Association of Methylenetetrahydrofolate Reductase, Vitamin D Receptor, and Interleukin-16 Gene Polymorphisms With Renal Cell Carcinoma Risk

Tianbiao Zhou, MD, PhD¹, Hongyan Li, MD, PhD², Wei-Ji Xie, MD¹, Zhiqing Zhong, MD¹, Hongzhen Zhong, MD¹, and Zhi-Jun Lin, MD¹

Abstract
In this meta-analysis, we investigated the association of methylenetetrahydrofolate reductase, vitamin D receptor, and interleukin-16 gene polymorphisms with the risk of renal cell carcinoma. We searched the PubMed and Cochrane Library databases up to July 1, 2017, and included 12 eligible case–control studies in our analysis. The vitamin D receptor ApaI A allele, ApaI AA and aa genotypes, BsmI B allele, and FokI FF genotype were all associated with the risk of renal cell carcinoma in Asian populations. However, methylenetetrahydrofolate reductase (rs1801133 and rs1801131), vitamin D receptor (TaqI and FokI), and interleukin-16 (rs4778889 and rs11556218) gene polymorphisms were not associated with the risk of renal cell carcinoma. Our study indicates that the vitamin D receptor ApaI A allele, ApaI AA and aa genotypes, BsmI B allele, and FokI FF genotype are associated with renal cell carcinoma risk.

Keywords
renal cell carcinoma, methylenetetrahydrofolate reductase, vitamin D receptor, interleukin-16, gene polymorphism, meta-analysis

Abbreviations
Cis, confidence intervals; IL-16, interleukin-16; MTHFR, methylenetetrahydrofolate reductase; OR, odds ratio; VDR, vitamin D receptor

Received: March 09, 2018; Revised: June 22, 2018; Accepted: August 20, 2018.

Introduction
Renal cell carcinoma, one of the most malignant tumors, is associated with low survival rates because of resistance to conventional cancer therapies such as radiotherapy and chemotherapy as well as high degree of recurrence after curative surgeries because of distant metastases.¹,² Therefore, there is urgent need for improved diagnostic and prognostic biomarkers that can accurately predict renal cell carcinoma progression. The etiology of renal cell carcinoma is not clear, and risk factors are not well established.

Many studies have shown that genetic polymorphisms in methylenetetrahydrofolate reductase (MTHFR), vitamin D receptor (VDR), and interleukin-16 (IL-16) are associated with the risk of renal cell carcinoma.³⁻⁷ However, some of the findings are contradictory. Arjumand et al reported that VDR BsmI (rs1544410) was associated with pathogenesis of RCC.⁸ But, Yang et al showed that there was no correlation between VDR BsmI alleles and RCC.⁹ The MTHFR rs1801133, MTHFR rs1801131, VDR ApaI (rs7975232), VDR BsmI (rs1544410), VDR TaqI (rs731236), VDR FokI (rs2228570), IL-16 rs4778889, and IL-16 rs11556218 are polymorphisms associated with risk of prostate, lung, breast, and ovarian cancer.¹⁰⁻¹⁸

¹ Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, Shantou, China
² Department of Nephrology, Huadu District People’s Hospital of Guangzhou, Southern Medical University, Guangzhou, China

Corresponding Author:
Tianbiao Zhou, MD, PhD, Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, 515041, Shantou, China.
Email: zhoutb@aliyun.com

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (http://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
Many studies have identified MTHFR, VDR, and IL-16 gene polymorphisms in renal cell carcinoma. Therefore, we conducted a comprehensive meta-analysis to investigate whether the polymorphisms in the MTHFR, VDR, and IL-16 genes are associated with the risk of renal cell carcinoma.

