High-Density Lipoprotein-Targeted Therapy and Apolipoprotein A-I Mimetic Peptides

Yoshinari Uehara, MD, PhD; Giulia Chiesa, PhD; Keijiro Saku, MD, PhD

Numerous randomized clinical trials have established statins as the major standard therapy for atherosclerotic diseases because these molecules decrease the plasma level of low-density lipoprotein (LDL) cholesterol and moderately increase that of plasma high-density lipoprotein (HDL) cholesterol. The reverse cholesterol transport pathway, mediated by HDL particles, has a relevant antiatherogenic potential. An important approach to HDL-targeted therapy is optimization of the HDL-cholesterol level and enhanced removal of plasma cholesterol, together with the prevention and mitigation of inflammation related to atherosclerosis. Small-molecule inhibitors of cholesteryl ester transfer protein (CETP) increase the HDL-cholesterol level in subjects with normal or low LDL-cholesterol. However, CETP inhibitors do not seem to reduce the risk of atherosclerotic diseases. HDL therapies using reconstituted HDL, including apolipoprotein (Apo) A-I Milano, ApoA-I mimetics, or full-length ApoA-I, are dramatically effective in animal models. Of those, the ApoA-I-mimetic peptide called FAMP effectively removes cholesterol via the ABCA1 transporter and acts as an antiatherosclerotic agent by enhancing the biological functions of HDL without elevating the HDL-cholesterol level. Our review of the literature leads us to conclude that HDL-targeted therapies have significant atheroprotective potential and thus may effectively treat patients with cardiovascular diseases. (Circ J 2015; 79: 2523–2528)

Key Words: Apolipoprotein; Atherosclerosis; Cardiovascular disease; Dyslipidemia; Reverse cholesterol transport

Dyslipidemia is one of the more relevant risk factors for coronary artery disease. Previous epidemiological studies and clinical trials demonstrated an inverse association between the serum level of high-density lipoprotein (HDL) cholesterol and the risk of cardiovascular events and that HDL-cholesterol exerts many potential antiatherogenic effects. For example, HDL particles transport cholesterol from peripheral cells to the liver and steroidogenic organs that use cholesterol for the synthesis of lipoproteins, bile acids, and steroid hormones. Low-density lipoprotein (LDL) cholesterol-lowering therapy moderately increases the plasma level of HDL cholesterol2–5 and intensive statin therapy reduces the volume of coronary plaque in patients with acute coronary syndrome (ACS). These results were not predicted by any of the indices in the patients’ baseline lipid profiles or by the LDL-cholesterol levels at follow-up, but they did correlate with the LDL-/HDL-cholesterol ratio at follow-up.6 HDL plays a major role in reverse cholesterol transport (RCT), and the RCT system has various potential antiatherogenic properties.1,2

HDL Metabolism and RCT

HDL is isolated using ultracentrifugation at a density range of 1.063–1.21 g/ml (HDL₂, 1.063–1.125 g/ml; HDL₃, 1.125–1.21 g/ml).7 However, HDL comprises a heterogeneous group of particles that differ in size, density, composition of lipids and apolipoproteins (Apo), and electrophoretic mobility. Gel electrophoresis separates HDL into a major subtraction that identically migrates as alpha HDL and other subfractions with mobilities similar to that of pre-β HDL. Alpha HDL is the most abundant HDL particle in human plasma, and pre-β HDL represents only 2–14% of the ApoA-I population.8,9 HDL metabolism is associated with several HDL-related genes, and its synthesis involves a complex pathway. Although the underlying genetic defects in many patients with primary low-HDL cholesterolemia are not clearly understood, defects in 3 pivotal molecules are associated with low plasma HDL-cholesterol levels: ApoA-I, lecithin cholesterol acyltransferase, and ATP-binding cassette (ABC) A1.10 HDL metabolism involves at least 3 important steps. First, lipid-free or lipiddoor ApoA-I removes free cholesterol from peripheral cells via ABCA1 to form nascent HDL. Second, the nascent HDL transported by ABCA1 is lipidated to generate mature HDL. Third, the mature HDL interacts with other ApoB-containing lipoproteins, such as VLDL, IDL, and LDL. ABCA1 is a key molecule for generating HDL particles de novo, which is the...
initial step of RCT, because ABCA1 proteins transport cholesterol and phospholipids from the inner to the outer leaflet of the membrane. Lipid-poor ApoA-I subsequently removes these transported cholesterol and phospholipid molecules to form nascent HDL.11

