Research on wave height cross-sections of UHF radio wave scattering from periodic water surface waves

Yan Tu¹, Biyang Wen¹, and Chaonan Liu¹

Abstract The relationship between wave field information (wave height, wavelength, etc.) and radar echo is hard to analyze with conventional measurement and extraction methods due to the randomness and complexity of the ocean. To improve wave field information estimates, we used an ultrahigh-frequency (340 MHz) radar to probe subscale water waves in the laboratory. First-order radar cross-section Doppler spectra were measured and analyzed. The results indicate a significant linear correlation between RCS (dB) and wave height (dB) (all correlation coefficients $R > 0.9$) but no linear correlation exists between RCS (dB) and wavelength (dB).

Keywords: ultrahigh-frequency radar, Bragg scattering, flume experiment, radar cross section

Classification: Electromagnetic theory

1. Introduction

Information about ocean dynamics such as wind speed, wave height and flow rate have great significance for national defense, production and research since Crombie first interpreted the dominant components of backscattered sea echoes with Bragg resonance theory [1]. In most research, ocean dynamics information is gathered by high-frequency (HF) radar. In 1977, Barrick [2, 3, 4] proposed an approximate method for inverting the ocean wave height nondirection spectrum using first-order and second-order radar cross-sections (RCS). Wyatt et al. [5, 6, 7, 8] studied wave measurements in different sea-states. Roarty et al. [9, 10] examined several wave-inducing factors to improve wave measurements. Zhou et al. [11, 12, 13, 14] proposed an inverse method by using the unsaturated property of the first-order Bragg spectral power in 2015. Tian [15, 16, 17] estimated wave height from dual-frequency radar data in 2017. However, it is hard to describe the ocean status with an accurate expression because of random wavelengths, wave heights and wave directions. In order to analyze complex ocean waves thoroughly, the random ocean model should be idealized with a single wavelength, wave height and wave direction; however, it is unrealistic to generate such a water wave in the ocean. In this project, a subscale water wave is generated to simulate the actual ocean in a multifunctional flume by controlling a single variable, such as the single frequency of a water wave. Similar methodology is widely used in research. Dennis C Cooper [18, 19, 20] conducted a series of laboratory experiments to analyze the first- and second-order backscatter Doppler spectra of water surface waves in a flume based on microwave frequencies (2.5 GHz). Lee PHY [21, 22, 23] conducted a series of laboratory experiments to analyze Bragg and non-Bragg scattering between different polarizations. Research on wave water electromagnetic scattering in a flume focuses on microwave and capillary waves, which have different mechanisms from deep water gravity waves.

Minimal research regarding ocean dynamics has been based on ultrahigh-frequency radar (UHF radar) and a multifunctional flume. UHF radar has many advantages on subscale experiments in a flume. First, the UHF electromagnetic wave scattering mechanism on a water wave satisfies the dispersion relation of gravity waves. Second, UHF electromagnetic waves have wavelengths on the magnitude of decimeters, which are between microwave and high-frequency waves [24, 25, 26, 27]. This wave is sensitive to decimeter water waves, which are easy to generate in a multifunctional flume. Third, the UHF radar studied in this paper has a range resolution of only 10 m, with a maximum detection length of 300 m, which can cover the entire flume and accurately detect water waves in the flume. In summary, this paper utilized UHF radar to conduct the subscale experiment, and used a multifunctional flume to generate certain wavelengths and certain wave heights of a sine water wave.

2. Wave flume experiment

The multifunction wave flume was provided by the State Key Laboratory of Coastal and Offshore Engineering of Dalian University of Technology. The overall structure of the experimental flume is shown in Fig. 1 [28]. The working depth of the wave flume is 0.8 m. The distance between two sensors is 34.7 cm. This radar system was designed and made by Radar and Signal Processing Laboratory of Wuhan University. It adopts a linear frequency modulated interrupted continuous waveform (LFMICW) mechanism and operates at 340 MHz, which depends on the presence of 44-cm-wavelength waves (one-half of the radar wavelength $\lambda = 0.88$ m). Both the transmitting and receiving antennas are TDJ-350A Yagi antenna, and their gain is 11 dB. The specific waveform parameters are as shown in Table I [29, 30, 31].

