Low molecular weight protein tyrosine phosphatases control antibiotic production in *Streptomyces coelicolor A3(2)*

Sohoni, Sujata Vijay; Lieder, Sarah; Bapat, Prashant Madhusudhan; Mijakovic, Ivan; Eliasson Lantz, Anna

Published in: Enzyme Engineering

Link to article, DOI: 10.4172/2329-6674.1000122

Publication date: 2014

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA): Sohoni, S. V., Lieder, S., Bapat, P. M., Mijakovic, I., & Eliasson Lantz, A. (2014). Low molecular weight protein tyrosine phosphatases control antibiotic production in *Streptomyces coelicolor A3(2)*. Enzyme Engineering, 3(1), [1000122]. https://doi.org/10.4172/2329-6674.1000122
Low Molecular Weight Protein Tyrosine Phosphatases Control Antibiotic Production in *Streptomyces coelicolor* A3(2)

Sujata Vijay Sohoni1,4, Sarah Lieder1,3, Prashant Bapat1,4, Ivan Mijakovic1 and Anna Eliasson Lantz1*

1Department of Systems Biology, Technical University of Denmark, Building 223, DK-2800 Kgs Lyngby, Denmark
2Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
3Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
4Novozymes A/S, Hallas Alle 1, 4400 Kalundborg, Denmark
5Systems Biology, Department of Chemical and Biological Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden

Abstract

Streptomyces coelicolor A3(2) possesses a low molecular weight protein tyrosine phosphatase (LMW-PTP), PtpA, that affects the production of undecylprodigiosin (RED) and actinorhodin (ACT). In this study we identified another LMW-PTP called sco3700. Tyrosine phosphatase activity of the purified Sco3700 was established using para-nitrophenyl phosphate and the tyrosine-phosphorylated protein PtkA from *Bacillus subtilis* as substrates. The optimum pH for the Sco3700 phosphatase activity was 6.8, and *K*ₐ for pNPP was 14.3 mM compared to pH 6.0 and *K*₂ₐ 0.75 mM for PtpA. The potential of Sco3700 to participate, alongside PtpA, in the regulation of *S. coelicolor* antibiotic production was investigated. Hence, *S. coelicolor* A3(2) strains with *ptpA* and *sco3700* overexpression were constructed and characterized for growth, RED and ACT production. We did observe an increase in volumetric productivity of ACT in the *ptpA* over expression strain. Furthermore, a significantly earlier onset of ACT production was observed when *ptpA* was over expressed. *Sco3700* overexpression had a pleiotropic effect on the cell, and the strain exhibited lower productivities and final concentrations of antibiotics. We conclude that *Sco3700* is indeed a tyrosine phosphatase, and it contributes to regulation of antibiotic production in *S. coelicolor* affecting the timing of onset of the antibiotic production.

Keywords: *Streptomyces coelicolor*; Tyrosine; Phosphorylation; LMW-PTP; Physiology; Antibiotic production

Abbreviations: ACT: Actinorhodin; DCW: Dry Cell Weight; Exp: Exponential; LMW-PTP: Low Molecular Weight Protein Tyrosine Phosphatase; Oxp: Overexpression; PNPP: Para-Nitrophenyl Phosphate; RED: Undecylprodigiosin; WT: Wild Type; μₘₐₓ: Maximum Specific Growth Rate; *μ*ₘₐₓ: Maximum Specific Growth Rate in Exponential Growth Phase; *μ*ₘₐₓₛ: Maximum Specific Growth Rate in the RED Producing Phase; rₛ: Specific Glucose Uptake Rate; q: Volumetric Productivity; Yₛ/Xₘ: Yield of Biomass on Glucose

Introduction

Protein phosphorylation is one of the most prevalent covalent posttranslational modifications and has tremendous regulatory and signaling potential [1]. Phosphorylation on proteins is well studied as a key regulatory mechanism in eukaryotes [2]. Eukaryotic cells rely extensively on phosphorylation of the hydroxyl group of the side chains of serine, threonine and tyrosine for their signal transduction cascades [3]. Bacterial genomes encode protein kinases and phosphatases, but their targets in prokaryotes have been less extensively studied until recently. Initial studies suggested that thr/ser/tyr phosphorylation is more common in eukaryotic signal transduction, while prokaryotes use thr/ser/tyr kinases and phosphatases with unknown homologues in eukaryotes [7].

Some of these tyrosine kinases and phosphatases have been characterized in details [10]. There are three different classes of phosphotyrosine phosphatases found in bacteria namely: protein tyrosine phosphatases (PTPs), dual-specificity phosphatases (DSPs) and the low-molecular-weight phosphatases (LMW-PTPs) [9]. Gram-positive bacteria also contain another class of PTPs in addition to LMW-PTPs, which resemble the phosphoesterase domain of DNA polymerase and histidinol phosphate (PHP) phosphoesterases. *Bacillus subtilis* encodes one such phosphatase named PtpZ [11]. Among the different classes, LMW-PTPs have been most often shown to control important physiological events. In *Staphylococcus aureus* and *Klebsiella pneumonia* these phosphatases are involved in production of a capsular polysaccharide, as a mechanism to overcome host defense mechanism during infection [6], while in *B. subtilis* LMW-PTPs are involved in the stress response [12] and production of teichuronic acid [13].

