Mapping Trends and Identifying Hotspots in Research on Mesenchymal Stem Cells in Cardiovascular Disease

Chan Chen
Hangzhou Xiaoshan district Hospital of TCM
https://orcid.org/0000-0002-3751-6241

Yang Lou
The first Affiliated Hospital Zhejiang Chinese Medical University

Xin-Yi Li
Southern Medical University Nanfang Hospital

Zheng-Tian Lv
The first Affiliated Hospital Zhejiang Chinese Medical University

Lu-Qiu Zhang
The first Affiliated Hospital Zhejiang Chinese Medical University

Wei Mao (maowellw@163.com)
The first Affiliated Hospital Zhejiang Chinese Medical University
https://orcid.org/0000-0003-1994-2770

Research

Keywords: Mesenchymal stem cells, Cardiovascular, Knowledge mapping analysis, Visualization

DOI: https://doi.org/10.21203/rs.3.rs-56826/v1

License: ☑️ ⬆️ This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background: Mesenchymal stem cells (MSCs) have important research value and broad application prospects in the cardiovascular disease. This study in order to provide information on the latest progress, evolutionary path, frontier research hotspots and future research developmental trends in this field.

Methods: A knowledge map was generated by CiteSpace and VOSviewer analysis software based on data obtained from the literature on MSCs in the cardiovascular field.

Results: The USA and China ranked at the top in terms of the percentage of articles, accounting for 34.306% and 28.550%, respectively. The institution with the highest number of research publications in this field was the University of Miami, followed by the Chinese Academy of Medical Sciences and Harvard University. The research institution with the highest ACI value was Harvard University, followed by the Mayo Clinic and the University of Cincinnati.

The top three subjects in terms of the number of published articles were cell biology, cardiovascular system cardiology and research experimental medicine. The journal with the most publications in this field was Circulation Research, followed by Scientific Reports and Biomaterials. The direction of research on MSCs in the cardiovascular system was divided into four parts: (1) tissue engineering and gene and material research, (2) cell transplantation and signal transduction pathway research, (3) assessment of the efficacy of the use of stem cells from different sources in the treatment of acute myocardial infarction, and (4) myocardial hypertrophy, heart failure and myocardial infarction regeneration and repair research. Tissue research is the hotspot and frontier in this field.

Conclusion: MSC research has presented a gradual upward trend in the cardiovascular field. Multidisciplinary intersection is a characteristic of this field. Engineering and materials disciplines are particularly valued and have received attention from researchers. The progress in multidisciplinary research will provide motivation and technical support for the development of this field.

1. **Introduction**

Mesenchymal stem cells (MSCs) are widely perceived as a class of adult pluripotent stem cells with multiple differentiation potentials, which derived from mesoderm and neuroectoderm and do not express hematopoietic-related markers [1]. The important biological characteristics of MSCs include its low level of expression of human leukocyte antigen class I molecules and CD40, CD40 ligand, CD80 or CD86, which is required to induce effector T cells[2]. MSCs have low immunogenicity and immunoregulatory effects, which can affect every cell of the immune system through cell-cell interactions and paracrine effects[3]. Based on these special biological characteristics, MSCs have important research value and broad application prospects.

Recent studies have shown that the use of MSCs has made great progress in cardiovascular basic and clinical research. MSCs induce the differentiation of cardiomyocytes and vascular endothelial cells. Bonnet found that BMSCs induced in vitro can express platelet-derived growth factor receptor (PDGFR), smooth muscle myosin heavy chain 11 (SMMHC11) and myoglobulin light chain 2 (MLC2), which is similar to that observed in aortic smooth muscle cells, and BMSCs have similar electrophysiological activity and contraction ability[4]. MSCs
inhibit myocardial fibrosis; for example, MSC exosomes reduce fibrosis of the heart by inhibiting the proliferation of fibroblasts, promoting the synthesis of metalloproteinases, and stimulating angiogenesis in the infarct area [5]. MSCs also promote angiogenesis. Rahbarghazi transplanted MSCs into infarcted myocardium in rabbits and found that the surrounding area of infarcted myocardium mainly differentiated into cardiomyocytes, endothelial cells and smooth muscle cells, and the microvessel density significantly increased [6]. MSCs can effectively treat myocardial infarction, dilated cardiomyopathy, heart failure and other conditions. For example, Lee et al proved that intravenous injection of bone marrow MSCs was safe, mild, effective, and had a long-lasting effect [7]. Chin et al confirmed that autologous bone marrow-derived MSCs were safe and effective in treating DCM [8]. Bartunek et al found that MSC therapy did not produce myocardial toxicity, which significantly increased the left ventricular ejection fraction, reduced the end-systolic volume, and increased the 6-minute walking distance of HF patients [9].

Bibliometrics uses the literature system and bibliometric characteristics as the research object and conducts quantitative and qualitative analysis of the literature[10]. It allows the quantitative measurement of the profile distribution as well as the relationships and clustering of studies[11]. In addition to describing and predicting the development of a particular research area, this type of analysis can also compare the contributions of different countries, institutions, journals, and scholars[12]. This type of analysis technology is playing an increasingly important role in developing guidelines and evaluating research trends[13]. Many scholars have used this method of literature analysis in various fields of medicine, such as spinal surgery research [14], health information research [15], biological signaling molecule research [16], neurogenetics research [17] and endocrine disease research [18].

This research is based on data regarding the literature on MSCs in the cardiovascular field which uses CiteSpace and VOSviewer to form a corresponding knowledge map and recognize the knowledge base. The study provides information on the latest progress, evolutionary path, frontier research hotspots and future research developmental trends in this field.

