Glioblastoma multiforme (GBM) is the most aggressive and highly vascularized brain tumor with poor prognosis. Endothelial cell-dependent angiogenesis and tumor cell-dependent Vasculogenic mimicry (VM) synergistically contribute to glioma vascularization and progression. However, the mechanism underlying GBM vascularization remains unclear. In this study, GBM stem cells (GSCs) were divided into high and low β8 integrin (ITGB8) subpopulations. Co-culture assays followed by Cell Counting Kit-8 (CCK-8), migration, Matrigel tube formation, and sprouting assays were conducted to assess the proliferative, migratory and angiogenic capacity of GBM cells and human brain microvascular endothelial cells (hBMECs). An intracranial glioma model was constructed to assess the effect of ITGB8 on tumor vascularization in vivo. Our results indicated that ITGB8 expression was elevated in GSCs and positively associated with stem cell markers in glioma tissues, and could be induced by hypoxia and p38 activation. ITGB8 in GSCs inhibited the angiogenesis of hBMECs in vitro, while it promoted the ability of network formation and expression of VM-related proteins. The orthotopic GBM model showed that ITGB8 contributed to decreased angiogenesis, meanwhile enhanced invasiveness and VM formation. Mechanistic studies indicated that ITGB8-TGFβ1 axis modulates VM and epithelial-mesenchymal transition (EMT) process via Smad2/3-RhoA signaling. Together, our findings demonstrated a differential role for ITGB8 in the regulation of angiogenesis and VM formation in GBM, and suggest that pharmacological inhibition of ITGB8 may represent a promising therapeutic strategy for treatment of GBM.

INTRODUCTION

Glioblastoma multiforme (GBM) is the most malignant brain tumor and is highly resistant to combination therapies [1]. Moreover, anti-angiogenic therapy has become a promising way to fight cancer [2]. However, in a phase II study of patients with newly diagnosed GBM, those administered with bevacizumab and temozolomide showed prolonged progression-free survival, while no improvement in overall survival [3, 4]. Therefore, further investigations of anti-angiogenic therapy in GBM are warranted.

Vasculogenic mimicry (VM) was firstly observed by Maniotis et al. in human melanoma cells and considered as a marker of aggressive tumor [5]. Analysis of xenograft models and human specimens unveiled that VM formation in patients with glioma usually predicts an unfavorable prognosis [6, 7]. Moreover, network formation in Matrigel has been widely used to evaluate the VM ability of tumor cells in vitro [8]. And various types of tumor cells are associated with tube formation in Matrigel under hypoxic condition [9–11]. Hence, VM has been considered as a compensation of angiogenesis, particularly in response to hypoxia. Moreover, VM acts as a novel paradigm for tumor perfusion, providing nutrition for tumor growth and progression. Epithelial-mesenchymal transition (EMT), is also associated with tumor aggressiveness and metastasis [12]. Moreover, both VM and EMT could promote tumor cell motility and invasiveness. In addition, VM formation related signaling pathways including TGFβ, Notch, and Wnt, have also been shown to induce EMT process [13]. Genes involved in angiogenesis and vasculogenesis are upregulated in aggressive cancer cells, including cadherin-5 (CDH5), EPH receptor A2 (EPHA2) and laminin gamma2 (LAMC2) [14]. Matrix metalloproteinase 2 (mmp2) is also necessary in VM as it mediated extracellular matrix (ECM) remodeling via interacting with laminin Sy2 chain [15]. During EMT process, epithelial markers (E-cadherin, cytokeratin) were downregulated while mesenchymal markers (N-cadherin, vimentin) were increased in tumor cells.