The soil dwelling bacterium *Streptomyces coelicolor* A3(2) has long been used as a model organism to study secondary metabolism in actinomycetes. The genome sequence of *S. coelicolor* revealed the presence of 44 ser/thr protein kinases [14]. Some of these ser/thr kinases have been studied in details and resemble eukaryotic kinases [15]. Later bioinformatic studies have been carried out to explore phosphatases in the *S. coelicolor* and *S. avermitilis* genomes. Each species was then shown to contain at least 55 eukaryotic type protein phosphatases that belong to four different families (those mentioned above) [16].
Existence of proteins phosphorylated on tyrosine in *S. coelicolor* has been documented by Waters et al. [17]. The phosphotyrosine protein phosphatase gene (*ptpA*) from *S. coelicolor* A3(2) was the first eukaryotic-type PP to be discovered in *Streptomyces*. PtpA belongs to the family of LMW-PTPs [18]. Its functional analysis demonstrated that the disruption of the *ptpA* gene had no observable effect on cell growth, formation of aerial mycelium and spores, or secondary metabolism in *S. coelicolor* A3(2). However, overexpression of the *ptpA* gene, which was carried out in *Streptomyces lividans*, increased the production of ACT and RED [19]. This led to a hypothesis that there might exist another tyrosine phosphatase that complements the function of *ptpA* in a *ptpA* disruption mutant. Shi and Zang [16] predicted gene *sco3700* (annotated as a heavy metal reductase) to be a LMW-PTP by bioinformatic analysis of phosphatases in *S. coelicolor* A3(2), but no functional verification was performed.

In the current study we cloned *sco3700* in *E. coli* and purified the protein. We confirmed the suggested tyrosine phosphatase activity of Sco3700 by biochemical studies. Furthermore, *ptpA* and *sco3700* overexpression strains of *S. coelicolor* A3(2) were constructed in order to study the effects on physiology. Here we report a physiological characterization of these strains in microtiter plates and the effect of *ptpA* and *sco3700* overexpression on antibiotic production in *S. coelicolor* A3(2).

Materials and Methods

Materials

Solvents used were HPLC grade and all other chemicals were analytical grade, unless otherwise stated, and purchased from Sigma–Aldrich (Steinheim, Germany). Water (MQ) used was purified from a Milli-Q-system (Millipore, Bradford, MA). Ni-NTA agarose was obtained from Qiagen (Hilden, Germany) and used for purification of 6X-His tagged Sco3700. All the primers used in this study were obtained from Qiagen (Hilden, Germany) and used for purification of *ptpA* and *sco3700* overexpression on antibiotic production in *S. coelicolor* A3(2).

Strains and plasmids

E. coli DH5α strain was used for gene cloning. A wild type *S. coelicolor* A3(2) strain (SCP1 and SCP2) obtained from John Innes Center, UK, was used as wild type strain. *E. coli* strain ET12567/pUZ8002 [20] was used for introducing the recombinant DNA into *S. coelicolor* A3(2) by conjugation. Integrative plasmid pJJ10257 containing the ermE* promoter and Xhol and Ndel restriction sites. *ptpA* and *sco3700* genes were amplified using primers as shown in Table 1. The forward primers in both cases possessed Xhol restriction site while the reverse primers possessed Ndel restriction site. The recombinant plasmids pJJ10257״ptpA and pJJ10257״sco3700 were then electroproporated into *E. coli* ET12567/pUZ8002 and eventually conjugated into *S. coelicolor*. Hygromycin resistant colonies of *S. coelicolor* were selected on MS agar plates and propagated further.

Cloning of *sco3700* in pQE30

The gene *sco3700* was amplified using a forward primer containing BamHI restriction site and a reverse primer containing HindIII restriction site (Table 1) and then cloned into plasmid pQE30 using BamHI and HindIII restriction sites as described in The QIA expression manual to obtain pQE30_Hisc3700. This plasmid was then used to transform *E. coli* M15 cells [21]. Ampicillin resistant colonies were selected.

