Co(NCS)$_2$(abpt)$_2$ and Ni(NCS)$_2$(abpt)$_2$ [abpt is 4-amino-3,5-bis(pyridin-2-yl)-1,2,4-triazole]: structural characterization of polymorphs A and B

Helen E. Mason, Judith A. K. Howard and Hazel A. Sparkes

The synthesis and structures of bis[4-amino-3,5-bis(pyridin-2-yl)-1,2,4-triazole-κ^2N^2,N^3]bis(thiocyanato-κ^2N)cobalt(II), [Co(NCS)$_2$(C$_{12}$H$_{10}$N$_6$)$_2$] or Co(NCS)$_2$(abpt)$_2$, and bis[4-amino-3,5-bis(pyridin-2-yl)-1,2,4-triazole-κ^2N^2,N^3]bis(thiocyanato-κ^2N)nickel(II), [Ni(NCS)$_2$(C$_{12}$H$_{10}$N$_6$)$_2$] or Ni(NCS)$_2$(abpt)$_2$, are reported. In both cases, two polymorphs, A and B, were identified and structurally characterized. For both polymorphs, the structures obtained with the different metals, i.e. CoII or NiII, were found to be isostructural. All of the structures contained an intramolecular N—H/C1/C1/C1 hydrogen bond, C—H/C1/C1/C1 interactions and π–π stacking interactions. No structural evidence was observed for a thermal spin crossover for either of the Co(NCS)$_2$(abpt)$_2$ polymorphs between 300 (2) and 120 (2) K.

1. Introduction

The bidentate ligand 4-amino-3,5-bis(pyridine-2-yl)-1,2,4-triazole (abpt) has been found to form mononuclear complexes, as well as single- or double-bridged dinuclear complexes, with a variety of metals (for examples, see Dupouy et al., 2008; White et al., 2009; Li et al., 2011). Amongst these, a number of FeII complexes have been synthesized and studied because of their interesting polymorphism and spin-crossover behaviour. Perhaps the most studied is the Fe(NCS)$_2$(abpt)$_2$ complex, of which there are four known polymorphs, denoted A–D, all of which display different magnetic behaviour. Three of the polymorphs, i.e. A (Moliner et al., 1999; Sheu et al., 2009; Mason et al., 2016), C (Sheu et al., 2009; Shih et al., 2010) and D (Sheu et al., 2009, 2012; Mason et al., 2021), undergo at least a partial thermal spin crossover under ambient pressure, while polymorph B (Gaspar et al., 2003) only undergoes a thermal spin crossover at pressures above 4.4 kbar (1 bar = 105 Pa). All of the three polymorphs which display at least a partial thermal spin crossover also show light-induced excited-spin-state trapping (LIESST) at low temperature. While three of the polymorphs (A, B and D) are known to undergo a pressure-induced spin crossover at room temperature (Mason et al., 2016, 2021), polymorph C has not been studied under pressure at room temperature. To date, Co(NCS)$_2$(abpt)$_2$ is the only other M(NCS)$_2$(abpt)$_2$ complex containing a transition metal for which any structures have been reported. Like the Fe analogue, this has also been found to display polymorphism, with two different polymorphs of Co(NCS)$_2$(abpt)$_2$ reported at room temperature. These will be referred to as Co(NCS)$_2$(abpt)$_2$ polymorphs B (Peng et al., 2006) and D (Chen & Peng, 2007) throughout, as they are isostructural with...
Fe(NCS)\(_2\) (abpt)\(_2\) polymorphs B and D. The structures of two polymorphs, A and B, of both Co(NCS)\(_2\) (abpt)\(_2\) and Ni(NCS)\(_2\) (abpt)\(_2\) are reported herein (see Scheme 1).

