Remarks on Liouville type theorems for the 3D steady axially symmetric Navier-Stokes equations

Wendong Wang

Dalian University of Technology, China
&University of Oxford, UK

May 9, 2018

Abstract

In this note, we investigate the 3D steady axially symmetric Navier-Stokes equations, and obtained Liouville type theorems if the velocity or the vorticity satisfies some a priori decay assumptions.

Keywords: Liouville type theorem, Navier-Stokes equations, axially symmetric Navier-Stokes equations

1 Introduction

An interesting question about Liouville type theorem of the 3D stationary Navier-Stokes equations in \mathbb{R}^3 is as follows: whether the solution of

\[
\begin{aligned}
- \Delta u + u \cdot \nabla u &= -\nabla p, \\
\nabla \cdot u &= 0,
\end{aligned}
\]

satisfying the vanishing property at infinity

\[
\lim_{|x| \to \infty} u(x) = 0,
\]

and the bounded Dirichlet energy

\[
D(u) = \int_{\mathbb{R}^3} |\nabla u|^2 dx < \infty
\]
implies \(u \equiv 0 \) is still an open problem, which is related to J. Leray (see also P12. Galdi [7]).

Many conditional criteria have been obtained for this issue. For example, Galdi proved the above Liouville type theorem by assuming \(u \in L^2_2(R^3) \) in [7]. Chae in [2] showed the condition \(\Delta u \in L^4(R^3) \) is sufficient for the vanishing property of \(u \). Also, Chae-Wolf gave an improvement of logarithmic form for Galdi’s result in [4] by assuming that \(\int_{R^3} |u|^8 \{ \ln(2 + \frac{1}{|u|}) \}^{-1} dx < \infty \). Seregin obtained the conditional criterion \(u \in BMO^{-1}(R^3) \) in [12]. Moreover, Kozonoa-Terasawab-Wakasugib proved \(u \equiv 0 \) if the vorticity \(w = o(|x|^{-\frac{\mu}{2}}) \) or \(\|u\|_{L^2_2(R^3)} \leq \delta D(u)^{1/3} \) for a small constant \(\delta \) in [10]. It is shown that all the above norms \(u \in L^2_2(R^3) \), the log form of \(u \in L^2_2(R^3) \) or \(u \in L^2_2(R^3) \) can be replaced by the norms in the annular domain \(B_R \setminus B_{R/2} \) in [16] by Seregin and the author, where the following energy description was stated:

\[
\int_{B_{R/2}} |\nabla u|^2 dx \leq CR^{-2} \left(\int_{B_R \setminus B_{R/2}} |u|^2 dx \right) + C(q) R^{2-q} \|u\|_{L^{q, \infty}(B_R \setminus B_{R/2})}^3
\]

where \(B_R = B_R(0) \) is a ball centered at 0 and \(q > 3 \). Note that the conditions (2) and (3) are not used in [16] as in [4]. More references, we refer to [3, 13, 14] and the references therein.

Moreover, the problem is not solved, even for the case of axially symmetric Navier-Stokes equations, to the best of the author’s knowledge. Motivated by the result Seregin in [14], where he proved that the condition \(|u| \lesssim \frac{1}{|x'|^\mu} \) with \(x' = (x_1, x_2) \) and \(\mu \approx 0.77 \) implies \(u \equiv 0 \), we are aimed to improve the decay assumption. At first, let us introduce the axially symmetric Navier-Stokes equations. Let \(u(x) = u_r(t, r, z)e_r + u_\theta(t, r, z)e_\theta + u_z(t, r, z)e_z \), where

\[
e_r = \left(\frac{x_1}{r}, \frac{x_2}{r}, 0 \right) = (\cos \theta, \sin \theta, 0),
\]

\[
e_\theta = \left(-\frac{x_2}{r}, \frac{x_1}{r}, 0 \right) = (-\sin \theta, \cos \theta, 0),
\]

\[
e_z = (0, 0, 1)
\]

and (1) becomes

\[
\begin{cases}
 b \cdot \nabla u_r - \Delta_0 u_r + \frac{u_r}{r^2} - \frac{u_\theta^2}{r} + \partial_r p = 0, \\
 b \cdot \nabla u_\theta - \Delta_0 u_\theta + \frac{u_\theta}{r^2} + \frac{u_r u_\theta}{r} = 0, \\
 b \cdot \nabla u_z - \Delta_0 u_z + \partial_z p = 0, \\
 \partial_r (ru_r) + \partial_z (ru_z) = 0,
\end{cases}
\]

where

\[
b = u_r e_r + u_z e_z, \quad \Delta_0 = \partial_{rr} + \frac{1}{r} \partial_r + \partial_{zz}.
\]
The vorticity is represented as
\[
w = w_r e_r + w_\theta e_\theta + w_z e_z = (\partial_z u_\theta)e_r + (\partial_z u_r - \partial_r u_z)e_\theta + \frac{\partial_r (ru_\theta)}{r} e_z.
\]

There are also many developments on the Liouville type theorems of a xi-symmetric case. For example, Liouville type theorem was proved by assuming no swirl (i.e. \(u_\theta = 0\)), see Koch-Nadirashvili-Seregin-Sverak [9] or Korobkov-Pileckas-Russo[11]. The condition \(ru_\theta \in L^q\) with some \(q \geq 1\) or \(b \in L^3\) is enough, see Chae-Weng in [5]. Specially, for the axially symmetric case, the decay of the velocity or the vorticity can be obtained: Choe-Jin [6], Weng [17] proved that
\[
|u_r(r, z)| + |u_z(r, z)| + |u_\theta(r, z)| \lesssim \sqrt{\ln r},
\]
\[
|w_\theta(r, z)| \lesssim r^{-\left(\frac{q}{q+1}\right)},
\]
\[
|w_r(r, z)| + |w_z(r, z)| \lesssim r^{-\left(\frac{q}{q+1}\right)}
\]
Recently, Carrillo-Pan-Zhang in [1] gave an alternative method for the decay of \(u\) and an improvement for the decay bound of the vorticity
\[
|w_\theta(r, z)| \lesssim r^{-\frac{2}{3}}(\ln r)^{\frac{2}{3}},
\]
\[
|w_r(r, z)| + |w_z(r, z)| \lesssim r^{-\frac{2}{3}}(\ln r)^{\frac{1}{3}}
\]
by using Brezis-Gallouet inequality.

