Metabolic Complications among Korean Patients with HIV Infection: The Korea HIV/AIDS Cohort Study

Dong Hyun Oh,1 Jin Young Ahn,1 Sang Il Kim,2 Min Ja Kim,3 Jun Hee Woo,4 Woo Joo Kim,3 Ji Hyeon Baek,5 Shin-Woo Kim,4 Bo Youl Choi,6,7 Mi Hwa Lee,7 Ju-yeon Choi,7 Myung Guk Han,9 Chun Kang,7 June Myung Kim,10 Jun Yong Choi,10 and Korea HIV/AIDS Cohort Study

INTRODUCTION

The introduction of highly active antiretroviral therapy (HAART) for the treatment of human immunodeficiency virus (HIV) infection changed the characteristics of HIV infection, from a fatal disease to a chronic manageable infectious disease (1). However, as the life expectancy of HIV-infected patients increased, lifestyle-related comorbidities such as cardiovascular disease (CVD), diabetes, and hyperlipidemia began to emerge as a problematic issue and challenge in the treatment of HIV infection. Furthermore, antiretroviral drugs have the potential to induce many adverse drug reactions as well as drug-drug interactions with medications administered for the treatment of other comorbidities (2).

Long-term metabolic complications induced by antiretroviral drugs include osteoporosis, lipodystrophy, dyslipidemia, hyperglycemia, hypertension, and metabolic syndrome, among others. These complications may be risk factors for cerebral vascular disease and coronary artery disease, and may contribute to the morbidity and mortality of these diseases. Recent studies have reported a higher prevalence of these diseases in HIV-infected patients than in the general population (3,4).

Differences in the prevalence of these long-term metabolic complications have been observed across previous studies, because each of the studies was performed in a different population and used different diagnostic criteria (5). Choe et al. (6) published a study evaluating the incidence of metabolic complications in a Korean population of HIV-infected patients in 2004. The study analyzed 66 HIV-infected patients and found...
an incidence of metabolic complications of 20.3%. In detail, the incidence of hypertriglyceridemia, hypercholesterolemia, hyperglycemia, and diabetes was 12.3%, 5.8%, 1.4%, and 4.3%, respectively.

To date, several studies have investigated the prevalence of metabolic complications in HIV-infected patients in Korea. However, these studies were limited by small sample sizes, and each study did not analyze metabolic parameters comprehensively (6-11). The purpose of the present study was to identify the prevalence of and evaluate the risk factors for metabolic complications in HIV-infected patients in Korea.

MATERIALS AND METHODS

Study population and design
Participants in this prospective cross-sectional study were HIV-infected subjects who visited 19 hospitals affiliated with the Korean HIV/AIDS Cohort from December 2006 to July 2013. The study protocol was approved by the Institutional Review Board of each of the participating hospitals. All participants were older than 18 years and provided informed consent prior to enrollment. Data at entry to cohort were used for analyses. The prevalence of metabolic abnormalities was calculated, and the rates of metabolic abnormalities were compared with data reported for the general population. The rates of metabolic abnormalities were compared between treatment-naïve and treatment-experienced subjects. In addition, a case-control study was performed to identify risk factors for dyslipidemia.

Data collection
Demographic and clinical characteristics were obtained for all participants. Biologic data such as age, sex, race, body weight, body mass index (BMI), waist circumference (WC), waist/hip ratio, and blood pressure were collected. Regarding comorbidities, history of hypertension, diabetes, dyslipidemia, CVD, smoking history, and family history were collected. In terms of history related to HIV infection, sexual habits, history of exposure route of HIV, time of entry to cohort, time of diagnosis, clinical classification guided by the Centers for Disease Control and Prevention, baseline CD4+ T-cell counts, baseline HIV viral loads, antiviral treatment status, and antiretroviral regimen were collected. Laboratory data related to metabolic complications such as fasting glucose, total cholesterol, high-density lipoprotein (HDL)-cholesterol, low-density lipoprotein (LDL)-cholesterol, and triglycerides were evaluated. To assess cardiovascular risk, the Framingham risk score (FRS) was calculated (12).

