Anti-Aging Drugs in Unani Medicine

Malik Itrat* and Javed A Khan1

*Department of TahaffuziwaSamajiTib, National Institute of Unani Medicine, India
1Department of Moalajat, National Institute of Unani Medicine, India

Abstract
Aging is a process of gradual, progressive and generalized impairment of functions resulting in the loss of adaptive response to stress and in increasing the risk of age-related diseases. According to Unani concept, aging is the result of tahleel by Quwwatehadima that maintain balance or homeostasis. Geriatric care is mentioned in unani literature under the heading of tadabeermashaihk. The concept of protection of an organ, stimulation of Hararate-gharizia and augmentation of vital force of important organs is the distinguishing feature of Unani medicine. The concept aims at maintaining the vitality of organs by protecting it from untoward stimuli and strengthening it to be able to cope with the diverse physiological climate. A number of drugs like Amla, Zanjabeel, Garlic, Kalonji categorize to possess such effects are frequently used in unani medicine. Some of the drugs studied in recent years demonstrate promising effect.

Keywords: Unani medicine; Anti-aging drugs; Antioxidant activity

Introduction

According to Tibbeunani, the people of above 60 years of age are considered as mashaikh. Unani scholars were well aware about the aging process and categorize the mashaikh under abdanezaeefa [1]. According to modern theory, Aging is a process of gradual, progressive and generalized impairment of functions resulting in the loss of adaptive response to stress and in increasing the risk of age-related diseases [2]. While according to unani concept, aging is the result of tahleel by Quwwatehadima that maintain the organism in functional state and inadequate Compensation of tahleel by Quwwatehadima that maintain balance or homeostasis. Due to increased tahleel of ratoobat hezareezia, hararateghareezia weakens because ratoobat hezareezia provide matter for hararateghareezia. Quwwat ehadima also get weakened due to weakness in hararateghareezia, ultimately resulting in decreased formation of akhlat and ratoobat, and decreased availability of the substitute of tahleel. Decrease in hararateghareezia changes the mizaj relatively to barid; gradual increase with age in baroodat results in decline of quwa (faculties) thereby afaal (functions) of the body. As all quwa requires hararat for performing afaal (function). Depravity of humours or dryness continues neutralizing the ratoobat of the body until the form ceases to have a capacity for life. Thus, healthy aging can be secured by the safeguarding of innate moisture from too rapid dissipation, and maintaining it at such a degree of strength that the original type of constitution peculiar to the person shall not change even up to the last moment of life [3-8]. A number of single and compound drugs like Amla, Zanjabeel, Asgandh, Garlic, Zafraan, Kalonji, Tiryaqwabai, Majoonfalasfa etc. categorize to possess such effects are frequently used uninani medicine and now are proven to have anti-oxidant and immunomodulator properties. Scientific studies revealed that, antioxidants drugs have definite role in the prevention of geriatric diseases (Table 1).

Recent Studies on Various Drugs

Tiryaqwabai

It is anunani compound formulation, ingredients are Elva, Mur-makki and Zafaran in the ratio of 2:1:1. A randomized placebo controlled trial was conducted at NIUM hospital, Bangalore. 30 immunocompromised elderly persons were selected and randomly assigned, 20 in test and 10 in control group. Tiryaq Wabai (Unani compound formulation) was given to test group 500 mg orally three times a week for 45 days. Placebo was given orally to the control group at a dose of 500 mg three times a week for 45 days. Response was assessed by TLC, lymphocyte percentage, Absolute lymphocyte count and CD4 count. The test drug showed statistically significant increase in TLC (P<0.001), Lymphocyte percentage (P<0.001), ALC (P<0.001) and CD4 count (P<0.001) in comparison to control group [9].

Asgand (Withaniasomnifera)

In a double-blind clinical trial, ashwagandha was tested in a group of 101 healthy males, 50-59 years old, at a dosage of 3 grams daily for one year. A significant improvement in hemoglobin, red blood cell count, hair melanin, and seated stature was observed. Serum cholesterol decreased and nail calcium was preserved. Erythrocyte sedimentation rate decreased significantly and 71.4 percent reported improvement in sexual performance [10].

