How Organizational Hierarchy Affects Information Production

Janis Skrastins∗ Vikrant Vig†‡

December 16, 2014

Abstract

This paper empirically investigates how organizational hierarchy affects the allocation of credit within a bank. Using an exogenous variation in organizational design, induced by a reorganization plan implemented in roughly 2,000 bank branches in India during 1999-2006, and employing a difference-in-difference research strategy, we find that increased hierarchization of a branch decreases its ability to produce “soft” information on loans. Specifically, we observe that increased hierarchy leads to increased standardization of loans and rationing of “soft information” loans. Furthermore, this standardization brings about a reduction in performance on loans: delinquency rates and returns on similar loans are lower in more hierarchical branches. We also document how hierarchical structures perform better in environments that are characterized by a high degree of corruption, thus highlighting the benefits of hierarchical decision making in restraining rent seeking activities.

Keywords: Hierarchies, Soft Information, Banks, Globalization, Complexity

JEL Classification: D21, D83, G21, G30

∗London Business School, email: jskrastins@london.edu
†London Business School, email: vvig@london.edu
‡We would like to thank Andres Almazan, Tobias Berg, Joao Cocco, Julian Franks, Oliver Hart, Robert Hauswald, Maggie Hu, Jose Liberty, Wenlan Qian, Rui Silva, Denis Sosyura, Philip Strahan, and seminar participants at the 9th NY Fed/NYU Stern Conference on Financial Intermediation, the 3rd MoFiR workshop, the 6th Financial Stability Conference, the 11th Annual Conference on Corporate Finance, ISNIE (Duke), CICF (China), London Business School, the Summer Research Conference 2014 (ISB), the Summer Real Estate Symposium (Monterey), University of Nottingham, University of Surrey, University of Washington (Foster), UBC, and WFA (Monterey) for their comments.
1 Introduction

Over recent years, there has been a substantial change in the landscape of lending, with banks becoming larger, more globalized, and more complex (Mester, 2012; Herring and Carmassi, 2012). While it is understood that banks benefit from economies of scale, it is argued that hierarchical structures may be inferior when it comes to granting loans to small and medium size enterprises (Stein, 2002; Aghion and Tirole, 1997). Given the importance of small and entrepreneurial firms for innovation and economic growth, it is plausible that the shift towards hierarchical organizations hampers growth. Furthermore, by favoring borrowers that have hard information, such as an established credit history, and depriving borrowers that lack such information, the change in the organizational structure of banks may perpetuate inequality in society. In this paper, we examine how organizational hierarchy affects the allocation of credit.

There is now growing recognition that organizational design matters. However, despite the abundance of theoretical literature on this topic, empirical research has been rather scant. Two obstacles hinder empirical research in this area. The first impediment comes from the paucity of good micro-level data. A researcher not only needs detailed data on the organizational design of firms, but also requires comprehensive information on outcome variables, to identify the effect of changes in organizational design. This is a tough ask, as such datasets are difficult to come by. The second problem relates to the classic endogeneity problem. Even if one is fortunate enough to get access to organizational-level micro data, one still has to grapple with the fact that the choice of organizational design is not random. While cross-sectional studies are informative about the plausible relationship, they are plagued by the problem of omitted variables. To make any causal claims, the researcher has to seek some exogenous variation in the organizational hierarchy.

In this paper we use micro-level data from a large bank in India with roughly 2,000 bank branches, to examine how organizational hierarchy affects the information that banks produce on loans that they originate. The dataset not only offers comprehensive information on financial contracts of individual borrowers, but also micro-details on the organizational design of all branches of the bank. Most importantly, we have both time series and cross-sectional variation in the organizational design variables of branches, which allow us to utilize the within-branch variation in organizational design for identification. More specifically, the identification strategy exploits changes in organizational design, brought about by a bank-level, pre-determined
reorganizational rule (discussed in details below), and employs a difference-in-difference (DID) research design to investigate how hierarchies affect information production on loans.

We find that organizational hierarchy affects both the quantity and the quality of loans originated by banks. Specifically, we observe that an increase in hierarchy results in a 9.9 percent decline in total new loans issued by the bank branch and a 5.4 percent decline in the average loan size. Furthermore, we find that an increase in organizational hierarchy leads to a 4.5 percent reduction in the number of informationally sensitive borrowers. On examining the performance of these loans, we find that there is a substantial drop in the quality of loans originated. Delinquencies on loans in more decentralized branches are 30 percent lower, and a similar loan portfolio in the decentralized branch generates a 15 percent higher return for the bank. Interestingly, the effects are greater when we examine value-weighted, instead of equally-weighted, defaults and returns. This suggests that the result comes from a better allocation of credit in decentralized structures. We show that none of the results are driven by pre-treatment trends.

Following this, we investigate the mechanism that delivers these results. Clearly, our results are consistent with better information being produced on loans in more decentralized structures and provide support for incentive based theories on organizational design (Stein, 2002; Aghion and Tirole, 1997). To further sharpen our analysis, we examine the second moment of contract terms on loan agreements similar in spirit to the Rajan et al. (2013) test. Specifically, Rajan et al. (2013) argue that more information should increase the variance of the contract terms, as it allows banks to discriminate amongst borrowers. Consistent with this prediction, we find that addition of a new layer in the hierarchy reduces the variance of contract terms, suggesting that an increase in hierarchy reduces information generated on loans.

A noteworthy feature of our setting is that larger and more hierarchical structures are headed by more senior officers, who have the discretion to approve higher loan amounts. If a borrower requests a loan above the cut-off limit of a given branch, their application is automatically sent to a higher level office at the regional level. For this reason, in our main specifications, we investigate only those retail loans that can be approved by the lowest rank officer within all branches. Clearly, an increase in organizational level implies that certain loans that would otherwise have been sent to a more senior branch are now approved within the lower branch. On examining the subset of loans that were sent to the regional office before the organizational change, but were approved in the branch after the change, we find both that the branch issues
more loans of this kind, and that it generates more soft information on them. Given that these
loans underwent a reduction in hierarchical distance, the result provides additional support for
the view that an increase in organizational hierarchy reduces the information produced on loans.

Our results can be rationalized using the Aghion and Tirole (1997) framework. Delegation
of decision-making to the agent gives the agent greater initiative, but results in a loss of control
for the principal. In hierarchical structures, this delegation is not completely credible – the
principal cannot commit not to overrule the agent. This lack of delegation of authority – principal
interfering in agent’s decision making – reduces the agent’s incentives to exert effort. Fortunately,
our data allows us to examine the interference channel in more detail. Specifically, we have
loan-level information on whether the principal intervened. Consistent with Aghion-Tirole’s
framework, we find that managers intervene in decision making of the junior manager in more
hierarchical branches. Moreover, we find that the effects of organizational design are stronger
in branches that have a higher degree of intervention, suggesting that managerial interference,
which translates into lower autonomy of the agent, is the prime mechanism at work.

Next, we investigate how organizational hierarchy interacts with corruption. As discussed
earlier, delegation in the presence of corruption may be a double-edged sword (Tirole (1986);
Banerjee et al. (2013)). While on the one hand delegation generates the incentive effect, it
may also be problematic in areas where corruption is quite widespread. To understand how
organizational hierarchy interacts with rent-extraction, we compare the effects seen in more
corrupt states to those seen in less corrupt ones. We proxy for corruption by focusing on branches
in the so-called BIMARU states (Bihar, Madhya Pradesh, Rajasthan, and Uttar Pradesh) which
have been singled out for corruption. Our estimates indicate that for corrupt states, the effects
are significantly reduced, thus highlighting the benefits of hierarchical structures in checking
corruption.

We also examine the effect of bank competition on our results and find several noteworthy
patterns. While our results are present across the spectrum of bank competition, they are partic-
ularly noticeable in more competitive banking markets. In competitive markets, a sub-optimal
organizational structure produces the biggest losses for the bank. One plausible mechanism
through which the effects are amplified in competitive markets is adverse selection. As compet-
itive markets offer borrowers more and possibly better choices, an inferior contract, offered by a
hierarchical bank, would induce the good borrowers to switch in such a market. This, however,
generates a portfolio that has been adversely selected for hierarchical banks. In a monopolistic
setting, however, the borrowers have little choice, so while banks lose out on some profits, the adverse selection is less severe.

We have so far argued that a change in organizational design affects only the hierarchy of decision making. However, it is plausible that other contemporaneous changes may have affected lending. As a first check, we control for local shocks to credit demand by using interacted quarter-district fixed effects. In this way, we exploit the within-district variation, and show that all our results remain qualitatively unchanged. Furthermore, an increase in the hierarchy of a branch brings in a higher level officer. To the extent that the higher level officer has different ability and experience, this may confound inference. Clearly, higher ability on the part of the loan officer would generate the opposite results, whereas lack of local expertise would deliver similar results to those we document here. We address this concern by showing that changing branch manager while keeping the organizational design fixed does not deliver any results. We carry out many other robustness tests and discuss some alternative stories in Section 7. Overall, the results provide strong support for the view that organizational hierarchy affects banks’ ability to produce information.

This paper adds to the literature on organizational hierarchy and information production (Aghion and Tirole, 1997; Stein, 2002). These theories analyze the trade-off involved in delegating decision-making to the agent. On the one hand, delegating a task leads to increased initiative on part of the agent. On the other hand, it exposes the principal to a potential conflict of interest – the agent may choose a project that could hurt the principal. In these models, the higher the degree of congruence between the principal and the agent, the more likely the principal is to delegate decision-making to the agent. An important insight from this theory is that the likelihood of interference dulls the agent’s incentives to exert effort.

Stein (2002) places the above discussion in the context of communicating information in a loan approval process within a bank. He argues that decentralized banks are more attractive when information about investment projects is subjective (i.e., ‘soft’) and cannot be credibly conveyed. Thus, such banks would be a poor fit for informationally opaque borrowers such as small businesses. Confirming the theoretical predictions, our results suggest that the lower effort, induced by the hierarchical organizational design, leads to greater standardization of loans and rationing of “soft information” loans. Furthermore, this standardization leads to a reduced loan

\[1\text{The reduction in soft information reduces the ability of a monopolist branch to extract surplus.}\]

\[2\text{See also the “communication costs” based theories à la Garicano, 2000.}\]
performance.

Our work also adds to existing empirical literature on organizations, particularly banks, and their design. A large stream of literature argues that as banks become larger and organizationally complex, they decrease lending to retail depositors and small businesses, borrowers being particularly dependent on subjective information. In particular, our work is closest to Liberti and Mian (2009), Canales and Nanda (2012), Qian et al. (2012), and Gil et al. (2014), who show that more hierarchical organizational structures tend to rely more heavily on hard, factual information about the borrower. What is unique about our approach is that we use shocks to the organizational design and observe the effect on the information that a bank produces on similar loans before and after the treatment. This allows us to further strengthen the identification strategy and identify the channel through which organizational hierarchy affects production of information.

Our paper also contributes to the literature on distance in credit markets. These studies argue that the proximity between the borrower and the lender mitigates the information asymmetry (Petersen and Rajan, 1995, 2002; Degryse and Ongena, 2005; Mian, 2006; Liberti and Mian, 2009; Alessandrini et al., 2009; Agarwal and Hauswald, 2010; Fisman et al., 2012; Brown et al., 2012; Berg et al., 2013). The key distinction here is that we focus on hierarchical distance, as opposed to geographical distance (Petersen and Rajan, 1995) or cultural distance (Fisman et al., 2012).

