A first checklist of the alien-dominated vegetation in Italy

Daniele Viciani1,2, Marisa Vidalì3, Daniela Gigante4, Rossano Bolpagni5,6, Mariacristina Villani3,6, Alicia Teresa Rosario Acosta7, Michele Adorni8,9, Michele Aleffi10,9, Marina Allegrezza10,11, Claudia Angiolini13, Silvia Assini12, Simonetta Bagella13, Gianmario Bonari13, Maurizio Bovio13, Francesco Bracco12, Giuseppe Brundu13, Gabriella Buffa17, Marco Caccianiga18, Lucilla Carnevali9, Simona Ceschin17, Giampiero Ciaschetti120, Annalena Cogoni121, Valter Di Cecco122, Bruno Foggi12, Anna Rita Frattaroli122, Piero Genovesi19, Rodolfo Gentili123, Lorenzo Lazzaro1,12, Michele Lonati124, Fernando Lucchese17, Andrea Mainetti124, Mauro Mariotti125, Pietro Minissale126, Bruno Paura127, Mauro Pellizzari128, Enrico Vito Perrino1,29, Gianfranco Pirone122, Laura Poggio130, Livio Poldini13, Silvia Poponessi13, Irene Prisco17, Filippo Prosser132, Marta Puglisi126, Leonardo Rosati133, Alberto Selvaggi134, Lucio Sottovia135, Giovanni Spampinato136, Angela Stanisci137, Adrianio Stinca138, Roberto Venanzoni131, Lorenzo Lastrucci139

1 Italian Society for Vegetation Science (SISV), Via Scopoli 22-24, I-27100 Pavia, Italy
2 Department of Biology, University of Florence, Via G. La Pira 4, I-50121 Firenze, Italy
3 Department of Life Sciences, University of Trieste, Via L. Gorgieri 5, I-34127 Trieste, Italy
4 Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX giugno 74, I-06121 Perugia, Italy
5 Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/a, I-43124 Parma, Italy
6 Botanical Garden of Padua, University of Padua, Via Orto Botanico 15, I-35121 Padova, Italy
7 Department of Sciences, University of Roma Tre, Viale G. Marconi 446, I-00146 Roma, Italy
8 Via degli Alpini 7, I-43037 Lesignano de’ Bagni (PR), Italy
9 School of Biosciences and Veterinary Medicine, Plant Diversity & Ecosystems Management Unit, Bryology Laboratory & Herbarium, University of Camerino, Via Pontoni 5, I-62032 Camerino (MC), Italy
10 Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, I-60131 Ancona, Italy
11 Department of Life Sciences, Via P.A. Mattioli 4, I-53100, Siena, Italy
12 Department of Earth and Environmental Sciences, University of Pavia, Via S. Epifanio 14, I-27100 Pavia, Italy
13 Department of Chemistry and Farmacy, University of Sassari, Via P找准答 4, I-07100 Sassari, Italy
14 Faculty of Science and Technology, Free University of Bolzano-Bozen, Piazza Università 5, I-39100 Bolzano, Italy
15 Comitato Scientifico, Museo Regionale di Scienze Naturali “Eelso Noussan”, Loc. Tache, I-11010 Saint-Pierre (AO), Italy
16 Department of Agriculture, University of Sassari, Viale Italia 39, 07100 Sassari, Italy
17 Department of Agricultural Sciences, Informatics and Statistics, Ca’ Foscari University of Venice, Via Voorino 15, I-30172 Venezia, Italy
18 Department of Biosciences, University of Milan, Via Celoria 26, I-20133 Milano, Italy
19 Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Via V. Brancati 60, I-00144 Roma, Italy
20 Majella National Park, via Badia 28, I-67039 Sulmona (AQ), Italy
21 Department of Life and Environmental Sciences, Botany section, University of Cagliari, V.le S. Ignazio 13, I-09123 Cagliari, Italy
22 Department of Life, Health & Environmental Sciences, University of L’Aquila, Piazzale Salvatore Tommasi 1, I-67100 L’Aquila, Italy
23 Department of Earth and Environmental Sciences, University of Milan-Bicocca, Piazza della Scienze 1, I-20126 Milano, Italy
24 Department of Agricultural, Forest and Food Sciences, University of Torino, Largo Paolo Brucini 2, I-10095 Grugliasco, Italy
25 Department of Earth, Environment and Life Sciences, University of Genova, Corso Europa 26, I-16132 Genova, Italy
26 Department of Biological, Geological and Environmental Sciences, University of Catania, Via A. Longo 19, I-95125 Catania
27 Department of Agriculture, Environment and Food Sciences, via De Sanctis snc, I-86100 Campobasso, Italy
28 Istituto Comprensivo “Bentivoglio”, Via Salvo D’Acquisto 5/7, I-44028 Poggio Renatico (FE), Italy
29 CIHEAM, Mediterranean Agronomic Institute of Bari, Via Celgie 9, I-70010 Valenzano (BA), Italy
30 Scientific Research and Biodiversity Service, Gran Paradiso National Park, Fraz. Valmontey 44, I-11012 Cogne (AO), Italy
31 Department of Chemistry, Biology and Biotechnology, University of Perugia, Polo Didattico via del Gliciocco 6, Ed. A, I-06126 Perugia Italy
32 Fondazione Museo Civico di Rovereto, Largo S. Caterina 41, I-38068 Rovereto (TN), Italy
33 School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, I-85100 Potenza, Italy
34 Istituto per le Piante da Legno e l’Ambiente, Corso Casale 155, I-70132 Torino, Italy
35 Ufficio Biodiversità e Rete Natura 2000, Provincia Autonoma di Trento, Via R. Guardini 75, I-38121 Trento, Italy
Abstract

This study provides a first step toward the knowledge of the alien-dominated and co-dominated plant communities present in Italy. The first ever checklist of the alien phytocoenoses described or reported in literature for the Italian territory has been compiled, produced by data-mining in national and local thematic literature. The resulting vegetation-type draft-list has been checked in the light of the most recent syntaxonomic documentation and updated with regards to syntaxonomy and nomenclature, with special reference to the frame proposed in the Italian Vegetation Prodrome. The list includes 27 vascular and one bryophyte vegetation classes, hosting 194 low rank alien-dominated syntaxa. The different vegetation types detected for each syntaxonomic class and macro-vegetation group, defined by physiognomical and ecological attributes, are discussed.

Keywords

biodiversity, conservation, habitat, Invasive Alien Species, phytosociology, plant communities, syntaxonomy, threats

Introduction

Biological invasions are an ever-increasing global process arising from the intentional or accidental human-mediated introduction of species to areas outside their native range, overcoming natural dispersal mechanisms and biogeographic barriers (Richardson and Pyšek 2006; Blackburn et al. 2014; Seebens et al. 2018).

The consideration and debate on Invasive Alien Species (IAS) date back to long ago (Allan 1936; Egler 1942; Baker 1948; Elton 1958). In the last few decades, invasion science has emerged, becoming a relevant discipline of its own (Richardson et al. 2000; Richardson and Pyšek 2006; Richardson 2011), also as a consequence of the increasing rates of alien species’ introductions at the global scale (Seebens et al. 2017, 2018) with no exception in Europe (DAISIE 2009) and in the Mediterranean (Hulme et al. 2008).

Biological invasions are nowadays widely recognized as an important component of human-induced global environmental change (Vitousek et al. 1997; Parmesan and Yohe 2003; Vilà et al. 2011; Vilà and Hulme 2017), being the second most common threat associated to species that underwent extinction in recent times (Bellard et al. 2016). Despite the accumulation of rigorous evidence of its importance to science and society, invasion biology has been the target of criticisms from scientists and academics who do not agree on the role of alien taxa as one of the greatest extinction threat at global scale (Davis 2011; Richardson and Ricciardi 2013; Pearce 2015; Russell and Blackburn 2017; Ricciardi and Ryan 2018). However, it is renowned that the establishment and spread of IAS can drastically affect the native biodiversity by changing community composition, biotic interactions and other ecosystem processes (Vilà et al. 2011; Pyšek et al. 2012; Vilà and Hulme 2017), as well as by replacing it with common and widespread taxa (McKinney and Lockwood 1999; Hahs and McDonnell 2016), and can promote alternative successional trajectories that may dramatically affect the landscape (Williamson 1996; McKinney and Lockwood 1999; Weber 2003; Acosta et al. 2007; Del Vecchio et al. 2013; Gaertner et al. 2014; Stinca et al. 2015; Malavasi et al. 2018).

An alien organism needs to overcome geographical, environmental, and reproductive barriers to colonize a new region and spread over wide areas. In this process, some factors and traits can be more significant than others in explaining its success and therefore its invasiveness (Van Kleunen et al. 2015). Particularly, the concept of invasiveness of plant species has been integrated with that of propagule pressure and of “invasibility” of habitats and plant communities, i.e. the susceptibility of an environment to invasions by alien species, as different habitats and phytocoenoses may be more invasive than others and show different degrees of resistance/resilience (Rejmánek 1989; Lonsdale 1999; Rejmánek et al. 2005; Richardson and Pyšek 2006). All these concepts have been included in
the unifying theory of invasion syndromes (Perkins and Nowak 2013).

Patterns of distribution and abundance of IAS depend on a number of drivers including introduction history and pathways, life traits, availability of potentially invasible ecosystems, presence of vegetation, disturbance (Wilson et al. 2007; Carranza et al. 2010; Richardson et al. 2011; Comin et al. 2011; Dainese and Poldini 2012; Jucker et al. 2013). It is acknowledged that anthropogenic drivers play a crucial role in the establishment and spread of alien species (Pyšek and Richardson 2006; Pyšek et al. 2010a, 2010b; Bolpagni and Piotti 2015; Lazzaro et al. 2017; Stonca et al. 2017), however alien species showed to be largely constrained also by the same broad environmental factors acting on the native vegetation (Rouget et al. 2015). The same applies to IAS populations as well, as it has been demonstrated that what is good for natives is good for aliens too (Pyšek and Richardson 2006; Dalle Fratte et al. 2019).

Vascular plants are the most investigated taxonomic group in the field of invasive biology, and Europe devoted great efforts to their study, being the second continent (after North America) for investigative endeavour on plant invasions (Pyšek et al. 2009; Early et al. 2016). However, in spite of a huge scientific production about alien species numbers, ecology, impacts and distribution (for a synthesis at the European level, see DAISIE 2009 and Galasso et al. 2018 for Italy), their patterns and co-occurrence dynamics have only recently started to be in the spotlight, together with the factors driving alien plant assemblages (Hui et al. 2013; Pyšek and Chytrý 2014; Rouget et al. 2015).

A number of studies addressed the key role of cover and dominance of alien species to understand the invasion patterns (Lundholm and Larson 2004; Smith et al. 2004; Crall et al. 2006; Chytrý et al. 2008, 2009; Pyšek et al. 2010a, 2010b). This seems to some extent more important than alien species number, suggesting the hypothesis that the more an alien taxon becomes dominant in a vegetation type, the stronger the impact on native species diversity might be. This approach gave a pulse to research on alien plant species assemblages, and recently investigations on IAS have been addressed also at the community scale and benefited from the currently available large databases of vegetation plots (see, e.g., Dengler et al. 2011; Landucci et al. 2012; Del Vecchio et al. 2015; Chytrý et al. 2016; Sperandii et al. 2018; Bonari et al. 2019).

A study by Chytrý et al. (2008) demonstrated that the habitat type is a reliable predictor of the level of plant invasion. This paper took into account patterns of plant invasions across habitats at the European scale, suggesting precious insights for biodiversity conservation and habitat monitoring, especially when considering the acknowledged correspondence between syntaxonomic types and habitats sensu Dir. 92/43/EEC (European Commission 1992, 2013; Evans 2010; Biondi et al. 2012; Viciani et al. 2016). Indeed, alien species have been listed among the causes of habitat decline and loss also in the most recent red-list assessments, both at European (Janssen et al. 2016) and Italian scale (Gigante et al. 2018).

Some authors started to qualify and quantify the role of alien species in different vegetation and habitat types, and to point out the functional role that alien species play in plant communities (Celesti-Grapow et al. 2010; Pyšek and Chytrý 2014; Prisco et al. 2016). Moreover, habitat misclassification can be favoured by the presence of alien species (Sarmati et al. 2019). However, to date only few studies focussed on alien-dominated plant communities and the role of aliens in natural assemblages. With notable exceptions (e.g. Jurko 1964; Hadáč and Sofron 1980; Ubaldi 2003; Vítková and Kolbek 2010; Sirbu and Oprea 2011; Allegrezza et al. 2019), the large majority of vegetation studies, especially outside Europe, are still mostly focused on natural and semi-natural phytocoenoses with few or no aliens (Chytrý et al. 2009; Pyšek and Chytrý 2014).

Despite a long-dated Italian tradition of phytosociological studies, a national synthesis of the alien-dominated (and co-dominated) plant communities thriving in Italy has never been produced yet. Therefore, the present research aims at taking the first step toward the filling of this knowledge gap.

The European and national projects dedicated to IAS, which involved and currently still involve research academic centres and institutions, are numerous in Italy. Some of them have helped to gather a significant amount of information on invasive plant and animal species. Among the most recent, addressing non-native plant species, their impact and their management, as well as the awareness of the general public on these topics, we can mention: LIFE ASAP (http://www.lifasap.eu), LIFE GESTIRE IP2020 (http://www.naturachevale.it/il-progetto/life-gestire-2020/), LIFE REDUNE (http://www.liferedune.it), MARITTIMO ALIEM (http://interreg-maritime.eu/web/aliem/).

