ARTIN \(L \)-FUNCTIONS ON \(\text{PGL}_3 \)

MING-HSUAN KANG AND WEN-CHING WINNIE LI

Abstract. We study Artin \(L \)-functions on a finite 2-dimensional complex \(X_\Gamma \) arising from \(\text{PGL}_3 \) attached to finite-dimensional representations \(\rho \) of its fundamental group. Some key properties, such as rationality, functional equation, and invariance under induction, of these functions are proved. Moreover, using a cohomological argument, we establish a connection between the Artin \(L \)-functions and the \(L \)-function of \(\rho \), extending the identity on zeta functions of \(X_\Gamma \) obtained in [KL, KLW].

1. Introduction

Let \(F \) be a nonarchimedean local field with the ring of integers \(\mathcal{O} \) and a uniformizer \(\pi \) such that its residue field \(\kappa = \mathcal{O}/\pi \mathcal{O} \) has cardinality \(q \). The building attached to the group \(G = \text{PGL}_3(F) \) is a contractible 2-dimensional simplicial complex \(X \), whose vertices are homothety classes of \(\mathcal{O} \) lattices of rank-3 in the 3-dimensional vector space \(F^3 \). The group \(G \) acts transitively on \(X \) as automorphisms.

Fix a discrete cocompact torsion-free subgroup \(\Gamma \) of \(G \) so that \(X_\Gamma = \Gamma \backslash X \) is a finite complex locally isomorphic to \(X \). Then \(X_\Gamma \) has \(X \) as its universal cover and \(\Gamma \) as its fundamental group. Two kinds of zeta functions, the edge zeta function and the chamber zeta function, on \(X_\Gamma \) were considered in [KL, KLW]. They extend the Ihara zeta functions for graphs to finite two-dimensional complexes. Analogous to the two expressions for the Ihara zeta function in terms of the vertex adjacency operator by Ihara [Ih] and edge adjacency operator by Hashimoto [Ha1], the edge and chamber zeta functions for \(X_\Gamma \) are shown to be rational functions and they satisfy an identity involving operators on the vertices, edges and chambers, resembling the zeta function for a smooth irreducible projective surface defined over a finite field. Along a similar vein, the edge and chamber zeta functions for finite quotients of the building of another rank two group \(\text{Sp}_4(F) \) have been investigated in [FLW], where rationality and identities for the zeta functions are also obtained, but they are more complicated due to the nature of the group.

Let \(\rho \) be a \(d \)-dimensional representation of \(\Gamma \) acting on the space \(V_\rho \) over \(\mathbb{C} \). In this paper we study the \(i \)-th Artin \(L \)-function of \(X_\Gamma \) attached to \(\rho \) for \(i = 1, 2 \) defined by

\[
L_i(X_\Gamma, \rho, u) = \prod_{p} \det \left(I - \rho(Frob_p)u^{l_A(p)} \right)^{-1},
\]

where \(I \) is the identity \(d \times d \) matrix, \(|p| \), which plays the role of an \(i \)-dimensional prime, runs through all equivalence classes of primitive uni-type closed \(i \)-dimensional geodesics \(p \) in \(X_\Gamma \), \(l_A(p) \) is the algebraic length of \(p \), and \(Frob_p \) is a conjugacy class in \(\Gamma \) associated to the “prime” \(|p| \). See §3.3 and §4.4 for detailed definitions. When \(\rho \) is the trivial representation of \(\Gamma \), the above \(L \)-functions coincide with the edge and chamber zeta functions studied in [KL, KLW].

Denote by \(N_i \) the number of \(i \)-dimensional simplices in \(X_\Gamma \). The Euler characteristic \(\chi(X_\Gamma) \) of the complex \(X_\Gamma \) is equal to \(N_0 - N_1 + N_2 \). We summarize the main properties of these Artin \(L \)-functions.

Theorem 1.0.1. \(L_1(X_\Gamma, \rho, u) \) converges absolutely for \(|u| \) small enough to a rational function of the form

\[
L_1(X_\Gamma, \rho, u) = \frac{1}{\det(I - A_E(\rho, u))},
\]

where \(A_E(\rho, u) \) is an edge adjacency operator acting on a free \(\mathbb{C}[u] \)-module of rank \(2dN_1 \). Consequently, \(L_1(X_\Gamma, \rho, u) \) has a meromorphic continuation to the whole \(u \)-plane, with reciprocal equal to a polynomial of degree \(2dN_1 \).

\[\text{2000 Mathematics Subject Classification. Primary: 22E35; Secondary: 11F70.}\]
\[\text{The research of the first author is supported by the NSC grant 100-2115-M-009-008-MY2 and 102-2115-M-009-005. The research of the second author is partially supported by the NSF grant DMS-1101368.}\]
4.3.1 shows its connection with the two vertex adjacency operators on L of irreducible subrepresentations. Define the (unramified) L-function, where σ is an irreducible representation of G. Since Γ is discrete and cocompact, the induced representation Ind_G^G is the identity operator.

With the above notation, for a point $u \in X_\Gamma$, the L-function of $\text{Ind}_G^G\rho$ can be decomposed into a direct sum of irreducible subrepresentations. Define the (unramified) L-function of $\text{Ind}_G^G\rho$ to be

$$L(\text{Ind}_G^G\rho, u) = \prod_{\sigma} L(\sigma, u)^{m(\sigma)},$$

where σ runs through all unramified irreducible representations of G and $m(\sigma)$ is the multiplicity of σ in $\text{Ind}_G^G\rho$. It is shown in §2 that the reciprocal of $L(\text{Ind}_G^G\rho, u)$ is a polynomial of degree $3dN_0$, and Proposition 4.3.1 shows its connection with the two vertex adjacency operators on X_Γ.

The main purpose of this paper is to prove the following identity on L-functions.

Theorem 1.0.2. Let $L_2(X_\Gamma, \rho, u)$ converges absolutely for $|u|$ small enough to a rational function of the form

$$L_2(X_\Gamma, \rho, u) = \frac{1}{\det(I - A_C(\rho, u))},$$

where $A_C(\rho, u)$ is a chamber adjacency operator acting on a free $\mathbb{C}[u]$-module of rank $3dN_2$. Consequently, $L_2(X_\Gamma, \rho, u)$ has a meromorphic continuation to the whole u-plane, with reciprocal equal to a polynomial of degree $3dN_2$.

These zeta functions encode the geometric information of Γ. The spectral information of Γ is characterized by the (local) L-function which we now explain. The Satake parameter attached to an irreducible unramified representation σ of G is a semisimple conjugacy class $s(\sigma)$ in the complex dual group $\hat{G}(\mathbb{C}) \cong \text{SL}_3(\mathbb{C})$ of G. The L-function of σ attached to the standard representation of $\text{SL}_3(\mathbb{C})$ is

$$L(\sigma, u) = \det(I - s(\sigma)u)^{-1}.$$

Since Γ is discrete and cocompact, the induced representation $\text{Ind}_G^G\rho$ can be decomposed into a direct sum of irreducible subrepresentations. Define the (unramified) L-function of $\text{Ind}_G^G\rho$ to be

$$L(\text{Ind}_G^G\rho, u) = \prod_{\sigma} L(\sigma, u)^{m(\sigma)},$$

where σ runs through all unramified irreducible representations of G and $m(\sigma)$ is the multiplicity of σ in $\text{Ind}_G^G\rho$. It is shown in §2 that the reciprocal of $L(\text{Ind}_G^G\rho, u)$ is a polynomial of degree $3dN_0$, and Proposition 4.3.1 shows its connection with the two vertex adjacency operators on X_Γ.

The main purpose of this paper is to prove the following identity on L-functions.

Theorem 1.0.3. With the above notation, for a d-dimensional representation ρ of Γ we have

$$(1 - u^3)\chi(X_\Gamma)dL(\text{Ind}_G^G\rho, qu) = \frac{L_1(X_\Gamma, \rho, u)}{L_2(X_\Gamma, \rho, -u)}.$$

This theorem is proved by a cohomological argument. More precisely, we define a cochain complex C^* whose i-th cochain group $C^i(X_\Gamma, \rho)$ for $0 \leq i \leq 2$ consists of $V_\rho \otimes_{\mathbb{C}} \mathbb{C}[u]$-valued functions on pointed i-simplicies on which the group Γ acts via ρ, and the coboundary maps are suitable deformations (involving the variable u) of the usual coboundary maps. See §4.2 and §5.1 for details. We show in §6 that there exist cochain endomorphisms $\Phi_i = \Phi_i(u)$ on $C^i(X_\Gamma, \rho)$ for $i = 0, 1$ and 2 whose determinants interpret the L-functions introduced above:

Theorem 1.0.4.

1. $\det(\Phi_0 | C^0(X_\Gamma, \rho)) = L(\text{Ind}_G^G\rho, qu)^{-1}$.
2. $\det(\Phi_1 | C^1(X_\Gamma, \rho)) = (1 - u^3)dN_1L_1(X_\Gamma, \rho, u)^{-1}$.
3. $\det(\Phi_2 | C^2(X_\Gamma, \rho)) = (1 - u^3)^{2dN_2}L_2(X_\Gamma, \rho, -u)^{-1}$.

The desired identity in Theorem 1.0.3 then follows from the fact that for each i, the cochain map Φ_i on $C^i(X_\Gamma, \rho)$ is homotopically equivalent to the cochain map multiplication by $1 - u^3$.

