Supplementary Materials

CHA-type zeolite prepared by interzeolite conversion method using FAU and LTL-type zeolite: effect of the raw materials on the crystallization mechanism, and physicochemical and catalytic properties

Toshiki Nishitoba¹, Takuya Nozaki¹, Sungsik Park¹, Yong Wang¹, Junko N. Kondo¹, Hermann Gies¹,², Toshiyuki Yokoi*¹

¹ Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
² Institute of Geology, Mineralogy und Geophysics, Ruhr-University Bochum, 44780, Germany

* Correspondence: yokoi@cat.res.titech.ac.jp; Tel.: +81-45-924-5430, Fax: +81-45-924-5431
(a) LTL (HSZ-500KOA (Si/Al = 3.0))

(b) FAU (JRC-Y-4.8 (Si/Al = 2.4))
Figure S1. Physicochemical properties of (a) LTL (HSZ-500KOA (Si/Al = 3.0)), (b) FAU (JRC-Y-4.8 (Si/Al = 2.4)) and (c) seed crystal (CHA-type zeolite) used as parent zeolite for the synthesis of CHA.
Figure S2. XRD patterns of (a) CHA-LTL-TMAda, (b) CHA-FAU-TMAda, (c) CHA-LTL-TEA, (d) CHA-FAU-TEA.

Figure S3. 27Al MAS NMR spectra of the calcined Na-type products: (a) CHA-FAU-TMAda, (b) CHA-LTL-TMAda, (c) CHA-LTL-TEA, (d) CHA-FAU-TEA.
Figure S4. 27Al MAS NMR spectra of the H$^+$ type products: (a) CHA-FAU-TMAda, (b) CHA-LTL-TMAda, (c) CHA-FAU-TEA, (d) CHA-LTL-TEA.

Table S1. The products’ selectivities in the MTO reaction over CHA-LTL-TMAda, CHA-FAU-TMAda, CHA-LTL-TEA, and CHA-FAU-TEA.

Catalyst	Acid amounta / mmol g$^{-1}$	TOS$_{95}^b$ / min	Product selectivity (C-atom %)b	Paraffins (C1-C4)	DME	Over C5
CHA-LTL-TMAda	0.46	180	56.7 28.8 6.4 6.0	0.3	1.9	
CHA-FAU-TMAda	0.47	240	55.9 28.9 7.7 4.7	2.0	0.9	
CHA-LTL-TEA	0.80	180	51.6 33.4 6.3 4.6	2.8	1.3	
CHA-FAU-TEA	1.17	120	48.0 30.8 5.9 5.2	8.9	1.1	

a; Estimated by the NH3-TPD, b; TOS$_{95}$ indicates TOS (time on Stream) required to achieve methanol conversion drop below 95%.