Autoregulation of convergent RNAi genes in fission yeast

Monika Gullerova,1 Danesh Moazed,2 and Nick J. Proudfoot1,3

1 Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom; 2 Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA

RNAi plays a central role in the regulation of eukaryotic genes. In Schizosaccharomyces pombe fission yeast, RNAi involves the formation of siRNA from dsRNA that acts to establish and maintain heterochromatin over centromeres, telomeres, and mating loci. We showed previously that transient heterochromatin also forms over S. pombe convergent genes (CGs). Remarkably, most RNAi genes are themselves convergent. We demonstrate here that transient heterochromatin formed by the RNAi pathway over RNAi CGs leads to their autoregulation in G1–S. Furthermore, the switching of RNAi gene orientation from convergent to tandem causes loss of their G1–S down-regulation. Surprisingly, yeast mutants with tandemized dcr1, ago1, or clr4 genes display aberrant centromeric heterochromatin, which results in abnormal cell morphology. Our results emphasize the significance of gene orientation for correct RNAi gene expression, and suggest a role for cell cycle-dependent formation of RNAi CG heterochromatin in cellular integrity.

[Keywords: RNAi genes; autoregulation; convergent genes; fission yeast; heterochromatin]

Supplemental material is available for this article.

Received December 7, 2010; revised version accepted January 25, 2011.
Saccharomyces cerevisiae and mammalian cells, little information about the mechanism of 3′-end processing and termination is available for fission yeast. Of the few genes so far examined—which include ura4, nmt1, and nmt2—it is apparent that both specific polyA signals and transcriptional pause sites may be present (Birse et al. 1997; Hansen et al. 1998; Aranda and Proudfoot 1999). In mammalian genomes, gene transcription will often generate multiple mRNA species that use both gene-proximal as well as additional more distal polyA signals [Tian et al. 2005; Sandberg et al. 2008; Mayr and Bartel 2009]. This readthrough transcription may therefore have biological importance through the generation of multiple mRNAs from one gene that may have particular regulatory functions. Interestingly, readthrough transcription has also been shown to occur for some genes in S. pombe, in particular when they are arranged in convergent orientation along the chromosome (Gullerova and Proudfoot 2008).

Studies in fission yeast have established that centromeric heterochromatin, thought to be normally transcriptionally silent, paradoxically depends on its own transcription. During mitosis, H3K9 methylation and Swi6 are lost, which allows centromeric transcripts to briefly accumulate in the S phase. Rapid processing of these transcripts into siRNA restores H3K9 methylation and Swi6 occupancy, leading to cohesin recruitment in G2 (Chen et al. 2008; Kloc and Martienssen 2008; Kloc et al. 2008). We also showed that heterochromatin is formed transiently over cotranscribed convergent genes (CGs) in G1–S, as during this phase of the cell cycle readthrough transcription appears to predominate. Overlapping complementary transcripts so generated result in dsRNA formation, which activates the RNAi pathway. CG heterochromatin is recognized by Swi6, which in turn leads to cohesin recruitment (Gullerova and Proudfoot 2008). Cohesin thus localized between CGs throughout the genome [Lengronne et al. 2004] acts to block further transcriptional readthrough in G2. H3K9me3 is subsequently removed during the S phase, so that CG transcription in G2 now generates nonoverlapping mRNA using proximal polyA sites (Gullerova and Proudfoot 2008). The fission yeast genome contains 5027 protein-encoding genes (Sanger Institute), of which 30% are convergent [Singleton and Levin 2002]. However, only a fraction of CG pairs may be cotranscribed to produce dsRNA in G1–S.

In this study, we extend our previous analysis of CG expression in fission yeast (Gullerova and Proudfoot 2008) by characterizing the cell cycle expression and heterochromatin formation of CGs that encode [as one partner] RNAi factors. Significantly, all protein complexes currently known to be involved in the RNAi pathway have CG components where the gene pairs in question are cotranscribed. We first show that CGs, unlike tandem genes (TGs), are generally down-regulated in G1–S, and this down-regulation requires the RNAi pathway. We then demonstrate that conversion of three key RNAi genes from convergent to tandem orientation causes loss of their G1–S down-regulation. Surprisingly, this in turn restricts centromeric transcription and causes aberrant cell morphology. Our studies therefore provide evidence for the critical importance of RNAi gene orientation in the correct regulation of heterochromatin formation and, consequently, in cell cycle progression.

Results

In our previous studies on CGs in S. pombe [Gullerova and Proudfoot 2008], we defined a cell cycle pathway for CG expression that is based on the regulated termination of transcription between CG pairs. In G1, readthrough transcription occurs, while in G2, efficient termination dominates using the gene proximal pA signal. This switch in termination profile is brought about by formation of G1-restricted CG dsRNA, which in turn elicits transient heterochromatin formation, including cohesin deposition. Cohesin then acts as a termination factor in G2, preventing further readthrough transcription and dsRNA formation. Effectively, CG heterochromatin is G1-restricted. This intricate regulatory pathway of CG transcription may in part relate to the need for cohesin recruitment along chromosome arms. Possibly, the restricted recruitment of cohesin solely to centromeres and telomeres is too limited to fully facilitate sister chromatid alignment in G2. However, we wondered whether some CGs might also use this complex transcription regulation for other biological purposes. We therefore scrutinized the genes that exist in convergent orientation to look for potential functional patterns. This led us to the realization that many genes encoding RNAi factors are themselves convergent.

Convergent RNAi genes are down-regulated in G1–S

Most RNAi genes, which are required for heterochromatin establishment, are themselves convergent [Fig. 1A]. RNAi components [Dcr1, Ste1, ARC, RTS, RDR3, CLRC, and HDACs] derive from predominantly convergent genes. On a random basis, it is predicted that CGs represent ~30% of all RNAi genes. However, they are actually 80% of all known RNAi genes required for heterochromatin establishment [Supplemental Fig. 1]. We analyzed three other randomly selected genetic pathways: polyadenylated mRNA export from nucleus, maintenance of DNA repeat elements, and response to caffeine. In all three cases, CGs represent the expected 25%–36% level of genes involved in these different pathways [Supplemental Fig. 1], arguing against bias in the much higher level of RNAi CGs. The fact that all of these RNAi genes and their CG partners are also cotranscribed [data not shown] further emphasizes the nonrandom CG arrangement of RNAi genes.