HDL-Targeted Therapy for Atherosclerosis

Inhibition of Cholesteryl Ester Transfer Protein (CETP)

CETP regulates the cholesterol level of the HDL particles and mediates the transfer of the cholesteryl esters of HDL to ApoB-containing lipoproteins, as well as those of triglycerides from triglyceride-enriched lipoproteins to HDL.12 Patients with mutations in the gene encoding CETP produce high levels of HDL-cholesterol.13 Inhibitors of CETP activity, such as torcetrapib, dalcetrapib, anacetrapib, and evacetrapib, benefit subjects with normal or low levels of HDL-cholesterol by increasing its level.14,15 Furthermore, CETP deficiency markedly reduces the rate of ApoA-I turnover, accounting for the high HDL-cholesterol levels in humans with inherited hypercholesterolemia.16–18 Moreover, inhibition of CETP activity in subjects with low HDL cholesterol levels increases the cholesterol percentage in the HDL\textsubscript{2} particle compared with that in the HDL\textsubscript{3} particle and increases the cholesterol levels of large HDL particles.15 Therefore, inhibiting CETP activity is a pharmacological approach to raising the HDL-cholesterol level and potentially reducing the risk of cardiovascular disease. Small-molecule CETP inhibitors such as torcetrapib,19–22 dalcetrapib,23–25 anacetrapib,26,27 and evacetrapib,28,29 significantly increase HDL-cholesterol levels in humans. However, this pharmacological approach does not seem to be beneficial for atherosclerotic disease. For example, the ILLUSTRATE study failed to show any slowing in atherosclerosis progression and determined a significant increase in the number of deaths from cardiovascular and noncardiovascular causes in the torcetrapib-treated group despite a 61\% increase in HDL-cholesterol concentration and a 20\% decrease in the level of LDL-cholesterol.19 Moreover, a multicenter, randomized, double-blind, placebo-controlled clinical trial, dal-Oimize, was designed to test the hypothesis that dalcetrapib reduces cardiovascular morbidity and mortality in patients with recent ACS. However, dalcetrapib increased HDL-cholesterol levels, but did not reduce the risk of recurrent cardiovascular events. This trial was prematurely terminated because of a lack of benefit of dalcetrapib for patients with recent ACS.25,30

Reconstituted HDL and ApoA-I Mimetics

HDL comprises heterogeneous particles with various densities...
and sizes, and ApoA-I is a common major protein of the HDL particle. ApoA-I-deficient and LDL receptor-deficient mice exhibit significant progression of atherosclerosis, approximately 5-fold increase than in LDL receptor-deficient mice, and this result demonstrates that ApoA-I deficiency is associated with a loss of protection from atherosclerotic development in a similar model of familial hypercholesterolemia. In contrast, high levels of human ApoA-I lead to a significant increase in HDL-cholesterol levels and a decrease in the development of atherosclerotic plaque lesions in Apoe knock-out mice.

Numerous researchers are working to increase the quantity of cholesterol in the HDL particle and enhance the biochemical function of HDL as an approach to therapy. HDL-targeted therapies that inject full-length ApoA-I, reconstituted HDL (eg, the ApoA-I-phospholipid complex), or an ApoA-I mimetic peptide-lipid complex are remarkably effective (Figure 1). Reconstituted HDL must be disc-shaped and may be effective for treating patients with atherosclerosis.

ABCA1 plays a pivotal role in mediating phospholipid and cholesterol efflux of lipid-free ApoA-I as described earlier and is involved in the formation of the discoidal HDL precursor. Mature HDL particles, which are spherical, incorporate cellular cholesterol through sterol efflux via other ABC transporters such as ABCG1 and ABCG4. Rye et al prepared discoidal reconstituted HDL, which is complexed with human serum-derived ApoA-I containing 1-palmitoyl-2-oleoylphosphatidylcholine (POPC). The POPC/ApoA-I disc incorporates cholesterol derived from macrophages and is active in ABCA1-deficient Tangier disease patients (see later) as well as in normal subjects.

