FACTORS THAT INFLUENCE NERVE CONDUCTION IN DIABETIC PATIENTS

Oras Kadhim Baqer*, Thamer A Hamdan# & Abdul Al-Razzaq N Khudair®
*MBChB, MSc. Physiology University of Basrah. #MBChB, FRCS(Ed), FRCP(Ed), FACS, FICS, Professor of Orthopaedic Surgery, Chancellor of Basrah University. ®BVMS, MSc., PhD physiology, University of Basrah, IRAQ.

Abstract
The alteration in nerve conduction is considered one of the important complaints of patients who are suffering from diabetes mellitus nowadays. Therefore, we conduct this study which aimed to evaluate the nerve conduction velocity and amplitude in diabetic patients and assess the effects of the patients’ age, severity and duration of diabetes on nerve conduction impairment. A case control study, the studied sample were 200 persons, 150 diabetic patients (93 males and 57 females) and the control group consisted of 50 participants (32 males and 38 females). All the patients attended the neurophysiology outpatient department of Al-Sader Teaching Hospital in Basrah city. The diabetic participants were selected at random from age, diabetes duration, and sex. Regarding the ages and exclusion criteria of the controls were ranged same as the diabetic. All participants were interviewed and a questionnaire form was filled prior to examination. Both the diabetic patients and the controls were subjected to the same electrophysiological and laboratory investigations.

The results of the study showed a significant decrease in nerve conduction velocity and amplitude in diabetic patients comparing to controls in all the examined nerves. Furthermore, there was a significant association between advancing age and longer-duration of diabetes with the reduction of conduction velocity and amplitude. Also, a significant inverse correlation between increased severity of diabetes disease (HbA1c level) and decreasing of both conduction velocity and amplitude. However, the study demonstrated no statistical significant difference between patients and controls regarding the gender. In conclusion, the age of the patients, duration of the disease and the severity of diabetes (hyperglycemia control) are playing a crucial role as risk factors in developing of peripheral neuropathy in diabetic patients.

Introduction
Diabetes mellitus is a chronic disease, which develops when pancreas is not producing enough insulin, or when the body cannot effectively use the insulin it produces\(^1\). Diabetes mellitus complications consist of both microvascular (neuropathy, nephropathy, and retinopathy) and macro-vascular (atherosclerotic) disease\(^2\). The most common micro-vascular complication of diabetes is known as peripheral neuropathy\(^3\). The risk of building a diabetic neuropathy is related to both the duration and magnitude of hyperglycemia\(^4\). Till now the nerve conduction studies(NCS) exist as the most dependable, sensitive and accurate measurement of peripheral nerve working in diabetic neuropathy\(^5\). Diabetic peripheral neuropathy is connected with changes in both nerve conduction velocity and amplitude\(^6\). Even though the conduction velocity variation may be an earlier hint of peripheral neuropathy, reduced amplitude is the most clinically reliable, due to its direct indicative of myelinated nerve fibre damage\(^7\).

Patients and Methods
A total of 220 persons were divided into 2 groups, the diabetic patients group which consisted of (150) diabetic patients
(93 males and 57 females), the patient's age ranged from 20 to >60 years old and with a duration of diabetes ranged from (≤ 5 to >15) years.

These participants were selected at random from age, diabetes duration, and sex. All the patients attended the electro neurophysiological outpatient department of Al-Sader Teaching Hospital in Basrah city.

The controls group consisted of 70 participants, consist of (38 females and 32 males). Regarding the age of the control was ranged same as the diabetic 20 to >60 years old. These controls were from the medical staff of the hospital and from volunteers. Exclusion criteria which selected to the controls group were similar to the exclusion criteria that were selected to the diabetic group. The controls group were subjected to the same testing and investigations as the diabetic group simultaneously.

All participants were interviewed and a questionnaire form was filled prior to examination. The questionnaire form includes the following: The patient general information: including (sex, age, marital status, occupation, address, educational status), duration of diabetes mellitus, types of treatment and any other associated diseases.

Nerve conduction studies (NCS) were performed in neuro-physiological department in Al-Sader Teaching Hospital by trained electrophysiologists with extensive experience in recording and interpreting clinical data. All the patients were examined in a comfortable supine position with their upper and lower limbs flexed 10-15° at the elbow and the knee joints respectively. Micromed System-plus EMG machine was used for electrophysiological analysis of nerve fibers conduction studies. This system includes eight channels preamplifiers and built-in two isolated stimulators with separate jacks.

