Search for transitions from $\Upsilon(4S)$ and $T(5S)$ to $\eta_b(1S)$ and $\eta_b(2S)$ with emission of an ω meson

P. Oskin,²⁴ R. Mizuk,²²,²⁸ H. Aihara,⁵⁵ D. M. Asner,³ H. Atmacan,⁷ V. Aulchenko,⁴,⁶³ T. Aushev,¹⁸ R. Ayad,⁷⁸ P. Behera,²⁵ K. Belous,²⁹ J. Bennett,²⁰ M. Bessner,¹⁰ V. Bhardwaj,²² B. Bhyuan,²³ T. Bilka,⁵ J. Biswal,³³ G. Bonvicini,⁸⁸ A. Bozek,⁶⁰ M. Brecko,⁴⁷,⁵³ T. E. Browder,¹⁵ M. Campajola,³⁰,⁵⁵ L. Cao,² D. Cervenkov,⁵ P. Chang,⁵⁹ V. Chekedian,⁴⁸ A. Chen,⁵⁷ B. G. Cheon,¹⁴ K. Chilikin,⁴² H. E. Cho,¹⁴ K. Cho,³⁷ S.-K. Choi,¹³ Y. Choi,⁷⁶ S. Choudhury,²⁴ D. Cinabro,⁸⁸ S. Cunliffe,⁸ G. De Nardo,¹⁰,⁵³ R. Dhamija,²⁴ F. Di Capua,¹⁰,⁵⁵ J. Dingfelder,² Z. Doležal,² T. V. Dong,¹⁰ S. Dubey,¹⁵ S. Eidelman,⁴,⁶³ D. Epifanov,¹,⁵³ T. Ferber,⁸ D. Ferlewisz,⁴⁹ B. G. Fulsom,⁶⁵ R. Garg,⁶⁶ V. Gaur,⁸⁷ N. Gabyshev,⁴,⁶³ A. Garmash,⁴,⁶³ A. Giri,²⁴ P. Goldenzweig,³⁴ B. Golob,⁴,⁶³ K. Gudkova,⁴,⁶³ C. Hadjiiasilian,⁶⁵ T. Hara,¹⁶,¹² O. Hartbrich,¹⁵ H. Hayashi,⁵⁶ M. T. Hedges,¹⁵ M. Hernandez Villanueva,⁵⁰ W.-S. Hou,⁵⁹ C.-L. Hsu,⁷⁷ T. Iijima,⁵⁴,⁵³ K. Inami,⁵³ A. Ishikawa,¹⁶,¹² R. Itoh,¹⁶,¹² M. Iwasaki,⁶⁴ Y. Iwasaki,¹⁶ W. W. Jacobs,²⁶ S. Jia,¹⁰ Y. Jia,⁸⁵ C. W. Joo,³⁵ K. K. Joo,⁶ A. B. Kaliyar,⁷⁹ K. H. Kang,⁴⁰ G. Karyan,⁸ H. Kichimi,¹⁶ C. Kiesling,⁴⁸ C. H. Kim,¹⁴ D. Y. Kim,⁷⁵ Y.-K. Kim,⁹⁰ K. Kinoshita,⁷ P. Kodyš,⁵ S. Korpar,⁴⁷,⁵³ D. Kotchetkov,¹⁵ P. Krížan,⁴,⁴⁴ R. Kroeger,⁵₀ P. Krokovny,⁴,⁶³ R. Kulasiri,³⁶ R. Kumar,⁶⁸ K. Kumara,⁸⁸ Y.-J. Kwon,⁹⁰ J. S. Lange,¹¹ S. C. Lee,¹⁰ P. Lewis,² C. H. Li,⁴³ L. K. Li,⁷ L. Li Gioi,⁴⁸ J. Libby,³³ K. Lieret,⁴⁵ Z. Liptak,¹⁵ D. Liventsev,⁸⁸,¹⁶ M. Masuda,⁸⁴,⁶⁹ T. Matsuda,⁵¹ M. Merola,³⁰,⁵⁵ F. Metzner,³⁴ K. Miyabayashi,⁵⁶ H. Miyata,⁵² G. B. Mohanty,⁷⁹ S. Mohanty,⁷⁹,⁸⁶ T. J. Moon,⁷² T. Mori,⁵³ R. Mussa,³¹ M. Nakazawa,⁵⁹ A. Natochii,¹⁵ L. Nayak,²⁴ M. Nayak,⁸¹ M. Niyangi,³⁹ N. K. Nisar,³ S. Nishida,¹⁶,¹² K. Ogawa,⁶² S. Ogawa,⁸² H. Ono,⁶¹,⁶² Y. Onuki,⁸⁵ P. Pakhlov,⁴²,⁵² G. Pakhlova,¹⁸,⁴² T. Pang,⁶⁷ S. Pardi,¹⁰ H. Park,¹⁰ S.-H. Park,⁹⁰ S. Paul,⁸⁰,⁴⁸ T. K. Pedlar,⁴⁶ R. Pestotnik,³³ L. E. Piilonen,⁸⁷ T. Podobnik,⁴⁴,³³ V. Popov,¹⁸ E. Prencipe,¹⁹ M. T. Prim,³⁴ A. Rostomyan,⁸ N. Rout,²⁵ G. Russo,⁵⁵ D. Sahoo,⁷⁹ Y. Sakai,¹⁶,¹² S. Sandilya,⁷,²⁴ A. Sangal,⁷ L. Santelj,⁴,⁴³ T. Sanuki,⁵³ V. Savinov,⁶⁷ G. Schnell,¹,²¹ J. Schueler,¹⁵ C. Schwanda,²⁸ Y. Seino,⁶² K. Senyo,⁸⁹ M. E. Sevior,⁴⁹ M. Shapkin,²⁹ C. P. Shen,¹⁰ J.-G. Shiu,⁵⁹ A. Sokolov,²⁹ E. Solovieva,⁴² M. Starič,³³ Z. S. Stottler,⁵⁷ K. Sumisawa,¹⁶,¹² M. Takizawa,⁴,²⁸,⁷³,¹⁷,⁷⁰ U. Tamponi,³¹ K. Tanida,³² F. Tchenichi,⁸ K. Trabelsi,⁴¹ T. Uglov,⁴²,⁴⁸ Y. Unno,¹⁴ S. Uno,¹⁶,¹² Y. Usoskin,⁴,⁶³ S. E. Vahsen,¹⁵ R. Van Tonder,² G. Varner,¹⁵ A. Vinokurova,⁴,⁶³ V. Vorobyev,¹,⁴,⁶³,⁴² E. Waheed,¹⁺ C. H. Wang,⁵⁸ E. Wang,⁶⁷ M.-Z. Wang,⁵⁹ P. Wang,²⁷ M. Watanabe,⁶² S. Watanuki,⁴¹ S. Wehle,⁸ J. Wiechczynski,³⁷ E. Won,³⁸ X. Xu,⁷⁴ B. D. Yabsley,⁷⁷ W. Yan,⁷¹ S. B. Yang,³⁸ H. Ye,⁸ J. Yelton,⁹ J. H. Yin,³⁸ C. Z. Yuan,²⁷ Y. Yusa,⁶² Z. P. Zhang,⁷¹ V. Zhirlich,⁴,⁶³ and V. Zhukova⁴² (The Belle Collaboration)

