RENEWED ACTIVITY FROM THE X-RAY TRANSIENT SAXJ 1810.8–2609 WITH INTEGRAL*

M. Fiocchi1, L. Natalucci1, J. Chenevez2, A. Bazzano1, A. Tarana1, P. Ubertini4, S. Brandt2, V. Beckmann3, M. Federici1, R. Galis3,4, and R. Hudec3,4

1 Istituto di Astrofisica Spaziale e Fisica Cosmica di Roma (INAF), Via Fosso del Cavaliere 100, Roma I-00133, Italy
2 National Space Institute, Technical University of Denmark, Juliane Maries Vej 30, 2100 Copenhagen, Denmark
3 INTEGRAL Science Data Centre, Chemin d’Ecogia 16, CH-1290 Versoix, Switzerland
4 Astronomical Institute, Academy of Sciences of the Czech Republic, CZ-251 65 Ondrejov, Czech Republic

Received 2008 June 16; accepted 2008 November 6; published 2009 March 2

ABSTRACT

We report on the results of International Gamma-Ray Astrophysics Laboratory (INTEGRAL) observations of the neutron star low-mass X-ray binary SAX J1810.8–2609 during its latest active phase in 2007 August. The current outburst is the first one since 1998 and the derived luminosity is 1.1–2.6 × 1038 erg s−1 in the 20–100 keV energy range. This low outburst luminosity and the long-term time-average accretion rate of ∼ 5 × 10−12 M⊙ yr−1 suggest that SAX J1810.8–2609 is a faint soft X-ray transient. During the flux increase, spectra are consistent with a thermal Comptonization model with a temperature plasma of kT e ∼ 23–30 keV and an optical depth of τ ∼ 1.2–1.5, independent of the luminosity of the system. This is a typical low hard spectral state for which the X-ray emission is attributed to the upscattering of soft seed photons by a hot, optically thin electron plasma. During the decay, spectra have a different shape, the high energy tail being compatible with a single power law. This confirm similar behavior observed by BeppoSAX during the previous outburst, with the absence of visible cutoff in the hard X-ray spectrum. INTEGRAL/JEM-X instrument observed four X-ray bursts in Fall 2007. The first one has the highest peak flux (∼ 3.5 crab in 3–25 keV) giving an upper limit to the distance of the source of about 5.7 kpc, for a Ledd ≈ 3.8 × 1038 erg s−1. The observed recurrence time of ∼ 1.2 days and the ratio of the total energy emitted in the persistent flux to that emitted in the bursts (α ∼ 73) allow us to conclude that the burst fuel was composed by mixed hydrogen and helium with X ≥ 0.4.

Key words: gamma rays: observations – radiation mechanisms: non-thermal – stars: individual (SAX J1810.8–2609) – stars: neutron – X-rays: binaries

Online-only material: color figure

1. INTRODUCTION

The transient X-ray source SAX J1810.8–2609 was discovered on 1998 March 10 (Ubertini et al. 1998) with the Wide-Field Cameras (WFCs; 2–28 keV) on board the BeppoSAX satellite. During the performed Galactic Bulge monitoring, a strong type I X-ray burst was detected identifying this compact object as a neutron star in a low-mass X-ray binary (LMXB) system. Assuming standard burst parameters and attributing the photospheric radius expansion to near-Eddington luminosity, the distance was estimated be ∼ 5 kpc (Natalucci et al. 2000). The wide-band spectral data (0.1–200 keV) obtained later with the NFI/BeppoSAX showed a hard X-ray spectrum described by a power law with photon spectral index Γ = 1.96 ± 0.04 and a soft component which was compatible with blackbody radiation of temperature kT e ∼ 0.5 keV (Natalucci et al. 2000).

During a ROSAT follow-up observation on 1998 March 24 an X-ray source (named RX J1810.7–2609) was detected at a position consistent with the WFC error box (Greiner et al. 1998). Optical-to-infrared follow-up observations of the 0.5′′ radius ROSAT HRI X-ray error box revealed one variable object (R = 19.5 ± 0.5 mag on March 13, R > 21.5 mag on 1998 August 27) which was proposed as the optical/IR counterpart of RX J1810.7–2609 and SAX J1810.8–2609 (Greiner et al. 1998).

