Hemodynamic Effects of Fenofibrate and Coenzyme Q₉₀ in Type 2 Diabetic Subjects With Left Ventricular Diastolic Dysfunction

Gerard T. Chew, MD¹
Gerald F. Watts, DSC¹
Timothy M.E. Davis, DPhil¹
Bronwyn G.A. Stuckey, MD¹,²
Lawrence J. Beilin, MD¹
Peter L. Thompson, MD¹
Valerie Burke, MD¹
Philip J. Currie, MD³

RESEARCH DESIGN AND METHODS — We randomized, double-blind, 74 subjects to fenofibrate 160 mg daily, CoQ 200 mg daily, fenofibrate 160 mg plus CoQ 200 mg daily, or matching placebo for 6 months. Echocardiography (including tissue Doppler imaging) and 24-h ABP and HR monitoring were performed pre- and postintervention.

RESULTS — Neither fenofibrate nor CoQ, alone or in combination, altered early diastolic mitral annular myocardial relaxation velocity ($E'$), early-to-late mitral inflow velocity ratio ($E/A$), deceleration time, isovolumic relaxation time, or the ratio of early mitral flow velocity to early diastolic mitral annular myocardial relaxation velocity ($E/E'$) compared with placebo ($P > 0.05$). Fenofibrate and CoQ interactively ($P = 0.001$) lowered 24-h systolic blood pressure ($−3.4 ± 0.09$ mmHg, $P = 0.010$), with a prominent nocturnal effect ($−5.7 ± 1.5$ mmHg, $P = 0.006$). Fenofibrate ($−1.3 ± 0.5$ mmHg, $P = 0.013$) and CoQ ($−2.2 ± 0.5$ mmHg, $P < 0.001$) independently lowered 24-h diastolic blood pressure. Fenofibrate reduced 24-h HR ($−3.3 ± 0.5$ beats/min, $P < 0.001$), but CoQ had no effect on HR.

CONCLUSIONS — In type 2 diabetic subjects with LVDD, neither fenofibrate nor CoQ, alone or in combination, improved diastolic function significantly. However, fenofibrate and CoQ independently and interactively lowered 24-h blood pressure, and fenofibrate alone reduced 24-h HR.

Diabetes Care 31:1502–1509, 2008

The increased risk of cardiac failure in diabetes reflects not only coexistent coronary artery disease and hypertension, but also a specific diabetic cardiomyopathy (DCM) (1). Multiple mechanisms underlie DCM, including altered substrate utilization and energetics, oxidative stress, endothelial dysfunction, myocardial fibrosis, and myocyte apoptosis. DCM can manifest as impaired relaxation and increased stiffness of the myocardium (2), detectable preclinically by echocardiography as left ventricular diastolic dysfunction (LVDD). Therapies targeting hypertension, dyslipidemia, and hyperglycemia, as well as the specific mechanisms underlying DCM, may prevent progression of LVDD to overt cardiac failure.

Fenofibrate, a peroxisome proliferator–activated receptor (PPAR)-α agonist, lowers triglycerides and raises HDL cholesterol. It could improve LVDD in diabetes by reducing myocardial free fatty acid and triglyceride delivery, thereby decreasing formation of lipid intermediates and oxidant species that promote myocyte apoptosis and fibrosis (1). However, in experimental animal models, PPAR-α overstimulation can promote fatty acid oxidation, leading to inefficient myocardial bioenergetics and pathologic remodeling (3). Importantly, there is no evidence for this in humans treated with fibrates (4), and in clinical trials in type 2 diabetes, fenofibrate reduced angiographic progression of coronary atherosclerosis (5) and microangiopathy (6), improved endothelial dysfunction (7), and modestly lowered blood pressure (BP) (6). Despite these effects, fenofibrate did not significantly decrease coronary events, the primary end point, in the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study (6), but it did reduce total cardiovascular events.

Coenzyme Q₉₀ (CoQ), a key intermediary in mitochondrial electron transport, has potent antioxidant properties. CoQ supplementation could improve LVDD by increasing myocardial energy production and decreasing oxidative stress, actions complementary to fenofibrate. CoQ improves endothelial function in type 2 diabetes (8), with modest beneficial effects on BP (9) and left ventricular (LV) systolic function (10).

We previously showed that fenofibrate and CoQ synergistically improve microcirculatory function in type 2 diabetes (11). By targeting several mechanisms underlying LVDD in type 2 diabetes, we hypothesized that these treatments would improve cardiac function. Although fenofibrate and CoQ may lower clinic blood pressure (CBP), their effect on diurnal BP has not been investigated. Our secondary hypothesis was that these treatments would independently and interactively lower ambulatory blood pressure (ABP) and, by improving cardiac function, also lower heart rate (HR).
RESEARCH DESIGN AND METHODS

Subjects
We studied 74 type 2 diabetic subjects, aged 40 to 79 years, who had LVDD on echocardiography. All were recruited from clinical databases at teaching hospitals in Perth, Western Australia. Type 2 diabetes was defined by American Diabetes Association criteria. Exclusions included daytime insulin use, GHb ≥9.0%, resting BP >150/90 mmHg, fasting cholesterol ≥7.0 mmol/l, triglycerides ≥4.0 mmol/l, creatinine >130 μmol/l, treatment with fibrates or CoQ >30 mg/day, and any cardiovascular event within the preceding 6 months. The study was approved by the ethics committees of Royal Perth, Fremantle, and Sir Charles Gardiner Hospitals. All participants gave informed written consent.