Recently cancer stem-like cells (CSCs) have been highlighted in malignant neoplasms for its role in chemotherapy resistance and recurrence [16, 17]. CSCs are a subpopulation within cancer cells that capable to self-renew and give rise to multiple cell lineages [18]. Recent studies demonstrated that a subpopulation of GBM cells could give rise to endothelial cells [19, 20]. Additionally, Hallani et al. and Scully et al. showed that some GSCs were able to transdifferentiate into smooth muscle cells or mural cells [21, 22].
Fig. 1 β8 integrin is enriched in GBM stem cells. A Levels of indicated proteins in five GBM stem cells derived from human GBM samples were determined via immunoblotting. B Protein levels of ITGB8 in GSCs and corresponding GSDCs were tested via immunoblotting. C Fluorescence staining for ITGB8 and Nestin in GSCs were evaluated. Scale bar = 25 μm. D Fluorescence staining for ITGB8 in GSCs and GSDCs were measured. Scale bar = 10/20 μm. E GSC#2 and GSC#4 fractionated into β8− and β8+ cells, were cultured in serum-free medium to form floating spheres. Measurement of diameters was conducted in five randomly chosen neurospheres in each group. Scale bar = 100 μm. F Gene expression analysis of ITGB8 in GBM, LGG (TCGA) and normal brain tissues (GTEx) was conducted via GEPIA2 web tool. G Gene expression of ITGB8 in TCGA glioma dataset was analyzed based on WHO grade. H Kaplan–Meier analysis for overall survival of glioma patients with high or low ITGB8 expression in TCGA glioma datasets. I Correlation between gene expression of ITGB8 and stem cell markers in TCGA glioma dataset was evaluated. J Representative IHC images of Nestin and ITGB8 in human GBM tissues. Scale bar = 25/100 μm. Uncropped western blot images are shown in Supplementary Fig. 5. Data are expressed as mean ± SD. **p < 0.01, ***p < 0.001. IHC Immunohistochemistry.
Furthermore, Mani et al. illustrated that the induction of EMT in epithelial cells could lead to the elevation of stem cell markers [23]. Integrins belong to the family of a type I transmembrane heterodimeric glycoprotein receptors for ECM proteins [24]. β8 integrin (ITGB8) is crucial for the development of neuro-epithelial cells and microvasculature [25, 26]. ITGB8 was detected in multiple cancer types including lung adenocarcinoma, high grade serous ovarian cancer, gastric cancer and glioma, and correlated with poor survival [27–30]. Reyes et al. indicated that ITGB8 was overexpressed in GBM cells and correlated with diminished
were positively associated with ITGB8 expression in TCGA and Nestin expression in GBM specimens (Fig. 1J). Together, our tissue (Fig. 1F). Specifically, ITGB8 expression was upregulated in GBM (grade IV) tissue rather than that of grade II and III (Fig. 1G). To evaluate ITGB8 expression is regulated by hypoxia and p38 activation

RESULTS

\(\beta 8\) integrin is enriched in GSCs

We first examined ITGB8 expression in five human GSCs (GSC#1-GSC#5) and differentiated glioma cells. Immunoblot analysis revealed a robust expression of ITGB8, CD133 and Nestin in most of GSCs (Fig. 1A, C). GSCs were induced to differentiation in response to serum (10%) treatment. We next investigated the ITGB8 expression in GSCs serum-differentiated cells (GSDCs) and found that ITGB8 decreased significantly in GSDCs compared to that in GSCs (Fig. 1B, D). Additionally, \(\beta 8\) GSCs showed robust self-renewal and proliferation capacities, while \(\beta 8\) GSCs showed decreased capacity to form spheres (Fig. 1E). We further examined the mRNA expression of ITGB8 in mixed glioma dataset from The Cancer Genome Atlas (TCGA) database. ITGB8 expression was significantly elevated in GBM and LGG compared to normal brain tissue (Fig. 1F). Specifically, ITGB8 expression was upregulated in GBM (grade IV) tissue rather than that of grade II and III (Fig. 1G). Moreover, high levels of ITGB8 indicated poor prognosis in glioma dataset (Fig. 1H and S1b). CD133, Nestin and SOX2 expression were positively associated with ITGB8 expression in TCGA and Chinese Glioma Genome Atlas (CGGA) databases (Fig. 1I and S1c), and we further confirmed that ITGB8 was closely correlated with Nestin expression in GBM specimens (Fig. 1J). Together, our findings indicated that ITGB8 was abundant in GSCs.

ITGB8 expression is regulated by hypoxia and p38 activation

GSC#1 and GSC#2 were further selected for in vitro experiments due to the robust ITGB8 expression. To evaluate ITGB8 expression under hypoxic condition, GSCs and GSDCs were exposed to varying levels of \(O_2\) for 24 h. We found that hypoxia-induced Decreased \(O_2\) concentrations for 24 h led to the upregulation of \(\beta 8\) integrin in GSCs but not GSDCs (Fig. 2A, B). The protein level of ITGB8 increased accompanied with Hypoxia-inducible factor 1a (HIF1a) accumulation in GSCs, but remained unchanged in GSDCs (Fig. 2C). In line with this, expression of ITGB8 was significantly attenuated in GSCs treated with si-HIF1a (Fig. 2D). These results were further confirmed by immunofluorescence (Fig. 2E). Additionally, bioinformatics analysis revealed a positive association between ITGB8 and HIF1a expression in GBM datasets (Fig. 2F). Moreover, gene set enrichment analysis (GSEA) revealed that hypoxia-induced genes were significantly correlated to ITGB8 in GBM (Fig. 2G).

