‘We hunt to share’: social dynamics and very large mammal butchery during the Oldowan–Acheulean transition

Gonzalo J. Linares Matás and José Yravedra

ABSTRACT
The Early Pleistocene (2.58–0.78 Ma) was a period of major evolutionary changes in the hominin lineage. The progressive consolidation of bipedal locomotion, alongside increases in cranial capacity and behavioural flexibility, allowed early Homo to exploit an increasing diversity of resources and environmental settings within the changing landscapes of East Africa and beyond. These complex processes were not necessarily linear or spatially uniform, given the technological diversity documented, particularly during the Oldowan–Acheulean transition. In this paper, we argue that human populations experienced a considerable demographic expansion from c.1.7–1.5 Ma onwards, expressed in the number, size, density, and distribution of archaeological sites. These patterns resulted from the interplay of high-yielding animal resource exploitation strategies, technological investment, prosocial behaviours as well as increasingly structured land use patterns. A more consolidated hominin demographic structure led to the extinction of large sympatric carnivore species, while larger group sizes would have led to more successful Out-of-Africa dispersals.

1. Introduction: the role of demography and social networks in multi-causal explanations of human evolutionary processes

The Pleistocene (2.58–0.01 Ma) was a long period of major evolutionary changes in the hominin lineage. For over 2 million years, an emergent and recurrent set of unifacial and/or bifacial technological sequences ascribed to either the Oldowan or the Acheulean (and sometimes featuring in both technocomplexes) were at the core of hominin behavioural strategies. Initial assessments were under the impression that these continuities in the lithic record were indicative of considerable behavioural stasis in the Early and Middle Pleistocene, derived from presumed cognitive constraints (cf. Isaac 1972; Leakey 1975; Binford 1989; Mithen 1996). However, there has been an increasing recognition that assemblages spanning the Oldowan–Acheulean transition were considerably more morphologically and techno-functionally diverse at local and supra-regional scales than was previously acknowledged. Alternative explanations now place more emphasis on demographic variables, such as the size, stability, and interconnectedness of past human populations (Nowell and White 2010; Kuhn 2012; French 2016), as well as their learning transmission methods (Lycett and
Gowlett 2008; Shipton 2010; Rossano 2017). Nowell and White (2010) argue that the small scale and limited degree of interconnectivity and foraging range of thinly spread hominin populations made the transmission and maintenance of innovations unlikely, hindering cumulative cultural dynamics (Shennan 2009; Premo and Kuhn 2010; Premo 2012; Hopkinson, Nowell, and White 2013; Collard et al. 2016). It is also possible that the effective technological solutions granted by platform preparation strategies for flake production and Large Cutting Tools (LCTs) may have led to a preference for adaptive conservatism in the technological realm (Finkel and Barkai 2018), with perishable material culture perhaps experiencing different innovation rates than their lithic counterparts (Hurcombe 2014).

Palaeolithic demography is a notoriously elusive archaeological signature (Pike-Tay 2000; French 2016), yet it is a fundamental dimension for understanding human evolutionary processes and behavioural innovations. Even if the long-term reproductive strategies of surviving populations will resemble optimal fitness-maximizing models (Shennan 2009), population trends are often driven by short-term individual prospects based on prior social experiences (French 2016) and the extent of landscape knowledge (Clark and Linares-Matás 2020; Linares-Matás and Lim 2021). A crucial demographic dimension that emerges from this multi-scalar tension and is often neglected in discussions of Early Pleistocene societies is the fact that metapopulation stasis with near-zero growth rates is uncharacteristic of any natural fertility population observed (Winterhalder et al. 1988; Bentley, Jasienska, and Goldberg 1993; Hill and Hurtado 1996). Therefore, these trends are most likely the outcome of long-term averaging periods of endogenously generated demographic fluctuations; such fluctuations would have involved exponential increases with subsequent regulation through mortality spikes or population dispersals (Boone 2002). Reproductive success tends to involve strategies of offspring resource and energy allocation that are flexibly adapted to environmental constraints and opportunities (e.g. Hill 1993; O’Connell, Hawkes, and Blurton Jones 1999; Winterhalder and Smith 2000; Read and LeBlanc 2003; Bird and O’Connell 2006; Shennan 2008). As such, these boom-bust population dynamics, also observed in the population ecology of many other animal species (Ostfeld and Keesing 2000), have the potential to increase population fitness and diversity beyond the predictions derived from stable equilibrium models (Doebeli, Jaque, and Ispolatov 2021); these implications are of great interest in the study of early human evolution.

In modern hunter-gatherer societies, social living reduces the daily variance in food acquisition, mitigating an important source of risk (Winterhalder 1986; Janssen and Hill 2014). At the same time, high exclusion costs, alongside social obligations of resource redistribution, tend to result in little correlation between the amount of large-game resources that individual foragers acquire and the amount they or their immediate families consume (Speth 1983; Smith 1985; Hawkes 1993; Speth 2010; Bird et al. 2013). In this context, reputation and trust are important drivers of indirect reciprocity and altruistic behaviours relying on assortative interaction at the population level (Eshel and Cavalli-Sforza 1982; Nowak and Sigmund 2005; Ohtsuki et al. 2006; Henrich and Henrich 2007). These processes imply that selection pressures influencing individual association, transmission of resources or information, and band formation are most likely taking place simultaneously at the individual and the (meta) group level (van Baalen and Rand 1998; Apicella et al. 2012).

As such, we argue in this paper that high-yielding food-acquisition strategies involving large and very large animals (Table 1) are more likely to emerge in the context of (meta) group-level provisioning, since this scenario would allow hunters and their families to reap the benefits associated with the elevated net nutritional returns of animal tissue consumption (Domínguez-Rodrigo et al. 2014), while simultaneously enhancing the social standing of the providers (Hawkes 1991; Hawkes, O’Connell, and Coxworth 2010) through prosocial behaviours that compensate for
Table 1. Classification of African fauna on the basis of size class and weight ratios, following Bunn (1982). Average weight and estimated meat (and fat) yields can vary significantly, on the basis of sex, age, season, etc, although it generally represents around 60% of the carcass weight. In our text, ‘large’ refers to size 4, and ‘very large’ refers to sizes 5 and 6.

Size Class	Weight ratio	Example	Average Weight	Estimated meat yield	Reference
1	<50 kg	Springbok, Antidorcas marsupialis, Impala, Aepyceros melampus	32 kg	25.6 kg	Galofré and Fábregas (1983)
2	50–125 kg	Grant’s gazelle, Gazella granti	60 kg	37.8 kg	Hoffman et al. (2020)
3a	125–250 kg	Gemsbok, Oryx gazella, Blue wildebeest, Connochaetes taurinus	187 kg	96 kg	Van Heerden (2018)
3b	250–500 kg	Burchell’s zebra, Equus quagga burchellii	321 kg	193.2 kg	Hoffman, Geldenhuys, and Cawthorn (2016)
4	>500–1,000 kg	Common eland, Taurotragus oryx	798 kg	480 kg	Galofré and Fábregas (1983)
5	1,000–4,000 kg	Hippopotamus amphibius, White rhinoceros, Ceratotherium simum	1,400 kg	800 kg	
6	>4,000 kg	African bush elephant, Loxodonta africana	3,800 kg	2,000 kg	Davis and Reeves (1990)

variations in carcass acquisition rates (Gurven and Hill 2009; Speth 2010; Tomasello et al. 2012; Bird et al. 2013). In this paper, we review the African archaeological record before and after the Oldowan–Acheulean transition, with a particular emphasis on BK (Olduvai) and other East African localities exhibiting exploitation of large and very large animal carcasses, in relation to emergent social and ecological factors associated with a greater reliance on megafauna, including carnivore palaeoguild dynamics.

2. The East African Early Pleistocene record

East Africa has been the focus of intense archaeological and palaeoanthropological research for nearly a hundred years, with the aim of unravelling the patterns of environmental change and the evolutionary processes of early hominins, including aspects of their biological adaptations, subsistence strategies, technological behaviour, and social organisation. The Early Pleistocene climatic trends towards increasing cooling show punctuated increases in variability, seasonality, and aridity, factors that lead to increasingly open mosaic habitats in East Africa (Bobe and Behrensmeyer 2004; deMenocal 2004; Cerling et al. 2011; Blumenfeld et al. 2019).

In terms of anatomy, the Early Pleistocene African record shows that the early Homo lineage experienced an expansion of the brain and the body, sexual dimorphism decreased, cheek teeth became reduced in size, and limb proportions and cranial morphology became more similar to those of later hominins (Walker and Leakey 1993; McHenry and Coffing 2000; Antón and Snodgrass 2012; Antón, Potts, and Aiello 2014). Bony labyrinth structure is a crucial adaptation in the unconscious perception of movement and the evolution of bipedal locomotion, with Homo erectus being the earliest hominin species with an anatomically modern morphology (Spoor, Wood, and Zonneveld 1994). Elongation of the lower limbs was another particularly important adaptation in the context of obligate bipedalism (Ruff and Walker 1993), since relative walking travel costs in
Homo erectus are nearly half those estimated for the skeletal architecture of *Australopithecus afarensis* (Steadel-Numbers and Tilkens 2004; Steudel-Numbers 2006; Pontzer, Raichlen, and Sockol 2009). The Ilor footprints (Kenya, 1.5 Ma) provide direct evidence of a longitudinally arched foot with energy-saving medial weight transfer of pressure in *H. erectus* (Hatala et al. 2016). The fibula is another important skeletal element involved in bipedal locomotion, since it plays an important role in transmitting hindlimb loads; the tibial strength ratios documented for *Homo erectus* further confirm that this species was fully adapted to terrestrial bipedality (Marchi et al. 2019). Moreover, the degree of developmental (or phenotypic) plasticity exhibited by *H. erectus* is also linked to the ability to disperse successfully beyond the environmental range of previous hominins (Antón et al. 2016).

The emergence of the Acheulean, with a focus on bifacial tools, has been documented around 1.76–1.74 Ma at the sites of Kokiselei 4 (West Turkana, Kenya) and Konso (Ethiopia), and around 1.7–1.66 Ma at FLK-West (Olduvai Gorge, Tanzania), in the East African Rift (Lepre et al. 2011; Beyene et al. 2013; Diez-Martín et al. 2015). This innovative method, which stems from the technological repertoire previously exhibited by Oldowan hominins, enabled the generation of a greater amount of sharp edge per unit of raw material. It was also deployed to make bifacial large cutting tools (LCTs), which effectively combine strength and shape through long and durable cutting edges able to undertake a wide range of tasks (Kleindienst 1961; Leakey 1971; Diez-Martín and Eren 2012; de la Torre 2016; Gallotti and Mussi 2018). Important dimensions in this process were familiarity with the properties and distribution of high-quality raw material sources, and control of knapping sequences through core preparation and volume management (Semaw, Rogers, and Stout 2009; Shipton 2010; Gallotti 2013; Diez-Martín et al. 2014a; Sánchez-Yustos et al. 2017). The versatility and manual portability of prepared cores, reflected in the spatio-temporal fragmentation of operational sequences, synergises nicely with the obligate terrestrial bipedalism of *Homo erectus* – the species with which this technocomplex is generally associated. The combination of these traits, alongside more developed landscape knowledge networks, would have helped enable a more structured exploitation of increasingly open environments with patchy resource distributions, as documented for example at the Peninj complex, near the shores of Lake Natron, Tanzania (de la Torre, Mora, and Martínez-Moreno 2008; Domínguez-Rodrigo, Alcalá, and Luque 2009a; Diez-Martín et al. 2014a; Clark and Linares-Matás 2020). Between 1.6 and 1.4 Ma, Acheulean technologies are found throughout the African continent (Sahnouni, Semaw, and Rogers 2013b) and soon afterwards also into Eurasia (Bar-Yosef and Goren-Inbar 1993).

With regard to subsistence, and while small- and medium-sized carcasses remain relevant, the Oldowan–Acheulean transition is characterized by a progressive increase in the proportion and frequency of large and very large animal carcasses exploited by early hominins (Surovell, Waguespack, and Brantingham 2005), often at water-margin habitats (Domínguez-Rodrigo et al. 2014; Table 2). At FwJj20, Koobi Fora Formation, Kenya (1.95 Ma) there are cut-marks on the ventral side of a rhinoceros rib and on a hippopotamus astragalus (Braun et al. 2010). More abundant evidence for hippopotamus and large mammal butchery comes from other Koobi Fora localities, such as Gaji 0/ and GaJi 5, in deposits dating to 1.5 Ma (Bunn 1994). Cut-marks on hippopotamus limb bones and a rib have similarly been documented at the Algerian site of El Kherba (1.8 Ma), one of them overlain by a carnivore tooth mark, which evidences hominin primary access (Sahnouni et al. 2013a). Butchery activities around 1.3 Ma have also been identified on garrifflid remains at the site of PEES4 at Peninj, Tanzania (Domínguez-Rodrigo et al. 2009a) and on the limb bones of large bovids, hippopotami and crocodiles at Buia, Eritrea (Delfino et al. 2004; Fiore et al. 2004). At Bouri (1 Ma, Ethiopia), butchery of large bovids and hippopotamus has also been documented (Asfaw et al. 2002).
Table 2. African Early Pleistocene and early Middle Pleistocene archaeological localities with megafaunal remains. Most of these open-air sites have direct evidence of hominin exploitation of very large carcasses.

Site	Chronology	Lithic technology	Taphonomic evidence	Megafaunal species	References
Kanjera (Kenya)	Lower Pleistocene, 2 Ma.	Oldowan	Association	Hippopotamus	Ferraro et al. (2013)
Fejej FI-1 (Ethiopia)	Lower Pleistocene, > 1.9 Ma	Oldowan	Association	Elephant (Teeth)	Asfaw et al. (1991)
El Kherda, Ain Hanech (Algeria)	Lower Pleistocene 1.8 Ma	Oldowan	CM	Hippopotamus	Sahnouini et al. (2013a)
FLKN 6 (Olduvai, Tanzania)	Lower Pleistocene bed I	Oldowan	CM	Elephant	Domínguez-Rodrigo, Barba, and Egeland (2007) and Leakey (1971)
HWK-EE (Olduvai, Tanzania)	Lower Pleistocene 1.7–1.5 Ma	Developed Oldowan	CM-astragalus	Elephant	Yravedra et al. (2017a)
FLKW (Olduvai, Tanzania)	Lower Pleistocene Bed II, 1.69 Ma	Acheulean	Association	Elephant, Hippopotamus	Leakey, 1971
FLKN bed II (Olduvai, Tanzania)	Lower Pleistocene 1.7–1.2 Ma	Developed Oldowan	Association	Elephant	Semav et al 2020
Gona Dan 5 (Ethiopia)	Lower Pleistocene 1.6 Ma	Acheulean	CM	Elephant	Berthelet and Chavaillon (1996), Berthelet and Chavaillon (2001), Berthelet (2001)
Barogali (Djibouti)	Lower Pleistocene 1.6–1.3 Ma.	Oldowan	CM	Elephant and Hippopotamus	
Koobi Fora (Kenya), several localities	Lower Pleistocene 1.5 Ma.	Developed Oldowan	CM	Hippopotamus	Bunn (1994) and Pobiner et al. (2008)
SHK (Olduvai, Tanzania)	Lower Pleistocene 1.5 Ma	Developed Oldowan	CM	Hippopotamus	Domínguez-Rodrigo et al. (2014)
TK (Olduvai, Tanzania)	Lower Pleistocene 1.5 Ma.	Acheulean	Association	Sivatherion, Elephas, Hippopotamus	Yravedra et al. (2016), Rubio Jara et al. (2017) and Panera et al. (2019)
ST (Peninj, Tanzania)	Lower Pleistocene 1.4 Ma.	Acheulean	CM	Giraffid	Domínguez-Rodrigo et al. (2002)
BK 3.1 (Olduvai, Tanzania)	Lower Pleistocene 1.3 Ma.	Developed Oldowan	CM	Hippopotamus	Yravedra et al. (2019a)
BK 4b (Olduvai, Tanzania)	Lower Pleistocene 1.3 Ma.	Developed Oldowan	CM	Elephant	Domínguez-Rodrigo et al (2014)
BK 4 c (Olduvai, Tanzania)	Lower Pleistocene 1.3 Ma.	Developed Oldowan	CM	Elephant	Organista et al. (2017)
BK 5 (Olduvai, Tanzania)	Lower Pleistocene 1.3 Ma.	Developed Oldowan	CM	Elephant	Organista et al (2016)
JK (Olduvai, Tanzania)	Lower-Middle Pleistocene bed III, 1 Ma.	Acheulean	CM	Hippopotamus	Yravedra et al. (2020)
Daka Member Bouri (Ethiopia)	Lower Pleistocene 1 Ma.	Acheulean	CM	Hippopotamus	Asfaw et al (2002)

