The sensitivity of the ice-nucleating ability of minerals to heat and the implications for the heat test for biological ice nucleators

Martin I. Daily¹, Mark D. Tarn¹, Thomas F. Whale¹* and Benjamin J. Murray¹

Supplementary Information

S1 Supplementary table

Table S1: List of past studies in which heat treatments were used to infer the presence of biological INPs in samples of various environmental media.

Study	Sample media	Heat treatment method	Ice nucleation measurement method
Baloh et al., 2019	Snow and surface water	Wet: 95 °C for 20 min	Drop freezing assay: 50 µL droplets in 96-well plates
Barry et al., 2021	Aerosol from wildfire smoke plume	Wet: 95 °C for 20 min	Drop freezing assay: 50 µL droplets in 96-well plates
Boose et al., 2019	Desert dusts from nine worldwide locations	Dry: 300 °C for 10 h	Ice crystal counting by optical particle counter downstream of CFDC*
Christner et al., 2008a and b	Snow and rainwater	Wet: 95 °C for 10 min	Drop freezing assay: 0.25 - 1 mL aliquots in test tubes
Conen et al., 2011	Soils with varying organic content	Wet: 100 °C for 10 min	Drop freezing assay: 50 µL droplets in microfuge tubes
Conen et al., 2016	Aerosol and leaf litter suspension	Wet: 80 °C for 10 min	Drop freezing assay: unstated volume in microfuge tubes
Conen et al., 2017	Aerosol sampled on hillside	Wet: 90 °C for 10 min	Drop freezing assay: filter punches immersed in 100 µL droplets in microfuge tubes
Creamean et al., 2018	Bulk seawater and sea surface microlayer	Wet: 90 °C for 30 min	Drop freezing assay: 2.5 µL droplets on cooling stage
Creamean et al., 2020	Permafrost soil and ice wedge	Wet: 95 °C for 20 min	Drop freezing assay: 50 µL droplets in 96-well plates
D'Souza et al., 2013	Plankton sample from frozen lake	Wet: 45, 65 and 90 °C for 2 h	Drop freezing assay: 80 µL aliquots in microcapillary tubes
Du et al., 2017	Rainwater	Wet: 100 °C for 10 min	Drop freezing assay: 10 µL droplets on cooling stage
Garcia et al., 2012	Aerosol and surface dust collected on a farm	Wet: 98 °C for 20 min	Drop freezing assay: 30 or 50 µL droplets in 96-well plates
Gong et al., 2020	Bulk seawater and sea surface microlayer, cloud water and aerosol	Wet: 95 °C for 1 h	Drop freezing assay: 1 µL droplets on cooling stage and 50 µL droplets in 96-well plates
Hara et al., 2016a	Snow collected from ground	Wet: 40 °C and 90 °C for 1 h	Drop freezing assay: filter punches immersed 0.5 mL in microfuge tubes
Study	Sample media	Heat treatment method	Ice nucleation measurement method
------------------------------	--	-----------------------	--
Hara et al., 2016b	Aerosol collected on building top	Wet: 90 °C for 1 h	Drop freezing assay: filter punches immersed 0.5 mL in microfuge tubes
Hartmann et al., 2020	Bulk seawater, sea surface microlayer and fog water	Wet: 95 °C for 1 h	Drop freezing assays: 1 μL droplets on cooling stage and 50 μL droplets in 96-well plates
Henderson-Begg et al., 2009	Lichen samples and aerosol sample in urban location	Wet: 37, 60 and 90 °C for unspecified duration	Not stated
Hill et al., 2014	Vegetation washings and snow and hail from ground	Wet: 60 °C and 90 °C for 10 min	Drop freezing assay: 50 μL droplets in 96-well plates
Hill et al., 2016	Topsoil	Wet: 60 °C and 105 °C for 20 min	Drop freezing assay: 50 μL droplets in 96-well plates
Hiranuma et al., 2020	Aerosol and surface dust sampling on a cattle farm	Dry: 100 °C for 12 h before cloud chamber analysis and drop freezing assays. Wet: 100 °C for 20 min before drop freezing assay only.	
Irish et al., 2017	Bulk seawater and surface microlayer	Wet: 100 °C for 1 h	Drop freezing assay: 0.6 μL droplets on cooling stage