As integrins were widely regulated by MAPK pathways in both tumors and normal tissues [31, 32], GSCs#2 was treated with inhibitors targeting ERK (PD98059), p38 (SB202190) and JNK (SP600125) to examine ITGB8 expression in relation to these pathways. mRNA and protein levels of ITGB8 were mostly affected by p38 signaling (Fig. 2H, I and S2c). Previous study has shown that ITGB8 promoter region was located in area from ~1280 to 69 bp of gene sequence with multiple putative transcription factor binding site (Fig. S2a) [24]. We performed a luciferase reporter assay with various ITGB8 reporter constructs. The region from ~491 to 69 bp was critical for transcriptional regulation of ITGB8 in GBM stem cells (Fig. 2J and S2d). Furthermore, a significant correlation between ITGB8 mRNA abundance and p38 phosphorylation was observed in TCGA glioma dataset (Fig. 2K).

As an integrin, ITGB8 expression was regulated in GBM in response to hypoxia and p38 activation.

ITGB8 correlates with reduced angiogenesis

To explore the potential interaction between GSCs and human brain microvascular endothelial cells (hBMECs), GSCs were co-cultured with hBMECs under different conditions (Fig. 3A). hBMECs co-cultured with \(\beta 8\) GSCs showed diminished proliferative capacity compared to those with \(\beta 8\) GSCs (Fig. 3A, B). Migration assay showed that the number of hBMECs crossed the Matrigel layer toward \(\beta 8\) GSCs was significantly lower than that toward \(\beta 8\) GSCs (Fig. 3C). Next, hBMECs were seeded on Matrigel-coated lower plates to investigate the tube formation (Fig. S3b). The hBMECs co-cultured with \(\beta 8\) GSCs showed attenuated network formation compared to those with \(\beta 8\) GSCs (Fig. 3D). Moreover, we established an in vitro angiogenesis model, in which hBMEC spheroids were located in the lower chamber with collagen I solution (Fig. S3c). An inhibited capacity of hBMECs spheroid-based angiogenesis was observed when co-cultured with \(\beta 8\) GSCs compared to that with \(\beta 8\) GSCs (Fig. 3E).

As an integrin, ITGB8-TGFβ signaling contributes greatly to endothelial cell development of retinal [33], we co-cultured hBMECs with \(\beta 8\) or \(\beta 8\) GSC#1. The protein levels of phosphorylated Smad, and p21 were elevated in brain endothelial cells cultured with \(\beta 8\) GSC#1 while c-myc expression was decreased accordingly (Fig. 3F). We also established orthotopic xenografts in nude mice with \(\beta 8\) or \(\beta 8\) GSC#2, and the vessel quantification revealed an increased angiogenesis in \(\beta 8\) GSC#2 intracranial tumors comparing to that of \(\beta 8\) GSC#2 (Fig. 3G). Together, these findings suggested that ITGB8 alleviated angiogenesis in GBM.
ITGB8 induces VM and EMT process

Primary GBM cells and A172 cells showed enhanced migration when co-cultured with β8− or β8+ GSCs rather than β8− GSCs and neutralizing antibody treated-GSCs (Fig. S3d, Fig. 4A, B). GSC#2 was added into the upper insert and G4 was seeded on Matrigel in the lower plate, and the tube formation ability of GBM cells was evaluated (Fig. S3e). Tubule formation of G4 increased significantly when co-cultured with β8+ GSC#2, which was alleviated by β8-neutralizing antibody pretreatment (Fig. 4C, D). Tumor cells undergo EMT would display a remodeling of actin filopodia formation, which was attenuated when GSCs were pretreated with β8-neutralizing antibody (Fig. 4E, F). Immunoblot analysis revealed augmented CDH5, MMP2, N-Cadherin and vimentin expression in GBM cells when co-cultivated with β8+ GSCs. And forced expression of ITGB8 in β8− GSCs led to the upregulation of these molecules in co-cultured GBM cells. Meanwhile, downregulating ITGB8 in β8+ GSC#2 caused declined expression of CDH5, MMP2, N-Cadherin and vimentin (Fig. 4G). These results were further confirmed by ICC and IHC staining analysis (Fig. 4H–J). Additionally, we performed PAS/CD34 dual staining to detect VM in GBM tissues (Fig. 4K).
A classic VM pattern was characterized as PAS-positive and CD34-negative [35]. VM quantity was significantly associated with ITGB8 expression (Fig. 4L). In addition, survival analysis demonstrated a positive association between ITGB8 expression and adverse outcomes (Fig. 4M).