(Continued)
Site	Chronology	Lithic technology	Taphonomic evidence	Megafaunal species	References
Buia (Ethiopia)	Lower Pleistocene 1 Ma.	Developed Oldowan	CM femur, tibiae calcaneus	Hippopotamus	Fiore et al (2004)
Olorgesailie 15, (Kenya)	Lower Pleistocene 0.97 Ma.	Acheulean	CM (rib)	Elephant	Potts, Behensmeyer, and Ditchfield (1999)
PDK (Olduvai, Tanzania)	Lower-Middle Pleistocene bed IV	Acheulean	CM	Elephant	Leakey (1994)
WK (Olduvai, Tanzania)	Lower-Middle Pleistocene bed IV	Acheulean	CM	Elephant and Hippopotamus	Leakey (1994)
Heb (Olduvai, Tanzania)	Lower-Middle Pleistocene bed IV	Acheulean	CM	Elephant	Leakey (1994)
Hargufia A-2 (Middle Awash, Ethiopia)	Early Middle Pleistocene	Acheulean	CM	Hippopotamus	Clark et al. (1984)
Gombore II (Mek Kunture, Ethiopia)	Early Middle Pleistocene	Acheulean	CM	Hippopotamus	Altamura, Mussi, and Melis (2017, 2018)
Ndung’a (Nachukui Formation, Kenya)	Early Middle Pleistocene	Acheulean	CM	Elephant (Single carcass)	Delagnes et al. (2006)
In Olduvai, the earliest evidence of megafaunal exploitation comes from FLK North (Bed I, 1.8 Ma) in the form of a single giraffid metapodial with cut-marks (Domínguez-Rodrigo et al. 2010). A giraffid tibia shaft and hippopotamid remains, including a mandible, have also been reported as evidencing large mammal butchery at HWK-EE, dated to 1.7 Ma (Pante et al. 2018). In Bed II, hominin occupations expanded beyond lake-side environments, into more varied ecological settings, including inland fluvial contexts (Hay 1976). Level 5 of FLK-West (1.7 Ma, Lower Bed II) has cut-marks on a large bovid (size 4) tibia and a metatarsal (Yravedra et al. 2017a), and at SHK (1.5 Ma), there are two hippopotamus ribs with cut-marks and one limb bone with percussion marks (Domínguez-Rodrigo et al. 2014b). However, the site with the clearest and most consistent evidence of megafaunal exploitation in Olduvai, and indeed Early Pleistocene East Africa, is BK (Bell’s Korongo), which also witnessed the first large-scale excavation conducted by the Leakey team in Olduvai (Leakey 1954, 1965).

3. BK: recurrent megafaunal exploitation in the Early Pleistocene of East Africa

BK is an Upper Bed II open-air site located just above Tuff IID (1.35 Ma), on the southern side of the Side Gorge, 3 km upstream from the Main Gorge junction (Olduvai, Tanzania). It consists of a series of low-energy alluvial and fluvial decantation deposits corresponding to a medial to distal fan zone and a floodplain facies (Leakey 1971; Uribelarrea del Val and Domínguez-Rodrigo 2017). During the formation of upper Bed II, BK was located by a small stream, south of seasonal ponds (Hay 1976). Most of the assemblage was deposited on the stream bank, with preserved material subsequently washed into the immediate channel fill, given the good degree of bone preservation and the high frequencies of lithic debitage (Leakey 1971; Monahan 1996; Egeland and Domínguez-Rodrigo 2008; Diez-Martín et al. 2009). While the extent to which hominins played a primary role in the accumulation of most Bed II faunal assemblages is unclear, several lines of evidence indicate that BK is primarily anthropogenic in origin, although some inputs from carnivore activity and other natural processes were also incorporated into the sequence (Egeland and Domínguez-Rodrigo 2008). On palaeoecological grounds, the taxonomic diversity and density of remains is greater than documented on natural background scatters (Bunn 1982; Behrensmeyer 1983; Potts 1988; Blumenschine 1989; Sept 1994; Tappen 1995; Egeland and Domínguez-Rodrigo 2008). The taxonomic profile of faunal remains suggests a very productive open ecosystem with riverine woodlands and permanent water sources, consistent with the geomorphological reconstruction of the site and its immediate environment, as described above. Pieces of ostrich eggshell are unusually plentiful at BK (Leakey 1971), and Stewart (1994) has reported the presence of very large catfish (Clarias sp.) specimens at BK exhibiting traces of anthropogenic processing, likely associated with very late dry or early wet season deposition.

Recent excavations by the TOPPP team have exposed a surface of 45 m² at the site, showing how most archaeological levels at BK have archaeological materials preferentially concentrated within 15/20 cm horizons with lower densities in between (Domínguez-Rodrigo et al. 2009b; Domínguez-Rodrigo et al. 2014; Yravedra et al. 2019a). Inferences from bone taphonomy show systematic and recurrent hominin butchery of large and very large mammals (including Pelorovis, Syncerus, Sivatherium, Hippopotamus, and Elephas), with abundant defleshing and evisceration cut-marks, a very high number of percussion marks, and low levels of carnivore damage in most levels throughout the sedimentary sequence (Table 3; Domínguez-Rodrigo et al. 2009b; Domínguez-Rodrigo et al. 2014; Organista et al. 2016; Yravedra et al. 2019a). Even proboscidean remains show a pattern of intensive breakage by hominins
Table 3. Summary of taphonomic data for the different levels of BK (Olduvai Gorge).

Level	NISP Small	NISP Medium	NISP Large/Very Large	Lithics	CM on Large	PM on Large	TM on Large	References
BK1	36	Unreported	119	216	14 (11.7%)	27 (22.6%)	7 (5.9%)	Domínguez-Rodrigo et al. (2009b) and
BK2	66	Unreported	245	321	37 (15.1%)	41 (16.8%)	14 (5.7%)	Diez-Martín et al. (2009)
BK3	27	127	68	614	9 (13.2%)	8 (11.7%)	0 (0.0%)	
BK4	79	379	412	424	16 (3.9%)	22 (5.34%)	8 (1.9%)	MDR et al. (2014) and
BK5	33	76	125	59	12 (9.6%)	9 (7.2%)	8 (6.4%)	Organista et al. (2016)
BK U3.1	6	41	13	17	3 (23.07%)	2 (15.38%)	0 (0.0%)	Yravedra et al. (2019a)

(Domínguez-Rodrigo et al. 2014). Monahan (1996) and Egeland (2007) already noted anthropogenic evidence on the Leakey faunal remains, but had to treat them as a single assemblage due to limited stratigraphic control. The abundance of taphonomic evidence for anthropogenic exploitation, coupled with the absence of axial and lower-utility elements resilient to density-mediated attrition processes (e.g. metapodials), suggest that hominins transported and processed high-utility skeletal portions of small and medium-sized carcasses (Monahan 1996; Faith and Gordon 2007; Egeland and Domínguez-Rodrigo 2008; Organista et al. 2016).

The even skeletal representation and the high frequency of skulls belonging to larger carcasses would be more consistent with on-the-spot processing of substantially fleshy carcasses, with some of these likely representing natural deaths (Domínguez-Rodrigo et al. 2014; Organista et al. 2016). Cut-mark frequencies and the percussion/carnivore ratios are more consistent with hammerstone-to-carnivore early access scenarios (Blumenschine 1988; Capaldo 1998; Gidna, Kisui, and Domínguez-Rodrigo 2014). As such, hyaena alterations at the site likely derive from secondary access to hominin refuse in the context of intermittent site use, given the considerable number of individual episodes of carcass processing registered in the BK sequence (Bunn 2006; Egeland and Domínguez-Rodrigo 2008). The concentration of water, vegetation, and other resources along the channel banks was favoured by numerous animals, including hominins, although it is worth noting that similar river channel contexts within the Bed II Olduvai palaeolandscape (e.g. PLK, WK, HK) have not yielded comparable bone accumulations (Uribelarrea del Val and Domínguez-Rodrigo 2017; Yravedra et al. 2019a).

In terms of the lithic assemblage, stone knapping sequences at BK targeted the production of relatively small flakes, mostly on quartz/quartzite, alongside several bifacial shaped tools (Leakey 1971; de La Torre and Mora 2005; Diez-Martín et al. 2009; Sánchez-Yustos et al. 2016). The preferential selection of quartz over basalt in flake manufacture has a functional explanation, since quartz flakes are more efficient in butchery tasks than basalt flakes (Schick and Toth 1993; Sánchez-Yustos et al. 2016). The advent of computational approaches to the study of bone surface modifications, such as cut-marks, is proving successful in the identification of implement type and lithic raw materials employed in butchery activities (Courtenay et al. 2019b; Linares-Matás et al. 2019; López-Cisneros et al. 2019; Maté-González et al. 2019; Yravedra et al. 2019b). At BK in particular, flakes made from high-quality quartzites with a fine granular composition were being preferentially selected for these tasks (Yravedra et al. 2017b; Courtenay et al. 2019a).

Manuports and hammerstones with clear battering signs and detached surface scars were likely involved in freehand and bipolar knapping (Diez-Martín et al. 2009), and some unmodified ones may have been used in bone percussion activities or for other activities, such as nut-cracking, plant processing, or for tenderizing meat (cf. de La Torre et al. 2013; Sánchez-Yustos et al. 2015; 2016;
Arroyo et al., 2016; Linares-Matás and Clark 2021). Relatively complex reduction sequences are documented throughout the BK sequence, frequently involving core rotation and elongation on multifacial/multipolar cores and bifacial multipolar centripetal hierarchized cores, among others, and resulted in the intensive exploitation and maximisation of raw material, often to the point of core exhaustion (Diez-Martín et al. 2009; Sánchez-Yustos et al. 2017; Yravedra et al. 2019a).

Retouched flakes in the BK assemblage (c.5%), mostly on quartz (>88%; Sánchez-Yustos et al. 2017), may have been oriented towards heavier-duty tasks, given that they are reported as ‘slightly larger, thicker and heavier than plain flakes’ (Diez-Martín et al. 2009). Recent experimental studies have shown that flake retouch and larger flake sizes increase force loading and manipulability, thus enhancing wood processing efficiency (Bencomo Viala et al. 2020; Gürbüz and Lycett 2021). It is likely that hominins at BK and elsewhere at this time fashioned organic tools, such as digging sticks and/or hunting implements. The presence of some handaxes and other bifacial LCTs documented at BK4b also seems to point in this direction (Sánchez-Yustos et al. 2016). Interestingly, in the assemblage studied by Diez-Martín et al. (2009), only 4% of flakes belong to initial reduction stages, and 73% of flakes do not exhibit cortical areas, and Sánchez-Yustos et al. (2017) document similar core preparation strategies at SHK and BK. This pattern implies that hominins were bringing prepared cores with them in anticipation of a need for flakes in the context of increasingly predictable and profitable very large carcass acquisition strategies.

4. Discussion
There is increasing evidence for the co-evolutionary nature of genetic phenotypical expression and cultural practices in the human lineage, particularly in the context of high-fidelity learning environments and strong selective pressures (e.g. Cavalli-Sforza and Feldman 1981; Boyd and Richerson 1985; Laland, Odling-Smee, and Feldman 2000). As such, understanding the causal pathways in the emergence of prosociality is necessarily a multi-disciplinary endeavour.

4.1. Seasonality and megafaunal exploitation
The potential influence of seasonal fluctuations in hominin behaviour has long been recognized, but it is still an incipient, albeit increasingly relevant, area of research (Speth and Davis 1976; Speth 1987; Bunn and Ezzo 1993; Foley 1993; Pante et al. 2018; Rivals et al. 2018; Domínguez-Rodrigo et al. 2019; Linares-Matás and Clark 2021). Palaeoclimatic records emphasise the importance of seasonal fluctuations of increasing amplitude throughout the Early Pleistocene in East Africa (Blumenthal et al. 2019). In open mosaic environments, these trends would have resulted in periods of low above-ground water and plant biomass availability, with physiological consequences for ungulates, which likely experienced periods of fat-depletion on a recurring basis (Sinclair 1975; Linares-Matás and Clark 2021). This scenario entails important selective pressures in terms of hominin behaviour: Cordain et al. (2000) argue that in the context of ungulate fat depletion, hunter-gatherers would either preferentially target fatter individuals and carcass portions, increase their consumption of carbohydrate-rich plant resources, or hunt larger animals with greater proportions of body fat. As noted by Linares-Matás and Clark (2021), Oldowan hominins were already deploying the first two strategies by 2.195 Ma through the targeting of ungulate brains and viscerae at Kanjera South, Kenya (Ferraro et al. 2013), as well as by incorporating freshwater resources to their diet at FwJ20, Kenya (Braun et al. 2010; Archer et al. 2014). It is very plausible that later Homo erectus also engaged
in similar seasonal behavioural adaptations, particularly once they incorporated food processing, including tendering and cooking – given evidence of hominin engagement with fire plausibly beginning around this time (Gowlett et al. 1981; Berna et al. 2012). Food processing practices would have considerably enhanced the digestibility and net nutritional returns of dietary resources, particularly meat and tubers (Wrangham et al. 1999).

Furthermore, opportunistic consumption of larger terrestrial and aquatic taxa at localities such as Gona OGS-6, FwJj20, HWK EE, or Buia (Fiore et al. 2004; Braun et al. 2010; Cáceres et al. 2017; Pante et al. 2018) may have emerged in contexts of seasonal stress towards the end of the dry season and early in the wet season (Linares-Matás and Clark 2021), in line with the third predicted alternative outlined by Cordain et al. (2000). These periods would have also provided easier access opportunities to megafaunal carcasses, since resource limitation also appears to be one of the main causes of mortality among very large taxa in the Serengeti (Sinclair, Mduma, and Brashares 2003). Similarly, these seasonal transitions also provide the best opportunities for procurement of large catfish without specialized technology, and there is evidence of anthropogenic exploitation of these fish taxa at both BK and FwJj20 (Stewart 1994; Archer et al. 2014). While some sedimentary units at BK represent time-averaged assemblages (Organista et al. 2016), tooth wear data suggest that BK 5, with evidence for megafaunal exploitation, entailed single-season occupations (Domínguez-Rodrigo et al. 2019). At BK U3.1, geoarchaeological evidence show that the level formed over less than a year, with sedimentation occurring during the wet season (Yravedra et al. 2019a), which implies that hominin activities took place during the preceding dry season and/or in the early wet season, prior to the quick and low energy flooding event that covered the assemblage.

4.2. Demographic dynamics and subsistence strategies

The mode of procurement of very large carcasses, either by scavenging or by hunting, is very difficult to infer from taphonomic or zooarchaeological data (Delagnes et al. 2006). It is very likely that the recurrent exploitation of natural deaths provided opportunities for megafaunal consumption, and it is true that very large animals, such as hippopotami and elephants, possess very thick skins, complicating hunting activities for carnivores and hominins alike. Nonetheless, more active procurement strategies may also be necessary to explain this novel hominin dietary niche, involving the systematic exploitation of large and very large animals, particularly during the second half of the Early Pleistocene onwards.

The more efficient locomotion documented for Homo erectus in relation to previous hominin taxa (cf. Steudel-Numbers 2006; Pontzer, Raichlen, and Sockol 2009) would have reduced mobility costs, a limiting factor in hunter-gatherer group sizes, and facilitated greater population densities, since larger groups, particularly those exploiting terrestrial animal resources, require greater mobility to meet collective dietary requirements (Binford 2001; Kelly 2003; Grove 2009; French 2016). Furthermore, since prey size correlates with frequency of food-sharing in modern hunter-gatherer societies (Kaplan et al. 1985), the energy-dense spaces of megafaunal carcass acquisition and processing would have acted as particularly attractive locales of enhanced sociality and nucleation. Groups of at least 16 individuals are recorded in the footprint trails at Ileret (1.5 Ma), in the context of consolidated bipedal locomotion adaptations (Hatala et al. 2016). Seasonal aggregations of larger group sizes, typical of multi-level modular primate societies in open-air and arid environments (e.g. Grüter and Zinner 2004; Grueter, Chapais, and Zinner 2012; Swedell and Plummer 2012), would have constituted an important anti-predator defence mechanism among hominins lacking specialised climbing
abilities, particularly when they approached contested spaces, such as permanent freshwater sources (Isbell et al. 2018; Chazan 2021). Larger and well-coordinated group sizes would have also facilitated the procurement of very large animals through the targeting of less predatory individuals by approaching within close striking distance (e.g. Surovell, Waguespack, and Brantingham 2005), since social carnivores experience a positive correlation between pack size and prey size, net energetic returns, and pursuit success (Kruuk 1972; Creel and Creel 1995; Carbone et al. 1999). Nonetheless, since we may envision considerable temporal variance in large and very large animal acquisition rates, the survival of larger groups and foraging units would have (also) depended on the seasonal and inter-annual outcomes of more reliable and predictable foraging strategies incorporating geophytes, berries, and likely other resources, such as invertebrates, honey, small game, etc. (Hawkes, Hill, and O’Connell 1982; Hawkes 1993; Kaplan et al. 2000; Lupo and Schmitt 2002; Bliege Bird and Bird 2008; Bliege Bird, Codding, and Bird 2009; Linares-Matás and Clarke 2021).

