Abstract and References. Technology and equipment of food production

DEVELOPMENT OF TECHNOLOGY FOR THE PRODUCTION OF SEMI-FINISHED PRODUCTS WITH AN EMULSION STRUCTURE BASED ON THE DECALCIFIED DAIRY RAW MATERIALS (p. 4-10)

Nano Grynchenko
Kharkiv State University of Food Technologies and Trade, Kharkiv, Ukraine

ORCID: http://orcid.org/0000-0002-8440-0727

Daria Tyutyukova
Kharkiv State University of Food Technologies and Trade, Kharkiv, Ukraine

ORCID: http://orcid.org/0000-0002-2514-4639

Pavlo Pyovarov
Kharkiv State University of Food Technologies and Trade, Kharkiv, Ukraine

ORCID: http://orcid.org/0000-0001-9119-1225

Oleksandr Nagorny
Kharkiv State University of Food Technologies and Trade, Kharkiv, Ukraine

ORCID: http://orcid.org/0000-0002-9069-4514

It was determined that in a condition of meeting requirements of current normative documents, physicochemical and technological properties of the cottage cheese differ from each other which affects technological parameters of making products based on this cheese. It was proved that in order to stabilize qualitative indicators of the final product, modification of protein substances of dairy stock or the use of stabilization systems of non-protein nature is necessary. It was proposed to use decalcified dairy stock—milk and cheese—as a source of modified protein substances. Experience of developing the technology of the target semi-finished products was proved. Influence of pH on solubility of protein substances of the cottage cheese was studied. It was determined that the change in pH of the systems based on the cottage cheese results in an increase in the content of soluble protein in the aqueous phase of dispersion which is an evidence of high functionality of proteins of the cottage cheese made from decalcified skim milk. Emulsifying capacity, kinetic and aggregate stability of the cheese and milk mixtures were studied. Based on the obtained data, rational content and the ratio of decalcified dairy and fat stocks in the composition of semi-finished products were determined. Ratios of the cottage cheese to decalcified milk in the range of (90:10) – (70:30) at fat content of 5–20 % were defined as rational. Rational parameters were experimentally substantiated and the model of the technological system for making semi-finished products with an emulsion paste-like structure was developed. Microstructure characteristics of the semi-finished products were studied. The data of electron microscopy confirmed formation of an emulsion structure in which fraction of fat particles with diameters of 0.25–0.45 10⁻⁶ m was dominant which confirms formation of a stable homogeneous emulsion structure of semi-finished products.

Keywords: semi-finished products, decalcified dairy stock, cheese and milk mixture, emulsifying capacity, emulsion paste-like structure.

References

1. Costa, A. I. A., Jongen, W. M. F. (2006). New insights into consumer-led food product development. Trends in Food Science & Technology, 17 (8), 437–465. doi: 10.1016/j.tifs.2006.02.003

2. Kashkevarova, I. A. (2012). Uluchshenie kachestva kislorodlochnih i tvorozhnyh produktov. Molokonaya promyshlennost', 3, 45–46.

3. Cassandro, M. et al. (2007). Genetic aspects of milk coagulation properties in dairy cattle. Poljopivnivoda, 13 (1), 30–34.

4. Plotnikova, R., Grychenko, N., Pyovarov, P. (2016). Study of influence of technological factors on the sorption of ionized calcium from skimmed milk by sodium alginate. Eastern-European Journal of Enterprise Technologies, 5 (11 (83)), 32–39. doi: 10.15387/1729-4061.2016.81413

5. Grychenko, N., Tyutyukova, D., Pyovarov, P. (2017). Study of quality indicators of cottage cheese obtained from skimmed milk at controlled content of calcium. Eastern-European Journal of Enterprise Technologies, 6 (11 (90)), 11–21. doi: 10.15387/1729-4061.2017.117136

6. Raikos, V. (2010). Effect of heat treatment on milk protein functionality at emulsion interfaces. A review. Food Hydrocolloids, 24 (4), 259–265. doi: 10.1016/j.foodhyd.2009.10.014

7. Gurova, N. V., Kozhoev, B. Sh. (1997). Ekologicheskii bezopasnŏye belkovye preparaty (teknologii ih polucheniya i primeneniya v produktah lechebno-profilakticheskogo pitaniya). Inzhenernaya ekologiya, 6, 29–34.

8. Singh, H., Tanehama, M., Hemar, Y., & Munro, P. A. (2003). Interfacial compositions, microstructures and properties of oil-in-water emulsions formed with mixtures of milk proteins and κ-carrageenan: 1. Sodium caseinate. Food Hydrocolloids, 17 (4), 539–548. doi: 10.1016/S0958-6946(03)00262-2

9. Gurova, N. V., Kuzhboev, B. Sh. (1997). Ekologicheskii bezopasnŏye belkovye preparaty (teknologii ih polucheniya i primeneniya v produktah lechebno-profilakticheskogo pitaniya). Inzhenernaya ekologiya, 6, 29–34.

10. Cantor, M. C., Mulvihill, D. M. (1983). Functional properties of caseinates chemically modified by reductive alkylation of zymins with reducing sugars. Helsingor, Denmark, 14, 152–161.

11. Shirashoji, N., Jaeggi, J. J., Lucey, J. A. (2006). Effect of Trisodium Citrate Concentration and Cooking Time on the Physicochemical Properties of Pasteurized Process Cheese. Journal of Dairy Science, 89 (1), 15–28. doi: 10.3168/jds.s0022-0302(06)72065-3

12. Guzmán-Gonzalez, M., Morais, F., Amigo, L. (2000). Influence of skimmed milk concentrate replacement by dry dairy products in a low-fat set-type yoghurt model system. Use of caseinates, co-precipitate and blended dairy powders. Journal of the Science of Food and Agriculture, 80 (4), 433–438. doi: 10.1002/(sici)1097-0010(200003)80:4<433:aaid:jfsa453>3.3.co;2-2

13. Channai, R., McClements, D. J. (2002). Comparison of Gum Arabic, Modified Starch, and Whey Protein Isolate as Emulsifiers. Influence of pH, CaCl₂ and Temperature. Journal of Food Science, 67 (1), 120–125. doi: 10.1111/j.1365-2621.2002.tb11370.x

14. Gutiérrez, G., Rayner, M., Dejnek, P. (2009). Production of vegetable oil in milk emulsions using membrane emulsification. Desalination, 245 (1-3), 631–638. doi: 10.1016/j.desal.2009.02.030

15. Grychenko, N., Tyutyukova, D., Pyovarov, P., Nagorny, O. (2018). Development of a model of technological system of semi-finished products with emulsion paste structure. EUREKA: Life Sciences. 2018. Issue 2. P. 19–27. doi: 10.21303/2504-5695.2018.00613

DOI: 10.15587/1729-4061.2018.126400

IMPROVEMENT OF A ROTOR FILM DEVICE FOR THE PRODUCTION OF HIGH-QUALITY MULTICOMPONENT NATURAL PASTES (p. 11-17)

Oleksandr Cherevko
Kharkiv State University of Food Technology and Trade, Kharkiv, Ukraine

ORCID: http://orcid.org/0000-0003-1809-5960

DOI: 10.15587/1729-4061.2018.127113

TECHNOLOGY AND EQUIPMENT OF FOOD PRODUCTION

DOI: 10.15587/1729-4061.2018.126400

IMPROVEMENT OF A ROTOR FILM DEVICE FOR THE PRODUCTION OF HIGH-QUALITY MULTICOMPONENT NATURAL PASTES (p. 11-17)

Oleksandr Cherevko
Kharkiv State University of Food Technology and Trade, Kharkiv, Ukraine

ORCID: http://orcid.org/0000-0003-1809-5960
We have improved a heat exchange system of the rotor film device by using, as a heater, a flexible film resistive electric heater of the radiation type, which repeats the geometry of a working chamber of the device. Its technical properties ensure the acceptable temperature mode (50...60 °C), a decrease in resource consumption, dimensional and weight characteristics of RFD, and hence the cost of such devices.

In order to test the improved RFD, a formulation ratio of natural components in multifunction composition was proposed. Based on the result of blending, we have obtained 3 compositions with different content of components (55...60 % of apple, 25...40 % of cranberries, 5...10 % of Hawthorn), which were compared with control. The effect of mass content of each component in the compositions on the structural-mechanical properties of the obtained products was studied. Values for the mean radii of microcapillaries in multifunction natural compositions were established: \(r = 1.51 \) \(\mu \)m for composition 1a, \(r = 1.69 \) \(\mu \)m for composition 1b, and \(r = 1.7 \) \(\mu \)m for composition 1c. It was established that at an increase in the content of cranberry from 25 to 30 % (compositions 1b and 1c), the dispersion decreased at an increase in the content of cranberry to 40 %.

Color patterns of apple puree, which is characterized by greenish-yellow coloration, and the puree made of cranberry and hawthorn, characterized by bright red and orange colors, were studied. Color parameters of the blended puree-like compositions were determined, specifically: puree 1a is characterized by a color tone purity of 76.4 %; Puree 1b and 1c – 70.7 % and 78.1 %, respectively; in this case, they are characterized by reddish-orange color. Comparison of visual characteristics of the color of puree and paste samples for the indicators of a dominant wavelength and a color frequency confirm maximal retention of colors. This allows us to draw a conclusion about the maximum production of such devices.

