RESEARCH ARTICLE

Umbilical cord characteristics and their association with adverse pregnancy outcomes: A systematic review and meta-analysis

Dexter J. L. Hayes1 *, Jane Warland2, Mana M. Parast3, Robert W. Bendon4, Junichi Hasegawa5, Julia Banks1, Laura Clapham1, Alexander E. P. Heazell1

1 Tommy’s Stillbirth Research Centre, University of Manchester, Manchester, United Kingdom, 2 University of South Australia, Adelaide, Australia, 3 University of California, San Diego, CL, United States of America, 4 Retired from Norton Children’s Hospital, Louisville, Kentucky, United States of America, 5 St Marianna University School of Medicine, Kawasaki, Japan

* dexter.hayes@manchester.ac.uk

Abstract

Objective

Current data on the role of the umbilical cord in pregnancy complications are conflicting; estimates of the proportion of stillbirths due to cord problems range from 3.4 to 26.7%. A systematic review and meta-analysis were undertaken to determine which umbilical cord abnormalities are associated with stillbirth and related adverse pregnancy outcomes.

Methods

MEDLINE, EMBASE, CINAHL and Google Scholar were searched from 1960 to present day. Reference lists of included studies and grey literature were also searched. Cohort, cross-sectional, or case-control studies of singleton pregnancies after 20 weeks’ gestation that reported the frequency of umbilical cord characteristics or cord abnormalities and their relationship to stillbirth or other adverse outcomes were included. Quality of included studies was assessed using NIH quality assessment tools. Analyses were performed in STATA.

Results

This review included 145 studies. Nuchal cords were present in 22% of births (95% CI 19, 25); multiple loops of cord were present in 4% (95% CI 3, 5) and true knots of the cord in 1% (95% CI 0, 1) of births. There was no evidence for an association between stillbirth and any nuchal cord (OR 1.11, 95% CI 0.62, 1.98). Comparing multiple loops of nuchal cord to single loops or no loop gave an OR of 2.36 (95% CI 0.99, 5.62). We were not able to look at the effect of tight or loose nuchal loops. The likelihood of stillbirth was significantly higher with a true cord knot (OR 4.65, 95% CI 2.09, 10.37).
Conclusions

True umbilical cord knots are associated with increased risk of stillbirth; the incidence of stillbirth is higher with multiple nuchal loops compared to single nuchal cords. No studies reported the combined effects of multiple umbilical cord abnormalities. Our analyses suggest specific avenues for future research.

Introduction

Umbilical cord abnormalities (UCA) usually describe situations where fetal blood flow is reduced or interrupted due to altered structure or function of the umbilical cord. UCA are associated with adverse pregnancy outcomes including stillbirth, birth asphyxia and emergency Caesarean birth. However, estimates of the contribution of UCA to these outcomes vary; for example between 3.4% to 20% of stillbirths are reported to be caused by UCA [1]. Some of the variation may be due to the use of different classification systems for stillbirth, not all of which include UCA as a cause of death.

Of the possible reported UCA, nuchal cord, where the umbilical cord is wound at least once around the fetal neck [2], has been the subject of the most studies; its incidence increases throughout gestation, peaking at birth [3, 4]. While there are reports of nuchal cord in individual cases of stillbirth [5], data from larger studies are conflicting, with some finding significant associations [5, 6] and others reporting no effect of nuchal cord on stillbirth [7, 8]. Other UCA, including true knots and cord prolapse are rarer, but are also linked to adverse outcomes; cohort studies have demonstrated associations between true knots and perinatal death and between cord prolapse and low Apgar scores [9, 10]. In addition, an excessive or reduced number of coils of blood vessels within the cord has also been associated with various adverse outcomes [11]. UCAs can also present in combination, for example true knots may occur more in longer cords which are also more prone to entanglement [12, 13], complicating the appreciation of the significance of individual abnormalities.

Variation in published results may be due to differences in study design, mode of detection (at birth or antenatal ultrasound), definitions of abnormalities, and lack of information about characteristics such as the number of loops of nuchal cord [14], tightness of cord loops or knots [15], or duration of UCA. To address these uncertainties and to better understand the association between UCA and adverse pregnancy outcomes we undertook a systematic review and meta-analysis of observational studies to describe the normal characteristics of human umbilical cord, the incidence of UCA in singleton pregnancies, and to determine the association between UCA and adverse pregnancy outcomes. We also aimed to understand potential sources of variation between studies.

Materials and methods

The review protocol was registered with the International Prospective Register of Systematic Reviews (PROSPERO) on the 4th of October 2018 (CRD420180099049). The systematic review and meta-analysis were conducted according to the PRISMA guideline [16].

Eligibility criteria, information sources, search strategy

Cohort or cross-sectional studies that reported normal characteristics of umbilical cord or the incidence of abnormalities were included in this review. Cohort studies that reported the
incidence of UCA and their relation to adverse pregnancy outcomes or case control studies that compared pregnancies with and without UCA, or that looked at the incidence of UCA in adverse outcomes were also included. Inclusion criteria were studies of singleton pregnancies after 20 weeks of gestation, without congenital abnormalities, conducted in hospital settings (secondary or tertiary centres). Studies reporting UCA in multiple pregnancies were excluded as cord entanglement is a specific complication of monoamniotic twins. Studies of vasa praevia were not included as there is a recent systematic review [17]. All other umbilical cord abnormalities were considered for inclusion in this review.

Literature searches were conducted in MEDLINE, EMBASE, CINAHL and Google Scholar to identify relevant papers published since 1960. In addition, references from articles found, conference proceedings, and bibliographies from review articles and book chapters were examined for appropriate references. Searches were initially performed in May 2018 and updated on 1st December 2019. Example search strategies for the association between cord abnormalities and adverse pregnancy outcomes can be seen in Appendix A.

Outcomes of interest

The primary outcome for this review was stillbirth or intrauterine fetal death (IUFD), defined as death of a baby before birth and after 20 weeks’ gestation (although the definitions employed in studies were anticipated to vary according to geographical location). Secondary outcomes studied were: neonatal intensive care unit (NICU) admission, preterm birth (<37 weeks' gestation), small-for-gestational-age (birthweight <10th centile or as defined by study), low birth weight at term (<2500g), low Apgar score (<7 at 1 minute and 5 minutes) and frequency of caesarean birth. These outcomes were selected because they reflect a proposed pathway through which UCA can lead to fetal death either acutely antenatally or intrapartum, or, if the UCA were present chronically, cause fetal vascular malperfusion leading to small for gestational age infants or sufficient intrapartum compromise [18], subsequent intervention in labour (Caesarean section), low Apgar score, and/or NICU admission (Fig 1). We anticipated that a positive association would be more compelling if it was associated with a number of these related outcomes.

Study selection and data extraction

Titles and abstracts were reviewed by two authors (from DH, JB, LC, AH) to identify relevant studies and full text papers were obtained. Data were extracted by two authors using a pre-piloted data extraction form (from DH, JW, RB, MP, JB, LC, AH); disagreements were resolved by consultation with a third author. Studies not published in English were translated where possible. When full text was not available for a study its authors were contacted, abstracts were not included if all necessary information was not present.

Assessment of risk of bias

Quality of included studies was assessed using the NIH quality assessment tool for observational cohort and cross-sectional studies and the NIH quality assessment tool for case control studies [19]; quality of studies was judged to be good, fair, or poor. This was tailored to best suit our review question, piloted on five studies, then assessed for all included studies by two authors as described above. Studies where data on diagnostic accuracy of antenatal ultrasound could be extracted were additionally assessed using QUADAS-2 [20], which rates risk of bias and concerns regarding applicability as high, low, or unclear.
Data synthesis

Analyses were performed using STATA version 15 [21]. Random effects meta-analysis was performed in anticipation of heterogeneity between studies due to study design. I^2, derived
from Cochran’s chi-squared statistic Q, was calculated to describe the percentage of variability in effect estimates that is due to heterogeneity. Heterogeneity was classified as low ($I^2 = 0–40\%$), moderate ($I^2 = 41–60\%$), substantial ($I^2 = 61–80\%$), or considerable ($I^2 = 81–100\%$) [22]. Subgroup analyses were performed to investigate heterogeneity where appropriate and funnel plots were created to test for sample size effects.

Incidences of UCA were calculated using the command metaprop [23]. The relationship between presence of UCA and adverse outcome was investigated using the command metan [24]. Planned subgroup analyses were performed to examine the effects of different forms of UCA such as number of loops of cord and whether the cord could be unwound at birth. Although not originally an aim of this study, we also found papers that allowed us to calculate the diagnostic accuracy of ultrasound for detecting UCA. The STATA command metandi [25] was used to calculate the summary sensitivity and specificity from these studies and to produce an HSROC curve.

Results

Study selection and study characteristics

After screening of 2,755 abstracts, 275 full text manuscripts were assessed and 145 studies met the inclusion criteria for this review (Fig 2). Two authors [26, 27] provided further information about their studies when contacted. Key characteristics of included studies are presented in Table 1.

Risk of bias of included studies

Quality of included studies was mostly judged to be fair: 35 studies were judged to be good and 7 poor, with the remaining 103 studies judged as fair quality using the NIH quality assessment tools. Most studies had issues with at least one of the following criteria: providing sample size justifications; measuring different levels of exposures, for example the number of loops of nuchal cord; defining exposure or outcome measures, such as the definitions of UCA or gestational age at birth or blinding of exposure and outcome assessors.

Synthesis of results

Results are presented in four sections: normal characteristics of umbilical cord, incidence of UCA, diagnostic accuracy of ultrasound, and associations between UCA and adverse pregnancy outcomes.

Normal characteristics of umbilical cord. The average cord length at birth was found to be $56.0 \pm 11.1 \text{cm}$, using data from 39 studies of 94,849 pregnancies. Studies used a range of definitions, but if a study presented data for several different gestational age periods, then the one closest to term was used for this analysis. The average cord length at birth at 39 weeks' gestation was $55.6 \pm 12.4 \text{cm}$, using data from 11 studies of 13,263 pregnancies; this was chosen as it was the gestational age reported by the most studies. The mean umbilical coiling index at birth, defined as the complete number of vascular coils divided by the cord’s length in centimetres [28], was $0.24 \pm 0.10 \text{ coils/cm}$ using data from 21 studies of 8,315 pregnancies.

Incidence of UCA. Nuchal cord. The incidence of any nuchal cord at birth, determined from data from 57 studies of 830,624 pregnancies, was 22% (95% CI 19, 24). Nuchal loops combined with other entanglements were included in this analysis. Heterogeneity was considerable, $I^2 = 99.92\%$ ($p < 0.001$). When the number of nuchal loops were recorded (data that could be extracted only as ‘multiple’ and not as the exact number of loops were not included), incidences were: 1 loop 16% (95% CI 13, 19); 2 loops 3% (95% CI 2, 4) 3 loops 1% (95% CI 0, 1); 4
Records identified through database searching (n=2555)

Duplicate records removed (n=184)

Records screened based on title and abstract (n=2371)

Records excluded (n=2133)

Records obtained from reference lists of other papers (n=23)

Full-text articles assessed for eligibility (n=261)

Full-text articles excluded, with reasons (n=125)
 13 could not be found
 25 reviews
 11 data couldn’t be extracted
 41 not relevant
 25 case reports
 9 congenital abnormalities

Studies included in meta-analysis (n=136):
 Normal characteristics of cord (n=39)
 Incidence of UCA (n=115)
 Adverse outcomes and UCA (n=90)
 (Numbers do not add to 136 as most studies were used to answer more than one of our review questions)

Fig 2. PRISMA diagram.

https://doi.org/10.1371/journal.pone.0239630.g002
First author	Year	Study population	Data extracted	Adverse outcomes(s) measured	Notes	Quality assessment
Abdallah [7]	2018	Prospective cohort of 455 primigravida women aged 18–35, >37w gestation.	Average cord length	CS, NICU, SB (not defined)	Sample size was reached by screening until 100 women with NC were found.	Good
Adesina [61]	2014	Cross-sectional study of singleton pregnancies, n = 428	Average cord length	None in relation to NC, coiling	Congenital abnormalities at birth included (n = 7), significantly associated with UCI	Good
Adesina [62]	2018	Prospective study of 436 pregnancies	Average UCI	5 min Apgar <7, NICU, SGA	5 congenital anomalies included; 3 in hypercoiled group and 2 in normocoiled	Fair
Adinma [6]	1990	Prospective cohort of 1000 consecutive births. 31 twin births included.	Incidence of umbilical cord knots	Appgar score, BW, fetal loss (IUFD and NND combined).	Cord entanglement was found to be more frequent at BW >2500g. Apgar score and BW presented as averages. Mortality split in to ante/intrapartum but only for all entanglements.	Fair
Agboola [63]	1978	Prospective study of births at 38-42w, n = 602	Average cord length	None in relation to length	18 IUFD and perinatal deaths in the cohort	Fair
Aibar [64]	2012	Retrospective cohort of all births at a tertiary hospital, 2003 to 2009. N = 29,530	Incidence of true knots	None in relation to UCA	Significantly higher incidence of nuchal cord and true knots in male fetuses	Good
Airas [65]	2002	Total population at a university hospital, 1990–1999	Incidence of true knots	1 min Apgar <7, fetal death (not defined), LBW, NICU, PTD, SGA	TN associated with AMA, parity, previous miscarriages, obesity, male fetus, long cord	Good
Akkaya [30]	2017	Prospective case control study, 250 women with NC on US and 250 without	Nuchal cord and adverse outcomes	1 and 5 minute Apgar score <7, BW, EmCS.	Apgar score and mode of birth did not significantly differ between groups (no. of cord entanglements), BW presented as mean.	Fair
Aksoy [33]	2003	Prospective study of 230 women who were referred to sonography for various indications, 68 of which gave birth during the study period.	Nuchal cord and adverse outcomes	None	Fetuses with severe IUGR were excluded	Fair

(Continued)
First author	Year	Study population	Data extracted	Adverse outcomes(s) measured	Notes	Quality assessment
Algreisi [66]	2016	Retrospective cohort of term singleton births 2001–2007; n = 14,873	Incidence of abnormal length	1 min Apgar <7, CS, IUFD, NICU	Elective CS, preterm births excluded. Some anomalies present at birth (7%), did not differ between groups	Fair
			Incidence of cord prolapse			
			Abnormal length and adverse			
			outcome			
Alnakash [67]	2018	Case control study, 75 women with NC at birth and 75 without.	Incidence of nuchal cord	Incidence of single and multiple loops recorded		Fair
Assimakopoulos [68]	2005	352 singleton pregnancies with fetuses in the vertex position.	Incidence of nuchal cord	CS	Detection of NC not used as an indication for births	Fair
Aviram [69]	2015	Retrospective cohort of all women who gave birth in a tertiary centre from 2008 to 2013 (n = 37856)	Incidence of true knots	Outcomes not presented in relation to NC	No relationship found between DFM and cord abnormalities	Good
			Incidence of nuchal cord			
Balkawade [54]	2012	Prospective study of 1000 women	Average cord length	Not presented in relation to NC	Preterm births excluded. Cord length significantly higher in NC.	Fair
			Incidence of cord prolapse			
			Incidence of abnormal length			
			Incidence of nuchal cord			
			Incidence of true knots			
			Abnormal length and adverse			
			outcome			
			Nuchal cord and adverse outcomes			
Balsak [70]	2017	Retrospective case control study of nuchal cord (477 cases, 1043 controls)	Nuchal cord and adverse outcomes	Apgar score, BW, CS, IUFD	Apgar score and BW presented as means for each group.	Fair
Bartling [71]	1980	Study of births of 115 fetuses	Incidence of nuchal cord	None	Variation in FHR seen in babies with UCA	Poor
Begum [72]	2011	Prospective cross-sectional study (n = 1646)	Average cord length	Apgar score, CS, IUGR, IUFD excluded. 1.4:1 ratio of male to female babies with NC		Fair
			Incidence of nuchal cord			
			Nuchal cord and adverse outcomes			
Behbehani [73]	2016	Retrospective cohort of all births, 2003–2005; n = 10,040,416	Incidence of cord prolapse	CS	IUFD excluded. Apgar score recorded as <3 at 5 min. Incidence of prolapse increased with parity.	Fair
			Cord prolapse and adverse outcome			
Table 1. (Continued)

