On the precise value of the strong chromatic index of a planar graph with a large girth

Gerard Jennhwa Chang*1,2 and Guan-Huei Duh†1

1Department of Mathematics, National Taiwan University, Taipei 10617, Taiwan
2National Center for Theoretical Sciences, Mathematics Division, 2F of Astronomy-Mathematics Building, National Taiwan University, Taipei 10617, Taiwan

September 24, 2015

Abstract

A strong k-edge-coloring of a graph G is a mapping from $E(G)$ to $\{1, 2, \ldots, k\}$ such that every pair of distinct edges at distance at most two receive different colors. The strong chromatic index $\chi'_s(G)$ of a graph G is the minimum k for which G has a strong k-edge-coloring. Denote $\sigma(G) = \max_{xy \in E(G)} \{\deg(x) + \deg(y) - 1\}$. It is easy to see that $\sigma(G) \leq \chi'_s(G)$ for any graph G, and the equality holds when G is a tree. For a planar graph G of maximum degree Δ, it was proved that $\chi'_s(G) \leq 4\Delta + 4$ by using the Four Color Theorem. The upper bound was then reduced to $4\Delta, 3\Delta + 5, 3\Delta + 1, 3\Delta, 2\Delta - 1$ under different conditions for Δ and the girth. In this paper, we prove that if the girth of a planar graph G is large enough and $\sigma(G) \geq \Delta(G) + 2$, then the strong chromatic index of G is precisely $\sigma(G)$. This result reflects the intuition that a planar graph with a large girth locally looks like a tree.

Keywords: Strong chromatic index, planar graph, girth.

1 Introduction

A strong k-edge-coloring of a graph G is a mapping from $E(G)$ to $\{1, 2, \ldots, k\}$ such that every pair of distinct edges at distance at most two receive different colors. It induces a proper vertex coloring of $L(G)^2$, the square of the line graph of G. The strong chromatic index $\chi'_s(G)$ of G is the minimum k for which G has a strong k-edge-coloring. This concept was introduced by Fouquet and Jolivet [19, 20] to model the channel assignment in some radio networks. For more applications, see [4, 29, 32, 31, 24, 36].

*E-mail: gjchang@math.ntu.edu.tw.
†E-mail: r03221028@ntu.edu.tw.
A Vizing-type problem was asked by Erdős and Nešetřil, and further strengthened by Faudree, Schelp, Gyárfás and Tuza to give an upper bound for $\chi'_s(G)$ in terms of the maximum degree $\Delta = \Delta(G)$:

Conjecture 1 (Erdős and Nešetřil ’88 [16] ’89 [17], Faudree et al ’90 [18]). If G is a graph with maximum degree Δ, then $\chi'_s(G) \leq \Delta^2 + [\frac{\Delta}{2}]^2$.

As demonstrated in [18], there are indeed some graphs reach the given upper bounds.

By a greedy algorithm, it can be easily seen that $\chi'_s(G) \leq 2\Delta(\Delta - 1) + 1$. Molloy and Reed [28] using the probabilistic method to show that $\chi'_s(G) \leq 1.998\Delta^2$ for maximum degree Δ large enough. Recently, this upper bound was improved by Bruhn and Joos [8] to $1.93\Delta^2$.

For small maximum degrees, the cases $\Delta = 3$ and 4 were studied. Andersen [1] and Horák et al [22] proved that $\chi'_s(G) \leq 10$ for $\Delta(G) \leq 3$ independently; and Cranston [13] showed that $\chi'_s(G) \leq 22$ when $\Delta(G) \leq 4$.

According to the examples in [18], the bound is tight for $\Delta = 3$, and the best we may expect for $\Delta = 4$ is 20.

The strong chromatic index of a few families of graphs are examined, such as cycles, trees, d-dimensional cubes, chordal graphs, Kneser graphs, k-degenerate graphs, chordless graphs and C_4-free graphs, see [9] [12] [15] [18] [27] [39] [41]. As for Halin graphs, refer to [10] [25] [26] [34] [35]. For the relation to various graph products, see [37].

Now we turn to planar graphs.

Faudree et al used the Four Color Theorem [2] [3] to prove that planar graphs with maximum degree Δ are strong $(4\Delta + 4)$-edge-colorable [18]. By the same spirit, it can be shown that K_5-minor free graphs are strong $(4\Delta + 4)$-edge-colorable. Moreover, every planar G with girth at least 7 and $\Delta \geq 7$ is strong 3Δ-edge-colorable by applying a strengthened version of Vizing’s Theorem on planar graphs [33] [38] and Grötzsch’s theorem [21].

The following results are obtained by using a discharging method:

Theorem 2 (Hudák et al ’14 [23]). If G is a planar graph with girth at least 6 and maximum degree at least 4, then $\chi'_s(G) \leq 3\Delta(G) + 5$.

Theorem 3 (Hudák et al ’14 [23]). If G is a planar graph with girth at least 7, then $\chi'_s(G) \leq 3\Delta(G)$.

And the bounds are improved by Bensmail et al.

Theorem 4 (Bensmail et al ’14 [6]). If G is a planar graph with girth at least 6, then $\chi'_s(G) \leq 3\Delta(G) + 1$.

Theorem 5 (Bensmail et al ’14 [6]). If G is a planar graph with girth at least 5 or maximum degree at least 7, then $\chi'_s(G) \leq 4\Delta(G)$.
It is also interesting to see the asymptotic behavior of strong chromatic index when the girth is large enough.

Theorem 6 (Borodin and Ivanova ’13 [7]). If G is a planar graph with maximum degree $\Delta \geq 3$ and girth at least $40\lfloor \frac{\Delta}{2} \rfloor + 1$, then $\chi'_s(G) \leq 2\Delta - 1$.

Theorem 7 (Chang et al ’13 [11]). If G is a planar graph with maximum degree $\Delta \geq 4$ and girth at least $10\Delta + 46$, then $\chi'_s(G) \leq 2\Delta - 1$.

Theorem 8 (Wang and Zhao ’15 [40]). If G is a planar graph with maximum degree $\Delta \geq 4$ and girth at least $10\Delta - 4$, then $\chi'_s(G) \leq 2\Delta - 1$.

The concept of maximum average degree is also an indicator to the sparsity of a graph. Graphs with small maximum average degrees are in relation to planar graphs with large girths, as a folklore lemma that can be proved by Euler’s formula points out.

Lemma 9. A planar graph G with girth g has maximum average degree $\text{mad}(G) < 2 + \frac{4}{g-2}$.

Many results concerning planar graphs with large girths can be extended to general graphs with small maximum average degrees and large girths. Strong chromatic index is no exception.

Theorem 10 (Wang and Zhao ’15 [40]). Let G be a graph with maximum degree $\Delta \geq 4$. If the maximum average degree $\text{mad}(G) < 2 + \frac{1}{3\Delta - 2}$, the even girth is at least 6 and the odd girth is at least $2\Delta - 1$, then $\chi'_s(G) \leq 2\Delta - 1$.