Purification of 6XHis-tagged Sco3700 from *E. coli*

Purification of 6X-His tagged Sco3700 was performed from 1 liter culture of *E. coli* cells were grown and IPTG used for induction as described in the protocol 8 from The QIA expressionist manual. After induction, the cells were harvested by centrifugation at 4000 g for 20 minutes. The cell pellet was suspended in 5 ml Solution A (50mM Tris-Hcl pH 7.5, 100 mM NaCl and 10% glycerol) containing 1mg/ml lysozyme and 5 µg/ml DNase I and incubated at room temperature for 1 hour. The cell lysate was passed through a 0.45 µm Millex filter and then loaded onto a Ni-NTA column and washed with wash buffer. The column was then developed with 250 ml wash buffer containing 250 mM imidazole. Fractions containing Sco3700 were pooled and dialyzed against 200 ml of buffer containing 20 mM Tris-Hcl pH 7.5, 100 mM NaCl and 10% glycerol. Pooled fractions were then loaded onto a HiLoad 16/60 Superdex 200 column (GE Healthcare) equilibrated with 20 mM Tris-Hcl pH 7.5, 100 mM NaCl and 10% glycerol. The position of Sco3700 peak was confirmed by SDS-PAGE. The sco3700 overexpression strain was used to overproduce Sco3700.

Media and growth conditions during strain construction

E. coli cultures for molecular biology purposes and for protein purification were grown at 37°C in Luria Bertani broth [22]. Hygromycin (50 µg/ml) was used for *E.coli* DH5α with plasmid pJJ10257. Kanamycin (25 µg/ml) and chloramphenicol (25 µg/ml) were used for *E. coli* ET12567/pUZ8002. Nalidixic acids (20 µg/ml) were used for *E. coli* and hygromycin (50 µg/ml) were used for *S. coelicolor* *ptpA* and *sco3700* overexpression strain selection.

Mannitol-Soya flour (MS) agar was used for plating of *S. coelicolor*. 2X YT medium was used for germination of spores and contained 16 g/L tryptone, 10 g/L yeast extract and 10 g/L sodium chloride. *S. coelicolor* strains were incubated at 28°C.

DNA techniques

DNA techniques involving *E. coli* were performed as described by Sambrook et al. [22]. *E. coli* transformations were done using electroporation. Chromosomal DNA from *S. coelicolor* was isolated as described by Kisser et al. [23]. *S. coelicolor* spores were streaked on MS agar plates to obtain dense masses of spores. These spores were isolated in 20% glycerol and used for conjugation.

Table 1: Sequences of primers for over-expressed and delta *ptpA* and *sco3700* strains of *S. coelicolor*

Name of primer	Sequence
Fw_ptpA_Xhol	TATTCTCGAGTCATGCCCGTCCTCCTCACC
Rv_ptpA_Ndel	CGTGGCCATATGATGACCTTGCTTTTCC
Fw_sco3700_Ndel	TGCCGATATGATGCGCGCGCGTCGCTCCTTG
Rv_sco3700_Xhol	GATTCTCGAGTCATGACCTTGCTTTTCC
pQE30_sco3700_fwd	TACGGAGGATCCATGCCGCGCGCGATC
pQE30_sco3700_rev	GATCTAAGGCTTATGACGTGCGCGCGCGATC
15 minutes. The cells were then lysed by sonication on ice. The lysate was centrifuged at 25000 g for 15 minutes to get rid of cellular debris and the crude protein extract was obtained. Ni-NTA agarose used for protein purification was obtained from Qiagen (Venlo, Netherlands) and purification was carried out following the manufacturer’s instructions. Fractions showing maximum protein were subjected to desalting using PD10 columns obtained from GE-Healthcare (Buckinghamshire, U.K.). Desalting was performed as per the manufacturer’s instructions. Qualitative determination of protein was performed using the Bradford reagent (Biorad, California, USA). The fractions containing maximum protein were pooled and used for assays.

Biochemical characterization of Sco3700

Optimum pH for Sco3700 was determined by determining phosphatase activity of Sco3700 using incubation buffers of different pH. Sodium citrate buffers of pH 5.5, 6.0, 6.5 and 7.1, and phosphate buffers of pH 7.5, 8.1, 8.5 and 8.9 were tested. 100 mM PNPP (para-nitrophenyl phosphate) was used as a substrate as described previously [24]. V_{max} and K_m for Sco3700 were determined using PNPP of different concentrations (5-30 mM with intervals of 5 mM) at 30°C. Enzyme activity was monitored over 60 minutes, by measuring the formation of p-nitrophenol at 405 nm.

Tyrosine phosphatase activity of Sco3700 was confirmed using *B. subtilis* PtkA (phosphotyrosine kinase) [25] that autophosphorylates on tyrosine in presence of ATP. In the assay, PtkA was allowed to autophosphorylate for 15 minutes at 30°C by incubating with 10 mM ATP and 10 mM MgCl₂. Sco3700 was then added to the above mixture and the release of phosphate was measured at 653 nm using Ph colorlock ALS kit from Innova Biosciences (Babraham, U.K.).

Frozen mycelia preparation of ptpA and sco3700 overexpression strains of S. coelicolor

Frozen mycelia were used as inoculum for all the cultivations in minimal medium. Frozen mycelia stocks were prepared as described by Sohoni et al. [26]. Spores for respective strains were inoculated into 50 ml 2X YT medium in shake flasks and incubated at 28°C and 150 rpm. Mycelia were harvested in mid-exponential phase and centrifuged at 4°C for 5 minutes, after which the supernatant was discarded. 2-3 ml of 20% pre-sterilized peptone was added to the pellet and mycelia were crushed using a glass homogenizer. 7-8 ml of 20% peptone was added to the crushed mycelia and distributed into cryo vials. Vials were stored at -20°C and used for inoculation in minimal medium.

