Commentary

Early antiretroviral treatment of infants to attain HIV remission: Not just a matter of timing

Albert Faye

A R T I C L E   I N F O

Article History:
Received 4 February 2020
Accepted 4 February 2020
Available online xxx

Over the past few years, the concept of HIV remission has arisen and sparked expectations towards an HIV cure. Several HIV-infected adults and children have shown sustained control of viral replication after antiretroviral treatment (ART) interruption. In adults, patients initially treated for HIV primary infection in a cohort named “Visconti”, were described as “HIV post-treatment controllers” as they had a median 7-year period of undetectable viral load (VL) after interruption of ART [1]. A similar posttreatment control pattern has been reported in approximately 9.5% of adults [2]. In children, a few case reports of posttreatment control have been published [3–5]. The first of them was the “Mississippi Baby”; ART was started very early, 30 h after birth, and continued up to 18 months. Then, the child had an undetectable viral load with a very low cell-associated HIV reservoir for more than 2 years after interruption [4]. In HIV-infected infants, transmission occurs mainly at delivery but during late pregnancy. Thus, compared to adults with a VL < 400 copies/ml by 24 weeks after ART initiation and < 50 copies/ml by 48 weeks of age and no confirmed VL > 50 copies/ml after suppression was attained. The primary immunologic endpoint was a CD4+ T-cell percentage > 30% by 24 weeks that was sustained through follow-up. Seventy-three HIV-infected neonates were included. At 48 weeks, just over half of the followed patients attained and sustained a VL < 50 copies/ml, and half of these patients sustained a CD4+ T-cell percentage > 30%. Moreover, the proportion of infants who achieved the primary endpoints was similar in the infants treated before 48 h and the infants treated between 48 h and 14 days. Thus, despite very early treatment, the number of children meeting the study virologic and immunologic endpoints was low.

The main finding from this study was that the precocity of ART initiation was not itself sufficient to achieve the virologic and immunologic prerequisites to consider a treatment interruption. Of course, this study does not question the need for early treatment in HIV-infected infants, which is associated with an indisputably clinical benefit compared to delayed treatment. However, it raises many questions about the possibility of reaching HIV remission through a posttreatment control period. First, in infants, achieving an undetectable VL is more difficult than in adults. In addition to the inappropriate galenic form and poor palatability of ART, starting a planned lifelong treatment just after birth might lead to adherence difficulties. Second, in utero HIV infection of infants could be associated with immunologic damage, such as early thymic dysfunction, which was not evaluated in this study and could prevent the achievement of immunologic endpoints. Third, because the immune system is immature in young children, a longer ART than 48 weeks in this study, might be necessary to achieve an optimal balance between a small pool of infected cells and potent specific immune responses. Fourth, it cannot be excluded that a very early treatment initiation might reduce the duration of exposure to viral antigens able to induce specific T and memory B cell responses, which could contribute to reducing the pool of infected cells and maintaining a status favourable for posttreatment control. Finally, two case reports of posttreatment control suggest that factors other than the early initiation of ART...
could be involved in HIV remission, as ART was started at 2 and 4 months of age in these cases [4,5]. These two cases are almost similar to the “Visconti” patients with very weak HIV-specific CD8+ T cell responses, which differentiated the profile of posttreatment controllers from the spontaneous HIV controllers or the “elite controllers” described in cohorts of patients naïve to treatment [10]. In elite controllers, the HIV-specific CD8+ T cell response seemed to be restricted by “protective” MHC class 1 molecules, that were not present in the two paediatric cases, one of them even displaying a pattern considered to be disadvantageous for HIV progression [10].

HIV remission is associated with many unresolved questions. This study shows that early initiation is not itself sufficient to attain an appropriate virologic and immunologic status to hope HIV remission after ART interruption. Finally, such study reflects the complexity of posttreatment control, likely involving subtle interactions between virologic, immunologic and host factors.

Declaration of Competing Interest

No conflicts of interest to declare (AF).

Funding

None.

References

[1] Saez-Cirion A, Bacchus C, Hocquelinoux L, Avertyand-Fenoel V, Girault I, Lecroux C, et al. Posttreatment HIV-1 controllers with a long-term virological remission after the interruption of early initiated antiretroviral therapy ANRS VISCONTI study. PLoS Pathog 2013;9(3):e1003211.
[2] Namazi G, Fajnzylber JM, Aga E, Bosch RJ, Acosta EP, Sharaf R, et al. The control of HIV after antiretroviral medication pause (CHAMP) study: posttreatment controllers identified from 14 clinical studies. J Infect Dis 2018;216(12):1954–63.
[3] Persaud D, Cay H, Ziemniak C, Chen YH, Patat M, Chun TW, et al. Absence of detectable HIV-1 viremia after treatment cessation in an infant. N Engl J Med 2013;369(19):1828–35.
[4] Frange P, Faye A, Avertyand-Fenoel V, Bellaton E, Descamps D, Angin M, et al. HIV-1 virological remission lasting more than 12 years after interruption of early antiretroviral therapy in a perinatally infected teenager enrolled in the French ANRS EPF-CO10 paediatric cohort: a case report. Lancet HIV 2016;3(1):e49–54.
[5] Violari A, Cotton MF, Kuhn L, Schramm DR, Paximadis M, Loubser S, et al. A child with perinatal HIV infection and long-term sustained virological control following antiretroviral treatment cessation. Nature Commun 2019;10(1):412.
[6] van Zyl GU, Bedison MA, van Rensburg AJ, Laughton B, Cotton MF, Meilers JW. Early antiretroviral therapy in south african children reduces HIV-1-infected cells and cell-associated HIV-1 RNA in blood mononuclear cells. J Infect Dis 2015;212(1):39–43.
[7] Crooks AM, Bateson R, Cope AB, Dahl NP, Griggs MK, Kurucet JD, et al. Precise quantitation of the latent HIV-1 reservoir: implications for eradication strategies. J Infect Dis 2015;212(9):1361–9.
[8] Goulder PJ, Lewin SR, Leitman EM. Paediatric HIV infection: the potential for cure. Nat Rev Immunol 2016;16(4):259–71.
[9] Kuhn L, Strehlau R, Shiaw S, Patel F, Shen Y, Technau KG, et al. Early antiretroviral treatment of infants to attain HIV remission. EClinicalMedicine 2020. doi: 10.1016/j.eclinm.2019.100241.
[10] Pereyra F, Jia X, McLanen PJ, Telenyi A, de Bakker PIW, Walker BD, et al. The major genetic determinants of HIV-1 control affect HLA class I peptide presentation. Science 2010;330(6016):1551–7.