Validity of Borodin & Kostochka Conjecture for a Class of Graphs
Medha Dhurandhar

Abstract: Borodin & Kostochka conjectured that if \(\Delta(G) \geq 9 \), then \(\chi(G) \leq \max\{\omega, \Delta - 1\} \). Here we prove that this Conjecture is true for \(\{P_3 \cup K_1\}\)-free graphs and \(\{K_2 \cup \overline{K_2}\}\)-free graphs.

Introduction:
In 1977, Borodin & Kostochka conjectured that if \(\Delta(G) \geq 9 \), then \(\chi(G) \leq \max\{\omega, \Delta - 1\} \) [1]. In 1999, Reed proved the conjecture for \(\Delta \geq 10^4 \) [2]. Also D. W. Cranston and L. Rabern [3] proved it for claw-free graphs and Medha Dhurandhar [4] proved it for \(2K_2\)-free graphs. Here we prove that the conjecture is true for \(\{P_3 \cup K_1\}\)-free graphs and \(\{K_2 \cup \overline{K_2}\}\)-free graphs.

Notation: For a graph \(G \), \(V(G) \), \(E(G) \), \(\Delta \), \(\omega \), \(\chi \) denote the vertex set, edge set, maximum degree, size of a maximum clique, chromatic number of \(G \) resp. For \(u \in V(G) \), \(N(u) = \{v \in V(G) / uv \in E(G)\} \), and \(\overline{N(u)} = N(u) \setminus \{u\} \). If \(S \subseteq V \), then \(<S> \) denotes the subgraph of \(G \) induced by \(S \). If \(C \) is some coloring of \(V(G) \) and if \(u \in V(G) \) is colored \(m \) in \(C \), then \(u \) is called a \(m \)-vertex. Also if \(P \) is a path in \(G \) s.t. vertices on \(P \) are alternately colored say \(i \) and \(j \), then \(P \) is called an \(i-j \) path. All graphs considered henceforth are simple and undirected. For terms not defined herein, we refer to Bondy and Murty [5].

Let \(H = P_3 \cup K_1 \) and \(R = K_2 \cup \overline{K_2} \). Note that the only odd cycle in a \(H \)-free or \(R \)-free graph is \(C_5 \).

Main Result 1: If \(\Delta \geq 9 \), and \(G \) is \(H \)-free, then \(\chi \leq \max\{\omega, \Delta - 1\} \).
Proof: Let \(G \) be a smallest \(H \)-free with \(\Delta \geq 9 \) and \(\chi > \max\{\omega, \Delta - 1\} \). Then clearly as \(G \neq C_{2n+1} \) or \(K_{\frac{|V(G)|}{2}} \), \(\chi = \Delta > \omega \). Let \(u \in V(G) \). Then \(G-u \neq K_{\frac{|V(G)|}{2}} \) (else \(\chi = \omega \)). If \(\Delta(G-u) \geq 9 \), then by minimality \(\chi(G-u) \leq \max\{\omega(G-u), \Delta(G-u)-1\} \). Clearly if \(\omega(G-u) \leq \Delta(G-u)-1 \), then \(\chi(G-u) = \Delta(G-u)-1 \leq \Delta-1 \) and otherwise \(\chi(G-u) = \omega(G-u) < \Delta < \Delta-1 \). In all the cases, \(\chi(G-u) \leq \Delta-1 \). Also if \(\Delta(G-u) < 9 \), then as \(G-u \neq C_{2n+1} \) (else as \(G \) is \(H \)-free, \(G-u \sim C_3 \)), by Brook’s Theorem \(\chi(G-u) \leq \Delta(G-u) < 9 \leq \Delta \). Thus always \(\chi(G-u) \leq \Delta-1 \) and in fact, \(\chi(G-u) = \Delta-1 \) and \(\deg u \geq \Delta-1 \) \(\forall \ u \in V(G) \).

Let \(Q \subseteq V(G) \) be s.t. \(<Q> \) is a maximum clique in \(G \). Let \(u \in Q \) be s.t. \(\deg u = \max_{v \in Q} \deg v \). Let \(S = \{1,..., \Delta\} \) be a \(\Delta \)-coloring of \(V(G) \) s.t. \(u \) is colored \(\Delta \) and \(\{A_1, A_2, ..., A_{\Delta-2}\} \subseteq N(u) \) where \(A_i \) has color \(i \) for \(1 \leq i \leq \Delta-2 \). If \(A_i \) is the only i-vertex in \(N(u) \), then \(A_i \) is said to have a unique color.

