Risk of infections with B cell maturation antigen (BCMA) directed Immunotherapy in Multiple Myeloma

Tracking no: ADV-2021-006178R2

Meera Mohan (Medical college of Wisconsin, United States) Sneha Nagavally (Medical College of Wisconsin, United States) Binod Dhakal (Medical College of Wisconsin, United States) Sabarinath Radhakrishnan (Medical College of Wisconsin, United States) Saurabh Chhabra (Medical College of Wisconsin, United States) Anita D'Souza (Medical College of Wisconsin, United States) Parameswaran Hari (Medical College of Wisconsin, United States)

Abstract:

Conflict of interest: No COI declared

COI notes:

Preprint server: No;

Author contributions and disclosures: Contribution: Conception and design, P.H., A.D., S.C., M.M.; Provision of study materials or patients, M.M.; Collection and assembly of data, M.M.; Data analysis and interpretation, P.H.; A.D., M.M., S.N.; Manuscript writing, M.M., P.H., A.D.; Final approval of manuscript, all authors.

Non-author contributions and disclosures: No;

Agreement to Share Publication-Related Data and Data Sharing Statement: Data will be available upon contacting the corresponding author

Clinical trial registration information (if any):
Risk of infections with B cell maturation antigen (BCMA) directed Immunotherapy in Multiple Myeloma

Authors: Meera Mohan MD, MS; Sneha Nagavally; Binod Dhakal MD, MS; Sabarinath Venniyil Radhakrishnan MD; Saurabh Chhabra MD, MS; Ani D’Souza MD, MS; Parameswaran Hari MD

Authors Affiliation: Medical College of Wisconsin

Key words: Infections, BCMA directed T cell therapies

Corresponding author:
Meera Mohan MD, MS
Address: 9200 W Wisconsin Avenue, Milwaukee, WI 53226
Email: memohan@mcw.edu

Word: 1,197 words

Figures/tables: 2
Supplement table: 1
Supplement figures: 1
Reference: 18

Statement of submission to conference: Submitted in the abstract form to American Society of Hematology Meeting 2021
To the Editor,

B-cell maturation antigen (BCMA) is a novel target for T cell immunotherapy in multiple myeloma (MM) including bispecific antibody (bsAb), antibody drug conjugates and chimeric antigen receptor T cell therapy (CAR-T)\(^1\)\(^2\)\(^3\). BCMA signaling is critical for survival and proliferation of long-lived plasma cells\(^4\). Impaired immune reconstitution, cytopenia, B cell aplasia and hypogammaglobulinemia (HGG) can compound preexisting MM-induced immunosuppression\(^5\). In addition, bsAb can redirect and activate regulatory T cells, thus theoretically increasing the risk of infections\(^6\). Herein, we describe the infectious complications observed across different BCMA-directed T cell therapies (bsAb and CAR-T) in relapsed/refractory MM clinical trials at our center. Infections confirmed by clinical, imaging, microbiologic or histopathologic evidence were captured from day 1 of the first cycle of bsAb and day 1 of lymphodepletion (LD) chemotherapy in autologous BCMA CAR-T therapies until disease progression or last follow up. NCI CTCAE v5 was used to describe the site and grade of infections\(^7\). The serum immunoglobulin G (IgG) concentration was evaluated prior to inception of treatment and approximately monthly thereafter. Antimicrobial prophylaxis was in accordance with institutional standards for CAR T recipients (supp table 1) and at physician’s discretion for patients on bsAb therapy. Descriptive statistics and comparisons were performed using two-sample t-test for continuous variables and chi-square goodness-of-fit test for categorical variables.

