The Use of High-Throughput DNA Sequencing in the Investigation of Antigenic Variation: Application to Neisseria Species

John K. Davies1*, Paul F. Harrison2, Ya-Hsun Lin1, Stephanie Bartley3, Chen Ai Khoo1, Torsten Seemann2, Catherine S. Ryan1, Charlene M. Kahler3,4,5, Stuart A. Hill6

1 Department of Microbiology, Monash University, Clayton, Victoria, Australia, 2 Victorian Bioinformatics Consortium, Monash University, Clayton, Victoria, Australia, 3 School of Pathology and Laboratory Medicine, 4 The Marshall Centre for Infectious Diseases, Research and Training, University of Western Australia, Nedlands, Western Australia, Australia, 5 Telethon Institute of Child Health Research, University of Western Australia, Nedlands, Western Australia, Australia, 6 Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, United States of America

Abstract

Antigenic variation occurs in a broad range of species. This process resembles gene conversion in that variant DNA is unidirectionally transferred from partial gene copies (or silent loci) into an expression locus. Previous studies of antigenic variation have involved the amplification and sequencing of individual genes from hundreds of colonies. Using the pilE gene from Neisseria gonorrhoeae we have demonstrated that it is possible to use PCR amplification, followed by high-throughput DNA sequencing and a novel assembly process, to detect individual antigenic variation events. The ability to detect these events was much greater than has previously been possible. In N. gonorrhoeae most silent loci contain multiple partial gene copies. Here we show that there is a bias towards using the copy at the 3' end of the silent loci (copy 1) as the donor sequence. The pilE gene of N. gonorrhoeae and some strains of Neisseria meningitidis encode class I pilin, but strains of N. meningitidis from clonal complexes 8 and 11 encode a class II pilin. We have confirmed that the class II pili of meningococcal strain FAM18 (clonal complex 11) are non-variable, and this is also true for the class II pili of strain NMB from clonal complex 8. In addition when a gene encoding class I pilin was moved into the meningococcal strain NMB background there was no evidence of antigenic variation. Finally we investigated several members of the opa gene family of N. gonorrhoeae, where it has been suggested that limited variation occurs. Variation was detected in the opaK gene that is located close to pilE, but not at the opaJ gene located elsewhere on the genome. The approach described here promises to dramatically improve studies of the extent and nature of antigenic variation systems in a variety of species.

Citation: Davies JK, Harrison PF, Lin Y-H, Bartley S, Khoo CA, et al. (2014) The Use of High-Throughput DNA Sequencing in the Investigation of Antigenic Variation: Application to Neisseria Species. PLoS ONE 9(1): e86704. doi:10.1371/journal.pone.0086704

Editor: Thomas Rudel, University of Würzburg, Germany

Received September 30, 2013; Accepted December 11, 2013; Published January 22, 2014

Copyright: © 2014 Davies et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was supported by National Institutes of Health (www.nih.gov) grant number 1R3S AI072720-01A1) to SAH, and grants (S54003 and S54004) from the Australian National Health and Medical Research Council (www.nhmrc.gov.au) to JKD and CMK. SB was supported by a PhD scholarship from the Amanda Young Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: John.Davies@monash.edu

Introduction

Antigenic variation is a genetic process that leads to high-frequency changes in cell surface components in a wide range of species. To evaluate the experimental approach described here we initially investigated antigenic variation in a gene where that process has been well studied, the pilE gene of Neisseria gonorrhoeae. N. gonorrhoeae (the gonococcus), and the closely related N. meningitidis (the meningococcus), are both strict human pathogens and must continually evade the human immune system. What partly confounds the immune system is antigenic variation of the PilE pilin subunit that assembles into the type IV pili. In this system the expressed gene (pilE) changes and the so-called silent loci (pilS) donate variant genetic information, but remain unchanged in the process. The variant sequences recombine into the distal two thirds of the pilE gene [1], and the process is dependent on the presence of the RecA protein [2]. Mosaic proteins can sometimes be formed as multiple gene segments from the pilS loci are recombined into the expressed copy to yield a variant gene [1]. Antigenic variation in this gene is a high-frequency event, with approximately 12% of randomly selected colonies containing a variant gene sequence [1]. Two distinct classes of type IV pili are found in N. meningitidis: class I pili (also found in N. gonorrhoeae) antigenically vary, whereas at least some class II pili do not [3].

In addition to the type IV pilin system, other potential antigenic variation systems have been identified in the genome sequences of Neisseria species. The opa genes are a gene family encoding surface-exposed proteins, with the number of genes varying between strains. For N. gonorrhoeae strain MS11, nine intact opa genes have been cloned and sequenced allowing alignment of their gene sequences [4]. From these alignments two hyper-variable regions can be observed in the middle of the genes as well as a semi-variable region located towards the 5’ end. Several studies have shown DNA transformation-mediated horizontal transmission of chromosomal DNA where hyper-variable opa segments are exchanged between strains [5–7]. However, limited data has been accrued as to whether opa genes also engage in antigenic variation
Table 1. Partial pilE gene copies found within the pilS loci of *N. gonorrhoeae*.