1Electronic Information School of Wuhan University, Wuhan 430072, China

a) rspl@whu.edu.cn

DOI: 10.1587/elex.16.20190344

Received May 27, 2019
Accepted June 10, 2019
Publicized July 1, 2019
Copyedited July 25, 2019
According to the waveform parameters of the UHF radar above, its Bragg frequency is caused by a gravity wave $f_B = 1.88$ Hz; the wavelength of the water caused Bragg scattering $L_B = \lambda/2 = 0.44$ m, and its wave period $T = 0.54$ s.

The multifunction wave flume could generate a specific single-frequency sinusoidal water wave with different wavelength and wave height. Two pressure sensors record the water surface profile, which is shown in Fig. 2. The distance between the two sensors is 34.7 cm.

3. Analysis

3.1 Experimental data and analysis

The power density spectra of the backscatter from the water surface pro
duced by the UHF radar are shown in Fig. 3. In this system, there are $N = 256$ sweep periods in each coherent integration period; thus, one coherent integration period is $T = N \times T_s = 11.08$ s. Fig. 4 shows the relationship between RCS and wave height from different wavelengths L. ‘*’ represents the average power value P (dB) of first peak at every data point (every coherent integration period). ‘0’ represents the average power value P (dB) = $E(P)$ of the first peak in each coherent integration period and the same parameter (same wave height h and same wavelength L). The slash is the curve fitting of P (dB) and h (dB). The correlation coefficients in the two sets of parameters are 0.9957 and 0.9945. The results indicate that the linear correlation between P (dB) and h (dB) is very prominent.

3.2 The relationship between RCS and wavelength

When the echo signal from the water wave is steady, the longer the coherent integration period is, the stronger the echo signal power, the greater the signal-to-noise ratio, and the more conducive to extraction are the ocean state parameters. In this system, there are $N = 256$ sweep periods in each coherent integration period; thus, one coherent integration period is $t = N \times T_s = 11.08$ s. Fig. 4 shows the relationship between RCS and wave height from different wavelengths L. '0' represents the average power value P (dB) = $E(P)$ of the first peak in each coherent integration period and the same parameter (same wave height h and same wavelength L). The slash is the curve fitting of P (dB) and h (dB). The correlation coefficients in the two sets of parameters are 0.9957 and 0.9945. The results indicate that the linear correlation between P (dB) and h (dB) is very prominent.

3.3 The relationship between RCS and wavelength

The overall structure of the experimental flume. Two antennas are 1 m above the water surface.
3.4 Slope k and correlation coefficient of the fitted curve

Table II shows slope k and correlation coefficient R of the fitted curve of different wavelengths L. Regardless of wavelength change, slope k is stable near 1, and all correlation coefficients R are greater than 0.9. Thus,

\[P = Ah^k \] \hspace{1cm} (4)

Fig. 2. Wave profile recorded by two sensors.

(a) Wavelength \(L = 6 \times \lambda/2 \), wave height \(h = 3\) cm, 6cm, 10cm, 16cm

(b) Wavelength \(L = 8 \times \lambda/2 \), wave height \(h = 3\) cm, 6cm, 10cm, 16cm

Fig. 3. Power spectra of the backscatter from different wavelengths. The horizontal axis is Normalized Doppler Frequency (NDF)

Fig. 4. Relationship between RCS and wave height \(h \) from different wavelengths L

(a) Wavelength \(L = 6 \times \lambda/2 \)

(b) Wavelength \(L = 8 \times \lambda/2 \)
Fig. 5. The relationship between RCS and wavelengths L from different wave heights h

L	k	R
$2 \times \lambda/2$	1.0657	0.9894
$3 \times \lambda/2$	1.0282	0.9929
$4 \times \lambda/2$	0.8825	0.9622
$5 \times \lambda/2$	0.8288	0.9790
$6 \times \lambda/2$	0.9646	0.9957
$7 \times \lambda/2$	1.2283	0.9689
$8 \times \lambda/2$	1.0139	0.9494
$9 \times \lambda/2$	0.9519	0.9757
$10 \times \lambda/2$	0.7852	0.9960

4. Conclusion

This result obtained from the scaled experiment in the flume verified that the linear correlativity between RCS and wave height is very prominent, and no correlativity exists between RCS and wavelength. Wave height is one of the most important dynamic parameters of the ocean. This research prepares dynamic parameters of the ocean for quantitative analysis via radar, and the relationship between the power of other peaks and hydrodynamic parameters will be studied in future work.

