Measurement of the $pn \to pp\pi^0\pi^-$ Reaction in Search for the Recently Observed Resonance Structure in $d\pi^0\pi^0$ and $d\pi^+\pi^-$ systems

P. Adlarson, 1 W. Augustyniak, 2 W. Bardan, 3 M. Bashkanov, 4, 5 F.S. Bergmann, 6 M. Berlowksi, 7 H. Bhatt, 8 M. Büscher, 9, 10 H. Caléni, 1 I. Cejpal, 3 H. Clement, 4, 5 D. Coderre, 3, 9, 10 E. Czerwiński, 9, 11 K. Demnich, 9 E. Doroshkevich, 4, 5 R. Engels, 9, 10 W. Erven, 12, 10 W. Eyrich, 13 P. Fedorets, 9, 10, 14 K. Föhl, 15 K. Fransson, 1 F. Goldenbaum, 9, 10 P. Gosławski, 6 A. Goswami, 16 K. Grigoryev, 9, 10, 17 C.-O. Gullström, 1 F. Hauenstein, 13 L. Heijenkisjöld, 1 V. Hejny, 9, 10 F. Hinterberger, 18 M. Hodana, 3, 9, 10 B. Höstad, 1 A. Jany, 3 B.R. Jany, 3 L. Jarczyk, 3 T. Johansson, 1 B. Kamys, 3 G. Kemmerling, 12, 10 F.A. Khan, 9, 10 A. Khouakaz, 6 D.A. Kirillov, 19 S. Kistryn, 3 J. Klaja, 3 H. Kleines, 12, 10 B. Klos, 20 M. Krapp, 13 W. Krzemień, 7 P. Kulesza, 21 A. Kupść, 1, 7 K. Lalwani, 8, 9 D. Lersch, 9, 10 L. Li, 3 B. Lorentz, 9, 10 A. Magiera, 3 R. Maier, 9, 10 P. Marciniewski, 1 B. Mariański, 2 M. Mikirtychiants, 9, 10, 11, 17 H. P. Marsch, 2 P. Moskal, 3 B.K. Nandi, 8 H. Oml, 9, 10 I. Ozerianska, 3 E. Perez del Rio, 4, 5 N.M. Piskunov, 19 P. Pluciński, 3 P. Podkopal, 3, 9, 10 D. Prasuhn, 9, 10 A. Pricking, 3, 5 D. Pszechel, 1, 7 K. Pysz, 21 A. Pyszniak, 1, 3 C.F. Redmer, 1 J. Ritman, 9, 10, 11 A. Roy, 16 Z. Rudy, 3 S. Sawant, 8 A. Schmidt, 13 S. Schadmand, 9, 10 T. Sezick, 9, 10 V. Serdyuk, 9, 10, 22 N. Shah, 8 M. Siemaszko, 20 R. Siudak, 21 T. Skorodko, 4, 5 M. Skurzok, 3 J. Smyrski, 3 V. Sopov, 14 R. Stassen, 9, 10 J. Stepaniak, 7 E. Stephani, 9, 10 G. Sterzenbach, 9, 10 H. Stockhorst, 9, 10 H. Stroher, 10 A. Szczurek, 21 T. Tolba, 9, 10 A. Trzciński, R. Varma, 9 R. V arma, 9 G.J. Wagner, 4, 5 W. Węglorz, 20 M. Wolke, 1 A. Wronski, 3 P. Wüstner, 12, 10 P. Wurm, 9, 10 A. Yamamoto, 23 X. Yuan, 24 J. Zabierowski, 25 C. Zheng, 24 M.J. Zielinski, 3 W. Zipper, 20 J. Złomańczuk, 1 P. Żuprański, 2 and M. Żurek 3

(WASA-ATOS Collaboration)

