Plastic Deformation of BaTiO$_3$ Ceramics by High-pressure Torsion and Changes in Phase Transformations, Optical and Dielectric Properties

Kaveh Edalati$^{a, b,*}$, Masashi Arimurac, Yoshifumi Ikomab, Takeshi Daiod, Moriji Miyatae, David J. Smithf and Zenji Horita$^{a, b}$

aWPI, International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395, Japan; bDepartment of Materials Science and Engineering, Faculty of Engineering, Kyushu University, Fukuoka 819-0395, Japan; cFukuoka Industrial Technology Center, Chemical & Textile Industry Research Institute, Fukuoka 818-8540, Japan; dInternational Research Center for Hydrogen Energy, Kyushu University, Fukuoka 819-0395, Japan; eMIYATA HI-MEQ Institute, Kitakyushu 806-0067, Japan; fDepartment of Physics, Arizona State University, Tempe, AZ 85287-1504, USA

(Received 25 February 2015; final form 19 June 2015)

Ceramics are generally brittle at ambient condition and they can hardly be deformed plastically. In this study, severe plastic deformation was successfully imposed on barium titanate ceramic powders by high-pressure torsion. A tetragonal-to-cubic phase transformation occurred, and the fraction and stability of the cubic phase increased by straining because of the formation of nanograins. BaTiO$_3$ exhibited photoluminescence and the yellow intensity increased after straining because of the formation of large fraction of grain boundaries. The dielectric constant of BaTiO$_3$ was unusually increased by nanograin formation while the Curie temperature remained constant.

Keywords: Severe Plastic Deformation (SPD), Ultrafine-Grained (UFG) Materials, Perovskite Oxides, Relative Permittivity, Capacitance

Barium titanate, BaTiO$_3$ (BTO), which belongs to the group of perovskite oxides with the general ABO$_3$ formula, has received much attention because of its dielectric,[1–5] piezoelectric [1,5,6] and ferroelectric [7,8] properties, as well as its mechanical and chemical stability.[9] Moreover, BTO has been widely investigated for its optical properties,[10] photoluminescence (PL),[11,12] photocatalysis,[13] proton conductivity [14] and phase transformations.[15–24] BTO transforms from a rhombohedral structure to an orthorhombic phase at -90°C, to a ferroelectric tetragonal phase at 5°C, and to a paraelectric cubic phase at 120°C under ambient pressure.[15–18] At ambient temperature, it exhibits a tetragonal-to-cubic phase transformation at 2 GPa [15–18] and it disorders at 5 GPa.[22] It was reported that the cubic phase can be stable or that several phases can coexist at ambient conditions due to the nanosize effect: 3 nm for nanowires,[19] 30–50 nm for nanograins,[23,24] and 5–26 nm for nanoparticles.[20,21]

Despite these results, there have been few reports on the effect of plastic strain on BTO phase transformations and subsequent changes in the physical properties. The main drawback is the technical difficulty of imposing plastic strain in hard and brittle ceramics with strong covalent or ionic bondings. However, some researchers reported that the high-pressure torsion (HPT) method, which is mainly used for metal processing,[25–28] is an effective technique for introducing plastic strain in ceramics.[29–33] In this work, intense plastic strain is imposed on BTO ceramic powders using the HPT method and the evolution of microstructure, phase transformations, PL and dielectric properties are investigated.

The material used in this study was commercial BTO powder with a purity level of $>96\%$ and ~ 1 μm particle size. Almost 1 g of the powders was placed between two Bridgman anvils [34] under a pressure of 6 GPa and shear strain γ ($\gamma = 2\pi rN/h$; r: distance from disc center, N: number of turns, h: thickness of disc [26])

© 2015 The Author(s). Published by Taylor & Francis. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/Licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
was introduced by rotating the two anvils with respect to each other for either \(N = 0 \) (mere compression), \(1/8, 1/4, 1/2, 1, 2, 5 \) turns at room temperature. The material had a disc shape with 10 mm diameter and 0.8 mm thickness after HPT processing.

