A novel phylogeny and morphological reconstruction of the PIN genes and first phylogeny of the ACC-oxidases (ACOs)

Ronald M. Clouse1* and Nicola Carraro2

1 Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
2 Department of Agronomy, Purdue University, West Lafayette, IN, USA

INTRODUCTION

The PIN and ACO gene families present interesting questions about the evolution of plant physiology, including testing hypotheses about the ecological drivers of their diversification and whether unrelated genes have been recruited for similar functions. The PIN-formed proteins contribute to the polar transport of auxin, a hormone which regulates plant growth and development. PIN loci are categorized into groups according to their protein length and structure, as well as subcellular localization. An interesting question with PIN genes is the nature of the ancestral form and location. ACOs are members of a superfamily of oxygenases and oxidases that catalyze the last step of ethylene synthesis, which regulates many aspects of the plant life cycle. We used publicly available PIN and ACO sequences to conduct phylogenetic analyses. Third codon positions of these genes in monocots have a high GC content, which could be historical but is more likely due to a mutational bias. Thus, we developed methods to extract phylogenetic information from nucleotide sequences while avoiding this convergent feature. One method consisted in using only A-T transformations, and another used only the first and second codon positions for serine, which can only take A or T and G or C, respectively. We also conducted tree-searches for both gene families using unaligned amino acid sequences and dynamic homology. PIN genes appear to have diversified earlier than ACOs, with monocot and dicot copies more mixed in the phylogeny. However, gymnosperm PINs appear to be derived and not closely related to those from primitive plants. We find strong support for a long PIN gene ancestor with short forms subsequently evolving one or more times. ACO genes appear to have diversified mostly since the dicot-monocot split, as most genes cluster into a small number of monocot and dicot clades when the tree is rooted by genes from mosses. Gymnosperm ACOs were recovered as closely related and derived.

Keywords: ethylene synthesis, auxin, ancestral reconstruction, GC mutational bias, PIN-formed, 1-aminocyclopropane-1-carboxylate oxidase

The dramatic increase in the amount of publicly available genomic information has facilitated analyses of gene-family origins and evolution. Plant gene phylogenies have proliferated, but they are commonly made using distance matrices of amino acid sequences. This method is expected to amplify misleading information resulting from convergence (Farris, 1983; Simmons, 2000; Simmons et al., 2002), obscuring any signal of the true history.

Methodological approaches to studying gene family histories need focused attention, since gene phylogenies are inherently difficult to verify. Molecular phylogenies of species can be compared to their morphology and biogeography to ask whether resulting trees are plausible. Perfect congruence is not expected, but phylogenies at extreme variance cast doubt on the quality of the methods and underlying data. Because gene copies can undergo any combination of diversification, loss, and neofunctionalization in different taxonomic lineages, nearly any sort of phylogenetic hypothesis can be the reasonable outcome of an analysis. Gene copies in the same taxon or with the same morphology would be expected to have a higher probability of being closely related, but this is not necessarily so, and it is dependent on the timing of gene family diversification events and the phylogenetic placement of progenitor copies.

Here we employ phylogenetic methods designed to minimize the effects of convergence and amplify historical signal in the data. We apply these methods to the PIN-formed (PIN) auxin transporters and the ethylene-forming, ACC-oxidase enzymes (ACO). We chose to analyze these gene families because both are important plant development genes for which there are hypotheses about the timing and drivers of their diversification, but they differ in the amount of phylogenetic study thus far received. The PIN genes have been the subject of different phylogenetic analyses (Paponov et al., 2005; Křeček et al., 2009; De Smet et al., 2011; Carraro et al., 2012; Viaene et al., 2013; Bennett et al., 2014), but for ACOs no such analysis has been attempted. We thus are able to compare the results of our methods to prior analyses in PIN genes, and we lay the groundwork for a new discussion on the history of ACOs.
Table 1 | PIN genes analyzed in this study.