2. Methods

2.1 Data collection

SCI-E and SSCI of the core database of the document information index database Web of Science were selected as the target databases for source document retrieval. The search formula was set to TS = (“cardiovascular” OR “heart” OR “circulation”) AND TS = (mesenchymal stem cells), and the dates of the search were from 2010-01-01 to 2020-03-31, which resulted in a total of 3455 records. There were 8 types of documents among the 3455 records. As shown in Table 1, there were 2380 articles, which accounted for 72.187% of the total number of records, making articles the most common type of literature. Reviews ranked second, as there were 755 reviews, accounting for 22.900% of the total. The other 8 document types were meeting abstracts (98), editorial materials (55), book chapters (35), proceedings papers (32), early access (20), letters (5), corrections (3) and news items (1).
Table 1.
Document types of the publications

No.	Type of Document	TP	SOTC	CA	Proportion/%	h-index
1	Article	2380	54115	32037	72.187	89
2	Review	755	25090	20693	22.900	77
3	Meeting Abstract	98	16	12	2.972	1
4	Editorial Material	55	411	403	1.668	9
5	Book Chapter	35	946	943	1.062	12
6	Proceedings Paper	32	891	871	0.971	15
7	Early Access	20	5	5	0.607	1
8	Letter	5	8	8	0.152	2
9	Correction	3	7	7	0.091	2
10	News Item	1	0	0	0.030	0

TP: total publications; SOTC: Sum of Times Cited; CA: Citing articles

2.2 Data analysis

VOSviewer and CiteSpace were used to analyze the 3384 exported articles. VOSviewer constructs a map based on the cooccurrence matrix. The construction of the map is a three-step process. In the first step, the similarity matrix is calculated based on the cooccurrence matrix. In the second step, the VOS mapping technique is applied to the similarity matrix to construct a map. Finally, in the third step, the map is translated, rotated and reflected [19]. The term cooccurrence graph in VOSviewer only includes terms that appear in the title and are abstracted at least 50 times under the binary count [20]. The purpose of the algorithm is to ensure that terms that occur more frequently have larger bubble images and that terms with high similarity are close to each other [21]. CiteSpace is a web-based Java application that focuses on detecting and analyzing the evolution of research frontiers and the relationship between research frontiers and their knowledge base. CiteSpace also examines the internal connections between different research frontiers [22]. It is used to capture keywords associated with strong citation bursts, which can be used as predictors of research frontiers.

3. Results

3.1 Temporal distribution map of the literature

From 2010 to 2018, the number of research publications on MSCs in the cardiovascular field generally showed an upward trend (Figure 1). From 2010 to 2013, the number of articles published in this field rose steadily, with a slight decline in 2014, an increase in 2015, and a decline in 2016. The number of articles increased each year from 2017 to 2018. In 2018, the number of articles reached its peak and then declined in 2019. As shown
in Figure 1, documents published between 2010 and 2015 were cited more frequently, and the most cited articles were published in 2011.

3.2 Country/Region distribution

As shown in Table 2, the number of articles published by the USA and China placed them at the top of the ranking, as each accounted for 34.306% and 28.550% of the total, respectively. The total number of studies conducted by both countries comprised more than half of the total, indicating that the two countries had high research interest in this field. The top three countries in terms of ACI values were the Netherlands (40.2288), Spain (34.2771) and the USA (32.5757), suggesting that these three countries had started to conduct research in this field earlier than other countries and that their research results were more mature.

Table 2. Top 10 productive countries

Rank	Country	Region	Quantity	Percentage	ACI	H-index	Total link strength
1	USA	North America	1129	34.306%	32.5757	89	541
2	China	East Asia	919	28.550%	16.7737	53	258
3	Italy	South Europe	188	5.840%	26.766	38	157
4	Germany	Central Europe	184	5.716%	32.4293	43	168
5	South Korea	East Asia	144	4.473%	21.4861	31	68
6	England	Western Europe	126	3.914%	27.2619	32	143
7	Netherlands	Western Europe	118	3.555%	40.2288	40	100
8	Canada	North America	116	3.604%	28.2586	30	78
9	Japan	East Asia	115	3.573%	25.5304	30	66
10	Spain	Southern Europe	83	2.578%	34.2771	27	59

*ACI: Average Citations per Item

As shown in Figure 2, Countries with close cooperation can be mainly divided into two types. The USA and China showed the greatest cooperation with South Korea, Japan, Canada and Australia. The Germany and Italy worked more closely with England, Netherlands, France, Switzerland and Spain.

3.3 Distribution of authors and research institutions
As shown in Table 3, Hare JM from the University of Miami in the United States has the highest number of published articles, followed by Wang Y from Shanghai Jiao Tong University in China and Zhang Yu from the Second Military Medical University in China. Seven of the top ten writers are from China, and three are from the United States.

Table 3
Top 15 authors

Rank	Author	Country	Institute	TP	P	h
1	Hare JM	USA	Univ Miami	64	1.941%	28
2	Wang Y	China	Shanghai Jiao Tong Univ	58	1.759%	21
3	Zhang, Yu	China	Second Mil Med Univ	42	1.274%	21
4	Zhang, Lei	China	Southeast Univ	39	1.183%	16
5	Ashraf, Muhammad	USA	Augusta Univ	32	0.971%	18
6	Li, Yan	China	Fourth Mil Med Univ	27	0.819%	11
7	Li, Xin	China	Guangdong Acad Med Sci	26	0.789%	11
8	Liu, Yue	China	China Acad Chinese Med Sci	25	0.758%	8
9	Cao, Feng	China	Fourth Mil Med Univ	24	0.728%	16
10	Heldman, Alan W.	USA	Univ Miami	24	0.728%	15

TP: total publications; h: H-index

As shown in Figure 3, Ashraf and Muhammad worked closely with Wang Yigang and Huang Wei. Li Ren-ke worked closely with Steinhoff, Gustav, David Robert, Guan Jianjun and Khan Mahmood, and so on.

As shown in Table 4, the institution with the highest number of research publications in this field is the University of Miami with a quantity of 73, followed by the Chinese Academy of Medical Sciences with a quantity of 55 and Harvard University with a quantity of 52. The research institution with the highest ACI value in this field was Harvard University, which had an ACI value of 92.2692, followed by Mayo Clinic with an ACI value of 36.5227 and University of Cincinnati with an ACI value of 34.5455.
Table 4.
Top 10 institutions

Rank	Institution	Country	Quantity	Total link strength	STC	ACI
1	Univ Miami	USA	73	23	3339	45.7397
2	Chinese Acad Med Sci	China	55	57	1319	23.9818
3	Harvard Univ	USA	52	24	4798	92.2692
4	Sun Yat Sen Univ	China	51	5	626	12.2745
5	Fourth Mil Med Univ	China	48	25	883	18.3958
6	Peking Union Med Coll	China	47	55	1173	24.9574
7	Mayo Clin	USA	44	9	1607	36.5227
8	Univ Cincinnati	USA	44	9	1520	34.5455
9	Univ Toronto	Canada	44	14	1410	32.0455
10	Fudan Univ	China	42	13	762	18.1429

*STC: Sum of the Times Cited, ACI: Average Citations per Item

As shown in Figure 4, the University of Miami cooperated closely with Harvard University, Pittsburgh University and Zhejiang University. Sun Yat-sen University cooperated closely with Fudan University.

