Molecular dynamics simulations of membrane proteins and their interactions: from nanoscale to mesoscale
Matthieu Chavent¹, Anna L Duncan¹ and Mark SP Sansom

Molecular dynamics simulations provide a computational tool to probe membrane proteins and systems at length scales ranging from nanometers to close to a micrometer, and on microsecond timescales. All atom and coarse-grained simulations may be used to explore in detail the interactions of membrane proteins and specific lipids, yielding predictions of lipid binding sites in good agreement with available structural data. Building on the success of protein–lipid interaction simulations, larger scale simulations reveal crowding and clustering of proteins, resulting in slow and anomalous diffusional dynamics, within realistic models of cell membranes. Current methods allow near atomic resolution simulations of small membrane organelles, and of enveloped viruses to be performed, revealing key aspects of their structure and functionally important dynamics.

Address
Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK

Corresponding author: Sansom, Mark SP
(mark.sansom@bioch.ox.ac.uk)
¹These two authors contributed equally to the preparation of this article.

Lipid–protein interactions at the nanoscale
MD simulations may be thought of as a computational microscope [4]: one may ‘zoom in’ to atomic resolution to examine detailed interactions of a membrane protein with water, ions, and lipids, or ‘zoom out’ to a lower resolution using for example coarse-grained (CG) [5,6] simulations to address longer length and timescales, albeit with some loss of detail in modelling interatomic interactions. This approach has been successfully used to reveal the dynamics interactions of membrane proteins with lipids at the nanoscale [1,7,8].

Simulations have been used to predict lipid interaction sites for a number of mammalian integral membrane proteins, providing detailed views of both the lipid annulus, as for aquaporin [9,10] (Figure 1a), and of interactions of specific lipids. A number of recent studies have characterised experimentally observed interactions between cholesterol molecules and G-protein coupled receptors (GPCRs), reviewed in [7], and have explored how such protein–lipid interactions may modulate the dimerization of GPCRs and its possible effects on receptor function (see e.g. [11]). In addition to interactions of membrane proteins with cholesterol, simulations have been used to identify binding sites for phosphatidyl inositol 4,5-bisphosphate (PIP₂) binding sites on ion channels, transporters, and receptor proteins. Thus, PIP₂ binding sites have been characterised for ion channels including Kir2.2

Introduction
Membrane proteins play a key role in the biology of cells. Around 20% of genes encode membrane proteins, and they form a major class of drug targets. There has been considerable progress in the structural biology of membrane proteins resulting in over 2500 structures in the PDB, corresponding to over 700 distinct membrane protein species [1]. Molecular dynamics (MD) and related molecular simulation approaches provide important tools which allow us to simulate both individual membrane proteins and more complex membrane systems [2]. Thus, MD simulations have become a valuable addition to the range of experimental structural and biophysical techniques for studying membrane proteins and their interactions with lipids [3].

In this article we will review two major and complementary trends in molecular simulations of membrane proteins: (i) to probe protein–lipid interactions of single membrane proteins and (ii) to model more complex membranes containing mixtures of multiple lipid species and multiple copies of membrane proteins (Figure 1). It remains a challenge to develop biologically realistic models of cell membranes, but recent methodological advances enable an integrated approach to the problem, drawing together structural, biophysical and biochemical data into dynamic models which aid interpretation of structural and imaging data on membranes of cells and their organelles. We will survey these advances and a number of recent applications. We will therefore also discuss the development of mesoscale approaches which allow very large scale simulations, exploring membrane behaviour beyond the nanoscale and thus narrowing the gap between simulations and experiment.
Recent computational studies of the interactions of the EGFR dimer [19], and these interactions can be influenced by receptor glycosylation [20]. Ectodomain/bilayer interactions of the related EphA2 receptor are mediated primarily via anionic lipids, and may stabilize different conformations at the membrane of liganded versus unliganded forms of the receptor [21] (Figure 1b).

