Review

Biologically Synthesized Silver Nanoparticles and Their Diverse Applications

Gattu Sampath 1,2,3, Yih-Yuan Chen 4, Neelamegam Rameshkumar 5, Muthukalingan Krishnan 6, Kayalvizhi Nagarajan 2,* and Douglas J. H. Shyu 1,*

1 Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
2 Department of Zoology, School of Life Sciences, Periyar University, Salem 636011, India
3 Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi 110016, India
4 Department of Biochemical Science and Technology, National Chiayi University, Chiayi City 600355, Taiwan
5 Amity Institute of Biotechnology, Amity University, Mumbai 410206, India
6 Central University of Tamil Nadu, Thiruvarur 610005, India
* Correspondence: kayalvizhinagarajan@gmail.com (K.N.); dshyu@mail.npust.edu.tw (D.J.H.S.); Tel.: +886-8-7703202 (ext. 6367) (D.J.H.S.)

Abstract: Nanotechnology has become the most effective and rapidly developing field in the area of material science, and silver nanoparticles (AgNPs) are of leading interest because of their smaller size, larger surface area, and multiple applications. The use of plant sources as reducing agents in the fabrication of silver nanoparticles is most attractive due to the cheaper and less time-consuming process for synthesis. Furthermore, the tremendous attention of AgNPs in scientific fields is due to their multiple biomedical applications such as antibacterial, anticancer, and anti-inflammatory activities, and they could be used for clean environment applications. In this review, we briefly describe the types of nanoparticle syntheses and various applications of AgNPs, including antibacterial, anticancer, and larvicidal applications and photocatalytic dye degradation. It will be helpful to the extent of a better understanding of the studies of biological synthesis of AgNPs and their multiple uses.

Keywords: AgNPs; antibacterial; anticancer; photocatalytic dye degradation applications

1. Introduction

Nanotechnology is a key area for modern research and development, handling the synthesis and construction of particle designs ranging 1–100 nm in size [1]. The synthesis of nanoparticles (NPs) is significant in the medical field due to their vast range of chemical, physical and biological applications. NPs are differentiated based on material shape, size, and composition [2]. Several types of synthesis are being used for NPs preparations, such as chemical, physical, and biological methods [3]. The most common approach for silver nanoparticle synthesis is the chemical reduction by reducing agents (organic and inorganic). In recent years, nanobiotechnology is paying much attention to the synthesis of metal-based NPs with nanosized and multiple properties [4]. Phyto-inspired nanocomplexes or assemblies are also gaining attention due to the variety of their applications. Chen et al. (2012) reported the biomineralization process using tomato and capsicum biomolecules by synthesizing vaterite and aragonite crystals [5]. Verma et al. (2020) explained the potential antimicrobial applications using uniform Ag-doped ZnO nanostructure synthesized by Moringa oleifera extract [6]. Rao et al. (2012) studied the role of phyto-inspired silica nanostructures synthesized by different surfaces by using pomegranate (Punica granatum) leaf extract; these fabricated silica nanostructures help in enzyme immobilization applications [7].
The NPs have been effectively discovered by biological synthesis as an alternative to chemical and physical methods due to overcoming the problem of environmentally friendly, safe, cost-effective (NPs produced by waste biomass [8]) techniques for the NPs development to use in therapeutic and biomedical applications [9]. For the green synthesis of NPs, researchers have commonly used plant material [10] and bacterial [11] and fungi [12] extracts. AgNPs have remarkable considerations due to their multiple properties such as antibacterial, antifungal [13], anti-inflammatory [11,14], antibiofilm [15], anticancer [16], and larvicidal [17]. This biosynthesis process acts as the best method for AgNPs development, particularly the use of plant-extract-based AgNPs used in drug delivery [18,19]. The green synthesis of various metal-based NPs from microorganisms, plant extracts, and animal extracts are used as alternative products for the synthesis of eco-friendly NPs, they also explained various metal nanoparticles are being used for biological synthesis such as Ag, Au, CuO, MgO, Pd, Pt, NiO, ZnO, Fe$_2$O$_3$ NPs [20]. Among all NPs, AgNPs have more important properties and have many biological applications such as antimicrobial, anticancer, and photocatalytic activities [21].

Plant-based medicine with biomedical properties has played a potential role throughout history. The usage of herbal medicines prominently increased in recent years which showed great interest in novel drug development [22]. Ayurveda (herbal treatment to cure diseases) is being used for many disease treatments around the globe [23]. In recent years, the usage of phytomedicine has increased due to its multiple applications, low cost, and safe [24]. In certain, AgNPs synthesized by different plant extracts containing phytomedicines have been great attention due to their multiple biological applications. AgNPs synthesized by fucoidan (sulfated polysaccharide) extracted from the brown seaweed (Spatoglossum Schroederi) showed anti-Trypanosoma cruzi activity [25]. The synthesis of AgNPs from pyrogallol (polyphenolic compound), purified from Acacia nilotica acetone leaves extract, showed multiple biological applications, such as antibacterial activity against Helicobacter pylori, antioxidant, and antigastric cancer activities [26]. Vanaraj et al. (2017) reported the synthesis of AgNPs from quercetin. The quercetin compound which was purified from Clitoria ternatea L. methanolic petal extract was used to synthesize AgNPs that showed antibiofilm activity against Staphylococcus aureus [27]. In this review, we briefly discussed the types of NPs synthesis, specifically focused on AgNPs synthesis from green routes, and the applications and mechanism of AgNPs in antibacterial, anticancer, antioxidant, larvicidal, and photocatalytic activities.

2. Types of AgNPs Synthesis

AgNPs have been studied to be used for a broad range of applications in multiple fields such as antibacterial applications, biological sensing, and catalysis applications. The different applications mainly depend on different properties such as shape, size, and the surrounding medium, which can be modified by different synthesis methods [28]. Different types of methods have been reported for AgNPs synthesis, which could be broadly divided into three different types (Figure 1) [29], including physical (laser ablation, irradiation, evaporation, condensation, and ultrasonication), biological (plant, bacteria, and fungi), and chemical (chemical reduction, sol-gel, inert condensation method, electrochemical, co-precipitation, microwave, photochemical, and pyrolysis) [30]. The chemical synthesis of AgNPs generally involves three different chemical substances, such as reducing agents, metal precursors, and capping agents. The reduction of metal salts (Ag) occurs in two stages; (1) nucleation and (2) growth [31].
The mechanisms of AgNPs formation had been investigated extensively [39,40]. The best known method for AgNPs fabrication is a chemical reduction process. In common, diverse amounts of reducing agents such as NaBH₄, Na₃C₆H₅O₇, C₆H₅O₆, NaBH₄, and other reagents are used for Ag⁺ to Ag reduction, and followed by accumulation into oligomeric groups, these groups ultimately form the colloidal AgNPs [34–36] (Figure 2).

2.1. AgNPs Synthesis by Physical and Chemical Approaches

The physical and chemical synthesis methods play the main role in NPs synthesis. The main NPs synthesis procedures include the top-down physical approach such as automatic grinding of a large number of metals, and the bottom-up chemical approaches such as metal reduction, and electrochemical process methods [32,33]. The environmental change and the increased atmospheric temperature have raised worldwide awareness to decrease toxic waste substances, and hence, the biological method has gained more interest in the scientific field [38].

The mechanisms of AgNPs formation had been investigated extensively [39,40]. The green synthesis of AgNPs is a cost-effective and simple method accomplished by adding silver salt with biological extracts (plant, fungi, bacteria, and algae) by acting as stabilizing or capping agents. In AgNPs synthesis, the reduction of Ag⁺ to Ag⁰ has been drawn to

Figure 1. Schematic representation of biological, physical, and chemical synthetic methods of nanoparticles.

Figure 2. Chemical synthesis of silver nanoparticles.
the presence of hydroxyl functional groups in different bioactive compounds in plant and microorganism extracts. However, there is no clear AgNP's synthesis mechanism due to the presence of different biomolecules in different plants. It was reported that the formation of colloidal stable-controlled shape and size of the nanoparticles depends on the surface of the particle and the type of stabilizing agent being used. The stabilization of nanoparticles may occur due to the (1) electrostatic repulsion of particles and (2) generation of steric repulsion by non-ionic surfactants [41]. The size of the NPs could be modified by changing the different physical and chemical parameters such as pH, temperature, and the concentration of reducing agents involved in NPs synthesis [42]. The mechanism of AgNPs formation is represented in Figure 3.

Various microbes have been involved in the synthesis of many typologies of NPs, such as Au, Mg, and others [43]. Mohanpuria et al. (2008) described that fungi can produce a higher yield of NPs in contrast to bacteria because fungi secrete higher protein content, and they straightly change into greater efficiency of NPs [44]. Mukherjee et al. (2001) reported the possible synthesis mechanism AgNPs using fungi. First Ag⁺ ions interact with the surface of fungi cells, followed by reduction with the help of fungal enzymes [45]. Jyothi et al. (2016) reported that plant-based NPs are more stable than fungi and bacteria [46]. It was reported that these NPs are quickly forming, low cost, environmentally safe, and suitable for large-scale production and a one-step method process [47]. The plant extract-based NPs synthesis is divided into (1) extracellular- (raw materials), (2) intracellular- (plant tissue using cellular enzymes), and 3) phytochemical-based methods (recovered by rupturing plant cells) [48]. Prabhu and Poulouse (2012) explained that different types of metabolites are the reason for the fast reduction of Ag⁺ ions compared to the microbes in the NPs synthesis process, the phytochemicals such as carboxylic acids, flavonoids, terpenoids, quinones, aldehydes, amides, and ketones are involved in the NPs synthesis mechanism [49]. The plant extract-based nanoparticles synthesis process is simply performed by mixing plant extract with metal salt at room temperature, with many various types of NPs produced by this process [50].

![Figure 3. Schematic representation of mechanisms involved in AgNPs synthesis.](image)
of NPs could be confirmed by altering the color due to the surface plasmon atmospheric excitation, and the plasma in the free-electron system holds an equal number of easily moving electrons (e\(^+\)) and positive ions. In the existence of electromagnetic waves, the movement of free e\(^-\) is driven by an electric field to constantly oscillate. These free e\(^+\) oscillations, known as plasmons, can interrelate with visible light, the process called surface plasmon resonance (SPR) \([51,52]\). The plant extract-based AgNPs synthesis process is shown in Figure 4.

Figure 4. Schematic representation of plant extract-based AgNPs synthesis process.

2.3. Comprehensive Analyses of Commercial Products Involving Silver Nanoparticle Synthesis

Different commercial compounds used for silver nanoparticles are listed below. The major optimal conditions for the synthesis of AgNPs are also addressed to further gain insight into the pure compounds used for AgNPs production and various optimal parameters involved in the particular synthesis method (Table 1).

Table 1. List of commercial reducing/capping agents involved in the AgNPs production.

Agents	Particle Size (nm)	Synthetic Time	Optimization Parameters Concentration/temperature Used	Reference
Quercetin	8.4 ± 0.3	20 min	350 μM	[53]
Starch	20–60	100 min	pH = 12	[54]
Glucose	80–100	180 min	80 °C	[55]
Sucrose	6	40 min	-	[56]
Maltose	6.2 ± 9.5	36 min	-	
Ascorbic acid	31.5	15 min	6 × 10\(^{-4}\) M pH = 10.5	[57]
Curcumin	51.13	2.5 h	50 °C	[58]
Trisodium citrate	22.14	20 min	90 °C	[59]
Chitosan	5 to 30	50 min	Autoclave at a pressure of 15 psi at 120 °C	[60]
Table 1. Cont.

