Research Article

Generalized Hadamard Fractional Integral Inequalities for Strongly (s, m)-Convex Functions

Chao Miao,1 Ghulam Farid,2 Hafsa Yasmeen,2 and Yanhua Bian1

1Public Education Department, Xuchang Electrical Vocational College, Xuchang 461000, China
2Department of Mathematics, COMSATS University Islamabad, Attock Campus, Attock, Pakistan

Correspondence should be addressed to Chao Miao; miaoc_1215@126.com and Ghulam Farid; faridphdsms@hotmail.com

Received 20 December 2020; Revised 9 January 2021; Accepted 29 January 2021; Published 25 March 2021

Academic Editor: Xiaolong Qin

Copyright © 2021 Chao Miao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This article deals with Hadamard inequalities for strongly (s, m)-convex functions using generalized Riemann–Liouville fractional integrals. Several generalized fractional versions of the Hadamard inequality are presented; we also provide refinements of many known results which have been published in recent years.

1. Introduction

Fractional calculus is related to the integrals and derivatives of any arbitrary real or complex order. Its history starts from the end of the seventeenth century, but now it has many applications in almost every field of mathematics, science, and engineering such as electromagnetic, viscoelasticity, fluid mechanics, and signal processing. Fractional integral and derivative operators are of great importance in fractional calculus. The Riemann–Liouville fractional integrals are playing key role in its development. Sarikaya et al. [1, 2] studied Hadamard inequality through Riemann–Liouville fractional integrals of convex functions. This study has encouraged a number of researchers to work further in the field of mathematical inequalities by using fractional integral operators. As a consequence, Hadamard’s inequality is generalized and extended by fractional integral operators in many ways (see [3–9] and the references therein). The following inequality is the well-known Hadamard inequality for convex functions which is stated in [10].

Let $f : I \rightarrow \mathbb{R}$ be a convex function defined on an interval $I \subset \mathbb{R}$ and $x, y \in I$ where $x < y$. Then, the following inequality holds:

$$f\left(\frac{x + y}{2}\right) \leq \frac{1}{y - x} \int_{x}^{y} f(v)dv \leq \frac{f(x) + f(y)}{2}.$$ \hspace{1cm} (1)

For the history of this inequality, we refer the readers to [11, 12]. Use of convex functions in the fields of statistics [13], economics [14], and optimization [15] is of prime importance because they play an important role in development of new concepts and notions. Various scholars extended the research on integral inequalities to fractal sets [16]. In this paper, the Hadamard inequality is studied for generalized Riemann–Liouville fractional integrals of strongly (s, m)-convex functions; also, by using two integral identities, some error bounds of already established fractional inequalities are studied. Bracamonte et al. [17] defined the strongly (s, m)-convex function as follows.

Definition 1. A function $f : [0, +\infty) \rightarrow \mathbb{R}$ is said to be strongly (s, m)-convex function with modulus $c \geq 0$ in second sense, where $(s, m) \in (0, 1]^2$, if

$$f(xt + m(1 - t)y) \leq t^{s}f(x) + m(1 - t)^s f(y) - cmt(1 - t)|y - x|^2,$$ \hspace{1cm} (2)

holds for all $x, y \in [0, +\infty)$ and $t \in [0, 1]$.

The well-known definition of Riemann–Liouville fractional integral is given as follows.

Definition 2 (see [18]) (see also [19]). Let $f \in L[a, b]$. Then, left-sided and right-sided Riemann–Liouville fractional
integrals of a function f of order μ where $\Re(\mu) > 0$ are given by

$$I_\mu^a f(x) = \frac{1}{\Gamma(\mu)} \int_a^x (x-t)^{\mu-1} f(t) \, dt, \quad x > a,$$ \hspace{1cm} (3)

$$I_\mu^b f(x) = \frac{1}{\Gamma(\mu)} \int_x^b (t-x)^{\mu-1} f(t) \, dt, \quad x < b,$$ \hspace{1cm} (4)

where $\Re(\mu)$ is real part of μ and $\Gamma(\mu) = \int_0^\infty e^{-z} z^{\mu-1} \, dz$. The following theorems are the fractional versions of Hadamard inequality by Riemann–Liouville fractional integrals.

Theorem 1 (see [1]). Let $f : [a, b] \rightarrow \mathbb{R}$ be a positive function with $0 \leq a < b$ and $f \in L[a, b]$. If f is a convex function on $[a, b]$, then the following fractional integral inequality holds:

$$f \left(\frac{a+b}{2} \right) \leq \frac{\Gamma(\mu+1)}{2(b-a)^\mu} \left[I_\mu^a f(b) + I_\mu^b f(a) \right] \leq \frac{f(a) + f(b)}{2},$$ \hspace{1cm} (5)

with $\mu > 0$.

Theorem 2 (see [2]). Under the assumptions of Theorem 1, the following fractional integral inequality holds:

$$f \left(\frac{a+b}{2} \right) \leq \frac{2^{1-\mu} \Gamma(\mu+1)}{(b-a)^\mu} \left[I_\mu^a f(b) + I_\mu^b f(a) \right] \leq \frac{f(a) + f(b)}{2},$$ \hspace{1cm} (6)

with $\mu > 0$.

By establishing an integral identity, the following error estimation of inequality (6) is proved.

Theorem 3 (see [1]). Let $f : [a, b] \rightarrow \mathbb{R}$ be a differentiable mapping on (a, b) with $a < b$. If $|f'|$ is convex on $[a, b]$, then the following fractional integral inequality holds:

$$\left| \frac{f(a) + f(b)}{2} - \frac{\Gamma(\mu+1)}{2(b-a)^\mu} \left[I_\mu^a f(b) + I_\mu^b f(a) \right] \right| \leq \frac{b-a}{2(\mu+1)} \left[1 - \frac{1}{2^\mu} \right] \left[|f'(a)| + |f'(b)| \right].$$ \hspace{1cm} (7)

A k-analogue of Riemann–Liouville integral is defined as follows.

Definition 3 (see [20]). Let $f \in L[a, b]$. Then, k-fractional Riemann–Liouville integrals of order μ are defined by $0 < k \leq 1$ as

$$I_\mu^a f(x) = \frac{1}{k^\mu_\Gamma(\mu)} \int_a^x (x-t)^{\mu-1} f(t) \, dt, \quad x > a, \hspace{1cm} (8)$$

$$I_\mu^b f(x) = \frac{1}{k^\mu_\Gamma(\mu)} \int_x^b (t-x)^{\mu-1} f(t) \, dt, \quad x < b, \hspace{1cm} (9)$$

where $\Gamma_k(.)$ is defined by [21]

$$\Gamma_k(\mu) = \int_0^\infty t^{\mu-1} e^{-t/k} \, dt, \quad \Re(\mu) > 0. \hspace{1cm} (10)$$

If $k = 1$, (8) and (9) coincide with (3) and (4).

Two k-fractional versions of Hadamard inequality for k-fractional Riemann–Liouville integrals are given in the next two theorems.

