Mechanical properties of the cement of the stalked barnacle *Dosima fascicularis* (Cirripedia, Crustacea)

Vanessa Zheden\(^1\), Waltraud Klepal\(^1\), Stanislav N. Gorb\(^2\) and Alexander Kovalev\(^2\)

\(^1\)Faculty of Life Sciences, Core Facility Cell Imaging and Ultrastructure Research, University of Vienna, Vienna, Austria
\(^2\)Zoological Institute: Functional Morphology and Biomechanics, Kiel University, Kiel, Germany

The stalked barnacle *Dosima fascicularis* secretes foam-like cement, the amount of which usually exceeds that produced by other barnacles. When *Dosima* settles on small objects, this adhesive is additionally used as a float which gives buoyancy to the animal. The dual use of the cement by *D. fascicularis* requires mechanical properties different from those of other barnacle species. In the float, two regions with different morphological structure and mechanical properties can be distinguished. The outer compact zone with small gas-filled bubbles (cells) is harder than the interior one and forms a protective rind presumably against mechanical damage. The inner region with large, gas-filled cells is soft. This study demonstrates that *D. fascicularis* cement is soft and visco-elastic. We show that the values of the elastic modulus, hardness and tensile stress are considerably lower than in the rigid cement of other barnacles.

1. Introduction

Sessile marine organisms secrete adhesives which are cured underwater and which remain durable in the water [1,2]. The best-studied animals, producing a strong adhesive, are the invertebrates, such as barnacles, mussels and tubeworms [3].

Barnacles are among the most troublesome and dominant fouling organisms [4]. They settle as cypris larvae on any hard substratum, whether it is man-made such as ships and bridges or organisms such as crabs and turtles. After metamorphosis from the cyprid to the juvenile, both acorn and stalked barnacles usually produce only a thin layer of permanent adhesive, the so-called cement, by which they adhere to the substratum. The stalked barnacle *Dosima fascicularis* (Ellis and Solander, 1786) is exceptional, secreting a large amount of proteinaceous cement which is produced by the cement glands and passed through the stalk in a complex canal system. At the base of the stalk, the cement is extruded through pores in the cuticle. The cells enclosed in the cement contain gas [5–7], the nature of which remains unknown. It is assumed that it may be CO\(_2\), a by-product of metabolism, which is transported by the haemolymph and diffuses through the lining cells of the cement canals into the lumen of the ducts. The excretion of CO\(_2\) together with the cement is doubly advantageous for the animal: it causes the formation of gas-filled cells in the cement and contributes to the pH regulation in the haemolymph [8].

Dosima fascicularis mainly attaches to floating objects such as feathers, driftwood, seaweed and tar pellets [5,7,9,10]. As the animal grows, the amount of cement increases and can subsequently enclose any small substratum to which it adheres. With this so-formed float, *D. fascicularis* drifts passively in the neuston [11]. Other animals, such as marine snails of the family Janthinidae, also raft in the water but their float is of different origin and consists of bubbles of mucus [12,13]. It is assumed that the float is derived from an egg mass which is modified for buoyancy [12]. The precise composition of this material...
Numerous cells disposed throughout its mass'. The marine density of which is decreased substantially by the presence of numerous cells disposed throughout its mass. According to Grayson [17, p. 531], a solid foam is defined as material 'the apparent density of which is decreased substantially by the presence of numerous cells disposed throughout its mass. The marine sandcastle worm Phragmatopoma californica builds protective tubes of solid foam [18] by gluing sand grains and parts of shells together with proteinaceous cement [19,20].

In addition, biofoams are frequently used by animals for the protection of brood. Examples are the nymphs of spittlebugs which secrete a froth consisting of a proteoglycan and glycoprotein complex. The froth surrounds their body and thus protects them, for example, from desiccation [21]. Fish, such as the armored catfish, protect their eggs in floating foam nests consisting of mucus [22,23]. Tropical frogs produce proteinaceous foams for the protection of eggs and embryos against environmental challenges [24].

