DESIGN, FACILE SYNTHESIS, AND BIOLOGICAL EVALUATION OF NOVEL 1,3-THIAZINE DERIVATIVES AS POTENTIAL ANTICONVULSANT AGENTS

RAVINDAR B1*, SRINIVASA MURTHY M2, AFZAL BASHA SHAIK3

1Department of Pharmaceutical Chemistry, Centre for Pharmaceutical Sciences, IST, Jawaharlal Nehru Technological University, Kukatpally, Hyderabad, Telangana, India. 2Department of Pharmaceutical Chemistry, Vignan Institute of Pharmaceutical Sciences, Near Ramoji Film City, Deshmukhi, Nalgonda, Telangana, India. 3Department of Pharmaceutical Chemistry, Vignan Pharmacy Colleges, Vadlamudi, Guntur, Andhra Pradesh, India. Email: ravinpharma@gmail.com

ABSTRACT

Objective: Chalcones and their heterocyclic analogs represent an important class of small molecules having anticonvulsant activities. Therefore, in this study, the synthesis and anticonvulsant activity of some new chalcones and 1,3-thiazines were described.

Methods: The reaction of 1-acetylnaphthalene with substituted aromatic aldehydes in the presence of aq. NaOH afforded corresponding chalcones which upon further cyclization with thiourea resulted in 1,3-thiazine derivatives. The newly synthesized compounds were tested for anticonvulsant activity by pentylenetetrazole-induced seizures method using diazepam as standard.

Results: Most of the compounds showed good anticonvulsant activity but is less than diazepam. 1,3-thiazines were more potent than chalcones and among them, compound P4 containing 4-fluorophenyl substituents on the thiazine moiety was more potent as it has prolonged the onset of convulsions by 15.2 seconds.

Conclusion: We described the synthesis and anticonvulsant activity of novel chalcones and 1,3-thiazine derivatives. 1,3-thiazines are more active anticonvulsant agents than chalcones and in particular compounds with electron withdrawing substituents.

Keywords: Chalcone, 1,3-thiazine, Pentylenetetrazole.

INTRODUCTION

Thiazines are a class of six-membered heterocyclic organic compounds with one nitrogen and sulfur atoms situated in a 1, 2- 1,3-, 1,4- positions or as a part of phenothiazine ring structure (Fig. 1). Due to nitrogen thiazines are chemically basic, 1,3-thiazines are of great importance because they form part of the framework of cephalosporins (3,6-dihydro-2H-1,3-thiazine) [1] and also in some other medicinally important compounds such as xylazine (agonist at the α2-adrenergic receptor is used for sedation, anesthesia, muscle relaxation, and analgesia in animals) [2] and chloromezone (used as an anxiolytic and a muscle relaxant) [3].

They exhibit sundry of pharmacological activities including antimicrobial [4-11], anti-inflammatory [12-15], anticancer [16,17], antidiabetic [18], analgesic [19], immunotropic [20] and antitumor [21], anticonvulsant, and antianxiety [22]. Chalcones, on the other hand, are α, β-unsaturated enones with a broad range of biological activities and also acts as key synthon in the chemical synthesis of heterocyclic compounds [23]. One important pharmacological activity of chalcones is anticonvulsant property [24]. Most of the anticonvulsant agents in therapy comprise a hydrophobic group with urea or urea like functionality (Fig. 2). Hydrophobicity assists the molecule to reach the brain by crossing blood brain barrier and also to interact with the target site via the hydrophobic interactions whereas the urea or urea like functionality for the polar interactions. These structural features of the existing drugs have become the rationale for designing novel anticonvulsant agent-containing hydrophobic naphthyl and phenyl portions along with polar enone and thiourea moieties in chalcones and 1,3-thiazines, respectively.

In the present work, we reported the synthesis of novel hydrophobic chalcones and 1,3-thiazine derivatives containing electron withdrawing and electron-releasing substituents on the phenyl ring and without any modification on the naphthyl portion to study the effect of such substitutions on anticonvulsant activity.

METHODS

General Melting points were determined in an open capillary melting point apparatus and are uncorrected. 1H NMR was recorded in CDCl3 on Bruker WM 400 MHz spectrometer with TMS as internal standard. Infrared spectra were recorded (KBr) on Perkin-Elmer AC-1 spectrophotometer. Microanalyses were performed on Carloerba EA-1108 element analyzer. All the compounds have been purified by column chromatography performed on Silica gel-G and crystallized from a suitable solvent to get chalcones (A1-A6).

