Lack of consensus in social systems

I. J. Benczik, S. Z. Benczik, B. Schmittmann(a) and R. K. P. Zia

Department of Physics, Virginia Tech - Blacksburg, VA 24061-0435, USA

received 23 October 2007; accepted in final form 4 April 2008
published online 14 May 2008

PACS 89.75.Hc – Networks and genealogical trees
PACS 02.50.Le – Decision theory and game theory
PACS 05.70.Ln – Nonequilibrium and irreversible thermodynamics

Abstract – We propose an exactly solvable model for the dynamics of voters in a two-party system. The opinion formation process is modeled on a random network of agents. The dynamical nature of interpersonal relations is also reflected in the model, as the connections in the network evolve with the dynamics of the voters. In the infinite time limit, an exact solution predicts the emergence of consensus, for arbitrary initial conditions. However, before consensus is reached, two different metastable states can persist for exponentially long times. One state reflects a perfect balancing of opinions, the other reflects a completely static situation. An estimate of the associated lifetimes suggests that lack of consensus is typical for large systems.

Copyright © EPLA, 2008

Concepts and tools of modern nonequilibrium statistical physics lend themselves very directly to describing complex interacting systems, including phenomena which rely on human behavior, e.g. the emergence of collective organization in social systems. Recently, a variety of voter model [1–3], like dynamics have been used to study collective phenomena, such as opinion formation or consensus creation. Many of these efforts have focused on regular lattices [4–9], which is justified in physical situations, but not in the context of the social sciences. In socio-cultural situations, the interaction patterns between individuals find a better characterization as complex networks in which the connections or relationships (links) between individuals (nodes) can change in time. More precisely, the full dynamics of such a social network consists of i) the opinion formation process taking place on the nodes, and ii) the evolution of the underlying topological structure (links). The coupling between these two processes reflects how the connections of people influence their opinions, and how their opinions determine, in turn, their new connections.

Although there is an increasing recent interest in modeling voter dynamics on networks, the dynamics of the links ii) was not yet considered in many of these studies [10–15]; or, if taken into account, occurred independently of the state of the nodes [16,17]. The coevolution of nodes and links — i.e., of the full network structure — started to attract attention only in the recent past. Such adaptive models were studied in the social sciences as well as in several other disciplines (see [18–20] and references therein). Most of these articles report numerical studies in which the adaptivity of the network is taken into account as a rewiring process: nodes carrying a given opinion tend to cut their links to opposite opinions and connect instead to similar ones. As a result, the number of links is strictly conserved. Also, similar opinions tend to interact more strongly than opposite opinions.

In this letter, we investigate voter dynamics on an adaptive network with a fluctuating number of links and update rules which explore the full range of interactions between nodes in equal or different states. Most importantly, our model is amenable to an exact analytical treatment, thus serving as a benchmark or test case for numerical studies of more complex models. In our network, each node j (“individual”) carries a spin \(\sigma_j \) (“opinion”) which can take two different values \(\sigma_j = \pm 1 \) [1]. At each time step, i) the spins are updated random sequentially based on a simple majority rule: if they are connected to more positive than negative spins, their state will be positive in the next time step, and negative otherwise; in the case of a tie, the spin remains unchanged. Further, ii) the links are updated as follows: two nodes carrying equal (unequal) spins are connected with probability \(p \) (\(q \)). In this letter, we focus on the special case \(q = 1 - p \), leaving the general case to [21].

As an interpretation, we propose that this model mimics a two-party electoral system. During a campaign, the supporters of one party are keen to interact with supporters...
of the other party to try to change their opinion. This situation can be described by this model with \(p < q \), when each agent has more interactions with opponents than with agents sharing the same opinion (according to the motto that “convinced people do not need to be convinced again”). On the other hand, when \(p > q \), the agents tend to interact more with individuals sharing the same opinion (according to the motto “united we are stronger”). The latter behavior seems to be a simplified description of the process of political polarization, when all the members of a party agree with the official position of the party, as often occurs in post-election periods.

