Electrostatic effects and binding determinants in the catalysis of prolyl oligopeptidase:

Site-specific mutagenesis at the oxyanion binding site*

Zoltán Szeltner‡, Dean Rea§, Veronika Renner‡, Vilmos Fülöp¶ and László Polgár‡||

From the ‡Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, H-1518 Budapest 112, P.O. Box 7, Hungary and the §Department of Biological Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom.

Running title: Prolyl oligopeptidase catalysis

* This work was supported by the Wellcome Trust (grant no. 060923/Z/00/Z and 066099/01/Z), the Human Frontier Science Program (RG0043/2000-M 102), OTKA T/11 (Grant T029056), and the British-Hungarian Science and Technology Program GB 18/98.

The atomic coordinates will be deposited in the Protein Data Bank.

¶ A Royal Society University Research Fellow.

|| To whom correspondence should be addressed Tel.: 36-1-279-3110;
 Fax: 36-1-466-5465; E-mail: polgar@enzim.hu.

Copyright 2002 by The American Society for Biochemistry and Molecular Biology, Inc.
SUMMARY

Prolyl oligopeptidase, a member of a new family of serine peptidases, plays an important role in memory disorders. Earlier X-ray crystallographic investigations indicated that stabilization of the tetrahedral transition state of the reaction involved hydrogen bond formation between the oxyanion of the tetrahedral intermediate and the OH group of Tyr473. The contribution of the OH group was tested with the Y473F variant using various substrates. The charged succinyl-Gly-Pro-4-nitroanilide was hydrolyzed with a much lower k_{cat}/K_m compared with the neutral benzyloxy carbonyl-G1y-Pro-2-naphthylamide, although the binding modes of the two substrates were similar, as shown by X-ray crystallography. This suggested that electrostatic interactions between Arg643 and the succinyl group competed with the productive binding mechanism. Unlike most enzyme reactions, catalysis by the wild type enzyme exhibited positive activation entropy. In contrast, the activation entropy for the Y473F variant was negative, suggesting that the tyrosine OH group is involved in stabilizing both the transition state and the water shell at the active site. Importantly, Tyr473 is also implicated in the formation of the enzyme-substrate complex. The nonlinear Arrhenius plot suggested a greater significance of the oxyanion binding site at physiological temperature. The results indicated that Tyr473 was more needed at high pH, at high temperature, and with charged substrates exhibiting “internally competitive inhibition”.

Downloaded from http://www.jbc.org/ by guest on March 24, 2020
INTRODUCTION

Prolyl oligopeptidase (EC 3.4.21.26) preferentially hydrolyses proline-containing peptides at the carboxyl end of proline residues (for reviews see1-4). It is involved in the maturation and degradation of neuropeptides and peptide hormones, as well as in amnesia (5-8), depression (9-11) and Alzheimer’s disease (12-14). Unrelated to the well-known trypsin and subtilisin families, the enzyme is a paradigm of the new prolyl oligopeptidase family, which also includes dipeptidyl peptidase IV, acylaminoacyl peptidase and oligopeptidase B (15, 16). These enzymes are much larger (molecular mass 80 kDa) than trypsin and subtilisin (25-30 kDa) and each contains a peptidase domain at the C-terminal region of the single polypeptide chain. In the case of prolyl oligopeptidase, the active site serine and histidine have been identified as Ser554 and His680, respectively (17, 18). A structural relationship between lipases and the peptidases of the prolyl oligopeptidase family has been supported by the similar topology of the catalytic groups and by the similar amino acid sequence around these residues (19). The 1.4 Å resolution crystal structure (20) shows that the enzyme contains a peptidase domain with an α/β hydrolase fold, as previously suggested using secondary structure analysis (21), and that its catalytic triad (Ser554, Asp641, His680) is covered by the central tunnel of an unusual β-propeller. This domain operates as a gating filter for the active site, excluding large, structured peptides (22).

The kinetic behavior of prolyl oligopeptidase is different from that of trypsin and subtilisin. These enzymes exhibit a simple pH-rate profile, controlled by an ionizing group with a pK$_a$ of about 7. Furthermore, they are only slightly, if at all, affected by the ionic strength of the medium. In contrast, prolyl oligopeptidase catalysis measured with the Z-Gly-
Pro-Nap\(^1\) substrate provides a doubly sigmoid pH-\(k_{cat}\)/\(K_m\) profile, and is rather sensitive to ionic strength (23-25). Kinetic investigations have also shown that the rate-determining step of the reaction is a conformational change (23, 26) rather than the chemical step characteristic of the chymotrypsin reactions. Studies of the structural changes induced by pH, temperature, and urea have demonstrated that the denaturation of the enzyme is promoted at 0.5 M NaCl concentration (27). These results suggest that prolyl oligopeptidase is stabilized by a water shell, which is less stable at low pH and high ionic strength.

A major catalytic difference from the trypsin- and subtilisin-type enzymes concerns the stabilization of the negatively charged tetrahedral intermediate. This is achieved by the oxyanion binding site, which provides two hydrogen bonds to the oxyanion. In the trypsin-type enzymes the hydrogen bonds are contributed by two main chain NH groups, while in the subtilisin and its homologues one of the two hydrogen bonds originates from the side chain amide of an asparagine residue (cf. 28, 29). In prolyl oligopeptidase one hydrogen bond is formed between the oxyanion and the main chain NH group of Asn\(^{555}\), adjacent to the catalytic Ser\(^{554}\). The other bond comes from the OH group of Tyr\(^{473}\) (20). We have recently eliminated the tyrosine OH group by replacing the Tyr\(^{473}\) by a phenylalanine (24). The enzyme variant displayed decreased catalytic activity; the degree of reduction depended on the nature of the substrate. Interestingly, the tyrosine OH group was implicated in utilizing a portion of the binding energy in the chemical reaction step. However, the mechanistic importance of the electrophilic assistance by the oxyanion binding site has not yet been established in sufficient detail. In this work we have demonstrated that, in addition to the

\(^1\) The abbreviations used are: EDTA, ethylenediaminetetraacetic acid; DTE, dithioerythritol; MES, 2-(morpholino)ethanesulfonic acid; Heps, 2-[4-[2-(hydroxyethyl)-1 piperazinyl]ethanesulfonic acid; Z, benzyloxycarbonyl; suc, succinyl; Nan, 4-nitroanilide; Nap, \(\beta\)-naphthylamide.
electrophilic catalysis, the Tyr473 OH group is also implicated in binding, and that its role very much depends on the nature of the substrate, the pH, and the temperature.

EXPERIMENTAL PROCEDURES

Enzyme Preparation – Prolyl oligopeptidase of porcine brain and its Y473F variant were expressed in *Escherichia coli* cells and purified as described previously (24). The protein concentration was determined at 280 nm (3).

The R252S mutation was introduced with the two-step polymerase chain reaction as described for the Y473F mutant (24). The following primers were used: 5’-GCTACGTCTTGTaTCgATAAGtGAGGGCTGC-3’ and 3’-CGATGCAGAACAAaAGcTATTcaCTC CCCGACG-5’. An extra recognition site for *Cla*I restriction enzyme (underlined) was also created with silent mutations, which was used to verify the incorporation of the mutant oligonucleotides into the PCR product.

