Association of subcutaneous and visceral adipose tissue with overall survival in Taiwanese patients with bone metastases – results from a retrospective analysis of consecutively collected data

Wen Ching Chuang, Ngan Ming Tsang, Chi Cheng Chuang, Kai Ping Chang, Ping Ching Pai, Kuan Hung Chen, Wen Chi Chou, Shiao Fwu Tai, Shu Chen Liu, Kin Fong Lei

1 Chang Gung University, Medicine, Taoyuan, Taiwan, 2 Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan, 3 Department of Radiation Oncology, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan, 4 School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, Taiwan, 5 Department of Neurosurgery, Chang Gung Memorial Hospital and University at Lin-Kou, Taoyuan, Taiwan, 6 Department of Otolaryngology-Head Neck Surgery, Linkou Chang Gung Memorial Hospital and Chang Gung University at Lin-Kou, Taoyuan, Taiwan, 7 Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital Linkou Branch, and School of Medicine, Chang Gung, Taoyuan, Taiwan, 8 Department of Otorhinolaryngology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan, 9 Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan, 10 Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan

☯ These authors contributed equally to this work.
* vtsang@cgmh.org.tw

Abstract

Background
Growing evidence indicates that measures of body composition may be related to clinical outcomes in patients with malignancies. The aim of this study was to investigate whether measures of regional adiposity—including subcutaneous adipose tissue index (SATI) and visceral adipose tissue index (VATI)—can be associated with overall survival (OS) in Taiwanese patients with bone metastases.

Methods
This is a retrospective analysis of prospectively collected data. We examined 1280 patients with bone metastases who had undergone radiotherapy (RT) between March 2005 and August 2013. Body composition (SATI, VATI, and muscle index) was assessed by computed tomography at the third lumbar vertebra and normalized for patient height. Patients were divided into low- and high-adiposity groups for both SATI and VATI according to sex-specific median values.

Results
Both SATI (hazard ratio [HR]: 0.696; P<0.001) and VATI (HR: 0.87; P = 0.037)—but not muscle index—were independently associated with a more favorable OS, with the former...
showing a stronger relationship. The most favorable OS was observed in women with high SATI (11.21 months; 95% confidence interval: 9.434–12.988; P<0.001).

Conclusions

High SATI and VATI are associated with a more favorable OS in Taiwanese patients with bone metastases referred for RT. The question as to whether clinical measures aimed at improving adiposity may improve OS in this clinical population deserves further scrutiny.

Introduction

Bone represents one of the most common sites for cancer spread, especially in patients with breast, prostate, or lung malignancies.[1, 2] Bone metastases are a significant source of morbidity, decreased performance status, and impaired quality of life. Moreover, the presence of bone metastases typically portends a poor prognosis, with a median overall survival (OS) of 6–7 months.[3]

Several factors—including clinical stage, patient demographics, and tumor histology—have been shown to affect the OS of patients with bone metastases.[4] Notably, sex disparities have been reported in the survival of patients with metastatic spread to the bone—with mortality rate ratios being significantly higher in males than in females for most malignancies.[5] Women also have a higher total adiposity than men, with a preponderance of subcutaneous adipose tissue. In contrast, men typically tend to accumulate visceral adipose tissue.[6] Subcutaneous and visceral adipose tissue indices (SATI and VATI, respectively) may influence the clinical outcomes of patients with cancer in a sex-dependent manner. [7]

Previous studies have reported a significant prognostic impact of SATI and VATI in different solid tumors, including advanced renal cell carcinoma, hepatocellular carcinoma, and pancreatic cancer,[8–10] although there has been some discrepant findings and the therapeutic implications of these observations have not been fully elucidated [11].

The aim of this study was to investigate whether measures of regional adiposity—including SATI and VATI—can be associated with overall survival (OS) in Taiwanese patients with bone metastases who were referred for radiotherapy (RT).

Materials and methods

Study patients

The present study was designed as a retrospective review of prospectively collected data and was conducted in a radiation oncology setting. Between March 2005 and August 2013, a total of 1654 Taiwanese patients with bone metastases were consecutively referred for RT to the Chang Gung Memorial Hospital. All of them had a histology-proven diagnosis of cancer and underwent computed tomography (CT) imaging within 30 days of the initial assessment. The diagnosis of bone metastases was based on the results of bone scintigraphy, X-ray, CT, or magnetic resonance imaging. Patients were excluded in presence of the following criteria: age <18 years, unavailable CT scans within two weeks before the start of RT, or lack of measures of weight and height within two weeks of enrolment. A total of 374 cases met the exclusion criteria, resulting in a final study sample of 1280 patients. The study protocol was reviewed and approved by the Institution Review Board of the Chang Gung Memorial Hospital (approval number: IRB: 201701224B0). Owing to the retrospective nature of the analysis, the need for informed consent was waived. Data collection from electronic medical records was supervised by an experienced nurse and a radiation oncologist.
CT-based body composition analysis

In keeping with previous methodology,[12] single-slice CT imaging at level L3 was used to analyze adiposity. SATI and VATI were identified according to Hounsfield units (HU) (from -190 to -30 HU for SATI and from -29 to 150 HU for VATI, respectively). The tissue cross-sectional areas (expressed in cm²) were calculated automatically by the CT software after normalization for patient height. SATI, VATI, total adipose tissue, and skeletal muscle indexes were expressed in cm² m⁻². All adiposity measures were taken in the two weeks preceding the start of RT.