The data obtained would allow the optimization of technological parameters when processing natural raw materials and producing high-quality multifunction pastes with a considerable content of BAS, medicinal-prevention properties, and pleasant structural-mechanical and color characteristics.

Keywords: natural raw materials, rotor film device, intensification, structural-mechanical properties, color formation.

References

1. Shazoo, R. I., Ovcharova, H. P. (2005). Produkty detskogo pitanija iz rastitel'noho i miasnoho syr'ia infrakrasnoi sushki. Khramienie i pererabotka sel'khozsyr'ya, 1, 50–52.

2. Kassianchuk, V. D., Kovach, M. M., Kassianchuk, M. V. (2013). Perspektivy vykorystannia dykorol'skykh plodiv, yahid i hrybiv v umovakh Prykarpattia dlia vyhovotlivennia produktii likualno profilaktichnoho pryznachennia [Prospects for the use of wild fruits, berries and mushrooms in the conditions of the Prekarpathian region for the production of products for treatment and prophylactic purposes]. Naukovyi visnyk NLTU Ukrainy, 23.7, 151–156.

3. Magomedov, G. O., Magomedov, M. G., Zhuravlev, A. A., Lobosova, L. A. (2015). The development of plants for the production of concentrated pastes of fruit and vegetable raw materials. Proceedings of the Voronezh State University of Engineering Technologies, 3, 13–16.

4. Magomedov, G. O., Magomedov, M. G., Astrednova, V. V., Latvino, A. A. (2012). Technology concentration of fruit and vegetables. Proceedings of the Voronezh State University of Engineering Technologies, 4, 86–89.

5. Vasilenie, I. M., Saburov, A. G. (1989). Rotorny plenolchny apparat v pishevoy promyslenosti. Moscow: Agropromizdat, 136.

6. Cherovko, A. I., Kiptelova, L. V., Mihailov, V. M., Zagorulko, A. E. (2009). Progressivne prosvysly kontsentrioivanija netradiccionnoho plovoosvochnogo syr'ya. Kharkiv: KhSUFTFT, 241.

7. Monocrystal. Heating systems. Available at: http://monicrystal.com.ua/index.php

8. Denev, P., Kratchanova, M., Ciz, M., Lojek, A., Vasieck, O., Nodelcheva, P. et. al. (2014). Biological activities of selected polyphenol-rich fruits related to immunity and gastrointestinal health. Food Chemistry, 157, 37–44. doi: 10.1016/j.foodchem.2014.02.022

9. Parn, O. J., Bhat, R., You, K. T., Al-Hassan, A. A. (2015). Development of novel fruit bars by utilizing date paste. Food Bioscience, 9, 20–27. doi: 10.1016/j.fbio.2014.11.002

10. Puthare, P. B., Opara, U. L., Al-Said, F. A.-J. (2012). Colour Measurement and Analysis in Fresh and Processed Foods: A Review. Food and Bioprocess Technology, 6 (1), 36–60. doi: 10.1007/s11947-012-0867-9

11. Dubnin, A. A., Shcherbakova, T. V., Selustin, H. A. (2010). Estimation of the color of products from vegetable raw material with use of the SP-method. Progressive engineering and technology of food production, restaurant business and trade, 2 (12), 429–435.

12. Vicario, I. M., Escudero-Gilette, M. L., Melendez-Martinez, A. J., Heredia, F. J. (2009). Optimization of olive-fruit paste production using a mathematical proposal based on a sensory and objective color analysis. Grasas y Aceites, 60 (4), 396–404. doi: 10.3989/gra010500

13. Kohayashi, Y., Habara, M., Ikenuki, H., Chen, R., Naito, Y., Toko, K. (2010). Advanced Taste Sensors Based on Artificial Lipids with Global Selectivity to Basic Taste Qualities and High Correlation to Sensory Scores. Sensors, 10 (4), 3411–3443. doi: 10.3390/s100403411

14. Ayyaz, H., Sierra-Cadavid, A., Aykas, D. P., Mulqueeney, B., Sullivan, S., Rodriguez-Saona, L. E. (2016). Monitoring multicomponent quality traits in tomato juice using portable mid-infrared (MIR) spectroscopy and multivariate analysis. Food Control, 66, 79–86. doi: 10.1016/j.foodcont.2016.01.031

15. Cherovko, V., Mykhaylov, V., Zagorulko, A., Zahorulko, A. (2018). Application of rotated film apparatus at production of multi-component fruit pastes. EUREKA: Physics and Engineering, 2, 21–27. doi: 10.21303/2504-5695.2018.003596

16. Zagorulko, A. M., Zagorulko, O. Ye. (2016). Pat. No. 108041 UA. Hruvchikyi plivkoviy rezystivnyi elektronahrivach vyprominyuvchogo typu. MPK H05B 3/36, B01D 1/22, G05D 23/19. No. u2016008527; declared: 02.02.2016; published: 24.06.2016, Bul. No. 12. Available at: http://uapatents.com/?5-108041-gnuchkij-plivkovij-rezistivnyj-elektronahrivach-vyprominyuvchogo-tipu.html
17. Zagorulko, O. Y e., Zagorulko, A. M., Filonenko, A. O. (2017) Pat. No. 119164 UA. MPK A23J 21/10. Method of manufacture of fruit-fresh paste. MPK A23L 21/10. No. u201703832; declared: 19.04.2017; published: 11.09.2017. Bul. No. 17. Available at: http://base.uipv.org/searchINV/search.php?action=viewdetails&IdClaim=239139

18. Zagorulko, A. M., Kiptela, L. V., Zagorulko, O. Ye. (2014) Pat. No. 103904 UA. Method of determining the strength of the multi-component structure of plant pastes. MPK (2015/01) A23B 7/00. No. u201413136; declared: 08.12.2014; published: 10.12.2015. Bul. No. 23. Available at: http://base.uipv.org/searchINV/search.php?action=viewdetails&IdClaim=218265

DOI: 10.15587/1729-4061.2018.126369

EFFECT OF PLASTICIZERS ON THE QUALITATIVE INDICATORS OF FILMFORMING COATINGS FOR THE PROTECTION OF CHILLED MEAT (p. 17-22)

Andrii Kyshenia
Odessa National Academy of Food Technologies, Odessa, Ukraine
ORCID: http://orcid.org/0000-0003-1763-0546

Lydmla Vinnikova
Odessa National Academy of Food Technologies, Odessa, Ukraine
ORCID: http://orcid.org/0000-0002-6606-1785

Yevhenii Kotliar
Odessa National Academy of Food Technologies, Odessa, Ukraine
ORCID: http://orcid.org/0000-0002-2137-8018

Tat'yana Volovik
Odessa National Academy of Food Technologies, Odessa, Ukraine
ORCID: http://orcid.org/0000-0002-1820-7697

Kateryna Garbazhiy
Odessa National Academy of Food Technologies, Odessa, Ukraine
ORCID: http://orcid.org/0000-0001-8696-8810

The result of theoretical research into protection and prolonging the duration of meat and meat products storage has demonstrated that one of the promising directions is the application of protective coatings based on natural biopolymers. We used hydrocolloids as basic components of film-forming protective coatings. The study into mechanical and rheological properties of protective coatings was conducted; a comparative characteristic of these properties, which depend on the added plasticizer, is given.

Film-forming coatings must possess high indicators of strength, elasticity, transparency, barrier properties, capability to sorb gases, water vapor. The film is to prevent undesirable effects for meat, to improve shelf life of the product without compromising quality indicators. Adding plasticizers to the composition of film-forming coatings will make it possible to control quality indicators of coatings.

We have analyzed and theoretically substantiated the character and mechanisms of interaction between components of a film-forming coating and plasticizers.

The viscosity of the film-forming coating without adding a plasticizer has the largest value compared to other solutions. The addition of plasticizers led to an increase in the elasticity of the film; we, however, observed a slight increase in strength. Film-forming coatings with the addition of a plasticizer had a higher yield limit and thus they were stronger than the integrated film-forming coatings without the addition of a plasticizer. On the other hand, the values of deformation of the film-forming coatings without the addition of a plasticizer were higher than those of the integrated film-forming coatings with the addition of a plasticizer, so they were more elastic.

Studying the physical properties of the developed film-forming coatings based on hydrocolloids revealed that coatings with a plasticizer possess a larger vapor permeability.

We have analyzed and theoretically substantiated the character and mechanisms of interaction between components of a film-forming coating and plasticizers.

Based on results obtained in the course of experiments, it was established that the best mechanical, rheological, and physical indicators are demonstrated by the film-forming coating based on sodium alginate, carboxymethyl cellulose, and glycerin.

Keywords: film-forming coating, plasticizer, shelf life of meat, synergy, sodium alginate, hydrocolloids.