Species	Gene code	Terminal name	Protein (aa)	TMDs	Type	Score
Aquilegia caerulea	AcoGoldSmith_v1.001931m.g	Aco001931	654	9	Long	1
	AcoGoldSmith_v1.007499m.g	Aco007499	566	9	Short	2
	AcoGoldSmith_v1.016169m.g	Aco016169	620	9	Long	1
	AcoGoldSmith_v1.018139m.g	Aco018139	641	9	Long	1
	AcoGoldSmith_v1.018694m.g	Aco018694	612	5	Long	1
Arabidopsis thaliana	AT1G73590	AtPIN1	622	9	Long	1
	AT5G57090	AtPIN2	647	9	Long	1
	AT1G70940	AtPIN3	640	9	Long	1
	AT2G01420	AtPIN4	616	10	Long	1
	AT5G16530	AtPIN5	351	9	Short	2
	AT1G77110	AtPIN6	570	9	Reduced	3
	AT1G23080	AtPIN7	619	9	Long	1
	AT5G15100	AtPIN8	367	8	Short	2
Citrus sinensis	Orange1.1g006199m.g	Csi_g006199	657	10	Long	1
	Orange1.1g007420m.g	Csi_g007420	604	8	Long	1
	Orange1.1g007826m.g	Csi_g007826	588	8	Long	1
	Orange1.1g018360m.g	Csi_g018360	357	8	Short	2
	Orange1.1g019021m.g	Csi_g019021	347	9	Short	2
	Orange1.1g035534m.g	Csi_g035534	291	5	N-terminal TMD only	5
	Orange1.1g036474m.g	Csi_g036474	646	9	Long	1
	Orange1.1g041301m.g	Csi_g041301	291	7	Short	2
	Orange1.1g048649m.g	Csi_g048649	256	5	N-terminal TMD only	5
Eucalyptus grandis	Eucgr.A02229	EgrA02229_1	599	8	Long	1
	Eucgr.B00948	EgrB00948_1	587	9	Long	1
	Eucgr.B01403	EgrB01403_1	365	9	Short	2
	Eucgr.B01405	EgrB01405_1	364	9	Short	2
	Eucgr.B01406	EgrB01406_1	285	7	Short	2
	Eucgr.B02902	EgrB02902_1	657	9	Long	1
	Eucgr.C00078	EgrC00078_1	626	9	Long	1
	Eucgr.F04265	EgrF04265_1	530	8	Reduced	3
	Eucgr.G02187	EgrG02187_1	652	9	Long	1
	Eucgr.G02548	EgrG02548_1	338	9	Short	2
	Eucgr.G02549	EgrG02549_1	360	9	Short	2
	Eucgr.H01382	EgrH01382_1	262	6	Short	2
	Eucgr.H01390	EgrH01390_1	519	7	Long	1
	Eucgr.01919	Egrl01919_1	356	8	Short	2
	Eucgr.K02271	EgrK02271_1	598	9	Long	1
Manihot esculenta	Cassava4.1_003367m.g	Mes003367	646	9	Long	1
	Cassava4.1_003794m.g	Mes003794	614	8	Long	1
	Cassava4.1_003807m.g	Mes003807	614	8	Long	1
	Cassava4.1_006998m.g	Mes006998	468	9	Long	1
	Cassava4.1_010607m.g	Mes010607	357	9	Short	2
	Cassava4.1_010688m.g	Mes010688	354	9	Short	2
	Cassava4.1_026579m.g	Mes026579	598	7	Long	1
	Cassava4.1_029063m.g	Mes029063	361	8	Short	2
	Cassava4.1_029078m.g	Mes029078	626	9	Long	1
	Cassava4.1_030090m.g	Mes030090	380	5	N-terminal TMD only	5
	Cassava4.1_033391m.g	Mes033391	355	8	Short	2

(Continued)
Species	Gene code	Terminal name	Protein (aa)	TMDs	Type	Score
Medicago truncatula	Medtr2g043210	Mtr2g043210	315	4	N-terminal TMD only	5
	Medtr4g154810	Mtr4g154810	524	8	Long	1
	Medtr6g083450	Mtr6g083450	659	10	Long	1
	Medtr7g008720	Mtr7g008720	357	8	Short	2
	Medtr7g089430	Mtr7g089430	363	9	Short	2
	Medtr7g106430	Mtr7g106430	591	8	Long	1
	Medtr8g130020	Mtr8g130020	625	9	Long	1
	Medtr8g130040	Mtr8g130040	568	10	Long	1
	Medtr4g084870	Mtr4g084870	659	10	Long	1
	MtrAY115838	MtrAY115838	621	10	Long	1
Oryza sativa	LOC_Os06g12610	OsPIN1a	595	10	Long	1
	LOC_Os02g50960	OsPIN1b	554	9	Reduced	3
	LOC_Os11g04190	OsPIN1c	592	10	Long	1
	LOC_Os12g04000	OsPIN1d	390	4	C-terminal TMD only	4
	LOC_Os06g44970	OsPIN2	630	9	Long	1
	LOC_Os01g45550	OsPIN3a	670	5	Long	1
	LOC_Os05g50140	OsPIN3b	591	10	Long	1
	LOC_Os01g69070	OsPIN5a	363	7	Short	2
	LOC_Os06g41720	OsPIN5b	398	7	Short	2
	LOC_Os09g32770	OsPIN5c	357	7	Short	2
	LOC_Os01g51780	OsPIN8	311	5	Short	2
	LOC_Os01g58860	OsPIN9	426	10	Reduced	3
Physcomitrella patens	Pp1s10_17V6.1	PpPIN1A	713	9	Long	1
	Pp1s18_186V6.1	PpPIN1B	713	9	Long	1
	Pp1s32_43V6.1	PpPIN1C	698	9	Long	1
Picea abies	fj031883.2	PaPIN1	699	10	Long	1
	MA_61553g0010	PaPIN2	426	3	C-terminal TMD only	4
	MA_69724g0010	PaPIN3	625	8	Long	1
Populus tomentosa	AAP59843.1	PtoPIN1	619	7	Long	1
Populus tremula × tremuloides	AF190881.1	PttPIN1	614	9	Long	1
	AF515435.1	PttPIN2	640	9	Long	1
	AF515434.1	PttPIN3	588	9	Long	1
Populus trichocarpa	POPTR_0015s04570	PtrPIN1	614	9	Long	1
	POPTR_0016s03450	PtrPIN2	588	8	Long	1
	POPTR_0010s12320	PtrPIN3	645	9	Long	1
	POPTR_0005s20990	PtrPIN4	534	9	Long	1
	POPTR_0002s07310	PptrPIN5	532	8	Long	1
	POPTR_0008s12830	PptrPIN6	649	9	Long	1
	POPTR_0012s04470	PptrPIN7	609	9	Long	1
	POPTR_0006s03540	PptrPIN8	587	9	Long	1
	POPTR_0018s13610	PptrPIN9	633	9	Long	1
	POPTR_0001s21230	PptrPIN10	547	10	Long	1
	POPTR_0013s08510	PptrPIN11	346	9	Short	2
	POPTR_0019s07990	PptrPIN12	346	10	Short	2
	POPTR_0004s12310	PptrPIN13	355	8	Short	2
	POPTR_0017s11440	PptrPIN14	358	8	Short	2
	POPTR_0014s14390a	PptrPIN15	370	8	Short	2
	POPTR_0014s14390a	PptrPIN16	304	6	Short	2

