Macrofungal biodiversity of Gürpınar (Van) district

Ezelhan ŞELEM1, Ali KELEŞ2, Sinan İŞLER3
1Yüzüncü Yıl University, Agriculture Faculty, Department of Field Crops, Van, Turkey
2Yüzüncü Yıl University, Education Faculty, Department of Science and Mathematics Education, Van, Turkey
3alikelese61@yahoo.com, ezelhanselem@hotmail.com, sinan_1970@hotmail.com

Gürpınar (Van) yöresinin makromantar biyoçeşitliği

Abstract: The study was based on macrofungi samples collected from Gürpınar district of Van province between 2015 and 2017. As a result of field and laboratory studies 94 macrofungi species belonging to 49 genera, 27 families, orders and three classes within Ascomycota and Basidiomycota were determined. The list of the determined taxa were presented together with their habitats, substrates, collection localities and personnel voucher numbers.

Key words: Biodiversity, macrofungi, mycota, Turkey

Özet: Çalışma 2015 ve 2017 yıllarında Van’ın Gürpınar ilçesinden toplanan makromantar örnekleri üzerinde gerçekleştirilmiştir. Arazi ve laboratuar çalışmalar sonucunda Ascomycota ve Basidiomycota böümleri içinde yer alan üç sınıf, yedi tane, 27 familya ve 49 cine ait 94 tür belirlenmiştir. Belirlenen taksonlar, habitatları, substratlari, toplanma yerleri ve toplayıcı numaraları ile birlikte listelenmiştir.

Anahtar Kelimeler: Biyoçeşitlilik, makromantar, mikota, Türkiye

1. Introduction

The kingdom Fungi constitutes the second most diverse living group in the world with about more than 1.5 million species (Hawksworth et al., 1995). They can grow almost everywhere in the world as saprophytes, parasites and symbionts, and those with fruiting bodies that can be seen by naked eye are known as macrofungi. Besides being consumed as food, macrofungi are used in cosmetics and pharmacology and have high economic value (Adanacıoğlu et al., 2016; Süfer et al., 2016).

Studies on the macrofungal biodiversity of Turkey have been started in the first quarter of the 19th century, and lots of works have been conducted by many researchers (Alkan et al., 2010; Demirel et al., 2010; Doğan et al., 2012; Türkekul and İşık, 2016; Uzun et al., 2017; Yıldız et al., 2019; Acar et al., 2020). The specimens were identified by comparing the obtained data with the relevant literature (Moser, 1983; Breitenbach and Kränzlin, 1984, 1986, 1991, 1995, 2000; Buczacki, 1989; Bresinsky and Besl, 1990; Jordan, 1995; Pegler et al., 1995; Philips, 1991; Dahncke, 2004; Hausknecht, 2009; Uzun, 2010; Kuo and Methven, 2014). The determined macrofungi samples are kept in the fungarium of Biology Department, Science Faculty, Van Yüzüncü Yıl University(VANF).

Gürpınar is the largest district of Turkey with a surface area of 4.063 km² within the boundaries of Van province (Fig. 1), and located between 37°44'–28°29' north latitudes and 43°07'–44°07' east longitudes. The district lies within the Irano-Turanian phytogeographical flora sector. The climate of the research area is Mediterranean with an annual rainfall of 281 mm and an annual average temperature of 8.1 °C (Bani and Adugüzler, 2008). Though the list of naturally growing edible mushrooms was presented by Şelem et al. (2019), there isn’t a detailed study on the overall macrofungal biodiversity of Gürpınar district.

The study aims to determine naturally growing macrofungi of the district and make a contribution to the mycobiota of Turkey.

2. Materials and Method

Macrofungi samples were collected from the region within the boundaries of Gürpınar districts of Van province. During field studies, first of all the fruit bodies were photographed at their natural habitats. Then necessary notes about the ecological and morphological characteristics and the geographical positions of the the samples were recorded. The collected samples were in paper boxes and transferred to the fungarium. They were dried in an air conditioned room and kept as fungarium materials in polyethylene bags. Further investigations were carried out in the fungarium on dried samples. Microscopic investigations were performed under a compound microscope. The specimens were identified by comparing the obtained data with the relevant literature (Moser, 1983; Breitenbach and Kränzlin, 1984, 1986, 1991, 1995, 2000; Buczacki, 1989; Bresinsky and Besl, 1990; Jordan, 1995; Pegler et al., 1995; Philips, 1991; Dahncke, 2004; Hausknecht, 2009; Uzun, 2010; Kuo and Methven, 2014). The determined macrofungi samples are kept in the fungarium of Biology Department, Science Faculty, Van Yüzüncü Yıl University(VANF).

