ON NON-ADMISSIBLE IRREDUCIBLE MODULO p REPRESENTATIONS OF $GL_2(\mathbb{Q}_{p^2})$

EKNATH GHATE AND MIHIR SHETH

Abstract. We use a Diamond diagram attached to a 2-dimensional reducible split mod p Galois representation of $\text{Gal}(\mathbb{Q}_p/\mathbb{Q}_{p^2})$ to construct a non-admissible smooth irreducible mod p representation of $GL_2(\mathbb{Q}_{p^2})$ following the approach of Daniel Le.

Contents

1. Introduction 1
2. Reducible Diamond diagram 2
3. The infinite dimensional diagram and the construction 3
References 6

1. Introduction

Let p be a prime number, \mathbb{Q}_p be the field of p-adic numbers, and $\overline{\mathbb{F}}_p$ be the algebraic closure of the finite field \mathbb{F}_p of cardinality p. The study of the admissibility of smooth irreducible representations of connected reductive p-adic groups goes back to Harish-Chandra ([HC70]). Building upon his work, Jacquet proved that every such representation over the field of complex numbers is admissible ([Jac75], see also Bernstein [Ber74]). This result was extended by Vignéras to smooth irreducible representations over any algebraically closed field of characteristic not equal to p ([Vig96]). It is also known that every smooth irreducible representation of $GL_2(\mathbb{Q}_p)$ over \mathbb{F}_p is admissible (see Berger [Ber12]). Let \mathbb{Q}_{p^2} be the unramified extension of \mathbb{Q}_p of degree 2. In this paper, we establish the existence of a non-admissible smooth irreducible $\overline{\mathbb{F}}_p$-linear representation of $GL_2(\mathbb{Q}_{p^2})$, for $p > 2$, following the approach of Daniel Le ([Le19]). Our result supports the viewpoint of Breuil and Paškūnas that the mod p (and p-adic) representation theory of $GL_2(\mathbb{Q}_{p^2})$ is more complicated than that of $GL_2(\mathbb{Q}_p)$ ([BP12], see also Schraen [Sch15]).

Let $G = GL_2(\mathbb{Q}_{p^2})$, $K = GL_2(\mathbb{Z}_{p^2})$, and $\Gamma = GL_2(\mathbb{F}_{p^2})$, where \mathbb{Z}_{p^2} is the ring of integers of \mathbb{Q}_{p^2} with residue field \mathbb{F}_{p^2}. Fix an embedding $\mathbb{F}_{p^2} \hookrightarrow \overline{\mathbb{F}}_p$. Let I and I_1 denote the Iwahori and the pro-p Iwahori subgroups of K respectively, and K_1 denote the first principal congruence subgroup of K. Write N for the normalizer of I (and of I_1) in G. As a group, N is generated by I, the center Z of G, and by the element $\Pi = \begin{pmatrix} 0 & 1 \\ p & 0 \end{pmatrix}$. All representations

2010 Mathematics Subject Classification. 22E50, 11S37.
considered in this paper from now on are over $\overline{\mathbb{F}}_p$-vector spaces. For a character χ of I, χ^* denotes its Π-conjugate sending g in I to $\chi(\Pi g \Pi^{-1})$.

A weight is a smooth irreducible representation of K. The K-action on such a representation factors through Γ and thus any weight is described by a 2-tuple $(r_0, r_1) \otimes \det^m := \text{Sym}^r_0 \mathbb{F}_p^2 \otimes (\text{Sym}^r_1 \mathbb{F}_p^2)_{\text{Prob}} \otimes \det^m$ of integers with $0 \leq r_0, r_1 \leq p - 1$ together with a determinant twist for some $0 \leq m < p^2 - 1$ ([Bre07], Lemma 2.16 and Proposition 2.17). Given a weight σ, its subspace σ^{I_1} of I_1-invariants has dimension 1. If χ_σ denotes the corresponding smooth character of I, then there exists a unique weight σ^* such that $\chi_{\sigma^*} = \chi_\sigma^*$ ([Pas04], Theorem 3.1.1).

A basic 0-diagram is a triplet (D_0, D_1, r) consisting of a smooth KZ-representation D_0, a smooth N-representation D_1 and an IZ-equivariant isomorphism $r : D_1 \xrightarrow{\sim} D_0^1$ with the trivial action of p on D_0 and D_1. Given such a diagram such that $D_0^{K_1}$ has finite dimension, the smooth injective K-envelope inj_KD_0 admits a non-canonical N-action which glues together with the K-action to give a smooth G-action on inj_KD_0 ([BP12], Theorem 9.8). The G-subrepresentation of inj_KD_0 generated by D_0 is smooth admissible and its K-socle equals the K-socle soc_KD_0 of D_0.

