CERTIFIED DOMINATION

MAGDA DETTLAFF, MAGDALENA LEMAŃSKA
Gdańsk University of Technology, 80-233 Gdańsk, Poland
{mdettlaff,magda}@mif.pg.gda.pl

JERZY TOPP, RADOSŁAW ZIEMANN, PAWEŁ ŻYLIŃSKI
University of Gdańsk, 80-952 Gdańsk, Poland
{j.topp,rziemann,zylinski}@inf.ug.edu.pl

Abstract
Imagine that we are given a set D of officials and a set W of civils. For each civil $x \in W$, there must be an official $v \in D$ that can serve x, and whenever any such v is serving x, there must also be another civil $w \in W$ that observes v, that is, w may act as a kind of witness, to avoid any abuse from v. What is the minimum number of officials to guarantee such a service, assuming a given social network?

In this paper, we introduce the concept of certified domination that perfectly models the aforementioned problem. Specifically, a dominating set D of a graph $G = (V_G, E_G)$ is said to be certified if every vertex in D has either zero or at least two neighbours in $V_G \setminus D$. The cardinality of a minimum certified dominating set in G is called the certified domination number of G. Herein, we present the exact values of the certified domination number for some classes of graphs as well as provide some upper bounds on this parameter for arbitrary graphs. We then characterise a wide class of graphs with equal domination and certified domination numbers and characterise graphs with large values of certified domination numbers. Next, we examine the effects on the certified domination number when the graph is modified by deleting/adding an edge or a vertex. We also provide Nordhaus-Gaddum type inequalities for the certified domination number. Finally, we show that the (decision) certified domination problem is NP-complete. As a side result, we characterise a wider class of DD_2-graphs, thus generalizing a result of [19].

Keywords: Certified domination, domination, corona, Nordhaus-Gaddum, DD_2-graph.

AMS Subject Classification: 05C05, 05C

1 Introduction
Imagine that we are given a set D of officials and a set W of civils. For each civil $x \in W$, there must be an official $v \in D$ that can serve x, and whenever any such v is serving x, there must also be another civil $w \in W$ that observes v, that is, w may act as a kind of witness, to avoid any abuse from v. What is the minimum number of officials to guarantee such a service, assuming a given social network?

The aforementioned problem motivates us introducing the concept of certified domination. Specifically, let D be a subsets of the vertex set of a graph $G = (V_G, E_G)$. We say that D dominates G (or is a dominating set of G) if each vertex in the set $V_G \setminus D$ has a neighbour in D. The cardinality of a minimum dominating set in G is called the domination number of G and denoted by $\gamma(G)$, and any minimum dominating set of G is called
a γ-set. A dominating set D of G is called certified if every vertex $v \in D$ has either zero or at least two neighbours in $V_G \setminus D$. The cardinality of a minimum certified dominating set in G is called the certified domination number of G and denoted by $\gamma_{\text{cer}}(G)$. A minimum certified dominating set of G is called a γ_{cer}-set. Notice that, by the definition, V_G is a certified dominating set of G, and certainly $1 \leq \gamma_{\text{cer}}(G) \leq |V_G|$. Furthermore, one can observe that $\gamma_{\text{cer}}(G) \neq |V_G| - 1$.

There is a wealth of literature about domination and its variations in graphs; we refer to the excellent books of Haynes, Hedetniemi, and Slater [17, 18]. The domination concept we introduce perfectly fits into that area where, for a given graph G, domination parameters are defined by imposing additional constraints on a dominating set D or its complement $V_G \setminus D$. This area includes, to mention but a few, the multiple domination, the distance domination, or the global domination. In particular, the problem of certified domination is closely related to the problem of existence a DD_2-pair in a graph, introduced by Henning and Rall in [19]. Recall, a set $X \subseteq V_G$ of vertices is 2-dominating in G if it is a dominating set of G and every vertex in $V_G \setminus X$ has at least two neighbours in X [14, 15]. A DD_2-pair of G is a pair (D, D_2) of disjoint sets of vertices of G such that D is a dominating set of G and D_2 is a 2-dominating set of G; a graph that has a DD_2-pair is called a DD_2-graph. One can observe that if G has a DD_2-pair (D, D_2), then the set D is a certified dominating set. However, there are graphs G with $\gamma_{\text{cer}}(G) < |D|$ for any (D, D_2)-pair in G (if any), see Fig. 1 for an illustration.

![Fig. 1. The family of graphs G_i.](image)

(a) Black vertices form a certified dominating set D_c with $|D_c| = i + 3$, $i \geq 2$. (b) Black and grey vertices form a (D, D_2)-pair, respectively, with $|D| = 2i + 1$. Observe that if $i \geq 3$, then G_i has no (D, D_2)-pair with $|D| \leq i + 3$.

Organization of the paper. In Section 2, we present the exact values of the certified domination number for some elementary classes of graphs. Some upper bounds on this new parameter for an arbitrary graph are presented in Section 3. Then, in Section 4 and Section 5, respectively, we characterise a wide class of graphs with equal domination and certified domination numbers and characterise graphs with large values of certified domination numbers. Next, in Section 6, we examine the effects on the certified domination number when the graph is modified by deleting/adding an edge or a vertex. Finally, Section 7 is devoted to Nordhaus-Gaddum type inequalities for the certified domination number, while in Section 8, we show that the (decision) certified domination problem is NP-complete. In addition, as a side result, in Section 9, we characterise a wider class of DD_2-graphs, thus generalizing a result of [19].

1.1 Definitions and notation

For general graph theory terminology, we follow [10]. In particular, for a vertex v of a graph $G = (V_G, E_G)$, its (open) neighbourhood, denoted by $N_G(v)$, is the set of all
vertices adjacent to \(v \), and the cardinality of \(N_G(v) \), denoted by \(\text{deg}_G(v) \), is called the degree of \(v \). The closed neighbourhood of \(v \), denoted by \(N_G[v] \), is the set \(N_G(v) \cup \{v\} \). In general, for a subset \(X \subseteq V_G \) of vertices, the (open) neighbourhood of \(X \), denoted by \(N_G(X) \), is defined to be \(\bigcup_{v \in X} N_G(v) \), and the closed neighbourhood of \(X \), denoted by \(N_G[X] \), is the set \(N_G(X) \cup X \). The minimum and maximum degree of a vertex in \(G \) is denoted by \(\delta(G) \) and \(\Delta(G) \), respectively. A vertex of degree \(|V_G| - 1 \) is called a universal vertex of \(G \). A vertex of degree one is called a leaf, and the only neighbour of a leaf is called its support vertex (or simply, its support). If a support vertex has at least two leaves as neighbours, we call it a strong support, otherwise it is a weak support. The set of leaves of \(G \) is denoted by \(L_G \). For a leaf \(v \in L_G \), its support vertex is denoted by \(s_G(v) \), and for a weak support \(v \), the unique leaf adjacent to \(v \) is denoted by \(l_G(v) \). The set of weak supports of \(G \) is denoted by \(S_1(G) \), while the set of strong supports of \(G \) is denoted by \(S_2(G) \).

2 Elementary graph classes

We begin by presenting the exact values of the certified domination number for some elementary classes of graphs.

Observation 2.1. If \(P_n \) is an \(n \)-vertex path, then

\[
\gamma_{\text{cer}}(P_n) = \begin{cases}
1 & \text{if } n = 1 \text{ or } n = 3; \\
2 & \text{if } n = 2; \\
4 & \text{if } n = 4; \\
\left\lceil \frac{n}{3} \right\rceil & \text{otherwise.}
\end{cases}
\]

Observation 2.2. If \(C_n \) is an \(n \)-vertex cycle, \(n \geq 3 \), then \(\gamma_{\text{cer}}(C_n) = \left\lceil \frac{n}{3} \right\rceil \).

