REVIEW

Thyroid-disrupting chemicals and brain development: an update

Bilal B Mughal, Jean-Baptiste Fini and Barbara A Demeneix
CNRS/UMR7221, Muséum National d’Histoire Naturelle, Sorbonne Universités, Paris, France
Correspondence should be addressed to B A Demeneix: bdem@mnhn.fr

Abstract

This review covers recent findings on the main categories of thyroid hormone–disrupting chemicals and their effects on brain development. We draw mostly on epidemiological and experimental data published in the last decade. For each chemical class considered, we deal with not only the thyroid hormone–disrupting effects but also briefly mention the main mechanisms by which the same chemicals could modify estrogen and/or androgen signalling, thereby exacerbating adverse effects on endocrine-dependent developmental programmes. Further, we emphasize recent data showing how maternal thyroid hormone signalling during early pregnancy affects not only offspring IQ, but also neurodevelopmental disease risk. These recent findings add to established knowledge on the crucial importance of iodine and thyroid hormone for optimal brain development. We propose that prenatal exposure to mixtures of thyroid hormone–disrupting chemicals provides a plausible biological mechanism contributing to current increases in the incidence of neurodevelopmental disease and IQ loss.

Introduction

Thyroid hormone (TH) is essential for normal brain development where it influences, during specific temporal windows, neurogenesis, neuronal migration, neuronal and glial cell differentiation, myelination and synaptogenesis. These TH-dependent processes are crucial during early gestation and postnatal development, and then continue, albeit at reduced rates, throughout adulthood. During the first 10–12 weeks of gestation, the foetus relies entirely on maternal TH. Hence, severe maternal TH deficiency adversely affects offspring neurodevelopment (1, 2). Recent epidemiological evidence suggests that even more moderate forms of maternal thyroid dysfunction may affect child cognitive development and increase the risk of neurodevelopmental disorders (3, 4, 5, 6). Therefore, it is important to gain a better understanding of early thyroid dysfunction on offspring neurodevelopment (1, 7).

Another major cause of thyroid dysfunction can be the presence of thyroid hormone-disrupting chemicals in the maternal and fetal environment. Endocrine-disrupting compounds (EDCs) are xenobiotics that modulate hormonal homeostasis thereby inducing adverse effects (8). Numerous EDCs identified to date contain a halogen group substitution with chlorine and bromine. Interestingly, THs are the only complex halogenated (iodine) molecules produced by and necessary for vertebrate homeostasis, making TH physiology highly vulnerable to EDCs. Halogen-substituted phenolic moieties can mimic natural THs and thereby interact with multiple aspects of hormone production, feedback, distribution, entry into cells, intracellular metabolism (deiodination, conjugation) of THs, as well as at the level of receptors, as antagonists or analogues.

The aim of this review is to provide an update on how different chemicals in the environment can disrupt thyroid signalling and thereby affect brain development. A number of previous reviews have addressed certain...
aspects of this question. Notably, in 1998, Brucker-Davis and colleagues (9) reviewed the different classes of chemicals that could affect thyroid signalling and Zoeller and Crofton (10) underlined how endocrine disruption affected early brain development. A decade later the situation was updated by Crofton (11) and by Boas and colleagues (12).

No new major classes of TH-disrupting chemicals have been characterised since the last review appeared. However, within classes certain novel compounds have attracted attention. Most often these new compounds have been introduced to replace a similar chemical for which adverse effects were reported. This has led to many examples of ‘regrettable substitutions’ within classes, cases of which are described below. Thus, our focus remains on perchlorate, phenols, pesticides, polychlorinated biphenyls (PCBs), polybrominated flame retardants, perfluorinated compounds (PFCs) and phthalates (Fig. 1). Many of these substances are classed as persistent organic pollutants (POPs) and were banned decades ago yet they remain environmentally relevant due to their previous high production volumes and exceptionally long half-lives.

Perchlorate

Perchlorate is a well-characterised inhibitor of the sodium-iodide symporter (NIS) that is expressed in the basal membrane of thyroid follicular cells and is critical for iodide uptake (13). Two other NIS inhibitor classes, nitrates and thiocyanates, are found at significant levels in human fluids, but in molar terms, they are respectively 240 and 15 times less active than perchlorate (14). However, their environmental levels are such that their combined effects should be more often taken into account (15, 16).

Given first, its wide-ranging uses as an oxidant in products ranging from rocket fuel to airbags and second, its high stability, perchlorate contamination is widespread. Epidemiological data show that despite its short half-life (<8h in humans), continual exposure means that the chemical is virtually ubiquitous in the US population (17). Epidemiological evidence showed that perchlorate levels were associated with TSH in women, and this association was stronger in women with <100µg/L urinary iodine (18). The relationship was even greater in women who smoke, related to the fact that cigarette smoke is a source of thiocyanate.
Furthermore, recent epidemiological data analysed pregnant women for their thyroid status and perchlorate levels (19). Offspring born to those women that were both borderline hypothyroid and hypothyroxinemic and had higher perchlorate levels had a higher risk of being in the lowest 10% for IQ scores. The adverse effect of perchlorate was not modified by thyroxine therapy (150µg/day) during pregnancy. However, it is possible that the timing of replacement (after 12 weeks pregnancy) was too late to exert corrective effects. Other recent data also link maternal perchlorate exposure to modified thyroid function during pregnancy (20). Iodine has long been known to be required for TH synthesis and both iodine deficiency and maternal hypothyroidism are risk factors for decreased IQ and neurodevelopmental disease (21, 22). It is worth noting that in the study cited (20), a large proportion of the women (74%) had urinary iodine levels below the recommended median level (150µg/L) for pregnancy, raising the question of whether iodine deficiency exacerbates the effects of perchlorate (and potentially other TH-disrupting chemicals). This question deserves far more research and needs to be taken into account in both epidemiological and experimental studies. Similarly, the presence of TH-disrupting chemicals has been identified as a confounder for epidemiological studies assessing effects of iodine supplementation during pregnancy (23).

Phenols

Two principal phenols are well-characterised TH disruptors, bisphenol A (BPA) and triclosan (TCS). Both have high production volumes and been so extensively used that they are now virtually ubiquitous contaminants of human fluids (24) and the environment (25).

Bisphenol A (BPA, 4,4′ isopropylidenediphenol)

BPA is an organic synthetic compound, first identified as a synthetic estrogen in 1930s (26). Current common uses of BPA are in plastic products such as water bottles and food containers, CDs, DVDs, safety equipment, thermal paper and medical devices. In the United States, France and Denmark, BPA is restricted for certain uses, such as baby bottles. More recently, since 2015, France banned the use of BPA in plastic food containers. The same year (2015), EFSA maintained their opinion delivered in 2013 that BPA poses no health risks, but the committee lowered the tolerable daily intake from 50µg/kg bw/day to 4µg/kg bw/day (27). Despite these recent restrictions, there is still widespread exposure to BPA in human populations (28). It is retained in humans and has been found in pregnant women’s serum, placenta and breast milk (29, 30, 31, 32, 33, 34). As restrictions were increasingly placed on BPA use, a number of structural BPA analogues such as bisphenol S (BPS), bisphenol F (BPF) and bisphenol B (BPB) were marketed. These analogues are found now in considerable quantities in human urine (35, 36, 37, 38). These replacement chemicals are often described as ‘regrettable substitutions’ as their EDC-related effects are apparently no less than those of BPA, including effects on TH signalling (39, 40) and estrogen receptor (ER) signalling (41).

As BPA is primarily thought of as an estrogen disruptor but is also a TH modulator. EDC action across endocrine systems is to be expected as crosstalk exists at multiple levels: from different nuclear receptors (42) to individual target genes and networks to physiological systems. As BPA can interact with multiple nuclear hormone receptors including ER (43), estrogen-related receptors (ERR) (44), AR (45, 46) and thyroid hormone receptors (TR) (39, 47, 48), potential crosstalk needs to be considered at multiple levels.

BPA and ER interaction has been reviewed extensively elsewhere, for both classical and non-classical estrogen receptors (8, 49). As to TRs, some experimental studies show that BPA does not bind to TR based on a competitive TR-binding test (50, 51, 52), others show T₃-TR-mediated agonistic and antagonistic effects of BPA (48, 53, 54). More recently, binding affinities of BPA and its analogues BPF and BPS, with TR were calculated in silico and found to be roughly similar (55). When tested by a spectrum of in vitro and in vivo methods, all three analogues activated TH signalling in the absence of T₃ (39). The in vitro approaches included competitive binding assays, molecular docking and coactivator-binding assays, whereas the in vivo methodology exploited TH-response gene responses in Pelophylax nigromaculatus tadpoles.

In human epidemiology, studies have reported changes in TH parameters as a function of BPA exposure in adults (56, 57, 58, 59), including in pregnant women (60, 61, 62). In pregnant women, maternal BPA levels were inversely (62) or positively (60) associated with T₄ levels while two studies reported no association (61, 63). In humans, inverse associations of BPA with TSH have also been reported in both sexes (60) and in other cases, only in women (61). Yet another study reported a positive association (64). Such inconsistencies need to be examined notably for methodological differences between studies.
We now focus specifically on BPA and TH and neurodevelopment. Increased prenatal BPA exposure is implicated in several sex-specific changes in child behaviour (65, 66, 67, 68, 69, 70). Prenatal BPA exposure is linked to increased internalising behaviours in boys (66, 67, 70) and increased risk of ADHD-related behaviour (65). In girls, prenatal BPA exposure has been associated with both internalising and externalising behaviours (66, 69), as well as poor executive function (68). It is possible that differences in the results are due to varying timing of sample collection, exposure and assessment among the studies. Studies on postnatal childhood BPA exposure and effects on neurodevelopment are even more inconsistent. Some studies report a positive association of BPA levels with ADHD-linked behaviours in both girls and boys (71), and anxious, depressive or aggressive behaviours in girls (66, 67, 72). Others report null association with childhood BPA exposure and neurodevelopmental outcomes (68, 73). Pubertal BPA exposure has also been associated with poorer cognitive performance in adolescence (74) and adulthood (75).

The lack of full endocrine profiles in these epidemiological studies makes it hard to pinpoint the exact mechanism linking endocrine disruption and neurodevelopmental outcome. Animal studies however can better define mode of action. Such studies link BPA levels with behavioural outcomes often associated with TH disruption including, hyperactivity (not sex specific) (76, 77), anxiety (78) and decreased motor activity (79). Prenatal BPA exposure in mice also results in mostly sex-specific changes in aggression and cognitive defects (80, 81, 82, 83, 84, 85). These sex-specific changes are not surprising due to the role of estrogen in differentiation of sexually dimorphic areas involved in behaviour and cognitive development (86). BPA exposure also causes epigenetic changes (methylation) on the ER-α gene in the cortex and hypothalamus of male and female mice and alters mRNA levels of DNA methyltransferases DNMT1 and DNMT3A (78, 87). Interestingly, DNMT3A is a well-known TH-responsive gene, activated by liganded TRs (88, 89). Halogenated BPAs include a bromine (Tetrabromobisphenol A, TBBPA) or chlorine (Tetrachlorobisphenol-A, TCBPA) substitute on the phenolic ring and are common flame retardants. TBBPA is currently the flame retardant with the highest production volume worldwide. It is found in printed electronic circuit boards and in plastics for electrical housings or piping. Due to its high production volume, toxicological effects attributed to TBBPA have been extensively reviewed by governments (90, 91, 92) and deemed to have no health hazard, risk or concerns to humans. However, Van der Ven and colleagues (93) assessing multiple in vivo studies on rats concluded that the margin of exposure for humans was only 2.6 and that TBBPA exposure was a matter of concern for authorities.

What is more, TBBPA has been established in vitro as neurotoxicant that disrupts multiple intracellular pathways including zinc and calcium homeostasis, inducing oxidative stress (94, 95, 96, 97) as well as acting as a partial GABA_α agonist at 0.1μM (98). So, results for in vivo developmental toxicity are less consistent. The conclusions of Van der Ven et al. (93) for instance contrast with those of certain toxicologists (99, 100). Although Viberg and Eriksson (2011) reported more marked effects for PBDE 99 than TBBPA in neonatal mouse brain, they observed downregulation of a certain classes of nicotinic receptors in the frontal cortex with both chemicals (101). In our laboratory, studies on mice showed that gestational exposure to TBBPA decreased TRH receptor and melancortin 4 receptor basal expression in pups, dramatically affecting T₃-induced repression of these genes (102).

Some studies have reported neural defects, including impaired motor function in zebrafish (103). Similarly, Nakajima and colleagues reported behavioural effects of TBBPA administration in adult mice and differential accumulation of the chemical according to brain region (104). Further, Lilienthal et al. noted increased latency of hearing responses in a rat one generation study (105). Interestingly, development of the inner ear is known to be a TH-dependent process (106).

Significant reduction in circulating T₃ is the most frequent phenotype seen across rodent studies as a function of TBBPA exposure (93, 107). T₃ reductions could occur through activation of UDP-glucuronosyltransferase, UGT, which increases metabolism of T₃ in the liver and subsequent reduction of serum T₃ levels (108). In vitro, TBBPA competes with binding of transthyretin (TTR) and interferes with T₃-dependent cell proliferation (109). In a fluorescent polarization assay, TBBPA was found to modulate both coactivator and co-repressor interactions with TR (110). TBBPA also shows TH-disrupting effects in amphibian models. In Rana rugosa, TBBPA displayed inhibitory effects on T₃-induced tail shortening (111) and in Xenopus laevis, TBBPA exerted antagonistic effects in the presence of high TH levels, but agonistic activity with low TH levels (112). TBBPA has also been demonstrated as a TH disruptor using both the amphibian metamorphosis assay (112, 113) and the Xenopus embryonic thyroid assay

http://www.endocrineconnections.org
http://doi.org/10.1530EC-18-0029
© 2018 The authors
Published by Bioscientifica Ltd

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
(XETA) (114). In the latter study, TBBPA was further found to alter expression of TH target genes implicated in neural stem cell function and differentiation. Whether such effects extend to other proliferative brain regions during development remains to be investigated (115).

In rats, TBBPA exposure increases estrogen levels (108) and uterine tumours (116), effects thought to be related to inhibition of liver estradiol sulfotransferase (109). The combined effects of TBBPA, increasing estrogen and antagonising TH signalling could well interact to modify genetic and cellular responses, as well as inducing longer-term adverse physiological responses governing reproduction.

Triclosan (TCS, 2,4,4-trichloro-hydroxy diphenyl ether)

Triclosan (TCS) is a widely used chlorinated phenolic antimicrobial and antifungal agent. It has been used for over 40 years as an antiseptic, disinfectant or preservative in medical and personal care products such as hand soaps and shampoos, mouthwash, toothpaste and cosmetics. While it has been banned from soaps and body washes and shampoos, mouthwash, toothpaste and cosmetics.

In the environment, TCS likely accumulates in sediments as inhibitors of the membrane TH transporter, mct8 and TβR164. Entry of both T3 and T4 into target cells is facilitated by this transporter. TCS has been found in various human samples, including breast milk and human urine, and is commonly found contaminant in solid and water compartments (124, 125).

Several animal studies have confirmed TCS to act as a TH-disruptive chemical. In pregnant rats, TCS decreases serum T3 and T4, disrupts pup sex ratio balance and lowers their body weights (126, 127, 128). TH disruption is also evident during weaning rats when their mothers are exposed to triclosan (126, 127). In mice, decreased levels of T4 are also observed after a short-term oral exposure to triclosan (129, 130, 131). In amphibian models, the North American bullfrog (Rana catesbeiana) and Xenopus laevis, TCS exposure results in the disruption of TH-dependent metamorphosis, marked metabolic disorders of the liver and modulation of innate immunity (132, 133, 134).

In addition to TH, numerous studies report adverse effects of TCS exposure on reproductive organ development in male rats i.e., decreased testosterone and sperm production (135), and early age of pubertal onset in female mice (136). In vitro assays have confirmed TCS to act as an estrogen agonist using ERα and ERβ reporter gene assays (137, 138, 139) stimulate breast and ovarian cancer cell growth in vitro (140, 141) and magnifying the effects of ethinyl estradiol (136, 142). In rodent models, TCS, like TBBPA (see above) inhibits estrogen sulfation by inhibiting sulfotransferases, thus preventing metabolism of estradiol into biologically inactive forms (143, 144, 145) thereby increasing circulating estrogen levels (143). Similar effects are seen in sheep (144). It is worth noting that these same sulfotransferases metabolise TH as well.

