Longitudinal structure function measurements from HERA

Vladimir Chekelian (MPI for Physics, Minich)

on behalf of H1 and ZEUS

- Deep Inelastic Scattering / Structure functions
- Longitudinal structure function $F_L(x,Q^2)$
- HERA / H1 and ZEUS
- Measurement strategy for F_L
- Experimental details of the F_L analyses
- F_L results
- Summary
Deep Inelastic Scattering

Neutral Current (NC): \(e^\pm p \rightarrow e^\pm X \)

\[Q^2 = -q^2 = -(k-k')^2 \] virtuality of \(\gamma^*,Z \)

\[x = \frac{Q^2}{2(Pq)} \] Bjorken x

\[y = \frac{(Pq)}{(Pk)} \] inelasticity

\[Q^2 = sxy \]

\[s = (k+P)^2 \]

Factorisation

\[\sigma_{DIS} \sim \hat{\sigma} \otimes pdf(x) \]

\(\hat{\sigma} \) – perturbative QCD cross section

pdf – universal parton distribution functions
The Proton Structure Functions

\[\frac{d^2\sigma^{\pm}}{dx_dQ^2} = \frac{2\pi\alpha^2Y}{xQ^4} \sigma^{\pm} = \frac{2\pi\alpha^2Y}{xQ^4} \left[F_2(x,Q^2) - \frac{y^2}{Y_+} F_L(x,Q^2) \mp \frac{Y_-}{Y_+} xF_3(x,Q^2) \right] \]

helicity factors: \[Y_\pm = 1 \pm (1 - y)^2 \]

dominant contribution:

\[F_2(x,Q^2) = \sum e_{q_i}^2 x(q_i \pm \bar{q}_i) \]

contributes only at high \(Q^2 \) (\(> M_Z^2 \))

\[xF_3(x,Q^2) = x \sum B_i (q_i - \bar{q}_i) \]

\[F_2 \sim \sigma_L \gamma p + \sigma_T \gamma p, \quad F_L \sim \sigma_L \gamma p \]

\[0 \leq F_L \leq F_2 \]
The longitudinal structure function $F_L(x,Q^2)$

- F_L is an independent structure function to be measured at HERA to complete the DIS program
- F_L is a pure QCD effect which allows to make critical tests of the perturbative QCD framework used for pdf determinations
- F_L is directly sensitive to gluon density

Breit frame:

\[
\frac{1}{2} \left[\alpha_s \pi \int^1_x \frac{dz}{z^3} \left[\frac{16}{3} F_2 + 8 \sum_q e_q^2 \left(\frac{1-x}{z} \right) \cdot x_g \right] \right]
\]

in QPM due to helicity and angular momentum conservation for spin $\frac{1}{2}$ quarks

$F_L \sim \sigma_L \gamma p = 0$

$F_L = F_2 - 2x F_1 = 0$

Callan-Gross relation

in QCD:
Gluon and F_L in LO–NLO–NNLO (MSTW)

\rightarrow poor stability for gluon at small x \rightarrow similarly for F_L but less prominent
Theory predictions for F_L in the HERA domain

- firm NLO/NNLO QCD predictions for $Q^2 > 10 \text{ GeV}^2$
- spread of predictions at Q^2 below 10 GeV^2
HERA (1992–2007)

- peak luminosity 5×10^{31} cm$^{-2}$ sec$^{-1}$
- $Q^2_{\text{max}} = 10^5$ GeV2
- $\lambda_{\text{max}} \sim 1/1000 r_{\text{proton}}$
- longitudinal e-beam polarisation

- HERA-1 (1992–2000)
- HERA-2 (2003–2007)

- electrons
- positrons
- low E_p

- V.Chekelian, 28.06.2008
- FL measurements from HERA

- $e (E_e = 27.5$ GeV$)\rightarrow E_p = 920 \ (575, 460$ GeV$)$

- H1+ZEUS in total ~ 1 fb$^{-1}$
 - about equally shared between experiments (H1, ZEUS)
 - e^+ and e^-,
 - positive and negative P_e

- low proton energy run for direct F_L measurements
 - 13 pb$^{-1}$ $E_p = 460$ GeV
 - 7 pb$^{-1}$ $E_p = 575$ GeV
Measurement strategy for F_L

$$\tilde{\sigma}_{NC} = \frac{d^2\sigma_{NC}^{ep}}{dxdQ^2} \left(\frac{2\pi\alpha^2}{xQ^4} Y_+ \right) = F_2 - \frac{y^2}{1+(1-y)^2} F_L$$