It’s a natural question: whether there exist the sharp constants \(\mu_1, \mu_2\) such that
\[
|(u_r(r, z), u_z(r, z), u_\theta(r, z))| \lesssim \frac{1}{r^{\mu_1}} \text{ or } |(w_r(r, z), w_z(r, z), w_\theta(r, z))| \lesssim \frac{1}{r^{\mu_2}}
\]
implies that \(u \equiv 0\) for the axially symmetric case?

With the help of energy estimates in [16] we can improve the result in [14] to \(\mu > \frac{2}{3}\), which is almost a equivalent form of \(u \in L^2_t L^\frac{q}{q+3} \rightarrow \infty\).

Theorem 1.1. Suppose that \(u\) is axially symmetric smooth solution of the equation (4) and for some \(\mu > \frac{2}{3}\),
\[
|u| \leq \frac{C}{(1 + r)^\mu}.
\]
Then \(u \equiv 0\).

Note that \(\Gamma = ru_\theta\) satisfies the special structure
\[
b \cdot \nabla \Gamma - \Delta_0 \Gamma + \frac{2}{r} \partial_r \Gamma = 0
\]
and Maximum principle can be applied, thus the condition \(u_\theta = o(\frac{1}{r})\) as \(|x| \rightarrow \infty\) implies \(u\) is trivial. However, it’s still known that whether \(u_\theta = o(\frac{1}{r})\) can be replaced by \(u_\theta = O(\frac{1}{r})\). But we show that the condition \(|b| = O(\frac{1}{r})\) or \(b \in BMO^{-1}(R^3)\) is sufficient, which improved the assumption \(b \in L^3(R^3)\) in [5].
Here we say a function $f \in BMO^{-1}(R^3)$ if there exists a vector-value function $d \in R^3$ and $d_j \in BMO(R^3)$ such that $f = \text{div} \, d = d_{j,j}$. It’s well-known that for the BMO space, we have

$$\Gamma(s) = \sup_{x_0 \in R^3, R > 0} \left(\frac{1}{|B_R(x_0)|} \int_{B_R(x_0)} |d - d_{x_0,R}|^s dx \right)^{\frac{1}{s}} < \infty.$$

for any $s \in [1, \infty)$.

In details, we obtained the following result.

Theorem 1.2. Suppose that u is axially symmetric smooth solution of the equation (4) satisfying (2) and (3). Then $u \equiv 0$ if one of the following conditions is satisfied

(i) $b = (u_r, u_z) \in BMO^{-1}(R^3)$;

(ii) $|b| \leq \frac{C}{r}$

For the decay of the vorticity, we also state the following corresponding result.

Theorem 1.3. Suppose that u is axially symmetric smooth solution of the equation (4) satisfying (2) and (3). Moreover,

$$|w_r, w_\theta, w_z| \leq \frac{C}{r^\beta}, \quad \beta > \frac{5}{3}.$$

Then $u \equiv 0$.

Remark 1. This conclusion generalized the result of [10] to the axially symmetric case, where the condition $|w| = o(|x|^{-\frac{5}{3}})$ was put.

Throughout this article, C denotes a constant, which may be different from line to line.

2 Proof of Theorem 1.1

Recall a Caccioppoli inequality in [16], which is stated as follows.

Proposition 2.1. Let (u, p) be the smooth solution of (1). Then for $0 < \delta \leq 1$ and $\frac{6(3-\delta)}{6-\delta} < q < 3$, we have

$$\int_{B_{R/2}} |\nabla u|^2 dx \leq \frac{C}{R^2} \left(\int_{B_R \setminus B_{R/2}} |u|^2 dx \right) + C(\delta) \left(\|u\|_{L^{\frac{3-\delta}{\delta}}(B_R \setminus B_{R/2})} R^2 \right)^\frac{\delta}{2} \left(\frac{\delta}{3-\delta} \right)^{\frac{q}{2}} \frac{R}{2}.$$
Proof of Theorem 1.1. Let C_R denote the cylindrical region $\{x; |x'| \leq R, |z| \leq R\}$, then it’s easy to check that

$$B_R \subset C_R \subset B_{\sqrt{3}R}.$$

Hence, it follows from Proposition 2.1 that

$$\int_{C_{\sqrt{3}R}} |\nabla u|^2 dx \leq \frac{C}{R^2} \left(\int_{C_R \setminus C_{\sqrt{3}R}} |u|^2 dx \right) + C(\delta) \left(\|u\|^3_{L^q,\infty(C_R \setminus C_{\sqrt{3}R})} R^{2-\frac{9-3\delta}{3} - \frac{\delta}{2}} \right)^{\frac{2}{2-\delta}}$$

\begin{equation}
\leq C\|u\|^2_{L^q(C_R)} R^{1-\frac{6}{q}} + C(\delta, q) \left(\|u\|^3_{L^q(C_R)} R^{2-\frac{9-3\delta}{3} - \frac{\delta}{2}} \right)^{\frac{2}{2-\delta}} \tag{5}
\end{equation}

for $q > 2$, where we used the property of Lorentz space

$$\|u\|_{L^q,\infty(\Omega)} \leq C(q, \ell) \|u\|_{L^{q,\ell}(\Omega)}$$

(for example, see Proposition 1.4.10 in [8]).

For $\mu q > 2$, we have

$$\|u\|_{L^q(C_R)} \leq C \left(R \int_0^R (1 + r)^{1-\mu q} dr \right)^{\frac{1}{q}} \leq C(\mu, q) R^{\frac{1}{q}}$$

Then the terms of the right hand side of (5) is controlled by

$$\int_{C_{\sqrt{2}R}} |\nabla u|^2 dx \leq C(\mu, q) R^{1-\frac{4}{q}} + C(\delta, \mu, q) \left(R^{2-\frac{4}{2} - \frac{6-2\delta}{q}} \right)^{\frac{2}{2-\delta}} \tag{6}$$

Claim that: for fixed $\mu > \frac{2}{3}$, there exist constants $\delta \in (0, 1)$ and q such that

$$\max\{6 - 3\delta, 2\mu\} < q < 3, \quad \text{and} \quad 2 - \frac{\delta}{2} - \frac{6 - 2\delta}{q} < 0 \tag{7}$$

hence letting $R \to \infty$, by (6) we have

$$\int_{R^3} |\nabla u|^2 dx = 0,$$

which implies $u \equiv 0$.

