from the questionnaire due to a problem of singularity and extracted variance 21.5% [Tables 1 and 2].

Table 2 displays the loadings of each item onto each factor, it represents the level of variance explained by the particular item for the corresponding factor, and the extraction is recommended to be at least 3%. This entails more evidence to exclude item “the hospital uses the lifespan approach in nutrition interventions” (with an extraction load of 0.215) in addition to its problem of singularity caused by this item. The rest of the items did not cause neither multicollinearity/singularity in the original correlation matrices nor of any of its extracted variance had its value <3%. As a result of that, all the items were included in the questionnaire under the corresponding factors.

After the exclusion of the item “the hospital uses the lifespan approach in nutrition interventions” from the questionnaire and factor analysis was running for the 43 items once regardless the categorization of items by factor, the test of Kaiser-Meyer-Olkin (KMO) and Bartlett’s test of sampling adequacy revealed that the original correlation matrix was significantly not identity matrix; the KMO value was 0.930 and Bartlett’s test with \(P < 0.001 \) in addition to its problem of singularity caused by this item. The rest of the items did not cause neither multicollinearity/singularity in the original correlation matrices nor of any of its extracted variance had its value <3%. As a result of that, all the items were included in the questionnaire under the corresponding factors.

Reliability
The internal consistency reliability was tested by Cronbach’s coefficient for each of the 11 factors in each of the four questions (except the second factor 3 question after exclusion of item “the hospital uses the lifespan approach in nutrition interventions”) with the participant as the unit of analysis. The observed coefficients ranged from 0.727 to 0.924, indicating exceptionally high reliability. By convention, a lenient cut-off of 0.60 is common in exploratory research; alpha should be at least 0.70 or higher to retain an item in an “adequate” scale. Many researchers require a cut-off value of 0.80 for a “good” scale.[16]

Discussion
The increase of NCD creates a great burden on healthcare systems; hence, it is essential to the UAE government to have a thorough nutritional-based strategic plan to counter this trend. This questionnaire aims to understand the assessment of what influences the implementation of a nutritional-based strategy. It is built upon a hypothesis that the participants are the best experts in this respect. Nevertheless, the participant’s opinion is based on many factors which include private or public sector, the degree to which they are involved in the strategy, and educational level.[17]

Table 3: A summary of results from factor analysis on the questionnaire per 11 factors for the agreement

Factors	Sample size	Kaiser-Meyer-Olkin measure of sampling adequacy	Bartlett’s test of sphericity (\(P \))	Cronbach \(\alpha \)	Percentage of amount of variance explained
Strategy development	154	0.780	<0.001	0.828	67.517
Resources and enablement	150	0.61	<0.001	0.727	65.980
Process and activity	148	0.707	<0.001	0.792	62.32
Patient orientation	152	0.769	<0.001	0.879	73.872
Quality	152	0.845	<0.001	0.924	81.987
People and competencies	145	0.775	<0.001	0.838	67.743
Values and care design	155	0.765	<0.001	0.869	71.961
Measurement and impact	146	0.813	<0.001	0.892	75.988
Innovation and best practice	152	0.806	<0.001	0.879	73.936
Teamwork	148	0.723	<0.001	0.838	67.513
Culture diversity	148	0.812	<0.001	0.906	78.158
Questionnaires seeking participants’ opinion should be not only reliable, valid, and consistent but also concise and adequate [Tables 2 and 3]. This is especially so if the area studied is conventionally regarded as sensitive such as participants provide their expertise for establishing a strategic plan that will be implemented nationwide. The exclusion of the first item from the second component “the hospital uses the lifespan approach in nutrition interventions” was informed by the logical and pragmatic approach. This demanded that all the key components in the original questionnaire be retained. Furthermore, the remaining 43 items which covered major aspects of factors of nutrition strategy were more simply and clearly phrased for the decision-makers. Hence, it was gratifying to note that the reduction of the items from 44 in the original instrument to 43 in the present version did not result in a significant reduction in reliability, validity, or consistency of the instrument. Another point to raise is that either the number of factors of a strategic plan of the specific domain such as nutrition to affect the burden of NCDs or the number of professionals needed to validate this instrument is a real dilemma. The question of an overall number of factors and sample size that needed to validate the instrument of a strategic plan as general is very fluctuated in the literature.\(^{18‑21}\) In this study, the existing number of factors (11) and their subitems (43) have robust, reliable, internal consistency and validity. Unfortunately, the method of validation and reliability of an instrument is able to exclude the inadequate factors and items involved, but without any ability to test the completeness of neither factors nor the items per component.