In terms of maximum degree Δ, the bound $2\Delta - 1$ is best possible. We seek for a better parameter as a refinement. Define

$$\sigma(G) := \max_{xy \in E(G)} \{\deg(x) + \deg(y) - 1\}.$$

An antimatching is an edge set $S \subseteq E(G)$ in which any two edges are at distance at most 2, thus any strong edge-coloring assigns distinct colors on S. Notice that each color set of a strong edge-coloring is an induced matching, and the intersection of an induced matching and an antimatching contains at most one edge. The fact suggests a dual problem to strong edge-coloring: finding a maximum antimatching of G, whose size is denoted by $\text{am}(G)$. For any edge $xy \in E(G)$, the edges incident with xy form an antimatching of size $\deg(x) + \deg(y) - 1$. Together with the weak duality, this gives the inequality

$$\chi'_s(G) \geq \text{am}(G) \geq \sigma(G).$$

By induction, we see that for any nontrivial tree T, $\chi'_s(T) = \sigma(T)$ attains the lower bound [18]. Based on the intuition that a planar graph with large girth locally looks like a tree, in this paper, we focus on this class of graphs. More precisely, we prove the following main theorem:
Theorem 11. If G is a planar graph with $\sigma = \sigma(G) \geq 5$, $\sigma \geq \Delta(G) + 2$ and girth at least $5\sigma + 16$, then $\chi'_s(G) = \sigma$.

We also make refinement on the girth constraint and gain a stronger result in Section 4.

The condition $\sigma \geq \Delta(G) + 2$ is necessary as shown in the following example. Suppose $n \geq 1$ and $d \geq 2$. Construct $G_{3n+1,d}$ from the cycle $(x_1, x_2, \ldots, x_{3n+1})$ by adding $d-2$ leaves adjacent to each x_{3i} for $1 \leq i \leq n$. Then $\sigma(G_{3n+1,d}) = d + 1 < d + 2 = \Delta(G_{3n+1,d}) + 2$. See Figure 1 for $G_{3n+1,4}$.

![Figure 1: The graph $G_{3n+1,4}$.](image)

We claim that $\sigma(G_{3n+1,d}) < \chi'_s(G_{3n+1,d})$. Suppose to the contrary that $\sigma(G_{3n+1,d}) = \chi'_s(G_{3n+1,d})$. For $1 \leq i \leq n$, the $(\sigma - 1)$ edges incident to x_{3i}, together with $x_{3i-2}x_{3i-1}$ (or $x_{3i+1}x_{3i+2}$) use all the σ colors, implying that $x_{3i-2}x_{3i-1}$ uses the same color as $x_{3i+1}x_{3i+2}$, where $x_{3n+2} = x_1$. Therefore, $x_1x_2, x_4x_5, \ldots, x_{3n+1}x_{3n+2}$ all use the same color, contradicting that x_1x_2 is adjacent to $x_{3n+1}x_1 = x_{3n+1}x_{3n+2}$.

2 The proof of the main theorem

To prove the main theorem, we need two lemmas and a key lemma (Lemma 18) to be verified in the next section.

The first lemma can be used to prove that any tree T has strong chromatic index $\sigma(T)$ by induction.

Lemma 12. Suppose x_1x_2 is a cut edge of a graph G, and G_i is the component of $G - x_1x_2$ containing x_i joining the edge x_1x_2 for $i = 1, 2$. If for some integer k, $\deg(x_1) + \deg(x_2) - 1 \leq k$ and $\chi'_s(G_i) \leq k$ for $i = 1, 2$, then $\chi'_s(G) \leq k$.

Proof. Choose a strong k-edge-coloring f_i of G_i for $i = 1, 2$. Let E_i be the set of edges incident with x_i in $G_i - x_1x_2$ and $S_i = f_i(E_i)$. Since $\deg(x_1) + \deg(x_2) - 1 \leq k$, we may assume S_1 and S_2 are disjoint and $f_1(x_1x_2) = f_2(x_1x_2)$ is some element $c \in \{1, 2, \ldots, k\} \setminus (S_1 \cup S_2)$. Then

$$f(e) = \begin{cases} f_1(e), & \text{if } e \in E(G_1) - x_1x_2; \\ f_2(e), & \text{if } e \in E(G_2) - x_1x_2; \\ c, & \text{if } e = x_1x_2 \end{cases}$$

is a strong k-edge-coloring of G. \hfill \qed
The following lemma from [30] about planar graphs is also useful in the proof of the main theorem. An \(\ell\)-thread is an induced path of \(\ell+2\) vertices all of whose internal vertices are of degree 2 in the full graph.

Lemma 13. Any planar graph \(G\) with minimum degree at least 2 and with girth at least \(5\ell+1\) contains an \(\ell\)-thread.

Proof. Contract all the vertices of degree 2 to obtain \(G'\). Notice that \(G'\) is a planar graph which may have multi-edges and may be disconnected. Embed \(G' = (V,E)\) in the plane as \(P\). Then Euler’s Theorem says that \(|V| - |E| + |F| \geq 2\), where \(F\) is the set of faces of \(P\). If \(G'\) has girth larger than 5, we have \(2|E| = \sum_{f \in F} \deg(f) \geq 6|F|\). But that \(G'\) has no vertices of degree 2 implies \(2|E| = \sum_{v \in V} \deg(v) \geq 3|V|\). Combining all these produces a contradiction:

\[
2 \leq |V| - |E| + |F| \leq \frac{2}{3}|E| - |E| + \frac{1}{3}|E| = 0.
\]

Hence \(G'\) has a cycle of length at most 5. The corresponding cycle in \(G\) has length at least \(5\ell+1\). Thus one of these edges in \(G'\) is contracted from \(\ell\) vertices in \(G\), and so \(G\) has the required path. \(\square\)

These two lemmas, together with a key lemma to be verified in the next section, lead to the following proof of the main theorem:

Proof of Theorem 11. Since the inequality \(\chi'_s(G) \geq \sigma(G)\) is trivial, it suffices to show that \(\chi'_s(G) \leq \sigma(G)\). That is, \(G\) admits a strong \(\sigma\)-edge-coloring \(\varphi\). Suppose to the contrary that there is a counterexample \(G\) with minimum vertex number. Then there is no vertex \(x\) adjacent to \(\deg(x) - 1\) vertices of degree 1. For otherwise, there is a cut edge \(xy\), where \(y\) is not a leaf. By applying Lemma 12 to \(G\) with the cut edge \(xy\) and using the minimality of \(G\), we get a contradiction.

