Comparative study of motion detection methods for video surveillance systems

Kamal Sehairi
Fatima Chouireb
Jean Meunier
Comparative study of motion detection methods for video surveillance systems

Kamal Sehairi, Fatima Chouireb, and Jean Meunier

University of Laghouat, Department of Computer Science and Operations Research, Laghouat, Algeria

Abstract. The objective of this study is to compare several change detection methods for a monostatic camera and identify the best method for different complex environments and backgrounds in indoor and outdoor scenes. To this end, we used the CDnet video dataset as a benchmark that consists of many challenging problems, ranging from simple basic scenes to complex scenes affected by bad weather and dynamic backgrounds. Twelve change detection methods, ranging from simple temporal differencing to more sophisticated methods, were tested and several performance metrics were used to precisely evaluate the results. Because most of the considered methods have not previously been evaluated on this recent large scale dataset, this work compares these methods to fill a lack in the literature, and thus this evaluation joins as complementary compared with the previous comparative evaluations. Our experimental results show that there is no perfect method for all challenging cases; each method performs well in certain cases and fails in others. However, this study enables the user to identify the most suitable method for his or her needs. © 2017 SPIE and IS&T [DOI: 10.1117/1.JEI.26.2.023025]

Keywords: motion detection; background modeling; object detection; video surveillance.

1 Introduction

Motion detection, which is the fundamental step in video surveillance, aims to detect regions corresponding to moving objects. The resultant information often forms the basis for higher-level operations that require well-segmented results, such as object classification and action or activity recognition. However, motion detection suffers from problems caused by source noise, complex backgrounds, variations in scene illumination, and the shadows of static and moving objects. Various methods have been proposed to overcome these problems by retaining only the moving object of interest. These methods are classified into three major categories: background subtraction, temporal differencing, and optical flow. Temporal differencing is highly adaptive to dynamic environments; however, it generally exhibits poor performance in extracting all relevant feature pixels. Therefore, techniques such as morphological operations and hole filling are applied to effectively extract the shape of a moving object. Background subtraction provides the most complete feature data, but is extremely sensitive to dynamic scene changes due to lighting and extraneous events. Several background modeling methods have been proposed to overcome these problems. Bouwmans classified these advanced methods into seven categories: basic background modeling, statistical background modeling, fuzzy background modeling, background clustering, neural network background modeling, wavelet background modeling, and background estimation. Furthermore, Goyette et al. categorized background modeling techniques into six families: basic, parametric, nonparametric and data-driven, matrix decomposition, motion segmentation, and machine learning. Sobral and Vacavant adopted a similar categorization for motion detection methods: basic [frame difference (FD), mean, and variance over time], nonparametric and data-driven, statistical, fuzzy, neural and neuro-fuzzy, and other models [principal component analysis (PCA), Vumeeter]. Optical flow can be used to detect independently moving objects even in the presence of camera motion. However, most optical flow methods are computationally complex and cannot be applied to full-frame video streams in real time without specialized hardware. Recent categories have emerged in the last few years, such as advanced nonparametric modeling (Vibe, PBAS, Vibe+), background modeling by decomposition into matrices, and background modeling by decomposition into tensors.

2 Related Works

2.1 Survey Papers

Several surveys on motion detection methods have been presented in the last decade, the authors tried to detail the algorithms used, categorize them, and explain their different steps such as postprocessing, initialization, background modeling, and foreground generation. Bouwmans presented the most complete survey of traditional and recent methods for foreground detection with more than 300 references, and these methods were categorized by the mathematical approach used. In addition, the author explored the different datasets available, existing background subtraction libraries and codes. Elhabian et al. provided a detailed explanation of different background modeling methods. Specifically, they explained how models can be updated and initialized, and explored ways to measure and evaluate their performance.
Morris and Angelov\(^{80}\) reviewed three pixel-wise subtraction techniques and compared their capabilities in seven points: resource utilization, computational speed, robustness to noise, precision of the output (no numerical results were provided), complexity of the environment, level of autonomy, and scalability. Bouwmans\(^{83}\) in another work presented a review paper in which he classifies the different improvement techniques made to PCA method [eigen-backgrounds (Eig-Bg)] and compared these techniques with Gaussian detection methods and kernel density estimation (KDE) using Wallflower datasets. Cuevas et al.\(^{82}\) presented a state of the art of different techniques for detecting stationary foreground objects, e.g., abandoned luggage, people remaining temporarily static or objects removed from the background; the authors addressed the main challenges in this field with different datasets available for testing these methods. Bux et al.\(^{83}\) gave a complete survey on human activity recognition (HAR), providing the state of the art of foreground segmentation, feature extraction, and activity recognition, which constitute the different phases of HAR systems; in foreground segmentation phase, the authors first categorized all methods to background construction-based segmentation for static cameras and foreground extraction-based segmentation for moving cameras. They detailed the different steps of background construction (initialization, maintenance, and foreground detection) and classified these methods into five models: basic, statistical, fuzzy, neural network, and others. Cristani et al.\(^{84}\) presented a comprehensive review of background subtraction techniques for monocular and multisensor surveillance systems that considers different kinds of sensors (visible, infrared, and audio). The authors presented a different taxonomy, classifying motion detection methods into three categories: per pixel, per region, and perframe processing, and from each category emerges subcategories. The authors propose solutions for different challenging situations (adopted from the Wallflower dataset\(^{85}\)) using the fusion of multisensors.

2.2 Comparative Papers

In recent years, many studies have also attempted to compare different motion detection methods. The aim of these studies is to define the accuracy, the speed, memory requirements, and capabilities to handle several situations. For this purpose, different challenging datasets have been developed in order to give a fair benchmark for all methods. Table 1 summarizes some previous comparison studies, the evaluated methods, datasets, and performance metrics used for each comparison.

Table 1 shows more than 60 motion detection methods that were tested on 8 datasets. Other datasets exist like: CMU,\(^{136}\) UCSD,\(^{137}\) BMC,\(^{138}\) SCOVIS,\(^{139}\) MarDCT.\(^{140}\) Moreover, new datasets were introduced with depth cameras, such as kinect database\(^{141}\) and RGB-D object detection dataset.\(^{142}\) We can also find more specialized video datasets such as Fish4knowledge\(^{143}\) for underwater fish detection and tracking. Other comparative studies can be found in Refs. 144–148.

Owing to the importance of the motion detection step, it is necessary to examine other motion detection methods that have not been evaluated thus far. In particular, various simple modifications to original methods (preprocessing, thresholding, filtering, etc.) can lead to different results.

The objective of this study is to evaluate and compare different motion detection methods and identify the best method for different situations using a challenging complete dataset. To this end, we tested the following methods: temporal differencing (FD),\(^{86,149,150}\) three-frame difference (3-FD),\(^{151–153}\) adaptive background (average filter),\(^{90,154,155}\) forgetting morphological temporal gradient (FMTG),\(^{156}\) \(\Delta \Sigma \Delta\) background estimation,\(^{157,158}\) spatio-temporal Markov field,\(^{89,156}\) running Gaussian average (RGA),\(^{14,162,163}\) mixture of Gaussians (MoG),\(^{15,59,164}\) spatio-temporal entropy image (STEI),\(^{165,166}\) difference-based STEI (DSTEI),\(^{166,167}\) Eig-Bg,\(^{22,168,169}\) and simplified self-organized map (Simp-SOBS).\(^{170}\) Methods. Many of these methods (3-FD, \(\Delta \Sigma \Delta\), FMTG, STEI, DSTEI, Simp-SOBS) have not been previously evaluated on challenging datasets; to this end, we used the CDnet2012\(^{80,115}\) and CDnet2014\(^{131}\) datasets and compared them with the well-known and classical algorithm of motion detection in the literature (RGA, MoG, and Eig-Bg). The CDnet2014\(^{131}\) comprises a total of 53 videos of indoor and outdoor scenes with more than 159,000 images. Each scene represents different moving objects, such as boats, cars, trucks, cyclists, and pedestrians, captured in different scenarios (baseline, shadow, and intermittent object motion) as well as under challenging conditions (bad weather, camera jitter, dynamic background, and thermal). For each video, a ground truth is provided to allow precise and unified comparison of the change detection methods. Furthermore, the following seven metrics were used for evaluation: recall, specificity, false positive rate (FPR), false negative rate (FNR), percentage of wrong classification (PWC), precision, and \(F\)-measure.

The remainder of this paper is organized as follows. Section 3 reviews the motion detection algorithms used in this study (FD techniques, background modeling techniques and energy-based methods). Section 4 provides a detailed explanation of the evaluation metrics used to score and evaluate the above-mentioned methods. Section 5 presents and discusses the results for different categories. Finally, Sec. 6 concludes this paper.

3 Motion Detection Methods

Motion detection by a fixed camera poses a major challenge for video surveillance systems in terms of extracting the shape of moving objects. This is due to several problems related to the monitored environment, such as complex backgrounds (e.g., tree leaf movement), weather conditions (e.g., snow or rain), and variations in illumination, as well as the characteristics of the moving object itself, such as the similarity of its color to the background color, its size, and its distance from the camera. Therefore, in recent years, several methods have been developed to overcome these problems. This section reviews the motion detection algorithms used in this comparative study.

3.1 Frame Difference (Temporal Differencing)

The FD method is the simplest method for detecting temporal changes in intensity in video frames. In a gray-level image, for each pixel with coordinates \((x, y)\) in frame \(I_{t-1}\), we compute the absolute difference with its corresponding coordinates in the next frame \(I_t\) as
Table 1 Comparison studies on motion detection methods.

