SAMUEL MULTIPLICITIES AND BROWDER SPECTRUM OF OPERATOR MATRICES

SHIFANG ZHANG AND JUNDE WU

Abstract. In this paper, we first point out that the necessity of Theorem 4 in [8] does not hold under the given condition and present a revised version with a little modification. Then we show that the definitions of some classes of semi-Fredholm operators, which use the language of algebra and first introduced by X. Fang in [8], are equivalent to that of some well-known operator classes. For example, the concept of shift-like semi-Fredholm operator on Hilbert space coincide with that of upper semi-Browder operator. For applications of Samuel multiplicities we characterize the sets of

$$\bigcap_{C \in \mathcal{B}(K, H)} \sigma_{ab}(M_C), \bigcap_{C \in \mathcal{B}(K, H)} \sigma_{sb}(M_C) \quad \text{and} \quad \bigcap_{C \in \mathcal{B}(K, H)} \sigma_b(M_C),$$

respectively, where $M_C = \begin{pmatrix} A & C \\ 0 & B \end{pmatrix}$ denotes a 2-by-2 upper triangular operator matrix acting on the Hilbert space $H \oplus K$.

1. Introduction

Throughout this paper, let H and K be separable infinite dimensional complex Hilbert spaces and $B(H, K)$ the set of all bounded linear operators from H into K, when $H = K$, we write $B(H, H)$ as $B(H)$. For $A \in B(H)$, $B \in B(K)$ and $C \in B(K, H)$, we have $M_C = \begin{pmatrix} A & C \\ 0 & B \end{pmatrix} \in B(H \oplus K)$. For $T \in B(H, K)$, let $R(T)$ and $N(T)$ denote the range and kernel of T, respectively, and denote $\alpha(T) = \dim N(T)$, $\beta(T) = \dim K/R(T)$. If $T \in B(H)$, the ascent $\text{asc}(T)$ of T is defined to be the smallest nonnegative integer k which satisfies that $N(T^k) = N(T^{k+1})$. If such k does not exist, then the ascent of T is defined as infinity. Similarly, the descent $\text{des}(T)$ of T is defined as the smallest nonnegative integer k for which $R(T^k) = R(T^{k+1})$ holds. If such k does not exist, then $\text{des}(T)$ is defined as infinity, too. If the ascent and the descent of T are finite, then they are equal (see [3]). For $T \in B(H)$, if $R(T)$ is closed and $\alpha(T) < \infty$, then T is said to be a upper semi-Fredholm operator, if $\beta(T) < \infty$, which implies that $R(T)$ is closed, then T is said to be a lower semi-Fredholm operator. If $T \in B(H)$ is either upper or lower semi-Fredholm operator, then T is said to

2000 Mathematical Subject Classification. Primary 47A10; Secondary 47A53.

Key words and phrases. Samuel multiplicities, Operator matrices, Upper semi-Browder operator, Upper semi-Browder spectrum, Browder operator, Browder spectrum.

This work is supported by the NSF of China (Grant Nos. 10771034 and 10771191).
be a semi-Fredholm operator. If both \(\alpha(T) < \infty \) and \(\beta(T) < \infty \), then \(T \) is said to be a Fredholm operator. For a semi-Fredholm operator \(T \), its index \(\text{ind}(T) \) is defined by \(\text{ind}(T) = \alpha(T) - \beta(T) \).

In this paper, the sets of invertible operators, left invertible operators and right invertible operators on \(H \) are denoted by \(G(H), G_l(H) \) and \(G_r(H) \), respectively, the sets of all Fredholm operators, upper semi-Fredholm operators and lower semi-Fredholm operators on \(H \) are denoted by \(\Phi(H), \Phi_+(H) \) and \(\Phi_-(H) \), respectively, the sets of all Browder operators, upper semi-Browder operators and lower semi-Browder operators on \(H \) are defined, respectively, by

\[
\Phi(H) := \{ T \in \Phi(H) : \text{asc}(T) = \text{des}(T) < \infty \},
\]

\[
\Phi_{ab}(H) := \{ T \in \Phi_+(H) : \text{asc}(T) < \infty \},
\]

\[
\Phi_{sb}(H) := \{ T \in \Phi_-(H) : \text{des}(T) < \infty \}.
\]

Moreover, for \(T \in B(H) \), we introduce its corresponding spectra as following [19];

- the spectrum: \(\sigma(T) = \{ \lambda \in \mathbb{C} : T - \lambda I \notin G(H) \} \),
- the left spectrum: \(\sigma_l(T) = \{ \lambda \in \mathbb{C} : T - \lambda I \notin G_l(H) \} \),
- the right spectrum: \(\sigma_r(T) = \{ \lambda \in \mathbb{C} : T - \lambda I \notin G_r(H) \} \),
- the essential spectrum: \(\sigma_e(T) = \{ \lambda \in \mathbb{C} : T - \lambda I \notin \Phi(H) \} \),
- the upper semi-Fredholm spectrum: \(\sigma_{SF+}(T) = \{ \lambda \in \mathbb{C} : T - \lambda I \notin \Phi_+(H) \} \),
- the lower semi-Fredholm spectrum: \(\sigma_{SF-}(T) = \{ \lambda \in \mathbb{C} : T - \lambda I \notin \Phi_-(H) \} \),
- the Browder spectrum: \(\sigma_b(T) = \{ \lambda \in \mathbb{C} : T - \lambda I \notin \Phi_b(H) \} \),
- the upper semi-Browder spectrum: \(\sigma_{ab}(T) = \{ \lambda \in \mathbb{C} : T - \lambda I \notin \Phi_{ab}(H) \} \),
- the lower semi-Browder spectrum: \(\sigma_{sb}(T) = \{ \lambda \in \mathbb{C} : T - \lambda I \notin \Phi_{sb}(H) \} \).