Little to nothing is known about the mechanical properties of the biofoams (e.g. [25,26]) and the mechanical qualities of the cement of stalked barnacles are still awaiting investigations. After the detailed documentation of the morphology of the cement apparatus and the cement [8] and the study of the biochemical composition of the cement of D. fascicularis [27], it is the aim of this study to investigate the mechanical properties of this adhesive. Studies investigating acorn barnacle cement show that its structure differs between different species and also within the same species depending on the substratum to which the animal is attached [2,28]. The adhesive may be fibrous, globular or sponge-like [1,2,29,30]. Accordingly, the mechanical properties of the cement differ. Among the best investigated qualities are adhesive tenacity, elastic modulus and hardness. On a hard substratum, the adhesive tenacity or removal stress of the temporary adhesive of the cyprid (which is searching for a suitable place for attachment) and of the permanent cement of the juvenile is almost the same (around 0.2 MPa). Considerably higher tenacity values (around 0.9 MPa) were found in the permanent adhesive of a settled cyprid and in the cement of the adult [31,32]. By using elastomeric coatings, the removal stress can be lowered and barnacles can easily be detached [30,33,34]. The substratum also influences the elastic modulus and hardness of the cement. These values are higher on non-metallic than on metallic substrata. In previous experiments, it was shown that acorn barnacles secrete more cement on low-energy polymeric surfaces to adhere firmly than on high-energy surfaces such as metal [2]. Compared with the cement of acorn barnacles, the Dosima cement has a different structure [5] and, according to the definition by Grayson [17], it is a solid foam. Its main function is to give buoyancy to the animal [9], apart from providing a reliable bond to the substratum. Therefore, it is to be expected that its mechanical properties differ from those of other barnacles whose only function is strong adherence to the substratum. In contrast to the thin and firm cement of acorn barnacles, the cement float of D. fascicularis appears soft and elastic.

In this study, both the elastic modulus and hardness of the cement were measured using micro-indentation. Furthermore, the cement float was pulled apart in a tensile test until it ruptured, and the tensile stress was compared with the stress measured in acorn barnacles at the pull-off from the substratum. The mechanical properties of the cement of D. fascicularis are interesting in comparison with those of acorn barnacles and in the context of the possible use of this adhesive in medicine and technology.

2. Material and methods

Individuals of Dosima fascicularis which had been washed ashore were collected on the northwest coast of Denmark. The cement was removed from the animals and stored in seawater with a 2% antibiotic antimycotic solution (Sigma-Aldrich, Vienna, Austria) prior to the analyses.

2.1. Electron microscopy

The cement was fixed in 2.5% glutaraldehyde in 0.1 mol l⁻¹ sodium cacodylate buffer with 10% (w/v) sucrose at pH 7.3 for 2 h. For scanning electron microscopy, cross sections of the pre-fixed cement floats were rinsed in distilled water, air-dried and coated with gold by an Agar B7340 sputter coater (Agar Scientific Ltd, Stansted, UK). The samples were examined in a Philips XL 30 scanning electron microscope (FEI/Philips, Eindhoven, The Netherlands) at 15 kV. For transmission electron microscopy small pieces of pre-fixed cement were post-fixed in 1% osmium tetroxide in 0.1 mol l⁻¹ sodium cacodylate buffer for 2 h. The samples were dehydrated in a graded ethanol series, and acetone was used as intermediate medium before embedding in Agar low-viscosity resin. Sixty-nanometre sections were cut on a Reichert Ultracut-S microtome (Leica Microsystems, Vienna, Austria), stained with 0.5% uranyl acetate and 2% lead citrate. The sections were viewed in a Zeiss EM 902 transmission electron microscope (Carl Zeiss Microscopy GmbH, Oberkochen, Germany) at 80 kV.

2.2. Micro-indentation experiments

The elastic (Young’s) modulus and the hardness of the D. fascicularis cement were measured by micro-indentation. The cement floats were cut into halves. The almost smooth outer surface and the inner foam-like region were measured in seawater and distilled water at room temperature. Also the surface of the dried cement was measured. On each of these samples, which were fixed in a metal frame, three indentations were performed on different spots. For the experiments, the Basalt 01 microtribometer (Tetra GmbH, Germany) [35–37] was used. Indentations were performed using a glass sphere (3 mm diameter) fixed to a metal spring (figure 1a). The spring constant was calculated experimentally from the slope of the force–distance curve obtained on an aluminium block. The effective Young’s modulus E and the hardness H of the cement samples were defined from the fit of the unloading
part of the force–indentation depth curves according to the Hertz equation [38]

