The Organ Trail: A Review of Biomarkers of Organ Failure

Long Dao, Drithi Ragoonanan, Sofia Yi, Rita Swinford, Demetrios Petropoulos, Kris M. Mahadeo and Shulin Li

Pediatric organ failure and transplant populations face significant risks of morbidity and mortality. The risk of organ failure itself may be disproportionately higher among pediatric oncology patients, as cancer may originate within and/or metastasize to organs and adversely affect their function. Additionally, cancer directed therapies are frequently toxic to organs and may contribute to failure. Recent reports suggest that nearly half of providers find it difficult to provide prognostic information regarding organ failure due to unknown disease trajectories. Unfortunately, there is a lack of uniform methodology in detecting the early symptoms of organ failure, which may delay diagnosis, initiation of treatment and hinder prognostic planning. There remains a wide array of outstanding scientific questions regarding organ failure in pediatrics but emerging data may change the landscape of prognostication. Liquid biopsy, in which disease biomarkers are detected in bodily fluids, offers a noninvasive alternative to tissue biopsy and may improve prompt detection of organ failure and prognostication. Here, we review potential liquid biopsy biomarkers for organ failure, which may be particularly useful among pediatric oncology patients. We synthesized information from publications obtained on PubMed, Google Scholar, clinicaltrials.gov, and Web of Science and categorized our findings based on the type of biomarker used to detect organ failure.

Keywords: oncology, organ failure, liquid biopsy, biomarkers, diagnostics

INTRODUCTION

Remarkable therapeutic advancement in pediatric oncology may be limited by long-term toxicity, and in particular, acute and/or chronic organ dysfunction/failure (1, 2). The most common reason for intensive care unit (ICU) admission in pediatric cancer patients is acute organ failure (3). While the definition of multiple organ dysfunction syndrome in pediatric patients (p-MODS) remains to be sufficiently determined, there is growing recognition that decrements in organ function may reliably predict stepwise increases in mortality rate and current binary descriptors of normal function versus dysfunction may hinder opportunities for earlier intervention (4, 5).
Among critically-ill pediatric oncology patients, overall ICU mortality ranges from 12-15% in those with solid and hematologic malignancy, and can be as high as 60% in stem cell transplant (SCT) recipients (6, 7). Organ failure may occur acutely, sub-acutely or progress to chronic disease, and numerous studies have shown early detection may lead to critical timely intervention and improved outcomes. Currently, the gold standard diagnostic criteria for organ failure are organ specific and are based on laboratory, clinical or a combination of both parameters as summarized in Table 1 (8–15). Although these tests are widely used to diagnose organ failure, they are not predictive. Multiple scoring systems have been developed to attempt to predict the likelihood of developing single as well as multi-organ failure (Table 1). However, these are based on clinical evidence when organ dysfunction is already present.

In this review, we evaluate currently available biomarkers, their diagnostic accuracy, clinical applicability and potential impact on the prediction and early detection of organ failure. The role of chemokine and cytokine expression in the progression of organ failure has been more extensively characterized and are not included in this review (16–19). Here, we review various noninvasive biomarkers including microRNA, cell free DNA, histones, exosomes, circulating mitochondria and circulating endothelial cells as promising potential biomarkers of organ failure (Table 2).

CELL FREE DNA

Cell-free DNA are small degraded fragments of DNA, derived from the apoptosis of nucleated cells and circulate freely in the blood plasma (36). Under normal physiological conditions, healthy subjects have lower levels of cfDNA compared to patients with systemic illnesses, making them a possible biomarker of organ failure (37).

CfDNA has been studied in the blood of patients undergoing cardiac surgery to predict late acute kidney injury (AKI). The ROC generated from cfDNA of patients had improved detection of AKI (AUC = 0.804) compared to the ROC generated from the serum creatinine of patients (AUC = 0.688) (28). Karlas et al used total plasma cfDNA to assess hepatic fibrosis in comparison to current methods such as transient elastography. Plasma cfDNA concentrations did indeed correlate with degree of hepatic fibrosis and severity in non-alcoholic fatty liver disease (p value < 0.001) (38).

While the above studies utilize total plasma cfDNA, a recent study has shown that in the plasma of lung transplant patients, donor-derived cfDNA (ddcfDNA) could be identified and quantified, with patients with increased levels of ddcfDNA having a higher risk of allograft failure (39). Thus, ddcfDNA can be used as a tissue specific biomarker to determine the likelihood of organ failure due to allograft rejection. DdcfDNA has also been utilized in the risk stratification of organ rejection post heart transplant in pediatrics and adults as reported by North et al. (40).

While these studies highlight the potential of cfDNA as a novel biomarker for organ dysfunction, further work is required to identify tissue-specific DNA which would more reliably diagnose organ failure in children.