Strain	pilS locus	Partial gene copies	Accession number
FA1090	pilS1	5	U58846
	pilS2	6	U58848
	pilS3	3	U58850
	pilS6	3	U58849
	pilS7	1	U58851
	pilEc2	1	U58847
MS11	pilS1	6	M11663
	pilS2	2	None
	pilS5	1	X60748
	pilS6	3	X60749
	pilS7	1	X60750
	Upstream of pilE	2	None
mer pair counts were used both in the assembly stage, as part of a seed-and-extend algorithm, and in the validation stage, where visualization of k-mer pair counts of an assembled sequence allowed manual validation of the correctness of assembled sequences. The details are discussed in a supplementary text file (Text File S1) in the Supporting Information, and the software is available for download at http://www.vichioinformatics.com/software.assemblet.shtml.

Nomenclature of pilS Silent Loci

We have continued the use of the system adopted by others to name the individual partial gene sequences located in the various silent loci [1,3,9]. Gonococcal strain FA1090 contains 19 partial gene copies [15]. All but one of these is found in five pilS loci distributed around the genome. Here for instance pilS1c3 refers to the third partial gene copy in the silent locus pilS1. One additional partial gene copy is found just upstream of the pilE gene, and has been designated pilEc2 [15]. Gonococcal strain MS11 also has 5 pilS loci, containing 13 partial gene copies [16]. An additional 2 partial gene copies are found upstream of the pilE gene. In some variants of this strain the pilE gene and upstream copies are duplicated. Only 11 of these 17 possible partial gene copies have been sequenced [16]. A summary of the pilS loci and the partial gene copies they contain, along with the relevant accession numbers, is shown in Table 1.

Results

Analysis of Sequence Assemblies

Each of the 50 sequence assemblies emerging from the selection stage was used as a query sequence in a BLASTn search of the databases, and any assembly that did not relate to the gene and strain in question was removed from further consideration. These were mainly short assemblies with very low sequence coverage. The remaining assemblies were aligned to the reference sequence using ClustalW2. This, along with heat maps (see Text File S1 in Supplementary Information), occasionally identified additional mis-assemblies arising from the short Illumina sequence reads, and the presence of direct or inverted repeats in the amplified region. These were also removed from the analysis. The remaining assemblies were then manually searched for those that differed from the reference sequence by just one nucleotide, such as a one nucleotide insertion or deletion, or a nucleotide change. For the reasons outlined below, these assemblies were also removed from further analysis. As expected, prominent amongst the remaining assemblies was an assembly (allele 1) with high k-mer depth that was identical to the reference sequence obtained by Sanger sequencing of the amplicon. The remaining assemblies were again aligned with the reference sequence using ClustalW2. In most cases the average k-mer depth exceeded 10^5, and in some cases 10^6 (Table 2). The frequency with which a particular variant appeared was estimated by dividing the average k-mer depth of the variant portion of the assembly by the average k-mer depth of same-sized regions immediately on either side of the variant sequence. This is illustrated for a particular assembly containing a variant sequence in Figure S1, Panel A. In some cases regions containing variant sequences were interrupted by region(s) of conserved sequence. An example of this is shown in Figure S1, Panel B. In these cases the spike in k-mer depth resulting from the presence of the internal conserved region would inflate the average k-mer depth if this was measured across the entire region, resulting in an artificially high frequency calculation. Therefore for these assemblies the frequency was calculated by dividing the k-mer depth of each individual variable segment by the average k-mer depth of same-sized regions immediately on either side of the entire region.

Variation at the pilE Gene Encoding Class I Pilin in N. gonorrhoeae Strain FA1090

The pilE of strain FA1090 recA6 grown in the absence of IPTG was amplified by PCR and sequenced using Sanger chemistry. An alignment with the FA1090 genome sequence (accession number AE004969) revealed sequence variation in the 3’ part of the gene (Figure S2). This variation can be explained by gene conversion using sequence from a specific silent locus, pilS1c1. In two independent experiments a culture grown in the absence of IPTG was split, with one half cultured in the absence of IPTG, whilst the other half was grown in the presence of IPTG, allowing antigenic variation. The pilE gene from both cultures was amplified by PCR, and subjected to high-throughput sequencing. In both experiments there were multiple assemblies that differed from the reference sequence by just one nucleotide. Unlike the variant sequences described below, the single nucleotide changes

Strain	Gene	Experiment	Average k-mer depth	Average k-mer depth
			ReCA \(\times 10^5\)	ReCA \(\times 10^5\)
N. gonorrhoeae FA1090	pilE	1	250	1070
N. gonorrhoeae FA1090	pilE	2	248	158
N. gonorrhoeae MS11	pilE	1	240	202
N. gonorrhoeae MS11	pilE	2	264	278
N. meningitidis FAM18	pilE	1	–	1540
N. meningitidis FAM18	pilE	2	–	1062
N. meningitidis NMB	pilE	1	–	669
N. meningitidis CKNM397	pilE	1	–	300
N. meningitidis CKNM397	pilE	2	–	220
N. gonorrhoeae FA1090	opaK	1	159	208
N. gonorrhoeae FA1090	opaK	2	87	110

doi:10.1371/journal.pone.0086704.t002
Table 3. Variant sequences detected in the first experiment with pilE from N. gonorrhoeae FA1090.

