Single-cell multiomics reveals the complexity of TGFβ signalling to chromatin in iPSC-derived kidney organoids

Jessica L. Davis1, Ciaran Kennedy1, Shane Clerkin1, Niall J. Treacy1, Thomas Dodd1, Catherine Moss2, Alison Murphy2, Derek P. Brazil3, Gerard Cagney1, Dermot F. Brougham4, Rabi Murad5, Darren Finlay5, Kristiina Vuori5 & John Crean1

TGFβ1 plays a regulatory role in the determination of renal cell fate and the progression of renal fibrosis. Here we show an association between SMAD3 and the histone methyltransferase, EZH2, during cell differentiation; ChIP-seq revealed that SMAD3 and EZH2 co-occupy the genome in iPSCs and in iPSC-derived nephron progenitors. Through integration of single cell gene expression and epigenome profiling, we identified de novo ACTA2+/POSTN+ myofibroblasts in kidney organoids treated with TGFβ1, characterised by increased SMAD3-dependent cis chromatin accessibility and gene expression associated with fibroblast activation. We have identified fibrosis-associated regulons characterised by enrichment of SMAD3, AP1, the ETS family of transcription factors, and NUAK1, CREB3L1, and RARG, corresponding to enriched motifs at accessible loci identified by scATACseq. Treatment with the EZH2 specific inhibitor GSK343, blocked SMAD3-dependent cis co-accessibility and inhibited myofibroblast activation. This mechanism, through which TGFβ signals directly to chromatin, represents a critical determinant of fibrotic, differentiated states.

1 UCD School of Biomolecular and Biomedical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland. 2 UCD Genomics Core Facility, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland. 3 Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, BT9 7BL Northern Ireland, UK. 4 UCD School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland. 5 Sanford Burnham Prebys Institute for Medical Discovery, La Jolla, CA 92037, USA. ✉email: john.crean@ucd.ie
Transforming growth factor beta (TGFβ) is a multifunctional regulator, centrally involved in normal homeostasis as well as stemness and regeneration. Dysregulation of TGFβ signalling is implicated in several diseases and inflammatory pathologies; notably in the context of renal fibrosis, TGFβ1 plays a central role as a pro-fibrotic factor and is pivotal for driving the development and progression of end-stage renal disease. TGFβ1 and SMAD2/3 signalling is increased in several experimental animal models and in patients with kidney disease and its therapeutic potential confirmed as neutralising antibodies and antisense oligodeoxynucleotides against TGFβ and its receptors attenuate fibrotic responses in multiple models.

Transcriptional activation is central to the processes regulating renal cell fate and is modulated by chromatin accessibility at regulatory loci such as promoters and enhancers. Genome-wide approaches, such as DNA-seq and ATAC-seq, mapping dynamic changes in chromatin accessibility during reprogramming to induced pluripotent stem cells (iPSCs), identified that nucleosome occupancy and open chromatin regions are dynamically altered in regulatory regions, especially at the binding sites for reprogramming transcription factors. The epigenetic mechanisms that contribute to cellular differentiation and maturation during organ development and in response to altered metabolic states in disease are under intense investigation, as this is widely recognised as a crucial step toward advancing regenerative therapeutics. Central to this process is the polycomb repressive complex 2 (PRC2), a chromatin remodelling complex that mediates silencing of gene expression, yet the identification of polycomb response elements remains elusive.

We recently identified an interaction between SMAD3 and EZH2 during stem cell differentiation that we hypothesise plays a key role in regulating chromatin access in the compromised microenvironment of the fibrotic kidney. The prevalence of SMAD3 and EZH2 at enhancers and superenhancers strongly suggests a role in the modulation of chromatin access. Superenhancers underlie the identity, lineage commitment and plasticity of stem cells in vivo and are likely to be centrally involved in the determination of cell fate where it has been suggested that they are subject to “super-silencing”, marked by loss of H3K27ac and gain of H3K27me3. Importantly, the dynamics of enhancers and superenhancers during fate determination, for example during wound repair or the acquisition of plasticity, are particularly sensitive to their microenvironment and thus reflect metabolic memory. The coupling of lineage determining factors with SMAD3 and EZH2 to these regulatory regions, is therefore likely to influence the chromatin dynamics required for phenotypic transitions in multiple contexts. Recent breakthroughs highlight the remarkable self-organising ability of pluripotent stem cells to form kidney organoids as a platform for functional, interrogative studies of gene function in development and disease.

Here, we use iPSC-derived kidney organoids to establish a model of cellular differentiation in renal fibrosis. Using multimodal single cell analysis, we show that treatment of organoids with TGFβ1 induced differentiation of resident fibroblasts into myofibroblasts, which was accompanied by the increased expression of fibrosis-associated genes and changes in chromatin accessibility. Inhibition of EZH2 attenuated fibrotic gene expression and TGFβ1-induced changes in chromatin accessibility. The results from this study indicate that the manipulation of the association between SMAD3 and EZH2 may be a useful therapeutic strategy for the resolution of renal fibrosis.

Results

Genome-wide localisation of SMAD3 and EZH2 in iPSCs and iPSC-derived nephron progenitor cells. Having previously identified an association between SMAD3 and EZH2 in multiple contexts, we first investigated the genome-wide localisation of SMAD3 and the core PRC2 component, EZH2, in human iPSCs and in iPSC-derived nephron progenitor cell (NPC) populations using ChIP-seq. The experiment is summarised as a schematic in Fig. 1a. iPSCs were confirmed as pluripotent, expressing OCT4; cells were differentiated for one week according to and were positive for the primitive streak marker, T/Brachury, after 3 days of differentiation (Fig. 1b). By day 7, cells were negative for OCT4 and T, while expressing markers of early nephrogenesis such as HOXD11 and PAX2 (Fig. 1b). EZH2 expression was sustained during differentiation whereas SMAD3 was increased during differentiation, coincident with increased H3K4me3 and H3K27me3 (Fig. 1c). ChIP-seq identified 971 SMAD3 peaks and 8228 EZH2 peaks at Day 0, and 2416 SMAD3 peaks and 1912 EZH2 peaks at Day 7. Over 70% of SMAD3 peaks at Day 0 were located at intergenic or distal regulatory regions. Similar data was observed for EZH2. By day 7, 2416 SMAD3 peaks and 1912 EZH2 peaks were apparent with broadly similar genomic distribution (Supplementary Fig. 1). SMAD3 co-occupies the genome with a variety of fate specifying master transcription factors. In stem cells, OCT4 is a SMAD3 target gene and together they form a regulatory circuit to promote self-renewal; SMAD3 peaks were apparent in iPSCs in the cis regulatory enhancer region of the POU5F1 locus, coding for OCT4 (Supplementary Fig. 1).

We further observed that SMAD3 and EZH2 bind similar sites across the genome, confirming their association (Fig. 1d, g). 656 SMAD3 peaks (67.46%) directly overlap with EZH2 peaks in iPSCs (Fig. 1e) while 574 (23.76%) overlap in NPCs (Fig. 1h). Genomic annotation of the overlapping binding sites revealed that most peaks were at intergenic or distal regulatory regions (Supplementary Fig. 1). Using ChromHMM data from H1-ESCs and foetal kidney, we found that overlapping regions in iPSCs and NPCs were mostly enriched for heterochromatin and repressed regions (Supplementary Fig. 1). Motif analysis revealed enrichment of the transcription factors TFAP2A, TCF7, and BACH2/BACH1 in iPSCs (Fig. 1f), and TCF7, PBX1, and FOXC2 in NPCs (Fig. 1i). Regions at both days were expectedly enriched for the SMAD binding element (Fig. 1f, i). By day 7, a similar number of SMAD3 and EZH2 co-occupied sites were apparent (Supplementary Fig. 1b), however we found fewer EZH2 bound sites in the differentiated progenitor population compared to iPSCs, with a concomitant increase in SMAD3 bound sites, likely reflecting SMAD3 binding to open promoters and enhancers in differentiated cells.