Theorem 4 (see [22]). Let $f : [a, b] \rightarrow \mathbb{R}$ be a positive function with $0 \leq a < b$. If f is a convex function on $[a, b]$, then the following inequality for k-fractional integrals holds:

$$f \left(\frac{a+b}{2} \right) \leq \frac{\Gamma_k(\mu+k)}{2(b-a)^\mu} \left[k I_\mu^a f(b) + k I_\mu^b f(a) \right] \leq \frac{f(a) + f(b)}{2},$$ \hspace{1cm} (11)

Theorem 5 (see [23]). Under the assumption of Theorem 4, the following inequality for k-fractional integrals holds:

$$f \left(\frac{a+b}{2} \right) \leq \frac{2^{1-\mu} \Gamma_k(\mu+k)}{(b-a)^\mu} \left[k I_\mu^a f(b) + k I_\mu^b f(a) \right] \leq \frac{f(a) + f(b)}{2}.$$ \hspace{1cm} (12)
By establishing an integral identity, in the following theorem, the error estimation of Theorem 4 is proved.

\[\left| f(a) + f(b) - \frac{\Gamma_k(\mu + k)}{2(b - a)^{\mu k}} \left[\frac{1}{\Gamma^k} f(a) + k \frac{1}{\Gamma^k} f(b) \right] \right| \leq \frac{b - a}{2} \left(1 - \frac{1}{2(\mu/k)} \right) \left(|f'(a)| + |f'(b)| \right). \]

(13)

In the following, we recall the definition of generalized Riemann–Liouville fractional integrals by a monotonically increasing function.

Definition 4 (see [24]). Let \(f: [a, b] \rightarrow \mathbb{R} \) be an integrable function. Also, let \(\psi \) be an increasing and positive function on \((a, b)\). Then, the following inequality for \(k \)-fractional integrals holds:

\[\int_a^b f(t)^{\mu/k} \psi(t) (t - \psi(t))^\mu \, dt \leq \int_a^b f(t)^{\mu/k} \psi(t) (t - \psi(t))^\mu \, dt. \]

(14)

(15)

If \(\psi \) is identity function, then (14) and (15) coincide with (3) and (4).

The \(k \)-analogue of generalized Riemann–Liouville fractional integral is defined as follows.

Definition 5 (see [25]). Let \(f: [a, b] \rightarrow \mathbb{R} \) be an integrable function. Also, let \(\psi \) be an increasing and positive function on \((a, b)\), having a continuous derivative \(\psi' \) on \((a, b)\). The left-sided and right-sided fractional integrals of a function \(f \) with respect to another function \(\psi \) on \([a, b]\) of order \(\mu \) where \(\Re(\mu) > 0 \) are given by

\[kI^\mu_a f(x) = \frac{1}{k \Gamma_k(\mu)} \int_a^x \psi(t) (x - \psi(t))^{\mu(k) - 1} f(t) \, dt, \quad x > a, \]

\[kI^\mu_b f(x) = \frac{1}{k \Gamma_k(\mu)} \int_x^b \psi(t) (\psi(t) - \psi(x))^{\mu(k) - 1} f(t) \, dt, \quad x < b. \]

(16)

(17)

For further study of fractional integrals, see [26, 27]. We will utilize the following well-known hypergeometric, beta, and incomplete beta functions in our results [28].

\[\text{If } c > 0, |z| < 1, \quad \text{then } \binom{a}{b} = \int_0^1 t^{b-1}(1-t)^{c-1}(1-zt)^{-a} \, dt. \]

\[B(x, y) = \int_0^1 t^{x-1}(1-t)^{y-1} \, dt = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}, \]

(18)

\[B(x, y; z) = \int_0^z t^{x-1}(1-t)^{y-1} \, dt. \]
2. Main Results

This section is dedicated to the Hadamard inequality for strongly \((s,m)\)-convex functions via generalized Riemann–Liouville fractional integrals. We will give two versions of this inequality. First one is stated and proved in the following theorem.

Theorem 7. Let \(f : [a,b] \rightarrow \mathbb{R}, \ [a,b] \subset [0, +\infty)\) be a positive function and \(f \in L_1[a,b]\). Also, let \(f\) be strongly \((s,m)\)-convex function on \([a, b]\) with modulus \(c\), such that \((a/m), (a/m^2), mb \in [a, b] \). Then, for \(k > 0\) and \((s,m) \in (0, 1]^2\), the following \(k\)-fractional integral inequalities hold for operators given in (16) and (17):

\[
f \left(\frac{a + mb}{2} \right) + \frac{cm}{4(\mu + k)(\mu + 2k)} \left[\mu(\mu + k)(b - a)^2 + 2k^2 \left(\frac{a}{m} - mb \right)^2 + 2k\mu(b - a) \left(\frac{a}{m} - mb \right) \right]
\]

\[
\leq \frac{\Gamma_k(\mu + k)}{2^k(\mu + 2k)} \left[\int_0^1 t^{(\mu k) - 1} \left((a/m) - mb \right)^2 \ dt + \mu(\mu + k)(\mu + 2k) \right]
\]

\[
\leq \frac{cm\mu}{4} \left[\frac{(b-a)^2}{2} + \frac{2k^2 ((a/m) - mb)^2}{\mu(\mu + k)(\mu + 2k)} \right]
\]

with \(\mu > 0\).

Proof. The following inequality holds for strongly \((s,m)\)-convex functions.

\[
f \left(\frac{x + my}{2} \right) \leq f(x) + mf(y) - \frac{cm(y - x)^2}{4}
\]

By setting \(x = at + m(1-t)b\), \(y = (a/m)(1-t) + mb\), \(t \in [0, 1]\), in (20), multiplying resulting inequality with \(t^{(\mu k) - 1}\), and then integrating with respect to \(t\), we get

\[
f \left(\frac{a + mb}{2} \right) \leq \frac{\Gamma_k(\mu + k)}{2^k(\mu + 2k)} \left[\int_0^1 t^{(\mu k) - 1} \left((a/m) - mb \right)^2 \ dt + \mu(\mu + k)(\mu + 2k) \right]
\]

\[
\leq \frac{cm\mu}{4} \left[\frac{(b-a)^2}{2} + \frac{2k^2 ((a/m) - mb)^2}{\mu(\mu + k)(\mu + 2k)} \right]
\]

By setting \(\psi(u) = at + m(1-t)b\) and \(\psi(v) = (a/m)(1-t) + bt\) in (21) and by applying Definition 5, we get the following inequality:

\[
f \left(\frac{a + mb}{2} \right) \leq \frac{\Gamma_k(\mu + k)}{2^k(\mu + 2k)} \left[\int_0^1 t^{(\mu k) - 1} \left((a/m) - mb \right)^2 \ dt + \mu(\mu + k)(\mu + 2k) \right]
\]

\[
\leq \frac{cm\mu}{4} \left[\frac{(b-a)^2}{2} + \frac{2k^2 ((a/m) - mb)^2}{\mu(\mu + k)(\mu + 2k)} \right]
\]