Strategies enabling a more consistent intake of high-quality dietary products would in turn have favoured selection of behavioural and cognitive traits that facilitated reciprocity, cooperation, and other social interactions (Foley and Lee 1991; Aiello and Dunbar 1993; Aiello and Wheeler 1995; Milton 1999; Wrangham et al. 1999; Bunn 2001; Foley 2001; Kudo and Dunbar 2001; Shultz, Nelson, and Dunbar 2012; Gowlett et al. 2015; Stade and Gamble 2019; Goren-Inbar and Belfer-Cohen 2020). Furthermore, the kin-bonding potential of these social mechanisms would allow the consolidation of cooperative child-rearing and the evolution of empathy, likely through the simultaneous influence of parental provisioning and alloparenting strategies including the assistance of post-reproductive females (Hawkes, O’Connell, and Blurton Jones 1997; O’Connell, Hawkes, and Blurton Jones 1999; Hrdy 2009; Antón and Snodgrass 2012; Spikins 2012). The offset of reproductive costs, alongside reductions in mortality risks associated with social anti-predator strategies, would have been a powerful driver of demographic growth in Homo erectus societies in East Africa, particularly during the second half of the Early Pleistocene.

We argue that this demographic expansion is clearly reflected in the marked increase in the number, size, density, and distribution of archaeological sites in East Africa (Figure 1 and Tables 4 and 5). A similar increase in the number and density of sites, as well as in terms of interassemblage variability, has also been documented in southern Africa over the course of the Acheulean (Deacon 1975; Figure 1).

4.3. Hominin carnivory and palaeoecological dynamics

The demographic increase and the dietary niche expansion of early Homo in East Africa ought to be examined also in relation to long-term dynamics of the carnivore palaeoguild throughout the Early Pleistocene, since a greater reliance on animal resources would have entailed a coevolutionary process that generated reciprocal selective pressures associated with overlapping dietary and habitat ranges among sympatric species (Turner 1990; Brantingham 1998; Werdelin and Lewis 2005, 2013; Faurby et al. 2020). The large carnivore guild incorporates species with body mass equal or greater than 21.5 kg, a threshold value in carnivore ecology, since these species generally capture prey of their own body mass or greater (Carbone et al. 1999). Early hominins started to consistently acquire meat from mammalian carcasses from the start of the Early Pleistocene (e.g. Bunn 1982; Dominguez-Rodrigo et al. 2005; Dominguez-Rodrigo, Barba, and Egeland 2007; Braun et al. 2010; Ferraro et al. 2013; Parkinson et al. 2018). This behaviour would have resulted in some degree of character displacement (i.e. behavioural divergence) and niche partitioning among the
Figure 1. Distribution map of African early pleistocene localities: (a) before and (b) after 1.7 Ma. Courtesy of Jonathan Lim.
Table 4. African Early Pleistocene sites older than 1.7 Ma, used to generate distribution and heat maps.

Site	Technocomplex	Chronology	Key References
Gona (Ethiopia) several localities	Oldowan	2.6–2.4 Ma	Semaw et al. (1997)
Bouri (Ethiopia)	Oldowan	2.5 Ma	de Heinzelin et al. (2000)
Hadar (Ethiopia) Several localities	Oldowan	2.6–2.52 Ma	Hovers (2001)
Omo 57 (Ethiopia)	Oldowan	2.36–2.34 Ma	Chavaillon (1976), Howell, Haesaerts, and de Heinzelin (1987) and Merrick (1976)
Omo 84 (Ethiopia)	Oldowan		
Omo 71 (Ethiopia)	Oldowan		
Omo 123 (Ethiopia)	Oldowan		
Omo 204 FtJ1 (Ethiopia)	Oldowan		
Omo 396 FtJ2 (Ethiopia)	Oldowan		
Kanjera (Kenya)	Oldowan	2 Ma	Plummer et al. (1999)
Fejej (Ethiopia)	Oldowan	1.9 Ma	Asfaw et al. (1991)
W. Turkana (Kenya)	Oldowan	2.3 Ma	Roche et al. (1999)
Lokalalei LA2C (Kenya)	Oldowan	2.24 Ma	Roche et al. (1999) and Brown
Lokalalei LA 1 (Gajh 5) (Kenya)	Oldowan	2.33 Ma	and Gathogo (2002)
Nachukui (Kenya)	Oldowan	2.3 Ma	Roche et al. (2003)
Senga 5 (Congo)	Oldowan	2 Ma	Harris et al. (1987)
Chiwondo (Malawi)	Oldowan	2 Ma	Kafulu and Stern (1987)
Koobi Fora (Kenya)	Oldowan	1.9 Ma	Isaac, Harris, and Crader (1976, 1997)
Ain Hanech (Algeria)	Oldowan	1.8 Ma	Sahnouni (1998) and Sahnouni et al. (2002)
DK Olduvai (Tanzania)	Oldowan	1.9 Ma	Leakey (1971)
MK Olduvai (Tanzania)	Oldowan	1.9 Ma	
FLK NN Olduvai (Tanzania)	Oldowan	1.8 Ma	
FLK-Zinj Olduvai (Tanzania)	Oldowan	1.76 Ma	
HWK EE, Olduvai (Tanzania)	Oldowan	~1.7 Ma	Pante and de La Torre (2018)
Sterkfontein (South Africa)	Oldowan	2–1.5 Ma	Kuman (1998)
Tardiguet-er-Raha (Morocco)	Oldowan	>2 Ma	Biberson (1961)
Douar Doum (Morocco)	Oldowan	>2 Ma	
Sidi Abderrahman (Morocco)	Oldowan	2–1.8 Ma	
Kokiselei 5 (Kenya)	Acheulean	1.8 Ma	Chevrier (2012) and Lepre et al. (2011)
Kokiselei 4 (Kenya)	Acheulean	1.76 Ma	
Konso-Gardula 6 KGA6-A1 (Ethiopia)	Acheulean	1.75 Ma	Beyene et al. (2013)
Melka Kunture (Ethiopia)	Oldowan	1.7 Ma	Chavaillon and Piperno (1975) and Chavaillon et al. (1979)

Table 5. African Early Pleistocene sites younger than 1.7 Ma, used to generate the distribution and heat maps.

Site	Technocomplex	Chronology	References
Bouri (Ethiopia) de Heinzelin et al. (1999)	Acheulean	1–0.5 Ma	de Heinzelin et al. (2000) and Schick and Toth (2017)
Gadeb (Ethiopia) Gadeb 2 (2C, 2B, 2E)	Acheulean	1.45–0.7 Ma	Clark and Kurashina (1979a, 1979b) and de La Torre (2011)
Konso-Gardula KGA4-A2 (Ethiopia)	Acheulean	~1.6 Ma	Asfaw et al. (1992)
Konso-Gardula KGA10-A11 (Ethiopia)	Acheulean	~1.45 Ma	
Konso-Gardula KGA10-A6 (Ethiopia)	Acheulean	~1.44–1.43 Ma	
Konso-Gardula KGA7-A1, A3 (Ethiopia)	Acheulean	~1.4 Ma	
Konso-Gardula KGA7-A2/ KGAB-A1 (Ethiopia)	Acheulean	~1.4–1.3 Ma	
Konso-Gardula KGA12-A1 (Ethiopia)	Acheulean	~1.25 Ma	
Dawaitoli Formation, Awash Ethiopia	Acheulean	1.0 Ma	Schick and Clark (2003)

(Continued)
Site	Technocomplex	Chronology	References
BSN-17 Gona (Ethiopia)	Acheulean	~1.7–1.5 Ma	Semaw et al. (2018) and Semaw et al. (2020)
DAN-5 Gona (Ethiopia)	Acheulean	~1.6–1.5 Ma	
OGS-12 Gona (Ethiopia)	Acheulean	~1.6–1.5 Ma	
OGS-5 Gona (Ethiopia)	Acheulean	~1.6 Ma	
BSN-12 Gona (Ethiopia)	Acheulean	~1.2 Ma	
Melka Wakena (Ethiopia) MW5	Acheulean	1.62–1.34 Ma	Hovers et al. (2021)
Melka Wakena (Ethiopia) MW2	Acheulean	1.62–1.34 Ma	
Melka Kunture (Ethiopia) Garba IVD	Acheulean	1.7–1.4 Ma	Gallotti et al. (2010), Gallotti et al. (2014) and Gallotti and Mussi (2017)
Atebella II (Melka Kunture-Ethiopia)	Acheulean	1.0 Ma	
Simbrio III (Melka Kunture-Ethiopia)	Acheulean	1.0 Ma	
Cornelia (Melka Kunture-Ethiopia)	Acheulean	1 Ma	Brink et al. (2012)
Gambore II y III, (M. Kunture Ethiopia)	Acheulean	1.7–1.4 Ma	Gallotti et al. (2010), Gallotti et al. (2014), and Gallotti and Mussi (2017, 2021)
Garba I (Melka Kunture, Ethiopia)	Acheulean	1.0 Ma	
Garba IIIC (Melka Kunture, Ethiopia)	Acheulean		
Garba XII (Melka Kunture, Ethiopia)	Acheulean		
Garba XIII (Melka Kunture, Ethiopia)	Acheulean		
Koobi Fora (Kenya) FxJj21	Acheulean	~1.41 Ma	Isaac, Harris, and Crader (1976) and Isaac, Harris, and Kroll (1997)
Koobi Fora (Kenya) FxJj37	Acheulean		
Koobi Fora (Kenya) FxJj63	Acheulean		
Koobi Fora (Kenya) FxJj65	Acheulean		
Chesowanja (Kenya) GnJi 1/6E	Acheulean	~1.4 Ma	Gallotti et al. (1981) and Harris and Gowlett (1980)
Olorgesailie member 1 (Kenya)	Acheulean	0.99–0.97 Ma	Isaac (1977) and Potts, Behrensmeier, and Ditchfield (1999)
Isinya, (Kenya)	Acheulean	0.974 Ma	Roche et al. 1988, Durkee and Brown (2014)
Kariandusi, (Kenya)	Acheulean	0.97 Ma	Shipton (2011)
Karari, (Kenya)	Acheulean	1.6–1.2 Ma	Harris (1978)
EF-HR Olduvai (Tanzania)	Acheulean	1.66–1.33 Ma	Leakey (1971) and de La Torre and Mora (2018)
FC West Olduvai (Tanzania)	Acheulean	>1.3 Ma	Leakey (1971)
CK Olduvai (Tanzania)	Acheulean	>1.35 Ma	
Elephant I Olduvai (Tanzania)	Acheulean	>1.35 Ma	
SHK Olduvai (Tanzania)	Acheulean	1.5 Ma	Leakey (1971) and Diez-Martín et al. (2014b)
TK Olduvai (Tanzania)	Acheulean	>1.35 Ma	Leakey (1971), Panera et al. (2019) and Rubio Jara et al. (2017)
BK Olduvai (Tanzania)	Acheulean	<1.35 Ma	Leakey (1971)
MNK Principal Olduvai (Tanzania)	Acheulean	~1.3 Ma	Leakey (1971)
JK Olduvai (Tanzania)	Acheulean	1.0 Ma	Pante (2013)
FLK-West Olduvai (Tanzania)	Acheulean	1.69	Diez-Martin et al. (2015) and Yravedra et al (2017)
Peninj (Tanzania)	Acheulean	1.6–1.2	de La Torre, Mora, and Martinez-Moreno (2008)
Peninj (Tanzania) ES2-Lepolosi	Acheulean	1.6–1.4	
Rietputs 15 (South Africa)	Acheulean	< 1.6	Kuman and Gibbon (2018)
Sterkfontein (South Africa)	Acheulean	1.6–1.4	
Swartkrans (South Africa)	Acheulean	1.6–1.4	
Vaal Rivers (South Africa)	Acheulean	< 1.5	
Wonderwerk (South Africa)	Acheulean	>1.07 Ma	Berna et al. 2012 and Shaar et al. (2021)
Elandsfontein (South Africa)	Acheulean	1 Ma	Klein et al. (2007), Braun et al. (2013) and Presnyakova (2019)
Nyabusosi NY18 (Uganda)	Developed Oldowan	1.5 Ma	Texier (1995)
Thomas Quarry 1 Casablanca (Morocco)	Acheulean	0.989 ± 0.208	Rhodes et al. (2006) and Geraads, Raynal, and Eisenmann (2004)
Barogali (Djibouti)	Developed Oldowan	1.6–1.3	Berthelet (2002)

(Continued)
Table 5. (Continued).

Site	Techno-complex	Chronology	References
Ain Boucherit (Algeria)	Developed Oldowan	1	Sahnouni, Van Der Made, and Everett (2011)
Palmerinhas (Angola)	Developed Oldowan	1.5	Clark (1991)
Mwaganda’s Village (Malawi)		Early Middle	Clark (1990)
		Pleistocene	

carnivore guild (Brown and Wilson 1956; Brantingham 1998). However, since there is a systemspecific limit to the amount of tolerable resource utilization overlap, increasing pressure associated with a greater degree of niche encroaching – in this case through hunting and perhaps some degree of confrontational scavenging – would eventually reach a critical point potentially leading to competitive exclusion (MacArthur and Levins 1967; Tillman 1982; Brantingham 1998; Faurby et al. 2020).

The East African carnivore guild has been shown to have lost progressively most of its functional richness throughout the Late Pliocene and the Early Pleistocene, in a protracted process over hundreds of thousands of years, but dropping dramatically around 2–1.5 Ma, with turnover and extinction rates peaking from 1.8 Ma onwards (Werdelin and Lewis 2013; Faurby et al. 2020). Hypercarnivores and long-faced social canids were most affected closer to 1.5 Ma (Werdelin and Lewis 2013). While macroevolutionary processes show how carnivore diversity is tightly linked to climate-determined fluctuations in herbivore biomass and diversity (Sandom et al. 2013; Fritz et al. 2016), environmental factors, such as variations in temperature or precipitation, appear unrelated to the trends observed in East Africa, and those palaeocological factors that do exhibit an important degree of correlation, such as changes in tree cover, did not impact functional richness or species diversity in other non-anthropogenic ecosystems, such as North America (Werdelin and Lewis 2013; Faurby et al. 2020). The decline of East African carnivore palaeoguilds may therefore be explained by the progressive introduction of early Homo into the carnivore niche space throughout the Early Pleistocene (Walker and Shipman 1989; Brantingham 1998; Werdelin and Lewis 2005, 2013; Faurby et al. 2020).

While the targeting of prime-aged individuals has been proposed as a hallmark of the hominin predatory niche (e.g. Stiner 2013), the process of niche encroaching during the Oldowan at FLK-Zinj and Kanjera South appears to have entailed primarily a systematic targeting of seasonally vulnerable bovid demographics (Bunn and Pickering 2010; Ferraro et al. 2013; Oliver et al. 2019; Linares-Matás and Clark 2021), followed by hominins actively expanding their predatory niche by engaging in megafaunal consumption later in the Early Pleistocene (e.g. Bunn 1994; Monahan 1996; Fiore et al. 2004; Sahnouni et al. 2013a; Domínguez-Rodrigo et al. 2014b; Yravedra et al. 2019a). These macroevolutionary changes affecting the carnivore palaeoguild of East Africa are reflected in the zooarchaeological and palaeoecological record of Olduvai: felid signatures, prominent in Bed I assemblages, gave way to stronger hyaenid signatures at most Bed II assemblages (Egeland and Domínguez-Rodrigo 2008), a pattern consistent with diachronic changes in trophic dynamics in which active hominin carcass procurement strategies became increasingly prominent at the expense of the hypercarnivore niche. Since omnivores tend to live in much greater densities than specialised carnivores (Walker and Shipman 1989; Pedersen, Faurby, and Svenning 2017), the combined meat intake of a growing hominin population, with increasingly larger brains and sophisticated behavioural adaptations, led to the competitive exclusion of many large carnivore taxa (Faurby et al. 2020). A similar phenomenon of hominin encroachment on
hypercarnivore niches is also emerging in the late Early Pleistocene record of southern Europe (e.g. Palombo et al. 2008; García Garriga, Martínez, and Yravedra 2017; Madurell-Malapeira et al. 2017; Linares-Matás et al. 2021; Yravedra et al. 2021). Stiner (2013) further suggests that an emphasis on prime-aged individuals of large animal species from the late Middle Pleistocene onwards may have represented an additional ‘galvanisation’ of the hominin predatory niche, although she also notes the considerable variability documented on actualistic and prehistoric human-generated mortality profiles.