First author	Year	Study population	Data extracted	Adverse outcomes(s) measured	Notes	Quality assessment
Bernad [74]	2012	Retrospective review of hospital records from 2009 to 2010 (n = 5025)	Nuchal cord and adverse outcomes	CS, IUFD	56% of fetuses with NC were male. All IUFD were thought to be due to NC. One CS was due to umbilical cord problems, the others were for various indications.	Fair
Bjoro [75]	1981	Study of 223 pregnancies with IUGR plus 500 controls	Incidence of true knots	None	Some fetal malformations included (n = 28)	Fair
Blickstein [76]	1987	Study of pregnancies with true knots between Aug 1983 and July 1984, n = 4650	Average cord length	5 min Apgar <7, SB (perinatal death before birth)	Outcomes analysed compared to a control group of 108 births	Fair
Bohitea [77]	2016	Retrospective study of pregnancies from 2011 to 2015, n = 18500	Incidence of true knots	1 min Apgar <7, NICU (in true knots only). No fetal deaths.	Outcomes presented in cases with cord knots only	Fair
Brant [78]	1966	24,084 births between 1955 and 1965	Incidence of cord prolapse	Outcomes only given for prolapse group	2 deaths in prolapse group due to congenital abnormalities, 15 multiple pregnancies included	Fair
Carey [79]	2000	13,757 consecutive births from 1991 to 1996.	Incidence of nuchal cord	SB	NC not associated with antepartum or intrapartum stillbirth	Fair
Carey [38]	2003	13,356 births from 1991 to 1996. Fetuses with BW <300g excluded	Nuchal cord and adverse outcomes	BW, IUGR	BW did not differ between single, multiple, and no NC groups	Fair
Carter [80]	2018	8,580 women with consecutive term singleton pregnancies >37 weeks	Incidence of true knots	None	Elective CS excluded	Fair
Caspi [81]	1983	32,365 births from 1970 to 1979	Incidence of cord prolapse	CS, IUFD	Six twin births included. Prolapse was an indication for CS.	Fair
Chaurasia [82]	1979	528 cords from normal full-term births	Average cord length	None	Data from aborted fetuses and multiple births not included	Fair
Chholak [49]	2017	Prospective study of 500 women with singleton pregnancies in active labour	Average UCI	1 min and 5 min Apgar, CS, IUGR, LBW	Hypertension, diabetes, chronic renal disease excluded	Good
Chitra [83]	2012	Prospective study of singleton pregnancies >28 weeks over two years	Average cord length	Apgar, CS, LBW, PTB	Fetal anomalies at birth included (n = 22). Elective CS excluded.	Good

(Continued)
First author	Year	Study population	Data extracted	Adverse outcomes(s) measured	Notes	Quality assessment
Clapp [84]	2003	Prospective study of nuchal cords, n = 356	Incidence of nuchal cord	Apgar score, CS	Percentages of nuchal cord did not differ between gestational weeks. No perinatal deaths. Apgar score presented as means.	Fair
Collins [5]	2000	Prospective observational study of 1064 births in a low risk population.	Nuchal cord and adverse outcomes	SB. No NICU admissions	Six fetal abnormalities included.	Fair
D’Antona [85]	1995	Prospective study of women in labour, n = 37	Incidence of true knots	5 min Apgar, BW, CS (as part of operative births), NICU	BW presented as median values	Fair
De Laat [86]	2006	Prospective study of 117 pregnancies.	Average UCI	SGA	UCI measured antenatally.	Fair
Degani [87]	1995	45 consecutive women with term singleton pregnancies	Average cord length	None	Coiling measured both antenatally and at birth	Fair
Degani [88]	2001	Singleton pregnancies with previous birth of an SGA infant	Average UCI	SGA	39% of the cohort were SGA at birth	Fair
Devaru [52]	2012	100 women with singleton pregnancies at term, Jan 2007 to Aug 2008	Abnormal coiling and adverse outcomes	NICU, IUGR, LBW,	Three neonatal deaths among NICU admissions, 1 had hypocoiling and 2 were normocoiled	Fair
Dhar [39]	1995	3058 consecutive births, 71 twin births included. Analysis performed on 178 NC pregnancies and 356 controls.	Incidence of nuchal cord	1 min Apgar <7, CS, IUFD, SFN	Perinatal mortality in tight NC group 6/70 (5 IUFD and 1 NND) compared to 5/356 in controls (numbers of SB/NND not specified)	Fair
Dilbaz [89]	2006	Retrospective study of all cases of cord prolapse in 1 year out of 16,874 births.	Incidence of cord prolapse	5 min Apgar <7, BW < 2500g, NICU	Analysed as case control, 80 cases versus 800 controls. One perinatal death in cord prolapse group.	Fair
Duman [90]	2018	Case control study, 60 pregnancies with cord entanglement and 60 randomly selected controls.	Cord entanglement and adverse outcomes	5 min Apgar <7, CS	Case control study so incidence data not used	Fair
El Behery [91]	2011	Study of 280 consecutive women in antenatal care	Average cord length	None in relation to cord length	Pregnancy complications and EFW <10th excluded	Fair
Enakpene [92]	2006	Retrospective study of 78 studies of cord prolapse	Incidence of cord prolapse	CS	Other outcomes presented for prolapse group only	Fair
Ercal [93]	1996	Prospective study of umbilical cord from 147 pregnancies	Average cord length	1 and 5 min Apgar <7, SGA	Four fetal anomalies included, one in hypocoiled group and three in normocoiled group	Fair
Ernst [94]	2013	Study of all hypercoiled cords from pathology database	Abnormal coiling and adverse outcomes	SB	Hypocoiling not studied	Fair
Ertuğrul [95]	2013	Cohort of 1784 viable singleton pregnancies born by elective caesarean section	Nuchal cord and adverse outcomes		Incidence of NC increased with gestation	Fair

(Continued)
First author	Year	Study population	Data extracted	Adverse outcomes(s) measured	Notes	Quality assessment
Ezimokhai [96]	2000	Prospective study of 1026 singleton pregnancies	Average UCI	Mean BW, CS, IUGR, PTD	7 cords with indeterminate or incomplete turns and 47 with incomplete data were excluded. Some congenital anomalies at birth included. 20 cords had no coiling.	Fair
Gabbay-Benziv [97]	2014	Retrospective cohort of all births Nov 2007 to Dec 2011, n = 36,889	Incidence of cord prolapse	Presented in relation to prolapse only	Elective CS excluded. 4 twin pregnancies included	Fair
Gaikwad [98]	2013	Singleton pregnancies in labour at term	Abnormal coiling	Appgar, IUGR, LBW, NICU	IUFD prior to presentation were excluded. Average UCI presented but no SD.	Good
Georgiadis [99]	2014	Retrospective study of 47,284 singleton pregnancies	Average cord length	None	Congenital abnormalities and IUFDs excluded	Good
Ghezzi [100]	2001	Women undergoing routine sonography, Nov 1999 to Feb 2003	Average cord length	Overall outcomes only	Only women with sonographically lean cords were included in the study	Fair
Ghosh [40]	2008	Prospective study of post term pregnancies (>42w), n = 202	Nuchal cord and adverse outcomes	1 and 5 min Apgar score <7, CS, IUFD, NICU, SGA	High rate of NC likely due to gestation	Fair
Gibbons [101]	2014	Retrospective review of 409,473 live births	Incidence of cord prolapse	None		Good
Gonzalez-Quintero [34]	2004	Retrospective study of consecutive women with nuchal cords identified via US, n = 233	Nuchal cord and adverse outcomes	Appgar <7 at 5 min, CS, IUFD NICU, PTD,	No differences in demographics between groups	Fair
Gupta [102]	2018	Prospective observational study, n = 700	Incidence of nuchal cord	CS, Apgar <7 at 5, 1 min	Autopsy for the perinatal death showed signs of asphyxia	Good
Guzikowski [103]	2014	Study of 2864 birth sin a one year period	Incidence of true knots	BW, CS, IUFD	Exclusion criteria not stated.	Fair
Hanaoka [104]	2002	Prospective study of 120 normal fetuses at 36–41 weeks gestation	Nuchal cord and adverse outcomes	None		Fair
Hashimoto [105]	2003	Prospective study of women who presented for labour, IoL, or EICS; n = 167	Nuchal cord and adverse outcomes	1 min Apgar score <7, BW<2500g	Preterm births excluded	Fair
Hehir [106]	2017	Retrospective cohort from 1991 to 2010	Incidence of cord prolapse	Perinatal deaths in prolapse only	Babies >500g only; immediate expedition of birth undertaken when a cord prolapse is diagnosed	Fair
Henry [55]	2013	Retrospective analysis of birth records, n = 21933	Nuchal cord and adverse outcomes	1 and 5 min Apgar score <7, NICU admission, VLBW<1500g,	Patients with true knot had a higher incidence of nuchal cord	Fair
Hershkovitz [107]	2001	Consecutive singleton pregnancies, 69139 births. Study of true knots	Incidence of true knots	BW <2500g, CS, SGA		Good
First author	Year	Study population	Data extracted	Adverse outcomes(s) measured	Notes	Quality assessment
--------------------	------	--	---	---	---	--------------------
Jauniaux [108]	1995	Retrospective study of singleton term pregnancies, n = 2650	Nuchal cord and adverse outcomes	1 min and 5 min Apgar < 7, CS, NICU admission	Two neonatal deaths in single NC group. Case control for nuchal cord. Three perinatal deaths in multiple loop group; all women had presented with RFM.	Fair
Jaya [109]	1995	Singleton pregnancies over a 4 month period, n = 3383	Average cord length	None in relation to cord length		Fair
Jessop [110]	2014	Prospective study of consecutive unselected low risk patients with singleton pregnancies	Average cord length	1 min Apgar < 7, CS, NICU	37 cords were not long enough to assess UCI	Fair
Jo [51]	2011	Retrospective study of pregnancies with US at 22–28 weeks	Abnormal coiling and adverse outcomes	1 min Apgar < 7, CS, LBW, NICU, PTD	Coiling only measured antenatally	Fair
Joshi [111]	2017	Study of term singleton pregnancies. Antenatal complications such as hypertension, PE were excluded. N = 506	Nuchal cord and adverse outcomes	Apgar < 7 at 1 min, CS	Cord was also around the trunk in three cases and upper limb in another. N of 506 was number needed to get to 100 NCs	Fair
Kahana [112]	2014	Population-based study of umbilical cord prolapse, n = 12122	Nuchal cord and adverse outcomes	None in relation to nuchal cord	Twin pregnancies included	Fair
Kalem [113]	2019	Prospective study of singleton pregnancies between 37 and 41 weeks	Average cord length	Presented as correlations/averages only	True knots were found to be associated with cord prolapse	Fair
Kashanian [114]	2006	Prospective cross-sectional study of term pregnancies, March 2003 to July 2004	Average UCI	5 min Apgar < 7, LBW < 2500g.	Exclusions: smoking, drug use, temp > 37.8°C, placenta previa, abruption	Good
Katsura [115]	2018	106 pregnancies with MRI scan at an average of 37.4 weeks	Average cord length	CS, IUGR		Good
Kesrouani [116]	2017	Retrospective study of pregnancies with nuchal cord. N = 44	Nuchal cord and adverse outcomes	CS, IUFD, IUGR, NICU admission	One twin pregnancy included, three first trimester scans	Fair
Kobayashi [117]	2015	Retrospective analysis of medical records, all women with singleton pregnancies with attempted vaginal birth > 37w from Jan 2004 to Dec 2013, n = 6307	Nuchal cord and adverse outcomes	1 min and 5 min Apgar < 7, BW, CS	Serious complications such as hypertension or diabetes excluded. Pregnancies with neck and body loops together excluded.	Fair
Kong [118]	2015	Retrospective study of all singleton births in 2010	Nuchal cord and adverse outcomes	5 min Apgar < 7, NND, NICU admission	One neonatal death in nuchal cord group due to trisomy 18	Fair
Lal [4]	2008	Prospective study of 200 consecutive singleton pregnancies	Nuchal cord and adverse outcomes	None	Numbers of nuchal cords that persisted were recorded	Good
LaMonica [119]	2008	Prospective study of 166 women chosen at random	Average cord length	None	Cord length was found to not affect likelihood of vaginal birth	Fair
Larson [120]	1995	Retrospective study of singleton term pregnancies, n = 8565	Nuchal cord and adverse outcomes	Apgar < 7 at 5 min, BW, CS, IUFD (intrapartum),	Prior CS, IUFD, abnormal fetal lies excluded	Good

(Continued)
First author	Year	Study population	Data extracted	Adverse outcomes(s) measured	Notes	Quality assessment
Larson [121]	1997	Retrospective study of singleton pregnancies at or after 20 weeks, n = 13875	Nuchal cord and adverse outcomes	IUFD (antepartum)	IUFD prior to admission and antepartum were recorded. Frequency of NC increased with gestational age.	Good
Linde [9]	2018	Retrospective study of singleton births in Norway from 1999 to 2013, n = 856300	Incidence of true knots	BW<10th centile, CS, NICU, IUFD (term and preterm), PTB <37w	Some fetal malformations included	Good
Lipitz [122]	1993	Retrospective case control study of nuchal cord (n = 12,241) plus prospective study of umbilical cord complications (n = 456)	Incidence of true knots	Apgar <7 at 5 min, BW <2500g	Study comprised of a retrospective case control study and a prospective cohort study.	Good
Lolis [123]	1998	Births from 1992 to 1996, n = 5278	Average cord length	None	Cord length increased with parity	Good
Ma’ayeh [48]	2017	Prospective study of 72 singleton pregnancies	UCI and adverse outcomes	1 and 5 min Apgar <7, EmCS, PTD, SGA	Coiling measured antenatally using ultrasound and postnatally as part of placental examination. Average UCI presented but without SD.	Good
Machin [124]	2000	1. Study of 120 consecutive singleton births	Average UCI	Outcomes only in relation to the case series of pathological examinations	Cords measuring <20cm were excluded	Fair
Malpas [125]	1964	“consecutive series of normal infants born at or near term”	Average cord length	None		Poor
Mariya [126]	2018	Retrospective study of 2957 studies from 2008 to 2012	Average cord length	Incidence of true knots	EICS and EmCS for cephalopelvic disproportion, malpresentation etc. excluded.	Fair
Mastrobattista [127]	2005	Retrospective study of all term singleton births from April 2001 to June 2002, n = 4426	Nuchal cord and adverse outcomes	Apgar <7 at 5 min, CS, LBW, NICU admission	Live births only, noncephalic presentations excluded	Good
Markov [128]	2007	Prospective study of 86 singleton pregnancies	Nuchal cord and adverse outcomes	None	Measurements taken at 37–42 weeks	Fair
McLennan [129]	1988	Retrospective study of labour ward logbooks, n = 1115	Incidence of true knots	1 min Apgar score <7, IUFD, NND	4 neonatal deaths, two due to fetal abnormalities. IUFD from 22 to 38 weeks	Fair

