The correlation between telomerase activity and Bax/Bcl-2 ratio in valproic acid-treated MCF-7 breast cancer cell line

Zahra Vafaiyan 1, Roghaye Gharaei 1, Jahanbakhsh Asadi 1*

1 Department of Biochemistry and Biophysics, Disorder Metabolic Research Center, Golestan University of Medical Sciences, Gorgan, Iran

ABSTRACT

Objectives: Valproic acid (VPA), a drug used in the treatment of neurological disorders, has been shown to have cytotoxic effects on cancer cells through different mechanisms. Telomerase, a ribonucleoprotein reverse transcriptase, is responsible for elongation of the telomere and is activated in cancers. A relation between telomerase activity and resistance to apoptosis has been established. This study focused on probable effects of VPA on MCF-7 cancer cells. In particular, we investigated VPA effects on viability, apoptosis and telomerase activity.

Materials and Methods: Cytotoxicity effects of VPA on MCF-7 cells were determined by neutral red uptake assay. Cells were treated with different concentrations of VPA (0-32 mM) and telomerase activity and Bax and Bcl-2 protein levels were determined using TRAP assay (PCR-ELISA) method and ELISA method, respectively.

Results: The cytotoxic effects of different concentration of VPA on MCF-7 cells were observed as a reduction in cell viability and telomerase activity and altered expression of Bcl-2 family protein levels. The results also showed that there is a significant correlation between reduction of telomerase activity and increase in Bax/Bcl-2 ratio (P<0.001).

Conclusion: Our study demonstrated that cell viability of MCF-7 cancer cells was decreased after treatment with VPA, probably through a reduction of telomerase activity and an increase in Bax/bcl-2 ratio. Therefore, it could be concluded that VPA is a potent anti-cancer agent for breast cancer cells through inhibition of telomerase activity and induction of apoptosis.

Please cite this article as:

Vafaiyan Z, Gharaei R, Asadi J. The Correlation between telomerase activity and Bax/Bcl-2 ratio in valproic acid-treated MCF-7 breast cancer cell line. Iran J Basic Med Sci 2015; 18:700-704.

Introduction

Breast cancer is the most common malignancy and the leading cause of death in women, worldwide. It is gradually increasing and brings economic burden to patients (1).

Valproic acid (VPA), 2- pentatonic propyl acid), a drug used in the treatment of neurological disorders, has anti-cancer effects through inhibition of histone deacetylase enzymes (HDACi) (2). VPA inhibits both class I and class II of histon deacetylase enzymes via hyperacetylation of histon H3 and H4. HDACi, through modifying chromatin structure and making dynamic changes in the nuclesosomal packaging of DNA, play an important role in regulation of gene expression (3). Studies have shown that inhibitors of histone deacetylase exert their effects via inhibition of cell growth, induction of differentiation and stimulation of apoptosis (3). The exact mechanisms via which HDACi reduce tumor growth are still unclear, but a factor that is suppressed by these inhibitors is the telomerase enzyme (4).

Telomerase enzyme is activated in more than 90% of cancers including breast cancer whereas it has negative or very weak activity in the most somatic cells (5). Telomerase, a cellular reverse transcriptase, protects the ends of chromosomes (telomeres). Telomeres are specialized structures at the ends of eukaryotic chromosomes that normally shorten during each cell division and eventually cause aging and cell death. The loss of telomere length is inhibited by telomerase in cancer cells (6). Telomerase is a ribonucleoprotein complex with a catalytic subunit (hTERT) and an RNA component (hTR) as a template to add telomeric repeats (TTAGGG) to the 3’ ends of chromosomes (7). Studies show that the level of hTERT expression in cells was associated with the degree of telomerase activity, whereas hTR gene expression in cells is independent of the activity of this enzyme (8). Scientists seek for anti-cancer agents that specifically target cancer cells and have fewer side effects on normal cells in this regard, telomerase now and over the last decade has
been considered by many studies (9). Also, targeting the process of apoptosis, the programmed cell death, is an appropriate strategy for prevention and treatment of cancer. Due to the fact that many cancer cells can inhibit apoptosis in various ways, inducing programmed cell death is an important mechanism for cancer treatment (10). Many studies have shown that inhibition of telomerase can affect cell viability by inducing apoptosis without having long periods of treatment (11).

