On the entropic derivation of the r^{-2}
Newtonian gravity force

A. Plastino1,3,4, M.C.Rocca1,2,3,

1 Departamento de Física, Universidad Nacional de La Plata,

2 Departamento de Matemática, Universidad Nacional de La Plata,

3 Consejo Nacional de Investigaciones Científicas y Tecnológicas
(IFLP-CCT-CONICET)-C. C. 727, 1900 La Plata - Argentina

4 SThAR - EPFL, Lausanne, Switzerland

April 26, 2018

Abstract

Following Verlinde’s conjecture, we show that Tsallis’ classical free
particle distribution at temperature T can generate Newton’s grav-
tational force’s r^{-2} distance’s dependence. If we want to repeat the
concomitant argument by appealing to either Boltzmann-Gibbs’ or
Renyi’s distributions, the attempt fails and one needs to modify the
conjecture.

Keywords: Tsallis’, Boltzmann-Gibbs’, and Renyi’s distributions, clas-
sical partition function, entropic force.
1 Introduction

Eight years ago, Verlinde [1] advanced a conjecture that links gravity to an entropic force, so that gravity would result from information regarding the positions of material bodies. His model joins a thermal gravity-treatment to 't Hooft’s holographic principle. This would entail that gravitation should be viewed as an emergent phenomenon. Verlinde’s notion received much attention, of course (just as an example, see [2]). For an excellent overview on the statistical mechanics of gravitation, the reader is directed to Padmanabhan’s article [4], and references therein.

Verlinde’s work attracted efforts on cosmology, the dark energy hypothesis, cosmological acceleration, cosmological inflation, and loop quantum gravity. The literature is immense [3]. In particular, an important contribution to information theory is that of Guseo [5], who has proved that the local entropy function, related to a logistic distribution, is a catenary and vice versa. This special invariance may be explained, at a deeper level, through the Verlinde conjecture on the origin of gravity, as an effect of the entropic force. Guseo advances a novel interpretation of the local entropy in a system, as quantifying a hypothetical attraction force that the system would exert [5].

This paper deals with none of these issues, though. We just show that extremely simple classical reasoning based on the Tsallis, probability distributions straightforwardly proves the conjecture. In Boltzmann-Gibbs and Renyi’s instance, one needs to modify the conjecture to achieve a similar result.

2 Tsallis’ q-entropy of the free particle

Tsallis’ q-partition function for a free particle of mass \(m \) in \(\nu \) dimensions reads [6]

\[
Z(\nu) = V(\nu) \int \left[1 + (1 - q) \frac{\beta p^2}{2m} \right]^{\frac{1}{q-1}} d^\nu p,
\]

(2.1)

with the particle probability distribution \(\xi(p) \) being

\[
\xi = \frac{1}{Z(\nu)} \left[1 + (1 - q) \frac{\beta p^2}{2m} \right]^{\frac{q}{q-1}},
\]

(2.2)
where V_ν is the volume of an hypersphere in ν dimensions and we assume $q > 1$. (2.1) can be recast as

$$Z_\nu = \frac{2 \pi^{\frac{\nu}{2}}}{\Gamma\left(\frac{\nu}{2}\right)} V_\nu \int_0^\infty \left[1 + (1 - q) \beta \frac{p^2}{2m} \right]^{\frac{1}{q-1}} p^{\nu-1} dp.$$ (2.3)

With the change of variables $x^2 = \frac{p^2}{2m}$ one has

$$Z_\nu = \frac{(2m\pi)^{\frac{\nu}{2}}}{\Gamma\left(\frac{\nu}{2}\right)} V_\nu \int_0^1 \left[1 + (1 - q) \beta x \right]^{\frac{1}{q-1}} x^{\frac{\nu}{2}-1} dx,$$ (2.4)

that after integration becomes

$$Z_\nu = V_\nu \frac{(2m\pi)^{\frac{\nu}{2}}}{\Gamma\left(\frac{\nu}{2}\right)} \frac{1}{(q-1) \beta} \frac{\Gamma\left(\frac{q}{q-1}\right)}{\Gamma\left(\frac{q}{q-1} + \frac{\nu}{2}\right)}.$$ (2.5)