ETC-642 is a form of reconstituted HDL with a predicted single amphipathic helix of 22 amino acid residues that mediates the formation of complexes of HDL with phospholipids. The characteristics of this reconstituted HDL are similar to those of the POPC/ApoA-I disc. The results of experiments using these reconstituted HDLs indicate that the ApoA-I-phospholipid complexes, but not the delipidated ApoA-I, mediate cholesterol efflux through ABCA1-dependent and nonspecific ABCA1-independent pathways. Thus, the main role of the ABCA1 transporter is to mediate the formation of the ApoA-I-phospholipid complex, and the artificial ApoA-I-phospholipid complex has the potential to incorporate cholesterol from cells via an ABCA1-independent pathway through, for example, the ABCG1 transporter. However, it is unclear whether ABCG1 and scavenger receptor class B member 1 mediate the efflux of cholesterol to reconstituted HDL independently or through the same pathway as the ApoA-I-phospholipid complex.

ApoA-I Milano

ApoA-I Milano is a mutant form of human ApoA-I that is generated by a point mutation that replaces an arginine with a cysteine residue at position 173. The levels of HDL-cholesterol and ApoA-I are markedly reduced in patients with this mutation. However, these patients are not at higher risk for cardiovascular disease. The higher levels of cellular cholesterol efflux mediated by ApoA-I Milano in cognate patients compared with subjects with ApoA-I are explained by the formation of ApoA-I Milano dimers linked by disulfide bonds between C173 residues.

Chiesa et al conducted intravascular ultrasound (IVUS) and magnetic resonance imaging studies of rabbits fed a high-cholesterol diet and found that ETC-216 [new code name: MDCO-216 (The Medicines Company)], an ApoA-I Milano-phospholipid complex (recombinant ApoA-I Milano complexed with POPC), significantly decreased the volume of carotid artery plaques. Nissen et al found that 5 weekly intravenous administrations of ETC-216 to humans lead to a regression of coronary atherosclerotic plaques. Furthermore, IVUS analysis revealed that after infusing ETC-216, regression of coronary atherosclerosis is accompanied by reverse remodeling of the external elastic membrane without changing luminal dimensions.

In contrast, ABCA1 overexpression increases ApoA-I-mediated cholesterol efflux in Abca1 transgenic mice. These findings indicate that Abca1 is pivotal for regulating plasma HDL-cholesterol levels as well as cellular cholesterol homeostasis.

Although studies of the use of ApoA-I mimetic peptides, such as D-4F, L-4F (APL180), and L37pA, are underway, none of these agents are currently available for clinical use. Moreover, these peptides have a high affinity for lipids, so they appear to increase cholesterol efflux through a nonspecific, passive pathway. The recently described novel human ApoA-I-mimetic 24-mer peptide [FAMP, ~one-tenth of human ApoA-I in molecular weight], which does not form complexes with phospholipids, significantly enhances the biochemical function of HDL and reduces the formation of aortic plaques by 48.2% in Apoe knockout mice fed a high-fat diet. FAMP differs from other ApoA-I mimetics because it is designed to specifically interact with human ABCA1 without engaging the nonspecific, passive efflux pathway. Therefore, it functions similarly to human ApoA-I. Furthermore, FAMP markedly increases pre-β HDL as well as overall cholesterol efflux from peripheral tissues.

Figure 2. Intravascular ultrasound (IVUS) analysis of the effects of coronary plaque regression of treatment using a statin and ETC-216 [new code name: MDCO-216 (The Medicines Company)]. Data from previous 3 clinical trials.

Fukuoka University ApoA-I Mimetic Peptide (FAMP)

The most severe form of HDL deficiency is Tangier disease, which was first described by Fredrickson et al and is caused by a mutation in Abca1. Abca1 knockout mice suffer from HDL deficiency and impaired RCT. These findings indicate that Abca1 is pivotal for regulating plasma HDL-cholesterol levels as well as cellular cholesterol homeostasis.
FAMP plays at least 2 possibly distinct roles in HDL metabolism as follows. First, FAMP enhances cellular cholesterol efflux that is mediated through ABCA1-dependent and partly ABCA1-independent mechanisms, generating nascent pre-β HDL particles. Second, FAMP incubation with human HDL or plasma generates pre-β-HDL-like small HDL particles and charged ApoA-I-rich particles that accelerate the generation of pre-β HDL, which is derived from mature HDL (Figure 3). Although 16-week treatment of ApoE knockout mice with FAMP did not significantly increase the level of HDL-cholesterol, the free cholesterol levels of the small-size HDL subfractions, reflecting pre-β1 HDL particles, were significantly increased, and this should reflect enhanced de novo generation of HDL through cholesterol efflux from peripheral tissue in the treated mice. On the one hand, CETP inhibition greatly increasing HDL-cholesterol levels is attended to grow larger HDL particle size; on the other hand, the apoA-I mimetic peptide FAMP reduces the particle size without changing the HDL-cholesterol level; thus these phenomena seem to be precisely opposing.