Comparative studies	Tested methods	Datasets used	Metrics used
Toyama et al.86	FD86, Mean + threshold86, Mean + covariance (RGA)14, MoG15, Normalized block correlation87, Temporal derivative (MinMax)88, Bayesian decision89, Subspace learning-principle component analysis (Eig-Bg)42, Linear predictive filter86, Wallflower method86	Wallflower dataset85	FN
			FP
Piccardi4	RGA14, Temporal median filter36,39,40, MoG15, KDE16, Sequential kernel density approximation12, Subspace learning-principle component analysis (Eig-Bg)85, Co-occurrence of image variations93	—	Limited accuracy (L), Intermediate accuracy (M), High accuracy (H)
Cheung and Kamath94	Frame differencing86,94,95,96, Linear predictive filter86, KDE86, Approximated median filter94, Kalman filter95, MoG15	KOGS/-IAKS, Universitat	Recall
			Precision
		Universitat	
		Karlsruhe dataset96	
Benezeth et al.97	Temporal median filter (basic motion detection)36,39,40, RGA (one Gaussian)14, Minimum, maximum, and maximum inter-FD (MinMax)88, MoG5, KDE16, Codebook19, Subspace learning-principle component analysis (Eig-Bg)89	Synthetic videos, Semisynthetic videos and VSSN 2006 dataset86, IBM dataset87	Recall
			Precision
Bouwmans10	MoG15, MoG with particle swarm optimization (MoG-PSO)100, Improved MoG101, MoG with MRF102, MoG improved HLS color space103, Spatial-time adaptive per pixel MoG (S-TAP-MoG)104, Adaptive spatio-temporal neighborhood analysis105, Subspace learning-principle component analysis (Eig-Bg)42, Subspace learning-independent component analysis86, Subspace learning incremental nonnegative matrix factorization107, Subspace learning using incremental rank-tensor108	Wallflower dataset85	FN
			FP
Goyette et al.109	Euclidean distance97, Mahalanobis distance97, Local-self similarity110, MoG15, GMM KaewTraKulPong58, GMM Zivkovic56, GMM RECTGAUSS-Tex111, Bayesian multilayer36, ViBe39, KDE86, KDE Nonaka et al.112, KDE Yoshinaga et al.113, Self-organized background subtraction (SOBS)21, Spatially coherent SOBS (SC-SOBS)22, Chebyshev probability29, ViBe29, Probabilistic super-pixel Markov random fields (PSP-MRF)114, Pixel-based adaptive segmenter (PBAS)40	CDnet 2012 dataset115	Recall
			Specificity
			FPR
			FNR
			PWCs
			Precision
			F-measure
Comparative studies	Tested methods	Datasets used	Metrics used
---------------------	----------------	--------------	--------------
Wang et al.\(^\text{116}\)	Euclidean distance\(^\text{97}\)	CDnet 2014 dataset\(^\text{125}\)	Recall
	Mahalanobis distance\(^\text{97}\)		Specificity
	Multiscale spatio-temp BG model\(^\text{117}\)		FPR
	GMM Zivkovic\(^\text{60}\)		FNR
	CP3-online\(^\text{118}\)		PWCs
	MoG\(^\text{15}\)		Precision
	KDE\(^\text{16}\)		*F*-measure
	SC-SOBS\(^\text{22}\)		
	K-nearest neighbor (KNN) method\(^\text{60,119}\)		
	Fast self-tuning BS\(^\text{120}\)		
	Spectral-360 (Ref. \(^\text{121}\))		
	Weightless neural networks (CwisarDH)\(^\text{51,122}\)		
	Majority vote-all\(^\text{116}\)		
	Self-balanced local sensitivity (SuBSENSE)\(^\text{123}\)		
	Flux tensor with split Gaussian (FTSG) models\(^\text{124}\)		
	Majority vote-3 (Ref. \(^\text{116}\))		
Jodoin et al.\(^\text{125}\)	Euclidean distance\(^\text{97}\)	CDnet 2012 dataset\(^\text{115}\)	FPR
	Mahalanobis distance\(^\text{97}\)		FNR
	MoG\(^\text{15}\)		PWCs
	GMM Zivkovic\(^\text{60}\)		
	GMM KaewTraKulPong\(^\text{68}\)		
	GMM RECTGAUSS-Tex\(^\text{111}\)		
	KDE\(^\text{16}\)		
	KDE Nonaka et al.\(^\text{112}\)		
	KDE Yoshinaga et al.\(^\text{113}\)		
	SOBS\(^\text{21}\)		
	SC-SOBS\(^\text{22}\)		
	KNN method\(^\text{119}\)		
	Spectral-360 (Ref. \(^\text{121}\))		
	FTSG models\(^\text{124}\)		
	PBAS\(^\text{60}\)		
	PSP-MRP\(^\text{114}\)		
	Splitting Gaussian mixture model (SGMM)\(^\text{126}\)		
	Splitting over-dominating modes GMM (SGMM-SOD)\(^\text{127}\)		
	Dirichlet process GMM (DPGMM)\(^\text{128}\)		
	Bayesian multilayer\(^\text{28}\)		
	Histogram over time\(^\text{13}\)		
	Local-self similarity\(^\text{110}\)		
Bianco et al.\(^\text{129}\)	IUTIS-1 (Ref. \(^\text{129}\))	CDnet 2014 dataset\(^\text{125,131}\)	Recall
	IUTIS-2 (Ref. \(^\text{129}\))		Specificity
	IUTIS-3 (Ref. \(^\text{129}\))		FPR
	FTSG models\(^\text{124}\)		FNR
	SuBSENSE\(^\text{123}\)		PWCs
	Weightless neural networks (CwisarDH)\(^\text{51,122}\)		Precision
	Spectral-360 (Ref. \(^\text{121}\))		*F*-measure
	Fast self-tuning BS\(^\text{120}\)		
	KNN method\(^\text{119}\)		
	KDE\(^\text{16}\)		
	SC-SOBS\(^\text{22}\)		
	Euclidean distance\(^\text{97}\)		
	Mahalanobis distance\(^\text{97}\)		
	Multiscale spatio-temp BG model\(^\text{117}\)		
	CP3-online\(^\text{118}\)		
	MoG\(^\text{15}\)		
	GMM Zivkovic\(^\text{60}\)		
	Fuzzy spatial coherence-based SOBS\(^\text{46}\)		
	Region-based MoG (RMoG)\(^\text{130}\)		
Xu et al.\(^\text{132}\)	MoG\(^\text{15}\)	CDnet 2014 dataset\(^\text{131}\)	Recall
	KDE\(^\text{16}\)		Specificity
	Codebook\(^\text{19}\)		FPR
	SOBS\(^\text{31}\)		FNR
	ViBe\(^\text{19}\)		PWCs
	PBAS\(^\text{40}\)		Precision
	GMM Zivkovic\(^\text{60}\) (adaptative GMM)		*F*-measure
	Sample consensus (SACON)\(^\text{133,134}\)		
The 3-FD method is based on the temporal differencing method. Two-FD operations given by Eqs. (5) and (6) are performed; then the results are thresholded using Eq. (7) and combined using Eq. (8), i.e., the AND logical operator (or the minimum) (see Fig. 1)

\[
\zeta_1(x, y) = |I_t(x, y) - I_{t-1}(x, y)|, \quad (5)
\]

\[
\zeta_2(x, y) = |I_t(x, y) - I_{t+1}(x, y)|, \quad (6)
\]

\[
\psi_1(x, y) = \begin{cases} 0, & \text{if } \zeta_1(x, y) < \text{Th} \\ 1, & \text{otherwise} \end{cases}, \quad (7)
\]

\[
\zeta(x, y) = \min\{\psi_1(x, y), \psi_2(x, y)\}. \quad (8)
\]

This method is robust to noise and provides good detection results for slow moving objects.

3.2 Three-Frame Difference

The 3-FD method is based on the temporal differencing method. Two-FD operations given by Eqs. (5) and (6) are performed; then the results are thresholded using Eq. (7) and combined using Eq. (8), i.e., the AND logical operator (or the minimum) (see Fig. 1)

\[
\zeta_1(x, y) = |I_t(x, y) - I_{t-1}(x, y)|, \quad (5)
\]

\[
\zeta_2(x, y) = |I_t(x, y) - I_{t+1}(x, y)|, \quad (6)
\]

\[
\psi_1(x, y) = \begin{cases} 0, & \text{if } \zeta_1(x, y) < \text{Th} \\ 1, & \text{otherwise} \end{cases}, \quad (7)
\]

\[
\zeta(x, y) = \max\{\zeta_1(x, y), \zeta_2(x, y)\}. \quad (8)
\]

where \(I_t(x, y) \) represents the pixel value in the C channel.

In spite of its simplicity, this method offers the following advantages. It exhibits good performance in dynamic environments (e.g., during sunrise or under cloud cover) and works well at the standard video frame rate. In addition, the algorithm is easy to implement, with relatively low design complexity, and can be executed effectively when applied to a real-time system.\(^1\)

3.3 Adaptive Background Subtraction (Running Average Filter)

The concept underlying this method is to compute the average of the previous \(N \) frames to model the background, to update the first background image by considering new static objects in the scene. The background image is obtained as in Ref. 155, where \(\tau \) is the time required to acquire \(N \) images.

\[
\delta_t[I_t(x, y)] = \max_{\zeta \in \mathbb{R}} \{I_{t+\zeta}(x, y)\}, \quad (11)
\]

where \(\alpha \in [0, 1] \) is a time constant that specifies how fast new information supplants old observations. The larger the value of \(\alpha \), the higher the rate at which the background frame is updated with new changes in the scene. However, \(\alpha \) cannot be too large, because it may cause artificial “tails” behind moving objects.\(^2\) In fact, to prevent tail formation, \(\alpha \) must be fixed according to the observed scene, the size and speed of the moving objects, and the distance of these objects from the camera. Furthermore, the problem of continuous movement of small background objects, especially in outdoor scenes (e.g., fluttering flags and swaying tree branches), can be addressed by segmenting such objects with the moving objects.

3.4 Forgetting Morphological Temporal Gradient

In this method, which was first introduced by Richelfeu and Manzanera,\(^3\) the difference between temporal dilation and temporal erosion defines the change, given by

\[
\delta_t[I_t(x, y)] = \max_{\zeta \in \mathbb{R}} \{I_{t+\zeta}(x, y)\}, \quad (11)
\]
where \(r = [r_1, r_2] \) is the temporal structuring element.

In order to reduce not only the memory consumption linked to the use of the temporal structuring element but also the sensitivity of this method to large sudden variations, the authors used a running average filter (RAF) to recursively estimate the values of the temporal erosion and dilation. Thus, Eqs. (11) and (12), respectively, become

\[
M_t(x, y) = aI_t(x, y) + (1 - a) \max \{I_t(x, y), M_{t-1}(x, y)\},
\]

where \(M_t(x, y), m_t(x, y) \) denote the forgetting temporal dilation and the forgetting temporal erosion, respectively.

The FMTG is given by

\[
\Gamma_t(x, y) = M_t(x, y) - m_t(x, y).
\]

Furthermore, the authors tried to combine this method with the \(\Sigma \Delta \) filter to improve the results and automatically define the time constant \(\alpha \).