Assembly	Donor sequence	5' sequence identity (nt)	Variant sequence (nt)	3' sequence identity (nt)	RecA frequency ($\times 10^{-3}$)	RecA frequency ($\times 10^{-3}$)	RecA/RecA ratio b
Allele 1	Reference	–	–	–	–	–	–
Allele 2	pilS3c1	23	169	39	0.062	10.4	168
Allele 3	pilS6c1	59	82	141	0.021	7.19	342
Allele 4	pilS2c4	42	87	39	0.070	6.42	92
Allele 5	pilS3c3	4	192	40	0.104	3.78	36
Allele 6	pilS3c1	39	10	234	0.027	15.1	559
Allele 7	pilS1c2	19	84	36	0.088	4.10	47
Allele 8	pilS7c1	35	125	106	0.018	2.68	149
Allele 9	pilS7c1 or pilS6c2	68	5	19	0.019	5.91	311
Allele 10	pilS6c1	57	178	59	0.038	7.50	197
Allele 11	pilS6c2	40	65	47	0.013	2.86	220
Allele 12	pilS1c1	8	71	228	0.034	5.96	175
Allele 13	pilS6c2	44	12	47	0.027	4.66	173
Allele 14	pilS2c1	3	96	141	0.023	4.19	182
Allele 15	pilS1c5	55	192	41	0.057	2.36	41
Allele 16	pilS3c3	56	137	23	0.104	3.48	34
Allele 17	pilS1c4	59	51	30	0.011	3.67	334
Allele 18	pilS1c4	5	6	18	0.075	0.92	12
Allele 19	pilS3c3	39	52	29	0.010	2.31	231
Allele 20	pilS7c1	56	71	68	0.024	1.78	74
Allele 21	pilS2c4	43	43	48	0.009	0.60	67
Allele 22	pilS7c1	68	62	35	0.015	4.76	317
Allele 23	pilS1c1	11	89	228	0.043	5.25	122
Allele 24	pilS1c5	6	13	18	0.003	0.81	270
Allele 25	mosaic	–	–	–	0.014	3.23	231
Allele 26	pilS3c3	5	38	26	0.019	3.02	159
Allele 27	pilEc2	47	4	42	0.031	1.22	39
Allele 28	pilS2c1 or pilS3c1	15	34	4	0.043	5.50	128
Allele 29	pilS1c2	36	40	55	0.011	4.97	452

aThe average k-mer depth of the variant portion of the assembly divided by the average k-mer depth of same-sized regions immediately on either side of the variant sequence.

bThe frequency in the presence of RecA divided by the frequency in the absence of RecA.

doi:10.1371/journal.pone.0086704.t003

Table 4. Variant sequences detected in the repeat experiment with pilE from N. gonorrhoeae FA1090.

Assembly	Donor sequence	5' sequence identity (nt)	Variant sequence (nt)	3' sequence identity (nt)	RecA frequency ($\times 10^{-3}$)	RecA frequency ($\times 10^{-3}$)	RecA/RecA ratio b
Allele 1	Reference	–	–	–	–	–	–
Allele 3	pilS6c1	59	82	141	0.027	6.11	226
Allele 4	pilS2c4	42	87	85	0.10	12.8	128
Allele 5	pilS6c2	111	165	48	0.075	3.91	52.1
Allele 6	pilS1c2	32	176	14	0.018	3.43	191
Allele 7	pilS7c1	68	263	106	0.244	1.60	6.56

aThe average k-mer depth of the variant portion of the assembly divided by the average k-mer depth of same-sized regions immediately on either side of the variant sequence.

bThe frequency in the presence of RecA divided by the frequency in the absence of RecA.

doi:10.1371/journal.pone.0086704.t004
were not concentrated in the 3' end of the pilE gene, but were scattered throughout the pilE gene and the flanking sequences. In both experiments, only one assembly involved a single nucleotide change that occurred at higher frequency in the presence of RecA. The same change was detected in both experiments, and involved a single nucleotide change downstream of the pilE gene. It therefore seems that almost all of the assemblies involving single nucleotide changes were not the result of antigenic variation. Others have reported that antigenic variation can result in single nucleotide changes [1], but in our hands it seems more likely that these are the result of low frequency mutations occurring during amplification of the gene or (less likely) sequencing errors. Such changes were therefore not considered further.