3. Results

The determined taxa are listed in alphabetical order. Index Fungorum (accessed on 20 December 2020) were followed for the systematics of taxa. Previously reported taxa were given with the citation.

Ascomycota Whittaker
Leotiomycetes O.E. Erikss. & Winka
Helotiales Nannf.
Helotiaceae Rehm
1. Hymenoscyphus calyculus (Fr.) W. Phillips: On decaying Populus sp., twigs, locality 17, 05.10.2016, Şelem 276.
Şelem et al. – Macrofungal biodiversity of ...

Figure 1. Map of the research area

Table 1. Collection localities of the macrofungi samples

Loc. No.	Locality	Coordinates	Altitude (m)
1	Akbulut village	38°18´06″N; 43°41´02″E	2186
2	Albenek village	38°36´01″N; 43°17´01″E	2022
3	Alnıak village	38°13´12″N; 43°42´48″E	2502
4	Bozyiğit Village	38°22´57″N; 43°34´08″E	1845
5	Çevizalan village	38°24´19″N; 43°47´56″E	2172
6	Çörekli village	38°21´53″N; 43°47´54″E	2001
7	Çevizalan village	38°22´16″N; 43°47´34″E	2025
8	Erkaldi quarter	38°21´26″N; 43°33´04″E	1809
9	Giyimli village	38°12´16″N; 43°47´05″E	2322
10	Günbaşı village	38°18´46″N; 43°43´45″E	2168
11	Gürpınar (entrance)	38°19´27″N; 43°24´06″E	1745
12	Gürpınar centre	38°19´33″N; 43°24´24″E	1751
13	Gürpınar-Hakkari highway 14th km	38°21´59″N; 43°34´02″E	2010
14	Güzelsu village	38°18´58″N; 43°48´04″E	1982
15	Güzelsu village	38°18´52″N; 43°48´25″E	1980
16	Güzelsu village	38°19´11″N; 43°48´07″E	1996
17	Güzelsu village	38°19´00″N; 43°47´58″E	1977
18	Güzelsu village	38°19´02″N; 43°48´12″E	1986
19	Güzelsu village	38°18´57″N; 43°48´00″E	1972
20	Hacıköy village	38°18´22″N; 43°38´23″E	2205
21	Hamurkesen village	38°20´38″N; 43°37´29″E	1948
22	İşkınpar village	38°19´16″N; 43°37´01″E	2134
23	Kırgeçit village	38°08´17″N; 43°29´43″E	2105
24	Kırgeçit village	38°08´35″N; 43°31´27″E	2147
25	Kırgeçit village	38°08´08″N; 43°31´17″E	2165
26	Koçgüden village	38°09´20″N; 43°38´33″E	2570
27	Kuşdağı village	38°14´35″N; 43°27´29″E	1905
28	Muratalı village	38°15´17″N; 43°51´08″E	2136
29	Ortaköy village	38°22´02″N; 43°38´04″E	1910
30	Ortaköy village	38°21´50″N; 43°37´55″E	1868
31	Örmeli village	38°07´05″N; 43°30´52″E	2231
32	Sapakonak village	38°12´46″N; 43°36´35″E	2537
33	Sevindik village	38°18´11″N; 43°52´51″E	2098
34	Sevindik village	38°18´22″N; 43°52´27″E	2038
35	Taşdöndüren village	38°16´01″N; 43°48´53″E	2031
36	Tepeğören village	38°21´35″N; 43°53´13″E	2107
37	Tutmaç village	38°15´08″N; 43°42´34″E	2401
38	Üçgen village	38°22´31″N; 43°44´46″E	2141
Morchellaceae Rchb.
8. Mitrophora semilibera (DC.) Lév.: (Şelem et al., 2019).
9. Morchella elata Fr.: (Şelem et al., 2019).
10. Morchella esculenta (L.) Pers.: (Şelem et al., 2019).
11. Morchella esculentoides M. Kuo, Dewsbury, Moncalvo & S.L. Stephenson: (Şelem et al., 2019).
12. Morchella prava Dewsbury, Moncalvo, J.D. Moore & M. Kuo.: (Şelem et al., 2019).
13. Verpa conica (O.F. Müll.) Sw.: On soil under Populus and Salix sp., locality 13, 03.06.2016, Şelem 34.
14. Geopora arenicola (Lév.) Kers: In soil under Populus sp., locality 12, 05.10.2016, Şelem 101; locality 15, 05.10.2016, Şelem 310; locality 23, 03.06.2016, Şelem 254.
15. Geopora arenosa (Fuckel) S. Ahmad: On soil under Populus sp., locality 16, 18.05.2016, Şelem 23.
16. Geopora sepulka (Fr.) Korf & Burds.: On soil under Populus sp., locality 19, 05.10.2015, Şelem 74.