Using Chandra instruments, Jonker et al. (2004) detected the neutron star system in quiescence at an unabsorbed luminosity of ∼ 1032 erg s−1 (assuming a distance of 4.9 kpc). The quiescent spectrum is well fitted with an absorbed power law with a photon index Γ = 3.3 ± 0.5 and the Galactic absorption value (NH, gal = 3.3 × 1021 cm−2) consistent with the value derived in outburst.

Since 1998 this burster remained in a quiescent state. Only in 2007 August Swift observed a new phase of activity (Parson et al. 2007). The Swift/UVOT instrument detected a weak source in the white-band filter at the position of SAX J1810.8–2609 and did not detect it in any other single filter (Schady & Parsons 2007). The source was observed on a daily basis with Swift using ∼ 1 ks exposure, starting 2007 August 6. In all observations the Swift/XRT 0.3–10 keV spectrum was well fitted using an absorbed power-law model with a hydrogen column density of NH ∼ 5 × 1021 cm−2 and a spectral index of Γ ∼ 2 (Degenaar et al. 2007). After few months, the source went back to quiescent state, indeed on November 3rd and 5th, Swift/XRT did not detect it during two individual ∼ 1.6 ks and ∼ 1.9 ks observations.

The X-ray spectra of LMXBs are usually fit with a complex model: at low energies a blackbody component that approximates the spectrum of an optically thick, geometrically thin accretion disk and/or the neutron star surface, and at higher energies a Comptonization component due to repeated inverse Compton scattering of the soft seed photons by hot electron plasma with a thermal distribution of velocities. BeppoSAX and International Gamma-Ray Astrophysics Laboratory (INTEGRAL) results showed that the hard component can
extend up to 200 keV without any appreciable break (Di Salvo et al. 2000, 2001; Fiocchi et al. 2006; Piraino et al. 1999; Iaria et al. 2001; Tarana et al. 2006). In this paper, we study the spectral behavior of the X-ray transient burster SAX J1810.8–2609, showing this behavior during the decay of the outburst. Finally, we report on four X-ray bursts observed by INTEGRAL/JEM-X instrument in Fall 2007.

2. OBSERVATIONS AND DATA ANALYSIS

The INTEGRAL (Winkler et al. 2003) observations are divided into uninterrupted 2000 s intervals, the so-called science windows (SCWs). Spectra and light curves of the source are obtained using data from the two high-energy instruments JEM-X1 (Lund et al. 2003) in the 3–20 keV band and from IBIS/ISGRI (Ubertini et al. 2003) in the range 22–200 keV. The instrument data are extracted for each individual SCW and processed using the Off-line Scientific Analysis (OSA, ver. 7.0) software released by the INTEGRAL Scientific Data Centre (Courvoisier et al. 2003). Following the standard analysis, we use the latest response matrix with 64 channels. Then, data above 90 keV are rebinned to improve the signal-to-noise ratio (S/N).

The RXTE/ASM (Levine et al. 1996) daily averaged light curve, provided by the ASM/RXTE teams at MIT and at the RXTE SOF and GOF at NASA’s GSFC (Figure 1, panel a5), shows that SAX J1810.8–2609 has been continuously active since the beginning of August for two months with multiple peaks. The outburst of this transient source was frequently observed by INTEGRAL during the Key Programme on the Galactic Centre and private Target of Opportunity observations.

![Figure 1](image_url)

Figure 1. (a) The RXTE ASM light curve daily averaged in 2–10 keV energy band of SAX J1810.8–2609. (b) The IBIS light curve in 22–45 keV energy band. Stars indicate only burst times. (c) The IBIS light curve in 45–68 keV energy band.

