Broken time-reversal symmetry in superconducting $\text{Pr}_{1-x}\text{La}_x\text{Pt}_4\text{Ge}_{12}$

J. Zhang, Z. F. Ding, K. Huang, C. Tan, A. D. Hillier, P. K. Biswas, D. E. MacLaughlin, and L. Shu

1State Key Laboratory of Surface Physics, Department of Physics, Fudan University, Shanghai 200433, People’s Republic of China
2ISIS Facility, STFC Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Chilton, Didcot, Oxon, United Kingdom
3Department of Physics and Astronomy, University of California, Riverside, California 92521, USA
4Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, People’s Republic of China

(Received 31 January 2019; revised manuscript received 20 June 2019; published 16 July 2019)

The superconducting state of the filled skutterudite alloy series $\text{Pr}_{1-x}\text{La}_x\text{Pt}_4\text{Ge}_{12}$ has been systematically studied by specific heat and zero-field muon spin relaxation (μSR), while the critical fields have been determined by magnetization measurements. An additional inhomogeneous local magnetic field, indicative of broken time-reversal symmetry, is observed in the superconducting states of the alloys. For $x \lesssim 0.5$, the broken-TRS phase sets in below a temperature T_m, distinctly lower than the superconducting transition temperature T_c. For $x \gtrsim 0.5$, $T_m \approx T_c$. The local field strength decreases as $x \rightarrow 1$, where $\text{LaPt}_4\text{Ge}_{12}$ is characterized by conventional pairing. The lower critical field $H_c(0)$ of $\text{PrPt}_4\text{Ge}_{12}$ shows the onset of a second quadratic temperature region below $T_q \approx T_m$. Upper critical field $H_c(2T)$ measurements suggest multiband superconductivity, and point gap nodes are consistent with the specific heat data. In $\text{Pr}_{1-x}\text{La}_x\text{Pt}_4\text{Ge}_{12}$, only a single specific-heat discontinuity is observed at T_c, in contrast to the second jump seen in $\text{PrOs}_8\text{Sb}_{12}$ below T_c. These results suggest that superconductivity in $\text{PrPt}_4\text{Ge}_{12}$ is characterized by a complex order parameter.

DOI: 10.1103/PhysRevB.100.024508

I. INTRODUCTION

The study of novel superconductors with intrinsic multiple superconducting phases has broadened the understanding of the microscopic origin of unconventional superconductivity (SC) [1,2]. A particular challenge is to clearly identify multiple SC phases in unconventional superconductors and to interpret their SC order parameter(s) (OP).

Gauge symmetry is always broken in the superconducting state. A key indication of multiphase SC is the observation of additional broken symmetry [time-reversal symmetry (TRS), inversion symmetry] at a distinct temperature T_m below the superconducting transition temperature T_c. However, superconductors with intrinsic multiple SC phases are extremely rare. $T_c \sim T_m$ for many superconductors with broken TRS, such as Sr_2RuO_4 [3], LaNiC_2 [4], SrPtAs [5], and Re_6Zr [6]. Empirically, superconductors with $4f$ or $5f$ electron elements are likely to have complex SC OPs [1,7] that can possibly lead to the emergence of multiple SC phases. For example, superconducting $\text{U}_{1-x}\text{Th}_x\text{Be}_{13}$ [8] and UPt_3 [9] were found to exhibit broken TRS at $T_m < T_c$, which suggests the existence of a second SC phase below T_m. The unusual properties of these heavy fermion (HF) superconductors have led to theories that invoke odd-parity (spin-triplet) Cooper pairing [2].

Of particular interest in the small family of multiphase superconductors is the puzzling SC OP of the filled-skutterudite f-electron compound $\text{PrOs}_8\text{Sb}_{12}$ [10], which exhibits broken TRS [11]. Several thermodynamic experiments show evidence for two SC transitions [12,13] in $\text{PrOs}_8\text{Sb}_{12}$, although T_m is not clearly below the upper $T_c = 1.85$ K in muon spin relaxation (μSR) experiments [11] and it has been argued [14] that the double T_c nature is not intrinsic. The SC OP of $\text{PrOs}_8\text{Sb}_{12}$ is a consequence of crystalline-electric-field and strong spin-orbital coupling (SOC) effects [10], and is complicated by the low T_c and HF behavior.

The isostructural compound $\text{PrPt}_4\text{Ge}_{12}$, with a smaller electron effective mass m^*, is considered to share great similarity with $\text{PrOs}_8\text{Sb}_{12}$ in the pairing state [15,16], although no multiple SC phases have been reported. The much higher $T_c \sim 7.8$ K and non-HF state makes $\text{PrPt}_4\text{Ge}_{12}$ a simpler playground to study SC in Pr-based filled skutterudites. Then the key question is whether the OP in $\text{PrPt}_4\text{Ge}_{12}$ is complex, including the possibility of a spin-triplet state and broken TRS [16–21].

The pairing symmetry of $\text{PrPt}_4\text{Ge}_{12}$ remains controversial. The observed broken TRS suggests an OP with either spin or orbital moments [17]. Thermodynamic studies reported the presence of pointlike nodes in the SC energy gap [15]. Superfluid density measurements by transverse-field μSR [16] suggest a nonunitary chiral p-wave state with gap function $\Delta_0|\hat{k}_x \pm i\hat{k}_y|$, where Δ_0 is the magnitude of the gap. These experimental observations motivated theoretical predictions of spin-nondegenerate nodal quasiparticle excitations due to strong SOC [22]. On the other hand, the T_c's of the La-doped series compounds are quite close and they vary continuously, with both end compounds being two-band superconductor candidates [21]. This indicates that the OPs of $\text{PrPt}_4\text{Ge}_{12}$ and $\text{LaPt}_4\text{Ge}_{12}$ could be compatible. The observation of a Hebel-Slichter coherence peak [23] below T_c in the ^{73}Ge NMR relaxation rate in $\text{PrPt}_4\text{Ge}_{12}$ [18] is evidence of weakly

1Present address: Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, USA
2Present address: Lawrence Livermore National Laboratory, Livermore, California 94550, USA
3Corresponding author: leishu@fudan.edu.cn
coupled conventional pairing. The situation is clearly quite fluid.

In this paper, we argue that unconventional SC with a complex OP in PrPt$_4$Ge$_{12}$ is favored by our doping study of Pr$_{1-x}$La$_x$Pt$_4$Ge$_{12}$, $x = 0.1, 0.2, 0.3, 0.5, 0.7$, and 0.9, using measurements of specific heats, superconducting critical fields determined by magnetization measurements, and muon spin relaxation (μSR) in zero and longitudinal [24] fields (ZF- and LF-μSR, respectively) [25–27]. Broken TRS in superconductors often results in an inhomogeneous local magnetic field B_{loc} below T_c, which can be readily detected by ZF-μSR experiments. The width ΔB of this field distribution is roughly $\Delta e/\gamma_\mu$, where Δe is the contribution of the field distribution to the static Gaussian muon spin relaxation rate Δ and $\gamma_\mu/2\pi = 135.53$ MHz/T is the muon gyromagnetic ratio [3,11]. We find broken TRS in all samples, with a continuous decrease of ΔB with increasing La doping. LaPt$_4$Ge$_{12}$ is a conventional superconductor [21,28]. Intriguingly, Δe is significant in Pr-rich alloys (~ 1 K in PrPt$_4$Ge$_{12}$). The temperature dependence of the lower critical field $H_{c1}(T)$ shows an anomaly at a temperature $T_g \sim T_m$ in PrPt$_4$Ge$_{12}$: $H_{c1} \propto T^2$ both above and below T_g, but with an increased coefficient below this temperature. The upper critical field $H_{c2}(T)$ of Pr$_{1-x}$La$_x$Pt$_4$Ge$_{12}$, $x = 0.1, 0.3, 0.5, 0.7,$ and 0.9, is well described by a two-band SC model. We find evidence for point gap nodes in Pr$_{1-x}$Pt$_4$Ge$_{12}$ from specific heat data, but no second SC jump in the specific heat at $\sim T_m$ in any of the measured alloys. Our results indicate a multicomponent SC OP in PrPt$_4$Ge$_{12}$, which results in intrinsic multiple SC phases.

