Novel fluorescent nano-sensor based on amino-functionalization of Eu$^{3+}$:SrSnO$_3$ for copper ion detection in food and real drink water samples

Z. Ghubish,a R. Kamal,b Hala R. Mahmoud,b M. Sait,b H. Hafezc and M. El-Kemaryb,*a

Lanthanide-doped nanoparticles exhibit unique optical properties and have been widely utilized for different sensing applications. Herein, the Eu$^{3+}$:SrSnO$_3$@APTS nanosensor was synthesized and its optical properties were analyzed using UV-Vis and photoluminescence spectroscopy. The TEM images of the synthesized nanophosphor Eu$^{3+}$:SrSnO$_3$@APTS exhibited peanut-like morphology, composed of two or more spherical nanoparticles with an average diameter \sim33 nm. Effects of environmental pH values and doping concentrations as well as amino functionalization on the structure of Eu$^{3+}$:SrSnO$_3$ were investigated. The as-synthesized optical nanosensor was used for determination of copper ions based on a fluorescence quenching approach. Red emission with a long lifetime was observed in the case of the 0.06 mol Eu$^{3+}$:SrSnO$_3$@APTS sample. Under the optimal experimental conditions, a Stern–Volmer plot exhibited a good linearity for copper ions over the concentration (0.00–10.8) \times 10$^{-10}$ mol L$^{-1}$ with a correlation efficient of 0.996 and a limit of detection 3.4 \times 10$^{-12}$ mol L$^{-1}$. The fluorescent sensor was dynamically quenched via a coulombic interaction mechanism between the Eu$^{3+}$ (5L_6) and Cu$^{2+}$. The Eu$^{3+}$:SrSnO$_3$@APTS nanosensor with the optimal Eu$^{3+}$ dopant concentration of 0.06 mol was applied for copper determination in food and real drink water samples with high recovery values. We believe that the developed nanosensor probe can also be used for the detection of other toxic compounds, with high selectivity and sensitivity.

1. Introduction

Recently, the detection of copper ions in environmental and biological systems has attracted considerable attention because copper plays an important role in physiological processes of living organisms in certain doses. However, the overuse of copper is highly toxic and leads to several diseases such as kidney failure, nervous system damage, and several others. Moreover, at higher concentrations, Cu$^{2+}$ can react with molecular oxygen to create reactive oxygen species (ROS), leading to significant damage to cell structures, due to its interaction with proteins, nucleic acids and lipids. Additionally, excess levels of copper in the body for two weeks or more may lead to adverse health effects as nausea, vomiting, diarrhea and permanent organs damage. Therefore, the detection of Cu$^{2+}$ in food samples and drinking water is a necessary precaution. Consequently, production of sensitive and low-cost sensors for measuring copper in different industrial fields remains an active area of research.

Many analytical methods had been reported for the detection of copper ion. Among these methods are atomic absorption spectroscopy (AAS),4 inductively coupled plasma mass spectrometry (ICP-MS), inductively coupled plasma atomic emission spectroscopy (ICP-AES),5 and electrochemical.6 Although these analytical methods are efficient quantitatively, they need expensive instrumentation and are time intensive. They also demand high operating cost, which makes these methods unsuitable for field monitoring.

In recent years, fluorescence methods had been widely employed for sensing various heavy metal ions, nanoparticles,4 fingerprint25,26 and biomarker$^{17–19}$ due to their low cost and visualization. Moreover, it has robust, high reliability, reusability, fast response time and other properties.20 Organic fluorescent sensors are limited by their photo-bleaching, broad emission band, short lifetime and low sensitivity.21

The simple, selective and sensitive nanopolar sensor based on a polyamine decorated β-cyclodextrin was used for the detection of copper(a) in real environmental samples.22 However, inorganic fluorescent sensors attracted much attention, as it avoiding the above-mentioned disadvantages. It was reported that functionalized silver nanoparticles, CdSe coated with 4-mercaptopbenzoic acid23 and ZnS quantum dots

\[\text{Eu}^{3+}:\text{SrSnO}_3@\text{APTS} \]
functionalize with L-cystine were used as a fluorescent sensor for copper detection. Although these inorganic sensors are simple, high-selective and relatively cheap, their broad emission bands showed some aggregation affecting the sensing ability. Moreover, the sensing features of silver and Q-dot depends on their shape and size, therefore the use of monodispersed nanoparticles is essential. Inorganic sensors based on lanthanide ions have been recently studied as an effective sensor for different applications. Lanthanide ions have distinct fluorescent properties that include anti-Stokes shifts, sharp emission peaks, and long-live luminescence. Lanthanide doped alkaline earth stannates MSnO3 (M = Sr, Ca, Ba) exhibit unique properties including lower chemical toxicity, lack of radioactive elements and greater thermal and chemical stability. Note that the forbidden f–f transition of the Ln(III) ions, which induces significantly low molar extinction coefficient ($\varepsilon < 10 \text{ M}^{-1} \text{ cm}^{-1}$) limiting the practical applications of the lanthanides. However, the presence of aromatic chromophores as linkers for lanthanides lead to minimize this effect and provide excellent sensing sensitivity toward the analyte. Due to their unique luminescence properties, lanthanide-based probes have recently used for the detection of nitroaromatic compounds in water, ions, trace-water, gas and temperature.

In the present study, we have developed nano-fluorescent sensor based on SrSnO3:Eu3+@APTS as an efficient analytical tool with quick response, high selectivity and sensitivity for the detection of copper ion in food and drinking water samples.