3.4 Distribution of disciplines in the literature

As shown in Table 5, the top three disciplines in terms of the number of published articles were cell biology (30.664%), cardiovascular system cardiology (20.534%) and research experimental medicine (20.140%). Additional disciplines represented in the literature were engineering (9.827%), materials science (9.160%), biochemistry and molecular biology (8.280%), biotechnology and applied microbiology (7.158%), pharmacology and pharmacy (6.946%), transplantation (4.974%), chemistry (3.063%) and other disciplines, indicating that the research performed in this field was broad and that the research methods were diverse.
Table 5.
The top 20 subject categories

Rank	Quantity	WOS Categories	Percentage
1	1011	Cell biology	30.664%
2	677	Cardiovascular system cardiology	20.534%
3	664	Research experimental medicine	20.140%
4	324	Engineering	9.827%
5	302	Materials science	9.160%
6	273	Biochemistry and molecular biology	8.280%
7	236	Biotechnology and applied microbiology	7.158%
8	232	Science technology—other topics	7.073%
9	229	Pharmacology and pharmacy	6.946%
10	222	Hematology	6.733%
11	164	Transplantation	4.974%
12	159	Oncology	4.823%
13	129	Physiology	3.913%
14	123	Surgery	3.731%
15	101	Chemistry	3.063%
16	96	General internal medicine	2.912%
17	80	Endocrinology and metabolism	2.426%
18	62	Respiratory system	1.880%
19	57	Biophysics	1.729%
20	57	Immunology	1.729%

As shown in Table 6, the journal with the highest number of articles in this field was Circulation Research, followed by Scientific Reports(42), Biomaterials(40), Molecular Medicine Reports(40), Stem Cells(39) and Tissue Engineering Part A(39). The magazine with the highest ACI value was Biomaterials (17.68), followed by Stem Cells Translational Medicine (17.45), Journal of Cellular and Molecular Medicine (16.48), Circulation Research (15.30), Tissue Engineering Part A (14.8182), Cell Transplantation (14.78) and Scientific Reports (13.9167).
Table 6.
Top 15 journals

Rank	Journal Title	Quantity	ACI
1	Circulation Research	49	15.30
2	Scientific Reports	42	13.9167
3	Biomaterials	40	17.68
4	Molecular Medicine Reports	40	12.4091
5	Stem Cells	39	8.95
6	Tissue Engineering Part A	39	14.8182
7	Stem Cells And Development	28	13.66
8	Cell Transplantation	27	14.78
9	Circulation	25	11.48
10	Journal of Cellular and Molecular Medicine	24	16.48
11	International Journal of Cardiology	22	2.25
12	PLOS One	22	7.02
13	Stem Cell Research & Therapy	18	6.16
14	Stem Cells Translational Medicine	17	17.45
15	Stem Cells International	11	5.15

ACI: Average Citations per Item

3.5 Highly cited literature analysis

As shown in Table 7, the article “Pericytes: Developmental, Physiological, and Pathological Perspectives, Problems, and Promises” was cited the most often. Armulik discussed the important roles of pericytes in the processes of organismal development and vascular homeostasis and their relationship with MSCs[23].

Rank	Title	Journal	Type	Authors	Y	C	IN	CN			
1	Pericytes: Developmental, Physiological, and Pathological Perspectives, Problems, and Promises	Developmental Cell	Review	Armulik, Annika. et al.	2011	1086	2	2			
2	Comparison of Allogeneic vs Autologous Bone Marrow-Derived Mesenchymal Stem Cells Delivered by Trans	Journal of the American Medical Association	Article	Hare, Joshua M. et al.	2012	639	8	1			
3	Whole-Organ Tissue Engineering: Decellularization and Recellularization of Three-Dimensional Matrix	Annual Review of Biomedical Engineering	Review	Badylak, Stephen F. et al.	2011	516	7	1			
4	Bone Marrow Mesenchymal Stem Cells Stimulate Cardiac Stem Cell Proliferation and Differentiation	Circulation Research	Article	Hatzistergos, Konstantinos E. et al.	2010	469	5	2			
5	Molecular mechanisms of cancer development in obesity	Nature Reviews Cancer	Review	Khandekar, Melin J. et al.	2011	467	4	1			
6	Harnessing the Mesenchymal Stem Cell Secretome for the Treatment of Cardiovascular Disease	Cell Stem Cell	Review	Ranganath, Sudhir H. et al.	2012	449	6	2			
7	Conversion of vascular endothelial cells into multipotent stem-like cells	Nature Medicine	Article	Medici, Damian et al.	2010	444	8	1			
8	Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate P	Stem Cell Research	Article	Arslan, Fatih Et al.	2013	436	8	2			
9	Clinical Trials With	Cell	Review	Squillaro,	2016	411	4	3			
Y	Cite	IN	CN	Title	Journal	Type	Authors	Year	1000s	100s	10s
---	------	----	----	---	---------------------	--------	-------------------------------	------	-------	------	----
10	411	1	1	Aggregation of human mesenchymal stromal cells (MSCs) into 3D spheroids enhances their antiinflammatory activity	Proceedings of the National Academy of Sciences of the United States of America	Article	Bartosh, Thomas J. et al.	2010	411	1	1
11	337	6	2	Perivascular Gli1(+) Progenitors Are Key Contributors to Injury-Induced Organ Fibrosis	Cell Stem Cell	Article	Kramann, Rafael. et al.	2015	337	6	2
12	332	2	1	Cell Therapy for Heart Failure: A Comprehensive Overview of Experimental and Clinical Studies, Curren	Circulation Research	Review	Sanganalmath, Santosh K. et al.	2013	332	2	1
13	327	4	1	Immunosuppressive Properties of Mesenchymal Stem Cells: Advances and Applications	Current Molecular Medicine	Review	De Miguel, M. P. et al.	2012	327	4	1
14	301	2	1	The war against heart failure: the Lancet lecture	Lancet	Review	Braunwald, Eugene.	2015	301	2	1
15	292	2	1	Bone Marrow-Derived Cell Therapy Stimulates Endogenous Cardiomyocyte Progenitors and Promotes Cardia	Cell Stem Cell	Article	Loffredo, Francesco S. et al.	2011	292	2	1

Y=Year; C=Citations; IN=Institute Number; CN=Country Number

The second most cited article was “Comparison of Allogeneic vs Autologous Bone Marrow-Derived Mesenchymal Stem Cells Delivered by Transendocardial Injection in Patients with Ischemic Cardiomyopathy: The POSEIDON Randomized Trial”. In this article, Hare et al confirmed that intracardiac injection of allogeneic and autologous MSCs could treat ischemic cardiomyopathy effectively and relatively safely [24].

