Endorsement and phylogenetic analysis of some Fabaceae plants based on DNA barcoding

Nader R. Abdelsalam¹ · Mohamed E. Hasan² · Talha Javed² · Samar M. A. Rabie¹ · Houssam El-Din M. F. El-Wakeel¹ · Amera F. Zaitoun¹ · Aly Z. Abdelsalam³ · Hesham M. Aly⁵ · Rehab Y. Ghareeb⁶ · Alaa A. Hemeida² · Adnan Noor Shah⁷

Received: 15 February 2022 / Accepted: 26 April 2022 / Published online: 2 June 2022 © The Author(s) 2022

Abstract

Background DNA barcoding have been considered as a tool to facilitate species identification based on its simplicity and high-level accuracy in compression to the complexity and subjective biases linked to morphological identification of taxa. MaturaseK gene (MatK gene) of the chloroplast is very vital in the plant system which is involved in the group II intron splicing. The main objective of this study is to determine the relative utility of the “MatK” chloroplast gene for barcoding in 15 legume as a tool to facilitate species identification based on their simplicity and high-level accuracy linked to morphological identification of taxa.

Methods and Results MatK gene sequences were submitted to GenBank and the accession numbers were obtained with sequence length ranging from 730 to 1545 nucleotides. These DNA sequences were aligned with database sequence using PROMALS server, Clustal Omega server and Bioedit program. Maximum likelihood and neighbor-joining algorithms were employed for constructing phylogeny. Overall, these results indicated that the phylogenetic tree analysis and the evolutionary distances of an individual dataset of each species were agreed with a phylogenetic tree of all each other consisting of two clades, the first clade comprising (Enterolobium contortisiliquum, Albizia lebbek), Acacia saligna, Leucaena leucocephala, Dichrostachys Cinerea, (Delonix regia, Parkinsonia aculeata), (Senna surattensis, Cassia fistula, Cassia javanica) and Schotia brachypetala were more closely to each other, respectively. The remaining four species of Erythrina humeana, (Sophora secundiflora, Dalbergia Sissoo, Tipuana Tipu) constituted the second clade.

Conclusion Moreover, their sequences could be successfully utilized in single nucleotide polymorphism or as part of the sequence as DNA fragment analysis utilizing polymerase chain reaction in plant systematic. Therefore, MatK gene is considered promising a candidate for DNA barcoding in the plant family Fabaceae and provides a clear relationship between the families.

Keywords DNA barcoding · Legume tree · MaturaseK gene · Phylogenetic tree

¹ Agricultural Botany Department, Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria 21531, Egypt
² Bioinformatics Department, Genetic Engineering and Biotechnology Research Institute, Sadat City University, Sadat City, Egypt
³ College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
⁴ Genetics Department, Faculty of Agriculture, Ain-Shams University, Ain Shams, Egypt
⁵ Department of Forestry and Wood Technology, Horticulture Institute, Agriculture Research Center, Antoniadis Botanical Garden, Alexandria 21554, Egypt
⁶ Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Borg El-Arab, Alexandria 21934, Egypt
⁷ Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Punjab, Pakistan
Introduction

Fabaceae is considering a large and economically vital family of flowering plants which is usually known as the legume family [1–5]. The Fabaceae family, which has over 490 medicinal plant species 730 genera flowering plants and more than 19,400 species [5–9]. Documentation of the Mediterranean legume crops depending on morphological characteristics has shown tricky and much impossible [10–13]. So, using a DNA-based technique would offer accurate knowledge and facilitate the discrimination of the species. DNA barcoding is new, efficient, quick, low-cost, and standard technique for the fast identification and evaluation of plant and animal species based on DNA sequence from a small fragment of the whole genome in a rapid, accurate [14–18]. DNA barcoding can help to detect species, quick identification of any species that are possibly novel to science and to report the essential ecological and evolutionary questions as a biological instrument [19–25]. DNA barcoding are frequently promoted for their facility to enhance the accessibility of scientific information and new knowledge to the public and non-specialists [26, 27]. Short DNA sequences in DNA barcoding are used to identify the diversity between plant and animal species as molecular markers [28], also, it’s used in an assignment the unknown samples to a taxonomic group, species as molecular markers [28], also, it’s used in an assignment the unknown samples to a taxonomic group, species as molecular markers [28]. DNA barcoding is a potential tool to detect an error in identifying species because similarity-based approaches using DNA barcoding combined with morphology would solve the misidentification based on morphology [30–32]. DNA barcoding could help decrease the limitations of morphological characteristics and hurry up plant and animal species identification since it can detect the organisms at any stage of growth. DNA barcodes are designed to create a shared community resource of DNA sequence that is used in the identification or taxonomic classification of any organisms [33]. The usage of DNA barcodes as a tool for plant/animal identification is based on the establishment of high-value reference databases of sequence [34] which cannot always distinguish between closely related species of land plants or fungi.

The MatK gene (1500 bp in length), located inside the intron of the mitochondrially encoded tRNA lysine-provided by HGNC (trnK) and codes for maturase as protein, which is involved in Group-II intron splicing, the trnK intron of plants encodes the MatK open reading frame (ORF). This gene has a high-level rate of substitution [3], a huge proportion of difference at nucleic acid levels at first and second codon place, and low transition and transversion ratio and the presence of mutationally conserved regions. Previous data were utilized to identify the molecular markers, which were used to identify the genus/species of these taxa, to provide valuable information for both conventional and molecular studies [11]. The current study, target to evaluate the capacity and the efficiency of MatK gene as normal plant barcode marker; documentation and identification of 45 plant specimens belonging to 15 species of Fabaceae plant species, and study the useful annotation, homology modeling and sequence analysis to permit an additional efficient use of these sequences between different plant species.