MICRO RNA

Micro RNAs (miRNA) are small, single-stranded, non-coding ribonucleotides that negatively regulate gene expression at the post-transcriptional level and play a role in cell proliferation, differentiation, repair and apoptosis (41). While each miRNA may regulate hundreds of genes, multiple miRNAs may work cooperatively to target one gene and despite their vast heterogeneity, miRNAs can display tissue-specific expression patterns (41, 42). MiRNAs are actively released into circulation as well as extracellular spaces including saliva and urine in response to toxic cellular insults either as extracellular vesicles or bound to RNA-binding proteins. This protein bound complex

Organ	Laboratory Test	Clinical Parameter	Grading System	Prognostic Scoring System
Heart (8, 9)	NT-pro BNP	Exercise Tolerance	NYHA-functional classification based on clinical parameters	None
Lung	paO2, paCO2			
Liver (10, 11)	ALT, AST			
Kidney (12)	Creatinine, Bilirubin, Platelet count	Urine output, Mean arterial pressure, Need for mechanical ventilation	KDIGO	
Multorgan (13–15)				

NYHA, New York Heart Association; paO2, arterial partial pressure of oxygen; paCO2, arterial partial pressure of carbon dioxide; ALT, alanine aminotransferase; AST, aspartate aminotransferase (changed order); MELD, model for end-stage liver disease; PELD, pediatric model for end-stage liver disease; KDIGO, Kidney Disease Improving Global Outcomes; GCS, Glasgow Coma Scale; SOFA, Sequential Organ Failure Assessment; pSOFA, Pediatric Sequential Organ Failure Assessment; APACHE, Acute Physiologic Assessment and Chronic Health Evaluation.
Organ	Author (year)	Setting	Biomarker	Gold standard control used in the study	Sample size and Study Design	Result	Clinical significance
Heart	Cakmak et al. (20) 2015	Chronic congestive heart failure	miRNA-182	NT-pro BNP	Prospective Study Age: ≥ 18 years n=42 HF patients grade II, III, and IV n = 15 Healthy controls	AUC NT-pro BNP: 0.35 miRNA-182: AUC 0.695	miRNA-182 is a potential prognostic marker for systolic heart failure
Lung	Zhu et al. (21) 2017	ARDS	miRNA-181a, miRNA-92a, miRNA-424	LIPS	Case control Study Age: ≥ 18 years n= 78 Patients with ARDS n= 78 Critically ill matched controls	AUC LIPS: 0.708 LIPS + miRNA-181a + miRNA-92a + miRNA-424: 0.723	miRNA profiling combined with the LIPS score can improve the risk estimate for ARDS
	Njock et al. (22) 2019	IPF	miRNA in Sputum exosomes	DLCO/VA	Prospective Study Age: ≥ 18 years n= 16 patients with IPF n= 14 healthy subjects	miRNA-33-a-5p + Let-7d-5p + miR-142-3p AUC: 0.979 Sensitivity: 93.75% Specificity: 80%	This combination of miRNAs is a potential biomarker for severity of lung disease in IPF
	Guiot et al. (23) 2019	IPF	Nucleosomes	DLCO/VA	Prospective Study Age: ≥ 18 years n= 23 patients with IPF n= 27 patients with IPF treated with antifibrotic therapy n=27 healthy volunteers	Nucleosomes AUC: 0.93 Sensitivity: 91% Specificity: 80%	Nucleosomes in patients with IPF are a potential diagnostic as well as treatment response biomarker
Liver	Tao et al. (24) 2019	Liver dysfunction in patients with chronic hepatitis B	miRNA-125b-5p, miRNA-122	MELD score	Prospective Study Age: ≥ 18 years n=136 ACLF n=90 moderate to severe liver damage n= 100 normal hepatic function n=27 healthy volunteers	AUC MELD score: 0.799 miRNA-125b-5p + miRNA-122: 0.898	Combined miRNA-125b-5p and miRNA-122 was a superior predictor of outcome of ACLF in patients with Hepatitis B
	Zheng et al. (25) 2016	HBV related ACLF	miRNA-130a	MELD score	Prospective study Age: ≥ 18 years n=99 patients with ACLF n=20 healthy controls	AUC MELD score: 0.86 miRNA-130: 0.74	miRNA-130a alone is not superior to the MELD score in predicting outcomes in liver failure
	Schutz et al. (26) 2017	Liver transplant	cfDNA	AST	Prospective Study Age: ≥ 18 years n= 107 patients post liver transplant with no evidence of graft rejection n= 17 patients posttransplant with acute liver rejection	AST AUC: 0.957 Sensitivity: 82.1% Specificity: 95.7% cfDNA AUC: 0.971 Sensitivity: 89.3% Specificity: 95.7%	cfDNA allowed for earlier and more sensitive discrimination of acute rejection in patients post liver transplant as compared to conventional LFTs
	Liver fibrosis in patients with HBV or HCV	miRNA	Fibroscan	Prospective Study Age: ≥ 18 years		miRNA in exosomes HBV: 0.8421-0.9802	MRNA in combination with fibroscan techniques is can potentially discriminate between stages of liver fibrosis