From now on, assume that p is odd. Let $\rho : \text{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p^2) \to GL_2(\overline{\mathbb{F}}_p)$ be a continuous generic Galois representation such that p acts trivially on its determinant and $D(\rho)$ be the set of weights, called Diamond weights, associated to ρ as described in [BP12], Section 11. Breuil and Paškūnas attach a family of basic 0-diagrams $(D_0(\rho), D_1(\rho), r)$, called Diamond diagrams, to ρ such that $\text{soc}_KD_0(\rho) = \bigoplus_{\sigma \in D(\rho)} \sigma$ ([BP12], Theorem 13.8).

For a finite unramified extension F of \mathbb{Q}_p of degree at least 3, Le uses a Diamond diagram attached to an irreducible $\rho : \text{Gal}(\overline{\mathbb{Q}}_p/F) \to GL_2(\overline{\mathbb{F}}_p)$ to construct an infinite dimensional smooth irreducible representation of $GL_2(F)$ ([Le19]). His strategy does not work for a Diamond diagram attached to an irreducible Galois representation of $\text{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p^2)$ because such a diagram does not have suitable Π-action dynamics. However, for $F = \mathbb{Q}_p^2$, we observe that a Diamond diagram attached to a reducible split ρ has an indecomposable subdiagram with suitable Π-action dynamics so that Le’s method can be used to obtain a non-admissible irreducible representation of $G = GL_2(\mathbb{Q}_p^2)$.

Acknowledgments. We thank Daniel Le and Sandeep Varma for useful comments on earlier versions of this paper. The second author also thanks Anand Chitrao for helpful discussions on diagrams.

2. Reducible Diamond diagram

Let ω_2 be Serre’s fundamental character of level 2 for the fixed embedding $\mathbb{F}_p^2 \hookrightarrow \overline{\mathbb{F}}_p$, and let $\rho : \text{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p^2) \to GL_2(\overline{\mathbb{F}}_p)$ be a continuous reducible split generic Galois representation. The restriction of ρ to the inertia subgroup is, up to a twist by some character, isomorphic to

\[
\begin{pmatrix}
\omega_2^{ro_1+1+(r_1+1)p} & 0 \\
0 & 1
\end{pmatrix}
\]
for some $0 \leq r_0, r_1 \leq p - 3$, not both equal to 0 or equal to $p - 3$ ([Bre07], Corollary 2.9 (i) and [BP12], Definition 11.7 (i)). Define the weight

$$\sigma := (r_0 + 1, p - 2 - r_1) \otimes \det^{p - 1 + r_1 p}.$$

Then the set of Diamond weights for ρ is given by

$$\mathcal{D}(\rho) = \{(r_0, r_1), \sigma, \sigma^s, (p - 3 - r_0, p - 3 - r_1) \otimes \det^{r_0 + 1 + (r_1 + 1)p}\}$$

([BP12], Lemma 11.2 or Section 16, Example (ii)). Fix a Diamond diagram $(D_0(\rho), D_1(\rho), r)$ attached to ρ, and identify $D_1(\rho)$ with $D_0(\rho)^{\Pi_1}$ as IZ-representations via r. There is a direct sum decomposition $D_0(\rho) = \bigoplus_{\nu \in D(\rho)} D_{0, \nu}(\rho)$ of K-representations with $\soc K D_{0, \nu}(\rho) = \nu$ ([BP12], Proposition 13.4).

Now define

$$D_0 := D_{0, \sigma}(\rho) \oplus D_{0, \sigma^s}(\rho) \text{ and } D_1 := D_0^{\Pi_1}.$$

It follows from [BP12], Theorem 15.4 (ii) that (D_0, D_1, r) is an indecomposable subdiagram of $(D_0(\rho), D_1(\rho), r)$. Set

$$\tau := (r_0 + 2, r_1) \otimes \det^{p - 2 + (p - 1)p} \text{ and } \tau' := (p - 1 - r_0, p - 3 - r_1) \otimes \det^{r_0 + (r_1 + 1)p}.$$