The third most cited article was “Whole-Organ Tissue Engineering: Decellularization and Recellularization of Three-Dimensional Matrix”. In this article, Badylak explained that the combination of three-dimensional bioscaffold materials and cell transplantation was a promising tissue engineering strategy and a method for the regeneration of functional organs for medical replacement [25]. The above articles could be regarded as constituting an important theoretical basis and providing clinical evidence for research in this field.
According to the types of the articles, 8 of the most highly cited articles were reviews, and 7 were monographs. Based on the publication dates of the most highly cited articles, the most highly cited articles were published from 2011 to 2013, followed by 2015 to 2016. These periods can be regarded as representing the two stages of the development of this field. Based on the numbers of cooperating institutions and countries, there were 10 articles involving more than three institutions and 6 articles involving groups in at least two countries.

3.6 Research hotspots and frontier analysis

3.6.1 Research hotspot analysis

Keywords reflect the core content of the article and can be used to identify the evolving research frontiers related to the knowledge field [26]. As shown in Table 8, in addition to mesenchymal stem cells and heart, the keywords with a high frequency of occurrence were heart transplantation (582), differentiation (535), myocardial infarction (482), in vitro (473), therapy (472) and progenitor cells (458).

As shown in Figure 5, in the keyword cooccurrence network map, the thicker the connection between the nodes is, the more frequently the two keywords appear together. The keywords formed 4 clusters, which represented the four major research directions in the field. Stromal cells, tissue, tissue engineering, regenerative medicine, gene expression, scaffolds and extracellular matrix were the key words that had a high correlation with MSCs, as shown in the blue cluster. This indicates that this clustering was predominated by tissue engineering, genes
and material research. The yellow cluster was associated with transplantation, expression, therapy and differentiation in the main body and mainly explored the pathways of cell transplantation and signal transduction. The green cluster was mainly associated with progenitor cells, endothelial progenitor cells and acute myocardial infarction and mostly explored the efficacy of stem cells from different sources in the treatment of acute myocardial infarction, cardiac hypertrophy and heart failure. The red cluster was associated with myocardial infarction, repair and regeneration, which indicated that myocardial infarction, regeneration and repair were the main research topics.

3.6.2 Combined evolutionary path

In Figure 6, the year corresponding to each of the keywords is the first year it appeared in the analyzed data set. The transformation between nodes could reveal the evolution of MSCs in the cardiovascular research hotspot. From 2010 to 2012, cardiovascular MSC research began to focus on apoptosis, left ventricular function, proliferation, bone marrow cells and endothelial cells. In 2013-2015, endothelial progenitor cells, extracellular matrix, ischemic cardiomyopathy and tissue received increased attention in the field. From 2016 to 2017, the field turned to research on injury and oxidative stress. Tissue engineering, exosomes and inflammation became the new focus in 2018-2020.

3.6.3 Research frontier identification

In Table 9, the timeline is depicted as a blue line, while burst detection is shown as a red segment on the blue timeline that indicates the start year, end year, and duration of the burst. In particular, we are interested in the key words with research significance, which reflect the evolutionary trend of this field.

Table 9. Top 15 Keywords with the Strongest Citation Bursts

Keywords	Strength	Begin	End	2010 - 2020
progenitor cell	3.4531	2010	2011	
marrow stromal cell	12.7969	2010	2011	
in vivo	6.6078	2010	2013	
heart function	10.3779	2010	2011	
bone marrow cell	13.1779	2010	2012	
endothelial progenitor cell	19.2627	2011	2012	
endothelial cell	13.3878	2012	2013	
cardiac function	8.7381	2012	2013	
delivery	3.585	2013	2016	
ischemic heart	8.0921	2014	2015	
ischemic cardiomyopathy	16.5089	2014	2017	
growth factor	4.0519	2014	2015	
cardiovascular disease	14.8349	2015	2017	
injury	9.9276	2016	2017	
tissue	5.5759	2016	2020	
Endothelial progenitor cells showed the strongest burst strength, followed by ischemic cardiomyopathy, cardiovascular disease and endothelial cells. The terms progenitor cells, marrow stromal cells, and heart function appeared for the first time recently but persisted for a shorter period of time. The burst times of the terms delivery, ischemic heart and ischemic cardiomyopathy were consistent. Tissue is the current research frontier in this field and is currently within the burst period.

4. Discussion

This paper used the information visualization software CiteSpace and VOSviewer to carry out bibliometric analysis of the literature on MSCs in the cardiovascular field published from 2000 to 2020. The analysis assessed the spatial and temporal distribution, author contribution, core literature, research hotspots and research frontier analysis. We used keyword cooccurrence analysis to identify research hotspots in each period and to determine the core evolutionary path of the theme. Then, we identified the current research frontiers of research of MSCs in the cardiovascular field. The main conclusions are as follows:

(1) The research of MSCs in the cardiovascular field showed a zigzag upward trend.

Stem cell therapy has great potential for use in future regenerative medicine treatment; however, it has some risks and limitations, such as the type of stem cells used, cell proliferation ability, differentiation status, drug delivery route, drug delivery site and the ability for survival of transplanted cells, which will affect the therapeutic effect. The therapeutic characteristics, medical ethics and possible teratogenicity have made the study of MSCs highly controversial[27]. For example, Hegyi proposed that MSCs might form primary cardiac sarcomas and develop into tumors with multiple lineage differentiation[28]. Huang reported that transplantation and differentiation of MSCs led to progressive ventricular dysfunction and other diseases[29]. In view of the risks of research and the limitations of technology, researchers are cautious in carrying out the research work.

(2) The study of cardiovascular MSCs in Europe and America started first, and Asian countries have paid increasing attention to this area of research.

