Addressing R_K and neutrino mixing in a class of $U(1)_X$ models

Disha Bhatia, Sabyasachi Chakraborty and Amol Dighe

November 29, 2016
Experimental anomalies and Global fits interpretation

$b \rightarrow s\ell\ell$ anomalies at LHCb:

\[
R_K = \frac{BR(B^+ \rightarrow K^+\mu\mu)}{BR(B^+ \rightarrow K^+ee)} = 0.745^{+0.090}_{-0.074} \pm 0.036 \text{ for } q^2 \in [1, 6] \text{GeV}^2.
\]

SM prediction : $1 \pm 0.001 \Rightarrow \text{Lepton flavour non-universality}$

- P'_{5} for $B \rightarrow K^*\mu\mu$

Global fits : Simultaneous explanation if NP in vector-axial operators

\[
\mathcal{O}_9^\ell = \bar{b}\gamma_\mu P_L s \bar{\ell} \gamma^\mu \ell, \quad \mathcal{O}_{10}^\ell = \bar{b}\gamma_\mu P_L s \bar{\ell} \gamma^\mu \gamma_5 \ell,
\]

\[
\mathcal{O}'_9^\ell = \bar{b}\gamma_\mu P_R s \bar{\ell} \gamma^\mu \ell, \quad \mathcal{O}'_{10}^\ell = \bar{b}\gamma_\mu P_R s \bar{\ell} \gamma^\mu \gamma_5 \ell.
\]
2-D global fits in \((C_{9}^{NP,\mu}, C_{9}^{NP,e})\), \((C_{9}^{NP,\mu}, C_{10}^{NP,\mu})\) and \((C_{9}^{NP,\mu}, C_{9}^{\prime,\mu})\)

- \(\chi^2\) for \((C_{9}^{NP,\mu}, C_{9}^{NP,e})\) better
- \(C_{9}^{NP,e} \neq 0\) allowed within 2\(\sigma\)
Model building by taking RK anomaly at face value

- Introduce NP in O_9^μ and O_9^e using Z' of a $U(1)_X$ symmetry.
 - $R_K \Rightarrow$ diff X-charges for e and μ
 - dominant Z' effects \Rightarrow unequal X-charges for d-type quarks.

- Explain neutrino-mixings simultaneously with flavour $b \rightarrow s$ anomalies.

- X-charges of SM fermions:

Quarks	Q_1	u_R	d_R	Q_2	c_R	s_R	Q_3	t_R	b_R
$U(1)_X$	x_{1L}	x_{1uR}	x_{1dR}	x_{2L}	x_{2cR}	x_{2sR}	x_{3L}	x_{3tR}	x_{3bR}

Leptons	L_1	e_R	L_2	μ_R	L_3	τ_R
$U(1)_X$	y_{1L}	y_{1eR}	y_{2L}	$y_{2\mu_R}$	y_{3L}	$y_{3\tau_R}$

- X-charge of $\Phi_{SM} = a\Phi_{SM}$
Model building by taking RK anomaly at face value continued ...

- X-charges are determined in a **bottom-up** approach (the importance stated in Camalich’s talk) using constraints from:

 - Anomaly free $U(1)_X$.
 - $K - \overline{K}$.
 - V_{ckm}.
 - Global fits: Vanishing of $C_{9,\ell}^{'}, C_{10,\ell}^{NP}$.
 - m_A.
 - Allowed neutrino textures.
Introducing 3 ν_R + assigning vector-like charges, i.e. $x_{1L} = x_{1uR} = x_{1dR} = x_1$

- \Rightarrow anomaly free $U(1)_X$,
- \Rightarrow X charge of Φ_{SM} zero,
- $\Rightarrow C_{10}^\ell = 0$.

Equal X-charge of first two generation, i.e. $x_1 = x_2$

- \Rightarrow relaxed K–\bar{K} constraint
- but V_{ckm} in 1-2 sector: solved by adding Φ_{NP} with X-charge, $x_1 - x_3$.

$V_{dR} \approx 1 \Rightarrow C'^{NP,\ell}_{9,10} = 0$: achieved with Φ_{NP}

Introduce scalar singlet, S, charged under $U(1)_X$

- \Rightarrow masses to Z', ν_R's
- \Rightarrow generates U_{PMNS}
- \Rightarrow prevents $m_A \neq 0$.