Proof of (7). First for fixed $\mu > \frac{2}{3}$, we choose $\delta_0 \in (0, 1)$ such that

$$\frac{2}{\mu} < 4 \frac{3 - \delta_0}{4 - \delta_0}$$
Since $0 < \delta_0 < 1$, we have

$$1 - \frac{\delta_0}{4} < 1 - \frac{\delta_0}{6},$$

and

$$\frac{6}{6 - \delta_0} > \frac{4}{4 - \delta_0}$$

so we take

$$q = \frac{1}{2} \left(\max \left\{ \frac{6}{6 - \delta_0}, \frac{2}{\mu} \right\} + \frac{4}{4 - \delta_0} \right)$$

Then we have

$$\max \left\{ \frac{6}{6 - \delta_0}, \frac{2}{\mu} \right\} < q < \frac{4}{4 - \delta_0} < 3,$$

which implies (7).

Hence the proof of Theorem 1.1 is complete.

3 Proof of Theorem 1.2

Let $\phi(x) = \phi(r, z) \in C_0^\infty(C_R)$ and $0 \leq \phi \leq 1$ satisfying

$$\phi(x) = \begin{cases} 1, & x \in C_{R/2}^c, \\ 0, & x \in C_R \end{cases}$$

and

$$|\nabla \phi| \leq \frac{C}{R}, \quad |\nabla^2 \phi| \leq \frac{C}{R^2}.$$

Without loss of generality, by Theorem X.5.1 in [7] we can assume that

$$\lim_{|x| \to \infty} |p| + |u| = 0.$$

Note that $\Delta p = -\partial_i \partial_j (u_i u_j)$, then using Calderón-Zygmund estimates and gradient estimates of harmonic function, we have

$$\int_{R^3} |p|^3 + |u|^6 dx < CD(u)^3,$$

and

$$\|\nabla p\|_{L^2(R^3)} < CD(u),$$
since \(\| \nabla u \|_{L^2(R^3)} \leq CD(u) \).

Multiplying \(\phi u \cdot \) on both sides of (1), integration by parts yields that

\[
\int_{C_R} \phi \left(|\nabla u_r|^2 + |\nabla u_\theta|^2 + |\nabla u_\varphi|^2 + \frac{u_r^2}{r^2} + \frac{u_\theta^2}{\theta^2} \right) \, dx
\leq \int_{C_R} \left(\frac{1}{2} |u|^2 + p \right) (u_r \partial_r + u_\varphi \partial_\varphi) \phi \, dx + C \| u \|_{L^6(C_R \cap C_{R/2})}^2 \leq I + C \| u \|_{L^6(C_R \cap C_{R/2})}^2.
\]

Case (i). Due to \(u_r, u_\varphi \in BMO^{-1}(R^3) \), we write

\[
u_r = \partial_j d_{1,j}, \quad u_\varphi = \partial_j d_{2,j}, \quad j = 1, 2, 3,
\]

where \(d_{1,j}, d_{2,j} \in BMO(R^3) \). Also, denote \(\bar{f} \) as the mean value of \(f \) on the domain \(C_R \).

Then we have

\[
I = \int_{C_R} \left(\frac{1}{2} |u|^2 + p \right) \left[\partial_j (d_{1,j} - \bar{d}_{1,j}) \partial_r + \partial_j (d_{2,j} - \bar{d}_{2,j}) \partial_\varphi \right] \phi \, dx
\]

\[
- \int_{C_R} \partial_j \left(\frac{1}{2} |u|^2 + p \right) \left[(d_{1,j} - \bar{d}_{1,j}) \partial_r \phi + (d_{2,j} - \bar{d}_{2,j}) \partial_\varphi \phi \right] \, dx
\]

\[
- \int_{C_R} \left(\frac{1}{2} |u|^2 + p \right) \left[(d_{1,j} - \bar{d}_{1,j}) \partial_r (\partial_r \phi) + (d_{2,j} - \bar{d}_{2,j}) \partial_\varphi (\partial_\varphi \phi) \right] \, dx
\]

Recall that \(\phi(x) = \phi(r, \varphi) \) and

\[
\partial_j \partial_r \phi = \partial_\varphi \partial_j \phi, \quad \text{for} \ j = 1, 2, 3,
\]

\[
\partial_j \partial_\varphi \phi = \partial_\varphi \partial_j \phi, \quad \text{for} \ j = 3,
\]

\[
\partial_\varphi \partial_\varphi \phi = \cos \theta \partial_r^2 \phi, \quad \partial_\varphi \partial_r \phi = \sin \theta \partial_r^2 \phi,
\]

which and the property of BMO function yield that

\[
I \leq CR^{-1} \| \nabla(|u|^2) \| + \| \nabla p \|_{L^2(C_R \cap C_{R/2})} (\| d_{1,j} - \bar{d}_{1,j} \|_{L^3(C_R)} + \| d_{2,j} - \bar{d}_{2,j} \|_{L^3(C_R)})
\]

\[
+ CR^{-2} (\| u \|_{L^6(C_R \cap C_{R/2})} + \| p \|_{L^3(C_R \cap C_{R/2})}) (\| d_{1,j} - \bar{d}_{1,j} \|_{L^2(C_R)} + \| d_{2,j} - \bar{d}_{2,j} \|_{L^2(C_R)})
\]

\[
\leq C \| \nabla(|u|^2) \| + \| \nabla p \|_{L^2(C_R \cap C_{R/2})} + C (\| u \|_{L^6(C_R \cap C_{R/2})} + \| p \|_{L^3(C_R \cap C_{R/2})})
\]

\[
\to 0 \quad (\text{as} \ R \to \infty)
\]

Hence, the proof of case (i) is complete.

