Record on dominant microfungi and their potential phosphate solubilization in tea garden soils

Temsurenla JAMIR*, T. AJUNGLA, Asangla KICHU

Nagaland University, Department of Botany, Lumami, 798627, Nagaland, India; arentem123@gmail.com (*corresponding author); lkr.talijungla@gmail.com; asanglakichu15@gmail.com

Abstract

Microfungi are one of the important microbial groups in agriculture due to their positive, mutualistic and negative effect on plant growth and productivity. The roles of fungi extend from organic matter decomposition and mineral cycling to plant growth promotion. Considering these indispensable roles of this microbial group, the present research was undertaken to investigate the indigenous dominant microfungi in tea garden soils of Mokokchung district, Nagaland in India. The dominant microfungi were screened for their phosphate solubilization activity in PVK agar medium using tri-calcium phosphate as the sole phosphate source. Microfungal isolates showed significant differences in culture plates as well as microscopic studies. A total of 110 fungal isolates under 19 genera were identified in the present study. Among the soil microfungi, Aspergillus, Penicillium and Trichoderma were found to dominate the studied tea garden soils. The highest phosphate solubilization activities were observed for species under Aspergillus (1.95 cm to 1.71 cm) followed by Penicillium (1.57 cm to 1.18 cm) and Trichoderma species (1.13 cm to 1.06 cm). The present study offers a glimpse of indigenous microfungi as well as provide information on the dominant microfungi in tea garden soils of Mokokchung district, Nagaland and hence, will aid and expand knowledge on indigenous fungi and their various roles. Also, the applications of potent phosphate-solubilizers isolated in this study can be a future source of biofertilizers consortium for tea and other plants.

Keywords: Aspergillus; microfungi; Mokokchung; Penicillium; tea gardens; Trichoderma

Introduction

Soil is a living habitat for wide arrays of biotic components. It is an excellent culture medium for the growth and development of various microorganisms (Bisi-Johnson et al., 2010) including fungi. Fungi are an important group of non-photosynthetic eukaryotic organisms that comprise both single-celled and multicellular forms that play a significant role in human, plant and animals' life. They are a source of numerous antibiotics, enzymes and medicines (Jamir and Ajungla, 2018) and are intimately linked with soil properties, nutrient cycling, ecosystem restoration and plant growth. Fungi constitute more of the soil biomass than bacteria, depending on soil depth and nutrient conditions (Karaoglu and Ulker, 2006). This group of microbes are the main decomposers of organic matter in soils because of their essential role in humus formation (Christensen, 1989) and are also responsible for the improvement or deterioration of plant health. Being an organism of immense value with a wide array of ecological and environmental importance, isolation and
identification of soil fungi are very necessary from an agricultural perspective. As many as 11.7-13.2 million fungal species reside on the earth (Wu et al., 2019) however, described fungi account for only 5-13% of the total estimated fungal species (Wang et al., 2008). Thus, despite their importance and diversity, fungi constitute under described, poorly documented organisms on earth.

Fungal identifications and classifications are based on different methods such as morphological and molecular methods. Fungal studies using the morphological method is still the most common and reliable procedure (Senanayake et al., 2020). This is because there are serious limitations associated with molecular methods such as lack of discrimination in the technique between living and dead material, or active and dormant organisms, relatively small amount of reference data available for comparison of sequence data that create uncertainty surrounding some fungal species concepts (Bridge and Spooner, 2001). Microfungal identification by morphological methods involves the application of culture media and microscopic studies. Microfungal studies from culture plates can provide detailed information on their morphological features, growth characteristics and their interactions with each other which are of immense value especially for isolation of potential organisms that are capable of degrading heavy metals, solubilizing inorganic fertilizers and for studying antagonistic activities against many diseases causing pathogens. Traditional plate culture methods using different artificial culture media also give guidance in microfungal identification since their mycelia growth and sporulation vary on different media differing in nutrient types and compositions. Apart from this, morphological methods are more cost-effective therefore require less specialized equipment which is important for many, especially those researchers in developing nations of the world who are unable to obtain large amounts of molecular data (Senanayake et al., 2020).

Tea is an economic crop and a healthy drink consumed by millions throughout the world. The tea industry relies heavily on soil nutrients especially macronutrients because it is intimately linked with tea growth, development, yield and quality. Among the soil macronutrient, phosphorus (P) is considered the master key to agriculture due to its multifarious roles. It is the most important nutrients for tea production after nitrogen and potassium. This macronutrient is crucial for physiological and biological processes in living organisms because it is a constituent of nucleic acid and is indispensable for the energy transport system. P is vital for the development of tea roots and normal growth of tea (Hajiboland, 2017), seed formation, early maturation of crops and contributes significantly towards disease resistance (Sharma et al., 2013). Despite its importance for agricultural productivity, P availability for plant usage is limited in agricultural soils including tea plantations due to its association and formation of complexes with different compounds in soil. To meet the P demands of plants, P nutrition is supplied in the form of expensive chemical phosphate fertilization can also consequently deteriorate the soil health as well as result in environmental pollution. Therefore, there is an immediate need to substitute these chemicals with potent environmentally friendly phosphate fertilizers such as microbial-based fertilizers.