17. Pulvinula convexella (P. Karst.) Pfister.: On burned ground, locality 15, 05.10.2016, Şelem 289.
18. Scutellinia scutellata (L.) Lambotte: On damp soil among leaf litter, locality 15, 05.10.2016, Şelem 290.
19. Tricharina praecox (P. Karst.) Dennis: On damp soil, locality 17, 05.10.2016, Şelem 273.
20. Trichophlea pseudogregaria (Rick) Boud.: (Keleş and Şelem, 2017).
Pezizaceae Dumort.
21. Peziza succosa Berk.: On burned ground, locality 18, 18.05.2015, Şelem 30.
Basidiomycota R.T. Moore
Agaricomycetes Doweld
Agaricales Underw.
Agaricaeae Chevall.
22. Agaricus bisporus (J.E. Lange) Imbach: (Şelem et al., 2019).
23. Agaricus campestris L.: (Şelem et al., 2019).
24. Agaricus urinascens (Jull. Schäff. & F.H. Möller) Singer: (Şelem et al., 2019).
25. Boivista plumbea Pers.: (Şelem et al., 2019).
26. Coprinus comatus (O.F. Müll.) Pers.: (Şelem et al., 2019).
27. Cyathus olla (Batsch) Pers.: On soil near woody debris, locality 17, 18.05.2015, Şelem 59.
28. Lepiota cristata (Bolton) P. Kumm: On soil among leaf litter, locality 8, 05.06.2015, Şelem 171.
29. Lepiota subincarnata J.E. Lange: On soil under Salix sp., locality 15, 10.05.2016, Şelem 299.
Bolbitiaceae Singer
30. Conocybe aporos Kits van Wav.: On soil under Salix sp., locality 17, 05.06.2015, Şelem 137.
31. Conocybe fuscimarginata (Murrill) Singer: On soil under Salix sp., locality 14, 18.05.2015, Şelem 43; locality 17, 05.06.2015, Şelem 145.
32. Conocybe pygmaeoaaffinis (Fr.) Kühner: On soil under Salix sp., locality 17, 05.06.2015, Şelem 146.
33. Conocybe rickeniana P.D. Orton: On soil among grass, locality 17, 05.06.2015, Şelem 149.
34. Conocybe tenera (Schueff.) Fayod: On soil among grass, locality 17, 18.05.2015, Şelem 43.
35. Conocybe vestita (Fr.) Kühner: On soil among grass, locality 11, 05.18.2015, Şelem 27.
Cortinariaceae R. Heim ex Pouzar
36. Cortinarius decipiens (Pers.) Fr.: On soil under Salix sp., locality 8, 05.06.2015, Şelem 175.
37. Cortinarius vernus H. Lindstr. & Melot: On soil under Populus sp., locality 15, 05.10.2016, Şelem 297.
Cyphellaceae Lotsy
38. Chondrostereum purpureum (Pers.) Pouzar: On Populus sp. stump, locality 11, 18.11.2015, Şelem 297; locality 8, 05.06.2015, Şelem 167.
Entolomataceae Kotl. & Pouzar
39. Entoloma caccabas (Kühner) Noordel.: On soil under Salix sp., locality 11, 19.05.2016, Şelem 343.
40. Entoloma rusticooides (Gillet) Noordel: On soil under Malus sp., locality 11, 18.05.2015, Şelem 108.
Hymenogastraceae Vittad.
41. Hebeloma mesophaeum (Pers.) Quél.: On soil under Salix sp., locality 17, 05.06.2015, Şelem 139.
42. Hebeloma pusillum J.E. Lange: On soil under Salix sp., locality 17, 18.05.2015, Şelem 53; on soil under Populus sp., locality 17, 05.10.2016, Şelem 256.
43. Hypholoma Fasciculare (Huds.) P. Kumm.: On Populus sp. stump, locality 17, 05.06.2015, Şelem 165.
44. Psilocybe coronilla (Bull.) Noordel.: (Şelem et al., 2019).
Incertaes sedis
45. Panaeolus fimico (Pers.) Gillet: On decaying cow dung, locality 4, 18.11.2015, Şelem 201.
Inocybaceae Julich
46. Crepidotus vulgaris Hesler & A.H. Sm.: On decaying Salix sp. stump, locality 13, 03.06.2016, Şelem 222.
47. *Inesperma maculatum* (Boud.) Matheny & Esteve-Rav.: On soil under *Salix* sp., locality 28, 08.11.2015, Şelem 280.

