The rate of unwinding of duplex DNA by the herpes simplex virus type 1 (HSV-1)-encoded helicase-primase (primosome) was determined by measuring the rate of appearance of single strands from a circular duplex DNA containing a 40-nucleotide 5’ single-stranded tail, i.e. a preformed replication fork, in the presence of the HSV-1 single strand DNA-binding protein, infected cell protein 8 (ICP8). With this substrate, the rate at low ionic strength was highly sensitive to Mg\(^{2+}\) concentration. The Mg\(^{2+}\) dependence was a reflection of both the requirement for ICP8 for helicase activity and the ability of ICP8 to reverse the helicase reaction as a consequence of its capacity to anneal homologous single strands at Mg\(^{2+}\) concentrations in excess of 3 mM. The rate of unwinding of duplex DNA by the HSV-1 primosome was also determined indirectly by measuring the rate of leading strand synthesis with a preformed replication fork as template in the presence of the T7 DNA polymerase. The value of 60–65 base pairs unwound/s estimated for the rate of fork movement in vivo during replication of pseudorabies virus, another herpesvirus. Interaction with the helicase-primase did not increase its helicase activity.

The 152-kb\(^1\) genome of herpes simplex virus type 1 (HSV-1) encodes three enzymes, in addition to a single strand DNA-binding protein, that are required for its replication (1, 2). These include a heterodimeric, highly processive DNA polymerase (3–6), an origin-binding protein with 3’-5’-helicase activity (7–9), and a heterotrimeric primosome with both helicase and primase activities (10–13). Earlier studies of the helicase activity (7–9), and a heterotrimeric primosome with both helicase and primase activities (10–13). Earlier studies of the helicase activity of the HSV-1 helicase-primase showed its rate of unwinding of duplex DNA substrates to be 2 bp/s (12), a rate far below the 50 bp/s estimated for the rate of replication of pseudorabies virus, a related herpesvirus (14).

The HSV-1 helicase-primase very likely exists in association with other HSV-1-encoded enzymes as part of a replisome (15, 16). Several structural and functional interactions between the components of the putative replisome have been described (1). For example, the single strand DNA-binding protein, infected cell protein 8 (ICP8) interacts with the UL8 subunit of the helicase-primase (17). It was recently demonstrated that the catalytic subunit of the HSV-1 DNA polymerase also interacts with the UL8 subunit (18). In light of these observations, we undertook an examination of the effect of the HSV-1-encoded DNA polymerase on the helicase rate. Studies of the Escherichia coli DNA helicase have shown its rate to be strongly influenced by its association with its cognate DNA polymerase III holoenzyme (19). We show here that the helicase activity of the HSV-1 helicase-primase in the presence of the HSV-1 single strand DNA-binding protein ICP8 is extraordinarily sensitive to reaction conditions, and at the appropriate Mg\(^{2+}\) conditions and ionic strength, the rate approaches the rate of replication fork movement in vivo. However, this rate is not significantly influenced by its association with the HSV-1 DNA polymerase.

Materials and Methods

Enzymes—The helicase-primase, DNA polymerase-UL42 protein, and ICP8 were purified by previously described procedures (17).

DNA Helicase Substrates—The formation of the 20-bp helicase substrate (Fig. 1, Structure A) has been described previously (17). The circular duplex DNA substrate containing a preformed replication fork was generated by annealing a 60-mer oligonucleotide (15 pmol, 5’-ACATGATAAGATACATGGATGAGTTTGGACAAACCACAACGTAAAAAGGTGTCG-3’) to 5 pmol of M13mp18 single-stranded DNA (Biolabs) to generate a 20-bp double-stranded region with a 40-nucleotide unpaired 5’ tail. The single-stranded circle was converted to the duplex form (Fig. 1, Structure B) by incubating the tailing M13mp18 single stranded DNA (10 pmol) with ICP8 (1 nmol) and HSV-1 DNA polymerase (100 pmol) in a reaction mixture (500 μl) containing 20 mM Tris-HCl, pH 7.3, 10% glycerol, 4.5 mM dithiothreitol, 0.5 mM ATP, 200 μM MgCl\(_2\), 0.1 mM dATP, dCTP, dGTP, and 50 mM NaCl. Incubation was at 37 °C for 90 min, and the reaction was stopped by the addition of 125 μl of 2% SDS and 0.8 mg/ml proteinase K, followed by further incubation at 37 °C for 30 min.

