Assessing for potential correlation between platelet count and varying grades of oral squamous cell carcinoma

Madhuja Bhagali¹, Archana A. Gupta², Sangeeta Palaskar³

¹Department of Clinical Dentistry, Cambrian College of Applied Arts and Technology, Ontario, Canada, ²Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India, ³Department of Oral Pathology and Microbiology, Sinhgad Dental College and Hospital, Pune, Maharashtra, India

Abstract

Introduction: The histopathological grade of oral squamous cell carcinoma (OSCC) is considered as a vital indicator for predicting the prognosis including the potential for local and distant metastasis. Similar to the histopathological grading, tumor-related angiogenesis is also an essential indicator of metastasis as it provides a pathway for the passage of tumor cells to distant sites. Studies have shown platelets to promote angiogenesis, which, in turn, could increase the risk of metastasis. Based on the above premise, the present study investigates the association between platelet count and the various grades of OSCC. The hypothesis of the study is that platelet counts increase with increasing grades of tumor, thus could be a potential prognostic marker for OSCC.

Aim: The study aims to assess any potential correlation between platelet count and varying grades of OSCC.

Materials and Methods: Clinical data and hematological data were retrieved from 140 histopathologically diagnosed cases of OSCC. Data were tabulated and statistically analyzed to correlate its association with tumor differentiation.

Results: Comparisons were made based on gender, tumor differentiation, and platelet counts. The correlation of platelet count with different grades of OSCC was statistically insignificant.

Conclusion: The lack of correlation between platelet count and OSCC grade could be due to the uneven distribution of the cases, especially due to the underrepresentation of poorly differentiated OSCC. Thus, further large-scale multicenter prospective studies with equal distribution of OSCC grades are needed to determine the interrelationship between platelets and tumor grade.

Keywords
Grading, Metastasis, Oral squamous cell carcinoma, Platelets, Prognosis

Introduction

Oral squamous cell carcinoma (OSCC) is one of the most common cancers worldwide with tobacco, alcohol consumption, constituting the prime etiologic agents.¹ Despite remarkable advancement in therapeutics, metastasis remains to be the Ultimate Foe for the survival of cancer patients.² The most common predisposing factor for metastasis is tumor-associated angiogenesis. These newly developed blood vessels around the tumor provide a pathway for the transport of cancer cells to distant sites.³ Studies have shown platelets to promote angiogenesis. The substances stored in platelet granules are responsible for mediating angiogenesis.³ Thus, an increase in the number of platelets could potentially increase the risk of metastasis. Based on this premise, an increased platelet count could well be a potential indicator of poor prognosis.⁴ In addition to platelets, the grade of OSCC is considered to be a prime prognostic indicator with several studies depicting a direct correlation between grade and tumor progression.⁵ Thus, the present study aims to investigate the potential correlation between the platelet count and the varying grades of OSCC. The hypothesis is that the platelet count would increase with the OSCC grade, thus could serve as a potential prognostic indicator.

Materials and Methods

Clinical and hematological data of histopathologically diagnosed cases of OSCC of the past 7 years were retrieved from the
hospital records of Sinhgad Dental College and Hospital and Smt. Kashibai Navale Medical College and Hospital. The data were presented in the tabular form with respect to the grades of a tumor and were statistically analyzed to correlate its association with tumor differentiation.

Inclusion criteria
Primary OSCC was included in the study.

Exclusion criteria
Cases with insufficient clinical and hematological data were excluded from the study.

Sample size
Sample consisted of 140 histopathologically diagnosed cases of OSCC. The cases were categorized based on tumor differentiation into well differentiated, moderately differentiated, and poorly differentiated tumors. Clinical details including age, gender, and hematological details including platelet count were retrieved.

Results
A total of 140 OSCC were studied. Of the 140 cases, 89 were male and 51 were female. Male:female ratio was 1.75. Refer to Table 1 for distribution of cases according to gender.

The platelet counts were divided into low, normal, and high (normal - 1.5 to 4 lakhs/cu.mm, low was taken <1.5 lakhs/cu.mm, and high was taken >4 lakhs/cu.mm). Refer to Table 2 for distribution of cases according to platelet count.

We segregated the tumors according to differentiation into well, moderate, and poorly differentiated squamous cell carcinoma. 109 (77.86%) cases were well differentiated, 26 (18.57%) cases were moderately differentiated, and 5 (3.57%) cases were poorly differentiated. Refer to Table 3 for distribution of cases according to OSCC grading.