ITGB8 modulates VM formation and invasion of glioblastoma cells through TGFβ-RhoA signaling

Previous studies revealed ITGB8/TGFβ axis as a prominent angiogenesis regulator during CNS development [36, 37]. B8⁺ GSCs produced more abundant TGFβ1 in culture medium.
Fig. 4 β8 integrin expressed in GSCs induces elevated network formation and invasive phenotype of GBM cells. A Primary GBM cells were untreated or pretreated with blocking antibody targeting β8 integrin and co-cultured with β8+ or β8− GSC#2. Migration abilities of GBM cells were determined. B Migrated cells were quantified. C, D Primary GBM cells pretreated in A were cultured on Matrigel. Network formation capacities of GBM cells were calculated. E Primary GBM cells treated and co-cultured in A, were subjected to immunofluorescence staining with phallolidin. Scale bar = 20 μm. F Filopodia number in E was quantitated and analyzed. G In the left panel, β8+ and β8− GSC#2 were transfected with ITGB8-plasmid or empty vector. In the right panel, β8+ GSC#2 was transfected with scrambled negative control siRNA or siRNA targeting ITGB8. Protein levels of CDH5, MMP2, N-Cadherin and Vimentin were measured. H GBM cells G4 and A172 were co-cultured with β8+ or β8− GSC#2. N-Cadherin and CDH5 expression were determined by immunofluorescence staining. Scale bar = 20 μm. I IHC staining of ITGB8, CDH5, N-Cadherin and MMP2 in representative human GBM sections. Scale bar = 200/100 μm. J Bar charts presenting IHC score of CDH5, N-Cadherin and MMP2 in ITGB8 low or high GBM samples, revealed associations between the expression of ITGB8 and indicated proteins. K VM pattern was identified by PASS/CD34 dual staining. Green arrowhead indicates CD34+ endothelial-based vascular channel, while red arrowhead indicates CD34− VM channel. IHC image in the lower right panel presents a vascular lumen, around which CD34 staining is absent and a deformed nucleus is indicated. L VM pattern quantitation and analysis in human GBM samples with high or low ITGB8 expression. M Kaplan–Meier survival plot of GBM patients with high or low ITGB8 expression. Uncropped western blot images are shown in Supplementary Fig. 5. Results are represented as mean ± SD of biologically triplicate assays. *p < 0.05, **p < 0.01, ***p < 0.001. ns not significant.

DISCUSSION

In the present study, we provided clinical, in vitro and animal evidences demonstrating that GSCs-derived ITGB8 exhibits anti-angiogenic effect on brain microvascular endothelial cells, and contributes to VM formation and EMT in GBM to support tumor invasion. Mechanistic investigation indicated that ITGB8 promotes VM formation and invasive phenotype in GBM cells via activating the TGFβ1/p-Smad/RhoA signaling pathway (Fig. 7).

Our results revealed that cancer stem-like cells derived from primary GBM displayed abundant ITGB8 expression. Moreover, we detected the loss of ITGB8 in GSCs with serum-induced differentiation in vitro. In fact, ITGB8 has been reported to be expressed in neural stem and progenitor cells of adult mouse brain [26, 41]. Similar to stem or progenitor cells, cancer stem cells possess the ability of self-renewal and differentiation and are crucial for tumor progression and metastasis [42]. ITGB8 was recently reported to be upregulated in various types of aggressive tumors. Mertens-Walker et al. reported that ITGB8 expression was positively associated with EphB4 receptor tyrosine kinase in prostate cancer cells and played an important role in tumor cell motility [43]. Jin et al. revealed ITGB8 as a determinant of pancreatic ductal adenocarcinoma radiochemo-sensitivity [44]. Additionally, overexpression of ITGB8 led to the growth and metastasis of colorectal cancer [45]. Moreover, expression of ITGB8 contributed to unfavorable prognosis of high grade serous ovarian cancers [30]. Our data showed that ITGB8 in GSCs, but not differentiated glioma cells, could be induced by hypoxia (Fig. 2A, B). Low oxygen tension facilitated the maintenance of undifferentiated states of embryonic and neural stem cell phenotypes [46]. In fact, previous studies have shown that ITGB8 is partly co-expressed with other stem cell markers such as CD133 [47].

