

PBLRQA strategy potential in enhancing metacognitive skills of students with different academic achievement

Arsad Bahri¹*, Irma Suryani Idris¹, Rusdianto Nurman¹, Evi Ristiana²

¹ Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Makassar, 90224, Indonesia
² Integrated Science Study Program, Faculty of Teacher Training and Educational Science, Universitas Muhammadiyah Makassar, Indonesia

*arsad.bahri@unm.ac.id

Abstract. The learning strategy used in the lecture process is currently oriented towards mastering the concept, and has not attempted to empower students' metacognitive skills. This research was a quasi-experimental study that aims to find out the influence of PBLRQA strategy on the metacognitive skills of students with different academic achievement in the study of animal physiology. This study used a pretest-posttest non-equivalent control group design. The sample of this study was the third year biology students as many as 115 people distributed in 4 groups. The experimental group was taught by using PBLRQA strategy and the control group was taught by traditional learning, each represented by two classes. Student cognitive retention is measured by essay questions. The research data were analyzed using descriptive and inferential statistics with two-ways covariate analysis (ANCOVA). The results showed that the score of metacognitive skills of students taught by PBLRQA increased by 55.23% from pretest to posttest, while those taught by traditional learning increased by 44.91%. The results of hypothesis testing showed that learning strategies, academic achievements, and interaction of both affect student metacognitive skills. The PBLRQA-upper academic achievement strategy's metacognitive skills differ significantly by 18.65% from the PBLRQA-lower academic achievement, while conventional-upper academic achievement learning strategies differ significantly by 10.02% from the conventional-lower academic achievement. Based on the results of the study, it was concluded that PBLRQA strategy could empower students' metacognitive skills with different academic achievement.

1. **Introduction**

Education in the 21st century requires students to master various skills that can be used in empowering themselves. The important skills in the 21st century are relevant to the five pillars of education which include learning to believe to God, learning to know, learning to do, learning to be and learning to live together. Each principles contain specific skills that need to be empowered, such as critical thinking skills, problem solving, metacognition, collaboration, communication skills, innovation, information literacy, and various other skills.

Independent learning as one of the basic skills in life needed to prepare for education in the 21st century is metacognition skills [1] Metacognition is defined as 'thinking about thinking'. A person who has metacognitive knowledge means realizing how much they understand the learning topic and the factors that influence their understanding. Metacognitive skills can improve student learning and
understanding. Some important steps to teach metacognitive skills are as follows: (a) teach students that learning is not limited in number and a person's ability to learn can be changed, (b) teaches how to set learning goals and plan their achievements, and (c) give students many opportunities to practice monitoring their learning activities accurately.

The pattern of lectures in the Department of Biology, FMIPA, Universitas Negeri Makassar, especially in Animal Physiology lectures, is mostly dominated by learning strategies which are still oriented to cognitive learning outcomes and yet attempted to empower thinking skills including students' metacognitive skills [2]. Bahri [3] showed that students' reading interest towards lecture materials in order to preparing themselves to attend the next lecture was still very low, so that the initial knowledge of students during the lecture was still lacking. According to Yamin [4], in the constructivist paradigm, a teacher must see students not as blank sheets, but with empiricism theory, where students have their own initial knowledge that they will make as the basis for developing further knowledge.

The learning strategy which is used has not yet attempted to empower students' metacognitive abilities. This implies that students' cognitive abilities tend to be low because students are still poorly trained to become independent learners, which is mean that they are less aware of their cognitive abilities (self-assessment) and less able to manage and monitor their cognitive abilities (self-regulated). According to Corebima [5], empowerment of thinking and metacognition skills needs to be applied so students can become independent learners. Metacognition skills are determined by learning strategies [2] Lack of students metacognitive empowerment has implications towards students' cognitive abilities which tend to be low. This is supported by the results of Bahri's research [3] that learning strategies have impact on metacognitive empowerment, motivation, learning outcomes and retention of students in learning. Besides that, students' reading interest in lecture material are still very low, so the prior knowledge of students is still lacking [6].