The rest of the paper is organized as follows. In the next section, we begin by providing an overview of the data and a description of the institutional details of the Indian bank that we study. In Section 3, we present the baseline empirical specification for the analysis. Section 4 describes our results on lending quantity and loan performance; Section 5 shows the results on soft information; Section 6 discusses results on large loans, managerial intervention, corruption, and bank competition; and Section 7 rules out a range of alternative explanations. Section 8 concludes our study.

3Some of the most notable works include Berger and Udell (1995); Berger et al. (1995, 1999); Strahan and Wetson (1998); Berger et al. (1998, 2001); Cole et al. (2004); Degryse et al. (2009); Liberti et al. (2012). A somewhat related work by Karpoff (2001) analyzes the incentive effects by comparing public vs. privately funded Arctic explorations. He finds that privately funded expeditions performed better partly because they adopted nonhierarchical organizational structures.

4Another notable contribution is by Berger et al. (2005), who argue that usage of soft information is negatively associated with size of a bank. A conjecture behind their empirical strategy is that bank size is a good proxy for organizational design. In this respect, the key advantage of our paper is the ability to differentiate between organizational design and size effects. Therefore, we can nail down the effects induced by organizational hierarchy and protect ourselves against a potential capture of a spurious correlation.
2 Data

The data for this study comes from a large, state-owned Indian bank operating over 2,000 branches that are geographically dispersed across India (Figure (1)). The dataset is rich in detail. It contains detailed information not only on all loan contracts, but also on the organizational design of all of the bank’s branches.\(^5\) At the contract level, it includes the loan balance outstanding, the interest rate, the maturity, the type of collateral, the collateral value, and the number of days late in payment, among other information. On the organizational front, it provides us with vital information on the number of managerial layers in each branch office, the overall seniority of the branch, the loan limit of the branch manager (which is linked to his seniority), and some other discretionary powers of the branch manager. The sample spans 29 quarters – 1999 Q1 to 2006 Q1.

2.1 Loans and Borrowers

We focus on first-time, individual (retail) borrowers. During our sample, the bank issued 1.75 million such contracts. For the purposes of this study, we aggregate the loan-level information and obtain 54,079 branch-quarter observations. In Table (1), we present means, medians, standard deviations, and the 1st and the 99th percentile for the main variables of interest. The loan amounts are expressed in rupees.\(^6\)

In a quarter, the average branch lends to 24 new retail borrowers with a mean loan size of 56,000 rupees, which is roughly 1,300 USD. Furthermore, the equally-weighted delinquency rate, defined as 60 or more days late in repayment within a year since the origination of the loan, is 5.0 percent. In comparison, the value-weighted delinquency rate is only 4.2 percent, suggesting that larger debt is less likely to be late in repayment and is issued to better quality borrowers. In addition, the average rupee-weighted return on loans is 7.0 percent. Moreover, 90 percent of all loans are secured with a median ratio of collateral to loan value of 1.42. Lastly, the average maturity and interest rate are 4.2 years and 11.4 percent, respectively.

2.2 Organizational Design

Figure (2) provides an illustration of the managerial hierarchy of the bank. In total, there are eight management levels. Employees in each layer are comparable in terms of their responsibil-

\(^5\)Due to confidentiality reasons we are unable to disclose the exact number of branches.

\(^6\)The average exchange rate during our sample period was 0.022 USD per rupee.
ities, discretionary power, experience, and salary. The top five layers, starting with Assistant General Manager, constitute the senior management team and are mainly involved in business development. The lower ranked employees consist of junior managers, senior managers and chief managers who focus more on the operation side of lending as managers in branch offices. Every ranked employee has a credit origination limit, and that limit increases with the rank of the official.

The organizational chart of the bank is as follows (see Figure (3)). The Chairman and the Executive Directors of the bank operate from the central office and set all bank-wide policies, which are then executed in other lower level branches. Below the central office there are zonal offices, which represent distinct geographical zones across the country. Within each zone, there are several regional offices that are responsible for business development in different regions of zone. Finally, under each regional office, there are a large number (2000+) of standardized branch offices, headed by different level officers.

With regard to the organizational design of branches, the branch head can be seen as the chief executive of the branch: they are responsible for the whole business of the branch, within the policy guidelines that are set by the central office. The branch manager can decide on whether to grant a loan and has considerable discretion over the terms of the loan contract, with the exception of the interest rate, which is set by the central office. For instance, all home improvement loans have the same interest rate as car loans with a maturity of up to five years (for an example, see Table (A1) in Appendix A). It should be noted that while the lower level loan officers in a branch can approve loans that are within their approval limit, the branch manager has the formal authority to overrule those decisions, if he sees fit. As a general rule, the larger the branch, the more senior the rank of the official who heads it. In total, there are three branch structures (see Figure (4)). The smallest branch (level 1) is typically headed by a branch manager, the next branch up (level 2) is headed by a senior branch manager, and finally the branch on level 3 is overseen by a chief manager. Higher level branches have more layers of hierarchy associated with them. For example, level 1 branches generally have only one additional layer (loan officers), and the branch manager directly interacts with the borrowers. However, a level 3 branch would have three layers: loan officers, managers, and senior managers.

The lending process is relatively simple (see Figure (5)). The borrower approaches the bank and fills in the application form. The application may be rejected by the loan officer, which ends the whole process. If not, the loan officer evaluates the loan application to assess
the borrower’s credit risk. The loan officer and the borrower then meet to discuss the needs, collateral requirements and other possibilities. Once a loan officer and a borrower agree on the loan terms, the loan is approved by the loan officer if the agreed size of the loan falls within his discretionary powers. If the loan exceeds the loan officer’s approval limit, it goes to the next authority up for approval. If the requested loan is even above the discretionary powers of the branch manager, the loan application, along with the branch’s assessment, is forwarded to a more senior manager in either regional, zonal, or central office. Nevertheless, the decision on whether to reject the application or send it for approval outside the branch remains with the head of the branch.

Table (2) reports cross-sectional summary statistics. More hierarchical branches originate larger loans, serve fewer customers, and their loan book performs better, as measured on the basis of both delinquencies and returns. That said, it should be noted that these cross-sectional patterns may be driven by the heterogeneity in types of borrowers in different branches, or by the degree of bank competition. For instance, higher-level branches may be located in areas with more economic activity and a lower borrower risk profile. Thus, to alleviate these concerns, we exploit within-branch changes in organizational design, allowing us to control for such cross-sectional differences.

2.3 Employee Incentives

Loan officers and managers are evaluated annually, based on a range of criteria. These include quantitative measures such as the amount and profitability of lending, as well as qualitative considerations such as employee skill development and effective customer communication. Each officer is ultimately assigned a numerical grade from zero to one hundred. While there is limited incentive pay, officers may be motivated through possible promotion to a higher rank manager position. Whether an officer or a manager is nominated for a promotion depends on their annual evaluation and their tenure at the bank. A promotion is generally accompanied by a transfer to a new branch.

2.4 Corruption Indices

We use several state-level measures to proxy for opportunities for rent extraction. First, we proxy for corruption by focusing on branches in the so-called BIMARU states – Bihar, Madhya Pradesh, Rajasthan, and Uttar Pradesh – which have been singled out for corruption (see, for
example, Bose (2007)). The group is often extended by including the neighboring state of Orissa. For this, we create two indicator variables $BIMARU$ and $BIMAROU$, denoting branches located in the former five and the latter six states respectively.

3 Empirical Specification

Our identification strategy employs a branch restructuring policy that is driven by pre-defined rules. A given branch is upgraded (downgraded) if over the last two years, the average outstanding balance of the combined loans and deposits exceeds (falls below) a fixed cut-off point. In the event of an upgrade, a branch is allocated more resources, including more personnel to meet the rising demand for services in that district, and vice versa. To manage the larger workforce, the branch’s organizational hierarchy is also adapted by adding an additional layer of managers (see Figure (6)). In addition to those changes, the approval limit of the head of the branch is increased. Thus, while the organization is more hierarchical after the reorganization, it gets more resources and discretionary power. During our sample period, a total of 500 (roughly a fifth) of all branches were reorganized (see Figure (7)).

We wish to highlight a few points about the reorganization of branches. Firstly, these cut-offs were fixed in the central office by a new CEO of the bank, before the start of our sample. Thus, from the perspective of a single borrower, the organizational design of a branch is exogenous. Secondly, we would like to stress again that we are examining the loans that are eligible across all branches, that is, we are looking at loans that are lower than 500,000 rupees (approx. 11,000 USD). This allows us to analyze a similar set of loans across all types of organizational designs, ensuring that the approval limit does not interfere with the loan decisions. It is important to emphasize that most of the branches that we examine have loan approval limits that are significantly above this cut-off (more than double), so this constraint is not binding for most of the loans that we examine.

Our empirical strategy attempts to identify the effect of organizational hierarchy on the parameters of interest (e.g., soft information, delinquencies, or return on loans). We employ a differences-in-differences (DID) strategy and compare branches that were subject to a change in their organizational design against a control group of branches that were not affected by these
reorganizations. Thus, the empirical specification is given by:

\[y_{bq} = \tau_q + \tau_b + \delta \text{Branch Level}_{bq} + \eta_{bq}, \] (1)

where the dependent variable (e.g., soft information) is measured at the branch-quarter level; \(q \) and \(b \) index the quarter and the branch, respectively. \(\text{Branch Level}_{bq} \) stands for the organizational design of branch \(b \) in quarter \(q \). It is a variable between one and three, where the lowest and highest values describe decentralized and centralized (i.e., four-layer) branches, respectively. The branch fixed effects (\(\tau_b \)) control for fixed differences between treated and non-treated branches. The quarterly dummies (\(\tau_q \)) control for aggregate fluctuations. This strategy identifies the effect of organizational structure on the production of information and the consequent outcomes, controlling for time and branch invariant effects. The coefficient \(\delta \) is our DID estimate of the effect of organizational design on, e.g., the production of soft information. Our identification strategy assumes that the variation in the organizational design that is plausibly uncorrelated with the demand for credit, allowing us to make causal inferences of organizational design on loan outcomes. We will revisit this identification assumption later in the paper, where we explicitly show that controlling for local-shocks (for example, demand shocks) non-parametrically (adding district interacted with quarter fixed effects) does not affect our results.

The identification approach can be understood using the following example. Let us suppose that there are two branches, branch A and branch B, both undergoing organizational change, but one in 2000 and the other in 2004. We wish to estimate the effect of the upgrade on production of soft information. For branch A, we would compare the measure of soft information after 2000 with the one before 2000. However, in 2000 other considerations, such as the economic environment, may have affected the quality of soft information. Branch B, as a control group, would help to control for changing economic conditions. The difference of these two differences would then serve as our estimate of the organizational effect on the production of soft information. Essentially, branch B, which undergoes a change in organizational design in 2004, acts as a control group for branch A until 2004. It should be noted that the staggered nature of organizational shocks implies that all reorganized branches belong to both treated and control groups at different points in time. Therefore, equation (1) implicitly takes as a control group all branches that are not subject to reorganization at quarter \(q \), even if they have already been reorganized, will be reorganized later on, or will not be reorganized at all.
4 Results

We will now report the results of our study, based on our empirical strategy discussed above. In section 4.1, we evaluate the effect of organizational design on total loans and the number of borrowers. Next, in section 4.2, we explore how hierarchy affects the performance of loans as measured by the delinquencies; and in section 4.3, we examine how hierarchy affects return on loans to the bank.