Remark. The combinatorial Artin L-functions attached to representations were considered by Ihara in [BH], Hashimoto in [Ha2, Ha3], Mizuno and Sato in [MS], and Stark and Terras in [ST2] for graphs. In the case of a finite connected undirected graph Y, the equivalence classes of primitive tailless closed geodesics in Y, that is, the “primes” for Y, naturally correspond to the conjugacy classes of nonidentity primitive elements in the fundamental group of Y. As pointed out in [KL], this is no longer the case for our X_Γ. Namely there are more Frobenius conjugacy classes than conjugacy classes of nonidentity primitive elements in Γ. Our results are generalizations of those of Hashimoto [Ha2] from graphs to two-dimensional complexes, but our method is different from his. For trivial ρ, two different proofs are in the literature: the one in [KL] results from counting the number of desired closed geodesics of given length, while in [KLW] the identity is derived using representation theory. The cohomological method described above is a generalization of the approach by Bass [Ba] and re-interpreted by Hoffman [Ho] for graphs. In particular it provides a third proof of the identities on zeta functions established in [KL, KLW],
Set
\[\epsilon(\rho, u) = \left(1 - \left(\frac{u}{q} \right)^3 \right)^{dN_0/2} \left(1 - (qu)^3 \right)^{dN_0/2}. \]

In §2.2 we show that there is a functional equation relating the L-function of \(\text{Ind}_{\Gamma}^G \rho \) and that of \(\text{Ind}_{\Gamma'}^G \rho' \).

Theorem 1.0.5. The following functional equation holds:
\[\epsilon(\rho, \frac{1}{qu}) L(\text{Ind}_{\Gamma}^G \rho, \frac{1}{qu}) = \epsilon(\rho^*, qu) L(\text{Ind}_{\Gamma'}^G \rho^*, qu). \]

Here \(\rho^* \) is the contragredient representation of \(\rho \).

Combined with Theorem 1.0.3 the above functional equation can be restated in terms of the quotient of the Artin L-functions.

Theorem 1.0.6. The following functional equation holds:
\[\hat{\epsilon}(\rho, \frac{1}{q^2u}) \frac{L_1(X_{\Gamma}, \rho, \frac{1}{q^2u})}{L_2(X_{\Gamma}, \rho, -\frac{1}{q^2u})} = \hat{\epsilon}(\rho^*, u) \frac{L_1(X_{\Gamma}, \rho^*, u)}{L_2(X_{\Gamma}, \rho^*, -u)}. \]

Here \(\hat{\epsilon}(\rho, u) = \epsilon(\rho, qu)(1 - u^3)^{-\chi(X_{\Gamma})d} \).

It follows immediately from the definition that for \(i = 1, 2 \) the Artin L-function decomposes into a product when the representation is a direct sum, that is,
\[L_i(X_{\Gamma}, \rho_1 \oplus \rho_2, u) = L_i(X_{\Gamma}, \rho_1, u)L_i(X_{\Gamma}, \rho_2, u). \]

In §7 we show that the Artin L-function is invariant under induction, just like the usual Artin L-functions attached to representations of the absolute Galois group of a number field.

Theorem 1.0.7. Suppose \(\rho \) is induced from a finite-dimensional representation \(\rho' \) of a finite-index subgroup \(\Gamma' \) of \(\Gamma \). Let \(X_{\Gamma'} = \Gamma' \backslash X \). Then for \(i = 1, 2 \) we have
\[L_i(X_{\Gamma}, \rho, u) = L_i(X_{\Gamma'}, \rho', u). \]

The corresponding statement for graphs was proved by Hashimoto in [Ha3], where it was proved by counting closed geodesics, using definition of the Artin L-function. Our proof in §7 compares the actions of the edge/chamber adjacency operators on \(X_{\Gamma} \) and \(X_{\Gamma'} \), using Theorems 1.0.1 and 1.0.2.

In particular, when \(\rho' \) is the identity representation of a finite-index normal subgroup \(\Gamma' \), the induced representation \(\text{Ind}_{\Gamma'}^G 1 \) decomposes into the direct sum \(\bigoplus_{\sigma \in \overline{\Gamma'/\Gamma}} m(\sigma)\sigma \), where \(\overline{\Gamma'/\Gamma} \) consists of all irreducible representations of the quotient group \(\Gamma'/\Gamma' \), and the multiplicity \(m(\sigma) \) is equal to the degree of \(\sigma \). Thus
\[Z_i(X_{\Gamma'}, u) = L_i(X_{\Gamma'}, 1, u) = \prod_{\sigma \in \overline{\Gamma'/\Gamma}} L_i(X_{\Gamma}, \sigma, u)^{m(\sigma)}, \]
for \(i = 1, 2 \). By Theorems 1.0.1 and 1.0.2 the reciprocal of each \(L_i \) above is a polynomial, hence we conclude

Corollary 1.0.8. Let \(\Gamma' \) be a normal subgroup of \(\Gamma \) of finite index. Then for \(i = 1 \) and 2, \(Z_i(X_{\Gamma'}, u)^{-1} \) divides \(Z_i(X_{\Gamma'}, u)^{-1} \).

The corresponding statement for graphs was proved in [Ha2].

2. L-functions and Functional Equations

2.1. L-functions. The group \(K = \text{PGL}_3(\mathbb{O}) \) is the standard maximal compact subgroup of \(G = \text{PGL}_3(F) \). The Hecke algebra \(H(G, K) \) is generated by the following two Hecke operators:
\[A_1 = K \left(\begin{array}{cc} 1 & \pi \\ 0 & 1 \end{array} \right) K \quad \text{and} \quad A_2 = K \left(\begin{array}{cc} 1 & \pi \\ \pi & 1 \end{array} \right) K. \]

The Satake isomorphism \(\phi : H(G, K) \to C[z_1, z_2, z_3]^{S_3}/(z_1z_2z_3 - 1) \) is characterized by
\[\phi(A_1) = q(z_1 + z_2 + z_3) \quad \text{and} \quad \phi(A_2) = q(z_1z_2 + z_2z_3 + z_1z_3). \]
For an unramified irreducible representation (σ, V_σ) of G with the Satake parameter $s(\sigma)$ equal to the conjugacy class of $\left(\begin{smallmatrix} \lambda_1 & \lambda_2 \\ \lambda_2 & \lambda_3 \end{smallmatrix} \right)$, its K-fixed subspace V_σ^K is one-dimensional on which $I - A_1 u + q A_2 u^2 - q^3 u^3 I$ acts as multiplication by the scalar
\[
\det(I - A_1 u + q A_2 u^2 - q^3 u^3 I \mid V_\sigma^K) = 1 - q(\lambda_1 + \lambda_2 + \lambda_3)u + q^2(\lambda_1 \lambda_2 + \lambda_2 \lambda_3 + \lambda_1 \lambda_3)u^2 - q^3 u^3
\]
\[
= \prod_{\lambda=1}^{3}(1-q\lambda_iu) = L(\sigma, qu)^{-1}.
\]
Here and thereafter $\det(A|W)$ denotes the determinant of the linear operator A on the finite dimensional vector space W. The induced representation
\[
\text{Ind}^G_G \rho = \{ f : G \to V_\rho \mid f(\gamma x) = \rho(\gamma)f(x), \text{ for all } \gamma \in \Gamma \text{ and } x \in G \}
\]
decomposes into a direct sum of irreducible representations σ of G. The total number of unramified σ’s, counting multiplicity, is equal to the dimension of $(\text{Ind}^G_G \rho)^K$. Hence
\[
L(\text{Ind}^G_G \rho, qu) = \prod_\sigma L(\sigma, qu) = \prod_\sigma \det(I - A_1 u + q A_2 u^2 - q^3 u^3 I \mid V_\sigma^K)^{-1}
\]
\[
= \det(I - A_1 u + q A_2 u^2 - q^3 u^3 I \mid (\text{Ind}^G_G \rho)^K)^{-1}.
\]
We record this in

Proposition 2.1.1.

\[
L(\text{Ind}^G_G \rho, qu) = \det(I - A_1 u + q A_2 u^2 - q^3 u^3 I \mid (\text{Ind}^G_G \rho)^K)^{-1}.
\]

Note that the dimension of $(\text{Ind}^G_G \rho)^K$ is equal to the cardinality of the double cosets in $\Gamma \backslash G / K$ times the dimension of V_ρ, that is, $N_0 d$. Hence the denominator of $L(\text{Ind}^G_G \rho, qu)$ is a polynomial of degree $3dN_0$.

2.2. A functional equation.**

In this subsection we prove the functional equation satisfied by $L(\text{Ind}^G_G \rho, qu)$ as stated in Theorem 1.0.6. Given an irreducible unramified representation (σ, V) with the Satake parameter $s_\rho = \left(\begin{smallmatrix} \lambda_1 & \lambda_2 \\ \lambda_2 & \lambda_3 \end{smallmatrix} \right)$, its contragredient representation (σ^*, V^*) has the Satake parameter equal to s_ρ^{-1}. Since $\lambda_1 \lambda_2 \lambda_3 = 1$, we have
\[
A_1|_V = q(\lambda_1 + \lambda_2 + \lambda_3) = q(\lambda_2^{-1} \lambda_3^{-1} + \lambda_1^{-1} \lambda_3^{-1} + \lambda_1^{-1} \lambda_2^{-1}) = A_2|_V.
\]
and
\[
A_2|_V = q(\lambda_2 \lambda_3 + \lambda_1 \lambda_3 + \lambda_1 \lambda_2) = q(\lambda_1^{-1} + \lambda_2^{-1} + \lambda_3^{-1}) = A_1|_{V^*}.
\]
Therefore,
\[
L(\sigma^*, qu) = \det(1 - A_2 u + q A_1 u^2 - q^3 u^3 | V)^{-1}
\]
and
\[
L(\text{Ind}^G_G \rho, \frac{1}{qu}) = \det \left(1 - A_1 \frac{1}{q^2 u} + A_2 \frac{1}{q^4 u^2} - \frac{1}{q^6 u^3} \mid (\text{Ind}^G_G \rho)^K \right)^{-1}
\]
\[
= (-q^3 u^3)^{dN_0} \det(1 - A_2 u + q A_1 u^2 - q^3 u^3 \mid (\text{Ind}^G_G \rho)^K)^{-1}
\]
\[
= (-q^3 u^3)^{dN_0} L(\text{Ind}^G_G \rho^*, qu).
\]
Let
\[
\epsilon(\rho, u) = \left(1 - \frac{u}{q} \right)^{dN_0/2} \left(1 - (qu)^3 \right)^{dN_0/2}.
\]
It is easy to verify that
\[
\epsilon(\rho, \frac{1}{qu}) L(\text{Ind}^G_G \rho, \frac{1}{qu}) = \epsilon(\rho^*, qu) L(\text{Ind}^G_G \rho^*, qu),
\]
which proves Theorem 1.0.6.
3. Paths and galleries on the simplicial complex X

These were discussed in detail in [KL]. In this section we recall them and set up notation to be used later.