The rest of the paper is organized as follows. In Section 2, we obtain Hadamard inequalities for generalized Riemann-Liouville fractional integrals of strongly \((s,m)\)-convex functions. Many specific cases are given as outcomes of these inequalities; they are related to the results which have been published in different papers. In Section 3, by using two integral identities for generalized fractional integrals, the error bounds of fractional Hadamard inequalities are established for differentiable strongly \((s,m)\)-convex functions. This paper reproduces the results which are explicitly given in [1, 2, 22, 23, 29–37].
The above inequality leads to the first inequality of (19). On the other hand, \(f \) is strongly \((s, m)\)-convex function with modulus \(c \); for \(t \in [0, 1] \), we have the following inequality:

\[
\begin{align*}
f(ta + m(1 - t)b) &+ mf \left(\frac{a}{m} (1 - t) + tb \right) \\
&\leq t' [f(a) + mf(b)] \\
&+ m(1 - t)^r \left[f(b) + mf \left(\frac{a}{m^r} \right) \right] - cmf(1 - t) \left[(b - a)^2 + m \left(b - \frac{a}{m^r} \right)^2 \right].
\end{align*}
\]

(23)

By integrating (23) over \([0, 1]\) after multiplying with \(t^{(\mu k)^{-1}} \), the following inequality holds:

\[
\begin{align*}
\int_0^1 t^{(\mu k)^{-1}} f(ta + m(1 - t)b)dt &+ mf \left(\frac{a}{m} (1 - t) + tb \right) dt \\
&\leq \frac{[f(a) + mf(b)]k}{\mu + sk} + m \left[f(b) + mf \left(\frac{a}{m^r} \right) \right] B \left(\frac{\mu}{k} s + 1 \right) \\
&- cmk^2 \left[(b - a)^2 + m \left(b - \left(a/m^r \right) \right)^2 \right] \frac{1}{(\mu + k)(\mu + 2k)}.
\end{align*}
\]

Again using substitutions as considered in (21), we get

\[
\begin{align*}
\frac{k^r}{(mb - a)^{\mu k}} \left[k^{\mu, \psi}_{\psi^{-1}} (f \psi)(\psi^{-1}(mb)) + m^{(\mu k)^{-1}} k^{\mu, \psi}_{\psi^{-1}} (f \psi)(\psi^{-1}(\frac{a}{m})) \right] \\
&\leq \frac{[f(a) + mf(b)]k}{\mu + sk} + m \left[f(b) + mf \left(\frac{a}{m^r} \right) \right] B \left(\frac{\mu}{k} s + 1 \right) \\
&- cmk^2 \left[(b - a)^2 + m \left(b - \left(a/m^r \right) \right)^2 \right] \frac{1}{(\mu + k)(\mu + 2k)}.
\end{align*}
\]

(25)

This leads to the second inequality of (19).

Remark 1. Under the assumption of Theorem 7, the following outcomes are noted.

(i) If \(s = 1, m = 1 \), then the inequality stated in [[32], Theorem 9] is obtained.

(ii) If \(c = 0, s = 1, m = 1 \), and \(\psi \) is the identity function in (19), then Theorem 4 is obtained.

(iii) If \(c = 0, s = 1, m = 1, k = 1 \), and \(\psi \) is the identity function in (19), then Theorem 1 is obtained.

(iv) If \(k = 1, s = 1, m = 1 \), and \(\psi \) is the identity function in (19), then refinement of Theorem 1 is obtained.

(v) If \(\mu = 1, k = 1, s = 1, m = 1, c = 0 \), and \(\psi \) is the identity function in (19), then Hadamard inequality is obtained.

(vi) If \(m = 1, s = 1, c = 0 \) in (19), then the inequality [[34], Theorem 1] is obtained.

(vii) If \(c = 0, k = 1, m = 1, s = 1 \) in (19), then the inequality stated in [[33], Theorem 2.1] is obtained.

(viii) If \(s = 1, k = 1, \) and \(\psi \) is the identity function in (19), then the inequality stated in [[31], Theorem 6] is obtained.

(ix) If \(k = 1, m = 1, s = 1, \mu = 1, \) and \(\psi \) is the identity function in (19), then the inequality stated in [[35], Theorem 6] is obtained.
Corollary 1. Under the assumption of Theorem 7 with \(c = 0 \) in (19), the following inequality holds:

\[
f\left(\frac{a + mb}{2}\right) \leq \frac{\Gamma_k(\mu + k)}{2^{(\mu + k)} (\mu + k)/\mu + 2k} \left[(f^{\mu})^{-1}(m_1) \right] \\
\leq \frac{\mu [f(a) + mf(b)]}{\mu + 2k} + \frac{m \mu B((\mu/k), s + 1)[f(b) + mf(a/m^2)]}{k^2}
\]

\[(26) \]

Theorem 8. Under the assumption of Theorem 7, the following \(k \)-fractional integral inequality holds:

\[
f\left(\frac{a + mb}{2}\right) + \frac{cm}{16(\mu + k)(\mu + 2k)} \left[\mu (b - a)^2 + \left(\frac{a}{m} - mb\right)^2 \left(\mu^2 + 5k\mu + 8k^2\right) + 2\mu (b - a)\left(\frac{a}{m} - mb\right) (\mu + 3k) \right] \\
\leq \frac{2^{(\mu/k)-1}}{\mu + k/2} \left[(f^{\mu})^{-1}(mb) + m \mu B((\mu/k), (\mu + k)/k); (1/2) \right] + \frac{cm(\mu + 3k)\mu [(b - a)^2 + m(b - (a/m^2))]}{2^{(\mu/k)+1} (\mu + k) (\mu + 2k)}
\]

\[(27) \]

with \(\mu > 0 \).

Proof. By setting \(x = (at/2) + m((2 - t)/2)b, \ y = (a/m) ((2 - t)/2) + (bt/2), t \in [0, 1] \) in (20), multiplying resulting

\[
k \int_{0}^{1} \int_{0}^{1} f\left(\frac{a + mb}{2}\right) \left(\frac{a}{m} - mb\right)t^{(\mu/k)-1} dt + m \int_{0}^{1} f\left(\frac{a}{m} \left(\frac{2 - t}{2}\right) \right) t^{(\mu/k)-1} dt
\]

\[
\leq \frac{cm}{4(\mu + 2k)} \left[\frac{(b - a)^2 k}{(\mu/k) - 1} \left(\mu^2 + 5k\mu + 8k^2\right) + \frac{(b - a)(\mu(k) - 1) (\mu + 3k)}{2(\mu + 2k)} \right].
\]

\[(28) \]
By setting \(\psi(u) = (at/2) + bm((2-t)/2) \) and \(\psi(v) = (a/m)((2-t)/2) + (bt/2) \) and by applying Definition 5, we get the following inequality:

\[
\frac{k}{\mu} f \left(\frac{a + mb}{2} \right) \leq 2^{\mu k} k \Gamma_k(\mu) \left[\frac{\mu^k}{2}(mb - a)^{\mu k} \right] \left[f^\circ \psi \left(\psi^{-1}(mb) \right) + m^k(\mu k)^{+1} \left(f^\circ \psi \left(\psi^{-1}\left(\frac{a}{m} \right) \right) \right) \right] - \frac{cm}{4} \left[k(b-a)^2 + \frac{k((a/m)-mb)^2(\mu^2 + 5k\mu + 8k^2)}{4\mu(\mu + k)(\mu + 2k)} + \frac{k(b-a)((a/m)-mb)(\mu + 3k)}{2(\mu + k)(\mu + 2k)} \right].
\]

