Short-Fluorinated iCVD Coatings for Nonwetting Fabrics

Dan Soto, Asli Ugur, Taylor A. Farnham, Karen K. Gleason, and Kripa K. Varanasi*

Water repellency is often generated by taking advantage of surface textures and low surface energy coatings such as the one afforded by long perfluorinated side-chains polymers. However, new regulations are phasing out these polymers because of their related health and safety hazard concerns. This is a particular challenge for water-repellent fabrics as consumers expect safer products with stable performance and new functionalities. In this work, an approach is developed that allows for iCVD deposition of durable, conformal short fluorinated polymers stabilized with a crosslinking agent. As a result, high hydrophobicity and low liquid adhesion are achieved simultaneously while maintaining initial substrate breathability. It is explained why this polymeric coating—1H,1H-perfluorooctyl methacrylate co divinylbenzene—exhibits remarkable hydrophobic properties amidst a wide range of other possible candidates. In order to further enhance the dynamic water repellency performance, the chemical treatment is combined with physical texturing—obtained through microsandblasting, a process particularly suitable for fabrics—thus making this combined approach a suitable candidate to meet the industrial needs. This work paves the way for the development of environmentally friendly, highly repellent coatings for large volume production and the application of roll-to-roll coating techniques, and multifunctionalization of fabrics and wearable devices.

1. Introduction

Water repellency is most often generated by taking advantage of surface textures and low surface energy coatings such as the one afforded by polymers possessing long perfluorinated side chains.[3–6] However, perfluorinated chains of eight carbons or more, have been shown to be persistent in the environment and bioaccumulate in living organisms.[7] Because of the related health and safety hazard concerns, governmental agencies are phasing out and banning these polymers, requiring the search for, and use of, new chemistries with shorter perflourinated side chains.[8] This is a particular challenge for the water-repellent fabrics as textile coatings are commonly applied via liquid phase processes[9] which requires forcing the liquid into the pores, drying them without clogging and taking care of waste management. Hence, in the midst of the textile technological evolution embodied by the development of the so called “smart fabrics,” initiated chemical vapor deposition[10] (iCVD) appears as a new promising technique; iCVD allows the deposition of the ultrathin conformal durable and breathable coatings and paves the path to new types of functionalization such as charge management capabilities.[11]

In this work, we develop an approach that allows for iCVD deposition of conformal short fluorinated polymers stabilized with a crosslinking agent and report the successful iCVD polymerization of 1H,1H-perfluorooctyl methacrylate crosslinked with divinylbenzene. We explain why this coating having less than eight perfluorinated sidechain carbons exhibit remarkable hydrophobic properties and low adhesion amidst a wide range of other possible candidates making it a suitable candidate to replace the more persistent polymers that are being banned. In order to further enhance the dynamic water repellency performance, we combine the chemical treatment with physical texturing done through microsandblasting, a process particularly suitable for fabrics. Finally, we show how the iCVD growth method results in durable and breathable coatings and allows to extend the range of applications to substrates as diverse as fabrics, paper, and nanotextured silicon.

2. Results and Discussions

The iCVD process is a single-step vapor-phase method used to deposit conformal polymer films with a controllable thickness[10] and texture.[10,12,13] In addition, the potential to graft the polymer directly to the substrate enhances coating durability.[14,15] The side chains of these polymer films, grown through radical polymerization,[16] play a key role in the macroscopic properties of the films. Indeed, it has been shown that the highest hydrophobicity, that is, the lowest surface energy, is chemically achieved with –CF3 groups (followed by –CF2H, –CF2, –CH3, –CH2, respectively, in terms of decreasing hydrophobicity). In that perspective, side chains can be seen as fluorine carriers site (see Figure 1a) that lead to surface energies as low as 6 mN m–1 when uniformly structured.[16] Since such low surface energies—giving rise to extremely nonwetting
substrates—can only be achieved with fluorinated chemistries, traditional, and widely used silicon-based coatings do not provide suitable replacement solutions.\(^{[17]}\) Because side chains can reorient upon interaction with different media\(^{[18]}\) they can lead to increased contact angle hysteresis (CAH) and pinning. Hence, it is important to control fluorine content and minimize pendant chains reorientation ability. Up to now, long side chain fluorinated polymers have been widely used because of their ability to crystalize,\(^{[16,19–21]}\) yielding outstanding performances in terms of water repellency, CAH,\(^{[22]}\) and stability. However, another consequence of this crystallization is their difficulty to be degraded, which leads to their bioaccumulation and potential environmental and health risks and makes them unsuitable for most applications.