Case (ii). When \(|(u_r, u_\varphi)| \leq \frac{C}{r} \) for \(r > 0 \),

\[
I = \int_{C_R} \left(\frac{1}{2} |u|^2 + p \right) (u_r \partial_r + u_\varphi \partial_\varphi) \phi \, dx
\]
\[\begin{array}{c}
\leq C \int_{C_R} \left(\frac{1}{2} |u|^2 + |p| \right) (\partial_r \ln(r) |\partial_r \phi| + \partial_r \ln(r) |\partial_z \phi|) \, dx.
\end{array} \]

Let \(g(r) = \ln(r) \) and \(\bar{g} \) be the mean value of \(g \) on \(\{ x' ; |x'| \leq R \} \). Then we have

\[I \leq -C \int_{C_R} \partial_r \left(\frac{1}{2} |u|^2 + |p| \right) (g - \bar{g}) (|\partial_r \phi| + |\partial_z \phi|) \, dx \]

\[-C \int_{C_R} \left(\frac{1}{2} |u|^2 + |p| \right) (g - \bar{g}) \partial_r (|\partial_r \phi| + |\partial_z \phi|) \, dx \]

\[-C \int_{C_R} \left(\frac{1}{2} |u|^2 + |p| \right) (g - \bar{g}) \frac{1}{r} (|\partial_r \phi| + |\partial_z \phi|) \, dx \]

\[= I_1 + I_2 + I_3 \]

Note that \(g \in BMO(R^2) \) (see, for example, Chapter IV [15]), and we have

\[R^{-1} \left(\int_{C_R} |g - \bar{g}|^3 \, dx \right)^\frac{1}{3} \leq C \left(R^{-2} \int_{|x'| \leq R} |g - \bar{g}|^3 \, dx \right)^\frac{1}{3} \leq C \]

and

\[R^{-2} \left(\int_{C_R} |g - \bar{g}|^\frac{4}{3} \, dx \right)^\frac{3}{4} \leq C, \quad R^{-3} \left(\int_{C_R} |g - \bar{g}|^{12} \, dx \right) \leq C \]

Hence as the arguments of (i), we have

\[I_1 + I_2 \leq C \| \nabla (|u|^2) \| + \| \nabla p \|_{L^2(C_R \setminus C_{R/2})} + C(\| u \|_{L^6(C_R \setminus C_{R/2})}^2 + \| p \|_{L^3(C_R \setminus C_{R/2})}) \]

For the term of \(I_3 \), we get

\[I_3 \leq CR^{-1} (\| u \|_{L^6(C_R \setminus C_{R/2})}^2 + \| p \|_{L^3(C_R \setminus C_{R/2})}) \| g - \bar{g} \|_{L^2(C_R)} \frac{1}{r} \| \tilde{2} \|_{L^2(C_R)} \]

\[\leq CR^{-\frac{1}{2}} (\| u \|_{L^6(C_R \setminus C_{R/2})}^2 + \| p \|_{L^3(C_R \setminus C_{R/2})}) \| g - \bar{g} \|_{L^2(C_R)} \]

\[\leq C (\| u \|_{L^6(C_R \setminus C_{R/2})}^2 + \| p \|_{L^3(C_R \setminus C_{R/2})}) \]

Hence, we can conclude that

\[I \to 0 \quad (\text{as } R \to \infty) \]

The proof of Theorem 1.2 is complete.

4 Proof of Theorem 1.3

We are going to prove that
Proposition 4.1. Assume that the conditions of Theorem 1.3 hold. (1) Let \(w_\theta \leq Cr^{-\beta} \) with \(\beta > 1 \). Then we get for \(r > 1 \)

\[
|u_r(r, z)| + |u_z(r, z)| \leq C \begin{cases}
(1 + r)^{\frac{3}{2} + \frac{\beta}{2}}, & \beta > 2, \\
(1 + r)^{1 - \beta}, & 1 < \beta < 2, \\
(1 + r)^{-1} \ln(r + 1), & \beta = 2.
\end{cases}
\]

(2) Let \(|w_r| + |w_z| \leq Cr^{-\beta} \) with \(\beta > 1 \). Then we get for \(r > 1 \)

\[
|u_\theta(r, z)| \leq C \begin{cases}
(1 + r)^{\frac{3}{2} + \frac{\beta}{2}}, & \beta > 2, \\
(1 + r)^{1 - \beta}, & 1 < \beta < 2, \\
(1 + r)^{-1} \ln(r + 1), & \beta = 2.
\end{cases}
\]

Proof of Theorem 1.3. It follows from Proposition 4.1 and Theorem 1.1 directly.

Next we are aimed to prove Proposition 4.1. Firstly, we introduce a representation formula of \(u_r, u_z \) and \(u_\theta \) with the help of the vorticity. Since \(b = u_r e_r + u_z e_z \) and \(\nabla \times b = w_\theta e_\theta \), \(\nabla \times (u_\theta e_\theta) = w_re_r + w郅e_z \) by Biot-Savart law, we can get the integral representation of the velocity as follows (for example, see Lemma 2.2 for a local version by Choe-Jin [6], also see Lemma 3.10 by Weng [17]).

Lemma 4.2. Like the vorticity at the point \((r \cos \theta, r \sin \theta, z) \) denoted by \((w_r, w_\theta, w_z)(r, z) \), we write the vorticity at the point \((\rho \cos \phi, \rho \sin \phi, k) \) as \((w_\rho, w_\phi, w_k)(\rho, k) \). Then we have

\[
u_r(r, z) = \int_{-\infty}^{\infty} \int_{0}^{\infty} \Gamma_1(r, \rho, z - k) w_\phi(\rho, k) \rho d\rho dk,
\]

\[
u_z(r, z) = -\int_{-\infty}^{\infty} \int_{0}^{\infty} \Gamma_2(r, \rho, z - k) w_\phi(\rho, k) \rho d\rho dk
\]

\[
u_\theta(r, z) = \int_{-\infty}^{\infty} \int_{0}^{\infty} \Gamma_3(r, \rho, z - k) w_k(\rho, k) \rho d\rho dk
\]

\[-\int_{-\infty}^{\infty} \int_{0}^{\infty} \Gamma_1(r, \rho, z - k) w_\rho(\rho, k) \rho d\rho dk\]