In the first experiment 29 assemblies passed the assembly and screening process described above, while in the second experiment (maybe because of a much lower average k-mer depth in the RecA+ sample; Table 2) just six assemblies were detected. The results are shown in Table 3 and Table 4, for the first and second experiments, respectively. All of the variants were present at basal levels in the absence of RecA, and at a much higher frequency in the presence of RecA, suggesting active gene conversion during the experiment. In the absence of RecA the average k-mer depth

| Table 5. Variant sequences detected in the first experiment with pilE from N. gonorrhoeae MS11. |
Assembly	Donor sequence	5' sequence identity (nt)	Variant sequence (nt)	3' sequence identity (nt)	RecA frequency (x10^-3)	RecA+/RecA ratio
Allele 1	Reference	-	-	-	-	-
Allele 2	pilS1c2	50	197	41	0.40	2.26
Allele 3	Uncertain	-	166	-	0.45	2.56
Allele 4	pilS5c1	38	163	51	0.34	1.70
Allele 5	pilS1c1	34	50	102	0.22	1.73
Allele 6	pilS1c4	32	95	23	0.27	1.12
Allele 7	pilS7c1	34	12	102	1.22	5.48
Allele 8	pilS1c3 or pilS1c3	41	64	34	0.70	1.25
Allele 9	pilS1c1	41	64	34	0.16	1.45
Allele 10	pilS7c1	45	47	37	0.32	1.68
Allele 11	pilS6c1	53	48	37	0.17	1.52
Allele 12	pilS1c4	59	44	30	0.21	1.01
Allele 13	pilS5c1	50	56	32	0.19	1.03
Allele 14	pilS1c2 or pilS1c3	41	64	40	0.21	0.82
Allele 15	Uncertain	-	68	-	0.28	0.43

aThe average k-mer depth of the variant portion of the assembly divided by the average k-mer depth of same-sized regions immediately on either side of the variant sequence.

bThe frequency in the presence of RecA divided by the frequency in the absence of RecA.

cNot all silent loci in strain MS11 have been sequenced and annotated. The donor sequence could be one of these “missing” silent copies. Alternatively this allele may represent a mosaic sequence derived from multiple recombination events.

doi:10.1371/journal.pone.0086704.t005

| Table 6. Variant sequences detected in the repeat experiment with pilE from N. gonorrhoeae MS11. |
Assembly	Donor sequence	5' sequence identity (nt)	Variant sequence (nt)	3' sequence identity (nt)	RecA frequency (x10^-3)	RecA+/RecA ratio
Allele 16	pilS5c1	7	155	51	0.44	1.96
Allele 17	Uncertain	-	132	-	0.55	2.81
Allele 18	Uncertain	-	204	-	0.42	2.23
Allele 19	pilS5c1	82	12	55	0.16	1.90
Allele 20	pilS6c1	12	53	54	0.022	0.61

aThe average k-mer depth of the variant portion of the assembly divided by the average k-mer depth of same-sized regions immediately on either side of the variant sequence.

bThe frequency in the presence of RecA divided by the frequency in the absence of RecA.

cNot all silent loci in strain MS11 have been sequenced and annotated. The donor sequence could be one of these “missing” silent copies. Alternatively this allele may represent a mosaic sequence derived from multiple recombination events.

doi:10.1371/journal.pone.0086704.t006
across the variant portion of each assembly was less than 10, compared with 10^3–10^6 for the rest of the assembly. In each case the kmer depth fell to zero for a portion of that variant sequence. An example of this can be seen in Figure S1, panel A. We used the average kmer depth across the entire variant sequence to calculate the frequency, rather than the minimal kmer depth (zero) for just a portion of the variant sequence. In agreement with the suggestion that this represents antigenic variation, alignments of the sequence deposited in the databases (Accession number K02078).

In two cases the variant sequence was identical to more than one silent locus, so it was not possible to unambiguously map the donor sequence. It was also evident that a particular silent locus can be involved in generating multiple variants. For instance, different portions of pilS3c3 were involved in generating alleles 4, 16, 19 and 26 (Table 3, Figure S3). In the repeat experiment all five variant sequences were identical to part of a silent locus (Table 4). Two variant sequences (alleles 3 and 4) appeared in both experiments. A variety of silent loci served as the source of donor sequences, with 12 of the 19 silent copies potentially involved.

Table 7. Variation in the opaK gene of N. gonorrhoeae strain FA1090.

Experiment	Assembly	RecA frequency ($\times 10^{-3}$)*	RecA* frequency ($\times 10^{-3}$)*	RecA/RecA* ratiob
1	Allele 1	1.05	5.85	3.86
1	Allele 2	6.21	10.24	2.47
1	Allele 3	3.94	6.50	1.66
1	Allele 4	4.06	6.36	1.62
2	Allele 1	0.35	9.13	26.16
2	Allele 6	1.05	5.85	5.57

*The average k-mer depth of the variant portion of the assembly divided by the average k-mer depth of same-sized regions immediately on either side of the variant sequence.