Acknowledgments

This research was supported by the National Natural Science Foundation of China (Grant No. 61371063). The authors would like to acknowledge the support provided by the State Key Laboratory of Coastal and Offshore Engineering of Dalian University of Technology as well as the editors and anonymous reviewers for their comments and suggestions, which were very helpful for improving the manuscript.

References

[1] D. D. Crombie: “Doppler spectrum of sea echo at 13.56 Mc./s,” Nature 175 (1955) 681 (DOI: 10.1038/175681a0).

[2] D. Barrick: “First-order theory and analysis of MF/HF/VHF scatter from the sea,” IEEE Trans. Antennas Propag. 20 (1972) 2 (DOI: 10.1109/TAP.1972.1140123).

[3] D. E. Barrick: “The ocean wave power non-directional spectrum from inversion of the HF sea-echo Doppler spectrum,” Remote Sens. Environ. 6 (1977) 201 (DOI: 10.1016/0034-4257(77)90004-9).

[4] D. Barrick and B. Lipa: “The second-order shallow-water hydrodynamic coupling coefficient in interpretation of HF radar sea echo,” IEEE J. Oceanic Eng. 11 (1986) 310 (DOI: 10.1109/JOE.1986.1145187).

[5] L. R. Wyatt: “HF radar wave measurement in high sea-states,” IEEE Oceanic Engineering Society. OCEANS’98. Conference Proc. (Cat. No. 98CH36259) 1 (1998) (DOI: 10.1109/OCEANS.1998.725790).

[6] L. R. Wyatt and J. J. Green: “Measuring high and low waves with HF radar,” OCEANS 2009-EUROPE. IEEE (2009) (DOI: 10.1109/ OCEANS.2009.5278328).

[7] L. R. Wyatt, et al.: “HF radar data quality requirements for wave measurement,” Coast. Eng. 58 (2011) 327 (DOI: 10.1016/j.coastaleng.2010.11.005).

[8] L. R. Wyatt: “Wave measurements from the Australian coastal ocean radar network,” OCEANS 2014-TAIPEI. IEEE (2014) (DOI: 10.1109/OCEANS-TAIPEI.2014.6964286).

[9] R. Forney, et al.: “Measuring waves with a compact HF radar,” OCEANS 2015-MTS/IEEE Washington. IEEE (2015) (DOI: 10.23919/OCEANS.2015.7404428).

[10] D. Barrick: “High-resolution Doppler radar observation of Bragg and non-Bragg scattering using single frequency and chirped radars,” Radio Sci. 32 (1997) 1725 (DOI: 10.1029/97RS01399).

[11] H. Zhou and B. Wen: “Wave height extraction from the first-order Bragg peaks in high-frequency radars,” IEEE Geosci. Remote Sens. Lett. 12 (2015) 2296 (DOI: 10.1109/LGRS.2015.2472976).

[12] H. Zhou, et al.: “Wave height measurement in the Taiwan Strait with a portable high frequency surface wave radar,” Acta Oceanol. Sin. 34 (2015) 73 (DOI: 10.1007/s11331-015-0599-6).

[13] H. Zhou and B. Wen: “Wave height estimation using the singular peaks in the sea echoes of high frequency radar,” Acta Oceanol. Sin. 37 (2018) 108 (DOI: 10.1007/s11331-018-1161-0).

[14] H. Roarty, et al.: “Evaluation of algorithms for wave height measurements with high frequency radar,” 2015 IEEE/OES Eleventh Current, Waves and Turbulence Measurement (CWTM). IEEE (2015) (DOI: 10.1109/CWTM.2015.7098109).