5. Conclusions

A sophisticated cognitive apparatus, a diverse and high-quality diet incorporating large and very large animals, efficient bipedal locomotion, advanced landscape planning, and prosocial interactions allowed early Homo communities in East Africa to form and maintain larger group sizes than earlier hominins, at least seasonally (Figure 2). The active procurement and butchery of very large prey, documented with increasing frequency through the Early Pleistocene, would have created ample opportunities for food sharing, a key factor for understanding the social dynamics of the Oldowan–Acheulean transition. The offset of
reproductive costs through food provisioning, alongside reductions in mortality risks associated with social anti-predator strategies and reductions in carnivore competition, appear to have promoted demographic growth among African *Homo erectus* societies, as reflected in the marked increase in the number, size, density, and distribution of archaeological sites during the second half of the Early Pleistocene. A more consolidated demographic structure involving larger group sizes may have also favoured even more successful Out-of-Africa dispersals during the late Early and early Middle Pleistocene, since dispersals would have also functioning as a mechanism to regulate the sustainability of regional hominin population ecologies. The development and application of analytical approaches aiming to characterize the nature and seasonality of carcass acquisition strategies in the context of hominin exploitation of very large animals would contribute to further advance these palaeoanthropological debates.

Acknowledgments

We thank Prof. Peter Mitchell (University of Oxford) and James Clark (University of Cambridge) for their insights and suggestions that helped improve this manuscript. We are grateful to Jonathan Lim (University of Oxford) for his assistance with the map presented in Figure 1. The research of G.L.M. was supported by the Arts and Humanities Research Council (grant number AH/R012709/1) through a Baillie Gifford AHRC Scholarship (OOC-DTP program) for his Ph.D. in Archaeology at St. Hugh’s College, University of Oxford (UK).

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by the Arts and Humanities Research Council [AH/R012709/1].

Notes on contributors

Gonzalo J. Linares Matás is Stipendiary Lecturer in Archaeology and Anthropology at St. Hugh’s College, University of Oxford, and a DPhil candidate at the School of Archaeology, University of Oxford. His research focuses on human adaptations to climate change, hunter-gatherer subsistence strategies, and Palaeolithic archaeology.

José Yravedra is Professor of Prehistory and Director of the Research Centre (CAI) in Archaeometry and Archaeological Analysis at the Complutensian University of Madrid. He specialises in zooarchaeology and bone taphonomy, with a focus on the Palaeolithic record of the Iberian Peninsula and the Early Pleistocene of East Africa.

ORCID

Gonzalo J. Linares Matás http://orcid.org/0000-0002-0429-7636

José Yravedra http://orcid.org/0000-0002-4323-3379
References

Aiello, L., and R.I.M. Dunbar. 1993. “Neocortex Size, Group Size, and the Evolution of Language.” *Current Anthropology* 34: 184–193. doi:10.1086/204160.

Aiello, L., and P. Wheeler. 1995. “The Expensive Tissue Hypothesis.” *Current Anthropology* 36: 199–221. doi:10.1086/204350.

Altmura, F., M. R. Bennett, K. D’Août, S. Gaudzinski-Windheuser, R. T. Melis, S. C. Reynolds, and M. Mussi. 2018. “Archaeology and Ichnology at Gombore II-2, Melka Kunture, Ethiopia: Everyday Life of a Mixed-age Hominin Group 700,000 Years Ago.” *Scientific Reports* 8: 2815. doi:10.1038/s41598-018-21158-7.

Altmura, F., M. Mussi, and R. T. Melis. 2017. “A Middle Pleistocene Hippo Tracksite at Gombore II-2 (Melka Kunture, Upper Awash, Ethiopia).” *Palaeogeography, Palaeoclimatology, Palaeoecology* 470: 122–131. doi:10.1016/j.palaeo.2017.01.022.

Antón, S.C., R. Potts, and L.C. Aiello. 2014. “Evolution of Early Homo: An Integrated Biological Perspective.” *Science* 345: 1236828.

Antón, S.C., and J.J. Snodgrass. 2012. “Origins and Evolution of the Genus Homo.” *Current Anthropology* 53 (Suppl. 6): S479–S496. doi:10.1086/667692.

Antón, S.C., H.G. Taboada, E.R. Middleton, C.W. Rainwater, A.B. Taylor, T.R. Turner, J.E. Turnquist, K.J. Weinstein, and S.A. Williams. 2016. “Morphological Variation in *Homo Erectus* and the Origins of Developmental Plasticity.” *Philosophical Transactions of the Royal Society B: Biological Sciences* 371: 20150236. doi:10.1098/rstb.2015.0236.

Apicella, C. L., F. W. Marlowe, J. H. Fowler, and N. A. Christakis. 2012. “Social Networks and Cooperation in Hunter-gatherers.” *Nature* 481: 497–500. doi:10.1038/nature10736.

Archer, W., D.R. Braun, J.W.K. Harris, J.T. McCoy, and B.G. Richmond. 2014. “Early Pleistocene Aquatic Resource Use in the Turkana Basin.” *Journal of Human Evolution* 77: 74–87. doi:10.1016/j.jhevol.2014.02.012.

Arroyo, A., and I. de La Torre. 2016. “Assessing the Function of Pounding Tools in the Early Stone Age: A Microscopic Approach to the Analysis of Percussive Artefacts from Beds I and II, Olduvai Gorge (Tanzania).” *Journal of Archaeological Science* 74: 23–34. doi:10.1016/j.jas.2016.08.003.

Asfaw, B., Y. Beyene, S. Semaw, G. Suwa, T. White, and G. WoldeGabriel. 1991. “Fejej: A New Paleoanthropological Research Area in Ethiopia.” *Journal of Human Evolution* 21: 137–143. doi:10.1016/0047-2484(91)90004-F.

Asfaw, B., Y. Beyene, G. Suwa, R. C. Walker, T. D. White, G. WoldeGabriel, and T. Yemane. 1992. “The Earliest Acheulean from Konso-Gurdula.” *Nature* 360: 732–735. doi:10.1038/360732a0.

Asfaw, B., W. H. Gilbert, Y. Beyene, W. K. Hart, P. R. Renne, G. WoldeGabriel, E. S. Vrba, and T. D. White. 2002. “Remains of Homo Erectus from Bouri, Middle Awash, Ethiopia.” *Nature* 416 (6878): 317–320. doi:10.1038/416317a.

Bar-Yosef, O., and N. Goren-Inbar. 1993. *The Lithic Assemblages of Ubeidiya*. Qedem 34. Jerusalem: The Institute of Archaeology, The Hebrew University.

Behrensmeyer, A.K. 1983. “Patterns of Natural Bone Distribution on Recent Land Surfaces: Implications for Archaeological Site Formation.” In *Animals and Archaeology I: Hunters and Their Prey*, edited by J. Clutton-Brock and C. Grison, 93–106. Oxford: British Archaeological Reports International Series.

Bencomo Viala, M., P. Jardón Giner, L.M. Sirvent Cañada, and L. Hortelano Piqueras. 2020. “Understanding Woodworking in Paleolithic Times by Means of Use-wear Analysis.” *Journal of Archaeological Science: Reports* 29: 102119. doi:10.1016/j.jasrep.2019.102119.

Bentley, G. R., G. Jasienska, and T. Goldberg. 1993. “Is the Fertility of Agriculturalists Higher than that of Non-agriculturalists?” *Current Anthropology* 34: 778–785. doi:10.1086/204223.

Berna, F., P. Goldberg, L.K. Horwitz, J. Brink, S. Holt, M. Bamford, and M. Chazan. 2012. “Microstratigraphic Evidence of In Situ Fire in the Acheulean Strata of Wonderwerk Cave, Northern Cape Province, South Africa.” *Proceedings of the National Academy of Sciences* 109: E1215–E1220. doi:10.1073/pnas.1117620109.

Berthelet, A. 2001. “L’outillage lithique du site de dépeçage à *Elephas recki ileretensis* de Barogali (République de Djibouti).” *Comptes Rendus de l’Académie des Sciences Paris* 332: 411–416.

Berthelet, A. 2002. “Barogali et l’Oued Doure. Deux gisements représentatifs du Paléolithique ancien en République de Djibouti.” *L’Anthropologie* 106: 1–39. doi:10.1016/S0003-5521(02)01087-7.

Berthelet, A., and J. Chavaillon. 1996. “Sites de boucherie à éléphants et hippopotamus au Paléolithique inférieur en Afrique orientale.” *Les dossiers de l’Archéologie, Revivre le passé grâce à l’Archéologie* 216: 6–11.
Beyene, Y., S. Katoh, G. Wolde Gabriel, W. K. Hart, K. Uto, M. Sudo, M. Kondo, et al. 2013. “The Characteristics and Chronology of the Earliest Acheulean at Konso, Ethiopia.” PNAS 477: 82–89.

Biberson, P. J. 1961. Le Paleolithique Inferieur du Maroc Atlantique. Rabat. Publications du service des antiquités du Maroc, 17.

Binford, L. 1989. “Isolating the Transition to Cultural Adaptations: Behavior. An Organisational Approach.” In The Emergence of Modern Humans: Biocultural Adaptations in the Later Pleistocene, edited by E. Trinkaus, 18–41. Cambridge: Cambridge University Press.

Binford, L. R. 2001. Constructing Frames of Reference. Berkeley: University of California Press.

Bird, D.W., B. F. Coddling, R. Bliege Bird, D.W. Zeanah, and C. J. Taylor. 2013. “Megafauna in a Continent of Small Game: Archaeological Implications of Martu Camel Hunting in Australia’s Western Desert.” Quaternary International 297: 155–166. doi:10.1016/j.quaint.2013.01.011.

Bird, D.W., and J.F. O’Connell. 2006. “Behavioral Ecology and Archaeology.” Journal of Archaeological Research 14: 143–188.

Bliege Bird, R., and D.W. Bird. 2008. “Why Women Hunt: Risk and Contemporary Foraging in a Western Desert Aboriginal Community.” Current Anthropology 49: 655–693. doi:10.1086/587700.

Bliege Bird, R., B.F. Coddling, and D.W. Bird. 2009. “What Explains Differences in Men’s and Women’s Production? Determinants of Gendered Foraging Inequalities among Martu.” Human Nature 20: 105–129. doi:10.1007/s12110-009-9061-9.

Blumenschine, R.J. 1988. “An Experimental Model of the Timing of Hominin and Carnivore Influence on Archaeological Bone Assemblages.” Journal of Archaeological Science 15: 483–502. doi:10.1016/0305-4403(88)90078-7.

Blumenschine, R.J. 1989. “A Landscape Taphonomic Model of the Scale of Prehistoric Scavenging Opportunities.” Journal of Human Evolution 18: 345–371. doi:10.1016/0047-2484(89)90036-5.

Blumenthal, S.A., T.E. Cerling, T.M. Smiley, C.E. Badgley, and T.W. Plummer. 2019. “Isotopic Records of Climate Seasonality in Equid Teeth.” Geochimica et Cosmochimica Acta 260: 329–348. doi:10.1016/j.gca.2019.06.037.

Bobe, R., and A.K. Behrensmeyer. 2004. “The Expansion of Grassland Ecosystems in Africa in Relation to Mammalian Evolution and the Origin of the Genus Homo.” Palaeogeography, Palaeoclimatology, Palaeoecology 207: 399–420. doi:10.1016/j.palaeo.2003.09.033.

Boone, J.L. 2002. “Subsistence Strategies and Early Human Population History: An Evolutionary Ecological Perspective.” World Archaeology 34 (1): 6–25. doi:10.1080/00438240202134232.

Boyd, R., and P.J. Richerson. 1985. Culture and the Evolutionary Process. Chicago: University of Chicago Press.

Brantingham, P.J. 1998. “Hominid-carnivore Coevolution and Invasion of the Predatory Guild.” Journal of Anthropological Archaeology 17: 327–353. doi:10.1006/jaar.1998.0326.

Braun, D.R., J.W.K. Harris, N.E. Levin, J.T. McCoy, A.I.R. Herries, M.K. Bamford, L.C. Bishop, B.G. Richmond, and M. Kibunjia. 2010. “Early Hominin Diet Included Diverse Terrestrial and Aquatic Animals 1.95 Ma in East Turkana, Kenya.” Proceedings of the National Academy of Sciences 107: 10002–10007. doi:10.1073/pnas.1002181107.

Braun, D. R., N. E. Levin, D. Styneder, A. I. R. Herries, W. Archer, F. Forrest, D. L. Roberts, et al. 2013. “Mid-Pleistocene Hominin Occupation at Elandsfontein, Western Cape, South Africa.” Quaternary Science Reviews 82: 145–166. doi:10.1016/j.quascirev.2013.09.027.

Brink, J.S., A.I. Herries, J. Moggi-Cecchi, J. A. Gowlett, C.B. Bousman, J.P. Hancox, R. Grün, V. Eisenmann, J. W. Adams, and L. Rossouw. 2012. “First Hominine Remains from a ~1.0 Million Year Oldbone Bed at Cornelia-Uitzoek, Free State Province, South Africa.” Journal of Human Evolution 63 (3): 527–535. doi:10.1016/j.jhevol.2012.06.004.

Brown, F.H., and P. N. Gathogo. 2002. “Stratigraphic Relation between Lokalalei 1A and Lokalalei 2C, Pliocene Archaeological Sites in West Turkana, Kenya.” Journal of Archaeological Science 29: 699–702. doi:10.1006/jasc.2001.0738.

Brown, W. L., Jr., and E. O. Wilson. 1956. “Character Displacement.” Systematic Zoology 5: 49–64. doi:10.2307/2411924.

Bunn, H.T., 1982. Meat-eating and human evolution: Studies on the diet and subsistence patterns of Plio-Pleistocene hominids in East Africa. Ph.D. Dissertation, University of California, Berkeley.

Bunn, H.T. 1994. “Early Pleistocene Hominid Foraging Strategies along the Ancestral Omo River at Koobi Fora, Kenya.” Journal of Human Evolution 27: 247–266. doi:10.1006/jhev.1994.1045.
Bunn, H.T. 2001. “Hunting, Power Scavenging and Butchery by Hadza Foragers and by Plio-Pleistocene Homo.” In Meat-Eating and Human Evolution, edited by C. B. Stanford, and H.T. Bunn, 199–217. New York: Oxford University Press.

Bunn, H.T. 2006. “Meat Made Us Human.” In Evolution of the Human Diet: The Known, the Unknown, and the Unknowable, edited by P.S. Ungar, 191–211. Oxford: Oxford University Press.

Bunn, H.T., and J.A. Ezzo. 1993. “Hunting and Scavenging by Plio-Pleistocene Hominids: Nutritional Constraints, Archaeological Patterns, and Behavioural Implications.” Journal of Archaeological Science 20: 365–398. doi:10.1006/jasc.1993.1023.

Bunn, H.T., and T.R. Pickering. 2010. “Bovid Mortality Profiles in Paleoenvironmental Context Falsify Hypotheses of Endurance Running–hunting and Passive Scavenging by Early Pleistocene Hominins.” Quaternary Research 74: 395–404. doi:10.1016/j.yqres.2010.07.012.

Cáceres, I., M.J. Rogers, S. Semaw, and A.CLeiss. 2017. “Crocodiles in the Diet of the First Oldowan Toolmakers: Evidence from OGS-6 at Gona (Afar, Ethiopia).” III Jornadas de Prehistoria Africana 20. https://cir.cenieh.es/handle/20.500.12136/944.

Capaldo, S.D. 1998. “Simulating the Formation of Dual-patterned Archaeofaunal Assemblages with Experimental Control Simplex.” Journal of Archaeological Science 35: 311–330. doi:10.1016/j.jas.1997.02.038.

Carbone, C., G.M. Mace, S.C. Roberts, and D.W. Macdonald. 1999. “Energetic Constraints on the Diet of Terrestrial Carnivores.” Nature 402: 286–288. doi:10.1038/46266.

Cavalli-Sforza, L.L., and M. Feldman. 1981. Cultural Transmission and Evolution: A Quantitative Approach. Princeton University Press.

Cerling, T.E., J.G. Wynn, S.A. Andanje, M.I. Bird, D.K. Korir, N E. Levin, W. Mace, et al. 2011. “Woody Cover and Hominin Environments in the past 6 Million Years.” Nature 476: 51–56. doi:10.1038/nature10306.