Physiological characterization of ptpA and sco3700 overexpression strains of S. coelicolor

Physiological characterization of the strains was performed in 24 deep square well microtiter plates with 3 ml working volume at 28 °C and 150 rpm as described by Sohoni et al. [26]. Phosphate limited minimal medium modified from Evan’s medium was prepared as described by Borodina et al. [27]. The medium contained 30 g/L glucose, 3 mM phosphate and 100 mM ammonia. In addition, the medium also contained 100 mM MOPS buffer. Glucose was sterilized separately and mixed with the rest of the medium later. Medium pH value was adjusted to 6.85 after sterilization using 4 M NaOH. 80 ml of the medium was inoculated with 80 µl frozen mycelia and then 3 ml was distributed in each well in a microtiter plate. At each time point duplicate samples were taken from plates and OD₆₀₀nm, dry cell weight (DCW), pH, glucose consumption and RED and ACT synthesis were monitored. All the analyses were carried out as described by Borodina et al. [27].

Analysis of phosphate in the broth

The Ph Color Lock TM ALS Kit (Innova Biosciences, Cambridge, UK) was used for the analysis of phosphate in the cultivation broth at different time points. The measurement of Pi in this kit is based on the change in absorbance of malachite green in the presence of molybdate and gives a sensitive detection of Pi.

The 0.8 mM Pi standard (provided by the kit) was diluted to the end concentrations of 0, 40, 80, 120, 160 and 200 µM. The samples were diluted to the phosphate concentration of 20-120 µM phosphate per assay. 200 µl ALS mix (provided by the kit) were added to 50 µl sample (diluted) and incubated for 5 minutes at 30°C. After adding 20 µl of stabilizer (provided by the kit) the mixture was incubated again for 30 minutes at 30°C. 1 ml of distilled water was added to each sample and the A₆₃₅ was measured.

Results and Discussion

This study focuses on LMW-PTPs from *S. coelicolor* A3(2) and their role in regulating the secondary metabolism. One of the LMW-PTPs, PtpA has previously been identified and shown to influence production of the antibiotics RED and ACT [18,19]. However, this is the first biochemical and physiological characterization of a second low molecular weight tyrosine phosphatase, Sco3700, present in *S. coelicolor*.

Biochemical characterization of Sco3700

In many bacteria the presence of two functionally active LMW-PTPs has been reported [12,13,28]. In *S. coelicolor* so far only one such LMW-PTP, PtpA, has been isolated and characterized [18]. In this study we biochemically confirmed Sco3700 as being a LMW-PTP, which was previously suggested by bioinformatic studies by Shi (2004) but never functionally proven. 6xHis-tagged Sco3700 purified from *E. coli* was used for biochemical characterization. Sco3700 was able to hydrolyze the artificial substrate PNPP, with the K_m value of 14.3 mM and pH optimum at 6.5 (Figure 1a and 1b). The K_m value of PtpA for PNPP has earlier been reported to be 0.75 mM [18]. *Mycobacterium tuberculosis*, also belonging to the group of actinomycetes, encodes one LMW-PTP namely mptpA [29]. *B. subtilis* PTPs have the highest reported substrate affinity with K_m of 0.156 mM and 0.25 mM for PtpA and PtpB, respectively [12], while an *E. coli* Ptp, Wzb, has been reported to have a K_m of 1 mM [28]. *S. aureus* PtpA and PtpB have K_m of 1.2 mM and 1.4 mM, respectively [30]. These values are comparable with the K_m reported for *S. coelicolor* PtpA, but the K_m of Sco3700 is 20 times higher, possibly reflecting that the two tyrosine phosphatases in *S. coelicolor* act at very different ranges of substrate concentration in the cell. PNPP is an artificial substrate and a small molecule, commonly used for detection of tyrosine phosphatase activity due to easy colorimetric determination of p-nitrophenol formed in the reaction after cleavage of phosphate from PNPP. To further verify the functionality of Sco3700 on a real protein substrate, we also tested the phosphotyrosine-protein phosphatase activity of Sco3700 using PtkA, a tyrosine phosphorylated protein from *B. subtilis*. The detected liberation of free phosphate from phosphorylated PtkA (data not shown) confirmed the capacity of Sco3700 to dephosphorylate tyrosine-phosphorylated proteins.

