Molecular phylogenetic studies on clinical bovine piroplasmosis caused by benign *Theileria* in Shaanxi Province, China

Jing Wang¹²,*, Jiyu Zhang², Zhen Zhu², Xuzheng Zhou², Bing Li²

¹Department of Veterinary Pharmaceutical, Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, China
²Lanzhou Institute of Husbandry and Veterinary Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Key Laboratory for Veterinary Drug Innovation, Ministry of Agriculture, Lanzhou 730050, China

A group of benign *Theileria* species, which are often referred to as *T. orientalis*/*T. buffeli*/*T. sergenti* group, has low pathogenicity in cattle. Herein, we report on *Theileria* spp. in cattle on a farm from China. Based on phylogenetic analysis of the major piroplasm surface protein gene sequences, we detected 6 genotypes that were categorized as Types 1, 2, 3, 4, and 5 as well as an additional Type 9 genotype. The new epidemiological features of the *T. orientalis*/*T. buffeli*/*T. sergenti* parasites in China indicate a greater diversity in the genetics of these species than had been previously thought.

Keywords: MPSP gene, *Theileria* spp., genotype, phylogeny

A group of benign *Theileria* species transmitted by *Haemaphysalis* ticks is often referred to as *T. orientalis*/*T. buffeli*/*T. sergenti* group. The parasite’s presence is characterized by anemia, jaundice, depression, abortion, mortality, and the presence of *Theileria* in blood films [4]. Benign *Theileria* group parasites are widespread among cattle in subtropical and temperate zones [6], and the parasite can eventually lead to severe economic losses in endemic areas. For simplicity, *T. orientalis* is used throughout this paper to denote this benign *Theileria* group. Herein, we report on *Theileria* spp. in cattle on a farm in the Shaanxi Province, a region in which disease outbreaks have occurred.

The exact taxonomic status of *T. orientalis* has been debated for many years. The 18S rRNA data have shown that parasites in this group can be divided into at least 8 types, A, B, B1, C, D, E, H, and *T. buffeli* (Warwick). However, the number of identified types is increasing and there is a lack of consensus on their nomenclature [12,13]. Recently, the gene encoding the major piroplasm surface protein (MPSP) was considered a highly useful marker in revealing the phylogeny of *Theileria* parasites [3].

The nomenclature for the benign *Theileria* group has not reached consensus to date. In 1995, Kubota *et al.* [7] divided the group into at least four types, Ikeda (I), Chitose (C), Thai, and Buffeli (B), based on the allelic forms of the MPSP gene. However, Kim *et al.* [6] proposed a different classification approach based on MPSP, in which there were 6 genotypes, designated Types 1 to 6. Subsequently, 5 additional genotypes, including Types 7, 8, and N1 to N3, were added to the list of previously described genotypes [3,5].

Theileriosis caused by the benign *Theileria* group is widely reported from countries neighboring China. However, there are few reports on the occurrence of benign *Theileria* in China. Liu *et al.* [8] and He *et al.* [2] have reported that *Theileria* spp. are present in Hubei Province of China. In addition, surveys have revealed that at least five genotypes of *T. orientalis* (Types 2, 3, 6, 7, and 8) exist in China [3].

This study investigated the genetic diversity of the benign *Theileria* parasites in Huanglong county, which is located in the northern part of Shaanxi Province, China, by analyzing blood samples gathered from cattle at a farm where there was an outbreak of clinical piroplasmosis following a severe tick infestation (species unknown) in August 2013. Blood samples were collected from 10 cattle showing appropriate clinical signs: marked pallor in the oral and genital mucosa, anorexia, and fever (rectal temperature with high readings ≤ 42°C). The

Received 11 Apr. 2018, Revised 15 Aug. 2018, Accepted 21 Aug. 2018

*Corresponding author: Tel: +86-13951140263; Fax: +86-523-86663808; E-mail: kenhtsjj@163.com

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Phylogenetic studies on benign Theileria in Shaanxi, China

Fig. 1. Giemsa-stained blood smear from an infected calf. The arrows point out different polymorphisms of Theileria orientalis. Scale bar = 10 μm.

Table 1. Comparison of gene types based on 18S and major piroplasm surface protein (MPSP) genes

Animal No.	18S gene type/GenBank accession No.	MPSP gene type/GenBank accession No.
1	–	Type 5/KJ020551
3	–	Type 3 (Buffeli)/KJ020552
5	Type B (Ikeda)/KJ020548	Type 2 (Ikeda)/KJ020553, KJ020549
6	Type C (Buffeli)/KJ020546	Type 3 (Buffeli)/KJ020555, Type 1 (Chitose)/KJ020554
7	–	Type 5/KJ020550
8	Type A (Chitose)/KJ020547	Type 3 (Buffeli)/KJ020556, Type 5/KJ020557
9	Type C (Buffeli)/KJ020545	Type 5/KJ020560
10	Type B (Ikeda)/KJ020544	Type 3 (Buffeli)/KJ020559, Type 9/KJ020558
4,045	–	Type 2 (Ikeda)/KJ020561, Type 4/KJ020562

Type 9, not detected.

www.vetsci.org
Fig. 2. Phylogenetic relationships among *Theileria* isolated in Shaanxi Province, China, based on major piroplasm surface protein (MPSP) gene sequences. The bold font indicates sequences obtained from this study. Bootstrap values are shown as percentages at each node based on 1,000 replicates. Branch lengths correlate to the number of substitutions inferred according to the scale shown.