4.1 Lending

In this subsection, we explore the effect of organizational design on lending. We use our DID specification, defined in equation (1). As discussed above, we use a branch office reorganization policy as a perturbation to the organizational hierarchy of a branch, to make causal inferences about the effects of organizational hierarchies on loan outcomes. In particular, we look at the outcomes on the same set of loans in branches that changed their organizational design, comparing them against branches that did not. Looking at within-branch variation allows us to control for the branch-specific, unobservable characteristics, thus mitigating the concern of endogenous choice of organizational structure. Besides, a control group, active in the same line of business and subject to the same institutional rules and environment, is well suited to capture the aggregate time trends.

Columns 1 to 3 in Table (3) report the effect of the organizational design on the loan quantities, estimated using the differences-in-differences methodology (specification (1)). The estimated coefficient of interest is the one on Branch Level, a variable between one and three where one stands for a decentralized branch and three for a centralized one. Both columns include quarter and branch fixed effects. We find that an increase in organizational hierarchy reduces the total lending to new borrowers by 9.9 percent (column 1) and the number of new borrowers by 4.5 percent (column 2). The difference between the two values implies that the average loan declined by 5.4 percent (column 3).

We have so far assumed that the change in organizational design affects only the supply side of the loan granting process. However, it is plausible that our results are driven, for example, by local, contemporaneous demand shocks or changes in the degree of bank competition. To account for these and other similar concerns, we saturate our main specification by including interacted
quarter with state, region and district fixed effects. The finest specification with quarter-district fixed effects splits our sample to 362 geographical districts and controls for all time variation within those districts. As a result, we exploit the within-district variation between treated and non-treated branches. To the extent that such shocks affect all branches at a district level, such shocks get differenced out in our specification. As columns 4 through 6 show, saturating the specification does not affect the qualitative nature of our results.

In columns 7 through 9, we further investigate issues of other contemporaneous events. One concern might be that, as the branches grow over time, the effect on loan quantities is a branch-specific time trend rather than a hierarchy-induced phenomenon. We can address this and similar other concerns by studying the dynamic effects of organizational change on loan quantities. We replace the Branch Level with four variables to track the effect of organizational design before and after the change: Before2 is a dummy variable that equals one (minus one) for a branch that will be upgraded (downgraded) in one or two quarters; Before0 is a dummy variable that equals one (minus one) if the branch is upgraded this quarter or one quarter ago; After2 is a dummy variable that equals one (minus one) if the branch was upgraded (downgraded) two or three quarters ago; and After$^{4+}$ is a dummy variable that equals one (minus one) if the branch was upgraded (downgraded) four or more quarters ago. The variable Before2 allows us to assess whether any quantity effects can be found prior to the change. Finding a significant effect could suggest that our results are driven by factors other than organizational design. In fact, the estimated coefficient on the Before2 is economically small and statistically insignificant. Furthermore, we find that the coefficient on the Before0 is smaller than those on the After2 and After$^{4+}$, suggesting that the documented effect continues in the long run.

4.2 Loan Repayment

We will now examine how a change in hierarchy affects the quality of loans originated by the bank. We examine loan delinquencies, where a loan is classified as delinquent if it is 60 or more days late in payments within a year since its origination. We then aggregate the loan level default measure and obtain a branch-quarter delinquency rate, i.e., the fraction of newly issued loans that are delinquent within a year since the inception. In Table (4), columns 1 and 2 examine the effect of organizational design on equally- and value-weighted loans, respectively.

7We report the most stringent specification that includes quarter-district fixed effects. The results are qualitatively the same, using the weaker two specifications – interacted state and region quarter effects.
The regression specification uses the differences-in-differences methodology, defined in equation (1).

Four main results can be seen. Firstly, we find that an increase in hierarchy increases delinquencies for the same set of loans, evaluated before and after the reorganization. The coefficients on the Branch Level are economically large and statistically significant at 1 percent, for both equally- and value-weighted default rates. The absolute increase of value-weighted default rates is 1.4 percent, implying a 33 percent increase in the default relative to the mean value-weighted default rate of 4.2 percent. In comparison, the effect on the equally-weighted measure is 1.0 percent, corresponding to a 20 percent increase relative to the mean. Secondly, the effects also remain strong after controlling for local demand shocks through quarter-district fixed effects (column 3). Thirdly and most importantly, we document a significant difference between the estimated value- and equally-weighted measures (column 4). This evidence is consistent with the view that an increase in hierarchy reduces banks’ ability to produce information on loans, thus impairing a branch’s ability to allocate resources efficiently. Fourthly, the dynamic effects of the change in organizational design (columns 5 and 6) indicate that there is no sign of a pre-trend two quarters prior to the change.

4.3 Return on Loans

So far, we have shown that more centralized organizational hierarchy leads to contract standardization and worse ex-ante capital allocation, as measured by loan delinquencies. Even though the default rates go up, the effects on monetary returns are unclear. On the one hand, increasing default rates put a downwards pressure on the returns. On the other hand, factors such as the recovery rates might alleviate these effects on returns.

To investigate the effects on monetary returns, we measure the return on the portfolio of loans (ROL) originated at the branch b in the quarter q. First, we calculate the lifetime ROL for each loan separately, and only then do we aggregate the loan-level returns at the branch-quarter level. The return on loans, representing bank earnings per rupee lent during the lifetime of a loan, is given as follows:

$$\text{ROL}_{b,i,q} = \sum_{\tilde{q}=q}^{\tilde{q}'} \omega_{b,i,\tilde{q}} \left[(1 + r_{b,i,\tilde{q}}) \left(1 - 1_{60+b,i,\tilde{q}} \right) + 1_{60+b,i,\tilde{q}} \phi_{b,i,\tilde{q}} \right],$$

(2)
where $\omega_{b,i,\bar{q}} = \frac{\text{Loan}_{b,i,q}}{\sum_{q=q^*}^{\bar{q}} \text{Loan}_{b,i,q}}$ is the value-weighted component; $r_{b,i,\bar{q}}$ is the quarterly interest rate; $\mathbb{I}_{60^+ + b,i,\bar{q}}$ is a dummy variable equal to one if the loan is 60^+ days late in the repayment; $\rho_{b,i,\bar{q}}$ is the expected return in case of delinquency; q is the quarter of the origination of the loan; \bar{q} is the quarter when the loan is repaid in full, the loan is 60^+ days late, or the last quarter in our dataset (whichever comes first). By weighting each quarter with the outstanding loan amount instead of equal weights, we place more emphasis on the quarters when the cash flows of the loan contribute more to the branch’s performance, i.e., when the outstanding loan amount is higher. Moreover, if a loan defaults towards the end of the repayment period, when only a fraction of the loan remains unpaid, we do not overestimate the effect of the loss given default. All in all, the value-weighted ROL is a better measure for estimating the impact on a branch’s performance than the equally-weighted measure.

When a loan becomes delinquent, the expected return is given by the following identity:

$$\rho_{b,i,\bar{q}} = \eta_{age_i} \cdot \delta_{\{s,u\}} \cdot (1 - \eta_{age_i}) (1 + r_{b,i,\bar{q}}),$$ \hspace{1cm} (3)

where η_{age_i} is the estimated value-weighted default probability, conditional on the age when the loan becomes 60^+ days delinquent; $\delta_{\{s,u\}}$ is the value-weighted recovery rate from the defaulted loans, computed as the value recovered against the defaulted principal and interest due for secured (s) and unsecured (u) loans separately.

To account for censoring in our data (i.e., not all loans are repaid or default by the end of Q1:2006), in the last quarter of the dataset we calculate the expected return on a loan in the following way:

$$R_{b,i,\bar{q}} = (1 - \sigma_{age_i}) (1 + r_{b,i,\bar{q}}) + \sigma_{age_i} \cdot \delta_{\{s,u\}},$$ \hspace{1cm} (4)

where σ_{age_i} is the transition probability for a healthy loan, or one that is less than 60 days late, to default eventually by loan age; $r_{b,i,\bar{q}}$ and $\delta_{\{s,u\}}$ are the quarterly interest and the recovery rates, respectively. We then replace the term in the square brackets in the equation (2) with the one calculated here ($R_{b,i,\bar{q}}$) for all healthy loans in Q1:2006. Lastly, the estimated default probabilities, required for computing the return on loans, are plotted in Figure (8).

The estimated value-weighted recovery rate for individual secured loans is 40 percent, while for unsecured loans it is only 16 percent, reflecting the importance of the realization value of the collateral when seized in default (see Table (5)). Our average estimated recovery rate is similar to the 25 percent provided by the Doing Business database from The World Bank (2013).
Since the dataset does not provide the recovery values for any of the loans that default prior to the first quarter of 2006, we calculate the recovery rates using the data from the last quarter (Q1:2006) of our sample only. As we may be overestimating or underestimating the recovery rates\(^8\), for robustness we also check our results using three other recovery rates:\(^9\) 25 percent as suggested by the Doing Business Database of the World Bank, a pessimistic 15 percent and an optimistic 50 percent. Qualitatively, the results remain the same.

Using the main DID specification, we find that the return on the same set of loans decreases after a branch becomes more hierarchical (Table (6)). The point estimates suggest that after the introduction of an additional managerial layer, the return on an individual loan decreases by 100 basis points (column 2). The economic effect is considerable. Given that every quarter the bank earns 7.0 percent on every rupee lent (the value-weighted return), the 100 basis point decline is equal to a 14 percent drop from the mean return. Similarly, for the equally-weighted measure, the 70 basis point fall in return (column 1) is equivalent to a 10 percent slip in the branch’s performance. Further, the estimated results remain unchanged after controlling for local demand shocks through quarter-district fixed effects (column 3) and do not have any pre-trend (columns 5 and 6), therefore ruling out reverse causality concerns. Last but not least, analogous to the delinquency result, the significant difference of 30 basis points between rupee- and equally-weighted measures (column 4) further supports the argument that hierarchy leads to frictions in information production. The returns on large loans shrink more than on the small ones, suggesting that resources are allocated less efficiently in the more hierarchical structure.

5 Alternative Approach

The results so far support the view that an increase in organizational hierarchy reduces banks’ ability to produce information and affects credit allocation. In this section, we sharpen the evidence that organizational hierarchy leads to loss of information by showing that contracts are more standardized in a centralized structure. To capture the soft information content in loans, we use methodology similar in spirit to the procedure employed in Rajan et al. (2013). Consider two borrowers with identical hard information, but differing in soft information content. A

\(^8\)For example, in June 2002, the government of India improved creditor rights by enacting the Securitization and Reconstruction of Financial Assets and Enforcement of Security Interest Act. In a nutshell, this act allows banks and financial institutions to auction properties (residential and commercial) when borrowers fail to repay their loans. As it enables banks to reduce their non-performing assets (NPAs) by adopting measures for recovery or reconstruction, we may be overestimating the recovery rates before 2002.

\(^9\)The results are available upon request.
loan officer who has no information about the borrowers would give similar loan contracts to each of these borrowers (a pooled contract). On the other hand, a loan officer who has perfect information would be able to discriminate between the borrowers by giving a higher loan amount to the good borrower and a lower to the bad one. Thus an increase in information would be captured in an increase in dispersion of contract terms. This is the basic intuition behind the test. In a world with no information, all the variance in quantity (dependent variable) would be explained by the variance in hard information variables (independent variables). However, in a world with perfect information, there would be some variation in contract terms that would not be captured by hard information variables – the lender uses the soft information to discriminate against borrowers who have similar hard information. Thus, if a decentralized organization were closer to the world with perfect information, the variation, unexplained by hard information, ought to be higher.