(Continued)
Organ	Author (year)	Setting	Biomarker	Gold standard control used in the study	Sample size and Study Design	Result	Clinical significance
Kidney	Merkle et al. (28)	AKI post cardiac surgery	cfDNA	Creatinine	Prospective Study	HCV: AUC: 0.8745-0.9841	CfdNA is a valuable potential predictor of AKI post cardiac surgery
					n= 21 patients post cardiac surgery with AKI	Sensitivity: 87.5% Specificity: 56.8%	
					n= 37 patients post cardiac surgery without AKI	Sensitivity: 64.9% Specificity: 82%	
Aguado-Fraile et al.	(29)	AKI	miRNA-26b-5p	Cystatin C	Prospective Study	miRNA-26b-5p: 0.908 Sensitivity: 87.5% Speciﬁcity: 64.9 %	The combination of miRNA-26b-5p, miRNA-27a-3p and miRNA-93-3p is superior and earlier predictor of AKI than serum creatinine in patients undergoing cardiac surgery
			miRNA-27a-3p		n= 35 ICU patients with AKI	miRNA-27a-3p: 0.888 Sensitivity: 87.5% Speciﬁcity: 64.9 %	
			miRNA-93-3p		n= 108 patients admitted to the CCU	miRNA-93-3p: 0.887 Sensitivity: 87.5% Speciﬁcity: 64.9 %	
			miRNA-127-3p		n= 20 healthy controls	miRNA-127-3p: 0.863 Sensitivity: 87.5% Speciﬁcity: 64.9 %	
Fan et al. (30)	AKI post MI		miRNA-24	Serum NGAL	Prospective Study	miRNA-24: 0.735 NGAL: 0.735 miRNA-23a: 0.888 miRNA-145: 0.863	The combination of miRNA-24 + miRNA-23a + miRNA-145 is a potential predictor of AKI post AMI that is superior to serum NGAL
			miRNA-23a		Age: ≥ 18 years	miRNA-23a: 0.888 Sensitivity: 87.5% Speciﬁcity: 64.9 %	
			miRNA-145		n= 108 patients admitted to the CCU	miRNA-145: 0.863 Sensitivity: 87.5% Speciﬁcity: 64.9 %	
Sole et al. (31)	Chronic kidney disease	Urinary exosomes	Healthy patients		Prospective Study	Urinary exosomes: AUC: 0.946 Sensitivity: 94 % Speciﬁcity: 82%	Urinary exosomes are a potential biomarker for detecting renal fibrosis
					n= 32 patients with lupus nephritis	Urinary exosomes: AUC: 0.946 Sensitivity: 94 % Speciﬁcity: 82%	
					n= 15 patients with non-lupus chronic kidney disease	Urinary exosomes: AUC: 0.946 Sensitivity: 94 % Speciﬁcity: 82%	
Hu et al. (32)	AKI		Urinary mtDNA	Creatinine	Prospective Study	Urinary mtDNA: AUC: 0.814-0.821 Serum Creatinine	Urinary mtDNA was superior than serum creatinine in predicting AKI
					n= 125 patients admitted to the Surgical ICU	Serum Creatinine: AUC: 0.724 Sensitivity: 86 % Speciﬁcity: 96.7%	
Pancreas	Ha et al. (33)	Pancreatitis	EPC	CRP	Prospective Study	EPC: AUC: 0.86 Sensitivity: 73.3 % Specificity: 96.7 %	EPCs are a potential predictor of severe acute pancreatitis
					Ages ≥ 18 years	EPC: AUC: 0.86 Sensitivity: 73.3 % Specificity: 96.7 %	
					n= 30 patients with mild acute pancreatitis	EPC: AUC: 0.86 Sensitivity: 73.3 % Specificity: 96.7 %	
					n= 30 patients with severe acute pancreatitis	EPC: AUC: 0.86 Sensitivity: 73.3 % Specificity: 96.7 %	
					n= 20 healthy volunteers	EPC: AUC: 0.86 Sensitivity: 73.3 % Specificity: 96.7 %	
Liu et al. (34)	Histones	Prospective Study	APACHE II criteria		Age: ≥ 18 years	APACHE II criteria: AUC: 0.74	
TABLE 2 | Continued

Organ Failure	Author (year)	Setting	Biomarker	Gold standard control used in the study	Sample size and Study Design	Result	Clinical significance	
Multi-Organ failure	Tapia et al. (35)	Survival outcomes in patients with sepsis	EPC SOFA score	n = 236 patients with acute pancreatitis; n = 47 healthy controls	Prospective Study	AUC: 0.92 AUROC SOFA score: 0.37	Endothelial progenitor cells	Circulating histones are a potential biomarker for predicting persistent organ failure in patients with acute pancreatitis. EPCs can be used as biomarkers for predicting survival outcome in patients with sepsis.

*Historical control as per previously reported studies.

miRNA, micro ribonucleic acid; NT-Pro BNP, B-type natriuretic peptide; AUC, area under the curve; ARDS, acute respiratory distress syndrome; PaO2/FiO2, ratio of the arterial pressure of arterial oxygen to fractional inspired oxygen; UIR, Lung Injury Prediction Score; PF, Idiopathic Pulmonary Fibrosis; DLCO/VA, diffusing capacity of the lungs for carbon monoxide/alveolar volume; MELD, Model for End Stage Liver Disease; ACLF, acute on chronic liver failure; cfDNS, cell free deoxyribonucleic acid; AST, aspartate aminotransferase; LFT, liver function test; HBV, Hepatitis B Virus; HCV, Hepatitis C Virus; AUC, area under the receiver operating characteristic curve; AST: Aspartate aminotransferase; HCV, Hepatitis C Virus; AKI: Acute Kidney Injury; NGAL, neutrophil gelatinase-associated lipocalin; CCU, coronary care unit; ICU, intensive care unit; AMI, acute myocardial infarction; CVP, C-reactive protein; miRNA, micro ribonucleic acid; APACHE, Acute Physiology and Chronic Health Evaluation; SOFA, Sequential Organ Failure Assessment Score. |
Increased levels of EPCs are associated with decreased cardiovascular mortality amongst patients with coronary artery disease (51). Moazzami et al also showed that decreased levels of a subpopulation of EPCs known as circulating progenitor cells (CPCs) are associated with a worse prognosis and is a stronger factor in outcomes than the presence of stress-induced myocardial ischemia in patients with coronary artery disease (52). More recently, Lieu et al demonstrated the use of EPCs in predicting persistent organ failure in patients with severe acute pancreatitis (SAP) and showed the level of EPCs correlate negatively to clinical scores that are used to grade SAP including the Ranson and acute physiology and chronic health evaluation (APACHE) scores (53). Interestingly, patients with persistent organ failure had lower levels of EPCs, though still elevated from the healthy volunteers than those with transient organ failure. Tapia et al showed that there was an increase in the number of EPCs, the protein expression of endothelial growth factor receptor-2 (VEGFR-2) and CD34 in the CEPCs (CD133+) was lower in critically ill patients with septic or non-septic shock and lowest in patients that did not survive (35).