Nagaland state situated in the north-eastern part of India is in Indo-Burma biodiversity hotspots of the world however, vast areas of the state remain unexplored concerning its microbial richness and biodiversity. In recent years, several researchers have been exploring and documenting macrofungi of the state (Kumar et al., 2013; Ao et al., 2016; Wabang and Ajungla, 2016) however, work on microfungi of the state is barely a handful.

In this paper, the microfungal inhabitants and dominant species among these microfungi in tea garden soils of Mokokchung district, Nagaland, India was documented using plate culture and microscopic methods. The dominant fungi were further screened for phosphate solubilization ability. This study was undertaken to unveil and provide insights into the morphologies of the residential microfungi. Furthermore, it will provide useful information about the type of microorganisms that can adapt, exploit and persist in such monoculture plantation soil as well as offer tremendous scope for many potential biofertilizers and plant growth promoters for the upliftment of the tea industry.
Materials and Methods

Sampling
Soil samples of tea rhizosphere and non-rhizosphere were collected from Mokokchung district, Nagaland, India during July 2017-April 2018. Soil collections were made from tea gardens at Tuli (N 26°39'19.3 E 094°39'22.7) and Ungma (N 26°17'30.6 E 094°28'29.2). Visible debris and fauna were removed manually and soils were combined to composite samples in both cases. Soils were then transferred to the laboratory under sterile conditions.

Culture media
Czapek dox agar (CDA), malt extract agar (MEA), potato dextrose agar (PDA) and rose bengal agar (RBA) were used in the present study. PDA (HiMedia, India) and RBA (HiMedia, India) were prepared from a dehydrated base according to the manufacturer’s instructions.

The chemical composition of CDA and MEA used in the study were prepared following the standard protocol (Atlas, 2004) as given below in Table 1.

Table 1. Composition of CDA and MEA

Ingredient	CDA	MEA	
Ingredient	g/l	g/l	
Sucrose	30	Glucose	20
K_2HPO_4	1	Malt Extract	20
MgSO_4.7H_2O	0.5	Mycological peptone	1
KCl	0.5	Agar	16
FeSO_4.7H_2O	0.01	Distilled water	1000
NaNO_3	3	Final pH	6.8 ± 0.2
Agar	15		
Distilled water	1000		
Final pH	7.3 ± 0.2		

All the ingredients for each media were dissolved in 500 ml distilled water by swirling the flasks. Flasks were filled up to the final 1000 ml with distilled water and the pH of respective fungal media was maintained. Media were then boiled with interval shaking to avoid sticking in the bottom of the flask while melting the agar. The media were autoclaved at 121 °C for 15 minutes and transferred to laminar airflow. Autoclaved media were allowed to cool down to about 40 °C and filter sterilized 30 µg/ml streptomycin sulphate (to inhibit bacterial growth) was added in each of the fungal media before pouring the medium on Petri plates.

About 25 ml of agar medium was poured on sterilized Petri plates and allowed to cool down to room temperature. Agar slants were poured into test tubes prior to autoclave. The solidified agar plates were treated with UV for 5 minutes. Agar plates and slants culture were kept inside the laminar airflow cabinet overnight.

Sterilization
Glassware’s, inoculation loop, needles and scalpel were washed with labolene and oven-dried at 105 °C. Prior to use in experiments, materials were autoclaved at 1200 rpm for 30 minutes and kept inside a laminar airflow chamber followed by UV irradiation.

Isolation and purification
Soil fungi were isolated following the serial dilution method of Waksman (1922) in PDA and RBA. 1 gm of soil sample was suspended in 10 ml of distilled and autoclaved water to make 10⁻¹ dilution. Suspensions were incubated at room temperature in a shaker incubator for 10 minutes. Serial dilution was carried out from
this and aliquots of 100 μl each from 10^{-5} and 10^{-6} dilution were plated onto Petri dishes. For each dilution, plating’s were carried out in triplicates to prevent any possible error. Plates with diluents were sealed, marked and incubated (IK-120) at 27 °C ± 2 °C for 120-168 hours.

Fungal colonies were picked from each plate, taking into account to include all colonies with distinct features in each of the plates. Purification was carried out by sub-culturing each colony on CZA, MEA, RBA and PDA to record variation in colony morphologies of the isolates. Three points inoculation and streaking of the fungal colony were done with a flame sterilized scalpel on each of the four different media plates to record variation in colony morphologies of the isolates. Plates were incubated following the same condition as that of the mixed culture or by increasing growth temperature and incubation time for some isolates.