Study design
Subjects were randomized, double-blind, to fenofibrate 160 mg daily (Laboratoires Fournier, Chenove, France), CoQ 200 mg daily (RP Scherer, Braesidea, Australia), fenofibrate 160 mg plus CoQ 200 mg daily, or matching placebo for 6 months. These doses and this duration of therapy were equivalent to those employed in previous clinical studies of these compounds (7,8,11). Participants underwent two echocardiograms at baseline and two at treatment end, with pre- and postintervention data taken as the mean value at each time point. The primary echocardiographic end point was early diastolic septal mitral annular myocardial relaxation velocity (E'), a tissue Doppler index of diastolic function. In this factorial design, a sample size of 15 subjects per treatment group was required to detect main treatment effects of 10% change in E’ compared with placebo at α = 0.05 and 80% power. Secondary end points included other diastolic and systolic function indexes, left atrial volume (LAV), and LV mass (LVM). ABP and HR were measured over 24 h at baseline and treatment end. Fasting venous samples were drawn at baseline and treatment end to measure lipids, apolipoproteins, glucose, GHb, and CoQ. Creatinine, hepatic transaminases, and creatine kinase were monitored periodically throughout the study.

Echocardiography
Transsthoracic echocardiography was performed at rest. Mitral annular tissue Doppler, transmural and pulmonary venous (PV) flow, and color M-mode flow propagation (Vp) were measured in the apical four-chamber view. LV end-diastolic and end-systolic volumes were estimated in the apical two-chamber view (Simpson’s biplane method) to calculate LV ejection fraction (LVEF). Data were taken as the mean of three measurements on different cardiac cycles. Exclusions included LVEF <50%, wall motion abnormalities, valvular disease, atrial fibrillation, frequent ectopy, paced rhythm, and early-to-late mitral inflow velocity ratio (E/A) wave fusion. One echocardiographer, blinded to treatment allocation, performed all studies.

LVDD classification
LVDD was classified using age-specific modifications of the Canadian Consensus (12) and Garcia (13) criteria. Participants were classified as having mild LVDD if three or more of the following criteria were met, including at least one of the first two: reduced E/A (age 40–49 years: <1.3; 50–59 years: <1.2; 60–69 years: <1.1; 70–79 years: <0.8), increased deceleration time (DT) (40–59 years: >200 ms; 60–69 years: >220 ms; 70–79 years: >250 ms), isovolumic relaxation time (IVRT) >100 ms, reduced E’ (40–59 years: <10.0 cm/s; 60–79 years: <8.0 cm/s), and Vp <45.0 cm/s. Participants were classified as having moderate LVDD if the ratio of early mitral flow velocity to early diastolic mitral annular myocardial relaxation velocity (E/E’) >8.0 and three or more of the following were met: >40% decrease in E/A with Valsalva maneuver, E/Vp >1.50, systolic-to-diastolic PV flow velocity ratio (PV S/D) <1.00, atrial systolic PV reversal flow velocity (PV ‘a’ rev) ≥0.35 m/s, normal E/A, and normal DT.

Ambulatory monitoring
ABP and HR were measured every 20 min during daytime (0900–2100) and every 30 min at night (2100–0900) using an Ultralite 90217 Monitor (Spacelabs Medical, Issaquah, WA). Participants recorded sleeping and waking times during monitoring. Datasets with ≥80% valid readings were excluded from analysis.

Laboratory analyses
Cholesterol, triglycerides, and HDL cholesterol were measured by enzymatic methods (Hitachi, Tokyo, Japan; Roche Diagnostics, Mannheim, Germany), and LDL cholesterol was calculated. Apolipoproteins (apos) A-I, A-II, and B-100 were measured by immunonephelometry (Dade-Behring BNII, Marburg, Germany) and C-III by immunoturbidimetry (Wako Pure Chemical Industries, Osaka, Japan). Nonesterified fatty acids (NEFAs) were measured by enzymatic methods (Wako Pure Chemical Industries), plasma CoQ by reverse-phase high-performance liquid chromatography using electrochemical detection, and cellular CoQ by high-performance liquid chromatography using isolated peripheral blood mononuclear cells with correction for protein content.

Statistical analyses
Data were analyzed using SPSS 12.0 (Chicago, IL) and SAS 9.1 (Cary, NC). Values are presented as means ± SEM unless otherwise indicated. Skewed data were logarithmically transformed. Only subjects who completed the study were included in efficacy analyses. Main treatment effects on echocardiographic and biochemical indexes were assessed using general linear modeling with adjustment for baseline and study site. For ABP and HR, main treatment effects were assessed using mixed models (study subject as random effect) adjusted for baseline, study site, hour, weight change, and antihypertensive use. Where significant treatment interaction was found, analyses by treatment group were undertaken with Scheffe adjustment for multiple comparisons. P values <0.05 were considered statistically significant.

RESULTS

Baseline characteristics
We randomized 74 eligible subjects to placebo (n = 20), fenofibrate (n = 19), CoQ (n = 16), or fenofibrate + CoQ (n = 19). Clinical characteristics were comparable across treatment groups (Table 1). Participants were typically overweight with satisfactory control of BP, lipids, and glycemia. Median diabetes duration was 4 years; one-third of cases were diet treated. Nearly one-half of subjects were taking antihypertensive medication, most commonly ACE inhibitors; over one-half were taking statins. On echocardiography, 12 participants (16.2%) had LV hypertrophy (LVM/height ≥143 g/m for men; ≥102 g/m for women). Most subjects (86.5%) had mild LVDD.

Clinical and biochemical responses
A total of 69 subjects completed the trial. Reasons for withdrawal were new-onset atrial fibrillation (n = 1), transaminase el-
Hemodynamic effects of fenofibrate and CoQ