Recent reports explore hydrophobic short-fluorinated solutions\(^{[16,23–25]}\) that draw their performances from the crystallization of heavy-molecule monomers. However, due to their low volatility, they cannot be vapor deposited and face all limitations of liquid-based solutions, among which the challenge of forcing the liquid coating into the roughness or pores of the textiles—a major obstacle to coat ever smaller features. For vapor deposition approaches, the consequences of going to short-fluorinated side chain polymers (fewer than eight perfluorinated carbons) are hence drastic: the polymer will not crystallize anymore and its amorphous nature (\(T_g\) decreasing with increasing side chain length,\(^{[26]}\) see Figure 1c) will lead to increased side chain mobility. Considering that fluorine content needs to be kept as high as possible in order to have low surface energies and high contact angles, we need to identify the best vaporizable monomer candidate with seven fluorinated carbons (see Figure 1c and the Supporting Information) and optimize its side chain interactions by tuning the main chain flexibility,\(^{[27]}\) the stiffness of the spacer group,\(^{[25]}\) and the geometrical hindering of substituents.\(^{[24]}\) The fluorinated tails can be attached to a wide range of reactive heads allowing us to select the ones which are most suitable for radical chain polymerization process:\(^{[28]}\) olefins, vinylbenzenes, acrylates, methacrylates, and their derivatives (see Figure 1a, forth panel). Among these options, only the monomers that are able to evaporate into the reactor chamber can be used with iCVD process (typical vapor pressure above 1 Torr). We observe in Figure 1b that although the vinylbenzene derivate (VB), the sulfonamide acrylates (SA-A), and sulfonamide methacrylates\(^{[16,25]}\) (SAMa) are good candidates—they have a stiff and bulky spacer group preventing chain mobility—they are too heavy to be easily vaporized. Finally, we expect that stiffer spacer group (only one–CH\(_2–\) group between the head and the fluorinated chain being the stiffest solution) as well as a bulky alpha substituent\(^{[24]}\) will reduce side chain mobility, suggesting H\(_1\)O\(_1\)F\(_7\)Ma as the best candidate. Indeed, this lack of mobility can also be observed in Figure 1c where for a given side chain length, the highest \(T_g\) corresponds to the case of methacrylates.

In order to deposit H\(_1\)F\(_7\)Ma via iCVD, the monomer is heated at 80 °C and the vapor phase is introduced into a reactor chamber at several hundred millitorr. The gaseous initiator tert-butyl peroxyde (TBPO) is activated via heating filaments and polymerization of a film of typical thickness 100 nm (see Table S1, Supporting Information) is enabled directly onto the surface of a flat (silicon substrate) or textured (fabric) substrate (see the detailed deposition conditions in the Supporting Information).
Information). To ensure the successful polymerization of the new monomer, in Figure 2a, we compare its Fourier transform infrared (FTIR) spectra to the polymer. Normalizing the region 2850–3000 cm$^{-1}$ by the total intensity of the –CH$_3$ asymmetric vibration peak (gray region at 2975 cm$^{-1}$, expected to remain unchanged through polymerization) we can observe a relative increase of the –CH$_2$– asymmetric peak (blue region at 2940 cm$^{-1}$) for the polymer case, confirming the formation of a backbone chain. Similarly, normalizing the region 900–1400 cm$^{-1}$ by the intensity of the bands attributed to the –CF$_2$–, –CF$_3$ moieties (green region at 1146 and 1240 cm$^{-1}$, respectively, expected also to remain unchanged), we observe a relative decrease of the =CH– rocking and =CH$_2$ vibrational peaks (red regions at 1327 and 950 cm$^{-1}$, respectively), confirming the successful formation of the expected polymer.