Consider \(H = G - \{x \in V(G) : \deg(x) = 1\}\), which clearly has the same girth as \(G\) since the deletion doesn’t break any cycle. And we have \(\delta(H) \geq 2\), otherwise \(G\) has a vertex \(x\) adjacent to \(\deg(x) - 1\) vertices of degree 1, which is impossible. Lemma 13 claims that there is a path \(x_0x_1 \ldots x_{\ell}+1\) with \(\ell = \sigma + 3\) and \(\deg_H(x_i) = 2\) for \(i = 1,2,\ldots,\ell\). Now let \(G'\) be subgraph obtained from \(G\) by deleting the leaf-neighbors of \(x_2, x_3, \ldots, x_{\ell-1}\) and the vertices \(x_3, x_4, \ldots, x_{\ell-2}\). Consider the subgraph \(T\) of \(G\) induced by \(x_1, x_2, \ldots, x_{\ell}\) and their neighbors, which is a caterpillar tree. By Lemma 18 that will be proved in the next section, \(T\) admits a strong \(\sigma\)-edge-coloring \(\varphi'\) such that \(\varphi\) and \(\varphi'\) coincides on the edges incident to \(x_1\) and \(x_{\ell}\). Gluing these two edge-colorings we construct a strong \(\sigma\)-edge-coloring of \(G\). \(\square\)

3 The key lemma: caterpillar with edge pre-coloring

All the graphs in this section are caterpillar trees. Let \(d_i \geq 2\) for \(i = 1,2,\ldots,\ell\). By \(T = \text{Cat}(d_1,d_2,\ldots,d_{\ell})\) we mean a caterpillar tree with spine \(x_0,x_1,\ldots,x_{\ell+1}\), whose degrees
are \(d_0, d_1, \ldots, d_{\ell+1}\), where \(d_0 = d_{\ell+1} = 1\). Call \(\ell\) the length of \(T\) and let \(E_i\) be the edges incident with \(x_i\). See Figure 2 for \(\text{Cat}(5,3,2,4,5)\).

![Figure 2: The caterpillar tree \(\text{Cat}(5,3,2,4,5)\).](image)

Collect all the tuples \((C; \alpha_0, C_1, C_\ell, \alpha_\ell)\) as \(P_\kappa(T)\), where the color sets \(C_1, C_\ell \subseteq C\) with \(|C_1| = d_1, |C_\ell| = d_\ell, |C| = \kappa\), and \(\alpha_0 \in C_1, \alpha_\ell \in C_\ell\). Fix \(\kappa \in \mathbb{N}\). For any \(P = (C; \alpha_0, C_1, C_\ell, \alpha_\ell) \in P_\kappa(T)\), the set of all strong edge-colorings \(\varphi\) using the colors in \(C\) and satisfying the following criterions is denoted by \(C_T(P)\):

\[
\varphi(E_1) = C_1, \quad \varphi(E_\ell) = C_\ell, \quad \varphi(x_0x_1) = \alpha_0 \quad \text{and} \quad \varphi(x_\ell x_{\ell+1}) = \alpha_\ell.
\]

If \(C_T(P)\) is nonempty for any \(P \in P_\kappa(T)\) with \(\kappa \geq \sigma(T)\), then \(T\) is called \(\kappa\)-two-sided strong edge-pre-colorable.

Lemma 14. If \(T = \text{Cat}(d_1, d_2, \ldots, d_\ell)\) is \(\kappa\)-two-sided strong edge-pre-colorable, then \(T\) is \(\kappa'\)-two-sided strong edge-pre-colorable for any \(\kappa' \geq \kappa\).

Proof. For any \(P' = (C'; \alpha_0', C_1', C_\ell', \alpha_\ell') \in P_\kappa'(T)\), we have to find a strong edge-coloring in \(C_T(P')\).

Case \(|C_1' \cup C_\ell'| \leq \kappa\). Choose a \(\kappa\)-set \(C\) so that \(C_1' \cup C_\ell' \subseteq C \subseteq C'\). By assumption, there is a strong edge-coloring in \(C_T(C; \alpha_0', C_1', C_\ell', \alpha_\ell') \subseteq C_T(P')\).

Case \(|C_1' \cup C_\ell'| > \kappa\). Choose a \(\kappa\)-set \(C\) so that \(C_1' \cup \{\alpha_\ell'\} \subseteq C \subseteq C_1' \cup C_\ell'\), and a \(d_\ell\)-set \(C_\ell\) so that \(C_\ell' \cap C \subseteq C_\ell \subseteq C\). By assumption, there is a strong edge-coloring \(\varphi\) in \(C_T(C; \alpha_0', C_1', C_\ell, \alpha_\ell')\). Let the edges in \(E_\ell\) with color \(C_\ell - C_\ell'\) be \(E_\ell'\). Notice \(C_\ell' - C_\ell\) and \(C\) are disjoint, so the colors in \(C_\ell' - C_\ell\) are not appeared in \(\varphi\). Hence we can change the colors of \(E_\ell'\) to \(C_\ell' - C_\ell\) and obtain a strong edge-coloring in \(C_T(P')\). \(\square\)

We now derive a series of properties regarding the two-sided strong edge-pre-colorability of a caterpillar tree and its certain subtrees.

Lemma 15. Suppose a caterpillar tree \(\bar{T}\) contains \(T\) as a subgraph, and both have the same length. If \(\bar{T}\) is \(\kappa\)-two-sided strong edge-pre-colorable, then \(T\) is also \(\kappa\)-two-sided strong edge-pre-colorable.

Proof. Suppose \((C; \alpha_0, C_1, C_\ell, \alpha_\ell) \in P_\kappa(T)\). We find \((C; \alpha_0, C_1', C_\ell', \alpha_\ell) \in P_\kappa(\bar{T})\) such that \(C_1' \supseteq C_1\) and \(C_\ell' \supseteq C_\ell\). The lemma follows that any \(\varphi' \in C_{\bar{T}}(C; \alpha_0, C_1', C_\ell', \alpha_\ell)\) has a restriction \(\varphi\) on \(T\) so that \(\varphi\) is a strong edge-coloring in \(C_T(C; \alpha_0, C_1, C_\ell, \alpha_\ell)\). \(\square\)

For \(T = \text{Cat}(d_1, d_2, \ldots, d_\ell)\), let \(T_{\ell-1}\) be the subtree \(\text{Cat}(d_1, d_2, \ldots, d_{\ell-1})\).
Lemma 16. For $T = \text{Cat}(d_1, d_2, \ldots, d_\ell)$, if T_{-1} is κ-two-sided strong edge-pre-colorable, where $\kappa \geq \sigma(T)$, then so is T.

Proof. For any $P = (C; \alpha_0, C_1, C_\ell, \alpha_\ell) \in \mathcal{P}_\kappa(T)$, pick $\alpha_{\ell-1} \in C_\ell - \alpha_\ell$ and $C_{\ell-1}$ a $d_{\ell-1}$-subset of C with $C_{\ell-1} \cap C_\ell = \{\alpha_{\ell-1}\}$. Notice that $C_{\ell-1}$ can be chosen since $d_{\ell-1} + d_\ell - 1 \leq \sigma(T) \leq \kappa$.