Definitions
Hyperglycemia is defined as serum fasting glucose ≥ 126 mg/dL (13). Hypercholesterolemia is defined as serum total cholesterol ≥ 240 mg/dL. Hypoalphalipoproteinemia is defined as serum HDL-cholesterol < 40 mg/dL. Hyper LDL-cholesterolemia is defined as serum LDL-cholesterol ≥ 160 mg/dL. Hypertriglyceridemia is defined as serum triglycerides ≥ 200 mg/dL (14). High and low BMI are defined as BMI > 25 and < 18.5, respectively (15). Dyslipidemia was defined as the presence of one or more of hypercholesterolemia, hyper LDL-cholesterolemia, hypoalphalipoproteinemia, and hypertriglyceridemia (16). Lipodystrophy was defined as the presence of peripheral lipodystrophy or central fat accumulation subjectively measured by standardized physical examination procedure (17). The FRS is the most commonly used tool for prediction of cardiovascular risk, and is calculated using variables including age, sex, total cholesterol, HDL-cholesterol, hypertension, hypertension treatment, diabetes mellitus, and current smoking. Subjects were classified as having a very low, low, moderate, or high 10-year coronary risk in accordance with the Framingham equation (< 10%, 10%–15%, 16%–20%, and > 20%, respectively) (18).

Data analysis
Continuous variables were expressed as mean or median (interquartile range) and compared using Student’s t-test if the variables followed a normal distribution. Continuous variables with skewed distribution were compared using the Mann-Whitney U test. Categorical variables were compared using the $\chi^2$ test. Variables with a $P$ value less than 0.05 on univariate analysis were included in the logistic regression model for multivariate analysis for predicting risk factors for dyslipidemia. All statistical analyses were performed using SAS 9.2 (SAS Institute Inc., Cary, NC, USA). $P$ values less than 0.05 were considered statistically significant.

Ethics statement
The study was approved by the Institutional Review Board of the Yonsei University Health System Clinical Trial Center and proceeded with getting informed consent from all patients participating in the study (Study No. 4-2006-0158).

RESULTS

A total of 1,096 patients were eligible for inclusion in this study. The median age of participants was 46 years, and the proportion of men was 92.8%. Almost all participants were Korean (99.1%), and the most frequent exposure route of HIV infection was sexual contact (87%). The proportion of intravenous drug use was 0.4%. The median baseline CD4+ T-cell count of participants was 235 cells/μL, and the proportion of treatment-naïve patients was 35.5%. The most commonly used antiretroviral regimen was a protease inhibitor (PI)-based regimen (40.4%) (Table 1).

The prevalence of metabolic complications in all HIV-infected patients in the cohort was as follows. The prevalence of obesity based on BMI, obesity based on waist/hip ratio (waist/hip
As the life expectancy of HIV-infected patients is increasing, metabolic complications are emerging as an issue of concern in managing HIV infections. This study evaluated the prevalence and characteristics of metabolic complications in HIV-infected Koreans.

As mentioned above, the prevalence of obesity based on BMI, obesity based on waist/hip ratio, hyperglycemia, hypercholesterolemia, hypertriglyceridemia were 16.4%, 19.0%, 10.4%, 6.0%, 44.2%, 5.5%, and 32.1%, respectively. These results are similar to the findings of a recent study conducted in an Asian population (19), but, compared to a previous Korean study (6), the prevalence of metabolic complications was relatively high. This difference seems to be the result of the difference in the study period between our study and the former study. Over a decade, there have been many changes in treatment trends; therefore, characteristics of HIV-infected patients have changed. When comparing the metabolic parameters between patient groups depending on the presence or absence of antiretroviral treatment,

**DISCUSSION**

As the life expectancy of HIV-infected patients is increasing, metabolic complications are emerging as an issue of concern in managing HIV infections. This study evaluated the prevalence and characteristics of metabolic complications in HIV-infected Koreans.

As mentioned above, the prevalence of obesity based on BMI, obesity based on waist/hip ratio, hyperglycemia, hypercholesterolemia, hypertriglyceridemia, and hypertriglyceridemia were 16.4%, 19.0%, 10.4%, 6.0%, 44.2%, 5.5%, and 32.1%, respectively. These results are similar to the findings of a recent study conducted in an Asian population (19), but, compared to a previous Korean study (6), the prevalence of metabolic complications was relatively high. This difference seems to be the result of the difference in the study period between our study and the former study. Over a decade, there have been many changes in treatment trends; therefore, characteristics of HIV-infected patients have changed. When comparing the metabolic parameters between patient groups depending on the presence or absence of antiretroviral treatment,