In many bacterial genomes PTPs are located next to protein tyrosine kinases (TKs) [12,31,32]. In Actinomycetes (*Mycobacterium spp* and *Streptomyces spp.*) despite the presence of tyrosine phosphatases, no tyrosine kinases have been evidenced so far [33]. Classical bacterial tyrosine kinases of the BK-kinase family [10] are
absent in Actinomycetes, and it is therefore possible that these bacteria harbor a presently unidentified family of tyrosine kinases or simply possess serine/threonine kinases with relaxed specificity, capable of phosphorylating tyrosine residues.

Physiological roles of tyrosine phosphatases in bacteria

LMW-PTPs have been shown to have important physiological roles in bacteria. Wzc in *E. coli* was found to be similar to proteins responsible for synthesis and export of exopolysaccharides that take part in capsule formation, which is an important mechanism in virulence [28]. Ptp of *Acinetobacter johnsonii* has also been predicted to be involved in exopolysaccharide formation [32]. In addition, as mentioned above, PTPs of *S. aureus* and *K. pneumoniae* take part in capsule formation and hence in pathogenicity. PtpA from *M. tuberculosis* has also been shown to serve as a virulence factor while infecting macrophages [29,33]. Furthermore, deletion and over-expression of tyrosine phosphatases resulted in altered polysaccharide biosynthesis in a range of bacteria and hence, these phosphatases might be attractive targets for the development of novel anti-microbials [34]. The role of protein phosphorylation in regulation of secondary metabolism is also well known. The two component systems AbsA1- AbsA2 and AfsK-AfsR that regulate antibiotic biosynthesis in *S. coelicolor* have been shown to mediate control by reversible Ser/Thr phosphorylation [35,36]. Waters et al. [17] demonstrated changes in the pattern of tyrosine phosphorylation in different *Streptomyces* species in different phases of growth and differentiation. In *S. lividans* cultures grown in minimal medium, they reported increased protein phosphorylation in early stationary phase and a specific increase in tyrosine phosphorylation in *S. lavendulae* in early stationary phase. They also suggested the possibility of tyrosine phosphorylation playing an important role in a switch from primary to secondary metabolism. In this study we examined the impact of the tyrosine phosphatases PtpA and Sco3700 on growth and antibiotic production in *S. coelicolor* on liquid, minimal medium.

Physiological characterization of *ptpA* over expression

Growth behavior of *S. coelicolor exp-*ptpA* was very similar to the WT strain (Figures 2b and 2a), with two growth phases. The first was the exponential phase with a μ_{max} of 0.11 h⁻¹ (same as the wild type), while the specific growth rate in the second growth phase, the RED-production phase, was slightly higher than for the WT strain (Table 2).

Dry cell weight (DCW) measurements showed a significantly higher biomass concentration for exp-*ptpA* (5.6 g/L) than for the WT strain (3.1 g/L) at the end of fermentation (Figures 2b and 2a).
However, the yield of biomass on glucose for \(\text{oxp-} \text{ptpA} \) was found to be comparable to that of the WT strain (Table 2), as was the substrate uptake rate \((-\nu_s)\) (1.8 g glu/g DCW. h\(^{-1}\) for WT, and 1.9 g glu/g DCW. h\(^{-1}\) for the \(\text{oxp-} \text{ptpA} \) strain).

In comparison with the \(S. \ coelicolor \) WT strain, there was an early onset of both RED and ACT production in the \(\text{oxp-} \text{ptpA} \) strain (Figure 3). The volumetric production rate for RED in \(\text{oxp-} \text{ptpA} \) (1.6 mg/L/hr) was slightly lower than in \(S. \ coelicolor \) WT (1.7 mg/L/hr), whereas the
volumetric production rate for ACT was higher in the oxp-\textit{ptpA} strain (16.1 mg/L/hr) than for \textit{S. coelicolor} WT (12.4 mg/L/hr).

Physiological effects of \textit{sco3700} overexpression

The growth curve of \textit{S. coelicolor} oxp-\textit{sco3700}, unlike that of the WT strain, exhibited a sigmoidal shape (Figure 2c). There was only a single growth phase with μ_{max} of 0.11 h$^{-1}$. As for the \textit{ptpA} overexpression strain, dry cell weight measurements showed significantly higher values for oxp-\textit{sco3700} (5.0 g/L) than wild type strain (3.1 g/L) at the end of fermentation. There was also a significant drop in pH from 6.86 to 4.87 for the oxp-\textit{sco3700} strain. Despite higher final biomass concentration, the yield of biomass on glucose (YSX) was lower for oxp-\textit{sco3700} (0.29 g/g) compared to \textit{S. coelicolor} WT (0.31 g/g) and oxp-\textit{ptpA} (Table 2). The lower biomass yield was as a consequence of acid production. HPLC analyses showed presence of acetate, which is likely to be produced by overflow metabolism due to the increased substrate uptake rate. Also differing from what was observed when \textit{ptpA} was overexpressed, the glucose uptake rate (-r_S) was significantly higher in the oxp-\textit{sco3700} strain (2.2 g glu/g DCW. h$^{-1}$) than in the \textit{S. coelicolor} WT strain (1.8 g glu/g DCW. h$^{-1}$).