The mean energy is

$$<U_\nu> = \frac{V_\nu}{Z_\nu} \int \left[1 + (1 - q) \beta \frac{p^2}{2m} \right]^{\frac{1}{q-1}} p^{2m} d^\nu p,$$ (2.6)

or

$$<U_\nu> = \frac{V_\nu (2m\pi)^{\frac{\nu}{2}}}{Z_\nu \Gamma\left(\frac{\nu}{2}\right)} \int_0^1 \left[1 + (1 - q) \beta x \right]^{\frac{1}{q-1}} x^{\frac{\nu}{2}-1} dx,$$ (2.7)

so that after integration we find

$$<U> = \frac{\nu}{2(q-1) \beta} \frac{\Gamma\left(\frac{1}{q-1} + \frac{\nu}{2} + 1\right)}{\Gamma\left(\frac{1}{q-1} + \frac{\nu}{2} + 2\right)},$$ (2.8)

and finally

$$<U> = \frac{\nu}{2q + \nu(q-1) \beta}.$$ (2.9)

For the entropy one has [6]

$$S_\nu = \ln_q Z_\nu + Z_\nu^{1-q} \beta <U>.$$ (2.10)
3 The Tsallis entropic force

We specialize things now to $\nu = 3$ and $q = \frac{4}{3}$. Why do we select this special value $q = \frac{4}{3}$? There is a solid reason. This is because

$$S_\nu = \ln_q Z_\nu + Z_\nu^{1-q} \beta < U >_\nu.$$

Since the entropic force is to be defined as proportional to the gradient of S, there is a unique q-value for which the dependence on r of the entropic force is $\sim r^{-2}$ when $\nu = 3$. Thus we obtain, for $q = \frac{4}{3}$,

$$Z = \left(\frac{6m\pi}{\beta}\right)^{\frac{4}{3}} \frac{8\pi}{\Gamma\left(\frac{11}{2}\right)} r^3, \quad (3.1)$$

$$< U > = \frac{9}{11\beta}. \quad (3.2)$$

Following Verlinde [1] we define the entropic force as

$$\vec{F}_e = -\frac{\lambda(m, M)}{\beta} \vec{\nabla} S, \quad (3.3)$$

where λ is a numerical parameter depending on the masses involved, m and a new one M that we place at the center of the sphere. Thus,

$$\vec{F}_e = -\frac{24}{11} \left[\frac{\Gamma\left(\frac{11}{2}\right)}{8\pi}\right]^{\frac{1}{3}} \left(\frac{k_B T}{6m\pi}\right)^{\frac{1}{2}} \frac{\lambda(m, M)}{r^2} \vec{e}_r, \quad (3.4)$$

where \vec{e}_r is the radial unit vector. We see that F_e acquires an appearance quite similar to that of Newton’s gravitation, as conjectured by Verlinde en [1]. Note that entropic force vanishes at zero temperature, in agreement with Thermodynamics’ third law [7].

4 An illustrative example

Assume that we deal with a large mass M and a very small one m. One has

$$\vec{F}_e = -\frac{24}{11} \left[\frac{\Gamma\left(\frac{11}{2}\right)}{8\pi}\right]^{\frac{1}{3}} \left(\frac{k_B T}{6m\pi}\right)^{\frac{1}{2}} \frac{\lambda(m, M)}{r^2} \vec{e}_r = -\frac{GmM}{r^2} \vec{e}_r. \quad (4.1)$$
We obtain for \(\lambda(m, M) \)

\[
\lambda^2(m, M) = \frac{121 \pi^2 G^2 m^3 M^2}{k_B T 24 2^\frac{3}{4} \left[\Gamma \left(\frac{11}{2} \right) \right]^\frac{3}{2}}.
\]

(4.2)

If we select \(M = \text{Sun mass} \) \(m = \text{Jupiter mass} \) \(T = 3^\circ K \) then \(\lambda(m, M) = 2.63 \times 10^{72} \text{Kg meters}^2 \). When \(m = \text{Earth mass} \), then \(\lambda(m, M) = 3.22 \times 10^{68} \text{Kg meters}^2 \).