Although the coating deposited onto a flat silicon surface shows a very good advancing contact angle (close to the theoretical limit of 120°, see Figure 2b) the receding contact angle is extremely low and the water droplet exhibits considerable pinning. Indeed, when removing the drop, a visible mark is left behind (see Figure 2b; Movie S1, Supporting Information), an indication that the coating is not stable. Microscope examination after polymerization shows that the film has destabilized into tiny droplets$^{[29,30]}$ that can be displaced by the water at the contact line$^{[31]}$, creating this unusual highly pinning behavior. To further understand this behavior, the glass transition temperature T_g for the homopolymer is measured with differential scanning calorimetry (DSC) and found to be around -37°C (see Figure 2c), in agreement with trends shown in Figure 1c and confirming that the coating was an elastomer allowing the film to destabilize.

To overcome this limitation we crosslink H$_1$F$_7$Ma with divinylbenzene (DVB)$^{[14,15]}$ and verify the presence of the crosslinker in the copolymer by the appearance of band around 3050 cm$^{-1}$ (a signature of the benzene =CH bond, see Figure 2a) in the FTIR spectra. Indeed, when measuring the dynamic contact angle of water across copolymer coatings with different DVB content (Figure 3a, from 10% to 60% DVB) we observe that the film is now stabilized and retains the high hydrophobicity of the fluorinated H$_1$F$_7$Ma homopolymer as well as the low CAH of the pure DVB.

In order to find the optimal composition of the film we show in Figure 3b the temporal behavior of the advancing contact angle for the different DVB compositions. Below 30% DVB content, a “stick–slip” behavior can be observed due to the low crosslinking rate of DVB leading to increased CAH. Above 60% DVB, this phenomenon is suppressed but the overall hydrophobicity starts to decrease because of the lower overall fluorine content. Hence, the optimal crosslinker content is found to be between 30% and 60% DVB depending on the application needed. In what follows, we will favor having high water contact angles and we will use 30% composition as our reference.
Since iCVD coatings can be applied on a wide variety of substrates, we test and compare different polymer performance on polyethylene terephthalate polyester (PET) fabrics (20 denier warp × 20 denier fill, taken as a reference since, together with nylon, they represent the two main outdoor fabric materials [32]). We observe in Figure 3c and Movie S2 (Supporting Information) that without treatment, the hydrophilic nature of PET results in immediate water penetration. When coated with a DVB homopolymer (more hydrophobic than PET, see Figure S2a, Supporting Information), water will bead up if deposited gently but will still soak if impacted. Only the H1F7Ma-co-DVB coating will ensure extended water resistance. To understand these behaviors, we rely on the structural nature of most textiles created by weaving yarns made of the interlocked fibers (see Figure 3d) in a great variety of different patterns (see Figure 4d). By modeling their cross section as cylinders piled up in planes (typically going from three to ten layers, see sketch in Figure 3d) we assume that the condition for water penetration across the textile (different from imbibition along the fibers [33, 34]) is for the contact line at a given layer of cylinders to reach the apex of the layer underneath it. In this framework, if the equilibrium contact angle is low (below 43° [35]) the water will spontaneously wick the medium, as seen for nylon and PET. Between 43° and 90°, even if the substrate is hydrophilic, water will not wick spontaneously but small pressure perturbations or texture defects will allow the water to wick from one level to the next, as seen for the pure DVB coatings. Finally, in the hydrophobic case, considering that contact line has to overcome the advancing contact angle in order to infiltrate a layer of fibers, greater contact angles result in increased water repellency. Since H1F7Ma-co-DVB coating is very close to the theoretical limit of 120°, it emerges as an optimal solution. Besides this static performance, H1F7Ma-co-DVB also demonstrates suitable dynamic behavior. Indeed, if we look at a side view of a drop impacting on the different fabrics, only the H1F7Ma-co-DVB coating (third row in Figure 4a) allows the droplet to recoil and roll away after impact. In the other cases (untreated or 100% DVB fabrics) droplets remain attached to the fabric. As a consequence, a liquid layer can build on top of the fabric, decreasing its breathability and locally increasing the water vapor content that facilitates condensation within...
the structure. To further reduce droplet adhesion, we propose to mechanically roughen the outermost layer of the fabric by microsandblasting it and applying the coating onto the structured fabric. This process (described in the Supporting Information) was chosen because it presents several main advantages: avoiding damage of the overall mechanical properties of the fabric (as would result from chemical \cite{36} etching), being fast, simple, and inexpensive (as compared to plasma etching \cite{37}) and achieving more durable treatments (as compared to approaches based on deposition of micro and nano feature.\cite{38}). We observe in Figure 4b the efficient creation of a micrometric high aspect ratio texture by sandblasting a PET fabric for 10 s with 10-micron size particles. As a result, impacting droplets can now completely bounce off the surface (Figure 4b, bottom panel) instead of only being able to roll off (as observed without microtexture, Figure 4a bottom panel).