1 Division of Nuclear Physics, Department of Physics and Astronomy, Uppsala University, Box 516, 75120 Uppsala, Sweden
2 Department of Nuclear Physics, National Centre for Nuclear Research, ul. Hoza 69, 00-681, Warsaw, Poland
3 Institute of Physics, Jagiellonian University, ul. Reymonta 4, 30-059 Kraków, Poland
4 Physikalisches Institut, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany
5 Kepler Center for Astro and Particle Physics, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany
6 Institut für Kernphysik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Str. 9, 48149 Münster, Germany
7 High Energy Physics Department, National Centre for Nuclear Research, ul. Hoza 69, 00-681, Warsaw, Poland
8 Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India
9 Institut für Kernphysik, Forschungszentrum Jülich, 52425 Jülich, Germany
10 Jülich Center for Hadron Physics, Forschungszentrum Jülich, 52425 Jülich, Germany
11 Institut für Experimentalphysik I, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany
12 Zentralinstitut für Physik, Forschungszentrum Jülich, 52425 Jülich, Germany
13 Physikalisches Institut, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erwin-Rommel-Str. 1, 91058 Erlangen, Germany
14 Institute for Theoretical and Experimental Physics, State Scientific Center of the Russian Federation, Bolshaya Cheremushkinskaya 25, 117218 Moscow, Russia
15 II. Physikalisches Institut, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
16 Department of Physics, Indian Institute of Technology Indore, Khandwa Road, Indore-450017, Madhya Pradesh, India
17 High Energy Physics Division, Petersburg Nuclear Physics Institute, Orlowa Rosha 2, Gatchina, Leningrad district 188300, Russia
18 Helmholtz-Institut für Strahlen- und Kernphysik, Rheinische Friedrich-Wilhelms-Universität Bonn, Nussallee 14-16, 53115 Bonn, Germany
19 Veksler and Baldin Laboratory of High Energy Physics, Joint Institute for Nuclear Physics, Joliot-Curie 6, 141980 Dubna, Moscow region, Russia
20 August Chelkowski Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007, Katowice, Poland
21 The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, 152 Radzikowskiego St, 31-342 Kraków, Poland
22 Dzelev Laboratory of Nuclear Problems, Joint Institute for Nuclear Physics, Joliot-Curie 6, 141980 Dubna, Moscow region, Russia
23 High Energy Accelerator Research Organisation KEK, Tsukuba, Ibaraki 305-0801, Japan
24 Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd., Lanzhou 730000, China
25 Department of Cosmic Ray Physics, National Centre for Nuclear Research, ul. Uniwersytecka 5, 90-950 Łódź, Poland

(Dated: May 7, 2014)

Exclusive measurements of the quasi-free $pn \to pp\pi^0\pi^-$ reaction have been performed by means of pd collisions at $T_p = 1.2$ GeV using the WASA detector setup at COSY. Total and differential cross sections have been obtained covering the energy region $\sqrt{s} = (2.35 - 2.46)$ GeV, which includes the region of the ABC effect and its associated resonance structure. No ABC effect, i.e. low-mass enhancement is found in the $\pi^0\pi^-$-invariant mass spectrum – in agreement with the constraint...
I. INTRODUCTION

Recent data on the basic double-pionic fusion reactions $pn \rightarrow d\pi^0\pi^0$ and $pn \rightarrow d\pi^+\pi^-$ demonstrate that the so-called ABC effect is tightly correlated with a narrow resonance structure in the total cross section of this reaction. The ABC effect denoting a huge low-mass enhancement in the $\pi\pi$ invariant mass spectrum is observed to happen, if the initial nucleons or light nuclei fuse to a bound final nuclear system and if the produced pion pair is isoscalar. Since as of yet no quantitative understanding of this phenomenon has been available, it has been named after the initials of Abashian, Booth and Crowe, who first observed it in the inclusive measurement of the $pd \rightarrow ^3HeX$ reaction more than fifty years ago.

The resonance structure with $I(J^P) = 0(3^+)$ observed in the $pn \rightarrow d\pi\pi$ total cross section at $\sqrt{s} = 2.37$ GeV is situated about 90 MeV below $\sqrt{s} = 2m_\Delta$, the peak position of the conventional t-channel $\Delta\Delta$ process, and has a width of only 70 MeV, which is about three times narrower than this process. From the Dalitz plots of the $pn \rightarrow d\pi^0\pi^0$ reaction it is concluded that this resonance must decay nevertheless via the intermediate $\Delta^+\Delta^0$ system into its final $d\pi^0\pi^0$ state.

If this scenario is correct, then also the $pn \rightarrow pp\pi^0\pi^-$ reaction should be affected by this resonance, since this channel may proceed via the same intermediate $\Delta^+\Delta^0$ system. From isospin coupling we expect that the resonance effect in the $pp\pi^0\pi^-$ system should be half that in the $n\pi^0\pi^0$ system. And from the estimations in Refs. we expect the resonance effect in the $pp\pi^0\pi^-$ system to be in the order of 100 μb.