Agents	Particle Size (nm)	Synthetic Time	Optimization Parameters	Concentration/Temperature Used	Reference
Fucoidan	39.99 ± 12.39	4 min	Microwave irradiation	RT	[61]
Tannic acid	27.7–46.7	30 min	85 °C oven	[62]	
Ellagic acid	2–5	10 min	5 to 15 µM	[63]	
Rosmarinic acid	-	20 min	RT	[64]	
Picric acid	30	4 min	-	[65]	
Resveratrol	11.5 ± 3.18	2 h	80 °C oven; 0.7 µM	[66]	
Sodium citrate	95.5	12 h	RT	[67]	
Epigenin	93.94			[68]	
Bovine serum albumin	113.3	12 h	RT	[69]	
Tannic acid and Sodium alginate	18.52 ± 0.07	200 W ultrasound for 10 min	1 mM	[70]	

Until now, there is no available commercial green silver nanoparticles product on the market. However, a few silver-based biocomposites are being used for wound-dressing applications, such as PolyMem Silver® (Aspen, Fort Worth, TX, USA), Tegaderm™ (3M, Mapplewood, MN, USA), and Acticoat™ Antimicrobial Silver Dressings (Smith & Nephew, Watford, UK) which are permitted by the Food and Drug Administration in the United States [70]. In addition to these commercial products, significant results were reported with respect to the AgNPs synthesized from biological materials for multiple biomedical applications. The AgNPs hydrogel synthesized from stabilized guar gum/curcumin composites showed significant wound healing and antibacterial activity in Wister rats [71]. The synthesis of AgNPs from Gardenia thailandica leaf extract showed good wound healing activity in albino rats where the excisional wounds were created and infected with Staphylococcus aureus [72]. The Arthrospira platensis (algae) supernatant extract mediated synthesized AgNPs showed good anti-breast cancer activity in the BALB/c model [73]. Moreover, AgNPs synthesized from Musa paradisiaca stem extract showed potential antidiabetic activity [74]. All these studies were under evaluation at the preclinical level. Further clinical investigations are required to identify their toxicity and efficacy.

3. Applications of AgNPs

In the earlier period, Ag was used for the treatment of different clinical disorders such as leg ulcers, acne, and epilepsy. The Ag foil was also used for surgical wound healing. The Ag and potassium nitrate pencils were used to remove ulcer debridement [75–77]. The AgNPs applications are mainly divided and used for therapeutic and diagnostic uses [78]. Initial findings to every infection disorder remain to play a vital role in confirming the primary action on treatment and perhaps result in an aim proved fortuitous for medication. Lin et al. (2011) explained the AgNPs used for the detection of non-invasive cancer by using surface-enhanced Raman spectroscopy [79]. Kwan et al. (2011) reported that AgNPs most effectively work on wound healing application, and they studied wound healing with AgNPs and it showed better collagen alignment after healing when compared to control [80]. Peer et al. (2007) explained that nanomedicine is estimated to improve the diagnosing of cancer by imaging and new drug design [81].

The significance of nanobiotechnology in therapeutic medicine is due to its broad-spectrum properties, cost-effectiveness, and eco-friendliness [82]. Moreover, nano-based drugs have become a major driving force behind the current developments in the drug delivery system and antibacterial therapy due to their small size and proven efficiency [83]. Presently, metal ion-based NPs possess prominent value due to their vast range of applications, including bacteria-killing properties [84]. AgNPs expanded abundant importance due to growing applications in the field of medical handlings such as in antibacterial [85] and anticancer [86] processes, the food industry [87], and consumer product development [88]. Various biological synthesis methods and their applications are represented in Figure 5.
AgNPs ranged from 54.64 to 78.00 g/mL [93]. The other study showed good antioxidant activity in the synthesis of AgNPs from *Aristolochia bracteolate*, aqueous shoot extract, which showed 50% DPPH antioxidant activity at a 1185.54 µg/mL concentration [94]. Other reports, such as Chinnasamy et al. (2019), explained that AgNPs synthesized using *Melia azedarch* aqueous leaf extract showed 42.5% DPPH radical scavenging activity at a 100 µg/mL concentration [95]. Patra et al. (2019) reported that *Psium sativum* L. outer peel mediated water extract synthesized AgNPs showed 50.17% DPPH activity at a 100 µg/mL concentration [96].

3.2. Antibacterial Properties of AgNPs

The unique properties of NPs have concerned potent concern for their pharmaceutical and biomedical applications such as photo-thermal, drug delivery, and bioactivity applications [97]. However, these treatments have some disadvantages such as toxic effects on non-targeted cells, drug-resistance, and cost-effectiveness. For these reasons, researchers need to find novel approaches to treat cancer. Mortezae et al. (2019) explained that the
toxicity of various metal-based NPs is different; the majority of metal NPs are toxic in both lower and high concentrations at different time exposures [98]. Antimicrobial resistance has a big problem due to the lack of effective drugs against different infectious diseases causing bacteria; however, prominent development of nanomaterial-based drugs was used against drug-resistant bacteria in the past few years [99].

Before the discovery of AgNPs, the AgNO₃ solution was topically used as an active antimicrobial agent [100]. The synthesis of AgNPs has proven to have higher antibacterial activity than the AgNO₃ solution [101]. Thomas et al. (2007) explained that Ag is used as a disinfecting reagent and it effectively works against bacteria by blocking the bacterial respiratory chain [102]. The possible mechanisms of action of AgNPs are, firstly, the AgNPs contact with the microbe, followed by Ag offering an exceedingly larger surface area for bacterial interaction (Figure 6). Next, the NPs become stuck with bacterial cell membrane after entering inside the bacteria [103]. Second, the AgNPs Ag⁺ ions can interrelate with sulfur-containing proteins of the bacterial membranes and perhaps inhibit the function of phosphorusr-containing compounds such as DNA [104]. Third, it can attack the bacterial mitochondrial respiratory chain and lead to cell death [105]. Fourth, the oxidative stress generated by ROS in bacteria results in damage to the electron transport chain due to the greater affinity of AgNPs for the cell membrane [106]. Various plants synthesizing AgNPs with antibacterial activity were reported, which are mentioned below (Table 2).

![Diagram](image-url)

Figure 6. (A) Diagrammatic representation of the action of silver nanoparticles against bacteria; (B) detailed schematic representation of mechanical interactions of AgNPs with bacteria, including aggregation, generation of free radicals, infection with bacterial nucleic acids and amino groups, and bacterial cell damage.
Table 2. List of natural plant–synthesized AgNPs used against microorganisms.

Plant Name	Part Used	Antibacterial Activity *	Reference
Ocimum santum	Leaf	*E. coli, S. aureus*	[107]
Cymbopogon citratus	Leaf	*E. coli, S. aureus, S. typhi, C. albicans*	[108]
Tribulus terrestris	Fruit bodies	*S. pyogenes, P. aeruginosa, E. coli, B. subtilis, S. aureus*	[109]
Santalum album	Leaf	*E. coli, S. aureus, P. aeruginosa, A. chroococcum, B. licheniformis*	[110]
Solanum xanthocarpum	Berry	*H. pylori*	[111]
Eucalyptus chapmaniana	Leaf	*E. coli, P. aeruginosa, K. pneumoniae, Proteus volgaris, S. aureus, C. albicans*	[112]
Pomegranate	Fruit	*B. subtilis, K. planticola*	[113]
Plectranthus amboinicus	Leaf	*E. coli, Penicillium spp.*	[114]
Alternathera dentate	Leaf	*E. coli, P. aeruginosa, K. pneumoniae, Enterococcus faecalis*	[115]
Peganum harmala	Seed	*H. pylori*	[116]
Taraxacum officinale	Floral	*E. faecalis, P. aeruginosa*	[117]
Artemisia princeps	Leaves	*H. pylori*	[118]
Talinum triangulare	Leaf	*S. aureus, E. coli, C. albicans*	[119]
Swertia paniculata	Aerial parts	*P. aeruginosa, K. pneumoniae, S. aureus*	[120]
Acacia rigidula	Stem, Root	*E. coli ATCC11229, P. aeruginosa, B. subtilis*	[121]
Senna alata	Bark	*S. aureus, A. baumannii, E. coli, K. pneumoniae, P. aeruginosa, C. albicans*	[122]
Catharanthus roseus	Leaf	*S. dysenteriae, K. pneumoniae, B. anthracis, S. aureus, P. aeruginosa*	[123]
Hibiscus rosasinesis	Leaf	*E. coli, S. aureus*	[124]
Tetrapleura tetraptera	Leaf	*S. aureus, E. coli, Salmonella spp.*	[125]
Perovskia abrotanoides	Plant	*S. aureus, B. cereus, E. coli*	[126]

* Abbreviations: *S. aureus*—*Staphylococcus aureus*, *E. coli*—*Escherichia coli*, *K. pneumoniae*—*Klebsiella pneumoniae*, *B. subtilis*—*Bacillus subtilis*, *H. pylori*—*Helicobacter pylori*, *C. albicans*—*Candida albicans*, *P. aeruginosa*—*Pseudomonas aeruginosa*, *S. typhi*—*Salmonella typhi*, *S. pyogenes*—*Streptococcus pyogenes*, *E. faecalis*—*Enterococcus faecalis*, *V. cholerae*—*Vibrio cholerae*, *S. dysenteriae*—*Shigella dysenteriae*, *K. planticola*—*Klebsiella planticola*, *A. chroococcum*—*Azotobacter chroococcum*, *B. licheniformis*—*Bacillus licheniformis*.

3.3. Use of AgNPs against Cancer

In the recent era, nanotechnology unlocks many effective treatments for cancer. Nanomedicine has displayed very good promise and growth, drastically changing the methods of cancer treatment. The mechanisms of AgNPs effects on cancer cells were investigated. It was reported that in mammalian cells, the AgNPs interrupt cell function and affect the membrane integrity by enhancing various apoptotic genes resulting in programmed cell death [127]. A report that studied the antiangiogenic properties of AgNPs explained that AgNPs induce the apoptotic pathway by ROS generation [128]. A high level of ROS production can cause cellular damage, which leads to mitochondrial membrane dysfunction [129]. In addition, AgNPs were involved in DNA damage in cancer cells [130]. The anticancer mechanism AgNPs is represented in Figure 7. Different plant extract–based AgNPs synthesis and their anticancer applications are mentioned in Table 3.
Table 3. List of natural plant–synthesized AgNPs used against different cancer cells.

