Loop Quantum Gravity Corrections and Cosmic Ray Decays

Jorge Alfaro and Gonzalo Palma

Facultad de Física,
Pontificia Universidad Católica de Chile
Casilla 306, Santiago 22, Chile.
jalfaro@puc.cl, gpalma@astro.puc.cl

(Dated: March 27, 2022)

Abstract

Loop quantum gravity effective theories are reviewed in the context of the observed GZK limit anomaly and related processes. This is accomplished through a kinematical analysis of the modified threshold conditions for the involved decay reactions, arising from the theory. Specially interesting is the possibility of an helicity dependant violation of the limit, whose primary effect would be the observation of favoured helicity states for highly energetic particles.
I. INTRODUCTION

The vast void that still separates us from a definite version of a quantum theory of gravity, and the fact that several alleged versions of it are being proposed, has motivated the development of various semiclassical approaches. These approaches follow the form of effective theories which take into consideration matter-gravity couplings, such as exposed in a number of recent works [1, 2, 3, 4], whose main results are the introduction of new terms in the equations of motion for the described system. An inevitable outcome of these works is the introduction of Lorentz Invariance Deformations (LID) at the effective theory level. These deformations become manifest when one analyzes the dispersion relations for freely propagating particles, and may have notorious consequences in high energy phenomena.

In particular, both [3] and [4] are based on the Loop Quantum Gravity (LQG) framework [5]. In these works, the effects of the loop structure of space, at the Planck level, are treated semiclassically through a coarse-grained approximation. An interesting feature of this kind of methods is the appearance of a new length scale \(L \) (with \(L \gg \ell_p \)), such that for distances \(d \ll L \) the quantum loop structure of space is manifest, while for distances \(d \geq L \) the continuous flat geometry is regained. This scale gives us the hope of bringing the effects of quantum gravity at an observable level. A natural question thus arise. Are we actually observing these quantum gravity effects?. To answer this question we are forced to go through the observations of the greatest energy registered.

The most energetic measured events are found in the form of Ultra High Energy Cosmic Rays (UHECR) [3, 7]. Such events (energies above \(10^{20} \text{eV} \)) are actually violating the theoretical threshold known as the GZK limit [3, 4], from which no extragalactic cosmic ray can exceed, in energy, the value of \(5 \times 10^{19} \text{eV} \). This current limit takes into consideration the interaction of protons with photons from the Cosmic Microwave Background Radiation (CMBR). There have been different attempts to formulate a convincing explanation about why such energetic particles are reaching the Earth. In a purely theoretical fashion, perhaps the most interesting explanations are the manifestation of decaying magnetic monopoles [10], and the decay of super-heavy relic particles [11]. Another more orthodox explanation can be found in the existence of Z-burst produced by collisions between ultra high energy neutrinos and cosmic relic neutrinos [12, 13, 14]. However, neither of these previous possibilities are fully satisfactory.
Another relevant observation is the detection of extragalactic multi-TeV photons from the BL Lac object known as Markarian (Mrk) 501 [15]. These detected photons have reached energies up to 20TeV. Similar to the case of protons, these multi-TeV γ-rays are subject to the interaction with the Far Infrared Background Radiation (FIBR), setting a limit to the energy of the photons that can reach us. Initially, the collected data suggested a violation of this limit, though it has recently been stated that no such violation exists [18, 19]. We adopt this last position.

In this paper we study the possible bounds on the length scale L emerging from the two observations mentioned above. This is accomplished through a kinematical analysis of the threshold conditions for the decays to be possible. In particular, since the GZK limit is broken, we assume that a reasonable explanation is found in the LID offered by the theory (see [16, 17, 18] for other similar approaches). On that score, the LID manifestations will, in certain cases, depend on the difference between two LQG parameters, each one belonging to different particles. For instance, as shown in [16], if the dispersion relation for a particle i is (from here on, $\hbar = c = 1$)

$$E_i^2 = A_i^2 p_i^2 + m_i^2$$

(1)

(where E_i, p_i and m_i are the respective energy, momentum and mass of the ith particle, and A_i is a LID parameter that can be interpreted as the maximum velocity of the ith particle) then, one can show that the mentioned thresholds can be substantially modified provided that the difference $\delta A = A_a - A_b$ is not null (a and b are two particles involved in the reaction leading to the mentioned threshold). Of course, this effect compromises the universality of the given parameters, namely, the fact that the A_i parameters—which eventually contain the information regarding the matter-gravity coupling—were not the same for all particles. In the case of the current LQG effective theories, these non universal deviations could be understood as the manifestation of the breakup of classical symmetries, emerging as a consequence of the choice of the quantum gravity vacuum. In this way, the standard model structure of different particles could appear through differentiated values for the parameters in question. In this respect, since we do not have a detailed knowledge of the precise values of the correction parameters, we shall consider all possible scenarios for the mentioned observations.

Finally we must mention the fact that in general, the presence of LID forces us to consider
the appearance of a preferred reference system. In the case of the LQG corrections that we
will consider, the dispersion relations are valid only in an isotropic system. For this reason,
we shall naturally assume that this preferred system is the CMBR co-moving reference frame
and consequently, the threshold conditions for the different decays should be considered
keeping this in mind.