Observation 2.3. If \(K_n \) is an \(n \)-vertex complete graph, then

\[
\gamma_{\text{cer}}(K_n) = \begin{cases}
1 & \text{if } n = 1 \text{ or } n \geq 3; \\
2 & \text{if } n = 2.
\end{cases}
\]

Observation 2.4. If \(K_{m,n} \) is a complete bipartite graph with \(1 \leq m \leq n \), then

\[
\gamma_{\text{cer}}(K_{m,n}) = \begin{cases}
1 & \text{if } m = 1 \text{ and } n > 1; \\
2 & \text{otherwise.}
\end{cases}
\]

Observation 2.5. If \(W_n \) is an \(n \)-vertex wheel, then \(\gamma_{\text{cer}}(W_n) = 1 \).

In addition, we have the following two general observations on the certified domination number of a graph.

Observation 2.6. If \(G \) is a graph of order at least three, then \(\gamma_{\text{cer}}(G) = 1 \) if and only if \(G \) has a universal vertex.

Observation 2.7. If \(G_1, \ldots, G_k \) are the connected components of a graph \(G \), then

\[
\gamma_{\text{cer}}(G) = \sum_{i=1}^{k} \gamma_{\text{cer}}(G_i).
\]
3 Upper bounds on the certified domination number

In this section we focus on upper bounds on the certified domination number. We start with two simple observations and then present our main result of this section: an upper bound on $\gamma_{\text{cer}}(G)$ with respect to the domination number $\gamma(G)$ and the number $|S_1(G)|$ of weak supports in G.

Observation 3.1. If D_c is a certified dominating set of a graph G, then every support vertex of G belongs to D_c.

Proof. Let s be a support vertex of G. If s were not in D_c, then $l_G(s)$ should be in D_c. But then $l_G(s)$ would have only one neighbour in $V_G \setminus D_c$, and D_c would not be a certified dominating set. \square

Observation 3.2. Let G be a graph of order n. If the strong supports of G are adjacent to k leaves in total, then $\gamma_{\text{cer}}(G) \leq n - k$. In particular, $\gamma_{\text{cer}}(G) \leq n - 2|S_2(G)|$.

Proof. Let L be the set of all leaf-neighbours of strong supports of G. Then $|L| = k$ and the set $V_G \setminus L$ is a certified dominating set of G. Thus $\gamma_{\text{cer}}(G) \leq |V_G \setminus L| = n - k \leq n - 2|S_2(G)|$ as $|L| \geq 2|S_2(G)|$. \square

Before we present our main result, let us introduce some useful terminology. Let D be a dominating set of a graph G. An element of D that has all neighbours in D is said to be shaded with respect to D (shortly shadowed), an element of D that has exactly one neighbour in $V_G \setminus D$ is said to be half-shadowed with respect to D (shortly half-shadowed), while an element of D having at least two neighbours in $V_G \setminus D$ is said to be illuminated with respect to D (shortly illuminated). It is easy to observe that if D is a minimum dominating set of a graph with no isolated vertices, then D has no shadowed element, and if D is a certified dominating set, then D has no half-shadowed element.

Theorem 3.3. If G is a connected graph, then $\gamma_{\text{cer}}(G) \leq \gamma(G) + |S_1(G)|$.

Proof. If G is a graph of order at most two, then the inequality is obvious. Thus assume that G has at least three vertices. Let D be a γ-set of G that minimizes the number of half-shadowed vertices and such that D does not contain any leaf of G. (Notice that such D always exists as G is connected and $|V_G| \geq 3$.) Let $D_{hs} \subseteq D$ be the set of all half-shadowed vertices of D. If $D_{hs} = \emptyset$, then $\gamma_{\text{cer}}(G) = \gamma(G) \leq \gamma(G) + |S_1(G)|$. Thus assume that $D_{hs} \neq \emptyset$.

Claim 1. If $v \in D_{hs}$, then $\deg_G(v) \geq 2$ and $v \notin S_2(G)$.

The inequality $\deg_G(v) \geq 2$ follows from the choice of D, that is, from the assumption that $D \cap L_G = \emptyset$. To argue the second property, suppose on the contrary that v is a strong support. Again, since $L_G \cap D = \emptyset$ and v has at least two leaf-neighbours, v would not be half-shadowed, a contradiction.

Next we show that all half-shadowed vertices are weak supports. Suppose on the contrary that there is a half-shadowed vertex $v \in D_{hs} \setminus S_1(G)$ and let u be the unique neighbour of v in $V_G \setminus D$. Since v is neither a weak nor strong support (by assumption and Claim 1, respectively), it implies that u is not a leaf. Furthermore, we have the following claim.
Claim 2. All but \(v \) neighbours of \(u \) are in \(V_G \setminus D \).

Otherwise the set \(D \setminus \{v\} \) would be a smaller (than \(D \)) dominating set of \(G \).

On the other hand, as regards all (but \(u \)) neighbours of \(v \) that are in \(D \), we have the following claim.

Claim 3. If \(w \in N_G(v) \setminus \{u\} \), then \(w \) is not shadowed.

Otherwise the set \(D \setminus \{w\} \) would be a smaller (than \(D \)) dominating set of \(G \).

Consequently, keeping in mind the fact that none of neighbours of \(v \) is a leaf (see Claim 1), by combining Claims 2 and 3, we conclude that the set \((D \setminus \{v\}) \cup \{u\} \) would be a dominating set with a smaller number of half-shadowed vertices, a contradiction. Therefore, the set \(D_{hs} \) of half-shadowed vertices consists of weak supports of \(G \) only.

Observe now that adding to \(D \) all leaves adjacent to half-shadowed weak supports results in a dominating set \(D' \) of \(G \) with no half-shadowed vertices, that is, \(D' \) is a certified dominating set of \(G \). Therefore \(\gamma_{cer}(G) \leq |D'| = |D| + |D_{hs}| = \gamma(G) + |D_{hs}| \leq \gamma(G) + |S_1(G)|. \)

From Observation 2.7 and Theorem 3.3, we immediately obtain the following corollary.

Corollary 3.4. If \(G \) is a graph, then \(\gamma_{cer}(G) \leq \gamma(G) + |S_1(G)|. \)

Finally, we have the following corollary.

Corollary 3.5. If \(G \) is a connected graph, then \(\gamma_{cer}(G) \leq 2 \gamma(G). \)

Proof. Let \(H \) be a connected component of \(G \). If \(H = K_2 \), then \(\gamma_{cer}(H) = 2 \gamma(H) \). If \(H \neq K_2 \), then \(|S_1(H)| \leq \gamma(H) \), and thus \(\gamma_{cer}(H) \leq 2 \gamma(H) \) by Theorem 3.3. Consequently, taking into account Observation 2.7, we conclude that \(\gamma_{cer}(G) \leq 2 \gamma(G). \)

We emphasize that the above upper bounds are sharp: the bound \(\gamma_{cer}(G) \leq \gamma(G) + |S_1(G)| \) in terms of \(|S_1(G)| \), while the bound \(\gamma_{cer}(G) \leq 2 \gamma(G) \) in terms of \(\gamma(G) \), and their sharpnesses are established by coronas of graphs which we shall discuss in Section 5 (see Remark on page 7).

4 Graphs with \(\gamma_{cer} = \gamma \)

We continue our study on the certified domination number by focusing now on the class of graphs with \(\gamma_{cer} = \gamma \). When trying to characterise this class, one may expect that the main problem lies in leaves of a graph. In fact, from the inequalities \(\gamma(G) \leq \gamma_{cer}(G) \leq \gamma(G) + |S_1(G)| \) (see Corollary 3.4), we immediately have the first two results of this section.

Corollary 4.1. If \(G \) is a graph with no weak support, then \(\gamma_{cer}(G) = \gamma(G) \).

Corollary 4.2. If \(G \) is a graph with \(\delta(G) \geq 2 \), then \(\gamma_{cer}(G) = \gamma(G) \).

The above two corollaries also follow from the next more general lemma.