¹ University of the Basque Country UPV/EHU, 48080 Bilbao
² University of Bonn, 53115 Bonn
³ Brookhaven National Laboratory, Upton, New York 11973
⁴ Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090
⁵ Faculty of Mathematics and Physics, Charles University, Prague 121 16 Prague
⁶ Chonnam National University, Gwangju 61186
⁷ University of Cincinnati, Cincinnati, Ohio 45221
⁸ Deutsches Elektronen–Synchrotron, 22607 Hamburg
⁹ University of Florida, Gainesville, Florida 32611
¹⁰ Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) and Institute of Modern Physics, Fudan University, Shanghai 200433
¹¹ Justus-Liebig-Universität Gießen, 35392 Gießen
¹² SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193
¹³ Gyeongsang National University, Jinju 52828
¹⁴ Department of Physics and Institute of Natural Sciences, Hangang University, Seoul 04763
¹⁵ University of Hawaii, Honolulu, Hawaii 96822
¹⁶ High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
¹⁷ J-PARC, KEK, Tokyo 305-0801
¹⁸ High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
¹⁹ Higher School of Economics (HSE), Moscow 101000
²⁰ Forschungszentrum Jülich, 52425 Jülich
²¹ Hiroshima Institute of Technology, Hiroshima 731-5193
²² Institut für Kernphysik, Albert Ludwigs Universität, Freiburg, 79104 Freiburg
²³ Indian Institute of Science Education and Research Mohali, SAS Nagar, 140306
²⁴ Indian Institute of Technology Guwahati, Assam 781039
²⁵ Indian Institute of Technology Hyderabad, Hyderabad 502285
²⁶ Indian Institute of Technology Madras, Chennai 600036