Iwata et al., 2019	Aerosol collected on building in forest	Dry: 150 °C for 10 min	Visual identification of ice growing on particles on cooling Si substrate
Joly et al., 2014	Cloud water	Wet: 95 °C for 10 min	Drop freezing assay: 20 μL aliquots in microfuge tubes
Joyce et al., 2019	Rainwater, sleet and snow	Wet: 95 °C for 10 min	Drop freezing assay: 200 μL droplets in 96-well plates
Knackstedt et al., 2018	River water and aerosolised river water	Wet: 95 °C for 20 min	Drop freezing assay: 80 μL droplets in 96-well plates
Lu et al., 2016	Rainwater	Wet: 100 °C for 20 min	Drop freezing assay: 10 μL droplets on cooling stage
Martin et al., 2019	Rainwater	Wet: 90 °C for 20 min	Drop freezing assay: 50 μL droplets in 96-well plates
McCluskey et al., 2018a	Aerosol at coastal site	Wet: 95 °C for 20 min	Drop freezing assay: 50 μL droplets in 96-well plates
McCluskey et al., 2018b	Sea spray aerosol, bulk seawater and sea surface microlayer	Wet: 95 °C for 20 min	Drop freezing assay: 50 μL droplets in 96-well plates
Michaud et al., 2014	Hailstones	Wet: 95 °C for 10 min	Drop freezing assay: 50 μL droplets in 96-well plates
Moffett et al., 2018	River water	Wet: 90 °C for 10 min	Differential scanning calorimetry
Moffett et al., 2018	River water	Wet: 95 °C for 20 min	Drop freezing assay: 80-100 μL droplets in 96-well plates
O'Sullivan et al., 2014	Agricultural soils	Wet: 90 °C for 10 min	Drop freezing assay: 1 μL droplets on cooling stage
Study	Sample media	Heat treatment method	Ice nucleation measurement method
------------------------------------	--	-----------------------	--
O’Sullivan et al., 2015	Woodland soils	Wet: 90 °C for 45 min	Drop freezing assay: 1 µL droplets on cooling stage
O’Sullivan et al., 2018	Aerosol sampling on an arable farm	Wet: 95 °C for 1 hr	Drop freezing assay: 1 µL droplets on cooling stage
Paramonov et al., 2018	Soil and desert dusts	Dry: 300 °C for 2 h	Ice crystal counting by optical particle counter downstream of CFDC*
Šantl-Temkiv et al., 2015	Snow and rainwater	Wet: 95 °C for 10 min	Drop freezing assay: 240 - 300 µL droplets in 96-well plates
Šantl-Temkiv et al., 2019	Aerosol and snow samples	Wet: 100 °C for 10 min	Drop freezing assay: 100 - 200 µL droplets for snow samples and filter punches immersed in 50 µL droplets in 96-well plates
Schneider et al., 2021	Aerosol collected from a boreal forest	Wet: 95 °C for 20 min	Drop freezing assay: 50 µL droplets in 96-well plates
Schnell and Vali, 1976	Leaf litter collected from various locations worldwide and seawater	Wet: 60 – 100 °C for unspecified duration	Drop freezing assay
Steinke et al., 2016	Agricultural soils	Dry: 110 °C for 1 h	Ice crystal concentration by optical particle counter in cloud chamber
Suski et al., 2018	Aerosol and surface dust sampling on an arable farm	Wet: 95°C for 20 min. Dry: 300 °C upstream of CFDC	Drop freezing assay: 50 µL droplets in 96-well plates; ice crystal counting by optical particle counter downstream of CFDC*
Tobo et al., 2020	Aerosol collected from tall TV mast in Tokyo, Japan	Wet: 100°C for 1 h	Drop freezing assay: 5 µL droplets on cooling stage
Tesson and Šantl-Temkiv, 2018	Snow	Wet: 100 °C for 10 min	Drop freezing assay: droplets of unspecified volume on cooling stage
Wilson et al., 2015	Bulk seawater and sea surface microlayer	Wet: 8 temperatures between 20 °C and 100 °C for 10 min	Drop freezing assay: 1 µL droplets on cooling stage
Yadav et al., 2019	Rainwater and desert dust from surface	Wet: 100 °C for 10 min	Drop freezing assay: 1 µL droplets on cooling stage