Amla (Emblicaofficinalis)

Vitamin C in EO accounts for approximately 45-70% of the antioxidant activity. The administration of ethyl acetate (EtOAc) extract of Amla or Sun Amla (Taiyo Kagaku Co., Ltd., Japan) reduced the elevated levels of urea nitrogen and serum creatinine in the aged rats. Oral administration of this extract significantly reduced thiobarbituric acid-reactive substance levels of serum, renal homogenate and mitochondria in aged rats, suggesting that Amla would ameliorate oxidative stress under aging. The increase of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 expressions in the aorta of aging rats were also significantly suppressed by EtOAc extract of Amla or Sun Amla extract. EtOAc extract of Amla or Sun Amla reduced the COX-2 and iNOS expression levels by inhibiting NF-kappaB activation in the aged rats. Thus Amla would be a very useful antioxidant for the prevention of age-related renal disease [11].
Honey contains many minor components with antioxidant activity, among which are amino acids and proteins, carotenes, phenolic compounds and flavonoids, ascorbic acid and organic acids. It has been proposed that the antioxidant capacity of honey is mainly due to the phenolic compounds and flavonoids they contain, and there is a high correlation between polyphenols and antioxidant capacity of honey [12].

Elva (Aloe barbadensis)

There are many substances in Aloe that exhibit the antioxidant effects. The acting substances are the minerals, manganese and copper, vitamins B2, B6, C, and E, and the amino acid cysteine. Manganese is a powerful antioxidant that slows down the aging process and makes cells stronger in the fight against the negative effects of oxygen and broad spectrum radiation, to which we are exposed daily. It constitutes a part of the enzyme superoxide dismutase, an allergic anti-free radical of the pancreas, liver and kidneys. Copper is an oligoelement essential to health. Also a strong antioxidant, Copper greatly limits the damaging effects of free radicals, mainly through the protein ceruloplasmin, which oxidizes the reduced form of iron responsible for the formation of free radicals. Through the enzyme superoxide dismutase, the copper element, which is one of its constituents, prevents racidity of polyunsaturated fatty acids and keeps the cellular membranes strong.

Vitamin B12 actively takes part in complex cellular metabolic processes by being an indispensable regulator together with the enzyme glutathione reductase, as part of the process of maintaining stable levels of glutathione, a highly active anti-free radical. Riboflavin limits and inhibits, in part, the toxic byproducts of cellular respiration, a natural metabolic process which is highly oxidative. Vitamin B6 plays a role in the metabolism of the important essential amino acid, tryptophan, which is involved in protein synthesis and is a strong antioxidant. Vitamin C, another strong antioxidant, limits the damage caused by the oxidation of free radicals to the white blood cells. It is known that white blood cells are responsible for our immune defense, by which sickness or disease is overcome more easily. Vitamin E interacts in cellular energy production processes and is truly important to our health, especially during nervous system and immune system illnesses.

Cysteine is also a member of Aloe’s antioxidant team. This non-essential amino acid is considered a guarantee to our health and longevity, by de-activating free radicals through its sulphurous function group, a good antioxidant, and, secondly, by protecting and strengthening cellular membranes from external attacks. Recent studies have demonstrated that cysteine, together with the B group of vitamins, can bind toxic molecules formed by disease processes and create inoffensive and harmless compounds [13].

Table 1: List of Drugs mentioned in Unani Literature for Geriatric Care.