The above inequality leads to the first inequality of (27). On the other hand, \(f \) is strongly \((s, m)\)-convex function with modulus \(c \); for \(t \in [0, 1] \), we have the following inequality:

\[
f \left(\frac{at}{2} + m\left(\frac{2-t}{2} \right)b \right) + mf \left(\frac{a}{m}\left(\frac{2-t}{2} \right) + \frac{bt}{2} \right) \leq \left(\frac{t}{2} \right)^s [f(a) + mf(b)] + m\left(\frac{2-t}{2} \right)^s \left[f(b) + mf\left(\frac{a}{m^2} \right) \right] \frac{cmk(2-t)^2 + m\left(b - (a/m^2) \right)^2}{4}.
\]

By integrating (30) over \([0, 1]\) after multiplying with \((\mu k)^{-1}\), the following inequality holds:

\[
\int_0^1 f \left(\frac{at}{2} + m\left(\frac{2-t}{2} \right)b \right) t^{(\mu k)^{-1}} dt + m \int_0^1 f \left(\frac{a}{m}\left(\frac{2-t}{2} \right) + \frac{bt}{2} \right) t^{(\mu k)^{-1}} dt \leq \frac{1}{2^s(\mu k)^{+1}} \left[k[f(a) + mf(b)] + \frac{mk[f(b) + f(a/m^2)]}{2} F_1(-s, (1 + \mu/k), (2 + (\mu + k)/k); (1/2)) \right] - \frac{cmk(\mu + 3k)}{4(\mu + k)(\mu + 2k)} \left[(b - a)^2 + m\left(b - (a/m^2) \right)^2 \right].
\]

Again using substitutions as considered in (28), we get
and known results. The Mathematica program is used for in-
tations obtained here provide refinements of many well-
are integrable functions on integrals of strongly

\begin{align*}
\frac{2^m k_3 k_6 (\mu)}{(mb - a)^{2m}}
\left[k_4^{1/2} \psi^{-1}(mb)^{-1} \right]
+ m \left(\frac{\mu}{k} \right)^{1/2} k_7^{1/2} \psi^{-1}(mb)^{-1}
\left(\int_{a/m}^b f^\psi (\psi^{-1}(mb))^\mu \right)
\leq \frac{k [f(a) + mf(b)]}{2^s (sk + \mu)}
\frac{m \left(f(b) + mf(a/m^2) \right)}{2^s (sk + \mu)} F_1(-s, \mu/k, ((\mu + k)/k); (1/2))
\frac{cmk(\mu + 3k)}{4(\mu + k)(\mu + 2k)}
\end{align*}

This leads to the second inequality of (27).

Remark 2. Under the assumption of Theorem 8, the follow-
outcomes are noted.

(i) If \(s = 1 \) and \(m = 1 \) in (27), then the inequality stated
in \([32], \text{Theorem 10}\) is obtained.

(ii) If \(s = 1, m = 1, k = 1, c = 0 \), and \(\psi \) is the identity
function in (27), then Theorem 2 is obtained.

(iii) If \(s = 1, m = 1, k = 1 \), and \(\psi \) is the identity function
in (27), then refinement of Theorem 2 is obtained.

(iv) If \(s = 1, m = 1, k = 1, \mu = 1, c = 0 \), and \(\psi \) is the
identity function in (27), then Hadamard inequality
is obtained.

\(f \left(\frac{a + mb}{2} \right) \leq \frac{2^{(\mu/k) - 1/2}}{(mb - a)^{\mu/k}}
\left[k_4^{1/2} \psi^{-1}(mb)^{-1} \right]
+ m \left(\frac{\mu}{k} \right)^{1/2} k_7^{1/2} \psi^{-1}(mb)^{-1}
\left(\int_{a/m}^b f^\psi (\psi^{-1}(mb))^\mu \right)
\leq \frac{\mu [f(a) + mf(b)]}{2^s (sk + \mu)}
\frac{m \left(f(b) + mf(a/m^2) \right)}{2^s (sk + \mu)} F_1(-s, \mu/k, ((\mu + k)/k); (1/2))
\end{align*}

\(3. \) **Error Estimations of Hadamard
Inequalities via Strongly
\((s, m)\)-Convex Functions**

In this section, we will study error estimations of Hadamard
inequalities for generalized Riemann–Liouville fractional
integrals of strongly \((s, m)\)-convex functions. The estima-
tions obtained here provide refinements of many well-
known results. The Mathematica program is used for
integration. We recall the well-known Hölder’s integral
inequality.

Theorem 9 (see [38]). Let \(p > 1 \) and \((1/p) + (1/q) = 1 \). If \(f \)
and \(g \) are real functions defined on \([a, b]\) and if \(|f|_p \) and \(|g|_q \)
are integrable functions on \([a, b]\), then

\[\int_a^b |f(x)g(x)| \, dx \leq \left(\int_a^b |f(x)|^p \, dx \right)^{1/p}
\left(\int_a^b |g(x)|^q \, dx \right)^{1/q}, \]

with equality holding iff \(A|f(x)|^p = B|g(x)|^q \) almost
everywhere, where \(A \) and \(B \) are constants.

In order to prove the next result, the following lemma is
useful.

Lemma 1 (see [34]). Let \(a < b \) and \(f : [a, b] \to \mathbb{R} \) be a
differentiable mapping on \((a, b)\). Also, suppose that
\(f' \in L[a, b], \psi(x) \) is an increasing and positive monotone
function on \((a, b)\), having a continuous derivative \(\psi'(x) \) on
\((a, b)\), and \(a \in (0, 1) \). Then, for \(k > 0 \), the following
identity holds:
\[
\begin{align*}
\frac{f(a) + f(b)}{2} - \frac{\Gamma_k(\mu + k)}{2(b - a)^{\mu k}} k^{\mu \psi - 1} (f^\psi)(\psi^{-1}(b)) &+ k^{\mu \psi - 1} (f^\psi)(\psi^{-1}(a)) \\
&= \frac{b - a}{2} \int_0^1 \left((1 - t)^{\mu k} - t^{\mu k}\right) f'(ta + (1 - t)b) dt.
\end{align*}
\]

Theorem 10. Let \(f : [a, b] \rightarrow \mathbb{R} \), \([a, b] \subset [0, +\infty)\) be a differentiable mapping on \((a, b)\) such that \(f' \in L_1[a, b] \). Also, suppose that \(|f'|\) is strongly \((s, m)\)-convex on \([a, b]\) with modulus \(c\). Then, for \(k > 0 \) and \((s, m) \in (0, 1]^2\), the following \(k\)-fractional integral inequality holds for operators given in (16) and (17):

\[
\left| \frac{f(a) + f(b)}{2} - \frac{\Gamma_k(\mu + k)}{2(b - a)^{\mu k}} k^{\mu \psi - 1} (f^\psi)(\psi^{-1}(b)) + k^{\mu \psi - 1} (f^\psi)(\psi^{-1}(a)) \right|
\]

\[
\leq \frac{b - a}{2} \left[f'(a) \left(2B \left(\frac{1}{2}; s + \frac{\mu}{k} + 1 \right) + \frac{1 - (1/2)^{s+\mu/k}}{s + (\mu/k) + 1} - B \left(1 + s, 1 + \frac{\mu}{k} \right) \right)
\]

\[
+ m \left| f'(b) \left(\frac{1 - (1/2)^{s+\mu/k} + 1}{s + (\mu/k) + 1} - \frac{2F_1(-s, 1 + (\mu/k), 2 + (\mu/k); (1/2))}{2^{1+(\mu/k)}((\mu/k) + 1)} \right) \right|
\]

\[
= \frac{B(1 + s, 1 + (\mu/k) - \frac{k(k + \mu + 2(2k + s + \mu))}{k + k(m/k) + 2(m/k); (1/2))}}{2^{1+(\mu/k)}((\mu/k) + 1)}
\]

\[
= c \left(\frac{(b/m) - a^2}{((\mu/k) + 2)((\mu/k) + 3)} \left(1 - \frac{(\mu/k) + 4}{2^{((\mu/k) + 2)}(\mu/k) + 3} \right) \right).
\]

with \(\mu > 0 \) and \(2F_1(-s, 1 + (\mu/k), 2 + (\mu/k); (1/2)) \) being the hypergeometric function.