Variable definition

Owing to the lack of a commonly accepted standard, SATI, VATI, and skeletal muscle indices were dichotomized according to median values measured at L3. OS was defined as the time elapsed from the start of RT for bone metastases to the date of death. Body mass index (BMI) was categorized as follows: underweight (BMI < 18.5 kg/m²), normal weight (BMI: 18.5–24.99 kg/m²), overweight (BMI: 25–29.99 kg/m²), and obese (BMI ≥ 30 kg/m²). Equivalent doses in 2-Gy fraction (EQD2Gy) were used to express different total radiation doses in terms of amount and number of fractions. The time to metastases (calculated from the time of diagnosis of primary cancer to the identification of distant metastases) was categorized in ≤ 1 year versus > 1 year. Metastases were considered multiple in presence of simultaneous involvement of at least two organs or different parts of skeleton (e.g., sternum and sacrum). The use of systemic therapy was investigated in the timeframe ranging from 1 month before RT to the date of the last follow-up. Other variables of interest were previously described.[13] The presence of comorbidities was dichotomized (yes versus no) according to the Charlson comorbidity index. Employment status was classified into three categories using the Registrar General’s Social Class (RGSC) scheme, as follows: unemployed, low-wage employed, and high-wage employed. Education status was categorized as high versus low (junior high school and above versus elementary school and below). The patient’s place of residence was dichotomized as either rural or urban (population density below or above 800 persons per km², respectively). Risky oral habits were classified as follows: cigarette smoking (smoked ≥ 100 in lifetime versus < 100 cigarettes in lifetime and no current smoking), betel quid chewing (current/former versus never), and alcohol drinking (current/former versus never).

Statistical analysis

Continuous variables were compared using the Student’s t-test, whereas the Pearson’s chi-square test was used for categorical variables. The associations between the study variables (including indices of adiposity) and OS were investigated using univariate and multivariate Cox proportional hazard ratio analyses. Results were expressed as hazard ratios (HRs) with their 95% confidence interval (CIs). We also categorized patients according to SATI and VATI values (high versus low, with high values serving as references). Survival plots were constructed with the Kaplan-Meier method (log-rank test). Two-tailed P values < 0.05 were considered statistically significant. Owing to the exploratory nature of the study, the Bonferroni’s correction was not applied.

Results

Patient characteristics

The general characteristics of the study patients are summarized in Table 1. Of the 1280 participants, 1237 were followed up until death, whereas the remaining 43 were censored on the
Table 1. Patient characteristics according to the subcutaneous and visceral adiposity status.

