CAMBRIAN ACYCLIC DOMAINS: COUNTING c-SINGLETONS

JEAN-PHILIPPE LABBÉ1,2 AND CARSTEN E. M. C. LANGE1

Abstract. We study the size of certain acyclic domains that arise from geometric and combinatorial constructions. These acyclic domains consist of all permutations visited by commuting equivalence classes of maximal reduced decompositions if we consider the symmetric group and, more generally, of all \(c\)-singletons of a Cambrian lattice associated to the weak order of a finite Coxeter group. For this reason, we call these sets Cambrian acyclic domains. Extending a closed formula of Galambos–Reiner for a particular acyclic domain called Fishburn’s alternating scheme, we provide explicit formulae for the size of any Cambrian acyclic domain and characterize the Cambrian acyclic domains of minimum or maximum size.

1. Introduction

Examples of \(c\)-singletons include certain acyclic domains in social choice theory, natural partial orders of crossings in pseudoline arrangements as well as certain vertices of particular convex polytopes called permutahedra and associahedra in discrete geometry. We first describe these objects and outline the relationship between these incarnations.

Acyclic domains are of great interest in social choice theory because of their importance for the following voting process: voters choose among a given collection of linear orders on \(m\) candidates and the result of the ballot obeys the order imposed by the majority for each pair of candidates. As already mentioned by the Marquis de Condorcet in 1785 [dC85], not every collection of linear orders yields a transitive order on the candidates in every election. Collections that do guarantee transitivity are called acyclic domains or Condorcet domains. According to Fishburn [Fis02, Introduction], the fundamental problem to determine the maximum cardinality of an acyclic domain for a given number of candidates is one of most fascinating and intractable combinatorial problems in social choice theory. Abello as well as Chameni-Nembua describe different constructions of “large” acyclic sets. They use maximal chains of the weak order on the symmetric group \(\Sigma_m\) [Abe91] and study covering distributive sublattices of the weak order on \(\Sigma_m\) [CN89].

Galambos and Reiner [GR08] prove that maximal acyclic domains constructed by Abello coincide with those of Chameni-Nembua and describe them in terms of higher Bruhat orders. Moreover, they show that acyclic domains obtained from Fishburn’s alternating scheme [Fis97] are a special case of Chameni-Nembua’s construction and prove that the cardinality of Fishburn’s acyclic domain is given by

\[
fb(m) = 2^{m-3}(m + 3) - \begin{cases}
\frac{m-1}{2} \left(\frac{m-1}{2} \right) & \text{for odd } m, \\
\frac{2m-4}{2} \left(\frac{m-2}{2} \right) & \text{for even } m.
\end{cases}
\]

Weakening a conjecture of Fishburn [Fis97, Conjecture 2], Galambos and Reiner conjecture that \(fb(m)\) is a tight upper bound on the cardinality of acyclic sets described in terms of higher Bruhat orders [GR08, Conjecture 1]. We notice that Knuth had a conjecture related to the one of Galambos and Reiner discussing his Equation (9.8) [Knu92, p. 39]. Felsner and Valtr as well as Danilov,
Karzanov and Koshevoy mention counterexamples to these conjectures \cite{KV11,DKS12}. Galambos and Reiner base the formula for fb(m) and their conjecture on counting extensions of a certain pseudoline arrangement by adding a new pseudoline and relate these extensions to elementarily equivalent maximal chains in the weak order on \(\Sigma_m \).

Planar pseudoline arrangements with contact points as well as pseudo- and multitriangulations are systematically studied by Pilaud and Pocchiola using the framework of \textit{networks} \cite{PP12}. Subsequently, Pilaud and Santos construct polytopes from a given network and relate their combinatorics to the combinatorics of triangulations of point configurations \cite{PS12}. For well-chosen networks, they construct associahedra (or Stasheff polytopes) which essentially coincide with a family of realizations obtained from the permutahedron by Hohlweg and Lange \cite{HL07}. This family provides a geometric interpretation of Reading’s Cambrian lattices \cite{Rea06}. Cambrian lattices are remarkable as they generalize the Tamari lattice as lattice quotient of the weak order on \(\Sigma_m \) in two ways. First, distinct lattice quotients are obtained by choosing different Coxeter elements \(c \) and yield distinct realizations of the associahedron from the permutahedron. Second, the construction of distinct lattice quotients extends from the symmetric group \(\Sigma_m \) to the weak order of any finite Coxeter group \(W \). Hohlweg, Lange and Thomas then identify \textit{c-singletons} as fundamental objects of Cambrian lattices and use them to derive distinct topological realizations of generalized associahedra from \(W \)-permutahedra \cite{HLT11}. Generalized associahedra are CW-complexes defined in the context of cluster algebras of finite type \cite{FZ03} that coincide with associahedra in type \(A \). Finally, Pilaud and Stump extend the construction of polytopes from Pilaud and Santos to any finite Coxeter group and, analogous to type \(A \), essentially reobtain realizations of generalized associahedra discovered by Hohlweg, Lange and Thomas \cite{PS15}.

Two interpretations of \textit{c-singletons} described in \cite{HLT11} are fundamental for our work. First, the geometric construction of generalized associahedra from \(W \)-permutahedron exhibits \textit{c-singletons} as the common vertices of both polytopes and, second, \textit{c-singletons} are combinatorially described as prefixes of a certain reduced expression for the longest element \(w_0 \in W \) up to commutations. For Coxeter groups of type \(A \), the latter interpretation translates to higher Bruhat orders: the set of \textit{c-singletons} for a fixed Coxeter element \(c \in \Sigma_m \) is precisely the set of all elements \(w \in \Sigma_m \) visited by the maximal chains contained in a certain equivalence class of elementarily equivalent maximal chains determined by \(c \). Galambos and Reiner showed in type \(A \) that these elements coincide with certain maximal acyclic domains and for this reason we define a Cambrian acyclic domain as the set of \textit{c-singletons} for a given Coxeter element \(c \) of a finite Coxeter group \(W \). The main results of this article are

- Theorem 5.31 that provides a combinatorial description for the cardinality of a Cambrian acyclic domain for any finite Coxeter system \((W, S)\) and any Coxeter element \(c \).
- Theorem 5.77 that characterizes the possible choices of \(c \) to minimize and maximize the cardinality of an Cambrian acyclic domain for any finite Coxeter system \((W, S)\).

These results solve Problem 3.1 of \cite[Chapter 8]{MHP12}. Even though we mentioned above that the conjecture of Galambos and Reiner is not true in general, Theorem 5.77 proves that the conjecture holds if it is restricted to the large subclass of acyclic domains: Fishburn’s alternating scheme yields the maximum cardinality for Cambrian acyclic domains of type \(A \).

The article is organized as follows. In Section 2 we discuss the results in type \(A \). Sections 2.1, 2.3 provide a unified description of Cambrian acyclic domains as geometric entities in terms of vertices of convex polytopes, as pseudoline arrangements, and as certain order ideals for type \(A \). Moreover, we derive formulae for the cardinality of Cambrian acyclic domains and give a new proof of Equation (11) using hypergeometric series in Section 2.4. Section 3 generalizes the discussion from type \(A \) to other finite types. We introduce and discuss relevant notions in Sections 3.1, 3.5 before proving Theorem 5.31 in Section 3.6. More precisely, a poset called \textit{natural partial order} by Galambos and Reiner \cite{GR08} as well as \textit{heap} by Viennot \cite{Vie86} and Stembridge \cite{Ste96} is introduced in Section 3.1. In Section 3.2 we introduce \textit{c-singletons} of a finite Coxeter system \((W, S)\) and show that the weak order on \textit{c-singletons} is isomorphic to the lattice of order ideals of a well-chosen natural partial order. In Section 3.3 Hasse diagrams of natural partial orders are
embedded in a cylindrical oriented graph that we call 2-cover. The 2-cover replaces the network used in type A as framework to count c-singletons in arbitrary type. The extension of a pseudoline arrangements considered by Galambos and Reiner in type A is replaced by cut paths introduced in Section 3.3. It turns out that the total number of cut paths in the 2-cover exceeds the size S_c of Cambrian domains and the difference can be expressed in terms of “crossing” cut paths discussed in Section 3.3. In Section 4 we illustrate Theorem 3.3.1 we explicitly compute the cardinality of Cambrian acyclic domains for various finite types and different choices of Coxeter elements. In Section 5 we finally derive lower and upper bounds for the cardinality of Cambrian acyclic domains. The examples discussed in Section 4 cover all possibilities to minimize and maximize the size S_c of Cambrian domains.

We assume familiarity with basic notions of convex polytopes and of Coxeter group theory and refer to Zhang as well as Hummel for details.

2. Associahedra, pseudoline arrangements and c-singletons in type A

2.1. Associahedra and c-singletons. An associahedron is a simple convex polytope of a particular combinatorial type. The underlying combinatorial structure relates to various branches of mathematics as mentioned in Tamvakis, MHPS, or Stanley. We follow Lee and consider tricircular combinatorial type. The underlying combinatorial structure relates to various branches of a labeled ($[Hai84, BFS90, GKZ94, HL07, Dev09, PS12]$), we focus on a family of realizations described by Loday who gave a combinatorial interpretation of the vertex coordinates of $Hyperplane arrangements$ and $Associahedra$ and the labelings of P using the integers 0 to n referring to Zhang as well as Hummel for details.

In Section 5, we finally derive lower and upper bounds for the cardinality of Cambrian acyclic domains for various finite types and different choices of Coxeter elements.

Moreover, the set of labeled $(n+3)$-gons P_c is in bijection with orientations of Coxeter graphs of type A and all Coxeter elements c of Σ_{n+1}. This bijection is crucial to extend the construction of associahedra to generalized associahedra for arbitrary finite Coxeter groups.

![Figure 1. Two examples of labeled heptagons P_c.](image)
Any proper diagonal δ of P_c yields a facet-defining inequality H^δ_\geq for Asso_c as follows. Let B_3 be the label set of vertices of P_c which lie strictly below the line supporting δ and include the endpoints of δ which are in U_c and set $H^\delta_\geq := \{ x \in \mathbb{R}^{n+1} \mid \sum_{i \in B_3} x_i \geq \left(\frac{n+1}{|B_3|}\right) \}.$

Theorem 2.1 ([HL07] Proposition 1.3, [LP18] Corollary 7). For every labeled $(n + 3)$-gon P_c, the polytope

$$\text{Asso}_c = \left\{ x \in \mathbb{R}^{n+1} \mid \sum_{i \in [n+1]} x_i = \frac{(n+1)(n+2)}{2} \text{ and } x \in H^\delta_\geq \text{ for any proper diagonal } \delta \text{ of } P_c \right\}$$

is a particular realization of an n-dimensional associahedron.

Each associahedron Asso_c is an instance of a generalized permutahedron, introduced by Postnikov, as it is obtained from the classical permutahedron

$$\text{Perm}_n = \text{conv} \left\{ (\pi(1), \ldots, \pi(n+1))^T \in \mathbb{R}^{n+1} \mid \pi \in \Sigma_{n+1} \right\}$$

$$= \left\{ x \in \mathbb{R}^{n+1} \mid \sum_{i \in [n+1]} x_i = \frac{(n+1)(n+2)}{2} \text{ and } \sum_{i \in I} x_i \geq \left(\frac{n+1}{|I|}\right) \text{ for any nonempty } I \subset [n+1] \right\}$$

by discarding some facet-defining inequalities [PRW08] [Pos09]. Following [HLT11] Section 2.3, a c-singleton is a common vertex of Perm_n and of Asso_c.

![Figure 2](image-url)

Figure 2. The permutahedron Perm_4 and the associahedra Asso_{alt} and Asso_{Lod}. Red vertices of the associahedra indicate c-singletons and maximal paths from $(1, 2, 3, 4)^T$ to $(4, 3, 2, 1)^T$ along red zig-zag edges of associahedra correspond to elementarily equivalent maximal chains in the weak order.

From Figure 2, where the 3-dimensional polytopes Perm_4, Asso_{Lod} and Asso_{alt} are shown, it is immediate that the number of c-singletons as well as the number of paths from $(1, 2, 3, 4)^T$ to $(4, 3, 2, 1)^T$ in the 1-skeleton of Asso_c visiting only c-singletons depends on c. For later use, we remark that the realization of Asso_c is completely determined by $U_c \cap \{2, 3, \ldots, n+1\}$ and assume without loss of generality

$$D_c = \{d_1 = 1 < d_2 < \cdots < d_k\} \quad \text{and} \quad U_c = \{u_1 < u_2 < \cdots < u_k\}.$$

2.2. Pseudoline arrangements and c-singletons.

Using the duality of points and lines in the Euclidean plane, we now describe Asso_c and c-singletons in terms of pseudoline arrangements, see [PPT12] and [PS12] for details. We visualize pseudoline arrangements on an alternating and sorting network \mathcal{N}_c that encodes the combinatorics of the point configuration of P_c: \mathcal{N}_c consists of $n + 3$ horizontal lines and $(\binom{n+3}{2})$ commutators which are vertical line segments connecting consecutive horizontal lines in an alternating way. A commutator is at level i if it connects the horizontal lines i and $i + 1$ of \mathcal{N}_c (counted from bottom to top starting with 0). Additionally, we label the ends of horizontal lines at the left end of \mathcal{N}_c from 0 to $n + 2$ bottom to top and from 0
to \(n + 2 \) top to bottom at the right end. Figure 3 illustrates these notions for \(\mathcal{N}_{\text{Lod}} \) and \(\mathcal{N}_{\text{alt}} \) which correspond to \(P_{\text{Lod}} \) and \(P_{\text{alt}} \) of Figure 1.

![Figure 3](image)

Figure 3. Two networks for pseudoline arrangements with labeled commutators: \(\mathcal{N}_{\text{Lod}} \) (left) and \(\mathcal{N}_{\text{alt}} \) (right) correspond to the labeled heptagons of Figure 1.