II. DISPERSION RELATIONS FROM LOOP QUANTUM GRAVITY

Here we present the main results from 3 and 4 relative to the modifications of the
dispersion relations of freely propagating neutrinos (more precisely Majorana fermions) and
photons. We shall assume that the results for Majorana fermions are extensive to fermions
in general. This assumption relies on the fact that no substantial departure from the original
methods would be expected for the general case, since the only difference is that for Majorana
fermions one must impose the reality condition on to the field equations. Of course, one
could expect that in the case of more general fermions there would appear more corrective
terms. Nevertheless, from the symmetry arguments found in 4, we should not expect new
\mathcal{L} and ℓ_p dependant corrections different from that which already appear in the present
theory.

Special attention deserves the appearance of the length scale \mathcal{L}.

A. Fermions

For Majorana fermions 3, the dispersion relation is given by

$$E_{\pm}^2 = (Ap \pm \frac{B}{2\mathcal{L}})^2 + m^2(\alpha \pm \beta p)^2 \quad (2)$$

where

$$A = \left(1 + \kappa_1 \frac{\ell_p}{\mathcal{L}} + \kappa_2 \left(\frac{\ell_p}{\mathcal{L}}\right)^2 + \frac{\kappa_3}{2} \ell_p^2 p^2\right),$$

$$B = \left(\kappa_5 \frac{\ell_p}{\mathcal{L}} + \kappa_6 \left(\frac{\ell_p}{\mathcal{L}}\right)^2 + \frac{\kappa_7}{2} \ell_p^2 p^2\right),$$

$$\alpha = \left(1 + \kappa_8 \frac{\ell_p}{\mathcal{L}}\right),$$

$$\beta = \frac{\kappa_9}{2} \ell_p. \quad (3)$$
In the former expressions, \(E_\pm \) is the energy of the fermionic particle of mass \(m \) and momentum \(p \), and the \(\kappa_i \) are unknown adimensional parameters of order one. The \(\pm \) signs stand for the helicity of the propagating fermion. It should be stressed that the terms associated with \(B \) and \(\beta \), and which are precisely causing the \(\pm \) signs, are both parity and CPT odd (in fact, the equations of motion are invariant under charge conjugation and time reversal operations).

In what follows, it will be sufficient to consider

\[
E^2_\pm = A^2 p^2 + \kappa_3 \ell_p^2 p^4 \pm \kappa_5 \left(\frac{\ell_p}{L^2} \right) |p| + m^2 + \frac{1}{4} \left(\kappa_5 \frac{\ell_p}{L^2} \right)^2 ,
\]

(4)

where now \(A = 1 + \kappa_1 \frac{\ell_p}{\mathcal{L}} \) and \(\kappa_1, \kappa_3 \) and \(\kappa_5 \) are of order one. For simplicity, let us write (with \(\eta = \kappa_3 \ell_p^2 \) and \(\lambda = \kappa_5 \ell_p / 2 \mathcal{L}^2 \))

\[
E^2_\pm = A^2 p^2 + \eta p^4 \pm 2 \lambda p + m^2 ,
\]

(5)

where we have absorbed the quadratic term in \(\kappa_5 \) into the mass. As we have said, the basis of the present work relies on the assumption that (2) is a valid expression for fermionic particles in general. In particular, we will adopt the expression (5) for electrons, protons and \(\Delta \) particles.

B. Photons

For photons \([4]\), the dispersion relation is

\[
E_\pm = p [A_\gamma - \theta_3 (\ell_p p)^2 \pm \theta_5 (\ell_p p)] ,
\]

(6)

where

\[
A_\gamma = 1 + \kappa_\gamma \left(\frac{\ell_p}{\mathcal{L}} \right)^{2+2\Upsilon} .
\]

(7)

In the previous expressions, \(E_\pm \) and \(p \) are the respective energy and momentum of the photon, while \(\kappa_\gamma \) and \(\theta_i \) are adimensional parameters of order one, and \(\Upsilon \) is a free parameter that, for the moment, still needs interpretation (it should be noted that the presence of the \(\Upsilon \) parameter in the fermion dispersion relation was not considered in [3]). For simplicity we shall only consider the possibilities \(\Upsilon = -1/2, 0, 1/2, 1, \) etc... in such a way that \(A_\gamma \sim 1 + \mathcal{O}[(\ell_p / \mathcal{L})^n] \), with \(n = 2 + 2\Upsilon \) a positive integer. With this assumption, we will be
able to find a tentative value for \(\Upsilon \), through the bounding of the lower order correction of
\[\delta A \sim \mathcal{O}[(\ell_p/\mathcal{L})^n] \] (where \(\delta A = A_\gamma - A_a \), \(a \) denoting another particle).

As before, we note the presence of the \(\pm \) signs which denote the helicity dependance of the photon. To the order of interest, equation (6) can be written
\[E_\pm^2 = p^2 \left[A_\gamma^2 \pm 2\theta_\gamma (\ell_p p) \right]. \tag{8} \]
Notably, (8) is essentially the same result that Gambini and Pullin \cite{2} have obtained for photon’s dispersion relation, with the difference that they have \(A_\gamma = 1 \) and therefore the semiclassical scale \(\mathcal{L} \) is absent.