For a semi-Fredholm operator \(T \in B(H) \), its shift Samuel multiplicity \(s_{mul}(T) \) and backward shift Samuel multiplicity \(b.s_{mul}(T) \) are defined ([5-8]), respectively, by

\[
s_{mul}(T) = \lim_{k \to \infty} \frac{\beta(T^k)}{k},
\]

\[
b.s_{mul}(T) = \lim_{k \to \infty} \frac{\alpha(T^k)}{k}.
\]

Moreover, it has been proved that \(s_{mul}(T), b.s_{mul}(T) \in \{ 0, 1, 2, \ldots, \infty \} \) and \(\text{ind}(T) = b.s_{mul}(T) - s_{mul}(T) \). These two invariants refine the Fredholm index and can be regarded as the stabilized dimension of the kernel and cokernel [8].

Definition 1.1 ([8]). A semi-Fredholm operator \(T \in B(H) \) is called a pure shift semi-Fredholm operator if \(T \) has the form \(T = U^n P \), where \(n \in \mathbb{N} \) or \(n = \infty \), \(U \) is the unilateral
shift, and P is a positive invertible operator. Analogously, T is called a pure backward shift semi-Fredholm operator if its adjoint T^* is a pure shift semi-Fredholm operator. Here U^∞ denotes the direct sum of countably (infinite) many copies of U.

Definition 1.2 ([8]) A semi-Fredholm operator $T \in B(H)$ is called a shift-like semi-Fredholm operator if $\text{b.s.}_\text{mul}(T) = 0$; T is called a shift semi-Fredholm operator if $\text{N}(T) = 0$. Analogous concepts for backward shifts can also be defined. T is called a stationary semi-Fredholm operator if $\text{b.s.}_\text{mul}(T) = 0$ and $\text{s.}_\text{mul}(T) = 0$.

It follows from Definition 1.1 that T is a shift semi-Fredholm operator iff T is a left invertible operator, and that T is a backward shift semi-Fredholm operator iff T is a right invertible operator.

In ([8], Theorem 4 and Corollary 18), Fang gave the following 4×4 upper-triangular representation theorem: An operator $T \in B(H)$ is semi-Fredholm iff T can be decomposed into the following form with respect to some orthogonal decomposition $H = H_1 \oplus H_2 \oplus H_3 \oplus H_4$,

$$T = \begin{pmatrix}
T_1 & * & * & *
0 & T_2 & * & *
0 & 0 & T_3 & *
0 & 0 & 0 & T_4
\end{pmatrix},$$

where $\dim H_4 < \infty$, T_1 is a pure backward shift semi-Fredholm operator, T_2 is invertible, T_3 is a pure shift semi-Fredholm operator, T_4 is a finite nilpotent operator. Moreover, $\text{ind}(T_1) = \text{b.s.}_\text{mul}(T)$ and $\text{ind}(T_3) = -\text{s.}_\text{mul}(T)$.

The following example shows that the representation theorem is not accurate.

Example 1.3. Let H be the direct sum of countably many copies of $\ell^2 := \ell^2(\mathbb{N})$, that is, the elements of H are the sequences $\{x_j\}_{j=1}^\infty$ with $x_j \in \ell^2$ and $\sum_{j=1}^\infty \|x_j\|^2 < \infty$. Let V be the unilateral shift on ℓ^2, i.e.,

$$V : \ell^2 \to \ell^2, \quad \{z_1, z_2, \ldots\} \mapsto \{0, z_1, z_2, \ldots\},$$

and the operators T_1 and T_3 be defined by

$$T_1 : H \to H, \quad \{x_1, x_2, \ldots\} \mapsto \{V^*x_1, V^*x_2, \ldots\}$$

and

$$T_3 : H \to H, \quad \{x_1, x_2, \ldots\} \mapsto \{Vx_1, Vx_2, \ldots\}.$$
Now, we consider the operator
\[T = \begin{pmatrix} T_1 & 0 \\ 0 & T_3 \end{pmatrix} : H \oplus H \to H \oplus H. \]

Note that \(T_1 \) is a pure backward shift semi-Fredholm operator, \(T_3 \) is a pure shift semi-Fredholm operator, so \(T \) satisfies the conditions of Fang’s \(4 \times 4 \) triangular representation theorem, but, since \(\alpha(T_1) = \alpha(T) = \beta(T) = \dim(H/R(T_3)) = \infty \), so \(T \) is not a semi-Fredholm operator.