The 1-kernels \(\mathcal{K}_{\text{Lod}} \) and \(\mathcal{K}_{\text{alt}} \) are obtained by deletion of the dotted line segments.

Now, pseudoline \(i \) (supported by \(\mathcal{N}_c \)) is an abscissa monotone path on \(\mathcal{N}_c \) starting on the left at label \(i \) and ending right at label \(i \) and a pseudoline arrangement on \(\mathcal{N}_c \) is a collection of pseudolines such that any pair intersects precisely along one commutator called crossing. A commutator that is touched by two pseudolines and traversed by none is called contact. There is a unique pseudoline arrangement with \(n + 3 \) pseudolines on \(\mathcal{N}_c \) which induces a labeling of all commutators by the two unique pseudolines that traverse along it, see Figure 3. The reader may prove the following facts:

i) labeled commutators of \(\mathcal{N}_c \) at levels 0 and \(n + 1 \) are in bijection to boundary diagonals of \(P_c \).

ii) \(\mathcal{N}_c \) is determined by \(\mathcal{N}_{\text{Lod}} \) and \(\pi_c \). The inversions of \(\pi_c \) label commutators in the bottom right of \(\mathcal{N}_{\text{Lod}} \) which can be moved to the upper left part if we temporarily consider \(\mathcal{N}_{\text{Lod}} \) as Möbius strip by identifying its sides. Relabeling the commutators by \(\pi_c \) yields \(\mathcal{N}_c \).

The 1-kernel \(\mathcal{K}_c \) of the network \(\mathcal{N}_c \) is the network obtained from \(\mathcal{N}_c \) by deletion of the horizontal lines 0 and \(n + 2 \) as well as all commutators touching these lines. On \(\mathcal{K}_c \), we use notions induced by \(\mathcal{N}_c \), for example, the level of a commutator or its label are inherited from \(\mathcal{N}_c \). Triangulations of \(P_c \) are now in bijection to pseudoline arrangements with \(n + 1 \) pseudolines supported by \(\mathcal{K}_c \): diagonals of a triangulation correspond to the contacts of a unique pseudoline arrangement on \(\mathcal{K}_c \) ([PP12 Theorem 23]). The simple fact that a commutator labeled by the endpoints of a proper diagonal \(\delta \) of \(P_c \) is at level \(|B_\delta| \) extends [HL07 Proposition 1.4] and [LP18 Proposition 20] by statement iii) below:

Proposition 2.2. Let \(\nu \) be a vertex of \(\text{Asso}_c \) with corresponding triangulation \(T_c \) of \(P_c \) and let \(C_c \) be the set of commutators of \(\mathcal{N}_c \) labeled by proper diagonals of \(T_c \). The following statements are equivalent:

i) \(\nu \) is a vertex of \(\text{Perm}_n \).

ii) The proper diagonals \(\delta_i \) of \(T_c \) can be ordered such that \(\emptyset \subset B_{\delta_1} \subset \ldots \subset B_{\delta_n} \subset [n + 1] \).

iii) \(C_c \) contains one commutator from each level of \(\mathcal{K}_c \) and commutators from consecutive levels are adjacent.

Proposition 2.2 shows that a \(c \)-singleton for \(\text{Asso}_c \) corresponds to a path which traverses the 1-kernel \(\mathcal{K}_c \) from bottom to top and ascents whenever possible. We call such a path a greedy ordinate monotone path on \(\mathcal{K}_c \). In the theory of pseudoline arrangements, a greedy ordinate monotone path is known as a pseudoline from the south pole to the north pole which extends the original arrangement by a new pseudoline.

2.3. **Order ideals and \(c \)-singletons.** It is possible to give another description of \(c \)-singletons that uses neighbouring transpositions \(s_i = (i \ i + 1) \) for \(1 \leq i \leq n \), if we combine Proposition 2.2 with [HLT11 Theorem 2.2]: a permutation \(\pi \in \Sigma_{n+1} \) is a \(c \)-singleton of \(\text{Asso}_c \) if and only if there is a reduced word for \(\pi \) in \(s_1, \ldots, s_n \) that is a prefix up to commutation of a particular reduced
expression \(w_c^\circ \) of the reverse permutation \(w_c = [n + 1, n, \ldots, 1] \) (given here in one-line notation). Although this point of view will be used in Section 5 to define \(c \)-singletons for arbitrary irreducible finite Coxeter systems \((W, S)\), we directly describe prefixes up to commutations of \(w_c^\circ \) in type \(A \) using order ideals of a poset \((S, \prec_c)\) associated to \(K_c \).

Let \(S \) be the set that contains one copy of the transposition \(s_i \) for each bounded region of \(K_c \) at level \(i \) and distinguish copies of the same transposition by their associated region. Define the partial order \(\prec_c \) on \(S \) as the transitive closure of the covering relation \(s_i \rightarrow s_j \) that satisfies

i) \(|i - j| = 1\);

ii) the bounded regions associated to \(s_i \) and \(s_j \) intersect in a (nonempty) horizontal line segment;

iii) the commutator bounding the region of \(s_i \) to the left is left of the region associated to \(s_j \).

Two Hasse diagrams for \((S, \prec_c)\) associated to \(K_{alt} \) are illustrated in Figure 4. Each greedy ordinate monotone path \(p \) in \(K_c \) is a cut of the Hasse diagram \((S, \prec_c)\) that partitions the vertex set \(S \) of this oriented graph in two sets and the set \(S_p \subseteq S \) below \(p \) is an order ideal of \((S, \prec_c)\). Therefore \(S_p \) corresponds to a \(c \)-singleton.

\[
\begin{array}{c}
\text{(S, } \prec_{alt} \text{) associated to } K_{alt} \text{ for } n = 4 \\
\text{(S, } \prec_{alt} \text{) associated to } K_{alt} \text{ for } n = 5
\end{array}
\]

Figure 4. The Hasse diagram of \((S, \prec_{alt})\). An ordinate monotone path \(p \) (dashed red line) determines an order ideal \(S_p \) of \((S, \prec_{alt})\) (shaded region).

We briefly indicate the relation to the work of Galambos and Reiner as well as Manin and Schechtmann. For a given Coxeter element \(c \), each \(c \)-singleton \(w \) determines a unique greedy ordinate monotone path \(p_w \) in the 1-kernel \(K_c \) as well as a unique pseudoline arrangement \(A_w \) supported by \(K_c \) (where contacts are the commutators traversed by \(p_w \)). The arrangements \(A_w \) differ only by their embedding in \(K_c \). They describe a unique pseudoline arrangement \(A_c \) that depends only on \(c \). Galambos and Reiner consider the “natural partial order” \(\mathcal{P}_A \) on the crossings of \(A_c \), which coincides with \((S, \prec_c)\) described above. Moreover, they show that the order ideals of \(\mathcal{P}_A \) encode an equivalence class of elementarily equivalent maximal chains in the weak order on \(\Sigma_{n+1} \) as defined by Manin and Schechtmann [MS89]. Hence the set of \(c \)-singletons for a given Coxeter element \(c \) corresponds to an equivalence class of elementarily equivalent admissible permutations of \(\binom{n+1}{2} \) also studied by Ziegler [Zie93].

2.4 Counting \(c \)-singletons

We first derive a general formula for the number \(S_c \) of \(c \)-singletons by enumeration of greedy ordinate monotone paths of \(K_c \) with \(n + 1 \) horizontal lines. To this respect, we define the *trapeze network* \(T_c \) associated to \(K_c \) as the maximal sorting network with \(n + 1 \) horizontal lines with the following properties:

i) \(T_c \) contains \(K_c \),

ii) \(T_c \) is alternating,

iii) every commutator of \(T_c \) is included in a greedy ordinate monotone path in \(T_c \) that contains a commutator of \(K_c \) at level \(n \).

A commutator in \(T_c \) which is not in \(K_c \) is called a *trapeze commutator*. If \(K_c = K_{Lod} \) then \(T_{Lod} = K_{Lod} \), so \(T_{Lod} \) contains no trapeze commutators. When \(K_c = K_{alt} \), the trapeze network \(T_{alt} \) contains 8 trapeze commutators for \(n = 4 \) and contains 10 trapeze commutators for \(n = 5 \), see Figure 5.
Clearly, any greedy ordinate monotone path in \(T \) is either a greedy ordinate monotone path that traverses only commutators of \(K_c \) or a greedy ordinate monotone path in \(T \) that traverses at least one trapeze commutator. As there are \(|U_c| + 2 \) commutators of \(K_c \) at level \(n \) and since there are \(2^{n-1} \) distinct ordinate monotone paths in \(T \) that end at each commutator at level \(n \), we conclude that the number of greedy ordinate monotone paths in \(T \) equals \((|U_c| + 2)2^{n-1}\). It remains to count the ordinate monotone paths that traverse at least one trapeze commutator. Clearly, these paths are naturally partitioned by the last trapeze commutator traversed. Let \(\Theta_c \) denote the set of trapeze commutators that appear as last trapeze commutator of some greedy ordinate monotone path in \(T \) and let \(\gamma_t \) denote the number of ordinate monotone paths in \(T \) that stay in \(K_c \) after traversing \(t \in \Theta_c \) at level \(\ell_t \). Then there are \(\gamma_t2^{\ell_t-1} \) greedy ordinate monotone paths in \(T \) with \(t \in \Theta_c \) as last trapeze commutator. We conclude

\[
S_c = (|U_c| + 2)2^{n-1} - \sum_{t \in \Theta_c} \gamma_t2^{\ell_t-1}.
\]

A trivial consequence is \(S_Lod = 2^n \) as \(\Theta_Lod = U_Lod = \emptyset \) and \(D_Lod = [n + 1] \).

For a less trivial example, we prove \(S_{alt} = \#(n + 1) \). Assume first that \(n = 2k \). Then

\[
|U_{alt}| = \frac{n}{2} \quad \text{and} \quad (|U_{alt}| + 2)2^{n-1} = (n + 4)2^{n-2}.
\]

For \(0 \leq r \leq k-1 \) there are exactly two distinct commutators in \(\Theta_{alt} \) at odd level \(\ell_t = 2r + 1 \) and no commutator at even level \(\ell_t = 2r + 2 \), see Figure 5. For \(t \in \Theta_{alt} \) to the left of \(K_{alt} \) with \(\ell_t = 2r + 1 \), any greedy ordinate monotone path \(p \) with last trapeze commutator \(t \) contains a greedy ordinate monotone path \(\tilde{p} \) from \(t \) to a commutator of \(K_{alt} \) at level \(n \) that uses only commutators in \(K_{alt} \).

The path \(\tilde{p} \) traverses \(n - \ell_t \) commutators, where the first one is determined since \(\tilde{p} \) must take an “east” step after \(t \). Moreover, at any position \(\tilde{p} \) must have taken strictly more “east” steps than “west” steps. The number of such paths \(\tilde{p} \) is \(\binom{2(k-r-1)}{k-r-1} \), see [NZ12, Corollary 6] for details.

A similar argument applies if \(t \in \Theta_{alt} \) with \(\ell_t = 2r + 1 \) is located to the right of \(K_{alt} \), so

\[
\gamma_t = \binom{2(k-r-1)}{k-r-1} = \binom{(n-\ell_t)-1}{(n-\ell_t)-1/2}
\]

for all \(t \in \Theta_{alt} \) relates to the sequence of central binomial coefficients \(A000984 \) of [NJAST17]. Setting \(p := k - r - 1 \) and using Gosper’s algorithm to obtain a closed form for the hypergeometric sum [PWZ99, Chapter 5], we conclude

\[
\sum_{t \in \Theta_{alt}} \gamma_t2^{\ell_t-1} = 2 \sum_{r=0}^{k-1} \binom{2(k-r-1)}{k-r-1} 2^{2r} = 2^{n-1} \sum_{p=0}^{2p} \left(\binom{2p}{p} \right) 2^{-2p} = k^{2k} = n \binom{n}{2}.
\]

If we now assume \(n = 2k - 1 \) then

\[
|U_{alt}| = \frac{n - 1}{2} \quad \text{and} \quad (|U_{alt}| + 2)2^{n-1} = (n + 3)2^{n-2}.
\]

For \(0 \leq r \leq k - 2 \) there is precisely one commutator in \(\Theta_{alt} \) at even level \(\ell_t = 2r + 2 \). Since \(n - \ell_t \) is odd, we get

\[
\gamma_t = \binom{n-\ell_t-1}{n-\ell_t-1/2} = \binom{2(k-r-2)}{k-r-2}.
\]

Further there is precisely one commutator in \(\Theta_{alt} \) at odd level \(\ell_t = 2r + 1 \), a similar argument yields

\[
\gamma_t = \binom{n-\ell_t-1}{n-\ell_t-1/2} = \binom{2(k-r-2)+1}{k-r-2+1}.
\]

Thus

\[
\gamma_t = \binom{n-\ell_t-1}{n-\ell_t-1/2} \quad \text{relates}
\]
to sequence A001405 of [MAS17]. Setting \(p := k - r - 2 \) and again using Gosper’s algorithm we conclude
\[
\sum_{\ell \in \Theta_{n+1}} \eta_\ell 2^{\ell-1} = 2^{n-3} \sum_{p=0}^{k-2} \frac{(4p + 3)}{p + 1} \left(\frac{2p}{p} \right)^{2-2p} = -2^{n-2} + \frac{2n - 1}{2} \left(\frac{n-1}{n-2} \right).
\]
We now set \(n = m - 1 \) and this proves the claim \(S_{alt} = fb(n+1) \). This provides a new proof of Formula (I).