A similar contribution was also suggested by Ellis et al \cite{21, 22} (in this case, without helicity dependance). They found
\[E^2 = p^2 \left[1 - 2M_D^{-1}p \right], \tag{9} \]
where \(M_D \) is a mass scale coming from D-brane recoil effects for the propagation of photons in vacuum. When Gamma Ray Burst (GRB) data are analyzed to restrict \(M_D \) \cite{22}, the following condition arises
\[M_D \gtrsim 10^{24}\text{eV}. \tag{10} \]
For the photon’s dispersion relation that we are currently considering, (10) can be interpreted as the bound \(\theta_\gamma \lesssim 10^4 \). Since \(\theta_\gamma \) is an adimensional parameter of order one, expression (8) still is a permitted dispersion relation, in what GRB concern. We shall soon see other possibilities to contrast a \(\theta_\gamma \) like term.

III. KINEMATICAL APPROACH

A decay reaction is kinematically allowed when, for a given value of the total momentum \(\vec{p}_0 = \sum_{\text{initial}} \vec{p} = \sum_{\text{final}} \vec{p} \), one can find a total energy value \(E_0 \) such that \(E_0 \geq E_{\text{min}} \). Here \(E_{\text{min}} \) is the minimum value that the total energy of the decaying products can acquire, for a given total momentum \(\vec{p}_0 \). To find \(E_{\text{min}} \) for the dispersion relations under consideration, it is enough to take the individual decay product momenta to be collinear respect to the total momentum \(\vec{p}_0 \) and with the same direction. To see this, it is enough to variate \(E_0 \) with the appropriate restrictions
\[E_0 = \sum_i E_i(|p_i|) + \xi_j(p^j_0 - \sum_i p^j_i), \tag{11} \]
where ξ_j are Lagrange multipliers, the i index specify the ith particle and the j index the jth vectorial component of the different quantities. Doing the variation, we obtain

$$\frac{\partial E_i}{\partial p'_i} \equiv v^i_j = \xi_j. \quad (12)$$

That is to say, the velocities of all product particles must be equal to ξ. Since the dispersion relations that we are treating are monotonously increasing in the range of momenta $p > \lambda$, this result means that the momenta can be taken collinear and with the same direction of \vec{p}_0.

In the present work, we will focus on those cases in which two particles (say a and b) collide, and lately decay. For the present, these particles will have momenta \vec{p}_a and \vec{p}_b respectively, and a total momentum \vec{p}_0. Nevertheless, the total energy of the system will depend only on $|p_a|$ and $|p_b|$. Therefore, to get the threshold condition for the mentioned process, we must find the maximum possible total energy E_{max} of the initial configuration, given $|p_a|$ and $|p_b|$. For this, let us fix \vec{p}_a and variate the direction of $\vec{p}_b \equiv |p_b|\hat{n}$ in

$$E_0 = E_a(\vec{p}_0 - |p_b|\hat{n}) + E_b(|p_b|) + \chi(\hat{n}^2 - 1). \quad (13)$$

Varying (13) respect to \hat{n} (χ is a Lagrange multiplier), we find

$$\hat{n}^i = \frac{v^i_a|p_b|}{2\chi}. \quad (14)$$

In this way we obtain two extremal situations $\chi = \pm v_a|p_b|/2$, or simply

$$\hat{n}^i = \pm \frac{v^i_a}{v_a}. \quad (15)$$

A simple inspection shows that for the dispersion relations that we are considering, the maximum energy is given by $\hat{n}^i = -v^i_a/v_a$, or in other words, when frontal collision occurs.

Summarizing, the threshold condition for a two particle (a and b) collision and posterior decay, can be expressed through the following requirements.

$$E_a + E_b \geq \sum_{\text{final}} E_f \quad (16)$$

with all final particles having the same velocity, and

$$p_a - p_b = \sum_{\text{final}} p_f, \quad (17)$$
where the sign of the momenta $\sum_{\text{final}} p_f$ is given by the direction of the highest momentum magnitude of the initial particles. A more detailed treatment can be found in [10].

As a final remark for this section, under certain circumstances (for example some special choice of the LID parameters) the condition $\nu^j_i = \xi_j$ could give more than one solution for the threshold-condition configuration. In fact, as noted in [20], for a reaction where two identical particles are the decaying products, it is possible to find configurations where the momenta of these particles are distributed asymmetrically within them. However, for the present work, these effects can be neglected since they give contributions to the threshold conditions that are smaller than those which we will consider.

IV. DECAY REACTIONS

Using the methods described in the last section, we can find the threshold conditions for the decay reactions leading to the theoretical limits for cosmic rays. These thresholds will present some consequential modifications due to the parameters of the theory. Here we examine the possible bounds on these parameters. Let us start with the observations coming from multi-TeV γ-rays.