ITGB8 in neuro-epithelial cells and astrocytes is crucial for cerebral angiogenesis and development [26, 36]. For instance, Mobley and colleagues showed that β8+ mice displayed compromised blood-brain barrier properties [26]. However, the β8+ GSCs exhibited a decreased tumor growth rate when compared to mice implanted with β8− GSC#2 (Fig. 6A, B). The endothelium-based vascular channel presented positive lectin and CD34 staining, while VM channel was characterized by positive lectin and mCherry staining (Fig. 6C). These results indicated that the VM formation in β8+ GSCs-xenograft GBM was significantly enhanced (Fig. 6D, E). Furthermore, the β8− GSCs-xenograft was positively correlated with augmented expression of β8 integrin, p-Smad3 and ROCK1, as well as indicators for VM and EMT (Fig. 6F). In summary, these findings indicated that ITGB8 plays a critical role in VM formation of GBM in vivo.

ITGB8 is associated with VM in an intracranial xenograft model

To explore ITGB8-mediated angiogenesis and VM in vivo, we established a xenograft model by orthotopically implanting mCherry-labeled β8+ or β8− GSC#2 into nude mice. Mice with β8− GSCs exhibited a decreased tumor growth rate when compared to mice implanted with β8+ GSC#2 (Fig. 6A, B). The endothelium-based vascular channel presented positive lectin and CD34 staining, while VM channel was characterized by positive lectin and mCherry staining (Fig. 6C). These results indicated that the VM formation in β8+ GSCs-xenograft GBM was significantly enhanced (Fig. 6D, E). Furthermore, the β8− GSCs-xenograft was positively correlated with augmented expression of β8 integrin, p-Smad3 and ROCK1, as well as indicators for VM and EMT (Fig. 6F). In summary, these findings indicated that ITGB8 plays a critical role in VM formation of GBM in vivo.
effects of ITGB8 on tumor neovascularization are much more complex. Takasaka et al. reported that β8 integrin expression was associated with increased angiogenesis and a specific ITGB8 blocking antibody substantially diminished vessel density in mouse xenografts derived from MC38 colon carcinoma cell line [48]. While Fang et al. suggested that reduced ITGB8 expression in glioma cells favored angiogenesis [49]. Our data implied that enriched ITGB8 in GSCs accounts for reduced GBM angiogenesis. VM contributes to the failure of anti-VEGF therapy in solid cancers, including GBM [50]. We presented evidence in
current study supporting the importance of β8 integrin in GSCs-mediated VM formation.

Mechanical investigations demonstrated that activation of the TGFβ/Smad signaling pathway is involved in ITGB8-mediated VM formation. Latent TGFβ1 is expressed in diverse tumor cells and can be activated by binding to ITGB8 [51]. Our work suggested that the expression of ITGB8 in GSCs was positively correlated with TGFβ1 levels. In addition to the Smad-dependent pathway, non-Smad pathways including MAPK, Rho-like GTPase and PI3K/AKT signaling pathways have been reported in carcinogenesis and tumor progression [51–53]. Our study showed that ITGB8-TGFβ1 affected downstream activation of Smad2/3 and RhoA in glioma cells. Attenuation of VM or invasive phenotype may result from inhibition of the Smad or RhoA pathway.

We further established orthotopic GBM models in nude mice with either integrin β8* or β8 primary GSCs. Mice in β8* group were associated with increased VM formation and EMT. Since ITGB8 caused opposite prognosis in patients with GBM, we speculated that endothelial-based angiogenesis mainly accounts for the outcome and tumor progression in GBM-bearing mice when no therapeutic intervention was received. While VM may play a greater role in GBM patients that clinically undergo surgery or chemotherapy.

CONCLUSION

In summary, our study depicted a complex role of β8 integrin in glioma vascularization. We provided evidence that β8 integrin expression was inversely correlated with angiogenesis, while promoted VM formation via inducing TGFβ expression, and subsequently activating the RhoA signaling pathway. Therefore, β8 integrin may be a potential therapeutic target for GBM VM and invasion. Pharmacological inhibition of β8 integrin together with anti-VEGF agent would effectively suppress tumor vascularization and prolong survival of patients with GBM.

