RESUMO

Introdução: O desequilíbrio da microbiota intestinal associa-se à alta produção de toxinas urêmicas tais como ácido indol-3-acético (IAA), em renais crônicos. Essa toxina ativa o receptor aril hidrocarboneto (AhR) - fator de transcrição ativado por ligante, na inflamação. Restaurar o equilíbrio da microbiota intestinal associa-se à produção reduzida de AIA e efeitos deletérios. Avaliamos os efeitos da suplementação de amido resistente prebiótico (AR) sobre AIA sérico e expressão de AhR mRNA em renais crônicos em HD. Métodos: Estudo clínico randomizado, duplo-cego, controlado por placebo, com 42 pacientes em HD, nos grupos AR (n = 22) ou placebo (n = 20). Os pacientes receberam, alternadamente, biscoitos e sachês com 16 g/dia de AR ou polvilho - 4 semanas. Coletamos amostras de sangue em jejum pré-diálise e medimos níveis séricos de AIA por cromatografia líquida de alta eficiência. Isolamos e processamos as células mononucleares do sangue periférico para avaliar expressão AhR mRNA e NF-κB mRNA pós-suplementação por PCR quantitativo em tempo real. Avaliamos parâmetros antropométricos, bioquímicos e ingestão alimentar. Resultados: 31 pacientes, 15 AR e 16 no placebo. Apesar de não apresentarem alteração significativa nos níveis de AIA, nas expressões de AhR ou NF-κB mRNA pós-suplementação com AR, foi verificada uma correlação positiva (r = 0,48; p = 0,03) entre AIA sérico e expressão de AhR na linha basal. Conclusão: Embora a suplementação com o prebiótico de AR não tenha influenciado os níveis de AIA ou a expressão de AhR, sua associação positiva reforça possível interação entre eles.

Palavras-chave: Prebióticos; Receptor aril hidrocarboneto; Inflamação; Doença renal crônica; hemodiálise.

Efeitos da suplementação de amido resistente no ácido indol-3-acético plasmático e na expressão do mRNA do receptor aril-hidrocarboneto em pacientes em hemodiálise: ensaio clínico randomizado, duplo-cego e controlado

Resistant starch supplementation effects on plasma indole 3-acetic acid and aryl hydrocarbon receptor mRNA expression in hemodialysis patients: Randomized, double blind and controlled clinical trial

ABSTRACT

Introduction: Gut microbiota imbalance is linked to high uremic toxins production such as indole-3-acetic acid (IAA) in chronic kidney disease patients. This toxin can activate the aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor involved with inflammation. Strategies to restore gut microbiota balance can be associated with reduced production of IAA and its deleterious effects. This study aimed to evaluate prebiotic resistant starch (RS) supplementation effects on IAA plasma levels and AhR mRNA expression in CKD patients on hemodialysis (HD). Methods: This randomized, double-blind and placebo-controlled clinical trial evaluated forty-two stable HD patients allocated in RS (n=22) or placebo (n=20) groups. Patients received, alternately, cookies and sachets containing 16 g/day of RS (Hi-Maize 260®) or manioc flour for four weeks. Fast- ing pre-dialysis blood samples were collected and IAA plasma levels measured by high performance liquid chromatography. Peripheral blood mononuclear cells were isolated and processed for AhR and nuclear factor kappa B (NF-κB) mRNA expression analyzes by quantitative real-time PCR. Anthropometric and biochemical parameters, as well as food intake were also evaluated. Results: Thirty-one patients completed the study, 15 in the RS group and 16 in the placebo group. Although there was no significant alteration in IAA plasma levels, neither in AhR mRNA expression and NF-κB mRNA expression after RS supplementation, a positive correlation (r=0.48; p=0.03) was observed between IAA plasma levels and AhR expression at baseline. Conclusion: Even though prebiotic RS supplementation did not influence IAA levels or AhR expression, their positive association reinforces a possible interaction between them.

