Closed Depressed Skull Fracture in Childhood Reduced with Suction Cup Vacuum Method: Case Report and a Systematic Literature Review

Matheus F. Ballestero, Ricardo S. De Oliveira

Abstract
Depressed skull fracture, also referred to as a "ping-pong ball" or "pond" fracture in neonates, is a common sign of traumatic brain injury in paediatric patients. The main causes of depressed skull fractures include labour and obstetric trauma in newborns and direct head trauma in older children. Skull depression rarely resolves spontaneously, and the surgical options include open cranioplasty and percutaneous microscrew elevation, among others. The use of negative pressure as a technique for fracture reduction has been described in a few papers. Here, we present a case-based review along with an illustrative case of depressed skull fracture reduced using the suction cup method via negative pressure. In addition, a Systematic Literature Review was performed to evaluate the safety of applying this procedure. The suction cup method is a feasible method to reduce depressed skull fracture in children, with minimum complications and no apparent long-term impairments.

Categories: Neurology, Pediatrics, Neurosurgery
Keywords: traumatic brain injury, depressed skull fracture, breast pump, pediatric neurosurgery

Introduction
Depressed skull fracture is a common symptom of paediatric patients with traumatic brain injury, and comprises up to 25% of all cranial fractures. In newborns and infants, this type of lesion is also referred to as a "ping-pong ball" or "pond" fracture, which are "green-stick" fractures of the skull.

The main causes of depressed skull fractures include various perinatal factors in newborns (labour, obstetric trauma) and head trauma in older children.

Skull depression rarely resolves spontaneously, and this cosmetic defect can cause anxiety for parents, who are often more comfortable with an active intervention. The surgical options include open cranioplasty and percutaneous microscrew elevation.

The use of negative pressure for reduction was first described in the 1970s by Schrager, who successfully treated a skull depression using a vacuum pump. Thereafter, only few papers have described this technique, along with related complications and success rate.

For this reason, we conducted a case-based review, and also present an illustrative case of depressed skull fracture reduced using the suction cup vacuum (SCV) method. Additionally, a literature review was performed to evaluate the safety of this procedure.

The typical clinical presentation of depressed skull fracture is a neonate deformity following vaginal delivery or even after difficult caesarean surgery. In older children, however, this fracture presents following direct head trauma.

The deformity is usually obvious on inspection, and skull radiographs show incomplete fracturing. When there is no cortical fracture accompanying the depression, the condition is named faulty fetal packing.

Although three-dimensional CT scans can provide more detailed information about the brain parenchyma, the radiation risks are not acceptable for all neonates or young children. Therefore, CT scans are reserved for deeper, extensive or more complex cases, or when neurological examination reveals alterations.

Some fractures can elevate spontaneously, there is some concern about the long-term cosmetic appearance and possible brain compression. For this reason, fractures are traditionally treated with elevation procedures. The surgical techniques used to elevate the skull include the insertion of a periosteal elevator through a new burr hole at the margins of the fracture, with the depressed bone fragments forced upwards; insertion of the same elevator through the coronal or lambdoidal sutures, avoiding the need for burr holes.
insertion of a percutaneous screw or a hook through the center of the fracture and pulling upwards [3]; or performing a circumferential craniotomy around the fracture, remoulding and reinserting the bone [8]. Non-invasive reduction through applying digital pressure at the margins of the fracture has also been reported, which avoids further intervention [2].

The prognosis of depressed skull fracture in childhood with no associated brain damage is good, even when no reduction procedure is performed. Mandatory urgent surgery is indicated for cases where a cerebrospinal fluid leak is clearly recognised, a foreign body is detected, debridement of the local wound is necessary, wound infection, or when evacuation of a hematoma is necessary [9].

Depressed skull fracture has been claimed to be an independent risk factor for post-traumatic seizures; however, there is no consensus in the current literature for this association [10].

Case Presentation

A male neonate delivered by caesarean presented traumatism, identified as a right frontotemporal depressed skull fracture. The child weighed 4420 g, and was born after 37 weeks and four days by caesarean. The fracture was 4 cm in diameter by 1.5 cm in depth (Figure 1).

Neurological examination and transfontanelle ultrasonography were unremarkable, but the deformity was visible by cranial X-ray (Figure 2).

FIGURE 1: Illustrative case – Lateral head photograph showing the depressed skull fracture (black arrow).
After 72 h of observation, formal consent was obtained from the parents and the SCV method was applied to elevate the skull depression.

A typical breast milk extractor (Figure 3) attached to hospital vacuum system was used for SVC. Elevation of the fracture was performed by placing the central part of the extractor over the central part of the defect after spreading solid vaseline over the defect to avoid air leakage. A progressive vacuum was applied while observing elevation through the breast milk extractor until the depression elevated and the sound of bone cracking could be heard.
FIGURE 3: The breast milk extractor showing the vacuum connection (black arrow) and the surface used to create vacuum (green arrow).