4.1 Energies involved

In [8], different \(q \)-values have been associated to energies of CERN experiments [9, 10]. \(q \)-Statistics is seen to be meaningful at very high energies (TeVs) for \(q = 1.15 \), high ones (GeVs) for \(q = 1.001 \), and at low energies (MeVs) for \(q = 1.000001 \). Then we see that \(q = \frac{4}{3} \) should be associated with an energy of (TeVs), an energy that can be expected to arise shortly after the Big Bang, where quantum gravity effects should be apparent.

5 The Boltzmann-Gibbs entropy of the free particle

Now the classical partition function \(Z_\nu \) is

\[
Z_\nu = V_\nu \int e^{-\frac{\pi^2 \nu^2}{2m} d^\nu p},
\]

(5.1)

with \(V_\nu \)

\[
V_\nu = \frac{2\pi^\frac{\nu}{2}}{\Gamma \left(\frac{\nu}{2} \right)} r^\nu.
\]

(5.2)

Since

\[
\int e^{-\frac{\pi^2 \nu^2}{2m} d^\nu p} = \left(\frac{2\pi m}{\beta} \right)^\frac{\nu}{2} \frac{\pi^\frac{\nu}{2}}{\Gamma \left(\frac{\nu}{2} + 1 \right)} r^\nu,
\]

(5.3)

we have

\[
Z_\nu = \left(\frac{2\pi m}{\beta} \right)^\frac{\nu}{2} \frac{\pi^\frac{\nu}{2}}{\Gamma \left(\frac{\nu}{2} + 1 \right)} r^\nu.
\]

(5.4)

so that the mean energy \(<U>_\nu \) is

\[
<U>_\nu = \frac{V_\nu}{Z_\nu} \int \frac{p^2}{2m} e^{-\frac{\pi^2 \nu^2}{2m} d^\nu p}.
\]

(5.5)
We appeal now to the well known relation:

\[
\int \frac{p^2}{2m} e^{-\beta \frac{p^2}{2m}} d^\nu p = \left(\frac{2\pi m}{\beta} \right)^{\frac{\nu}{2}} \frac{\nu}{2\beta},
\]

so that

\[
< U >_\nu = \frac{\nu}{2\beta},
\]

which leads to an entropy:

\[
S_\nu = \ln Z_\nu + \frac{\nu}{2}.
\]

6 The Boltzmann-Gibbs entropic force

Our hyper-sphere’s area \(A_\nu \) is

\[
A_\nu = \frac{2\pi^\frac{\nu}{2}}{\Gamma \left(\frac{\nu}{2} \right)} r^{\nu-1}.
\]

The hyper-sphere’s volume, as a function of its area reads

\[
V_\nu = \left[\frac{\Gamma \left(\frac{\nu}{2} \right)}{2^{\frac{\nu}{2}} \pi^{\frac{\nu}{2} - 1}} \right] A_\nu^{\frac{\nu}{2} - 1} \frac{\nu}{2^{\frac{\nu}{2}} \pi^{\frac{\nu}{2} - 1}}.
\]

The derivative of \(S_\nu \) with respect to \(A_\nu \) is

\[
\frac{\partial S_\nu}{\partial A_\nu} = \frac{\nu}{\nu - 1} \frac{1}{A_\nu}.
\]

Specialize things now to \(\nu = 3 \). Following Verlinde [1], with a slight modification, we define the entropic force that arises out of forcing the particle of mass \(m \) to remain enclosed in a given volume as

\[
F_e = -\frac{\lambda(m, M) k_B T}{\beta} \frac{\partial S_3}{\partial A_3} = -\frac{\lambda}{\beta} \frac{3}{2} \frac{1}{A_3},
\]

