Velocity Tails for Inelastic Maxwell Models

M. H. Ernst¹ and R. Brito²

¹Instituut voor Theoretische Fysica
Universiteit Utrecht, Postbus 80006
3508 TA Utrecht, The Netherlands
²Departamento de Física Aplicada I
Universidad Complutense
28040 Madrid, Spain

We study the velocity distribution function for inelastic Maxwell models, characterized by a Boltzmann equation with constant collision rate, independent of the energy of the colliding particles. By means of a nonlinear analysis of the Boltzmann equation, we find that the velocity distribution function decays algebraically for large velocities, with exponents that are analytically calculated.

I. INTRODUCTION

Velocity distributions have over-populated high energy tails in many particle systems with in-elastic interactions, as has been discovered theoretically, and later observed in laboratory experiments with granular materials [1]. Instead of Gaussian tail distributions, many kinetic equations typically predict stretched exponentials, like \(\exp[-A|v|^{3/2}] \) in driven inelastic hard sphere systems (IHS) [2], or even tails with a higher overpopulation, like \(\exp[-A|v|] \) in the freely evolving IHS fluids [2]. These theoretical predictions have been extensively verified in Direct Monte Carlo Simulations (DSMC) of the Boltzmann equation [3], and the stretched exponentials have been observed in laboratory experiments with granular matter on vibrating plates [4]. However, the presence and also the absence of over-populated tails depends very strongly on the energy input or on how the system is thermo-statted [5,6]. Recently classes of simplified kinetic models have been studied, so-called Maxwell models, which are characterized by a Boltzmann equation with a collision rate that is independent of the relative kinetic energy of the colliding particles. Maxwell molecules are for kinetic theory, what harmonic oscillators are for quantum mechanics, and dumb-bells for polymer physics.

Ben-Naim and Krapivsky [7] have presented arguments about the non-existence of scaling solutions of the Boltzmann equation for the one-dimensional Maxwell model, and argue in favor of multi-time scales [8]. However, Puglisi et al. [2] have found an exact scaling solution \(\tilde{f}(v,t) \sim \left(1/v_0^3(t)\right)f(v/v_0(t)) \) for that equation, i.e. \(\tilde{f}(c) = (2/\pi)(1+c^2)^{3/2} \). It does have a power law tail \((1/c^4) \). Puglisi et al. also solve the spatially homogeneous Maxwell-Boltzmann equation using MC simulations in one- and two- dimensions, and, more importantly, they show that an arbitrary initial distribution approaches this scaling solution, with power law tails at high energies. In two-dimensions the exponent \(\alpha \) of the power law tails depends on the degree of in-elasticity, i.e. on the coefficient of restitution \(\alpha \). The goal of this article is to derive these power laws from the dominant small-\(k \) singularity in the Fourier transform of the velocity distribution function.

II. DOMINANT SMALL \(k \) SINGULARITY

In order to analyze the large \(v \)-behavior of the distribution function, it is convenient to use the Fourier transform \(\phi(k,t) \) of \(f(v,t) \). It is the generating function of the moments \(\langle v^n \rangle_t \). If \(f(v,t) \) has a tail \(\sim 1/|v|^{\alpha+d} \), then the moments with \(n > \alpha \) are divergent, and so is the \(n \)-th derivative of the generating function at \(k = 0 \), i.e. \(\phi(k,t) \) is singular at \(k = 0 \). Suppose the dominant small-\(k \) singularity of \(\phi(k,t) \) is \(\sim |k|^{\alpha} \), where \(\alpha \) is different from an even integer (even powers of \(k \) represent contributions that are regular at small \(k \)), then the inverse Fourier transform scales as \(1/|v|^{\alpha+d} \) at large \(v \).

By applying Bobylev’s Fourier transform method [9,10,11], we obtain a nonlinear equation for \(\phi(k,t) \), and we determine its dominant small-\(k \) singularity. In doing so we have derived a transcendental equation for the exponent \(\alpha \) in the power law tail \(\sim 1/|c|^{\alpha+d} \) of the scaling solutions \(\tilde{f}(v/v_0) \) of the Boltzmann equation for Maxwell molecules with in-elastic hard sphere interactions in arbitrary dimensions.

