occAssess: An R package for assessing potential biases in species occurrence data

1Boyd, R. J., 2Powney, G., 1Carvell, C., 1Pescott, O. L.

1UK Centre for Ecology and Hydrology, MacLean Bldg, Benson Ln, Crowmarsh Gifford, Wallingford OX10 8BB
2Oxford Martin School & School of Geography and Environment, University of Oxford, Oxford, OX1 3BD, UK

Abstract

Species occurrence records from a variety of sources are increasingly aggregated into heterogeneous databases and made available to ecologists for immediate analytical use. However, these data are typically biased, i.e. they are not a representative sample of the target population of interest, meaning that the information they provide may not be an accurate reflection of reality. It is therefore crucial that species occurrence data are properly scrutinised before they are used for research. In this article, we introduce occAssess, an R package that enables quick and easy screening of species occurrence data for potential biases. The package contains a number of discrete functions, each of which returns a measure of the potential for bias in one or more of the taxonomic, temporal, spatial and environmental dimensions. The outputs are provided visually (as ggplot2 objects) and do not include a formal recommendation as to whether data are of sufficient quality for any given inferential use. Instead, they should be used as ancillary information and viewed in the context of the question that is being asked, and the methods that are being used to answer it. We demonstrate the utility of occAssess by applying it to data on two key pollinator taxa in South America: leaf-nosed bats (Phyllostomidae) and hoverflies (Syrphidae). In this worked example, we briefly assess the degree to which various aspect of data coverage appear to have changed over time. We then discuss additional ways in which the package could be used, highlight its limitations, and point to where it could be improved in the future. Going forward, we hope that occAssess will help to improve the quality, and transparency, of assessments of species occurrence data as a necessary first step where they are being used for ecological research at large scales.

Key words: bias; biological records; occAssess; R; recorder effort; species distributions; species occurrence data
Introduction

Species occurrence records comprise information in three basic dimensions: geographic, temporal, and taxonomic; that is to say, what was seen, where it was seen, and when. Humans have been accumulating species occurrence data for centuries: historically as preserved specimens in museums and herbaria (Newbold, 2010; Spear et al., 2017), and in written accounts (e.g. Oswald and Preston, 2011); and more recently through recording for distribution atlases (Preston, 2013), and various other structured and unstructured monitoring and citizen science initiatives (Boakes et al., 2010; Pescott et al., 2015; Petersen et al., 2021). Taken together, these data provide an immense resource documenting species’ geographical distributions and opportunities to investigate how they may have changed over time. Over the last two decades, species occurrence data have become increasingly accessible, thanks to the digitisation of historic records and the launch of online data portals such as the Global Biodiversity Information Facility (GBIF) (Nelson and Ellis, 2019). The corollary of this increase in accessibility has been a surge in the use of species occurrence data for research in biodiversity conservation and other fields (Ball-Damerow et al., 2019).

Within any particular spatio-temporal domain, species occurrence data may be collected with or without a probability sampling protocol (i.e. some form of random sampling). If the data are collected without a probability-based sampling design (sometimes called convenience sampling) they will be biased; that is to say, they cannot be guaranteed to be representative of the underlying population of interest. Even probability samples may be biased for answering a biological question of interest that was not considered when the scheme was initially designed; likewise, when different datasets are aggregated, as in online data portals such as GBIF, the actual population sampled is unlikely to be unambiguously identified for formal inferential purposes. Put another way, our inferences about species’ geographical distributions, and how they have changed over time, may not reflect reality if we rely on non-probability samples with no clear mapping from sample to population. The extent to which sampling biases might affect inference depends on the question being asked and the methods used to answer it. It may be possible to mitigate for biases by modifying the data (e.g. spatial thinning) (Beck et al., 2014) or through the use of statistical correction procedures (e.g. Turner et al., 2009). In order to decide on what mitigating action might be required, or if the data are simply too unrepresentative for use, it would be helpful to have a set of heuristics that can indicate the degree to which a dataset suffers from various forms of bias.