European and American countries started research in this field earlier than other countries, and their research is therefore more mature. For example, Harvard University, the Mayo Clinic and University of Cincinnati in the United States have obtained a large number of high-quality research results. Harvard University has mainly studied 3D microcapsules[30] and engineered three-layer scaffolds[31]. The Mayo Clinic has explored the effect of MSCs on left ventricular assist device (LVAD) implantation [32], left ventricular remodeling[33] and heart failure[34] through clinical trials while developing microfiber stents[35] and vascular biomaterials[36]. The paracrine effect of nuclear casein kinase on MSC and MSC-derived extracellular vesicles (EVs) has been studied[37]. The University of Cincinnati explored the cardiac protection mechanism of paracrine MSCs, which involves iPS cells (MiPS)[38], the Wnt11 signaling pathway[39], CXCR4 factor expression[40], the suicide gene[41] and the clusterin Akt/GATA-4 pathway[42].

For the past decade, Asian countries have also paid attention to MSC research. For example, the Chinese Academy of Medical Sciences and Sun Yat-sen University in China are the leading research institutions with high achievements in the field. The Chinese Academy of Medical Sciences examined the time-distribution
characteristics of MSCs in the myocardium and other organs [43]. The mechanism by which statins and Chinese medicines regulate SDF-1/CXCR4[44], JAK-STAT[45], RhoA/ROCK [46] and AMPK/eNOS[47] in MSCs has been studied. The Chinese Academy of Medical Sciences also explored the improvement of cardiac function by MSCs regulated by matrix-derived factor 1 (SDF1a)[48] and CXC chemokine receptor 4 (CXCR4) [49]. Sun Yat-sen University researched the effects of exons (Exo)[50], the TGF-β superfamily[51], the long noncoding RNA brave heart (lncRNA-Bvht)[52], apelin[53] and granulocyte colony stimulating factor (G-CSF) [54] on the proliferation, differentiation and vascularization of MSCs. The functions of the transcription factors islet-1 (ISL1)[55] and platelet brin (PRF)[56] in regulating the repair of myocardial infarction by MSCs have been explored. Although basic research on cardiovascular stem cells in China is at the forefront of efforts around the world, progress on clinical studies in China is stagnant, which may be related to the lack of efficient scientific approval systems and strict regulatory policies.

(3) Multidisciplinary intersection provides power and technical support for the development of this field.

The literature published in this field is mainly focused on cell biology, cardiovascular system cardiology and research experimental medicine, as well as engineering, materials science, chemistry, biophysics and other disciplines, which reflects that multidisciplinary intersection is a characteristic of research in this field. Engineering and materials disciplines, such as bioengineering[57], tissue engineering[58], genetic engineering[59-60] and biomaterials[61], have received special attention from scholars. The development of these related disciplines will aid in breaking through the limitations of the technical conditions of research in this field.

(4) The direction of the research of MSCs in the cardiovascular field is mainly divided into four parts.

The four parts include tissue engineering and gene and materials research; cell transplantation and signal transduction pathway research; assessment of the efficacy of stem cells from different sources in the treatment of acute myocardial infarction, myocardial hypertrophy and heart failure; research of myocardial infarction and regenerative repair.

Heart failure caused by ischemic and nonischemic cardiomyopathy is due to the progressive and complex process of myocardial remodeling. Local compensatory changes at the genetic, molecular, cellular and interstitial levels are accompanied by ventricular dilatation and the impairment of systolic and diastolic function. The consequence is that billions of cardiomyocytes replaced by fibrous tissue, and the cardiomyocytes and vascular cells are severely injured [62].

Although it has been confirmed that the adult heart contains a small number of active circulating cells, resident stem cells and progenitor cells [63], its inherent ability for self-regeneration is unable to compensate for the loss in cell quality due to heart failure. The need to replace heart cells has aroused great interest in regenerative medicine, especially in the prevention and treatment of heart failure by stem cell transplantation.

(5) Tissue research is a hot spot and frontier area in this field.

Tissue research refers to tissue engineering and tissue repair. Tissue engineering is an emerging technology that uses cells, engineering methods, materials, and appropriate combinations of biochemical and
physicochemical factors to improve or replace biological functions. It aims to reconstruct damaged or diseased organs and tissues in vitro and to transplant tissues in vivo to repair lost or malfunctioning organs or tissues [64]. The ability of the heart to compensate for the loss of functional cardiomyocytes plays a key role in the treatment of heart disease [65]. Therefore, one of the future challenges of cardiovascular therapy is to develop strategies for the regeneration of myocardial contractile function, which can be used for tissue engineering, cell therapy, and reprogramming of scar fibroblasts [66-67].

5. Conclusion

MSCs have important research value and broad application prospects in the field of cardiovascular. With the help of information visualization technology, we have obtained a more in-depth understanding of the study progression, evolutionary path, frontier hot spots and future trends of the research of MSCs in cardiovascular disease over the past 10 years. Multinational cooperation and multidisciplinary intersection are the characteristics and trend of the development in the field, and tissue engineering will be the focus of future research.

Declarations

Acknowledgements

Not applicable

Author’s contributions

C.C. and W.M. conceived and desined the experiments. X.Y.L. and Y.L. analyzed the data, Z.T.L and L.Q.Z. contributed reagents, materials, and analysis tools. C.C. and X.Y.L. wrote the manuscript. Z.T.L and Y.L contributed to the revision of the manuscript.

Funding

This work supported by Hangzhou Municipal Health Commission Projects (No.20181228Y90) and Zhejiang Medical Science and Technology Projects (No.2020RC104).

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable
Competing interests

The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

1. KIM N, CHO SG. Clinical applications of mesenchymal stem cells [J]. Korean J Intern Med. 2013, 28(4): 387-402.

2. McIntosh K, Zvonic S, Garrett S, et al. The immunogenicity of human adipose-derived cells: Temporal changes in vitro [J]. Stem Cells, 2006, 24(5): 1246-1253.

3. YAGI H, SOTO-GUTIERREZ A, PAREKKADAN B, et al. Mesenchymal stem cells: Mechanisms of immunomodulation and homing [J]. Cell Transplant. 2010, 19(6): 667-679.

4. Bonnet P, Awede B, Rochefort GY, et al. Electrophysiological maturation of rat mesenchymal stem cells after induction of vascular smooth muscle cell differentiation in vitro [J]. Stem Cells Dev, 2008, 17(6): 1131-1140.