Simulations have also been used to explore the interactions with proteins of more ‘specialized’ lipids from mitochondrial and bacterial inner membranes such as cardiolipin (CL). CG-MD simulations have been used to assess binding sites for CL with cytochrome bc1 [22] or cytochrome c oxidase [23] and to estimate the free energy landscapes of these interactions [23]. A comparable approach has been used to examine the interactions of cardiolipin with the ADP/ATP carrier ANT1 (Figure 2a). These studies confirm that such simulations can accurately reproduce lipid binding sites seen in the X-ray structure of this key mitochondrial transport proteins [1,7].

Simulations have also been applied to bacterial membranes [24] and their proteins. For example, combined structural, biophysical and computational studies have explored the role of lipids in the mechanosensitivity of the Escherichia coli ion channel MscS [25]. Selective interactions of CL with UraA, a bacterial inner membrane transporter, have also been explored [26]. Realistic modelling of the more complex outer membranes of Gram negative bacteria has required development of models for lipopolysaccharide (LPS), the major constituent of the outer leaflet of these membranes [27,28]. Recent progress in both atomistic [29] and coarse-grain [30] simulations of LPS enable studies of the interactions of a number of E. coli outer membrane proteins, for example FecA [31], OmpLA [29] and OmpF [32], with this complex membrane environment.
The nanoscale interactions of cytoplasmic peripheral membrane proteins and their lipid recognition domains with cell membranes may also be explored by simulations [33]. For example, MD simulations may be used to study how interactions with lipids such as PIPs may guide the recruitment of peripheral proteins such as PTEN to membranes within the cell [34], and also to explore the free energy landscapes [35**] underlying the interactions of lipid-recognition domains, such as PH domains [36] (Figure 2b), with PIP-containing membranes. The nanoscale effects of curvature and lipid composition on recruitment of peripheral proteins to cell membranes have also been explored by a combination of experiments and simulation [37**].

Beyond the nanoscale: simulation of complex and crowded membrane systems

The diversity of lipids and proteins simulated and the accuracy with which interaction sites are identified, as surveyed in the previous section, demonstrate the efficacy of the simulation approach, and strengthens confidence in its extension to more complex membrane systems. Models can now incorporate the compositional complexity of cell membranes [38,39*,40], and mimic the crowding of proteins in cell membranes. Simulations of such models allow us to explore the emergent dynamics of complex and crowded membranes. In multi-component membranes lipids move in concert, with correlation times in the range of hundreds of nanoseconds, and correlation lengths of >10 nm [41], underlining the importance of large scale extended simulations to fully sample the interactions of the complex in vivo environment experienced by membrane proteins. These larger scale models help us to understand the collective behaviour of multiple copies of membrane proteins, such as the influence of crowding of membrane proteins on their clustering and diffusion [42,43*]. These emergent dynamic properties of membranes may play a key role as regulatory mechanisms [44,45], and will influence the mechanical properties of cell membranes.

Simulations have been used to explore lipid sorting and membrane (nano)domain formation. For example, long atomistic simulations have revealed substructures within ordered lipid phases, and have demonstrated coexistence of ordered and disordered lipid phases [46]. Large scale CG simulations have also provided insights into the degree of dynamic lateral heterogeneity as consequence of lipid clustering within models of mammalian cell membranes [38,39*]. Protein clustering and oligomerization are observed within such large scale simulations. A number of studies have focussed on GPCR oligomerization and the influence of lipids. Thus, Periole et al. used CG-MD simulations to model supra-molecular assemblies of rhodopsin [47]. Simulations of opioid receptors in a mixed POPC-cholesterol membrane helped to define the role of interfacial lipids at the protein-protein interface [48]. CG simulations of oligomerization of the β2-adrenergic receptor have explored the effects of protein-membrane hydrophobic mismatch [49]. Different mixtures of unsaturated and saturated lipids have been shown to affect the oligomerization of both adenosine and dopamine receptors.
[50]. Simulations of the sphingosine-1-phosphate receptor in a complex mixed-lipid asymmetric bilayer have revealed how protein–lipid–protein interactions may influence the dynamic clustering of GPCRs [51*].