By the assumption, T_{-1} admits a strong κ-edge-coloring $\varphi \in \mathcal{C}_{T_{-1}}(C; \alpha_0, C_1, C_\ell, \alpha_{\ell-1})$. Coloring the remaining edges with $C_\ell - \alpha_{\ell-1}$ so that $x_\ell x_{\ell+1}$ has color α_ℓ results in a strong κ-edge-coloring in $\mathcal{C}_T(P)$. \hfill \Box

Hereafter, if necessary we reverse the order to view $T = \text{Cat}(d_\ell, d_{\ell-1}, \ldots, d_1)$ so that we can always assume $\sigma(T_{-1}) = \sigma(T)$. Hence the requirement $\kappa \geq \sigma(T)$ in Lemma 16 automatically holds.

For a caterpillar tree T, we define T' and I_T as follows. Call a vertex x_i σ-large if $d_i \geq d^* := \lceil \frac{\sigma + 1}{2} \rceil$. The value d^* is critical in the sense that

1. If $d_i + d_j \leq \sigma + 1$, then either d_i or d_j must be at most d^*.
2. If $d_i + d_j \geq \sigma + 1$, then either d_i or d_j must be at least d^*.

Let $S = \{x_i : i \in I_T\}$ be the set of all σ-large vertices, except that if there exist $i < j$ with $d_{i-1} < d^*$, $d_i = d_{i+1} = \ldots = d_j = d^*$ and $d_{j+1} < d^*$, we only take $x_i, x_{i+2}, x_{i+4}, \ldots$ till x_j or x_{j-1}, depending on the parity. Then S is a nonempty independent set. Consider a new degree sequence $d'_1, d'_2, \ldots, d'_\ell$ where

$$d'_i = \begin{cases}
 d_i - 1, & \text{if } i \in I_T; \\
 d_i, & \text{if } i \notin I_T.
\end{cases}$$

Then $T' = \text{Cat}(d'_1, d'_2, \ldots, d'_\ell)$ is a caterpillar tree isomorphic to a subgraph of T, with $\sigma(T') = \sigma(T) - 1$ due to the criticalness of d^* and the choice method of S.

It is straightforward to see that $T'_{-1} = \text{Cat}(d'_1, d'_2, \ldots, d'_{\ell-1})$ by the choice method of S.

Lemma 17. For $T = \text{Cat}(d_1, d_2, \ldots, d_\ell)$, suppose $\sigma(T) \geq 6$ and T'_{-1} is $(\kappa - 1)$-two-sided strong edge-pre-colorable, then T is κ-two-sided strong edge-pre-colorable.

Proof. For any $P = (C; \alpha_0, C_1, C_\ell, \alpha_\ell) \in \mathcal{P}_\kappa(T)$, we have to show that $\mathcal{C}_T(P)$ is nonempty.

Let $I = I_T$. Our strategy is to search for a color β such that

$$\beta \in C_1 \text{ if and only if } 1 \in I; \text{ and } \beta \in C_\ell \text{ if and only if } \ell \in I.$$

Suppose such a color β exists and $\beta \neq \alpha_\ell$. By Lemma 16, T' admits a strong $(\kappa - 1)$-edge coloring in $\mathcal{C}_{T'}(C - \beta; \alpha_0, C_1 - \beta, C_\ell - \beta, \alpha_\ell)$. Coloring the remaining edges with β then yields the required strong κ-edge-coloring in $\mathcal{C}_T(P)$. Notice that S being an independent set guarantees that the edges with color β form an induced matching. If it happens that β coincides with α_ℓ, then we seek instead for strong-edge coloring in $\mathcal{C}_{T'}(C - \beta; C_1 - \beta, \alpha_0, C_\ell - \beta, \alpha_\ell)$.

Similarly, there is a strong edge-coloring in $C_{t_{-1}} \subseteq C$ and $C_{t_{-1}} \cap C_t = \{\alpha_{t_{-1}}\}$, there will be a β such that

$$\beta \in C_t \text{ if and only if } 1 \in I; \text{ and } \beta \in C_{t_{-1}} \text{ if and only if } \ell - 1 \in I.$$

Similarly, there is a strong edge-coloring in $C_{T_{-1}}(C; \alpha_0, C_1, \alpha_{t_{-1}})$. Color the remaining edges with $C_t - \alpha_{t_{-1}}$ so that $x_{t}x_{t_{+1}}$ has color α_t, we gain a strong κ-edge-coloring in $C_T(P)$.

We now prove the existence of β according to the following four cases.

Case 1. $1, \ell \in I$. In this case, $C_1 \cap C_\ell$ is nonempty since

$$|C_1 \cap C_\ell| = |C_1| + |C_\ell| - |C_1 \cup C_\ell| \geq 2d^* - \sigma > 0.$$

Pick β to be any color in the intersection.

Case 2. $1 \in I$ but $\ell \notin I$. If $C_1 - C_\ell$ is nonempty, then pick β to be any color in the difference. Otherwise, $1 \in I$ and $\ell \notin I$ imply $d_1 \geq d^* \geq d_\ell$. On the other hand, $C_1 - C_\ell = \emptyset$ implies $d_1 \leq d_\ell$. Thus the situation that $C_1 - C_\ell$ is empty occurs only when $d_1 = d_\ell = d^*$ and $C_1 = C_\ell$. We consider the subtree T_{-1}. Choose $\alpha_{t_{-1}}$ to be any color in $C_t - \alpha_{t_{-1}}$. Let $C_{t_{-1}}$ be $\alpha_{t_{-1}}$ together with any $(d_{t_{-1}} - 1)$-subset in $C - C_t$.

Since $d_{\ell} = d^*$ but $\ell \notin I$, it is the case that $\ell - 1 \in I$ and $d_{t_{-1}} = d^*$. Pick $\beta = \alpha_{t_{-1}}$.

Case 3. $\ell \in I$ but $1 \notin I$. If $C_t - C_1$ is nonempty, then let β be any color in the difference. Otherwise, $d_1 = d_\ell = d^*$ and $C_1 = C_\ell$. But $d_1 = d^*$ implies $1 \in I$, a contradiction.

Case 4. $1, \ell \notin I$. If $C - (C_1 \cup C_\ell)$ is nonempty, then pick β to be any color in the difference set. Now, suppose $C = C_1 \cup C_\ell$. We consider the subtree T_{-1}.

First estimate the size

$$|C_t - C_1| = |C_t \cup C_1| - |C_1| \geq \sigma - d^* \geq d^* - 2 \geq 2,$$

where $d^* \geq 4$ since $\sigma \geq 6$. Pick $\alpha_{t_{-1}}$ to be any color in $C_t - C_1 - \alpha_\ell$. Let $C_{t_{-1}}$ be a color set such that $|C_{t_{-1}}| = d_{t_{-1}}$ and $C_{t_{-1}} \cap C_t = \{\alpha_{t_{-1}}\}$.

