ECG
IST-2000-26473
Effective Computational Geometry for Curves and Surfaces

ECG Technical Report No. : ECG-TR-123101-02

A Separation Bound for Real Algebraic Expressions

Christoph Burnikel Stefan Funke Kurt Mehlhorn
Stefan Schirra Susanne Schmitt

Deliverable: 12 31 01
Site: MPI
Month: 12

Project funded by the European Community under the “Information Society Technologies” Programme (1998–2002)
A Separation Bound for Real Algebraic Expressions

Christoph Burnikel† † Stefano Funke‡ ‡ Kurt Mehlhorn‡ ‡ Stefan Schirra§ § Susanne Schmitt‡

April 11, 2002

Abstract

Real algebraic expressions are expressions whose leaves are integers and whose internal nodes are
additions, subtractions, multiplications, divisions, \(k \)-th root operations for integral \(k \), and taking roots
of polynomials whose coefficients are given by the values of subexpressions. We consider the sign
computation of real algebraic expressions, a task vital for the implementation of geometric algorithms.
We prove a new separation bound for real algebraic expressions and compare it analytically and experimentally
with previous bounds. The bound is used in the sign test of the number type \(\text{leda_real} \).

1 Introduction

Real algebraic expressions are expressions whose leaves are integers and whose internal nodes are
additions, subtractions, multiplications, divisions, \(k \)-th root operations for integral \(k \), and taking roots
of polynomials whose coefficients are given by the values of subexpressions; the exact definition is given
below. Examples are \(\sqrt[4]{7} + \sqrt{21} - \sqrt[4]{17} + \sqrt{21} + 2\sqrt{35} \) and \(\frac{17 + \sqrt{21}}{19} - \frac{18 + \sqrt{27}}{20} \). We consider the sign
computation of real algebraic expressions.

Our main motivation is the implementation of geometric algorithms. The evaluation of geometric predic-
ates, such as the incircle or the side-of-predicate, amounts to the computation of the sign of an expression.
Non-linear objects (circles, ellipses, . . .) lead to expressions involving roots and hence an efficient method
for computing signs of algebraic expressions is an essential basis for the robust implementation of geometric
algorithms dealing with non-linear objects.

The separation bound approach is the most successful approach to sign computation; it is, for example,
used in the number type \(\text{leda_real} \) [BMS96, BFMS99, MN99] and the number type \(\text{Expr} \) of the \(\text{CORE} \) package [KLPY99]. A
separation bound is an easily computable function \(sep \) mapping expressions into positive real numbers such that
the value \(\xi \) of any non-zero expression \(E \) is lower bounded by \(sep(E) \), i.e.,

\[
\text{either } \xi = 0 \text{ or } |\xi| \geq sep(E).
\]

Separation bounds allow one to determine the sign of an expression by numerical computation. An error
bound \(\Delta \) is initialized to some positive value, say \(\Delta = 1 \), and an approximation \(\xi \) of \(\xi \) with \(|\xi - \xi| \leq \Delta \)
is computed using approximate arithmetic, say floating point arithmetic with arbitrary-length mantissa. If
\(|\xi| > \Delta \), the sign of \(\xi \) is equal to the sign of \(\xi \). Otherwise, \(|\xi| \leq \Delta \) and hence \(|\xi| < 2\Delta \). If \(2\Delta \geq sep(E) \), we have \(\xi = 0 \). If \(2\Delta < sep(E) \), we halve \(\Delta \) and repeat. The worst case
complexity of the procedure just outlined is determined by the separation bound; \(\log(1/sep(E)) \) determines the maximal precision needed
for the computation of \(\xi \) and we refer to \(\log(1/sep(E)) \) as the bit bound. If \(\xi \neq 0 \), the actual precisions
required is \(\log \xi \) and hence “easy sign tests” are much faster than the worst case. This feature distinguishes

*Partially supported by ESPRIT LTR project (Effective Computational Geometry for Curves and Surfaces).
†burnikel@mpi-sb.mpg.de, ENCOM GmbH, 66740 Saarlouis
‡{funke,mehlhorn,schmitt}@mpi-sb.mpg.de, MPI für Informatik, 66123 Saarbrücken
§stschirr@mpi-sb.mpg.de, think & solve Beratungsgesellschaft, 66111 Saarbrücken
the separation bound approach to sign computation from approaches that explicitly compute a defining polynomial.

Separation bounds have been studied extensively in computer algebra [Can87, Mig82, Sch00, Mig92, Yap99], as well as in computational geometry [BMS94, BFMS00, Yap97, LY01, MS01]. We prove a new separation bound for the following class of real algebraic expressions. The value of a real algebraic expression is either a real algebraic number or undefined (at the end of Section 3 we show how to test whether the value of an expression is defined).

(1) Any integer \(v \) is a real algebraic expression. The integer is also the value of the expression.

(2) If \(E_1 \) and \(E_2 \) are real algebraic expressions, so are \(E_1 + E_2, E_1 - E_2, E_1 \cdot E_2, E_1 / E_2, \) and \(\sqrt[k]{E_1} \), where \(k \geq 2 \) is an integer. The value of \(\sqrt[k]{E_1} \) is undefined if \(k \) is even and the value of \(E_1 \) is negative. The value of \(E_1 / E_2 \) is undefined, if the value of \(E_2 \) is zero. The value of \(E_1 + E_2, E_1 - E_2, E_1 \cdot E_2, E_1 / E_2, \) or \(\sqrt[k]{E_1} \) is undefined, if the value of \(E_1 \) or the value of \(E_2 \) is undefined. Otherwise the value of \(E_1 + E_2, E_1 - E_2, E_1 \cdot E_2, \) and \(E_1 / E_2 \) is the sum, the difference, the product and the quotient of the values of \(E_1 \) and \(E_2 \) respectively and the value of \(\sqrt[k]{E_1} \) is the \(k \)-th root of the value of \(E_1 \).