3.1. The building X of $\text{PGL}_3(F)$. The vertices of the building X of $\text{PGL}_3(F)$ are the homothety classes of \mathcal{O}-lattices a in F^3. Given an inclusion relation of lattices $a_1 \supseteq a_2 \supseteq \cdots \supseteq a_r$, denote by $[a_1 \supseteq a_2 \supseteq \cdots \supseteq a_r]$ the homothety class of this relation. Hence the vertices of X, also called the (pointed) 0-simplices of X, are denoted by $[a]$. Two vertices $[a_1]$ and $[a_2]$ form an edge (or 1-simplex) $E = \{[a_1], [a_2]\}$ of X if there exist representatives a_1 and a_2 so that $\pi^{-1} a_2 \supseteq a_1 \supseteq a_2(\supseteq \pi a_1)$. In this case, a_1/a_2 is a proper subspace of $\pi^{-1} a_2/a_2 \cong (F_q)^3$ with dimension

$$|a_1/a_2| := \dim F_q a_1/a_2 = 1 \text{ or } 2, \quad \text{and} \quad |a_2/\pi a_1| = \dim F_q a_2/\pi a_1 = 3 - |a_1/a_2|.$$

To E, we associate two pointed edges: $[\pi^{-1} a_2 \supseteq a_1 \subsetneq a_2]$ of type $[a_1/a_2]$, and $[a_1 \supseteq a_2 \supseteq \pi a_1]$ of type $[a_2/\pi a_1]$. Define the algebraic length of a pointed edge to be its type. Three vertices, $[a_1], [a_2]$ and $[a_3]$ form a chamber (or 2-simplex) $C = \{[a_1], [a_2], [a_3]\}$ if there exist representatives a_1, a_2 and a_3 so that $a_1 \supseteq a_2 \supseteq a_3 \supseteq a_1(\supseteq \pi a_2 \supseteq \pi a_3)$. In this case, we associate to C three pointed chambers $[\pi^{-1} a_3 \supseteq a_1 \supseteq a_2]$, $[a_1 \supseteq a_2 \supseteq a_3 \supseteq a_2]$, and $[a_1 \supseteq a_2 \supseteq a_3 \supseteq \pi a_3]$. The algebraic length of a pointed chamber $[a_1 \supseteq a_2 \supseteq a_3 \supseteq a_1]$ is defined to be the type of the pointed edge $[a_1 \supseteq a_2 \supseteq a_3 \supseteq a_1]$, which is always equal to 1.

An element $g \in G$ acts on the vertices of X by sending $[a]$ to $[ga]$. It preserves edges and chambers, and hence G acts on X as automorphisms. Note that K is the stabilizer of the vertex represented by the lattice spanned by the standard basis of F^3. As G acts transitively on vertices of X, the coset space G/K parametrizes the vertices of X. Furthermore, G also acts transitively on pointed edges and pointed chambers and these two sets can be parametrized by cosets of certain parahoric subgroup and Iwahoric subgroup of G, respectively. See [KL] for details.

3.2. Out-neighbors. The out-neighbors of a pointed edge $[\pi^{-1} a_2 \supseteq a_1 \subsetneq a_2]$ of type $[a_1/a_2]$ are the pointed edges $[\pi^{-1} a_3 \supseteq a_2 \supseteq a_3]$ with type $[a_2/a_3] = [a_1/a_2]$ such that $[a_1], [a_2], [a_3]$ do not form a chamber. In this case we have two relations $a_1 \supseteq a_2 \supseteq \pi a_1 \supseteq \pi a_2$ and $a_1 \supseteq a_2 \supseteq a_3 \supseteq \pi a_2$. The condition $[a_1/a_2] = [a_2/a_3]$ implies that one of $a_3/\pi a_2$ and $\pi a_1/\pi a_2$ is a one-dimensional subspace of $a_2/\pi a_2 \cong F_q^3$ and the other is two-dimensional. Denote by $N(e)$ the collection of out-neighbors of a pointed edge e. Therefore, we obtain a criterion for out-neighbors of a pointed edge:

$$[\pi^{-1} a_3 \supseteq a_2 \supseteq a_3] \in N([\pi^{-1} a_2 \supseteq a_1 \supseteq a_2]) \iff [a_1/a_2] = [a_2/a_3], a_3 \not\supseteq \pi a_1, \pi a_1 \not\supseteq a_3 \iff [a_1/a_2] = [a_2/a_3], a_3 + \pi a_1 = a_2,$$

where $a_3 + \pi a_1$ is the lattice generated by a_3 and πa_1. Observe that a pointed edge has q^2 out-neighbors.

For a pointed chamber $c = [\pi^{-1} a_3 \supseteq a_1 \supseteq a_2 \supseteq a_3]$, its out-neighbors are pointed chambers $[\pi^{-1} a_4 \supseteq a_2 \supseteq a_3 \supseteq a_4]$ with $[a_4] \neq [a_1]$; denote the collection by $N(c)$. In terms of lattices, we have

$$[\pi^{-1} a_4 \supseteq a_2 \supseteq a_3 \supseteq a_4] \in N([\pi^{-1} a_3 \supseteq a_1 \supseteq a_2 \supseteq a_3]) \iff a_4 \not\supseteq \pi a_1 \iff a_4 + \pi a_1 = a_3.$$

Hence a pointed chamber has q out-neighbors.

3.3. Paths and galleries. An edge path p of X is a sequence $e_1 \rightarrow e_2 \rightarrow \cdots \rightarrow e_n$ of pointed edges in the 1-skeleton of X such that e_{i+1} is an out-neighbor of e_i for $i = 1, \ldots, n - 1$; all pointed edges in p have the same type j, equal to 1 or 2, called the type of the path. We define the geometric length $l_G(p)$ of p to be n and the algebraic length $l_A(p)$ to be jn. Note that a path in X is a directed straight line segment in an apartment.

A type 1 gallery g in X is a sequence of pointed chambers $c_1 \rightarrow \cdots \rightarrow c_n$ in X so that c_{i+1} is an out-neighbor of c_i for $i = 1, \ldots, n - 1$. In other words, there exists a sequence of lattices $a_1 \supseteq \cdots \supseteq a_{n+2}$ so that $c_i = [\pi^{-1} a_{i+2} \supseteq a_1 \supseteq a_{i+1} \supseteq a_{i+2}]$ for $1 \leq i \leq n$. We define both the geometric length $l_G(g)$ and the algebraic length $l_A(g)$ of g to be n. Geometrically a type one gallery is a directed straight gallery in an apartment.

For convenience, a type 1 gallery in X is called a uni-type 2-dimensional geodesic, and an edge path contained in the 1-skeleton of X is called a uni-type 1-dimensional geodesic.
4. Artin L-functions attached to representations of Γ

4.1. The finite quotient X_Γ. Let Γ be a discrete cocompact torsion-free subgroup of G so that $X_\Gamma := \Gamma \backslash G$ is a finite simplicial complex locally isomorphic to X. Since X is contractible, Γ is isomorphic to the fundamental group of X_Γ. Explicit constructions of such finite complexes can be found in [Sar] for instance, in which the 1-skeleton of the complexes may be described as Cayley graphs on subgroups of $\text{PGL}_3(\mathbb{F}_q)$ containing $\text{PSL}_3(\mathbb{F}_q)$.

Denote by X_i the set of pointed i-simplices of X for $i = 0, 1, 2$. The group Γ acts freely and transitively on X_i by left translation. Fix a choice of a subset S_i of X_i representing the orbit space $\Gamma \backslash X_i$. Then the elements in X_i can be labeled by ΓS_i. Geometrically the building X is a maximal unramified cover of X_Γ with covering group Γ. The fibre of an i-simplex of X_Γ represented by $s \in S_i$ is ΓS. For the convenience of later discussions, we require that if a pointed 2-simplex $[\pi^{-1} a_2 \supseteq a_0 \supseteq a_1 \supseteq a_2]$ lies in S_2, so do $[a_0 \supseteq a_1 \supseteq a_2 \supseteq \pi a_0]$ and $[a_1 \supseteq a_2 \supseteq \pi a_0 \supseteq \pi a_1]$; and if a pointed 1-simplex $[\pi^{-1} a_2 \supseteq a_1 \supseteq a_2]$ lies in S_1, then so does its opposite $[a_1 \supseteq a_2 \supseteq \pi a_1]$. For $i = 0, 1, 2$, the cardinality of S_i is $(i+1)N_i$, where N_i is the number of pointed i-simplices in X_Γ.

4.2. Cochain groups. Let $V_\rho[u]$ denote the tensor product $V_\rho \otimes \mathbb{C}[u]$ of V_ρ with the polynomial ring $\mathbb{C}[u]$. It is a free $\mathbb{C}[u]$-module of rank d admitting the action by Γ on V_ρ. For each $i \in \{0, 1, 2\}$ denote by $C^i(X_\Gamma, \rho) = C^i(X_\Gamma, V_\rho[u])$ the space

$$C^i(X_\Gamma, \rho) = \{ f : X_i \to V_\rho[u] \mid f(\gamma x_i) = \rho(\gamma)f(x_i) \text{ for all } \gamma \in \Gamma \text{ and } x_i \in X_i \}.$$

Note that functions in $C^i(X_\Gamma, \rho)$ are determined by their values on S_i, hence it is a free module over $\mathbb{C}[u]$ of rank $d(i+1)N_i$.