3. Enumeration of \(c \)-singletons – General Case

In order to provide formulae to enumerate singletons in the general case of arbitrary finite Coxeter systems, we first generalize the poset \((S, \preceq_c)\) to general type, and present a planar embedding of its Hasse diagram in Section 3.1. In Section 3.2, we describe two equivalence relations on words and class representatives indexed by Coxeter elements. In Section 3.3, we present a graph called the 2-cover that we embed on a cylinder. In Section 3.4, we count cut paths in this embedding and provide a correspondence to Coxeter elements. In Section 3.5, we define when two cut paths are crossing. Finally, in Section 3.6, starting with a Coxeter element \(c \), we obtain a formula for the cardinality \(S_\Gamma \) of a Cambrian acyclic domain by counting certain cut path that do not cross the cut path corresponding to \(c \).

Consider an irreducible finite Coxeter system \((W, S)\) of rank \(n \) with generators \(s_1, \ldots, s_n \) and length function \(\ell \). A Coxeter element \(c \in W \) is the product of \(n \) distinct generators of \(S \) in some order and \(\text{Cos}(W, S) \) is the set of all Coxeter elements of \((W, S)\). The Coxeter number \(h \) is the smallest positive integer such that \(c^h = 1 \) is the identity of \(W \) and is independent of the choice of \(c \). As proposed by Shi [Shi97], we identify Coxeter elements \(c \in W \) to orientations \(\Gamma \) of the Coxeter graph \(\Gamma \) associated to \(W \): an edge \(\{s, t\} \) of \(\Gamma \) is directed from \(s \) to \(t \) if and only if \(s, t \in S \) do not commute and \(s \) comes before \(t \) in (any reduced expression of) \(c \). A word \(w \) in \(S \) is a concatenation \(s_1 \ldots s_k \) for some nonnegative integer \(k \) and \(s_i \in S \) a subword of \(w = s_1 \ldots s_k \) is a word \(s_{i_1} \ldots s_{i_r} \) with \(1 \leq i_1 < \ldots < i_r \leq k \) and the support \(\text{supp}(w) \) of \(w \) is the set of generators that appear in \(w \). Of particular interest is the unique element \(w_o \in W \) of maximum length \(\ell(w_o) = N := \frac{h}{2} \) which is called longest element. A reduced expression \(w_o = s_1 \ldots s_N \) is called longest word.

3.1. Natural partial order. A Coxeter triple \((W, S, w)\) is an irreducible finite Coxeter system \((W, S)\) together with a word \(w \) in \(S \) such that \(\text{supp}(w) = S \). Any Coxeter triple \((W, S, w)\) induces a unique reduced expression \(c_w \) of a Coxeter element \(c_w \) where the elements of \(S \) appear according to their first appearance in \(w \). In particular, \(w \) induces a canonical orientation on \(\Gamma \). We first define the natural partial order \(\preceq_w \) on \(L_w \) as follows: \(\sigma_r \preceq_w \sigma_s \) if and only if there is a subword \(\sigma_{i_1} \ldots \sigma_{i_k} \) of \(w \) such that \(\sigma_{i_1} = \sigma_r, \sigma_{i_k} = \sigma_s \) and the elements \(g(\sigma_{i_j}) \) and \(g(\sigma_{i_{j+1}}) \) do not commute for all \(1 \leq j \leq k - 1 \). The Hasse diagram of \((L_w, \preceq_w)\) is an oriented graph denoted by \(G_w \).

Definition 3.1 (Natural partial order). The natural partial order \(\preceq_w \) on \(L_w \) is defined for any Coxeter triple \((W, S, w)\) as follows: \(\sigma_r \preceq_w \sigma_s \) if and only if there is a subword \(\sigma_{i_1} \ldots \sigma_{i_k} \) of \(w \) such that \(\sigma_{i_1} = \sigma_r, \sigma_{i_k} = \sigma_s \) and the elements \(g(\sigma_{i_j}) \) and \(g(\sigma_{i_{j+1}}) \) do not commute for all \(1 \leq j \leq k - 1 \). The Hasse diagram of \((L_w, \preceq_w)\) is an oriented graph denoted by \(G_w \).

Example 3.2. Let \((\Sigma_5, S, w)\) be the Coxeter triple with generators \(s_i = (i ~ i + 1) \) and
\[
w := s_3s_2s_1s_2s_3s_4s_2s_3s_1s_2s_3s_4s_2s_3s_4.
\]
The induced reduced word for the Coxeter element \(c_w \) is \(c_w = s_3s_2s_1s_4 \) and we have \(|L_w| = 20\). Moreover, \((L_w, \preceq_w)\) consists of the following 21 covering relations:
\[
\begin{align*}
\sigma_1 & \prec_w \sigma_2, \quad \sigma_2 \prec_w \sigma_3, \quad \sigma_3 \prec_w \sigma_4, \quad \sigma_4 \prec_w \sigma_5, \quad \sigma_5 \prec_w \sigma_6, \quad \sigma_6 \prec_w \sigma_7, \\
\sigma_7 & \prec_w \sigma_8, \quad \sigma_8 \prec_w \sigma_9, \quad \sigma_9 \prec_w \sigma_{10}, \quad \sigma_{10} \prec_w \sigma_{11}, \quad \sigma_{11} \prec_w \sigma_{12}, \quad \sigma_{12} \prec_w \sigma_{13}, \quad \sigma_{13} \prec_w \sigma_{14}, \\
\sigma_{14} & \prec_w \sigma_{15}, \quad \sigma_{15} \prec_w \sigma_{16}, \quad \sigma_{16} \prec_w \sigma_{17}, \quad \sigma_{17} \prec_w \sigma_{18}, \quad \sigma_{18} \prec_w \sigma_{19}, \quad \sigma_{19} \prec_w \sigma_{20}.
\end{align*}
\]
Example 3.3. Let \((W, S, w_1)\) and \((W, S, w_2)\) be Coxeter triples such that \(w_1 \neq w_2\), but \(w_1\) is obtained from \(w_2\) by a sequence of braid relations of length 2 (and no deletions). Then \(w_1 \neq w_2\) and \(\langle w_1 \rangle \neq \langle w_2 \rangle\) are reduced expressions for the same Coxeter element \(c \in W\) and the posets \((\mathcal{L}_{w_1}, \prec_{w_1})\) and \((\mathcal{L}_{w_2}, \prec_{w_2})\) are isomorphic.

The next result gives a crossing-free straight-line planar embedding of the Hasse diagram \(G_w\) for \((W, S, w)\).

Proposition 3.4. Let \(k\) be a positive integer and \((W, S, c)\) be a Coxeter triple where \(c\) is a reduced expression for \(c \in \text{Cox}(W, S)\). The graph \(G_w\) is connected, planar, and has a crossing-free straight-line planar embedding using integer vertex coordinates such that the \(x\)-coordinate is strictly increasing in direction of every oriented edge.

Proof. If \(k = 1\) then \(G_w\) is isomorphic (as oriented graph) to the Coxeter graph \(\Gamma\) oriented according to \(c\). By the classification of finite Coxeter groups, \(\Gamma\) is a tree which is connected and planar. Now label the vertices of \(\Gamma\) such that \(s_1, \ldots, s_p\) are successive vertices of \(\Gamma\) along a path of maximum length. We have \(p = n - 1\) if \((W, S)\) is of type \(D_n, E_6, E_7\) or \(E_8\) and \(p = n\) otherwise. If \(p = n - 1\) we label the path such that the remaining vertex \(s_n\) is connected to \(s_r\) where \(r = n - 2\) (type \(D_n\)) or \(r = n - 3\) (otherwise). To obtain the claimed drawing, locate \(s_1\) at \((0,0)\) and determine coordinates \((x_j, y_j)\) for \(s_j\) with \(j \leq p\) inductively from \((x_{j-1}, y_{j-1})\) for \(s_{j-1}\) via \(x_j := x_{j-1} + 1\) and \(y_j := y_{j-1} + 1\) where the sign depends on the orientation of \\{\(s_{j-1}, s_j\)\}. If \(p = n - 1\) then coordinates for the remaining point \(s_n\) are \(x_n := x_r + 1\) and \(y_n := y_r\).

We now inductively construct a planar drawing of \(G_{c^{k+1}}\) from a drawing of \(G_{c^k}\). Observe that

1) \(\mathcal{L}_{c^k}\) and \(\mathcal{L}_{c_{k+1}}\) differ by a copy of \(S\). Denote the vertices of \(\mathcal{L}_{c_{k+1}} \setminus \mathcal{L}_{c^k}\) by \(s_i^{k+1}\) for \(1 \leq i \leq n\).

2) The new covering relations of \(\langle \mathcal{L}_{c_{k+1}}, \prec_{c^{k+1}}\rangle\) are of two types:

- \(s_i^{k+1} \prec s_i^{k+1} s_j^{k+1}\) if and only if \(s_{i'} \rightarrow s_j\) in \(\Gamma\);
- \(s_i^{k+1} \prec s_i^{k+1} s_j^{k}\) if and only if \(s_{i'} \rightarrow s_j\) in \(\Gamma\).

Now set \(x_j^{k+1} := x_j + 2\) and \(y_j^{k+1} := y_j + 1\) to obtain valid coordinates for \(s_j^{k+1}\) and include oriented edges according to the covering relation of \(\prec_{c^{k+1}}\).

Definition 3.5 (Tiles and their boundary). Let \((W, S, w)\) be a Coxeter triple. An (open) tile of \(G_w\) is a bounded connected component of \(R^2 \setminus G_w\). The boundary of the closure of \(T\) is denoted by \(\partial T\).

To simplify notation, the closure of a tile \(T\) is also denoted by \(T\).

Corollary 3.6. Let \(T\) be a tile of \(G_{c^k}\) for a Coxeter triple \((W, S, c^k)\). The boundary \(\partial T\) defines an induced subgraph of \(G_{c^k}\) with four vertices; one vertex is a source of out-degree 2 and one vertex is a sink of in-degree 2. In particular, the source and sink of this subgraph are letters of \(c^k\) of consecutive copies of \(c\) that represent the same generator of \(S\).

3.2. Equivalence classes and c-sorting words. As in \([\text{Ste}06]\), we now define the equivalence relations \(\approx\) and \(\sim\) on words in \(S\) as well as representatives for the equivalence classes \([w]_{\approx}\) and \([w]_{\sim}\) that are determined by a reduced expression \(c\) in \(\text{Cox}(W, S)\).

First, we write \(u \approx v\) if and only if \(u, v\) are reduced words that represent the same element \(w \in W\). The equivalence class \([w]_{\approx}\) depends only on \(w\), so we often write \([w]_{\approx}\) instead of \([w]_{\approx}\). Following Reading \([\text{Rea}07]\), we define the c-sorting word \(w^c\) of \(w\) as the lexicographically first subword of the infinite word \(c^\infty = ccc\ldots\) (as a sequence of positions) which belongs to \([w]_{\sim}\).

Second, \(u \sim v\) if and only if \(u, v\) are words that coincide up to commutations, that is, one is obtained from the other by a sequence of braid relations of length 2 (and no deletions). The c-sorting word \(w^c\) of \(w\) is defined as the element of \([w]_{\sim}\) that appears first lexicographically as a subword of the infinite word \(c^\infty = ccc\ldots\) (as a sequence of positions).

Due to the similar definition, \(w^c\) and \(w^c\) are both called c-sorting word. We emphasize that \(w^c\) represents \([w]_{\approx}\) while \(w^c\) represents \([w]_{\sim}\) and, by definition, \(\ell(u) = \ell(v)\) if \(u \sim v\) but \(u\) and \(v\) are not necessarily reduced. Although the definition of \(w^c\) depends on a reduced expression \(c\) for \(c\), we have \(w^{c_1} \sim w^{c_2}\) if \(c_1 \sim c_2\).
Example 3.7. The words \(u = s_1 s_2 s_1 \) and \(v = s_2 s_1 s_2 \) are reduced words for the longest element \(w_0 \in \Sigma_3 \) of the Coxeter system \((\Sigma_3, S)\) with generators \(s_i = (i \; i + 1) \) for \(i \in \{1, 2\} \). Thus \(u \approx v \). As both words do not coincide up to commutations, we have \(u \not= v \). More precisely, we have
\[
\begin{align*}
w_0^c &= s_1 s_2 | s_1, \quad u^c = s_1 s_2 | s_1, \quad \text{and} \quad v^c = s_2 | s_1 s_2,
\end{align*}
\]
if \(c = s_1 s_2 \) and
\[
\begin{align*}
w_0^c &= s_2 s_1 | s_2, \quad u^c = s_1 | s_2 s_1, \quad \text{and} \quad v^c = s_2 s_1 | s_2,
\end{align*}
\]
if \(c = s_2 s_1 \). We write \(| \) to distinguish between copies of \(c \) in \(c^\infty \).

Example 3.8 (Example 3.2 continued).
The \(c_w \)-sorting word of \(w \) is \(w^{c_w} = s_3 s_2 s_1 | s_2 | s_1 s_2 s_1 | s_2 | s_3 s_2 s_1 | s_3 s_2 s_1 | s_3 s_2 s_1 | s_1 s_2 | s_3 s_4 \).

Lemma 3.9. Let \((W, S, w)\) be a Coxeter triple. The oriented graph \(G_w \) is an induced oriented subgraph of \(\tilde{G}_{c_w} \) for some positive integer \(m \).

Proof. Let \(\bar{w} \) be the subword of \(c_w c_w c_w \ldots \) that is lexicographically first (as a sequence of positions) among all subword of \(c_w c_w c_w \ldots \) that coincide with \(w \) up to commutations and let \(m \) be the minimum integer such that \(\bar{w} \) is a subword of \(c_w^m = (c_w)^m \). Then \((L_w, \prec_w)\) and \((L_w, \prec_w)\) are isomorphic, so their Hasse diagrams coincide and \(G_w \) is an induced subgraph of \(\tilde{G}_{c_w} \).

We often write \(G_w \) for the graph \(G_w \) embedded according to Lemma 3.9.