To show the versatility and performance of the iCVD technique we probe it well beyond the application of water impacting on textiles (Movie S2, Supporting Information). Indeed, from an everyday application's viewpoint, the durability of the nonwetting fabric is a critical issue. Physical damages can likely occur from abrasions, such as the one originated by the encountering between fabrics. To characterize this type of mechanical durability a laundering test consisting of 10 cold wash machine cycles was performed and no apparent wetting behavior modification was observed (see Figure 5b). In addition, abrasion tests (ISO 12947) were performed by abrading the fabric with an increasing number of strokes. Figure 5a shows how the wetting behavior of a 20 µL water droplet remains unchanged when deposited onto an iCVD coated fabric abraded up to 10 000 times, confirming its durability (above 10 000 strokes, fiber damage and breakage became apparent).
We can also observe in Figure 4c very good performance and chemical durability for a wide variety of liquids. Since we did not see any modification of the coated textiles after soaking them for 24 h in harsh acids or bases (HCl 37% and NaOH 50%), this coating can also be considered to protect surfaces from chemical exposure. In addition, since iCVD allows for ultrathin conformal coating, initial breathability of the fabric can be maintained. Indeed, Figure 5c shows how the initial breathability (1200 ± 20 g d⁻¹ m⁻²) of a noncoated fabric remains almost unchanged after iCVD deposition (1180 ± 20 g d⁻¹ m⁻²). The small difference (1.7% lower breathability after deposition) is in very good agreement with the 1% thickness change and emphasizes the importance of being able to deposit ultrathin coatings. Regarding low surface tension oils (see the Supporting Information) we are able to observe much slower impregnation dynamics than compared with the bare fabrics. In order to address a wider variety of substrates, we successfully coated fabrics with different weaves (duchess, luxury duchesse, georgette, and plain), different materials (cotton, silk, linen, and wool) and even more general substrates such as flat nylon, silicon wafer, paper, and nano-textured surfaces (all showing super hydrophobic behavior, see Figure 4d).

3. Conclusion

In summary, our approach allows: 1- to tackle the EPA challenge while exploiting all advantages associated to a vapor deposition technique and 2- to extend the range of application from textiles to any type of substrates and surface coatings. Indeed, the iCVD approach has shown promise as a high-performance coating in the face of regulations banning of longer chain fluorinated polymers. The conformal, ultrathin, grafted, and multifunctionalization aspect of iCVD leads to breathable, low material usage, durable, and EPA acceptable coatings. H₁F₇Ma-co-DVB achieves an optimal balance between: surface energy, permitted carbon chain length, and polymer chain rigidity, three parameters critical in the creation of non-wetting fabrics. Additionally, a method for roughening fabrics and creating additional texture has been proposed and shown to improve the performance of the H₁F₇Ma-co-DVB coating. This combined approach has yielded fabrics that repel water impacting from height, as well as oils, acids and bases even after abrasion or laundering aging. Beyond textiles, the iCVD deposition has shown applicability to a variety of substrates ranging from paper to plastics. As a consequence, this work opens the door to new solutions in the coating landscape and paves the way for development of high repellency coatings with large volume production, application of roll-to-roll coating techniques, and multifunctionalization of fabrics and wearable devices.

4. Experimental Section

iCVD Process: All iCVD depositions were conducted in a custom-built reactor previously described[14,15] TBPO (97%) initiator was introduced at room temperature into the chamber through a mass flow controller. It underwent activation by hot filament wires placed 2 cm above the samples. The specimen temperature was controlled via a back-cooling recirculation water system. Monomers were heated to 60 °C for DVB (80%) and 80 °C for H₁F₇Ma (25G) and their flow rates were controlled using needle valves. The chamber pressure was maintained constant during the whole process using a throttle valve. Polymerization thickness was monitored in situ with laser interferometry through the transparent quartz top cover and growth was interrupted when a thickness of 100 nm was attained (typically 10 min) ensuring initial color remained unchanged after deposition. The overall composition of each compound was estimated by evaluating their partial pressure and

![Image](https://example.com/image.png)
deducting the corresponding fractional saturation percentage. See the Supporting Information for a more detailed description.