2. Experimental

2.1 Materials

All chemicals used in the present study were of analytical grade and used without further purification. Metal salts: europium nitrate Eu(NO3)3 was prepared by reactions of europium oxide (Belami Fine Chemical) and nitric acid. Strontium chloride SrCl2, copper chloride CuCl2·2H2O, lead nitrate Pb(NO3)2, nickel nitrate hexahydrate Ni(NO3)2·6H2O, ferric chloride hexahydrate FeCl3·6H2O, magnesium nitrate Mg(NO3)2, manganese chloride MnCl2, mercuric nitrate Hg(NO3)2, tin(iv) chloride pentahydrate SnCl4·5H2O and cobalt chloride CoCl2 were obtained from Sigma. 3-Aminopropyl trimethoxysilane (APTS) as a silylating agent, purchased from Fluka. Acetic acid, NaOH and hydrochloric acid were obtained from Sigma-Aldrich.

2.2 Synthesis of fluorescent materials

2.2.1 Synthesis of x mol Eu3+:SrSnO3. 25 mL of aqueous solution of NaOH (1.2 mol L$^{-1}$) was added to 25 mL of aqueous solution of SrCl2 (0.2 mol L$^{-1}$) under stirring and a clear aqueous solution was obtained. The obtained solution was added drop wise into 50 mL of aqueous solution of SnCl2 (0.1 mol L$^{-1}$), which contains different molar ratios (0.00–0.10 mol) from europium nitrate (Eu(NO3)3·6H2O). Then, 0.1 mol L$^{-1}$ HCl was added with continued stirring for 30 min to adjust different pH. The obtained slurry was washed repeatedly with distilled water to remove excess salts. The product was finally dried at 80 °C in air and annealed at 700 °C.

2.2.2 Synthesis of SrSnO3·0.06 mol Eu3+@APTS. SrSnO3·Eu3+ (500 mg) was dispersed and sonicated in 600 mL ethanol/water (5/1) for 20 minutes. Acetic acid was added dropwise to the solution until the solution pH equal to 4. Then 4 mL of APTS was added to the solution and the mixture stirred for 3 hours at room temperature. Finally, the nanoparticle was purified and washed several times with ethanol and then dried for 24 hours at 45 °C in an oven. The obtained particles was characterized by FT-IR spectra.

2.3 Sensitivity of nanofluorescent sensor

Stock solutions of metal salts were synthesized in distilled water. All dilute solutions were prepared from standard stock aqueous solutions of concentration 0.1 M of their respective metal ions. An aqueous solution of metal salt (5 mL) has been mixed with 0.005 g of nanosensor and stirred for 30 min. Then the nanopowder was centrifuged. The obtained spectra of solutions were recorded at $\lambda_{ex} = 285$ nm.

2.4 Analytical application in food and drinking water samples

A food sample including 2.0 g of green tea or 2.0 g of black tea or 5.2 of tomato sauce were put into porcelain crucible and burned with flame. Three powder samples were calcinated at 550 °C for 4 h, then 10 mL of concentrated nitric acid was added, followed by adding 5 mL of hydrogen peroxide 30% and the mixture was heated for drying. Finally, 25 mL water were added. Aliquots of these solutions was subjected to the analytical determination.

Drinking water samples were taken from Kafr ElSheikh governorate, Egypt. All water samples were filtered using 0.45 µm member filters before testing. 1 mL was taken and diluted to 10 mL distilled water and mixed with the fluorescent sensor for copper ion determination.

Results obtained by developed fluorescent sensor were compared to data obtained by standard method using Inductive Coupled Plasma Atomic Emission Spectrometry (ICP-AES) (Optima 5300DV, PerkinElmer type).

2.5 Characterization of x mol Eu3+:SrSnO3 and 0.06 mol Eu3+:SrSnO3@APTS

Nanofluorescent sensor was characterized by high resolution Transmission Electron Microscope (TEM, JEM-2100, JEOL). The XRD patterns were recorded using Shimadzu X-ray diffractometer with CuKα1 radiation ($\lambda = 1.54056$ Å). The accelerating voltage of 40 kV and an emission current of 30 mA were used. The FT-IR spectra were recorded using JASCO-FT-IR 6800 spectrometer. The photoluminescence emission spectra were recorded at room temperature with a spectrofluorometer Shimadzu RF5301PC. The luminescent lifetime of the prepared compounds was recorded using a PerkinElmer LS 55...
luminescence spectrometer (USA). Surface charge of nanoparticles were calculated by Brookhaven zeta potential/particle size analyser.

3. Results and discussion

3.1 Structure, surface and morphology

3.1.1 XRD. Fig. 1(A) showed the XRD patterns of SrSnO$_3$:x mol Eu$^{3+}$ as a function of Eu$^{3+}$ concentrations (x = 0.00–0.1 mol) (left) and pH values (right). The peaks observed at 21.5, 30.8, 44.4, 55.6, 64.9 and 73.8 can be related to (200), (202), (400), (440), (442) and (620) crystal planes of cubic phase (standard JCPDF card 09-0080). The lattice parameters of the prepared nanofluorescent samples were calculated35 and the obtained data are listed in Table 1. It is readily seen that, the host matrix exhibit a peak shift to the higher angles after addition of Eu$^{3+}$ ion and no new peak was obtained, suggesting a small decrease in the unit cell parameters, Table 1. This phenomenon is likely a result of the shrinkage of the unit cell when Sr$^{2+}$ ions were exchanged with smaller ionic radius Eu$^{3+}$ ion (Sr$^{2+}$ = 1.44 Å; Eu$^{3+}$ = 1.12 Å),36 Fig. 1(C). However, we have found that the crystal size of the nanophosphor decreases as a function of Eu$^{3+}$ doping concentrations (pH = 12.5), Table 1.