Materials and Methods

Literature Search Strategy

We identified 73 articles after searching the PubMed, and Cochrane Library databases until July 1, 2017, with the following keywords: methylenetetrahydrofolate reductase OR MTHFR OR vitamin D receptor OR VDR OR interleukin-16 OR IL-16 and renal cell carcinoma OR renal cell cancer. Among these, we searched case–control studies that reported renal cell cancer outcomes and provided data regarding MTHFR, VDR, and IL-16 genotype distribution for inclusion in our meta-analysis. We excluded articles that were (1) reviews and editorials, (2) case reports, (3) did not report MTHFR, VDR, and IL-16 gene polymorphism or renal cell cancer outcomes, and (4) did not investigate the role of MTHFR, VDR, and IL-16 gene expression to renal cell cancer. If multiple publications were identified for the same data, we only recruited the latest paper for our final analysis.

Data Extraction

The following information was extracted from each eligible study by 2 independent investigators: first author’s surname, publication year, location of the study conducted, ethnicity, control source of the control group, and the number of cases and controls for MTHFR, VDR, and IL-16 genotypes. Any disagreements in the 2 sets of data were resolved by discussion.

Statistical Analysis

Statistical analyses were performed with the Cochrane Review Manager Version 5 (Cochrane Library, London, United Kingdom). In most cases, the pooled statistics were analyzed by the fixed effects model (Mantel-Haenszel method), but random effects model (DerSimonian-Laird method) was used to analyze data when \(P_{\text{heterogeneity}} < .1 \). Data were expressed as odds ratios (ORs) and 95% confidence intervals (CIs) for dichotomous data. \(P < .05 \) was considered statistically significant for pooled ORs. \(I^2 \) was used to test the heterogeneity among the included studies. We conducted subgroup analysis when more than 2 included reports were available for analysis.

Results

Study Characteristics

The literature search yielded 73 studies with 72 from PubMed and 1 from Cochrane Library (Figure 1). Based on inclusion and exclusion criteria, 12 articles were identified for this meta-analysis. As shown in Table 1, 3 included studies reported the relationship between MTHFR gene polymorphism and renal cell carcinoma susceptibility. All 3 studies analyzed MTHFR 677C/T rs1801133 whereas 2 studies assessed MTHFR 1298A/C rs1801131.

As shown in Table 2, 6 studies reported the relationship between VDR gene polymorphism and the susceptibility of renal cell carcinoma. Among these, 2 studies analyzed VDR ApaI rs7975232 whereas 4 studies each reported VDR BsmI rs154410, VDR TaqI rs731236, and VDR FokI rs2228570 gene polymorphisms.

As shown in Table 3, 3 studies reported the relationship between IL-16 gene polymorphism and renal cell carcinoma susceptibility in Chinese population. Among these, 3 studies reported IL-16 rs4778889 whereas 2 studies reported IL-16 rs11556218 gene polymorphisms.

Association of MTHFR Gene Polymorphism With Renal Cell Carcinoma Susceptibility

The MTHFR rs1801133 (T allele as well as TT and CC genotypes) and rs1801131 (C allele as well as CC and AA genotypes) were not associated with renal cell carcinoma risk (Figure 2 and Table 4).
Association Between VDR Gene Polymorphism and Renal Cell Carcinoma Susceptibility

The VDR Apal A allele as well as AA and aa genotypes were associated with renal cell carcinoma risk in Asians (A allele: OR = 1.41, 95% CI: 1.15-1.72, P = .0007; AA genotype: OR = 2.25, 95% CI: 1.41-3.60, P = .0007; aa genotype: OR = 0.72, 95% CI: 0.55-0.94, P = .01; Table 4). The VDR BsmI alleles and genotypes were not associated with the risk of renal cell carcinoma (B allele: OR = 0.81, 95% CI: 0.60-1.09, P = .17; BB genotype: OR = 0.83, 95% CI: 0.65-1.05, P = .12; bb genotype: OR = 1.21, 95% CI: 0.79-1.85, P = .37; Table 4). In Asian population, B allele was associated with the risk of renal cell carcinoma, but BB genotype and bb genotype were not (B allele: OR = 0.68, 95% CI: 0.54-0.85, P = .001; BB genotype:

Table 1. Effects of MTHFR Gene Polymorphism on Renal Cell Carcinoma Risk.