**Table 1. Baseline characteristics of HIV-infected patients in this study**

| Variables                                    | HIV-infected patients (n = 1,096) |
|----------------------------------------------|-----------------------------------|
| Age at entry to cohort, yr                   |                                   |
| Median (range)                               | 46 (20–83)                        |
| 20–29                                        | 96 (8.8)                          |
| 30–39                                        | 266 (24.3)                        |
| 40–49                                        | 325 (29.7)                        |
| 50–59                                        | 260 (23.7)                        |
| ≥ 60                                         | 149 (13.6)                        |
| Sex                                          |                                   |
| Male                                         | 1,017 (92.8)                      |
| Race                                         |                                   |
| Korean                                       | 1,086 (99.1)                      |
| Asian                                        | 10 (0.9)                          |
| Reported exposure category                   |                                   |
| Sexual contact                               | 953 (87.0)                        |
| Reception of blood/product                   | 25 (2.3)                          |
| IDU                                          | 4 (0.4)                           |
| Other                                        | 61 (5.6)                          |
| Sexual habit                                 |                                   |
| Homosexual                                   | 353/958 (36.8)                    |
| Heterosexual                                 | 368/958 (44.6)                    |
| Bisexual                                     | 83/958 (8.8)                      |
| Other                                        | 154/958 (16.0)                    |
| First year diagnosed with HIV                |                                   |
| Before 1991                                  | 4/1,029 (0.4)                     |
| 1991–1995                                    | 19/1,029 (1.8)                    |
| 1996–2000                                    | 50/1,029 (4.9)                    |
| 2001–2005                                    | 276/1,029 (26.8)                  |
| 2006–2010                                    | 560/1,029 (54.4)                  |
| After 2010                                   | 120/1,029 (11.7)                  |
| CDC clinical classification for HIV infection|                                   |
| Category A                                   | 398/1,095 (36.5)                  |
| Category B                                   | 286/1,095 (26.1)                  |
| Category C                                   | 311/1,095 (28.4)                  |
| Baseline CD4+ T-cell count, cells/μL         |                                   |
| Median (range)                               | 235 (1–1,699)                     |
| < 50                                         | 198/750 (26.4)                    |
| 50–199                                       | 186/750 (24.8)                    |
| 200–499                                      | 278/750 (37.1)                    |
| ≥ 500                                        | 88/750 (11.7)                     |
| Baseline HIV viral loads, copies/mL          |                                   |
| Median (range)                               | 3.9 × 10^5 (0–7.5 × 10^5)         |
| Not detected                                 | 33/745 (4.4)                      |
| < 400                                        | 333/745 (44.7)                    |
| 400–9,999                                    | 57/745 (7.7)                      |
| 10,000–99,999                                | 146/745 (19.6)                    |
| ≥ 100,000                                    | 176/745 (23.6)                    |
| Treatment                                    |                                   |
| Treatment-naïve                              | 387/1,091 (35.5)                  |
| Treatment-experienced                        | 704/1,091 (64.5)                  |
| Antiretroviral treatment at entry to cohort   |                                   |
| Not on treatment                             | 416/1,084 (38.4)                  |
| 2 NRTIs+PI                                   | 438/1,084 (40.4)                  |
| 2 NRTIs+NNRTI                               | 196/1,084 (18.1)                  |
| 2 NRTIs+II                                  | 7/1,084 (0.6)                     |
| 3 NRTIs                                     | 1/1,084 (0.1)                     |
| Combinations without NRTIs                  | 4/1,084 (0.4)                     |
| Other                                        | 22/1,084 (2.0)                    |

HIV = human immunodeficiency virus, IDU = intravenous drug use, CDC = Centers for Disease Control and Prevention, NRTI = nucleoside analogue reverse transcriptase inhibitor, PI = protease inhibitor, NNRTI = non-nucleoside reverse transcriptase inhibitor, II = integrase inhibitor.
Table 2. Comparisons of metabolic parameters between treatment-naïve patients and treatment-experienced patients