Conclusion

The study concluded that the questionnaire was valid and reliable on its form of 43 items divided into 11 factors to assess the agreement toward factors needed to implement a nutrition strategy in the UAE.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

References

1. Lopez AD, Mathers CD, Ezzati M, Jamison DT, Murray CJ, editors. Global Burden of Disease and Risk Factors. Washington, DC: Oxford University Press and World Bank; 2006.
2. World Health Organization. Preventing Chronic Diseases: A Vital Investment. Geneva: World Health Organization; 2005.
3. Adeyi O, Smith O, Robles S. Public Policy and the Challenge of Chronic Noncommunicable Diseases. Washington, DC: World Bank; 2007.
4. Lachat C, Otchere S, Robertfroid D, Abdulai A, Seret FM, Milesevic J, et al. Diet and physical activity for the prevention of noncommunicable diseases in low- and middle-income countries: A systematic policy review. PLoS Med 2013;10:e1001465.
5. Musaiger AO, Al-Hazzaa HM. Prevalence and risk factors associated with nutrition-related noncommunicable diseases in the Eastern Mediterranean region. Int J Gen Med 2012;5:199-217.
6. Katz DL, Sarrel PM, Njieke VY, Vinante V, Katz et al. Respond. Am J Public Health 2013;103:e3.
7. Beaglehole R, Bonita R, Horton R, Adams C, Alleyne G, Asaria P, et al. Priority actions for the non-communicable disease crisis. Lancet 2011;377:1438-47.
8. Islam SM, Purnat TD, Phaong NT, Mwingira U, Schacht K, Fröschl G, et al. Non-communicable diseases (NCDs) in developing countries: A symposium report. Global Health 2014;10:81.
9. Alshishtawy MM. Vitamin D deficiency: This clandestine endemic disease is veiled no more. Sultan Qaboos Univ Med J 2012;12:140-52.
10. He B, Tang J, Ding Y, Wang H, Sun Y, Shin JH, et al. Mining relational paths in integrated biomedical data. PLoS One 2011;6:e27506.
11. Brooke J, Ojo O. Enteral nutrition in dementia: A systematic review. Nutrients 2015;7:2456-68.
12. Hasan M, Mohieldein AH, Almutairi FR. Comparative study of serum 8-hydroxydeoxy-guanosine levels among healthy offspring of diabetic and non-diabetic parents. Int J Health Sci (Qassim) 2017;11:33-7.
13. United Arab Emirates Population Growth Rate – Demographics. Available from: http://www.indexmundi.com. [Last retrieved on 2017 Apr 05].
14. Alshaikh MK, Filippidis FT, Al-Omar HA, Rawaf S, Majeed A, Salmasi AM, et al. The ticking time bomb in lifestyle-related diseases among women in the gulf cooperation council countries; review of systematic reviews. BMC Public Health 2017;17:536.
15. Cronbach LJ. Coefficient alpha and the internal structure of tests. Psychometrika 1951;16:297-34.
16. Nunnally JC. Psychometric Theory. 3rd ed. New York: McGraw-Hill; 1994.
17. Mosadeqhrad AM. Factors influencing healthcare service quality. Int J Health Policy Manage 2014;3:77-89.
18. Al-Rubaish AM, Abdel Rahim SL, Hassan A, Ali AA, Mokabel F, Hegazy M, et al. Developing questionnaires for students’ evaluation of individual faculty’s teaching skills: A Saudi Arabian pilot study. J Family Community Med 2010;17:91-5.
19. Chariyalertsk S, Wansom T, Kawichai S, Ruangyuttikarn C, Kemerer VF, Wu AW, et al. Reliability and validity of Thai versions of the MOS-HIV and SF-12 quality of life questionnaires in people living with HIV/AIDS. Health Qual Life Outcomes 2011;9:15.
20. Reeder AI, Hammond VA, Gray AR. Questionnaire items to assess skin color and erythemal sensitivity: Reliability, validity, and “the dark shift”. Cancer Epidemiol Biomarkers Prev 2010;19:1167-73.
21. Pintrich PR, Smith DA, Garcia T, McKeach WJ. Reliability and predictive validity of the motivated strategies for learning questionnaire (MSLq). Educ Psychol Measurement 1993;53:801-13.
Effectiveness of “percutaneous coronary intervention care program” on selected variables among patients undergoing percutaneous coronary intervention