arXiv:2009.11720v1 [hep-ex] 24 Sep 2020
Using data collected in the Belle experiment at the KEKB asymmetric-energy e^+e^- collider we search for transitions $\Upsilon(4S) \to \eta_b(1S)\omega$, $\Upsilon(5S) \to \eta_b(1S)\omega$ and $\Upsilon(5S) \to \eta_b(2S)\omega$. No significant signals are observed and we set 90% confidence level upper limits on the corresponding visible cross sections: 0.2 pb, 0.4 pb and 1.9 pb, respectively.

PACS numbers: 14.40.Rt, 14.40.Pq, 13.25.Gv

I. INTRODUCTION

Recently Belle observed the $\Upsilon(4S) \to h_b(1P)\eta$ transition and measured its branching fraction to be $\mathcal{B}[\Upsilon(4S) \to h_b(1P)\eta] = (2.18 \pm 0.21) \times 10^{-3}$ [1]. This value is unexpectedly large in comparison with branching fractions of the $\Upsilon(4S) \to \Upsilon(1S,2S)\pi^+\pi^-$ decays [2–4], and represents a strong violation of the Heavy Quark Spin Symmetry (HQSS) [5]. A possible mechanism for the HQSS breaking is an admixture of $B\bar{B}$ pairs in the $\Upsilon(4S)$ state [6]. Indeed, the $B\bar{B}$ pair is not an eigenstate of the b quark spin and contains $b\bar{b}$ quarks in both spin-singlet and spin-singlet states. The $\Upsilon(4S) \to h_b(1P)\eta$ transition proceeds via the spin-singlet component. The transition $\Upsilon(4S) \to \eta_b(1S)\omega$ might also proceed via the spin-singlet component and thus could be enhanced [6]. We perform a search for the $\Upsilon(4S) \to \eta_b(1S)\omega$ as well as $\Upsilon(10860) \to \eta_b(1S)\omega$ and $\Upsilon(10860) \to \eta_b(2S)\omega$ transitions. For brevity, the $\Upsilon(10860)$ state is denoted as $\Upsilon(5S)$ according to its quark model assignment.

We use the full data samples of 711 fb$^{-1}$ and 121 fb$^{-1}$ collected at the $\Upsilon(4S)$ and $\Upsilon(5S)$ resonances by the Belle detector [6] at the KEKB asymmetric-energy e^+e^- collider [8]. The average center-of-mass (c.m.) energy of the $\Upsilon(10860)$ sample is $\sqrt{s} = 10.867$ GeV. The Belle detector is a large-solid-angle magnetic spectrometer that consists of a silicon vertex detector, a 50-layer central drift chamber, an array of aerogel threshold Cherenkov counters, and an electromagnetic calorimeter comprised of CsI(Tl) crystals (ECL) located inside a superconducting solenoid coil that provides a 1.5 T magnetic field. An iron flux-return located outside of the coil is instrumented to detect K_L^0 mesons and to identify muons.