After processing by HPT, X-ray diffraction (XRD) analysis was performed using Cu K\(\alpha \) radiation. Raman spectroscopy and PL measurements were performed using a micro-Raman system with a 488 nm argon ion laser at 3.5 mm from the disc center. Cross section of sample was examined using scanning electron microscopy (SEM). For transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM), thin foils were prepared from material located at 4 mm away from the disc center using either the focused-ion-beam system or crushing. For dielectric measurements, the samples were sintered at 1,200°C for 2 h with a heating rate of 2°C/min. Two Au electrodes were attached to both sides of discs and the dielectric constant (permittivity of sample to permittivity of vacuum, \(8.854 \times 10^{-12} \) F/m) and the dielectric loss (dissipation of electromagnetic energy) were measured using an impedance analyzer at 1 Vrms and 1–2,000 kHz.

XRD analysis, as shown in Figure 1(a), confirms the presence of a tetragonal phase in the as-received powders as well as in the samples after only compression. The tetragonal peaks are not distinguishable after HPT processing either because of XRD peak broadening and/or phase transformation to a cubic phase. The peak broadening is visible more clearly in Figure 1(b), where the full-width-at-half-maximum (FWHM) is plotted against the imposed shear strain. The FWHM increases slightly with compression, but the increase is more significant after HPT straining, proving the occurrence of plastic deformation. It should be noted that the occurrence of steady states at large strains, as in Figure 1(b), has been reported in many other materials.\[35–37\]

The BTO microstructure at the steady state after HPT processing is shown in Figure 2. Nanograins form after processing, in agreement with earlier studies of grain refinement by severe straining.\[25–28\] While some grains have low misorientation angles as in Figure 2(a) (diffracted beams from the two grains exhibit a small angle in the selected-area electron diffraction (SAED) pattern), others have high misorientation angles as in Figure 2(b) (two grains A and B rotated by 40° with respect to each other). Note that the dark-field image in (a) was taken with the diffracted beams indicated by the arrow in the SAED pattern. Detailed microstructural examination confirms that the average grain sizes at the steady state are well into the nanometer regime (smaller than 100 nm and mainly in the range of 10–20 nm).

SEM micrographs of BTO samples after HPT processing for (a) \(N = 0 \) and (b) \(N = 5 \) and subsequent
Figure 3. SEM micrographs for samples processed by HPT for (a) \(N = 0 \) and (b) \(N = 5 \) turns and subsequently sintered at 1,200°C. (c) TEM lattice image for sample processed for \(N = 5 \) turns and subsequently sintered at 1,200°C.

aging at 1,200°C are shown in Figure 3. These micrographs suggest that the average grain sizes measured for 90–150 grains (regions separated by some boundaries in SEM micrographs) is \(\sim 830 \) nm for \(N = 0 \) and \(\sim 470 \) nm for \(N = 5 \). Although the average grain size measured for \(N = 0 \) is reasonably consistent with the initial particle size of the powders (\(\sim 1 \) μm), examinations using TEM clearly show that many nanograins (mainly in the range of 10–20 nm) are retained even after sintering the sample at 1,200°C, as visible in Figure 3(c).

Raman spectra in Figure 4(a) show that the peaks corresponding to the tetragonal phase become less visible after mere compression under 6 GPa. The intensity of tetragonal peaks decreases significantly after HPT processing at large strains (\(N = 1–5 \) or \(\gamma = 27–137 \)), indicating that a decrease in tetragonality and a transition to the cubic phase could have occurred, consistent with the BTO phase diagram.[16–18] Details concerning
the BTO Raman spectra were reported elsewhere.[21–24] These results clearly show that, although substantial pressure is required to trigger the cubic-phase formation, the phase transition is facilitated with straining. This finding is consistent with earlier reports concerning the effect of strain on phase transitions in Ti,[38–40] Zr,[41] ZrO2 [30] and some other metallic alloys.[42–44] The cubic phase present after HPT processing remains partially stable even after pressure release because of the formation of nanograins.[19–24] Figure 4(b) shows Raman spectra for the samples processed for \(N = 0, 1 \) and 5 and subsequently sintered at 1,200°C for 2 h. Figure 4(b) suggests that the crystal structure of BTO samples is mainly composed of tetragonal phase after sintering at 1,200°C.

