A NOTE ON LOCALIZATIONS OF MAPPING SPACES

BERNARD BADZIOCH AND WOJCIECH DORABIALA

Abstract. We show that if A is a simply connected, finite, pointed CW-complex then the mapping spaces $\text{Map}_*(A, X)$ are preserved by the localization functors only if A has the rational homotopy type of a wedge of spheres $\bigvee_j S^k$.

1. Introduction

The motivation for this brief note comes from the following well known property of localization functors [2, Thm 3.A.2]. Given a map of pointed spaces f consider the localization functor $L_f: \text{Spaces}_* \to \text{Spaces}_*$. For any $X \in \text{Spaces}_*$ we have a weak equivalence

$$L_f \Omega X \simeq \Omega L\Sigma f X$$

This shows that localizations preserve loop spaces.

It is natural to ask if this preservation property can be extended. This leads to the following

Definition 1.1. We say that a finite, connected, pointed CW-complex A is L-good if for any pointed map f and any $X \in \text{Spaces}_*$ we have

$$L_f \text{Map}_*(A, X) \simeq \text{Map}_*(A, Y)$$

for some $Y \in \text{Spaces}_*$.

The weak equivalence (1) shows that S^1 is L-good. We would like to know what other spaces have this property. This is in fact one of the questions posed by Dror Farjoun in [2, 9.F]. Since $\Omega^k X \cong \Omega(\Omega^{k-1}X)$, applying iteratively the weak equivalence (1) we get that S^k is L-good for all $k \geq 1$. Also, since $\text{Map}_*(\bigvee_l S^k, X) \cong \prod_l \text{Map}_*(S^k, X)$, and since localization functors preserve finite products up to a weak equivalence, we obtain that the class of L-good spaces contains all spaces $\bigvee_l S^k$ for $k > 0$, $l \geq 0$. Our goal here is to show that, rationally, every L-good space will resemble $\bigvee_l S^k$.

Theorem 1.2. Let A be a finite, connected, pointed CW-complex such that for some $p > q > 0$ we have $H^p(A, \mathbb{Q}) \neq 0 \neq H^q(A, \mathbb{Q})$. Then A is not an L-good space.

Equivalently, for an L-good space A we have $H^i(A, \mathbb{Q}) \neq 0$ for at most one $i > 0$. As a consequence we obtain

Date: 07/15/2008.
Corollary 1.3. If A is a simply connected L-good space then A has the rational homotopy type of $\bigvee_l S^k$ for some $k > 0$, $l \geq 0$.

We note here that the formula (1) follows from the existence of the loop space machines (see e.g. [1], [5], [6]) which describe the structure of spaces ΩX in terms of maps of finite products $(\Omega X)^m \to (\Omega X)^n$. An analogous description of mapping spaces $\text{Map}_*(A, X)$ for some A would similarly imply that A is an L-good space. Theorem 1.2 shows then that finite product "mapping space" machines do not exist for any finite CW-complex A whose rational cohomology is non-trivial in more than one dimension.

Acknowledgements. This work was completed while the authors participated in the Research in Pairs program at the Mathematisches Forschungsinstitut Oberwolfach. The authors want to express their gratitude to the Institute for its hospitality. The first author also wants to thank A. Przewieszek and W. G. Dwyer for conversations which inspired this paper.

2. Proof of Theorem 1.2

Let A be a CW-complex as in the statement of Theorem 1.2. Since A is finite we can choose p so that $H^i(A, \mathbb{Q}) = 0$ for all $i > p$. For $n > p$ we have a weak equivalence

$$\text{Map}_*(A, K(\mathbb{Q}, n)) \simeq \prod_{i=n-p}^n K(H^{n-i}(A, \mathbb{Q}), i)$$

Consider the constant map $f : S^k \to *$. In this case the localization L_f is the nullification functor P_{S^k}. We have

$$P_{S^{n-p+1}} \text{Map}_*(A, K(\mathbb{Q}, n)) \simeq K(H^p(A, \mathbb{Q}), n - p)$$

If follows that if A was an L-good space then for every $N > 0$ we would be able to find a space Y such that

$$\text{Map}_*(A, Y) \simeq K(H^p(A, \mathbb{Q}), N)$$

(2)

We will show that this is impossible arguing by contradiction. Assume first that A is simply connected, $0 \neq V = H^p(A, \mathbb{Q})$, and that for some fixed $N > p + 1$ we have a space Y satisfying (2).

Since A is simply connected we have $\text{Map}_*(A, Y) \simeq \text{Map}_*(A, \tilde{Y})$ where \tilde{Y} is the universal cover of Y. Therefore we can assume that Y is simply connected.