This approach has been extended beyond the interactions of GPCRs. For example, simulations of a mitochondrial inner membrane indicate how cardiolipin may ‘glue’ together respiratory proteins into supercomplexes [52*]. Analysis of the free energy landscape of interaction of the bacterial outer membrane protein NanC has revealed how intervening lipids may stabilize a membrane protein dimer [53]. Such protein–lipid–protein interaction may underlie functionally important larger scale membrane organization. Thus, combining molecular dynamics simulations with in vitro and in vivo experimental studies has indicated how formation of large clusters of bacterial outer membrane proteins (OmpF and BtuB) may play a key role in the formation of membrane protein ‘islands’ during the division of bacterial cells [54*] (Figure 3a). The impact of protein clustering on membrane curvature has been demonstrated in a study of ATP synthase, combining electron cryotomography with simulations of ATP synthase dimers in a phospholipid bilayer [55].

Clustering has also been explored in larger scale simulations of peripheral membrane proteins. For example, clustering of lipid-anchored H-Ras has been observed in simulations of a 3 lipid component (d16:0 PC + di18:2 PC + cholesterol) bilayer, in which the protein accumulated at the interface between lipid ordered and lipid disordered regions, resulting in an increased local membrane curvature [56*]. CG simulations have also suggested that N-Ras clusters can alter the rate of formation of lipid phases in similar mixed lipid bilayers [57]. Other peripheral proteins may have dramatic effects on membrane properties. For example, simulations of α-synuclein aggregation [58] indicate how proteins may remodel the shapes of membranes, and large scale simulations of SNARE proteins suggest that hydrophobic mismatch may induce protein clustering and segregation [59].

Approaching experimental length scales: large scale membrane simulations

Ongoing advances in for example the development of simulation codes to efficiently exploit very large scale computing resources, including CPU/GPU combination [60], and in methods for setup and analysis of complex simulation systems [61] enable molecular simulations of membranes to achieve length scales of several hundred nanometers, thus permitting direct comparison with cell membrane imaging by cryo-electron tomography and by superresolution optical microscopies. Using these approaches, simulations of for example whole virus particles and subcellular organelles become feasible. Furthermore, more highly coarse-grained (or mesoscopic) simulation approaches have been developed to aid modelling of emergent behaviours in these complex protein-membrane systems.

A landmark early study in this field is provided by a combined experimental and modelling study of synaptic vesicles [62], in which diverse data (from structural biology, mass spectroscopy, and biophysics) were integrated to develop a near atomic resolution model which could be compared to images from electron microscopy. With this proof of principle for developing such large scale models, it is now timely to embark on their simulation. For example, molecular simulations can enable dynamic structural models of enveloped viruses to be explored at atomic or near atomic resolution. Thus multiscale simulations, including a coarse-grained model of the lipid bilayer, have been used to study the early stages of formation of the HIV capsid, [63*], whilst all-atom molecular dynamics have been used to fit a model of the mature HIV-1 capsid into cryo-electron microscopy density [64**]. CG-MD simulations have been used to probe the dynamic behaviour of lipid bilayer components of two viral envelopes: those of influenza A [65**] and of dengue virus [66]. In both cases simulations of the membrane envelopes of intact virions revealed slow and anomalous diffusion of the lipids, that is ‘raft-like’ behaviour of the viral membrane. Taken together these studies and others (reviewed in [67]) reveal considerable scope for the application of molecular simulations to viruses and their interactions with cell membranes. Other applications have explored large scale dynamic events including for example membrane fusion [68], and BAR domain-induced remodelling of vesicles [69,70], including the influence of membrane tension on BAR assembly [71].