II. SAMPLE CHARACTERIZATION AND EXPERIMENTAL METHODS

A. Sample preparation

Synthesis procedures for our polycrystalline Pr$_{1-x}$La$_x$Pt$_4$Ge$_{12}$ samples ($x = 0.1, 0.3, 0.5, 0.7,$ and 0.9) were similar to those described in Refs. [15,29]. The body-centered-cubic structure (point group T_i, space group $I\bar{m}3\bar{d}$) was confirmed by Rietveld refinements of powder x-ray diffraction (XRD) patterns. The observed isostructural linear expansion of lattice constant a with La concentration x (Fig. 1) is consistent with Vegard’s law. No obvious Pr/La occupation defect is found.

B. Specific heat

Measurements of the specific heat C_p of the samples were performed using a standard thermal relaxation technique in a commercial PPMS EverCool-II device (Quantum Design). Measurements on the $x = 0.3$ and 0.7 samples were also carried out in a dilution refrigerator. The sample surfaces were polished flat to make good thermal contact. The Debye-Sommerfeld approximation $C_p = C_v + C_{\text{ph}} = \gamma T + \beta_{\text{ph}} T^3$ was fit to the normal-state specific heat, measured in a magnetic field of 3 T over the temperature range 2–10 K. The Debye temperature was obtained from the relation $\Theta_D = (12\pi^2N_A k_B / 5 \beta_{\text{ph}})^{1/3}$, where N_A is Avogadro’s number, n is the number of atoms per formula unit, and k_B is the Boltzmann constant.

C. Magnetic susceptibility

Susceptibility measurements were carried out using a commercial vibrating sample magnetometer (Quantum Design) down to 2 K. Upper critical fields H_{c2} were taken as the onset of the superconducting magnetization $M_s(H, T)$ in field-cooled experiments. Lower critical fields H_{c1} were determined from the field dependence of $M_s(H, T)$ measured after cooling in “zero” field (less than ± 0.3 mT). H_{c1} was defined typically as the field value where the magnetization deviates from the field shielding initial slope. Figure 2 shows the determination of H_{c1} at several representative temperatures. Results are discussed in Sec. III B.

D. μSR

In time-diﬀerential μSR [25–27], spin-polarized muons are implanted into the sample and decay via the weak interaction: $\mu^+ \rightarrow e^+ + \nu_\mu (\bar{\nu}_\mu) + \nu_e (\bar{\nu}_e)$. The decay positron (electron) count rate asymmetry $A_e(t)$ in a given direction is proportional to the muon ensemble spin polarization $P_m(t)$ in that direction, and yields information on static and dynamic local fields at the muon sites. Positive muons (μ^+), which stop at interstitial sites in solids, are generally used because they sample local magnetism better than negative muons, which are tightly bound to nuclei. μSR experiments were carried out on samples with $x = 0.3, 0.5, 0.7, 0.8,$ and 0.9 using the MUSR spectrometer at the ISIS Neutron and Muon Facility, Rutherford Appleton.

FIG. 1. Powder x-ray diffraction results for Pr$_{1-x}$La$_x$Pt$_4$Ge$_{12}$ ($x = 0, 0.1, 0.3, 0.5, 0.7, 0.8,$ and 0.9). (a) X-ray diﬀraction pattern for the $[h k l] = [2 2 0]$ peak. A gradual shift of 2Θ indicates a continuous change in the lattice parameter of Pr$_{1-x}$La$_x$Pt$_4$Ge$_{12}$. (b) Lattice constant of Pr$_{1-x}$La$_x$Pt$_4$Ge$_{12}$ calculated from XRD patterns, Vegard’s law is obeyed. Dashed lines are guide to the eye.

For Pr$_{0.7}$La$_{0.3}$Pt$_4$Ge$_{12}$, an upturn in the temperature dependence of C_p below ~ 0.5 K was observed, due to a Schottky contribution [30] $C_{\text{sch}} \propto T^2$ from quadrupole-split 141Pr nuclei (data not shown). The fit gives $C_{\text{sch}}(T)/\gamma_e = 0.0115(3) T^2$ K, which was subtracted to obtain C_p of Pr$_{0.7}$La$_{0.3}$Pt$_4$Ge$_{12}$. A Schottky anomaly was also reported in the parent compound PrPt$_4$Ge$_{12}$ [16], but is not observed in Pr$_{0.3}$La$_{0.7}$Pt$_4$Ge$_{12}$ down to 0.1 K. It is possible that there is Schottky contribution in the low-temperature C_p, but it is small due to diluted 141Pr nuclei and thus hard to fit and be subtracted from C_p.

024508-2
FIG. 2. Representative \(M - \mu_0 H \) at several temperatures. \(H_{\text{c1}} \) is typically defined as the field value where the \(M - \mu_0 H \) deviates from the linear initial shielding curve.

Laboratory, Chilton, United Kingdom, over the temperature range 0.3–12 K. The ambient magnetic field was actively compensated to better than 1 \(\mu T \). The ZF-\(\mu \)SR data for the parent compound PrPt\(_4\)Ge\(_{12}\) discussed in this paper are from Ref. [20].

The observed ZF and LF asymmetry time spectra \(A_\mu(t) = a_0 P_\mu(t) \), where \(a_0 \) is the initial asymmetry, are well described by the exponentially damped Gaussian Kubo-Toyabe polarization function [31] plus a background signal from the silver sample holder with a weighing factor \(f_\mu \):

\[
P_\mu(t) = f_\mu e^{-\lambda t} G^{\text{KT}}_{\mu}(\Delta, t) + (1 - f_\mu) P_{\text{Ag}}, \tag{1}
\]

where \(F = \text{ZF or LF} \), \(\Delta/\gamma_\mu \) is the rms width of a Gaussian distribution of static local fields, and the damping rate \(\lambda \) is often interpreted as a dynamic relaxation rate due to thermal fluctuations of the muon local field [32]. Here

\[
G^{\text{KT}}_{\mu}(\Delta, t) = \frac{1}{3} + \frac{2}{3} (1 - \Delta^2 r^2) \exp \left(-\frac{1}{2} \Delta^2 r^2 \right) \tag{2}
\]

and

\[
G^{\text{KT}}_{L\mu}(\Delta_{\text{LF}}, t) = 1 - \frac{2 \Delta^2 \omega_L}{\omega_L^2} \left[1 - \exp \left(-\frac{1}{4} \Delta^2 \omega_L^2 t^2 \cos(\omega_L t) \right) \right] + \frac{2 \Delta^4 \omega_L^4}{\omega_L^4} \int_0^t \exp \left(-\frac{1}{4} \Delta^2 \omega_L^2 \tau^2 \right) \sin(\omega_L \tau) d\tau,
\]

where \(\omega_L = \gamma_\mu H_L \) is the muon Zeeman frequency in the longitudinal field \(H_L \). Equations (1)–(3) have previously been used to analyze data from PrOs\(_4\)Sb\(_{12}\) and PrPt\(_4\)Ge\(_{12}\) and their alloys [11,17,20,33].

The last term \(P_{\text{Ag}} = e^{-\lambda t_\mu} \) in Eq. (1) is due to muons that miss the sample and stop in the silver sample holder. Measured silver relaxation rates \(\lambda_{\text{Ag}} \) are sample dependent but very small (~0.1–10 ms\(^{-1}\)), with weak temperature and initial muon energy dependencies [34,35]. This background signal is often considered as nonrelaxing \((P_{\text{Ag}} \sim 1) \) when sample relaxation is much larger. We here apply \(P_{\text{Ag}} = 1 \). Its fraction \((1 - f_\mu) \) is well determined using low-temperature \(\mu \)SR asymmetry spectra, where the silver signal dominates the late-time data. Using a nonzero silver relaxation rate \((10 \text{ ms}^{-1}) \) does not change the fit results appreciably.