The Statistical Package for the Social Sciences (SPSS) was used, the arithmetic mean and standard deviation of distribution of each of the parameters were calculated. The independent sample T-test program was used to get the significance level (P-value) for all of the parameters tested. A (P<0.05) is considered significant, (P<0.001) is highly significant and (P>0.05) is non-significant.

Results

The total number of the patients was 150 patients, 93 (62%) males and 57(38%) females, the majority were males. The age of these patients ranged from 20 to >60 years, for comparison purposes, the studied patients were divided into 5 age groups: 20-30 years, 31-40 years, 41-50 years, 51-60 years and >60 years. The majority of the patients aged between 51-60 years old, has a number of 50 patients which represents approximately (33.3%) of the total patients groups at duration >15 years, as clarified in table I.
Table I: Characteristics of the patients included in this study

Characteristic of patients	Number	(%)	
Sex	Male	93	62
	Female	57	38
Age group	20-30	13	8.67
	31-40	20	13.33
	41-50	41	27.33
	51-60	50	33.33
	>60	26	17.33
Duration	≤ 5	20	13.33
	6-10	43	28.67
	11-15	41	27.33
	>15	46	30.67

The controls total number was 70 persons, the majority of them were females 38 (45.29 %) while males were 32(45.71 %). The general features of controls were summarized in table II.

Table II: Characteristics of the controls included in this study

Character of controls	Number	(%)	
Sex	Male	32	45.71
	Female	38	45.29
Age group	20-30	9	12.86
	31-40	15	21.43
	41-50	12	17.14
	51-60	18	25.71
	>60	16	22.86

The electrophysiological studies of the studied sample showed a significant decrease in nerve conduction velocity and amplitude in diabetic patients comparing to controls in all the examined nerves (common peroneal, posterior tibial, sural, median and ulnar). As shown in table III.

Table III: Comparison all examined nerves conduction parameters for patients and controls.

Nerve	Patients nerve velocity (m/sec) Mean ± SD	Patients amplitude (mv.) Mean ± SD	Controls nerve velocity (m/sec) Mean ± SD	Controls amplitude (mv.) Mean ± SD	P value
Right common peroneal	35.79±10.55	2.91 ± 1.75	50.46 ±7.74	3.40 ± 2.09	S.
Left common peroneal	34.76±12.58	1.46 ± 0.25	53.55 ± 9.71	3.23 ± 1.13	S.
Right posterior tibial	36.52±12.41	1.48 ± 0.24	50.33±6.90	2.87 ± 0.51	S.
Left posterior tibial	34.16±11.05	2.64±1.4	51.04±9.55	2.64±1.48	S.
Right sural	32.17 ± 10.4	1.72 ± 0.59	54.76 ±6.36	2.83 ± 0.60	S.
Left sural	34.33±10.65	1.72 ± 0.70	54.41 ±7.17	2.93 ± 0.55	S.
Right median	44.09±7.04	2.42 ± 0.27	52.69±10.83	3.40 ± 0.31	S.
Left median	45.97±9.36	1.46 ± 0.26	48.89±8.47	3.09 ± 0.55	S.
Right ulnar	50.04±7.63	3.12 ± 1.50	53.70±5.06	3.45 ± 0.25	S.
Left ulnar	47.00±3.30	3.19 ± 1.93	52.86±4.91	3.41 ± 0.22	S.
Total	150	70	70	220	

P<0.05, NS=non-significant, S =significant
Furthermore, there was a significant association between advancing age and longer-duration of diabetes with the reduction of conduction velocity and amplitude, as clarified in tables IV and V.

Table IV: Relationship between the age groups and impairment of nerve conduction in diabetic cases.

Age group (years)	Impaired Nerves conduction	Unimpaired Nerves conduction	Total
	No. (%)	No. (%)	
20-30	8 61.54	5 38.46	13
31-40	17 84.0	3 15	20
41-50	35 85.37	6 14.63	41
51-60	46 93.0	4 8	50
>60	25 96.15	1 3.85	26
Total	131 100	19 100	150

X²=10.874, p<0.05, S=Significant

Table V: Relation between the duration of diabetes and impaired nerves conduction in the diabetic patients.

Duration	Impaired Nerves conduction	Unimpaired Nerves conduction	Total
	Number %	Number %	
≤ 5 years	15 75	5 25	20
6-10 years	34 79.07	9 20.93	43
11-15	38 92.68	3 7.32	41
>15	44 95.65	2 4.35	46
Total	131 100	19 100	150

X²=9.343, P<0.05, S=Significant

Also, there is a significant inverse correlation between increased severity of diabetes disease (HbA1c level) and decreasing of both conduction velocity and amplitude, as shown in table VI.