Identification of fungal isolates
Identification of purified fungi was carried out using colony features in the agar plates and microscopic characteristics. Identification was based on review and consultation of available literature and taxonomic keys (Raper and Thom, 1949; Bamett 1965; Rifai, 1969; Domsch et al., 1980; Nelson et al., 1983; Gilman, 2001; Klich, 2002; Watanabe, 2002; Asan, 2004; Frisvad and Samson, 2004; Pitt and Hocking, 2009; Samson et al., 2014; Siddiquee, 2017).

Culture characterization
After three days of incubation, culture plates were checked every next day to record their colony morphologies. Culture characteristics including reverse and obverse colony colour, size of the colony, growth pattern, surface texture, margin character, pigmentation etc., were recorded from each culture media.

Microscopic characterization of isolates
Purified fungal isolates were transferred to a clean glass slide with a flame sterilized needle and mounted on lactophenol cotton blue. Microscopic examination including mycelium, hyphae shape, conidial development, conidial shape, conidiophore dimension, size and shape of metulae, philiade, chlamydospores spores and other special fungal structures in the stained slides were carried out in microscope (Moitiic, BA210LED) at 10X, 40X and 100X magnification under oil immersion. Micrographs were captured using the camera equipped with microscope.

Screening for phosphate solubilizing fungi
Dominant fungi were screened for their phosphate solubilizing ability. Fungal isolates were inoculated in Pikovskaya (PVK) agar plates supplemented with 0.5% tri-calcium phosphate. Isolates were incubated at 27 ± 2 °C for 5 days. Potential phosphate solubilizers were detected through clear halozones in the PVK plates after 5 days of incubation. Phosphate solubilization index (SI) was calculated using the formula:

\[
SI = \frac{\text{Colony diameter + clearing zone}}{\text{Colony diameter}}
\]

Results

Dominant fungi
A total of 110 fungal isolates under 19 genera were identified in the present study (Table 2). Based on their colony and microscopic characteristics, the identified 19 fungal genera were Apophysomyces, Aspergillus, Botrytis, Chaetomium, Chrysosporium, Cladosporium, Colletotrichum, Cunninghamamella, Fusarium, Geosmithia, Mucor, Paecilomyces, Penicillium, Pestalotiopsis, Rhizopus, Sclerotinia, Scytalidium, Trichoderma and Trichophyton. Among the fungal genera, Aspergillus with 4 species, Penicillium with 5 species and Trichoderma with 6 species were found to be dominant. Furthermore, the highest of the isolates were under these genera. The morphological characterization of these dominant fungi is presented in Table 3.
The colony diameters and colours of *Aspergillus* and *Penicillium* were recorded in 7 days whereas, for *Trichoderma*, these were recorded in 3-5 days. Figures 1-5 represent some of the dominant fungi isolated in the present study.

Table 2. Genera and number of fungal isolates in tea garden soils

Fungal genera	Species	Number of isolates
Apophysomyces	*Apophysomyces viriabilis*	1
Aspergillus	*Aspergillus niger*	8
	Aspergillus sp.1	4
	Aspergillus sp.2	5
	Aspergillus sp.3	2
Botrytis	*Botrytis* sp.	2
Chaetomium	*Chaetomium globosum*	2
	Chaetomium sp.	2
Chrysosporium	*Chrysosporium* sp.	4
Cladosporium	*Cladosporium cladosporiodes*	4
	C. oxy sporum	4
	Cladosporium sp.	1
Colletotrichum	*Colletotrichum* sp.	4
Cunninghamella	*Cunninghamella echinulata*	4
Fusarium	*Fusarium oxysporum*	4
	F. solani	4
Geosmithia	*Geosmithia* sp.	2
Mucor	*Mucor circinelloides*	2
	M. hiemalis	2
Paecilomyces	*Paecilomyces* sp.	2
Penicillium	*Penicillium citrinum*	2
	P. commune	1
	P. waksmanii	8
	Penicillium sp.1	1
	Penicillium sp.2	2
Pestalotiopsis	*Pestalotiopsis egyptiaca*	4
	Pestalotiopsis sp.	5
Rhizopus	*Rhizopus stolonifer*	2
Sclerotinia	*Sclerotinia* sp.	1
Scytalidium	*Scytalidium* sp.	1
Trichoderma	*Trichoderma hamatum*	2
	T. harzianum	6
	T. koningii	2
	T. viride	2
	Trichoderma sp.1	4
	Trichoderma sp.2	2
Trichophyton	*Trichophyton* sp.1	2