Our model is aimed to describe a free public debate in the sense that it does not consider the effects of central institutions or the mass media; neither lobbying, nor organized strategies (apart from possibly influencing the probability \(p \)) are taken into account. Models similar to ours may also be appropriate to describe groups defined by criteria such as education, religion or ethnicity, rather than political opinion. Cultural assimilation, the spreading of a language or a religion of an ethnic or religious minority, and social reforms are examples of phenomena which might be modeled in this fashion.

To describe the dynamics of the system, let us focus on \(\rho(t) \), the “popularity” of \(+ \) opinions, defined as the average fraction of \(+\) nodes at time \(t \). Thus, we consider \(P(M,t) \), the probability of finding the network with \(M \) positive spins at time \(t \), and

\[
\rho(t) = \frac{1}{N} \sum_{M=0}^{N} M P(M,t),
\]

where \(N \) is the total (fixed) number of nodes. Clearly, \(\rho = 0 \) or 1 correspond to a complete ordering of the system, while \(\rho = 0.5 \) characterizes the completely disordered state. Contrary to the voter model on regular lattices, the global magnetization \(\langle m \rangle = 2\rho - 1 \) is not conserved here, but the dynamics is still \(S^2 \) symmetric (i.e., invariant under the global inversion \(\sigma_i \mapsto -\sigma_i, \ M/N \mapsto 1 - M/N \)).

Since the spins on the nodes flip one at a time, the time evolution of \(P(M,t) \) is a simple birth-death process for which we can write a master equation:

\[
\partial_t P(M,t) = b_{M-1} P(M-1,t) + d_{M+1} P(M+1,t) - [b_M + d_M] P(M,t).
\]

Here, \(b_M \) denotes the birth rate of a positive spin (i.e., the rate for flipping a negative to a positive spin), and \(d_M \) its death rate (flip rate from positive to negative). Both depend on \(M \), the current number of positive spins in the system. Whether a positive spin will flip or not is determined by the number of positive and negative spins it is connected to. Since these connections are established randomly, with probabilities \(p \) and \(q \), respectively, they are controlled by binomial distributions. For example, the probability that a positive spin is connected to exactly \(k \) of the other \(M-1 \) positive spins, is given by \(B_{M-1,p}(k) \equiv \binom{M-1}{k} p^k (1-p)^{M-1-k} \). Writing a similar expression for the probability of this spin to be connected to \(k' \) negative spins, the death rate is given by

\[
d_M = \frac{M}{N} \sum_{k=0}^{N-M} \sum_{k'=0}^{M} B_{M-1,p}(k) B_{N-M,q}(k') \Theta(k' - k).
\]

The prefactor simply reflects the probability to find a positive spin among the \(N \) spins. The step function \(\Theta(k' - k) \) expresses the fact that if the selected spin is connected to \(k \) positive and \(k' \) negative spins then, in the next time step, it will take the state \(\text{sgn}(k - k') \). Similarly, the birth rate is

\[
b_M = \frac{N - M}{N} \sum_{l=0}^{M-1} \sum_{l'=0}^{N-M-1} B_{N-M-1,p}(l) B_{M,q}(l') \Theta(l' - l).
\]

For the special case \(q = 1 - p \) [21], the \(\Theta \)-functions can be eliminated from \(b_M \) and \(d_M \), due to the properties of the binomial distributions, to yield

\[
d_M = \frac{M}{N} \sum_{k=0}^{N-M-1} B_{N-1,p}(k), \quad (3)
\]

\[
b_M = \frac{N - M}{N} \sum_{l=0}^{M-1} B_{N-1,p}(l). \quad (4)
\]