5. Karantalis V, Hare JM. Use of mesenchymal stem cells for therapy of cardiac disease [J]. Circ Res, 2015, 116(8): 1413-30.

6. RAHBARGHAZI R, NASSIRI S M, AHMADI S H, et al. Dynamic induction of pro-angiogenic milieu after transplantation of marrow-derived mesenchymal stem cells in experimental myocardial infarction [J]. Int J Cardiol, 2014, 173(3): 453-466.

7. LEE J, LEE S, YOUN Y, et al. A randomized, open-label, multicenter trial for the safety and efficacy of adult mesenchymal stem cells after acute myocardial infarction [J]. J Korean Med Sci, 2014, 29(1): 23-31.

8. Chin SP, Poey AC, Wong CY, et al. Intramyocardial and intracoronary autologous bone marrow-derived mesenchymal stromal cell treatment in chronic severe dilated cardiomyopathy. Cytotherapy. 2011, 13(7): 814-821.

9. Bartunek J, Behfar A, Dolatabadi D, et al. Cardiopoietic stem cell therapy in heart failure: the C- CURE cardiopoietic stem cell therapy in heart failure multicenter randomized trial with lineage-specific biologics [J]. J Am Coll Cardiol, 2013; 61(23): 2329-38.

10. Ekinci S, Agilli M, Erson O, Ekinci GH. Letter to the Editor regarding Analysis of Changing Paradigms of Management in 179 Patients with Spinal Tuberculosis During a 12-Year Period and Proposal of a New Management Algorithm. World Neurosurg. 2015 Dec; 84(6): 2072.

11. Zou X, Yue WL, Vu HL. Visualization and analysis of mapping knowledge domain of road safety studies. Accid Anal Prev. 2018 Sep; 118(): 131-145.

12. Avcu G, Sahbudak Bal Z, Duyu M. Thanks to Trauma: A Delayed Diagnosis of Pott Disease. Emerg Care. 2015 Dec; 31(12): e17-8.

13. Gao Y, Wang Y, Zhai X, et al. Publication trends of research on diabetes mellitus and T cells (1997-2016): A 20-year bibliometric study. PLoS One 2017; 12:e0184869.

14. Lin Xie, Zhenhao Chen, Hongli Wang, Chaojun Zheng, Jianyuan Jiang. Bibliometric and Visualized Analysis of Scientific Publications on Atlantoaxial Spine Surgery Based on Web of Science and VOSviewer. World Neurosurg. 2020, 137: 435-442.e4.
15. **Tahereh Saheb, Mohammad Saheb**. Analyzing and Visualizing Knowledge Structures of Health Informatics From 1974 to 2018: A Bibliometric and Social Network Analysis. Healthc Inform Res. 2019, 25(2):61-72.

16. **Kaining Lu, Shan Yu, Dan Sun, Haotian Xing, Jun An**, et al. Scientometric Analysis of SIRT6 Studies. Med Sci Monit. 2018;24:8357-8371.

17. **Jing Gan, Qianyun Cai, Peter Galer, Dan Ma, Xiaolu Chen**, et al. Mapping the Knowledge Structure and Trends of Epilepsy Genetics Over the Past Decade: A Co-Word Analysis Based on Medical Subject Headings Terms. Medicine (Baltimore)2019, 8(32): e16782

18. **Waleed S Beshyah, Salem A Beshyah**. Bibliometric Analysis of the Literature on Ramadan Fasting and Diabetes in the Past Three Decades (1989-2018). Diabetes Res Clin Pract 2019, 151: 313-322.

19. **Nees Jan van Eck, Ludo Waltman**. Software Survey: VOSviewer, a Computer Program for Bibliometric Mapping. Scientometrics, 2010,84(2):523-538.

20. Software survey: VOSviewer, a computer program for bibliometric mapping. van Eck NJ, Waltman L. Scientometrics. 2010 Aug; 84(2):523-538.

21. **Chen C**. Searching for intellectual turning points: progressive knowledge domain visualization. Proc Natl Acad Sci U S A. 2004;101(Suppl 1):5303–5310.

22. **Chen C**. CiteSpace : Detecting and visualizing emerging trends and transient patterns in scientific literature[J]. Journal of the American Society for Information Science and Technology, 2006, 57(3): 359-377.

23. **Annika Armulik, Guillem Genové, Christer Betsholtz**. Pericytes: Developmental, Physiological, and Pathological Perspectives, Problems, and Promises. Dev Cell. 2011 Aug 16;21(2):193-215.

24. **Joshua M Hare, Joel E Fishman, Gary Gerstenblith, Darcy L DiFede Velazquez, Juan P.** et al. Comparison of Allogeneic vs Autologous Bone Marrow-derived Mesenchymal Stem Cells Delivered by Transendocardial Injection in Patients With Ischemic Cardiomyopathy: The POSEIDON Randomized Trial. JAMA. 2012 Dec 12;308(22):2369-79.

25. **Stephen F Badylak, Doris Taylor, Korkut Uygun**. Whole-organ Tissue Engineering: Decellularization and Recellularization of Three-Dimensional Matrix Scaffolds. Annu Rev Biomed Eng. 2011, Aug 15;13:27-53.

26. **He Q**. Knowledge Discovery Through Co-Word Analysis[J]. Library Trends, 1999, 48(1):133-59.

27. **Wei X, Yang X, Han ZP, Qu FF, Shao L, Shi YF**. Mesenchymal stem cells: a new trend for cell therapy. Acta Pharmacol Sin. 2013 Jun; 34(6):747-54.

28. **Hegyi L, Thway K, Fisher C, Sheppard MN**. Primary cardiac sarcomas may develop from resident or bone marrow-derived mesenchymal stem cells: use of immunohistochemistry including CD44 and octamer binding protein 3/4. Histopathology. 2012 Nov; 61(5):966-73.

29. **Huang XP, Sun Z, Miyagi Y, McDonald Kinkaid H, Zhang L, Weisel RD, Li RK**. Differentiation of allogeneic mesenchymal stem cells induces immunogenicity and limits their long-term benefits for myocardial repair. Circulation. 2010 Dec 7; 122(23):2419-29.