Chavaillon, J. 1976. “Evidence for the Technical Practices of Early Pleistocene Hominids, Shungura Formation, Lower Omo Valley, Ethiopia.” In Earliest Man and Environments in the Lake Rudolf Basin, edited by F.C.H.Y. Coppens, G.L. Isaac, and R.E.F. Leakey, 565–573. Chicago: University of Chicago Press.

Chavaillon, J., and A. Berthelet. 2001. “The Elephas Reckii Site of Haidalo (Republic of Djibouti).” In G. Cavarretta, P. Gioia, M. Mussi, and M. R. Palombo edited by, The World of Elephants. Proceedings of the 1st. Rome: International Congress October. 16-20, 2001. 191–193. Consiglio Nazionale delle Ricerche: Rome

Chavaillon, J., N. Chavaillon, F. Hours, and M. Piperno. 1979. “From the Oldowan to the Middle Stone Age at Melka-Kunturé (Ethiopia).” Understanding Cultural Changes Quaternaria XXI: 87–114.

Chavaillon, J., and M. Piperno. 1975. “Garba IV, site paléolithique ancien de Melka-Kunturé (Ethiopie).” Bulletin de la Société Préhistorique Française 72: 134–138.

Chazan, M. 2021. “Early Hominin Group Size: A Perspective from Bestwood 1, Northern Cape Province, South Africa.” Quaternary International. doi:10.1016/j.quaint.2021.05.017.

Chevrier, B. 2012. “Les assemblages à pièces bifaciales au Pléistocène inférieur et moyen en Afrique de l’Est et au Proche-Orient. Nouvelle approche du phénomène bifacial appliqué aux problématiques de migration, de diffusion et d’évolution locale.” Doctoral Thesis. University Paris Ouest-Nanterre La Défense.

Clark, J.D. 1990. “The Earliest Cultural Evidences of Hominids in Southern and South Central Africa.” In From Apes to Angels: Essays in Anthropology in Honor of Phillip V. Tobias, edited by On G. Sperber, 1–15. Nueva York: Wiley-Liss.

Clark, J. D. 1991. “Stone Artifakt Assemblages from Swartkrans, Transvaal, South Africa.” In Cultural Beginnings. Approches to Undestandig Early Hominid Life-ways in the African Savanna, edited by En J. D. Clark, 137–158. Bonn: Germanishes Zentralmuseum.

Clark, J. D., B. Asfaw, G. Assefa, J.W. K. Harris, H. Kurashina, R.C. Walter, T. D. White, and M. A. J. Williams. 1984. “Palaeoanthropological Discoveries in the Middle Awash Valley, Ethiopia.” Nature 307: 423–428. doi:10.1038/307423a0.

Clark, J. D., and H. Kurashina. 1979a. “Hominid Occupation of the East-central Highlands of Ethiopia in the Plio-Pleistocene.” Nature 282: 33–39. doi:10.1038/282033a0.

Clark, J. D., and H. Kurashina. 1979b. “An Analysis of Earlier Stone Age Bifaces from Gadeb (Locality 8E), Northern Bale Highlands, Ethiopia.” the South African Archaeological Bulletin 34: 93–109. doi:10.2307/3887867.

Clark, J., and G.J. Linares-Matás. 2020. “The Role of Landscape Knowledge Networks in the Early Pleistocene Technological Variability of East Africa.” Archaeological Review from Cambridge 35 (2): 25–44.

Collard, M, K Vaesen, R Cosgrove, and W. Roebroeks. 2016. “The Empirical Case against the ‘Demographic Turn’ in Palaeolithic Archaeology.” Philosophical Transactions of the Royal Society B: Biological Sciences 371: 20150242. doi:10.1098/rstb.2015.0242.
Cordain, L., J.B. Miller, S.B. Eaton, N. Mann, S.H. Holt, and J.D. Speth. 2000. “Plant-animal Subsistence Ratios and Macronutrient Energy Estimations in Worldwide Hunter-gatherer Diets.” The American Journal of Clinical Nutrition 71: 682–692. doi:10.1093/ajcn/71.3.682.

Courtenay, L. A., J. Yravedra, J. Aramendi, M. Á. Mate-González, D. M. Martín-Perea, D. Uribelarrea, E. Baquedano, D. González-Aguilera, and M. Domínguez-Rodrigo. 2019a. “Cut Marks and Raw Material Exploitation in the Lower Pleistocene Site of Bell’s Korongo (BK, Olduvai Gorge, Tanzania): A Geometric Morphometric Analysis.” Quaternary International 526: 155–168. doi:10.1016/j.quaint.2019.06.018.

Courtenay, L. A., J. Yravedra, M. Á. Mate-González, J. Aramendi, and D. González-Aguilera. 2019b. “3D Analysis of Cut Marks Using a New Geometric Morphometric Methodological Approach.” Archaeological and Anthropological Sciences 11 (2): 651–665. doi:10.1007/s12520-017-0554-x.

Creel, S., and N. M. Creel. 1995. “Communal Hunting and Pack Size in African Wild Dogs, Lycaon Pictus.” Animal Behaviour 50 (5): 1325–1339. doi:10.1006/anbe.1995.1006.

Davis, L., and B. Reeves, Eds. 1990. Hunters of the Recent Past. London-Boston: One world archaeology, Unwin Hyman.

de Heinzelin, J., J. D. Clark, K. D. Schick, and W. H. Gilbert. 2000. The Acheulian and the Plio-Pleistocene Deposits of the Middle Awash Valley, Ethiopia. Vols. 104. Tervuren: Royal Museum of Central Africa (Belgium), Annales-Sciences Géologiques.

de Heinzelin, J., J. D. Clark, T. White, W. Hart, P. Renne, G. WoldeGabriel, Y. Beyene, and E. Vrba. 1999. “Environment and Behavior of 2.5-million-year-old Bouri Hominids.” Science 284: 625–629. doi:10.1126/science.284.5414.625.

de La Torre, I. 2011. “The Early Stone Age Lithic Assemblages of Gadeb (Ethiopia) and the Developed Oldowan/ early Acheulean in East Africa.” Journal of Human Evolution 60: 768e812. doi:10.1016/j.jhevol.2011.01.009.

de La Torre, I. 2016. “The Origins of the Acheulean: Past and Present Perspectives on a Major Transition in Human Evolution.” Philosophical Transactions of the Royal Society B: Biological Sciences 371 (1698): 20150245. doi:10.1098/rstb.2015.0245.

de La Torre, I., A. Benito-Calvo, A. Arroyo, A. Zupancich, and T. Proffitt. 2013. “Experimental Protocols for the Study of Battered Stone Anvils from Olduvai Gorge (Tanzania).” Journal of Archaeological Science 40: 313–332. doi:10.1016/j.jas.2012.08.007.

de La Torre, I., and R. Mora. 2005. Technological Strategies in the Lower Pleistocene at Olduvai Beds I and II. Eraul 112. Brussels: University of Liège Press.

de La Torre, I., and R. Mora. 2018. “Technological Behaviour in the Early Acheulean of EF-HR (Olduvai Gorge, Tanzania).” Journal of Human Evolution 120: 329–377. doi:10.1016/j.jhevol.2018.01.003.

de La Torre, I., R. Mora, and J. Martinez-Moreno. 2008. “The Early Acheulean in Peninj (Lake Natron, Tanzania).” Journal of Anthropological Archaeology 27: 244–268. doi:10.1016/j.jaa.2007.12.001.

Deacon, H.J. 1975. “Demography, Subsistence, and Culture during the Acheulean in Southern Africa.” In After the Australopithecines. Stratigraphy, Ecology, and Culture Change in the Middle Pleistocene, edited by K.W. Butzer, and G.LI. Isaac, 543–570. The Hague: De Gruyter Mouton.

Delagnes, A., A. Lenoble, S. Harmand, J.-P. Brugal, S. Prat, J.-J. Tiercelin, and H. Roche. 2006. "Interpreting Pachyderm Single Carcass Sites in the African Lower and Early Middle Pleistocene Record: A Multidisciplinary Approach to the Site of Nadung’A 4 (Kenya).” Journal of Anthropological Archaeology 25: 448–465. doi:10.1016/j.jaa.2006.03.002.

Delfino, M., A. Segid, D. Yosief, J. Shoshani, L. Rook, and Y. Libsekal. 2004. “Fossil Reptiles from the Pleistocene Homo-bearing Locality of Buia (Eritrea, Northern Danakil Depression).” Rivista Italiana di Paleontologia e Stratigrafia 110 (supplement): 51–60.

deMenocal, P.B. 2004. “African Climate Change and Faunal Evolution during the Pliocene-Pleistocene.” Earth and Planetary Science Letters 220: 3–24. doi:10.1016/S0012-821X(04)00003-2.

Diez-Martín, F., and M.I. Eren. 2012. “The Early Acheulean in Africa: Past Paradigms, Current Ideas, and Future Directions.” In Stone Tools and Fossil Bones. Debates in the Archaeology of Human Origins, edited by M. Domínguez-Rodrigo, 310–357. Cambridge: Cambridge University Press.

Diez-Martín, F., P. Sánchez Yustos, D. Gómez de La Rúa, J. Á. Gómez González, L. de Luque, and R. Barba. 2014a. “Early Acheulean Technology at Es2-Lepolosi (Ancient MHS-Bayasi) in Peninj (Lake Natron, Tanzania).” Quaternary International 322–323: 209–236. doi:10.1016/j.quaint.2013.08.053.
Díez-Martín, F., P. Sánchez Yustos, D. Uribelarrea, E. Baquedano, D. F. Mark, A. Mabulla, C. Fraile, et al. 2015. “The Origin of the Acheulean: The 1.7 Million-Year-Old Site of FLK West, Olduvai Gorge (Tanzania).” *Scientific Reports* 5 (1): 17839. doi:10.1038/srep17839.

Díez-Martín, F., P. Sánchez-Yustos, D. Uribelarrea, M. Domínguez-Rodrigo, C. Fraile-Márquez, R. A. Obregón, I. Díaz Muñoz, et al. 2014b. “New Archaeological and Geological Research at SHK Main Site (Bed II, Olduvai Gorge, Tanzania),” *Quaternary International* 322–323: 107–128. doi:10.1016/j.quaint.2013.11.004.

Díez-Martín, F., P. Sánchez, M. Domínguez-Rodrigo, A. Mabulla, and R. Barba. 2009. “Were Olduvai Hominins Making Butchering Tools or Batttering Tools? Analysis of a Recently Excavated Lithic Assemblage from BK (Bed II, Olduvai Gorge, Tanzania).” *Journal of Anthropological Archaeology* 28 (3): 274–289. doi:10.1016/j.jaa.2009.03.001.

Doebeli, M., E.C. Jaques, and Y. Isopolatov. 2021. “Boom-bust Population Dynamics Increase Diversity in Evolving Competitive Communities.” *communications Biology* 4: 1–8. doi:10.1038/s42003-021-02021-4.

Domínguez-Rodrigo, M., L. Alcalá, and L. Luque. 2009a. *Peninj. A Research Project on the Archaeology of Human Origins* (1995–2005). Oxford: Oxbow.

Domínguez-Rodrigo, M., R. Barba, and C.P. Egeland. 2007. *Deconstructing Olduvai: A Taphonomic Study of the Bed I Sites*. New York: Springer-Verlag. doi:10.1007/978-1-4020-6152-3.

Domínguez-Rodrigo, M., H.T. Bunn, A.Z.P. Mabulla, E. Baquedano, D. Uribelarrea, A. Pérez-González, and A. Gidna, et al. 2014. “On Meat Eating and Human Evolution: A Taphonomic Analysis of BK4b (Upper Bed II, Olduvai Gorge, Tanzania), and Its Bearing on Hominin Megafaunal Consumption.” *Quaternary International* 322–323: 129–152. doi:10.1016/j.quaint.2013.08.015.

Domínguez-Rodrigo, M., I. Dela Torre, L. Luque, L. Alcalá, R. Mora, J. Serallonga, and V. Medina. 2002. “The ST Site Complex at Peninj, West Lake Natron, Tanzania: Implications for Early Hominid Behavioural Models.” *Journal of Archaeological Science* 29 (6): 639–665. doi:10.1016/j.jas.2001.0768.

Domínguez-Rodrigo, M., F. Díez-Martín, J. Yravedra, R. Barba, H. Bunn, A. Mabulla, E. Baquedano, D. Uribelarrea, P. Sánchez, and M. Eren. 2014b. “Study of the SHK Main Site Faunal Assemblage, Olduvai Gorge, Tanzania: Implications for Bed II Taphonomy, Paleoeconomy and Hominin Utilization of Megafauna.” *Quaternary International* 322–323: 153–166. doi:10.1016/j.quaint.2013.09.025.

Domínguez-Rodrigo, M., A. Mabulla, H. T. Bunn, R. Barba, F. Díez-Martín, C. P. Egeland, E. Espízle, A. Egeland, J. Yravedra, and P. Sánchez. 2009b. “Unraveling Hominin Behavior at Another Anthropogenic Site from Olduvai Gorge (Tanzania): New Archaeological and Taphonomic Research at BK, Upper Bed II.” *Journal of Human Evolution* 57 (3): 260–283. doi:10.1016/j.jhevol.2009.04.006.

Domínguez-Rodrigo, M., A. Z. P. Mabulla, H. T. Bunn, F. Díez-Martín, E. Baquedano, D. Barboni, R. Barba, et al. 2010. “Disentangling Hominin and Carnivore Activities near a Spring at FLK North (Olduvai Gorge, Tanzania),” *Quaternary Research* 74 (3): 363–375. doi:10.1016/j.yqres.2010.07.004.

Domínguez-Rodrigo, M., T.R. Pickering, S. Semaw, and M.J. Rogers. 2005. “Cutmarked Bones from Pliocene Archaeological Sites at Gona, Afar, Ethiopia: Implications for the Function of the World’s Oldest Stone Tools.” *Journal of Human Evolution* 48: 109–121. doi:10.1016/j.jhevol.2004.09.004.

Domínguez-Rodrigo, M., A.J. Sánchez-Flores, E. Baquedano, M. Carmen Arriaza, J. Aramendi, L. Cobo-Sánchez, E. Organista, and R. Barba. 2019. “Constraining Time and Ecology on the Zinj Paleolandscape: Microwear and Mesowear Analyses of the Archaeofaunal Remains of FLK Zinj and DS (Bed I), Compared to FLK North (Bed I) and BK (Bed II) at Olduvai Gorge (Tanzania).” *Quaternary International* 526: 4–14. doi:10.1016/j.quaint.2019.05.041.

Durkee, H., and F. H. Brown. 2014. “Correlation of Volcanic Ash Layers between the Early Pleistocene Acheulean Sites of Isinya, Kariandusi, and Olorgesailie, Kenya.” *Journal of Archaeological Science* 49: 510–517. doi:10.1016/j.jas.2014.06.006.

Egeland, C.P., and M. Domínguez-Rodrigo. 2008. Taphonomic perspectives on hominin site use and foraging strategies during Bed II times at Olduvai Gorge, Tanzania. *Journal of Human Evolution* 55 (6): 1031–1052.

Eshel, I., and L. L. Cavalli-Sforza. 1982. “Assortment of Encounters and Evolution of Cooperativeness.” *Proceedings of the National Academy of Sciences* 79: 1331–1335. doi:10.1073/pnas.79.4.1331.

Faith, J.T., and A.D. Gordon. 2007. “Skeletal Element Abundances in Archaeofaunal Assemblages: Economic Utility, Sample Size, and Assessment of Carcass Transport Strategies.” *Journal of Archaeological Science* 34: 872–888. doi:10.1016/j.jas.2006.08.007.

Faurby, S., D. Silvestro, L. Werdelin, and A. Antonelli. 2020. “Brain Expansion in Early Hominins Predicts Carnivore Extinctions in East Africa.” *Ecology Letters* 23 (3): 537–544. doi:10.1111/ele.13451.
Ferraro, J.V., T.W. Plummer, B.L. Pobiner, J.S. Oliver, L.C. Bishop, D.R. Braun, P.W. Ditchfield, et al. 2013. “Earliest Archaeological Evidence of Persistent Hominin Carnivory.” *PLoS ONE* 8: e62174. doi:10.1371/journal.pone.0062174.

Finkel, M., and R. Barkai 2018. “The Acheulean Handaxe Technological Persistence: A Case of Preferred Cultural Conservatism?” *Proceedings of the Prehistoric Society* 84: 1–19. doi:10.1017/ppr.2018.2.

Fiore, I., L. Bondioli, A. Coppa, R. Macchiarelli, H. Kashay, T. Solomon, L. Rook, and Y. Libsekal. 2004. “Taphonomic Analysis of the Late Early Pleistocene Bone Remains from Buia (Dandiero Basin, Danakil Depression, Eritrea): Evidence for Large Mammal and Reptile Butchering.” *Rivista Italiana di Paleontologia e Stratigrafia* 110: 89–97.