(Continued)
First author	Year	Study population	Data extracted	Adverse outcomes(s) measured	Notes	Quality assessment	
Miser [41]	1992	Retrospective review of births from a six month period, n = 706	Nuchal cord and adverse outcomes	1 and 5 min Apgar score, BW <2500g, IUGR/SGA	No significant differences in demographics between groups. No details on tightness of cords for 86/167	Fair	
Mittal [47]	2015	Prospective study of 200 randomly selected singleton pregnancies at 20-24w, Aug 2012 to July 2013	Average UCI	Abnormal coiling and adverse outcomes	5 min Apgar <7, CS, NICU admission, PTD	SUA excluded	Good
Naeye [130]	1985	35,779 singleton pregnancies from 13 centres	Average cord length	Data not presented in a way that could be analysed	Data presented for various gestations	Fair	
Najafi [131]	2018	Prospective study of 296 consecutive pregnancies, Oct 2014 to August 2016	Average UCI	None	UCI measured antenatally at 37-41w	Good	
Narang [12]	2014	Cross-sectional study, n = 150	Average cord length	Apparar <7 at 5 min, NICU admission	Single and multiple NC groups combined for analysis.	Fair	
Nkwasong [13]	2018	Case control study of singleton pregnancies, n = 2015	Nuchal cord and adverse outcomes	BW <2500g, CS, PTD	Cord length significantly higher in nuchal cords	Fair	
Nnatu [133]	1960	661 consecutive singleton pregnancies at term	Average cord length	None	No significant correlation found between parity and cord length	Fair	
Ogueh [134]	2006	Retrospective study of singleton pregnancies with BW>2500g, n = 57853	Nuchal cord and adverse outcomes	CS	Pregnancies with NC less likely to be born by CS	Fair	
Ndolo [135]	2017	Prospective study of singleton pregnancies	Abnormal coiling and adverse outcomes	CS, SGA, PTD	Gestation between 18 and 24 weeks	Good	
Nkwabong [13]	2018	Case control study of singleton pregnancies, n = 2015	Nuchal cord and adverse outcomes	BW <2500g, CS, PTD	Cord length significantly higher in nuchal cords	Fair	
Osak [137]	1997	Retrospective study of hospital records over a three year period, n = 10509	Nuchal cord and adverse outcomes	Mean BW	Only live births were included in the study. Hypertension, IUGR, diabetes also excluded	Fair	
Olaya-C [136]	2018	Retrospective observational study, 2013–2014; n = 434	Incidence of true knots	Abnormal coiling and adverse outcomes	1 neonatal death and 2 stillbirths, not associated with TN	Fair	
Önderoglu [8]	2008	Retrospective study of all births with nuchal cord from 2002 to 2004	Nuchal cord and adverse outcomes	SB (not defined), Apgar <7 at 1 min	Term pregnancies only.	Good	
Onderoglu [8]	2008	Retrospective study of all births with nuchal cord from 2002 to 2004	Nuchal cord and adverse outcomes	SB (not defined), Apgar <7 at 1 min	Term pregnancies only.	Good	
Pathak [138]	2010	861 women with consecutive singleton pregnancies that birthed at 37-42w	Average cord length	None in relation to cord length		Fair	
Patil [139]	2013	Prospective study of 200 patients in active labour at term	Abnormal coiling and adverse outcomes	1 and 5 min Apgar <7, IUGR, NICU	EmCS were not included	Good	
Peng [140]	2006	Retrospective review of 268 fetal autopsies	Abnormal coiling and adverse outcomes	IUFD	Hypocoiling not recorded	Fair	

(Continued)
Table 1. (Continued)

First author	Year	Study population	Data extracted	Adverse outcomes(s) measured	Notes	Quality assessment
Peregrine [31]	2005	Prospective study of women undergoing induction after 36 weeks gestation, n = 237	Nuchal cord and adverse outcomes	1 and 5 min Apgar score, CS, NICU admission	No association between reduced fetal movements and NC. One neonatal death due to a congenital malformation.	Fair
Poljak [141]	1989	Study of women who had antenatal US at term before induction, n = 100	Nuchal cord and adverse outcomes	Apgar score (mean only)	Mean Apgar was significantly lower in NC group	Fair
Purola [142]	1968	Series of 1980 consecutive singleton births with BW>600g	Average cord length	Apgar score (time not stated), LBW	No. of loops of nuchal cord recorded but not in relation to outcomes. Cord around neck in 3/25 IUFDs but not attributed as a cause–two were due to fetal abnormalities.	Good
Qin [32]	2000	Prospective study of 180 consecutive singleton pregnancies, n = 531	Average cord length	None	Color Doppler results included in analysis, greyscale also used	Good
Räisänen [143]	2013	Retrospective study of singleton births from 2000 to 2012, n = 27537	Incidence of true knots	1 min and 5 min Apgar <7, CS, IUFD, LBW, NICU, PTD, SGA		Good
Rana [144]	1995	Prospective study of placentas from consecutive high risk patients	Average cord length	5 min Apgar <7	Fetal congenital anomalies diagnosed by day 3 of life were included	Fair
Rayburn [145]	1981	536 term births	Incidence of cord prolapse	None	UCA were most frequent with long cords	Fair
Romeo Gutierrez [147]	2000	Prospective cross sectional study, n = 132	Nuchal cord and adverse outcomes	1 and 5 min Apgar score <7, BW, IUFD	Low risk pregnancies only	Fair
Sahoo [148]	2015	177 women with singleton pregnancies and US examination at 18 to 23 weeks	Average UCI	CSFD, IUFD, PTD	High risk pregnancies (diabetes, hypertension) were excluded	Good
Salge [149]	2018	Cross-sectional study from 2012 to 2015, n = 265	Incidence of true knots	None	126/265 were high risk pregnancies	Fair
Schaffer [150]	2005	Retrospective study of women with planned vaginal births, n = 9574	Nuchal cord and adverse outcomes	1 and 5 min Apgar score, CS, NICU admission	Mean BW significantly lower in nuchal cord groups	Fair
Sharma [151]	2012	Study of all booked singleton primigravidas in the second trimester of pregnancy	Average UCI	5 min Apgar <7, CS, FGR, LBW, PTD		Fair
First author	Year	Study population	Data extracted	Adverse outcomes(s) measured	Notes	Quality assessment
--------------------	--------	--	---------------------------------	--	--	--------------------
Sheiner [152]	2006	Retrospective study of all births from 1988 to 2003, n = 16631	Nuchal cord and adverse outcomes	1 and 5 min Apgar score <7, BW, CS	Perinatal mortality was significantly lower in pregnancies with nuchal cord. 1 min Apgar <7 more common in NC but 5 min less common.	Good
Shiva Kumar [153]	2017	Prospective study of 1000 term pregnancies picked at random	Average cord length	None	Pregnancy were excluded if FHR measured during labour. Knots more common in long cords. Only one nuchal cord occurred with short cord; 70 were long cords (>95cm)	Fair
Shrestha [154]	2007	Prospective cross-sectional study of women who gave birth after 28 weeks, n = 512	Nuchal cord and adverse outcomes	1 and 5 min Apgar score <7, CS, NICU admission		Fair
Singh [13]	2008	Review of labour records over a six month period, n = 350	Nuchal cord and adverse outcomes	1 and 5 min Apgar score <7, CS	Study recorded 26 perinatal deaths, none of which were attributed to nuchal cord. 2 were due to fetal abnormalities.	Fair
Sinnathuray [155]	1965	All births in 1961, n = 3917	Nuchal cord and adverse outcomes	None	Study recorded 26 perinatal deaths, none of which were attributed to nuchal cord. 2 were due to fetal abnormalities.	Fair
Sørenes [156]	1989	5675 births between 1979 and 1984	Average cord length	CS	BW <3000g, EICS, operative births excluded	Fair
Sørenes [157]	1995	11,201 singleton births from 1991 to 1994	Incidence of entanglements	None	836 insufficiently filled charts excluded. Entanglements described as encirclements in the paper, not specified.	Poor
Sørenes [158]	2000	Study using obstetric database between 1991 and 1997, n = 22012	Incidence of true knots	CS, IUFD (antepartum, death during or after birth classified as perinatal loss)	Fetal deaths before 24 weeks were not included. Number of knots was recorded	Fair
Stanek [159]	2016	Consecutive pregnancies >21 weeks from 1994 to 2013, n = 5634	Incidence of true knots	None	Loose and tight knots recorded	Fair
Stefos [160]	2003	534 consecutive singleton pregnancies	Average cord length	None	Some multiple pregnancies and congenital malformations included	Fair
Strong [161]	1996	Prospective study of 200 consecutive pregnancies	Nuchal cord and adverse outcomes	None	Mean UCI was significantly higher in nuchal cords. Characteristics of NC not recorded.	Poor
Suzuki [162]	2011	All singleton pregnancies at 34–41 weeks between 2002 and 2009, n = 10453	Average cord length	None	True knots were more common in long cords >68cm. Chromosomal aberrations present in 7 fetuses.	Fair
Tamrakar [163]	2013	Case control study, 289 cases with at least one nuchal loop and 965 randomly selected controls from 4219 unaffected singleton pregnancies	Incidence of nuchal cord	CS	73% controls were birthed by CS; this paper was excluded from NC and CS analysis	Fair
Tantbirojn [164]	2009	Retrospective study of pathology database, n = 224	Incidence of true knots	Apgar score, IUGR (not defined), IUFD (not defined)	49% of long cords had true knots. Case control for nuchal cord so incidence not used.	Fair
Tapasvi [165]	2017	100 singleton term births	Average cord length	1 min and 5 min Apgar <7	Preterm births, previously diagnosed IUFD, instrumental births excluded	Fair

(Continued)
First author	Year	Study population	Data extracted	Adverse outcomes(s) measured	Notes	Quality assessment
Tripathy [166]	2014	Prospective study of high risk singleton pregnancies, n = 100	Average cord length	5 min Apgar <7, LBW, PTD		Fair
			Average UCI	Abnormal coiling and adverse outcomes		
Uygur [167]	2002	32,457 births that occurred during the study period	Incidence of cord prolapse	BW <2500g	1.73% incidence of twin pregnancy in controls, none in prolapse group. Cord prolapse associated with multiparity	Fair
Van Dijk [168]	2002	Uncomplicated singleton pregnancies, Jan-April 2000; n = 122	Average cord length	None	Preeclampsia, hypertension, diabetes, LBW, birth for fetal distress excluded	Fair
Vasa [45]	2018	Retrospective study of all births in 2012 at Mercy Hospital	Incidence of nuchal cord	1 and 5 min Apgar <7, CS, IUGR, NICU	Tertiary referral centre– 90% high risk patients. 379 were preterm. Perinatal death also recorded, no difference between groups.	Fair
Vintzileos [43]	1992	Retrospective study of referred high risk women over a two year period, n = 520	Nuchal cord and adverse outcomes	1 and 5 min Apgar score <7, CS, IUGR, PTD		Fair
Walker [169]	1960	Retrospective study of 223 consecutive births	Average cord length	None	No link found between cord length and parity	Poor
Walla [170]	2018	Study of 486 pregnant women, Feb 2014 to May 2016	Incidence of true knot	CS, NICU admission	Two twin pregnancies included, neither had UCA. No stillbirths in the study. Incidence of other entanglements with nuchal cord also presented.	Fair
			Incidence of nuchal cord			
			Nuchal cord and adverse outcomes			
Wang [44]	2016	Retrospective study of medical records, n = 1749	Nuchal cord and adverse outcomes	1 and 5 min Apgar <7, EmCS, SGA	Terminations <22w, IUFD <37w, EICS, PTD all excluded. NC was not routinely evaluated using sonography and did not affect management.	Good
Wasswa [171]	2014	Retrospective review of all births with cord prolapse >28w, 2000 to 2009; n = 438	Cord prolapse and adverse outcomes	Outcomes in prolapse only: 5 min Apgar <7, CS, IUF D	438 randomly sampled from 661 after exclusion of 273 IUFD	Fair
Weiner [172]	2015	Retrospective study of women who underwent EmCS for FHR at 37–42 weeks, n = 530	Incidence of true knot	5 min Apgar score <7, BW (continuous).	Significantly higher CAPO incidence in multiple loops compared to single (this includes limb and trunk entanglements). No difference in BW between groups. Case control for EmCS so not used as an outcome.	Good
Winch [173]	1961	48,885 births over a ten year period, exclusions not stated.	Incidence of cord prolapse	Perinatal death, not defined	States that incidence may be low as high standards of documentation were not adapted until 1957 and BW<1500g was not included.	Poor
Wu [174]	1996	Prospective study of 1087 births >28w, May to Aug 1995	Average cord length	Cord length and entanglements had no effect on fetal distress		Fair

(Continued)
or 5 loops <1%. 32 studies of 89,455 pregnancies presented data for at least a single loop of cord. Loose nuchal loops were more frequent than tight loops, with a summary frequency of 10% (95% CI 4, 18) compared to 5% (95% CI 4, 7; data from 230,729 pregnancies from 10 studies).

The incidence of nuchal cord detected by ultrasound scan at any gestational age was 28% (95% CI 21, 36; I² 97.67%; data from 13 studies of 4,107 pregnancies). Case control studies were not included in this analysis.

It was not possible to calculate the incidence of other entanglements due to variation in study definitions and outcomes.

Cord prolapse. Incidence of cord prolapse was calculated from 21 studies of 11,057,165 pregnancies; the overall incidence was 0.17%.

True knots. Overall, the incidence of true knots at birth was 1% (0, 1). Heterogeneity was considerable (I² 98.52%, p<0.001); data from 27 studies of 1,289,679 births. Only one paper [29] recorded the incidence of multiple knots; 14 were found from 22,012 births (0.06%).

Abnormal coiling. Twenty-one studies reported the frequency of abnormal coiling, but the incidences of hypercoiling and hypocoiling were not calculated as they were generally defined using the 90th and 10th centiles respectively.

It is important to note, however, that the actual measurements used to define these centiles differed between studies depending on the populations.