![XRD spectra](image)

Fig. 1 XRD spectra of (A) SrSnO$_3$:x mol Eu$^{3+}$ at pH = 12.5 and [x] of (a–f) = 0, 0.01; 0.02, 0.03; 0.06 and 0.10 mol, respectively and (B) SrSnO$_3$:0.06 mol Eu$^{3+}$ prepared at pH 12.5 (a), pH 11.0 (b), pH 10.5 (c), pH 10.5 + APTS (d) and pH 9 (e) and (C) schematic model of SrSnO$_3$ and Eu$^{3+}$:SrSnO$_3$ cubic structure.

Table 1 The crystal parameters and band gap values (E_g) of x mol Eu$^{3+}$:SrSnO$_3$ (pH = 12.5) as a function of doping concentrations

SrSnO$_3$:x mol Eu$^{3+}$	2θ (°)	Crystal size [nm]	FWHM	Lattice parameter [Å]	Band gap [eV]
0.00	30.87	30.58	0.2816	8.1846	4.10
0.01	30.90	28.98	0.2974	8.0970	3.99
0.02	30.91	28.85	0.2985	8.0887	3.92
0.03	30.99	28.04	0.3072	8.0381	3.74
0.06	31.29	27.86	0.3093	8.0123	3.68
0.10	30.95	26.01	0.3311	8.0041	3.57
Fig. 1(B) shows the effect of pH of the synthesis solution on the crystal structure of SrSnO₃:0.06 mol Eu³⁺ system. It is apparent that the observed peak became weaker and broader by decreasing the pH values from 12.5 to 9.0 and by addition of APTS, indicating a decrease on the crystal sizes of the obtained samples by decreasing the pH values and by addition of APTS. It was also observed that the sample prepared at pH = 9.0 showed an amorphous structure. In addition, the observed peak shift to

pH	2θ (°)	Crystal size (nm)	FWHW	Lattice parameter (Å)	Band gap (eV)
pH = 12.5	31.29	27.86	0.3093	8.0123	3.68
pH = 11.0	30.89	27.76	0.3102	8.1390	3.59
pH = 10.5	30.78	27.66	0.3112	8.1860	3.28
pH = 10.5 + APTS	30.76	27.42	0.3141	8.2020	3.14
pH = 9.0	30.83	20.50	0.4200	8.1740	3.10

Table 2 The crystal parameters and band gap values (E_g) of 0.06 mol Eu³⁺:SrSnO₃ as a function of pH values and in the presence of APTS.

Fig. 2 TEM images of the synthesized optimized nanophosphors Eu³⁺:SrSnO₃@APTS (a and b). The SEM images of Eu³⁺:SrSnO₃ (e), and 0.06 mol Eu³⁺:SrSnO₃@APTS (f). The high resolution transmission electron microscopy (HR-TEM) of an interplanar d-spacing of lattice fringes (c); the energy dispersive X-ray (EDX) analysis of nanoparticles exhibited peaks corresponding to the presence of Eu, Sr, Sn, and O in addition to Si elements in case of amino-functionalized sample (d).
the lower angles reflects a small increase in the unit cell parameters, Table 2.

3.1.2 Microstructures and morphologies analysis. Fig. 2(a and b) shows transmission electron microscopy (TEM) images of the synthesized optimized nanophosphors Eu\(^{3+}\):SrSnO\(_3\)@APTS. The particles exhibited peanut flower-like morphology, and each peanut flower-like particle composed of two or more spherical nanoparticles with an average particle size \(\sim 33\) nm, which is smaller than that (\(\sim 45\) nm) observed by C. Lee et al.\(^{37}\) The high resolution transmission electron microscopy (HR-TEM) showed the lattice fringes with an interplanar \(d\)-spacing of \(0.28–0.31\) nm, Fig. 2(c).

Fig. 2(e and f) displays the SEM images of samples Eu\(^{3+}\):SrSnO\(_3\) and 0.06 mol Eu\(^{3+}\):SrSnO\(_3\)@APTS. The Eu\(^{3+}\):SrSnO\(_3\) exhibited an aggregated and irregular morphologies in micro domain, Fig. 2(e), while the amino functionalization sample (0.06 mol Eu\(^{3+}\):SrSnO\(_3\)@APTS) has a uniform, regular peanut phase in nano-domain, Fig. 2(f). The energy dispersive X-ray (EDX) analysis of nanoparticles shows the corresponding peaks of Eu, Sr, Sn, and O in addition to Si elements Fig. 2(d). The elemental mapping demonstrating the homogeneous distribution of the elements in the investigated nano-phosphor samples, Fig. 3(a–f).

3.1.3 Zeta potential. Fig. 4(A) shows that the initial SrSnO\(_3\) particles exhibited zeta potential value of \(-33\) mV. After doping with Eu\(^{3+}\) ions, the zeta potential value decreased to \(-17\) mV. This observation could be due to the ability of Eu\(^{3+}\) ions to substitute for Sr\(^{2+}\) in the host lattice upon lanthanide doping, which will make an unbalanced charge on the matrix surface. Consequently, it increases the surface polarity, positivity and chemical reactivity. However, the 0.06 mol Eu\(^{3+}\):SrSnO\(_3\) functionalized with APTS exhibited much lower zeta potential of about \(-3.0\) mV, Fig. 4. This observation is probably, due to an abundance of APTS amine groups on the high positive 0.06 mol Eu\(^{3+}\):SrSnO\(_3\) surface.\(^{38}\) This leads to a high activated surface with low surface potential, which highlight the potential sensing application.