References
1. Filipps, G. O., Vil’yams, P. A., Kochetkova, A. A. (Ed.) (2006). Spravochnik po gidrokolloidam. Sankt-Peterburg: GIORD, 535.
2. Šćetar, M., Kurek, M., Galic, K. (2018). Trends in meat and meat products packaging. Food Sci. Technol., 2 (1), 32–48.
3. Vinnikova, L. H., Kyshenia, A. V. (2016). Biokhirkyshye pokryt’ya dlia podovzheniia termiu zberihannia miasa. Wospolpraca Europejska, 1 (8), 97–107.
4. Madhumita, R., Ramalingam, C. (2012). Bioedible coating of meat using garlic, cinnamon and turmeric. European Journal of Experimental Biology, 2 (5), 1439–1443.
5. Shom, J.-H., Kim, J.-H., Eo, J.-H., Choi, Y.-H. (2012). Effect of Soy Protein Isolate Coating on Meat Quality of Pork Fresh Cut during Refrigerated Storage. Journal of Applied Biological Chemistry, 55 (1), 27–34. doi: 10.1839/jabc.2011.055
6. Khan, M. I., Adrees, M. N., Tarig, M. R., Sohail, M. (2013). Application of edible coating for improving meat quality. Pacing. Journal Food Science, 23 (2), 71–79.
7. Li, J.-M., Nie, S.-P. (2016). The functional and nutritional aspects of hydrocolloids in foods. Food Hydrocolloids, 53, 46–61. doi: 10.1016/j.foodhyd.2015.01.035
8. Gohil, R. M. (2010). Synergistic blends of natural polymers, pectin and sodium alginate. Journal of Applied Polymer Science, 120 (4), 2324–2336. doi: 10.1002/app.33422
9. Bilbao-Sainz, C., Avena-Bustillos, R. J., Wood, D. F., Williams, T. G., McHugh, T. H. (2010). Composite Edible Films Based on Hydroxypropyl Methylcellulose Reinforced with Microrystatel Cellulose Nanoparticles. Journal of Agricultural and Food Chemistry, 58 (6), 3753–3760. doi: 10.1021/jf903318c
10. Lima, A. M., Cerqueira, M. A., Souza, B. W. S., Santos, E. C. M., Teixeira, J. A., Moreira, R. A., Vicente, A. A. (2010). New edible coatings composed of galactomannans and collagen blends to improve the postharvest quality of fruits – Influence on fruits gas transfer rate. Journal of Food Engineering, 97 (1), 101–109. doi: 10.1016/j.jfoodeng.2009.09.021
11. Jurukakul, N. (2013). A study of Mu Yor sausage wraps using chitosan films incorporating garlic oil, lemon grass oil and galangal oil. International Food Research Journal, 20 (3), 1199–1204.
12. Lima, A. M. F., Soldi, V., Borsali, R. (2009). Dynamic light scattering and viscometry of aqueous solutions of pectin, sodium alginate and their mixtures: effects of added salt, concentration, countermiers, temperature and chelating agent. Journal of the Brazilian Chemical Society, 20 (9), 1705–1714. doi: 10.1590/S0103-50532009000900020
13. Tang, X., Alavi, S., Herald, T. J. (2008). Effects of plasticizers on the structure and properties of starch–clay nanocomposite films. Carbohydrate Polymers, 74 (3), 552–558. doi: 10.1016/j.carbpol.2008.04.022
14. Atarès, L., Bonilla, J., Chiralt, A. (2010). Characterization of sodium caseinate-based edible films incorporated with cinnamon or ginger essential oils. Journal of Food Engineering, 100 (4), 678–687. doi: 10.1016/j.jfoodeng.2010.05.018
Determined the microelement composition of poppy seeds using solid-phase spectrophotometry method (p. 23-28)

Elizaveta Kostenko
National University of Food Technologies, Kyiv, Ukraine
ORCID: http://orcid.org/0000-0002-2451-0828

Elena Butenko
National University of Food Technologies, Kyiv, Ukraine
ORCID: http://orcid.org/0000-0002-8130-414X

Maria Golubeva
National University of Food Technologies, Kyiv, Ukraine
ORCID: http://orcid.org/0000-0001-6813-410X

Larisa Arsenova
National University of Food Technologies, Kyiv, Ukraine
ORCID: http://orcid.org/0000-0002-6632-090X

Poppy seeds are one of the most important and oldest oil-bearing crops in the world. Therefore, quality control of poppy seeds and food products whose composition contains them as a food additive, is very important. To this end, we have applied procedures for solid-phase spectrophotometric and photometric determining of micro elements in food products.

It was established that in determining cadmium and zine, the best ion exchanger for the group concentration of interfering metal ions is the ion exchanger with the immobilized KO.

CAX, made it possible to concentrate and determine in the solid phase the ions of Hg(II). Using PCV enabled selective determining of Pb(II). Selective determining of the Fe(III) ions at pH 3 was conducted using ammonium thiocyanate. Cu(II) was determined photometrically upon masking the ions of Fe(III) employing SPADNS. Based on the data acquired, we have developed a microelement analysis scheme for poppy seeds.

It was established that the sample contained, mg/kg: Cu(II) – 5.0; Pb(II) – 0.3; Zn(II) – 50; P(V) – 1,600; K – 550; Na – 20; Ca – 1,500; Mg(II) – 450; Fe(III) – 10; Cd(II) and Hg(II) are absent.

The proposed scheme for analysis of poppy seeds is universal and could be applied for microelement analysis of other food products. The procedures employed are characterized by sensitivity and selectivity.

Ion exchangers with the immobilized dyes, as well as procedures for the solid-phase spectrophotometric determining, are environmentally safe. They do not require the use of toxic organic reagents.

The procedures applied are easy to use. Relative standard deviation in the results does not exceed 0.10. This indicates good reproducibility of the results.

Keywords: spectrophotometric determining of elements, food supplements, poppy seeds, hybrid methods of analysis.

References
1. Andreeva, I. I., Rodman, L. S. (2005). Botanika Moscow: Kolos, 528
2. Kostenko, Ye. Ye. (2011). Khimiko-analitychnyi vlastyosti sulfofalenoykovych barvnykov, immobilizovanych na anioniti AV-17x8 ta yikh vykorystannya v analiz kharchovych ob'ektiv. Khimiko-analytichni metod. Dunajskaya khimicheskaya zhurnal, 77 (8), 107–115.
3. Kostenko, Ye. Ye. (2011). Khimiko-analitychnyi vlastyosti azo-barvnykov, immobilizovanych na anioniti AV-17x8, ta vykorystannya yikh v analiz kharchovych ob'ektiv. Ukraynskyi khimicheskii zhurnal, 77 (8), 107–115.
4. Shtokalo, M. Y., Kostenko, E. E. (2002). Zastosuvannia metodu tverdofaznoi spektrofotometriyi v analiz kharchovych materialiv. Visti Akademiyi inzhenernykh nauk Ukrainy, 1 (14), 36–41.
5. Kostenko, E. E., Shtokalo, M. Y. (2004). Tverdofaznaya spektrofotometriya-effektivnyy metod opredeleniya tyazhelyh metallov v pishchevykh ob'ektah. Zhurnal analiticheskoy himii, 59 (12), 1276–1281.
6. Brykina, G. D., Kryshna, L. S., Ivanov, V. M. (1988). Tverdofaznaya spektrofotometriya. Zhurnal analiticheskoy himii, 43 (9), 1547–1552.
7. Brykina, G. D., Marchenko, D. Yu., Shipigen, O. A. (1995). Tverdofaznaya spektrofotometriya. Zhurnal analiticheskoy himii, 50 (5), 484–491.
8. Zaporozhets, O. A., Ishchenko, M. V., Suchova, K. O., Meshcheriakova, V. V. (2005). Hibridnyi metody vyznachennia kadmiiu(II) ta sumy vazhkyh metaliv immobilizovanych na yukaliheh brombenzituxo. Zbirnyk dop. VI Vsesuv. Konf. «Suchasni problemy khimii». Kyiv, 173.
9. Zaporozhets, O. A., Cyuko, L. E. (2004). Test-opredelenie svinca i cinka v vode s ispol'zovaniem immobilizovanego na kremnezeme ksilenolovo-vogo oranzhevogo. Zhurnal analiticheskoy himii, 59 (4), 434–439.
10. Zaporozhets, O. A., Ivanko, L. S., Karach, I. A. (2005). Tverdofazni reagent na osnovi molibdosofoforoi heteropolikysloty dlya sorbtsiy-no-spektroskopichnogo vyznachennia ascorbinovoi kysloty. Voprosy himii i im.teknologii, 1, 9–13.
A STUDY OF THE EFFECT OF THERMOTROPIC POLYSACCHARIDES ON THE PROPERTIES OF THE ALGINATE-CALCIUM SHELL OF AN ENCAPSULATED FATTY SEMIFINISHED FOOD PRODUCT (p. 29-38)

Olga Neklesa
Kharkiv State University of Food Technology and Trade, Kharkiv, Ukraine

Yevgenia Yarantseva
Kharkiv State University of Food Technology and Trade, Kharkiv, Ukraine

Oleg Kotlyar
Kharkiv State University of Food Technology and Trade, Kharkiv, Ukraine

Olga Grinchenko
Kharkiv State University of Food Technology and Trade, Kharkiv, Ukraine