\[F = \frac{4}{3(1 - \nu^2)} E \frac{R}{\delta^{1.5}} \]

\[H = \frac{F_{\text{max}}}{\pi R \delta_{\text{max}}} \]

where \(R \) is the radius of the glass sphere, \(\nu \) is the Poisson ratio, \(\delta \) is the indentation depth caused by the applied force \(F \), and \(F_{\text{max}} \) and \(\delta_{\text{max}} \) are the maximal values of the applied force and indentation depth, respectively. The software Matlab v. 7.12.0 (The MathWorks, Inc., Natick, MA, USA) was used for the fit. Graphs, box plots and statistical tests were created in SIGMA Plot v. 11.0 (Systat Software Inc., Bangalore, India, and San Jose, CA, USA). Statistical analysis was done with the non-parametric Kruskal–Wallis one-way analysis of variance on ranks with Dunn’s multiple comparison procedure (significance set at \(p < 0.05 \)). Data were fitted by linear regression and tested for normal distribution using the Shapiro–Wilk test.

2.3. Tensile test

In this experiment, whole cement floats as well as parts of the outer region of the cement float were used. These parts were cut into cubes of about \(10 \times 10 \times 0.2 \text{ mm} \). The samples were then fixed by two clamps (figure 1b); one clamp was fixed on a force transducer FORT 100 (World Precision Instruments, Sarasota, FL, USA) which pulled the sample with a constant speed of \(200 \mu \text{m s}^{-1} \). The cement was pulled in 5 mm steps, each followed by a resting period of around 8 s until the sample ruptured. Pulling force and distance were measured. Additionally, the strain at rupture was defined. Knowing the area (width multiplied by height) and the length of the cement samples, a stress–strain curve could be generated. The value of the stress \(\sigma \) was obtained from the applied force \(F \) divided by the cement cross-section area \(A \) (\(\sigma = F/A \)) and the strain \(e \) from the extension \(\delta \) divided by the length \(l \) of the cement sample (\(e = \delta/l \)). The graphs were created in SIGMA

Figure 2. (a) Stranded aggregation of D. fascicularis connected by a single cement float (c). (b–d) Scanning electron micrographs. (b) Cross section of a cement float. The outer zone forming a rind (r) contained mainly small cells, whereas in the inner region of the float large cells (b) were dominant. (c) Higher magnification of the rind with narrow layers (arrows). (b, c) On the layers and the inner lining of the cells, the cement showed some roughness. (e, f) Transmission electron micrographs. (e) The cement had a fibrous structure. (f) In the region where the fibres were condensed, irregular lines were seen. Scale bars: (a) 1 cm; (b) 500 \(\mu \text{m} \); (c) 100 \(\mu \text{m} \); (d) 5 \(\mu \text{m} \); (e) 2 \(\mu \text{m} \); (f) 5 \(\mu \text{m} \).
with condensed zones, where the fibres aggregated (figure 2). Under the transmission electron microscope it appeared fibrous. The float were mainly large cells. Under the scanning electron microscope some of these zones formed the frames of the cells. Enclosed gas-filled cells of different size (figure 2). Centric layers around the stalk and the substratum to which the rind, were narrow and contained small cells (figure 2).

3. Results

3.1. Cement morphology

Dosimafascicularis occurred individually or in groups (figure 2a), producing a large amount of cement. The foam-like cement enclosed gas-filled cells of different size (figure 2b), which gave buoyancy to the animal. The cement was secreted in concentric layers around the stalk and the substratum to which the animal had attached. The outer layers, forming a kind of rind, were narrow and contained small cells (figure 2c). Inside the float were mainly large cells. Under the scanning electron microscope, the cement had a rough structure (figure 2d); under the transmission electron microscope it appeared fibrous with condensed zones, where the fibres aggregated (figure 2e,f). Some of these zones formed the frames of the cells.