30. **Yaqian Li, Wei Liu, Fei Liu, Yang Zeng, Simin Zuo**. Primed 3D Injectable Microniches Enabling Low-Dosage Cell Therapy for Critical Limb Ischemia. Proc Natl Acad Sci U S A. 2014 Sep 16;111(37):13511-6.
31. Naseh Masoumi, Nasim Annabi, Alexander Assmann, Benjamin L Larson, Jesper Hjortnaes. Tri-layered Elastomeric Scaffolds for Engineering Heart Valve Leaflets. Biomaterials. 2014 Sep;35(27):7774-85.

32. Deborah D Ascheim, Annetine C Gelijns, Daniel Goldstein, Lemuel A Moye, Nicholas Smedira, et al. Mesenchymal precursor cells as adjunctive therapy in recipients of contemporary left ventricular assist devices. Circulation. 2014 Jun;129(22):2287-96

33. John R Teerlink, Marco Metra, Gerasimos S Filippatos, Beth A Davison, Jozef Bartunek, et al. Benefit of cardiopoietic mesenchymal stem cell therapy on left ventricular remodelling: results from the Congestive Heart Failure Cardiopoietic Regenerative Therapy (CHART-1) study. Eur J Heart Fail. 2017 Nov;19(11):1520-1529.

34. John R Teerlink, Marco Metra, Gerasimos S Filippatos, Beth A Davison, Jozef Bartunek, et al. Benefit of cardiopoietic mesenchymal stem cell therapy on left ventricular remodelling: results from the Congestive Heart Failure Cardiopoietic Regenerative Therapy (CHART-1) study. Eur J Heart Fail. 2017 Nov;19(11):1520-1529.

35. Soumen Jana, Amrita Bhagia, Amir Lerman. Optimization of Polycaprolactone Fibrous Scaffold for Heart Valve Tissue Engineering. Biomed Mater. 2019 Oct 8;14(6):065014.

36. Alfonso-Garcia A, Shklover J, Sherlock BE, Panitch A, Griffiths LG, Marcu L. Fiber-based fluorescence lifetime imaging of recellularization processes on vascular tissue constructs. J Biophotonics. 2018 Sep;11(9):e201700391.

37. Yuelin Zhang, Sinming Chiu, Xiaoting Liang, Yuet-Hung Chai, Yiming Qin, Junwen Wang, Xiang Li. Absence of NUCKS Augments Paracrine Effects of Mesenchymal Stem Cells-Mediated Cardiac Protection. Exp Cell Res. 2017 Jul 1;356(1):74-84.

38. Stephanie Buccini, Khawaja Husnain Haider, Rafeeq P H Ahmed, Shujia Jiang, Muhammad Ashraf. Cardiac progenitors derived from reprogrammed mesenchymal stem cells contribute to angiomyogenic repair of the infarcted heart. Basic Res Cardiol. 2012 Nov;107(6):301.

39. Zhisong He, Hongxia Li, Shi Zuo, Zeeshan Pasha, Yigang Wang, Yueling Yang, Wenping Jiang, Muhammad Ashraf, Meifeng Xu. Transduction of Wnt11 promotes mesenchymal stem cell transdifferentiation into cardiac phenotypes. Stem Cells Dev. 2011 Oct;20(10):1771-8.

40. Kai Kang, Ruilian Ma, Wenfeng Cai, Wei Huang, Christian Paul, et al. Exosomes Secreted from CXCR4 Overexpressing Mesenchymal Stem Cells Promote Cardioprotection via Akt Signaling Pathway following Myocardial Infarction. Stem Cells Int. 2015;2015:659890.

41. Jialiang Liang, Wei Huang, Xiyong Yu, Atif Ashraf, Kishore K Wary, Meifeng Xu, Ronald W Millard, Muhammad Ashraf, Yigang Wang. Suicide gene reveals the myocardial neovascularization role of mesenchymal stem cells over expressing CXCR4 (MSC (CXCR4)). PLoS One. 2012;7(9):e46158.

42. Bin Yu, Yueling Yang, Huan Liu, Min Gong, Ronald W Millard, Yi-Gang Wang, Muhammad Ashraf, Meifeng Xu. Clusterin/Akt Up-Regulation Is Critical for GATA-4 Mediated Cytoprotection of Mesenchymal Stem Cells against Ischemia Injury. PLoS One. 2016 Mar 10;11(3):e0151542.

43. Ning Ma, Huaibing Cheng, Minjie Lu, Qiong Liu, Xiuyu Chen, Gang Yin, Hao Zhu, Lianfeng Zhang, Xianmin Meng, Yue Tang, Shihua Zhao. Magnetic resonance imaging with superparamagnetic iron oxide fails to track the long-term fate of mesenchymal stem cell transplanted into heart. Sci Rep. 2015 Mar 12;5:9058.
44. Xia-Qiu Tian, Yue-Jin Yang, Qin Li, Jun Xu, Pei-Sen Huang, Yu-Yan Xiong, Xiang-Dong Li, Chen Jin, Kang Qi, Lei-Pei Jiang, Gui-Hao Chen, Li Qian, Jiandong Liu, Yong-Jian Geng. Combined therapy with atorvastatin and atorvastatin-pretreated mesenchymal stem cells enhances cardiac performance after acute myocardial infarction by activating SDF-1/CXCR4 axis. Am J Transl Res. 2019 Jul 15;11(7):4214-4231.

45. Hui Xu, Yue-Jin Yang, Hai-Yan Qian, Yi-Da Tang, Hong Wang, Qian Zhang. Rosuvastatin treatment activates JAK-STAT pathway and increases efficacy of allogeneic mesenchymal stem cell transplantation in infarcted hearts. Circ J. 2011;75(6):1476-85.

46. Qian Zhang, Hong Wang, Yue-Jin Yang, Qiu-Ting Dong, Tian-Jie Wang, Hai-Yan Qian, Na Li, Xi-Mei Wang, Chen Jin. Atorvastatin treatment improves the effects of mesenchymal stem cell transplantation on acute myocardial infarction: the role of the RhoA/ROCK/ERK pathway. Int J Cardiol. 2014 Oct 20;176(3):670-9.

47. Na Li, Yue-Jin Yang, He-He Cui, Qian Zhang, Chen Jin, Hai-Yan Qian, Qiu-Ting Dong, Hao Zhang. Tongxinluo decreases apoptosis of mesenchymal stem cells concentration-dependently under hypoxia and serum deprivation conditions through the AMPK/eNOS pathway. J Cardiovasc Pharmacol. 2014 Mar;63(3):265-73.