TGFβ1 induces differentiation and activation of fibroblasts in iPSC-derived kidney organoids. The complex heterogeneity of iPSC-derived kidney organoids has led to their proposal as an attractive model for many aspects of renal disease. To generate kidney organoids to model TGFβ responses, we adapted the protocol of Supplementary Fig. 2a. Characterisation of kidney organoids by immunocytochemistry and transmission electron microscopy is outlined in Supplementary Fig. 2 and is comparable to other published kidney organoids. We performed single cell RNA-sequencing (scRNAseq) to transcriptionally validate and characterise the heterogenous populations of cells within control organoids and those treated with TGFβ1. To identify the cell types within each of the organoids, clusters from the control organoid were used for annotation (Supplementary Fig. 3a, b) and the top differentially expressed genes from each cluster were compared to known markers of the developing kidney as well as marker genes from published kidney organoid protocols and the Human Nephrogenesis Atlas (Supplementary Data 1 and 2). We observed some non-kidney cell populations in the organoid, consistent with single cell data from kidney organoids generated using...
RNA velocity and Phate-based trajectory analysis revealed that Cluster 3 (Nephron progenitors) was most likely the parental cluster of cells for Cluster 0 (Fibroblast 1; Fib1), the PDGFRA$^+$ Cluster 1 (Fibroblast 2; Fib2), and Cluster 2 (Proliferating Fibroblast) (Supplementary Fig. 3c). Additionally, Cluster 5 (Podocyte/SSB/PT) originated partially from these three clusters. The muscle progenitor population (Cluster 10) originated from a portion of Cluster 0 (Stroma 1; S1).

To identify the cell types within TGFβ1 treated organoids, 4057 cells were integrated and clustered together with the untreated organoid. Two distinct populations were induced by TGFβ1 (Fig. 2d), one of which bears similarity to the single cell data of pericyte and myofibroblast populations suggested by others as the major sources of matrix production in chronic kidney disease (Supplementary Fig. 4a, Supplementary Data 3). Cluster 2 (POSTN$^{+/+}$, PDGFRA$^{+/+}$, PDGFRB$^{+/+}$, ACTA2$^{+/+}$) readily identify as activated myofibroblasts whereas the second population, Cluster 3 (VIM$^{+/+}$, COL1A1$^{+/+}$, PDGFRA$^{-/-}$, ACTA2$^{+/+}$) were less easily identifiable but the expression of VIM and COL1A1 indicated that these cells were of a stromal lineage (Fig. 2e and Supplementary Fig. 4b). Interestingly, TGFβ1 also induced the expansion of a population of epithelial-like cells (Kidney Progenitor 2) cluster by 34.3% (Fig. 2d); these cells did not appear to be actively proliferating, nor did they exhibit any signs of epithelial to mesenchymal transition.

The PDGFRA$^{+/+}$ Myofibroblast 1 (MFib1) cluster was marked by the increased expression of periostin (POSTN), transgelin (TAGLN), fibronection (FN1), and α-smooth muscle actin (ACTA2)
indicating that this cluster was mostly comprised of myofibroblast-like cells. Cluster S1 was marked by increased expression of FST, LEFTY2, ADAMTS6, OGN, and SULF2. Both clusters expressed several common genes, most notably several extracellular matrix (ECM) proteins associated with fibrosis including FN1, COL1A1, COL1A2, COL3A1, COL22A1, and the collagen crosslinking enzyme LOX (Supplementary Data 1) as well as fibroblast genes CALD1, PALLD, NCAM1 (Supplementary Fig. 4b). Cells in both clusters were negative for the smooth muscle genes, CNN1 and MYH11 (Supplementary Fig. 4c). Analysis of all marker genes in control and TGFβ1 treated organoids revealed striking similarity with Fib1 and Fib2, suggesting that these cells had differentiated in response to TGFβ1.

Fig. 2 Single-cell RNA-seq characterisation of iPSC-derived kidney organoids after treatment with TGFβ1. a) UMAP projection of 8176 single cells (4119 Control/4057 TGFβ1) revealing 17 distinct clusters in iPSC-derived kidney organoids, including new distinct populations of stromal and muscle like cells in response to TGFβ1. Each dot represents a single cell, colour coded for control (red) and TGFβ1 (red). b) RNA Velocity Map illustrating altered trajectories of cells in organoid in response to TGFβ1. Long arrows correspond to changes in gene expression and are undergoing differentiation while short arrows represent terminally differentiated cells. c) Cluster tree illustrating relationship between new clusters. d) Three new populations of cells were apparent in response to TGFβ1 and annotated as Mfib1, S1 and Kp2, corresponding to differentiating myofibroblast-like and epithelial populations, respectively. e) Expression of PDGFRA, PDGFRB, POSTN, ACTA2, and OGN in Fib1-2 and Mfib1 and S1 clusters. f) Heatmap of selected marker genes used to annotate the Mfib1 and S1 clusters. g) Cell Phate Map illustrating fate trajectories of Fib 1, Fib 2, Mfib1, and S1 within the organoid. h) Lineage tree of the fibroblast and stromal clusters in response to TGFβ1.
response to TGFβ1 (Fig. 2c, f); Phate trajectories and RNA velocity analysis similarly suggested that Fib2 was the parent cluster of MFib1 while Fib1 was the parent cluster of S1 (Fig. 2b, c, g, h). TGFβ target gene and core matrisome gene scores were significantly higher in clusters MFib1 and S1 (Supplementary Fig. 5a, b).

Differential gene expression (DEG) analysis was performed to understand the variation between the newly formed stromal clusters and their parent clusters. 491 genes were increased in MFib1 compared to its parent cluster Fib2 (Supplementary Data 4); 349 genes were significantly increased in S1 compared to its parent cluster Fib1. In response to TGFβ1, MFib1 and S1 had increased expression of ACTA2, POSTN, FN1, FST, TAGLN, SCX, CDH2, OGN, and several collagens (Fig. 3a-c and Supplementary Data 4). Expression of OGN, COL22A1, TAGLN, FIBIN, RGCC, ACTG2, and ACTA2 were exclusive to the new clusters and are generally accepted marker genes of fibroblast-to-myofibroblast transition.22-25 (Fig. 3c, g). Of note, immunofluorescence confirmed significantly increased staining for αSMA and periostin in interstitial/stromal cells in response to TGFβ1 (Fig. 3d–f). In addition, elevated picrosirius red staining was observed in response to TGFβ1 (Supplementary Fig. 6a, b). Several genes associated with myofibroblasts were also highly expressed in MFib1 compared to Fib1-2 and S1 such as POSTN, FGF18, MGP, and BGN (Supplementary Fig. 7a). Protein network maps for differentially upregulated genes in MFib1 revealed a tight protein-protein interaction (PPI) network significantly associated with the biological processes of ECM organisation, organ development, and morphogenesis (Supplementary Fig. 7b). In S1, expression of LEFTY2, PAX7, DLK1, and SYT6 was observed compared to the other stromal clusters (Supplementary Fig. 7c). PPIs for differentially upregulated genes in S1 were significantly associated with developmental processes and cell differentiation (Supplementary Fig. 7d).