48. *Inocybe cincinnata* (Fr.) Quél.: On soil under *Populus* sp., locality 30, 18.06.2016, Şelem 79.

49. *Inocybe dulcamara* (Pers.) P. Kumm.: On soil under *Populus* sp., locality 13, 18.05.2015, Şelem 81; on soil under *Salix* sp., locality 14, 05.06.2015, Şelem 119; locality 17, 18.11.2015, Şelem 235.

50. *Inocybe flocculosa* Sacc.: On soil under *Populus* sp., locality 14, 18.05.2015, Şelem 37.

51. *Inocybe fuscocmarginata* Kühner: On soil under *Salix* sp., locality 17, 05.06.2015, Şelem 145.

52. *Inocybe perbrevis* (Weim.) Gillet: On soil under *Salix* sp., locality 17, 18.10.2016, Şelem 121; on soil under *Populus* sp., locality 16, 05.06.2015, Şelem 278.

53. *Pseudosperma rimosum* (Bull.) Matheny & Esteve-Rav.: On soil under *Populus* sp., locality 8, 05.06.2015, Şelem 169; on soil under *Salix* sp., locality 4, 18.11.2015, Şelem 197.

54. *Pleurotus eryngii* (DC.) Quél.: (Şelem et al., 2019).

55. *Pleurotus ostreatus* (Jacq.) P. Kumm.: (Şelem et al., 2019).

56. *Pleurotus populinus* O. Hilber & O.K. Mill.: (Şelem et al., 2019).

57. *Pluteus aurantiocrusgus* (Trog) Sacc.: (Şelem et al., 2019).

58. *Pluteus romellii* (Britzelm.) Sacc.: (Şelem et al., 2019).

59. *Volvopluteus gloiocephalus* (DC.) Vizzini, Contu & Justo: (Şelem et al., 2019).

60. *Psathyrellaceae* Kühner

61. *Psathyrella candeldeana* (Fr.) Maire: (Şelem et al., 2019).

62. *Psathyrella fatua* (Fr.) P. Kumm. *Populus* sp. ağacları altı, 17, 18.05.2015, Şelem 56.

63. *Psathyrella panaeoloides* (Maire) Arnold: On soil under *Salix* sp., locality 17, 05.06.2015, Şelem 162; locality 15, 05.10.2016, Şelem 302.

64. *Psathyrella poteri* A.H. Sm.: On soil under *Populus* and *Salix* sp., locality 13, 18.05.2015, Şelem 103.

65. *Psathyrella pron* (Fr.) Gillet: On soil under *Populus* and *Salix* sp., locality 13, 18.05.2015, Şelem 204; locality 17, 05.10.2015, Şelem 263; locality 15, 05.10.2016, Şelem 301.

66. *Psathyrella pseudogracilis* (Romagn.) M.M. Moser: On decaying stump, locality 17, 18.05.2015. Şelem 58.

67. *Strophariaceae* Singer & A.H. Sm.

68. *Agrocybe dura* (Bolton) Singer: (Şelem et al., 2019).

69. *Agrocybe paludosa* (J.E. Lange) Kühner & Romagn. ex Bon: On soil among grass, locality 17, 05.06.2015. Şelem 148.