where

\[
\Gamma_1(r, \rho, z - k) = \frac{1}{4\pi} \int_{0}^{2\pi} \frac{z - k}{[r^2 + \rho^2 - 2r\rho \cos \phi + (z - k)^2]^{\frac{3}{2}}} \cos \phi d\phi,
\]

\[
\Gamma_2(r, \rho, z - k) = -\frac{1}{4\pi} \int_{0}^{2\pi} \frac{\rho - r \cos \phi}{[r^2 + \rho^2 - 2r\rho \cos \phi + (z - k)^2]^{\frac{3}{2}}} d\phi,
\]

\[
\Gamma_3(r, \rho, z - k) = -\frac{1}{4\pi} \int_{0}^{2\pi} \frac{\rho - r \cos \phi}{[r^2 + \rho^2 - 2r\rho \cos \phi + (z - k)^2]^{\frac{3}{2}}} \cos \phi d\phi.
\]
Secondly, we give the bounds of estimate of Γ_2, Γ_3 and Γ_1, which will be used in the proof. This is similar to that in [6], where $\rho \approx r$ was assumed. Here we consider all $\rho > 0$ and large $r > 0$. In details, we have the following estimates.

Lemma 4.3 (Estimate of Γ_2, Γ_3 and Γ_1).

\[
|\Gamma_2(r, \rho, z - k)| + |\Gamma_3(r, \rho, z - k)| \leq \frac{C}{(\max\{\rho, r\})^0[(r - \rho)^2 + (z - k)^2]^{\frac{2-\alpha}{4}}}, \tag{11}
\]

for $r > 1$ and $0 \leq \alpha \leq 1$;

\[
|\Gamma_1(r, \rho, z - k)| \leq \frac{C|z - k|}{(\max\{\rho, r\})^0[(r - \rho)^2 + (z - k)^2]^{\frac{3-\alpha}{4}}}, \tag{12}
\]

where $r > 1$, $0 \leq \alpha \leq 1$ for $\frac{r}{4} \leq \rho \leq 4r$, and $0 \leq \alpha \leq 3$ for $\rho < \frac{r}{4}$ or $\rho \geq 4r$.

Thirdly, we assume Lemma 4.3 holds and complete the proof of Proposition 4.1 and Lemma 4.3 is proved later.

Proof of Proposition 4.1: At first, we estimate the term of $u_r(r, z)$. Let

\[
I = u_r(r, z) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \Gamma_1 w_\phi \rho d\rho dk
\]

\[
= \int_{-\infty}^{\infty} \int_{0}^{r^{\gamma/8}} \Gamma_1 w_\phi \rho d\rho dk + \int_{-\infty}^{\infty} \int_{r^{\gamma/8}}^{r^{\gamma/4}} \Gamma_1 w_\phi \rho d\rho dk + \int_{-\infty}^{\infty} \int_{r^{\gamma/4}}^{r^{\gamma/2}} \Gamma_1 w_\phi \rho d\rho dk + \int_{-\infty}^{\infty} \int_{r^{\gamma/2}}^{r^{\gamma/2} + \beta} \Gamma_1 w_\phi \rho d\rho dk + \int_{-\infty}^{\infty} \int_{r^{\gamma/2} + \beta}^{r} \Gamma_1 w_\phi \rho d\rho dk + \int_{-\infty}^{\infty} \int_{r}^{\infty} \Gamma_1 w_\phi \rho d\rho dk
\]

where $0 \leq \gamma, \delta \leq 1$, to be decided.

For the term I_1, by (12) and $\|w_\phi\|_{L^2(\mathbb{R}^3)} \leq CD(u) < \infty$ we get

\[
I_1 \leq C \left(\int_{-\infty}^{\infty} \int_{0}^{r^{\gamma/8}} |\Gamma_1(r, \rho, z - k)|^2 \rho d\rho dk \right)^{\frac{1}{2}}
\]

\[
\leq C \left(\int_{-\infty}^{\infty} \int_{0}^{r^{\gamma/8}} \frac{|z - k|^2}{r^{2\alpha} + (z - k)^2} d\rho dk \right)^{\frac{1}{2}}
\]

\[
\leq Cr^{-\frac{\gamma}{2}} \left(\int_{-\infty}^{\infty} \int_{0}^{r^{\gamma/8}} \frac{r^{-2}|z - k|^2}{[1 + r^{-2}(z - k)^2]^{3-\alpha} r^{-\gamma} d\rho dk} \right)^{\frac{1}{2}} \leq Cr^{-\frac{\gamma}{2} + \gamma}
\]

where $0 \leq \alpha < \frac{3}{7}$. For the term I_2, using $r > 1$, (12) and $w_\theta \leq Cr^{-\beta}$

\[
I_2 \leq C \int_{r^{\gamma/8}}^{r^{\gamma/4}} \int_{0}^{r^{\gamma/8}} \Gamma_1 \rho^{1-\beta} d\rho dk
\]
\[C \left(\int_{-\infty}^{\infty} \int_{r^{\gamma/8}}^{r^{\gamma/4}} \frac{|z-k|}{r^\alpha (r^2 + (z-k)^2)^{\frac{\alpha}{2}}} \rho^{1-\beta} \, d\rho \, dk \right) \leq C \left\{ \begin{array}{ll} r^{-1+\gamma(2-\beta)} & (\beta > 2) \\ r^{-1} \ln r & (\beta = 2) \\ r^{1-\beta} & (1 < \beta < 2) \end{array} \right. \]

where \(0 \leq \alpha < 1\).