Table 1

Log of SAXJ1810.8–2609 IBIS and PCA Observations

Epoch	Instrument	Tstart (MJD)	Tstop (MJD)	Exposure (ks)	Counts s⁻¹ ±
1	IBIS	54337	54357	572	5.80 ± 0.07
2	IBIS	54358	54362	107	11.6 ± 0.2
3	IBIS	54367	54370	121	10.9 ± 0.2
4	IBIS	54373	54376	128	10.2 ± 0.1
5	PCA	54345.49	54345.51	2	75.0 ± 0.3

Note. Rates are in the 22–200 keV energy range for IBIS and in 3–30 keV for PCA spectra. Source counts are background subtracted.

The IBIS/ISGRI light curve (Figure 1, panels b and c) shows a gradual brightening in the two energy bands, 22–45 keV and 45–68 keV, while the ASM peak intensity was not monitored with INTEGRAL.

We report here on the outburst emission measured by the IBIS/ISGRI instrument by dividing it into four separate epochs (see Table 1). These correspond to time periods during which the source spectra appear quite stable, with very small or absent spectral variability as monitored on the timescale of a few SCWs.

We searched simultaneous IBIS and Proportional Counter Array (PCA; Glasser et al. 1994) data in the XTE public archive6, but unfortunately only for epoch 1 PCA standard products are available. No public PCA data are available for the epochs 2, 3, and 4. For our analysis we use the PCA standard products OBSID 93414-01-04-01. Data are collected in standard2 modes with a time resolution of 16 s and 129 energy channels and from PCU 2 and PCU 4. Source and background spectra are generated with SAEXTRCT version 4.2d and response files with the tool PCARMF version 10.1. Background rates were estimated using the epoch-5 models, as provided by the PCA calibration team.

5 From http://xte.mit.edu/ASM_lc.html

6 http://heasarc.gsfc.nasa.gov/docs/xte/xhp_archive.html
Parameter Values of Spectral Models Fitting the Outburst Emission in the Energy Range 22–200 keV Using IBIS Data and in the Energy Range 3–200 keV Using PCA Plus IBIS Data

IBIS Spectra

Epoch	Γ	kT_ν, E_e (keV)	τ	Flux$_{20–100\text{keV}}$	χ^2_{ν}
1	2.30$^{+0.10}_{-0.06}$	3.6	1.43[30]
2	2.32$^{+0.05}_{-0.06}$	7.5	1.49[29]
3	2.67$^{+0.07}_{-0.06}$	6.3	1.13[27]
4	2.43$^{+0.09}_{-0.05}$	6.0	0.92[32]

COMPPT

Epoch	kT_ν (keV)	E_e (keV)	τ	Flux$_{3–100\text{keV}}$	χ^2_{ν}
1	40.3$^{+0.29}_{-0.27}$	1.2$^{+0.4}_{-0.2}$	3.6	0.70[29]	
2	23.6$^{+0.4}_{-0.5}$	1.5$^{+0.4}_{-0.5}$	7.5	0.40[28]	
3	69.5$^{+0.4}_{-0.8}$	<0.8	6.3	1.02[26]	
4	87.5$^{+0.5}_{-0.8}$	<0.8	6.0	0.81[31]	

IBIS and PCA Spectra

Epoch	kT_ν (keV)	E_e (keV)	τ	Flux$_{3–100\text{keV}}$	χ^2_{ν}
1	0.44$^{+0.06}_{-0.05}$	22$^{+3}_{-3}$	1.7$^{+0.3}_{-0.3}$	8.1	1.05[78]

Note. Uncertainties are given at a 90% confidence level.

3. SPECTRAL ANALYSIS

3.1. The Eide Band Outburst Emission

The IBIS spectra extracted for the four epochs listed in Table 1 have been fitted with both a simple power law and a COMPPT model (Titarchuck 1994), assuming a spherical geometry for the Comptonizing region. Results are reported in Table 2. The temperature of the Comptonizing electrons kT_e, and the plasma optical depth τ_p were free parameters in the fit, while the temperature of the soft photon Wien distribution kT_ν was fixed at 0.6 keV. This is the value observed by BeppoSAX in 1998 and previously reported by Natalucci et al. (2000). Spectra are well described by a simple power law after the outburst peak, while a COMPPT model is required before the outburst peak. Using a thermal Comptonization model COMPPT instead of simple power law did not give significantly better fits for epochs 3 and 4, with the corresponding F-test chance probabilities being 6×10^{-2} and 3×10^{-3}, respectively. Instead this model is statistically highly significant for the epochs 1 and 2, with the corresponding F-test chance probabilities of 4×10^{-6} and 2×10^{-9}, respectively.