The present work is the result of a research agreement between SISV (the Italian Society for Vegetation Science) and ISPRA (the Italian Institute for Environmental Protection and Research), with financial support from the Italian Ministry of Environment, aimed at supporting the implementation of Regulation EU 2014/1143 (updated by EU Reg. 2017/1263) on the prevention and management of the introduction and spread of invasive alien species. In particular, the general agreement focused on: i) the update of the Database of Italian Alien Species (DIAS) with reference to their impacts on the ecosystems and the most threatened habitats and ii) the identification of the alien-dominated or co-dominated plant communities occurring in Italy. The outcomes of the latter are here presented. The research on alien plant communities and habitats was carried out through the collaboration of a wide working group of experts led by a Coordinating Committee composed by SISV members.
Methods

A dedicated SISV working team, formed by national and local experts, collected all the thematic literature related to terrestrial and freshwater alien-dominated and co-dominated vegetation. On the basis of this bibliographic dataset, a selection of all vegetation data was carried out, with special attention to nomenclature and syntaxonomic classification. All the existing national and regional vegetation databases (e.g., LiSy – http://www.scienzadellavegetazionedonne.it/sisy/lisy/index.jsp; Poldini et al. 1985; Poldini 1991, 2002, 2009; Gallizia Vuerich et al. 1999; Brullo et al. 2001; Gigante et al. 2012; Landucci et al. 2012; Evangelista et al. 2016), together with the regional bibliographic sources (e.g., Poldini 1989; Poldini and Vidali 1989; Poldini et al. 1991, 1999), were consulted. Data concerning each phytocoenosis were selected if one or more alien species played a substantial role in the analysed vegetation unit. In particular, the SISV Coordinating Committee collected and checked the information and selected the data whenever:

1. the analysed low rank syntaxon (association, subassociation, phytocoenon) was dominated or co-dominated by one or more alien plant species; a cover value ≥ 3 according to the "Braun-Blanquet" scale (Braun-Blanquet 1979) for alien species cover in each relevé has been set as threshold; if, instead of the "Braun-Blanquet" scale, the "Pignatti" scale was used in the bibliographical reference (Pignatti and Mengarda 1962), the cover value threshold was set to ≥ 2, i.e. 20-40%;
2. the alien species name was included in the name of the syntaxon, by that implying that it is a characteristic/differential/diagnostic or somehow important taxon for the definition of the syntaxon, or even dominating and determining its vertical structure (as stated in Art. 10b of the International Code of Phytosociological Nomenclature: Theurillat et al. 2020).

Starting from this selected dataset, a draft syntaxonomic list was produced. The names of the plant communities and their syntaxonomic attributions at higher ranks have been acknowledged (and are here reported) in the same form as published by the original Authors. In case of inconsistencies or discrepancies, a specific comment has been provided.

The syntaxonomic scheme has then been updated in accordance with the Italian Vegetation Prodrome (Biondi et al. 2014; http://www.prodromo-vegetazione-italia.org/), which however does not take into considerations syntaxa below the alliance level. Relevant differences and discrepancies with other syntaxonomic frames, especially regarding the EuroVegChecklist (Mucina et al. 2016), have been commented.

Plant nomenclature in the text follows the Checklists of the vascular flora of Italy (Bartolucci et al. 2018; Galasso et al. 2018) and later updates reported in the "Portal to the flora of Italy" (http://dryades.units.it/floritaly/index.php), to which we referred also to identify the species to be considered as aliens to Italy, including archaeophytes (e.g. Arundo donax, Acanthus mollis subsp. mollis) as well. New hybridogenic species due to xeno-speciation events (e.g. some species of Oenothera or Vitis) were taken into account, when considered as alien taxa by Galasso et al. (2018). In case of species considered alien to an administrative region and native to another one, only the communities reported for the region where the species is alien have been recorded (e.g., a community dominated by Acanthus mollis subsp. mollis was considered alien to Liguria but not to Sicily, where this species is considered as native, see Minissale et al. 2019).

This process allowed to produce a first checklist of the Italian alien-dominated plant communities. On this ground, some statistics were calculated considering the number of alien vegetation units with reference to i) each resulting syntaxonomic class and ii) homogeneous groups of the resulting syntaxonomic classes, clustered according to their physiognomic and ecological characteristics.

Results and discussion

A comprehensive and annotated checklist of the alien-dominated and co-dominated plant communities occurring in Italy is provided in Appendix I. All phytocoenoses have been framed in an updated syntaxonomic scheme. A specific bibliographical list with references for all the syntaxa quoted in the checklist is available in Appendix II.

The checklist includes a total of 27 classes of vascular plant vegetation and one of bryophyte vegetation, including plant communities dominated or co-dominated by aliens to Italy. The total number of low rank syntaxa (associations/subassociations/communities) amounts to 194.

The number of communities for each class is reported in Fig. 1. As expected, the class with the highest number of alien-dominated plant communities resulted by far Stellarietalia mediae, followed by Artemisetalia vulgaris. The presence of some higher-rank syntaxa named after and mainly formed by IAS (e.g., the class Robinietea, the order Nicotiano glaucae-Ricinetaalia communis) is worth to be noted, which highlights the coenological and physiognomic-structural autonomy of these communities.

The 27 identified classes and some subordinate syntaxa have been grouped in clusters based on their physiognomy and ecology. The considered groups are as follows:

- Forest vegetation (Querco-Fagetalia, Quercetalia ilicis);
- Anthropogenic woody vegetation (Robinietea and part of Rhamno-Prunetea);
- Alluvial, marshy and riparian woody vegetation (Alnetea, Salici-Populetea, Salicetea, Alnion incanae);
- Perennial herbaceous hygrophilous and hygro-nitrophilous vegetation (Galio-Urticetea, Filipendulo-Convulvuletalia, Molinio-Arrhenatheretea, Phragmito-Magnocaricetea);
Perennial ruderal herbaceous vegetation (Artemisietea);
Annual ruderal herbaceous vegetation (Stellarietea, Polygono arenastri-Poetea annuae);
Annual herbaceous hygro-nitrophilous vegetation (Bidentetea);
Hydrophitic freshwater vegetation (Potametea, Lemnetea);
Psammophilous vegetation (Euphorbio-Ammophiletea, Cakiletea, Helichryso-Crucianelletea).

Results of the community rates per class groups are shown in Fig. 2. The group including the classes of annual ruderal herbaceous vegetation (Stellarietea mediae and Polygono arenastri-Poetea annuae) hosts about 25% of the total number of the detected alien-dominated communities. *Stellarietea mediae* is by definition characterized by high rates of alien plant species, especially archaeophytes (http://www.prodrromo-vegetazione-italia.org/). However, data analysis showed that this explains only part of the story. Actually, the involved alien species and genera are mainly represented by neophytes (e.g. *Robinia pseudoacacia*, *Artemisia* sp.pl., *Amaranthus* sp.pl., *Erigeron* sp.pl., *Euphorbia* sp.pl., *Solidago* sp.pl.). Indeed, it is known that neophytes mostly occur in strongly anthropogenic areas, whose habitats appear to be not only the most invaded, but also the most invisible (Pyšek et al. 2002, 2005; Deuschewitz et al. 2003; Kühn et al. 2003; Chytrý et al. 2008). On the contrary, relatively low- or non-anthropized ecosystems, such as nutrient-poor environments or montane habitats, are least or not invaded (Chytrý et al. 2008; Angiolini et al. 2019). For these reasons, heavily human-impacted environments (i.e. arable lands and fallow fields, urban and industrial areas, aquatic and riparian habitats) show the highest levels of neophyte invasion, as already suggested by previous studies, at least in continental areas (Kowarik 1995; Walter et al. 2005; Richardson and Pyšek 2006; Chytrý et al. 2009; Myśliwy 2014) and, as a consequence, the highest number of alien-dominated plant communities (Bolpagni and Piotti 2015).

Also the coastal areas are highly impacted by IAS (Acosta et al. 2007; Carboni et al. 2010; Del Vecchio et al. 2013, 2015; Lazzaro et al. 2017). Indeed, the close connection between invasibility, propagule pressure and habitat disturbance is a widely accepted relationship (Di Castri 1990; Vitousek et al. 1997; Pino et al. 2006; Perkins and Nowak 2013). This is indirectly confirmed in this study, by the fact that many of the less represented groups of alien-dominated communities refer to scarcely invasible environments, such as screes (*Thlaspietea rotundifolii*) or Mediterranean grass-dominated vegetation (*Lygeo-Stipeetea*). Unexpectedly, our data seem to suggest that psammophilous coastal vegetation experiences low rates of

![Figure 1. Number of alien-dominated communities for each syntaxonomic class of the checklist reported in Appendix I.](image-url)
alien community occurrence (Figs. 1, 2). However, to correctly interpret this outcome, it should be considered that the collected data might outline a biased picture due to a lack of syntaxonomic investigation and classification for some communities. In support of this hypothesis, it should be noted that many alien coastal communities dominated by Ailanthus altissima, Robinia pseudoacacia, Amorpha fruticosa, and many others) can be defined as “ecosystem engineers”, i.e. species that shape habitats and/or cause changes to their state and resources availability (Vitousek 1986; Schmitz et al. 1997; Jones et al. 1997; Crooks 2002; Bašnou and Vilá 2009; Djurdjevic et al. 2011; Benesperi et al. 2012; Cierjacks et al. 2013; Vitková et al. 2017; Lazzaro et al. 2018). The replacement of native species by alien plants, even when apparently ecologically equivalent, almost always negatively affects the ecosystems, especially if those species act as “ecosystem engineers” (Brown et al. 2006; Wilson and Ricciardi 2009; Lazzaro et al. 2018; Sitzia et al. 2018; Uboni et al. 2019).

In the checklist we also recorded a bryophyte community dominated by the alien Campylopus introflexus, which in Europe is considered a neophytic moss, introduced from the Southern hemisphere and rapidly expanding (Hill et al. 2006). It was detected along Mediterranean ponds and neighbouring wood glades (Cogoni et al. 2002; Puglisi et al. 2016; Poponessi et al. 2016, 2018) and its distribution deserves to be monitored.

Few considerations can be made on the number of alien species involved in the communities reported in the checklist. According to Galasso et al. (2018), there are 791 non-native naturalized species in the Italian territory, 221 of which are considered invasive in at least one region. Our checklist shows that, based on the current knowledge, less than one hundred of these species (precisely 88) perform a dominant or co-dominant role in the considered plant communities. Only five of these (Ailanthus altissima, Elo-dea nuttallii, Lagarosiphon major, Myriophyllum aquaticum, Cerchus setaceus) are considered IAS of Union Concern (see https://ec.europa.eu/environment/nature/invasivealien/list/index_en.htm), however this number grows considerably when downsampling at the national level, with 76 of them (i.e. more than 86% of the total) to be considered as IAS in Italy (Galasso et al. 2018). Again, this can be traced back to the fact that most of these IAS are neophytes, many have been introduced in relatively recent times, and probably there was not enough time to give rise to such a degree of invasion to be relevant at European scale yet. Additionally, also at the national scale these invasions are often very localized or at very early stages, and their study from the phytosociological point of view is still a minor topic (although emergent).

At the same time, the continuous rate of introduction-naturalisation-invasion of new alien plants is an ongoing process that should be detected just in early stages, in order to prevent serious damage to native biodiversity. The numbers here reported raise the alarm for planning conservation biodiversity studies, monitoring protocols and management activities.

Conclusion

The here presented first checklist of the alien-dominated plant communities in Italy should not be considered exhaustive. It is the first step toward a better understanding
of distribution, ecology and invasion processes of alien species at community level in this country. Our review represents a screenshot of the current knowledge and suggests that a serious lack of investigation for certain vegetation types (and probably for certain areas of the country) has to be highlighted.

The present checklist of the alien vegetation in Italy can represent a very useful tool, not only for stimulating further studies and investigations but also for prevention, management and monitoring purposes. As emphasized by Olaczek (1982), the phytosociological school, taking into account the whole floristic composition of plant communities, was one of the first approaches able to detect the effects of alien species on the diversity of natural phytocoenoses and to include these new communities in the syntaxonomical vegetation classification. In fact, the "floristic and phylogenetic homogenization" (e.g. Pino et al. 2009) and the "degeneration of phytocoenoses" by means of a progressive modification of structure and floristic composition due to the alien species invasion, concepts expressed by Olaczek (1982) and Faliński (1998a, 1998b), can transform a native plant community into an anthropogenic one, or even in a "novel ecosystem" (Lugo 2015), susceptible to be classified in a new syntaxonomic frame.

This becomes particularly important when considering the close link between plant communities syntaxonomically described and Natura 2000 habitat types, as listed in the Annex I to the Directive 92/43/EEC (European Commission 1992, 2013). It is mandatory for Member States to conserve Annex I habitats in Europe in a favourable conservation status (Evans 2012; Gigante et al. 2016). Undoubtedly, a better understanding of the processes by which a plant community and a habitat type are firstly invaded and then dominated by alien species, together with the comprehension of the successional (and syntaxonomic) implications of those processes, can effectively support the monitoring and management of biodiversity and protected areas.

Bibliography

Acosta A, Carranza ML, Ciaschetti G, Conti F, Di Martino L, DiOrazio G, et al. (2007) Specie vegetali esotiche negli ambienti costieri sabbiosi di alcune regioni dell'Italia Centrale. Webbia 62(1): 77–84.

Allan HH (1936) Indigene versus alien in the New Zealand plant world. Ecology 17: 187–193.

Allegrezza M, Montecchiari S, Ottaviani C, Pelliccia V, Tesei G (2019) Syntaxonomy of the Robinia pseudoacacia communities in the central peri-adiatic sector of the Italian peninsula. Plant Biosystems 153(4): 616–623.

Alpert P, Bone E, Holzapfel C (2000) Invasiveness, invisibility and the role of environmental stress in the spread of non-native plants. Perspectives in plant ecology, evolution and systematics 3: 52–66.