Activity measurements – The activity of prolyl oligopeptidase was determined fluorometrically with Z-Gly-Pro-Nap (Bachem, Ltd.), using a Jasco FP 777 spectrofluorometer equipped with a thermostated cell holder. The excitation and emission wavelengths were 340 nm (1.5 nm bandwidth) and 410 nm (5 nm bandwidth), respectively. The gain of photomultiplier was set to “medium”. Cells with excitation and emission path-lengths of 1.0 cm and 0.4 cm, respectively, were used. The substrate with internally quenched fluorescence, Abz-Gly-Phe-Gly-Pro-Phe-Gly-Phe(NO₂)-Ala-NH₂, was prepared with solid phase synthesis, and its hydrolysis was followed as in the case of Z-Gly-Pro-Nap, except that the excitation and emission wavelengths were 337 and 420 nm, respectively.
The reaction of suc-Gly-Pro-Nan (Bachem, Ltd.) was monitored at 410 nm using a Cary IE spectrophotometer. For calculation of the liberation of 4-nitroanilide a molar extinction coefficient of 8800 was used (30).

Kinetics – The specificity rate constants \((k_{cat}/K_m)\) were determined under first-order conditions; i.e., at substrate concentrations lower than \(K_m\). The first-order rate constant, calculated by nonlinear regression analysis, was divided by the total enzyme concentration to provide \(k_{cat}/K_m\). The pH dependence of catalysis was measured in a four-component buffer, which consisted of 25 mM glycine, 25 mM acetic acid, 25 mM Mes, 75 mM Tris and contained 1 mM EDTA and 1 mM DTE (standard buffer). The buffer was titrated to the desired pH with HCl or NaOH, while the ionic strength remained fairly constant over a wide pH range. Small changes in the conductivity were adjusted by the addition of NaCl. After the reaction had been completed the pH of each sample was practically identical to the starting value.

Theoretical curves for bell-shaped pH-rate profiles were calculated by nonlinear regression analysis, using Equation 1 and the GraFit software (31). In Equation 1 \(k\) stands for \(k_{cat}/K_m\), and (limit) refers to the pH independent maximum rate constant. \(K_1\) and \(K_2\) are the dissociation constants of a catalytically competent base and acid, respectively. The pH-rate profiles composed of two bell-shaped curves were fitted to Equation 2 where \(k_1\) and \(k_2\) gave the limiting values of the rate constant for the low-pH and high-pH forms of the enzyme. The curve for suc-Gly-Pro-Nan is described by Equation 3 comprising one sigmoid and one bell-shaped term. A simple sigmoid curve is represented by Equation 4, where the p\(K_a\) reflects the ionization of a general acid.

\[
k = k \, \text{(limit)} \left[l/(l + 10^{pK_1-pH} + 10^{pH-pK_2}) \right] \quad \text{(Eq. 1)}
\]

\[
k = k_1 \left[l/(l + 10^{pK_1-pH} + 10^{pH-pK_2}) \right] + k_2 \left[l/(l + 10^{pK_2-pH} + 10^{pH-pK_3}) \right] \quad \text{(Eq. 2)}
\]

\[
k = k_1/(l + 10^{pH-pK_1}) + k_2[l/(l + 10^{pK_1-pH} + 10^{pH-pK_2})] \quad \text{(Eq. 3)}
\]
\[k = k / (1 + 10^{pH-pK_a}) \] \hspace{1cm} \text{(Eq. 4)}

\[k / k_0 = 1/(1 + I/K_i) \] \hspace{1cm} \text{(Eq. 5)}

The dissociation constant of the enzyme-inhibitor complex \((K_i)\) was calculated from Equation 5, where \(k_1\) and \(k_0\) are pseudo-first-order rate constants determined at substrate concentrations at least 10-fold less than \(K_m\) with and without inhibitor \((I)\), respectively.

Rate-limiting general acid/base catalyses were tested by measuring kinetic deuterium isotope effects in heavy water \((99.9\%)\). The deuterium oxide content of the reaction mixture was at least 95%. The \(p^2H\) of the deuterium oxide solutions was obtained from pH meter readings according to the relationship \(p^2H = pH(meter\ reading) + 0.4\) (32).

Thermodynamic parameters – The temperature dependence of the hydrolysis of Z-Gly-Pro-Nap was determined between 7 °C and 30 °C at concentrations of 2-20 nM prolyl oligopeptidase. The thermodynamic parameters were calculated from Eyring plots (Equation 6), where \(k\) is the rate constant, \(R\) is the gas constant \((8.314\ J/mol.K)\), \(T\) is the absolute temperature, \(N_A\) is the Avogadro number \((6.022 \times 10^{23}/mol)\), \(h\) is the Planck constant \((6.626 \times 10^{-34}\ J.s)\), the enthalpy of activation \(\Delta H^* = -(slope) \times 8.3\ 14\ J/mol\), the entropy of activation \(\Delta S^* = (intercept - 23.76) \times 8.3\ 14\ J/mol.K\). The free energy of activation, \(\Delta G^*\), was calculated from Equation 7.

\[
\ln(k/T) = \ln(R/N_A h) + \Delta S^*/R - \Delta H^*/RT
\] \hspace{1cm} \text{(Eq. 6)}

\[
\Delta G^* = \Delta H^* - T \Delta S^*
\] \hspace{1cm} \text{(Eq. 7)}

Crystallization, X-ray data collection and structure refinement – Prolyl oligopeptidase was crystallized (and co-crystallized with the peptides) using the conditions established for the wild type enzyme (20). Crystals belong to the orthorhombic space group \(P2_12_12_1\). X-ray diffraction data were collected at 100 K using synchrotron radiation. Wild-type data were collected again, as a monothioglycerol derivative was covalently bound to the catalytic site of
the original structure (20, PDB code: 1qfm). All data were processed using the HKL suite of programs (33). Refinements of the structures were carried out by alternate cycles of X-PLOR (34) and manual refitting using O (35), based on the 1.4 Å resolution model of wild type enzyme (20) (PDB code: 1qfm). A bulk solvent correction allowed all measured data to be used. Water molecules were added to the atomic model at the positions of large positive peaks (>3.0σ) in the difference electron density, only at places when the resulting water molecule fell into an appropriate hydrogen-bonding environment. Restrained isotropic temperature factor refinements were carried out for each individual atom. The final model contains all the 710 amino acid residues in all structures, the covalently bound Z-Pro-prolinal for the Y473F mutant, and a large number of solvent (glycerol and water) molecules. Statistics for the data processing and refinement are given in Table I.

Please insert Table I here

RESULTS AND DISCUSSION

Absence of the Tyr473 OH simplifies the pH-activity profiles – The formation and decomposition of the intermediate acyl enzyme in classic serine protease catalysis are promoted by a histidine residue, which exhibits a pKₐ of about 7 and operates as a general base/acid catalyst (cf. 28, 29). The ionization of this residue governs the pH dependence of catalysis, which conforms to a simple dissociation curve with subtilisin, and a bell-shaped curve with chymotrypsin and its homologues, since in these enzymes an additional acidic group modifies the pH-rate profiles through a conformational change at the active site.