There is a growing literature of studies which take species occurrence datasets and screen them for biases (Barends et al., 2020; Boakes et al., 2010; Meyer et al., 2016; Pescott et al., 2019a; Petersen et al., 2021; Rueet, 2015; Speed et al., 2018; Sumner et al., 2019; Troudet et al., 2018); elsewhere, various approaches to visualising the spatial and temporal coverage of occurrence records across large areas have been commonplace in national species atlases for some time (e.g. Preston et al., 2002). Studies of this type provide a template for how to conduct such assessments, and a suite of heuristics which can be deployed in similar situations. For example, one could assess data for spatial bias by comparing the nearest neighbour distances of the occurrence data with those from a simulated random distribution (Sumner et al., 2019). The proportion of records identified to species level can be used as a measure of how taxonomic uncertainty has changed over time (Troudet et al., 2018). Multidimensional environmental space can be summarised using principal component analyses (PCAs), or other ordination techniques, allowing one to map the distribution of records in environmental space and scrutinise it for bias relative to the total domain of interest (Pescott et al.,
Whilst these metrics are often presented in studies whose primary aim is to assess datasets for their limitations, we find that they are rarely presented in studies which use such aggregated species occurrence data to investigate actual temporal trends in species’ distributions and their drivers [see Ball-Damerow et al. (2019) for a sobering review of the lack of scrutiny where species occurrence data are used across research fields more generally].

One way to encourage the proper use of species occurrence data is to develop software that can facilitate the various tasks involved, thereby easing the burden on researchers’ time. Indeed, a suite of packages have been developed in the R statistical programming environment (R Core Team, 2019) to facilitate the acquisition, cleaning and proper acknowledgement of species occurrence data (Chamberlain et al., 2021; Owens et al., 2021; Zizka et al., 2019). Recently, Zizka et al. (2021) developed what is, to our knowledge, the first R package dedicated to quantifying sampling biases in species occurrence data. The package, called sampbias, quantifies the relative strengths of various geographical biasing factors, such as roads, cities and airports, in a given dataset. While sampbias provides useful information on the geographical biases in species occurrence data, it is not designed to screen data for biases in other dimensions (e.g. taxonomic, temporal and environmental). It would be useful to build on the functionality provided by sampbias and develop additional software that can screen species occurrence data for biases in these other dimensions. We do not think that bias screening can ever be a completely automatic or easy task: assessing the great number of things that could go wrong, or be misinterpreted, between the numerous data collection, collation, digitisation, and interpretation tasks embodied by the use of any slice of any aggregated database, for any given inferential purpose, should humble any scientist (e.g. Pescott et al., 2018). Nevertheless, making some basic “risk of bias” assessments more straightforward, and raising their profile, is a step in the right direction for ecology.

Here, we present occAsses: an R package for assessing potential biases in species occurrence data. The package takes a user-supplied dataset and returns a suite of metrics that have been used in the literature to assess species occurrence data for common issues when broad-scale inferences relating to distributions and their changes may be desired. The aim is to enable quick and easy screening of data for common limitations, thereby enabling researchers to properly scrutinise their data before using it in further analyses. We start by providing an overview of the package, what data it requires, and what outputs it returns. We then provide a worked example using data on the occurrences of leaf-nosed bats and hoverflies in South America over the period 1950 to 2019, and refer the reader to the supporting information where additional vignettes and tutorials can be found. Finally, we discuss different ways in which the package can be used, highlight its limitations, and suggest how it could be improved in future.

Package

Package specifications

occAsses is an open-source R package (R Core Team, 2019), built around the existing packages ggplot2 (Wickham, 2016), spatstat (Baddeley et al., 2015), raster (Hijmans, 2019), and stats (R Core Team, 2019). A stable version (1.0.0) can be found at https://github.com/roboyd/occAsses/releases and the development version can be found at https://github.com/roboyd/occAsses. We provide three vignettes with the package: 1) a tutorial using the data presented in this article; 2) a second example using data that are simulated to be
unbiased for the purpose of estimating trends in species’ distributions; and 3) a fully-reproducible example for which all required data are available within the package.