Below, expression always means real algebraic expression. An expression is given as a directed acyclic graph (dag) whose source nodes are labeled by the operands and whose internal nodes are labeled by operators. We call an expression simple and division-free if only items (1) and (2) are used in its definition and we call it simple and division-free if, in addition, no division operator occurs in the expression.

The starting point for the present work is the bound given by Burnikel et al. [BFMS00] for simple expressions. We refer to this bound as the BFMS bound in the sequel.

Lemma 1 ([BFMS00]) Let \(E \) be an expression with integral operands and operations \(+, -, \cdot, /, \sqrt[k]{}\) for integral \(k \geq 2 \). Let \(\xi \) be the value of \(E \), let the weight \(D(E) \) of \(E \) be the product of the indices (the index of a \(\sqrt[k]{} \) operation is \(k \)) of the radical operations in \(E \), and let \(u(E) \) and \(l(E) \) be defined inductively on the structure of \(E \) by the rules shown in the table below.

\(E \)	\(u(E) \)	\(l(E) \)
\(E_1 \pm E_2 \)	\(u(E_1) \cdot l(E_2) + l(E_1) \cdot u(E_2) \)	\(l(E_1) \cdot l(E_2) \)
\(E_1 \cdot E_2 \)	\(u(E_1) \cdot u(E_2) \)	\(l(E_1) \cdot l(E_2) \)
\(E_1 / E_2 \)	\(u(E_1) \cdot l(E_2) \)	\(l(E_1) \cdot u(E_2) \)
\(\sqrt[k]{E_1} \)	\(u(E_1) \)	\(l(E_1) \)

Then \(\xi = 0 \) or

\[
\left(l(E)u(E)^{D(E)^2} - 1 \right)^{-1} \leq |\xi| \leq u(E)l(E)^{D(E)^2} - 1.
\]

If \(E \) is division-free, \(l(E) = 1 \), and the above bound holds with \(D(E)^2 \) replaced by \(D(E) \).

Observe the difference between the division-free case and the general case. For simple division-free expressions, the BFMS-bound is the best bound known. Expressions with divisions arise naturally in geometric applications. Inputs to expressions are frequently fractions and, e.g., normalizing a line equation amounts to a division. For expressions with divisions, the BFMS-bound is much weaker than for expressions without divisions. We give an example. Consider the expression

\[
\frac{2^{10} \sqrt[28]{2^{28} - (2^8 - 1) - 2^6}}{2^6 - 1}
\]
Lemma 4

Let \(u(E) \approx 2^{10}, l(E) = 1 \) and \(D(E) = 8 \). So the BFMS bound is \(2^{-10 \cdot 63} = 2^{-630} \), since \(E \) is not division-free and hence the dependence (of the logarithm of the bound) on \(D \) is quadratic. Without the final redundant division, the expression is division-free and the bound becomes \(2^{-10 \cdot 7} = 2^{-70} \). Our new bound handles divisions much better and also applies to a wider class of expressions than the BFMS bound.

This paper is structured as follows. In Section 2, we review the proof of the BFMS bound and motivate our new way of dealing with divisions. In Section 3, we prove our main theorem, a separation bound for expressions defined by (1), (2), and (3). In Sections 4 and 5 we compare our bound analytically and experimentally to previous bounds.

2 A Review of the BFMS bound

An algebraic integer is the root of a polynomial with integer coefficients and leading coefficient one. The following three Lemmas were already used in [BFMS00] and [LY01].

Lemma 2 Let \(\alpha \) be an algebraic integer and let \(\deg(\alpha) \) be the algebraic degree of \(\alpha \). If \(U \) is an upper bound on the absolute value of all conjugates of \(\alpha \), then

\[
|\alpha| \geq U^{1-\deg(\alpha)}
\]

Proof: The proof is simple. Let \(d \) be the degree of \(\alpha \) and let \(\alpha_1 = \alpha, \alpha_2, \ldots, \alpha_d \) be the conjugates of \(\alpha \). The product of the conjugates is equal to the constant coefficient of the defining polynomial and hence in \(\mathbb{Z} \). Thus \(|\alpha| \cdot U^{d-1} \geq 1 \).

Lemma 3 ([Hec70, Loo82] or [BFMS00, Theorem 4]) Let \(\alpha \) and \(\beta \) be algebraic integers. Then \(\alpha \pm \beta, \alpha \beta \) and \(\sqrt{\alpha} \) are algebraic integers.

We also need to cover item (3) in the definition of algebraic expressions.

Lemma 4 Let \(\rho \) be the root of a monic polynomial

\[
P(X) = X^n + \alpha_{n-1}X^{n-1} + \alpha_{n-2}X^{n-2} + \cdots + \alpha_0
\]

of degree \(n \) where the coefficients \(\alpha_{n-1}, \alpha_{n-2}, \ldots, \alpha_0 \) are algebraic integers. Then \(\rho \) is an algebraic integer.