Compared with the classic serine peptidases, the reaction of porcine muscle prolyl oligopeptidase with Z-Gly-Pro-Nap has already been shown to exhibit a more complex pH-
dependence curve, which is composed of two bell-shaped terms (23, 25, 36). In contrast to the wild-type enzyme, the Y473F variant displays a normal bell-shaped curve for the reactions with both the classical substrate Z-Gly-Pro-Nap (Fig. 1A) and an octapeptide (Fig. 1B), Abz-Gly-Phe-Gly-Pro-Phe-Gly-Phe(NO$_2$)-Ala-NH$_2$, possessing the genuine peptide bond, Pro–Phe, which is stronger than the Pro–Nap bond. The differences may modify the hydrolytic mechanism. The doubly bell-shaped curve for the wild type enzyme is also shown in Fig. 1B. Since the reaction of the wild type prolyl oligopeptidase with Z-Gly-Pro-Nap was found to be rather sensitive to the ionic strength (23, 25), the rate constants for the enzyme variant were tested at 0.5 M NaCl concentration, too (Table II). Interestingly, the salt effects, which caused about a 2-fold increase in k_{cat}/K_m with the wild-type enzyme, were significantly reduced with the Y473F variant. It can be seen from Table II that the effects of ionic strength are less important with the Y473F variant than with the wild-type enzyme. The rate of hydrolysis of Z-Gly-Pro-Nap diminishes to a lesser extent (17-32-fold, respectively, without and with 0.5 M NaCl) than that of the octapeptide (53-81-fold, respectively, without and with 0.5 M NaCl). This indicates that the contribution of the oxyanion binding site is dependent on the nature of the substrate. The pH dependence curves in Fig. 1 show that in the absence of the Tyr473 OH group, the activity of the low-pH form virtually vanishes, which implies the electrophilic catalysis by the Tyr473 OH group is not uniformly operative over the total pH range. The reason for this effect and the nature of the group that perturbs the simple pH-rate profile is not clear.

Please insert Fig. 1 and Table II here

The rate-limiting step is not general base/acid catalysis – The hydrolysis of Z-Gly-Pro-Nap was also conducted in 2H$_2$O (Fig. 1A). It is known that general base/acid catalyzed
reactions proceed slower in heavy water by a factor of 2-3 as found with chymotrypsin and subtilisin (cf. 28, 29). However, such a high kinetic isotope effect is not associated with the prolyl oligopeptidase reaction, indicating that the rate-limiting catalytic step is not the chemical reaction catalyzed by the active site histidine residue, but rather a conformational change not affected by the medium (3, 23). The pH dependence for k_{cat}/K_m for the reaction of the Y473F variant with Z-Gly-Pro-Nap is shown in Fig. 1A. The low kinetic isotope effect ($k_{\text{cat}}/K_m(\text{H}_2\text{O})/k_{\text{cat}}/K_m(\text{D}_2\text{O}) = 1.1$) does not support the participation of general base catalysis in the rate limiting step, indicating that the rate limiting step does not change upon the truncation of the oxyanion binding site.

Thiono substrate hydrolysis greatly increases upon removal of the OH group of Tyr473 –

The use of thiono substrates having a sulfur atom in place of the carbonyl oxygen of the P1 residue has been rewarding for the studies on the oxyanion binding site of serine peptidases (37). Compared with the corresponding oxo substrates, the rate constants for the thiono substrates of chymotrypsin and subtilisin are lower by more than four orders of magnitude, which is about the detection limit (37). Although to a somewhat lesser extent, similar changes have also been observed with prolyl oligopeptidase, using the Z-Gly-Pro1-Nap thiono substrate (38). The low rate may not be attributed to a reduced chemical reactivity, because the reactivities of the oxo and the corresponding thiono compounds are comparable.

The effects of steric hindrance and transition state stabilization with a sulfur atom at the oxyanion binding site are difficult to separate. It appears that the oxyanion hole is designed for the precise accommodation of an oxygen atom, and fails to accept the larger sulfur. The steric hindrance to the sulfur atom may be alleviated by removal of the OH group of Tyr473. Indeed, Table III shows that in the case of the wild-type enzyme there is a dramatic reduction in the rate constant for the thiono substrate (2346-fold), whereas with the Y473F variant the decrease is substantially less (2.7-fold). Elimination of the steric hindrance in the Y473F
variant increases the catalytic efficacy for the thiono substrate about 50-fold. However, the rate constant of 80 M⁻¹s⁻¹ is still less by a factor of 45 than that for the wild-type enzyme with the oxo substrate, and this can account for the electrophilic catalysis. These results underline the importance of both the precise stereochemistry and the electrophilic catalysis at the oxyanion binding site.

Please insert Table III here

Estimation of the pKₐ of Tyr⁴⁷³ — We have recently shown that Z-Gly-Pro-OH is an inhibitor of prolyl oligopeptidase; the carbonyl oxygen of the free carboxyl group binds to the oxyanion binding site, while the other oxygen forms a hydrogen bond with the catalytic imidazole of His⁶₈⁰ (36). It can be expected that the K_i for Z-Gly-Pro-OH will increase with the ionization of Tyr⁴⁷³ at high pH, due to the repulsion by the developing charge on the Tyr⁴⁷³ oxygen atom. Indeed Fig. 2 shows that above pH 8 the K_i strongly increases, indicating weakening of binding. The experimental points perfectly fit to a dissociation curve with a pKₐ of 10.21±0.05 that was calculated by extrapolation because the enzyme tends to denature close to pH 10. This pKₐ value is consistent with the ionization of a normal tyrosine. The removal of Tyr⁴⁷³ OH considerably enhances the K_i. A simple pH dependence curve cannot be fitted to the points obtained with the Y473F variant. The weaker binding to the modified enzyme underlines the importance of the oxyanion binding site, and indicates that the change in the K_i of the wild-type enzyme is predominantly coupled with the ionization of Tyr⁴⁷³ rather than with conformational changes at high pH.

Please insert Figs. 2 and 3 here
Electrostatic effects on the binding of suc-Gly-Pro-Nan – The charged suc-Gly-Pro-Nan has been a widely used substrate of prolyl oligopeptidase because of its better solubility compared with the corresponding neutral Z-derivative. The pH-activity profile for suc-Gly-Pro-Nan (Fig. 3) is very different from the doubly bell-shaped character for the related Z-Gly-Pro-Nap substrate. Thus, k_{cat}/K_m is lower by two orders of magnitude, and the succinyl derivative reacts in the absence of NaCl faster at low pH than at high pH. Addition of 0.5 M NaCl remarkably modifies the curve, which then assumes a bell-shaped character (Fig. 3).