Package structure

occAssess comprises seven discrete functions (Table 1), each of which is designed to assess a common form of potential bias in species occurrence data. The functions each assess species occurrence data in at least one of the spatial, temporal, taxonomic, and environmental dimensions. The user must provide a set of time periods into which the data will be split, meaning that all functions are to some extent temporally-explicit. For example, one function assesses spatial bias in the data, but if a number of periods are specified, then the function provides information on temporal variation in spatial bias. We provide the option to split the data into periods to facilitate assessments of the suitability of data for estimating changes in species distributions over time. However, in some cases it may be preferable to specify one time period, perhaps covering the entire temporal extent of the data. This may be useful for static species distribution modelling where one simply requires information on, e.g., spatial or environmental bias in the dataset as a whole. At present the time periods must be specified in units of years, and the minimum permitted length for a time period is one year (see Discussion below).

Table 1. Summary of the functions provided in occAssess. Note that all functions are temporally explicit and hence provide information on temporal variation in some characteristic of the data.

Function	Heuristic for potential bias	Additional data required
assessEnvBias	Environmental bias	Environmental data corresponding to each occurrence data point and, optionally, a background sample
assessRarityBias	Taxonomic bias (in relation to range size)	None
assessRecordNumber	Recording intensity bias	None
assessSpatialBias	Geographical bias	Raster layer indicating which areas fall inside the study extent
assessSpatialCov	Geographical bias	Shapefile giving country boundaries. Only required if data are not on WGS84 coordinate reference system.
assessSpeciesID	Taxonomic resolution bias	None
assessSpeciesNumber	Taxonomic coverage bias	None

Input data

For all functions, users must provide their occurrence data and a list of time periods into which the data should be split. The occurrence data must be provided as a data.frame object with six fields: species (species name; note that whilst we use the word “species” here for convenience, essentially any set of taxonomic levels could be used), x (x coordinate), y (y coordinate), spatialUncertainty (uncertainty associated with the x and y coordinates; any units are permitted), year and identifier. We would expect that information on all of these fields would be provided by any typical species
occurrence data aggregator, e.g. GBIF. Note that users may specify a threshold spatial uncertainty above which data are dropped before the heuristics are calculated. This allows users to ask the question “how do the biases in my data change if I retain only the more precise records?” Any coordinate reference system (CRS) may be used. In the spatialUncertainty field, any units are permitted (e.g. metres for eastings/northings, or decimal degrees for lon/lat) but they must be consistent. The identifier field is used to group the data; for example, it may denote specific taxonomic groups, countries, datasets etc. Where there is no information available for a field, its values should be set to NA. See Table 2 for an example set of input data.

Table 2. An example dataset as required by occAssess. Note that any units are permitted in the spatialUncertainty field (here metres) but they must be consistent.

species	x	y	year	spatialUncertainty	Identifier
Anoura caudifer	-65.4	-17.0667	1993	11839	Phyllostomidae
Carollia perspicillata	-65.5497	-17.1072	1993	1043	Phyllostomidae
Carollia perspicillata	-65.4	-17.0667	1993	11839	Phyllostomidae
Sturnira erythromos	-65.8692	-17.2119	1993	1043	Phyllostomidae
Platyrrhinus dorsalis	-65.5497	-17.1072	1993	1043	Phyllostomidae
Artibeus lituratus	-56	-25.4667	1995	11010	Phyllostomidae

