ChIPOTle v1.0: A Tool to Identify Genomic Regions Enriched in ChIP-chip Experiments

Michael Buck, UNC-CH Lieb lab, 2005
mjbuck@unc.email.edu

Description
ChIPOTle is a Microsoft Excel add-in Macro that analyzes yeast ChIP-chip data generated on whole-genome tiled arrays.

Introduction
In contrast to mRNA microarray experiments, in which each arrayed element usually measures the abundance of one mRNA species, in ChIP-chip experiments each element measures the abundance of a population of fragments of assorted lengths due to chromatin shearing. Therefore, arrayed elements representing genomic regions 1- to 2-kb downstream or upstream from the binding site will also detect enrichment. This effect produces a peak over several arrayed elements containing genomically adjacent DNA. This is non-random behavior that is not expected from spuriously high ratio measurements. ChIPOTle takes advantage of this fact and uses it as an independent confirmation of enrichment for a given genomic region.

ChIPOTle works by determining a sliding window average across each chromosome. A window of selected size (default 1 kb) is slid across a region or chromosome, and the average log₂ ratio of any arrayed elements that fall within that window is determined. The window is moved downstream by the step size (default 0.25 kb), and then the calculation is repeated iteratively for the whole chromosome. This sliding average will identify binding sites as peaks. The height of peaks caused by spuriously high ratios will be reduced, since the probability of a neighboring genomic element also having a high ratio is low. ChIPOTle also defines a array density value for each peak based on the number of independent arrayed elements used to construct the peak.

The utility of this approach is that it does not depend on the absolute number of targets, but on the density of their distribution. It is appropriate for detecting any number of targets that are distributed with a frequency less than approximately three times the average sheared chromatin size. For example, if the average sheared chromatin size were 1 kb, this method would be useful for the detection of any protein predicted to be spaced at intervals of at least 3 kb. A drawback to this approach is that it requires high-resolution tiling arrays.

Setting up and running the Microsoft Excel CHIPOTLE Macro
1) Start excel by double clicking on the ChIPOTle.xla file. You may get a security warning, and if so click "enable marcos". This will start Excel with the macro loaded. ChIPOTle will add a menu option to the excel Tools toolbar “CHIPOTLE”.

 If you are having problems, make sure Excel’s security setting for macros is set to medium or low. Excel’s security setting may be changed in the tools-macros -security menu option.

2) Open a spreadsheet containing your data in five columns (Spot name, log₂ ratio, Chromosome or region ID, start coordinate, and stop coordinate).
3) To run ChIPOTle, go to the tools – CHIPOTLE menu option. You will be presented with a set of options.

Setting Parameters
1.) You will be prompted to select the cells containing the required input data. Select the cells containing the spot names (string), log ratios (real), chromosome number (string or number), start and stop coordinate (integer).

2) Selecting window size and step size: The program was designed to use a window size equal to the average shearing size of the DNA used in the ChIP. The step size should be set at \(\frac{1}{4}\) the shear size. Default settings – window size 1000 bases, step size 250 bases (Figure 1).

3) Select significance criteria: (A) Peak height cutoff (log2 ratio value, default 1.0), to use as a cutoff for significant peaks. (B) Assume that the background distribution is Gaussian. (C) Estimate the background distribution using a permutation simulation. See “Picking a significance criterion” below for more details.

4) Permutation Parameters – If you selected permutation simulation, two additional parameters are required before the program will run. These are the number of permutations and the p-value. The number of permutations is the number of times all the data will be shuffled and the sliding window used to determine the negative peak distribution. The larger this number the longer it takes to run the program. The p-value is used in determining the cutoff via permutation simulations. In addition, the user should pay close attention to the number of significant negative regions (Significant Negative Regions). If there are many significant negative regions when compared to significant positive regions (Significant Regions), then the p-value cutoff should be decreased. A p-value cutoff that produces about 50 times more significant regions than false regions may be satisfactory.

Running the program
1) ChIPOTle retrieves the chromosome number, start, and end coordinates for each array element from the inputted data.