4.3. Vertex Adjacency operators. Let A_1 and A_2 be the vertex adjacency operators on $C^0(X_\Gamma, \rho)$ given by

$$A_i f([a_0]) = \sum_{a_0 \supseteq b \supseteq \pi a_0, |a_0 / b| = i} f([b]).$$

Since the vertices of X can be parametrized by the cosets G/K, functions in $C^0(X_\Gamma, \rho)$ as described above are precisely the functions in the space $\text{Ind}_i G^0 \rho$ which are right invariant by K. Therefore we may identify $C^0(X_\Gamma, \rho)$ with the set $(\text{Ind}_i G^0 \rho)_K \otimes \mathbb{C}[u]$. Under this identification, the adjacency operators A_1 and A_2 defined above coincide with the Hecke operators A_1 and A_2 in [2]. In view of Proposition 4.3.1. we conclude

Proposition 4.3.1.

$$L(\text{Ind}_i G^0 \rho, qu) = \frac{1}{\det(I - A_1 u + qA_2 u^2 - q^3 I u^3 \mid C^0(X_\Gamma, \rho))}.$$

4.4. Artin L-functions attached to representations of Γ. For $i = 1, 2$, two closed i-dimensional paths in X_Γ are called equivalent if one can be obtained from the other by changing the starting simplex. Denote by $[c]$ the equivalence class of a closed i-dimensional path c. A closed i-dimensional path c in X_Γ is called primitive if it is not obtained by repeating a shorter path more than once; it is called a uni-type geodesic if it lifts to a uni-type geodesic in X.

Denote by $P_i^{(n)}$ the set of all i-dimensional uni-type closed geodesics in X_Γ with geometric length n, and by P_i the union of $P_i^{(n)}$ for $n \geq 1$. Let P_i^{pr} be the subset of primitive paths in P_i, and $[P_i^{pr}]$ be the set of equivalence classes of paths in P_i^{pr}. The elements in $[P_i^{pr}]$ play the role of primes for the i-th zeta and Artin L-functions.

Given an element p in $P_i^{(n)}$, its starting pointed edge is represented by a unique $s_0 \in S_1$ and p can be uniquely lifted to a uni-type path $\tilde{p} : s_0 \to s_1 \to \cdots \to s_n = \gamma p s_0$ in X, where $\gamma p \in \Gamma$. If p is lifted to a path \tilde{p}' in X starting at $s_0' = \gamma a s_0$, then \tilde{p}' ends at $\gamma \gamma p \gamma a^{-1} s_0$.

Hence to p in P_i we can associate an element $\gamma p \in \Gamma$ which is unique up to conjugation. Note that if $s_0' = \gamma p s_0$, then $\tilde{p}' = \gamma p \tilde{p}$. Thus p repeated twice is lifted to the path $s_0 \to s_1 \to \cdots \to s_n = \gamma p s_0 \to \gamma p s_1 \to \cdots \to \gamma p s_n = \gamma^2 p s_0$. The projection to X_Γ of the sub-paths $s_j \to \cdots \to s_{j+1}$ for $1 \leq j \leq n - 1$ runs through the paths equivalent to p. This shows that the conjugacy class $[\gamma p]$ in Γ of γp depends only on the equivalence class $[p]$ of p. When p is primitive, call $[\gamma p]$ the “Frobenius at the prime p” and denote it by $\text{Frob}_{[p]}$.

6
In a similar manner, to g in P_2 we associate the conjugacy class $[g]$ and define Frob_g for each prime $[g] \in [P_2^p]$. Observe that if p in P_2 is obtained from the path p' by repeating it k-times, then $l_A(p) = k \cdot l_A(p')$, $l_G(p) = k \cdot l_G(p')$ and $\gamma_p = (\gamma_{p'})^k$.

Now fix a d-dimensional representation (ρ, V_{ρ}) of Γ. For $i = 1, 2$ define the i-th Artin L-function of X_Γ associated to ρ to be

$$L_i(X_\Gamma, \rho, u) = \prod_{[c] \in [P_2^p]} \frac{1}{\det (I - \rho(\text{Frob}_c)u^{l_A(c)})}.$$

Note that when ρ is the trivial representation of Γ, the ith Artin L-function coincides with the zeta function $Z_i(X_\Gamma, u)$ defined in [KL, KLW]. Since the determinant of a matrix is invariant under conjugation and two equivalent paths have the same algebraic length, the Artin L-function above is well-defined. We shall show in §4.6 that it converges absolutely for $|u|$ small to the reciprocal of a polynomial.

4.5. Edge adjacency operator. Define the edge adjacency operator $A_E(\rho, u)$ on $C^1(X_\Gamma, \rho)$ by sending $f \in C^1(X_\Gamma, \rho)$ to $A_E(\rho, u)f$ whose value at $e \in X_1$ is given by

$$A_E(\rho, u)f(e) = u^{l_A(e)} \sum_{e' \in N(e)} f(e').$$

We proceed to represent $A_E(\rho, u)$ by a block matrix $M_E(\rho, u)$ whose rows and columns are parametrized by the set S_1 representing the pointed 1-simplices in X_Γ. Given $s \in S_1$, consider the above definition at $e = s$. Then $e' \in N(e)$ lies in the Γ-orbit of some $s' \in S_1$, and there is a unique $\gamma_{ss'} \in \Gamma$ such that $e' = \gamma_{ss'}s'$ and hence $f(e') = \rho(\gamma_{ss'})f(s')$. The ss'-entry of $M_E(\rho, u)$ is the $d \times d$ matrix $\rho(\gamma_{ss'})u^{l_A(s)}$ if $\gamma_{ss'}$ is an out-neighbor of Γs in X_Γ, and the zero $d \times d$ matrix otherwise. The block matrix $M_E(\rho, u)$ representing $A_E(\rho, u)$ depends on the choice of the set S_1. For a different choice of S_1, the matrix is replaced by a conjugation.

4.6. A proof of Theorem 1.0.1. A closed path p in $P_1^{(n)}$ is a sequence of pointed edges $e_0 \rightarrow e_1 \cdots \rightarrow e_n = e_0$ of length n, where each e_i is represented by a unique $s_i \in S_1$ and e_{i+1} is an out-neighbor of e_i in X_Γ for $0 \leq i \leq n - 1$. Its lifting \bar{p} in X starting at s_0 is

$$\bar{p} : s_0 \rightarrow \gamma_{s_0s_1}s_1 \rightarrow (\gamma_{s_0s_1}\gamma_{s_1s_2})s_2 \rightarrow \cdots \rightarrow (\gamma_{s_0s_1} \cdots \gamma_{s_{n-1}s_n})s_n = \gamma_p s_0$$

so that the associated γ_p explained in §4.4 is $\gamma_p = \gamma_{s_0s_1} \cdots \gamma_{s_{n-1}s_n}$. Thus we have

$$\rho(\gamma_p) = \rho(\gamma_{s_0s_1}) \cdots \rho(\gamma_{s_{n-1}s_n}).$$

On the other hand, the s_0s_0 entry of $M_E(\rho, u)^n$ is the sum of all possible products of n entries of $M_E(\rho, u)$ of the form $\rho(\gamma_{s_0s_1})\rho(\gamma_{s_1s_2}) \cdots \rho(\gamma_{s_{n-1}s_n})u^{l_A(s_0)+l_A(s_1)+\cdots+l_A(s_{n-1})}$, in which $s_n = s_0$, and for $0 \leq i \leq n - 1$, each Γs_{i+1} is an out-neighbor of Γs_i. In other words, the s_0s_0 entry of $M_E(\rho, u)^n$ is the sum of $\rho(\gamma_p)u^{l_A(p)}$ over elements p in $P_1^{(n)}$ starting at Γs_0. This shows that

$$\text{Tr}(M_E(\rho, u)^n) = \sum_{p \in P_1^{(n)}} \text{Tr}(\rho(\gamma_p))u^{l_A(p)}.$$

To proceed, we shall use the following well-known facts in linear algebra.

Proposition 4.6.1. Let A be a square matrix over \mathbb{C} with norm less than 1. Then

$$\log(I - A) = -\sum_{n=1}^{\infty} \frac{A^n}{n} \text{ converges and } \text{Tr}(\log(I - A)) = \log(\det(I - A)).$$

Order the pointed edges in S_1 so that those of type 1 are before those of type 2. Then $M_E(\rho, u)$ is of the form

$$M_E(\rho, u) = \begin{pmatrix} B_1u & 0 \\ 0 & B_2u^2 \end{pmatrix}.$$
for some \(dN_1 \times dN_1\) complex matrices \(B_1\) and \(B_2\). The norms of \(B_1\) and \(B_2\) are bounded and depend only on \(A_E(\rho, u)\). It follows from Proposition 4.6.1 and 4.2 that, for \(|u| < \min\{\|B_1\|^{-1}, \sqrt{\|B_2\|^{-1}}\}\), there holds

\[
\log \det(I - A_E(\rho, u)) = \log \det(I - M_E(\rho, u)) = \text{Tr}(\log(I - M_E(\rho, u))) = - \sum_{n=1}^{\infty} \frac{\text{Tr}(M_E(\rho, u)^n)}{n}
\]

\[
= - \sum_{n=1}^{\infty} \sum_{p \in \mathcal{P}_n} \frac{\text{Tr}(\rho(p))u^A(p)}{n} = - \sum_{p \in \mathcal{P}_1} \frac{\text{Tr}(\rho(p))u^A(p)}{l_G(p)}
\]

\[
= - \sum_{m=1}^{\infty} \sum_{p \in \mathcal{P}_m} \frac{\text{Tr}(\rho(p))u^A(p^m)}{l_G(p^m)} = - \sum_{m=1}^{\infty} \sum_{p \in \mathcal{P}_m} \frac{\text{Tr}(\rho(p))u^A(p)^m}{m l_G(p)}.
\]

Since the number of closed paths equivalent to a primitive cycle is equal to its geometric length, the above can be rewritten as

\[
\log \det(I - A_E(\rho, u)) = - \text{Tr} \left(\sum_{[p] \in [\mathcal{P}_m]} \sum_{m=1}^{\infty} (\rho(\text{Frob}_p))u^A(p)^m \right)
\]

\[
= \text{Tr} \left(\sum_{[p] \in [\mathcal{P}_m]} \log \left(I - \rho(\text{Frob}_p)u^A(p) \right) \right)
\]

\[
= \log \left(\prod_{[p] \in [\mathcal{P}_m]} \det \left(I - \rho(\text{Frob}_p)u^A(p) \right) \right) = - \log L_1(X_\Gamma, \rho, u).
\]

Exponentiating both sides proves Theorem 1.0.1.