Polymer Coating Characterization: For each deposition, a flat silicon wafer was placed into the chamber to allow postpolymerization characterization. Film thickness was confirmed through variableangle ellipsometric spectroscopy (VASE, M-2000, J. A. Woollam), in good agreement with the in situ laser interferometric measurement. All VASE thickness measurements were performed at 60°, 70°, and 80° incidence angle using 190 wavelengths from 315 to 718 nm. A nonlinear least-squares minimization was used to fit ellipsometric data of the films to the Cauchy-Urbach model. The thickness was obtained upon convergence of the algorithm. FTIR was performed on a Nicolet Nexus 870 ESP spectrometer equipped with a mercury cadmium tellurium (MCT) detector and KBr beam splitter in normal transmission mode. For the liquid H1F7Ma monomer, a DTGS detector was used in combination with a liquid transmission cell (Pike, 6 µm path length). Spectra over 350–3500 cm\(^{-1}\) with a resolution of 4 cm\(^{-1}\) were collected and averaged over 256 scans to improve signal-to-noise ratio. All spectra were baseline-corrected. Differential scanning calorimetry (Discovery DSC, TA instruments) was used to measure the glass transition of H1F7Ma homopolymer by ramping up from –90 to 120 °C by 2.5 °C min\(^{-1}\) after initial and final temperature equilibration for 5 min.

Test: Laundering test was performed in a top load washing machine and drying was allowed in between each cold wash cycle. Abrasion test initial and final temperature equilibration for 5 min. Breathability test (ISO 2528) and drying was allowed in between each cold wash cycle. Abrasion test

Supporting Information

Supporting Information is available from the Wiley Online Library or from the author.

Acknowledgements

The authors gratefully acknowledge funding support from Deshpande center at MIT. D.S. acknowledges funding support from Translational Fellowship Program at MIT. The authors thank A. Liu, A. Servi, and Y. Jiang for interesting discussions as well as B. Solomon, H. L. Girard, and P. Moni for help with DSC, AFM, and FTIR measurements, respectively. This work made use of the Institute for Soldier Nanotechnologies (ISN) at MIT. The authors thank M. Jansen from SDL Atlas for performing abrasion tests and T. O’Hara for providing fabrics samples.

Conflict of Interest

The authors declare no conflict of interest.

Keywords

fabrics, hydrophobic coatings, initiated chemical vapor deposition (iCVD), micro-sandblasting, short-fluorinated polymers, textiles

Received: December 19, 2017
Revised: March 19, 2018
Published online: June 29, 2018