In the following we will demonstrate that in this particular reaction the resonance is not correlated with the ABC effect for two reasons. First, the isovector $\pi\pi$ system here is not in relative s-wave, but in relative p-wave. And second, in case of unbound nucleons in the final state the form factor introduced for the description of the ABC-effect in Ref. does not act on the pions primarily, but on the nucleons.

Henceforth we will denote the resonance structure by d^* – following its notation in Refs., where a resonance with the same quantum numbers has been predicted at just about the mass, where we see this particular resonance structure. Actually, the first prediction of such a resonance dates back to Dyson and Xuong (in their nomenclature) postulating a mass amazingly close to the one we observe now. Also, a very recently fully relativistic three-body calculation of Gal and Garzilaco finds this resonance at exactly the position we observe now. For a recent review of the dibaryon issue see Ref.

Since in the reaction of interest here the pion pair is produced in the ρ channel, it provides also unique access to the question, whether this resonance can contribute to ρ production and thus to e^+e^- production in np collisions. Known as the so-called DLS puzzle the dilepton production at $T_p \approx 1.2$ GeV is strongly enhanced in the mass range $0.3 \text{ GeV}/c^2 \leq M_{ee} \leq 0.6 \text{ GeV}/c^2$ compared to what is expected from a conventional reaction scenario, whereas the pp induced dilepton production is in agreement with it. As a possible solution of this puzzle e^+e^- production via the d^* resonance has been proposed. In fact, first simulations of this resonance scenario are very promising, if the d^* production in the $pp\pi^0\pi^-$ channel turns to be, indeed, in the order of 100 μb.

Finally, we note that this basic two-pion production reaction has been looked at so far only by low-statistics bubble-chamber measurements. As a result there exist no data on differential observables, just total cross sections at a few energies. Therefore not only from the aspect of resonance search it appears desirable to collect high-quality data for this reaction channel, but also from the more general aspect to investigate, to what extent this reaction channel can be understood by conventional reaction mechanisms, which have been shown to work well for all pp induced two-pion production channels –

*present address: Department of Physics and Astrophysics, University of Delhi, Delhi-110007, India
1present address: Department of Physics, Stockholm University, Roslagstullsbacken 21, AlbaNova, 10691 Stockholm, Sweden
3present address: Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, Johann-Joachim-Becher Weg 45, 55128 Mainz, Germany
5present address: Department of Physics and Astronomy, University of California, Los Angeles, California–90045, U.S.A.
6present address: Albert Einstein Center for Fundamental Physics, Fachbereich Physik und Astronomie, Universität Bern, Sidlerstr. 5, 3012 Bern, Switzerland

PACS numbers: 13.75.Cs, 14.20.Gk, 14.20.Pt
Keywords: ABC Effect and Resonance Structure, Double-Pion Production, Dibaryon
II. EXPERIMENT

In order to investigate this reaction in more detail experimentally, we have analyzed a pd run at $T_p = 1.2$ GeV taken in 2009 with the WASA detector facility at COSY using the deuterium pellet target \[18, 19\]. The hardware trigger utilized in this analysis requested at least one charged hit in the forward detector as well as two neutral hits in the central detector.

The quasi-free reaction $pd \rightarrow pp\pi^0\pi^- + p_{\text{spectator}}$ has been selected by requiring two proton tracks in the forward detector, an π^- track in the central detector as well as two photons originating from a π^0 decay. That way the non-measured proton spectator four-momentum could be reconstructed by a kinematic fit with two over-constraints.

In Fig. 1 the reconstructed spectator momentum distribution is shown in comparison with a Monte-Carlo (MC) simulation of the quasi-free $pd \rightarrow pp\pi^0\pi^- + p_{\text{spectator}}$ process. The good agreement provides confidence that the data indeed reflect a quasi-free process. As in Ref. \[1\] we only use spectator momenta $p_{\text{spectator}} < 0.16$ GeV/c for the further data analysis. This implies an energy range of $2.35 \text{ GeV} \leq \sqrt{s} \leq 2.46 \text{ GeV}$ being covered due to the Fermi motion of the nucleons in the target deuteron. This energy range corresponds to lab incident energies of $1.07 \text{ GeV} < T_p < 1.36 \text{ GeV}$.