Angiolini C, Viciani D, Bonari G, Zoccola A, Bottacci A, Ciampelli P, et al. (2019) Environmental drivers of plant assemblages: are there differences between palustrine and lacustrine wetlands? A case study from the northern Apennines (Italy). Knowledge and Management of Aquatic Ecosystems 420 (34): 11 pp. https://doi.org/10.1051/kmae/2019026

Figure 2. Percentages of alien-dominated communities in physiognomically and ecologically homogeneous groups of classes and subordinate syntaxa, based on the checklist reported in Appendix I.
Baker HG (1948) Stages in invasion and replacement demonstrated by species of Melandrium. Journal of Ecology 36: 96–119.

Barbottini F, Peruzzi L, Galasso G, Albano A, Alessandrini A, Ardenghi NMG, et al. (2018) An updated checklist of the vascular flora native to Italy. Plant Biosystems 152(2): 179–203.

 Başnou C (2009) Robinia pseudoacacia L., black locust (Fabaceae, Magnoliophyta). In: DAISIE (Ed.) Handbook of Alien Species in Europe. Springer. Dordrecht, The Netherlands, 357.

 Başnou C, Vilà M (2009) Ailanthus altissima (Mill.) Swingle, tree of heaven (Simaroubaceae, Magnoliophyta). In: DAISIE (Ed.) Handbook of Alien Species in Europe. Springer. Dordrecht, The Netherlands, 342.

Bellard C, Cassey P, Blackburn TM (2016) Alien species as a driver of recent extinctions. Biology Letters 12: 20150623.

Benesperi R, Zanetti S, Giuliani C, Gennari M, Mariotti-Lippi M, Guidi T, et al. (2012) Forest plant diversity is threatened by Robinia pseudoacacia (Black-Locust) invasion. Biodiversity and Conservation 22(8): 1679–1690.

Biondi E, Blasi C, Allegrezza M, Anzellotti I, Azzella MM, Carli E, et al. (2014) Plant communities of Italy: The Vegetation Prodrôme. Plant Biosystems 148(4): 728–814.

Biondi E, Burrascano S, Casavecchia S, Copiz R, Del Vico E, Galdenzi D, et al. (2012) Diagnosis and taxonomic interpretation of Annex I Habitats (Dir. 92/43/EEC) in Italy at the alliance level. Plant Sociology 49(1): 5–37.

Blackburn TM, Essl F, Evans T, Hulme PE, Jeschke JM, Kuhn I, et al. (2014) A Unified Classification of Alien Species Based on the Magnitude of their Environmental Impacts. PLOS Biology 12(5): e1001850 https://doi.org/10.1371/journal.pbio.1001850

Bolpagni R (2013) Macrophyte richness and aquatic vegetation complexity of the Lake Idro (Northern Italy). Annali di Botanica Roma 3: 35–43.

Bolpagni R, Piotti A (2015) Hydro-hygrophilous vegetation diversity and distribution patterns in riverine wetlands in an agricultural landscape: a case study from the Oglio River (Po Plain, Northern Italy). Phytocoenologia 45(1-2): 69–84.

Bonari G, Knollóva J, Vlčková P, Systrakis E, Čoban S, Šaglám C, et al. (2019) CircumMed Pine Forest Database: An electronic archive for Mediterranean and Submediterranean pine forest vegetation data. Phytocoenologia 49(3): 311–318.

Braun-Blanquet J (1979) Fitosociologia. Bases para el estudio de las comunidades vegetales. Blume, Madrid, 820 pp.

Brown CJ, Blossey B, Maerz JC, Joule S (2006) Invasive plant and experimental venue affect tadpole performance. Biological Invasions 8: 327–338.

Brullo S, Scelisi F, Spannato G (2001) La vegetazione dell’Aspromonte. Blume, Madrid, 820 pp.

Brullo S, Scelisi F, Spannato G, Feola S, Acosta ATR (2010) Landscape-scale patterns of alien plant species on coastal dunes: the case of iceplant in central Italy. Applied Vegetation Science 13: 135–145.

Celesti-Grapow L, Alessandrini A, Arrigoni PV, Assini S, Banfi E, Barni E, et al. (2010) Non-native flora of Italy: Species distribution and threats. Plant Biosystems 144(1): 12–28.

Ceschin S, Abati S, Leacche I, Iamonomo D, Iberite M, Zuccarello V (2016) Does the alien Lemna minuta show an invasive behaviour outside its original range? Evidence of antagonism with the native L. minor L. in Central Italy. International Review of Hydrobiology 101(5–6): 173–181.

Ceschin S, Abati S, Traversetti L, Spani F, Del Grosso F, Scalici M (2019) Effects of the alien duckweed Lemna minuta Kunth on aquatic animals: an indoor experiment. Plant Biosystems 153(6): 749–755.

Chytrý M, Hennekens SM, Jiménez-Alfaro B, Knolová I, Dengler J, Jansen E, et al. (2016) European Vegetation Archive (EVA): An integrated database of European vegetation plots. Applied Vegetation Science 19(1): 173–180.

Chytrý M, Jarosík V, Pylek P, Hádek O, Knolová O, Tichý L, Danihelka J (2008) Separating habitat invasibility by alien plants from the actual level of invasion. Ecology 89: 1541–1553.

Chytrý M, Pýsek P, Wild J, Pino J, Maskell LC, Vilá M (2009) European map of alien plant invasions based on the quantitative assessment across habitats. Diversity and Distributions 15: 98–107.

Cierjacks A, Kowarič I, Joshi J, Hempel S, Ristom V, von der Lippe M, Weber E (2013) Biological Flora of the British Isles: Robinia pseudoacacia. Journal of Ecology 101(6): 1623–1640.

Cogoni A, Flore F, Aleffi M (2002) Survey of bryoflora on Monte Lamburga (Northern Sardinia). Cryptogamie, Bryologie 23(1): 73–86.

Comín S, Gandis P, Poldini L, Vidali M (2011) A diachronic approach to assess alien plant invasion: The case study of Friuli Venezia Giulia (NE Italy). Plant Biosystems 145(1): 50–59.

Crall AW, Newman GJ, Stohlgren TJ, Jarnevich CS, Engelbasta P, Gueder T (2006) Evaluating dominance as a component of non-native species invasions. Diversity and Distributions 12: 195–204.

Crooks J (2002) Characterizing ecosystem-level consequences of biological invasions: the role of ecosystem engineers. Oikos 97: 153–166.

Dainese M, Poldini L (2012) Does residence time affect responses of alien species richness to environmental and spatial processes? Neobiota 14: 47–66.

DAISIE (2009) Handbook of Alien Species in Europe. Springer. Dordrecht, The Netherlands, 400 pp.

Dalle Fratte M, Bolpagni R, Brusa G, Caccianiga M, Pierce S, Zanzottiera M, Cerabolini BEL (2019) Alien plant species invade by occupying similar functional spaces to native species. Flora 257: 151419.

Davis MA (2011) Researching invasive species 50 years after Elton: a cautionary tale. In: Richardson DM (Ed.), Fifty Years of Invasion Ecology: The Legacy of Charles Elton. Wiley-Blackwell, Chichester, 269-276.

Davis MA, Grime JP, Thompson K (2000) Fluctuating resources in plant communities: a general theory of invasibility. Journal of Ecology 88: 528–534.

Del Vecchio S, Acosta A, Stanisci A, Bartolucci F, Peruzzi L, Galasso G, Albano A, Alessandrini A, Ardenghi NMG, et al. (2011). The Global Index of Vegetation-Plot Databases (GIVD): an electronic archive for integrated database of European vegetation plots. Applied Vegetation Science 13: 135–145.

Del Vecchio S, Acosta A, Stanisci A, Bartolucci F, Peruzzi L, Galasso G, Albano A, Alessandrini A, Ardenghi NMG, et al. (2011). The Global Index of Vegetation-Plot Databases (GIVD): an electronic archive for integrated database of European vegetation plots. Applied Vegetation Science 19(1): 173–180.

Del Vecchio S, Acosta A, Stanisci A, Bartolucci F, Peruzzi L, Galasso G, Albano A, Alessandrini A, Ardenghi NMG, et al. (2011). The Global Index of Vegetation-Plot Databases (GIVD): an electronic archive for integrated database of European vegetation plots. Applied Vegetation Science 19(1): 173–180.

Del Vecchio S, Acosta A, Stanisci A, Bartolucci F, Peruzzi L, Galasso G, Albano A, Alessandrini A, Ardenghi NMG, et al. (2011). The Global Index of Vegetation-Plot Databases (GIVD): an electronic archive for integrated database of European vegetation plots. Applied Vegetation Science 19(1): 173–180.
Deutschwitz K, Lausch A, Kühn I, Klotz S (2003) Native and alien plant species richness in relation to spatial heterogeneity on a regional scale in Germany. Global Ecology and Biogeography 12: 299–311.

di Castri F (1990) On invading species and invaded ecosystems: the interplay of historical chance and biological necessity. In: di Castri F, Hansen AJ, Debusse M (Eds.), Biological Invasions in Europe and the Mediterranean Basin. Kluwer Academic Publishers, Dordrecht, 3–16.

Djurdjević L, Mitrović M, Gajić G, Jarić S, Kostić O, Oberan L, Pavlović P (2011) An allelopathic investigation of the domination of the introduced invasive Conyza canadensis L. Flora 206: 921–927.

Early R, Bradley BA, Dukes JS, Lawler JJ, Olden JD, Blumenthal DM, et al. (2016) Global threats from invasive alien species in the twenty-first century and national response capacities. Nature Communications 7: 12485. https://doi.org/10.1038/ncomms12485

Egler FE (1942) Indigene versus alien in the development of arid Hawai’i vegetation. Ecology 23: 14–23.

Elton CS (1958) The Ecology of Invasions by Animals and Plants. Methuen, London, 181 pp.

European Commission (1992) Council directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. Official Journal L206. Retrieved July 22, 1992 (Consolidated version 1.1.2007).

European Commission (2013) Interpretation manual of European Union Habitats, vers. EUR28. Brussels: European Commission, DG Environment.

Evangelista A, Frate L, Stinca A, Carranza ML, Stanisci A (2016) VIOLA - the vegetation database of the central Apennines: structure, current status and usefulness for monitoring EU habitats (92/43/EEC). Plant Sociology 53(2): 47–58.

Evans D (2010) Interpreting the habitats of Annex I. Past, present and future. Acta Botanica Gallica 157(4): 677–686.

Evans D (2012) Building the European Union’s Natura 2000 network. Nature Conservation 1: 11–26.

Falinski JB (1998a) Invasive alien plants and vegetation dynamics. In: Starfinger U, Edwards K, Kowarik I, Williamson M (Eds.), Plant invasions: ecological mechanisms and human responses. Backhuys Publishers, Leiden, The Netherlands, 3–21.

Falinski JB (1998b) Invasive alien plants, vegetation dynamics and neophytism. Phytocoenosis 10 (N.S.) Suppl. Cartogr. Geobot. 9: 163–187.

Gaertner M, Biggs R, Te Beest M, Hui C, Molofsky J, Richardson DM (2014) Invasive plants as drivers of regime shifts: identifying high priority invaders that alter feedback relationships. Diversity and Distributions 20: 733–744.

Galasso G, Conti F, Peruzzi L, Ardenghi NMG, Banfi E, Celesti-Grapow L, et al. (2018) An updated checklist of the vascular flora alien to Italy. Plant Biosystems 152(3): 556–592. https://doi.org/10.1080/11263504.2018.1411197

Galizia Vuerich L, Ganis P, Oriolo G, Poldini L, Vidali M (1999) La banca dati fitosociologica del Friuli-Venezia Giulia: struttura e applicazioni. Archivio Geobotanico 41(1): 1988: 137–141.

Gigante D, Acosta ATR, Agrillo E, Armiraglio S, Assimi S, Attorre F, et al. (2018) Habitat conservation in Italy: the state in the art in the light of the first European Red List of Terrestrial and Freshwater Habitats. Rendiconti Lincei. Scienze Fisiche e Naturali 29(2): 251–265.

Gigante D, Acosta ATR, Agrillo E, Attorre F, Cambria VM, Casavecchia S, et al. (2012) VegItaly: Technical features, crucial issues and some solutions. Plant Sociology 49(2): 71–79.

Gigante D, Attorre F, Venanzoni R, Acosta ATR, Agrillo E, Aleffi M, et al. (2016) A methodological protocol for Annex I Habitats monitoring: the contribution of Vegetation science. Plant Sociology 53(2): 77–87.

Hadaš E, Sofron J (1980) Notes on syntaxonomy of cultural forest communities. Folia Geobotanica Phytosociologica 15: 245–258.

Habs AK, McDonnell MJ (2016) Moving beyond biotic homogenization: searching for new insights into vegetation dynamics. Journal of Vegetation Science 27(3): 439–440.

Hill MO, Bell N, Bruggeman-Nannenga MA, Brugués M, Cano MJ, Enroth J, et al. (2006) An annotated checklist of the mosses of Europe and Macaronesia. Journal of Bryology 28: 198–267.

Hui C, Richardson DM, Pylek P, Le Roux JJ, Kučera T, Jarosík V (2013) Increasing functional modularity with residence time in co-distribution of native and introduced vascular plants. Nature Communications 4: 2454.

Hulme PE, Bacher S, Kenis M, Klotz S, Kühn I, Minchin D, et al. (2008) Grasping at the routes of biological invasions: a framework for integrating pathways into policy. Journal of Applied Ecology 45: 403–414.

Jacó J (2002) Authors of syntaxon names. In: Rivás-Martínez S, Díaz TE, Fernández-González F, Jacó J, Loidi J, Lousá M, Penas Á, Vascular plant communities of Spain and Portugal. Addenda to the Syntaxonomical checklist of 2001. Itinera Geobotanica 15(1-2): 5–922.

Janssen JAM, Rodwell JS, García Criado M, Gubbay S, Haynes T, Nieto A, et al. (2016) European Red List of Habitats. Part 2. Terrestrial and freshwater habitats. Publications Office of the European Union, Luxembourg, 38 pp. ISBN 978-92-79-61588-7.