Epidemiological studies have investigated the short- and long-term effect of TCS on TH parameters, with inconsistent findings (56, 146, 147, 148, 149, 150). Many report no significant disruptions in TH levels while some report only most marked effects (149, 151). Among the effects, some observe a positive association between TCS and total T3 (149) in adolescents, while others report an inverse association between TCS and fT3 (151) levels in pregnant women. A prospective study on prenatal TCS exposure recently reported reduced head circumference in boys but not girls (152).

Flavonoids

Flavonoids are phenols that occur as natural food items. Recent work identified the plant extract (Silybum) silymarin, and its derivatives silychristin and silybilin, as inhibitors of the membrane TH transporter, mct8 (Slc16a2). Entry of both T3 and T4 into target cells is reduced (153). This feature highlights the possible, and little studied, effects of compounds that interact with membrane TH transporters.

Pesticides

Pesticide usage increased dramatically over the last century, arguably to keep up with the demands of a...
 Thyroid-disrupting chemicals and brain development

B B Mughal et al.

© 2018 The authors

Published by Bioscientifica Ltd

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Growing population. However, many studies have shown that pesticide usage is excessive and that yields can be maintained even when halving pesticide use (154). Many pesticides exert toxicological effects, including on thyroid signalling. Notably, the European Food Safety Authority reported that of 287 pesticide files examined, 101 showed effects indicative of thyroid disruption (155). Even though many incriminated pesticides have now been banned, many of them are still in use in emerging economies. Further, many of these chemicals are persistent due to their long half-lives and remain in the environment long after their ban. Such pesticides are called legacy pesticides, with many being common environmental contaminants. Here, we choose a few examples of this latter category and some others that currently on the market, but are potentially problematic.

Dichlorodiphenyltrichloroethane (DDT)

Dichlorodiphenyltrichloroethane (DDT) is an organochlorine insecticide, first used in World War I to control malaria and typhus. Its initial notoriety arose due to widespread effects on wildlife described by Rachel Carlson in her 1962 book Silent Spring (156), notoriety that led to its ban in the United States by 1972 and worldwide by the Stockholm Convention on POPs later that decade. Despite the ban, it is still used in certain countries to fight against malaria and dengue fever (157). DDT, and its main metabolite dichlorodiphenyltrichloroethylene (DDE), are highly persistent, lipophilic compounds that bio-accumulate and are still found in significant amounts in the environment and in humans, including in pregnant women (158, 159, 160). Prenatal exposure to p,p'-DDT and p,p'-DDE has been associated with obesity (161, 162) and a significant reduction in children’s psychomotor neurodevelopment (162, 163, 164, 165, 166, 167, 168), in some cases, in a sex-specific manner (162, 169, 170). The latter is not surprising as DDT binds to and activates ERs in both reproductive and other tissues including the brain (171, 172). On the other hand, DDE has been shown to inhibit androgens from binding to their receptors (173, 174). In adolescent boys, DDE is associated with increased testosterone (175) and decreased luteinizing hormone (176) while DDT is associated with decreases in both luteinizing hormone and testosterone (176). In women, in utero exposure to DDT, as judged by umbilical cord levels, has been associated with an increased risk of breast cancer later in life (177).

DDT and its metabolites have also been confirmed as TH-disrupting chemicals through human epidemiological studies (158, 178, 179, 180, 181). Studies have found negative association with DDE and total T₄ and T₃ levels (182, 183) and a positive association with TSH levels (183); suggesting an anti-thyroid effect. In contrast, recent studies found a positive association of DDE with total T₃ and T₄ levels, and a non-significant TSH reduction in floriculture workers (158, 179). These differences could be due to different levels of exposure and/or exposure to additional chemicals and characteristics of the populations studied, such as iodine or thyroid status and genetic factors.

In experimental studies, rats exposed to DDE exposure exhibit lower free T₄ levels. One target of DDT action on thyroid metabolism may be through the inhibition of TSH-stimulated intracellular accumulation of cyclic adenosine monophosphate (cAMP) by the action of DDT on the TSH receptor (184, 185, 186, 187). The highly lipophilic DDT may also interfere indirectly with the TSH receptor by altering the phosphor-lipid composition of the thyroid cell membrane, rendering the TSH receptor unable to internalise and instead be released extracellularly in vesicle forms in the presence of DDT (188). These vesicles have been suggested to initiate autoimmunity favouring the development of Graves’ disease (184). Mice exposed to DDE also exhibit reduced expression of TTR and Dio2 mRNA, which further explains the reduced free T₄ levels observed (189, 190). Increased expression of several hepatic enzymes can further contribute to TH degradation (190). Another study in mice reported that DDT exposure was associated with increased peripheral conversion of T₄ into T₃, reduced TSH levels and morphological changes in the thyroid gland typical of iodine deficiency (191).

Hexachlorobenzene (HCB)

Hexachlorobenzene (HCB) is an organochloride, used primarily as a fungicide for seeds and as a wood-preserving agent. It was banned globally in 1979 under the Stockholm Convention on POPs as a pesticide. Its current main source is through the industrial emission as a by-product of the manufacture of chlorinated solvents and pesticides. It is extremely lipophilic and accumulates in the environment. It gained prominence during late 1950s when accidentally over-treated HCB-treated seeds were consumed by the general public in Turkey. Affected individuals, primarily children, displayed changed porphyrin metabolism, leading to porphyria cutanea tarda, enlarged liver and thyroid gland and osteoporosis (192, 193). Similar effects have been observed in HCB-exposed rats (194) i.e. hepatic and thyroid neoplasms (195, 196, 197), porphyria (193, 198). Other epidemiological studies
have found associations between lower levels of HCB and decreased gestational length (199), poor social competence (200) and increased body weight during childhood (201). Studies on floriculture workers have further revealed an association between HCB with decreased levels of total T₃ (TT₃) (202) and TT₄ (203). In animal studies, HCB is known to disrupt progesterone and estradiol concentrations (204, 205, 206), impair reproductive efficiency (207, 208) and reduce neonatal viability and growth (209). It also disrupts levels of T₃ and T₄ (210, 211), leads to goitre (212) and hypothyroidism (213). Disruption of the TH axis may partly be due to HCB’s action on the activity and expression of hepatic Dio1 and Dio2 enzymes, respectively (214). In rats, HCB has been shown to induce apoptosis in the thyroid cells, most likely due to action on mitochondria through oxidative stress (215, 216). There is also evidence that HCB may competitively inhibit binding of thyroxine to serum carrier proteins (214, 215). More investigations are required to elucidate the exact mechanisms of HCB on TH signalling.

Chlorpyrifos (CPF, O,O-diethyl O-(3,5,6-trichloro-2-pyridinyl) ester phosphorothioic acid)

Chlorpyrifos is a member of the organophosphate class of insecticides that target the central and peripheral nervous system specifically inhibiting the enzyme activity of acetylcholinesterase (217). It is currently one of the most widely used insecticides in the United States and other countries, to manage insect pests on agricultural crop. CPF applications were once particularly heavy in urban areas, where the exposed populations included pregnant women (218, 219). Interestingly, its ban in household use in 2001 allowed for a natural experiment within an ongoing birth cohort study at Columbia University. Before the ban, decreases in birth weight and length were observed in association with CPF in newborn cord blood. After the ban, these outcomes disappeared (220). This result has been observed more recently (221), a result that is not surprising as CPF readily crosses the placenta (222). Further studies have reported prenatal CPF exposure association with impaired cognition and motor function (223), attention-deficit hyperactive disorder (224), deficits in working memory and reduced IQ (225) and tremors during childhood (226). While some groups have considered that the levels of CPF in cord blood are too low to induce adverse effects (227, 228), one needs to take into account that the half-life of CPF is approximatively 27h (229). Thus, the possibility of substantially higher in utero levels of CPF is considerable. Despite these studies and its recent thorough evaluation by the World Health Organization (WHO) and Danish Environmental Protection Agency finding, toxicological evidence to be strong and the epidemiological evidence to be of moderate-to-high quality, the EPA denied a recent petition for ban calling it ‘crucial to U.S. agriculture’ (230). Not surprisingly, given the well-demonstrated epidemiological data showing negative effects on brain development, this decision has been severely criticised (231).

Given the importance of TH to brain development, the neurological and impaired cognitive outcomes associated with CPF exposure could well have underlying thyroid hormone-dependent mechanisms. Two studies based on analysis of NHANES data from the years 1999–2002 describe significant associations between levels of chlorpyrifos metabolite, 3,5,6-trichloro-2-pyridinol (TCPY) and thyroid parameters, namely increased TT₃ in both males and females and decreased TSH levels in males, with increased TSH levels in females (232, 233).

In rat studies, a reduction in brain T₄ levels is seen following prenatal CPF exposure whereas postnatal exposure results in a transient elevation in young adulthood (234). Mice exposed to low-dose CPF display reduced serum T₃ levels and display altered thyroid follicular size, with an apparent higher vulnerability in males (235) and anxiety-like behaviour (236). Reduction of T₄ in response to CPF has also been observed in rats (237), whereas exposure to CPF’s methyl counterpart (chlorpyrifos-methyl) results in reduced T₄ and increased TSH (hypothyroidism) (238). In our lab, CPF was shown to affect TH signalling using a transgenic reporter. Moreover, a short embryonic exposure impacts mature brain structure (Spirhazlova P, Leemans M, Sébastien LE, Mughal BB, Wejaphikul K, Fini J-B, Visser T & Demeneix BA, unpublished observations).

As to the effects on ER and AR signalling, CPF has been found to interfere with the ERβ mRNA steady state level (239, 240) and exert an ERα-dependent estrogenic effect on cell proliferation in vitro (241) and in vivo (242). CPF also has anti-androgenic activity as Leydig cells from the rat exposed to CPF in vitro exhibit a significant decrease in testosterone biosynthesis (243). More epidemiological and experimental data are urgently needed as this pesticide is being assessed for renewal in the EU from 2019.

Other pesticides

As previously stated, more than a 100 of the 287 pesticides examined by European Food Safety Authority (EFSA) had features indicative of thyroid disruption (155).
In the recent review of chemicals that could be used as reference for thyroid disruption screening, Wegner and colleagues identified a number of phytopharmaceuticals or biocides with TH-disrupting activity (244). To cite a few, their list contained different classes of fungicides and organophosphates, along with a number of juvenile hormone analogues. Among the fungicides, figure the ethylene bisdithiocarbamates (EBDC) e.g. maneb, mancozeb, ziram, zineb. Their common degradation product, ethylene thiourea (ETU), in addition to being a type IIB carcinogen, interferes with iodide organification by inhibiting thyroid peroxidase (TPO) (245) thereby decreasing thyroidal production of T3 and T4 in experimental animals (246, 247). In addition, the animals exhibit increased thyroid/body weight ratio, histopathological changes and reduced serum protein-bound iodine (246). Recent epidemiological data further underlines the importance of iodine status and the effect of ETU on thyroid function (248). Another class of fungicides with TH-disrupting activity are the azoles. This class of fungicide can enhance TH hepatic metabolism through the induction of enzymes uridine diphosphate-glucuronosyl-transferase (UDPGT), thereby increasing biliary elimination of T3 and T4 (249). Reduction of TH level varies considerably depending on the class of azoles (250).

The organophosphate insecticide malathion is an acetylcholinesterase inhibitor, similar to CPF, widely used in North American agriculture and residential landscapes, and in public health pest control programmes such as residential mosquito eradication. It has also been characterised as an inhibitor of teleost TPO (251) and TTR (252, 253). Other authors have documented increased levels of T3 and reduced T4 as a function of malathion exposure (254, 255). As it is currently an approved insecticide in North America and Europe, it is important to note that it has been associated with a increased risk of thyroid cancer in spouses of pesticide applicators (256).

Pyrethroids are synthetic organic insecticides similar to the natural pyrethrins produced by the flowers of chrysanthemums. Due to their high lipophilicity and persistence, they are prone to bioaccumulation. Further, toxicological studies have demonstrated their potential to disrupt the endocrine system and exert developmental toxicity (257). Permethrin (PM), one of the most heavily used synthetic pyrethroids, exerts estrogenic effect in zebrafish (258) while other pyrethroids have been demonstrated as interfering with TRs (259), TTR binding (260) and Dio1 inhibition (261, 262). Several rat studies also suggest that pyrethroid insecticides alter serum TH levels, mostly increasing total T3 levels (255, 263, 264, 265).

Finally, a pyridine-based juvenile hormone analogue pesticide, Pyriproxyfen, has been suggested as a TH-active substance (244). This and other findings led us and colleagues to suspect it could be implicated in the increased incidence of Zika-induced microcephaly in north eastern Brazil (266), especially given its use at high levels in drinking water during the outbreak (266).

Polychlorinated biphenyls (PCBs)

PCBs are a class of organic man-made chemicals that were mass produced globally since the 1920s, until their commercial production ban in the United States in 1979. They were widely used as plasticizers, in hydraulic fluids, heat transfer fluids, lubricants and electrical equipment like capacitors and transformers. A total of 209 possible congeners exists, classed according to the number and position of chlorine atoms carried. PCBs can also be metabolized by hydroxylation to OH-PCBs. Due to their high chemical stability, PCBs do not readily break down and are still found in significant quantities throughout the environment and human fluids (267). PCBs and their metabolites are known to efficiently transfer from maternal to foetal blood via the placenta (268, 269) and to nursing children via milk (270, 271). Prenatal PCB exposure in human has been associated with increased risk of a number of TH-related disorders including, high BMI (272), IQ loss (273, 274, 275), cognitive defects (23, 273, 276, 277, 278), reduced visual recognition memory (274), attention and motor deficits (276, 279, 280, 281), increased risk of autism (282, 283) and ADHD (273, 284, 285). In PCB-exposed adults, an increased risk of cardiovascular disease has been reported (286), as has a slightly increased risk of thyroid autoimmunity in men (287, 288).

Due to their physiochemical properties, PCBs have long been suspected to act as TH and other steroidal hormone analogues (2, 289). Numerous publications covering both epidemiological and experimental studies have confirmed the association of hydroxylated and non-hydroxylated PCBs with decreased TH levels, T4 (290, 291, 292) and T3 (292, 293, 294, 295). In fact, serum hypothyroxinemia is the most frequently reported adverse health effect in human populations exposed to PCBs due to displacement of T3 from TTR and subsequent increase of metabolism (296). PCBs in cord blood have also been linked with low thyroid-binding globulin (TBG) (293) and high TSH levels (297, 298). In contrast to the latter study, a recent analysis of
three cohorts revealed slightly lower levels of TSH with PCB-153 exposure (299).

In experimental studies, PCB and their metabolites demonstrate a clear association with reduced TH levels in animal models (300, 301, 302) and induce long-term effects on behaviour and neurodevelopment (303, 304). More recent studies have highlighted other possible mechanisms of PCB action on additional TH axis components. TTR disruption may play a role in distribution of hydroxylated PCBs to the placenta and the brain as PCB metabolites are known competitors for TTR’s T₄-binding pocket (296, 305). PCB exposure suppresses NIS expression (301) through the Akt/FoxO3a/NIS pathway (306, 307). NIS suppression may also be due to inflammation by PCB exposure. The PCB-induced AhR/JNK pathway stimulates the production of cytokines and thereby suppresses NIS expression (308). Hydroxylated PCBs may also inhibit SULT-catalysed THs sulfation (309). A more recent study on infants found further an association between PCBs in maternal blood with high T₃ and low rT₃ in cord serum indicating possible action on deiodinases (310). Finally, iodine status can have a major impact on the effect of PCB exposure (23). A pilot study found that PCB exposure lessens the benefits of iodine supplementation during pregnancy in a borderline iodine-deficient group and higher PCB levels have a negative impact on the neurocognitive development of the offspring.