The Boltzmann equation for the \(d \)-dimensional in-elastic Maxwell model reads,
Here \(\int (\cdots) = (1/\Omega_d) \int dn(\cdots)\) is an average over a \(d\)-dimensional solid angle where \(\Omega_d = 2\pi^{d/2}/\Gamma(\frac{d}{2})\). The velocities \(v_i^{**}\) with \(i,j = \{1,2\}\) denote the \(d\)-dimensional restituting velocities, and \(v_i^\ast\) the corresponding post-collision velocities. They are defined as,

\[
\begin{align*}
\hat{v}_i^* &= v_i - \frac{1}{2}(1 + \frac{q}{K_d})v_{ij} \cdot nn \\
\hat{v}_i^\ast &= v_i - \frac{1}{2}(1 + \alpha)v_{ij} \cdot nn,
\end{align*}
\]

with \(v_{ij} = v_i - v_j\), and \(n\) is a unit vector along the line of centers of the interacting particles. In one-dimension, the tensorial product \(nn\) can be replaced by 1. From the normalization of \(f\) it follows that the loss term reduces to \(-f(v_1, t)\), i.e. the collision frequency is unity, and the dimensionless time \(t\) counts the average number of collisions per particle.

We first illustrate the method for the one-dimensional case. Fourier transformation of the Boltzmann equation yields then,

\[
\partial_t \phi(k,t) = \phi(pk,t)\phi((1-p)k,t) - \phi(k,t),
\]

where we have used that \(\phi(0,t) = 1\) and \(p = \frac{2}{3}(1 + \alpha)\). The equation for the scaling solution, \(\phi(k,t) = \Phi(v_0(t)k)\) simplifies to,

\[
- \gamma k d\Phi(k)/dk + \Phi(k) = \Phi(pk)\Phi((1-p)k),
\]

where the exponent \(\gamma\) in \(v_0(t) = v_0(0) \exp[-\gamma t]\) is still to be determined.

The requirement that the total energy be finite, imposes the the lower bound \(a > 2\) on the exponent. We therefore make the ansatz that the dominant small-k singularity has the form,

\[
\Phi(k) = 1 - \frac{1}{2\alpha}(k \cdot c)^2 + A|k|^a.
\]

Inserting this in (3), and equating the coefficient of equal powers of \(k\) yields the equation,

\[
a = \frac{1 - p^a - (1-p)^a}{p(1-p)}.
\]

The smallest root of this equation, satisfying \(a > 2\), is \(a = 3\), and \(A\) is left undetermined. Consequently the scaling solution has a power law tail, \(f(c) \sim 1/c^4\).

The same method can be applied to the \(d\)-dimensional case. Application of Bobylev’s Fourier transform method to the Boltzmann equation for this case yields the transformed equation,

\[
\partial_t \phi(k,t) = \int_n \phi(k+,t)\phi(k-,t) - \phi(k,t),
\]

where the \(n\)-average is defined below (1), and

\[
\begin{align*}
k_+ &= pk \cdot nn & |k_+|^2 &= p^2 k^2(k \cdot n)^2 \\
k_- &= k - k_+ & |k_-|^2 &= k^2[1 - q(k \cdot n)^2],
\end{align*}
\]

where \(q = p(2-p)\) is a positive number. We proceed in the same way as in the one-dimensional case, and obtain the equation for the scaling solution,

\[
- \gamma k d\Phi(k)/dk + \Phi(k) = \int_n \Phi(k_+)\Phi(k_-).
\]

Inserting the ansatz (5) into (8), and equating the coefficients of equal powers of \(k^a\) yields,

\[
a\gamma \langle |k \cdot c|^a \rangle = \int_n \langle |k \cdot c|^a - |k_+ \cdot c|^a - |k_- \cdot c|^a \rangle,
\]

for \(s = 2, a\). In order to carry out the angular \(\hat{c}\)-average in \(\langle |q \cdot c|^a \rangle\) with \(q = \{k, k_+, k_-\}\) we choose \(q\) as polar axis, and denote \(q \cdot c = q c \hat{q} \cdot \hat{c} = q c \cos \theta\), then \(\langle |q \cdot c|^a \rangle = \langle |c|^a \rangle K_a^{(d)}\), where \(K_a^{(d)}\) is the average of \(|\cos \theta|^a\) over a \(d\)-dimensional solid angle, which equals
\[K_a^{(d)} = \Gamma\left(\frac{d}{2}(a + 1)\right) \frac{\Gamma\left(\frac{1}{2}d\right)}{\Gamma\left(\frac{1}{2}(a + d)\right)} \Gamma\left(\frac{1}{2}\right), \]

where \(q = p(2 - p) \). Finally we carry out the angular \(n \)-averages using (8), and obtain,

\[
\int_n |k_+|^a = k^a p^a K_a^{(d)} \\
\int_n |k_-|^a = k^a \int_n [1 - q(\hat{k} \cdot n)^2]^{a/2} = k^a L_a^{(d)}(q). \tag{12}
\]