Jones CG, Lawton JH, Shachak M (1997) Positive and negative effects of organisms as physical ecosystem engineers. Ecology 78: 1946–1957.

Jucker T, Carboni M, Acosta ATR (2013) Going beyond taxonomic diversity: deconstructing biodiversity patterns reveals the true cost of iceplant invasion. Diversity and Distributions 19: 1566–1577.

Jurko A (1964) Feldheckenvegetationen und Uferweidengebüsche des Westkarpatengebietes. Botanische präce 10: 1–100.

Kowarik I (1995) On the role of alien species in urban flora and vegetation. In: Pyšek P, Prach K, Rejmánek M, Wade M (Eds.), Plant invasions: general aspects and special problems. SPB Academic Publ., Amsterdam, 83–103.

Kühn I, Brandl R, May R, Klotz S (2003) Plant distribution patterns in Germany: will aliens match natives? Feddes Repertorium 114: 559–573.

Landucci F, Acosta ATR, Agrillo E, Attorre F, Biondi E, Cambria VM, et al. (2012) VegItaly: The Italian collaborative project for a national vegetation database. Plant Biosystems 146(4): 756–763.

Lazzaro L, Bolpagni R, Barni E, Brundu G, Blasi C, Siniscalco C, Celesti-Grapow L (2019) Towards alien plant prioritization in Italy: methodological issues and first results. Plant Biosystems 153: 740–746.

Lazzaro L, Giuliani C, Benesperi R, Calamassi R, Foggi B (2015) Plant species loss and community nestedness after leguminous tree Acacia pycnantha invasion in a Mediterranean ecosystem. Folia Geobotanica 50(3): 229–238.

Lazzaro L, Giuliani C, Fabiani A, Aghelli AE, Pastorelli R, Lagomarsino A, et al. (2014) Soil and plant changing after invasion: The case of Acacia dealbata in a Mediterranean ecosystem. Science of the Total Environment 497: 491–498.

Lazzaro L, Maizza G, D’Errico F, Fabiani A, Giuliani, C, Inghilesi AF, et al. (2018) How ecosystems change following invasion by Robinia pseudoacacia: Insights from soil chemical properties and soil microbial, nematode, macroarthropod and plant communities. Science of the Total Environment 622–623: 1509–1518.
Pyšek P, Jarošík V, Hulme PE, Pergl J, Hejda M, Schaffner Vilá M (2012) A global assessment of alien invasive plant impacts on resident species, communities and ecosystems: the interaction of impact measures, invading species' traits and environment. Global Change Biology 18: 1725–1737.

Pyšek P, Lambdon PW, Arianoutsou M, Kühn I, Pino J, Winter M (2009) Alien Vascular Plants of Europe. In: DAISIE, Handbook of alien species in Europe. Springer, Dordrecht, The Netherlands, 43–61.

Rauchich J, Reader RJ (1999) An experimental study of wetland invasibility by purple loosestrife (Lythrum salicaria). Canadian Journal of Botany 77: 1499–1503.

Rejmánek M (1989) Invasiveness of plant communities. In: Drake JA, Mooney HA, di Castri F, Groves RH, Kruger FJ, Rejmánek M, Williamson M (Eds.), Biological invasions: a global perspective. Wiley, Chichester, UK, 369–388.

Rejmánek M, Richardson DM, Pyšek P (2005) Plant invasions and invasibility of plant communities. In: Van der Maarel E (Ed.), Vegetation Ecology. Blackwell, Oxford, 332–355.

Ricciardi A, MacIsaac HJ (2011) Impacts of Biological Invasions on Freshwater Ecosystems. In: Richardson DM (Ed.), Fifty Years of Invasion Ecology: The Legacy of Charles Elton. Wiley-Blackwell, Chichester, 211–224.

Ricciardi A, Ryan R (2018) The exponential growth of invasive species denialism. Biological Invasions 20(3): 549–553.

Richardson DM (Ed.) (2011) Fifty Years of Invasion Ecology: The Legacy of Charles Elton. Wiley-Blackwell, Chichester.

Richardson DM, Pyšek P (2006) Plant invasions: merging the concepts of species invasiveness and community invasibility. Progress in Physical Geography 30: 409–431.

Richardson DM, Ricciardi J (2013) Misleading criticisms of invasion science: a field guide. Diversity and Distributions 19: 1461–1467.

Richardson DM, Carrruthers J, Hui C, Impson FA, Miller JE, Robertson MP, et al. (2011) Human-mediated introductions of Australian acacias - a global experiment in biogeography. Diversity and Distributions 17: 771–787.

Richardson DM, Pyšek P, Rejmánek M, Barbouèr MG, Panetta FD, West CJ (2000) Naturalization and invasion of alien plants: concepts and definitions. Diversity and Distributions 6: 93–107.

Rommens W, Maes J, Dekeze N, Ingelbrecht P, Nhiwatiwa T, Holsters E, et al. (2003) The impact of water hyacinth (Eichhornia crassipes) in a eutrophic suburban impoundment (Lake Chivero, Zimbabwe). I. Water quality. Archiv für Hydrobiologie 158: 373–388.

Rouget M, Hui C, Rentería J, Richardson DM, Wilson JRU (2015) Plant invasions as a biogeographical assay: Vegetation biomes constrain the distribution of invasive alien species assemblages. South African Journal of Botany 101: 24–34.

Russell JC, Blackburn TM (2017) The rise of invasive species denialism. Trends in Ecology and Evolution 32(1): 3–6.

Santoro R, Jucker T, Carboni M, Acosta ATR (2012) Patterns of plant community assembly in invaded and non-invaded communities along a natural environmental gradient. Journal of Vegetation Science 23(3): 483–494.

Sarmati S, Ronari G, Angioldi C (2019) Conservation status of Mediterranean coastal dune habitats: anthropogenic disturbance may hamper habitat assignment. Rendiconti Lincei Scienze Fisiche e Naturali 30(3): 623–638.

Schmitz DC, Smkerllof D, Hofstetter RH, Haller W, Sutton D (1997) The ecological impact of nonindigenous plants. In: Smkerllof D, Schmitz DC, Brown TC. (Eds.), Strangers in Paradise: Impact and Management of Nonindigenous Species in Florida. Island Press, Washington D.C., 39–61.

Seebens H, Blackburn TM, Dyer EE, Genovesi P, Hulme PE, Jeschke JM, et al. (2017) No saturation in the accumulation of alien species worldwide. Nature Communications 8: 14435.

Seebens H, Blackburn TM, Dyer EE, Genovesi P, Hulme PE, Jeschke JM, et al. (2018) Global rise in emerging alien species results from increased accessibility of new source pools. Proceedings of the National Academy of Sciences USA 115(10): E2264–E2273.

Siber C, Oprea A (2011) Contribution to the study of plant communities dominated by Atlanticus altissima (Mill.) Swingle, in the Eastern Romania (Moldavia). Cercetări Agronomice in Moldova 44(3/147): 51–74.

Sitizia T, Campagnaro T, Kotze DJ, Nardi S, Ertani A (2018) The invasion of abandoned fields by a major alien tree filters understory plant traits in novel forest ecosystems. Scientific Reports 8(1): 1–10.

Smith MD, Wilcox JC, Kelly T, Knapp AK (2004) Dominance not richness determines invasibility of tallgrass prairie. Oikos 106: 253–262.

Souza-Alonso P, Guisande-Collazo A, Lechuga-Lago Y, González L (2019) The necessity of surveillance: medium-term viability of Carpobrotus edulis propagules after plant fragmentation. Plant Biosystems 153(5): 736–739.

Sperandii MG, Prisco I, Acosta ATR (2018) Hard times for Italian coastal al dunes: insights from a diachronic analysis based on random plots. Biodiversity and Conservation 27: 633–646.

Stinca A, Chianese G, D’Auria G, Del Guacchio E, Fasceati S, Perrino EV, et al. (2017) New alien vascular species for the flora of southern Italy. Wêbbia 72(2): 295–301.

Stinca A, Chirico GB, Incerti G, Ronanomi G (2015) Regime Shift by an Exotic Nitrogen-Fixing Shrub Mediates Plant Facilitation in Primary Succession. PLoS ONE 10(4): e0123128.

Theurillat JP, Willnner W, Fernández-González F, Büttmann H, Čarni A, Gigante D, et al. (2020) International Code of Phytosociological Nomenclature. 4th edition. Applied Vegetation Science. doi: 10.1111/avsc.12491

Ubaldi D (2003) Flora, fitocenosi e ambiente. Elementi di Geobotanica e Fitosociologia. Clueb, Bologna, 334 pp.

Uboni C, Tordoni E, Brandmayr P, Battistella S, Bragato G, Castello M, et al. (2019) Exploring cross-taxon congruence between carabid beetles (Coleoptera: Carabidae) and vascular plants in sites invaded by Atlantus altissima versus non-invaded sites: The explicative power of biotic and abiotic factors. Ecological Indicators 103: 145–155.

Valley RD, Bremigan MT (2002) Effect of macrophyte bed architecture on largemouth bass foraging: implications of exotic macrophyte invasions. Transactions of the American Fisheries Society 131: 234–244.

Van Kleunen M, Dawson W, Maurel F, Rejmánek M, Williamson M. (2014) Characteristics of successional processes dominated by purple loosestrife (Lythrum salicaria) in a eutrophic subtropical impoundment (Lake Chivero, Zimbabwe). I. Water quality. Archiv für Hydrobiologie 158: 373–388.

Van Kleunen M, Dawson W, Maurel F, Rejmánek M, Williamson M. (2014) Characteristics of successional processes dominated by purple loosestrife (Lythrum salicaria) in a eutrophic subtropical impoundment (Lake Chivero, Zimbabwe). I. Water quality. Archiv für Hydrobiologie 158: 373–388.

Uboni C, Tordoni E, Brandmayr P, Battistella S, Bragato G, Castello M, et al. (2019) Exploring cross-taxon congruence between carabid beetles (Coleoptera: Carabidae) and vascular plants in sites invaded by Atlantus altissima versus non-invaded sites: The explicative power of biotic and abiotic factors. Ecological Indicators 103: 145–155.

Valley RD, Bremigan MT (2002) Effect of macrophyte bed architecture on largemouth bass foraging: implications of exotic macrophyte invasions. Transactions of the American Fisheries Society 131: 234–244.

Van Kleunen M, Dawson W, Maurel F, Rejmánek M, Williamson M. (2014) Characteristics of successional processes dominated by purple loosestrife (Lythrum salicaria) in a eutrophic subtropical impoundment (Lake Chivero, Zimbabwe). I. Water quality. Archiv für Hydrobiologie 158: 373–388.

Van Kleunen M, Dawson W, Maurel F, Rejmánek M, Williamson M. (2014) Characteristics of successional processes dominated by purple loosestrife (Lythrum salicaria) in a eutrophic subtropical impoundment (Lake Chivero, Zimbabwe). I. Water quality. Archiv für Hydrobiologie 158: 373–388.

Van Kleunen M, Dawson W, Maurel F, Rejmánek M, Williamson M. (2014) Characteristics of successional processes dominated by purple loosestrife (Lythrum salicaria) in a eutrophic subtropical impoundment (Lake Chivero, Zimbabwe). I. Water quality. Archiv für Hydrobiologie 158: 373–388.

Van Kleunen M, Dawson W, Maurel F, Rejmánek M, Williamson M. (2014) Characteristics of successional processes dominated by purple loosestrife (Lythrum salicaria) in a eutrophic subtropical impoundment (Lake Chivero, Zimbabwe). I. Water quality. Archiv für Hydrobiologie 158: 373–388.

Van Kleunen M, Dawson W, Maurel F, Rejmánek M, Williamson M. (2014) Characteristics of successional processes dominated by purple loosestrife (Lythrum salicaria) in a eutrophic subtropical impoundment (Lake Chivero, Zimbabwe). I. Water quality. Archiv für Hydrobiologie 158: 373–388.
Appendixes

Appendix I – Alien-dominated and co-dominated plant communities in Italy (Syntaxa authors are abbreviated according to Izco 2002)

Class	Order	Alliance	Association/Phytocoenon	Reference number in the specific bibliographical list of Supplement I