The difference between the reactivities of Z-Gly-Pro-Nap and suc-Gly-Pro-Nan can obviously be attributed to the disparate N-terminal acylating groups. Crystal structures of the S554A variant of the enzyme complexed with the acyl products of the above two substrates revealed that the succinyl and the benzyloxy carbonyl groups occupied similar positions. (Fig. 4, and [36]). This finding hardly explains why the succinyl derivative is so much less effective. Apparently, the binding is less efficient because the K_s value increases with the succinyl substrate, but the k_{cat} remains virtually unchanged (24). Fig. 4 shows that in the vicinity of the negatively charged succinyl group there are two positive charges, notably the guanidinium groups of Arg$_{252}$ and Arg$_{643}$. The succinyl group is approximately 7 Å from each guanidinium group and lies halfway between them. This distance is too large to allow the formation of a salt bridge. However, the guanidinium groups may slow down efficient binding by pulling the substrate away from the catalytically competent position. In other words, there is competition for the substrate between the true binding site involving the “proline hole” and the arginines attracting the succinyl group (Fig. 4). This kind of interaction differs from nonproductive binding or competitive inhibition. In the case of nonproductive binding the substrate binds in an alternative nonreactive mode at the active site of a significant portion of the enzyme molecules, and this gives rise to the same degree of reduction in K_m and k_{cat}. Only the rest of the enzyme molecules can bind the substrate productively and carry out
catalysis. For competitive inhibition, catalysis and inhibition also occur with separate enzyme molecules. In the present case, however, inhibition and catalysis take place within the same molecule, so that the enzyme performs a part time job. When compared with the Z-derivative, the formation of the enzyme-substrate complex (k_1) decreases (see Table V and the discussion in the next section) and its dissociation (k_{-1}) probably increases, with the consequent enlargement of $K_s = k_{-1}/k_1$.

Please insert Fig. 4 here

With Z-Gly-Pro-Nap, as well as with the octapeptide, the wild-type enzyme displays a doubly bell-shaped pH-rate profile, whereas the Y473F variant exhibits bell-shaped curves (Fig. 1). On the other hand, with suc-Gly-Pro-Nan the two enzymes show similar pH dependencies. For simplicity, only the curves for the wild type enzyme are displayed in Fig 3, but the parameters for both enzymes are shown in Table IV. Specifically, without added salt both enzymes have two active forms, the low-pH form being more active. At 0.5 M NaCl concentration both curves display simple bell-shaped character. However, compared with the neutral substrates the decrease in k_{cat}/K_m is much greater with the succinyl derivative (3 orders of magnitude). It is clear then that the Tyr473 OH group has different effects on different substrates, so that its contribution to the interaction with the oxyanion is more important with a poor substrate.

Kinetic properties of the R252S enzyme variant – The electrostatic attraction between the guanidinium and the succinyl groups is deshielded in the presence of 0.5 M NaCl, and this can account for the drastic modification in the pH-rate profile (Fig. 3). The other effect that predominates in the absence of salt is the progressive proton uptake by the succinyl group.
with the decrease in pH. The loss in charge counteracts the attraction by Arg252 or Arg643 thereby increasing k_{cat}/K_m at low pH values.

To examine the electrostatic effects of Arg252 on the catalytic activity of prolyl oligopeptidase, we have eliminated the charged residue by producing the corresponding serine variant. A similar mutagenesis with Arg643 may not be straightforward because this residue is directly involved in substrate binding by forming a hydrogen bond with the P2 carbonyl oxygen (20). This important role of Arg643 and its localization at the active site suggest that it should exert a more important effect on the succinyl substrate than Arg252 could do. Indeed, the kinetic studies with the R252S variant do not show a significant difference from the wild type enzyme. The pH-rate profiles were similar for the reactions with both the Z-Gly-Pro-Nap and the suc-Gly-Pro-Nan, except that the activity of the enzyme variant was slightly less, within a factor of two. These results rule out the catalytic importance of Arg252 and support the alternative possibility that involves Arg643.

Optimum activity below physiological temperature – The hydration zone around the active site of enzymes may increase both the activation enthalpy (ΔH^*) and the activation entropy (ΔS^*) of the reaction when the ordered water molecules are released into the bulk water upon substrate binding. Since Tyr473 OH helps stabilize the water structure at the oxyanion binding site (see supplementary material), determination of ΔH^* and ΔS^* for the specificity rate constant (k_{cat}/K_m) may provide information about the catalytic implication of this water structure. In fact, distinct temperature dependencies were found for the wild type enzyme and the Y473F variant. While k_{cat}/K_m for the wild-type peptidase increased up to \sim40°C, the modified enzyme gave an unexpectedly low temperature optimum in the reaction with Z-Gly-Pro-Nap (Fig. 5A). The maximum activity was reached before the enzyme tended to denature with the increase in temperature. Indeed, both enzymes retained full activity at 42 °C upon
incubation at pH 8.0 for 20 min, the longest period of the probe, although some reversible unfolding was revealed by differential scanning calorimetric measurements (not shown).

Please insert Fig. 5 here

A low temperature optimum, such as found with the Y473F variant (Fig. 5A), is uncommon among enzyme reactions. A similar temperature effect was observed with thrombin and the phenomenon was interpreted in terms of the change in the individual rate constants that compose k_{cat}/K_m as defined by Equations 8 and 9 (39, 40).

\[
\begin{align*}
 \text{E} + \text{S} & \xrightarrow{k_1} \text{ES} \xrightarrow{k_2} \text{EA} \\
 \text{k}_1 & \text{k}_2 \\
 \text{k}_{-1} & \text{ES} \rightarrow \text{EA}
\end{align*}
\]

(Eq. 8)

\[
k_{cat}/K_m = k_1 k_2 / (k_{-1} + k_2) = k_1 \alpha / (1 + \alpha)
\]

(Eq. 9)

where k_1 and k_{-1} are the rate constants for binding and dissociation of the substrate, k_2 is the first-order acylation rate constant, EA is the acyl enzyme, and $\alpha = k_2 / k_{-1}$ measures the stickiness of the substrate (41), which indicates that the substrate dissociates more slowly from its complex formed with the enzyme than it reacts to yield product, i.e. stickiness is high if $k_{-1} < k_2$. It follows from Equation 9 that k_{cat}/K_m approximates k_1 whenever $\alpha >> 1$. The temperature dependence of the rate constants can be obtained from Equation 10 (39).

\[
k_{cat}/K_m = k_{1,0} \exp\left[\left(-E_1/R\right)(1/T - 1/T_0)\right] q / (1 + q)
\]

(Eq. 10)

where $q = \alpha \exp\left[E_\alpha / R \left(1/T - 1/T_0\right) \right]$, $k_{1,0}$ is the value of k_1 at the reference temperature $T_0 = 298.15$ K, E_1 is the activation energy associated with k_1, and $E_\alpha = E_{-1} - E_2$. From the temperature dependence of k_{cat}/K_m the value of k_1 and the ratio of k_2/k_{-1} can be obtained together with the corresponding activation energies. Since T_0 can be set to any value, the parameters can be calculated for various temperatures. The data obtained in such a way are shown in Tables V-VII:
The parameters for the abnormal temperature dependence (Fig. 5B) are shown in Table V. It can be seen that the ratio of k_2/k_{-1} decreases with the increase in temperature, indicating a great rate enhancement for the dissociation of the enzyme-substrate complex compared to its conversion into acyl-enzyme. At low temperature $k_2 >> k_{-1}$, and k_{cat}/K_m becomes equal to k_1. Because the substrate dissociation has high activation energy, k_{-1} becomes predominant at high temperature. Thus, a plot of $\ln(k_{cat}/K_m)$ vs. $1/T$ yields a distinct maximum curve defined by Equation 10 (39). Consistent with the assumption made in the Arrhenius law, the activation energies do not alter in a reasonable temperature range. E_α is rather large, indicating a major difference between the activation energies for the dissociation and the breakdown to acyl-enzyme of the enzyme-substrate complex. This holds for all of the substrates tested (Tables V-VII).

