Supplementary Material

Adsorption of Tetracycline on Fe (Hydr)oxides: Effects of pH and Metal Cation (Cu^{2+}, Zn^{2+}, and Al^{3+}) Addition in Various Molar Ratios

Liang-Ching Hu, Yu-Ting Liu, Chien-Hui Syu, Mei-Hsia Huang, Yu-Min Tzou*, Heng Yi Teh

a Scientific Research Division, National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 300, Taiwan

b Department of Soil and Environmental Sciences, National Chung-Hsing University, 145 Xingda Rd., Taichung 402, Taiwan

c Division of Agricultural Chemistry, Taiwan Agricultural Research Institute, No.189, Zhongzheng Rd., Wufeng Dist., Taichung City 41362, Taiwan

d Division of Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, 332 Building of Environmental Studies, 5-1-5 Kashiwanoha, Kashiwa City, Chiba 277-8563, Japan

*Corresponding author:
Yu-Ting Liu: email: yliu@nchu.edu.tw; TEL: +886-4-2284-0373 ext. 3402; Fax: +886-4-2285-6050
Yu-Min Tzou: ymtzou@dragon.nchu.edu.tw; Tel.: +886-4-2284-0373 ext. 4206; fax: +886-4-228-5516
Preparation and characterizations of Fe (hydr)oxides

The suspensions of goethite and ferrihydrite were dialyzed until the electric conductivity was < 50 \(\mu \)S/cm\(^{-1} \). Final stock suspensions in 0.01M NaCl background were stored at 4 °C for a maximum of two weeks.

The X-ray powder diffraction analysis was conducted using the PANalytical X'Pert Pro MRD instrument with a step of 0.017° in a 2\(\Theta \) range from 15° to 90° with the Cu-K\(\alpha \) radiation (\(\lambda = 1.5406 \) nm, 40 kV, 40 mA). The point of zero charge was determined using the pH drift method [1]. The average particle sizes were measured by dynamic light scattering (Malvern/Nano-ZS, USA), and the specific surface areas were determined by N\(_2\)-BET method.

TC Adsorption on Fe (hydr)oxides

To avoid the possible photolysis of TC, the reaction vials were covered with Al foil and placed in a stainless steel chamber during the equilibration. Control experiments conducted at each tested pH in the absence of adsorbents showed that < 1% of TC was lost, implying the negligible photolysis of TC over the course of incubation. All experiments were performed in three replicates.
Figure S1. The molecular structure of tetracycline (TC) and dissociation constants (pKa) of the dominant acidic groups.

Phenolic diketone group, pKa$_2$ = 7.7
Tricarbonylamide group, pKa$_1$ = 3.3
Dimethylamino group, pKa$_3$ = 9.7
Figure S2. The UV/Vis absorption spectroscopy of TC and TC-metal complexes formed at the metal to TC molar ratio of 1 : 1 (each 0.0225 mM) for 24 h.
Figure S3. X-ray diffraction patterns of (a) 2-line ferrihydrite and (b) goethite
Figure S4. Effect of metals on the zeta potential of goethite.
Table S1. Characteristics of the Fe (hydr)oxides used in this study.

Iron hydroxide	pH_{PZC}	Particle size (nm)	Surface area (m² g⁻¹)
2-line Ferrihydrite	6.3	290.3	251.8
Geothite	6.5	466.5	25.0
Table S2. Parameters of Freundlich isotherm model for TC adsorption on ferrihydrite and goethite.

	Ferrihydrite			Goethite		
	K_f	1/n	R²	K_f	1/n	R²
TC only						
pH 3	1.202	0.222	0.991	0.141	0.400	0.980
pH 4	2.079	0.318	0.962	0.300	0.833	0.993
pH 5	2.140	0.232	0.990	0.387	0.700	0.940
pH 6	2.763	0.288	0.983	0.759	0.855	0.991
TC+Cu²⁺						
pH 3	0.947	0.194	0.955	0.958	0.945	0.964
pH 4	1.531	0.248	0.973	1.013	0.857	0.988
pH 5	2.866	0.346	0.996	1.514	0.709	0.986
pH 6	8.116	0.418	0.993	4.113	0.766	0.987
TC+Zn²⁺						
pH 3	1.111	0.227	0.973	0.208	0.688	0.868
pH 4	1.876	0.313	0.975	0.328	0.787	0.968
pH 5	2.261	0.306	0.977	0.457	0.661	0.972
pH 6	2.839	0.282	0.957	0.999	0.820	0.986
TC+Al³⁺						
pH 3	1.288	0.199	0.996	2.241	1.167	0.958
pH 4	2.198	0.257	0.999	1.665	1.003	0.963
pH 5	2.400	0.265	0.957	0.751	0.704	0.956
pH 6	1.886	0.203	0.980	1.119	0.716	0.961

Freundlich isotherm equation: q_e = K_fC_e\(^{1/n}\); where q_e is the amounts of TC adsorption onto Fe (hydr)oxides (mg g⁻¹); C_e = equilibrium concentrations of TC (mmol L⁻¹); K_f = Freundlich isotherm constants (mmol^{1-1/n} L^{1/n} g⁻¹); n = adsorption intensity.
Table S3. Pseudo-second order parameters for TC adsorption on ferrihydrite and goethite at pH 3, 5, and 8.

	Ferrihydrite		Goethite			
	k	q_e	R²	k	q_e	R²
pH 3	0.691 g mmol⁻¹ h⁻¹	0.298 mmol g⁻¹	0.902	29.25 g mmol⁻¹ h⁻¹	0.007 mmol g⁻¹	0.900
pH 5	2.351 g mmol⁻¹ h⁻¹	0.392 mmol g⁻¹	0.906	47.33 g mmol⁻¹ h⁻¹	0.032 mmol g⁻¹	0.999
pH 8	1.340 g mmol⁻¹ h⁻¹	0.287 mmol g⁻¹	0.940	3.69 g mmol⁻¹ h⁻¹	0.015 mmol g⁻¹	0.841

Pseudo-second-order equation: \(\frac{dq}{dt} = k(q_e-q_t)^2 \), where \(k \) is the rate constant of adsorption; \(q_e \) is the amounts of TC adsorption onto Fe hydr(o)oxides at equilibrium; \(q_t \) is the amounts of TC adsorption onto Fe hydr(o)oxides at any time.
Reference:
[1] C. Sun, J.C. Berg, A review of the different techniques for solid surface acid–base characterization, Adv. Colloid Interface Sci. 105 (2003) 151-175.