Gene Sites	Author, Year	Ethnicity	Country/Subgroup	Source of Control	TT	CT	CC	Total	TT	CT	CC	Total
rs1801133	Moore et al, 2008	Caucasian	Europe Hospital	Case Control	93	370	355	818	113	419	556	1088
rs1801133	Ajaz et al, 2012	Asian	Pakistan Population	Case Control	4	50	108	162	6	50	121	177
rs1801133	Lv et al, 2015	Asian	China Population	Case Control	16	32	33	81	23	36	21	80

Abbreviation: MTHFR, methylenetetrahydrofolate reductase.

Table 2. Summary of the Effects of VDR Gene Polymorphism on Renal Cell Carcinoma Risk.

Restriction Sites	Author, Year	Ethnicity	Country/Subgroup	Source of Control	AA	Aa	aa	Total	AA	Aa	aa	Total
Apal	Obara et al, 2007	Asian	Japan Population	Case Control	23	52	60	135	11	71	68	150
Apal	Yang et al, 2016	Asian	China Population	Case Control	35	153	114	302	18	135	149	302
BsmI	Obara et al, 2007	Asian	Japan Population	Case Control	BB	Bb	bb	Total	BB	Bb	bb	Total
BsmI	Karami et al, 2008	Caucasian	United States Hospital	Case Control	0	33	102	135	1	41	108	150
BsmI	Arjumand et al, 2012	Asian	Healthy	Case Control	50	88	58	196	83	130	37	250
BsmI	Yang et al, 2016	Asian	China Population	Case Control	255	302	126	583	265	302		
TaqI	Ikuyama et al, 2002	Asian	Japan Hospital	Case Control	tt	Tt	TT	Total	tt	Tt	TT	Total
TaqI	Obara et al, 2007	Asian	Japan Population	Case Control	1	19	82	102	8	70	126	204
TaqI	Karami et al, 2008	United States	Caucasian Hospital	Case Control	97	361	320	778	137	438	302	1029
TaqI	Yang et al, 2016	Asian	China Population	Case Control	261	302	272	735	272	302		
FokI	Karami et al, 2008	Caucasian	United States Hospital	Case Control	ff	Ff	FF	Total	ff	Ff	FF	Total
FokI	Arjumand et al, 2012	Indian	Healthy	Case Control	40	94	62	196	38	98	114	250
FokI	Southard et al, 2012	Caucasian	Finland Healthy	Case Control	22	66	64	152	48	144	113	305
FokI	Yang et al, 2016	Asian	China Population	Case Control	61	171	70	302	64	159	79	302

Abbreviation: VDR, vitamin D receptor.

Table 3. Effects of IL-16 Gene Polymorphism on Renal Cell Carcinoma Risk.

Restriction Sites	Author, Year	Country/Subgroup	Source of Control	CC	CT	TT	Total	CC	CT	TT	Total
rs477889	Zhu et al, 2010	China Hospital	Case Control	14	122	199	335	34	135	171	309
rs477889	Wang et al, 2015	China Hospital	Case Control	22	77	82	181	12	106	160	278
rs477889	Yang et al, 2016	China Hospital	Case Control	28	113	132	273	14	84	176	274
rs11556218	Wang et al, 2015	China Population	Case Control	12	75	94	181	15	108	155	278
rs11556218	Yang et al, 2016	China Hospital	Case Control	15	110	149	274	12	107	155	274

Abbreviation: IL-16, interleukin-16.
OR = 0.68, 95% CI: 0.45-1.03, \(P = .07 \); bb genotype: OR = 1.35, 95% CI: 0.43-4.22, \(P = .60 \); Table 4).

The VDR TaqI allele and genotypes were not associated with the risk of renal cell carcinoma (t allele: OR = 0.74, 95% CI: 0.46-1.19, \(P = .21 \); tt genotype: OR = 0.84, 95% CI: 0.64-1.10, \(P = .50 \); Table 4).