Considering the gender, among males - of 89 cases, 68 were of well differentiated, 17 were moderately differentiated, and 4 of poorly differentiated OSCC. Among females, of 51 cases, 41 were well differentiated, 9 were moderately differentiated, and 1 was poorly differentiated. Refer to Table 4 for distribution of males and females according to OSCC grading.

When the platelet level was compared between males and females on the grounds of low, normal, and high platelet count, 85 cases showed normal and 4 cases showed high platelets in males, whereas in females, only 39 cases showed normal platelet count and 8 cases showed high platelet count. Low platelet count was observed in 4 cases of females while none of the males showed low platelet count. Refer to Table 5 for distribution of males and females according to platelet count.

Table 1: Gender distribution
Gender	Frequency (%)	Valid percent	Cumulative percent
Male	89 (63.6)	63.6	63.6
Female	51 (36.4)	36.4	100.0
Total	140 (100.0)	100.0	

Table 2: Distribution of platelet count among the cases
Platelet Count	Frequency (%)	Valid percent	Cumulative percent
Low	4 (2.9)	2.9	2.9
Normal	124 (88.6)	88.6	91.4
High	12 (8.6)	8.6	100.0
Total	140 (100.0)	100.0	

Table 3: Distribution of OSCC grades among the cases
OSCC grading	Frequency (%)	Valid percent	Cumulative percent
Valid			
Well	109 (77.9)	77.9	77.9
Moderate	26 (18.6)	18.6	96.4
Poor	5 (3.6)	3.6	100.0
Total	140 (100.0)	100.0	

OSCC: Oral squamous cell carcinoma

Table 4: Gender-wise distribution of the OSCC grades
Gender	Well	Moderate	Poor	Total
Male	68	17	4	89
Female	41	9	1	51
Total	109	26	5	140

OSCC: Oral squamous cell carcinoma

Table 5: Gender-wise distribution of the platelet counts
Gender	Low	Normal	High	Total
Male	0	85	4	89
Female	4	39	8	51
Total	4	124	12	140

Table 6: Statistical correlation between platelet count and OSCC grades
Correlation Tests	Value	df	Asymp. Sig. (two-sided)
Pearson Chi-square	1.066	4	0.900
Likelihood ratio	1.600	4	0.809
Linear-by-linear association	0.001	1	0.978
n of valid cases	140		

OSCC: Oral squamous cell carcinoma
However, this difference in platelet count between the genders was statistically insignificant ($P = 0.001$). The present study did not find any significant correlation between platelet count and the different grades of OSCC. Refer to Chart 1 and table 6 for OSCC grade-wise distribution of platelet counts.

Discussion

The relation between circulating platelets and carcinoma progression suggests that platelets have a more important role beyond just the hemostatic function.$^{[9]}$ Platelets act as mediators of angiogenesis, wound healing, and immune modulation. They secrete cytokines and growth factors such as transforming growth factor-beta, matrix metalloproteinase-2, platelet factor 4, and platelet-derived growth factor.$^{[10-13]}$ All of these induce cancer progression including epithelial, mesenchymal transition, angiogenesis, cell migration, and proliferation.$^{[14]}$

Production of interleukin-6 (IL-6) in some malignancies like in ovarian carcinoma has been proved to result in increased thrombocytosis. It was proposed that the production of IL-6 by ovarian cancer cells stimulates liver producing thrombopoietin, further stimulating megakaryocyte progenitors in bone marrow.$^{[14]}$

Platelets may contribute to cancer progression by:

a. Stabilizing tumor cell arrest in the vasculature
b. Stimulating tumor cell proliferation
c. Promoting tumor cell extravasation by potentiating tumor cell-induced endothelial cell retraction
d. Enhancing tumor cell interaction with the extracellular matrix.$^{[15]}$

Several studies reported a decrease in platelet count during aging and also the presence of higher platelet count in women than in men.$^{[16]}$ The present study did not show any significant results associating the platelet number with the gender or age. The reason could be due to the unequal number of division of cases among male and female.

![Bar Chart](image)

Chart 1: Oral squamous cell carcinoma grade-wise distribution of platelet counts

Higher platelet count has been proved to be an adverse prognostic factor in several types of cancers including gynecologic, breast, lung, and genitourinary.$^{[14-18]}$ Different studies have shown a positive correlation between the platelet count and various grades of OSCC, wherein well-differentiated OSCC showed normal or low platelet count and poorly differentiated carcinoma showed high platelet count.$^{[16]}$ However, the present study did not find any significant correlation between platelet count and OSCC grades.