When $\ell - 1 \in I$, pick $\beta = \alpha_{t_{-1}}$. Otherwise, let β be chosen from $C_t - C_1 - \alpha_{t_{-1}}$.

Now we are ready to prove the key lemma.

Lemma 18. Suppose $T = \text{Cat}(d_1, d_2, \ldots, d_\ell)$ is a nice caterpillar tree, i.e. it satisfies

$$\sigma = \sigma(T) \geq 5, \ \ell \geq \sigma + 3 \ \text{and} \ \sigma \geq \Delta(T) + 2.$$

For any $\kappa \geq \sigma(T)$, any color sets $C_1, C_\ell \subseteq C$ with $|C| = \kappa$, $|C_1| = d_1$, $|C_\ell| = d_\ell$, and any two colors $\alpha_0 \in C_1, \alpha_\ell \in C_\ell$, there is a strong σ-edge colorings φ using the colors in C such that $\varphi(E_1) = C_1$, $\varphi(E_\ell) = C_\ell$ and $\varphi(x_0x_1) = \alpha_0$, $\varphi(x_\ell x_{\ell+1}) = \alpha_\ell$. That is, T is κ-two-sided strong edge-pre-colorable for any $\kappa \geq \sigma$.

8
Proof. We prove the lemma by induction on \(\sigma = \sigma(T) \). By Lemmas 14 and 16 it suffices to consider the case \(\kappa = \sigma \) and \(\ell = \ell_\sigma \).

If \(T \) is nice and \(\sigma \geq 6 \), then \(T'_{-1} \) is also a nice caterpillar tree: The first two conditions remain since \(\sigma(T'_{-1}) = \sigma(T') = \sigma(T) - 1 \). The third one \(\sigma(T'_{-1}) + 1 \leq \Delta(T'_{-1}) + 2 \leq \Delta(T) + 2 \) and so \(\Delta(T') = \Delta(T) \). Since \(\Delta(T) \geq d^* \), in this case, \(\Delta(T') = \Delta(T) + 2 \geq \Delta(T'_{-1}) + 2 \).

By Lemma 17 we only have to discuss the base cases \(\sigma = 5 \) and \(\ell = 8 \). We may assume all degrees \(d_i = 3 \) since \(\sigma \geq \Delta + 2 \). Also assume \(C_1 = \{1, 2, 3\} \) and \(\alpha_0 = 1 \). Depending on \(C_1 \cap C_8 \) and whether \(\alpha_8 = \alpha_0 \) or not, by symmetry we color \(T \) according to \(\varphi \) shown in Table 1, where \(\alpha_i = \varphi(x_i x_{i+1}) \) and \(\hat{C}_i = \varphi(C_i) - \varphi(x_i) - \varphi(x_{i+1}) \). Or we can solve this case by the argument in [7] or the odd graph method in [11, 40].

Table 1: The 5-strong edge-colorings of \(T \) for \(\sigma = 5 \) with \(\ell = 8 \).

4 Refinement of Lemma 18

We now discuss the optimality of Lemma 18. If we take more care about the base cases, there would be a refinement:

Lemma 19. Suppose \(T \) is a caterpillar tree of length \(\ell \) satisfying

\[
\sigma = \sigma(T) \geq 5, \quad \ell \geq \ell_\sigma \quad \text{and} \quad \sigma \geq \Delta(T) + 2,
\]

where

\[
\ell_\sigma = \begin{cases}
8, & \text{if } \sigma = 5; \\
7, & \text{if } \sigma = 6, 7; \\
\sigma, & \text{if } \sigma \geq 8.
\end{cases}
\]

Then \(T \) is \(\kappa \)-two-sided strong edge-pre-colorable for any \(\kappa \geq \sigma \).
Proof. Similar to Lemma 15, we only need to consider the base cases.

For $\sigma = 6$, we first consider the situation $\ell = 6$. By Lemma 15 and the symmetry, it suffices to discuss the caterpillar trees $\text{Cat}(4, 3, 4, 3, 4, 3)$, $\text{Cat}(4, 3, 4, 3, 4, 3, 4)$, and $\text{Cat}(3, 4, 3, 4, 3, 4, 3)$. We enumerate all the cases in Table 2 and Table 3 to show that the first two are 6-two-sided strong edge-pre-colorable.

Table 2: The 6-strong edge-colorings for $T = \text{Cat}(4, 3, 4, 3, 4, 3)$.

α_0	\hat{C}_1	α_1	\hat{C}_2	α_2	\hat{C}_3	α_3	\hat{C}_4	α_4	\hat{C}_5	α_5	\hat{C}_6	α_6
1	$\{3, 4\}$	2	$\{6\}$	5	$\{3, 4\}$	1	$\{2\}$	6	$\{4, 5\}$	3	$\{2\}$	1
1	$\{2, 4\}$	3	$\{5\}$	6	$\{1, 4\}$	2	$\{3\}$	5	$\{4, 5\}$	1	$\{3\}$	2
1	$\{3, 4\}$	2	$\{6\}$	5	$\{3, 4\}$	1	$\{2\}$	6	$\{3, 4\}$	5	$\{2\}$	1
1	$\{2, 4\}$	3	$\{5\}$	6	$\{1, 4\}$	2	$\{5\}$	3	$\{4, 6\}$	1	$\{5\}$	2
1	$\{2, 4\}$	3	$\{5\}$	6	$\{2, 4\}$	1	$\{5\}$	3	$\{4, 6\}$	2	$\{1\}$	5
1	$\{2, 4\}$	3	$\{5\}$	6	$\{2, 4\}$	1	$\{5\}$	3	$\{2, 4\}$	6	$\{5\}$	1
1	$\{2, 3\}$	4	$\{5\}$	6	$\{2, 3\}$	1	$\{5\}$	4	$\{2, 3\}$	6	$\{1\}$	5
1	$\{3, 4\}$	2	$\{6\}$	5	$\{1, 4\}$	3	$\{2\}$	6	$\{1, 5\}$	4	$\{3\}$	2
1	$\{2, 3\}$	4	$\{5\}$	6	$\{1, 3\}$	2	$\{5\}$	4	$\{1, 6\}$	3	$\{5\}$	2
1	$\{2, 3\}$	4	$\{5\}$	6	$\{1, 3\}$	2	$\{5\}$	4	$\{1, 6\}$	3	$\{2\}$	5
1	$\{2, 3\}$	4	$\{5\}$	6	$\{1, 3\}$	2	$\{5\}$	4	$\{1, 3\}$	6	$\{5\}$	2
1	$\{2, 4\}$	3	$\{5\}$	6	$\{1, 4\}$	2	$\{5\}$	3	$\{1, 4\}$	6	$\{2\}$	5

Table 3: The 6-strong edge-colorings for $T = \text{Cat}(4, 3, 4, 3, 4, 3)$.