In total a sample of about 42000 good events has been selected. The requirement that the two protons have to be in the angular range covered by the forward detector and that the π^- and the gammas resulting from π^0 decay have to be in the angular range of the central detector reduces the overall acceptance to about 25%. Efficiency and acceptance corrections of the data have been performed by MC simulations of reaction process and detector setup. For the MC simulations model descriptions have been used, which will be discussed below in the next chapter. Since the acceptance is substantially below 100%, the efficiency corrections are not fully model independent. The error bars in Fig. 2 and the hatched grey histograms in Figs. 3 - 9 give an estimate for systematic uncertainties due to the use of different models with and without d^* resonance hypothesis for the efficiency correction.

The absolute normalization of the data has been achieved via the simultaneous measurement of the quasi-free single pion production process $pd \rightarrow pp\pi^0 + n_{\text{spectator}}$ and comparison of its result to previous bubble-chamber results for the $pp \rightarrow pp\pi^0$ reaction \[21, 22\]. That way the uncertainty in the absolute normalization of our data is that of the previous $pp \rightarrow pp\pi^0$ data, i.e. in the order of 20%.

In order to determine the energy dependence of the total cross section we have divided our data sample into 10 MeV bins in \sqrt{s}. The resulting total cross sections together with their statistical and systematic uncertainties are listed in Table 1.

Fig. 2 exhibits the energy dependence of the total cross section. The result of this work is given by the full circles and compared to previous bubble-chamber measurements from KEK (open circles) \[15\], NIMROD at RAL (open triangles) \[19\] and Gatchina (open squares) \[17\]. The latter are known to give much too high cross sections, see e.g. the $pp\pi^+\pi^-$ channel \[24\]. Hence we will disregard them for the further discussion. In the overlap region our data agree well with the bubble-chamber results from KEK and RAL. The data exhibit a smooth energy dependence of a monotonically rising cross section with no particular evidence for a narrow resonance structure in the region of the ABC effect around $T_p = 1.13 \text{ GeV}$. However, at closer inspection the data indicate some kind of plateau in just this region.

The data are first compared to theoretical calculations in the framework of the Valencia model \[23\], which incorporates non-resonant and resonant t-channel processes for two-pion production in NN collisions. Resonance processes concern here the excitation and decay of the $\Delta\Delta$ system as well as the excitation of the Roper reson-
TABLE I: Total cross sections obtained in this work for the \(pn \to pp\pi^0\pi^- \) reaction in dependence of the center-of-mass energy \(\sqrt{s} \) and the proton beam energy \(T_p \). Systematic uncertainties are given as obtained from MC simulations for the detector performance assuming various models for the reaction process.

\(\sqrt{s} \) [MeV]	\(T_p \) [MeV]	\(\sigma_{tot} \) [\(\mu b \)]	\(\Delta \sigma_{stat} \) [\(\mu b \)]	\(\Delta \sigma_{sys} \) [\(\mu b \)]
2.35	1.075	93	2	11
2.36	1.100	124	3	20
2.37	1.125	165	3	29
2.38	1.150	177	3	23
2.39	1.186	186	3	21
2.40	1.201	195	3	15
2.41	1.227	215	3	17
2.42	1.253	238	3	18
2.43	1.279	278	4	21
2.44	1.305	277	5	21
2.45	1.331	320	6	25
2.46	1.357	397	9	31

The latter modification was necessary, in order to account for the unexpectedly large \(pp \to nn\pi^+\pi^- \) cross section [20]. The predictive power of these modifications has been demonstrated by its successful application to the recent \(pp \to pp\pi^0\pi^0 \) data obtained with WASA at COSY at \(T_p = 1.4 \text{ GeV} \) [34].

Though these modifications significantly affect the differential distributions, their effect on the total cross section of the \(pn \to pp\pi^0\pi^- \) reaction is predominantly just in absolute scale – compare the dot-dot-dot-dashed line in Fig. 2 with the short-dashed one. The dot-dashed line in Fig. 2 denotes the \(t \)-channel \(\Delta\Delta \) process and the dotted line the \(t \)-channel Roper excitation with subsequent \(N^* \to \Delta\pi \) decay.