| Variables                      | Total (n = 1,091) | Treatment-naïve (n = 387) | Treatment-experienced (n = 704) | P-value |
|-------------------------------|-------------------|---------------------------|--------------------------------|---------|
| Weight, kg                    |                   |                           |                                |         |
| Median (range)                | 63.8 (36.4–122.5) | 64.4 (39–107)             | 63.4 (36.4–122.5)              | 0.190*  |
| BMI, kg/m²                    |                   |                           |                                |         |
| Median (range)                | 22.2 (14.5–37.8)  | 22.2 (14.8–33.8)          | 22.14 (14.5–37.8)              | 0.817†  |
| > 25                          | 140/856 (16.4)    | 56/318 (17.6)             | 84/537 (15.6)                  | 0.452†  |
| WC, cm                        |                   |                           |                                |         |
| Median (range)                | 82.0 (60.0–120.0) | 81.2 (65–118)             | 82.4 (60.0–120.0)              | 0.176*  |
| Abdominal obesity             | 85/447 (19.0)     | 28/154 (18.2)             | 57/293 (19.5)                  | 0.745†  |
| Waist/hip ratio               | 0.87 (0.71–1.21)  | 0.87 (0.73–1.21)          | 0.88 (0.71–1.16)               | 0.160*  |
| Abdominal obesity             | 23/417 (5.5)      | 7/146 (4.8)               | 16/273 (5.9)                   | 0.648†  |
| Fasting glucose, mg/dL        |                   |                           |                                |         |
| Median (range)                | 43 (4–177)        | 38 (4–137)                | 45 (10–177)                    | 0.001†  |
| ≥ 126                         | 337/763 (44.2)    | 148/254 (58.3)            | 189/507 (37.3)                 |         |
| Total cholesterol, mg/dL      |                   |                           |                                |         |
| Median (range)                | 169 (11–364)      | 155 (48–297)              | 176 (11–364)                   | < 0.001*|
| ≥ 280                         | 12/997 (1.2)      | 2/332 (0.6)               | 10/663 (1.5)                   | 0.008†  |
| 240–279                       | 48/997 (4.8)      | 7/332 (2.1)               | 41/663 (6.2)                   | -       |
| HDL-cholesterol, mg/dL        |                   |                           |                                |         |
| Median (range)                | 101 (10–1,236)    | 98 (10–623)               | 103 (11–1,236)                 | 0.313*  |
| ≥ 190                         | 13/688 (1.9)      | 3/230 (1.3)               | 10/455 (2.2)                   | 0.593†  |
| 160–189                       | 25/688 (3.6)      | 7/230 (3.0)               | 18/455 (4.0)                   | -       |
| Triglycerides, mg/dL          |                   |                           |                                |         |
| Median (range)                | 186 (14–1,040)    | 155 (14–636)              | 202 (18–1,040)                 | < 0.001*|
| ≥ 500                         | 27/872 (2.5)      | 2/279 (0.7)               | 25/589 (4.2)                   | < 0.001†|
| 200–499                       | 258/872 (29.6)    | 64/279 (22.9)             | 194/589 (32.9)                 | -       |
| Systolic blood pressure, mmHg |                   |                           |                                |         |
| Median (range)                | 124 (62–205)      | 123 (62–173)              | 125 (90–205)                   | 0.102†  |
| > 160                         | 21/742 (2.8)      | 8/251 (3.2)               | 13/491 (2.6)                   | 0.191†  |
| 140–159                       | 97/742 (11.5)     | 22/251 (8.8)              | 65/491 (13.2)                  | -       |
| Smoking history               | 649/1,044 (62.2)  | 238/366 (64.9)            | 410/676 (60.4)                 | 0.239†  |
| Current smoking               | 466/1,044 (44.6)  | 191/366 (52.2)            | 274/676 (40.3)                 | -       |
| Underlying disease            |                   |                           |                                |         |
| Hypertension                  | 112/1,087 (10.3)  | 37/383 (9.7)              | 75/690 (10.9)                  | 0.535†  |
| On antihypertensive treatment | 97/1,087 (8.9)    | 33/383 (8.6)              | 64/690 (9.3)                   | -       |
| Dyslipidemia                  | 98/1,081 (9.1)    | 10/362 (2.6)              | 86/668 (12.4)                  | < 0.001†|
| On dyslipidemia treatment     | 80/1,081 (7.4)    | 8/362 (2.1)               | 72/668 (10.9)                  | -       |
| Diabetes mellitus             | 71/1,088 (6.5)    | 23/363 (6.0)              | 48/691 (6.9)                   | 0.552†  |
| On diabetes treatment         | 69/1,088 (6.2)    | 23/363 (6.0)              | 45/691 (6.5)                   | -       |
| Lipodystrophy                 | 28/1,089 (2.6)    | 0/365 (0)                 | 26/693 (4.0)                   | < 0.001†|
| CVD                           | 3/1,064 (0.3)     | 0/381 (0)                 | 3/678 (0.4)                    | 0.299†  |
| Angina pectoris               | 3/1,064 (0.3)     | 0/381 (0)                 | 3/678 (0.4)                    | 0.165†  |
| Myocardial infarction         | 3/1,064 (0.3)     | 0/381 (0)                 | 3/678 (0.4)                    | 0.295†  |
| Stroke                        | 12/1,064 (1.1)    | 5/381 (1.3)               | 8/678 (1.2)                    | -       |
| Family history                |                   |                           |                                |         |
| Hypertension                  | 262/1,093 (23.9)  | 87/386 (22.5)             | 175/704 (24.9)                 | 0.525†  |
| Diabetes mellitus             | 213/1,093 (19.5)  | 67/386 (17.4)             | 146/704 (20.7)                 | 0.308†  |
| Dyslipidemia                  | 12/1,093 (1.1)    | 2/386 (0.5)               | 10/704 (1.4)                   | 0.223†  |
| Ischemic heart disease        | 43/1,093 (3.9)    | 10/386 (2.6)              | 33/704(4.7)                    | 0.167†  |
| FRS                           | 7.13 (0–31)       | 6.61 (0–31)               | 7.4 (0–31)                     | 0.194*  |
| Low risk                      | 409/558 (87.3)    | 147/192 (76.6)            | 262/366 (71.6)                 | 0.419†  |
| Moderate risk                 | 122/588 (11.1)    | 36/192 (18.8)             | 86/366 (23.5)                  | -       |
| High risk                     | 27/558 (2.5)      | 9/192 (4.7)               | 18/366 (4.9)                   | -       |