Table 1—Baseline characteristics of randomized subjects

|                         | Placebo   | Fenofibrate | CoQ       | Combination |
|-------------------------|-----------|-------------|-----------|-------------|
| n                       | 20        | 19          | 16        | 19          |
| Age (years)             | 62.4 ± 8.8| 64.8 ± 7.3  | 61.3 ± 4.1| 63.0 ± 9.4  |
| Male/female (n)         | 14/6      | 13/6        | 13/3      | 13/6        |
| BMI (kg/m²)             | 30.7 ± 5.0| 29.9 ± 5.6  | 30.1 ± 4.6| 28.7 ± 3.4  |
| Fasting glucose (mmol/l)| 7.2 ± 1.8 | 7.0 ± 1.1   | 7.6 ± 1.6 | 7.6 ± 2.2   |
| GHB (%)                 | 6.5 ± 1.0 | 6.5 ± 0.9   | 6.6 ± 0.9 | 6.6 ± 0.8   |
| Duration of type 2 diabetes (years) | 5.5 (4.1–7.5) | 4.5 (2.7–7.5) | 3.1 (1.8–5.4) | 3.0 (2.0–4.9) |
| Resting SBP (mmHg)      | 130.5 ± 15.7| 131.0 ± 17.8| 136.8 ± 14.7| 132.8 ± 17.3|
| Resting DBP (mmHg)      | 73.0 ± 11.8| 73.3 ± 10.4| 76.9 ± 10.0| 74.1 ± 9.2  |
| Total cholesterol (mmol/l)| 4.4 ± 1.2 | 4.6 ± 0.9 | 4.6 ± 0.9 | 4.6 ± 0.8 |
| Triglycerides (mmol/l)  | 1.6 ± 0.7 | 1.6 ± 1.0 | 1.7 ± 0.7 | 1.7 ± 0.8 |
| HDL cholesterol (mmol/l)| 1.2 ± 0.27| 1.29 ± 0.36 | 1.25 ± 0.25 | 1.35 ± 0.38 |
| LDL cholesterol (mmol/l)| 2.5 ± 1.1 | 2.6 ± 0.7 | 2.6 ± 0.8 | 2.5 ± 0.7 |
| Serum creatinine (umol/l) | 82 ± 16 | 74 ± 10 | 79 ± 15 | 75 ± 15 |
| History of ischemic heart disease | 15.0 | 15.8 | 12.5 | 10.5 |
| LV hypertrophy          | 20.0      | 26.3        | 6.3       | 10.5        |
| LVDD: mild/moderate (n) | 16/4      | 17/2        | 15/1      | 16/3        |

Medications

- No antihyperglycemic medication
- Metformin
- Sulphonylurea
- Nocturnal basal insulin
- No antihypertensive medication
- ACE inhibitor
- Angiotensin receptor blocker
- β-Adrenergic receptor blocker
- Calcium channel blocker
- Diuretic
- Statin
- Statin 75.0 36.8 68.8 52.6
- Diuretic 30.0 10.5 18.8 10.5
- Calcium channel blocker 25.0 15.8 18.8 10.5
- β-Adrenergic receptor blocker 5.0 5.3 25.0 10.5
- Angiotensin receptor blocker 15.0 10.5 6.3 5.3
- No antihypertensive medication 35.0 63.2 50.0 63.2
- ACE inhibitor 45.0 26.3 37.5 15.8
- Sulphonylurea 50.0 42.1 37.5 21.1
- Metformin 60.0 47.4 50.0 68.4
- No antihyperglycemic medication 25.0 42.1 43.8 26.3

Data are means ± SD, percent, or geometric means (95% CI).

evaluation more than three times the upper limit of normal (n = 1), and personal choice (n = 3). The subjects with adverse events were on fenofibrate alone.

Compared with placebo, neither body weight (data not shown) nor glyceremia changed with any of the treatments (Table 2). Total, HDL, and LDL cholesterol and NEFAs were similarly unaltered, but fenofibrate lowered triglycerides, apoB-100, and apoC-III and increased HDL cholesterol (Table 2). Total, HDL, and LDL cholesterol changed with any of the treatments (Table 2). Total, HDL, and LDL cholesterol and NEFAs were similarly unaltered, but fenofibrate lowered triglycerides, apoB-100, and apoC-III and increased HDL cholesterol (Table 2).

**Echocardiographic indexes**

Compared with placebo, none of the treatments significantly altered the primary end point (E') or any of the following diastolic function indexes: E/A, DT, IVRT, PV S/D, or E/E' (Table 3). However, fenofibrate increased Vp (2.4 ± 1.0 cm/s, P = 0.020), and CoQ increased E/np (0.12 ± 0.05, P = 0.007) and PV a' rev (0.02 ± 0.01 m/s, P = 0.009). In most subjects (82.6%), LVDD classification was unchanged by treatment: one subject each in the fenofibrate and fenofibrate + CoQ groups progressed from mild to moderate LVDD, whereas LVDD improved in four subjects taking placebo, three taking fenofibrate, two taking CoQ, and one taking fenofibrate + CoQ. None of the treatments significantly altered systolic function (systolic myocardial contraction velocity [S' and LVEF] or cardiac structure (LAV and LVM). Adjustment for statin use did not alter these findings.

**ABP and HR**

Of those who completed the study, eight subjects declined ambulatory monitoring and seven had insufficient readings. Feno

CONCLUSIONS — In type 2 diabetic subjects with LVDD, fenofibrate and CoQ, alone or in combination, did not significantly alter LV function. However, we provide new evidence that these treatments have independent and interactive effects in lowering ABP, with fenofibrate alone also decreasing HR.
Table 2—Effect of interventions on biochemical variables