Moreover, for the term \(I_3\), by (12) and \(w_\theta \leq C r^{-\beta}\)

\[I_3 \leq C \int_{-\infty}^{\infty} \int_{r^{\delta/2}}^{r^{\delta/4}} \Gamma_1 \rho^{1-\beta} \, d\rho \, dk \leq C \left(\int_{-\infty}^{\infty} \int_{r^{\delta/2}}^{r^{\delta/4}} \frac{|z-k|}{r^\alpha [(r-\rho)^2 + (z-k)^2]^{\frac{3-\alpha}{2}}} \rho^{1-\beta} \, d\rho \, dk \right) \leq C r^{-\alpha-\delta+\alpha\delta} \left(\int_{-\infty}^{\infty} \int_{r^{\delta/2}}^{r^{\delta/4}} \frac{r^{-\delta} |z-k|}{\left[\frac{1}{4} + r^{-2\delta (z-k)^2} \right]^{\frac{3-\alpha}{2}}} r^{-\delta} \, d\rho \, dk \rho^{1-\beta} \, d\rho \right) \leq C \left\{ \begin{array}{ll} r^{2-\beta-\alpha-\delta+\alpha\delta} & (\beta < 2 \text{ or } \beta > 2) \\ r^{-\alpha-\delta+\alpha\delta} \ln r & (\beta = 2) \end{array} \right. \]

where \(0 \leq \alpha < 1\).

Similarly, for \(I_5\) we have

\[I_5 \leq C \left\{ \begin{array}{ll} r^{2-\beta-\alpha-\delta+\alpha\delta} & (\beta < 2 \text{ or } \beta > 2) \\ r^{-\alpha-\delta+\alpha\delta} \ln r & (\beta = 2) \end{array} \right. \]

where \(0 \leq \alpha < 1\).

Furthermore, for \(0 \leq \alpha < 1\) by (12) and \(w_\theta \leq C r^{-\beta}\) we have

\[I_4 \leq C \int_{-\infty}^{\infty} \int_{r^{\delta/2}}^{r^{\delta/4}} \Gamma_1 \rho^{1-\beta} \, d\rho \, dk \leq C \left(\int_{-\infty}^{\infty} \int_{r^{\delta/2}}^{r^{\delta/4}} \frac{|z-k|}{r^\alpha [(r-\rho)^2 + (z-k)^2]^{\frac{3-\alpha}{2}}} \rho^{1-\beta} \, d\rho \, dk \right) \leq C \left(\int_{r^{\delta/2}}^{r^{\delta/4}} r^{-\alpha} (r-\rho)^{-1+\alpha} \rho^{1-\beta} \, d\rho \right) \leq C r^{1-\beta-\alpha} \left(\int_{r^{\delta/2}}^{r^{\delta/4}} (r-\rho)^{-1+\alpha} \, d\rho \right) \leq C r^{1-\beta-\alpha+\alpha\delta} \ (\beta > 1) \]

Finally, (12) and \(w_\theta \leq C r^{-\beta}\) yield that

\[I_6 \leq C \int_{-\infty}^{\infty} \int_{4r}^{\infty} \Gamma_1 \rho^{1-\beta} \, d\rho \, dk \]
\[I \leq C \left(\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{|z - k|}{\rho^\alpha \left[\rho^2 + (z - k)^2 \right]^\frac{1+\beta}{2}} \rho^{1-\beta} d\rho dk \right) \]
\[\leq Cr^{1-\beta} \quad (\beta > 1) \]

Hence, concluding the estimates of \(I_1, \cdots, I_6 \), we have the following arguments.

Case a. \(\beta > 2 \). At this time, we have

\[I \leq C \left[r^{-\frac{3}{2}+\gamma} + r^{-1+\gamma(2-\beta)} + r^{2-\beta-\alpha-\delta+\delta\alpha} + r^{1-\beta-\alpha+\delta\alpha} + r^{1-\beta} \right] \]

where \(0 \leq \alpha < 1 \) and \(0 \leq \gamma, \delta \leq 1 \).

First, we choose \(\gamma = \frac{1}{2(\beta-1)} \) such that \(-\frac{3}{2} + \gamma = -1 + \gamma(2-\beta) \). Furthermore, we take \(\alpha \uparrow 1, \delta \uparrow 1 \) such that

\[(1 - \delta)(1 - \alpha) \leq \beta - \frac{5}{2} + \frac{1}{2(\beta - 1)} \]

which implies

\[-1 + \gamma(2 - \beta) \geq 2 - \beta - \alpha - \delta + \delta\alpha \]

Moreover, note that

\[2 - \beta - \alpha - \delta + \delta\alpha \geq 1 - \beta \geq 1 - \beta - \alpha + \delta\alpha \]

Then, we get for \(r > 1 \)

\[|u_r(r, z)| \leq Cr^{-\frac{3}{2}+\frac{1}{2(\beta-1)}}. \]

Case b. \(\beta < 2 \). At this time, we have

\[I \leq C \left[r^{-\frac{3}{2}+\gamma} + r^{2-\beta-\alpha-\delta+\delta\alpha} + r^{1-\beta-\alpha+\delta\alpha} + r^{1-\beta} \right] \]

where \(0 \leq \alpha < 1 \) and \(0 \leq \gamma, \delta \leq 1 \). We choose \(\gamma = 0 \) and \(\delta = 1 \), then we get

\[|u_r(r, z)| \leq Cr^{1-\beta}. \]

Case c. \(\beta = 2 \). At this time, we have

\[I \leq C \left[r^{-\frac{3}{2}+\gamma} + r^{-1} \ln r + r^{-\alpha-\delta+\delta\alpha} \ln r + r^{1-\beta-\alpha+\delta\alpha} + r^{1-\beta} \right] \]

where \(0 \leq \alpha < 1 \) and \(0 \leq \gamma, \delta \leq 1 \). We choose \(\gamma = 0 \) and \(\delta = 1 \), then we get

\[|u_r(r, z)| \leq Cr^{-1} \ln r. \]

Hence we complete the estimate of \(u_r(r, z) \).
Note that the bound of Γ_1 used as above is similar to the estimates of Γ_2 and Γ_3. Hence similar arguments hold for u_z and u_θ. The proof of Proposition 4.1 is complete.

