Femoral adipose tissue may accumulate the fat that has been recycled as VLDL and non-esterified fatty acids

Siobhán E. McQuaid,¹ Sandy M. Humphreys,¹ Leanne Hodson,¹ Barbara A. Fielding,¹ Fredrik Karpe,¹,² Keith N. Frayn¹

¹Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK; and ²NIHR Oxford Biomedical Research Centre, Oxford Radcliffe Hospitals, Oxford OX3 9DU, UK

Correspondence:
Keith N Frayn PhD
email: keith.frayn@oxlip.ox.ac.uk

Additional information for this article can be found in an online appendix at http://diabetes.diabetesjournals.org

Submitted 12 May 2010 and accepted 19 July 2010.

This is an uncopied electronic version of an article accepted for publication in Diabetes. The American Diabetes Association, publisher of Diabetes, is not responsible for any errors or omissions in this version of the manuscript or any version derived from it by third parties. The definitive publisher-authenticated version will be available in a future issue of Diabetes in print and online at http://diabetes.diabetesjournals.org.
Objective. Gluteo-femoral, in contrast to abdominal, fat accumulation appears protective against diabetes and cardiovascular disease. Our objective was to test the hypothesis that this reflects differences in the ability of the two depots to sequester fatty acids, with gluteo-femoral fat acting as a longer-term ‘sink’.

Research design and methods. Twelve healthy volunteers were studied after an overnight fast and after ingestion of a mixed meal. Blood samples were taken from veins draining subcutaneous femoral and abdominal fat and compared with arterialized. Stable isotope-labeled fatty acids were used to trace specific lipid fractions. In 36 subjects, adipose tissue blood flow in the two depots was monitored with ^{133}Xe.

Results. Blood flow increased in response to the meal in both depots, and these responses were correlated ($r_s = 0.44$, $P < 0.01$). Non-esterified fatty acid (NEFA) release suppressed after the meal in both depots; it was lower in femoral fat than abdominal ($P < 0.01$). Plasma triacylglycerol (TG) extraction by femoral fat was also lower than that by abdominal fat ($P = 0.05$). Isotopic tracers showed that the difference was in chylomicron-TG extraction. VLDL-TG extraction and direct NEFA uptake were very similar in the two depots.

CONCLUSIONS. Femoral fat shows lower metabolic fluxes than subcutaneous abdominal, but differs in its relative preference for extracting fatty acids directly from the plasma NEFA and VLDL-TG pools compared with chylomicron-TG.

Obesity is associated with increased risk of coronary heart disease (CHD) and type 2 diabetes. The distribution of body fat is an important factor in this relationship. The ratio of abdominal to lower-body (gluteo-femoral) fat accumulation, measured by the waist-hip ratio, is a major determinant of adverse metabolic consequences and mortality independent of the degree of obesity (1, 2). In recent years it has become clear that not only is lower-body fat less harmful than is abdominal fat, but that it actually provides protection against CHD and type 2 diabetes (reviewed in 3). The reason for the different relationships of these two major fat depots to metabolic health is not clear. On the basis of in vitro observations, it has been postulated that lipolysis, and hence delivery of non-esterified fatty acids (NEFA) into the systemic circulation, is greater in abdominal adipose tissue (4, 5), and less readily suppressed by insulin (6). These arguments have been extended to visceral fat, which has a high rate of lipolysis in vitro (7, 8), and in many studies is the depot most closely associated with metabolic risk (9, 10). However, it is evident that this explanation alone cannot be sufficient, since any fat depot with a high rate of lipolysis should disappear unless fat mobilization is matched by a high rate of fatty acid uptake, i.e. a high rate of turnover (11).

The most consistent argument for the protective properties of lower-body fat, viewed in that light, is that lower-body fat depots provide a long-term energy store, and hence act as a ‘metabolic sink’ for excess fat, protecting other tissues from
excessive exposure to fatty acids (12; reviewed in 3). In support of this hypothesis is the fact that the gluteofemoral depots are lost more slowly than abdominal depots during energy deficit (13-15). Direct measurements of fat turnover after oral administration of radio-labeled fat show faster turnover in subcutaneous abdominal than femoral fat (16). Several studies have been made of the short-term adipose tissue uptake of radio-labeled dietary fat. In lean people, short-term uptake of meal-derived fatty acids is greater in subcutaneous abdominal than in femoral adipose tissue, because of greater efficiency of uptake and greater adipose tissue mass (17, 18). However, women with lower-body obesity store more dietary fat over 24 h in the lower body (gluteal fat depot) than women with upper-body obesity or obese men (15). In addition, lean women, as compared to men, preferentially store fat in their lower-body adipose tissue when fed a high-fat, high-calorie meal (19).

Little is known of the physiological and metabolic responses at the tissue level that lead to these differences in handling of excess fat. For instance, an increase in adipose tissue blood flow (ATBF) after meal intake (20) may have a role in presenting substrate to lipoprotein lipase (LPL) in adipose tissue capillaries for uptake (21), and delivering signals such as insulin to promote fat storage. Studies of the regulation of ATBF in different depots have given divergent results (reviewed in Discussion). LPL activity measured in biopsies in the fed state is correlated with meal fatty acid uptake, and is greater in femoral than in abdominal fat (19, 22); but physiological measurements of LPL action in vivo, which would include the effects of ATBF, have not been made.

We hypothesised that the action of gluteofemoral adipose tissue as a ‘metabolic sink’ might be most apparent in the fed state, and would be reflected in a greater ability of femoral than abdominal adipose tissue to entrap dietary fatty acids. The metabolic physiology of the subcutaneous abdominal fat depot has been investigated extensively using measurements of ATBF in conjunction with arterio-venous difference measurements (23). Recently we have described a similar technique for studying the metabolic physiology of the subcutaneous femoral adipose depot (24). Here we report the first direct comparisons of the physiological and metabolic responses of the two adipose depots to meal ingestion.