Replacing \(A_3 \)’s value in (6.4) we find

\[
F_e = -\lambda(m, M) k_B T \frac{3 \Gamma \left(\frac{3}{2} \right)}{2^{\frac{3}{2}} \pi^{\frac{3}{2}}} \frac{1}{r^2},
\]

or

\[
F_e = -\frac{3\lambda(m, M) k_B T}{8\pi} \frac{1}{r^2}.
\]

We see again that \(F_e \) acquires an appearance quite similar to that of Newton’s gravitation, as conjectured by Verline in [1].
A second illustrative example

Let us replace the enclosing effect of a spherical cavity by the gravitational one of a large mass M on a very small one m, that is,

$$F_e = -\frac{3\lambda(m, M)k_b T}{8\pi} \frac{1}{r^2} = -\frac{GmM}{r^2},$$

(7.1)

and deduce $\lambda(m, M)$ as

$$\lambda(m, M) = \frac{8\pi GmM}{3Tk_b}.$$

(7.2)

If we select $M=$Sun mass $m=$Jupiter mass, $T=3^\circ K$ then $\lambda(m, M) = 4, 6 \times 10^{71}$ meters. When $m=$Earth mass, then $\lambda(m, M) = 1, 5 \times 10^{69}$ meters.

The Renyi entropic force

In Renyi’s approach to our problem the entropy is [11]-[22]

$$Z_\nu = V_\nu \left[\left(\frac{2m\pi}{\alpha - 1}\right)^{\frac{\nu}{2}} \frac{\Gamma\left(\frac{\alpha}{\alpha-1}\right)}{\Gamma\left(\frac{\alpha}{\alpha-1} + \frac{\nu}{2}\right)} \right] \quad \alpha > 1,$$

$$Z_\nu = V_\nu \left[\left(\frac{2m\pi}{1 - \alpha}\right)^{\frac{\nu}{2}} \frac{\Gamma\left(\frac{1}{1-\alpha}\right)}{\Gamma\left(\frac{1}{1-\alpha} + \frac{\nu}{2}\right)} \right] \quad \alpha < 1,$$

(8.1)

(8.2)

that for $\nu = 3$ becomes

$$Z_3 = \gamma(\alpha, m, \beta) A_3^{\frac{3}{2}} \quad A_3 = 4\pi r^2,$$

(8.3)

while for the mean energy one has

$$<U>_\nu = \frac{\nu}{2\alpha + \nu(\alpha - 1)} \beta \quad \alpha > 1,$$

$$<U>_\nu = \frac{\nu}{2 - (\nu + 1)(1 - \alpha)} \beta \quad \alpha < 1,$$

(8.4)

(8.5)

and for the entropy

$$S = \ln Z + \ln[1 + (1 - \alpha)\beta <U>]\frac{1}{1 - \alpha}.$$

(8.6)
The second term on the right hand of (8.6) is independent of \(r \). Additionally,

\[
\ln \mathcal{Z}_3 = \frac{3}{2} \ln A_3 + \ln[\gamma(m, \beta)] + \ln(3\sqrt{4\pi}).
\]

(8.7)

Slightly modifying, as in the BG case, Verlinde’s entropic form we have

\[
F_e = -\lambda(m, M) \frac{\partial S_3}{\beta \partial A_3} = -\frac{\lambda}{\beta} \frac{3}{8\pi r^2}.
\]

(8.8)

We see that (8.8) coincides with (6.6). Renyi’s entropic force is just Boltzmann-Gibbs’ one.

9 Conclusions

We have presented three very simple classical realizations of Verlinde’s conjecture. The Tsallis one, for \(q = 4/3 \) seems to be ”cleaner”, as the entropic force is directly associated to the gradient of Tsallis’ entropy \(S_q \), which acts as a ”potential”, as Verlinde prescribes. This is not so in the classical BG and Renyi instances, in which one has to modify Verlinde’s \(F_e \) definition. The Tsallis case also gives interesting indications regarding the energies involved. Remarkably enough, Boltzmann-Gibbs’ and Renyi’s entropic forces coincide.