Another thing that needs attention in the lecture process is the initial academic achievement of students because it greatly influences the ability of students to attend lectures. This initial academic achievement should be empowered, especially low initial academic achievement to achieve the same results with different initial abilities [7] [8]. (Sidi, 2001 & Corebima, 2006a). The results of the research [9] Amnah (2009) showed that learning in groups influences the learning success of students with low, medium, and high academic achievement.

Based on those facts, it requires a learning strategy that can empower strong student metacognition skills and well trained in managing their own learning, so learning outcomes will increase by themself. Problem-based Learning (PBL) strategy integrated with Reading, Questioning and Answering (RQA) known as PBLRQA strategy potential to empower students' metacognitive skills [10].

2. Experimental Details

2.1. Types of research
This research used quasi experimental design. The independent variable was learning strategy which consist of 2 types, PBLRQA and conventional learning as factor A, while factor B is academic achievement consist of high academic and low academic achievement as a moderator variable. The dependent variable is students’ metacognitive skills.

2.2. Subjects of research
The subjects in the study were all students of biology class of academic year 2016/2017 Department of Biology, FMIPA UNM which distributed in four classes. Two classes taught by PBLRQA strategy, and two classes taught by conventional learning. Each class consist of students with the upper and lower academic achievement based on placement test result.

2.3. Instruments and Procedures of Research
The research instrument used an essay test for students’ metacognitive skills measurement. Students’ metacognitive skills data was collected using a test instrument in the form of 7 number essay questions. The student's answer sheet was corrected using a rubric consist of 8 scales (0-7) and as a reference to check the subject's answers of each test item that had been answered [5] Before being used, the test instrument was first validated including content validation, construct validation, and empirical validation and determined the reliability value.

2.4. Data Analysis
Research data were analyzed by descriptive analysis and inferential analysis. Research data were analyzed using descriptive statistics to show descriptions or profiles of students’ metacognitive skills, while two-way covariate analysis (ANCOVA) as an inferential analysis with 5% significance level was used to test the difference hypothesis. Data were analyzed using the SPSS 17.0 for Windows program. If the ancova results show significant then proceed to the LSD test.

3. Result and Discussion

3.1. Result of Research
This research aims to enhance metacognitive skills of students with different academic achievement at the Department of Biology, FMIPA UNM. The sample of this study was all of the students of 2016/2017 biology as many 115 people, distributed in 4 classes. The results of this study are qualitative descriptive data and inferential data.

Students’ metacognition skills are measured using essay tests and corrected by metacognitive skills rubric (MAD) before and after the lectures. Furthermore, the data were analyzed with descriptive statistics to determine the mean and percentage changes in metacognitive skill scores. The research data related to the mean score and the percentage change in pretest-posttest score of metacognition skills on each learning strategy according to academic achievement shown in Table 1.

Learning Strategy	Academic Achievement	Mean Pretest	Mean Posttest	Percentage	Annotation
1 PBLRQA	High	15.42	49.75	40.59	Increase
	Low	7.24	28.81	23.25	Increase
	Total	22.66	78.56	72.28	Increase
	High	12.12	29.46	19.73	Increase
	Low	6.39	19.23	13.72	Increase
	Total	18.51	48.69	37.04	Increase
	High	27.54	79.21	71.31	Increase
	Low	13.63	48.04	39.84	Increase

Table 4.1 showed that the metacognitive skills of students taught by PBLRQA strategies, and conventional learning have vary increase, between learning strategies in different academic achievement.

The results of hypothesis testing with ANCOVA of students' metacognitive skills are shown in Table 2.

Source	Type III Sum of	DF	Mean Square	F	Sig.
Corrected Model	11344.347	4	2836.087	43.319	<0.001
Intercept	7693.004	1	7693.004	117.506	<0.001
Based on the source of learning strategies and academic achievement, p-level is smaller than alpha 0.05 (p <0.05) with sig. 0.000. This means that Ho is rejected and the research hypothesis stating "There is an influence of learning strategies and academic achievement on students' metacognitive skills" is accepted. Based on the interaction sources of learning strategies with academic achievement obtained p-level is smaller than alpha 0.05 (p <0.05) with sig. 0.024. This means that Ho is rejected and the research hypothesis, which states "There is an interaction effect of learning strategies with academic achievement on students' metacognitive skills" is accepted. It can be concluded that there is a significant effect of learning strategies and academic achievement, on students' metacognitive skills, and there was an influence of the interaction of learning strategies with academic achievement on students' metacognitive skills.