For the Monte Carlo (MC) simulation, we use EVTGEN [9] VectorISR model, which correctly describes the angular distribution of ISR photons but uses a flat distribution in photon-energy radiator function. We apply corrections on the ISR photon energy according to Ref. [10]. We use the GEANT3 [11] package to simulate the detector response.

II. EVENT SELECTION

Since the $\eta_b(1S,2S)$ mesons do not have decay channels that are convenient to reconstruct, we reconstruct only $\omega \to \pi^+\pi^-\pi^0$ and use the recoil mass $M_{\text{recoil}}(\omega) = \sqrt{(\sqrt{s} - E_\omega^*)^2 - (p_\omega^*)^2}$ to identify the signal, where E_ω^* and p_ω^* are the energy and momentum of the ω meson in the c.m. frame.

We use a generic hadronic event selection with requirements on the position of the primary vertex, track multiplicity, and the total energy and momentum of the event [12]. For charged pions we require the distance of closest approach to the interaction point to be within 2 cm along the beam direction and within 0.2 cm in the plane transverse to the beam direction. We apply loose particle identification requirements to separate charged pions from kaons, protons and electrons. The energy of a photon in the laboratory frame is required to be greater than 50 MeV for the barrel part of the ECL and greater than 100 MeV for the endcap part of the ECL. To further suppress the background from low-energy photons, we require the momentum of the p_γ in the c.m. frame to be above 240 MeV/c, 270 MeV/c and 140 MeV/c for the $\Upsilon(4S) \to \eta_b(1S)\omega$, $\Upsilon(5S) \to \eta_b(1S)\omega$ and $\Upsilon(5S) \to \eta_b(2S)\omega$ transitions, respectively. The masses of the π^0 and ω candidates should satisfy $|M(\gamma\gamma) - m_{\pi^0}| < 8$ MeV/c^2 and $|M(\pi^+\pi^-\pi^0) - m_\omega| < 12$ MeV/c^2 [13]. The resolutions in $M(\gamma\gamma)$ and $M(\pi^+\pi^-\pi^0)$ are 5.5 MeV/c^2 and 8 MeV/c^2, respectively.

The $\omega \to \pi^+\pi^-\pi^0$ events predominantly populate the central part of the Dalitz Plot (DP), while background events populate the region near the boundaries. Therefore we require the normalized distance from the DP center, r, to be lower than 0.84. The variable r takes values from $r=0$ at the DP center to $r=1$ at its boundary [14].

To suppress background from continuum events $e^+e^- \to q\bar{q}$ ($q = u, d, s, c$) that have a jet-like shape, we use the angle θ_{thrust} between the thrust axis of $\pi^+\pi^-\pi^0$ and the thrust axis of the rest of the event in the η_b-meson candidate rest frame. The thrust axis is defined as the unit vector \vec{n}_T, which maximizes the thrust value: $T = \sum_i |\vec{p}_i \cdot \vec{n}_T|/\sum_i |\vec{p}_i|$. The selection criteria are $|\cos(\theta_{\text{thrust}})| < 0.90$ and $|\cos(\theta_{\text{thrust}})| < 0.70$ for the $\Upsilon(4S) \to \eta_b(1S)\omega$ and $\Upsilon(5S) \to \eta_b(1S)\omega$ transitions, respectively, while for the $\Upsilon(5S) \to \eta_b(2S)\omega$ transition no criteria on $\cos(\theta_{\text{thrust}})$ are applied.

The selection requirements described above are optimized using a figure of merit $N_{\text{sig}}/\sqrt{N_{\text{bkg}}}$, where the
The integral of the signal function over the fit range is taken as a signal yield. The background component is described with a Chebyshev polynomial; its order is chosen as the one that gives the maximum p-value for the fit. The polynomial orders are 8, 5 and 6 for the three transitions, respectively. The $M_{\text{ recoil}}(\pi^+\pi^-\pi^0)$ distributions and fit results for $\Upsilon(4S) \to \eta_b(1S)\omega$, $\Upsilon(5S) \to \eta_b(1S)\omega$ and $\Upsilon(5S) \to \eta_b(2S)\omega$ are shown in Figs. 2, 3 and 4, respectively. We use 1 MeV bins for fitting and 10 MeV bins for visualization to improve clarity. No significant signals are observed. The obtained signal yields for each transition are presented in Table I.