RESEARCH DESIGN AND METHODS
Participants and protocol. We studied ATBF responses to meal ingestion in 36 healthy non-obese subjects (18 males and 18 females comparable for age and BMI). In a subgroup of 12 of these volunteers (8 males), we conducted detailed studies of metabolic physiology by measurement of arterio-venous differences across the two depots. Volunteers were recruited from the greater Oxford community by advertisement or from the Oxford BioBank (25). The protocol was approved by the Oxfordshire Research Ethics Committee and all participants gave written, informed consent. None of the subjects was taking medication known to affect lipid metabolism and all were normoglycemic. They were asked to consume a corn-free diet for 48 h prior to the study and to refrain from strenuous exercise and alcohol for 24 h before the study. They attended the Oxford Centre for Diabetes, Endocrinology and
Metabolism Clinical Research Unit having fasted from 10 pm the previous night. ATBF was measured in subcutaneous abdominal and femoral depots with the 133Xe washout method, as described previously (26), in the fasting state and following the ingestion of a mixed meal. The mixed meal contained 40 g fat as olive oil in the form of a chocolate-flavored emulsion with 400 mg emulsifier and flavorings, and 40 g carbohydrate as Rice Krispies (Kellogg, Manchester, UK) with skimmed milk (200 g) (27).

In the ‘metabolic study’ subgroup, arterio-venous differences were measured across abdominal and femoral adipose tissue. A superficial epigastric vein draining subcutaneous abdominal fat (28), a branch of the great saphenous vein draining femoral fat (24), and an arterialized dorsal hand vein (with the hand kept in a warming box at 60°C) were cannulated. The cannulae were kept patent with 0.9% saline. We used plasma creatinine concentrations as an indication of contamination by muscle venous blood (24). Stable isotope-labeled fatty acids were used to tracer different lipid pools as described previously (29). A constant infusion of $[^{3}H]_{2}$palmitate (CK gases, Hampshire, UK) was given intravenously (0.01 µmol.kg$^{-1}$.min$^{-1}$) in 400 ml human albumin (4.5%) throughout the study to trace endogenous fatty acid metabolism and the VLDL-triacylglycerol (TG) pool (produced in the liver after hepatic uptake of labeled plasma NEFAs). $[^{1}C]_{13}$palmitate (100 mg) was added to the fat emulsion as part of the mixed meal (29) to trace exogenous (dietary) fatty acid metabolism.

In the metabolic study subgroup, blood samples were taken simultaneously from all three sites at baseline (-30 and 0 min) and at 30, 60, 90, 120, 180, 240, 300, and 360 min after the meal. Skin temperatures were measured throughout the study at regular intervals. Abdominal and thigh skin temperatures remained relatively constant and no differences between sites were noted.

Analytical methods. Blood samples were drawn into heparinized syringes (Sarstedt, Leicester, UK) and plasma was prepared rapidly at 4°C. Glucose concentrations were measured immediately and remaining samples frozen before analysis. Plasma TG, NEFA, glucose and creatinine were analyzed enzymatically using commercially-available kits run on an ILAB600 or ILAB650 clinical analyzer (Instrumentation Laboratory UK, Warrington, UK) and insulin was measured by radioimmunoassay (Millipore (UK) Ltd, Watford, UK). Chylomicron ($S_f > 400$) and VLDL ($S_f 20 – 400$) fractions were prepared from plasma by sequential flotation in the ultracentrifuge as described previously (29). TG concentrations were measured enzymatically as above. Lipid fractions (NEFA and TG) were separated and fatty acid composition and tracer enrichment analysed by gas chromatography and mass spectrometry as described previously (29). Enrichments were converted to tracer-to-tracee ratios (TTRs).

Calculations and statistics. ATBF was calculated from the washout of 133Xe assuming a partition coefficient of 10 ml/g for both depots (30). Although this may not be accurate for each individual, the emphasis in this study was on changes induced by feeding within depots, and on correlations between the depots. There is no consistent difference in partition coefficient between subcutaneous abdominal and thigh adipose tissue (30, 31). Baseline ATBF was taken as the
average at time -30 and 0 min. Peak ATBF was calculated as the greatest mean of three adjacent points after the meal (20). The ATBF response to the meal was calculated as peak minus baseline.

Metabolic calculations were made as described previously (29) and are described in outline in the Results section. We calculated chylomicron- and VLDL-TG extraction across the tissues directly, based on the rates of extraction of \([^{13}\text{C}]\text{palmitate}\) in TG and \([^{2}\text{H}_2]\text{palmitate}\) in TG respectively. They were multiplied up by the appropriate TTR and percentage of palmitate in TG. Net transcapillary flux of fatty acids across adipose tissue was calculated as the difference between total arterialized and total venous fatty acids \([(\text{TG} \times 3 + \text{NEFA})_{\text{arterial}} - (\text{TG} \times 3 + \text{NEFA})_{\text{venous}}] (32).\) It represents the net flux of fatty acids between adipocytes and capillaries. We applied the same calculation to isotopically-labeled fatty acids to represent the handling of all fatty acids (TG and NEFA) arising from chylomicron- and VLDL-fractions.

Data were analysed using SPSS Statistics version 17.0. Repeated measures analysis of variance (RM-ANOVA) with time and site as within-subject factors was used to identify time and site effects, and sex as between-subject factor to identify sex effects. Spearman rank correlation coefficient \((r_s)\) was used to test for associations. Data are presented as mean ± SE unless otherwise stated.