Outputs

Each function returns a list with two elements: a ggplot2 (Wickham, 2016) object; and the data that underpins that plot. The ggplot2 objects generally display the various potential bias metrics for each level of the identifier field (Table 2) and for each time period specified. We provide the outputs as ggplot2 objects because these can be subsequently modified by the user for presentation in e.g. published articles or supplementary material (providing some transparency regarding the potential for researchers’ conclusions to be undermined by biases in the data used). The functions do not provide any formal recommendation as to whether the data are too biased for any given inferential use; instead, we hope that the heuristics will be used in combination with researchers’ expert judgement to decide on whether mitigating action must be taken. In supplementary material 2 we provide the outputs of occAssess as applied to a simulated dataset that has a random distribution in space and time, and is resolved to species level in all cases; this is taken as an example of a dataset that is unbiased relative to the inferential use case of assessing all species’ distributions in a region over time. These outputs can be used as a point of comparison in that they are likely to provide examples of how the heuristics would appear if a dataset is unbiased.

Worked example

In this section, we provide a worked example of the functionality of occAssess. We use the package to assess data on the occurrences of leaf-nosed bats and hoverflies in South America over the period 1950 to 2019. The data were downloaded from GBIF (GBIF, 2021) and were cleaned for spatial issues (e.g. coordinates matching country centroids, capital cities, biodiversity institutes, etc.) using the CoordinateCleaner package (Zizka et al., 2019). We specify seven time periods, each one decade in duration. We use the identifier field to distinguish between the leaf-nosed bats (Phyllostomidae) and hoverflies (Syrphidae). We do not provide the code in the main text; instead, we refer the reader to the vignette in supplementary material 1 which provides the code for this example. As we introduce each function, and where where applicable, we: 1) outline what form of bias it relates to and in what
dimension(s); 2) provide the theory behind the metric; 3) indicate where additional inputs—beyond
the fields in Table 2—are required; 4) present the ggplot2 object returned for this case study; and 5)
give guidance on how to interpret the outputs. We reiterate here that these heuristics are designed
to be used alongside expert judgement and careful thought relative to the inferences desired by the
analyst—we do not intend any function to provide a simple binary answer to the question “are these
data biased for answering my question?”.

assessRecordNumber()

The simplest function in occAssess, assessRecordNumber, can be used to assess the number of
records in your dataset per year (Fig. 1A). Although simple, it is important to understand the extent
to which the quantity of data varies over time, because a change in the number of records could
reflect a change in recording intensity, which is itself likely to affect the prevalence of particular
species in the dataset through time in a non-random fashion (Pescott et al., 2019a).

![Figure 1](image)

assessSpeciesNumber()

The function assessSpeciesNumber displays the number of unique species represented each year in
the data, hence providing a measure of taxonomic coverage and how it changes over time (Fig. 1B).
Of course, such changes could also reflect true extinction/colonisation events in your dataset, but,
for heterogeneous, aggregated, data, issues of uneven representativeness across time are considerably more likely.

assessSpeciesID()

The function `assessSpeciesID` provides a measure of taxonomic uncertainty and how it changes over time. By default, the function displays the proportion of records identified to species level each year [Fig. 1C, as in Troudet et al. (2018) and Zattara and Aizen (2021)]. Records are considered not identified to species level if they take the value NA. The user has the option to substitute proportions for counts which may be preferable in some circumstances. For example, it is feasible that, due to the increase in the number of records submitted by volunteer citizen scientists over time, the proportion of records identified to species level may decrease, but the overall quantity may show a different trend.

assess RarityBias()

The function `assessRarityBias` can be used to assess the degree to which the number of times a species is recorded reflects its commonness at some spatial scale. The idea is that, were there no sampling bias, species would be recorded in proportion to their commonness. Commonness can be defined as local abundance or regional occupancy (Gaston, 2011). Following Speed et al. (2018), we define a species’ commonness as the number of grid cells on which it has been recorded, a proxy for regional occupancy. The user may decide on the spatial resolution of the grid cells; and whether commonness is calculated over the entire temporal extent of the data, or separately for each time period (which could have important implications for the interpretation of discovered patterns, given other biases in the dataset assessed). Within each period, `assessRarityBias` regresses the number of records for each species on its commonness. Each species’ deviation from the fitted regression – its residual – can be used as an index of how over- or under-sampled it is given its commonness (Barends et al., 2020; Speed et al., 2018). Extending this concept, the coefficient of variation (r^2) of the fitted regression can be used a measure of proportionality between the number of times species have been recorded and their commonness. This measure ranges from 0, indicating high bias, to 1, indicating low bias. `occAssess` displays this measure for each time period and for each level of identifier (Fig. 1D).