Proof: This fact is well-known, a proof can, for example, be found in [Neu90, Theorem 2.4]. We include a proof for completeness. The proof uses an argument similar to the proof of Lemma 3. Let \(\alpha_j^{(i)} \), \(1 \leq i_j \leq \deg(\alpha_j) \), be the conjugates of \(\alpha_j \) for \(0 \leq j \leq n-1 \) and let \(\tilde{\alpha}_j \) be the vector formed by the conjugates of \(\alpha_j \). Consider the polynomial

\[
Q(X) = \prod_{i_1} \cdots \prod_{i_n} (X^n + \alpha_{n-1} X^{n-1} + \alpha_{n-2} X^{n-2} + \cdots + \alpha_0).
\]

\(\rho \) is a root of \(Q(X) \) and \(Q(X) \) is symmetric in the \(\alpha_j^{(i)} \) for all \(j \). The theorem on elementary symmetric function implies that \(Q(X) \) is a polynomial in \(X \) and the elementary symmetric functions \(\sigma_1(\tilde{\alpha}_j), \ldots, \sigma_{\deg(\alpha)}(\tilde{\alpha}_j) \). The elementary symmetric function \(\sigma_1(\tilde{\alpha}_j) \) is the coefficient of \(X^{\deg(\alpha_j) - 1} \) in the minimal polynomial of \(\alpha_j \) and hence in \(\mathbb{Z} \) (since \(\alpha_j \) is an algebraic integer). Thus \(Q(X) \) is a monic polynomial in \(\mathbb{Z}[X] \) and \(\rho \) is an algebraic integer.

Lemma 5 ([BFMS00, Lemma 6]) Let \(\alpha \) and \(\beta \) be algebraic integers and let \(U_\alpha \) and \(U_\beta \) be upper bounds on the absolute size of the conjugates of \(\alpha \) and \(\beta \), respectively. Then \(U_\alpha + U_\beta \) is an upper bound on the absolute size of the conjugates of \(\alpha \beta \), and \(\sqrt{U_\alpha} \) is an upper bound on the absolute size of the conjugates of \(\sqrt{\alpha} \).
We also need bounds for the absolute size of roots of monic polynomials. Let \(P(X) = X^n + a_{n-1}X^{n-1} + a_{n-2}X^{n-2} + \cdots + a_0 \) be a monic polynomial with arbitrary real coefficients, not necessarily integral, and let \(\alpha \) be a root of \(P(X) \). A root bound \(\Phi \) is any function of the coefficients of \(P \) that bounds the absolute value of \(\alpha \), i.e.,
\[
|\alpha| \leq \Phi(a_{n-1}, a_{n-2}, \ldots, a_0)
\]
We require that \(\Phi \) is monotone, i.e., if \(|a_i| \leq b_i \) for \(0 \leq i \leq n - 1 \), then
\[
\Phi(a_{n-1}, a_{n-2}, \ldots, a_0) \leq \Phi(b_{n-1}, b_{n-2}, \ldots, b_0).
\]
Examples of root bounds are:
\[
|\alpha| \leq 2 \max \left(|a_{n-1}|, \sqrt{|a_{n-2}|}, \sqrt[n]{|a_{n-3}|}, \ldots, \sqrt[n]{|a_0|} \right)
\]
\[
|\alpha| \leq 1 + \max (|a_{n-1}|, |a_{n-2}|, \ldots, |a_0|)
\]
\[
|\alpha| \leq \max \left(n|a_{n-1}|, \sqrt[n]{|a_{n-2}|}, \sqrt[n]{n|a_{n-3}|}, \ldots, \sqrt[n]{n|a_0|} \right)
\]
\[
|\alpha| \leq \left(\sqrt{2} - 1 \right)^{-1} \max \left(\frac{|a_{n-1}|}{1}, \sqrt{|a_{n-2}|}, \sqrt[n]{|a_{n-3}|}, \ldots, \sqrt[n]{|a_0|} \right)
\]
A proof of all bounds can be found in [Yap99]. The first bound is called the Lagrange-Zassenhaus bound and the middle two bounds are called the Cauchy bounds.

We next briefly review the proof of the BFMS bound. For a division-free simple expression \(E \) one observes that the value \(\xi \) of \(E \) is an algebraic integer (by Lemma 3) and that \(u(E) \) is an upper bound on \(\xi \) and all its conjugates (by Lemma 5). Furthermore \(D(E) \) is an upper bound for the algebraic degree of \(E \). Thus \(|\xi| \leq u(E) \) and \(|\xi| \geq 1/(u(E)^{D(E)-1}) \) by Lemma 2.

Expressions with divisions are handled by reduction to the division-free case. Let \(E \) be a simple expression and let \(\xi \) be its value. We construct a new expression dag, also with value \(\xi = val(E) \), containing only a single division. Moreover, the division is the final operation in the dag and hence \(val(E) = val(E_1)/val(E_2) \), where \(E_1 \) and \(E_2 \) are the inputs to the division. The bounds for the division free case apply to \(E_1 \) and \(E_2 \) and \(D(E_1) \) and \(D(E_2) \) are at most \(D(E)^2 \). The construction of the new dag is straightforward. For every node \(A \) in the original dag there are two nodes \(A_1 \) and \(A_2 \) in the new dag such that \(val(A) = val(A_1)/val(A_2) \). For the leaves (which stand for integers) the replacement is trivial (we take \(A_1 = A \) and \(A_2 = 1 \)) and for interior nodes we use the rules
\[
\frac{A_1}{A_2} \pm \frac{B_1}{B_2} \Rightarrow \frac{A_1B_2 \pm A_2B_1}{A_2B_2} \quad \frac{A_1}{A_2} \frac{B_1}{B_2} \Rightarrow \frac{A_1B_2}{A_2B_1} \quad \frac{A_1}{A_2} \sqrt[k]{\frac{A_1}{A_2}} \Rightarrow \sqrt[k]{\frac{A_1^{k-1}}{A_2}}.
\]
In this way, each root operation in the original dag gives rise to two root operations in the new dag. This may square the \(D \)-value of the expression.