Since cotranscribed CGs form transient G1–S heterochromatin, we wished to determine whether such heterochromatin marks result in down-regulation of CG RNAi gene expression. Indeed, global analysis of S. pombe gene transcript levels throughout the cell cycle [Sanger Center/ gene expression viewer] shows a mild but consistent reduction in G1–S transcript levels for convergent RNAi
genes. We repeated this analysis using quantitative RT–PCR (qRT–PCR) in wild-type G1–S and G2 cells. All CG RNAi mRNA levels decreased in G1–S about twofold as compared with control TGs (Fig. 1B). Similarly, RNAi protein levels were reduced in G1–S blocked cells. The levels of reduction varied from 1.5-fold to twofold, presumably depending on relative protein stability. Note that two TG-derived proteins do not show G1–S-phase reduction in levels (Fig. 1C). We next measured Pol II occupancy over the centromere (cen), CGs, and TGs. As expected, cen Pol II signals were detected in G1–S-phase cells but not in G2 (Fig. 1D). This result correlates with the previously described cell cycle control of centromeric transcription [Chen et al. 2008]. However, all tested RNAi CGs showed an opposite effect to cen with higher Pol II levels in G2, but lower Pol II levels in G1–S (Fig. 1D). Notably, the reduction in Pol II levels for CGs in G1–S as compared with G2 was significantly larger than the RNA level change, indicating that nascent transcription is severely affected [by more than fourfold]. Finally, we showed that Pol II occupancy over a panel of TGs did not alter significantly through the cell cycle (Supplemental Fig. 2A).

Transient CG heterochromatin requires Dcr1 and Ago1 but not Rdp1 activities

Since CG and centromeric heterochromatin show different cell cycle regulation, we wished to determine whether this might reflect different usage of the cellular RNAi apparatus. We first verified that heterochromatin forms on CGs using G1 chromatin, as described previously [Gullerova and Proudfoot 2008]. Thus, hydroxyurea (HU)-treated wild-type or cdc10ts, mutant cells both blocked in late G1–S, gave similar levels of H3K9me3...
signal over a range of CGs, while no signal was detectable over a TG panel (Supplemental Fig. 3). Previously, temperature shift was shown to cause accumulation of siRNA through inhibition of RNAi [Kloc et al. 2008]. Therefore, we elected to use HU-blocked and released cells for further experiments. Using HU-blocked Δdcr1, Δago1, and Δchp1 cells, we observed a near complete loss of heterochromatin marks for CGs (Fig. 2A), confirming a general requirement for Dcr1 and RITS complex in heterochromatin formation. Similarly, G2 cen heterochromatin requires Dcr1 and RITS. In contrast, gene deletion of all RDRC components had little effect on CG H3K9me3 levels, but a substantial effect on cen [Fig. 2B]. Next, we examined the methyltransferase complex CLRC. The H3K9me3 mark was lost at both cen and CGs with Δclr4 and Δrik1 mutants [Fig. 2C], confirming the crucial role of CLRC in H3K9 methylation. Since nucleosomes must be kept underacetylated at sites of heterochromatin formation, we also examined the role of HDACs Clr3 and Sir2 in CG heterochromatin formation. While Δclr3 gave little reduction of H3K9me3 on both cen and CG, Δsir2 led to a substantial decrease in H3K9me3 over cen and its total loss over CGs [Fig. 1D]. This confirms that Sir2 is the major H3K9-specific HDAC [Shankaranarayana et al. 2003], essential for heterochromatin formation over CGs.

As shown above, Dcr1 and RITS complex are required for CG heterochromatin formation. This implies that CG readthrough transcription forms dsRNA, which is then processed into siRNAs. However, genomic RNA sequencing of siRNAs in S. pombe failed to detect significant CG siRNA above background levels of genomewide RNA degradation products [Buhler et al. 2008]. Possibly, the transient [G1–S-restricted] nature of CG

Figure 2. Comparison of heterochromatin (H3K9me3) between cen and CGs. CG heterochromatin was isolated from HU-blocked cells (Supplemental Fig. 3A), while cen was from unsynchronized cells. ChIP analysis was performed using H3K9me3 antibody. Probe for cen is specific to dg repeat. Probes for CGs represent average signal of four different CG probes in ORFs (mei4, act1, nmt2, and avn2). ChIP signals were normalized to wild-type levels (100%). Bars represent at least three biological repeats. Errors were determined by SD. (A–D) H3K9me3 ChIP analysis is shown on cen and CGs in Δdcr1, Δago1, and Δchp1 (A), in RDRC deletion mutants (B), in CLRC deletion mutants (C), and for sir2 and clr3 HDAC deletion mutants (D). (E) Plasmid expressing dcr1 D937A (RNase III catalytic domain mutant) was transformed into a Δdcr1 background and compared with wild-type cells by ChIP analysis, as above. (F) Plasmid expressing ago1 D580A (slicer mutant) was transformed into Δago1 and compared with wild-type cells by ChIP analysis, as above.
heterochromatin, and the fact that no Rdp1 amplification of CG transcription occurs, makes detection of CG siRNA problematic. Even so, CG siRNAs have been detected for some Drosophila CGs (Czech et al. 2008). In view of the very low levels of CG siRNA in S. pombe, we tested whether CG heterochromatin depends on Dcr1 and Ago1 RNA processing activity. To do this we used a dcr1D937A strain mutated in the catalytic site of the RNase IIIa domain (Colmenares et al. 2007), and ago1D580A mutated in the endonucleolytic cleavage or slicing domain PIWI (Irvine et al. 2006; Buker et al. 2007). Significantly, both of these mutants showed loss of centromeric and CG heterochromatin [Fig. 2E, F]. We conclude that both dcr1 and ago1 RNA processing activities are required for CG heterochromatin formation. Recent experiments described below [Fig. 5C, below] now show the detection of low levels of G1–S-specific siRNAs from the ago1-mmi1 CGs. This result confirms the requirement of Dcr1 and Ago1 RNA processing for CG heterochromatin formation.