The importance of other endocrine systems especially the sex hormones must not be overlooked as many sexually dimorphic changes due to gestational PCB exposure have been reported. Gestationally PCB-exposed females pups display increased birth weight, higher locomotor behaviours, higher corticosterone concentrations while the males display increased anogenital distances (311, 312). Certain PCB metabolites have been shown to interact with the ERs acting either as agonists or antagonists (313, 314). On the other hand, one PCB metabolite (PCB104) exhibits both, AR antagonistic and ER agonist properties (315). PCBs may also induce estrogenicity indirectly through inhibition of the estrogen sulfotransferase (316).

Polybrominated flame retardants

PBDEs are widely used flame retardants being used in furniture, carpets, automobiles, electrical appliances and flame-retardant fabrics. PBDEs are lipophilic in nature and as they are not chemically bound to the substrate, they easily accumulate in the environment. High levels are found in diverse situations from house dust (317) to river sediments (318). There are 209 congeners of PBDEs, due to the different possible bromine substitutions on the biphenyl backbone. Similar to PCBS, hydroxylated PBDEs (OH-PBDEs) add to the complexity of chemical interactions and stability. Production and usage of the less brominated PBDEs were banned in Europe in 2004, and more recently extended to BDE-209 (or deca-BDE). As BDE-209, is the most highly brominated compound (10 bromines), it is easily broken down into less brominated congeners (318). However, general levels of PBDE are increasing despite the ban (see for instance: (319)). In the United States, despite similar restrictions and phase out of deca-PBDE at the end of 2013 (except for certain uses) the entire population have detectable levels of at least one PBDE congener in their blood (320).

As PBDEs are persistent, PBDE congeners are still found in significant amounts in the placenta (321), fetal blood (322), and breast milk (323). Early exposure of PBDEs has also been associated with decreased IQ, diminished language and reading abilities, increased problems with hyperactivity and attention, and poorer executive function in children (324, 325, 326, 327, 328, 329, 330, 331, 332). Among these, two studies further observed sex-specific differences. Vuong et al. reported significantly poorer executive function among boys with higher concurrent BDE-153 and no associations in girls, while Sagiv et al., observed poorer executive function in girls with higher 4 PBDE (BDE-47, -99, -100, -153) concentrations, but not in boys (327, 333). These sex-specific differences need to be investigated further as other studies have revealed no statistically significant sex interactions (328, 329).

The biological mechanism for sex differences in PBDE exposure-related neurotoxicity remains unknown. These behavioural changes are not surprising as PBDEs are well known to pass the blood–brain barrier, accumulate in the central nervous system and induce developmental neurotoxicity (334). Neonatal rodents exposed to PBDEs exhibit behavioural changes (335, 336, 337, 338), with reduced hippocampal long-term potentiation, modified intracellular calcium homeostasis (339), oxidative stress (340) and reduced postsynaptic protein levels in the hippocampus (341). Poorer attention and executive function suggests that PBDEs may also target the prefrontal cortex region of the brain (342, 343).

The precise mechanism of PBDE action at a molecular level, still remains to be elucidated. Clearly, one plausible action of PBDEs is through its disruption of TH availability. Several epidemiological studies have reported increased TSH levels, lower total T₄ and, in some studies greater
Phthalates

Phthalates or phthalate esters are esters of phthalic acid and mainly used as plasticizers and softeners in various commercial products such as furniture, cosmetics, food packaging, and medical equipment such as catheters and perfusion bags/drips. Phthalates are also one of the most volatile EDCs and can be found at high concentrations in enclosed spaces where air conditioning is used, such as in vehicles (369). One of the most widely used phthalates is di-(2-ethylhexyl) phthalate (DEHP), used as a plasticizer in PVC recycling, but not manufacturing. This phthalate used in soft medical devices and toys was of major concern due to its high migration rate (370) and to the vulnerable population in contact with the compound. Consequently production was banned and manufacturing ceased by BASF in 2002. Other notable common phthalates are dibutyl phthalate (DBP) and its metabolite monobutyl phthalate (MBP), mono-(2-ethylhexyl) phthalate (MEHP), monoethyl phthalate (MEP), benzylbutylphthalate (BBP), diisodecyl phthalate (DIDP), and diisononyl phthalate (DINP). Alternatives to phthalate such as hexamoll Dinch are now being used in medical devices. A transgenerational study carried out by BASF in 2005, unpublished but described in EFSA 2006 (371) and NICNAS 2012 (372) reports, showed significant hepatic effects and thyroid hyperplasia induced by Dinch (372).

Phthalates do not bio-accumulate in the environment but since they are ubiquitous in our daily life, the potential of consequences of continuous exposure has raised concerns. Current EU legislation focuses on levels in children's toys. Some phthalates (DEHP, BBP and DBP) cannot be used in toys and childcare products. Other phthalates (DINP and DIDP) are banned only from toys that could be potentially placed in mouth. Urinary levels of phthalates serve as a good biomarker and high exposure levels have been found in the general public, including pregnant women (373, 374, 375, 376, 377).

In humans, DEHP and its metabolites measured in maternal urine have been associated with adverse neurodevelopment and behaviour in offspring (378, 379, 380, 381, 382). Interestingly, the phthalate metabolites, MEHHP, MEHP and MBP were associated with both mental and behaviour defects in male but not female infants of 6 months (378). Prenatal exposure to phthalates has also been associated with ‘reduced masculine play’ among boys of 3- to 6-year (383). In contrast, Téllez-Rojo et al. reported lower scores on the mental developmental index (Bayley’s test) in females but not males at 2–3 years.
These sex-specific differences seem to attenuate with age (7–9 age) (384). More studies are needed to determine if gender differences are found as a function of phthalate exposure in older children. While these previous studies have focused on cognitive and behavioural defects during early years, other studies have found association between phthalates and more severe neurodevelopmental defects during school ages such a reduced IQ (385) and attention-deficit disorder (ADD) (386).

As for a number of pesticides, these negative effects on brain development can be linked to changes in TH levels. In pregnant women, urinary MBP, MEP and MEHP have been associated with low serum T\textsubscript{4} and fT\textsubscript{4} during the second trimester (387, 388, 389, 390, 391, 392). These inverse relationships between MEHP and DEHP and T\textsubscript{4} levels have been reported in the adult population including men (59, 393). In children, there are varying reports of levels of phthalates and its effect on TH levels. Some report inverse relations between the two (388, 394), others a positive relation (59), and one that relied on a relatively small cohort found none at all (395). This highlights the importance of study design, age group, sample size, and exposure profiles when studying non-persistent chemicals.

Since DBP down-regulates the human NIS promoter (396), modulating the transcriptional activity of NIS may be one of the underlying causes of thyroid hyperactivity and decreased circulating T\textsubscript{4} concentrations. DBP also appears to act as a thyroid antagonist when assessed through reporter gene assays (397). Zebrafish and male rats exposed to varying concentrations for MEHP and DEHP respectively demonstrate similar low levels of whole body T\textsubscript{4} levels (398, 399). It is interesting to note that in 2017, ECHA classified DBP, DEHP, BBP and DIBP as substances of high concern due to their endocrine-disrupting properties.

Perfluorinated compounds

Perfluorinated chemicals (PFCs) are widely used in the manufacture of fabrics, carpets, surfactants, emulsifiers, Teflon, lubricants, cosmetics, and fire-fighting foams. They are commonly used as surfactants due to their fully fluorinated linear carbon chain attached to a hydrophilic head. Surfactants are compounds that lower the surface tension between two liquids or between a liquid and a solid and therefore are used in detergents, wetting agents, emulsifiers, foaming agents, and dispersants. They are also highly stable and therefore extremely persistent in the environment including both wildlife and human populations (400). Between the years 2000 and 2002, the main producers discontinued production of certain PFCs, including perfluorohexane sulfonate (PFHxS), perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS). Following its discontinuation, a significant decrease in the serum levels of PFOA and PFOS were observed (401, 402, 403). However, another factor that needs to be taken into consideration is their relatively long half-life in humans being approximately 3.8 years for PFOA, 5.4 years for PFOS, and 8.5 years for PFHxS (404). Despite the ban, they are still found in significant levels in drinking water. A 2016 study covering 2/3 of drinking water supplies in the United States found unsafe levels of PFCs at the minimum reporting levels required by the EPA (405). PFOS has been banned in the EU since 2008 but there are no restrictions on PFOA and PFHxS. In the USA, the EPA launched a voluntary campaign in which the companies committed to reduce global facility emissions and product content of PFOA and related chemicals by 2015. The last update for this reduction was in 2013/2014.

Several animals studies have shown low-dose exposure of PFCs during neonatal development results in irreversible neurotoxic effects and alterations in spontaneous behaviour, habituation capability, learning and memory (assessed at 4 months) (406, 407). PFCs were also shown to alter the levels of synaptophysin and tau proteins in the cerebral cortex and hippocampus. Both proteins are important for the formation and growth of dopaminergic synapses and alterations in the dopamine transporters and receptors are one of the underlying causes of behavioural defects such as ADHD (408, 409). Several cross-sectional studies have investigated the potential association between PFC levels in school-age children and ADHD (410, 411). Hoffman et al. (410) reported a positive association between levels of PFOA, PFOA and PFHxS with ADHD symptoms while Stein and Savitz (411) reported an association with only PFHxS. High impulsivity has also been reported in children with high PFC levels (412) and high levels of PFOS exposure during pregnancy have been associated with delayed motor development in the first two years of life (413, 414). TH dysfunction is a well-established risk for ADHD (5, 415, 416, 417, 418).

PFC exposure and TH disruption have also been reported in adults. A large study of employees in a PFC manufacturer revealed negative associations between PFOA and free T\textsubscript{4} levels (419). In the US, women with high levels of PFOA and men with high levels of PFOS are also at increased risk of thyroid diseases (420). Low levels of T\textsubscript{4} as a function of PFC exposure have also been confirmed.
in several animal models. A single dose of PFOS in adult rats resulted in an initial increased fT₄ and decreased TSH levels, followed by decrease in total T₃ and T₄ levels (421). In other adult rat studies, PFOA exposure resulted in decreased T₄ levels (422, 423). Perinatal exposure to PFOS also results in decreased levels of T₄ in both the mother and the offspring (424, 425, 426, 427). A test of twenty-four PFCs revealed competitive binding of most PFCs to TTR (428) in which turn can explain the dysfunctional levels of T₄ observed in humans and animal models. Of the 24 PFCs, PFHxS displayed the highest competitive binding followed by PFOA and PFOS equally. PFOS has also been shown to decrease hepatic Dio1 mRNA while increasing thyroidal Dio1 mRNA (429). Whether this is a direct effect on Dio1 transcription or a response to levels of T₄ is not yet clear.

Conclusion

The above review covers the main categories of chemicals that affect thyroid signalling. However, we have not reported environmental and human levels of exposure for each chemical class or effects of mixtures. There are wide variations in exposure to individual chemical exposure due to geographical location and legislation of the country of residence. Moreover, as we are exposed to multiple chemicals at a given time, it is increasingly important to address the effect of chemicals as a mixture, since synergistic effects of chemical mixtures without individual effects have been reported (430, 431). Our laboratory has shown that exposure to mixtures of common chemicals found in human amniotic fluid, alters TH signalling, brain structure and behaviour (432, 433). Together, these findings highlight the current impact of EDC exposure on neurodevelopment and argue for rapid public health intervention.

Declaration of interest

B B M and J B F have nothing to disclose. B D is a co-founder of WatchFrog.

Funding

This work was supported by grants from Centre National de la Recherche Scientifique, Muséum National d’Histoire Naturelle and European Union Contracts DevCom FP 7- People 2013-ITN N°607142, H2020_EDC MIX RISK, GA N°634880 and H2020_HBMAEU_GA n° Contract No. 733032.

References

1 Moog NK, Entringer S, Heim C, Wadhwa PD, Kathmann N & Buss C. Influence of maternal thyroid hormones during gestation on fetal brain development. *Neuroscience* 2017 342 68–100. (https://doi.org/10.1016/j.neuroscience.2015.09.070)
2 Gilbert ME, Rovet J, Chen Z & Koibuchi N. Developmental thyroid hormone disruption: prevalence, environmental contaminants and neurodevelopmental consequences. *Neurotoxicology* 2012 33 842–852. (https://doi.org/10.1016/j.neuro.2011.11.005)
3 Henrichs J, Bongers-Schokking JJ, Schenk JJ, Ghassabian A, Schmidt HG, Visser TJ, Hooijkaas H, de Muinck Keizer-Schrama SM, Hofman A, Jaddoe VV, et al. Maternal thyroid function during early pregnancy and cognitive functioning in early childhood: the generation R study. *Journal of Clinical Endocrinology and Metabolism* 2010 95 4227–4234. (https://doi.org/10.1210/jc.2010-0415)
4 Stagnaro-Green A & Pearce E. Thyroid disorders in pregnancy. *Nature Reviews Endocrinology* 2012 8 650–658. (https://doi.org/10.1038/nrendo.2012.171)
5 Pakkilä E, Mannisto T, Pouta A, Hartikainen AL, Ruokonen A, Surcel HM, Biogiu A, Viääsmäki M, Jarvelin MR, Molinari I, et al. The impact of gestational thyroid hormone concentrations on ADHD symptoms of the child. *Journal of Clinical Endocrinology and Metabolism* 2014 99 E1–E8. (https://doi.org/10.1210/jc.2013-2943)
6 Korevaar TIM, Muetzel R, Medici M, Chaker L, Jaddoe VW, de Rijke YB, Steegers EA, Visser TJ, White T, Tiemeier H, et al. Association of maternal thyroid function during early pregnancy with offspring IQ and brain morphology in childhood: a population-based prospective cohort study. *Lancet Diabetes and Endocrinology* 2016 4 35–43. (https://doi.org/10.1016/S2213-8587(15)00327-7)
7 Fetene DM, Betts KS & Alari A. Mechanisms in endocrinology maternal thyroid dysfunction during pregnancy and behavioural and psychiatric disorders of children: a systematic review. *European Journal of Endocrinology* 2017 177 R261–R273. (https://doi.org/10.1530/EJE-16-0860)
8 Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A, Prins GS, Toppari J & Zoeller RT. Executive summary to EDC-2: the Endocrine Society’s second Scientific Statement on endocrine-disrupting chemicals. *Endocrine Reviews* 2015 36 593–602. (https://doi.org/10.1210/er.2015-1093)
9 Brucker-Davis F. Effects of environmental synthetic chemicals on thyroid function. *Thyroid* 1998 8 827–856. (https://doi.org/10.1098/thy.1998.8.827)
10 Zoeller RT & Crofton KM. Thyroid hormone action in fetal brain development and potential for disruption by environmental chemicals. *Neurotoxicology* 2000 21 935–945.
11 Crofton KM. Thyroid disrupting chemicals: mechanisms and mixtures. *International Journal of Andrology* 2008 31 209–222. (https://doi.org/10.1111/j.1365-2605.2007.00857.x)
12 Boas M, Main KM & Feldt-Rasmussen U. Environmental chemicals and thyroid function: an update. *Current Opinion in Endocrinology, Diabetes and Obesity* 2009 16 385–391. (https://doi.org/10.1097/MED.0b013e328305fa7)
13 Dohán, O, Portulano C, Basquin C, Reyna-Neyra A, Amzel LM & Santini F, Crump K & Gibbs J. Relative potencies and additivity of transport of the environmental pollutant perchlorate. *Thyroid* 2004 14 1012–1019. (https://doi.org/10.1098/thy.2004.14.1012)
14 Demeneix B. Losing Our Minds: How Environmental Pollution Impairs Human Intelligence and Mental Health. Oxford, UK: Oxford University Press, 2014. (https://doi.org/10.1093/acprof:oso/9780199971581.001.0001)
15 Suh M, Abraham L, Dixon JG & Proctor DM. The effects of perchlorate, nitrate, and thiocyanate on free thyroid hormone for potentially sensitive subpopulations. The 2001–2002 and 2007–2008 National Health and Nutrition Examination Surveys. *Journal of Toxicology.
Exposure Science and Environmental Epidemiology 2014 24 579–587. (https://doi.org/10.1007/s10603-013-1667-z)

Zoeller TR. Environmental chemicals targeting thyroid. Hormones 2010 9 28–40. (https://doi.org/10.14310/horm.2002.1250)