In a pediatric study, EPCs were reported to be highly correlated with pulmonary arterial hypertension in pediatric patients with congenital heart disease (54). EPCs have also been reported to stratify risk in adult patients with chronic kidney disease (CKD), however the same did not hold true for pediatric patients with predialysis CKD (55).

While the role of EPCs as a biomarker for organ failure is promising, these cell levels are altered by multiple other factors including age, underlying chronic diseases such as diabetes mellitus, frequency of dialysis and the use of immunosuppressive drugs thus limiting its current value and application to pediatrics (56).

EXOSOMES

Exosomes are micro vesicles, roughly 30-100 nm in diameter, released from cells after fusion with an intermediate endocytic compartment (57). These microvesicles contain various biomolecular cargo that are transported across cell membranes. Under physiological conditions, exosomes are present and widely distributed in bodily fluids and are often treated as therapeutic targets or diagnostic and prognostic biomarkers in patients with cancer. Their widespread availability also make them an easily accessible noninvasive potential biomarker (58–60).

Sole et al examined miR-29c in urinary exosomes to determine whether patients with lupus nephritis would develop end-stage renal disease. They found that the contents of these microvesicles correlated with renal chronicity but not with renal function, suggesting that it could possibly be used as an early biomarker for development of renal fibrosis (31). Exosomes have also been used as biomarkers of renal injury within the context of preeclampsia. Gilani et al found that in women with preeclamptic podocyte related renal injuries, a significantly higher ratio of podocin-positive to nephrin-positive extracellular vesicles was found when compared to the urine of women with normotensive pregnancies, indicating proteinuria and renal injury (61).

Njock et al analyzed exosomes in the sputum to find biomarkers for idiopathic pulmonary fibrosis. They found exosomes containing mir-142-3p were negatively correlated with the diffusing capacity of the lungs and therefore severity of the disease (22). Lambrecht et al investigated the role of plasma exosomal miRNAs in distinguishing between healthy individuals and patients with hepatitis B and C who had early stage fibrosis. They found that certain exosomal miRNA cargos could be used to distinguish between healthy patients and HBV and HCV groups. However, whether these exosomes can diagnose liver fibrosis of any origin remains unclear (27). While the aforementioned studies highlight the potential for exosomes as a biomarker of organ failure in adults, there is currently a lack of similar research in pediatrics and further research is needed to evaluate its applicability in children.

NUCLEOSOMES

Nucleosomes are complexes composed of a histone core surrounded by DNA base pairs. Under normal physiological conditions, nucleosomes are released during apoptosis. However in pathological conditions, as in the case of organ failure, the normal phagocytic clearance mechanisms are overwhelmed and nucleosomes are released into circulation (62). These nucleosomes are remarkably stable and can be measured from the serum using immunoassay techniques. Current studies focus on their role as biomarkers with which to diagnose patients with cancers or with which to stratify patients for more tailored therapy (63).

Nucleosome levels have also been shown to be capable of differentiating the acuity and pathogenesis of organ failure. In a cohort of surgical and non-surgical ICU patients, patients who were septic had higher levels of nucleosomes upon admission than those who were not. This, however, was comparable to already established clinical scoring systems and did not provide additional predictive benefit (64). Craig et al showed that there are elevated nucleosome levels in patients with ALF in comparison to patients with chronic liver disease. However, there was no significant difference in nucleosome levels in severity of liver dysfunction or outcome (65). Additionally, nucleosome levels have been shown to be adversely related to cardiac outcomes and also elevated in familial cardiomyopathy (66, 67) In pediatrics, elevated levels of nucleosomes were found to be associated with increased mortality in pediatric acute respiratory distress syndrome (p<0.001) (68).

CIRCULATING MITOCHONDRIAL DNA

Mitochondria are cellular organelles whose DNA (mtDNA) has been found to reflect a potential damage-associated molecular pattern. They are released extracellularly during necrosis in response to inflammation and have been found to be associated
with the severity of a variety of diseases. Thus, mtDNA may be a potential biomarker for organ failure (69, 70). Publications that have examined the role of mtDNA in cancer focus on both copy number as a diagnostic and prognostic marker and on mutations within mtDNA as an additional prognostic marker (71–74).