RNAi genes are autoregulated in G1–S

Our above results show that many RNAi genes are convergent and are down-regulated in G1–S by forming transient heterochromatin through the RNAi pathway. We therefore confirmed that RNAi genes are effectively autoregulated by the RNAi pathway during the cell cycle. First, we measured mRNA levels of RNAi CGs from G1–S blocked Δdcr1, Δago1, Δclr4, and ΔSir2 cells and observed variable mRNA accumulation [Fig. 3A], in marked contrast to eight TGs [Supplemental Fig. 2B]. According to our above results [Fig. 2B], RDRC is not involved in heterochromatin formation over CGs. Significantly, mRNA levels of RNAi genes in G1–S phase were unaffected in RDRC mutants Δrdp1, Δhrr1, and Δcid12 [Fig. 3B]. We also quantified Ago1 levels on chromatin from G1–S blocked and G2 cells. Centromeres showed higher Ago1 occupancy in G2, but lower levels in G1–S. Strikingly, all tested convergent RNAi genes showed an opposite profile, with high Ago1 levels in G1–S and only background levels in G2 [Fig. 3C]. Notably, we detected only background Ago1 levels on TGs in both G1–S and G2 [Supplemental Fig. 2C]. These results suggest that convergent RNAi genes result in readthrough mRNAs in G1–S that are then processed by RNAi to form their observed transient heterochromatin marks. In an almost mirror-image arrangement, centromeric heterochromatin is fully established throughout G2 with complete transcriptional silencing, while in G1–S, centromeric Pol II and associated transcripts become clearly detectible. The opposite cell cycle regulation of these two heterochromatic classes suggests an autoregulatory process whereby CG RNAi gene down-regulation in G1–S affords some relaxation in centromeric heterochromatin with consequent transcription during this limited cell cycle time period.

Switching convergent RNAi genes to tandem orientation

The marked difference in expression patterns of CGs and TGs during the cell cycle suggests that the convergent orientation of these RNAi genes is a defining feature. To test whether changing gene orientation from convergent to tandem leads to a different expression pattern, we introduced ura4 between the key RNAi CGs (ago1-mmi1, spn6-dcr1, and meu6-clr4) and the non-RNAi nmt2-avn2 CG pair as a control, all in a Δura4 strain. This effectively changes ago1, dcr1, clr4, and nmt2 from convergent to tandem orientation. We refer to these reoriented genes as...
“tandemized.” The mutant strains so generated are called Tago1, Tdcr1, Tclr4, and Tnmt2. In these strains, the integrated ura4 is tandem with each RNAi gene, but in a convergent orientation with respect to downstream mmi1, spn6, meu6, and avn2, respectively (Fig. 4A–D). In these gene reconstructions, we maintained full promoter and terminator elements in ura4 (Birse et al. 1997). We also positioned ura4 between each CG so as to maintain promoter and terminator elements. Wild-type and tandemized mutant strains were blocked by HU treatment in G1–S and then released into G2. RT–PCR analysis systematically revealed that tandemized ago1, dcr1, clr4, and nmt2 lose their transcriptional down-regulation in G1–S, seen in wild type, so that their expression profile now remains constant during the cell cycle. Semiquantitative gel analysis of the RT–PCR products obtained is shown for all four tandemized gene arrangements (levels of DNA product are shown below each gel lane in Fig. 4A–D). Also, for tandemized Tago1 and Tdcr1, quantitative real-time RT–PCR was performed (Fig. 4A,B, right graphs), reaffirming the loss of G1–S down-regulation, as observed in wild type. We also examined protein levels of Ago1 in wild-type and Tago1 cells. Consistent with the transcript analysis, a significant decrease in Ago1 levels was observed in wild-type G1–S as compared with G2. Levels of Ago1, significantly, were both constant and twofold-elevated in G1–S and G2 Tago1 (Fig. 4A). In contrast, ura4, which is a TG in wild type, showed a significant decrease of mRNA levels in G1–S, as it is now repositioned as a CG. The other CGs—mmi1, spn6, meu6, and avn2—continued to display down-regulation in G1–S, since they remain in a

![Figure 4. Gene orientation dictates RNAi CG expression during the cell cycle. (A–D) ura4 was introduced between the four CGs by homologous recombination as indicated, changing the orientation of adjacent RNAi CGs to tandem and itself becoming a CG. Total RNA was isolated from wild type and tandem mutants and blocked in G1–S by HU or released into G2, and RNA levels were determined by RT–PCR. Quantification shown below bands is expressed in arbitrary units. Multiple repeats of these experiments gave similar values within a 5% range. Specific RT primers were positioned within ORFs. Tandem fbp1 was used as a control. (A,B, right graphs) Tago1 and Tdcr1 were further quantitated by real-time RT–PCR. Also shown in A is a Western blot analysis of Ago1 in wild-type or Tago1 cells blocked in G1–S by HU or released to G2. Anti-Ago1 antibody was used to detect Ago1 protein levels. Equal levels of total protein extracts were confirmed by Western blotting using anti-tubulin antibody.](genesdev.cshlp.org)
convergent direction to ura4 [Fig. 4A–D]. These results confirm that convergent orientation affects gene expression during cell cycle, and furthermore suggest that the convergent orientation for RNAi genes may relate to their function during the cell cycle.

We showed previously that CGs generate readthrough mRNAs in G1–S phase. We wished to test whether orientation switching affects this readthrough profile. 3'RACE analysis of wild-type ago1 and dcr1 genes in G1–S revealed the expected readthrough bands [Fig. 5A]. These are extended mRNAs derived from Pol II transcription that fails to use the proximal polyA site, instead reading through to more distal polyA signals. In marked contrast, a single band, corresponding to mRNA terminated after the proximal polyA site, was observed in G1–S for both tandem-oriented ago1 and dcr1 (Tago1 and Tdcr1 mutants). Notably, this confirms that the ura4 insertion in Tago1 and Tdcr1 has not interrupted ago1 or dcr1 polyA signals. Effectively, the switch from proximal polyA site in G2 to readthrough transcripts in G1–S is lost in the tandem-oriented ago1 and dcr1 mutants [Fig. 5A]. Consistent with the loss of dsRNA in Tago1, Tdcr1, and Tdcr4, we also observed a loss of G1–S-specific heterochromatin marks over these modified gene loci [Fig. 5B]. In view of the clear difference in heterochromatin status between tandemized and wild-type convergent RNAi genes, we searched for the presence of ago1 siRNAs in G1–S-phase wild-type cells and their absence in Tago1 cells. To maximize the sensitivity of this experiment, we used an improved Northern blot technique using a chemical (EDC) cross-linking procedure that favors small RNA detection [Pall et al. 2007]. Furthermore, G1–S cells were selected for by nitrogen starvation [Fig. 5C, left, FACS] and the siRNA fraction enriched by polyethylene glycol 8000 precipitation [see the Materials and Methods for details]. Note that nitrogen starvation blocks cells in late G1.
G1 (Sabatinos and Forsburg 2010) rather than the HU-induced S-phase block. This slightly early block in the cell cycle may favor higher siRNA accumulation. With 32P-labeled oligo probes across ago1-mm1, siRNA was detected in G1, but not significantly in G2 cells. Note that G1 Tago1 cells still produce mm1 siRNAs, as this gene is now convergent with ura4. Importantly, with solely ago1 oligo probes, siRNA was detected in G1 wild-type but not Tago1 cells (Fig. 5C). These crucial experiments were repeated multiple times, and their quantification is presented below selected Northern blots in Figure 5C.