Lemma 4.3. If a connected graph \(G \) has at least three vertices, then \(\gamma_{cer}(G) = \gamma(G) \) if and only if there exists a minimum dominating set \(D \) of \(G \) such that \(N_G(s) \setminus L_G \nsubseteq D \) for every \(s \in S_1(G) \).
Proof. Assume first that $\gamma_{\text{cer}}(G) = \gamma(G)$. Let D_c be a minimum certified dominating set of G. Then D_c is a minimum dominating set of G. Now, if $s \in S_1(G)$, then $D_c \cap \{s, l_G(s)\} \neq \emptyset$ (as D_c is dominating in G), $|D_c \cap \{s, l_G(s)\}| \neq 2$ (otherwise $D_c \setminus \{l_G(s)\}$ would be a smaller dominating set of G), and $D_c \cap \{s, l_G(s)\} \neq \{l_G(s)\}$ (otherwise $l_G(s)$ would be half-shadowed). Thus $D_c \cap \{s, l_G(s)\} = \{s\}$ and $(N_G(s) \setminus L_G) \cap (V_G \setminus D_c) = (N_G(s) \setminus \{l_G(s)\}) \cap (V_G \setminus D_c) \neq \emptyset$ (otherwise s would be half-shadowed), and so $N_G(s) \setminus L_G \not\subseteq D_c$.

Assume now that in G there exists a γ-set D such that $N_G(s) \setminus L_G \not\subseteq D$ for every $s \in S_1(G)$. Of all such sets, choose one, say D', that does not contain any leaf of G (such D' exists in every connected graph of order at least three) and minimizes the number of its half-shadowed vertices. We claim that such D' is a certifying dominating set of G (and therefore $\gamma(G) = |D'| = \gamma_{\text{cer}}(G)$). Suppose, on the contrary, that some element v of D' is half-shadowed. Let v' be the unique element of $N_G(v) \setminus D'$. Since v is half-shadowed, $v \not\in S_2(G)$, and $v \not\in S_1(G)$ (as every element of $S_1(G)$ is illuminated by the adjacent leaf and, by the assumption, by at least one non-leaf). Finally, since $D' \cap L_G = \emptyset$ (by the choice of D') and $v \in D'$, we have $v \not\in L_G$ and $d_G(v) \geq 2$. Now, if it were $N_G(v') \cap (D' \setminus \{v\}) \neq \emptyset$, then $D' \setminus \{v\}$ would be a dominating set of G smaller than D', a contradiction. Thus $N_G(v') \setminus \{v\}$ must be a nonempty subset of $V_G \setminus D'$ and, then, $D'' = (D' \setminus \{v\}) \cup \{v'\}$ is a minimum dominating set of G and it has less half-shadowed vertices than D', a final contradiction which proves that $\gamma(G) = \gamma_{\text{cer}}(G)$.

Observe that if $G = \overline{K_n}$, then $\gamma_{\text{cer}}(G) = n = \gamma(G)$. Next, if $G = lK_2$, then $\gamma_{\text{cer}}(G) = 2l \neq l = \gamma(G)$. In the latter case, $S_1(G) = V_G = L_G$ and G has no minimum dominating set D of G such that $N_G(s) \setminus L_G \not\subseteq D$ for every $s \in S_1(G)$. Therefore, taking into account Observation 2.7 and Lemma 4.3, we obtain the following corollary for graphs which are not necessarily connected.

Corollary 4.4. If G is a graph, then $\gamma_{\text{cer}}(G) = \gamma(G)$ if and only if there exists a minimum dominating set D in G such that $N_G(s) \setminus L_G \not\subseteq D$ for every $s \in S_1(G)$.

Furthermore, we have the following relation between graphs each of which has a unique minimum dominating set and those for which γ_{cer} and γ are equal.

Corollary 4.5. If a graph G has a unique minimum dominating set, then $\gamma_{\text{cer}}(G) = \gamma(G)$.

Proof. If $S_1(G) = \emptyset$, then $\gamma_{\text{cer}}(G) = \gamma(G)$ by Corollary 4.1. Thus assume that $S_1(G) \neq \emptyset$. Let D be the minimum dominating set of G. From the uniqueness and minimality of D it follows that $S_1(G) \subseteq D$ and $L_G \subseteq V_G \setminus D$. Now, if it were $\gamma_{\text{cer}}(G) \neq \gamma(G)$, then, by Lemma 4.3, we could find $s \in S_1(G)$ such that $N_G(s) \setminus \{l_G(s)\} \subseteq D$, and then the set $(D \setminus \{s\}) \cup \{l_G(s)\}$ would be another minimum dominating set of G, which is impossible. \hfill \Box

5 Graphs with large values of γ_{cer}

As we have already observed, for any graph G of order n, $\gamma_{\text{cer}}(G) \leq n$, $\gamma_{\text{cer}}(G) \neq n - 1$, and there are graphs G with $\gamma_{\text{cer}}(G) = n$, for example, the complement of a complete graph K_n or a 4-vertex path P_4. Thus it is natural to try to characterise all graphs with $\gamma_{\text{cer}} = n$ and $\gamma_{\text{cer}} = n - 2$, respectively, which is successfully carried out in this section.
In particular, we prove that \(\gamma_{\text{cer}}(G) = n \) if and only if \(G \) is the complement of a complete graph, the corona of a graph, or the union of both of them. Recall, the corona product (or simply, the corona) of two graphs \(H \) and \(F \) is the graph \(G = H \circ F \) resulting from the disjoint union of \(H \) and \(|V_H| \) copies of \(F \) in which the \(i \)-th vertex of \(H \) is joined to all vertices of the \(i \)-th copy of \(F \). If \(F \) is a 1-vertex graph, \(F = K_1 \), then the corona \(H \circ K_1 \) is simply called the corona of \(H \).

Lemma 5.1. Let \(G \) be a connected graph of order \(n \). If \(G \) is the corona of some graph, then \(\gamma_{\text{cer}}(G) = n \).

Proof. Let \(D_c \) be a smallest certified dominating set of \(G \). It suffices to prove that \(D_c = V_G \). This is obvious if \(n = 2 \). Thus assume \(n > 2 \). In this case, since \(G \) is the corona of some graph, every vertex of \(G \) either is a leaf of \(G \) or is adjacent to exactly one leaf of \(G \). From this and from Observation 3.1 it follows that \(V_G \setminus L_G \subseteq D_c \). Moreover, every leaf \(l \) of \(G \) also belongs to \(D_c \) (as otherwise its only neighbour \(s_G(l) \) would be half-shadowed). Consequently, \(L_G \subseteq V_G \) and therefore \(D_c = V_G \). \(\square \)

Lemma 5.2. Let \(G \) be a connected graph of order \(n \geq 2 \). If \(\gamma_{\text{cer}}(G) = n \), then \(G \) is the corona of some graph.

Proof. The statement is obvious for connected graphs of order at most 4. Thus assume that \(G \) is a connected graph of order \(n \geq 5 \) and \(\gamma_{\text{cer}}(G) = n \). Now, since \(\gamma(G) \leq n/2 \) for every graph with no isolated vertex, so by Corollary 3.5 we have \(\gamma_{\text{cer}}(G) \leq 2\gamma(G) \leq n = \gamma_{\text{cer}}(G) \). Thus \(\gamma(G) = n/2 \) and so \(G \) is the corona of some graph (as it was proved in [16]). \(\square \)

From the above lemmas, we immediately conclude with the following theorem.

Theorem 5.3. If \(G \) is a graph of order \(n \), then \(\gamma_{\text{cer}}(G) = n \) if and only if \(G \) is either the complement of a complete graph, or the corona of a graph, or the union of both of them.