Moreover, the biological function of HDL in FAMP-treated ApoE knockout mice is significantly increased, according to the results of an analysis of ex vivo HDL efflux capacity that is strongly predictive of coronary heart disease. Furthermore, FAMP promotes ABCA1-dependent HDL efflux ex vivo, HDL turnover in vivo, and RCT in the macrophages of transgenic mice that express human CETP, despite decreased plasma HDL-cholesterol levels. These findings support the conclusion that the prospects are promising for successful treatment of atherosclerotic disease with FAMP and other mimetics.

HDL may play a significant role in the pathogenesis of diseases other than those of the cardiovascular system. For example, mice with complete HDL deficiency caused by targeted deletions of Apoa1 and Apoe exhibit a phenotype characterized by deep alterations in skin structure, with a massive dermal accumulation of cholesterol clefts, foam cells, and T lymphocytes. This phenotype resembles that of humans with inherited or secondary hyperlipidemic conditions referred to as xanthomas or xanthelasmas. Therefore, HDL-targeted therapy may be applicable to patients with xanthomas, as well as to those with dermatitis.

Besides its therapeutic potential, FAMP exhibits interesting properties that can be applied to the analysis of atherosclerotic plaque. ApoA-I or its mimetics must penetrate atherosclerotic plaques to remove cholesterol, and this characteristic may be exploited to detect activated arterial plaques. FAMP serves as a unique tracer for positron electron emission tomography (PET). When FAMP is functionalized using the chelator, 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid and labeled with 68Ga (68Ga-DOTA-FAMP), it can be used to...
specifically image atherosclerotic plaques. Thus, athero-lesion plaques incorporate 64 Ga–DOTA-FAMP at a high rate, generating impressive PET images of an aortic plaque in vivo.64 Uchida et al have also investigated plaque characteristics using color fluorescent microscopy and shown the fluorescent characteristics of HDL deposits with plaque formation, but not in the advanced stage of plaque in the human coronary arterial wall.65

We believe that HDL-targeted therapy, including the use of FAMP, has tremendous atheroprotective potential and likely represents a new therapeutic tool for treating atherosclerotic cardiovascular disease. Although most research is focused on the therapeutic use of HDL, an ApoA-I mimetic peptide may contribute to the development of a technique to diagnose lipid-rich, unstable plaques.

Conclusions

LDL-lowering statin therapy is the standard treatment for cardiovascular diseases; however, it lacks benefit for preventing or mitigating adverse vascular events experienced by numerous patients. Therefore, the studies described here indicate that targeting HDL has very bright prospects for treating patients with atherosclerotic diseases. In particular, novel ApoA-I mimetics, such as FAMP, will likely enhance the pharmacological armamentarium available for treating these diseases.

Acknowledgments

This work was supported by Grants-in-Aid for Scientific Research (No. 19590874, No. 25461141 and No. 21590960) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan to Y.U. and K.S.; and in part by funds from the Central Research Institute of Fukuoka University (2013–2015) to Y.U. and K.S., the Fukuoka University One-Campus Project (2009, 2010, supported in part by the Ministry of Education, Science and Culture of Japan), supported in part by funds (No. 157009) from the Central Research Institute of Fukuoka University to Y.U. and NPO Clinical and Applied Science, Fukuoka, Japan.

Disclosures

Disclosures (Y.U., G.C., and K.S.): None.

K.S. is the Chief Director of NPO Clinical and Applied Science, Fukuoka, Japan.