To set upper limits on the branching fractions, we study the systematic uncertainties in the yields. We vary the $\eta_b(1S)$ and $\eta_b(2S)$ masses and widths within one standard deviation [13]. The $\eta_b(2S)$ width is estimated using a model-independent relation [16]:

$$
\Gamma[\eta_b(2S)] = \Gamma[\eta_b(1S)] \cdot \frac{\Gamma[\Upsilon(2S) \to e^+e^-]}{\Gamma[\Upsilon(1S) \to e^+e^-]} = 4.6^{+2.3}_{-1.8} \text{ MeV}.
$$

FIG. 1. The $M(\pi^+\pi^-\pi^0)$ distribution for the $\Upsilon(4S) \to \eta_b(1S)\omega$ candidates. Red lines indicate the ω mass requirement.

We find on average 1.33, 1.12 and 1.63 candidates per event for the $\Upsilon(4S) \to \eta_b(1S)\omega$, $\Upsilon(5S) \to \eta_b(1S)\omega$ and $\Upsilon(5S) \to \eta_b(2S)\omega$ transitions, respectively. The multiple candidates are not correlated in $M_{\text{ recoil}}(\pi^+\pi^-\pi^0)$, therefore we do not perform a best candidate selection. The total selection efficiencies are 5.5%, 5.6% and 6.6% for the three transitions, respectively.

III. FIT TO DATA

We perform a binned χ^2 fit to the $M_{\text{ recoil}}(\pi^+\pi^-\pi^0)$ distributions in the $\eta_b(1S)$ and $\eta_b(2S)$ mass regions. The fit function is a sum of signal and background components. The signal component is described with a two-sided Crystal Ball (CB) function, which consists of a Gaussian core portion and power-law tails; the function and its first derivative are both continuous [13]. The parameters of the CB function are fixed using MC simulation; the σ-parameters of the core Gaussian are 12.7 MeV/c^2, 14.6 MeV/c^2 and 9.2 MeV/c^2 for $\Upsilon(4S) \to \eta_b(1S)\omega$, $\Upsilon(5S) \to \eta_b(1S)\omega$ and $\Upsilon(5S) \to \eta_b(2S)\omega$, respectively. The integral of the signal function over the fit range is

![Graph showing the $M(\pi^+\pi^-\pi^0)$ distribution for the $\Upsilon(4S) \to \eta_b(1S)\omega$ candidates.](image)

The ISR tails are sensitive to the energy dependence of the $e^+e^- \to \eta_b(nS)\omega$ cross sections. Instead of a resonant production via $\Upsilon(4S)$ or $\Upsilon(5S)$, we consider also the cross sections that are energy independent. We generate MC samples for each modification and use them to determine signal shapes. To estimate the uncertainties due to background parameterization we vary the fit

![Graph showing the $M_{\text{ recoil}}(\pi^+\pi^-\pi^0)$ distribution for the $\Upsilon(4S) \to \eta_b(1S)\omega$ candidates.](image)
range and increase or decrease the polynomial order by one. Maximal deviations in each case are considered to be a systematic uncertainty. The summary of the uncertainties in the yields is presented in Table III. The total systematic uncertainty in the yield is found by adding various contributions in quadrature.

Table II. Systematic uncertainties in the yields of various transitions in units of 10^3.