RESULTS

The reaction of 1-acetylnaphthalene with substituted aromatic aldehydes in the presence of aq. NaOH afforded corresponding chalcones and among them, compound P4 containing 4-fluorophenyl substituents on the thiazine moiety was more potent as it has prolonged the onset of convulsions by 15.2 seconds.

CONCLUSION

We described the synthesis and anticonvulsant activity of novel chalcones and 1,3-thiazine derivatives. 1,3-thiazines are more active anticonvulsant agents than chalcones and in particular compounds with electron withdrawing substituents.

Received: 24 June 2016, Revised and Accepted: 12 July 2016
reaction mixture was poured into ice-cold water; the solid product obtained was filtered, washed with water and crystallized from a suitable solvent to gain 1,3-thiazines (P1-P6). The purity of all the compounds was established by TLC using a mixture of hexane and ethyl acetate as a mobile phase. All the compounds are purified by column chromatography.

(E)-1-[napthalen-5-yl]-3-phenylprop-2-en-1-one (A1) yellowish solid; Yield: 81%; m.p. 151-154°C; infrared (IR) (KBr, cm\(^{-1}\)): 1669.24 (-CO-), 1518.12 (-CH=CH-), 3047.79 (Ar-CH stretching); \(^1\)H NMR (400 MHz, CDCl\(_3\), ppm): 7.56-7.60 (1H, d, J=16, Ar-CH=), 7.90-7.92 (1H, d, J=8.8, -CO-CH=C-), 7.42-7.88 (m, C-2', 3', 4', 5', 6', 7', Ar-H), 9.19 (1H, d, C-8', Ar-H).

(E)-3-(4-methylphenyl)-1-napthalen-5-yl)prop-2-en-1-one (A2) yellowish solid; Yield: 53%; m.p. 175-177°C; IR (KBr, cm\(^{-1}\)): 1669.24 (-CO-), 1515.66 (-CH=CH-), 2921.36 (Ar-CH stretching); \(^1\)H NMR (400 MHz, CDCl\(_3\), ppm): 2.35 (3H, s, CH\(_3\)), 7.58-7.62 (1H, d, J=16, Ar-CH=), 7.92-7.94 (1H, d, J=8.8, -CO-CH=C-), 7.40-7.84 (m, C-2', 3', 4', 5', 6', 7', Ar-H), 9.14 (1H, d, C-8', Ar-H), 7.16-7.26 (m, C-2', 3', 5', 6', Ar-H).

(E)-3-(4-chlorophenyl)-1-napthalen-5-yl)prop-2-en-1-one (A3) yellowish solid; Yield: 59%; m.p. 189-192°C; IR (KBr, cm\(^{-1}\)): 1667.95 (-CO-), 1520 (-CH=CH-), 2920.30 (Ar-CH stretching), 1064.38 (C-Cl); \(^1\)H NMR (400 MHz, CDCl\(_3\), ppm): 7.56-7.60 (1H, d, J=16, Ar-CH=), 7.90-7.92 (1H, d, J=8.8, -CO-CH=C-), 7.42-7.78 (m, C-2', 3', 4', 5', 6', 7', Ar-H), 9.25 (1H, d, C-8', Ar-H), 7.22-7.24 (m, C-2', 3', 5', 6', Ar-H).

(E)-3-(4-fluorophenyl)-1-napthalen-5-yl)prop-2-en-1-one (A4) fluorescent yellowish solid; Yield: 70%; m.p. 167-169°C; IR (KBr, cm\(^{-1}\)): 1663.12 (-CO-), 1518.51 (-CH=CH-), 3030.66 (Ar-CH stretching), 1047.70 (C-F); \(^1\)H NMR (400 MHz, CDCl\(_3\), ppm): 7.52-7.58 (1H, d, J=16, Ar-CH=), 7.94-7.96 (1H, d, J=8.8, -CO-CH=C-), 7.46-7.92 (m, C-2', 3', 4', 5', 6', 7', Ar-H), 9.09 (1H, d, C-8', Ar-H), 6.92-7.28 (m, C-2', 3', 5', 6', Ar-H).