Abnormal length. The incidence of abnormal cord length could not be recorded due to wide variation in study definitions. Definitions of a long cord ranged from >59.0cm to >95.0cm, and definitions of a short cord ranged from <35.0cm to <50cm.

Diagnostic accuracy of ultrasound. **Nuchal cord.** We identified 12 papers which reported the diagnostic accuracy of ultrasound scanning for predicting nuchal cord at birth, these are described in the characteristics of included studies table (Table 1). For this element, a positive index test result was any nuchal cord suspected antenatally using ultrasound and the reference standard was the presence of a nuchal cord at birth. Results were combined for ultrasound screening at any gestation; four studies [7, 30–32] performed screening immediately prior to induction or during labour and in all but two studies all measurements were performed after 36 weeks [33, 34].

QUADAS-2 was used to quantify the risk of bias and applicability concerns for each included study. Most papers were at low or unclear risk of bias for all domains. Akkaya et al.
was judged to be at high risk of bias for patient selection and index test domains, while Gonzalez-Quintero et al. [34] was judged to be at high risk of bias for patient selection; these were both case control studies. Studies were all low or unclear risk of bias for applicability concerns. Only one study [32] was judged to be low risk for all domains. Six studies blinded reference standard results [3, 4, 32, 35–37] all but one of these [36] also blinded index test results. All other studies did not state whether blinding took place.

Summary sensitivity for ultrasound at all gestations was 80.5 (95% CI 66.3, 89.6), summary specificity 86.6 (95% CI 80.0, 91.2). However, there was considerable variation in sensitivity of individual studies ranging from 29.0 to 96.8%, with specificities ranging from 57.0% to 96.6%. The positive likelihood ratio (LR+) was 6.01 and the negative likelihood ratio (LR-) was 0.17. Sensitivities and specificities from each study were used to produce an HSROC plot (Fig 3); the diagnostic odds ratio (DOR) for ultrasound scanning at all gestations was 26.6 (95% CI 9.46, 74.7). There did not appear to be a linear relationship between accuracy and gestational age although for studies where ultrasound scanning was performed in early labour the sensitivity values were higher, ranging from 90.2 to 96.8%.

True knots. The accuracy of ultrasound for the detection of true knots at birth could not be analysed due to a lack of available study data.

Associations between UCA and adverse pregnancy outcomes.

Nuchal cord and stillbirth. When data for any nuchal cord at birth were pooled, no statistically significant association was detected between presence of any nuchal cord and stillbirth (OR 1.11; 95% CI 0.62, 1.98). Heterogeneity was moderate (I^2 44.4%, $p = 0.055$). As no association was detected for a single loop of nuchal cord versus controls (OR 0.87; 95% CI 0.56, 1.35), data were combined for an analysis comparing multiple loops to combined data for no loop and a single loop. This resulted in an OR of 2.36 (95% CI 0.99, 5.62; $p = 0.053$) for multiple loops of nuchal cord (Fig 4). Heterogeneity for this analysis was low (I^2 7.0%, $p = 0.372$). Comparing multiple loops to no loops, excluding single loops from the analysis, resulted in an OR of 1.91 (95% CI 0.90, 4.06). Heterogeneity was again low (I^2 0.0, $p = 0.623$). 123 stillbirths from 40,114 pregnancies were included in the pooled analysis. There was no evidence of small study effects (Harbord’s test, $p = 0.137$).

Three studies presented data for the relationship between nuchal cord detected by ultrasound at any gestation and stillbirth, no statistically significant association was detected (OR 0.72; 95% CI 0.17, 3.05). Heterogeneity for this analysis was low (I^2 = 25.8%, $p = 0.260$). Data from this analysis were obtained from 1955 pregnancies, 24 of which were stillbirths.

Nuchal cord and other adverse outcomes. Results from analyses of the relationships between nuchal cord and all secondary adverse outcomes are shown in Table 2. Analyses could not be performed for the association between nuchal cord detected using ultrasound and Apgar scores < 7 at 5 minutes, NICU admission, small-for-gestational age, or preterm birth, or for the association between nuchal cord at birth and preterm birth.

A single loop of nuchal cord at birth was only associated with a 1 minute Apgar score < 7 whereas multiple loops of cord were associated with increased likelihood of caesarean section and Apgar scores < 7 at both one and five minutes. Tight loops of nuchal cord but not loose loops were associated with low Apgar scores.

We found no evidence for an association between nuchal cords at birth and NICU admission. Overall heterogeneity was substantial at 66.8% ($p < 0.01$); this was due to considerable heterogeneity in the data from multiple loops (I^2 88.5%, $p = 0.00$), whereas heterogeneity in the data for single loops was low (I^2 30.5%, $p = 0.22$). However, the likelihood of NICU admission with a tight nuchal cord at birth was twice as high as with no nuchal cord, although this was not statistically significant.

No included studies specified nuchal cord as an indication for birth; if a study presented emergency caesarean section or caesarean section for fetal distress separately, then these data
Fig 3. HSROC plot for the diagnostic accuracy of antenatal ultrasound to predict nuchal cord at birth.

https://doi.org/10.1371/journal.pone.0239630.g003
were used instead of the overall rate. However, caesarean section was significantly more likely in pregnancies with nuchal cord detected via ultrasound (OR 1.64; 95% CI 1.07, 2.51) Heterogeneity was low (I² 33.5%, p = 0.211).

No significant relationship between nuchal cord and birth weight <2500g (OR 0.66; 95% CI 0.50, 1.35), or fetal growth restriction or small for gestational age infants (OR 1.41; 95% CI 0.90, 2.21) was identified. Studies of fetal growth restriction and small for gestational age were combined as they used a wide range of definitions [8, 38–45].

Sensitivity analyses for nuchal cord papers. No studies that were rated poor by quality assessment presented data for nuchal cord and its relationship to adverse outcome so planned sensitivity analyses were not performed.
True knots and stillbirth. The likelihood of stillbirth was significantly higher in pregnancies with a true knot in the umbilical cord at birth than in those without, with an OR of 3.96 (95% CI 1.85, 8.47; 7 studies of 930,314 births) (Fig 5) Heterogeneity was moderate (I^2 60%, $p < 0.05$).

True knots and other adverse outcomes. Results from these analyses are presented in Table 3. Statistically significant associations with modest effect sizes were found between true cord knots at birth and all of our secondary outcomes except for caesarean section. We were not able to look at the association between true knots at birth and low Apgar scores at 1 minute. No evidence of small study effects was seen for our main outcome of stillbirths in studies of true knots; Egger's test gave a p value of 0.27 (Fig 6).

Abnormal coiling and intrauterine fetal death. We were unable to perform meta-analysis to analyse the relationship between abnormal coiling of the umbilical cord and stillbirth

Abnormal coiling and other adverse outcomes. Outcome data are shown in Table 4. For all coiling analyses the hypo- or hypercoiled group was compared to the group with normal coiling only. The only exception is a study of hypocooiling by Strong, Finberg & Mattox [46] where the control group was all cords with an umbilical coiling index (UCI) above the 10th centile (so would also have included hypercoiled cords). Analyses were also performed combining all thresholds for hypo- and hypercoiling as in most cases variation was minimal; for UCI at birth the range of thresholds classed as hypocooiling was from <0.6 to <0.17 UCI, with one outlier [47] using <0.26 UCI. For hypercooiling the range was >0.26 to >0.48 UCI. Some studies

| Table 2. Analyses of the relationship between nuchal cord and adverse outcomes. |
|----------------|----------------|----------------|----------------|----------------|
| | Stillbirth | CS | 1 min Apgar score <7 | 5 min Apgar score <7 | NICU admission |
| All nuchal cords | | | | | |
| Odds ratio (95% CI) | 1.11 (0.62, 1.98) | 1.05 (0.88, 1.25) | **1.70 (1.31, 2.20)** | 1.12 (0.86, 1.47) | 1.17 (0.99, 1.39) |
| I^2 | 44.4% (p = 0.055) | 93.7% (p = 0.00) | 87.4% (p = 0.00) | 46.6% (p<0.05) | 66.8% (p<0.01) |
| Number of pregnancies | 40,114 | 274,107 | 210,102 | 210,102 | 243,712 |
| Single loop | | | | | |
| Odds ratio (95% CI) | 0.87 (0.56, 1.35) | **0.66 (0.50, 0.88)** | **1.80 (1.22, 2.65)** | 0.86 (0.42, 1.75) | 1.01 (0.86, 1.18) |
| I^2 | 0.00% (p = 0.997) | 83.8% (p = 0.00) | 54.3% (p = 0.087) | 68.7% (p<0.01) | 30.5% (p = 0.22) |
| Number of pregnancies | 28,687 | 31,230 | 17,568 | 29,718 | 21,097 |
| Multiple loop (no NC as controls) | | | | | |
| Odds ratio (95% CI) | 1.91 (0.90, 4.06) | **1.60 (1.10, 2.32)** | **3.39 (2.30, 5.01)** | **2.74 (1.12, 6.73)** | 1.75 (0.92, 3.34) |
| I^2 | 0.0% (p = 0.623) | 79.0% (p = 0.00) | 53.0% (p = 0.075) | 72.0% (p<0.01) | 88.5% (p = 0.00) |
| Number of pregnancies | 22,649 | 25,028 | 14,100 | 26,638 | 16,824 |
| Multiple loop (single loop plus no NC as controls) | | | | | |
| Odds ratio (95% CI) | 2.36 (0.99, 5.62) | **1.66 (1.21, 2.28)** | **2.77 (1.53, 5.03)** | 2.20 (0.75, 6.48) | 1.79 (0.92, 3.49) |
| I^2 | 7.0% (p = 0.372) | 71.4% (p<0.01) | 80.8% (p<0.01) | 85.8% (p = 0.00) | 88.3% (p = 0.00) |
| Number of pregnancies | 29,629 | 32,851 | 17,906 | 34,764 | 22,332 |
| Tight loop (no NC as controls) | | | | | |
| Odds ratio (95% CI) | Insufficient data | **1.42 (0.46, 4.41)** | **6.94 (2.42, 19.59)** | **7.57 (1.80, 11.60)** | 2.27 (0.73, 7.05) |
| I^2 | n/a | 95.9% (p = 0.00) | 65.1% (p<0.05) | 0.0% (p = 0.657) | 85.8% (p = 0.00) |
| Number of pregnancies | n/a | 63,698 | 3468 | 2968 | 174,639 |
| Loose loop (no NC as controls) | | | | | |
| Odds ratio (95% CI) | Insufficient data | **0.72 (0.54, 0.97)** | **0.92 (0.61, 1.37)** | **0.37 (0.14, 0.96)** | 0.86 (0.65, 1.14) |
| I^2 | n/a | 26.4% (p = 0.227) | 29.6% (p = 0.235) | 0.0% (p = 0.930) | 26.9% (p = 0.251) |
| Number of pregnancies | n/a | 6515 | 4131 | 3593 | 208,116 |

Shading and bold text indicate statistical significance. Key: CS = caesarean section. NC = nuchal cords, 95% CI = 95% confidence interval.

https://doi.org/10.1371/journal.pone.0239630.t002

True knots and stillbirth. The likelihood of stillbirth was significantly higher in pregnancies with a true knot in the umbilical cord at birth than in those without, with an OR of 3.96 (95% CI 1.85, 8.47; 7 studies of 930,314 births) (Fig 5) Heterogeneity was moderate (I^2 60%, $p < 0.05$).

True knots and other adverse outcomes. Results from these analyses are presented in Table 3. Statistically significant associations with modest effect sizes were found between true cord knots at birth and all of our secondary outcomes except for caesarean section. We were not able to look at the association between true knots at birth and low Apgar scores at 1 minute. No evidence of small study effects was seen for our main outcome of stillbirths in studies of true knots; Egger’s test gave a p value of 0.27 (Fig 6).

Abnormal coiling and intrauterine fetal death. We were unable to perform meta-analysis to analyse the relationship between abnormal coiling of the umbilical cord and stillbirth.

Abnormal coiling and other adverse outcomes. Outcome data are shown in Table 4. For all coiling analyses the hypo- or hypercoiled group was compared to the group with normal coiling only. The only exception is a study of hypocooiling by Strong, Finberg & Mattox [46] where the control group was all cords with an umbilical coiling index (UCI) above the 10th centile (so would also have included hypercoiled cords). Analyses were also performed combining all thresholds for hypo- and hypercoiling as in most cases variation was minimal; for UCI at birth the range of thresholds classed as hypocooiling was from <0.6 to <0.17 UCI, with one outlier [47] using <0.26 UCI. For hypercooiling the range was >0.26 to >0.48 UCI. Some studies
Fig 5. The association between true knots and the likelihood of stillbirth.
https://doi.org/10.1371/journal.pone.0239630.g005

Table 3. Analyses of the relationship between true knots and adverse outcomes.

First author	Year	Odds ratio (95% CI)	% weight (D>l)
Airas	2002	3.67 (1.34, 10.07)	20.18
Blickstein	1987	10.33 (0.49, 219.11)	5.18
Guzikowski	2014	317.00 (18.37, 5469.27)	5.81
Linde	2018	3.27 (2.76, 3.87)	30.80
McLennan	1988	11.31 (0.58, 219.25)	5.44
Räisänen	2013	2.99 (0.94, 9.50)	18.14
Tantbiroj	2009	0.78 (0.18, 3.36)	14.46
D+L Overall		3.96 (1.85, 8.47)	100.00
M-H Overall		3.21 (2.72, 3.78)	

Note: Weights are from random effects analysis.

Shading and bold text indicate statistical significance. Key: BW = birth weight, CS = caesarean section, EmCS = emergency caesarean section, NICU = neonatal intensive care unit, PTB = pre-term birth, SGA = small for gestational age.

https://doi.org/10.1371/journal.pone.0239630.t003
stated that they used <10th and <90th centile thresholds but did not specify the actual measurements to which these corresponded. Studies that measured UCI antenatally were not analysed with studies that measured coiling at birth; definitions for hypo- and hypercoiling from these studies also tended to differ, potentially due to the gestation at measurement.

Apgar score <7 at 1 minute was measured with UCI at birth by three studies [48–50] and antenatal UCI by another [51]. One study defined a low Apgar score at 1 minute as below 4 [52] and another combined all poor Apgar scores [47]. These studies were not included in this analysis. Thresholds for diagnosis of hyper- or hypocoiled cords are displayed on the forest plots and did not appear to lead to any variation in the effect sizes between studies. Sensitivity analyses were also performed for the SGA/FGR analyses based on whether a definition for this outcome was provided by the study, but no effect was seen. For hypercoiling the OR was reduced once studies with unclear definitions were removed but there was still a statistically significant association with SGA.

Abnormal cord length and adverse outcomes. We did not perform any analyses of the relationship between abnormal cord length and adverse outcomes due to variation in study definitions, as described earlier.
Cord prolapse and adverse outcomes. We were unable to perform meta-analysis to investigate the relationship between cord prolapse and any of our outcomes of interest due to a lack of available data.