70. *Agrocybe pediades* (Fr.) Fayod: (Şelem et al., 2019).

71. *Agrocybe praecox* (Pers.) Fayod: (Şelem et al., 2019).

72. *Cyclocybe cylindracea* (DC.) Vizzini & Angelini: (Şelem et al., 2019). On *Populus* sp. stump, locality 13, 05.10.2016, Şelem 268.

73. *Pholiota aurivella* (Batsch) P. Kumm.: (Şelem et al., 2019).

74. *Tricholomataceae* Lotsy

75. *Melanoleuca angelesiana* A.H. Sm.: On soil among needle litter under *Pinus* sp., locality 29, 05.06.2015, Şelem 179.

76. *Melanoleuca brevipes* (Bull.) Pat.: (Şelem et al., 2019).

77. *Melanoleuca cognata* (Fr.) Konrad & Maubl.: (Şelem et al., 2019).

78. *Pseudoclitocybe cyathiformis* (Bull.) Singer: (Şelem et al., 2019).

79. *Lepista personata* (Fr.) Cooke: (Şelem et al., 2019).

80. *Tubariaceae* Vizzini

81. *Tubaria conspersa* (Pers.) Fayod: On damp soil among leaf litter under *Salix* sp., 17, 05.06.2015, Şelem 122.

82. *Tubaria furfuracea* (Pers.) Gillet: On woody debris, locality 30, 18.11.2015, Şelem 195

83. *Boletales* E.-J. Girbert

84. *Suillaceae* Besl & Bresinsky

85. *Suillus collinitus* (Fr.) Kuntze: (Şelem et al., 2019).

86. *Hymenochaetales* Oberw.

87. *Hymenochaetaceae* Donk

88. *Polyporales* Gäum.

89. *Polyporaceae* Fr. ex Corda
91. *Fomes fomentarius* (L.) Fr.: On *Populus* sp. stump, locality 20, 28.06.2017, Şelem 375; locality 5, 19.05.2016, Şelem 381.

92. *Cerioporus squamosus* (Huds.) Quël.: (Şelem et al., 2019).

93. *Trametes trogii* Berk.: On *Populus* sp. stump, locality 17, 05.06.2015, Şelem 118; locality 18, 19.05.2016, Şelem 332; locality 26, 13.06.2017, Şelem 375; locality 5, 13.11.2016, Şelem 381.

94. *Trametes versicolor* (L.) Lloyd: On *Populus* sp. stump, locality 19, 19.05.2016, Şelem 362.

4. Discussions

Ninety four macrofungi species belonging to 49 genera, 27 families, seven orders and three classes were determined from Gürpınar district. Twenty one of the determined taxa belong to Ascomycota (Leotiomycetes 2, Pezizomycetes 19) while 73 belong to Basidiomycota (Agaricomycetes 73). Except previously reported 36 edible species (Şelem et al., 2019), all the taxa are new for the region.

The taxa are distributed in 7 orders (Fig. 2) and 27 families. *Psathyrellaceae* and *Inocybaceae* were found to the most crowded first two families with 16 and 7 taxa respectively.

Agaricales, *Boletales*, *Incertae sedis*, *Morchellales* and *Strophariaceae* are the third crowded families each with 6 taxa. Then *Helvellaceae* and *Pyronemataceae* come each with 5 taxa. Two of the families (Hymenogasteraceae, *Polyporaceae*) comprise 4, Three of them (*Pluteaceae*, *Pluteaceae*, *Tubariaceae*) comprises 3, three of them (*Cortinariaceae*, *Entolomataceae*, *Pulvinulaeaceae*) comprises 2 taxa, and the rest of the 10 families comprises 1 taxon.

![Figure 2. Distribution of the determined taxa within orders.](image)

The determined taxa are distributed in 49 genera. The most crowded genera are *Conocybe* and *Psathyrella* each with 6 taxa. *Inocybe* and *Parasola* were found to be the second crowded two genera each with 5 taxa. Three of of the genera (*Agrocybe*, *Helvella*, *Morchella*) comprise 4 taxa, five of them (*Agaricus*, *Coprinellus*, *Geopora*, *Melanoleuca*, *Pleurotus*) comprise 3 taxa, eight of them (*Coprinopsis*, *Cortinarius*, *Entoloma*, *Hebeloma*, *Lepticia*, *Plateus*, *Trametes*, *Tubaria*) comprise 2 taxa, and the rest of the 29 taxa comprise one taxon.