Remark. We incidentally observe that the above result implies the sharpness of the upper bound \(\gamma_{\text{cer}}(G) \leq \gamma(G) + |S_1(G)| \) (Corollary 3.4) in terms of \(|S_1(G)| \) as well as the sharpness of the upper bound \(\gamma_{\text{cer}}(G) \leq 2\gamma(G) \) (Corollary 3.5) in terms of \(\gamma(G) \), since for the corona \(G \) of any graph, we have \(|S_1(G)| = \gamma(G) \) and \(\gamma_{\text{cer}}(G) = 2\gamma(G) \).

5.1 Graphs with \(\gamma_{\text{cer}} = n - 2 \)

A **diadem graph** of a graph \(H \) is a graph obtained from the corona \(H \circ K_1 \) by adding a new vertex, say \(v \), and joining \(v \) to one of support vertices of \(H \circ K_1 \) (see Fig. 2).

![Fig. 2. The diadem graph resulting from the corona \(G = (K_3 \cup K_2) \circ K_1 \) by adding a leaf to the support vertex \(s \) of \(G \).](image)
Lemma 5.4. If G is a diadem graph of order n, then $\gamma_{cer}(G) = n - 2$.

Proof. Let s be the unique strong support of G, and let l_1, l_2 be the two leaves of G adjacent to s in G. It is obvious that $V_G \setminus \{l_1, l_2\}$ is a certified dominating set of G. Let D_c be a smallest certified dominating set of G. Then $V_G \setminus L_G \subseteq D_c$ (by Observation 3.1) and $\{l_1, l_2\} \cap D_c = \emptyset$. Moreover, every leaf l different from l_1 and l_2 belongs to D_c (otherwise $s_G(l)$ would be half-shadowed). Consequently $D_c = V_G \setminus \{l_1, l_2\}$ and therefore $\gamma_{cer}(G) = n - 2$. \hfill \square

Lemma 5.5. Let G be a connected graph of order n. If $\gamma_{cer}(G) = n - 2$, then $G = C_3$, $G = C_4$, or G is a diadem graph (of a connected graph).

Proof. If G is a connected graph of order at most $n \leq 4$ and $\gamma_{cer}(G) = n - 2$, then $G = K_{1,2}$, $G = C_3$ or $G = C_4$. Thus assume that $n \geq 5$. In this case $\delta(G) = 1$, as otherwise, since $\gamma_{cer}(G) = \gamma(G)$ (by Corollary 4.2), $\gamma_{cer}(G) = n - 2$, and $\gamma(G) \leq \frac{n}{2}$, we would have $n - 2 = \gamma_{cer}(G) = \gamma(G) \leq \frac{n}{2}$, which is impossible. We now claim that G is a diadem graph.

By way of contradiction, suppose that the claim is false. Let G be a smallest counterexample, say of order $n \geq 5$, such that $\gamma_{cer}(G) = n - 2$ and G is not a diadem graph. Let D_c be a γ_{cer}-set of G, and let v and u be the only elements of $V_G \setminus D_c$. From the fact that $D_c = V_G \setminus \{v, u\}$ is a certified dominating set of G it follows that if $x \in D_c$, then either $x \in N_G(v) \cap N_G(u)$ or $x \notin N_G(v) \cup N_G(u)$. Thus proves that $N_G(v) \cap D_c = N_G(u) \cap D_c$. In addition, the set $V_G \setminus N_G(\{v, u\})$ is nonempty, as otherwise $\{v, u\}$ would be a certified dominating set of G and we would have $n - 2 = \gamma_{cer}(G) \leq |\{v, u\}| = 2$, which is impossible.

Let G' denote the subgraph $G - N_G(\{v, u\})$ of G. From the assumption $\gamma_{cer}(G) = n - 2$ it easily follows that $\gamma_{cer}(G') = |V_{G'}|$. Thus, by Theorem 5.3, every connected component of G' is an isolated vertex or the corona of a graph.

Let H be a connected component of G'. From the fact that $D_c = V_G \setminus \{v, u\}$ is a minimum certified dominating set of G it follows that at least one vertex of H is not adjacent to any vertex belonging to $N_G(\{v, u\}) \setminus \{v, u\}$ as otherwise $D_c \setminus V_H$ would be a certified dominating set of G, which is impossible as $\gamma_{cer}(G) \leq |D_c \setminus V_H| < |D_c| = \gamma_{cer}(G)$. From this we conclude that G' has no isolated vertex. Consequently, every connected component of G' is the corona of a graph.

We now claim that K_2 is not a connected component of G'. Suppose on the contrary that K_2 on vertices a and b is a connected component of G'. Then one of the vertices a and b is a leaf in G and the latter one is adjacent to a vertex in $N_G(\{v, u\}) \setminus \{v, u\}$, say $a \in L_G$ and b is adjacent to a vertex $w \in N_G(\{v, u\}) \setminus \{v, u\}$. Let \tilde{G} denote the graph $G - \{a, b\}$ (of order $n - 2$). For this graph either $\gamma_{cer}(\tilde{G}) < n - 4$, or $\gamma_{cer}(\tilde{G}) = n - 4$, or $\gamma_{cer}(\tilde{G}) > n - 4$. Assume first that $\gamma_{cer}(\tilde{G}) < n - 4$. Let \tilde{D}_c be a smallest certified dominating set of \tilde{G}. Then $\tilde{D}_c \cup \{b\}$ (if $(N_G(b) \setminus \{a\}) \setminus \tilde{D}_c \neq \emptyset$) or $\tilde{D}_c \cup \{a, b\}$ (if $N_G(b) \setminus \{a\} \subseteq \tilde{D}_c$) is a certified dominating set of G and $\gamma_{cer}(G) \leq |\tilde{D}_c \cup \{a, b\}| = \gamma_{cer}(\tilde{G}) + 2 < n - 2$, a contradiction.

Assume now that $\gamma_{cer}(\tilde{G}) > n - 4$. Then $\gamma_{cer}(\tilde{G}) = n - 2 = |V_{\tilde{G}}|$ and, by Theorem 5.3, \tilde{G} is the corona of a graph. But this is impossible as no vertex of $N_G(\{v, u\}) \setminus \{v, u\}$ is a leaf or a neighbour of exactly one leaf. Finally, assume that $\gamma_{cer}(\tilde{G}) = n - 4 = |V_{\tilde{G}}| - 2$. In this case the choice of G implies that \tilde{G} is the diadem graph in which v and u are leaves and w is their only common neighbour. Now, it is obvious that the graph G (obtained
from \(\tilde{G} \) by the addition of the vertices \(a \) and \(b \), and the edges \(ab \) and \(bw \)) is a diadem graph, a contradiction.

Now, to complete the proof, it suffices to show that this smallest counterexample is not a counterexample, that is, it suffices to show that \(G \) is a diadem graph. It is enough to prove that: (1) no vertex belonging to \(N_G\{v, u\} \) is adjacent to a leaf of a connected component of \(G' \) of order at least four, (2) \(v \) and \(u \) have exactly one common neighbour, and (3) \(v \) and \(u \) are not adjacent in \(G \).

1. Suppose on the contrary that there is a vertex in \(N_G\{v, u\} \) adjacent to a leaf \(l \) of a connected component \(H \) (of order at least four) of \(G' \). Let \(L \) be the set of leaves of \(H \) within the distance at most 2 from \(s_H(l) \). Then \(D = D_c \setminus (L \cup \{s_H(l)\}) \) is a certified dominating set of \(G \) and \(|D| < |D_c| \), a contradiction.

2. Suppose on the contrary that \(|N_G\{v, u\} \setminus \{v, u\}| \geq 2 \). Let us consider the set \(S = \{x \in V_{G'} : N_G(x) \cap N_G\{v, u\} \neq \emptyset \} \). By (1), \(S \) is a subset of \(V_{G'} \setminus L_{G'} \). In addition, since \(G' \) is the corona of a graph, every vertex of \(S \) is adjacent to a vertex of \(L_{G'} \). From the supposition \(|N_G\{v, u\} \setminus \{v, u\}| \geq 2 \) and from properties of elements of \(S \) it follows that \(D = \{v, u\} \cup (V_{G'} \setminus L_{G'}) \cup (L_{G'} \setminus N_{G'}(S)) \) (= \(\{v, u\} \cup (V_{G'} \setminus (N_{G}(S) \cap L_{G})) \)) is a certified dominating set of \(G \) and \(|D| < |D_c| \), a contradiction.