Timmermans et al found mtDNA levels to be elevated in patients with septic shock. Di Caro et al additionally demonstrated this facet in pediatric patients (75). Dhondup showed low circulating levels of mtDNA to be associated with greater mortality in chronic heart failure. McGill et al found that elevated levels of mtDNA are associated with poorer outcomes in patients with liver failure (76–78). MtDNA can be isolated from the blood as well as urine and the latter has been explored as a biomarker for kidney injury. Eirin et al demonstrated elevated levels of mtDNA in patients with hypertension and its correlation with renal dysfunction, while Hu et al demonstrated urinary mtDNA to be a more sensitive predictor of AKI in post-operative patients than serum creatinine (32, 79). MtDNAs have also been shown to play a role in organ dysfunction and rejection post-transplant. Pollara et al demonstrated a correlation between elevated donor plasma mitochondrial DNA levels and early allograft dysfunction in liver transplant recipients, suggesting a role for circulating mtDAMPs in allograft outcomes (80).

HISTONES

Histones are proteins found extracellularly and within the nucleus that have been found to be elevated in patients with cancer and are associated with cell death and toxicity (81, 82). Abrams et al examined circulating histone levels in patients with trauma-induced lung injuries and found that high levels of circulating histones were associated with the incidence of acute lung injury and Sequential Organ Failure Assessment (SOFA) scores (83). Liu et al demonstrated that histones predicted disease severity in severe acute pancreatitis with higher predictive values for persistent organ failure and mortality than the currently used scoring indices for pancreatitis (34). Elevated histone levels have also been shown in patients with acute liver injury, acute kidney damage, and correlate with markers of disease severity and mortality (84, 85).

Other studies have analyzed the relationship between high levels of circulating histones and multiple organ failure. In patients with multiple organ dysfunction syndrome, there was a strong correlation between circulating histone levels and markers of organ injury, disease severity and p-SOFA scores. Furthermore, the authors observed that sera from patients with high histone levels were non-selectively toxic to primary cells from a variety of organs, including the lungs, livers and kidneys and therefore a possible mediator for multiple organ dysfunction syndrome (86).

DISCUSSION

Biomarkers are surrogate indirect indicators of a pathological or physiological process. In pediatrics, there has been limited progress in the identification and development of biomarkers to predict organ failure, its severity and outcome and its response to therapy. Identifying suitable biomarkers for organ dysfunction in pediatrics could potentially help improve risk stratification and possibly patient outcomes. It may also help to reduce the psychological stress, patients and their families may experience for more invasive procedures as well as reduce the health care costs and risks associated with these procedures which often require sedation.

Currently for biomarkers reported in the literature, there is a high degree of heterogeneity in the levels amongst patients based on age, sex and existing comorbidities. Levels of cfDNA for example are much higher in elderly patients due to decreased level of clearance by phagocytosis whilst changes in cfDNA methylation occur rapidly during childhood (87, 88). Limitations of these reported studies include lack of age-matched controls, limited sample sizes and lack of studies that included pediatric patients. These limitations make it impossible to assess age-related changes of the biomarkers reported and limits its generalizability to pediatric patients where age and weight specific normal ranges is unknown. Barriers to development of pediatric biomarkers include low prevalence of disease in pediatric vs adult patients and parental reluctance to participate in research, particularly for healthy controls making sample acquisition challenging (89).

Additionally in order to develop meaningful and clinically useful biomarkers, further research is needed to establish the optimal timing and method of sample collection as well as standardization of laboratory techniques. It should also be noted that none of these potential biomarkers in this review are truly organ-specific and may be a marker for multiple diseases thereby limiting its usefulness. Further work is therefore needed in distinguishing each biomarker from their respective molecular or cellular background in order to enhance its clinical utility. Presently there are multiple ongoing pediatric clinical trials to identify biomarkers in pediatric patients with lung, cardiac and renal injury amongst others (90–95).

Current ongoing or planned trials for pediatric oncology patients include the identification of biomarkers to detect cardiac injury and renal injury post chemotherapy (96–99).

Although there is still much work to be done, among pediatric oncology patients, there is promising utility for several of the biomarkers reviewed. Future studies might examine (i) the use of cfDNA and mtDNA post hematological or solid organ transplant in detecting organ rejection (ii) the use of MiRNA to determine risk of AKI among patients with post-surgical tumor resection (iii) serial sampling of EPCs in predicting progressive organ failure (iv) the use of histones as a predictor for multi-organ dysfunction syndrome and (v) the use of exosomes and nucleosomes to predict persistent or chronic organ failure in pediatric cancer patients.

CONCLUSIONS

Although many potential biomarkers exist to predict organ failure among pediatric cancer patients, all come with shared and unique challenges that limit their clinical value at this time. Additionally, while much research has been focused on heart failure and sepsis, a leading cause of multi-organ failure, there has been little headway in the application of these potential...
biomarkers to lung injury, for which there is currently no prognostic score or standard severity grading and diagnosis remains reliant on clinical markers. Despite the need for further studies, the data is promising. Pediatric oncology and critical care investigators should be encouraged to investigate these biomarkers further as they hold great potential for future use.