Example 3.10 (Example 3.2 continued).
As \(w \) is a subword of \(c_w^m \), we obtain a planar drawing of \(G_w \) induced from the planar drawing of \(G_{c_w} \) as shown in Figure 6.

Figure 6. The crossing-free straight-line embedding of \(G_{c_w}^\infty \) described in Proposition 3.34 together with \(G_w \) as subgraph according to Lemma 3.9.

Remark 3.11.

a) If \(u \sim v \) then \((L_u, \prec_u)\) and \((L_v, \prec_v)\) are isomorphic posets and \(G_u \) and \(G_v \) are isomorphic directed graphs.
b) Let \((W, S, c)\) be a Coxeter triple of type \(A \) and \(w \in [w_c^m] \) . Then \((L_w, \prec_w)\) is isomorphic to \((S, \prec_c)\) described in Section 2.3.
c) The graph \(G_{w_c^k} \) is isomorphic to the Auslander–Reiten quiver associated to \(c \in \text{Cox}(W, S) \) and \(G_{c_k} \) is a finite truncation of the repetition quiver described by Keller [Kel10, Section 2.2] for all positive integers \(k \).

A word \(\sigma_1 \ldots \sigma_r \) is a prefix up to commutations of a word \(w \) if and only if there is a word \(w' \sim w \) such that the first \(r \) letters of \(w' \) are \(\sigma_1 \ldots \sigma_r \). The following characterization of \(c \)-singletons serves as definition and does not depend on \(c \) but on \(c \in \text{Cox}(W, S) \).
Definition 3.12 (c-singletons [HLLT11 Theorem 2.2]).
Let \((W, S, c)\) be a Coxeter triple. An element \(w \in W\) is a c-singleton if and only if some reduced expression of \(w\) is a prefix of \(w^c_0\) up to commutations. The number of c-singletons is denoted by \(S_c\).

Definition 3.13 (Cambrian acyclic domains).
Let \((W, S, c)\) be a Coxeter triple. The set \(\text{Acyc}_c\) of c-singletons is called Cambrian acyclic domain and its cardinality is \(S_c\).

The set of c-singletons, endowed with the weak order inherited from \((W, S)\), forms a distributive lattice \(L_c\) [HLLT11 Proposition 2.5]. Any distributive lattice \(L\) is isomorphic to the lattice of order ideals of a poset \((P, \leq)\) which is unique up to isomorphism, [Sta12 Theorem 3.4.1]. Before we show that \((L_{w^c_0}, \prec_{w^c_0})\) is such a poset \((P, \leq)\) for \(L_c\), we recall that an order ideal (or down-set or semi-ideal) of \((P, \leq)\) is a subset \(I \subseteq P\) such that \(t \in I\) and \(s \leq t\) implies \(s \in I\) and that antichains of a finite poset \(P\) in bijection with order ideals of \(P\) [Sta12 Section 3.1]. A generator \(s \in S\) is called initial (resp. final) in \(w \in W\) if and only if \(\ell(sw) < \ell(w)\) (resp. \(\ell(ws) < \ell(w)\)).

Proposition 3.14. Let \((W, S, c)\) be Coxeter triple. The lattice of order ideals of \((L_{w^c_0}, \prec_{w^c_0})\) is isomorphic to the poset of c-singletons ordered by the weak order.

Proof. If \(w \in W\) is a c-singleton then \(w\) is represented by a prefix \(\sigma_1 \ldots \sigma_k\) of \(w^c_0 = \sigma_1 \ldots \sigma_N\) up to commutations and the set \(F_w \subseteq \{\sigma_1, \ldots, \sigma_k\}\) of final letters for \(w\) is an antichain of \((L_{w^c_0}, \prec_{w^c_0})\). Conversely, if \(\{\sigma_1, \ldots, \sigma_k\}\) is an antichain of \((L_{w^c_0}, \prec_{w^c_0})\) then let \(I_j\) be the order ideal of \((L_{w^c_0}, \prec_{w^c_0})\) generated by \(\sigma_j\) for \(1 \leq j \leq k\) and consider the order ideal \(I := \bigcup_{j=1}^k I_j\) of \((L_{w^c_0}, \prec_{w^c_0})\) together with some linear extension of \(\prec_{w^c_0}\) on \(I\). The product of elements of \(I\) with respect to this linear order yields a prefix up to commutations of \(w^c_0 = \sigma_1 \ldots \sigma_N\) with final letters \(\{\sigma_1, \ldots, \sigma_k\}\). \(\square\)

3.3. 2-covers. The longest element \(w_0\) of \((W, S)\) defines an automorphism \(\varphi : W \to W\) defined via \(w \mapsto w_0^{-1}w_0\) that preserves length and adapts to words \(w = \sigma_1 \ldots \sigma_r\) via \(\varphi(w) := \varphi(\sigma_1) \ldots \varphi(\sigma_r)\). Let \(\text{rev}(w) := \sigma_r \ldots \sigma_1\) denote the reverse word of \(w\) and let \(w^c_0\) denote the concatenation of \(w^c_0\) and \(\varphi(w^c_0)\) and \(\psi(w^c_0)\). By Remark 7.6 of [CLST14],

\[w^{c(\varphi)} - w^0 \varphi(w^{c(\varphi)}) \quad \text{and} \quad c^h \sim w^{c_0} \psi(w^{c(\varphi)}) = w^{c_0} \psi(w^{c(\varphi)}) \]

In combination with Remark 3.11 we obtain the next lemma.

Lemma 3.15. Let \((W, S, c)\) be a Coxeter triple. The graphs \(G_{c^h}\) and \(G_{w^c_0} \psi(w_0^{c(\varphi)})\) are isomorphic as oriented graphs. In particular, \(G_{w^c_0} \psi(w_0^{c(\varphi)})\) depends on \(c \in \text{Cox}(W, S)\) but not on the reduced expression \(\varphi\).

Example 3.16 (Example 3.2 continued). Consider the longest word \(w_0 := s_3 s_2 s_1 s_2 s_3 s_4 s_2 s_3 s_2 s_1\) of \((\Sigma_5, S)\). Then \(w\) is the concatenation \(w^c_0((\varphi(c))\) and a direct computation yields

\[w^c_0 = s_3 s_2 s_1 s_2 s_3 s_4 s_2 s_3 s_2 s_1 \quad \text{and} \quad \psi(w^c_0) = s_2 s_3 s_4 s_2 s_3 s_1 s_2 s_3 s_2 \]

Hence, \(G_{c^h}\) and \(G_{w^c_0} \psi(w^c_0)\) are not isomorphic as oriented graphs. On the other hand,

\[w_0^{c(\varphi)} = s_3 s_2 s_1 s_4 s_2 s_3 s_1 s_4 s_3 s_2 s_3 s_4 \quad \text{and} \quad \psi(w_0^{c(\varphi)}) = s_3 s_2 s_3 s_1 s_2 s_3 s_4 s_1 s_2 s_3 s_4 s_1 \]

show that \(c^h \sim w_0^{c(\varphi)} \psi(w_0^{c(\varphi)})\). Thus \(G_{c^h}\) and \(G_{w^c_0} \psi(w_0^{c(\varphi)})\) are isomorphic as oriented graphs.

Remark 3.17.

a) The constructions of \((L_w, \prec_w)\) and of \(G_{c^h}\) extend to the infinite word \(c^\infty\). Thus, there is a canonical ‘left-most’ embedding of \(G_{w^c_0} \psi(w_0^{c(\varphi)})\) inside \(G_{c^\infty}\) by Lemma 3.15 (using \(G_{c^h}\)). Moreover, there is a natural projection \(pr_{c^h} : L_{c^\infty} \to L_{c^h}\) that maps a letter of copy \(c^{h+i}\) in \(c^\infty\) to the corresponding letter of copy \(c^i\) in \(c^h\) for \(0 \leq i \leq h - 1\) and non-negative integers \(k\).

b) There are obvious ‘bi-infinite’ versions \(L_{c^\pm}\) of \(L_{c^\infty}\) and \(G_{c^\pm}\) of \(G_{c^\infty}\) with infinitely many copies of \(c\) in the two possible directions and a projection \(pr_{c^\mp} : L_{c^\pm} \to L_{c^h}\) that we use in Section 5.

Definition 3.18 (2-cover).
Let \((W, S, c)\) be a Coxeter triple and \(w^c_0\) the c-sorting word of \(w_0\).
a) The 2-cover C^2_e is a graph with vertices $\mathcal{L}_{w_e^S}(w_e^S)$ and directed edges induced by pr_{eb} from G_{e^∞}.
b) Let $V_{w_e^S}$ be the vertices of C^2_e that correspond to the first $\frac{nh}{2}$ letters of $w_e^S \psi(w_e^S)$ and $V_{\psi(w_e^S)}$ be the vertices of C^2_e that correspond to the last $\frac{nh}{2}$ letters of $w_e^S \psi(w_e^S)$. Then $C_{w_e^S}$ is the subgraph of C^2_e induced by $V_{w_e^S}$ and $C_{\psi(w_e^S)}$ is the subgraph of C^2_e induced by $V_{\psi(w_e^S)}$.

The planar drawing for G_{c^k} described in Proposition 3.3 and the simple observation that G_{c^k} is isomorphic to some induced subgraph of $G_{c_{\infty}}$ for all $c, \tilde{c} \in \text{Cox}(W, S)$ imply the following lemma.

Lemma 3.19. Let (W, S, c) and (W, S, \tilde{c}) be Coxeter triples.
i) The 2-cover C^2_c has a crossing-free drawing on the open cylinder $S^1 \times \mathbb{R}$.
i) The 2-covers C^2_c and $C^2_{\tilde{c}}$ are isomorphic as directed graphs.

We refer to a particular embedding of $C^2_e \subset S^1 \times \mathbb{R} \subset \mathbb{R}^2 \times \mathbb{R}$ induced by pr_{eb} which can be visualized as ‘wrapping the plane drawing of G_{c^k} around a cylinder’. Without loss of generality, we assume that the y-direction for the plane drawing of G_{c^k} is parallel to the z-axis of $\mathbb{R}^3 = \mathbb{R}^2 \times \mathbb{R}$ which we assume to coincide with the axis of the cylinder $S^1 \times \mathbb{R} \subset \mathbb{R}^3$. For this reason, we identify y-coordinates in the plane drawing of G_{c^k} with third coordinates in \mathbb{R}^3. This embedding $C^2_e \subset \mathbb{R}^3$ has the following obvious properties:

i) copies of s_i have strictly smaller third coordinate than copies of s_j for $1 \leq i < j \leq p$ (where p is defined in the proof of Proposition 3.3);
ii) for fixed $i \in [n]$, the third coordinate of all copies of s_i coincide;
iii) if $p < n$ then the third coordinate of s_p and s_n coincide.

We say that copies of the generator s_i are located at the bottom of C^2_e while the copies of the generator s_p are located at the top of C^2_e. The definition of a tile as well as the proof of Corollary 3.6 extend this embedding of C^2_e.

3.4. Cut paths.

Definition 3.20 (Cut paths, primary and secondary cut paths). Let (W, S, c) be a Coxeter triple and C^2_c the associated 2-cover.
i) A **cut path** κ of C^2_c is a set of edges of C^2_c such that every directed cycle of C^2_c contains precisely one edge of κ. The set of all cut paths of C^2_c is denoted by $\text{CP}(C^2_c)$.
i) The **primary cut path** κ_c of C^2_c is the cut path that consists of all edges of C^2_c that are not (projections of) edges of $\mathcal{L}_{w_e^S}(w_e^S)$. The **secondary cut path** κ^*_c is the cut path that consists of all edges of $C^2_c \setminus \kappa_c$ that are neither edges of $C_{w_e^S}$ nor edges of $C_{\psi(w_e^S)}$.

The primary and secondary cut paths are disjoint because $\text{supp}(w_e^S) = \text{supp}(\psi(w_e^S)) = S$. Primary and secondary cut paths relate to cuts of a graph as $\kappa_c \cup \kappa^*_c$ partitions the 2-cover C^2_c into two connected components. Every cut path κ induces a sequence (‘path’) of tiles that cuts the 2-cover C^2_c from bottom to top: consider the set of tiles such that consecutive tiles have at least one common edge in κ.

Example 3.21. The notions of Definition 3.20 are illustrated in Figure 4 for c_{Low} and c_{alt} in (Σ_3, S). The 2-covers C^2_c coincide in both situations and are shown in a planar drawing where vertices $\sigma \in \mathcal{L}_{w_e^S}(w_e^S)$ of C^2_c are labeled by corresponding generators $g(\sigma) \in S$ and oriented edges of C^2_c contained in a cut path are indicated by \hookrightarrow. The primary and secondary cut paths κ_i and κ^*_i for $i \in \{1, 2\}$ are edges \hookrightarrow intersected by a dashed red line.

Since every cut path of C^2_c that avoids edges of $C_{\psi(w_e^S)}$ (or, equivalently, every cut path of C^2_c that avoids edges of the Hasse diagram of $(\mathcal{L}_{w_e^S}, \prec_{w_e^S})$) defines an antichain of $(\mathcal{L}_{w_e^S}, \prec_{w_e^S})$, we obtain the following characterization of order ideals of $(\mathcal{L}_{w_e^S}, \prec_{w_e^S})$.

Lemma 3.22. Let (W, S, c) be a Coxeter triple. The set of c-singletons is in bijection with the set of cut paths of C^2_c that avoid edges of $C_{\psi(w_e^S)}$.

