Abstract. Diabetic retinopathy (DR) is a common complication of diabetes mellitus (DM). We investigated whether Nogo receptor (NgR) knockdown and ciliary neurotrophic factor (CNTF) treatment, either alone or in combination, ameliorated diabetic retinopathy (DR) in diabetic rat model. STZ-induced diabetic rats were administrated for a total of 12 weeks with 3 µM siRNA (5 µl) once every 6 weeks and/or 1 µg CNTF weekly. The retinal tissues were excised. We measured cell number in ganglion cell layer (GCL) using H&E staining and cell apoptosis using TUNEL assay. Bax, Bcl-2, Caspase-3, F-actin, GAP-43, NgR, RhoA and Rock1 levels were then analyzed by Western blotting, Immunohistochemistry or Real-time PCR. We found that NgR siRNA or CNTF injection alone significantly increased cell count in GCL in diabetic rats, inhibited ganglion cell apoptosis, elevated Bcl-2, F-actin and GAP-43, and decreased Bax, Caspase-3, NgR, RhoA and Rock1 levels. Combination treatment further prevented retinal ganglion cell loss, enhanced growth cone cytoskeleton and axonal regeneration, and suppressed NgR/RhoA/Rock1. Our results indicate that combination therapy has therapeutic potential for the treatment of DR.

Introduction

Diabetes mellitus (DM) is the most common metabolic disease worldwide (1). DM may become the seventh leading cause of human death by the year 2030 (2). The complications of DM include microvascular (retinopathy, nephropathy and neuropathy) and macrovascular complications (cardiovascular disease) (3). Diabetic retinopathy (DR) is characterized by the increased vessel permeability and progressive vascular occlusion (4). DR is a main cause of visual impairment and blindness in adults (5). The pathogenesis of DR is multifactorial, such as hyperglycemia, advanced glycation end products, oxidative stress and inflammation (6,7).

Retinal ganglion cells (RGCs) are the final neurons in the retina that output vision signals to brain visual centers (8). The death of RGCs contributes to irreversible visual loss (9). Ciliary neurotrophic factor (CNTF) is a neurotrophic cytokine of the IL-6 family and can induce neuron differentiation in the central nervous system (10). Mathews et al have reported that CNTF administration promotes RGC survival and provides neuroprotection against ischaemic optic nerve injury in animal models (11). Aizu et al have found that topical instillation of CNTF via eye drops protects STZ-induced diabetic rats from retinal degeneration (12).

RhoA is a GTPase protein that regulates cytoskeleton reorganization in stress fiber formation (13). RhoA exerts its downstream effect via effector proteins, Rho-associated protein kinase 1 (Rock1) and Rock2 (14). Lu et al have demonstrated that RhoA/Rock1 signaling is involved in the protection of microvascular endothelial cell dysfunction induced by hyperglycemia in an in vitro model of DR (15). Nogo receptor (NgR) is a neural regeneration-associated membrane receptor for Nogo, oligodendrocyte-myelin glycoprotein and myelin-associated glycoprotein (16). Our previous study has demonstrated that NgR and Rock1 expression levels are elevated in the retina of diabetic rats. Downregulation of NgR inhibits retinal ganglion cell apoptosis and decreases Rock1 expression (17).

Our study focused on the effect of NgR inhibition and CNTF treatment on RGCs in DR in vivo. Furthermore, we evaluated the synergistic effect of combination therapy and the possible protective mechanisms. Our study provides a novel strategy for DR treatment.

Materials and methods

Animals and treatment. Male Sprague Dawley (SD) rats (weighting 200-250 g, purchased from Vital River, Beijing,
Western blotting. The retinal tissues were lysed on the ice, followed by protein extraction. The protein concentration was determined by BCA assay kit (Wanleibio, Shenyang, China). All the rats were sacrificed after 12 weeks. The retinal tissues were excised and fixed in 4% paraformaldehyde for further analyses. The retinal tissues were lysed on the ice, and the number of cells in GCL. The results showed that the number of cells in GCL was significantly reduced in diabetic rats compared with those in non-diabetic control rats. We found that NgR siRNA or CNTF injection alone increased the number of cells in GCL. Similarly, combination treatment further enhanced the ability of single treatment, although the difference was not statistically significant.