To estimate the effect of organizational design on information production, we use two approaches. In the first one, we evaluate the second moment of the loan quantity, assuming that the latent demand remains constant. Given that the other contractual terms did not change, tracking the evolution of the second moment over time would allow us to analyze the changes in the soft information component. In the second approach, we relax the assumption that other loan characteristics have not changed and employ a “quasi” R-square analysis similar as in Rajan et al. (2013).

5.1 Variance in Quantity

In the first approach, we exploit two measures that have been used in the literature to capture soft information through variation in loan quantity: inter-quartile range and standard deviation of debt (see, for instance, Fisman et al. (2012)). Both measures possess similar characteristics: the larger the amount of soft information, the larger the proxy. Using the differences-in-differences methodology defined in specification (1), qualitatively, both measures deliver the same result: contracts become more standardized when a branch is converted to a more hierarchical unit (see Table (7)). The inter-quartile range of debt (column 1) and standard deviation of debt (column 2) decrease by 12.3 and 9.5 percent, respectively. Furthermore, these effects remain unchanged from a qualitative point of view after absorbing all local shocks through quarter-district fixed effects (columns 3 and 4). Lastly, in columns 5 and 6, we investigate the dynamic effects and find no pre-trend. In fact, if anything, both pre-trend coefficients show the opposite signs.
Moreover, all of the effects increase over time and persist in the long run. Thus, the result on soft information remains robust to concerns such as reverse causality.

5.2 “Quasi” R-square

For the second approach, we use a two-stage estimation procedure. Given that small borrowers are credit constrained in India (see, for example, Banerjee et al. (2005)), we can estimate the bank’s credit supply curve. Thus, in the first stage, using the loan-level data, we regress the quantity of loans granted to the borrower against several hard information variables and obtain the equilibrium supply schedule. This gives us a mapping from characteristics to the quantity of the loan supplied by the bank. We then use this model to generate the predicted value based on the characteristics of the borrower. The difference between the actual and the predicted value (i.e., the error term) gives us a measure of soft information content on the loans. We then calculate the standard deviation of these error terms and scale it by the variance of the dependent variable to generate a “quasi” R-square. The higher the soft information, the lower the measured R-square.

More specifically, to measure the soft information, we take the residual \(\hat{\epsilon}_{biq} \) from the following regression:

\[
y_{biq} = \tau_q + \tau_b + \theta'X_{biq} + \epsilon_{biq}, \quad (5)
\]

where \(i \) denotes a borrower, \(q \) denotes a quarter, and \(b \) is a branch. The dependent variable \(y_{biq} \) is the natural logarithm of the loan outstanding at the quarter of origination. The log transformation of the loan size reduces its skewness and allows coefficients to be interpreted as elasticity. The two fixed effects - \(\tau_b \) and \(\tau_q \) - capture the time invariant components of each branch and aggregate shocks to all branches, respectively. \(X_{biq} \) is the vector of control variables. The vector of controls includes contract-specific characteristics, such as maturity, value of the collateral, gender, and product group fixed effects.

Table (8) examines the relationship between the loan amount and borrower characteristics (variables that capture hard information) for new individual borrowers, as defined in equation (5). As can be seen, the higher the value of the collateral, the larger the loan amount. Specifically, raising the collateral by 10 percent would increase the loan amount by roughly 0.9 percent. Similarly, the longer the maturity or the higher the interest rate, the larger the loan size. Additionally, female borrowers, representing 17 percent of the sample, take loans that are, on average,
13 percent smaller than those taken by male borrowers. The adjusted R^2 of the regression is 0.55. This leaves 45 percent of the credit model unexplained, therefore implying that the bank’s credit decisions are based on roughly 45% subjective information.

In graph-form, we find that hierarchical branches are associated with less soft information. Figure (9) plots the kernel density functions of soft information for decentralized and centralized branches. For the most hierarchical branches, the measure of soft information is more centered around the mean (zero) than for the more flatly organized branches, implying less variation in subjective information. The Kolmogorov-Smirnov test for the equality of distributions claims that the two density functions differ with a 1 percent significance level.

More formally, Table (9) measures the outcomes at the level of branch b in quarter q. Columns 1 to 4 evaluate the cross-sectional patterns. The first column reports the results, using the quarter fixed effects only. In the other specifications, we also control for geographic characteristics, such as differences in dominant industries or institutional development. Thus, in addition to the quarter effects, column 2 controls for the zone-specific trends, whereas column 3 controls for the regional trends. Finally, besides the regional and time trends, in column 4, we also control for all unobservable characteristics of branches with the same initial organizational design (i.e. the one we observe at the beginning of the sample).

Cross-sectional analysis suggests that flatter and less hierarchical branches are associated with additional soft information. All four specifications give strong, negative results, statistically significant at 1 percent. The magnitudes imply that an additional managerial layer is associated with roughly 7 percent lower production of soft information when measured against the mean soft information.

To alleviate concerns about the omitted variable bias that confounds cross-sectional analysis, we turn to our main DID specification, defined in equation (1). As the choice of the organizational design is endogenous to the firm, it might be that the captured correlation in the cross-sectional results is driven by a firm-specific or clientele-specific effect, rather than by or-

10 The residuals are standardized to account for the heterogeneity in the pool of borrowers across branches. For a better understanding of why this is, imagine the following situation. The distribution of granted loans in branch A is wide (i.e., large standard deviation) due to significant heterogeneity in the borrower’s requirements. On the other hand, the distribution of granted loans in branch B is narrow (i.e., small standard deviation). However, the estimated residuals in both cases are the same. Judging by the residuals, both branches would look alike, but this is not the case. As the variation in errors is the same, while the variation in the dependent variable is larger for branch A, the model’s predictive power for branch A is higher than for branch B (think in terms of R^2). Consequently, as the R^2 for branch A is higher, it would imply loans being more standardized there. Therefore, for cross-sectional analysis, we scale the residuals for each branch by the standard deviation of the dependent variable - natural logarithm of the loan size. Please note that the scaling does not affect the results in the DID specification as the branch fixed effects implicitly account for the branch invariant characteristics such as clientele.
ganizational design. Studying the same set of loans before and after the reorganization, we find that they become more standardized in a more hierarchical structure (column 5 in Table (9)). The estimated coefficient on the Branch Level is negative and significant at 1 percent. In terms of economic magnitudes, the introduction of an additional managerial layer increases the contract standardization by roughly 5.3 percent when measured against the mean soft information. Furthermore, the results remain qualitatively the same after absorbing all local shocks through quarter-district fixed effects (column 6). Hence, the agency problems between the manager of the branch and the loan officer are strong. These two findings again confirm that a hierarchical structure leads to distortions in information production.

Figure (10) plots the dynamics of soft information around the branch reorganization. The figure investigates issues of other contemporaneous events that might be driving the contract standardization and hence the change in the organizational design. As can be seen, there is no pre-trend and the results intensify over time. Column (7) of Table (9) reports the same result more formally. The estimated coefficient on the Before2 is economically small and statistically insignificant, meaning that there is no pre-trend in the data. Furthermore, the coefficient on the Before0 is smaller than those on the After2 and After$^{4+}$, suggesting that the loan standardization amplifies over time and remains significant.

6 Other Results

6.1 Trade-off: Large Loans

One of the rationales for the bank’s policy towards changing the organizational design of a branch is to increase the within-branch discretionary power and therefore allow more loans to be approved internally. In this way, the bank hopes to shorten the processing time and to gather more information for borrower assessment. After centralizing a branch, the distance between the borrower and the decision maker increases for small loans. But the opposite is true for the loans that were above the approval limit of the branch and had to be approved externally before the upgrade.11 If the information argument is true for small loans, it must also hold for the larger ones. Thus, large loans should benefit from the upgrade, as the manager can now decide about the loans internally. Identifying the same mechanism for large loans supports our results.

11Formerly a loan application had to be sent to a regional, zone, or head office, where another manager would evaluate the application based on the material submitted.
on small loans.

Since after an upgrade the head of a branch can act on soft information, we find an improvement in the lending outcomes on large loans (see Table (10)). Firstly, to capture the effect on the total debt granted, we use $\ln(1 + Debt)$ as the dependent variable (column 1). The log transformation reduces the skewness and ensures that quarters without loans do not become missing values. Secondly, the effect on the large loan extensive margin, i.e., the probability that a large loan is granted, is captured by a linear probability model (column 2). Thirdly, as the average number of ‘large loans’ per branch-quarter is 1.4, computing the second moment of the residual as the measure for soft information becomes challenging, if not impossible. Therefore, we use the mean absolute value of the residual estimated in specification (5) (column 3). The properties of this measure are similar to the main proxies of soft information: the larger the amount of soft information, the greater the mean absolute value. We test this proxy in our main results on small loans and find the same results in qualitative terms. As the results for small loans are qualitatively the same for all measures of soft information, we conjecture that the same must hold true for large loans.

The estimated coefficients on the Branch Level are positive and significant across all three specifications. The estimates imply that lending of large loans increases when the approval of these loans is carried out internally (column 1), and the probability of issuing a large loan increases by 3.5 percentage points (column 2). The latter result is equivalent to an 85 percent increase in the average probability of issuing a large loan. The soft information increases as well (column 3). To address the reverse causality, we also show the dynamic effects. None of the estimated effects have a pre-trend. In fact, the effects increase over time and remain significant in the long run. To conclude, although small loans suffer from the hierarchy, the very large borrowers, who, in terms of physical distance, are closer to the decision maker after a branch is centralized, benefit from the proximity. Thus, from a social point of view, the net effect is ambiguous, as small borrowers lose out while large borrowers benefit.

6.2 Intervention vs. Delegation

Aghion and Tirole argue that delegation strengthens incentives to exert effort. Intervention, on the other hand, dulls those incentives. Therefore, the possibility that the branch manager may intervene with the junior manager’s decisions should result in lower effort and performance. In this section, we test the effect of intervention directly.
We observe two results for intervention (see Table (11)). Firstly, the head of the branch intervenes with the decisions of the junior manager in a hierarchical branch. We show that the fraction of loans that are approved by the junior manager (the manager with the smallest approval limit) shrinks by 6 percent in a more hierarchical branch (column 1). Thus, the head of a hierarchical branch intervenes with at least some of the decisions made by the junior manager.

Secondly, the frictions generated by organizational hierarchy are weaker for branches that intervene less. To show this, we construct a branch-level measure of delegation as the average fraction of loans that are delegated to the junior manager. In line with the theoretical prediction, we find that the results of organizational hierarchy are attenuated in branches that delegate more. All three measures – soft information, value-weighted returns and defaults (columns 2, 3, and 4, respectively) – are better for upgraded branches that intervene less in comparison to those that intervene fully.

All in all, these results provide strong evidence in support of Aghion and Tirole’s theory that the possibility of intervention adversely affects incentives to exert first-best effort. Furthermore, these findings also rule out alternative stories such as changes in Business Focus or IT, as neither of these can explain this cross-sectional cut.