→ one possible way:
measure σ at high y
and assume F_2

→ free from theoretical assumption:
measure σ at the same x & Q^2 and different y
by changing the proton beam energy ($y = Q^2/sx$)

sensitivity to F_L
only at high y
H1 and ZEUS

\[E'_e > 3 \text{ GeV} \ (y \approx 0.90) \quad y = 1 - \left(\frac{E'_e}{E_e} \right) \sin^2 \left(\frac{\theta_e}{2} \right) \quad E'_e > 6 \text{ GeV} \ (y \approx 0.76) \]

FL measurements in H1

\(Q^2 \) range (GeV\(^2\))	Spacal+CT	LAr+CT	DESY-08-053
medium \(Q^2 \)	12-90		
high \(Q^2 \)	35-800		
low \(Q^2 \)	5-15	Spac+BST	to come

FL measurements in ZEUS

- \(\theta_e < 168^\circ \)
- \(24 \leq Q^2 \leq 110 \text{ GeV}^2 \)
- more to come
Hardware & software improvements

H1: new trigger hardware since fall 2006:
- **Jet Trigger** (real time clustering in LAr)
- **Fast Track Trigger** (FTT)

ZEUS: new tool is developed to extend the tracking region:
- acceptance of the track reconstruction is limited to $\theta < 154^\circ$
- use single hits in the tracking detector along a road from primary vertex to el. candidate in CAL taking into account the charge of the scattered electron
 - reject neutral particles up to $\theta \approx 168^\circ$

\rightarrow combined trigger eff. $\approx 100\%$ for $E_e > 3$ GeV
Photoproduction background estimation using 6m electron tagger (ZEUS)

- In photoproduction ($Q^2 \approx 0$) quasi-real photon interacts with the proton
- Electron with reduced energy goes along the e beam direction, bends in the dipole magnet and hits the electron tagger located at 6 m

\rightarrow Fraction of γp events is measured in 6m tagger and used to normalize PYTHIA γp MC for each E_p period

\rightarrow H1 uses similar technique for E_p=920 GeV at $y < 0.56$
\(\gamma p \) bkg identification up to \(y=0.90 \) (H1)

Electric charge of the scattered electron using track from the primary interaction, pointing to the electron cluster:
- good charge measurement resolution
- wrong assignment of the charge < 1%

1. identify and exclude half of \(\gamma p \) bkg require the "right" charge for el.
2. estimate and subtract remaining \(\gamma p \) bkg using "wrong" charge el.

taken into account in statistical subtraction:
- charge asymmetry in \(\gamma p \) data due to antiprotons determined using "wrong charge" el. candidates in the \(e^\pm p \) HERA II data and in \(\gamma p \) events identified by the 6 m electron tagger

V. Chekelian, 28.06.2008
FL measurements from H1
PIC 2008
High y region at medium Q^2 (H1)

$E_p = 460$ GeV

before "wrong" charge subtraction

$E'_e < 10$ GeV

γp background (green) concentrates at low E_e

the data are well understood in terms of MC

after "wrong" charge subtraction

V.Chekelian, 28.06.2008
PIC 2008

FL measurements from HERA 2008
High \(y \) region \((0.70 < y < 0.90)\) at high \(Q^2 \) (H1)

\[
\text{E}_p = 460 \text{ GeV}
\]

data

\[
\text{NC MC + BG}
\]

\[
\text{BG (data)}
\]

\[
\text{E-P}_z > 35 \text{ GeV}:
\]

- rejects \(\gamma p \) background
- rejects initial state radiation (ISR)

\(\rightarrow \) step at \(E_e = 6 \text{ GeV} \) is due to selection requirements

V. Chekelian, 28.06.2008
FL measurements from HERA
PIC 2008
Full y range at high Q^2 after γp background subtraction (H1)

for $E_p = 920$ GeV ($y < 0.56$) γp bkg is taken from PYTHIA MC checked using 6m electron tagger
ZEUS: control plots ($E_p = 460, 920$ GeV)

MC is shown without F_L contribution

- **$E_p = 460$ GeV**
 - $E'_e > 6$ GeV
 - $42 < E-Pz < 65$ GeV

- **$E_p = 920$ GeV**
 - $E'_e > 6$ GeV
 - $42 < E-Pz < 65$ GeV

V.Chekelen, 28.06.2008
PIC 2008

FL measurements from HERA
NC cross sections for $E_p = 460, 920$ GeV

ZEUS

$Q^2 = 24$ GeV2
$Q^2 = 32$ GeV2
$Q^2 = 45$ GeV2

$Q^2 = 60$ GeV2
$Q^2 = 80$ GeV2
$Q^2 = 110$ GeV2

ZEUS (prel.)