We identified 62 patients who received BCMA-directed T cell therapies including bsAb (n=36) and CAR-T (n=26) between 1/2019-6/2021 (Table 1). The median age was 66.5 (range, 63-72) years with 44% females (27/65) and 14.5% of AA. The median time to bsAb and CAR-T trial from diagnosis were 6.6 (range 0.83-15.5) and 2.6 (range 0.35-14.4) years, respectively. The median lines of prior therapy were 5 (range 4-6), with BCMA CAR-T recipients receiving fewer prior lines of therapy compared to bsAb (4 vs 6, p<0.001). All patients receiving bsAb were triple class refractory and had progressive disease (PD) entering the study. Among patients receiving CART-T, 76.9% (n=20) had PD and 46% (n=12) bridging therapy prior to CAR T. Approximately 27% (n=16) patients had lymphopenia at study inception. Baseline HGG and severe HGG were present in 76% and 44% patients, respectively.
Tocilizumab was used in 39% (bsAb 28.6% vs. CAR-T 55.6%; p = 0.38) patients for CRS and was similar between the patients with and without infectious complications. IVIG was used in 23.7% of patients. At a median follow up of 9 (range 3.1-18) months, cumulative incidence of infections in this cohort was 30, with 32% (n=20) of all patients experiencing at least one episode of infection. The cumulative incidence of infection with bsAb and CAR-T were 25 and 5 (p=0.012), respectively, with 41.2% of patients experiencing at least one episode of infection with bsAb and 23.1% with CAR-T (p=0.141). Average infection density was higher with bsAb compared to CAR-T treated patients (23 vs 6 per 100 patients, p=0.012) (supp fig 1). The spectrum of infections was predominantly bacterial (n=13). While gram negative infections (Escherichia coli and Klebsiella pneumoniae bacteremia, Proteus mirabilis and Psuedomonas aeruginosa urinary tract infections) were seen in 6 patients, skin infection including cellulitis occurred in 4 patients, including 1 case of necrotizing fascitis requiring amputation of the involved limb in the recipient of bsAb therapy. We also observed bacteremia with rare opportunistic pathogens such Rhizobium radiobacter and Ochrobacterium anthropic. Ten cases of viral infections were seen in this cohort including rhinovirus (upper respiratory infection), cytomegalovirus (CMV) reactivation with viremia, norovirus (diarrhea), parvovirus B19 reactivation and SARS-CoV2 (COVID-19). About 50% (n=15) of infections were grade ≥3 infections with 2 grade 5 events (≥ grade 3 events with bsAb = 12 vs CAR T =4). The two cases of grade 5 infections were severe COVID-19 (n=1) and Pseudomonas sp. sepsis (n=1), with both patients having achieved MRD-negative CR (10^{-5}) on bsAb therapy. While most infections occurred within the first 30 days of LD chemotherapy in the CAR T group, these occurred at a median 49 (range 24-148.5) days from study enrollment with bsAb therapy (figure 1). Most infections also occurred in the context of ≥ very good partial response (VGPR)^3 to therapy. The average length of inpatient hospital stay for infectious complications in this cohort was 5.6 (bsAb 4.8 vs. CAR T 9; p=0.11) days.

This report informs us of the shifting spectrum of infections with this novel class of drugs in MM. In this cohort of 62 MM patients treated with BCMA-targeting bsAb and CAR-T, a third of patients developed at least one infectious complication. Grade ≥3 infections were seen in 50% of cases including two grade 5
Thus, we observed a high rate of infections and severity of infection (clinical significance and inpatient hospitalizations) in patients treated with these agents. Additionally, patients treated on BCMA CAR-T trials enrolled less heavily pretreated patients in earlier relapses, i.e., with a shorter time from diagnosis to CAR-T; higher baseline lymphocyte count and earlier in the natural history of the disease compared to patients on bsAb. While this suggests a different risk for infections in the 2 groups, it is also plausible that bsAb are associated with a higher rate of infections than CAR-T due to continuous therapy resulting in more ongoing profound B-cell aplasia and hypogammaglobulinemia.

Morbidity and mortality from infectious complications are common in advanced and refractory MM where treatment options are also limited. In a phase 2 study of selinexor, which is approved in the setting of pent-refractory MM, infections such as pneumonia (11%), sepsis (9%) and bacteremia (3.3%) were common serious adverse effects\(^9\). In the DREAMM2 study of belantamab mafodotin, the first in anti-BCMA class antibody drug conjugate, ≥ grade 3 pneumonia was reported in 6% of study population\(^10\). Of note, dose reductions were noted in 29-41% of study subjects due to toxicities and thus the full extent of infection risk is less clear. An inferior overall survival primarily due to patients succumbing to infections was also seen with venetoclax therapy\(^11\). Salvage autologous cell transplantation, another acceptable treatment option in this population is also associated with significant infectious complications\(^12,13\). The only currently FDA-approved BCMA CAR-T, idecabtagene vilocilird was associated with infections in 69% of study patients (relapsed/refractory MM), of which 22% were grade 3 or 4\(^2\). Similar rates of infections have been observed with ciltacabtagene autoleucel\(^14\). Infection rates range between 21-52% across various trials of BCMA-directed bsAb with serious infections ranging from 8-30%\(^15,17\).

In addition to the limitation of examining a small cohort with a relatively short follow up, the data presented here are limited to the phase I/II clinical trials of different products, some with dose escalation. Our findings highlight the need for the myeloma provider community to be aware of this risk and the need for guidelines on screening for infections prior to treatment, active surveillance for viral reactivation, antimicrobial and IVIG prophylaxis, and treatment of infections with support from infectious disease experts in this setting. The existing equivocal approach to IVIG replacement in HGG induced by MM
therapy should also be revisited considering these newer therapies. This information also has major implications in the context of responses to COVID-19 vaccination18. As the era of T-cell directed immunotherapy dawns in MM care, we underscore the need for comprehensive infection management protocols particularly in patients with deep durable remission on ongoing therapy.
Data Sharing Statement:

Data will be available upon contacting the corresponding author (memohan@mcw.edu).