Before solving the master equation, we discuss its approximate solutions in the thermodynamic limit, in order to identify the different types of behavior and the parameter regimes where they occur. For \(N \to \infty \), the binomial distribution \(B_{N,p}(k) \) approaches a normal distribution with mean \(Np \), so that \(d_M \) is given by the Gaussian error function multiplied by the prefactor \(M/N \),

\[
d_M \simeq \begin{cases} 0, & \text{if } M < N(1-p), \\ M/N, & \text{if } M > N(1-p) \end{cases}, \quad (5)
\]

apart from a region of width \(\sqrt{Np(1-p)} \) around \(Np \). Similarly, the birth rate \(b_M \) is described by the complementary error function. These forms of the transition rates (see fig. 1), along with the probability \(p \) and the initial fraction of positive spins, \(M_0/N \), determine the late-time
properties of the model. The master equation controls the flow of M/N, as a function of time, leading to four distinct regimes, depending on the relative magnitudes of M_0/N and p. In a $(p, M_0/N)$ phase diagram, these different regimes are bounded by

$$\frac{M_0}{N} = p, \quad \frac{M_0}{N} = 1 - p. \quad (6)$$

For $p < 0.5$ and $M_0/N < p$, we find that M/N stays below p at later time also. Indeed, in the approximation (5), we have a pure death process

$$N\partial_t P(M, t) = (M + 1)P(M + 1, t) - MP(M, t), \quad (7)$$

which leads to the extinction of the positive population. The steady state, $\rho_\infty \equiv \lim_{t \to \infty} \rho(t) = 0$, is reached exponentially as $\rho(t) \sim \rho_0 \exp(-t/N)$. Similarly, if $p < 0.5$ and $M_0/N > 1 - p$, we have a pure birth process, and the system relaxes exponentially to the state $\rho_\infty = 1$ on the same characteristic time scale as in the previous case (due to the Z_2-symmetry). In the intermediate region $M_0/N \in [p, 1-p]$, the dynamics is described by

$$N\partial_t P(M, t) = (M + 1)P(M + 1, t) + (N-M+1)P(M-1, t) - NP(M, t), \quad (8)$$

and the system reaches a disordered phase: $\rho_\infty = 0.5$. Again, the relaxation is exponential, with a characteristic time scale $N/2$.

For $p > 0.5$ the pure death and pure birth regimes are the same as for $p < 0.5$. A small minority ($M_0/N < 1 - p$) will win. However, a new feature appears in the interval $M_0/N \in [1 - p, p]$, where the system seems to acquire infinite memory. Both the death and birth rates vanish in this region, so that $\partial_t P(M, t) = 0$ whence the fraction of positive spins remains frozen at its initial value, M_0/N.

Our analytic findings are tested by simulations [22] on a network with $N = 1,000$ nodes. The relaxation into the four late-time states is displayed in figs. 2(a) for $p < 0.5$ and (b) for $p > 0.5$. The possible outcomes of the voter dynamics, for all parameters p and initial fractions M_0/N of the positive population are summarized in fig. 3.

To illustrate the picture further, fig. 4 shows the outcome of the voter dynamics for two initial fractions of positive population: one starting from a minority $M_0/N < 0.5$, and one starting from a majority $M_0/N > 0.5$. For small p, the system reaches a disordered state, independent of M_0/N: the “open-mindedness” of the population (reflected by a large probability $1 - p$ to communicate with the opposite party) leads to an equal distribution of opinions. In contrast, an “inflexible attitude” (characterized by a large probability p of linking up with similar opinions) leads to an unchanging distribution of opinions. For intermediate values of p, the system reaches a completely ordered state: all voters reach the same opinion, namely that of the initial majority.

In conclusion, in the thermodynamic limit, the voter dynamics has four possible outcomes: a perfect balance of opinions, a static situation, or consensus ($p = 0, 1$). In this last section, we discuss how these findings are modified in finite systems. The two completely ordered states are absorbing states, thus they will be reached from the other two (metastable) states. Two interesting questions remain: First, in which of the two absorbing states will each metastable state arrive, and second, how do the relaxation times depend on system size?

To answer the first question, we write eq. (2) in a matrix representation, $\partial_t |v(t)\rangle = L|v(t)\rangle$, where $|v(t)\rangle$ is the $(N+1)$-dimensional column vector with components $P(M, t)$, $M = 0, 1, \ldots, N$, and the time evolution...
Finally, we explore numerically the relaxation times into the absorbing states in fig. 6. The lifetime τ of the metastable states increases with the system size N, as $\tau \sim e^{a(p)N}$, with a p-dependent coefficient $a(p)$. An estimate of the time to consensus for a network of $N=1000$ voters with $p=0.3$ shows that it may take as many as 10^36 spin flips to reach one of the absorbing states. In much larger systems, consensus is practically impossible.