α_0	\hat{C}_1	α_1	\hat{C}_2	α_2	\hat{C}_3	α_3	\hat{C}_4	α_4	\hat{C}_5	α_5	\hat{C}_6	α_6
1	$\{2, 4\}$	3	$\{5\}$	6	$\{2, 4\}$	1	$\{3\}$	5	$\{6\}$	4	$\{2, 3\}$	1
1	$\{3, 4\}$	2	$\{5\}$	6	$\{1, 4\}$	3	$\{2\}$	5	$\{6\}$	1	$\{3, 4\}$	2
1	$\{3, 4\}$	2	$\{5\}$	6	$\{1, 3\}$	4	$\{5\}$	2	$\{6\}$	3	$\{4, 5\}$	1
1	$\{2, 4\}$	3	$\{6\}$	5	$\{1, 2\}$	4	$\{3\}$	6	$\{2\}$	1	$\{4, 5\}$	3
1	$\{2, 4\}$	3	$\{6\}$	5	$\{1, 2\}$	4	$\{3\}$	6	$\{2\}$	1	$\{3, 4\}$	5
1	$\{3, 4\}$	2	$\{5\}$	6	$\{3, 4\}$	1	$\{5\}$	2	$\{3\}$	6	$\{4, 5\}$	1
1	$\{3, 4\}$	2	$\{6\}$	5	$\{3, 4\}$	1	$\{6\}$	2	$\{3\}$	5	$\{1, 6\}$	4
1	$\{3, 4\}$	2	$\{6\}$	5	$\{1, 3\}$	4	$\{6\}$	2	$\{3\}$	1	$\{4, 6\}$	5
1	$\{3, 4\}$	2	$\{6\}$	5	$\{1, 4\}$	3	$\{2\}$	6	$\{1\}$	4	$\{3, 5\}$	2
1	$\{2, 4\}$	3	$\{6\}$	5	$\{1, 2\}$	4	$\{3\}$	6	$\{1\}$	2	$\{3, 4\}$	5
1	$\{3, 4\}$	2	$\{5\}$	6	$\{1, 4\}$	3	$\{5\}$	2	$\{1\}$	6	$\{4, 5\}$	3
1	$\{3, 4\}$	2	$\{6\}$	5	$\{1, 3\}$	4	$\{6\}$	2	$\{1\}$	3	$\{4, 6\}$	5

If the caterpillar tree T considered with $\sigma = 6$ and $\ell = 7$ has $T_{-1} = \text{Cat}(3, 4, 3, 4, 3, 4, 3)$, then T is a subtree of $\text{Cat}(3, 4, 3, 4, 3, 4, 4)$. We can assume $T = \text{Cat}(3, 4, 3, 4, 3, 4, 3)$ by Lemma 15. Reverse the direction to see T as $\text{Cat}(4, 3, 4, 3, 4, 3, 4)$. Then the subtree $T_{-1} = \text{Cat}(4, 3, 4, 3, 4, 3)$, which is 6-two-sided strong edge-pre-colorable. Hence all the caterpillar trees with $\sigma = 6$ and $\ell = 7$ are 6-two-sided strong edge-pre-colorable.
For $\sigma = 7$ and $\ell = 7$. It suffices to consider the caterpillar trees in Table 4.

\begin{table}[h]
\begin{center}
\begin{tabular}{|c|c|}
\hline
T & T'_{-1} \\
\hline
Cat(3,5,3,5,3,5,3) & Cat(3,4,3,4,3,4) \\
Cat(5,3,3,5,3,5,3) & Cat(4,3,4,3,4,3) \\
Cat(5,3,3,5,3,5,4,4) & Cat(4,3,4,3,4,3) \\
Cat(4,3,4,3,4,4,4) & Cat(3,4,3,4,3,4) \\
Cat(5,3,4,4,4,4,4) & Cat(4,3,4,3,4,3) \\
Cat(3,4,3,4,4,3,4) & Cat(3,4,3,4,3,4) \\
Cat(4,4,3,5,3,3,5) & Cat(3,4,3,4,3,4) \\
Cat(4,4,3,5,3,3,3) & Cat(3,4,3,4,3,4) \\
\hline
\end{tabular}
\end{center}
\caption{The caterpillar trees to be considered for $\sigma = 7$ and $\ell = 7$.}
\end{table}

All the trees T considered except Cat(3,5,3,4,4,4,4) and Cat(3,5,3,4,4,3,5) have T'_{-1} being 6-two-sided strong edge-pre-colorable, so these T are 7-two-sided strong edge-pre-colorable by Lemma 17.

If we see Cat(3,5,3,4,4,4,4) as $T = Cat(4,4,4,4,3,5,3)$, then $T'_{-1} = Cat(3,4,3,4,3,4)$ is 6-two-sided strong edge-pre-colorable. Similarly, regard Cat(3,5,3,4,4,3,5) as $T = Cat(5,3,4,4,3,5,3)$, then $T'_{-1} = Cat(4,3,4,3,4,3)$ is 6-two-sided strong edge-pre-colorable. So these two trees are also 7-two-sided strong edge-pre-colorable by Lemma 17, and hence all the caterpillar trees considered with $\sigma = 7$ and $\ell = 7$ are 7-two-sided strong edge-pre-colorable.

The ℓ_σ here cannot be reduced: For $\sigma \geq 7$, consider $\ell = \sigma - 1$ and $T = Cat(d_1,d_2,\ldots,d_\ell)$, where $d_1,d_3\cdots = \lceil \frac{\sigma + 1}{2} \rceil$ and $d_2,d_4\cdots = \lceil \frac{\sigma + 1}{2} \rceil$.

If $\sigma = 2d - 1$ is an odd integer, let $P = ([1,\sigma];1,[1,d],[1,1,1]) \in P_\sigma(T)$. Suppose there is some $\varphi \in C_T(P)$. Let $C_1 = \varphi(E_1)$. Then $|C_i+C_i| = 1$ for $i = 1,2,\ldots,\ell-2$. So $|C_\ell-C_2| \leq d-2$. However, $C_1 = C_\ell$ implies $|C_\ell-C_2| = d-1$, a contradiction.

If $\sigma = 2d-2$ is an even integer, let $P = ([1,\sigma];1,[1,d-1],[2d-2],d) \in P_\sigma(T)$. Suppose there is some $\varphi \in C_T(P)$. Let $C_1 = \varphi(E_1)$. Again $|C_{i+2}-C_i| = 1$ for $i = 1,2,\ldots,\ell-2$. So $d-1 = |C_\ell-C_1| \leq d-2$, a contradiction.