assessSpatialCov()

The function `assessSpatialCov` displays the geographical coverage of species occurrence data and how it changes over time. The function returns ggplot2 objects, where n is the number of levels in the identifier field. Each ggplot2 object contains N maps, where N is the number of time periods (see Figs 1Ei and 1Eii).

assessSpatialBias()

The function `assessSpatialBias` screens data for geographical bias, i.e. the degree to which a sample deviates from a random distribution within the spatial domain of interest. The function is based on the widely-used nearest neighbour index (NNI; Clark and Evans, 1954). The NNI is given as the ratio of the average observed nearest neighbour distances (the Euclidean distance of each data point to its nearest neighbouring point) to the expected average nearest neighbour distance if the data were randomly distributed. In the standard NNI, the average expected nearest neighbour distance for a random distribution is given by $1/2 \sqrt{\text{study area/number of points}}$. However, in the case of irregularly shaped study boundaries (e.g. the country borders used here), the above formula does
not equal the expected average nearest neighbour distances for a random distribution. To circumvent this problem, assessSpatialBias simulates n datasets randomly across the study area in equal number to the occurrence data. The NNI can then be given as the ratio of the average observed nearest neighbour distances to the average of the simulated nearest neighbour distances (Fig. 6). Another advantage of this approach is that, by simulating n (chosen by the user) random datasets, assessSpatialBias can provide uncertainty associated with the index (the function will display 90% confidence intervals by default). The NNI produced by assessSpatialBias can be interpreted as how far the observed distribution deviates from a random distribution of the same density. Values between 0 and 1 are more clustered than a random distribution, and values between 1 and 2.15 are more widely dispersed (i.e., over-dispersed). See Sumner et al. (2019) for a somewhat similar approach.

assessEnvBias()

The function assessEnvBias maps species occurrence data in environmental space in each user-specified time period. To do so, additional environmental data are required. As a minimum users must supply environmental data (can be many variables) at the coordinates of the occurrence data. Users may optionally supply a “background” sample of the same environmental variables; this may be, for example, the environment at random locations across the domain of interest. Whether or not background data are supplied impacts interpretation of the assessEnvBias outputs. If background data are supplied, then the function maps the distribution of the occurrence data in the environmental space of the domain of interest. Otherwise, the data are mapped in the sampled environmental space. In this example we use the standard suite of 19 bioclimatic variables from worldclim (Fick and Hijmans, 2017). These data can be downloaded at https://www.worldclim.org/data/worldclim21.html or through R using the getData function in the raster package (Hijmans et al., 2016).

assessEnvBias reduces the dimensionality of the environmental data using PCAs. It then maps the data in two dimensional environmental space (Fig. 1G), enabling the user to assess whether their data are sampled from a representative portion of environmental space in the domain of interest, or whether the data are sampled from different portions of the environment between periods. The data are displayed as ellipses delimiting 95% of the occurrence data. Strictly speaking, PCAs assume multivariate normality in the environmental data, and the ellipses displayed by assessEnvBias assume multivariate normality among the principal component scores. Users may wish to assess their data, and the resultant PC scores (which are returned by the function), for normality. If the data are non-normal, then transformations can be applied. If the PC scores are non-normal, it is simple to substitute the ellipses for the actual data points (see s1 for more details). For similar approaches see Pescott et al. (2019b) and Barends et al. (2020). Note that this assessment assumes that the spatial resolution of the environmental data are relevant to the responses of the target organism(s) at the spatial scale of the analysis desired.