III. RESULTS

The lattice constant \(a \), superconducting transition temperatures \(T_c^{\text{Sp}} \) from the specific heat, Sommerfeld coefficients \(\gamma_\mu \), Debye temperatures \(\theta_D \), and the relative specific heat discontinuity \(\Delta C_{\mu}/\gamma_\mu T_c \) at \(T_c \) are summarized in Table I, including data for the two end compounds \((x = 0 \text{ and } 1)\) from Refs. [15,16]. The quantity \(b \) is the coefficient in Eq. (8) of Sec. III C 1, where \(\mu \)SR relaxation data are analyzed assuming the contribution \(\Delta_\alpha(T) \) to the static relaxation rate due to broken TRS exhibits a BCS gaplike temperature dependence.

A. Specific heat

The temperature dependencies of the electronic specific heat \(C_e(T) \) for Pr\(_{1-x}\)La\(_x\)Pt\(_4\)Ge\(_{12}\), \(x = 0.1, 0.3, 0.5, 0.7, 0.8 \)

\(x \)	\(a (\text{Å}) \)	\(T_c (\text{K}) \)	\(\gamma_\mu (\text{mJ/mol K}^2) \)	\(\Delta C_{\mu}/\gamma_\mu T_c \)	\(\theta_D (\text{K}) \)	\(b \)
0.0 \(^a\) \(^b\)	8.6111(6)	7.91	87.1	1.56	198	1.2(1)
0.1	8.6134(1)	7.85 (5)	76.3 (6)	1.56 (3)	201.3 (2)	–
0.3	8.6150(2)	7.87 (5)	67.9 (5)	1.67 (4)	203.7 (1)	1.2(2)
0.5	8.6189(5)	7.97 (3)	70.5 (7)	1.55 (3)	203.1 (2)	1.3(2)
0.7	8.6213(4)	8.02 (3)	68.8 (7)	1.54 (2)	216.4 (1)	1.3(2)
0.8	8.6229(4)	8.07 (5)	67.2 (6)	1.53 (3)	208.1 (1)	2.1(7)
0.9 \(^c\)	8.6224(3)	8.22 (3)	64.6 (6)	1.53 (2)	207.9 (1)	2.0(0)
1.0 \(^a\)	8.6235(3)	8.27	75.8	1.49	209	–

\(^a\) Data from Ref. [15].

\(^b\) Data from Ref. [16].

\(^c\) For \(x = 0.9, \Delta_\alpha(T) \) is scattered, and a fit using Eq. (8) with \(b \) free does not converge well. A fit with fixed \(b = 2.0 \), which gives reasonable fit quality, is used to obtain \(\Delta_\alpha(0) \).
and 0.9, are shown in Figs. 3 and 4. There is only one obvious SC specific heat jump for all La concentrations, so that macroscopic separation of PrPt4Ge12 and LaPt4Ge12 SC phases due to sample inhomogeneity is unlikely. The nonlinearity of the T/T_c dependence of $\ln(C_e/\gamma T_c)$ for all measured samples [Fig. 3(a)] suggests structure in the superconducting gap [1,29]. A simple power-law fit to C_e vs T ($C_e \propto T^n$) can give heuristic estimation of the gap symmetry. The values of the power n are displayed in Fig. 3(b). A $\sim T^3$ dependent C_e suggests point gap nodes in $x \neq 1$ alloys. Also, the values of $\Delta C_p/\gamma T_c$ for all measured samples are slightly larger than the BCS value of 1.43 [Fig. 3(c)], indicating unconventional SC.

The temperature dependencies of the specific heats for $x = 0.3$ and 0.7 alloys down to $T/T_c \approx 0.02$ are displayed in Figs. 4(a) and 4(b). For $T < T_c$, $C_e(T)$ can be best described by the two-component “α model” [37] with a weighting factor f:

$$C_e = f C_{e1} + (1 - f)C_{e2}.$$

(4)

This phenomenological model has been used to describe multiband superconductors such as MgB$_2$ [38], and Eq. (4) with both C_{e1} and C_{e2} based on the BCS theory with different gaps was used to characterize LaPt4Ge12 [21]. In Pr$_{0.5}$La$_{0.5}$Pt$_4$Ge$_{12}$ and Pr$_{0.3}$La$_{0.7}$Pt$_4$Ge$_{12}$, however, $C_e(T)$ can be best fit using $C_{e1} \propto e^{-\Delta_1/k_BT_c}$ and $C_{e2} \propto T^n$, which are empirical expressions for a full gap and a gap with nodes, respectively [1]. This parametrization results in $f = 0.17$, $n = 2.91$, and $\Delta_1/k_BT_c = 1.33$ for Pr$_{0.5}$La$_{0.5}$Pt$_4$Ge$_{12}$; and $f = 0.26$, $n = 3.1$, and $\Delta_1/k_BT_c = 1.13$ for Pr$_{0.3}$La$_{0.7}$Pt$_4$Ge$_{12}$. The increase in f with increasing x suggests the gradual disappearance of the point-node gap as x increases, and for $x = 1$, where TRS is fully restored, there is no power-law term ($f = 1$) [28]. Other forms for C_{e1} and C_{e2} result in worse fit quality. Since specific heat of LaPt4Ge12 can be well fit by a two-isotropic band model [21], fit of $C_e(T)$ using two isotropic BCS gap functions could be used for comparison. For $x = 0.3$, $\Delta_1/k_BT_c = 1.05$ and $\Delta_2/k_BT_c = 3.51$, with $f = 0.31$. For $x = 0.7$, $\Delta_1/k_BT_c = 4.19$ and $\Delta_2/k_BT_c = 1.21$, with $f = 0.77$.

At low temperatures, a single fully gapped scenario does not yield the measured $C_e(T)$ of either Pr$_{0.5}$La$_{0.5}$Pt$_4$Ge$_{12}$ or Pr$_{0.3}$La$_{0.7}$Pt$_4$Ge$_{12}$; neither the asymptotic form [36]

$$\lim_{T \to 0} \frac{C_e}{\gamma_e T} = 3.15 \left(\frac{\Delta_0}{1.76k_BT}\right)^{5/2} \exp\left(-\frac{\Delta_0}{k_BT}\right)$$

(5)

nor a simple exponential fit the data. The best fits to the data at low temperatures ($0.1 K < T < 0.3T_c$) are to Eq. (4) with the low-temperature asymptotic form for $C_{e1}(T)$ and a power law for $C_{e2}(T)$ with $n = 3$. Fits to weighted sums of T^2 and T^3 result in $f \to 0$ for T^2, precluding the possibility of line nodes in the gap. The goodness of fit for single power-law T^3 fits is worse than for multicomponent fits.

We have summarized the fit results in Table II. Our results suggest that Pr$_{1-x}$La$_x$Pt$_4$Ge$_{12}$ alloys are multiband superconductors, with one of the gap functions favoring pointlike nodes. But we cannot rule out the possibility of multiple isotropic gaps in $x = 0.3$ and 0.7 alloys due to the close fit quality.

Our specific heat measurements in Pr$_{1-x}$La$_x$Pt$_4$Ge$_{12}$ are in good agreement with previous work [15,16,21], except that reported values of the Sommerfeld coefficient γ_e for $x = 0$ and 1 (Table I) are somewhat higher than extrapolations from the alloys. Differences between reported values have been noted previously, and may be due to measurements at different fields and temperatures [29]. There is no evidence for sample differences based on comparison with published results [15,29]; in particular, we do not observe the dramatic decrease in γ_e found in Pr$_{0.5}$Pt$_4$Ge$_{12}$ [39] and attributed to Pr vacancies.
TABLE II. Fit quality of the models applied to the T dependence of $C_v/\gamma T$.