Site of primary cancer	SATI	VATT					
	Low	High	Total number	P value			
	Low	High	Total number	P value			
	Low	High	Total number	P value			
	Low	High	Total number	P value			
	Low	High	Total number	P value			
	Low	High	Total number	P value			
	Low	High	Total number	P value			
Number of patients	640 (50.0%)	640 (50.0%)	1280 (100%)	640 (50.0%)	640 (50.0%)	1280 (100%)	
SATI							
Low							
High							
Median	8.15 (0.01–15.48)	27.77 (15.50–148.77)	15.49 (0.01–148.77)	<0.001^a			
Mean ± SD, cm²/m²	7.96±4.58	33.42±17.87	20.69±18.22	12.81±11.92	28.57±19.96	20.69±18.22	
VATT							
Low	455 (71.1%)	185 (28.9%)	640 (50.0%)	<0.001^a			
High	455 (71.1%)	185 (28.9%)	640 (50.0%)				
Median	4.74 (0.02–72.53)	15.59 (0.40–93.34)	9.84 (0.02–93.34)	<0.001^b			
Mean	8.10±9.39	18.35±13.19	13.23±12.54	4.07±2.92	22.39±11.75	13.23±12.54	
Muscle index							
Low	293 (45.8%)	347 (54.2%)	640 (50.0%)	0.003^a			
High	347 (54.2%)	293 (45.8%)	640 (50.0%)				
Median	17.23 (4.02–49.49)	16.01 (6.44–93.90)	16.61 (4.02–93.90)	0.015^b			
Mean	17.78±5.59	16.96±6.28	17.37±5.95	17.06±5.65	17.68±6.23	17.37±5.95	
Age group, years							
<=59.5	318 (49.7%)	313 (48.9%)	631 (49.3%)	0.823^a			
>=59.5	322 (50.3%)	327 (51.1%)	649 (50.7%)	264 (41.3%)	385 (60.2%)	649 (50.7%)	
Median	59.67 (19.54–95.57)	59.83 (21.98–87.05)	59.73 (19.54–95.57)	0.503^b			
Mean	60.5±13.16	60.8±12.11	60.32±12.64	57.59±12.94	63.0±11.73	60.32±12.64	
Sex							
Female	152 (23.8%)	388 (60.6%)	540 (42.2%)	<0.001^a			
Male	488 (76.3%)	252 (39.4%)	740 (57.8%)	253 (39.5%)	387 (60.5%)	740 (57.8%)	
Performance status							
ECOG 0–1	428 (66.9%)	469 (73.3%)	897 (70.1%)	0.015^a			
ECOG 2–4	212 (33.1%)	171 (26.7%)	383 (29.9%)	196 (30.6%)	187 (29.2%)	383 (29.9%)	
Onset of metastasis							
<=1 year	470 (73.4%)	430 (67.2%)	900 (70.3%)	0.017^a			
>1 years	170 (26.6%)	210 (32.8%)	380 (29.7%)	185 (28.9%)	195 (30.5%)	380 (29.7%)	
Median	0.08 (0–13.50)	0.04 (0–15.64)	0.05 (0–15.64)	0.006^b			
Mean	1.04±2.03	1.40±2.56	1.22±2.32	1.19±2.28	1.25±2.36	1.22±2.32	
Site of metastasis							
Bone	543 (84.8%)	542 (84.7%)	1085 (84.8%)	0.943			
Brain	17 (2.7%)	19 (3.0%)	36 (2.8%)	25 (3.9%)	11 (1.7%)	36 (2.8%)	
Others	80 (12.5%)	79 (12.3%)	159 (12.4%)	91 (14.2%)	68 (10.6%)	159 (12.4%)	
Multiple metastases							
No	121 (18.9%)	124 (19.4%)	245 (19.1%)	0.832^a			
Yes	519 (81.1%)	516 (80.6%)	1035 (80.9%)	120 (18.8%)	125 (19.5%)	245 (19.1%)	0.776^a
Site of primary cancer							
Lung cancer	253 (39.5%)	222 (34.7%)	475 (37.1%)	<0.001^a			
Hepatoma	75 (11.7%)	60 (9.4%)	135 (10.5%)	75 (11.7%)	60 (9.4%)	135 (10.5%)	
Breast cancer	26 (4.1%)	90 (14.1%)	116 (9.1%)	56 (8.8%)	60 (9.4%)	116 (9.1%)	
Table 1. (Continued)

SATI	VATI						
Low	High	Total number	P value	Low	High	Total number	P value
Prostate cancer	39 (6.1%)	53 (8.3%)	92 (7.2%)	21 (3.3%)	71 (11.1%)	92 (7.2%)	
Rectal cancer	34 (5.3%)	43 (6.7%)	77 (6.0%)	40 (6.3%)	37 (5.8%)	77 (6.0%)	
Others	213 (33.3%)	172 (26.9%)	385 (30.1%)	216 (33.8%)	169 (26.4%)	385 (30.1%)	

EQD_{2Gy}

Low	High	Total number	P value	Low	High	Total number	P value	
<32.5	337 (52.7%)	279 (43.6%)	616 (48.1%)	0.001^a	325 (50.8%)	291 (45.3%)	616 (48.1%)	0.065^a
≥32.5	303 (47.3%)	361 (56.4%)	664 (51.9%)	315 (49.2%)	349 (54.5%)	664 (51.9%)		

Median 31.25 (1.44–70.00) 32.50 (1.44–84.00) <0.001^b 31.98 (1.83–70.00) 32.50 (1.44–84.00) 0.484^b

Mean 28.14±10.99 30.66±10.70 29.40±10.91 29.19±11.29 29.62±10.52 29.40±10.91

Systemic therapy

No	Yes
266 (41.6%)	374 (58.4%)
164 (25.6%)	476 (74.4%)
430 (33.6%)	850 (66.4%)

Comorbidities

No	Yes
296 (46.3%)	344 (53.8%)
256 (40.0%)	384 (60.0%)
552 (43.1%)	728 (56.9%)

Employment status

High	Low	None
152 (23.8%)	275 (43.0%)	213 (33.3%)
142 (22.2%)	169 (26.4%)	329 (51.4%)
294 (23.0%)	444 (34.7%)	542 (42.3%)