I. Every \(A_i \) with a unique color has at the most one repeat color and two vertices of that color (else \(N(A_i) \) has a color say \(r \) missing. Then color \(A_i \) by \(r \) and \(u \) by \(i \)).
II. Now if \(\deg u = \Delta-1 \), then all vertices in \(N(u) \) have unique colors (else some color \(r \) is missing in \(N(u) \)). Color \(u \) by \(r \) and if \(\deg u = \Delta \), then \(N(u) \) has \(\Delta-2 \) vertices with unique colors and two vertices with the same color. Thus \(N(u) \) has at least seven vertices with unique colors.
III. Every \(A_i \) with a unique color has a j-vertex \(\forall j \neq i \) (else color \(A_i \) by \(j \), \(u \) by \(i \)).

Claim: All vertices in \(N(u) \) with unique colors are adjacent to each other.
Let if possible say \(A_i, A_s \notin E(G) \) where \(A_i \) and \(A_s \) have unique colors. Then clearly \(\exists A_r-A_s \) path = \(\{A_r, B, C, A_s\} \) s.t. \(B, C \) have colors \(s, r \) resply. Now \(B \) is the only \(s \)-vertex in \(V(G) \)-\(N(u) \) (else let \(B' \) be another \(s \)-vertex. If \(A_r B \notin E(G) \), then \(<u, A_r, B, B'> = H \) and if \(A_i B \in E(G) \), then \(<A_s, B, B', A_r,> = H \).
Hence the claim holds.

Thus \(\deg u = \Delta > \omega \geq \Delta - 1 \Rightarrow \omega = \Delta - 1 \). Let \(Q = \{ u, A_1, A_2, \ldots, A_{\omega - 1} \} \) and \(A_{\omega}, A_{\omega + 1} \in N(u) - Q \) have the same color \(\omega \).

As \(G \) is \(H \)-free, \(V(G) - \overline{N(u)} \) has no \(\omega \)-vertex. Hence \(A_{\omega} \cup A_{\omega + 1} \in E(G) \) \(\forall i, 1 \leq i \leq \omega - 1 \) (else color \(A_i \) by \(\omega \), \(u \) by \(i \)). W.l.g. let \(A_{\omega}A_2 \notin E(G) \Rightarrow A_2A_{\omega - 1} \in E(G) \) and let \(A_{\omega}A_2 \notin E(G) \Rightarrow A_1A_{\omega} \in E(G) \).

Now by \(III \), \(A_1 \) (\(A_2 \)) has an \(i \)-vertex \(\forall i \neq 1 \). As \(\Delta \geq 9 \), w.l.g. let \(A_2 \neq A_i, A_3 \) be adjacent to \(A_{\omega} \). Again \(A_{\omega} \) has at least one repeat color (else \(A_{\omega} \) has some color missing. Color \(A_{\omega} \) by the missing color, \(A_1 \) by \(\omega \), \(u \) by \(1 \)). Hence w.l.g. let \(A_3, A_4 \) be the only 3-vertex, 4-vertex of \(A_{\omega} \). Also w.l.g. let \(A_3 \) be the only 3-vertex of \(A_2 \). Now if \(A_2A_{\omega - 1} \notin E(G) \), then \(A_3 \) by \(\omega \), \(A_4 \) by \(3 \), \(A_2 \) by \(3, u \) by \(2 \) and if \(A_2A_{\omega - 1} \in E(G) \), then \(A_1 \) is the only 1-vertex of \(A_3 \) and hence color \(A_3 \) by \(1 \), \(A_4 \) by \(\omega \), \(A_3 \) by \(3, A_2 \) by \(3, u \) by \(2 \), a contradiction in both the cases.

This proves Result 1.

Main Result 2: If \(\Delta \geq 9 \), and \(G \) is \(H \)-free, then \(\chi \leq \max \{ \omega, \Delta - 1 \} \).