Table VI: The relation of severity of diabetes and nerves conduction.

Severity of diabetes (HbA1c %)	Impaired Nerves conduction	Unimpaired Nerves conduction	Total
	Number %	Number %	
Mild HbA1c (≤7%)	16 80.00	4 20.00	20
Moderate HbA1c(8 - 9%)	38 84.44	7 15.5	45
Severe HbA1c (≥10%)	77 90.59	8 9.41	85
Total	131 100	19 100	150

X²=7.603, P<0.05, S=significant
However, the study demonstrated no statistical significant difference between patients and controls regarding the gender, as demonstrated in table VII.

Table VII: Relation between sex and impaired nerves conduction in diabetic patients.

Gender	Impaired Nerves conduction	Unimpaired Nerves conduction	Total
	No. (%)	No. (%)	
Male	82 (88.71)	11 (11.83)	93
Female	49 (85.96)	8 (14.03)	57
Total	131 (100)	19 (100)	150

$X^2 = 0.156$, $p > 0.05$, NS

Discussion

The study results showed a significant reduction ($p<0.05$) in both the nerve conduction velocity and amplitude of all examined nerves (common peroneal, posterior tibial, sural, median and ulnar) from control to the diabetic patients. These findings were in agreement with those reported by other authors such as Kimura et al\(^8\), Partanen et al\(^9\), Ohkubo et al\(^10\), Viswanathan et al\(^11\), Younger et al\(^12\), Pastore et al\(^13\), Kohara et al\(^14\), Vinik et al\(^15\), Smith et al\(^16\), Uluc et al\(^17\), and Cermenati et al\(^18\). Nerve damage caused by Hyperglycemia by different mechanisms. Increasing the level of intracellular glucose with cellular toxicity in the endothelial cells of the capillaries related to peripheral nerves due to hyperglycemia\(^19\). This will lead to degeneration of myline sheath with reduction in the number of nerve fibres and alterations occurred in the endoneurial connective tissue, endoneurial vessels and perineurium\(^20\). A local nerve ischaemia could result from the abnormal vasa nervorum\(^21\). As a consequence the basement membrane of the endoneurial capillary is thickened and reduces the number of the tight junction between cells\(^22\). At first, conduction velocity reduces as a result of progression of nerve demylination then at the end will cause blocking of nerve conduction.

Another hypothesis participates in neuropathy by preventing normal axonal repair and regeneration due to effect of hyperglycemia that incites reduced formation of neurotropin like nerve growth factor (NGF)\(^19\). Furthermore, ischemia to the nerves which may contribute to neuropathy in hyperglycemia as a result of damage of the blood vessels which occurs because of conversion of intracellular glucose to what is called Amadori product, and these subsequently could form advanced glycosylated end products (AGEs), which cross-link matrix proteins\(^23\).

In this study we found a correlation between nerve conduction defects and increasing age which represented by a significant decrease ($p<0.05$) in both nerve conduction velocity and amplitude with age advancing of diabetic patients in the studied sample. This finding in accordance with that reported by other authors like Albers et al\(^24\), Viswanathan et al\(^11\), Tesfaye et al\(^25\), Ohgakio et al\(^26\), and Loseth\(^27\). We could attribute the strong association between deterioration of nerve conduction velocity and amplitude with increasing age to the deleterious effects of long-term exposure to hyperglycaemia and lowering of the resistance of peripheral nerves as well as higher incidence of concomitant atherosclerosis leading to peripheral neuropathy.

Results of our study established a statistical significant correlation between the nerve conduction abnormalities and the increasing in duration of diabetes mellitus. The study showed that the most common affected group with decreasing of nerve conduction velocity and amplitude among all diabetic patients...
groups in the studied sample was the group of the longer duration of the disease. This finding agrees with most other studies conducted about the nerve conduction changes in diabetic patients like Tesfaye et al25, Barbosa et al28, Rajbhandari and Piya29, Janghorbani et al30, Charles et al31, and Malazy et al32. This is because of increased the chance of susceptibility to hyperglycemia deleterious complications with increase in the duration of the disease.

Electrophysiological findings established a strong negative impact of the severity of diabetes disease on the nerve conduction velocity and amplitude in the study sample. The study confirmed there was a statistical significant inverse correlation between HbA1c measurements (i.e., the severity of diabetes) and the nerve conduction velocity and amplitude. This study results was in accordance with that reported by other authors such as Vinik et al15, Ohkubo et al10, Viswanathan et al11, and Charles et al31. Furthermore, glycemic control have an important role for the prevention of microvascular complications of diabetes and there is a strong association between the occurrence and progression of microvascular and macrovascular complications and hyperglycemia33.