3.2. Micro-indentation test

Typical curves of loading force versus indentation depth of the wet and the dry cement are shown in figure 3a,b. The force-indentation depth curves of two consecutive indentations at the same spot on the float provided information about viscoelastic-plastic deformation of the cement during the loading/unloading process (figure 4). The plastic deformation was seen as a shift of the second indentation curve (grey) relative to the first indentation curve (black). The large difference in the loading and unloading parts of the indentation curves demonstrated the pronounced viscoelastic properties of the float. However, the main mechanical response of the float on the indentation was elastic.

The elastic modulus of the cement surface measured in seawater was 16.4 kPa ± 8.8, whereas in distilled water it was 11.6 kPa ± 5.3. In the inner region, the modulus was 9.3 kPa ± 5.3 measured in seawater and 8.5 kPa ± 3.6 in distilled water. Statistically, there was a significant difference between the different regions of the cement in the two media (p < 0.001, Kruskal–Wallis test). However, the pairwise comparison revealed that the inner regions were not significantly different. The dry cement had a much higher Young’s modulus (0.76 MPa ± 0.87) than the cement under wet conditions (figure 5a).

The hardness of the cement surface measured in seawater was 2.5 kPa ± 1.2, whereas in distilled water it was 1.7 kPa ± 0.7. In seawater, the inner region had a hardness of 1.5 kPa ± 0.9; in distilled water, 1.3 kPa ± 0.4. As for the elastic modulus, the hardness differed significantly between the different regions and media (p < 0.001, Kruskal–Wallis test), but again the pairwise comparison showed that there was no significant difference between the inner regions of the float in seawater and distilled water. The dry cement had the highest hardness values (39.0 kPa ± 13.4) than the cement measured in seawater and 8.5 kPa ± 3.6 measured in distilled water. Statistically, there was a significant difference between the different regions of the cement in the two media (p < 0.001, Kruskal–Wallis test), but again the pairwise comparison showed that there was no significant difference between the inner regions of the float in seawater and distilled water. The dry cement had the highest hardness values (39.0 kPa ± 13.4) than the cement under wet conditions (figure 5a).

The elastic modulus and the hardness were higher at the surface than in the inner region of the wet cement. With an increasing indentation depth, the elastic modulus ($R^2 = 0.22$, Shapiro–Wilk test) and the hardness ($R^2 = 0.06$, Shapiro–Wilk test) decreased (figure 6a,b). In the inner region of the cement float, no correlation between the indentation depth and the elastic modulus ($R^2 = 0.0002$, Shapiro–Wilk test) or hardness ($R^2 = 0.006$, Shapiro–Wilk test) was observed (figure 6a,b). In the dry cement, the values of the elastic modulus ($R^2 = 0.47$, Shapiro–Wilk test) and hardness ($R^2 = 0.43$, Shapiro–Wilk test) decreased significantly with an increasing indentation depth (figure 6c,f).

Figure 3. Typical force versus indentation depth curves of the cement of D. fascicularis. (a) The cement surface measured in seawater. (b) The surface of the dry cement. The solid line indicates the fit of the indentation data with the Hertz theory. E, elastic modulus. (Online version in colour.)

Figure 4. Two consecutive indentations, applied with the same force, measured on the same spot at the surface of a wet cement float of D. fascicularis. The second indentation (grey) demonstrated a visco-elastic-plastic deformation when compared with the first indentation (black).

PLOT v. 11.0. The data for the relaxation were fitted by a single exponential function and tested for normal distribution using the Shapiro–Wilk test.
Figure 5. The elastic modulus (a) and the hardness (b) of the surface and inner region of the cement float of D. fascicularis measured in seawater and distilled water as well as of the surface of the dry cement. Box plots show the median value (line), the ends of the boxes define the 25th and 75th percentiles and the error bars the 10th and 90th percentiles. The outlines are illustrated as black dots. The difference between the wet and dry cement was obvious, therefore only the differences between the different regions under wet conditions were analysed using Kruskal–Wallis one-way analysis of variance on ranks. (a,b) p < 0.001.

3.3. Tensile test

During pulling, the cement was elastically extensible to the point of rupture (figure 7). The tensile stress of the cement was below 0.2 MPa (figure 8a). During the resting period, the force decreased, indicating slow relaxation of the material (figure 8a,b). This proved the visco-elastic properties of the cement.