Blount BC, Valentin-Blasini I, Ostertoh JD, Mauldin JP & Pirkle JL. Perchlorate exposure of the US population, 2001–2002. Journal of Exposure Science and Environmental Epidemiology 2007 17 400–407. (https://doi.org/10.1038/sj.ess.1205535)

Taylor FN, Okosime OE, Murphy R, Hales C, Chicusano E, Maina A, Joomun M, Bestwick JP, Smyth P, Paradise R, et al. Maternal perchlorate levels in women with borderline thyroid function during pregnancy and the cognitive development of their offspring: data from the controlled antenatal thyroid study. Journal of Clinical Endocrinology and Metabolism 2014 99 4291–4298. (https://doi.org/10.1210/jc.2014-1901)

Steinmaus C, Pearl M, Kharrazi M, Blount BC, Miller MD, Pearce EN, Valentin-Blasini I, DeLoренze G, Hooffnagle AN & Liaw J. Thyroid hormones and moderate exposure to perchlorate during pregnancy in women in southern California. Environmental Health Perspectives 2016 124 861–867. (https://doi.org/10.1289/ehp.1409614)

Rayman MP & Bath SC. The new emergence of iodine deficiency. Annals of the New York Academy of Sciences 2008 1124 232–348. (https://doi.org/10.1196/annals.1423.029)

Andersen SL, Laurberg P, Wu CS& Olsen J. Attention deficit hyperactivity disorder and autism spectrum disorder in children born to mothers with thyroid dysfunction: a Danish nationwide cohort study. British Journal of Obstetrics and Gynaecology 2014 121 1365–1374. (https://doi.org/10.1111/j.1471-0528.12681)

Brucker-Davis FA, Saner-Chauliac F, Gal J, Panza-Ferrari P, Pacini P, Fénichel P & Héronius S. Neurotoxicant exposure during pregnancy is a confounder for assessment of iodine supplementation on neurodevelopment outcome. Neurotoxicology and Teratology 2015 51 45–51. (https://doi.org/10.1016/j.ntt.2015.07.009)

Provencher G, Bérubé R, Dumais P, Bienvenu JF, Gaudreau E, Boscher C, Antignac JP & Le Bizec B. Determination of bisphenol A and related substitutes/analogues in human breast milk using gas chromatography-tandem mass spectrometry. Analytical and Bioanalytical Chemistry 2015 407 2485–2497. (https://doi.org/10.1007/s00216-015-8469-9)

Ye X, Wong LY, Kramer J, Zhou X, Jia T & Calafat AM. Urinary concentrations of bisphenol A and three other bisphenols in convenience samples of U.S. adults during 2000–2014. Environmental Science and Technology 2015 49 11834–11839. (https://doi.org/10.1021/acs.est.5b02135)

Yang Y, Guan J, Yin J, Shao B & Li H. Urinary levels of bisphenol analogues in residents living near a manufacturing plant in south China. Chemosphere 2014 112 481–486. (https://doi.org/10.1016/j.chemosphere.2014.05.004)

Yang YJ, Li ZL, Zhang J, Yang Y & Shao B. Simultaneous determination of bisphenol A, bisphenol AF, tetrachlorobisphenol A, and tetrabromobisphenol A concentrations in water using on-line solid-phase extraction with ultrahigh-pressure liquid chromatography tandem mass spectrometry. International Journal of Environmental Analytical Chemistry 2014 94 16–27. (https://doi.org/10.1080/03067319.2013.853756)

Thayer KA, Taylor KW, Garantziotis S, Schurman SH, Kissing GF, Hunt D, Herbert B, Church R, Jankovich R, Churchwell MJ, et al. Bisphenol A, bisphenol s, and 4-hydroxyxyphenyl 4-isopropoxyphenyl sulfone (bpsip) in urine and blood of cashiers. Environmental Health Perspectives 2016 124 437–444. (https://doi.org/10.1289/ehp.1409427)

Zhang Y-F, Ren XM, Li YY, Yao XF, Li CH, QinZF & Guo LH. Bisphenol A alternatives bisphenol S and bisphenol F interfere with thyroid hormone signaling pathway in vitro and in vivo. Environmental Pollution 2017 [epub]. (https://doi.org/10.1016/j.envpol.2017.11.027)

Lee S, Kim CY, Youn H & Choi K. Thyroid hormone disrupting potentials of bisphenol A and its analogues – in vitro comparison study employing rat pituitary (GH3) and thyroid follicular (FRTL-5) cells. Toxicology in Vitro 2017 40 297–304. (https://doi.org/10.1016/j.tiv.2017.02.004)

Le Fol V, Ait-Aissa S, Sonavane M, Porcher JM, Balaguer P, Cravedi JP, Zalko D & Brion F. In vitro and in vivo estrogenic activity of BPA, BPF and BPS in zebrafish-specific assays. Ecotoxicology and Environmental Safety 2017 142 150–156. (https://doi.org/10.1016/j.ecoenv.2017.04.009)

MacKay H & Abiaiad A. A plurality of molecular targets: The receptor ecosystem for bisphenol-A (BPA). Hormones and Behavior 2017 [epub]. (https://doi.org/10.1016/j.yhbeh.2017.11.001)

Okada H, Tokunaga T, Liu X, Takayanagi S, Matsushima A & Shimohigashi Y. Direct evidence revealing structural elements essential for the high binding ability of bisphenol A to human estrogen-related receptor-gamma. Environmental Health Perspectives 2008 116 32–38. (https://doi.org/10.1289/ehp.108587)

Matsushima A, Kakuta Y, Teramoto T, Koshiba T, Liu X, Okada H, Tokunaga T, Kawabata S, Kimura M & Shimohigashi Y. Structural...
evidence for endocrine disrupter bisphenol A binding to human nuclear receptor ERβ. Journal of Biological Chemistry 2007 142 517–524. (https://doi.org/10.1093/jcb/mvm158)

45 Xu LC, Sun H, Chen JJ, Bian Q, Qian J, Song L & Wang XR. Evaluation of androgen receptor transcriptional activities of bisphenol A, octylphenol and nonylphenol in vitro. Toxicoilogy 2005 216 197–203. (https://doi.org/10.1016/j.tox.2005.08.006)

46 Teng C, Goodwin B, Shockley K, Xia M, Huang R, Norris J, Merrick BA, Jetten AM, Austin CP & Tice RR. Bisphenol A affects androgen receptor function via multiple mechanisms. Chemo-Biological Interactions 2013 203 556–564. (https://doi.org/10.1016/j.cbi.2013.03.013)

47 Zoeller RT, Bansal R & Parris C. Bisphenol-A, an environmental contaminant that acts as a thyroid hormone receptor antagonist in vitro, increases serum thyroxine, and alters R3/C3 neurogranin expression in the developing rat brain. Endocrinology 2005 146 607–612. (https://doi.org/10.1210/en.2004-1018)

48 Moriyama K, Tagami T, Akamiu T, Usui T, Saji M, Kanamoto N, Hayata Y, Shimatsu A, Kuzuya H & Nakao K. Thyroid hormone action is disrupted by bisphenol A as an antagonist. Journal of Endocrinology and Metabolism 2002 87 5185–5190. (https://doi.org/10.1210/jc.2002-020909)

49 Alonso-Magdalena P, Ropero AB, Soriano S, García-Arévalo M, Moriyama K, Tagami T, Akamizu T, Usui T, Saijo M, Kanamoto N, Ikezuki Y, Tsutsumi O, Takai Y, Kamei Y & Taketani Y. Determination of alternatives to BPA found in thermal paper in Switzerland. Magnin R, Becker TW & Bourqui-Pittet M. Endocrine activity of bisphenol A, octylphenol and nonylphenol in vitro. Toxicological Sciences 2002 293 534–559. (https://doi.org/10.1093/toxsci/kf0674)

50 Kitamura S, Jinno N, Ohita S, Kuroki H & Fujimoto N. Thyroid hormonal action of the flame retardants tetrahydrobisphenol A and tetrachlorobisphenol A. Biochemical and Biophysical Research Communications 2002 293 534–559. (http://www.scopus.com/inward/record.url?eid=2-s2.0-006-291x2002620-3)

51 Ikezuki Y, Tsutsumi O, Takai Y, Kamei Y & Taketani Y. Determination of bisphenol A concentrations in human biological fluids reveals significant early prenatal exposure. Human Reproduction 2002 17 2839–2841. (https://doi.org/10.1093/humrep/17.11.2839)

52 Kitamura S, Sanuki T, Sanoh S, Kohta R, Jinno N, Sugihara K, Yoshihara S, Fujimoto N, Watanabe H & Ohita S. Comparative study of the endocrine-disrupting activity of bisphenol A and 19 related compounds. Toxicological Sciences 2005 84 249–259. (https://doi.org/10.1093/toxsci/kf0674)

53 Freitas J, Cano P, Craig-Veit C, Goodson ML, Furlow JD & Murk AJ. Determination of bisphenol A and triclosan in human breast milk. Environmental Health Perspectives 2011 119 1396–1402. (https://doi.org/10.1289/ehp.1103582)

54 Teng C, Goodwin B, Shockley K, Xia M, Huang R, Norris J, Merrick BA, Jetten AM, Austin CP & Tice RR. Bisphenol A affects androgen receptor function via multiple mechanisms. Chemo-Biological Interactions 2013 203 556–564. (https://doi.org/10.1016/j.cbi.2013.03.013)

556–564. (https://doi.org/10.1016/j.tox.2015.01.014)

56 Teng C, Goodwin B, Shockley K, Xia M, Huang R, Norris J, Merrick BA, Jetten AM, Austin CP & Tice RR. Bisphenol A affects androgen receptor function via multiple mechanisms. Chemo-Biological Interactions 2013 203 556–564. (https://doi.org/10.1016/j.cbi.2013.03.013)

57 Wang F, Hua J, Chen M, Xia Y, Zhang Q, Zhao R, Zhou W, Zhang Z & Wang E. High urinary bisphenol A concentrations in workers and possible laboratory abnormalities. Occupational and Environmental Medicine 2012 69 679–684. (https://doi.org/10.1136/oemed-2011-100359)

58 Xu LC, Sun H, Chen JJ, Bian Q, Qian J, Song L & Wang XR. Evaluation of androgen receptor transcriptional activities of bisphenol A, octylphenol and nonylphenol in vitro. Toxicoilogy 2005 216 197–203. (https://doi.org/10.1016/j.tox.2005.08.006)

59 Meeker JD & Ferguson KK. Relationship between urinary phthalate and bisphenol a concentrations and serum thyroid measures in U.S. adults and adolescents from the national health and nutrition examination survey (NHANES) 2007–2008. Environmental Health Perspectives 2011 119 1396–1402. (https://doi.org/10.1289/ehp.1103582)

60 Aung MT, Johns LE, Ferguson KK, Mukherjee B, McElrath TF & Meeker JD. Thyroid hormone parameters during pregnancy in relation to urinary bisphenol A concentrations: a repeated measures study. Environment International 2017 104 33–40. (https://doi.org/10.1016/j.envint.2017.04.001)

61 Romano ME, Webster GM, Vuong AM, Thomas Zoeller R, Chen A, Hootenagle AN, Calafat AM, Karagas MR, Tolton K, Langhearn BP, et al. Gestational urinary bisphenol A and maternal and newborn thyroid hormone concentrations: the HOME Study. Environmental Research 2015 138 453–460. (https://doi.org/10.1016/j.envres.2015.03.003)

62 Chevrier C, Gunier RB, Bradman A, Holland NT, Calafat AM, Eskenazi B & Harley KG. Maternal urinary bisphenol a during pregnancy and maternal and neonatal thyroid function in the CHAMACOS study. Environmental Health Perspectives 2013 121 138–144.

63 Minatoya M, Sasaki S, Araki A, Miyashita C, Itoh S, Yamamoto J, Matsumura T, Mitsu T, Moriya K, Cho K, et al. Cord blood bisphenol A levels and reproductive and thyroid hormone levels of neonates. Epidemiology 2017 28 53–59. (https://doi.org/10.1097/ EDE.0000000000000176)

64 Andrianou XD, Gängler S, Picu A, Charisidiad F, Zira C, Aristidou K, Picu D, Hauser R & Makris IC. Human exposures to bisphenol A, bisphenol F and chlorinated bisphenol a derivatives and thyroid function. PLoS ONE 2016 7 14 0155237. (https://doi.org/10.1371/ journal.pone.0155237)

65 Casas M, Forns J, Martínez D, Avella-García C, Valdi V, Ballesteros-Gómez A, Luque N, Rubio S, Julvez J, Sunyer J, et al. Exposure to bisphenol A during pregnancy and child neuropsychological development in the INMA-Sabadell cohort. Environmental Research 2015 142 671–679. (https://doi.org/10.1016/j. envev.2015.07.024)

66 Roen EL, Wang Y, Calafat AM, Wang S, Margolis A, Herbstman J, Hoepner LA, Rauh V & Perera FP. Bisphenol A exposure and behavioral problems among inner city children at 7–9 years of age. Environmental Research 2015 142 739–745. (https://doi.org/10.1016/j. envev.2015.01.014)

67 Harley KG, Gunier RB, Kogut K, Johnson C, Bradman A, Calafat AM & Eskenazi B. Prenatal and early childhood bisphenol A concentrations and behavior in school-aged children. Environmental Research 2013 126 43–50. (https://doi.org/10.1016/j. envev.2013.06.004)

68 Braun JM, Kalkbrenner AE, Calafat AM, Tolton Y, Ye X, Dietrich KN & Langhearn BP. Impact of early-life bisphenol a exposure on behavior and executive function in children. Pediatrics 2011 128 873–882. (https://doi.org/10.1542/peds.2011-1335)

69 Braun JM, Tolton Y, Dietrich KN, Hornung K, Ye X, Calafat AM & Langhearn BP. Prenatal bisphenol A exposure and early childhood behavior. Environmental Health Perspectives 2009 117 1945–1952. (https://doi.org/10.1289/ehp.0900979)

70 Evans SB, Kroboswy RW, Barrett ES, Thurston SW, Calafat AM, Weiss B, Stahlhut R, Tolton Y & Swan SH. Prenatal bisphenol A exposure and maternally reported behavior in boys and girls. Neurotoxicology 2014 45 91–99. (https://doi.org/10.1016/j.neurotox.2014.10.003)

71 Tewar S, Auinger P, Braun JM, Langhearn B, Tolton Y, Epstein JN, Ehrlich S & Froehlich TE. Association of bisphenol A exposure and attention-deficit/hyperactivity disorder in a national sample of U.S. children. Environmental Research 2016 150 112–118. (https://doi.org/10.1016/j. envev.2016.05.040)
Thyroid-disrupting chemicals

B B Mughal et al. Thyroid-disrupting chemicals and brain development

144 James MO, Li W, Summerlot DJ, Rowland-Faux L & Wood CE. Triclosan is a potent inhibitor of estradiol and estrone sulfonation in sheep placenta. Environmental International 2010 36 942–949. (https://doi.org/10.1016/j.envint.2009.02.004)

145 Wang LQ, Falany CN & James MO. Triclosan as a substrate and inhibitor of 3′-phosphoadenosine 5′-phosphosulfate-sulfotransferase and UDP-glucuronyl transferase in human liver fractions. Drug Metabolism and Disposition 2004 32 1162–1169. (https://doi.org/10.1124/dmd.104.00273)

146 Aker AM, Watkins DJ, Johns LE, Ferguson KK, Solid DP, Anzalota Del Toro LV, Alshawahkeh AN, Cordero JJ & Meeker JD. Phenols and parabens in relation to reproductive and thyroid hormones in pregnant women. Environmental Research 2016 151 30–37. (https://doi.org/10.1016/j.envres.2016.07.002)

147 Almmyr, Panagiotidis G, Sparve F, Diczfalusy U & Sandborgh-Englund G. Human exposure to triclosan via toothpaste does not change cpyp3a4 activity or plasma concentrations of thyroid hormones. Basic and Clinical Pharmacology and Toxicology 2009 105 339–344. (https://doi.org/10.1111/j.1742-7843.2009.00455.x)

148 Cullinan MP, Palmer JE, Carle AD & Seymour GJ. Long term use of triclosan anti-bacterial toothpaste and thyroid function. Science of the Total Environment 2012 416 75–79. (https://doi.org/10.1016/j.scitotenv.2011.11.063)

149 Koeppe ES, Ferguson KK, Colacino JA & Meeker JD. Relationship between urinary triclosan and paraben concentrations and serum thyroid measures in NHANES 2007–2008. Science of the Total Environment 2013 445–446 299–305.