2 LEMNETEA MINORIS O. Bolòs & Masclans 1955

2.1 LEMNETALIA MINORIS O. Bolòs & Masclans 1955

Lemma minuta community

2.1.1 Lernion minoris O. Bolòs & Masclans 1955

Azollo filiculoidis-Lemnetum minuscolae Felzines & Loiseau 1991 82, 83, 90

Ceratophyllo-Azolletum filiculoidis Nedelcu 1967 56, 58

Lemma minuta community 110

Lemnetum minuto-gibbae Liberman Cruz, Pedrotti & Venanzoni 1988 56

Lemno-Azolletum filiculoidis Br.-Bl. 1952 40, 115

3 POTAMETEA PECTINATI Klika in Klika & V. Novák 1941

3.1 POTAMETALIA PECTINATI Koch 1926

3.1.1 Potamion pectinati (Koch 1926) Libbert 1931

Callitricho-Elodeetum canadensis Passarge 1964 ex Passarge 1994 39

Elodea canadensis and *Potamogeton crispus* community 91

Elodea nuttallii community 28

Elodeo-Potametum crispi (Pignatti 1953) Passarge 1994 40

Elodeo-Ranunculetum Richard 1975 114

Lagarosiphon major community 28

Myriophyllum aquaticum community 64

Potametum crispi Soó 1927 *Myriophyllum aquaticum* variant 64

Potametum lucentis Hueck 1931 *Lagarosiphon major* variant 116

3.1.2 Nymphaeion albae Oberdorfer 1957

Hydrocotyletum ranunculoidis Corbetta & Lorenzoni 1976 42
Class	Order	Alliance	Association/Phytocoenon	Reference number in the specific bibliographical list of Supplement 1
			3.1.3 Ranunculion aquatilis Passarge 1964	
			Callitriches stagneris and Myriophyllum aquaticum community	
			Lemna-Callitrichetum cophocarpae (Mierwald 1988) Passarge 1992	
			Myriophyllum aquaticum variant	
12	BIDENTEAE TRIPARTITAE Tüxen, Lohmeyer & Preising ex Von Rochow 1951			
12.1	BIDENTETALIA TRIPARTITAE Br.-Bl. & Tüxen ex Klika in Klika & Hadac 1944			
12.1.1	Bidention tripartitae Nordhagen 1940			
			Bidens frondosus community	
			Bidenti-Polygonetum mitis (Von Rochow 1951) Tüxen 1979	
			Bidens frondosa variant	
			Bidenti-Polygonetum mitis (Von Rochow 1951) Tüxen 1979	
			echinocloetosum crus-galli Baldoni & Biondi 1993	
			Polygonetum hydropiperis Passarge 1965 Bidens frondosus facies	
			Xanthio italic-Polygonetum persicariae O. Bolos 1957	
			Xanthio italic-Persicarietum maculosae O. Bolos 1957 nom. mut. propos.	
			Abutilon theophrasti variant	
			Xanthium orientale subsp. italicum community	
12.1.2	Chenopodion rubri (Tüxen 1960) Hilbig & Jage 1972			
			Cyperetum esculenti \(\text{Wisskirchen 1995}\)	
			\(\text{Polygono-Xanthietum italic}\) Pirola & Rossetti 1974	
			\(\text{Polygono-Xanthietum italic}\) Pirola & Rossetti 1974	
			\(\text{Ambrosia artemisifolia}\) variant	
16	PHRAGMITO AUSTRALIS-MAGNOCARICETEA ELATAE Klika in Klika & V. Novák 1941			
16.1	PHRAGMITETALIA AUSTRALIS Koch 1926			
16.1.1	Phragmition communis Koch 1926			
			\(\text{Scirpetum maritimi}\) (Christiansen 1934) Tüxen 1937	
			\(\text{Paspalum distichum}\) variant	
16.3	MAGNOCARICETALIA ELATAE Pignatti 1953			
16.3.1	Magnocaricion elatae Koch 1926			
			\(\text{Cyperus eragrostis}\) community	
			\(\text{Cyperus glomeratus}\) community	
16.5	NASTURTIO OFFICINALIS-GLYCERIETALIA FLUITANTIS Pignatti 1953			
16.5.1	Glycerio fluitantis-Sparganiion neglecti Br.-Bl. & Sissingh in Boer 1942			
			\(\text{Eleocharitetum palustris}\) Schennikov 1919	
			\(\text{paspaletosum paspaloidis}\) Biondi et al. 2002	
20	EUPHORBIO PARALIAE-AMMOPHILETEA AUSTRALIS Géhu & Rivas-Martinez in Rivas-Martínez, Asensi, Diaz-Garretas, Molero, Valle, Cano, Costa & T.E. Díaz 2011			
20.1	AMMOPHILETALIA AUSTRALIS Br.-Bl. 1933			
20.1.1	Ammophilion australis Br.-Bl. 1933 em. Géhu & Géhu-Franck 1988			
			\(\text{Carpobrotus acinaciformis}\) community	
Class	Order	Alliance	Association/Phytocoenon	Reference number in the specific bibliographical list of Supplement 1
-------	-------	----------	------------------------	---
			Carpobrotus edulis community	88
			Xanthium-Ammophiletum Pignatti 1953	91

21 CABLETEA MARITIMAE Tüxen & Preising ex Br.-Bl. & Tüxen 1952

			21.1 EUPHORBIETALIA PEPLIS Tüxen 1950	
			21.1.1 Euphorbion peplus Tüxen 1950	
			Cakilo-Xanthietum italici Pignatti 1953	1, 9, 12, 38, 91, 93
			Salsolo kali-Xanthietum maritimae Costa et Mansanet 1981 corr. Rivas-Martinez et al. 1992	17, 24, 48, 70, 91,106
			Xanthio italici-Cenchrion incerti Biondi, Brugiaaglia, Allegrezza & Ballelli 1992	24, 100, 109
			Xanthio italici-Cenchrion longispini Poldini et al. 1999	100, 106

22 HELICRYSO-CRUCIANELLETALIA MARITIMAE (Sissingh 1974) Géhu, Rivas-Martinez & & Tüxen 1973 em. Sissingh 1974

			22.1 HELICRYSO-CRUCIANELLETALIA MARITIMAES Géhu, Rivas-Martinez & & Tüxen 1973 em. Sissingh 1974	
			22.1.1 Crucianellion maritimae Rivas Goday & Rivas-Martinez 1958	
			Crucianello-Helichrysetum microphylli Bartolo, Bruullo, De Marco, Dinelli, Signorello & Spampinato 1992 Carpobrotus acinaciformis variant	125
			Ephedro-Helichrysetum microphylli Valsecchi & Bagella 1991 Carpobrotus acinaciformis variant	125

31 PARIERIETALIA JUDAICAE Oberdorfer 1977

			31.1 TORTULO-CYMBALARIELTALIA Segal 1969	
			31.1.1 Parietarion judaicae Segal 1969	
			Cheiranthenum cheirii Segal 1962	46
			Erigeronnetum karvinskian Oberdorfer 1969	46, 54, 70

33 TLASPIETALIA ROTUNDIFOLII Br.-Bl. 1948

			33.6 EPILOBIETALIA FLEISCHERI Moor 1958	
			Oenothera biennis and Scrophularia canina community	114

34 ARTEMISIETALIA VULGARIS Lohmeyer, Preising & Tüxen ex Von Rochow 1951

			34 ARTEMISIETALIA VULGARIS Lohmeyer, Preising & Tüxen ex Von Rochow 1951	
			Sporobolus vaginiflorus community	104
			Senecio mikanoides community	101
			Helianthus tuberosus community	99, 104
			Solidago gigantea community	70, 120
			Senecio inaequidens community	99

34.1 ARCTIO LAPPAE-ARTEMISIETALIA VULGARIS Dengler 2002

			34.1.1 Arction lappae Tüxen 1937	
			Artemisietum verlotorii Lang 1973	41, 99, 101
			Arundo donax community	43
			Saponario-Artemisietum verlotorium Biondi & Baldoni 1993	15, 63, 72
			Sileno albae-Acanthetum mollis Biondi, Allegrezza & Filigheddu 1990	21
Class	Order	Alliance	Association/Phytocoenon	Reference number in the specific bibliographical list of Supplement 1
--------	--------	---------------------------	---	---
34.2	AGROPYRETALIA INTERMEDI-REPENTIS Oberdorfer, Müller & Görs in Müller & Görs 1969			
34.2.1	Convulvulo arvensis-Agropyron repentis Görs 1966			
	Artemisia verlotiorum community	13, 127		
	Sorghum halepense community	46		
34.4	BRACHYPODIO RAMOSI-DACTYLETALIA HISPANICAe Biondi, Filigheddu & Farris 2001			
34.4.4	Bromo-Oryzopsion miliaceae O. Bolòs 1970			
	Boerhaavia-Oryzopsietum miliaceae Brullo 1984	33		
34.5	ONOPORDETALIA ACANTHII Br.-Bl. & Tüxen ex Klika in Klika & Hadač 1944			
	Artemisia verlotiorum community	118		
	Helianthus tuberosus community	29		
	Senecio inaequidens community	29		
	Solidago gigantea community	29		
34.5.1	Onopordion acanthii Br.-Bl. in Br.-Bl., Gajewski, Wraber & Walas 1936			
	Erigeron canadense and Broussonetia papyrfera community	91		
34.5.2	Dauco carotae-Melilotion albi Görs 1966			
	Artemisia verlotiorum community	47, 118		
	Artemisia absinthii-Senecionetum inaequidentis Pirone 2001	45, 96		
	Echo-Melilotetum Tüxen 1947	30		
	Senecio inaequidens and Erigeron annuus variant	30		
	Echo-Melilotetum Tüxen 1947 Oenothera biennis (aggr.) variant	31		
	Erigeron annuus community	78		
	Helianthus tuberosus community	29		
	Oenothera biennis community	123		
	Senecio inaequidens community	29, 31, 129		
	Solidago gigantea community	29		
34.6	CARTHAMETALIA LANATI Brullo in Brullo & Marcenò 1985			
34.6.2	Onopordion illyrici Oberdorfer 1954			
	Carduo pycnocephali-Nicotianetum glaucae Biondi, Blasi, Brugiapaglia, Fogu & Mossa 1994	23		
36	ORYZETEA SATIVAE Miyawaki 1960			
36.1	CYPERO DIFFORMIS-ECHINOCHOLETALIA ORYZOIDIS O. Bolòs & Masclans 1955			
36.1.1	Oryzo sativae-Echinochloion oryzoidis O. Bolòs & Masclans 1955			
	Heteranthera sp.pl. community	39		
37	PEGANO HARMALAE-SALSOLETEA VERMICULATAE Br.-Bl. & O. Bolòs 1958			
37.2	NICOTIANO GLAUCAE-RICINETALIA COMMUNIS Rivas-Martínez, Fernández-González & Loidi 1999			
37.2.1	Nicotiano glaucae-Ricinietum communis Rivas-Martínez, Fernández-González & Loidi 1999			
	Nicotiano glaucae-Ricinetum communis (Br.-Bl. & Maire 1924) de Foucault 1993	37, 87		
	Polycarpo-Nicotianetum glaucae Sunding 1972	37		
Class	Order	Alliance	Association/Phytocoenon	Reference number in the specific bibliographical list of Supplement 1
-------	-------	----------	-------------------------	---
38	POLYGONO ARENASTRI-POETEA ANNUAEE	Rivas-Martínez 1975 corr. Rivas-Martínez, Báscones, T.E. Diáz, Fernández-González & Loidi 1991		
			Eleusinetum indicae (Slavnic 1951) Pignatti 1953	30
			Euphorbio-Oxalidetum corniculatae Lorenzoni 1964	30
38.2	SAGINO APETALAE-POLYCARPETALIA TETRAPHYLLEI de Foucault 2010			
38.2.1	Polycarpion tetraphylli	Rivas-Martínez 1975		
			Eleusine indica community	91
			Eleusinetum indicae (Slavnic 1951) Pignatti 1953	46, 70, 99, 104
			Euphorbietum maculatae Poldini 1989	70, 99, 101, 104
			Euphorbio-Oxalidetum corniculatae Lorenzoni 1964	38, 99, 101

39 | STELLARIOETEA MEDIAE Tüxen, Lohmeyer & Preising ex Von Rochow 1951 |
39a.3	SOLANO NIGRI-POLYGONETALIA CONVOLVULI (Sissingh in Westhoff, Dijk, Passchier & Sissingh 1946) O. Bolòs 1962			
39a.3.1	Digitario ischaemi-Setario viridis	Sissingh in Westhoff, Dijk, Passchier & Sissingh 1946		
			Amarantho-Chenopodietum albi (Morariu 1943) Soó 1957	101
			Amarantho-Digitarietum sanguinalis Pignatti 1953	67, 71, 91, 101
			Chenopodium album and Amaranthus retroflexus community	99
			Cynodonto-Sorghetum halepensis (Laban 1974) Kojic 1979	38
			Echinochloa-Setarietum pumilae Felföldy 1942 corr. Mucina 1993 xanthietosum italici Poldini et al. 1998	105
			Oxalido-Chenopodietum polyspermi (Br.-Bl. 1921) Sissingh (1942) 1946 (*)	66, 67, 91
			Oxalido-Chenopodietum polyspermi (Br.-Bl. 1921) Sissingh (1942) 1946 Galinsoga parviflora (*) subassociation	66
			Panico sanguinalis-Polygonetum persicariae Pignatti 1953 sorghetosum halepensis Baldoni 1995 (*)	14
			Panico sanguinalis-Polygonetum persicariae Pignatti 1953 Acalypha virginica (*) facies	67
			Panico sanguinalis-Polygonetum persicariae Pignatti 1953 Echinochloa oryzoides (*) facies	66
			Panico sanguinalis-Polygonetum persicariae Pignatti 1953 Panicum capillare (*) subassociation	66
			Panico sanguinalis-Polygonetum persicariae Pignatti 1953 Datulastramonium and Portulaca oleracea (*) variant	51
			Panico sanguinalis-Polygonetum persicariae Pignatti 1953 Bolboschoenus maritimus and Paspalum distichum (*) variant	51
			Euphorbio-Galinsogetum ciliatae Passarge 1981	79
			Galeopsis tetrahit-Galinsogetum parviflorae Poldini et al. 1998	105
			Galinsogo-Portulaccetum Br.-Bl. 1949 ex Pedrotti 1959	78, 91
			Setario-Echinochloetum colonus A. & O. Bolòs ex O. Bolòs 1956	34, 38
			Setario-Galinsogetum parviflorae (Beck 1941) Tüxen 1950 em. Müller & Oberdorfer	70
			Setario ambiguae-Cyperetum rotundii Brullo, Scelsi & Spampinato 2001	38
39a.3.3	Diplotaxion erucoidis	Br.-Bl. in Br.-Bl., Gajewski, Wraber & Walas 1936 em. Brullo & Marcenò 1980		
			Amaranthus retroflexus community	86
39a.3.5	Fumarion wirgenii-agrairiae	Brullo in Brulo & Marcenò 1985		
			Oxalis pes-caprae community	85, 87
Class	Order	Alliance	Association/Phytocoenon	Reference number in the specific bibliographical list of Supplement 1
39b.1	CHENOPODIETALIA MURALIS	Br.-Bl. in Br.-Bl., Gajewski, Wraber & Walas 1936		
39b.1.1	Chenopodion muralis	Br.-Bl. in Br.-Bl., Gajewski, Wraber & Walas 1936		
		Amarantho bitoidis-Chenopodietum ambrosioidis O. Bolós 1967	46	
		Amarantho muricati-Chenopodietum ambrosioidis O. Bolós 1967	34	
		Amarantho-Chenopodietum ambrosioidis O. Bolós 1967	34, 38, 99	
		Conyzetum albidae-canadensis Baldoni & Biondi 1993		
		Lolium multiflorum variant	8	
		Conyzetum albido-canadensis Baldoni & Biondi 1993	46, 101	
		Conyzo canadensis-Oenotheretum biennis Biondi, Brugiapaglia, Allegrezza & Ballelli 1992	24	
		Xanthio italicis-Daturetum stramoni Fanelli 2002	46	
		Amaranthus deflexus and Polycarpion tetraphyllon community	91	
		Datura stramonium community	21	