Now, we can prove the following improved \(4 \times 4 \) upper-triangular representation theorem:

Theorem 1.4. An operator \(T \in B(H) \) is semi-Fredholm iff \(T \) can be decomposed into the following form with respect to some orthogonal decomposition \(H = H_1 \oplus H_2 \oplus H_3 \oplus H_4 \),
\[T = \begin{pmatrix} T_1 & * & * & * \\ 0 & T_2 & * & * \\ 0 & 0 & T_3 & * \\ 0 & 0 & 0 & T_4 \end{pmatrix}, \]

where \(\dim H_4 < \infty \), \(T_1 \) is a pure backward shift semi-Fredholm operator, \(T_2 \) is invertible, \(T_3 \) is a pure shift semi-Fredholm operator and \(\min\{\text{ind}(T_1), -\text{ind}(T_3)\} < \infty \), \(T_4 \) is a finite nilpotent operator. Moreover,

1. \(\text{ind}(T_1) = b.s.\text{mul}(T) \), \(\text{ind}(T_3) = -s.\text{mul}(T) \);
2. \(\text{ind}(T) = +\infty \) iff \(\text{ind}(T_1) = +\infty \);
3. \(\text{ind}(T) = -\infty \) iff \(\text{ind}(T_3) = -\infty \);
4. \(\text{ind}(T) \) is finite iff both of \(\text{ind}(T_1) \) and \(\text{ind}(T_3) \) are finite.

Theorem 1.4 can be described as \(3 \times 3 \) triangular representation form which may be more convenient for the study of operator theory, that is,

Theorem 1.5. An operator \(T \in B(H) \) is semi-Fredholm if and only if \(T \) can be decomposed into the following form with respect to some orthogonal decomposition \(H = H_1 \oplus H_2 \oplus H_3 \)
\[T = \begin{pmatrix} T_1 & T_{12} & T_{13} \\ 0 & T_2 & T_{23} \\ 0 & 0 & T_3 \end{pmatrix} : H_1 \oplus H_2 \oplus H_3 \to H_1 \oplus H_2 \oplus H_3, \]
where \(\dim H_3 < \infty \), \(T_1 \) is a right invertible operator, \(T_3 \) is a finite, nilpotent operator, \(T_2 \) is a left invertible operator, and \(\min\{\text{ind}(T_1), -\text{ind}(T_2)\} < \infty \). Moreover, \(\text{ind}(T_1) = \alpha(T_1) = b.s._{-\text{mul}}(T) \), \(\text{ind}(T_2) = -\beta(T_2) = -s_{\text{mul}}(T) \) and \(\text{ind}(T) = \alpha(T_1) - \beta(T_2) \).

The next lemma is useful for the proofs of our results below, especially in Section 2.

Lemma 1.6 [19]. Let \(A \in B(H), B \in B(K) \) and \(C \in B(K, H) \).

1. If \(A \in \Phi_b(H) \), then \(B \in \Phi_{ab}(K) \) iff \(M_C \in \Phi_{ab}(H \oplus K) \) for some \(C \in B(K, H) \).

2. If \(M_C \in \Phi_{ab}(H \oplus K) \) for some \(C \in B(K, H) \), then \(A \in \Phi_{ab}(H) \).

3. If \(A \in \Phi_{ab}(H) \) and \(B \in \Phi_{ab}(K) \), then \(M_C \in \Phi_{ab}(H \oplus K) \) for any \(C \in B(K, H) \).

4. If \(B \in \Phi_b(K) \), then \(A \in \Phi_{ab}(H) \) iff \(M_C \in \Phi_{ab}(H \oplus K) \) for some \(C \in B(K, H) \); \(A \in \Phi_{ab}(H) \) iff \(M_C \in \Phi_{ab}(H \oplus K) \) for some \(C \in B(K, H) \).

5. If \(M_C \in \Phi_b(H \oplus K) \) for some \(C \in B(K, H) \), then \(A \in \Phi_{ab}(H) \) and \(B \in \Phi_{ab}(K) \).

6. If two of \(A, B \) and \(M_C \) are Browder, then so is the third.

Proposition 1.7. Let \(T \in B(H) \). Then \(T \) is upper semi-Browder iff \(T \) can be decomposed into the following form with respect to some orthogonal decomposition \(H = H_1 \oplus H_2 \),

\[
T = \begin{pmatrix} T_1 & T_{12} \\ 0 & T_2 \end{pmatrix},
\]

where \(\dim(H_1) < \infty \), \(T_1 \) is nilpotent, \(T_2 \) is left invertible, and \(\beta(T_2) = s_{\text{mul}}(T) = -\text{ind}(T) \).