Materials and methods

Plant materials

Forty-five samples (three replicates for each species), which belonged to 15 species found in Fig. 1 were collected from Antoniadis Garden’s (N 29° 56’ 55, E 18° 12’ 31), Alexandria, Egypt between July 2019 to January 2020.

DNA extraction and sequencing of specimens

Total genomic DNA was extracted from fresh leaves tissue by (i-genomic plant DNA extraction Mini kit @ iNtron biotechnology, Berlin, Germany) corresponding to the protocol linked to the Plant Genomic DNA Kit (iNiRON Bio Co., South Korea) as found in Fig. 2. PCR of the MatK regions were conducted out in Techne Flexigene PCR Thermal Cycler programmed for 30 cycles as follows: 94 °C/5 min (1 cycle); 94 °C/45 s, 50 °C/45 s, 72 °C/45 s (30 cycles); 72 °C/7 min (1 cycle); 4 °C (infinitive). The designed common primers and reaction conditions of the MatK region is F: 5’-CGTACAGTACTTTTGTGTTACGAG-3’ (Tm, 53.9 and GC%, 40), R: 5’-ACCCAGTCCATCTGGGAAATCTTCTGG TTC-3’ (Tm, 60.4 and GC%, 48). The PCR products were run on a 1.0% agarose gel utilizing 1X TAE buffer containing 0.5 µg/mL ethidium bromide for electrophoresis of PCR products as found in Fig. 3. PCR products were purified using Mini kit @ iNtron Biotechnology Purification kits before being sequenced exploitation the dideoxynucleotide chain termination method with a DNA sequencer (Applied Biosystems® 3500 and 3500XL Genetic Analyzers) and a BigDye Terminator version 3.1 Cycle Sequencing RR-100 Kit (Applied Biosystems). The sequences were submitted to DDBJ/EMBL/GenBank database. Generic and species data was achieved from the taxonomy database of the National Centre for Biotechnology Information (NCBI).

Sequence analysis

The sequences results analysis was completed for the one grouped dataset, this set contains all the plant species of
Fig. 1 showing difference between leaves in fifteen fabaceae plants (1) Cassia fistula, (2) Cassia javinca, (3) Albizia lebbek, (4) Delonix regia, (5) Senna surattensis, (6) Parkinsonia aculeata, (7) Schotia brachypetala, (8) Tipuana tipu, (9) Erythrina huneana, (10) Sophora secundiflora, (11) Leucaena leucocephala, (12) Enterolobium contortisiliquum, (13) Dichrostachys cinerea, (14) Acacia saligna and (15) Dalbergia sissoo

Fig. 2 Agarose gel electrophoresis for extracted DNA from samples (1) Cassia fistula, (2) Cassia javinca, (3) Albizia lebbek, (4) Delonix regia, (5) Senna surattensis, (6) Parkinsonia aculeata, (7) Schotia brachypetala, (8) Tipuana tipu, (9) Erythrina huneana, (10) Sophora secundiflora, (11) Leucaena leucocephala, (12) Enterolobium contortisiliquum, (13) Dichrostachys cinerea, (14) Acacia saligna and (15) Dalbergia sissoo

Fig. 3 Agarose gel electrophoresis for amplified samples by using the primer MatK for the samples (1) Cassia fistula, (2) Cassia javinca, (3) Albizia lebbek, (4) Delonix regia, (5) Senna surattensis, (6) Parkinsonia aculeata, (7) Schotia brachypetala, (8) Tipuana tipu, (9) Erythrina huneana, (10) Sophora secundiflora, (11) Leucaena leucocephala, (12) Enterolobium contortisiliquum, (13) Dichrostachys cinerea, (14) Acacia saligna and (15) Dalbergia sissoo
Fabaceae for which the sequences are available in GenBank to find the inter-species and inter-generic variation. *Fabaceae* species sequences of *MatK* were retrieved from NCBI in Fasta format. Multiple sequence alignments of the *MatK* gene were conducted from different species applying the PROMALS server [35], Clustal Omega server [36], the BIOEDIT software [37] and MEGA-11 [38] which are offline software that conducts optimal sequence alignment to find the conserved area. The MEGA 11 software has matured to contain a large collection of methods and tools of computational molecular evolution for building time-trees of species, pathogens, and gene families using rapid relaxed-clock methods and estimating divergence times and confidence intervals for node-dating and sequence sampling dates for tip-dating analyses. Comparing to the greatest alignment methods with development for distantly related sequences the “PROMALS” is up to 30% more accurate. Clustal Omega server is a new multiple sequence alignment software that generates alignments between three or more sequences using seeded guide trees and HMM profile-profile methods. The “BIOEDIT” software is a user-friendly biological sequences alignment editor that aims to provide fundamental functions for editing, aligning, manipulating, and analyzing protein sequences.