3.2 Optical properties

3.2.1 FTIR. Fig. 4(B) shows the FT-IR spectra of samples SrSnO\(_3\), 0.06 mol Eu\(^{3+}\):SrSnO\(_3\) and 0.06 mol Eu\(^{3+}\):SrSnO\(_3\)@APTS. SrSnO\(_3\) show broad peaks at \(3400\) cm\(^{-1}\) and \(1454\) cm\(^{-1}\) related to stretching and bending vibration of hydroxyl group \(-OH\), respectively. The observed peaks at \(853\) and \(517\) cm\(^{-1}\) are associated to stannate group (SnO\(_3^{2–}\)) molecular vibrations.\(^{39,40}\)

For 0.06 mol Eu\(^{3+}\):SrSnO\(_3\)@APTS, the FTIR spectra revealed deformation mode of the Si–CH\(_2\) peak at \(1415\) cm\(^{-1}\) and the asymmetric stretching modes of the Si–O–Si bond at \(1073\) cm\(^{-1}\). Also, the scissoring absorption mode of the Si–O–Si siloxane.

Fig. 3 SEM image of 0.06 mol Eu\(^{3+}\):SrSnO\(_3\)@APTS (a); EDS element mapping mono color of 0.06 mol Eu\(^{3+}\):SrSnO\(_3\)@APTS (all element), (b) Sr, (c) Sn, (d) Eu (e) O and (f) Si.
groups exhibited a broad band at 570 cm\(^{-1}\). The observed peak at 1560 cm\(^{-1}\) indicates the presence of NH\(_2\) deformation modes of the amine groups via hydrogen bonded to form cyclic structures. The observed broad band at 3420 cm\(^{-1}\) is related to the stretching modes of NH\(_2\) and Si–OH groups. However, the weak peak at 2924 cm\(^{-1}\) is assigned to the stretching modes of CH\(_2\) group. These results clearly demonstrating the successful functionalization of in \(\text{SrSnO}_3\) with APTS.

3.2.2 UV/Vis diffuse reflectance. Generally, the UV-Vis diffuse reflectance property depends on both doping concentration of Eu\(^{3+}\) and pH values during preparation procedures. Fig. 4(C and D) shows the UV-Vis diffuse reflectance spectra of Eu\(^{3+}\):\(\text{SrSnO}_3\) as a function of Eu\(^{3+}\) doping concentrations (0–0.1 mol) and pH values (12.5–9.0). The spectra of Eu\(^{3+}\):\(\text{SrSnO}_3\) exhibited an intense band in the UV region, which may be attributed to the transition of electrons located in the valence band of O 2p states into Sn 5s states of the conduction band upon absorption of UV light. This reflectance band exhibited red shift as a Eu\(^{3+}\) concentration increased. In addition, the \(\text{SrSnO}_3\) sample doped with 0.06 mol\% Eu\(^{3+}\) also exhibit red shift as the pH value decreased. Moreover, a characteristic f-f transition bands of Eu\(^{3+}\) appeared in visible region of the spectra (395 nm, 419 nm and 533 nm) especially at low pH values.

The optical band gap \(E_g\) of the samples can be calculated on the basis of the optical absorption spectra by using the following equation:

\[
(ahv)^n = \beta(hv - E_g)
\]

where \(hv\) is the photon energy, \(A\) is the absorbance, \(\beta\) is related to the effective masses associated with the valence and conduction bands, and \(n\) is either equal to 2 for an indirect allowed transition or 1/2 for the direct allowed transition. The inset of Fig. 4(C and D) shows a good linear dependence of \((ahv)^{0.5}\) versus \((hv)\) for all samples, suggesting that the samples have direct forbidden band gaps. The values of the band gap energy of the samples \(n\) were estimated using the linear extrapolation method and the estimated results are listed in Table 2.

It is readily seen that, the band gap value of \(\text{SrSnO}_3\) decreases with incorporation of Eu\(^{3+}\) ions and with decreasing the pH value during preparation procedures. However, the observed optical band gap value for optimized sample (0.06 mol Eu\(^{3+}\):\(\text{SrSnO}_3\@APTS\)) is 3.14 eV, which is relatively smaller than the reported value of bulk sample (4.3 eV). This behavior is due to a difference in particle size of the sample by different treatments. These observed UV-Vis diffuse reflectance data confirm the obtained results from XRD analysis.

3.2.3 Photoluminescence study. Fig. 5(B) displays the emission spectra (\(\lambda_{ex} = 285\) nm) of Eu\(^{3+}\):\(\text{SrSnO}_3\) at different doping concentrations of Eu\(^{3+}\) in the range 0.01–0.1 mol and keeping the pH fixed at 12.5. It is apparent that an increase of Eu\(^{3+}\) concentration to 0.06 mol\% leads to an enhancement of the photoluminescence (PL) intensity and then decreases after further increase in the concentration of Eu\(^{3+}\) ions, due to the
Fig. 5 The excitation and emission spectra of (D) and (B) x mol Eu$^{3+}$:SrSnO$_3$ at different doping concentration (0.01–0.1 mole) prepared at pH 12.5; (C) and (A) 0.06 mol Eu$^{3+}$:SrSnO$_3$ at pH 12.5–9 and modified with APTS.

Fig. 6 (A) The PL decay curves of (A) x mol Eu$^{3+}$:SrSnO$_3$ at different doping concentrations (0.01–0.1 mol) prepared at pH 12.5; (B) 0.06 mol Eu$^{3+}$:SrSnO$_3$ at pH 12.5–9, and (C) CIE diagram of 0.06 mol Eu$^{3+}$:SrSnO$_3$@APTS; (D) effect of different metal ions on intensity of Eu$^{3+}$:SrSnO$_3$@APTS nanophosphor. Concentration of metal ions 10.8 x 10^{-11} M.
concentration quenching. This observation suggesting that 0.06 mol Eu\(^{3+}\) doped SrSnO\(_3\) host gave the higher PL intensity. Therefore, the optimal Eu\(^{3+}\) dopant concentration is 0.06 mol%. A similar effect has also been performed for excitation spectra \((\lambda_{em} = 615 \text{ nm})\) of Eu\(^{3+}\):SrSnO\(_3\) at different doping concentrations of Eu\(^{3+}\) as shown in Fig. 5(D). As can be seen from Fig. 5(A), the PL spectra exhibited four distinct peaks at about 593, 618, 656 and 710 nm. These observations are due to 4f transitions of Eu\(^{3+}\) from the excited \(^5D_0\) level to ground \(^7F_j\) levels \((j = 0, 1, 2, 3\) and \(4)\), respectively, which are in close agreement to some reported literature values for Eu\(^{3+}\) doped SrGd\(_2\)O\(_4\) phosphors.\(^{41}\)