The data were expressed as median (interquartile range) or number (percentage).
BMI = body mass index, WC = waist circumference, HDL = high-density lipoprotein, LDL = low-density lipoprotein, CVD = cardiovascular disease, FRS = Framingham risk score.
*Mann-Whitney U-test, median (interquartile range); †Pearson’s χ²-test.
Table 3. Comparison and multivariate analysis of risk factors for dyslipidemia in HIV-infected patients

| Variables                  | Patients without dyslipidemia (n = 433) | Patients with dyslipidemia (n = 247) | P value | OR (95% CI); P value |
|----------------------------|----------------------------------------|--------------------------------------|---------|----------------------|
| Age, yr                    | 44.5 (20–82)                           | 47.1 (25–81)                         | 0.005*  | -                    |
| Male                       | 408/433 (94.2)                         | 230/247 (93.1)                      | 0.563†  | -                    |
| Race                       |                                        |                                      |         |                      |
| Korean                     | 428/433 (98.5)                         | 246/247 (99.6)                      | 0.315†  | -                    |
| Asian                      | 5/433 (1.2)                            | 1/247 (0.4)                         | -       | -                    |
| CD4+ cell counts, cells/μL| 225 (1–1,584)                          | 261 (2–1,699)                       | 0.105*  | -                    |
| < 50                       | 19/349 (5.4)                           | 2/216 (0.9)                         | 0.011†  | -                    |
| 50–199                     | 64/349 (18.3)                          | 37/216 (17.1)                       | -       | -                    |
| 200–499                    | 182/349 (52.1)                         | 106/216 (49.1)                      | -       | -                    |
| ≥ 500                      | 84/349 (24.1)                          | 71/216 (32.9)                       | -       | -                    |
| HIV viral loads, copies/mL | 4.24 × 10³                             | 3.07 × 10³                          | 0.731†  | -                    |
| Not detected               | 17/339 (5.0)                           | 21/210 (10.0)                       | < 0.001†| -                    |
| < 400                      | 152/339 (44.8)                         | 122/210 (58.1)                      | -       | -                    |
| 400–9,999                  | 54/339 (15.9)                          | 25/210 (11.9)                       | -       | -                    |
| 10,000–99,999              | 72/339 (21.2)                          | 22/210 (10.5)                       | -       | -                    |
| > 100,000                  | 44/339 (13.0)                          | 20/210 (9.5)                        | -       | -                    |
| HAART regimen              |                                        |                                      |         |                      |
| PI treatment               | 198/413 (47.9)                         | 153/239 (64.0)                      | < 0.001†| 2.868 (1.419–5.797)⁷; 0.003|
| NNRTI treatment            | 212/424 (28.5)                         | 79/247 (32.0)                       | 0.347†  | -                    |
| Smoking                    | 263/417 (63.1)                         | 152/236 (64.4)                      | 0.931†  | -                    |
| BMI, kg/m²                 | 21.76 (15.20–31.74)                    | 23.42 (16.40–37.80)                 | < 0.001*| 6.839 (2.673–17.495); < 0.001|
| > 25                      | 54/366 (14.8)                          | 55/210 (26.2)                       | 0.001†  | -                    |
| WC, cm                     | 75.7 (60–107)                          | 85.2 (68–120)                       | < 0.001*| -                    |
| Obesity (waist/hip ratio)  | 6/211 (2.8)                            | 11/122 (9.0)                        | 0.014†  | -                    |
| Systolic blood pressure, mmHg | 122 (92–181)                         | 128 (95–205)                        | 0.001*  | -                    |
| > 140                     | 40/327 (12.2)                          | 42/197 (21.3)                       | 0.006†  | -                    |
| Fasting glucose, mg/dL     | 102 (62–432)                           | 107 (70–358)                        | 0.060*  | -                    |
| > 126                     | 28/349 (8.0)                           | 29/200 (14.5)                       | 0.017†  | -                    |
| FRS                        | 5.81 (0–31)                            | 9.05 (0–31)                         | < 0.001*| -                    |
| Low risk                   | 255/320 (79.7)                         | 123/190 (64.7)                      | < 0.001†| -                    |
| Intermediate to high risk  | 65/320 (20.3)                          | 67/190 (35.3)                       | -       | -                    |

The data were expressed as median (interquartile range) or number (percentage) or mean.