The results of further tests influence the interaction of learning strategies with academic achievement on students' metacognitive skills shown in Table 3.

Table 3. Summary of Advanced Test Results of the Influence of Learning Strategies with Academic Achievement on Students’ Metacognitive Skills

Strategy	Academic Achievement	Xmeta	Ymeta	Metacor	LSD Notation
PBLRQA	1: High	15.42	49.75	34.32	45.15^a
	2: Low	7.24	28.81	21.56	31.58^b
Conventional	1: High	1.21	2.95	1.73	27.85^b
	2: Low	6.39	1.92	1.28	22.77^c

Table 3 showed that the average score of the combination of conventional learning strategies-low academic achievement was the lowest metacognitive skills with corrected mean (22.77) and the highest in a combination of level high academic achievement-PBLRQA strategy (45.15).

Based on the BNT test results, it was explained that the average score of students' metacognitive skills were measured using rubrics in a combination of PBLRQA strategies -academic achievement were significantly different 18.65% higher than the combination of PBLRQA-lower academic achievement. For combination of conventional learning strategy-upper academic achievement differ significantly, it is 10.02% higher than combination of conventional of lower academic achievement. Thus, it can be seen that there is a tendency for PBLRQA learning strategies to be more appropriate to improve students' metacognitive skills.

3.2. Discussion

The results of research indicated that there was influence of PBLRQA strategy on students' metacognitive skills as measured by using rubrics. The results of this study are in line with Sungur & Tekkaya's research [11], Corebima (2011), Bahri [6], Bahri [3] who found the influence of learning strategies on metacognitive skills.

PBLRQA learning strategies affect students' metacognitive skills as measured by MAD rubrics, where students who are taught with PBLRQA strategies get the highest corrected score, while the lowest score is seen in conventional learning strategies especially in low academic achievement. This finding shows that PBLRQA strategy has proven to empower metacognitive skills of students.
PBLRQA aims to develop self-directed learning. By self-directed learner, students can be responsible to regulate their own learning. In addition, this strategy helps students to become self-regulated learners. According to Corebima [5] that self-regulated learners can be raised through specific strategies. This study results are in line with the results of Kuiper's research [12], which used metacognitive strategies to help students enhance their metacognitive skills. PBLRQA strategy helping students to empower thinking skills and make students become independent learners.

The increase of student's metacognitive skills taught with PBLRQA strategy cannot be separated from the integration of PBL syntax and RQA syntax. Through the syntax integration in the PBLRQA strategy, students are confronted with a real-world problem that is ill-structured, so that students will try to make the problem clear and well-structured through the process of reading various sources, both in the form of books and articles in journal. Students will formulate a hypothesis and also the solutions with information from some literatures. The activities of learners that occur during the class clearly to involve metacognition.

In PBLRQA learning, students are required to study independently and given individual responsibility to students. As stated by Slavin [13] that in cooperative learning there are individual responsibilities, where in PBLRQA each student is given responsibilities as mentioned above which is one of the main elements in this learning. Before working collaboratively, each group member has the responsibility to raise problems and also a temporary solution. This shows that students should have a curiosity motivation by thinking a lot about understanding the material by reading a lot before attending the lecture. Thus, the possibility of the emergence of the same problems when joining a group member, will cause many possible solutions offered by each group member because students in groups seek various materials or resources related to the problem.

In addition, the improvement of students' metacognitive skills taught using PBLRQA learning strategies is also inseparable from: a) assignments to students formulating problems in the form of questions related to a topic, b) assignments answering questions that have been made, c) assignments present questions and answers that have been made in group discussions and class discussions.

PBLRQA's strategy provides opportunities for students to train self-directed learning that encourages students to be disciplined and allows students to find more facts about a topic. Students like being forced to read certain topics so can be able to gain greater insight into different issues. In PBLRQA learning, students well trained to learn independently, filter out irrelevant information while focusing on more important things, teamwork, solving and learning to apply the concept of problems. This helps students absorb more information and make it responsible for learning.