(Continued)
Species	Gene code	Terminal name	Protein (aa)	TMDs	Type	Score
Prunus persicum	ppa002528m.g	Ppe002528	662	10	Long	1
	ppa002944m.g	Ppe002944	619	9	Long	1
	ppa003159m.g	Ppe003159	597	8	Long	1
	ppa007621m.g	Ppe007621	361	9	Short	2
	ppa021573m.g	Ppe021573	357	7	Short	2
	ppa022797m.g	Ppe022797	550	9	Long	1
	ppa024134m.g	Ppe024134	649	9	Long	1
	ppa025174m.g	Ppe025174	602	8	Long	1
Ricinus communis	Rco27985.t000045	Rc27985	544	8	Long	1
	Rco29662.t000026	Rc29662	635	8	Long	1
	Rco29816.t000014	Rc29816	614	10	Long	1
	Rco29822.t000149	Rc29822	313	7	Short	2
	Rco30128.t000486	Rc30128	357	9	Short	2
	Rco30180.t000054	Rc30180	613	8	Long	1
Selaginella moellendorfii	234325	SmPIN1-1	625	9	Long	1
	XM_002990455.1	SmPIN1-2	617	9	Long	1
	102666	SmPIN2-1	602	9	Long	1
	XM_002977411.1	SmPIN2-2	716	9	Long	1
	99301	SmPIN3-1	669	9	Long	1
	XM_002976656.1	SmPIN3-2	672	9	Long	1
	119024	SmPIN4-1	687	9	Long	1
	231064	SmPIN5-1	636	9	Long	1
	268490	SmPIN5-2	625	9	Long	1
Sorghum bicolor	Sb02g029210	SbPIN1	371	9	Short	2
	Sb03g029320	SbPIN2	653	8	Long	1
	Sb03g032850	SbPIN3	362	7	Short	2
	Sb03g037350	SbPIN4	444	10	Reduced	3
	Sb03g043960	SbPIN5	336	7	Short	2
	Sb04g028170	SbPIN6	605	10	Long	1
	Sb05g002150	SbPIN7	583	9	Long	1
	Sb07g026370	SbPIN8	402	9	Short	2
	Sb10g004430	SbPIN9	600	10	Long	1
	Sb10g006290	SbPIN10	606	9	Long	1
	Sb10g026300	SbPIN11	626	9	Long	1
Vitis vinifera	GSVIV01025748001	VvPIN1a	604	8	Long	1
	GSVIV01025749001	VvPIN1b	591	8	Long	1
	GSVIV01029266001	VvPIN2	630	10	Long	1
	GSVIV01019110001	VvPIN5b	361	9	Short	2
	GSVIV01019126001	VvPIN5a	356	9	Short	2
	GSVIV01010025001	VvPIN6	532	9	Reduced	3
	GSVIV01033005001	VvPIN8	357	8	Short	2
	GSVIV01031663001	VvPIN9	463	8	Reduced	3
Zea mays	GRMZM2G0988643	ZmPIN1a	601	9	Long	1
	GRMZM2G074267	ZmPIN1b	595	8	Long	1
	GRMZM2G149184	ZmPIN1c	597	8	Long	1
	GRMZM2G171702_T01	ZmPIN1d	580	8	Long	1
	JQ421085.1	ZmPIN2	626	9	Long	1
	GRMZM2G025742	ZmPIN5a	382	9	Short	2
	GRMZM2G148648	ZmPIN5b	385	7	Short	2

(Continued)
PIN-formed proteins polarly transport the plant hormone auxin, which regulates several aspects of plant growth and development (Robert and Friml, 2009; Zazímalová et al., 2010). Since the discovery and characterization of the first PIN mutant in Arabidopsis (Okada et al., 1991), several other PINs have been identified and characterized in different plant species. In the Arabidopsis genome, there are eight PIN loci, which are categorized into groups according to their protein length and structure, as well as subcellular localization (Paponov et al., 2005; Křeček et al., 2009). The first cladistic analysis of PIN genes (Carraro et al., 2012), which was rooted by moss and lycophyte copies, suggested that PIN genes diversified mostly since the rise of land plants, around the time of the monocot-dicot split. A subsequent analysis (Viaene et al., 2013) focused on the evolution of PIN gene morphology; the preferred topology—rooted by protist, animal, bacterial genes—suggested that the moss sequence “PpPIN1D” is sister to all other PIN genes, and the morphology evolved from short forms to long.

ACOs help in the synthesis of ethylene, which is a gaseous hormone under normal environmental conditions, and which regulates many aspects of the plant life cycle (Bleecker and Kende, 2000; Lin et al., 2009). In higher plants, ethylene is synthesized via two committed enzyme-catalyzed steps from S-adenosyl-L-methionine. The first step is catalyzed by 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS), and the second (and last) step is carried out by ACC oxidase (ACO). ACOs are members of a superfamily of oxygenases and oxidases, most of which utilize Fe (II) as a cofactor and 2-oxoglutarate (2OG) as a cosubstrate (Sato and Theologis, 1989; Bidonde et al., 1998; Wang et al., 2002). The subcellular localization of ACO proteins is prevalently cytosolic rather than membrane-bound (Chung et al., 2002; Hudgins et al., 2006; Lin et al., 2009). ACOs have high similarity throughout the protein coding sequences and expression analyses reveal that the ACO genes display a high degree of differential expression in tissues at various stages of development. A variety of plant species produce ethylene, including unicellular and multicellular algae, although angiosperms use a different biosynthetic pathway from primitive land plants and algae (Wang et al., 2002; De Paeppe and Van der Staen, 2005; Plettner et al., 2005; Yordanova et al., 2010; Wanke, 2011; Yasumura et al., 2012).