The graded pieces of the socle filtrations of $D_{0, \sigma}(\rho)$ and $D_{0, \sigma^s}(\rho)$ are as follows ([BP12], Theorem 14.8 or Section 16, Example (ii)):

$$D_{0, \sigma}(\rho) : \quad \sigma \quad \tau \oplus \tau^s \quad (p - 4 - r_0, r_1 - 1) \otimes \det^{r_0 + 2}$$

$$D_{0, \sigma^s}(\rho) : \quad \sigma^s \quad \tau' \oplus \tau'^s \quad (r_0 - 1, p - 4 - r_1) \otimes \det^{(r_1 + 2)p}.$$

We have from [BP12], Corollary 14.10 that

$$D_1 = \chi_\sigma \oplus \chi_\tau \oplus \chi_\sigma^s \oplus \chi_\tau^s \oplus \chi_\sigma^s \oplus \chi_\tau^s.$$

For an IZ-representation V and an IZ-character χ, we write V^χ for the χ-isotypic part of V.

3. THE INFINITE DIMENSIONAL DIAGRAM AND THE CONSTRUCTION

Let $D_0(\infty) := \bigoplus_{i \in \mathbb{Z}} D_0(i)$ be the smooth KZ-representation with component-wise KZ-action, where there is a fixed isomorphism $D_0(i) \cong D_0$ of KZ-representations for every $i \in \mathbb{Z}$. Following [Le19], we denote the natural inclusion $D_0 \hookrightarrow D_0(i) \hookrightarrow D_0(\infty)$ by ι_i, and write $v_i := \iota_i(v)$ for $v \in D_0$ for every $i \in \mathbb{Z}$. Let $D_1(\infty) := D_0(\infty)^{\Pi_1}$. We define the Π-action on $D_1(\infty)$ as follows. Let $\lambda = (\lambda_i) \in \prod_{i \in \mathbb{Z}} \mathbb{F}_p^\times$. For all integers $i \in \mathbb{Z}$, define

$$\Pi v_i := \begin{cases} (\Pi v)_i & \text{if } v \in D_1^{\chi^s}, \\ (\Pi v)_{i+1} & \text{if } v \in D_1^{\chi^s}, \\ \lambda_i (\Pi v)_i & \text{if } v \in D_1^{\chi^s}. \end{cases}$$

This uniquely determines a smooth N-action on $D_1(\infty)$ such that $p = \Pi^2$ acts trivially on it. Thus we get a basic 0-diagram $D(\lambda) := (D_0(\infty), D_1(\infty), \can)$ with the above actions where \can is the canonical inclusion $D_1(\infty) \hookrightarrow D_0(\infty)$.
Theorem 3.1. There exists a smooth representation \(\pi \) of \(G \) such that

1. \((\pi|_{KZ}, \pi|_N, \text{id}) \) contains \(D(\lambda) \),
2. \(\pi \) is generated by \(D_0(\infty) \) as a \(G \)-representation, and
3. \(\text{soc}_K \pi = \text{soc}_K D_0(\infty) \).

Proof. Let \(\Omega \) be the smooth injective \(K \)-envelope of \(D_0 \) equipped with the \(KZ \)-action such that \(p \) acts trivially. The smooth injective \(I \)-envelope \(\text{inj}_I D_1 \) of \(D_1 \) appears as an \(I \)-direct summand of \(\Omega \). Let \(e \) denote the projection of \(\Omega \) onto \(\text{inj}_I D_1 \). There is a unique \(N \)-action on \(\text{inj}_I D_1 \) compatible with that of \(I \) and compatible with the action of \(N \) on \(D_1 \). By [BPT12], Lemma 9.6, there is a non-canonical \(N \)-action on \((1 - e)(\Omega) \) extending the given \(I \)-action. This gives an \(N \)-action on \(\Omega \) whose restriction to \(IZ \) is compatible with the action coming from \(KZ \) on \(\Omega \).