Conclusion

The unequal distribution of cases among different OSCC grades was a major limitation in the study. It could have been the reason for the lack of correlation between the platelet count and the OSCC grades. Further, large-scale prospective studies based on multiple centers with equally distributed OSCC grades can aid in accurately determining the association between platelet count and OSCC grading.

References

1. Bagan JV, Scully C. Recent advances in oral oncology 2007: Epidemiology, aetiopathogenesis, diagnosis and prognostication. Oral Oncol 2008;44:103-8.
2. Woolgar JA, Scott J, Vaughan ED, Brown JS, West CR, Rogers S, et al. Survival, metastasis and recurrence of oral cancer in relation to pathological features. Ann R Coll Surg Engl 1995;77:325-31.
3. Zetter BR. Angiogenesis and tumor metastasis. Annu Rev Med 1998;49:407-24.
4. Nishida N, Yano H, Nishida T, Kamura T, Kojiro M. Angiogenesis in cancer. Vasc Health Risk Manag 2006;2:213-9.
5. Sabrkhany S, Griffioen AW, Oude Egbrink MG. The role of blood platelets in tumor angiogenesis. Biochim Biophys Acta 2011;1815:189-96.
6. Matowicka-Karna J, Kamocki Z, Polińska B, Osada J, Kemona H. Platelets and inflammatory markers in patients with gastric cancer. Clin Dev Immunol 2013;2013:401623.
7. Jamadar S, Narayan TV, Shreedhar B, Mohanty L, Shenoy S. Comparative study of various grading systems in oral squamous cell carcinoma and their value in predicting lymph node metastasis. Indian J Dent Res 2014;25:357-63.
8. Acharya S, Sivakumar AT, Shetty S. Cervical lymph node metastasis in oral squamous cell carcinoma: A correlative study between histopathological malignancy grading and lymph node metastasis. Indian J Dent Res 2013;24:599-604.
9. Jurk K, Kehrel BE. Platelets: Physiology and biochemistry. Semin Thromb Hemost 2005;31:381-92.
10. Wakefield LM, Smith DM, Flanders KC, Sporn MB. Latent transforming growth factor-beta from human platelets. A high molecular weight complex containing precursor sequences. J Biol Chem 1988;263:7646-54.
11. Banks RE, Forbes MA, Kinsey SE, Stanley A, Ingham E, Walters C, et al. Release of the angiogenic cytokine vascular endothelial growth factor (VEGF) from platelets: Significance for VEGF measurements and cancer biology. Br J Cancer 1998;77:956-64.
12. Pilatova K, Greplova K, Demlova R, Bencsikova B, Klement GL, Zdrazilova-Dubska L, et al. Role of platelet chemokines, PF-4 and CTAP-III, in cancer biology. J Hematol Oncol 2013;6:42.
13. Senzel L, Gnatenko DV, Bahou WF. The platelet proteome. Curr Opin Hematol 2009;16:329-33.
14. Naina HV, Harris S. Paraneoplastic thrombocytosis in ovarian cancer. N Engl J Med 2012;366:1840.
15. Guo F, Parker Kerrigan BC, Yang D, Hu L, Shmulevich I, Sood AK, et al. Post-transcriptional regulatory network of epithelial-to-mesenchymal and mesenchymal-to-epithelial transitions. J Hematol Oncol 2014;7:19.
16. Honn KV, Tang DG, Crissman JD. Platelets and cancer metastasis: A causal relationship? Cancer Metastasis Rev 1992;11:325-51.
17. Biino G, Santimone I, Minelli C, Sorice R, Frongia B, Traglia M, et al. Age- and sex-related variations in platelet count in Italy: A proposal of reference ranges based on 40 987 subjects’ data. PLoS One 2013;8:e54289.
18. Yu D, Liu B, Zhang L, DU K. Platelet count predicts prognosis in operable non-small cell lung cancer. Exp Ther Med 2013;5:1351-4.

How to cite this article: Bhagali N, Gupta AA, Palaskar S. Assessing for potential correlation between platelet count and varying grades of oral squamous cell carcinoma. J Oral Dis Markers 2018;19–22.