Foley, R.A. 1993. “The Influence of Seasonality on Hominid Evolution.” In *Seasonality and Human Ecology*, edited by S.J. Ulijaszek and S. Strickland, 17–37. Cambridge: Cambridge University Press.

Foley, R.A.F. 2001. “The Evolutionary Consequences of Increased Carnivory in Humans.” In *Meat-eating and Human Evolution*, edited by C.B. Stanford and H.T. Bunn, 305–331. Oxford: Oxford University Press.

Foley, R. A., and P.C. Lee. 1991. “Ecology and Energetics of Encephalization in Hominid Evolution.” *Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences* 334 (1270): 223–232. doi:10.1098/rstb.1991.0111.

French, J.C. 2016. “Demography and the Palaeolithic Archaeological Record.” *Journal of Archaeological Method and Theory* 23 (1): 150–199. doi:10.1007/s10816-014-9237-4.

Fritz, S.A., J.T. Eronen, J. Schnitzler, C. Hof, C.M. Janis, A. Mulch, K. Böhning-Gaese, et al. 2016. “Twenty-million-year Relationship between Mammalian Diversity and Primary Productivity.” *Proceedings of the National Academy of Sciences* 113: 10908–10913. doi:10.1073/pnas.1602145113.

Gallotti, R. 2013. “An Older Origin for the Acheulean at Melka Kunture (Upper Awash, Ethiopia): Techno-economic Behaviours at Garba IVD.” *Journal of Human Evolution* 65: 594–620. doi:10.1016/j.jhevol.2013.07.001.

Gallotti, R., C. Collina, J. P. Raynal, G. Kieffer, D. Geraads, and M. Piperno. 2010. “The Early Middle Pleistocene Site of Gombore II (Melka Kunture, Upper Awash, Ethiopia) and the Issue of Acheulean Bifacial Shaping Strategies.” *African Archaeological Review* 27: 291–322. doi:10.1007/s10437-010-9083-z.

Gallotti, R., and M. Mussi. 2017. “Two Acheuleans, Two Humankind: From 1.5 To 0.85 Ma. At Melka Kunture (Upper Awash, Ethiopian Highlands).” *Journal of Anthropological Sciences* 95: 1–46. doi:10.4436/JASS.95019.

Gallotti, R., and M. Mussi. 2018. *The Emergence of the Acheulean in East Africa and Beyond: Contributions in Honor of Jean Chavaillon*. Springer International Publishing. doi:10.1007/978-3-319-75985-2.

Gallotti, R., J. P. Raynal, D. Geraads, and M. Mussi. 2014. “Garba XIII (Melka Kunture, Upper Awash, Ethiopia): A New Acheulean Site of the Late Lower Pleistocene.” *Quaternary International* 343: 17–27. doi:10.1016/j.quaint.2014.04.039.

Galofré, R., and X. Fábregas. 1983. *Potencial económico de la fauna salvaje africana*. Barcelona: Etnologia e Identificación.

García Garriga, J., K. Martinez, and J. Yravedra. 2017. “Hominin and Carnivore Interactions during the Early Pleistocene in Western Europe.” *L’Anthropologie* 121: 343–366. doi:10.1016/j.anthro.2017.10.006.

Geraads, D., J. P. Raynal, and V. Eisenmann. 2004. “The Earliest Human Occupation of North Africa: A Reply to Sahnouini Et Al. (2002).” *Journal of Human Evolution* 46: 751–761. doi:10.1016/j.jhevol.2004.01.008.

Gidna, A., A.B. Kisu, and M. Domínguez-Rodrigo. 2014. “An Ecological Neotaphonomic Study of Carcass Consumption in Tarangire National Park (Tanzania) and Its Relevance for Human Evolutionary Biology.” *Quaternary International* 322–323: 167–180. doi:10.1016/j.quaint.2013.08.059.

Goren-Inbar, N., and A. Belfer-Cohen. 2020. “Reappraisal of Hominin Group Size in the Lower Paleolithic.” *Journal of Human Evolution* 144: 102821. doi:10.1016/j.jhevol.2020.102821.

Gowlett, J.A.J., J.S. Brink, A.I.R. Herries, S. Hoare, I. Onjala, and S.M. Rucina. 2015. “At the Heart of the African Acheulean: The Physical, Social and Cognitive Landscapes of Kilombe.” In *Settlement, Society and Cognition in Human Evolution: Landscapes in Mind*, edited by F. Coward, F. Wenban-Smith, M. Pope, and R. Hosfield, 75–93. Cambridge: Cambridge University Press. doi:10.1017/CBO9781139208697.006.

Gowlett, J. A. J., J. W. K. Harris, D. A. Walton, and B. A. Wood. 1981. “Early Archaeological Sites, Further Hominid Remains and Traces of Fire from Chesowanja, Kenya.” *Nature* 294: 125–129. doi:10.1038/294125a0.

Grove, M. 2009. “Hunter-gatherer Movement Patterns: Causes and Constraints.” *Journal of Anthropological Archaeology* 28: 222–233. doi:10.1016/j.ja.2009.01.003.

Guéret, C.C., B. Chapais, and D. Zinner. 2012. “Evolution of Multilevel Social Systems in Nonhuman Primates and Humans.” *International Journal of Primatology* 33 (5): 1002–1037. doi:10.1007/s10764-012-9618-z.
Grüter, C. C., and D. Zinner. 2004. “Nested Societies: Convergent Adaptations of Baboons and Snub-nosed Monkeys?” *Primate Report* 70: 1–98.

Gürbüz, R.B., and S.J. Lycett. 2021. “Could Woodworking Have Driven Lithic Tool Selection?” *Journal of Human Evolution* 156: 102999. doi:10.1016/j.jhevol.2021.102999.

Gurven, M., and K. Hill. 2009. “Why Do Men Hunt?” *Current Anthropology* 50: 51–74. doi:10.1086/595620.

Harris, J.W.K. 1978. *The Karari Industry: Its Place in East African Prehistory.* Berkeley: University of California.

Harris, J.W.K., and J.A.J. Gowlett. 1980. “Evidence of Early Stone Industries at Chesowanja, Kenya.” In *Proceedings of the 8th Panafriican Congress of Prehistory and Quaternary Studies, Nairobi, 1977*, edited by R. E. Leakey and B. A. Ogut, 208–212. Nairobi: TILLMIAP.

Harris, J. W. K., P. Williamson, J. Verniers, M. Tappen, K. Stewart, D. Helgren, J. de Heinzelin, N. Boaz, and R. Bellomo. 1987. “Late Pliocene Hominid Occupation in Central Africa: The Setting, Context, and Character of the Senge 5A Site, Zaire.” *Journal of Human Evolution* 16: 701–728. doi:10.1016/0047-2484(87)90020-0.

Hatała, K. G., N. T. Roach, K. R. Ostrofsky, R. E. Wunderlich, H. L. Dingwall, B. A. Villmoare, D. J. Green, J. W. K. Harris, D. R. Braun, and B. G. Richmond. 2016. “Footprints Reveal Direct Evidence of Group Behavior and Locomotion in *Homo Erectus.*” *Scientific Reports* 6 (1): 28766. doi:10.1038/srep28766.

Hawkes, K. 1991. “Showing Off: Tests of an Hypothesis about Men’s Foraging Goals.” *Ethology and Sociobiology* 12: 29–54. doi:10.1016/0162-3095(91)90011-E.

Hawkes, K. 1993. “Why Hunter–gatherers Work: An Ancient Version of the Problem of Public Goods.” *Current Anthropology* 34: 341–361. doi:10.1086/204182.

Hawkes, K., K. Hill, and J.F. O’Connell. 1982. “Why Hunters Gather: Optimal Foraging and the Aché of Eastern Paraguay.” *American Ethnologist* 9: 379–398. doi:10.1525/ae.1982.9.2.02a00100.

Hawkes, K., J. F. O’Connell, and N. G. Blurton Jones. 1997. “Hadza Women’s Time Allocation, Offspring Provisioning, and the Evolution of Long Postmenopausal Life Spans.” *Current Anthropology* 38: 551–577. doi:10.1086/204646.

Hawkes, K., J.F. O’Connell, and J.E. Coxworth. 2010. “Family Provisioning Is Not the Only Men Hunt.” *Current Anthropology* 51: 259–264. doi:10.1086/651074.

Hay, R.L. 1976. *Geology of the Olduvai Gorge.* Berkeley: University of California Press.

Henrich, N., and J. Henrich. 2007. *Why Humans Cooperate: A Cultural and Evolutionary Explanation.* Oxford: Oxford University Press.

Hill, K. 1993. “Life History Theory and Evolutionary Anthropology." *Evolutionary Anthropology* 2 (3): 78–88. doi:10.1002/evan.1360020303.

Hill, K., and M. Hurtado. 1996. *Ache Life History: The Ecology and Demography of a Foraging People.* Chicago: Aldine de Gruyter.

Hoffman, L.C., G. Geldenhuys, and D.-M. Cawthorn. 2016. “Proximate and Fatty Acid Composition of Zebra (*Equus Quagga Burchelli*) Muscle and Subcutaneous Fat.” *Journal of the Science of Food and Agriculture* 96 (11): 3922–3927. doi:10.1002/jsfa.7623.

Hoffman, L. C., D. L. van Schalkwyk, M. Muller, T. Needham, B. J. van Rensburg, and K. W. Mcmillin. 2020. “Carcass Yields and Physiochemical Meat Quality Characteristics of Namibian Gemsbok (*Oryx Gazella*) as Influenced by Muscle, Gender and Age.” *Meat Science* 169: 108208. doi:10.1016/j.meatsci.2020.108208.

Hopkinson, T., A. Nowell, and M. White. 2013. “Life Histories, Metapopulation Ecology, and Innovation in the Acheulian.” *PaleoAnthropology* 2013: 61–76.

Hovers, E. 2001. “Stone Knapping in the Late Pliocene in Hadar, Ethiopia.” In *Knapping Stone. A uniquely hominid behaviour? International workshop*, 11–12. Pont-à-Mousson. Abstracts. November 21–24.

Hovers, E., T. Gossa, A. Asrat, E. M. Niespolo, A. Resom, P. M. Renne, R. Ekshain, G. Herzlinger, N. Keturn, and B. Martinez Navarro. 2021. “The Expansion of the Acheulian to the Southeastern Ethiopian Highlands: Insights from the New Early Pleistocene Site-complex of Melka Wakena.” *Quaternary Science Reviews* 253: 106763. doi:10.1016/j.quascirev.2020.106763.

Howell, F. C., P. Haesaerts, and J. de Heinzelin. 1987. “Depositional Environments, Archeological Occurrences and Hominids from Members E and F of the Shungura Formation (Omo Basin, Ethiopia).” *Journal of Human Evolution* 16: 665–700. doi:10.1016/0047-2484(87)90019-4.

Hrdy, S. B. 2009. *Mothers and Others: The Evolutionary Origins of Mutual Understanding.* Cambridge, MA: Harvard University Press.
Hurcombe, L. M. 2014. *Perishable Material Culture in Prehistory: Investigating the Missing Majority.* London: Routledge.

Isaac, G. 1972. “Early Phases of Human Behaviour: Models in Lower Palaeolithic Archaeology.” In *Models in Archaeology*, edited by D. Clarke, 167–199. London: Methuen.

Isaac, G. L. 1977. *Olorgesailie. Archeological Studies of Middle Pleistocene Lake Basin in Kenya.* Chicago: University Chicago Press.

Isaac, G. L., J. W. K. Harris, and D. Crader. 1976. “Archaeological Evidence from the Koobi Fora Formation.” In *Earliest Man and Environments in the Lake Rudolf Basin*, edited by F.C.H.Y. Coppens, G. L. Isaac, and R. E. F. Leakey, 533–551. Chicago: University of Chicago Press.

Isaac, G. L., J. W. K. Harris, and E. M. Kroll. 1997. “The Stone Artefact Assemblages: A Comparative Study.” In *Koobi Fora Research Project. Volume 5: Plio-Pleistocene Archaeology*, edited by G. L. Isaac, 262–362. Oxford: Oxford University Press.

Isbell, L. A., L. R. Bidner, E. K. Van Cleave, A. Matsumoto-Oda, and M. C. Crofoot. 2018. “GPS-identified Vulnerabilities of Savannah-woodland Primates to Leopard Predation and Their Implications for Early Homoins.” *Journal of Human Evolution* 118: 1–13. doi:10.1016/j.jhevol.2018.02.003.

Janssen, M.A., and K. Hill. 2014. “Benefits of Grouping and Cooperative Hunting among Ache Hunter–Gatherers: Insights from an Agent-Based Foraging Model.” *Human Ecology* 42: 823–835. doi:10.1007/s10745-014-9693-1.

Kaplan, H., K. Hill, R. V. Cadeliña, B. Hayden, D. C. Hyndman, R. J. Preston, E. A. Smith, D. E. Stuart, and D. R. Yesner. 1985. “Food Sharing among Ache Foragers: Tests of Explanatory Hypotheses [And Comments and Reply].” *Current Anthropology* 26 (2): 223–246. doi:10.1086/203251.

Kaplan, H., K. Hill, J. Lancaster, and A. M. Hurtado. 2000. “A Theory of Human Life History Evolution: Diet, Intelligence, and Longevity.” *Evolutionary Anthropology Issues and Reviews* 9 (4): 156–185. doi:10.1002/1520-6505(2000)9:4<156::AID-EVAN>3.0.CO;2-7.

KaufuZ, Z.M., and N. Stern. 1987. “The First Stone Artefacts to Be Found in Situ within the Plio-Pleistocene Chiwondo Beds in Northern Malawi.” *Journal of Human Evolution* 16 (7–8): 729–740. doi:10.1016/0047-2484(87)90021-2.

Kelly, R.L. 2003. “Colonization of New Land by Hunter-gatherers. Expectations and Implications Based on Ethnographic Data.” In *Colonization of Unfamiliar Landscapes: The Archaeology of Adaptation*, edited by M. Rockman and J. Steele, 44–58. London: Routledge.

Klein, R. G., G. Avery, K. Cruz Uribe, and T. E. Steele. 2007. “The Mammalian Fauna Associated with an Archaic Hominin Skullcap and Later Acheulean Artifacts at Elandsfontein, Western Cape Province, South Africa.” *Journal of Human Evolution* 52: 164–186. doi:10.1016/j.jhevol.2006.08.006.

Kleinendist, M. R. 1961. “Variability within the Late Acheulean Assemblage in Eastern Africa.” *South African Archaeological Bulletin* 16 (62): 35–52. doi:10.2307/3886868.

Kruuk, H. 1972. *The Spotted Hyena: A Study of Predation and Social Behaviour.* Chicago: University of Chicago Press.

Kudo, H., and R.I.M. Dunbar. 2001. “Neocortex Size and Social Network Size in Primates.” *Animal Behaviour* 62: 711–722. doi:10.1006/anbe.2001.1808.

Kuhn, S.L. 2012. “Emergent Patterns of Creativity and Innovation in Early Technologies.” *Development in Quaternary Science* 16: 69–87.

Kuman, K. 1998. “The Earliest South African Industries.” In *Early Human Behavior in Global Context. Rise and Diversity of the Lower Paleolithic Record*, edited by M. D. Petraglia and R. Korisettar, 151–186. London: Routledge.

Kuman, K., and R.J. Gibbon. 2018. “The Rietputs 15 Site and Early Acheulean in South Africa.” *Quaternary International* 480: 4–15. https://doi.org/10.1016/j.quaint.2016.12.031

Laland, K.N., F.J. Odling-Smee, and M.W. Feldman. 2000. “Niche Construction, Biological Evolution, and Cultural Change.” *Behavioural Brain Sciences* 23: 131–175. doi:10.1017/S0140525X00002417.

Leakey, L.S.B. 1954. “The Giant Animals of Prehistoric Tanaganyika and the Hunting Grounds of Chellean Man. New Discoveries in Olduvai Gorge.” The Illustrated London News 224: 1047–1051. Illustration by Neave Parker.

Leakey, L.S.B. 1965. *Olduvai Gorge. A Preliminary Report on the Geology and the Fauna 1951–1961.* Cambridge: Cambridge University Press.

Leakey, M.D. 1971. *Olduvai Gorge: Volume 3, Excavations in Beds I and II, 1960-1963.* Cambridge: Cambridge University Press.
Leakey, M.D. 1975. “Cultural Patterns in the Olduvai Sequence.” In *After the Australopithecines*, edited by K.W. Butzer and G. Isaac, 477–494. The Hague: Mouton.