Table 3. Morphological characterization of dominant fungi

Isolates	Culture characteristics	Microscopic characteristics		
Aspergillus niger				
CZA	3.5-4.6	Black	Cream	Effuse, velvety to powdery, radially sulcate, flat and entire
MEA	3.3-3.9	Black	Yellow	Conidiophores developed directly from the substratum, 15 μm wide and 310-450 μm long, smooth, hyaline, septate, biserial. Phialides, 6.9-8.3 μm long, 2.9-
Aspergillus sp.1	Aspergillus sp.2	Aspergillus sp.3	Penicillium citrinum	P. commune
-----------------	-----------------	-----------------	-------------------	------------
Medium	**Colour**	**Structure**	**Medium**	**Colour**
PDA	4.8-5.2	Black	Yellow	3.5 μm wide. Vesicles covered by 2 series of phialides. 15-40 μm in diameter. Conidia 2.5-4 μm diameter, smooth, globose.
RRA	2.1-2.6	Black	Colourless	
Medium	**Colour**	**Structure**	**Medium**	**Colour**
CZA	2.5-3.4	Light yellow to pale brown	Yellow to brown	Velvety, off white mycelium, diametrically sulcate on the reverse and heavily wrinkled on the reverse of the plate. Conidiophores developed directly from the substratum, 159-270 μm long, 5.1-8.3 μm wide, smooth-walled, hyaline, septate, biseriate. Phialides 3.8-6.9 μm wide, 5.3-9 μm long. Vesicles 10-19 μm diameter, sub-globose. Conidia 1.8-2.3 μm in diameter, globose
CZA	4.5-5.3	Bright yellow	Orange	
MEA	2.1-4.3	Greyish-yellow	Brown	
PDA	3.5-4.1	Greyish-yellow	Yellow to brown	
RRA	3.2-3.9	Pale yellow	Colourless	
Medium	**Colour**	**Structure**	**Medium**	**Colour**
CZA	2.1-2.9	Pale yellow	Colourless	Slightly raised, laeose, sulcate, wrinkled, entire
MEA	2.7-3.2	Bluish-grey	Pale yellow	
PDA	3.8-4.4	Yellowish-white	Pale yellow to brown	
RRA	3.3-4.2μm	Pale yellow	Colourless	
Medium	**Colour**	**Structure**	**Medium**	**Colour**
CZA	2.3-3.4	Green, white mycelia	Yellowish-orange	Velvety, sulcate to fasciculate
MEA	2.3-3.1	Green, white mycelia	Yellowish-orange	
PDA	2.5-3.6	Green, grey mycelia	Orange	Conidiophores developed from surface or subsurface hyphae. Stipes smooth-walled, monoverticillate to terverticillate. Metulae cylindrical. Phialides 7-9.3 x 2.2-5 μm, ampulliform. Conidia 2.5-3.1 μm, globose to sub-globose
RRA	2.4-3.3	Orange, white mycelia	Yellowish-orange	
Medium	**Colour**	**Structure**	**Medium**	**Colour**
CZA	2.1-3.2	Grey, white mycelia	Reddish-brown	Velvety to floccose, granular, radially sulcate to slightly sulcate
MEA	2.6-3.7	Pale green, white mycelia	brown	Conidiophores developed from surface or subsurface hyphae. Stipes smooth-walled, terverticillate. Metulae 13-17 μm wide, cylindrical. Phialides 7-9.2 μm long, ampulliform. Conidia 3.1-3.8 μm wide, ellipsoidal to globose.
PDA	3.5-3.9	Pale grey, yellow centre, white mycelia	Yellow	
RRA	3.9-4	Dark green, yellow centre, white mycelia	Colourless	
Medium	**Colour**	**Structure**	**Medium**	**Colour**
CZA	2.0-2.8	Dull green, white mycelium	Cream	Velvety to floccose, plane to radially sulcate
MEA	2.1-3.0	Dull green, pale green mycelium	Brown	Conidiophores developed from the subsurface hyphae. Stipes smooth-walled, biverticillate and 210-440 μm long. Metulae 5-6 μm long, cylindrical, ampulliform. Conidia 2.6-3.2 μm diameter, globose.
	PDA 1.6-2.5	RBA 1.4-2.3		
----------------	-------------	-------------		
Penicillium sp.1	Dull green, pale yellow mycelium	Colourless, Yellow		
CZA 1.7-2.0	Yellowish-green, white mycelium	Brown		
MEA 1.9-2.5	Deep green, white mycelium	Brown		
PDA 2.5-3.5	Sage green, white mycelium	Colourless, Yellow		
RBA 2.4-3.6	Greyish-green, white mycelium	Colourless, Colourless		

Conidiophore hyaline, straight to erect, separate, monoverticillate, unbranched. Metulae absent. Phialides 3.2-4.5 µm wide and 9.1-12.3 µm long, hyaline, ampulliform. Conidia 3.7-4 µm wide, hyaline, 1-celled and globose

Slightly velvety, sulphate to smooth, entire.