Education level

None/primary school	High school
311 (48.6%)	329 (51.4%)
344 (53.8%)	296 (46.3%)
655 (51.2%)	625 (48.8%)
0.074^a	0.028^a

Place of residence

Urban	Rural
351 (54.8%)	289 (45.2%)
345 (53.9%)	295 (46.1%)
696 (54.4%)	584 (45.6%)
0.779^a	0.082^a

Cigarette smoking

No	Yes
270 (42.2%)	370 (57.8%)
455 (71.1%)	185 (28.9%)
725 (56.6%)	344 (53.8%)
<0.001^a	0.074^a

Betel quid chewing

No	Yes
511 (79.8%)	129 (20.2%)
578 (90.3%)	62 (9.7%)
1089 (85.1%)	191 (14.9%)
<0.001^a	0.037^a

Alcohol drinking

No	Yes
420 (65.6%)	220 (34.4%)
531 (83.0%)	109 (17.0%)
951 (74.3%)	329 (25.7%)
<0.001^a	0.338^a

Days of metastases treatment

≤12	≥13	Median	Mean
360 (56.3%)	280 (43.8%)	11.50 (1–93)	11.60±7.98
311 (48.6%)	329 (51.4%)	13.00 (1–67)	13.59±8.86
671 (52.4%)	609 (47.6%)	12.00 (1–93)	12.59±8.49
0.007^b	0.008^b	<0.001^b	<0.001^b

Metastasis treatment period

≤2009	≥2010
331 (51.7%)	309 (48.3%)
298 (46.6%)	342 (53.4%)
629 (49.1%)	651 (50.9%)
0.074^a	0.043^b

Body mass index, kg/m²

Underweight	Normal weight
116 (18.1%)	478 (74.7%)
4 (0.6%)	344 (53.8%)
120 (9.4%)	822 (64.2%)
<0.001^a	<0.001^a

(Continued)
date last known to be alive. The study cohort included 740 (57.8%) men and 540 (42.2%) women. The most common primary cancer site was the lung (35% in both sexes), and there were 897 (70%) patients with an ECOG performance status of 0−1. The interval between the diagnosis of primary cancer and the detection of metastases was 0.11 months in women (95% CI: 0−15.64 months) and 0.04 months (95% CI: 0−13.50 months) in men, respectively. Table 1 shows the results pertaining to adiposity indices. Men had higher skeletal muscle and VATI than women, whereas SATI was higher in women.

Survival analysis

The median follow-up time for the 43 surviving patients was 78.28 months (range: 0.78—147.25 months). The median OS after RT was 6.03 months (range: 0.03—147.25 months). The 6-, 12-, 24-, and 48-month OS rates in women and men were 41.4%/61.8%, 23.6%/43.2%, 9.8%/22.6%, and 3.8%/11.2%, respectively. The median OS was 9.53 months (range: 0.10—137.42 months) in women and 4.7 months (range: 0.30—147.25) in men. SATI values ≥11.63 cm² in men and ≥25.21 cm² in women were considered as high. Similarly, VATI values ≥10.46 cm² in men and ≥8.96 cm² in women were regarded as elevated. The median OS in the high and low SATI groups was 27.77 months (range: 15.50—93.34 months) and 8.15 months (range: 0.01—9.83 months), respectively. The median OS in the high and low VATI groups was 19.35 months (range: 9.84—93.34 months) and 3.70 months (range: 0.02—9.83 months), respectively.

The results of univariate and multivariate analyses are presented in Table 2. The following variables were independently associated with OS in multivariate analysis: SATI, VATI, sex, performance status, primary tumor site, more than one metastatic site, ECOG performance status, EQD2Gy, systemic therapy, education, days of metastases treatment, and time to metastases (Table 2).

Prognostic significance of SATI and VATI

We subsequently examined the prognostic impact of SATI and VATI by classifying patients into high versus low categories. Kaplan-Meier analysis revealed no differences in OS between the high SATI/high VATI group (median survival: 9.37 months) and high SATI/low VATI group (median survival: 9.43 months; P = 0.303; Table 3). The lowest OS (3.97 months) was observed in the low SATI/low VATI group (Fig 1; Table 3).