Leakey, L.S.B. 1994. *Olduvai Gorge. Excavations in the Bed II, IV and Masked Beds*. Cambridge: Cambridge University Press.

Lepre, C. J., H. Roche, D. V. Kent, S. Harmand, R. L. Quinn, J. P. Brugal, P. J. Texier, A. Lenoble, and C. S. Feibel. 2011. “An Earlier Origin for the Acheulian.” *Nature* 477: 82–85. doi:10.1038/nature10372.

Linares-Matás, G.J., and J. Clark. 2021. “Seasonality and Oldowan Behavioral Variability in East Africa.” *Journal of Human Evolution*. doi:10.1016/j.jhevol.2021.103070.

Linares-Matás, G.J., N. Fernández Ruiz, M. Haber Uriarte, López Martínez, M., Walker, M.J. 2021. “Hyaenas and Early Humans in the Latest Early Pleistocene of South-Western Europe.” *Scientific Reports* 11 :24036. doi:10.1038/s41598-021-03547-7.

Linares-Matás, G.J., and J.S. Lim. 2021. “‘This Is the Way’: Knowledge Networks and Toolkit Specialization in the Circumpolar Coastal Landscapes of Western Alaska and Tierra Del Fuego.” *Journal of Island and Coastal Archaeology* 1–29. doi:10.1080/15564894.2021.2000073.

Linares-Matás, G. J., J. Yravedra, M. Á. Maté-González, L. A. Courtenay, J. Aramendi, F. Cuartero, and D. González-Aguilera. 2019. “A Geometric-morphometric Assessment of Three-dimensional Models of Experimental Cutmarks Using Flint and Quartzite Flakes and Handaxes.” *Quaternary International* 517: 45–54. doi:10.1016/j.quaint.2019.05.010.

López-Cisneros, P., G. Linares-Matás, J. Yravedra, M. Á. Maté-González, V. Estaca-Gómez, R. Mora, J. Aramendi, J. A. Rodríguez Asensio, J. M. Barrera-Logares, and D. González Aguilera. 2019. “Applying New Technologies to the Taphonomic Study of La Lluera (Asturias, Spain). Geometric Morphometrics and the Study of Bone Surface Modifications (BSM).” *Quaternary International* 517: 107–117. doi:10.1016/j.quaint.2019.02.020.

Lupo, K.D., and D.N. Schmitt. 2002. “Upper Paleolithic Net-hunting, Small Prey Exploitation, and Women’s Work Effort: A View from the Ethnographic and Ethnoarchaeological Record of the Congo Basin.” *Journal of Archaeological Method and Theory* 9: 147–179. doi:10.1023/A:1016578224794.

Lycett, S.J., and J.A.J. Gowlett. 2008. “On Questions Surrounding the Acheulean ‘Tradition’.” *World Archaeology* 403: 295–315. doi:10.1080/00438240802260970.

MacArthur, R. H., and R. Levins. 1967. “The Limiting Similarity, Convergence and Divergence of Coexisting Species.” *American Naturalist* 101: 377–385. doi:10.1086/282505.

Madurell-Malapeira, J., D M. Alba, M-P. Espigares, V. Vinuesa, P. Palmqvist, B. Martínez-Navarro, S. Moyà-Solà, et al. 2017. “Were Large Carnivorans and Great Climatic Shifts Limiting Factors for Hominin Dispersals? Evidence of the Activity of *Pachycrocuta brevirostris* during the Mid-Pleistocene Revolution in the Vallparsadis Section (Vallès-penedès Basin, Iberian Peninsula).” *Quaternary International* 431: 42–52. doi:10.1016/j.qua.2015.07.040.

Marchi, D., C.M. Harper, H. Chirchir, and C.B. Ruff. 2019. “Relative Fibular Strength and Locomotor Behavior in KNM-WT 15000 and OH 35.” *Journal of Human Evolution* 131: 48–60. doi:10.1016/j.jhevol.2019.02.005.

Maté-González, M. Á., D. González-Aguilera, G. Linares-Matás, and J. Yravedra. 2019. “New Technologies Applied to Modelling Taphonomic Alterations.” *Quaternary International* 517: 4–15. doi:10.1016/j.quaint.2018.12.021.

McHenry, H. M., and K. Coffing. 2000. “Australopithecus to Homo: Transformations in Body and Mind.” *Annual Review of Anthropology* 29 (1): 125–146. doi:10.1146/annurev.anthro.29.1.125.

Merrick, H. V. 1976. “Recent Archaeological Research in the Plio-Pleistocene Deposits of the Lower Omo, Southwestern Ethiopia.” In *Human Origins. Louis Leakey and the East African Evidence*, edited by G. L. Isaac and E. R. McCown, 461–481. California: W. A. Benjamin, Inc.

Milton, K. 1999. “A Hypothesis to Explain the Role of Meat-eating in Human Evolution.” *Evolutionary Anthropology* 8: 11–21. doi:10.1002/(SICI)1520-6505(1999)8:1<11::AID-EVAN>3.0.CO;2-M.

Mithen, S. 1996. *The Prehistory of the Mind*. London: Thames and Hudson.

Monahan, C.M. 1996. “New Zooarchaeological Data from Bed II, Olduvai Gorge, Tanzania: Implications for Hominid Behavior in the Early Pleistocene.” *Journal of Human Evolution* 31: 93–128. doi:10.1006/jhev.1996.0053.

Mussi, M., F. Altamura, L. Di Bianco, R. Bonnefille, S. Gaudzinski Windheuser, D. Geraads, R. T. Melis, et al. 2021. “After the Emergence of the Acheulean at Melka Kunture (Upper Awash, Ethiopia): From Gombore IB (1.6 Ma) to Gombore II (1.4 Ma), Gombore Ic (1.3 Ma) and Gombore II OAM Test Pit C (1.2 Ma).” *Quaternary International*. doi:10.1016/j.qua.2021.02.031.
Nowak, M., and K. Sigmund. 2005. “Evolution of Indirect Reciprocity.” Nature 437: 1291–1298. doi:10.1038/nature04131.

Nowell, A., and M. White. 2010. “Growing up in the Middle Pleistocene. Life History Strategies and Their Relationship to Acheulian Industries.” In Stone Tools and the Evolution of Human Cognition, edited by A. Nowell and I. Davidson, 67–81. Boulder: University of Colorado Press.

O’Connell, J. F., K. Hawkes, and N. G. Blurton Jones. 1999. “Grandmothering and the Evolution of Homo Erectus.” Journal of Human Evolution 36: 461–485. doi:10.1016/j.jhevol.1998.0285.

Ohtsuki, H., C. Hauert, E. Lieberman, and M. A. Nowak. 2006. “A Simple Rule for the Evolution of Cooperation on Graphs and Social Networks.” Nature 441: 502–505. doi:10.1038/nature04605.

Oliver, J.S., T.W. Plummer, F. Hertel, and L.C. Bishop. 2019. “Bovid Mortality Patterns from Kanjera South, Homa Peninsula, Kenya and FLK-Zinj, Olduvai Gorge, Tanzania: Evidence for Habitat Mediated Variability in Oldowan Hominin Hunting and Scavenging Behavior.” Journal of Human Evolution 131: 61–75. doi:10.1016/j.jhevol.2019.03.009.

Organista, E., M. Domínguez-Rodrigo, C.P. Egeland, D. Uribelarra, A. Mabulla, and E. Baquedano. 2016. “Did Homo Erectus Kill A Pelorovis Herd at BK (Olduvai Gorge)? A Taphonomic Study of BK5.” Archaeological and Anthropological Sciences. doi:10.1007/s12520-015-0241-8.

Organista, E., M. Domínguez-Rodrigo, J. Yravedra, D. Uribelarra, M. Carmen Arriaza, M. Cruz Ortega, A. Mabulla, A. Gidna, and E. Baquedano. 2017. “Biotic and Abiotic Processes Affecting the Formation of BK Level 4c (Bed II, Olduvai Gorge) and Their Bearing on Hominin Behaviour at the Site.” Palaeogeography, Palaeoclimatology, Palaeoecology 488: 59–75. doi:10.1016/j.palaeo.2017.03.001.

Ostfeld, R.S., and F. Keesing. 2000. “Pulsed Resources and Community Dynamics of Consumers in Terrestrial Ecosystems.” Trends in Ecology & Evolution 15: 232–237. doi:10.1016/S0169-5347(00)01862-0.

Palombo, M. R., R. Sardella, and M. Novell. 2008. “Carnivora Dispersal in Western Mediterranean during the Last 2.6 Ma.” Quaternary International 179: 176–189. doi:10.1016/j.quaint.2007.08.029.

Panera, J., S. Domínguez Rodrigo Jara Rubio, M. Yravedra, J. Méndez Quintas, A. Pérez González, P. Bello Alonso, A. Mochlán, E. Baquedano, and M. Santonja. 2019. “Assessing Functionality during the Early Acheulean in Level TKSF at Thiongo Korongo Site (Olduvai Gorge, Tanzania).” Quaternary International 526: 77–98. doi:10.1016/j.quaint.2019.09.013.

Pante, M. C. 2013. “The Larger Mammal Fossil Assemblage from JK2, Bed III, Olduvai Gorge, Tanzania: Implications for the Feeding Behavior of Homo Erectus.” Journal of Human Evolution 64 (1): 68–82. doi:10.1016/j.jhevol.2012.10.004.

Pante, M.C., and I. de La Torre. 2018. “A Hidden Treasure of the Lower Pleistocene at Olduvai Gorge, Tanzania: The Leakey HWK EE Assemblage.” Journal of Human Evolution 120: 114–139. doi:10.1016/j.jhevol.2017.06.006.

Pante, M.C., J.K. Njau, B. Hensley-Marschand, T.L. Keevil, C. Martín-Ramos, R.F. Peters, and I. de La Torre. 2018. “The Carnivorous Feeding Behavior of Early Homo at HWK EE, Bed II, Olduvai Gorge, Tanzania.” Journal of Human Evolution 120: 215–235. doi:10.1016/j.jhevol.2017.06.005.

Parkinson, J.A. 2018. “Revisiting the Hunting-versus-scavenging Debate at FLK Zinj: A GIS Spatial Analysis of Bone Surface Modifications Produced by Hominins and Carnivores in the FLK 22 Assemblage, Olduvai Gorge, Tanzania.” Palaeogeography, Palaeoclimatology, Palaeoecology 511: 29–51. doi:10.1016/j.palaeo.2018.06.044.

Pedersen, R.Ø., S. Faurby, and J.C. Svenning. 2017. “Shallow Size–density Relations within Mammal Clades Suggest Greater Intra-guild Ecological Impact of Large-bodied Species.” Journal of Animal Ecology 86: 1205–1213. doi:10.1111/1365-2656.12701.

Pike-Tay, A. 2000. “Comment on ‘The Tortoise and the Hare. Small Game-use, the Broad-spectrum Revolution, and Paleolithic Demography’ (Stiner Et Al. 2000).” Current Anthropology 41 (1): 65–66.

Plummer, T., L. C. Bishop, P. Ditchfield, and J. Hicks. 1999. “Research on Late Pliocene Oldowan Sites at Kanjera South, Kenya.” Journal of Human Evolution 36: 151–170. doi:10.1006/jhev.1998.0256.

Pobiner, B. L., M. J. Rogers, C. M. Monahan, and J. W. K. Harris. 2008. “New Evidence for Hominin Carcass Processing Strategies at 1.5 Ma, Koobi Fora, Kenya.” Journal of Human Evolution 55: 103–130. doi:10.1016/j.jhevol.2008.02.001.

Pontzer, H., D.A. Raichlen, and M.D. Sockol. 2009. “The Metabolic Cost of Walking in Humans, Chimpanzees, and Early Hominins.” Journal of Human Evolution 56: 43–54. doi:10.1016/j.jhevol.2008.09.001.

Potts, R. 1988. Early Hominid Activities at Olduvai. New York: Aldine de Gruyter.
Potts, R., A.K. Behrensmeyer, and P. Ditchfield. 1999. “Paleolandscape Variation and Early Pleistocene Hominid Activities: Members 1 and 7, Olorgesailie Formation, Kenya.” Journal of Human Evolution 37 (5): 747–788. doi:10.1006/jhev.1999.0344.

Preno, L. S. 2012. “Local Extinctions, Connectedness, and Cultural Evolution in Structured Populations.” Advances in Complex Systems 15 (1&2): 1150002. doi:10.1142/S0219525911003268.

Preno, L. S., and S. L. Kuhn. 2010. “Modeling Effects of Local Extinctions on Culture Change and Diversity in the Paleolithic.” PLoS One 5 (12): e15582. doi:10.1371/journal.pone.0015582.

Presnyakova, D. 2019. “Landscape Perspectives on Variability in the Acheulean Behavioural System in sub-Saharan Africa: A View from Koobi Fora and Elandsfontein.” Tesis doctoral, Universität Tübingen.

Read, D., W. and S. A. LeBlanc. 2003. “Population Growth, Carrying Capacity and Conflict.” Current Anthropology 44 (1): 59–85. doi:10.1086/344616.

Rhodes, E. J., J. S. Singarayer, J.-P. Raynal, K. E. Westaway, and F. Z. Sbihi-Alaoui. 2006. “New Age Estimates for the Paleolithic Assemblages and Pleistocene Succession of Casablanca, Morocco.” Quaternary Science Reviews 25: 2569–2585. doi:10.1016/j.quascirev.2005.09.010.

Rivals, F., K.T. Uno, F. Bibi, M.C. Pante, J. Njau, and I. de la Torre. 2018. “Dietary Traits of the Ungulates from the HWK EE Site at Olduvai Gorge (Tanzania): Diachronic Changes and Seasonality.” Journal of Human Evolution 120: 203–214. doi:10.1016/j.jhevol.2017.08.011.

Roche, H., J.-P. Brugal, A. Delagnes, C. Feibel, S. Harmand, M. Kibunia, S. Prat, and P.-J. Texier. 2003. “Les sites archéologiques plio-pliéistocènes de la formation de Nachukui, Ouest-Turkana, Kenya: Bilan synthétique 1997-2001.” Comptes Rendus Palevol 2: 663–673. doi:10.1016/j.crpb.2003.06.001.

Roche, H., J.-P. Brugal, D. Lefèvre, S. Ploux, and P.-J. Texier. 1988. “Isenya: État des recherches sur un nouveau site acheuléen d’Afrique orientale.” African Archaeological Review 6: 27–55. doi:10.1007/BF01117111.

Roche, H., A. Delagnes, J.-P. Brugal, C. Feibel, M. Kibunia, V. Mousse, and P.-J. Texier. 1999. “Early Hominid Stone Tool Production and Technical Skill 2.34 Myr Ago in West Turkana, Kenya.” Nature 399: 57–60. doi:10.1038/19959.

Rossano, M. 2017. “Cognitive Fluidity and Acheulean Over-imitation.” Cambridge Archaeological Journal 27 (3): 495–509. doi:10.1017/S0264817817000208.

Rubio Jara, S., J. Panera, M. Santonja, A. Pérez-González, J. Yravedra, M. Domínguez-Rodrigo, P. Bello, R. Rojas, A. Mabulla, and E. Baquedano. 2017. “Site Function and Lithic Technology in the Acheulean Technocomplex: A Case Study from Thiongo Korongo (TK), Bed II, Olduvai Gorge, Tanzania.” Bores 46: 894–917. doi:10.1111/bor.12275.

Ruff, C.B., and A. Walker. 1993. “Body Size and Body Shape.” In The Nariokotome Homo Erectus Skeleton, edited by A. Walker and R. Leakey, 234–265. Cambridge: Harvard University Press.

Sahnouni, M. 1998. The Lower Paleolithic of the Maghreb. Excavations and Analyses at Ain Hanech, Algeria, Vol. 689. Oxford: BAR International Series.

Sahnouni, M., D. Hadjouis, J. Van der Made, A. e. K. Derradjj, A. Canals, M. Medig, H. Belahrech, Z. Harichane, and M. Rabhi. 2002. “Further Research at the Oldowan Site of Ain Hanech, North-eastern Algeria.” Journal of Human Evolution 43: 925–937. doi:10.1006/jhev.2002.0608.

Sahnouni, M., J. Rosell, J. van der Made, J. M. Vergès, A. Ollé, N. Kandi, Z. Harichane, A. Derradjj, and M. Medig. 2013a. “The First Evidence of Cut Marks and Usewear Traces from the Plio-Pleistocene Locality of El-Kherba (Ain Hanech), Algeria: Implications for Early Hominin Subsistence Activities Circa 1.8 Ma.” Journal of Human Evolution 64 (2): 137–150. doi:10.1016/j.jhevol.2012.10.007.