The pH dependence of the PL intensity of the 0.06 mol Eu\(^{3+}\):SrSnO\(_3\) are shown in Fig. 5(A). The results demonstrated that the PL intensity increases with decreasing pH value from 9 to 10.5, then begin to decrease upon more increase in the pH value to 12.5. An increase on the doping concentration and amorphous structure at relatively low pH value (9.0) increases the non-radiative deactivation process and consequently leading to decreasing the energy transfer probability. In addition, the sample 0.06 mol Eu\(^{3+}\):SrSnO\(_3\)@APTS at pH 10.5 exhibited the relatively higher intense excitation band, due to increasing energy transfer probability, Fig. 5(C). This means that the presence of amino group of APTS on the Eu\(^{3+}\):SrSnO\(_3\) surface act as another sensitizer for Eu\(^{3+}\) in addition to the SrSnO\(_3\) host. However, the high aggregated micro-morphology of Eu\(^{3+}\):SrSnO\(_3\) prepared without APTS increases the non-radiative transitions compared to the sample prepared in the presence of APTS (SEM results). This behavior agree with the XRD data of the sample prepared by addition of APTS, which show a decrease on the crystal.

The excitation spectra of Eu\(^{3+}\):SrSnO\(_3\) nano-phosphor were also characterized with sharp weak lines located at 364, 383, 395, 465 and 533 nm. They are related to the intra-configurational 4f–4f transitions of Eu\(^{3+}\) ions doped in the host lattice. These peaks are assigned to \(^{7}F_{0} \rightarrow ^{5}D_{4}\), \(^{7}F_{0} \rightarrow ^{5}D_{2}\), \(^{7}F_{0} \rightarrow ^{5}D_{3}\) and \(^{7}F_{0} \rightarrow ^{5}D_{2}\) transitions, respectively.\(^{44}\)

As shown in Fig. 6(B and D), the emission spectra obtained upon excitation of the phosphor at 285 nm are characterized with five emission bands at 580, 593, 616, 655 and 701 nm, which attributed to \(^5D_0 \rightarrow ^7F_j\) \((j = 0–4)\), respectively. However, the emission spectrum is broad and less-resolved, especially in case of 0.06 mol Eu\(^{3+}\):SrSnO\(_3\)@APTS at pH 10.5. These observations are attributed to the nanostructure property of this sample, which changes the strength of local electrostatic field and site symmetry around lanthanide element due to structure disorder and surface defects.\(^{45}\) This suggestion is supported by increasing of red emission line relative to orange one and the asymmetry ratio values by decreasing the crystal size as a result of different modifications, Table 3.

We note that high asymmetry value was obtained in case of 0.06 mol Eu\(^{3+}\):SrSnO\(_3\)@APTS at pH 10.5. This is attributed to the altering of the coordination sphere of Eu\(^{3+}\) ions resulting from the further coordination of amino group of APTS to the Eu\(^{3+}\) ions on the surface.

Table 3 The measured PL and calculated Judd–Ofelt parameters of Eu\(^{3+}\):SrSnO\(_3\)@APTS nano-phosphor as a function of a doping concentrations and pH values

Phosphors	Intensity	Asymmetric factor \((\lambda_{ex} \, 285 \text{ nm})\)	\(\tau\) (ms) ± error \(\lambda_{ex} = 285 \text{ nm}\)	\(\lambda_{rad}\) \(\%\)	Quantum efficient, \(\Omega_x \times 10^{-20}\)	\(\Omega_y \times 10^{-20}\)			
\(x\) mol Eu\(^{3+}\)									
0.01	153	118	1.30	0.550 ± 0.004	365	1453	20.0	1.93	0.14
0.02	167	125	1.34	0.890 ± 0.017	287	832	25.6	2.3	0.49
0.03	241	174	1.38	0.785 ± 0.003	352	999	26.1	2.5	0.68
0.06	338	173	1.97	1.030 ± 0.007	389	737	34.4	3.2	1.1
0.1	285	156	1.83	0.890 ± 0.009	338	773	30.0	3.3	1.4
pH value									
12.5	338	174	1.97	1.030 ± 0.007	389	737	34.4	3.2	1.8
11.0	558	214	2.60	0.925 ± 0.025	402	431	48.1	4.0	1.2
10.5	870	303	2.65	1.208 ± 0.024	488	498	50.7	4.4	1.3
10.5 + APTS	932	341	2.70	1.2 ± 0.008	414	418	50.2	3.9	1.9
9.0	850	307	2.41	0.802 ± 0.024	330	503	39.6	3.8	1.8
direct f-f excitation (DE) at 395 nm. The Commission international De l-Eclairage (CIE) coordinates of 0.06 mol Eu3+:SrSnO3@APTS was evaluated to be \(x = 0.633\) and \(y = 0.367\), which is found in pure red color region, Fig. 6(C).