Poonam Sharma, Sandhya Ghai, Manoj Kumar Rohit, Monika Dutta
Department of Nursing, National Institute of Nursing Education, PGIMER, Department of Cardiology, PGIMER, Chandigarh, India

ABSTRACT
Objective: The study was conducted to assess the effectiveness of “percutaneous coronary intervention (PCI) care program” among patients undergoing PCI.

Subjects and Methods: A quasi-experimental design was adopted, and purposive sampling technique was used to enroll the patients in the experimental and control groups. Different tools were used to collect the data, which include numerical pain and comfort rating scale, Barthel Index for activities of daily living, assessment for the presence of vascular complications, modified CADEQ-SV questionnaire, State-Trait Anxiety Inventory scale, self-structured satisfaction scale, and PCI manual.

Results: There was a significant decrease observed in state anxiety (P < 0.001), pain level at 12 h (P = 0.03), discomfort within 12 h (P < 0.001) and 24 h (P = 0.002), improving knowledge regarding coronary artery disease (CAD) (P < 0.001), and activities of daily living as well as significant increase in satisfaction level (P < 0.001) among patients undergoing PCI in the experimental group than the control group.

Conclusion: The study concluded that this program was effective in reducing anxiety, pain, and discomfort and increased satisfaction level, knowledge regarding CAD, and independence in self-care activities for PCI patients.

Keywords: Coronary artery disease, educational and interventional package, percutaneous coronary intervention

Introduction

Globally, cardiovascular diseases are the topmost cause of mortality and morbidity. Among all cardiovascular diseases, coronary artery disease (CAD) occupies the number one position as the main cause of mortality.[1] According to the WHO’s Global Health Statistics 2008, CAD will become the number one killer disease in 2030, causing 14.2% of all deaths worldwide for 200 member countries.[2]

The options to treat patients with CAD are nonpharmacological, pharmacological, interventional cardiology procedures, and surgical treatment. Percutaneous coronary interventions (PCIs) are interventional cardiology procedures to improve survival and relieve symptoms by reducing the target stenosis and restoring the coronary blood flow.[3] Educational and interventional programs are considered to be vital strategies that can contribute to better health outcomes in patients with cardiac diseases. Therefore, preinformed education should be given by nurses to patients to reduce their physical and emotional discomfort. Post-PCI nursing care of patients undergoing PCIs includes close assessment, pain relief, sheath removal,
management of complications, patient positioning, ambulation, and health education.[3,4] Therefore, the present study was conducted to develop, implement, and evaluate the effectiveness of “PCI care program” for patients undergoing PCI. The goal of this educational interventional program is to increase the patient’s interest and involvement in self-care by conveying knowledge and preparing them to manage their own condition.