Conidiophores developed from the surface or subsurface. Stripes simple, smooth, verruculose. Metulae cylindrical. Phialides ampulliform. Conidia 3.9-3.3 µm wide, short chains, 1-celled and globose to sub-globose

Conidiophore hyaline, upper part undulate to hamate, erect, highly branched, irregular, short side branches, 3-6 phialides on each branch arise in 1-3 whorls. Phialides 2.9-3.9 µm wide, 4.6-8.9 µm long, hyaline, flask-shaped, tapered towards the apex, separate, densely clustered on board. Conidia 2.3-3 µm wide, 3.3-4.3 µm long, hyaline, 1-celled, oblong to elliptical. Chlamydospore 7.5-11.3 µm in diameter, terminal and intercalary, sub-globose to elliptoidal

Floccose, powdery, slightly raised, greenish pustules and conidia distributed irregularly over the surface.

Conidiophore hyaline, highly branched, side branches stand at right angles to the bear tip, Phialides 3.7-4.5 µm long, ampulliform, short and broad in the middle, convergent. Conidia 2.4-2.9 µm in diameter, hyaline, 1-celled, globose. Chlamydospore 6.8-16.8 µm in diameter, sub-globose

Floccose, powder, slightly raised, 1-2 concentric rings, white pustules and green conidia distributed irregularly over the surface.

Conidiophore hyaline, highly branched, side branches stand at right angles to the bear tip, 2 to 3 phialides on each branch developed in opposite pairs. Phialides 2.1-2.9 µm wide and 7.7-9.8 µm long, 3 or 4 whorls, hyaline, flask-shaped, broad in the middle, tapered towards the apex. Conidia 2.7-3.3 µm wide and 3.8-4.2 µm long, hyaline, 1-celled, subglobose to ellipsoidal. Chlamydospore 9.2-12.8 µm in diameter, terminal and sub-globose
Trichoderma sp.1

	CZA	MEA	PDA	RBA
CD	4.5-5.1	4.7-5.4	4.6-5.4	4.4-5.2
CCO	Yellowish-white	Light-green	Yellowish-white	Yellowish-white
CCR	Pale yellow	Brownish	Pale yellow	Colourless

Conidiophore hyaline, erect, highly branched, side branches stand at right angles to the break tip, 2 to 3 phialides developed on each branch in opposite pairs. Phialides 2.2-3.2 μm wide and 6.7-10.9 μm long, hyaline, solitary or in whorls of 2-3, flask-shaped, cylindrical to bearded in the middle, ampulliform. Conidia 3.4-5 μm wide and 4 μm long, hyaline, 1-celled, globose to obovoid. Chlamydoaphore 5.5-7.3 μm in diameter, intercalary and globose to sub-globose.

Floccose, powdery, white pustules and green conidia distributed irregularly over the surface, with a yellowish ring, slightly raised to flat and undulate.

Trichoderma sp.2

	CZA	MEA	PDA	RBA
CD	1.1-1.7	4.9-5.4	4.9-5.5	4.4-5
CCO	Green	Yellowish	Yellowish	Yellowish
CCR	Yellow	Yellow	Yellow	Colourless

Conidiophore hyaline, slightly erect, branched, side branches stand at right angles to the break tip, 3 phialides on each branch arise in opposite pairs. Phialides 2.2-7 μm wide and 7.1-8.3 μm long, hyaline, ampulliform, broad in the middle, tapering towards the apex. Conidia 1.8-3 μm wide and 2.9-3.8 μm long, hyaline, 1-celled, sub-globular. Chlamydoaphore 5.1-98.8 μm long, hyaline, slightly erect, branched, side branches stand at right angles to the break tip, 3 phialides on each branch arise in opposite pairs. Conidia 2-2.7 μm wide and 7.1-8.3 μm long, hyaline, ampulliform, broad in the middle, tapering towards the apex. Conidia 1.8-3 μm wide and 2.9-3.8 μm long, hyaline, 1-celled, sub-globular. Chlamydoaphore 6.3-8.2 μm wide, intercalary and sub-globular.

Floccose to compact tufts, whitish pustules and green conidia distributed irregularly over the surface, flat to umbonate, irregular.