Linear double stranded DNA was generated by cleaving plasmid pTZ18r (Amersham Pharmacia Biotech) with the EcoRI and Smal restriction enzymes to yield a linear double-stranded DNA, 2860 bp in length, containing a 4-base overhang at the 5’ end and a 3’ blunt end. Both the circular duplex DNA with a preformed replication fork and the linear pTZ18r DNA were extracted first with phenol/chloroform and then with chloroform and precipitated by the addition of ammonium acetate to 2.5 M and 2.5 volumes of ethanol. The DNAs were kept at 4 °C for 30 min, centrifuged, washed with ice-cold 70% ethanol, dried, and dissolved in 10 mM Tris-HCl, pH 8.0, 0.1 mM EDTA.

Assay of DNA Helicase Activity—The reaction mixture (20 μl) contained either 0.1 μg (21 fmol) of circular duplex M13mp18 DNA with a preformed replication fork (Fig. 1, Structure B) or 0.1 μg (48 fmol) of linear pTZ18r, 20 μl Tris-HCl, pH 7.6, 10% glycerol, 3 mM dithiothreitol, 3 mM ATP, 100 μM MgCl\(_2\), 20 μM bovine serum albumin, and the indicated concentration of MgCl\(_2\). Twenty pmol of ICP8 and 1 pmol of helicase-primase were added. Incubation was at 34 °C for the times indicated and stopped by addition of 4 μl of stop solution (90 mM EDTA, pH 8.0, 6% SDS, 30% glycerol, 0.25% bromphenol blue, 0.25% xylene cyanol). The products were separated by electrophoresis at 150 V for 3 h through
an 0.8% agarose gel with Tris borate/EDTA (89 mM Tris borate, 1 mM EDTA) containing 1.0 μg/ml ethidium bromide. The DNA was denatured by submerging the gel in 900 ml of denaturation buffer (1.5 mM NaCl, 0.5 mM NaOH) for 30 min with gentle agitation. The gel was rinsed with water for 5 min and then neutralized by gentle agitation in 900 ml of neutralization buffer (1.5 mM NaCl, 1 mM Tris-HCl, pH 7.4) for 30 min. The DNA was transferred by a Hybond-N nylon membrane (Amersham Pharmacia Biotech) using 10× SSC (1.5 mM NaCl, 0.15 mM sodium citrate, pH 7.5) overnight. It was covalently bound to the filter by UV irradiation and then preincubated for 60 min at 65 °C with 50 ml of prehybridizing buffer (5× SSC, 0.5% SDS, 0.1 g of bovine serum albumin, 0.1 g of polyvinylpyrrolidone) before adding a randomly primed probe (Stratagene Prime-it II) for M13mp18 or pYT818r. After incubation overnight, the filter was washed for 30 min with 0.1% SDS and 1× SSC at 65 °C. The labeled hybrids were visualized by autoradiography. Measurement of helicase activity with Substrate A (Fig. 1) was performed as described previously (17).