Subjects and Methods

A quasi-experimental study to assess the effectiveness of “PCI care program” was conducted in one hundred patients undergoing PCI in cardiology units of Advance Cardiac Centre, PGIMER, Chandigarh, in the month of July–September 2017. The study participants were selected through purposive sampling, with 50 each in the experimental and control groups. The Institute’s Ethics Committee of PGIMER, Chandigarh, approved the study protocol; the study was also registered under the Clinical Trial Registry India with reference No. REF/2017/05/014405; and informed consent was obtained from the patients. The study duration was 10 weeks, July-September 2017.

The study participants were patients undergoing PCI in cardiology units of Advance Cardiac Centre, PGIMER, Chandigarh. All patients who were undergoing PCI were screened for eligibility criteria. All the patients who knew Hindi/Punjabi or English and who were willing to participate were the eligible criteria for the participants. Patients who met the inclusion criteria were enrolled and placed into the experimental or control group. There were no exclusion criteria in the study.

It was an interventional study, in which there were two groups – control group and experimental group. In this study, intervention was in the form of PCI care program. This program was developed after assessing the needs of the patient, review of literature, and suggestion of experts in the field of cardiology and nursing. PCI care program contained both interventional package and educational package which include care of the patient before, during, and after PCI; demonstrations and assistance in performing self-care activities; and teaching in appropriate language and via booklet regarding CAD, PCI, lifestyle changes, medication, and postdischarge to reduce anxiety and increase knowledge.

Patients in the control group received routine care. PCI care program was implemented in patients of experimental group 1 day before procedure; on the day of procedure; during procedure; and at the 0, 1st, 2nd, or till the day of discharge of patients from the hospital after PCI via informational booklet, demonstration, teaching in appropriate language with suitable audiovisual aids, and assisted in performing self-care activities. However, the majority of patients discharged on the 2nd day after procedure. Follow-up was done on outpatient department basis at the 30th day and telephonic approach at the 15th and 30th days after PCI.

Tools of the present study included different parts. They were patient pro forma, numerical pain and comfort rating scale, Barthel Index for activities of daily living, assessment for the presence of vascular complications, modified CADEQ-SV questionnaire, State-Trait Anxiety Inventory (STAI) scale, self-structured satisfaction scale with “PCI care program,” or routine care. Patient pro forma further included sociodemographic profile, clinical profile, and personal profile. Numerical rating scale adopted from McCaffery and Beebe \textit{et al.} (1989) indicates the intensity of current, best, and worst pain levels over the past 24 h on a scale of 0 (no pain) to 10 (worst pain imaginable). Numerical comfort rating scale indicates the intensity of current, best, and worst pain levels over the past 24 h on a scale of 0 (no comfort) to 10 (highest level of comfort). The Barthel Index for activities of daily living was used as a record of what a patient does and not as a record of what a patient could do. It includes ten components that are feeding, bathing, grooming, dressing, bowels, bladder, toilet use, transfer, mobility, and stairs. The modified CADE-QSV was used to assess the knowledge of patients related to CAD; the CADE-Q was developed which includes knowledge of five domains of CAD – medical condition, risk factors, exercise, nutrition, and psychosocial factors. Based on the CADE-Q (the first version), the CADE-QSV was developed. From the CADE-QSV, the modified CADE-Q SV was developed which includes knowledge related to PCI. The modified CADE-QSV has designed to be a true/false/I do not know questionnaire, with 23 items. Each correct answer is equal to 1 point; therefore, the maximum score possible is 23. STAI is a psychological inventory consisting of forty self-report items about anxiety affect. It measures anxiety at both extremes of the normal affect curve (state vs. trait). Self-structured satisfaction scale includes 25 items and each item has 5-point Likert scale. The score for each item ranged from 1 (very dissatisfied) to 5 (very satisfied). Hence, the overall minimum score is 25 and maximum score is 125.

Data analysis

The effectiveness of “PCI care program” was assessed by conducting statistical analysis of data by SPSS (IBM SPSS