![Scheme 1](image)

2. Experimental

2.1. Synthesis

The synthesis of M(NCS)\(_2\) (abpt)\(_2\), where M is Co or Ni, was carried out using a slow-diffusion method with methanol–water solutions as reported previously (Sheu et al., 2009). All chemicals were obtained from Sigma–Aldrich and used as supplied. CoSO\(_4\)\(\cdot\)7H\(_2\)O (1 mmol, 0.281 g) or NiSO\(_4\)\(\cdot\)6H\(_2\)O (1 mmol, 0.263 g) and KNCS (2 mmol, 0.194 g) were stirred in methanol (10 ml) for 15 min. A pale-yellow insoluble K\(_2\)SO\(_4\) precipitate was removed by filtration and deionized water (10 ml) was added to the remaining clear solution. Abpt (2 mmol, 0.477 g) was dissolved in methanol (20 ml) and placed in a narrow (<5 cm) Schlenk tube. The M\(^{2+}\)/NCX\(^{-}\) solution was very carefully pipetted at the bottom of the Schlenk tube to form a lower more dense layer below the abpt solution. Immediately, a coloured band formed at the interface between the two layers containing the target complex. The Schlenk tube was left undisturbed and single crystals suitable for X-ray diffraction studies had formed within one week to one month later.

2.2. Refinement

Details of the crystallographic data collections are given in Table 1. All H atoms, apart from the N—H hydrogens, were positioned geometrically and refined using a riding model. The N—H hydrogens were located in a difference Fourier map (DFM) wherever feasible.

3. Results and discussion

The structure of Co(NCS)\(_2\) (abpt)\(_2\) polymer B has already been reported at room temperature and is consistent with that reported here (Peng et al., 2006). The main structural features of all four structures are very similar: they all crystallized in the monoclinic space group \(P2_1/n\) with half a molecule in the

Crystal data	Co(NCS)\(_2\) (abpt)\(_2\), Polymorph A	Co(NCS)\(_2\) (abpt)\(_2\), Polymorph B	Ni(NCS)\(_2\) (abpt)\(_2\), Polymorph A	Ni(NCS)\(_2\) (abpt)\(_2\), Polymorph B
Chemical formula	[Co(NCS)\(_2\) (C\(_{12}\)H\(_{10}\)N\(_6\))\(_2\)]	[Co(NCS)\(_2\) (C\(_{12}\)H\(_{10}\)N\(_6\))\(_2\)]	[Ni(NCS)\(_2\) (C\(_{12}\)H\(_{10}\)N\(_6\))\(_2\)]	[Ni(NCS)\(_2\) (C\(_{12}\)H\(_{10}\)N\(_6\))\(_2\)]
\(M_e\)	651.61	651.61	651.39	651.39
\(a, b, c (\text{Å})\)	8.4792 (6), 10.1307 (7), 16.3774 (11)	11.4978 (5), 9.5235 (4), 12.7179 (5)	8.4041 (7), 10.0681 (9), 16.2360 (14)	11.5860 (14), 9.5489 (12), 12.8132 (16)
\(c\) (°)	93.485 (1)	100.771 (1)	93.060 (2)	100.806 (2)
\(V (Å^3)\)	1368.07 (10)	1371.8 (2)	0.91	0.89
\(μ (\text{mm}^{-1})\)	0.81	0.83	0.81	0.83
Crystal size (mm)	0.24 × 0.16 × 0.11	0.48 × 0.22 × 0.1	0.2 × 0.12 × 0.08	0.2 × 0.13 × 0.04

Data collection

Diffractometer	Bruker SMART CCD 1K area detector	Bruker SMART CCD 1K area detector	Bruker D8 VENTURE area detector	Bruker SMART CCD 1K area detector
\(T_{\text{min}}, T_{\text{max}}\)	0.793, 0.919	0.755, 0.884	0.781, 0.936	0.746, 0.948
No. of measured, independent and observed \([I > 2σ(I)]\) reflections	13341, 2884, 2383	13084, 2799, 2363	15450, 2819, 2161	12077, 2552, 1666
\(R_{\text{int}}\) \((\sin θ/λ)_{\text{max}} (Å^{-1})\)	0.044	0.037	0.046	0.116
0.625	0.625	0.625	0.602	
\(R[F^2 > 2σ(F^2)], wR(F^2), S\)	0.039, 0.093, 1.06	0.028, 0.065, 1.03	0.037, 0.085, 1.02	0.058, 0.136, 1.06
No. of reflections	2884	2799	2819	2552
No. of restraints	1	0	0	0
Δρ_{max}, Δρ_{min} (e Å\(^{-3}\))	0.58, −0.27	0.26, −0.39	0.48, −0.27	0.61, −0.66