RESULTS

Adipose tissue blood flow. Characteristics of the participants in whom ATBF was studied are given in Table 1. Age and BMI of the male and female participants were similar, but as expected the females had greater body fat content.

There was no difference in fasting ATBF between subcutaneous abdominal and femoral depots \((P = 0.64)\). After the mixed meal, ATBF increased in both depots (Fig. 1A), with significant main effects of time \((P < 0.001)\) and site \((P = 0.003)\) by RM-ANOVA. The peak was on average at 60 min, and was higher in the abdominal than the femoral depot \((P = 0.01)\). There were no sex differences in fasting or in postprandial abdominal or femoral ATBF (not shown).

In the whole group, there was a positive relationship between fasting and peak ATBF within both abdominal and femoral AT depots \((r_s = 0.67; r_s = 0.64\) respectively, each \(P < 0.001)\). Comparing the two depots, there was no correlation between fasting ATBF in the abdominal and femoral depots \((r_s = 0.15, P = 0.38)\). However, peak abdominal and peak femoral ATBF were positively correlated \((r_s = 0.53, P < 0.001)\), and the blood flow response (peak – baseline) in abdominal correlated with the blood flow response in femoral adipose tissue \((r_s = 0.44, P < 0.01)\).

Peak postprandial ATBF, and to a lesser extent the ATBF response, were negatively related to measures of adiposity. These associations were generally weaker for femoral than for abdominal ATBF (e.g. peak ATBF versus BMI, \(r_s = -0.47, P < 0.01\); \(r_s = -0.36, P = 0.03\) for abdominal and femoral respectively). These relationships also held for waist and hip circumference (versus peak abdominal ATBF, \(r_s = -0.44, P < 0.01\); \(r_s = -0.43, P < 0.01\) respectively). There was no consistent pattern of association with blood flow in either depot and either waist or hip circumference in men compared with women. It should be noted that waist and
hip circumferences were themselves positively correlated within each sex (males, $r_s = 0.68$, $P = 0.002$; females, $r_s = 0.57$, $P = 0.01$) and over the whole group ($r_s = 0.59$, $P < 0.001$).

Metabolic study: systemic concentrations. Characteristics of the participants in the metabolic sub-study are shown in Table 2.

ATBF in this subgroup followed a very similar pattern to that in the larger group (Fig. 1A). Systemic concentrations of glucose, insulin and TG rose after the meal while those of NEFA fell (Fig. 1B-D). There was consistent extraction of glucose and TG across both depots, and release of NEFA (raw concentrations are shown on Fig. 1C).

Creatinine concentrations were very similar in the three sampling sites (Fig. 2A) although there was a small but significant site-effect. Mean concentrations averaged over the experimental period were: arterial, 67.9 ± 3.8; abdominal adipose venous, 66.7 ± 3.7; femoral adipose venous, 69.0 ± 3.8 µmol/l. (For comparison, concentrations in a vein draining skeletal muscle are typically 20% greater than arterial (24)).

Adipose tissue substrate fluxes. Glucose uptake was identical in the two depots in the fasting state, and increased in both depots after the meal (Fig. 2B), with an early peak, but otherwise mirroring arterialized glucose concentrations. NEFA release (Fig. 2C) tended to be lower in the fasting state in femoral compared with subcutaneous abdominal adipose tissue ($P = 0.1$). It suppressed similarly after the meal in both depots, but was significantly lower in femoral than in abdominal adipose tissue. TG extraction (Fig. 2D) was similar in the two depots in the fasted state. It increased in both after the meal, but tended to be lower in the femoral than the subcutaneous abdominal depot.

For each of these parameters, sex effects were investigated by including sex as a between-subjects factor in the RM-ANOVA. For glucose uptake, there was a time x sex interaction ($P = 0.03$) reflecting a greater peak value in the men in both depots. This was not seen for either NEFA release or TG extraction.

Measures of net fatty acid retention in the two adipose tissue depots are shown in Fig. 3. Transcapillary fatty acid flux (Fig. 3A), reflecting the net movement of fatty acids in and out of adipocytes (32), was negative (fat mobilization) in the fasting state and became positive (fat storage) after the meal in both depots. In the fasting state, it tended to be less negative in femoral than in subcutaneous abdominal adipose tissue ($P = 0.06$); after the meal it responded less, with a significant time x site interaction ($P = 0.02$). Fractional re-esterification of fatty acids within adipose tissue was calculated from the mass balances of NEFA and glycerol (Fig. 3B). In the fasting state, it was similar in the two depots and correlated between them ($r_s = 0.60$, $P = 0.04$, Fig. 3C). It increased in both depots after the meal, and remained higher in the femoral than the subcutaneous abdominal in the late postprandial period. Average values over the postprandial period were also highly correlated between the two depots ($r_s = 0.93$, $P < 0.001$, Fig. 3D). Neither sex nor insulin concentrations were involved in these close relationships between the two depots; nor were BMI or percentage body fat.

Whole-depot responses were estimated using depot fat masses measured by DXA in 7 volunteers. They are shown on Supplementary Table 1 in the online appendix which is available at
These data confirm the greater substrate fluxes in abdominal fat on a whole-depot basis.