150 Poole AC, Pischel L, Ley C, Sub G, Goodrich JK, Hagerty TD, Ley RE & Parsonnet J. Crossover control study of the effect of personal care products containing triclosan on the microbiome. mSphere 2016 1 e00056-15. (https://doi.org/10.1128/mSphere.00056-15)

151 Wang X, Ouyang F, Feng L, Wang X, Liu Z & Zhang J. Maternal exposure to triclosan and urinary androsterone levels in a Mexican floriculture area. Reproductive Toxicology 2014 39 359–365. (https://doi.org/10.1016/j.reprotox.2014.04.004)

152 Lassen TH, Frederiksen H, Kyhl HB, Swan SH, Main KM, Anderson SM, Lind DV, Husby S, Wohlfahrt-Veje C, Skakkebæk NE, Andersson AM, Lind DV, Husby S, Wohlfahrt-Veje C, Skakkebæk NE, et al. Prenatal triclosan exposure and anthropometric measures including anogenital distance in Danish infants. Environmental Health Perspectives 2016 124 1261–1268. (https://doi.org/10.1289/ehp.1409637)

153 Johannes J, Jaryama-Naidu R, Meyer F, Wirth EK, Schweizer U, Schomburg I, Köhler J & Renko K. Silychristin, a flavonolignan derived from the milk thistle, is a potent inhibitor of the thyroid hormone transporter MCT8. Endocrinochemistry 2016 5 1051–1061. (https://doi.org/10.1128/mSphere.00056-15)

154 Hossard I, Philibert A, Bertrand M, Colineau-David C, Debaeke P, Munier-Jolain N, Jeuffroy MH, Richard G & Makowski D. Effects of halving pesticide use on wheat production. Scientific Reports 2014 4 4405. (https://doi.org/10.1038/srep04405)

155 EFSAS. Scientific opinion on the identification of pesticides to be included in cumulative assessment groups on the basis of their toxicological profile. EFSA Journal 2013 11 3293. (https://doi.org/10.2903/j.efsa.2013.3293)

156 Carson R. Silent spring. 1962 218–219.

157 Guimarães RM, Arnsus CRF & Meyer A. DDT reindroduction for malaria control: the cost-benefit debate for public health. Cadernos de Saúde Pública 2007 23 2835–2844.

158 Hernández-Mariano JA, Torres-Sánchez L, Bassol-Mayagoitia S, Escamilla-Núñez MC, Cebrian ME, Villeda-Gutiérrez EA, López-Rodríguez G, Félix-Arellano EE & Blanco-Muñoz J. Effect of exposure to p,p′-DDE during the first half of pregnancy in the maternal thyroid profile of female residents in a Mexican floriculture area. Environmental Research 2017 158 213–219. (https://doi.org/10.1016/j.envres.2017.04.004)
Thyroid-disrupting chemicals and brain development

B B Mughal et al. Thyroid-disrupting chemicals and brain development. Journal of Applied Toxicology 2008 28 27–34. (https://doi.org/10.1002/jat.1247)

106 Sala M, Ribas-Fitó N, Cardo D, de Muga ME, Marco E, Mazón C, Verdú A, Grimalt JO & Sunyer J. Levels of hexachlorobenzene and other organochlorine compounds in cord blood: exposure across placenta. Chemosphere 2001 43 895–901. (https://doi.org/10.1016/S0045-6535(00)00450-1)

107 Cano-Sanchez G, Salmon AG & La Merrill MA. Association between exposure to p,p′-DDT and its metabolite p,p′-DDE with obesity: integrated systematic review and meta-analysis. Environmental Health Perspectives 2017 125 96002. (https://doi.org/10.1289/EHP527)

108 Gaspar FW, Harley KG, Kogut K, Chevrier J, Mora AM, Sjödin A & Cohn BA. In utero and childhood environmental exposure to organochlorine compounds and mercury outcomes. Environ Health Perspect 2015 123 446–454. (https://doi.org/10.1289/ehp.15009.004)

109 Zhang X, Wu X, Lei B, Jing Y, Zhang X, Fang X & Yu L. Transplacental transfer characteristics of organochlorine pesticides in paired maternal and cord sera, and placenta and possible influencing factors. Environmental Pollution 2018 233 1–10. (https://doi.org/10.1016/j.envpol.2017.10.075)

110 Forns J, Mandal S, Iszatt N, Polder A, Lynge JL, Stigum H, Vermeulen R & Eggesbo M. Novel application of statistical methods for analysis of multiple toxicants identifies DDT as a risk factor for early child behavioral problems. Environmental Research 2016 151 103–110. (https://doi.org/10.1016/j.envres.2016.07.014)

111 Kezios KL, Liu X, Cirillo PM, Cohn BA, Kalantzi OI, Forns J, Mandal S, Iszatt N, Polder A, Thomsen C, Lyche JL, Zhang X, Wu X, Lei B, Jing Y, Zhang X, Fang X & Yu L. Transplacental transfer characteristics of organochlorine pesticides in paired maternal and cord sera, and placenta and possible influencing factors. Environmental Pollution 2018 233 1–10. (https://doi.org/10.1016/j.envpol.2017.10.075)

112 Torres-Sánchez L, Schaafs L, Rothenberg SJ, Cebrián ME, Osorio-Valencia E, Hernández Méndez C, García-Hernández RM & López-Carrillo L. Prenatal p,p′-DDE exposure and neurodevelopment among children 3.5–5 years of age. Environmental Health Perspectives 2013 121 263–268.

113 Eskenazi B, Chevrier J, Rosas LG, Anderson HA, Borman MS, Bouwman H, Chen A, Cohn BA, de Jager C, Henschel DS, et al. The pine river statement: human health consequences of DDT use. Environmental Health Perspectives 2009 117 1359–1367. (https://doi.org/10.1289/ehp.11748)

114 Torres-Sánchez L, Rothenberg SJ, Schaafs L, Cebrián ME, Osoiro E, Del Carmen Hernández M, García-Hernández RM, Del Rio-Garcia C, Wolff MS & López-Carrillo L. In utero p,p′-DDE exposure and infant neurodevelopment: a perinatal cohort in Mexico. Environmental Health Perspectives 2007 115 435–439. (https://doi.org/10.1289/ehp.9586)

115 Eskenazi B, Marks AR, Bradman A, Fenske L, Johnson C, Barr DB & Jewell NP. In utero exposure to dichlorophenyltrichloroethane (DDT) and dichlorophenyldichloroethylene (DDE) and neurodevelopment among young Mexican American children. Pediatrics 2006 118 233–241. (https://doi.org/10.1542/peds.2005-3117)

116 Ribas-Fitó N, Torrent M, Carrió D, Muñoz-Ortiz L, Jüleve J, Grimalt JO & Sunyer J. In utero exposure to background concentrations of DDT and cognitive functioning among preschoolers. American Journal of Epidemiology 2006 164 955–962. (https://doi.org/10.1093/aje/kwj299)

117 Zhuang S, Zhang J, Wei Y, Zhang C & Liu W. Distinct mechanisms of endocrine disruption of DDT-related pesticides toward estrogen receptor α and estrogen-related receptor γ. Environmental Toxicology and Chemistry 2012 31 2597–2605. (https://doi.org/10.1002/etc.1986)

118 Mussi P, Cianca P, Ravisiioni M, Villa R, Regondi S, Agradi E, Maggi A & Di Lorenzo D. Activation of brain estrogen receptors in mice lactating from mothers exposed to DDT. Brain Research Bulletin 2005 65 241–247. (https://doi.org/10.1016/j.brainresbull.2004.11.016)

119 Kojima H, Katsura E, Takeuchi S, Niyaumi K & Kobayashi M. Screening for estrogen and androgen receptor activities in 200 pesticides by in vitro reporter gene assays using Chinese hamster ovary cells. Environmental Health Perspectives 2004 112 524–531. (https://doi.org/10.1289/ehp.6649)

120 Kelce WR, Stone CR, Laws SC, Gray LE, Kemppainen JA & Wilson EM. Persistent DDT Metabolite p,p′-DDE is a potent androgen receptor antagonist. Obstetrical and Gynecological Survey 1996 51 111–114. (https://doi.org/10.1038/375581a0)

121 Schell LM, Gallo MV, Deane GD, Nelder KR, DeCaprio AP, Jacobs J & Akwesasne Task Force on the Environment. Relationships of polychlorinated biphenyls and dichlorodiphenyldichloroethylene (p,p′-DDE) with testosterone levels in adolescent males. Environmental Health Perspectives 2014 122 304–309. (https://doi.org/10.1289/ehp.122-A304)

122 Eskenazi B, Rauch SA, Tenerelli R, Huen K, Holland NT, Lustig RH, Kogut B, Bradman A, Sjödin A & Harley KG. In utero and childhood DDT, DDE, PBDE and PCBs exposure and sex hormones in adolescent boys: the CHAMACOS study. International Journal of Hygiene and Environmental Health 2017 220 364–372. (https://doi.org/10.1016/j.ijhesh.2016.11.001)

123 Cohn BA, La Merrill M, Krigbaum NY, Yeh G, Park JS, Zimmermann I & Cirillo PM. DDT exposure in utero and breast cancer. Journal of Clinical Endocrinology and Metabolism 2015 100 2865–2872. (https://doi.org/10.1210/jc.2015-1841)

124 Cock M, de Boer MR, Lamoree M, Legler J & van de Bor M. Prenatal exposure to endocrine disrupting chemicals in relation to thyroid hormone levels in infants – a Dutch prospective cohort study. Environmental Health 2014 13 106. (https://doi.org/10.1186/1476-069X-13-106)

125 Blanco-Muñoz J, Lacasarfa M, López-Flores I, Rodríguez-Barranco M, González-Alzaga B, Bassol S, Cebrían ME, López-Carrillo L & Aguilar-Garduño C. Association between organochlorine pesticide exposure and thyroid hormones in floriculture workers. Environmental Research 2016 150 357–363. (https://doi.org/10.1016/j.envres.2016.05.054)

126 Li C, Cheng Y, Tang Q, Lin S, Li Y, Hu X, Nian J, Gu H, Lu Y, Tang H, et al. The association between prenatal exposure to organochlorine pesticides and thyroid hormone levels in newborns in Yancheng, China. Environmental Research 2014 129 47–51. (https://doi.org/10.1016/j.envres.2014.11.029)

127 Parent AS, Naveau E, Gerard A, Bourguignon JP & Westbrook GL. Early developmental actions of endocrine disruptors on the hypothalamus, hippocampus, and cerebral cortex. Journal of Toxicology and Environmental Health Part B: Critical Reviews 2011 14 328–345. (https://doi.org/10.1080/10937404.2011.578556)

128 Takser L, Mergler D, Baldwin M, de Grosois S, Margiassi A & Lafond J. Thyroid hormones in pregnancy in relation to environmental exposure to organochlorine compounds and mercury. Environmental Health Perspectives 2005 113 1039–1045. (https://doi.org/10.1289/ehp.7685)

129 Lopez-Espinoza MJ, Vizcaíno E, Murcia M, Llop S, Espada M, Seco V, Marco A, Rebagliato M, Grimalt JO & Ballester F. Association between thyroid hormone levels and 4,4′-DDE concentrations in pregnant women (Valencia, Spain). Environmental Research 2009 109 479–485. (https://doi.org/10.1016/j.envres.2009.02.003)

130 Rossi M, Taddei AR, Fasciani I, Maggio R & Giorgi F. The cell biology of the thyroid-disrupting mechanism of dichlorodiphenyldichloroethylene (DDT). Journal of Endocrinological Investigation 2017 41 67–73. (https://doi.org/10.1007/s40618-017-0716-9)

131 Rossi M, Dimida A, Dell’anno MT, Trinacreli ML, Agetti P, Giorgi F, Corsini GU, Pinchera A, Vitti P, Tonacchera M, et al. The thyroid
disruptor, 1,1,1-trichloro-2,2-bis(chlorophenyl)-ethane appears to be an uncompetitive inverse agonist for the thyrotropin receptor. Journal of Pharmacology and Experimental Therapeutics 2007 320 465–474. (https://doi.org/10.1124/jpet.106.113613)

186 Rossi M, Dimida A, Ferrarini E, Silvano E, De Marco G, Agretti P, Aloisi G, Simioncini T, Di Bari L, Tonacchera M, et al. Presence of a putative steroidal allenic site on glycoprotein hormone receptors. European Journal of Pharmacology 2009 623 155–159. (https://doi.org/10.1016/j.ejphar.2009.04.029)

187 Santini E, Vitti P, Ceccarini G, Mammoli M, Rosellini V, Velosini C, Marsili A, Tonacchera M, Agretti P, Santoni T, et al. In vitro assay of thyroid disruptors affecting TSH-stimulated adenylate cyclase activity. Journal of Endocrinological Investigation 2003 26 950–955. (https://doi.org/10.1007/BF0348190)

188 De Gregorio F, Pellegrino M, Picchietti S, Belardinelli MC, Taddei AR, Fausto AM, Rossi M, Maggio R & Giorgi F. The insecticide 1,1,1-trichloro-2,2-bis(chlorophenyl) ethane (DDT) alters the membrane raft location of the TSH receptor stably expressed in Chinese hamster ovary cells. Toxicology and Applied Pharmacology 2011 253 121–129. (https://doi.org/10.1016/j.taap.2010.11.018)

189 Liu C, Shi Y, Li H, Wang Y & Yang KP. p-DDE disturbs the hormonal thyroid status of rats after exposure to low dose dichlorophenyltrichloroethane. Archives of Toxicology 2011 85 391–396. (https://doi.org/10.1007/s00204-011-0871-0)

190 Liu C, Ma H, Li L & Yang K. PCB153 and p,p′-DDE disorder thyroid hormones via thyroglobulin, deiodinase 2, transthyretin, hepatic enzymes and receptors. Environmental Science and Pollution Research 2014 21 11361–11369. (https://doi.org/10.1007/s11356-014-3093-3)

191 Yaglova NV & Yaglov VV. Changes in thyroid status of rats after prolonged exposure to hexachlorobenzene. Toxicology and Applied Pharmacology 2009 248 41–47. (https://doi.org/10.1016/j.taap.2009.08.013)

192 Sims DE, Singh A, Donald A, Jarrell J & Villeneuve DC. Alteration of primates ovary surface epithelium by exposure to hexachlorobenzene: A quantitative study. Histology and Histopathology 1991 6 525–529.

193 Babineau KA, Singh A, Jarrell JF & Villeneuve DC. Surface epithelium of the ovary following oral administration of hexachlorobenzene to the monkey. Journal of Submicroscopic Cytology and Pathology 1991 23 457–464.