Computer programs: SMART, APEX2, SAINT and SAINT-Plus (Bruker, 1999–2013), SHELXS (Sheldrick, 2008), SHELXL2018 (Sheldrick, 2015) and OLEX2 (Dolomanov et al., 2009).
asymmetric unit \((Z' = 0.5)\) (Fig. 1). Each of the four complexes consists of an approximately octahedrally coordinated metal centre (Co\(\text{II}\) or Ni\(\text{II}\)) coordinated to six N atoms, one from each of the NCS\(^-\) ligands and two from each abpt ligand (one pyridyl and one triazole N atom). Each of the structures contains an intramolecular N—H\(/\text{C1}/\text{C1}/\text{C1}\) hydrogen bond between the NH\(_2\) group on the triazole ring and the N atom of the uncoordinated pyridyl ring, as well as two intramolecular C—H\(/\text{C1}/\text{C1}/\text{C1}\) interactions, one between a pyridyl C—H group and the NH\(_2\) group attached to the triazole ring, and a second between a pyridyl C—H group and the uncoordinated N atom on the triazole group (Table 2).

The pair of A polymorphs of the Co\(\text{II}\) or Ni\(\text{II}\) structures are isomorphic with each other, and are also isostructural with the previously reported Fe(NCS)\(_2\)(abpt)\(_2\) polymorph A structure (Moliner et al., 1999; Sheu et al., 2009; Mason et al., 2016). In addition to the previously mentioned N—H\(/\text{C1}/\text{C1}/\text{C1}\) hydrogen bonding and C—H\(/\text{C1}/\text{C1}/\text{C1}\) interactions, the structures contain intermolecular \(\pi—\pi\) stacking between pairs of molecules and involving the two pyridyl rings at each end of the abpt ligand interacting with the two pyridyl rings on an adjacent abpt ligand, creating a one-dimensional chain through the structure (Table 3 and Fig. 2).

As seen for the pair of polymorph A structures, the two polymorph B structures were also isostructural with each other and with the previously reported Fe(NCS)\(_2\)(abpt)\(_2\) polymorph B structure (Gaspar et al., 2003; Mason et al., 2021). The structures of polymorph B also display \(\pi—\pi\) interactions, but in this case each of the pyridyl rings on the abpt ligand is involved in a \(\pi—\pi\) interaction to a pyridyl ring on a different abpt ligand, creating a three-dimensional network of interactions in the structure (Table 3 and Fig. 2). Along with the difference in the form of the \(\pi—\pi\) interactions between the polymorph A and polymorph B structures, the other main difference is the twist between the two rings on the abpt ligands. In the case of A, the twist between the rings is \(\sim 9^\circ\), while for B,

![Figure 1](image_url)

Figure 1
Illustration of the structures of Co(NCS)\(_2\)(abpt)\(_2\) polymorphs (a) A and (b) B, and Ni(NCS)\(_2\)(abpt)\(_2\) polymorphs (c) A and (d) B, with the atomic numbering schemes depicted. H atoms have been omitted for clarity. [Symmetry code: (i) \(-x + 1, -y + 1, -z + 1\).]

Table 2
Hydrogen-bond geometry (\(\AA\), °) for Co(NCS)\(_2\)(abpt)\(_2\) and Ni(NCS)\(_2\)(abpt)\(_2\) at 120 (2) K.