MATERIALS AND METHODS

GBM specimen and cell culture
Brain tumor samples were obtained from consenting patients diagnosed as GBM. 73 paraffin-embedded GBM samples and corresponding clinicopathological data were collected from patients undergoing surgical operation in the department of neurosurgery at Zhijiang Hospital from 2013 to 2017. Glioblastoma tissues were enzymatically digested and GBM stem cells were cultured in DMEM/F12 (Gibco, USA) medium supplemented with EGF (20 ng/ml, Peprotech, USA), bFGF (20 ng/ml, Peprotech) and B27 (1:50, Gibco).

Reagents, plasmids construction and siRNA
ITGB8 cDNA and plasmids construction, as well as siRNAs for target genes were designed and provided by Sangon Biological Engineering Technology and Service Co., Ltd. (Shanghai, P.R. China). PCR primer sequences for IGF8 and GAPDH were provided in supplementary table 2.

Sphere formation assay
Dissociated single GBM stem cells were seeded into 24-well plates and incubated in serum-free medium at 37 °C for 7 days. Diameters of 5 randomly selected tumor spheres were measured.

Cell proliferation and migration assay
Cell proliferation was measured via using CCK-8 and Edu assay. Migration assay was performed by using cell culture insert with 8-um pores in 24-well plates (Costar, USA).

Tube formation assay
Tube formation assay of glioma cells and hBMECs was carried out as previously described [6]. Cells were cultured on Matrigel (BD Biosciences, USA) for 24 h and tubules were quantified.

Endothelium spheroid-based sprouting angiogenesis assay
In vitro angiogenesis assay was performed according to methods previously published by Korff and colleagues with minor modification [54]. Detailed procedures were described in Supplementary methods.

Immunological analysis
Human TGF-beta1 ELISA kit (Proteintech) was used to measure the concentration of TGF-beta1 from GSCs-derived culture media according to manufacturer’s instruction.

Immunoblot Analysis and Immunoprecipitation assays
The immunoblot and immunoprecipitation assay were performed as described before [6]. Lysates from certain cells were subjected to immunoblot analysis using antibodies which is listed in supplementary table 2.

Tissue immunohistochemical and immunofluorescence staining
Tissue IHC and IF staining were performed as previously reported. Briefly, specimens of surgical GBM tissues and xenograft samples were fixed, embedded and sectioned followed by immuno-staining. Antibodies used for targeted proteins were listed in supplementary table 2.

Luciferase reporter assay
Luciferase reporter assay was carried out according to the protocol described previously [55]. Luciferase activity was measured using dual-luciferase reporter assay kit with Renilla luciferase activity as control (Promega, Mannheim, Germany).

In vivo xenograft assay
Five to eight-week-old Balb/c male mice were purchased from the Central Animal Facility of Southern Medical University. Fractionated β8* or β8 GSCs cells (1 × 105 cells in 0.1 ml PBS) stably transfected with mCherry-LUC vector were orthotopically injected into the brain of Balb/c nude mice according to Ozawa’s instruction [56]. Each group included 8 mice.
Fig. 6 β8 integrin contributes to VM formation in intracranial GBM xenograft. A Luminescent imaging of representative nude mice xenografts from mCherry-labeled β8+ (n=8) or β8− GSC#2 (n=8) at day 3, 12, 21 and 30. B Luminescent signal intensity of GBM-bearing mice in two groups were evaluated. C Representative immunofluorescence images of vascular channels lined by ECs or tumor cells. Arrows indicate the regular CD34+ vessels, while arrowheads indicate CD34/Lectin+ vessels. Scale bar = 20 μm. D Quantification of lectin (+) vessels stained positively by CD34 or mCherry. E Percentage of VM vessels in β8+ or β8− integrin xenografts. F IHC staining of ITGB8, p-Smad3, ROCK1, CDH5 and N-Cadherin in β8+ and β8− integrin xenografts. Results are represented as mean ± SD of biologically triplicate assays. *p < 0.05, **p < 0.01, ***p < 0.001.
Vasculature quantification

Vasculature quantification was measured according to the method previously reported [57]. Three random specimens from each xenograft sample were subjected to CD34, mCherry and lectin (i.v.) staining. Lectin+/mCherry+ lumens stand for VM vessels and CD34+ lumens stand for regular endothelium-based vessels. ImageJ software was used for vessel density quantification.