Plant Name	Extract Used	Type of Cancer Cells *	IC₅₀ Value (µg/mL)	Reference
Phytolacca decandra	Root ethanol	MCF-7, HT-29, Hep-2, Vero cells	37, 49, 12.5, 95	[131]
Uva lactua (Marine Macroalgae)	Aqueous	MCF-7	37	[132]
Citrullus colocynthis	Fruit-Aqueous	MCF-7, Hep-G2	22.4, 17.2	[133]
Melia dubia	Leaf-Aqueous	MCF-7	31.2	[134]
Cucurbita maxima	Petal Leaf Rhizome	A431	82.39 ± 31.1	[135]
Moringa oleifera Acorus calamus	Plant-Aqueous	HeLa	-	[136]
Azadirachta indica	Leaf-Aqueous	A549	30	[137]
Solanum trilobatum	Unripe-fruit-Aqueous	MCF-7	-	[138]
Cynodon decytton	Leaf-Aqueous	HepG-2	45.6	[139]
Syzygium aromaticum	Cloves-Aqueous	MCF-7, Hep-2	60, 50	[140]
Indigofera tinctoria	Leaf-Aqueous	A549	56.62 ± 0.86	[141]
Rhynchosia suaveolens	Leaf-Aqueous	DU-145, PC-3, SKOV3	4.35, 7.72, 4.2	[142]
Dodonaea viscosa	Leaf-Methanol Acetone Acetonitrile Water	A549	14, 3, 80, 4	[143]
Cynara scolymus	Leaf	MCF-7	-	[144]
Atropa acuminata	Leaf-Aqueous	HeLa	5.418	[145]
Putranjiva roxburghii wall	Seed-Aqueous	MCF-7	72.32	[146]

* Note: MCF-7—Breast cancer cell line, HT-29—Human colorectal adenocarcinoma, A549—Adenocarcinomic human alveolar basal epithelial cells, Hep2—Human liver cancer cells, Vero cells—Kidney cells, HepG2—Liver cancer cells, A431—Epidermoid carcinoma, HeLa—Cervical cancer, PC-3—Human prostate cancer cells, SKOV3—Human ovarian cancer cells, MKN45—Human gastric cancer cells.
3.4. AgNPs Used for Controlling Mosquito Larvae

Vector-borne diseases such as zika fever and dengue fever, triggered by *Aedes aegypti*, and malaria-infected by *Culex quinquefasciatus* mosquitoes are still gaining attention nowadays. The World Health Organization reported 219 million cases of malaria in 2010 and an estimated 660,000 deaths (WHO, 2010) [147]. It was a recognized approach to efficiently eliminate the spread of vector-borne infections by controlling the number of mosquito larvae, but a chemical insecticide shows harmful and serious effects on other living organisms and the environment. Additionally, mosquitos may evolutionarily develop resistant mechanisms against various chemical insecticides. The novel plant-mediated nanoparticles might be the alternatives to developing the safety elimination approaches [148]. Vector-borne diseases such as dengue, malaria, and chikungunya are the major problem for human health due to the uncontrolled mosquito vector effects. Mosquitos developed resistance against synthetic pesticides; hence, the plant-mediated synthesis of AgNPs was proposed as the alternative vector control agents [149]. Different researchers studied AgNPs and focused their mosquito larvicidal activity by using plant extract (Table 4).

Table 4. Different plant-synthesized AgNPs used for mosquito larvicidal activity.

Plant Name	Type of Larvae *	LC₅₀ Value	Reference
Rhizophora mucronota	*Aa, Cq*	0.585, 0.891 (mg/L)	[150]
Tinospora cordifolia	*As, Cq*	6.43, 6.96 (mg/L)	[151]
Mimosa pudica	*As, Cq*	13.90, 11.73 (mg/L)	[152]
Nelumbo nucifera	*As, Cq*	0.69 ± 0.54, 1.10 ± 0.68 (mg/L)	[153]
Euphorbia hirta	*As*	16.82 ppm	[154]
Pergularia daemia	*As*	5.12 ± 0.31, 5.35 ± 0.34 (mg/L)	[155]
Drypetes roxburghii	*Cq, As*	0.8632, 0.13 ppm	[156]
Azadirachta Indica	*As, Cq*	0.006, 0.047 (mg/L)	[157]
Cassia roxburghii	*As, Aa, Cq*	26.35, 28.67, 31.27 (µg/mL)	[158]
Turbunaria ornata	*As, As, Cq*	0.738, 1.134, 1.494 (µg/mL)	[159]
Holarrhena antidysenterica	*Aa, Cq*	5.53, 9.3 ppm	[160]
Annona reticulata	*Aa*	4.43 (µg/mL)	[161]

* Abbreviations: *Aa*—*Aedes aegypti*, *Cq*—*Culex quinquefasciatus*, *As*—Anopheles stephensi.

Numerous pesticide products established by medicinal plants have more significant mosquito larvicidal properties. The preparation of mosquitocidal material by purified compounds is gaining greater importance [162]. Amala and Krishnaveni (2022) reported that AgNPs from *Azolla pinnata* were tested against the IV instar larva of *A. aegypti*, which displayed lethal concentrations of LC₅₀ and LC₉₀ values of 2.673 and 3.255 ppm, respectively [163]. Kumar et al. (2016) also reported that *Excoecaria agallocha* leaf-mediated AgNPs were also tested against *A. aegypti* (2–14 mg/L), which showed LC₅₀ value = 4.65 mg/L for exposure of 1 day [164]. Eventually, the study showed that the AgNPs synthesized from *Hibiscus rosasinensis* against *Aedes albopictus* mosquito larvae exhibited larvicidal activity with minimal lethal concentration could be due to the rupture of the larval cellular membrane, DNA damage, and cell death [165].

3.5. AgNPs Used for Environmental Applications

The increasing water pollution has attracted the investigator to focus on the development of various photocatalysts against the chemical pollutants released by different industries in water [166]. One type of toxic chemical was the staining dyes that cause detrimental effects on aquatic organisms [167]. The research remains important to investigate the detoxification of the staining dyes to protect the water ecosystem from pollution. Various toxic staining dye-removing approaches, such as redox treatment, carbon sorption, and electrocoagulation, were generally used [168–170], though there is an increasing challenge to develop a more operative and modest technique to eliminate toxic chemicals [171].
The biosynthesized NPs could be used in reducing and eradicating toxic chemicals from the environment [172]. Yaqoob et al. (2020) stated that the toxic chemicals from various companies are producing larger destruction to the ecosystem by discharging toxic pollutants into water. Though different dye-degradation techniques were reported, the established NPs were proved to endorse photocatalytic dye removal among all the methods [173]. The mechanism of AgNPs on dye degradation was studied. The AgNPs absorb the visible light leading to excitation of the surface electron to the higher energy state, and next this electron is accepted by O\(_2\) and OH ions to form radicals. These radicals target the particular dye molecules and induce dye degradation [174,175]. The mechanistic action of AgNPs on environmentally toxic dyes is represented in Figure 8. Various plant extracts that were used for photocatalytic dye degradation are summarized in Table 5.

![Schematic representation of the mechanism of AgNPs on photocatalytic dye degradation activity.](image)

Figure 8. Schematic representation of the mechanism of AgNPs on photocatalytic dye degradation activity.

Plant Extract	Extract	Type of Dye Degradation *	Time	% Dye Degradation	Reference
Solanum nigrum	Unripe fruit	MO	6 h	-	[176]
Lippia citriodora	Leaf	MB	660 min	68.7	[177]
Moringa oleifera	Flower	MO	52 h	97	[178]
Lagerstroemia speciosa	Leaves	MO	310 min	10	[179]
Camellia japonica	Leaf	EY dye	60 min	>97	[180]
Carissa carandas	Fruit	CV	150 min	100	[181]
Prosopis juliflora	Bark	4-Nitrophenol	80 min	90	[182]
Trichodusma indicum	Leaf	MB	210 min	82	[183]
Angelica gigas	Ribbed stem	EY	180 min	67	[184]
		MG		64	
Theobroma cacao	Pulp	MB	180 min	98.3	[185]
Ludwigia octovalvis	Leaf	Alizarin red	6 h	92.3	[186]
		Congo red		76	
		Rhodamine B		91.1	
		MB		94.5	
Aspilia pluriseta	Leaf	Congo red	30 h	50	[187]
Ehretia laevis Roxb	Leaves	Congo red	8 h	85	[188]

* Abbreviations: MO—Methyl orange, MB—Methylene blue, MG—Malachite green.
4. Conclusions

In this review, several methods for the synthesis of AgNPs are explained. AgNPs have attained growing interest due to their small size and multiple biomedical applications, including antibacterial, anticancer, and environmental applications. We briefly discuss up-to-date AgNPs studies for their applications in several categories. This report will be helpful to all the researchers who are working in this particular field. Furthermore, it gives easy access to understand the inhibitory activity of various reported plant AgNPs against pathogens, including how the AgNPs exhibit their potential antibacterial activity and the mechanistic activity of AgNPs, which may help to better understand the AgNPs–pathogen interactions. Further, the production of green synthesized AgNPs for commercial approval for human usage is still in the preclinical stage. In the future, detailed short-term and long-term biologically synthesized AgNPs toxicity, efficacy, and biocompatibility will need to be investigated with a large number of clinical validations. Long-term studies of the effects would be required for the safe use of biologically synthesized AgNPs.

Author Contributions: Conceptualization, G.S., K.N. and D.J.H.S.; writing—original draft preparation, G.S.; writing—review and editing, Y.-Y.C., N.R., M.K., K.N. and D.J.H.S.; visualization, G.S.; supervision, N.R., M.K., K.N. and D.J.H.S.; project administration, K.N. and D.J.H.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We apologize to colleagues whose works are not included in this review due to the space limitation. We thank the TEEP@AsiaPlus program provided through D.J.H.S. by the Department of International and Cross-strait Education, Ministry of Education, Taiwan, for G.S.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2019, 12, 908–931. [CrossRef]
2. Jeevanandam, J.; Barhoum, A.; Chan, Y.S.; Dufresne, A.; Danquah, M.K. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein J. Nanotechnol. 2018, 9, 1050–1074. [CrossRef] [PubMed]
3. Iravani, S.; Korbekandi, H.; Mirmohammadi, S.V.; Zolfaghari, B. Synthesis of silver nanoparticles: Chemical, physical and biological methods. Res. Pharm. Sci. 2014, 9, 385–406. [PubMed]
4. Patra, J.K.; Baek, K.-H. Green nanobiotechnology: Factors affecting synthesis and characterization techniques. J. Nanomater. 2014, 2014, 417305. [CrossRef]
5. Chen, L.; Xu, W.-H.; Zhao, Y.-G.; Kang, Y.; Liu, S.-H.; Zhang, Z.-Y. Synthesis of vaterite and aragonite crystals using biomolecules of tomato and capsicum. Russ. J. Phys. Chem. A 2012, 86, 2071–2075. [CrossRef]
6. Rao, A.; Bankar, A.; Shinde, A.; Kumar, A.R.; Gosavi, S.; Zinjarde, S. Phyto-inspired silica nanowires: Characterization and application in lipase immobilization. ACS Appl. Mater. Interfaces 2012, 4, 871–877. [CrossRef] [PubMed]
7. Swati; Verma, R.; Chauhan, A.; Shandilya, M.; Li, X.; Kumar, R.; Kulshrestha, S. Antimicrobial potential of Ag-doped ZnO nanostructure synthesized by the green method using moringa oleifera extract. J. Environ. Chem. Eng. 2020, 8, 103730. [CrossRef]
8. Zuorro, A.; Iannone, A.; Natali, S.; Lavecchia, R. Green synthesis of silver nanoparticles using bilberry and red currant waste extracts. Processes 2019, 7, 193. [CrossRef]
9. Barabadi, H.; Mahjoub, M.A.; Tajani, B.; Ahmadi, A.; Junejo, Y.; Saravanan, M. Emerging theranostic biogenic silver nanomaterials for breast cancer: A systematic review. J. Clust. Sci. 2019, 30, 259–279. [CrossRef]
10. Sampath, G.; Govarthanan, M.; Ramesh Kumar, N.; Vo, D.-V.N.; Krishnan, M.; Sivaskaran, P.; Kayalvizhi, N. Eco-friendly biosynthesis metallic silver nanoparticles using Aegle marmelos (Indian bael) and its clinical and environmental applications. Appl. Nanosci. 2021, 1–12. [CrossRef]
11. Srivastava, S.; Bhargava, A. Biological synthesis of nanoparticles: Bacteria. In Green Nanoparticles: The Future of Nanobiotechnology; Springer: Singapore, 2022; pp. 77–79. [CrossRef]
12. Chauhan, A.; Anand, J.; Parkash, V.; Rai, N. Biogenic synthesis: A sustainable approach for nanoparticles synthesis mediated by fungi. Inorg. Nano-Metal Chem. 2022, 1–14. [CrossRef]
13. Dudhagara, P.; Alagiya, J.; Bhagat, C.; Dudhagara, D.; Ghelani, A.; Desai, J.; Patel, R.; Vansia, A.; Nhiem, D.N.; Chen, Y.-Y.; et al. Biogenic synthesis of antibacterial, hemocompatible, and antiplatelets lysozyme functionalized silver nanoparticles through the one-step process for therapeutic applications. *Processes* **2020**, *10*, 623. [CrossRef]