Molecular simulations in combination with AFM and spectroscopic data have been used to construct a model of an intact bacterial photosynthetic chromatophore (Figure 4a) ([72**], M Sener, unpublished data) enabling detailed modelling of excitation transfer between pigment molecule clusters. Highly coarse-grained (DPD) models have been used recently to study the dynamic organization of PSI–LHCII supercomplexes in plant photosynthetic membranes [73]. These and related models, which address the dynamic organization of thylakoid membranes on a several-hundred nanometer lengthscale, can be used to model light harvesting mechanisms, thus enabling direct comparison with spectroscopic data on these processes [74**].

The studies described above have made use of models over a range of scales, from atomistic to CG, building up to mesoscale simulations. Such investigations may be aided by simulation-based tools that allow for the melding of high resolution structural data with lower resolution data from for example cryo-EM [75]. With the recent advances in the resolution of cryo-EM and cryo-ET, and
the current expansion in simulations carried out at close to experimental length scales, there is much opportunity for further development of mesoscale models.

Molecular simulations of complex membrane assemblies have benefitted from development of a range of tools for, for example, semi-automated setup of complex mixed...
lipid bilayer. On a larger scale, for example, cellPACK provides mesoscale packing algorithms to generate and visualize three-dimensional models of complex biological environments, and has been evaluated for models of synaptic vesicles and of an HIV virion. Larger simulations also necessitate the use of significant computing resources, and careful consideration of scaling on thousands of CPUs becomes important. The volume of data generated by large scale simulations is appreciable, in the range of hundreds of GB per simulation (Figure 1), which imposes substantial data storage and processing demands. Very large scale simulations also require development of novel methods for visualization (e.g. Quicksurf in VMD) and for analysis of, for example, lipid flows in complex membranes (Figure 4b). It is clear that future developments are likely to
Further integrate a range of tools for setup, running, visualization and analysis of larger and more complex membrane systems, in addition to development of databases for storage and dissemination of the results of membrane simulations (e.g. MemProtMD [1*]).

Conclusions
Using multiscale molecular simulations as a ‘computational microscope’ we can characterize the interactions of membrane proteins with lipid, matching, incorporating and extending the information which may be obtained from experimental structural and biophysical (e.g. MS) studies. Simulation approaches have been extended to allow crowded and complex membranes to be simulated with increasing biological realism. Having thus established the accuracy and utility of computational approaches to cell membranes, they are now being used to model and simulate cellular organelles and enveloped viruses. Paired with the growing wealth of cryo-EM and cryo-ET structural data, there is considerable promise for future ‘in silico in vivo’ studies of cell membranes.

Conflict of interest
Nothing declared.

Acknowledgements
This study was supported by grants from the Wellcome Trust, the BBSRC, and the EPSRC. Scaling data in Figure 3 was obtained thanks to the EU PRACE (http://www.prace-ri.eu/) research infrastructure. Our thanks to Dr. Heidi Koldso for Figure 1c.

References and recommended reading
Papers of particular interest, published within the period of review, have been highlighted as:

- of special interest
- of outstanding interest

1. Stansfeld PJ, Goose JE, Caffrey M, Carpenter EP, Parker JL, Newshead S, Sansom MSP: MemProtMD: automated insertion of membrane protein structures into explicit lipid membranes. Structure 2015, 23:1350-1361.

All ca. 2000 membrane protein structures in the PDB are automatically simulated in an explicit lipid bilayer with results available on the MemProtMD (http://sccb.bioch.ox.ac.uk/memprotmd/) database.

2. Stansfeld PJ, Sansom MSP: Molecular simulation approaches to membrane proteins. Structure 2011, 19:1562-1572.

3. Lagatorovsyz A, Reading E, Allison TM, Ulschneider MB, Degiacomi MT, Baldwin AJ, Robinson CV: Membrane proteins bind lipids selectively to modulate their structure and function. Nature 2014, 510:172-175.

4. Ingoldsson HI, Arnarez C, Periolo X, Marrink SJ: Computational “microscopy” of cellular membranes. J Cell Sci 2016:1-12.