The local structure, environmental surrounding the Eu3+ ion inside host nanomaterial was investigated on the bases of Judd–Ofelt (J–O) theory. There parameters are then evaluated from emission spectra and lifetime and using intensity parameters \(U_k\) \((k = 2, 4, 6)\) of Eu3+ ion inside host nanomaterial according to the modified method based on Kodaira et al. approach. Because the \(^{5}D_0 \rightarrow ^{7}F_2\) transition \((U(2) = 0.0028)\), the \(^{5}D_0 \rightarrow ^{7}F_4\) transition \((U(4) = 0.002)\) and the \(^{5}D_0 \rightarrow ^{7}F_6\) transition \((U(6) = 0.0002)\). The value of \(U_6\) is very small (negligible). \(A_{0→J}\) can be calculated by using the following relation:

\[
A_{0→J} = \frac{A64\pi^4 e^4 \hbar^4 n(n^2 + 2)}{3\hbar(2J + 1)^2} \sum_{J=2,4,6} \Omega M I \left< \psi J \left| U^J \right| \psi'' J'' \right>^2. \quad (2)
\]

where \(e\) is the charge of an electron, \(\hbar\) is Planck's constant \((6.63 \times 10^{-34}\) erg s), \(\nu\) is the average transition energy \((\text{in} \ \text{cm}^{-1})\), \(n\) is the refractive index of the medium and \(|\langle \psi D_0 | U^J | \psi F_6 \rangle|^2\) is the squared reduced matrix. Most of the matrix elements for transitions starting from the \(^{5}D_0\) level are zero. The \(^{5}D_0 \rightarrow ^{7}F_2\) transition \((U(2) = 0.0028)\), the \(^{5}D_0 \rightarrow ^{7}F_4\) transition \((U(4) = 0.002)\) and the \(^{5}D_0 \rightarrow ^{7}F_6\) transition \((U(6) = 0.0002)\). The value of \(U_6\) is very small (negligible). \(A_{0→J}\) can be calculated by using the following relation:

\[
A_{0→J} = \frac{\left(\frac{p_{0→J}}{I_{0→J}} \right) \left(\frac{I_{0→J}}{I_{0→J}} \right)}{A_{0→J}}. \quad (3)
\]

The sum of all \(A_{0→J}\) provide the radiative decay rate \((A_{rad})\), whereas inverse lifetime gives sum nonradiative and radiative decay rate \((A_{rad}/A_{rad} + A_{nrad})\). The parameters \(\Omega_2\) and \(\Omega_4\) are complex, and can be determined using a suitable calculation program such as JEOS and LUMPAC. The \(\Omega_2\) values are

Scheme 1 Proposed guest–host energy transfer mechanism in the in Eu³⁺:SrSnO₃ nanophosphor (A) and quenching energy transfer process in the presence of Cu²⁺ ion (B) as well as after addition of EDTA (C).
related to the changing structure around Eu$^{3+}$. For example, the very small value of Ω_2 suggesting a greatly symmetric environment around the rare earth ion. However, Ω_3 and Ω_4 are relatively more sensitive to the variation in the macroscopic properties, such as viscosity and rigidity of the matrix.

The theoretically calculated Ω_2 values are listed in Table 3. It should be noted that the theoretical values are in close agreement with the experimentally obtained values from PL spectra. The highest Ω_2 values are obtained for 0.06 mol Eu$^{3+}$:SrSnO$_3$ prepared at pH = 10.5 as well as in the presence of APTS. This is due to the high distortion environment around surface Eu$^{3+}$ cations polyhedra in the presence of SrSnO$_3$ and APTS units. A similar effect has been observed for Ω_4 parameter, which corresponds to the electron density on of the surrounding sensitizers, and its value increase with increasing the doping concentration and the highest value was observed for 0.06 mol Eu$^{3+}$:SrSnO$_3$@APTS at pH = 10.5, in the presence of APTS sensitizers, Table 3. The quantum efficiency values of nanophosphor increase with decreasing pH value and in the presence of APTS due to improved luminescence properties. These results are consistent with the obtained PL lifetime values.

3.3 Analytical performance and validation

Eu$^{3+}$:SrSnO$_3$ coated with APTS nanophosphor (Eu$^{3+}$:SrSnO$_3$@APTS) was tested as a fluorescent sensor for copper ion in aqueous solution. The coupling agent APTSA have been used because it change the surface charge of NPs, which may improve their stability in aqueous media. Therefore, Eu$^{3+}$:SrSnO$_3$@APTS exhibited a characteristic intense pure red emission color with long lifetime value in aqueous medium (pH = 7) under UV illumination. We have studied the selectivity and sensitivity of Eu$^{3+}$:SrSnO$_3$@APTS for different metal ions in aqueous medium (pH = 7). Fig. 6(D) shows the effect of different studied metal ions (10$^{-11}$ M) on the fluorescence intensity of the Eu$^{3+}$:SrSnO$_3$@APTS nanophosphor. The red emission of Eu$^{3+}$:SrSnO$_3$@APTS nanophosphor was highly quenched with 85% in the presence of copper ion compared to the other studied metal ions. This phenomenon may be due to the negative charge of the silanes. As a result, the amino group interacted with copper ion.

Fig. 7(A) displays the change of emission spectra of Eu$^{3+}$:SrSnO$_3$@APTS nano-phosphor as a function of copper ion concentration in aqueous medium (pH = 7). As the Cu$^{2+}$ ion concentration increases, the nanophosphor intensity decreases. The fluorescence quenching of nanophosphor was analyzed by the Stern–Volmer quenching plot using the following relation:

$$\frac{F_0}{F} = 1 + K_{SV}[Q]$$

where, F and F_0 are the fluorescence intensities of the nanosensor in the absence and presence of quencher of concentration [Q], and K_{SV} is the Stern–Volmer quenching rate constant. Fig. 7(B) shows linear correlation between $[\frac{F_0}{F}−1]$ and $[\text{Cu}^{2+}]$ in the concentration range 0.0–10.8 \times 10$^{-11}$ mol L$^{-1}$ with