4. Discussion

Many organisms use adhesives for a variety of purposes, e.g. for attachment, defence or protection [18,39,40]. In marine animals, the attachment can be permanent as in mussels, transitory as in turbellarians, or temporary as in echinoderms [41]. Barnacles use both temporary and permanent adhesives during their life cycle. The last larval stage, the cyprid, uses temporary adhesion to explore the substratum before settlement and the adult is permanently attached [32]. According to Yule & Walker [31], the cyprid used a low-bond-strength cement in comparison with the higher-bond-strength cement of the adult.

Normally barnacles deposit a thin layer (a few micrometres thick) of firm adhesive on high-energy surfaces. Only when they adhere firmly on polymeric substrata with low energy do they produce a thicker cement layer with a sponge-like structure. Interestingly, this spongy cement is harder and has a higher elastic modulus than the firm cement [2]. In contrast to all other barnacles, D. fascicularis produces a large amount of foam-like cement which contains gas-filled cells. The cement is secreted in concentric layers around the stalk and the attached substratum [8]. It is known that the layered structure of barnacle cement is the result of cyclic secretion during the growth of the animal [30,42,43]. Sun et al. [30] described the multi-layered structure of the adhesive plaque of Balanus eburneus and Balanus variagatus. In these species, the elastic modulus, in the range of 0.01–100 MPa, increased from the outer to the inner layer. In contrast to the Balanus cement, the surface of the Dosinia cement had a higher elastic modulus and was harder than the inner region (figure 6). A reason for this may be that the salts in the seawater hardened the surface of the cement. In experiments, we could show that the elastic modulus and hardness of the cement surface were higher in seawater than in distilled water. In addition, the outer narrow layers formed a rind, containing only small cells (about 11 μm in diameter) compared with the inner region where the elongate cells (up to 2460 μm in length) predominated [8]. This structure would give greater mechanical stability and stronger protection to the surface region. The rind, as the interface with the environment, would be prone to any mechanical- or UV damage and possible dehydration. Similar structural and mechanical characteristics were also observed in the cement of P. californica, where the smallest cells were at the interface with the surrounding water [18]. These authors suggested that the highest elastic modulus would be at the interface. Also the inner spongy plaque matrix of the mussel M. edulis became increasingly dense towards the outside [14]. This seems to be a common phenomenon in the adhesives of aquatic animals.

The cement of barnacles was generally fibrous [8,29,44–46] and visco-elastic [2,30]. Visco-elasticity is known to be a property of many, if not all, biological materials [47]. This term has been used to describe natural fibrous composites, such as the cuticle of the attachment pads of Orthoptera [35,37]. Also non-fibrous materials such as those of echinoderm tube foot discs [48] and the adhesive gels of gastropods [49] have visco-elastic properties. Visco-elasticity of the cement of D. fascicularis may be necessary to protect the gas-filled cells inside the float from rupture by any fast and strong mechanical impact, for example water current and waves.

Most values of the elastic modulus of the wet cement of D. fascicularis were in the range of 5–20 kPa. Investigations of the cement of the acorn barnacle Amphibalanus spp. showed that the elastic modulus of the cement was higher than that of D. fascicularis. The modulus of elasticity of the cement of A. amphitrite measured by Ramsay et al. [50] with punch test apparatus was between 2.9 and 6.5 GPa. Sullan et al. [1] performed atomic force microscopy nanoindentations on different structures of the cement of the same species and got lower values of the elastic modulus ranging from 0.2 to 90 MPa. The difference in these results may be due to the different methods used. Sangeetha & Kumar [2] analysed the cement of A. reticulatus growing on metallic
and non-metallic substrata, using a nanomechanical testing system. The hardness and the elastic modulus of the cement were higher on non-metallic \((H = 52.6 \text{ MPa and } E = 1.2 \text{ GPa})\) than on metallic \((H = 8.7 \text{ MPa and } E = 0.4 \text{ GPa})\) substrata and again higher than those of the Dosima cement. These authors reported that barnacles needed more cement to adhere firmly to non-metallic substrata than to metal and that detachment of barnacles from metallic surfaces was generally more difficult than from non-metallic ones.

The acorn barnacles described above had a calcareous base. It cannot be ruled out that parts of the hard calcareous base were included in the measurements. In our experiments, only the pure cement, free of any animal tissue and free of any substratum, was investigated. In the indentation experiments, we selected indentation depths at least 10-fold lower than the sample thickness, in order to prevent contribution of the stiff support to the results of our measurements.