A. Pair decay, $\gamma + \gamma_e \rightarrow e^- + e^+$

Multi-TeV photons are subject to interactions with the FIBR through the process $\gamma + \gamma_e \rightarrow e^- + e^+$, where γ_e is a soft photon from the FIBR. For this reaction to occur, the following threshold condition must be satisfied

$$E_\gamma + \omega \geq E_{e^+} + E_{e^-}$$

(18)

with

$$p_\gamma - k = p_{e^+} + p_{e^-}.$$

(19)

In the above expressions, ω and k are the energy and momentum of the target photon from the FIBR. Since the energy of these photons do not significantly exceed the eV range, we will consider for these the usual dispersion relation $w = k$. The above equations can be reexpressed as

$$E_\gamma^2 + 2\omega E_\gamma \geq E_{e^+}^2 + E_{e^-}^2 + 2E_{e^+}E_{e^-}$$

(20)
and
\[p_\gamma^2 - 2k p_\gamma = p_{e^+}^2 + p_{e^-}^2 + 2p_{e^+}p_{e^-}, \] (21)

where we have neglected the quadratic terms in the FIBR quantities. An important property of the field equations from which the fermion dispersion relation comes from is that they are charge conjugation invariant. Therefore we can take for both electron and positron, the same dispersion relation with the same sign conventions. Furthermore, an analysis of conservation of angular momenta shows that both helicities are equally probable for the emerging pair, hence for the right hand of (21) we must procure that the energy of both, electron and positron, be the minimum possible. For this reason, we must use \(E_{e^+} = E_{e^-} = E_{(-)} \), where \(E_{(-)} \) is defined as
\[E_{(-)}^2 \equiv A^2 p^2 + \eta p^4 - 2|\lambda|p + m^2. \] (22)

Physically, this condition means that the helicity state of less energy is the one that sets the threshold condition. With this consideration, we are left with
\[E_\gamma^2 + 2\omega E_\gamma \geq 4E_{(-)}^2. \] (23)

\(\)From the dispersion relations (4) and (8) we can write the last equation as
\[p_\gamma^2[A^2_{\gamma} + (\pm)\gamma 2\theta_{\gamma}(\ell_p p_\gamma)] + 2\omega E_\gamma \geq 4[A^2_e p_e^2 - 2|\lambda|p_e + m_e^2]. \] (24)

Here, \((\pm)_\gamma \) stands for the incident photon helicity. Note that we have neglected the terms related with \(\eta \); these terms will become important when we study other reactions. Replacing the momentum conservation, we obtain
\[p_\gamma^2(A^2_{\gamma} - A^2_e) + (\pm)\gamma 2\theta_{\gamma}(\ell_p p_\gamma)^3 + 2(\omega E_\gamma + p_\gamma k A^2_e) + 8|\lambda|p_e \geq 4m_e^2. \] (25)

To the order in consideration we can replace \(p \)'s by \(E \)'s. Additionally, we can use \(2E_e \simeq E_\gamma \)
\[E_\gamma^2(A^2_{\gamma} - A^2_e) + (\pm)\gamma 2\theta_{\gamma}(\ell_p E_\gamma)^3 + 4\omega E_\gamma + 4|\lambda|E_\gamma \geq 4m_e^2. \] (26)

Now, note that in the absence of quantum gravity corrections we would have the usual threshold condition
\[E_\gamma \geq \frac{m_e^2}{\omega}, \] (27)
therefore, to contrast the new terms, we compare them with the quantity $4m_e^2$ in the right side of inequality (28).

Following [19], no LID should be inferred from the analysis of the data from the observed Markarian Blazar Mrk 501. This impose strong bounds on our parameters and, in particular, it means that any modified term must be less than $4m_e^2$ up to photons of energy $\sim 20 TeV$. In the first place, let us see the A terms

$$E_\gamma^2 |A^2_\gamma - A^2_e| \approx 2E_\gamma^2 |A_\gamma - A_e| \leq 4m_e^2.$$ \hspace{1cm} (28)

So, it follows that

$$|\delta A| \leq \frac{2m_e^2}{E_\gamma^2}.$$ \hspace{1cm} (29)

Evaluating with $E_\gamma \sim 20 TeV$, we obtain $|\delta A| \leq 1.3 \times 10^{-15}$. If we assume that the adimensional parameters are of order one, and taking for Υ the value $\Upsilon = -1/2$ (so that $\delta A = \mathcal{O}(\ell_p/\mathcal{L})$), we can estimate the following bound for \mathcal{L}

$$\mathcal{L} \gtrsim 6.4 \times 10^{-14} eV^{-1}.$$ \hspace{1cm} (30)

Nevertheless, typical values for the LID parameter difference $|\delta A|$ are below 10^{-22} [10]. This in turn impose a new bound $\mathcal{L} \gtrsim 8.3 \times 10^{-7} eV^{-1}$ (or $\mathcal{L} \gtrsim 10^{-11} cm$) which is nearly in the range of nuclear physics. Since there is no evidence that space manifests its loop structure at this scale, we interpret this result as that $\delta A = \mathcal{O}(\ell_p/\mathcal{L})$ (that is, the universality is broken at most in second order in the ratio ℓ_p/\mathcal{L}). With this last assumption we obtain a favoured $\Upsilon = 0$ value, and the bound

$$\mathcal{L} \gtrsim 8.3 \times 10^{-18} eV^{-1}.$$ \hspace{1cm} (31)

This is by far a more reasonable bound for \mathcal{L}.

In the second place, we have the θ_γ term (recall that this term involves the photon helicity dependance). Imposing the same kind of constrain with photons of energy $E_\gamma \sim 20 TeV$, we obtain

$$|\theta_\gamma| \lesssim 0.8.$$ \hspace{1cm} (32)

This is not a serious bound on the parameter θ_γ. In any case, if $|\theta_\gamma| \gtrsim 1$ then the observed photons from Mrk 501 should have a preferred helicity (this particular helicity will depend on
the sign of θ_γ). Furthermore, since θ_γ is assumed to be a parameter of order one, expression (32) tells us that more energetic photons than those we are considering (energies $\sim 20T eV$) should appear with such a preferred helicity.

