. Plant J 1998; 13: 519–527. PMID: 9680997

8. Lee BH, Won SH, Lee HS, Miya M, Chung WI, Kim UJ, et al. Expression of the chloroplast-localized small heat shock protein by oxidative stress in rice. Gene 2000; 245: 283–290. PMID: 10717479

9. Morgan RW, Christman MF, Jacobson FS, Storz G, Ames BN. Hydrogen peroxide-inducible proteins in Salmonella typhimurium overlap with heat shock and other stress proteins. Proc. Natl. Acad. Sci. USA 1986; 83: 8059–8063. PMID: 3534337

10. Davidson JF, Whyte B, Blissinger PH, Schiestl RH. Oxidative stress is involved in heat-induced cell death in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 1996; 93: 5116–5121. PMID: 8643537

11. Storozhenko S, De Pauw P, Van Montague M, Inze D, Kushnir S. The heat-shock element is a functional component of the Arabidopsis APX1 gene promoter. Plant Physiol. 1998; 118: 1005–1014. PMID: 9808745

12. Park HJ, Jung WY, Lee SS, Song JH, Kwon SY, Kim H, et al. Use of heat stress responsive gene expression levels for early selection of heat tolerant cabbage (Brassica oleracea L.). Int. J. Mol. Sci. 2013; 14:11871–11894. https://doi.org/10.3390/ijms140611871 PMID: 23736994

13. Cui L, Huang Q, Yan B, Wang Y, Qian Z, Pan J, et al. Molecular cloning and expression analysis of a Cu/Zn SOD gene BcCSD1 from Brassica campestris ssp. chinensis. Food Chem.2015; 186: 306–311. https://doi.org/10.1016/j.foodchem.2014.07.121 PMID: 25976826

14. Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plantarum1962; 15: 473–497.

15. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL X windows interface, flexible strategies for multiple sequence alignment aided by qualityanalysis tools. Nucleic Acids Res.1997; 25:4876–4882. PMID: 9396791

16. Kumar S, Tamura J, Jakobsen IB, Nei M. MEGA2: molecular evolutionary genetics analysis software. Bioinformatics2001; 12:1244–1245.

17. Muller PY, Janovjak H, Miserez AR, Dobbie Z. Processing of gene expression data generated by quantitative real-time RT-PCR. Biotechniques 2002; 32:1372–1378. PMID: 12074169

18. Zhou W, Huang Q, Wu X, Zhou ZW, Ding MQ, Shi M, et al. Comprehensive transcriptome profiling of Salvia miltiorrhiza for discovery of genes associated with the biosynthesis of tanshinones and phenolic acids. Sci. Rep. 2017; 7: 10554. https://doi.org/10.1038/s41598-017-10215-2 PMID: 28874707

19. Zhou W, Gong YF, Huang CT, Gao F. Molecular cloning and function analysis of flavonoid 3'-hydroxylase gene in the purple-fleshed sweet potato (Ipomoea batatas). Mol. Bio. Rep. 2012; 39: 295–302.

20. Zhou W, Huang FF, Li S, Wang Y, Zhou CC, Shi M, et al. Molecular cloning and characterization of two 1-deoxy-D-xylulose5-phosphate synthase genes involved in tanshinone biosynthesis in Salvia miltiorrhiza. Mol.Bre ed.2016; 36:124.

21. Zhou C, Qian Z, Ji Q, Xu H, Chen L, Luo X, et al. Expression of the zga agglutinin gene in tobacco can enhance its anti-pest ability for peach-potato aphid (Myzus persicae). Acta Physiol. Plantarum2011; 33: 2003–2010.
Wang Y, Hu J, Qin GC, Cui HW, Wang QT. Salicylic acid analogues with biological activity may induce...

Irigoyen JJ, Einerich DW, Sánchez-Díaz M. Water stress induced changes in concentrations of proline...

Chance B, Maehly A. Assay of catalases and peroxidases. Methods Enzymol. 1955; 2: 764–775.

Wang Y, Wen TT, Hu J, Han R, Zhu YF, Guan YJ, et al. Relationship between endogenous salicylic...

Bates LS, Waldren RP, Teare ID. Rapid determination of free proline for water-stress studies. Plant-

Arce-Paredes P, Mora-Escobedo R, Luna-Arias JP, Mendoza-Hernández G, Rojas-Espinosa O. Heat, salinity, and acidity, commonly upregulate A1aB1b proglycinin in soybean embryonic axes. Soybean-biochemistry, chemistry and physiology. InTech (open access), Rijeka, 2011; 402–422.

Wang Y, Hu J, Qin GC, Cui HW, Wang QT. Salicylic acid analogues with biological activity may induce chilling tolerance of maize (Zea mays) seeds. Botany 2012; 90: 845–855.

Irigoyen JJ, Einerich DW, Sánchez-Díaz M. Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiol. Plantarum 1992; 84: 55–60.

Bates LS, Waldren RP, Teare ID. Rapid determination of free proline for water-stress studies. Plant-

Zhou W, Gong YF, Feng QL, Gao F. An improved method of isolation of high quality total RNA from purple-fleshed sweet potato. Ipomoea batatas (L.) Lam. Prep. Biochem. Biotech. 2009; 39:95–104.

Hao XL, Shi M, Cui LJ, Xu C, Zhang YJ, Kai GY. Effects of methyl jasmonate and salicylic acid on the tanshinone production and biosynthetic genes expression in transgenic Salvia miltiorrhiza hairy roots. Biotechnol. Appl. Bioc. 2015; 62:24–31.