Pavlo Pyovarov
Kharkiv State University of Food Technology and Trade, Kharkiv, Ukraine

Numerous tests have determined that the use of AlgNa, as a polysaccharide capable of ionotropic gelation, in the technology of capsular products is a promising direction. Owing to the ability of AlgNa to interact chemically with Ca$^{2+}$, it loses its bond with the aquatic medium. The result is a technological possibility of forming an elastic thermostable shell of capsules with specific structural and mechanical parameters. In this case, the formation of a globular shape of capsules is achieved by using the technological principles of droplet extrusion of the recipe mixture in an air medium. Simultaneous use of several thermotrophic and/or ionotropic gelators in a common solvent helps implement the chemical potentials inherent in the ionotropic gel formers. The result is the production of “chemical” gels or the creation of a system of a “physical + chemical” gel with the use of thermotrophic polysaccharides. The need to correct the texture properties of alginate-calcium shells of the EFSSFPP is due to the prerequisites for providing new organoleptic properties of products, managing the extent of permeability for controlled homeostasis, and expanding the spectrum of using encapsulated products in the technology of culinary and food products. It has been experimentally proved that the use of “AlgNa – agar – Ca$^{2+}$ – water” and “AlgNa – low-esterified pectin – Ca$^{2+}$ – water” systems can significantly influence the elastic stability of mixed gels in terms of increasing their density. The use of glycerol as an alcohol-solvent of an aqueous solvent results in inhibiting the process of forming the Alg2Ca gel, thereby providing controlled capsulation with the formation of plastic gels.

It has been established that the characteristics of mixed gels, their elastic-plastic and technological properties depend on many factors. These are the choice and concentration of polysaccharide, the properties of the solvent, the stage of conversion of AlgNa into Alg2Ca, the concentration ratio of the components, and the temperature of the medium, which determines the mobility of hydrogen bonds. On the basis of the obtained data, a technological model of producing an EFSSFPP has been developed to obtain capsulated products with given organoleptic parameters.

Keywords: alginate-calcium shell, semifinished fatty food capsule, ionotropic and thermotropic gel formation.

References

1. Varum, F. J. O., Hatton, G. B., Rasit, A. W. (2013). Food, physiology and drug delivery. International Journal of Pharmaceutics, 457 (2), 446–460. doi:10.1016/j.ijpharm.2013.04.034

2. Nikolaeva, O. V., Budaeva, T. V., Kalyuzhnaya, L. M., Bel’kevich, N. G. (1999). Mezho molekul'nyye sinye s poliarizatsiyi rastvorov polikhlorilovoy kislity i eifor celluloyozh. Vysoko molekul'nyye soedinienia, 41 (7), 1176–1182.

3. Grychenko, N. (2018). Development of a theoretical model for the intensification of technological processes for manufacturing dairy products. Eastern-European Journal of Enterprise Technologies, 1 (11 (91)), 22–32. doi:10.15587/1729-4061.2018.120875

4. Tschech, A., Takeoka, S. (2014). Interpolymer Complexes and their Ion-Conduction. Macromolecular Complexes in Chemistry and Biology, 183–213. doi:10.1007/978-3-642-78469-9_12

5. Rambid, N. G., Berezkin, A. V. (2008). Fizicheskie i himicheskie osnovy nanotehnologii. Moscow: FIZMATLIT, 454.

6. Gasserod, O., Larsen, C. K., Andersen, P. O. (2010). Pat. No. 20110059165 US. Seamless alginate capsules. PC A61K 9/48, A61K 35/60, A61P 3/02. No. 12/874,567; declared: 02.09.2010; published: 10.03.2011, 13.

7. Peake, N. J., Pevlov, A. M., D’Souza, A., Pingguan-Murphy, B., Sukhorukov, G. B., Hobbs, A. J., Chowdhury, T. T. (2015). Controlled Release of C-Type Natriuretic Peptide by Microencapsulation Dampens Proinflammatory Effects Induced by IL-1β in Cartilage Explants. Biomacromolecules, 16 (2), 524–531. doi:10.1021/bm501575w

8. Korotayeva, Y., Neklesa, O., Grinchenko, O., Pyovarov, P. (2015). The study of functional-technological properties of encapsulated vegetable oils. Eastern-European Journal of Enterprise Technologies, 6 (10 (78)), 16–23. doi:10.15587/1729-4061.2015.56198

9. Potapov, V., Neklesa, O., Pyovarov, P. (2017). Analysis of kinetics pattern in the formation and separation of a drop of fluid in the form of a capsule. Eastern-European Journal of Enterprise Technologies, 2 (10 (86)), 32–40. doi:10.15587/1729-4061.2017.98537

10. Moroz, O. V. (2015). Naukovye oshchernuvannia zmishanoho druhalevtnennia v tehnolohiakh tertmostabilnykh nachynok. Prohresyvni tekhnika i tehnologii kharchovokh vyrobyntstv restorannoho hospodarstva i torhivli, 2 (18), 42–47.

11. Pyovarov, P. P., Neklesa, O. P., Nahornyi, O. Yu. (2015). Pat. No. 106622 UA. Kapsuliatorna holovka dlia oderzhannia kapsul. MPK B01J 13/00, B01J 15/02. No. u201512371; declared: 14.12.2015; published: 25.04.2016, Bul. No. 8. 12 p.
of fermentation and then rapidly decreases. The highest stability during fermentation had dough prepared of flour of Zoria Ukrainy variety and NSS 6/01 and NAK34/12-2 lines. Volume of the bread baked of prime flour was from 303 to 523 cm³, which corresponded to 1.0–7.6 points. The corresponding figure for dark flour was from 270 to 470 cm³ depending on spelt variety and line. Its quality was high in all samples: 7.2–8.4 points or 80–93 % of the maximum value. The bread baked of flour of Zoria Ukrainy variety and LPP 3132, NAK34/12-2 and TV 1100 lines was of the highest quality. The overall estimate of quality of the bread baked of dark flour was very high (8.3–9.0 points) while the bread baked of flour of Swedish 1 variety and LPP 3117, LPP 3122/2, P 3, LPP 3132, NAK34/12-2 lines had the highest quality (9.0 points). Glossiness of the bread surface and its overall estimate were influenced by the content of protein in grain. Gluten content affected bread quality somewhat less. Gluten deformation index also affected crust surface, pore size and the overall estimate of bread. The bread baked of flour of Zoria Ukrainy variety and LPP 3132, NAK34/12-2 and TV 1100 lines had the highest overall culinary estimate.

Technological properties of grain of 16 spelt varieties and lines have been theoretically substantiated and experimentally confirmed. Differences between quality of the bread baked of prime and dark flour were analyzed. Relevance of the differentiated approach to the technological properties of flour for its production was shown. Based on the study of physical-chemical and organoleptic characteristics of bread, promising possibility of its use in the baking technology has been confirmed for expanding assortment of products and improving their quality.

Keywords: spelt, baking properties, bread quality, hydrocarbon-amylase complex.

References

1. Mahar, A. R., Hollington, P. A., Virki, D. S., Witcombe, J. R. (2003). Selection of early heading and salt-tolerance in bread wheat. *Cer. Res. Com.*, 1, 81–88.
2. Skrabanja, V., Kovac, B., Golob, T., Liljeborg Elmstahl, H. G. M., Björck, I. M. E., Kreft, I. (2001). Effect of Spelt Wheat Flour and Kernel on Bread Composition and Nutritional Characteristics. *Journal of Agricultural and Food Chemistry*, 49 (1), 497–500. doi: 10.1021/jf000819w
3. Onishi, I., Hongo, A., Sasakuma, T., Kawahara, T., Kato, K., Miura, H. (2006). Variation and Segregation for Rachis Fragility in Spelt Wheat, *Triticum Spelta* L. Genetic Resources and Crop Evolution, 53 (5), 985–992. doi: 10.1007/s10722-004-7068-y
4. Petrenko, V., Liubich, V., Bondar, V. (2017). Baking quality of wheat grain as influenced by agriculture systems, weather and storing conditions. *Romanian Agricultural Research*, 34, 69–76.
5. Demirkesen, I., Mert, B., Sumnu, G., Sahin, S. (2010). Rheological properties of gluten-free bread formulations. *Journal of Food Engineering*, 96 (2), 295–303. doi: 10.1016/j.jfoodeng.2009.08.004
6. Arufe, S., Chiron, H., Doré, J., Savary-Auzeloux, I., Saulnier, L., Della Valle, G. (2017). Processing & rheological properties of wheat flour dough and bread containing high levels of soluble dietary fibres blends. *Food Research International*, 97, 123–132. doi: 10.1016/j.foodres.2017.03.040
7. Podpriatov, G., Skaletska, L., Nasikovsky, V. (2011). Interdependence of technological indicators of wheat grain quality in the process of long-term storage. *Scientific Bulletin of National University of Bioresources and Nature Management of Ukraine*, 281–290.
8. Hasanova, I. (2008). Quantity and quality of wheat germ of winter wheat under the conditions of the northern steppe in Ukraine. *Bulletin of Institute of Grain Farming*, 14–17.
9. Kohajdová, Z., Karovičová, J. (2008). Nutritional value and baking applications of spelt wheat. *Acta Scientiarum Polonorum, Technologia Alimentaria*, 7 (3), 5–14.
10. Peressini, D., Braunstein, D., Page, J. H., Strýbulevych, A., Lagazio, C., Scanlon, M. G. (2016). Relation between ultrasonic properties, rheology and baking quality for bread doughs of widely differing formulation. Journal of the Science of Food and Agriculture, 97 (8), 2366–2374. doi: 10.1002/jsfa.8048

11. Liu, W., Brennan, M. A., Serventi, L., Brennan, C. S. (2017). Effect of cellulase, xylanase and α-amyrase combinations on the rheological properties of Chinese steamed bread dough enriched in wheat bran. Food Chemistry, 234, 93–102. doi: 10.1016/j.foodchem.2017.04.160

12. Niniya, A. K. (2013). Selection value of spelt under the conditions of the eastern part of forest-steppe of Ukraine. Collection of scientific works of Uman National University of Horticulture, 82, 159–166.