For the first period we build a spectrum in a broad energy band (3–200 keV), using simultaneous IBIS and PCA data. The most simple model which provides a good fit to this spectrum is made up of a thermal Comptonized component COMPPT in XSPEC (Titarchuck 1994) with a spherical geometry plus a soft component consisting of a single temperature blackbody and a Gaussian component for iron line.

In the fitting procedure, a multiplicative constant has been introduced to take into account possible cross-calibration mismatches between the soft X-ray and the INTEGRAL data; this constant has been found to be 1.05$^{+0.05}_{-0.05}$. The results are reported in Table 2. The iron line centroid is 6.3$^{+0.3}_{-0.3}$ keV, σ_{Fe} < 0.6 keV, and equivalent width 139$^{+43}_{-50}$ eV. Figure 2 shows four spectra and the residuals with respect to the corresponding best fits. Data and models are shown in Figure 3 for four epochs.

![Figure 2](image-url)
3.2. The Bursts Emission

In Figures 4 and 5, we show the JEM-X 3–25 keV light curves for the four bursts. The start time for each burst was determined when the intensity rose to 10% above the persistent intensity level. The rise time is defined as the time between the start of the burst and the time at which the intensity reached 90% of the peak burst intensity, as measured from the 2 s bin light curve in the full 3–25 keV band. The burst duration is the approximate time it takes to the 3–25 keV intensity (averaged over three consecutive bins) to decrease back to the average persistent level previous to the burst start.

The spectral analysis of the bursts is based on JEM-X data in the 3–25 keV band. Unfortunately, time-resolved spectral analysis of such short bursts, requiring relatively high time resolution, leads to statistically poor results due to the little aperture of the JEM-X instrument. Therefore, a time-averaged spectral analysis over the first 18 s including the peak has been performed for each burst and every burst spectrum is well fit by a simple blackbody model.

The inferred blackbody temperature, kT_{bb}, and the apparent blackbody radius at 5.5 kpc, R_{bb}, for every burst are reported in Table 3. Burst fluences are obtained from the bolometric fluxes, F_{bol}, extrapolated in the 0.1–100 keV energy range and integrated over the respective burst durations. The peak fluxes,
Table 3

Data Set	Burst 1	Burst 2	Burst 3	Burst 4
Date (YYMDD)	20070915	20070924	20070930	20071001
Start time (UTC)	23:20:18	19:52:50	17:10:03	21:42:10
kTb (keV)	1.4^{+0.4}_{-0.5}	2.1^{+0.2}_{-0.2}	2.6^{+0.3}_{-0.3}	2.5^{+0.5}_{-0.4}
R_{bb-ds,spec} (km)	18^{+20}_{-6}	6.1^{+2}_{-1}	4.1^{+2}_{-1}	4.5^{+2}_{-1}
χ^2/dof	17/27	40/43	30/24	31/57
$F_{bol}\,^a$ (10^{-9} erg cm^{-2} s^{-1})	4.5 ± 2.3	2.8 ± 0.8	2.7 ± 0.7	3.0 ± 1.3
Burst parameters				
$F_{peak}\,^a$	9.6 ± 1.9	5.0 ± 0.6	6.8 ± 0.7	5.5 ± 1
f_b	1.1 ± 0.7	0.7 ± 0.2	0.8 ± 0.2	0.7 ± 0.3
Rise time (±1 s)	5	3	4	7
Duration (±2 s)	30	30	30	25
r^a	12 ± 9	14 ± 5	12 ± 4	13 ± 8
$q^{d}(10^{-2})$	0.9 ± 0.2	1.0 ± 0.2	0.9 ± 0.2	0.8 ± 0.2

Notes. a Unabsorbed flux (0.1–100 keV) in units of 10^{-9} erg cm^{-2} s^{-1}. b Fluence (10^{-6} erg cm^{-2}). d $r(s) \equiv f_b/F_{peak}\,^a$. c $f_{pers}/F_{peak,Max}$. F_{peak} is the persistent flux in 0.1–100 keV energy range previous to the time of each burst, $F_{peak,Max}$ is the highest burst peak flux, here F_{peak} of Burst 1.