Table 1. (Continued)

SATI	Low	High	Total number	P value	Low	High	Total number	P value
Overweight	45 (7.0%)	242 (37.8%)	287 (22.4%)	<0.001 b	55 (8.6%)	232 (36.3%)	287 (22.4%)	<0.001 b
Obese	1 (0.2%)	50 (7.9%)	51 (4.0%)	<0.001 b	2 (0.3%)	49 (7.7%)	51 (4.0%)	<0.001 b
Median	21.01 (13.34−20.65)	24.78 (16.98−38.73)	22.86 (13.34−38.73)	<0.001 b	21.01 (13.34−30.65)	24.68 (16.98−38.73)	22.86 (13.34−38.73)	<0.001 b
Mean	21.12±2.74	25.08±3.32	23.10±3.63	21.12±2.74	25.08±3.32	23.10±3.63		

Abbreviations: SD, standard deviation; ECOG, Eastern Cooperative Oncology Group; EQD2 Gy, equivalent doses in 2-Gy fractions; SATI, subcutaneous adipose tissue index; VATI, visceral adipose tissue index.

a Chi-square test

b ANOVA test

https://doi.org/10.1371/journal.pone.0228360.t001
Prognostic stratification according to sex and body composition

Thereafter, both sex and SATI values were taken into account to construct four different groups. We specifically selected SATI owing to its higher prognostic value in multivariate analysis. A total of four groups were identified (male/high SATI; female/high SATI; male/low SATI; female/low SATI), with the most favorable survival figures being evident in the female/high SATI group (median OS: 11.21 months; 95% CI: 9.43–12.98 months; \(P < 0.001 \) versus other groups). The less favorable OS survival (median: 3.84 months; 95% CI: 3.39–4.30 months) was observed in the male/low SATI group (Fig 2; Table 4).

Table 2. Univariate and multivariate analysis of overall survival.
Univariate analysis
Overall survival
Number of patients = 1280
SATI (high versus low)
VATI (high versus low)
Muscle index (high versus low)
Age group (≥59.5 versus <59.5 years)
Sex (male versus female)
ECOG performance status (2–4 versus 0–1)
Multiple metastases (yes versus no)
Site of primary cancer (lung versus other sites)
EQD2Gy (≥32.5 versus <32.5)
Systemic therapy (yes versus no)
Comorbidities (yes versus no)
Education level (high school versus none/primary school)
Cigarette smoking (yes versus no)
Betel quid chewing (yes versus no)
Alcohol drinking (yes versus no)
Days of metastasis treatment (≥13 versus ≤12)
Onset of metastasis (>1 year versus ≤1 year)
Place of residence (urban versus rural)
Site of metastasis
Bone
Brain
Employment status
(low versus high)
(none versus high)
Metastases treatment period (≥2010 versus ≤2009)
Body mass index (≥25 versus ≤25 kg/m²)

Abbreviations: HR, hazard ratio; CI, confidence interval; ECOG, Eastern Cooperative Oncology Group; EQD2 Gy, equivalent doses in 2-Gy fractions; SATI, subcutaneous adipose tissue index; VATI, visceral adipose tissue index. An L3 subcutaneous adipose tissue index ≥11.63 cm² m⁻² in males and ≥25.21 cm² m⁻² in females was considered as high. An L3 visceral adipose tissue index ≥10.46 cm² m⁻² in males and ≥8.96 cm² m⁻² in females was considered as high.

https://doi.org/10.1371/journal.pone.0228360.t002
Table 3. Multivariate Cox regression analysis of overall survival in patients stratified according to subcutaneous adiposity and visceral adiposity.

Subgroup	No. of patients	Median survival time (95% CI)	HR	P value
High SATI/high VATI	455	9.370 (8.116–10.624)		<0.001\(^{a}\)
High SATI/low VATI	185	9.436 (7.129–11.742)	1.097 (0.920–1.307)	0.303
Low SATI/high VATI	185	4.603 (3.657–5.548)	1.882 (1.580–2.242)	<0.001\(^{a}\)
Low SATI/low VATI	455	3.978 (3.362–4.594)	1.854 (1.622–2.121)	<0.001\(^{a}\)

Abbreviations: CI, confidence interval; HR, hazard ratio; SATI, subcutaneous adipose tissue index; VATI, visceral adipose tissue index.

\(^{a}\)Chi-square test
\(^{b}\)ANOVA test.

https://doi.org/10.1371/journal.pone.0228360.t003

Fig 1. Kaplan-Meier estimates of overall survival in patients with bone metastases stratified according to subcutaneous adiposity (high versus low) and visceral adiposity (high versus low).

https://doi.org/10.1371/journal.pone.0228360.g001
Discussion

The results of this retrospective analysis of prospectively collected data can be summarized as follows: 1) high SATI and VATI were independently associated with a better OS in a sample of Taiwanese patients with bone metastases, with the former showing a stronger relationship; 2) the most favorable OS was observed in women with high SATI. Although we observed associations—and not prediction or causation—our study adds to the growing literature investigating adiposity in relation to clinical outcomes of patients with malignancies.[13–15]
Currently, the association of indices of adiposity with the disease course of cancer patients remains controversial. Although adiposity seems to be positively correlated with OS in several solid tumors [16, 17], poorer survival figures have been reported for obese patients with cancer—possibly because of an increased production of growth factors and inflammatory mediators from the adipose tissue. [18] In this regard, it should be noted that adipose tissue may serve as a nutrient replacement in patients with cancer, [15, 19] but it can also be involved in tumor spread through adipokine-induced extracellular matrix remodeling. [20]