Proof. By Lemma 1, it follows that

\[
\left| \frac{f(a) + f(b)}{2} \right| - \frac{\Gamma_k(\mu + k)}{2(b - a)^{\mu k}} k^{\mu \psi - 1} (f^\psi)(\psi^{-1}(b)) + k^{\mu \psi - 1} (f^\psi)(\psi^{-1}(a)) \leq \frac{b - a}{2} \int_0^1 \left((1 - t)^{\mu k} - t^{\mu k}\right) f'(ta + (1 - t)b) dt.
\]

Since \(|f'|\) is strongly \((s, m)\)-convex function on \([a, b]\), for \(t \in [0, 1] \), we have

\[
\left| f'(ta + (1 - t)b) \right| \leq t^s |f'(a)| + m(1 - t) \left| f' \left(\frac{b}{m} \right) \right| - cm(t(1 - t)) \left(\frac{b}{m} - a \right)^2.
\]

Now using (38) in (37), we have
\[\left| \frac{f(a) + f(b)}{2} - \frac{\Gamma_k(\mu + 1)}{2(b-a)^{\mu k}} \left[k^{\mu k}(a) (f^2(a)) - k^{\mu k}(b) \right] \right| \]

\[\leq \frac{b-a}{2} \left[\Gamma_k(\mu + 1) \left[k^{\mu k}(a) (f^2(a)) - k^{\mu k}(b) \right] \right] \]

\[\leq \frac{b-a}{2} \int_0^1 \left(1-t \right)^{\mu k - t} \left(t^m f(t) + m(1-t)^{\mu} f(t) \right) \left(b m - a \right)^2 \right] \]

\[\leq \frac{b-a}{2} \left[\left(1-t \right)^{\mu k - t} \left(t^m f(t) + m(1-t)^{\mu} f(t) \right) \left(b m - a \right)^2 \right] \]

\[\leq \frac{b-a}{2} \left[\left(1-t \right)^{\mu k - t} \left(t^m f(t) + m(1-t)^{\mu} f(t) \right) \left(b m - a \right)^2 \right] \]

\[\leq \frac{b-a}{2} \left[\left(1-t \right)^{\mu k - t} \left(t^m f(t) + m(1-t)^{\mu} f(t) \right) \left(b m - a \right)^2 \right] \]

\[\leq \frac{b-a}{2} \left[\left(1-t \right)^{\mu k - t} \left(t^m f(t) + m(1-t)^{\mu} f(t) \right) \left(b m - a \right)^2 \right] \]

We now evaluate integrals that appear on the right side of the above inequality:

\[\int_0^{1/2} \left(t^m f(t) + m(1-t)^{\mu} f(t) \right) \left(b m - a \right)^2 \right] \]

\[\leq \frac{b-a}{2} \left[\left(1-t \right)^{\mu k - t} \left(t^m f(t) + m(1-t)^{\mu} f(t) \right) \left(b m - a \right)^2 \right] \]

\[\leq \frac{b-a}{2} \left[\left(1-t \right)^{\mu k - t} \left(t^m f(t) + m(1-t)^{\mu} f(t) \right) \left(b m - a \right)^2 \right] \]

\[\leq \frac{b-a}{2} \left[\left(1-t \right)^{\mu k - t} \left(t^m f(t) + m(1-t)^{\mu} f(t) \right) \left(b m - a \right)^2 \right] \]

Remark 3. Under the assumption of Theorem 10, the following outcomes are noted.

(i) If \(s = 1 \) and \(m = 1 \) in (45), then the inequality stated in [[32], Theorem 11] is obtained.

(ii) If \(s = 1 \), \(m = 1 \), and \(c = 0 \) in (45), then the inequality stated in [[32], Corollary 10] is obtained.
(iii) If $s = 1$, $m = 1$, $k = 1$, and $ψ$ is the identity function in (45), then a refined error estimation of the fractional Hadamard inequality is obtained.

(iv) If $m = 1$ and $c = 0$ in (45), then the inequality stated in [34], Theorem 2] is obtained.

(v) If $m = 1$, $s = 1$, $c = 0$, and $ψ$ is the identity function in (45), then Theorem 6 is obtained.

(vi) If $k = 1$, $m = 1$, $s = 1$, and $ψ$ is the identity function in (45), then Theorem 3 is obtained.

(vii) If $k = 1$, $s = 1$, and $ψ$ is the identity function in (45), then the inequality stated in [31, Theorem 8] is obtained.

Corollary 5. Under the assumption of Theorem 10 with $c = 0$ in (3.10), the following inequality holds:

\[
\left| f(a) + f(b) \right| \leq \frac{b-a}{2} \left| f'(a) \right| + \frac{1}{b-a} \int_a^b f'(x) \, dx \leq \frac{b-a}{8} \left| f'(a) \right| + \frac{c(b-a)^3}{32}.
\]

Lemma 2. Let $f : [a, b] \to \mathbb{R}$ be a differentiable mapping on (a, b) such that $f' \in L^1[a, b]$. Then, for $k > 0$ and $m \in (0, 1]$, the following identity holds for operators given in (16) and (17):

\[
\frac{2(\mu/k)-1}{(mb-a)^{\mu/k}} \Gamma_k(\mu+k) \left[k \mu \psi^{-1} (\psi^{-1}(mb)) m \left(\frac{a+mb}{2m} \right) \left(f^{\mu} \psi \right) \left(\psi^{-1}(mb) \right) + m^{(\mu/k)-1} \mu \psi^{-1} (\psi^{-1}(mb)) m \left(\frac{a+mb}{2m} \right) \left(f^{\mu} \psi \right) \left(\psi^{-1}(mb) \right) \right]
\]

\[= \frac{mb-a}{4} \left[\int_0^1 \mu \psi f \left(\frac{at}{2} + m \left(\frac{2-t}{2} \right) b \right) dt - \int_0^1 \mu \psi f \left(\frac{a}{m} \left(\frac{2-t}{2} \right) + bt \right) dt \right].
\]