3. Suppose on the contrary that \(vu \in E_G \), and consider the graph \(G'' = G - vu \) of order \(n \), in which, by (2), \(v \) and \(u \) are leaves, and they have exactly one common neighbour, say \(w \). In this graph we have either \(\gamma_{cer}(G'') > n - 2 \) (and therefore \(\gamma_{cer}(G'') = n \)), or \(\gamma_{cer}(G'') = n - 2 \), or \(\gamma_{cer}(G'') < n - 2 \). Assume first that \(\gamma_{cer}(G'') = n \). Then, by Theorem 5.3, \(G'' \) is the corona of a graph, but this is impossible as leaves \(v \) and \(u \) share the same neighbour \(w \). Assume now that \(\gamma_{cer}(G'') = n - 2 \). Then, by the choice of \(G \), \(G'' \) is a diadem graph. Let \(L \) be the set of leaves of \(G'' \) within the distance at most 3 from \(v \) (and \(u \)). Then \(D = (D_c \setminus (L \cup \{w\}) \cup \{v\} \) is a certified dominating set of \(G \) and \(|D| < |D_c| \), a contradiction. Finally, assume that \(\gamma_{cer}(G''') < n - 2 \). Let \(D''' \) be a smallest certified dominating of \(G'' \). Since \(w \) is a strong support of \(G'' \), \(w \in D_c \) by Observation 3.1, and \(v, u \notin D''' \) by minimality of \(D''' \). But then, \(D'''' \) is also a certified dominating set of \(G \) and so \(\gamma_{cer}(G) < n - 2 \), a final contradiction. □

From Theorem 5.3, Lemma 5.4 and Lemma 5.5, we have the final characterisation of graphs of order \(n \) with \(\gamma_{cer} = n - 2 \).

Theorem 5.6. Let \(G \) be a graph of order \(n \geq 3 \). Then \(\gamma_{cer}(G) = n - 2 \) if and only if \(G \) is \(C_3, C_4 \), or a diadem graph, or \(G \) is one of these three graphs with possible number of isolated vertices, or \(G \) is the union of one of these three graphs with the corona of some graph, with possible number of isolated vertices. □

6 Influence of deleting/adding edge/vertex

In this section, following [4, 5, 7, 12], to mention but a recent few, we examine the effects on the certified domination number when the graph is modified by deleting/adding an edge or a vertex. We observe that deleting an edge or a vertex may arbitrarily increase the certified domination number. For example, for the graph \(G_i \) of order \(2i + 4 \) illustrated
in Fig. 3(a) we have $\gamma_{cer}(G_i) = i + 1$ and $\gamma_{cer}(G_i - e) = 2i + 4$. To argue a similar influence of deleting a vertex, consider a wheel graph W_n with the hub v. We have $\gamma_{cer}(W_n) = 1$ and $\gamma_{cer}(W_n - v) = \lceil \frac{n-1}{3} \rceil$.

Fig. 3. Adding or deleting an edge may arbitrarily increase the certified domination number.

Adding an edge to a graph may also arbitrarily increase the certified domination number. Namely, consider the disconnected graph H_i of order $2i+4$ illustrated in Fig. 3(b). We have $\gamma_{cer}(H_i) = i + 2$ and $\gamma_{cer}(H_i + e) = 2i + 4$. However, adding an edge to a connected graph does not increase the certified domination number, that is, $\gamma_{cer}(G + e) \leq \gamma_{cer}(G)$ for any connected graph G. To argue this property, we use the following lemma.

Lemma 6.1. Let D_c be a γ_{cer}-set of a connected graph G of order $n \geq 2$. Then:

a) Every shadowed vertex in D_c is a weak support or a leaf.

b) Every non-leaf neighbour of a shadowed weak support is either an illuminated vertex or a shadowed weak support.

Proof. (a) Consider a shadowed vertex $v \in D_c$. Suppose on the contrary that v is neither a weak support nor a leaf in G. By minimality of D_c, there are no shadowed strong supports in D_c, in particular, v is not a strong support, and thus all neighbours of v are of degree at least two. Let $X \subseteq D_c$ be a maximal subset of shadowed vertices such that (i) $v \in X$, (ii) the induced subgraph $G[X]$ is connected, and (iii) none of elements of X is an illuminated vertex or a shadowed weak support. Next, for a vertex $x \in X$, define the set $B_G(x) = N_G(x) \setminus X$. Analogously, define the set $B_G(X) = \bigcup_{x \in X} B_G(x)$.

Observe that by minimality of D_c, each vertex $x \in X$ is a non-support vertex, and by the choice of X, and every element in $B_G(X)$ is either an illuminated vertex or a shadowed weak support.

Case 1: $G[X]$ is a 1-vertex graph. Let L be the set of shadowed leaves within the distance 2 from v. Then the set $D = D_c \setminus (L \cup \{v\})$ would be a certified dominating set of G and $|D| < |D_c|$, a contradiction.

Case 2: $|X| \geq 2$ and $\gamma_{cer}(G[X]) = |X|$. By Theorem 5.3, $G[X]$ is the corona of some connected graph. Observe that by the choice of X and minimality of D_c, if $x \in X$ is a leaf of $G[X]$, then the set $B_G(x)$ is non-empty.

Consider now a weak support s in $G[X]$. Let L_1 be the set of leaves of $G[X]$ within the distance at most 2 from s and let L_2 be the set of shadowed leaves of G within the distance 2 from $L_1 \cup \{s\}$. Then the set $D = D_c \setminus (L_1 \cup L_2 \cup \{s\})$ is a certified dominating set of G and $|D| < |D_c|$, a contradiction.

Case 3: $|X| \geq 3$ and $\gamma_{cer}(G[X]) \leq |X| - 2$ (as the case $\gamma_{cer}(G[X]) = |X| - 1$ is impossible).
Let D_X be a γ_{cer}-set of $G[X]$ and let $\overline{D}_X = X \setminus D_X$. Let L_3 be the set of shadowed leaves within the distance 2 from \overline{D}_X. Then the set $D = D_c \setminus (\overline{D}_X \cup L_3)$ is a certified dominating set of G and $|D| < |D_c|$, a contradiction.

(b) A non-leaf neighbour of a shadowed weak support $s \in D_c$ is either illuminated or shadowed. If s is shadowed, then, since it is not a leaf, it must be a weak support by (a).

Theorem 6.2. If G is a connected graph of order $n \geq 2$, then $\gamma_{cer}(G + e) \leq \gamma_{cer}(G)$.

Proof. One can verify the validity of the theorem for graphs of order at most $n \leq 4$. So assume $n \geq 5$ and let D_c be a γ_{cer}-set of G.

Let $e = vw$, $v, w \in V_G$, be the added edge to G. If both $v, w \in D_c$, then D_c is also a certified dominating set of the graph $G + e$. Similarly, if either both $v, w \notin D_c$, or $v \notin D_c$ and $w \in D_c$ is illuminated, or $v \in D_c$ is illuminated and $w \notin D_c$, then D_c is a certified dominating set of $G + e$ as well. Therefore, in all aforementioned cases, we have $\gamma_{cer}(G + e) \leq |D| = \gamma_{cer}(G)$ as required.

Without loss of generality assume now that $v \notin D_c$ and $w \in D_c$ is shadowed (the case $w \notin D_c$ and $v \in D_c$ is shadowed can be analysed in a similar way). By Lemma 6.1(a), w is either a weak support or a leaf of G.

Case 1: w is a weak support of G. Then the set $D = D_c \setminus \{l_G(w)\}$ is a certified dominating set of $G + e$, and thus, $\gamma_{cer}(G + e) \leq |D| < |D_c| = \gamma_{cer}(G)$.