The PL spectra in Figure 4(c) show that four peaks, corresponding to green, yellow, orange and red appear at 570, 590, 620 and 650 nm, respectively, after compression. Following HPT processing, the yellow intensity increases and the green, orange and red intensities decrease. These emissions are not due to direct transition of electrons between BTO valence and conduction bands, but they are instead attributed to the formation of lattice defects such as oxygen vacancies, excess oxygen and grain boundaries.[11,12] It was shown earlier that yellow intensity can increase as grain size decreases to the nanometer level,[11] which is consistent with the current results.

The BTO dielectric constant is plotted against (a) frequency and (b) temperature in Figure 5. The dielectric constant increases with the application of HPT, whereas the Curie temperature remains constant. The increase in dielectric constant appears to be more significant for larger numbers of turns, such as \(N = 5 \) or \(\gamma = 137 \). As shown in Figure 5(a), the samples processed for \(N = 1 \) and 5 exhibit better consolidation (relative density: 97%) than the sample processed for \(N = 0 \) (relative density: 93%). These results are consistent with the earlier reports on the improvement of consolidation of ceramics by HPT processing.[32,33] Figure 5(c) shows that the sintered samples exhibit similar dielectric loss, especially at temperatures in the range of 70–140°C. Therefore, the increase in dielectric constant is not due to the effect of dielectric loss. The dielectric constant of 5,000–14,000 after \(N = 5 \) is higher than values reported in the literatures,[1–5] suggesting that the current material should be promising for high-capacitance capacitors and for electronic devices that need efficient mechanical-electric energy conversion, provided that the material can be produced with a reasonable cost.

The increase in the BTO dielectric constant caused by HPT processing should be mainly due to the effect of grain size,[2–4] and partly due to good consolidation.[32,33] Earlier papers reported that the optimum grain size to achieve high dielectric constants was in the range of 700–1,300 nm.[2,3,5] However, this present work suggests that the optimum grain size can shift even to the nanometer level after severe straining. The increase in the dielectric constant by nanograin formation through HPT processing is consistent with the theoretical models based on elastic field energy and domain wall energy.[2] These models suggest that the width of domains should decrease proportional to the square root of the grain size.[2] The reduction of optimum grain size is a challenging task for the development of high-capacitance multilayered ceramic capacitors.[3]

In summary, when severe plastic strain is introduced into BTO powders at room temperature, nanograins are formed and a tetragonal-to-cubic phase transformation occurs. The formation of cubic phase and its stability is facilitated by straining. The HPT-processed BTO exhibits PL and enhanced dielectric properties.

Disclosure statement No potential conflict of interest was reported by the authors.
Funding KE acknowledges the Japan Society for Promotion of Science (JSPS) for a Grant-in-Aid for Research Activity [No. 25889043]. This work was supported in part by a Grant-in-Aid for Scientific Research from the MEXT, Japan, in Innovative Areas ‘Bulk Nanostructured Metals’ [No. 22102004], in part by a Grant-in-Aid for Scientific Research (S) from the MEXT, Japan [No. 26220909] and in part by a Grant-in-Aid for Challenging Exploratory Research from the MEXT, Japan [No. 15K14183]. The HPT process was carried out in the International Research Center on Giant Straining for Advanced Materials (IRC-GSAM) at Kyushu University.