Proof. Let

\[
I_1 = \frac{2(\mu/k)-1}{(mb-a)^{\mu/k}} \Gamma_k(\mu+k) \left[k \mu \psi^{-1} (\psi^{-1}(mb)) m \left(\frac{a+mb}{2m} \right) \left(f^{\mu} \psi \right) \left(\psi^{-1}(mb) \right) \right],
\]

\[
I_2 = \frac{m^{(\mu/k)-1} \frac{2(\mu/k)-1}{(mb-a)^{\mu/k}} \Gamma_k(\mu+k) \left[k \mu \psi^{-1} (\psi^{-1}(mb)) m \left(\frac{a+mb}{2m} \right) \left(f^{\mu} \psi \right) \left(\psi^{-1}(mb) \right) \right].
\]
First, we evaluate I_1:

$$I_1 = \frac{2(\mu/k) - 1}{k(m - a)^{(\mu/k)}} \left[\int_{\psi^{-1}(m)}^{\psi^{-1}(mb)} f'(u) (\psi(u) - \psi(a))^{\mu/k - 1} (f^\circ \psi)(u) du \right]$$

Now integrating by parts, we have

$$I_1 = \frac{1}{2} f\left(\frac{a + mb}{2}\right) + \frac{1}{2} \int_{\psi^{-1}(mb)}^{\psi^{-1}(a + mb)/2} \left(\frac{2(m - \psi(u)) - mb}{mb - a} \right)^{\mu/k} \psi'(u) f'(\psi(u)) du. \quad (47)$$

Substituting $t = 2 (mb - \psi(u))/mb - a$, so that $\psi(u) = (at/2) + m ((2 - t)/2)b$ in (48), we get the following inequality:

$$I_1 = \frac{1}{2} f\left(\frac{a + mb}{2}\right) + \frac{mb - a}{4} \int_{0}^{1} t^{\mu/k} f'(\frac{at}{2} + m \left(\frac{2 - t}{2}\right)b) dt. \quad (49)$$

Now, we evaluate I_2:

$$I_2 = m(\mu/k + 1) \frac{1}{2} \frac{\mu}{m} \left[\int_{\psi^{-1}(m)}^{\psi^{-1}(a + mb)/2m} \left(\frac{f^\circ \psi}{\psi^{-1}(a/m)} \right)'(\psi^{-1}(\frac{a}{m})) \right]$$

Integrating by parts, we get

$$I_2 = m(\mu/k + 1) \frac{1}{2} \frac{\mu}{m} \left[\int_{\psi^{-1}(a/m)}^{\psi^{-1}(a + mb)/2m} \left(\frac{f^\circ \psi}{\psi^{-1}(a/m)} \right)'(\psi^{-1}(\frac{a}{m})) \right]$$

Substituting $s = 2m ((\psi(v)) - (a/m))/(mb - a)$, so that $\psi(v) = (a/m)((2 - t)/2) + (bt/2)$ in (51), we get the following inequality:

$$I_2 = \frac{m}{2} f\left(\frac{a + mb}{2m}\right) - \frac{(mb - a)}{4} \int_{0}^{1} s^{\mu/k} f'(\frac{a}{m} \left(\frac{2 - s}{2}\right) + \frac{bs}{2}) ds. \quad (52)$$
Adding (49) and (52), (45) is obtained. □

Remark 4. Under the assumption of Lemma 2, the following outcomes are noted.

(i) If $k = 1$ and ψ is the identity function in (45), then the identity stated in [30], Lemma 2.3 is obtained.

(ii) If $m = 1$ in (45), then the identity stated in [32], Lemma 2 is obtained.

(iii) If $m = 1, k = 1$, and ψ is the identity function in (45), then the identity stated in [2], Lemma 3 is obtained.

(iv) If $m = 1, k = 1, \mu = 1$, and ψ is the identity function in (45), then the identity stated in [[2], Corollary 1] is obtained.

(v) If $m = 1$ and ψ is the identity function in (45), then the identity stated in [[23], Lemma 3.1] is obtained.

Theorem 11. Let $f : [a, b] \to \mathbb{R}$, $[a, b] \subset [0, +\infty)$ be a differentiable mapping on (a, b) such that $f' \in L[a, b]$. Also, suppose that $|f''|^p$ is strongly (s, m)-convex function on $[a, b]$ for $q \geq 1$. Then, for $k > 0$ and $(s, m) \in (0, 1]^2$, the following k-fractional integral inequality holds for operators given in (16) and (17):

\[
\begin{align*}
\frac{2^{[(\mu/k) - 1]} \Gamma_k (\mu + k)}{(mb - a)(\mu/k)} & \int \frac{f'(a) + m f'(b)}{2} dt \\
& \leq \frac{m b - a}{4(\mu/k + 1)} \left[\int \frac{f'(a) + m f'(b)}{2} dt \right] + \frac{m b - a}{4} \left[\int \frac{f'(a) + m f'(b)}{2} dt \right] \\
& \leq \frac{c m \left((b - a)^2 + m (b - (am)^2)^2 \right)}{4} \left[\int 2 t^{(\mu/k) + 1} (2-t) dt \right] \\
& \leq \frac{mk \Gamma_{1,2} \left(-s, 1, (\mu/k), (1/2) \right) \left[f'(a) + m f'(b) \right]}{k + \mu}.
\end{align*}
\]

Proof. We divide the proof into two cases. □

Case 1. Fix $q = 1$. Applying Lemma 2 and strongly (s, m)-convexity of $|f''|$, we have

\[
\begin{align*}
\frac{2^{[(\mu/k) - 1]} \Gamma_k (\mu + k)}{(mb - a)(\mu/k)} & \int \frac{f'(a) + m f'(b)}{2} dt \\
& \leq \frac{m b - a}{4(\mu/k + 1)} \left[\int \frac{f'(a) + m f'(b)}{2} dt \right] + \frac{m b - a}{4} \left[\int \frac{f'(a) + m f'(b)}{2} dt \right] \\
& \leq \frac{c m \left((b - a)^2 + m (b - (am)^2)^2 \right)}{4} \left[\int 2 t^{(\mu/k) + 1} (2-t) dt \right] \\
& \leq \frac{mk \Gamma_{1,2} \left(-s, 1, (\mu/k), (1/2) \right) \left[f'(a) + m f'(b) \right]}{k + \mu}.
\end{align*}
\]
Case 2. For $q > 1$. From Lemma 2 and using power mean inequality, we get

$$\frac{2^{(\mu k)^{-1}} r_k (\mu + k)}{(mb - a)^{(\mu k)^{-1}}} \left[k \int_{1}^{\infty} \left(f^q \psi \left(\frac{1}{m} \right) \right) \left(f^q \psi \left(\frac{a}{m} \right) \right) \left(f^q \psi \left(\frac{a + mb}{2m} \right) \right) \left(f^q \psi \left(\frac{a + mb + mk}{2m} \right) \right) \right]$$

$$\leq \frac{mb - a}{4} \left(\int_{0}^{1} t^{(\mu k)q} \left(\int_{0}^{1} t^{(\mu k)q} \left(f^q \psi \left(\frac{a + mb}{2m} \right) \right) \right) \right)$$

$$+ \frac{m f'(b)}{2^q} \left(\int_{0}^{1} t^{(\mu k)q} \left(\int_{0}^{1} t^{(\mu k)q} \left(cm(b - a)^2 / 4 \right) \right) \right)$$

$$\leq \frac{mb - a}{4} \left[km k f'(b) |_{-}^{q} F_{1} \left(-s, 1 + (\mu k), 2 + (\mu k), (1/2) \right) + k + \mu \right]$$

$$- \frac{cm((\mu k) + 4) (b - a)^2}{4 ((\mu k) + 2) ((\mu k) + 3)} \left[km k f'(b) |_{-}^{q} F_{1} \left(-s, 1 + (\mu k), 2 + (\mu k), (1/2) \right) + k + \mu \right]$$

$$+ \frac{cm((\mu k) + 4) (b - a)^2}{4 ((\mu k) + 2) ((\mu k) + 3)} \left[km k f'(b) |_{-}^{q} F_{1} \left(-s, 1 + (\mu k), 2 + (\mu k), (1/2) \right) + k + \mu \right]$$

$$\leq \frac{mb - a}{4} \left(\frac{1}{2 ((\mu k) + 1) ((\mu k) + 2)} \right)$$

$$+ \frac{2k ((\mu k) + 1) ((\mu k) + 2)}{2i (sk + \mu + k)}$$

Hence, we get (53).