References

1. von Eckardstein A, Nofer JR, Assmann G. High density lipoproteins and arteriosclerosis: Role of cholesterol efflux and reverse cholesterol transport. Arterioscler Thromb Vasc Biol 2001; 21: 13–27.
2. Gordon T, Castelli WP, Hjortland MC, Kannel WB, Dawber TR. High density lipoprotein as a protective factor against coronary heart disease: The Framingham study. Am J Med 1977; 62: 707–714.
3. Assmann G. Genes and dyslipoproteinemia. Eur Heart J 1990; 11(Suppl H): 4–8.
4. Briel M, Ferreira-Gonzalez I, You JJ, Kariancikos PJ, Akl EA, Wu P, et al. Association between change in high density lipoprotein cholesterol and cardiovascular disease morbidity and mortality: Systematic review and meta-regression analysis. BMJ 2009; 338: b92.
5. Saku K, Zhang B, Noda K, Investigators PT. Randomized head-to-head comparison of pitavastatin, atorvastatin, and rosuvastatin for safety and efficacy (quantity and quality of LDL): The PATROL trial. Circ J 2011; 75: 1493–1505.
6. Soeda T, Uemura S, Okayama S, Kawakami R, Sugawara Y, Nakagawa H, et al. Intensive lipid-lowering therapy with rosuvastatin stabilizes lipid-rich coronary plaques: Evaluation using dual-source computed tomography. Circ J 2011; 75: 2621–2627.
7. Havel RJ, Eder HA, Bragdon JH. The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J Clin Invest 1955; 34: 1345–1353.
8. Kunitake ST, La Sala KJ, Kane JP. Apolipoprotein A-I-containing lipoproteins with pre-beta electrophoretic mobility. J Lipid Res 1985; 26: 549–555.
9. Ishida BY, Frolich J, Fielding CJ. Prebeta-migrating high density lipoprotein: Quantitation in normal and hyperlipidemic plasma by solid phase immunodetermination following electrophoretic transfer. J Lipid Res 1987; 28: 778–86.
10. Miller M, Rhine J, Hamlette S, Birnbaum J, Rodriguez A. Genetics of HDL regulation in humans. Curr Opin Lipidol 2003; 14: 273–279.
11. Oram JF, Lawn RM. ABCA1: The gatekeeper for eliminating excess tissue cholesterol. J Lipid Res 2001; 42: 1173–1179.
12. Barter PJ, Brewer HB Jr, Chapman MJ, Hennekens CH, Rader DJ, Talf AR. Cholesterol ester transfer protein: A novel target for raising HDL and inhibiting atherosclerosis. Arterioscler Thromb Vasc Biol 2002; 22: 160–167.
13. Yamashita S, Sprecher DL, Sakai N, Matsuzawa Y, Tanu S, Hui DY. Accumulation of apolipoprotein E-rich high density lipoproteins in hyperalphalipoproteinemichum subjects with plasma cholesterol ester transfer protein deficiency. J Clin Invest 1990; 86: 688–695.
14. Clark RW, Suttin TA, Raggeri RB, Willauer AT, Sugarman ED, Magnus-Aryitey G, et al. Raising high-density lipoprotein in humans through inhibition of cholesterol ester transfer protein: An initial multidose study of torcetrapib. Arterioscler Thromb Vasc Biol 2004; 24: 490–497.
15. Brousseau ME, Schaefer EJ, Wolfe ML, Bloedon LT, Digienio AG, Clark RW, et al. Effects of an inhibitor of cholesterol ester transfer protein on HDL cholesterol. N Engl J Med 2004; 350: 1505–1515.
16. Ikewaki K, Rader DJ, Sakamoto T, Nishiwaki M, Wakimoto N, Schaefer JR, et al. Delayed catalysis of high density lipoprotein apolipoproteins A-I and A-II in human cholesteryl ester transfer protein deficiency. J Clin Invest 1993; 92: 1650–1658.
17. Tall AR. Plasma high density lipoproteins: Metabolism and relationship to atherogenesis. J Clin Invest 1990; 86: 379–384.
18. Cuchel M, Rader DJ. Genetics of increased HDL cholesterol levels: Insights into the relationship between HDL metabolism and atherosclerosis. Arterioscler Thromb Vasc Biol 2003; 23: 1710–1712.
19. Nicholls SJ, Tuzcu EM, Brennan DM, Tardiff JC, Nissen SE. Cholesteryl ester transfer protein inhibition, high-density lipoprotein raising, and progression of coronary atherosclerosis: Insights from ILLUSTRATE (investigation of lipid level management using coro-nary ultrasound to assess reduction of atherosclerosis by CETP inhibition and HDL elevation). Circulation 2008; 118: 2506–2514.
20. Bots ML, Visseren FL, Evans GW, Riley WA, Revkin JH, Tegeler CH, et al. Torcetrapib and carotid intima-media thickness in mixed dyslipidaemia (Radiance 2 study): A randomised, double-blind trial. Lancet 2007; 370: 153–160.
21. Kastelein JJ, van Leuven SJ, Burgess L, Evans GW, Kuivenhoven JA, Barter PJ, et al. Effect of torcetrapib on carotid atherosclerosis in familial hypercholesterolemia. N Engl J Med 2007; 356: 1620–1630.
22. Nissen SE, Tardiff JC, Nicholls SJ, Revkin JH, Shear CL, Duggan WT, et al. Effect of torcetrapib on the progression of coronary atherosclerosis. N Engl J Med 2007; 356: 1304–1316.
23. Fayad ZA, Mani V, Woodward M, Kallend D, Abt M, Burgess T, et al. Safety and efficacy of dalteparin on atherosclerotic disease using novel non-invasive multimodality imaging (dal-PLAQUE): A randomised clinical trial. Lancet 2011; 378: 1547–1559.
24. Luscher TF, Taddei S, Kaski JC, Jukema JW, Kallend D, Munzel T, et al. Vascular effects and safety of dalteparin in patients with or at risk of coronary heart disease: The dal-RESOLUTION randomized clinical trial. Eur Heart J 2012; 33: 857–865.
25. Schwartz GG, Olsson AG, Abt M, Ballantyne CM, Barter PJ, Brunn J, et al. Effects of dalteparin in patients with a recent acute coronary syndrome. N Engl J Med 2012; 367: 2089–2099.
26. Cannon CP, Braunwald E, McCabe CH, Rader DJ, Rouleau JL, Belder R, et al. Intensive versus moderate lipid lowering with statins after acute coronary syndromes. N Engl J Med 2004; 350: 1495–1504.
27. Bloomfield D, Carlson GL, Sapre A, Tribble D, McKenzie JM, Littlejohn TW 3rd, et al. Efficacy and safety of the cholesterol ester transfer protein inhibitor anacetrapib as monotherapy and coadministered with atorvastatin in dyslipidemic patients. Am Heart J 2009; 157: 352–360.e2, doi:10.1016/j.ahj.2008.09.022.
28. Nicholls SJ, Brewer HB, Kastelein JJ, Krueger KA, Wang MD, Shao M, et al. Effects of the CETP inhibitor evacetrapib administered as monotherapy or in combination with statins on HDL and LDL cholesterol. Circulation 2012; 125: 2109–2119.
29. Cao G, Beyer TP, Zhang Y, Schmidt RJ, Chen YQ, Cockerham SL, et al. Evacetrapib is a novel, potent, and selective inhibitor of cholesteryl ester transfer protein that elevates HDL cholesterol without inducing aldosteron or increasing blood pressure. J Lipid Res 2011; 52: 2169–2176.
30. Schwartz GG, Olsson AG, Ballantyne CM, Barter PJ, Holme IM, Kallend D, et al. Efficacy and safety of dalteparin in patients with recent acute coronary syndrome. *Am Heart J* 2009; 158: 896–901.e3, doi:10.1016/j.ahj.2009.09.017.