Case 2: w is a leaf of G. By the choice of D_c, it follows that the support vertex $s_G(w)$ is weak and shadowed. Therefore, by Lemma 6.1(b), every non-leaf neighbour of the weak support $s_G(w)$ in G is either an illuminated vertex or a shadowed weak support of G. Let L be the set of shadowed leaves within the distance 2 from $s_G(w)$ in G. Then, the set $D = D_c \setminus (L \setminus \{s_G(w)\})$ is a certified dominating set in $G + e$, and hence $\gamma_{cer}(G + e) \leq |D| \leq |D_c| - 1 < \gamma_{cer}(G)$. □

![Fig. 4](image)

Fig. 4. Graph G_i has $2i + 1$ vertices, and $\gamma_{cer}(G_i) = i$, while $\gamma_{cer}(G_i + v) = 2i + 2$.

As regards adding a vertex, we claim that it may arbitrarily increase the certified domination number which is not the case as in the model of classic domination. Indeed, for the graph G_i of order $2i+1$ depicted in Fig. 4, we have $\gamma_{cer}(G_i) = i$, while $\gamma_{cer}(G_i + v) = 2i + 2$. However, bearing in mind Corollary 4.1, one can expect that the clue of the above construction lies in adding a leaf. Indeed, this is the case since one can prove that adding a non-leaf vertex does not effect the certified domination number significantly. Namely, we have the following theorem.

Theorem 6.3. If we add a non-leaf vertex v to a graph G, then $\gamma_{cer}(G + v) \leq \gamma_{cer}(G) + 1$.
Proof. Let \(D_c \) be a \(\gamma_{cer} \)-set of a graph \(G \) and let \(v \) be a new added vertex.

Case 1: \(\deg_{G + v}(v) = 2 \). Let \(u \) and \(w \) be the two neighbours of \(v \) in \(G + v \). If either \(v, w \notin D_c \) or both \(v, w \in D_c \), then the set \(D_c \cup \{v\} \) is a certified dominating set of \(G + v \), and thus \(\gamma_{cer}(G + v) \leq \gamma_{cer}(G) + 1 \). Otherwise, without loss of generality, we consider two subcases.

Subcase 1.a: \(u \notin D_c, w \in D_c, \text{ and } w \text{ is illuminated} \). Then the set \(D_c \) remains a certified dominating set of \(G + v \), and in this case, \(\gamma_{cer}(G + v) \leq \gamma_{cer}(G) \) holds.

Subcase 1.b: \(u \notin D_c, w \in D_c, \text{ and } w \text{ is shadowed} \). If the vertex \(w \) constitutes a 1-vertex component of \(G \), then the set \((D_c \setminus \{w\}) \cup \{v\} \) is a certified dominating set in \(G + v \), thus getting \(\gamma_{cer}(G + v) \leq \gamma_{cer}(G) + 1 \). Otherwise, by Lemma 6.1(a), \(w \) is either a weak support or a leaf of \(G \). Now, similarly as in the proof of Theorem 6.2, we consider two subcases.

Subcase 1.b.1: \(w \) is a weak support of \(G \). (We emphasize that this subcase includes the case when \(w \) and the \(I_G(w) \) constitute a 2-vertex component of \(G \).) Then the set \(D_c \setminus \{I_G(w)\} \) is a certified dominating set in \(G + v \). In this case, \(\gamma_{cer}(G + v) \leq \gamma_{cer}(G) - 1 \) holds.

Subcase 1.b.2: \(w \) is a leaf of \(G \), and \(w \) together with the support vertex \(s_G(w) \) does not constitute a 2-vertex component of \(G \). By the choice of \(D_c \), the support vertex \(s_G(w) \) is weak and shadowed. By Lemma 6.1(b), every non-leaf neighbour of \(s_G(w) \) in \(G \) is either an illuminated vertex or a shadowed weak support of \(G \). Again, let \(L \) be the set of shadowed leaves within the distance 2 from \(s_G(w) \) in \(G \). Then, the set \(D = D_c \setminus (L \cup \{s_G(w)\}) \) is a certified dominating set in \(G + v \). In this case, \(\gamma_{cer}(G + v) \leq \gamma_{cer}(G) - 1 \).

Case 2: \(\deg_{G + v}(v) \geq 3 \). Then, when adding \(v \) to \(G \), we first add only two edges, thus obtaining a temporary graph \(G' \), where \(\deg_{G'}(v) = 2 \). Now, taking into account Case 1, we conclude that \(\gamma_{cer}(G') \leq \gamma_{cer}(G) + 1 \). Next, when adding all the remaining edges to \(G' \), sequentially, to obtain the final graph \(G + v \), we apply Theorem 6.2, sequentially, for each of added edge, thus getting \(\gamma_{cer}(G + v) \leq \gamma_{cer}(G') \leq \gamma_{cer}(G) + 1 \) as required. \(\square \)

7 Nordhaus-Gaddum type results

Following the precursory paper of Nordhaus and Gaddum [28], the literature has become abundant in inequalities of a similar type for many graph invariants, see a recent survey by Aouchiche and Hansen [1]. In particular, the following result is known for the domination number.

Theorem 7.1. [2, 8, 21] If \(\overline{G} \) is the complement of a graph \(G \) of order \(n \), then:

a) \(\gamma(G) \gamma(\overline{G}) \leq n \);

b) \(\gamma(G) + \gamma(\overline{G}) \leq n + 1 \) with equality if and only if \(G = K_n \) or \(\overline{G} = K_n \).

Further sharpening of bounds was done for the case when, for example, both \(G \) and \(\overline{G} \) are connected [25] or for graphs with specified minimum degree [11], to mention but a few. In particular, the following theorem was proved in [22].
Theorem 7.2. [22] If a graph G is a graph of order n and neither G nor \overline{G} has an isolated vertex, that is $1 \leq \delta(G) \leq n-2$, then

$$\gamma(G) + \gamma(\overline{G}) \leq \left\lfloor \frac{n}{2} \right\rfloor + 2.$$

Moreover, if $n \neq 9$, the bound is attained if and only if $\{\gamma(G), \gamma(\overline{G})\} = \{\left\lfloor \frac{n}{2} \right\rfloor, 2\}$.

In this section we provide some Nordhaus-Gaddum type inequalities for the certified domination number. First, taking into account Corollary 4.1, Theorem 7.1 and Theorem 7.2, we obtain the following corollary.

Corollary 7.3. If G is a graph of order n and $\min\{\delta(G), \delta(\overline{G})\} \geq 2$, then

$$\gamma_{cer}(G) + \gamma_{cer}(\overline{G}) \leq \left\lfloor \frac{n}{2} \right\rfloor + 2 \quad \text{and} \quad \gamma_{cer}(G) \gamma_{cer}(\overline{G}) \leq n.$$

By enumerating all graphs of order at most 4, we obtain the following observation.

Observation 7.4. Let G be a graph of order n. Then:

a) $\gamma_{cer}(G) + \gamma_{cer}(\overline{G}) = \gamma_{cer}(G) \gamma_{cer}(\overline{G}) = 4$ if $n = 2$;

b) $\gamma_{cer}(G) + \gamma_{cer}(\overline{G}) = 4$ and $\gamma_{cer}(G) \gamma_{cer}(\overline{G}) = 3$ if $n = 3$;

c) $(\gamma_{cer}(G) + \gamma_{cer}(\overline{G}), \gamma_{cer}(G) \gamma_{cer}(\overline{G})) \in \{(3, 2), (5, 4), (6, 6), (8, 16)\}$ if $n = 4$.

Next, we have the following theorem.