With regards to antibiotic production, an opposite behavior compared to overexpression of \textit{ptpA} was seen. Onset of antibiotics production (RED and ACT) was significantly delayed in the oxp-\textit{sco3700} strain. Also the volumetric production rate for RED was pronouncedly lower (0.3 mg/L/hr for the oxp-\textit{sco3700} strain) than in \textit{S. coelicolor} WT (1.9 mg/L/hr) (Table 2). The volumetric production rate for ACT could not be calculated in the oxp-\textit{sco3700} cultivations due to the late onset of ACT production (around 100 hrs). The cultivation was terminated at 120h since wall growth started to appear in oxp-\textit{sco3700} cultivation.

Comparison of physiological behavior of the \textit{ptpA} and \textit{sco3700} over expression strains and possible regulatory effects

Dephosphorylation of proteins can mediate both activation and inactivation of target proteins, and by consequence physiological functions [37]. Overexpression of \textit{ptpA} and \textit{sco3700} affected antibiotic production in \textit{S. coelicolor} differently. Even though the oxp-\textit{ptpA} strain behaved similarly to the WT strain, it exhibited earlier onset of antibiotics production and increased volumetric production of ACT. Interestingly, oxp-\textit{sco3700} exhibited a very atypical growth behavior. Antibiotic production was significantly affected in the oxp-\textit{sco3700} strain, with volumetric production rates for RED and ACT severely reduced.

Eukaryotic LMW PTPs play an important role in signal transduction mainly by specifically dephosphorylating and down-regulating tyrosine kinase receptors such as the PDGF receptor or insulin receptor [37]. In \textit{S. cerevisiae} heterologous overexpression

Table 2: Comparative table representing physiological parameters for the different strains in this study.

Strain	μ_{max} (h$^{-1}$)	μ_{max} (h$^{-1}$)	Y$_{SX}$ (g/g)	-r$_S$ (g glu/g DCW. h$^{-1}$)	q$_{RED}$ (g/L/hr)	q$_{ACT}$ (g/L/hr)
\textit{S. coelicolor} A3(2) [WT]	0.11 ± 0.01	0.04 ± 0.02	0.31 ± 0.02	1.8 ± 0.04	1.7 ± 0.28	12.4 ± 2.4
\textit{S. coelicolor} oxp-\textit{ptpA}	0.11 ± 0.01	0.04 ± 0.02	0.31 ± 0.01	1.9 ± 0.004	1.6 ± 0.01	16.1 ± 0.4
\textit{S. coelicolor} oxp-\textit{sco3700}	0.11 ± 0.005	-	2.29 ± 0.007	2.2 ± 0.04	0.33 ± 0.03	-

Figure 2c: Batch profile of \textit{S. coelicolor} oxp-\textit{sco3700} cultivation in minimal medium, using microtiter plates. The graph shows time course measurement for OD$_{450nm}$ (♦), DCW (■) g/L, ACT (▲) and RED (△) in mg/L, and pH (□). The three vertical lines from left to right indicate – start of exponential phase, onset of RED and ACT production, respectively. All the trends (OD, DCW, ACT and RED) except for pH trend are represented on primary axis.
of a LMW-PTP, Stp1, (from \textit{Schizosaccharomyces pombe}) resulted in a large number of phenotypes that indicated down-regulation of the Ras pathway [38]. These phenotypes included reduction in both cAMP signaling and GTP loading of Ras2, impaired growth on non-fermentable carbon source, alteration of cell cycle parameters, delayed recovery from nitrogen starvation, increased heat shock resistance and
attenuation of invasive growth. This suggests that dephosphorylation of proteins by LMW-PTPs may lead to global changes in the cell. LMW-PTPs from different bacteria have been characterized at biochemical level, but studies on their overexpression are scarce.

The observed effects of ptpA and sco3700 on S. coelicolor cell are likely to be at the regulatory level, but one cannot exclude direct metabolic effects. Antibiotic production in actinomycetes is believed to be a result of stress or nutrient limitation. In this study we used phosphate limitation and hence it was interesting to monitor the phosphate consumption over the period of fermentation. Figure 4 represents time course measurement of phosphate consumption in the different strains with respect to WT strain. The oxp-tpA and oxp-sco3700 strains consumed phosphate faster than the WT strain (Figure 4). This could be one reason for an early onset of antibiotic production in the oxp-tpA strain. A plausible hypothesis for the regulatory interaction between LMW-PTPs and antibiotic production would be that PtpA and Sco3700 interact with one or several tyrosine-phosphorylated proteins, some of which are implicated in regulation of antibiotic biosynthesis. Accordingly, overexpression of ptpA triggered production of antibiotics early. This type of regulation has been seen for colonial acid production in E. coli. The ca gene cluster in E. coli contains one tyrosine autokinase (Wzc) and one LMW-PTP (Wzb) that function as a pair of kinase/phosphatase in the regulation of colonial acid production. As a consequence, colonial acid is only produced after the dephosphorylation of the phosphorylated Wzc by Wzb [28].