5. Marrink SJ, Tielman DP: Perspective on the Martini model. Chem Soc Rev 2013, 42:6801-6822. A valuable recent review of the widely used MARTINI coarse-grained method, covering a wide range of applications to membranes and related biomolecular systems.

6. Shinoda W, DeVane R, Klein ML: Computer simulation studies of self-assembling macromolecules. Curr Opin Struct Biol 2012, 22:175-186.

7. Hedger G, Sansom MSP: Lipid interaction sites on channels, transporters and receptors: recent insights from molecular dynamics simulations. Biochim Biophys Acta 2016 http://dx.doi.org/10.1016/j.bbamem.2016.02.037.

8. Pöry S, Vattulainen I: Role of charged lipids in membrane structures - insight given by simulations. Biochim Biophys Acta 2016 http://dx.doi.org/10.1016/j.bbamem.2016.03.016.

9. Aponte-Santamaría C, Briones R, Schenk AD, Walz T, de Groot BL: Molecular driving forces defining lipid positions around aquaporin-0. Proc Natl Acad Sci USA 2012, 109:9887-9892.

10. Stansfeld PJ, Jefferys EE, Sansom MSP: Multiscale simulations reveal conserved patterns of lipid interactions with aquaporins. Structure 2013, 21:810-819.

11. Sengupta D, Chattopadhyay A: Molecular dynamics simulations of GPCR-cholesterol interaction: an emerging paradigm. Biochim Biophys Acta 2015, 1846:1775-1782.

12. Schmidt MR, Stansfeld PJ, Tucker SJ, Sansom MSP: Simulation-based prediction of phosphatidylinositol 4,5-bisphosphate binding to an ion channel. Biochemistry 2013, 52:279-281.

13. Kasimova MA, Zaydman MA, Cui J, Tarek M: PIP2-dependent exoeylisis is prominent in K+ ions - coordinated interactions between S4-S5 and S6. Sci Rep 2015, 5:7474.

14. Khelashvili G, Stanley N, Sahai MA, Medina J, LeVine MV, Shi L, De Fabritiis G, Weinstein H: Spontaneous inward opening of the dopamine transporter is triggered by PIP2-regulated dynamics of the N-terminus. ACS Chem Neurosci 2015, 6:1825-1837. Unbiased atomistic MD simulations explore the interaction of PIP2 with the dopamine transporter and the mechanism by which PIP2 can cause inward opening of the transporter.

15. Hedger G, Sansom MSP, Koldso H: The juxtamembrane regions of human receptor tyrosine kinases exhibit conserved interaction sites with anionic lipids. Sci Rep 2015, 5:9198. High throughput study of lipid-protein interactions, comparing anionic lipid interactions across 58 members of the human receptor tyrosine kinase family.

16. Hall BA, Halim KBA, Buyan A, Emmanouil B, Sansom MSP: Sidekick for membrane simulations: automated ensemble molecular dynamics simulations of transmembrane helices. J Chem Theory Comput 2014, 10:2165-2175.

17. Wassenaar TA, Pluhackova K, Moussatova A, Sengupta D, Marrink SJ, Tielman DP, Böckmann RA: High-throughput simulations of dimer and trimer assembly of membrane proteins. The DAFT approach. J Chem Theory Comput 2015, 11:2278-2291.

18. Hedger G, Koldso H, Sansom MSP: Free energy landscape of lipid interactions with regulatory binding sites on the transmembrane domain of the EGF receptor. J Phys Chem B 2016 http://dx.doi.org/10.1021/acs.jpcb.5b01387. Atomistic simulation of intact EGF receptor and its interaction with the membrane.

19. Arkhipov A, Shan Y, Kim ET, Shaw DE: Membrane interaction of bound ligands contributes to the negative binding cooperativity of the EGF receptor. PLoS Comput Biol 2014, 10:e1003742. Atomistic simulation of intact EGF receptor and its interaction with the membrane.