Now let \(\Omega(\infty) := \bigoplus_{i \in \mathbb{Z}} \Omega(i) \) with component-wise \(KZ \)-action where there is a fixed isomorphism \(\Omega(i) \cong \Omega \) of \(KZ \)-representations for every \(i \in \mathbb{Z} \). We wish to define a compatible \(N \)-action on \(\Omega(\infty) \). As before, denote the natural inclusion \(\Omega \hookrightarrow \Omega(i) \hookrightarrow \Omega(\infty) \) by \(\iota_i \), and write \(v_i := \iota_i(v) \) for \(v \in \Omega \). Let \(\Omega_\chi \) denote the smooth injective \(I \)-envelope of an \(I \)-character \(\chi \). Thus, from [2], we have \(e(\Omega) = \text{inj}_I D_1 = \Omega_{\chi_0} \oplus \Omega_{\chi_1} \equiv \Omega_{\chi_0} \oplus \Omega_{\chi_1} \oplus \Omega_{\chi_2} \oplus \Omega_{\chi_3} \oplus \Omega_{\chi_3^*} \). If \(v \in (1 - e)(\Omega) \), we define \(\Pi v_i := (\Pi v)_i \) for all integers \(i \). Otherwise, we define \(\Pi v_i := (\Pi v)_i \) if \(v \in \Omega_{\chi_0} \); \(\Pi v_i := (\Pi v)_{i+1} \) if \(v \in \Omega_{\chi_1} \), and \(\Pi v_i := \lambda_i(\Pi v) \) if \(v \in \Omega_{\chi_2} \). By demanding that \(\Pi^2 \) acts trivially, this defines a smooth \(N \)-action on \(\Omega(\infty) \) which is compatible with the \(N \)-action on \(D_1(\infty) \), and whose restriction to \(IZ \) is compatible with the action coming from \(KZ \) on \(\Omega(\infty) \). By [Pas04], Corollary 5.5.5, we have a smooth \(G \)-action on \(\Omega(\infty) \). We then take \(\pi \) to be the \(G \)-representation generated by \(D_0(\infty) \) inside \(\Omega(\infty) \). It follows easily from the construction that \(\pi \) satisfies the properties (1), (2) and (3).

Theorem 3.2. If \(\lambda_i \neq \lambda_0 \) for all \(i \neq 0 \), then any smooth representation \(\pi \) of \(G \) satisfying the properties (1), (2), and (3) of Theorem 3.1 is irreducible and non-admissible.

Proof. Let \(\pi' \subseteq \pi \) be a non-zero subrepresentation of \(G \). By property (3), we have either \(\text{Hom}_K(\sigma, \pi') \neq 0 \) or \(\text{Hom}_K(\sigma^*, \pi') \neq 0 \). We consider the case \(\text{Hom}_K(\sigma, \pi') \neq 0 \); the other case is treated analogously. There exists a non-zero \((c_i) \in \bigoplus_{i \in \mathbb{Z}} \mathbb{F}_p \) such that

\[
\left(\sum_i c_i \iota_i \right)(D_{0,\sigma}(\rho)) \cap \pi' \neq 0.
\]

We claim that

\[
(3.3) \quad \left(\sum_i c_i \iota_{i+j} \right)(D_0) \subset \pi' \quad \text{for all} \quad j \in \mathbb{Z}.
\]

Note that the \(K \)-socle of \(\left(\sum_i c_i \iota_i \right)(D_{0,\sigma}(\rho)) \) is \(\left(\sum_i c_i \iota_i \right)(\sigma) \) which is irreducible. Hence, \(\left(\sum_i c_i \iota_i \right)(D_{0,\sigma}(\rho)) \cap \pi' \neq 0 \) implies that \(\left(\sum_i c_i \iota_i \right)(\sigma) \subset \pi' \). The map \(\delta \) defined in [BPT12], Section 15 takes \(\sigma \) to \(\sigma^* \) and vice versa. Therefore, the arguments in the proof of [BPT12], Theorem 19.10 (i) and Lemma 19.7 imply that

\[
(3.4) \quad \left(\sum_i c_i \iota_i \right)(D_{0,\delta(\sigma)}(\rho)) = \left(\sum_i c_i \iota_i \right)(D_{0,\sigma^*}(\rho)) \subset \pi'.
\]
Repeating the argument now for $σ^*$, we see that $(\sum_i c_it_i)(D_{0,σ}(ρ)) \subset π'$. Thus,

$$(\sum_i c_it_i)(D_0) \subset π'.$$

Therefore,

$$(\sum_i c_it_i)(D_1^{Xσ}) \subset π' \quad \text{and} \quad (\sum_i c_it_i)(D_1^{Xσ'}) \subset π'.$$

Since $π'$ is stable under the $Π$-action, we have

$$(\sum c_{i+1})(D_0,σ(ρ)) \subset π' \quad \text{and} \quad (\sum c_{i-1})(D_0,σ(ρ)) \cap π' \neq 0.$$

In particular,

$$(\sum_i c_{i+1})(D_0,σ(ρ)) \subset π' \quad \text{and} \quad (\sum_i c_{i-1})(D_0) \subset π'.$$

By the same arguments as above, we find that

$$(\sum_i c_{i+1})(D_0) \subset π' \quad \text{and} \quad (\sum_i c_{i-1})(D_0) \subset π'.$$

The claim is now proved by repeatedly using the $Π$-action.