39b.2	THERO-BROMETALIA	(Rivas Goday & Rivas-Martinez ex Esteve 1973) O. Bolós 1975	
39b.2.1	Echio plantaginei-Galactition tomentosae	O. Bolós & Molinier 1969	
		Erigeron canadensis community	121
		Galacticio-Isatidetum canescentis Brullo 1983	32

39b.3	SISYMBRIETALIA OFFICINALIS	J. Tüxen ex W. Matuszkiewicz 1962	
39b.3.1	Sisymbriion officinalis	Tüxen, Lohmeyer & Preising ex Von Rochow 1951	
		Artemisietum annuæ Fijalcowski 1967	30
		Artemisietum annuæ Fijalcowski 1967 ambrosiotsam Siniscalco & Montacchini 1989	118, 119
		Conyzo-Lactucetum serriolae Lohmeyer in Oberdorfer 1957	3, 31, 104
		Datura stramonium and Malva neglecta community	67, 91
		Erigeron canadensis community	70, 86

| 39b.3.2 | Hordeion leporini | Br.-Bl. in Br.-Bl., Gajewski, Wraber & Walas 1936 corr. O. Bolós 1962 |
| | | Bassia scoparia and Chenopodium ambrosioides community (** | 91 |

| 39b.4 | URTICO-SCROPHULARIETALIA PEREGRINAE | Brullo ex Biondi, Blasi, Casavecchia & Gasparri in Biondi, Allegrezza, Casavecchia, Galdenzi, Gasparri, Pesaressi, Vagge & Blasi 2014 |
| | | Oxalis pes-caprae community | 70 |

| 39b.4.1 | Veronica-Urticion urensis | Brullo in Brullo & Marcenò 1985 |
| | | Bromo-Brassicetum sylvestris Brullo & Marcenò 1985 | 34 |

40 | GALIO APARINES-URTICETEA DIOICAEx Passarge ex Kopecký 1969 |
40.1	GALIO APARINES-ALLIARIETALIA PETIOLATAE	Oberdorfer ex Görs & Müller 1969	
40.1.1	Petasition officinalis	Sill. 1933 em. Kopecký 1969	
		Robinia pseudoacacia community	39
40.1.2	Geo-Alliarion	Lohmeyer & Oberdorfer ex Görs & Müller 1969	
		Solidago canadensis community	5, 89

40.1.5	Allion triquetri	O. Bolós 1967	
		Acantho-Smyrnietum olusatri Brullo & Marcenò 1985	34, 70
		Acanthus mollis community	70, 117
Class	Order	Alliance	Association/Phytocoenon	Reference number in the specific bibliographical list of Supplement 1
FILIPENDULO			**41 FILIPENDULO ULMARIAE-CONVOLVULETAE SEPIUM** Géhu & Géhu-Franck 1987	
	Order	Alliance	**41.1 CALYSTEGITALIA SEPIUM** Tüxen ex Mucina 1993 nom. mut. propos. Rivas-Martínez, T.E. Diaz, Fernandez-Gonzales, Izco, Loidi, Lousã & Penas 2002	
	Order	Alliance	*Reynoutria japonica* community	31
	Order	Alliance	*Helianthus tuberosus* community	31
	Order	Alliance	*Solidago canadensis* and *E* riger *on annuus* community	31
	Order	Alliance	*E* riger *on annuus* community	31
	Order	Alliance	**41.1.1 Calystegion sepium** Tüxen ex Oberdorfer 1957 nom. mut. propos. Rivas-Martínez, T.E. Diaz, Fernandez-Gonzales, Izco, Loidi, Lousã & Penas 2002	
	Order	Alliance	*Amorpha fruticosa* community	81
	Order	Alliance	*Artemisia verlotiorum* community	127
	Order	Alliance	*Arundini-Convolvuletum sepium* (Tüxen & Oberdorfer) O. Bolós 1962	72
	Order	Alliance	*Arundini-Convolvuletum sepium* (Tüxen & Oberdorfer 1958) O. Bolós 1962	11, 15, 34, 40, 46, 80, 99, 101
	Order	Alliance	*Arundo donax* community	43
	Order	Alliance	*Calystegio sylvaticae-Arundinetum donacis* Brullo, Scelsi & Spampinato 2001	35, 38, 73, 84, 85, 87
	Order	Alliance	*Calystegio-Asteretum lanceolati* (Holzner et al. 1978) Passarge 1993	63
	Order	Alliance	*Helianthus tuberosus* community	15, 63, 71, 127
	Order	Alliance	*Humulus scandens* community	39
	Order	Alliance	*Rubus caesius* and *Amorpha fruticosa* community	89
	Order	Alliance	*Solidago canadensis* community	81, 83
	Order	Alliance	*Solidago gigantea* community	39, 63, 127
	Order	Alliance	**50 TUBERARIE TAA GUTTATAE** (Br.-Bl. in Br.-Bl., Roussine & Nègre 1952) Rivas Goday & Rivas-Martínez 1963 nom. mut. propos. Rivas-Martínez, T.E. Diaz, Fernández-González, Izco, Loidi, Lousã & Penas 2002	
	Order	Alliance	**50.2 MALCOLMIETALIA** Rivas Goday 1958	
	Order	Alliance	**50.3.2 Laguro ovati-Vulpion fasciculatae** Géhu & Biondi 1994	
	Order	Alliance	*Ambrosio coronopifolii-Lophochloetum pubescensii* Biondi, Brugiapaglia, Aliegretteza & Ballelli 1992	95, 99, 102
	Order	Alliance	*Sileno coloratae-Vulpietum membranaceae* (Pignatti 1953) Géhu & Scoppola 1984	97
	Order	Alliance	**55 LYGEO SPARTI-STIPETEA TENACISSIMAE** Rivas-Martínez 1978 nom. conserv. propos. Rivas-Martínez, T.E. Diaz, Fernández-González, Izco, Loidi, Lousã & Penas 2002	
	Order	Alliance	**55.2 HYPARRHENIETALIA HIRTAE** Rivas-Martínez 1978	
	Order	Alliance	**55.2.1 Hyparrhenion hirtae** Br.-Bl., P. Silva & Rozeira 1956	
	Order	Alliance	*Pennisetum setacei-Hyparrhenietum hirtae* Gianguzzi, Ilardi & Raimondo 1996	36, 52
	Order	Alliance	**56 MOLINIO-ARRHENATHERETEA** Tüxen 1937	
	Order	Alliance	**56.4 HOLOSCHOENETALIA VULGARIS** Br.-Bl. ex Tchou 1948	
	Order	Alliance	**56.4.4 Paspalo distichi-Agrostion semiverticillatae** Br.-Bl. in Br.-Bl., Roussine & Nègre 1952	
	Order	Alliance	*Aster squamatus* and *Inula viscosa* community	94
	Order	Alliance	*Loto tenuis-Paspalenum paspaloidis* Biondi, Casavecchia & Radetic 2002	25, 68
	Order	Alliance	*Paspalo distichi-Polyposonetum viridis* Br.-Bl. in Br.-Bl., Gajewski, Wraber & Walas 1936 nom. mut. propos. Rivas-Martínez et al. 2002	15, 41, 46, 60, 61, 63, 68, 70, 76, 93, 94, 95, 99, 101
	Order	Alliance	(= *Paspalo distichi-Agrostidetum verticillati* Br.-Bl. in Br.-Bl., Roussine & Nègre 1952)	115
Class	Order	Alliance	Association/Phytocoenon	Reference number in the specific bibliographical list of Supplement 1
-------	-------	----------	-------------------------	---
			Paspalo distichi-Polypogonetum viridis* Br.-Bl. in Br.-Bl., Gajewski, Wraber & Walas 1936 nom. mut. propos. Rivas-Martínez et al. 2002 facies with *Cyperus eragrostis*	63
			Paspalum distichum (= paspaloides) community	19, 81, 103
56.5	PLANTAGINETALIA MAJORIS Tüxen ex Von Rochow 1951			
56.5.1	Lolio perennis-Plantaginion majoris Sissingh 1969			
	Juncetum macri (Diemont et al. 1940) Tüxen 1950			
	Eleusine indica community			91
61	CISTO CRETCI-MICROMERIETEA JULIANAE Oberdorfer ex Horvatić 1958			
61.1	*CISTO CRETCI-ERICETALIA MANIPULIFLORA* Horvatić 1958			
61.1.1	*Cisto cretici-Ericion manipuliflorae* Horvatić 1958			
	Opuntia ficus-indica community			69, 85
64	RHAMNO CATHARTICAE-PRUNETEA SPINOSAE Rivas Goday & Borja ex Tüxen 1962			
64.1	*PRUNETALIA SPINOSAE* Tüxen 1952			
	Robinia pseudoacacia and *Rubus ulmifolius* community			6
	Robinia pseudoacacia and *Sambucus nigra* community			70
64.1.1	*Berberidion vulgaris* Br.-Bl. 1950			
	"*Corno sanguineae-Ligustretum vulgaris*" sensu Biondi et al. 1999 non Horvat 1956 *amorphetosum fruticosae* Biondi, Vagge, Baldoni & Taffetani 1999			27
64.1.2	*Cytision sessilifolii* Biondi in Biondi, Allegrezza & Guitian 1988			
	Cercido siliquastri-Rhoetum coriariae Biondi, Allegrezza & Guitian 1988			22
64.3.1	*Pruno-Rubion ulmifolii* O. Bolòs 1954			
	Clematido vitalbae-Arundinetum donacis Biondi & Allegrezza 2004			18
65	ALNETEA GLUTINOSAE Br.-Bl. & Tüxen ex Westhoff, Dijk & Passchier 1946			
65.1	*SALICETALIA AURITAE* Doing ex Westhoff in Westhoff & Den Held 1969			
65.1.1	*Salicion cinereae* Müller & Görs 1958			
	Salicetum cinereae Zolyomi 1931 *Amorpha fruticosa* variant			65
68	SALICI PURPUREAE-POPULETEA NIGRAE Rivas-Martínez & Cantó ex Rivas-Martínez, Báscones, T.E. Diaz, Fernández-González & Loidi 2001			
68.1	*POPULETALIA ALBAE* Br.-Bl. ex Tchou 1948			
	Robinia pseudoacacia community			122
68.1.1	*Populion albae* Br.-Bl. ex Tchou 1948			
	Acer negundo community			46
	Ailanthus altissima and *Robinia pseudoacacia* community			6
69	SALICETEA PURPUREAE Moor 1958			
69.1	*SALICETALIA PURPUREAE* Moor 1958			
69.1.1	*Salicion albae* Soó 1930			
	Amorpha fruticosae-Salicetum albae Poldini, Vidali, Bracco, Assini & Villani in Poldini, Vidali & Ganis 2011			13, 27, 48, 71, 107
	Sicyos angulatus community			40, 112
69.1.2	*Salicion triandrae* Müller & Görs 1958			
	Salicetum triandrae (Malcut 1929) Noirfalise 1955 *Amorpha fruticosa* variant			27
Class	Order	Alliance	Association/Phytocoenon	Reference number in the specific bibliographical list of Supplement 1
-------	-------	----------	-------------------------	---
69.1.4			Salicion incanae	69.1.4 Salicion incanae Aichinger 1933 Salicetum incano-purpureae Sillinger 1933 Amorpha fruticosa variant 27, 62
70	QUERCETEA ILICIS Br.-Bl. in Br.-Bl., Roussine & Nègre 1952			70.1 QUERCETALIA ILICIS Br.-Bl. ex Molinier 1934 70.2.2 Oleo sylvestris-Ceratonion siliquae Br.-Bl. ex Guinochet & Drouineau 1944 Asparago acutifolii-Oleetum sylvestris Bacchetta et al. 2003 Opuntia ficus-indica variant 117
71	QUERCO ROBORIS-FAGETEA SYLVATICAE Br.-Bl. & Vlieger in Vlieger 1937			71.1 FAGETALIA SYLVATICAE Pawłowski in Pawłowski, Sokolowski & Wallisch 1928 71.1.4 Tilio platyphylli-Acerion pseudoplatani Klika 1955 Robinia pseudoacacia community 50 71.1.6 Carpinion betuli Issler 1931 Prunus serotina community 113 71.1.10 Alnion incanae Pawłowski in Pawłowski, Sokolowski & Wallisch 1928 Amorpha fruticosa community 40 Populus nigra and Robinia pseudoacacia community 26 Robinia pseudoacacia and Rubus ulmifolius community 55 71.2 QUERCETALIA ROBORIS Tüxen 1931 Buddleja davidii community 74 71.2.1 Quercion roboris Malcuit 1929 Robinia pseudoacacia community 50 71.3 QUERCETALIA PUBESCENTI-PETRAEAE Klika 1933 71.3.3 Crataego laevigatae-Quercion cerridis Arrigoni 1997 Sambuco nigrae-Robinietum pseudacaciae Arrigoni 1997 10
75	ROBINIETEA Jurko ex Hadac & Sofron 1980			75.1 CHELIDONIO-ROBINIETALIA Jurko ex Hadac & Sofron 1980
Class Order Alliance Association/Phytocoenon Reference number in the specific bibliographical list of Supplement 1

75.1.1 **Ballotina nigrae-Robinion** Jurko ex Hadac & Sofron 1980
Ailanthus altissima community
88

75.1.2 **Bryonio-Robinion** Ubaldi, Melloni & Cappelletti in Ubaldi 2003
Ailanthus altissima community
46
Bryonio-Robinietum Ubaldi, Melloni & Cappelletti in Ubaldi 2003
124
Robinia pseudoacacia community
46, 98, 128, 130

75.1.3 **Lauro nobilis-Robinion pseudoacaciae** Allegrezza, Montecchiari, Ottaviani, Pelliccia & Tesei 2019
Melisso altissimae-Robinietum pseudoacaciae Allegrezza, Montecchiari, Ottaviani, Pelliccia & Tesei 2019
2
Rubio peregrinae-Robinietum pseudoacaciae Allegrezza, Montecchiari, Ottaviani, Pelliccia & Tesei 2019
2

BRYOPHYTE COMMUNITIES

CERATODONTO PURPUREI-POLYTRICHETEA PILIFERI Mohan 1978
POLYTRICHETALIA PILIFERI von Hübschmann 1975
Campylopodion polytrichoidis Giacomini 1951
Campylopus introflexus community
108, 111

(*) In Poldini et al. (1998) the associations *Panico-Polygonetum persicariae* Pignatti 1953 and *Oxalido-Chenopodietum polyspermi* (Br.-Bl. 1921) Sissingh (1942) 1946 are considered syntaxonomic synonyms of *Echinochloo-Setarietum pumilae* Felföldy 1942 corr. Mucina 1993. The authors reached this result by elaborating the synthetic tables of only a part of the works published at national level with the name *Panico-Polygonetum* and *Oxalido-Chenopodietum*. Beside this, in Poldini et al. (1988) the numbers of tables and relevés taken into account for the analysis were not indicated. These authors did not also consider any subassociations and variants described. For these reasons, we prefer to report the names of the associations as they were indicated in the original works, without including them as synonyms in the name *Echinochloo-Setarietum*.