The stage of raising problems (questions) on PBLRQA is a part of empowering the metacognitive skills of students’. Correspondingly, Slavin [13] found that concept mastery of students was better if students were taught to ask themselves. Questioning has the effect to empower metacognitive skills [13, 14], and asking questions included as a metacognitive strategy depend on the purpose of asking that questions [15]. Furthermore, one of the ways to improve thinking ability was by encouraging questions that could stimulate the thinking process [16]. It was further stated that the question was the trigger of the students’ thinking process and one of the most important function of the question was to spur high order thinking skills. Asking is a common and fundamental learning technique for high-quality learning [17].

In line with this, Martin [18] said that questions have many functions, including: enable to help students think systematically, practice expressing something, developing thinking skills, etc. Questions also can be used to stimulate students to express opinions [19]. According to Frazee and Rudnitski [17], through questions posing the lecturers can check students' understanding and thinking processes. The ability to find problems is important to improve students’ thinking skills and to stimulate students’ reasoning [6].

In the another phase of PBLRQA could empowers metacognitive skills is that students make summaries of reading results and conduct discussions. This activity could promote metacognitive learning. In line with the statements of Schumaker & Deshler [20] and Corebima [17] that summarizing is one of the learning strategies that can empower students' metacognitive skills. Eggen
The syntax of PBLRQA learning developed shows that student ems related to high cognitive-t align their abilities with
ents are accustomed to think. According to
so learning
ets' self-powered through specific strategies or efforts
ICOMSET2018
training students' ability to think, using their cognitive structure in a fully and directed manner.
Sanjaya [32] the applied learning strategies are not only useful for deliver material, but also for
discussions and arguing with each other, as a result stude
influences significant metacognitive skills. This is due to the PBLRQA stages in which there are
supported by interaction tests, where the interaction between strategies and academic
skills of students with academic
the metacognitive skills of lower academic students who are taught by PBLRQA with metacognitive
skills of students with academic
[28].

and Kauchak [21] explained that metacognitive skills can help students to responsible for their own
learning progress. Summarizing is carried out at the end of PBLRQA.
The lecturers’ efforts to empower the metacognitive skills are clearly seen carried out through the
implementation of active learning. The syntax of PBLRQA learning developed shows that student
activity begins with reading, then students think about the problems, then design those in the form of
questions. Furthermore, students will conduct discussions related to the tasks that have been made to
clarify the answers or solutions that are not yet clear. The end of learning is the self assessing made by
each student to monitor the thinking process and the learning outcomes. This is in line with Rivers's
research [22] which concluded that students who are skilled at assessing their learning are more aware
to their abilities and act more strategically.
PBLRQA strategy involves three main components that explain the appropriate understanding
strategy to use, when, where, how, using that strategy and self regulated learners in using the strategy
clearly shows metacognitive learning patterns. This will be reflected when students discuss for
clarification. From the discussion activities students can find out learning and what is not yet known.
With this activity, students will be able to develop into independent learners.
Another advantage of PBLRQA is to train cooperative learning to teach each other and giving each
other the skills, experience and understanding that raised through clarifying answers. Johnson [23]
states that cooperative learning generally is able to empower students' metacognitive skills. Emphasis
on learning in a cooperative way aims to enable students to give each other the skills and experiences
they had before or forming new meanings [24]. Collaborative learning activities in PBLRQA would
enrich students' self-discovery process by creating an environment with mutual influence between
individuals and society, between individuals and ideas, and between individuals and one learning
process itself [25, 26].
Through empowering the students’ metacognitive skills in PBLRQA, it would give the positive
impact on the cognitive aspects of students. Peters [27] explain that metacognitive skills help students
to develop into independent learners, because it encourages them to become class managers of
themselves and to be assessors of their own learning. Based on the above description, it can be said
that metacognition skills cannot appear suddenly, but must go through training or using appropriate
learning strategies. Self-regulated learners can be empowered through specific strategies or efforts
[28].
The results also showed that students with upper academic achievement had higher metacognitive
skills scores than those with lower academic achievement. Relevant research and in line with these
findings which indicate that students with high academic achievement have higher scores of
metacognitive skills than lower academic achievement students reported by Bahri [6], Pallenari [29],
and Bahri [3]. This is due to the knowledge using to solve complex problems related to high cognitive
possessed by students with high academic achievement. Metacognitive skills are part of the ability to
think. If the students have good thinking skills, they will also have good metacognitive skills. Lyman & Foyle' [30] explained that students with high academic achievement will have better achievement in
thinking high levels than those with low academic achievement. This is reinforced by Corebima [31]
that smart students will be smarter and less intelligent students still cannot align their abilities with
smart learners because students with high academic achievement have a higher initial state.
The results also show that PBLRQA tend to be more appropriate to improve the metacognitive
skills of students with academic achievement, compared to conventional strategies, and enable to align
the metacognitive skills of lower academic students who are taught by PBLRQA with metacognitive
skills of students with academic achievement taught by conventional strategies. These results are also
supported by interaction tests, where the interaction between strategies and academic achievement
influences significant metacognitive skills. This is due to the PBLRQA stages in which there are
discussions and arguing with each other, as a result students are accustomed to think. According to
Sanjaya [32] the applied learning strategies are not only useful for deliver material, but also for
training students' ability to think, using their cognitive structure in a fully and directed manner.
4. Conclusion
From this study, it can be concluded that PBLRQA was potential to improve metacognitive skills of students compared to conventional strategies. The average corrected score of metacognitive skills, students with upper academic achievement is higher than students with lower academic achievement. The interaction between learning strategies and academic achievement influence students' metacognitive skills.