A summary of normal cord characteristics, UCA incidences, diagnostic accuracy data, and associations between UCA and stillbirth is provided in Table 5.

| Table 4. Analyses of the relationship between abnormal coiling and adverse outcomes. |
|-----------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| | PTB <37w | 5 min Apgar <7 | 1 min Apgar <7 | NICU admission | BW <2500g | SGA/FGR (all definitions) | CS |
| Hypocoiling | | | | | | | |
| Odds ratio (95% CI) | 1.68 (1.18, 2.39) | 4.45 (2.04, 9.71) | 3.18 (1.36, 7.43) | 2.24 (0.83, 6.04) | 2.06 (0.91, 4.70) | 1.65 (0.76, 3.58) | 2.82 (2.13, 3.73) |
| I² | 0.00% (p = 0.800) | 78.6% (p = 0.00) | 62.5% (p = 0.069) | 74.9% (p<0.01) | 81.2% (p = 0.00) | 71.6% (p = 0.00) | 0.0% (p = 0.533) |
| No. of pregnancies | 2396 | 3982 | 1547 | 2123 | 2578 | 6150 | 4751 |
| Hypercoiling | 2.48 (1.52, 4.06) | 1.97 (0.93, 4.18) | 0.80 (0.45, 1.43) | 1.56 (0.85, 2.86) | 3.69 (1.79, 7.64) | 4.31 (1.89, 9.79) | 3.55 (1.74, 7.26) |
| Odds ratio (95% CI) | 0.00% (p = 0.135) | 78.5% (p = 0.00) | 0.00% (p = 0.707) | 32.4% (p = 0.193) | 78.9% (p = 0.00) | 84.3% (p = 0.00) | 82.0% (p = 0.00) |
| No. of pregnancies | 2275 | 3969 | 1550 | 2118 | 2781 | 6767 | 4820 |

Key: BW = birth weight, CS = caesarean section, FGR = fetal growth restriction, NICU = neonatal intensive care unit, PTB = pre-term birth, SGA = small for gestational age.

https://doi.org/10.1371/journal.pone.0239630.t004

Cord prolapse and adverse outcomes. We were unable to perform meta-analysis to investigate the relationship between cord prolapse and any of our outcomes of interest due to a lack of available data.

A summary of normal cord characteristics, UCA incidences, diagnostic accuracy data, and associations between UCA and stillbirth is provided in Table 5.

Table 5. Summary of results.

| Table 5. Summary of results. |
|-------------------------------|-----------------|-----------------|-----------------|
| Normal characteristics | Cord length at birth | Cord length at birth (39 weeks) | Umbilical coiling index at birth |
| | 56.0±11.1cm | 55.6±12.4cm | 0.24±0.10 coils/cm |
| Incidence of UCA | | | |
| Nuchal cord at birth | Any | 22% (19, 24%) | |
| One loop | 16% (13, 19%) | | |
| Two loops | 3% (2, 4%) | | |
| Three loops | 1% (0, 1%) | | |
| Four or five loops | <1% | | |
| Loose loop | 10% (4, 18%) | | |
| Tight loop | 5% (4, 7%) | | |
| Nuchal cord detected antenatally | Any | 28% (21, 36%) | |
| Cord prolapse | 0.17% | | |
| True knots at birth | At birth | 1% (0, 1%) | |

Diagnostic accuracy of ultrasound

Nuchal cord	All gestations	Sensitivity 80.5 (66.3, 89.6)	
	LR+ 6.01	LR- 0.17	DOR 26.6 (9.46, 74.7)

Early labour

| Associations between cord abnormalities and stillbirth |
|--|-----------------|-----------------|-----------------|-----------------|
| Nuchal cord at birth | Any nuchal cord | OR 1.11 (0.62, 1.98) | | |
| Single loop | | OR 0.87 (0.56, 1.35) | | |
| Multiple loops | | OR 2.36 (0.99, 5.62) | | |
| Nuchal cord detected antenatally | Any nuchal cord | OR 0.72 (0.17, 3.05) | | |
| True knots at birth | Any | OR 3.96 (1.85, 8.47) | | |

https://doi.org/10.1371/journal.pone.0239630.t005
Discussion

Our systematic review was able to combine a large amount of data to determine the normal characteristics of umbilical cord and report the frequency of abnormalities. Some cord abnormalities are common, for example nuchal cord was found in 22% of births (95% CI 19–24), whereas true knots and cord prolapse are less common (1% and 0.1% of births respectively). The definition of some abnormalities e.g. UCI were consistent between studies but others, such as the length of cord were heterogeneous, due to the thresholds applied to define abnormality which often overlapped with the normal ranges (e.g. pooled mean cord length 56.0±11cm, “long cord” defined as >59cm). Estimates of frequency also varied by gestation studied.

We selected stillbirth as our primary outcome, and identified secondary outcomes to reflect diagnosis of fetal compromise that was not sufficiently severe to cause fetal death or represent intervention that prevented it. None of the abnormalities studied showed a significant association with all outcomes and the observed odds ratios were in the range of 1 to 5. This review found the diagnostic accuracy of antenatal or antepartum ultrasound to identify cord abnormalities was modest; the diagnosis of nuchal cord was most accurate when performed in early labour (all studies had sensitivity >90% and specificity >83%). This may be because its incidence is highest at term and there is less time for fetal movements to affect whether the cord is around the fetal neck or not [36, 53]. There are insufficient data to determine whether other abnormalities of the umbilical cord can be reliably detected by antenatal ultrasound.

Strengths and limitations

This systematic review was strengthened by being conducted according to a pre-specified protocol by an international multidisciplinary review team to maximise the inclusion of relevant data. Up to 270,973 births were included in the meta-analyses giving robust estimates of effect size. However, this review is limited by variation in the definitions used to define both UCA and the associated outcomes, which restricted the number of analyses that can be reliably performed. We were also not able to identify any unpublished data suitable for inclusion, meaning that some of our effect sizes may be overstated due to publication bias.

Our proposed pathway for the differential effects of chronic vs. acute UCA is also limited in that we could mostly report evidence of UCA at birth without knowing how long it had been present, and could not address temporal variation (i.e. whether nuchal cord had been intermittently present). Due to the nature of our included studies we were also unable to distinguish between events that occurred antepartum vs. intrapartum or acute vs. chronic effects, nor could we look at the effects of combinations of UCA, which could affect the likelihood of adverse outcomes, for example shorter cords may lead to tighter nuchal cords and knots when they are present while longer cords may be more prone to entanglements (studies have shown the average cord length to be higher in cases with nuchal cord) [54]. Limb and body entanglements were also not recorded by the majority of studies.

Quality assessment showed that recording of UCA needs to be far more stringent, especially in nuchal cords; number of loops, tightness (which is unlikely to be a true dichotomous variable [55] and also may change during labour so tightness at birth may not reflect tightness antenatally) [56], and type of nuchal cord (A or B, indicating whether the cord is in a locked pattern or can easily be unwound) [57] should all be recorded along with whether other entanglements were present. Classification of stillbirth also requires improvement so that umbilical cord pathology is accurately recorded. Early classification systems such as the Wigglesworth classification did not include umbilical cord complications as a cause of perinatal death. Even when modern classification systems are applied, there is variation in recording of umbilical cord complications resulting in the estimated incidence of cord complications varying from

PLOS ONE | https://doi.org/10.1371/journal.pone.0239630 September 24, 2020 26 / 36
3.4% to 20%. A recent detailed analysis using the INCODE system suggested 19% of stillbirths are due to cord accident [58]. Variation in reporting of umbilical cord pathology would be reduced by a core outcome set for studies examining the association between UCA and adverse outcome.

Clinical implications

Our data demonstrate that UCA are associated with adverse perinatal outcomes. The broadest range of associations with stillbirth and associated adverse outcomes were seen for true knots, following by coiling abnormalities then nuchal cord, whereas the strongest effect sizes were for tight nuchal cords. Robust information about the diagnostic accuracy for UCA is only available for nuchal cords, in this case the pooled sensitivity and specificity of antenatal ultrasound was 80.5% and 86.6% respectively. Nuchal cords were only associated with adverse outcomes when either multiple or tight loops were present. On the basis of this information identifying an isolated nuchal cord antenatally is unlikely to prevent adverse outcome, but may increase intervention. However, combining identification of nuchal cord and abnormal umbilical artery flow increases the likelihood of intrapartum compromise [7, 59]. Further test-accuracy studies are needed, but must be appropriately blinded to prevent intervention altering the outcome.

We hypothesised that umbilical cord abnormalities act via a common pathway of restricting blood flow to the fetus which may be acute or chronic (Fig 1). Thus, we expected to see associations with stillbirth and the secondary outcomes investigated in this meta-analysis. Given the comparatively modest effect size of the relationship between UCA and the outcomes studied here, we conclude that all stillbirths and adverse perinatal outcomes should be thoroughly investigated, even when UCA are present at birth to determine whether a) histopathological changes consistent with UCA are present, including lesions of fetal vascular malperfusion [42], and b) to exclude other possible causes, in order that a robust link may be made between the outcome and antecedent cord complications. In the context of stillbirth, the triple risk model proposes that fetal deaths can result from a combination of fetal stressors, maternal factors, and placental or fetal vulnerability [60]. Applying this model, UCA is a fetal stressor, where stillbirths occur with combinations of risk factors such as reduced placental perfusion, and maternal factors such as maternal obesity, or maternal sleep position. Further studies are also needed to understand the biological mechanisms underpinning UCA and adverse outcomes. For some, such as tight loops of cord or a true knot, this may be from direct occlusion, whereas in hyper- or hypo-coiled cords this may reflect haemodynamic consequences or developmental abnormalities. Larger datasets applying consistent thresholds for abnormalities are required to accurately determine the relationship of UCA to adverse perinatal outcomes.

Conclusion

This systematic review and meta-analysis has demonstrated links between UCA and several adverse pregnancy outcomes, although not all analyses were adequately powered and some comparisons were restricted by the methodologies of the original studies. Further studies are needed to allow robust clinical recommendations on the management of UCA to be made. These should make use of the information presented about normal cord characteristics to inform thresholds for abnormalities and examine multiple UCA and a range of adverse perinatal outcomes. Ideally, UCA should also be recorded antenatally in blinded studies so that prognostic accuracy can be calculated. Until such data are available, clinicians should be cautious about assigning causality of an adverse outcome based on an isolated observation of UCA.
Supporting information

S1 Checklist. (DOC)

S1 Appendix. (DOCX)

S1 Data. (XLSX)

S2 Data. QUADAS-2 for studies of ultrasound accuracy for detection of nuchal cord. (DOCX)

Author Contributions

Conceptualization: Dexter J. L. Hayes, Alexander E. P. Heazell.

Data curation: Dexter J. L. Hayes, Jane Warland, Mana M. Parast, Robert W. Bendon, Junichi Hasegawa, Julia Banks, Laura Clapham.

Formal analysis: Dexter J. L. Hayes.

Methodology: Dexter J. L. Hayes, Alexander E. P. Heazell.

Writing – original draft: Dexter J. L. Hayes, Alexander E. P. Heazell.

Writing – review & editing: Dexter J. L. Hayes, Jane Warland, Mana M. Parast, Robert W. Bendon, Junichi Hasegawa, Alexander E. P. Heazell.

References

1. The Stillbirth Collaborative Research Network Writing Group. Causes of death among stillbirths. JAMA. 2011; 306: 2459–68. https://doi.org/10.1001/jama.2011.1823 PMID: 22166605

2. Crawford J. Cord Round the Neck. Acta Paediatr. 1962; 51: 594–603. https://doi.org/10.1111/j.1651-2227.1962.tb06586.x PMID: 14023723

3. Clapp JF, Stepanchak W, Hashimoto K, Ehrenberg H, Lopez B. The natural history of antenatal nuchal cords. Am J Obstet Gynecol. 2003; 189: 488–93. https://doi.org/10.1067/s0002-9378(03)00371-5 PMID: 14520223

4. Lal N, Deka D, Mittal S. Does the nuchal cord persist? An ultrasound and color-Doppler-based prospective study. J Obstet Gynaecol Res. 2008; 34: 314–317. https://doi.org/10.1080/1447-0756.2007.00695.x PMID: 18686343

5. Collins J. The human umbilical cord. RCOG Press. 2000.

6. Adinma JIB. Effect of cord entanglement on pregnancy outcome. Int J Gynaecol Obstet. 1990; 32: 15–18.

7. Abdallah A, Eldorf A, Sallam S, Ahmed S, Shawky M, Nawara M, et al. Nuchal cord: impact of umbilical artery Doppler indices on intrapartum and neonatal outcomes: a prospective cohort study. J Matern Neonatal Med. 2018; 1–12. https://doi.org/10.1080/14767058.2018.1463984 PMID: 29639952

8. Onderoğlu LS, Dursun P, Durukan T. Perinatal features and umbilical cord blood gases in newborns complicated with nuchal cord. Turk J Pediatr. 50: 466–70. Available: http://www.ncbi.nlm.nih.gov/pubmed/19102052 PMID: 19102052

9. Linde LE, Rasmussen S, Kessler J, Ebbing C. Extreme umbilical cord lengths, cord knot and entanglement: Risk factors and risk of adverse outcomes, a population-based study. Räisänen SH, editor. PLoS One. 2018; 13: e0194814. https://doi.org/10.1371/journal.pone.0194814 PMID: 29584790

10. Gabbay-Beniziv R, Maman M, Wiznitzer A, Linder N, Yogev Y. Umbilical cord prolapse during delivery–risk factors and pregnancy outcome: a single center experience. J Matern Neonatal Med. 2014; 27: 14–17. https://doi.org/10.3109/14767058.2013.799651 PMID: 23617536