Proof of Lemma 4.3. The remaining part is devoted to proving Lemma 4.3, which is similar to that of [6], where the case $\frac{r}{4} < \rho < 4r$ is discussed. Here we consider all the value $\rho > 0$ and sketch the proof. First, for $k > 0$ and $\beta \geq 1$ we find

\[
I = \int_0^{\frac{\pi}{2}} \frac{d\phi}{(\sqrt{1 + k \sin^2 \phi})^\beta} \leq \begin{cases}
C(\delta) \min\{1, k^{-\frac{\delta}{2}}\}, & \beta = 1 \\
C(\beta) \min\{1, k^{-\frac{1}{2}}\}, & \beta > 1
\end{cases}
\]
(13)

for any $0 \leq \delta < 1$. Obviously, $k \leq C$ holds, and next we assume that k is large enough. Then for $0 < \ell < 1$

\[
I \leq \ell + \int_0^{\frac{\pi}{2}} \frac{d\phi}{(k \sin^2 \phi)^{\beta/2}}
\]

Due to $\phi \leq 2 \sin \phi$ for $\phi \in (0, \frac{\pi}{2})$, we have

\[
I \leq \ell + 2k^{-\beta/2}(\ln(\frac{\pi}{2}) - \ln \ell), \quad \beta = 1,
\]

and

\[
I \leq \ell + 2k^{-\beta/2}\frac{(\frac{\pi}{2})^{1-\beta} - \ell^{1-\beta}}{1-\beta}, \quad \beta > 1,
\]

which yield the required bound (13) by choosing a suitable ℓ.

Obviously, from the formulas of Γ_2, Γ_3 and Γ_1, we have

\[
|\Gamma_i(r, \rho, z - k)| \leq \frac{\rho + r}{[(r - \rho)^2 + (z - k)^2]^{\frac{3}{2}}}, \quad i = 2, 3;
\]

(14)

\[
|\Gamma_1(r, \rho, z - k)| \leq \frac{|z - k|}{[(r - \rho)^2 + (z - k)^2]^{\frac{3}{2}}}
\]

(15)

for all $\rho > 0$ and $r > 0$.

Next we go on estimating Γ_2, Γ_3, and Γ_1 carefully, respectively.

Step I. Noting the periodic and even property and variable transform for ϕ, we also have

\[
\Gamma_2 = -\int_0^{2\pi} \frac{d\phi}{4\pi \left[r^2 + \rho^2 - 2r \rho \cos \phi + (z - k)^2\right]^{\frac{3}{2}}} \\
= -\int_0^{\frac{\pi}{2}} \frac{d\phi}{\pi \left[r^2 + \rho^2 - 2r \rho \cos 2\phi + (z - k)^2\right]^{\frac{3}{2}}}
\]

and

\[
\Gamma_2 = -\int_0^{\frac{\pi}{2}} \frac{d\phi}{2\pi \rho \left[(r - \rho)^2 + 4r \rho \sin^2 \phi + (z - k)^2\right]^{\frac{3}{2}}}
\]
\[
\leq C \frac{1}{\rho \sqrt{(r - \rho)^2 + (z - k)^2}} \int_{0}^{\pi/2} \frac{d\phi}{\sqrt{1 + K \sin^2 \phi}} - \frac{1}{2\pi \rho [(r - \rho)^2 + (z - k)^2]^{3/2}} \int_{0}^{\pi/2} \frac{\rho^2 - r^2}{(\sqrt{1 + K \sin^2 \phi})^3} d\phi = I_1 + I_2
\]

where

\[
K = \frac{4r\rho}{(r - \rho)^2 + (z - k)^2}
\]

When \(K \leq 1 \), that is \(4r\rho \leq (r - \rho)^2 + (z - k)^2 \), we have \((r - \rho)^2 + (z - k)^2 \geq \frac{1}{2}r^2 \) for \(\rho \leq \frac{r}{2} \) and \((r - \rho)^2 + (z - k)^2 \geq 2r^2 \) for \(\frac{r}{2} \leq \rho \leq 4r \). Moreover, for \(\rho \geq 4r \) we have

\[
(r - \rho)^2 + (z - k)^2 \geq \left(\frac{3}{4}\rho \right)^2 \geq \left(\frac{3}{5}(\rho + r) \right)^2 \geq \frac{9}{25}(\rho + r)^2
\]

Hence for \(K \leq 1 \) we have

\[
\Gamma_2 \leq C \frac{1}{\rho \sqrt{(r - \rho)^2 + (z - k)^2}}
\]

When \(K > 1 \), by (13) we have

\[
\Gamma_2 \leq C(\delta) \frac{1}{\rho \sqrt{(r - \rho)^2 + (z - k)^2}} \left[\left(\frac{(r - \rho)^2 + (z - k)^2}{4r\rho} \right)^{\frac{3}{2}} + \frac{|\rho^2 - r^2|}{(r - \rho)^2 + (z - k)^2} \left(\frac{(r - \rho)^2 + (z - k)^2}{4r\rho} \right)^{\frac{3}{2}} \right]
\]

where \(0 \leq \delta < 1 \).

Case a. For \(r > 1 \) and \(\rho \leq \frac{r}{4} \) or \(\rho > 4r \), by (14) we know the estimate (11) holds.

Case b. For \(r > 1 \) and \(\frac{r}{4} \leq \rho \leq 4r \) with \(K \leq 1 \), by (14) and (16) we know the estimate (11) holds.

Case c. For \(r > 1 \) and \(\frac{r}{4} \leq \rho \leq 4r \) with \(K >> 1 \), by (14) and (17) we know the estimate (11) holds by noting that \((r - \rho)^2 + (z - k)^2 \leq 16r^2 \) and

\[
\frac{|\rho^2 - r^2|}{(r - \rho)^2 + (z - k)^2} \left(\frac{(r - \rho)^2 + (z - k)^2}{4r\rho} \right)^{\frac{3}{2}} \leq \frac{\rho + r}{\sqrt{4r\rho}} \leq 5.
\]

Hence the proof of \(\Gamma_2 \) is complete.

Step II. The term \(\Gamma_2 \) is similar and we omitted the details.