Keywords: Prebiotics; Aryl hydrocarbon receptor; Inflammation; Chronic kidney disease; hemodialysis.
INTRODUÇÃO

O receptor aril hidrocarboneto (AhR) é um fator de transcrição alocado no subgrupo hélice-loop-hélice básico da família de fatores de transcrição Per-Arnt-Sim, uma classe de proteínas consideradas sensores ambientais, amplamente expressa em nível central e sistêmico1. O AhR foi identificado primeiramente como um fator de transcrição relacionado ao metabolismo dos xenobióticos, sendo o principal ligante ativador as dioxinas2. Desde então, tem sido extensivamente estudado como mediador de respostas celulares contra substâncias tóxicas ambientais. Os últimos achados mostram que, além das dioxinas, outros ligantes endógenos são capazes de ativá-lo, associando o AhR às várias vias fisiológicas necessárias para manter a homeostase em diferentes tecidos e tipos de células de animais e humanos3-7. Entre esses ligantes endógenos estão as toxinas urêmicas derivadas do metabolismo do triptofano, como o ácido indol-3-acético (AIA)8.

O triptofano, um aminoácido essencial, está presente em alimentos de origem animal, como carne, leite e ovos e, quando atinge o cólon, o triptofano pode ser fermentado pela microbiota e produzir AIA9,10. Em um indivíduo saudável, as toxinas urêmicas são facilmente excretadas pelos rins, mas na doença renal crônica (DRC) sua depuração é prejudicada e a diálise não é capaz de filtrá-las porque estão fortemente ligadas à albumina sérica11.

As toxinas urêmicas têm sido associadas à inflamação e estresse oxidativo, bem como à progressão da DRC12,13 e maior incidência de doenças cardiovasculares (DCV)14-16. Entre as toxinas urêmicas, o AIA tem sido associado à patogênese das DCV, estimulando a produção de fatores teciduais procoagulantes17 e pela ativação de mecanismos pró-inflamatórios16,18. De fato, o AIA - um metabólito do triptofano - é capturado na célula pelos transportadores de ânions orgânicos e se liga ao complexo AhR, ativando-o e desencadeando uma resposta de sinalização inflamatória através da ligação ao AhR19. Além disso, quando as toxinas urêmicas estão ligadas ao AhR, o fator 2 alfa induzido por hipóxia (HIF2α) não é translocado para o núcleo e a expressão do gene eritropoietina é reduzida, levando à anemia20. É importante notar que a ativação do AhR também envolve muitas funções fisiológicas, como desenvolvimento fetal e diferenciação de células T CD4+19.

O complexo da toxina urêmica-AhR se transloca para o núcleo e se dissocia do complexo proteico estabilizador para formar um complexo heterodimérico com o translocador nuclear de aril hidrocarboneto, induzindo a produção de radicais livres e citocinas inflamatórias21,22.

Estudos sugerem que a suplementação de fibras alimentares com função prebiótica, como o amido resistente (AR), pode exercer um possível efeito modulador na microbiota intestinal em pacientes com DRC, reduzindo a produção de toxinas urêmicas, reduzindo a inflamação e o estresse oxidativo23-25. Além disso, relatamos recentemente que a suplementação de AR por 4 semanas pode melhorar os níveis de toxinas urêmicas, marcadores de estresse oxidativo e IL-626. Assim, o objetivo deste estudo foi investigar os possíveis efeitos da suplementação de AR nos níveis plasmáticos de AIA e na expressão do mRNA do AhR na DRC.

MATERIAIS E MÉTODOS

POPULAÇÃO ESTUADA

As características detalhadas dos pacientes foram publicadas recentemente26. Os pacientes receberam uma prescrição dietética de 1,2 a 1,4 g de proteína/kg/dia e 30-35 kcal/kg/dia, conforme recomendado para pacientes em HD, de acordo com suas necessidades. O monitoramento da dieta foi realizado pelo nutricionista da clínica e direcionado de acordo com os exames bioquímicos dos pacientes. As drogas utilizadas pelos dois grupos foram semelhantes, incluindo quelantes de ferro, eritropoietina, anti-hipertensivos e fósforo. O cálculo do tamanho da amostra foi realizado no software G-Power, com poder de teste de 80%, considerando a PCR como desfecho principal, nível de significância de 5% (bicaudal) e 17 pacientes para cada grupo.

DISENO DO ESTUDO

Este ensaio clínico longitudinal, randomizado, duplo-cego e controlado por placebo foi realizado entre 2016 e 2017 no Rio de Janeiro, Brasil, e foi uma análise secundária do estudo de suplementação com AR. Amostras de sangue de pacientes em HD, recrutados para o estudo descrito anteriormente,26 foram analisadas quanto aos níveis plasmáticos de AIA e à expressão do AhR mRNA.