194 Arnold DL, Moodie CA, Charbonneau SM, Grice HC, McGuire PE, Bryce FR, Collins BT, Zawidzka ZZ, Kreviski DR, Nera EA, et al. Long-term toxicity of hexachlorobenzene in the rat and the effect of dietary vitamin A. Food and Chemical Toxicology 1985 23 779–793. (https://doi.org/10.1016/0278-6915(85)90278-9)

195 Hadjialoul S, Maufel D, Cazals Y & Siaud P. Hexachlorobenzene, a dioxin-like compound, disrupts auditory function in rat. Hearing Research 2004 191 125–134. (https://doi.org/10.1016/j.jheares.2003.12.017)

196 van Raaij JAGM, Kaptein E, Visser TJ & van den Berg KJ. Increased glucuronidation of thyroid hormone in hexachlorobenzene-treated rats. Biochemical Pharmacology 1993 45 627–631. (https://doi.org/10.1016/0006-2952(93)90136-K)

197 Smith AG, Dinsdale D, Cahill JR, Wright AL, Goitre and wasting induced in hamsters by hexachlorobenzene. Archives of Toxicology 1987 60 343–349. (https://doi.org/10.1007/BF00295753)

198 Van Raaij JAGM, Fritters CMG & van den Berg KJ. Hexachlorobenzene-induced hypothyroidism. Involvement of different mechanisms by parent compound and metabolite. Biochemical Pharmacology 1993 46 1385–1391. (https://doi.org/10.1016/0006-2952(93)90103-4)

199 Alvarez L, Hernández S, Martínez-de-Mena R, Kolliker-Frans R, Obregón MJ & Kleiman de Pisarev DL. The role of type I and type II 5′-deiodinases on hexachlorobenzene-induced alteration of the hormonal thyroid status. Toxicology 2005 207 349–362. (https://doi.org/10.1016/j.tox.2004.10.006)

200 Chiappini F, Alvarez L, Randi AS & Kleiman de Pisarev DL. Hexachlorobenzene induces TGF-β1 expression, which is a regulator of p27 and cyclin D1 modifications. Toxicology Letters 2014 230 1–9. (https://doi.org/10.1016/j.toxlet.2014.08.002)

201 Chiappini F, Alvarez L, Lux-Lantos V, Randi AS & Kleiman de Pisarev DL. Hexachlorobenzene triggers apoptosis in rat thyroid follicular cells. Toxicological Sciences 2009 108 301–310. (https://doi.org/10.1093/toxsci/kfp106)

202 Muller M, Hess L, Tardivo A, Lajmanovich R, Attademo A, Poletta G, Simonelli MF, Yodice A, Lavarello S, Chialvo D, et al. Neurologic
thyroid-disrupting chemicals

B B Mughal et al. Thyroid-disrupting chemicals and brain development 7:4

231 Trasande L. When enough data are not enough to enact policy: The failure to ban chlorpyrifos. PLoS Biology 2017 15 e2003671. (https://doi.org/10.1371/journal.pbio.2003671)

232 Fortenberry GZ, Hu H, Turyk M, Barr DB & Meeker JD. Association between urinary 3,5,6-trichloro-2-pyridinol, a metabolite of chlorpyrifos and chlorpyrifos-methyl, and serum T4 and TSH in NHANES 1999–2002. Science of the Total Environment 2012 424 351–355. (https://doi.org/10.1016/j.scitotenv.2012.02.039)

233 Meeker JD, Barr DB & Hauser R. Thyroid hormones in relation to urinary metabolites of non-persistent insecticides in men of reproductive age. Reproductive Toxicology 2006 22 437–442. (https://doi.org/10.1016/j.reprotox.2006.02.005)

234 Slotkin TA, Cooper EM, Stapleton HM & Seidler FJ. Does thyroid disruption contribute to the developmental neurotoxicity of chlorpyrifos? Environmental Toxicology and Pharmacology 2013 36 284–287. (https://doi.org/10.1016/j.etap.2013.04.003)

235 De Angelis S, Tassinari R, Manunghi F, Eusepi A, Di Virgilio A, Chiarotti F, Ricceri I, Venerosi Pescolini A, Gilardi E, Moracci G, et al. Developmental exposure to chlorpyrifos induces alterations in thyroid and hormone levels without other toxicity signs in CD-1 mice. Toxicological Sciences 2009 108 311–319. (https://doi.org/10.1093/toxsci/kfp171)

236 Silva J, Boaretto AC, Schreiber AK, Redivo DD, Gambeta E, Vergara F, Morais H, Zanoveli JM & Dalenter PR. Chlorpyrifos induces anxiety-like behavior in offspring rats exposed during pregnancy. Neurotoxicology 2017 64 91–100. (https://doi.org/10.1016/j.neurotox.2017.01.001)

237 Ghisari M & Bonefeld-Jorgensen EC. Impact of environmental chemicals on the thyroid hormone function in pterine rat GH3 cells. Molecular and Cellular Endocrinology 2015 414 31–41.

238 Jeong SH, Kim BY, Kang HG, Ko HO & Cho JJ. Effect of chlorpyrifos-methyl on steroid and thyroid hormones in rat F0- and F1-generations. Toxicology 2006 220 189–202. (https://doi.org/10.1016/j.tox.2006.01.005)

239 Ventura C, Núñez M, Miret N, Martínez Lamas D, Randi A, Venturino A, Rivera E & Coccia C. Differential mechanisms of action are involved in chlorpyrifos effects in estrogen-dependent or -independent breast cancer cells exposed to low or high concentrations of the pesticide. Environmental Toxicology Letters 2012 213 184–193. (https://doi.org/10.1016/j.toxlet.2012.06.017)

240 Grünfeld HT & Bonefeld-Jorgensen EC. Effect of in vitro estrogenic pesticides on human oestrogen receptor α and β mRNA levels. Toxicology Letters 2004 151 467–480.

241 Yu K, Li G, Feng W, Liu L & Zhang J. Wu X, Wu L & Yan Y. Chlorpyrifos is estrogenic and alters embryonic hatchling, cell proliferation and apoptosis in zebrafish. Chemo-Biological Interactions 2015 239 26–33. (https://doi.org/10.1016/j.cbi.2015.06.010)

242 Ventura C Nieto MR, Bourguignon N, Lux-Lantos V, Rodriguez H, Cao G, Randi A, Coccia C & Núñez M. Pesticide chlorpyrifos acts as an endocrine disruptor in adult rats causing changes in mammary gland and hormonal balance. Journal of Steroid Biochemistry and Molecular Biology 2016 156 1–9. (https://doi.org/10.1016/j.jsbmb.2015.10.010)

243 Viswanath G, Chatterjee S, Dabral S, Nanguneri SR, Divate G & Roy P. Anti-androgenic endocrine disrupting activities of chlorpyrifos and piperophos. Journal of Steroid Biochemistry and Molecular Biology 2012 120 22–29. (https://doi.org/10.1016/j.jsbmb.2011.02.032)

244 Wegner S, Browne P & Dix D. Identifying reference chemicals for thyroid bioactivity screening. Reproductive Toxicology 2016 65 402–413. (https://doi.org/10.1016/j.reprotox.2016.08.016)

245 Marinovich M, Guizzetti M, Ghilardi F, Viviani B, Corsini E & Galli CL. Thyroid peroxidase as toxicity target for dithiocarbamates. Archives of Toxicology 1997 71 508–512. (https://doi.org/10.1007/s002040050420)

246 Mallem L, Bouklakoud MS & Franck M. Hyperthyroidism after medium exposure to the fungicide maneb in the rabbit Cuniculus lepus.
Thyroid-disrupting chemicals and brain development

261 Maiti PK, Kar A, Gupta P & Chauvaria SS. Loss of membrane integrity and inhibition of type-I iodothyronine 5′-monodeiodinase activity by fenvalerate in female mouse. Biochemical and Biophysical Research Communications 1995 214 905–909.

262 Maiti PK & Kar A. Dimethoate inhibits extrathyroidal 5′-monodeiodination of thyroxine to 3,3′,5-triiodothyronine in mice: the possible involvement of the lipid peroxidative process. Toxicology Letters 1997 91 1–6. (https://doi.org/10.1016/S0378-4274(96)03877-2)

263 Tu W, Xu C, Lu B, Lin C, Wu Y & Liu W. Acute exposure to synthetic pyrethroids causes bioconcentration and disruption of the hypothalamus-pituitary-thyroid axis in zebrafish embryos. Science of the Total Environment 2016 542 876–885. (https://doi.org/10.1016/j.scitotenv.2015.10.131)

264 Kaul PP, Rastogi A, Hans RK, Seth TD, Seth PK & Srilal RC. Fenvalerate-induced alterations in circulatory thyroid hormones and calcium stores in rat brain. Toxicology Letters 1996 89 29–33. (https://doi.org/10.1016/S0378-4274(96)03877-2)

265 Giray B, Caglayan A, Erkekoğlu P & Hnilc A. Fenvalerate exposure alters thyroid hormone status in selenium- and/or iodine-deficient rats. Biological Trace Element Research 2010 135 233–241. (https://doi.org/10.1007/s12066-010-0850-6)

266 Cotugno E, Alavanja MC, Strickland S, Khan N & Maiti PK. Inhibition of type-I iodothyronine 5′-monodeiodinase activity by fenvalerate and pyrethromes. Environmental Health Perspectives 2016 124 1208–1212. (https://doi.org/10.1289/ehp.16424)

267 van den Berg M, Kypke K, Kots A, Trutscher A, Lee SY, Magulova K, Fiedler H & Malisch R. WHO/UNEP global surveys of PCDDs, PCDFs, PCBs and DDTs in human milk and breastmilk-tissue sustainability. Environmental Health Perspectives 2017 91 83–96. (https://doi.org/10.1007/100204-016-1802-z)

268 Meironytė Guvenius D, Aronsson A, Ekmans-Ordeberg G, Bergman Å & Norén K. Human prenatal and postnatal exposure to polychlorinated diphenyl ethers, polychlorinated biphenyls, polychlorobiphenyls, and pentachlorophenol. Environmental Health Perspectives 2003 111 1235–1241.

269 Soechitram SD, Athanasiadou M, Hovander L, Bergman Å & Sauer PJ. Fetal exposure to PCBs and their hydroxylated metabolites in a Dutch cohort. Environmental Health Perspectives 2004 112 1208–1212. (https://doi.org/10.1289/ehp.6424)

270 Fangstrom B, Strid A, Grandjean P, Welhe P & Bergman Å. A retrospective study of PBDEs and PCBs in prenatal milk from the Faroe Islands. Environmental Health 2005 4 12.

271 Guvenius DM, Hassanzadeh P, Bergman Å & Norén K. Metabolites of polychlorinated biphenyls in human liver and adipose tissue. Environmental Toxicology and Chemistry 2002 21 2264–2269. (https://doi.org/10.1002/etc.5620011102)

272 Valvi D, Mendez MA, Martinez D, Grimalt JO, Torrent M, Sunyer J & Vrijheid M. Prenatal concentrations of polychlorinated biphenyls, DDE, and DDT and overweight in children: a prospective birth cohort study. Environmental Health Perspectives 2012 120 451–457. (https://doi.org/10.1289/ehp.1103862)

273 Caspersen IH, Aase H, Bie G, Brantsæter AL, Haugan M, Kvalem HE, Skogan AH, Zeimer P, Alexander J, Meltzer HM & Knutsen HK. The influence of maternal dietary exposure to dioxins and PCBs during pregnancy on ADHD symptoms and cognitive functions in Norwegian preschool children. Environmental International 2016 94 649–660. (https://doi.org/10.1016/j.envint.2016.06.033)

274 Stewart PW, Lonky E, Reihman J, Pagano J, Gump BB & Darvill T. The relationship between prenatal PCB exposure and intelligence (IQ) in 9-year-old children. Environmental Health Perspectives 2008 116 1416–1422. (https://doi.org/10.1289/ehp.11058)

275 Walkowiak J, Wiener JA, Fastabend A, Heinzow B, Krämer U, Schmidt E, Steinrüger HJ, Wundram S & Winneke G. Environmental...
exposure to polychlorinated biphenyls and quality of the home environment; effects on psychodevelopment in early childhood. *Lancet* 2001 **358** 1602–1607. (https://doi.org/10.1016/S0140-6736(01)06654-5)

276 Verner MA, Desjardins JL, Carrier C, Haddad S, Ayotte P, Dewailly É & Muckle G. Prenatal and early-life polychlorinated biphenyl (PCB) levels and behavior in Inuit preschoolers. *Environment International* 2015 **78** 90–94. (https://doi.org/10.1016/j.envint.2015.02.004)

277 Åkesson A. Thyroid-disrupting chemicals and brain development. *Endocrine Regulations* 2012 **46** 191–203. (https://doi.org/10.4149/endreg_2012_04_191)

289 McKinney JD & Waller CL. Polychlorinated biphenyls as hormonally active structural analogues. *Environmental Health Perspectives* 1994 **102** 290–297. (https://doi.org/10.1289/ehp.94102290)

290 Okate T, Yoshinaga J, Enomoto T, Matsuda M, Wakimoto T, Ikegami M, Suzuki E, Naruse H, Yanamata T, Shibuya N, et al. Thyroid hormone status of newborns in relation to in utero exposure to PCBs and hydroxylated PCB metabolites. *Environmental Research* 2007 **105** 240–246. (https://doi.org/10.1016/j.envres.2007.03.010)

291 Horstman JB, Sjödin A, Apelberg BJ, Witter FR, Halden RU, Patterson DG, Panny SR, Needham LL & Goldman LR. Birth delivery mode modifies the associations between prenatal polychlorinated biphenyl (PCB) and polypbranomized diethyl ether (PBDE) and neonatal thyroid hormone levels. *Environmental Health Perspectives* 2008 **116** 1376–1382. (https://doi.org/10.1289/ehp.11379)

292 Brucker-Davis F, Ferrari P, Boda-Buccino M, Wagner-Mahler K, Pacini P, Gal J, Aznar P & Fenichel P. Cord blood thyroid tests in boys born with and without cryptorchidism: correlations with birth parameters and *in utero* xenobiotics exposure. *Thyroid* 2011 **21** 1133–1141. (https://doi.org/10.1089/thy.2010.0459)

293 Dallaire R, Muckle G, Dewailly É, Deschênes J-P, jacobsen JL, Sandanger TM, Sandau CD & Ayotte P. Thyroid hormone levels in pregnant inuit women and their infants exposed to environmental contaminants. *Environmental Health Perspectives* 2009 **117** 1014–1020. (https://doi.org/10.1289/ehp.0800219)

294 Darnen-DL, Lindell S, Glynn A, Aune M, Törnkvist A & Stridsberg M. POP levels in breast milk and maternal serum and thyroid hormone levels in mother-child pairs from Uppsala, Sweden. *International Journal of Hygiene and Environmental Health* 2010 **36** 180–187. (https://doi.org/10.1016/j.ijheh.2009.11.001)

295 Knip MM, ten Tusscher GW, Olie K, van Teunenbroek T, van Aalderen WM, de Voogt P, Vulsma T,artonova A, Kreyen kraus M, Mesouli C, et al. Thyroid hormone metabolism and environmental chemical exposure. *Environmental Health* 2012 **11** S10. (https://doi.org/10.1289/ehp.12160198)

296 Grimm FA, Lehmiller JH, He X, Robertson LW & Duffel MW. Sulfated metabolites of polychlorinated biphenyls are high-affinity ligands for the thyroid hormone transport protein transthyretinin. *Environmental Health Perspectives* 2013 **121** 657–662. (https://doi.org/10.1289/ehp.12160198)

297 Álvarez-Pedrerol M, Ribas-Fitó N, Torrent M, Carrizo D, Garcia-Esteban R, Grimalt JO & Socorro J. Thyroid disruption at birth due to prenatal exposure to β-hexachlorocyclohexane. *Environmental International* 2008 **34** 737–740. (https://doi.org/10.1016/j.envint.2007.12.001)

298 Hisada A, Shimoda K, Okai T, Watanabe K, Takemori H, Takasuga T, Koyama M, Watanabe N, Suzuki E, Shirakawa M, et al. Associations between levels of hydroxylated PCBs and PCBs in serum of pregnant women and blood thyroid hormone levels and body size of neonates. *International Journal of Hygiene and Environmental Health* 2014 **217** 546–553. (https://doi.org/10.1016/j.ijheh.2013.10.004)

299 De Cock M, de Boer MR, Govarts E, Iszatt N, Palkovicova L, Hisada A, Shimodaira K, Okai T, Watanabe K, Takemori H, Alvarez-Pedrerol M, Ribas-Fitó N, Torrent M, Carrizo D, García-Esteban R, Grimalt JO & Socorro J. Thyroid disruption at birth due to prenatal exposure to β-hexachlorocyclohexane. *Environmental International* 2008 **34** 737–740. (https://doi.org/10.1016/j.envint.2007.12.001)

300 Crofton KM, Craft IS, Hedge JM, Gennings C, Simpsons JE, Carchman RA, Carter WH Jr & DeVito MJ. Thyroid-hormone-disrupting chemicals: evidence for dose-dependent additivity or synergism. *Environmental Health Perspectives* 2005 **113** 1549–1554. (https://doi.org/10.1289/ehp.8195)