Thus, according to studies on telomerase activity in cancer cells and its effect on the proliferation and growth of cancer cells, this study examined the effects of VPA on telomerase activity and two factors affecting apoptosis: (1) Bax and (2) Bcl-2, in MCF-7 breast cancer cell line.

Materials and Methods

Cell culture and VPA treatment

Human breast adenocarcinoma Cell line (MCF-7) (Pasteur Institute, Tehran, Iran) was maintained at 37 °C in a humidified condition of 95% air and 5% CO2 in Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with 10% heat-inactivated fetal bovine serum (FBS), 100 U/ml penicillin and 100 µg/ml streptomycin (Gibco, Germany).

VPA (Sigma, Germany) was dissolved in PBS to prepare a stock solution of 100 mM and stored at -20 °C.

Determination of cell growth and viability

The sensitivity of MCF-7 cells to VPA was evaluated in vitro using neutral red assay. It is based on the ability of viable cells to incorporate the supravital dye neutral red in the lysosomes. For this assay, 5×10^4 cells/ml were seeded in triplicate wells of a 24-well microtiter plate and cultured overnight prior to treatment. Cells were exposed to various concentrations of VPA (0-32 mM) for 24, 48, 72 hr. Untreated samples were considered as control cells. The extent of viability was determined by the neutral red assay. The absorbance of the samples was measured using a spectrophotometer at a wavelength of 450 nm. Cell viability was calculated as (mean OD of treated cells/mean OD of control or untreated cells) × 100. Lethal concentrations (LC50) of VPA were obtained from concentration-response curves. One million (1×10^6) cells were grown after determination of LC50 values in 25 cm² flasks. After 24 hr of incubation, cells were treated with various concentrations of VPA (0, 2, 8 and 16 mM) for 24, 48 and 72 hr and this treatment was repeated for three times; Then, cells were trypsinized and washed with phosphate-buffered saline (PBS). Next, the viable cells were scored with a hemocytometer based on the exclusion of trypan blue.

Measurement of telomerase activity

Based on the protocol of Kim et al, quantitative measurement of telomerase activity was conducted using polymerase chain reaction-based telomeric repeat amplification protocol (TRAP Assay) (Telomeric Assay, USA), was added to the reaction mixture. The PCR reaction for 30 cycles (25 °C for 20 min, 94 °C for 5 min, 94 °C for 30 sec, 50 °C for 30 sec, 72 °C for 90 sec, 72 °C for 10 min) was performed using Thermal cycler. Products of PCR (2.5 µl) were used for the ELISA reaction and the absorbance of each sample was read at 450 nm using ELISA reader device.

Measurement of Bax and Bcl-2 levels

Bax and Bcl-2 protein levels were measured using ELISA kits (Biospes, China), according to the manufacturer protocol as duplicate. Briefly, treated and untreated cells were lysed according to the ELISA kit instruction. Bax and Bcl-2 protein from the cell lysate specifically bound to the primary antibody and were detected by Horseradish peroxidase (HRP)-conjugated secondary antibody. Then, Bax and Bcl-2 protein levels were determined by measuring the absorbance at 450 nm using a microplate reader.

Statistical analysis

The normality of data distribution was measured using Kolmogorov-Smirnov test. All data were analyzed by One-way Analysis of variance (ANOVA), followed by post-hoc Tukey’s test. The relationship between telomerase activity and the ratio of Bax/Bcl-2 was measured by Pearson correlation test. A P-value less than 0.05 was considered statistically significant. Statistical analysis was performed using SPSS 16.