[1] X. Deng, L. Mammen, H.-J. Butt, D. Vollmer, Science 2012, 335, 67.
[2] M. Liu, S. Wang, L. Jiang, Nat. Rev Mater. 2017, 2, 17036.
[3] Y. Li, S. Chen, M. Wu, J. Sun, Adv. Mater. 2014, 26, 3344.
[4] A. Tuteja, W. Choi, M. Ma, J. M. Mabry, S. A. Mazzella, G. C. Rutledge, G. H. McKinley, R. E. Cohen, Science 2007, 318, 1618.
[5] T. Iacono, S. M. Budy, D. W. Smith, J. M. Mabry, J. Mater. Chem. 2010, 20, 2979.
[6] A. C. Glavan, R. V. Martinez, A. B. Subramanian, H. J. Yoon, R. M. D. Nunes, H. Lange, M. M. Thuo, G. M. Whitesides, Adv. Funct. Mater. 2014, 24, 60.
[7] OECD/UNEP Global PFC Group, Environment Health Safety, Environment Directorate, OECD, 2013.
[8] Environmental Protection Agency, US Environmental Protection Agency, 2009, 12, p. 30.
[9] G. Akovali, Advances in Polymer Coated Textiles, Smithers Rapra, 2012.
[10] A. M. Coolte, R. M. Howden, D. C. Borrelli, C. D. Petruczok, R. Yang, J. L. Yagüe, A. Ugur, N. Chen, S. Lee, W. J. Jo, A. Liu, X. Wang, K. K. Gleason, Adv. Mater. 2013, 25, 5392.
[11] A. Ugur, F. Katmis, M. Li, L. Wu, Y. Zhu, K. K. Varanasi, K. K. Gleason, Adv. Mater. 2015, 27, 4604.
[12] L. C. Bradley, M. Gupta, Langmuir 2015, 31, 7999.
[13] H. S. Suh, D. H. Kim, P. Moni, S. Xiong, L. E. Ocola, N. J. Salazuc, K. K. Gleason, P. F. Nealey, Nat. Nanotechnol. 2017, 12, 575.
[14] A. T. Paxson, J. L. Yagüe, K. K. Gleason, K. K. Varanasi, Adv. Mater. 2014, 26, 418.
[15] A. Liu, E. Goktekin, K. K. Gleason, Langmuir 2014, 30, 14189.
[16] Q. Zhang, Q. Wang, J. Jiang, X. Zhan, F. Chen, Langmuir 2015, 31, 4752.
[17] J. Williams, Waterproof and Water Repellent Textiles and Clothing, 1st ed., (Ed: J. T. Williams), Elsevier 2017.
[18] J. A. Kleingartner, H. Lee, M. F. Rubner, G. H. McKinley, R. E. Cohen, Soft Matter 2013, 9, 6080.
[19] M. Beiner, H. Huth, Nat. Mater. 2003, 2, 595.
[20] K. A. O’Leary, D. R. Paul, Polymer 2006, 47, 1245.
[21] Y. Yoo, J. B. You, W. Choi, S. G. Im, Polym. Chem. 2013, 4, 1664.
[22] A. M. Coclite, Y. Shi, K. K. Gleason, Adv. Mater. 2012, 24, 4534.
[23] Q. Zhang, Q. Wang, X. Zhan, F. Chen, Ind. Eng. Chem. Res. 2014, 53, 8026.
[24] K. Honda, I. Yamamoto, M. Morita, H. Yamaguchi, H. Arita, R. Ishige, Y. Higaki, A. Takahara, Polymer 2014, 55, 6303.
[25] Q. Wang, Q. Zhang, X. Zhan, F. Chen, J. Polym. Sci., Part A: Polym. Chem. 2010, 48, 2584.
[26] F. Fleischhaker, A. P. Haehnel, A. M. Misske, M. Blanchot, S. Haremza, C. Barner-Kowollik, Macromol. Chem. Phys. 2014, 215, 1192.
[27] T. Hirabayashi, T. Kidai, K. Kasabou, K. Yokota, Polym. J. 1988, 20, 693.
[28] G. G. Odian, Principles of Polymerization, Wiley-Interscience, Hoboken, NJ, USA 2004, Ch. 3.
[29] R. Mukherjee, A. Sharma, Soft Matter 2015, 11, 8717.
[30] Fluid Mechanics of Surfactant and Polymer Solutions (Eds: V. Starov, I. Ivanov), Springer, Vienna 2004.
[31] R. W. Style, E. R. Dufresne, Soft Matter 2012, 8, 7177.
[32] R. R. Mather, R. H. Wardman, The Chemistry of Textile Fibers, Royal Society of Chemistry, Cambridge 2010.
[33] I. Pezron, G. Bourgain, D. Quéré, J. Colloid Interface Sci. 1995, 173, 319.
[34] C. Duprat, S. Protière, A. Y. Beebe, H. A. Stone, Nature 2012, 482, 510.
[35] P. S. Raux, H. Cockenpot, M. Ramaiali, D. Quéré, C. Clanet, Langmuir 2013, 29, 3636.
[36] C.-H. Xue, X.-J. Guo, M.-M. Zhang, J.-Z. Ma, S.-T. Jia, J. Mater. Chem. A 2015, 3, 21797.
[37] B. Shin, K.-R. Lee, M.-W. Moon, H.-Y. Kim, Soft Matter 2012, 8, 1817.
[38] J. A. Kleingartner, S. Srinivasan, Q. T. Truong, M. Sieber, R. E. Cohen, G. H. McKinley, Langmuir 2015.