We note by passing that in the energy region of interest the \(pp \) final state interaction is not of importance, see, e.g., the \(M_{pp} \) spectrum in Fig. 6, top left of Ref. [25], where the solid line shown there exhibits only a tiny enhancement at threshold close to the Roper excitation. The modified calculations provide a reasonable description of the data at high energies – mainly due to the inclusion of the \(\Delta(1600) \) excitation and its decay into \(\Delta(1600) \to \Delta\pi \), but also fail largely at energies below 1.3 GeV, where they predict cross sections, which are by as much as a factor of four too small. Since such a large failure has not been observed in \(pp \) induced, i.e., isovector two-pion channels – and since there is no \(t \)-
channel resonance process known, which could feed this low-energy region –, the reason for this striking failure must be in a low-energy two-pion production process, which is not taken into account in the Valencia model and which has not much influence on the well-measured pp initiated two-pion production channels.

In Ref. 28 it has been shown that the so-called nucleon-pole term could possibly be such a process. According to their calculations it provides even the largest contribution close to threshold in the $p n \rightarrow p p \pi^0 \pi^-$ reaction. Still, its contribution is far too low to account for these discrepancies here.

We conclude that this failure points to an important isoscalar reaction component, which is not included in the t-channel treatment of two-pion production. It is intriguing that this failure appears to be largest in the energy region, where the ABC-effect and its associated resonance in the total cross section have been observed in the isoscalar part of the double-pionic fusion to deuterium. Hence we add tentatively the amplitude of this channel resonance process known, which could feed this low-energy region –, the reason for this striking failure must be in a low-energy two-pion production process, which is not taken into account in the Valencia model and which has not much influence on the well-measured pp initiated two-pion production channels.

For a four-body final state there are seven independent differential observables. We choose to show in this paper the differential distributions for the invariant masses $M_{\pi^0\pi^-}$, M_{π^-}, M_{pp}, $M_{pp\pi}$ as well as the differential distributions for the center-of-mass (cm) angles for protons and pions, namely $\Theta_p^{\pi^0}$, $\Theta_p^{\pi^-}$ and $\Theta_{\pi\pi}$. These distributions are shown in Figs. 3 - 9 with each of them plotted for four energy bins: $2.35 \text{ GeV} < \sqrt{s} < 2.36$ GeV (a), $2.365 < \sqrt{s} < 2.375$ GeV (b), $2.40 < \sqrt{s} < 2.41$ GeV (c) and $2.44 < \sqrt{s} < 2.45$ GeV (d). The second region is chosen to cover just the peak region of the d^* resonance structure observed in the $p n \rightarrow d\pi^0\pi^0$ reaction.

In all cases we find an only gradual change in the shapes of the differential distributions. At all energies the invariant mass distributions are significantly different from pure phase space distributions (shaded areas in Figs. 3 - 9). At the highest energy bin the observed invariant mass distributions follow closely the shapes expected from the $\Delta\Delta$ process. This gets particularly clear in the M_{π^-} (see Fig. 4) and $M_{pp\pi}$ (not shown) spectra, where pronounced peaks due to the Δ excitation develop – compare corresponding spectra in the $pp \rightarrow p p \pi^0\pi^0$ channel 15. Actually all spectra are qualitatively similar in shape to those obtained in the $pp \rightarrow p p \pi^0\pi^0$ channel with the exception of the $M_{\pi\pi}$ spectra (Fig. 3). These observations are understandable by the fact that on the one hand the $\Delta\Delta$ process is the leading process at high energies in both channels, but on the other hand the $\pi\pi$ systems have different relative angular momenta in these cases due to Bose symmetry. Whereas the isoscalar $\pi^0\pi^0$ system is in relative s-wave, the isovector $\pi^0\pi^-$ system has to be in relative p-wave. The p-wave condition favors large relative momenta between the pions and hence causes a suppression of intensity at low $\pi\pi$-masses and an enhancement at large masses compared to phase space – and that is what is indeed observed in the $M_{\pi^0\pi^-}$ spectra.

From Fig. 5 we see that the observed M_{pp} spectra exhibit distributions, which are substantially narrower then the corresponding phase-space distributions. Obviously large relative momenta between the two protons are suppressed in the reaction of interest. Again the situation is very similar to that in the $ppn\pi^0$ channel and may be traced to the dominant $\Delta\Delta$ contribution. The modified Valencia calculations reproduce these spectra very well (dashed curves in Fig. 5).

The $M_{pp\pi}$ spectra (Fig. 6) peak at $M = M_\Delta + M_{\pi\pi}$ as expected for a $pp\pi^0$ subsystem within the $\Delta\Delta$ excitation process.

