ON THE DIAMETER OF THE COMMUTING GRAPH OF THE FULL MATRIX RING OVER THE REAL NUMBERS

J. M. GRAU, A. M. OLLER-MARCÉN* AND C. TASIS

(Communicated by Ebadollah S. Mahmoodian)

ABSTRACT. In a recent paper C. Miguel proved that the diameter of the commuting graph of the matrix ring \(M_n(\mathbb{R}) \) is equal to 4 if either \(n = 3 \) or \(n \geq 5 \). But the case \(n = 4 \) remained open, since the diameter could be 4 or 5. In this work we close the problem showing that also in this case the diameter is 4.

Keywords: Commuting graph, diameter, idempotent matrix.
MSC(2010): Primary: 05C50; Secondary: 15A27.

1. Introduction

For a ring \(R \), the commuting graph of \(R \), denoted by \(\Gamma(R) \), is a simple undirected graph whose vertices are all non-central elements of \(R \), and two distinct vertices \(a \) and \(b \) are adjacent if and only if \(ab = ba \). The commuting graph was introduced in [1] and has been extensively studied in recent years by several authors [2–7,12,13].

In a graph \(G \), a path \(P \) is a sequence of distinct vertices \((v_1, \ldots, v_k) \) such that every two consecutive vertices are adjacent. The number \(k - 1 \) is called the length of \(P \). For two vertices \(u \) and \(v \) in a graph \(G \), the distance between \(u \) and \(v \), denoted by \(d(u,v) \), is the length of the shortest path between \(u \) and \(v \), if such a path exists. Otherwise, we define \(d(u,v) = \infty \). The diameter of a graph \(G \) is defined

\[
\text{diam}(G) = \sup\{d(u,v) : u \text{ and } v \text{ are vertices of } G\}.
\]

A graph \(G \) is called connected if there exists a path between every two distinct vertices of \(G \), equivalently, \(\text{diam}(G) < \infty \).

Most research has been conducted regarding the diameter of commuting graphs of certain classes of rings [3,7–10]. Here, we deal with the full matrix rings over fields. Let \(\mathbb{F} \) be an arbitrary field. We know that \(\Gamma(M_2(\mathbb{F})) \) is never
Diameter commuting graph matrix ring over \mathbb{R}

connected. It was proved in [4] that $\Gamma(M_n(\mathbb{F}))$ is connected if and only if every field extension of \mathbb{F} of degree n contains a proper intermediate field. Moreover, it was shown in [3] that if $\Gamma(M_n(\mathbb{F}))$ is connected, then $4 \leq \text{diam}(\Gamma(M_n(\mathbb{F}))) \leq 6$ and it is conjectured that $\text{diam}(\Gamma(M_n(\mathbb{F}))) \leq 5$. Let \mathbb{Q} and \mathbb{R} be the fields of rational and real numbers, respectively. We know from [3, 4] that $\Gamma(M_n(\mathbb{Q}))$ is disconnected for any $n \geq 2$ and $\text{diam}(\Gamma(M_n(\mathbb{F}))) = 4$ for every algebraically closed field \mathbb{F} and $n \geq 3$. Quite recently, C. Miguel [11] has verified this conjecture for \mathbb{R}, proving the following result.

Theorem 1.1. Let $n \geq 3$ be any integer. Then, $\text{diam}(\Gamma(M_n(\mathbb{R}))) = 4$ for $n \neq 4$ and $4 \leq \text{diam}(\Gamma(M_4(\mathbb{R}))) \leq 5$.

Unfortunately, this result left open the question whether $\text{diam}(\Gamma(M_4(\mathbb{R})))$ is 4 or 5. In this paper we solve this open problem. Namely we will prove the following result.

Theorem 1.2. The diameter of $\Gamma(M_4(\mathbb{R}))$ is equal to 4.

2. On the diameter of $\Gamma(M_n(\mathbb{R}))$

Before we proceed, let us introduce some notation. If $a, b \in \mathbb{R}$, we define the matrix $A_{a,b}$ as

$$A_{a,b} := \begin{pmatrix} a & b \\ -b & a \end{pmatrix}.$$

Now, given two matrices $X, Y \in M_n(\mathbb{R})$, we define

$$X \oplus Y := \begin{pmatrix} X & 0 \\ 0 & Y \end{pmatrix} \in M_{2n}(\mathbb{R}).$$

Finally, two matrices $A, B \in M_n(\mathbb{R})$ are called similar and are written as $A \sim B$ if there exists an invertible matrix P such that $P^{-1}AP = B$.