Differential expression analysis also revealed that 112 genes were downregulated in MFib1 compared to Fib2 and these genes included ID3, ID1, NR2F1, and VEGFD (Supplementary Fig. 8a). In S1, 176 genes were differentially downregulated compared to Fib1 and these genes included MET, EDN3, IGDCC3, and ST1 (Supplementary Fig. 8c). PPIs for genes differentially downregulated in MFib1 and S1 in response to TGFβ1 were enriched for the GO terms associated with DNA replication, organic substance biosynthetic processes, and epithelial development (Supplementary Fig. 8c, d). In summary, TGFβ1 treatment of kidney organoids induces differentiation of stromal clusters, activation of fibroblasts, and stimulates fibroblast-to-myofibroblast transition.

Next, we aimed to assess whether genes upregulated in response to TGFβ1 were also associated with renal fibrosis. Genes upregulated within MFib1 and S1 in response to TGFβ1 were compared with publicly available bulk RNA-seq data from the tubulointerstitium of healthy living donors (n = 9) and patients with renal fibrosis (n = 10; www.nephroseq.org). A significant decline in glomerular filtration rate (GFR) confirmed that patients had developed kidney disease (Supplementary Fig. 9a). A large proportion of upregulated DEGs were also significantly increased in fibrotic kidney (n = 10) compared to healthy living control (n = 9; Supplementary Fig. 9a, b). This indicates that TGFβ1 treatment of kidney organoids induces a similar fibrotic response to that observed in vivo.

GSK343 attenuates αSMA and periostin expression in TGFβ1 treated kidney organoids. Current evidence suggests that EZH2 likely regulates activation of fibrogenic gene transcription by interacting with the TGFβ1 signalling pathway.26-29. Given our previous observations on SMAD3 and EZH2, we hypothesised that targeting this interaction might change the response of the stromal populations to TGFβ1. Kidney organoids were treated with the selective and highly potent S-adenosyl-L-methionine competitive EZH2 inhibitor, GSK34330. We mapped the single cell transcriptome of kidney organoids treated with GSK343 and TGFβ1. During processing, low-quality cells were removed and 3584 cells for GSK343 and 3823 cells for TGFβ1 + GSK343 were integrated and clustered together with the control and TGFβ1 organoids as previously described. Kidney organoids treated with GSK343 alone served as a control and single cell analysis revealed that these organoids were very similar to the control organoids with no apparent cell differentiation or significant changes in cell number per cluster (Fig. 4a, b). Clusters in TGFβ1 + GSK343 organoids mapped very well to TGFβ1 and the number and proportion of cells within each cluster was extremely similar (Fig. 4a, b). In addition, the proliferation of the Kidney Progenitor 2 cluster was also evident in TGFβ1 + GSK343 organoids. At the gene expression level, pre-treatment of organoids with GSK343 before TGFβ1 treatment did not change the identity of the MFib1 and S1 clusters (Fig. 4a, c); however, downregulation of several myofibroblast associated genes (ACTA2, POSTN, COL4A1, and SULF2) in the PDGFRAα+ MFib1 cluster was apparent (Fig. 4c). In addition, immunofluorescence analysis revealed that pretreatment with GSK343 ablated the increased expression of αSMA and periostin within the interstitial/stromal cells of the kidney organoids in response to TGFβ1 (Fig. 4d–f). Overall, we show that inhibition of EZH2 in kidney organoids attenuates the expression of genes associated with kidney fibrosis.

Chromatin accessibility is dynamically regulated by TGFβ1 and EZH2 in iPSC-derived kidney organoids. Transcriptional responses to TGFβ1 are to a large degree shaped by the interaction of activated SMAD proteins with chromatin. TGFβ superfamily members exert their transcriptional control in part through the regulation of enhancer activity and through the direct interaction of SMAD complexes with promoters. To further probe the relationship between TGFβ1 and EZH2 at the chromatin level, we employed single cell ATAC-seq (scATACseq) to map genome accessibility within stromal cells during fibroblast-to-myofibroblast transition in iPSC-derived organoids exposed to TGFβ1 in the presence or absence of GSK343.

Using multimodal integration, we characterised the cell types present in our scATACseq dataset by comparing chromatin accessibility profiles to gene expression. Briefly, to interpret the scATACseq clusters, we used the annotated scRNAseq dataset to predict the cell types present within the scATACseq dataset. Annotation of the scATACseq clusters was performed by creating a gene-activity matrix using a measure of chromatin accessibility within the gene body and promoter of protein-coding genes. A set of integration anchors were identified between the scRNAseq dataset and the gene-activity matrix which allowed for the prediction and assignment of cell types within the scATACseq dataset. Following integration, labels were transferred from the annotated clusters in the scRNAseq dataset to the predicted clusters in the scATACseq dataset (Fig. 5a); Gene activity at promoters was generally a reliable predictor of gene expression (Supplementary Fig. 10a, b) and the key marker genes chosen for cluster annotation shared correlation patterns across the datasets.

To assess global changes in chromatin accessibility, fragments were counted and scored based on their proximity to genomic locations such as the Transcription Start Site (TSS), promoters, enhancers, and DNase I hypersensitivity sites. TGFβ1 treatment increased global accessibility at the TSS, promoters, and DNase I hypersensitivity sites (Fig. 5b and Supplementary Data 5). Significant changes were observed at enhancers in response to
Fig. 3 TGFβ1 induces the differentiation of stromal clusters and activation of fibroblasts. a UMAPs of differentially upregulated genes in TGFβ1-treated organoids. b Scaled expression of collagens in Fib1-2 and MFib1, and S1. c Violin plots of differentially expressed genes in MFib1 and S1 compared to parent populations Fib1-2. d Organoids were treated with TGFβ1 for 48 h. TGFβ1 induced expression of α-smooth muscle actin (αSMA) and periostin (POSTN) in kidney organoids relative to control Scale bar: Control, 200 µm, TGFβ1, 150 µm. Images are representative of three independent experiments. e αSMA/DAPI area and f POSTN/DAPI area in untreated or TGFβ1 treated organoids. Each symbol represents the mean of 18 randomly imaged fields, taken from one organoid per condition, from three independent experiments. Data are presented as the mean ± SEM. *P ≤ 0.01, **P ≤ 0.0015. g Single-cell trajectory analysis plots of gene expression changes for ACTA2, FN1, COL22A1, COL14A1, and POSTN in Fib2 and MFib1. Cells are coloured by pseudotime.
Fig. 4 GSK343 attenuates a subset of TGFβ1-induced fibrotic gene expression. a Integrated UMAP of scRNAseq data for all conditions. b Bar chart depicting the percentage of cells per cluster in each sample. c Scaled gene expression for MFib1 in control, TGFβ1, and TGFβ1 + GSK343 treated organoids. d Organoids were pre-treated with the EZH2 inhibitor GSK343 for 1 h prior to treatment with TGFβ1 for 48 h. Immunostaining of αSMA and periostin (POSTN) in TGFβ1−, and TGFβ1 + GSK343-treated organoids. Scale bar 150 μm. Images are representative of three independent experiments. e αSMA/DAPI area and f POSTN/DAPI area in TGFβ1 and TGFβ1 + GSK343 treated organoids. Each symbol represents the mean of 18 randomly imaged fields, taken from one organoid per condition, from three independent experiments. Data are presented as the mean ± SEM. **P ≤ 0.01 (αSMA/DAPI area = P ≤ 0.0083; POSTN/DAPI area = P ≤ 0.0017).
TGFβ1 and pre-treatment with GSK343 prior to TGFβ1 generally prevented these accessibility changes (Fig. 5b). To assess changes in chromatin accessibility between the myofibroblast cluster, MFib1, and its parent cluster, Fib2, we scored the number of fragments present at the TSS, promoters, enhancers, and DNase I hypersensitivity sites (Fig. 5c, Supplementary Data 6). In response to TGFβ1, accessibility was significantly increased in both cell clusters at promoters, TSS and DNase I hypersensitivity regions. Conversely, a decrease in accessibility was noted at enhancers within MFib1. Again, pre-treatment with
GSK3δ prior to TGFβ1 significantly prevented these accessibility changes (Fig. 5c).