3.5 \(\Sigma \Delta \) Background Estimation

Proposed by Manzanera and Richelieu, this method is based on the nonlinear \(\Sigma \Delta \) filter used in electronics applications for analogue-to-digital conversion. The principle of this algorithm is to estimate two values, namely the current background image \(M_t \) and the time-variance image \(V_t \), using an iterative process to increment or decrement these values. The algorithm is executed in four steps:

1. Computation of \(\Sigma \Delta \) mean

\[
\begin{align*}
M_0(x, y) &= I_0(x, y) \\
M_t(x, y) &= M_{t-1}(x, y) + \text{sgn}[I_t(x, y) - M_{t-1}(x, y)] \\
\end{align*}
\]

2. Computation of difference

\[
\Delta_t(x, y) = |M_t(x, y) - I_t(x, y)|.
\]

3. Computation of \(\Sigma \Delta \) variance

\[
\begin{cases}
V_0(x, y) = \Delta_0(x, y) \\
V_t(x, y) = V_{t-1}(x, y) + \text{sgn}[V_{t-1}(x, y) - V_{t-1}(x, y)] \\
\end{cases}
\]

4. Computation of motion label

\[
\begin{cases}
D_t(x, y) = 0 & \text{if } \Delta_t(x, y) < V_t(x, y) \\
D_t(x, y) = 1 & \text{else}
\end{cases}
\]

The only parameter to be set in this method is \(\varnothing \), which represents the amplification factor. However, the application of this method entails several problems such as noise and ghost effects due to moving objects that remain static for long periods in the scene. To overcome this problem, the authors proposed a hybrid geodesic morphological reconstruction filter based on the forgetting morphological operator, and given by

\[
\Delta_t = HR_c e^{\gamma} \left[\min(\|I_t\|, \|\Delta_t\|) \right].
\]

where the gradients of \(I_t \) and \(\Delta_t \) are obtained by convolution with Sobel masks, and \(\alpha \) is the time constant. Furthermore, the classical geodesic relaxation \(c \) is defined by the geodesic dilation as \(\max \left[\text{Min} \left(\|I_t\|, \|\Delta_t\| \right) \right] = \min \left[\text{Min} \left(\|I_t\|, \|\Delta_t\| \right) \right] \), where \(\delta \) is the morphological dilation operator and \(B \) is the structuring element.

3.6 Markov Random Field-Based Motion Detection Algorithm

Introduced by Bouthemy and Lalande, this algorithm aims to improve image difference using a Markovian process. To this end, the authors have defined motion detection in images as a binary labeling problem, where the appropriate labels are given by

\[
\begin{cases}
e(x, y, t) = 1 & \text{if the pixel belongs to a moving object} \\
e(x, y, t) = 0 & \text{if the pixel belongs to a static background}
\end{cases}
\]

and the observation is the absolute difference between two consecutive frames or between the current frame and a reference image

\[
O_t(x, y) = |I_t(x, y) - I_{t-1}(x, y)|.
\]

The maximum a posteriori (MAP) criterion is used to estimate the appropriate labels of field \(E \) given field of observation \(O \) interpreted by maximizing the conditional probability

\[
\max_e P(E = e|O = o).
\]

Using Bayes' theorem, this is equivalent to

\[
\max_e \frac{P(O = o|E = e)P(E = e)}{P(O = o)}.
\]

where \(P(O = o) \) is constant with respect to the maximization because the observations are inputs. Conversely, the maximization of \(P(O = o|E = e)P(E = e) \) is equivalent to the minimization of an energy function derived from the Hammersley–Clifford theorem, which states that MRF exhibit a Gibbs distribution with an energy function as

\[
P(E = e|O = o) = e^{-U(O, e)}.
\]

where \(Z \) is a normalizing factor. The energy function \(U \) is given by the sum of two terms

\[
U(e, o) = U_m(e) + U_s(a, e),
\]

where \(U_m \) denotes the energy that ensures spatio-temporal homogeneity and \(U_s \) denotes the adequacy energy that ensures good coherence of the solution compared to the observed data.
In this method, the background is modeled by fitting a pixel; this gives the probability density function (pdf) of the background.14 In order to update this pdf, an RAF is applied to the parameters of the Gaussian

\[
\mu_i = a \mu_i + (1 - a) \mu_{i-1},
\]

\[
\sigma_i^2 = \alpha (\mu_i - \mu_t)^2 + (1 - \alpha) \sigma_t^2.
\]

Then, the pixels correspond to a moving object if the following inequality is satisfied

\[
|I_t - \mu_i| > D \sigma_t,
\]

where \(D\) is the deviation threshold (e.g., \(D = 2.5\)).

This method offers the advantages of high execution speed and low memory consumption. However, it suffers from problems associated with the use of the running average (appropriate choices of \(\alpha\) and deviation threshold \(D\)). Moreover, the use of a single Gaussian to model the background will not give good results for complex backgrounds; in addition, it will favor the extraction of the shadows of moving objects.

3.8 Gaussian Mixture Model

In the Gaussian mixture model (GMM) (or MoG), proposed by Stauffer and Grimson,15 the temporal histogram of each pixel \(X\) is modeled using a mixture of \(K\) Gaussian distributions in order to precisely model a dynamic background. For example, the periodic or random oscillation of a tree branch that sways in the wind and hides the sun is modeled using two Gaussians. One Gaussian models the temporal variation in the intensity of the pixels when the tree branch obstructs the sun, and the other Gaussian represents the different local intensities produced by the sun. The intensity of each pixel is compared to these Gaussian mixtures, which represent the probability distribution of possible intensities belonging to the dynamic background model. Low probability of belonging to these Gaussian mixtures indicates that the pixel belongs to a moving object. The probability of observing the current pixel value in the multidimensional case is given by

\[
P(X_t) = \sum_{k=1}^{K} \omega_k \eta(\mu_{k,t}, \Sigma_{k,t}, X_t),
\]

where \(\omega_{k,t}\) is the estimated weight associated with the \(k\)th Gaussian at time \(t\), \(\mu_{k,t}\) is the mean of the \(k\)th Gaussian at time \(t\), and \(\Sigma_{k,t}\) is the covariance matrix. Furthermore, \(\eta\) is a Gaussian pdf

\[
\eta(\mu_{k,t}, \Sigma_{k,t}, X_t) = \frac{1}{(2\pi)^{d/2} |\Sigma_t|} e^{-\frac{1}{2} (X_t - \mu_{k,t})^T \Sigma_t^{-1} (X_t - \mu_{k,t})}.
\]

Owing to limited memory and computing capacity, the authors have set \(K\) in the range of 3 to 5, and they have assumed that the RGB color components are independent and have the same variances. Hence, the covariance matrix is of the form59

\[
\sum_{i=1}^{3} \sigma_i^2 I.
\]

The first step is to initialize the parameters of the Gaussians \((\omega_k, \mu_k, \Sigma_k)\). Then, a test is performed to match each new pixel \(X_t\) with the existing Gaussians.
\[|\mu_k - X_i| \leq D\sigma_k, \quad k = 1, \ldots, M, \]
\[(36) \]

where \(M \) is the number of Gaussians and \(D \) is the deviation threshold.

If a match is found, we update the parameters of this matched Gaussian as
\[\rho = \frac{\alpha}{\omega}, \]
\[(37) \]

\[\omega_t = (1 - \alpha)\omega_{t-1} + \alpha, \]
\[(38) \]

\[\mu_t = \rho X_t + (1 - \rho)\mu_{t-1}, \]
\[(39) \]

\[\sigma^2 = \rho(X_t - \mu_t)^2 + (1 - \rho)\sigma^2_{t-1}, \]
\[(40) \]

where \(\alpha \) and \(\rho \) are learning rates; here, \(\rho \) is taken from the alternative approximation proposed by Power and Schoonens.\(^{177}\) For the other unmatched distributions, we maintain their mean and variance and update only the weights as in
\[\omega_t = (1 - \alpha)\omega_{t-1}. \]
\[(41) \]

Then, we normalize all the weights as \(\omega_t / \sum_{k=1}^{M} \omega_t \).

If no match is found with any of the \(K \) distributions, we create a new distribution that replaces the parameters of the least probable one, with the current pixel value as its mean, an initially high variance, and a low prior weight
\[\mu_t = X_t, \]
\[(42) \]

\[\sigma^2 = \sigma^2_0 \quad \text{(largest value)}, \]
\[(43) \]

\[\omega_t = \min(\omega_t) \quad \text{(smallest value)}. \]
\[(44) \]

Then, to distinguish the foreground distribution from the background distribution, we order the distributions by the ratio of their weights to their standard deviations (\(\omega_k / \sigma_k \)), assuming that the higher and more compact the distribution, the greater the likelihood of belonging to the background. Then, the first \(B \) distributions in the ranking order satisfying Eq. (45) are considered background\(^4\)

\[\sum_{k=1}^{B} \omega_k > T, \]
\[(45) \]

where \(T \) is a threshold value. Finally, each new pixel value \(X \) is compared to these background distributions. If a match is found, this pixel is considered to be a background pixel; otherwise, it is considered to be a foreground pixel
\[|\mu_k - X_i| \leq D\sigma_k, \quad k = 1, \ldots, B. \]
\[(46) \]

This method can yield good results for dynamic backgrounds by fitting multiple Gaussians to represent the background more effectively. However, it entails two problems: high computational complexity and parameter initialization. Furthermore, additional parameters must be fixed, such as the threshold value and learning values \(\alpha \) and \(\rho \). Many improvements on this method, which deal with the issues and complications affecting the standard algorithm, such as the updating process, initialization, and approximation of the learning rate, can be found in the literature. We refer the readers to the following papers: Power and Schoonens\(^{177}\) explained in detail the standard MoG method used by Stauffer and Grimson; Bouwmans et al.\(^{176}\) discussed the improvements made to the standard MoG method; Carminati and Benois-Pineau\(^{178}\) used an ISODATA algorithm to estimate the number of \(K \) Gaussians for each pixel, and for the matching test the authors use the likelihood maximization followed by Markov regularization instead of the approximation of MAP. Kim et al.\(^{179}\) showed that an indoor scene is much closer to a Laplace distribution than to a Gaussian, for which a generalized Gaussian distribution (G-GMM) is proposed instead of a GMM to model the background. Makantasis et al.\(^{180}\) proposed to use the Student-\(t \) mixture model (STMM) rather than the Gaussian, due to the smaller number of parameters to be tuned. However, the use of STMM increases the complexity of calculation and the memory requirements. To solve this problem, the authors used an image grid; if change is detected using FD, the background modeling is applied in the corresponding grid. Many other works tried to use different mixture models like the Dirichlet\(^{128} \) or hybrid (KDE-GMM) mixture model.\(^{76,181}\)

3.9 Spatio-Temporal Entropy Image

In this method, which was proposed by Ma and Zhang,\(^{165}\) a statistical approach is adopted to measure the variation of each pixel based on its \(w \times w \) neighbors along \(L \) accumulated frames. A spatio-temporal histogram is created for each pixel, \(H_{x,y,q} \) (Fig. 5), where \(q \) denotes the bins of the histogram, and the components of the histogram are \(\{H_{x,y,1}, \ldots, H_{x,y,Q}\} \), where \(Q \) is the total number of bins. Then, the corresponding pdf for each pixel is given by \(^{166}\)

\[P_{x,y,q} = \frac{H_{x,y,q}}{N}, \]
\[(47) \]

where \(N = L \times w \times w \). To determine whether this pixel belongs to the background or foreground, an entropy measure \(E_{x,y} \) is computed from the pdf

![Fig. 5 Pixels used to construct the spatio-temporal histogram of pixel \((i,j)\).](image-url)
E_{x,y} = -\sum_{q=1}^{Q} P_{x,y,q} \log(P_{x,y,q}). \hspace{1cm} (48)

Entropy is a measure of disorder; it is thus assumed that the entropy for a change due to noise is small compared to that due to a moving object.