Insertion of these results in (10) for \(a=2 \), yields

\[\gamma = \frac{1}{d} p(1 - p) = \frac{1}{4}(1 - \alpha^2). \tag{13} \]

For the exponent \(a \), featuring in the power law tail of the scaling function \(f(c) \sim 1/c^{a+d} \), we obtain the transcendental equation,

\[a = \frac{1 - p^a K_a^{(d)} - L_a^{(d)}(q)}{\frac{1}{4} p(1 - p)}. \tag{14} \]

The two most interesting cases are \(d = 2, 3 \), where

\[
L^{(2)}_a(q) = \frac{2}{\pi} \int_0^{\pi/2} d\theta |1 - q \cos^2 \theta|^{a/2} \\
L^{(3)}_a(q) = \int_0^1 dx |1 - qx^2|^{a/2}, \tag{15}
\]

and one can verify that \(a = 2 \) is also a solution of (14). We look for the smallest solution \(a(\alpha) \) of this transcendental equation with \(a > 2 \). The numerical solutions for \(d = 2, 3 \) are shown in Figure 1 as a function of \(\alpha \). If \(p = \frac{1}{2}(1 + \alpha) \uparrow 1 \) the root \(a(\alpha) \) moves to \(\infty \), as it should, which is consistent with a Maxwellian tail distribution for the elastic case.

FIG. 1. Solution of Eq. (14) as a function of \(\alpha \) for 2 dimensions (left panel) and 3 dimensions (right panel). The solution diverges as \(\alpha \to 1 \) (elastic limit), because \(f \) becomes Maxwellian in this limit. We note that \(a = 2 \) always satisfies Eq. (14), and the solution shown here is the one different from \(a = 2 \).

The simulations in Ref. [9] of the two-dimensional Maxwell - Boltzmann equation show for the exponent \(a(\alpha = 0) + 2 \simeq 5 \), where our analytical method predicts \(a(\alpha = 0) + 2 \simeq 6.2 \). In fact, closer inspection of their two-dimensional scaling plot shows that the slope of their log-log plot of \(f(c) \) versus \(c \) increases at larger velocities, approaching the exact prediction of the Boltzmann equation. However, at these large velocities the statistical errors in their simulations are too large to make a quantitative comparison for larger \(\alpha \)-values.
[1] G.P. Collins, A Gas of Steel Balls, *Sci. Am.* Jan. 2001.
[2] T. P. C. van Noije and M. H. Ernst, *Granular Matter*, 1, 57 (1998).
[3] S.E. Esipov and T. Pöschel, *J. Stat. Phys.* 86, (191)3851997.
[4] J.J. Brey, M.J. Montero and D. Cubero, *Phys. Rev. E* 54, 3664 (1996).
[5] J.M. Montanero and A. Santos, *Granular Matter* 2, (2000).
[6] Th. Biben, Ph. A. Martin and J. Piasecki, preprint July 2001.
[7] E. Ben-Naim and P. Krapivsky, *Phys. Rev. E* 61, R5 (2000).
[8] Very recently Krapivsky and Ben-Naim came to essentially the same results as presented in this article; see cond-mat/0111044, 2 Nov 2001.
[9] A. Baldassarri, U. Marini Bettolo Marconi and A. Puglisi, cond-mat/0111066, Nov, 5th (2001).
[10] A. Baldassarri, U. Marini Bettolo Marconi and A. Puglisi, cond-mat/0105299, May, 15th (2001).
[11] A. V. Bobylev, Sov. Phys. Dokl 20, 820 (1976).
[12] M. H. Ernst, *Phys. Reports* 78, 1 (1981).
[13] A. V. Bobylev, J. A. Carrillo, I. M. Gamba, *J. Stat. Phys.* 98, 743 (2000).