Molecular evolution and phylogenetic analysis

The Neighbor Joining method was used to deduce the evolutionary narrative. Finding the topology and branch length of the tree that will offer the best chance of detecting amino acid sequence in current data is the approach for constructing the phylogenetic tree using maximum likelihood. So, for phylogenetic evaluation Mafft server [39], Clustal Omega server and “MEGA-11” software were applied. MEGA was used to analyze the sequencing data using the neighbor-joining technique and Unweighted Pair Group Mean Average “UPGMA.” The “DNADIST” software of “PHYLIP” was used to calculate distances. NJ plot was used to do bootstrapping and decay analysis. MEGA determined parsimony analyses and different clades.

Results

DNA extraction and PCR amplification

The quality of the obtained DNA was detected 1% agarose gel electrophoresis. The results indicated that there is no fragmentation was observed in extracted DNA. The quantity of extracted DNA samples was determined by using Nanodrop Spectrophotometer and the concentration ranged from 30 to 50 ng/μl. The extracted DNA was directly used in PCR amplification for the *MatK* gene recorded on fragment in molecular weight (900 bp).

Development in DNA sequencing methods has allowed us to describe the genomes of numerous organisms quickly. Evaluations of the DNA sequences of several species are providing useful knowledge about their taxonomy, gene makeup, and utilization. In the current study using DNA sequence polymorphisms of the chloroplast, *MatK* gene is much more variable than many other genes. From Fifteen plant species belong to different genera of the same family Fabaceae as found in Table 1. In this data we organized a study to contribute to the knowledge of the major

Species	Isolate	Length (bp)	Accession number	Number of conserved region	Average Entropy (Hx)
Acacia saligna	SR01	714	LC602060	15	0.0000
Albizia lebbeck	SR02	788	LC602154	16	0.0000
Cassia fistula	SR03	854	LC602263	14	0.0000
Cassia javanica	SR04	845	LC603314	14	0.0068
Dalbergia sissoo	SR05	763	LC603655	13	0.0354
Delonix regia	SR06	864	LC603845	18	0.0000
Dichrostachys cinerea	SR07	866	LC603846	22	0.0119
Enterolobium contortisiliquum	SR08	856	LC603847	19	0.0204
Erythrina hemeana	SR09	781	LC604717	13	0.0028
Leucaena leucocephala	SR10	820	LC604718	15	0.0203
Parkinsonia aculeata	SR11	838	LC605994	15	0.0000
Schotia brachypetala	SR12	856	LC604799	21	0.0119
Sophora flavescens	SR13	853	LC605995	17	0.0074
Sophora secundiflora	SR14	749	LC606468	16	0.0139
Tipuana tipu	SR15	787	LC606469	18	0.0353
evolutionary relationship between the studied plant genus and species (clades) and discussed the application of MatK for molecular evolution. The chloroplast MatK marker was more useful as DNA markers. The present study included fifteen species from fifteen genera are deposited in GenBank; accession numbers were obtained for the respective plant species with different numbers of conserved domains, segment length and average entropy (Hx) (Table 1).

Phylogenetic analysis of collected plants

Numerous sequence alignments showed that there are varying numbers of “Indels” in the gene MatK. Using the neighbor-joining method, UPGMA and maximum likelihood, the evolutionary distances for the 15 plant species were recognized into individual clades. The alignment of MatK gene of Acacia saligna nucleotide sequences showed 15 conserved regions, 769 variable sites and 571 parsimony sites, the overall mean distance is 2.85 (Table 2). The combined tree showed two groups or cladograms and they are represented as follows: Group I include Acacia saligna was closely related to different species belonging to other genera of the same family (Fabaceae) such as Enterolobium, Parachidondron, Archidendron, Samanea, Hydrochorea, Balizia and Abarema (Fig. 4). Also, Acacia comprising other species were closely arranged but distinguished into different genera such as Falcataria, Parachidondron and Lacacia. In addition, the aligned MatK dataset was 793 nucleotide sites long, of which 102 sites were potentially parsimony informative. Consequently, Enterolobium contortisiliquum is more closely related to different species of genus Acacia according to phylogenetic analysis using maximum likelihood (Fig. 4). The length of MatK varies from 750 bp in Albizia lebbeck (the smaller length of MatK gene for these species is due to incomplete sequencing, which was retrieved from GenBank) to 813 in different genera (Enterolobium, Acacia, Senegalia, Cojoba, Samanea, Hydrochorea, Balizia and Abarema). Maximum likelihood and Neighbor-joining analysis of the dataset resulted in tree with two groups. The clades established in the trees were mainly mixtures of numerous species. Consequently, creating a local barcode database will be useful for a broad range of potential ecological purposes, involving the building of community phylogenies [40]. Group I have three clusters comprising several genera (Albizia, Enterolobium, Mariosousa, Archidendron, Samanea, Balizia, and Abarema). Otherwise, group II has one genera acacia which is the most closely related to our plant Albizia lebbeck according to MatK gene partial cds (Fig. 4). The arrangement of MatK gene of Albizia lebbeck nucleotide sequence revealed 649 varying sites and 359 parsimony sites, the overall mean distance is 2.37 and the estimated Transition/Transversion bias (R) is 0.52 (Table 2, 3).