Resumidamente, os pacientes foram randomizados em dois grupos, AR e placebo, para receber durante...
4 semanas a suplementação correspondente (16 g de Hi-Maize 260®, ingrediente ou polvilho, Yoki). Os pacientes receberam a respectiva suplementação na forma intercalada de biscoitos (1 embalagem/dia com 9 unidades, entregue durante a sessão de diálise para consumo no local) e pó (1 sachê/dia para consumo em dias sem diálise). Biscoitos e sachês foram preparados quinzenalmente no Laboratório de Nutrição e Dietética da Faculdade de Nutrição - UFF, e eram idênticos em cor, aparência, tamanho e forma, e foram embalados em embalagens plásticas idênticas.

A coleta de sangue, a antropometria e a retirada de alimentos foram realizadas no início e após 4 semanas do período de suplementação, conforme descrito anteriormente26. A concepção do projeto foi aprovada pelo Comitê de Ética em Pesquisa da Faculdade de Medicina e pelo Hospital Universitário Antonio Pedro e recebeu a licença n.º CAAE 47703315.6.0000.5243. Este estudo também foi registrado no serviço de Ensaios Clínicos dos Institutos Nacionais de Saúde dos EUA (clinicaltrials.gov - NCT02706808). Todos os procedimentos estavam de acordo com os princípios da Declaração de Helsinque.

Procedimentos Analíticos e Análises Bioquímicas

Amostras de sangue em jejum foram obtidas antes do procedimento de HD. As alíquotas de sangue total foram divididas para obtenção de plasma e soro e para isolamento de células mononucleares do sangue periférico (PBMCs).

Para obter plasma e soro, o sangue foi centrifugado (15 min, 3500 rpm, 4°C) e, em seguida, armazenado a -80°C até análises posteriores. Os níveis plasmáticos de AIA foram medidos por cromatografia líquida de alta eficiência, conforme descrito anteriormente27. Os níveis séricos de fósforo, potássio, creatinina e albumina foram analisados usando os kits Bioclin® (catálogo # K020, K131, K016, K040, respectivamente) pelo analisador bioquímico automático. Os PBMCs foram isolados e análises da reação em cadeia da polimerase quantitativa em tempo real (rt-PCR) foram realizadas para avaliar a expressão de AhR e NF-xB mRNA de acordo com Cardozo et al.28. Os ensaios de expressão gênica TaqMan (Applied Biosystems®) foram utilizados para a detecção de mRNA de AhR (Hs00169233_m1), mRNA de NF-xB (Hs00765730_m1) e o gene de controle, GAPDH (Hs02758991_g1). A amplificação por PCR foi realizada com o sistema de detecção de sequenciamento ABI Prism 7500 (Applied Biosystems®) e padrões de condição de ciclo. A expressão dos níveis de AhR e NF-xB foi normalizada em função do GAPDH e o nível de expressão foi calculado usando o método do ciclo de limiar de detecção delta (ΔΔCT).

Além disso, os parâmetros bioquímicos de rotina, incluindo hemoglobina, hematócrito e ureia pré e pós-diafise, foram medidos de acordo com métodos padrão do laboratório clínico da clínica de HD.

Análise Estatística

De acordo com o teste de Kolmogorov-Smirnov, os resultados foram relatados como média ± desvio padrão (DP) ou mediana (intervalo interquartil). O teste-t de Student ou Mann-Whitney foi utilizado para avaliar diferenças entre as médias; os coeficientes de correlação de Pearson ou Spearman foram usados para avaliar correlações. O efeito da suplementação (Δ) para cada variável foi definido como a diferença do próprio paciente entre o valor final e os valores basais do AR ou suplementação com placebo. Os testes foram estabelecidos com intervalos de confiança de 95% (p <0,05) e foram considerados significativos. As análises estatísticas foram realizadas no programa Statistical Package for the Social Sciences versão 23.0.

Resultados

Dos 43 pacientes em HD selecionados para o estudo, 22 foram alocados no grupo AR e 20 no grupo placebo. Um paciente morreu antes da randomização e 31 terminaram o período de suplementação, 15 no grupo AR (47% homens, 56,0 ± 7,5 anos; 50,0 ± 36,6 meses de HD) e 16 no grupo placebo (69%, 53,5 ± 11,5 anos e 44,3 ± 26,4 meses de HD). Os motivos pelos quais os pacientes foram perdidos neste estudo já foram descritos26.