13. Ziechinski, H., Ceglińska, A., Michalska, A. (2007). Bioactive compounds in spelt bread. European Food Research and Technology, 226 (3), 537–544. doi: 10.1007/s00217-006-0568-1

14. Hospodarenko, G., Tkachenko, I. (2014). Spelt wheat quality depending on the characteristics of fertilizing with nitrogen fertilizers. Bulletin of Lviv National University. Series: Agronomy, 18, 68–75.

15. Kohajdová, Z., Karoňcová, J. (2007). Effect of incorporation of spelt flour on the dough properties and wheat bread quality. Žywność. Nauka. Technologia. Jakość, 4 (53), 36–45.

16. Petrenko, V., Osipova, T., Lyubich, V., Homenko, L. (2015). Relation between Hagberg-Perten falling number and acidity of wheat flour according to storage and agricultural systems. Ratarstvo i Polzovanie, 52 (3), 120–124. doi: 10.5937/rat pov52-8485

17. Pruska-Kedzior, A., Kedzior, Z., Klockiewicz-Kaminsa, E. (2007). Comparison of viscoelastic properties of gluten from spelt and common wheat. European Food Research and Technology, 227 (1), 199–207. doi: 10.1007/s00217-007-0710-0

18. Sokolov, V. (2009). Potential of new varieties and hybrids. Seed production, 9, 1–5.

19. Osokina, N., Lyubich, V., Novak, L., Pushkarova-Bezdil, T., Priss, O., Verkholtantseva, V. et. al. (2018). Analysis of bakery properties of grain of new varieties and lines of wheat spelt. EUREKA: Life Sciences, 2, 41–46. doi: 10.21303/2504-5695.2018.00601

20. Bakarc, A. H., Osundahunsi, O. F., Oluwaseyi, J. O. (2015). Rheological, baking, and sensory properties of composite bread dough with breadfruit (Artocarpus communis Forst) and wheat flours. Food Science & Nutrition, 4 (4), 573–587. doi: 10.1002/fsn3.321

21. Lozinska, T. (2015). Formation of elements of productivity of new varieties of soft wheat under the conditions of the forest-steppe. Agrobiology, 10, 22–25.

22. Ramya, P., Chauhan, A., Kulkarni, K., Gupta, L., Kadoo, N., Dhalwal, H. S. et. al. (2010). QTL mapping of 1000-kernel weight, kernel length, and kernel width in bread wheat (Triticum aestivum L.). Journal of Applied Genetics, 51 (4), 421–429. doi: 10.1007/s10288-010-0073-1

23. Carlson, M. H., Halvorsen, B. L., Holte, K., Bohn, S. K., Dragland, S., Sampson, L. et. al. (2010). The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. Nutrition Journal, 9 (1). doi: 10.1186/1475-2891-9-3

DI0: 10.15587/1729-4061.2018.127158

THE STUDY OF BAS COMPLEX IN CHLOROPHYLL-CONTAINING VEGETABLES AND DEVELOPMENT OF HEALTHIMPROVING NANOPRODUCTS BY A DEEP PROCESSING METHOD (p. 48-56)

Raisa Pavlyuk
Kharkiv State University of Food Technology and Trade, Kharkiv, Ukraine
ORCID: http://orcid.org/0000-0003-3440-0451

Viktoriya Pogarskaya
Kharkiv State University of Food Technology and Trade, Kharkiv, Ukraine
ORCID: http://orcid.org/0000-0001-8031-5210

Valeriy Mykhaylov
Kharkiv State University of Food Technology and Trade, Kharkiv, Ukraine
ORCID: http://orcid.org/0000-0003-4335-1751

Oleksandr Bessarab
National University of Food Technologies, Kyiv, Ukraine
ORCID: http://orcid.org/0000-0001-8620-8694

Ludmila Radchenko
National University of Trade and Economics, Kharkiv, Ukraine
ORCID: http://orcid.org/0000-0002-2514-7549

Aleksey Bogarskiy
Kharkiv State University of Food Technology and Trade, Kharkiv, Ukraine
ORCID: http://orcid.org/0000-0001-8714-9518

Oleksandr Telenko
Putivl College of Sumy National Agrarian University, Putivl, Ukraine
ORCID: http://orcid.org/0000-0002-9743-386X

Anna Radchenko
National University of Trade and Economics, Kharkiv, Ukraine
ORCID: http://orcid.org/0000-0003-0890-6007

The BAS complex was determined in chlorophyll-containing vegetables (broccoli, spinach, Brussels sprouts, green beans). Presence of the BAS complex (chlorophyll, phenolic compounds, L-ascorbic acid, β-carotene) in 100 gms of fresh CCV in a quantity capable of satisfying the daily demand of the human body was established. It was found that in comparison with boiling in conventional equipment, steam thermal treatment of CCV in an automatic steam convection oven proceeds at a more intensive inactivation of oxidative enzymes. It was shown that a complete inactivation of enzymes occurs after 10 minutes of steam thermal treatment of CCV. Health-improving nanoproducts with a high content of chlorophyll were developed. A combined action on the raw materials of the processes of steam thermal treatment and mechanolysis with the use of a new generation of equipment for heat treatment and fine-dispersed shredding was used for the first time. Conditions of steam thermal treatment of CCV were established in which not only preservation of a and β chlorophylls and β-carotene but also thermal destruction and extraction from hidden forms take place. In comparison with fresh CCV, a 1.33...1.4 times larger mass fraction of chlorophyll and a 2-fold increase in β-carotene were observed. The mechanism of this process involves inactivation of oxidative enzymes and thermal destruction of hydrogen and other bonds between hidden forms of chlorophylls in nanocomplexes and proteins and polysaccharides. It has been established that significantly greater effect of extraction of hidden BAS forms occurred when using fine shredding of thermally treated chlorophyll-containing vegetables. Increase in chlorophyll and β-carotene content was 2.0...2.1 and 2.0...3.3 times, respectively, in the case of production of fine-dispersed CCV purées. With the help of the innovations used, it was possible to establish existence of hidden forms of chlorophylls and carotenoids and transform the product into an easily digestible nanoform. It has been shown that quality of fine-dispersed purées prepared from CCV with the use of these innovations exceeds quality of the starting raw material. Based on fine-dispersed CCV purées, a wide range of health-improving food products were developed.
products are in an easily digestible nanosized form. Thick soups, nanodrinks, nanosorbets, dressings sauces have been developed, their quality was studied and a comparison with counterparts made. It has been established that new types of products made from chlorophyll-containing vegetables exceed existing counterparts in the content of the BAS complex (chlorophyll, ascorbic acid, β-carotene, phenolic compounds, etc.). One portion of the product contains from 1/3 to the daily person’s demand of BAS. The BAS content in the obtained nanoproducts can be included to the health-improving products and recommended for immunizing people.

Keywords: chlorophyll-containing vegetables, BAS complex, health-improving nanoproducts, steam thermal treatment, mechanoysis, hidden forms of chlorophylls.