Finally, it remains the term involving the λ parameter for electrons. For this, we obtain:

$$|\kappa_5| \frac{E_p}{L^2} \leq 2.6 \times 10^{-2} eV.$$ \hspace{1cm} (33)

Or, assuming that κ_5 is of order one

$$L \gtrsim 5.7 \times 10^{-14} eV^{-1}.$$ \hspace{1cm} (34)

B. Proton decay, $p + \gamma \rightarrow \Delta$

The main reaction leading to the GZK limit is the resonant $\Delta(1232)$ decay $p + \gamma \rightarrow \Delta$. The threshold condition is

$$E_p + \omega \geq E_\Delta$$ \hspace{1cm} (35)

with

$$p_p - k = p_\Delta.$$ \hspace{1cm} (36)

Here $E_\Delta^2 = A^2 p^2 + \eta p^4 - 2|\lambda| p + m^2$, that is to say, the minimum possible value for the energy of the emerging Δ. With some algebraic manipulation we can find

$$2\delta A E_p^2 + \delta \eta E_p^4 + ((\pm) p_\lambda + |\lambda|) E_p + 4\omega E_p \geq M_\Delta^2 - M_p^2,$$ \hspace{1cm} (37)

where $\delta A = A_p - A_\Delta$ and $\delta \eta = \eta_p - \eta_\Delta$. Additionally, $(\pm)_p$ refers to the incident proton helicity. Note that in the absence of LQG modifications the threshold condition becomes

$$E_p \geq \frac{M_\Delta^2 - M_p^2}{4\omega}.$$ \hspace{1cm} (38)

Since we don’t have a detailed knowledge of the deviation parameters, we take account of them independently. Naturally, there will always exist the possibility of having an adequate combination of these parameter values that could affect the threshold condition simultaneously. However, as we will soon see, each one of these parameters will be significant in different energy ranges.
Let us start considering the terms involving A

$$2\delta A E_p^2 + 4\omega E_p \geq M^2_\Delta - M^2_p.$$ \hfill (39)

For this inequality it is easy to see that, for a given value of ω, the reaction is kinematically precluded for all E, if

$$A_\Delta - A_p > \frac{2\omega^2}{M^2_\Delta - M^2_p} \simeq 1.7 \times 10^{-25} \frac{[\omega/\omega_0]^2}{2},$$ \hfill (40)

where $\omega_0 = 2.35 \times 10^{-4}eV$ is the kT energy (with $T = 2.73K$) of the CMBR thermal distribution. For all purposes the GZK limit is forbidden for the CMBR photons if we take $\omega \simeq \omega_0$. Incidentally, assuming that the adimensional parameters are of order one and that—as previously asserted—the non universal deviation of A is at most of second order in ℓ_p/L, we obtain

$$L \lesssim 2 \times 10^{-16}eV^{-1}.$$ \hfill (41)

Of more relevance than the A terms (as we will verify), are the η related ones. Here we have

$$\delta \eta E_p^4 + 4\omega E_p \geq M^2_\Delta - M^2_p.$$ \hfill (42)

In this case the condition is independent of L and it depends strictly on the difference $\delta \eta$. For this, the reaction is forbidden if

$$\left(\eta_\Delta - \eta_p\right) > \frac{27\omega^4}{(M^2_\Delta - M^2_p)^3} \simeq 3.2 \times 10^{-67} \frac{[\omega/\omega_0]^4}{4} \text{eV}^{-2}.$$ \hfill (43)

Recalling that $\eta = \kappa_3 \ell_p^2$, (43) tell us that it is enough to have $|\kappa_3| > 5 \times 10^{-11}$ with $\kappa_{3\Delta} > \kappa_{3p}$, for the reaction to be precluded. Since we are assuming that $O(\kappa_3) = 1$, this result reveals us that the presence of a non null $\delta \eta < 0$ ensures the GZK violation effect.

In view of the possibilities $\delta \eta = 0$ and $\delta A = 0$, we must consider the λ dependant terms

$$2 (\pm p \lambda_p + |\lambda_\Delta|) E_p + 4\omega E_p \geq M^2_\Delta - M^2_p.$$ \hfill (44)

This last expression is very interesting faced with the fact that its terms are helicity dependant. In this case, the reaction is more sensitive to the energy of the target photon. For instance, if ω is such that

$$\pm p \lambda_p + |\lambda_\Delta| + 2\omega \leq 0,$$ \hfill (45)
the reaction would be forbidden. Of course, this situation will depend on the helicity configuration of the incident proton. For example, if

\[|\lambda_p| \geq |\lambda_{\Delta}| + 4.7 \times 10^{-4}[\omega/\omega_0] \text{eV}, \] (46)

the reaction would also be forbidden at least for one proton helicity. Indeed, if \(|\kappa_{5p}|-|\kappa_{5\Delta}| \gtrsim 1\) (recall that \(\lambda = \kappa_{5} \ell_p/2\mathcal{L}^2\)) the threshold condition is dominated by the \(\lambda_p\) term

\[|\lambda_p| \gtrsim 4.7 \times 10^{-4}[\omega/\omega_0] \text{eV}. \] (47)

This impose a new bound on the parameters of the theory

\[\mathcal{L} \lesssim 3 \times 10^{-13} \text{eV}^{-1}. \] (48)

On the other hand, if \(|\kappa_{5\Delta}| - |\kappa_{5p}| \gtrsim 1\), the conservation of angular momentum always allows the reaction, and no GZK violation would be obtained. Although for this effect to be notorious we must demand universality on both \(A\) and \(\eta\) (at least for these hadronic particles). Since \(\Delta\)'s and protons have different spins, we cannot discard this possibility.