HIV = human immunodeficiency virus, OR = odds ratio, CI = confidence interval, HAART = highly active antiretroviral therapy, PI = protease inhibitor, NNRTI = non-nucleoside reverse transcriptase inhibitor, BMI = body mass index, WC = waist circumference, FRS = Framingham risk score.

* Mann-Whitney U-test, median (interquartile range); † Pearson’s χ²-test; § Logistic regression analysis.

median total cholesterol, HDL-cholesterol, and triglyceride levels were high among patients who received antiretroviral therapy. Furthermore, the prevalence of dyslipidemia and lipodystrophy among comorbidities were also significantly high in the patients receiving antiretroviral treatment. This result is similar to previous study findings. Jantarapakde et al. (19) reported a higher prevalence of lipodystrophy and median total cholesterol, HDL-cholesterol, and triglycerides in patients who had received antiretroviral therapy. Moreover, increases in mean total cholesterol, HDL-cholesterol, and triglyceride levels were observed as the duration of antiretroviral therapy increased in previous studies in Asian patients (20,21). Therefore, in consideration of these studies, it can be presumed that antiretroviral therapy influenced the prevalence of metabolic complications.

This is thought to be the result of the combination of the catabolic characteristics of HIV infection, lipodystrophy due to antiretroviral treatment, and the effects on metabolic profiles of antiretroviral therapy. In this cohort, 38.4% of the patients were not undergoing treatment for HIV infection at entry into the cohort, but some antiretroviral regimens such as PIs could cause dyslipidemia.

In comparison of the patient groups depending on the presence or absence of dyslipidemia, high BMI and the use of a PI-based regimen as antiretroviral therapy were significant risk factors for dyslipidemia on multivariate analysis. BMI is associated with the prevalence of dyslipidemia; and a Japanese study conducted by Ishikawa-Takata et al. (22) showed Japanese had a higher prevalence of dyslipidemia than Caucasian, even with low BMI. Since this study was also conducted on Asian, the results can also be referred to the Japanese study. The association between metabolic syndrome and PI exposure was frequently mentioned in previous studies (23,24). In addition, dyslipidemia might be associated with lipodystrophy in HIV-infected patients. Fat accumulation, a type of lipodystrophy, can be induced by PI treatment (25). However, the results of a recently reported randomized controlled study indicated that there was no difference...
in the appearance of fat accumulation between treatment with PIs and other classes of antiretroviral drugs (26). In our cohort, other classes of antiretroviral drug such as non-nucleoside reverse transcriptase inhibitors (NNRTIs) did not show a significant correlation with the appearance of dyslipidemia. However, because about 40% of HIV-infected patients were receiving PI-based regimens, and the percentage of those receiving ritonavir-boosted lopinavir (22.1%), which is well known to induce dyslipidemia, was relatively high, the difference between the previous study and this study can be explained through this factor (data not shown).

CVD is an important predictor of mortality in the general population, and dyslipidemia is an important risk factor for the occurrence of CVD (27). In a previous cohort study of 4,061 patients, dyslipidemia in HIV-infected patients was found to be a major risk factor for CVD (28). Therefore, dyslipidemia caused by HIV infection and antiretroviral agents increases long-term mortality by increasing the risk of CVD. Additionally, HIV infection itself is a risk factor for the development of CVD (3).

This study has some limitations. First, the number of patients was small, and it limits our study results. Second, because of the cross-sectional design of this study, we could not evaluate the incidence of and associated factors for metabolic complications. Third, the distribution of antiretroviral regimens was not even because of the observational study design. Additionally, because we analyzed data from 2006 to 2013, this study could not reflect the current situation of Korea. Especially, single tablet regimens with integrase strand transfer inhibitor are introduced into Korea in 2014, and HAART regimens including integrase strand transfer inhibitor are more commonly used. That might change the prevalence of metabolic complications in Korea since 2014. Finally, there were significant missing values for some important variables such as FRS, smoking history, and so on.