In conclusion, the best strategy for a minority group is to establish many contacts with its opponents. In this way, it can convince half of them and keep this balance for a long time. If the same group is less open for discussions, it cannot overcome the majority, but at least it will not disappear. It is tempting to speculate whether these results might be relevant for real social systems. Will two-party systems, once formed, persist for long times? Will relatively isolated parties continue to receive the same, almost constant percentage of the vote? Will closed religious communities continue to exist without gaining or losing members? Will bilingual regions remain bilingual? For example, a study of the number of languages in the Solomon Islands [23] found that small islands (less than 100 square miles) have a single language, but for larger islands, the number of languages increases. The finite-size effects of our model might provide a possible mechanism for this phenomenon.

Apart from these intriguing implications of our study, the importance of the model presented here stems from the fact that it is mathematically simple, exactly solvable, and easily generalized to more complex situations. For example, our main conclusions remain valid for general $q \neq 1-p$ [21]. Although the model neglects certain important social factors (e.g., spatial and age structures, a spectrum of opinions, etc.), it can serve as a "baseline" model which captures the key characteristics of social systems, namely, having disordered networks of agents and dynamically changing connections between them.

**

We thank S. REDNER, M. MOBILIA and I. GEORGIev for useful discussions, and K. HOLsinger for the binomial generator. This research is supported by the College of
Lack of consensus in social systems

Science at Virginia Tech and by NSF through DMR-0414122 and DMR-0705152.

REFERENCES

[1] Spitzer F., Adv. Phys., 5 (1970) 246; Liggett T. M., Interacting Particle Systems (Springer, New York) 1985.
[2] Krapivsky P. L., Phys. Rev. A, 45 (1992) 1067.
[3] Frachebourg L. and Krapivsky P. L., Phys. Rev. E, 53 (1996) R3009.
[4] Castellano C., Marsili M. and Vespignani A., Phys. Rev. Lett., 85 (2000) 3536.
[5] Dornic I., Chaté H., Chave J. and Hinrichsen H., Phys. Rev. Lett., 87 (2001) 045701.
[6] Mobilia M., Phys. Rev. Lett., 91 (2003) 28701.
[7] Vazquez F., Krapivsky P. L. and Redner S., J. Phys. A, 36 (2003) L61.
[8] Klemm K., Eguiluz V. M., Toral R. and San Miguel M., Phys. Rev. E, 67 (2003) 045101(R).
[9] Tessone C. J., Toral R., Amengual P., Wio H. S. and San Miguel M., Eur. Phys. J. B, 39 (2004) 535.
[10] Dickman R. and Vidigal R., J. Phys A, 35 (2002) 1147.
[11] Galam S., Eur. Phys. J. B, 25 (2002) 403.
[12] Slanina F. and Lavicka H., Eur. Phys. J. B, 35 (2003) 279.
[13] Castellano C., Vilone D. and Vespignani A., Europhys. Lett., 63 (2003) 153.
[14] Suchecki K., Eguiluz V. M. and San Miguel M., Europhys Lett., 69 (2005) 228.
[15] Vazquez F. and Redner S., EPL, 78 (2007) 18002.
[16] Vilone D. and Castellano C., Phys. Rev. E, 69 (2004) 016109.
[17] Klimk P., Lambiotte R. and Thurner S., preprint physics.soc-ph/0706.4058 (2007).
[18] Nardini C., Kozma B. and Barrat A., arXiv:0711.1261 (2007).
[19] Kozma B. and Barrat A., Phys. Rev. E, 77 (2008) 016102.
[20] Gross T. and Blasius B., J. R. Soc. Interface, 5 (2008) 259.
[21] Benczik I. J., Benczik S. Z., Schmittmann B. and Zia R. K. P. in preparation.
[22] The binomial generator used the BTPEC algorithm described in Kachitvichyanukul V. and Schmeiser B. W., Commun. ACM, 31/2 (1988) 216.
[23] Terrel J., Fieldiana Anthropol., 68 (1977) 1.