Remark 5. Under the assumption of Theorem 11, the following outcomes are noted.

(i) If $s = 1$ and $m = 1$ in (53), then the inequality stated in [[32], Theorem 12] is obtained.

(ii) If $s = 1$, $k = 1$, and ψ is the identity function in (53), then the inequality stated in [[31], Theorem 9] is obtained.

(iii) If $s = 1$, $k = 1$, $c = 0$, and ψ is the identity function in (53), then the inequality stated in [[30], Theorem 2.4] is obtained.
(iv) If $c = 0$, $s = 1$, $m = 1$, and ψ is the identity function in (53), then the inequality stated in [23], Theorem 3.1 is obtained.

(v) If $s = 1$, $m = 1$, $c = 0$, $k = 1$, and ψ is the identity function in (53), then the inequality stated in [2], Theorem 5 is obtained.

Corollary 7. Under the assumption of Theorem 11 with $c = 0$ in (53), the following inequality holds:

\[
\frac{1}{2} \Gamma_k(\mu + k) \left[\int_{\mu/k}^{\mu/(a + mb)} (f^x\psi)(\psi^{-1}(mb)) \right.
\]
\[
+ m \int_{\mu/(a + mb)/2m}^{\mu/k} (f^x\psi)(\psi^{-1}\left(\frac{a}{m}\right)) - \frac{1}{2} \left[f\left(\frac{a + mb}{2}\right) + mf\left(\frac{a + mb}{2m}\right) \right] \left| \frac{mb - a}{4((\mu/k) + 1)} \left(2 ((\mu/k) + 1)((\mu/k) + 2) \right)^{1/q} \left(\left(\frac{a}{m} \right)^q + 2m \left| f'(b) \right| q \right) \right| \left(\frac{a + mb}{2m} \right) \right]
\]
\[
\frac{1}{2} \Gamma_k(\mu + k) \left[\int_{\mu/k}^{\mu/(a + mb)} (f^x\psi)(\psi^{-1}(mb)) \right.
\]
\[
+ m \int_{\mu/(a + mb)/2m}^{\mu/k} (f^x\psi)(\psi^{-1}\left(\frac{a}{m}\right)) - \frac{1}{2} \left[f\left(\frac{a + mb}{2}\right) + mf\left(\frac{a + mb}{2m}\right) \right] \left| \frac{mb - a}{4((\mu/k) + 1)} \left(2 ((\mu/k) + 1)((\mu/k) + 2) \right)^{1/q} \left(\left(\frac{a}{m} \right)^q + 2m \left| f'(b) \right| q \right) \right| \left(\frac{a + mb}{2m} \right) \right].
\]

Corollary 8. Under the assumption of Theorem 11 with $k = 1$, $s = 1$, $m = 1, q = 1$, $\mu = 1$, and ψ as the identity function in (53), the following inequality holds:

\[
\left| \frac{1}{b - a} \int_a^b f'(x)dx \right| \leq \left| f'(a) \right| + \left| f'(b) \right| - \frac{5c(a - b)^2}{12}.
\]

Lemma 3 (see [39]). Let $p \geq 1$ be a real number. For $(x_1, x_2, \ldots, x_n) \in [0, \infty) \times n$ and $m \geq 2$, the following inequality holds:

\[
\sum_{i=1}^{n} x_i^p \leq \left(\sum_{i=1}^{n} x_i \right)^p.
\]

Theorem 12. Let $f: I \rightarrow \mathbb{R}$ be a differentiable mapping on (a, b) with $a < b$. Also, suppose that $|f''|$ is strongly (s, m)-convex function on $[a, b]$ for $q > 1$. Then, for $k > 0$ and $(s, m) \in (0, 1)$, the following k-fractional integral inequality holds for operators given in (16) and (17):
Now applying Hölder’s inequality for integrals, we get

\[
\left| \frac{2^{(\mu/k)} \Gamma_k(\mu + k)}{(mb - a)^{\mu/k}} k^{\mu} \psi^{-1}((a + mb)/2)^{*} \left(f^{*} \psi \right) \left(\psi^{-1} (mb) \right) \right| - \frac{1}{2} \left[f \left(\frac{a + mb}{2} \right) + mf \left(\frac{a + mb}{2m} \right) \right] \leq \frac{mb - a}{4} \left[\int_{0}^{1} \left| t^{(\mu/k)} f' \left(\frac{at}{2} + m \left(\frac{2 - t}{2} \right) b \right) \right| dt + \int_{0}^{1} \left| t^{(\mu/k)} f' \left(\frac{at}{2} + m \left(\frac{2 - t}{2} \right) b \right) \right| dt \right].
\]

Using strongly \((s,m)\)-convexity of \(|f'|^q|\), we get
Remark 6. Under the assumption of Theorem 12, the following outcomes are noted.

(i) If \(s = 1 \) and \(m = 1 \) in (59), then the inequality stated in [[32], Theorem 13] is obtained.

(ii) If \(s = 1 \) and \(\psi \) is the identity function in (53), then the inequality stated in [[31], Theorem 10] is obtained.

(iii) If \(s = 1, k = 1, c = 0, \) and \(\psi \) is the identity function in (53), then the inequality stated in [[30], Theorem 2.7] is obtained.

(iv) If \(c = 0, s = 1, m = 1, \) and \(\psi \) is the identity function in (59), then the inequality stated in [[23], Theorem 3.2] is obtained.

(v) If \(k = 1, s = 1, m = 1, c = 0, \) and \(\psi \) is the identity function in inequality (59), then the inequality stated in [[2], Theorem 6] is obtained.

(vi) If \(k = 1, s = 1, m = 1, c = 0, \mu = 1, \) and \(\psi \) is the identity function in inequality (59), then the inequality stated in [[37], Theorem 2.4] is obtained.