Proof: Let \(G \) be a smallest \(R \)-free graph with \(\Delta \geq 9 \) and \(\chi > \max \{ \omega, \Delta - 1 \} \). Then clearly as \(G \neq C_{2\omega + 1} \) or \(K_{\omega \mid |G|} \), \(\chi = \Delta > \omega \). Let \(u \in V(G) \). Then \(G - u \neq K_{\omega \mid |G|} \) (else \(\chi = \omega \)). If \(\Delta(G - u) \geq 9 \), then by minimality \(\chi(G - u) \leq \max \{ \omega(G - u), \Delta(G - u) - 1 \} \). Clearly if \(\omega(G - u) \leq \Delta(G - u) - 1 \), then \(\chi(G - u) = \Delta(G - u) - 1 \leq \Delta - 1 \) and otherwise \(\chi(G - u) = \omega(G - u) \leq \omega < \Delta \). In all the cases, \(\chi(G - u) \leq \Delta - 1 \). Also if \(\Delta(G - u) < 9 \), then as \(G - u \neq C_{2\omega + 1} \) (else as \(G \) is \(R \)-free, \(G - u \sim C_3 \)), by Brook’s Theorem \(\chi(G - u) \leq \Delta(G - u) < 9 \leq \Delta \). Thus always \(\chi(G - u) \leq \Delta - 1 \) and in fact \(\chi(G - u) = \Delta - 1 \) and \(\deg v \geq \Delta - 1 \ \forall v \in V(G) \).

Let \(Q \subseteq V(G) \) be s.t. \(\langle Q \rangle \) is a maximum clique in \(G \). Let \(u \in Q \) be s.t. \(\deg u = \max_{v \in Q} \deg v \). Let \(S = \{ 1, \ldots, \Delta \} \) be a \(\Delta \)-coloring of \(V(G) \) s.t. \(u \) is colored \(\Delta \) and \(\{ A_1, A_2, \ldots, A_{\Delta - 2} \} \subseteq N(u) \) where \(A_i \) has color \(i \) for \(1 \leq i \leq \Delta - 2 \). If \(A_i \) is the only \(i \)-vertex in \(N(u) \), then \(A_i \) is said to have a unique color.

I. Every vertex \(A_i \) of \(N(u) \) with a unique color has at most two vertices of the same color (else \(N(A_i) \) has a color say \(r \) missing. Then color \(v \) by \(r \) and \(u \) by \(i \)).

II. Also as \(G \) is \(R \)-free, \(V(G) - \overline{N(u)} \) has no repeat color (else if \(V, W \in V(G) - \overline{N(u)} \) have color say \(i \), then \(\langle u, A_i, V, W \rangle = R \)).

III. Every \(A_i \) with a unique color has a \(j \)-vertex \(\forall j \neq i \) (else color \(A_i \) by \(j \), \(u \) by \(i \)).

IV. Now if \(\deg u = \Delta - 1 \), then all vertices in \(N(u) \) have unique colors (else some color \(r \) is missing in \(\overline{N(u)} \). Color \(u \) by \(r \) and if \(\deg u = \Delta \), then \(N(u) \) has \(\Delta - 2 \) vertices with unique colors and two vertices with the same color. Thus \(N(u) \) has at least seven vertices with unique colors.

Claim: All vertices in \(N(u) \) with unique colors are adjacent to each other.

Let if possible say \(A_1A_2 \notin E(G) \) where \(A_1, A_2 \) have unique colors. Then clearly \(\exists A_1, A_2 \) s.t. \(B, C \) have colors 2, 1 resp. Now by **II**, \(B \) is the only 2-vertex of \(A_1 \). Also \(A_2 \) is non-adjacent to the most one more \(A_k \in N(u), k \neq 1 \) (else if \(A_2A_k, A_2A_1 \notin E(G) \), then \(B \) has two, 1, k, 1 vertices and hence has some color \(r \) missing in \(\overline{N(B)} \). Color \(B \) by \(r, A_1 \) by 2, \(u \) by 1). By **IV**, w.l.g. let...
A_3,...,A_5 be vertices in N(u) with unique colors s.t. A_1A_i, A_2A_j ∈ E(G) for 3 ≤ i ≤ 5. Also by I, w.l.g. let A_3 be the only 3 vertex of A_1, A_2. Again by I, A_3 has either a unique 1-vertex or 2-vertex. W.l.g. let A_3 be the only 1-vertex of A_3. Then color A_3 by 1, A_1 and A_2 by 3, u by 2, a contradiction.

Hence the claim holds.

Thus ω ≥ Δ - 1 > ω - 1 ⇒ ω = Δ - 1 ⇒ deg u = Δ. Let Q = {u, A_1, A_2, A_3, A_4} where A_i has a unique color i and X, Y ∈ N(u) be colored ω. Further let YA_1 ∈ E(G). Then XA_1 E(G) (else by III, A_1 has a ω-vertex Z and <A_1, Z, X, Y> = R). Again w.l.g. let XA_2 E(G). Then YA_2 E(G).