| Placebo | Fenofibrate | CoQ | Combination | P for interaction | P for Fenofibrate main effect | P for CoQ main effect |
|---------|-------------|-----|-------------|-------------------|-------------------------------|----------------------|
| **Fasting glucose (mmol/l)** | | | | | | |
| Baseline | 7.2 | | | | | |
| End | 7.4 | | | | | |
| **GHb (%)** | | | | | | |
| Baseline | 6.5 | | | | | |
| End | 6.4 | | | | | |
| **Total cholesterol (mmol/l)** | | | | | | |
| Baseline | 4.4 | | | | | |
| End | 4.3 | | | | | |
| **Triglycerides (mmol/l)** | | | | | | |
| Baseline | 1.6 | | | | | |
| End | 1.8 | | | | | |
| **HDL cholesterol (mmol/l)** | | | | | | |
| Baseline | 1.22 | | | | | |
| End | 1.20 | | | | | |
| **LDL cholesterol (mmol/l)** | | | | | | |
| Baseline | 2.5 | | | | | |
| End | 2.3 | | | | | |
| **ApoA-I (g/l)** | | | | | | |
| Baseline | 1.35 | | | | | |
| End | 1.39 | | | | | |
| **ApoA-II (g/l)** | | | | | | |
| Baseline | 0.32 | | | | | |
| End | 0.32 | | | | | |
| **ApoB-100 (g/l)** | | | | | | |
| Baseline | 0.90 | | | | | |
| End | 0.88 | | | | | |
| **ApoC-III (mg/l)** | | | | | | |
| Baseline | 125.8 | | | | | |
| End | 129.8 | | | | | |
| **NEFAs (mmol/l)** | | | | | | |
| Baseline | 0.40 (0.30–0.52) | 0.34 (0.27–0.43) | 0.37 (0.26–0.54) | 0.32 (0.23–0.44) | 0.836 | 0.08 0.057 0.01 0.866 |
| End | 0.38 (0.28–0.51) | 0.29 (0.20–0.40) | 0.37 (0.29–0.48) | 0.27 (0.19–0.37) | | |
| **Plasma CoQ (mol/l)** | | | | | | |
| Baseline | 1.5 (1.2–1.8) | 1.8 (1.5–2.3) | 1.7 (1.4–2.2) | 1.5 (1.2–1.8) | | |
| End | 1.4 (1.2–1.8) | 1.8 (1.5–2.2) | 5.3 (3.9–7.2) | 4.1 (3.1–5.4) | 0.090 | 0.2 0.250 3.2 |
| **Cellular CoQ (nmol/g protein)** | | | | | | |
| Baseline | 108 (94–125) | 107 (95–120) | 123 (105–145) | 118 (100–132) | | |
| End | 116 (97–139) | 116 (97–139) | 147 (129–165) | 127 (109–145) | | |

Data are means ± SEM or geometric means (95% CI). Main effect vs. placebo, adjusted for baseline and study site (general linear model).
**Hemodynamic effects of fenofibrate and CoQ**

Table 3—Effect of interventions on echocardiographic indices

|                  | Placebo | Fenofibrate | CoQ | Combination | P for interaction | Fenofibrate main effect | CoQ main effect | P     |
|------------------|---------|-------------|-----|-------------|-------------------|------------------------|----------------|-------|
| n                | 20      | 16          | 16  | 17          |                   |                        |                |       |
| E' (cm/s)        |         |             |     |             |                   |                        |                |       |
| Baseline         | 8.4 ± 0.3 | 8.5 ± 0.3  | 9.2 ± 0.4 | 8.6 ± 0.4 |                   |                        |                |       |
| End              | 8.6 ± 0.3 | 8.1 ± 0.3  | 8.9 ± 0.4 | 8.7 ± 0.4 | 0.094             | −0.1 ± 0.2            | 0.539           | 0.1 ± 0.2 | 0.698 |
| E/A              |         |             |     |             |                   |                        |                |       |
| Baseline         | 0.82 ± 0.03 | 0.83 ± 0.03 | 0.90 ± 0.04 | 0.91 ± 0.10 |                   |                        |                |       |
| End              | 0.83 ± 0.03 | 0.85 ± 0.03 | 0.92 ± 0.04 | 0.99 ± 0.11 | 0.262             | 0.04 ± 0.02            | 0.112           | 0.04 ± 0.02 | 0.129 |
| DT (ms)          |         |             |     |             |                   |                        |                |       |
| Baseline         | 218 ± 6 | 233 ± 7     | 215 ± 8 | 215 ± 7 |                   |                        |                |       |
| End              | 215 ± 6 | 220 ± 9     | 206 ± 7 | 212 ± 6 | 0.376             | 2 ± 6                    | 0.779           | −2 ± 6 | 0.737 |
| IVRT (ms)        |         |             |     |             |                   |                        |                |       |
| Baseline         | 106 ± 3 | 108 ± 1     | 108 ± 2 | 109 ± 2 |                   |                        |                |       |
| End              | 108 ± 2 | 112 ± 3     | 109 ± 3 | 111 ± 2 | 0.655             | 2 ± 2                    | 0.338           | −1 ± 2 | 0.530 |
| Vp (cm/s)        |         |             |     |             |                   |                        |                |       |
| Baseline         | 41.5 ± 1.4 | 42.0 ± 1.3 | 44.1 ± 2.0 | 41.9 ± 1.7 |                   |                        |                |       |
| End              | 40.9 ± 1.2 | 44.4 ± 1.8 | 42.9 ± 1.7 | 42.9 ± 1.9 | 0.531             | 2.4 ± 1.0                | 0.020           | −0.8 ± 1 | 0.451 |
| E/E'             |         |             |     |             |                   |                        |                |       |
| Baseline         | 7.7 ± 0.3 | 8.0 ± 0.4  | 7.8 ± 0.5 | 7.9 ± 0.5 |                   |                        |                |       |
| End              | 7.6 ± 0.3 | 8.5 ± 0.3  | 8.3 ± 0.5 | 8.6 ± 0.5 | 0.345             | 0.5 ± 0.3                | 0.078           | 0.4 ± 0.3 | 0.130 |
| E/Vp             |         |             |     |             |                   |                        |                |       |
| Baseline         | 1.56 ± 0.07 | 1.60 ± 0.06 | 1.59 ± 0.05 | 1.60 ± 0.08 |                   |                        |                |       |
| End              | 1.59 ± 0.06 | 1.56 ± 0.05 | 1.70 ± 0.07 | 1.73 ± 0.07 | 0.367             | 0.00 ± 0.05                | 0.940           | 0.12 ± 0.05 | 0.007 |
| PV S/D           |         |             |     |             |                   |                        |                |       |
| Baseline         | 1.55 ± 0.06 | 1.50 ± 0.06 | 1.41 ± 0.09 | 1.61 ± 0.13 |                   |                        |                |       |
| End              | 1.60 ± 0.06 | 1.52 ± 0.07 | 1.43 ± 0.09 | 1.43 ± 0.08 | 0.933             | −0.06 ± 0.07                | 0.390           | −0.12 ± 0.07 | 0.081 |
| PV 'a' rev (m/s) |         |             |     |             |                   |                        |                |       |
| Baseline         | 0.33 ± 0.01 | 0.33 ± 0.01 | 0.31 ± 0.01 | 0.33 ± 0.01 |                   |                        |                |       |
| End              | 0.32 ± 0.01 | 0.32 ± 0.01 | 0.33 ± 0.01 | 0.34 ± 0.01 | 0.785             | 0.00 ± 0.01                | 0.457           | 0.02 ± 0.01 | 0.009 |
| LVEF (%)         |         |             |     |             |                   |                        |                |       |
| Baseline         | 63.2 ± 0.9 | 61.6 ± 1.0 | 64.6 ± 0.9 | 63.3 ± 1.2 |                   |                        |                |       |
| End              | 64.1 ± 0.8 | 62.6 ± 1.2 | 64.6 ± 1.1 | 62.4 ± 0.8 | 0.615             | 0.0 ± 0.8                | 0.961           | 1.3 ± 0.8 | 0.102 |
| S' (cm/s)        |         |             |     |             |                   |                        |                |       |
| Baseline         | 8.8 ± 0.2 | 9.4 ± 0.3  | 9.4 ± 0.3 | 8.7 ± 0.3 |                   |                        |                |       |
| End              | 9.1 ± 0.2 | 9.3 ± 0.4  | 9.8 ± 0.4 | 8.6 ± 0.3 | 0.417             | −0.5 ± 0.3                | 0.071           | 0.0 ± 0.3 | 0.914 |
| LAV/BSA (ml/m²)  |         |             |     |             |                   |                        |                |       |
| Baseline         | 30.4 ± 1.3 | 32.4 ± 1.8 | 31.3 ± 1.8 | 35.9 ± 2.5 |                   |                        |                |       |
| End              | 32.4 ± 1.5 | 33.9 ± 1.8 | 31.7 ± 1.5 | 36.4 ± 2.6 | 0.649             | 0.4 ± 1.0                | 0.693           | −1.0 ± 1.0 | 0.335 |
| LVM/BSA (g/m²)   |         |             |     |             |                   |                        |                |       |
| Baseline         | 92.5 ± 3.8 | 101.5 ± 4.2 | 94.8 ± 3.5 | 90.1 ± 3.8 |                   |                        |                |       |
| End              | 95.0 ± 4.0 | 106.3 ± 4.5 | 95.1 ± 3.1 | 91.2 ± 4.2 | 0.533             | 2.4 ± 1.8                | 0.195           | −3.5 ± 1.8 | 0.059 |