Behavior of the oxp-sco3700 strain was unexpected. Even though phosphate in the medium was depleted earlier, onset of both the antibiotics, RED and ACT was delayed. Sco3700 has twenty times higher K_M for FNPP than PtpA. Hence, Sco3700 is likely to act on a different set of physiological substrates and be involved in regulatory loops different from those of PtpA. Final responses to these questions will come only with phosphoproteomic studies in S. coelicolor that will assign physiological substrates to all protein kinases and phosphatases.

Conclusions

Sco3700 was biochemically characterized and confirmed to be a tyrosine phosphatase. The enzyme seems to present significant differences to the second earlier described tyrosine phosphatase in S coelicolor PtpA, both in terms of biochemical and physiological characteristics. The oxp-sco3700 recombinant strain turned out to behave very differently compared to the oxp-tpA and WT strain and affected the production of antibiotics negatively. The significant changes in growth behavior observed in oxp-sco3700 led to the conclusion that overexpression of sco3700 have a pleiotrophic effect on the cell. In agreement to the results of Umeyama et al. [19], significant increase in volumetric productivity of ACT was observed but no significant changes in yield was observed when looking at the yield of product per amount of biomass. An early onset of the ACT production could be confirmed and furthermore a higher volumetric productivity was seen. Despite the fact that in the overexpression strain of sco3700 antibiotic production was affected, the growth was not severely affected.

Acknowledgements

Authors would like to thank the Technical University of Denmark, the Danish Biotechnology Research School and the European Commission (IP005224 ActinoGEN) for financial support during this work. We would also like to acknowledge Dr. Bertott Gust from University of Tubingen for fruitful discussions on the work.

References

1. Deutscher J, Saier MH (1988) Protein-phosphorylation in bacteria – regulation of gene-expression, transport functions, and metabolic processes. Angewandte Chemie-International Edition in English 27: 1040-1049.
2. Pawson T, Scott JD (2005) Protein phosphorylation in signaling—50 years and counting. Trends Biochem Sci 30: 286-290.
3. Hunter T (1995) Protein kinases and phosphatases: the Yin and Yang of protein phosphorylation and signaling. Cell 80: 225-236.
4. Hoch JA (2000) Two-component and phosphorelay signal transduction. Curr Opin Microbiol 3: 165-170.
5. Deutscher J, Saier MH Jr (2005) Ser/Thr/Tyr protein phosphorylation in bacteria - for long time neglected, now well established. J Mol Microbiol Biotechnol 9: 125-131.
6. Lin MH, Hsu TL, Lin SY, Pan YJ, Jan JT, et al. (2009) Phosphoproteomics of Klebsiella pneumoniae NTUH-K2044 reveals a tight link between tyrosine phosphorylation and virulence. Mol Cell Proteomics 8: 2613-2623.
7. Macek B, Mijakovic I, Olsen JV, Grud N, Kumar C, et al. (2007) The serine/threonine/tyrosine phosphoproteome of the model bacterium Bacillus subtilis. Mol Cell Proteomics 6: 697-707.
8. Ravichandran A, Sugiyama N, Tomita M, Swarp P, Ishihama Y (2009) Ser/Thr/Tyr phosphoproteome analysis of pathogenic and non-pathogenic Pseudomonas species. Proteomics 9: 2764-2775.
9. Kennelly PJ (2002) Protein kinases and protein phosphatases in prokaryotes: a genomic perspective. FEMS Microb Lett 206: 1-8.
10. Grangeasse C, Cozzone AJ, Deutscher J, Mijakovic I (2007) Tyrosine phosphorylation: an emerging regulatory device of bacterial virulence. Trends Biochem Sci 32: 86-94.
11. Mijakovic I, Musumeci L, Tautz L, Petranovic D, Edwards RA, et al. (2005) In vitro characterization of the Bacillus subtilis protein tyrosine phosphatase YwqE. J Bacteriol 187: 3384-3390.
12. Musumeci L, Bongioni C, Tautz L, Edwards RA, Osterman A, et al. (2005) Low-molecular-weight protein tyrosine phosphatases of Bacillus subtilis. J Bacteriol 187: 4945-4956.
13. Soldo B, Lazarovic V, Pagni M, Karamata D (1999) Teichuronic acid operon of Bacillus subtilis 168. Mol Microbiol 31: 795-805.
14. Bentley SD, Chater KF, Cerdeño-Tarraga AM, Challis GL, Thomson NR, et al. (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417: 141-147.
15. Ogawara H, Aoyagi N, Watanabe M, Urabe H (1999) Sequences and evolutionary analyses of eukaryotic-type protein kinases from Streptomyces coelicolor A3(2). Microbiology 145 : 3343-3352.
16. Shi L, Zhang W (2004) Comparative analysis of eukaryotic-type protein phosphatases in two streptomycetes genomes. Microbiology 150: 2247-2256.
17. Waters B, Vuckijlka D, Gold MR, Davies J (1994) Protein tyrosine phosphatase in streptomycetes. FEMS Microbiol Lett 120: 187-190.
18. Li Y, Stroher WR (1996) Cloning, purification, and properties of a phosphotyrosine protein phosphatase from Streptomyces coelicolor A3(2). Microbiology 148 : 3343-3352.
19. Umeyama T, Tanabe Y, Aigle BD, Horinouchi S (1996) Expression of the Streptomyces coelicolor A3(2) ptpA gene encoding a phosphotyrosine protein phosphatase leads to overproduction of secondary metabolites in S. lividans. FEMS Microbiol Lett 144: 227-235.
20. Bubnicki DL, Gewain KM, Ruby CL, Dezemy G, Gibbons PH, et al. (1992) Analysis of Streptomyces avermectinis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene 111 : 61-68.
21. The QIAexpressionist™ (2003) A handbook for high-level expression and purification of 6xHis-tagged proteins 5th ed. Qiagen.
22. Sambrook J, Russell DW (2001) Molecular cloning: A laboratory manual. New York: New York: Cold Spring Harbor Laboratory.
23. Kissner T, Bibbo MJ, Buttnor MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces genetics. Norwich, England: The John Innes Foundation.
24. Wo YY, McCormack AL, Shabanowitz J, Hunt DF, Davis JP, et al. (1992) Sequencing, cloning, and expression of human red cell tyrosine acid phosphatase, a cytoplasmic phosphotyrosyl protein phosphatase. J Biol Chem 267: 10855-10865.
25. Mijakovic I, Poncet S, Boël G, Mazé A, Gillet S, et al. (2003) Transmembrane modulator-dependent bacterial tyrosine kinase activates UDP-glucose dehydrogenases. EMBO J 22: 4709-4718.