4.7. Chamber adjacency operator and a proof of Theorem 1.0.2. Define the chamber adjacency operator \(A_C(\rho, u)\) on \(C^2(X_\Gamma, \rho)\) by sending \(f \in C^2(X_\Gamma, \rho)\) to \(A_C(\rho, u)f\) whose value at \(c \in X_2\) is given by

\[
A_C(\rho, u)f(c) = u^A(c) \sum_{c' \in N(c)} f(c') = u \sum_{c' \in N(c)} f(c')
\]

because all pointed 2-simplices have algebraic length equal to 1. Similar to the edge adjacency operator, the chamber adjacency operator \(A_C(\rho, u)\) can be represented by a block matrix \(M_C(\rho, u)\) whose rows and columns are parametrized by the set \(S_2\) representing the pointed 2-simplices in \(X_\Gamma\). The \(cc'\) entry of \(M_C(\rho, u)\) is the \(d \times d\) matrix \(\rho(\gamma_{cc'})u\) if \(\gamma_{cc'}\) is an out-neighbor of \(c\) in \(X_\Gamma\), and the zero \(d \times d\) matrix otherwise.

By an argument similar to the previous subsection, we have that, for \(|u|\) small enough,

\[
\log \det(I + A_C(\rho, u)) = - \log L_2(X_\Gamma, \rho, -u),
\]

and hence Theorem 1.0.2 holds.

5. Pointed simplicial cohomology groups. For \(i = 0, 1, 2\) denote by \(C^i(X)\) the free \(\mathbb{C}[u]\)-module of functions \(f_i : X_i \to V_p[u]\). The action of \(\Gamma\) on \(X_i\) yields the action of \(\Gamma\) on \(C^i(X)\) given by \((\gamma f_i)(x) = f_i(\gamma x)\) for all \(\gamma \in \Gamma\), \(f_i \in C^i(X)\) and \(x \in X_i\). Then \(C^i(X_\Gamma, \rho)\) consists of the functions in \(C^i(X)\) on which the action of \(\Gamma\) is given by \(\rho\). Define the map \(d_i : d_i(u) : C^i(X) \to C^{i+1}(X)\) by

\[
(d_0f)([\pi^{-1}a_1 \supseteq a_0 \supseteq a_1]) = u^{[a_0/a_1]}f_0([a_1]) - f_0([a_0]),
\]

\[
(d_1f)([\pi^{-1}a_2 \supseteq a_0 \supseteq a_1 \supseteq a_2]) = u f_1([\pi^{-1}a_2 \supseteq a_1 \supseteq a_2]) - f_1([\pi^{-1}a_2 \supseteq a_0 \supseteq a_2]) + f_1([\pi^{-1}a_1 \supseteq a_0 \supseteq a_1]),
\]

and all other \(d_j\) to be the zero map. It follows from

\[
d_1(d_0f)([\pi^{-1}a_2 \supseteq a_0 \supseteq a_1 \supseteq a_2]) = u d_0f([\pi^{-1}a_2 \supseteq a_1 \supseteq a_2]) - d_0f([\pi^{-1}a_2 \supseteq a_0 \supseteq a_2]) + d_0f([\pi^{-1}a_1 \supseteq a_0 \supseteq a_1])
\]

\[
= u(u f_0([a_2]) - f_0([a_1])) - (u^2 f_0([a_2]) - f_0([a_0])) + (u f_0([a_1]) - f_0([a_0])) = 0
\]
that the d_i’s are coboundary maps. Note that when $u = 1$, d_0 and d_1 are the usual coboundary maps. As d_i commutes with the action of Γ, it defines a coboundary map $d_i : C^i(X, \rho) \to C^{i+1}(X, \rho)$. This gives rise to the i-th pointed simplicial cohomology group

$$H^i(X, \rho) = \ker(d_i)/\text{Im}(d_{i-1})$$

for $i = 0, 1, 2$, which measures the failure of exactness at $C^i(X, \rho)$ to the i-th pointed simplicial cohomology group

$$C^* : 0 \to C^0(X, \rho) \xrightarrow{d_0} C^1(X, \rho) \xrightarrow{d_1} C^2(X, \rho) \to 0.$$

For $i = 1, 2$ define the map $\delta_i = \delta_i(u) : C^i(X) \to C^{i-1}(X)$ which sends $f_i \in C^i(X)$ to $C^{i-1}(X)$ given by

$$(\delta_1 f_1)([a_0]) = \sum_{a_0 \geq b \geq a_0/b = 1} u f_1([a_0 \geq b \geq \pi a_0]) - \sum_{a_0 \geq b \geq a_0/b = 2} q u^2 f_1([a_0 \geq b \geq \pi a_0])$$

and

$$(\delta_2 f_2)([\pi^{-1} a_1 \geq a_0 \geq 1]) = \sum_{a_0 \geq b \geq a_1} - u f_2([a_0 \geq b \geq a_1 \geq \pi a_0]) + \sum_{a_1 \geq b \geq a_0} u^2 f_2([a_1 \geq b \geq \pi a_0 \geq \pi a_1]).$$

Note that in $\delta_2 f_2$ only the first or the second sum is nonempty according as $|a_0/a_1| = 2$ or 1. Since δ_i commutes with the action of Γ, it defines a map $\delta_i(u) : C^i(X, \rho) \to C^{i-1}(X, \rho)$.

Let

$$\Delta_0(u) = \delta_1(u) d_0(u), \quad \Delta_1(u) = \delta_2(u) d_1(u) + d_0(u) \delta_1(u) \quad \text{and} \quad \Delta_2(u) = d_1(u) \delta_2(u).$$

Observe that $\Delta_i(u)$ is a cochain endomorphism on $C^i(X, \rho)$ and

$$\Delta_i(u) = 0 \quad \text{on} \quad H^i(X, \rho).$$

For $i = 0, 1$ and 2, define

$$\Phi_i(u) = \Delta_i(u) + (1 - u^3) I,$$

which is also a cochain endomorphism on $C^i(X, \rho)$.

Assuming Theorem 1.0.4 which will be proved in the next section, we establish Theorem 1.0.3. By setting $u = 0$, it is obvious that $\Phi_i(u)$ on $C^i(X, \rho)$ has nonzero determinant for $i = 0, 1, 2$. By a general theory on cohomology groups, we have

$$\prod_{i=0}^{\delta} \det(\Phi_i(u) \mid C^i(X, \rho))^{i-1} = \prod_{i=0}^{\delta} \det(\Phi_i(u) \mid H^i(X, \rho))^{i-1} = \prod_{i=0}^{\delta} \det((1 - u^3) I \mid H^i(X, \rho))^{i-1},$$

$$= \prod_{i=0}^{\delta} \det((1 - u^3) I \mid C^i(X, \rho))^{i-1} = (1 - u^3)^{d(N_0 - 2N_1 + 3N_2)}.$$

On the other hand, by Theorem 1.0.4 we also have

$$\prod_{i=0}^{\delta} \det(\Phi_i(u) \mid C^i(X, \rho))^{i-1} = \frac{\det(I - A_1(\rho) u + q A_2(\rho) u^2 - q^3 u^3 I) (1 - u^3)^{2dN_2} \det(I + A_C(\rho, u))}{(1 - u^3)^{2dN_2} \det(I - A_E(\rho, u))} \frac{L_1(X, \rho, u)}{L(\text{Ind}^G_\rho, qu) L_2(X, \rho, -u)},$$

Comparing the above two expressions of the alternating product of $\det(\Phi_i(u))$, we obtain

$$(1 - u^3)^{\chi(X, \rho)d} L(\text{Ind}^G_\rho, qu) = \frac{L_1(X, \rho, u)}{L_2(X, \rho, -u)},$$

which is Theorem 1.0.3.
6.1. The operator $\Phi_0(u)$. Recall that for a lattice a_0, $a_0/\pi a_0 \cong \mathbb{F}_q^3$. In this 3-dimensional vector space over \mathbb{F}_q there are $q^2 + q + 1$ lines and the same number of planes. Further, a line in this space is contained in $q + 1$ planes. These results are restated in terms of lattices as follows.

Proposition 6.1.1.

(a) Given a lattice a_0, the number of pointed edges $[\pi^{-1}b \supseteq a_0 \supseteq b]$ in X_1 of type i is equal to $q^2 + q + 1$ for $i = 1$ or 2.

(b) Given a type 1 pointed edge $[a_0 \supseteq c \supseteq \pi a_0]$, there are $q+1$ pointed chambers of the form $[a_0 \supseteq b \supseteq \pi a_0]$.