Fit range	Model	Adj. $R^2 (x = 0.3)$	Adj. $R^2 (x = 0.7)$
i	base 4 to $0.3T_c$ asymptotic BCS + power-law	0.98410	0.99207
ii	asymptotic BCS	0.79138	0.89589
iii	$T^2 + T^3$	0.97762	0.99299
iv	power-law + BCS	0.99932	0.99974
v	base to T_c BCS	0.98163	0.97940
vi	two BCS terms	0.99908	0.99948

* As mentioned in main text, base T is about $0.02T_c$.

B. Critical fields

The origin of the difference between T_m and T_c has been further investigated by lower and upper critical field measurements. Results are shown in Fig. 5. As shown in Fig. 5(a), we observe the possible existence of a second quadratic temperature dependence region below $T_q \sim 6$ K in $H_{1c}(T)$ of PrPt$_4$Ge$_{12}$. Within errors, T_q is close to the onset of brokenTRS T_m (results shown later in Sec. III C), but is slightly higher in a similar $H_{1c}(T)$ study [40]. In contrast, $H_{1c}(T)$ does not exhibit enhancement below T_m, but rather a smooth increase with decreasing temperature for all the measured Pr$_{1-x}$La$_x$Pt$_4$Ge$_{12}$ as shown in Figs. 5(b)–5(e).

The origins of $H_{1c}(T)$ and $H_{2c}(T)$ are different. $H_{1c}(T)$ might provide a heuristic description of the gap symmetry, since in the London limit (coherence length ξ much smaller than the penetration depth Λ) [41] $H_{1c}(T)/H_{2c}(0)$ is proportional to the superfluid density $\rho_s \propto n_s/m^*$. For a fully gapped conventional superconductor such as pure niobium, $H_{1c}(T)/H_{1c}(0) = 1 - (T/T_c)^2$ [43]. The occurrence of the second quadratic temperature region thus indicates gap structure, possibly multiband structure or gap anisotropy.

Considering the onset of broken TRS at T_m, the extra enhancement of $H_{1c}(T)$ below T_m could imply the occurrence of a distinct magnetic phase below T_m as in U_{1-x}Th$_x$Be$_{13}$ [8]. Intriguingly, Ref. [16] showed that $\rho_s/\rho(0)/(T/T_c)$ measured at 35 mT slightly deviates from other field results at $T/T_c < 0.75$ (close to T_m). This deviation was attributed to larger vortex disorder at fields close to H_{1c}, but an anomaly in $\rho_s/(\rho(0)/(T/T_c))$ (35 mT) might be relevant. It should be mentioned, however, that μSR experiments found no obvious anomaly at T_m in this quantity, measured at various fields between 75 mT and 640 mT [16]. The upturn in $H_{1c}(T)$ could also be due to a flux pinning effect, which can play a significant role in determining $H_{1c}(T)$ on decreasing temperature. A similar situation occurs in isostructural PrOs$_4$Sb$_{12}$, where enhancement of $H_{1c}(T)$ below 0.6 K was found [44] but there is no anomaly at this temperature in specific heat or μSR results [45].

We now analyze the temperature dependence of the upper critical field H_{2c} of Pr$_{1-x}$La$_x$Pt$_4$Ge$_{12}$. Results are shown in Figs. 5(b)–5(e). In a one-band superconductor, the Werthamer-Helfand-Hohenberg theory [46] predicts an orbital limiting field $H_{2c}^{orb}(0) = 0.73 |dH_{1c}/dT| T_{c}$ in the clean limit, and $H_{2c}^{orb}(0) = 0.69 |dH_{1c}/dT| T_{c}$ in the dirty limit. A linear fit to $H_{2c}(T)$ data near T_m (from T_c to 0.8 K below) gives initial slopes $|dH_{1c}/dT| T_{c} = 1.80(11)$ T K$^{-1}$, 1.74(17) T K$^{-1}$, 2.15(24) T K$^{-1}$, and 1.64(17) T K$^{-1}$ for $x = 0, 0.1, 0.3$ and 0.7, respectively. In either case of clean limit or dirty limit, $H_{2c}^{orb}(0)$ is smaller than the expected weak coupling Pauli limit field $H_{2c}^{P}(0) = 1.84T_c = 14.6$ T, assuming a spin singlet state. However, both $H_{2c}^{orb}(0)$ and $H_{2c}^{P}(0)$ are much larger than $H_{2c}(0)$. We thus speculate that the single-band Ginzburg-Landau theory does not describe SC well in PrPt$_4$Ge$_{12}$: the SC OP is more complex.

The linear fit of $H_{2c}(T)$ vs T/T_c, i.e., $H_{2c}(T)/H_{2c}(0) = 1 - T/T_c$, falls on most of the data. It gives $\mu_0H_{2c}(0) = 2.07(2)$ T, 2.20 (0.04) T, 2.13 (2) T, and 2.04 (3) T for $x = 0, 0.1, 0.3$ and 0.7, respectively. A quasilinear T dependence is often attributed to the dirty two-gap quasiclassical Usadel equations [47]. For example, a linear T-dependent $H_{2c}(T)$ is observed in the multiband superconductor MgB$_2$ [48]. This suggests that SC in Pr$_{1-x}$La$_x$Pt$_4$Ge$_{12}$ could be described by the Ginzburg-Landau theory in the dirty limit with nonmagnetic intraband and interband impurity scattering. Indeed, in polycrystalline PrPt$_4$Ge$_{12}$, the mean-free path l_{mfp} is estimated to be close to $\xi(0)$ using the free electron theory, and l_{mfp} is much smaller than the Pippard coherence length $\xi_p \sim 360$ nm [39].
However, it should be noted that results on single-crystalline PrPt$_4$Ge$_{12}$ give the mean-free path $l_{\text{mf}} = 103$ nm using ρ_e from specific heat and ρ from resistivity measurements [19]. This is much larger than the coherence length $\xi(0)$, and suggests that PrPt$_4$Ge$_{12}$ is in the local and clean limit. It is therefore evidence that the linearity of $H_{\text{c2}}(T)$ is not of dirty-limit two-band origin. We conclude that more work is required to understand this situation. But still, the most important indication of the broken-TRS field distribution [52] is shown in Fig. 8(b). It is interesting to note that $\Delta_e(0)/\gamma_{\mu}$ of the broken-TRS field distribution [52] is shown in Fig. 8(b). It is interesting to note that $\Delta_e(0)/\gamma_{\mu}$ and the pointlike node gap fraction from specific heat results [Fig. 8(b)] have the same x dependence, which is highly nonlinear compared to that in the PrOs$_{1−x}$Ru$_x$Sb$_2$, Pr$_{1−x}$La$_x$OsSb$_2$, or Pr$_{1−x}$Ce$_x$Pt$_4$Ge$_{12}$ alloy systems [20,33]. We thus speculate that the origin of the...
as $T \to 0$. In the normal state above T_c, $\lambda(T)$ increases with increasing temperature. The temperature-dependent features become smaller with increasing x, and for $x = 0.7$ the rate is essentially temperature independent. For $x = 0.8$, $\lambda(T)$ increases with decreasing temperature below $\sim 5\,K \approx 0.6T_c$, and for $x = 0.9$ there are not enough normal-state data to determine a temperature dependence. The La concentration dependence of the zero-field $\lambda(T)$ in Pr$_{1-x}$Ce$_x$Pt$_4$Ge$_{12}$ (Fig. 9) is similar to that observed in Pr$_{1-x}$Ce$_x$Pt$_4$Ge$_{12}$, which is discussed in some detail by Zhang et al. [20].