The VDR FokI allele and genotype were not associated with the risk of renal cell carcinoma (f allele: OR = 1.05, 95% CI: 0.85-1.29, \(P = .64 \); ff genotype: OR = 0.99, 95% CI: 0.83-1.18, \(P = .90 \); FF genotype: OR = 0.91, 95% CI: 0.66-1.26, \(P = .57 \); Figure 3 and Table 4). In Asian population, FF genotype was associated with the risk of renal cell carcinoma (Table 4), but F allele and ff genotype were not. Furthermore, VDR BsmI f allele as well as Ff and FF genotypes were not associated with the risk of renal cell carcinoma in Caucasians (Table 4).

Association of IL-16 Gene Polymorphism With the Susceptibility of Renal Cell Carcinoma

The IL-16 rs4778889 C allele and genotype were not associated with the risk of renal cell carcinoma in Chinese population (C allele: OR = 1.24, 95% CI: 0.66-2.33, \(P = .50 \); CC genotype: OR = 1.36, 95% CI: 0.38-4.79, \(P = .64 \); TT genotype: OR = 0.78, 95% CI: 0.40-1.50, \(P = .45 \); Figure 4; Table 4). Moreover, the IL-16 rs11556218 G allele, GG and TT genotypes were also not associated with renal cell carcinoma risk in Chinese population (G allele: OR = 1.11, 95% CI: 0.91-1.36, \(P = .30 \); GG genotype: OR = 1.25, 95% CI: 0.72-2.18, \(P = .42 \); TT genotype: OR = 0.89, 95% CI: 0.69-1.14, \(P = .36 \); Table 4).

Discussion

In previous studies, the gene polymorphisms have been associated with increased susceptibility of renal cell carcinoma. Our study indicated that MTHFR rs1801133 (T allele, TT and CC genotypes) as well as MTHFR rs1801131 (C allele, CC and AA genotypes) were not associated with renal cell carcinoma risk in Caucasians (Table 4). Since the number of included studies were small, further investigations are necessary to confirm these findings. The MTHFR, a central enzyme involved in folate metabolism, plays an important role in DNA synthesis and methylation that are relevant in cancer pathogenesis.24-26 Our findings suggest that MTHFR rs1801133 and rs1801131 gene polymorphisms do not affect DNA synthesis and methylation, and therefore, do not influence the onset of renal cell carcinoma.
The VDR BsmI, TaqI, and Fok1 gene polymorphisms are not associated with renal cell carcinoma risk in overall populations. Interestingly, VDR ApaI (A allele, AA and aa genotypes, BsmI B allele, and Fok1 FF genotype) are associated with the risk of renal cell carcinoma. Ou et al conducted a meta-analysis and demonstrated that the ApaI AA genotype, BsmI BB genotype, and Fok1 FF genotype were associated with renal cell carcinoma risk in Asians.27 Our study was more robust as it included more studies than Ou et al.27 Vitamin D regulates the cell proliferation, differentiation, and apoptosis in various tissues and plays a protective role in some cancer types.28,29 We showed that VDR ApaI (A allele, AA genotype, aa genotype), BsmI B allele, and Fok1 FF genotype are associated with onset of renal cell carcinoma suggesting that these polymorphisms alter the activity of VDR.

Our meta-analysis also showed that IL-16 rs4778889 (C allele, CC and TT genotypes) as well as rs11556218 (G allele, GG and TT genotypes) gene polymorphisms were not associated with renal cell carcinoma risk in Chinese population. Interleukin-16 is a multifunctional pro-inflammatory cytokine, which is associated with many complex human disorders as it plays a critical role in regulating cellular homeostasis.30 Our study demonstrates that IL-16 rs4778889 and rs11556218 gene polymorphisms did not alter IL-16 function and therefore was not involved in the onset of renal cell carcinoma.

Our study demonstrates that the VDR ApaI (A allele, AA and aa genotypes), BsmI B allele, and Fok1 FF genotype are potential indicators of renal cell carcinoma risk in Asians. This needs to be confirmed by large-scale studies in future. Furthermore, the association of haplotype blocks of those genes with renal cell carcinoma needs to be investigated.