26. Sohani SV, Bapat PM, Lantz AE (2012) Robust, small-scale cultivation platform for Streptomyces coelicolor. Microb Cell Fact 11: 1-9.

27. Borodina I, Siebring J, Zhang J, Smith CP, van Keulen G, et al. (2008) Antibiotic overproduction in Streptomyces coelicolor A3 2 mediated by phosphofructokinase deletion. J Biol Chem 283: 25186-25199.

28. Vincent C, Doublet P, Grangeasse C, Vaganay E, Cozzone AJ, Duclos B (1991) Cells of Escherichia coli contain a protein-tyrosine kinase, wzc, and a phosphotyrosine-protein phosphatase, wzb. J Bacteriol 81: 3472-3477.

29. Koul A, Choidas A, Treder M, Tyagi AK, Drlica K, et al. (2000) Cloning and characterization of secretory tyrosine phosphatases of Mycobacterium tuberculosis. J Bacteriol 182: 5425-5432.

30. Soulat D, Vaganay E, Duclos B, Genestier AL, Etienne J, et al. (2002) Staphylococcus aureus contains two low-molecular-mass phosphotyrosine protein phosphatases. J Bacteriol 184: 5194-5199.

31. Grangeasse C, Doublet P, Vaganay E, Vincent C, Deléage G, et al. (1997) Characterization of a bacterial gene encoding an autoprophosphorylating protein tyrosine kinase. Gene 204: 259-265.

32. Grangeasse C, Doublet P, Vincent C, Vaganay E, Riberty M, et al. (1998) Functional characterization of the low-molecular-mass phosphotyrosine-protein phosphatase of Acinetobacter johnsonii. J Mol Biol 278: 339-347.

33. Grundner C, Ng HL,Alter T (2005) Mycobacterium tuberculosi protein tyrosine phosphatase PtpB structure reveals a diverged fold and a buried active site. Structure 13: 1625-1634.

34. Standish AJ, Morona R (2014) The Role of Bacterial Protein Tyrosine Phosphatases in the Regulation of the Biosynthesis of Secreted Polysaccharides. Antioxid Redox Signal.

35. Horinouchi S (2003) AfsR as an integrator of signals that are sensed by multiple serine/threonine kinases in Streptomyces coelicolor A3(2). J Ind Microbiol Biotechnol 30: 462-467.

36. McKenzie NL, Nodwell JR (2007) Phosphorylated AbsA2 negatively regulates antibiotic production in Streptomyces coelicolor through interactions with pathway-specific regulatory gene promoters. J Bacteriol 189: 5284-5292.

37. Chiarugi P, Taddei ML, Schiavone N, Papucci L, Giannoni E, et al. (2004) LMW-PTP is a positive regulator of tumor onset and growth. Oncogene 23: 3905-3914.

38. Magherini F, Busti S, Gamberti T, Sacco E, Raugei G, et al. (2006) In Saccharomyces cerevisiae an unbalanced level of tyrosine phosphorylation down-regulates the Ras/PKA pathway. Int J Biochem Cell Biol 38: 444-460.