The diversity of the state of each pixel indicates the intensity of motion at its position.\footnote{165}

Ma and Zhang\footnote{165} first binarized the entropy result using an adaptive threshold and then applied a morphological filter (close-open operation) to enhance the results.

3.10 Difference-Based Spatio-Temporal Entropy Image

To overcome the problems associated with spatio-temporal entropy, especially the errors resulting from edge pixels, Jing et al.\footnote{166} attempted to use simple temporal differencing as

\[D_t = \Phi(|I_t - I_{t-1}|), \hspace{1cm} (49) \]

where \(\Phi \) quantizes the 256 gray-level values into \(Q \) gray levels. As in the case of the STEI method, a spatio-temporal histogram is constructed for each pixel using a \(w \times w \) window along an FD of \(L \) as

\[H_{x,y,q}(L) = \frac{1}{L} \sum_{k=1}^{L} h_{x,y,q}(k), \hspace{1cm} (50) \]

where \(h_{x,y,q}(k) \) is the spatial histogram of each pixel in frame \(k \).

To reduce memory consumption in a real-time system, the authors proposed recursive computation of the spatio-temporal histogram using Eq. (51), where \(\alpha \) is a time constant that determines the influence of the previous frames

\[H_{x,y,q}(k+1) = \alpha H_{x,y,q}(k) + (1-\alpha)h_{x,y,q}(k+1). \hspace{1cm} (51) \]

Then, the pdf of each pixel \(P_{x,y,q} \) is obtained by normalizing Eq. (47). Subsequently, the entropy of each pixel is obtained using Eq. (48). Finally, a thresholding method is used to extract the motion region.

3.11 Eigen-Background Subtraction

The Eig-Bg method, or subspace learning using principle component learning (SL-PCA), is a background modeling method developed by Olivier et al.\footnote{182} The concept underlying this method is that the moving object is rarely found in the same position in the scene across the training frames; hence, its contribution to the eigenspace model is not significant. Conversely, the static objects in the scene can be well described as the sum of various eigenbasis vectors. In this method, an eigenspace is formed using \(N \) reshaped training frames, \(ES = [I_1I_2 \ldots I_N] \), with mean \(\mu \) and covariance \(C \)

\[\mu = \frac{1}{N} \sum_{k=1}^{N} I_k, \]

\[C = \text{Cov}(ES) = ES \cdot EST = \frac{1}{N} \sum_{k=1}^{N} [I_k - \mu] \cdot [I_k - \mu]^T. \hspace{1cm} (53) \]

Then, we compute \(M \) principal eigenvectors by PCA, using singular value decomposition or eigendecomposition; the eigendecomposition is given by

\[C = VAV^T, \hspace{1cm} (54) \]

where \(\Lambda = \text{diag}\{\lambda_1, \lambda_2, \ldots, \lambda_N\} \) is the diagonal matrix that contains the eigenvalues \(\{\lambda_1 > \lambda_2 > \cdots > \lambda_N\} \) and \(V \) is the eigenvector matrix. Furthermore, \(V_M \) consists of the \(M \) eigenvectors in \(V \) that correspond to the \(M \) largest eigenvalues.\footnote{169, 182} Then, every new image \(I \) is normalized to the mean of the eigenspace \(\mu \) and projected on these \(M \) eigenvectors as

\[I' = V_M^T(I - \mu). \hspace{1cm} (55) \]

Subsequently, the background is reconstructed by back-projection as

\[B = V_M I' + \mu. \hspace{1cm} (56) \]

Finally, the foreground can be detected by thresholding the absolute difference as

\[|I - B| > Th. \hspace{1cm} (57) \]

The authors were very satisfied with the accuracy of the results obtained and specified that their method entails a lower computational load than the MoG method. However, they did not explain how to choose the images that form the eigenspace, because the model is based on the content of these images. If a scene includes a slow or large moving object or crowd movement in the eigenspace, the background model, which should contain only the static objects, will be inappropriate. Furthermore, the authors have not explained how to update the background to consider the possibility of moving objects becoming static. Many methods have been proposed to overcome these problems, e.g., updating the Eig-Bg method\footnote{183, 182} and using a selective mechanism.\footnote{169} A complete survey on PCA techniques applied to background subtraction can be found in the work of Bouwmans and Zahzah.\footnote{69, 81}

3.12 Simplified Self-Organized Background Subtraction

The use of a self-organizing map for background modeling was first proposed by Maddalena and Petrosino.\footnote{31} They built a model by mapping each color pixel \(I_i(x,y) \) into an \(n \times n \) weight vector, thus obtaining a neuronal map \(B_i \) of size \(n \times W, n \times H \), where \(W \) and \(H \) are the width and height of the observed scene. The initial neuronal map \(B_0 \) is obtained in the same manner, where \(I_0 \) represents the scene containing the static objects (Fig. 6).

Then, for each pixel \(I_i(x,y) \) from the incoming frame, a matching test is performed with the corresponding weights \(b_i, i = 1, \ldots, n^2 \) to find the best match \(h_m \) defined by the
minimum distance between $I_t(x, y)$ and b_t that should not be greater than a predefined threshold Th

$$d_{\min}[b_m, I_t(x, y)] = \min_{i=1, \ldots, n^2} \{d(b_i, I_t(x, y))\} \leq Th.$$

The difference is computed per the color space of the image. Maddalena and Petrosino19 used the HSV hexagonal cone color space; the Euclidean distance in this case is given by172

$$d[b, I_t(x, y)] = \sqrt{(h_b - h_i)^2 + (s_b - s_i)^2 + (v_b - v_i)^2}.$$

where $d[b, I(x, y)]$ is the Euclidean distance in HSV color space, defined previously in Eq. (59), and Th and Th_i are threshold values experimentally set by the authors. The second condition eliminates object shadows. If the result is true, the current pixel is considered to be a background pixel and the weights of the corresponding neuron $b(x, y)$ and its neighbors are updated using Eqs. (63) and (64), respectively

$$b_{t+1}(x, y) = b_t(x, y) + \alpha_1[I_t(x, y) - b_t(x, y)],$$

$$b_{t+1}(x', y') = b_t(x', y') + \alpha_2[I_t(x', y') - b_t(x', y')],$$

where $x' = x - 1, x + 1$ and $y' = y - 1, y + 1$ are the coordinates of the neighboring neurons, and α_1 and α_2 are the learning rates, with $\alpha_1 > \alpha_2$ for nonuniform learning.

If the result of Eq. (62) is not true, the current pixel is considered to be a foreground pixel and no update is considered to be a foreground pixel and no update is required. The authors showed that this simplified model performs satisfactorily in different scenarios.

Many other studies have attempted to improve the original self-organized background subtraction (SOBS) method. For example, Maddalena and Petrosino19 introduced fuzzy rules for subtraction and process updates. Furthermore, the authors183,184 used a 3-D neuronal map to model the background; the map consists of n layers of the classical two-grid neuronal map and considers scene changes over time.

If the best match is found in background B_t at position (x, y), otherwise, we consider it to be a foreground pixel. We update the model around the best match position as

$$b_{t+1}(i, j) = b_t(i, j) + \alpha_i(t)[I_t(x, y) - b_t(i, j)].$$

For $i = \bar{x} - [n/2], \ldots, \bar{x} + [n/2], j = \bar{y} - [n/2], \ldots, \bar{y} + [n/2],$ $\alpha_i(t) = \alpha(t),\alpha_{ij},$ where α_{ij} are $n \times n$ Gaussian weights and $\alpha(t)$ is the learning factor given by

$$\alpha(t) = \begin{cases} \alpha_1 - t(\alpha_1 - \alpha_2), & \text{if } 0 \leq t \leq K \\ \alpha_2, & \text{if } t > K \end{cases},$$

where α_1 and α_2 are predefined constants such that $\alpha_2 \leq \alpha_1$ and K is the number of frames required for the calibration phase, which depends on how many static initial frames are available for each sequence.

To reduce the computational load as well as the number of parameters to be tuned, Chacon-Murguia et al.24 proposed an self organizing map (SOM)-like architecture in which the mapping is one-to-one, i.e., each neuron is associated with its corresponding pixel. Since each pixel $I_t(x, y)$ is represented in the HSV color space, each neuron $b(x, y)$ has three inputs $h_b, s_b, v_b,$ and the matching test is performed as

$$d[b, I_t(x, y)] \leq Th \wedge |v_b - v_i| \leq Th_i.$$
4 Evaluation Metrics and Performance Analysis

To correctly evaluate these methods and achieve a fair comparison, the methods were applied to the same dataset. Furthermore, to define the properties of each method, we used the same seven metrics as those used for CDnet2014: recall, specificity, FPR, FNR, PWC, precision, and F-measure. The role of these metrics is to quantify how well each algorithm matches the ground truth. All metrics are based on the following four quantities:79

- True positives (TP): number of foreground pixels correctly detected.
- False positives (FP): number of background pixels incorrectly detected as foreground pixels.
- True negatives (TN): number of background pixels correctly detected.
- False negatives (FN): number of foreground pixels incorrectly detected as background pixels (also known as misses).

Recall (the sensitivity or true positive rate) is the ratio of the number of foreground pixels correctly detected by the algorithm to the number of foreground pixels in the ground truth:79

\[
Re = \frac{TP}{TP + FN}.
\]

Specificity (the true negative rate) represents the percentage of correctly classified background pixels

\[
Sp = \frac{TN}{TN + FP}.
\]

FPR is the ratio of the number of background pixels incorrectly detected as foreground pixels by the algorithm to the number of background pixels in the ground truth

\[
FPR = \frac{FP}{TN + FP}.
\]

FNR is the ratio of the number of foreground pixels incorrectly detected as background pixels by the algorithm to the number of background pixels in the ground truth

\[
FNR = \frac{FN}{FN + TP}.
\]

PWC is defined as the percentage of wrongly classified pixels

\[
PWC = \frac{FN + FP}{TN + TP + FP + FN}.
\]

Precision is defined as the ratio of the number of foreground pixels correctly detected by the algorithm to the total number of foreground pixels detected by the algorithm:79,84

\[
Pr = \frac{TP}{TP + FP}.
\]

\[
F\text{-measure (or } F1 \text{ score) is a measure of quality that quantifies, in one scalar value for a frame, the similarity between the resulting foreground detection image and the ground truth.}^{79,88} \text{ Mathematically, it is a trade-off between recall and precision,}
\]

\[
F1 = 2 \cdot \frac{Pr \cdot Re}{Pr + Re}.
\]

For comparison, we have adopted the same approach used on CDnet to generate results. First, for each method, we computed all the metrics for each video in each category; then a category average metric was computed

\[
M_c = \frac{1}{N_c} \sum_v M_{v,c}.
\]

where \(M_c\) represents one of the seven metrics (Re, Sp, FPR, FNR, PWC, Pr, F1), \(N_c\) is the number of videos in each category, and \(v\) is a video in category \(c\).