References

1. Tutel’yan, V. A., Vyalkov, A. I., Razumov, A. N. et. al. (2010). Nauchnye osnovy zdorovogo pitania. Moscow: Panorama, 816.
2. Global Strategy on Diet, Physical Activity and Health: report of a Joint WHO/FAO/UNU (2010). Expert Consultation. Geneva: World Health Organization.
3. Protein and Amino Acid Requirements in Human Nutrition: report of a Joint WHO/FAO/UNU (2002). Expert Consultation. WHO technical report series No. 935. Geneva: World Health Organization, 284. Available at: http://apps.who.int/iris/bitstream/10665/43411/1/WHO_TRS_935_eng.pdf
4. Simahina, G. A. et. al. (2010). Innovacionnye tehnologii i produkty oxdorovitel’nogo pitania. Kyiv: NUHT, 295.
5. Pavlyuk, R. Yu., Poharska, V. V., Radchenko, L. O. et. al. (2017). Novyi napriamok hlybokoi pererobki kharchovoi syrovyny. Kharkiv: Fakt, 380.
6. Wu, Z.-M., Wang, L., Zhu, W., Gao, Y.-H., Wu, H.-M., Wang, M. et al. (2017). Preparation of a chlorophyll derivative and investigation of its photodynamic activities against cholangiocarcinoma. Biomedicine & Pharmacotherapy, 92, 285–292. doi: 10.1016/j.biopha.2017.05.022
7. Burana-osot, J., Desjardins, Y., Angers, P. (2015). Prolonged freezing on freeze–thaw injury and post-thaw recovery of nanotechnology. Eastern-European Journal of Enterprise Technologies, 6 (10 (78)), 24–28. doi: 10.15587/1729-4061.2015.56145
8. Pavlyuk, R. Yu., Poharska, V. V., Matsipura, T. S., Maksimova, N. F. (2015). Development of nanotechnology of fine frozen champion puree (agaricus bisporus). Eastern-European Journal of Enterprise Technologies, 6 (11 (84)), 39–46. doi: 10.15587/1729-4061.2016.86968
9. Pavlyuk, R. Yu., Poharska, V. V., Matsipura, T. S., Maksimova, N. F. (2016). The effect of cryomechanodestruction and mechanochemistry when devising nano-technologies for the frozen carotenoid plant supplements. Eastern-European Journal of Enterprise Technologies, 6 (1 (1)), 23–36. doi: 10.15587/1729-4061.2016.76996
storage and maximum separation of chlorophils from chlorophyll-containing vegetables at reception of healthful nanoproducts. EUREKA: Life Sciences, 2, 47–54. doi: 10.21303/2504-5695.2018.00616

DOI: 10.15587/1729-4061.2018.127173

EXAMINING A POSSIBILITY OF USING PURPLE AMARANTH IN THE TECHNOLOGY FOR PRODUCTS MADE OF YEAST DOUGH (p. 57-64)

Olga Simakova
Donetsk National University of Economics and Trade named after Mykhailo Tugan-Baranovsky
Kryvyi Rih, Ukraine

ORKID: http://orcid.org/0000-0002-9432-8337

It was experimentally found that additives of purple amaranth (APA) have high enzyme activity, which is proved by high activity of the amylase complex: maltose number of 5 % water extract from dry foliage of purple amaranth is 12.31±0.36 %, with addition of the amylase complex: maltose number of 5 % water extract from APA A have high enzyme activity, which is proved by high activity

η

rel=1.09), from amaranth malt – (η

rel=1.13), comparable with the activity of barley malt. Application of the enzyme preparation accelerates the process of hydration of gluten proteins of wheat flour (one-hour tying of dough is not required), gluten elasticity is also improved. Thus, the expedience of the use of APA in the technology of products from yeast dough was substantiated.

Keywords: wheat flour, yeast dough, quality, gluten, purple amaranth, enzyme activity.

References

1. Balansy ta spozhivannya osnovnych produktiv kharchuvannya naselenniam Ukrainy (2016). Kyiv: Konsultant, 54.

2. Kodencova, V. M. (2008). Pshlichevye produkty, obogashchennya vitaminami i mineral`nymi veshchestvami: ih rol` v obespechenii organizma mikronutrientami. Voprosy pitanii, 4, 16–26.

3. Lozova, T. M.; Syrokhman, I. V. (Ed.) (2009). Naukovyi osnovy formuvannia spozhivnykh vlastiosti i zberihannia yakosti borosnih-

anykh kondyters`kykh vyrobiv. Lviv: KLE, 456.

4. Syrokhman, I. V., Lozova, T. M. (2008). Naukovyi osnovy formuvannia u poliglifnh spozhivnykh vlastiosti i zberihannia yakosti borosnih-

anykh kondyters`kykh vyrobiv. Nauk. pratsi NUKhT, 25, 40–43.

5. Krasilnikova, L. O., Avksentieva, O. O., Zhmurok, V. V. (2007). Bio-

khimiya rosl`n. Kharkiv, 191.

6. Pogarskaya, V. V. et. al. (2007). Novye tehnologii funkcional`nyh osnovoritel`nyh produkty. Kharkiv, 262.

7. Simakova, O. A., Korenets, Yu. M., Hlushko, V. O. (2016). Desid-

zhennia ta vplyv yakosti pytnoi vody na khlebop`karmi vlastiosti polivnychho boroshina. Visn. NTU «KhPh». Novi rashennia v su-

chanykh tehnolohiyakh, 25 (1197), 158–163.

8. Korenets, Y., Goria inova, I., Nykyforov, R., Nazarenko, I., Simakova, O. (2017). Substantiation of feasibility of using black chokeberry in the technology of products from shortcake dough. Eastern-European Journal of Enterprise Technologies, 2 (10 (86)), 25–31. doi: 10.15587/1729-4061.2017.98409

9. Chang, J., Kisu, W. (2011). Enzymes and their effect on the quality of dough. Foods, 15 (4), 33–37.

10. Prosek, A., Yu., U’r’i, E. V., Noskova, S. Yu. et. al. (2013). Po-

luchenie fermentnyh gidrolizatov belkov molocchny syrovori s ispol`zovaniem proteolyticheskikh fermentov. Fundamental`nye isle-

dovaniya, 6, 1089–1093.

11. Pavlink, R. Yu. et. al. (2010). Aktivatsiya rosl`nnikh biologichih aktivnykh rechovyn fizichnym metodany. Kharkiv, 157.

12. Simakova, O., Nazarenko, I. (2017). Investigation of the impact of the quality of drinking water on the process of bread produc-

tion. Bulletin of the National Technical University «KhPh» Series: New solutions in modern technologies, 32 (1254), 112–116. doi: 10.20998/2413-4295.2017.32.18

13. Korenets, Y., Goria inova, I., Nykyforov, R., Nazarenko, I., Simakova, O. (2017). The study of influence of aronia additives on function-

al-technological properties of wheat flour. EUREKA: Life Sciences, 1, 27–34. doi: 10.21303/2504-5695.2017.00299

14. Sniezkin, Yu. F., Petrova, Zh. O. (2009). Novi kharchovi produkty v ekolohiyi kharchuvannya. Zakhyst navkolyshnoho seredovyshcha. Enerhooshchadnist. Zbalansovane pryrodokorystuvannia, 75–76.

15. Laguta, I. V., Stavinskaya, O. N., Dzyuba, O. I. et. al. (2015). Analiz antioxidantnyh svoystv ekstraktov rasteniy. Dop. Natsionalnoi akademiyi nauk Ukrainy, 5, 130–137.

16. Katalinic, V., Milo, M., Kulic, T., Jukic, M. (2006). Screening of 70 medicinal plant extracts for antioxidant capacity and total phenols. Energooshchadnist. Zbalansovane pryrodokorystuvannia, 6, 1089–1093.

17. Prosek, A., Yu., U’r’i, E. V., Noskova, S. Yu. et. al. (2013). Po-

luchenie fermentnyh gidrolizatov belkov molocchny syrovori s ispol`zovaniem proteolyticheskikh fermentov. Fundamental`nye isle-

dovaniya, 6, 1089–1093.

18. Semenova, L. Ya., Simakova, O. O. (2012). Vplyv laminariy tsuk-

um. Lutsk, 360.

19. Krasilnikova, L. O., Avksentieva, O. O., Zhmurok, V. V. (2007). Bio-

khimiya roslyn. Kharkiv, 191.

20. Prosek, A., Yu., U’r’i, E. V., Noskova, S. Yu. et. al. (2013). Po-

luchenie fermentnyh gidrolizatov belkov molocchny syrovori s ispol`zovaniem proteolyticheskikh fermentov. Fundamental`nye isle-

dovaniya, 6, 1089–1093.

21. Pavlink, R. Yu. et. al. (2010). Aktivatsiya rosl`nnikh biologichih aktivnykh rechovyn fizichnym metodany. Kharkiv, 157.

22. Simakova, O., Nazarenko, I. (2017). Investigation of the impact of the quality of drinking water on the process of bread produc-

tion. Bulletin of the National Technical University «KhPh» Series: New solutions in modern technologies, 32 (1254), 112–116. doi: 10.20998/2413-4295.2017.32.18

23. Korenets, Y., Goria inova, I., Nykyforov, R., Nazarenko, I., Simakova, O. (2017). The study of influence of aronia additives on function-

al-technological properties of wheat flour. EUREKA: Life Sciences, 1, 27–34. doi: 10.21303/2504-5695.2017.00299

24. Sniezkin, Yu. F., Petrova, Zh. O. (2009). Novi kharchovi produkty v ekolohiyi kharchuvannya. Zakhyst navkolyshnoho seredovyshcha. Enerhooshchadnist. Zbalansovane pryrodokorystuvannia, 75–76.

25. Laguta, I. V., Stavinskaya, O. N., Dzyuba, O. I. et. al. (2015). Analiz antioxidantnyh svoystv ekstraktov rasteniy. Dop. Natsionalnoi akademiyi nauk Ukrainy, 5, 130–137.

26. Katalinic, V., Milo, M., Kulic, T., Jukic, M. (2006). Screening of 70 medicinal plant extracts for antioxidant capacity and total phenols. Energooshchadnist. Zbalansovane pryrodokorystuvannia, 6, 1089–1093.