Acknowledgments
This project is funded by the Ministry of Research, Technology and Higher Education of the Republic of Indonesia (Contract of Institution National Strategic Research No. 97/UN36.9/PL/2018).

References
[1] Zubaidah, S. 2016. 21st Century Skills: Skills Taught Through Learning. Presented at the National Education Seminar on December 10, 2016 in the Biology Education Study Program STKIP Persada Khatulistiwa Sintang – West Kalimantan.

[2] Bahri, A. 2010. The Influence of Reading Questioning and Answering (RQA) Learning Strategies on Animal Physiology Lectures on Metacognitive Awareness, Metacognitive Skills and Cognitive Learning Outcomes of Biology Department Students FMIPA Universitas Negeri Makassar. Disertation and Thesis Postgraduate Universitas Negeri Malang.

[3] Bahri, A. 2016a. The Influence of Problem Based Learning (PBL) Integrated With Reading, Questioning, and Answering (RQA) Strategies on Basic Biology Lectures towards student's Learning Motivation, Metacognitive Skills, Cognitive Learning, Retention and Character Characteristics of Different Academic Ability. Jornal. DISERTASI dan TESIS. Postgraduate Universitas Negeri Malang.

[4] Yamin, M. 2008. Paradigm Constructivistic Education. Jakarta: Gaung Persada Press.

[5] Corebima, A.D. 2009. Experience Trying to Become a Professional Teacher. Speech inauguration of Professor in Genetics at the Faculty of Mathematics and Natural Sciences, delivered at the Senate Open Session of Universitas Negeri Malang on July 30, 2009.

[6] Bahri, A., & Aloysius, D. C. 2015. The Contribution of learning motivation and metacognitive skill on cognitive learning outcome of students within different learning strategies. Journal Of Baltic Science Education, 14(4), 488-490.

[7] Sidi, I. 2001. Towards Learning Communities: Initiating New Educational Paradigms. Jakarta: Logos Wacana Ilmu.

[8] Corebima. A.D. 2006a. Learning Strategies that Empower Thinking Ability and Understanding the Concept of Low Academic Potential Students. Paper presented at The International Conference on Mathematics and Science Education in Universitas Negeri Jakarta on November 29-30, 2006.

[9] Amnah, S. 2009. The Effect of TPS Cooperative Learning, Jigsaw, Combination with Metacognitive Strategies and Academic Ability on Metacognitive Awareness, Metacognitive Skills, and Cognitive Learning Outcomes of Students in Pekan Baru Riau Public High School. Dissertation. Malang: Postgraduate Universitas Negeri Malang.