Statistical analysis

All statistical analyses in this study were performed using Prism 8.0 (GraphPad Software Inc., USA) and R software. Data were expressed as mean ± SD. Sample size for each study was determined based on literature documentation of similar well-characterized experiments. Statistical significance was assessed by Student’s t-test or one-way ANOVA with Bonferroni correction for multiple comparisons. P value smaller than 0.05 was considered statistically significant. Statistical outlier analysis was calculated using the GraphPad Outlier calculator. Those significant outliers were excluded from data analysis.

DATA AVAILABILITY

All data generated during this study are included either in the main article or in the supplementary information files.

REFERENCES

1. Ohgaki H, Kleihues P. Epidemiology and etiology of gliomas. Acta Neuropathol. 2005;109:93–108.
2. Harold F. Tumor stroma, tumor blood vessels, and antiangiogenesis therapy. Cancer J. 2015;21:237–43.
3. Norden AD, Drappatz AEJ, Muzikansky AEA, David AEK, Gerard M, Mcnamara AEMB, et al. An exploratory survival analysis of anti-angiogenic therapy for recurrent malignant glioma. J Neurooncol. 2009;92:149–55.
4. Lai A, Tran A, Nghiemphu PL, Pope WB, Solch OL, Selch M, et al. Phase II Study of Bevacizumab Plus Temozolomide During and After Radiation Therapy for Patients With Newly Diagnosed Glioblastoma Multiforme. J Clin Oncol. 2010. https://doi.org/10.1200/JCO.2010.30.2729.

5. Maniotis AJ, Folberg R, Hess A, Seftor EA, Gardiner LMG, Pe J, et al. Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am J Pathol. 2012;180:2482–21.

6. Liu Y, Li P, Yang YT, Wu XD, Chen JS, Xu XD, et al. IGFBP2 promotes vasulogenmic mimicry via regulating CD144 and MMP2 expression in glioma. Oncogene. 2013;38:1815–31.

7. Francesco R, Scully S, Bentley B, Yan W, Taylor SL, Oh D, et al. Glioblastoma-derived tumor cells induce vasulogenmic mimicry through FkR-1 protein activation. J Biol Chem. 2012;287:24821–6.

8. Li R, Feng X, Zhang Q, Yuan Z, Wang B, Han X, et al. A matrix-based tube formation assay to assess the vasulogenmic activity of tumor cells. J Vis Exp. 2013;5:52–5.

9. Liu Z, Qi L, Li Y, Zhao X, Sun B. VEGFR2 regulates endothelial differentiation of colon cancer cells. BMC Cancer. 2017;17:1–11.

10. Du J, Sun B, Zhao X, Gu Q, Dong X, Mo J, et al. Hypoxia promotes vasulogenmic mimicry formation by inducing epithelial-mesenchymal transition in ovarian carcinoma. Gynecol Oncol. 2014;133:575–83.

11. Zhu P, Ning Y, Yao L, Chen M, Xu C. The proliferation, apoptosis, invasion of endothelial-like epithelial ovarian cancer cells induced by hypoxia. J Exp Clin Cancer Res. 2010;29:124.

12. Soundararajan R, Paranjape AN, Maity S, Aparicio A, Mani SA, EMT, stemness and tumor plasticity in aggressive variant neuroendocrine prostate cancers. Biochim Biophys Acta Rev Cancer. 2018;1870:229–38.

13. Kirschmann DA, Seftor EA, Hardy KM, Seftor REB, Hendrix MJC. Molecular pathways: vasulogenmic mimicry in tumors: diagnostic and therapeutic implications. Clin Cancer Res. 2012;18:2726–32.

14. Seftor REB, Seftor EA, Koshikawa N, Meltzer PS, Gardiner LMG, Bilban M, et al. Cooperative interactions of laminin 5 gamma2 chain, matrix metalloproteinase-2, and membrane type-1 matrix/metalloproteinase are required for mimicry of embryonic vasulogenmic by aggressive melanoma. Cancer Res. 2001;61:6322–7.

15. Guo P, Imani S, Cackowski FC, Jarzynka MJ, Tao H-Q, Nishikawa R, et al. Up-regulation of angiopoietin-2, matrix metalloprotease-2, membrane type 1 metalloprotease, and laminin 5 gamma 2 correlates with the invasiveness of human glioma. Am J Pathol. 2005;166:877–90.