The starting point for the present paper was a simple but powerful observation. Although the transformation rules above are natural, they are not the only way of obtaining division free expressions \(E_1 \) and \(E_2 \) with \(val(E) = val(E_1)/val(E_2) \). Instead of the last rule we may also use
\[
\frac{\sqrt[k]{A_1}}{A_2} \Rightarrow \frac{\sqrt[k]{A_1A_2^{k-1}}}{A_2} \quad \text{or} \quad \frac{A_1}{\sqrt[k]{A_1^{-1}A_2}}.
\]
The new rule does not increase the total degree of the expression and hence \(D(E_1) \) and \(D(E_2) \) are at most \(D(E) \). In an earlier version of the paper, we only used the first alternative of the new rule. Chee Yap (personal communication, January 2001) pointed out to us that it is advantageous to have both rules (see the proof of Lemma 6).

3 The New Bound

We derive a separation bound for the expressions defined by items (1) to (3). For items (1) and (2), we use the BFMS rules with the modification proposed in the previous paragraph. The diamond operation allows
Let \(D \) be an expression with integer operands and operations \(+, -, \cdot, \sqrt[k]{\cdot}\) operations. Let \(\xi \) be the value of \(E \). Let \(u(E) \) and \(l(E) \) be defined inductively on the structure of \(E \) according to the following rules:

\(E \)	\(u(E) \)	\(l(E) \)
integer \(N \)	\(u(E) = u_1 \cdot l_1 \cdot (E_1) \cdot l(E_2) \)	\(l(E) = \left\lfloor \frac{N}{l(E_1)} \right\rfloor \)
\(E_1 \pm E_2 \)	\(u(E_1) \cdot l(E_2) + l(E_1) \cdot u(E_2) \)	\(l(E_1) \cdot l(E_2) \)
\(E_1 \cdot E_2 \)	\(u(E_1) \cdot u(E_2) \)	\(l(E_1) \cdot l(E_2) \)
\(\sqrt[k]{E_1} \)	\(u(E_1) \cdot l(E_2) \)	\(l(E_1) \cdot l(E_2) \)
\(\sqrt[k]{E_1} \)	\(u(E_1) \cdot l(E_2) \)	\(l(E_1) \cdot l(E_2) \)
\(\omega(j, E_2, \ldots, E_d) \)	\(u(E_1) \cdot l(E_2) \)	\(l(E_1) \cdot l(E_2) \)

Let \(D(E) \) be the weight of \(E \). Then either \(\xi = 0 \) or

\[
\left(l(E)u(E)D(E)^{-1} \right)^{-1} \leq \xi \leq u(E)l(E)D(E)^{-1}
\]
Proof: We show that the rules for u and l keep the invariant that there are algebraic integers β and γ such that $\xi = \beta/\gamma$ and $l(E)$ is an upper bound on the absolute size of the conjugates of β and $l(E)$ is an upper bound on the absolute size of the conjugates of γ.

We prove this by induction on the structure of E. The base case is trivial. If E is an integer N, we take $\beta = N$ and $\alpha = 1$; β is the root of the polynomial $X - N$ and α is a root of $X - 1$.

Now let $E = E_1 \pm E_2$. By induction hypothesis we have $\xi_j = \beta_j/\gamma_j$ for $j = 1, 2$. We set $\beta = \beta_1 \gamma_2 \pm \beta_2 \gamma_1$ and $\gamma = \gamma_1 \gamma_2$. Since algebraic integers are closed under additions, subtractions and multiplications, β and γ are algebraic integers. By Lemma 5, $u(E) = u(E_1) \cdot l(E_2) + l(E_1) \cdot u(E_2)$ is an upper bound on the absolute size of the conjugates of β. Similarly, $l(E)$ is an upper bound on the absolute size of the conjugates of γ.

If $E = E_1 \cdot E_2$, we set $\beta = \beta_1 \beta_2$ and $\gamma = \gamma_1 \gamma_2$. The claim follows analogously to the previous case by Lemma 5.

If $E = E_1 / E_2$, we set $\beta = \beta_1 \gamma_2$ and $\gamma = \beta_2 \gamma_1$. Again, the claim follows using Lemma 5.

If $E = \sqrt[n]{E_1}$ and $\beta_1 \geq \gamma_1$, we set $\beta = \sqrt[n]{\beta_1 \gamma_1^{n-1}}$ and $\gamma = \gamma_1$. Since algebraic integers are closed under $\sqrt[n]{-}$-operations, β is an algebraic integer. By Lemma 5, $u(E)$ is an upper bound on the absolute size of the conjugates of β. There is nothing to show for $\gamma = \gamma_1$.

If $E = \sqrt[n]{E_1}$ and $\beta_1 < \gamma_1$, we set $\beta = \beta_1$ and $\gamma = \sqrt[n]{\beta_1^{n-1} \gamma_1}$. Since algebraic integers are closed under $\sqrt[n]{-}$-operations, γ is an algebraic integer. By Lemma 5, $l(E)$ is an upper bound on the absolute size of the conjugates of γ. There is nothing to show for $\beta = \beta_1$.

Finally, let E be defined by a $\circ (j, E_d, \ldots, E_0)$-operation. We set

$$\beta = \circ(j, 1, \beta_{d-1} \gamma_{d-2} \cdots \gamma_0, \beta_{d-2} \gamma_{d-3} \cdots \gamma_0, \ldots, \beta_0)$$

and

$$\gamma = \beta_{d-1} \gamma_{d-2} \cdots \gamma_0.$$

By the discussion preceding the statement of our main theorem, $\xi = \beta/\gamma$, β and γ are algebraic integers, $l(E)$ is an upper bound on the absolute size of the conjugates of γ, and $u(E)$ is an upper bound on the absolute value of the conjugates of β. This completes the induction step.

Rewriting ξ as β/γ corresponds to a restructuring of the expression dag defining E into an expression dag E' with a single division-operation. We have $D(E') = D(E)$.