31. Moore RE, Kawashii MA, Kitajima K, Secreto A, Millar JS, Pratico D, et al. Apolipoprotein A-I deficiency results in markedly increased atherosclerotic lesion size in mice lacking the LDLR receptor. *Arterioscler Thromb Vasc Biol* 2003; 23: 1914–1920.

32. Paszty C, Maeda N, Verstuyft J, Rubin EM. Apolipoprotein AI transgene corrects apolipoprotein E deficiency-induced atherosclerosis in mice. *J Clin Invest* 1994; 94: 899–903.

33. Plump AS, Scott CJ, Breslow JL. Human apolipoprotein A-I gene expression increases high density lipoprotein and suppresses atherosclerosis in the apolipoprotein E-deficient mouse. *Proc Natl Acad Sci USA* 1994; 91: 9607–9611.

34. Annema W, von Eckardstein A. High-density lipoproteins: Multifunctional but vulnerable protectors from atherosclerosis. *Circ J* 2013; 77: 2432–2448.

35. Zhang B, Kawachi E, Miura S, Uehara Y, Matsunaga A, Kuroki M, et al. Therapeutic approaches to the regulation of metabolism of high-density lipoprotein: Novel HDL-directed pharmacological intervention and exercise. *Circ J* 2013; 77: 2651–2663.

36. Wang N, Lan D, Chen W, Matsuda F, Tall AR. ATP-binding cassette transporters G1 and G4 mediate cellular cholesterol efflux to high-density lipoproteins. *Proc Natl Acad Sci USA* 2004; 101: 9774–9779.