6.3 Hierarchy and Corruption

Full delegation in the presence of corruption is a double-edged sword (Tirole (1986); Banerjee et al. (2013)). On the one hand, if the private benefits of an agent are aligned with those of the principal, then delegation may be a good idea, as it creates an extra incentive to perform the task. For instance, Bandiera et al. (2009) show that giving more discretion to bureaucrats in Italian public procurement may lead to budget savings, even though it allows the bureaucrat to pocket some of the money. On the other hand, if agents’ private benefits are not aligned with the profit-maximizing behavior of the principal, it may be worthwhile maintaining control over the employees. For example, by analyzing regulators, Stigler (1971) and Leaver (2009) argue that discretion may lead to outcomes that reflect regulators’ personal objectives, rather than the social objectives that give rise to regulation in the first place. Essentially, the nature of corruption determines the optimal level of discretion.

To understand how organizational hierarchy interacts with rent-extraction in our setting, we compare the effects in more corrupt states to those in the less corrupt ones. We proxy for corruption by focusing on branches in the so-called BIMARU states (Bihar, Madhya Pradesh,
Rajasthan, and Uttar Pradesh) which have been singled out for corruption (see, for example, Bose (2007)). Our estimates indicate that for BIMARU states, the effects are significantly reduced (see Table (13)). We find similar results using alternative corruption proxy – BIMAROU – which adds the state of Orissa to the BIMARU list. These findings are in line with the view that greater delegation provides extra incentives to generate ‘soft’ information, while simultaneously enabling rent extraction. However, if the decision making were centralized in the corrupt branches, the benefits of limiting corruption might be attenuated by the incentive problems and the consequent loss of ‘soft’ information.

6.4 Competition

Finally, we examine how our results vary with the degree of bank competition. Theoretically, the effect of competition is quite ambiguous, making it an empirical question. We measure branch competition as the log of the total number of branches per 1,000 inhabitants at district level in year 2001, obtained from the Reserve Bank of India.12 We then interact the measure with our organizational design variable (Branch Level) and obtain an estimate that describes the effects of upgradation in more competitive areas (i.e., more branch offices per 1,000 inhabitants) compared to less competitive areas.

We present our results in Table (12). While our results are present across the spectrum of bank competition, they are all – soft information, returns, defaults and quantities – particularly strong in more competitive banking markets (see Table (12)). In competitive markets, a sub-optimal organizational structure produces the biggest losses for the bank. One plausible mechanism through which the effects are amplified in competitive markets is adverse selection. While more hierarchical banks produce less information, borrowers have more and possibly better choices in competitive markets. Thus, borrowers switch if offered inferior contracts, generating a portfolio that has been adversely selected. In a monopolistic setting, however, the borrowers have little choice, so while banks lose out on some profits, the adverse selection is less severe.

12We would like to thank Shawn Cole for providing us with this data.
7 Alternative Explanations and Robustness Tests

We have so far shown that a change in organizational design affects a bank’s ability to produce information on loans that it generates and has implications for capital allocation decisions by banks. While we are labeling the change in organizational design as primarily a change in organizational hierarchy, there are other changes to organizational design that can potentially confound inference. In this section, we discuss these changes and specific ways to rule them out.

7.1 New Officer Effect

A change in organizational design also brings in a new official as the head of the branch. If the branch gets upgraded to a higher level, it brings in a more experienced and senior official to head the branch. One would expect that the presence of an experienced official should improve the credit allocation decision in the bank because the loan officer, approving loans earlier, now has access to a more knowledgeable advisor. It should be noted that such an effect, if present, would lead to increased soft information and lower defaults on loans, thus biasing against finding the result that we have identified in the paper.

In a similar vein, one could argue that the arrival of a new branch manager, an event that accompanies changes in organizational design, leads to a temporary loss of information and that it is this which drives the poor performance of loans and higher standardization (a new officer tends to over-rely on hard information). This is untrue for two reasons. Firstly, such an effect should also be present, and perhaps to a higher degree, when officers are rotated without the change in organizational design. We do not find this to be the case (see Table (15)). Secondly, we do not find the effect to be transient, that is, the effects do not reverse after the officer gets comfortable in the new system. The results on dynamics confirm this.

7.2 Manipulation

As noted above, the reorganization of a branch entails a change in the loan approval limit. This change in the cut-off point may alter the composition of borrowers around the threshold. Plais can be demonstrated by the following situation. An individual with no credit history or adverse credit history requests a loan for 550,000 rupees from a manager whose approval limit is only 500,000 rupees. Even though, after a thorough investigation the manager knows that the borrower is of the good-type, the very nature of soft information makes it extremely difficult to transmit it to
the regional office. Hence, forwarding the application further would clearly lead to a rejection. Anticipating this, the manager may instead offer the client a loan of 500,000 rupees that falls within his approval limit. If such terms are acceptable to both parties, a loan is granted. However, in the period after upgradation, the branch manager that is heading this branch does not face this dilemma (if the approval limit is above 550,000 rupees) as he can approve this loan within the branch. He would then simply approve the 550,000 rupee loan. Thus manipulation of the loan amount may change the composition of borrowers around the threshold.

Additional tests show that this does not affect our results. We begin by plotting the Epanechnikov kernel density functions around the normalized cut-off for pre- and post-treatment periods. As can be seen in Figure (11), both distributions are statistically the same around the cut-off point and the Kolmogorov-Smirnov test for the equality of the distributions cannot reject at the 1 percent level. In other words, we find no evidence of any bunching around the threshold.13 We next disregard loans that are within 20 percent window around the cut-off14 and re-estimate our specification. Our results remain virtually the same with the lower approval limit (Table (14)). Finally, as already noted, the smallest common cut-off is binding only for a subset of bank branches (roughly a sixth of branches). Excluding those branches leaves our results qualitatively unchanged. In sum, all three tests allay all concerns of manipulation around the cut-off.

\section{Conclusion}

A large literature in financial intermediation delegates the role of screening and monitoring to banks. According to these theories, screening and monitoring by banks is efficient since it reduces duplication in monitoring costs, and free-riding problems are associated with multiple creditors. But for a bank to deliver on its promise, it must have the correct organizational design in place, just like any other firm.

While there are many theories on the organizational structure of a firm and the associated trade-offs, there has been far less empirical work. In this paper, we use a quasi-natural experiment research design to provide a causal link between organizational design and production of soft information. Overall, our findings suggest that a centralized organizational structure

13The humps in the distribution represent round numbers that are popular loan amounts such as 450,000 and 550,000.

14For example, if the cut-off is 500,000 rupees then all loans from 400,000 to 500,000 would not be considered.
distorts production and communication of soft information and leads to standardization of loan contracts. Furthermore, our study also suggests that adding one more managerial layer increases the delinquency rate by 30 percent and decreases the return on loan by 14 percent. Our paper also shows that large organizations mitigate the problem of transmitting soft information by creating within-firm sub-organizations. Although in line with Stein’s (2002) view that more hierarchical firms tend to base their decisions on hard information, this result shows that even if a firm appears to be hierarchical from outside, it can organize itself internally in a way that reduces this problem.

It is important to note that while this paper identifies the effect of hierarchy on information production, it does so in a setting where incentive contracts are fixed across different branches. While this is ideal from an identification point of view, it leaves the following question unanswered: Can contractual flexibility remove the underproduction of information in hierarchical branches, or are there limits to delegation in these branches? This is an important question for future research.

Finally, this paper does not make any claims regarding efficiency. While we show that hierarchy in branches induces negative effects for smaller loans, larger loans do much better in such branches. Thus, the efficiency implications are ambiguous.
References

Agarwal, Sumit, and Robert Hauswald, 2010, Distance and Private Information in Lending, *Review of Financial Studies* 23, 2757–2788.

Aghion, Philippe, and Jean Tirole, 1997, Formal and Real Authority in Organizations, *Journal of Political Economy* 105, 1–29.

Alessandrini, Pietro, Andrea F Presbitero, and Alberto Zazzaro, 2009, Banks, Distances and Firms’ Financing Constraints, *Review of Finance* 13, 261–307.

Bandiera, Oriana, Andrea Prat, and Tommaso Valletti, 2009, Active and Passive Waste in Government Spending: Evidence from a Policy Experiment, *American Economic Review* 99, 1278–1308.

Banerjee, Abhijit V., Shawn Cole, and Esther Duflo, 2005, Bank Financing in India, in Wanda Tseng, and David Cowen, eds., *India’s and China’s Recent Experience with Reform and Growth*, number October (Palgrave Macmillan).

Banerjee, Abhijit V., Rema Hanna, and Sendhil Mullainathan, 2013, Corruption, in Robert Gibbons, and John Roberts, eds., *The Handbook of Organizational Economics*, 1109–1147 (Princeton University Press, Princeton).

Berg, Tobias, Manju Puri, and Jorg Rocholl, 2013, Loan officer incentives and the limits of hard information, Technical report.

Berger, Allen N., Rebecca S. Demsetz, and Philip E. Strahan, 1999, The consolidation of the financial services industry: Causes, consequences, and implications for the future, *Journal of Banking & Finance* 23, 135–194.

Berger, Allen N., Anil K Kashyap, Joseph M Scalise, Mark Gertler, and Benjamin M Friedman, 1995, The Transformation of the U.S. Banking Industry: What a Long, Strange Trip It’s Been, *Brookings Papers on Economic Activity* 1995, 55–218.

Berger, Allen N., Leora F. Klapper, and Gregory F. Udell, 2001, The ability of banks to lend to informationally opaque small businesses, *Journal of Banking & Finance* 25, 2127–2167.

Berger, Allen N., Nathan H. Miller, Mitchell A. Petersen, Raghuram G. Rajan, and Jeremy C. Stein, 2005, Does function follow organizational form? Evidence from the lending practices of large and small banks, *Journal of Financial Economics* 76, 237–269.

Berger, Allen N., Anthony Saunders, Joseph M Scalise, and Gregory F. Udell, 1998, The effects
of bank mergers and acquisitions on small business lending, *Journal of Financial Economics* 50, 187–229.

Berger, Allen N., and Gregory F. Udell, 1995, Universal Banking and the Future of Small Business Lending.

Brown, Martin, Matthias Schaller, Simone Westerfeld, and Markus Heusler, 2012, Information or Insurance? On the Role of Loan Officer Discretion in Credit Assessment.

Canales, Rodrigo, and Ramana Nanda, 2012, A darker side to decentralized banks: Market power and credit rationing in SME lending, *Journal of Financial Economics* 105, 353–366.

Cole, Rebel A., Lawrence G. Goldberg, and Lawrence J. White, 2004, Cookie Cutter vs. Character: The Micro Structure of Small Business Lending by Large and Small Banks, *Journal of Financial and Quantitative Analysis* 39, 227–251.

Degryse, Hans, Luc Laeven, and Steven Ongena, 2009, The Impact of Organizational Structure and Lending Technology on Banking Competition*, *Review of Finance* 13, 225–259.

Degryse, Hans, and Steven Ongena, 2005, Distance, Lending Relationships, and Competition, *The Journal of Finance* 60, 231–266.

Fisman, Raymond, Daniel Paravisini, and Vikrant Vig, 2012, Cultural Proximity and Loan Outcomes, *National Bureau of Economic Research Working Paper Series* No. 18096.

Garicano, Luis, 2000, Hierarchies and the Organization of Knowledge in Production, *Journal of Political Economy* 108, 874–904.

Gil, Ricard, Jason Sturgess, and Jose Maria Liberti, 2014, Authority and Initiative: Evidence from Bank Relationship Managers, *Working Paper*.

Herring, Richard, and Jacopo Carmassi, 2012, The Corporate Structure of International Financial Conglomerates: Complexity and its Implications for Safety and Soundness, in *The Oxford Handbook of Banking*.