Data are means ± SEM. Main effect vs. placebo, adjusted for baseline and study site (general linear model). BSA, body surface area.

**Cardiac function**

LVDD is common in diabetes and is associated with increased mortality (14). However, few studies have investigated potential therapies. In type 2 diabetic subjects with LVDD, 6 months’ treatment with candesartan improved one index of diastolic filling (E/A), but not another (DT) (15). In hypertensive patients with LVDD, 12% of whom had diabetes, BP reduction over 38 weeks improved myocardial relaxation (E’) irrespective of the agent used, but the independent effect of diabetes was not assessed (16). No trials have previously examined fenofibrate’s effect on cardiac failure or LVDD. Small trials in heart failure patients collectively suggest a modest benefit of CoQ on systolic function (10), but no studies have investigated its effect on LVDD.

In type 2 diabetes, LVDD is associated with abnormal high-energy phosphate metabolism (17), and we anticipated that fenofibrate and CoQ would improve LVDD in type 2 diabetes by reducing lipotoxicity and oxidative stress and improving endothelial function and myocellular energetics. However, we did not demonstrate treatment effects on myocardial relaxation (E’), or several other diastolic function indexes, suggesting that possible favorable effects of fenofibrate could have been offset by adverse consequences of PPAR-α stimulation on myocardial fatty acid oxidation and energetics (3). Our study was powered to detect clinically relevant main treatment effects of ≥10% change in E’ compared with placebo. We observed statistically significant mixed treatment effects on several secondary diastolic indexes, such as increase in Vp (potentially beneficial),
mild dyslipidemia. Greater treatment effects may have significantly. However, most subjects had not raise HDL cholesterol or lower NEFAs. 