Using Proposition 6.1.1 (a), we compute $\Phi_0 f$ for $f \in C^0(X)$:

\[
\Phi_0(u)f([a_0]) = (\delta_1 d_0 + 1 - u^3) f([a_0]) = (1 - u^3) f([a_0]) + \sum_{a_0 \supseteq b \supseteq \pi a_0} (-q)^{|a_0/b| - 1} u^{|a_0/b|} (d_0 f)([a_0 \supseteq b \supseteq \pi a_0])
\]

\[
= (1 - u^3) f([a_0]) + \sum_{a_0 \supseteq b \supseteq \pi a_0} (-q)^{|a_0/b| - 1} u^{|a_0/b|} \left(u^{|b/\pi a_0|} f([\pi a_0]) - f([b]) \right)
\]

\[
= (1 - u^3) f([a_0]) + (q^2 + q - q(q^2 + q + 1)) u^3 f([a_0]) - uA_1 f([a_0]) + qu^2(A_2 f)([a_0])
\]

\[
= (I - A_1 u + qA_2 u^2 - q^3 u^3 I) f([a_0]).
\]

In other words, $\Phi_0(u) = I - A_1 u + qA_2 u^2 - q^3 u^3 I$ and hence $\det(\Phi_0(u) | C^0(X_1, \rho)) = L(\text{Ind}^\gamma \rho, qu)^{-1}$ by Proposition 4.3.1. This proves Theorem 1.0.4 (1).

6.2. The operator $\Phi_1(u)$. Introduce the following two operators on $C^1(X)$:

\[
Q(u)f([\pi^{-1}a_1 \supseteq a_0 \supseteq a_1]) = \sum_{a_0 \supseteq b \supseteq \pi a_0} u^{|a_0/b|} f([\pi^{-1}a_1 \supseteq b \supseteq a_1])
\]

and

\[
J_E(u)f([\pi^{-1}a_1 \supseteq a_0 \supseteq a_1]) = u^{|a_0/a_1|} f([a_0 \supseteq a_1 \supseteq \pi a_0]).
\]

They preserve the subspace $C^1(X_1, \rho)$, and will be viewed as operators on this space. As such, $J_E = J_E(u)$ is an involution up to scalar, more precisely, J_E is multiplication by u^3. A straightforward computation shows that

\[
J_E A_E J_E^{-1} f([\pi^{-1}a_1 \supseteq a_0 \supseteq a_1]) = u^{|a_1/\pi a_0|} \sum_{a_0 \supseteq b \supseteq \pi a_0, [b/\pi a_0] = [a_0/a_1], a_0 \supseteq b \supseteq a_1} f([a_0 \supseteq b \supseteq \pi a_0]).
\]

Furthermore, $Q = Q(u)$ is unipotent with determinant 1 on $C^1(X_1, \rho)$, hence it is an automorphism there. Under Q, the action of δ_1 is much simplified. More precisely, for $f_1 \in C^1(X_1, \rho)$ we have

\[
(\delta_1 Q)f_1([a_0]) = \sum_{a_0 \supseteq b \supseteq \pi a_0, [a_0/b] = 1} uQf_1([a_0 \supseteq b \supseteq \pi a_0]) - \sum_{a_0 \supseteq b \supseteq \pi a_0, [a_0/b] = 2} qu^2 Qf_1([a_0 \supseteq b \supseteq \pi a_0])
\]

\[
= \sum_{a_0 \supseteq b \supseteq \pi a_0, [a_0/b] = 1} u^{|a_0/b|} \sum_{b \supseteq c \supseteq \pi a_0} u^{|b/c|} f_1([a_0 \supseteq c \supseteq \pi a_0])
\]

\[
- \sum_{a_0 \supseteq b \supseteq \pi a_0, [a_0/b] = 2} qu^2 f_1([a_0 \supseteq b \supseteq \pi a_0])
\]

\[
= \sum_{a_0 \supseteq b \supseteq \pi a_0, [a_0/c] = 1} u^{|a_0/c|} f_1([a_0 \supseteq c \supseteq \pi a_0]) + \sum_{a_0 \supseteq b \supseteq \pi a_0, [a_0/c] = 2} (q + 1) u^2 f_1([a_0 \supseteq c \supseteq \pi a_0])
\]

\[
- \sum_{a_0 \supseteq b \supseteq \pi a_0, [a_0/b] = 2} qu^2 f_1([a_0 \supseteq b \supseteq \pi a_0])
\]

\[
= \sum_{a_0 \supseteq b \supseteq \pi a_0} u^{|a_0/c|} f_1([a_0 \supseteq c \supseteq \pi a_0]).
\]
The operator
\[W(u) = I + J_E(u) \]
also simplifies our computations. Write \(W \) for \(W(u) \) for short. Indeed, for \(f_0 \in C^0(X_{\Gamma}, \rho) \), we have

\[(6.3) \quad (Wd_0)f_0(\pi^{-1}a_1 \supseteq a_0 \supseteq a_1) = d_0f_0(\pi^{-1}a_1 \supseteq a_0 \supseteq a_1) + u[a_0/a_1]d_0f_0([a_0 \supseteq a_1 \supseteq \pi a_0])
= u[a_0/a_1]f_0([a_1]) - f_0([a_0]) + u[a_0/a_1](u[a_1/\pi a_0]f_0([a_0]) - f_0([a_1]))
= -(1-u^3)f_0([a_0]).\]

Further, for \(f_2 \in C^2(X_{\Gamma}, \rho) \) and a pointed edge \(\pi^{-1}a_1 \supseteq a_0 \supseteq a_1 \in S_1 \) with \(|a_0/a_1| = 1 \), we have

\[(6.4) \quad (W\delta_2)f_2(\pi^{-1}a_1 \supseteq a_0 \supseteq a_1) = \delta_2f_2(\pi^{-1}a_1 \supseteq a_0 \supseteq a_1) - u\delta_2f_2([a_0 \supseteq a_1 \supseteq \pi a_0]) = 0\]
and

\[(6.5) \quad (W\delta_2)f_2([a_0 \supseteq a_1 \supseteq \pi a_0]) = \delta_2f_2([a_0 \supseteq a_1 \supseteq \pi a_0]) - u^2\delta_2f_2(\pi^{-1}a_1 \supseteq a_0 \supseteq a_1)
= (1-u^3)\delta_2f_2([a_0 \supseteq a_1 \supseteq \pi a_0]).\]

Given \(f \in C^1(X_{\Gamma}, \rho) \) we apply the above results to compute \(\frac{1}{\pi}(W\Phi_1)f(\pi^{-1}a_1 \supseteq a_0 \supseteq a_1) \) according to the type \(|a_0/a_1| \) of the pointed edge.

Case I. \(|a_0/a_1| = 1 \). By (6.1)-(6.4) we have

\[(6.6) \quad \frac{1}{1-u^3}(W\Phi_1)f(\pi^{-1}a_1 \supseteq a_0 \supseteq a_1)
= \frac{1}{1-u^3}W((1-u^3)I + \delta_2d_1 + d_0\delta_1)Qf(\pi^{-1}a_1 \supseteq a_0 \supseteq a_1)
\]

by (6.2)
\[WQf(\pi^{-1}a_1 \supseteq a_0 \supseteq a_1) = -\delta_1Qf([a_0]) \]

by (6.4)
\[f(\pi^{-1}a_1 \supseteq a_0 \supseteq a_1) + u \sum_{a_1 \supseteq b \supseteq \pi a_0} u[a_1/b]f([a_0 \supseteq b \supseteq \pi a_0]) - \sum_{a_0 \supseteq c \supseteq \pi a_0} u[a_0/c]f([a_0 \supseteq c \supseteq \pi a_0])
= f(\pi^{-1}a_1 \supseteq a_0 \supseteq a_1) - \sum_{a_0 \supseteq b \supseteq \pi a_0, a_1 \supseteq b} u[a_0/b]f([a_0 \supseteq b \supseteq \pi a_0]) \]

by (6.1)
\[(I - J_{EA}J_{E}^{-1})f(\pi^{-1}a_1 \supseteq a_0 \supseteq a_1) - \sum_{a_0 \supseteq b \supseteq \pi a_0, |a_0/b| = 1, b \neq a_1} uf([a_0 \supseteq b \supseteq \pi a_0]).\]

Case II. \(|a_0/a_1| = 2 \). Applying (6.3) and (6.2), we obtain

\[(6.7) \quad \frac{1}{1-u^3}(Wd_0\delta_1)\Phi_1f(\pi^{-1}a_1 \supseteq a_0 \supseteq a_1) = -\sum_{a_0 \supseteq c \supseteq \pi a_0} u[a_0/c]f([a_0 \supseteq c \supseteq \pi a_0]).\]

On the other hand,

\[(6.8) \quad \frac{1}{1-u^3}(W\delta_2d_1)f(\pi^{-1}a_1 \supseteq a_0 \supseteq a_1)
\]

by (6.3)
\[(\delta_2d_1)f(\pi^{-1}a_1 \supseteq a_0 \supseteq a_1)
= \sum_{a_0 \supseteq b \supseteq a_1} u(d_1)\Phi_1f([a_0 \supseteq b \supseteq a_1 \supseteq \pi a_0])
= \sum_{a_0 \supseteq b \supseteq a_1} -u^2f([a_0 \supseteq a_1 \supseteq \pi a_0]) + uf([a_0 \supseteq b \supseteq \pi a_0]) - uf(\pi^{-1}a_1 \supseteq b \supseteq a_1)
\]

by (6.2)
\[f([a_0 \supseteq a_1 \supseteq \pi a_0]) + u \sum_{b \supseteq c \supseteq \pi a_0} u[b/c]f([a_0 \supseteq c \supseteq \pi a_0]) - uf([\pi^{-1}a_1 \supseteq b \supseteq a_1]) \]