Karpoff, Jonathan M, 2001, Public versus private initiative in Arctic exploration: The effects of incentives and organizational structure, *Journal of Political Economy* 109, 38–78.

Leaver, Clare, 2009, Bureaucratic Minimal Squawk Behavior: Theory and Evidence from Regulatory Agencies, *The American Economic Review* 99, 572–607.

Liberti, Jose Maria, and Atif R. Mian, 2009, Estimating the Effect of Hierarchies on Information Use, *Review of Financial Studies* 22, 4057–4090.
Liberti, Jose Maria, Amit Seru, and Vikrant Vig, 2012, Information, Credit and Organization, Working Paper, London Business School.

Mester, Loretta J., 2012, Banks: Is Big Beautiful or Do Good Things Come in Small Packages?, in the Columbia University Conference on Financial Risk and Regulation: Unfinished Business, number 2009, 1–15.

Mian, Atif R., 2006, Distance Constraints: The Limits of Foreign Lending in Poor Economies, The Journal of Finance 61, 1465–1505.

Petersen, Mitchell A., and Raghuram G. Rajan, 1995, The Effect of Credit Market Competition on Lending Relationships, Quarterly Journal of Economics 110, 407–443.

Petersen, Mitchell A., and Raghuram G. Rajan, 2002, Does Distance Still Matter? The Information Revolution in Small Business Lending, The Journal of Finance 57, 2533–2570.

Qian, Jun, Philip E. Strahan, and Zhishu Yang, 2012, The Impact of Incentives and Communication Costs on Information Production: Evidence from Bank Lending, SSRN Electronic Journal.

Rajan, U., Amit Seru, and Vikrant Vig, 2013, The failure of models that predict failure: distance, incentives and defaults, Journal of Financial Economics.

Stein, Jeremy C., 2002, Information Production and Capital Allocation: Decentralized versus Hierarchical Firms, The Journal of Finance 57, 1891–1921.

Stigler, George J., 1971, The theory of economic regulation, The Bell journal of economics and management science 3–21.

Strahan, Philip E., and James P. Wetson, 1998, Small business lending and the changing structure of the banking industry, Journal of Banking & Finance 22, 821–845.

The World Bank, 2013, Doing Business.

Tirole, Jean, 1986, Hierarchies and Bureaucracies: On the Role of Collusion in Organizations, Journal of Law, Economics, & Organization 2, 181–214 CR – Copyright © 1986 Oxford Universi.
Figure 1: Geographical Distribution of Branches, Weighted by Total Lending

The center indicates the location of the branch by postal code. The size corresponds to the total amount lent in the branch in 2006.

Figure 2: Organizational Design

The bank’s organizational design consists of ten layers described below. A higher-ranking manager has more decisional power and authority. The top five layers, marked with an asterisk, are the senior management team, mainly involved in business development. The lower three focus on the operational side of lending.

Position	Level of a Manager
Chairman and Managing Director	8*
Executive Director	7*
General Manager	6*
Deputy General Manager	5*
Assistant General Manager	4*
Chief Manager	3
Senior Manager	2
Junior Manager	1
Figure 3: Internal Organizational Design

Below is a schematic illustration of the bank and its branches. Each level has a specified approval limit on the size of the loan. If the loan falls outside of the branch manager's limits, it is sent either to the regional, zone, or head office for approval, depending on the size of the loan.

![Internal Organizational Design Diagram]

Figure 4: Branch Office Design

Below is a schematic illustration of the bank’s branches. Each level has a specified approval limit on the size of the loan. If the loan falls outside of the branch manager’s limits, it is sent either to the regional, zone, or head office for approval, depending on the size of the loan. Our sample consists of three organizational designs: decentralized (Level 1), medium hierarchy (Level 2), and centralized (Level 3). The more hierarchical the branch, the higher the approval limits of its manager. Our analysis focuses on all new individual loans eligible for approval at any organizational design, i.e., the loans that fall below the limit of the least hierarchical branch (the triangles at the bottom of the chart).

![Branch Office Design Diagram]

Focus:
- Similar loans
- Approved within any branch
Figure 5: Loan Approval Process

The flowchart below describes the loan approval process. It starts with a loan application at the branch office and continues until the loan is approved or rejected either at the branch or other external office.

Apply for a loan with a loan officer

Assess risk

Low

Agree on Terms?

Yes

Within approval limits?

No

High

Reject

Approve

Forward the application to:
1) higher officer
2) branch manager
3) regional office
4) zone office
5) central office (no limit)

Figure 6: Identification Strategy

The figure below describes our differences-in-differences (DID) identification strategy. We estimate the effect of organizational design on a set of loans eligible for approval both before and after the treatment (treatment group). Then we compare our estimated effect with the results of similar branches whose organizational design was left unchanged (control group).
Figure 7: Changes in Branch Levels

Below we plot the distribution of branch level changes over time. In total 500 branches (or roughly 20% of total) were reorganized.

Figure 8: Transition Probabilities

The graphs below plot the transition probabilities (rupee-weighted) of loans that subsequently defaulted (i.e., the legal proceedings with the borrower are finalized). The plot on the left presents the default probabilities for loans that are 60 or more days late, whereas the one on the right presents those for loans that are paid on time or are less than 60 days late. We track loans from the quarter they become 60+ days late and plot the average loans that default conditional on their age at the quarter becoming delinquent (Figure (a)). Similarly, we track loans from their origination quarter and plot the average loans that default conditional on the age of a loan (Figure (b)). Both graphs are smoothed using fractional-polynomial approximation.
Figure 9: Cross-Sectional Variation

The graph below plots the kernel density functions of standardized residuals (estimated by equation (5)) for loans falling within the approval limits of all branches. The graph is trimmed to show 98% of the sample.

![Kernel Density Functions](image)

Figure 10: Dynamics Plot: Soft Information

The horizontal axis shows the time, in quarters, since the branch reorganization (0 represents the first two quarters of the reorganization). The vertical axis measures the soft information measured as the standard deviation of the residual estimated using equation (5). The coefficients are estimated using equation (3). The dashed lines indicate the 95% confidence interval.

![Dynamics Plot](image)
Figure 11: Distribution Around the Approval Threshold

The graph below plots kernel density functions of loans around the threshold value for pre- and post-treatment periods. The threshold is normalized to equal 1. We show the frequency of all loans that fall within the 40% window around the threshold value. The values to the right of 1.00 are above the threshold, while the values to the left are below it.

![Kernel Density Functions of Loans](image)

Table 1: Summary Statistics

This table reports branch-quarter summary statistics of new individual loans. The variable *Branch Level* is a number between one and three, where the lowest value (1) and the highest value (3) characterize the least hierarchical branches and the most hierarchical branches, respectively. We report the mean, standard deviation, the 1st percentile, median, and the 99th percentile for all the variables.

Branch-Quarter Statistics (N=54,079)	Mean	Std. Dev.	p1	p50	p99
New Credit (1,000s of rupees)	1,175.1	2,063.4	31.0	726.4	6,650.1
Mean Loan Amount (1,000s of rupees)	56.0	43.5	7.8	42.8	216.5
# of Borrowers	24.5	39.1	2.0	15.0	143.0
Fraction of Borrowers delinquent within a year	0.050	0.111	0.000	0.000	0.500
Fraction of Debt delinquent within a year	0.042	0.111	0.000	0.000	0.570
Return on Loans (value-weighted)	0.070	0.079	-0.244	0.083	0.150
Interest Rate	11.44	1.83	8.19	11.60	15.84
Maturity (years)	4.15	2.26	0.60	4.00	11.11
Collateral-to-Loan (median)	6.75	406.98	0.00	1.42	19.12
Std. Dev. Debt (1,000s of rupees)	57.6	44.7	2.3	47.9	184.1
IQR Debt (1,000s of rupees)	54.6	66.8	0.7	28.2	399.8
Branch Level	1.4	0.6	1	1	3
Branch Level (treated)	1.7	0.7	1	2	3
Table 2: Summary Statistics: Cross-Section

This table reports branch-quarter summary statistics of new individual loans across organizational designs. The variable *Branch Level* is a number between one and three, where the lowest value (1) and the highest value (3) characterize the least hierarchical branches and the most hierarchical branches, respectively. We report the mean and the standard deviation for all the variables.

Branch Level (# Obs)	Mean Loan Amount	Mean # of Borrowers	Mean del. within a year	Mean Return on Loans	
	Mean	Std. Dev.	Mean	Std. Dev.	
Level 1 (34,068)	46,303	35,698	24.65	30.48	0.046
	0.116	0.066	0.083		
Level 2 (17,139)	70,231	48,438	25.27	52.53	0.039
	0.105	0.074	0.073		
Level 3 (2,872)	85,918	57,944	17.94	35.20	0.024
	0.083	0.078	0.067		
Table 3: Credit Rationing, Number of Borrowers and Total Lending

This table reports the effect of organizational design on total new lending to small individual borrowers (columns 1, 4, and 7), the number of new individual borrowers (columns 2, 5, and 8), and loan size (columns 3, 6, and 9), using specification (1). The unit of analysis is branch-quarter. The variable \textit{Branch Level} is a number between one and three, where the lowest value (1) and the highest value (3) characterize the least hierarchical branches and the most hierarchical branches, respectively. Before−2 is a dummy variable that equals one (minus one) if the branch was upgraded (downgraded) in one or two quarters. Before0 is a dummy variable that equals one (minus one) if the branch was upgraded this quarter or one quarter ago. After2 is a dummy variable that equals one (minus one) if the branch was upgraded (downgraded) two or three quarters ago. After4+ is a dummy variable that equals one (minus one) if the branch was upgraded (downgraded) four quarters ago or more. The standard errors are reported in parentheses and clustered at the branch level. * significant at 10%; ** significant at 5%; *** significant at 1%

Dependent Variable	ln (New Ind. Debt\textsubscript{b,q})	ln (\# of brwrs\textsubscript{b,q})	ln (Loan\textsubscript{b,q})	ln (New Ind. Debt\textsubscript{b,q})	ln (\# of brwrs\textsubscript{b,q})	ln (Loan\textsubscript{b,q})	ln (New Ind. Debt\textsubscript{b,q})	ln (\# of brwrs\textsubscript{b,q})	ln (Loan\textsubscript{b,q})
Branch Level	-0.099*** (0.030)	-0.045* (0.025)	-0.054*** (0.017)	-0.083** (0.033)	-0.031 (0.026)	-0.052*** (0.018)			
Before−2	0.032 (0.040)	0.039 (0.032)	-0.006 (0.024)						
Before0	-0.037 (0.041)	0.014 (0.033)	-0.051** (0.024)						
After2	-0.123*** (0.043)	-0.055 (0.034)	-0.068*** (0.026)						
After4+	-0.123*** (0.039)	-0.058* (0.033)	-0.065*** (0.022)						
Observations	54,079	54,079	54,079	54,079	54,079	54,079	54,079	54,079	54,079
Adj-\textit{R}^2	0.396	0.450	0.403	0.464	0.539	0.444	0.396	0.450	0.403
Branch FE	Y	Y	Y	Y	Y	Y	Y	Y	Y
Quarter FE	Y	Y	Y	N	N	N	Y	Y	Y
Quarter-District FE	N	N	N	Y	Y	Y	N	N	N
Table 4: Effect of Organizational Design on Loan Repayment