The maximum in $\lambda(T)$ is accompanied by a dip in $\Delta(T)$ at $\sim T_c$ (Fig. 7). The fit quality, denoted by χ^2, is good for all the fits. This might be an effect of statistical correlation between the two parameters, but the dip in Δ is still present when $\lambda(T)$ is fixed in (poorer-quality) fits of Eqs. (1) and (2) to $P(t)$. Mechanisms for $\lambda(T)$ are discussed further in Sec. III C 3.

2. Longitudinal-field μSR

In ZF, the dynamic and static field contributions to the muon spin relaxation rate are hard to disentangle experimentally. The usual procedure for doing this is measurement of $\lambda_0(t)$ in a longitudinal field H_L parallel to the initial muon spin polarization $P_\mu(0)$. For H_L much greater than static local fields at muon sites ($\omega_L \gg \Delta$), the resultant static field is nearly parallel to $P_\mu(0)$, so there is little static muon relaxation (precession and dephasing). Then $P_\mu(t)$ is said to be “decoupled” from the static local fields, and any remaining relaxation for high H_L is dynamic in origin, due to thermal fluctuation of the local fields.

A field dependence of the dynamic relaxation rate is also expected, due to the proportionality of λ to the fluctuation noise power at ω_L; in general, this is reduced at high frequencies. If the fluctuations are characterized by a correlation time τ_c, $\lambda(H_L)$ is given by the Redfield equation [53],

$$\lambda_{LF}(H_L) = \frac{\delta \omega_{rms}^2 \tau_c}{1 + (\omega_L \tau_c)^2}. \tag{9}$$

in the motionally narrowed limit $\delta \omega_{rms} \tau_c \ll 1$, where $\delta \omega_{rms} = \sigma_\omega \langle dB^2 \rangle^{1/2}$ is the rms fluctuating local field amplitude in frequency units. Thus $\lambda_{LF}(H_L)$ decreases with increasing H_L for $\omega_L \tau_c \gg 1$. This field dependence can be distinguished from decoupling if $1/\tau_c$ is sufficiently larger than the static rate Δ.

LF-μSR experiments were carried out in the normal state ($T = 10\,K$) of Pr$_{0.3}$La$_{0.7}$Pt$_4$Ge$_{12}$. Muon spin-polarization time spectra $P_\mu(t)$, obtained from the asymmetry $A_\mu(t)$ by subtracting the signal from the cold finger and normalizing, are shown in Fig. 10. The field dependence of $P_\mu(t)$ shows characteristics of both decoupling and field-dependent dynamic relaxation: the small-amplitude oscillation with frequency ω_L at intermediate fields is a feature of decoupling [31], but decoupling alone would not account for the nonzero field dependence of the overall relaxation rate at intermediate fields.

These data have been fit using Eqs. (1) and (3). The field dependence of λ_{LF} for Pr$_{0.3}$La$_{0.7}$Pt$_4$Ge$_{12}$ at 10 K is shown in Fig. 11. For $\mu_0 H_L \geq 0.5\,mT$, a good fit to Eq. (9) is obtained, which yields $\tau_c = 1.0(1)\,\mu s$ and $\delta B_{rms} = 0.29(1)\,mT$. The motional-narrowing criterion $\delta \omega_{rms} \tau_c \ll 1$ is more or less satisfied [$\delta \omega_{rms} \tau_c = 0.25(3)$], but the local field fluctuations...
are close to “adiabatic.” The same behavior is observed in PrOs$_4$Sb$_{12}$ [11], with similar parameter values.

Values of the static rate Δ and the ZF damping rate λ_{ZF} are also shown in Fig. 11. The relation $\Delta \tau_c \ll 1$, necessary to separate decoupling and dynamic-rate field dependencies, is also more or less satisfied [$\Delta \tau_c = 0.14(1)$]. The fit value $\lambda_{LF}(H_L \rightarrow 0) = 0.062(2) \mu s^{-1}$ is less than λ_{ZF}, suggesting a static contribution to the latter. This would indicate a so-called Voigtian static field distribution, i.e., the convolution of Gaussian and Lorentzian distributions [54]. An early report of a Voigtian distribution in PrPt$_4$Ge$_{12}$ [17] was not reproduced in later studies [20].

3. Mechanism for dynamic muon relaxation?

There are two candidate sources of fluctuating μ^+ local fields in Pr$_{1-x}$La$_x$Pt$_4$Ge$_{12}$: Pr$^{3+}$ 4f fluctuations and nuclear magnetism. There is no Pr$^{3+}$ local moment, since the Pr$^{3+}$ non-Kramers crystal-field ground state is nonmagnetic. Although 4f/conduction-band mixing is likely in these alloys, the μ^+ contact interaction with conduction or 4f electrons is normally weak and relaxation rates are too slow to be observed in the μSR time window. This can be seen from an estimation of the conduction-electron hyperfine coupling constant ω_{hf} (or hyperfine field $H_{hf} = \omega_{hf}/\gamma_\mu$) needed to yield the observed μ^+ relaxation rate, since $\lambda \approx \omega_{hf}^2/\tau_c$, and for conduction-electron relaxation τ_c is at the most of the order of $h/k_B T_c \sim 10^{-13}$ s, where $T_c \sim 100$ K is the “Fermi temperature” from the specific heat of PrPt$_4$Ge$_{12}$ [29] and associated with a putative 4f band. With the observed $\lambda \sim 0.1 \mu s^{-1}$, this yields $\omega_{hf}/k_B T_c \sim 1$T, which is is an order of magnitude larger than typical muon/conduction-electron or muon/4f hyperfine fields in metals [55].

In Pr-rich alloys, 141Pr nuclei are dominant. In PrPt$_4$Ge$_{12}$, as in Pr$_{1-x}$Ce$_x$Pt$_4$Ge$_{12}$ [20], the $\mu^+ \lambda(T)$ resembles the 73Ge NMR relaxation rate [18], and is similarly reminiscent of Hebel-Slichter relaxation [23] in fully gapped superconductors. This suggests 141Pr spin fluctuations with correlation times τ_c slower than the motionally narrowed limit, in which case $\lambda \sim 1/\tau_c$.

The Hebel-Slichter rate vanishes exponentially as $T \rightarrow 0$, whereas in PrPt$_4$Ge$_{12}$ and its alloys the muon spin relaxation remains nonzero at low temperatures. We note, however, that mechanisms for fluctuating nuclear magnetism are of two kinds: spin-lattice (T_1) relaxation, due to interactions with the electronic environment, and spin-spin (T_2) relaxation, due to interactions between nuclei [56]. The latter are not expected to be temperature dependent at ordinary temperatures. Contributions of both mechanisms to nuclear spin fluctuations would be consistent with the observed behavior.

There is a problem with this scenario in Pr-rich alloys, however: The 141Pr dipolar fields should be fluctuating fully (i.e., have no static component), in which case the “dynamic” K-T relaxation function [31] is appropriate. But as in Pr$_{1-x}$Ce$_x$Pt$_4$Ge$_{12}$ [20], fits to this function are not as good as fits using Eqs. (1) and (2). This is perhaps less of a difficulty for La-rich alloys, where 139La nuclear spin fluctuations are expected to be much slower and could account for the static relaxation. The reduction with increasing x of the temperature dependence of λ (which is nearly T independent in Pr$_{0.3}$La$_{0.7}$Pt$_4$Ge$_{12}$) is consistent with this possibility, but the increased $\lambda(T)$ below T_c for $x = 0.8$ is not understood. The situation remains unclear, and more work needs to be done.