C. Photo - Pion Production, \(p + \gamma \rightarrow p + \pi\)

The next relevant reaction leading to the GZK threshold is the non-resonant photo-pion production \(p + \gamma \rightarrow p + \pi\). Since the pion is a spin 0 particle, we may assume that, to the order considered for (4), the relevant dispersion relation is

\[E^2 = A_\pi^2 p^2 + \eta_\pi p^4 + m_\pi^2, \] (49)

where \(A_\pi = 1 + \kappa_\pi (\ell_\pi^2/\mathcal{L}^2)\) (recall that we must have \(\delta A \sim \ell_\pi^2/\mathcal{L}^2\)). As in the other cases, the threshold condition will be given by

\[E_p + \omega \geq \tilde{E}_p + E_\pi \] (50)

with

\[p_p - k = \tilde{p}_p + p_\pi. \] (51)

Where \(\tilde{E}_p\) and \(\tilde{p}\) refer to the emerging proton. In analogy with the \(\Delta\) decay, for this threshold condition we must put \(\tilde{E}_p^2 = A_{\pi}^2 \tilde{p}^2 + \eta \tilde{p}^4 - 2|\lambda_p|\tilde{p} + m_p^2\).
With a little amount of algebra we are able to find

\[2\delta A E^2_\pi + \left(\delta \eta + 3 \eta_p \frac{M_p(M_p + M_\pi)}{M^2_\pi} \right) E^4_\pi + 4E_\pi \omega + 2E_\pi (|\lambda| \pm \lambda) \geq \frac{M^2_\pi(2M_p + M_\pi)}{M_p + M_\pi}, \]

(52)

where \(\delta A = A_p - A_\pi \), and \(\delta \eta = \eta_p - \eta_\pi \). In the last expression, \(\pm \) refers to the helicity of the incoming proton. Since there will necessarily be an incident proton helicity that can minimize this term, we can take for the threshold condition

\[2E_\pi (|\lambda| \pm \lambda) = 0. \]

(53)

With this consideration in mind, we get

\[2\delta A E^2_\pi + (\delta \eta + 168 \eta_p) E^4_\pi + 4E_\pi \omega \geq \frac{M^2_\pi(2M_p + M_\pi)}{M_p + M_\pi}. \]

(54)

As before, let us consider the modifications separately. If \(\delta A \) were the dominant term, we would have to consider

\[2\delta A E^2_\pi + 4E_\pi \omega \geq \frac{M^2_\pi(2M_p + M_\pi)}{M_p + M_\pi}, \]

(55)

consequently, the violation condition would be

\[A_\pi - A_p > \frac{2\omega^2(M_p + M_\pi)}{M^2_\pi(2M_p + M_\pi)} \approx 3.3 \times 10^{-24} [\omega/\omega_0]^2. \]

(56)

Using \(\delta A \sim \ell^2_p/L^2 \), this result can be understood as

\[L \lesssim 4.6 \times 10^{-17} eV^{-1}. \]

(57)

Let us now consider the \(\eta \) terms. For these we have a violated threshold if

\[-\delta \eta - 168 \eta_p > 27\omega^4 \left(\frac{M_p + M_\pi}{M^2_\pi(2M_p + M_\pi)} \right)^3 \approx 2.2 \times 10^{-63} [\omega/\omega_0]^4 eV^{-2}. \]

(58)

Since \(\mathcal{O}(\delta \eta) \approx \mathcal{O}(\eta_p) \) (when \(\delta \eta \neq 0 \)), let us assume that the \(\eta_p \) term dominates. In this case, for the threshold condition to be violated we just require \(|\eta| > 1.3 \times 10^{-63} eV^{-2} \) with \(\eta \) negative. Recalling that \(\eta = \kappa_3 \ell^2_p \) with \(\kappa_3 \) of order one, this condition can be well read as \(|\kappa_3| \geq 1.9 \times 10^{-9} \). Hence if \(\kappa_3 \) is not strictly zero, this term would be an acceptable causing agent of the GZK limit violation, as far as photo-pion production is concerned. Finally, if \(\eta \) were null, the next relevant terms would be the \(\lambda \) helicity dependant ones. But, by angular momentum conservation, there will always be a emergent proton helicity that cancels them, hence these terms cannot forbid the reaction.
V. CONCLUSIONS

We have seen how the introduction of modifications from loop quantum gravity can affect and explain the anomalies observed in highly energetic phenomena like cosmic rays. In particular, the notable appearance of helicity dependant decays could be a special footprint of this kind of effective theories.