Table 2: The Homogeneity test of substitution patterns between sequences of fifteen studied species

Species	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Acacia saligna SR01	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Albizia lebbeck SR02	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Cassia fistula SR03	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Cassia javanica SR04C	0.216	0.182	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Dalbergia sissoo SR05	0.096	0.106	0.178	0.214	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Delonix regia SR06	0.224	0.306	0.186	0.106	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Dichrostachys cinerea SR07	0.020	0.182	0.012	0.028	0.038	0.004	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Enterolobium contortisiliquum SR08	1.000	0.182	0.036	0.028	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Erythrina humeana SR09	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Leucaena leucocephala SR10	1.000	1.000	0.328	0.164	0.060	0.204	0.048	0.238	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Parkinsonia aculeata SR11	1.000	1.000	1.000	1.000	0.282	1.000	1.000	0.236	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Schotia brachypetala SR12	1.000	1.000	1.000	1.000	0.282	1.000	1.000	0.158	1.000	0.000	0.000	0.000	0.000	0.000	0.000
Senna sulfurea SR13	1.000	1.000	0.260	0.030	0.346	1.000	1.000	0.078	0.002	0.146	0.000	0.000	0.000	0.000	0.000
Sophora secundiflora SR14	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.030	0.000	1.000	1.000	1.000	1.000	1.000	1.000
Tipuana tipu SR15	0.274	1.000	1.000	1.000	1.000	1.000	1.000	0.046	0.000	0.184	1.000	1.000	1.000	1.000	1.000
Furthermore, depending on the phylogenetic analysis, the two genera Cassia and Senna with different species are closely related and more highly similar than any other studies species (Fig. 5). The phylogeny tree was created using the neighbor-joining approach and the evolutionary distances were calculated employing the maximum composite likelihood approach. The combined trees showed that there are two groups, and they are as follows: Group I consisted of five clades representing different genera with different species such as (Chamaecrista, Senna, Erytherophleum, Arapatiell and Dinizia). Group II showed two branches: each one with many sub-branches containing five clades with different species of the genus Senna. According to MatK gene sequence, the collected plants (Cassia fistula and Cassia javanica) revealed a high percentage of identity with different 7 species of genus senna having the same clade (Fig. 5). Also, they are closely related to other different species of Erytherophleum, Arapatiell. On another hand, the sequence of MatK gene of collected Senna surattensis species has a high degree of similarity with many species in different genera in Fabaceae (Fig. 5), and consequently, this species is used as a template to estimate the similarity between different species in Fabaceae family.

Nevertheless, the Delonix regia is the more studied species having a good similarity to different species of different genera of the Fabaceae family. Polymorphism obtained from the DNA sequence indels or replacements of the MatK gene indicated that Delonix regia, Umtiza listeriana, Dipychandra aurantiaca, Moldenhawera blanchetiana, Schizolobium parahyba, Tachigali costaricensis, Arapatiella psilophylla and Parkinsonia Africana were evolved from a Common ancestor (Fig. 6). In addition, Dichrostachys cinerea is closely related to different species of genera Leucaena, Senegalia, Falcataaria and prosopis (Fig. 6). Furthermore, applying the same incremental method of informative sites starting at the 5’-end of the MatK gene, completely different results were found. The consensus tree of 15 most parsimonious trees demonstrated unresolved clades until 250 informative sites. At that point, 1 highly parsimonious tree was created, which was congruent with the topology of the stable tree achieved from the 3’-end. To recognize the greatest DNA barcode marker for species documentation and traceability, the value of genetic divergence for all the

Fig. 4 Phylogenetic tree analysis and the evolutionary distances of Acacia saligna, Albizia lebbeck and Enterolobium contortisiliquum were computed using the Maximum Likelihood technique using nucleotide sequences of the MatK gene. This analysis involved 49 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All ambiguous positions were removed for each sequence pair (pairwise deletion option). There were a total of 856 positions in the final dataset.
confirmed loci were calculated in each analyzed group at
dissimilar taxonomic level and by considering only fresh
morphologically identified samples. Results indicated the
species of *Delonix regia*, *Parkinsonia aculeata* and *Leu-
caca leucocephala* are more like other species of the same
genus and less similar to species of other genera of the
Fabaceae family (Fig. 6). This reflected that the *Parkinso-
nia aculeata* was closely related and in the same clade with*
Schizolobium parahyba*, *Diprychandra aurantiaca*, *Delonix*
regia*, *Conzattia multiflora* and *Colvillea racemose* (Fig. 6).

The current sequences showed little variations in the per-
centage of guanine plus cytosine content (% G + C) related
to that in the sequences of *MatK*. In case of *MatK*, the nucle-
otide structure was biased toward the guanine and cytosine
content (G + C) with frequencies were 30.4 to 34.8%, respec-
tively. The NJ, ML, and MP analyses all resulted in compa-
rable trees in each of the data sets. There are often variations
between the trees from the various analyses involving non-
resolution (polytomies). Analyses carried out on samples
belonging to *Parkinsonia aculeata*, *Schotia brachypetala*, *So-
phora secundiflora* and *Tipuana Tipu* indicated that the
sequences divergences of marker *MatK* were clearly distin-
guished from other species of Fabaceae. Figures 7 showed
phylogenetic clusters constructed using ML and NJ; The
difference observed in *MatK* does separate several species;
however, there is a wide range of intra- specific and inter-
specific variation. Furthermore, On the Neighbor-Joining
Phylogram, the Schotia group is a sister taxon to the Mac-
rolobium group and this observation is found in 50% of the
most clade in this cladistic analysis (Fig. 7).