16. Eun K, Ham SW, Kim H. Cancer stem cell heterogeneity: origin and new perspectives on CSC targeting. BMJ Rep. 2017;50:117–25.

17. Bai X J, N J, Beretov J, Graham P, Li Y. Cancer stem cell in breast cancer therapeutic resistance. Cancer Treat Rev. 2018;69:152–63.

18. Ayob AZ, Ramasamy TS. Cancer stem cells as key drivers of tumour progression. J Biomed Sci. 2018;25:20.

19. Ricci-Vitiani L, Scurrell S, Francescone R, Faibish M, Bentley B, Taylor SL, et al. Glioblastoma stem cells exploit the transforming growth factor-β signaling axis to drive tumor angiogenesis in the brain. Development. 2015;142:4363–73.

20. Scutelnicu R, Scully S, Francescone R, Bentley B, Yan W, Taylor SL, et al. IGFBP2 promotes vasulogenmic mimicry by inducing epithelial-mesenchymal transition in ovarian carcinoma. Gynecol Oncol. 2014;133:575–83.

21. Chen M, Xu C, Li P, Ning Y, Ma L, Wang P, et al. The proliferation, apoptosis, invasion of endothelial-like epithelial ovarian cancer cells induced by hypoxia. J Exp Clin Cancer Res. 2010;29:124.

22. Soundararajan R, Paranjape AN, Maity S, Aparicio A, Mani SA, EMT, stemness and tumor plasticity in aggressive variant neuroendocrine prostate cancers. Biochim Biophys Acta Rev Cancer. 2018;1870:229–38.

23. Kirschmann DA, Seftor EA, Hardy KM, Seftor REB, Hendrix MJC. Molecular pathways: vasulogenmic mimicry in tumors: diagnostic and therapeutic implications. Clin Cancer Res. 2012;18:2726–32.

24. Seftor REB, Seftor EA, Koshikawa N, Meltzer PS, Gardiner LMG, Bilban M, et al. Cooperative interactions of laminin 5 gamma2 chain, matrix metalloproteinase-2, membrane type-1 matrix/metalloproteinase are required for mimicry of embryonic vasulogenmic by aggressive melanoma. Cancer Res. 2001;61:6322–7.

25. Guo P, Imani S, Cackowski FC, Jarzynka MJ, Tao H-Q, Nishikawa R, et al. Up-regulation of angiopoietin-2, matrix metalloprotease-2, membrane type 1 metalloprotease, and laminin 5 gamma 2 correlates with the invasiveness of human glioma. Am J Pathol. 2005;166:877–90.

26. Eun K, Ham SW, Kim H. Cancer stem cell heterogeneity: origin and new perspectives on CSC targeting. BMJ Rep. 2017;50:117–25.

27. Bai X J, N J, Beretov J, Graham P, Li Y. Cancer stem cell in breast cancer therapeutic resistance. Cancer Treat Rev. 2018;69:152–63.

28. Ayob AZ, Ramasamy TS. Cancer stem cells as key drivers of tumour progression. J Biomed Sci. 2018;25:20.

29. Ricci-Vitiani L, Scurrell S, Francescone R, Faibish M, Bentley B, Taylor SL, et al. Glioblastoma stem cells exploit the transforming growth factor-β signaling axis to drive tumor angiogenesis in the brain. Development. 2015;142:4363–73.

30. Scutelnicu R, Scully S, Francescone R, Bentley B, Yan W, Taylor SL, et al. IGFBP2 promotes vasulogenmic mimicry by inducing epithelial-mesenchymal transition in ovarian carcinoma. Gynecol Oncol. 2014;133:575–83.
ACKNOWLEDGEMENTS
This work was supported by the National Natural Science Foundation of China (No. 82002631 and No. 82072762).

AUTHOR CONTRIBUTIONS
Conceptualization, Y.K. and X.S.; methodology, L.S. and X.X.; software, Y.Z. and Y.M.; data curation, Y.L. and L.S.; original draft preparation, Y.L.; supervision, Y.K. and X.S.; all authors have read and agreed to the published version of the manuscript.

COMPETING INTERESTS
The authors declare no competing interests.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE
Animal study was performed with the permission of the Animal Care and Use Committee of Southern Medical University. And study protocol and informed consent were approved by the Ethical Committee of Zhujiang Hospital.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41419-022-04959-7.

Correspondence and requests for materials should be addressed to Xinlin Sun, Lingling Shu or Yiquan Ke.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022