2) If selected, ChIPOTle estimates a cutoff for the selected p-value. The program updates its progress in the bottom left of the window.

3) The program calculates the sliding-window average for your data and outputs several data sheets.

Output
1) ChIPOTle will add the following sheets to the data workbook:
 - SummarySheet - Contains all the data with the spot start and stop
 - Significant Regions - Lists all regions above the positive cutoff
 - Significant Negative Regions - Lists all regions below the negative cutoff
 - Chromosomes aveP - Contains full output for each chromosome
 - Peaks - Lists all the positive peaks above the positive cutoff
 - Description - Lists the settings for CHIPOTLE run
 - FDR - Lists all peaks identified by CHIPOTLE with the p-value and q-value for false discovery rate when using the permutation simulation approach.

2) Output Column Labels:
A) "Significant Regions" and "Significant Negative Regions"

- **Chromosome** – Chromosome Number
- **Position** – Start of window
- **Ave Log Ratio** – Sliding window average for that region starting at position
- **# of spots** – Counts the number of independent spots used to get the average
- **Names** – List the name of the spots for that region

B) Peaks above cutoff

- **Peak Number** – Peak ID number by location
- **High Average** – Highest window average for that peak
- **High Ratio** – Highest log ratio for that peak
- **High Spot** – The array element with the highest log ratio
- **Length** – The length of the peak above the cutoff
- **Chromosome** – Chromosome location or region
- **Peak Start** – The first window average above the cutoff
- **Array density** – A measure of the number of independent spots in the peak. A “1” means that only one spot was used to make that peak above the cutoff, therefore, this peak may not be reliably enriched.
- **P-value** – Probability of enrichment via Gaussian or permutation

C) FDR

- **Peak Number** – Peak ID number by height
- **High Average** – Highest window average for that peak
- **High Ratio** – Highest log ratio for that peak
- **High Spot** – The array element with the highest log ratio
- **Chromosome** – Chromosome location or region
- **Peak Start** – The first window average above the cutoff
- **P-value** – Probability of enrichment via permutation
- **Q-value** – Q-value for determining FDR
Figure 1. Loading required input data and running ChIPOTle

Select array spot names
Select log ratio values
Chromosome or region ID
Coordinate for the start of the array element, **must be smaller than stop**
Coordinate for the end of the array element, **must be larger than start**

Assume that the background distribution is normal
Estimate the background distribution using a permutation simulation
Threshold cutoff, no p-values provided
Get the party started!
Figure 2. Looking at Results

SHEET – “Peaks above cutoff”

- High window average for peak
- Highest log ratio from original data for that peak
- The array spot with the highest log ratio
- Length of the peak above the cutoff
- Chromosome ID
- Start of peak
- Average number of array elements in each window of the peak
- P-value estimate by assuming a Gaussian background or by permutation

SHEET – “Description”

- Date and time ChIPOTle was run
- Window and step size
- Significance technique
- P-value threshold cutoff chosen
- Number of unique windows used to correct for multiple comparisons
- Standard deviation for background distribution
- Number of binding sites found
Figure 3. Making Charts

Chromosomal Maps of sliding window average - Sheet “Chromosomes aveP” contains all the sliding window average data.

Step 1) Select the window average for the chromosome or region desired.

Step 2) Insert line chart

Step 3) Select chromosomal location for category X-axis

Step 4) Label chart as desired
Figure 4. **P-value vs Average Window log ratio chart** (only for permutation simulations) – Sheet “P-value Histogram” contains the results from the permutation simulation.

Step 1) Select Average log ratio and p-value (cols A and B)

Step 2) Insert xy scatter chart

Step 3) Label chart as desired

![P-value vs Average Window log ratio chart](image)

Figure 5. **Distribution of all peaks** – Sheet “P-value Histogram” contains the height of all peaks found in the experiment.

Step 1) Select column K

Step 2) Insert column chart

Step 3) Select column J for category X-axis

Step 4) Label chart as desired

![Distribution of all peaks](image)
Picking a significance criterion

ChIPOTle has three options for determining the significance of enrichment found in ChIP-chip experiment.