20. Kaszuba K, Grzybek M, Orłowski A, Danne R, Rog T, Simons K, Coskun Ü, Vattulainen I: N-Glycosylation as determinant of epidermal growth factor receptor conformation in membranes. Proc Natl Acad Sci USA 2015, 112:2-7. Simulations of the interaction of an EGF receptor with the membrane, demonstrating the importance of considering protein glycosylation.

21. Chavent M, Seiradake E, Jones EY, Sansom MSP: Structures of the EphA2 receptor at the membrane: role of lipid interactions. Structure 2015, 24:337-347.

22. Aramane C, Mazat J, Elezgaray J, Marrink SJ, Periolo X: Evidence for cardiolipin binding sites on the membrane-exposed surface of the cytochrome bc2. J Am Chem Soc 2013, 135:3112-3120.

23. Aramane C, Marrink SJ, Periolo X: Identification of cardiolipin binding sites on cytochrome c oxidase at the entrance of proton channels. Sci Rep 2013, 3:1263. One of the first instances of CG potential of mean force calculations to derive free energy landscapes for lipid interaction with a membrane protein.
Molecular dynamics simulations of membranes Chavent, Duncan and Sansom

References

24. Khakbaz P, Klauda JB: Probing the importance of lipid diversity in cell membranes via molecular simulation. Chem Phys Lipids 2015, 192:12-22.

25. Piotas C, Dahl ACE, Rasmussen T, Mahendran KR, Smith TK, Marius P, Gault J, Banda T, Rasmussen A, Miller S et al.: The role of lipids in mechanosensations. Nat Struct Mol Biol 2015, 22:991-998.

26. Kalli AC, Sansom MSP, Reithmeier RaF: Molecular dynamics simulations of the bacterial UraA H+–Uracil symporter in lipid bilayers reveal a closed state and a selective interaction with cardiolipin. PLoS Comput Biol 2015, 11:e1004123.

27. Parkin J, Chavent M, Khalid S: Molecular simulations of gram-negative bacterial membranes: a vignette of some recent successes. Biophys J 2015, 109:461-468.

28. Pavlova A, Hwang H, Lundquist K, BalNSE C, Gumbart JC, Noskov S: Living on the edge: simulations of bacterial outer membrane proteins. Biochim Biophys Acta 2016, 1858:1753-1759.

29. Wu EL, Fleming PJ, Yeom MS, Widmalm G, Klauda JB,* Fleming KG, lm W: E. coli outer membrane and interactions with OmpLA. Biophys J 2014, 106:2483-2502.

30. Ma H, Iruy advised FJ, Jiang W, Nangia S: Simulating gram-negative bacterial outer membrane: a coarse grain model. J Phys Chem B 2015, 119:14668-14882.

31. Piggot TJ, Holdbrooke DA, Khalid S: Conformational dynamics and membrane interactions of the E. coli outer membrane protein FecA: a molecular dynamics simulation study. Biochim Biophys Acta 2013, 1829:284-293.

32. Patel DS, Re S, Wu EL, Qi Y, Klebba PE, Widmalm G, Yeom MS, Sugita Y, Im W: Dynamics and interactions of OmpF and LPS: influence on pore accessibility and ion permeability. Biophys J 2016, 110:930-938.

33. Kalli AC, Sansom MSP: Interactions of peripheral proteins with model membranes as viewed by molecular dynamics simulations. Biochimica et Biophysica Acta 2014, 42:1418-1424.

34. Kalli AC, Devaney L, Sansom MSP: Interactions of PTEN proteins with phosphatidyl inositol phosphates: insights from molecular dynamics simulations of PTEN and VSP. Biochemistry 2014, 53:1724-1732.

35. Naughton FB, Kalli AC, Sansom MSP: Association of peripheral membrane proteins with membranes; free energy of binding of GRP1 PH domain with PIP-containing model bilayers. J Phys Chem B 2011, 7:1219-1224.

36. Lai CL, Srivastava A, Pilling C, Chase AR, Falke JJ, Voth GA: Molecular mechanism of membrane binding of the GRP1 PH domain. J Mol Biol 2013, 425:3073-3090.