Gene dysfunction could induce the disorders of cell growth and differentiation, and it can lead to the out of control of cell proliferation and apoptosis which affects the susceptibility of RCC. The MTHFR, a critical enzyme in the metabolism of folic acid, converts 5, 10-methylenetetrahydrofolate acid into 5-methyltetrahydrofolate and is a key importance for the homocysteine metabolism.31,32 The active form of vitamin D acts as a steroid hormone and binds to the VDR. Vitamin D receptor mediates many genomic and nongenomic effects of vitamin D.33 This receptor is expressed in most cell types including cells in kidney. Interleukin-16, a multifunctional pro-inflammatory cytokine, plays a critical role in regulation of cellular functions such as homoeostasis and affects the...
C vs. T

Alleles and Genotypes	Group and Subgroups	Studies Number	Q Test P Value	Model Selected	OR (95% CI)	P
MTHFR rs1801133	Overall	3	.01	Random	0.96 (0.66-1.41)	.84
	Asian	2	.10	Fixed	0.82 (0.61-1.10)	.19
TT vs (CT + CC)	Overall	3	.29	Fixed	1.00 (0.77-1.31)	.98
	Asian	2	.82	Fixed	0.64 (0.34-1.20)	.16
CC vs (CT + TT)	Overall	3	.02	Random	1.00 (0.62-1.61)	.90
	Asian	2	.07	Random	1.28 (0.63-2.62)	.50
MTHFR rs1801131	Overall	2	.05	Random	1.13 (0.81-1.57)	.46
	Asian	2	.29	Fixed	1.48 (0.59-3.74)	.41
AA vs (AC + CC)	Overall	2	.08	Random	0.87 (0.57-1.33)	.52
VDR ApaI	A vs a	2	.47	Fixed	1.41 (1.15-1.72)	.0007
	AA vs Aa + aa	2	.64	Fixed	2.25 (1.41-3.60)	.0007
	aa vs AA + Aa	2	.13	Fixed	0.72 (0.55-0.94)	.01
VDR BsmI	B vs b	3	.02	Random	0.81 (0.60-1.09)	.17
	Asian	2	.34	Fixed	0.68 (0.54-0.85)	.001
BB vs Bb + bb	Overall	3	.49	Fixed	0.83 (0.65-1.05)	.12
	Asian	2	.70	Fixed	0.68 (0.45-1.03)	.07

(continued)
secretion of tumor-related inflammatory cytokines. The current evidences indicated that MTHFR, VDR, and IL-16 take part in the pathogenesis of cancers.

The limitations of our study include small sample size, limited statistical power, heterogeneity of enrolled cases, variable study designs, and various interventions. These may have affected the statistical results and hence need to be regarded cautiously and confirmed in the future.

In conclusion, we demonstrate the association of VDR Apal A allele, AA genotype, aa genotype, BsmI B allele, and Fok1 FF genotype are associated with the risk of renal cell carcinoma in Asians.

Authors’ Note
Tianbiao Zhou and Hongyan Li contributed equally to this article.

Declaration of Conflicting Interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This study was supported by Guangzhou Medical Key Discipline Construction Project (2017-2019).