MATERIALS AND METHODS

ASSEMBLING OF THE ACO AND PIN DATA SETS

For all phylogenetic analyses, unless otherwise specified, coding sequences (CDS) were used. All taxa with publicly available sequences were included, although a random subset of all available angiosperm sequences were taken, so as to generate a manageable data set size. For the PIN data set (Table 1), reported unique sequence identifiers were used to retrieve the corresponding sequences from the Phytozome v.9.1 (www.phytozome.org) (Goodstein et al., 2012), ConGenIE (congenie.org), and Genebank (www.ncbi.nlm.nih.gov/genbank) (Benson et al., 2005) databases. The only major plant group that was not included in the PIN data set was ferns, as previously reported PIN genes from them are not publicly available (Viaene et al., 2013). ACO sequences (Table 2) were identified from previously published studies and via queries with the BLASTn algorithm at the National Center for Biotechnology Information (NCBI) nucleotide collection and from the Phytozome v.9.1 (Goodstein et al., 2012). Only proteins that were annotated as aminocyclopropane-carboxylate oxidases were retained. Transmembrane profiles for PIN amino acid sequences were predicted querying the TMHMM Server v.2.0 (www.cbs.dtu.dk/services/TMHMM/) (Moller et al., 2001). PIN proteins were classified (1–5) according to their length, number of transmembrane domains, and length of the central hydrophilic loop (See Table 1). Generally, caution should be exerted when classifying PIN proteins according to their number of TMDs, as those are predicted protein domains that will need final confirmation by reconstruction of the tertiary structure by crystallography. In two cases where gene sequences showed no notable differences from long forms but were predicted to have only the N-terminal transmembrane domain (OsPIN3a and Aco018694), we coded them as long.

ALIGNMENT AND PHYLOGENETIC ANALYSIS

The moss PIN gene “PpPIN1D” (Gene Code “Pp1s79_126V6.1”) was excluded from analysis due to suspicion of it being a pseudogene; although not the most distant gene in the data set, it has only about half the number of nucleotides relative to other moss PIN genes (with the gaps appearing in the middle), and in preliminary phylogenies it was recovered on a very long branch (usually twice as long as its sister). This can also be seen in our previous phylogeny of PIN genes (Figure 2A in Carraro et al., 2012). Likewise, we did not include purported PIN homologs from non-plants (Viaene et al., 2013), as we had no evidence for their homology.

We aligned the amino acids with ClustalW2 (Larkin et al., 2007) in SeaView (Gouy et al., 2010) (-gapopen parameter set to 15) and then back-translated the amino acids to nucleotides (Figures 1A,B). The resulting nucleotide alignments for the PIN and ACO data sets are available as supplemental material.
Table 2 | ACO genes analyzed in this study.

Species	Gene code	Terminal name
Arabidopsis thaliana	AT1G62380	AtACO2
	AT1G12010	AtACO3
	AT1G05010	AtACO4
	AT1G77330	AtACO5
	AT1G03400	AtACO6
	AT2G25450	AtACO7
	AT2G30830	AtACO8
	AT2G30840	AtACO9
	AT3G47190	AtACO10
	AT3G61400	AtACO11
	AT5G43440	AtACO12
	AT5G43450	AtACO13
Carica papaya	evm.model.supercontig_132.27	CpACO1
	evm.model.supercontig_64.148	CpACO2
Eucalyptus grandis	Eucgr.K00740	EgK00740
	Eucgr.K00750	EgK00750
	Eucgr.K00746	EgK00746
	Eucgr.K00749	EgK00749
	Eucgr.K00747	EgK00747
	Eucgr.C00906	EgC00906
	Eucgr.C03886	EgC03886
	Eucgr.F03839	EgF03839
Glycine max	Glyma07g39420	Gm07g39420
	Glyma17g01330	Gm17g01330
	Glyma09g01110	Gm09g01110
	Glyma15g11930	Gm15g11930
	Glyma14g05390	Gm14g05390
	Glyma02g43560	Gm02g43560
	Glyma06g12340	Gm06g12340
	Glyma04g42460	Gm04g42460
	Glyma05g36310	Gm05g36310
	Glyma07g15480	Gm07g15480
	Glyma08g03310	Gm08g03310
Gossypium raimondii	Gorai.010G184900	GrcACO1
	Gorai.009G182300	GrcACO2
	Gorai.004G062100	GrcACO3
	Gorai.007G170100	GrcACO4
	Gorai.001G096300	GrcACO5
	Gorai.001G096400	GrcACO6
	Gorai.001G011100	GrcACO7
	Gorai.013G107500	GrcACO8
Malus domestica	MDP00000195885	MdACO1
	MDP0000200737	MdACO2
	MDP0000725984	MdACO3
	MDP0000251295	MdACO4
	MDP0000453114	MdACO5
	MDP000025650	MdACO6
	MDP0000200896	MdACO7

(Continued)
SeaView retains original nucleotide data through the process of amino acid alignment and thus allows an accurate back-translation after alignment. SeaView also has the alignment program MAFFT (Katoh et al., 2009) implemented, but, with the translation after alignment. SeaView also has the alignment program Poy (Varón et al., 2009), which optimizes the multiple sequence alignment and tree searching simultaneously. When completed, PIN trees were uploaded to Mesquite with a character matrix of their protein lengths (Figure 3; coded as 1–5), and parsimony ancestral reconstructions traced over the trees. Characters were treated as unordered.