Transition	$\Upsilon(4S) \rightarrow \eta_b(1S)\omega$	$\Upsilon(5S) \rightarrow \eta_b(1S)\omega$	$\Upsilon(5S) \rightarrow \eta_b(2S)\omega$
η_b mass	$+6_{-3}^{+27}$	$+0_{-0}^{+34}$	$+0_{-0}^{+1}$
η_b width	$+6_{-7}^{+1}$	$+0_{-2}^{+4}$	$+0_{-2}^{+1}$
ISR tail	$+0_{-0}^{+1}$	$+2_{-2}^{+2}$	$+0_{-0}^{+1}$
Background	$+11_{-17}^{+3}$	$+1_{-1}^{+17}$	$+12_{-17}^{+3}$
Total	$+15_{-23}^{+1}$	$+1_{-1}^{+18}$	$+108_{-23}^{+1}$

IV. UPPER LIMITS ON VISIBLE CROSS SECTIONS AND BRANCHING FRACTIONS

The visible cross sections are calculated as:

$$\sigma_{\text{vis}}[e^+e^- \rightarrow \eta_b(mS)\omega] = \frac{N}{\epsilon \cdot B[\omega \rightarrow \pi^+\pi^-\pi^0] \cdot L(\eta_b(mS))},$$

where $n=4$, 5 and $m=1$, 2; N is the signal yield, ϵ is the selection efficiency, $L(\eta_b(mS))$ is the integrated luminosity, $L(\Upsilon(4S)) = 711 \text{ fb}^{-1}$ and $L(\Upsilon(5S)) = 121.4 \text{ fb}^{-1}$.

We take into account the uncertainty in the efficiency due to possible discrepancies between data and MC simulation (1% per track and 2.2% for π^0), the uncertainty in $B[\omega \rightarrow \pi^+\pi^-\pi^0]$, and the uncertainty in the $\Upsilon(4S)$ and $\Upsilon(5S)$ integrated luminosity. The total multiplicative uncertainty in the visible cross section is 4.5%.

To combine the uncertainty in the yield, δ_N, which is obtained by adding corresponding statistical and systematic uncertainties in quadrature, and the multiplicative uncertainty δ, we use formula:

$$(N \pm \delta_N) \cdot (1 \pm \delta) = N \pm (\delta_N \oplus N\delta \oplus \delta_N\delta),$$

where the symbol \oplus denotes addition in quadrature.

Estimated visible cross sections and upper limits set using the Feldman-Cousins method at the 90% confidence level are presented in Table III.

We also estimate branching fractions of the $\Upsilon(4S) \rightarrow \eta_b(1S)\omega$, $\Upsilon(5S) \rightarrow \eta_b(1S)\omega$ and $\Upsilon(5S) \rightarrow \eta_b(2S)\omega$ transitions using the number of $\Upsilon(4S)$ or $\Upsilon(5S)$ instead of the luminosity in the denominator of Eq. (2). The number of $\Upsilon(4S)$ is $(771.6 \pm 10.6) \times 10^3$, while the number of $\Upsilon(5S)$ is estimated as $L(\Upsilon(5S)) \cdot \sigma_{\text{et}}$ where $\sigma_{\text{et}} = ...
TABLE III. Visible cross sections and upper limits at the 90% confidence level in pb.

Process	Visible cross section	Upper limit
$e^+e^- \to \eta(1S)\omega$ at $\Upsilon(4S)$	$-0.14^{+0.19}_{-0.20}$	0.2
$e^+e^- \to \eta(1S)\omega$ at $\Upsilon(5S)$	$0.13^{+0.18}_{-0.17}$	0.4
$e^+e^- \to \eta(2S)\omega$ at $\Upsilon(5S)$	$0.3^{+0.9}_{-1.7}$	1.9

(0.340 ± 0.016) nb [18]. The total multiplicative uncertainty in the branching fraction is 4.5% and 6.5% for transitions from $\Upsilon(4S)$ and $\Upsilon(5S)$, respectively. Estimated branching fractions and upper limits at the 90% confidence level are presented in Table IV.

TABLE IV. Branching fractions and upper limits at the 90% confidence level.

Process	Branching fraction	Upper limit
$\Upsilon(4S) \to \eta_b(1S)\omega$	$(-1.3^{+1.8}_{-1.9}) \times 10^{-4}$	1.8×10^{-4}
$\Upsilon(5S) \to \eta_b(1S)\omega$	$(3.7^{+5.4}_{-5.1}) \times 10^{-4}$	1.3×10^{-3}
$\Upsilon(5S) \to \eta_b(2S)\omega$	$(1.0^{+2.7}_{-2.3}) \times 10^{-3}$	5.6×10^{-3}

We also set the upper limit on the ratio:

$$\frac{B[\Upsilon(4S) \to \eta_b(1S)\omega]}{B[\Upsilon(4S) \to \eta_b(1P)\eta]} < 8.4 \times 10^{-2}$$ (4)

at the 90% confidence level.