14. Singh, P.; Ahn, S.; Kang, J.-P.; Veronika, S.; Hoo, Y.; Singh, H.; Chokkaligam, M.; Farh, M.E.-A.; Aceituno, V.C.; Kim, Y.J.; et al. In vitro anti-inflammatory activity of spherical silver nanoparticles and monodisperse hexagonal gold nanoparticles by fruit extract of *Prunus serrulata*: A green synthetic approach. *Artif. Cells Nanomed. Biotechnol.* **2018**, *46*, 2022–2032. [CrossRef]

15. Jaiswal, S.; Mishra, P. Antimicrobial and antibiofilm activity of curcumin-silver nanoparticles with improved stability and selective toxicity to bacteria over mammalian cells. *Med. Microbiol. Immunol.* **2018**, *207*, 39–53. [CrossRef]

16. De Matteis, V.; Cascione, M.; Toma, C.C.; Leporatti, S. Silver nanoparticles: Synthetic routes, in vitro toxicity and theranostic applications for cancer disease. *Nanomaterials* **2018**, *8*, 319. [CrossRef]

17. Kalaimurugan, D.; Sivasankar, P.; Lavanya, K.; Shivakumar, M.S.; Venkatesan, S. Antibacterial and larvicidal activity of *Fusarium proliferatum* (YN52) whole cell biomass mediated copper nanoparticles. *J. Clust. Sci.* **2019**, *30*, 1071–1080. [CrossRef]

18. Fahimirad, S.; Ajalloueian, F.; Ghorbampour, M. Synthesis and therapeutic potential of silver nanomaterials derived from plant extracts. *Ecotoxicol. Environ. Saf.* **2019**, *168*, 260–278. [CrossRef]

19. Lee, S.H.; Jun, B.-H. Silver Nanoparticles: Synthesis and Application for Nanomedicine. *Int. J. Mol. Sci.* **2019**, *20*, 865. [CrossRef]

20. Das, R.K.; Pachapur, V.L.; Lonappan, L.; Naghdi, M.; Maiti, S.; Cleedon, M.; Dalila, L.M.A.; Sarma, S.J.; Brar, S.K. Biological synthesis of metallic nanoparticles: Plants, animals and microbial aspects. *Nanotechnol. Environ. Eng.* **2017**, *2*, 18. [CrossRef]

21. Yusuf, M. Silver Nanoparticles: Synthesis and Applications. In *Handbook of Ecomaterials*; Martinez, I.M.T., Kharissova, O.V., Kharisov, B.I., Eds.; Springer: Cham, Switzerland, 2017; pp. 1–14. [CrossRef]

22. Mohamed, I.; Shuid, A.; Borhanuddin, B.; Fozi, N. The application of phytomedicine in modern drug development. *Internet J. Herb. Plant Med.* **2012**, *1*, 1–9.

23. Iyer, M.; Gujari, A.K.; Rao, R.N.; Gowda, D.V.; Srivastava, A. Biomedical applications of phytomedicines: Dental perspective. *Dent. Hypotheses* **2016**, *7*, 34. [CrossRef]

24. Kaur, N.; Kumar, V.; Rishi, P.; Sehrawat, N.; Dilawari, R.; Kumar, P.; Aggarwal, N.K. Phytomedicine: History, Scope and Future Prospects. In *Industrial Biotechnology: Plant Systems, Resources and Products*; Yadav, M., Kumar, V., Sehrawat, N., Eds.; De Gruyter: Boston, MA, USA, 2019; pp. 105–120. [CrossRef]

25. Souza, A.O.; Oliveira, J.W.D.F.; Moreno, C.J.G.; de Medeiros, M.J.C.; Fernandes-Negreiros, M.M.; Souza, F.R.M.; Pontes, D.L.; Silva, M.S.; Rocha, H.A.O. Silver nanoparticles containing fucoidan synthesized by green method have anti-*Trypanosoma cruzi* activity. *Nanomaterials* **2022**, *12*, 2059. [CrossRef] [PubMed]

26. Sampath, G.; Shyu, D.J.H.; Rameshkumar, N.; Krishnan, M.; Sivasankar, P.; Kayalvizhi, N. Synthesis and characterization of pyrogallol capped silver nanoparticles and evaluation of their in vitro anti-bacterial, anti-cancer profile against AGS cells. *J. Clust. Sci.* **2021**, *32*, 549–557. [CrossRef]

27. Vanaraj, S.; Keerthana, B.B.; Preethi, K. Biosynthesis, characterization of silver nanoparticles using quercetin from *Clitoria ternatea* L. to enhance toxicity against bacterial biofilm. *J. Inorg. Organomet. Polym. Mater.* **2017**, *27*, 1412–1422. [CrossRef]

28. Zhang, Z.; Shen, W.; Xue, J.; Liu, Y.; Liu, Y.; Yan, P.; Liu, J.; Tang, J. Recent advances in synthetic methods and applications of silver nanostructures. *Nanoscale Res. Lett.* **2018**, *13*, 54. [CrossRef]

29. Dawadi, S.; Katuwal, S.; Gupta, A.; Lamichhane, U.; Thapa, R.; Jaisi, S.; Lamichhane, G.; Bhattarai, D.P.; Parajuli, N. Current research on silver nanoparticles, characterization, and applications. *J. Nanomater.* **2021**, *2021*, 6687290. [CrossRef]

30. Rafique, M.; Sadaf, I.; Rafique, M.S.; Tahir, M.B. A review on green synthesis of silver nanoparticles and their applications. *Artif. Cells Nanomed. Biotechnol.* **2017**, *45*, 1272–1292. [CrossRef]

31. Zhang, X.-F.; Liu, Z.-G.; Shen, W.; Gurunathan, S. Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. *Int. J. Mol. Sci.* **2016**, *17*, 1534. [CrossRef]

32. Gaffet, E.; Tachikart, M.; El Kedim, O.; Rahouadji, R. Nanostructural materials formation by mechanical alloying: Morphologic analysis based on transmission and scanning electron microscopic observations. *Mater. Charact.* **1996**, *36*, 185–190. [CrossRef]

33. Amulyavichus, A.; Daugvila, A.; Davidonis, R.; Sipavichus, C. Study of chemical composition of nanostructural materials prepared by laser cutting of metals. *Fiz. Met. Metalloved.* **1998**, *85*, 111–117. [CrossRef]

34. Evanoff, J.A.D.D.; Chumanov, G. Size-controlled synthesis of nanoparticles. 2. Measurement of extinction, scattering, and absorption cross sections. *J. Phys. Chem. B* **2004**, *108*, 13957–13962. [CrossRef]

35. Merga, G.; Wilson, R.; Lynn, G.; Milosavljevic, B.H.; Meisel, D. Redox catalysis on “naked” silver nanoparticles. *J. Phys. Chem. C* **2007**, *111*, 12220–12226. [CrossRef]

36. Wiley, B.; Sun, Y.; Mayers, B.; Xia, Y. Shape-controlled synthesis of metal nanostructures: The case of silver. *Chem. A Eur. J.* **2005**, *11*, 454–463. [CrossRef]

37. Nagajyothi, P.C.; Lee, K.D. Synthesis of plant-mediated silver nanoparticles using *Dioscorea batatas* rhizome extract and evaluation of their antimicrobial activities. *J. Nanomater.* **2011**, *2011*, 573429. [CrossRef]

38. Ahmad, N.; Sharma, S.; Singh, V.N.; Shamsi, S.F.; Fatma, A.; Mehta, B.R. Biosynthesis of silver nanoparticles from *Desmodium triflorum*: A novel approach towards weed utilization. *Biotechnol. Res. Int.* **2011**, *2011*, 454090. [CrossRef]