In conclusion, HIV-infected Koreans had higher serum triglyceride levels compared to the general population; however, the prevalence of other metabolic abnormalities was not high. Analysis of patient groups based on the presence or absence of dyslipidemia revealed that antiretroviral therapy contributed to abnormality of lipid profiles; in particular, high BMI and the use of a PI-based regimen were statistically significant risk factors in multivariate analysis. To improve long-term cardiovascular outcomes in HIV-infected Koreans, clinicians should be vigilant regarding the proper management of metabolic abnormalities in these patients.

ACKNOWLEDGMENT

All authors thank the related practitioners involved in the Korea HIV/AIDS Cohort Study.

DISCLOSURE

The authors have no potential conflicts of interest to disclose.

AUTHOR CONTRIBUTION

Conceptualization: Oh DH, Ahn JY, Kim JM, Choi JY. Data curation: Kim SI, Kim MJ, Woo JH, Kim WJ, Baek JH, Kim SW, Choi JY, Han MG, Kang C, Kim JM, Choi JY. Investigation: Choi BY, Lee MH. Writing - original draft: Oh DH, Ahn JY, Choi JY.

ORCID

Dong Hyun Oh https://orcid.org/0000-0002-9990-6042
Jin Young Ahn https://orcid.org/0000-0002-3740-2826
Sang Il Kim https://orcid.org/0000-0001-9361-7381
Min Ja Kim https://orcid.org/0000-0002-2125-7521
Jun Hee Woo https://orcid.org/0000-0003-4512-5352
Woo Joo Kim https://orcid.org/0000-0002-4546-3880
Ji Hyeon Baek https://orcid.org/0000-0002-1783-6930
Shin-Woo Kim https://orcid.org/0000-0002-3755-8249
Bo Youl Choi https://orcid.org/0000-0003-0115-5736
Mi Hwa Lee https://orcid.org/0000-0002-9048-5552
Ju-yeon Choi https://orcid.org/0000-0003-3477-8569
Myung Guk Han https://orcid.org/0000-0002-3543-1826
Chun Kang https://orcid.org/0000-0003-4318-5247
June Myung Kim https://orcid.org/0000-0002-0337-8573
Jun Yong Choi https://orcid.org/0000-0002-2775-3315

REFERENCES

1. Casalino E, Wolff M, Ravaud P, Choquet C, Bruneel F, Regnier B. Impact of HAART advent on admission patterns and survival in HIV-infected patients admitted to an intensive care unit. AIDS 2004; 18: 1429-33.
2. Pau AK, Boyd SD. Recognition and management of significant drug interactions in HIV patients: challenges in using available data to guide therapy. Clin Pharmacol Ther 2010; 88: 712-9.
3. Triant VA, Lee H, Hadigan C, Grinspoon SK. Increased acute myocardial infarction rates and cardiovascular risk factors among patients with human immunodeficiency virus disease. J Clin Endocrinol Metab 2007; 92: 2506-12.
4. Sobieszczuk ME, Hoover DR, Anastos K, Mulligan K, Tan T, Shi Q, Gao W, Hyman C, Cohen MH, Cole SR, et al. Prevalence and predictors of metabolic syndrome among HIV-infected and HIV-uninfected women in the Women’s Interagency HIV Study. J Acquir Immune Defic Syndr 2008; 48: 272-80.
5. Nguyen KA, Peer N, Mills EJ, Kengne AP. A meta-analysis of the metabolic syndrome prevalence in the global HIV-infected population. PLoS One 2016; 11: e0150970.
6. Choe YJ, Park SW, Kim HB, Park WB, Lee KD, Oh MD, Choe KW. Metabolic complications in Korean HIV/AIDS patients receiving highly active anti-retroviral therapy. Infect Chemother 2004; 36: 197-206.
7. Choi H, Jeong SJ, Lee HS, Chin BS, Choi SH, Han SH, Kim MS, Kim CO, Choi JY, Song YG, et al. Clinical manifestations for diabetes mellitus in HIV-infected Koreans on highly active antiretroviral therapy. Korean J Med 2008; 74: 506-14.

8. Han SH, Chin BS, Choi HK, Shin SY, Chae YT, Baek JH, Kim CO, Choi JY, Song YG, Lee HC, Kim JM. Prevalence of and clinical factors associated with lipoatrophy in HIV-infected Koreans receiving highly active antiretroviral therapy. Tohoku J Exp Med 2009; 219: 145-53.

9. Han SH, Chin BS, Lee HS, Jeong SJ, Choi HK, Kim CO, Choi JY, Song YG, Lee HC, Kim JM. Serum retinol-binding protein 4 correlates with obesity, insulin resistance, and dyslipidemia in HIV-infected subjects receiving highly active antiretroviral therapy. Metabolism 2009; 58: 1523-9.