Table 4—Effect of interventions on ABP and HR

|       | Placebo | Fenofibrate | CoQ | Combination | P for interaction | Fenofibrate main effect | P | CoQ main effect | P |
|-------|---------|-------------|-----|-------------|------------------|------------------------|---|----------------|---|
| n     | 15      | 15          | 10  | 14          |
| 24-h  |         |             |     |             |                  |                        |   |                |    |
| SBP (mmHg) |         |             |     |             |                  |                        |   |                |    |
| Baseline | 125.0 ± 1.5 | 130.4 ± 2.8 | 126.2 ± 3.6 | 125.7 ± 3.1 |
| End    | 126.0 ± 2.5 | 130.2 ± 3.2 | 125.9 ± 4.7 | 123.0 ± 2.6 |
| DBP (mmHg) |         |             |     |             |                  |                        |   |                |    |
| Baseline | 73.8 ± 2.3 | 73.1 ± 1.9 | 73.5 ± 2.0 | 72.3 ± 1.9 |
| End    | 74.3 ± 2.9 | 72.1 ± 1.9 | 72.3 ± 2.7 | 70.1 ± 1.6 |
| HR (bpm) |         |             |     |             |                  |                        |   |                |    |
| Baseline | 73.9 ± 2.8 | 72.3 ± 2.7 | 70.4 ± 2.5 | 73.3 ± 2.8 |
| End    | 74.5 ± 2.5 | 70.2 ± 2.9 | 72.7 ± 2.3 | 70.9 ± 2.4 |
| Awake  |         |             |     |             |                  |                        |   |                |    |
| SBP (mmHg) |         |             |     |             |                  |                        |   |                |    |
| Baseline | 130.3 ± 1.6 | 134.5 ± 2.8 | 130.8 ± 2.9 | 130.1 ± 3.3 |
| End    | 130.5 ± 2.9 | 134.3 ± 3.0 | 130.4 ± 4.6 | 129.0 ± 2.7 |
| DBP (mmHg) |         |             |     |             |                  |                        |   |                |    |
| Baseline | 77.9 ± 2.5 | 76.2 ± 1.7 | 77.3 ± 1.8 | 76.2 ± 2.1 |
| End    | 78.5 ± 3.0 | 75.3 ± 1.9 | 76.1 ± 3.0 | 74.3 ± 1.6 |
| HR (bpm) |         |             |     |             |                  |                        |   |                |    |
| Baseline | 77.0 ± 3.1 | 75.8 ± 3.1 | 73.2 ± 2.9 | 76.2 ± 3.2 |
| End    | 77.5 ± 2.6 | 72.6 ± 3.3 | 75.8 ± 2.6 | 74.9 ± 2.7 |
| Asleep |         |             |     |             |                  |                        |   |                |    |
| SBP (mmHg) |         |             |     |             |                  |                        |   |                |    |
| Baseline | 114.6 ± 2.0 | 120.6 ± 3.4 | 116.4 ± 6.3 | 117.0 ± 3.3 |
| End    | 116.5 ± 2.6 | 120.0 ± 3.7 | 117.9 ± 5.5 | 114.4 ± 2.9 |
| DBP (mmHg) |         |             |     |             |                  |                        |   |                |    |
| Baseline | 65.1 ± 2.2 | 65.8 ± 2.2 | 64.9 ± 3.2 | 64.6 ± 1.8 |
| End    | 65.8 ± 2.6 | 64.9 ± 2.0 | 66.7 ± 3.1 | 61.4 ± 1.8 |
| HR (bpm) |         |             |     |             |                  |                        |   |                |    |
| Baseline | 67.4 ± 2.3 | 65.1 ± 2.3 | 64.8 ± 2.3 | 67.3 ± 2.2 |
| End    | 68.5 ± 2.5 | 64.0 ± 2.6 | 67.2 ± 2.2 | 63.2 ± 2.1 |

Data are means ± SEM. Main effect vs. placebo, adjusted for baseline, study site, hour, change in weight, and antihypertensive medication use (mixed models).

E/Vp, and PV 'a' rev (potentially adverse), but these were small (<10%) and unlikely to be clinically important. 

Significant treatment effects may have been masked by our selection of subjects with predominantly mild LVDD and satisfactory control of BP, lipids, and glycemia. Many were taking medications that could have affected cardiac function, such as ACE inhibitors, angiotensin receptor blockers, and statins. Fenofibrate and CoQ might have greater impact in patients with more advanced LVDD and worse BP and metabolic control. Ischemic heart disease was not formally excluded, but no subjects had wall motion abnormalities on echocardiography. 

Despite favorable effects on triglycerides and apolipoproteins, fenofibrate did not raise HDL cholesterol or lower NEFAs significantly. However, most subjects had mild dyslipidemia. Greater treatment effects and clinical benefit might be expected in patients with lower HDL cholesterol (6). Whether higher-dose fenofibrate and CoQ given for longer periods could improve LVDD needs to be established.

The strengths of our study include the use of contemporary techniques (including tissue Doppler imaging) and multiple echocardiographic indexes to assess cardiac function. Traditional diastolic function measures (indirect mitral inflow indexes such as E/A, DT, and IVRT) may be affected by volume loading and have nonlinear associations with LVDD; our primary end point, E', is less load dependent. Measurement of PV flow and Vp yielded additional diastolic function indexes, and we carefully selected subjects for having LVDD using a comprehensive classification system. We did not observe any treatment effect on this categorical LVDD definition, but our study had insuficient power to test this.

Blood pressure 

Clinical trials of fenofibrate in type 2 diabetes have yielded inconsistent BP findings. In the FIELD study, there was a placebo-adjusted 2 mmHg systolic and 1 mmHg diastolic reduction in median CBP (6), but in the smaller Diabetes Atherosclerosis Intervention Study (DAIS), there was no significant change (5). By contrast, an uncontrolled short-term study in healthy adults showed that fenofibrate increased ambulatory SBP by 3 mmHg (18). Animal experiments suggest a role for PPAR-Î± in mediating hypertension and atherosclerosis (19), but their relevance to human disease is uncertain. Meta-analyses suggest that CoQ supplementation in hypertensive patients reduces CBP by up to 10 mmHg SBP and 8 mmHg DBP (9), but its effect on ABP has not been previously examined.

Our finding that fenofibrate and CoQ independently and interactively lowered
Hemodynamic effects of fenofibrate and CoQ

ABP is consistent with their beneficial effects on endothelial dysfunction. Fenofibrate’s hypotensive effect may reflect increased endothelial NO bioavailability and reduced endothelin-1 production. CoQ could improve NO bioavailability by reducing oxidative stress and recoupling NO synthase activity. However, fenofibrate and CoQ’s interactive effects may be mediated by non-NO mechanisms (11).

We previously showed that CoQ, but not fenofibrate, reduced CBF (11). In the present study, we were able to demonstrate independent and interactive effects of both treatments on ABP, possibly because multiple measurements over 24 h provide greater statistical power, even with limited sample sizes. Fenofibrate, alone or combined with CoQ, had greater effects at night perhaps because BP is subject to less variation during sleep. This does not, however, explain CoQ’s greater effect on daytime BP, which might be due to interaction with factors such as concomitant morning medications.