Figure 5. Three other bursts detected on 2007 September 24, 30, and October 1 respectively. The JEM-X (3–25 keV) light curves are shown with a time bin of 2 s.

The average persistent unabsorbed flux between 0.1 and 100 keV, $F_{pers} \approx 5 \times 10^{-10}$ erg cm^{-2} s^{-1}, translates to a bolometric luminosity $L_{pers} \approx 1.8 \times 10^{36}$ erg s^{-1}, assuming an approximate distance of 5.5 kpc. This corresponds to a mass accretion rate per unit area equal to $\dot{m} = L_{pers}(1+z)/\eta^{-1} c^2/A_{acc} \approx 10^3$ g cm^{-2} s^{-1} (where $A_{acc} = 4\pi R_{NS}^2$ and $\eta = G M_{NS}/(R_{NS} c^2) \approx 0.2$ is the accretion efficiency for a canonical neutron star).

The total energy released by the first burst was $E_{b,1} \approx 4 \times 10^{39}$ erg which, assuming complete and isotropic burning, corresponds to an ignition column $y = E_{b,1}(1 + z)/4\pi R_{NS}^2 Q_{nuc}$ ranging between $y \approx 1 \times 10^8$ g cm^{-2} for burning hydrogen with abundance $X = 0.7$, and $y \approx 2.6 \times 10^8$ g cm^{-2} for $X = 0$ (pure helium); here $Q_{nuc} = 1.6 + 4X$ MeV nucleon^{-1} is the nuclear energy release for a given average hydrogen fraction at ignition X, and $z = 0.31$ is the appropriate gravitational redshift at the surface of a 1.4 M_{\odot} neutron star (Cumming 2003). From the relation $\Delta t_{rec} = y(1 + z)/\dot{m}$ a burst recurrence time of 1.5 days is expected for $X = 0.7$, and $\Delta t_{rec} = 3.8$ days for pure helium burning. The same calculations for the fourth burst with an energy release of $E_{b,4} \approx 2.5 \times 10^{39}$ erg lead to $\Delta t_{rec} = 0.9$ days for $X = 0.7$, and $\Delta t_{rec} = 2.3$ days for $X = 0$. The observed recurrence time seems thus most consistent with mixed H/He burning.
Moreover, it is also possible to calculate the burst energetics by the ratio of the total energy emitted in the persistent flux to that emitted in the bursts (e.g., Galloway et al. 2004): \[\alpha = \frac{F_{\text{pers}}}{f_{\text{b}}} \Delta \tau_{\text{rec}} \approx 73, \quad \text{for} \quad \Delta \tau_{\text{rec}} = 3 \times 10^{-4}, \quad F_{\text{pers}} = 5 \times 10^{-10} \text{erg cm}^{-2} \text{s}^{-1}, \quad \text{and} \quad f_{\text{b}} \approx 0.7 \times 10^{-6} \text{erg cm}^{-2} \text{s}^{-1} \] is the fluence of the fourth burst. Assuming that all the accreted fuel is burned during the bursts, the calculated \(\alpha \)-value from the measurable quantities is consistent with \(Q_{\text{acc}} = (1 + z)\rho c^2/\alpha (10^{18} \text{erg g}^{-1})^{-1} \approx 3.2 \text{MeV} \) nucleon\(^{-1} \), corresponding to a hydrogen fraction of \(X \) = 0.4. Since other bursts could have been burned during the observation gaps, the calculated \(\alpha \)-value is only an upper limit and conversely the calculated value of \(X \) is a lower limit. We can indeed conclude that the burst fuel could be composed by mixed hydrogen and helium with high X-ray binaries (see Fiocchi et al. 2008; Falanga et al. 2008).