Overall, these results demonstrate that the CG status of RNAi genes is required for down-regulation in G1–S at both mRNA and protein levels. This is clearly demonstrated by switching their orientation from convergent to tandem. Even though several-hundred nucleotides of 5' promoter and 3' terminator sequences were preserved on either side of the tandemized RNAi genes, we found that switching gene orientation was dominant over potential local cis-acting elements in preventing G1–S readthrough transcription. Consequently, heterochromatin marks were lost and transcription was no longer G1–S down-regulated. These results provide an unanticipated example of how gene orientation can affect gene expression.

Overexpression of ago1 and dcr1 causes aberrant centromeric transcription and gene silencing

We sought to establish the biological function for cell cycle-dependent down-regulation of RNAi genes. A potentially related observation is that increased levels of centromeric transcription [both sense and antisense] occur in G2 with dcr1 and clr4 deletion mutants, but only a slight increase in swi6 mutant cells [Motamedi et al. 2008]. Notably, swi6 is a TG. We therefore examined whether altered expression levels of ago1 and dcr1 could affect centromeric transcription. We compared our tandemized strains that display increased gene expression in G1–S phase with strains either deleted for ago1 or dcr1 or overexpressing ago1 and dcr1 from transformed plasmids (Buker et al. 2007; Colmenares et al. 2007).

RT–PCR analysis of RNA isolated from wild-type, Tago1, Tdcr1, Tclr4, and Tnmt2 cells blocked in G1–S revealed that the levels of centromeric antisense dg transcripts were significantly reduced in Tago1 and Tdcr1 cells. With Tclr4 cells, the effect on centromeric transcription was only slight, while the control Tnmt2 cells showed no effect [Fig. 6A]. Pol II levels at centromeres in wild-type, Tago1, Tdcr1, Tclr4, and Tnmt2 cells blocked in G1–S were also tested. Pol II occupancy over the centromere (dg region) correlated with the dg RT–PCR analysis, revealing significant reduction in Tago1 and Tdcr1 cells but only a mild (20%) reduction in Tclr4 cells. Tnmt2 again had no effect on Pol II at centromeres [Fig. 6B]. TG fbp1 was used as a control and showed no significant change in Pol II occupancy for the different strains. We next carried out RT–PCR analysis on dg antisense RNA from Δago1, Δdcr1, +ago1, and +dcr1 strains, all blocked in G1–S, and observed a significant reduction of dg transcripts in cells overexpressing ago1 or dcr1. In contrast, ago1 or dcr1 deletion caused the accumulation of centromeric transcripts [Fig. 6C]. Decreased levels of centromeric transcripts in cells overexpressing ago1 or dcr1 could be due to either post-transcriptional processing or lower Pol II levels. Therefore, we performed Pol II chromatin immunoprecipitation [ChIP] experiment on wild-type, +ago1, and +dcr1 cells and observed that Pol II levels were reduced in +ago1 or +dcr1 cells. The TG fbp1 was used as a control and showed no change in Pol II occupation [Fig. 6D]. To further investigate cen transcription in Tago1 cells, we finally quantitated the levels of cen siRNA in G1–S and G2. Interestingly, in contrast to Pol II-derived cen transcription, which decreased in Tago1 cells, siRNA levels increase by about twofold [Fig. 6E]. We predict that higher Ago1 levels in Tago1 cells may act to stabilize siRNA, resulting in higher siRNA detection.

A clear biological measure of altered centromeric transcription is the degree of reporter gene silencing when inserted within the centromeric repeats. We therefore used a strain with ade6 positioned at the right repeat of cen1 [Allshire et al. 1994]. Cells were grown on EMM plates with low adenine. Silencing at centromeres in wild-type cells lead to pink colony formation. Impaired silencing in Δago1 lead to active transcription of ade6 and, consequently, white colonies. Cells overexpressing ago1 showed a dark-red color, suggesting even more stable silencing at centromeres compared with wild-type cells. Tago1 colonies were dark pink, an intermediate phenotype [Fig. 6F]. This observation correlates with the fact that, in Tago1 cells, Ago1 levels are increased compared with wild type, but are lower than in +ago1 cells. We finally tested ade6 centromeric silencing for the other tandemized mutants. Like Tago1, Tdcr1 and Tclr4 gave the same intermediate silencing phenotype, while the control Tnmt2 strain gave a wild-type silencing phenotype.

Mutant strains with tandemized RNAi genes display aberrant cellular phenotypes

To look for cytological phenotypes, we examined wild-type, Tago1, Tdcr1, Tclr4, and Tnmt2 cells by light microscopy. Notably, Tago1 and Tdcr1 cells were visibly smaller than wild-type and Tnmt2 cells. Tclr4 cells were thicker, but otherwise similar to wild-type cells [Fig. 7A]. These altered cell morphologies indicate significant cell growth defects. Next, based on a previous study [Carmichael et al. 2004], we used DAPI staining to visualize mitotic nuclei. Tago1, Tdcr1, and Tclr4 cells displayed a high incidence of aberrantly extended chromosomes compared with wild type and Tnmt2 [Fig. 7B]. This phenotype, known as “archery bow,” indicates that, when cells enter mitosis, centromeres separate, but the distal regions of chromosomes remain associated [Funabiki et al. 1993, 1996], causing a delay in separation. This phenotype suggests that the cell cycle regulation of RNAi genes [lost in the tandem constructs] is linked directly or indirectly to cohesin and condensin function. We also examined the +ago1 and +dcr1 cells by light microscopy and observed that a majority of cells were smaller and had
abnormal morphological phenotypes (Fig. 7C) and higher proliferation (data not shown), similar to previous studies (Carmichael et al. 2004). These phenotypes may be connected to ago1 and dcr1 function in cell cycle regulation rather than defects at centromeric transcription (Carmichael et al. 2004), or possibly a combination of both.

Overall, these phenotypic data show that overexpression of ago1 and dcr1, by either tandemizing or transformation of expression plasmids, affects centromeric transcription in G1–S. This leads to both gene silencing and cytological defects that may impact on cell cycle progression.