This table reports the effect of organizational structure on loan repayment (columns 1, 2, and 3) and its dynamics (columns 4 and 5), using specification (1). Column 3 reports the effect on value-weighted default rates after controlling for local demand shocks through quarter-district fixed effects instead of quarterly fixed effects. Column 4 reports the difference between the estimated coefficients on equally- and value-weighted default rates. Defaults are measured as a fraction of loans that are over 60 days late one year forward, estimated at the branch-quarter level. The sample considers individual, new loans that can be approved within any branch. The variable *Branch Level* is a number between one and three, where the lowest value (1) and the highest value (3) characterize the least hierarchical branches and the most hierarchical branches, respectively. Before$^{-2}$ is a dummy variable that equals one (minus one) if the branch was upgraded (downgraded) in one or two quarters. Before0 is a dummy variable that equals one (minus one) if the branch was upgraded this quarter or one quarter ago. After2 is a dummy variable that equals one (minus one) if the branch was upgraded (downgraded) two or three quarters ago. After$^{4+}$ is a dummy variable that equals one (minus one) if the branch was upgraded (downgraded) four quarters ago or more. The standard errors are reported in parentheses and clustered at the branch level. P-values are reported in square brackets. * significant at 10%; ** significant at 5%; *** significant at 1%

Defaults (60+ days late)	Equally Weighted	Value Weighted	Value Weighted	Difference	Equally Weighted	Value Weighted
	(1)	(2)	(3)	(4)	(5)	(6)
Branch Level	0.010***	0.014***	0.009***	0.004***		
	(0.003)	(0.003)	(0.003)	[0.008]		
Before$^{-2}$	0.003	0.001			(0.004)	(0.004)
Before0	0.010***	0.013***			(0.004)	(0.004)
After2	0.009***	0.013***			(0.004)	(0.003)
After$^{4+}$	0.012***	0.015***			(0.004)	(0.003)

Observations	54,079	54,079	54,079	54,079	54,079	54,079
Adj-R2	0.234	0.183	0.271	0.234	0.183	
Branch FE	Y	Y	Y	Y	Y	
Quarter FE	Y	Y	N	Y	Y	
Quarter-District FE	N	N	Y	N	N	

38
Table 5: Recovery Rates

The table below reports the mean (1) and the standard error (2) of our estimated recovery rates which are used in return on loan calculations. Additionally, column (3) reports the number of observations used in calculating the rates. We report rupee-weighted recovery rates from the defaulted loans computed as the value recovered against the defaulted principal and interest due for both secured and unsecured loans. Due to data limitations, the recovery rates are calculated only for loans written off in the first quarter of 2006. Unfortunately, we do not have the data from other quarters.

Recovery rate (δ)	Branch Hierarchy:	Mean (1)	S.E. (2)	Obs. (3)
Secured	Decentralized	48.07	0.56	2,516
	Medium	39.76	0.70	2,240
	Centralized	40.77	1.69	358
Unsecured	Decentralized	30.07	0.46	4,420
	Medium	23.47	0.46	3,699
	Centralized	23.28	1.02	595
Table 6: Return on Loans

This table reports the effect of organizational structure on the equally- and value-weighted return on loans (columns 1, 2, and 3) and its dynamics (columns 4 and 5) using specification (1). Column 3 reports the effect on value-weighted returns after controlling for local demand shocks through quarter-district fixed effects instead of quarterly fixed effects. Column 4 reports the difference between the estimated coefficients on equally and value-weighted returns. The unit of analysis is branch-quarter return on loans. First, we estimate the return for each loan, as defined in equation (2). Then we aggregate the loan-level estimate at the branch-quarter level using equal or value weights. The variable Branch Level is a number between one and three, where the lowest value (1) and the highest value (3) characterize the least hierarchical branches and the most hierarchical branches, respectively. Before$^{-2}$ is a dummy variable that equals one (minus one) if the branch was upgraded (downgraded) in one or two quarters. Before0 is a dummy variable that equals one (minus one) if the branch was upgraded this quarter or one quarter ago. After2 is a dummy variable that equals one (minus one) if the branch was upgraded (downgraded) two or three quarters ago. After$^{4+}$ is a dummy variable that equals one (minus one) if the branch was upgraded (downgraded) four quarters ago or more. Standard errors in parentheses are corrected for clustering at the branch level. P-values are reported in square brackets. * significant at 10%; ** significant at 5%; *** significant at 1%

	Equally Weighted (1)	Value Weighted (2)	Value Weighted (3)	Difference (2)-(1) (4)	Equally Weighted (5)	Value Weighted (6)
Branch Level	-0.007***	-0.010***	-0.006***	-0.003**		
Before$^{-2}$	(0.002)	(0.002)	(0.002)	(0.011)		
Before0		-0.007**	-0.010***			
	(0.003)	(0.003)				
After2		-0.003	-0.010***			
	(0.003)	(0.002)				
After$^{4+}$		-0.008***	-0.012***			
	(0.003)	(0.002)				
Observations	54,079	54,079	54,079	54,079	54,079	54,079
Adj-R2	0.155	0.136	0.207	0.155	0.136	
Branch FE	Y	Y	Y	Y	Y	Y
Quarter FE	Y	Y	N	Y	Y	
Quarter-District FE	N	N	Y	N	N	N
Table 7: Measures of Soft Information

The table below reports the effect of organizational design on soft information: inter-quartile range of debt (columns 1, 3, and 5) and standard deviation of debt (columns 2, 4, and 6), estimated in equation (5). Columns 3 and 4 report the effect on soft information after controlling for local demand shocks through quarter-district fixed effects instead of quarterly fixed effects. The unit of analysis is branch-quarter. The variable Branch Level is a number between one and three, where the lowest value (1) and the highest value (3) characterize the least hierarchical branches and the most hierarchical branches, respectively. Before \(-2\) is a dummy variable that equals one (minus one) if the branch was upgraded (downgraded) in one or two quarters. Before \(^0\) is a dummy variable that equals one (minus one) if the branch was upgraded this quarter or one quarter ago. After \(^2\) is a dummy variable that equals one (minus one) if the branch was upgraded (downgraded) two or three quarters ago. After \(^4+\) is a dummy variable that equals one (minus one) if the branch was upgraded (downgraded) four quarters ago or more. The standard errors are reported in parentheses and clustered at the branch level. * significant at 10%; ** significant at 5%; *** significant at 1%

Dependent Variable:	ln (IQR\(_b,q\))	ln (\(\sigma_{Loan_b,q}\))	ln (IQR\(_b,q\))	ln (\(\sigma_{Loan_b,q}\))	ln (IQR\(_b,q\))	ln (\(\sigma_{Loan_b,q}\))
(1)	(2)	(3)	(4)	(5)	(6)	
Branch Level	-0.123***	-0.095***	-0.112***	-0.076***		
	(0.026)	(0.021)	(0.029)	(0.023)		
Before \(-2\)		-0.026	0.020			
		(0.040)	(0.032)			
Before \(^0\)	-0.135***	-0.050				
	(0.042)	(0.034)				
After \(^2\)	-0.111***	-0.102***				
	(0.039)	(0.035)				
After \(^4+\)	-0.145***	-0.117***				
	(0.034)	(0.027)				
Observations	54,079	54,079	54,079	54,079	54,079	54,079
Adj-R\(^2\)	0.271	0.291	0.298	0.321	0.271	0.291
Branch FE	Y	Y	Y	Y	Y	Y
Quarter FE	Y	Y	N	N	Y	Y
Quarter-District FE	N	N	Y	Y	N	N
Table 8: First Stage Results

The table below reports the coefficients obtained from the first stage regression, used to estimate loan-level soft information (see Equation (5)). The dependent variable is the natural logarithm of the outstanding loan balance. The specification controls for the priority sector, the loan type, the collateral type, the branch, and quarterly fixed effects. To account for the potential differences in the realization value at seizure across collateral types, we estimate the interacted collateral type and nominal value coefficients. We report the average coefficient on the collateral value and provide a joint F-test that all coefficients are jointly equal to zero. The standard errors are reported in parentheses (except for the collateral value) and clustered at the branch level. * significant at 10%; ** significant at 5%; *** significant at 1%

Dependent Variable:	ln (Loan Size)
Maturity	0.0365***
	(0.0038)
Female	-0.1009***
	(0.0053)
ln (1+Value) x Collateral Type	0.1571***
F-test (p-val)	0.0000
Priority Sector	-0.0081
	(0.0105)

Observations: 1,742,092
Adjusted R^2: 0.55
Other Controls: Y
Branch FE: Y
Quarter FE: Y
Table 9: Effects of Organizational Structure on Loan Standardization

In this table, we report the effect of organizational hierarchy on the production of soft information using specification (1). The dependent variable $\hat{\sigma}(\epsilon_{b,t})$ captures the intensity of soft information at branch b, in quarter q. It is estimated as the standard deviation of the residuals obtained from the regression model defined in Equation (5). The variable Branch Level is a number between one and three, where the lowest value (1) and the highest value (3) characterize the least hierarchical branches and the most hierarchical branches, respectively. The columns (1) - (4) report cross-sectional results. Column (5) reports the within-branch results. Column (6) reports the results after controlling for local demand shocks through quarter-district fixed effects instead of quarterly fixed effects. The coefficients in column (7) report the cumulative dynamics of the organizational change. Before$^{-2}$ is a dummy variable that equals one (minus one) if the branch was upgraded (downgraded) in one or two quarters. Before0 was a dummy variable that equals one (minus one) if the branch is upgraded this quarter or one quarter ago. After2 is a dummy variable that equals one (minus one) if the branch was upgraded (downgraded) two or three quarters ago. After$^{++}$ is a dummy variable that equals one (minus one) if the branch was upgraded (downgraded) four or more quarters ago. For cross-sectional comparison, the measure is normalized by the standard deviation of the dependent variable (log outstanding amount) at the branch level. The sample is trimmed for the upper 1st percentile of the soft information. The standard errors are reported in parentheses and clustered at the branch level. * significant at 10%; ** significant at 5%; *** significant at 1%

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Dependent Variable: Soft Information $\hat{\sigma}(\epsilon_{b,t})$							
Branch Level	-0.048***	-0.042***	-0.038***	-0.043***	-0.033***	-0.022**	
	(0.003)	(0.004)	(0.004)	(0.006)	(0.008)	(0.009)	
Before$^{-2}$						-0.000	
						(0.011)	
Before0						-0.011	
						(0.011)	
After2						-0.022*	
						(0.012)	
After$^{++}$						-0.046***	
						(0.010)	
Observations	54,079	54,079	54,079	54,079	54,079	54,079	54,079
Adj-R^2	0.02	0.03	0.04	0.04	0.110	0.138	0.110
Initial Level FE	N	N	N	N	Y	N	N
Zone FE	N	Y	N	N	N	N	N
Region FE	N	N	Y	Y	N	N	N
Branch FE	N	N	N	N	Y	Y	Y
Quarter FE	Y	Y	Y	Y	Y	N	Y
Quarter-District FE	N	N	N	N	N	Y	N
Table 10: Effect of Organizational Design on Large Loans, Eligible for Approval Internally