Proof. Necessity. Suppose that \(T \) is upper semi-Browder. Then we can assume \(p = \text{asc}(T) < \infty \). Let \(H_1 = N(T^p) \). Note that \(T \) is upper semi-Fredholm, so \(\dim H_1 < \infty \). Let \(H = H_1 \oplus H_1^\perp \), we have

\[
T = \begin{pmatrix} T_1 & T_{12} \\ 0 & T_2 \end{pmatrix} : H_1 \oplus H_1^\perp \rightarrow H_1 \oplus H_1^\perp.
\]

That \(T_1 \) is nilpotent is clear. Moreover, since the fact that \(\dim H_1 < \infty \) implies \(T_1 \in \Phi_b(H_1) \), it follows from Lemma 1.6 (1) that \(T_2 \in \Phi_{ab}(H_1^\perp) \). A direct calculation shows that \(T_2 \) is injective, thus, \(T_2 \) is left invertible. From Theorem 1.5, it is clear that \(\beta(T_2) = s_{\text{mul}}(T) = \text{ind}(T_2) \).

Sufficiency follows from Lemma 1.6 immediately.

Proposition 1.8. Let \(T \in B(H) \). Then \(T \) is lower semi-Browder iff \(T \) can be decomposed into the following form with respect to some orthogonal decomposition \(H = H_1 \oplus H_2 \),

\[
T = \begin{pmatrix} T_1 & T_{12} \\ 0 & T_2 \end{pmatrix},
\]

where \(\dim(H_2) < \infty \), \(T_1 \) is right invertible, \(T_2 \) is nilpotent, and \(\alpha(T_1) = b.s._{-\text{mul}}(T) = \text{ind}(T) \).
Proof. Necessity. If \(T \) is lower semi-Browder, then we can assume \(p = \text{des}(T) < \infty \). Denote \(H_1 = R(T^p) \) and \(H_2 = H_1^\perp \). Note that \(T^p \) is lower semi-Browder, so \(\dim H_2 < \infty \). Let \(H = H_1 \oplus H_2 \), we have

\[
T = \begin{pmatrix} T_1 & T_{12} \\ 0 & T_2 \end{pmatrix} : H_1 \oplus H_2 \to H_1 \oplus H_2.
\]

That \(T_1 \) is surjective and \(T_2^p = 0 \) is evident. Note that \(\dim H_2 < \infty \) implies \(T_2 \in \Phi_b(H_2) \), it follows from Lemma 1.6 that \(T_1 \in \Phi_{sb}(H_1) \), and so \(T_1 \) is right invertible. From Theorem 1.5, we have \(\alpha(T_1) = \text{ind}(T_1) = \text{b.s._mul}(T) \).

Sufficiency follows from Lemma 1.6.

Combining Theorem 1.5, Propositions 1.7 and 1.8, we have the following theorem immediately.

Theorem 1.9. Let \(T \in B(H) \). Then

1. \(T \) is a shift-like semi-Fredholm operator iff \(T \) is an upper semi-Browder operator.
2. \(T \) is a backward shift-like semi-Fredholm operator iff \(T \) is a lower semi-Browder operator.
3. \(T \) is a stationary semi-Fredholm operator iff \(T \) is a Browder operator.

2. Applications of Samuel multiplicities

In ([8-12]), Fang studied Samuel multiplicities and presented some applications. In this section, by using Samuel multiplicities, we characterize the sets

\[
\bigcap_{C \in B(K,H)} \sigma_{sb}(M_C), \bigcap_{C \in B(K,H)} \sigma_{sb}(M_C)
\]

and \(\bigcap_{C \in B(K,H)} \sigma_b(M_C) \) completely, where \(M_C = \begin{pmatrix} A & C \\ 0 & B \end{pmatrix} \) is a \(2 \times 2 \) upper triangular operator matrix defined on \(H \oplus K \). For the study advances of \(2 \times 2 \) upper triangular operator matrix, see ([1-4], [13-19]).

First, note that if \(T \in B(H) \), then \(T \) is bounded below iff \(T \) is left invertible, thus, Theorem 1 of [14] can be rewritten as follows:

Lemma 2.1 [14]. For any given \(A \in B(H) \) and \(B \in B(K) \), \(M_C \) is left invertible for some \(C \in B(K,H) \) iff \(A \) is left invertible and

\[
\alpha(B) \leq \beta(A) \quad \text{if} \, R(B) \text{ is closed,} \quad \beta(A) = \infty \quad \text{if} \, R(B) \text{ is not closed.}
\]

Lemma 2.2 [4]. For any given \(A \in B(H) \) and \(B \in B(K) \),

\[
\bigcap_{C \in B(K,H)} \sigma(M_C) = \sigma_l(A) \cup \sigma_r(B) \cup \{ \lambda \in \mathbb{C} : \alpha(B - \lambda) \neq \beta(A - \lambda) \}.
\]
One of the main results in this section is:

Theorem 2.3. For any given \(A \in B(H) \) and \(B \in B(K) \), \(M_C \in \Phi_{ab}(H \oplus K) \) for some \(C \in B(K, H) \) iff \(A \in \Phi_{ab}(H) \) and

\[
\begin{cases}
 s\text{-}mul(A) = \infty & \text{if } B \notin \Phi_+(K), \\
 b.s.\text{-}mul(B) \leq s\text{-}mul(A) & \text{if } B \in \Phi_+(K).
\end{cases}
\]