Características clínicas e parâmetros bioquímicos e antropométricos foram relatados anteriormente; nem no início nem no final do estudo foram observadas diferenças. Embora não tenha havido mudança significativa nos hábitos alimentares após o período de suplementação nos dois grupos, o grupo que consumiu AR aumentou a ingestão de fibras (de 18,6 ± 7,1 para 34,4 ± 7,9, p = 0,0001)26.

Além disso, não houve diferença significativa nos níveis plasmáticos de AIA ou na expressão de AhR mRNA nos dois grupos após a intervenção de 4 semanas. Houve uma tendência à redução da expressão do mRNA de NF-xB no grupo AR (Tabela 1). No
entanto, uma correlação positiva \((r = 0,48; p = 0,03)\) foi observada entre os níveis plasmáticos de AIA e a expressão de AhR mRNA no início do estudo (pacientes incluídos nos dois grupos) (Figura 1).

DISCUSSÃO

O presente estudo revelou que 4 semanas com 16g de suplementação com AR não foram capazes de reduzir os níveis plasmáticos de AIA da toxina urêmica ou a expressão de AhR e mRNA de AhR e NF-κB em pacientes em HD. No entanto, foi observada uma correlação positiva entre os níveis plasmáticos do AIA e a expressão do AhR mRNA, o que reforça a ideia de que concentrações mais altas de toxinas urêmicas, especificamente o AIA, podem estar envolvidas na ativação do AhR.

O presente ensaio clínico foi o primeiro a avaliar o efeito de um prebiótico, especificamente o AR, pela concentração da toxina urêmica AIA e pela possível ativação do receptor AhR, que foi identificado como um importante receptor de toxina urêmica e, portanto, poderia desempenhar um importante papel central na ativação da via inflamatória na DRC\(^{29}\). Em nossa revisão anterior, discutimos a expressão de AhR e sua associação com toxinas urêmicas e inflamação em pacientes com DRC\(^{19}\).

Até onde sabemos, apenas um estudo examinou os efeitos da suplementação de fibra solúvel fermentativa no estado inflamatório de pacientes em HD\(^{30}\), e apenas dois estudos avaliaram o uso da suplementação de AR em pacientes em HD\(^{31,26}\).

No estudo de Khosroshahi\(^{31}\), a suplementação com AR foi capaz de reduzir significativamente os níveis plasmáticos de TNF-α, IL-6 e malondialdeído. Reforçando esses achados, nosso estudo piloto\(^{26}\) observou uma redução dos níveis plasmáticos de substâncias reativas à IL-6 e do ácido tiobarbitúrico (TBARS), bem como aos níveis plasmáticos de indoxil sulfato após quatro semanas de suplementação com 16g de AR. Além disso, foi observada uma correlação positiva entre IS e IL-6. Achados semelhantes, como redução dos níveis de toxinas urêmicas e, portanto, marcadores de estresse oxidativo e de inflamação foram encontrados em estudos anteriores em ratos com DRC alimentados com AR\(^{24,25}\). Além disso, no presente estudo, houve uma tendência na redução da expressão de NF-kB. Vaziri et al. (2014)\(^{24}\) observaram redução da expressão do fator nuclear kappa-B (NF-kB) após suplementação com amido resistente 2 em ratos nefrectomizados. Os mecanismos pelos quais o AR pode modular a expressão de NF-kB não são claros; no entanto, a hipótese de que esse prebiótico possa modular a microbiota intestinal,

TABELA 1.