The proof of Theorem 1.1 in [11] relies on the possible forms of the Jordan canonical form of a real matrix. In particular, it is proved that the distance between two matrices $A, B \in M_4(\mathbb{R})$ is at most 4 unless we are in the situation where A and B have no real eigenvalues and only one of them is diagonalizable over \mathbb{C}. In other words, the case when

$$A = \begin{pmatrix} A_{a,b} & 0 \\ 0 & A_{c,d} \end{pmatrix}, \quad B = \begin{pmatrix} A_{s,t} & I_2 \\ 0 & A_{s,t} \end{pmatrix},$$

The following result will provide us the main tool to prove that the distance between A and B is at most 4 also in the previous setting. It is true for any division ring D. In what follows, given a matrix A, L_A and R_A will denote the left and right multiplication by A, respectively.

Proposition 2.1. Let $A, B \in M_n(D)$ matrices such that $A^2 = A$ and $B^2 = 0$. Then, there exists a non-scalar matrix commuting with both A and B.

Proof. Since \(A^2 = A \); i.e., \(A(I - A) = (I - A)A = 0 \), then one of nullity \(A \) or nullity \((I - A)\) is at least \(n/2 \). Since \(I - A \) is also idempotent and a matrix commutes with \(A \) if and only if it commutes with \(I - A \) we can assume that nullity \(A \geq n/2 \). Moreover, since \(B^2 = 0 \), it follows that nullity \(B \geq n/2 \).

Now, if \(\text{Ker}(A) \cap \text{Ker}(B) \neq \{0\} \) and \(\text{Ker}(A) \cap \text{Ker}(B) \neq \{0\} \) we can apply [3, Lemma 4] and the result follows. Hence, we assume that \(\text{Ker}(A) \cap \text{Ker}(B) = \{0\} \), since in the case \(\text{Ker}(A) \cap \text{Ker}(B) = \{0\} \) we can consider the transposes of \(A \) and \(B \) instead of \(A \) and \(B \), respectively. Note that, in these conditions, \(n = 2r \) and the nullities of \(A \) and \(B \) are equal to \(r \).

Let \(B_1 \) and \(B_2 \) be bases for \(\text{Ker}(A) \) and \(\text{Ker}(B) \), respectively, and consider \(B = B_1 \cup B_2 \) a basis for \(D^n \). Since \(A \) is idempotent, it follows that \(D^n = \text{Ker}(A) \oplus \text{Im}(A) \).

We want to find the representation matrix of \(A \) in the basis \(B \). To do so, if \(v \in B_2 \), we write \(v = a + a' \) with \(a \in \text{Ker}(A) \) and \(a' \in \text{Im}(A) \). If \(a' = Aa'' \) for some \(a'' \in D^n \), then \(Av = Aa + Aa' = 0 + A(Aa'') = Aa'' = a'' = -a + v \). Since \(Av = 0 \) for every \(v \in B_1 \), we get that the representation matrix of \(A \) in the basis \(B \) is of the form

\[
\begin{pmatrix}
0 & A' \\
0 & I_r
\end{pmatrix},
\]

with \(A' \in M_r(D) \).

Now, we want to find the representation matrix of \(B \) in the basis \(B \). Clearly, \(Bw = 0 \) for every \(w \in B_2 \). Let \(w \in B_1 \). Then, \(Bw = w_1 + w_2 \) with \(w_1 \in \text{Ker}(A) \) and so \(w_2 \in \text{Ker}(B) \). Hence, \(0 = B^2w = Bw_1 \) and \(w_1 \in \text{Ker}(A) \cap \text{Ker}(B) = \{0\} \). Thus, the representation matrix of \(B \) in the basis \(B \) is of the form

\[
\begin{pmatrix}
0 & 0 \\
B' & 0
\end{pmatrix},
\]

with \(B' \in M_r(D) \).

As a consequence of the previous work we can find a regular matrix \(P \) such that:

\[
PAP^{-1} = \begin{pmatrix}
0 & A' \\
0 & I_r
\end{pmatrix}, \quad PBP^{-1} = \begin{pmatrix}
0 & 0 \\
B' & 0
\end{pmatrix}.
\]

Now, if \(A'B' \neq B'A' \), then \(P^{-1}(A'B' \oplus B'A')P \) is a non-scalar matrix commuting with \(A \) and \(B \). If \(A' \) and \(B' \) commute, we can find a non-scalar matrix \(S \in M_r(D) \) commuting with both \(A' \) and \(B' \). Therefore \(P^{-1}(S \oplus S)P \) commutes with both \(A \) and \(B \) and the proof is complete. \(\square \)

We are now in the condition to prove the main result of the paper.

Theorem 2.2. The diameter of \(\Gamma(M_4(\mathbb{R})) \) is four.