The last two members i.e., *Sophora secundiflora* and *Tip-
ua Tipu* produced an independent clade and confirmed the
ambiguous position relative to the other genera of Fabaceae
based on the combined cladistic analysis data from chlo-
roplast DNA restriction sites and morphology. Sophora
secundiflora shared a common ancestor with *Angylocal-
lyx braunii*, *Zollernia splendens*, *Ormosia xylocarpa* and
Dermatophyllum secundiflorum. Also, *Tipuana Tipu* is in
the same clade with different species of two genera *Cen-
trolobium* and *Pterocarpus* (Fig. 7). Additionally, highly
Fabaceae species in the current research were detected to
have a unique sequence in the *MatK* gene. These results will
offer a valuable way to authenticate various *MatK* species.
MatK sequence created in this analysis will be applied to
construct reference sequence libraries, and the sequences
extracted from samples with particular identity classifica-
tions will be utilized to search the database.

Lastly, utilizing BLAST1 and the closest genetic distance
approach, we will be able to define the species identities
of the query sequences based on these data. In the dataset
of *MatK*, the nearest genetic distance approach achieved
99.68% to 96.45% identification accomplishment rates at
the species level for “BLAST1” and distance discrimination

Table 3 The estimation of evolutionary divergence between fifteen studied species

Species	Distance	Distance	Distance	Distance	Distance
Acacia saligna SR01	0.0261	0.0510	0.0301	0.0459	0.0301
Albizia lebbeck SR02	0.0510	0.0510	0.0301	0.0459	0.0301
Cassia fistula SR03	0.0261	0.0510	0.0301	0.0459	0.0301
Dalbergia sissoo SR05	0.0261	0.0510	0.0301	0.0459	0.0301
Dichrostachys cinerea SR07	0.0261	0.0510	0.0301	0.0459	0.0301
Enterolobium contortisiliquum SR09	0.0261	0.0510	0.0301	0.0459	0.0301
Erythrina humeana SR09	0.0261	0.0510	0.0301	0.0459	0.0301
Leucaena leucocephala SR10	0.0261	0.0510	0.0301	0.0459	0.0301
Parkinsonia aculeata SR11	0.0261	0.0510	0.0301	0.0459	0.0301
Schotia brachypetala SR12	0.0261	0.0510	0.0301	0.0459	0.0301
Sophora secundiflora SR14	0.0261	0.0510	0.0301	0.0459	0.0301
Tipuana tipu SR15	0.0261	0.0510	0.0301	0.0459	0.0301
methodology, respectively, with no equivocal identification at the genus level. The planned barcoding portion of MatK is about 760 base pairs in Fabaceae. The phylogenetic tree (Fig. 8) consists of two clades, the first clade comprising (Enterolobium contortisiliquum, Albizia lebbek), Acacia saligna, Leucaena leucocephala, Dichrostachys Cinerea, (Delonix regia, Parkinsonia aculeata), (Senna surattensis, Cassia fistula, Cassia javanica) and Schotia brachypetala were more closely to each other, respectively. The other four species of Erythrina humeana with Sophora secundiflora and (Dalbergia Sissoo, Tipuana Tipu) constituted the second clade.

Discussion

Because plant genomes include several copies of MatK sequences, it's unclear if the sequence obtained by PCR will be balanced and representative [41]. As a result, we suggest MatK as a potential barcode sequence in the Fabaceae family, as well as a wider range of plant species. Utilizing MatK as a DNA barcode would extend our knowledge of phylogenetics and population genetics in Fabaceae species as reviewed by [42–45]. We also recommend that MatK be used as a DNA barcode sequence to overcome difficulties in Fabaceae genus and species categorization [44, 46]. MatK might serve as a starting point for quality control and assurance of plant materials utilized in research, manufacturing, customs, and forensics.

The MatK was discovered to be a necessarily variable DNA region between Fabaceae species as determined by genetic divergences, and it demonstrated a greater potential of effective discrimination. MatK can be a powerful taxonomic marker for identifying species and resolving taxonomic issues [30, 32, 41]. For instance, the MatK sequence of Enterolobium contortisiliquum is highly like Albizia lebbek, so our results indicate that in the genus Cassia, in which the species were poorly graded, MatK was still able to distinguish among some confusing species [47]. The evolutionary distances for the 15 plant species that were separated into distinct clades were analyzed using the maximum likelihood and neighbor-joining methods, which discriminated most of the species better than previous techniques [48].
The identification by MatK region paired with morphological recognition 100% to species (Fig. 1) level; for the set of plants studied, it appears to be an accurate approximation of species identification using this one locus. Short sequence, universality, and unique identifiers are three features of a common barcode [48, 49]. According to our results of sequence length and composition of MatK barcode gene for the 15 plant species, MatK regions have high rate of nucleotide substitutions as showed by [50] or the locus remodeling ring [51]. Alternate primer sequences may increase the success rate of MatK amplification for some of the current taxa, making it a barcoding locus. The species in which the MatK region is amplified, however, had wide taxonomic coverage in the Fabaceae family, indicating that the locus' conserved sequence is notable.