The study of the individual rate constants allows a deeper insight into the mechanism of action of prolyl oligopeptidase. The effect of the OH group of Tyr473 is considerable on k_{cat}/K_m, a complex constant involving both binding and acylation. Similar effects can be observed with k_1, which exclusively refers to the formation of the enzyme-substrate complex, i.e. to binding. This clearly indicates that the Tyr473 OH group operates not only as an electrophilic catalyst, but it also plays an important role in the formation of the enzyme-substrate complex, and this complex formation is the rate-limiting step in the acyl-enzyme formation. Clearly, the binding step in the present catalysis is not a diffusion-controlled fast step, in contrast to several other enzyme reactions. The binding step is very likely associated with conformational changes, which are more difficult to carry out in the absence of the
Tyr473 OH group. Hence, this OH group must interact with the substrate carbonyl group in the ground state of the reaction, not just in the transition state.

It is worthy of note that \(E_1 \) values for the wild type enzyme reactions having greater \(k_1 \) values are larger than \(E_1 \) for the slower Y473F variant (Tables V–VII). This indicates that considerable entropy effects should be associated with the reaction of the native enzyme (cf. next section).

The temperature dependence of the suc-Gly-Pro-Nan reaction was estimated in the absence of added NaCl at pH 6.3, close to the pH optimum (Fig 3). At this pH the temperature dependence was more linear for the Y473F variant. Since at pH 6.3 the enzyme was less stable, the temperature dependence was not probed above 38 °C. The Z-Gly-Pro-Nap reaction was also examined at this pH. It was found that the Arrhenius plots for both the wild type and the Tyr473 variant displayed better linearity at pH 6.3 than at pH 8.0. In fact, the temperature optimum of the modified enzyme is significantly shifted towards higher values (not shown). This made the estimation of the parameters for the reaction of the suc-Gly-Pro-Nan with the Y473F variant very uncertain, at least at low temperature. The large error of \(k_2/k_{-1} \) is also seen in the reaction of the wild type enzyme with Z-Gly-Pro-Nap (Table V), where the maximum is not explicit enough.

Estimation of thermodynamic parameters from nonlinear Eyring plots – The activation enthalpy (\(\Delta H^* \)) and activation entropy (\(\Delta S^* \)) were calculated from an Eyring plot (1/T vs. ln(\(k/T \))). It was difficult to obtain a precise linear Eyring plot from the curves of Fig. 5B, in particular from the maximum curve pertinent to the enzyme variant. This is because the points progressively declined from the straight lines calculated with the parameters \(k_1 \) and \(E_1 \) of Table V. Therefore, the \(k_1 \) values were calculated from Equation 10, using several different T\textsubscript{0} temperature values, instead of the standard T\textsubscript{0} = 298.15 K. The Eyring plots were constructed with these \(k_1 \) data.
The Eyring plots for the reactions of Z-Gly-Pro-Nap with the wild type enzyme and its Y473F variant are shown in Figure 6, and the thermodynamic parameters calculated from the plots are compiled in Table VIII, along with the corresponding parameters of the octapeptide and suc-Gly-Pro-Nan. It is conspicuous that the ΔS^* gives a positive value for the wild type enzyme in all cases, while it is negative or exhibits a low positive value for the Y473F variant, as it is common in most enzyme reactions. This is because the transition state becomes more ordered by freezing considerable translational and rotational degrees of freedom of motion of the reactants. The consequent entropy loss is apparently overcompensated in the prolyl oligopeptidase catalysis by the release of the ordered water molecules located around the active site, in particular at the oxyanion binding site. This is consistent with the remarkably positive entropy and the high enthalpy (Table VIII); the latter is required for breaking the hydrogen bonds of the water shell, in addition to breaking the covalent peptide bond.

A water molecule in the oxyanion hole of the free wild-type enzyme is extensively hydrogen-bonded to the Tyr473 η, Ser554 γ, main chain NH group of Asn555 and other water molecules that make an extensive hydrogen bonding network (see supplementary material). These, together with other water molecules must be removed upon substrate binding, which enhances both ΔH^* and ΔS^*. It could be anticipated that the water shell in the Y473F variant is less stable and hence more easily removed, as indicated by the strikingly reduced ΔS^*. However, the water structures around the oxyanion binding sites are very similar for both enzymes, apart from an additional water molecule coordinated to the Tyr473 OH group of the wild type enzyme (see supplementary material), which does not fully explain the dramatic
entropy differences. Although the structural differences are not considerable, they may cause substantial changes in activity. The energies of hydrogen bond have been suggested to be 12-38 kJ/mol. For example, the lowest limit of 15 kJ/mol has been suggested for the energy of a simple hydrogen bond in ice (42). For a hydrogen bond between a tyrosine OH and H₂O, bond energy of 20 kJ/mol may be a reasonable estimate. As 5.7 kJ/mol energy results in a 10-fold alteration in rate constant, 20 kJ/mol bond energy can significantly influence the catalytic efficacy.

Please insert Fig. 7 here

Compensation for the loss of the OH group in the Y473F variant – Prolyl oligopeptidase forms a transition state analogue complex with Z-Pro-prolinal. In the wild-type enzyme the oxyanion is stabilized by the main chain NH group of Asn⁵⁵⁵ and Oη of the Tyr⁴⁷³ via hydrogen bonds (20). The latter atom is also hydrogen bonded to a water molecule, which is too far away from the oxyanion to form an interaction (Fig. 7A). When the same complex is formed with the Y473F variant, a water molecule moves closer and partly compensates for loss of the Tyr⁴⁷³ OH group by providing a hydrogen bond to the oxyanion (Fig. 7B). This water molecule is enthalpically and entropically less efficient for stabilization of the oxyanion. Being less acidic, it is a poorer proton donor than the tyrosine OH group. Also, it is more mobile, which is consistent with the significant difference in entropy between the two forms of the enzyme.

Conclusion – Prolyl oligopeptidase is of pharmaceutical interest because of its implication in memory disorders. Tyr⁴⁷³ is a part of the oxyanion binding site and operates as an electrophilic catalyst. At the same time it contributes to the binding of substrates and
inhibitors, in particular of transition-state inhibitors. The knowledge pertinent to the function of Tyr473 can be utilized in drug design.

Tyr473 displayed a normal ionization and did not affect the rate-limiting step. Elimination of the Tyr473 OH group from the oxyanion binding site restricted the catalytic activity mainly to the high-pH form of prolyl oligopeptidase, when reacted with Z-Gly-Pro-Nap or an octapeptide. This indicated that the hydrogen bond formation between the tyrosine OH and the oxyanion facilitated the catalysis to a higher degree at lower pH. On the other hand, the pH-rate profile did not significantly change with the succinyl substrate having a lower pH optimum, except that its specificity rate constant more considerably diminished. This was very likely due to unfavorable electrostatic interactions of the succinyl group with Arg643. The implication of Arg252, another candidate for interacting electrostatically with the succinyl group, was discounted using the R252S variant. It should also be considered that the benzyloxy carbonyl group binds stronger in the hydrophobic environment than the succinyl group can do.