S. No.	Name of Drug	Origin	Scientific name
1	Amla	Plant	Emblica officinalis
2	Anjeer1	-do-	Ficus carica
3	Asgrand1	-do-	Withania somnifera
4	Aabresham1	Animal	Bombax ceiba
5	Anmaric	-do-	Ambragrasa
6	Ast1	-do-	Honey
7	Badmin	Plant	Prunus amygdalus
8	Badranjboya1	-do-	Neptala hindoysana
9	Behman1	-do-	Centaurea abebehen
10	Busd	Animal	Corallium rubrum
11	Darchini	Plant	Cinnamomum zeylanicum
12	Darunaj	-do-	Doryoncium hookeri
13	Elva	-do-	Aloe barbadensis
14	Faranjmushk	-do-	Oolnum gratissimum
15	Fillidaraz	-do-	Piper longum
16	Gandana1	-do-	Allium ascaloncinum
17	Gaozaban	-do-	Borago officinalis
18	Habb-ul-Aas	-do-	Myrthus communis
19	Halela	-do-	Terminalia chebula
20	Heel Kalan	-do-	Amomnum subulatum
21	Irsa	-do-	Iris ensata
22	Jadwar	-do-	Delphinium denudatum
23	Jaiphal	-do-	Myristica fragrans
24	Javitri	-do-	Myristica fragrans
25	Kahruba	-do-	Pinus succinifera
26	Kalonji	-do-	Nigella sativa
27	Karafs1	-do-	Apiumgraveolans
28	Khulanjan	-do-	Alpinia galanga
29	Khurma	-do-	Phoenix dactylifera
30	Kundur	-do-	Boswelliaserrata
31	Maslagi	-do-	Pistacia lentiscus
32	Mur Makki	-do-	Commiphora myrrha
33	Mushik	Animal	Moschus moschiferus
34	Nagar Motha	Plant	Cyperus rotundus
35	Nakhud	-do-	Coriandrum sativum
36	Nankhwah	-do-	Trachyspermum mammum
37	Naana	-do-	Mentha virresens
38	Ood	-do-	Aquilariaagallocha
39	Pista	-do-	Pistacia vera
40	Qaranfal	-do-	Szyzygium aromaticum
41	Qust	-do-	Sausurellaappa
42	Sandal	-do-	Santalum album
43	Seer	-do-	Allium sativum
44	Sumbul-ul-Teeb	-do-	Nardostachys jatamansi
45	Taj	-do-	Cinnamomum cassia
46	Turanji	-do-	Citrus medicia
47	Unsul	-do-	Urginea ascalac
48	Zafaran	-do-	Crocus sativus
49	Zaitoon	-do-	Olea europea
50	Zanjabeel	-do-	Zingiber officinalis
51	Zarandad	-do-	Zingiber zerumbet
52	Zarnab	-do-	Taxus baccata

References
1. Ilahi Ahsan (2010) UsoolWaTadabeereHilzaneSehat. New Delhi: NaiAawaz; 143-147.
2. Suhami RL, Moxham J (2004) A Text book of medicine. 4: 183-185.
3. Ilahi Ahsan (2008) Al QanoonFilTib. IdaraMatbooat Sulaimani 1: 232-234.
4. Gruener O. Cameron (1929) A Treatise on the Canon of Medicine. London: Burleigh Press; 432-436.
5. Harwi Yousuf (2007) Ain-Al- Hayat Aligarh: Ibne Sina academy 1: 251-272.
6. Kabeeruddin M (1954) K uliyateNafisi. New delhi: IdaraKitabusShifa: 367-373.
7. Majosi (2010) Kamil us Sana’t. (Urdu Translation) Vo1.2. New delhi: IdaraKitabusShifa: 78-80.
8. Itrat Malik, Zarnigar, Haque N (2013) Concept of Aging in Unani Medicine. IJRAP: 4(3) 459-462.
9. Itrat Malik, Zarnigar (2013) Evaluation of Tiryaqwabai as an immunosimulator in Elderly Persons. Universal Journal of Pharmacy 02: 76-82.
10. Verma Kumar Sitansu, Kumar Ajay (2011) Therapeutic uses of Withaniasomnifera (ashwagandha) with a note on withanolides and its pharmacological actions. Asian J Pharm Clin Res 4: 1-4.
11. Khan KH (2009) Roles of Emblicaofficinalis in Medicine - A Review. Botany Research International 2: 218-228.
12. Elizabeth Pérez-Pérez, Vit Patricia, HuqFazlul (2013) Flavonoids and polyphenols in studies of honey antioxidant activity. Int J Med Plant Altern Med 1: 063-072.
13. Itrat Malik, Zarnigar, Haque N (2013) Aloe vera-A Review of its Clinical Effectiveness. IRJP; 4(8).