CFDC = Continuous Flow Diffusion Chamber
Figure S1: Fraction of droplets frozen ($f_{\text{ice}}(T)$) curves for all mineral-based INP samples. Data for four background runs are shown in each plot. A dotted horizontal line denotes $f_{\text{ice}}(T) = 0.5$, from which T_{50} values were determined. All suspensions were prepared to a concentration of 1 % w/v. Denoted in each panel are T_{50}, $\Delta T_{50}^{\text{wet}}$ and $\Delta T_{50}^{\text{dry}}$ values for the sample, with significant ($\Delta T_{50}^{\text{dry}}$ greater than $\pm 1.2 ^\circ C$) values highlighted in yellow.
Figure S2: Fraction of droplets frozen ($f_{ic}(T)$) curves for all biological INP samples. Data for four background runs are shown in each plot. A dotted horizontal line denotes $f_{ic}(T) = 0.5$, from which T_{50} values were determined. All suspensions were prepared to a concentration of 1% w/v. Denoted in each panel are T_{50}, ΔT_{50}^{wet} and ΔT_{50}^{dry} values for the sample, with significant (ΔT_{50} greater than ±1.2 °C) values highlighted in yellow.

Figure S3: Plot showing $n_i(T)$ data for calcite, illustrating the relative changes in INA before and after wet heating compared to a control suspension (solid squares) that was immersed in room temperature water for the same amount of time as the wet heated sample.
References for Table S1:

Baloh, P., Els, N., David, R. O., Larose, C., Whitmore, K., Sattler, B., and Grothe, H.: Assessment of Artificial and Natural Transport Mechanisms of Ice Nucleating Particles in an Alpine Ski Resort in Obergurgl, Austria, Front. Microbiol., 10, 2278, 2019.

Barry, K. R., Hill, T. C. J., Levin, E. J. T., Twohy, C. H., Moore, K. A., Weller, Z. D., Toohey, D. W., Reeves, M., Campos, T., Geiss, R., Schill, G. P., Fischer, E. V., Kreidenweis, S. M., and DeMott, P. J.: Observations of Ice Nucleating Particles in the Free Troposphere From Western US Wildfires, J. Geophys. Res.-Atmos., 126, e2020JD033752, 2021.

Boose, Y., Baloh, P., Plötze, M., Ofner, J., Grothe, H., Sierau, B., Lohmann, U., and Kanji, Z. A.: Heterogeneous ice nucleation on dust particles sourced from nine deserts worldwide – Part 2: Deposition nucleation and condensation freezing, Atmos. Chem. Phys., 19, 1059-1076, 2019.

Christner, B. C., Cai, R., Morris, C. E., McCarter, K. S., Foreman, C. M., Skidmore, M. L., Montross, S. N., and Sands, D. C.: Geographic, seasonal, and precipitation chemistry influence on the abundance and activity of biological ice nucleators in rain and snow, Proc Natl Acad Sci U S A, 105, 18854-18859, 2008a.

Conen, F., Morris, C. E., Leifeld, J., Yakutin, M. V., and Alewell, C.: Biological residues define the ice nucleation properties of soil dust, Atmos. Chem. Phys., 11, 9643-9648, 2011.

Creamean, J. M., Hill, T. C. J., DeMott, P. J., Uetake, J., Kreidenweis, S., and Douglas, T. A.: Thawing permafrost: an overlooked source of seeds for Arctic cloud formation, Environ. Res. Lett., 15, 084022, 2020.

D'Souza, N. A., Kawarasaki, Y., Gantz, J. D., Lee, R. E., Beall, B. F. N., Shtarkman, Y. M., Koçer, Z. A., Rogers, S. O., Wildschutte, H., Bullerjahn, G. S., and McKay, R. M. L.: Diatom assemblages promote ice formation in large lakes, ISME. J., 7, 1632-1640, 2013.