In hypertensive type 2 diabetic patients, lowering CBF reduces macro- and microvascular complications. However, ABP, in particular nocturnal BP, predicts cardiovascular risk better than CBF (20). By lowering ABP, especially at night, fenofibrate and CoQ may potentially improve clinical outcomes in diabetes, where concomitant hypertension augments risk. In the FIELD study, modest lowering of CBF was not paralleled by reduction in coronary events, although secondary vascular outcomes were reduced (6). Longer treatment may be required for BP reduction to improve LVDD (16), as processes such as LV remodelling occur over an extended period.

HR
HR may be an important therapeutic target because it independently predicts cardiovascular risk (21). In hypertri glyceridemic subjects, short-term bezafibrate treatment reduced clinic HR by 3 bpm, (22), but no controlled studies have examined fibrate effects on ambulatory HR. In our study, fenofibrate lowered HR throughout the 24-h period by >3 bpm, which may translate to a 10–15% reduction in cardiovascular risk (21). The underlying mechanism is unclear. HR reduction may reflect increased myocardial efficiency and decreased oxygen demand related to decreased lipid substrate supply (1). Other possibilities include PPARα-mediated effects on baroreceptor and cardiac pacemaker sensitivity or sympathovagal outflow. Indeed, PPAR-α affects orphan nuclear receptor Rev-erb-α expression (23), which regulates clock genes mediating circadian hemodynamic and sympathoadrenal responses. NO also regulates cardiac autonomic function, but whether fenofibrate alters sympathovagal tone through this mechanism merits investigation.

Although fenofibrate and CoQ did not improve diastolic function in type 2 diabetic patients with mild LVDD and satisfactory BP and metabolic control, we observed beneficial hemodynamic effects with no significant adverse cardiac sequelae. Further studies are required to explore the benefits and risks of fenofibrate and CoQ in diabetic patients with more severe LVDD and metabolic abnormalities treated for longer periods. Combining these treatments with agents such as renin-angiotensin system inhibitors and advanced glycation end-product cross-link breakers should be investigated. Ultimately, larger long-term trials are required to determine whether combining fenofibrate with CoQ reduces clinical cardiovascular outcomes, such as heart failure, in type 2 diabetes.

Acknowledgments — G.C. was supported by a National Health and Medical Research Council Medical Postgraduate Research Scholarship.

We thank Marcus Bryant, Dr. Renate Zilkens, and Professor Kevin Croft for their assistance with this study.