Discussion

We describe different features of cen and CG heterochromatin. First, the RDRC complex, although essential for cen heterochromatin formation, is not required for CG heterochromatin. The transient nature of CG heterochromatin suggests that Pol II sense and antisense transcription is sufficient to generate dsRNA for CGs without relying on Rdpl amplification. In contrast, cen heterochromatin is a more permanent state that requires RDRC amplification of centromeric transcripts. How RDRC is recruited to centromeres but not CGs remains to be established. Importantly, we now provide direct evidence for the formation of siRNA from CG dsiRNA. Thus, both Dcr1 and Ago1 RNA processing activities are required for CG heterochromatin formation [Fig. 2E,F]. Furthermore, low levels of siRNA from ago1-mmi1 CGs are detectable using an improved Northern blot procedure and, appropriately, G1 synchronized cells (Fig. 5C). Significantly, these siRNAs are only detected in G1 phase but not from ago1 when it is in tandem orientation, as in Tago1.
Tago1 of DAPI-stained mitotic nuclei in wild-type, Tclr4. Exponential cultures were grown in EMM medium. (A) Strains harboring tandem-oriented RNAi genes show defective cellular phenotypes. (B) Analysis of DAPI-stained mitotic nuclei in wild-type, Tago1, Tdcr1, Tclr4, and Tmnt2 cells reveals archery bow phenotype in Tago1, Tdcr1, and Tclr4 cells. Values below selected cells show percentage of cells with the shown phenotype, based on indicated sample numbers. Wild type and Tmnt2 show the expected wild-type pattern, while Tago1, Tdcr1, and Tclr4 show the mutant phenotype. (C) +ago1 and +dcr1 have aberrant morphology compared with wild type. Cells were grown in EMM medium and analyzed by light microscopy using a 100× objective. (D) Model of cell cycle-dependent RNAi regulation of heterochromatin. Transcription of cen repeats is detectable in G1–S, when CGs are silenced by RNAi-dependent formation of transient heterochromatin. CGs are highly transcribed in G2, when cen is silenced. RNAi apparatus is denoted as ovals, while elongating Pol II is indicated in cartoon format. Red arrows denote silenced RNAi CGs in G1–S, while green arrows denote active RNAi CGs in G2.

Figure 7. Strains harboring tandem-oriented RNAi genes show defective cellular phenotypes. (A) Wild-type, Tago1, Tdcr1, Tclr4, and Tmnt2 cells were observed by light microscopy. Exponential cultures were grown in EMM medium. (B) Analysis of DAPI-stained mitotic nuclei in wild-type, Tago1, Tdcr1, Tclr4, and Tmnt2 cells reveals archery bow phenotype in Tago1, Tdcr1, and Tclr4 cells. Values below selected cells show percentage of cells with the shown phenotype, based on indicated sample numbers. Wild type and Tmnt2 show the expected wild-type pattern, while Tago1, Tdcr1, and Tclr4 show the mutant phenotype. (C) +ago1 and +dcr1 have aberrant morphology compared with wild type. Cells were grown in EMM medium and analyzed by light microscopy using a 100× objective. (D) Model of cell cycle-dependent RNAi regulation of heterochromatin. Transcription of cen repeats is detectable in G1–S, when CGs are silenced by RNAi-dependent formation of transient heterochromatin. CGs are highly transcribed in G2, when cen is silenced. RNAi apparatus is denoted as ovals, while elongating Pol II is indicated in cartoon format. Red arrows denote silenced RNAi CGs in G1–S, while green arrows denote active RNAi CGs in G2.

We demonstrate that RNAi genes are convergent and down-regulated in G1–S, implying a biological purpose for this gene arrangement. An exception to this rule is the CG clr6. However, Clr6 exists in two complexes with Sin3 and is essential for viability [Nicolas et al. 2007] and regulation of the checkpoint kinase Cds1 [Kunoh et al. 2008]. This suggests a more complex gene regulatory process. The key importance of RNAi CG arrangement is underlined by our analysis of tandem ago1 and dcr1 genes [Tago1 and Tdcr1]. The deregulation of their expression, when switched to a tandem orientation, shows clear defects in cell division and morphology. This provides a striking paradigm for the importance of gene position along a chromosome.

Faithful chromosome segregation is essential for successful completion of the cell cycle. RNAi mutants are known to display frequent defects, such as lagging chromosomes or chromosome loss during mitosis. This is related to incorrect sister chromatid orientation and the defective attachment of the kinetochore to the spindle [Provost et al. 2002, Hall et al. 2003]. These data support a model in which chromosome architecture is regulated by the RNAi pathway. Furthermore, RNAi core proteins have been shown to perform functions related to cell cycle regulation [Carmichael et al. 2004]. In fission yeast, Ago1 and Dcr1 regulate hyperphosphorylation of the mitotic regulator Cdc2 upon genotoxic insult. Under normal conditions, DNA damage activates signaling pathways, which leads to inhibitory phosphorylation of Cdc2 and cell cycle arrest [Rhind et al. 1997, Rhind and Russell 1998]. Once DNA damage is corrected, Cdc2 is dephosphorylated by Cdc25 mitotic phosphatase and cell cycle is restored [Russell and Nurse 1986, Millar et al. 1991]. ago1- and dcr1-null mutants fail to block mitosis in response to DNA damage, most probably due to the lack of Cdc2 hyperphosphorylation. These mutant cells divide unchecked, and so result in unequal chromosome divisions. Surprisingly, overexpression of human ago1 rescues checkpoint deficiencies in the dcr1-null strain [Carmichael et al. 2004], suggesting that Ago1 in higher eukaryotes also plays a role in cell cycle regulation. In addition, it has been shown that Ago1 binds to 14-3-3 proteins that function in cell cycle regulation. Also, overexpression of the Ago1 N terminus leads to cell cycle delays through inhibition of the nuclear import of cyclin kinase Cdc25 [Stoica et al. 2006].