Consequently, the partial amplification sequence of MatK was further utilized to investigate the evolutionary linkage of the selected plants. The evolutionary distances between the 15 plant species were divided into two clades using the Neighbor-Joining approach., the first clade comprising (Enterolobium contortisiliquum, Albizia lebbek), Acacia saligna, Leucaena leucocephala, Dichrostachys Cinerea, Delonix regia and Parkinsonia aculeata using the Neighbor-Joining technique using nucleotide sequences. All ambiguous positions were removed for each sequence pair (pairwise deletion option). There were a total of 924 positions in the final dataset.

![Fig. 6 Phylogenetic tree analysis and the evolutionary distances of Leucaena leucocephala, Dichrostachys Cinerea, Delonix regia and parkinsonia aculeata using the Neighbor-Joining technique using nucleotide sequences of the MatK gene. This analysis involved 73 taxa...](Image)
secundiflora, Dalbergia Sissoo, Tipuana Tipu) constituted the second clade. The results are encouraging, which give a backbone of knowledge in the data set. As additional species become accessible, more research for species resolution of a genus may be undertaken.

Conclusion

During the current study, DNA barcoding using MatK chloroplast gene was applied in fifteen legume trees by both single region and multiregional approaches. The obtained chloroplast gene sequences were submitted to GenBank, and fifteen accession numbers were recorded as LC604799, LC605995, LC606468, LC606469 with length ranging from 730 to 1545 nucleotides. The current results indicated that the phylogenetic tree analysis and the evolutionary distances of an individual dataset of each studied species were agreed with a phylogenetic tree of all each consisting of two clades, the first clade comprising (Enterolobium contortisiliquum, Albizia lebbek), A. saligna, Leucaena leucocephala, Dichrostachys Cineraria, (Delonix regia, Parkinsonia aculeata), (Senna surattensis, C. fistula, C. javanica) and Schotia brachypetala were more closely to each other, respectively. The remaining four species of Erythrina humeana, (Sophora secundiflora, Dalbergia Sissoo, Tipuana Tipu) were more closely to each other, respectively. The remaining four species of Erythrina humeana, (Sophora secundiflora, Dalbergia Sissoo, Tipuana Tipu) were more closely to each other, respectively. The remaining four species of Erythrina humeana, (Sophora secundiflora, Dalbergia Sissoo, Tipuana Tipu) were more closely to each other, respectively. The remaining four species of Erythrina humeana, (Sophora secundiflora, Dalbergia Sissoo, Tipuana Tipu) were more closely to each other, respectively.
Acknowledgements The authors gratefully acknowledge their respective universities for their support.

Author contribution Data curation, AZA, SMAR, HEDMFE, AFZ, MEH & NRA; Formal analysis, SMAR, HEDMFE, AFZ, HMA and MEH & NRA; Funding acquisition, SMAR, HMA, EDMFE, AFZ and MEH, AAH & NRA; Methodology, SMAR, HEDMFE, AFZ, HMA and MEH, AAH & NRA; Resources, SMAR, HEDMFE, AFZ; Writing—original draft, MEH, SMAR, HEDMFE, AFZ, AAH and NRA; Writing—review & editing, TJ, RYG, ANS, AAH and NRA.

Funding Open access funding provided by The Science, Technology & Innovation Funding Authority (STDF) in cooperation with The Egyptian Knowledge Bank (EKB). The current research received no external funding.

Declarations

Conflict of interest The authors declare no conflict of interest.

Ethical approval Not applicable.

Informed consent Not applicable.

Consent to Publish Not applicable.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Gepts P, Beavis WD, Brummer EC, Shoemaker RC, Stalker HT, Weeden NF, Young ND (2005) Legumes as a model plant family. Genomics for food and feed report of the cross-legume advances through genomics conference. Plant Physiol 137:1228. https://doi.org/10.1104/pp.105.060871

2. Antunes A, Nunes R, Novaes E, Coelho A, Soares T, Telles M (2020) Large number of repetitive elements in the draft genome assembly of *Dipteryx alata* (Fabaceae). Genet Mol Res 19:GMR18463

3. Xiong Y, Xiong Y, He J, Yu Q, Zhao J, Lei X, Dong Z, Yang J, Peng Y, Zhang X et al (2020) The complete chloroplast genome of two important annual clover species, *Trifolium alexandrinum* and *T. resupinatum*: genome structure, comparative analyses and phylogenetic relationships with relatives in Leguminosae. Plants. https://doi.org/10.3390/plants9040478

4. Tungmunnithum D, Drouet S, Lorenzo JM, Hano C (2021) Effect of traditional cooking and in vitro gastrointestinal digestion of the ten most consumed beans from the fabaceae family in Thailand on their phytochemicals, antioxidant and anti-diabetic potentials. Plants 11:67

5. Janarny G, Ranaweera KKDS, Gunathilake KDPP (2022) Digestive recovery of polyphenols, antioxidant activity, and anti-inflammatory activity of selected edible flowers from the family Fabaceae. J Food Biochem 46:e14052

![Fig. 8 Evolutionary analysis of legume tree species grown in Egypt in this study using MatK gene by Maximum Likelihood method](image-url)
6. Gao T, Yao H, Song J, Liu C, Zhu Y, Ma X, Pang X, Xu H, Chen S (2010) Identification of medicinal plants in the family Fabaceae using a potential DNA barcode ITS2. J Ethnopharmacol 130:116–121. https://doi.org/10.1016/j.ejep.2010.04.026