An important corollary of this work is that major kinetic differences are not immediately apparent from the study of crystallographic structures. Thus, the large entropy differences between the reactions of the wild type enzyme and its Y473F variant are not readily seen from the water structure around its transition state analog complexes. Furthermore, the similar binding mode of the charged and neutral substrates (suc-Gly-Pro-Nan and Z-Gly-Pro-Nap) also cannot account for the large difference in the specificity rate constants.

The study with a thiono substrate indicates that the oxyanion binding site is a very precisely developed component of the catalytic machinery. In the absence of the Tyr473 OH group, the oxyanion of the catalytic intermediate is stabilized by a water molecule, but at a considerable cost to catalytic efficiency. The temperature dependence of k_{cat}/K_m exhibits a maximum well below the physiological temperature, in particular with the modified enzyme
and the neutral substrates. This implies that the dissociation of the enzyme-substrate complex \((k_{-1})\) becomes predominant with the increase in temperature with respect to its degradation to acyl-enzyme \((k_2)\).

In short, the contribution of the Tyr\(^{473}\) OH to the catalysis of prolyl oligopeptidase markedly depends upon the reaction conditions (pH, temperature, and the substrate used). A similar phenomenon has not been recognized with the extensively studied serine proteases of the trypsin and subtilisin families. A better understanding of the electrostatic effects in substrate binding and catalysis may assist structural based inhibitor design.

Acknowledgements – We thank Dr. Enrico Di Cera for helpful discussion concerning the temperature dependence of the reactions. Thanks are due to Ms. I. Szamosi and the late Ms. J. Fejes for the excellent technical assistance. D.R. thanks the BBSRC for the award of a studentship. We are grateful for access and user support to the synchrotron facilities of MAXLAB (Lund) and SRS (Daresbury).
REFERENCES

1. Walter, R., Simmons, W. H., and Yoshimoto, T. (1980) *Mol. Cell. Biochem.* **30**, 111-127
2. Wilk, S. (1983) *Life Sci.* **33**, 2149-2157
3. Polgár, L. (1994) *Methods. Enzymol.* **244**, 188-200
4. Cunningham, D. F., and O’Connor, B. (1997) *Biochim. Biophys. Acta* **1343**, 160-186
5. Yoshimoto, T., Kado, K., Matsubara, F., Koriyama, N., Kaneto, H., and Tsuru, D. (1987) *J. Pharmacobiodyn.* **10**, 730-735
6. Atack, J. R., Suman-Chauhan, N., Dawson, G., and Kulagowski, J. J. (1991) *Eur. J. Pharmacol.* **205**, 147-163
7. Miura, N., Shibata, S., and Watanabe, S. (1995) *Neurosci. Lett.* **196**, 128-130
8. Portevin, B., Benoist, A., Rémond, G., Hervé, Y., Vincent, M., Lepagnol, J., and De Nanteuil, G. (1996) *J. Med. Chem.* **39**, 2379-2391
9. Maes, M., Goossens, F., Scharpé, S., Meltzer, H.Y., D’Hondt, P., and Cosyns, P. (1994) *Biol. Psychiatry* **35**, 545-552
10. Williams, R.S.B., Eames, M., Ryves, W.J., Viggars, J., and Harwood, A.J. (1999) *EMBO J.* **18**, 2734-2745
11. Williams, R.S.B., Cheng, L., Mudge, A.W., and Harwood, A.J. (2002) *Nature* **417**, 292-295
12. Ishiura, S., Tsukahara, T., Tabira, T., Shimizu, T., Arahata, K., and Sugita, H. (1990) *FEBS Lett.* **260**, 131-134
13. Shinoda, M., Toide, K., Ohsawa, I., and Kohsaka, S. (1997) *Biochem. Biophys. Res. Commun.* **235**, 641-645
14. Cacabelos, R., Alvarez, A., Lombardi, V., Fernández-Novoa, L., Corzo, L., Pérez, P., Laredo, M., Pichel, V., Hernández, A., Varela, M., Figueroa, J., Prous, Jr., J., Windisch, M., and Vigo, C. (2000) *Drugs of Today* **36**, 415-499
15 Rawlings, N. D., Polgar, L., and Barrett, A. J. (1991) Biochem. J. 279, 907-911
16 Rawlings, N. D., and Barrett, A. J. (1994) Methods. Enzymol. 244, 19-61
17 Rennex, D., Hemmings, B. A., Hofsteenge, J., and Stone, S. R. (1991) Biochemistry 30, 2195-2203
18 Stone, S.R., Rennex, D., Wikstrom, P., Shaw, E., and Hofsteenge, J. (1991) Biochem. J. 276, 837-840
19 Polgár, L. (1992) FEBS Lett. 311, 281-284
20 Fülöp, V., Böcskei, Z., and Polgár, L. (1998) Cell 94, 161-170
21 Goossens, F., de Meester, I., Vanhoof, G., Hendriks, D., Vriend, G., and Scharpe, S. (1995) Eur. J. Biochem. 233, 432-441
22 Fülöp, V., Szeltner, Z., and Polgár, L. (2000) EMBO Reports 1, 277-281
23 Polgár, L. (1991) Eur. J. Biochem. 197, 441-447
24 Szeltner, Z., Renner, V., and Polgár (2000) Protein Sci. 9, 353-360
25 Szeltner, Z., Renner, V., and Polgár (2000) J. Biol. Chem. 275, 15000-15005
26 Polgár, L. (1992) Biochem. J. 283, 647-648
27 Polgár, L. (1995) Biochem. J. 312, 267-271
28 Polgár, L. (1987) New. Comp. Biochem. 16, 159-200
29 Polgár, L. (1989) Mechanisms of Protease Action, pp. 87-122. CRC Press, Boca Raton, Florida
30 Erlanger, B. F., Kokowsky, N., and Cohen, W. (1961) Arch. Biochem. Biophys. 95, 271-278
31 Leatherbarrow, R. J. (1990) GraFit, Version 2, Erithacus Software Ltd., Staines, U. K.
32 Glasoe, P. K., and Long, F. A. (1960) J. Phys. Chem. 64, 188-190
33 Otwinowski, Z., and Minor, W. (1997) Methods Enzymol. 276, 307-326
34 Brünger, A. T. (1992) X-PLOR: Version 3.1, Yale University Press, New Haven, CT
35 Jones, T. A., Zou, J. Y., Cowan, S. W., and Kjeldgaard, M. (1991) Acta Crystallogr. (Sect A) 47, 110-112