As shown in these studies, overexpression of ago1 or dcr1 show striking morphological phenotypes. Cells lose their elongated shape and display hyperproliferation. This phenotype has been observed previously [Carmichael et al. 2004]. A milder version of the +ago1 and +dcr1 phenotypes is clearly visible in Tago1 and Tdcr1, suggesting that the dosage of these proteins must be tightly regulated. The intermediate phenotype of Tclr4 is consistent with the position of Clr4 in the RNAi pathway. Thus, higher levels of Dcr1 and Ago1 show strong phenotypes, as they act upstream in heterochromatin establishment. Indeed, high levels of RNAi core proteins may be cytotoxic. Notably, elevated levels of human Ago2 have been observed in a breast cancer cell line, where
ago2 overexpression enhances cell proliferation and reduces cell–cell adhesion (Adams et al. 2009). In addition, the Burkitt’s lymphoma-derived cell lines express four-fold higher levels of Dicer mRNA than normal human lymphocytes (Hecht and Aster 2000). Clearly, core RNAi proteins play a role in signaling and cell cycle regulation.

We propose a general model for cell cycle regulation in S. pombe (Fig. 7D) that may resolve the paradox of a transcriptional requirement to silence centromeric transcription. During mitosis, H3K9me and Swi6 occupancy on centromeric chromatin is altered by phosphorylated H3S10, which correlates with condensin recruitment (Hirano 2005). Cut3, a condensin subunit, displays enrichment in mitosis, but delocalizes from centromeres in G1→S (Chen et al. 2008). This opens up a short window of time for centromeric transcription in G1→S. We suggest that the RNAi machinery, precisely at this time period, preferentially acts on CGs, occurring at multiple positions along the chromosomal arms, where it leads to their down-regulation. This effective sequestration of the RNAi machinery to CGs destabilizes CEN heterochromatin, allowing its unrestricted transcription. Consistent with our model, deregulated levels of Ago1 or Dcr1 lead to a decrease in cen G1→S transcription (Fig. 6). RNAi gene expression is also down-regulated during G1→S through RNAi-mediated heterochromatin formation. Cohesin recruitment then blocks transcriptional readthrough in G2, and so prevents dsRNA formation (Gullerova and Proudfoot 2008). This results in translatable mRNAs and RNAi protein production in G2. Centromeric RNAs formed during S phase are quickly processed by RNAi and lead to heterochromatin restoration until the next M phase. Overall, our results demonstrate an autoregulatory process for RNAi-induced heterochromatin that neatly perpetuates these epigenetic marks through multiple rounds of cell division.

Materials and methods

Yeast strains

S. pombe 972 h- was used as wild type. Growth conditions and all genetic manipulations were carried out as described previously (Moreno et al. 1991). The S. pombe strains used in this study are summarized in Supplemental Table 1.

Silencing assay

The S. pombe strain with a reporter ade6 gene inserted in centromere was used as wild type for the silencing assay. Exponentially growing cells were serially diluted and dropped onto EMM-low ade plates. Growth of cells was checked on EMM complete plates. Chromosome instability was tested on YES containing 10 μg/mL thiabendazol plates.

ChIP

See the Supplemental Material for ChIP. Cells used are shown in Supplemental Table 1, antibodies are shown in Supplemental Table 2, and oligonucleotide primers are shown in Supplemental Table 3.

Cell cycle arrest

HU was used to block cells in early S phase. Exponential cell culture was treated by 11 mM HU for 4 h. Cells were washed twice with 50 mL of water and released for 1 h to grow. Cycling cells were used to provide predominantly G2 cell cycle chromatin (90%). Cdc10ts cells were blocked in G1 by a temperature shift (37°C). Cells were stained by propidium iodide and checked by FACS.

Northern blotting of siRNAs

Wild-type and Tago1 cells were grown in EMM medium for 20 h, washed, split into EMM and EMM-N, and incubated overnight at 25°C. Cell phase of the cultures was confirmed by FACS. RNA was extracted by resuspending cells in 50 mM Tris-HCl [pH 7.5], 10 mM EDTA [pH 8], 100 mM NaCl, and 1% SDS. Acid phenolchloroform and acid-washed glass beads were added, followed by three cycles of homogenization. Soluble fraction was extracted with isopropanol. siRNAs were precipitated as follows: RNA pellet was dissolved in 300 μL of TE buffer with addition of equal amounts of PEG solution (20% PEG 8000, 2 M NaCl). Samples were mixed and incubated for at least 30 min on ice, followed by centrifugation at 14,000×g for 15 min. siRNAs were precipitated from supernatant by isopropanol. Concentration of siRNA was measured by nano Drop. Sixty micrograms of total siRNA were loaded and separated on 17.5% polyacrylamide/7 M urea gel, followed by transfer onto positively charged nylon membrane (Roche). Cross-linking was performed as follows: For 320-cm2 membrane, 122.5 μL of 12.5 M 1-methylimidazol was added to 10 mL of DEPC-treated water and pH was adjusted to 8 by HCl. This was used to dissolve 0.373 μg of N-3(dimethylaminopropyl)-N-ethylcarbodiimide (EDC). Whatman paper (membrane size) was saturated with EDC solution. Membrane with the RNA side on top was placed on the EDC-saturated Whatman paper, wrapped in cling film, and incubated for 2 h at 65°C. Cross-linked membranes were prehybridized with ULTRAhyb-Oligo Hybridization buffer (Ambion) for at least 30 min. Mixtures of primers complementary to cen, ago1, or mmi1 were labeled with T4 PNK and 20 pmol 32P-P-ATP. Probes were incubated with membranes overnight at 35°C. Membranes were washed with 2× SSC and 0.5% SDS for 1 h and visualized using a PhosphorImager. Oligonucleotides used as probes were as follows: cen: dg1, CTACTTTCTTCGATGCTTG; dg2, GTA GTACGAGCAGATGTTTTC; dh1, ATTTCTTTCTGACCTCTCTTT; dh2, TTGATGCTTCCACCTCCTG; dh3, GGGCGTACATCTCCTCTCTCTGATA; dh4, TACTGT CATTAGGATATGGA; ago1-1, ATTGAGAGGAGTGGTGAAC; ago1-2, CCAGTATCTAGTAAATGCT; ago1-3, TAACGATGAAATGGCTAAA; ago1-4, AGAGATATAGCTAAAAC; ago1-5, ATACCCAAATCCCACTTCTCTG; ago1-6, GACCATCTCCTCAAGGGCT; ago1-7, AGCCGATGATCATTTGTTG; ago1-8, ACAAAGATGTGGTATATGTA; ago1-9, TTGTTTATTTTGTTTTC; ago1-10, TCCAATAATTGAAAACAGGCT; mmi1-1, CTCCTATCGGATTAGGTTG; mmi1-2, ACAGGAGCGCTTCTCATATG; mmi1-3, AGCAATCACATG TCTTGGAA; mmi1-4, AATCCAGGAAAAAGGAGATA.