37. Vanni S, Hirose H, Barello H, Antony B, Gautier R: A sub-nanometre view of how membrane curvature and composition modulate lipid packing and protein recruitment. Nat Commun 2014, 5:4916.

38. Kodsdh H, Shorthouse D, Helle J, Sansom MSP: Lipid clustering correlates with membrane curvature as revealed by molecular simulation of complex lipid bilayers. PLoS Comput Biol 2014, 10:e1003911.

39. Ingölfsdóttir HJ, Melo MN, Van Eerden FJ, Arancé C, López CA, Wassenaar TA, Pereira X, De Vries AH, Tieleman DP, Marrink SJ: Lipid organization of the plasma membrane. J Am Chem Soc 2014, 136:14554-14559.

40. van Eerden FJ, de Jong DH, de Vries AH, Wassenaar TA, Marrink SJ: Characterization of thylakoid lipid membranes from cyanobacteria and higher plants by molecular dynamics simulations. Biochim Biophys Acta 2015, 1848:1319-1330.

41. Apajalahti T, Niemel P, Govindan PN, Miettinen MS, Salonen E, Marrink SJ, Vattulainen I: Concerted diffusion of lipids in raft-like membranes. Faraday Discuss 2010, 144:411-430.

42. Javanainen M, Hammaren H, Monticelli L, Jeon J-H, Miettinen MS, Martinez-Seara H, Metzler R, Vattulainen I: Anomalous and normal diffusion of proteins and lipids in crowded lipid membranes. Faraday Discuss 2013, 161:397-417.

43. Goose JE, Sansom MSP: Reduced lateral mobility of lipids and proteins in crowded membranes. PLoS Comput Biol 2013, 9:e1003033.

44. Revese the complex interplay between protein and lipid diffusion in a crowded model membrane.

45. Iversen L, Mathiasen S, Larsen JB, Stamou D: Membrane curvature bends the laws of physics and chemistry. Nat Chem Biol 2015, 11:822-825.

46. Guigas G, Weiss M: Effects of protein crowding on membrane systems. Biochim Biophys Acta 2015 http://dx.doi.org/10.1016/j.bbamem.2015.12.021.

47. Scott AJ, Sandor ML, Gawinich K, Pastor RW, Lyman E: The molecular structure of the liquid-ordered phase of lipid bilayers. J Am Chem Soc 2014, 136:725-732.

48. Periolo X, Kraep AM, Sakmar TP, Marrink SJ, Huber T: Structural determinants of the supramolecular organization of G protein-coupled receptors in bilayers. J Am Chem Soc 2012, 134:10959-10965.

49. An early use of CG simulation to explore protein–protein interactions within a lipid bilayer.

50. Provadi D, Boz MB, Johnston JM, Filizola M: Preferred supramolecular organization and dimer interfaces of opioid receptors from simulated self-association. PLoS Comput Biol 2015, 11:e1004148.

51. Mondal S, Johnston JM, Wang H, Khelashvili G, Filizola M, Weinstein H: Membrane driven spatial organization of GPCRs. Sci Rep 2013, 3:2909.

52. Guixá-González R, Javanainen M, Gómez-Soler M, Cordobbilla B, Domingo JC, Sanz F, Pastor M, Ciruela F, Martinez-Seara H, Selent J: Membrane omega-3 fatty acids modulate the oligomerisation kinetics of adenosine A3 and dopamine D2 receptors. Sci Rep 2016, 6:19839.

53. Kodsd H, Sansom MSP: Organization and dynamics of receptor proteins in a plasma membrane. J Am Chem Soc 2015, 137:14694-14704.

54. Over 100 receptors are simulated in a model plasma membrane revealing the complex interplay of protein-protein and protein-lipid interactions.

55. Arnarz C, Marrink SJ, Periolo X: Molecular mechanism of cardiolipin-mediated assembly of respiratory chain supercomplexes. Chem Soc Rev 2016 http://dx.doi.org/10.1039/ C5CS04664E.