Acknowledgements:

We thank our patients and families for the opportunity to be involved in their care and their willingness to contribute to the advancement of the field.

Authorship

Contribution: Conception and design, P.H., A.D., S.C., M.M.; Provision of study materials or patients, M.M.; Collection and assembly of data, M.M.; Data analysis and interpretation, P.H.; A.D., M.M., S.N.; Manuscript writing, M.M., P.H., A.D.; Final approval of manuscript, all authors.

Conflict-of-interest disclosure: The authors declare no competing financial interests.

Correspondence: Meera Mohan MD, MS, 9200 W Wisconsin Avenue, Milwaukee, WI 53226
e-mail: memohan@mcw.edu
Clinical Variables	bsAb (N=36)	CAR-T (N=26)	Total (N=62)	p value
Median age (range)	66.5 (63.7-73.2)	65.5 (63-70)	66 (63-72)	0.40
Sex				0.22
Female	18 (50.0%)	9 (34.6%)	27 (43.5%)	
Male	18 (50.0%)	17 (65.4%)	35 (56.5%)	
Ethnicity				0.20
African American	7 (19.4%)	2 (7.7%)	9 (14.5%)	
Caucasian	29 (80.6%)	23 (88.5%)	52 (83.9%)	
Others	0 (0.0%)	1 (3.8%)	1 (1.6%)	
Immunochemical subtype				
IgG	24 (66.7%)	14(53.8%)	38(61.3%)	
IgA	10(27.8%)	4(15.4%)	14(22.6%)	
IgD	0	1(3.8%)	1 (1.6%)	
Kappa light chain	2(5.6%)	3(11.5%)	5 (8%)	
Lambda light chain	0	4(15.4%)	4(8%)	
Median prior lines of therapy (range)	6 (5-7)	3.5 (2-6)	5(4-6)	<0.001
Triple class refractory	36 (100.0%)	14 (53.8%)	50 (80.6%)	<0.001
ISS stage				0.844
I	6 (28.6%)	4 (23.5%)	10 (26.3%)	
II	7 (33.3%)	5 (29.4%)	12 (31.6%)	
III	8 (38.1%)	8 (47.1%)	16 (42.1%)	
R-ISS stage				0.371
I	3 (37.5%)	4 (26.7%)	7 (30.4%)	
II	5 (62.5%)	7 (46.7%)	12 (52.2%)	
III	0 (0.0%)	4 (26.7%)	4 (17.4%)	
CRS grade*				0.52
1	12 (33.3%)	6 (23.1%)	18 (29.0%)	
2	2 (5.6%)	3 (11.5%)	5 (8.1%)	
Median time to therapy from diagnosis	6.6 (0.83-15.5) yrs.	2.6 (0.35-14.4) yrs.	5.2 (0.3-15.5) yrs.	0.04
Use of tocilizumab	4 (28.6%)	5 (55.6%)	9 (39.1%)	0.38
Median follow in months(range)	8.5 (3.5-10.5)	8.9 (3.1-18.1)	9 (range 3.1-18) months	0.81
Median IgG levels (mg/L) at start of therapy (range)	889(333-1931)	605(259-1315)	673(281-1826)	0.13
Baseline Hypogammaglobinemia (≤700 mg/dl) *	20 (80.0%)	13 (72.2%)	33 (76.7%)	0.551
Baseline Severe hypogammaglobinemia (≤400 mg/dl) *	11 (44.0%)	8 (44.4%)	19 (44.2%)	0.97
Baseline Lymphopenia (≤300/ml)	8 (23.5%)	8 (30.8%)	16 (26.7%)	0.53
IVIG supplementation	8 (22.9%)	6 (25%)	14 (23.7%)	0.84
Cumulative infections	25	5	30	0.01
--------------------------------	-----	-----	-----	-----
Number of bacterial infections (n)	12	1	13	0.11
Number of viral infections (n)	8	2	10	0.69
Aggregated hospitalizations for infection (n)	15	3	18	0.03
Average length of stay per patient mean (sd)	4.833 (3.460)	9.000 (5.196)	5.667 (4.030)	0.11
Best response				0.75
PD	7 (25.9%)	6 (30.0%)	13 (27.7%)	
≥PR	20 (74.1%)	14 (70.0%)	34 (72.3%)	

*Accounted for functional hypogammaglobulinemia in IgG isotype

The grading and management of cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS) was done in accordance with specific trial protocol.