Fields	Q_1	Q_2	Q_3	L_1	L_2	L_3	Φ_{SM}	Φ_{NP}	S
$U(1)_X$	x_1	x_2	x_3	x_1-uR	x_1-dR	x_1	x_1-uR	x_1-dR	x_1

$D.\ Bhatia,\ S.\ Chakraborty\ and\ A.\ Dighe$
Constructing the $U(1)_X$ Model

- Introducing 3 ν_R + assigning vector-like charges, i.e. $x_{1L} = x_{1uR} = x_{1dR} = x_1$
 - \Rightarrow anomaly free $U(1)_X$,
 - \Rightarrow X charge of Φ_{SM} zero,
 - $\Rightarrow C_{10}^{NP,\ell} = 0$.

- equal X-charge of first two generation, i.e. $x_1 = x_2$
 - \Rightarrow relaxed $K-\bar{K}$ constraint
 - but $V_{c_{km}}$ in 1-2 sector : solved by adding Φ_{NP} with X-charge, $x_1 - x_3$.

- $V_{dR} \approx 1$ $\Rightarrow C_{9,10}^{NP,\ell} = 0$: achieved with Φ_{NP}

- Introduce scalar singlet, S, charged under $U(1)_X$
 - \Rightarrow masses to Z', ν_R's
 - \Rightarrow generates U_{PMNS}
 - \Rightarrow prevents $m_A \neq 0$.

Fields	Q_1	Q_2	Q_3	L_1	L_2	L_3	ν_R	Φ_{NP}	S
$U(1)_X$	x_1	$x_1 - x_3$	$K \rightarrow \bar{K}$						
Constructing the $U(1)_X$ Model

- Introducing 3 ν_R + assigning vector-like charges, i.e.
 \[x_{1L} = x_{1uR} = x_{1dR} = x_1 \]
 - \Rightarrow anomaly free $U(1)_X$,
 - \Rightarrow X charge of Φ_{SM} zero,
 - $\Rightarrow C_{10}^{NP,\ell} = 0$.

- Equal X-charge of first two generation, i.e. $x_1 = x_2$
 - \Rightarrow relaxed K–\overline{K} constraint
 - but V_{ckm} in 1-2 sector : solved by adding Φ_{NP} with X-charge, $x_1 - x_3$.

- $V_{dR} \approx 1 \Rightarrow C_{9,10}^{NP,\ell} = 0$: achieved with Φ_{NP}

- Introduce scalar singlet, S, charged under $U(1)_X$
 - \Rightarrow masses to Z', ν_R's
 - \Rightarrow generates U_{PMNS}
 - \Rightarrow prevents $m_A \neq 0$.

- Fields Q_1, Q_2, Q_3, L_1, L_2, L_3, ν_{SM}, Φ_{NP}, S
Constructing the $U(1)_X$ Model

- Introducing $3 \nu_R +$ assigning vector-like charges, i.e.
 \[x_{1L} = x_{1uR} = x_{1dR} = x_1 \]
 \[\Rightarrow \text{anomaly free } U(1)_X, \]
 \[\Rightarrow X \text{ charge of } \Phi_{\text{SM}} \text{ zero}, \]
 \[\Rightarrow C_{10}^{\text{NP}, \ell} = 0. \]

- Equal X-charge of first two generation, i.e. $x_1 = x_2$
 \[\Rightarrow \text{relaxed } K \rightarrow \bar{K} \text{ constraint} \]
 \[\text{but } V_{c_{km}} \text{ in 1-2 sector: solved by adding } \Phi_{\text{NP}} \text{ with } X \text{-charge, } x_1 - x_3. \]
 \[V_{dR} \approx 1 \Rightarrow C_{9,10}^{\text{NP}, \ell} = 0 : \text{achieved with } \Phi_{\text{NP}} \]

- Introduce scalar singlet, S, charged under $U(1)_X$
 \[\Rightarrow \text{masses to } Z', \nu_R's \]
 \[\Rightarrow \text{generates } U_{\text{PMNS}} \]
 \[\Rightarrow \text{prevents } m_A \neq 0. \]

Fields	Q_1	Q_2	Q_3	L_1	L_2	L_3	Φ_{SM}	Φ_{NP}	S
$U(1)_X$	x_1	x_1	x_3	y_1	y_2	y_3	0	$x_1 - x_3$	$x_1 - x_3$
Constructing the $U(1)_X$ Model

- Introducing 3 ν_R + assigning vector-like charges, i.e.
 $$x_{1L} = x_{1uR} = x_{1dR} = x_1$$
 - \Rightarrow anomaly free $U(1)_X$,
 - \Rightarrow X charge of Φ_{SM} zero,
 - $\Rightarrow C^{NP,\ell}_{10} = 0$.