Step III. The term \(\Gamma_1 \) is estimated as follows.

\[
\Gamma_1(r, \rho, z - k) = \frac{1}{2\pi} \int_{0}^{\pi} \frac{z - k}{[r^2 + \rho^2 - 2r\rho \cos \phi + (z - k)^2]^{3/2}} \cos \phi d\phi
\]
\[
\begin{align*}
= & \frac{1}{\pi} \int_{0}^{\pi/2} \frac{z - k}{[(r - \rho)^2 + 4r \rho \sin^2 \phi + (z - k)^2]^{1/2}} \cos 2\phi d\phi \\
\leq & \frac{C}{\sqrt{|z - k|}} \int_{0}^{\pi/2} \frac{1}{(\sqrt{1 + K \sin^2 \phi})^3} d\phi \\
\leq & I'
\end{align*}
\]

where

\[
K = \frac{4r \rho}{(r - \rho)^2 + (z - k)^2}
\]

When \(K \leq 1\), i.e. \(4r \rho \leq (r - \rho)^2 + (z - k)^2\), we have \((r - \rho)^2 + (z - k)^2 \geq \frac{1}{2}r^2\) for \(\rho \leq \frac{r}{2}\) and \((r - \rho)^2 + (z - k)^2 \geq 2r^2\) for \(\frac{r}{2} \leq \rho \leq 4r\). Moreover, for \(\rho \geq 4r\) we have

\[
(r - \rho)^2 + (z - k)^2 \geq \left(\frac{3}{4}\rho\right)^2
\]

Hence for \(K \leq 1\) we have

\[
(r - \rho)^2 + (z - k)^2 \geq \frac{1}{2}(\max\{r, \rho\})^2
\]

Using \((15)\), for \(K \leq 1\) we get

\[
|\Gamma_1(r, \rho, z - k)| \leq \frac{C|z - k|}{\sqrt{\rho}[(r - \rho)^2 + (z - k)^2]^{3/2}}, \tag{18}
\]

where \(0 \leq \alpha \leq 3\).

When \(K > 1\), i.e. \(4r \rho \geq (r - \rho)^2 + (z - k)^2\), which implies \(\rho \geq \frac{1}{2}r\), by \((13)\) we have

\[
|\Gamma_1(r, \rho, z - k)| \leq \frac{C|z - k|}{\sqrt{r}[(r - \rho)^2 + (z - k)^2]} \left(\frac{(r - \rho)^2 + (z - k)^2}{4r \rho}\right)^{1/2}
\]

Thus for \(\frac{1}{8}r \leq \rho \leq 4r\), we have

\[
|\Gamma_1(r, \rho, z - k)| \leq \frac{C|z - k|}{\sqrt{r} \max\{\rho, r\}^{\alpha\left[\frac{3}{2}(r - \rho)^2 + (z - k)^2\right]^{3/2}}}, \tag{19}
\]

where \(0 \leq \alpha \leq 1\). For \(\rho \geq 4r\), by \((15)\) we also derive that

\[
|\Gamma_1(r, \rho, z - k)| \leq \frac{C|z - k|}{\max\{\rho, r\}^{\alpha\left[\frac{3}{2}(r - \rho)^2 + (z - k)^2\right]^{3/2}}}, \tag{20}
\]

where \(0 \leq \alpha \leq 3\).

Concluding the estimates \((18)\), \((19)\) and \((20)\), we complete the proof of the inequality \((12)\).

Acknowledgments. W. Wang was supported by NSFC under grant 11671067, "the Fundamental Research Funds for the Central Universities" and China Scholarship Council.
References

[1] B. Carrillo, X. Pan, Q. Zhang, Decay and vanishing of some axially symmetric D-solutions of the Navier-Stokes equations, arXiv:1801.07420 [math.AP].

[2] D. Chae, Liouville-type theorem for the forced Euler equations and the Navier-Stokes equations. Commun. Math. Phys., 326: 37-48 (2014).

[3] D. Chae, T. Yoneda, On the Liouville theorem for the stationary Navier-Stokes equations in a critical space, J. Math. Anal. Appl. 405 (2013), no. 2, 706-710.

[4] D. Chae, J. Wolf, On Liouville type theorems for the steady Navier-Stokes equations in R^3, arXiv:1604.07643.

[5] Chae, G., Weng, S., Liouville type theorems for the steady axially symmetric Navier-Stokes and Magnetohydrodynamic equations, Discrete and Continuous Dynamical Systems, Volume 36, Number 10, 2016, 5267-5285.

[6] H. Choe, B. Jin, Asymptotic properties of axis-symmetric D-solutions of the Navier-Stokes equations. J. Math. Fluid Mech. 11 (2009), no. 2, 208-232.

[7] G. P. Galdi, An introduction to the mathematical theory of the Navier-Stokes equations. Steady-state problems. Second edition. Springer Monographs in Mathematics. Springer, New York, 2011. xiv+1018 pp.

[8] Grafakos, Loukas, Classical Fourier analysis, Graduate Texts in Mathematics, 249 (2nd ed.), Berlin, New York: Springer-Verlag, 2008. doi:10.1007/978-0-387-09432-8, ISBN 978-0-387-09431-1, MR 2445437.

[9] Koch, G., Nadirashvili, N., Seregin, G., Sverak, V., Liouville theorems for the Navier-Stokes equations and applications, Acta Mathematica, 203 (2009), 83-105.

[10] H. Kozono, Y. Terasawa, Y. Wakasugi, A remark on Liouville-type theorems for the stationary Navier-Stokes equations in three space dimensions, Journal of Functional Analysis, 272(2017), 804-818.

[11] M. Korobkov, K. Pileckas and R. Russo, The Liouville theorem for the steady-state Navier-Stokes problem for axially symmetric 3D solutions in absence of swirl, J. Math. Fluid Mech., 17 (2015), 287-293.

[12] G. Seregin, Liouville type theorem for stationary Navier-Stokes equations, Nonlinearity, 29 (2016), 2191-2195.
[13] G. Seregin, *A liouville type theorem for steady-state Navier-Stokes equations*, arXiv:1611.01563 and J. E. D. P. (2016), Expos no IX, 5 p.

[14] G. Seregin, *Remarks on Liouville type theorems for steady-state Navier-Stokes equations*, arXiv:1703.10822v1 and Algebra i Analiz, 2018, Vol. 30, no.2., 238-248.

[15] E.M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton University Press, Princeton, New Jersey, 1993.

[16] G. Seregin, W. Wang, *Sufficient conditions on Liouville type theorems for the 3D steady Navier-Stokes equations*, arXiv:1805.02227v1

[17] S. Weng, *Decay properties of axially symmetric D-solutions to the steady Navier-Stokes equations*, J. Math. Fluid Mech. (2017). DOI 10.1007/s00021-016-0310-5