Next, let $Y_{(0)}$ denote the rationalization of Y. By [4] Thm.3.11, p.77 $\text{Map}_*(A, Y_{(0)}) \simeq \text{Map}_*(A, Y)_{(0)}$, and since $\text{Map}_*(A, Y) \simeq K(V, N)$ is a rational space thus $\text{Map}_*(A, Y_{(0)}) \simeq \text{Map}_*(A, Y)$. As a consequence we can assume that Y is a simply connected rational space.

By [3] Corollary p. 229) we have

$$\Omega Y \simeq \prod_{n \geq 1} K(V_n, n)$$
where V_n is a \mathbb{Q}-vector space and \prod denotes the weak product of pointed spaces: $\prod_{n \geq 1} K(V_n, n) = \text{colim}_{M \geq 1} \left(\prod_{n=1}^{M} K(V_n, n) \right)$. We obtain

(3) \hspace{1cm} K(V, N - 1) \simeq \text{Map}_*(A, \Omega Y) \simeq \text{Map}_*(A, \prod_{n \geq 1} K(V_n, n))

We claim that there exists $n_0 \geq N - 1$ such that $V_{n_0} \neq 0$. Indeed, if $V_n = 0$ for all $n \geq N - 1$ then $\prod_{n \geq 1} K(V_n, n) = \prod_{n=1}^{N-2} K(V_n, n)$ so

$$\text{Map}_*(A, \prod_{n \geq 1} K(V_n, n)) = \prod_{n=1}^{N-2} \text{Map}_*(A, K(V_n, n))$$

This would give

$$\pi_i(\text{Map}_*(A, \prod_{n \geq 1} K(V_n, n))) \cong \bigoplus_{n=1}^{N-2} \tilde{H}^{n-i}(A, V_n)$$

In particular we would have $\pi_i(\text{Map}_*(A, \prod_{n \geq 1} K(V_n, n))) = 0$ for $i \geq N - 1$ which contradicts [3].

Since $n_0 \geq N - 1 > p, q$ we have

$$\pi_{n_0 - p}(\text{Map}_*(A, K(V_{n_0}, n_0))) \cong H^p(A, V_{n_0}) \neq 0$$

and

$$\pi_{n_0 - q}(\text{Map}_*(A, K(V_{n_0}, n_0))) \cong H^q(A, V_{n_0}) \neq 0$$

where the inequalities on the right hold by our assumption that $H^p(A, \mathbb{Q}) \neq 0$, $H^q(A, \mathbb{Q}) \neq 0$. Also, the space $\text{Map}_*(A, K(V_{n_0}, n_0))$ is a retract of $\text{Map}_*(A, \prod_{n \geq 1} K(V_n, n))$ so this last space must have non-trivial homotopy groups in at least two dimensions $n_0 - p$ and $n_0 - q$. This however contradicts the formula [3]. The contradiction shows that $\text{Map}_*(A, Y) \neq K(V, N)$ for any space Y, and so A is not an L-good space.

Assume now that A is not simply connected. If A was an L-good space then again we would be able to find a space Y such that $\text{Map}_*(A, Y) \simeq K(V, N)$, where $V = H^p(A, \mathbb{Q})$, $N > p + 2$. This would give

$$\text{Map}_*(\Sigma A, Y) \simeq \Omega \text{Map}_*(A, Y) \simeq K(V, N - 1)$$

Since ΣA is a simply connected space this is however impossible by the argument above. It follows that $\text{Map}_*(A, Y) \neq K(V, N)$ for any $Y \in \text{Spaces}_*$, and so A is not an L-good space.

References

[1] J. M. Boardman and R. M. Vogt. Homotopy invariant algebraic structures on topological spaces. Lecture Notes in Mathematics, Vol. 347. Springer-Verlag, Berlin, 1973.

[2] Emmanuel Dror Farjoun. Cellular spaces, null spaces and homotopy localization, volume 1622 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1996.

[3] Yves Félix, Stephen Halperin, and Jean-Claude Thomas. Rational homotopy theory, volume 205 of Graduate Texts in Mathematics. Springer-Verlag, New York, 2001.
[4] Peter Hilton, Guido Mislin, and Joe Roitberg. *Localization of nilpotent groups and spaces*. North-Holland Publishing Co., Amsterdam, 1975. North-Holland Mathematics Studies, No. 15, Notas de Matemática, No. 55. [Notes on Mathematics, No. 55].

[5] J. P. May. *The geometry of iterated loop spaces*. Springer-Verlag, Berlin, 1972. Lectures Notes in Mathematics, Vol. 271.

[6] Graeme Segal. Categories and cohomology theories. *Topology*, 13:293–312, 1974.

Department of Mathematics, University at Buffalo, SUNY, Buffalo, NY

Department of Mathematics, Penn State Altoona, Altoona, PA