REFERENCES

1. Cohen EP, Pais P, Moulder JE. Chronic kidney disease after hematopoietic stem cell transplantation. *Semin Nephrol* (2010) 30(6):627–34. doi: 10.1016/j.snep.2010.09.010
2. Faraci M, Bertaina A, Dalisser A, Iversen M, Schulz A, Genney A, et al. Solid organ transplantation after hematopoietic stem cell transplantation in childhood: A multicentric retrospective survey. *Am J Transplant* (2019) 19(6):1798–805. doi: 10.1111/ajt.15152
3. Dean NP, Fenix JB, Spaeder M, Levin A. Evaluation of a Pediatric Early Warning Score Across Different Subspecialty Patients. *Pediatr Crit Care Med* (2017) 18(7):655–60. doi: 10.1097/PCC.0000000000001176
4. Graciano AL, Balco JA, Rahn DS, Ahmad N, Giroir BP. The Pediatric Multiple Organ Dysfunction Score (P-MODS): development and validation of an objective scale to measure the severity of multiple organ dysfunction in critically ill children. *Crit Care Med* (2005) 33(7):1484–91. doi: 10.1097/01.CCM.0000170943.23635.47
5. Marshall JC, Cook DJ, Christou NV, Bernard GR, Sprung CL, Sibbald WJ. Multiple organ dysfunction score: a reliable descriptor of a complex clinical outcome. *Crit Care Med* (1995) 23(10):1638–52. doi: 10.1097/00003188-199510000-00007
6. Hauser MJ, Tabak J, Baier H. Survival of patients with cancer in a medical critical care unit. *Arch Intern Med* (1982) 142(3):527–9. doi: 10.1001/archinte.1982.00340160107022
7. Rowan CM, Gertz SJ, Fitzgerald JC, Nitu ME, Loomis A, et al. Invasive Mechanical Ventilation and Mortality in Pediatric Hematopoietic Cell Transplantation: A Multicenter Study. *Pediatr Crit Care Med* (2016) 17(4):294–302. doi: 10.1097/PCC.0000000000000673
8. de Lemos JA, McGuire DK, Drazner MH. B-type natriuretic peptide in cardiomyopathic heart disease. *Lancet* (2003) 362(9380):316–22. doi: 10.1016/S0140-6736(03)13976-1
9. Association TCCotNYH. *Nomenclature and Criteria for Diagnosis of Diseases of the Heart and Great Vessels*. 9th ed. Boston: Little, Brown & Co (1994). p. 253–6.
10. Kamath PS, Kim WR. Advanced Liver Disease Study G. The model for end-stage liver disease (MELD). *Hepatology* (2007) 45(3):797–805. doi: 10.1002/hep.21563
11. McDermid SV, Anand R, Lindaas AS, Principal I. Institutions of the Studies of Pediatric Liver Transplantation Research G. Development of a pediatric end-stage liver disease score to predict poor outcome in children awaiting liver transplantation. *Transplantation* (2002) 74(2):173–81. doi: 10.1097/00007890-2002072700-00006
12. Kellum JAL, Norbert, Aspelin P, Boursoum RS, Burdman EA, Goldstein SL, et al. Kidney disease: Improving global outcomes (KDIGO) acute kidney injury work group. KDIGO clinical practice guideline for acute kidney injury. *Kidney Int* (2012) 81(2):1–138. doi: 10.1038/skp.2012.2
13. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). *JAMA* (2016) 315(8):801–10. doi: 10.1001/jama.2016.0287
14. Mohamed El-Mashad G, Said El-Mekkawy M, Helmy Zayan M. [Paediatric sequential organ failure assessment (pSOFA) score: A new mortality prediction score in the paediatric intensive care unit]. *Pediatr (Barc)* (2019) 92(5):277–85. doi: 10.1016/j.jamededi.2019.05.018
15. Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. *Crit Care Med* (1985) 13(10):818–29. doi: 10.1097/00003246-198510000-00009
16. Anders HJ, Vielhauer V, Schlondorff D. Chemokines and chemokine receptors are involved in the resolution or progression of renal disease. *Kidney Int* (2003) 63(2):401–15. doi: 10.1046/j.1523-1755.2003.00750.x