Discussion

In this paper, we have introduced a new R package, occAssess, which enables rapid screening of species occurrence data for biases of potential importance for drawing inferences about changes in ecological communities over time. The package takes standard species occurrence data as input, and returns a number of metrics relating to common forms of bias in one or more of the taxonomic,
temporal, spatial, and environmental dimensions. None of the metrics provided in the package are new (although some are extended and/or modified). However, we hope that in assembling these metrics in an easy-to-use R package, we will ease the burden on researchers who would like to scrutinize their data. In turn, we hope to promote the proper assessment of species occurrence data before it is used in attempts to answer important research questions regarding ecological change.

The heuristics returned by occAssess could be provided as, for example, supplementary material to published articles to provide evidence of the fact that a proper assessment has been conducted. In general, we would expect such evidence of assessment to be accompanied by written commentary interpreting the patterns seen and considering their implications for any analyses presented.

We have presented a single example of how occAssess may be used, but it is easy to imagine additional use cases. In our example, we used the identifier field (Table 2) to split the data by taxonomic group (Phyllostomidae and Syrphidae). One might instead use the identifier field to denote specific datasets. For example, one level of identifier could denote a dataset before some newly-digitized data were added, and a second could denote the same data with the addition of the newly-digitized records. It would then be possible to make an assessment of to what extent the data have improved as a result of digitization efforts. occAssess could also be used for model-based data integration (Isaac et al., 2020), where the aim is to exploit the strengths of multiple datasets, each of which could be specified in the identifier field. Another possibility is that occAssess could be used to screen data for single species as opposed to whole taxonomic groups as presented in our worked example. In this case note that some heuristics would require different interpretation; for example, one would expect the data to be biased in environmental space relative to the domain of interest because it would reflect a species’ environmental niche. In summary, we feel that occAssess has the potential to be useful for many applications where species occurrence data are used.

A key feature of occAssess is the periods argument in each function, which enables assessment of how the limitations of a dataset change over time. We include this feature because a common application of species occurrence data is the estimation of temporal trends in species’ distributions (e.g. Outhwaite et al., 2019; Pescott et al., 2019a; Powney et al., 2019). For some applications, however, it may be more appropriate to consider an entire dataset as comprising one time period, thereby removing the temporal dimension. An obvious example is where data are to be used for species distribution modelling (SDM). In this case the objective is typically estimation of spatial variation in species’ occurrences with no explicit reference to time. Where occAssess is used to screen data for use in SDMs, we suggest that the functions relating to spatial and environmental bias will be of most importance, namely assessSpatialBias, assessSpatialCov and assessEnvBias (although the other functions could still provide important context on the temporal dynamics of the dataset).

The functions in occAssess provide heuristics relating to the quality of species occurrence data, but stop short of making a formal recommendation as to whether the data are of sufficient quality for any given use. It would not be appropriate to provide such recommendations, because the utility of species occurrence data depend not only their biases, but also on the question being asked and the methods used to answer it. For example, it may be possible to obtain relatively unbiased predictions of species’ geographical distributions using SDMs, even when the data themselves are spatially and environmentally biased. Phillips et al. (2009) developed the “target group” approach whereby background data are generated with similar sampling biases to the occurrence data. This approach helps SDMs to distinguish between suitable and unsuitable habitats as opposed to popular and
unpopular sampling locations. There have also been attempts to correct for changes in recorder effort statistically, thereby enabling estimation of how species' distributions have changed over time from biased data (e.g., Hill, 2012; Telfer et al., 2002; Van Strien et al., 2013). While it is not always clear to what extent the above-mentioned methods achieve the goal of mitigating for sampling biases, the point remains that relatively informative inferences may be possible from biased data where the biases can either be modelled, or reduced through appropriate resolution-based aggregation (Pescott et al., 2019a), or through more complex methods designed to leverage unbiased estimates of model parameters from additional probability samples (e.g., Ahmad Suhaimi et al., 2021). It is for this reason that we suggest the metrics provided by occAssess be consulted in combination with other relevant information in order to decide whether or not a dataset is of sufficient quality for use for a given purpose.