Corollary 9. Under the assumption of Theorem 12 with \(c = 0 \) in (61), the following inequality holds:
\[
\frac{2^{\mu/k} \Gamma_k (\mu + k)}{(mb - a)^{\mu/k}} \left[k \mu \psi^{-1} ((a + mb)/2) \left(f^\varphi \psi \left(\psi^{-1} (mb) \right) \right) + m \left(\frac{\mu}{k} + 1 \right) \Gamma_k \mu \psi^{-1} ((a + mb)/2m) \right] \left(f^\varphi \psi \left(\psi^{-1} \left(\frac{a}{m} \right) \right) \right) \\
- \frac{1}{2} \left[f \left(\frac{a + mb}{2} \right) + mf \left(\frac{a + mb}{2m} \right) \right] \\
\leq \frac{mb - a}{16} \left(\frac{4}{(\mu/p + 1)} \right)^{1/p} \left[f' \left(a \right) \left(\frac{4}{2^s (s + 1)} \right)^{1/q} + f' \left(b \right) \left(\frac{4m (-1 + 2^{s+1})}{2^s (1 + s)} \right)^{1/q} \right] \\
+ \left(\left| f' \left(\frac{a}{m} \right) \left(\frac{4m (-1 + 2^{s+1})}{2^s (1 + s)} \right)^{1/q} \right| + \left(\frac{4}{2^s (s + 1)} \right)^{1/q} \left| f' \left(b \right) \right| \right].
\]

Corollary 10. Under the assumption of Theorem 12 with \(q \rightarrow 1 \) and \(p \rightarrow \infty \) in (59), the following inequality holds:

\[
\frac{2^{\mu/k} \Gamma_k (\mu + k)}{(mb - a)^{\mu/k}} \left[k \mu \psi^{-1} ((a + mb)/2) \left(f^\varphi \psi \left(\psi^{-1} (mb) \right) \right) + m \left(\frac{\mu}{k} + 1 \right) \Gamma_k \mu \psi^{-1} ((a + mb)/2m) \right] \left(f^\varphi \psi \left(\psi^{-1} \left(\frac{a}{m} \right) \right) \right) \\
- \frac{1}{2} \left[f \left(\frac{a + mb}{2} \right) + mf \left(\frac{a + mb}{2m} \right) \right] \\
\leq \frac{mb - a}{16} \left[\frac{4 \left(f' \left(a \right) \right) + \left| f' \left(b \right) \right|}{2^s (s + 1)} + \frac{4m (-1 + 2^{s+1}) \left(\left| f' \left(b \right) \right| + \left| f' \left(a/m \right) \right| \right)}{2^s (1 + s)} - \frac{4cm (b - a)^2}{3} \right].
\]

4. Conclusion

In this article, we studied the Hadamard inequalities and their estimations for generalized Riemann–Liouville fractional integrals of strongly \((s, m)\)-convex functions. These inequalities represent the generalizations and refinements of a number of well-known inequalities stated in [1, 2, 22, 23, 29–37]. The error estimations of Hadamard inequalities for differentiable strongly \((s, m)\)-convex functions are better as compared to those which are obtained for convex functions, strongly convex functions, and strongly \(m\)-convex functions.

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] M. Z. Sarikaya, E. Set, H. Yaldiz, and N. Basak, “Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities,” Mathematical and Computer Modelling, vol. 57, no. 9–10, pp. 2403–2407, 2013.
[2] M. Z. Sarikaya and H. Yildirim, “On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals,” Miskolc Mathematical Notes, vol. 17, no. 2, pp. 1049–1059, 2017.
[3] F. Chen, “Extensions of the Hermite-Hadamard inequality for convex functions via fractional integrals,” Journal of Mathematical Inequalities, vol. 10, no. 1, pp. 75–81, 2016.
[4] M. Iqbal, M. I. Bhatti, and K. Nazeer, “Generalization of inequalities analogous to Hermite-Hadamard inequality via fractional integrals,” Bulletin of the Korean Mathematical Society, vol. 52, no. 3, pp. 707–716, 2015.
[5] M. Jleli, D. O’Regan, and B. Samet, “On Hermite-Hadamard type inequalities via generalized fractional integrals,” Turkish Journal of Mathematics, vol. 40, no. 6, pp. 1221–1230, 2016.
[6] M. A. Noor, K. I. Noor, M. U. Awan, and S. Khan, “Fractional Hermite-Hadamard inequalities for some new classes of Godunova-Levin functions,” Applied Mathematics & Information Sciences, vol. 8, no. 6, pp. 2865–2872, 2014.
[7] P. Agarwal, M. Jleli, and M. Tomar, “Certain Hermite-Hadamard type inequalities via generalized \(k \)-fractional integrals,” Journal of Inequalities and Applications, vol. 2017, no. 1, pp. 1–10, 2017.
[8] S. Mehmoond and G. Farid, “Fractional integrals inequalities for exponentially \(m \)-convex functions,” Open Journal of Mathematical Analysis, vol. 4, no. 1, pp. 78–85, 2020.
[9] T. U. Khan and M. A. Khan, “Hermite-Hadamard inequality for new generalized conformable fractional operators,” AIMS Mathematics, vol. 6, no. 1, pp. 23–28, 2020.
[10] J. E. Pecaric, F. Proschan, and Y. L. Tong, “Convex functions, partial orderings, and statistical applications,” Mathematics in Science and Engineering, vol. 187, 1992.
fractional integrals," *Journal of Inequalities and Special Functions*, vol. 7, no. 4, pp. 150–167, 2016.

[30] G. Farid, A. U. Rehman, and B. Tariq, “On Hadamard-type inequalities for,” *Studia Universitatis Babeş-Bolyai Mathematica*, vol. 62, no. 2, pp. 141–150, 2017.

[31] Y. C. Kwun, G. Farid, S. B. Akbar, and S. M. Kang, “Riemann-Liouville fractional versions of Hadamard inequality for strongly m-convex functions,” 2020.

[32] G. Farid, H. Yasmeen, C. Y. Jung, S. H. Shim, and G. Ha, “Refinements and generalizations of some fractional integral inequalities via strongly convex functions,” *Mathematical Problems in Engineering*, In Press.

[33] K. Liu, J. Wang, and D. O’Regan, “On the Hermite-Hadamard type inequality for ψ-Riemann-Liouville fractional integrals via convex functions,” *Journal of Inequalities and Applications*, vol. 2019, no. 1, pp. 1–10, 2019.

[34] M. U. Awan, S. Talib, Y. M. Chu, M. A. Noor, and K. I. Noor, “Some new refinements of Hermite-Hadamard-type inequalities involving ψκ-Riemann-Liouville fractional integrals and applications,” *Journal of Mathematical Problems in Engineering*, vol. 2020, pp. 1–10, 2020.

[35] N. Merentes and K. Nikodem, “Remarks on strongly convex functions,” *Aequationes Mathematicae*, vol. 80, pp. 193–199, 2010.

[36] S. S. Dragomir and R. P. Agarwal, “Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula,” *Applied Mathematics Letters*, vol. 11, no. 5, pp. 91–95, 1998.

[37] U. S. Kirmaci, “Inequalities for differentiable mappings and applications to special means of real numbers to midpoint formula,” *Applied Mathematics and Computation*, vol. 147, no. 1, pp. 137–146, 2004.

[38] D. S. Mitrinović, *Analytic Inequalities*, Springer, New York, NY, USA, 1970.

[39] B. Belaïdi, E. Farissi, and Z. Latreuch, “Inequalities between sum of the powers and the exponential of sum of nonnegative sequence,” *Archivum Mathematicum*, vol. 47, pp. 257–262, 2012.