The epidemiology of theileriosis in China has not been described. Basic information about the *Theileria* spp., such as their life cycles, vectors, modes of transmission, virulences, and host compatibilities require further study. Regardless, the present study demonstrates that infection by *T. orientalis* is a potentially serious problem in Shaanxi Province, China.
Acknowledgments

This work was supported by the National Beef Cattle Industrial Technology System of China (CARS-38) and the Fund of Jiangsu Agri-animal Husbandry Vocational College (NSF201606). The authors would like to thank the State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, for technical help.

Conflict of Interest

The authors declare no conflicts of interest.

References

1. Gubbels MJ, Hong Y, van der Weide M, Qi B, Nijman IJ, Guangyuan L, Jongejan F. Molecular characterisation of the *Theileria buffeli/orientalis* group. Int J Parasitol 2000, 30, 943-952.
2. He L, Feng HH, Zhang WJ, Zhang QL, Fang R, Wang LX, Tu P, Zhou YQ, Zhao JL, Oosthuizen MC. Occurrence of *Theileria* and *Babesia* species in water buffalo (*Bubalus bubalis*, Linnaeus, 1758) in the Hubei province, South China. Vet Parasitol 2012, 186, 490-496.
3. Jeong WY, Yoon SH, An DJ, Cho SH, Lee KK, Kim JY. A molecular phylogeny of the benign *Theileria* parasites based on major piroplasm surface protein (MPSP) gene sequences. Parasitology 2010, 137, 241-249.
4. Kamau J, de Vos AJ, Playford M, Salim B, Kinyanjui P, Sugimoto C. Emergence of new types of *Theileria orientalis* in Australian cattle and possible cause of theileriosis outbreaks. Parasit Vectors 2011, 4, 22.
5. Khukhluu A, Lan DT, Long PT, Ueno A, Li Y, Luo Y, Macedo AC, Matsumoto K, Inokuma H, Kawazu S, Igarashi S, Xuan X, Yokoyama N, Molecular epidemiological survey of *Theileria orientalis* in Thua Thien Hue province, Vietnam. J Vet Med Sci 2011, 73, 701-705.
6. Kim SJ, Tsuji M, Kubota S, Wei Q, Lee JM, Ishihara C, Onuma M. Sequence analysis of the major piroplasm surface protein gene of benign bovine *Theileria parasitica* in east Asia. Int J Parasitol 1998, 28, 1219-1227.
7. Kubota S, Sugimoto C, Onuma M. A genetic analysis of mixed population in *Theileria sergenti* stocks and isolates using allele-specific polymerase chain reaction. J Vet Med Sci 1995, 57, 279-282.
8. Liu Q, Zhou YQ, He GS, Oosthuizen MC, Zhou DN, Zhao JL. Molecular phylogenetic studies on *Theileria* spp. isolates (China) based on small subunit ribosomal RNA gene sequences. Trop Anim Health Prod 2010, 42, 109-114.
9. McFadden AM, Rawdon TG, Meyer J, Makin J, Morley CM, Clough RR, Thom K, Mullner P, Geyser D. An outbreak of haemolytic anaemia associated with infection of *Theileria orientalis* in naive cattle. N Z Vet J 2011, 59, 79-85.
10. Ota N, Mizuno D, Kuboki N, Igarashi I, Nakamura Y, Yamashina H, Hanzaike T, Fujii K, Onoe S, Hata H, Kondo S, Matsui S, Koga M, Matsumoto K, Inokuma H, Yokoyama N. Epidemiological survey of *Theileria orientalis* infection in grazing cattle in the eastern part of Hokkaido, Japan. J Vet Med Sci 2009, 71, 937-944.
11. Rishniw M, Barr SC, Simpson KW, Frongillo MF, Franz M, Dominguez Alpizar JL. Discrimination between six species of canine microfilariae by a single polymerase chain reaction. Vet Parasitol 2006, 135, 303-314.
12. Shimizu S, Nojiri K, Matsunaga N, Yamane I, Minami T. Reduction in tick numbers (*Haemaphysalis longicornis*), mortality and incidence of *Theileria sergenti* infection in field-grazed calves treated with flumethrin pour-on. Vet Parasitol 2000, 92, 129-138.
13. Shiono H, Yagi Y, Thongnoon P, Kurabayashi N, Chikayama Y, Miyazaki S, Nakamura I. Acquired methemoglobinemia in anemic cattle infected with *Theileria sergenti*. Vet Parasitol 2001, 102, 45-51.
14. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28, 2731-2739.
15. Zhang S, Xu Y, Jin Y, Jin Z, Ju Y, Lu C. Development of a Bereriol slow release agent and its preventive effect against *Theileriosis sergenti* of cattle. Chin J Vet Sci 1998, 18, 367-369.