RESULTS
PIN phylogenies recovered from a variety of sequence alignments and under parsimony or likelihood reconstructed the evolution of these genes from long to short (Figures 4, 5). The phylogeny recovered with full gap information under parsimony showed a clearer evolution from long, through intermediate, and to short forms, and the short versions were recovered as two clades under likelihood and parsimony when gaps were replaced by “?” or gappy regions removed by Gblocks (Figures 4B, 5A, B). Although several smaller clades remained stable throughout the analysis, and the moss and most of the lycophyte sequences tended to remain as sister to the remaining PIN genes, the relationships among the major lineages were generally unresolved. Genes having the trans-membrane domain only on the C-terminal end appeared to have evolved from long-form PINs, possibly twice, and those having this domain only on the N-terminal appear to have evolved from short-form genes, perhaps more than once. Monocot PINs were recovered mostly in small stable clades mixed among the dicot genes. Lycophyte genes were monophyletic under likelihood and under parsimony when the alignment was trimmed by Gblocks (Figure 5B); otherwise they tended to form a paraphyletic grade at the base of the tree, near the Pscomitrella patens (moss) genes, or several small clades, only some of which were near the moss genes. Gymnosperm genes were found monophyletic only under likelihood (Figure 4B), and at the base of the tree, after the lycophytes, under parsimony (Figure 4A).

ACO genes clustered more distinctly by taxonomic group, under both parsimony and likelihood, except for the moss and lycophyte genes, which were mixed at the base of the
FIGURE 1 | Different alignments used in this study. Alignments began by translating coding sequences and aligning them with ClustalW2 ("gapopen" option set to 15), and then back-translating them into nucleotides (A,B). From these only the 1st and 2nd codon positions were taken (C), and then all G and C nucleotides converted to "N" (D), which is read as "any nucleotide" in the phylogenetic program TNT. This alignment then had gappy regions removed by the program Gblocks (E) or had all of its GC bases and gaps converted to "?" (F), which is read as "any nucleotide or gap" in TNT. The alignment in B also had all codon positions except those coding for Serine converted to "N", then the 3rd codon positions removed (G). This also had all Ns and gaps converted to "?" (H).

tree (Figure 6). Gymnosperm ACOs were recovered as closely related but not near the basal plants. Under parsimony gymnosperms ACOs were recovered as monophyletic, with the exception of the Norway spruce gene PaABO4, and under likelihood they were recovered in two clades that formed a paraphyletic grade between two angiosperm diversifications. In both analysis, ACOs of monocotyledonous species (Oryza sativa, Sorghum bicolor, and Zea mays) cluster into three groups of closely related copies; under likelihood these groups are each monophyletic. Genes resulting from duplications are recovered as closest in both analysis (for example Sb05g005710 and Sb05g005720). ACOs from dicotyledonous species form several clades or paraphyletic grades, each containing copies from a mixture of species, except one which contains exclusively Arabidopsis sequences. As in monocots, dicot species that underwent relatively recent whole genome duplications (Malus domestica, Populus trichocarpa) present tightly related gene copies with high sequence similarity.

Trees recovered under dynamic homology using amino acids were less organized by taxonomic group than those recovered using the nucleotide alignments above (Figure 7). With PIN genes, copies from the moss P. patens remained sister to all other PINs, but the lycophyte copies were recovered throughout the rest of the tree. This would make any ancestral reconstruction of gene length ambiguous, as the lycophyte copies are classified as long. With the ACOs, the mixing of gene copies by taxonomic group occurred mostly at the base of the tree, although it was more complete.

Tree lengths, numbers, and likelihoods are provided in Table 3. The full alignment of 1st and 2nd codon positions, with all GC
content replaced by N resulted in a large number of equally parsimonious trees for PINs and ACOs, mostly due to equally parsimonious resolutions among the main lineages in PINs, and among members of small, derived clades in ACOs. These unstable regions of each gene family’s phylogeny also received little bootstrap support (Figures S1, S2).

DISCUSSION

We find strong support for shorter PINs evolving during the diversification of angiosperms, and the basal plants (here represented by the moss *Physcomitrella patens* and lycophyte *Selaginella moellendorfii*) retaining only long PINs. Whether originating more than once or not, short PINs have evolved more recently and their number increased in monocots and dicots following genome duplications in species such as *Oryza Sativa*, *Zea mays*, *Populus trichocarpa*. This finding contradicts that of Viaene et al. (2013).

The difference results from how our phylogenies are rooted, and rooting rests homology assessments, alignment methods, the way phylogenetic programs handle missing data, and assumptions about whether primitive plants are more likely to retain primitive gene copies. There are several tests for homology (Patterson, 1988), and the only one presently available for analyzing gene families is similarity; thus for highly dissimilar sequences some justification should be offered for their inclusion. To illustrate how divergent the outgroups of Viaene et al. (2013) are, their supposed PIN homolog from ants has a shorter uncorrected p-distance relative to the ingroups when reversed than in its original direction. Homology for the animal sequences cannot be justified based on auxin transport, since animals do not have auxin, so it seems likely such sequences are simply not homologous. For such divergent sequences, even if homologous, they will generate large gappy sections in the alignment, only some of which can be removed by hand, and they will likely root randomly. Another source of alignment difficulties is the partial nature of the algal PIN sequences which Viaene et al. (2013) took from ESTs. If the phylogenetic programs they employed treated gaps and missing data the same, algal sequences among the outgroups would be inclined to pull short PIN genes to the base of the tree. Indeed, it is not surprising that non-homologous and partial sequences in the outgroups attracted the strange and truncated PpPIN1D sequence to the outside of the ingroups—more through shared exclusion than similarity—thus strengthening the appearance of a short-to-long evolution of PIN genes.