37. Rye KA, Hime NJ, Barter PJ. Evidence that cholesteryl ester transfer protein-mediated reductions in reconstituted high density lipoprotein size involve particle fusion. *J Biol Chem* 1997; 272: 3953–3960.

38. Uehara Y, Tsuibo Y, Zhang B, Miura S, Baba Y, Higuchi MA, et al. POPC/Apo-A-I discs as a potent lipoprotein modulator in Tangier disease. *Atherosclerosis* 2008; 197: 283–289.

39. Iwata A, Miura S, Zhang B, Imaizumi S, Uehara Y, Shiomi M, et al. Antiatherogenic effects of newly developed apolipoprotein A-I mimetic peptide/phospholipid complexes against aortic plaque burden in Watanabe-heritable hyperlipidemic rabbits. *Atherosclerosis* 1997; 127: 9774–9779.

40. Uchida Y, Hiruta N, Yamanoi D, Shimoyama E, Maezawa Y, et al. Imaging of native high-density lipoprotein in human coronary plaques by color fluorescent angioscopy. *Circ J* 2004; 68: 1071–1080.

41. Brooks-Wilson A, Marcil M, Clee SM, Zhang LH, Leavitt BR, et al. Human ABCA1 BAC transgenic mice show increased high density lipoprotein cholesterol and apoAI-dependent efflux stimulated by an internal promoter containing liver X receptor response elements in intron 1. *J Biol Chem* 2001; 276: 33969–33979.

42. Remaley AT, Thomas F, Stonik JA, Demosky SJ, Neufeld EB, et al. Synthetied amphiphatic helical peptides promote lipid efflux from cells by an ABCA1-dependent and an ABCA1-independent pathway. *J Lipid Res* 2003; 44: 828–836.

43. Van Lenten BJ, Wagner AC, Jung CL, Ruchala P, Gabel C, Aldinger C, et al. High density lipoprotein deficiency and foam cell accumulation in mice with targeted disruption of ATP-binding cassette transporter I. *Proc Natl Acad Sci USA* 2000; 97: 4245–4250.

44. McNeish J, Aiello RJ, Goyut D, Turi T, Gabel C, Aldinger C, et al. Newly developed apolipoprotein A-I mimetic peptide/fospholipid complexes against aortic plaque burden in Watanabe-heritable hyperlipidemic rabbits. *Atherosclerosis* 2002; 160: 259–269.

45. Idler KH, Barter PJ, Holme IM, Dam M, et al. Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency. *Nat Genet* 1999; 22: 336–345.

46. Rust S, Rosier M, Funke H, Real J, Amoura Z, Piette JC, et al. Tangier disease is caused by mutations in the gene encoding ATP-dependent binding cassette transporter 1. *Nat Genet* 1999; 22: 336–345.

47. Orso E, Broccardo C, Kaminski WE, Botcher A, Liebsch G, Drobnik W, et al. Transport of lipids from Golgi to plasma membrane is defective in Tangier disease patients and ABC1-deficient mice. *Nat Genet* 2000; 24: 192–196.

48. Nissen SE, Nicholls SJ, Sipahi I, Glibek B, Drobnik W, et al. ABCA1 overexpression leads to hyperalphalipoproteinemia and increased biliary cholesterol excretion in transgenic mice. *J Clin Invest* 2001; 108: 303–309.

49. Vaisman BL, Lambert G, Amar M, Joyce C, Bt T, Shamburek RD, et al. ABCA1-mimetic peptides directed at the reverse cholesterol transport pathway in Tangier disease. *Proc Natl Acad Sci USA* 1997; 94: 2894–2899.

50. Li X, Chuy KY, Furia Neto JR, Yano J, Nathwani N, Ferreira C, et al. Differential effects of apolipoprotein A-I mimetic peptide on evolving and established atherosclerosis in apolipoprotein E-null mice. *Circulation* 2004; 110: 1701–1705.

51. Perlstein DJ, Cachera M, Nemec B, Seidman NE, Neufeld EB, et al. Synthetic amphiphatic helical peptides promote lipid efflux from cells by an ABCA1-dependent and an ABCA1-independent pathway. *J Lipid Res* 2003; 44: 828–836.

52. Rust S, Rosier M, Funke H, Real J, Amoura Z, Piette JC, et al. Tangier disease is caused by mutations in the gene encoding ATP-dependent binding cassette transporter 1. *Nat Genet* 1999; 22: 336–345.