7. Van Wyk BE (2020) A family-level floristic inventory and analysis of medicinal plants used in Traditional African Medicine. J Ethnopharmacol 249:112351. https://doi.org/10.1016/j.ejep.2019.112351

8. Christenhusz MJ, Byng JW (2016) The number of known plants species in the world and its annual increase. Phytotaxa 261:201–217. https://doi.org/10.11646/phytotaxa.261.3.1

9. Palmer CM, Wershoven NL, Martinson SJ, ter Hofstede HM, Kress WJ, Symes LB (2022) Patterns of herbivory in neotropical forest katydids as revealed by DNA barcoding of digestive tract contents. Diversity, https://doi.org/10.3390/d14020152

10. Smartt J (1980) Evolution and evolutionary problems in food management. New Delhi, Springer India, pp 13–23

11. Enriquez-Hidalgo D, Cruz T, Teixeira DL, Steinfort U (2020) Molecular approaches for low-cost point-of-care pathogen detection in agriculture and forestry. Front Plant Sci 11:570862–570862. https://doi.org/10.3389/fpls.2020.570862

12. Lombardo E, Bancheva S, Domina G, Venturella G (2020) Dis-crimination, ecological role and symbioses of selected shrubby species in the Mediterranean Basin: a review. Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology 154:438–454. https://doi.org/10.1111/11263504.2020.1727988

13. Zsögön A, Peres LE, Xiao Y, Yan J, Fernie AR (2022) Enhanc-ing crop diversity for food security in the face of climate uncer-tainty. Plant J 109:402–414

14. Hajibabaie M, de Waard JR, Ivanova NV, Ratnasingham S, Dooth RT, Kirk SL, Mackie PM, Hebert PDN (2005) Critical factors for assembling a high volume of DNA barcodes. Philosoph Trans R Soc B 360:1959–1967. https://doi.org/10.1098/rstb.2005.1727

15. Baldi P, La Porta N (2020) Molecular approaches for low-cost point-of-case pathogen detection in agriculture and forestry. Front Plant Sci 11:570862–570862. https://doi.org/10.3389/fpls.2020.570862

16. Jalali SK, Ojha R, Venkatesan T (2015) DNA barcoding for identification of agriculturally important insects. In: Chakravorthy AK (ed) New horizons in insect science: towards sustainable pest management. New Delhi, Springer India, pp 13–23

17. Khan MQ, Khalil AT, Shinwari ZK (2015) Searching for DNA barcodes in plants. Am Eura- nian J Agric Environ Sci 15:504–513

18. Zhao J, Abdelsalam NR, Khalaf L, Chuang W-P, Zhao L, Smith CM, Carver B, Bai G (2019) Development of single nucleotide polymorphism markers for the wheat curl mite resistance gene Cmc4. Crop Sci 59:1567–1575. https://doi.org/10.2135/crops ci2018.11.0695

19. Kress WJ, Erickson DL (2012) DNA barcodes: methods and protocols. In: Kress WJ, Erickson DL (Eds) DNA barcodes: methods and protocols. Humana Press, Totowa, NJ, pp 3–8

20. Lahaye R, van der Bank M, Bogarin D, Warner J, Pupulin F, Gigot G, Maurin O, Duthoti S, Barraclough TG, Savolainen V (2008) DNA barcoding the floras of biodiversity hotspots. Proc Natl Acad Sci 105:2923–2928. https://doi.org/10.1073/pnas.0709936105

21. Park H-S, Jayakodi M, Lee SH, Jeon J-H, Lee H-O, Park JY, Moon LB, Kim C-K, Wing RA, Newman SR et al (2020) Mitochon-drial plastid DNA can cause DNA barcoding paradox in plants. Sci Rep 10:6112. https://doi.org/10.1038/s41598-020-63233-y

22. Abdelsalam NR, Salem MZ, Ali HM, Shacklett MJ, Mervat E-H, Elshikh MS, Hatameh AA (2019) Morphological, biochemical, molecular, and oil toxicity properties of Taxodium trees from different locations. Ind Crops Prod 139:111515

23. Abdelsalam NR, Ali HM, Salem MZ, Ibrahim EG, Elshikh MS (2018) Genetic and morphological characterization of Mangifera indica L. growing in Egypt. HortScience 53:1266–1270

24. Abdelsalam NR, Awad RM, Ali HM, Salem MZ, Abdellatif KF, Elshikh MS (2019) Morphological, pomological, and specific molecular marker resources for genetic diversity analyses in fig (Ficus carica L). HortScience 54:1299–1309

25. Abdelsalam NR, Ali HM, Salem MZ, El-Wakil HE (2020) Quantitative and qualitative genetic studies of some Acacia species grown in Egypt. Plants 9:243

26. Kress WJ, Erickson DL (2008) DNA barcoding: a windfall for tropical biology? Biotropica 40:405–408

27. Li Q, Wu J, Wang Y, Lian X, Wu F, Zhou L, Huang Z, Zhu S (2017) The phyloge-netic analysis of Dalbergia (Fabaceae: Papilionaceae) based on different DNA barcodes. Holzpforgschung 71:939–949. https://doi.org/10.1515/hf-2017-0052