Our results revealed that the \(D.\ fascicularis\) cement is a soft biological material. Its elastic modulus was in the same range as that of other animal adhesive structures such as the tube foot discs of echinoderms \((3–140 \text{ kPa})\) [48], the adhesive pads of ensiferan insects \((25–100 \text{ kPa})\) [37] and the adhesive secreted by the Australian frog \(Notaden bennetti\) \((170–1035 \text{ kPa})\) [51]. The adhesives secreted by the serpulid
5. Conclusion

The cement of *D. fascicularis* is a soft biological material and like that of other barnacles fibrous and visco-elastic. The values of elastic modulus, hardness and tensile stress are much lower than in the rigid cement of acorn barnacles investigated so far. A physical explanation for these differences is the foam-like structure of the *Dosima* cement caused by the gas-filled cells. An ecological explanation could be the different living conditions of acorn barnacles and *Dosima* with the partly different use of the adhesive. In contrast to the gregariously settling acorn barnacles, which are firmly attached to the substratum, *D. fascicularis* occurs either singly or in small numbers attached to floating objects or drifting through the sea with a cement float. For this lifestyle, the *Dosima* cement has to be able to withstand mechanical impact in the water, it must not be hard and—very importantly—the float must be impermeable to water and gas. The great elasticity enhanced by the foam-like structure makes the cement damping properties. In addition, this special structure of the cement is more economical for the animal than a solid structure. It saves material and thus energy.

The shock-absorbing properties combined with the expected biocompatibility of the *Dosima* cement make it interesting for possible applications in orthopaedics. Its structure and the assumed biodegradability make it perfectly suitable as three-dimensional scaffolds for tissue growth and wound healing like other biofoams [56,57]. Besides the possible application in medicine, the *Dosima* cement could also be used in technology. Its foam-like weight-saving structure in conjunction with the fact that the cement cures and is durable underwater could make it an appropriate material for construction works in a wet environment.

Acknowledgements. We thank H. L. Nemeschkal for help with the statistics and the anonymous reviewers for the helpful comments.
Funding statement. This research was carried out with the financial support of the Austrian Science Fund (FWF) P21767-B17 to W.K. V.Z. was granted a ‘Short-Term Scientific Mission’ from the COST-action TD0906 to perform experiments at Kiel University, Germany.

References

1. Sullan RMA, Gunari N, Tanur AE, Chan Y, Dickinson GH, Orhiuela B, Rittschof D, Walker GC. 2009 Nanoscale structures and mechanics of barnacle biofouling. Biofouling 25, 263 – 275. (doi:10.1080/ 08972010902868099)

2. Sangeetha R, Kumar R. 2011 Interfacial morphology and nanomechanics of cement of the barnacle, Amphibolus reticulatus on metallic and nonmetallic substrata. Biofouling 27, 569 – 577. (doi:10. 1080/08972011.2011.589027)

3. Stewart RJ, Ransom TC, Hlady V. 2011 Natural underwater adhesives. J. Polym. Sci B Polym. Phys. 49, 757 – 771. (doi:10.1002/pols.22256)

4. Kamino K. 2013 Mini-review: barnacle adhesives and adhesion. Biofouling 29, 715 – 749. (doi:10. 1080/08972013.2010.880863)

5. Hinojosa I, Böltsia S, Lancellotti D, Macaya E, Ugalde P, Valdivia N, Vásquez N, Newman WA, Thiel M. 2006 Geographic distribution and description of four pelagic barnacles along the south east Pacific coast of Chile—a zoogeographical approach. Rev. Chil. Hist. Nat. 79, 13 – 27. (doi:10.4067/S0716- 078X2006010000002)

6. Newman WA, Abbott DP. 1980 Cirripedia: the buoy barnacle Lepas anatifera the substratum of Phragmatopoma californica: a solid foam. J. Exp. Biol. 207, 4727 – 4734. (doi:10. 1242/jeb.03110)

7. Jensen RA, Morse DE. 1988 The bioadhesive of Phragmatopoma californica tubes: a silk-like cement containing L-DOPA. J. Comp. Physiol. B 158, 317 – 324. (doi:10.1002/jb.979005330)