Figure 1. Culture and microscopic features of *Aspergillus niger*

(A-D) Obverse view of isolate on CZA, MEA, PDA and RBA plates; (E-H) Reverse view of isolate on CZA, MEA, PDA and RBA plates; (I) Conidiophores with conidial heads under 10X; (J) Conidiophores with conidial heads under 40X; (K) Conidiophore with conidial head under 100X; (L) Conidia under 100X; Scale bars represent 10 μm.
Figure 2. Culture and microscopic features of Aspergillus sp.2
(A-D) Obverse view of isolate on CZA, MEA, PDA and RBA plates; (E-H) Reverse view of isolate on CZA, MEA, PDA and RBA plates; (I) Conidiophores with conidial heads under 10X; (J) Conidiophores with conidial heads under 40X; (K) Conidiophore with conidial head under 100X; (L) Conidia under 100X; Scale bars represent 10 μm.

Figure 3. Culture and microscopic features of Penicillium citrinum
(A-D) Obverse view of isolate on CZA, MEA, PDA and RBA plates; (E-H) Reverse view of isolate on CZA, MEA, PDA and RBA plates; (I-K) Conidiophore with conidia under 40X and 100X; (L) Conidia under 100X; Scale bars represent 10 μm.
Figure 4. Culture and microscopic features of *Penicillium commune*
(A-D) Obverse view of isolate on CZA, MEA, PDA and RBA plates; (E-H) Reverse view of isolate on CZA, MEA, PDA and RBA plates; (I) Mycelium and conidiophore with conidia under 10X; (J-L) Conidiophore with conidia under 100X; Scale bars represent 10 μm

Figure 5. Culture and microscopic features of *Trichoderma hamatum*
(A-D) Obverse view of isolate on CZA, MEA, PDA and RBA plates; (E-H) Reverse view of isolate on CZA, MEA, PDA and RBA plates; (I-J) Conidiophores with phialides and conidia under 40X and 100X; (K) Chlamydospore (arrow) under 40X; (L) Conidia under 100X; Scale bars represent 10 μm
Formation of halo zones and phosphate solubilization index

Fungal genera that dominated the study areas were screened for phosphate solubilization ability. In total, 15 isolates belonging to the dominant genera were selected. These isolates showed a clear halo zone on PVK agar plates after five days, which indicated that all these isolates exhibited the desired phosphate solubilizing ability. As presented in Table 4, the highest SI was recorded in plates inoculated with *Aspergillus* species (1.95 cm to 1.71 cm) followed by *Penicillium* species (1.57 cm to 1.18 cm). Contrary to this, the lowest SI was recorded in plates inoculated with *Trichoderma* species (1.13 cm to 1.06 cm).

Fungal isolates	SI (in cm)
Aspergillus niger	1.95 ± 0.03
Aspergillus sp.1	1.81 ± 0.02
Aspergillus sp.2	1.71 ± 0.03
Aspergillus sp.3	1.75 ± 0.03
Penicillium citrinum	1.57 ± 0.02
P. commune	1.39 ± 0.01
P. waksmanii	1.18 ± 0.01
Penicillium sp.1	1.20 ± 0.01
Penicillium sp.2	1.22 ± 0.01
Trichoderma hamatum	1.10 ± 0.01
T. harzianum	1.06 ± 0.01
T. koningii	1.08 ± 0.01
T. viride	1.09 ± 0.01
Trichoderma sp.1	1.13 ± 0.01
Trichoderma sp.2	1.09 ± 0.01

Discussion

A number of microfungal isolates under different genera were identified in the present study as revealed by their growth and morphologies in different culture plates and microscopic observations. The morphological characterization from culture plates and microscopic studies is crucial for the identification of fungi. Culture plate studies using different media provide valuable information on fungal mycelia growth, sporulation and release of exudates as well as pigments which vary between culture media differing in nutrient types and compositions. Likewise, photomicrography through microscopic study is an important and the most commonly used descriptive illustrating method for morphological characterization of fungi (Senanayake et al., 2020). Although several microfungi were isolated from the tea garden soils, however, species of *Aspergillus*, *Penicillium* and *Trichoderma* dominated the studied tea garden soils. This agrees with Karaoglu and Ulker (2006) who reported that the tea garden soil fungi belong to a restricted range of taxonomic groups with a few dominant and some rare species. More or less similar observation with the present study was made by Pandey et al. (2001) who reported the dominancy of *Penicillium* and *Trichoderma* among the fungi in the rhizosphere of established tea bushes. The dominancy of *Aspergillus*, *Penicillium* and *Trichoderma* indicates their versatile nature and depicts a clear picture that, species of these genera can adapt easily to a different environment or seasonal fluctuations. Moreover, in tea soil, fungi that can adapt better to environmental changes are expected to dominate other species because tea plantation includes monoculture practice with more or less the same cultivation practices for years. It could also be due to the ability of these fungi to utilize different substrates in the soil more readily over other species (Gomez et al., 2006), antagonistic activity exhibited by these genera against other fungi and the tea plant itself. According to Pandey et al. (2001), tea roots exhibited selectivity
towards fungal species like *Penicillium*, *Trichoderma*, *Paecilomyces* and *Cladosporium* in comparison to other species.