- Equal X-charge of first two generation, i.e. $x_1 = x_2$
 - \Rightarrow relaxed $K-K$ constraint
 - but V_{ckm} in 1-2 sector: solved by adding Φ_{NP} with X-charge, $x_1 - x_3$.

- $V_{dR} \approx 1$ $\Rightarrow C^{NP,\ell}_{9,10} = 0$: achieved with Φ_{NP}

- Introduce scalar singlet, S, charged under $U(1)_X$
 - \Rightarrow masses to Z', ν_R's
 - \Rightarrow generates U_{PMNS}
 - \Rightarrow prevents $m_A \neq 0$.

Fields	Q_1	Q_2	Q_3	L_1	L_2	L_3	Φ_{SM}	Φ_{NP}	S
$U(1)_X$	x_1	x_1	x_3	y_1	y_2	y_3	0	$x_1 - x_3$	$x_1 - x_3$
Plot:
allowed symmetries in lepton sector with at most two-zeros in M_R (in presence of S)
+ Global fit contours in (C_9^μ, C_9^e)

Select: pass $1\sigma + C_9^{NP,e,\mu} \neq 0$.

Selected combinations (6):

Type-A = $L_e - 3L_\mu \pm L_\tau$.
Type-B = $L_e - L_\mu \pm 3L_\tau$,
$\quad L_e - L_\mu \pm L_\tau$.

Determine X-charges of quarks using $U(1)_X$ anomaly condition

Figure: τ charge suppressed.
Constructing the $U(1)_X$ Model continued ...

Selecting neutrino textures in accordance with global fit

- **Plot:**
 allowed symmetries in lepton sector with atmost two-zeros in M_R
 (in presence of S)
 + Global fit contours in (C^μ_9, C^e_9)

- **Select:** pass $1\sigma + C^{NP,e,\mu}_9 \neq 0$.

- **Selected combinations (6):**

 - **Type-A** = $Le - 3L_\mu \pm L_\tau$.
 - **Type-B** = $Le - L_\mu \pm 3L_\tau$,
 $Le - L_\mu \pm L_\tau$.

- Determine X-charges of quarks using $U(1)_X$ anomaly condition

Figure: τ charge suppressed.
Combined flavour constraints from neutral meson mixings and global fits

Type	Allowed at 1σ	Disallowed at 1σ
A	0.10 0.15 0.20 0.25 0.30 0.35	
B	0.10 0.15 0.20 0.25 0.30 0.35	

$M_{Z'} (GeV)$ vs g_X

Type-A
- Accepted

Type-B
- Disallowed at 1σ

- $B_s - \overline{B_s}$
- Global fit
- 2σ reach

Type-B: no 1σ overlap between $(B_s - \overline{B_s})$ and global fit: disregarded

Type-A: Accepted
Subjecting Type-A symmetries to direct production Z' bounds from colliders

Collider bounds from: $\sigma(pp \rightarrow Z' \rightarrow \mu\mu)$

Bounds from flavour(B_s-$\overline{B_s}$), global fit and collider: Substantial overlap
R_K predictions for Type-A symmetries

Figure: $g_X = 0.2$
Detection of Z' in $\mu\mu$ channel:

Figure: Schematic for signal access over background for di-muon events

Figure: Significance for detecting Z' with $g_X = 0.2$
Summarizing

- Two symmetry combinations: $L_e - 3L_\mu \pm L_\tau$ pass all the constraints.

- Additional particles introduced: Z', Φ_{NP}, S and 3 ν_R's.

- Possible to probe $L_e - 3L_\mu + L_\tau$ at 3σ with ~ 60 fb$^{-1}$ luminosity: $M_{Z'} = 3800$ GeV and $g_X = 0.2$.