Identification a novel mononucleotide deletion mutation in GAA in Pompe disease patients

Milad Ebrahimi, Mahdieh Behnam1, Nafiseh Behranvand-jazi, Ladan Yari2, Sajad Sheikh-kanlomilan3, Mansoor Salehi1,4, Pardis Tahnasebi, Mohaddeseh Amini, Mohaddeseh Behjati5, Nafisehsadat Hosseini6

Department of Laboratory Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, 1Medical Genetics Laboratory of Genome, 2PHD Candidate of Genetics at National Institute of Genetic Engineering and Biotechnology, Tehran, 3Department of Radiology, School of Medicine, Isfahan University of Medical Sciences, 4Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Cardiovascular Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, 6Department of Biotechnology, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Background: Mutations in the acid alpha-glucosidase (GAA) gene usually lead to reduced GAA activity. In this study, we analyzed the mutations of GAA and GAA enzyme activity from one sibling suspected Pompe disease and their first-degree relatives. Materials and Methods: In this cross-sectional study, GAA enzyme activity assay was assessed using tandem mass spectrometry. Polymerase chain reaction and Sanger sequencing were performed for GAA analysis. Results: GAA enzyme activity was significantly decreased in patients compared to the normal range (P = 0.02). Two individuals showed ten alterations in the GAA sequence, in which one of them (c.1650delG) has not been previously described in the literature. A single Guanine deletion (del-G) was detected at codon 551 in exon 12. Conclusion: According to the literature, the detected change is a novel mutation. We hypothesized that the discovered deletion in the GAA might lead to a reduced activity of the gene product.

Key words: Acid alpha-glucosidase, novel mutation, polymerase chain reaction, Pompe disease

INTRODUCTION

Pompe disease, a glycogen storage disease (GSD) Type II (OMIM 232300), is characterized by a deficiency of the normal function enzyme acid alpha-glucosidase (GAA) that results in intralysosomal accumulation of glycogen. Clinical heterogeneity is a pivotal characteristic of Pompe disease which reveals importance of investigations in different populations.[1,2] This heterogeneity occurs due to many mutations in the GAA gene which cause incomplete or complete lack of GAA activity and also different clinical manifestations.[2-5] The GAA is located on chromosome 17q25.2-25.3 which contains twenty exons and is highly polymorphic with a large number of neutral variations.[5] To the best of our knowledge, 351 disease-causing mutations have been described in the GAA, however, the leaky c.-32-13T>G (usually known as IVS1-13T>G) is the most frequent mutation among the Caucasian Pompe disease patients.[6,7] Therefore, in this study, we aimed to analyze the GAA and GAA enzyme activity from one sibling suspected Pompe disease and their first-degree relatives.

MATERIALS AND METHODS

Study population
An Iranian couple with three children, a 26-year-old affected son, a 34-year-old affected daughter, and a 31-year-old healthy daughter were referred to our center, Isfahan, Iran. In this cross-sectional study, due to the very low prevalence of Pompe disease and also based on low sample size of previous studies, we investigated mutations of GAA gene in two patients with Pompe. Both patients are resident of Semnan Province. Research
Enzyme activity and polymerase chain reaction
For confirmation of the diagnosis, an enzyme activity assay test to determine reduced or no activity of the GAA enzyme is required. GAA enzyme activity assay was assessed using tandem mass spectrometry.

Genomic DNA was extracted from total blood using DNA extraction Spin Kit (GE Healthcare UK Ltd., Buckinghamshire, UK) according to the manufacturer’s instructions. Polymerase chain reaction and Sanger sequencing were performed for GAA analysis.

Statistical analysis
Data were collected and then SPSS for software (version 20.0; SPSS Chicago, IL, USA) was used for statistical analysis. The comparison of GAA enzyme activity between Pompe patients and the lower limit of normal range of GAA enzyme activity was performed using one-sample t-test.

RESULTS

Enzyme activity
Both patients had more than 17% reduction in the GAA activity (range: 0.13–0.19 nmol/spot*21 h) compared to the normal range (>0.9 nmol/spot*21 h) [Table 1]. The patients had elevated serum levels of creatine phosphokinase and liver enzymes (aspartate aminotransferase and alanine aminotransferase) ranging from 2 to 10-fold of the normal ranges.

Genotyping
Our study revealed ten alterations in the patients. According to Pompe Center, one of the alterations was novel, and nine of them were previously reported. These alterations in the GAA were eight single-nucleotide polymorphisms (SNP) and two mutations including one deletion mutation and one large deletion splice site mutation. The new alteration c.1650delG was found in two children of this family. Molecular analysis revealed two heterozygous mutations including a deletion of a single guanine in exon 12 at codon 551 and a large deletion in intron 1. Sequencing of GAA in other member of this family revealed that father, the healthy daughter and one affected of the children were heterozygous for the c.32-13T>G mutation, while the mother was normal for this mutation. For this new deletion mutation, the both of father and healthy daughter were normal, but mother and affected children were heterozygous.