Tracer studies. The pathways of fat uptake were further investigated using the tracer fatty acids, $[^{13}\text{C}]$palmitate incorporated into the dietary fat, and $[^{2}\text{H}_2]$palmitate, which was infused to label both the plasma NEFA and the newly-synthesized VLDL-TG pools. Both adipose depots extracted $[^{13}\text{C}]$TG-palmitate (representing chylomicron-TG), with a peak rate at 120 – 180 min and, similar to total plasma TG extraction (Fig. 2D), the rate was lower in femoral than in subcutaneous abdominal adipose tissue ($P = 0.02$). Chylomicron-TG extraction calculated based on these data is shown in Fig. 4A. It was also lower in femoral than in subcutaneous abdominal adipose tissue. Both adipose depots demonstrated ‘spillover’ of chylomicron-derived fatty acids, assessed by the appearance of 13C-labeled palmitate in the venous plasma (33) (Fig. 4B). This was lower in the femoral than the subcutaneous abdominal adipose depot, reflecting lower extraction of 13C-labeled TG as above. Fractional spillover of 13C-labeled fatty acids (i.e. the proportion of those 13C-labeled fatty acids released by LPL that enter the plasma NEFA pool) was, therefore, not different between the depots ($P = 0.65$).

In contrast, handling of $[^{2}\text{H}_2]$palmitate, the infused tracer marking both the plasma NEFA pool and newly-synthesised VLDL-TG, was not different between the depots. Directly-measured $[^{2}\text{H}_2]$TG-palmitate extraction was very similar in the two depots, as was VLDL-TG extraction calculated from these data (Fig. 4C). The flux of non-esterified $[^{2}\text{H}_2]$palmitate (Fig. 4D) changed between release in the fasting and late postprandial states (this represents spill-over from VLDL-TG) and uptake in the early postprandial period (reflecting the direct NEFA uptake pathway). Handling of non-esterified $[^{2}\text{H}_2]$palmitate was not different between the depots. There was a correlation between fasting values (net release of esterified $[^{2}\text{H}_2]$palmitate representing spill-over from VLDL-TG) in the two depots ($r_s = 0.66, P = 0.03$), although not after feeding.

Net uptake of fatty acids is a combination of TG extraction and entrapment (the complement of spillover) and is measured by the net transcapillary flux. The movement of the two fatty acid tracers, $[^{13}\text{C}]$- and $[^{2}\text{H}_2]$palmitate, was therefore examined in this way (Fig. 5). The transcapillary flux of $[^{13}\text{C}]$palmitate (Fig. 5A), representing the uptake of dietary fatty acids from chylomicron-TG, was significantly greater in subcutaneous abdominal than in femoral adipose tissue. In contrast, the net transcapillary flux of $[^{2}\text{H}_2]$palmitate, which represents mainly the uptake of fatty acids from VLDL-TG, with a smaller component of direct plasma NEFA uptake, was not different between the two depots (Fig. 5B). The ratio of $[^{13}\text{C}]$palmitate to $[^{2}\text{H}_2]$palmitate transcapillary flux was calculated as an index of this preferential relative removal of $[^{2}\text{H}_2]$palmitate by femoral fat, and showed a site x time interaction ($P = 0.054$).

DISCUSSION

We compared directly subcutaneous abdominal and femoral adipose tissue in the fasting and fed states. There were clear similarities between the two depots: ATBF increased in response to meal ingestion, and the pathways of fat
deposition were qualitatively similar between the two depots. The depots differed in one respect: whereas chylomicron-TG was clearly the favored source for postprandial fat deposition in subcutaneous abdominal fat, the femoral depot discriminated less against VLDL-TG.

Regulation of femoral ATBF has not been so extensively studied as has that in the abdominal depot. In postabsorptive lean subjects, subcutaneous abdominal has been reported to be higher than femoral ATBF (34, 35) and gluteal ATBF (36), while other studies have reported that abdominal and femoral ATBF are similar in lean individuals (37, 38). In obese subjects, abdominal and femoral ATBF were similar (34, 38) but after seven days of fasting, abdominal ATBF increased whereas femoral ATBF did not (34). In the present study, we showed qualitatively similar responses in the two depots to meal ingestion. This has been shown previously after a carbohydrate-rich meal or a glucose load (37, 38).

Of especial interest, we and others have shown previously that the responsiveness of abdominal ATBF to meal ingestion varies markedly from person to person (20, 38, 39), partly dependent upon obesity status or insulin sensitivity. Jansson et al. have shown that this responsiveness is also lost in obesity in the femoral fat depot (38). Here we show for the first time that the responsiveness of the two depots is correlated over a relatively normal BMI range. Although we did not assess sympathoadrenal responses in this study, the postprandial increase in ATBF is largely mediated via β-adrenergic receptors (37, 40), and it may be that the sympathoadrenal response to meal intake varies between individuals and is one reason for this similarity in the two depots.

Ours is not the first study to examine lower-body adipose depots by measurements of arterio-venous differences. Indeed, one of the earliest studies of NEFA metabolism used saphenous vein measurements to demonstrate NEFA release from subcutaneous adipose tissue, and showed that it was suppressed after glucose and insulin administration (41). More recently, Tan et al. cannulated veins draining gluteal fat and showed that the gluteal adipose depot is distinctly less metabolically active than the abdominal depot in the fasting state (36). However, the gluteal depot may have very specific properties. In a series of studies by Jensen and colleagues, lower-body fat metabolism has been studied by sampling from the femoral vein, which drains both adipose tissue and muscle, in conjunction with appropriate tracer measurements (reviewed in (42)). Upper-body subcutaneous adipose tissue shows greater rates of lipolysis than lower-body fat (when expressed as NEFA release per kg fat) in lean males and females in the postabsorptive state (43). Following mixed meal ingestion, leg NEFA release is more readily suppressed than upper-body subcutaneous fat in lean subjects, more so in females than males (43), and especially so in upper-body obese women (44).