We next investigated differences in chromatin accessibility between MFib1 and Fib2 using Signac. 10,678 Differentially Accessible (DA) regions were identified in MFib1 while 10,222 regions were identified in Fib2 (Supplementary Data 7). Chromatin accessibility at cis regulatory elements such as enhancers and promoters signify reduced nucleosome density indicating the binding of sequence specific transcription factors. Regulatory elements tend to cluster to form co-accessibility networks that regulate gene expression31. To better understand the mechanism by which TGFβ1 controls gene expression at distal elements, we used Cicero to predict cis regulatory DNA interactions in control, TGFβ1, and TGFβ1 + GSK3δ treated organoids for differentially expressed genes identified in MFib1. Differentially upregulated genes in MFib1 compared to Fib2 included sMA (ACTA2) and follistatin (FST). For both these genes, TGFβ1 treatment changed co-accessibility between enhancer and promoter sites, whereas pre-treatment with GSK3δ reversed this increase in a similar manner to that observed in control (Fig. 5d). These results indicate that EZH2 may be required for TGFβ1 mediated changes in chromatin co-accessibility and enhancer-promoter interactions.

Cis co-accessibility networks are families of chromatin regions that can be used to predict looping interactions between regulatory elements that are likely to be located in close proximity to one another31. We next investigated whether TGFβ1 increased co-accessibility links between regulatory elements at putative enhancer locations identified to be occupied by both SMAD3 and EZH2 in our iPSC and NPC ChIP-seq experiments. In both iPSCs and NPCs, TGFβ1 increased regulatory interactions between distal elements up- and down-stream of the putative enhancer regions. Connections between these presumed co-accessible regions were not observed in control or in organoids pre-treated with GSK3δ (Supplementary Fig. 11).

Enhancers and promoters can associate via long-range interactions and this is partially regulated by transcription factors32. We used chromVAR to predict transcription factor ‘activity’ based on the presence of binding motifs for differentially accessible regions identified within Fib2 and MFib1. We observed increased motif activity for SMAD3, and members of the AP1 family such as JUNB and FOSL2 (Fig. 6a, b), that were exclusive to differentially accessible regions identified in MFib1 in response to TGFβ1. Treatment with GSK3δ attenuated this activity (Fig. 6b). Increased footprint depth was also observed for SMAD3, FOSL2, and JUNB (Fig. 6a, c, d). We next employed SCENIC (Single-Cell regulatory Network Inference and Clustering), which defines core transcription factors with their positively regulated target genes in single cells, to investigate this regulatory network in the scRNAseq data. Previous studies have identified AP1 as a core modulator of TGFβ activity33–35. We similarly identified high AP1 regulon activity in MFib1 in response to TGFβ1 (Fig. 6e, f and Supplementary Data 8), among several novel regulons including ETS family members and other fibrosis-associated transcription factors (Fig. 6e and Supplementary Data 8). This establishes that the TGFβ1 response requires the AP1 regulon for fibroblast-to-myofibroblast transition in kidney organoids and identifies a transcriptional regulatory mechanism centred on the ETS family and another fibrosis-associated transcription factors including NUAK1, CREB3L1 and RARG constituting a new regulatory hierarchy.

Discussion
The biochemical processes that contribute to the initiation and progression of renal fibrosis are multi-factorial in nature and consist of the complex interplay between numerous metabolic and growth factor signalling pathways. At present, intense efforts have been dedicated to target pathogenic mediators of renal fibrosis such as oxidative stress, inflammation, AGEs, and growth factors such as TGFβ1, PDGF, and CTGF (reviewed in ref. 36). Some of these strategies have been successful in delaying progression in human clinical trials but most have not restored kidney function.

This study aimed to model TGFβ1-induced renal injury using iPSC-derived kidney organoids. A major limitation of this model is organoid immaturity, for example, the population of podocyte-like cells within the organoid are at best immature precursors; although they stained positive for WT1, positive staining for slit diaphragm markers like nephrin and podocin was somewhat equivocal. While acknowledging that the organoids represent immature embryonic-like tissues nevertheless, the major findings from this study were subsequently validated by multiple modalities. Within the organoid, three novel clusters were identified in response to TGFβ1 corresponding to two differentiating stromal populations and a differentiating epithelial progenitor population. In fibrosis, TGFβ1-induced epigenetic modifications such as DNA methylation and post-translational histone modifications are required to establish and maintain the persistent activation of fibroblasts37,38. In addition, increasing evidence suggests that abnormal expression of EZH2 is associated with enhanced fibrosis and contributes to the pathogenesis of renal disease27,39. SMAD3 is key to regulating cell fate during the maintenance of pluripotency as well as during differentiation in development and disease14,40. It is now well established that SMAD3 cooperates with EZH2 to mediate cell fate decisions in retinal epithelial cells, neuron progenitors, embryonic stem cells, and in activated fibroblasts10,12,39,41. We demonstrated that SMAD3 and EZH2 co-localise at putative enhancers and heterochromatin regions in iPSCs and in iPSC-derived nephron progenitor cells. SMAD3 is important for the maintenance of self-renewal through cooperation with core pluripotency factors and co-repressors12,43. In mouse ESCs, Smad3 and Oct4 interact with PRC2 to maintain the repression of Rip1 to promote genomic stability44. In our ChIP-seq data, regions co-occupied by SMAD3 and EZH2 in iPSCs were largely enriched for co-repressors such as TEAD and BACH2. We propose that SMAD3 is a master regulator of cell fate and cooperates with EZH2 to facilitate and dynamically maintain chromatin states to preserve pluripotency in human iPSCs. SMAD3 is also thought to participate in maintaining the self-renewal of iPSC-derived NPCs45 and in our ChIP-seq data, SMAD3 and EZH2 co-occupied sites originally presumed to be repressive but are likely to be in a more dynamic state. We postulate that SMAD3 and EZH2 regulate the accessibility of
Fig. 6 De novo clusters in response to TGFβ1 represent a “fibrotic” regulon, enriched with motifs for SMAD3 and Fos/Jun.

a. Motif-centric footprinting showing enrichment for SMAD3.

b. Motif activity at accessible regions in MFiβ1 treated with TGFβ1 or TGFβ1 + GSK343, compared to Fib2 (Control). AP1 motif enrichment in myofibroblasts is decreased by inhibition of EZH2.

c. Motif-centric footprinting showing enrichment for factors associated with a “fibrotic” regulon; Shown are representative SCENIC-UMAPs of the regulons from the top enriched motifs (right hand panels), and the correspondence with scATACseq enriched motifs (centre panels).

d. Differentially regulated transcription factor networks (“regulons”) associated with API complex, ETS family, and other fibrosis-associated transcription factors in MFiβ1 compared to its parent cluster Fib2.