Results

Effect of NgR siRNA and CNTF injection on the number of cells in GCL in diabetic rats. Histopathological examination showed that the cell numbers in GCL (Fig. 1) were decreased in diabetic rats compared with those in non-diabetic control rats. We found that NgR siRNA or CNTF injection alone increased the number of cells in GCL. Similarly, combination treatment further enhanced the ability of single treatment, although the difference was not statistically significant.
Effect of NgR siRNA and CNTF injection on cell apoptosis in the retinal tissues of diabetic rats.

Death of RGCs is one of the earliest events in DR occurrence and progression (18). Therefore, we evaluated cell apoptosis using TUNEL assay. As expected, diabetic rats presented higher apoptosis rate of the cells in the retina than control rats (Fig. 2A). However, NgR knockdown or CNTF incubation significantly protected RGCs against apoptosis in diabetic rats. Combined injection of NgR siRNA and

Effect of NgR siRNA and CNTF injection on cell apoptosis in the retinal tissues of diabetic rats. (A) Apoptosis was detected by TUNEL assay. Scale bars 50 μm. (B) Bcl-2, Bax and Caspase-3 protein levels were examined by western blotting. *P<0.05 and **P<0.01 vs. STZ group. &P<0.05 and &&P<0.01 vs. STZ+control siRNA group. $$$P<0.01 vs. STZ+NgR siRNA group. ##P<0.01 vs. STZ+CNTF group.
CNTF decreased the apoptotic rate of RGCs in diabetic rats in comparison with the STZ+NgR siRNA group or STZ+CNTF group, however, no significant difference was observed between the single treatment group and the combination group. Next, we measured the levels of apoptosis-related proteins (Bax, Bcl-2 and Caspase-3) in the retinal tissues using western blotting. We demonstrated that Bax and Caspase-3 levels were significantly upregulated in the retinal tissues of diabetic rats compared with control rats, whereas anti-apoptotic protein Bcl-2 was downregulated. NgR siRNA alone and CNTF injection alone notably reversed diabetes-induced cell apoptosis by decreasing Bax and Caspase-3 levels and increasing Bcl-2 level. Compared with the STZ+NgR siRNA group or STZ+CNTF group, NgR siRNA injection combined with CNTF further enhanced the anti-apoptotic effect of NgR knockdown and CNTF.

Effect of NgR siRNA and CNTF injection on growth cone cytoskeleton and axonal regeneration. To evaluate the effect of NgR knockdown and CNTF treatment, either alone or in combination, on growth cone cytoskeleton and axonal regeneration, we measured the expression levels of F-actin and GAP-43 in the retinal tissues. We observed the downregulated expression of F-actin and GAP-43 at both protein (Fig. 3A) and mRNA levels (Fig. 3B) in the retinal tissues of diabetic rats. However, NgR siRNA or CNTF incubation significantly elevated the levels of these two proteins. Moreover, the combination of NgR siRNA and CNTF further increased F-actin and GAP-43 levels. We then performed IHC analysis (Fig. 3C) and verified the results obtained from western blotting and qPCR.

Effect of NgR siRNA and CNTF injection on NgR/RhoA/Rock1 signaling pathway. We then examined the effect of NgR knockdown and CNTF treatment, either alone or in combination, on the activation of NgR/RhoA/Rock1 signaling pathway in diabetic rats. The results showed that NgR, RhoA and Rock1 levels were elevated in diabetic rats in comparison with
control rats, as demonstrated by western blotting (Fig. 4A) and qPCR (Fig. 4B). After injection with NgR siRNA or CNTF, the diabetic rats expressed lower levels of NgR, RhoA and Rock1 in the retinal tissues than the corresponding model rats. As expected, the expression of NgR, RhoA and Rock1 were significantly inhibited by the combined administration of NgR siRNA and CNTF compared with the single treatment group.