We still need to argue that $D(E)$ is an upper bound on the algebraic degree of β. This follows from the fact that every operation leads to a field extensions whose degree is bounded by the weight of the operation.

We now have collected all ingredients to bound the absolute value of ξ from below. If $\xi \neq 0$, we have $\beta \neq 0$. The absolute value of β and all its conjugates is bounded by $u(E)$. Thus $|\beta| \geq (u(E)^{\deg(|\beta|-1)})^{-1}$ by Lemma 2. Also $|\gamma| \leq l(E)$. Thus

$$|\xi| = \frac{\beta}{\gamma} \geq \frac{1}{u(E)^{\deg(\beta)-1}} \cdot \frac{1}{l(E)} \geq \frac{1}{u(E)^{\deg(E)-1} \cdot l(E)}.$$

The value of an algebraic expression may be undefined. Divisions by zero and taking a root of even degree of a negative number are easily caught by the sign test. We next argue that the sign test also allows us to test whether the diamond-operation is well defined. For this matter, we need to determine the number of zeros of a polynomial. Sturm sequences, see [Mig92, chapter 5] or [Yap99, Chapter 7] are the appropriate tool. The computation of Sturm sequences amounts to a gcd computation between a polynomial and its derivative. Our sign test is sufficient to implement a gcd computation.

4 Comparison to Other Constructive Root Bounds

We compare our new bound to previous root bounds provided by Mignotte [Mig92], Canny [Can87], Dubé/Yap [YD95], BFMS [BFMS00, MS01], Scheinermann [Sch00], Li/Yap [LY01]. We refer to the
The bounds by Mignotte, Dubé/Yap and Scheinerman apply to division-free simple expressions, BFMS applies to simple expressions. The bounds in [LY01] and [MS01] apply to expressions defined by items (1) to (3) with the restriction that the E_j to E_k in (3) must be integers. Canny’s bound is most general. It applies to algebraic numbers defined by systems of multi-variate polynomial equations with integer coefficients.

We next discuss the quality of the bounds. In [BFMS00, LY01] it was already shown that the BFMS-bound it never worse than the bounds by Mignotte, Canny, Dubé/Yap and Scheinermann. In [LY01] it was also shown that the BFMS bound and the Li/Yap bound are incomparable.

Lemma 6 (C. Yap, personal communication) Let E be an arbitrary simple expression, let u and l be defined as in the original BFMS-bound, let u' and l' be defined as in Theorem 1, and let $D = D(E)$ be the degree bound of E. Then

$$l(E)u(E)^{D^2-1} \geq l'(E)u'(E)^{D^2-1},$$

i.e., the improved bound is always as least as strong as the orginal BFMS-bound.

Proof: We show

$$\frac{u(E)}{l(E)} = \frac{u'(E)}{l'(E)} \quad \text{and} \quad u'(E) \leq u(E)^D \quad \text{and} \quad l'(E) \leq l(E)^D$$

by induction on the structure of E. Assume that these relations hold. Then

$$l(E)u(E)^{D^2-1} = \frac{l(E)}{u(E)}u(E)^D \geq \frac{l'(E)}{u'(E)}u'(E)^D = l'(E)u'(E)^{D^2-1}$$

and we are done.

The proof of the equality is a simple induction on the structure of E. The base case is clear. In the inductive step we write u_1 instead of $u(E_1)$ and similarly for E_2, l, u' and l'. If $E = E_1 + E_2$, we have

$$\frac{u(E)}{l(E)} = \frac{u_1 l_2 + u_2 l_1}{l_1 l_2} = \frac{u_1}{l_1} + \frac{u_2}{l_2} = \frac{u_1'}{l_1'} + \frac{u_2'}{l_2'} = \frac{u'(E)}{l'(E)}.$$

Multiplication and division are handled similarly. If $E = \sqrt[\nu]{f_1}$, we have (assuming $u_1' \geq l_1'$, the case $u_1' < l_1'$ is handled similarly)

$$\frac{u(E)}{l(E)} = \sqrt[\nu]{\frac{u_1}{l_1}} = \sqrt[\nu]{\frac{u_1'}{l_1'}} = \frac{\sqrt[\nu]{u_1' (l_1')^{\nu-1}}}{l_1'} = \frac{u'(E)}{l'(E)}.$$

For the inequalities we have to work slightly harder. The base case is again clear; observe that $D = 1$ in the base case. It is also clear that $u(E) \geq 1$ (or $u(E) = 0$) and $l(E) \geq 1$ for all E. If $E = E_1 \pm E_2$, we have (using $D \geq D_1$ and $D \geq D_2$)

$$u(E)^D = (u_1 l_2 + u_2 l_1)^D \geq (u_1 l_2)^D + (u_2 l_1)^D \geq u_1^D l_2^D + u_2^D l_1^D \geq u_1' l_2' + u_2' l_1' = u'(E)$$

and

$$l(E)^D = (l_1 l_2)^D \geq l_1^D l_2^D \geq l_1' l_2' = l'(E).$$

Multiplication and division are handled similarly. If $E = \sqrt[\nu]{f_1}$, we have $D(E_1) = D(E)/k$ and hence (assuming $u_1' \geq l_1'$, the case $u_1' < l_1'$ is handled similarly)

$$u(E)^D = u_1^{D/k} = u_1^{D_1} \geq u_1' \geq \sqrt[\nu]{u_1' (l_1')^{\nu-1}} = u'(E) \quad \text{and} \quad l(E)^D = l_1^{D/k} = l_1^{D_1} \geq l_1' = l'(E).$$

We next show that the new bound can be significantly better than the old bound. Consider the expression $F = \sqrt{x/a}$ and $E = F - F$ where x is a c-bit integer for some constant c and a is a d-bit integer for some constant d. Then $D(E) = k$. We evaluate both bounds as functions of k.