301 Katarzynska D, Huba A, Kowalik K & Sechman A. Comparison of the in vitro effects of TCDD, PCB 126 and PCB 153 on thyroid-restricted
gene expression and thyroid hormone secretion by the chicken thyroid gland. Environmental Toxicology and Pharmacology 2015 39 496–503. (https://doi.org/10.1016/j.etap.2015.01.016)
302 Ahmed RG. Early weaning PCB95 exposure alters the neonatal endocrine system: thyroid adipokine dysfunction. Journal of Endocrinology 2013 219 205–215. (https://doi.org/10.1530/JOE-13-0302)
303 Meerts IATM. Developmental exposure to 4-hydroxy-2,3,3′,4′,5′-pentachlorobiphenyl (4-OH-CB107): long-term effects on brain development, behavior, and brain stem auditory evoked potentials in rats. Toxicological Sciences 2004 82 207–218. (https://doi.org/10.1093/toxsci/kfh252)
304 Reilly MP, Weeks CD, Topper YV, Thompson LM, Crews D & Gore AC. The effects of prenatal PCBs on adult social behavior in rats. Hormones and Behavior 2015 73 47–55. (https://doi.org/10.1016/j.yhbeh.2015.06.002)
305 Gutleb AC, Cenijn P, Velzen MV, Lie E, Ropstad E, Skare A, Malmberg T, Bergman A, Gabrielsen GW & Legler J. In vitro assay shows that PCB metabolites completely saturate thyroid hormone transport capacity in blood of wild polar bears (Ursus maritimus). Environmental Science and Technology 2010 44 3149–3154. (https://doi.org/10.1021/es903029y)
306 Yang H, Chen HC, Guo H, Li W, Tang J, Xu B, Sun M, Ding G, Jiang L, Cui D, Zheng X, et al. Molecular mechanisms of 2,3,4,5-pentachlorobiphenyl-induced thyroid dysfunction in FRTL-5 cells. PLoS ONE 2015 10 e0120133. (https://doi.org/10.1371/journal.pone.0120133)
307 Guo H, Yang H, Chen H, Li W, Tang J, Cheng P, Xie Y, Liu Y, Ding G, Cui D, et al. Molecular mechanisms of human thyrocyte dysfunction induced by low concentrations of polychlorinated biphenyl 118 through the Akt/FoxO3a/NIS pathway. Environmental Research 2015 35 992–998. (https://doi.org/10.1002/jat.3032)
308 Xu B, Yang H, Sun M, Chen H, Jiang L, Zheng X, Ding G, Liu Y, Sheng Y, Cui D, et al. 2,3,4,4′,5′-pentachlorobiphenyl induces inflammatory responses in the thyroid through JNK and Aryl hydrocarbon receptor-mediated pathway. Toxicological Sciences 2016 149 300–311. (https://doi.org/10.1093/toxsci/kfv235)
309 Ekuse EI, Liu Y, Lehmler HJ, Robertson LW & Duffell MW. Structural-activity relationships for hydroxylated polychlorinated biphenyls as inhibitors of the sulfation of dehydroepiandrosterone catalyzed in vitro dual-luciferase reporter gene assay. Chemical Research in Toxicology 2011 24 1720–1728. (https://doi.org/10.1021/tx200260h)
310 Soechitram SD, Berghuis SA, Visser TJ & Sauer PJJ. Polychlorinated biphenyl exposure and deiodinase activity in young infants. Hormones and Behavior 2016 85 574–581. (https://doi.org/10.1016/j.yhbeh.2016.02.007)
311 deCastro BR, Korrick SA, Spengler JD & Soto AM. Estrogenic activity of polychlorinated biphenyls present in human tissue and the environment. Environmental Science and Technology 2006 40 2819–2825. (https://doi.org/10.1021/es051667u)
312 Zhang Q, Lu M, Wang C, Du J, Zhou P & Zhao M. Characterization of estrogen receptor α activities in polychlorinated biphenyls in vitro dual-luciferase reporter gene assay. Environmental Pollution 2014 189 169–175. (https://doi.org/10.1016/j.envpol.2014.03.001)
313 Hamers T, Kamstra JH, Cenijn PH, Pencikova K, Falkova L, Simeckova P, Vondracek J, Anderson PL, Stenberg M & Machala M. In vitro toxicity profiling of ultrapure non-dioxin-like polychlorinated biphenyl congeners and their relative toxic contribution to PCB mixtures in humans. Toxicological Sciences 2011 121 88–100. (https://doi.org/10.1093/toxsci/kfr043)
314 Flor S, He X, Lehmler HJ & Ludewig G. Estronignicity and androgenicity screening of PCB sulfate monoesters in human breast cancer MCF-7 cells. Environmental Science and Pollution Research 2016 23 2186–2200. (https://doi.org/10.1007/s11356-015-5142-y)
315 Lyche JL, Roseland C, Berge G & Folder A. Human health risk associated with brominated flame-retardants (BFRs). Environmental International 2015 74 170–180. (https://doi.org/10.1016/j. envint.2014.09.006)
316 Law RJ, Covacci A, Harrad S, Herzeck D, Abbalah MA, Fernie K, Toms LM & Takigami H. Levels and trends of PBDEs and HBCDs in the global environment: status at the end of 2012. Environment International 2014 65 147–158. (https://doi.org/10.1016/j. envint.2014.01.006)
317 Hiedner A, Lohmann N, Rüdel H, Teubner D, Wellmizt J & Koschorek J. Current levels and trends of selected EU Water Framework Directive priority substances in freshwater fish from the German environmental specimen bank. Environmental Pollution 2016 216 866–876. (https://doi.org/10.1016/j.envpol.2016.06.060)
318 Sjödin A, Jones RS, Caudill SP, Wong HY, Turner WE & Calafat AM. Polybrominated diphenyl ether (PBDE) exposure and persistent pesticides in serum from the national health and nutrition examination survey: 2003–2008. Environmental Science and Technology 2014 48 753–760.
319 Vizcaíno E, Grimalt JO, Fernández-Somoano A & Tardon A. Transport of persistent organic pollutants across the human placenta. Environment International 2014 65 107–115. (https://doi.org/10.1016/j.envint.2014.01.004)
320 Choi G, Kim S, Kim S, Choi Y, Kim HJ, Lee JF, Kim SY, Lee S, Moon HB, et al. Occurrences of major polybrominated diphenyl ethers (PBDEs) in maternal and fetal cord blood sera in Korea. Science of the Total Environment 2014 491 219–226. (https://doi.org/10.1016/j.scitotenv.2014.02.071)
321 Gómez B, Herrero I, Ramos JF, Mateo JR, Fernández MA, García JF & González MJ. Distribution of polybrominated diphenyl ethers in human umbilical cord serum, placental, maternal serum, placenta, and breast milk from madrid population, Spain. Environmental Science and Technology 2007 41 6961–6968.
322 Zhang H, Yolton K, Webster GM, Sjödin A, Calafat AM, Dietrich KN, Xu Y, Xie C, Braun JM, Lamphear BP, et al. Prenatal PBDE and PCB exposures and reading, cognition, and externalizing behavior in children. Environmental Health Perspectives 2017 125 746–752. (https://doi.org/10.1289/EHP478)
323 Braun JM, Yolton K, Stacy SL, Erar B, Papandonatos GD, Bellinger DC, Lamphear BP & Chen A. Prenatal environmental chemical exposures and longitudinal patterns of child neurobehavior. Neurotoxicology 2017 62 192–199. (https://doi.org/10.1016/j.neuro.2017.07.027)
324 Yuen AM, Braun JM, Yolton K, Xie C, Webster GM, Sjödin A, Dietrich KN, Lamphear BP & Chen A. Prenatal and postnatal polybrominated diphenyl ether exposure and visual spatial abilities in children. Environmental Research 2017 153 83–92. (https://doi.org/10.1016/j.envres.2016.11.020)
325 Sagiv SK, Kogut K, Gaspar FW, Gunier RB, Harley KG, Parra K, Villaseñor D, Bradman A, Holland N & Eskenazi B. Prenatal and Teratology 2016 33 856–862. (https://doi.org/10.1289/ehp.1307562)
to the polyn brominated diphenyl ether mixture DE-71 damages the nigrostriatal dopamine system: role of dopamine handling in neurotoxicity. Experimental Neurology 2013 241 138–147. (https://doi.org/10.1016/j.expneurol.2012.12.013)

344 Jacobson MH, Barr DB, Marcus M, Muir AB, Lyles RH, Howards PP, Pardo I & Darrow LA. Serum polyn brominated diphenyl ether concentrations and thyroid function in young children. Environmental Research 2016 149 222–230. (https://doi.org/10.1016/j.envres.2016.05.022)

345 Xue X, Liu J, Zeng X, Lu F, Chen A & Hux O. Elevated serum polyn brominated diphenyl ethers and alteration of thyroid hormones in children from Guiyu, China. PLoS ONE 2014 9 e113699. (https://doi.org/10.1371/journal.pone.0113699)

346 Makey CM, McClean MD, Braverman LE, Pearce EN, He XM, Sjödin A, Weinberg JM & Webster TF. Polyn brominated diphenyl ether exposure and thyroid function tests in North American adults. Environmental Health Perspectives 2016 124 420–425. (https://doi.org/10.1289/ehp.1509755)

347 Kiciński M, Vlaene MK, Den Hond E, Schoeters G, Covaci A, Diru AC, Nelen V, Bruckers I, Croes K, Sioen I, et al. Neurobehavioural function and low-level exposure to brominated flame retardants in adolescents: a cross-sectional study. Environmental Health 2012 11 86. (https://doi.org/10.1186/1476-069X-11-86)

348 GuanGen H, Ding G, Lou X, Wang X, Han J, Shen H, Zhou Y & Du L. Correlations of PCBs, DIOXIN, and PBDE with TSH in children's blood in areas of computer E-waste recycling*. Biomedical and Environmental Sciences 2011 24 112–116. (https://doi.org/10.1086/609739.

349 Abdelouahab N, Langlois ME, Lavioie I, Corbin F, Pasquier JC & Takser L. Maternal and cord-blood thyroid hormone levels and exposure to polyn brominated diphenyl ethers and polychlorinated biphenyls during early pregnancy. American Journal of Epidemiology 2013 178 701–713. (https://doi.org/10.1093/aje/kwt141)

350 Zhao X, Wang H, Li J, Shan Z, Teng W & Teng X. The correlation between polyn brominated diphenyl ethers (PBDES) and thyroid hormones in the general population: a meta-analysis. PLoS ONE 2015 10 e0126989. (https://doi.org/10.1371/journal.

351 Lee E, Kim TH, Choi JS, Nahabata P, Kim NY, Ahn MY, Jung KK, Kang H, Kim TS, Kwack SJ, et al. Evaluation of liver and thyroid toxicity in Sprague-Dawley rats after exposure to polyn brominated diphenyl ether BDE-209. Journal of Toxicological Sciences 2010 35 535–545. (https://doi.org/10.2131/jts.2010.35.535)

352 Miller VM, Sanchez-Moreno P, Brousch KO & Seegal RF. Developmental coexposure to polychlorinated biphenyls and polyn brominated diphenyl ethers has additive effects on circulating thyroxine levels in rats. Toxicological Sciences 2012 127 76–83. (https://doi.org/10.1093/toxsci/kfs089)

353 Kodavanti PPS, Coburn CG, Moser VC, MacPhail RC, Fenton SE, Stoker TE, Rayner JL, Kannan K & Birnbaum LS. Developmental exposure to a commercial PBDE Mixture, DE-71: neurobehavioral, hormonal, and reproductive effects. Toxicological Sciences 2010 116 297–312. (https://doi.org/10.1093/toxsci/kfq105)

354 Richardson VM, Staskal DF, Ross DG, Diliberto JJ, DeVito MJ & Birnbaum LS. Possible mechanisms of thyroid hormone disruption in mice by BDE 47, a major polyn brominated diphenyl ether congener. Toxicology and Applied Pharmacology 2008 226 244–250. (https://doi.org/10.1016/j.taap.2007.09.015)

355 Ren XM, Guo LH, Gao Y, Zhang BT & Wan B. Hydroxylated polyn brominated diphenyl ethers exhibit different activities on thyroid hormone receptors depending on their degree of bromination. Toxicology and Applied Pharmacology 2013 268 256–263. (https://doi.org/10.1016/j.taap.2013.01.026)

356 Li F, Xie Q, Li X, Li N, Chi P, Chen J, Wang Z & Hao C. Hormone activity of hydroxylated polyn brominated diphenyl ethers on human thyroid receptor-3 in vitro and in silico investigations. Environmental Endocrinology 2014 7 4

http://www.endocrinologyconnections.org
https://doi.org/10.1530EC-18-0029
© 2018 The authors
Published by Bioscientifica Ltd
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Health Perspectives 2010 118 602–606. (https://doi.org/10.1289/ehp.0901457)

357 Kitamura S, Jinno N, Suzuki T, Sugihara K, Ohta S, Kuroki H & Fujimoto N. Thyroid-hormone-like and estrogenic activity of hydroxylated PCBs in cell culture. Toxicology 2005 208 377–387. (https://doi.org/10.1016/j.tox.2004.11.037)

358 Schirks M, Roessig JM, Munk AJ & Furlow JD. Thyroid hormone receptor isofrom selectivity of thyroid hormone disrupting compounds quantified with an in vitro reporter gene assay. Environmental Toxicology and Pharmacology 2007 23 302–307. (https://doi.org/10.1016/j.etap.2006.11.007)

359 Kojima H, Takeuchi S, Uramaru N, Sugihara K, Yoshida T & Kitamura S. Nuclear hormone receptor activity of polybrominated diphenyl ethers and their hydroxylated and methoxylated metabolites in transactivation assays using Chinese hamster ovary cells. Environmental Health Perspectives 2009 117 1210–1218. (https://doi.org/10.1289/ehp.0900753)

360 Ibha-zeeheko I, Iwasaki T, Kimura-Kuroda J, Miyazaki W, Shimokawa N & Koibuchi N. Disruption of thyroid hormone receptor-mediated transcription and thyroid hormone-induced purification cell dendrite arborization by Polybrominated diphenyl ethers. Environmental Health Perspectives 2011 119 168–175. (https://doi.org/10.1289/ehp.1002065)

361 Dach K, Bendt F, Huebenthal U, Giersiefer S, Lein PJ, Heuer H & Fritsche E. BDE-99 impairs differentiation of human and mouse NPCs into the oligodendroglial lineage by species-specific modes of action. Scientific Reports 2017 7 44861. (https://doi.org/10.1038/srep44861)

362 Macauley LJ, Chen A, Rock KD, Dishaw LV, Dong W, Hinton DE & Stapleton HM. Developmental toxicity of the PBDE metabolite 6-OH-BDE-47 in zebrafish: a tool for examining OH-BDE toxicity to early life stages. Environmental Health Perspectives 2010 118 368–374. (https://doi.org/10.1289/ehp.0900753)

363 Ren XM & Guo LH. Assessment of the binding of hydroxylated polybrominated diphenyl ethers to thyroid hormone transport proteins using a site-specific fluorescence probe. Environmental Science and Technology 2012 46 4631–4640. (https://doi.org/10.1021/es2046074)

364 Cao J, Lin Y, Guo LH, Zhang AQ, Wei Y & Yang Y. Structure-based investigation on the binding interaction of hydroxylated polybrominated diphenyl ethers with thyroxine transport proteins. Toxicology 2010 277 20–28. (https://doi.org/10.1016/j.tox.2010.08.012)

365 Roberts SC, Aker SC & Stapleton HM. Disruption of type 2 iodothyronine deiodinase activity in cultured human glial cells by polybrominated diphenyl ethers. Chemical Research in Toxicology 2015 28 1265–1274. (https://doi.org/10.1021/acs.chemrestox.5b00072)

366 Marsan ES & Bayse CA. Halogen-bonding interactions of polybrominated diphenyl ethers and thyroid hormone derivatives: a potential mechanism for the inhibition of iodothyronine deiodinase. Chemistry 2017 23 6625–6633. (https://doi.org/10.1002/chem.201700407)

367 Bansal R, Tighe D, Danai A, Rawn DF, Gaertner DW, Arnold DL & Kowal MM. Developmental toxicity of the PBDE metabolite 6-OH-BDE metabolites in zebrafish: a tool for examining OH-BDE toxicity to early life stages. Aquatic Toxicology 2013 132–133 190–199. (https://doi.org/10.1016/j.aquatox.2013.02.008)

369 Geiss O, Tredini S, Barrero-Moreno J & Kotzias D. Investigation of volatile organic compounds and phthalates present in the cabin air of used private cars. Environment International 2009 35 1188–1195. (https://doi.org/10.1016/j.envint.2009.07.016)

370 Eckert E, München F, Göen T, Purbojo A, Müller J & Cesnjevar M. Comparative study on the migration of di-2-ethylhexyl phthalate (DEHP) and tri-2-ethylhexyl trimellitate (TOTM) into blood from PVC tubing material of a heart-lung machine. Chemosphere 2016 145 10–16. (https://doi.org/10.1016/j.chemosphere.2015.11.067)

371 EFSA. Opinion of the scientific panel on food additives, flavourings, processing aids and materials in contact with food (AFC) on a request from the Commission related to a 5th list of substances for food contact materials. EFSA Journal 2004 2 109. (https://doi.org/10.2903/j.efsa.2004.109)

372 Bloult BC, Silva MJ, Caudill SP, Needham LL, Pikle JL, Sampson EJ, Lucier GW, Jackson RJ & Brock JW. Levels of seven urinary phthalate metabolites in a human reference population. Environmental Health Perspectives 2000 108 979–982. (https://doi.org/10.1289/ehp.0010879)

373 Adibi JJ, Perera FP, Jedrychowski W, Camann DE, Barr D, Jacek R & Whyatt RM. Prenatal exposure to phthalates among women in New York and Krakow, Poland. Environmental Health Perspectives 2003 111 1719–1722. (https://doi.org/10.1289/ehp.6235)

374 Latini G, De Felice C, Presta G, Del Vecchio A, Paris I, Ruggieri F & Mazzero P. In utero exposure to di-(2-ethylhexyl)phthalate and duration of human pregnancy. Environmental Health Perspectives 2003 111 1783–1785. (https://doi.org/10.1289/ehp.6202)

375 Silva MJ, Reidy JA, Herbert AR, Preau JL Jr, Needham LL & Calafat AM. Detection of phthalate metabolites in human amniotic fluid. Bulletin of Environmental Contamination and Toxicology 2004 72 1226–1231.