Coprinus comatus, *Coprinellus disseminatus*, *C. micaceus*, *Coprinopsis atramentaria*, *Psathyrella candollea*, *Pleurotus ostreatus*, *P. eryngii*, *Inocybe dulcama* and *Pholiota aurivella* were found to be the most widespread species in the region.

Thirty six (%38.30) of the determined taxa are edible. Among them *Pleurotus eryngii* is collected and consumed in all villages of the district. This mushroom is known with the Turkish name “heliz mantarı” and also has regional economic importance. *Agaricus bisporus*, *A. campestris*, *A. urinascens* and *P. ostreatus* are regionally known in research area and they are also collected and consumed by some locals. Forty four (%46.81) of them are inedible and 14 (%14.89) of them are more or less poisonous.

The taxa determined in Gürpınar district were compared with the findings of the studies carried out in neighbouring regions and some similarities were observed. These studies and the similarity percentages are given in Table 2.

Table 2. Similarity percentages of neighbouring studies with Gürpınar district.

Neighbouring study	# of identical taxa	Total taxa	Similarity (%)
Bütis (Kaya, 2001)	17	60	28.33
Ağrı (Demirel et al., 2002)	20	45	44.44
Erzurum (Demirel et al., 2003)	17	114	14.91
Malazgirt (Akçay et al., 2010)	16	50	32.00
Van (Demirel et al., 2015)	40	122	32.79
Bingöl (Uzun et al., 2017)	16	112	14.29
Şemdinli and Yüksekova (Acar et al., 2020)	40	197	20.30
Muradiye (Çagli and Öztürk, 2020)	38	86	44.19
Karz Dağı (Sadullahoğlu and Uzun, 2020)	25	95	26.32

Conflict of Interest

Authors have declared no conflict of interest.

Authors’ Contributions

The authors contributed equally.

Acknowledgments

The authors would like to thank Van Yüzüncü Yıl University Research Project Unit (Project No: FYL-2016-5213) for its financial support.

References

Acar İ., Uzun Y., Akata I (2020). Some macrofungi determined in Şemdinli and Yüksekova districts (Hakkari-Turkey). Kahramanmaraş Sütçü İman Üniversitesi Tarım ve Doğa Dergisi 23(1): 157-167.

Adanacoglu N., Yildiz Ü., Erdinç O., Aykas L., Tan A., Taylan T (2016). Türkiye makromantarı genetik kaynakları I. Ege Bölgesi. Anadolu Ege Tarımsal Araştırma Enstitüsü Dergisi 26(1): 46-61.

Akçay ME., Uzun Y., Kaya A (2010). Malazgirt (Musı) yöresi makrofunguslarına katkılar. Mantar Dergisi 1(1): 14-20.

Alkan S., Kaşk G., Aktaş S (2010). Macrofungi of Derebucak district (Konya, Turkey). Turkish Journal of Botany 34(4): 335-350.
Bani B, Adıgüzel N (2008). Flora of an important plant area: Çatak valley I-(Çatak-Pervari) Van Turkey. Flora Mediterranea 18: 11-63.

Breitenbach J, Kränzlin F (1984). Fungi of Switzerland, Vol.1. Lucerne: Verlag Mykologia.

Breitenbach J, Kränzlin F (1986). Fungi of Switzerland, Vol.2. Lucerne: Verlag Mykologia.

Breitenbach J, Kränzlin F (1991). Fungi of Switzerland, Vol.3. Lucerne: Verlag Mykologia.

Breitenbach J, Kränzlin F (1995). Fungi of Switzerland, Vol.4. Lucerne: Verlag Mykologia.

Breitenbach J, Kränzlin F (2000). Fungi of Switzerland, Vol.5. Lucerne: Verlag Mykologia.

Bresinsky A, Besl H (1990). A color atlas of poisonous fungi. London: Wolfe Publishing.

Buczacki S (1989). Mushrooms and toadstools of Britain and Europe. Glasgow: Harper Collins Publishers.

Çağlı G, Öztürk A (2020). Macromycetes determined in Muradiye (Van) district. Anatolian Journal of Botany 4(1): 57-64.