Strictly speaking, Verlinde’s conjecture can be unambiguously proved for the Tsallis entropy with \(q = 4/3 \). The Boltzmann-Gibbs and Renyi demonstrations correspond to a modified version of Verlinde’s conjecture. Of course, ours is a very preliminary, if significant, effort. A much more elaborate model would be desired.
References

[1] E. Verlinde, arXiv:1001.0785 [hep-th]; JHEP 04 (2011) 29.

[2] D. Overbye, A Scientist Takes On Gravity, The New York Times, 12 July 2010; M. Calmthout, New Scientist 205 (2010) 6.

[3] J. Makela, arXiv:1001.3808v3; J. Lee, arXiv:1005.1347; V. V. Kiselev, S. A. Timofeev, Mod. Phys. Lett. A 25 (2010) 2223; T. Aaltonen et al; Mod. Phys. Lett. A 25 (2010) 2825.

[4] T. Padmanabhan, arXiv 0812.2610v2.

[5] R. Guseo, Physica A 464 (2016) 1.

[6] C. Tsallis, Introduction to Nonextensive Statistical Mechanics (Springer, Berlin, 2009); M. Gell-Mann and C. Tsallis, Eds. Nonextensive Entropy: Interdisciplinary applications (Oxford University Press, Oxford, 2004); See http://tsallis.cat.cbpf.br/biblio.htm for a regularly updated bibliography on the subject; A. R. Plastino, A. Plastino, Phys. Lett. A 174 (1993) 384.

[7] F. Reif, Fundamentals of statistical and thermal physics (McGraw-Hill, New York NY, 1965).

[8] A. Plastino, M. C. Rocca, EPL 118 (2017) 61004.

[9] A. Plastino, M. C. Rocca, Nuclear Physics A 948 (2016) 19; Nucl. Phys. A, 955 (2016) 16.

[10] ALICE Collaboration (Barile F. et al.), EPJ Web of Conferences, 60 (2013) 13012; ALICE Collaboration (Abelev B. et al.), Phys. Rev. Lett., 111 (2013) 222301; ALICE Collaboration (Kharlov Yu. V.), Phys. At. Nuclei, 76 (2013) 1497; ALICE Collaboration, Phys. Rev. C, 91 (2015) 024609; ATLAS Collaboration, New J. Phys., 13 (2011) 053033; CMS Collaboration, J. High Energy Phys., 05 (2011) 064; CMS Collaboration, Eur. Phys. J. C, 74 (2014) 2847.

[11] C. Beck, F. Schlgl, Thermodynamics of chaotic systems: an introduction (Cambridge University Press, Cambridge, England, 1993).
[12] C. M. Herdman, Stephen Inglis, P.-N. Roy, R. G. Melko, and A. Del Maestro, Phys. Rev. E 90 (2014) 013308.

[13] Mohammad H. Ansari and Yuli V. Nazarov, Phys. Rev. B 91 (2015) 174307.

[14] Lei Wang and Matthias Troyer, Phys. Rev. Lett. 113 (2014) 110401.

[15] Matthew B. Hastings, Ivn Gonzalez, Ann B. Kallin, and Roger G. Melko, Phys. Rev. Lett 104 (2010) 157201 .

[16] Richard Berkovits, Phys. Rev. Lett. 115 (2015) 206401.

[17] Nima Lashkari, Phys. Rev. Lett. 113 (2014) 051602 .

[18] Gabor B. Halasz and Alioscia Hamma, Phys. Rev. Lett. 110 (2013) 170605.

[19] MB Hastings, I Gonzalez, AB Kallin, RG Melko, Phys. Rev. Lett. 104, 157201 (2010); A. De Gregorio, S.M. lacs, 179 (2009) 279 .

[20] Leila Golshani, Einollah Pasha, Gholamhossein Yari, Information Sciences, 179, 2426 (2009); J.F. Bercher, Information Sciences 178 (2008) , 2489 .

[21] EK Lenzi, RS Mendes, LR da Silva, Physica A 280 (2000) , 337.

[22] A.Plastino, M. C. Rocca, F. Pennini, Phys. Rev. E 94 (2016) 012145.