8. Zhao H, Sun CI, Stewart RJ, Waite JH. 2005 Cement proteins of the tube-building polychaete Phragmatopoma californica. J. Biol. Chem. 280, 42 938 – 42 944. (doi:10.1074/jbc.M508457200)

9. Mello MLS, Pimentel ER, Yamada AJ, Storopoli-Neto A. 1987 Composition and structure of the frost of the spittlebug, Desis sp. Insect Biochem. 17, 493 – 502. (doi:10.1016/0095-3964(87)90009-6)

10. Andrade DV, Abe AS. 1997 Foam nest production in the armoured catfish, Armourea eugeجاز. Aquat. Living Resour. 11, 173 – 185. (doi:10.100090- 7440(98)00114-9)

11. Cooper A, Kennedy MW, Fleming RI, Wilson EH, Videler H, Woksolin DL, Su TJ, Green RJ, Lu JR. 2005 Desorption of frog foam nest proteins at the air- water interface. Biophys. J. 88, 2114 – 2125. (doi:10. 1529/biophysj.104.046268)

12. Holten-Andersen N, Zhao H, Waite JH. 2005 Stiff coatings on compliant biofibers: the cuticle of Mytilus californianus byssal threads. Biochemistry 48, 2752 – 2759. (doi:10.1021/bi050018m)

13. Bell EC, Golsme J. 1996 Mechanical design of mussel byssus: material yield enhances attachment strength. J. Exp. Biol. 199, 1005 – 1017.

14. Kowalczyk V, Klepal W, von Byern J, Bogner FR, Thiel K, Vögele J. 2004 Biochemical analyses of the cement float of the goose barnacle Dosima fascicularis—a preliminary study. Biofouling 20, 279 – 289. (doi:10.1080/08927010500499563)

15. Yule AB, Walker G. 1984 The adhesion of the barnacle, Balanus balanoides, to slate surfaces. J. Mar. Biol. Assoc. UK 64, 147 – 156. (doi:10.1017/ S0025315400059695)

16. Yule AB, Walker G. 1987 Adhesion in barnacles. In Crustacean issues 5: barnacle biology (ed. AJ Southward), pp. 389 – 402. Rotterdam, The Netherlands: Balkema.

17. Wendt DE, Kowalke GL, Kim J, Singer IL. 2006 Factors that influence elastomeric coating performance: the effect of coating thickness on basalt plate morphology, growth and critical removal stress of the barnacle Balanus amphitrite. Biofouling 22, 1 – 9. (doi:10.1080/08927010500499563)

18. Berglin M, Gatenholm P. 1999 The nature of bioadhesive bonding between barnacles and fouling-release silicone coatings. J. Adhes. Sci. Technol. 13, 713 – 727. (doi:10.1163/156856199x99086)

19. Gorb S, Jia YQ, Scherge M 2000 Ultrastructural architecture and mechanical properties of attachment pads in Tettigonia viridissima (Orthoptera Tettigoniidae). J. Comp. Physiol. A 186, 821 – 831. (doi:10.1007/s003590000135)

20. Jiao YK, Gorb S, Scherge M. 2000 Adhesion measured on the attachment pads of Tettigonia viridissima (Orthoptera, Insecta). J. Exp. Biol. 203, 1887 – 1895.

21. Perez Goodwyn P, Peressadko A, Schwarz H, Kastner V, Gorb S. 2006 Material structure, stiffness, and adhesion: why attachment pads of the grasshopper (Tettigonia viridissima) adhere more strongly than those of the locust (Locusta migratoria) (Insecta: Orthoptera). J. Comp. Physiol. A 192, 1233 – 1243. (doi:10.1007/s00359-006-0156-z)

22. Hertz H. 1881 Über den Kontakt elastischer Körper. J. Reine Angew. Math. 92, 156 – 171.

23. DeMoor S, Waite JH, Jangoux M, Flammang P. 2003 Characterization of the adhesive from Cuvierian tubules of the sea cucumber Holothuria forskali

rsfs.royalsocietypublishing.org
40. Kamino K. 2010 Molecular design of barnacle cement in comparison with those of mussel and tubeworm. *J. Adhes.* **86**, 96 – 110. (doi:10.1080/00218460903418139)

41. Flammang P. 2006 Adhesive secretions in echinoderms: an overview. In *Biological adhesives* (eds AM Smith, JA Callow), pp. 183 – 206. Berlin, Germany: Springer.