Provided that the difference δA between A_{γ} and A_{e} is not affecting the observations of the arrival of multi-TeV photons (as the ultimate analysis show), we have the strong possibility granted by (8)

$$E_{+}^{2} = p^{2} \left[A_{\gamma}^{2} \pm 2 \theta_{\gamma} (\ell_{p} p) \right],$$

to be on the edge of observing polarized multi-TeV photons. In a few words, the actual universe could be transparent for one helicity state (while for the other not), nearly over the TeV range. The specific helicity necessarily depends on the sign of θ_{γ} and for the moment no related observations could decide this sign.

Likewise, there also is the possibility that we have been observing polarized protons in the form of GZK limit violating events. For these helicity effects to take place, it is necessary that both A and η be universals parameters as opposed to λ, which would need to respect (10). This last assumption appears to be a little forced. Nevertheless, faced with the fact that these terms depend on the parity and CPT violation structure of the theory and hence the helicity degeneracy of states is broken, we must take this possibility seriously. For instance, it is enough to note the great difference that, in what these helicity terms refers, must exist between particles of spin zero and fractional spin.

Summarizing, the GZK limit can be violated by A, η and λ in three different ways. Firstly, by having a non universal A parameter up to second order in ℓ_{p}/L ($\Upsilon = 0$ in the case of photons) in such a way that $A_{p} < A_{\Delta}$ and $A_{p} < A_{\pi}$. In this case, from bounds (31) and (57), the favoured range for L is

$$4.6 \times 10^{-17} eV^{-1} \gtrsim L \gtrsim 8.3 \times 10^{-18} eV^{-1}. \tag{59}$$

Note however that this possibility necessarily excludes the existence of a λ term in the dispersion relations for fermions, since there would be fermions having velocities in the opposite direction from that of the momentum (up to $p = \lambda \simeq K eV$). This last assumption
has, at the same time, the consequence that no parity violation (and therefore CPT violation) should be present in the fermionic part of the theory, at the discussed level.

Secondly, by having \(\eta_p < \eta_\Delta \) with \(\eta \) a negative parameter. This case is more interesting since it fixes the sign of \(\eta \) and, consequently, its effects could be studied in other high energy reactions with at least a little more knowledge on these corrections.

Thirdly, the already mentioned possibility of an helicity dependant violation of the limit needs, as in the previous case, a negative and universal \(\eta \). The reason for this exotic combinations of parameters is that for the photo-pion production to be forbidden it is only necessary to have a negative \(\eta \), while for the resonant \(\Delta \) decay, the \(\eta \) sign is not sufficient. For this last effect to take place, the length scale \(\mathcal{L} \) needs to satisfy (from bounds (14) and (15))

\[
3 \times 10^{-13} eV^{-1} \lesssim \mathcal{L} \gtrsim 5.7 \times 10^{-14} eV^{-1}.
\]

It is worth noting that the helicity dependant effects tend to grant a privilege to a length scale around \(\sim 2 \times 10^{-13} eV^{-1} \) or, if we prefer, a mass scale in the TeV range. This is the same tentative range found in other works related with gravity [23]. For example, recent works on compactification of extra dimensions [24, 25] show the possibility to define a mass scale in the TeV range and, as commonly emphasized, it is on the edge of actual empirical observations [26]. A length scale’s range like (60) gives a \(\lambda \) value

\[
\lambda \sim 2.5 \times 10^{-3} eV.
\]

As was noted in [27], a dispersion relation of the type

\[
E^2 = p^2 + \lambda p + m^2,
\]

with a value of \(\lambda \geq 10^{-7} eV \), should be discarded because of the extremely sensitive measures made on the Lamb shift. However in the present framework, since the Lamb shift depends primarily on the interaction detail between electrons and photons, we are compelled to wait for a complete interaction picture of the effective LQG theories to say something about the symmetries involved in a low energy effect like that. In this sense, our developments are strictly valid for analysis made on asymptotically free particle states (as done in the present work), where the effects of interactions are taken to be negligible, and kinematical considerations are valid.
Future experimental developments like the Auger array, the Extreme Universe Space Observatory (EUSO) and Orbiting Wide-Angle Light Collectors (OWL) satellite detectors, shall increase the precision and phenomenological description (such as a favoured proton helicity) of these UHECR.

Other related bounds for these parameters can also be established. Such is the case of Gamma Ray Burst (GRB) observations which could throw sensitive results on the δA difference between photons and neutrinos \cite{3} (see Appendix A), or neutrino oscillations, in which the universality between the different neutrino flavor LID parameters can be measured \cite{28}.

Acknowledgments

The authors are grateful to S. Liberati and A. Ringwald for calling to our attention references \cite{20} and \cite{12,14}. Also to S. Gálvez for his help in improving the English of the paper. The work of JA is partially supported by Fondecyt 1010967. The work of GP is partially supported by a CONICYT Fellowship.

APPENDIX A: TIME DELAY BETWEEN PHOTONS AND NEUTRINOS FROM GRB

The prediction of $10^{14} - 10^{19}eV$ neutrino bursts generated in GRB events \cite{29,30}, open the interesting possibility of observing a time delay between the arrival of photons and neutrinos. For instance, taking into account the range predicted in \cite{29} —which gives an A difference of $\delta A \approx 10^{-22}$—, the time delay from a typical source at 40 Mpc in a flat Friedman-Robertson-Walker (FRW) universe, should be $\delta t \sim 10^{-6}s$. This result may be compared with the respective one from \cite{3}, where, for the same distance, it is found that $\delta t \sim 0.4 \times 10^{3}s$. The great discrepancy can be understood not only on the ground of having different magnitude and expressions for δA in terms of the L parameter, but also on the fact that in \cite{3} the length scale L was taken to be a mobile scale which sets a cutoff value for the involved momenta ($L \lesssim 1/p$) given the specific physical situation. In this paper we have considered that L is a universal length scale. From this point of view, since the length scale is not mobile, we have included the possibility $p > 1/L$ (in which the LQG structure
of the region $\ell_p \lesssim d \lesssim \mathcal{L}$ is present through its effects), and therefore the actual results.

