Three remarks on a question of Aczél

Orr Moshe Shalit

Abstract. At ISFE 2009 J. Aczel asked for the monotonic solutions of a certain functional equation. We show that when a parameter appearing in the equation takes a certain value there is a unique monotonic solution, and when it takes other values there are infinitely many monotonic solutions. Further, we comment on continuous and continuously differentiable solutions.

Mathematics Subject Classification. 39B22.

1. Introduction

Consider the functional equation

\[f(x^2 R) = \frac{k}{2xR} f(x), \quad x > \frac{1}{R}, \]

where \(R, k \) are positive constants. In a personal communication, we learned from Ali Abbas that he gives this equation the interpretation of describing the probability density function for power consumption in a wire.

At the 47th International Symposium on Functional Equations 2009, Janos Aczél [1, p. 195] presented the general solution of this equation as

\[f(x) = \frac{(\ln(xR))^c}{xR} p(\log_2(\ln(xR))), \]

where \(c = \log_2(k/2) \) and \(p \) is an arbitrary periodic function of period 1 on \(\mathbb{R} \) (for proof define \(p(s) = (\frac{k}{2})^s \exp(2^s f(\frac{\exp(s^2)}{R})) \)), and then asked for the monotonic solutions.

A special solution for the functional equation (1) is

\[\varphi_c(x) = \frac{(\ln(xR))^c}{xR}, \]

obtained by taking \(p \equiv 1 \) in (2). This function is monotonic precisely when \(c \leq 0 \), that is, when \(k \leq 2 \). Are all monotonic solutions of (1) scalar multiples
of φ_c? We show that when $k = 2$ the answer is yes, and that it is no when $k < 2$. We then consider the effects of imposing continuity and differentiability conditions at $1/R$. Here, too, the results depend on the value of k.

2. Monotonicity

First, assume that $k = 2$.

Theorem 1. Let p be periodic of period 1. The function

$$f(x) = \frac{1}{xR} \cdot p(\log_2(\ln(xR)))$$

is monotonic on $(1/R, \infty)$ if, and only if, p is constant.

Proof. If p is not constant, then it takes two distinct values $M > m$. For any x_1, x_2 sufficiently close to $1/R$,

$$M \frac{1}{x_1 R} > m \frac{1}{x_2 R}.$$

Let x_1 be sufficiently close to $1/R$ which satisfies $p(\log_2(\ln(x_1 R))) = M$, and let $x_2 > 1/R$ be smaller than x_1 such that $p(\log_2(\ln(x_2 R))) = m$. Then $x_2 < x_1$, but $f(x_1) > f(x_2)$, so f is not monotonic decreasing. In other words, if f is monotonic decreasing, then p is constant.

If f is an increasing function then $-f$ is a decreasing function of the same form, so p must be constant.

Corollary 2. When $k = 2$, the only monotonic solutions to (1) are $f(x) = \frac{\lambda}{xR} = \lambda \varphi_0(x)$, $\lambda \in \mathbb{R}$.

Now we consider the case $k < 2$.

Theorem 3. There are infinitely many differentiable functions p such that (2) is a monotonic solution of (1) with $k < 2$.

Proof. Indeed, differentiating (2) we find

$$f'(x) = \frac{\ln(xR)^{c-1}}{x^2 R} \left((c - \ln(xR)) \cdot p(\log_2(\ln(xR))) + \log_2 e \cdot p'(\log_2(\ln(xR))) \right).$$

(4)

Keeping in mind that $c < 0$ in this case, it is easy to see that, so long as p is bounded away from 0 and $|p'|$ is bounded from above by a small enough number, f' has a constant sign in $(1/R, \infty)$.

Thus, there are many monotonic — even differentiable — solutions other than φ_c.