In particular, if the number of all cut paths and the number of cut paths that contain edges of $C_{\psi(w_e^S)}$ are known, Lemma 3.22 implies a formula for the cardinality S_c. A formula for $|\text{CP}(C^2_c)|$ is obtained from the next theorem and a formula for S_c will be derived in Section 3.5.
Theorem 3.23. Let (W, S, c) be a Coxeter triple, with Coxeter graph Γ, and $\kappa \in \text{CP}(C^2_i)$.

i) For each edge $e = \{s_i, s_j\}$ of Γ, there exists a unique directed edge $e_\kappa = (\sigma, \tau) \in \kappa$ with $(g(\sigma), g(\tau)) = \{s_i, s_j\}$.

ii) Let s_j be a vertex of degree 2 of Γ with incident edges $e = \{s_i, s_j\}$. There is a unique tile T that contains the corresponding directed edges $e_\kappa = (\sigma, \tau)$, and $\bar{e}_\kappa = (\bar{\sigma}, \bar{\tau})$ from i.

iii) Let s_r be a vertex of degree 3 of Γ with incident edges $e = \{s_r, s_{r+1}\}$ and corresponding directed edges of κ from i.

$$e_\kappa = (\sigma, \tau), \quad \bar{e}_\kappa = (\bar{\sigma}, \bar{\tau}) \quad \text{and} \quad e_\kappa = (\sigma, \tau).$$

There are two unique tiles T_1, T_2 such that $e_\kappa, \bar{e}_\kappa \in \partial T_1, \bar{e}_\kappa \in \partial T_2$ and $\partial T_1 \cap \partial T_2$ consists of two edges of C^2_i.

Proof.

i) For every edge $\{s_i, s_j\}$ of the Coxeter graph Γ there exists a directed cycle in C^2_i that visits only vertices corresponding to s_i and s_j. This implies for every edge $\{s_i, s_j\}$ of Γ that a cut path κ must contain precisely one oriented edge (σ, τ) of C^2_i such that $\{g(\sigma), g(\tau)\} = \{s_i, s_j\}$.

By ii), there are unique oriented edges $e_\kappa = (\sigma, \tau), \bar{e}_\kappa = (\bar{\sigma}, \bar{\tau}) \in \kappa$ with $\{g(\sigma), g(\tau)\} = \{s_i, s_j\}$ and $\{g(\sigma), g(\tau)\} = \{s_j, s_k\}$. Suppose there is no tile T with $e_\kappa, \bar{e}_\kappa \in \partial T$. Without loss of generality, let T be the unique tile such that $e_\kappa \in \partial T$ and the two other vertices of T correspond to the generators s_j and s_k. Then consider the directed cycle that only uses edges (σ, τ) of C^2_i with $\{g(\sigma), g(\tau)\} = \{s_i, s_j\}$ where the two edges of ∂T are replaced by the other two edges of ∂T. Clearly, no edge of this cycle is an edge of κ. This contradicts the assumption that κ is a cut path.

iii) The argument to prove ii) can be used to show that there are unique tiles T_1 and T_2 such that $e_\kappa, \bar{e}_\kappa \in \partial T_1$ and $e_\kappa, \bar{e}_\kappa \in \partial T_2$. But ∂T_1 and ∂T_2 clearly share a directed edge (α, β) of C^2_i with $\{g(\alpha), g(\beta)\} = \{s_r, s_n\}$ that is distinct from \bar{e}_κ.

Corollary 3.24. Each cut path $\kappa \in \text{CP}(C^2_i)$ determines a unique set of $n - 2$ tiles:

$$\text{tile}(\kappa) = \left\{ T_1, \ldots, T_k \mid \partial T_i \text{ contains 2 edges of } \kappa \right\}.$$

We tacitly order the tiles $T_i \in \text{tile}(\kappa)$ from bottom to top in $C^2_i \subset S^1 \times \mathbb{R}$: if z_i denotes the smallest third coordinate of all points in T_i then $1 \leq i < j \leq n - 2$ implies $z_i \leq z_j$.

Lemma 3.19 states that C^2_i is isomorphic to C^2_i for all c, \tilde{c}, so it is impossible to recover $c \in \text{Cox}(W, S)$ from C^2_i. As any cut path κ provides one oriented edge for every edge of Γ, we have an induced Coxeter element c_κ, its reduced expressions are uniquely determined up to commutations.
Corollary 3.25. Let \((W, S, c)\) be a Coxeter triple, \(\kappa_c\) be the associated primary cut path and \(c_{\kappa_c}\) be the Coxeter element obtained from \(\kappa_c\). For any reduced expression \(w\) of \(c_{\kappa_c}\), we have \(w \sim \text{rev}(c)\).

Proof. The edges of \(C_2^c\) that are not projections of edges of \(G_{w_\kappa_c \circ \text{rev}(c)}\) define Coxeter element that correspond to the equivalence class \([\text{rev}(c)]\).

Example 3.26 (Example 3.24 continued). Figure 7 also illustrates Corollaries 3.24 and 3.25. First, the set of tiles \(\text{tile}(\kappa_1)\) and \(\text{tile}(\kappa_2)\) associated to \(\kappa_1\) and \(\kappa_2\) according to Corollary 3.24 are illustrated. This example shows that the set of tiles can coincide even if \(\kappa_1 \neq \kappa_2\). Moreover, the Coxeter element \(c_{\kappa_1}\) is represented by \(s_4s_3s_2s_1\) and \(s_4s_3s_2s_1 \in [\text{rev}(c_{\text{Lab}})]\). Similarly, \(c_{\kappa_2}\) is represented by \(s_1s_3s_2s_4\) and \(s_1s_3s_2s_4 \in [\text{rev}(c_{\text{Alt}})]\).

Corollary 3.27. The map \(\Phi : CP(C_2^c) \rightarrow Cox(W, S)\) sending a cut path \(\kappa\) to its corresponding Coxeter element \(c_{\kappa}\) is surjective and satisfies \(|\Phi^{-1}(c)| = h\) for each \(c \in Cox(W, S)\). In particular, \(|CP(C_2^c)| = 2^{n-1}h\).

Proof. We only prove \(|\Phi^{-1}(c)| = h\). There are \(h\) choices in \(C_2^c\) to pick a vertex \(g(\sigma_1) = s_1\). Now \(c_1\) determines a unique tile \(T_1\) with \(c_1 \in \partial T_1\) and there is a unique directed edge \(e_1^c\) that reflects the order of \(s_1\) and \(s_2\) in \(c\). Now consider the unique tile \(T_2\) whose vertices map to \(s_2, s_3\) and \(s_4\) under \(g\) such that the orientation of \(T_1 \cap T_2\) in \(c\) and proceed similarly with the following generators until all generators have been considered. This process determines a unique cut path \(\kappa\) with \(\Phi(\kappa) = c\) after choosing one of the \(h\) possible initial vertices \(\sigma\) at the bottom of \(C_2^c\).

3.5. Crossings of cut paths.

Definition 3.28 (crossing of cut paths, initial and final side, crossing tile).

Let \((W, S, c)\) be a Coxeter triple and \(\kappa_c \in CP(C_2^c)\) be the associated primary cut path.

i) A cut path \(\kappa\) crosses \(\kappa_c\) if \(\text{tile}(\kappa) \cap \text{tile}(\kappa_c) \neq \emptyset\) and there are edges \(e_1, e_2 \in \kappa\) with \(e_1 \in C_\psi(w_{\kappa_c})\) and \(e_2 \in C_\psi(w_c)\).

ii) Let \(\kappa\) be a cut path that crosses \(\kappa_c\). The initial side of \(\kappa\) is the connected component of \(C_2^c \setminus (\kappa_c \cup \kappa_c^*)\) that contains the edge of \(\kappa \setminus (\kappa_c \cup \kappa_c^*)\) whose midpoint has minimal third coordinate. The final side of \(\kappa\) is the connected component of \(C_2^c \setminus (\kappa_c \cup \kappa_c^*)\) that is not the initial side of \(\kappa\).

iii) Let \(\kappa\) be a cut path that crosses \(\kappa_c\). The crossing tile \(T^{\kappa_c}\) of \(\kappa\) in \(C_2^c\) is the first tile of \(\kappa\) (with respect to the bottom-to-top order) that contains an edge of \(\kappa\) in the final side of \(\kappa\).

Definition 3.29 (Initial and final segments).

Let \((W, S, c)\) be a Coxeter triple, \(\kappa_c \in CP(C_2^c)\) be the associated primary cut path, \(T^c \in \text{tile}(\kappa_c)\) and \(\kappa \in CP(C_2^c)\) with tile(\(c\)) = \(\{T_1, \ldots, T_{n-2}\}\).

i) Let \(i \in \{1, \ldots, n-1\}\). The initial segment of \(\kappa\) up to \(T_i\) is defined as

\[
\{e \in \kappa \mid e \in \partial T_j \text{ for } j \in \{i-1\} \} \cup \{u, v \in \kappa \mid g(u) = s_1 \text{ or } g(v) = s_1\}
\]

and the final segment of \(\kappa\) starting at \(T_i\) is defined as

\[
\{e \in \kappa \mid e \in \partial T_j \text{ with } j > i \} \cup \{u, v \in \kappa \mid g(u) = s_p \text{ or } g(v) = s_p\}
\]

where \(s_1, \ldots, s_p\) are successive vertices of \(\Gamma\) along a path of maximum length.

ii) Let \(e_1 = (u_1, v_1)\) and \(e_2 = (u_2, v_2)\) be the distinct edges of \(\partial T^c \setminus \kappa_c\) such that the midpoint of \(e_1\) has smaller third coordinate than the midpoint of \(e_2\). The connected component of \(C_2^c \setminus (\kappa_c \cup \kappa_c^*)\) that contains \(e_2\) is denoted by \(\text{out}(T^c)\) and the other component is denoted by \(\text{in}(T^c)\).

iii) Let \(I(T^c)\) be the number of distinct initial segments of cut paths \(\kappa\) up to \(T^c\) with edges contained in \(C_2^c \setminus \text{out}(T^c)\).

iv) Let \(F(T^c)\) be the number of distinct final segments of cut paths \(\kappa\) starting at \(T^c\) that contain \(e_2\).

In Definitions 3.28 and 3.29 the primary cut path \(\kappa_c\) can be replaced by any cut path \(\kappa \in CP(C_2^c)\). Moreover, concatenation of an initial segment counting towards \(I(T^c)\) that differs from the initial segment of \(\kappa_c\) and a final segment counting towards \(F(T^c)\) yields a cut path that crosses \(\kappa_c\).
Example 3.30 (Example 3.21 continued).

We illustrate Definitions 3.25 and 3.26 in Figure 8. The cut path $\tilde{\kappa}_1$ crosses κ_1 with crossing tile T_2^{-1} while $\tilde{\kappa}_2$ does not cross κ_2. A straightforward counting of crossing cut paths verifies

$$I(T_2^{+1}) = 2 \quad \text{and} \quad I(T_2^{+2}) = 4 \quad \text{as well as} \quad I(T_2^{-2}) = 1 \quad \text{and} \quad I(T_2^{-3}) = 2.$$

The reasoning of Section 3.6 yields formulae for all positive integers i:

$$I(T_i^{\text{ext}}) = I(T_i^{\text{ev}(c_{\text{ext}})}) = 2^i \quad \text{and} \quad I(T_i^{\text{cut}}) = \left\{ \begin{array}{ll}
(2^i), & \text{if } i = 2j, \\
\frac{1}{2} (2^i), & \text{if } i = 2j - 1.
\end{array} \right.$$

Figure 8. Two planar drawings of the 2-cover for Σ_5. The cut path $\tilde{\kappa}_1$ crosses the primary cut path κ_1 (left) and the cut path $\tilde{\kappa}_2$ does not cross the primary cut path κ_2 (right).

3.6. Enumerating c-Singletons.

Theorem 3.31. Let (W, S, c) be Coxeter triple with associated primary cut path κ_c and set of tiles $\text{tile}(\kappa_c) = \{T_1^+, \ldots, T_{n-2}^+\}$. The cardinality of the Cambrian acyclic domain Acyc_c is

$$S_c = 2^{n-2} (h - 1) - \sum_{i \in [n-2]} 2^{n-2-i} I(T_i^c).$$

Proof. We count the cut paths of $\text{CP}(C_2^c)$ twice. By Corollary 3.27, the cardinality of $\text{CP}(C_2^c)$ equals $2^{n-1} h$. On the other hand, $\kappa \in \text{CP}(C_2^c)$ satisfies precisely one of the following statements:

1. κ crosses κ_c or κ_c^*, but not both;
2. $\kappa \subseteq C_{\psi(c)} \cup \kappa_c \cup \kappa_c^*$ or $\kappa \subseteq C_{\psi(c)} \cup \kappa_c \cup \kappa_c^*$ but $\kappa \notin \{\kappa_c, \kappa_c^*\}$;
3. $\kappa \in \{\kappa_c, \kappa_c^*\}$.

We first claim that the number Q_c of cut paths that cross κ_c equals the number of cut paths that cross κ_c^*. Indeed, the automorphism ψ maps c to $\psi(c)$ and induces an involution φ between $\text{tile}(\kappa_c)$ and $\text{tile}(\kappa_c^*)$ that extends to an involution between cut paths that cross κ_c and cut paths that cross κ_c^* (where $\varphi(T_i^c)$ is the crossing tile of $\varphi(\kappa)$). Thus, the number of cut paths satisfying i) equals $2Q_c$. Moreover, this involution extends to an involution on $\text{CP}(C_2^c)$ that maps cut paths contained in $C_{\psi(c)} \cup \kappa_c \cup \kappa_c^*$ to cut paths contained in $C_{\psi(c)} \cup \kappa_c \cup \kappa_c^*$. As κ_c and κ_c^* are the only cut paths that correspond simultaneously to a c-singleton and a $\psi(c)$-singleton, the number of cut paths satisfying ii) equals $2S_c - 4$ by Lemma 3.29. Thus we established

$$2Q_c + (2S_c - 4) = 2^{n-1} - 1 \quad \text{or equivalently} \quad S_c = 2^{n-1} - Q_c + 1.$$

To analyze Q_c, we partition the cut paths that cross κ_c according to their crossing tile T_i^c and observe that $I(T_i^c)$ exceeds the number of cut paths with crossing tile T_i^c by one (the initial segment of κ_c is counted by $I(T_i^c)$ but it is not the initial segment of a cut path with crossing tile T_i^c). The number of final segments $F(T_i)$ of cut paths starting at T_i^c satisfies $F(T_i) = 2^{n-2-i}$.
because each final segment consists of $n - 2 - i$ tiles (not counting T^c_i) and there are 2 valid choices to exit each tile. This gives
\[
Q_c = \sum_{i \in [n-2]} (I(T^c_i) - 1) F(T^c_i) = \sum_{i \in [n-2]} 2^{n-2-i} I(T^c_i) - (2^{n-2} - 1).
\]
Substitution in Equation (2) yields the claim. \hfill \Box

At this point, we could characterize the Coxeter elements of any irreducible finite Coxeter system (W, S) that minimize the cardinality S_c of the Cambrian acyclic domain Acyc_c. Instead, we first provide explicit formulae for S_c of two families of Cambrian acyclic domains in Section 4 and characterize the Coxeter elements of (W, S) that minimize and maximize S_c in Section 5 where we use the following result obtained in the previous proof.