Table 1: Baseline characteristics of patients
1. Lancman G, Richter J, Chari A. Bispecifics, trispecifics, and other novel immune treatments in myeloma. *Hematology*. 2020;2020(1):264-271.
2. Munshi NC, Anderson LD, Shah N, et al. Idecabtagene Vicleucel in Relapsed and Refractory Multiple Myeloma. *New England Journal of Medicine*. 2021;384(8):705-716.
3. Raje NS, Siegel DS, Jagannath S, et al. Idecabtagene Vicleucel (ide-cel, bb2121) in Relapsed and Refractory Multiple Myeloma: Analyses of High-Risk Subgroups in the KarMMa Study. *Blood*. 2020;136(Supplement 1):37-38.
4. Shah N, Chari A, Scott E, Mezzi K, Usmani SZ. B-cell maturation antigen (BCMA) in multiple myeloma: rationale for targeting and current therapeutic approaches. *Leukemia*. 2020;34(4):985-1005.
5. Blimark C, Holmberg E, Mellqvist U-H, et al. Multiple myeloma and infections: a population-based study on 9253 multiple myeloma patients. *Haematologica*. 2015;100(1):107-113.
6. Koristka S, Cartellieri M, Theil A, et al. Retargeting of Human Regulatory T Cells by Single-Chain Bispecific Antibodies. *The Journal of Immunology*. 2012;188(3):1551-1558.
7. https://ctep.cancer.gov/protocoldevelopment/electronic_applications/ctc.htm#ctc_50.
8. Kumar S, Paiva B, Anderson KC, et al. International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma. *Lancet Oncol*. 2016;17(8):e328-e346.
9. Chari A, Vogl DT, Gavriatopoulou M, et al. Oral Selinexor-Dexamethasone for Triple-Class Refractory Multiple Myeloma. *N Engl J Med*. 2019;381(8):727-738.
10. Lonial S, Lee HC, Badros A, et al. Longer term outcomes with single-agent belantamab mafodotin in patients with relapsed or refractory multiple myeloma: 13-month follow-up from the pivotal DREAMM-2 study. *Cancer*. n/a(n/a).
11. Kumar SK, Harrison SJ, Cavo M, et al. Venetoclax or placebo in combination with bortezomib and dexamethasone in patients with relapsed or refractory multiple myeloma (BELLINI): a randomised, double-blind, multicentre, phase 3 trial. *The Lancet Oncology*. 2020;21(12):1630-1642.
12. Mohan M, Susanibar-Adaniya S, Buros A, et al. Bacteremias following autologous stem cell transplantation for multiple myeloma: Risk factors and outcomes. *Transpl Infect Dis*. 2019;21(2):e13052.
13. Yarlagadda L, Gundarlapalli S, Parikh R, et al. Salvage Autologous Stem Cell Transplantation in Daratumumab-Refractory Multiple Myeloma. *Cancers (Basel)*. 2021;13(16).
14. Madduri D, Berdeja JG, Usmani SZ, et al. CARTITUDE-1: Phase 1b/2 Study of Ciltacabtagene Autoleucel, a B-Cell Maturation Antigen-Directed Chimeric Antigen Receptor T Cell Therapy, in Relapsed/Refractory Multiple Myeloma. *Blood*. 2020;136(Supplement 1):22-25.
15. Harrison SJ, Minnema MC, Lee HC, et al. A Phase 1 First in Human (FIH) Study of AMG 701, an Anti-B-Cell Maturation Antigen (BCMA) Half-Life Extended (HLE) BiTE® (bispecific T-cell engager) Molecule, in Relapsed/Refractory (RR) Multiple Myeloma (MM). *Blood*. 2020;136(Supplement 1):28-29.
16. Garfall AL, Usmani SZ, Mateos M-V, et al. Updated Phase 1 Results of Teclistamab, a B-Cell Maturation Antigen (BCMA) x CD3 Bispecific Antibody, in Relapsed and/or Refractory Multiple Myeloma (RRMM). *Blood*. 2020;136(Supplement 1):27-27.
17. Madduri D, Rosko A, Brayer J, et al. REGN5458, a BCMA x CD3 Bispecific Monoclonal Antibody, Induces Deep and Durable Responses in Patients with Relapsed/Refractory Multiple Myeloma (RRMM). *Blood*. 2020;136(Supplement 1):41-42.
18. Van Oekelen O, Gleason CR, Agte S, et al. Highly variable SARS-CoV-2 spike antibody responses to two doses of COVID-19 RNA vaccination in patients with multiple myeloma. *Cancer Cell*. 2021;39(8):1028-1030.
Figure 1 Distribution of infections with BCMA CAR T (1a) and bsAb therapy (1b)
Figure 1: Distribution of infections with BCMA CAR T (1a) and bsAb therapy (1b)