(E)-3-(4-dimethylaminophenyl)-1-napthalen-5-yl)prop-2-en-1-one (A5) yellowish solid; Yield: 91%; m.p. 231-233°C; IR (KBr, cm\(^{-1}\)): 1660.35 (-CO-), 1513.33 (-CH=CH-), 2922.91 (Ar-CH stretching); \(^1\)H NMR (400 MHz, CDCl\(_3\), ppm): 2.85 (6H, s, Ar-N(CH\(_3\))\(_2\)), 7.60-7.64 (1H, d, J=16, Ar-CH=), 7.94-7.96 (1H, d, J=8.8, -CO-CH=C-), 7.40-7.86 (m, C-2', 3', 4', 5', 6', 7', Ar-H), 9.23 (1H, d, C-8', Ar-H), 6.56-7.14 (m, C-2', 3', 5', 6', Ar-H).

(E)-3-(4-hydroxyphenyl)-1-napthalen-5-yl)prop-2-en-1-one (A6) Yellowish solid; 69%; m.p. 194-196°C; IR (KBr, cm\(^{-1}\)): 1663.99 (-CO-), 1515.76 (-CH=CH-), 3047.79 (Ar-CH stretching), 3443.23 (hydroxy benzene); \(^1\)H NMR (400 MHz, CDCl\(_3\), ppm): 5.1 (1H, s, 4'-OH), 7.56-7.60 (1H, d, J=16, Ar-CH=), 7.90-7.92 (1H, d, J=8.8, -CO-CH=C-), 7.42-7.88 (m, C-2', 3', 4', 5', 6', 7', Ar-H), 9.19 (1H, d, C-8', Ar-H), 6.68-7.13 (m, C-2', 3', 5', 6', Ar-H).

Fig. 1: Structures of different types of thiazines

Scheme 1: Synthesis of chalcones (A1-A6) and 1,3-thiazines (P1-P6); (i) substituted aromatic aldehydes, ethanol, aq. NaOH; (ii) Thiorea, ethanolic KOH

Fig. 2: Design of hydrophobic group linked 1,3-thiazine analogues for their anticonvulsant activity hydrophobic portion shown in blue whereas as polar urea or urea like portion in red
6-(4-chlorophenyl)-4-(naphthalen-5-yl)-2H-1,3-thiazin-2-amine (P3) pale yellow solid; Yield: 65%; m.p. 157-158°C; IR (KBr, cm⁻¹): 3412.97 (NH), 1642.85 (C=N), 703 (C−S), 1575.45 (C=C); H NMR (400 MHz, CDCl₃ ppm): 7.31 (1H,s, C-6 Ar-H), 7.38-7.75 (7H, m, C-2',3',4',5',6',7',8' Ar-H); Anal. Calcd for: C₂₀H₁₆N₄S: C, 76.33; H, 5.49; N, 8.48; Found: C, 76.44; H, 5.57; N, 8.49.

6-(4-fluorophenyl)-4-(naphthalen-5-yl)-2H-1,3-thiazin-2-amine (P4) pale yellowish solid; Yield: 68%; m.p. 188-190°C; IR (KBr, cm⁻¹): 3424.68 (NH), 1621.35 (C=N), 683 (C−S), 1528.36 (C=C); H NMR (400 MHz, CDCl₃ ppm): 6.95 (1H,s, C-6 Ar-H), 7.46 (2Hd, J=7Hz, C-3',5' Ar-H), 7.38-7.75 (7H, m, C-2',3',4',5',6',7',8' Ar-H); Anal. Calcd for: C₂₀H₁₆N₄F: C, 71.83; H, 4.52; N, 8.38; Found: C, 71.88; H, 4.59; N, 8.49.

6-(4-hydroxyphenyl)-4-(naphthalen-5-yl)-2H-1,3-thiazin-2-amine (P5) pale yellow solid; Yield: 68%; m.p. 116.5±0.61°C; IR (KBr, cm⁻¹): 3341.52 (NH), 1670/cm and 1510 and 1520/cm, whereas the bands in the IR analysis. Construction of the chalcones is confirmed by characteristic carbonyl and olefinic IR absorption bands in between 1660 and 1670/cm and 1510 and 1520/cm, whereas the bands in the IR

Table 1: Results of the anticonvulsant activity of chalcones (A1-A6) and 1,3-thiazines (P1-P6)

Group	Number of animals used	Onset of convulsions (seconds)	Number of animals died	Percentage mortality
PTZ	6	89±2.16	6	100
STD+PTZ	0	0	0	0
PTZ+A1	6	126.8±1.85	2	33.33
PTZ+A2	6	116.5±0.61	3	50
PTZ+A3	6	131.2±1.83	3	50
PTZ+A4	6	142.3±2.27	1	16.66
PTZ+A5	6	120±0.93	3	50
PTZ+A6	6	116.2±0.79	3	50
PTZ+P1	6	143.5±1.25	2	33.33
PTZ+P2	6	138.5±1.25	3	50
PTZ+P3	6	151±1.52	3	50
PTZ+P4	6	155.2±1.42	2	16.66
PTZ+P5	6	144.3±0.88	2	33.33
PTZ+P6	6	138.5±0.76	3	50