References
[1] Roberts S. Dielectric and piezoelectric properties of barium titanate. Phys Rev. 1947;71:890–895.
[2] Arlt G, Hennings D, de With G. Dielectric properties of fine-grained barium titanate ceramics. J Appl Phys. 1985;58:1619–1625.
[3] Hoshina T. Size effect of barium titanate: fine particles and ceramics. J Ceram Soc Jpn. 2013;121:156–161.
[4] Tsurumi T, Sekine T, Kakeyoto H, et al. Evaluation and statistical analysis of dielectric permittivity of BaTiO 3 powders. J Amer Ceram Soc. 2006;89:1337–1341.
[5] Huan Y, Wang X, Fang J, Li L. Grain size effect on piezoelectric and ferroelectric properties of BaTiO 3 ceramics. J Europ Ceram Soc. 2014;34:1145–1448.
[6] Park KI, Xu S, Liu Y, et al. Piezoelectric BaTiO 3 thin film nanogenerator on plastic substrates. Nano Lett. 2010;10:4939–4943.
[7] Lee T, Aksay IA. Hierarchical structure-ferroelectricity relationships of barium titanate particles. Cryst Growth Des. 2001;1:401–419.
[8] Cohen RE. Origin of ferroelectricity in perovskite oxides. Nature. 1992;358:136–138.
[9] Vijatovic MM, Bobic JD, Stojanovic BD. History and challenges of barium titanate: part I. Sci Sinter. 2008;40:155–165.
[10] Saha S, Sinha TP, Mookerjee A. Electronic structure, chemical bonding, and optical properties of paraelectric BaTiO 3. Phys Rev B. 2000;62:8828–8834.
[11] Meng J, Huang Y, Zhang M, Du Z, Zhu Z, Zou G. Phololuminescence in nanocrystalline BaTiO 3 and SrTiO 3. Phys Lett A. 1995;205:72–76.
[12] Maneesha LV, Anitha VS, Lekshmy SS, et al. Influence of annealing temperature and oxygen atmosphere on the optical and photoluminescence properties of BaTiO 3 amorphous thin films prepared by sol-gel method. J Mater Sci: Mater Electron. 2013;24:848–854.
[13] Cui Y, Briscoe J, Dunn S. Effect of ferroelectricity on solar-light-driven photocatalytic activity of BaTiO 3—Influence on the carrier separation and stern layer formation. Chem Mater. 2013;25:4215–4223.
[14] Kreuer KD, Adams S, Munch W, Fuchs A, Klock U, Maier J. Proton conducting alkaline earth zirconates and titanates for high-drain electrochemical applications. Solid State Ionics. 2001;145:295–306.
[15] Zhong W, Venderbilt D, Rabe KM. Phase transitions in BaTiO 3 from first principles. Phys Rev Lett. 1994;73:1861–1864.
[16] Ishidate T, Abe S, Takahashi H, Morii N. Phase diagram of BaTiO 3. Phys Rev Lett. 1997;78:2397–2400.
[17] Hayward SA, Salje EKH. The pressure-temperature phase diagram of BaTiO 3: a macroscopic description of the low-temperature behaviour. J Phys: Condens Mater. 2002;14:L599–L604.
[18] Wang JI, Wu PP, Ma XQ, Chen LQ. Temperature-pressure phase diagram and ferroelectric properties of BaTiO 3 single crystal based on a modified landau potential. J Appl Phys. 2010;108:114105.
[19] Spanier JE, Kolpak AM, Urban JJ, et al. Ferroelectric phase transition in individual single-crystalline BaTiO 3 nanowires. Nano Lett. 2006;6:735–739.
[20] Han W, Zhu J, Zhang S, et al. Phase transitions in nanoparticles of BaTiO 3 as functions of temperature and pressure. J Appl Phys. 2013;113:193513.
[21] Smith MB, Page K, Siegrist T, et al. Crystal structure and the paraelectric-to-Ferroelectric phase transition of nanoscale BaTiO 3. J Am Chem Soc. 2008;130:6955–6963.
[22] Venkateswaran UD, Naik VM, Naik R. High-pressure Raman studies of polycrystalline BaTiO 3. Phys Rev B. 1998;58:14256-14260.
[23] Shiratori Y, Pithan C, Dorneisseier J, Waser R. Raman scattering studies on nanocrystalline BaTiO 3, part I—isolated particles and aggregates. J Raman Spectrose. 2007;38:1288–1299.
[24] Hsiang HI, Yen FS. Effect of crystallite size on the ferroelectric domain growth of ultrafine BaTiO 3 powders. J Amer Ceram Soc. 1996;79:1053–1060.
[25] Valiev RZ, Islamgaliev RK, Alexandrov IV. Bulk nanostructured materials from severe plastic deformation. Prog Mater Sci. 2000;45:103–189.
[26] Valiev RZ, Estrin Y, Horita Z, Langdon TG, Zehetbauer MJ, Zhu YT. Producing bulk ultrafine-grained materials by severe plastic deformation. JOM. 2006;58(4):33–39.
[27] Zhilyaev AP, Langdon TG. Using high-pressure torsion for metal processing: fundamentals and applications. Prog Mater Sci. 2008;53:899–979.
[28] Larsen ES, Bridgman PW. Shearing experiments on some selected minerals and mineral combinations. Am J Sci. 1938;36:81–94.
[29] Miller RO, Dachille FF, Roy R. High-pressure phase-equilibrium studies of CdS and MnS by static and dynamic methods. J Appl Phys. 1966;37:4913–4918.
[30] Edalati K, Toh S, Ikoma Y, Horita Z. Plastic deformation and allotropic phase transformations in zirconia ceramics during high-pressure torsion. Scripta Mater. 2011;65:974–977.
[31] Levitas VI, Ma Y, Selvi E, Wu J, Patten JA. High-density amorphous phase of silicon carbide obtained under large plastic shear and high pressure. Phys Rev B. 2012;85:054114.
[32] Edalati K, Horita Z. Application of high-pressure torsion for consolidation of ceramic powders. Scripta Mater. 2010;63:174–177.
[33] Edalati K, Iwaoka H, Dornseiffer J, Waser R. Raman scattering studies on nanocrystalline BaTiO 3, part I—isolated particles and aggregates. J Raman Spectrose. 1998;58:14256-14260.
[34] Bridgman PW. Effects of high shearing stress combined with high hydrostatic pressure. Phys Rev. 1935;48:825–847.
[35] Pippan R, Scheriau S, Taylor A, Hafok M, Hohenwarter A, Bachmaier A. Saturation of fragmentation due to severe plastic deformation. Annu Rev Mater Res. 2010;40:319–343.
[36] Starink MJ, Cheng X, Yang S. Hardening of pure metals by high-pressure torsion: a physically based model employing volume-averaged defect evolutions. Acta Mater. 2013;61:183–192.
[37] Lee DJ, Yoon EY, Ahn DH, et al. Dislocation density-based finite element analysis of large strain deformation behavior of copper under high-pressure torsion. Acta Mater. 2014;76:281–293.