36 Fülöp, V., Szeltner, Z., Renner, V., and Polgár, L. (2001) J. Biol. Chem. 276, 1262-1266

37 Asbóth, B., and Polgár, L. (1983) Biochemistry 22, 117-122

38 Polgár, L., Kollát, E., and Hollósi, M. (1993) FEBS Lett. 322, 227-230

39 Vindigni, A., and Di Cera, E. (1996) Biochemistry 35, 4417-4426

40 Ayala, Y. M., and Di Cera, E. (2000) Protein Sci. 9, 1589-1593

41 Cleland, W. W. (1977) Adv. Enzymol. Relat. Areas Mol. Biol. 45, 273-387

42 Hamilton, W.C., and Ibers, J.A. (1968) Hydrogen bond in solids, W.A. Benjamin, Inc.

43 Read, R. J. (1986) Acta Crystallogr. (Sect A) 42, 140-149

44 Kraulis, P. J. (1991) J. Appl. Crystallogr. 24, 946-950

45 Esnouf, R. M. (1997) J. Mol. Graphics 15, 133-138

46 Brünger, A. T. (1992) Nature 355, 472-474
Legends to figures

Fig. 1. The pH-dependence of specificity rate constants for the Y473F variant of prolyl oligopeptidase. A, the reactions were measured at 25°C with 0.29 μM Z-Gly-Pro-Nap in the absence (o) and presence of 0.5 M NaCl (●), and in 2H2O (+) without salt at 50-100 nM enzyme concentration. B, the reactions were measured with 0.25 μM the octapeptide with (●) and without (o) 0.5 M NaCl. For comparison, the thin line represents the doubly sigmoid pH-rate profile for the wild type enzyme in the presence of 0.5 M NaCl (from reference 36).

Fig. 2. The inhibition of prolyl oligopeptidase and its Y473F variant with Z-Gly-Pro-OH. The K_i values are shown for the wild type (o, left ordinate) and the modified (+, right ordinate) enzymes. The curve was calculated with Equation 5.

Fig. 3. The pH dependence of k_{cat}/K_m for suc-Gly-Pro-Nan. The reactions were measured at 25°C with 11-22 μM of suc-Gly-Pro-Nan in the absence (o) and presence of 0.5 M NaCl (●). The concentration of the wild type enzyme was 100 nM. The thin line represents a simple dissociation curve fitted to the (o) points.

Fig. 4. Stereo view of the complex formed between the S554A variant of prolyl oligopeptidase and the hydrolysed product of suc-Gly-Pro-Nan. The bound ligand is shown darker than the protein residues. The benzyloxycarbonyl group of the Z-Gly-Pro-OH complex is in thin line (from PDB entry 1e8m). The SIGMAA (43) weighted 2mFo-ΔFc electron density using phases from the final model is contoured at 1σ level, where σ represents the rms electron density for the unit cell. Contours more than 1.4 Å from any of the displayed atoms.
have been removed for clarity. Dashed lines indicate hydrogen bonds. The distances between the succinyl group and Arg^{252}/Arg^{643} are also shown (Drawn with MolScript, 44, 45).

Fig. 5. Dependence on temperature of k_{cat}/K_m for Z-Gly-Pro-Nap. A, the second-order rate constants were determined at pH 8.0 in the absence of 0.5 M NaCl with the wild type enzyme (+, left ordinate) and its Y473F variant (o, right ordinate). B, Arrhenius plots for the wild type enzyme (+, left ordinate) and its Y473F variant (o, right ordinate). The dashed lines were calculated with k_1 and E_1 shown in Table V.

Fig. 6. Eyring plots for reactions of Z-Gly-Pro-Nap. The k_1 represents the rate constant for the formation of the enzyme-substrate complex. Symbols and reactions are identical with those shown in Fig. 6A.

Fig. 7. Stereo view of the covalently bound transition state analogue Z-Pro-prolinal A, to the wild-type enzyme (Drawn from PDB entry 1qfs (20)). B, to the Y473F variant (drawn as Fig. 4).
TABLE I

Data collection and refinement statistics

	WT	Y473F	Y473F + Z-Pro-proinal	S554A + suc
Data collection				
Synchrotron radiation, detector	SRS 9.6	MAXLAB BL-711	SRS 14.2	SRS 14.1
and wavelength (Å)	MAR IP, 0.87	MAR IP, 1.021	ADSC Q4 CCD, 0.979	ADSC Q4 CCD, 1.488
Unit cell (Å)	71.6, 100.1, 111.6	71.2, 99.8, 111.1	70.8, 99.6, 110.9	71.4, 100.2, 111.4
Resolution (Å)	22 – 1.39	26 – 1.49	33 – 1.78	52 – 1.65
Observations	414,442	545,342	304,631	472,928
Unique reflections	144,474	128,812	75,584	95,461
R_{sym}	0.060	0.036	0.065	0.092
Completeness (%)	89.6	99.4	99.7	98.8
Refinement				
Non-hydrogen atoms	6,720 (including 1 glycerol & 1013 water molecules)	6,789 (including 4 glycerol & 1,065 water molecules)	6,535 (including 5 glycerol & 781 water molecules)	6,792 (including 3 glycerol & 1055 water molecules)
R_{cryst} (2σ)b	0.212	0.175	0.172	0.202
R_{free} (2σ)c	0.230	0.196	0.194	0.228
Reflections used	136,164	122,694	71,263	89,637
R_{cryst}	0.218	0.177	0.177	0.209
Reflections used	138,616	123,567	72,480	91,576
Parameter	Value 1	Value 2	Value 3	Value 4
---	-------------	-------------	-------------	-------------
\(R_{\text{free}} \)^c	0.236	0.197	0.198	0.234
Reflections used	5,858	5,245	3,104	3,885
\(R_{\text{cryst (all data)}} \)^b	0.218	0.178	0.178	0.210
Mean temperature factor (Å²)	17.0	9.7	19.6	12.5
Rmsds from ideal values				
Bonds (Å)	0.007	0.007	0.008	0.009
Angles (°)	1.4	1.4	1.5	1.5
Mean coordinate error (Å)^d	0.16	0.09	0.12	0.12
PDB code	1h2w	1h2x	1h2y	1h2z

\[^a\] \(R_{\text{sym}} = \frac{\sum_j \sum_h |I_{h,j} - \langle I_h \rangle|}{\sum_j \sum_h |\langle I_h \rangle|} \) where \(I_{h,j} \) is the jth observation of reflection \(h \), and \(\langle I_h \rangle \) is the mean intensity of that reflection.

\[^b\] \(R_{\text{cryst}} = \frac{\sum |F_{\text{obs}}| |F_{\text{calc}}|}{\sum |F_{\text{obs}}|} \) where \(F_{\text{obs}} \) and \(F_{\text{calc}} \) are the observed and calculated structure factor amplitudes, respectively.

\[^c\] \(R_{\text{free}} \) is equivalent to \(R_{\text{cryst}} \) for a 4% subset of reflections not used in the refinement (46).

\[^d\] determined by the SIGMAA method (43).
Table II.