For $\sigma = 6$, let $T = Cat(3,4,3,3,4,3)$ and $P = ([1,6];1,\{1,2,3\},\{4,5,6\},6) \in P_\sigma(T)$. Suppose there is some $\varphi \in C_T(P)$. Let $C_1 = \varphi(E_1)$ and $X = C_3 \cup C_4 - \varphi(x_2x_3) - \varphi(x_4x_5)$. Then $|C_1 \cap X| = |X \cap C_6| = 2$ implies $|X| \geq 4$, which is impossible since $|X| = 3$.

Exploiting Lemma 19 the main Theorem 11 can be strengthened to:
Theorem 20. If G is a planar graph with $\sigma = \sigma(G) \geq 5$, $\sigma \geq \Delta(G) + 2$ and girth at least g_σ, where

$$g_\sigma = \begin{cases}
41, & \text{if } \sigma = 5; \\
36, & \text{if } \sigma = 6, 7; \\
5\sigma + 1, & \text{if } \sigma \geq 8,
\end{cases}$$

then $\chi'_s(G) = \sigma$.

If we take off the condition $\sigma \geq \Delta + 2$ in Theorem 20, a weaker result can be obtained by using the following corollary of Lemma 19 in the proof of the main Theorem 11.

Corollary 21. Suppose T is a caterpillar tree of length ℓ satisfying

$$\sigma = \sigma(T) \geq 4 \text{ and } \ell \geq \ell_{\sigma+1},$$

where

$$\ell_{\sigma+1} = \begin{cases}
8, & \text{if } \sigma + 1 = 5; \\
7, & \text{if } \sigma + 1 = 6, 7; \\
\sigma + 1, & \text{if } \sigma + 1 \geq 8.
\end{cases}$$

Then T is κ-two-sided strong edge-pre-colorable for any $\kappa \geq \sigma + 1$.

Proof. Add pendant edges at some vertices of T with degree $\delta(T)$ such that the resulting graph \tilde{T} has $\sigma(\tilde{T}) = \sigma(T) + 1$ and $\sigma(\tilde{T}) \geq \Delta(\tilde{T}) + 2$. So \tilde{T} satisfies the requirements of Lemma 19 and hence it is κ-two-sided strong edge-pre-colorable for any $\kappa \geq \sigma(\tilde{T}) = \sigma(T) + 1$. The corollary then follows from Lemma 13. \qed

Theorem 22. If G is a planar graph with $\sigma = \sigma(G) \geq 4$ and girth at least $g_{\sigma+1}$, where

$$g_{\sigma+1} = \begin{cases}
41, & \text{if } \sigma + 1 = 5; \\
36, & \text{if } \sigma + 1 = 6, 7; \\
5\sigma + 6, & \text{if } \sigma + 1 \geq 8,
\end{cases}$$

then $\sigma \leq \chi'_s(G) \leq \sigma + 1$.

5 Consequences concerning the maximum average degree

The following lemma is a direct consequence of Proposition 2.2 in [14].

Lemma 23. Suppose the connected graph G is not a cycle. If G has minimum degree at least 2 and average degree $\frac{2|E|}{|V|} < 2 + \frac{2}{3\ell-1}$, then G contains an ℓ-thread.

A C_n-jellyfish is a graph by adding pendant edges at the vertices of C_n. In [9], it is shown that
Proposition 24. If G is a C_n-jellyfish of m edges with $\sigma(G) \geq 4$, then $\chi'_s(G) =$
\[
\begin{cases}
 m, & \text{if } n = 3; \\
 \sigma(G) + 1, & \text{if } n = 4; \\
 \lceil \frac{m}{\lfloor n/2 \rfloor} \rceil, & \text{otherwise, if } n \text{ is odd with all } \deg(v_i) = d \text{ but } (n, d) \neq (7, 3),\
 \sigma(G) + 1, & \text{otherwise, if } (n, d) = (7, 3) \text{ with all } \deg(v_i) = d, \\
 \sigma(G), & \text{otherwise}.
\end{cases}
\]

Adopting these results leads to a strengthening of Theorem 10.

Theorem 25. If G is a graph with $\sigma = \sigma(G) \geq 5$, $\sigma \geq \Delta(G) + 2$, odd girth at least g'_σ, even girth at least 6, and $\text{mad}(G) < 2 + \frac{2}{\sigma+1-1}$, where
\[
g'_\sigma = \begin{cases}
 9, & \text{if } \sigma = 5; \\
 \sigma, & \text{if } \sigma > 5,
\end{cases}
\]

and
\[
\ell_\sigma = \begin{cases}
 8, & \text{if } \sigma = 5; \\
 7, & \text{if } \sigma = 6; \\
 \sigma, & \text{if } \sigma \geq 8,
\end{cases}
\]

then $\chi'_s(G) = \sigma$.

Proof. In the proof of Theorem 20 alternatively use Lemma 23 to find an ℓ_σ-thread in H. It should be noticed the girth constraints exist merely to address the problem that H may be a cycle. In this case, by Proposition 24 G still has strong chromatic index σ.

Indeed, suppose $H = C_n$ and G is a C_n-jellyfish. The case n is even is trivial. If $\sigma \geq \sigma(H) \geq 5$, n is odd and $n \geq g'_\sigma \geq \sigma$, then
\[
\left\lfloor \frac{|E(G)|}{\frac{n}{2}} \right\rfloor \leq \left\lfloor \frac{n-1}{2} (\sigma - 1) + \frac{\sigma+1}{2} - 1 \right\rfloor \leq \sigma.
\]

Hence $\chi'_s(G) = \sigma$.

Similarly, Theorem 22 can be modified correspondingly.

Theorem 26. If G is a graph with $\sigma = \sigma(G) \geq 4$, odd girth at least $\frac{\sigma+1}{2}$, and $\text{mad}(G) < 2 + \frac{2}{\sigma+1-1}$, where
\[
\ell_{\sigma+1} = \begin{cases}
 8, & \text{if } \sigma + 1 = 5; \\
 7, & \text{if } \sigma + 1 = 6; \\
 \sigma + 1, & \text{if } \sigma + 1 \geq 8,
\end{cases}
\]

then $\sigma \leq \chi'_s(G) \leq \sigma + 1$.

Acknowledgements. This project was supported in part by the Ministry of Science and Technology (Taiwan) under grant 104-2115-M-002-006-MY2. The authors thank Tao Wang for extensive discussion and providing many useful comments.
References

[1] L. D. Andersen, The strong chromatic index of a cubic graph is at most 10, *Discrete Math.*, 108(1-3):231–252, 1992.

[2] K. Appel and W. Haken, Every planar map is four colorable. Part I: Discharging, *Illinois J. of Math.*, 21(3):429–490, 1977.

[3] K. Appel, W. Haken, and J. Koch, Every planar map is four colorable. Part II: Reducibility, *Illinois J. of Math.*, 21(3):491–567, 1977.