RESULTS AND DISCUSSION

Effect of Mg^{2+} Concentration on the Helicase Activity of the HSV-1 Helicase-primase—To measure the helicase activity of the HSV-1 helicase-primase, a circular duplex DNA with a preformed replication fork was used (Fig. 1, Structure B). Our earlier studies had shown that ICP8 is essential for the unwinding of long stretches of duplex DNA by the helicase-primase, presumably as a consequence of its ability, as a helixdestabilizing protein, to prevent reannealing of the separated single strands (17). Saturating amounts of ICP8 (one ICP8 monomer/12 nucleotides of single-stranded DNA) were therefore included in all reactions with this substrate. Examination of the helicase activity at various ionic strengths showed 20 mM magnesium acetate, 4 mM dATP, dGTP, and dTTP, 10 μM dCTP, 5 μCi of [α-32P]dCTP (3000 Ci/mmol), 250 μM CTP, 250 μM GTP, 250 μM UTP, 40 μM creatine phosphate, 5 μg of creatine kinase, and 40 fmol of M13mp18 circular duplex DNA with a preformed replication fork (Fig. 1, Structure B). Where indicated, 1 pmol of helicase-primase, 10 pmol of ICP8, 500 fmol of HSV-1 DNA polymerase-UL42 protein, or 0.01 unit of T7 DNA polymerase was added. Incubation was at 37 °C for the times indicated and stopped by the addition of 5 ml of stop solution (90 mM EDTA, pH 8.0, 6% SDS, 30% glycerol, 0.25% bromphenol blue, 0.25% xylene cyanol) and 1 μl of denaturing agarose gel (50 mM NaOH, 1 mM EDTA) was added before loading half the reaction mixture onto a 0.7% denaturing agarose gel (20, 21). Earlier studies had in fact shown this substrate heated to 100 °C and then chilled. Structure B was heated to 100 °C and then cooled. Twenty pmol of ICP8 were added to each reaction mixture. The 20-bp single strands of DNA (20, 21) were then added to 25 μl of reaction mixture to be sensitive to Mg^{2+} concentration (21). As substrate, the circular duplex DNA with a preformed replication fork, which had been heated to 100 °C for 2 min and then quickly chilled on ice, was used. The experimental conditions, including 3 mM ATP, were identical to those described for the previous experiment. As shown in Fig. 2B, the single strands reannealed in the presence of ICP8 at Mg^{2+} concentrations of >3.5 mM. At Mg^{2+} concentration <3.5 mM, no ICP8-mediated...
reannealing was observed. The reaction was dependent on ICP8, because no reannealing of the single strands was observed in an identical experiment performed in the absence of ICP8 (results not shown). The range of Mg2+ concentrations at which ICP8 could promote the reannealing of single strands coincided with the concentrations at which no helicase activity could be detected. It therefore appears that the apparent inhibition of helicase activity at Mg2+ concentrations >3.5 mM is simply a consequence of the reannealing of the product single strands under these conditions. In contrast, with the 20-bp helicase substrate (Fig. 1, Structure A) for which ICP8 is not required (17), helicase activity was observed at all Mg2+ concentrations tested (Fig. 3).

The HSV-1 Helicase-primase Can Unwind Duplex DNA at the Rate of 60 bp/s—

To estimate the rate of DNA unwinding catalyzed by the HSV-1 helicase-primase, we performed the reaction under conditions that were found to be optimal for helicase activity (20 mM NaCl, 3 mM Mg2+, 3 mM ATP, saturating ICP8). The molar ratio of enzyme to substrate was 40:1 for the circular substrate and 20:1 for the linear substrate. The complete unwinding of the circular duplex with a preformed replication fork (7240 bp) occurred in 2 min (Fig. 4A). The rate of unwinding was therefore 60 bp/s. This value is sufficient to support the rate of DNA replication observed in vivo with pseudorabies virus.

With a linear duplex substrate (linear pTZ18r DNA), the rate was 24 bp/s (Fig. 4B). The lower rate is presumably attributable to the lack of a sufficiently long single-stranded loading site for the helicase-primase.

As an alternative approach to measurement of the rate of unwinding of duplex DNA by the helicase-primase, the rate of leading strand DNA synthesis by the T7 DNA polymerase coupled to the helicase action of the helicase-primase in the absence of ICP8 was determined. This method depends on the inability of the T7 DNA polymerase to replicate through the regions of duplex DNA (22, 23) and has the advantage of being
independent of the reannealing reaction, because DNA synthesis and unwinding are closely coordinated.

Because a functional interaction between the HSV-1 helicase-primase and the T7 DNA polymerase is unlikely, the rate of the T7 DNA polymerase-catalyzed leading strand synthesis should reflect the rate of unwinding of the DNA duplex by the helicase-primase. We found that at 4 min the 7-kb substrate had been extended by the T7 DNA polymerase to yield products of ~23 kb. The rate of unwinding was calculated to be 65 bp/s, in excellent agreement with the direct measurements of helicase activity (60 bp/s) (Fig. 5).

The HSV-1 DNA Polymerase Does Not Stimulate the Helicase Activity of the Helicase-primase—Studies of the dnaB helicase of *E. coli* have shown it to be markedly stimulated by its interaction with the DNA polymerase III holoenzyme (19). We therefore wished to determine whether there was a comparable stimulation of the helicase-primase by the HSV-1 DNA polymerase. In a reaction with helicase-primase, the DNA polymerase-UL42 protein, and ICP8, leading strand synthesis was observed (Fig. 5). Under these conditions we found no evidence for lagging strand synthesis. With the HSV-1 DNA polymerase-UL42 protein, 12 min were required to extend the 7-kb substrate to a length of ~23 kb. The rate was therefore 20 bp/s. This rate was similar to the rate of DNA synthesis by the DNA polymerase-UL42 protein in the presence of ICP8 with a primed M13mp18 single stranded DNA template (Figs. 1, Structure A, and 6). In this instance the synthesis of the 7.2-kb duplex DNA was completed within 10 min. Thus, leading strand synthesis by the DNA polymerase does not enhance the rate of unwinding of a DNA duplex by the helicase-primase. Moreover, deoxynucleotide polymerization by the HSV-DNA polymerase appears to be rate-limiting during leading strand synthesis.