Parâmetros	Grupo AR \((n=15)\)	Grupo placebo \((n=16)\)							
	Valores basais	Pós	Valor de \(p\)	\(\Delta\)	Valores basais	Pós	Valor de \(p\)	\(\Delta\)	Valores de \(p\) de \(\Delta\)
Expressão AhR	1,1 ± 0,5	1,1 ± 0,5	0,84	0,3 (–0,4; 0,5)	1,1 ± 0,5	1,0 ± 0,5	0,29	-0,1 (-0,7; 0,3)	0,19
Expressão NF-κB	1,35 ± 0,81	0,97 ± 0,37	0,06	-0,2 (-0,6; 0,19)	1,0 ± 0,54	1,16 ± 0,64	0,49	0,04 (-0,61; 0,61)	0,18
AIA (mg/L)	2132,0 ± 1167,0	1917,0 ± 966,0	0,16	6,6 (–4,270; 226,0)	2004,0 ± 1035,0	1840,0 ± 908,0	0,59	-194,0 (-1254,0; 520,0)	0,89

AhR, receptor de aril hidrocarbono; NF-κB, Fator nuclear κB; AIA, ácido indole-3-acético. Os dados são apresentados como média ± DP ou mediana (25º-75º percentil).
reduzindo toxinas e aumentando a produção de ácidos graxos de cadeia curta, pode ser aceita.

Estudos anteriores já avaliaram os níveis de toxinas urêmicas e seu papel na patogênese da DRC e eventos cardiovasculares, que são uma causa de mortalidade entre os pacientes com DRC. Dentre essas toxinas, o indoxil sulfato é o principal precursor de doenças cardiovasculares, associadas à mortalidade geral e cardiovascular\(^\text{15}\), e à mortalidade por todas as causas em pacientes com DRC, principalmente naqueles em diálise\(^\text{16}\).

O AIA e a relação de toxinas urêmicas foram exploradas na DRC\(^\text{16,23,32,33}\). Em um ensaio clínico, o AIA foi associado a um aumento na mortalidade e eventos cardiovasculares em pacientes com DRC com níveis de AIA> 3,73 μM quando comparado a pacientes com níveis mais baixos (AIA <= 3,73 μM). Para confirmar essa associação, observou-se pela cultura celular que o AIA induzia o estresse oxidativo aumentando a síntese e a inflamação de ERO via AhR/p38MAPK/NF-κB, aumentando as citocinas inflamatórias e ativando o ciclo-oxigenase-2\(^\text{16}\).

Embora não tenha havido redução significativa nos níveis de IAA em nosso estudo, Sirich et al.\(^\text{23}\) relataram que, após a intervenção com 15g de amido de milho rico em amilose (Hi-milho 260) via sachês por 6 semanas, o nível plasmático livre de IS foi significativamente reduzido quando comparado ao grupo controle. Vale ressaltar que, embora nosso estudo tenha tido um menor tempo de intervenção (4 semanas), a quantidade de AR administrada por dia foi maior (16g). Além disso, Ramos et al. não observaram redução do AIA após a suplementação com um prebiótico (FOS) em pacientes em pré-diálise, concordando com nossos resultados\(^\text{33}\).

Nesse contexto, a redução da concentração de toxinas urêmicas na DRC, restabelecendo a microbiota intestinal com suplementação prebiótica, surge como estratégia não-farmacológica para diminuir a ativação da cascata inflamatória via ativação do AhR\(^\text{23-25}\). Os mecanismos de ação dos prebióticos, especificamente a AR, no intestino humano são complexos e várias hipóteses foram propostas para explicar seus efeitos benéficos na saúde intestinal e sistêmica de pacientes em HD. O AR é fermentado no intestino grosso por bactérias simbióticas (Firmicutes, Bacteroidetes e Actinobacterium), que possuem atividade enzimática capaz de clivar as ligações α 1,4 e α 1,6 da AR, resultando nos produtos dessa fermentação, ácidos graxos de cadeia curta (SCFAs) (metano, hidrogênio, dióxido de carbono), ácidos orgânicos (lactato, succinato e fumarato) e álcoois (metanol e etanol)\(^\text{34}\). Vaziri et al.\(^\text{15}\) relataram que após a suplementação com AR2 houve um aumento na população de bactérias simbióticas, incluindo Bifidobacterium e Faecalibacterium prausnitzii, que apresentam potencial anti-inflamatório.

Os SCFAs promovem a redução do pH intestinal, modulando a microbiota intestinal e reduzindo a uremia\(^\text{36,37}\). Além disso, os SCFAs são substratos energéticos para linfócitos T-reguladores, aumentando assim a imunidade e para os colonocitos, restaurando a integridade da barreira mucosa\(^\text{37}\). Uma vez que essa barreira esteja completa, ela se torna mais seletiva e não permite a passagem de toxinas urêmicas, bactérias e seus componentes da parede celular de lipopolissacarídeos para a corrente sanguínea, reduzindo a inflamação presente nos pacientes com DRC\(^\text{38}\).