39. Nauman, B.; Abbasi, A.S. Review: Green synthesis of silver and gold nanoparticles. *Middle East J. Sci. Res.* **2014**, *19*, 834–842. [CrossRef]
40. Das, R.K.; Brar, S.K. Plant mediated green synthesis: Modified approaches. *Nanoscale* 2013, 5, 10155–10162. [CrossRef]
41. Dumur, F.; Guerlin, A.; Dumas, E.; Bertin, D.; Gigmes, D.; Mayer, C.R. Controlled spontaneous generation of gold nanoparticles assisted by dual reducing and capping agents. *Gold Bull.* 2011, 44, 119–137. [CrossRef]
42. Rao, A.; Mahajan, K.; Bankar, A.; Srikanth, R.; Kumar, A.R.; Gosavi, S.; Zinjarde, S. Facile synthesis of size-tunable gold nanoparticles by pomegranate (*Punica granatum*) leaf extract: Applications in arsenate sensing. *Mater. Res. Bull.* 2013, 48, 1166–1173. [CrossRef]
43. Saklani, V.; Suman, J.V.; Jain, K. Microbial synthesis of silver nanoparticles: A review. *J. Biotechnol. Biomater.* 2012, s13, 007. [CrossRef]
44. Mohammadinejad, R.; Shavandi, A.; Raie, D.S.; Sangeetha, J.; Soleimani, M.; Hajibehzad, S.S.; Thangadurai, D.; Hospet, R.; Pitarke, J.M.; Silkin, V.M.; Chulkov, E.V.; Echenique, P.M. Surface plasmons in metallic structures.
45. Mukherjee, P.; Ahmad, A.; Mandal, D.; Senapati, S.; Sainkary, S.R.; Khan, M.I.; Parishcha, R.; Ajaykumar, P.V.; Alam, M.; Mandal, D.; Senapati, S.; Sainkary, S.R.; Khan, M.I.; Parishcha, R.; Ajaykumar, P.V.; Alam, M.; Jyoti, K.; Baunthiyal, M.; Singh, A. Characterization of silver nanoparticles synthesized using *Urtica dioica* Linn. leaves and their synergistic effects with antibiotics. *J. Radiat. Res. Appl. Sci.* 2016, 9, 217–227. [CrossRef]
46. Huang, H.; Yang, X. Synthesis of polysaccharide-stabilized gold and silver nanoparticles: A green method. *Carbohydr. Res.* 2004, 339, 2627–2631. [CrossRef]
47. Chen, Q.; Liu, G.; Chen, G.; Mi, T.; Tai, J. Green synthesis of silver nanoparticles with glucose for conductivity enhancement of conductive ink. *New J. Chem.* 2006, 30, 1121–1132. [CrossRef]
48. Mohammadinejad, R.; Shavandi, A.; Raie, D.S.; Sangeetha, J.; Soleimani, M.; Hajihehzad, S.S.; Thangadurai, D.; Hospet, R.; Poooola, J.O.; Arzani, A.; et al. Plant molecular farming: Production of metallic nanoparticles and therapeutic proteins using green factories. *Green Chem.* 2019, 21, 1845–1865. [CrossRef]
49. Prabh, S.; Pouluse, E.K. Silver nanoparticles: Mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. *Int. Nano Lett.* 2012, 2, 32. [CrossRef]
50. Li, S.; Shen, Y.; Xie, A.; Yu, X.; Qu, L.; Zhang, L.; Zhang, Q. Green synthesis of silver nanoparticles using *Capsicum annuum* L. extract. *Green Chem.* 2007, 9, 852–858. [CrossRef]
51. Moores, A.; Goettmann, F. The plasmon band in noble metal nanoparticles: An introduction to theory and applications. *New J. Chem.* 2006, 30, 1121–1132. [CrossRef]
52. Pitarke, J.M.; Silkin, V.M.; Chulkov, E.V.; Echenique, P.M. Surface plasmons in metallic structures. *J. Opt. A Pure Appl. Opt.* 2005, 7, S57–S84. [CrossRef]
53. Tasca, F.; Antiochia, R. Biocide activity of green quercetin-mediated synthesized silver nanoparticles. *Nanomaterials* 2020, 10, 909. [CrossRef] [PubMed]
54. Pascu, B.; Negrea, A.; Ciopec, M.; Duteanu, N.; Negrea, P.; Nemes, N.S.; Seiman, C.; Marian, E.; Micle, O. A green, simple and facile way to synthesize silver nanoparticles using soluble starch. *Int. J. Biol. Macromol.* 2017, 101, 515–519. [CrossRef]
55. Qin, Y.; Ji, X.; Jing, J.; Liu, H.; Wu, H.; Yang, W. Size control over spherical silver nanoparticles by ascorbic acid reduction. *Colloids Surf. A Physicochem. Eng. Asp.* 2010, 372, 172–176. [CrossRef]
56. Filippo, E.; Serra, A.; Buccolieri, A.; Manno, D. Green synthesis of silver nanoparticles with sucrose and maltose: Morphological and structural characterization. *J. Non-Cryst. Solids* 2010, 356, 344–350. [CrossRef]
57. Karan, T.; Erenler, R.; Bozer, B.M. Synthesis and characterization of silver nanoparticles using curcumin: Cytotoxic, apoptotic, and necrotic effects on various cell lines. *Z. Naturforsch. C J. Biosci.* 2022, 77, 343–350. [CrossRef]
58. Verragopou, P.S.; Hiregoudar, S.; Nidoni, U.; Ramappa, K.T.; Sreenivas, A.G.; Doddagoudar, S.R. Chemical Synthesis of Silver Nanoparticles Using Tri-sodium Citrate, Stability Study and Their Characterization. *Int. Res. J. Pure Appl. Chem.* 2020, 21, 37–50. [CrossRef] [PubMed]
59. Venkateshan, M.; Ayodhya, D.; Madhusudhan, A.; Babu, N.V.; Veerabhadrar, G. A novel green one-step synthesis of silver nanoparticles using chitosan: Catalytic activity and antimicrobial studies. *Appl. Nanosci.* 2012, 4, 113–119. [CrossRef]
60. Rao, S.S.; Saptami, K.; Venkatesan, J.; Rekha, P. Microwave-assisted rapid synthesis of silver nanoparticles using fucoidan: Characterization with assessment of biocompatibility and antimicrobial activity. *Int. J. Biol. Macromol.* 2020, 163, 745–755. [CrossRef] [PubMed]
61. Kim, T.Y.; Cha, S.-H.; Cho, S.; Park, Y. Tannic acid-mediated green synthesis of antibacterial silver nanoparticles. *Arch. Pharm. Res.* 2016, 39, 465–473. [CrossRef]
62. Barnaby, S.N.; Yu, S.M.; Fath, K.R.; Tsiola, A.; Khatami, P.; Banerjee, I.A. Ellagic acid promoted biomimetic synthesis of shape-controlled silver nanochains. *Nanotechnology* 2011, 22, 225605. [CrossRef]
63. Bhatt, S.; Vyas, G.; Paul, P. Rosmarinic acid-capped silver nanoparticles for colorimetric detection of CN− and Redox-modulated surface reaction-aided detection of Cr(VI) in water. *ACS Omega* 2022, 7, 1318–1328. [CrossRef] [PubMed]
64. Parmar, A.K.; Valand, N.N.; Solanki, K.B.; Menon, S.K. Picric acid capped silver nanoparticles as a probe for colorimetric sensing of creatinine in human blood and cerebrospinal fluid samples. *Analyst* 2016, 141, 1488–1498. [CrossRef] [PubMed]
65. Park, S.; Cha, S.-H.; Cho, I.; Park, S.; Park, Y.; Cho, S.; Park, Y. Antibacterial nanocarriers of resveratrol with gold and silver nanoparticles. *Mater. Sci. Eng. C Mater. Biol. Appl.* 2016, 58, 1160–1169. [CrossRef] [PubMed]
67. Zarei, M.; Karimi, E.; Oskoueian, E.; Es-Haghi, A.; Yazdi, M.E.T. Comparative study on the biological effects of sodium citrate-based and apigenin-based synthesized silver nanoparticles. *Nutr. Cancer* 2021, 73, 1511–1519. [CrossRef]

68. Espinosa-Cristóbal, L.E.; Zavala-Alonso, N.V.; Lara, R.H.; Reyes-López, S.Y.; Martínez-Castañón, G.A.; Loyola-Rodríguez, J.P.; Niño-Martínez, N.; Ruiz, E. Bovine serum albumin and chitosan coated silver nanoparticles and its antimicrobial activity against oral and nonoral bacteria. *J. Nanomater.* 2015, 2015, 420853. [CrossRef]

69. Tian, S.; Hu, Y.; Chen, X.; Liu, C.; Xue, Y.; Han, B. Green synthesis of silver nanoparticles using sodium alginate and tannic acid: Characterization and anti-*S. aureus* activity. *Int. J. Biol. Macromol.* 2022, 195, 515–522. [CrossRef]

70. Burdusel, A.-C.; Gherasim, O.; Grumezescu, A.M.; Mogoantă, L.; Ficai, A.; Andronescu, E. Biomedical applications of silver nanoparticles: An up-to-date overview. *Nanomaterials* 2018, 8, 681. [CrossRef]

71. Bhubhanil, S.; Talodthaisong, C.; Khongkow, M.; Namdee, K.; Wongchitrat, P.; Yingmema, W.; Hutchison, J.A.; Lapmanee, S.; Kulchat, S. Enhanced wound healing properties of guar gum/curcumin-stabilized silver nanoparticle hydrogels. *Sci. Rep.* 2021, 11, 21836. [CrossRef]

72. Attallah, N.G.M.; Elekhnawy, E.; Negm, W.A.; Hussein, I.A.; Mokhtar, F.A.; Al-Fakhrany, O.M. In vivo and in vitro antimicrobial activity of biogenic silver nanoparticles against *Staphylococcus aureus* clinical isolates. *Pharmaceuticals* 2022, 15, 194. [CrossRef]

73. El-Deeb, N.M.; Abo-Eleneen, M.A.; Awad, O.A.; Abo-Shady, A.M. *Arthrosira platensis*-mediated green biosynthesis of silver nano-nanoparticles as breast cancer controlling agent: In vitro and in vivo safety approaches. *Appl. Biochem. Biotechnol.* 2022, 194, 2183–2203. [CrossRef] [PubMed]

74. Anbazhagan, P.; Murugan, K.; Jaganathan, A.; Sujitha, V.; Kumar, S.; Wei, H.; et al. Mosquitocidal, antimalarial and antidiabetic potential of *Musana paradisica*-synthesized silver nanoparticles: In vivo and in vitro approaches. *J. Clust. Sci.* 2016, 28, 91–107. [CrossRef]

75. Demling, R.H.; Desanti, L. Effects of silver on wound management. *Wounds* 2001, 13, 4–15.

76. Dunn, K.; Edwards-Jones, V. The role of Acticoat™ with nanocrystalline silver in the management of burns. *Burns* 2004, 30, S1–S9. [CrossRef]

77. Fong, J. The use of silver products in the management of burn wounds: Change in practice for the burn unit at Royal Perth Hospital. *Prim. Intent. Aust.* 2005, 13, S16–S22.

78. Klasen, H.J. A historical review of the use of silver in the treatment of burns. *II. Renewed interest for silver.* *Burns* 2000, 26, 131–138. [CrossRef]

79. Lin, J.; Chen, R.; Feng, S.; Pan, J.; Li, Y.; Chen, G.; Cheng, M.; Huang, Z.; Yu, Y.; Zeng, H. A novel blood plasma analysis technique combining membrane electrophoresis with silver nanoparticle-based SERS spectroscopy for potential applications in noninvasive cancer detection. *Nanomed. Nanotechnol. Biol. Med.* 2011, 7, 655–663. [CrossRef]

80. Kwan, K.H.; Liu, X.; To, M.K.; Yeung, K.; Ho, C.-M.; Wong, K.K. Modulation of collagen alignment by silver nanoparticles results in better mechanical properties in wound healing. *Nanomed. Nanotechnol. Biol. Med.* 2011, 7, 497–504. [CrossRef]

81. Peer, D.; Karp, J.M.; Hong, S.; Farokhzad, O.C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. *Nat. Nanotechnol.* 2007, 2, 751–760. [CrossRef]

82. Sampath, G.; Shyu, D.J.H.; Rameshkumar, N.; Krishnan, M.; Durairaj, K.; Kayalvizhi, N. Fabrication and Characterization of pH-mediated *Labeo rohita* fish scale extract capped silver nanoparticles and its antibacterial activity. *J. Clust. Sci.* 2021, 33, 1553–1560. [CrossRef]

83. Sivasankar, P.; Poongodi, S.; Seedevi, P.; Kalaimurugan, D.; Sivakumar, M.; Loganathan, S. Nanoparticles from actinobacteria: A potential target to antimicrobial therapy. *Curr. Pharm. Des.* 2019, 25, 2626–2636. [CrossRef]

84. Rolim, W.R.; Pieretti, J.C.; Renó, D.L.S.; Lima, B.A.; Nascimento, M.H.M.; Ambrosio, F.N.; Lombello, C.B.; Brochi, M.; De Souza, A.C.S.; Seabra, A.B. Antimicrobial activity and cytoxicity to tumor cells of nitric oxide donor and silver nanoparticles containing PVA/PEG films for topical applications. *ACS Appl. Mater. Interfaces* 2019, 11, 6589–6604. [CrossRef] [PubMed]

85. Nasar, S.; Murtaza, G.; Mehmoon, A.; Bhatti, T.M.; Rafi, M. Environmentally benign and economical phytofabrication of silver nanoparticles using *fujilans regia* leaf extract for antibacterial study. *J. Electron. Mater.* 2019, 48, 3562–3569. [CrossRef]

86. Yuan, Y.-G.; Zhang, S.; Hwang, J.-Y.; Kong, I.-K. Silver nanoparticles potentiates cytotoxicity and apoptotic potential of campothecin in human cervical cancer cells. *Oxid. Med. Cell. Longev.* 2018, 2018, 6121328. [CrossRef] [PubMed]

87. Feichtmeier, N.S.; Ruchter, N.; Zimmermann, S.; Sures, B.; Leopold, K. A direct solid sampling analysis method for the detection of silver nanoparticles in biological matrices. *Anal. Bioanal. Chem.* 2016, 408, 295–305. [CrossRef]

88. Pang, C.; Hristozov, D.; Zabeo, A.; Pizzol, L.; Tsang, M.P.; Sayre, P.; Marcomini, A. Probabilistic approach for assessing infants’ health risks due to ingestion of nanoscale silver released from consumer products. *Environ. Int.* 2017, 99, 199–207. [CrossRef]

89. Chirag, P.J.; Tyagi, S.; Halligudi, N.; Yadav, J.; Pathak, S.; Singh, S.P.; Shankar, P. Antioxidant activity of herbal plants: A recent review. *J. Drug Deliv.* 2013, 1, 1–8.