= \sum_{a_0 \supseteq b \supseteq a_1} \left(-u^2f([a_0 \supseteq a_1 \supseteq \pi a_0]) + u \sum_{b \supseteq c \supseteq \pi a_0} u[b/c]f([a_0 \supseteq c \supseteq \pi a_0]) - uf([\pi^{-1}a_1 \supseteq b \supseteq a_1]) \right)

= \sum_{a_0 \supseteq b \supseteq a_1} \left(\sum_{b \supseteq c \supseteq \pi a_0, c \neq a_1} u[a_0/c]f([a_0 \supseteq c \supseteq \pi a_0]) - \sum_{a_0 \supseteq b \supseteq a_1} u[a_0/b]f([\pi^{-1}a_1 \supseteq b \supseteq a_1]). \right)\]
It leaves invariant the subspace C as stated in Theorem 1.0.4, (2). Adding the above two formulæ yields
\[
\frac{1}{1 - u^3} (W \Delta_1 Q)f((\pi^{-1} b \supseteq a_0 \supseteq a_1))
\]
\[
= - \sum_{a_0 \supseteq b \supseteq \pi a_0 \setminus \{a_0\}} u f((a_0 \supseteq b \supseteq \pi a_0)) - u^2 f((a_0 \supseteq b \supseteq \pi a_0)) - u \sum_{a_0 \supseteq b \supseteq a_1} f((b \supseteq a_0 \supseteq a_1))
\]
\[
= -(J_E A E J^{-1}_E) f((\pi^{-1} a_1 \supseteq a_0 \supseteq a_1)) - J_E Q f((\pi^{-1} a_1 \supseteq a_0 \supseteq a_1)) - (Q - I) f((\pi^{-1} a_1 \supseteq a_0 \supseteq a_1)).
\]
As $\Phi_1 = \Delta_1 + (1 - u^3) I$, the above can be rewritten as
\[
(6.9) \quad \frac{1}{1 - u^3} (W \Phi_1 Q)f((\pi^{-1} a_1 \supseteq a_0 \supseteq a_1)) = (I - J_E A E J^{-1}_E) f((\pi^{-1} a_1 \supseteq a_0 \supseteq a_1)).
\]
Combining (6.6) and (6.9) yields the following identity on operators
\[
(6.10) \quad \frac{1}{1 - u^3} W \Phi_1 Q = I - J_E A E J^{-1}_E - N,
\]
where N is the operator on $C^1(X, \rho)$ sending f to Nf which is zero at pointed type 2 edges, and whose value at a pointed type 1 edge $[\pi^{-1} a_1 \supseteq a_0 \supseteq a_1]$ is given by
\[
Nf((\pi^{-1} a_1 \supseteq a_0 \supseteq a_1)) = \sum_{a_0 \supseteq \pi a_0 \setminus \{a_0\}} u f((a_0 \supseteq \pi a_0)).
\]
Thus $N^2 = 0$. As noted before, $(I - J_E)(I + J_E) = I - J^{-1}_E = (1 - u^3) I$. Hence multiplying both sides of (6.10) by $I - J_E$ on the left gives rise to the identity
\[
\Phi_1 = (I - J_E)(I - J_E A E J^{-1}_E - N)Q^{-1}.
\]
Now we express the determinant of Φ_1 on $C^1(X, \rho)$ in terms of the determinants of the operators on the right hand side on the same space. As remarked before Q and hence Q^{-1} have determinant 1. By pairing off a type 1 pointed edge $[\pi^{-1} a_1 \supseteq a_0 \supseteq a_1] \in S_1$ with its type 2 opposite $[a_0 \supseteq a_1 \supseteq \pi a_0] \in S_1$, we partition the $2N_1$ pointed edges in S_1 into N_1 pairs and with respect to this basis the operator $I - J_E$ is represented by N_1 diagonal block matrices of the form
\[
\left(\begin{array}{cc} I_d & -u I_d \\ -u I_d & I_d \end{array} \right),
\]
where I_d denotes the identity $d \times d$ matrix. Therefore $\det(I - J_E) = (1 - u^3)^{dN_1}$. Finally to compute the determinant of $I - J_E A E J^{-1}_E - N$, we order the pointed edges in S_1 by first selecting those of type 1 then followed by those of type 2. With respect to this basis, the operator $J_E A E J^{-1}_E$ is represented by the diagonal block matrix
\[
\left(\begin{array}{cc} B_1 u & 0 \\ 0 & B_2 u^2 \end{array} \right)
\]
and $J_E A E J^{-1}_E + N$ by a lower triangular block matrix
\[
\left(\begin{array}{cc} B_1 u & 0 \\ A & B_2 u^2 \end{array} \right).
\]
Therefore
\[
\det(I - J_E A E J^{-1}_E - N) = \det(I - J_E A E J^{-1}_E) = \det(I - A E(\rho, u)).
\]
Put together, we have shown
\[
\det(\Phi_1(u) \mid C^1(X, \rho)) = (1 - u^3)^{dN_1} \det(I - A E(\rho, u)) = (1 - u^3)^{dN_1} L_1(X, \rho, u)^{-1},
\]
as stated in Theorem 120.3 (2).

6.3. The operator $\Phi_2(u)$. Define the operator J_C on $C^2(X)$ which sends $f \in C^2(X)$ to
\[
J_C f((\pi^{-1} a_2 \supseteq a_0 \supseteq a_1 \supseteq a_2)) = f((a_0 \supseteq a_1 \supseteq a_2 \supseteq \pi a_0)).
\]
It leaves invariant the subspace $C^2(X, \rho)$. Further, for $g \in C^2(X, \rho)$, an easy computation shows
\[
J_C A C J^{-1}_C g((\pi^{-1} a_2 \supseteq a_0 \supseteq a_1 \supseteq a_2)) = \sum_{a_0 \supseteq b \supseteq a_2 \setminus \{a_0\}} u g((a_0 \supseteq b \supseteq a_2 \supseteq \pi a_0)).
\]
We begin with
Proposition 6.3.1. On \(C^2(X_\Gamma, \rho) \) there holds the identity
\[
d_1 \delta_2 = (I + J_C u + J_C^2 u^2)(I + J_C AC J_C^{-1}) - (1 - u^3)I.
\]
Equivalently, \(\Phi_2(u) = d_1(u) \delta_2(u) + (1 - u^3)I = (I + J_C u + J_C^2 u^2)(I + J_C AC(\rho, u)J_C^{-1}). \)

Proof. We compare both sides evaluated at \(f \in C^2(X_\Gamma, \rho) \). The left hand side is
\[
d_1(\delta_2 f)(\pi^{-1} a_2 \ni a_0 \ni a_1 \ni a_2) = u(\delta_2 f)(\pi^{-1} a_2 \ni a_1 \ni a_2) + u^3 \sum_{a_0, b_2 \ni a_0 \ni a_2} f([a_0 \ni b \ni \pi a_0 \ni a_1]) + u^2 \sum_{a_0, b_2 \ni a_2 \ni a_1} f([a_0 \ni b \ni \pi a_0 \ni a_1]) + u^3 \sum_{a_2 \ni a_0 \ni a_1} f([a_2 \ni b \ni \pi a_0 \ni a_1]).
\]
For the right hand side, we first compute
\[
(I + J_C u + J_C^2 u^2)(I + J_C AC J_C^{-1}) f(\pi^{-1} a_2 \ni a_0 \ni a_1 \ni a_2) = (I + J_C u + J_C^2 u^2) f(\pi^{-1} a_2 \ni a_0 \ni a_1 \ni a_2)
\]
\[
= (I + J_C AC J_C^{-1}) f(\pi^{-1} a_2 \ni a_0 \ni a_1 \ni a_2) + u(I + J_C AC J_C^{-1}) f(\pi^{-1} a_2 \ni a_0 \ni a_1 \ni a_2) + u^2 f(\pi^{-1} a_2 \ni a_0 \ni a_1 \ni a_2) + u^3 \sum_{a_0, b_2 \ni a_2 \ni a_1} f([a_0 \ni b \ni \pi a_0 \ni a_1])
\]
\[
= (d_1 \delta_2 f)(\pi^{-1} a_2 \ni a_0 \ni a_1 \ni a_2).
\]
Therefore the right hand side is equal to
\[
(I + J_C u + J_C^2 u^2)(I + J_C AC J_C^{-1}) f(\pi^{-1} a_2 \ni a_0 \ni a_1 \ni a_2) - (1 - u^3) f(\pi^{-1} a_2 \ni a_0 \ni a_1 \ni a_2) = d_1 \delta_2 f(\pi^{-1} a_2 \ni a_0 \ni a_1 \ni a_2).
\]
This proves the proposition. \(\square \)

Now we compute the determinant of \(\Phi_2 \). For \(c = [\pi^{-1} a_2 \ni a_0 \ni a_1 \ni a_2] \) in \(S_2 \), write \(c' \) for the pointed chamber \([a_0 \ni a_1 \ni a_2] \ni \pi a_0 \ni a_2 \ni a_2 \) and \(c'' \) for \([a_1 \ni a_2 \ni a_2] \ni a_0 \ni a_1 \ni a_2 \). By our choice of \(S_2 \), \(c' \) and \(c'' \) are all in \(S_2 \), and the pointed chambers in \(S_2 \) can be partitioned into \(N_2 \) disjoint triples \([c,c',c'']\). With respect to each triple, the operator \(I + J_C u + J_C^2 u^2 \) is represented by the \(3d \times 3d \) matrix \[
\begin{pmatrix}
I_d & u I_d & u^2 I_d \\
u^2 I_d & I_d & u I_d \\
u I_d & u^3 I_d & I_d
\end{pmatrix},
\]
which has determinant \((1 - u^3)^{3d} \). Here \(I_d \) is the \(d \times d \) identity matrix. Thus \(\det(I + J_C u + J_C^2 u^2 | C^2(X_\Gamma, \rho)) = (1 - u^3)^{3d N_2} \). Combined with
\[
\det(I + J_C AC(\rho, u)J_C^{-1}) = \det(I + AC(\rho, u)) = \det(I - AC(\rho, -u)) = L_2(X_\Gamma, \rho, -u)^{-1},
\]
we get \(\det(\Phi_2(u) | C^2(X_\Gamma, \rho)) = (1 - u^3)^{2d N_2} L_2(X_\Gamma, \rho, -u)^{-1} \), as claimed in Theorem 1.0.13 (3).