* Allele 1 was identical to the reference sequence.

Lack of Variation in the pilE Gene of Strains of N. meningitidis that Express Class II Pilin

Meningococci also express type IV pili, with at least some of the class I pilin subunits also varying antigenically [17]. However the class II pili of N. meningitidis FAM18 appear not to vary [3]. We therefore searched for evidence of pilE variation in FAM18 and another meningococcal strain, NMB, which also produces class II pilin. In neither strain were we able to detect antigenic variation despite adequate k-mer depth (Table 2). We also looked for antigenic variation in meningococcal strain CKNM397. This strain is derived from strain NMB but produces the class I pilin from strain MC58 instead of the native class II pilin [11]. In two separate experiments we were unable to detect any antigenic variants despite adequate k-mer depth (Table 2).

Variation at opa Genes

For the reasons outlined above, we also investigated whether there was any evidence of antigenic variation in the opa genes of N. gonorrhoeae strain FA1090. In an initial experiment we were unable to detect any variation in the FA1090 opaJ gene (NG01922) (data not shown). However it has been reported that the opaK gene, situated close to the pilE gene, is more variable than other opa loci [7]. In two separate experiments, we were able to detect variant sequences in opaK (NG02132) (Table 7, Figure S7 and Figure S8). In each case the variant portion of the assembly was identical to that seen in strain FA1090 (Table 5 and Table 6). Rather than being barely detectable in the RecA culture, the variant sequences were present at a higher frequency than seen in FA1090, suggesting that despite single colony isolations a variant subpopulation was present. This occurred in both experiments and might suggest that the recA promoter is not as tightly controlled in the MS11 genetic background. As a result the presence of RecA only boosted the variant frequency approximately 10-fold in MS11, compared with approximately 100-fold in FA1090 (Table 3, Table 4). Not all silent loci in strain MS11 have been sequenced and annotated. As a result in three cases in both experiments, it was not possible to assign a specific silent locus as the source of the donor sequence. Alleles 9 and 11 appeared in both experiments.

Variation at pilE Gene Encoding Class I Pilin in N. gonorrhoeae Strain MS11

The pilE gene of gonococcal strain MS11 is also antigenically variable, but reportedly at a lower frequency than in strain FA1090 [9]. In order to determine whether the approach outlined above could detect such differences, we again conducted two separate experiments, using strain MS11recA6. In the first experiment 15 assemblies passed the screening procedure (Table 5, Figure S5), while the second experiment yielded 8 assemblies (Table 6, Figure S6). In both experiments allele 1 was identical to both the reference sequence, and the MS11 pilE sequence deposited in the databases (Accession number K02078). In agreement with the earlier report [9] the frequency of antigenic variation observed was lower than that seen in strain FA1090 (Table 5 and Table 6). Rather than being barely detectable in the RecA culture, the variant sequences were present at a higher frequency than seen in FA1090, suggesting that despite single colony isolations a variant subpopulation was present. This occurred in both experiments and might suggest that the recA promoter is not as tightly controlled in the MS11 genetic background.
Discussion

Previous investigations of the extent and nature of antigenic variation in Neisseria have involved the amplification of genes from hundreds of individual colonies that were then sequenced by conventional Sanger sequencing technology in order to detect the subset that contained variant sequences [1,3,8]. Such an approach was both time-consuming and expensive. The advent of affordable deep sequencing platforms has enabled an alternative approach to such studies. Here we have used PCR amplification of the genes of interest, followed by high throughput DNA sequencing, to detect variant sequences. This involved a single PCR amplification rather than hundreds, one sequencing reaction rather than hundreds, and an improved ability to detect low-frequency variants. The data shown in Table 3 and Table 4 suggest that this approach is indeed capable of detecting examples of antigenic variation, in that the variant sequences detected in these experiments are typical of antigenic variation events. They are (a) restricted to the 3' end of the pilE gene, (b) detected at a high frequency only in the presence of RecA, and (c) in almost all cases identical to a portion of a pilS copy. We were also able to detect antigenic variation in the pilE gene of N. gonorrhoeae strain MS11, and in agreement with an earlier report [9] this appeared to be occurring at a frequency lower than that observed for strain FA1090.

In agreement with earlier studies [1,9] there are aspects of the antigenic variation that are difficult to explain. In the cases where it was possible to unambiguously identify the source of the donor variant sequence, it is clear that all silent loci can act in this capacity, and the number of variants generated was roughly proportional to the number of partial gene copies within the individual pilS loci. This was true for both strains FA1090 and MS11, and would seem to imply an underlying stochastic process. However we also observed two alleles arising in two separate experiments, again for both FA1090 and MS11. Similar results have been observed before [1,9], exceed what might be expected by chance, and suggest some bias in the process of selection of donor sequences. There was also some bias evident in the partial gene copy, within a silent locus, that was used as a donor sequence. The copy at the 3' end of the silent loci (copy 1) appears to be over-represented. For strain FA1090 5 of the 19 partial gene copies are designated as copy 1, so if all copies were used equally they may be expected to make up 26% of the donor sequences. In fact they make up 40% of the donor sequences. For strain MS11 this bias is even more pronounced. The use of copy 1 as a donor might be expected in 36% of the time whereas this was observed in 69% of cases.