10. Jeong SJ, Chin BS, Chae YT, Jin SJ, Ku NS, Baek JH, Han SH, Kim CO, Choi JY, Song YG, et al. Serum retinol-binding protein-4 levels are increased in HIV-infected subjects with metabolic syndrome receiving highly active antiretroviral therapy. Yonsei Med J 2012; 53: 1211-5.

11. Kim SB, Kim YC, Kim MH, Song JE, Oh DH, Ahn JY, Ku NS, Kim HW, Jeong SJ, Han SH, et al. A comparison of the predicted risk for cardiovascular disease between HIV-infected and uninfected persons in Korea. Scand J Infect Dis 2013; 45: 855-62.

12. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, Jones DW, Materson BJ, Oparil S, Wright JT Jr, et al. The seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. JAMA 2003; 289: 2560-72.

13. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2010; 33 Suppl 1: S62-9.

14. National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation 2002;106: 3143-421.

15. Clinical guidelines on the identification, evaluation, and treatment of over-weight and obesity in adults—the evidence report. National Institutes of Health. Obes Res 1998; 6 Suppl 2: S1S-208S.

16. Screening for lipid disorders in children and adolescents: recommendation statement. Am Fam Physician 2016; 94: Online.

17. Carr A, Samaras K, Burton S, Law M, Freund J, Chisholm DJ, Cooper DA. A syndrome of peripheral lipodystrophy, hyperlipidaemia and insulin resistance in patients receiving HIV protease inhibitors. AIDS 1998; 12: F51-8.

18. D’Agostino RB Sr, Vasan RS, Pencina MJ, Wolf PA, Cobain M, Massaro JM, Kannel WB. General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation 2008; 117: 743-53.

19. Jantarapakde J, Panuphak N, Chaturawit C, Pengnonyang S, Mathajitiphan P, Takamtha P, Dungjün N, Pinyakorn S, Pimma W, Prasitsirikul W, et al. Prevalence of metabolic syndrome among antiretroviral-naive and antiretroviral-experienced HIV-1 infected Thai adults. AIDS Patient Care STDS 2014; 28: 331-40.

20. Gupta V, Biswas A, Sharma SK. Metabolic and body composition changes after six months of highly active antiretroviral therapy in northern Indian patients. Int J STD AIDS 2011; 22: 46-9.

21. Wu PY, Hung CC, Liu WC, Hsieh CY, Sun HY, Lu CL, Wu H, Chien KL. Metabolic syndrome among HIV-infected Taiwanese patients in the era of highly active antiretroviral therapy: prevalence and associated factors. J Antimicrob Chemother 2012; 67: 1001-9.

22. Ishikawa-Takata K, Ohta T, Moritaki K, Gotou T, Inoue S. Obesity, weight change and risks for hypertension, diabetes and hypercholesterolemia in Japanese men. Eur J Clin Nutr 2002; 56: 601-7.

23. Gazzaruso C, Sacchi P, Garzaniti A, Fratino P, Bruno R, Flice G. Prevalence of metabolic syndrome among HIV patients. Diabetes Care 2002; 25: 1253-4.

24. Samaras K, Wand H, Law M, Emery S, Cooper D, Carr A. Prevalence of metabolic syndrome in HIV-infected patients receiving highly active antiretroviral therapy using International Diabetes Foundation and Adult Treatment Panel III criteria: associations with insulin resistance, disturbed body fat compartmentalization, elevated C-reactive protein, and [corrected] hypoadiponectinemia. Diabetes Care 2007; 30: 113-9.

25. Wohl D, Scherzer R, Heymsfield S, Simberkoff M, Sidney S, Bacchetti P, Grunfeld C, FRAM Study Investigators. The associations of regional adipose tissue with lipid and lipoprotein levels in HIV-infected men. J Acquir Immune Defic Syndr 2008; 48: 44-52.

26. McComsey GA, Moser C, Currier J, Ribaudo HJ, Paczuski P, Dubé MP, Kelseyis T, Rothenberg I, Stein JH, Brown TT. Body composition changes after initiation of raltegravir or protease inhibitors: ACTG A5260s. Clin Infect Dis 2016; 62: 853-62.

27. Feeney ER, Mallon PW. HIV and HAART-associated dyslipidemia. Open Cardiovasc Med J 2011; 5: 49-63.

28. Kaplan RC, Kingsley LA, Sharrett AR, Li X, Lazar J, Tien PC, Mack WL, Cohen MH, Jacobson L, Gange SJ. Ten-year predicted coronary heart disease risk in HIV-infected men and women. Clin Infect Dis 2007; 45: 1074-81.