The version of occAssess presented here has two key limitations. First, the temporal unit is the year, meaning that the package can say nothing about intra-annual biases (e.g. phenological patterns in the data). In future versions it might be feasible to increase the temporal resolution of the package. Second, there are some forms of bias that it was not possible to account for. Examples include temporal variation in: 1) the number of taxonomists able to identify certain species (subtly different to what is measured by assessSpeciesID); and 2) the proportional coverage of the actual community of species in a given taxonomic group and geographical region (although note that assessSpeciesNumber gives counts of species). Metrics relating to these forms of bias would require data on 1) the number of active taxonomists, and other recorders, working on particular taxa (and, potentially, how this has varied through time); and 2) the total number of extant species in the focal taxonomic group and geographical region (and, again, how this may vary through time). To our knowledge these data are not generally readily available, precluding their incorporation in occAssess. Instead, we suggest that this sort of information is best obtained by collaboration with local experts.

References

Ahmad Suhaimi, S.S., Blair, G.S., Jarvis, S.G., 2021. Integrated species distribution models: A comparison of approaches under different data quality scenarios. Divers. Distrib. 1–10. doi:10.1111/ddi.13255

Baddeley, A., Rubak, E., Turner, R., 2015. Spatial point patterns: Methodology and applications with R. Chapman & Hall, London.

Ball-Damerow, J.E., Brenskelle, L., Barve, N., Soltis, P.S., Sierwald, P., Bieler, R., LaFrance, R., Ariño, A.H., Guralnick, R., 2019. Research applications of primary biodiversity databases in the digital age. PLoS One 1–26. doi:10.1101/605071

Barens, J.M., Pietersen, D.W., Zambatis, G., Tye, D.R.C., Maritz, B., 2020. Sampling bias in reptile occurrence data for the Kruger National Park. Koedoe 62, 1–9. doi:10.4102/koedoe.v62i1.1579

Beck, J., Böller, M., Erhardt, A., Schwanghart, W., 2014. Spatial bias in the GBIF database and its effect on modeling species' geographic distributions. Ecol. Inform. 19, 10–15. doi:10.1016/j.ecoinf.2013.11.002

Boakes, E.H., McGowan, P.J.K., Fuller, R.A., Chang-Qing, D., Clark, N.E., O'Connor, K., Mace, G.M., 2010. Distorted views of biodiversity: Spatial and temporal bias in species occurrence data.
Pescott, O.L., Humphrey, T.A., Walker, K.J., 2018. A short guide to using British and Irish plant occurrence data for. Wallingford. doi:10.13140/RG.2.2.33746.86720

Pescott, O.L., Walker, K.J., Harris, F., New, H., Cheffings, C.M., Newton, N., Jitlal, M., Redhead, J., Smart, S.M., Roy, D.B., 2019b. The design, launch and assessment of a new volunteer-based plant monitoring scheme for the United Kingdom. PLoS One 14, 1–30. doi:10.1371/journal.pone.0215891

Pescott, O.L., Walker, K.J., Pocock, M.J.O., Jitlal, M., Outhwaite, C.L., Cheffings, C.M., Harris, F., Roy, D.B., 2015. Ecological monitoring with citizen science: The design and implementation of schemes for recording plants in Britain and Ireland. Biol. J. Linn. Soc. 115, 505–521. doi:10.1111/bij.12581

Petersen, T.K., Austreheim, G., Speed, J.D.M., Grøt an, V., 2021. Species data for understanding biodiversity dynamics: The what, where and when of species occurrence data collection 1–17. doi:10.1002/2688-8319.12048