Structure	Polymorph	\(D—H\cdot\cdot\cdotA\)	\(D—H\)	\(H—A\)	\(D—A\)	\(D—H—A\)
Co(NCS)\(_2\)(abpt)\(_2\)	A	N6—H6b—N7 0.90 (3) 2.14 (3) 2.861 (3) 136 (3)	C5—H5—N6 0.95 2.53 3.135 (4) 122	C2—H2—N4i 0.95 2.67 3.467 (3) 142		
	B	N6—H6b—N7 0.90 (2) 2.41 (2) 2.914 (2) 115.6 (16)	C5—H5—N6 0.95 2.46 3.084 (2) 123	C2—H2—N4ii 0.95 2.66 3.482 (2) 145		
Ni(NCS)\(_2\)(abpt)\(_2\)	A	N6—H6b—N7 0.88 (3) 2.14 (3) 2.848 (3) 137 (3)	C5—H5—N6 0.95 2.52 3.124 (4) 122	C2—H2—N4i 0.95 2.55 3.437 (3) 141		
	B	N6—H6b—N7 0.84 (6) 2.52 (5) 2.950 (6) 112 (4)	C5—H5—N6 0.95 2.48 3.104 (7) 123	C2—H2—N4ii 0.95 2.59 3.403 (7) 144		

Symmetry codes: (i) \(-x + 1, -y + 1, -z + 1\); (ii) \(-x + 1, -y + 1, -z + 1\).
the twist between the rings is $\sim 35^\circ$ (Table 4). This is likely to be the reason for the significantly different $\pi-\pi$ stacking, as the larger twist in B would prevent both rings on one abpt ligand being correctly orientated to interact with both rings on a single abpt ligand on an adjacent molecule.

Table 3
$\pi-\pi$ stacking interactions (Å) for Co(NCS)$_2$(abpt)$_2$ and Ni(NCS)$_2$(abpt)$_2$ at 120 (2) K.

Structure	Polymorph	Plane 1	Plane 2	Centroid-to-centroid distance	Shift distance
Co(NCS)$_2$(abpt)$_2$	A	N2,C2,C3,C4,C5,C6	N7,C9,C10,C11,C12,C13	3.63	1.31
	B	N7,C9,C10,C11,C12,C13	N2,C2,C3,C4,C5,C6	3.63	1.31
Ni(NCS)$_2$(abpt)$_2$	A	N2,C2,C3,C4,C5,C6	N7,C9,C10,C11,C12,C13	3.63	1.34
	B	N7,C9,C10,C11,C12,C13	N2,C2,C3,C4,C5,C6	3.64	1.34

Symmetry codes: (i) $x + 1$, $-y + 2$, $-z + 1$; (ii) $x + \frac{1}{2}$, $-y + \frac{1}{2}$, $z + \frac{1}{2}$; (iii) $x - \frac{1}{2}$, $y - \frac{1}{2}$, $z - \frac{1}{2}$.
Examining the Co–N bond lengths showed them to be essentially identical to the 120 (2) K structure and indicate that no spin transition had occurred over this temperature range (Table 5). In the case of NiII, the complex is \(d^8\) so no spin transition would be possible.

4. Conclusions

The synthesis and structures of Co(NCS)\(_2\)(abpt)\(_2\) and Ni(NCS)\(_2\)(abpt)\(_2\) are reported. Two polymorphs were identified for each of the complexes, A and B, and the pairs of polymorphs with the different metal centres were found to be isostructural. All of the structures contained intramolecular N–H···N hydrogen bonding, intramolecular C–H···N interactions and π–π stacking. There are identifiable differences between the two polymorph structures. Firstly, the twist angle between the two six-membered rings on one abpt ligand was \(\sim 9^\circ\) for polymorph A and \(\sim 35^\circ\) for polymorph B. Secondly, the nature of the π–π stacking interactions was significantly different, presumably due to the differing twist angles of the rings. In the case of A, both rings on one abpt ligand form π–π stacking interactions with both rings on an abpt ligand on an adjacent molecule, while for B, each of the rings on the abpt ligand forms π–π stacking interactions with a ring on different abpt ligands in adjacent molecules. Variable-temperature studies on \(d^7\) Co(NCS)\(_2\)(abpt)\(_2\) did not show any evidence of a thermally-induced spin crossover for either of the polymorphs between 300 (2) and 120 (2) K.

Acknowledgements

HEM was grateful to the EPSRC and Durham University for funding and Professor Jonathan Steed, Durham University, for useful discussions.