27. Prosek, A., Yu., U’r’i, E. V., Noskova, S. Yu. et. al. (2013). Po-

luchenie fermentnyh gidrolizatov belkov molocchny syrovori s ispol`zovaniem proteolyticheskikh fermentov. Fundamental`nye isle-

dovaniya, 6, 1089–1093.
The dynamics of freezing a semi-finished product for making a smoothie drink was investigated. We have chosen, as the subject of present study, a semi-finished product whose production technology included strawberry, dried apple, and oat flakes.

By using a low temperature calorimeter, crystallization ranges for the examined semi-finished product, as well as the amount of frozen moisture, which was 86.6 %, were identified. It is established that freezing at −20±2 °C contributes to the complete preservation of the sample, and its further storing at the temperature within such limits ensures its storage over a long period of time. It was also experimentally established that the curves of freezing and defrosting of the sample do not coincide, that is, the character of temperature dependence during freezing and defrosting is different. This testifies to the irreversibility of plant tissue during ice formation and thawing.

A reduction in the total microbial contamination over a long refrigeration storing is established, which indicates a negative effect of cold on the viability of microorganisms. The amount of mesophilic-aerobic and optionally anaerobic microorganisms in 30, 60, 90, 180, and 270 days of refrigeration at mesophilic-aerobic and optionally anaerobic microorganisms in 30, 60, 90, 180, and 270 days of refrigeration at

The development and active introduction of effective freezing technologies, low temperature storage, and processing of fruits and berries would contribute to solving a task on the balanced nutrition of people, reducing the level of diseases, improving quality of life. In addition, the introduction of such technologies would significantly enlarge the base of local processing industry whose development, in turn, would contribute to the development of agricultural production in a given region.

The data obtained data could be applied to determine the rational freezing and defrosting modes for a semi-finished product and would make it possible to extend the assortment of frozen products.

Keywords: frozen moisture, microflora, frozen products, crystallization temperature, kinetics of freezing, defrosting.

References

1. Rickman, J. C., Bruhn, C. M., Barrett, D. M. (2007). Nutritional comparison of fresh, frozen, and canned fruits and vegetables II. Vitamin A and carotenoids, vitamin E, minerals and fiber. Journal of the Science of Food and Agriculture, 87 (7), 1185–1196. doi: 10.1002/jsfa.2824
2. Rickman, J. C., Bruhn, C. M., Barrett, D. M. (2007). Nutritional comparison of fresh, frozen, and canned fruits and vegetables II. Vitamin A and carotenoids, vitamin E, minerals and fiber. Journal of the Science of Food and Agriculture, 87 (7), 1185–1196. doi: 10.1002/jsfa.2824
3. Walkling-Ribeiro, M., Noci, F., Cronin, D. A., Lyng, J. G., Morgan, D. J. (2010). Shelf life and sensory attributes of a fruit smoothie-type beverage processed with moderate heat and pulsed electric fields. LWT – Food Science and Technology, 43 (7), 1067–1073. doi: 10.1016/j.lwt.2010.02.010
4. Roberts, J. S., Gentry, T. S., Bates, A. W. (2006). Utilization of Dried Apple Pomace as a Press Aid to Improve the Quality of Strawberry, Raspberry, and Blueberry Juices. Journal of Food Science, 69 (4), SNQ181–SNQ190. doi: 10.1111/j.1365-2621.2004.tb06361.x
5. Barbosa-Canovas, G. V., Altunakar, B., Mejia-Lorio, D. J. (2015). Freezing of Fruits and Vegetables: An Agribusiness Alternative for Rural and Semi-Rural Areas. Chapter I. Food and Agriculture Organization of the United Nations. Rome, 1–36.
6. Bonat Celli, G., Ghanem, A., Su-Ling Brooks, M. (2015). Influence of freezing process and frozen storage on the quality of fruits and fruit products. Food Reviews International, 32 (3), 280–304. doi: 10.1080/87559129.2015.1075212
7. Korotki, I. A., Sakhabutdinova, G. F., Ibragimov, M. I. (2016). Opredeleniy tepolozhicheskikh svoystv komponentov ploedorovoshchny smesi v protsesse zamorazhivaniya. Technology and technology of food production, 1, 81–86.
8. Rickman, J. C., Barrett, D. M., Bruhn, C. M. (2007). Nutritional comparison of fresh, frozen and canned fruits and vegetables. Part 1. Vitamins C and B and phenolic compounds. Journal of the Science of Food and Agriculture, 87 (6), 930–944. doi: 10.1002/jsfa.2825
9. Sahari, M. A., Mohsen Boostani, F., Zohreh Hamidi, E. (2004). Effect of low temperature on the ascorbic acid content and quality characteristics of frozen strawberry. Food Chemistry, 86 (3), 357–363. doi: 10.1016/j.foodchem.2003.09.008
10. Agnelli, M. E., Mascheroni, R. H. (2002). Quality evaluation of food-stuffs frozen in a cryomechanical freezer. Journal of Food Engineering, 52 (3), 257–263. doi: 10.1016/S0260-8774(01)00113-3
11. Koyuncu, M. A., Dilmacunal, T. (2011). Determination of Vitamin C and Organic Acid Changes in Strawberry by HPLC During Cold Storage. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 38 (3), 95–98.
12. Carle, R., Borzych, P., Dubb, P., Siliba, H., Maier, O. (2001). A new process for firmer canned cherries and strawberries. Journal of Food Australia, 53, 334–348.
13. Van Buggenhout, S., Messagie, I., Maes, V., Duvetter, T., Van Loey, A., Hendrickx, M. (2006). Minimizing texture loss of frozen strawberry: effect of infusion with pectinmethylesterase and calcium combined with different freezing conditions and effect of subsequent storage/thawing conditions. European Food Research and Technology, 223 (3), 395–404. doi: 10.1007/s00217-005-0218-4
14. Pogozhich, M. I., Odarchenko, D. M., Odarchenko, A. M., Cher-kashina, V. Yu. (2011). Mikrobiolohichni pokaznyky zamorozhennoho tistovoho napivfabrykatu z dodavannym roslynnoyi syrovnyy v protesni vyrobnystva ta zherihannya. Progressive technology and technologies of food production of restaurant and trade, 7, 177–180.
15. Afroz, H., Ahmed, T., Uddin, M. A. (2016). Microbiological analysis and antibacterial activity of pear samples. Stamford Journal of Microbiology, 5 (1), 1. doi: 10.3329/sjm.v5i1.26910
16. Kovalenko, V. O., Odarchenko, D. M., Kudryashov, A. I., Shtrih, S. V., Synuel, O. O. (2012). Mikrobiolohichna otsinka yakosti zamoro-
The mechanism of influence of the Magnetofood additive on the moisture retaining in rye-and-wheat dough of various acidities was established. In a neutral medium, solvated Magnetofood nanoparticles are formed from polarized Magnetofood nanoparticles. Their surface acquires hydrophilic and ability to interact with ionogenic groups of biopolymers and water dipoles. Interaction of solvated Magnetofood nanoparticles with water molecules results in solvate complexes. In an acidic medium, the protonated Magnetofood nanoparticles interact with dipoles of water by an ion-dipole mechanism forming solvated Magnetofood nanoparticles which interact with water dipoles through hydrogen bonds with formation of solvate complexes. In an alkaline medium, hydroxylated Magnetofood nanoparticles interact with dipoles of water by an ion-dipole mechanism forming solvated Magnetofood nanoparticles. Their interaction with water dipoles through hydrogen bonds leads to formation of solvate complexes.

The mechanism of interaction of the Magnetofood nanoparticles with ionogenic groups of biopolymers of dough systems was shown. The Magnetofood nanoparticles enter ionic, ion-dipole, dipole-dipole and coordination interactions. Solvated Magnetofood nanoparticles form hydrogen bonds with water dipoles and with molecules of biopolymers.

A “cluster-loop-chain” model of the moisture-retaining power of gluten and flour enriched with the Magnetofood additive was proposed. The Magnetofood nanoparticles contribute to the emergence of structural formations such as “clusters”, “clathrates”, “cavities” and “loops” in which both intermicellar and intramicellar water is retained. It has been experimentally established that the Magnetofood polyfunctional food additive has a beneficial effect on the body and has a complex sorption, complexing, moisture- and fat-retaining and bacteriostatic action. This results in yield increase, quality improvement, preservation of freshness and extension of shelf life of bakery products.

From this point of view, the study results are of interest not only for Ukraine but also for the international scientific community.

Keywords: polyfunctional food additive, rye-and-wheat flour, interaction mechanism, “cluster-loop-chain” model.