Proof. We first claim that if \(B \notin \Phi_+(K) \), then

\[
M_C \in \Phi_{ab}(H \oplus K) \quad \text{for some } C \in B(K, H) \iff A \in \Phi_{ab}(H) \text{ and } s\text{-}mul(A) = \infty.
\]

To do this, suppose \(M_C \in \Phi_{ab}(H \oplus K) \). Then from Lemma 1.6 we have \(A \in \Phi_{ab}(H) \). If \(s\text{-}mul(A) < \infty \), then \(A \in \Phi(H) \), since \(\text{ind}(A) = \alpha(A) - \beta(A) = b.s.\text{-}mul(A) - s\text{-}mul(A) \). Hence it is easy to show that \(B \in \Phi_+(K) \), which is in a contradiction. Thus, \(s\text{-}mul(A) = \infty \).

Conversely, suppose that \(A \in \Phi_{ab}(H) \) and \(s\text{-}mul(A) = \infty \), which implies \(\beta(A) = \infty \). It follows from Proposition 1.7 that \(A \) can be decomposed into the following form with respect to some orthogonal decomposition \(H = H_1 \oplus H_2 \)

\[
A = \begin{pmatrix}
A_1 & A_{12} \\
0 & A_2
\end{pmatrix},
\]

where \(\text{dim}(H_1) < \infty \), \(A_1 \) is nilpotent, and \(A_2 \) is a left invertible operator. Noting that \(\beta(A) = \infty \), we have \(\beta(A_2) = \infty \). Hence it follows from Lemma 2.1 that there exists some \(C_0 \in B(K, H_2) \) such that \(\begin{pmatrix} A_2 & C_0 \\ 0 & B \end{pmatrix} \) is left invertible. Now consider operator

\[
M_C = \begin{pmatrix}
A & C \\
0 & B
\end{pmatrix} = \begin{pmatrix}
A_1 & A_{12} & 0 \\
0 & A_2 & C_0 \\
0 & 0 & B
\end{pmatrix},
\]

where \(C = \begin{pmatrix} 0 \\ C_0 \end{pmatrix} \in B(K, H) \). By Lemma 1.6, it is easy to check that \(M_C \in \Phi_{ab}(H \oplus K) \).

Next, We claim that if \(B \in \Phi_+(K) \), then

\[
(3) \quad M_C \in \Phi_{ab}(H \oplus K) \quad \text{for some } C \in B(K, H) \iff A \in \Phi_{ab}(H) \text{ and } b.s.\text{-}mul(B) \leq s\text{-}mul(A).
\]

To this end, suppose \(M_C \in \Phi_{ab}(H \oplus K) \), which implies \(A \in \Phi_{ab}(H) \). By Proposition 1.8, we have that \(A \) can be decomposed into the following form with respect to some orthogonal decomposition \(H = H_1 \oplus H_2 \)

\[
A = \begin{pmatrix}
A_1 & A_{12} \\
0 & A_2
\end{pmatrix},
\]

where \(\text{dim}(H_1) < \infty \), \(A_1 \) is nilpotent, and \(A_2 \) is a left invertible operator.
\[
A = \begin{pmatrix}
A_1 & A_{12} \\
0 & A_2
\end{pmatrix},
\]

where \(\dim(H_1) < \infty\), \(A_1\) is nilpotent, \(A_2\) is a left invertible operator, and \(\beta(A_2) = s_{mul}(A)\). Since the assumption that \(B \in \Phi_{+}(K)\), using Theorem 1.5, we know that \(B\) can be decomposed into the following form with respect to some orthogonal decomposition \(K = K_1 \oplus K_2 \oplus K_3\)

\[
B = \begin{pmatrix}
B_1 & * & * \\
0 & B_2 & * \\
0 & 0 & B_3
\end{pmatrix},
\]

where \(\dim K_3 < \infty\), \(B_1\) is a right invertible operator, \(B_2\) is a left invertible operator, \(B_3\) is a finite, nilpotent operator, and the parts marked by * can be any operators. Moreover, \(\text{ind}(B_1) = \alpha(B_1) = b.s_{mul}(B)\), \(\text{ind}(B_2) = -\beta(B_2) = -s_{mul}(B_1)\) and \(\text{ind}(B) = \alpha(B_1) - \beta(B_2)\). Therefore, \(M_C\) can be rewritten as the following form

\[
M_C = \begin{pmatrix}
A_1 & A_{12} & C_{11} & C_{12} & C_{13} \\
0 & A_2 & C_{21} & C_{32} & C_{23} \\
0 & 0 & B_1 & * & * \\
0 & 0 & 0 & B_2 & * \\
0 & 0 & 0 & 0 & B_3
\end{pmatrix} : H_1 \oplus H_2 \oplus K_1 \oplus K_2 \oplus K_3 \rightarrow H_1 \oplus H_2 \oplus K_1 \oplus K_2 \oplus K_3.
\]