Fig. 7 (A) Effect of different metal ions on PL intensity of Eu$^{3+}$:SrSnO$_3$@APTS nanophosphor, $[\text{metal ions}] = 10.8 \times 10^{-11}$ M, (b) PL spectra of Eu$^{3+}$:SrSnO$_3$@APTS as a function of Cu$^{2+}$ concentration (C) the Stern–Volmer plot of the quenching of Eu$^{3+}$:SrSnO$_3$@APTS nanophosphor by Cu$^{2+}$ concentration; (D) the PL decay curves for 0.06 mol Eu$^{3+}$:SrSnO$_3$@APTS at pH = 10.5 in the presence and absence of Cu$^{2+}$ ion.
The half quenching concentration ($C_{1/2}$) was obtained from $1/K_{sv} = 1.217 \times 10^{-11}$ mol L$^{-1}$. The critical energy transfer distance (R_0) between donor (Eu$^{3+}$) and acceptor (Cu$^{2+}$) was also calculated from the following relationship: $R_0 = 7.35/(C_{1/2})^{1/3} = 43$ Å. Moreover, the luminescence decays of Eu$^{3+}$:SrSnO$_3$@APTS nanomaterials in the absence and presence of Cu$^{2+}$ were measured after excitation at a wavelength of 285 nm for better understanding of quenching type. Lifetime values of Eu$^{3+}$:SrSnO$_3$@APTS before ($\tau = 1.25$ ms) and after addition of Cu$^{2+}$ (0.80 ms) was detected, Fig. 7(C). The luminescence lifetime and critical distance results demonstrated that the fluorescent sensor was dynamically quenched via coulombic interaction mechanism between the Eu$^{3+}$ (5D$_{0}$) and Cu$^{2+}$ in which the Cu$^{2+}$ excited state is well matched with an energy level 5D$_{0}$ of Eu$^{3+}$, Scheme 1(B). As a consequence, Cu$^{2+}$ ions absorb the energy from the excited state of Eu$^{3+}$. Furthermore, the complexion of $-$NH$_2$ to Cu$^{2+}$ ions decrease the distance between Cu$^{2+}$ and Eu$^{3+}$, which would significantly improve the efficiency of energy transfer between the ions.

As revealed before, the interaction of Cu$^{2+}$ ions with NH$_3$ of APTS coated on the surface of as-prepared NPs proceeds via energy transfer between NPs and Cu$^{2+}$ ion. Support for this comes from adding EDTA as a complexing agent, and has stronger coordination ability to Cu$^{2+}$ ions. As shown in Fig. 7(D), almost 85% of the initial PL intensity was recovered by adding different concentrations of EDTA. This result suggesting that the detection of Cu$^{2+}$ ion by the as-prepared Eu$^{3+}$:SrSnO$_3$@APTS is reversible Scheme 1(C).

3.4 Interference with coexisting foreign substances

The anti-interference capacity of the new developed fluorescent nanosensor was evaluated to detect the performance of this new sensor. Under the optimum conditions, the influences of interference ions (Cl$^-$, SO$_4^{2-}$, HCO$_3^-$, NO$_3^-$, C$_6$H$_5$O$_7^-$, PO$_4^{3-}$, Cd$^{2+}$, Ca$^{2+}$, Mg$^{2+}$, Fe$^{3+}$, Co$^{2+}$, Ni$^{2+}$) on the fluorescence features were studied. As reported previously, any change in fluorescent intensity $\geq (\pm 5\%)$ the analytical signal value of Eu(III) was considered as an interference. At fixed concentration of Cu(II) at 10 ng L$^{-1}$, the change in the analytical signal before and after addition of the interfering ion was determined and the calculated values for KCl, SO$_4^{2-}$, HCO$_3^-$, NO$_3^-$, citrate, PO$_4^{3-}$ did not interfere even at 1000 fold of Cu(II); hence they were applied as a masking agent for Cd$^{2+}$ at 10-fold levels, Ca$^{2+}$, Mg$^{2+}$, Fe$^{3+}$ at 20-fold levels, Co$^{2+}$ at 30 and Ni$^{2+}$ at 35-fold, respectively. It is worth mentioning that the fluorescent nano-sensor exhibited high anti-interference of coexisting ions. The concentrations of these interfering ions were at least ten times higher than that of Cu$^{2+}$ ion in the sample solution.

3.5 Application of SrSnO$_3$:Eu$^{3+}$@APTS in the determination of Cu(II) in food samples

The optimized fluorescent nano-sensor (Eu$^{3+}$:SrSnO$_3$@APTS) was applied to copper sensing from food samples (tomato sauce, green and black tea) and wastewater samples were obtained from Kafr El Sheikh governorate, Egypt. These samples were measured in the absence and presence of Cu(II), Fig. 7(A) and then analysed. The fluorescence spectra of nano-sensor were measured ($\lambda_{ex} = 285$ nm) after addition of all prepared food and drink water samples. The copper concentration was determined from the Stern–Volmer plot, Fig. 7(B), where three measurements were performed for each concentration and the results and the recoveries for samples are listed in Table 4. A good agreement was obtained between the added and found values of the analyte with high recovery values (average proposed/standard × 100). Moreover, the analyte samples (without any addition of external known Cu$^{2+}$ concentration) were also analysed by ICP-OES for comparison and the results are summarised in Table 4. There results are in reasonable agreement and the t-test exhibited 95% confidence limit. The recovery results for the proposed method confirm the sensitivity of the nano-sensor for copper detection.

To further check the sensitivity of the proposed approach, we compared the observed results with the other values obtained other published methods as shown in Table 5. It is obvious that, our results are of lowest detection among the reported values.

