Perforated gangrenous cholecystitis with concurrent *Clostridium perfringens* bacteraemia masquerading as adenomyomatosis of the gallbladder: A case report

Natalie LY Ngu, Alexander Olaussen, Jessica Wong, Hayden Snow, Mark Cullinan, Paul J. Sitzler

ABSTRACT

Introduction: *Clostridium perfringens* (*C. perfringens*) is an unusual cause of bacteraemia in the healthy, immunocompetent host. Similarly, acalculous cholecystitis is rare in the absence of critical illness or preceding trauma. We present, to the best of our knowledge, the first documented case of concurrent *C. perfringens* bacteraemia and acalculous cholecystitis in a previously well human.

Case Report: An apparently healthy 56-year-old male was presented with sepsis of unknown origin, and was treated for a respiratory infection and incidentally found to have gallbladder mural thickening on a computed tomography (CT) chest scan. An abdominal ultrasound (USG) demonstrated adenomyomatosis of the gallbladder, without evidence of acute cholecystitis or gallstones. The initial blood sample hemolyzed, however, subsequent specimens showed raised inflammatory markers, neutrophilia and thrombocytopenia. The patient continued to deteriorate clinically and biochemically. At 30 hours from presentation, blood cultures demonstrated a *C. perfringens* bacteraemia and intravenous antibiotics were commenced. Following these findings and the development of right upper quadrant abdominal pain, biliary sepsis was suspected and the patient taken to theatre. During laparoscopic cholecystectomy, a perforated and gangrenous gallbladder was identified and the intraoperative cholangiogram demonstrated no retained stones. Acute gangrenous cholecystitis was confirmed on histopathology. Postoperatively, the patient recovered quickly and was discharged with oral antibiotics.

Conclusion: We present a case of acalculous cholecystitis in a patient with an unusual clinical presentation and lack of positive imaging findings. In this setting, the need for definitive surgical intervention and clinical suspicion of cholecystitis was recognized with the finding of *C. perfringens* bacteraemia despite imaging suggesting adenomyomatosis. This case highlights that acalculous cholecystitis can occur in patients without risk factors, and can be complicated by atypical bacteraemia, even in previously healthy individuals.

International Journal of Case Reports and Images (IJCRI)

International Journal of Case Reports and Images (IJCRI) is an international, peer reviewed, monthly, open access, online journal, publishing high-quality, articles in all areas of basic medical sciences and clinical specialties.

Aim of IJCRI is to encourage the publication of new information by providing a platform for reporting of unique, unusual and rare cases which enhance understanding of disease process, its diagnosis, management and clinico-pathologic correlations.

IJCRI publishes Review Articles, Case Series, Case Reports, Case in Images, Clinical Images and Letters to Editor.

Website: www.ijcasereportsandimages.com
Perforated gangrenous cholecystitis with concurrent *Clostridium perfringens* bacteraemia masquerading as adenomyomatosis of the gallbladder: A case report

Natalie LY Ngu, Alexander Olaussen, Jessica Wong, Hayden Snow, Mark Cullinan, Paul J. Sitzler

ABSTRACT

Introduction: *Clostridium perfringens* (*C. perfringens*) is an unusual cause of bacteraemia in the healthy, immunocompetent host. Similarly, acalculous cholecystitis is rare in the absence of critical illness or preceding trauma. We present, to the best of our knowledge, the first documented case of concurrent *C. perfringens* bacteraemia and acalculous cholecystitis in a previously well human. Case Report: An apparently healthy 56-year-old male was presented with sepsis of unknown origin, and was treated for a respiratory infection and incidentally found to have gallbladder mural thickening on a computed tomography (CT) chest scan. An abdominal ultrasound (USG) demonstrated evidence of acute cholecystitis or gallstones. The initial blood sample hemolyzed, however, subsequent specimens showed raised inflammatory markers, neutrophilia and thrombocytopenia. The patient continued to deteriorate clinically and biochemically. At 30 hours from presentation, blood cultures demonstrated a *C. perfringens* bacteraemia and intravenous antibiotics were commenced. Following these findings and the development of right upper quadrant abdominal pain, biliary sepsis was suspected and the patient taken to theatre. During laparoscopic cholecystectomy, a perforated and gangrenous gallbladder was identified and the intraoperative cholangiogram demonstrated no retained stones. Acute gangrenous cholecystitis was confirmed on histopathology. Postoperatively, the patient recovered quickly and was discharged with oral antibiotics. Conclusion: We present a case of acalculous cholecystitis in a patient with an unusual clinical presentation and lack of positive imaging findings. In this setting, the need for definitive surgical intervention and clinical suspicion of cholecystitis was recognized with the finding of *C. perfringens* bacteraemia despite imaging suggesting adenomyomatosis. This case highlights that acalculous cholecystitis can occur in patients without risk factors, and can be complicated by atypical bacteraemia, even in previously healthy individuals.