DISCUSSION

Our data confirmed the clinical manifestations of GSDII in the patients. In addition, the activity of GAA approved the molecular genetic results. The activity of GAA at pH 3.8 with and without specific inhibition was less than the normal ranges. Two patients had similar GAA activity and GAA alterations. Different clinical symptoms in these two patients may in part be clarified by the existence of other variants in GAA gene or other related genes. GAA mutations are located on different parts of the gene and include missense, nonsense, splicing, and both small and large deletions and insertions. Although most of the mutations related to GSDII are located on limited numbers of regions, some of them are common in special ethnical populations. The most common mutation is IVS1-13T>G, which seen in approximately 77% of patients with Pompe who are from different ethnic populations. The presence of this mutation result in improper splicing in 80%–90% of the GAA premessenger RNA splicing events. Although this mutation was found in our cases, the father of this family was homozygous. In this regard, Musumeci et al.10 reported six Pompe patients who were homozygous for c.32-13T>G mutation. The new mutation c. 1650delG was heterozygous in two patients and their mother. The female patient showed higher severity in clinical symptoms compared to his brother. The low enzyme activity of GAA of patients was in line with the presence of the alteration in c. 32-13T>G and c.1650delG. However, further investigations in different populations will be required to establish these mutations in the GAA gene of Pompe patients.

CONCLUSION

According to the literature, the detected change is a novel mutation. We hypothesized that the discovered deletion in the GAA might lead to a reduced activity of the gene product.

Table 1: Measured acid alpha-glucosidase activity of the affected individual in comparison to the reference values, which shows significant differences

Alpha-glucosidase measurement from dried blood specimen (nmol/spot*21 h)	Enzyme levels	Clinical manifestations	Spirometry					
pH 3.8	pH 7.0	AST	ALT	CPK	FEV1	FEV1/FVC		
With acarbose	Without acarbose							
Patient 1	0.19	0.89	4.40	211	294	1925	0.81	89.25
Patient 2	0.13	0.65	3.84	165	261	1212	0.83	90.25
Reference	0.9-7.2	1.5-10	1.8-17.1	0.45	5.40	25-200		

CPK = Creatine phosphokinase; AST = Aspartate transaminase; ALT = Alanine transaminase; FVC = Forced vital capacity; FEV1 = Forced expiratory volume in 1 s
Acknowledgments
We would like to thank patients and their family for their ongoing commitments. In addition, we thank Dr. Morteza Purfarzam and Dr. Shahriyar Nafisi.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

REFERENCES

1. Hagemans ML, Winkel LP, Van Doorn PA, Hop WJ, Loonen MC, Reuser AJ, et al. Clinical manifestation and natural course of late-onset Pompe’s disease in 54 Dutch patients. Brain 2005;128(Pt 3):671-7.
2. Cabrera López JC, Marti Herrero M, Fernández Burriel M, Toledo L, de Andrés-Cofiño R, Orera MA. Familial Pitt-Rogers-Danks: Two new cases. Rev Neurol 2001;33:439-43.
3. Chan J, Desai AK, Kazi ZB, Corey K, Austin S, Hobson-Webb LD, et al. The emerging phenotype of late-onset Pompe disease: A systematic literature review. Mol Genet Metab 2017;120:163-72.
4. Hirschhorn R. Glycogen storage disease type II; acid α-glucosidase (acid maltase) deficiency. The metabolic and molecular bases of inherited disease. 2001.
5. Raben N, Plotz P, Byrne BJ. Acid alpha-glucosidase deficiency (glycogenosis type II, Pompe disease). Curr Mol Med 2002;2:145-66.
6. Engel AG, Seybold ME, Lambert EH, Gomez MR. Acid maltase deficiency: Comparison of infantile, childhood, and adult types. Neurology 1970;20:382.
7. Huie ML, Chen AS, Tsujino S, Shanske S, DiMauro S, Engel AG, et al. Aberrant splicing in adult onset glycogen storage disease type II (GSDII): Molecular identification of an IVS1 (-13T→G) mutation in a majority of patients and a novel IVS10 (+1GT→CT) mutation. Hum Mol Genet 1994;3:2231-6.
8. Hermans MM, van Leenen D, Kroos MA, Beesley CE, Van Der Ploeg AT, Sakuraba H, et al. Twenty-two novel mutations in the lysosomal alpha-glucosidase gene (GAA) underscore the genotype-phenotype correlation in glycogen storage disease type II. Hum Mutat 2004;23:47-56.
9. Winkel LP, Hagemans ML, Van Doorn PA, Loonen MC, Hop WJ, Reuser AJ, et al. The natural course of non-classic Pompe’s disease; a review of 225 published cases. J Neurol 2005;252:875-84.
10. Musumeci O, Thieme A, Claes KG, Wenninger S, Kley RA, Kuhn M, et al. Homozygosity for the common GAA gene splice site mutation c.-32-13T→G in Pompe disease is associated with the classical adult phenotypical spectrum. Neuromuscular disorders: NMD 2015;25:719-24.