For completeness, let us show the time delay contributions (in a flat FRW universe) from the most significant terms of the dispersion relation for neutrinos. These delays are considered respect to the arrival of photons with a conventionally re-scaled $A_\gamma \equiv 1$.

- A term:

$$
\delta t_A = \frac{2|\delta A|}{H_0} \left[1 - (1 + z)^{-1/2}\right].
$$

(A1)

- η_ν term:

$$
\delta t_\eta = \frac{|\eta_\nu| \ell_p^2}{H_0} \left[(1 + z)^{3/2} - 1\right].
$$

(A2)

Additionally, there will be a time delay between photons of different helicities [4] (to follow the later convention, we take $(v_+ + v_-)/2 = A_\gamma \equiv 1$, where $v_\pm = A_\gamma \pm 2 \theta_\gamma \ell_p p$)

- θ_γ term:

$$
\delta t_\pm = \frac{8|\theta_\gamma| \ell_p p_0}{H_0} \left[(1 + z)^{1/2} - 1\right].
$$

(A3)

In (A1), (A2) and (A3), p_0 is the momentum (or energy) of the arriving particles, H_0 is the Hubble constant and z is the source redshift. The above results can be used to analyze the GRB spectral structure in more detail and give additional bounds to the current parameters. Currently, present observations can not give such bounds.

[1] G. Amelino-Camelia, J. Ellis, N.E. Mavromatos, D.V. Nanopoulos, and S. Sarkar, Nature **393**, 763 (1998).
[2] R. Gambini and J. Pullin, Phys. Rev. D **59**, 124021 (1999).
[3] J. Alfaro, H.A. Morales-Técotl and L.F. Urrutia, Phys. Rev. Lett. **84**, 2318 (2000).
[4] J. Alfaro, H.A. Morales-Técotl and L.F. Urrutia, hep-th/0108061.
[5] For a comprehensive review on the Loop Quantum Gravity framework, see for example C. Rovelli, Living Reviews Vol. 1 “Loop Quantum Gravity”, at http://www.livingreviews.org/articles
[6] AGASA Collaboration, M. Takeda *et al.*, Phys. Rev. Lett. **81**, 1163 (1998). For an update see M. Takeda *et al.*, Astrophys. J. **522**, 225 (1999).
[7] Fly’s Eye Collaboration, D.J. Bird et al., Astrophys. J. 424, 144 (1995).
[8] K. Greisen, Phys. Rev. Lett. 16, 748 (1966).
[9] G.T. Zatsepin and V.A. Kuz’min, Zh. Eksp. Teor. Fiz., Pis’ma Red. 4, 114 (1966).
[10] T.W. Kephart and T.J. Weiler, Astropart. Phys. 4, 271 (1996).
[11] V. Berezinsky, M. Kachelriess and V. Vilenkin, Phys. Rev. Lett. 79, 4302 (1997).
[12] D. Fargion, B. Mele, A. Salis, Astrophys. J. 517, 725 (1999).
[13] T.J. Weiler, Astropart. Phys. 11, 303 (1999).
[14] Z. Fodor, S.D. Katz, A. Ringwald, hep-ph/0105064.
[15] F.A. Aharonian et al. Astron. and Astrophys. 349, 11 (1999).
[16] S. Coleman and S.L. Glashow, Phys. Rev. D 59, 116008 (1999).
[17] G. Amelino-Camelia, gr-qc/0107086.
[18] F.W. Stecker and S.L. Glashow, Astropart. Phys. 16, 97 (2001).
[19] F.W. Stecker and O.C. De Jager, astro-ph/0107103.
[20] S. Liberati, T.A. Jacobson, D. Mattingly, hep-ph/0110094.
[21] J. Ellis, N.E. Mavromatos, D.V. Nanopoulos, Gen. Rel. Grav. 32, 127 (2000).
[22] J. Ellis, N.E. Mavromatos, D.V. Nanopoulos, gr-qc/9909085.
[23] A.G. Cohen, D.B. Kaplan and A.E. Nelson, Phys. Rev. Lett. 82, 4971 (1999).
[24] N. Arkani-Hamed, S. Dimopoulos and G. Dvali, Phys. Lett. B 429, 263 (1998).
[25] I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G. Dvali, Phys. Lett. B 436, 257 (1998).
[26] S. Dimopoulos and G. Landsberg, Phys. Rev. Lett. 87, 161602 (2001).
[27] J.M. Carmona and J.L. Cortés, Phys. Rev. D 65, 025006 (2002).
[28] R. Brustein, D. Eichler, S. Foffa, hep-ph/0106306.
[29] E. Waxman and J. Bahcall, Phys. Rev. Lett. 78, 2292 (1997).
[30] M. Vietri, Phys. Rev. Lett. 80, 3690 (1998).