Keywords: Acalculous cholecystitis, adenomyomatosis, Bacteraemia, *Clostridium perfringens*

How to cite this article

Natalie LY Ngu, Olaussen A, Wong J, Snow H, Cullinan M, Sitzler PJ. Perforated gangrenous cholecystitis with concurrent *Clostridium perfringens* bacteraemia masquerading as adenomyomatosis of the gallbladder: A case report. Int J Case Rep Images 2017;8(3):179–183.
INTRODUCTION

C. perfringens is a potentially dangerous gram positive anaerobic rod, causing disease through toxin release. The incidence has been estimated to be less than 2 per 100,000 [1] and mortality rates have been reported between 27% and 44% [1]. Recognized sources of *C. perfringens* bacteraemia include wound contamination and iatrogenic bowel leakage, and can be complicated by hemolysis and overwhelming infection if treatment is delayed [2].

Acute cholecystitis commonly presents with a syndrome of right upper quadrant abdominal pain, fever and leukocytosis, and is usually attributed to gallstones [3]. Common organisms associated with cholecystitis include *Escherichia coli*, *Klebsiella* spp. and *Enterococcus faecalis* [4]. Acalculous cholecystitis has a similar clinical picture but in the absence of gallstones. It accounts for 2–15% [5] of acute cholecystitis cases and often presents in critically ill patients or with severe systemic stress e.g., trauma, major surgery, shock or burns [6]. Acalculous cholecystitis is more frequently associated with *Pseudomonas*, Staphylococci including methicillin-resistant *Staphylococcus aureus*, *Enterobacter*, *Bacteroides* spp. and fungi [4].

We present a diagnostic dilemma of concurrent acalculous cholecystitis inaccurately identified on ultrasound and *C. perfringens* bacteraemia in a previously healthy individual, with implications for future diagnosis.

CASE REPORT

A 56-year-old male presented to the emergency department with a history of one day of severe chest and epigastric pain, fevers and rigors. His medical history included ischemic heart disease, peptic ulcer disease and gastroesophageal reflux disease.

On examination, he was febrile (39.4°C), demonstrated tachycardia of 110 beats per minute, tachypnea of 26 breaths per minute, an oxygen saturation of 92% on one litre of supplemental oxygen and was normotensive. His chest and abdominal examinations were normal.

An initial blood sample was hemolyzed prior to analysis. Subsequent blood tests revealed a mild neutrophilia, raised C-reactive protein (CRP) and thrombocytopenia (Table 1). All other blood levels including liver function tests were normal. Since a chest X-ray demonstrated no abnormality, a CT pulmonary angiogram was performed for suspected pulmonary embolism, however, the only salient findings were gallbladder wall thickening and a small volume of pericholecystic fluid. An abdominal USG suggested adenomyomatis of the gallbladder without features of cholecystitis. Gallstones were not visualized on either scan. Empirical intravenous antibiotics (ceftriaxone 1 g and azithromycin 500 mg) were commenced.

The patient continued to be febrile overnight with mild right upper quadrant abdominal pain developing. The following morning, the CRP had increased and the platelet count had fallen further (Table 1). Preliminary blood cultures taken at time of presentation, demonstrated a *C. perfringens* bacteraemia at 30 hours from presentation, and antibiotics were changed to intravenous tazobactam/piperacillin 4.5 g and clindamycin 600 mg. This positive blood culture result and the location of abdominal pain greatly increased suspicion for biliary sepsis, and the patient was taken to theatre. Intraoperatively, a perforated and gangrenous gallbladder was removed laparoscopically and a cholangiogram demonstrated no filling defects. The patient received a single pack of pooled, irradiated platelets, due to refractory bleeding from the gallbladder fossa. Postoperatively, the thrombocytopenia had improved and the patient was discharged with oral antibiotics (amoxicillin/clavulanate 875/125 mg). Acute gangrenous cholecystitis without gallstones was confirmed on histopathology (Figure 1). At a two-week follow-up appointment, all blood abnormalities had resolved to within normal range (Table 1).