We also defined an overall average metric (OAM), which is the simple average of the category averages

\[
OAM = \frac{1}{C} \sum_{c=1}^{C} M_c.
\]

To rank all the methods, for each category \(c\), we computed the rank of each method for metric \(M\). Then, we computed the average rank of this method across all the metrics

\[
RM_c = \frac{1}{7} \sum_{n=1}^{7} \text{rank}(M_c).
\]

Subsequently, we computed the average over all categories to obtain the average rank across categories (RC) for each method

\[
RC = \frac{1}{C} \sum_{c=1}^{C} RM_c.
\]

In addition, we computed the average rank across the OAM for each method

\[
R = \frac{1}{7} \sum_{n=1}^{7} \text{rank}(OAM).
\]

5 Results and Discussion

We applied each motion detection method described in Sec. 2 to the CDnet 2014 dataset, which includes different scenarios and challenges. Figure 7 shows sample frames from each video in each category, whereas Fig. 8 shows their corresponding ground truths.

Each motion detection method was followed by an automatic thresholding operation in order to determine region changes and remove small changes in luminosity, except for the RGA, MoG, and MRFMD methods; for the two first methods, the threshold was fixed to \(2.5\sigma\), where \(\sigma\) denotes the standard deviation, and for MRFMD, a fixed threshold \(Th = 35\) was used to compute the observation.
We selected Otsu’s thresholding method based on a previous study.67

For the Eig-Bg method, we set the number of training images to $N = 28$. These training images were equally spaced by 10 frames and the number of Eig-Bg vectors was set to $M = 3$.

For the MoG method, the parameters used were selected in accordance with the work of Nikolov et al.,185 who measured the accuracy of the algorithm as a function of each variable parameter. Furthermore, they proposed a set of optimal parameters to improve the performance of the MoG algorithm. Accordingly, we selected the number of Gaussians as $K = 3$, the learning rate as $\alpha = 0.01$, the foreground threshold as $T = 0.25$, the deviation threshold as $D = 2.5$, and the initial standard deviation as $\sigma_{init} = 20$. Notice that the selected parameters are different from those presented

![Sample frames from each video in each category.](image)

\textbf{Fig. 7} Sample frames from each video in each category.

\[O(x, y, t) \]
in CDnet2014;131 furthermore, we adopted the approximation of Power and Schoonees177 to compute the learning rate ρ, hence the values of (μ_t, σ_t) were affected and different too.

For the RGA method, the learning rate was set to $\alpha = 0.01$ and the deviation threshold was set to $D = 2.5$. We note that MoG and RGA were applied to gray-level images in all our tests. We also applied the STEI and DSTEI methods to the gray-level images; to construct the spatio-temporal histogram, we selected a 3×3 window with five images and the number of gray levels was set as $Q = 100$. For the MRF-based motion detection algorithm, per the work of Caplier,160 we set the four parameters to $\beta_s = 20$, $\beta_p = 10$, $\beta_f = 30$, $\alpha = 10$. For the $\Sigma\Delta$ method, the only parameter to be set was N; we selected $N = 3$ (typically, $N = 2, 3$, or 4).158 For the simplified SOBS (Simp-SOBS), the method was...
Table 2 Selected parameters for each method.

Method	Abbrev.	Parameters used
Temporal differencing	FD	N/A
Three-frame difference	3-FD	N/A
Running average filter	RAF	$\alpha = 0.1$
Forgetting morphological temporal gradient	FMTG	$\alpha = 0.1$
$\Sigma \Delta$ background estimation	$\sum \Delta$	$N = 3$
MRF-based motion detection algorithm	MRFMD	$\beta_1 = 20, \beta_2 = 10, \beta_3 = 30, \alpha = 10$
Spatio-temporal entropy image	STEI	$w \times w \times L = 3 \times 3 \times 5, \ Q = 100$
Difference-based STEI	DSTEI	$w \times w \times L = 3 \times 3 \times 5, \ Q = 100$
Running Gaussian average	RGA	$\alpha = 0.01, \ D = 2.5$
Mixture of Gaussians	MoG	$\alpha = 0.01, \ T = 0.25, \ D = 2.5$
Eigen-background	Eig-Bg	$N = 28, M = 3$
Simplified self-organized	Simp-SOBS	$\alpha_1 = 0.02$ and $\alpha_2 = 0.01$

Table 3 Overall results across all categories.

Method	Recall	Specificity	FPR	FNR	PWC	Precision	F-measure	R	R C
Simp-SOBS	0.49362	0.97220	0.02780	0.50638	4.67079	0.51477	0.40997	4.00000	4.68831
RGA	0.30123	0.99351	0.00649	0.69877	3.22117	0.49145	0.31465	3.42857	5.15584
GMM	0.20606	0.99593	0.00407	0.79394	3.08499	0.61021	0.25420	4.00000	5.44156
Eig-Bg	0.59669	0.93715	0.06285	0.40331	7.35814	0.41815	0.41028	6.57143	6.00000
RAF	0.36107	0.97060	0.02940	0.63893	5.25655	0.44158	0.27924	6.28571	6.05195
FMTG	0.42449	0.95736	0.04264	0.57551	6.37002	0.42101	0.28152	7.14286	6.20779
DSTEI	0.29669	0.96815	0.03185	0.70331	5.63380	0.41881	0.22299	8.14286	6.67532
FD	0.22779	0.97247	0.02753	0.77221	5.43072	0.46649	0.18825	6.85714	6.83117
3-FD	0.08117	0.98815	0.01185	0.91883	4.27114	0.46440	0.08201	8.00000	6.94805
MRFMD	0.08693	0.99056	0.00944	0.91307	4.02845	0.42689	0.09293	7.00000	7.37662
$\Sigma \Delta$	0.13762	0.98851	0.01149	0.86238	4.11532	0.37271	0.14229	7.42857	7.49351
STEI	0.45870	0.78646	0.21354	0.54130	22.18321	0.12255	0.12881	9.14286	9.12987
accumulation window and the tails caused by using inappropriate values of α to compute the spatio-temporal histogram recursively (see Figs. 9 and 10). Notably, DSTEI has acceptable percentage of correctly classified background pixels (Sp) in the “dynamic background” category, compared to other methods, see Fig. 16.

From Table 3, we can see that the $\Sigma\Delta$ method produced poor results but achieved significant improvement over the
STEI method. The ΣΔ method was characterized by a low FPR (Fig. 14) and high specificity (Fig. 16), i.e., many background pixels were correctly classified, but it still suffered from a high FNR, especially in "PTZ," "camera jitter," and "thermal" categories, and also low precision in "PTZ," "bad weather," "dynamic background," "shadow," and "thermal" categories (See Tables 4, 5, 6, and 7). In Fig. 9, we observe that false detections caused by snowfall in the "skating"
video were eliminated, whereas the objects in motion were not well segmented. We note also that this method has a high precision in the case of “baseline” category, Fig. 12; however, results on this category, Fig. 15, show holes left in the segmented objects (high misses) which produce a low recall (Figs. 11 and Table 8), and this problem is owed to the initialization step based on temporal differencing.

The MRFMD method also yielded poor results and was similar to the ΣΔ method, with a high FNR and low recall (Figs. 11 and 17), due to its dependence on the initialization step based on the temporal differencing method, leading to incompletely segmented moving objects (holes). Nevertheless, this method performed well by enhancing the image difference in terms of specificity (Fig. 16), and PWC (Fig. 13) has acceptable precision in the cases of “bad weather,” “shadow,” “night video,” and “thermal” (see Fig. 12 and Tables 5, 9–11).

In addition, this method is parametric because we had to define the values of the model energy \((\beta_s, \beta_p, \beta_f, \alpha)\). Furthermore, the iterative conditional mode technique is...
a suboptimal algorithm that may converge to local minima, but its computational time is considerably shorter than that of a stochastic relaxation scheme (i.e., simulated annealing). As expected, the FD and 3-FD methods did not show good results, except for high precision, mainly because of the incomplete segmentation of the shape of moving objects, preserving only the edges. Moreover, these methods suffered from overlap of slow moving objects and poor detection of objects far from the camera. To overcome the problem of incomplete segmentation, the threshold operation in the FD method is usually followed by morphological operations to link the edges of the moving objects. Then, regions and holes in the image are filled. Another solution is to combine FD methods with a background subtraction method. We also note that these methods demonstrate good detection of foreground pixels in night-time videos compared to background subtraction techniques, see Fig. 12 and Table 9.
owing to the change of light (vehicle or street light), which
impairs the modeled background.

The FMTG method yielded acceptable results with
observable low FNR (Fig. 17) and high recall (Fig. 11) for
“PTZ,” “camera jitter,” “dynamic background,” “low frame
rate,” “night video,” and “turbulence” categories (Tables 12
and 13). However, it was characterized by high FPR, caused
by artificial tails due to an inappropriate value of α.
Moreover, this method was conducive to strong background
motion, as in the “dynamic background” category, Fig. 9.

As with FMTG, the RAF method yielded acceptable
results. This result was expected because FMTG is based on
a recursive operation of the RAF, i.e., Eq. (10). However,
FMTG gave good detection results in bad weather conditions
(see Figs. 12 and 15, Table 5) owing to the morphological
temporal gradient filter, Eq. (15). Compared to FD and
3-FD, the RAF method outperforms them for almost all
categories (except night videos) in terms of F-measure,
FNR, and sensitivity, but with high FPR.

The fourth-best method according to the evaluation results
(Table 3) was the Eig-Bg method, which yielded good detection
results as well as silhouettes of objects. We noted that it
had a high recall among all categories, Fig. 11 (except “low
frame rate” category), and low FPR, Fig. 14. For “intermittent
object” and “PTZ” categories, the Eig-Bg shows high FPR
and PWC (Figs. 13, 14 and Tables 4, 14), and this is due to
the absence of an update process in the original algorithm.
Different techniques have been developed to resolve this prob-
lem; to this end we refer the reader to these Refs. 43, 69, 81,
and 181. Remarkably, this method had a great precision and
F-measure for the “baseline” category, which makes this
method the ideal approach for easy and mild challenging

![Fig. 17](image-url)
Fig. 17 FNR results for all tested methods over all categories.