V. CROSSCHECK WITH $\Upsilon(5S) \to \chi_{bJ}(1P)\omega$

As a crosscheck, we perform a search for the $\Upsilon(5S) \to \chi_{bJ}(1P)\omega$ transitions that were observed previously using exclusive reconstruction [19]. The analysis procedure is the same as for the $\eta_b(nS)\omega$ transitions. To fit the signal region we use the sum of three CB functions corresponding to $\chi_{b0}(1P), \chi_{b1}(1P)$ and $\chi_{b2}(1P)$ signals. Since we do not have enough resolution to measure $\chi_{b1}(1P)$ and $\chi_{b2}(1P)$ yields individually, we fix the ratio between them according to the known values [19]. To fit the background contribution we use a ninth-order Chebyshev polynomial. The fit result is shown in Fig. 5.

There are no significant signals. The obtained upper limits on branching fractions at the 90% confidence level are

$$B[\Upsilon(5S) \to \chi_{b0}(1P)\omega] < 3.0 \times 10^{-3},$$

$$B[\Upsilon(5S) \to \chi_{b1}(1P)\omega] < 3.2 \times 10^{-3}.$$ (5)

Since the ratio between $\chi_{b1}(1P)$ and $\chi_{b2}(1P)$ is fixed, we do not give an upper limit for $\chi_{b2}(1P)$. The obtained upper limits are consistent with the exclusive measurement [19].

VI. CONCLUSION

In summary, we perform a search for the transitions $\Upsilon(4S) \to \eta_b(1S)\omega$, $\Upsilon(5S) \to \eta_b(1S)\omega$ and $\Upsilon(5S) \to \eta_b(2S)\omega$. No significant signals are observed and we set upper limits on visible cross sections and branching fractions presented in Tables III and IV. The upper limit for $\Upsilon(4S) \to \eta_b(1S)\omega$ is order of magnitude lower than the value for the similar transition to a spin-singlet state, $\Upsilon(4S) \to h_b(1P)\eta$ [1]. We set the upper limit on the ratio:

$$\frac{B[\Upsilon(4S) \to \eta_b(1S)\omega]}{B[\Upsilon(4S) \to h_b(1P)\eta]} < 8.4 \times 10^{-2}$$ (7)

at the 90% confidence level. As both transitions are expected to proceed via the BB admixture in the $\Upsilon(4S)$ state [3], our result will help to better understand this mechanism. The suppression of the $\Upsilon(4S) \to \eta_b(1S)\omega$ transition relative to the $\Upsilon(4S) \to h_b(1P)\eta$ one could be due to different overlaps between the initial state and the bottomonium in the final state or the details of the η and ω meson production.
VII. ACKNOWLEDGMENTS