DISCUSSION

This case represents a clinical dilemma given the unusual presentation and difficult pathway to diagnosis. The diagnosis of acalculous cholecystitis was finally made based on intraoperative findings of a perforated and gangrenous gallbladder, the normal cholangiogram and the subsequent histopathologic analysis of the specimen. As outlined in Table 2, the commonly

Figure 1: Necrotic gallbladder wall with area of mural suppuration (lumen on left), (H&E stain, x40).
associated organisms vary between calculous, acalculous and emphysematous cholecystitis. Although Clostridium spp. has been associated with secondary emphysematous acalculous cholecystitis in critically ill patients or following antibiotics [3], no features suggestive of emphysematous acalculous cholecystitis including air in the gallbladder lumen or wall were seen on imaging in this case. In addition, the absence of a preceding physiological stress or immunocompromise is unusual in the development of both acalculous cholecystitis and C. perfringens bacteraemia.

Although no other case of acalculous cholecystitis and C. perfringens bacteraemia has been reported in human literature, there is a similar published case of a pig with undifferentiated sepsis, a necrotic gall bladder without gallstones on autopsy and hemolysis of initial blood samples [6]. A human case of C. perfringens bacteraemia with clinical suspicion of a biliary source, was attributed to gallstones, which were confirmed on endoscopic retrograde cholangiopancreatography [7]. These examples highlight the atypical presentation in our patient and the need to consider all clinical features when faced with a similar diagnostic dilemma.

CONCLUSION

C. perfringens bacteraemia is a rare and potentially serious condition. Acalculous cholecystitis can occur despite abdominal ultrasonography suggesting an

Table 1: Relevant blood test results

	Day 1	Day 2	Day 3	Day 15	Reference Interval
Hemoglobin (g/L)	144	131	114	132	128–175
White Cell Count (x 10^9/L)	11.40	13.79	14.97	6.95	3.90–12.70
Platelets (x10^9/L)	106	82	110	174	150–396
C-Reactive Protein (mg/L)	26	208	273	NA	0–5
Neutrophils (x10^9/L)	9.26	11.75	13.02	3.67	1.90–8.00
Bilirubin (umol/L)	11	14	10	6	≤21
ALT (units/L)	17	13	43	28	≤40
GGT (units/L)	14	16	17	20	≤62
ALP (units/L)	62	60	68	84	30–110
Lipase (units/L)	15	NA	NA	NA	10–70

Abbreviations: NA Not available

Table 2: Organisms commonly associated with diagnosis [4, 5, 10]

Calculous Cholecystitis	Acalculous Cholecystitis	Emphysematous Cholecystitis
Escherichia coli,	*Pseudomonas*	*Clostridium* spp.
Klebsiella spp.,	*Staphylococci* (including MRSA)	
Enterococcus faecalis	*Enterobacter*	
	Bacteroides spp.	
	Fungi	

Abbreviations: MRSA Methicillin-Resistant *Staphylococcus aureus*
alternative diagnosis. This case highlights that acalculous cholecystitis can occur in patients without risk factors, and can be complicated by atypical bacteraemia, even in previously healthy individuals.

Acknowledgements
Dr Rhoda Cameron, Consultant Pathologist, Anatomical Pathology, Alfred Health, Melbourne, Victoria. Informed, written consent for the synthesis and publication of this case report was obtained from the patient, with thanks.

Author Contributions
Natalie LY Ngu – Substantial contributions to conception and design, Acquisition of data, Analysis and interpretation of data, Drafting the article, Revising it critically for important intellectual content, Final approval of the version to be published
Alexander Olaussen – Substantial contributions to conception and design, Acquisition of data, Analysis and interpretation of data, Drafting the article, Revising it critically for important intellectual content, Final approval of the version to be published
Jessica Wong – Substantial contributions to conception and design, Drafting the article, Revising it critically for important intellectual content, Final approval of the version to be published
Hayden Snow – Substantial contributions to conception and design, Revising it critically for important intellectual content, Final approval of the version to be published
Mark Cullinan – Substantial contributions to conception and design, Revising it critically for important intellectual content, Final approval of the version to be published
Paul Sitzler – Substantial contributions to conception and design, Revising it critically for important intellectual content, Final approval of the version to be published

Guarantor
The corresponding author is the guarantor of submission.

Conflict of Interest
Authors declare no conflict of interest.