(**) This association was described for the north-Adriatic Italian coasts, published by Pignatti (1952-53) as "nom. prov.", therefore not validly, according to ICPN (Art. 3b, Weber et al., 2000). It cannot be attributed to *Atriplicion littoralis* sensu Nordhagen 1940, as already highlighted by Mucina et al. (2016, p. 137), according to whom it must be referred to ruderal communities of *Atriplicion Passarge 1978* (*Sisymbrietalia*). After examining the original table in Pignatti (1952-53), we agree with the comments of Mucina et al. (2016). Anyway, in the Italian Vegetation Prodrome, the alliance *Atriplicion Passarge 1978* is not reported, so we provisionally prefer to attribute this association to *Hordeion leporini*, the most similar alliance from the eco-coenological point of view present in the Italian Vegetation Prodrome.

Soon after the development and data analysis of this article, Pellizzari (2020) hypothesized a reinterpretation of *Cyperus glomeratus*, currently considered alien species in Italy, as a probable native. We are currently sticking to the consolidated position of Galasso et al. (2018), pending a reassessment of the chorology of this species.

Appendix II – Specific bibliographical list with reference numbers for all the syntaxa quoted in the checklist of Appendix I

N.	References
1	Acosta A., Carranza M.L., Ciaschetti G., Conti F., Di Martino L., D’Orazio G., Frat taroli A., I zzi C.F., Pirone G. & Stanisci A., 2007. Specie vegetali esotiche negli ambienti costieri sabbiosi di alcune regioni dell'Italia Centrale. Webbia 62: 77-87.
2	Allegrezza M., Montecchiari S., Ottaviani C., Pelliccia V. & Tesei G., 2019. Syntaxonomy of the *Robinia pseudoacacia* communities in the central periadriatic sector of the Italian peninsula. Plant Biosystems 153 (4): 616–623.
3	Andreucci F., 2006. Flora e vegetazione spontanea della città di Alessandria (Piemonte-Italia). Fitosociologia 43 (2): 77-95.
4	Andreucci F. & Castelli M., 2006. Alcuni aspetti di vegetazione erbae ca nelle aree golenali del torrente Scrivia (Piemonte, Italia settentrionale). Arch. Geobot. 8 (1-2) (2002): 49-68.
Andreucci F. & Castelli M., 2008. Stedi evolutivi nel processo di colonizzazione di *Robinia pseudoacacia* L. in ex coltivi del Piemonte meridionale (Italia). Arch. Geobot. 11 (1-2) (2005): 1-14.

Angiolini C., Chiarucci A., De Dominicis V., Gabellini A., Morrocchi D. & Selvi F., 2002. Lineamenti vegetazionali dell’Area Naturale Protetta del Fiume Elsa. Atti Accademia dei Fisiocritici Siena Ser. 15, 18 (1999): 101-122.

Angiolini C., Landi M., Boddi M. & Frignani F., 2006. La vegetazione dell’alveo fluviale del sito d’importanza regionale torrente Trasubbie (Groseto, Toscana meridionale). Atti Soc. tosc. Sci. nat., Mem., Ser. B, 112 (2005): 127-151.

Apruzzese A., Gigante D. & Venanzoni R., 2001. La ricolonizzazione di ex-coltivi in ambiente perilacuale: modalità di recupero della vegetazione semi-naturale e strategie di miglioramento. Riv. Idrobiol. 40 (2-3): 335-366.

Arrigoni P. V., 1990. Flora e vegetazione della Macchia lucchese di Viareggio (Toscana). Webbia 44 (1): 1-62.

Arrigoni P.V., 1997. Documenti per la carta della vegetazione delle Cerbaie (Toscana settentrionale). Parlalorea 2: 39-71.

Arrigoni P.V. & Papini P., 2003. La vegetazione del sistema fluviale Lima - Serchio (Toscana meridionale). Parlalorea 6: 95-129.

Arrigoni P.V., Nardi E. & Raffaelli M., 1985. La vegetazione del Parco Naturale della Maremma (Toscana). (con carta in scala 1:25.000). Univ. degli Studi di Firenze Dip. Biol. Veg. 39 pp.

Assini S., 2004. The alluvial vegetation of the Po River in the central-west Padana Plain (Po Plain - Northern Italy). Coll. Phytosoc. 28: 333-360.

Baldoni M., 1995. Vegetazione infestante le colture erbacee delle Marche e dei piani carsici dell’Appennino Umbro-Marchigiano (Italia centrale) e serie di vegetazione. Coll. Phytosoc. 24: 787-812.

Baldoni M. & Biondi E., 1993. La vegetazione del medio e basso corso del fiume Esino (Marche - Italia centrale). Studia Botanica 11: 209-257.

Bolpagni R., 2013. Macrophyte richness and aquatic vegetation coplexity of the lake Idro (Northern Italy). Ann. Bot. (Roma) 3: 35-43.

Bracco F., Sartori F. & Terzo V., 1984. Indagine geobotanica per la valutazione di un’area della Bassa Padania occidentale. Atti Ist. Bot. Lab. Critt. Univ. Pavia 7 (3): 5-50.

Brandes D., 1987. Zur Kenntnis der Ruderalvegetation des Alpensüdrandes. Tuexenia 7: 121-138.

Brandes D. & Brandes E., 1981. Ruderal- und Saumgesellschaften des Etschtals zwischen Bozen und Rovereto. Tuexenia 1: 99-133.
34	Brullo S. & Marcenò C., 1985. Contributo alla conoscenza della vegetazione nitrofila della Sicilia. Coll. Phytosoc. 12: 23-148.
35	Brullo S. & Sciandrello S., 2006. La vegetazione del bacino lacustre "Biviere di Gela" (Sicilia meridionale). Fitosociologia 43 (2): 21-40.
36	Brullo C., Brullo S., Giuso Del Galdo G., Guarino R., Minissale P., Scuderi L., Siracusa G., Sciandrello S. & Spampinato G., 2010. The *Lygeo-Stipetea* class in Sicily. Ann. Bot. (Roma) 10: 57-84.
37	Brullo S., Giuso Del Galdo G., Guarino R., Minissale P., Sciandrello S. & Spampinato G., 2012. Syntaxonomic survey of the class *Pegano harnalae-Salseoltea vermiculatae* Br.-Bl. & O. Bolos 1958 in Italy. Plant Biosystems 147 (2): 472-492.
38	Brullo S., Scelsi F. & Spampinato G., 2001. La vegetazione dell'Aspromonte. Studio Fitosociologico. Laruffa Editore, Reggio Calabria.
39	Brusa G., Castiglioni L. & Cerabolini B., 2006. La vegetazione dell'istituenda Riserva naturale Oasi di Lacchiarella (Parco agricolo sud Milano). Pianura 20: 5-41.
40	Ceschin S. & Salerno G., 2008. La vegetazione del basso corso del Fiume Tevere e dei suoi affluenti (Lazio, Italia). Fitosociologia 45 (1): 39-74.
41	Ceschin S., Cutini M. & Caneva G., 2006. Contributo alla conoscenza della vegetazione ruderale delle aree archeologiche romane (Roma). Fitosociologia 43(1): 97-139.
42	Corbetta F. & Lorenzoni G., 1976. La vegetazione degli stagni del golfo di Oristano (Sardegna). Ricerche di Biologia della Selvaggina 7 (Suppl. Scritti in memoria di Augusto Toschi): 271-319.
43	Crisanti M. A. & Taffetani F., 2015. Diachronic analysis of variations induced on the flora and vegetation of river ecosystems by actions taken to reduce the risk of flooding. Case study of the River Chienti (central Adriatic, Italy). Plant Sociology 52 (1): 41-64.
44	D'Auria G. & Zavagno F., 1995. La vegetazione alveale del fiume Brembo, alla confluenza con l'Adda, in relazione a morfologia e substrato. Pianura 7: 5-38.
45	Di Franco C., Salerno G., Carranza M.L. & Stanisci A., 2012. Ambienti umidi salmastri in Molise: biodiversità e vulnerabilità. Territori 7: 47-53.
46	Fanelli G., 2002. Analisi fitosociologica dell'area metropolitana di Roma. Braun-Blanquetia 27: 1-276.
47	Fascetti S. & Veri L., 1983. Alcuni aspetti della vegetazione sinantropica della città dell'Aquila e dei dintorni (Abruzzo-Italia centrale). Coll. Phytosoc. 12: 429-447.
48	Francescato C., 2012. Paesaggi vegetali, biodiversità cenotica e funzionalità fluviale. Il caso del fiume Tagliamento. Tesi di dottorato, XXIV ciclo Metodologie di biomonitoraggio dell'alterazione ambientale, Università degli Studi di Trieste. http://hdl.handle.net/10077/8598
49	Gentile A., 1996. Esempi di integrazione di specie forestali esotiche in contesti vegetazionali mediterranei italiani. Coll. Phytosoc. 24 (1995): 123-130.
50	Gentile S., 1996. *Robinia pseudoacacia* L. in formazioni forestali miste dell'Italia Nord-occidentale. Coll. Phytosoc. 24 (1995): 11-18.
51	Gerdol R. & Piccoli F., 1979. Considerazioni sulla sinsistematica della vegetazione infestante delle colture sarchiate del Ferrarese. Arch. Bot. Biogeogr. Ital. 55 (4): 113-123.
52	Gianuzzi L., Iardi V. & Raimondi F. M., 1996. La vegetazione del promontorio di Monte Pellegrino (Palermo). Quad. Biol. Appl. Amb. 4: 79-137.
53	Gigante D. & Venanzoni R., 2004. Flora e Vegetazione. In: AA. VV., Relazione sullo stato dell'Ambiente in Umbria. ARPA, Regione dell’Umbria, pp. 305-334, Perugia.
54	Kumbaric A., Ceschin S., Zuccarello V. & Caneva G., 2012. Main ecological parameters conditioning the colonization of higher plants in the biodeterioration of stone embankments of Lungotevere (Rome). Int. Biodeter. Biodegr. 72: 31-41.
55	Landucci F., Gigante D. & Venanzoni R., 2011. An application of the Cocktail method for the classification of the hydrophytic vegetation at Lake Trasimeno (Central Italy). Fitosociologia 48 (2): 3-22.
56	Lastrucci L. & Becattini R., 2009. La vegetazione delle aree umide presso Bosco ai Frati (Firenze, Toscana). Atti Soc. Tosc. Sci. Nat. mem. Ser. B 115 (2008): 57-67.
57	Lastrucci L., Bonari G., Angiolini C., Casini F., Giallonardo T., Gigante D., Landi M., Landucci F., Venanzoni R. & Viciani D., 2014. Vegetation of Lakes Chiusi and Montepulciano (Siena, central Italy): updated knowledge and new discoveries. Plant Sociology 51(2): 29-55.
58	Lastrucci L., Ferretti G., Mantarano N. & Foggi B., 2019. Vegetation and habitat of conservation interest of the lake Acquato (Grosseto – Central Italy). Plant Sociology 56(1): 19-30.
Lastrucci L., Foggi B., Selvi F. & Becattini R., 2007. Contributo alla conoscenza della vegetazione e della flora delle aree umide nel comprensorio di Capalbio (provincia di Grosseto, Italia Centrale). Arch. Geobot. 10 (1-2)(2004): 1-30.

Lastrucci L., Landi M. & Angiolini C., 2010. Vegetation analysis on wetlands in a Tuscan agricultural landscape (central Italy). Biologia 65 (1): 54-68.

Lastrucci L., Landucci F., Gonnelli V., Barocco R., Foggi B. & Venanzoni R., 2012. The vegetation of the upper and middle River Tiber (Central Italy). Plant Sociology 49(2): 29-48.

Lastrucci L., Paci F. & Raffaelli M., 2008. Indagine vegetazionale su alcuni laghi di origine artificiale limitrofi alla Padule di Fucecchio (Toscana, Italia centrale). Ann. Mus. Civ. Rovereto 23 (2007): 169-203.