AUTHOR CONTRIBUTIONS

LD, SY, and DR were all major contributors in writing and editing this manuscript. RS, DP, KM, and SL were major contributors in editing the manuscript. All authors contributed to the article and approved the submitted version.
33. Ha X-Q, Song Y-J, Zhao H-B, Ta W-W, Gao H-W, Feng Q-S, et al. Endothelial progenitor cells in peripheral blood may serve as a biological marker to predict severe acute pancreatitis. World J Gastroenterol (2017) 23 (14):3922–600. doi:10.3748/wjg.v23.i14.3922
34. Liu T, Huang W, Szatmary P, Abrams ST, Alhamdi Y, Lin Z, et al. Accuracy of circulating histones in predicting persistent organ failure and mortality in patients with acute pancreatitis. BJSL (British J Surgery) (2017) 104(9):1215–25. doi:10.1016/bjsj.10538
35. Tapia P, Gatica S, Cortes-Rivera C, Otero C, Becerra A, Riekel CA, et al. Circulating Endothelial Cells From Septic Shock Patients Convert to Fibroblasts Are Associated With the Resuscitation Fluid Dose and Are Biomarkers for Survival Prediction. Crit Care Med (2019) 47(7):942–50. doi:10.1097/CM9.0000000000003778
36. Mandel P, Metas P. Les acides nucléiques du plasma sanguine chez l’homme. C R Seances Soc Biol Fil (1948) 142(3-4):241–3.
37. Meddeb R, Dache ZA, Zehenzas S, Otandault A, Tanos R, Pastor B, et al. Quantifying circulating cell-free DNA in humans. Sci Rep (2019) 9(1):5220. doi:10.1038/s41598-019-41593-4
38. Karlas T, Weise L, Kuhn S, Krenzien F, Mehdorn M, Petroff D, et al. Donor–Recipient Transplantation. Transplant Proc (2015) 47(8):2646–53. doi:10.1016/j.transproceed.2015.05.034
39. Agbor-Enoh S, Wang Y, Tunc I, Jang MK, Davis A, De Vlaeminck I, et al. Decreased plasma cell-free DNA levels predict allograft failure and mortality after lung transplantation. Ebiomedicine (2019) 40:541–53. doi:10.1016/j.ebiom.2018.12.029
40. North PE, Ziegler E, Mahnke DK, Thomm A, Daft P, et al. Cell-free DNA donor fraction analysis in pediatric and adult heart transplant patients by multiplexed allele-specific quantitative PCR: Validation of a rapid and highly sensitive clinical test for stratification of rejection probability. PLoS One (2020) 15(1):e0227385. doi:10.1371/journal.pone.0227385
41. Hartel DP. MicroRNAs: target recognition and regulatory functions. Cell (2009) 136(2):215–33. doi:10.1016/j.cell.2009.01.002
42. Shi N, Deng L, Chen W, Zhang X, Luo R, Jin T, et al. Is MicroRNA-127 a Novel Biomarker for Acute Pancreatitis with Lung Injury? Dis Markers (2017) 2017:1204295. doi:10.1155/2017/1204295
43. Zhou M, Wang X, Shi H, Cheng L, Wang Z, Zhao H, et al. Characterization of long non-coding RNA-associated cel lRNA network to reveal potential prognostic IncRNA biomarkers in human ovarian cancer. Oncotarget (2016) 7(11):12598–611. doi:10.18632/oncotarget.7181
44. Jin X, Chen Y, Chen H, Fei S, Chen D, Cai X, et al. Evaluation of Tumor-Derived Exosomal miRNA as Potential Diagnostic Biomarkers for Early-Stage Non-Small Cell Lung Cancer Using Next-Generation Sequencing. Clin Cancer Res (2017) 23(17):5311–9. doi:10.1158/1078-0432.CCR-17-0577
45. Schneider S, Silvello D, Martinelli NC, Garbin A, Bubol A, Clausell N, et al. Plasma levels of microRNA-21, -126, and -423-5p alter during clinical improvement and are associated with the outcome of acute myocardial infarction. Mol Med Rep (2018) 17(3):4736–46. doi:10.3892/mmr.2018.7181
46. Goren Y, Kushnir M, Zafir B, Tabak S, Lewis BS, Amir O. Serum levels of microRNAs in patients with heart failure. Eur J Heart Fail (2012) 14(2):147–54. doi:10.1093/eurhj/hfr155
47. Dubin PH, Yuan H, Devine RK, Hynan LS, Jain MK, Lee WM, et al. MicroRNA-122 levels in acute liver failure and chronic hepatitis C. J Med Virol (2014) 86(9):1507–14. doi:10.1002/jmv.23987
48. Goren Y, Kushnir M, Zafir B, Tabak S, Lewis BS, Amir O. Serum levels of microRNAs in patients with heart failure. Eur J Heart Fail (2012) 14(2):147–54. doi:10.1093/eurhj/hfr155
49. Wagner HH, Cui YL, Zaoersky NG, Lan J, Deng L, Zeng XL, et al. Mesenchymal stem cells generate pericytes to promote tumor recurrence via vaslclogenesis after stereotactic body radiation therapy. Cancer Lett (2016) 375(2):349–59. doi:10.1016/j.canlet.2016.02.031
50. Werner N, Kposiol S, Schieg T, Ahlers P, Walenta K, Link A, et al. Circulating endothelial progenitor cells and cardiovascular outcomes. N Engl J Med (2005) 353(10):999–1007. doi:10.1056/NEJMoa043814
73. Gopal RK, Kubler K, Calvo SE, Polak P, Livitz D, Rosebrock D, et al. Widespread Chromosomal Losses and Mitochondrial DNA Alterations as Genetic Drivers in Hurler Cell Carcinoma. Cancer Cell (2018) 34(2):242–55 e5. doi: 10.1016/j.ccell.2018.06.013

74. Li S, Wan P, Peng T, Xiao K, Su M, Shang L, et al. Associations between sequence variations in the mitochondrial DNA D-loop region and outcome of hepatocellular carcinoma. Oncol Lett (2016) 11(6):3723–8. doi: 10.3892/ol.2016.4466

75. Di Caro V, Walko TD, Bola RA, Hong JD, Pang D, Hseue V, et al. Plasma Mitochondrial DNA–a Novel DAMP in Pediatric Sepsis. Shock (2016) 45(5):506–11. doi: 10.1097/SHK.0000000000000539

76. Timmermans K, Kox M, Scheffer GJ, Pickkers P. Plasma Nuclear and Mitochondrial DNA Levels, and Markers of Inflammation, Shock, and Organ Damage in Patients with Septic Shock. Shock (2016) 45(6):607–12. doi: 10.1097/SHK.0000000000000549

77. Dhondup Y, Ueland T, Dahl CP, Askevold ET, Sandanger O, Fiane A, et al. Low Circulating Levels of Mitochondrial and High Levels of Nuclear DNA Predict Morbidity in Chronic Heart Failure. J Card Fail (2016) 22(10):823–8. doi: 10.1016/j.cardfail.2016.06.013