Category	Recall	Specificity	FPR	FNR	PWC	Precision	F-measure	RM_c
GMM	0.44955	0.98300	0.01700	0.55045	2.18306	0.26124	0.28955	3.57143
RGA	0.29935	0.98946	0.01054	0.70065	1.71521	0.29488	0.24364	3.71429
RAF	0.55135	0.96246	0.03754	0.44865	4.10254	0.18547	0.24236	4.42857
3-FD	0.14254	**0.99055**	**0.00945**	0.85746	1.74923	0.21983	0.12676	5.00000
FD	0.42000	0.97292	0.02708	0.58000	3.23362	0.21225	0.22099	5.28571
FMTG	**0.67296**	0.94991	0.05009	**0.32704**	5.22171	0.16603	0.24073	5.85714
DSTEI	0.45699	0.96035	0.03965	0.54301	4.42049	0.18210	0.22979	5.85714
MRFMD	0.13974	0.98662	0.01338	0.86026	2.14460	0.19404	0.12624	6.42857
Simp-SOBS	0.46153	0.93149	0.06851	0.53847	7.29140	0.13466	0.16815	7.42857
Eig-Bg	0.35897	0.80386	0.19614	0.64103	19.98432	0.03295	0.05791	9.71429
Σ	0.07621	0.95886	0.04114	0.92379	4.92846	0.03709	0.04640	9.85714
STEI	0.32390	0.78885	0.21115	0.67610	21.53317	0.01634	0.03047	10.85714
scenes. However, its results were strongly dependent on the images that form the eigenspace; the presence of moving objects in this space could alter the detection results. The execution time of this method depended on the number of eigenvectors. In our case, the execution time seemed acceptable for real-time application; however, memory requirements make it unsuitable for this type of application.

Methods based on Gaussian distributions showed better performance than other methods. The GMM method is characterized by its very high precision and high F_1-score in difficult challenging categories ("bad weather, dynamic background, camera jitter, low frame rate, shadow, and turbulence"), and has low PWCs and low FPR in all categories; this is due to the number of K Gaussians used to model the

Table 5	Pixel-based evaluation of different motion detection methods applied to the “bad weather” category.							
Recall	Specificity	FPR	FNR	PWC	Precision	F-measure	RM_c	
Simp-SOBS	0.58117	0.99862	0.00138					
GMM	0.12651	**0.99966**	**0.00034**	0.87349	1.67592	0.81834	0.21127	4.57143
FMTG	0.25595	0.99546	0.00454	0.74405	1.89175	0.70015	0.35741	5.00000
RAF	0.24383	0.99563	0.00437	0.75617	1.94594	0.65861	0.35216	5.57143
Eig-Bg	**0.60037**	0.97762	0.02238	0.39963	2.91987	0.49428	0.50623	6.57143
MRFMD	0.04452	0.99863	0.00137	0.95548	2.07388	0.67153	0.08175	6.85714
RGA	0.32721	0.99209	0.00791	0.67279	2.19833	0.42407	0.33892	7.14286
FD	0.12061	0.99620	0.00380	0.87939	2.18648	0.62279	0.19972	7.57143
DSTEI	0.15961	0.99509	0.00491	0.84039	2.11153	0.61012	0.24112	7.57143
3-FD	0.03300	0.99895	0.00105	0.96700	2.09177	0.60550	0.06235	7.71429
ΣΔ	0.27268	0.98994	0.01006	0.72732	2.61408	0.33206	0.25832	8.14266
STEI	0.39261	**0.84577**	**0.15423**	0.50739	15.89976	0.10713	0.14777	9.14286

Table 6	Pixel-based evaluation of different motion detection methods applied to the “camera jitter” category.							
Recall	Specificity	FPR	FNR	PWC	Precision	F-measure	RM_c	
Eig-Bg	**0.6076**	0.9421	0.0579	**0.3924**	7.1837	0.3663	0.4391	3.1429
RGA	0.2905	0.9894	0.0106	0.7095	3.8901	0.5399	0.3741	3.5714
GMM	0.2374	**0.9944**	**0.0056**	0.7626	**3.6016**	**0.6779**	0.3344	3.7143
Simp-SOBS	0.5808	0.9373	0.0627	0.4192	7.7127	0.3411	0.4147	4.1429
RAF	0.4378	0.8926	0.1074	0.5622	12.6178	0.1664	0.2351	6.8571
FMTG	0.5246	0.8533	0.1467	0.4754	16.0025	0.1457	0.2236	7.0000
ΣΔ	0.0637	0.9837	0.0163	0.9363	5.5428	0.1953	0.0898	7.0000
FD	0.2809	0.9061	0.0939	0.7191	12.0018	0.1227	0.1668	8.1429
3-FD	0.1188	0.9513	0.0487	0.8812	8.4001	0.1040	0.1065	8.2857
STEI	0.4609	0.8205	0.1795	0.5391	**19.6615**	0.1436	0.1872	8.4286
MRFMD	0.0987	0.9554	0.0446	0.9013	8.1616	0.0888	0.0824	8.5714
DSTEI	0.4354	0.8314	0.1686	0.5646	18.5179	0.1041	0.1648	9.1429
dynamic backgrounds. Notably, the RGA method outperforms the MoG method (Table 3), with higher recall (Fig. 11), low FNR values (Fig. 17), and higher F-measure (Fig. 15) in almost all categories. This is owed to the large number of parameters required to set for the MoG algorithm \((K, \alpha, T, D, \sigma)\), which differ with the challenging conditions presented by a video (day/night, indoor/outdoor, complex/simple background, with/without noise). Thus, in some cases, the RGA method seemed to be sufficient. Moreover, its computational complexity was lower than that of the MoG method, as was found by Piccardi\(^4\) and Benezeth et al.\(^9\).

Table 7 Pixel-based evaluation of different motion detection methods applied to the “dynamic background” category.

Method	Recall	Specificity	FPR	FNR	PWC	Precision	F-measure	RMc
RGA	0.32604	0.99739	0.00261	0.67396	1.25771	0.44585	0.30555	3.00000
DSTEI	0.34040	0.96264	0.03736	0.65960	4.53876	0.21356	0.18193	5.00000
GMM	0.07816	0.99984	0.00116	0.92184	1.28203	0.43209	0.11900	5.28571
Simp-SOBS	0.52337	0.92951	0.07485	0.47663	7.89821	0.10130	0.16129	5.57143
MRFMD	0.11941	0.98458	0.01542	0.88059	2.65240	0.15423	0.09444	6.14286
FMTG	0.35967	0.91493	0.08061	0.64033	8.73891	0.09714	0.13346	7.14286
RAFT	0.09090	0.98135	0.01865	0.90095	2.95550	0.17437	0.08254	7.28571
Eig-Bg	0.06276	0.89217	0.10783	0.37239	11.02858	0.07684	0.13219	7.28571
ΣΔ	0.13895	0.98350	0.01650	0.86105	2.75199	0.07037	0.07060	7.57143
FD	0.22397	0.95006	0.04794	0.77603	5.86099	0.09671	0.10502	7.14292
STEI	0.42841	0.71230	0.28770	0.57159	29.06152	0.05091	0.07804	9.57143

Table 8 Pixel-based evaluation of different motion detection methods applied to the “baseline” category.

Method	Recall	Specificity	FPR	FNR	PWC	Precision	F-measure	RMc
Eig-Bg	0.70521	0.99832	0.00168	0.29479	1.32715	0.93552	0.80366	2.14286
Simp-SOBS	0.48942	0.99649	0.00351	0.51058	2.63660	0.84190	0.60852	3.85714
ΣΔ	0.17359	0.99946	0.00054	0.82641	3.23513	0.90046	0.27642	5.42857
RGA	0.37160	0.99672	0.00328	0.62840	3.39816	0.69864	0.44997	5.85714
FMTG	0.41467	0.99483	0.00517	0.58533	3.00519	0.67255	0.45341	6.57143
FD	0.16392	0.99883	0.00117	0.83608	3.35138	0.79205	0.25216	6.71429
RAF	0.33089	0.99618	0.00382	0.66911	3.21227	0.68705	0.40236	7.14286
DSTEI	0.30211	0.99629	0.00371	0.69789	3.09809	0.68363	0.36369	7.42857
3-FD	0.06106	0.99947	0.00053	0.93894	3.61961	0.77192	0.10796	7.71429
GMM	0.29563	0.99640	0.00360	0.70437	3.30918	0.66375	0.39360	8.00000
MRFMD	0.11522	0.99872	0.00128	0.88478	3.51801	0.69588	0.18603	8.28571
STEI	0.60964	0.76918	0.23082	0.39036	23.14295	0.25211	0.20983	8.85714
Finally, Simp-SOBS showed the best results of all the methods, with high precision, recall, and F-measure, owing to the use of the HSV color space and the condition on the V value component that significantly reduced object shadows. Furthermore, we note from Table 15 that the results of this method in challenging categories (“bad weather,” “low frame rate,” and “shadow”) were as good as those in simple categories (“baseline”). From the previous results, we can note that the most challenging categories for this method are: the “turbulence” category characterized by low precision.

Recall	Specificity	FPR	FNR	PWC	Precision	F-measure	RM_e	
FD	0.26524	0.99547	0.00453	0.73476	2.01185	0.56769	0.35088	4.71429
DSTEI	0.40097	0.99043	0.00957	0.59903	2.24922	0.48116	0.42043	5.14286
3-FD	0.06949	**0.99921**	0.00079	0.93051	2.03676	**0.70609**	0.12229	5.28571
FMTG	**0.56808**	0.98238	0.01762	**0.43192**	2.63505	0.45533	**0.46018**	5.28571
Simp-SOBS	0.47254	0.98834	0.01166	0.52746	2.29129	0.44207	0.43995	5.28571
MRFMD	0.07002	0.99876	0.00124	0.92998	2.07952	0.56291	0.12237	5.57143
RAF	0.50793	0.98401	0.01599	0.49207	2.63158	0.42673	0.43843	7.00000
GMM	0.20595	0.99388	0.00612	0.79405	2.26189	0.39635	0.26142	7.71429
Eig-Bg	0.48550	0.97250	0.02750	0.51450	3.77828	0.31558	0.35541	7.14292
$\Sigma\Delta$	0.03625	0.99749	0.00251	0.96375	2.27967	0.38100	0.05685	8.14286
RGA	0.32350	0.98592	0.01408	0.67650	2.84418	0.30709	0.29126	8.28571
STEI	0.45413	0.77635	0.22365	0.54587	22.85890	0.05566	0.09322	9.85714

Table 10: Pixel-based evaluation of different motion detection methods applied to the “shadow” category.