We thank the KEKB group for the excellent operation of the accelerator; the KEK cryogenics group for the efficient operation of the solenoid; and the KEK computer group, and the Pacific Northwest National Laboratory (PNNL) Environmental Molecular Sciences Laboratory (EMSL) computing group for strong computing support; and the National Institute of Informatics, and Science Information NETwork 5 (SINET5) for valuable network support. We acknowledge support from the Ministry of Education, Culture, Science, and Technology (MEXT) of Japan, the Japan Society for the Promotion of Science (JSPS), and the Tau-Lepton Physics Research Center of Nagoya University; the Australian Research Council including grants DP180102629, DP170102389, DP170102204, DP150103061, FT130100303; Austrian Science Fund (FWF); the National Natural Science Foundation of China under Contracts No. 11435013, No. 11475187, No. 11521505, No. 11575017, No. 11675166, No. 11705209; Key Research Program of Frontier Sciences, Chinese Academy of Sciences (CAS), Grant No. QYZDJ-SSW-SLH011; the CAS Center for Excellence in Particle Physics (CCEPP); the Shanghai Pujiang Program under Grant No. 18PJ1401000; the Ministry of Education, Youth and Sports of the Czech Republic under Contract No. LTT17020; the Carl Zeiss Foundation, the Deutsche Forschungsgemeinschaft, the Excellence Cluster Universe, and the VolkswagenStiftung; the Department of Science and Technology of India; the Istituto Nazionale di Fisica Nucleare of Italy; National Research Foundation (NRF) of Korea Grant Nos. 2016R1D1A1B01010135, 2016R1D1A1B02012900, 2018R1A2B3003643, 2018R1A6A1A06024970, 2018R1D1A1B07047294, 2019K1A3A7A09033840, 2019R1I1A3A01058933; Radiation Science Research Institute, Foreign Large-size Research Facility Application Supporting project, the Global Science Experimental Data Hub Center of the Korea Institute of Science and Technology Information and KREONET/GLORIAD; the Polish Ministry of Science and Higher Education and the National Science Center; the Russian Science Foundation (RSF), Grant No. 18-12-00226; Radiation Science Research Institute, Foreign Large-size Research Facility Application Supporting project, the Global Science Experimental Data Hub Center of the Korea Institute of Science and Technology Information and KREONET/GLORIAD; the Polish Ministry of Science and Higher Education and the National Science Center; the Russian Science Foundation (RSF), Grant No. 18-12-00226; University of Tabuk research grants S-1440-0321, S-0256-1438, and S-0280-1439 (Saudi Arabia); the Slovenian Research Agency; Ikerbasque, Basque Foundation for Science, Spain; the Swiss National Science Foundation; the Ministry of Education and the Ministry of Science and Technology of Taiwan; and the United States Department of Energy and the National Science Foundation.

[1] U. Tamponi et al. [Belle Collaboration], Phys. Rev. Lett. 115, 142001 (2015).
[2] E. Guido et al. [Belle Collaboration], Phys. Rev. D 96, 052005 (2017).
[3] B. Aubert et al. [BaBar Collaboration], Phys. Rev. D 78, 112002 (2008).
[4] I. Adachi et al. [Belle Collaboration], Phys. Rev. Lett. 108, 032001 (2012).
[5] A. E. Bondar, R. V. Mizuk and M. B. Voloshin, Mod. Phys. Lett. A 32, 1750025 (2017).
[6] M. B. Voloshin, Phys. Rev. D 85, 034024 (2012).
[7] A. Abashian et al., Nucl. Instrum. Meth. A 479, 117 (2002).
[8] S. Kurokawa and E. Kikutani, Nucl. Instrum. Meth. Phys. Res., Sect. A 499, 1 (2003), and other papers included in this Volume; T. Abe et al., Prog. Theor. Exp. Phys. 2013, 03A001 (2013) and references therein.
[9] D. J. Lange, Nucl. Instrum. Meth. A 462, 152 (2001).
[10] M. Benayoun, S. I. Eidelman, V. N. Ivanchenko and Z. K. Silagadze, Mod. Phys. Lett. A 14, 2605 (1999).
[11] R. Brun et al., GEANT3.21, CERN Report DD/EE/84-1 (1984).
[12] K. Abe et al. [Belle Collaboration], Phys. Rev. D 64, 072001 (2001).
[13] P. A. Zyla et al. [Particle Data Group], Prog. Theor. Exp. Phys. 2020, 083C01 (2020).
[14] D. Matvienko et al. [Belle Collaboration], Phys. Rev. D 92, 012013 (2015).
[15] T. Skwarnicki, DESY-F31-86-02.
[16] M. B. Voloshin, Prog. Part. Nucl. Phys. 61, 455 (2008).
[17] G. J. Feldman and R. D. Cousins, Phys. Rev. D 57, 3873 (1998).
[18] U. Tamponi et al. [Belle Collaboration], Eur. Phys. J. C 78, 633 (2018).
[19] X. H. He et al. [Belle Collaboration], Phys. Rev. Lett. 113, 142001 (2014).