Dähncke MR (2004). 1200 Pilze in Farbfotos. Sweden: Verlag.

Demirel K, Erdem Ö, Uzun Y, Kaya A (2010). Macrofungi of Hatila Valley National Park (Artvin-Turkey). Turkish Journal of Botany 34(5): 457-465.

Demirel K, Kaya A, Uzun Y (2003). Macrofungi of Erzurum province. Turkish Journal of Botany 27(1): 29-36.

Demirel K, Uzun Y, Akçaı ME, Keleş A, Acar İ, Efe V (2015). Van yöresi makromantarlarina katkilar. Mantar Dergisi 6(2): 12-23.

Demirel K, Uzun Y, Kaya A (2002). Macrofungi of Ağrı Province. Turkish Journal of Botany 26: 291-295.

Doğan HH, Aktaş S, Öztürk C, Kaşık G (2012). Macrofungi distribution of Cocakdere valley (Arslanköy, Mersin). Turkish Journal of Botany 36(1): 83-94.

Hausknacht A (2009). Fungi Europaei. A monograph of the genera Conocybe Fayod, Pholiotina Fayod in Europe. Italia: Massimo condusso.

Hawksworth DL, Kirk PM, Sutton BC, Pegler DN (1995). Ainsworth and Bibly's dictionary of the fungi (8th Ed.). Wallingford: CAB International.

Index Fungorum. (2020). http://www.indexfungorum.org/names/Names.asp / [20 December 2020].

Jordan M (1995). The encyclopedia of fungi on Britain and Europe. Devon: David & Charles Book.

Kaya A (2001). Contributions to the macrofungi flora of Bitlis province. Turkish Journal of Botany 25: 379-383.

Kaya A, Uzun Y (2018). New contributions to the Turkish Ascomycota. Turkish Journal of Botany 42: 644-652.

Keleş A, Şelem E (2017). Türkiye mikobiyotasi için yeni bir kayıt (Trichophaea pseudogregaria (Rick) Boud.). Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22(2): 142-145.

Kuo M, Methven SA (2014). Mushrooms of the Midwest. Urbana: University of Illinois Press.

Lukić M (2008). The distribution and diversity of Boletus genus in central Serbia. Kragujevac Journal of Science 31: 59-68.

Moser M (1983). Keys to agarics and boleti (Polyporales, Boletales, Agaricales, Russulales). Stuttgart: Gustav Fischer Verlag.

Pegler DN, Læssøe T, Spooner BM (1995). British Puffballs, Earthstars, and Stinkhorns. Kew: Royal Botanic Gardens.

Phillips R (1981). Mushrooms and other fungi of Great Britain and Europe. London: Pan Books.

Sadullahoğlu C, Uzun Y (2020). Karz Dağı (Tatvan-Bitlis) ve çevresinde belirlenen makrofunguslar. Mantar Dergisi 11(1): 1-11.

Sesiı E, Denchev CM (2014). Checklists of the myxomycetes, larger ascomycetes, and larger basidiomycetes in Turkey. 6th edn. Mycotaxon Checklists Online (http://www.mycotaxon.com/resources/checklists/sesli-v106-checklist.pdf): 1-136.

Süfer Ö, Bozik F, Demir HG (2016). Usage of edible mushrooms in various food products. Turkish Journal of Agriculture-Food Science and Technology 4(3): 144-149.

Şelem E, Keleş A, Acar İ, Demirel K (2019). Edible macrofungi determined in Gürpinar (Van) district. Anatolian Journal of Botany 3(1): 7-12.

Türkekul İ, Işık H (2016). Bozatalan (Tokat) Yöresi Makrofunguslar. Katkıs Üniversitesi Fen Bilimleri Enstitüsü Dergisi 9(1): 5-11.

Uzun Y (2010). Macrofungal diversity of Ardahan and Iğdır province. International Journal of Botany 6(1): 11-20.

Uzun Y, Acar İ, Akçaı ME, Kaya A (2017). Contributions to the macrofungi of Bingöl, Turkey. Turkish Journal of Botany 41(5): 516-534.

Yıldız MS, Türkkekul İ, Işık H (2019). Macrofungal Biodiversity of Pazar (Tokat) District. Bitlis Eren University Journal of Science 8(2): 387-395.