56. Simulations of multiple copies of complexes III and IV in a model of the inner mitochondrial membrane reveal how cardiolipin may mediate protein–protein interactions.

57. Dunton TA, Goose JE, Gavaghan DJ, Sansom MSP, Osborne JM: The free energy landscape of dimerization of a membrane protein, NanC. PLoS Comput Biol 2014, 10:e1003417.

58. Rassam P, Copeland NA, Birkozol O, Tóth C, Chavent M, Duncan AL, Cross SJ, Housden NG, Kaminska R, Seger U et al.: Supramolecular assemblies underpin turnover of outer membrane proteins in bacteria. Nature 2015, 253:333-336.

59. Fluorescence microscopy and MD simulations are combined to uncover the mechanism of E. coli outer membrane turnover.

60. Davies KM, Anselmi C, Wittig I, Faraldo-Gómez JD, Kühbrandt W: Structure of the yeast F1Fo-ATP synthase dimer and its role in shaping the mitochondrial cristae. Proc Natl Acad Sci USA 2012, 108:14121-14126.
56. Janoal L, Li Z, Hancock JF, Gorfe AA: Organization, dynamics, and segregation of Ras nanoclusters in membrane domains. Proc Natl Acad Sci USA 2012, 109:8097-8102.

57. Jeffrey E, Sansom MSP, Fowler PW: NRas slows the rate at which a model lipid bilayer phase separates. Faraday Discuss 2014, 169:209-223.

58. Braun AR, Lacy MM, Ducas VC, Rhoades E, Sachs JN: α-Synuclein-induced membrane remodeling is driven by binding affinity, partition depth, and interleaflet order asymmetry. J Am Chem Soc 2014, 136:9962-9972.

59. Milovanovic D, Honigmann A, Koike S, Göttert F, Pähler G, Junius M, Möller S, Diederichsen U, Janshoff A, Grubmüller H et al.: Hydrophobic mismatch sorts SNARE proteins into distinct membrane domains. Nat Commun 2015, 6:5984.

60. Kutzner C, Päl S, Fechner M, Etschmann A, De Groot BL, Grubmüller H: Best bang for your buck: GPU nodes for GROMACS biomolecular simulations. J Comput Chem 2015, 36:1990-2008.

61. Prönk S, Pouya I, Lundborg M, Rotsko G, Kasson PM, Lindahl E: Molecular simulation workflows as parallel algorithms: the execution engine of Copernicus, a distributed high-performance computing platform. J Chem Theory Comput 2015, 11:2600-2608.

62. Takamori S, Holt M, Stenius K, Lemke EA, Gronenborg M, Riedel D, Urlaub H, Schenck S, Brügger B, Ringler P et al.: Molecular anatomy of a trafficking organelle. Cell 2006, 127:831-846.

63. Grime JMA, Voth GA: Early stages of the HIV-1 capsid protein: lattice formation. Biophys J 2012, 103:1774-1783.

64. Zhao G, Perilla JR, Yufenyuy El, Meng X, Chen B, Ning J, Ahn J, Gronenborn AM, Schulten K, Aiken C et al.: Mature HIV-1 capsid structure by cryo-electron microscopy and all-atom molecular dynamics. Nature 2013, 497:643-648.

65. Reddy T, Shorthouse D, Parton DL, Jeffrey E, Fowler PW, Chavent M, Baaden M, Sansom MSP: Nothing to sneeze at: a dynamic and integrative computational model of an influenza A virion. Structure 2015, 23:384-397.

66. CG simulation of an influenza virion, revealing anomalous diffusion and raft-like dynamics of the membrane of the viral envelope.

67. Reddy T, Sansom MSP: The role of the membrane in the structure and biophysical robustness of the dengue virion envelope. Structure 2016, 24:375-382.

68. Reddy T, Sansom MSP: Computational virology: from the inside out. Biochim Biophys Acta 2016, 1858:1610-1618.