6.4. Cohomological interpretation of the proof. The computations in §6.1-§6.3 can be rephrased as follows. We define two homomorphisms \(\Psi_1 = \{ \Psi_{1,i} | i = 0, 1, 2 \} \) and \(\Psi_2 = \{ \Psi_{2,i} | i = 0, 1, 2 \} \) from the complex \(C^* \) to itself as follows. For the first, \(\Psi_{1,i} : C^i(X_\Gamma, \rho) \to C^i(X_\Gamma, \rho) \) is multiplication by \(1 - u^3 \) for each
0 ≤ i ≤ 2. It is clear that \(\Psi_{1,i+1}d_i = d_i\Psi_{1,i} \) for \(i = 0, 1 \). Hence \(\Psi_1 \) is an endomorphism of the complex \(C_* \). For the second map, \(\Psi_{2,i} : C^i(X_\Gamma, \rho) \to C^i(X_\Gamma, \rho) \) are defined as

\[
\begin{align*}
\Psi_{2,0} &= I - A_1u + \frac{1}{2}A_2u^2 - u^3I \\
\Psi_{2,1} &= (I - J_E)(I - J_EA_E(\rho, u)J_E^{-1} - N)Q^{-1} \\
\Psi_{2,2} &= (I + J_Eu^2 + J_E^2u^3)(I + J_CAC(\rho, u)J_C^{-1}).
\end{align*}
\]

That \(\Psi_2 \) is also an endomorphism of the complex \(C_* \) follows from the fact that each \(\Psi_{2,i} = \Phi_i \) and \(\Phi_i \) have the desired property. Further, the relation \(\Psi_{2,i} - \Psi_{1,i} = \Delta_i = d_{i-1}\delta_i + \delta_{i+1}d_i \) for each \(i \) shows that \(\Psi_1 \) and \(\Psi_2 \) are homotopically equivalent. Therefore Theorem 1.0.3 holds.

7. A proof of Theorem 1.0.7

For a finite-dimensional representation \((\rho', V_{\rho'}) \) of a finite-index subgroup \(\Gamma' \) of \(\Gamma \), regard the space \(V_\rho \) of the induced representation \(\rho = \text{Ind}_{\gamma}^{\Gamma} \rho' \) as the set

\[
V_\rho = \{ f : \Gamma \to V_{\rho'} : f(\gamma') = \rho'(\gamma')f(\gamma) \text{ for all } \gamma' \in \Gamma', \gamma \in \Gamma \}
\]
on which \(\rho \) acts by right translation \(\rho(\gamma)f(\gamma) = f(\gamma\gamma) \). Let \(i \in \{1, 2\} \). Given \(g \in C^i(X_\Gamma, \rho) \), define the function \(f_g \) on \(X_i \) such that its value at \(x_i \in X_i \) is a function \(f_g(x_i) : \Gamma \to V_{\rho'}[u] \) given by

\[
f_g(x_i)(\gamma) := g(\gamma x_i) \quad \text{for all } \gamma \in \Gamma.
\]

Then for \(\gamma' \in \Gamma' \), it follows from the definition that

\[
f_g(x_i)(\gamma' \gamma) = g(\gamma' \gamma x_i) = \rho'(\gamma')g(\gamma x_i) = \rho'(\gamma')f_g(x_i)(\gamma),
\]

which shows that \(f_g(x_i) \) lies in \(V_{\rho'}[u] \). Moreover, for \(\gamma \in \Gamma \),

\[
f_g(\gamma x_i)(\gamma) = g(\gamma x_i) = f_g(x_i)(\gamma) = \rho(\gamma)f_g(x_i)(\gamma)
\]

implies that \(f_g \in C^i(X_\Gamma, \rho) \). Hence \(g \mapsto f_g \) defines a homomorphism \(\phi_i : C^i(X_{\Gamma'}, \rho') \to C^i(X_\Gamma, \rho) \) as \(\mathbb{C}[u] \)-modules. Conversely, for \(f \in C^i(X_\Gamma, \rho) \), set

\[
g_f(x_i) := f(x_i)(1) \quad \text{for all } x_i \in X_i.
\]

Then for \(\gamma' \in \Gamma' \),

\[
g_f(\gamma' x_i) = f(\gamma' x_i)(1) = \left(\rho(\gamma')f(x_i) \right)(1) = f(x_i)(\gamma') = \rho'(\gamma')(f(x_i)(1)) = \rho'(\gamma')g_f(x_i).
\]

Thus \(g_f \) lies in \(C^i(X_{\Gamma'}, \rho') \). It is easy to see that \(f \mapsto g_f \) defines the inverse map of \(\phi_i \) which implies that \(\phi_i \) is an isomorphism.

Next we claim that the diagram

\[
\begin{array}{ccc}
C^1(X_{\Gamma'}, V_{\rho'}[u]) & \xrightarrow{\phi_1} & C^1(X_\Gamma, V_\rho[u]) \\
\bigg| & A_E(\rho', u) & \bigg| \\
A_E(\rho', u) & \xrightarrow{\phi_1} & A_E(\rho, u) \\
\bigg| & C^1(X_{\Gamma'}, V_{\rho'}[u]) & \xrightarrow{\phi_1} \\
\bigg| & C^1(X_\Gamma, V_\rho[u]) & \xrightarrow{\phi_1}
\end{array}
\]

commutes. If so, then combined with Theorem 1.0.3, this gives

\[
L_1(X_{\Gamma'}, \rho', u) = \frac{1}{\det(I - A_E(\rho', u))} = \frac{1}{\det(I - A_E(\rho, u))} = L_1(X_\Gamma, \rho, u).
\]
To prove the claim, given $g \in C^1(X_{\Gamma'}, \rho')$, $e \in X_1$, and $\gamma \in \Gamma$, we examine
\[
f_{A_E(\rho', u)g}(e)(\gamma) = A_E(\rho', u)g(\gamma e) = \sum_{e' \in N(e)} u^{A(\gamma e)}(\gamma e') \quad \text{since } N(\gamma e) = \gamma N(e) = \sum_{e' \in N(e)} u^{A(\gamma e)}(\gamma e') \quad \text{since } \Gamma \text{ preserves the type of pointed edges}
\]
that is, $f_{A_E(\rho', u)g} = A_E(\rho, u)f_g$, as claimed.
A similar argument proves $L_2(X_{\Gamma'}, \rho', u) = L_2(X_{\Gamma}, \rho, u)$.

References

[Ba] H. Bass, The Ihara-Selberg zeta function of a tree lattice, Internat. J. Math. 3 (1992), no. 6, 717-797.
[FLW] Y. Fang, W.-C. W. Li and C.-J. Wang, The zeta functions of complexes from $Sp(4)$, Int. Math. Res. Not. IMRN (2013), 886-923.
[Ha1] K. Hashimoto, Zeta functions of finite graphs and representations of p-adic groups. Automorphic Forms and Geometry of Arithmetic Varieties, 211-280, Adv. Stud. Pure Math., 15, Academic Press, Boston, MA, 1989.
[Ha2] K. Hashimoto, Artin type L-functions and the density theorem for prime cycles on finite graphs, Internat. J. Math. 3 (1992), no. 6, 809-826.
[Ha3] K. Hashimoto, On zeta and L-functions for finite graphs, Internat. J. Math. 1 (1990), no. 4, 381-396.
[Hof] J. Hoffman, Remarks on the zeta function of a graph. Dynamical systems and differential equations (Wilmington, NC, 2002). Discrete Contin. Dyn. Syst. 2003, suppl., 413-422.
[Ih] Y. Ihara, On discrete subgroups of the two by two projective linear group over p-adic fields, J. Math. Soc. Japan 18 (1966), 219-235.
[KL] M.-H. Kang and W.-C. W. Li Zeta Functions of Complexes Arising from $PGL(3)$, Adv. Math. 256 (2014), 46-103.
[KILW] M.-H. Kang, W.-C. W. Li, C.-J. Wang, The Zeta functions of complexes from $PGL(3)$: a representation-theoretic approach, Israel J. Math. 177 (2010), 335-347.
[MS] H. Mizuno and I Sato, Zeta functions of graph coverings, J. Comb. Theory, Series B 80 (2000), 247-257.
[Sar] A. Sarveniazi, Explicit construction of a Ramanujan $(n_1, n_2, \ldots, n_{d-1})$-regular hypergraph, Duke Math. J. 139 (2007), no. 1, 141-171.
[Sat] I. Satake, Theory of spherical functions on reductive algebraic groups over p-adic fields. Inst. Hautes Études Sci. Publ. Math. No. 18 (1963), 5-69.
[ST2] H. Stark and A. Terras, Zeta functions of finite graphs and coverings, Part II, Adv. Math. 154 (2000), 132-195.

Ming-Hsuan Kang, Department of Applied Mathematics, National Chiao-Tung University, Hsinchu, Taiwan
E-mail address: mhkang@nctu.edu.tw

Wen-Ching Winnie Li, Department of Mathematics, The Pennsylvania State University, University Park, PA 16802 and, National Center for Theoretical Sciences, National Tsing Hua University, Hsinchu, Taiwan
E-mail address: wli@math.psu.edu