Values are expressed as mean±SEM of each group (n=6) and are significant when done One-way ANOVA with Tukey’s post hoc test. ***p<0.001 when compared with disease control. PTZ: Pentylentetrazole, SEM: Standard error of mean

Anticonvulsant activity
According to neurological theory, epilepsy is a paroxysmal, self-limited cerebral dysrhythmia. It is accompanied by abnormal patterns on the electroencephalograph, and severe seizures may cause a loss of consciousness. It may or may not be associated with body movements or hyperactivity of the autonomic nervous system. All the experimental protocols and procedures described hereupon were prior approved by the Institutional Animal Ethics Committee. The method followed for activity is PTZ-induced Seizures [25-28]. Diazepam (10 mg/kg) and PTZ were dissolved in normal saline. The healthy albino rats (Wistar, 100-150 g, 5-6 weeks) were kept under standard laboratory conditions (room temperature: 23±2°C; relative humidity: 60±5%); illumination: 12 hrs light/dark cycle) and had freely access to food pellets and fresh water except for the short time duration when animals were removed for pharmacological testing. All experiments were performed between 9.00 AM and 2.00 PM. The animals were divided into 14 groups of six animals each for two test drugs. Group 1 is treated as a negative control and injected subcutaneously with PTZ at a dose of 85 mg/kg body weight. Group 2 serves as standard and treated with diazepam injected intraperitoneally at a dose of 10 mg/kg body weight. Groups 3–6 and 7–14 were treated with test compounds A1–A6 and P1–P6, respectively, at a dose of 100 mg/kg ip. Animals were pretreated with the test drug 30 minutes and diazepam 15 minutes before administration of PTZ 85 mg/kg subcutaneously. The onset of total duration as well as the frequency of clonic seizures was measured within a 30 minutes period and % mortality was measured, and the results are summarized in Table 1.

Table 1: Results of the anticonvulsant activity of chalcones (A1-A6) and 1,3-thiazines (P1-P6)
We are grateful to the Management, Vignan Institute of Pharmaceutical Sciences, Hyderabad for providing necessary facilities for the outcome of this work.