90. Men’shikova, E.B.; Zenkov, N.K.; Lankin, V.Z.; Bondar, I.A.; Trufanin, V.A. Oksidativnyy Stress: Patologicheskie Sostoyaniya i Zabolevaniya [Oxidation Stress: Pathological States and Diseases]; ARTA: Novosibirsk, Russia, 2008; p. 284.

91. Knight, J.A. Diseases related to oxygen-derived free radicals. *Ann. Clin. Lab. Sci.* 1995, 25, 111–121.

92. Adeshina, G.O.; Onalapolo, J.A.; Ehinnmidu, J.O.; Odama, L.E. Phytochemical and antimicrobial studies of the ethyl acetate extract of *Alchornea cordifolia* leaf found in Abuja, Nigeria. *J. Med. Plant Res.* 2010, 4, 649–658.
93. Thanh, N.C.; Pugazhendhi, A.; Chinnathambi, A.; Alharbi, S.A.; Subramani, B.; Brindhadevi, K.; Whangchai, N.; Pikulaew, S. Silver nanoparticles (AgNPs) fabricating potential of aqueous shoot extract of Aristolochia bracteolata and assessed their antioxidant efficiency. Environ. Res. 2022, 208, 112683. [CrossRef]

94. Thomas, B.; Vithiya, B.S.M.; Prasad, T.A.A.; Mohamed, S.B.; Magdalane, C.M.; Kaviyarasu, K.; Maaza, M. Antioxidant and photocatalytic activity of aqueous leaf extract mediated green synthesis of silver nanoparticles using Passiflora edulis f. flavicarpa. J. Nanosci. Nanotechnol. 2019, 19, 2640–2648. [CrossRef]

95. Chinnasamy, G.; Chandrasekharan, S.; Bhthagnar, S. Biosynthesis of silver nanoparticles from Melia azedarach: Enhancement of antibacterial, wound healing, antiinflammatory and antioxidant activities. Int. J. Nanomed. 2019, 14, 9823–9836. [CrossRef]

96. Patra, J.K.; Das, G.; Shin, H.-S. Facile green biosynthesis of silver nanoparticles using Pismum sativum L. outer peel aqueous extract and its antiinflammatory, cytotoxicity, antioxidant, and antibacterial activity. Int. J. Nanomed. 2019, 14, 6679–6690. [CrossRef]

97. Barabadi, H.; Ovais, M.; Shinwari, Z.K.; Saravanan, M. Anti-cancer green bionanomaterials: Present status and future prospects. Green Chem. Lett. Rev. 2017, 10, 285–314. [CrossRef]

98. Mortezaee, K.; Najafi, M.; Samadian, H.; Barabadi, H.; Azarnezhad, A.; Khodamoradi, A. Redox interactions and genotoxicity of metal-based nanoparticles: A comprehensive review. Chem. Biol. Interact. 2019, 312, 108814. [CrossRef]

99. Tang, S.; Zheng, J. Antibacterial activity of silver nanoparticles: Structural effects. Adv. Healthc. Mater. 2018, 7, 1701503. [CrossRef]

100. Wyatt, D.; McGowan, D.N.; Najarian, M.P. Comparison of a hydrocolloid dressing and silver sulfadiazine cream in the outpatient management of second-degree burns. J. Trauma Inj. Infect. Crit. Care 1990, 30, 857–865. [CrossRef]

101. Lok, C.-N.; Ho, C.-M.; Chen, R.; He, Q.-Y.; Yu, W.-Y.; Sun, H.; Tam, P.K.-H.; Chiu, J.-F.; Che, C.-M. Silver nanoparticles: Partial oxidation and antibacterial activities. Biol. J. Inorg. Chem. 2007, 12, 527–534. [CrossRef]

102. Thomas, V.; Vallapu, M.M.; Sreedhar, B.; Bajpai, S. A versatile strategy to fabricate hydrogel–silver nanocomposites and investigation of their antimicrobial activity. J. Colloid Interface Sci. 2007, 315, 389–395. [CrossRef]

103. Rai, M.; Yadav, A.; Gade, A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 2009, 27, 76–83. [CrossRef]

104. Liu, S.Y.; Read, D.C.; Pugh, W.J.; Furr, J.R.; Russell, A.D. Interaction of silver nitrate with readily identifiable groups: Relationship to the antibacterialaction of silver ions. Lett. Appl. Microbiol. 1997, 25, 279–283. [CrossRef]

105. Sondi, I.; Salopek-Sondi, B. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci. 2004, 275, 177–182. [CrossRef]

106. Quinteros, M.A.; Aristizábal, V.C.; Dalmasso, P.R.; Paraje, M.G.; Páez, P.L. Oxidative stress generation of silver nanoparticles in three bacterial genera and its relationship with the antiinamicrobial activity. Toxicol. In Vitro 2016, 36, 216–223. [CrossRef]

107. Singhal, G.; Bhavesh, R.; Kasariya, K.; Sharma, A.R.; Singh, R.P. Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity. J. Nanoparticle Res. 2011, 13, 2981–2988. [CrossRef]

108. Masurkar, S.A.; Chaudhari, P.R.; Shidore, V.B.; Kabble, S.P. Rapid biosynthesis of silver nanoparticles using Cymbopogan Citrus (Lemongrass) and its antimicrobial activity. Nano-Micro Lett. 2011, 3, 189–194. [CrossRef]

109. Gopinath, V.; MubarakAli, D.; Priyaadharshini, S.; Priyadharssini, N.M.; Thajuddin, N.; Velusamy, P. Biosynthesis of silver nanoparticles from Tribulus terrestris and its antimicrobial activity: A novel biological approach. Colloids Surf. B Biointerfaces 2012, 96, 69–74. [CrossRef]

110. Swamy, V.S.; Prasad, R. Green synthesis of silver nanoparticles from the leaf extract of Santalum album and its antimicrobial activity. J. Optoelectron. Biomed. Mater. 2012, 4, 53–59.

111. Amin, M.; Anwar, F.; Janjua, M.R.S.A.; Iqbal, M.A.; Rashid, U. Green synthesis of silver nanoparticles through reduction with Solanum xanthocarpum L. berry extract: Characterization, antimicrobial and urease inhibitory activities against Helicobacter pylori. Int. J. Mol. Sci. 2012, 13, 9923–9941. [CrossRef] [PubMed]

112. Sulaiman, G.M.; Mohammed, W.H.; Marzoog, T.R.; Al-Amiery, A.A.A.; Kadhum, A.A.H.; Mohamad, A.B. Green synthesis, antimicrobial and cytotoxic effects of silver nanoparticles using Eucalyptus chapmaniana leaves extract. Asian Pac. J. Trop. Biomed. 2013, 3, 58–63. [CrossRef]

113. Gnanajothi, G.; Rajeshkumar, S.; Annadurai, G.; Kannan, C. Preparation and characterization of fruit-mediated silver nanoparticles using pomegranate extract and assessment of its antimicrobial activities. J. Environ. Nanotechnol. 2013, 2, 04–10. [CrossRef]

114. Ajitha, B.; Reddy, Y.A.K.; Reddy, P.S. Biosynthesis of silver nanoparticles using Plectranthus anubinicus leaf extract and its antimicrobial activity. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 128, 257–262. [CrossRef] [PubMed]

115. Kumar, D.A.; Palanichamy, V.; Roopan, S.M. Green synthesis of silver nanoparticles using Alternanthera dentata leaf extract at room temperature and their antimicrobial activity. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 127, 168–171. [CrossRef]

116. Amin, M.; Hameed, S.; Ali, A.; Anwar, F.; Shahid, S.A.; Shakir, I.; Yaqoob, A.; Hasan, S.; Khan, S.A.; Rahman, S.U. Green synthesis of silver nanoparticles: Structural features and in vivo and in vitro therapeutic effects against Helicobacter pylori induced gastritis. Bioinorg. Chem. Appl. 2014, 2014, 135824. [CrossRef]

117. Arokiyaraj, S.; Saravanan, M.; Badathala, V. Green synthesis of silver nanoparticles using aqueous extract of Taraxacum officinale and its antimicrobial activity. South Indian J. Biol. Sci. 2015, 21, 115–118. [CrossRef]

118. Gurunathan, S.; Jeong, J.-K.; Han, J.W.; Zhang, X.-F.; Park, J.H.; Kim, J.-H. Multidimensional effects of biologically synthesized silver nanoparticles in Helicobacter pylori, Helicobacter felis, and human lung (L132) and lung carcinoma A549 cells. Nanoscale Res. Lett. 2015, 10, 35. [CrossRef]
119. Ojo, O.A.; Oyinloye, B.E.; Ojo, A.B.; Afolabi, O.B.; Peters, O.A.; Olaiya, O.; Fadaka, A.; Jonathan, J.; Osunlana, O. Green synthesis of silver nanoparticles (AgNPs) using Talinum triangulare (Jacq.) Willd. leaf extract and monitoring their antimicrobial activity. *J. Biomater. Sci.* 2017, 11, 292–296. [CrossRef]

120. Alhuwalia, V.; Elumalai, S.; Kumar, V.; Kumar, S.; Sangwan, R.S. Nano silver particle synthesis using Swertia paniculata herbal extract and its antimicrobial activity. *Microb. Pathog.* 2018, 114, 402–408. [CrossRef]

121. Escárciga-González, C.E.; Garza-Cervantes, J.A.; Vazquez-Rodriguez, A.; Montelongo-Peralta, L.Z.; Treviño-Gonzalez, M.T.; Castro, E.D.B.; Saucedo-Salazar, E.M.; Morales, R.M.C.; Regalado-Soto, D.I.; Treviño-González, F.M.; et al. In vivo antimicrobial activity of silver nanoparticles produced via a green chemistry synthesis using *Acacia rigidaulis* as a reducing and capping agent. *Int. J. Nanomed.* 2018, 13, 2349–2363. [CrossRef]