Discussion

Understanding the pathological mechanisms of DR and targeting them are essential to DR prevention. In our study, we aimed to investigate the effect of NgR/RhoA/Rock1 signaling pathway inhibition and/or CNTF treatment on retinal ganglion cells in diabetic rats.

RGCs are the main part of nervous tissues in the retina and they relay visual signals to the brain (19). Apoptosis of RGCs plays an essential role in onset and progression of DR (20). Tong et al have demonstrated that NgR silencing inhibits C6 cell proliferation and promotes cell apoptosis (21). Wang et al have reported that CNTF protects neuroblastoma SH-SY5Y cells from cytotoxicity and apoptosis induced by amyloid beta peptide (Aβ1-42) (22). However, the effect of NgR knockdown or CNTF treatment and their synergistic effect on RGC-5 cells needed to be clarified. In our study, a rat model of DM was induced by a single injection of STZ (65 mg/kg). After administration of siRNAs or CNTF, the retinal tissues were excised and subjected to H&E staining to measure RGC count. The results showed that NgR siRNA or CNTF injection, as well as combined therapy, prevented diabetes-induced the loss of ganglion cells in GCL. B-cell-lymphoma 2 (Bcl-2) protein family members regulate cell apoptosis and this family consists of proapoptotic proteins (Bax and Bad) and antiapoptotic (Bcl-2 and Bcl-xL) (23). Bax is a soluble protein that usually exists in the cytosol. Bax translocates to mitochondrial membranes, enhances membrane permeabilization, results in cytochrome c release and thus induces apoptosis (24). However, Bcl-2 can inhibit the translocation of Bax in the cells undergo apoptosis (25). Apoptosis is the result of caspase cascades. Caspase-3 is the downstream executor of these cascades (26). The results showed that, consistent with previous study (27), diabetes induced RGC apoptosis in the retinal tissues, along with the increases of Bax and Caspase-3 and the decrease of Bcl-2. NgR siRNA or CNTF injection, as well as combined therapy, protected cells from diabetes-induced apoptosis by downregulating Bax and Caspase-3 and upregulating Bcl-2. Our results suggested that both single agent treatment and combination treatment alleviated diabetes-induced apoptosis by regulating the expression of apoptosis-related proteins in diabetic rats.

F-actin is a main element of cytoskeleton and functions in cell shape, motility and division (28). F-actin dynamics plays an important role in regulating axon extension (29). GAP-43, which belongs to the calmodulin-binding protein family, is a protein kinase C (PKC) substrate and is highly expressed in adult RGCs (30,31). Increased expression of GAP-43 correlates with cytoskeletal organization in nerve ending, neurite outgrowth and axon regeneration (32). Liu et al have found that CNTF attenuates gp120-induced inhibition of neurite outgrowth by elevating GAP-43 expression in dorsal root ganglion (DRG) explants (33). Our results showed that diabetes resulted in the loss of F-actin and GAP-43 in the retina. NgR siRNA, CNTF or combination injection prevented diabetes-induced loss of F-actin and GAP-43. Our results...
suggested that NgR siRNA, CNTF or combination injection may promote growth cone cytoskeleton and axonal regeneration by regulating F-actin and GAP-43.

RhoA, a small GTPase protein, is associated with the contractility of actin cytoskeleton (13). Moreover, RhoA has been demonstrated to be involved in cell proliferation, apoptosis and metastasis (34). Rock1 is a downstream target of RhoA (35). Peng et al. have reported that RhoA/ROCK1 pathway is inhibited by simvastatin in the treatment of early-stage of diabetic nephropathy (DN) (36). Additionally, RhoA/ROCK1 pathway has been shown to be involved in the pathology of DR via triggering microvascular endothelial dysfunction (15). In our study, we demonstrated that NgR siRNA, CNTF or combination injection inhibited the activation of NgR/RhoA/Rock1 signaling pathway induced by diabetes.