Our findings were also that femoral fat was less metabolically active than abdominal in many, but not all, respects. For instance, glucose uptake was similar in the two depots, which is consistent with other studies. In lean males, glucose uptake, as measured by PET using 2-fluoro-2-deoxy-D-glucose, was similar in abdominal and femoral AT depots during normoglycemic hyperinsulinemia (45). Glucose uptake 4 h after ingestion of 100 g glucose containing a radio-tracer
showed no difference between abdominal and femoral sites (46).
Some metabolic parameters were correlated between the two depots, but
some not. Particularly striking was the strong relationship between re-
esterification (i.e. storage) of fatty acids in the two depots in the fed state. This did
not depend upon relationships with insulin concentrations, nor with sex or adiposity,
and may reflect a fundamental individual characteristic of adipose tissue.
The pathway of ‘direct NEFA uptake’ has been revealed recently from in vivo
studies (29, 35). Since NEFA arise from adipose tissue, it has been suggested
that this is a means of redistributing fatty acids between adipose depots (35). In
our studies, direct NEFA uptake was clearly seen, and quantitatively similar, in
both depots in the postprandial state, implying that there was not a net
movement of fatty acids by this route from one depot to another. However, it may
be that subtle differences occurring day after day can lead to significant fat
redistribution as suggested by Shadid et al. (35). A related potential mechanism
for body fat redistribution, only recently studied, is the preferential delivery of
VLDL-TG towards particular fat depots. VLDL-TG represents another form of
recycling of adipose tissue-derived fatty acids as well as dietary fatty acids that
have passed through the liver. In a recent study, women with lower-body
obesity channelled a larger proportion of ex-vivo-labeled VLDL-TG toward
deposition in subcutaneous femoral compared with abdominal adipose tissue
in the postabsorptive state (47). Furthermore, the greater the amount of
femoral fat, the greater was the efficiency of VLDL-TG uptake into that depot (48).
This relationship between femoral fat mass and increased femoral fat uptake
has been seen also in studies of meal fat deposition (49). Our data, looking for the
first time at the postprandial state, suggest that the femoral depot differs
from the subcutaneous abdominal in discriminating less between chylomicron-
and VLDL-TG; whereas the former was by far the major substrate for net fat
uptake in the postprandial period in subcutaneous abdominal fat, this
distinction was not found in the femoral depot.
In summary, we found that the femoral adipose depot was generally rather less
active in terms of blood flow and fatty acid fluxes than the subcutaneous abdominal
depot, when comparing responses in the fasting to feeding transition after a single
meal. This is in contrast to our expectations of seeing more avid entrapment of dietary fat in the femoral
depot, in keeping with its proposed role as a ‘metabolic sink’. However, it is
important to distinguish short-term ‘transmembrane fatty acid flux’ from
longer-term net changes in fat mass (11). Our finding that the two depots were
quantitatively similar in terms of removal of VLDL-TG and direct uptake of NEFA
suggests an interpretation that the femoral depot may act as a sink for fatty
acids not immediately removed by more active depots such as the subcutaneous
abdominal. In normal daily life in a state of energy balance, fat depots are neither
expanding nor contracting. It could be that in a state of chronic positive energy
balance, the femoral depot would, at least in some people, become more active in
entrapment of excess dietary fat and
would thus protect non-adipose tissues
from ectopic fat deposition. Our studies
were conducted with a single meal only.
It would be important now to test this
hypothesis with studies over a 24-hour
period (50) involving three test meals.
Author contributions. S.E.McQ. conducted the clinical studies, collated data, wrote first draft of paper. S.M.H. supervised analyses, helped with calculations and statistics, contributed to the paper. L.H. made all the tracer measurements, contributed to the paper. B.A.F. supervised all tracer work, helped with calculations related to tracers, contributed to the paper. F.K. was joint project supervisor, advised on the study, contributed to the paper. K.N.F. was joint project supervisor, advised on the study, wrote final version of paper.

ACKNOWLEDGEMENTS
This work was supported by the Wellcome Trust. We thank Jane Cheeseman and Louise Dennis, University of Oxford, for expert assistance with the clinical studies, and Marje Gilbert and Pauline Sutton, University of Oxford, for technical assistance.
REFERENCES

1. Yusuf S, Hawken S, Ounpuu S, Bautista L, Franzosi MG, Commerford P, Lang CC, Rumboldt Z, Onen CL, Lisheng L, Tanomsup S, Wangai P, Jr., Razak F, Sharma AM, Anand SS: Obesity and the risk of myocardial infarction in 27,000 participants from 52 countries: a case-control study. Lancet 366:1640-1649, 2005

2. Pischon T, Boeing H, Hoffmann K, Bergmann M, Schulze MB, Overvad K, van der Schouw YT, Spencer E, Moons KG, Tjønneland A, Halkjaer J, Jensen MK, Stegger J, Clavel-Chapelon F, Boutron-Ruault MC, Chajes V, Linseisen J, Kaaks R, Trichopoulou A, Trichopoulous D, Bamia C, Sieri S, Palli D, Tumino R, Vineis P, Panico S, Peeters PH, May AM, Bueno-de-Mesquita HB, van Duijn J, Hallmans G, Weinehall L, Manjer J, Lund E, Agudo A, Arriola L, Barricarte A, Navarro C, Martinez C, Quiros JR, Key T, Bingham S, Khaw KT, Boffetta P, Jenab M, Ferrari P, Riboli E: General and abdominal adiposity and risk of death in Europe. N Engl J Med 359:2105-2120, 2008

3. Manolopoulos KN, Karpe F, Frayn KN: Gluteofemoral body fat as a determinant of metabolic health. Int J Obes 34:949-959, 2010