Phillips, S.J., Dudík, M., Elith, J., Graham, C.H., Lehmann, A., Leathwick, J., Ferrier, S., 2009. Sample selection bias and presence-only distribution models: Implications for background and pseudo-absence data. Ecol. Appl. 19, 181–197. doi:10.1890/07-2153.1

Powney, G.D., Carvell, C., Edwards, M., Morris, R.K.A., Roy, H.E., Woodcock, B.A., Isaac, N.J.B., 2019. Widespread losses of pollinating insects in Britain. Nat. Commun. 1–6. doi:10.1038/s41467-019-08974-9

Preston, C.D., Pearman, D.A. & Dines, T.D., 2002. New Atlas of the British and Irish Flora., eds. ed. Oxford University Press, Oxford.

Preston, C.D., 2013. Following the BSBi’s lead: the influence of the Atlas of the British flora, 1962-2012. New J. Bot. 3, 2–14.

R Core Team, 2019. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

Rueute, A., 2015. Displaying bias in sampling effort of data accessed from biodiversity databases using ignorance maps. Biodivers. Data J. 3. doi:10.3897/BDJ.3.e5361

Spear, D.M., Pauly, G.B., Kaiser, K., 2017. Citizen science as a tool for augmenting museum collection data from urban areas. Front. Ecol. Evol. 5, 1–12. doi:10.3389/fevo.2017.00086

Speed, J.D.M., Bendiksby, M., Finstad, A.G., Hassel, K., Kolstad, A.L., Prestø, T., 2018. Contrasting spatial, temporal and environmental patterns in observation and specimen based species occurrence data. PLoS One 13, 1–17. doi:10.1371/journal.pone.0196417

Sumner, S., Bevan, P., Hart, A.G., Isaac, N.J.B., 2019. Mapping species distributions in 2 weeks using citizen science. Insect Conserv. Divers. 12, 382–388. doi:10.1111/icad.12345

Telfer, M.G., Preston, C.D., Rothery, P., 2002. A general method for measuring relative change in range size from biological atlas data. Biol. Conserv. 107, 99–109. doi:10.1016/S0006-3207(02)00050-2

Troudet, J., Vignes-Lebbe, R., Grandcolas, P., Legendre, F., 2018. The increasing disconnection of primary biodiversity data from specimens: How does it happen and how to handle it? Syst. Biol. 67, 1110–1119. doi:10.1093/sysbio/syy044
Turner, R. M., Spiegelhalter, D. J., Smith, G. C. S., Thompson, S. G., 2009. Bias modelling in evidence synthesis. J. R. Stat. Soc. Ser. A Stat. Soc. 172, 21–47. doi:10.1111/j.1467-985X.2008.00547.x

Van Strien, A. J., Van Swaay, C. A. M., Termaat, T., 2013. Opportunistic citizen science data of animal species produce reliable estimates of distribution trends if analysed with occupancy models. J. Appl. Ecol. 50, 1450–1458. doi:10.1111/1365-2664.12158

Wickham, H., 2016. ggplot2: Elegant Graphics for Data Analysis.

Zattara, E. E., Aizen, M. A., 2021. Worldwide occurrence records suggest a global decline in bee species richness. One Earth 4, 114–123. doi:10.1016/j.oneear.2020.12.005

Zizka, A., Antonelli, A., Silvestro, D., 2021. Sampbias, a Method for Quantifying Geographic Sampling Biases in Species Distribution Data. Ecography (Cop.). 44, 25–32. doi:10.1111/ecog.05102

Zizka, A., Silvestro, D., Andermann, T., Azevedo, J., Duarte Ritter, C., Edler, D., Farooq, H., Herdean, A., Ariza, M., Scharn, R., Svantesson, S., Wengström, N., Zizka, V., Antonelli, A., 2019. CoordinateCleaner: Standardized cleaning of occurrence records from biological collection databases. Methods Ecol. Evol. 10, 744–751. doi:10.1111/2041-210X.13152