Noting that \(\dim(H_1) < \infty\) and \(\dim(K_3) < \infty\), we have \(A_1 \in \Phi_b(H_1)\) and \(B_3 \in \Phi_b(K_3)\). Consequently, Lemma 1.6 leads to

\[
\begin{pmatrix}
A_2 & C_{21} & C_{32} \\
0 & B_1 & * \\
0 & 0 & B_2
\end{pmatrix} \in \Phi_{ab}(H_2 \oplus K_1 \oplus K_2),
\]

which implies

\[
\begin{pmatrix}
A_2 & C_{21} \\
0 & B_1
\end{pmatrix} \in \Phi_{ab}(H_2 \oplus K_1).
\]

Now we shall prove that

\[\beta(A_2) \geq \alpha(B_1).\]

If \(\beta(A_2) = \infty\), the above inequality obviously holds. On the other hand, if \(\beta(A_2) < \infty\), then \(A_2 \in \Phi(H_2)\), and hence \(B_1 \in \Phi_{+}(K_1)\). Thus,
0 ≥ \text{ind}\left(\begin{pmatrix} A_2 & C_{21} \\ 0 & B_1 \end{pmatrix} \right) = \text{ind}(A_2) + \text{ind}(B_1) = -\beta(A_2) + \alpha(B_1),

that is,

\alpha(B_1) ≤ \beta(A_2).

Therefore,

b.s._\text{mul}(B) ≤ s._\text{mul}(A).

Conversely, suppose \(A \in \Phi_{ab}(H) \), \(B \in \Phi_+(K) \) and \(\text{b.s._mul}(B) ≤ s._\text{mul}(A) \). Similar to the above arguments, we have

\[A = \left(\begin{array}{ccc} A_1 & A_{12} \\ 0 & A_2 \end{array} \right) : H_1 \oplus H_2 \mapsto H_1 \oplus H_2 \]

and

\[B = \left(\begin{array}{ccc} B_1 & * & * \\ 0 & B_2 & * \\ 0 & 0 & B_3 \end{array} \right) : K_1 \oplus K_2 \oplus K_3 \mapsto K_1 \oplus K_2 \oplus K_3, \]

where \(\dim(H_1) < \infty \), \(A_1 \) is nilpotent, \(A_2 \) is a left invertible operator; \(\dim K_3 < \infty \), \(B_1 \) is a right invertible operator, \(B_2 \) is a left invertible operator, \(B_3 \) is a finite, nilpotent operator, and the parts marked by * can be any operators. Moreover, \(\beta(A_2) = s._\text{mul}(A) \) and \(\alpha(B_1) = \text{b.s._mul}(B) \). Since the assumption that \(\text{b.s._mul}(B) ≤ s._\text{mul}(A) \), we have \(\alpha(B_1) ≤ \beta(A_2) \). It follows from Lemma 2.1 that there exists a left invertible operator \(\widetilde{C} \in B(K_1, H_2) \) such that

\(\left(\begin{array}{ccc} A_2 & \widetilde{C} \\ 0 & B_1 \end{array} \right) \in B(H_2 \oplus K_1) \) is left invertible.

Consider operator \(M_C = \left(\begin{array}{ccc} A & C \\ 0 & B \end{array} \right) : H \oplus K \mapsto H \oplus K \)

\[= \left(\begin{array}{ccc} A_1 & A_{12} & 0 & 0 & 0 \\ 0 & A_2 & \widetilde{C} & 0 & 0 \\ 0 & 0 & B_1 & * & * \\ 0 & 0 & 0 & B_2 & * \\ 0 & 0 & 0 & 0 & B_3 \end{array} \right): H_1 \oplus H_2 \oplus K_1 \oplus K_2 \oplus K_3 \mapsto H_1 \oplus H_2 \oplus K_1 \oplus K_2 \oplus K_3, \]

where \(C = \left(\begin{array}{ccc} 0 & 0 & 0 \\ \widetilde{C} & 0 & 0 \end{array} \right) \in B(K_1 \oplus K_2 \oplus K_3, H_1 \oplus H_2) \). Using Lemma 1.6, it is easy to see that \(M_C \in \Phi_{ab}(H \oplus K) \).
By duality, we have

Theorem 2.4. For any given \(A \in B(H) \) and \(B \in B(K) \), \(M_C \in \Phi_{sb}(H \oplus K) \) for some \(C \in B(K, H) \) iff \(B \in \Phi_{sb}(K) \) and

\[
\begin{align*}
 b.s._{mul}(B) &= \infty & \text{if } A \not\in \Phi_{-}(H) \\
 b.s._{mul}(B) &\geq s._{mul}(A) & \text{if } A \in \Phi_{-}(H)
\end{align*}
\]

From Theorems 2.3 and 2.4, we obtain the following two corollaries, concerning perturbations of the upper semi-Browder spectrum and lower semi-Browder spectrum, respectively.