Kinetic parameters for prolyl oligopeptidase reactions

	Wilde type	Y473F 0.5M NaCl	Y473F 0.5M NaCl
Z-GP-Nap			
k_1 (µM$^{-1}$s$^{-1}$)	1.75±0.20	5.09±0.24	–
k_2 (µM$^{-1}$s$^{-1}$)	5.05±0.22	12.82±0.69	0.290±0.011
pK$_1$	4.88±0.32	5.20±0.10	–
pK$_2$	7.47±0.13	7.74±0.11	6.61±0.05
pK$_3$	9.16±0.06	8.74±0.06	8.69±0.07
Octapeptide			
k_1 (µM$^{-1}$s$^{-1}$)	0.85±0.15	1.88±0.19	–
k_2 (µM$^{-1}$s$^{-1}$)	3.44±0.11	6.72±0.38	0.065±0.002
pK$_1$	4.95±0.45	5.30±0.14	–
pK$_2$	7.16±0.10	7.42±0.11	6.42±0.05
pK$_3$	9.03±0.05	8.59±0.06	8.89±0.05

Table III

Rate constant for thiono substratea

	Z-Gly-Pro-Nap	Z-Gly-Prot-Nap	
	$k_{cat}K_m$ (mM$^{-1}$s$^{-1}$) A	$k_{cat}K_m$ (mM$^{-1}$s$^{-1}$) B	A/B
Wild type	3590	1.53	2346
Tyr473Phe	213	80	2.67

a Measured at pH 8.0
Table IV.

Reaction of prolyl oligopeptidase with suc-Gly-Pro-Nan

	Wild type	0.5M NaCl	Tyr473Phe	0.5M NaCl
k_1 (mM$^{-1}$s$^{-1}$)	61.0±1.4	–	0.084±0.002	–
k_2 (mM$^{-1}$s$^{-1}$)	27.1±5.2	61.6±1.4	0.033±0.00	0.094±0.002
pK_1	–	5.61±0.05	–	5.87±0.05
pK_2	7.11±0.18	–	6.58±0.12	–
pK_3	8.53±0.15	8.40±0.05	8.33±0.14	8.88±0.06
Table V. Kinetic and activation parameters for the reactions of prolyl oligopeptidase and its Y473F variant with Z-Gly-Pro-Nap at pH 8.0

Parameter	10 °C	15 °C	20 °C	25 °C	30 °C	35 °C
Wild type						
k_1 (μM$^{-1}$s$^{-1}$)a	0.97±0.04	1.59±0.04	2.47±0.05	4.05±0.35	6.25±0.65	9.20±0.88
k_2/k_{-1}	152±147	60±54	46±16	9.0±5.3	4.0±2.0	1.9±0.8
E_1 (kJ/mol)	66.7±4.8	66.5±4.7	63.2±2.3	66.8±4.9	66.5±4.7	65.0±3.7
$E_{-1} - E_2$ (kJ/mol)	131±18	132±18	149±9	131±18	132±18	138±20
Y473F						
k_1 (μM$^{-1}$s$^{-1}$)a	168±3	213±4	265±9	329±16	405±27	497±40
k_2/k_{-1}	98±40	30±8	12±4	4.6±1.1	1.8±0.4	0.7±0.1
E_1 (kJ/mol)	32±2	32±2	32±2	32±2	32±2	32.2±2
$E_{-1} - E_2$ (kJ/mol)	143±8	141±6	143±8	143±8	143±8	143±8

a Note the different dimensions for the wild type enzyme and its variant

Table VI. Kinetic and activation parameters for the reactions of prolyl oligopeptidase and its Y473F variant with the octapeptide at pH 8.0

Parameter	10 °C	15 °C	20 °C	25 °C	30 °C	35 °C
Wild type						
k_1 (μM$^{-1}$s$^{-1}$)a	0.58±0.02	1.01±0.03	1.73±0.08	2.93±0.24	4.8±0.5	7.8±1.0
k_2/k_{-1}	126±84	47±31	17±9	6.0±2.5	2.4±0.9	0.97±0.29
E_1 (kJ/mol)	76±5	76±4	76±4	76±5	76±5	76±4
$E_{-1} - E_2$ (kJ/mol)	142±13	144±14	144±14	142±13	143±13	144±14
Y473F						
k_1 (mM$^{-1}$s$^{-1}$)a	40.2±1.3	60±5	80±12	130±24	186±45	265±80
k_2/k_{-1}	9.7±4.0	4.5±1.8	2.2±0.8	1.1±0.4	0.6±0.2	0.3±0.1
E_1 (kJ/mol)	55±8	55±8	55±8	55±8	55±8	55±8
$E_{-1} - E_2$ (kJ/mol)	102±3	102±3	102±3	102±3	102±3	102±3

a Note the different dimensions for the wild type enzyme and its variant
Table VII. Kinetic and activation parameters for the reactions of prolyl oligopeptidase and its Y473F variant with suc-Gly-Pro-Nan at pH 6.3

Parameter	10 °C	15 °C	20 °C	25 °C	30 °C	35 °C
Wild type						
k_1 (mM$^{-1}$s$^{-1})$	16.7±0.3	27.5±0.7	44.5±2.1	70.7±4.8	111±10	171±19
k_2/k_1	130±106	46±31	17±9	6.6±3.0	2.6±0.9	1.1±0.3
E_1 (kJ/mol)	68±3	68±3	68±3	68±3	68±3	68±3
$E_{A1} - E_2$ (kJ/mol)	139±17	139±17	139±17	139±17	139±17	139±17
Y473F						
k_1 (M$^{-1}$s$^{-1}$)	40±1	54±1	76±2	106±4	146±7	200±13
k_2/k_1	3623±9590	765±1614	173±275	41±43	10±6	2.6±0.5
E_1 (kJ/mol)	48±3	48±3	48±3	48±3	48±3	48±3
$E_{A1} - E_2$ (kJ/mol)	210±72	210±72	210±72	210±72	210±72	210±72

Note the different dimensions for the wild type enzyme and its variant

Table VIII. Activation parameters for prolyl oligopeptidase and its variant

	Wilde type	Y473F
Z-GP-Nap, pH 8.0		
ΔG^* (kJ/mol)	36.1 (36.0)a	41.5
ΔH^* (kJ/mol)	63.8 (57.1)a	29.0
ΔS^* (J/mol.K)	93.2 (70.7)a	-42.0
Octapeptide, pH 8.0		
ΔG^* (kJ/mol)	36.1	43.8
ΔH^* (kJ/mol)	73.2	52.2
ΔS^* (J/mol.K)	124	28.0
suc-GP-Nan, pH 6.3		
ΔG^* (kJ/mol)	45.3	61.5 (61.5)a
ΔH^* (kJ/mol)	65.0	45.7 (43.3)a
ΔS^* (J/mol.K)	65.93	-52.8 (-60.9)a

The parameters were calculated with the k_1 values of Table V-VII. The values in brackets were determined from measured points from the low temperature range.
Fig. 1B
Fig. 3
Fig. 6
Legend for the figure of supplementary material:

Stereo view of the water structure around the oxyanion binding site. A, wild-type enzyme. B, Y473F variant (drawn as Fig. 4).
Electrostatic effects and binding determinants in the catalysis of prolyl oligopeptidase: Site specific mutagenesis at the oxyanion binding site
Zoltán Szeltner, Dean Rea, Veronika Renner, Vilmos Fülöp and László Polgár

J. Biol. Chem. published online August 28, 2002

Access the most updated version of this article at doi: 10.1074/jbc.M208043200

Alerts:
• When this article is cited
• When a correction for this article is posted

Click here to choose from all of JBC’s e-mail alerts