A similar theme emerges when the variant frequency, rather than the number of variants, is examined. We summed the RecA+ frequencies of the individual variants to provide an overall frequency for all variants. For FA1090 this was 15.1%, and for MS11 3.6%. This is in reasonable agreement with previous studies using different methods where the variant frequency was estimated to be 12.9–13% for FA1090 [1,9] and 5.7% for MS11 [9]. Again leaving aside those cases where a donor sequence could not be unambiguously identified, it seemed that partial gene copies 1 from the various pilS loci were again over-represented. For FA1090 they make up 53%, and for MS11 78%, of the unambiguous variant frequency.

The partial gene copies designated copy 1 differ from other silent copies in that they contain a sequence of approximately 250 nucleotides that has been designated the Pilus Associated Repeat (PAR) [15]. PAR is found immediately downstream of the end of the pilE gene, and each copy 1 of the pilS loci. Within the PAR in FA1090 are two previously described repeats, RS4 (32 nt) and the Sma/Cla repeat (65 nt) [15]. PAR is identically located in strain MS11, although some copies lack the RS4 repeat [16]. Previous work suggested that deletion of the Sma/Cla repeat downstream of the pilE gene results in a decrease in the amount of antigenic variation [18]. Our results suggest that PAR sequences associated with copy 1 in the various pilS loci influence both the source of the donor sequence and the frequency of antigenic variation associated with these specific partial gene copies.

It has previously been reported that antigenic variation is undetectable in the pilE gene of N. meningitidis strain FAM18 expressing class II pilin [3]. Despite potentially having the ability to detect variants at a much lower frequency than in the previous report, we were also unable to detect variation in this gene, or in the equivalent gene from N. meningitidis strain NMB. Strains producing class II pili have only two silent loci, as opposed to eight pilS loci in other meningococcal strains. Also the pilE gene expressing class II pilin is located elsewhere on the chromosome, whereas in those meningococcal strains that produce class I pili the silent loci are adjacent to pilE. Both of these factors might adversely affect the ability of the pilE gene from class II-producing strains to undergo antigenic variation. In addition, a DNA structure in the pilE promoter region of N. gonorrhoeae that is necessary for pilin antigenic variation has recently been described [12]. This guanine quartet structure is degenerate in meningococcal strains that produce class II pili, and this would also adversely affect the frequency of antigenic variation. However CKNM397 contains the pilE gene, and its native promoter, from strain MC58. The promoter region includes the sequences from MC58 that can form the guanine quartet structure. The absence of variation in this strain suggests that although this DNA structure is necessary for antigenic variation [12], by itself it is not sufficient to allow this process, at least in this genetic background. It seems that additional factor(s), present in class I-producing but not class II-producing strains, are needed for antigenic variation. Both FAM18 and NMB are disease-causing, rather than carriage, isolates. It therefore seems that antigenic variation of pilE is not essential for virulence, despite the fact that this process can be observed in all N. gonorrhoeae and many N. meningitidis strains.

We have also investigated another gene family where it has been suggested that antigenic variation might be occurring. In initial experiments with the opfJ gene of N. gonorrhoeae strain FA1090, we were unable to detect any variation. However it has been reported that the opfK gene, located close to pilE, is more variable than other opf genes [7]. In two separate experiments with opfK we were able to detect sequence variants. However only in the second experiment were they clearly more frequent when the RecA protein was present. There were also distinct differences from the variation observed in pilE. Firstly the number of different sequence variants detected was much smaller than seen in pilE. Secondly, compared with pilE, there was a more distinct bias in the source of the donor sequences. In every case the variant portion of the sequence was identical to part of the opfJ gene, suggesting that this gene alone was donating sequence to yield variants of opfK.

Here we have demonstrated that PCR amplification of the genes of interest, followed by high throughput DNA sequencing, can be used to investigate antigenic variation. This approach could therefore be applied to a wide range of antigenic variation systems at a level that has not previously been possible. For example Borrelia burgdorferi, the causative agent of Lyme disease has a surface-exposed lipoprotein, VlsE, that undergoes antigenic variation [19,20]. The Map2 and Map3 systems of Anaplasma marginale [21] and the VlHa system of Mycoplasma synoviae [22] are additional examples of antigenic variation of surface components that could be explored using this approach. These genes all
contain both conserved and variable segments. Given the data depth that can be achieved using this approach, it should therefore be possible to undertake more systematic searches for conserved segments in these antigenically variable genes.

