CONFLICTS OF INTEREST

The authors have nothing to disclose.

ORCID

Jiyun Park, https://orcid.org/0000-0003-1317-2891
Daewook Lee, https://orcid.org/0000-0003-4604-9603
Seung Hwi Kwon, https://orcid.org/0000-0002-1272-2807
Jin Young Song, https://orcid.org/0000-0003-3458-9733
Yoo Sang Baek, https://orcid.org/0000-0002-8667-2814
Jiehyun Jeon, https://orcid.org/0000-0003-2456-7573

REFERENCES

1. Humbert P, Pelletier F, Dreno B, Puzenat E, Aubin F. Gluten intolerance and skin diseases. Eur J Dermatol 2006;16:4-11.
2. Cummins AG, Roberts-Thomson IC. Prevalence of celiac disease in the Asia-Pacific region. J Gastroenterol Hepatol 2009;24:1347-1351.
3. Zuberbier T, Aberer W, Asero R, Abdul Latiff AH, Baker D, Ballmer-Weber B, et al. The EAACI/GA²LEN/EDF/WAO guideline for the definition, classification, diagnosis and management of urticaria. Allergy 2018;73:1393-1414.
4. Powell RJ, Leech SC, Till S, Huber PA, Nasser SM, Clark AT. BSACI guideline for the management of chronic urticaria and angioedema. Clin Exp Allergy 2015;45:547-565.
5. Green PH, Cellier C. Celiac disease. N Engl J Med 2007;357:1731-1743.
6. Anderson RP. Coeliac disease. Aust Fam Physician 2005;34:239-242.
7. Di Sabatino A, Volta U, Salvatore C, Biancheri P, Caio G, De Giorgio R, et al. Small amounts of gluten in subjects with suspected nonceliac gluten sensitivity: a randomized, double-blind, placebo-controlled, cross-over trial. Clin Gastroenterol Hepatol 2015;13:1604-1612.e3.
8. Bruins MJ. The clinical response to gluten challenge: a review of the literature. Nutrients 2013;5:4614-4641.
9. Gwee KA, Ghoshal UC, Chen M. Irritable bowel syndrome in Asia: Pathogenesis, natural history, epidemiology, and management. J Gastroenterol Hepatol 2018;33:99-110.
10. Catassi C, Fabiani E, Iacono G, D’Agate C, Francavilla R, Biagi F, et al. A prospective, double-blind, placebo-controlled trial to establish a safe gluten threshold for patients with celiac disease. Am J Clin Nutr 2007;85:160-166.

Contribution of Container Types on Cosmetics Contamination

Ji Min Lee, Sook In Ryu, Jin Il Kim, Sehee Park, Il-Hwan Kim, Man-Seong Park, Hwa Jung Ryu

Department of Dermatology, Ansan Hospital, Korea University College of Medicine, Ansan, Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul, Korea

Dear Editor:
BB cream has surged in popularity worldwide. CC cream has also been released, and the BB and CC cushion compact is setting the trend in base makeup. The cushion compact is composed of a urethane puff and a sponge soaked with BB or CC cream that forms a reservoir for the pro...
duct. The cream is applied by pressing the puff into the moistened sponge and patting the puff onto the face. The repetitive use of the wet puff with BB or CC cream can result in bacterial growth. Therefore, we conducted a comparative study on the prevalence of Cutibacterium acnes in BB and CC cushion compacts and other forms, such as tubes, pumps, and solid foundation compacts and discussed their association with acne.

Two sets of subjects using the BB or CC cushion and BB or CC cream in other containers were recruited from June 2014 to August 2014. Eighty-one participants in their 20s to 40s that applied makeup daily were recruited. All participants were female. Eighty-one samples were collected; 45 samples (55.6%) from subjects using a cushion compact, and 36 samples (44.4%) from subjects using BB or CC cream in a tube, pump container, or solid foundation compact were analyzed. The number of subjects used the tubes were 13, pumps were 16, and solid foundation compacts were 7.

Samples were collected aseptically from each container using a sterilized dry swab. The specimens were placed in Luria–Bertani broth (Affymetrix Inc., Santa Clara, CA, USA) without antibiotics and incubated for 12 to 16 hours at 37 °C with shaking at 250 rpm. The samples that turned opaque were selected and streaked onto plates with specific media to identify C. acnes, Staphylococcus, and Streptococcus, Clostridium spp. and the plates were incubated for 12 to 16 hours at 37°C.

Differences for hypothesis testing of proportions were estimated between the groups. A p < 0.05 was considered significant. p-values were calculated using proportion hypothesis testing.

C. acnes was isolated in 10 of the 81 specimens (12.3%). Of the 10 samples, nine were the cushion type, and one was a pump type (Table 1). The frequency of C. acnes isolates was significantly different between the cushion compact and the other container groups (9 [20.0%] and 1 [2.8%], respectively; p < 0.05). One specimen from the pump type revealed a plate culture of only C. acnes, while all nine specimens from the cushion compact type grew C. acnes and other Gram-positive species, such as Staphylococcus aureus, Staphylococcus epidermidis, and Streptococcus spp. (Table 2). Of the nine subjects using cushions that harbored C. acnes, four had acne. One subject using BB cream in a pump container did not have acne. No direct correlation was detected between C. acnes isolates and acne.

Kligman and Mills proposed the concept of “acne cosmectica” in 1972, which suggests that daily use of cosmetics causes minor acne in women. Acne cosmectica is characterized by closed comedones on the chin and cheeks of women aged 20 to 50 years with or without an acne history.