122. Ontong, J.C.; Faosen, S.; Shankar, S.; Voravuthikunchai, S.P. Eco-friendly synthesis of silver nanoparticles using *Senega alata* bark extract and its antimicrobial mechanism through enhancement of bacterial membrane degradation. *J. Microbiol. Methods* 2019, 165, 105692. [CrossRef][PubMed]

123. Ahmad, S.; Tauseef, I.; Haleem, K.S.; Khan, K.; Shahzad, M.; Ali, M.; Sultan, F. Synthesis of silver nanoparticles using leaves of Catharanthus roseus and their antimicrobial activity. *Appl. Nanosci.* 2020, 10, 4459–4464. [CrossRef]

124. Singh, A.; Gaud, B.; Jaybhaye, S. Optimization of synthesis parameters of silver nanoparticles and its antimicrobial activity. *Mater. Sci. Energy Technol.* 2020, 3, 232–236. [CrossRef]

125. Ogunsile, B.O.; Seyinde, D.O.; Salako, B.A. Green synthesis of silver nanoparticles from leaf extract of *Tetrapleura tetraptera* and its antimicrobial activity. *IOP Conf. Ser. Mater. Sci. Eng.* 2020, 805, 012032. [CrossRef]

126. Mirsadeghi, S.; Koudehi, M.F.; Rajabi, H.R.; Pourmortazavi, S.M. Green and simple synthesis of silver nanoparticles by aqueous extract of *Perovskia abrotanoides*: Characterization, optimization and antimicrobial activity. *Curr. Pharm. Biotechnol.* 2020, 21, 1129–1137. [CrossRef][PubMed]

127. Sanpui, P.; Chattopadhayay, A.; Ghosh, S.S. Induction of apoptosis in cancer cells at low silver nanoparticle concentrations using chitosan nanocarrier. *ACS Appl. Mater. Interfaces* 2011, 3, 218–228. [CrossRef][PubMed]

128. Gurunathan, S.; Lee, K.J.; Kalishwaralal, K.; Sheikhpranbabu, S.; Vaidyanathan, R.; Eom, S.H. Antiangiogenic properties of silver nanoparticles. *Biomaterials* 2009, 30, 6341–6350. [CrossRef]

129. Dwivedi, S.; Siddiqui, M.A.; Farshori, N.N.; Ahamed, M.; Musarrat, J.; Al-Khedhairy, A.A. Synthesis, characterization and toxicological evaluation of iron oxide nanoparticles in human lung alveolar epithelial cells. *Colloids Surf. B Biointerfaces* 2014, 122, 209–215. [CrossRef]

130. Bin-Jumah, M.; Monera, A.A.; Albasher, G.; Alarifi, S. Effects of green silver nanoparticles on apoptosis and oxidative stress in normal and cancerous human hepatic cells in vitro. *Int. J. Nanomed.* 2020, 15, 1537–1548. [CrossRef]

131. Bhattacharyya, S.S.; Das, J.; Das, S.; Samadder, A.; Das, D.; De, A.; Khuda-Bukhsh, A.R. Rapid green synthesis of silver nanoparticles from silver nitrate by a homeopathic mother tincture *Phytolacca Decandra*. *Clin. J. Integr. Med.* 2012, 10, 546–554. [CrossRef]

132. Devi, J.S.; Bhimba, B.V. Anticancer Activity of Silver Nanoparticles synthesized by the seaweed Ulva lactuca Invitro. *Open Access Sci. Rep.* 2012, 1, 242. [CrossRef]

133. Shawkey, A.M.; Rabeh, M.A.; Abdulall, A.K.; Abdellatif, A.O. Green nanotechnology: Anticancer activity of silver nanoparticles from *Citrus limon* aqueous extracts. *Adv. Life Sci. Technol.* 2013, 13, 60–70. [CrossRef]

134. Kathiravan, V.; Ravi, S.; Ashokkumar, S. Synthesis of silver nanoparticles from *Melia dubia* leaf extract and their in vitro anticancer activity. *Spectrochim. Acta A Mol. Biomol. Spectrosc.* 2014, 130, 116–121. [CrossRef]

135. Nayak, D.; Pradhan, S.; Ashe, S.; Rauta, P.R.; Nayak, B. Biologically synthesised silver nanoparticles from three diverse family of plant extracts and their anticancer activity against epidermoid A431 carcinoma. *J. Colloid Interface Sci.* 2015, 457, 329–338. [CrossRef]

136. Srerankanth, T.V.M.; Pandurangan, M.; Kim, D.H.; Lee, Y.R. Green Synthesis: In-vitro anticancer activity of silver nanoparticles on human cervical cancer cells. *J. Clust. Sci.* 2016, 27, 671–681. [CrossRef]

137. Kummara, S.; Patil, M.B.; Uriah, T. Synthesis, characterization, biocompatible and anticancer activity of green and chemically synthesized silver nanoparticles—A comparative study. *Biomed. Pharmacother.* 2016, 84, 10–21. [CrossRef]

138. Rama, M.; Manikandan, B.; Marimuthu, P.N.; Raman, T.; Mahalingam, A.; Subramanian, P.; Kharthick, S.; Munusamy, A. Synthesis of silver nanoparticles using *Solainum trilobatum* fruits extract and its antibacterial, cytotoxic activity against human breast cancer cell line MCF 7. *Spectrochim. Acta A Mol. Biomol. Spectrosc.* 2015, 140, 223–228. [CrossRef]

139. Supraja, S.; Arumugam, P. Antibacterial and anticancer activity of silver nanoparticles synthesized from *Cynodon dactylon* leaf extract. *J. Acad. Ind. Res.* 2015, 3, 629–631. [CrossRef]

140. Venugopal, K.; Rather, H.A.; Rajagopal, K.; Shanthi, M.P.; Sherriff, K.; Illyias, M.; Rather, R.A.; Manikandan, E.; Uvarajan, S.; Bhaskar, M.; et al. Synthesis of silver nanoparticles (Ag NPs) for anticancer activities (MCF 7 breast and A549 lung cell lines) of the crude extract of *Syzygium aromaticum*. *J. Photochem. Photobiol. B Biol.* 2017, 167, 282–289. [CrossRef]

141. Vijayan, R.; Joseph, S.; Mathew, B. *Indigofera tinctoria* leaf extract mediated green synthesis of silver and gold nanoparticles and assessment of their anticancer, antimicrobial, antioxidant and catalytic properties. *Artif. Cells Nanomed. Biotechnol.* 2018, 46, 861–871. [CrossRef]
142. Bethu, M.S.; Netala, V.R.; Domdi, L.; Tartte, V.; Janapala, V.R. Potential anticancer activity of biogenic silver nanoparticles using leaf extract of Rynchosia suaveolens: An insight into the mechanism. *Artif. Cells Nanomed. Biotechnol.* **2018**, *46*, 104–114. [CrossRef] [PubMed]

143. Anandan, M.; Poorani, G.; Boomi, P.; Varunkumar, K.; Anand, K.; Chuturgoon, A.A.; Saravanan, M.; Prabu, H.G. Green synthesis of anisotropic silver nanoparticles from the aqueous leaf extract of *Dodonaea viscosa* with their antibacterial and anticancer activities. *Process Biochem.* **2019**, *80*, 80–88. [CrossRef]

144. Erdogan, O.; Abbak, M.; Demirbolat, G.M.; Birtekocak, E.; Aksel, M.; Pasa, S.; Cevik, O. Green synthesis of silver nanoparticles via *Cynara scolyms* leaf extracts: The characterization, anticancer potential with photodynamic therapy in MCF7 cells. *PLoS ONE* **2019**, *14*, e0216496. [CrossRef] [PubMed]

145. Rajput, S.; Kumar, D.; Agrawal, V. Green synthesis of silver nanoparticles using Indian Belladonna extract and their potential antioxidant, anti-inflammatory, anticancer and larvicidal activities. *Plant Cell Rep.* **2020**, *39*, 921–939. [CrossRef]

146. Nayaka, S.; Bhat, M.P.; Chakraborty, B.; Pallavi, S.; Airodagi, R.; Muthukumaran, H.M.; Dhanyakumara, S.B.; Shashiraj, K.N.; Kupaneshi, K.N.S.A.C. Seed extract-mediated synthesis of silver nanoparticles from *Putranjiva roxburghii* Wall., Phytochemical characterization, antibacterial activity and anticancer activity against MCF-7 Cell Line. *Indian J. Pharm. Sci.* **2020**, *82*, 260–269. [CrossRef]

147. World Health Organization. Dengue Transmission Research in WHO Bulletin. Available online: http://whqlibdoc.who.int/hq/2005/WHO-CDS-WHOES-GCDPP-2005.13.pdf (accessed on 25 June 2010).

148. Vinoth, S.; Shankar, S.G.; Gurusaravan, P.; Janani, B.; Devi, J.K. Anti-larvicidal activity of silver nanoparticles synthesized from *Sargassum polycystum* against mosquito vectors. *J. Clust. Sci.* **2019**, *30*, 171–180. [CrossRef]

149. Benelli, G.; Maggi, F.; Pavela, R.; Murugan, K.; Govindarajan, M.; Vaseeharan, B.; Petrelli, R.; Cappellacci, L.; Kumar, S.; Hofer, A.; et al. Mosquito control with green nanopesticides: Towards the one health approach? A review of non-target effects. *Environ. Sci. Pollut. Res.* **2017**, *25*, 10184–10206. [CrossRef]

150. Gnanadesigan, M.; Anand, M.; Ravikumar, S.; Maruthupandy, M.; Vijayakumar, V.; Selvam, S.; Dhineshkumar, M.; Kumaraguru, A. Biosynthesis of silver nanoparticles by using mangrove plant extract and their potential mosquito larvicidal property. *Asian Pac. J. Trop. Med.* **2011**, *4*, 799–803. [CrossRef]

151. Jayaseelan, C.; Rahuman, A.A.; Rajakumar, G.; Kirthi, A.V.; Santhoshkumar, T.; Marimuthu, S.; Bagavan, A.; Kamaraj, C.; Zahir, A.A.; Elango, G. Synthesis of pediculocidal and larvicidal silver nanoparticles by leaf extract from heartleaf moonseed plant, *Tinospora cordifolia* Mierts. *Parasitol. Res.* **2011**, *109*, 185–194. [CrossRef]

152. Marimuthu, S.; Rahuman, A.A.; Rajakumar, G.; Santhoshkumar, T.; Kirthi, A.V.; Jayaseelan, C.; Bagavan, A.; Zahir, A.A.; Elango, G.; Kamaraj, C. Evaluation of green synthesized silver nanoparticles against parasites. *Parasitol. Res.* **2010**, *108*, 1541–1549. [CrossRef]

153. Santhoshkumar, T.; Rahuman, A.A.; Rajakumar, G.; Marimuthu, S.; Bagavan, A.; Jayaseelan, C.; Zahir, A.A.; Elango, G.; Kamaraj, C. Synthesis of silver nanoparticles using *Nelumbo nucifera* leaf extract and its larvicidal activity against malaria and filariasis vectors. *Parasitol. Res.* **2010**, *108*, 693–702. [CrossRef] [PubMed]