Arce-Paredes P, Mora-Escobedo R, Luna-Arias JP, Mendoza-Hernández G, Rojas-Espinosa O. Heat, salinity, and acidity, commonly upregulate A1aB1b proglycinin in soybean embryonic axes. Soybean-biochemistry, chemistry and physiology. InTech (open access), Rijeka, 2011; 402–422.

Wang Y, Hu J, Qin GC, Cui HW, Wang QT. Salicylic acid analogues with biological activity may induce chilling tolerance of maize (Zea mays) seeds. Botany 2012; 90: 845–855.

Irigoyen JJ, Einerich DW, Sánchez-Díaz M. Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiol. Plantarum 1992; 84: 55–60.
46. Wang DF, Pang XJ, Yang F, Kou LS, Zhang X, Yu PX, et al. Antioxidative enzymes, calcium, and ABA signaling pathway are required for the stress tolerance of transgenic wheat plant by the ectopic expression of harpin protein fragment Hpa110-42 under heat stress. Russ. J. Plant Physiol. 2017; 64: 899–905.

47. Xu Y, Wang J, Bonos S, Meyer W, Huang B. Candidate genes and molecular markers correlated to physiological traits for heat tolerance in fine fescue cultivars. Int. J. Mol. Sci. 2018; 19: 116.

48. Agarwal P, Khurana P. Characterization of a novel zinc finger transcription factor (TaZnF) from wheat conferring heat stress tolerance in Arabidopsis. Cell Stress Chaperon. 2018; 23:253–267.

49. Georgieva K. Some mechanisms of damage and acclimation of the photosynthetic apparatus due to high temperature. Bulg. J. Plant Physiol.1999; 25:89–99.

50. Zhu Y, Zhu G, Guo Q, Zhu Z, Wang C, Liu Z. A comparative proteomic analysis of Pinellia ternate leaves exposed to heat stress. Int. J. Mol. Sci. 2013; 14, 20614–20634. https://doi.org/10.3390/ijms141020614 PMID: 24132150

51. Xu H, Liu G, Liu G, Yan B, Duan W, Wang L, et al. Comparison of investigation methods of heat injury in grapevine (Vitis) and assessment to heat tolerance in different cultivars and species. BMC Plant Biol. 2014; 14: 156. https://doi.org/10.1186/1471-2229-14-156 PMID: 24898786

52. Wang M, Zou Z, Li Q, Xin H, Zhu X, Chen X, et al. Heterologous expression of three Camellia sinensis small heat shock protein genes confers temperature stress tolerance in yeast and Arabidopsis thaliana. Plant Cell Rep. 2017; 36:1125–1135. https://doi.org/10.1007/s00299-017-1214-3 PMID: 28455764

53. Ji CY, Jin R, Xu Z, Kim H S, Lee C J, Kang L, et al. Overexpression of Arabidopsis P38 increases heat and low temperature stress tolerance in transgenic sweetpotato. BMC Plant Biol. 2017; 17:139. https://doi.org/10.1186/s12870-017-0874-2 PMID: 28806972

54. Trapero-Mozos A, Morris WL, Ducreux LJM, McLean K, Stephens J, Torrance L, et al. Engineering heat tolerance in potato by temperature-dependent expression of a specific allele of HEAT-SHOCK COGNATE 70. Plant Biotechnol. J. 2018; 16: 197–207. https://doi.org/10.1111/pbi.12760 PMID: 28509353

55. Han Y, Fan S, Zhang Q, Wang Y. Effect of heat stress on the MDA, proline and soluble sugar content in leaf lettuce seedlings. Agr. Sci. China2013; 4: 112.

56. Cvikrova M, Gemperlova L, Dobr J, Martincová O, Prášil IT, Gubis J, et al. Effect of heat stress on polyamine metabolism in proline-over-producing tobacco plants. Plant Sci. 2012; 182: 49–58. https://doi.org/10.1016/j.plantsci.2011.01.016 PMID: 22116615

57. Choudhury FK, Rivero RM, Blumwald E, Mittler R. Reactiveoxygen species, abiotic stress and stress combination. Plant J. 2017; 90: 856. https://doi.org/10.1111/tpj.13299 PMID: 27801967

58. Mittler R, Vanderauwera S, Gollery M, Van Breusegem F. Reactiveoxygen gene network of plants. Trends Plant Sci. 2004; 9: 490–498. https://doi.org/10.1016/j.tplants.2004.08.009 PMID: 15465684

59. Zandalinas SI, Balfagón D, Arbona V, Gómez-Cadenas Á. Modulation of antioxidant defense system is associated with combined drought and heat stress tolerance in Citrus. Front. Plant Sci. 2017; 8:953. https://doi.org/10.3389/fpls.2017.00953 PMID: 28638395

60. Yang M, Zhang Y, Zhang H, Wang H,Wei T, Che S, et al. Identification of MsHsp20 gene family in Malus sieversii and functional characterization of MsHsp16.9 in heat tolerance. Front. Plant Sci. 2017; 8:1761. https://doi.org/10.3389/fpls.2017.01761 PMID: 29163556

61. Li Q,Wang W,Wang W, Zhang G, Liu Y, Wang Y, et al. Wheat F-Box protein gene tafba1 is involved in plant tolerance to heat stress. Front. Plant Sci. 2018; 9:521.