The results show that the C. acnes isolation rate was higher in the cushion compact than that of other containers. All cushion compacts that harbored C. acnes also had other gram-positive species. However, no correlation was found between isolating C. acnes and acne. C. acnes is one of the normal skin flora. However, in healthy adults, C. acnes is barely detectable. Typical cosmetic products use phenoxyethanol, butylhydroxytoluene, glyceryl caprylate and parabens as a preservative. This may reduce the isolation rate of C. acnes in our study. However, despite preservatives, two or more bacteria were recovered together in all cushion compact with bacteria identified.

Table 1. Comparison of Cutibacterium acnes isolation in a BB or CC cushion compact with other types

	BB or CC cushion (%)	Other* types (%)	p-value †
Number of samples	45	36	
Isolation of C. acnes	9 (20.0)	1 (2.8)	0.04534
Isolation of Staphylococcus	5 (11.1)	0	
aureus			
Isolation of Streptococcus	6 (13.3)	0	
spp.			
Isolation of Staphylococcus	1 (2.2)	0	
epidermidis			

Values are presented as number only or number (%). *Includes pump or tube containers and the solid foundation compact type. †p-values were calculated using proportion hypothesis testing.

Of the nine subjects using cushions that harbored C. acnes, four had acne. One subject using BB cream in a pump container did not have acne.

Table 2. Types of bacteria identified in the cushion and other* container types

Cushion compact with bacteria recovered	Sample #1	Staphylococcus aureus, Cutibacterium acnes
Sample #2	C. acnes, Streptococci spp.	
Sample #3	C. acnes, Streptococci spp.	
Sample #4	C. acnes, Streptococci spp.	
Sample #5	S. aureus, C. acnes, Streptococci spp.	
Sample #6	S. aureus, C. acnes	
Sample #7	S. aureus, C. acnes	
Sample #8	S. aureus, C. acnes, Streptococci spp.	
Sample #9	Staphylococcus epidermidis, C. acnes, Streptococci spp.	

| Pump type BB cream with bacteria recovered | Sample #1 | C. acnes |

*Includes pump or tube containers and the solid foundation compact type.
Most women alternate patting the puff into the BB or CC cream liquid soaked sponge of a cushion compact and applying it to the face when using cushion compact. Because the polyurethane sponge is always wet and enclosed in a container, the humidity and temperature in the cushion compact are suitable for bacterial growth. Frequently re-applying make-up during the day allows air pollutants, skin secretions, and sweat to contaminate the cushion compact.

However, not all subjects using product harboring *C. acnes* had acnes. Because the pathogenesis of acne is multifaceted, the presence of *C. acnes* is insufficient to explain the development of acne. In addition, subjects with normal skin barrier function are not easily affected by *C. acnes* or other Gram-positive bacteria in cosmetics. Nevertheless, patients with sensitive skin or skin with decreased barrier function, particularly those with acne, rosacea, or atopic dermatitis, may be vulnerable to skin infections from contaminated products, and an underlying skin diseases could be aggravated as presented in the study of Lopez et al. that investigated the effects of beta hemolytic streptococcus group B on skin lesions. Therefore, dermatologists should warn patients about the possibility of bacterial growth in cushion compacts and educate cushion compact users to wash the puff at least once weekly and not to share it with other users.

Our study had some limitations. First, it was not a matched case-control study. The baseline characteristics were not homogeneous; thus, it was difficult to evaluate the association between bacterial isolation and the development of acne. Second, we could not match the formulations of BB or CC product. Differences in formulation could account for dissimilar recovery of organisms beyond those attributed to the puff and packaging. Third, we investigated the skin bacteria species colonizing the cosmetic goods, not the extent of microbial contamination. However, identifying the quantitative number of the bacteria of interest would provide the basis for determining the microbiological hazard to consumers. Fourth, the effect of preservatives on the isolation rate of *C. acnes* from the cosmetics was not examined. It would have been helpful to know if the preservative were adequate and capable of preventing growth of skin microflora accidentally introduced into the product.

Our results emphasize the importance of appropriate use, and containers of cosmetics. A case-control study to evaluate the association between cushion compacts and acne should be conducted in the future.

CONFLICTS OF INTEREST

The authors have nothing to disclose.

ORCID

Ji Min Lee, https://orcid.org/0000-0002-5021-4336
Sook In Ryu, https://orcid.org/0000-0002-9880-4837
Jin Il Kim, https://orcid.org/0000-0001-8833-2138
Sehee Park, https://orcid.org/0000-0002-4799-2241
Il-Hwan Kim, https://orcid.org/0000-0002-4225-002X
Man-Seong Park, https://orcid.org/0000-0002-7427-486X
Hwa Jung Ryu, https://orcid.org/0000-0003-2136-4682

REFERENCES

1. Misery L. [BB creams: a revolutionary product dating from … 1860]. Ann Dermatol Venereol 2014;141:74-76. French.
2. Evans CA, Mattern KL. The aerobic growth of Propionibacterium acnes in primary cultures from skin. J Invest Dermatol 1979;72:103-106.
3. Kligman AM, Mills OH Jr. “Acne cosmetica”. Arch Dermatol 1972;106:843-850.
4. Zaenglein AL, Graber EM, Thiboutot DM. Acne vulgaris and acneiform eruptions. In: Fitzpatrick TB, Goldsmith LA, Katz SI, Gilchrest BA, Paller AS, Leffell DJ, et al., editors. Fitzpatrick’s dermatology in general medicine. 8th ed. New York: McGraw-Hill Professional, 2012:898-900.
5. Lopez JB, Gross P, Boggs TR. Skin lesions in association with beta-hemolytic Streptococcus group B. Pediatrics 1976;58:859-861.