Results

Cytotoxic effects of VPA on MCF-7 cells

To determine the effects of VPA on MCF-7, cells were exposed to various concentrations of VPA (0-32 mM) for 24, 48 and 72 hr. Assessment of cell viability by neutral red test showed that with increasing dose and treatment time, an increase in cytotoxic effects was observed and the concentrations of 8, 16 and 32 mM had the greatest effects compared with control (P<0.05). Also, LC50 value for VPA in MCF-7 cells after 48 and 72 hr were about 12 and 7 mM, respectively (Figure 1).
After determination of LC50 values, cells were treated with selected concentrations of VPA (2, 8 and 16 mM).

The effect of VPA on telomerase activity

Telomerase activity was investigated at the concentrations of 0, 2, 8 and 16 mM at 24, 48 and 72 hr (Figure 2). Telomerase activity was reduced by increasing concentrations of VPA. Maximum reduction of telomerase activity was obtained at 16 mM VPA at 48 hr. The telomerase activity was not significantly different between 48 and 72 hr, while there was significant differences between 24 and 48 hr as well as 24 and 72 hr at concentrations 0.8 and 16 mM.

The effect of VPA on the expression of Bax and Bcl-2 and Bax / Bcl-2 ratio

Bax, Bcl-2 and Bax / Bcl-2 were measured following 24, 48 and 72 hr treatment with different concentrations of VPA (0, 2, 8, 16 mM). Bax protein levels were augmented by increasing concentrations of VPA, and maximum protein concentration was obtained at 16 mM after 48 hr of treatment (Figure 3). Bcl-2 protein levels decreased with increasing concentrations of VPA and the lowest value was obtained at 16 mM following 72 hr treatment (Figure 4). Bax / Bcl-2 Ratio was also increased with increasing concentrations of valproic acid and showed the highest value at 16 mM in 48 hr (Figure 5).
Thus, an increase in Bax/Bcl-2 ratio which was observed in this study may partly reflect the activation of mitochondrial apoptosis pathway in MCF-7 cells after treatment with VPA. In accordance with our results, previous studies showed that HDACi can induce apoptosis through repression of apoptotic and regulation of anti-apoptotic genes (20).

Although following VPA treatment a significant correlation was observed between reduction of telomerase activity and increase in Bax/Bcl-2 ratio, but it is still not clear whether there is any association between changes in Bcl-2 family proteins and telomerase activity induced by HDACi; However, some reports showed that inhibition of hTERT and telomerase activity may facilitate the induction of mitochondrial apoptosis (21).

Conclusion
Our results showed that VPA causes a decrease in cell viability and induces apoptosis by reducing telomerase activity and increasing Bax/Bcl-2 ratio. Our study illustrated that loss of telomerase activity may be a useful biomarker to evaluate the antitumor activity of VPA in breast cancer cells but still further studies are needed. The significant correlation that was observed between decreased telomerase activity and increased Bax/Bcl-2 ratio may provide a new perspective about the molecular mechanisms involved in cancer cells.

Acknowledgment
This work was supported by a grant (Grant No. 92021002) from Golestan University of Medical Science, Gorgan, Iran.