376 Calafat AM, Brock JW, Silva MJ, Gray LE Jr, Reidy JA, Barr DB & Needham LL. Urinary and amniotic fluid levels of phthalate monoesters in rats after the oral administration of di(2-ethylhexyl) phthalate and di-n-butyl phthalate. Toxicology 2006 217 22–30. (https://doi.org/10.1016/j.tox.2005.08.013)

377 Kim Y, Ha EH, Kim EJ, Park H, Ha M, Kim JH, Hong YC, Chang N & Kim BN. Prenatal exposure to phthalates and infant development at 6 months: prospective mothers and children’s environmental health (MOCEH) study. Environmental Health Perspectives 2011 119 1495–1500. (https://doi.org/10.1289/ehp.1003178)

378 Polanska K, Ligocka D, Sobala W, Pilgrim A & Mazzeo P. Prenatal phthalate exposure and child development: the Polish Mother and Child Cohort Study. Early Human Development 2014 90 477–485. (https://doi.org/10.1016/j.earlhumdev.2014.06.006)

379 Téllez-Rojas MM, Cantoral A, Cantowine DE, Schnaas L, Peterson K, Hu H & Meeker JD. Prenatal urinary phthalate metabolite levels and neurodevelopment in children at two and three years of age. Science of the Total Environment 2013 461–462 386–390. (https://doi.org/10.1016/j.scitotenv.2013.05.021)

380 Whyatt RM, Liu X, Rauh VA, Calafat AM, Just AC, Hoepner L, Diaz D, Quinn J, Adibi J, Perea PF, et al. Maternal prenatal urinary phthalate metabolite concentrations and child mental, psychomotor, and behavioral development at 3 years of age. Environmental Health Perspectives 2012 120 290–295. (https://doi.org/10.1289/ehp.1103705)

381 Mizutaya M, Naka Jima S, Sasaki S, Azaki A, Miyashita C, Ikeno T, Nakajima T, Goto Y & Kitoh R. Effects of prenatal phthalate exposure on thyroid hormone levels, mental and psychomotor development of infants: the Hokkaido Study on Environment and Children’s Health. Science of the Total Environment 2016 565 1037–1043. (https://doi.org/10.1016/j.scitotenv.2016.05.098)

382 Swan SH, Liu F, Hines M, Kruse RL, Wang C, Redmon JB, Sparks A & Weiss B. Prenatal phthalate exposure and reduced masculine play in
Thyroid-disrupting chemicals and brain development

B B Mughal et al.

Thyroid-disrupting chemicals

Boys. International Journal of Andrology 2010 33 259–267. [https://doi.org/10.1111/j.1365-2605.2009.01019.x]

384 Miodownik A, Engel SM, Zhu C, Ye X, Soorya LV, Silva MJ, Calafat AM & Wolff MS. Endocrine disruptors and childhood social impairment. Neurotoxicology 2011 32 261–267. [https://doi.org/10.1016/j.nuro.2010.12.009]

385 Cho SC, Bhang SY, Hong YC, Shin MS, Kim BN, Kim JW, Hoo HJ, Cho IH & Kim HW. Relationship between environmental phthalate exposure and the intelligence of school-age children. Environmental Health Perspectives 2010 118 1027–1032. [https://doi.org/10.1289/ehp.0901376]

386 Chopra V, Harley K, Lahiff M & Eskenazi B. Association between phthalates and attention deficit disorder and learning disability in U.S. children, 6–15 years. Environmental Research 2014 128 64–69. [https://doi.org/10.1016/j.envres.2013.10.004]

387 Huang PC, Kuo PL, Guo YL, Liao PC & Lee CC. Associations between urinary phthalate monoesters and thyroid hormones in pregnant women. Human Reproduction 2007 22 2715–2722. [https://doi.org/10.1093/humrep/dem205]

388 Boas M, Frederiksen H, Feldt-Rasmussen U, Skakkebæk NE, Hegediüs L, Hilsted L, Juul A & Main KM. Childhood exposure to phthalates: associations with thyroid function, insulin-like growth factor I, and attention. Environmental Health Perspectives 2010 118 1458–1464. [https://doi.org/10.1289/ehp.0901331]

389 Huang PC, Tsai CH, Liang WY, Lee WT, Huang HB & Kuo PL. Early iodide symporter responds to certain phthalate plasticisers. in Children's Health: Temporal Variability, and Predictors. Among pregnant women in Northern Puerto Rico: distribution, Toro LV, Ferguson KK, Mukherjee B, Calafat AM, Crespo N, Jiménez-Velez B, Padilla TJ, et al. Urinary phthalate metabolite concentrations among pregnant women in Northern Puerto Rico: distribution, temporal variability, and predictors. Environmental International 2014 68 55–65. [https://doi.org/10.1016/j.envint.2014.02.010]

390 Ar buckle TE, Davis K, Marro L, Fisher M, Legrand M, Leblanc A, Huang PC, Tsai CH, Liang WY, Li SS, Huang HB & Kuo PL. Trends in exposure to polyfluoralkyl chemicals in the U.S. population: 1999–2008. Environmental Health Science and Technology 2011 45 8037–8045. [https://doi.org/10.1021/eh1034613]

391 Ols en GW, Burr is MJ, Ihresman DJ, Froelich JW, Seacat AM, Butenhof JL & Zobel LR. Half-life of serum elimination of perfluorooctanesulfonate, perfluorohexanesulfonate, and perfluorooctanoate in retired fluorochemical production workers. Environmental Health Perspectives 2007 115 1298–1305. [https://doi.org/10.1289/ehp.10009]

392 Hu xc, And rews OQ, Lindstrom AB, Bruton TA, Schaid LA, Grandjean P, Lohmann R, Carignan CC, Blum A, Balan SA, et al. Detection of Poly- and Perfluoralkyl Substances (PFASs) in U.S. drinking water linked to industrial sites, military fire training areas, and wastewater treatment plants. Environmental Health Science and Technology Letters 2016 5 344–350. [https://doi.org/10.1021/acs.estlett.6b00260]

393 Johansson N, Fredriksson A & Eriksson P. Neonatal exposure to perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) causes neurobehavioural defects in adult mice. Neurotoxicology 2008 29 160–169. [https://doi.org/10.1016/j.neuro.2007.10.008]

394 S tookin TA, MacKillop EA, Meinick RL, Thayer KA & Seidler FJ. Developmental neurotoxicity of perfluorinated chemicals modeled in vitro. Environmental Health Perspectives 2008 116 716–722. [https://doi.org/10.1289/ehp.11253]

395 G izier IR, Ficks C & Waldman ID. Candidate gene studies of ADHD: a meta-analytic review. Human Genetics 2009 126 51–90. [https://doi.org/10.1007/s00439-009-0694-x]

396 Far aone SV, Perlis RH, Doyle AE, Smoller JW, Goralnick JJ, Holmgren MA & Sklar P. Molecular genetics of attention-deficit/hyperactivity disorder. Biological Psychiatry 2005 57 1313–1323. [https://doi.org/10.1016/j.biopsych.2004.11.024]

397 Hoffmann K, Webster TJ, Weisskopf MG, Weinberg J & Vieira VM. Exposure to polyfluoroalkyl chemicals and attention deficit/hyperactivity disorder in U.S. children 12–15 years of age. Environmental Health Perspectives 2010 118 1762–1767. [https://doi.org/10.1289/ehp.1001898]

398 Stein CR & Savitz DA. Serum perfluorinated compound concentration and attention deficit/hyperactivity disorder in children 5–18 years of age. Environmental Health Perspectives 2011 119 1466–1471. [https://doi.org/10.1289/ehp.1003538]

399 Gump BB, Wu Q, Dumas AK & Kannan K. Perfluorochemical (PFC) exposure in children: associations with impaired response inhibition. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Environmental Science and Technology 2011 45 8151–8159. (https://doi.org/10.1021/es103712q)

413 Fei C, McLaughlin JK, Lipworth L & Olsen J. Prenatal exposure to perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS) and maternal reported developmental milestones in infancy. Environmental Health Perspectives 2008 116 1391–1395. (https://doi.org/10.1289/ehp.11277)

414 Fei C & Olsen J. Prenatal exposure to perfluorinated chemicals and behavioral or coordination problems at age 7 years. Environmental Health Perspectives 2011 119 573–578. (https://doi.org/10.1289/ehp.1002026)

415 Endendijk JJ, Wijnen HAA, Pop VJM & van Baar AL. Maternal thyroid hormone trajectories during pregnancy and child behavioral problems. Hormones and Behavior 2017 94 84–92. (https://doi.org/10.1016/j.yhbeh.2017.06.007)

416 Modesto T, Tiemeier H, Peeters RP, Jaddoe V, Looman CW, Feskens EJ, Kromhout D, Jukema JW, Houthuijs D, Soeters PB & van Duijn CM. Exposure to perfluorinated chemicals and child's attentional functioning. Environmental Health Perspectives 2007 115 1384–1389. (https://doi.org/10.1289/ehp.961)

417 Hauser P, Zametkin AJ, Martinez P, Vitiello B, Matochik JA, Mixson AJ & Weinstauber BD. Attention deficit-hyperactivity disorder in people with generalized resistance to thyroid hormone. New England Journal of Medicine 1993 328 997–1001. (https://doi.org/10.1056/NEJM199304083281403)

418 Pearce EN. Maternal hyperthyroxinemia in pregnancy is associated with increased risk for ADHD symptoms in children. Clinical Thyroidology 2015 27 212–214. (https://doi.org/10.1089/ct.2015.27.212-214)

419 Olsen GW & Zobel LR. Assessment of lipid, hepatic, and thyroid hormone concentrations in female and male rats exposed to eight weak estrogenic chemicals combined at concentrations below NOECs produce significant mixture effects. Toxicological Sciences 2009 109 206–216. (https://doi.org/10.1093/toxsci/kfp055)

420 Melzer D, Rice N, Depledge MH, Henley WE & Galloway TS. Association between serum perfluorooctanoic acid (PFOA) and thyroid disease in the U.S. National Health and Nutrition Examination Survey. Environmental Health Perspectives 2010 118 686–692. (https://doi.org/10.1289/ehp.0901584)

421 Chang SC, Thibodeaux JR, Eastvold MT, Ehresman DJ, Bjork JA, Froehlich JW, Lau CS, Singh RJ, Wallace KB & Butenhoff JL. Negative bias from analog methods used in the analysis of free thyroxine in rat serum containing perfluorooctanesulfonate (PFOS). Toxicology 2007 234 21–33. (https://doi.org/10.1016/j.tox.2007.01.020)

422 Martin MT, Beeman RJ, Hu W, Ayanugu E, Lau C, Ren H, Wood CR, Corton JC, Kavlock RJ & Dix DJ. Toxicogenomic study of triazole fungicides and perfluoroalkyl acids in rat livers predicts toxicity and categorizes chemicals based on mechanisms of toxicity. Toxicological Sciences 2007 97 595–613. (https://doi.org/10.1093/toxsci/kfm065)

423 Seacat AM, Thomford PJ, Hansen KJ, Clemen LA, Eldridge SL, Elcombe CR & Butenhoff JL. Sub-chronic dietary toxicity of potassium perfluorooctanesulfonate in rats. Toxicology 2003 183 117–131. (https://doi.org/10.1016/S0300-481X(02)00511-5)

424 Thibodeaux JR, Hanson RG, Rogers JM, Grey BE, Barbree BD, Richards JH, Bottenhoff JL, Stevenson LA & Lau C. Exposure to perfluorooctane sulfonate during pregnancy in rat and mouse. I: maternal and prenatal evaluations. Toxicological Sciences 2003 74 369–381. (https://doi.org/10.1093/toxsci/kfg121)

425 Lau C, Thibodeaux JR, Hanson RG, Rogers JM, Grey BE, Stanton ME, Bottenhoff JL & Stevenson LA. Exposure to perfluorooctane sulfonate during pregnancy in rat and mouse. II: postnatal evaluation. Toxicological Sciences 2003 74 382–392. (https://doi.org/10.1093/toxsci/kfg122)

426 Yu WG, Liu W, Jin Y-H, Liu X-H, Wang F-Q, Liu I & Nakayama SF. Prenatal and postnatal impact of perfluorooctane sulfonate (PFOS) on rat development: a cross-foster study on chemical burden and thyroid hormone system. Environmental Science and Technology 2009 43 8416–8422. (https://doi.org/10.1021/es901602d)

427 Luebker DJ, York RG, Hansen KJ, Moore JA & Butenhoff JL. Neonatal mortality from in utero exposure to perfluorooctanesulfonate (PFOS) in Sprague-Dawley rats: dose-response, and biochemical and pharmacokinetic parameters. Toxicology 2005 215 149–169. (https://doi.org/10.1016/j.tox.2005.07.019)

428 Weiss JM, Andorsen PL, Lamoee MH, Leards PE, van Leeuwen SP & Hamers T. Competitive binding of poly- and perfluorinated compounds to the thyroid hormone transport protein transthyretin. Toxicological Sciences 2009 109 206–216. (https://doi.org/10.1093/toxsci/kfp055)

429 Yu WG, Liu W & Jin YH. Effects of perfluorooctane sulfonate on rat thyroid hormone biosynthesis and metabolism. Environmental Toxicology and Chemistry 2008 28 1. (https://doi.org/10.1897/08-345.1)

430 Delfosse V, Dendele B, Huet T, Grimaldi M, Boulahtouf A, Bardini Bressan R, Cavallo F, Even Chorev N, Affaticati P, Jenett A & Demeneix BA. Human embryonic stem cells co-cultured with human placental fragments are sensitive to endocrine disrupting mixtures. Scientific Reports 2017 7 43786. (https://doi.org/10.1038/srep43786)

431 Biggersson L, Borbely G, Caporale N, Germain P-L, Leemans M, Delfosse V, Dendele B, Huet T, Grimaldi M, Boulahtouf A, Bardini Bressan R, Cavallo F, Even Chorev N, et al. From cohorts to molecules: adverse impacts of endocrine disrupting mixtures. bioRxiv 2017 206664. (https://doi.org/10.1101/206664)

Received in final form 4 March 2018
Accepted 14 March 2018

http://www.endocrineconnections.org
https://doi.org/10.1530/EC-18-0029
© 2018 The authors
Published by Bioscientifica Ltd

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.