For $(d_i) ∈ \bigoplus_{i∈Z} F_p$, let $#(d_i)$ denote the number of non-zero d_i's. Among all the non-zero elements (c_i) of $\bigoplus_{i∈Z} F_p$ for which $(\sum_i c_it_i)(D_0) \subset π'$, we pick one with $#(c_i)$ minimal. We may also assume that $c_0 \neq 0$ using (3.3). We now show that $(c_i) = 1$. Assume to the contrary that $(c_i) > 1$. Since $(\sum_i c_it_i)(D_1^{Xσ}) \subset π'$ and $π'$ is stable under the $Π$-action, we have

$$(\sum_i \lambda_i c_it_i)(D_1^{Xσ}) \subset π'.$$

Since $(\sum_i \lambda_0 c_it_i)(D_1^{Xσ})$ is also clearly in $π'$, subtracting it from the above, we get

$$(\sum_i (λ_i - λ_0)c_it_i)(D_1^{Xσ}) \subset π'.$$

Writing $(c'_i) := ((λ_i - λ_0)c_i)$, we see that

$$(\sum_i c'_it_i)(D_0,σ(ρ)) \cap π' \neq 0.$$

Following the same arguments as in the previous paragraph, we get that $(\sum_i c'_it_i)(D_0) \subset π'$. However, the hypothesis $λ_i ≠ λ_0$ for all $i ≠ 0$, and the assumption $#(c_i) > 1$ imply that (c'_i) is non-zero and $#(c'_i) = #(c_i) - 1$ contradicting the minimality of $#(c_i)$. Therefore, we have $c_0t_0(D_0) \subset π'$. So $uo(D_0) \subset π'$. Using (3.3) again, we get that $\bigoplus_{j∈Z} t_j(D_0) = D_0(∞) \subset π'$. By property (2), we have $π' = π$.

Non-admissibility of $π$ is clear because $π^{K_1} ⊃ soc_K π$ and $soc_K π$ is not finite dimensional by property (3). □
References

[Ber12] L. Berger, *Central characters for smooth irreducible modular representations of $GL_2(\mathbb{Q}_p)$*, Rend. Semin. Mat. Univ. Padova **128** (2012), 1–6.

[Ber74] J. Bernstein, *All reductive p-adic groups are of type I*, Funkcional. Anal. i Priložen. **8**, no. 2 (1974), 3–6.

[Bre07] C. Breuil, *Representations of Galois and of GL_2 in characteristic p*, Lecture notes of a graduate course at Columbia University (Fall 2007).

[BP12] C. Breuil, V. Paškūnas, *Towards a modulo p Langlands correspondence for GL_2*, Mem. Amer. Math. Soc. **216** (2012).

[HC70] Harish-Chandra, *Harmonic analysis on reductive p-adic groups*, Notes by G. van Dijk, Lecture Notes in Mathematics **162**, Springer-Verlag, Berlin-New York (1970).

[Jac75] H. Jacquet, *Sur les représentations des groupes réductifs p-adiques.*, C. R. Acad. Sci. Paris Sér. A-B **280** (1975), A1271–A1272.

[Le19] D. Le, *On some non-admissible smooth representations of GL_2*, to appear in Math. Res. Lett., arXiv preprint available at https://arxiv.org/abs/1809.10247.

[Pas04] V. Paškūnas, *Coefficient systems and supersingular representations of $GL_2(F)$*, Mém. Soc. Math. Fr. (N.S.) **99** (2004).

[Sch15] B. Schraen, *Sur la présentation des représentations supersingulières de $GL_2(F)$*, J. Reine Angew. Math. **704** (2015), 187–208.

[Vig96] M.-F. Vignéras, *Représentations l-modulaires d’un groupe réductif p-adique avec $l \neq p$*, Progress in Mathematics **137**, Birkhäuser, Boston, MA (1996).

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai - 400005, India.

E-mail address: eghate@math.tifr.res.in

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai - 400005, India.

E-mail address: mihir@math.tifr.res.in