Corollary 2.5. For any given \(A \in B(H) \) and \(B \in B(K) \), we have

\[
\bigcap_{C \in B(K, H)} \sigma_{ab}(M_C) = \sigma_{ab}(A) \cup \big\{ \lambda \in \mathbb{C} : \lambda \in \sigma_{SF+}(B) \text{ and } s._{mul}(A - \lambda) < \infty \big\} \cup \\
\big\{ \lambda \in \Phi(A) \cap \Phi_{+}(B) : b.s._{mul}(B - \lambda) > s._{mul}(A - \lambda) \big\}.
\]

Corollary 2.6. For any given \(A \in B(H) \) and \(B \in B(K) \), we have

\[
\bigcap_{C \in B(K, H)} \sigma_{sb}(M_C) = \sigma_{sb}(B) \cup \big\{ \lambda \in \mathbb{C} : \lambda \in \sigma_{SF-}(A) \text{ and } b.s._{mul}(B - \lambda) < \infty \big\} \cup \\
\big\{ \lambda \in \Phi(B) \cap \Phi_{-}(A) : b.s._{mul}(B - \lambda) < s._{mul}(A - \lambda) \big\}.
\]

Theorem 2.7. For any given \(A \in B(H) \) and \(B \in B(K) \), the following statements are equivalent:

1. \(M_C \in \Phi_{b}(H \oplus K) \) for some \(C \in B(K, H) \);
2. \(A \in \Phi_{ab}(H) \), \(B \in \Phi_{sb}(K) \) and \(b.s._{mul}(B) = s._{mul}(A) \);
3. \(A \in \Phi_{ab}(H) \), \(B \in \Phi_{sb}(K) \) and \(\alpha(A) + \alpha(B) = \beta(A) + \beta(B) \).

Proof. (1) \(\Rightarrow \) (2). Suppose that \(M_C \in \Phi_{b}(H \oplus K) \). Then from Lemma 1.6, we have \(A \in \Phi_{ab}(H) \) and \(B \in \Phi_{sb}(K) \). Using Propositions 1.7 and 1.8, we have
\[M_C = \begin{pmatrix}
A_1 & A_{12} & C_{11} & C_{12} \\
0 & A_2 & C_{21} & C_{32} \\
0 & 0 & B_1 & B_{12} \\
0 & 0 & 0 & B_2
\end{pmatrix} : H_1 \oplus H_2 \oplus K_1 \oplus K_2 \to H_1 \oplus H_2 \oplus K_1 \oplus K_2, \]

where \(\dim(H_1) < \infty \), \(A_1 \) is nilpotent, \(A_2 \) is a left invertible operator, \(\dim K_2 < \infty \), \(B_1 \) is a right invertible operator, \(B_2 \) is a finite, nilpotent operator. Moreover,

\[\beta(A_2) = s._{\text{mul}}(A) \text{ and } \alpha(B_1) = b.s._{\text{mul}}(B). \]

In addition, it follows from Lemma 1.6 that

\[\begin{pmatrix}
A_2 & C_{21} \\
0 & B_1
\end{pmatrix} \in \Phi_b(H_2 \oplus K_1). \]

Note the well-known fact that if \(M_C \in \Phi(H \oplus K) \), then \(A \in \Phi(H) \) if and only if \(B \in \Phi(K) \).

Thus, if \(\beta(A_2) = \infty \), then \(B_1 \not\in \Phi(K_1) \), and so \(\beta(A_2) = \alpha(B_1) = \infty \) since that \(B_1 \) is right invertible. Otherwise, if \(\beta(A_2) < \infty \), then both \(A_2 \) and \(B_1 \) are Fredholm. Consequently,

\[0 = \text{ind}(\begin{pmatrix}
A_2 & C_{21} \\
0 & B_1
\end{pmatrix}) = \text{ind}(A_2) + \text{ind}(B_1) = -\beta(A_2) + \alpha(B_1), \]

that is, \(\beta(A_2) = \alpha(B_1) \). Therefore, \(s._{\text{mul}}(A) = b.s._{\text{mul}}(B) \).

(2) \Rightarrow (1). Suppose that \(A \in \Phi_{ab}(H) \), \(B \in \Phi_{sb}(K) \) and that \(s._{\text{mul}}(A) = b.s._{\text{mul}}(B) \).

Then from Proposition 1.7 we have that \(A \) can be decomposed into the following form with respect to some orthogonal decomposition \(H = H_1 \oplus H_2 \)

\[A = \begin{pmatrix}
A_1 & A_{12} \\
0 & A_2
\end{pmatrix}, \]

where and \(\dim(H_1) < \infty \), \(A_1 \) is nilpotent, and \(A_2 \) is a left invertible operator. By Proposition 1.8, \(B \in B(K) \) can be decomposed into the following form with respect to some orthogonal decomposition \(K = K_1 \oplus K_2 \)

\[B = \begin{pmatrix}
B_1 & B_{12} \\
0 & B_2
\end{pmatrix}, \]

where \(\dim(K_2) < \infty \), \(B_1 \) is a right invertible operator, and \(B_2 \) is nilpotent. Moreover, \(s._{\text{mul}}(A) = \beta(A_2) \) and \(b.s._{\text{mul}}(B) = \alpha(B_1) \). Since the assumption that \(s._{\text{mul}}(A) = b.s._{\text{mul}}(B) \), \(\alpha(B_1) = \beta(A_2) \). Thus, we conclude from Theorem 1.5 that there exists some
operator $C_{12} \in B(K_1, H_2)$ such that
\[
\begin{pmatrix}
A_2 & C_{21} \\
0 & B_1
\end{pmatrix}
\] is invertible. Define $C \in B(K, H)$ as follows:
\[
C = \begin{pmatrix}
0 & 0 \\
C_{12} & 0
\end{pmatrix}.
\]
By Lemma 1.6, it is no hard to prove that $M_C \in \Phi_b(H \oplus K)$.