The proton angular distributions exhibit a strongly anisotropic shape in agreement with a peripheral reac-
tion process (Fig. 7). Also the pion angular distributions exhibit a pronounced anisotropy – see Figs. 8 and 9. Both for protons and pions the anisotropy is significantly larger than observed in the $pp\pi^0\pi^0$ channel. In the latter the two pions can be in relative s-wave, whereas here in the $ppn^0\pi^-$ channel they have to be in relative p-wave.

Both the modified Valencia calculations (dashed curves in Figs. 3 - 9) and those including the d^* resonance (solid curves) provide very similar shapes for the differential distributions in reasonable agreement with the data. This similarity may appear surprising on a first glance and hence needs some detailed consideration.
factor at the $\Delta\Delta$ vertex, which was introduced phe-
omenologically for the description of the ABC effect,
i.e. the low-mass enhancement in the $M_{\pi^0\pi^0}$ distribution,
in the $pn \rightarrow d\pi^0\pi^0$ reaction. Different from the
bound nucleus case, where the relative momentum be-
tween the two Δs is essentially made up by the relative
momentum between the two emerging pions, in the un-
bound case the relative $\Delta\Delta$ momentum is mainly trans-
ferred to the two emerging nucleons – the heavy partners
of the Δ decays. Hence in the case of unbound nucleons
in the final state we expect the low-mass enhancement
due to this form factor not to be in the $M_{\pi^0\pi^0}$ spectrum,
but in the M_{pp} spectrum. And this is also, what initially
calculations with the inclusion of form-factor for the d^*
resonance show. However, this effect is counterbalanced
by the requirement that the two protons have to be in
relative p-wave, in order to build a s-channel resonance
with $J^P = 3^+$. In case of a $d\pi^0\pi^0$ final state this spin-
parity can be easily achieved by combining the spin 1 of
the deuteron with the p-wave decays of the two Δ states
to the $N\pi$ system such that in total we have a $\pi^0\pi^0$ system in relative s-wave, which again is in relative d-
wave to the deuteron. In case of the $pp\pi^0\pi^0$ channel we
have an isovector $\pi^0\pi^{-}$ system, which by Bose symmetry
need to be in relative p-wave. To fulfill the required spin-
parity, the pp system can no longer be in relative s-wave,
but needs to be at least in a relative 3P_2 state.

That way, *i.e.* by inclusion of the d^* resonance, we ob-
tain a description for both integral (solid curve in Fig. 2)
and differential cross sections (solid curves in Figs. 3 -
9), which is comparable in quality to what was achieved
for the description of the the purely isovector channels $pp\pi^0\pi^0$ and $nn\pi^+\pi^-$. Concerning the $\Delta\Delta$ vertex form factor, which was
introduced for the phenomenological description of the
ABC effect in the $pn \rightarrow d\pi^0\pi^0$ reaction, we would like
to mention an alternative ansatz proposed recently by
Platinova and Kukulin. They assume the d^* resonance
only not to decay into the $d\pi^0\pi^0$ channel via the
route $d^* \rightarrow \Delta^+\Delta^0 \rightarrow d\pi^0\pi^0$, but also via the route
$d^* \rightarrow d\sigma \rightarrow d\pi^0\pi^0$. Since σ is a spin zero object, it
has to in relative d-wave to the deuteron in this decay
process, in order to satisfy the resonance condition of
$J^P = 3^+$. In consequence the available momentum in
the decay process is concentrated in the relative motion
between d and σ leaving only small relative momenta
between the two emerging pions. Therefore the $M_{\pi^0\pi^0}$ distribution is expected to be peaked at low masses. *i.e.*, the low-mass enhancement (ABC effect) in this model is
made by the $d\sigma$ decay branch and not by a form fac-
tor as introduced in Ref. [1]. The enhancement in this
model is further increased by interference of the $d\sigma$ de-
cay amplitude with the decay amplitude via the $\Delta^+\Delta^0$
system. Applying this scenario to the $pp\pi^0\pi^0$ channel
we have in this case no decay branch via the isoscalar
σ configuration, since the $\pi^0\pi^-$ pair is purely isovector.
Hence the d^* decay into this channel proceeds solely via
the $\Delta^+\Delta^0$ system and does not exhibit any low-mass en-

First, the observed strongly anisotropic proton angular
distribution is very close to the one expected for a
$J = 3$ resonance – see Ref. [1]. However, it is also equally
well accounted for by t-channel pion exchange, which pro-
duces a prominent U-shape at energies far above the $\pi\pi$
threshold, see also Refs. [23, 34].