$\sqrt{s} = 225$ GeV (14.0 pb$^{-1}$)
$\sqrt{s} = 318$ GeV (32.8 pb$^{-1}$)

ZEUS-JETS
ZEUS-JETS (F_L=0)
\(F_L (x, Q^2) \) from ZEUS

\(F_L \) measurements are consistent within errors with QCD calculations and with \(F_L = 0 \)
NC cross sections at medium Q^2 (H1)

$$E_p = 460, 575, 920 \text{ GeV}$$

$$\tilde{\sigma}_{NC} = F_2 - \frac{y^2}{1 + (1 - y)^2} F_L$$

→ determine F_L and F_2 from linear fits at each x and Q^2

$Q^2 = 25 \text{ GeV}^2$

→ use relative normalisation (the same for LAr and Spacal) of $E_p = 460, 575, 920 \text{ GeV}$ from the low y data for the F_L measurement
The published $F_L(x, Q^2)$ and averaged $F_L(Q^2)$ at medium Q^2 (H1)

\rightarrow measured F_L are above zero and consistent with QCD calculations

DESY-08-053
NC cross section in the full Q^2 range (H1)

The full range of medium and high Q^2 obtained using Spacal and LAr data

$E_p = 460, 575, 920$ GeV

use relative normalisation (the same for LAr and Spacal) of $E_p = 460, 575, 920$ GeV from the low y data for the F_L measurement
NC cross sections at the same x & Q² which involve both the LAr and Spacal data (H1)

\[\tilde{\sigma}_{NC} = F_2 - \frac{y^2}{1+(1-y)^2} F_L \]

From linear fits at each x and Q² one determines \(F_L \) and \(F_2 \)

\(\rightarrow \) nice interplay of the two fully independent analyses using different detectors: Lar and Spacal
$F_L (x, Q^2)$ in the full Q^2 range using the LAr and Spacal data (H1)

H1 Preliminary F_L

Q^2 (GeV2)	$F_L (x, Q^2)$
12	
15	
20	
25	
35	
45	
60	
90	
120	
150	
200	
250	
300	
400	
500	
650	
800	

$E_p = 460, 575, 920$ GeV

H1 PDF 2000

medium Q^2 measurements are taken in the preliminary form
Averaged $F_L(Q^2)$ in the full Q^2 range (H1)

Spacal and LAR provide a cross check of the F_L measurements

→ overall correlated systematics between F_L points is $\delta F_L \approx 0.05-0.10$

medium Q^2 measurements are taken in the preliminary form

V.Chekelian, 28.06.2008
FL measurements from HERA
Comparison of F_L from H1 with recent theory predictions

$F_L = 0.27 \times F_2$ is motivated by Schildknecht et al. arXiv:0806.0202

F_L measurements are in a good agreement with the NLO/NNLO QCD calculations

→ extension to $Q^2 < 10$ GeV2 will provide an important constraint
Summary

The longitudinal structure function $F_L(x,Q^2)$ is measured at HERA in a model independent way using low E_p data

H1:
- measured at medium and high Q^2: $12 \leq Q^2 \leq 800$ GeV2
 using the e^+p 2007 data collected with $E_p = 460, 575$ and 920 GeV
- nice interplay of the two fully independent analyses which use two different detectors: LAr and Spacal
- measured $F_L(x,Q^2)$ is in agreement with the recent theoretical calculations in the QCD framework

ZEUS:
- measured in the range $24 \leq Q^2 \leq 110$ GeV2
 using the e^+p 2007 data collected with $E_p = 460$ and 920 GeV
- measured $F_L(x,Q^2)$ consistent within errors with QCD calculations but also with $F_L=0$

→ more to come: F_L at $Q^2<10$ GeV2 (H1), analysis of $E_p=575$ GeV data (ZEUS), F_L^D, ...
Experimental challenge: γp bkg at high y

ZEUSS:
- γp background contribution in the Q^2-y bins used for FL
 - $<2\%$ for $E_p = 920$ GeV ($y < 0.40$)
 - 10-15% for $E_p = 460$ GeV ($y \approx 0.76$)

H1:
- the same binning in x and Q^2 for all E_p and LAr/Spacal
- measurements up to $y = 0.90$
- where γp bkg is up to 50% and more
Electron identification & background suppression at high y

Electron is identified by compactness of the cluster in calorimeter and track pointing to the cluster.

Further reduction of γp background keeping high eff. for electron:

Spacal sample
- distance between extrapolated track and the electron cluster \(D < 6 \text{ cm} \)
- energy fraction behind the electron cluster \(E_h/E_e < 0.15 \)

LAR sample at \(E_e < 6 \text{ GeV} \)
- small transverse size of the electron cluster in LAR: \(E_{\text{cr}} < 4 \text{ cm} \)
- matching between track momentum and cluster energy: \(0.7 < E_t^{\text{cluster}}/P_t^{\text{track}} < 1.5 \)