In the absence of a suitable outgroup for plant PIN genes, we have simply made the assumption that plants recovered as sister to all the others (what one might call “primitive” or “basal” plants) carry gene copies that are also likely to be sister to all the others. This may not be correct, as evidenced by the placement of some gymnosperm copies as more derived than angiosperm copies. However, perhaps the most stable and supported relationship we recovered with PINs and ACOs was the clear distinction between moss (and usually lycophyte) copies and all the others. Thus, these gene families either diversified very early, and mosses and lycophytes retained only the most derived copies, or, more parsimoniously, the gene families simply diversified after the rise of spermatophytes. In any case, we note that the reconstruction of a long-to-short evolution of PIN genes is not merely the result of putting moss copies as the outgroup, for even in generally unresolved trees, like the one recovered from the alignment trimmed of gaps by Gblocks (Figure 5B), the main clades of short-form PINs are closely related to each other and are derived from angiosperm long forms. Only rerooting specifically by a short-form copy would change this, and in reconstructions with two origins of short-form copies, one clade would remain derived.
A recent phylogenetic analysis of \textit{PIN} genes done independently of the analysis here (Bennett et al., 2014) uses a similar methodological approach and obtains results that are broadly congruent with our previous analysis (Carraro et al., 2012) and the analysis here. Bennett et al. (2014) use nucleotide sequences and root by bryophytes, and they recover the odd PpPIN\textsubscript{D} in a derived position on a long branch. They also find multiple, later origins for short (or more specifically, what they term “non-canonical”) forms of \textit{PIN} genes. It thus appears that whether improvements are made to \textit{PIN} phylogenies by adding more sequences (Bennett et al., 2014) or excluding sources of convergence in the data, as we do here, \textit{PIN} genes increasingly seem to have undergone shortening events multiple times.

In our phylogenies it appears that most modern ACOs arose subsequent to the monocot-dicot split [140–150 Ma ago, during the late Jurassic-early Cretaceous (Chaw et al., 2004)], but \textit{PIN} genes diversified much earlier, as evidenced by their more thorough historical mixture of monocot and dicot copies. A broad diversification of \textit{ACOs} during the Mesozoic is later than was.
FIGURE 5 | Strict consensuses of equally parsimonious trees using various alignments of the PIN gene data set with only 1st and 2nd codon positions. With Gs and Cs removed, the influence of gaps was minimized so as to mimic how gaps and Ns are treated in likelihood programs by replacing them with "?" (A). Alternatively, the alignment had gappy regions removed using the program Gblocks, and then all Gs, Cs, and remaining gaps replaced by "?" (B). A Serine-only alignment was also used, with only 1st and 2nd positions and all gaps and non-Serine positions replaced with "?" (C).

previously hypothesized by John (1997), who did not consider them present in primitive land plants and believed their appearance was necessitated by droughts at the end of certain Permian periods (the Devonian at 360 Ma ago and the Carboniferous at 300 Ma ago). It appears that multiple ACO copies were present during the Permian and before the split between gymnosperms and angiosperms, and even before the split between mosses and lycophytes, but the later proliferation of copies in angiosperms requires a new ecological driver besides droughts in the Permian.

Gymnosperm PINs and ACOs appear to have derived from angiosperm gene copies. This is not corrected simply by using a gymnosperm root, since that renders moss and lycophyte copies derived. Rather it indicates that for both PINs and ACOs the ancestral copy in gymnosperms was a more derived copy than some of the copies inherited and retained in the ancestral angiosperm. A very limited number of gymnosperm sequences are available for both gene families, so the possibility remains that the history of gymnosperm sequences will become clearer as more of them are included in future analyses.

Amino acid sequences should present problems for historical reconstruction (Simmons, 2000), despite their popularity in plant gene family phylogenies. Genetic code degeneracy and selection pressure on protein function are sources of convergence, and although amino acids may correct for back-mutations in the third codon position, which can be another source of convergence,
FIGURE 6 | Phylogeny of the ACO genes, using only the 1st and 2nd codon positions and with all Gs and Cs converted to “N.” The strict consensus of 42 equally parsimonious trees is shown in (A), and the most likely tree under the GTR model is shown in (B). Terminals are colored according to plant taxon. Clades recovered under the likelihood optimality criterion (B) which were also recovered under parsimony (A) are noted with the letter “p.” Scale bar equals per-site mutation probability.

ignoring the third codon position removes information on recent divergences. Using amino acids with phenetic tree-building methods like Neighbor-Joining (algorithms that cluster sequences by overall similarity) (Saitou and Nei, 1987) will likely amplify convergence in amino acids, and using them with probabilistic optimality criteria requires a model of evolution both for the alignment step and tree-searching. We find here that trees made with amino acids and the most agnostic cladistic method for optimizing alignment and tree-searching (dynamic homology) produced trees with little in their favor relative to the trees made from GC-free nucleotide alignments, and we would not recommend using amino acids for future historical studies of gene families.

Although a few monocot PIN and ACO sequences do not have a high GC content, it seems likely that this quality is the result of an ongoing substitution bias and thus a source of misleading, convergent signal. Monocot copies are not monophyletic, and almost all of them present very high GC content, which argues against this being the result of a historical event no longer maintained in monocots. For example, in PINs almost half of the monocot copies have GC content at the third codon position above 50%, and all but four are over 40%. We notice in Meister and Barow’s survey (2007) that monocots in general have statistically significantly higher GC content than dicots (using a t-test of the GC percentages, p < 0.001), and that they attain a maximum content around 50%, about 10% higher than the maximum GC content of dicots. However on average monocot genomes have only about 1% more GC content than dicots. We notice that the most GC-rich species in Meister and Barow (2007) are the grasses, which constitute all the monocots in our data set. Given how strong this bias appears in grass ACOs and PINs, it was perhaps trivial for us to retrieve monocot clades in our previous PIN phylogeny (Carraro et al., 2012), which was based on all three codon positions and did not have GC content removed.
However, we still recover most monocots together (either still in clades or paraphyletic grades) and in the same combinations here as before. For example, the monocot group of nine short-form genes that includes OsPIN5b and SbPIN5 was recovered both previously and here (Figure 4B), but previously these were monophyletic, and here they form a grade out of which diversifies a clade of short-form and N-terminal-TMD-only genes. Even using the alignment that had only the first and second positions of serine, which should be immune from a GC mutational bias, we recovered clusters of monocots, a close relationship among primitive land plants, and a clade of mostly short PIN genes (Figure 5C).