Table 4 Determination of Cu$^{2+}$ in real samples

Sample	Cu$^{2+}$ added (ng L$^{-1}$)	Cu(II) found by nano-sensor (ng L$^{-1}$)	Standard [ICP-AES] (ng L$^{-1}$)	Recovery (%)
Green tea	—	10.63	10.0	106.3
	1.36	12.12	—	102.0
	4.26	14.01	—	94.08
Black tea	—	10.44	10.0	104.4
	1.36	5.70	6.00	95.00
Tomato sauce	—	6.97	—	98.00
	1.36	10.03	—	104.0
	2.70	18.40	18.2	101.1
Drink water	—	18.95	—	96.8 0
	1.36	20.79	—	99.4 0
The optimized nano-sensor based on Eu$^{3+}$:SrSnO$_3$ was synthesized at different doping concentrations and pH values. The optimized nano-fluorescent sample was amine-functionalized with APTS to produce 0.06 mol Eu$^{3+}$:SrSnO$_3$@APTS, which has a characteristic surface, morphological and optical properties to be applied as nano-sensor material, which emits a pure red emission lines with long lifetime values. The results indicate that Eu$^{3+}$:SrSnO$_3$@APTS is useful nano-sensor for copper determination from different food and drink water samples with high sensitivity and selectivity.

Thus, it may be concluded that the method is an effective approach detection of copper from various samples.

4. Conclusions

New fluorescent nanosensor based on Eu$^{3+}$:SrSnO$_3$ was synthesized at different doping concentrations and pH values. The optimized nano-fluorescent sample was amine-functionalized with APTS to produce 0.06 mol Eu$^{3+}$:SrSnO$_3$@APTS, which has a characteristic surface, morphological and optical properties to be applied as nano-sensor material, which emits a pure red emission lines with long lifetime values. The results indicate that Eu$^{3+}$:SrSnO$_3$@APTS is useful nano-sensor for copper determination from different food and drink water samples with high sensitivity and selectivity.

Conflicts of interest

The authors declared that they have no conflicts of interest with this work.

Acknowledgements

The study was financially supported by the Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Egypt.

References

1. Y. Zhang and B. Yan, *Talanta*, 2019, **197**, 291–298.
2. J. Pan, J. Yu, S. Qiu, A. Zhu, Y. Liu, X. Ban, W. Li, H. Yu and L. Li, *J. Photochem. Photobiol., A*, 2021, **406**, 113018.
3. B. Rezaei, E. Sadeghi and S. Meghdadi, *J. Hazard. Mater.*, 2009, **168**, 787–792.
4. I. Durukan, C. A. Sahin and S. Bektas, *Microchem. J.*, 2011, **98**, 215–219.
5. J. Beckman and W. Koppenol, *Am. J. Physiol.*, 1996, **271**, 1424–1437.
6. P. Pacher, J. Beckman and L. Liaudet, *Physiol. Rev.*, 2007, **87**, 315–424.
7. V. Andrade, M. Mateus, M. Batoréu, M. Aschner and A. Marreilha dos Santos, *EC Pharmacol. Toxicol.*, 2017, **3**, 31–42.
8. N. Pourreza and R. Hoveizavi, *Anal. Chim. Acta*, 2005, **549**, 124–128.
9. S. Chaiyo, O. Chailapakul, T. Sakai, N. Teshima and W. Siangproh, *Talanta*, 2013, **108**, 1–6.
10. D. Atanassova, V. Stefanova and E. Russeva, *Talanta*, 1998, 1237–1243.
11. J. Tang, J. Li, Y. Zhang, B. Kong, Y. Yiliguma, Y. Wang, Y. Quan, H. Cheng, A. Al-Enizi, X. Gong and G. Zheng, *Anal. Chem.*, 2015, **87**(13), 6703–6708.
12. Z. Ghubish, M. Saif, H. Hafez, H. Mahmoud, R. Kamal and M. El-Kemary, *J. Mol. Struct.*, 2020, **1207**, 127840.
13. G. Kamel, M. El-Nahass, M. El-Khouly, T. Fayed and M. El-Kemary, *RSC Adv.*, 2019, **9**, 8355–8363.
14. M. Abdelbar, H. El-Sheshhtawy, K. Shoueir, I. El-Mehasseb, E. Ebeid and M. El-Kemary, *RSC Adv.*, 2018, **18**, 24617–24626.
15. W. Omer, M. El-Kemary, M. Elsady, M. Abou-Omar, A. Youssef, A. Sayqal, A. Gouda and M. Attia, *ACS Omega*, 2020, 5, 5629–5637.
16. M. Saif, N. Alsayed, A. Mbarek, M. El-Kemary and M. Abdel-Mottaleb, *J. Mol. Struct.*, 2016, **1125**, 763–771.
17. X. Zhang, Y. Xiao and X. Qian, *Angew. Chem.*, 2008, **120**, 8145–8149.
18. M. Attia, K. Ali, M. El-Kemary and W. Darwish, *Talanta*, 2019, **201**, 185–193.
19. Y. An, Y. Ren, M. Bick, A. Dudek, E. Waworuntu, J. Tang, J. Chen and B. Chang, *Biosens. Bioelectron.*, 2020, **154**, 112075.
20. S. M. Saleh, R. Ali and O. S. Wolfbeis, *Chem.–Eur. J.*, 2011, **17**, 14611–14617.
21. S. Liu, J. Tian, L. Wang, Y. Zhang, X. Qin, Y. Luo, A. Asiri, A. AlYoubi and X. Sun, *Adv. Mater.*, 2012, **24**, 2037–2041.
22. Y. Guo, F. Jian and X. Kang, *RSC Adv.*, 2017, **7**, 15315–15320.
23. Y. Zhou, H. Zhao, Y. He, N. Ding and Q. Cao, *Colloids Surf., A*, 2011, **391**, 179–183.
24. B. J. Walker, G. P. Nair, L. F. Marshall, V. Bulovic and M. G. Bawendi, *J. Am. Chem. Soc.*, 2009, **131**, 9624–9625.