Corollary 3.32. Let (W, S) be an irreducible finite Coxeter system of rank n and $c \in \text{Cox}(W, S)$. Then the number of cut paths κ that cross κ_c is
\[
Q_c = \sum_{i \in [n-2]} 2^{n-2-i} I(T^c_i) - (2^{n-2} - 1).
\]

Remark 3.33. For reducible finite Coxeter groups, the cardinality of a Cambrian acyclic domain is the product of the cardinalities of the acyclic domains for each irreducible component with respect to the corresponding parabolic Coxeter elements.

4. Examples

In this section, we determine explicit formulae for the cardinality S_c of a Cambrian acyclic domain Acyc_c when c is a Coxeter element that minimizes or maximizes the total number of sources and sinks of Γ_c. We denote the relevant subsets of $\text{Cox}(W, S)$ by Cox_min and Cox_max. Standard examples in type A are $c_{\text{Loz}} \in \text{Cox}_\text{min}$ and $c_{\text{alt}} \in \text{Cox}_\text{max}$. We call a Coxeter system *path-like* if Γ is a path.

4.1. Maximum total number of sources and sinks. If c provides a bipartition of Γ then every node of Γ_c is a source or a sink and there are n sources and sinks in total. Theorem 2.3 of [BHLT09] implies that S_c does not depend on c as the associated associahedra Asso_c are isometric. In particular, S_c depends only on the type and rank of (W, S).

Proposition 4.1. Let (W, S) be an irreducible Coxeter system of rank $n > 1$ and $c \in \text{Cox}_\text{max}$.

i) If (W, S) is path-like then
\[
S_c = \begin{cases}
2^{n-2}(h+3) - n \cdot \left(\frac{n-1}{2}\right), & n \text{ even,} \\
2^{n-2}(h+3) - \frac{2n-1}{2} \cdot \left(\frac{n-1}{2}\right), & n \text{ odd.}
\end{cases}
\]

ii) If (W, S) is of type D_n then
\[
S_c = \begin{cases}
2^{n-2}(h+3) - n \cdot \left(\frac{n-1}{2}\right) + \frac{1}{2} \cdot \left(\frac{n-2}{2}\right), & n \text{ even,} \\
2^{n-2}(h+3) - (n-1)\left(\frac{n-1}{2}\right) - \left(\frac{n-3}{2}\right), & n \text{ odd.}
\end{cases}
\]

iii) If (W, S) is of type E_6, E_7 or E_8 then
\[
S_c = \begin{cases}
2^{n-2}(h+3) - 2(n-2)\left(\frac{n-3}{2}\right) - 2 \cdot \left(\frac{n-4}{2}\right) - (n-3)(n-4), & n \text{ even,} \\
2^{n-2}(h+3) - (n-1)\left(\frac{n-1}{2}\right) + \left(\frac{n-3}{2}\right) - (n-3)(n-4), & n \text{ odd.}
\end{cases}
\]

Proof. We aim for explicit formulae for $I(T^c_i)$, $1 \leq i \leq n - 2$, apply Theorem 3.31 and simplify the result using the closed form of a hypergeometric sum used in Section 2.4.

Suppose that (W, S) is path-like and recall from Example 3.30 that
\[
I(T^c_i) = \begin{cases}
\binom{2j}{j} & \text{if } i = 2j, \\
\frac{1}{2}\binom{2j}{j} & \text{if } i = 2j - 1.
\end{cases}
\]
We prove the claim for $n = 2k-1$, the proof is along the same lines if $n = 2k$. Theorem 3.31 and $2^{2n+1} \sum_{i=0}^{n} 2^{-2i} \binom{2i}{i} = (n+1)\binom{n+2}{n+1}$ imply

$$S_c = 2^{n-2}(h+1) - \sum_{i \in [n-2]} 2^{n-2-i} I(T_i^c)$$

$$= 2^{n-2}(h+1) - 2^{n-1} \left(\sum_{j \in [k-2]} \left(2^{-2j} I(T_{2j-1}^c) + 2^{-(2j+1)} I(T_{2j+1}^c) \right) + 2^{-(n-1)} I(T_{n-2}^c) \right)$$

$$= 2^{n-2}(h+1) - 2^{n-1} \left(\sum_{j \in [k-2]} 2^{-2j} \binom{2j}{j} + 2^{-(2k-1)} \binom{2k-1}{k-1} + 1 \right)$$

$$= 2^{n-2}(h+3) - 2^{n-1} \left(2^{-(2k-3)}(k-1) \binom{2k-1}{k-1} + 2^{-(2k-1)} \binom{2k-1}{k-1} \right)$$

$$= 2^{n-2}(h+3) - \frac{2n-1}{2} \left(\frac{n-1}{n} \right)$$

Suppose that (W,S) is of type D_n. Then $I(T_{n-2}^c) = I(T_{n-3}^c)$ as well as

$$I(T_i^c) = \binom{2j}{j} \quad \text{if } i = 2j, \quad \text{and} \quad I(T_i^c) = \frac{1}{2} \binom{2j}{j} \quad \text{if } i = 2j-1,$$

for $1 \leq i \leq n-3$. Substitution of $I(T_i^c)$ in the formula for S_c of Theorem 3.31 and a computation similar to the previous case yields the claim.

Finally, we assume that (W,S) is of type E_n for $n \in \{6,7,8\}$. If $i \in [n-4]$ then

$$I(T_i^c) = \binom{2j}{j} \quad \text{if } i = 2j, \quad \text{and} \quad I(T_i^c) = \frac{1}{2} \binom{2j}{j} \quad \text{if } i = 2j-1,$$

as well as $I(T_{n-3}^c) = I(T_{n-4}^c)$ and $I(T_{n-2}^c) = (n-3)(n-4)$. Theorem 3.31 implies the claim. □

Remark 4.2.

i) Notice that Proposition 1.1 yields Equation (1) of Galambos and Reiner if (W,S) is of type A as $W \cong \Sigma_{n+1}$, $\text{alt} \in \text{Cox}_{\text{max}}$ and $h = n+1 = m$.

ii) For the Coxeter groups of type $I_2(m)$ we obtain $S_c = m + 1$ for $c \in \text{Cox}_{\text{max}}$.

iii) Substitution of the relevant Coxeter numbers yields S_c for exceptional finite Coxeter groups and $c \in \text{Cox}_{\text{max}}$:

(W,S)	H_2	H_4	F_4	E_6	E_7	E_8
S_c	21	120	48	182	546	1840

4.2. **Minimum total number of sources and sinks.** Since Γ is a tree with at most one branching point, the minimum number of sources and sinks of Γ_c is two or three: if Γ is a path then $|\text{Cox}_{\text{min}}| = 2$ while $|\text{Cox}_{\text{min}}| = 6$ if Γ has a branching point. In the latter case, we partition Cox_{min} into Cox_a, Cox_b and Cox_c where each set consists of the Coxeter element shown in Figure 9 together with $\text{rev}(c)$.

![Figure 9](image_url)

Figure 9. Oriented Coxeter graphs Γ_c with branching point and minimum total number of sources and sinks $(r = n - 2$ in type D and $r = n - 3$ in type $E)$.
Remark 4.4. Let \((W, S)\) be an irreducible Coxeter system of rank \(n > 1\) and \(c \in \text{Cox}_\text{min}\).

i) Suppose that \((W, S)\) is path-like then

\[S_c = 2^{n-2}(h - n + 3). \]

ii) Suppose \((W, S)\) is of type \(D_n\) and \(n \geq 4\) then

\[S_c = \begin{cases} 2^{n-2}(h - n + \frac{3}{2}), & c \in \text{Cox}_a, \\ 2^{n-2}(h - n + 4) - 2, & c \in \text{Cox}_b \cup \text{Cox}_c. \end{cases} \]

iii) Suppose \((W, S)\) is of type \(E_6, E_7\) or \(E_8\). Then

\[S_c = \begin{cases} 2^{n-2}(h - n + 4) - 2^{n-4}, & c \in \text{Cox}_a, \\ 2^{n-2}(h - n + 4) - 4, & c \in \text{Cox}_b, \\ 2^{n-2}(h - n + 4) + 2^{n-2} - 2n, & c \in \text{Cox}_c. \end{cases} \]

Proof. Again, all claims follow from Theorem 4.3.4 together with the following formulae for \(I(T_i^c)\). First, if \((W, S)\) is path-like then \(I(T_i^c) = 2^i\) for all \(i \in [n - 2]\) and all \(c \in \text{Cox}_\text{min}\).

Second, if \((W, S)\) is of type \(D_n\) and \(n \geq 4\). Then \(I(T_i^c) = 2^i\) for all \(i \leq [n - 4]\) and all \(c \in \text{Cox}_\text{min}\) as well as

\[I(T_i^c) = \begin{cases} 2^{n-3}, & i = n - 3, \\ 2^{n-3}, & i = n - 2, \\ 1, & i = n - 3, \end{cases} \quad I(T_i^c) = \begin{cases} 2^{n-2}, & i = n - 2, \\ 2, & i = n - 2, \end{cases} \quad \text{and} \quad I(T_i^c) = \begin{cases} 2^{n-3}, & i = n - 3, \\ 2, & i = n - 2, \end{cases} \]

where \(c_a \in \text{Cox}_a, c_b \in \text{Cox}_b\) and \(c_c \in \text{Cox}_c\).

Third, if \((W, S)\) is of type \(E_n\) \([E_6, E_7, E_8]\). Then \(I(T_i^c) = 2^i\) for all \(i \in [n - 5]\) and all \(c \in \text{Cox}_\text{min}\) as well as

\[I(T_i^c) = \begin{cases} 2^{n-4}, & i = n - 4, \\ 2^{n-3}, & i = n - 3, \\ 3, & i = n - 2, \\ 2^{n-2}, & i = n - 2, \end{cases} \quad I(T_i^c) = \begin{cases} 2^{n-4}, & i = n - 4, \\ 2^{n-3}, & i = n - 3, \\ 2n - 4, & i = n - 2, \end{cases} \]

where \(c_a \in \text{Cox}_a, c_b \in \text{Cox}_b\) and \(c_c \in \text{Cox}_c\). \(\square\)

Remark 4.4.

i) If \((W, S)\) is of type \(I_2(m)\) then \(\text{Cox}_\text{min} = \text{Cox}_\text{max}\). Notice that Proposition 4.3.1 and 4.3.3 yield \(S_c = m + 1\) in both cases for all \(m\).

ii) Let \((W, S)\) be of type \(D_n\). If \(n = 4\) then both formulae of Proposition 4.3.3 yield \(S_c = 22\). Moreover, if \(n \geq 5\) and \(c \in \text{Cox}_\text{min}\) then \(S_c\) is minimal if and only if \(c \in \text{Cox}_a\).

iii) Let \((W, S)\) be of type \(E_n\).

- If \(n = 6\) and \(c \in \text{Cox}_a \cup \text{Cox}_b\) then \(S_c = 156\) while \(S_c = 164\) for \(c \in \text{Cox}_c\).
- If \(n = 7\) then \(S_c = 472\) for \(c \in \text{Cox}_a, S_c = 476\) for \(c \in \text{Cox}_b\) and \(S_c = 498\) for \(c \in \text{Cox}_c\).
- If \(n = 8\) then \(S_c = 1648\) for \(c \in \text{Cox}_a, S_c = 1660\) for \(c \in \text{Cox}_b\) and \(S_c = 1904\) for \(c \in \text{Cox}_c\).

iv) The minimum numbers of \(S_c\) for all exceptional finite Coxeter groups and \(c \in \text{Cox}_\text{min}\) are:

\(W, S\)	\(H_3\)	\(H_4\)	\(F_4\)	\(E_6\)	\(E_7\)	\(E_8\)
\(S_c\)	20	116	44	156	472	1648
5. Lower and Upper bounds

In this section, we use Theorem 5.3.1 and Corollary 5.3.2 to prove upper and lower bounds for the cardinality S_c of a Cambrian acyclic domain A_{cyc} by identification of minimizers and maximizers for $\sum_{i=2}^{n-2} 2^{n-2-i}(T_i^c)$. As done in the proof of Proposition 5.3.1 we fix a Coxeter triple (W, S, c) and label the generators of S along a longest path of Γ such that s_1, \ldots, s_p with $p \in \{n-1, n\}$ are successive vertices and in types D and E we have $p = n - 1$ and the vertex s_n is connected to s_r where $r = n - 2$ (type D_n) or $r = n - 3$ (type E).