In conclusion, the combination of NgR knockdown and CNTF treatment exhibits obvious advantages over either therapy alone. The combined therapy may be a potential therapeutic strategy for the treatment of DR.

Acknowledgements

This study was supported by a grant from the National Natural Science Foundation of China (grant no. 81571383).

References

1. Kassor Hossain M, Abdal Dayem A, Han J, Kumar Saha S, Yang GM, Choi HY and Cho SG: Recent advances in disease modeling and drug discovery for diabetes mellitus using induced pluripotent stem cells. Int J Mol Sci 17: 256, 2016.
2. Rothman I, Ghugre N, Zia MI, Farkouh ME, Zavodni A, Wright GA and Connelly KA: Diabetes is an independent predictor of right ventricular dysfunction post ST-elevation myocardial infarction. Cardiovasc Diabetol 15: 34, 2016.
3. Amutha A and Mohan V: Diabetes complications in childhood and adolescent onset type 2 diabetes-a review. J Diabetes Complications 30: 951-957, 2016.
4. van den Born JC, Hammes HP, Greffrath W, van Goor H and Hillebrands JL; DFG GRK International Research Training Group 1874 Diabetic Microvascular Complications (DIAMICOM): Gasotransmitters in vascular complications of diabetes, Diabetes 65: 331-345, 2016.
5. Kur J, Burian MA and Newman EA: Light adaptation does not prevent early retinal abnormalities in diabetic rats. Sci Rep 6: 21075, 2016.
6. Liu S, Lin YU and Liu X: Protective effects of SIRT1 in patients with proliferative diabetic retinopathy via the inhibition of IL-17 expression. Exp Ther Med 11: 257-262, 2016.
7. He K, Lv W, Zhang Q, Wang Y, Tao L and Liu D: Gene set enrichment analysis of pathways and transcription factors associated with diabetic retinopathy using a microarray dataset. Int J Mol Med 36: 103-112, 2015.
8. Nashes S, Liu Y, Kim BJ, Clark AF and Pang IH: Role of C/EBP homologous protein in retinal ganglion cell death after ischemia/reperfusion injury. Invest Ophthalmol Vis Sci 56: 221-231, 2014.
9. Wang W, Chan A, Qin Y, Kwong JM, Caprioli J, Levinson R, Atkinson Leadbetter K, Hehr CL, Johnston J, Bertolesi G and McFarlane S: EGCG stabilizes growth cone filopodia and prevents early retinal abnormalities in diabetic rats. Sci Rep 6: 21075, 2016.
10. Martin PM, Roop RV and Van Ells TK: Ganapathy V and Smith SB: Death of retinal neurons in streptozotocin-induced diabetic mice. Invest Ophthalmol Vis Sci 45: 3330-3336, 2004.
11. Galan A, Dergham P, Escoll P, de-la-Hera A, D’Onofrio PM, Magharris MM, Koeberle PD, Frade JM and Saragovi HU: Neuronal injury external to the retina rapidly activates retinal astrocytes via elevation of markers for cell cycle re-entry and death in retinal ganglion cells. PLoS One 9: e101349, 2014.
12. Wang DD, Zhu HZ, Li SW, Yang JM, Xiao Y, Kang QR, Li CY, Zhao Y, Zeng Y, Li Y, et al: Crucial saponins of Panax notoginseng have neuroprotective effects to inhibit palmitate-triggered endoplasmic reticulum stress-associated apoptosis and loss of post-synaptic proteins in streptozotocin differentiated RGC-5 retinal ganglion cells. J Agric Food Chem 64: 1528-1539, 2016.
13. Tong S, Xiong N and Shen J: RNA interference suppression of Nogo-66 receptor prevents Nogo-66-mediated inhibition of invasion and adhesion and simultaneously increases cell apoptosis in C6 cells. Onco Rep 30: 2171-2178, 2013.
14. Wang K, Xie M, Zhu L, Zhu X, Zhang K and Zhou F: Ciliary neurotrophic factor protects SH-SY5Y neuroblastoma cells against Aβ1-42-induced neurotoxicity via activating the JAK2/STAT3 axis. Folia Neuropathol 53: 226-235, 2015.
15. Cheng CH, Cheng YP, Chang LL, Chen HY, Wu CC and Hsieh CP: Dodecyl gallate induces apoptosis by upregulating the caspase-dependent apoptotic pathway and inhibiting the expression of anti-apoptotic Bel-2 family proteins in human osteosarcoma cells. Mol Med Rep 13: 1495-1500, 2016.
16. Zhang M, Li Q, Zhou C, Dau C, Yu M, Yang Y, Zhang S, Lei L, Yang L and Zhang Z: Glucagonlike peptide1 protects cardiomyocytes from advanced oxidation protein production-induced apoptosis via the PI3K/Akt/BAD signaling pathway. Mol Med Rep 13: 1593-1601, 2016.
17. Zhang X, Jiang D, Jiang W, Zhao M and Gan J: Role of TLR4-Mediated PI3K/AKT/GSK-3β signaling pathway in apoptosis of rat hepatocytes. Biomed Res Int 2015: 631326, 2015.
18. Fourneau G, Nogueira JC and Ferreira AJ: Activation of endogenous angiotensin enzyme 2 prevents early injuries induced by hyperglycemia in rat retina. Braz J Med Biol Res 48: 1109-1114, 2015.
19. Yamazaki S, Yamamoto K de Lanerolle P and Harata M: Nuclear F-actin enhances the transcriptional activity of β-catenin by increasing its nuclear localization and binding to chromatin. Histochem Cell Biol 145: 389-399, 2016.
20. Atkinson-leadbetter K, Hehr CL, Johnston J, Bertolesi G and McFarlane S: EGCg stabilizes growth cone filopodia and improves retinal ganglion cell axon guidance. Dev Dyn 245: 667-677, 2016.
21. Zhu Q, Liu Z, Wang C, Nie L, He Y, Zhang Y, Liu X and Su G: Lentiviral-mediated-activated-associated protein-43 modification of bone marrow mesenchymal stem cells improves traumatic optic neuropathy in rats. Mol Med Rep 12: 5691-5700, 2015.
31. Ivanov D, Dvoriantchikova G, Nathanson L, McKinnon SJ and Shestopalov VI: Microarray analysis of gene expression in adult retinal ganglion cells. FEBS Lett 580: 331-335, 2006.