28. Selvaraj D, Sarma RK, Sathishkumar R (2008) Phylogenetic analysis of chloroplast MatK gene from Zingiberaceae for plant DNA barcoding. Bioinformation 3:24–27. https://doi.org/10.6026/ 9732063003024

29. Balachandran KRS, Mohanamurthi S, Ramalingam S (2015) DNA barcoding: a genomic-based tool for authentication of phytomedicinals and its products. Botanics 5:77–84. https://doi. org/10.2147/BJTAT.S61121

30. Liu Z-F, Ci X-Q, Li L, Li H-W, Conran JG, Li J (2017) DNA bar-coding evaluation and implications for phylogenetic relationships in Lauraceae from China. PLoS ONE 12:e0175788. https://doi. org/10.1371/journal.pone.0175788

31. Abdelsalam NR (2014) Polymorphism in some Egyptian wheat varieties based on SSR-markers. J Exp Agric Int. https://doi.org/ 10.9734/AJEIA/2014/9235

32. Ahmed SS (2022) DNA barcoding in plants and animals: a critical review

33. Chakraborty C, Doss CGP, Patra BC, Bandyopadhyay S (2014) DNA barcoding to map the microbial communities: current advances and future directions. Appl Microbiol Biotechnol 98:3425–3436. https://doi.org/10.1007/s00253-014-5550-9

34. Katoh K, Misawa K, Kuma KI, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Four-ier transform. Nucleic Acids Res 30:3059–3066. https://doi.org/10.1093/nar/gkf436

35. Pei J, Grishin NV (2007) PROMALS: towards accurate multiple sequence alignments of distantly related proteins. Bioinformatics 23:802–808. https://doi.org/10.1093/bioinformatics/btm017

36. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J et al (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539. https://doi.org/10.1038/msb.2011.75

37. Hall T (2001) BioEdit version 5.0. 6. Department of Microbiol-ogy, North Carolina State University

38. Stecher G, Tamura K, Kumar S (2020) Molecular evolutionary genetics analysis (MEGA) for macOS. Mol Biol Evol 37:1237– 1239. https://doi.org/10.1093/molbev/msz312

39. Katoh K, Nozaki S, Hartanto D, Miyano R, Nakayama K (2015) Architectures of multisubunit complexes revealed by a visible immunoprecipitation assay using fluorescent fusion proteins. J Cell Sci 128:2351–2362. https://doi.org/10.1242/jcs.168740

40. Kress WJ, Erickson DL, Jones FA, Swanson NG, Perez R, Sanjur O, Berringham E (2009) Plant DNA barcodes and a community phylogeny of a tropical forest dynamics plot in Panama. Proc Natl Acad Sci 106:18621–18626. https://doi.org/10.1073/pnas.09099 2010

41. De Mattia F, Bruni I, Galimberti A, Cattaneo F, Casiraghi M, Labra M (2011) A comparative study of different DNA barcoding markers for the identification of some members of Lamiaceae.
Food Res Int 44:693–702. https://doi.org/10.1016/j.foodres.2010.12.032
42. Wattoo JI, Saleem MZ, Shahzad MS, Arif A, Hameed A, Saleem MA (2016) DNA Barcoding: Amplification and sequence analysis of rbcL and MatK genome regions in three divergent plant species. Adv Life Sci 4:03–07
43. Ali MA, Gyulai G, Hidvegi N, Kerti B, Al Hemaid FM, Pandey AK, Lee J (2014) The changing epitome of species identification–DNA barcoding. Saudi J Biol Sci 21:204–231
44. Adolfo LM, Rao X, Dixon RA (2022) Identification of Pueraria spp. through DNA barcoding and comparative transcriptomics. BMC Plant Biol 22:1–18
45. Kenfack D, Abiem I, Chapman H (2022) The efficiency of DNA barcoding in the identification of afromontane forest tree species. Diversity 14:233
46. Gholami A, Malik S, Dhabe AS, Pandey AK, Babbar SB (2020) DNA barcoding of Indian Alysicarpus (Fabaceae): ITS alone distinguishes species. Vegetos 33:592–600
47. Neugebauer K, El-Serehy HA, George TS, McNicol JW, Moraes MF, Sorreano MC, White PJ (2020) The influence of phylogeny and ecology on root, shoot and plant ionomes of 14 native Brazilian species. Physiol Plant 168:790–802
48. Presting GG (2006) Identification of conserved regions in the plastid genome: implications for DNA barcoding and biological function. Can J Bot 84:1434–1443. https://doi.org/10.1139/b06-117
49. Stoeckle M (2003) Taxonomy, DNA, and the Bar Code of Life. Bioscience 53:796–797. https://doi.org/10.1641/0006-3568(2003)053[0796:TDATBC]2.0.CO;2
50. Hilu KW, Borsch T, Müller K, Soltis DE, Soltis PS, Savolainen V, Chase MW, Powell MP, Alice LA, Evans R et al (2003) Angiosperm phylogeny based on <011>MatK sequence information. Am J Bot 90:1758–1776. https://doi.org/10.3732/ajb.90.12.1758
51. de Groot GA, During HJ, Maas JW, Schneider H, Vogel JC, Erkens RHJ (2011) Use of rbcL and trnl-F as a two-locus DNA barcode for identification of NW-European ferns: an ecological perspective. PLoS ONE 6:e16371. https://doi.org/10.1371/journal.pone.0016371

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.