For the BFMS-bound we have \(\log u(F) = (1/k)ck = c, \log l(F) = d/k, \log u(E) = 1 + c + d/k, \log l(E) = 2d/k \) and hence the BFMS bit bound is \((k^2 - 1) \log u(E) + \log l(E) = \Theta(k^2)\).

For the BFMS-bound we have \(\log u(F) = (1/k)(ck + d) = c + d/k, \log l(F) = d, \log u(E) = 1 + c + d/k + d, \log l(E) = 2d \) and hence the BFMS bound is \((k - 1) \log u(E) + \log l(E) = \Theta(k)\).

It remains to compare the BFMS and the Li/Yap bound. For division-free simple expressions, the bounds are identical. For expressions with divisions, the bounds are incomparable.

We start with an example, where the BFMS-bound is significantly better. Let \(E_0 = 17/3, \) let \(F_i = \sqrt{E_{i-1}} \) and \(E_i = F_i + F_i \) for \(1 \leq i \leq k, \) and let \(E = E_k - E_k. \) Then \(\deg(E_i) = \deg(F_i) = 2^i. \) We evaluate both bounds as functions of \(k. \)

For the BFMS bound, we have

\[
\begin{align*}
\log u(E_0) &= \log 17, \\
\log l(E_0) &= \log 3, \\
\log u(F_i) &= \log l(E_{i-1}), \\
\log u(E_i) &= \frac{1}{2} (\log u(E_{i-1}) + \log l(E_{i-1})), \\
\log l(E_i) &= 2 \log l(F_i) = 2 \log l(E_{i-1}) = 2^i \log 3, \\
\log u(E_k) &= 1 + \log u(F_i) + \log l(F_i) \\
&= 1 + \frac{1}{2} \log u(E_{i-1}) + \frac{3}{2} \log l(E_{i-1}) \\
&= 1 + \frac{1}{2} \log u(E_{i-1}) + \frac{3}{2} \cdot 2^{i-1} \log 3 \\
&= \sum_{0 \leq j < i} 2^{-j} + 2^{-i} \log 17 + 2^{-i} \cdot \frac{3}{2} \log 3 \sum_{0 \leq j < i} 4^{-j} \\
&\leq 2 + 2^{-i+1} \log 17 + 2^i \log 3
\end{align*}
\]

and hence \(\log u(E) = 1 + \log u(E_k) + \log l(E_k) \leq 3 + 4 \cdot 2^k \) and \(\log l(E) = 2 \log l(E_k) \leq 4 \cdot 2^k. \) We conclude that the BFMS bit bound is equal to \((2^k - 1)(3 + 4 \cdot 2^k) + 4 \cdot 2^k = \Theta(4^k). \) Increasing \(k \) by one, quadruples the numbers of bits.

The Li/Yap bound involves the lead coefficient of the minimal polynomial and is at least the logarithm of the lead coefficient. Li and Yap compute the following estimates \(lc \) for the lead coefficients. Let \(d_i = D(E_i) = D(F_i) = 2^i. \) Then \(\log l(c(E_0)) = \log 3 \geq 1, \log l(c(F_i)) = \log l(c(E_{i-1})), \log l(E_i) = 2 \cdot d_i \cdot \log l(c(F_i)) = 2 \cdot 2^i \log l(c(E_{i-1})) = 2^i \prod_{1 \leq j \leq i} 2^j \cdot \log 3 \geq 2^i (i+3)/2, \log l(c(E)) = 2 \cdot 2^k \log l(c(E_k)) \) and hence the Li-Yap bit bound is \(\Omega(2^k/2). \) Increasing \(n \) by one multiplies the required number of bits by more than \(2^k. \)

We next give an example where the Li/Yap bound is better. We start with the fraction \(17/3, \) square \(k \) times and then take roots \(k \) times. The weight of the expression is \(2^k \) and \(\log u(E) \geq 2^k. \) The BFMS bit bound is therefore at least \(\Omega(4^k). \) On the other hand, the Li/Yap bound is \(O(2^k). \)

An implementation should compute the Li/Yap and BFMS bounds and use the better of the bounds.

5 Experimental Evaluation

The separation bound approach to sign determination of algebraic numbers is used in the number types real of LEDA [LED] and Expr of CORE [KLPY99]. We report about the improvements in running time due to the new separation bounds and due to a recent reimplementation of leda_real. We also compare CORE and leda_real.

All tests are based on LEDA 4.2.1 with the most recent arithmetic module incorporated. For the tests with the CORE library we used CORE v1.3 available from [LY01]; it uses the Li/Yap-bound. All benchmarks are performed on a Sun Ultra 5 with 333 MHz, 128 MB RAM, running Solaris 2.7. We used g++ 2.95.2.1 as a compiler, times are always stated in seconds.

1 Any other fraction will also work as the initial value.
We briefly review the implementation of $\textit{leda}_\textit{real}$, a detailed description is available in [BMS96]. The number type supports the sign determination of simple algebraic expressions. Expressions are represented by their expression dag $G(\mathcal{E})$. The input values of \mathcal{E} are contained in the leaves of the dag, every inner node corresponds to an arithmetical operation, and the root corresponds to \mathcal{E}.

When the sign of an algebraic number \mathcal{E} needs to be determined, the datatype first computes a separation bound $q\mathcal{E}$. Using $\textit{leda}_\textit{bigfloat}$ arithmetic (= floating-point numbers with exponent and mantissa of arbitrary length), the datatype computes successively intervals of decreasing length that include \mathcal{E}, until the interval does not contain zero or the length of the interval is less than $q\mathcal{E}$.