Theorem 7.5. If G is a graph of order $n \geq 3$ and $\min\{\delta(G), \delta(\overline{G})\} = 0$, then

$$\gamma_{cer}(G) + \gamma_{cer}(\overline{G}) \leq n + 1 \quad \text{and} \quad \gamma_{cer}(G) \gamma_{cer}(\overline{G}) \leq n.$$

In addition, if $\min\{\delta(G), \delta(\overline{G})\} = 0$, then each of the above upper bounds is attainable, and the following statements are equivalent:

a) $\gamma_{cer}(G) + \gamma_{cer}(\overline{G}) = n + 1$;

b) $\gamma_{cer}(G) \gamma_{cer}(\overline{G}) = n$;

c) G or \overline{G} is the complement of K_n or the union of the corona of some graph and a positive number of isolated vertices.

Proof. From the assumption $\min\{\delta(G), \delta(\overline{G})\} = 0$ it follows that $\max\{\Delta(\overline{G}), \Delta(G)\} = n - 1$ and, therefore, $\gamma_{cer}(\overline{G}) = 1$ or $\gamma_{cer}(G) = 1$. Now, since $\gamma_{cer}(G) \leq n$ and $\gamma_{cer}(\overline{G}) \leq n$, we get $\gamma_{cer}(G) + \gamma_{cer}(\overline{G}) \leq n + 1$ and $\gamma_{cer}(G) \gamma_{cer}(\overline{G}) \leq n$.

Assume now that $\min\{\delta(G), \delta(\overline{G})\} = 0$, say $\delta(G) = 0$. Then $\Delta(\overline{G}) = n - 1$, and so $\gamma_{cer}(\overline{G}) = 1$. Now, since $\gamma_{cer}(\overline{G}) = 1$, it follows from each of the equalities $\gamma_{cer}(G) + \gamma_{cer}(\overline{G}) = n + 1$ and $\gamma_{cer}(G) \gamma_{cer}(\overline{G}) = n$ that $\gamma_{cer}(G) = n$. Finally, since $\delta(G) = 0$ and $\gamma_{cer}(G) = n$, we conclude from Theorem 5.3 that G is the complement of $\overline{K_n}$ or the union of the corona of some graph and a positive number of isolated vertices. This proves the implications $a) \Rightarrow c)$ and $b) \Rightarrow c)$. Opposite implications are straightforward. \[\square\]

Finally, we have the following theorem.
Theorem 7.6. If G is a graph of order $n \geq 5$, then
\[
\gamma_{cer}(G) + \gamma_{cer}(\overline{G}) \leq n + 2 \quad \text{and} \quad \gamma_{cer}(G) \gamma_{cer}(\overline{G}) \leq 2n.
\]

In addition, each of the above upper bounds is attainable, and the following statements are equivalent:

a) $\gamma_{cer}(G) + \gamma_{cer}(\overline{G}) = n + 2$;

b) $\gamma_{cer}(G) \gamma_{cer}(\overline{G}) = 2n$;

c) G or \overline{G} is the corona of some graph.

Proof. If $\min \{\delta(G), \delta(\overline{G})\} \geq 2$, then $\gamma_{cer}(G) + \gamma_{cer}(\overline{G}) \leq \left\lceil \frac{n}{2} \right\rceil + 2 \leq n + 2$ and $\gamma_{cer}(G) \gamma_{cer}(\overline{G}) \leq n \leq 2n$ by Corollary 7.3. If $\min \{\delta(G), \delta(\overline{G})\} = 0$, then $\gamma_{cer}(G) + \gamma_{cer}(\overline{G}) \leq n + 1 \leq n + 2$ and $\gamma_{cer}(G) \gamma_{cer}(\overline{G}) \leq n \leq 2n$ by Theorem 7.5.

Thus assume $\min \{\delta(G), \delta(\overline{G})\} = 1$. Then $\max \{\Delta(G), \Delta(\overline{G})\} = n - 2$. This also implies that $\gamma_{cer}(G) > 1$ and $\gamma_{cer}(\overline{G}) > 1$. Thus, since $\gamma_{cer}(G) \leq n$ and $\gamma_{cer}(\overline{G}) \leq n$, it suffices to show that $\gamma_{cer}(G) = 2$ or $\gamma_{cer}(\overline{G}) = 2$. Without loss of generality assume that $\delta(G) = 1$. Let l be a leaf of G and let s be the only element of $N_G(l)$. We consider two cases: $\deg_{G}(s) = n - 2$, and $\deg_{G}(s) \leq n - 3$.

Case 1: $\deg_{G}(s) = n - 2$. Let t be the only element of $V_G \setminus N_G[s]$. Assume first that $d_G(t) \geq 2$. Let u and w be two neighbours of t (and s). Now, because $N_G[\{s,t\}] = N_G[s] \cup N_G[t] = (V_G \setminus \{t\}) \cup N_G[t] = V_G \setminus \{s,t\}$, $\{u,w\} \subseteq N_G(s) \setminus (V_G \setminus \{s,t\})$, and $\gamma_{cer}(G) > 1$, we conclude that $\{s,t\}$ is a minimum certified dominating set of G, and $\gamma_{cer}(G) = 2$. Assume now that $d_G(t) = 1$. In this case, let u and w be vertices such that $N_G(t) = \{u\}$ and $w \in N_G(s) \setminus \{l, u\}$. Since $N_{\overline{G}}[\{l,t\}] = N_{\overline{G}}[l] \cup N_{\overline{G}}[t] = (V_G \setminus \{s\}) \cup (V_G \setminus \{u\}) = V_G$, the set $\{l,t\}$ is dominating in \overline{G}. In addition, since $\{u,w\} \subseteq N_{\overline{G}}(l) \cap (V_G \setminus \{l,t\})$ and $\{s,w\} \subseteq N_{\overline{G}}(t) \cap (V_G \setminus \{l,t\})$, the set $\{l,t\}$ is certified dominating in \overline{G}. From this and from the fact that $\gamma_{cer}(\overline{G}) > 1$ it follows that $\gamma_{cer}(\overline{G}) = 2$.

Case 2: $\deg_{G}(s) \leq n - 3$. Let t and u be two elements of the set $V_G \setminus N_G[s]$. In this case, $\{l,s\}$ is a certified dominating set of \overline{G}, since $N_{\overline{G}}[\{l,s\}] = V_G \setminus \{l,s\}$, and $\{t,u\} \subseteq N_{\overline{G}}(s) \setminus (V_G \setminus \{l,s\})$. From this it again follows that $\gamma_{cer}(\overline{G}) = 2$.

We now prove the equivalence of a), b), and c). Let G be a graph of order $n \geq 5$ such that $\gamma_{cer}(G) + \gamma_{cer}(\overline{G}) = n + 2$ ($\gamma_{cer}(G) \gamma_{cer}(\overline{G}) = 2n$, respectively). From this assumption, from Corollary 7.3 and Theorem 7.5 it follows that $\min \{\delta(G), \delta(\overline{G})\} = 1$. Then, as we have already proved, $\gamma_{cer}(G) = 2$ or $\gamma_{cer}(\overline{G}) = 2$, and therefore $\gamma_{cer}(\overline{G}) = n$ or $\gamma_{cer}(G) = n$, respectively. From this and from Theorem 5.3 it follows that \overline{G} or G is the corona of some graph. Thus, we have proved the implications $a) \Rightarrow c)$ and $b) \Rightarrow c)$. Finally, assume that G is the corona of some graph and G is of order $n \geq 5$. Then $\gamma_{cer}(G) = n$ by Theorem 3.3. From the fact that the corona has no isolated vertex, it follows that $\gamma_{cer}(G) > 1$. Now, since $\delta(G) = 1$, as in Case 2, we get $\gamma_{cer}(\overline{G}) = 2$. Consequently, $\gamma_{cer}(G) + \gamma_{cer}(\overline{G}) = n + 2$ and $\gamma_{cer}(G) \gamma_{cer}(\overline{G}) = 2n$. This proves the implications $c) \Rightarrow a)$ and $c) \Rightarrow b)$. □
8 The complexity status

When introducing a new model of domination, no discussion would be complete without mentioning its complexity status. Define the (decision) certified domination problem as follows.