e. Blended UMAPs of transcription factor regulon for FOSL2 and JUNB identified by SCENIC in MFiβ1 and S1.
We have shown that pre-treatment of kidney organoids with the selective EZH2 inhibitor, GSK3-43, prior to TGFβ1 results in the attenuation of fibrotic gene expression and this correlates with the inhibition of TGFβ1-induced changes in chromatin accessibility. While GSK3-43 did not significantly change the identity of clusters, several SMAD target genes were clearly downregulated, likely reflecting the pleiotropic nature (SMAD-dependent and non-SMAD dependent) of TGFβ1 signalling. In many contexts, inhibition of EZH2 results in the transcriptional inactivation of the TGFβ1 signalling pathway10,39,48. Furthermore, inhibition of HDACs, which permit repression of gene expression, also results in dampening of the TGFβ1 transcriptional response38,47–49. Previous studies in our lab have shown that double knockdown of both SMAD3 and EZH2 in epithelial cells undergoing trans-differentiation in response to TGFβ results in the complete loss of fibrotic gene expression and retention of the epithelial junction marker, CDH110. This would suggest that SMAD3 appears to require the recognition of compacted chromatin by bind and facilitate chromatin remodelling prior to establishing its transcriptional response. This observation is in line with those of others who have shown that SMAD proteins can bind to inactive chromatin and recruit chromatin remodelers in the absence of a pioneer transcription factor50.

Our study remains somewhat inconclusive pertaining to how SMAD3 and EZH2 interact at the chromatin level, however, we can speculate that EZH2 activity is required for this interaction to take place, in turn suggesting that genomic co-occupancy is a prerequisite; although, this might yet involve additional “linker” proteins as part of a wider complex. In the absence of EZH2, it is possible that phosphorylated SMAD3 persists in a non-complexed form. We suggest that SMAD3 interacts with EZH2 and recruit chromatin accessibility in one of three ways. GSK3/43 binds inside the SET domain overlapping the SAM binding site30,51 therefore inhibiting interactions within the binding pocket. Therefore, a first possibility is that SMAD3 recognises and interacts with EZH2, perhaps at the catalytic SET domain, or alternatively at another site on the EZH2 molecule. A second possibility is that SMAD3 indirectly interacts with EZH2 through miRNAs or a related mechanism. A third potential mechanism by which SMAD3 may recognise the H3K27me3 mark is through interaction with its histone reader (Supplementary Fig. 12). One candidate is the EED subunit of PRC2, which has H3K27me3 binding ability via its WD40 domain. This binding enhances PRC2 activity through a Polycomb-like proteins PHF1 and PHF19, which we detected in EZH2 affinity purification experiments10,12. Both proteins can enhance PRC2 catalytic activity53,54. However, SMAD3 has been shown to bind and form complexes with many histone readers, including those containing plant homeodomains, chromo- or bromodomains that bind and recognise histone modifications to promote SMAD-mediated transcriptional activity, so the range of candidates that SMAD3 may interact with is wide55,56.

To the best of our knowledge, this is the first time that scRNAseq and scATACseq datasets have been integrated to examine TGFβ1-induced changes in chromatin accessibility within fibroblast populations undergoing differentiation to myofibroblasts. Transcriptional regulation by SMAD complexes requires the remodelling of chromatin and this may be facilitated through the cooperation of SMAD3 with other transcription factor complexes. For example, SMAD3 and AP1 binding motifs were highly enriched in the activated myofibroblast cluster. In addition, we identified high AP1 regulon activity in MiFib1 in response to TGFβ1, as well as increased regulon activity for ETS family members and other fibroblastic

Methods

Human iPSC maintenance. All experiments were performed in the human iPSC line HPS11213-balk_2 purchased from the ECACC. iPSCs were maintained on Vitronectin XF (StemCell Technologies, cat. no. 07180) coated plates in Essential 8 Flex (ThermoFisher Scientific, cat. no. A2058501) supplemented with an additional concentration of vitamin and minerals (StemCell Technologies, cat. no. 00872). iPSCs were passaged using 0.05% trypsin-EDTA (Hyclone). Culture media were refreshed every 2-3 days.

Kidney organoid generation. iPSCs at passages 32–38 were differentiated using an adapted protocol from53. Briefly, 15,100 cells per cm² were seeded prior to differentiation. On the day of differentiation (Day 0), medium was switched to STEMdiff APEL2 medium (StemCell Technologies, cat. no. 05275) supplemented with 5 ng/ml Noggin, 0.5 μM PD0325901, 100 μM Y27632. Culture media were refreshed every 2-3 days.

Human iPSC maintenance. All experiments were performed in the human iPSC line HPS11213-balk_2 purchased from the ECACC. iPSCs were maintained on Vitronectin XF (StemCell Technologies, cat. no. 07180) coated plates in Essential 8 Flex (ThermoFisher Scientific, cat. no. A2058501) supplemented with an additional concentration of vitamin and minerals (StemCell Technologies, cat. no. 00872). iPSCs were passaged using 0.05% trypsin-EDTA (Hyclone). Culture media were refreshed every 2-3 days.

Kidney organoid generation. iPSCs at passages 32–38 were differentiated using an adapted protocol from53. Briefly, 15,100 cells per cm² were seeded prior to differentiation. On the day of differentiation (Day 0), medium was switched to STEMdiff APEL2 medium (StemCell Technologies, cat. no. 05275) supplemented with 5 ng/ml Noggin, 0.5 μM PD0325901, 100 μM Y27632. Culture media were refreshed every 2-3 days.

Methods

Human iPSC maintenance. All experiments were performed in the human iPSC line HPS11213-balk_2 purchased from the ECACC. iPSCs were maintained on Vitronectin XF (StemCell Technologies, cat. no. 07180) coated plates in Essential 8 Flex (ThermoFisher Scientific, cat. no. A2058501) supplemented with an additional concentration of vitamin and minerals (StemCell Technologies, cat. no. 00872). iPSCs were passaged using 0.05% trypsin-EDTA (Hyclone). Culture media were refreshed every 2-3 days.

Kidney organoid generation. iPSCs at passages 32–38 were differentiated using an adapted protocol from53. Briefly, 15,100 cells per cm² were seeded prior to differentiation. On the day of differentiation (Day 0), medium was switched to STEMdiff APEL2 medium (StemCell Technologies, cat. no. 05275) supplemented with 5 ng/ml Noggin, 0.5 μM PD0325901, 100 μM Y27632. Culture media were refreshed every 2-3 days.

Methods

Human iPSC maintenance. All experiments were performed in the human iPSC line HPS11213-balk_2 purchased from the ECACC. iPSCs were maintained on Vitronectin XF (StemCell Technologies, cat. no. 07180) coated plates in Essential 8 Flex (ThermoFisher Scientific, cat. no. A2058501) supplemented with an additional concentration of vitamin and minerals (StemCell Technologies, cat. no. 00872). iPSCs were passaged using 0.05% trypsin-EDTA (Hyclone). Culture media were refreshed every 2-3 days.

Kidney organoid generation. iPSCs at passages 32–38 were differentiated using an adapted protocol from53. Briefly, 15,100 cells per cm² were seeded prior to differentiation. On the day of differentiation (Day 0), medium was switched to STEMdiff APEL2 medium (StemCell Technologies, cat. no. 05275) supplemented with 5 ng/ml Noggin, 0.5 μM PD0325901, 100 μM Y27632. Culture media were refreshed every 2-3 days.