11. Pergialiotis V, Kotrogianni P, Koukila V, Christopoulos-Timogiannakis E, Papantonioi N, Daskalakis G. Umbilical cord coiling index for the prediction of adverse pregnancy outcomes: a meta-analysis and
12. Narang Y, Vaid NB, Jain S, Sunjea A, Guleria K, Faridi MMA, et al. Is nuchal cord justified as a cause of obstetrician anxiety? Arch Gynecol Obstet. 2014; 289: 128–31. Available: http://www.ncbi.nlm.nih.gov/pubmed/24864269
13. Khan E, Ndoumbe Mbalo J, Dohbit JS. Risk factors for nuchal cord entanglement at delivery. Int J Gynecol Obstet. 2014; 289: 795–801. Available: http://www.ncbi.nlm.nih.gov/pubmed/24864269
14. Larson JD, Rayburn WF, Crosby S, Thurnau GR. Multiple nuchal cord entanglements and intrapartum complications. Am J Obstet Gynecol. 1995; 173: 1228–31. Available: http://www.ncbi.nlm.nih.gov/pubmed/7483266
15. Singh G, Sidhu K. Nuchal Cord: A retrospective analysis. Med J Armed Forces India. 2008; 64: 237–240. Available: http://www.ncbi.nlm.nih.gov/pubmed/27585242
16. Moher D, Liberati A, Tetzlaff J, Altman DG. Guidelines for Systematic Reviews and Meta-Analyses: The PRISMA Statement. [cited 15 May 2019]. Available: http://www.ncbi.nlm.nih.gov/pubmed/19621072
17. Ruiter L, Kok N, Limpens J, Derks J, de Graaf I, Mol B, et al. Incidence of and risk indicators for vasa praevia: a systematic review. BJOG An Int J Obstet Gynaecol. 2016; 123: 1287–1293. Available: http://www.ncbi.nlm.nih.gov/pubmed/27223167
18. Khong TY, Mooney EE, Ariel I, Balmus NCM, Boyd TK, Brundler M-A, et al. Sampling and Definitions of Placental Lesions: Amsterdam Placental Workshop Group Consensus Statement. Arch Pathol Lab Med. 2016; 140: 55–73. Available: http://www.ncbi.nlm.nih.gov/pubmed/25810908
19. NIH. Study Quality Assessment Tools. [cited 10 Sep 2019]. Available: https://www.nihbi.nih.gov/health-topics/study-quality-assessment-tools
20. Whiting P, Rutjes A, Westwood M, Mallett S, Deeks J, Reitsma J, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med. 2011; 18: 529–36.
21. StataCorp. Stata Statistical Software. College Station, TX: StataCorp LLC; 2017.
22. Higgins J, Thomas J, Chandler J, Cumpston M, Li T, Page M, et al. Cochrane Handbook for Systematic Reviews of Interventions. John Wiley & Sons; 2019.
23. Nyaga VN, Arbyn M, Aerts M. Metaprop : a Stata command to perform meta-analysis of binomial data. Arch Public Heal. 2014; 72: 39. Available: http://www.ncbi.nlm.nih.gov/pubmed/24864269
24. Harbord RM, Whiting P, Metand: Meta-analysis of Diagnostic Accuracy Using Hierarchical Logistic Regression. Stat J Prom Cons Stat Stata. 2009; 9: 211–229. Available: http://www.ncbi.nlm.nih.gov/pubmed/24864269
25. Strong TH, Jarles DL, Vega JS, Feldman DB. The umbilical coil index. Am J Obstet Gynecol. 1994; 170: 29–32. Available: http://www.ncbi.nlm.nih.gov/pubmed/24864269
26. Yamamoto Y, Aoki S, Oba MS, Seki K, Hirahara F. Relationship Between Short Umbilical Cord Length and Adverse Pregnancy Outcomes. Fetal Pediatr Pathol. 2016; 35: 81–87. Available: http://www.ncbi.nlm.nih.gov/pubmed/24864269
27. Tamrakar SR. Incidence of nuchal cord, mode of delivery and perinatal outcome: a notable experience in Dhulikhel Hospital—Kathmandu University Hospital. Nepal Med Coll J. 2013; 15: 40–5. Available: http://www.ncbi.nlm.nih.gov/pubmed/24864269
28. Strong TH, Jarles DL, Vega JS, Feldman DB. The umbilical coil index. Am J Obstet Gynecol. 1994; 170: 29–32. Available: http://www.ncbi.nlm.nih.gov/pubmed/24864269
29. Sørnes T. Umbilical cord knots. Acta Obstet Gynecol Scand. 2000; 79: 157–9. Available: http://www.ncbi.nlm.nih.gov/pubmed/10716294
30. Akokay H, Büke B, Pekcan MK, Şahin K, Uysal G, Yeğin GF, et al. Nuchal cord: is it really the silent risk of pregnancy? J Matern Fetal Neonatal Med. 2017; 30: 1730–1733. Available: http://www.ncbi.nlm.nih.gov/pubmed/24864269
31. Peregrine E, O’Brien P, Jauniaux E. Ultrasound detection of nuchal cord prior to labor induction and the risk of cesarean section: Editorial comment. Obstet Gynecol Surv. 2005; 60: 506–507. Available: http://dx.doi.org/10.1097/01.ogx.0001272819.27668.34
32. Qin Y, Wang CC, Lau TK, Rogers MS. Color ultrasonography: a useful technique in the identification of nuchal cord during labor. Ultrasound Obstet Gynecol. 2000; 15: 413–7. Available: http://dx.doi.org/10.1046/j.1469-0705.2000.00113.x
33. Aksoy U. Prenatal color Doppler sonographic evaluation of nuchal encirclement by the umbilical cord. J Clin Ultrasound. 31: 473–7. Available: http://dx.doi.org/10.1002/jcu.10211 PMID: 14595737
34. González-Quintero VH, Tolaymat L, Muller AC, Izquierdo L, O’Sullivan MJ, Martín D. Outcomes of pregnancies with sonographically detected nuchal cords remote from delivery. J Ultrasound Med. 2004; 23: 43–7. Available: http://www.ncbi.nlm.nih.gov/pubmed/14756352 https://doi.org/10.7863/jum.2004.23.1.43 PMID: 14756352

35. Assimakopoulos E, Zafrakas M, Garmiris P, Athanasiadis AP, Dragoumis K, et al. Nuchal cord detected by ultrasound at term is associated with mode of delivery and perinatal outcome. Eur J Obstet Gynecol Reprod Biol. 2005; 123: 188–92. https://doi.org/10.1016/j.ejogrb.2005.02.026 PMID: 15941615

36. Hanaoka U, Yanagihara T, Tanaka H, Hata T. Comparison of three-dimensional, two-dimensional and color Doppler ultrasound in predicting the presence of a nuchal cord at birth. Ultrasound Obstet Gynecol. 2002; 19: 471–4. https://doi.org/10.1046/j.1469-0705.2002.00670.x PMID: 11982980

37. Peregrine E, O’Brien P, Jauniaux E. Ultrasound detection of nuchal cord prior to labor induction and the risk of Cesarean section. Ultrasound Obstet Gynecol. 2005; 25: 160–4. https://doi.org/10.1002/ uog.1767 PMID: 15543520

38. Carey JC, Rayburn WE. Nuchal cord encirclements and birth weight. J Reprod Med. 2003; 48: 460–462. Available: http://www.ncbi.nlm.nih.gov/pubmed/12856519 PMID: 12856519

39. Dhar KK, Ray SN, Dhall GI. Significance of nuchal cord. J Indian Med Assoc. 1995; 93: 451–3. Available: http://www.ncbi.nlm.nih.gov/pubmed/8773129 PMID: 8773129

40. Ghosh GS, Gudmundsson S. Nuchal cord in post-term pregnancy—relationship to suspected intrapartum fetal distress indicating operative intervention. J Perinat Med, 2008; 36: 142–4. https://doi.org/10.1515/JP.2008.012 PMID: 18212153

41. Miser WF. Outcome of infants born with nuchal cords. J Fam Pract. 1992; 34: 441–5. Available: http://www.ncbi.nlm.nih.gov/pubmed/1556538 PMID: 1556538

42. Tantbirojn P, Saleemuddin A, Sirois K, Crum CP, Boyd TK, Tworoger S, et al. Gross abnormalities of the umbilical cord: related placental histology and clinical significance. Placenta. 2009; 30: 1083–8. https://doi.org/10.1016/j.placenta.2009.09.005 PMID: 19853300

43. Vintzileos AM, Egan JFX, Rodis JF, Campbell WA, Wolf EJ, Balducci J. Obstetrical factors associated with nuchal cord in a high-risk population. J Matern Neonatal Med. 1992; 1: 196–201. https://doi.org/10.3109/14767059209161918

44. Wang L, Kuromaki K, Kawabe A, Kikugawa A, Matsunaga S, Takagi A. Nuchal cord complication in male small for gestational age increases fetal distress risk during labor. Taiwan J Obstet Gynecol. 2016. https://doi.org/10.1016/j.tjog.2016.03.002 PMID: 27590384

45. Vasa R, Dimitrov R, Patel S. Nuchal cord at delivery and perinatal outcomes: Single-center retrospective study, with emphasis on fetal acid-base balance. Pediatr Neonatol. 2018. https://doi.org/10.1016/J.PEDNEO.2018.03.002 PMID: 29581058

46. Strong TH, Finberg HJ, Mattox JH. Antepartum diagnosis of noncoiled umbilical cords. Am J Obstet Gynecol. 1994; 170: 1729–31. https://doi.org/10.1016/S0002-9378(94)70348-5 PMID: 8203433

47. Mittal A, Nanda S, Sen J. Antenatal umbilical coiling index as a predictor of perinatal outcome. Arch Gynecol Obstet. 2015; 291: 763–768. https://doi.org/10.1007/s00404-014-3456-5 PMID: 25209352

48. Ma’ayeh M, McClennen E, Chamchad D, Geary M, Brest N, Gerson A. Hypercoiling of the umbilical cord in uncomplicated singleton pregnancies. J Perinat Med. 2017; 46: 593–598. Available: https://www.degruyter.com/view/j/jpme.ahead-of-print/jpm-2017-0034/jpm-2017-0034.xml

49. Chholak D, Gupta P, Khajotia S. Study to evaluate association of umbilical cord index and perinatal outcome. Int J Reprod Contraception. Obstet Gynecol. 2017; 6: 408–412.

50. Erkal T, Lacin S, Altunyurt S, Saygili U, Cinar O, Mumcu A. Umbilical coiling index: is it a marker for the foetus at risk? Br J Clin Pract. 1996; 50: 254–6. Available: http://www.ncbi.nlm.nih.gov/pubmed/8794602 PMID: 8794602

51. Jo Y, Jang D, Lee G. The sonographic umbilical cord coiling in late second trimester of gestation and perinatal outcomes. Int J Med Sci. 2011; 8: 594–598. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3198255/ https://doi.org/10.7150/ijms.8.594 PMID: 2202212

52. Devaru D, Thusoou M. Umbilical Coiling Index & the Perinatal Outcome. J Obstet Gynecol India. 2012; 62: 43–46. https://doi.org/10.1007/s13224-012-0158-4 PMID: 23372289

53. Jauniaux E, Ramsay B, Peellaerts C, Scholler Y. Perinatal features of pregnancies complicated by nuchal cord. Am J Perinatol. 1995; 12: 255–8. https://doi.org/10.1055/s-2007-994467 PMID: 1515/JPM.2008.012 PMID: 18212153

54. Balkawade NU, Shinde MA. Study of Length of Umbilical Cord and Fetal Outcome: A Study of 1,000 Deliveries. J Obstet Gynecol India. 2012; 62: 520–525. https://doi.org/10.1007/s13224-012-0194-0 PMID: 24082551

55. Henry E, Andres RL, Christensen RD. Neonatal outcomes following a tight nuchal cord. J Perinatol. 2013; 33: 231–4. https://doi.org/10.1038/jp.2012.79 PMID: 22899359
56. Collins JH. Tight nuchal cord morbidity and mortality. Am J Obstet Gynecol. 1999; 180: 251. Available: http://www.ncbi.nlm.nih.gov/pubmed/9914613 https://doi.org/10.1016/s0002-9378(11)70005-9 PMID: 9914613
57. Collins JH. Nuchal cord type A and type B. Am J Obstet Gynecol. 1997; 177: 94.
58. Hammad IA, Blue NR, Allshouse AA, Silver RM, Gibbins KJ, Page JM, et al. Umbilical Cord Abnormalities and Stillbirth. Obstet Gynecol. 2020; 1. https://doi.org/10.1097/aog.0000000000003676 PMID: 32028503
59. Zhao F, Geng Q, Kong F, Ning Y. Quantitative analysis of tightness of Nuchal cord and its relationship with Fetal intraterine distress. Int J Clin Exp Med. 2015; 8: 17507–17514. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4694241/ PMID: 26770341
60. Warland J, Mitchell EA. A triple risk model for unexplained late stillbirth. BMC Pregnancy Childbirth. 2014; 14: 142. https://doi.org/10.1186/1471-2393-14-142 PMID: 24731396
61. Adesina KT, Ogunlaja OO, Aboyeji AP, Olarinoye OA, Adeniran AS, Fawole AA, et al. Umbilical cord parameters in Ilorin: correlates and foetal outcome. East Afr Med J. 2014; 91: 274–80. Available: http://www.ncbi.nlm.nih.gov/pubmed/26862652 PMID: 26862652
62. Adesina KT, Ogunlaja OA, Olarinoye AO, Aboyeji AP, Akande HJ, Fawole AA, et al. An observation of umbilical coiling index in a low risk population in Nigeria. J Perinat Med. 2018; 46. https://doi.org/10.1515/jpm-2017-0170 PMID: 28915121
63. Agboola A. Correlates of human umbilical cord length. Int J Gynaecol Obstet. 1978; 16: 238–239.
64. Aibar L, Puertas A, Valverdes A, Carrillo MP, Montoya F. Fetal sex and perinatal outcomes. J Perinat Med. 2012; 40: 271–6. https://doi.org/10.1515/jpm-2011-0137 PMID: 22505506
65. Airas U, Heinonen S. Clinical significance of true umbilical knots: a population-based analysis. Am J Perinatol. 2002; 19: 127–32. https://doi.org/10.1055/s-2002-25311 PMID: 12012287
66. Algreisi F, Brown R, Shrim A, Albasti SF, Shamarami H. Effect of long and short umbilical cord on perinatal outcome. Int J Reprod Contraception, Obstet Gynecol. 2016; 5: 4228–4231. Available: http://www.ijrcog.org/index.php/ijrcog/article/view/27
67. Alnakash A, Ali E. Effect of Nuchal Cord on Mode of Delivery and Perinatal Outcome. Iraqi Postgrad Med J. 2018 [cited 13 Sep 2018]. Available: https://www.iasj.net/iasj?func=article&aId=147764
68. Assimakopoulos E, Zafarakas M, Garmiris P, Goulis DG, Athanasiadis AP, Dragoumis K, et al. Nuchal cord detected by ultrasound at term is associated with mode of delivery and perinatal outcome. Eur J Obstet Gynecol Reprod Biol. 2005; 123: 188–92. https://doi.org/10.1016/j.ejogr.2005.02.026 PMID: 15941615
69. Aviram A, Ashwal E, Hadar E, Wiznitzer A, Yogev Y. Decreased perception of fetal movements at term among nulliparous women: old complaint, new insights? Am J Obstet Gynecol. 2015; 212: S80. http://dx.doi.org/10.1016/j.ajog.2014.10.171
70. Balsak D, Erol O, Töz E, Tahaoğlu AE, Tögrül C, Eser A, et al. Perinatal outcomes of sonographically detected nuchal cord in southeastern Turkey. Clin Exp Obstet Gynecol. 2017; 44: 395–397. https://doi.org/10.12891/ceog3278.2017 PMID: 29949280
71. Bättling TH, Klück FK, Bräcker HP, Claey s J. Characteristic changes of the pre-ejection period of the human fetal heart during umbilical cord complications. J Perinat Med. 1980; 8: 183–94. Available: http://www.ncbi.nlm.nih.gov/pubmed/7431191 PMID: 7431191
72. Begum A, Sultana H, Hasan R, Ahmed M. a Clinical Study of Fetal Outcome in Cases of Nuchal Cord. JAFMC Bangladesh. 2011; 7: 25–27. Available: https://www.banglajol.info/index.php/JAFMC/article/view/8622
73. Behbehani S, Patenaude V, Abenhaim HA. Maternal Risk Factors and Outcomes of Umbilical Cord Prolapse: A Population-Based Study. J Obstet Gynaecol Can. 2016/02/14. 2016; 38: 23–28. https://doi.org/10.1016/j.jogc.2015.10.008 PMID: 26872752
74. Bernad ES, Craina M, Tudor A, Bernad SI. Perinatal outcome associated with nuchal umbilical cord. Clin Exp Obstet Gynecol. 2012; 39: 494–7. Available: http://www.ncbi.nlm.nih.gov/pubmed/23444751 PMID: 23444751
75. Bjørn K Jr., Bjørø K. Gross pathology of the placenta in intraterine growth retardation. Ann Chir Gynaecol. 1981/01/01. 1981; 70: 316–322. Available: http://www.ncbi.nlm.nih.gov/pubmed/7337404 PMID: 7337404
76. Blickstein I, Shoham-Schwartz Z, Lancet M. Predisposing factors in the formation of true knots of the umbilical cord—analysis of morphometric and perinatal data. Int J Gynaecol Obstet. 1987; 25: 395–8. Available: http://www.ncbi.nlm.nih.gov/pubmed/2889634 https://doi.org/10.1016/0020-7292(87)90346-8 PMID: 2889634
77. Bohițea RE, Turcă N, Cîrșcioiu M. Prenatal ultrasound diagnosis and pregnancy outcome of umbilical cord knot—debate regarding ethical aspects of a series of cases. J Med Life. 2016; 9: 297–301. Available: http://www.ncbi.nlm.nih.gov/pubmed/27974939 PMID: 27974939