Pai et al. [21] have previously shown that SATI is strongly related to distant metastasis-free survival, locoregional control, and OS in 881 patients with head and neck cancer. Ebadi et al. [5] also demonstrated that patients with low SATI and high VATI independently predicted mortality in a sample of patients with different solid malignancies. Herein, we show that VATI, and most prominently SATI, were significantly associated with OS in Taiwanese patients with bone metastases. Controversy still exists on the relationship between VATI and clinical outcomes in patients with solid tumors. [10, 22–24] The reasons whereby SATI appears to hold a stronger association with OS over VATI in our study remain to be elucidated. However, it is notable that—differently from visceral fat (which is an active endocrine organ)—subcutaneous fat is more strictly involved in lipid and energy storage and is characterized by a lower inflammatory environment [14, 25, 26].

The study was conducted in a radiation oncology setting. Bone metastases are not only the most common site of distant spread in patients with solid malignancies but they are also the most commonly identified by radiation oncologists. The question as to whether our findings may be applied to patients with metastases to other distant sites (e.g., liver or brain) remains open. We acknowledge several limitations of the present study. First, the study was conducted in an Asian population, and it is well-known that ethnic differences exist in measures of adiposity between Asian and Caucasian populations [27]. Therefore, our findings need to be independently replicated in other geographic areas. Second, we did not segment body fat in the whole CT volume. Nonetheless, there is published evidence suggesting that measures of adiposity obtained at the L3 level through a simplified CT protocol are well-correlated to those taken at other sites [28–31]. Third, all measures of adiposity were taken in the two week preceeding the start of RT. Wu et al. [32] have recently demonstrated the prognostic importance of the time at which body adiposity is assessed. However, these data were not available in this study, and we were unable to run this analysis. Finally, this was a retrospective analysis of prospectively collected data which had an exploratory nature. The application of the Bonferroni’s correction in this setting may be too conservative and was avoided. In any case, our results should be considered as preliminary and hypothesis-generating. Because we observed associations, we cannot claim any prognostic effect of adiposity indices in our population. Future longitudinal studies are required to clarify this issue further.

Subgroup	No. of patients	Median survival time (95%CI)	HR	P value
Female with high SATI	388	11.211 (9.434–12.988)		<0.001*
Female with low SATI	152	5.293 (3.084–7.503)	1.604 (1.324–1.942)	<0.001*
Male with high SATI	252	6.773 (5.481–8.064)	1.312 (1.115–1.545)	<0.001*
Male with low SATI	488	3.847 (3.391–4.302)	2.182 (1.899–2.507)	<0.001*

Abbreviations: CI, confidence interval; HR, hazard ratio; SATI, subcutaneous adipose tissue index.

*Chi-square test
*ANOVA

https://doi.org/10.1371/journal.pone.0228360.t004
These limitations notwithstanding, we found that high SATI and VATI are associated with a more favorable OS in Taiwanese patients with bone metastases referred for RT. The question as to whether clinical measures aimed at improving adiposity may improve OS in this clinical population deserves further scrutiny.

Acknowledgments

The authors thank all the patients for the participation in this study.

Author Contributions

Conceptualization: Chi Cheng Chuang, Kai Ping Chang, Ping Ching Pai, Kuan Hung Chen, Wen Chi Chou, Shiao Fwu Tai.
Data curation: Ngan Ming Tsang, Kin Fong Lei.
Formal analysis: Wen Ching Chuang, Ngan Ming Tsang.
Investigation: Wen Ching Chuang.
Methodology: Shu Chen Liu.
Resources: Chi Cheng Chuang, Kai Ping Chang, Wen Chi Chou.
Supervision: Ngan Ming Tsang.
Writing – original draft: Wen Ching Chuang.
Writing – review & editing: Ngan Ming Tsang.