IV. DISCUSSION

A. Multiband superconductivity

We have shown that in Pr$_{1-x}$La$_x$Pt$_4$Ge$_{12}$, upper critical fields $H_{c2}(T)$ are consistent with two SC gaps. The two-band α model is capable of describing the specific-heat results. We found that the larger-gap band has point nodes and the smaller-gap band is weakly coupled. The small fraction f of the BCS gap for $x = 0.3$ and 0.7 suggests that SC of Pr$_{1-x}$La$_x$Pt$_4$Ge$_{12}$ is dominated by the larger band with point nodes. Values of $\Delta C_p/\gamma T_c$ for Pr$_{1-x}$La$_x$Pt$_4$Ge$_{12}$ are all slightly larger than the BCS value of 1.43, indicating that PrPt$_4$Ge$_{12}$ is an unconventional superconductor. Pr-based filled skutterudites, including PrOs$_4$Sb$_{12}$ [57–59], PrRu$_4$As$_{12}$
[60], and PrRu$_4$Sb$_{12}$ [59,61], might all be multiband superconductors. Transverse field μSR results [16] concluded that in polycrystalline PrPt$_4$Ge$_{12}$ the gap functions $|\Delta_0 \sin \theta |$ and $\Delta_0 (1-\sin^2 \theta \cos \theta)$, both with point nodes, can best describe the gap symmetry. These are also candidate gap functions for PrOs$_4$Sb$_{12}$ [62,63]. However, a study of single-crystalline PrPt$_4$Ge$_{12}$ [19] reports two isotopic BCS gaps. While our $H_{\perp}(T)$ and $C_v(T)$ results suggest multiband SC, point gap nodes in one band are favored by $C_v(T)$ results, corresponding well to the μSR study [16]. Still, we cannot rule out the possibility of multiple isotropic bands in Pr$_{1-x}$La$_x$Pt$_4$Ge$_{12}$, since the fit quality is only delicately worse.

The discrepancy in $C_v(T)$ between polycrystalline and single-crystalline PrPt$_4$Ge$_{12}$ was previously attributed to the inaccurate subtraction of the nuclear Schottky anomaly at low temperature [19]. Although accurate subtraction is difficult, this only affects the analysis of the nuclear Schottky anomaly at low temperatures, and fits over the entire temperature range $< T_c$ yield evidence for point gap nodes. Furthermore, the Schottky anomaly is reduced and not observed in $x > 0.5$ alloys, whereas $C_v(T) \propto T^{-3.1}$ is still found in Pr$_{0.3}$La$_{0.7}$Pt$_4$Ge$_{12}$. High-quality single-crystalline Pr$_{1-x}$La$_x$Pt$_4$Ge$_{12}$ samples will be required to clarify the origin of this discrepancy.

It should be mentioned that we did not observe any obvious specific heat jump around T_m in both $x = 0$ and $x = 0.3$ with a $C_v(T)$ measurement T step $\Delta T = 0.025$ K. Moreover, $C_v(T)$ anomaly at T_m was not reported in several previous works, including the single crystal study by Zhang et al. [19]. While our ZF-μSR results provide strong indication of $T_m < T_c$ in PrPt$_4$Ge$_{12}$ (see also discussion Sec. IV B), the absence of multiple $C_v(T)$ jumps puts constraints on taking T_m as a second SC transition temperature. If there are multiple components in the SC OP of PrPt$_4$Ge$_{12}$, it is possible that one of the components that breaks TRS is not sufficient to generate an obvious C_v discontinuity at T_m. Further study on the nature of TRSB below T_m is desired.

B. Broken time-reversal symmetry

In general, the violation of TRS naturally occurs in bulk superconductors with nonunitary states [1,64]. Broken TRS can emerge at temperatures differing from T_c, such as in the E_{2u} odd-parity triplet state candidate UPt$_3$ [9]. The appealing claim of spin-triplet chiral p wave states in PrPt$_4$Ge$_{12}$ was first anticipated from superfluid density results [16]. To date, other experimental confirmations of other implications are still lacking.

A singlet pairing state cannot be ruled out, due to the continuous variation of $\delta B_s(x)$ as well as the smooth and small change of $T_c(x)$ in Pr$_{1-x}$La$_x$Pt$_4$Ge$_{12}$. These results suggest a continuous variation of OP symmetry between LaPt$_4$Ge$_{12}$ and PrPt$_4$Ge$_{12}$ [17,21], where LaPt$_4$Ge$_{12}$ is characterized by a spin-singlet state.

Broken TRS tends to be stabilized by the forming of a subdominant gap [64]. Thus, if a spin-singlet state is present in PrPt$_4$Ge$_{12}$, a straightforward explanation of broken TRS, point gap nodes together with a BCS gap, and $T_m < T_c$ might be chirality in a superconducting state with an s-wave component [22], e.g., the $d + i s$ state [64]. Then supercurrents form around non-magnetic imperfections, resulting in local fields and the enhancement of $\Delta(T)$ below T_m [17,65]. A subdominant s-wave component in the SC OP of PrPt$_4$Ge$_{12}$ results in the two-consecutive SC phase feature [64,66].

It was observed [40] that in PrPt$_4$Ge$_{12}$ the critical current density I_c decreases exponentially with increasing applied field and decreases linearly with increasing temperature. The absence of an anomaly in $I_c(H)$ around T_m indicates no macroscopic separation of multiple SC phases [39], but is not evidence against the claim of multiple components in the SC OP.

The model of Koga, Matsumoto, and Shiba (KMS) [67], which proposed several T_h symmetric irreducible representations for isostructural PrOs$_4$Sb$_{12}$, suggests that in this compound SC with broken TRS is driven by crystal-field excitonic Cooper-pairing [33]. With increasing La concentration, the weakened Pr-Pr intersite interaction results in a crossover between SC ground states with broken and preserved TRS due to less excitonic dispersion, resulting in a monotonic decrease in $\delta B_s(x)$ in Pr$_{1-x}$La$_x$Os$_4$Sb$_{12}$ [33].

To some extent, Pr$_{1-x}$La$_x$Pt$_4$Ge$_{12}$ resembles Pr$_{1-x}$La$_x$Os$_4$Sb$_{12}$, since both end compounds are superconductors and they both exhibit a continuous decrease in δB_s on increasing x. Considering the small variation of T_c and the smooth evolution of $\delta B_s(x)$ in Pr$_{1-x}$La$_x$Pt$_4$Ge$_{12}$, the KMS model might be applicable to describe the SC OP in this alloy series. Sergienko and Curnoe [68] also proposed a singlet-state model for PrOs$_4$Sb$_{12}$, based on the assumptions of point gap nodes as well as equivalent OP between the TRS breaking SC phase and the TRS-preserved one. These assumptions are compatible with our results in PrPt$_4$Ge$_{12}$. In this case, the absence of multiple SC specific heat jumps in tetrahedral Pr$_{1-x}$La$_x$Pt$_4$Ge$_{12}$ is a reflection of orbital components in the OP, and the broken TRS originates from a complex orbitally degenerate OP in the spin-singlet state within the strong SOC limit [17,68].

It should be mentioned that orbital degrees of freedom further complicate the origin of the SC excitation gap. It was found that even-parity superconductors with broken TRS have multiband OP [1,69]. These superconductors are characteristic of two-dimensional Fermi surfaces, with nodes in the gap replaced by Bogoliubov quasiparticles. PrPt$_4$Ge$_{12}$ could be such a candidate material, considering the broken TRS state with multiband feature. Moreover, it was recently proposed that three-dimensional chiral superconductors with strong SOC and odd-parity states can be the host of gapless Majorana fermions [22]. PrOs$_4$Sb$_{12}$ was proposed as a candidate for such a system, due to the existence of point gap nodes, broken TRS, and a possible spin-triplet state. Isostructural PrPt$_4$Ge$_{12}$ was also proposed to be a candidate material. The two-band feature is not evidence against a nonunitary state [22]. We thus note here that the origin of the multiband feature with nodal gap structure and broken TRS in PrPt$_4$Ge$_{12}$ remains an unsolved problem.