Here we present new phylogenies for PIN and ACO genes, after working to improve the methods used to reconstruct the histories of gene families. First, we avoid the use of amino acids and distance (phenetic) algorithms, which have the potential to convey and amplify homoplasy. Next, in a further attempt to avoid homoplasy among genes with similar lengths and GC content, we avoid the use of indels and treat Gs and Cs or their transformations as missing data. We root trees by gene copies found in bryophytes, and we exclude sequences which are not clearly homologous. The results suggest an evolution from long to short PINs, perhaps multiple times, and a diversification of ACOs mostly after the dicot-monocot split. More sequences from a wider taxonomic range for these gene families are welcome for the continued development of their phylogenetic hypotheses and a deeper understanding of their histories.
Table 3 | The number of most parsimonious trees found and their lengths, or the log likelihoods, for each of the alignments searched.

Gene family	Alignment and figure	No. trees	Lengths	Likelihood	
PIN	(H) Non-Serine and gaps replaced by “?”.	D (Figure 4A)	85	11,745	-12279.865284
	(E) Gappy regions removed by g-blocks, remaining gaps replaced by “?”.	F (Figure 5A)	1	2960	
	(B) Amino acids.	E (Figure 5B)	2	843	
	(A) G and C replaced by N.	F (Figure 5C)	1	494	
	(G) E and gaps replaced by “?”.	A (Figure 7A)	1	22,706	
ACO	(D) Non-Serine and gaps replaced by “?”.	D (Figure 6A)	42	4215	-6064.187817
		D (Figure 6B)	1	8688	

Alignment codes (D, F, H, etc.) follow those illustrated in Figure 1, and the figure showing the resulting tree is noted.

ACKNOWLEDGMENTS

We are grateful to Jon Halter and the University Research Computing staff at UNC Charlotte for assistance with cluster computing. This work was partially conducted under a postdoctoral position funded by a grant from Defense Advanced Research Projects Agency (DARPA, W911NF-05-1-0271).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: http://www.frontiersin.org/journal/10.3389/fpls.2014.00296/abstract

REFERENCES

Benson, D., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., and Wheeler, D. L. (2005). GenBank. Nucleic Acids Res. 33, D34–D38. doi: 10.1093/nar/gki063

Bennett, T., Brockington, S. F., Rothfels, C., Graham, S., Stevenson, D. and, Kutchan, T., et al. (2014). Paraligand analysis of PIN proteins with multiple origins of non-canonical PIN structure. Mol. Biol. Evol. doi: 10.1093/molbev/msu147. [Epub ahead of print].

Bleecker, B., and Kende, H. (2000). Ethylene: a gaseous signal molecule in plants. Annu. Rev. Cell Dev. Biol. 16, 1–18. doi: 10.1146/annurev.cellbio.16.1.1

Bidone, S., Ferrer, M. A., Zeggouti, H., Ramassamy, S., Latché, A., Pech, J. C., et al. (1998). Expression and characterization of three tomato 1-aminocyclopropane-1-carboxylate oxidase cDNAs in yeast. Eur. J. Biochem. 253, 20–26. doi: 10.1046/j.1432-1327.1998.2530020.x

Carraro, N., Tisdale-Orr, T. E., Clouse, R. M., Knoller, A. S., and Spicer, R. (2012). Diversification and expression of the PIN, AUX/LAX, and ABCB families of putative auxin transporters in Populus. Front. Plant Sci. 3:17. doi: 10.3389/fpls.2012.00017

Castresana, J. (2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17, 540–552. doi: 10.1093/oxfordjournals.molev.a026334

Chaw, S. M., Chang, C. C., Chen, H. L., and Li, W. H. (2004). Dating the monodicot divergence and the origin of core eudicots using whole chloroplast genomes. J. Mol. Evol. 58, 424–441. doi: 10.1007/s00239-003-2564-9

Chung, M.-C., Chou, S.-J., Kuang, L.-Y., Charng, Y.-Y., and Yang, S. F. (2002). Subcellular localization of 1-aminocyclopropane-1-carboxylic acid oxidase in apple fruit. Plant Cell Physiol. 43, 549–554. doi: 10.1093/pcp/pcf067

De Paepe, A., and Van der Straeten, D. (2005). Ethylene biosynthesis and signaling: an overview. Vitam. Horm. 72, 399–430. doi: 10.1016/S0083-6729(05)72011-2

De Smet, I., Voss, U., Lau, S., Wilson, M., Shao, N., Timme, R. E., et al. (2011). Unraveling the evolution of auxin signaling. Plant Physiol. 155, 209–221. doi: 10.1104/pp.111.186181

Farris, J. S. (1983). “The logical basis of phylogenetic analysis,” in Advances in Cladistics: Proceedings of the Second Meeting of the Willi Hennig Society, eds N. I. Platnick and V. A. Funk (New York, NY: Columbia University Press), 7–36.