References

1. Zhang L, Gong Z. Clinical Characteristics and Prognostic Factors in Bone Metastases from Lung Cancer. Med Sci Monit 2017; 23:4087–4094. https://doi.org/10.12659/MSM.902971. PMID: 28835603
2. Riihimäki M, Hemminki A, Fallah M, Thomsen H, Sundquist K, Sundquist J, et al. Metastatic sites and survival in lung cancer. Lung Cancer 2014; 21:78–84. https://doi.org/10.1016/j.lungcan.2014.07.020. PMID: 25130083
3. Coleman RE. Clinical features of metastatic bone disease and risk of skeletal morbidity. Clinical cancer research: an official journal of the American Association for Cancer Research. 2006; 12(20 Pt 2):6243–6249. https://doi.org/10.1158/1078-0432.CCR-06-0931. PMID: 17062708
4. Zhang H, Zhu W, Biskup E, Yang W, Yang Z, Wang H, et al. Incidence, risk factors and prognostic characteristics of bone metastases and skeletal-related events (SREs) in breast cancer patients: A systematic review of the real world data. J Bone Oncol 2018; 3:38–50. https://doi.org/10.1016/j.jbo.2018.01.004. PMID: 29151626
5. Ebadi M, Martin L, Ghosh S, Field CJ, Lehner R, Baracos VE, et al. Subcutaneous adiposity is an independent predictor of mortality in cancer patients. Br J Cancer. 2017; 117(1):148–155. https://doi.org/10.1038/bjc.2017.149. PMID: 28588319
6. Rosenquist K, Wennerberg J, Schildt EB, Bladstrom A, Goran HB, Andersson G. Oral status, oral infections and some lifestyle factors as risk factors for oral and oropharyngeal squamous cell carcinoma. A population-based case-control study in southern Sweden. Acta Otolaryngol 2005; 125(12):1327–1336. https://doi.org/10.1080/00016480510012273. PMID: 16303983
7. Valencak TG, Osterrieder A, Schulz TJ. Sex matters: The effects of biological sex on adipose tissue biology and energy metabolism. Redox Biol 2017; 12:806–813. https://doi.org/10.1016/j.redox.2017.04.012. PMID: 28441629
8. Lee HW, Jeong BC, Seo SI, Jeon SS, Lee HM, Choi HY, et al. Prognostic significance of visceral obesity in patients with advanced renal cell carcinoma undergoing nephrectomy. Int J Urol 2015; 22 (5):455–461. https://doi.org/10.1111/iju.12716. PMID: 25631365
9. Fujiwara N, Nakagawa H, Kudo Y, Tateishi R, Taguri M, Watadani T, et al. Sarcopenia, intramuscular fat deposition, and visceral adiposity independently predict the outcomes of hepatocellular carcinoma. J Hepatol 2015; 63:131–140. https://doi.org/10.1016/j.jhep.2015.02.031. PMID: 25724366
10. Otunctemur A, Dursun M, Ozer K, Horsanal O, Ozbek E. Renal Cell Carcinoma and Visceral Adipose Index: a new risk parameter. Int Braz J Urol 2016; 42(5):955–959. https://doi.org/10.1590/S1677-5538.IBJU.2015.0396 PMID: 28609463

11. Chou YC, Lin CY, Pai PC, Tseng CK, Hsieh CE, Chang KP, et al. Dose-escalated radiation therapy is associated with better overall survival in patients with bone metastases from solid tumors: a propensity score-matched study. Cancer Med 2017; 6(9):2087–2097. https://doi.org/10.1002/cam4.1150 PMID: 28905767

12. Mourtzakis M, Prado CM, Lieffers JR, Reiman T, Mccargar LJ, Baracos VE. A practical and precise approach to quantification of body composition in cancer patients using computed tomography images acquired during routine care. Appl Physiol Nutr Metab 2008; 33(5):997–1006. https://doi.org/10.1139/H08-075 PMID: 18923576

13. Tsang NM, Pai PC, Chuang CC, Chuang WC, Tseng CK, Chang KP, et al. Overweight and obesity predict better overall survival rates in cancer patients with distant metastases. Cancer Med 2016; 5(4):665–673. https://doi.org/10.1002/cam4.634 PMID: 26811258

14. Bays H. Central obesity as a clinical marker of adiposopathy; increased visceral adiposity as a surrogate marker for global fat dysfunction. Curr Opin Endocrinol Diabetes Obes 2014; 21:345–351 https://doi.org/10.1097/MED.0000000000000093 PMID: 25106000

15. Lennon H, Sperrin M, Badrick E, Renehan AG. The Obesity Paradox in Cancer: a Review. Curr Oncol Rep 2016; 18(9):56. https://doi.org/10.1007/s11912-016-0539-4 PMID: 27475805

16. Antoun S, Bayar A, Ileana E, Laplanche A, Fizazi K, Di Palma M, et al. High subcutaneous adipose tissue predicts the prognosis in metastatic castration-resistant prostate cancer patients in post chemotherapy setting. Eur J Cancer 2015; 51:2570–2577 https://doi.org/10.1016/j.ejca.2015.07.042 PMID: 26278649

17. Ladoire S, Bonnetain F, Gauthier M, Zanetta S, Petit JM, Guiu S, et al. Visceral Fat Area as a New Independent Predictive Factor of Survival in Patients with Metastatic Renal Cell Carcinoma Treated with Antiangiogenic Agents. Oncologist 2011; 16:71–81 https://doi.org/10.1634/theoncologist.2010-0227 PMID: 21224335