The dominant microfungi were able to solubilize phosphate in the culture plate assay revealing that the tea garden soils in the Mokokchung district of Nagaland support a diverse group of phosphate solubilizers. Species of *Aspergillus*, *Penicillium* and *Trichoderma* showed great phosphate SI which indicates that the presence of these microfungal genera in the soil might be beneficial to P nutrition and tea growth. These microfungi are also among the economically important fungal genera serving plant and soil in tea and other types of agricultural fields (Pandya *et al*., 2018; Thiep *et al*., 2019). In this study, species of *Aspergillus* were the most effective phosphate solubilizers than other species tested as shown by phosphate SI on the agar plate. The present result corroborates the findings by Yadav *et al*., (2011) who found significantly higher SI by species of *Aspergillus* followed by *Penicillium* and *Trichoderma* species. This may be due to the higher production of organic acids by *Aspergillus* species (Yadav *et al*., 2011). Additionally, the type and diffusion rates of organic acids by the phosphate solubilizers can be accounted for in the present result.

Conclusions

The morphological characterization revealed that the tea garden soils in the Mokokchung district of Nagaland have diverse fungal species however, there was selectivity towards several fungal genera. *Aspergillus*, *Penicillium* and *Trichoderma* dominated among the tea soil fungi probably due to their greater ability to utilize different substrates in the soil, antagonistic activity against other fungi, a greater rate of spore production as well as greater spore dispersal rate and resistance against extreme environmental conditions. Phosphate solubilization assay carried out with these dominant fungal genera showed that species under *Aspergillus* were the most effective phosphate solubilizers which were followed by *Penicillium* and *Trichoderma* species. The present study will aid and expand knowledge on indigenous fungi and their various roles. The potent phosphate-solubilizers isolated in this study can be a future source of biofertilizers consortium for tea and other plants and hence, provide economically and environmentally viable strategy towards plant growth-promoting strategies. In the present study, fungal identifications were carried out using morphological methods however, further studies employing molecular, biochemical, and physiological methods are important. The experiment was carried on solid media under laboratory conditions therefore, detailed investigation under field conditions must be considered to observe the potentialities of these fungi in improving tea productivity.

Authors’ Contributions

TJ - Concept development, sample collection, methodology, writing original draft; TA and AK - Validation supervision, review and editing of the original draft. All authors read and approved the final manuscript.

Ethical approval (for researches involving animals or humans)

Not applicable.
Acknowledgements

This study was financially supported by University Grant Commission - Basic Scientific Research (No.NU/PF/F-17/2013), Government of India, New Delhi.

Conflict of Interests

The authors declare that there are no conflicts of interest related to this article.

References

Ao T, Deb CR, Khruomo N (2016). Wild edible mushrooms of Nagaland, India: A potential food resource. Journal of Experimental Biology and Agricultural Sciences 4(1):59-65. http://dx.doi.org/10.18006/2015.4(1).5965

Asan A (2004). Aspergillus, Penicillium and related species reported from Turkey. Mycotaxon 89(1):155-157.

Atlas RM (2004). Handbook of microbiological media. CRC Press LLC, Boca Raton, Florida.

Bamett HL (1965). Illustrated genera of imperfect fungi. Burgess Publishing Company, Minnea Polis.

Bisi-Johnson MA, Obi CL, Ekosse GE (2010). Microbiological and health related perspectives of geophagia: An overview. African Journal of Biotechnology 9(36):5784-5791. https://doi.org/10.5897/AJB2010.000-3307

Bridge P, Spooner B (2001). Soil fungi: Diversity and detection. Plant and Soil 232:147-154. https://doi.org/10.1023/A:1010346305799

Christensen M (1989). A view of fungal ecology. Mycologia 81(1):1-19. https://doi.org/10.1080/00275514.1989.12025620

Domsch KH, Gams W, Anderson T (1980). Compendium of soil fungi. Academic Press, London.

Frisvad JC, Samson RA (2004). Polyphasic taxonomy of Penicillium subgenus Penicillium. A guide to identification of food and airborne terverticillate Penicillia and their mycotoxins. Studies in Mycology 49:1-173.

Gilman JC (2001). A manual of soil fungi. Biotech Books, Delhi, India.

Hajiboland R (2017). Environmental and nutritional requirements for tea cultivation. Folia Horticulturae 29(2):199-220. https://doi.org/10.1515/fhort-2017-0019

Jamir T, Ajungla T (2018). Morphological characterization of fungi in tea garden. International Journal of Basic and Applied Research 8(2):296-303.