Hence, It is reasonable to conclude that a progressive neuronal involvement in the diabetic process which is accelerated by poor glycaemic control. Regarding the gender effects, our electrophysiological measurements of both controls and diabetic patients in the study sample demonstrated that there was no significant statistical difference (P>0.05). This finding agrees with that reported by other studies such as Akbar et al34, Loseth27 and Charles et al31. However, our study disagrees with Mansour35 who found that a percentage of women with nerve conduction abnormalities was significantly higher than that of men and Viswanathan et al11 who claimed that nerve conduction impairment was significantly higher in men than women in his study. The explanation of these variations may be due to differences of methods, sample size, sex distribution of the sample and patient selection criteria.

In conclusion, the age of the patients, duration of the disease and the severity of diabetes (hyperglycemia control) are playing a crucial role as risk factors in impairment of nerve conduction and developing of peripheral neuropathy in diabetic patients.

References
1. World Health Organization (2009): Diabetes Fact sheet No. 312 November 2009.
2. Zimmet P, Alberti, KG, Shaw J. Global and societal implications of the diabetes epidemic. Nature 2001; 414:782-787.
3. American Diabetes Association Standards of medical care in diabetes. Diabetes Care; vol 30(Supplement 1): S11 at Pancreas Physiol Res 2013; 50:536-46.
4. Hoogwerf BJ. Complications Of Diabetes Mellitus Int. J. Diab. Dev. Countries 2005; Vol. 25.
5. Karagoz E, Tanridag T, Karlikaya G, Midil, Emlaci NT. The Electrophysiology Of Diabetic Neuropathy. The Internet Journal of Neurology 2005; 5(1).
6. Burke D, Skuse NF, Lethlean AK. Sensory conduction of the sural nerve in polyneuropathy. J Neurol Neurosurg Psychiatry 1974; 37(6):647-652.
7. Albers JW, Herman WH, Pop-Busui R, Martin CL, Cleary P, Waberski B. Subclinical neuropathy among Diabetes Control and Complications Trial participants without diagnosable neuropathy at trial completion: possible predictors of incident neuropathy? Diabetes Care 2007; 30(10):2613-2618.
8. Kimura J, Yamada T, Stevland N. Distal slowing of motor nerve conduction velocity in diabetic polyneuropathy. Journal of the Neurological Sciences 1979; 42: 291-302.
9. Partanen J, Niskanen L, Lehtinen J, Mervaala E, Siitonen O, Uusitupa M. Natural history of peripheral neuropathy in patients with non-insulin dependent diabetes mellitus. The New England Journal of Medicine 1995; 333(2):89-94.
10. Ohkubo Y, Kishikawa H, Araki E, Miyata T, Isami S, Motoyoshi S, Kojimab Y, Furuyoshib N, Shichiri Intensive M. insulin therapy prevents the progression of diabetic microvascular complications in...
Factors that influence nerve conduction in diabetic patients

O K Baqer, T A Hamdan & A N Khudair

Factors that influence nerve conduction in diabetic patients: a randomized prospective 6-year study. Diabetes Research and Clinical Practice 1995; 28:103-117.

11. Viswanathan V, Seena R, Nair M, Snehalaatha C, Bhoopathy R, Ramachandran A. Nerve conduction abnormalities in different stages of glucose Intolerance. Neurology India 2004; 52 (4):466-469.

12. Younger D, Rosoklija G, Hays A, Trojaborg W, Latov N. Diabetic peripheral neuropathy: A clinicopathologic and immunohistochemical analysis of nerve biopsies. Muscle and Nerve 1996; 19:722-727.

13. Pastore C, Izura V, Geijo-Barrientos E, Dominguez J. A comparison of electrophysiological tests for the early diagnosis of diabetic neuropathy, Muscle Nerve 1999; 22: 1667–1673.

14. Kohara N, Kimura J, Kaji R, Goto Y, Ishii J, Takiguchi M, Nakai M. F-wave latency serves as the most reproducible measure in nerve conduction studies of diabetic polyneuropathy: multicentre analysis in healthy subjects and patients with diabetic polyneuropathy, Diabetologia 2000; 43: 915–921.

15. Vinik AI, Park TS, Stansberry KB, Pittenger GL. Diabetic neuropathies. Diabetologia 2000; 43: 957–973.

16. Smith G, Ramachandran P, Tripp S, Singleton J. Epidermal nerve innervation in impaired glucose tolerance and diabetes-associated neuropathy. Neurology 2001; 57:1701–1704.

