Scar masses from granulation tissue

Asad Khan, Sandro Lanzon-Miler, Kamran Rostami

Department of Gastroenterology, Milton Keynes University Hospital United Kingdom

Question

A 50 years old Male known with a diagnosis of ulcerative colitis since October 2012 (Montreal Class E3) was seen for further follow up in gastroenterology outpatient. He was on Meselazine 2.4 gm per day. The last flare up he had was 2.5 years ago in April 2013 when he was treated successfully with a course of oral steroids. His colitis has been in a stable state with no further flare ups ever since. During his follow-up in Gastroenterology clinic in Sept 2015, he mentioned that he is opening his bowels 4-5/day with a consistency between watery to loose stool that was “normal” for him. He denied having significant bleeding or cramps. He also denied having a family history for colorectal cancer (CRC) or polyps. Physical examination was unremarkable. Blood test revealed a normal CRP of 7, FBC, LFTs and U &E were also normal. Further colonoscopy surveillance were organised for assessment.

What is the diagnosis? What is the prognosis and appropriate management?

Figure 1. Colonoscopy; distal ascending colon. The colonoscopist reported that the ascending abnormalities caused stenosis but just enough open to pass the scope getting through to the Caecum.
Answer

Giant Inflammatory Polyps (GIPs) in IBD.

Discussion

Giant inflammatory polyps are uncommon with a reported prevalence of 4.6% and two thirds of cases being associated with Crohn’s disease (1,2).

Inflammatory polyps are not exclusive to inflammatory bowel disease and can occur in infectious, ischemic colitis, borders of ulcers as well as mucosal anastomosis (3).

It is not exactly clear why these polyps form with some studies showing enhanced de novo synthesis of all types of collagen, in patients with ulcerative colitis, as well as increased expression of collagenases (4,5).

Giant inflammatory polyps are defined as inflammatory polyps more than 1.5cm (1).

Most are asymptomatic although there could be symptoms of underlying IBD. GIPs are known to cause obstruction, protein-losing enteropathy, anaemia and bleeding (6-8). GIPs are generally deemed benign but there have been case reports of dysplasia and malignancy within these polyps (9,10). Despite their benign nature, the presence of inflammatory polyps have been demonstrated to be associated with an increased risk of malignancy (11,12). Based on increased risk for malignant transformation BSG guidelines, for colorectal
cancer screening, recommend escalation of risk category to “intermediate” and performing 3 yearly surveillance colonoscopy rather than every 5 years (13).

Microscopically these show inflammatory infiltrates overlying the muscularis mucosae with deep fissure-like ulcers, features of chronic mucosal inflammation with lymphoid and nerve hyperplasia in the surrounding mucosa (6-8, 14-17).

The pathologist reported inflammatory polyps might show features of crypt distortion, cryptitis, crypt abscesses, loss of muscularis mucosae, submucosal fibrosis, and Paneth cell hyperplasia.

In almost all of the cases, these are not amenable to medical management but some case reports have demonstrated regression of these lesions after medical management (2, 18, 19). BSG guideline states that prophylactic colectomy should be discussed with patient especially if colonoscopist feels that the value of surveillance is compromised (13). Our patient was discussed in lower GI MDT and MDT recommended referral to Oxford team for second opinion.