78. Brant HA, Lewis B V. Prolapse of the umbilical cord. Lancet (London, England). 1966; 2: 1443–5. Available: http://www.ncbi.nlm.nih.gov/pubmed/4163444

79. Carey JC, Rayburn WF. Nuchal cord encirclements and risk of stillbirth. Int J Gynaecol Obstet. 2000; 69: 173–4. Available: http://www.ncbi.nlm.nih.gov/pubmed/10802092 https://doi.org/10.1016/s0020-7292(99)00219-2 PMID: 10802092

80. Carter E, Chu C, Thompson Z, . . . MT-J of, 2018 undefined. True knot at the time of delivery: electronic fetal monitoring characteristics and neonatal outcomes. nature.com. Available: https://www.nature.com/articles/s41372-018-0250-4

81. Caspi E, Lotan Y, Schreyer P. Prolapse of the cord: reduction of perinatal mortality by bladder instillation and cesarean section. Isr J Med Sci. 1983; 19: 541–5. Available: http://www.ncbi.nlm.nih.gov/pubmed/6862862 PMID: 6862862

82. Chaurasia BD. Single umbilical artery with caudal defects in human fetuses. Teratology. 1974; 9: 287–97. https://doi.org/10.1002/tera.1420090308 PMID: 4857608

83. Chitra T, Sushanth YS. Umbilical coiling index as a marker of perinatal outcome: an analytical study. Obs Gynecol Int. 2012; 2012: 213689. https://doi.org/10.1155/2012/213689 PMID: 22496697

84. Clapp JF, Stepanchak W, Hashimoto K, Ehrenberg H, Lopez B. The natural history of antenatal nuchal cords. Am J Obstet Gynecol. 2003; 189: 488–93. Available: http://www.ncbi.nlm.nih.gov/pubmed/14520223 https://doi.org/10.1067/s0002-9378(03)00371-5 PMID: 14520223

85. D’Antona D, Aldrich CJ, Spence JA, Delpy D, Reynolds EO, Wyatt JS. Effect of nuchal cord on fetal cerebral haemodynamics and oxygenation measured by near infrared spectroscopy during labour. Eur J Obstet Gynecol Reprod Biol. 1995; 59: 205–9. Available: http://www.ncbi.nlm.nih.gov/pubmed/7657017 https://doi.org/10.1002/2243(95)02041-p PMID: 7657017

86. de Laat MWM, Franz A, Bots ML, Visser GHA, Nikkels PGJ. Umbilical Coiling Index in Normal and Complicated Pregnancies. Obstet Gynecol. 2006; 107: 1049–1055. https://doi.org/10.1097/01.AOG.000020917.84185.15 PMID: 16648410

87. Degani S, Lewinsky RM, Berger H, Spiegel D. Sonographic estimation of umbilical coiling index and correlation with Doppler flow characteristics. Obstet Gynecol. 1995; 86: 990–3. Available: http://www.ncbi.nlm.nih.gov/pubmed/7501354 https://doi.org/10.1016/0029-7844(95)00307-d PMID: 7501354

88. Degani S, Leibovich Z, Shapiro I, Gonen R, Ohel G. Early second-trimester low umbilical coiling index predicts small-for-gestational-age fetuses. J Ultrasound Med. 2001; 20: 1183–1188. https://doi.org/10.7863/jum.2001.20.11.1183 PMID: 11758023

89. Dilbaz B, Ozturkoglu E, Dilbaz S, Ozturk N, Sivaslioglu AA, Haberal A. Risk factors and perinatal outcomes associated with umbilical cord prolapse. Arch Gynecol Obstet. 2006; 274: 104–7. https://doi.org/10.1007/s00404-006-0142-2 PMID: 16538441

90. Buyukkayaci Duman N, Topuz M, Bostanci MO, Gorkem U, Yuksel Kocak D, Togrul C, et al. The effects of umbilical cord entanglement upon labor management and fetal health: retrospective case control study. J Matern Neonatal Med. 2018; 31: 656–660. https://doi.org/10.1080/14767058.2017.1293033 PMID: 28282778

91. El Behery MM, Nouh AA, Alanwar AM, Diab AE. Effect of umbilical vein blood flow on perinatal outcome of fetuses with lean and/or hypo-coiled umbilical cord. Arch Gynecol Obstet. 2011; 283: 53–8. https://doi.org/10.1007/s00404-009-1272-0 PMID: 19898858

92. Enakpene CA, Omigbodun AO, Arowojolu AO. Perinatal mortality following umbilical cord prolapse. Int J Gynaecol Obstet. 2006; 95: 44–5. https://doi.org/10.1016/j.ijgo.2006.05.030 PMID: 16828093

93. Ercal T, Lacin S, Altunyurt S, Saygili U, Cinar O, Mumcu A. Umbilical coiling index: is it a marker for the foetus at risk? Br J Clin Pr. 1996/07/01. 1996; 50: 254–256.

94. Ernst LM, Minturn L, Huang MH, Curry E, Su EJ. Gross patterns of umbilical cord coiling: correlations with placental histology and stillbirth. Placenta. 2013/05/07. 2013; 34: 583–588. https://doi.org/10.1016/j.placenta.2013.04.002 PMID: 23642640

95. Ertuğrul S, Gün I, Mungen E, Muḥçu M, Kılıç S, Atay V. Evaluation of neonatal outcomes in elective repeat cesarean delivery at term according to weeks of gestation. J Obstet Gynaecol Res. 2013; 39: 105–12. https://doi.org/10.1111/j.1447-0756.2012.01951.x PMID: 2289289

96. Ezimokhai M, Rizk DE, Thomas L. Maternal risk factors for abnormal vascular coiling of the umbilical cord. Am J Perinatol. 2000; 17: 441–5. https://doi.org/10.1055/s-2000-13452 PMID: 11142396

97. Gabbay-Ben Ziv R, Maman M, Wiznitzer A, Linder N, Yoeg Y. Umbilical cord prolapse during delivery—risk factors and pregnancy outcome: a single center experience. J Matern Neonatal Med. 2014; 27: 14–17. https://doi.org/10.3109/14767058.2013.799651 PMID: 23617536
Umbilical cord characteristics and adverse pregnancy outcomes

98. Gaikwad P, Patole K. Umbilical coiling index and perinatal outcome. MVP Journal of Medical Sciences 2016; 3(2):118–121. https://doi.org/10.18311/mvpjms/2016/v3i2/744

99. Georgiadis L, Kesi-Nisula L, Harju M, Raisanen S, Georgiadis S, Hannila ML, et al. Umbilical cord length in singleton gestations: a Finnish population-based retrospective register study. Placenta. 2014/02/25. 2014; 35: 275–280. https://doi.org/10.1016/j.placenta.2014.02.001 PMID: 24560495

100. Ghezzi F, Raio L, Di Naro E, Franchi M, Brühwiler H, D’Addario V, et al. First-trimester sonographic umbilical cord diameter and the growth of the human embryo. Ultrasound Obstet Gynecol. 2001; 18: 348–51. https://doi.org/10.1046/j.1460-1555.2001.00507.x PMID: 11778994

101. Gibbons C, O’Herlihy C, Murphy J. Umbilical cord prolapse—changing patterns and improved outcomes: a retrospective cohort study. BJOG An Int J Obstet Gynaecol. 2014; 121: 1705–1708. https://doi.org/10.1111/1471-0528.12890 PMID: 24931454

102. Gupta A, Kakkar T, Pathania H, Singh V. Impact of Nuchal Cord on Intrapartum Complications, Mode of Delivery and Perinatal Outcome. J Evol Med Dent Sci. 2018; 7. https://doi.org/10.14260/jemds/2018/253

103. Guzikowski W, Kowalczysz D, Więcek J. Diagnosis of true umbilical cord knot. Arch Med Sci. 2014; 10: 91–5. https://doi.org/10.5114/aoms.2013.33068 PMID: 24701220

104. Hanaoka U, Yanagihara T, Tanaka H, Hata T. Comparison of three-dimensional, two-dimensional and color Doppler ultrasound in predicting the presence of a nuchal cord at birth. Ultrasound Obstet Gynecol. 2002; 19: 471–4. https://doi.org/10.1046/j.1460-1555.2002.00670.x PMID: 11982980

105. Hashimoto K, Clapp JF. The effect of nuchal cord on amniotic fluid and cord blood erythropoietin at delivery. J Soc Gynecol Investig. 2003; 10: 406–11. Available: http://www.ncbi.nlm.nih.gov/pubmed/14519481 https://doi.org/10.1016/s1071-5576(03)00139-4 PMID: 14519481

106. Hehir MP, Hartigan L, Mahony R. Perinatal death associated with umbilical cord prolapse. J Perinat Med. 2017; 45. https://doi.org/10.1515/jpm-2016-0223 PMID: 27831923

107. Hershkovitz R, Silberstein T, Sheiner E, Shoham-Vardi I, Holcberg G, Katz M, et al. Risk factors associated with true knots of the umbilical cord. Eur J Obs Gynecol Reprod Biol. 2001/08/23. 2001; 98: 36–39.

108. Jauniaux E, Ramsay B, Peellaerts C, Scholler Y. Perinatal features of pregnancies complicated by nuchal cord. Am J Perinatol. 1995; 12: 255–8. https://doi.org/10.1055/s-2007-994467 PMID: 7575829

109. Jaya DS, Kumar NS, Bai LS. Anthropometric indices, cord length and placental weight in newborns. Indian Pediatr. 1995/11/01. 1995; 32: 1183–1188. PMID: 8772867

110. Jessop FA, Lees CC, Pathak S, Hook CE, Sebire NJ. Umbilical cord coiling: clinical outcomes in an unselected population. J Matern Fetal Neonatal Med. 2017; 30: 434–436. https://doi.org/10.1080/14767058.2015.1342065 PMID: 26240566

111. Joshi K, Saxena R, Bhat M, Lomrod Y, Verma K. Incidence of Cord around the Neck and Its Effects on Labour and Neonatal Outcome. Adv Hum Biol. 2017; 7: 15–18. https://doi.org/10.4103/2321-8568.199535

112. Kahana B, Sheiner E, Levy A, Lazer S, Mazor M. Umbilical cord prolapse and perinatal outcomes. Int J Gynaecol Obstet. 2004; 84: 127–32. https://doi.org/10.1016/S0090-7322(03)00333-3 PMID: 14871514

113. Namli Kalem M, Kalem Z, Akgun N, Yuce E, Aktas H. The Journal of Maternal-Fetal & Neonatal Medicine Investigation of possible maternal and fetal factors which affect umbilical coiling index. [cited 8 Jan 2020]. https://doi.org/10.1080/14767058.2017.1396311 PMID: 29065736

114. Kashanian M, Akbarian A, Kouhpayehzadeh J. The umbilical coiling index and adverse perinatal outcome. Int J Gynecol Obstet. 2006; 95: 8–13. https://doi.org/10.1016/j.ijgo.2006.05.029 PMID: 16860802

115. Katsura D, Takahashi Y, Shimizu T, Watanbe Y, Iwagaki S, Murakami T, et al. Prenatal measurement of umbilical cord length using magnetic resonance imaging. Eur J Obstet Gynecol Reprod Biol. 2018; 231: 142–146. Available: https://www.sciencedirect.com/science/article/pii/S0020729218310522 https://doi.org/10.1016/j.ejogrb.2018.10.037 PMID: 30388608

116. Kesrouani A, Daher A, Maoula A, Attieh E, Richa S. Impact of a prenatally diagnosed nuchal cord on obstetrical outcome in an unselected population. J Matern Fetal Neonatal Med. 2017; 30: 434–436. https://doi.org/10.1080/14767058.2016.1174993 PMID: 27049480

117. Kobayashi N, Aoki S, Oba MS, Takahashi T, Hirahara F. Effect of Umbilical Cord Entanglement and Position on Pregnancy Outcomes. Obstet Gynecol Int. 2015; 2015: 342065. https://doi.org/10.1155/2015/342065 PMID: 26240566

118. Kong CW, Lee DHY, Chan LW, To WWK. Impact of nuchal cord on fetal outcomes, mode of delivery, and management: a questionnaire survey of pregnant women. Hong Kong Med J = Xianggang yi xue za zhi. 2015; 21: 143–8. https://doi.org/10.12809/hkmj144349 PMID: 25756276
119. LaMonica GE, Wilson ML, Fulillove AM, Rayburn WE. Minimum cord length that allows spontaneous vaginal delivery. J Reprod Med. 2008; 53: 217–9. Available: http://www.ncbi.nlm.nih.gov/pubmed/18441729 PMID: 18441729

120. Larson JD, Rayburn WF, Crosby S, Thurnau GR. Multiple nuchal cord entanglements and intrapartum complications. Am J Obstet Gynecol. 1995/10/01. 1995; 173: 1228–1231.