32. Benowitz LI and Routtenberg A: GAP-43: An intrinsic determinant of neuronal development and plasticity. Trends Neurosci 20: 84-91, 1997.

33. Liu H, Liu G and Bi Y: CNTF regulates neurite outgrowth and neuronal migration through JAK2/STAT3 and PI3K/Akt signaling pathways of DRG explants with gp120-induced neurotoxicity in vitro. Neurosci Lett 569: 110-115, 2014.

34. Huang Y, Chen JB, Yang B, Shen H, Liang JJ and Luo Q: RhoA/ROCK pathway regulates hypoxia-induced myocardial cell apoptosis. Asian Pac J Trop Med 7: 870-888, 2014.

35. Chang J, Xie M, Shah VR, Schneider MD, Entman ML, Wei L and Schwartz RJ: Activation of Rho-associated coiled-coil protein kinase 1 (ROCK-1) by caspase-3 cleavage plays an essential role in cardiac myocyte apoptosis. Proc Natl Acad Sci USA 103: 14495-14500, 2006.

36. Peng H, Luo P, Li Y, Wang C, Liu X, Ye Z, Li C and Lou T: Simvastatin alleviates hyperpermeability of glomerular endothelial cells in early-stage diabetic nephropathy by inhibition of RhoA/ROCK1. PLoS One 8: e80009, 2013.