[38] Ivanisenko Y, Kilmametov A, Rosner H, Valiev RZ. Evidence of $\alpha \rightarrow \omega$ phase transition in titanium after high pressure torsion. Int J Mater Res. 2008;99:36–41.

[39] Tane M, Okuda Y, Todaka Y, Ogi H, Nagakubo A. Elastic properties of single-crystalline ω phase in titanium. Acta Mater. 2013;61:7543–7554.

[40] Shirooyeh M, Xu J, Langdon TG. Microhardness evolution and mechanical characteristics of commercial purity titanium processed by high-pressure torsion. Mater Sci Eng A. 2014;614:223–231.

[41] Perez-Prado MT, Gimazov AA, Ruano OA, Kassner ME, Zhilyaev AP. Bulk nanocrystalline ω-Zr by high-pressure torsion. Scripta Mater. 2008;58:219–222.

[42] Chinh NQ, Valiev RZ, Sauvage X, et al. Grain boundary phenomena in an ultrafine-grained Al-Zn alloy with improved mechanical behavior for micro-devices. Adv Eng Mater. 2014;16:1000–1009.

[43] Figueiredo RB, Sicupira FL, Malheiros LRC, Kawasaki M, Santos DB, Langdon TG. Formation of epsilon martensite by high-pressure torsion in a TRIP steel. Mater Sci Eng A. 2015;625:114–118.

[44] Huang JY, Zhu YT, Liao XZ, Valiev RZ. Amorphization of TiNi by high pressure torsion. Phil Mag Lett. 2004;84:183–190.