Methods

Human iPSC maintenance. All experiments were performed in the human iPSC line HPS11213-balk_2 purchased from the ECACC. iPSCs were maintained on Vitronectin XF (StemCell Technologies, cat. no. 07180) coated plates in Essential 8 Flex (ThermoFisher Scientific, cat. no. A2058501) supplemented with an additional concentration of vitamin and minerals (StemCell Technologies, cat. no. 00872). iPSCs were passaged using 0.05% trypsin-EDTA (Hyclone). Culture media were refreshed every 2-3 days.

Kidney organoid generation. iPSCs at passages 32–38 were differentiated using an adapted protocol from53. Briefly, 15,100 cells per cm² were seeded prior to differentiation. On the day of differentiation (Day 0), medium was switched to STEMdiff APEL2 medium (StemCell Technologies, cat. no. 05275) supplemented with 5 ng/ml Noggin, 0.5 μM PD0325901, 100 μM Y27632. Culture media were refreshed every 2-3 days.
with 8 µM CHIR99021 (Sigma-Aldrich, cat. no. SML0146), 5% (v/v) PFFHM-II protein free hybridoma medium (ThermoFisher Scientific, cat. no. 12040077), and 1% (v/v) antibiotic-antimycotic (10×X) (AA) (ThermoFisher Scientific, cat. no. 15240062). On Day 3, medium was switched to APEL2 supplemented with 200 ng ml⁻¹ human FGFR (StemmCell Technologies, cat. no. 78161.1), 1 µg ml⁻¹ heparin (Sigma-Aldrich, cat. no. H4784), 5% (v/v) PFFHM-II, and 1% (v/v) AA. Medium was changed every 48 h. On Day 7, progenitor cells were cultured in 5 µM CHIR99021 for 1 h prior to pelleting at 300 × g for 3 minutes. Pellets were transferred onto 0.4 µm pore PET transwell filters and cultured until day 12 in APEL2 supplemented with FGFR and heparin. On day 12, growth factors were removed, and organoids were matured until day 24. Medium was replenished every 48 h over the course of differentiation. On Day 24, Organoids were treated with 10 ng/ml human recombinant TGFβ1 (Promokine) for 48 h with repeated exposure after 24 h. 0.1% (v/v) BSA served as vehicle control. Organoids from the same batch were pre-treated with or without 5 µM GSK343 (Sigma Aldrich, cat. no. SML0766) for 1 h prior to TGFβ1 treatments. DMSO served as vehicle control.

Immunofluorescence of organoid sections. Organoids (Day 7 or Day 26) were fixed in 2% (v/v) paraformaldehyde and cryoprotected in a 10-30% (v/v) sucrose gradient. Organoids were snap frozen in 75:10% (v/v) gelatine/sucrose at −70 °C using an isopropyl alcohol bath. Organoids were cryosectioned into 10–20 µm sections using a Leica CM3050S cryostat set to −20 °C overnight. Sections were warmed to RT and antigen retrieval was performed using 1% (v/v) SDS in DPBS for 10 minutes. Sections were blocked for 1 h at RT using blocking solution (5% (v/v) goat serum, 0.1% (v/v) triton X-100, DPBS). Sections were incubated in primary antibody at 4 °C overnight. For LTL, sections were blocked using a streptavidin-biotin blocking solution containing 5% (v/v) goat or donkey serum. Cells were incubated in primary antibody at 4 °C overnight. Cells were then incubated in 100% Agar 100 EPON for 4 hours at 37 °C to polymerize the epoxy resin. Tissues were dehydrated using 95% and 100% ethanol. Sections were incubated in Xylene before incubation in a 50:50 mix of 100% ethanol: Agar 100 EPON epoxy resin (48.6% ethanol, 9.4% epoxy resin, 18.2% Agar 100 EPON, 29.8% dehydrated tissue). Sections were then incubated in 30.4% mercuric nitric anhydride, 2.8% BDMA benzylidemethyamine overnight on a rotator at RT. Organoids were then incubated in 100% Agar 100 EPON for 4 hours at 37 °C to dehydrate the remaining ethanol. After incubation, organoids were polymerised in fresh EPON at 60 °C overnight. Ultrathin sections were imaged using a FEI Tecnai T12 transmission electron microscope at an accelerating voltage of 80 kV. Images were captured using an ImageJ/Fiji. Semi-thin sections were stained with toluidine blue at 60 °C for 1 min and washed with ddH₂O water. Coverslips were mounted using DPX and sections were imaged using a Nikon E801 transmission light microscope.

Western blotting. iPSCs were differentiated for 7 days using an adapted protocol from14. Whole cell protein extracts were isolated from differentiated and undifferentiated cells and were proteolytically digested using trypsin. Primary antibodies used were H3K27me3 (1:500; 39155, Active Motif), H3K4me3 (1:500, H4440, Millipore), H3K36me3 (1:1000; 6003, Abcam), H3K4me1 393498, Santa Cruz), SIX2 (1:300, 11562-1-AP, Invitrogen), periostin (POSTN) (1:300; A5228, Sigma). Brightness and contrast adjustments were made using Fiji/ImageJ. Immuno-fluorescence of adherent cells were differentiated from a single well of hiPSCs and three organoids were pooled as part of a single independent experiment and dissociated for scRNAseq and sc-TACseq experiments using the cold-active protease method adapted from14. Organoid characterisation was performed on 3–4 organoids from a minimum of 3 independent experiments. Immunofluorescence analysis was performed on one organoid per condition, from three independent experiments (Figs. 3d-f and 4d-f). Histological analysis was performed on one organoid per condition, from four independent experiments (Supplementary Fig. 4). Where possible, common available tools and statistical methods were used. Fijiform (version: 2.10.0/1.35p) was used for quantification of ASMA/DAPI and POSTN/DAPI areas, and quantification of picrosirius red staining. Statistical analysis was performed in GraphPad Prism (version: 8.3.0) and P-values were estimated by unpaired t-test.

Transmission electron microscopy. Organoids were fixed in 2% (v/v) PFA and 2.5% (v/v) glutaraldehyde in 0.1 M Sorenssen phosphate buffer (0.133 M Na₂HPO₄, 0.133 M KH₂PO₄) overnight at 4 °C. Organoids were incubated in 1% (v/v) osmium tetroxide for 1 h at RT, followed by incubation in 1% (v/v) tannic acid for 1 h at RT. Organoids were dehydrated in 70, 90, and 100% ethanol. Organoids were incubated in a 50:50 mix of 100% ethanol: Agar 100 EPON epoxy resin (48.6% ethanol, 9.4% epoxy resin, 18.2% Agar 100 EPON, 29.8% dehydrated tissue). Organoids were then incubated in 100% Agar 100 EPON for 4 hours at 37 °C to dehydrate the remaining ethanol. After incubation, organoids were polymerised in fresh EPON at 60 °C overnight. Ultrathin sections were imaged using a FEI Tecnai T12 transmission electron microscope at an accelerating voltage of 80 kV. Images were captured using an ImageJ/Fiji. Semi-thin sections were stained with toluidine blue at 60 °C for 1 min and washed with ddH₂O water. Coverslips were mounted using DPX and sections were imaged using a Nikon E801 transmission light microscope.

Histological analysis was performed on one organoid per condition, from four independent experiments. **Immuno-fluorescence of organoid sections** was performed with 3 µg Smad3 (Abcam, cat. no. ab28379) or 2.5 µg EZH2 (Cell Signalling, cat. SMAD3 (1:2000; ab28379, Abcam), phosphorylated SMAD3 (1:2000; as52903, Abcam), Beta-actin (1:2000; a5516, Sigma) served as a loading control. Detection was performed using the Abvansa WesternBright ECL (Avansan, cat. no. K12045) and the Vilber Fusion FX Image.