Karaoglu SA, Ulker S (2006). Isolation, identification and seasonal distribution of soilborne fungi in tea growing areas of Iyidere-Ikizdere vicinity (Rize-Turkey). Journal of Basic Microbiology 46(3):208-218. https://doi.org/10.1002/jobm.200510030

Klich MA (2002). Identification of common Aspergillus species. Central Bureau Voor Schimmel Cultures, Utrecht, Netherlands.

Kumar R, Tapwal A, Pandey S, Borah RK, Borah D, Borgohain J (2013). Macro-fungal diversity and nutrient content of some edible mushrooms of Nagaland, India. Nusantara Bioscience 5 (1):1-7. http://dx.doi.org/10.13057/Nusbiosci/N050101

Nelson PE, Toussoun TA, Marasas WFO (1983). Fusarium species: An illustrated manual for identification. The Pennsylvania State University Press, Pennsylvania, USA.

Pandya ND, Desai PV, JadHAV HP, Sayyed, RZ (2018). Plant growth promoting potential of Aspergillus sp. NPF7, isolated from wheat rhizosphere in South Gujarat, India. Environmental Sustainability 1:245-252. https://doi.org/10.1007/s42398-018-0025-z

Pandey A, Palni LMS, Bish D (2001). Dominant fungi in the rhizosphere of established tea bushes and their interaction with the dominant bacteria under in situ conditions. Microbiological Research 156(4):377-382. https://doi.org/10.1078/0944-5013-00123

Pitt JI, Hocking AD (2009). Fungi and food spoilage. Springer Dordrecht, Heidelberg, New York.

Raper KB, Thom C (1949). A manual of Penicillia. Williams and Wilkins Co., Baltimore, U.S.A.

Rifai MA (1969). A revision of the genus Trichoderma. In: Mycological Paper No. 116. Commonwealth Mycological Institute, International, Wallingford, UK, pp 1-56.
Samson RA, Visagie CM, Houbraken J, Hong SB, Hubka V, Klaassen CHW, … Frisvad, JC (2014). Phylogeny, identification and nomenclature of the genus Aspergillus. Studies in Mycology 78:141-173. https://doi.org/10.1016/j.simyco.2014.07.004

Senanayake IC, Rathnayaka AR, Marasinghe DS, Calabon MS, Gentekaki E, Lee HB, … Xiang MM (2020). Morphological approaches in studying fungi: collection, examination, isolation, sporulation and preservation. Mycosphere 11(1):2678-2754. https://doi.org/10.5943/mycosphere/11/1/20

Siddiquee S (2017). Morphology-based characterization of Trichoderma species. In: Practical handbook of the biology and molecular diversity of Trichoderma species from tropical regions. Springer International Publishing, pp 41-73. https://doi.org/10.1007/978-3-319-64946-7_4

Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013). Phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus 2:587. https://doi.org/10.1186/2193-1801-2-587

Thiep NV, Soytong K, Thi Kim Oanh N, Huy Quang P, Hai Yen P (2019). Research and development of enzymatic producing fungi as biofertilizer for tea and arabica coffee production in Northern Vietnam. International Journal of Agricultural Technology 15(5):797-806.

Waksman SA (1922) A method of counting the number of fungi in the soil. Journal of Bacteriology 7(3):339-341.

Wang H, Hyde KD, Soytong K, Lin F (2008). Fungal diversity on fallen leaves of Ficus in northern Thailand. Journal of Zhejiang University Science 9:835-841.

Wabang T, Ajungla T (2016). Edible, medicinal and red listed monkey head mushroom Hericium erinaceus (Bull.) Pers. from Japfu mountain of Kohima needs immediate protection. Current Botany 7:33-35. http://dx.doi.org/10.19071/cb.2016.v7.3064

Watanabe T (2002). Pictorial atlas of soil and seed fungi: morphologies of cultured fungi and key to species. CRC Press, Boca Raton. https://doi.org/10.1201/9781420040821

Wu B, Hussain M, Zhang W, Stadler M, Liu X, Xiang M (2019). Current insights into fungal species diversity and perspective on naming the environmental DNA sequences of fungi. Mycology 10(3):127-140. https://doi.org/10.1080/21501203.2019.1614106

Yadav J, Verma JP, Tiwari KN (2011). Plant growth promoting activities of fungi and their effect on chickpea plant growth. Asian Journal of Biological Sciences 4(3):291-299. https://dx.doi.org/10.3923/ajbs.2011.291.299

The journal offers free, immediate, and unrestricted access to peer-reviewed research and scholarly work. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author.

License - Articles published in Notulae Scientia Biologicae are Open-Access, distributed under the terms and conditions of the Creative Commons Attribution (CC BY 4.0) License. © Articles by the authors; SHST, Cluj-Napoca, Romania. The journal allows the author(s) to hold the copyright/to retain publishing rights without restriction.