After the procedure, transfontanelle ultrasound was performed to confirm the absence of intracranial injury as a result of the procedure, and another cranium X-ray was performed to confirm that correct fracture reduction had occurred (Figure 4). The neonate was observed for 24 h before being discharged. At two months follow-up, the child presented normal development with a symmetric skull shape.
FIGURE 4: Illustrative case – Post-reduction anteroposterior X-ray showing no bone deformity (white arrow).

Discussion

Systematic literature review

A literature search was performed to identify reports of the use of SCV to reduce skull fractures in children. Searches of the PubMed and Ovid MEDLINE databases were performed for relevant articles published until March 2019. Appropriate keywords and MeSH terms were used to identify all studies, including: "neonate", "newborn", "depressed skull fracture", "vacuum extractor", and "breast pump." The reference lists of papers were also manually searched to identify additional data sources.

The literature review included eight papers with a total of 35 children submitted to skull fracture reduction through SCV (Table 1). The mean age ranged from a few hours to 18.5 months (mean 6.9 months). The sample contained more males (62.5%) than females (37.5%). The mechanism of trauma was peripartum trauma in 47.6%, falls in 19%, impact from falling objects in 14.3%, and road traffic accident in 14.3%.
TABLE 1: Summary of SCV technique used to reduce skull fracture in children published in the medical literature.

SCV: Suction cup vacuum; CPH: Cephalohematoma; F: Female; FO: Falling object; FT: Frontal; FTTP: Frontotemporal; L: Left; M: Male; NI: No information; PT: Peripartum trauma; R: Right; RTA: Road traffic accident; TP: Temporal.

Study	Patients	Mean Age (mos)	Gender	Mechanism	Location	Side	Diameter (cm)	Success	Complications	Follow-up (mos)	Long-term impairment	
Schragai, 1970 [4]	1	0	100% F	100% PT	100% L	6.0	100%	None	None	12	None	
Van de Graaf, 1972 [11]	1	5.55	100% M	100% Fall	100% PT	4.5	100%	None	None	18	None	
Saunders et al., 1979 [12]	3	Neonate	100% M	100% PT	66.7% FT / 33.3% PT	66.8% L / 33.3% R	3.5	100%	None	Nil	Nil	
Paul and Farber, 1992 [13]	1	18	NI	100% Trauma	100% PT	100% R	100%	None	Nil	Nil	None	
Poteh et al., 1999 [14]	1	Neonate	NI	100% PT	100% Partial	100% L	4	100%	None	Nil	Nil	
Hong et al., 2005 [15]	14	4.5	57.1% M / 42.9% F	NI	50% PT / 35.6% TP / 14.3% FT / 7.1% FTTP	37.5% R / 42.5% L	3.8	50.0%	None	24		
Djientcheu et al., 2006 [16]	8	10.4	62.5% M / 37.5% F	37.5% Fall / 25% RTA / 27.5 FD	100% PT	50% R / 25% L / 25% NI	Nil	100%	Nil	12.5% CPH	3	None
Kim et al., 2007 [17]	1	3	100% M	100% RTA	100% PT	100% R	100%	None	Nil	Nil		
Mastrapa et al., 2007 [18]	5	1	60% M / 40% F	100% PT	NI	NI	100%	None	18			
Overall	35	6.9	62.5% M / 37.5% F	47.6% PT / 19% Fall / 14.3% FO / 14.3% Other	70% PT / 13.3% FT / 15.3%	42.8% Right / 27.1%	4.0	97.2%	2.5% CPH	16.6	None	

Regarding the defect localisation, 70% were parietal, 13.3% frontal, 13.3% temporal and 3.3% frontoparietal. Of the fractures, 42.9% occurred on the right side and 37.1% on the left side, with no information on the location reported for the remaining 20% of children. The mean diameter of the depression was 4.0 cm.

The procedure was successful in 97.2% of cases, with complications observed in only one child (cephalohematoma). No long-term impairment was described over a mean follow-up period of 16.6 months.

Discussion

Although depressed skull fracture in neonates and children is unusual and spontaneous reduction may be possible, parents sometimes prefer more aggressive intervention due to the deforming aspect of such fractures.

Operations can carry complications such as surgical scarring and wound infection, along with anaesthetic challenges, which cannot be ignored in children of this age [19]. The length of stay in the hospital is another factor that may influence the choice of treatment. Use of the SCV method can reduce the length of hospital stay to less than 24 hours, and avoids unnecessary cannulation of peripheral or umbilical veins and the risks associated with these procedures [20].

Another important aspect is the social effect of the non-invasive procedure, as it prevents unnecessary parental stress and avoids interruption of breast-feeding and segregation from the mother.

Comparing our case with the literature, children were generally older in the review (mean 6.9 months). However, despite the variation in age, the predominant trauma mechanism was peripartum trauma (47.6%), showing a long delay between trauma and effective treatment.
The literature search did not reveal an age limit for SCV intervention. Djientcheu et al. were able to correct fracture in children from five months to 17 years (not a greenstick fracture) with 100% success, thereby expanding the therapeutic possibilities beyond single ping pong fractures [16].