References
1. Cheng HY, You HY, Zhou TB. Relationship between GSTM1/GSTT1 null genotypes and renal cell carcinoma risk: a meta-analysis. *Ren Fail*. 2012;34(8):1052-1057.
2. Wang J, Liu L, Long Q, et al. Decreased expression of JMJD3 predicts poor prognosis of patients with clear cell renal cell carcinoma. *Oncol Lett*. 2017;14(2):1550-1560.
3. Ajaz S, Khaliq S, Hashmi A, Naqvi SA, Rizvi SA, Mehdi SQ. Polymorphisms in the methylene tetrahydrofolate reductase gene and their unique combinations are associated with an increased susceptibility to the renal cancers. *Genet Test Mol Biomarkers*. 2012;16(5):346-352.
4. Ikuyama T, Hamasaki T, Inatomi H, Katoh T, Muratani T, Matsumoto T. Association of vitamin D receptor gene polymorphism with renal cell carcinoma in Japanese. *Endocr J*. 2002;49(4):433-438.
5. Karami S, Brennan P, Hung RJ, et al. Vitamin D receptor polymorphisms and renal cancer risk in Central and Eastern Europe. *J Toxicol Environ Health A*. 2008;71(6):367-372.
6. Wang Z, Xu Y, Zhu S. Interleukin-16 rs4778889 polymorphism contributes to the development of renal cell cancer in a Chinese population. *Int J Clin Exp Pathol.* 2015;8(11):15228-15233.

7. Zhu J, Qin C, Yan F, et al. IL-16 polymorphism and risk of renal cell carcinoma: association in a Chinese population. *Int J Urol.* 2010;17(8):700-707.

8. Arjumand W, Ahmad ST, Seth A, Saini AK, Sultana S. Vitamin D receptor FokI and BsmI gene polymorphism and its association with grade and stage of renal cell carcinoma in North Indian population. *Tumour Biol.* 2012;33(1):23-31.

9. Yang C, Li J, Li Y, et al. The vitamin D receptor gene Apal polymorphism is associated with increased risk of renal cell carcinoma in Chinese population. *Sci Rep.* 2016;6:25987.

10. Amadori D, Serra P, Masalu N, et al. Vitamin D receptor polymorphisms or serum levels as key drivers of breast cancer development? The question of the vitamin D pathway. *Oncotarget.* 2017;8(8):13142-13156.

11. Durda K, Kaklewski K, Gupta S, et al. Serum folate concentration and the incidence of lung cancer. *PLoS One.* 2017;12(5): e0177441.

12. El Ezzi AA, Baker MT, Zaidan WR, et al. Association of polymorphisms in the VDR, CYP17 and SRD5A2 genes and prostate cancer among Lebanese Men. *Asian Pac J Cancer Prev.* 2017;18(1):93-100.

13. He L, Shen Y. MTHFR C677T polymorphism and breast, ovarian cancer risk: a meta-analysis of 19,260 patients and 26,364 controls. *Onco Targets Ther.* 2017;10:227-238.

14. Kang S, Zhao Y, Liu J, et al. Association of Vitamin D receptor Fok I polymorphism with the risk of prostate cancer: a meta-analysis. *Oncotarget.* 2016;7(47):77878-77889.

15. Mostowska A, Saidak S, Pawlik P, Lianeri M, Jagodziński PP. Polymorphic variants in the vitamin D pathway genes and the risk of ovarian cancer among non-carriers of BRCA1/BRCA2 mutations. *Oncol Lett.* 2016;11(2):1181-1188.

16. Rai V, Abdol J, Agrawal S, Agrawal DK, Vitamin D Receptor polymorphism and cancer: an update. *Anticancer Res.* 2017;37(8):3991-4003.

17. Shahabi A, Alipour M, Safiri H, et al. Vitamin D receptor gene polymorphism: association with susceptibility to early-onset breast cancer in Iranian, BRCA1/2-Mutation carrier and non-carrier patients. *Pathol Oncol Res.* 2018;24(3):601-607.

18. Singh A, Pandey S, Pandey LK, Saxena AK. In human alleles specific variation of MTHFR C677T and A1298C associated “risk factor” for the development of ovarian cancer. *J Exp Ther Oncol.* 2017;11(1):67-70.

19. Moore LF, Hung R, Karami S, et al. Folate metabolism genes, vegetable intake and renal cancer risk in central Europe. *Int J Cancer.* 2008;122(8):1710-1715.

20. Lv C, Bai Z, Liu Z, Luo P, Zhang J. Renal cell carcinoma risk is associated with the interactions of APOE, VHL and MTHFR gene polymorphisms. *Int J Clin Exp Pathol.* 2015;8(5):5781-5786.