5.1. Cut functions.

Definition 5.1 (Cut function). A function $f : S \to \mathbb{Z}$ is a cut function of (W, S) if $f(s_1)$ is odd and $|f(s) - f(t)| = 1$ for all non-commuting pairs $s, t \in S$. We write $(f(s_1), \ldots, f(s_n))$ for the cut function f and denote the set of all cut functions of (W, S) by $\text{CF}(W, S)$. A generator $s \in S$ is an extremum of the cut function if either $f(s) < f(t)$ or $f(s) > f(t)$ for all $t \in S$ that do not commute with s.

Since $|f(s) - f(t)| = 1$ for all non-commuting pairs $s, t \in S$, any cut function f determines a unique Coxeter element $c_f \in \text{Cox}(W, S)$ such that $f(s) < f(t)$ if and only if (s, t) is a directed edge of Γ_{c_f} and every Coxeter element determines a cut function up to an even constant. Moreover, sources and sinks of Γ_{c_f} correspond to extrema of f and, among the h cut paths of $\Phi^{-1}(\text{rev}(c_f))$ from Corollary 5.2.1, the cut function f determines a unique cut path κ_f as follows. Let σ be the vertex of C^c_f with $g(\sigma) = s_2$ such that the x-coordinate of $v \in pr_{gh}^{-1}(\sigma)$ satisfies $x_v \equiv f(s_1) \mod 2h$ and let (ρ, σ) and (σ, τ) be the two edges of C^c_f with $g(\rho) = g(\tau) = s_1$. Now κ_f contains (ρ, σ) if $\rho(g(\rho)) > g(\sigma)$ and (σ, τ) if $\sigma(g(\sigma)) < g(\tau)$. We say that the cut path κ_f represents the cut function f.

Example 5.2. Consider (W, S) of type A_4 and $c = s_2s_1s_4s_3$. The cut functions f and g with $f(s_1, s_2, s_3, s_4) = (-1, 0, 1, 2)$ and $g(s_1, s_2, s_3, s_4) = (1, 0, 1, 0)$ determine the Coxeter elements $c_f = s_1s_2s_3s_4$ and $c_g = s_2s_1s_4s_3$ indicated as shaded subgraphs in the planar drawing of C^c_f in Figure 10. As $f(s_1) = -1 \equiv 9 \mod 10$ and $f(s_1) < f(s_2)$ as well as $g(s_1) = 1 \equiv 1 \mod 10$ and $g(s_1) > g(s_2)$, we obtain the cut paths κ_f and κ_g that represent the cut functions f and g as indicated. The extrema of f are s_1 and s_4, while all generators in S are extrema of g.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{cut_functions}
\caption{The cut functions f and g and their associated cut paths κ_f and κ_g and Coxeter elements c_f and c_g in type A_4.}
\end{figure}

Definition 5.3 (equivalence and crossing of cut functions).
Let $f, g : S \to \mathbb{Z}$ be cut functions of the finite and irreducible Coxeter system (W, S).

i) f and g are equivalent, $f \simeq g$, if and only if $f(s) \equiv g(s) \mod 2h$ for all $s \in S$.

ii) f and g cross if and only if there exist $s, t \in S$ and $\tilde{f} \simeq f$ such that $\tilde{f}(s) < g(s)$ and $\tilde{f}(t) > g(t)$.

Before showing that the notion of crossing cut functions \(f \) and \(g \) coincides with the crossing of cut paths \(\kappa_f \) and \(\kappa_g \) that represent \(f \) and \(g \) in the next lemma, we illustrate the definition with an example.

Example 5.4 (Example 5.2 continued). Consider \(f'(s_1, s_2, s_3, s_4) = (19, 20, 21, 22) \) and \(f''(s_1, s_2, s_3, s_4) = (0, 1, 2, 3) \). Then \(f \simeq f' \) and \(f \neq f'' \). Moreover, \(f' \) crosses \(f \) as \(f' \simeq f \) and \(f(s_1) < g(s_1) \) and \(f(s_4) > g(s_4) \). Further, notice that the edges \(a \) and \(b \) required by Definition 5.2 show that \(\kappa_g \) crosses \(\kappa_f \) while the edges \(c \) and \(d \) show that \(\kappa_f \) crosses \(\kappa_g \).

Lemma 5.5. Let \((W, S, c)\) be a Coxeter triple with associated 2-cover \(C^2_e \) as well as cut paths \(\kappa_f \) and \(\kappa_g \) representing cut functions \(f \) and \(g \). The cut paths \(\kappa_f \) and \(\kappa_g \) cross if and only if the cut functions \(f \) and \(g \) cross.

Proof. Assume that the cut path \(\kappa_f \) crosses \(\kappa_g \) on \(C^2_e \). Since \(\kappa_f \) and \(\kappa_g \) are crossing, they have a common tile \(T \) and there are edges \(e_1 \in \kappa_g \) in the initial side of \(\kappa_f \) and \(e_2 \in \kappa_g \) in the final side of \(\kappa_f \). These edges are also in \(C^2_e \setminus \kappa_f \). The common tile \(T \) allows us to get specific representatives \(\tilde{f} \) and \(\tilde{g} \) for \(f \) and \(g \) by going down to the first tiles of \(\kappa_f \) and \(\kappa_g \). Indeed, consider the (unoriented) edge \((\rho, \sigma) \in \kappa_f \) such that \(g(\rho) = s_2 \) and \(g(\sigma) = s_1 \) and use the \(x \)-coordinate \(x_\rho \) of \(\rho \) as the value \(\tilde{f}(s_1) = \tilde{f}(g(\rho)) := x_\rho \). This determines \(\tilde{f} \simeq f \). Proceed similarly to obtain \(\tilde{g} \). Further, since we have edges \(e_1 \) and \(e_2 \) on distinct connected components of \(C^2_e \setminus (\kappa_f \cup \kappa_f') \), there exist \(s, t \in S \) such that

\[
\tilde{f}(s) < \tilde{g}(s) \quad \text{and} \quad \tilde{f}(t) > \tilde{g}(t) \quad \text{or} \quad \tilde{f}(s) > \tilde{g}(s) \quad \text{and} \quad \tilde{f}(t) < \tilde{g}(t)
\]

depending if the initial side of \(\kappa_f \) is “on the right” or “on the left” of \(\kappa_f \).

Now suppose that \(f \) and \(g \) are crossing cut functions with equivalent cut functions \(\tilde{f} \simeq f \) and \(\tilde{g} \simeq g \) such that \(\tilde{f}(s) < \tilde{g}(s) \) and \(\tilde{f}(t) > \tilde{g}(t) \) for some \(s, t \in S \). Since the Coxeter graph \(\Gamma \) is a tree and since a cut function \(h \) satisfies \(|h(a) - h(b)| \geq 1 \) for non-commuting \(a, b \in S \), every integral value between \(\tilde{f}(s) \) and \(\tilde{f}(t) \) is in the image of \(\tilde{f} \). Because of the latter inequalities for \(\tilde{f}(s) \) and \(\tilde{g}(s) \), this implies that there exists a generator \(u \in S \) such that \(\tilde{f}(u) = \tilde{g}(u) \). Following the procedure to obtain the cut path \(\kappa_h \) from a cut function \(h \), this implies that the representing cut paths \(\kappa_f \) and \(\kappa_g \) will have a common tile once we get to a tile with vertex label \(u \). Further, the inequalities guarantee that there will be one edge in the initial side of \(\kappa_f \) and one edge in the final side of \(\kappa_f \) taken by \(\kappa_g \). \(\square \)

5.2. Upper and lower bounds for the cardinality of Cambrian acyclic domains.

To obtain lower and upper bounds for \(\mathcal{S}_c = |\text{Acyc}_c| \), the next lemma about the minimum and maximum number of extrema of a cut function \(f \) is essential. Clearly, the maximum number of extrema is equal to \(n \) while the minimum number of extrema is equal to 2 if \((W, S)\) is path-like and equal to 3 if \((W, S)\) is of type \(D \) or \(E \).

Lemma 5.6. Let \(f \) be a cut function of the finite irreducible Coxeter system \((W, S)\).

- **a)** The number of cut functions that cross \(f \) is minimum if and only if the number of extrema of \(f \) is maximum.
- **b)** If \((W, S)\) is path-like, then the number of cut functions that cross \(f \) is maximum if and only if the number of extrema of \(f \) is minimum.

If \((W, S)\) is of type \(D \) or \(E \), then the number of cut functions that cross \(f \) is maximum if and only that the number of extrema of \(f \) is minimum.

Proof. a) For \(m \in \mathbb{Z} \), the \(m \)-reflection \(\mathcal{R}_m : \text{CF}(W, S) \to \text{CF}(W, S) \) is the bijection

\[
\mathcal{R}_m(f)(m + \ell) := f(m - \ell) \quad \text{for all } \ell \in \mathbb{Z}.
\]

If \(f \in \text{CF}(W, S) \) has less than \(n \) extrema then set

\[
f' : S \to \mathbb{Z} \quad \text{via} \quad s \mapsto \begin{cases} f(s), & \text{if } f(s) < \max_{t \in S} f(t), \\ f(s) - 2, & \text{if } f(s) = \max_{t \in S} f(t). \end{cases}
\]
Clearly, every extremum of \(f \) is an extremum of \(f' \) and there is at least one \(s \in S \) that is extremal for \(f' \) but not for \(f \), see Figure 11. Now define

\[
F := \{ g \in \text{CF}(W, S) \mid g \text{ crosses } f \} \quad \text{and} \quad F' := \{ g \in \text{CF}(W, S) \mid g \text{ crosses } f' \}.
\]

We first prove \(|F'| < |F|\) by showing that \(|F' \setminus F| < |F \setminus F'|\). To see this, let \(\mu := \max_{t \in S} f(t) \) and notice that

\[
R_{\mu-1}(g) \in F \setminus F' \quad \text{for all } g \in F' \setminus F,
\]

so the reflection \(R_{\mu-1} \) is an injection \(F' \setminus F \to F \setminus F' \) which is not surjective because \(f \not\in F' \setminus F \) and \(R_{\mu-1}(f) \in F \setminus F' \). Thus \(|F'| < |F|\) and iterating this process yields a cut function where every generator of \(S \) is extremal. To complete the proof, we show that \(|F| = |\mathcal{G}|\) if \(f \) and \(g \) are cut functions where every \(s \in S \) is extremal. This follows from the observation that two cut functions where every \(s \in S \) is extremal differ only by translation and reflection.

\textbf{Figure 11.} \(F' \supset F' \) for cut functions \(f \) and \(f' \) as in the proof of Lemma 5.6. We have \(R_{\mu-1}(f) \in F \setminus F' \) as well as \(g \in F' \setminus F \) implies \(R_{\mu-1}(g) \in F \setminus F' \).

b) For \(n = 1 \) and \(n = 2 \) there is nothing to prove, as all generators are extremal for each cut function. We therefore assume \(n \geq 3 \) and prove the claim first if \((W, S)\) is path-like. A cut function \(f \) determines the Coxeter element \(c_f \) and the number of cut functions that cross \(f \) is equal to the number \(Q_{\text{rev}(c_f)} \) of cut paths that cross \(\kappa_{\text{rev}(c_f)} \) in \(\mathcal{C}_t^2 \) by Lemma 5.5. By Corollary 3.32 we have

\[
Q_{\text{rev}(c_f)} = \sum_{i \in [n-2]} 2^{n-2-i} I(T_i^{\text{rev}(c_f)}) - (2^{n-2} - 1),
\]

where \(T_i^{\text{rev}(c_f)} \) is tile \(i \) of \(\kappa_{\text{rev}(c_f)} \) and \(I(T_i^{\text{rev}(c_f)}) \) is the number of distinct initial segments of cut paths \(\kappa \) up to \(T_i^{\text{rev}(c_f)} \) with edges contained in \(\mathcal{C}_t^2 \setminus \text{out}(T_i^{\text{rev}(c_f)}) \). The reasoning of Example 3.50 shows

\[
\text{rev}(c_f) \in \{s_1s_2 \cdots s_n, s_ns_{n-1} \cdots s_1\} \quad \Rightarrow \quad I(T_i^{\text{rev}(c_f)}) = 2^i \quad \text{for all } i \in [n-2].
\]

These are clearly the only Coxeter elements with \(I(T_i^{\text{rev}(c_f)}) = 2^i \) for all \(i \in [n-2] \) and these values are maximum. Thus \(I(T_i^{\text{rev}(c_f)}) \) attains its maximum value for each \(i \leq n-2 \) if and only if \(f \) is strictly monotone on \([i+2] \). In particular, \(Q_{\text{rev}(c_f)} \) is maximum if and only if the cut function \(f \) is strictly monotone. Thus, we conclude for any path-like Coxeter system \((W, S)\) that \(f \) has precisely two extrema if and only if the number of cut functions that cross \(f \) is maximum.
To analyze type D, we first consider D_4. Without loss of generality, we have to analyze the following four cases for c_f and $\kappa_{\text{rev}(c_f)}$ as they represent all cut functions f in type D_4.

\begin{align*}
&c_f = c_a \in \text{Cox}_a \quad c_f = c_b \in \text{Cox}_b \quad c_f = c_c \in \text{Cox}_c \\
&c_f = c_{\max} \in \text{Cox}_{\max}
\end{align*}

Corollary 3.32 implies

\[
\begin{align*}
Q_{c_a} = 6 - 3 & \quad Q_{c_b} = 6 - 3 & \quad Q_{c_c} = 6 - 3 & \quad Q_{c_{\max}} = 3 - 3.
\end{align*}
\]

This shows that if the number of crossing cut functions of $f \in \text{CF}(D_4, S)$ is maximum then f has three extrema which is the minimum number of extrema in this situation.