Sahnouni, M., S. Semaw, and M. Rogers. 2013b. “The African Acheulean.” In The Oxford Handbook of African Archaeology, edited by P. Mitchell, and P. Lane, 307–323. Oxford: Oxford University Press. doi:10.1093/oxfordhb/9780199569885.013.0022.

Sahnouni, M., J. Y. Van Der Made, and M. Everett. 2011. “Ecological Background to Plio-Pleistocene Hominin Occupation in North Africa: The Vertebrate Faunas from Ain Boucherit, Ain Hanech and El-Kherba, and Paleosol Stable-carbon Isotope Studies from El-Kherba, Algeria.” Quaternary Science Reviews 30: 1303–1317. doi:10.1016/j.quascirev.2010.01.002.

Sánchez-Yustos, P., F. Diez-Martin, I.M. Díaz, J. Duque, C. Fraile, and M. Domínguez-Rodrigo. 2015. “Production and Use of Percussive Stone Tools in the Early Stone Age: Experimental Approach to the Lithic Record of Olduvai Gorge, Tanzania.” Journal of Archaeological Science: Reports 2: 367–383. doi:10.1016/j.jasrep.2015.03.005.
Sánchez-Yustos, P., F. Diez-Martín, M. Domínguez-Rodrigo, J. Duque, C. Fraile, E. Baquedano, and A. Mabulla. 2017. “Diversity and Significance of Core Preparation in the Developed Oldowan Technology: Reconstructing the Flaking Processes at SHK and BK (Middle-upper Bed II, Olduvai Gorge, Tanzania).” *Boreas* 46 (4): 874–893. doi:10.1111/bor.12237.

Sánchez-Yustos, P., F. Diez-Martín, M. Domínguez-Rodrigo, C. Fraile, J. Duque, D. Uribe Ibarra, A. Mabulla, and E. Baquedano. 2016. “Techno-economic Human Behavior in a Context of Recurrent Megafaunal Exploitation at 1.3 Ma. Evidence from BK4b (Upper Bed II, Olduvai Gorge, Tanzania).” *Journal of Archaeological Science: Reports* 9: 386–404. doi:10.1016/j.jasrep.2016.08.019.

Sandom, C., L. Dalby, C. Fløjgaard, W.D. Kissling, J. Lenoir, and B. Sandel, K. Trojeelsgaard, R. Ejræs, J.-C. Svenning. 2013. “Mammal Predator and Prey Species Richness are Strongly Linked at Macroscales.” *Ecology* 94: 1112–1122. doi:10.1890/12-1342.1.

Schick, K. D., and J. D. Clark. 2003. “Biface Technological Development and Variability in the Acheulean Industrial Complex in the Middle Awash Region of the Afar Rift, Ethiopia.” In *Multiple Approaches to the Study of Bifacial Technologies*, edited by En M. Soressi and H. L. Dibble, 1–30. Philadelphia: University of Pennsylvania Museum of Archaeology and Anthropology.

Schick, K., and N. Toth. 1993. *Making Silent Stones Speak*. London: Phoenix.

Schick, K. D., and N. Toth. 2017. “Acheulean Industries of the Early and Middle Pleistocene, Middle Awash, Ethiopia.” *L’Anthropologie* 121: 451–491. doi:10.1016/j.anthro.2017.10.009.

Semaw, S., P. Renne, J. W. K. Harris, C. S. Feibel, R. Bernor, N. Fesseha, and K. Mowbray. 1997. “2.5-million-year-old Stone Tools from Gona, Ethiopia.” *Nature* 385: 333–336. doi:10.1038/385333a0.

Semaw, S., M. J. Rogers, I. Cáceres, D. Stout, and A. C. Leiss. 2018. “The Early Acheulean ~1.6–1.2 Ma from Gona, Ethiopia: Issues Related to the Emergence of the Acheulean in Africa.” In *The Emergence of the Acheulean in East Africa and Beyond: Contributions in Honor of Jean Chavaillon*, edited by R. Gallotti, and M. Mussi, 115–128. Cham: Vertebrate Paleobiology and Paleanthropology, Springer.

Semaw, S., M. J. Rogers, S. W. Simpson, N. E. Levin, H. Quade, N. Dunbar, W. C. McIntosh, et al. 2020. “Co-occurrence of Acheulean and Oldowan Artifacts with Homo Erectus Cranial Fossils from Gona, Afar, Ethiopia.” *Science Advances* 6: eaaw4694. doi:10.1126/sciadv.aaw4694.

Semaw, S., M.J. Rogers, and D. Stout. 2009. “The Oldowan-Acheulean Transition: Is There a “Developed Oldowan” Artifact Tradition?” In *Sourcebook of Paleolithic Transitions: Methods, Theories, and Interpretations*, edited by M. Camps and P. Chauchan, 173–193. New York: Springer.

Sept, J.M. 1994. “Bone Distribution in a Semi-arid Riverine Habitat in Eastern Zaire: Implications for the Interpretation of Faunal Assemblages at Early Archaeological Sites.” *Journal of Archaeological Science* 21: 217–235. doi:10.1016/j.jasc.1994.10.233.

Shaar, R., A. Matmon, L.K. Horwitz, Y. Ebert, M. Chazan, M. Arnold, G. Aumaitre, D. Bourlès, and K. Keddamouche. 2021. “Magnetostatigraphic and Cosmogenic Dating of Wonderwerk Cave: New Constraints for the Chronology of the South African Earlier Stone Age.” *Quaternary Science Reviews* 259: 106907. doi:10.1016/j.quascirev.2021.106907.

Shennan, S. 2008. “Evolution in Archaeology.” *Annual Review of Anthropology* 37: 75–91. doi:10.1146/annurev.anth.37.081407.085153.

Shennan, S. 2009. *Pattern and Process in Cultural Evolution*. Berkeley: University of California Press.

Shipton, C. 2010. “Imitation and Shared Intentionality in the Acheulean.” *Cambridge Archaeological Journal* 20: 197–210. doi:10.1017/S0959774310000235.

Shipton, C. 2011. “Taphonomy and Behaviour at the Acheulean Site of Kariandusi, Kenya.” *African Archaeological Review* 28 (2): 141–155. doi:10.1007/s10437-011-9089-1.

Shultz, S., E. Nelson, and R. I. M. Dunbar. 2012. “Hominin Cognitive Evolution: Identifying Patterns and Processes in the Fossil and Archaeological Record.” *Philosophical Transactions of the Royal Society B: Biological Sciences* 367: 2130–2140. doi:10.1098/rstb.2012.0115.

Sinclair, A.R.E. 1975. “The Resource Limitation of Trophic Levels in Tropical Grassland Ecosystems.” *Journal of Animal Ecology* 44: 497–520. doi:10.2307/3608.

Sinclair, A, S Mduma, and J. Brashares. 2003. “Patterns of Predation in a Diverse Predator-prey System.” *Nature* 425: 288–290. doi:10.1038/nature01934.

Smith, E.A. 1985. “Inuit Foraging Groups: Some Simple Models Incorporating Conflicts of Interest, Relatedness, and Central-place Sharing.” *Ethology and Sociobiology* 6: 27–47. doi:10.1016/0162-3095(85)90039-1.

Speth, J.D. 1983. *Bison Kills and Bone Counts*. Chicago: University of Chicago Press.
Speth, J.D. 1987. “Early Hominid Subsistence Strategies in Seasonal Habitats.” *Journal of Archaeological Science* 14: 13–29. doi:10.1016/S0305-4403(87)80003-1.

Speth, J.D. 2010. *The Paleoanthropology and Archaeology of Big-game Hunting: Protein, Fat or Politics?* New York: Springer.

Speth, J.D., and D.D. Davis. 1976. “Seasonal Variability in Early Hominid Predation.” *Science* 192: 441–445. doi:10.1126/science.192.4238.441.

Spikins, P. 2012. “Goodwill Hunting? Debates over the ‘Meaning’ of Lower Palaeolithic Handaxe Form Revisited.” *World Archaeology* 44 (3): 378–392. doi:10.1080/00438243.2012.725889.

Spoor, F., B. Wood, and F. Zonneveld. 1994. “Implications of Early Hominid Labyrinthine Morphology for Evolution of Human Bipedal Locomotion.” *Nature* 369 (6482): 645–648. doi:10.1038/369645a0.

Stade, C. M., and C. Gamble. 2019. “In Three Minds: Extending Cognitive Archaeology with the Social Brain.” In *Squeezing Minds from Stones: Cognitive Archaeology and the Evolution of the Human Mind*, edited by K. A. Overmann, and F. L. Coolidge. 319–331. Oxford: Oxford University Press.

Steudel-Numbers, K. L. 2006. “Energetics in *Homo Erectus* and Other Early Hominins: The Consequences of Increased Lower-limb Length.” *Journal of Human Evolution* 51 (5): 445–453. doi:10.1016/j.jhevol.2006.05.001.

Steudel-Numbers, K.L., and M.J. Tilkens. 2004. “The Effect of Lower Limb Length on the Energetic Cost of Locomotion: Implications for Fossil Hominins.” *Journal of Human Evolution* 47: 95–109. doi:10.1016/j.jhevol.2004.06.002.

Stewart, K.M. 1994. “Early Hominid Utilisation of Fish Resources and Implications for Seasonality and Behaviour.” *Journal of Human Evolution* 27: 229–245. doi:10.1006/jhev.1994.1044.

Stiner, M.C. 2013. “An Unshakable Middle Paleolithic? Trends versus Conservatism in the Predatory Niche and Their Social Ramifications.” *Current Anthropology* 54: S288–S304. doi:10.1086/673285.

Surovell, T., N. Waguespack, and P.J. Brantingham. 2005. “Global Archaeological Evidence for Proboscidean Overkill.” *Proceedings of the National Academy of Sciences* 102: 6231–6236. doi:10.1073/pnas.0501947102.

Swedell, L., and T. Plummer. 2012. “A Papionin Multilevel Society as A Model for Hominin Social Evolution.” *International Journal of Primatology* 33 (5): 1165–1193. doi:10.1007/s10764-012-9600-9.

Tappen, M. 1995. “Savanna Ecology and Natural Bone Deposition: Implications for Early Hominid Site Formation, Hunting and Scavenging.” *Current Anthropology* 36: 223–260. doi:10.1086/204353.

Texier, P. J. 1995. “The Oldowan Assemblage from NY 18 Site at Nyabusosi (Toro-uganda).” *Comptes rendus de l’Académie des Sciences Paris* 320 (Ila): 647–653.

Tillman, D. 1982. *Resource Competition and Community Structure*. Princeton: Princeton Univ. Press.

Tomasello, M., A. P. Melis, C. Tennie, E. Wyman, and E. Herrmann. 2012. “Two Key Steps in the Evolution of Human Cooperation: The Interdependence Hypothesis.” *Current Anthropology* 53 (6): 673–692. doi:10.1086/668207.

Turner, A. 1990. “The Evolution of the Guild of Larger Terrestrial Carnivores in the Plio-Pleistocene of Africa.” *Geobios* 23: 349–368. doi:10.1016/1666-6995(90)80006-2.

Uribelarrea del Val, D., and M. Dominguez-Rodrigo. 2017. “Geoarchaeology in A Meandering River: A Study of the BK Site (1.35ma), Upper Bed II, Olduvai Gorge (Tanzania).” *Palaeogeography, Palaeoclimatology, Palaeoecology* 488: 76–83. doi:10.1016/j.palaeo.2017.05.006.

van Baalen, M., and D. A. Rand. 1998. “The Unit of Selection in Viscous Populations and the Evolution of Altruism.” *Journal of Theoretical Biology* 193: 631–648. doi:10.1006/jtbi.1998.0730.

Van Heerden, A. M., 2018. Profiling the meat quality of blue wildebeest (*Connochaetes taurinus*). MSc in Animal Sciences thesis, Stellenbosch University.

Walker, A., and R. Leaky, Eds. 1993. *The Nariokotome Homo Erectus Skeleton*. Berlin: Springer-Verlag.

Walker, A., and P. Shipman. 1989. “The Costs of Becoming a Predator.” *Journal of Human Evolution* 18: 373–392. doi:10.1016/0047-2484(89)90037-7.

Werdelin, L., and M. E. Lewis. 2005. “Plio-Pleistocene Carnivora of Eastern Africa: Species Richness and Turnover Patterns.” *Zoological Journal of the Linnean Society* 144 (2): 121–144. doi:10.1111/j.1096-3642.2005.00165.x.

Werdelin, L., and M. E. Lewis. 2013. “Temporal Change in Functional Richness and Evenness in the Eastern African Plio-Pleistocene Carnivoran Guild.” *PLoS ONE* 8 (3): e57944. doi:10.1371/journal.pone.0057944.
Winterhalder, B. 1986. “Optimal Foraging: Simulation Studies of Diet Choice in a Stochastic Environment.” *Journal of Ethnobiology* 6: 205–223.

Winterhalder, B., W. Baillargeon, F. Cappelletto, R. Daniel Jr., and C. Prescott. 1988. “The Population Ecology of Hunter-gatherers and Their Prey.” *Journal of Anthropological Archaeology* 7: 289–328. doi:10.1016/0278-4165(88)90001-3.

Winterhalder, B., and E. A. Smith. 2000. “Analysing Adaptive Strategies: Human Behavioural Ecology at Twenty-five.” *Evolutionary Anthropology* 9 (2): 51–72.

Wrangham, R., J. Holland Jones, G. Laden, D. Pilbeam, and N. L. Conklin-Brittain. 1999. “The Raw and the Stolen: Cooking and the Ecology of Human Origins.” *Current Anthropology* 40: 567–594. doi:10.1086/300083.

Yravedra, J., F. Díez-Martín, C. P. Egeland, M. Á. Maté-González, J. F. Palomeque-González, M. C. Arriaza, J. Aramendi, et al. 2017a. “FLK West (Lower Bed II, Olduvai Gorge, Tanzania): A New Early Acheulean Site with Evidence for Human Exploitation of Fauna.” *Boreas* 46 (4): 816–830. doi:10.1111/bor.12243.

Yravedra, J., M. Domínguez-Rodrigo, M. Santonja, S. Rubio-Jara, J. Panera, A. Pérez-González, D. Uribelarrea, C. Egeland, A. Mabulla, and E. Baquedano. 2016. “The Large Mammal Palimpsest from TK (Thiongo Korongo), Bed II Olduvai Gorge, Tanzania.” *Quaternary International* 417: 3–15. doi:10.1016/j.quaint.2015.04.013.

Yravedra, J., D. M. Martín-Perea, F. Díez-Martín, M. S. Domingo, M. C. Arriaza, E. Organista, J. Aramendi, R. Barba, E. Baquedano, and M. Domínguez-Rodrigo. 2019a. “Level U3.1, A New Archaeological Level Discovered at BK (Upper Bed II, Olduvai Gorge) with Evidence of Megafaunal Exploitation.” *Journal of African Earth Sciences* 158: 103545. doi:10.1016/j.jafrearsci.2019.103545.

Yravedra, J., M. Á. Maté-González, L. A. Courtenay, P. López-Cisneros, V. Estaca-Gómez, J. Aramendi, M. de Andrés-herrero, G. Linares-Matás, D. G. Aguilera, and D. Álvarez-Alonso. 2019b. “Approaching Raw Material Functionality in the Upper Magdalenian of Coimbre Cave (Asturias, Spain) through Geometric Morphometrics.” *Quaternary International* 517: 97–106. doi:10.1016/j.quaint.2019.01.008.

Yravedra, J., M. Á. Maté-González, J. F. Palomeque-González, J. Aramendi, V. Estaca-Gómez, M. S. J. Blazquez, E. G. Vargas, et al. 2017b. “A New Approach to Raw Material Use in the Exploitation of Animal Carcasses at BK (Upper Bed II, Olduvai Gorge, Tanzania): A Micro-photogrammetric and Geometric Morphometric Analysis of Fossil Cut Marks.” *Boreas* 46 (4): 860–873. doi:10.1111/bor.12224.

Yravedra, J., S. Rubio Jara, L. Courtenay, and J. A. Martos. 2020. “Mammal Butchery by *Homo Erectus* at the Lower Pleistocene Acheulean Site of Juma’s Korongo 2 (JK2), Bed III, Olduvai Gorge, Tanzania.” *Quaternary Science Reviews* 249: 106612. doi:10.1016/j.quascirev.2020.106612.

Yravedra, J., J.A. Solano, L.A. Courtenay, J. Saarinen, G. Linares-Matás, C. Luzón, A. Serrano-Ramos, et al. 2021. “Use of Meat Resources in the Early Pleistocene Assemblages from Fuente Nueva 3 (Orce, Granada, Spain).” *Archaeological and Anthropological Sciences* 13: 213. doi:10.1007/s12520-021-01461-7.