42. Walker G. 1978 A cytological study of the cement apparatus of the barnacle, *Chelonibia testudinaria* Linnaeus, an epizoite on turtles. *Bull. Mar. Sci.* **28**, 205 – 209.

43. Fyhn UEH, Costlow JD. 1976 A histochemical study of cement secretion during intermolt cycle in barnacles. *Biol. Bull.* **150**, 47 – 56. (doi:10.2307/1540588)

44. Barlow DE, Dickinson GH, Orihuela B, Kulp JL, Rittschof D, Wahl KJ. 2010 Characterization of the adhesive plaque of the barnacle Balanus amphitrite: amyloid-like nanofibrils are a major component. *Langmuir* **26**, 6549 – 6556. (doi:10.1021/la092640w)

45. Barlow DE, Dickinson GH, Orihuela B, Rittschof D, Wahl KJ. 2009 *In situ* ATR-FTIR characterization of primary cement interfaces of the barnacle Balanus amphitrite. *Biofuelling* **25**, 359 – 366. (doi:10.1080/08927010902812009)

46. Wiegermann M, Watermann B. 2003 Peculiarities of barnacle adhesive cured on non-stick surfaces. *J. Adhes. Sci. Technol.* **17**, 1957 – 1977. (doi:10.1163/156856010037705270)

47. Vincent J. 2012 Structural biomaterials, 3rd edn. Princeton, NJ: Princeton University Press.

48. Santos R, Gorb S, Jamar V, Flammang P. 2005 Adhesion of echinoderm tube feet to rough surfaces. *J. Exp. Biol.* **208**, 2555 – 2567. (doi:10.1242/jeb.01683)

49. Smith AM. 2006 The biochemistry and mechanics of gastropod adhesive gels. In *Biological adhesives* (eds AM Smith, JA Callow), pp. 167 – 182. Berlin, Germany: Springer.

50. Ramsay DB, Dickinson GH, Orihuela B, Rittschof D, Wahl KJ. 2008 Base plate mechanics of the barnacle Balanus amphitrite (=*Amphibalanus amphitrite*). *Biofuelling* **24**, 109 – 118. (doi:10.1080/08927010701882112)

51. Graham LD et al. 2005 Characterization of a protein-based adhesive elastomer secreted by the Australian frog *Notaden bennetti*. *Biomacromolecules* **6**, 3300 – 3312. (doi:10.1021/bm050335e)

52. Tanur AE, Gunani N, Sultan RMA, Kavanagh CI, Walker GC. 2010 Insights into the composition, morphology, and formation of the calcareous shell of the serpulid *Hydroides dianthus*. *J. Struct. Biol.* **169**, 145 – 160. (doi:10.1016/j.jsb.2009.09.008)

53. Enders S, Barbakadse N, Gorb SN, Arzt E. 2004 Exploring biological surfaces by nanoindentation. *J. Mater. Res.* **19**, 880 – 887. (doi:10.1557/jmr.2004.19.3.880)

54. Hengsberger S, Kulik A, Zysset P. 2002 Nanoindentation discriminates the elastic properties of individual human bone lamellae under dry and physiological conditions. *Bone* **30**, 178 – 184. (doi:10.1016/s8756-3282(01)00624-x)

55. Watermann B, Berger H-D, Sönnichsen H, Willemsen P. 1997 Performance and effectiveness of non-stick coatings in seawater. *Biofouling* **11**, 101 – 118. (doi:10.1016/S0885-3282(97)00033-4)

56. Cooper A, Kennedy MW. 2010 Biofoams and natural protein surfactants. *Biophys. Chem.* **151**, 96 – 104. (doi:10.1016/j.bpc.2010.06.006)

57. Kennedy MW, Cooper A. 2013 Surfactant proteins and natural biofoams. In *Proteins in solution and at interfaces: methods and applications in biotechnology and materials science* (eds JM Ruso, A Pineiro), pp. 365 – 378. Hoboken, NJ: Wiley and Sons.