Du, R., Du, P., Lu, Z., Ren, W., Liang, Z., Qin, S., Li, Z., Wang, Y., and Fu, P.: Evidence for a missing source of efficient ice nuclei, Sci Rep, 7, 39673, 2017.

Garcia, E., Hill, T. C. J., Prenni, A. J., DeMott, P. J., Franc, G. D., and Kreidenweis, S. M.: Biogenic ice nuclei in boundary layer air over two U.S. High Plains agricultural regions, J. Geophys. Res.-Atmos., 117, n/a-n/a, 2012.

Gong, X., Wex, H., van Pinxteren, M., Triesch, N., Fomba, K. W., Lubitz, J., Stolle, C., Robinson, T. B., Müller, T., Herrmann, H., and Stratmann, F.: Characterization of aerosol particles at Cabo Verde close to sea level and at the cloud level – Part 2: Ice-nucleating particles in air, cloud and seawater, Atmos. Chem. Phys., 20, 1451-1468, 2020.
Hara, K., Maki, T., Kakikawa, M., Kobayashi, F., and Matsuki, A.: Effects of different temperature treatments on biological ice nuclei in snow samples, Atmos. Env., 140, 415-419, 2016a.

Hara, K., Maki, T., Kobayashi, F., Kakikawa, M., Wada, M., and Matsuki, A.: Variations of ice nuclei concentration induced by rain and snowfall within a local forested site in Japan, Atmos. Env., 127, 1-5, 2016b.

Hartmann, M., Gong, X., Kecorius, S., van Pinxteren, M., Vogl, T., Welti, A., Wex, H., Zeppenfeld, S., Herrmann, H., Wiedensohler, A., and Stratmann, F.: Terrestrial or marine? – Indications towards the origin of Ice Nucleating Particles during melt season in the European Arctic up to 83.7°N, Atmos. Chem. Phys. Discuss., 2020, 1-35, 2020.

Henderson-Begg, S. K., Hill, T., Thyrrhaug, R., Khan, M., and Moffett, B. F.: Terrestrial and airborne non-bacterial ice nuclei, Atmos. Sci. Lett., 10, 215-219, 2009.

Hill, T. C. J., DeMott, P. J., Tobo, Y., Fröhlich-Nowoisky, J., Moffett, B. F., Franc, G. D., and Kreidenweis, S. M.: Sources of organic ice nucleating particles in soils, Atmos. Chem. Phys., 16, 7195-7211, 2016.

Hill, T. C. J., Moffett, B. F., Demott, P. J., Georgakopoulos, D. G., Stump, W. L., and Franc, G. D.: Measurement of ice nucleation-active bacteria on plants and in precipitation by quantitative PCR, Appl Environ Microbiol, 80, 1256-1267, 2014.

Hiranuma, N., Auvermann, B. W., Belosi, F., Bush, J., Cory, K. M., Fösig, R., Georgakopoulos, D., Höhler, K., Hou, Y., Saathoff, H., Santachiara, G., Shen, X., Steinke, I., Unno, N., Vepuri, H. S. K., Vogel, F., and Möhler, O.: Feedlot is a unique and constant source of atmospheric ice-nucleating particles, Atmos. Chem. Phys. Discuss., 2020, 1-27, 2020.

Irish, V. E., Elizondo, P., Chen, J., Chou, C., Charette, J., Lizotte, M., Ladino, L. A., Wilson, T. W., Gosselin, M., Murray, B. J., Polishchuk, E., Abbott, J. P. D., Miller, L. A., and Bertram, A. K.: Ice-nucleating particles in Canadian Arctic sea-surface microlayer and bulk seawater, Atmos. Chem. Phys., 17, 10583-10595, 2017.

Iwata, A., Imura, M., Hama, M., Maki, T., Tsuchiya, N., Kunihsa, R., and Matsuki, A.: Release of Highly Active Ice Nucleating Biological Particles Associated with Rain, Atmosphere, 10, 2019.

Joly, M., Amato, P., Deguillaume, L., Monier, M., Hoose, C., and Delort, A. M.: Quantification of ice nuclei active at near 0 °C temperatures in low-altitude clouds at the Puy de Dôme atmospheric station, Atmos. Chem. Phys., 14, 8185-8195, 2014.