ACKNOWLEDGMENTS

REFERENCES

1. Lemke TL. Foye’s Principles of Medicinal Chemistry. Philadelphia, PA: Lippincott Williams & Wilkins; 2008. p. 1028-82.
2. Greene SA, Thurmon JC. Xylazine – A review of its pharmacology and use in veterinary medicine. J Vet Pharmacol Ther 1988;11:295-313.
3. Seeling A, Oelschlager H, Rothley D. Important pharmaceutical-chemical characteristics of the central muscle relaxant chlorpromazine. Pharmazie 2000;55(4):293-6.
4. Rathore MM, Parhate VV, Rajput PR. Synthesis and antimicrobial activities of some bromo-substituted-1,3-thiazines. Int J Res Pharm Biomed Sci 2013;4(1):9-62.
5. Gunokar RS, Gunokar RP, Parhate VV. Synthesis, characterisation and antibacterial activities of some new bromo/nitro 1,3-thiazenes. Rasayan J Chem 2013;6(1):65-7.
6. Haider F, Haider Z. Synthesis and antimicrobial screening of some 1,3-thiazines. J Chem Pharm Res 2012;4(4):2263-7.
7. Saijapi HI, Shat AR, Jacob J, Sathya AE. Synthesis and biological evaluation of some pyrimidino, pyrimido-[2,1-b]-1,3-thiazine and thiazolo-3,2-a-pyrimidine derivatives. Acta Pharm 2006;56(2):231-44.
8. Siddiqui R, Singh PK. Novel one pot synthesis of 1,3-dithiins and 1,3-thiazoles under microwave irradiation. Int J Chem 2007;46B(3):499-504.
9. Ali TE, El-Kazak AZ. Synthesis and antimicrobial activity of some new 1,3-thiazoles, 1,3,4-thiadiazoles, 1,2,4-triazoles and 1,3-thiazines incorporating acridine and 1,2,3,4-tetrahydroyacridine moieties. Eur J Chem 2010;1(1):23.
10. Rathod SP, Char Jain AP, Rajput PR. Synthesis and antibacterial activities of chloro-substituted-1,3-thiazines. Rasayan J Chem 2010;3(2):363-7.
11. Kumar BK, Devi KV, Gupta PR, Kranthi G, Ramakrishna C, Sankaraiah P, et al. Synthesis and biological evaluation of different thiazine derivatives. J Pharm Res 2011;4(1):274-5.
12. Judapi S. Screening of in-vitro anti-inflammatory activity of some newly synthesized 1,3-thiazine derivatives. Int J Res Pharm Chem 2013;3(2):213-20.
13. Sanjeeva Reddy C, Nagara A. Synthesis and biological study of novel bis thiazine, bis-thiazines and bispyrimidines. J Iran Chem Soc 2008;5(2):262-7.
14. Kalirajan R, Sivakumar SU, Juhie S, Gowramma B, Suresh B. Synthesis and biological evaluation of some heterocyclic derivatives of chalcones. J Chem Tech Res 2009;11(1):27-34.
15. Udapi RH, Bhat AR, Jacob J. Synthesis and biological evaluation of some biphenyl ethyl and thiazine derivatives. Indian J Heterocycl Chem 2005;15:89.
16. Wang W, Zhao B, Xu C, Wu W. Synthesis and antitumor activity of the thiazole and thiazine multithioether. Int J Organ Chem 2012;2(2):117-20.
17. Meric A, Nceou Z, Hatipoglu I. Synthesis of some 3,4-disubstituted-6,7-dihydro-imidazo[2,1-b][1,3]thiazole and 3,4-disubstituted-7,8-dihydro-6H-imidazo[2,1-b][1,3]thiazine derivatives and evaluation of their cytotoxicities against F2408 and SRP7 cells. Med Chem Res 2008;17(1):30-41.
18. Beauchamp J, Benarneau A, Hilpert H, Wang H. 2-Aminodihydro [1,3] Thiazines as Bace 2 Inhibitors. For the Treatment of Diabetes. Patent Scope. World Intellectual Property Organization; 2011. p. 165.
19. Dabhokar VV, Parab SD. 1, 3-Thiazines and 1, 3-pyrimidines derivatives and their biological evaluation for anti-inflammatory, analgesic and ulcerogenic activity. Hetero Lett 2011;12(2):176-88.
20. Zawisza T, Mateczak H, Kowalczyk-Bronisz SH, Jakobić T. Syntheses and pharmacological analysis of new derivatives of tetrahydro-[1,3]-thiazine and 2-thiobarbituric acid. Arch Immunol Ther Exp (Warsz) 1981;29(2):235-48.
21. Foks H, Rudnicka W, Głowa M, Kaliszcz R, Nasal A, Damasiewicz B, et al. Synthesis, structure and biological activity of 1,2,4-triazolo-1,3-thiazine derivatives. Pharmazie 1992;47(10):770-3.
22. Jagodziński TS, Wesołowska A, Jagodzińska E, Rump S. Synthesis and biological activity of certain novel derivatives of 1H-pyrorolo[2-5-c][1,3]thiazine. Acta Pol Pharm 2003;60(1):67-73.
23. Yazdan SK, Sagar GV, Shaik AB. Biological and synthetic potentiality of chalcones. J Chem Pharm Res 2015;7(11):829-42.
24. Nagiyan B, Bedia KK, Salih G, Feyza A. Synthesis and anticonvulsant activity of some 2-pyrazoline derivatives derived from chalcones. Arabian J Chem 2013;44:1-9.
25. Kulkarni SK. In: Handbook of Experimental Pharmacology. New Delhi, India: Vallabh Prakashan; 1993. p. 56.
26. Prakash CR, Raja S, Sriram V. Synthesis, characterization and
27. Rao T, Bhongde SL, More SM, Dongarwar AS, Shende VS, Pande VB. Effects of *Lippia nodiflora* extracts on motor coordination, exploratory behaviour pattern, locomotor activity, anxiety and convulsions on albino mice. Asian J Pharm Clin Res 2011;4(3):133-8.

28. Singh D, Maurya VB, Prajapati K, Kumar H, Niranjan PS, Jain SK. Evaluation of anticonvulsant activity of the leaves ethanolic and aqueous extracts of *Nyctanthes arbor-tristis* Linn. Against seizures induced by PTZ and MES in mice. Int J Pharm Sci Res 2010;1(2):63-71.