18. Cozzo AJ, Fuller AM, Makowski L. Contribution of Adipose Tissue to Development of Cancer. Compr Physiol 2017; 8(1):237–282. https://doi.org/10.1002/cphy.c170008 PMID: 29357128

19. DeMerrck-Whalenfied W, Platz EA, Ligibel JA, Blair CK, Courneya KS, Meyerhardt JA, et al. The role of obesity in cancer survival and recurrence. Cancer Epidemiol Biomarkers Prev 2012; 21(8):1244–1259. https://doi.org/10.1158/1055-9965.EPI-12-0485 PMID: 22695735

20. Oudin MJ, Jonas O, Kosciuk T, Broye LC, Guido BC, Wyckoff J, et al. Tumor Cell-Driven Extracellular Matrix Remodeling Drives Haptotaxis during Metastatic Progression. Cancer Discov 2016; 6(5):516–531. https://doi.org/10.1158/2159-8290.CD-15-1183 PMID: 26692564

21. Grignol VP, Smith AD, Shlapak D, Zhang X, Del Campo SM, Carson WE. Increased visceral to subcutaneous fat ratio is associated with decreased overall survival in patients with metastatic melanoma receiving anti-angiogenic therapy. Surg Oncol 2015; 24(4):353–358. https://doi.org/10.1016/j.suronc.2015.09.002 PMID: 26690825

22. Lee KH, Kang BK, Ahn BK. Higher visceral fat area/subcutaneous fat area ratio measured by computed tomography is associated with recurrence and poor survival in patients with mid and low rectal cancers. Int J Colorectal Dis 2018; 33:1303–1307. https://doi.org/10.1007/s00384-018-3065-z PMID: 29713823

23. Harada K, Baba Y, Ishimoto T, Kosumi K, Tokunaga R, Iizumi D, et al. Low Visceral Fat Content is Associated with Poor Prognosis in a Database of 507 Upper Gastrointestinal Cancers. Ann Surg Oncol 2015; 22:3946–3953 https://doi.org/10.1245/s10434-015-4432-4 PMID: 25712800

24. McCarty MF. Modulation of adipocyte lipoprotein lipase expression as a strategy for preventing or treating visceral obesity. Med hypotheses 2001; 57(2):192–200. https://doi.org/10.1054/mehy.2001.1317 PMID: 11461172

25. Christen T, Shelkine Y, Rocha VZ, Hurwitz S, Goldfine AB, Di Carli M, et al. Increased glucose uptake in visceral versus subcutaneous adipose tissue revealed by PET imaging. JACC Cardiovasc imaging 2010; 3(8):843–851. https://doi.org/10.1016/j.jcmg.2010.06.004 PMID: 20705265

26. Heymsfield SB, Peterson CM, Thomas DM, Heo M, Schuna JM Jr. Why are there race/ethnic differences in adult body mass index-adiposity relationships? A quantitative critical review. Obes Rev 2016; 17(3):262–75. https://doi.org/10.1111/obr.12358 PMID: 26663309
28. Shen W, Punyanitya M, Wang Z, Gallagher D, St-Onge MP, Albu J, et al. Visceral adipose tissue: relations between single-slice areas and total volume. Am J Clin Nutr 2004; 80:271–278. https://doi.org/10.1093/ajcn/80.2.271 PMID: 15277145.

29. Noumura Y, Kamishima T, Sutherland K, Nishimura H. Visceral adipose tissue area measurement at a single level: can it represent visceral adipose tissue volume? Br J Radiol 2017; 90:20170253. https://doi.org/10.1259/bjr.20170253 PMID: 28707539

30. Schweitzer L, Geisler C, Pourhassan M, Braun W, Gluer CC, Bosy-Westphal A, et al. What is the best reference site for a single MRI slice to assess whole-body skeletal muscle and adipose tissue volumes in healthy adults? Am J Clin Nutr 2015; 102:58–65. https://doi.org/10.3945/ajcn.115.111203 PMID: 26016860

31. Demerath EW, Shen W, Lee M, Choh AC, Czerwinski SA, Siervogel RM, Towne B. Approximation of total visceral adipose tissue with a single magnetic resonance image. Am J Clin Nutr 2007; 85:362–368. https://doi.org/10.1093/ajcn/85.2.362 PMID: 17284730

32. Wu S, Liu J, Wang X, Li M, Gan Y, Tang Y. Association of obesity and overweight with overall survival in colorectal cancer patients: a meta-analysis of 29 studies. Cancer Causes Control. 2014; 25:1489–1502. https://doi.org/10.1007/s10552-014-0450-y PMID: 25070688