Thus far we have not found evidence for a coupled leading and lagging strand synthesis in these reactions. Possibly additional factors are required to promote synthesis of the lagging strand.

REFERENCES

1. Boehmer, P. E., and Lehman, I. R. (1997) *Annu. Rev. Biochem.* 66, 347–384
2. Wu, C. A., Nelson, N. J., McGeech, D. J., and Challberg, M. D. (1988) *J. Virol.* 62, 435–443
3. Gottlieb, J., Marcy, A. I., Coen, D. M., and Challberg, M. D. (1990) *J. Virol.* 64, 5976–5987
4. Hernandez, T. R., and Lehman, I. R. (1990) *J. Biol. Chem.* 265, 11227–11232
5. Purfey, D. J., Lewis, R. B., and Powell, K. L. (1977) *Nature* 269, 621–623
6. Vaughan, P. J., Purfey, D. J., and Powell, K. L. (1985) *J. Virol.* 53, 501–508
7. Bruckner, R. C., Crute, J. J., Dodson, M. S., and Lehman, I. R. (1991) *J. Biol. Chem.* 266, 2609–2674
8. Elias P., O'Donnell, M. E., Mocarski, E. S., and Lehman, I. R. (1986) *Proc. Natl. Acad. Sci. U. S. A.* 83, 6322–6326
9. Olivo P. D., Nelson N. J., and Challberg, M. D. (1988) *Proc. Natl. Acad. Sci. U. S. A.* 85, 5414–5418
10. Crute, J. J., Bruckner, R. C., Dodson, M. S., and Lehman, I. R. (1991) *J. Biol. Chem.* 266, 21252–21256
11. Crute, J. J., Mocarski, E. S., and Lehman, I. R. (1988) *Nucleic Acids Res.* 16, 6585–6596
12. Crute, J. J., and Lehman, I. R. (1991) *J. Biol. Chem.* 266, 4484–4488
13. Crute, J. J., Tsurumi, T., Zhu, L. A., Weller, S. K., Olivo, P. D., Challberg, M. D., Mocarski, E. S., and Lehman, I. R. (1989) *Proc. Natl. Acad. Sci. U. S. A.* 86, 2136–2139
14. Ben-Porat, T., Blankenship, M. L., DeMarchi, J. M., and Kaplan, A. S. (1977) *J. Virol.* 22, 734–741
15. Skaliter, R., and Lehman, I. R. (1994) *Proc. Natl. Acad. Sci. U. S. A.* 91, 10665–10669
16. Skaliter, R., Makhev, A. M., Griffith, J. D., and Lehman, I. R. (1996) *J. Virol.* 70, 1132–1136
17. Falkenberg, M., Bushnell, D. A., Elias, P., and Lehman, I. R. (1997) *J. Biol. Chem.* 272, 22766–22770
18. Marsden, H. S., McLean, G. W., Barnard, E. C., Francis, G. J., MacEachran, K., Murphy, M., McVey, G., Cross, A., Abbotts, A. P., and Stow, N. D. (1997) *J. Virol.* 71, 6390–6397
19. Kim, S., Dallmann, H. G., McHenry, C. S., and Marinas, M. J. (1996) *Cell* 84, 643–650
20. Bertner, C., Hernandez, T. R., Lehman, I. R., and Griffith, J. (1993) *J. Mol. Biol.* 231, 241–250
21. Dutch, R. E., and Lehman, I. R. (1993) *J. Virol.* 67, 6945–6949
22. Engler, M. J., Lechner, R. L., and Richardson, C. C. (1983) *J. Biol. Chem.* 258, 11165–11173
23. Lechner, R. L., Engler, M. J., and Richardson, C. C. (1983) *J. Biol. Chem.* 258, 11174–11184