Joyce, R. E., Lavender, H., Farrar, J., Werth, J. T., Weber, C. F., D’Andrilli, J., Vaitilingom, M., and Christner, B. C.: Biological Ice-Nucleating Particles Deposited Year-Round in Subtropical Precipitation, Appl Environ Microbiol, 85, e01567-01519, 2019.

Knackstedt, K. A., Moffett, B. F., Hartmann, S., Wex, H., Hill, T. C. J., Glasgo, E. D., Reitz, L. A., Augustin-Bauditz, S., Beall, B. F. N., Bullerjahn, G. S., Fröhlich-Nowoisky, J., Grawe, S., Lubitz, J., Stratmann, F., and McKay, R. M. L.: Terrestrial Origin for Abundant Riverine Nanoscale Ice-Nucleating Particles, Environ. Sci. Technol., 52, 12358-12367, 2018.

Lu, Z., Du, P., Du, R., Liang, Z., Qin, S., Li, Z., and Wang, Y.: The Diversity and Role of Bacterial Ice Nuclei in Rainwater from Mountain Sites in China, Aerosol. Air. Qual. Res., 16, 640-652, 2016.

Martin, A. C., Cornwell, G., Beall, C. M., Cannon, F., Reilly, S., Schaap, B., Lucero, D., Creamean, J., Ralph, F. M., Mix, H. T., and Prather, K.: Contrasting local and long-range-transported warm ice-nucleating particles during an atmospheric river in coastal California, USA, Atmos. Chem. Phys., 19, 4193-4210, 2019.
McCluskey, C. S., Hill, T. C. J., Sultana, C. M., Laskina, O., Trueblood, J., Santander, M. V., Beall, C. M., Michaud, J. M., Kreidenweis, S. M., Prather, K. A., Grassian, V., and DeMott, P. J.: A Mesocosm Double Feature: Insights into the Chemical Makeup of Marine Ice Nucleating Particles, J. Atmos. Sci., 75, 2405-2423, 2018a.

McCluskey, C. S., Ovadnevaite, J., Rinaldi, M., Atkinson, J., Belosi, F., Ceburnis, D., Marullo, S., Hill, T. C. J., Lohmann, U., Kanji, Z. A., O'Dowd, C., Kreidenweis, S. M., and DeMott, P. J.: Marine and Terrestrial Organic Ice-Nucleating Particles in Pristine Marine to Continentially Influenced Northeast Atlantic Air Masses, J. Geophys. Res.-Atmos., 123, 6196-6212, 2018b.

Michaud, A. B., Dore, J. E., Leslie, D., Lyons, W. B., Sands, D. C., and Priscu, J. C.: Biological ice nucleation initiates hailstone formation, J. Geophys. Res.-Atmos., 119, 12,186-112,197, 2014.

Moffett, B. F., Hill, T. C. J., and DeMott, P. J.: Abundance of Biological Ice Nucleating Particles in the Mississippi and Its Major Tributaries, Atmosphere, 9, 2018.

O'Sullivan, D., Murray, B. J., Malkin, T. L., Whale, T. F., Umo, N. S., Atkinson, J. D., Price, H. C., Baustian, K. J., Browse, J., and Webb, M. E.: Ice nucleation by fertile soil dusts: relative importance of mineral and biogenic components, Atmos. Chem. Phys., 14, 1853-1867, 2014.

O’Sullivan, D., Adams, M. P., Tarn, M. D., Harrison, A. D., Vergara-Temprado, J., Porter, G. C. E., Holden, M. A., Sanchez-Marroquin, A., Carotenuto, F., Whale, T. F., McQuaid, J. B., Walshaw, R., Hedges, D. H. P., Burke, I. T., Cui, Z., and Murray, B. J.: Contributions of biogenic material to the atmospheric ice-nucleating particle population in North Western Europe, Sci. Rep., 8, 13821, 2018.