17. Uluc K, Isak B, Borucu D, Temucin C, Cetinkaya Y, Koytak P, Tanridag T, Us O. Medial plantar and dorsal sural nerve conduction studies increase the sensitivity in the detection of neuropathy in diabetic patients. Clinical Neuropathology 2008; 119: 880–885.

18. Cermenati G, Abbati F, Cerminati S, Brioschi E, Volonterio A, Cavaletti G, Saez E, Fabiani E, Crestani M, Garcia-Segura L, Melcangi R, Caruso D, Miotto N. Diabetes-induced myelin abnormalities are associated with an altered lipid pattern: protective effects of LXR activation. Journal of Lipid Research 2012; 53:300-311.

19. Larsen P, Henry M, Melmed S, Kenneth S. In Williams-Textbook of endocrinology. 10th Ed.; Saunders An Imprint of Elsevier, Philadelphia, Pennsylvania 2005.

20. Greene DA, Sima AA, Stevens MJ, Feldman EL, Lattimer SA. Complications neuropathy, pathogenetic considerations. Diabetes Care 1992; 15: 1902-1925.

21. Pfeifer MA, Schurmer MP. Clinical trials of diabetic neuropathy: past, present, and future. Diabetes 1995; 44: 1355-1361.

22. Sima AA, Nathaniel V, Prashar A, Bril V, Greene DA. Endoneurial microvessels in human diabetic neuropathy. Endothelial cell dysfunction and lack of treatment effect by aldose reductase inhibitor. Diabetes 1991; 40: 1090-1099.

23. Ganong WF. Review of Medical Physiology. 23rd Ed; McGraw-Hill Inc, New Delhi, India 2010; 333-335.

24. Abers J, Brown M, Sima A, Greene D. The effects of age, sex, type of diabetes, disease duration, and anthropometric factors. American Academy of Neurology 1996; 46:85-91.

25. Tesfaye S, Stevens LK, Stephenson JM, Fuller JH, Plater M, Ionescu-Tirgoviste C. Prevalence of diabetic peripheral neuropathy and its relation to glycemic control and potential risk factors. The Euro Diab IDDM complications study. Diabetologia 1996; 39: 1377-1384.

26. Ohgakik K, Nakano K, Shigeta H, Kitagawa Y, Nakamura, N, Iwamoto K, Makino M, Takahashi Y, Kajiyama S, Kondo M. Ratio of Motor Nerve Conduction Velocity to F-Wave Conduction Velocity in Diabetic Neuropathy. Diabetes care 1998; 21(4):615-618.

27. Loseth S. (2008). Studies of peripheral large and small nerve fibre disease with emphasis on diabetic polyneuropathy. A dissertation for the degree of Philosophiae Doctor, University of Tromso.

28. Barbosa AP, Medina JL, Ramos EP, Barros HP. Prevalence and risk factors of clinical diabetic polyneuropathy in a Portuguese primary health care population. Diabetes Metab 2001; 27: 496-502.

29. Rajanandhirand A, Sima AA, Nathaniel V, Prashar A, Bril V, Greene DA. Endoneurial microvessels in human diabetic neuropathy. Diabetes care 1998; 21(4):615-618.

30. Tesfaye S, Stevens LK, Stephenson JM, Fuller JH, Plater M, Ionescu-Tirgoviste C. Prevalence of diabetic peripheral neuropathy and its relation to glycemic control and potential risk factors. The Euro Diab IDDM complications study. Diabetologia 1996; 39: 1377-1384.

31. Ohgakik K, Nakano K, Shigeta H, Kitagawa Y, Nakamura, N, Iwamoto K, Makino M, Takahashi Y, Kajiyama S, Kondo M. Ratio of Motor Nerve Conduction Velocity to F-Wave Conduction Velocity in Diabetic Neuropathy. Diabetes care 1998; 21(4):615-618.

32. Loseth S. (2008). Studies of peripheral large and small nerve fibre disease with emphasis on diabetic polyneuropathy. A dissertation for the degree of Philosophiae Doctor, University of Tromso.

33. Barbosa AP, Medina JL, Ramos EP, Barros HP. Prevalence and risk factors of clinical diabetic polyneuropathy in a Portuguese primary health care population. Diabetes Metab 2001; 27: 496-502.

34. Rajanandhirand A, Sima AA, Nathaniel V, Prashar A, Bril V, Greene DA. Endoneurial microvessels in human diabetic neuropathy. Diabetes care 1998; 21(4):615-618.