Histology. Sections were stained with Mayer haematoxylin for 6 min, followed by washing in warm running tap water for 5 min. Sections were stained with 0.5% (v/v) eosin Y for 6 min and washed for 3 min in running distilled water. Sections were dehydrated using 95% and 100% ethanol. Sections were cleared using xylene and subsequently mounting using DPX Mountant. For picrosirius red staining, sections were rehydrated in DPBS for 10 min and then post-fixed in 4% (v/v) PFA for 30 min at room temperature. Sections were stained using the picrosirius red stain kit (Poly-sciences, cat. no. 24901) as per the manufacturer’s instructions. Sections were dehydrated and mounting using xylene before mounting using DPX mountant. Sections were imaged using a 10X objective and a Canon EOS600D camera installed on a Nikon 80i transmission light microscope.

Statistics and reproducibility. Results are representative of the similar observations and analyses made across multiple independent experiments and technical replicates. Independent experiments were classed as monolayer differentiations or organoids derived from separate passages and/or freezbacks. The number of replicates for each experiment is indicated in the legends of the corresponding figure. Organoids used in single-cell RNA and ATAC sequencing experiments were differentiated from a single well of hiPSCs and three organoids were pooled as part of a single independent experiment and dissociated for scRNAseq and sc-TACseq experiments using the cold-active protease method adapted from14. Organoids were dissociated into single-cell suspension using the cold-active protease method adapted from14.
in dissociation buffer (10 mg ml\(^{-1}\) *Bacillus licheniformis* (Sigma-Aldrich, cat. no. P5380), 125 U ml\(^{-1}\) DNase I (Thermo Fischer, cat. no. 90083), 5 mM CaCl\(_2\) in
DPBS) by gentle trituration for 15 min on ice. Cells were collected using a 70 µm and 70 µm
MACS SmartStrainers and centrifuged at 300 xg for 5 min. Pellets were
resuspended in 1X PBS with 2% BSA and filtered using a 40 µm Flowmi cell
strainer (Sigma-Aldrich, cat. no. BAH136800040). Cell concentrations and viability
were assessed using trypan blue staining. 10,000 single cells were loaded onto the
10X Chromium while using the Single Cell 3’ Ready Kit (version: 3.1) as per
maker’s protocol. Following library preparation and quantitation, libraries
were sequenced on the Illumina NextSeq 550 platform.

Single-cell ATAC sequencing. Organoids used in single-cell ATAC sequencing
experiments were differentiated from a single well of passage 34 hiPSCs. On day 24,
three organoids were pooled as part of a single independent experiment and
dissociated for scATACseq as previously described. Cells were lysed for 5 min in
100 µl chilled 0.1X lysis buffer (10 mM Tris-HCl (pH 7.4), 10 mM NaCl, 3 mM
MgCl\(_2\), 1% BSA, 0.01% Tween-20, 0.01% IGEPA 12-60, 0.001% Digitonin).
Nuclei concentration and viability were determined using ethidium homodimer-1
(2 µM). scATACseq libraries were generated using 10X Genomics Chromium
ATAC library and Gel Bead Kit (version: 1.1) according to the manufacturer’s
protocol. Libraries were sequenced using an Illumina NovaSeq 6000 platform.

Chi-seq data analysis. Illumina BaseSpace was used to align sequences to hg19
genome. Peak calling was performed on merged replicates using EaSeq (version: 1.11)\(^{17}\) using
the adaptive local thresholding method and default settings. Peaks overlapping blacklisted features as de
scribed for scATACseq were previously described. Cells were lysed for 5 min in
100 µl chilled 0.1X lysis buffer (10 mM Tris-HCl (pH 7.4), 10 mM NaCl, 3 mM
MgCl\(_2\), 1% BSA, 0.01% Tween-20, 0.01% IGEPA 12-60, 0.001% Digitonin).
Nuclei concentration and viability were determined using ethidium homodimer-1
(2 µM). scATACseq libraries were generated using 10X Genomics Chromium
ATAC library and Gel Bead Kit (version: 1.1) according to the manufacturer’s
protocol. Libraries were sequenced using an Illumina NovaSeq 6000 platform.

scRNAseq analysis. Cell Ranger (version: 3.1.0) was used to demultiplex, align,
and generate single cell feature counts. scBiFinder was used to remove suspected
doublets. scRNAseq analysis was performed using Enrichr\(^{99}\) to identify
unique genes or UMIas >2 standard deviations above the median for all samples or
previously described\(^{91,92}\) were summarised based on normalised gene expression data
using the same method used for cell cycle analysis.

Chromatin accessibility changes at regulatory regions. To obtain a global view
and cluster-based changes in accessibility within regulatory regions, the number of
fragments located within classes of regulatory regions (Transcription start sites,
Enhancers, Promoters, and DNase hypersensitive regions) as annotated by
Cell Ranger ATAC in each cell were extracted and divided by the total number of
fragments within each cell which passed filtering by Cell Ranger ATAC. These
scRNaseq data were used to compare the means between treatment groups by unpaired t-test with post-

Motif analysis. DNA sequence motif analysis was performed in Signac, To find
overrepresented motifs for differentially accessible peaks identified in Fibo and
MFib, motif position frequency matrices were extracted from the JASPAP2020
database.\(^{100}\) To find cell-type specific regulatory sequences, a hypergeometric test
was performed to examine the possibility of observing the motif at the given loci.
Motif activities per cell were computed using chromVAR in Signac.\(^{101}\) To perform
transcription factor footprinting analysis, the expected Tn5 insertion frequency was
computed for each instance of the input motif in Signac.

SCENIC. SCENIC\(^{102}\) was used to determine potential regulatory transcription
actors from the voxel svnn flowpipeline (v0.26.1)\(^{103}\) using default settings
only the full sceni pipeline was iterated 100 times, retaining only regulons present in over 80% of runs. SCOPe\(^{104}\) was used for the
initial exploration of the results. Further analysis was performed in R.
References

1. Zayadieh, F. N. et al. Long-term prevention of renal insufficiency, excess matrix gene expression, and glomerular mesangial expansion by treatment with monoclonal antitumor necrosis factor-β antibody in db/db diabetic mice. *Proc. Natl Acad. Sci. USA* 97, 8015–8020 (2000).

2. Sharma, K. et al. Increased Renal Production of Transforming Growth Factor-1 in Patients with Type II Diabetes. *Diabetes* 46, 854–859 (1997).

3. Xiao, X. et al. EZH2 enhances the differentiation of ES cells to definitive endoderm. *Cell. Mol. Gastroenterol. Hepatol.* 7, 197–209 (2019).

4. Tsou, P. S. et al. Inhibition of EZH2 prevents fibrosis and restores normal angiogenesis in scleroderma. *Proc. Natl Acad. Sci. USA* 116, 3695–3702 (2019).

5. Verma, S. K. et al. Identification of potent, selective, cell-Active inhibitors of the histone lysine methyltransferase EZH2. *ACS Med. Chem. Lett.* 3, 1091–1096 (2012).

6. Pliner, H. A. et al. Cicero predicts cis-regulatory DNA interactions from single-cell chromatin accessibility data. *Nat. Cell Biol.* 71, 858–871.e16 (2018).

7. Nolits, I. K. et al. Transcription factors mediate long-range enhancer-promoter interactions. *Proc. Natl Acad. Sci. USA* 106, 20222–20227 (2009).

8. Hall, M. C. et al. The competitive role of activator protein 1 and Smad factors in the regulation of Timp-1 and MMP-1 gene expression by transforming growth-factor-β1. *J. Biol. Chem.* 278, 10304–10313 (2003).