4. Rebuffé-Scrive M, Lönroth P, Mårin P, Wesslau C, Björntorp P, Smith U: Regional adipose tissue metabolism in men and postmenopausal women. Int J Obesity 11:347-355, 1987

5. Wahrenberg H, Lönqvist F, Arner P: Mechanisms underlying regional differences in lipolysis in human adipose tissue. J Clin Invest 84:458-467, 1989

6. Johnson JA, Fried SK, Pi-Sunyer FX, Albu JB: Impaired insulin action in subcutaneous adipocytes from women with visceral obesity. Am J Physiol Endocrinol Metab 280:E40-E49, 2001

7. Richelsen B, Pedersen SB, Møller-Pedersen T, Bak JF: Regional differences in triglyceride breakdown in human adipose tissue: effects of catecholamines, insulin, and prostaglandin E₂. Metabolism 40:990-996, 1991

8. Bolinder J, Kager L, Östman J, Arner P: Differences at the receptor and postreceptor levels between human omental and subcutaneous adipose tissue in the action of insulin on lipolysis. Diabetes 32:117-123, 1983

9. Kuk JL, Katzmarzyk PT, Nichaman MZ, Church TS, Blair SN, Ross R: Visceral fat is an independent predictor of all-cause mortality in men. Obesity 14:336-341, 2006

10. Fox CS, Massaro JM, Hoffmann U, Pou KM, Maurovich-Horvat P, Liu C-Y, Vasan RS, Murabito JM, Meigs JB, Cupples LA, D'Agostino RB, Sr., O'Donnell CJ: Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation 116:39-48, 2007

11. Smith J, Al-Amri M, Dorairaj P, Sniderman A: The adipocyte life cycle hypothesis. Clin Sci 110:1-9, 2006

12. Lemieux I: Energy partitioning in gluteal-femoral fat: does the metabolic fate of triglycerides affect coronary heart disease risk? Arterioscler Thromb Vasc Biol 24:795-797, 2004
13. Jones PR, Edwards DA: Areas of fat loss in overweight young females following an 8-week period of energy intake reduction. *Ann Hum Biol* 26:151-162, 1999
14. Goodpaster BH, Kelley DE, Wing RR, Meier A, Thaete FL: Effects of weight loss on regional fat distribution and insulin sensitivity in obesity. *Diabetes* 48:839-847, 1999
15. Santosa S, Hensrud DD, Votruba SB, Jensen MD: The influence of sex and obesity phenotype on meal fatty acid metabolism before and after weight loss. *Am J Clin Nutr* 88:1134-1141, 2008
16. Mårin P, Rebuffé-Scrive M, Björntorp P: Uptake of triglyceride fatty acids in adipose tissue in vivo in man. *Eur J Clin Invest* 20:158-165, 1990
17. Romanski SA, Nelson RM, Jensen MD: Meal fatty acid uptake in adipose tissue: gender effects in nonobese humans. *Am J Physiol Endocrinol Metab* 279:E455-E462, 2000
18. Jensen MD, Sarr MG, Dumesic DA, Southern PA, Levine JA: Regional uptake of meal fatty acids in humans. *Am J Physiol Endocrinol Metab* 285:E1282-E1288, 2003
19. Votruba SB, Jensen MD: Sex-specific differences in leg fat uptake are revealed with a high-fat meal. *Am J Physiol Endocrinol Metab* 291:1115-1123, 2006
20. Karpe F, Fielding BA, Illic V, Macdonald IA, Summers LKM, Frayn KN: Impaired postprandial adipose tissue blood flow response is related to aspects of insulin sensitivity. *Diabetes* 51:2467-2473, 2002
21. Samra JS, Simpson EJ, Clark ML, Forster CD, Humphreys SM, Macdonald IA, Frayn KN: Effects of epinephrine infusion on adipose tissue: interactions between blood flow and lipid metabolism. *Am J Physiol* 271:E834-E839, 1996
22. Votruba SB, Jensen MD: Sex differences in abdominal, gluteal, and thigh LPL activity. *Am J Physiol Endocrinol Metab* 292:E1823-E1828, 2007
23. Frayn KN: Macronutrient metabolism of adipose tissue at rest and during exercise: a methodological viewpoint. *Proc Nutr Soc* 58:877-886, 1999
24. McQuaid SE, Manolopoulos KN, Dennis AL, Cheeseman J, Karpe F, Frayn KN: Development of an arterio-venous difference method to study the metabolic physiology of the femoral adipose tissue depot. *Obesity* 18:1055-1058, 2010
25. Tan GD, Neville MJ, Liverani E, Humphreys SM, Currie JM, Dennis AL, Fielding BA, Karpe F: The in vivo effects of the Pro12Ala PPARγ2 polymorphism on adipose tissue NEFA metabolism: the first use of the Oxford Biobank. *Diabetologia* 49:158-168, 2006
26. Samra JS, Frayn KN, Giddings JA, Clark ML, Macdonald IA: Modification and validation of a commercially available portable detector for measurement of adipose tissue blood flow. *Clin Physiol* 15:241-248, 1995
27. Tan GD, Fielding BA, Currie JM, Humphreys SM, Désage M, Frayn KN, Laville M, Vidal H, Karpe F: The effects of rosiglitazone on fatty acid and triglyceride metabolism in type 2 diabetes. *Diabetologia* 48:83-95, 2005
28. Frayn KN, Coppock SW, Humphreys SM, Whyte PL: Metabolic characteristics of human adipose tissue in vivo. *Clin Sci* 76:509-516, 1989
29. Bickerton AS, Roberts R, Fielding BA, Hodson L, Blaak EE, Wagenmakers AJ, Gilbert M, Karpe F, Frayn KN: Preferential uptake of dietary fatty acids in adipose tissue and muscle in the postprandial period. *Diabetes* 56:168-176, 2007
30. Jansson P-A, Lönnroth P: Comparison of two methods to assess the tissue/blood partition coefficient for xenon in subcutaneous adipose tissue in man. *Clin Physiol* 15:47-55, 1995