1. Peak height cutoff
 Any peak with a height above the average log$_2$ ratio inputted will be saved in the Significant Regions and the Peaks worksheets. This approach does not estimate the p-value for each window or peak.

2. Background Gaussian distribution
 The background or non-enriched population is assumed to a symmetric Gaussian distribution about the mean of zero. For most ChIP-chip datasets this is the case but is not true for all experiments. See “Is my data Gaussian” below if you are not sure if your data fits this assumption. Using the Gaussian distribution is the most powerful approach in ChIPOTle for estimating the p-value of enrichment. Under the null hypothesis, the distribution of the average log$_2$ ratio within each window is again Gaussian, with mean zero and variance equal to the variance of a single log ratio divided by the number of elements in the window. Thus the nominal p-value for a window with average ratio w can be calculated using the standard error function (ERF) as follows:

\[
P_{\text{window}} = 1 - \text{ERF} \left(\frac{w}{\sigma \sqrt{n}} \right)
\]

where σ is the standard deviation for the background distribution, and n is the number of microarray elements used in the window. The p-values reported by ChIPOTle are corrected for multiple comparisons using the conservative Bonferroni correction.

3. Estimate background using permutation
 The background or non-enriched population is assumed only to be symmetric about the mean of zero. This approach only looks for peaks in the sliding window averages and does not estimate a p-value for every window. In addition the p-values for peaks are not correct for multiple testing. Therefore, ChIPOTle includes an additional output sheet FDR which contains the false discovery rate statistics. The peaks are identified from the data as any window or group of windows with the same value having a preceding and following window of a lower value. Only these peaks will be tested for enrichment, reducing the total number of statistical test required. The significance of enrichment for a peak is estimated by comparing it’s height to the height of peaks caused by chance (non-enriched). The height of peaks caused by chance is estimated by a permutation simulation of all non-enriched regions. Since, ChIP-chip experiments do not specifically deplete any genomic fragments, any array element or peak with negative log ratio can be assumed to belong to the non-enriched population. With the assumption of symmetry about the mean for the non-enriched population we can estimate the complete non-enriched population by reflecting the negative distribution onto the positive axis. For example, a negative peak of depth -0.5, which should occur only by chance, will occur as often as a positive peak of height 0.5 by chance. From this distribution of the non-enriched positive
peaks, CHIPOTLE estimates the probability of enrichment for each peak found.

First the genomic order of the data is randomized and then a sliding window average is determined with the user specifications. Negative peaks are determined and their depth’s counted. This is repeated a selected (default = 100) number of times and the distribution of the peaks is used to determine the p-value for enrichment.

Is my data Gaussian?

The quick and easy check using Microsoft excel data “Analysis ToolPak”. The steps below demonstrate how to make a plot similar to a Q-Q plot in microsoft excel.

1. Count the number of elements in your dataset.
2. Create a list of random number from a Normal distribution using data analysis toolpak addin.

Figure 6. Creating random Gaussian data

Select data analysis, if you don’t have this option make sure you have the ToolPak add-in installed.
3. Sort your dataset and the random number dataset individually in ascending order
4. Make a x-y plot of the two data sets
5. Interpret the plot! (Figure 10)

a. Try drawing a line for the linear region of the plot? If there is not a linear region your data is not Gaussian. It may have a bimodal distribution depending on percentage of arrayed elements enriched in the IP. When you enrich greater then > 20 % of the arrayed elements the data distribution is more bimodal then normal.
b. Is there a heavy skew to the left? Are there many spots above the line in the bottom left of the chart? If there is a heavy skew on the left side of the distribution then the Gaussian assumption may be too liberal. Depending on how heavy the tail is you may want to use the permutation simulation approach.

c. Does the line intersect (0,0)? If not the data may need to be normalized or centered. A slight deviation < 0.05 from (0,0) is ok, but too much will invalidate the assumption of symmetry.

Figure 10. Q-Q plot in Excel