Table S1. Gonad samples of cats used in this study.

No	Strains	Tissues
1	Mongrel	Testes
2	Mongrel	Testes
3	Mongrel	Testes
4	Mongrel	Testes
5	Mongrel	Testes
6	Mongrel	Testes
7	Mongrel	Testes
8	Mongrel	Testes
9	Mongrel	Testes
10	Mongrel	Testes
11	Mongrel	Testes
12	Mongrel	Ovary
13	Mongrel	Testes
14	Mongrel	Testes
15	Mongrel	Testes
16	Mongrel	Testes
17	Mongrel	Testes
18	Mongrel	Ovary
19	Mongrel	Ovary
20	Mongrel	Ovary
21	Mongrel	Ovary
22	Mongrel	Ovary
23	Mongrel	Testes
24	Mongrel	Ovary
25	Mongrel	Ovary
26	Mongrel	Ovary
27	Mongrel	Ovary
28	Mongrel	Testes
29	Mongrel	Testes

Testes and ovaries of mongrel cats were obtained from local animal hospitals with permissions from the animal owners. Twenty five samples of 29 were used to determine each SNP.
Table S2. Primers used for PCR, sequencing and mutagenesis of CYP1A2 in this study

No	Primers	Sequences (5' to 3')	Purpose
1	CYP1A2 F	CCAGACTCCATAACCCTGCTGATC	Protein expression
2	CYP1A2 R	GCAATGCTGCTGTCTCTTCACTTGATGG	Protein expression
3	ompA F	GGAATTTCCATATGAAAAGACAGATCAGCG	Protein expression
4	CYP1A2 ompA+2 linker	GGCGGTGGGGGATTATTGGCCTCCGGGCCTGCTACGTAGCGAA	Protein expression
5	CYP1A2 Express R	TCTAGATCACTTGATGGAGAACCTGGGC	Protein expression
6	CYP1A2 Seq3	GATGGGGGAAGAGGACCTCACAG	Sequence
7	CYP1A2 Seq4	GAAGAGGAGTCTGGAAGATC	Sequence
8	CYP1A2 Seq5	TGTCACAAGCAGGTCATCTCTG	Sequence
9	CYP1A2 Exon1 F	GACTGAGTGTGAGTGAAGCTTGAAG	PCR, sequence
10	CYP1A2 Exon1 R	ATCAGCTGCGTGCTACCTTG	PCR, sequence
11	CYP1A2 Exon2 F	CCCAGCTTACTGCTAGAGG	PCR, sequence
12	CYP1A2 Exon2 R	GTGGTGGCAAGTTATCTGATGGAC	PCR
13	CYP1A2 Exon3/4 F	ATGCTGTGTACATGTTGCTTGGTG	PCR, sequence
14	CYP1A2 Exon3/4 R	CTGTGAGGAAATTTTCGCTGACATGG	PCR, sequence
15	CYP1A2 Exon5 F	GAGACTATGGAAGCTGCAACAGTATTG	PCR, sequence
16	CYP1A2 Exon5 R	GACAGAGACCTTCTGAC	PCR
17	CYP1A2 Exon6 F	ACAGAAGTCTCCCAGCTGTC	PCR, sequence
18	CYP1A2 Exon6 R	CTTGCGATCTGCTGTTCCTTCAC	PCR
19	CYP1A2 680 A>C F	TCCTCGGGGAACCCCTGGAC	Mutagenesis
20	CYP1A2 680 A>C R	CGCATTCCACGAAATATTGCTGCTGTATG	Mutagenesis
21	CYP1A2 799 C>A F	GAGAATACAGGACTTGGACG	Mutagenesis
22	CYP1A2 799 C>A R	CTGGAATTTTCTGAGAAGACCTGAC	Mutagenesis
23	CYP1A2 1229 T>C F	CCAATCGTAGACAAAGGAGTGG	Mutagenesis
24	CYP1A2 1229 T>C R	CCTGCCACTGTTATGGAAC	Mutagenesis
25	CYP1A2 1381 A>G F	CGAGTGGGGAGTCTTCTCTCTC	Mutagenesis
26	CYP1A2 1381 A>G R	GCCAGAACCTCCCCCTATACAC	Mutagenesis
Supplemental Fig. S1. Genomic structure of feline CYP1A2 and polymorphic variants identified.

Exons and lines are indicated by white boxes and lines, respectively. Blue columns show putative substrate-recognition sites (SRS1-6). Red columns indicate heme-binding region. The scheme is drawn with reference to Ensembl genome browser (Ensembl genome browser (ENSFCAG00000000344, Chromosome B3: 33,511,989 - 33,516,370 reverse strand).
Supplemental Fig. S2. Saturation curve of coumarin hydroxylation activity by feline CYP1A2 variants.

Heterologously-coexpressed feline CYP1A2 variants in bactosomes of *E. coli* were incubated with 7-ethoxyresorufin (8 graded concentrations in 0.078 μM - 5 μM) for 10 min. Enzymatic activity was indicated in pmol/min/pmol P450. N=4. Vertical bars for each point indicate sem.