31. Bülow J, Jelnes R, Astrup A, Madsen J, Vilmann P: Tissue/blood partition coefficients for xenon in various adipose tissue depots in man. *Scand J Clin Lab Invest* 47:1-3, 1987

32. Frayn KN, Shadid S, Hamlani R, Humphreys SM, Clark ML, Fielding BA, Boland O, Coppack SW: Regulation of fatty acid movement in human adipose tissue in the postabsorptive-to-postprandial transition. *Am J Physiol* 266:E308-E317, 1994

33. Evans K, Burdge GC, Wootton SA, Clark ML, Frayn KN: Regulation of dietary fatty acid entrapment in subcutaneous adipose tissue and skeletal muscle. *Diabetes* 51:2684-2690, 2002

34. Engfeldt P, Linde B: Subcutaneous adipose tissue blood flow in the abdominal and femoral regions in obese women: effect of fasting. *Int J Obes* 16:875-879, 1992

35. Shadid S, Koutsari C, Jensen MD: Direct free fatty acid uptake into human adipocytes in vivo: relation to body fat distribution. *Diabetes* 56:1369-1375, 2007

36. Tan G, Goossens GH, Humphreys SM, Vidal H, Karpe F: Upper and lower body adipose tissue function: a direct comparison of fat mobilization in humans. *Obes Res* 12:114-118, 2004

37. Simonsen L, Bülow J, Astrup A, Madsen J, Christensen NJ: Diet-induced changes in subcutaneous adipose tissue blood flow in man: effect of β-adrenoceptor inhibition. *Acta Physiol Scand* 139:341-346, 1990

38. Jansson P-A, Larsson A, Smith U, Lönnroth P: Glycerol production in subcutaneous adipose tissue in lean and obese humans. *J Clin Invest* 89:1610-1617, 1992

39. Dimitriadis G, Lambadiari V, Mitrou P, Maratou E, Boutati E, Panagiotakos DB, Economopoulos T, Raptis SA: Impaired postprandial blood flow in adipose tissue may be an early marker of insulin resistance in type 2 diabetes. *Diabetes Care* 30:3128-3130, 2007

40. Ardilouze J, Fielding B, Currie J, Frayn K, Karpe F: Nitric oxide and beta-adrenergic stimulation are major regulators of pre- and postprandial subcutaneous adipose tissue blood flow in humans. *Circulation* 109:47-52, 2004

41. Gordon RS: Unesterified fatty acid in human blood plasma. II. The transport function of unesterified fatty acid. *J Clin Invest* 36:810-815, 1957

42. Santosa S, Jensen MD: Why are we shaped differently, and why does it matter? *Am J Physiol Endocrinol Metab* 295:E531-E535, 2008

43. Jensen MD: Gender differences in regional fatty acid metabolism before and after meal ingestion. *J Clin Invest* 96:2297-2303, 1995

44. Guo Z, Hensrud DD, Johnson CM, Jensen MD: Regional postprandial fatty acid metabolism in different obesity phenotypes. *Diabetes* 48:1586-1592, 1999

45. Virtanen KA, Lönnroth P, Parkkola R, Peltoniemi P, Asola M, Viljanen T, Tolvanen T, Knuuti J, Rönnemaa T, Huupponen R, Nuutila P: Glucose uptake and perfusion in subcutaneous and visceral adipose tissue during insulin stimulation in nonobese and obese humans. *J Clin Endocrinol Metab* 87:3902-3910, 2002

46. Mårin P, Rebuffé-Scrive M, Smith U, Björntorp P: Glucose uptake in human adipose tissue. *Metabolism* 36: 1154-1160, 1987
47. Gormsen LC, Nelleman B, Sørensen LP, Jensen MD, Christiansen JS, Nielsen S: Impact of body composition on very-low-density lipoprotein-triglycerides kinetics. *Am J Physiol Endocrinol Metab* 296:E165-E173, 2009

48. Nelleman B, Gormsen LC, Christiansen JS, Jensen MD, Nielsen S: Postabsorptive VLDL-TG fatty acid storage in adipose tissue in lean and obese women. *Obesity* 2009

49. Votruba SB, Mattison RS, Dumesic DA, Koutsari C, Jensen MD: Meal fatty acid uptake in visceral fat in women. *Diabetes* 56:2589-2597, 2007

50. Ruge T, Hodson L, Cheeseman J, Dennis AL, Fielding BA, Humphreys SM, Frayn KN, Karpe F: Fasted to fed trafficking of fatty acids in human adipose tissue reveals a novel regulatory step for enhanced fat storage. *J Clin Endocrinol Metab* 94:1781-1788, 2009

TABLE 1. Characteristics of participants in the ATBF study

Variable	Males	Females
ATBF study		
Number	18	18
Age (yrs)	34.0 ± 10.8	36.6 ± 13.2
BMI (kg/m²)	24.4 ± 2.8	23.5 ± 2.7
Body fat (%)	16.6 ± 1.4	28.1 ± 1.4*
Waist:hip ratio	0.88 ± 0.08	0.78 ± 0.01

Data are means ± SD.