Conclusions
The suction cup method is a feasible method to reduce depressed skull fractures in children, and is associated with minimum complications and no apparent long-term impairments.

Additional Information
Disclosures
Human subjects: Consent was obtained by all participants in this study. Conflicts of interest: In compliance with the ICMJE uniform disclosure form, all authors declare the following: Payment/services info: All authors have declared that no financial support was received from any organization for the submitted work. Financial relationships: All authors have declared that they have no financial relationships at present or within the previous three years with any organizations that might have an interest in the submitted work. Other relationships: All authors have declared that there are no other relationships or activities that could appear to have influenced the submitted work.

References
1. Harwood-Nash DC, Hendrick EB, Hudson AR: The significance of skull fractures in children. A study of 1,187 patients. Radiology. 1971, 101:151-156. 10.1148/101.1.151
2. Raynor R, Parsa M: Nonsurgical elevation of depressed skull fracture in an infant. J Pediatr. 1968, 72:262-264. 10.1016/S0022-3476(68)80321-X
3. Zalatimo O, Ranasinghe M, Dias M, Iantosca M: Treatment of depressed skull fractures in neonates using percutaneous microscrew elevation. J Neurosurg Pediatr. 2012, 9:676-679. 10.3171/2012.2.peds11304
4. Schrager GO: Elevation of depressed skull fracture with a breast pump. J Pediatr. 1970, 77:300-301. 10.1016/S0022-3476(70)80340-7
5. Cho SM, Kim HG, Yoon SH, Chang KH, Park MS, Park YH, Choi MS: Reappraisal of neonatal greenstick skull fractures caused by birth injuries: comparison of 3-dimensional reconstructed computed tomography and simple skull radiographs. World Neurosurg. 2018, 109:505-512. 10.1016/j.wneu.2017.09.168
6. Axton JHM, Levy LF: Congenital moulding depressions of the skull. Br Med J. 1965, 1:1644-1647. 10.1136/bmj.1.5451.1644
7. Stein SC: The evolution of modern treatment for depressed skull fractures. World Neurosurg. 2019, 121:186-192. 10.1016/j.wneu.2018.10.045
8. Rogers L: Simple depressed fracture of the skull. Br Med J. 1953, 1:1451-1452. 10.1136/bmj.1.4825.1451
9. Steinhok P, Flodmark O, Martens D, Germann ET: Management of simple depressed skull fractures in children. J Neurosurg. 1987, 66:506-510. 10.3171/jns.1987.66.4.0506
10. Araki T, Yokota H, Morita A: Pediatric traumatic brain injury: characteristic features, diagnosis, and management. Neurol Med Chir. 2017, 57:82-95. 10.2176/nmc.ra.2016-0191
11. Van Enk A: Reduction of pond fracture. Br Med J. 1972, 2:353. 10.1136/bmj.2.5809.353-b
12. Saunders BS, Lazaritz S, McArtor RD, Marshall P, Bason WM: Depressed skull fracture in the neonate. Report of three cases. J Neurosurg. 1979, 50:512-514. 10.3171/jns.1979.50.4.0512
13. Paul MA, Fahner T: Closed depressed skull fracture in childhood reduced with suction cup method: case report. J Trauma. 1991, 31:1551-1552. 10.1097/00005373-199111000-00017
14. Pollak L, Raziel A, Ariely S, Schiffer J: Revival of non-surgical management of neonatal depressed skull fractures. Paediatr Child Health. 1999, 35:96-97.
15. Hung KL, Liao HT, Huang JS: Rational management of simple depressed skull fractures in infants. J Neurosurg. 2005, 103:i69-72. 10.3171/2005.10.0669
16. de Paul Djientcheu V, Njamnshi AK, Ongolo-Zogo P, Akso S, Essomba A, Sozzo MA: Depressed skull fractures in children: treatment using an obstetrical vacuum extractor. Pediatr Neurosurg. 2006, 42:275-276. 10.1159/000094061
17. Kim YJ, Lee SK, Cho MK, Kim YJ: Elevation of depressed skull fracture with a cup of breast pump and a suction generator: a case report in technical aspects. Korean Neurosurg Soc. 2007, 42:346-348. 10.3340/kns.2007.42.4.346
18. Mastraipa TL, Fernandez LA, Alvarez MD, Storrs BB, Flores-Urreta A: Depressed skull fracture in Ping Pong: elevation with Medeva extractor. Child’s Nerv Syst. 2007, 23:787-790. 10.1007/s00381-007-0354-1
19. Escobar MA Jr, Caty MG: Complications in neonatal surgery. Semin Pediatr Surg. 2016, 25:347-350. 10.1053/j.sempedsurg.2016.10.005
20. Ramasethu J: Complications of vascular catheters in the neonatal intensive care unit. Clin Perinatol. 2008, 35:199-222. 10.1016/j.clp.2007.11.007