V. CONCLUDING REMARKS

We report specific heat, critical field, ZF-, and LF-μSR studies of well-characterized polycrystalline superconducting Pr$_{1-x}$La$_x$Pt$_4$Ge$_{12}$, to investigate the SC OP of the parent
compound PrPt₄Ge₁₂. There is no obvious SC pair breaking effect in Pr₁₋ₓLaₓPt₄Ge₁₂, since \(T_c(x) \) varies only slightly. We find that Pr₁₋ₓLaₓPt₄Ge₁₂ alloys exhibit broken TRS, with a signature local field distribution width \(6 B \) below \(T_c \) that continuously decreases with increasing \(x \), disappearing for \(x \sim 1 \). This behavior is a reflection of a crossover between broken and preserved TRS SC across the alloy series, similar to Pr₁₋ₓLaₓOs₄Sb₁₂. The most intriguing feature is that the onset temperatures \(T_m \) for broken TRS in Pr₁₋ₓLaₓPt₄Ge₁₂ (\(x \lesssim 0.5 \)) are below \(T_c \), as is most obvious in PrPt₄Ge₁₂. Furthermore, \(H_c(1)(T) \) exhibits a second quadratic temperature region below \(T_m \approx 6 \) K. These results are likely due to the intrinsic two-continuous-SC-phase nature of PrPt₄Ge₁₂. Critical fields \(H_c(1)(T) \) and the specific heat \(C_v(T) \) in Pr₁₋ₓLaₓPt₄Ge₁₂ can be well described by a two-band model, with \(C_v(T) \) suggesting a dominant point-node gap structure in the pairing symmetry. However, there are no obvious multiple SC specific-heat jumps at \(T_m \). Based on these results, we conclude that PrPt₄Ge₁₂ is likely to be a multiband superconductor characterized by a complex multicomponent SC OP with orbitally degenerate representations. Our results motivate further studies of SC excitation gap symmetry in PrPt₄Ge₁₂ and isostructural compounds, including PrOs₄Sb₁₂.

ACKNOWLEDGMENTS

We wish to thank M. B. Maple, G. M. Zhang, O. O. Bernal, and P.-C. Ho for fruitful discussions. We are grateful to the ISIS Cryogenics Group for their valuable help during the \(\mu \)SR experiments. The research performed in this study was supported by the National Key Research and Development Program of China (No. 2017YFA0303104 and No. 2016YFA0300503), and the National Natural Science Foundation of China under Grant No. 11774061. Research at UC Riverside (UCR) was supported by the UCR Academic Senate.

[1] M. Sigrist and K. Ueda, Rev. Mod. Phys. 63, 239 (1991).
[2] M. R. Norman, Science 332, 196 (2011).
[3] G. M. Luke, Y. Fudamoto, M. I. Larkin, J. Merrin, B. Nachumi, Y. J. Uemura, Y. Maeno, Z. Q. Mao, Y. Mori, H. Nakamura, and M. Sigrist, Nature 394, 558 (1998).
[4] A. D. Hillier, J. Quintanilla, B. Mazidian, J. F. Annett, and R. Cywinski, Phys. Rev. Lett. 109, 097001 (2012).
[5] P. K. Biswas, H. Luetkens, T. Neupert, T. Stürzer, C. Baines, G. Pascua, A. P. Schnyder, M. H. Fischer, J. Goryo, M. R. Lees, H. Maeter, F. Brückner, H.-H. Klauss, M. Nicklas, P. J. Baker, A. D. Hillier, M. Sigrist, A. Amato, and D. J ohrendt, Phys. Rev. B 87, 180503(R) (2013).
[6] R. P. Singh, A. D. Hillier, B. Mazidian, J. Quintanilla, J. F. Annett, D. M. Paul, G. Balakrishnan, and M. R. Lees, Phys. Rev. Lett. 112, 107002 (2014).
[7] V. P. Mineev and K. K. Samokhin, Introduction to Unconventional Superconductivity (Gordon and Breach Science Publishers, Amsterdam, 1999).
[8] R. H. Heffner, J. L. Smith, J. O. Willis, P. Birrer, C. Baines, F. N. Gygax, B. Hitti, E. Lippelt, H. R. Ott, A. Schenck, E. A. Knetsch, J. A. Mydosh, and D. E. MacLaughlin, Phys. Rev. Lett. 65, 2816 (1990).
[9] E. R. Schemm, W. J. Gannon, C. M. Wishne, W. P. Halperin, and A. Kapitulnik, Science 345, 190 (2014).
[10] M. B. Maple, Z. Henkie, W. M. Yuhasz, P.-C. Ho, T. Yanagisawa, T. A. Sayles, N. P. Butch, J. R. Jeffries, and A. Pietraszko, J. Magn. Magn. Mater. 310, 182 (2007).
[11] Y. Aoki, A. Tsuchiya, T. Kanayama, S. R. Saha, H. Sugawara, H. Sato, W. Higemoto, A. Koda, K. Ohishi, K. Nishiyama, and R. Kadono, Phys. Rev. Lett. 91, 067003 (2003).
[12] K. Izawa, Y. Nakajima, J. Goryo, Y. Matsuda, S. Osaki, H. Sugawara, H. Sato, P. Thalmeier, and K. Mak, Phys. Rev. Lett. 90, 117001 (2003).
[13] E. M. Levenson-Falk, E. R. Schemm, Y. Aoki, M. B. Maple, and A. Kapitulnik, Phys. Rev. Lett. 120, 187004 (2018).
[14] M.-A. Méasson, D. Braithwaite, B. Salce, J. Flouquet, G. Lapertot, J. Pécaut, G. Seyfarth, J.-P. Brison, H. Sugawara, and H. Sato, Physica B (Amsterdam) 378–380, 56 (2006).
[15] R. Gumeniuk, W. Schnelle, H. Rosner, M. Nicklas, A. Leithe-Jasper, and Y. Grin, Phys. Rev. Lett. 100, 017002 (2008).
[16] A. Maisuradze, M. Nicklas, R. Gumeniuk, C. Baines, W. Schnelle, H. Rosner, A. Leithe-Jasper, Y. Grin, and R. Khasanov, Phys. Rev. Lett. 103, 147002 (2009).
[17] A. Maisuradze, W. Schnelle, R. Khasanov, R. Gumeniuk, M. Nicklas, H. Rosner, A. Leithe-Jasper, Y. Grin, A. Amato, and P. Thalmeier, Phys. Rev. B 82, 024524 (2010).
[18] F. Kanetake, H. Mukuda, Y. Kitaoka, H. Sugawara, K. Magishi, K. M. Itoh, and E. E. Haller, Physica C (Amsterdam) 470, S703 (2010).
[19] J. L. Zhang, Y. Chen, L. Jiao, R. Gumeniuk, M. Nicklas, Y. H. Chen, L. Yang, B. H. Fu, W. Schnelle, H. Rosner, A. Leithe-Jasper, Y. Grin, F. Steglich, and H. Q. Yuan, Phys. Rev. B 87, 064502 (2013).
[20] J. Zhang, D. E. MacLaughlin, A. D. Hillier, Z. F. Ding, K. Huang, M. B. Maple, and L. Shu, Phys. Rev. B 91, 104523 (2015).
[21] H. Pfau, M. Nicklas, U. Stöckert, R. Gumeniuk, W. Schnelle, A. Leithe-Jasper, Y. Grin, and F. Steglich, Phys. Rev. B 94, 054523 (2016).
[22] V. Kozi, J. W. F. Venderbos, and L. Fu, Sci. Adv. 2, e1601835 (2016).
[23] L. C. Hebel and C. P. Slichter, Phys. Rev. 113, 1504 (1959).
[24] Parallel to the initial muon spin polarization.
[25] J. H. Brewer, in Encyclopedia of Applied Physics, Vol. 9, edited by G. L. Trigg (VCH, New York, 1994), p. 23.
[26] S. J. Blundell, Contemp. Phys. 40, 175 (1999).
[27] A. Yaouanc and P. Dalmas de Réotier, *Muon Spin Rotation, Relaxation, and Resonance: Applications to Condensed Matter*, International Series of Monographs on Physics (Oxford University Press, New York, 2011).