48. Xu-He Gong, Hui Liu, Si-Jia Wang, Si-Wen Liang, Guo-Gan Wang. Exosomes derived from SDF1-overexpressing mesenchymal stem cells inhibit ischemic myocardial cell apoptosis and promote cardiac endothelial microvascular regeneration in mice with myocardial infarction. J Cell Physiol. 2019 Aug;234(8):2657-3.

49. Na Li, Yue-Jin Yang, Hai-Yan Qian, Qing Li, Qian Zhang, Xiang-Dong Li, Qiu-Ting Dong, Hui Xu, Lei Song, Hao Zhang. Intravenous administration of atorvastatin-pretreated mesenchymal stem cell simproves cardiac performance after acute myocardial infarction: role of CXCR4. Am J Transl Res. 2015 Jun 15;7(6):1058-70.

50. Peisen Huang, Li Wang, Qin Li, Jun Xu, Junyan Xu, Yuyan Xiong, Guihao Chen, Haiyan Qian, Chen Jin, Yuan Yu, Jiandong Liu, Li Qian, Yuejin Yang. Combinatorial treatment of acute myocardial infarction using stem cells and their derived exosomes resulted in improved heart performance. Stem Cell Res Ther. 2019 Oct 10;10(1):300.

51. Wen-Jia Ai, Jie Li, Shao-Mang Lin, Wen Li, Chi-Zhuai Liu, Wei-Ming Lv. R-Smad signaling-mediated VEGF expression coordinately regulates endothelial cell differentiation of rat mesenchymal stem cells. Stem Cells Dev. 2015 Jun 1;24(11):1320-31.

52. Jingying Hou, Huibao Long, Changqing Zhou, Shaoxin Zheng, Hao Wu, Tianzhu Guo, Quanhua Wu, Tingting Zhong, Tong Wang. Long noncoding RNA Braveheart promotes cardiogenic differentiation of mesenchymal stem cells in vitro. Stem Cell Res Ther. 2017 Jan 17;8(1):4.

53. Jingying Hou, Tingting Zhong, Tianzhu Guo, Changqing Miao, Changqing Zhou, Huibao Long, Hao Wu, Shaoxin Zheng, Le Wang, Tong Wang. Apelin promotes mesenchymal stem cells survival and vascularization under hypoxic-ischemic condition in vitro involving the upregulation of vascular endothelial growth factor. Exp Mol Pathol. 2017 Apr;102(2):203-209.

54. Zhao Y, Liu YX, Xie SL, Deng BQ, Wang JF, Nie RQ. Increased expression of granulocyte colony-stimulating factor mediates mesenchymal stem cells recruitment after vascular injury. Chin Med J (Engl). 2011 Dec;124(24):4286-92
55. Qiuling Xiang, Yan Liao, Hua Chao, Weijun Huang, Jia Liu, Haixuan Chen, Dongxi Hong, Zhengwei Zou, Andy Peng Xiang, Weiqiang Li. ISL1 overexpression enhances the survival of transplanted human mesenchymal stem cells in a murine myocardial infarction model. Stem Cell Res Ther. 2018 Feb 26;9(1):51.

56. Yung-Lung Chen, Cheuk-Kwan Sun, Tzu-Hsien Tsai, Li-Teh Chang, Steve Leu, Yen-Yi Zhen, Jiunn-Jye Sheu, Sarah Chua, Kuo-Ho Yeh, Hung-I Lu, Hsueh-Wen Chang, Fan-Yen Lee, Hon-Kan Yip. Adipose-derived mesenchymal stem cell embedded in platelet-rich fibrin scaffolds promote angiogenesis, preserve heart function, and reduce left ventricular remodeling in rat acute myocardial infarction. Am J Transl Res. 2015 May 15;7(5):781-803.

57. Kai Wang, Ruei-Zeng Lin, Juan M Melero-Martin. Bioengineering Human Vascular Networks: Trends and Directions in Endothelial and Perivascular Cell Sources. Cell Mol Life Sci. 2019 Feb;76(3):421-439.

58. Emmert MY, Wolint P, Wickboldt N, Gemayel G, Weber B, Brokopp CE, Boni A, Falk V, Bosman A, Jaconi ME, Hoerstrup SP. Human stem cell-based three-dimensional microtissues for advanced cardiac cell therapies. Biomaterials. 2013;34:6339–6354.

59. Li J., Yoong S. L., Goh W. J., et al. In vitro controlled release of cisplatin from gold-carbon nanobottles via cleavable linkages. Journal of International Journal of Nanomedicine. 2015; 10: 7425–7441.

60. Shen Y., Qiao H., Fan Q., Zhang S., Tang T. Potentiated osteoinductivity via cotransfection with BMP-2 and VEGF genes in microencapsulated C2C12 Cells. BioMed Research International. 2015;2015:10.

61. Qazi TH, Mooney DJ, Duda GN, et al. Biomaterials that promote cell-cell interactions enhance the paracrine function of MSCs. Biomaterials. 2017September;140:103–114.

62. Peter J. Psaltis, Nisha Schwarz, Deborah Toledo-Flores, and Stephen J. Nicholls. Cellular Therapy for Heart Failure. Curr Cardiol Rev. 2016 Aug; 12(3): 195–215.

63. Leri A., Rota M., Hosoda T., Goichberg P., Anversa P. Cardiac stem cell niches. Stem Cell Res. (Amst.) 2014;13(3 Pt B):631–646.

64. Langer R, Vacanti JP. Tissue Engineering. Science. 1993;260:920–926.

65. Regeneration of the heart. Steinhauser ML, Lee RT. EMBO Mol Med. 2011 Dec; 3(12):701-12.

66. Early cardiac retention of administered stem cells determines clinical efficacy of cell therapy in patients with dilated cardiomyopathy. Assmus B, Zeiher AM. Circ Res. 2013 Jan 4; 112(1):6-8.

67. Heart regeneration. Laflamme MA, Murry CE. Nature. 2011 May 19; 473(7347):326-35.

Figures
Figure 1

Trends in the growth of publications and the number of cited articles worldwide from 2010-2020
Figure 2

Cooperation map of countries

Figure 3

Cooperation map of authors
Figure 4

Cooperation map of institutions
Figure 5

Map of keyword clustering
Figure 6

Evolutionary path