(2) \iff (3). For this, it is sufficient to prove that if $A \in \Phi_{ab}(H)$ and $B \in \Phi_{sb}(K)$, then

\[
\alpha(A) + \alpha(B) = \beta(A) + \beta(B) \text{ if and only if } b.s.mul(B) = s.mul(A),
\]
which follows from Propositions 1.7 and 1.8 immediately. This completes the proof.

In [1], Cao has proved the equivalence of (1) and (3) of Theorem 2.7 by a different method, which seems to be more complicated.

The next corollary immediately follows from Theorem 2.7.

Corollary 2.8. For any given $A \in B(H)$ and $B \in B(K)$, we have
\[
\bigcap_{C \in G(K, H)} \sigma_b(M_C) = \sigma_{ab}(A) \cup \sigma_{sb}(B) \cup \\
\{ \lambda \in \Phi_{ab}(A) \cap \Phi_{sb}(B) : b.s.mul(B - \lambda) \neq s.mul(A - \lambda) \}
\]
\[
= \sigma_{ab}(A) \cup \sigma_{sb}(B) \cup \\
\{ \lambda \in \mathbb{C} : \alpha(A - \lambda) + \alpha(B - \lambda) \neq \beta(A - \lambda) + \beta(B - \lambda) \}.
\]

References

[1] X. H. Cao. Browder spectra for upper triangular operator matrices, J. Math. Anal. Appl., 342(2008), 477-484.

[2] X. L. Chen, S. F. Zhang, H. J. Zhong. On the filling in holes problem of operator matrices, Linear Algebra Appl., 430(2009) 558-563.

[3] D. S. Djordjević. Perturbations of spectra of operator matrices, J. Operator Theory, 48(2002) 467-486.

[4] H. K. Du, J. Pan. Perturbation of spectrums of 2×2 operator matrices, Proc. Amer. Math. Soc., 121(1994) 761-766.

[5] J. Eschmeier. Samuel multiplicity and Fredholm theory, Math. Ann., 339 (2007) 21-35.

[6] J. Eschmeier. On the Hilbert-Samuel multiplicity of Fredholm tuples, Indiana Univ. Math. J., 56(2007) 1463-1477.

[7] J. Eschmeier. Samuel multiplicity for several commuting operators, J. operator Theory, 60(2008) 399-414.

[8] X. Fang. Samuel multiplicity and the structure of semi-Fredholm operators, Adv. Math., 186 (2) (2004) 411-437.

[9] X. Fang. Hilbert polynomials and Arveson’s curvature invariant, J. Funct. Anal., 198 (2) (2003) 445-464.
[10] X. Fang. Invariant subspaces of the Dirichlet space and commutative algebra, J. Reine Angew. Math., 569 (2004) 189-211.
[11] X. Fang. The Fredholm index of quotient Hilbert modules, Math. Res. Lett., 12 (2005) 911-920.
[12] X. Fang. The Fredholm index of a pair of commuting operators, Geom. Funct. Anal., 16 (2006) 367-402.
[13] J. K. Han, H. Y. Lee, W. Y. Lee. Invertible completions of 2×2 upper triangular operator matrices. Proc. Amer. Math. Soc., 128(1999) 119-123.
[14] I. S. Hwang, W. Y. Lee. The boundedness below of 2×2 upper triangular operator matrices, Integr. Equ. Oper. Theory, 39(2001) 267-276.
[15] W. Y. Lee. Weyl's theorem for operator matrices, Integr. equ. oper. theory, 32(1998) 319-331.
[16] W. Y. Lee. Weyl spectra of operator matrices, Proc. Amer. Math. Soc., 129(2000) 131-138.
[17] S. F. Zhang, H. J. Zhong, Q. F. Jiang. Drazin spectrum of operator matrices on the Banach space, Linear Algebra Appl., 429(2008) 2067-2075.
[18] S. F. Zhang, Z. Y. Wu, H. J. Zhong. Continuous spectrum, point spectrum and residual spectrum of operator matrices, Linear Algebra Appl., 433(2010) 653-661.
[19] S. F. Zhang, H. J. Zhong, J. D. Wu. Spectra of Upper-triangular Operator Matrices, Acta Math. Sci. (in Chinese), 54(2011) 41-60.

(Shifang Zhang) Department of Mathematics, Zhejiang University, Hangzhou 310027, P.R. China, School of Mathematics and Computer Science, Fujian Normal University, Fuzhou 350007, China
E-mail address: shifangzhangfj@163.com

(Junde Wu) Department of Mathematics, Zhejiang University, Hangzhou 310027, P.R. China
E-mail address: wjd@zju.edu.cn