Supporting Information

Figure S1 K-mer depth across assemblies containing variant sequence segments. The green trace depicts the k-mer depth in an amplicon derived from a culture grown in the presence of RecA, and therefore antigenic variation. The blue trace shows the k-mer depth for an amplicon obtained from a culture grown in the absence of RecA and therefore no antigenic variation. The vertical pale green bar shows the variant segment of the assembly across which the k-mer depth was averaged, and the vertical grey bars the same-sized conserved sequences on either side across which the k-mer depth was averaged, for the frequency calculation. A. An assembly containing a single variant segment. B. An assembly where a conserved region of more than k bases interrupts a variant segment, resulting in a spike of k-mer depth (marked with a downward arrow) that would result in an artificially high frequency calculation if the k-mer depth was averaged across the entire region. (TIF)

Figure S2 Alignment of the sequence of the pilE gene from the stock of N. gonorrhoeae strain FA1090 used in these experiments (top), and the FA1090 genome sequence (bottom). Blue text indicates sequence flanking the pilE gene (black text). Sequence differences are highlighted in yellow. The grey shading highlights the extent of the sequence identity between the pilE genome sequence and pilS1c1, flanking the variant sequence. (DOC)

Figure S3 Alignment of the variant sequences detected in the first experiment with pilE in N. gonorrhoeae FA1090. The allele 1 assembly is identical to the reference sequence obtained by Sanger sequencing of the amplicon. Blue text indicates sequence flanking the pilE gene (black text). Sequence differences are highlighted in yellow. The grey shading highlights the extent of the sequence identity between the pilE sequence and the various silent copies, flanking the variant sequence. (DOC)

Figure S4 Alignment of the variant sequences detected in the repeat experiment with pilE in N. gonorrhoeae FA1090. The allele 1 assembly is identical to the reference sequence obtained by Sanger sequencing of the amplicon. Blue text indicates sequence flanking the pilE gene (black text). Sequence differences are highlighted in yellow. The grey shading highlights the extent of the sequence identity between the pilE sequence and the various silent copies, flanking the variant sequence. (DOC)

Figure S5 Alignment of the variant sequences detected in the first experiment with pilE in N. gonorrhoeae MS111. The allele 1 assembly is identical to the reference sequence obtained by Sanger sequencing of the amplicon. Blue text indicates sequence flanking the pilE gene (black text). Sequence differences are highlighted in yellow. The grey shading highlights the extent of the sequence identity between the pilE sequence and the various silent copies, flanking the variant sequence. (DOC)

Figure S6 Alignment of the variant sequences detected in the repeat experiment with pilE in N. gonorrhoeae MS111. The allele 1 assembly is identical to the reference sequence obtained by Sanger sequencing of the amplicon. Blue text indicates sequence flanking the pilE gene (black text). Sequence differences are highlighted in yellow. The grey shading highlights the extent of the sequence identity between the pilE sequence and the various silent copies, flanking the variant sequence. (DOC)

Figure S7 Alignment of the variant sequences detected in the first experiment with opaK in N. gonorrhoeae FA1090. The allele 1 assembly is identical to the reference sequence obtained by Sanger sequencing of the amplicon. Blue text indicates sequence flanking the opaK gene (black text). Sequence differences are highlighted in yellow. (DOC)

Figure S8 Alignment of the variant sequences detected in the repeat experiment with opaK in N. gonorrhoeae FA1090. The allele 1 assembly is identical to the reference sequence obtained by Sanger sequencing of the amplicon. Blue text indicates sequence flanking the opaK gene (black text). Sequence differences are highlighted in yellow. (DOC)

Table S1 Oligonucleotide primers used to amplify the genes of interest. (DOC)

Table S2 Sequence quality data. (DOC)

Text File S1 Assembly of sequence reads. (DOC)

Acknowledgments

We thank S. Coutts and Micromon for assistance with the high-throughput sequencing.

Author Contributions

Conceived and designed the experiments: JKD CSR SAH. Performed the experiments: YHL CAK CSR. Analyzed the data: PFH JKD. Contributed reagents/materials/analysis tools: YHL CSR SB CMK PFH TS. Wrote the paper: JKD PFH SAH.