References
1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA-Cancer J Clin 2011; 61:69-90.
2. Xia Q, Sung J, Chowdhury W, Chen C-I, Hōti N, Shabbeer S, et al. Chronic administration of valproic acid inhibits prostate cancer cell growth in vitro and in vivo. Cancer Res 2006; 66:7237-7244.
3. Ververis K, Hiong A, Karagiannis TC, Licciardi PV. Histone deacetylase inhibitors (HDACis): multitargeted anticancer agents. Biologies 2013; 7: 47-60.
4. Rahman R, Ostesu-Ilanez T, Hirst RA, Levesley J, Kilday J-P, Quinn S, et al. Histone deacetylase inhibition attenuates cell growth with associated telomerase inhibition in high-grade childhood brain tumor cells. Mol Cancer Ther 2010; 9:2568-2581.
5. Rao Y, Xiong W, Liu H, Jia C, Zhang H, Cui Z, et al. Inhibition of telomerase activity by dominant-negative hTERT retards the growth of breast cancer cells. Breast Cancer 2014; 1-8.
6. Shay JW, Wright WE. Telomerase therapeutics for cancer: challenges and new directions. Nat Rev Drug Discovery 2006; 5:577-584.
7. Wai L.K. Telomeres, telomerase, and tumorigenesis-a review. Med Gen Med 2004; 6:19.
8. Massard C, Zermati Y, Pauleau A, Larochette N, Metivier D, Sabatier L, et al. hTERT: a novel
1. Vafaiyan et al. Telomerase activity and apoptosis in cancer. Iran J Basic Med Sci, Vol. 18, No. 7, Jul 2015.

2. Endogenous inhibitor of the mitochondrial cell death pathway. Oncogene 2006; 25:4505-4514.

3. Buseman C, Wright W, Shay J. Is telomerase a viable target in cancer? Mutat Res 2012; 730:90-97.

4. Induction of apoptosis and inhibition of telomerase activity by trichostatin A, a histone deacetylase inhibitor, in human leukemic U937 cells. Exp Mol Pathol 2007; 82:77-84.

5. Rubis B, Holsz H, Gladych M, Toton E, Paszel A, Lisiak N, et al. Telomerase downregulation induces proapoptotic genes expression and initializes breast cancer cells apoptosis followed by DNA fragmentation in a cell type dependent manner. Mol Biol Rep 2013; 40:4995-5004.

6. Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PdL, et al. Specific association of human telomerase activity with immortal cells and cancer. Science 1994; 266:2011-2015.

7. Byun S-S, Kim FJ, Khandrika L, Kumar B, Koul S, Wilson S, et al. Differential effects of valproic acid on growth, proliferation and metastasis in HTB5 and HTB9 bladder cancer cell lines. Cancer Lett 2009; 281:196-202.

8. Fortunati N, Bertino S, Costantino L, Bosco O, Vercellinato I, Catalano MG, et al. Valproic acid is a selective antiproliferative agent in estrogen-sensitive breast cancer cells. Cancer Lett 2008; 259:156-164.

9. Li Y, Yin S, Feng S, Nie D, Xie S, Ma L, et al. [Effect of valproic acid on apoptosis of leukemia HL-60 cells and expression of h-tert gene]. Zhongguoshiyianxue ye Xuezazhi 2010; 18:1445-1450.

10. Khaw AK, Silasudjana M, Banerjee B, Suzuki M, Baskar R, Hande MP. Inhibition of telomerase activity and human telomerase reverse transcriptase gene expression by histone deacetylase inhibitor in human brain cancer cells. Mutat Res 2007; 625:134-144.

11. Wu P, Meng L, Wang H, Zhou J, Xu G, Wang S, et al. Role of hTERT in apoptosis of cervical cancer induced by histone deacetylase inhibitor. Biochem Biophys Res Commun 2005; 335:36-44.

12. Meenan SM, Patel SN, Tollefsbol T0. Sulforaphane causes epigenetic repression of hTERT expression in human breast cancer cell lines. PloS One 2010; 5:e11457.

13. Adams JM, Cory S. Bcl-2-regulated apoptosis: mechanism and therapeutic potential. Curr Opin Immunol 2007; 19:488-496.

14. Tsujimoto Y, Shimizu S. Role of the mitochondrial membrane permeability transition in cell death. Apoptosis 2007; 12:835-840.

15. Bokelmann I, Mahlknecht U. Valproic acid sensitizes chronic lymphocytic leukemia cells to apoptosis and restores the balance between pro-and antiapoptotic proteins. Mol Med 2008; 14:20-27.