This table reports the effect of organizational design on loans that had to be approved externally (e.g., regional office) before the change, but can be approved internally since the increase in the approval limit of the branch. We report the estimated effect on log debt amount (columns 1 and 4), the probability of receiving any credit (columns 2 and 5), and soft information (columns 3 and 6) using specification (1). The measure of soft information is the mean absolute value of the residual, estimated by Equation (5). The unit of analysis is branch-quarter. The variable Branch Level is a number between one and three, where the lowest value (1) and the highest value (3) characterize the least hierarchical branches and the most hierarchical branches, respectively. Before\(^{-2}\) is a dummy variable that equals one (minus one) if the branch was upgraded (downgraded) in one or two quarters. Before\(^{0}\) is a dummy variable that equals one (minus one) if the branch was upgraded (downgraded) this quarter or one quarter ago. After\(^{2}\) is a dummy variable that equals one (minus one) if the branch was upgraded (downgraded) two or three quarters ago. After\(^{4+}\) is a dummy variable that equals one (minus one) if the branch was upgraded (downgraded) four quarters ago or more. The standard errors are reported in the parentheses and clustered at the branch level. * significant at 10%; ** significant at 5%; *** significant at 1%

	ln (1 + Value\(_{b,q}\))	\#Loans\(_{b,q}>0\)	Soft Info	ln (1 + Value\(_{b,q}\))	\#Loans\(_{b,q}>0\)	Soft Info
	(1)	(2)	(3)	(4)	(5)	(6)
Branch Level	0.465***	0.035***	0.067***			
	(0.106)	(0.008)	(0.015)			
Before\(^{-2}\)				0.142	0.012	0.031
				(0.121)	(0.009)	(0.023)
Before\(^{0}\)				0.108	0.009	0.026
				(0.125)	(0.009)	(0.022)
After\(^{2}\)				0.420***	0.033***	0.067***
				(0.148)	(0.011)	(0.023)
After\(^{4+}\)				0.633***	0.047***	0.093***
				(0.136)	(0.010)	(0.021)
Observations	54,079	54,079	54,079	54,079	54,079	54,079
Adj – \(R^2\)	0.101	0.097	0.076	0.101	0.097	0.076
Quarter FE	Y	Y	Y	Y	Y	Y
Branch FE	Y	Y	Y	Y	Y	Y
Table 11: Organizational Hierarchy and Interference

This table reports two results. First, the effect of organizational design on the fraction of loans that have been approved by the manager with the smallest approval limit—the junior manager (column 1 in Panel A). Second, the cross-sectional treatment effect depending on the degree of delegation within the branch (Panel B). In Panel B we report the estimated effect on the measure of soft information (column 2), value-weighted return on loans (column 3) and default (column 4). The unit of analysis is a branch-quarter. The variable Branch Level is a number between one and three, where the lowest value (1) and the highest value (3) characterize the least hierarchical branches and the most hierarchical branches, respectively. The variable %, Junior Mgr is the average fraction of loans that have been delegated to the junior manager at the branch level. The standard errors are reported in parentheses and clustered at the branch level. * significant at 10%; ** significant at 5%; *** significant at 1%

% Approved by Junior Manager	Soft Info	VW ROL	Defaults
Panel A: Delegation			
Branch Level	-0.054***		
(0.010)			
Adj R2	54.079		
Obs	0.36		
Quarter FE	Y		
Branch FE	Y		

Panel B: Cross-sectional effects by degree of delegation
Branch Level
(0.027)
Branch Level x %, Junior Mgr
(0.031)
Observations
Adj – R^2
Quarter FE
Branch FE

Table 12: Bank Competition

This table reports the effect of organizational design depending on the bank competition in the area. We report the estimated effect on the three measures of soft information (columns 1 to 3), value-weighted return on loans (column 4) and default (column 5), log debt amount (column 6), and the number of borrowers (column 7). The unit of analysis is branch-quarter. The variable Branch Level is a number between one and three, where the lowest value (1) and the highest value (3) characterize the least hierarchical branches and the most hierarchical branches, respectively. Branch Density is the log of number of bank branches scaled by the size of population (in 1,000) in a district in 2001. The variable is winsorized for a single outlier district that corresponds to 3% of the sample. The standard errors are reported in parentheses and clustered at the branch level. * significant at 10%; ** significant at 5%; *** significant at 1%

Soft Info	ln (IQRb,q)	ln ($\sigma_{Loan,b,q}$)	VW ROL	VW Defaults	ln (New Ind. Debtb,q)	ln (# of brwrsb,q)	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	
Branch Level	-0.116***	-0.192***	-0.203***	-0.006***	0.024***	-0.323***	-0.295***
	(0.021)	(0.073)	(0.058)	(0.001)	(0.006)	(0.005)	(0.073)
Branch Level x Branch Density	-0.030***	-0.025	-0.037*	-0.001***	0.004*	-0.080***	-0.096***
	(0.007)	(0.024)	(0.019)	(0.000)	(0.002)	(0.031)	(0.024)
Observations	54,079	54,079	54,079	54,079	54,079	54,079	54,079
Adj – R^2	0.108	0.271	0.292	0.133	0.177	0.390	0.444
Quarter FE	Y	Y	Y	Y	Y	Y	Y
Branch FE	Y	Y	Y	Y	Y	Y	Y
Table 13: Organizational Hierarchy and Corruption

The table reports the effect of organizational design depending on the severity of corruption in the area. We report the estimated effect on the measure of soft information (column 1), value-weighted return on loans (column 2) and default (column 3). The unit of analysis is branch-quarter. The variable Branch Level is a number between one and three, where the lowest value (1) and the highest value (3) characterize the least hierarchical branches and the most hierarchical branches, respectively. BIMARU is a dummy variable equal to one if the branch is located in states of Bihar, Madhya Pradesh, Rajasthan, and Uttar Pradesh, which have been singled out for corruption and dysfunction. The standard errors are reported in parentheses and clustered at the branch level. * significant at 10%; ** significant at 5%; *** significant at 1%

	Soft Info (1)	VW ROL (2)	VW Default (3)
Branch Level	-0.046***	-0.016***	0.020***
	(0.000)	(0.000)	(0.000)
Branch Level x BIMARU	0.043**	0.019***	-0.021***
	(0.017)	(0.000)	(0.000)
Obs	53,579	53,579	53,579
Adj-R²	0.110	0.136	0.183
Branch FE	Y	Y	Y
Quarter FE	Y	Y	Y

Table 14: Loan Size Manipulation Around the Approval Limit

In this table, we report the effect of the organizational hierarchy for the loans well below the loan approval limit of the head of the branch. We redefine the approval limit as 80% of the true threshold. We report the effect on the value-weighted defaults (column 1) and return on loans (column 2), and the soft information (columns 3 and 4). The unit of analysis is a branch-quarter. The measure of soft information is estimated as the standard deviation of the residuals obtained from the regression model defined in Equation (5). The defaults are measured as whether a loan is over 60 days late one year forward. The return on loans is measured as defined in equation (2). The variable Branch Level is a number between one and three, where the lowest value (1) and the highest value (3) characterize the least hierarchical branches and the most hierarchical branches, respectively. Before−2 is a dummy variable that equals one (minus one) if the branch was upgraded (downgraded) in one or two quarters. Before⁰ is a dummy variable that equals one (minus one) if the branch was upgraded this quarter or one quarter ago. After² is a dummy variable that equals one (minus one) if the branch was upgraded (downgraded) two or three quarters ago. After⁴+ is a dummy variable that equals one (minus one) if the branch was upgraded (downgraded) four quarters ago or more. The standard errors are reported in parentheses and clustered at the branch level. * significant at 10%; ** significant at 5%; *** significant at 1%

	VW Def (1)	VW ROL (2)	Soft Info (3)
Branch Level	0.013***	-0.008***	-0.035***
	(0.003)	(0.004)	(0.008)
Before−2			0.006
			(0.011)
Before⁰			-0.009
			(0.012)
After²			-0.022*
			(0.013)
After⁴+			-0.047***
			(0.010)
Observations	54,079	54,079	54,079
Adj-R²	0.18	0.13	0.11
Branch FE	Y	Y	Y
Quarter FE	Y	Y	Y
Table 15: Manager Rotation

The table reports the results of manager rotation when the organizational design remains unchanged. We show the estimated effects on the soft information (column 1), the value weighted return on loans (column 2) and defaults (column 3), log average loan (column 4), log total new individual lending (column 5), log total new individual borrowers (column 6), and the inter-quartile range of debt (column 7). The unit of analysis is a branch-quarter. The variable Change is a dummy variable equal to one if the manager changed at the branch \(b\), in quarter \(q\), and zero otherwise. The measure of soft information is estimated as the standard deviation of the residuals obtained from the regression model defined in Equation (5). The defaults are measured as whether a loan is over 60 days late one year forward. The standard errors are reported in parentheses and clustered at the branch level. * significant at 10%; ** significant at 5%; *** significant at 1%

Soft Info	VW ROL	VW Default	\(\ln(\sigma_{\text{Loan}_{b,q}})\)	\(\ln(\text{New Ind. Debt}_{b,q})\)	\(\ln(\# \text{ of brwrs}_{b,q})\)	\(\ln(\text{IQR}_{b,q})\)	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	
Change	-0.015	-0.004	0.001	0.007	-0.029	-0.036	0.014
	(0.010)	(0.003)	(0.003)	(0.021)	(0.037)	(0.029)	(0.036)
Obs	50,548	50,548	50,548	50,548	50,548	50,548	50,548
Adj-\(R^2\)	0.109	0.130	0.181	0.388	0.396	0.444	0.264
Branch FE	Y	Y	Y	Y	Y	Y	Y
Quarter FE	Y	Y	Y	Y	Y	Y	Y

Table 16: Combined Retail Portfolio

In this table, we report the effect of the organizational hierarchy for the combined retail portfolio (i.e. it includes both small and large loans). We report the effect on the soft information, standard deviation of debt, inter-quartile range of debt, value-weighted defaults and return on loans, and total new lending to retail borrowers in columns 1 through 6, respectively. The unit of analysis is a branch-quarter. The measure of soft information is estimated as the standard deviation of the residuals obtained from the regression model defined in Equation (5). The defaults are measured as whether a loan is over 60 days late one year forward. The return on loans is measured as defined in equation (2). The variable Branch Level is a number between one and three, where the lowest value (1) and the highest value (3) characterize the least hierarchical branches and the most hierarchical branches, respectively. The standard errors are reported in parentheses and clustered at the branch level. * significant at 10%; ** significant at 5%; *** significant at 1%

Soft info	\(\ln(\sigma_{\text{Loan}_{b,q}})\)	\(\ln(\text{IQR}_{b,q})\)	VW Default	VW ROL	\(\ln(\text{New Ind. Debt}_{b,q})\)	
(1)	(2)	(3)	(4)	(5)	(6)	
Branch Level	-0.030***	-0.042*	-0.089***	0.013***	-0.009***	-0.040
	(0.000)	(0.070)	(0.001)	(0.000)	(0.000)	(0.180)
Obs	54,078	54,078	54,067	54,078	54,078	54,078
Adj-\(R^2\)	0.108	0.407	0.350	0.186	0.114	0.466
Branch FE	Y	Y	Y	Y	Y	Y
Quarter FE	Y	Y	Y	Y	Y	Y
A Example Loan Term Sheet

Table A1: Interest Rates and Loans

The table provides three examples of loan terms by product type. The term sheet defines the relationship between the loan size, the maturity, and the interest rate. The terms are set centrally by the head office and are uniform for all bank branches. Please note that the numbers have been changed to preserve the bank’s identity.

Home Loan	Maturity	≤ 2,000,000	> 2,000,000
	Up to 5 years	1.5% + base rate	3.0% + base rate
	Over 5 years & up to 20 years	2.0% + base rate	4.0% + base rate

Home Improvement Loan

| All sizes | All maturities | 3.0% + base rate |

Car Loan

All sizes	Up to 5 years	3.0% + base rate
Over 5 years	4.0% + base rate	