Several shortcuts are used to speed up the computation of the sign. First, a double approximation $\tilde{\mathcal{E}}$ and an error bound err such that $|\mathcal{E} - \tilde{\mathcal{E}}| \leq \text{err}$ is stored with every node of the expression dag. As long as the double approximation $\tilde{\mathcal{E}}$ is known to be exact, i.e. $\text{err} = 0$, no expression graph is constructed and $\tilde{\mathcal{E}}$ represents \mathcal{E}.

Secondly, if the double approximation $\tilde{\mathcal{E}}$ suffices to determine the sign of \mathcal{E}, i.e. $0 \notin [\tilde{\mathcal{E}} - \text{err}, \tilde{\mathcal{E}} + \text{err}]$, no bigfloat computation is triggered. This technique is called a floating-point filter.

In the reimplementation, we made the following improvements:

1. the separation bound is the better of the LiYap and the BFMS bound.
2. the implementation of the underlying bigfloat arithmetic has been improved; at the beginning it was based on number type $\textit{leda}_\textit{integer}$ for integer numbers of arbitrary size, now it directly operates on vectors of long integers.
3. memory management within the \textit{real} datatype has been improved; in particular, space for the bigfloat approximations is now only allocated if bigfloat computation is necessary for a sign determination.
4. the built-in floating-point filters have been improved, both with respect to running time as well as precision.

Overall, the efficiency has improved for 'easy instances' (i.e. instances that do not need the bigfloat computation) due to improved floating-point filter techniques as well as for 'difficult instances' due to the improved separation bounds and bigfloat implementation.

We turn to our experiments. The source code of all experiments is available at http://www.mpi-sb.mpg.de/~funke/SepBoundESA01.html. Many of the experiments make use of L-bit random integers. We generated them outside the $\textit{leda}_\textit{real}$ number type and used them as inputs for our expressions.

(1) The first test is a simple check of a binomial expression. Let $x = \frac{a}{b}$, $y = \frac{c}{d}$ where a, b, c, and d are L-bit integers and let $\mathcal{E} = (\sqrt{x} + \sqrt{y}) - \sqrt{x + y + 2\sqrt{xy}}$. For the old BFMS-bound we get $sep_{BFMS} = 381$, for our improved bound $sep_{\text{improv}} = 96L + 60$, whereas the LiYap-bound gives $sep_{LiYap} = 28L + 60$. This is of course reflected in the running times.

L	25	50	100	200	400	800	1600
BFMS	0.04	0.10	0.27	0.77	2.21	6.55	20.73
Improv	0.01	0.04	0.10	0.27	0.77	2.26	7.07
LiYAP	0.00	0.01	0.02	0.04	0.11	0.29	0.91

(2) Let x and y be L-bit integers, $C = (\sqrt{x} - \sqrt{y})/(x - y)$ and $\mathcal{E} = C - C$. For both our old and improved bound we get $sep_{BFMS} = sep_{\text{improv}} = 6L + 64$, whereas the LiYap-bound gives $sep_{LiYap} = 65L + 91$. Again this shows in the running times.

L	500	1000	2000	4000	8000	16000
BFMS	0.01	0.03	0.08	0.25	0.72	2.33
Improv	0.01	0.03	0.08	0.24	0.73	2.32
LiYAP	0.36	1.05	3.17	9.47	28.5	85.6

We now turn to examples for which we have already proved differing asymptotic behaviour of the bounds in Section 4.
(3) First consider $F = \sqrt[4]{x/y}$ and $E = F - F$ where x is a 100$\,k$-bit integer and y a 32-bit integer. The BFMS bound is $\Theta(k^2)$, whereas the new bound is $\Theta(k)$. The Li/Yap bound is also $\Theta(k)$ and even better than our new bound.

k	2	4	8	16	32	64
BFMS time	0.01	0.02	0.20	2.22	24.36	86.6
BFMS bound	391	1683	6751	26781	106396	421787
Improv. time	0.01	0.01	0.04	0.11	0.36	
Improv. bound	214	538	1198	2524	5179	10459
LiYap time	0.01	0.01	0.03	0.04	0.12	
LiYap bound	150	346	750	1564	3195	6427

The running time of multiplication, division, and the root operation for L-bit numbers in leda_bigfloat is $L \log_3 L$. Doubling k in case of the BFMS bound quadruples the separation bound and hence multiplies the running time by about 2^9, whereas in case of the improved bound, the separation bound doubles and the running time roughly triples.

(4) For $E_0 = 17/3, F_i = \sqrt{E_{i-1}}, E_i = F_i + F_i, E = E_k - E_k$, the BFMS and the BFMSS bound for E is $\Theta(4^k)$ (but with different constant factors), whereas the Li-Yap bound is $\Theta(2^k)$.

k	2	3	4	5	6
BFMS time	0.01	0.01	0.02	0.04	0.08
BFMS bound	237	1213	5885	27645	126973
Improv. time	0.01	0.01	0.04	0.04	0.32
Improv. bound	76	284	1084	4220	16636
LiYap time	0.01	0.01	1.98	1781	(too long)
LiYap bound	140	2076	65956	4194428	53687164

In the following test we compare different implementations: real(1) denotes our old implementation and real(2) the new implementation.

(5) As in our first example we take $x = \frac{a}{b}, y = \frac{c}{d}$, where a, b, c, d are L-bit integers, and $E = (\sqrt{x} + \sqrt{y}) - \sqrt{x + y + 2\sqrt{xy}}$. As we can see, the improved implementation of the LEDA real datatype already leads to a speedup of a factor of 4, even when using the same separation bound. The new separation bound gives another speedup of a factor of 3. We did not expect the currently available CORE/Expr implementation that far behind, since it uses the Li-Yap bound which is superior to our bounds in this example. We neither understand why there is no difference in running time for $L = 100$ and $L = 200$, nor the change in running time when doubling the bitlength of the input values.