We now consider an extension from (D_n, S) to (D_{n+1}, \bar{S}) with $n \geq 4$ by adding a new vertex adjacent to the leaf s_1 of Γ_{D_n} and appropriate relabeling of generators. Thus Γ_{D_n} corresponds to the subgraph of $\Gamma_{D_{n+1}}$ induced by $\bar{S} \setminus \{s_1\}$ and every Coxeter element $c_n \in \text{Cox}(D_n, S)$ can be extended in precisely two ways to a Coxeter element $c_{n+1} \in \text{Cox}(D_{n+1}, \bar{S})$. Clearly, we have

\[
I(T_{i+1}^{c_{n+1}}) \in \{1, 2\} \quad \text{as well as} \quad I(T_{i}^{c_n}) \leq I(T_{i+1}^{c_{n+1}}) \leq 2I(T_{i}^{c_n}) \text{ for } i \in [n-2].
\]

Thus

\[
\begin{align*}
Q_{c_{n+1}} &= \sum_{i \in [n-1]} 2^{n-1-i} I(T_{i}^{c_{n+1}}) - (2^{n-1} - 1) \\
&\leq 2^{n-1-1} \cdot 2 + \sum_{i \in [n-2]} 2^{n-2-i} \cdot (2I(T_{i}^{c_n})) - 2(2^{n-2} - 1) - 1 \\
&= 2^{n-1} + 2Q_{c_n} - 1
\end{align*}
\]

with equality if $I(T_{i+1}^{c_{n+1}}) = 2I(T_{i}^{c_n})$ for all $i \in [n-2]$ and $I(T_{i}^{c_{n+1}}) = 2$ which happens if and only if $\text{out}(T_{i}^{c_{n+1}})$ and $\text{out}(T_{i}^{c_{n+1}})$ coincide for all $1 \leq k, \ell \leq n - 1$. Thus, if $Q_{c_{n+1}}$ is maximum then $c_{n+1} \in \text{Cox}_a \subseteq \text{Cox}_{\min}$. In other words, if the number of cut functions that cross f is maximum then f has three extrema. This proves the claim if (W, S) is of type D.

Finally, we prove the claim in type E. We first analyze E_6. Clearly, removing the vertex $s_p = s_5$ from Γ_{E_6} yields a Coxeter graph of type D_5. Let c be a Coxeter element for type E_6 and \bar{c} be the corresponding Coxeter element for $(W, S \setminus \{s_5\})$ of type D_5. Since $I(\bar{T}_5^c) = I(T_5^\bar{c})$ for $1 \leq k \leq 3$, we obtain $Q_c = 2Q_{\bar{c}} + I(T_5^\bar{c}) - 1$.

A case analysis reveals that Q_c is maximum in type E_6 if and only if $c \in \text{Cox}_a \cup \text{Cox}_b$. Thus, if f is a cut function with the maximum number of crossing cut functions then $c_f \in \text{Cox}_a \cup \text{Cox}_b$, that is, f has three extrema. To solve the remaining cases E_7 and E_8 we extend from type E_6 to E_7 and from type E_7 to E_8 similarly to the induction step from D_n to D_{n+1}. Again, we obtain $Q_{c_{n+1}} \leq 2^{n-1} + 2Q_{c_n} - 1$ with equality if and only if $\text{out}(T_{k}^{c_{n+1}})$ and $\text{out}(T_{k}^{c_{n+1}})$ coincide for all $1 \leq k, \ell \leq n - 1$. Therefore, if $Q_{c_{n+1}}$ is maximum then $c_{n+1} \in \text{Cox}_a \subseteq \text{Cox}_{\min}$. This proves the claim if (W, S) is of type E_7 and E_8.

We now characterize the Coxeter elements c that maximize and minimize the cardinality S_c of a Cambrian acyclic domain Acyc_c.

Theorem 5.7. Let (W, S) be a finite irreducible Coxeter system, $c \in \text{Cox}(W, S)$ and $S_c = |\text{Acyc}_c|$.

a) The cardinality S_c of Acyc_c is maximum if and only if $c \in \text{Cox}_{\max}$.

b) The cardinality S_c of Acyc_c is minimum if and only if

i) $c \in \text{Cox}_{\min}$ and (W, S) is path-like or of type D_4;

ii) $c \in \text{Cox}_a \cup \text{Cox}_b$ and (W, S) is of type E_6;

iii) $c \in \text{Cox}_a$ and (W, S) is of type E_7, E_8 or D_n for $n \geq 5$.

Proof. a) This is a consequence of Theorem 3.31 and Corollary 3.32 combined with Lemma 5.6.

b) When (W, S) is path-like or of type D_4, it follows immediately from Lemma 5.6. Otherwise, to decide the remaining cases for type D and E, we use the relevant values for $I(T_f)$ from the proof of Proposition 5.5. We have to analyze $c_a \in \text{Cox}_a$, $c_b \in \text{Cox}_b$ and $c_c \in \text{Cox}_c$. If (W, S) is of type D, we obtain

$$Q_{c_a} = (n - 4)2^{n-1} + 2^{n-3} + 1, \quad Q_{c_b} = (n - 4)2^{n-1} + 3 \quad \text{and} \quad Q_{c_c} = (n - 4)2^{n-1} + 3.$$

The maximum is achieved by c_a, c_b, and c_c if $n = 4$ and only by c_b if $n \geq 5$. If (W, S) is of type E, we similarly obtain

$$Q_{c_a} = (n - 5)2^{n-2} + 5 \cdot 2^{n-4} + 1, \quad Q_{c_b} = (n - 5)2^{n-2} + 2^{n-2} + 5 \quad \text{and} \quad Q_{c_c} = (n - 5)2^{n-2} + 2n + 1.$$

The maximum is achieved by c_a and c_b if $n = 6$ and by c_b if $n \in \{7, 8\}$. In particular, this shows that the number of cut functions that cross f is not always maximized if the number of extrema of f is minimized.

\[\square\]

Acknowledgements

The authors would like to thank Vic Reiner for pointing out his article with Galambos which initiated this work, and Cesar Ceballos and Vincent Pilaud for helpful discussions and their hospitality in Paris and Toronto.

References

[Abel91] James Abello. The weak Bruhat order of S_n, consistent sets, and Catalan numbers, SIAM J. Discr. Math. 4 (1991), no. 1, 1–16.

[BFS90] Louis J. Billera, Paul Fillman, and Bernd Sturmfels, Constructions and complexity of secondary polytopes, Adv. Math. 83 (1990), 155–179.

[BHLT09] Nantel Bergeron, Christophe Hohlweg, Carsten E.M.C. Lange, and Hugh Thomas, Isometry classes of generalized associahedra, Sém. Lothar. Combin. B61Aa (2009), 13 pp.

[CLS14] Cesar Ceballos, Jean-Philippe Labbé, and Christian Stump, Subword complexes, cluster complexes, and generalized multi-associahedra, J. Algebraic Combin. 39 (2014), no. 1, 17–51.

[CN89] Célestin Chameni-Nembua, Règle majoritaire et distributivité dans le permutoèdre, Math. Inf. Sci. Hum. 27 (1989), no. 108, 5–22.

[dC85] Marquis de Condorcet, Essais sur l’application de l’analyse à la probabilité des décisions rendues à la pluralité des voix, Imprimerie Royale, Paris, 1785.

[Dev09] Satyan L. Devadoss, A realization of graph associahedra, Discrete Math. 309 (2009), 271–276.

[DKK12] Vladimir I. Danilov, Alexander V. Karzanov, and Gleb Koshevoy, Condorcet domains of tiling type, Discrete Appl. Math. 160 (2012), no. 7–8, 933–940.

[Fis97] Peter C. Fishburn, Acyclic sets of linear orders: A progress report, Soc. Choice Welfare 14 (1997), 113–124.

[Fis02] Acyclic sets of linear orders: A progress report, Soc. Choice Welfare 19 (2002), 431–447.

[FV11] Stefan Felsner and Pavel Valtr, Coding and counting arrangements of pseudolines, Discrete Comput. Geom. 46 (2011), no. 3, 405–416.

[FZ03] Sergey Fomin and Andrei Zelevinsky, Y-systems and generalized associahedra, Ann. of Math. 158 (2003), 977–1018.

[GKZ04] Israel M. Gelfand, Mikhail M. Kapranov, and Andrei V. Zelevinsky, Discriminants, Resultants, and Multidimensional Determinants, Birkhäuser, Boston, 1994.

[GR08] Ádám Galambos and Victor Reiner, Acyclic sets of linear orders via the Bruhat orders, Soc. Choice Welfare 30 (2008), no. 2, 245–264.

[Hai84] Mark Haiman, Constructing the associahedron, unpublished manuscript, http://math.berkeley.edu/~mhaiman/ftp/assoc/manuscript.pdf (1984), 12 pp.

[HL07] Christophe Hohlweg and Carsten E.M.C. Lange, Realizations of the associahedron and cyclohedron, Discrete Comput. Geom. 37 (2007), no. 4, 517–543.

[HLT11] Christophe Hohlweg, Carsten E.M.C. Lange, and Hugh Thomas, Permutohedra and generalized associahedra, Adv. Math. 226 (2011), no. 1, 608–640.

[Hum92] James E. Humphreys, Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics. 29 (Cambridge University Press), 1992.

[Kel10] Bernhard Keller, Cluster algebras, quiver representations and triangulated categories, Triangulated Categories, London Math. Soc. Lecture Note Ser., vol. 375, Cambridge University Press, Cambridge, 2010, pp. 76–160.

[Knu92] Donald E. Knuth, Axioms and Hulls, Lecture Notes in Computer Science, vol. 606, Springer-Verlag, Berlin, Heidelberg, 1992.
[Lee89] Carl W. Lee, *The associahedron and triangulations of the n-gon*, Europ. J. Combinatorics 10 (1989), 551–560.

[Lod04] Jean-Louis Loday, *Realization of the Stasheff polytope*, Arch. Math. 83 (2004), no. 3, 267–278.

[LP18] Carsten Lange and Vincent Pilaud, *Associahedra via spines*, Combinatorica, DOI: 10.1007/s00493-015-3248-y (2018), 44 pp.

[MHP12] Folkert Müller-Hoissen, Jean Marcel Pallo, and Jim Stasheff (eds.), *Associahedra, Tamari lattices and related structures*, Progress in Mathematics, vol. 299, Birkhäuser Boston Inc., Boston, MA, 2012.

[MS89] Yuri I. Manin and Vadim V. Schechtman, *Arrangements of hyperplanes, higher braid groups and higher Bruhat orders*, Algebraic number theory – in honor of K. Iwasawa, Advanced studies in pure mathematics, Kinokuniya/Academic Press, Boca Raton, FL, 1989, pp. 289–308.

[Nil12] Jonathan Nilsson, *Enumeration of basic ideals in type B Lie algebras*, J. Integer Seq. 15 (2012), no. 9, Art. 12.9.5, 30.

[NJAS17] editor N. J. A. Sloane, *The on-line encyclopedia of integer sequences*, 2017, http://oeis.org.

[Pos09] Alexander Postnikov, *Permutohedra, associahedra, and beyond*, Int. Math. Res. Not. (2009), no. 6, 1026–1106.

[PP12] Vincent Pilaud and Michel Pocchiola, *Multitriangulations, pseudotriangulations and primitive sorting networks*, Discrete Comput. Geom. 48 (2012), no. 1, 142–191.

[PRW08] Alex Postnikov, Victor Reiner, and Lauren Williams, *Faces of generalized permutohedra*, Doc. Math. 13 (2008), 207–273.

[PS12] Vincent Pilaud and Francisco Santos, *The brick polytope of a sorting network*, Eur. J. Combin. 33 (2012), no. 4, 632–662.

[PS15] Vincent Pilaud and Christian Stump, *Brick polytopes of spherical subword complexes and generalized associahedra*, Adv. Math. 276 (2015), 1–61.

[PWZ96] Marko Petkovšek, Herbert S. Wilf, and Doron Zeilberger, *A = B*, A K Peters Ltd., Wellesley, MA, 1996.

[Rea06] Nathan Reading, *Cambrian lattices*, Adv. Math. 205 (2006), no. 2, 313–353.

[Rea07] Nathan Reading, *Clusters, Coxeter-sortable elements and noncrossing partitions*, Trans. Amer. Math. Soc. 359 (2007), no. 12, 5931–5958.

[Shi97] Jian-Yi Shi, *The enumeration of Coxeter elements*, J. Algebraic Combin. 6 (1997), no. 2, 161–171.

[Sta63] James D. Stasheff, *Homotopy associativity of H-spaces. I*, Trans. Amer. Math. Soc. 108 (1963), no. 2, 257–292.

[Sta12] Richard P. Stanley, *Enumerative combinatorics. Volume I*, second ed., Cambridge Studies in Advanced Mathematics, vol. 49, Cambridge University Press, Cambridge, 2012.

[Ste96] John R. Stembridge, *On the fully commutative elements of Coxeter groups*, J. Algebraic Combin. 5 (1996), no. 4, 353–385.

[Tam51] Dov Tamari, *Monoides préordonnés et chaînes de Malcev*, Ph.D. thesis, Paris, 1951.

[Vie86] Gérard Xavier Viennot, *Heaps of pieces. I. Basic definitions and combinatorial lemmas*, Combinatoire énumérative (Gilbert Labelle and Pierre Leroux, eds.), Lecture Notes in Math., vol. 1234, Springer, Berlin, 1986, pp. 312–350.

[Zie93] Günter M. Ziegler, *Higher Bruhat orders and cyclic hyperplane arrangements*, Topology 32 (1993), no. 2, 259–279.

[Zie95] Günter M. Ziegler, *Lectures on polytopes*, GTM, vol. 152, Springer, New York, 1995.

(J.-P. Labbé) Institut für Mathematik, Freie Universität Berlin, Arnimallee 2, 14195 Berlin, Germany

E-mail address: labbe@math.fu-berlin.de

URL: http://page.mi.fu-berlin.de/labbe

(C.E.M.C. Lange) Fakultät für Mathematik, Technische Universität München, D-85748, Garching, Germany

E-mail address: lange@ma.tum.de

URL: https://www-m10.ma.tum.de/bin/view/Lehrstuhl/CarstenLange