O’Sullivan, D., Murray, B. J., Ross, J. F., Whale, T. F., Price, H. C., Atkinson, J. D., Umo, N. S., and Webb, M. E.: The relevance of nanoscale biological fragments for ice nucleation in clouds, Sci. Rep., 5, 8082, 2015.

Paramonov, M., David, R. O., Kretzschmar, R., and Kanji, Z. A.: A laboratory investigation of the ice nucleation efficiency of three types of mineral and soil dust, Atmos. Chem. Phys., 18, 16515-16536, 2018.

Šantl-Temkiv, T., Lange, R., Beddows, D., Rauter, U., Pilgaard, S., Dall’Osto, M., Gunde-Cimerman, N., Massling, A., and Wex, H.: Biogenic Sources of Ice Nucleating Particles at the High Arctic Site Villum Research Station, Environ. Sci. Technol., 53, 10580-10590, 2019.

Šantl-Temkiv, T., Sahyoun, M., Finster, K., Hartmann, S., Augustin-Bauditz, S., Stratmann, F., Wex, H., Clauss, T., Nielsen, N. W., Sørensen, J. H., Korsholm, U. S., Wick, L. Y., and Karlson, U. G.: Characterization of airborne ice-nucleation-active bacteria and bacterial fragments, Atmos. Env., 109, 105-117, 2015.

Schneider, J., Höhler, K., Heikkilä, P., Keskinen, J., Bertozzi, B., Bogert, P., Schorr, T., Umo, N. S., Vogel, F., Brasseur, Z., Wu, Y., Hakala, S., Duplissy, J., Moisseev, D., Kulmala, M., Adams, M. P., Murray, B. J., Korhonen, K., Hao, L., Thomson, E. S., Castarède, D., Leisner, T., Petäjä, T., and Möhler, O.: The seasonal cycle of ice-nucleating particles linked to the abundance of biogenic aerosol in boreal forests, Atmos. Chem. Phys., 21, 3899-3918, 2021.

Steinke, I., Funk, R., Busse, J., Iturri, A., Kirchen, S., Leue, M., Möhler, O., Schwartz, T., Schnaiter, M., Sierau, B., Toprak, E., Ulrich, R., Ulrich, A., Hoose, C., and Leisner, T.: Ice nucleation activity of agricultural soil dust aerosols from Mongolia, Argentina, and Germany, J. Geophys. Res.-Atmos., 121, 13,559-513,576, 2016.

Suski, K. J., Hill, T. C. J., Levin, E. J. T., Miller, A., DeMott, P. J., and Kreidenweis, S. M.: Agricultural harvesting emissions of ice nucleating particles, Atmos. Chem. Phys. Discussions, doi: 10.5194/acp-2018-348, 2018. 1-30, 2018.
Tesson, S. V. M. and Šantl-Temkiv, T.: Ice Nucleation Activity and Aeolian Dispersal Success in Airborne and Aquatic Microalgae, Front. Microbiol., 9, 2681, 2018.

Tobo, Y., Uetake, J., Matsui, H., Moteki, N., Uji, Y., Iwamoto, Y., Miura, K., and Misumi, R.: Seasonal Trends of Atmospheric Ice Nucleating Particles Over Tokyo, J. Geophys. Res.-Atmos., 125, e2020JD033658, 2020.

Wilson, T. W., Ladino, L. A., Alpert, P. A., Breckels, M. N., Brooks, I. M., Browse, J., Burrows, S. M., Carslaw, K. S., Huffman, J. A., Judd, C., Kilthau, W. P., Mason, R. H., McFiggans, G., Miller, L. A., Najera, J. J., Polishchuk, E., Rae, S., Schiller, C. L., Si, M., Temprado, J. V., Whale, T. F., Wong, J. P., Wurl, O., Yakobi-Hancock, J. D., Abbatt, J. P., Aller, J. Y., Bertram, A. K., Knopf, D. A., and Murray, B. J.: A marine biogenic source of atmospheric ice-nucleating particles, Nature, 525, 234-238, 2015.

Yadav, S., Venezia, R. E., Paerl, R. W., and Petters, M. D.: Characterization of Ice-Nucleating Particles Over Northern India, J. Geophys. Res.-Atmos., 124, 10467-10482, 2019