4. DISCUSSION

The IBIS/ISGRI observations have allowed us to follow the high energy behavior of SAX J1810.8–2609 during its long and bright X-ray outburst. Light curves varied simultaneously in all X-ray bands monitored (2–10 keV, 22–45 keV, and 45–68 keV). The X-ray spectra appeared always to be comparably soft, with a photon index of \(\Gamma = 2.3 \pm 2.7 \). The 20–100 keV luminosities are in the range \(L_X = 1.1 \times 10^{36} \text{erg s}^{-1} \) (estimated for a source at 5.5 kpc), which is typical for the low hard state of neutron star binaries (Barret et al. 2000). We estimated a fluence of \(5.5 \times 10^{-3} \text{erg cm}^{-2} \) using an average bolometric flux of \(1.6 \times 10^{-9} \text{erg cm}^{-2} \text{s}^{-1} \) in the 0.1–500 keV energy band and an outburst duration of ~40 days from ASM light curve. The long-term time-averaged accretion rate is \(M \approx 5 \times 10^{-12} \text{M}_\odot \text{yr}^{-1} \), taking into account a time interval between two outbursts of ~9.6 yr. The ASM, IBIS, and BAT\(^7 \) light curves show the same behavior, so the outburst duration and the time between two outbursts are estimated using the ASM light curve. This time-average low mass accretion rate, the outburst luminosity of \(\sim 1.3 \times 10^{36} \text{erg s}^{-1} \) lower than typical values for neutron star X-ray transient (\(\sim 2 \times 10^{38} \text{erg s}^{-1} \)), together with low quiescent luminosity (\(\sim 1 \times 10^{32} \text{erg s}^{-1} \)) reported by Jonker et al. (2004), strengthens the idea of these authors that this source belongs to the class of faint soft X-ray transient. In addition, we note that the low average persistent bolometric luminosity is very similar as the luminosity of the ultracompact X-ray binaries (see Fiocchi et al. 2008; Falanga et al. 2008). However, we think it difficult to derive a conclusion about the ultracompact nature of the system because the derived hydrogen fraction in the burst fuel of SAX J1810.8–2609 is not consistent with an ultracompact source, since those are thought to accrete pure helium from a white dwarf (Nelemans & Jonker 2006).

Spectral parameters are not correlated with the observed luminosities, but instead, they vary according with the rise/decay phases of the outburst. During the rise of the flux, the SAX J1810.8–2609 luminosity changes by a factor of 2, while there are no modifications of the spectral shape: the electron temperature \(kT_e \) is \(\sim 23–30 \text{keV} \) and the optical depth \(\tau \) of the plasma is \(\sim 1.2–1.5 \). This hard X-ray emission could be interpreted in the standard way, as produced by the upscattering of soft seed photons by a hot, optically thin electron plasma. During the decrease of the flux, spectra show a harder spectral shape with an optical depth of the plasma lower than 0.8 and very high electron temperatures \(kT_e \) of \(\sim 69–87 \text{keV} \). The spectral parameters measured during the decay phase of the 2007 outburst agree with those found using the BeppoSAX observations (Natalucci et al. 2000), showing the same X-ray spectral behavior: during the decay phase of the outbursts of 1998 also no high energy spectral steepening was observed.

We cannot determine whether the emission is due to a thermal or nonthermal process, because equally good fits are obtained either with a power law with no detectable cutoff below ~100 keV or with a thermal Comptonization spectrum with an electron temperature in excess of ~80–90 keV. This electron distribution could also arise from Comptonization by hybrid (thermal and nonthermal) corona (Coppi 1999), or from the Compton cloud located inside the neutron stars magnetosphere (Titarchuk et al. 1996), or, alternatively, the power-law component could be produced by the Comptonization of synchrotron emission in a relativistic jet (Bosch-Ramon et al. 2005; Fender 2004). Up to date there are few detections of radio emission associated with neutron star X-ray transients and sometimes outbursts of soft X-ray transient were associated with strong transient radio emission (Ball et al. 1995; Kuulkers et al. 1999; Fender & Kuulkers 2001). A comparison with hard tails detected from neutron star systems and some black hole binaries could be interesting suggesting that a similar mechanism could originate these components.