Second, we expect a sizable effect from the dipole form

![Figure 8](image1)

FIG. 8: (Color online) Same as Fig. 3 but for the distributions
of the cms angle Θ_{π^0}.

![Figure 9](image2)

FIG. 9: (Color online) Same as Fig. 3 but for the distributions
of the angle Θ_{π^-}.

![Figure 10](image3)

FIG. 10: (Color online) Same as Fig. 3 but for the distributions
of the angle Θ_{π^0}.

![Figure 11](image4)

FIG. 11: (Color online) Same as Fig. 3 but for the distributions
of the angle Θ_{π^-}.

hancement (ABC effect) – neither in the \(M_{\pi\pi}\) nor in the \(M_{pp}\) system. This situation corresponds just to a \(d^*\) calculation without form factor at the \(\Delta^+\Delta^0\) vertex. Since then the \(p\)-wave condition for the \(pp\) subsystem is no longer counterbalanced by the effect of the form factor, the calculated \(M_{pp}\) distribution gets wider and close to phase-space worsening thus somewhat the agreement with the data.

IV. SUMMARY AND OUTLOOK

The first exclusive and kinematically complete \(pn \rightarrow pp\pi^0\pi^-\) measurements of solid statistics have been carried out in quasi-kinematic with a proton beam hitting a deuterium target. Utilizing the nucleons’ Fermi motion in the deuterium target an energy region of 2.35 GeV < \(\sqrt{s}\) < 2.46 GeV could be covered corresponding to an incident lab energy range of (1.07 - 1.36) GeV. This energy region also covers the region of the ABC effect and its associated narrow resonance structure around 2.37 GeV. No evidence for a low-mass enhancement (ABC effect) is found in the data for the \(\pi^0\pi^-\)-invariant mass distribution. Its absence is easily understood from the fact that the isovector \(\pi^0\pi^-\) pair has to be in relative \(p\)-wave and – even more important – that in this case of unbound nucleons the form factor introduced for the description of the ABC effect in the \(d\pi\pi\) channel causes a low-mass enhancement in \(M_{pp}\) and not in \(M_{\pi\pi}\). In the latter, however, the impact of the form factor is counterbalanced by the condition that the two protons have to be in relative \(p\) wave, in order to reach the \(J^P = 3^+\) requirement for the resonance.

The differential data are reasonably well accounted for by conventional \(t\)-channel calculations with the modified Valencia model [23, 25, 26]. These calculations also give a good description of the total cross section at the highest measured energies. However, at lower energies these calculations lack up to at least a factor of four in cross section. Since such a big failure has not been observed in \(pp\)-induced reaction channels and since it concerns the low energy region, where no \(t\)-channel resonance processes are known to contribute, it has to be ascribed to an unconventional isoscalar process. One such process is the excitation of the \(d^*\) resonance. Its inclusion in the model description for the \(pn \rightarrow pp\pi^0\pi^-\) reaction leads to a much improved understanding of both differential and total cross section data. The necessary peak cross section of about 100 \(\mu\)b for the \(d^*\) contribution agrees very well with expectations.

After the experimental evidences found in the \(d\pi^0\pi^0\) and \(d\pi^0\pi^-\) channels, the \(pp\pi^0\pi^-\) channel is now the third channel, which is consistent with the \(d^*\) hypothesis. If true, then this resonance should also been sensed in the \(pn \rightarrow pn\pi^0\pi^-\) reaction and – most importantly – in \(pn\) scattering, the experimentum crucis. Data for these reactions have been taken already by the WASA collaboration. Their analysis is in progress.

V. ACKNOWLEDGMENTS

We acknowledge valuable discussions with C. Hanhart, V. Kukulin, E. Oset, A. Sibirtsev and C. Wilkin on this issue. We are particularly indebted to L. Alvarez-Ruso for using his code. This work has been supported by BMBF (06TU9193), Forschungszentrum Jülich (COSY-FFE), the Polish National Science Centre and the Foundation for Polish Science.
[31] S. Abd El-Bary et al., Eur. Phys. J. A 37, 267 (2008).
[32] T. Skorodko et al., Eur. Phys. J. A 35, 317 (2008).
[33] A. V. Sarantsev et al., Phys. Lett. B 659, 94 (2008).
[34] P. Adlarson et al., Phys. Lett. B 706, 256 (2012).
[35] M. Platonova and V. Kukulin, Phys. Rev. C 87, 025202 (2013).