9. Arase, M. et al. Dynamics of chromatin accessibility during TGF-β1-induced EMT of Ras-transformed mammary gland epithelial cells. *Sci. Rep.* 7, 1166 (2017).

10. Yamazaki, T., Minura, I., Tanaka, T. & Nangaku, M. Treatment of diabetic kidney disease: current and future. *Diabetes Metab. J.* 45, 11–26 (2021).

11. Yuan, H. et al. Epigenetic histone modifications involved in profibrotic gene regulation by 12/15-lipoxygenase and its oxidized lipid products in diabetic nephropathy. *Antioxid. Redox Signal* 24, 361–375 (2016).

12. Jones, D. L. et al. TGF-β-induced fibroblast activation requires persistent and targeted HDAC-mediated gene repression. *J. Cell Sci.* 132, jcs233486 (2019).

13. Takasato, M., Er, P. X., Chiu, H. S. & Little, M. H. Generation of kidney organoids from human pluripotent stem cells. *Nat. Protoc.* 11, 1681–1692 (2016).

14. Mullen, A. C. et al. Master transcription factors determine cell-type-specific responses to TGF-β signaling. *Cell Rep.* 147, 565–576 (2013).

15. Lindström, N. O. et al. Conserved and divergent features of mesenchymal progenitor cell types within the cortical nephrogenic niche of the human and mouse kidney. *J. Am. Soc. Nephrol.* 29, 806–824 (2018).

16. Menon, R. et al. Single-cell analysis of progenitor cell dynamics and lineage specification in the human fetal kidney. *Development.* 145, dev164038 (2018).

17. Hidhane, M. et al. Single-cell transcriptionics reveals gene expression dynamics of human fetal kidney development. *PLoS Biol.* 17, e3000152 (2019).

18. Wu, H. et al. Comparative analysis and refinement of human PSC-derived kidney organoid differentiation with single-cell transcriptomics. *Cell Stem Cell* 23, 869–881.e8 (2018).

19. Combes, A. N., Zappa, L., Er, P. X., Oshlack, A. & Little, M. H. Single-cell analysis reveals congruence between kidney organoids and human fetal kidney. * Genome Med.* 11, 3 (2019).

20. Harder, J. L. et al. Organoid single cell profiling identifies a transcriptional signature of glomerular disease. *JCI Insight* 4, e122697 (2019).

21. Phipson, B. et al. Evaluation of variability in human kidney organoids. *Nat. Methods* 16, 79–87 (2019).

22. Lindström, N. O. et al. Spatial Transcriptional Mapping of the Human Nephrogenic Program. *Dev. Cell* 56, 2381–2398 (2021).

23. Kuppe, C. et al. Decoding myofibroblast origins in human kidney fibrosis. *Nature 589*, 281–286 (2021).

24. Michalik, M. et al. Fibroblast-to-myofibroblast transition in bronchial asthma. *Cell. Mol. Life Sci.* 75, 3943–3961 (2018).

25. Watanabe, T. et al. A human skin model recapitulates systemic sclerosis dermal fibrosis and identifies COL22A1 as a TGFβ early response gene that mediates fibroblast to myofibroblast transition. *Genes (Basel)* 10, 75 (2019).

26. Xiao, X. et al. EZH2 enhances the differentiation of fibroblasts into myofibroblasts in idiopathic pulmonary fibrosis. *Physiol. Rep.* 4, 1–15 (2016).

27. Zhou, X. et al. Enhancer of zeste homolog 2 inhibition attenuates renal fibrosis by maintaining Smad7 and phosphatase and tensin homolog expression. *J. Am. Soc. Nephrol.* 27, 2092–2108 (2016).

28. Martin-Mateos, R. et al. Enhancer of zeste homologue 2 inhibition attenuates TGF-β1 dependent hepatic stellate cell activation and liver fibrosis. *Cell Mol. Gastroenterol. Hepatol.* 7, 197–209 (2019).
69. Sabari, B. R. et al. Coactivator condensation at super-enhancers links phase separation and gene control.

70. Ceballos-Chávez, M. et al. The chromatin remodeler CHD8 is required for TGF-β signaling and HOX gene regulation and development. Naturally

71. Riching, A. S. et al. Suppression of canonical TGF-β/β3 signaling factors and epigenetic regulators mediates TGF-β-dependent enhancer activation.

72. Estarás, C. et al. Genome-wide analysis reveals that Smad3 and JMJD3 HDMs co-activate the neural developmental program.

73. Vierbuchen, T. et al. AP-1 transcription factors and the BAF complex mediate signal-dependent enhancer selection.

74. Li, C. H. et al. MeCP2 links heterochromatin condensates and gene control.

75. Afgan, E. et al. The Galaxy platform for accessible, reproducible and accessible analysis and visualization of ChIP-sequencing data.

76. Karolchik, D. et al. The UCSC table browser data retrieval tool.

77. Roadmap Epigenomics Consortium. et al. Integrative analysis of 111 reference epigenomes.

78. Kent, W. J. et al. The human genome browser at UCSC.

79. Lander, E. S. et al. Initial sequencing and analysis of the human genome.

80. Gao, T. et al. EnhancerAtlas: a resource for enhancer annotation and analysis of large DNA datasets.

81. Schep, A. N., Wu, B., Buenrostro, J. D. & Greenleaf, W. J. ChromVAR: inferring transcription-factor-associated accessibility from single-cell epigenomic data.

82. Abar, S. et al. SCENIC: single-cell regulatory network inference and clustering.

83. De Waegeneer, M., Flerin, C., Davie, K. & Hulselmans, G. vib-singlecell-nf/vsn-pipelines.v0.26.1 (2021). Zenodo https://doi.org/10.5281/zenodo.6075473 (2021).

84. Davie, K. et al. A single-cell transcriptome atlas of the aging drosophila brain.

Acknowledgements

The authors thank Tiina O’Neill of the Conway Institute Imaging Core for her expertise in TEM. Confocal microscopy was carried out at the Nano Research Facility, Dublin City University and in the UCD Conway Institute Imaging Core. Work in J.C.’s laboratory was supported by grants from Science Foundation Ireland (16/IA/4584, 19/FFP/6833) and is co-funded under the European Regional Development Fund (13/RC/2673_2) and the Irish Research Council Postgraduate Scholarship (GOIPG/2016/91). We also thank the Sanford Burnham Prebys Institute (SBP) Bioinformatics and Next Generation Sequencing Cores, which are supported by SBP’s NCI Cancer Center Support Grant P30 CA030199.

Author contributions

Conceptualization, J.C. and J.L.D.; Methodology, J.L.D., S.C., N.J.T. and T.D.; Single-cell transcription-factor-associated accessibility from single-cell epigenomic data.

Nature Methods, 14, 975–978 (2017).

Nature Methods, 11, 1083–1086 (2017).

De Waegeneer, M., Ferlin, C., Davie, K. & Hulselmans, G. vib-singlecell-nf/vsn-pipelines.v0.26.1 (2021). Zenodo https://doi.org/10.5281/zenodo.6075473 (2021).

Davie, K. et al. A single-cell transcriptome atlas of the aging drosophila brain.

Cell 174, 982–998.e20 (2018).

The authors declare no competing interests.

Additional information

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s42003-022-04264-1.

Correspondence and requests for materials should be addressed to John Crean.

Peer review information Communications Biology thanks Ruyi Morzane and the other anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editors: Patrick Murphy and Manuel Breuer.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