[15] Y. Tian, et al.: “Wave height estimation from first-order backscatter of a dual-frequency high frequency radar,” Remote Sens. 9 (2017) 1186 (DOI: 10.3390/rs9111186).

[16] Y. Tian, et al.: “Measurement of high and low waves using dual-frequency broad-beam HF radar,” IEEE Geosci. Remote Sens. Lett. 14 (2017) 1599 (DOI: 10.1109/LGRS.2014.2301837).

[17] Y. Tian, et al.: “Wave height field measurement using a compact dual-frequency HF radar,” 2018 OCEANS-MTS/IEEE Kobe Techno-Oceans (OTO). IEEE (2018) (DOI: 10.1109/ OCEANSKOBE.2018.8559375).

[18] A. Abou-Taleb and D. Cooper: “Microwave scattering by surface waves on water,” IEEE J. Ocean. Eng. 11 (1986) 316 (DOI: 10.1109/JOE.1986.1145171).

[19] H. Li, et al.: “High-resolution Doppler radar observation of scattering from waves in laboratory wave-tanks,” International Conference on Antennas & Propagation, IAPC IET (1989).

[20] E. D. R. Shearmur: “High spatial resolution observations of radar scattering from a wave tank,” IEEE Colloquium on Interaction of Radio waves with the Sea Surface IET (2002).

[21] P. H. Y. Lee, et al.: “Experiments on Bragg and non-Bragg scattering using single frequency and chirped radars,” Radio Sci. 32 (1997) 1725 (DOI: 10.1029/97RS01399).

[22] L. Wang, et al.: “Electromagnetic wave propagation in and scattering from random media,” Appl. Phys. Lett. 72 (1998) 1914 (DOI: 10.1063/1.12123).

[23] P. H. Y. Lee, et al.: “What are the mechanisms for non-Bragg scattering from water wave surfaces?” Radio Sci. 34 (1999) 123 (DOI: 10.1029/1998RS000024).
[24] D. Barrick, et al.: “Profiling river surface velocities and volume flow estimation with bistatic UHF RiverSonde radar,” Proc. of the IEEE/OES Seventh Working Conference on Current Measurement Technology, 2003. IEEE (2003) (DOI: 10.1109/CCM.2003.1194283).

[25] C. C. Teague, et al.: “Initial river test of a monostatic RiverSonde streamflow measurement system,” Proc. of the IEEE/OES Seventh Working Conference on Current Measurement Technology, 2003. IEEE (2003) (DOI: 10.1109/CCM.2003.1194281).

[26] C. C. Teague, et al.: “Long-term UHF RiverSonde river velocity observations at Castle Rock, Washington and Threemile Slough, California,” Proc. of the IEEE/OES Eighth Working Conference on Current Measurement Technology, 2005. IEEE (2005) (DOI: 10.1109/CCM.2005.1506345).

[27] J. Huang: Ultra High Frequency Ocean Surface Dynamics Parameters Radar System Design (Wuhan University, 2008).

[28] Y. Tu, et al.: “Research on cross section of UHF radio wave scattering from surface waves on water,” IEICE Electron. Express 13 (2016) 20160898 (DOI: 10.1587/elex.13.20160898).

[29] K. Li, et al.: “A novel UHF radar system design for river dynamics monitoring,” IEICE Electron. Express 12 (2015) 20141074 (DOI: 10.1587/elex.12.20141074).

[30] S. Wang, et al.: “UHF surface dynamics parameters radar design and experiment,” IEEE Microw. Wireless Compon. Lett. 24 (2014) 65 (DOI: 10.1109/LMWC.2013.2288268).

[31] K. Li: “Bragg and non-Bragg wave scattering research based on full-digital uhf radar system,” Thesis, Wuhan University (2015).

[32] B. Wen and K. Li: “Frequency shift of the Bragg and non-Bragg backscattering from periodic water wave,” Sci. Rep. 6 (2016) 31588 (DOI: 10.1038/srep31588).