* P < 0.001

TABLE 2. Characteristics of participants in the metabolic study

Variable	Value (mean ± SD)
Number (M/F)	12 (8/4)
Age (yrs)	32.3 ± 11.3
BMI (kg/m²)	24.2 ± 3.1
Body fat (%)	20.4 ± 8.3
Waist:hip ratio	0.85 ± 0.07

These participants were a subset of the 36 participants in the ATBF study.

Figure legends

FIG. 1. Adipose tissue blood flow (ATBF) and systemic concentrations in the fasting and postprandial states. A, ATBF (solid points, subcutaneous abdominal; open points, femoral adipose tissue), n = 36. B, arterialized plasma glucose (solid triangles) and plasma insulin (open triangles). C, arterialized non-esterified fatty acids (NEFA) (solid triangles, arterialized plasma; open circles, saphenous venous plasma; solid circles, abdominal adipose venous plasma). D, arterialized plasma triacylglycerol (TG). For B, C, D, n = 12.
FIG. 2. Tissue-specific responses in the fasting and postprandial states. A, plasma creatinine (solid triangles, arterialized plasma; open circles, saphenous venous plasma; solid circles, abdominal adipose venous plasma). B, adipose tissue glucose uptake (solid circles, subcutaneous abdominal; open circles, femoral). C, adipose tissue non-esterified fatty acid (NEFA) release (symbols as for B). D, adipose tissue triacylglycerol (TG) extraction (symbols as for B). RM-ANOVA shows: creatinine, main effects of site ($P = 0.004$) and time ($P = 0.007$); glucose uptake, main effect of time ($P = 0.01$), no effect of site nor time x site interaction; NEFA release, main effects of time and of site ($P < 0.01$) with time x site interaction ($P = 0.02$); TG extraction, main effects of time ($P = 0.01$) and site ($P = 0.052$) (interaction, $P = 0.07$).

FIG. 3. Measures of net fatty acid retention in adipose tissue in the fasting and postprandial states. A, net transcapillary flux of fatty acids (solid circles, subcutaneous abdominal; open circles, femoral). B, percentage re-esterification of fatty acids (symbols as for A); both A and B calculated from mass balances as in Methods. RM-ANOVA shows: net transcapillary flux, main effect of time ($P = 0.001$) and time x site interaction ($P = 0.019$); percentage re-esterification, main effect of site ($P = 0.02$) and time ($P < 0.001$). C, D, relationships between the two adipose depots in the fasting (C) and postprandial (D) states. The data show the mean percentage re-esterification of fatty acids (as in Fig. 3B), on panel D averaged over the postprandial period, in subcutaneous abdominal (abdo.) (X-axis) and femoral (Y-axis) adipose tissue. Solid triangles, men; open triangles, women. The correlation between depots was significant for each period (statistics in text).

FIG. 4. Tracer-based measurements of chylomicron- and VLDL-TG extraction by the two adipose tissue depots. A, extraction of chylomicron-TG (solid circles, subcutaneous abdominal; open circles, femoral). B, net flux (expressed as release) of non-esterified $[{\text{U}}^{13}C]$palmitate from adipose tissue (‘spillover’) (symbols as for A). C, extraction of VLDL-TG (symbols as for A). D, net flux (expressed as release) of non-esterified 2H_2palmitate across adipose tissue (negative values therefore show net uptake) (symbols as for A). RM-ANOVA shows: chylomicron-TG extraction, main effects of time ($P = 0.03$) and site ($P = 0.03$); $[{\text{U}}^{13}C]$palmitate flux, main effects of site ($P = 0.025$) and time ($P < 0.001$); VLDL-TG extraction, no significant effects; 2H_2palmitate flux, main effect of time ($P = 0.02$) with no effect of site ($P = 0.20$) nor time x site interaction.

FIG. 5: Net transcapillary flux of labeled palmitic acid in the fasting and postprandial states. Solid circles, subcutaneous abdominal adipose tissue; open circles, femoral adipose tissue. Units are nmol.100g$^{-1}$.min$^{-1}$. A, net transcapillary flux of $[{\text{U}}^{13}C]$palmitate (i.e. net uptake or release of chylomicron-derived palmitate, including uptake via lipoprotein lipase (LPL) pathway and spillover as shown in Fig. 4B. B, net transcapillary flux of 2H_2palmitate (i.e. net uptake or release of NEFA- and VLDL-TG-derived palmitic acid, including uptake via lipoprotein lipase (LPL) pathway, and direct uptake and spillover as shown in Fig. 4D. Repeated measures ANOVA shows: net transcapillary flux of $[{\text{U}}^{13}C]$palmitate, main effects of site ($P = 0.042$) and time ($P < 0.001$); net transcapillary flux of 2H_2palmitate, main effect of time ($P = 0.012$), no effect of site ($P = 0.67$) nor time x site interaction ($P = 0.13$).
Figure 1

A. Adipose tissue blood flow (mL/min, 100g⁻¹) for Abdominal and Femoral regions.

B. Plasma glucose (mmol/L) and Insulin (mU/L) levels.

C. Plasma NEFA (μmol/L) for Abdominal venous, Saphenous venous, and Arterialized samples.

D. Plasma TG (μmol/L) levels over time after meal (min).
Figure 2

A

Creatinine (µmol/L)

-30 0 60 120 180 240 300 360

Arterialized
Abdominal venous
Saphenous venous

B

Glucose uptake (µmol/100g.min)

-30 0 60 120 180 240 300 360

Abdominal
Femoral

C

NEFA release (µmol/100g.min)

-30 0 60 120 180 240 300 360

Abdominal
Femoral

D

TG extraction (nmol/100g.min)

-30 0 60 120 180 240 300 360

Abdominal
Femoral