Recall	Specificity	FPR	FNR	PWC	Precision	F-measure	RM_e	
Simp-SOBS	0.50198	0.99044	0.00956	0.49802	**3.07260**	0.75207	0.59353	4.28571
RGA	0.32784	0.99372	0.00628	0.67216	3.61823	0.71265	0.43611	4.57143
GMM	0.24914	0.99518	0.00482	0.75086	3.61844	0.74109	0.34635	5.00000
FD	0.11852	0.99764	0.00236	0.88148	4.08282	0.71392	0.19762	6.14286
DSTEI	0.20761	0.99541	0.00459	0.79239	3.92670	0.67913	0.30582	6.28571
FMTG	0.30569	0.99083	0.00917	0.69431	3.94654	0.63377	0.39529	6.42857
3-FD	**0.03776**	**0.99962**	**0.00038**	**0.96224**	4.24996	**0.77620**	0.07113	6.85714
Eig-Bg	0.61292	0.95488	0.04512	0.38708	6.08321	0.50480	0.50255	7.14286
MRFMD	0.06100	0.99894	0.00106	0.93900	4.24903	0.69451	0.11048	7.28571
RAF	0.24641	0.99171	0.00829	0.75359	4.09855	0.62128	0.33949	7.42857
$\Sigma\Delta$	0.07324	0.99648	0.00352	0.92676	4.39514	0.51865	0.12251	8.28571
STEI	**0.71537**	0.76417	0.23583	**0.28463**	23.76070	0.12635	0.20898	8.28571
(Fig. 12) and high FNR (Fig. 17), and the “PTZ” category characterized by high PWC (Fig. 13) and high FPR (Fig. 14).

Figure 18 shows the frame rate (execution time) of each method, applied on “PETS2006” video from the “baseline” category, with a resolution of 720 × 576. Tests were carried on Intel I7 2.3 GHz with 16 GB RAM, and parts of the code were nonvectorized. This figure shows that the fastest methods were DF, 3-FD, RAF, and FMTG because of their

Table 11	Pixel-based evaluation of different motion detection methods applied to the “thermal” category.							
Method	Recall	Specificity	FPR	FNR	PWC	Precision	F-measure	RMc
-----------	---------	-------------	----------	---------	------	-----------	-----------	------
Eig-Bg	0.57527	0.98983	0.01017	0.42473	3.34477	0.75660	0.63940	4.71429
RAF	0.16894	0.99785	0.00215	0.83106	6.46159	0.77678	0.24840	4.85714
FD	0.08293	0.99952	0.00048	0.91707	6.76412	0.89736	0.13254	5.28571
FMTG	0.17280	0.99771	0.00229	0.82720	6.53223	0.76712	0.23493	5.42857
Simp-SOBS	0.30052	0.99103	0.00897	0.69948	6.14208	0.72833	0.40935	5.42857
DSTEI	0.09116	0.99884	0.00116	0.90884	6.80556	0.77026	0.13743	6.00000
3-FD	0.03946	0.99975	0.00025	0.96054	6.90147	0.87329	0.06998	6.42857
RGA	0.14817	0.99652	0.00348	0.85183	6.69029	0.66375	0.23215	7.14286
MRFMD	0.01977	0.99979	0.00021	0.98023	6.97932	0.79833	0.03642	7.28571
GMM	0.07448	0.99857	0.00143	0.92552	6.79791	0.72397	0.13242	7.57143
STEI	0.41382	0.65387	0.34613	0.58618	33.18293	0.09735	0.15688	8.28571
ΣΔ	0.02021	0.99972	0.00208	0.97979	7.12201	0.40127	0.03848	9.57143

Table 12	Pixel-based evaluation of different motion detection methods applied to the “low frame rate” category.							
Method	Recall	Specificity	FPR	FNR	PWC	Precision	F-measure	RMc
-----------	---------	-------------	----------	---------	------	-----------	-----------	------
Simp-SOBS	0.51954	0.98959	0.01041	0.48046	2.56486	0.66767	0.44959	2.71429
RGA	0.40264	0.99610	0.00390	0.59736	2.58883	0.59523	0.36304	3.71429
GMM	0.33327	0.99736	0.00264	0.66673	2.31369	0.65832	0.35273	3.71429
RAF	0.51335	0.98607	0.01393	0.48665	2.90861	0.51617	0.40144	4.57143
Eig-Bg	0.56639	0.94749	0.05251	0.43361	6.54513	0.54566	0.46997	5.85714
FD	0.45044	0.97505	0.02495	0.54956	4.09714	0.34237	0.31730	6.42857
FMTG	0.57796	0.95039	0.04961	0.42204	6.06386	0.23980	0.28403	6.57143
ΣΔ	0.08207	0.99134	0.00866	0.91793	3.90652	0.50163	0.10016	7.14286
MRFMD	0.08464	0.98657	0.01343	0.91536	4.31021	0.11816	0.06137	8.85714
3-FD	0.10544	0.98281	0.01719	0.89456	4.58337	0.11600	0.08011	9.14286
DSTEI	0.31088	0.95063	0.04937	0.68912	6.88456	0.13012	0.15748	9.28571
STEI	0.34130	0.79972	0.20028	0.65870	22.17830	0.18730	0.06510	10.00000
simplicity. Eig-Bg shows also a good execution time, and this is interpreted by the use of a subset of singular values and vectors, which overcomes the long time required to compute the N eigenvectors using eigendecomposition. $\Sigma\Delta$ has a slow frame rate owing to the postprocessing step required to eliminate the ghost effect. The slowest methods were MoG, STEI, and DSTEI; MoG is slow because of the computing complexity linked to the use of K Gaussian distributions.

Table 13 Pixel-based evaluation of different motion detection methods applied to the “turbulence” category.

Method	Recall	Specificity	FPR	FNR	PWC	Precision	F-measure	RM_c
RGA	0.37053	0.99522	0.00478	0.62947	0.89475	0.22000	0.24396	3.42857
GMM	0.15444	0.99975	0.00025	0.84556	0.46990	0.75562	0.24731	4.14286
Eig-Bg	0.78752	0.95435	0.04565	0.21248	4.71277	0.10395	0.15637	4.71429
Simp-SOBS	0.78287	0.95072	0.04928	0.21713	5.07985	0.11308	0.16392	5.28571
DSTEI	0.46520	0.97167	0.02833	0.53480	3.17950	0.05695	0.09098	5.71429
$\Sigma\Delta$	0.34950	0.97966	0.02034	0.65050	2.48953	0.07998	0.08646	5.85714
RAF	0.50183	0.95535	0.04465	0.49817	4.79166	0.06753	0.09773	6.14286
MRFMD	0.16698	0.98938	0.01062	0.83302	1.56510	0.04329	0.05261	7.00000
FMTG	0.59875	0.91203	0.08797	0.40125	9.05480	0.05586	0.08904	7.28571
3-FD	0.17101	0.96715	0.03285	0.82899	3.76600	0.03516	0.04327	8.57143
STEI	0.58499	0.81651	0.18349	0.41501	18.58043	0.03174	0.05193	9.28571
FD	0.33346	0.90664	0.09336	0.66654	9.71757	0.02896	0.04452	10.57143

Table 14 Pixel-based evaluation of different motion detection methods applied to the “intermittent object” category.

Method	Recall	Specificity	FPR	FNR	PWC	Precision	F-measure	RM_c
$\Sigma\Delta$	0.22742	0.99530	0.00470	0.77258	6.00318	0.68200	0.31732	4.28571
Simp-SOBS	0.21610	0.99506	0.00494	0.78390	5.81846	0.65376	0.30207	5.42857
DSTEI	0.09327	0.99691	0.00309	0.90673	6.23954	0.69406	0.15943	5.85714
RGA	0.12612	0.99609	0.00391	0.87388	6.33705	0.53360	0.18253	6.28571
FD	0.04566	0.99873	0.00127	0.95434	6.43023	0.73456	0.08313	6.42857
FMTG	0.11714	0.99452	0.00548	0.88286	6.18409	0.66480	0.19018	6.42857
RAF	0.10976	0.99541	0.00459	0.89024	6.31262	0.65421	0.18066	6.71429
Eig-Bg	0.63616	0.87557	0.12443	0.36384	14.03169	0.46714	0.45021	7.00000
3-FD	0.01516	0.99954	0.00046	0.98484	6.62883	0.72605	0.02929	7.14286
MRFMD	0.03628	0.98878	0.00122	0.96372	6.57922	0.67419	0.06807	7.28571
GMM	0.06211	0.99820	0.00180	0.93789	6.42132	0.58364	0.10818	7.28571
STEI	0.32070	0.90380	0.09620	0.67930	14.15520	0.27958	0.18753	7.85714
the time required to update their parameters, and to order them; and the slowness of STEI and DSTEI is more closely related to the time needed to compute the histogram from the spatio-temporal window. MRF, Simp-SOBS, and RGA also had long execution times, but they were not as slow as the previous methods.

6 Conclusion
In this paper, we review and compare motion detection methods using one of the most recent, complete, and challenging datasets: CDnet2012 and CDnet2014. Detailed pixel evaluation was performed using different metrics to enable a user to determine the appropriate method for his or her needs.

From the results reported, we can conclude that there is no ideal method for all situations; each method performs well in some cases and fails in others. However, it is worth mentioning here that methods based on FDs are not really designed to detect a complete silhouette of the moving object and thus are underrated here; they aim to detect motion and typically must be combined with other methods to achieve full segmentation. If we had to choose two methods based on the different challenging categories, they would be the Simp-SOBS\(^{24}\) and the RGA\(^{14}\) methods; the former for the “bad weather,” “baseline,” “intermittent object motion,” “low frame rate,” “night video,” “shadow,” and “thermal” categories, and the latter for the “PTZ,” “camera jitter,” “dynamic background,” and “turbulence” categories. This choice is justified by the high ranks of the methods for nearly all categories based on the average RC as well as their acceptable execution times. The good performance of Simp-SOBS can be explained by the simple but powerful competitive learning used in SOM with an appropriate HSV color space that separates chromaticity from brightness information. The surprising results of RGA are linked to its low complexity with only a few parameters to adjust (e.g., compared to MoG\(^{15}\)) that was sufficient for most areas of the images tested (only small image portions would have required more complex methods such as MoG), because the whole image background is not always dynamic except for the bad weather condition or

Table 15

Category	First	Second	Third
PTZ	MoG	RGA	RAF
Bad weather	Simp-SOBS	MoG	FMTG
Baseline	Eig-Bg	Simp-SOBS	ΣΔ
Camera jitter	Eig-Bg	RGA	MoG
Dynamic background	RGA	DSTEI	MoG
Intermittent object motion	ΣΔ	Simp-SOBS	DSTEI
Low frame rate	Simp-SOBS	RGA	MoG
Night video	FD	3-FD	DSTEI
Shadow	Simp-SOBS	RGA	MoG
Thermal	Eig-Bg	RAF	FD
Turbulence	RGA	MoG	Eig-Bg

![Fig. 18](image-url) Computed time for each method (presented in frames per second).
References