References
1. Boudina S, Abel ED: Diabetic cardiomypathy revisited. Circulation 115:3213–3223, 2007
2. Zile MR, Baicu CF, Gaasch WH: Diastolic heart failure: abnormalities in active relaxation and passive stiffness of the left ventricle. N Engl J Med 350:1953–1959, 2004
3. Finck BN, Lehman JJ, Leone TC, Welch MJ, Bennett MJ, Kovacs A, Han X, Gross RW, Kozak R, Lopaschuk GD, Kelly DP: The cardiach phenotype induced by PPARalpha overexpression mimics that caused by diabetes mellitus. J Clin Invest 109:121–130, 2002
4. Lefebvre P, Chinetti G, Frucht JC, Staels B: Sorting out the roles of PPAR alpha in energy metabolism and vascular homeostasis. J Clin Invest 116:571–580, 2006
5. Diabetes Atherosclerosis Intervention Study Investigators: Effect of fenofibrate on progression of coronary-artery disease in type 2 diabetes: The Diabetes Atherosclerosis Intervention Study, a randomised study. Lancet 357:905–910, 2001
6. Keelh A, Simes RJ, Barter P, Best J, Scott R, Taskinen MR, Forder P, Pillai A, Davis T, Glassiou P, Drury P, Kesaniemi YA, Sullivan D, Hunt D, Colman P, d’Emden M, Whiting M, Ehnholm C, Laakso M, FIELD study investigators: Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet 366:1849–1861, 2005
7. Playford DA, Watts GF, Best JD, Burke V: Effect of fenofibrate on brachial artery flow-mediated dilation in type 2 diabetes mellitus. Am J Cardiol 90:1254–1257, 2002
8. Watts GF, Playford DA, Croft KD, Ward NC, Mori TA, Burke V: Coenzyme Q10 improves endothelial dysfunction of the brachial arterial in type II diabetes mellitus. Diabetologia 45:420–426, 2002
9. Rosenfeldt FL, Haas SS, Krum H, Hadi A, Ng K, Leong YJ, Watts GF: Coenzyme Q10 in the treatment of hypertension: a meta-analysis of the clinical trials. J Hum Hypertens 21:297–306, 2007
10. Sander S, Coleman CI, Patle AA, Kluger J, White CM: The impact of coenzyme Q10 on systolic function in patients with chronic heart failure. J Card Fail 12:464–472, 2006
11. Playford DA, Watts GF, Croft KD, Burke V: Combined effect of coenzyme Q10 and fenofibrate on forearm microcirculatory function in type 2 diabetes. Atherosclerosis 168:169–179, 2003
12. Rakowski H, Appleton C, Chan KL, Dumesnil JG, Honos G, Jue J, Kolpillai C, Lepage S, Martin RP, Mercier LA, O’Kelly B, Prieur T, Sanfilippo A, Sasson Z, Alvarez N, Pruitt R, Thompson C, Tomlinson C: Canadian consensus recommendations for the measurement and reporting of diastolic dysfunction by echocardiography: from the Investigators of Consensus on Diastolic Dysfunction by Echocardiography. J Am Soc Echocardiogr 9:736–760, 1996
13. Garcia MJ, Thomas JD, Klein AL: New Doppler echocardiographic applications for the study of diastolic function. J Am Coll Cardiol 32:865–875, 1998
14. Redfield MM, Jacobsen SJ, Burnett JC Jr, Mahoney DW, Bailey KR, Rodeheffer RJ: Burden of systolic and diastolic ventricular dysfunction in the community: appreciating the scope of the heart failure epidemic. JAMA 289:194–202, 2003
15. Kawasaki D, Kosugi K, Waki H, Yamamoto K, Tsuji T, Masuyama T: Role of activated renin-angiotensin system in myocardial fibrosis and left ventricular diastolic dysfunction in diabetic patients: reversal by chronic angiotensin II type 1A receptor blockade. Circ J 71:524–529, 2007
16. Solomon SD, Janardhanan R, Verma A, Bourgon M, Daley WL, Purkayastha D, Mogensen CE, Redfield MM, Rodeheffer RJ, Jacobsen SJ, Burnett JC Jr, Mahoney DW, Bailey KR, Bakris GL, White CM, Matsushita K, de Simone G, Auerbach M, Baughman KL, Brown MA, Wang J, Zile MR, Welch MJ: Fitted model of left ventricular diastolic and systolic function: application and conditions for use. JACC Cardiovasc Imaging 4:1269–1278, 2011
17. 5. Diabetes Atherosclerosis Intervention Study Investigators: Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet 366:1849–1861, 2005
18. Playford DA, Watts GF, Best JD, Burke V: Effect of fenofibrate on brachial artery flow-mediated dilation in type 2 diabetes mellitus. Am J Cardiol 90:1254–1257, 2002
19. Watts GF, Playford DA, Croft KD, Ward NC, Mori TA, Burke V: Coenzyme Q10 improves endothelial dysfunction of the brachial arterial in type II diabetes mellitus. Diabetologia 45:420–426, 2002
20. Rosenfeldt FL, Haas SS, Krum H, Hadi A, Ng K, Leong YJ, Watts GF: Coenzyme Q10 in the treatment of hypertension: a meta-analysis of the clinical trials. J Hum Hypertens 21:297–306, 2007
21. Sander S, Coleman CI, Patle AA, Kluger J, White CM: The impact of coenzyme Q10 on systolic function in patients with chronic heart failure. J Card Fail 12:464–472, 2006
22. Playford DA, Watts GF, Croft KD, Burke V: Combined effect of coenzyme Q10 and fenofibrate on forearm microcirculatory function in type 2 diabetes. Atherosclerosis 168:169–179, 2003
23. Garcia MJ, Thomas JD, Klein AL: New Doppler echocardiographic applications for the study of diastolic function. J Am Coll Cardiol 32:865–875, 1998
24. Redfield MM, Jacobsen SJ, Burnett JC Jr, Mahoney DW, Bailey KR, Rodeheffer RJ: Burden of systolic and diastolic ventricular dysfunction in the community: appreciating the scope of the heart failure epidemic. JAMA 289:194–202, 2003
25. Kawasaki D, Kosugi K, Waki H, Yamamoto K, Tsuji T, Masuyama T: Role of activated renin-angiotensin system in myocardial fibrosis and left ventricular diastolic dysfunction in diabetic patients: reversal by chronic angiotensin II type 1A receptor blockade. Circ J 71:524–529, 2007
26. Solomon SD, Janardhanan R, Verma A, Bourgon M, Daley WL, Purkayastha D, Mogensen CE, Redfield MM, Rodeheffer RJ, Jacobsen SJ, Burnett JC Jr, Mahoney DW, Bailey KR, Bakris GL, White CM, Matsushita K, de Simone G, Auerbach M, Baughman KL, Brown MA, Wang J, Zile MR, Welch MJ: Fitted model of left ventricular diastolic and systolic function: application and conditions for use. JACC Cardiovasc Imaging 4:1269–1278, 2011
Lacourcière Y, Hippler SE, Fields H, Naqvi TZ, Mulvagh SL, Arnold JM, Thomas JD, Zile MR, Aurigemma GP: Val- 
sartan In Diastolic Dysfunction (VALIDD) 
Investigators: Effect of angiotensin recep-
tor blockade and antihypertensive drugs 
on diastolic function in patients with hyper-
tension and diastolic dysfunction: a ran-
domised trial. Lancet 369:2079–2087, 
2007

Diamant M, Lamb HJ, Groeneveld Y, 
Endert EL, Smit JW, Bax JJ, Romijn JA, de 
Roos A, Radder JK: Diastolic dysfunction 
is associated with altered myocardial me-
tabolism in asymptomatic normotensive 
patients with well-controlled type 2 dia-
betes mellitus. J Am Coll Cardiol 42:328– 
335, 2003

Subramanian S, DeRosa MA, Bernal-
Mizrachi C, Laffey N, Cade WT, Yarash-
eski KE, Cryer PE, Semenkovich CF: 
PPARalpha activation elevates blood pres-
sure and does not correct glucocorticoid-
induced insulin resistance in humans. Am J 
Physiol Endocrinol Metab 291:E1365–
E1371, 2006

Tordjman KM, Semenkovich CF, 
Coleman T, Yudovich R, Bak S, Osher E, 
Vechoropoulos M, Stern N: Absence of 
peroxisome proliferator-activated recep-
tor-alpha abolishes hypertension and at-
tenuates atherosclerosis in the Tsukuba 
hypertensive mouse. Hypertension 50: 
945–951, 2007

Dolan E, Stanton A, Thijs L, Hinedi K, 
Atkins N, McClory S, Den Hond E, Mc-
Cormack P, Staessen JA, O’Brien E: Supe-
riority of ambulatory over clinic blood 
pressure measurement in predicting mor-
tality: The Dublin outcome study. Hyper-
tension 46:156–161, 2005

Cook S, Togni M, Schaub MC, Wena 
wenes P, Hess OM: High heart rate: a car-
diovascular risk factor? Eur Heart J 27: 
2387–2393, 2006

Jonkers IJ, de Man FH, van der Laarse A, 
Frolich M, Gevers Leuven JA, Kamper 
AM, Blauw GJ, Smelt AH: Bezafibrate re-
duces heart rate and blood pressure in 
patients with hypertriglyceridemia. J 
Hypertens 19:749–755, 2001

Fontaine C, Staels B: The orphan nuclear 
receptor Rev-erb-α: A transcriptional link 
between circadian rhythmicity and car-
diometabolic disease. Curr Opin Lipidol 
18:141–146, 2007

Chew and Associates