Entre outros efeitos do AR está a melhora da sensibilidade à insulina\(^\text{39}\) e a redução do perfil lipídico\(^\text{40}\) e adiposidade\(^\text{39}\).

Em relação às limitações do estudo, o pequeno tamanho da amostra e o fato de alguns participantes terem se retirado do estudo podem ter impedido o surgimento de outros resultados com significância estatística. Além disso, não foi possível avaliar a expressão de genes conhecidos ativados pelo receptor, como CYP1A1, CYP1A2 e CYP1B1, ou mesmo executar uma técnica de Western blotting para avaliar o receptor AhR e a proteína NF-kB. Embora esses estudos sugiram um possível efeito modulador da microbiota intestinal em pacientes com DRC, reduzindo a produção de toxinas urêmicas e, com isso, diminuindo a ativação da cascata inflamatória e diminuindo o estresse oxidativo, a ação prebiótica nesses pacientes ainda não está clara. De fato, esta é a primeira evidência do impacto da suplementação prebiótica, especificamente AR, na expressão de AhR.

Conclusão

Em resumo, os dados deste estudo sugerem que a suplementação com AR prebiótico não influencia os níveis plasmáticos de AIA, nem a expressão de AhR e NF-κB mRNA. Além disso, o estudo sugere que os níveis de AIA estão associados positivamente à ativação do AhR. Mais estudos são necessários para explorar a suplementação prebiótica na redução da...
toxina urêmica e sua relação com a possível ativação do AhR nessa população.

AGRADECIMENTOS

Os autores gostariam de agradecer a todos os pacientes que participaram do estudo e à equipe da clínica Renalcor pela notável ajuda neste estudo. Além disso, gostariam de agradecer à Unidade de Pesquisa Clínica, Laboratório de Nutrição Experimental, Laboratório de Alimentos e Dietética, Coordenação de Aperfeiçoamento do Pessoal de Nível Superior (CAPES), Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) e Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). O AR usado para suplementação foi gentilmente fornecido pela Ingredion.

CONTRIBUIÇÃO DOS AUTORES

Renata Azevedo, Marta Esqalhado, Julie Ann Kemp, Bruna Regis, Ludmila MF Cardozo, Lia S. Nakao, Jessyca Sousa de Brito e Denise Mafra foram responsáveis pela concepção, design, coleta de dados, análises e interpretação dos dados. Ludmila MF Cardozo e Denise Mafra foram responsáveis pela concepção, design, interpretação dos dados e revisão do artigo por conteúdo intelectual de importância crítica.

CONFLITO DE INTERESSE

Os autores declaram que não há conflito de interesses.

REFERÊNCIAS

1. Mimura J, Fujii-Kuriyama Y. Functional role of AhR in the expression of toxic effects by TCDD. Biochim Biophys Acta. 2003 Feb;1619(3):263-8.
2. Poland A, Glover E, Kende AS. Stereospecific, high affinity binding of 2,3,7,8- tetrachlorodibenzo-p-dioxin by hepatic cytosol. Evidence that the binding species is receptor for induction of aryl hydrocarbon hydroxylase. J Biol Chem 1976 Aug;251(16):4936-46.
3. Nguyen LP, Bradfield CA. The search for endogenous activators of the aryl hydrocarbon receptor. Chem Res Toxicol. 2008 Jan;21(1):102-16.
4. Bock KW. From dioxin toxicity to putative physiologic functions of the human Ah receptor in homeostasis of stem/progenitor cells. Biochem Pharmacol 2017 Jan;123:1-7.
5. Mulero-Navarro S, Fernandez-Salguario P. New trends in aryl hydrocarbon receptor biology. Front Cell Dev Biol. 2016 May;4:45.
6. Nebert DW. Aryl hydrocarbon receptor (AhR): “pioneer member” of the basicelix/loop/helix per-Arm-sim (bHLH/PAS) family of “sensors” of foreign and endogenous signals. Prog Lipid Res. 2017;67:38-57.
7. Pohjanvirta R. The Ah receptor in biology and toxicology. New York: John Wiley & Sons; 2012.
25. Kieffer DA, Piccolo BD, Vaziri ND, Liu S, Lau WL, Khazaei M, et al. Resistant starch alters gut microbiome and metabolomic profiles concurrent with amelioration of chronic kidney disease in rats. Am J Physiol Renal Physiol. 2016 May;310(9):F857-71.