1. I. S. Kim et al., “Intelligent visual surveillance—a survey,” Int. J. Control Autom. Syst. 8(5), 926–939 (2010).
2. M. Paul, S. M. Naque, and S. Chakraborty, “Human detection in surveillance videos and its applications—a review,” EURASIP J. Adv. Signal Process. 2013(1), 176 (2013).
3. W. Hu et al., “A survey on visual surveillance of object motion and behaviors,” IEEE Trans. Syst. Man Cybern. Part C 44(3), 334–352 (2004).
4. M. Piccardi, “Background subtraction techniques: a review,” in 2004 IEEE Int. Conf. on Systems, Man and Cybernetics, Vol. 4, pp. 3099–3104 (2004).
5. D. A. Migliore, M. Matteucci, and M. Naccari, “A revaluation of frame difference in fast and robust motion detection,” in Proc. of the 4th ACM Int. Workshop on Video Surveillance and Sensor Networks, pp. 215–218 (2006).
6. S. Yalamanchili, W. N. Martin, and J. K. Aggarwal, “Extraction of moving object descriptions via differencing,” Comput. Graph. Image Process. 56(2), 188–201 (1992).
7. R. Jain, W. Martin, and J. Aggarwal, “Segmentation through the detection of changes due to motion,” Comput. Graph. Image Process. 11(1), 13–34 (1979).
8. B. D. Lucas and T. Kanade, “An iterative image registration technique with an application to stereo vision,” in Proc. 7th Int. Joint Conf. Artificial Intelligence, Morgan Kaufmann Publishers Inc., San Francisco, California, pp. 674–679 (1981).
9. B. K. Horn and B. G. Schunck, “Determining optical flow: a retrospective,” Artif. Intell. 59(1–2), 81–93 (1993).
10. T. Bouwmans, “Recent advanced statistical background modeling for foreground detection-a systematic survey,” Recent Pat. Comput. Sci. 4(3), 147–176 (2011).
11. W.-X. Kang, W.-Z. Lai, and X.-B. Meng, “An adaptive background reconstruction algorithm based on inertial filtering,” Optoelectron. Lett. 5(6), 468–471 (2009).
12. S. Jiang and Y. Zhao, “Background extraction algorithm base on Partition Weighed Histogram,” in 3rd IEEE Int. Conf. on Network Infrastructure and Digital Content (IC-NIDC 2012), pp. 433–437 (2012).
13. J. Zheng et al., “Extracting roadway background image: mode-based approach,” Transp. Res. Rec. 1944, 88–86 (2006).
14. C. R. Wen et al., “Plinder: real-time tracking of the human body,” IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 780–785 (1997).
15. C. Stauffer and W. E. L. Grimson, “Adaptive background mixture models for real-time tracking,” Int. J. Comput. Vision 26(2), 157–175 (1998).
16. A. Elgammal et al., “Background and foreground modeling using nonparametric kernel density estimation for visual surveillance,” IEEE Trans. Pattern Anal. Mach. Intell. 23(1), 176 (2001).
17. O. Barnich and M. Van Droogenbroeck, “ViBe: a universal background subtraction algorithm for video sequences,” IEEE Trans. Image Process. 20(6), 1709–1724 (2011).
18. N. Goyette et al., “Real-time discriminative background subtraction,” in Proc. Ninth IEEE Int. Conf. on Computer Vision, pp. 674–679 (2003).
19. R. Jain and W. Martin, “Motion foreground detection in dynamic scenes,” in Proc. of the Third ACM Int. Workshop on Video Surveillance & Sensor Networks, pp. 55–58 (2005).
20. P. Jaiyukumar, A. Singh, and S. K. Mitra, “Background subtraction in videos using Bayesian learning with motion information,” in British Machine Vision Conf. (BMVC), pp. 615–624 (2008).
21. A. Elgammal et al., “Background and foreground modeling using nonparametric kernel density estimation for visual surveillance,” IEEE Trans. Pattern Anal. Mach. Intell. 23(1), 176 (2001).
22. O. Barnich and M. Van Droogenbroeck, “ViBe: a universal background subtraction algorithm for video sequences,” IEEE Trans. Image Process. 20(6), 1709–1724 (2011).
23. N. Goyette et al., “Real-time discriminative background subtraction,” in Proc. Ninth IEEE Int. Conf. on Computer Vision, pp. 674–679 (2003).
24. R. Jain and W. Martin, “Motion foreground detection in dynamic scenes,” in Proc. of the Third ACM Int. Workshop on Video Surveillance & Sensor Networks, pp. 55–58 (2005).
25. P. Jaiyukumar, A. Singh, and S. K. Mitra, “Background subtraction in videos using Bayesian learning with motion information,” in British Machine Vision Conf. (BMVC), pp. 615–624 (2008).
26. A. Elgammal et al., “Background and foreground modeling using nonparametric kernel density estimation for visual surveillance,” IEEE Trans. Pattern Anal. Mach. Intell. 23(1), 176 (2001).
27. O. Barnich and M. Van Droogenbroeck, “ViBe: a universal background subtraction algorithm for video sequences,” IEEE Trans. Image Process. 20(6), 1709–1724 (2011).
28. N. Goyette et al., “Real-time discriminative background subtraction,” in Proc. Ninth IEEE Int. Conf. on Computer Vision, pp. 674–679 (2003).
29. R. Jain and W. Martin, “Motion foreground detection in dynamic scenes,” in Proc. of the Third ACM Int. Workshop on Video Surveillance & Sensor Networks, pp. 55–58 (2005).
162. Z. Tang, Z. Miao, and Y. Wan, “Background subtraction using running Gaussian average and frame difference,” in Entertainment Computing (ICEC 2007), pp. 411–414, Springer (2007).
163. S. Jabri et al., “Detection and location of people in video images using adaptive fusion of color and “free” information,” in 15th Int. Conf. on Pattern Recognition Proc., pp. 627–630 (2000).
164. J. S. Lumentut and F. E. Gunawan, “Evaluation of recursive background subtraction algorithms for real-time passenger counting at bus rapid transit systems,” Proc. Comput. Sci., 15:452–453 (2015).
165. Y.-F. Ma and H. Zhang, “Detecting motion object by spatio-temporal entropy,” in IEEE Int. Conf. Multimedia and Expo, pp. 265–268 (2001).
166. G. Jing, C. E. Siong, and D. Rajan, “Foreground motion detection by difference-based ‘virtual’ temporal entropy,” in 2004 IEEE Region 10 Conf. TÉLÉCON, pp. 379–382 (2004).
167. M.-C. Chang and Y.-J. Cheng, “Motion detection by using entropy image and adaptive state-labeling technique,” in IEEE Int. Symp. on Circuits and Systems (ISCAS 2007), pp. 3667–3670 (2007).
168. M. Celenk et al., “Change detection and object tracking in IR surveillance video,” in Third Int. IEEE Conf. on Signal-Image Technologies and Internet-Based System (SITIS 2007), pp. 791–797 (2007).
169. Y. Tian et al., “Selective eigenbackground for background modeling and subtraction in crowded scenes,” IEEE Trans. Circuits Syst. Video Technol. 23(11), 1849–1864 (2013).
170. R. J. Radke et al., “Image change detection algorithms: a systematic survey,” IEEE Trans. Image Process. 14(3), 294–307 (2005).
171. R. Fisher, “Change detection in color images,” in Proc. of 7th IEEE Conf. on Computer Vision and Pattern (1999).
172. N. Selvarasu, A. Nachiappan, and N. Nanditha, “Euclidean distance based color image segmentation of abnormality detection from pseudo color thermographs,” Int. J. Comput. Theory Eng. 2(4), 514–516 (2010).
173. Z. Zhou and J. K. Aggarwal, “Tracking and classifying moving objects from video,” in Proc. of IEEE Workshop on Performance Evaluation of Tracking and Surveillance (2001).
174. T. Ko, “A survey on behavior analysis in video surveillance for homeland security applications,” in 37th IEEE Applied Imagery Pattern Recognition Workshop (AIPR 2008), pp. 1–8 (2008).
175. S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images,” IEEE Trans. Pattern Anal. Mach. Intell. PAMI-6, 721–741 (1984).
176. R. C. Dubes and A. K. Jain, “Random field models in image analysis,” J. Appl. Stat. 16(2), 131–164 (1989).
177. P. W. Power and J. A. Schoonees, “Understanding background mixture models for foreground segmentation,” in Proc. Image and Vision Computing New Zealand, pp. 10–11 (2002).
178. L. Carminati and J. Benois-Pineau, “Gaussian mixture classification for moving object detection in video surveillance environment,” in IEEE Int. Conf. on Image Processing (ICIP 2005), Vol. 3, pp. 113–116 (2005).
179. H. Kim et al., “Robust silhouette extraction technique using background subtraction,” in 10th Meeting on Image Recognition and Understand (MIRU) (2007).
180. K. Makantasis, A. Doulamis, and N. F. Matsatsinis, “Student-t background modeling for persons’ fall detection through visual cues,” in 2012 43rd Int. Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS), pp. 1–4 (2012).

2012 13th Int. Workshop on Image Analysis for Multimedia Interac-

2016 10th Meeting on Image Recognition and

2017 15th Int. Workshop on Image Analysis for Multimedia Interac-

2018 23rd Int. Workshop on Image Analysis for Multimedia Interac-

2019 24th Int. Workshop on Image Analysis for Multimedia Interac-

2020 25th Int. Workshop on Image Analysis for Multimedia Interac-

2021 26th Int. Workshop on Image Analysis for Multimedia Interac-

Kamal Sehairi received his BS degree and engineering degree in electronics from Amar Telidji Laghouat University in 2004 and 2009, respectively, and his master degree in advanced techniques in signal processing from École Militaire Polytechnique, Algiers, in 2012. He is a PhD student at Amar Telidji Laghouat University and a member of the LTSS Laboratory. He is an assistant lecturer at École Normale Supérieure, Laghouat (ENS-L). His current research interests include image processing and video processing, real-time implementation, FPGAs, classification and recognition, and video surveillance systems. He is a member of SPIE.

Fatima Chouireb received her diploma degree in electrical engineering in 1992 and her magister and PhD degrees from Saad Dahlab University of Bliida, Algeria, in 1996 and 2007, respectively. In 1997, she joined the Electrical Engineering Department, Laghouat University, Algeria, as an assistant lecturer. Since 2015, she has been full professor in the same department. She is also a team leader of the Signal, Image, and Speech Research Group of LTSS Laboratory, Laghouat University, Algeria. Her current research interests include signal, image, and speech processing, computer vision, localization/mapping/SLAM, and mobile robotics problems.

Jean Meunier received his BS degree in physics from the Université de Montréal, Montréal, QC, Canada, in 1981, his MScA degree in applied mathematics in 1983, and his PhD degree in biomedical engineering from the École Polytechnique de Montréal, Montréal, in 1989. In 1989, after postdoctoral studies with the Montreal Heart Institute, Montréal, he joined the Department of Computer Science and Operations Research, Université de Montréal, where he is currently a full professor. He is a regular member of the Biomedical Engineering Institute at the same institution. His current research interests include computer vision and its applications to medical imaging and health care.