Case 2.1: V(G)-N(u) has no ω-vertex.

By III, every A_i is adjacent to X or Y. Also X (Y) is the only ω-vertex of A_1 (A_2). Further as Δ ≥ 9, w.l.g. let XA_i E(G) for 3 ≤ i ≤ 5. Now X (Y) has a k-vertex ∀ k ≠ ω (else color X (Y) by the missing color, A_i(A_2) by ω, u by 1 (2)). Hence X and Y have at the most one repeat color. W.l.g. let A_3 be the unique 3-vertex of X and A_2. If XA_3 E(G), then color A_3 by ω, X by 3, A_2 by 3, u by 2 and if YA_3 E(G), then as A_3 has the unique 2-vertex A_2, color A_3 by 2, X by 3, A_2 by 3, A_1 by ω, u by 1, a contradiction in both the cases.

Case 2.2: V(G)-N(u) has a ω-vertex Z.

Then as G is R-free, every A_i has two ω-vertices and hence a unique j-vertex A_i, j≠i.

Case 2.2.1: X has no r-vertex for some r, 2 ≤ r ≤ ω - 1.

Then XA_i E(G) ⇒ YA_1 E(G). Clearly ZA_1, ZA_2 ∈ E(G). Now Z has another 1-vertex (else color X by r, A_j by ω, Z by 1, u by 1). Also Y has an i-vertex ∀ i ≠ ω (else color X by r, Y by i, u by ω). If ∃ s ≠ r, s.t. YA_i E(G) and A_i is the only s-vertex of Y, then color X by r, A_i by 1, A_j by s, Y by s, u by ω, a contradiction. Hence whenever YA_i E(G), s ≠ r, Y has another s-vertex. Hence Y is adjacent to at the most one A_j, s ≠ r. As Δ ≥ 9, w.l.g. let XA_1, ZA_j E(G) for say i = 3 ≤ i ≤ 6. As Z has two 1-vertices, Z has at the most one more repeat color (else N(Z) has some color t missing, color X by r, Z by t, A_i by ω, u by 1) and hence w.l.g. let Z have the unique 3-vertex A_3. Color X by r, Z by 3, A_3 by ω, u by 3, a contradiction.

Case 2.2.2: X, Y have an i-vertex ∀ i ≠ ω.

Clearly ZA_1, ZA_2 E(G). As Δ ≥ 9, w.l.g. XA_i E(G) for i = 3, 4, 5. Also as X has at the most one repeat color, w.l.g. let A_j be the only i-vertex of X for i = 3, 4. Now Z has another 1-vertex (else color A_j by 2, A_j by 3, A_1 by ω, Z by 1, u by 1) and Z has no color missing (else color Z by the missing color t, A_3 by 2, A_2 by 3, X by 3, A_1 by ω, u by 1). Hence Z has at the most one more repeat color other than 1 ⇒ ZA_3 E(G) or ZA_4 E(G) (else Z has a unique say 4-vertex A_4. Color X by 3, A_3 by 2, A_2 by 3, A_1 by ω, Z by 4, u by 4). W.l.g. let ZA_3 E(G) ⇒ YA_1 E(G). If A_2 is the unique 2-vertex of Y, then color A_j by 2, A_2 by 3, A_1 by 1, X by 3, Y by 2, u by ω and if A_1 is the unique 3-vertex of Y, then color A_3 by 1, A_3 by 3, Y by 3, A_4 by 2, A_2 by 4, X by 4, u by ω, a contradiction in both the cases.

This proves Result 2.

References

[1] O. V. Borodin and A. V. Kostochka, “On an upper bound of a graph’s chromatic number, depending on the graph’s degree and density”, JCTB 23 (1977), 247–250.
[2] B. A. Reed, “A strengthening of Brooks’ Theorem”, J. Comb. Theory Ser. B, 76 (1999), 136–149.
[3] D. W. Cranston and L. Rabern, “Coloring claw-free graphs with Δ-1 colors” SIAM J. Discrete Math., 27(1) (1999), 534–549.
[4] Medha Dhurandhar “Coloring 2K_2-free graphs with Δ-1 colors”, arXiv:1702.00914, Feb. 2017
[5] J.A. Bondy and U.S.R. Murty. Graph Theory, volume 244 of Graduate Text in Mathematics. Springer, 2008.