Copyright
© 2017 Natalie LY Ngu et al. This article is distributed under the terms of Creative Commons Attribution License which permits unrestricted use, distribution and reproduction in any medium provided the original author(s) and original publisher are properly credited. Please see the copyright policy on the journal website for more information.

REFERENCES
1. Yang CC, Hsu PC, Chang HJ, Cheng CW, Lee MH. Clinical significance and outcomes of Clostridium perfringens bacteremia: A 10-year experience at a tertiary care hospital. Int J Infect Dis 2013 Nov;17(11):e955–60.
2. Rechner PM, Agger WA, Mruz K, Cogbill TH. Clinical features of clostridial bacteremia: A review from a rural area. Clin Infect Dis 2001 Aug 1;33(3):349–53.
3. Zakko SF, Adhal NH. Acute cholecystitis: Pathogenesis, clinical features and diagnosis. UptoDate. 2015. [Available at: http://www.uptodate.com/contents/acute-cholecystitis-pathogenesis-clinical-features-and-diagnosis]
4. Barie PS, Eachempati SR. Acute Cholecystitis. Switzerland: Springer International Publishing; 2015. p. 187–96.
5. Huffman JL, Schenker S. Acute acalculous cholecystitis: A review. Clin Gastroenterol Hepatol 2010 Jan;8(1):15–22.
6. Starost MF, Burkholder TH. Acalculous and clostridial cholecystitis in a pig. J Vet Diagn Invest 2008 Jul;20(4):527–30.
7. Atia A, Raiyani T, Patel P, Patton R, Young M. Clostridium perfringens bacteremia caused by choledocholithiasis in the absence of gallbladder stones. World J Gastroenterol 2012 Oct 21;18(39):5632–4.
8. Foreman J. Massive haemolysis as initial indication of Clostridium perfringens septicemia. J Hosp Med 2010;5(S1).
9. Stevens DL, Bryant A. Clostridial myonecrosis. UpToDate. 2016. [Available at: http://www.uptodate.com/contents/clostridial-myonecrosis?source=search_result&search=perfringens&selectedTitle=1~34]
10. Sawyer RG, Davies SW. Infectious considerations in complicated acute cholecystitis. In: Eachempati SR, Reed LR eds. Acute Cholecystitis. Switzerland: Springer International Publishing; 2015. p. 107–24.
Edorium Journals: An introduction

Edorium Journals Team

About Edorium Journals
Edorium Journals is a publisher of high-quality, open access, international scholarly journals covering subjects in basic sciences and clinical specialties and subspecialties.

Invitation for article submission
We sincerely invite you to submit your valuable research for publication to Edorium Journals.

But why should you publish with Edorium Journals?
In less than 10 words - we give you what no one does.

Vision of being the best
We have the vision of making our journals the best and the most authoritative journals in their respective specialties. We are working towards this goal every day of every week of every month of every year.

Exceptional services
We care for you, your work and your time. Our efficient, personalized and courteous services are a testimony to this.

Editorial Review
All manuscripts submitted to Edorium Journals undergo pre-processing review, first editorial review, peer review, second editorial review and finally third editorial review.

Peer Review
All manuscripts submitted to Edorium Journals undergo anonymous, double-blind, external peer review.

Early View version
Early View version of your manuscript will be published in the journal within 72 hours of final acceptance.

Manuscript status
From submission to publication of your article you will get regular updates (minimum six times) about status of your manuscripts directly in your email.

Our Commitment

Six weeks
You will get first decision on your manuscript within six weeks (42 days) of submission. If we fail to honor this by even one day, we will publish your manuscript free of charge.*

Four weeks
After we receive page proofs, your manuscript will be published in the journal within four weeks (31 days). If we fail to honor this by even one day, we will publish your manuscript free of charge and refund you the full article publication charges you paid for your manuscript.*

Favored Author program
One email is all it takes to become our favored author. You will not only get fee waivers but also get information and insights about scholarly publishing.

Institutional Membership program
Join our Institutional Memberships program and help scholars from your institute make their research accessible to all and save thousands of dollars in fees make their research accessible to all.

Our presence
We have some of the best designed publication formats. Our websites are very user friendly and enable you to do your work very easily with no hassle.

Something more...
We request you to have a look at our website to know more about us and our services.

* Terms and condition apply. Please see Edorium Journals website for more information.

We welcome you to interact with us, share with us, join us and of course publish with us.

CONNECT WITH US

Edorium Journals: On Web
Browse Journals

This page is not a part of the published article. This page is an introduction to Edorium Journals and the publication services.