The certified domination problem
Instance:
Question:

As one can expect, the certified domination problem is NP-complete. Specifically, the certified domination problem remains NP-complete even if we restrict ourselves to bipartite planar subcubic graphs. The proof immediately follows from Corollary 4.1 and the fact that the (original) domination problem is NP-complete in bipartite planar subcubic graphs with no leaves [24, 29].

Theorem 8.1. The certified domination problem is NP-complete in bipartite planar subcubic graphs with no leaves.

Following several algorithmic results for the domination problem and its variations [6, 17, 23], one can focus on designing effective (exponential time) algorithms, faster (polynomial time) algorithms for some restricted graph classes, or approximation algorithms for the variant of certified domination.

9 Certified domination and \(DD_2 \)-graphs

Here, we briefly continue our discussion from the introductory section on the relation between the concepts of certified domination and \(DD_2 \)-graphs. In [19], the following theorem was established.

Theorem 9.1. [19] A graph of a minimum degree at least two is a \(DD_2 \)-graph.

Since any minimal dominating set has no shadowed vertices, one can observe that if a graph \(G \) has a minimal dominating set \(D \) being also certified then its complement \(V_G \setminus D \) is a 2-dominating set of \(G \). Therefore, taking into account Corollaries 4.1 and 4.5, we conclude with the following theorem which generalizes Theorem 9.1.

Theorem 9.2.

a) A graph of a minimum degree at least one and without weak supports is a \(DD_2 \)-graph.

b) A graph of order at least two having a unique dominating set is a \(DD_2 \)-graph.

Moreover, any such graph in a) or b) has a \((D, D_2) \)-pair such that \(|D| = \gamma(G) \).

10 Concluding remarks

Since over the years researchers have published thousands of papers on the topic of domination in graphs, our paper cannot claim the right to cover the new model even partially,
it should only be thought of as a very beginning, a small contribution to. In this section, we present two exemplary open problems that we find interesting and which research on we feel worth of being continued.

Stable and critical graphs. It is natural to characterise the class of critical graphs where the certified domination number increases on the removal of any edge/vertex as well as the class of stable graphs where the certified domination number remains unchanged on the removal of any edge/vertex. We point out that by Corollary 4.1, the class of critical (resp. stable) (with respect to the certified domination number) graphs with minimum degree $\delta \geq 3$ is the same as the class of critical (resp. stable) graphs with respect to domination number, see for example [3, 13, 27]. Therefore, we are left with characterising critical (resp. stable) graphs with minimum degree $\delta \leq 2$. This is an open problem.

Trees with $\gamma_{cer} = \gamma$. The problem of constructive characterisations of trees with equal domination parameters has received attention in the literature, see for example [9, 20, 26], to mention but a few recent. Following this concept, we leave as an open problem to provide a constructive characterisation of (γ, γ_{cer})-trees, that is, the class of trees with $\gamma_{cer} = \gamma$.

References

[1] M. Aouchiche and P. Hansen, A survey of Nordhaus-Gaddum type relations, *Discrete Applied Mathematics* 161(4-5) (2013), 466–546.

[2] M. Borowiecki, On the external stability number of a graph and its complement, *Prace Naukowe Instytutu Matematyki Politechniki Wroclawskiej* 12 (1976), 39–43.

[3] R. C. Brigham, P. Z. Chinn, and R. D. Dutton, Vertex domination-critical graphs, *Networks* 18(3) (1988), 173–179.

[4] C. Balbuena, A. Hansberg, T. W. Haynes, and M. A. Henning, Total domination edge critical graphs with total domination number three and many dominating pairs, *Graphs and Combinatorics* 31(5) (2015), 1163–1176.

[5] A. P. Burger, A. P. de Villiers, and J. H. van Vuuren, Edge stability in secure graph domination, *Discrete Mathematics and Theoretical Computer Science* 17(1) (2015), 103–122.

[6] G. J. Chang, “Algorithmic aspects of domination in graphs”, Handbook of Combinatorial Optimization, Springer, New York (2013), pp. 221–282.

[7] X.-G. Chen, S. Fujita, M. Furuuya, and M. Y. Sohn, Constructing connected bicritical graphs with edge-connectivity 2, *Discrete Applied Mathematics* 160(4-5) (2012), 488–493.

[8] E. J. Cockayne and S. T. Hedetniemi, Toward a theory of domination in graphs, *Networks* 7 (1977), 247–261.
[9] J. Cyman, Total outer-connected domination in trees, *Discussiones Mathematicae Graph Theory* 30(3) (2010), 377–383.

[10] R. Diestel, Graph Theory, Springer, Heidelberg, 2012.

[11] J. E. Dunbar, T. W. Haynes, and S. T. Hedetniemi, Nordhaus-Gaddum bounds for domination sums in graphs with specified minimum degree, *Utilitas Mathematica* 67 (2005), 97–105.

[12] M. Edwards and G. MacGillivray, The diameter of total domination and independent domination vertex-critical graphs, *The Australasian Journal of Combinatorics* 52 (2012), 33–39.

[13] J. Fulman, D. Hanson, and G. MacGillivray, Vertex domination-critical graphs, *Networks* 25 (1995), 41–43.

[14] J. Fink and M. Jacobson, “n-domination in graphs”, Graph Theory with Applications to Algorithms and Computer Science, Wiley, New York (1985), pp. 282–300.

[15] J. Fink and M. Jacobson: “On n-domination, n-dependence and forbidden subgraphs”, Graph Theory with Applications to Algorithms and Computer Science, Wiley, New York (1985), pp. 301–311.

[16] J. F. Fink, M. S. Jacobson, L. F. Kinch, and J. Roberts, On graphs having domination number half their order, *Periodica Mathematica Hungarica* 16(4) (1985), 287–293.

[17] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.

[18] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, Domination in Graphs: Advanced Topics, Marcel Dekker, New York, 1998.

[19] M. A. Henning and D. F. Rall, On graphs with disjoint dominating and 2-dominating sets, *Discussiones Mathematicae Graph Theory* 33(1) (2013), 139–146.

[20] X. Hou, A characterization of $(2\gamma, \gamma_p)$-trees, *Discrete Mathematics* 308(15) (2008), 3420–3426.

[21] F. Jaeger and C. Payan, Relations du type Nordhaus-Gaddum pour le nombre dabsorption dun graphe simple, *Comptes Rendus de l’Académie des Sciences* (Paris) 274 (1972), 728–730.

[22] J. P. Joseph and S. Arumugam, Domination in graphs, *International Journal of Management and Systems* 11(2) (1995), 177–182.

[23] L. Kang, “Variations of dominating set problem”, Handbook of Combinatorial Optimization, Springer, New York (2013), pp. 3363–3394.

[24] T. Kikuno, N. Yoshida, and Y. Kakuda, The NP-completeness of the dominating set problem in cubic planar graphs, *IEICE Transactions* E64(6) (1980), 443–444.
[25] R. Laskar and K. Peters, Vertex and edge domination parameters in graphs, *Congressus Numerantium* 48 (1985), 291–305.

[26] Y. Lu, X. Hou, J.-M. Xu, and N. Li, A characterization of (γ_t, γ_2)-trees, *Discussiones Mathematicae Graph Theory* 30(3) (2010), 425–435.

[27] Y. Manimuthu and K. Kumarasamy, Domination Stable Graphs, LAP Lambert Academic Publishing, Saarbrücken, 2012.

[28] E. A. Nordhaus and J. Gaddum, On complementary graphs, *The American Mathematical Monthly* 63 (1956), 175–177.

[29] J. Suomela: Is the dominating set problem restricted to planar bipartite graphs of maximum degree 3 NP-complete? (posted by Florent Foucaud). Theoretical Computer Science Stack Exchange: http://cstheory.stackexchange.com/questions/2505 [2016-01-08].