Lastrucci L., Valentini E., Dell’Olmo L., Vietina B. & Foggi B., 2015. Hygrophilous vegetation and habitats of conservation interest in the area of the Lake Porta (Tuscany, Central Italy). Atti Soc. Tosc. Sci. Nat., Mem., Serie B 122: 131-146.

Lastrucci L., Viciani D., Nuccio C. & Melillo C., 2008. Indagine vegetazionale su alcuni laghi di origine artificiale limitrofi alla Padule di Fucecchio (Toscana, Italia centrale). Ann. Mus. Civ. Rovereto 23 (2007): 169-203.

Lorenzoni G.G., 1963. La vegetazione infestante del mais nel Friuli nel Veneto e in Lombardia. Maydica 2: 5-55.

Lorenzoni G.G., 1964. Vegetazioni infestanti e ruderali della provincia di Vicenza. Lav. Bot. Ist. Bot. Univ. Padova 27: 1-46.

Maiorca G., Crisafulli A., Cameriere P. & Spampinato G., 2007. Flora vascolare e vegetazione della Riserva Naturale Regionale “Foce del Fiume Crati” (Calabria, Italia meridionale). Webbia 62 (2): 121-174.

Morgan I., Poli Marchese E., Di Benedetto L., Grillo S., & Razzara S., 1999. Valutazione della naturalità su basi vegetazionali del territorio di Castel di Judica (Sicilia orientale). Arch. Geobot. 5 (1-2): 157-193.

Mariotti M.G., 1995. Osservazioni sulla vegetazione della Liguria. Atti dei Convegni Lincei 115: 189-227.

Martini F. & Poldini L., 1980. Il paesaggio vegetale del fiume Noncello nell’area urbana di Pordenone. Gortania 2: 123-156.

Mereu L., Lastrucci L. & Viciani D., 2012. Contributo alla conoscenza della vegetazione del fiume Pesa (Toscana, Italia centrale). Stud. Bot. 29 (2010): 105-143.

Mondino G.P. & Scotta M., 1988. L’evoluzione della vegetazione nelle discariche di cava della Valle Ossola. Riv. Piem. St. Nat. 9: 69-76.

Montanari C., 1988. Note illustrative della carta della vegetazione dell’alta Val di Vara. Atti Ist. Bot. Lab. Critt. Univ. Pavia, serie 7, 6 (suppl.): 1-59.

Montanari C., 1988. Aspetti di vegetazione erbacea nei corsi d’acqua dell’Appennino Ligure. Boll. Mus. St. Nat. Lunigiana 6-7: 103-107.

Parolo G., 2000. La dinamica delle comunità a Robinia pseudoacacia L. in Valtellina. Arch. Geobot. 6 (2): 133-154.

Pedrotti F., 2004. Ricerche geobotaniche al Laghestel di Piné (1967-2001). Braun-Blanquetia 35: 1-54.

Pedrotti F., 2010. Neoﬁtismo e associazioni vegetali. Braun-Blanquetia 46: 345-349.

Pellizzari M., 2006. Studio della vegetazione e valutazione degli habitat dell’Idrovia Ferrarese. Ann. Mus. Civ. St. nat. Ferrara 7: 53-64.

Pellizzari M., 2009. La vegetazione del Po Ferrarese da Porporana all’Isola Bianca. Quad. Staz. Ecol. civ. Mus. St. nat. Ferrara 19: 49-80.

Pellizzari M. & Piccoli F., 2001. La vegetazione dei corpi idrici del Bosco della Mesola (Delta del Po). Quad. Staz. Ecol. civ. Mus. St. nat. Ferrara 13: 7-24.

Pellizzari M., Piubello F. & Fogli S. 2005. Aspetti vegetazionali del biotopo Brusà - Vallette (Cerea - Verona) e proposte per la conservazione degli habitat. Quad. Staz. Ecol. civ. Mus. St. nat. Ferrara 15: 23-51.

Perrino E.V., 2006. Vegetazione del Gargano (fasce costiera e collinare). Tesi di Dottorato in Scienze Ambientali I (Fitogeografia dei territori mediterranei).

Perrino E.V. & Calabrese G., 2014. Vascular flora of ancient olive groves of Apulia (southern Italy). Natura Croatica 23 (1): 189-218.

Perrino E.V., Ladisa G. & Calabrese G., 2014. Flora and plant genetic resources of ancient olive groves of Apulia (southern Italy). Genet. Resour. Crop Ev. 61 (1): 23-53.

Perrino E.V., Signorile G. & Marvulli M., 2013. A first checklist of the vascular flora of the Polignano a Mare coast (Apulia, southern Italy). Natura Croatica 22 (2): 295-318.

Perrino E.V., Tomasselli V., Costa R. & Pavone P., 2013. Conservation status of habitats (Directive 92/43 EEC) of coastal and low hill belts in a Mediterranean biodiversity hot spot (Gargano - Italy). Plant Biosystems 147 (4): 1006-1028.
89 Petraglia A., Tomasselli M., Borghi M.L., Cavozzi C. & Bolpagni R., 2005. Flora e vegetazione della Riserva Naturale Orien-
tata della Parma Morta (Italia settentrionale). Acta Naturalia de "L'Ateneo Parmense" 41 (1/2): 5-34.

90 Piccoli F. & Pellizzari M., 2003. Note ecologiche sulle comunità pleustofitiche a Lemna minuta H., B. & K. nel Parco Regionale del Delta del Po. Atti del Convegno Nazionale "Botanica delle zone umide" Vercelli - Albano Vercellese 10-11
novembre 2000. Mus. Reg. Sci. nat. Torino, pp. 221-230.

91 Pignatti S., 1952 - 1953. Introduzione allo studio fitosociologico della pianura veneta orientale con particolare riguardo alla
vegetazione litoranea. Arch. Bot. 28 (4): 265-329 (1952), 29 (1): 1-25 (1953), 29 (2): 65-98 (1953), 29 (3): 129-174 (1953).

92 Pirola A. & Rossetti A., 1974. Polygono-Xanthietum italici ass. nova, vegetazione di greto del corso medio del Reno (Bo-
gna). Not. Fitosoc. 8: 15-27.

93 Pirone G., 1983. La vegetazione del litorale pescarese (Abruzzo). Not. Fitosoc. 18: 37-62.

94 Pirone G., 1991. Flora e vegetazione del Fiume Saline (Abruzzo). Micol. Veget. Medit. 6 (1): 45-76.

95 Pirone G., 1995. Aspetti geobotanici del territorio di Roseto degli Abruzzi (Teramo, Italia centrale) - 1. La vegetazione. Micol. e Veget. Medit. 20 (1): 67-96.

96 Pirone G., 2001. Due nuove associazioni di margine stradale dell'Abruzzo (Italia centrale). Studia Geobotanica 22: 33-39.

97 Pirone G., 2005. La vegetazione del litorale di Martinsicuro nel contesto dell'ambiente costiero dell'Abruzzo: aspetti e prob-
lemi. In: Le dune di Martiniscuro nel sistema costiero dell'Abruzzo. Comune di Martiniscuro (TE), pp. 21-75.

98 Pirone G., 2015. Alberi, arbusti e liane d'Abruzzo. Cogecstre Edizioni, Penne (PE).

99 Pirone G. & Ferretti C., 1999. Flora e vegetazione spontanea della città di Pescara (Abruzzo, Italia). Fitosociologia 36 (1): 111-155.

100 Pirone G., Ciaschetti G., Di Martino L., Cianfaglione K., Giallonardo T. & Frattaroli A.R., 2014. Contribution to the knowl-
edge of the coastal vegetation of Abruzzo (central Adriatic). Plant Sociology 51 Suppl.1: 57-64.

101 Pirone G., Corbetta F. & Dragani G., 2006. La vegetazione urbica della città di Ortona (Abruzzo). Arch. Geobot. 9 (1-2)
(2003): 25-56.

102 Pirone G., Corbetta F., Frattaroli A.R. & Ciaschetti G., 2001. Aspetti della vegetazione costiera dell'Abruzzo. Biogeographia
22: 171-191.

103 Pisanu S., Farris E., Caria M.C., Filigheddu R., Urbani M. & Bagella S., 2014. Vegetation and plant landscape of Asinara
National Park. Plant Sociology 51 (1): 31-57.

104 Poldini L., 1989. La vegetazione del Carso isontino e triestino. Ed. Lint, Trieste, pp. 315.

105 Poldini L., Oriolo G. & Mazzolini G., 1998. The segetal vegetation of vineyards and crop fields in Friuli-Venezia Giulia (NE
Italy). Studia Geobot. 16: 5-32.

106 Poldini L., Vidali M. & Fabiani M.L., 1999. La vegetazione del litorale settentrionale dell'Alto Adriatico con particolare
riguardo ai Friuli-Venezia Giulia (NE Italia). Studia Geobot. 17: 3-68.

107 Poldini L., Vidali M. & Ganis P., 2011. Riparian Salix alba Scrubs of the Po lowland (N-Italy) from an European perspective.
Plant Biosystems 145 (Suppl. 1): 132-147.

108 Poponessi S., Allefi M., Gigante D. & Venanzoni R., 2016. Updates on the bryophyte flora of the lowland woods and tem-
porary ponds west of Lake Trasimen (Central Italy). Fl. Medit. 26: 151-162.

109 Prisco I., Stanisci A. & Acosta A.T.R., 2016. Mediterranean dunes on the go: evidence from a short term study on coastal
herbaceous vegetation. Estuarine, Coastal and Shelf Science 182: 40-46.

110 Prosser F. & Sarzo A., 2002. Flora e vegetazione dei fossi nel settore trentino del fondovalle dell'Adige (Trentino - Italia
settentrionale). Ann. Mus. civ. Rovereto, Sez. Arch., St., Sc. Nat. 18: 89-144.

111 Puglisi M., Minissale P., Scandrello S. & Privitera M., 2015. The bryophyte vegetation of the Mediterranean temporary
ponds in Italy. Plant Sociology 52 (2): 69-78.

112 Salerno G., Ceschin S., Notamurzi C. & Iannuzzi E., 2006. Notulae floristica: Sicyos angulatus L. (Cucurbitaceae). Inform.
Bot. Ital. 38 (1): 212.

113 Sartori F., 1988. Prunus serotina Ehrh. in Italia. Coll. Phytosoc. 14 (1985): 185-203.

114 Sartori F. & Bracco F., 1995. Flora e vegetazione del Po. Acc. Sc. Torino - Quaderni 1: 139-191.

115 Sburlino G., Tomassella, G. Oriolo & L. Poldini, 2004. La vegetazione acquatica e palustre dell'Italia nord-orientale. 1 -
La classe Lemnetae Tuxen ex O. Bolòs et Masclans 1955. Fitosociologia. 41 (1) suppl. 1: 27-42.

116 Sburlino G., Tomassella M., Oriolo G., Poldini L. & Bracco F., 2008. La vegetazione acquatica e palustre dell'Italia nord-orien-
tale. 2 – La classe Potametea Klik in Klik et V. Novák 1941. Fitosociologia, 45 (2): 3-40.

117 Scandrello S., Minissale P. & Sturiale G., 2017. Plant communities supported by the geological setting: the case history of the
Isola dei Ciclopi (east Sicily). Lazaroa 38 (1): 27-51.
118	Siniscalco C. & Barni E., 1994. L’incidenza delle specie esotiche nella flora e nella vegetazione della città di Torino. Allionia 32: 163-180.
119	Siniscalco C. & Montacchini F., 1989. Relation between ruderal and turfgrass vegetation in the city of Torino (Italy). Braun-Blanquetia 3: 127-136.
120	Siniscalco C., Minciardi M.R., Bari A., Potenza A., Zanini E. & Caramiello R., 1996. Historical-cartographic, vegetational and pedological study of Isolone del Ritano in the bed of the Dora Baltea River. Arch. Geobot. 2 (2): 97-112.
121	Taffetani F., Lancioni A. & Zitti S., 2011. Studio vegetazionale del bosco Fantine. I quaderni della selva “Il Bosco Fantine” 4: 46-81.
122	Tomaselli R. & Gentile S., 1971. La riserva naturale integrale "Bosco Siro Negri" dell’Università di Pavia. Atti. Ist. Bot. Lab. Critt. Univ. Pavia, serie 6, 7: 41-70.
123	Tomaselli V., Perrino E.V. & Cimarusti G., 2008. Paludi Sfinale e Gusmay, due aree umide di rilevante interesse naturalistico nel Parco Nazionale del Gargano. Inform. Bot. Ital. 40 (2): 183-192.
124	Ubaldi D., 2003. Flora, fitocenosi e ambiente. Elementi di Geobotanica e Fitosociologia. Clueb, Bologna, 334 pp.
125	Vagge I., Corradi N., Ferrari M., Balduzzi I. & Mariotti L.M., 2007. Aspetti vegetazionali e morfo-sedimentologici dei campi dunari di Platamona-Marritza con particolare riguardo all’area di Marina di Sorso (Sardegna settentrionale). Fitosociologia 44 (1): 33-48.
126	Venanzoni R. & Gigante D., 2000. Contributo alla conoscenza della vegetazione degli ambienti umidi dell’Umbria (Italia). Fitosociologia 37 (2): 13-63.
127	Villani M., 2001. La vegetazione ripariale del fiume Adige. Tesi di dottorato in Geobotanica XII ciclo, Università degli Studi di Pavia.
128	Villani M., 2004. Carta delle vocazioni apistiche del territorio dei Colli Euganei. Unpublished technical report. Available on: https://www.izsvenezie.it/documenti/temi/api/aree-nettarifere/2003-2004-mappatura-colli-euganei.pdf
129	Wagensommer R.P., Perrino E.V. & Russo G., 2017. Senecio inaequidens DC. (Asteraceae) + PUG. Italian Botanist 3: 63-64.
130	Zavagno F. & Gaìara S., 1997. Boschi relitti tra Milano e il Ticino: vegetazione, fenologia e dinamica evolutiva. Pianura 9: 27-61.