[4] C. Barrett, G. Istrate, A. V. S. Kumar, M. Marathe, S. Thite, and S. Thulasidasan, Strong edge coloring for channel assignment in wireless radio networks, in *PERCOMW ’06: Proceedings of the 4th Annual IEEE International Conference on Pervasive Computing and Communications Workshops*, pp. 106–110, IEEE Computer Society, Washington, DC, 2006.

[5] M. Basavaraju and M. C. Francis, Strong chromatic index of chordless graphs, *J. Graph Theory*, 80(1):58–68, 2015.

[6] J. Bensmail, A. Harutyunyan, H. Hocquard, and P. Valicov, Strong edge-colouring of sparse planar graphs, *Discrete Applied Math.*, 179:229–234, 2014.

[7] O. V. Borodin and A. O. Ivanova, Precise upper bound for the strong edge chromatic number of sparse planar graphs, *Discuss. Math. Graph Theory*, 33(4):759–770, 2013.

[8] H. Bruhn and F. Joos, A stronger bound for the strong chromatic index, preprint at *arXiv*: 1504.02583v1, 22 pages, 2015.

[9] G. J. Chang, S.-H. Chen, C.-Y. Hsu, C.-M. Hung, and H.-L. Lai, Strong edge-coloring for jellyfish graphs, *Discrete Math.*, 338(12):2348–2355, 2015.

[10] G. J. Chang and D. D.-F. Liu, Strong edge-coloring for cubic Halin graphs, *Discrete Math.*, 312(8):1468–1475, 2012.

[11] G. J. Chang, M. Montassier, A. Pêcher, and A. Raspaud, Strong chromatic index of planar graphs with large girth, *Discuss. Math. Graph Theory*, 34(4):723–733, 2014.

[12] G. J. Chang and N. Narayanan, Strong chromatic index of 2-degenerate graphs, *J. Graph Theory*, 73(2):119–126, 2013.

[13] D. W. Cranston, Strong edge-coloring of graphs with maximum degree 4 using 22 colors, *Discrete Math.*, 306(21):2772–2778, 2006.

[14] D. W. Cranston, D. B. West, A guide to the discharging method, preprint at *arXiv*: 1306.4434v1, 77 pages, 2013.
[15] M. Dębski, J. Grytczuk, and M. Śleszyńska Nowak, The strong chromatic index of sparse graphs, *Inform. Process. Lett.*, 115(2):326–330, 2015.

[16] P. Erdős, Problems and results in combinatorial analysis and graph theory, *Discrete Math.*, 72(1-3):81–92, 1988.

[17] P. Erdős and J. Nešetřil. Problems, in *Irregularities of Partitions*, pp. 162–163, Springer, Berlin, 1989.

[18] R. J. Faudree, A. Gyárfás, R. H. Schelp, and Z. Tuza, The strong chromatic index of graphs, *Ars Combin.*, 29B:205–211, 1990.

[19] J. L. Fouquet and J. L. Jolivet, Strong edge-colorings of graphs and applications to multi-k-gons, *Ars Combin.*, 16:141–150, 1983.

[20] J. L. Fouquet and J. L. Jolivet, Strong edge-coloring of cubic planar graphs, in *Progress in graph theory*, pp. 247–264, Academic Press, Toronto, 1984.

[21] H. Grötzsch, Ein dreifarbensatz fur dreikreisfreie netze auf der kugel, *Math.-Nat. Reihe*, 8:109–120, 1959.

[22] P. Horák, H. Qing, and W. T. Trotter, Induced matchings in cubic graphs, *J. Graph Theory*, 17(2):151–160, 1993.

[23] D. Hudák, B. Luzar, R. Soták, and R. Skrekovski, Strong edge-coloring of planar graphs, *Discrete Math.*, 324:41–49, 2014.

[24] J. Janssen and L. Narayanan, Approximation algorithms for channel assignment with constraints, *Theoret. Comput. Sci.*, 262(1–2):649–667, 2001.

[25] H.-H. Lai, K.-W. Lih, and P.-Y. Tsai, The strong chromatic index of Halin graphs, *Discrete Math.*, 312(9):1536–1541, 2012.

[26] K.-W. Lih and D. D.-F. Liu, On the strong chromatic index of cubic Halin graphs, *Appl. Math. Lett.*, 25(5):898–901, 2012.

[27] M. Mahdian, The strong chromatic index of C_4-free graphs, *Random Structures and Algorithms*, 17(3-4):357–375, 2000.

[28] M. Molloy and B. Reed, A bound on the strong chromatic index of a graph, *J. Combin. Theory Ser. B*, 69(2):103–109, 1997.

[29] T. Nandagopal, T.-E. Kim, X. Gao, and V. Bharghavan, Achieving MAC layer fairness in wireless packet networks, in *MobiCom ’00: Proceedings of the 6th annual international conference on Mobile computing and networking*, pp. 87–98, ACM, New York, 2000.
[30] J. Nešetřil, A. Raspaud, and E. Sopena, Colorings and girth of oriented planar graphs, *Discrete Math.*, 165/166:519–530, 1997.

[31] S. Ramanathan, A unified framework and algorithm for channel assignment in wireless networks, *Wireless Networks*, 5(2):81–94, 1999.

[32] S. Ramanathan and E. L. Lloyd, Scheduling algorithms for multihop radio networks, *IEEE/ACM Transactions on Networking*, 1(2):166–177, 1993.

[33] D. P. Sanders and Y. Zhao, Planar graphs of maximum degree seven are class I, *J. Combin. Theory Ser. B*, 83(2):201–212, 2001.

[34] W. C. Shiu, P. C. B. Lam, and W. K. Tam, On strong chromatic index of Halin graphs, *J. Combin. Math. Combin. Comput.*, 57:211–222, 2006.

[35] W. C. Shiu and W. K. Tam, The strong chromatic index of complete cubic Halin graphs, *Appl. Math. Lett.*, 22(5):754–758, 2009.

[36] H. Tamura, K. Watanabe, M. Sengoku, and S. Shinoda, A channel assignment problem in multihop wireless networks and graph theory, *Journal of Circuits, Systems and Computers*, 13(02):375–385, 2004.

[37] O. Togni, Strong chromatic index of products of graphs, *Discrete Math. Theor. Comput. Sci.*, 9(1):47–56, 2007.

[38] V. G. Vizing, Critical graphs with given chromatic class, *Diskretnyi Analiz*, 5:9–17, 1965.

[39] T. Wang, Strong chromatic index of k-degenerate graphs, *Discrete Math.*, 330:17–19, 2014.

[40] T. Wang and X. Zhao, Odd graph and its application on the strong edge coloring, preprint at arXiv: 1412.8358v3, 7 pages, 2015.

[41] G. Yu, Strong edge-colorings for k-degenerate graphs, *Graphs and Combin.*, 31(5):1815–1818, 2015.