154. Priyadarshini, K.A.; Murugan, K.; Panneerselvam, C.; Ponarulesh, S.; Sekar, P.; Hwang, J.-S.; Nicoletti, M. Biolarvicidal and pupicidal potential of silver nanoparticles synthesized using *Euphorbia hirta* against *Anopheles stephensi* Liston (Diptera: Culicidae). *Parasitol. Res.* **2012**, *111*, 997–1006. [CrossRef]

155. Patil, C.; Borase, H.P.; Patil, S.; Salunkhe, R.B.; Salunke, B.K. Larvicidal activity of silver nanoparticles synthesized using *Pergularia daemia* plant latex against *Aedes aegypti* and *Anopheles stephensi* and nontarget fish *Pocellia reticulata*. *Parasitol. Res.* **2012**, *111*, 555–562. [CrossRef] [PubMed]

156. Haldar, K.M.; Haldar, B.; Chandra, G. Fabrication, characterization and mosquito larvicidal bioactivity of silver nanoparticles synthesized from aqueous fruit extract of putranjiva, *Drypetes roxburghii* (Wall.). *Parasitol. Res.* **2013**, *112*, 1451–1459. [CrossRef] [PubMed]

157. Poopathi, S.; De Britto, L.J.; Praba, V.L.; Mani, C.; Praveen, M. Synthesis of silver nanoparticles from *Azadirachta indica*—A most effective method for mosquito control. *Environ. Sci. Pollut. Res. Int.* **2015**, *22*, 2956–2963. [CrossRef] [PubMed]

158. Muthukumaran, U.; Govindarajan, M.; Rajeswary, M. Green synthesis of silver nanoparticles from *Cassia roxburghii*—A most potent power for mosquito control. *Parasitol. Res.* **2015**, *114*, 4385–4395. [CrossRef] [PubMed]

159. Deepak, P.; Sowmya, R.; Ramkumar, R.; Balasubramani, G.; Aiswarya, D.; Perumal, P. Structural characterization and evaluation of mosquito-larvicidal property of silver nanoparticles synthesized from the seaweed, *Turbinaria ornata* (Turner). *J. Agardh Artif. Cells Nanomed. Biotechnol.* **2017**, *45*, 990–998. [CrossRef]

160. Kumar, D.; Kumar, G.; Agrawal, V. Green synthesis of silver nanoparticles using *Holarrhena antidysenterica* (L.) Wall.bark extract and their larvicidal activity against dengue and filariasis vectors. *Parasitol. Res.* **2018**, *117*, 377–389. [CrossRef]

161. Parthibhan, E.; Manivannan, N.; Ramanibai, R.; Mathivanan, N. Green synthesis of silver-nanoparticles from *Anmona reticulata* leaves aqueous extract and its mosquito larvicidal and anti-microbial activity on human pathogens. *Biotechnol. Rep.* **2019**, *21*, e00297. [CrossRef]

162. Chowdhury, N.; Ghosh, A.; Chandra, G. Mosquito larvicidal activities of *Solanum villosum* berry extract against the dengue vector *Stegomyia aegypti*. *BMC Complement. Altern. Med.* **2008**, *8*, 10. [CrossRef]

163. Amala, V.E.; Krishnaveni, R. Biogenic synthesis of silver nanoparticles: Characterizations, antibacterial and larvicidal bioassay. *Mater. Today Proc.* **2022**, *49*, A7–A11. [CrossRef]
164. Kumar, V.A.; Ammani, K.; Jobina, R.; Parasuraman, P.; Siddhardha, B. Larvicidal activity of green synthesized silver nanoparticles using *Exocoetia agallocha* L. (*Euphorbiaceae*) leaf extract against *Aedes aegypti*. *IET Nanobiotechnol.* **2016**, *10*, 382–388. [CrossRef]

165. Sareen, S.J.; Pillai, R.K.; Chandramohanakumar, V.; Balagopalan, M. Larvicidal potential of biologically synthesised silver nanoparticles against *Aedes albopictus*. *Res. J. Recent Sci.* **2012**, *1*, 52–56.

166. Cai, X.; Cai, Y.; Liu, Y.; Deng, S.; Wang, Y.; Wang, Y.; Djerdj, I. Photocatalytic degradation properties of Ni(OH)2 nanosheets/ZnO nanorods composites for azo dyes under visible-light irradiation. *Ceram. Int.* **2014**, *40*, 57–65. [CrossRef]

167. Kim, S.; Umar, A.; Kumar, R.; Ibrahim, A.A.; Kumar, G. Facile synthesis and photocatalytic activity of cocoon-shaped CuO nanostructures. *Mater. Lett.* **2015**, *156*, 138–141. [CrossRef]

168. Kim, Y.H.; Hensley, R. Effective control of chlorination and dechlorination at wastewater treatment plants using redox potential. *Water Environ. Res.* **1997**, *69*, 1008–1014. [CrossRef]

169. Chaudhary, D.; Vigneswaran, S.; Jegatheesan, V.; Ngo, H.H.; Moon, H.; Shim, W.; Kim, S. Granular activated carbon (GAC) adsorption in tertiary wastewater treatment: Experiments and models. *Water Sci. Technol.* **2003**, *47*, 113–120. [CrossRef]

170. Butler, E.; Hung, Y.-T.; Yeh, R.Y.-L.; Al Ahmad, M.S. Electrocoagulation in Wastewater Treatment. *Water* **2011**, *3*, 495–525. [CrossRef]

171. Rana; Padhi, B.S. Pollution due to synthetic dyes toxicity & carcinogenicity studies and remediation. *Int. J. Environ. Sci.* **2012**, *3*, 940–955. [CrossRef]

172. Tamuly, C.; Hazarika, M.; Bordoloi, M. Biosynthesis of Au nanoparticles by *Gymnocladus assamicus* and its catalytic activity. *Mater. Lett.* **2013**, *108*, 276–279. [CrossRef]

173. Yaqoob, A.A.; Parveen, T.; Umar, K.; Mohamad Ibrahim, M.N. Role of nanomaterials in the treatment of wastewater: A review. *Water* **2020**, *12*, 495. [CrossRef]

174. Garg, D.; Sarkar, A.; Chand, P.; Bansal, P.; Gola, D.; Sharma, S.; Khantwal, S.; Surabhi; Mehrotra, R.; Chauhan, N.; et al. Synthesis of silver nanoparticles utilizing various biological systems: Mechanisms and applications—A review. *Prog. Biomater.* **2020**, *9*, 81–95. [CrossRef]

175. Sumi, M.B.; Devadiga, A.; Shetty, K.V.; Saidutta, M.B. Solar photocatalytically active, engineered silver nanoparticle synthesis using aqueous extract of mesocarp of *Cocos nucifera* (*Ehretia laevis*). *Res. J. Recent Sci.* **2012**, *1*, 495. [CrossRef]

176. Cai, X.; Cai, Y.; Liu, Y.; Deng, S.; Wang, Y.; Wang, Y.; Djerdj, I. Photocatalytic degradation properties of Ni(OH)2 nanosheets/ZnO nanorods composites for azo dyes under visible-light irradiation. *Ceram. Int.* **2014**, *40*, 57–65. [CrossRef]

177. Elemike, E.E.; Onwudiwe, D.C.; Ekennia, A.C.; Ehiri, R.C.; Nnaji, N.J. Phytosynthesis of silver nanoparticles using aqueous extracts of *Ehretia laevis* leaves. *Res. J. Recent Sci.* **2012**, *1*, 495. [CrossRef]

178. Mohan, S.; Vishnudevan, M. Rapid Green synthesis of amalgamated silver nanoparticles and its photocatalytic activity of dye degradation. *J. Environ. Nanotechnol.* **2017**, *6*, 28–33. [CrossRef]

179. Saraswathi, V.S.; Santhakumar, K. Green synthesis of silver nanoparticles mediated using *Lagerstroemia speciosa* and photo-catalytic activity against azo dye. *Mech. Mater. Sci. Eng.* **2017**, *9*, hal-01500536.

180. Karthik, R.; Govindasamy, M.; Chen, S.-M.; Cheng, Y.-H.; Mathiyalagan, R.; Anandanpadmanaban, G.; Ahn, J.C.; Park, J.K.; Lu, J.; Yang, D.C. Photocatalytic degradation of industrial dyes using Ag and Au nanoparticles synthesized from *Angelica gigas* ribbed stem extracts. *Optik* **2019**, *185*, 1213–1219. [CrossRef]

181. Thatikayala, D.; Jayaramabu, N.; Banothu, V.; Ballipalli, C.B.; Park, J.; Rao, K.V. Biogenic synthesis of silver nanoparticles mediated by *Theobroma cacao* extract: Enhanced antibacterial and photocatalytic activities. *J. Mater. Sci. Mater. Electron.* **2019**, *30*, 17303–17313. [CrossRef]

182. Arya, G.; Kumari, R.M.; Gupta, N.; Kumar, A.; Chandra, R.; Nimesh, S. Green synthesis of silver nanoparticles using *Prosopis juliflora* bark extract: Reaction optimization, antimicrobial and catalytic activities. *Artif. Cells Nanomed. Biotechnol.* **2018**, *46*, 985–993. [CrossRef]

183. Kathiravan, V. Green synthesis of silver nanoparticles using different volumes of *Trichodesma indicum* leaf extract and their antibacterial and photocatalytic activities. *Res. Chem. Intermed.* **2018**, *44*, 4999–5012. [CrossRef]

184. Chokkalingam, M.; Rupa, E.J.; Huo, Y.; Mathiyalagan, R.; Anandanpadmanaban, G.; Ahn, J.C.; Park, J.K.; Lu, J.; Yang, D.C. Photocatalytic degradation of industrial dyes using Ag and Au nanoparticles synthesized from *Angelica gigas* ribbed stem extracts. *Optik* **2019**, *185*, 1213–1219. [CrossRef]

185. Thatikayala, D.; Jayaramabu, N.; Banothu, V.; Ballipalli, C.B.; Park, J.; Rao, K.V. Biogenic synthesis of silver nanoparticles mediated by *Theobroma cacao* extract: Enhanced antibacterial and photocatalytic activities. *J. Mater. Sci. Mater. Electron.* **2019**, *30*, 17303–17313. [CrossRef]

186. Kannan, D.S.; Mahboob, S.; Al-Ghanim, K.A.; Venkatachalam, P. Antibacterial, antibiofilm and photocatalytic activities of biogenic silver nanoparticles from *Ludwigia octovalvis*. *J. Clust. Sci.* **2020**, *32*, 255–264. [CrossRef]

187. Nyabola, A.O.; Kareriu, P.G.; Madivoli, E.S.; Wanakai, S.I.; Maina, E.G. Formation of silver nanoparticles via *Aspilia pleriseta* extracts their antimicrobial and catalytic activity. *Inorg. Organomet. Polym. Mater.* **2020**, *30*, 3493–3501. [CrossRef]

188. Panja, S.; Choudhuri, I.; Khanra, K.; Pati, B.; Bhattacharyya, N. Biological and photocatalytic activity of silver nanoparticle synthesized from *Ehretia laevis* Roxb. leaves extract. *Nano Biomed. Eng.* **2020**, *12*, 104–113. [CrossRef]