We acknowledge the ASI financial/programmatic support via contracts ASI-IR I/008/07/0. J.C. acknowledges financial support from ESA-PRODEX, Nr. 90057. We are particularly thankful to K. Hurley for making data available before becoming public. Finally, we thank the anonymous referee for the constructive comments and detailed review of the paper.

REFERENCES

Ball, K., et al. 1995, MNRAS, 273, 722
Barret, D., et al. 2000, ApJ, 533, 329
Bosch-Ramon, V., Romero, G. E., & Paredes, J. M. 2005, A&A, 429, 267
Coppi, P. S. 1999, in ASP Conf. Ser. 161, High Energy Processes in Accreting Black Holes, ed. J. Svensson & R. Poutanen (San Francisco, CA: ASP), 375
Cumming, A. 2003, ApJ, 595, 1077
Degenaar, N., Klein-Wolt, M., & Wijnands, R. 2007, GCN Circ. 6707
Di Salvo, T., et al. 2000, ApJ, 544, 119
Di Salvo, T., et al. 2001, ApJ, 554, 49
Falanga, M., et al. 2008, A&A, 484, 43
Fender, R. P. 2004, Compact Stellar X-Ray Sources, ed. W. H. G. Lewin & M. van der Klis (Cambridge: Cambridge Univ. Press)
Fender, R. P., & Kuulkers, E. 2001, MNRAS, 324, 923
Fiocchi, M., et al. 2006, ApJL, 657, L448
Fiocchi, M., et al. 2008, A&A, 492, 557
Galis, R., et al. 2007, Astron. Telegram, 1227
Galloway, D. K., et al. 2004, ApJ, 601, 466
Glasser, C. A., Odell, C. E., & Seufert, S. E. 1994, IEEE Trans. Nucl. Sci., 41, 1343
Greiner, J., Castro-Tirado, A. J., & Boller, T. 1998, IAU Circ. 6985
Haymoz, P., et al. 2007, Astron. Telegram, 1185
Iaria, R., et al. 2001, ApJ, 548, 883
Jonker, P. G., Galloway, D. K., McClintock, J. E., Buxton, M., Garcia, M., & Murray, S. 2004, MNRAS, 354, 666
Kuulkers, E., et al. 1999, MNRAS, 36, 919
Kuulkers, E., et al. 2003, A&A, 399, 663
Levine, A. M., et al. 1996, ApJ, 469, 33
Lewin, W. H. G. L., van Paradijs, J., & Taam, R. 1993, Space Sci. Rev., 62, 223
Lund, N., et al. 2003, A&A, 411, L231
Natalucci, L., Bazzano, A., Cocchi, M., Ubertini, P., Heise, J., Kuulkers, E., In’t Zand, J. J. M., & Smith, M. J. S. 2000, Apl, 536, 891
Nelemans, G., & Jonker, P. G. 2006, arXiv:astro-ph/5722
Parson, A. M., et al. 2007, GCN Circ. 6706
Piraino, S., et al. 1999, A&A, 349, 77
Schady, P., & Parsons, A. M. 2007, GCN Circ. 6707
Tarana, A., et al. 2006, A&A, 448, 336
Titarchuck, L. 1994, A&A, 434, 313
Titarchuck, L., Mastichiadis, A., & Kylafis, N. D. 1996, A&AS, 120, 171
Ubertini, P., et al. 1998, IAU Circ. 6838
Ubertini, R., et al. 2003, A&A, 411, L131
Winkler, C., Gehrels, N., Schönfelder, V., Roques, J.-P., Strong, A. W., Wunderer, C., & Ubertini, P. 2003, A&A, 411, 349