Goloboff, P. A., Farris, J. S., and Nixon, K. C. (2008). TNT, a free program for phylogenetic analysis. Cladistics 24, 774–786. doi: 10.1111/j.1095-8399.2008.00217.x

Goodstein, D. M., Shu, S., Howson, R., Neupane, R., Hayes, R. D., Fazo, J., et al. (2012). Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res. 40, D1178–D1186. doi: 10.1093/nar/gkr944

Gouy, M., Guindon, S., and Gascuel, O. (2010). SeaView Version 4: a multipurpose graphical user interface for sequence alignment and phylogenetic tree building. Mol. Biol. Evol. 27, 221–224. doi: 10.1093/molbev/msp259

Hall, T. (2007). BioEdit (Version 7.0.9) [Computer Program]. Available online at: www.ibischudios.com

Hudgins, J. W., Ralph, S. G., Franceschi, V. R., and Bohlmann, J. (2006). Ethylene in induced conifer defense: cDNA cloning, protein expression, and cellular and subcellular localization of 1-aminocyclopropane-1-carboxylate oxidase in resin duct and phenolic parenchyma cells. Planta 224, 865–877. doi: 10.1007/s00425-006-0274-4

John, P. (1997). Ethylene biosynthesis: the role of 1-aminocyclopropane-1-carboxylate (ACC) oxidase, and its possible evolutionary origin. Physiol. Plant. 100, 583–592. doi: 10.1111/j.1399-3054.1997.tb30614.x

Kato, K., Asimenos, G., and Tóth, H. (2009). Multiple alignment of DNA sequences with MAFFT. Methods Mol. Biol. 537, 39–64. doi: 10.1007/978-1-59754-251-9_3

Kéreek, P., Skúpa, P., Libus, J., Naramoto, S., Tejos, R., Friml, J., et al. (2009). The PIN-PHORMED (PIN) protein family of auxin transporters. Genome Biol. 10, 1–11. doi: 10.1186/gb-2009-10-12-249

Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., et al. (2007). Clustal W and clustal X version 2.0. Bioinformatics 23, 2947–2948. doi: 10.1093/bioinformatics/btm494

Lin, Z., Zong, S., and Grierson, D. (2009). Recent advances in ethylene research. J. Exp. Bot. 60, 3311–3336. doi: 10.1093/jxb/erp204

Maddison, W. P., and Maddison, D. R. (2009). Mesquite: a Modular System for Evolutionary Analysis (Version 2.6) [Computer Program]. Available online at: http://mesquiteproject.org

Meister, A., and Barow, M. (2005). “DNA base composition of plant genomes,” in Flow Cytometry with Plant Cells: Analysis of Genes, Chromosomes and Genomes, eds J. Doležel, J. Greilhuber, and J. Suda (Weinheim: Wiley–VCH), 177–215.

Miller, M. A., Pfeiffer, W., and Schwartz, T. (2010). “Creating the CIPRES Science Gateway for inference of large phylogenetic trees,” in Proceedings of the Gateway Computing Environments Workshop (GCE) (New Orleans, LA), 1–8.

Moller, S., Croning, M. D. R., and Apweiler, R. (2001). Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics 17, 646–653. doi: 10.1093/bioinformatics/17.7.646

Okada, K., Ueda, J., Komaki, M. K., Bell, C. J., and Shimura, Y. (1991). Requirement for CTP:phosphate cytidylyltransferase activity in induced conifer defense: cDNA cloning, protein expression, and cellular and subcellular localization of 1-aminocyclopropane-1-carboxylate synthase, the key enzyme for ethylene biosynthesis in plants. Plant Cell Physiol. 43, 549–554. doi: 10.1093/pcp/pcf067

Papoušek, L., Ving, M., and Smarda, Z. (1997). Cloning the mRNA encoding l-1-aminocyclopropane-l-carboxylate synthase, the key enzyme for ethylene biosynthesis in plants. Proc. Natl. Acad. Sci. U.S.A. 86, 6621–6625. doi: 10.1073/pnas.86.17.6621
Simmons, M. (2000). A fundamental problem with amino-acid-sequence characters for phylogenetic analyses. *Cladistics* 16, 274–282. doi: 10.1111/j.1096-0031.2000.tb00283.x

Simmons, M., Ochoterena, H., and Freudenstein, J. V. (2002). Conflict between amino acid and nucleotide characters. *Cladistics* 18, 200–206. doi: 10.1111/j.1096-0031.2002.tb00148.x

Stamatakis, A., Hoover, P., and Rougemont, J. (2008). A rapid bootstrap algorithm for the RAxML web servers. *Syst. Biol.* 57, 758–771. doi: 10.1080/10635150802429642

Tamura, K., Dudley, J., Nei, M., and Kumar, S. (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. *Mol. Biol. Evol.* 24, 1596–1599. doi: 10.1093/molbev/msm092

Varón, A., Sy Vinh, L., and Wheeler, W. C. (2009). POY version 4: phylogenetic analysis using dynamic homologies. *Cladistics* 26, 72–85. doi: 10.1111/j.1096-0031.2009.00282.x

Vieene, T., Delwiche, C. F., Rensing, S. A., and Friml, J. (2013). Origin and evolution of PIN auxin transporters in the green lineage. *Trends Plant Sci.* 18, 5–10. doi: 10.1016/j.tplants.2012.08.009

Wang, K. L., Li, H., and Ecker, J. R. (2002). Ethylene biosynthesis and signaling networks. *Plant Cell* 14(Suppl.), S131–S152. doi: 10.1105/tpc.001768

Wanke, D. (2011). The ABA-mediated switch between submersed and emersed lifestyles in aquatic macrophytes. *J. Plant Res.* 124, 467–473. doi: 10.1007/s10265-011-0434-x

Yasumura, Y., Pierik, R., Fricker, M. D., Voesenek, L. A., and Harberd, N. P. (2012). Studies of *Physcomitrella patens* reveal that ethylene-mediated submergence responses arose relatively early in land-plant evolution. *Plant J.* 72, 947–959. doi: 10.1111/tpj.12005

Received: 25 March 2014; accepted: 06 June 2014; published online: 24 June 2014.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

This article was submitted to Plant Evolution and Development, a section of the journal Frontiers in Plant Science.

Copyright © 2014 Clouse and Carraro. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.