78. McGill MR, Staggs VS, Sharpe MR, Lee WM, Jaeschke H. Acute Liver Failure Study G. Serum mitochondrial biomarkers and damage-associated molecular patterns are higher in acetaminophen overdose patients with poor outcome. Hepatology (2014) 60(4):1336–45. doi: 10.1002/hep.27265

79. Einir A, Saad A, Tang H, Herrmann SM, Woollard JR, Lerman A, et al. Urinary Mitochondrial DNA Copy Number Identifies Chronic Renal Injury in Hypertensive Patients. Hypertension (Dallas Tex) (2016) 68(2):401–10. doi: 10.1161/HYPERTENSIONAHA.116.07849

80. Pollara J, Edwards RW, Lin J, Bendersky VA, Brennan TV. Circulating mitochondria in deceased organ donors are associated with immune activation and early allograft dysfunction. JCI Insight (2018) 3(15): e121622. doi: 10.1172/jcinsight.121622

81. Kang R, Xie Y, Zhang Q, Hou W, Jiang Q, Zhu S, et al. Intracellular HMGB1 as a novel tumor suppressor of pancreatic cancer. Cell Res (2017) 27(7):916–32. doi: 10.1038/cr.2017.51

82. Thalin C, Lundström S, Seignez C, Daleskog M, Lundstrom A, Henriksson P, et al. Citrullinated histone H3 as a novel prognostic blood marker in patients with advanced cancer. PloS One (2018) 13(1):e0191231. doi: 10.1371/journal.pone.0191231

83. Abrams ST, Zhang N, Manson J, Liu T, Dart C, Baluwa F, et al. Circulating histones are mediators of trauma-associated lung injury. Am J Respir Crit Care Med (2013) 187(2):160–9. doi: 10.1164/rcrm.201206-1037OC

84. Wen Z, Lei Z, Yao L, Jiang P, Gu T, Ren F, et al. Circulating histones are major mediators of systemic inflammation and cellular injury in patients with acute liver failure. Cell Death Dis (2016) 7(9):e2391. doi: 10.1038/cddis.2016.303

85. Nakatawa D, Kumar SV, Marschner J, Desai J, Holderied A, Rath L, et al. Histones and Neutrophil Extracellular Traps Enhance Tubular Necrosis and Remote Organ Injury in Ischemic AKI. J Am Soc Nephrol (2017) 28(6):1753–68. doi: 10.1681/ASN.2016080925

86. Cheng Z, Abrams ST, Alhamdi Y, Toh J, Yu W, Wang G, et al. Circulating Histones Are Major Mediators of Multiple Organ Dysfunction Syndrome in Acute Critical Illnesses. Crit Care Med (2019) 47(8):e877–e84. doi: 10.1097/CCM.0000000000003839

87. Islam SA, Goodman SJ, MacIsaac JL, Obradovic J, Barr RG, Boyce WT, et al. Integration of DNA methylation patterns and genetic variation in human pediatric tissues help inform EWAS design and interpretation. Epigenet Chromatin (2019) 12(1):1. doi: 10.1186/s13372-018-0245-6

88. Jylhäv J, Kotipelto T, Raitala A, Jylhä M, Hervonen A, Hurme M. Aging is associated with quantitative and qualitative changes in circulating cell-free DNA: the Vitality 90+ study. Mech Aging Dev (2011) 132(1-2):20–6. doi: 10.1016/j.mad.2011.10.001

89. Shores DR, Everett AD. Children as Biomarker Orphans: Progress in the Field of Pediatric Biomarkers. J Pediatr (2018) 193:14–20 e31. doi: 10.1016/j.jpeds.2017.08.077

90. Genetic Variability and Biomarkers in Children With Acute Lung Injury. Available at: https://ClinicalTrials.gov/show/NCT01048996

91. Identifying PARDS Endotypes. Available at: https://ClinicalTrials.gov/show/NCT03539783

92. Predictive Value of Troponin I for Acute Respiratory Distress Syndrome in Children With Shock. Available at: https://ClinicalTrials.gov/show/NCT02361840

93. Prognostication Biomarkers in Pediatric Cardiac Arrest. Available at: https://ClinicalTrials.gov/show/NCT02769026

94. Use of Biomarkers to Optimize Fluid Dosing.CRT Initiation and Discontinuation in Pediatric ICU Patients With AKI. Available at: https://ClinicalTrials.gov/show/NCT01416298

95. Use of NGAL for Fluid Dosing and CRT Initiation in Pediatric AKI. Available at: https://ClinicalTrials.gov/show/NCT03541785

96. Cancer Therapies Effects on the Heart. Available at: https://ClinicalTrials.gov/show/NCT04262830

97. Preventing Cardiac Sequelae in Pediatric Cancer Survivors. Available at: https://ClinicalTrials.gov/show/NCT01805778

98. Study to Evaluate Blood and Urine Kidney Injury Markers to Facilitate Early Detection of Renal Adverse Drug Events in Pediatric Cancer Patients Treated With Nephrotoxic Chemotherapy. Available at: https://ClinicalTrials.gov/show/NCT04308642

99. Cisplatin Induced Kidney Toxicity. Available at: https://ClinicalTrials.gov/show/NCT04442516

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Dao, Ragoonanan, Yi, Swinford, Petropoulos, Mahadeo and Li. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.