[28] J. L. Zhang, G. M. Pang, L. Jiao, M. Nicklas, Y. Chen, Z. F. Weng, M. Smidman, W. Schnelle, A. Leithe-Jasper, A. Maisuradze, C. Baines, R. Khasanov, A. Amato, F. Steglich, R. Gumeniuk, and H. Q. Yuan, Phys. Rev. B **92**, 220503(R) (2015).

[29] K. Huang, L. Shu, I. K. Lum, B. D. White, M. Janoschek, D. Yacizi, J. J. Hamlin, D. A. Zocco, P.-C. Ho, R. E. Baumbach, and M. B. Maple. Phys. Rev. B **89**, 035145 (2014).

[30] Y. Aoki, T. Namiki, S. Ohsaki, S. R. Saha, H. Sugawara, and H. Sato, J. Phys. Soc. Jpn. **71**, 2098 (2002).

[31] R. S. Hayano, Y. J. Uemura, J. Imazato, N. Nishida, T. Yamazaki, and R. Kubo, Phys. Rev. B **20**, 850 (1979).

[32] But not always; see Sec. III C 2.

[33] L. Shu, W. Higemoto, Y. Aoki, A. D. Hillier, K. Ohishi, K. Ishida, R. Kadono, A. Koda, O. O. Bernal, D. E. MacLaughlin, Y. Tunashima, Y. Yonezawa, S. Sanada, D. Kikuchi, H. Sato, H. Sugawara, T. U. Ito, and M. B. Maple. Phys. Rev. B **83**, 100504(R) (2011).

[34] J. F. Bueno, D. J. Arseneau, R. Bayes, J. H. Brewer, W. Faszer, M. D. Hasinoff, G. M. Marshall, E. L. Mathie, R. E. Mischke, G. D. Morris, K. Olchanski, V. Selivanov, and R. Tacik, Phys. Rev. B **83**, 205121 (2011).

[35] J. Zhang, Z. Ding, C. Tan, K. Huang, O. O. Bernal, P.-C. Ho, G. D. Morris, A. D. Hillier, P. K. Biswas, S. P. Cottrell, H. Xiang, X. Yao, D. E. MacLaughlin, and L. Shu, Sci. Adv. 4, eaao5235 (2018).

[36] V. Z. Kresin and V. P. Parkhomenko, Fiz. Tverd. Tela (Leningrad) **16**, 3363 (1974) [Sov. Phys. Solid State **16**, 2180 (1975)].

[37] F. Bouquet, Y. Wang, R. A. Fisher, D. G. Hinks, J. D. Jorgensen, A. Junod, and N. E. Phillips, Europhys. Lett. **56**, 856 (2001).

[38] R. Fisher, G. Li, J. Lashley, F. Bouquet, N. Phillips, D. Hinks, J. Jorgensen, and G. Crabtree, Physica C (Amsterdam) **385**, 180 (2003).

[39] D. Venkateshwarlu, S. Shanmukharao Samatham, M. Gangrade, and V. Ganesan, J. Phys.: Conf. Ser. **534**, 012040 (2014).

[40] L. S. S. Chandra, M. K. Chattopadhyay, and S. B. Roy, Philos. Mag. **92**, 3866 (2012).

[41] This criterion is satisfied, since $\xi(0) = |\Phi_0/f\pi H_c^2(0)|^{1/2} = 13$ nm, taking $H_c^2(0) = 1.75$ T [from our $H_c^2(T)$ analysis of the anisotropic two-band model] and $\Lambda = 114(4)$ nm from μSR [16].

[42] M. Tinkham, *Introduction to Superconductivity* (McGraw-Hill, New York, 1996).

[43] R. French, *Cryogenics* **8**, 301 (1968).

[44] T. Cichorek, A. C. Mota, F. Steglich, N. A. Frederick, W. M. Yuhasz, and M. B. Maple, Phys. Rev. Lett. **94**, 107002 (2005).

[45] D. E. MacLaughlin, A. D. Hillier, J. M. Mackie, L. Shu, Y. Aoki, D. Kikuchi, H. Sato, Y. Tunashima, and H. Sugawara, Phys. Rev. Lett. **105**, 019701 (2010).

[46] N. R. Werthamer, E. Helfand, and P. C. Hohenberg, Phys. Rev. **147**, 295 (1966).

[47] A. Gurevich, Phys. Rev. B **67**, 184515 (2003).

[48] C. Buzea and T. Yamashita, Supercond. Sci. Technol. **14**, R115 (2001).

[49] A. Changjan and P. Udomsamuthirun, Solid State Commun. **151**, 988 (2011).

[50] A. P. Mackenzie and Y. Maeno, Rev. Mod. Phys. **75**, 657 (2003).

[51] F. Gross, B. S. Chandrasekhar, D. Einzel, K. Andres, P. J. Hirschfeld, H. R. Ott, J. Beuers, Z. Fisk, and J. L. Smith, Z. Phys. B **64**, 175 (1986).

[52] Note that this field is an effect of broken TRS and not its cause; in a pure superconductor with orbital broken TRS the field would be Meissner screened [1].

[53] C. P. Slichter, *Principles of Magnetic Resonance*, 3rd ed., Springer Series in Solid-State Sciences (Springer, New York, 1996), Chap. 5.

[54] M. R. Crook and R. Czywinski, J. Phys.: Condens. Matter **9**, 1149 (1997).

[55] A. Schenck, *Muon Spin Rotation Spectroscopy: Principles and Applications in Solid State Physics* (A. Hilger, Bristol, Boston, 1985), Chap. 4.

[56] Ref. [53], Chap. 3.

[57] L. Shu, D. E. MacLaughlin, W. P. Beyermann, R. H. Heffner, G. D. Morris, O. O. Bernal, F. D. Callaghan, J. E. Sonier, W. M. Yuhasz, N. A. Frederick, and M. B. Maple, Phys. Rev. B **79**, 174511 (2009).

[58] G. Seyfarth, J. P. Brison, M.-A. Méasson, D. Braithwaite, G. Lapertot, and J. Flouquet, Phys. Rev. Lett. **97**, 236403 (2006).

[59] R. W. Hill, S. Li, M. B. Maple, and L. Taillefer, Phys. Rev. Lett. **101**, 237005 (2008).

[60] T. Namiki, Y. Aoki, H. Sato, C. Sekine, I. Shirotani, T. D. Matsuda, Y. Haga, and T. Yagi, J. Phys. Soc. Jpn. **76**, 093704 (2007).

[61] N. Takeda and M. Ishikawa, J. Phys. Soc. Jpn. **69**, 868 (2000).

[62] E. E. M. Chia, M. B. Salamon, H. Sugawara, and H. Sato, Phys. Rev. Lett. **91**, 247003 (2003).

[63] K. Maki, S. Haas, D. Parker, H. Won, K. Izawa, and Y. Matsuda, Phys. Rev. B **68**, 720 (2004).

[64] M. Sigrist, Physica C (Amsterdam) **341–348**, 695 (2000).

[65] C. H. Choi and P. Muzikar, Phys. Rev. B **39**, 9664 (1989).

[66] M. Sigrist, Physica B (Amsterdam) **250**, 154 (2000).

[67] M. Koga, M. Matsumoto, and H. Shiba, J. Phys. Soc. Jpn. **75**, 014709 (2006).

[68] I. A. Sergienko and S. H. Curnoe, Phys. Rev. B **70**, 144522 (2004).

[69] D. F. Agterberg, P. M. R. Brydon, and C. Timm, Phys. Rev. Lett. **118**, 127001 (2017).