References

1. Welsch T, Büchler MW, Kienle P. Recalling superior mesenteric artery syndrome. Dig Surg 2007; 24: 149-56.
2. Shiu JR, Chao HC, Luo CC, Lai MW, Kong MS, Chen SY, et al. Clinical and nutritional outcomes in children with idiopathic superior mesenteric artery syndrome. J Pediatr Gastroenterol Nutr 2010; 51: 177-82.
3. Roy A, Gisel JJ, Roy V, Bouras EP. Superior mesenteric artery (Wilkie's) syndrome as a result of cardiac cachexia. J Gen Intern Med 2005; 20: C3-4.
4. Ozkurt H1, Cenker MM, Bas N, Erturk SM, Basak M. Measurement of the distance and angle between the aorta and superior mesenteric artery: normal values in different BMI categories. Surg Radiol Anat 2007; 29: 595-99.
5. Gerasimidis T, George F. Superior Mesenteric Artery Syndrome.Wilkie Syndrome. Dig Surg 2009; 26: 213-14.
6. Agarwal T, Rockall TA, Wright AR, Gould SW. Superior mesenteric artery syndrome in a patient with HIV. J R Soc Med 2003; 96: 350-51.
7. Stümpfle R, Wright AR, Walsh J. Superior mesenteric artery syndrome in an HIV positive patient. Sex Transm Infect 2003; 79: 262-63.
8. Di Lecce F, Paimi PB, Pagliari C, Malchiodi G, D'Errico G, Testa S, et al. Superior mesenteric venous thrombosis. Report of 2 cases and review of the literature. Chir Ital 2003; 55: 77-84.
9. Smith BM, Zyromski NJ, Purtill MA. Superior mesenteric artery syndrome: an underrecognized entity in the trauma population. J Trauma 2008; 64: 827-30.
10. Reckler JM, Bruck HM, Munster AM, Curreri PW, Pruitt BA Jr. Superior mesenteric artery syndrome as a consequence of burn injury. J Trauma 1972; 12: 979-85.
11. Goitein D, Gagné DJ, Papasavas PK, Dallal R, Quebbemann B, Eichinger JK, et al. Superior mesenteric artery syndrome after laparoscopic Roux-en-Y gastric bypass for morbid obesity. Obes Surg 2004; 14: 1008-11.
12. Clapp B, Applebaum B. Superior mesenteric artery syndrome after Roux-en-y gastric bypass. JSLS 2010; 14: 143-46.
13. Baker MT, Lara MD, Kothari SN. Superior mesenteric artery syndrome after laparoscopic Roux-en-Y gastric bypass. Surg Obes Relat Dis 2006; 2: 667.
14. Schroeppep TJ, Chilcote WS, Lara MD, Kothari SN. Superior mesenteric artery syndrome after laparoscopic Roux-en-Y gastric bypass. Surgery 2005; 137: 383-85.
15. Laffont I, Bensmail D, Rech C, Prigent G, Loubert G, Dizien O. Late superior mesenteric artery syndrome in paraplegia: case report and review. Spinal Cord 2002; 40: 88-91.
16. Barnes JB, Lee M. Superior mesenteric artery syndrome in an intravenous drug abuser after rapid weight loss. South Med J 1996; 89: 331-34.
17. Pentlow BD, Dent RG. Acute vascular compression of the duodenum in anorexia nervosa. Br J Surg 1981; 68: 665-66.
18. Gwee K, Teh A, Huang C. Acute superior mesenteric artery syndrome and pancreatitis in anorexia nervosa. Australas Psychiatry 2010; 18: 523-26.
19. Zhu ZZ, Qiu Y. Superior mesenteric artery syndrome following scoliosis surgery: its risk indicators and treatment strategy. World J Gastroenterol 2005; 11: 3307-10.
20. Cho KR, Jo WM. Superior mesenteric artery syndrome after esophagectomy with cervical esophagogastronomy. Ann Thorac Surg 2006; 82: e37-38.

21. Iwaoka Y, Yamada M, Takehira Y, Hanajima K, Nakamura T, Murohisa G, et al. Superior mesenteric artery syndrome in identical twin brothers. Intern Med 2001; 40: 713-15.

22. Cohen LB, Field SP, Sachar DB. The superior mesenteric artery syndrome. The disease that isn’t, or is it? J Clin Gastroenterol 1985; 7: 113-16

23. Neri S, Signorelli SS, Mondati E, Pulvirenti D, Campanile E, Di Pino L, et al. Ultrasound imaging in diagnosis of superior mesenteric artery syndrome. J Intern Med 2005; 257: 346-51.

24. Unal B1, Aktaş A, Kemal G, Bilgili Y, Güliter S, Daphan C, et al. Superior mesenteric artery syndrome: CT and ultrasonography findings. Diagn Interv Radiol 2005; 11: 90-95.

25. Strong EK. Mechanics of arteriomesentric duodenal obstruction and direct surgical attack upon etiology. Ann Surg 1958; 148: 725-30.

26. Wilson-Storey D, MacKinlay GA. The superior mesenteric artery syndrome. J R Coll Surg Edinb 1986; 31: 175-78.

27. Kingham TP, Shen R, Ren C. Laparoscopic treatment of superior mesenteric artery syndrome. JSLS 2004; 8: 376-79.