Other RNA and protein isolation and analysis

See the Supplemental Material for other methods of RNA and protein analysis.

Microscopy

Cells were grown to mid-log phase, collected by centrifugation [1000g] for 3 min, washed with water, and dropped onto slides.
Cells were fixed by boiling at 65°C and stained with DAPI in 50% glycerol solution.

Acknowledgments

We thank the Moazed laboratory for support and technical advice, especially Erica Gerace. We also thank Thomas Gligoris for valuable advice and comments. We gratefully received strains for valuable advice and comments. We gratefully received strains and HHMI to D.M. This work was supported by a Wellcome Trust program and a Cancer Research UK project grant to N.J.P. and HHMI to D.M.

References

Adams BD, Claffey KP, White BA. 2009. Argonaute-2 expression is regulated by epidermal growth factor receptor and mitogen-activated protein kinase signaling and correlates with a transformed phenotype in breast cancer cells. Endocrinology 150: 14–23.

Allshire RC, Javerzat JP, Redhead NJ, Cranston G. 1994. Position effect variegation at fission yeast centromeres. Cell 76: 157–169.

Aranda A, Proudfoot NJ. 1999. Definition of transcriptional pause elements in fission yeast. Mol Cell Biol 19: 1251–1261.

Birse CE, Lee BA, Hansen K, Proudfoot NJ. 1997. Transcriptional termination signals for RNA polymerase II in fission yeast. EMBO J 16: 3633–3643.

Buhler M, Spies N, Bartel DP, Moazed D. 2008. TRAMP-mediated RNA surveillance prevents spurious entry of RNAs into the Schizosaccharomyces pombe siRNA pathway. Nat Struct Mol Biol 15: 1015–1023.

Buker SM, Iida T, Buhler M, Villen J, Gygi SP, Nakayama J, Moazed D. 2007. Two different Argonaute complexes are required for siRNA generation and heterochromatin assembly in fission yeast. Nat Struct Mol Biol 14: 200–207.

Carmichael JB, Provost P, Ekwall K, Hohman TC. 2004. ago1 and dcr1, two core components of the RNA interference pathway, functionally diverge from rdp1 in regulating cell cycle events in Schizosaccharomyces pombe. Mol Biol Cell 15: 1425–1435.

Carrthew RW, Sontheimer EJ. 2009. Origins and mechanisms of miRNAs and siRNAs. Cell 136: 642–655.

Chen ES, Zhang K, Nicolas E, Cam HP, Zofall M, Grewal SI. 2008. Cell cycle control of centromeric repeat transcription and heterochromatin assembly. Nature 451: 734–737.

Colmenares SU, Buker SM, Buhler M, Dlakic M, Moazed D. 2007. Coupling of double-stranded RNA synthesis and siRNA generation in fission yeast RNAi. Mol Cell 27: 449–461.

Czech B, Malone CD, Zhou R, Stark A, Schlingheheyde C, Dus M, Perrimon N, Kellis M, Wohlschlegel JA, Sachidanandam R, et al. 2008. An endogenous small interfering RNA pathway in Drosophila. Nature 453: 798–802.

Funabiki H, Hagan I, Uzawa S, Yanagida M. 1993. Cell cycle-dependent specific positioning and clustering of centromeres and telomeres in fission yeast. J Cell Biol 121: 961–976.

Funabiki H, Kumada K, Yanagida M. 1996. Fission yeast Cut1 and Cut2 are essential for sister chromatid separation, concentrate along the metaphase spindle and form large complexes. EMBO J 15: 6617–6628.

Grewal SI, Jia S. 2007. Heterochromatin revisited. Nat Rev Genet 8: 35–46.

Gromak N, West S, Proudfoot NJ. 2006. Pauses sites promote transcriptional termination of mammalian RNA polymerase II. Mol Cell Biol 26: 3986–3996.

Gullerova M, Proudfoot NJ. 2008. Cohesin complex promotes transcriptional termination between convergent genes in S. pombe. Cell 132: 983–995.

Hall IM, Noma K, Grewal SI. 2003. RNA interference machinery regulates chromosome dynamics during mitosis and meiosis in fission yeast. Proc Natl Acad Sci 100: 193–198.

Hansen K, Birse CE, Proudfoot NJ. 1998. Nascent transcription from the nmt1 and nmt2 genes of Schizosaccharomyces pombe overlaps neighbouring genes. EMBO J 17: 3066–3077.

Hecht JL, Aster JC. 2000. Molecular biology of Burkitt’s lymphoma. J Clin Oncol 18: 3707–3721.

Hirano T. 2005. Condensins: organizing and segregating the genome. Curr Biol 15: R265–R275. doi: 10.1016/j.cub.2005.03.037.

Irvine DV, Zaratiegui M, Tolia NH, Goto DB, Chitwood DH, Vaughn MW, Joshua-Tor L, Martienssen RA. 2006. Argonaute slicing is required for heterochromatic silencing and spreading. Science 313: 1134–1137.

Kloc A, Martienssen R. 2008. RNAi, heterochromatin and the cell cycle. Trends Genet 24: 511–517.

Kloc A, Zaratiegui M, Nora E, Martienssen R. 2008. RNA interference guides histone modification during the S phase of chromosomal replication. Curr Biol 18: 490–495.

Kunoh T, Habu T, Matsumoto T. 2008. Involvement of fission yeast Ctr6-HDAC in regulation of the checkpoint kinase Cds1. Nucleic Acids Res 36: 3311–3319.

Lengronne A, Katou Y, Mori S, Yokobayashi S, Kelly GP, Itoh T, Watanabe Y, Shirahige K, Uhlmann F. 2004. Cohesin re-localization in yeast during mitosis of chromosomes 3 and 14. EMBO J 23: 373–383.

Mattick JS. 2009. The genetic signatures of noncoding RNAs. PLoS Genet 5: e1000459. doi: 10.1371/journal.pgen.1000459.

Mayr C, Bartel DP. 2009. Widespread shortening of 3′UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell 138: 673–684.

Millar JB, McGowan CH, Lenaers G, Jones R, Russell P. 1991. p80cdc25 mitotic inducer is the tyrosine phosphatase that activates p34cdc2 kinase in fission yeast. EMBO J 10: 4301–4309.

Moreno S, Klar A, Nurse P. 1991. Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol 194: 795–823.