Proof. In [11] it was proved that \(d(A, B) \leq 4 \) for every \(A, B \in M_4(\mathbb{R}) \), unless

\[
A \sim \begin{pmatrix}
A_{a,b} & 0 \\
0 & A_{c,d}
\end{pmatrix} \quad \text{and} \quad B \sim \begin{pmatrix}
A_{s,t} & I_2 \\
0 & A_{s,t}
\end{pmatrix},
\]
for some real numbers \(a, b, c, d, s, t\). Hence, we only focus on this case. Assume that
\[
A = P^{-1} \begin{pmatrix} A_{a,b} & 0 \\ 0 & A_{c,d} \end{pmatrix} P \quad \text{and} \quad B = Q^{-1} \begin{pmatrix} A_{s,t} & I_2 \\ 0 & A_{s,t} \end{pmatrix} Q,
\]
for some invertible matrices \(P\) and \(Q\). Let
\[
M = P^{-1} \begin{pmatrix} 0 & 0 \\ 0 & I_2 \end{pmatrix} P \quad \text{and} \quad N = Q^{-1} \begin{pmatrix} 0 & I_2 \\ 0 & 0 \end{pmatrix} Q.
\]
It is straightforwardly checked that \(M^2 = M, N^2 = 0, AM = MA,\) and \(BN = NB\). Furthermore, Proposition 2.1 implies that there exists a non-scalar matrix \(X\) that commutes both with \(M\) and \(N\).
Thus, we have found a path \((A, M, X, N, B)\) of length 4 connecting \(A\) and \(B\) and the result follows.

\[\square\]

Corollary 2.3. For every \(n \geq 3\), \(diam(\Gamma(M_4(\mathbb{R}))) = 4\).

Acknowledgements

We want to thank the anonymous referee for his useful comments that helped to improve the paper, in particular its introduction.

References

[1] S. Akbari, M. Ghandehari, M. Hadian and A. Mohammadian, On commuting graphs of semisimple rings, *Linear Algebra Appl.* **390** (2004) 345–355.

[2] S. Akbari, D. Kiani and F. Ramezani, Commuting graphs of group algebras, *Comm. Algebra* **38** (2010), no. 9, 3532–3538.

[3] S. Akbari, A. Mohammadian, H. Radjavi and P. Raja, On the diameters of commuting graphs, *Linear Algebra Appl.* **418** (2006), no. 1, 161–176.

[4] S. Akbari, H. Bidkhoi and A. Mohammadian, Commuting graphs of matrix algebras, *Comm. Algebra* **36** (2008), no. 11, 4020–4031.

[5] S. Akbari and P. Raja, Commuting graphs of some subsets in simple rings, *Linear Algebra Appl.* **416** (2006) 1038–1047.

[6] J. Araújo, M. Kinyon and J. Konečný, Minimal paths in the commuting graphs of semigroups, *European J. Combin.* **32** (2011), no. 2, 178–197.

[7] G. Dolinar, B. Kuzma and P. Oblak, On maximal distances in a commuting graph, *Electron. J. Linear Algebra* **23** (2012) 243–256.

[8] D. Dolžan, D. Kokol Bukovšek and P. Oblak, Diameters of commuting graphs of matrices over semirings, *Semigroup Forum* **84** (2012), no. 2, 365–373.

[9] D. Dolžan and P. Oblak, Commuting graphs of matrices over semirings, *Linear Algebra Appl.* **435** (2011), no. 7, 1657–1665.

[10] M. Giudici and A. Pope, The diameters of commuting graphs of linear groups and matrix rings over the integers modulo \(m\), *Australas. J. Combin.* **48** (2010) 221–230.

[11] C. Miguel, A note on a conjecture about commuting graphs, *Linear Algebra Appl.* **438** (2013), no. 12, 4750–4756.

[12] A. Mohammadian, On commuting graphs of finite matrix rings, *Comm. Algebra* **38** (2010), no. 3, 988–994.

[13] G. R. Omidi and E. Vatandoost, On the commuting graph of rings, *J. Algebra Appl.* **10** (2011), no. 3, 521–527.
(Jose Maria Grau) Departamento de Matemáticas, Universidad de Oviedo. Avenida Calvo Sotelo s/n, 33007 Oviedo, Spain.
E-mail address: grau@uniovi.es

(Antonio M. Oller-Marcén) Centro Universitario de la Defensa de Zaragoza. Carretera de Huesca s/n, 50090 Zaragoza, Spain.
E-mail address: oller@unizar.es

(Carmen Tasis) Departamento de Matemáticas, Universidad de Oviedo. Avenida Calvo Sotelo s/n, 33007 Oviedo, Spain.
E-mail address: ctasis@uniovi.es