References
1. Yurchak, V. G., Berzina, N. I., Shmarovoz, V. M., Prishcheva, M. P. (1989). Determination of bound water by the indicator method in baking production. News of Higher Education. Food technology, 4, 78–80.
2. Auerman, L. Ya.; Puchkova, L. I. (Ed.) (2003). Technology of bakery production. Sankt-Peterburg: The profession, 253.
3. Alexandrov, A., Tsykhanovska, I., Gontar, T., Kokody, N., Dormenko, N. (2016). The study of nanoparticles of magnetite of the ligand-magnettite suspensions by methods of photometry and electronic microscopy. Eastern-European Journal of Enterprise Technologies, 4 (11 (82)), 51–61. doi: 10.15587/1729-4061.2016.76105
4. Chandhry, Q., Castle, L., Watkins, R. (Eds.) (2010). Nanotechnoiogy in food. Royal Society of Chemistry. doi: 10.1039/9781782686879
5. Polumbrik, M. O. (2011). Nanotechnology in food products. Food industry, 10, 319–322.
6. Tsykhanovska, I., Evals, V., Alexandrov, A., Lazariya, T., Svidlo, K., Gontar, T. (2017). Design of technology for the rye-wheat bread “Kharkivskii rodnichok” with the addition of polyfunctional food additive “Magnetofood”. Eastern-European Journal of Enterprise Technologies, 6 (11 (90)), 48–58. doi: 10.15587/1729-4061.2017.117279
7. Ilyukha, N. G., Barsova, Z. V., Kovalenko, V. A., Tsikhanovskaya, I. V. (2010). Production technology and quality indices of a food additive based on magnetite. Eastern-European Journal of Enterprise Technologies, 6 (10 (48)), 32–35. Available at: http://journals.uran.ua/eejt/article/view/5847/5271
8. Sozer, N., Kokini, J. L. (2009). Nanotechnology and its applications in the food sector. Trends in Biotechnology, 27 (2), 82–89. doi: 10.1016/j.tibtech.2008.10.010
9. Semicircular, M. O. (2011). Carbohydrates in foods and human health. Kyiv: Akademperiodika, 487.
10. Baranov, D. A., Gubin, S. P. (2009). Magnetic nanoparticles: achievements and problems of chemical synthesis. Radioelektronika na-noisemy informatsionnye tehnologii, 1 (1-2), 129–145.
11. Gubin, S. P., Koksharova, V. A., Khomutov, G. B., Yurkov, G. Y. (2005). Magnetic nanoparticles: preparation, structure and properties. Rus-
sian Chemical Reviews, 74 (6), 489–520. doi: 10.1070/rf2005v074n06abeh000897
12. Belitz, H.-D., Grosch, W., Schieberle, P. (2004). Food chemistry. Springer Verlag, 1070. doi: 10.1007/978-3-662-07279-0
13. Aamodt, A., Magnus, E. M., Faergestad, E. M. (2003). Effect of Flour Quality, Ascorbic Acid, and DATEM on Dough Rheological Parameters and Hearth Loaves Characteristics. Journal of Food Science, 68 (7), 2201–2210. doi: 10.1111/j.1365-2621.2003.tb05747.x
14. Aminlari, M., Majzooobi, M. (2002). Effect of Chemical Modification, pH Change, and Freezing on the Rheological, Solubility, and Electrophoretic Pattern of Wheat Flour Proteins. Journal of Food Science, 67 (7), 2502–2506. doi: 10.1111/j.1365-2621.2002.tb08766.x
15. Aleshkov, A. V. (2016). Food industry – innovation industry. Khabarovsk: HIC, 188.
16. Budilakov, A. (2008). Nutritional supplements: directory. Moscow: St. Petersburg, 280.
17. Matveeva, I. V., Velitskaya, I. G. (1998). Food additives and bakery improvers in the production of bread. Novosibirsk: Sib. univ. publishing house; 328.
18. Maforimbo, E., Skurray, G. R., Nguyen, M. (2007). Evaluation of l-ascorbic acid oxidation on SH concentration in soy-wheat composite dough during resting period. LWT – Food Science and Technology, 40 (2), 338–343. doi: 10.1016/j.lwt.2005.09.008
19. Rosell, C. M., Wang, J., Aja, S., Bean, S., Lookhart, G. (2003). Wheat Flour Proteins as Affected by Transglutaminase and Glucose Oxidase. Cereal Chemistry Journal, 80 (1), 52–55. doi: 10.1094/ cchem.2003.80.1.52
20. Chugunova, O. V., Pastushkova, E. V. (2015). Modeling of organoleptic indicators of bread with plant supplements. Bulletin of the South Ural State University: Series Food and Biotechnology, 3 (4), 80–87. doi: 10.14529/food150411
21. Tamazova, S. U., Lisovoy, V. V., Pershakova, T. V., Kasimirova, M. A. (2016). Food supplements based on vegetable raw materials in the production of baked goods and pastries. Polythematic Online Scientific Journal of Kuban State Agrarian University, 122 (08). doi: 10.21515/1990-4665-122-076
22. Roslyakov, Yu. F., Veshchina, O. L., Gonchar, V. V. (2016). Scientific developments for bakery and confectionery industries. Technologies of food and processing industry AIC-products of healthy nutrition, 6, 42–47.
23. Roslyakov, Yu. F., Veshchina, O. L., Gonchar, V. V. (2010). Perspective researches of technologies of bakery products of functional purpose. Investiia Vazov Food technology, 1, 125–125.
24. Gorkshanova, K. D., Semenova, P. A., Bessonov, V. V. (2012). Interaction of hydrocolloids and water-soluble vitamins in the design of enriched foods. Food Industry, 11, 46–49.
25. Phillips, G. O., Williams, P. A. (Eds.) (2006). Handbook of hydrocolloids. Sankt-Peterburg: GIORD, 536.
26. Herbaed A. Q. Plus Citrus Fibers – Type N. Specification for Food Additives and Recipes. Available at: http://specin.ru/kletchatka/109.htm
27. Domoroshchenkova, M. L., Demyanenko, T. F., Kamysheva, I. M. et. al. (2007). Research of functional and technological properties of isolates of soy proteins. Oil and fat industry, 4, 24–28.
28. Renzyaeva, T. V., Poznyakovskiy, V. M. (2009). Water-retaining ability of raw materials and food additives in the production of flour confectionery products. Storage and processing of agricultural raw materials, 8, 35–38.
29. Renzyaeva, T. V., Tuboltsava, A. S., Ponkratova, E. K., Lugovaya, A. V., Kazantseva, A. V. (2014). Functional-technological properties of powdered raw materials and food additives in the production of confectionery products. Technique and technology of food production, 4, 43–49.
30. Drobot, V. I. (2008). The use of non-traditional raw materials in the baking industry. Kyiv: The harvest, 152.
31. Martins, Z. E., Pinho, O., Ferreira, I. M. P. L. V. O. (2017). Food industry by-products used as functional ingredients of bakery products. Trends in Food Science & Technology, 67, 106–128. doi: 10.1016/j.tifs.2017.07.003
32. Lai, W. T., Khong, N. M. H., Lim, S. S., Hee, Y. Y., Sim, B. I., Lau, K. Y., Lai, O. M. (2017). A review: Modified agricultural by-products for the development and fortification of food products and nutraceuticals. Trends in Food Science & Technology, 59, 148–160. doi: 10.1016/j.tifs.2016.11.014
33. Driki, D., Rzaylo, R., Gawlik-Dziki, U., Świeca, M. (2014). Current trends in the enhancement of antioxidant activity of wheat bread by the addition of plant materials rich in phenolic compounds. Trends in Food Science & Technology, 40 (1), 48–61. doi: 10.1016/j.tifs.2014.07.010
34. Torres-León, C., Rojas, R., Contreras-Esquivel, J. C., Serna-Cock, L., Belmares-Cerda, R. E., Aguilar, C. N. (2016). Mango seed: Functional and nutritional properties. Trends in Food Science & Technology, 55, 109–117. doi: 10.1016/j.tifs.2016.06.009
35. Bharath Kumar, S., Prabhavan, P. (2014). Low glyemic index ingredients and modified starches in wheat based food processing: A review. Trends in Food Science & Technology, 35 (1), 32–41. doi: 10.1016/j.tifs.2013.10.007
36. Ngemakwe, P. N., Le Roes-Hill, M., Jideani, V. (2014). Advances in gluten-free bread technology. Food Science and Technology International, 21 (4), 256–276. doi: 10.1177/1082013214531425
37. Bird, L. G., Pilkington, C. L., Saputra, A., Serventi, L. (2017). Products of chickpea processing as texture improving in gluten-free bread. Food Science and Technology International, 23 (8), 690–698. doi: 10.1080/12221020.2017.12717802
38. García-Segovia, P., Pagán-Moreno, M. J., Lara, I. F., Martínez-Monzo, J. (2017). Effect of microalgae incorporation on physico-chemical and textural properties in wheat bread formulation. Food Science and Technology International, 23 (5), 437–447. doi: 10.1177/1082013217708259
39. Boubaker, M., Ouni, A. E., Blecker, C., Bouzouita, N. (2016). Fibre concentrate from artichoke (Cynara scolymus L.) stem by-products: Characterization and application as a bakery product ingredient. Food Science and Technology International, 22 (8), 759–768. doi: 10.1080/108201321654598
40. Tsykhovskova, I., Evlash, V., Alexandrov, A., Lazareva, T., Svidlo, K., Gontar, T. et. al. (2018). Investigation of the moisture-retaining power of rye-wheat gluten and flour with polyfunctional food supplement “Magnetofood”. EUREKA: Life Sciences, 2, 67–76. doi: 10.21303/2504-5695.2018.00611
41. Ershov, P. S. (2004). Collection of recipes for bread and bakery products. Sankt-Petersburg: Prof-Inform, 190.