References

1. Criss AK, Kline KA, Seifert HS (2005) The frequency and rate of pilin antigenic variation in Neisseria gonorrhoeae. Mol Microbiol 58: 510–519.
2. Koomey M, Gotshlich EG, Robbins K, Beegstrom S, Swason J (1987) Effects of recA mutations on pilus antigenic variation and phase transitions in Neisseria gonorrhoeae. Genetics 117: 391–398.
3. Helm RA, Seifert HS (2010) Frequency and rate of pilin antigenic variation in Neisseria gonorrhoeae. J Bacteriol 192: 3822–3823.
4. Bhat KS, Gibbs CP, Barrera O, Morrison SG, Jahang F, et al. (1991) The opacity proteins of Neisseria gonorrhoeae strain MS11 are encoded by a family of 11 complete genes. Mol Microbiol 5: 1809–1901.
5. Hobbs MM, Seiler A, Achtman M, Cannon JG (1994) Microevolution within a clonal population of pathogenic bacteria: recombination, gene duplication and horizontal genetic exchange in the opa gene family of Neisseria meningitidis. Mol Microbiol 12: 171–180.
6. Hobbs MM, Malorny B, Prasad P, Morelli G, Kusecek B, et al. (1998) Recombinational reassortment among opa genes from ET-57 complex Neisseria meningitidis isolates of diverse geographical origins. Microbiology 144: 157–166.
7. Bilik N, Ison CA, Spratt BG (2009) Relative contributions of recombination and mutation to the diversification of the opa gene repertoire of Neisseria gonorrhoeae. J Bacteriol 191: 1878–1890.
8. Rohrer MS, Lazio MP, Seifert HS (2005) A real-time semi-quantitative RT-PCR assay demonstrates that the pilE sequence dictates the frequency and characteristics of pilin antigenic variation in *Neisseria gonorrhoeae*. Nucleic Acids Res 33: 3363–3371.

9. Helm RA, Seifert HS (2009) Pilin antigenic variation occurs independently of the RecBCD pathway in *Neisseria gonorrhoeae*. J Bacteriol 191: 5613–5621.

10. Seifert HS (1997) Insertionally inactivated and inducible recA alleles for use in *Neisseria*. Gene 188: 215–220.

11. Bartley SN, Tzeng YL, Heel K, Lee CW, Moshaloccus S, et al. (2013) Attachment and invasion of *Neisseria meningitidis* to host cells is related to surface hydrophobicity, bacterial cell size and capsule. PLoS One 8: e55798.

12. Cahoon LA, Seifert HS (2009) An alternative DNA structure is necessary for pilin antigenic variation in *Neisseria gonorrhoeae*. Science 325: 764–767.

13. Myer A, Carrick CS, Davies JK (1995) The pilE gene of *Neisseria gonorrhoeae* MS11 is transcribed from a sigma 70 promoter during growth in vitro. J Bacteriol 177: 3701–3707.

14. Pevzner PA, Tang H, Waterman MS (2001) An Eulerian path approach to DNA fragment assembly. Proc Natl Acad Sci U S A 98: 9748–9753.

15. Hamrick T, Dempsey JA, Cohen MS, Cannon JG (2003) Antigenic variation of gonococcal pilin expression in vivo: analysis of the strain FA1090 pilin repertoire and identification of the pilS gene copies recombining with pilE during experimental human infection. Microbiology 149: 839–849.

16. Haas R, Veit S, Meyer TF (1992) Silent pilin genes of *Neisseria gonorrhoeae* MS11 and the occurrence of related hypervariant sequences among other gonococcal isolates. Mol Microbiol 6: 197–208.

17. Virji M (2009) Pathogenic neisseriae: surface modulation, pathogenesis and infection control. Nat Rev Microbiol 7: 274–286.

18. Wainwright LA, Prichard KH, Seifert HS (1994) A conserved DNA sequence is required for efficient gonococcal pilin antigenic variation. Mol Microbiol 13: 75–87.

19. Zhang JR, Hardham JM, Barbour AG, Norris SJ (1997) Antigenic variation in Lyme disease borreliae by promiscuous recombination of VMP-like sequence cassettes. Cell 89: 275–285.

20. Coutte I, Botkin BJ, Gao L, Norris SJ (2009) Detailed analysis of sequence changes occurring during pilE antigenic variation in the mouse model of *Borrelia burgdorferi* infection. PLoS Pathog 5: e1000293.

21. Mcus PF, Brayton KA, Palmer GH, Barbet AF (2003) Conservation of a gene conversion mechanism in two distantly related paralogues of *Anaplasma marginale*. Mol Microbiol 47: 633–643.

22. Noormohammadi AH, Markham PF, Kanci A, Whithear KG, Browning GF (2000) A novel mechanism for control of antigenic variation in the haemagglutinin gene family of *Mycoplasma synoviae*. Mol Microbiol 35: 911–923.
Author/s: Davies, JK; Harrison, PF; Lin, Y-H; Bartley, S; Khoo, CA; Seemann, T; Ryan, CS; Kahler, CM; Hill, SA

Title: The Use of High-Throughput DNA Sequencing in the Investigation of Antigenic Variation: Application to Neisseria Species

Date: 2014-01-22

Citation: Davies, J. K., Harrison, P. F., Lin, Y. -H., Bartley, S., Khoo, C. A., Seemann, T., Ryan, C. S., Kahler, C. M. & Hill, S. A. (2014). The Use of High-Throughput DNA Sequencing in the Investigation of Antigenic Variation: Application to Neisseria Species. PLOS ONE, 9 (1), https://doi.org/10.1371/journal.pone.0086704.

Persistent Link: http://hdl.handle.net/11343/262188

File Description: Published version

License: CC BY