121. Larson JD, Rayburn WF, Harlan VL. Nuchal cord entanglements and gestational age. Am J Perinatol. 1997; 14: 555–7. https://doi.org/10.1055/s-2007-994333 PMID: 9394166

122. Lipitz S, Seidman DS, Gale R, Stevenson DK, Alcalay M, Menczer J, et al. Is fetal growth affected by cord entanglement? J Perinatol. 1993; 13: 385–8. Available: http://www.ncbi.nlm.nih.gov/pubmed/8263624 PMID: 8263624

123. Lolis D, Stefos T, Ziakas G, Sotiriadis A. Birth characteristics of 5,278 pregnancies. J Matern Neonatal Med. 1998; 7: 32–35. https://doi.org/10.3109/14767059809022650

124. Machin GA, Ackerman J, Gilbert-Barness E. Abnormal umbilical cord coiling is associated with adverse perinatal outcomes. Pediatr Dev Pathol. 2000; 3: 462–471. https://doi.org/10.1055/s-2000-29135 PMID: 10890931

125. Malpas P. Length of the Human Umbilical Cord at Term. Br Med J. 1964; 1: 673–674. https://doi.org/10.1136/bmj.1.5384.673 PMID: 14096463

126. Mariya T, Fujibe Y, Shinkai S, Sugita N, Suzuki M, Endo T, et al. Multiple part umbilical cord entanglement and neonatal outcomes. Taiwan J Obstet Gynecol. 2018; 57: 672–676. https://doi.org/10.1016/j.tjog.2018.09.001 PMID: 30342649

127. Matolbattista JM, Hollier LM, Yeomans SM, Day M-C, Sosa A, et al. Effects of nuchal cord on birthweight and immediate neonatal outcomes. Am J Perinatol. 2005; 22: 83–5. https://doi.org/10.1055/s-2005-837737 PMID: 15731986

128. Markov D, Milanovka K, Dimitrov A, Marinov B, Nikolov A, Ivanov S. [Nuchal cord between 37 and 42 completed weeks of gestation—diagnosis and prognostic value]. Akush Ginekol (Sofia). 2007; 46: 3–10. Available: http://www.ncbi.nlm.nih.gov/pubmed/18335605

129. McLennan H, Price E, Urbanska M, Craig N, Fraser M. Umbilical cord knots and encirclements. Aust N Z J Obstet Gynaecol. 1988; 28: 116–119. Available: http://www.ncbi.nlm.nih.gov/pubmed/3228405 https://doi.org/10.1111/j.1479-828x.1988.tb01637.x PMID: 3228405

130. Naeye RL. Umbilical cord length: clinical significance. J Pediatr. 1985; 107: 278–81. Available: http://www.ncbi.nlm.nih.gov/pubmed/4020556 https://doi.org/10.1016/s0022-3476(85)80149-9 PMID: 4020556

131. Najafi L, Khamseh ME, Kashanian M, Younesi L, Abedini A, Valojerdi AE, et al. Antenatal umbilical coiling index in gestational diabetes mellitus and non-gestational diabetes pregnancy. Taiwan J Obstet Gynecol. 2018; 57: 487–492. https://doi.org/10.1016/j.tjog.2018.04.033 PMID: 30122566

132. Ndolo JM, Vinayak S, Silaba MO, Stones W. Antenatal umbilical coiling index and newborn outcomes: cohort study. NcbiNlmNihGov. 2017; 7: 21. https://dx.doi.org/10.4103/jcis.JCIS_111_16

133. Nnatu S. Length of human umbilical cord in african population. J Natl Med Assoc. 1960; 83: 33–36. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3782929/pdf/jnma00879-0041.pdf

134. Ogueh O, Al-Tarkait A, Vallerand D, Rouah F, Morin L, Benjamin A, et al. Obstetrical factors related to nuchal cord. Acta Obstet Gynecol Scand. 2006; 85: 810–4. https://doi.org/10.1080/00016340500345428 PMID: 16817078

135. Ohno Y, Terauchi M, Tamakoshi K. Perinatal outcomes of abnormal umbilical coiling according to a modified umbilical coiling index. J Obstet Gynaecol Res. 2016; 42: 1457–1463. https://doi.org/10.1111/jog.13092 PMID: 27527823

136. Olaya-C M, Bernal JE. Clinical associations to abnormal umbilical cord length in Latin American newborns. J Neonatal Perinatal Med. 2015; 8; 251–266. https://doi.org/10.3233/NPM-15915086 PMID: 26485559

137. Osak R, Webster KM, Bocking AD, Campbell MK, Richardson BS. Nuchal cord evident at birth impacts on fetal size relative to that of the placenta. Early Hum Dev. 1997; 45: 193–202. Available: http://www.ncbi.nlm.nih.gov/pubmed/9378081 https://doi.org/10.1016/s0378-3782(97)00030-3 PMID: 9378081

138. Pathak S, Hook E, Hackett G, Murdoch E, Sebire NJ, Jessop F, et al. Cord coiling, umbilical cord insertion and placental shape in an unselected cohort delivering at term: relationship with common obstetric outcomes. Placenta. 2010/09/14. 2010; 31: 963–968. https://doi.org/10.1016/j.placenta.2010.08.004 PMID: 20838856

139. Patil N, Kulkarni S, Lohitaswa R. Umbilical cord coiling index and perinatal outcome. Journal of Clinical and Diagnostic Research. 2013; 7(8):1675–1677. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3782929/ https://doi.org/10.7860/JCDR/2013/5135.3224 PMID: 24086872
140. Peng HQ, Levitin-Smith M, Rochelson B, Kahn E. Umbilical cord stricture and overcoiling are common causes of fetal demise. Pediatr Dev Pathol. 2006; 9: 14–19. https://doi.org/10.2350/05-05-0051.1 PMID: 16808633

141. Poljak B, Banovic I, Vidovic-Filipovic S, Gabric Z, Juric-Vitanovic A. [Prenatal diagnosis of coiling of the umbilical cord around the neck and its effect on early neonatal prognosis]. Lijec Vjesn. 1989/08/01. 1989; 111: 260–262. PMID: 25682110

142. Purola E, Schreck-Purola I. Looping of the umbilical cord around the foetal neck. Ann Paediatr Fenn. 1968; 14: 43–6. Available: http://www.ncbi.nlm.nih.gov/pubmed/5706792 PMID: 5706792

143. Ra¨ is¨inen S, Georgiadis L, Harju M, Keski-Nisula L, Heinonen S. True umbilical cord knot and obstetric outcome. Int J Gynecol Obstet. 2013; 122: 18–21. https://doi.org/10.1016/j.ijgo.2013.02.012 PMID: 23523334

144. Rana J, Ebert GA, Kappy KA. Adverse perinatal outcome in patients with an abnormal umbilical coiling index. Obstet Gynecol. 1995; 85: 573–7. https://doi.org/10.1016/0029-7844(94)00435-G PMID: 7898836

145. Rayburn WF, Beynen A, Brinkman DL. Umbilical cord length and intrapartum complications. Obstet Gynecol. 1981; 57: 450–2. Available: http://www.ncbi.nlm.nih.gov/pubmed/7243092 PMID: 7243092

146. Rogers MS, Ip YW, Qin Y, Rogers SM, Sahota D. Relationship between umbilical cord morphology and nuchal cord entanglement. Acta Obstet Gynecol Scand. 2003; 82: 32–7. Available: http://www.ncbi.nlm.nih.gov/pubmed/12580837 https://doi.org/10.1034/j.1600-0412.2003.820106.x PMID: 12580837

147. Romero Gutierrez G, Estrada Razo S, Chávez Curiel A, Ponce Ponce de León AL. [Color Doppler flowmetry values in fetuses with nuchal cord encirclement]. Ginecol Obstet Mex. 2000; 68: 401–7. Available: http://www.ncbi.nlm.nih.gov/pubmed/11138400 PMID: 11138400

148. Sahoo K, Mahajan A, Shaha P, Kshirsagar N. Evaluation of umbilical coiling index as a predictor of pregnancy outcome. IJHSR. 2015; 5: 92–100. Available: http://www.ijhsr.org/IJHSR_Vol.5_Issue.3_March2015/15.pdf

149. Salge AKM, Reis MR, Siqueira KM, Castral TC, Guimarães JV, Castro EC da C. Associação entre as características macroscópicas do cordão umbilical, gestação de alto risco e repercussões neonatais. Rev da Esc Enferm da USP. 2018; 51. https://doi.org/10.1590/s1980-220x2017006303294 PMID: 29412226

150. Schäffer L, Burkhardt T, Zimmermann R, Kurmanavicius J. Nuchal cords in term and postterm deliveries—Do we need to know? Obstet Gynecol. 2005; 106: 23–28. https://doi.org/10.1097/01.AOG.0000165322.42051.0f PMID: 15994613

151. Sharma B, Bhardwaj N, Gupta S, Gupta PK, Verma A, Malviya K. Association of Umbilical Coiling Index by Colour Doppler Ultrasonography at 18–22 Weeks of Gestation and Perinatal Outcome. J Obstet Gynecol India. 2012; 62: 650–654. https://doi.org/10.1007/s13224-012-0230-0 PMID: 24293842

152. Sheiner E, Abramowicz JS, Levy A, Silberstein T, Mazor M, Hershkovitz R. Nuchal cord is not associated with adverse perinatal outcome. Arch Gynecol Obstet. 2006; 274: 81–3. https://doi.org/10.1007/s00404-005-0110-2 PMID: 16374604

153. Shiva Kumar H. Study of length of umbilical cord and fetal outcome: a study of 1000 deliveries. Int J Reprod Contracept Obstet Gynecol. 2017; 6: 3770. https://doi.org/10.18203/2320-1770.ijrcog20173622

154. Shrestha NS, Singh N. Nuchal cord and perinatal outcome. Kathmandu Univ Med J (KUMJ). 2007; 5: 360–3. Available: http://www.ncbi.nlm.nih.gov/pubmed/18604054

155. Sinnathurai TA. Cord round the neck. An evaluation of its significance. Singapore Med J. 1965; 6: 213–8. Available: http://www.ncbi.nlm.nih.gov/pubmed/5899274 PMID: 5899274

156. Sørnes T, Bakke T. Uterine size, parity and umbilical cord length. Acta Obstet Gynecol Scand. 1989; 68: 439–41. Available: http://www.ncbi.nlm.nih.gov/pubmed/2520789 https://doi.org/10.3109/0016348909021017 PMID: 2520789

157. Sørnes T. Umbilical cord encirclements and fetal growth restriction. Obstet Gynecol. 1995; 86: 725–8. https://doi.org/10.1016/0029-7844(95)00258-S PMID: 7566836

158. Sørnes T. Umbilical cord knots. Acta Obstet Gynecol Scand. 2000; 79: 157–9. Available: http://www.ncbi.nlm.nih.gov/pubmed/10716294 https://doi.org/10.1080/j.1600-0412.2000.079003157.x PMID: 10716294

159. Stanek J. Association of coexisting morphological umbilical cord abnormality and clinical cord compromise with hypoxic and thrombotic placental histology. Virchows Arch. 2016/03/18. 2016; 468: 723–732. https://doi.org/10.1007/s00428-016-1921-1 PMID: 26983702
160. Stefos T, Sotiriadis A, Vasilios D, Tsirkas P, Korkontzelos I, Avgoustatos F, et al. Umbilical cord length and parity—the Greek experience. Eur J Obstet Gynecol Reprod Biol. 2003; 107: 41–4. Available: http://www.ncbi.nlm.nih.gov/pubmed/12593892 PMID: 12593892

161. Strong TH, Manriquez-Gilpin MP, Gilpin BG. Umbilical vascular coiling and nuchal entanglement. J Matern Neonatal Med. 1996; 5: 359–361. https://doi.org/10.1002/SIC%201520-6661(199611/12) 5.6::AID-MFM133.0.CO;2-C

162. Suzuki S, Hiraizumi Y, Miyake H. Influence of umbilical cord abnormalities (velamentous/marginal cord insertion and nuchal cord) on the perinatal outcomes of the second twin after vaginal delivery of the first twin. J Perinat Med. 2011; 39: 745–8. https://doi.org/10.1515/jpm.2011.096 PMID: 21812754

163. Tamrakar S. Incidence of nuchal cord, mode of delivery and perinatal outcome: A notable experience in Dhulikel Hospital—Kathmandu University Hospital. Nepal Med Coll J. 2013; 15: 40–45. PMID: 24592793

164. Tantbirojn P, Saleemuddin A, Siros K, Crum CP, Boyd TK, Tworoger S, et al. Gross abnormalities of the umbilical cord: related placental histology and clinical significance. Placenta. 2009; 30: 1083–1088. https://doi.org/10.1016/j.placenta.2009.09.005 PMID: 19853300

165. Tapasvi I, Tapasvi C, Grover S, Bhambril M, Bhalla S. To identify the relationship between umbilical cord length and birth weight, amniotic fluid index, perinatal outcome in term pregnancies—study in a tertiary care hospital of North India. Indian J Basic Appl Med Res. 2017; 6: 569–577. Available: http://ijbamr.com/pdf/September 2017 569–577 AA.pdf.pdf

166. Tripathy. Umbilical Coiling Index and Its Relationship with Perinatal Outcomes. Indian J Neonatal Med Res. 2014; 2: 1–4.

167. Uygur D, Kis S, Tuncer R, Ozcan FS, Erkaya S. Risk factors and infant outcomes associated with umbilical cord prolapse. Int J Gynaecol Obs. 2002/08/15. 2002; 78: 127–130.

168. van Dijk CC, Franx A, de Laat MWM, Bruinse HW, Visser GHA, Nikkels PGJ, et al. The umbilical coiling index in normal pregnancy. J Matern Neonatal Med. 2002; 11: 280–3. https://doi.org/10.1080/jmfm.11.4.280.283 PMID: 12375686

169. Walker CW, Pye BG. The length of the human umbilical cord: a statistical report. Br Med J. 1960/02/20. 1960; 1: 546–548. https://doi.org/10.1136/bmj.1.5172.546 PMID: 13842494

170. Walla T, Rothschild MA, Schmolling JC, Banaschak S. Umbilical cord entanglement's frequency and its impact on the newborn. Int J Legal Med. 2018; 132: 747–752. https://doi.org/10.1007/s00414-017-1746-8 PMID: 29170816

171. Wasswa EW, Nakubulwa S, Mutyaba T. Fetal demise and associated factors following umbilical cord prolapse in Mulago hospital, Uganda: a retrospective study. Reprod Health. 2014; 11: 12. https://doi.org/10.1186/1742-4755-11-12 PMID: 24485199

172. Weiner E, Fainstein N, Schreiber L, Sagiv R, Bar J, Kovo M. The association between umbilical cord abnormalities and the development of non-reassuring fetal heart rate leading to emergent cesarean deliveries. J Perinatol. 2015/08/21. 2015; 35: 919–923. https://doi.org/10.1038/jp.2015.102 PMID: 26291780

173. Winch GC, Claman AD. Prolapse of the cord. Can Med Assoc J. 1961; 84: 1369–73. Available: http://www.ncbi.nlm.nih.gov/pubmed/13785757 PMID: 13785757

174. Wu JF, Chang SY, Hsu TY, Hsieh CH, Kung FT, Hwang FR, et al. Multivariate analyses of the relationship between umbilical cord length and obstetric outcome. Chang yi xue za zhi. 1996; 19: 247–52. Available: http://www.ncbi.nlm.nih.gov/pubmed/8921643

175. Yadav B., Kurdukar D., Darade R., Mahada N. Correlation of Umbilical Cord Length and Foetal Outcome. J Evol Med Dent Sci. 2013; 2: 412–417. Available: http://www.jemds.com/data_pdf/BBYadav-CORRELATION OF UMBILICAL CORD.pdf

176. Zahoor F, Minhas Z, Zaki A. Perinatal outcome of nuchal cord. 2013; 27: 174–178. Available: https://www.scopus.com/record/display.uri?eid=2-s2.0-84875035194&origin=inward&bxGid=160f3b40a56fd0a0bfce78f5906a9ded