26. Esgalhado M, Kemp JA, Azevedo R, Paiva BR, Stockler-Pinto MB, Dolenga CJ, et al. Could resistant starch supplementation improve inflammatory and oxidative stress biomarkers and uremic toxins levels in hemodialysis patients? A pilot randomized controlled trial. Food Funct. 2018 Dec;9(12):6508-16.

27. Borges NA, Barros AF, Nakao LS, Dolenga CJ, Fouque D, Mafra D. Protein-bound uremic toxins from gut microbiota and inflammatory markers in chronic kidney disease. J Renal Nutr. 2016 Dec;26(6):396-400.

28. Cardozo LFMF, Stockler-Pinto MB, Mafra D. Brazil nut consumption modulates Nrf2 expression in hemodialysis patients: a pilot study. Mol Nutr Food Res. 2016 Jul;60(7):1719-24.

29. Sallée M, Dou I, Cerini C, Poitevin S, Brunet P, Burtey S. The aryl hydrocarbon receptor-activating effect of uremic toxins from tryptophan metabolism: a new concept to understand cardiovascular complications of chronic kidney disease. Toxins (Basel). 2014 Mar;6(3):934-49.

30. Xie LM, Ge YY, Huang X, Zhang YQ, Li JX. Effects of fermentable dietary fiber supplementation on oxidative and inflammatory status in hemodialysis patients. Int J Clin Exp Med. 2015 Jan;8(1):1363-9.

31. Khosroshahi HT, Vaziri ND, Abedi B, Asl BH, Ghojazadeh M, Jing W, et al. Effect of high amylase resistant starch (HAMS) supplementation on biomarkers of inflammation and oxidative stress in hemodialysis patients: a randomized clinical trial. Hemodial Int. 2018;22(4):492-500.

32. Satoh M, Hayashi H, Watanabe M, Ueda K, Yamato H, Yoshioka T, et al. Uremic toxins overload accelerates renal damage in a rat model of chronic renal failure. Nephron Exp Nephrol. 2003;95(3):e111-18.

33. Ramos CI, Armani RG, Canziani MEF, Dalboni MA, Dolenga CJR, Nakao LS, et al. Effect of prebiotic (fructooligosaccharide) on uremic toxins of chronic kidney disease patients: a randomized controlled trial. Nephrol Dial Transplant. 2019 Nov;34(11):1876-84.

34. Wang AYM. Consequences of chronic inflammation in peritoneal dialysis. Semin Nephrol. 2011;31(2):159-71.

35. Vaziri ND, Wong J, Pahl M, Piceno YM, Yuan J, DeSantis TZ, et al. Chronic kidney disease alters intestinal microbial flora. Kidney Int. 2013;83(2):308-15.

36. Martinez I, Kim J, Duffy PR, Schlegel VL, Walter J. Resistant starches types 2 and 4 have differential effects on the composition of the fecal microbiota in human subjects. PLoS ONE. 2010 Nov;5(11):e15046.

37. Lange K, Hugenholtz F, Jonathan MC, Schols HA, Kleerebezem M, Smidt H, et al. Comparison of the effects of five dietary fibers on mucosal transcriptional profiles, and luminal microbiota composition and SCFA concentrations in murine colon. Mol Nutr Food Res. 2015 Aug;59(8):1590-602.

38. Esgalhado M, Kemp JA, Damasceno NR, Fouque D, Mafra D. Short-chain fatty acids: a link between prebiotics and microbiota in chronic kidney disease. Future Microbiol. 2017 Nov;12(15):1413-25.

39. Bodinham CL, Smith L, Thomas EL, Bell JD, Swann JR, Costabile A, et al. Efficacy of increased resistant starch consumption in human type 2 diabetes. Endocr Connect. 2014 Apr;3(2):75-84.

40. Nichenametla SN, Weidauer LA, Wey HE, Beare TM, Specker BL, Dey M. Resistant starch type 4-enriched diet lowered blood cholesterol and improved body composition in a double-blind controlled cross-over intervention. Mol Nutr Food Res. 2014 Jun;58(6):1365-9.