Motamedi MR, Verdel A, Colmenares SU, Gerber SA, Gygi SP, Moazed D. 2004. Two RNAi complexes, RITS and RDRC, physically interact and localize to noncoding centromeric RNAi complexes. Cell 119: 789–802.

Motamedi MB, Hong EJ, Li X, Gerber S, Denison C, Gygi S, Moazed D. 2008. HP1 proteins form distinct complexes and mediate heterochromatin gene silencing by nonoverlapping mechanisms. Mol Cell 32: 778–790.

Neil H, Malabat C, D’Aubenton-Carafa Y, Xu Z, Steinmetz LM, Jacques A. 2009. Widespread bidirectional promoters are the major source of cryptic transcripts in yeast. Nature 457: 1038–1042.

Nicolas E, Yamada T, Cam HP, Fitzgerald PC, Kobayashi R, Grewal SI. 2007. Distinct roles of HDAC complexes in promoter silencing, antisense suppression and DNA damage protection. Nat Struct Mol Biol 14: 372–380.

Noma K, Allis CD, Grewal SI. 2001. Transitions in distinct histone H3 methylation patterns at the heterochromatin domain boundaries. Science 293: 1150–1155.

Pall GS, Codony-Servat C, Byrne J, Ritchie L, Hamilton A. 2007. Carbodiimide-mediated cross-linking of RNA to nylon membranes improves the detection of siRNA, miRNA and piRNA
Gullerova et al.

by northern blot. *Nucleic Acids Res* 35: e60. doi: 10.1093/ nar/gkm112.

Proudfoot N. 2004. New perspectives on connecting messenger RNA 3′ end formation to transcription. *Curr Opin Cell Biol* 16: 272–278.

Provost P, Silverstein RA, Dishart D, Walfriðsson J, Djupedal I, Knøla B, Wright A, Samuelsson B, Radmark O, Ekwall K. 2002. Dicer is required for chromosome segregation and gene silencing in fission yeast cells. *Proc Natl Acad Sci* 99: 16648–16653.

Rhind N, Russell P. 1998. Tyrosine phosphorylation of cdc2 is required for the replication checkpoint in *Schizosaccharomyces pombe*. *Mol Cell Biol* 18: 3782–3787.

Rhind N, Furnari B, Russell P. 1997. Cdc2 tyrosine phosphorylation is required for the DNA damage checkpoint in fission yeast. *Genes Dev* 11: 504–511.

Richard P, Manley JL. 2009. Transcription termination by nuclear RNA polymerases. *Genes Dev* 23: 1247–1269.

Russell P, Nurse P. 1986. cdc25+ functions as an inducer in the mitotic control of fission yeast. *Cell* 45: 145–153.

Sabatinos SA, Forsburg SL. 2010. Molecular genetics of *Schizosaccharomyces pombe*. *Methods Enzymol* 470: 759–795.

Sandberg R, Neilson JR, Sarma A, Sharp PA, Burge CB. 2008. Proliferating cells express mRNAs with shortened 3′ untranslated regions and fewer microRNA target sites. *Science* 320: 1643–1647.

Shankaranarayana GD, Motamedi MR, Moazed D, Grewal SI. 2003. Sir2 regulates histone H3 lysine 9 methylation and heterochromatin assembly in fission yeast. *Curr Biol* 13: 1240–1246.

Singleton TL, Levin HL. 2002. A long terminal repeat retrotransponson of fission yeast has strong preferences for specific sites of insertion. *Eukaryot Cell* 1: 44–55.

Stoica C, Carmichael JB, Parker H, Pare J, Hobman TC. 2006. Interactions between the RNA interference effector protein Ago1 and 14-3-3 proteins: consequences for cell cycle progression. *J Biol Chem* 281: 37646–37651.

Sun FL, Elgin SC. 1999. Putting boundaries on silence. *Cell* 99: 459–462.

Tian B, Hu J, Zhang H, Lutz CS. 2005. A large-scale analysis of mRNA polyadenylation of human and mouse genes. *Nucleic Acids Res* 33: 201–212.

Verdel A, Jia S, Gerber S, Sugiyama T, Gygi S, Grewal SI, Moazed D. 2004. RNAi-mediated targeting of heterochromatin by the RITS complex. *Science* 303: 672–676.

Volpe TA, Kidner C, Hall IM, Teng G, Grewal SI, Martienssen RA. 2002. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. *Science* 297: 1833–1837.

Volpe T, Schramke V, Hamilton GL, White SA, Teng G, Martienssen RA, Allshire RC. 2003. RNA interference is required for normal centromere function in fission yeast. *Chromosomes Res* 11: 137–146.

West AG, Huang S, Gaszner M, Litt MD, Felsenfeld G. 2004. Recruitment of histone modifications by USF proteins at a vertebrate barrier element. *Mol Cell* 16: 453–463.

West S, Gromak N, Proudfoot NJ. 2004. Human 5′ → 3′ exonuclease Xrn2 promotes transcription termination at co-transcriptional cleavage sites. *Nature* 432: 522–525.

Wilhelm BT, Marguerat S, Watt S, Schubert F, Wood V, Goodhead I, Penkett CJ, Rogers J, Bahler J. 2008. Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. *Nature* 453: 1239–1243.

Xu Z, Wei W, Gagneur J, Peroschi F, Clauder-Munster S, Camblong J, Guiffanti E, Stutz F, Huber W, Steinmetz LM. 2009. Bidirectional promoters generate pervasive transcription in yeast. *Nature* 457: 1033–1037.

Zofall M, Grewal SI. 2006. Swi6/HP1 recruits a JmjC domain protein to facilitate transcription of heterochromatic repeats. *Mol Cell* 22: 681–692.
Autoregulation of convergent RNAi genes in fission yeast

Monika Gullerova, Danesh Moazed and Nick J. Proudfoot

Genes Dev. 2011, 25: originally published online February 28, 2011
Access the most recent version at doi:10.1101/gad.618611

Supplemental Material

http://genesdev.cshlp.org/content/suppl/2011/02/18/gad.618611.DC1

Related Content

RNAi genes pave their own way
Leonie M. Kamminga and René F. Ketting
Genes Dev. March 2011, 25: 529-533

References

This article cites 58 articles, 20 of which can be accessed free at:
http://genesdev.cshlp.org/content/25/6/556.full.html#ref-list-1

Articles cited in:
http://genesdev.cshlp.org/content/25/6/556.full.html#related-urls

License

Freely available online through the Genes & Development Open Access option.

Email Alerting Service

Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or [click here.](#)