L	25	50	100	200	400	800	
real(1)	sep_{BFMS}	0.12	0.30	0.98	2.63	8.48	23.97
real(2)	sep_{BFMS}	0.04	0.10	0.27	0.77	2.21	6.55
real(2)	sep_{improv}	0.01	0.04	0.10	0.27	0.77	2.26
CORE/Expr	$\text{sep}_{\text{OldLiYap}}$	2.32	15.7	116.9	116.84	692	3973

(6) The final comparison concerns easy sign tests. The following expression arises during Fortune’s sweep-line algorithm for Voronoi diagrams: $E = \frac{a + \sqrt{b} - d + \sqrt{c}}{d + \sqrt{b}}$ where a, d, b, d', c', c', c' are random $3L$, $6L$, and $2L$-bit integers. The root bounds do not play a role here, only the efficiency of the implementation, in particular the floating-point filters comes into play. To get meaningful results we measured the time of 200,000 sign computations.

L	50	100	200
double	0.08	0.08	0.08
real(1)	1.64	1.65	194
real(2)	1.22	1.23	120
CORE/Expr	568	555	672

\(^2\text{As machines get slower as they use more memory, we see a factor of slightly more than 9.}\)
Clearly, pure double arithmetic is the fastest, creating the expression dag does not come without cost. But as you can see, our new implementation gains about 25% compared to the old one. The huge increase in running time for $L = 200$ can be explained by the fact that in this case, the numbers get too large to be representable by a double (remember that we create integers of length $6L$). Therefore the floating-point filters will always fail and bigfloat arithmetic has to be used. CORE does not have built-in floating-point filters so it is much slower then leda_real.

6 Conclusions

We presented a new separation bound for algebraic expressions. The bound applies to a wide class of expressions and is easily computable. For many expressions it gives much better bounds than previous bounds resulting in significant gains in running time. We see two main challenges: (1) For algebraic numbers defined by systems of polynomials, Canny’s bound is the best bound known. Provide a better bound. (2) Our bound as well as the Li/Yap bound is very easy to compute. In the context of expensive sign computations it is worthwhile to investigate more expensive methods for computing separation bounds.

References

[BFMS99] C. Burnikel, R. Fleischer, K. Mehlhorn, and S. Schirra. Exact efficient computational geometry made easy. In Proceedings of the 15th Annual Symposium on Computational Geometry (SCG’99), pages 341–350, 1999. www.mpi-sb.mpg.de/~mehlhorn/ftp/egcme.ps.

[BFMS00] C. Burnikel, R. Fleischer, K. Mehlhorn, and S. Schirra. A strong and easily computable separation bound for arithmetic expressions involving radicals. Algorithmica, 27:87–99, 2000.

[BMS94] C. Burnikel, K. Mehlhorn, and S. Schirra. How to compute the Voronoi diagram of line segments: Theoretical and experimental results. In Springer, editor, Proceedings of the 2nd Annual European Symposium on Algorithms - ESA’94, volume 855 of Lecture Notes in Computer Science, pages 227–239, 1994.

[BMS96] C. Burnikel, K. Mehlhorn, and S. Schirra. The LEDA class real number. Technical Report MPI-I-96-1-001, Max-Planck-Institut für Informatik, Saarbrücken, 1996.

[Can87] J.F. Canny. The Complexity of Robot Motion Planning. The MIT Press, 1987.

[Hec70] E. Hecke. Vorlesungen über die Theorie der algebraischen Zahlen. Chelsea, New York, 1970.

[KLPY99] V. Karamcheti, C. Li, I. Pechtchanski, and Chee Yap. A core library for robust numeric and geometric computation. In Proceedings of the 15th Annual ACM Symposium on Computational Geometry, pages 351–359, Miami, Florida, 1999.

[LED] LEDA (Library of Efficient Data Types and Algorithms). www.mpi-sb.mpg.de/LEDA/leda.html.

[Loo82] R. Loos. Computing in algebraic extensions. In B. Buchberger, G. E. Collins, and R. Loos, editors, Computer Algebra. Symbolic and Algebraic Computation, volume 4 of Computing Supplimentum, pages 173–188. Springer-Verlag, 1982.

[LY01] C. Li and C. Yap. A new constructive root bound for algebraic expressions. In Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’01), pages 496–505, 2001.

[Mig82] M. Mignotte. Identification of Algebraic Numbers. Journal of Algorithms, 3(3):197–204, September 1982.

[Mig92] M. Mignotte. Mathematics for Computer Algebra. Springer, 1992.

[MN99] K. Mehlhorn and S. Näher. The LEDA Platform for Combinatorial and Geometric Computing. Cambridge University Press, 1999. 1018 pages.

[MS01] K. Mehlhorn and St. Schirra. Exact computation with leda_real - theory and geometric applications. In G. Alefeld, J. Rohn, S. Rumpf, and T. Yamamoto, editors, Symbolic Algebraic Methods and Verification Methods. Springer Verlag, Vienna, 2001. www.mpi-sb.mpg.de/~mehlhorn/ftp/ledareal.ps.

[Neu90] J. Neukirch. Algebraische Zahlentheorie. Springer-Verlag, 1990.

[Sch00] E. R. Scheinerman. When close enough is close enough. American Mathematical Monthly, 107:489–499, 2000.

[Yap97] Yap. Towards exact geometric computation. CGTA: Computational Geometry: Theory and Applications, 7, 1997.

[Yap99] C.K. Yap. Fundamental Problems in Algorithmic Algebra. Oxford University Press, 1999.

[YD95] C.K. Yap and T. Dube. The exact computation paradigm. In Computing in Euclidean Geometry II. World Scientific Press, 1995.