[10] Bahri, A. & Idris, I.S. 2018. Development and Validation of Learning Strategy for Metacognitive Skills Empowerment: PBLRQA (PBL integrated with Reading, Questioning, and Answering). Journal of Physics: Conf. Series 1028. doi:10.1088/1742-6596/1028/1/012028

[11] Sungur, S., & Tekkaya, C. 2006. Effect of Problem Based Learning and Traditional Instruction on Self-Regulated Learning. The Journal of Educational Research, 99(5), 307-317.

[12] Kuiper, R. 2002 . Enhancing Metacognition through The Reflective Use of Self-Regulated Learning Strategies. Journal of Continuing Education in Nursing, 33(1), 278-87.

[13] Slavin, R.E. 2000. Educational Psychology. Boston: Allyn and Bacon.
[14] Schraw, G., Horn, C, Thorndike-Christ, T., & Bruning, R. 1995. Academic goal Orientation and Student Achievement. Contempory Educational Psychology, 20(1), 359-368.

[15] Livingston, J. 1997. Metacognition: An overview. Retrieved Sept. 23, 2005 from (http://www.gse.buffalo.edu/fas/shuell/cep564/Metacog.htm, diakses 12 September 2009).

[16] Corebima, A.D. 2010. Empower Thinking Skills During Science Learning For Our Future. Paper Presented at the National Science Seminar at Unesa on January 16, 2010.

[17] Frazee, B.M. & Rudnitski, R.A. 1995. Integrated Teaching Methods: Theory, Classroom Applications, and Field-Based Connections. Albany: Delmar Pub.

[18] Martin, R. 1997. Teaching Science for All Children. Sec. ed. Boston: Allyn and Bacon.

[19] Wassermann, S. 2009. Teaching for Thinking Today: Theory, Strategies, and Activities for The K-8 Classroom. pp. 224. New York: Teachers College Press.

[20] Schumaker, J.B., & Deshler, D.D. 1992. Validation of Learning Strategy Interventions for Students with Learning Disabilities: Results of A Programmatic Research Effort. In B. Y. L. Wong (Ed.), Contemporary Intervention Research in Learning Disabilities: An International Perspective (pp.22-46). New York: Springer-Verlag.

[21] Eggen P.D., & Kauchak D.P. 1996. Strategies for Teachers. Boston: Allyn and Bacon.

[22] Rivers, W. 2001. Autonomy at All Costs: An Ethnography of Metacognitive Self-Assessment and Self-Management among Experienced Language Learners. Moderns Language Journal, 86(2), 279-290.

[23] Johnson, D.W., & Johnson, R.T. 1999. Learning Together and Alone: Cooperative, Competitive, and Individualistic Learning (5th ed.). Boston: Allyn & Bacon.

[24] Hewitt, G. 1995. Reciprocal Teaching: Toward Student Autonomy in Reading. English Teaching Forum, 33(4), 28-29.

[25] Lee, G.C.M. 1998. Collaborative Learning in Three British Adult Education Schemes. Unpublished PhD thesis. University of Nottingham.

[26] Savin-Baden, M., & Major, C.H. 2004. Foundations of Problem-based Learning. Buckingham: Open University Press.

[27] Slavin, R.E. 2010. Cooperative Learning: Research and Practice Theory. Translatation of Narroliya Yuson. Bandung: Nusa Media.

[28] Peters, M. 2000. Does Constructivst Epistemology Have a Place in Nurse Education. Journal of Nursing Education, 39(4), 166-170.

[29] Palenmari, M. 2012. The Influence of Problem-Based Learning Integration with Jigsaw Cooperative Learning and Academic Ability towards Metacognition, Critical Thinking, Concept Understanding, and Student Retention in Basic Biology Lectures. Dissertation. Not Published. Malang: Postgraduate Universitas Negeri Malang.

[30] Lyman, L., & Foyle, H.C. 1988. Cooperative Learning Strategies and Children. ERIC igest. (Online) http://eric.ed.gov/?id=ED306003. Accessed on May 25, 2018.

[31] Corebima, A.D. 2005. Student Thinking Empowerment in Biology Learning: One Umbrella Research Advancement in the Department of Biology UM. Paper presented in the National Seminar on Biology and Learning, Malang, December 3, 2005.

[32] Sanjaya, W. 2008. Standard Process-Oriented of Learning Strategies. Jakarta: Kencana Predana Media Group.