References

- Bruker (1999–2013). SMART, SAINT, APEX2, SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, Z. Y. & Peng, M. X. (2007). Chin. J. Inorg. Chem. 23, 2091–2096.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Dupouy, G., Marchivie, M., Triki, S., Sala-Pala, J., Salaün, J. Y., Gomez-Garcia, C. J. & Guionneau, P. (2008). Inorg. Chem. 47, 8921–8931.
- Gaspar, A. B., Muñoz, M. C., Moliner, N., Ksenofontov, V., Levchenko, G., Gülich, P. & Real, J. A. (2003). Monatsh. Chem. 134, 285–294.
- Li, C. P., Wu, J. M. & Du, M. (2011). Inorg. Chem. 50, 9284–9289.
- Mason, H. E., Li, W., Carpenter, M. A., Hamilton, M. L., Howard, J. A. K. & Sparkes, H. A. (2016). New J. Chem. 40, 2466–2478.
- Mason, H. E., Musselle-Sexton, J. R. C., Howard, J. A. K., Probert, M. R. & Sparkes, H. A. (2021). New J. Chem. 45, 14014–14023.
- Moliner, N., Muñoz, M. C., Létard, S., Létard, J.-F., Solans, X., Burriel, R., Castro, M., Kahn, O. & Real, J. A. (1999). Inorg. Chem. Acta, 291, 279–288.
- Peng, M. X., Hong, C. G., Tan, C. K., Chen, J. C. & Tong, M. L. (2006). J. Chem. Crystallogr. 36, 703–707.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
- Sheu, C.-F., Chen, S.-M., Wang, S.-C., Lee, G.-H., Liu, Y.-H. & Wang, Y. (2009). Chem. Commun. pp. 7512–7514.
- Sheu, C.-F., Shih, C.-H., Sugimoto, K., Cheng, B.-M., Takata, M. & Wang, Y. (2012). Chem. Commun. 48, 5715–5717.
- Shih, C.-H., Sheu, C.-F., Kato, K., Sugimoto, K., Kim, J., Wang, Y. & Takata, M. (2010). Dalton Trans. 39, 9794–9800.
- Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net.
- White, N. G., Kitchen, J. A. & Brooker, S. (2009). Eur. J. Inorg. Chem. 2009, 1172–1180.
Co(NCS)$_2$(abpt)$_2$ and Ni(NCS)$_2$(abpt)$_2$ [abpt is 4-amino-3,5-bis(pyridin-2-yl)-1,2,4-triazole]: structural characterization of polymorphs A and B

Helen E. Mason, Judith A. K. Howard and Hazel A. Sparkes

Computing details

Data collection: SMART (Bruker, 1999) for Co$_A$$_{120}K, Co_B$$_{120}K, Ni_B$$_{120}K, Co_A$$_{300}K, Co_B$$_{300}$K; APEX2 (Bruker, 2005) for Ni$_A$$_{120}$K. Cell refinement: SAINT (Bruker, 2003) for Co$_A$$_{120}K, Co_B$$_{120}K, Ni_B$$_{120}K, Co_A$$_{300}K, Co_B$$_{300}$K; APEX2 (Bruker, 2005) for Ni$_A$$_{120}$K. Data reduction: SAINT (Bruker, 2003) for Co$_A$$_{120}K, Co_B$$_{120}K, Ni_B$$_{120}K, Co_A$$_{300}K, Co_B$$_{300}$K; SAINT-Plus (Bruker, 2013) for Ni$_A$$_{120}$K. For all structures, program(s) used to solve structure: SHELXS (Sheldrick, 2008). Program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015) for Co$_A$$_{120}K, Co_B$$_{120}K, Ni_A$$_{120}K, Ni_B$$_{120}K, Co_A$$_{300}K, Co_B$$_{300}$K; SHELXL2014 (Sheldrick, 2015) for Co$_B$$_{300}$K. For all structures, molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Bis[4-amino-3,5-bis(pyridin-2-yl)-1,2,4-triazole-κ2N$_2$,N$_3$]bis(thiocyanato-κN)cobalt(II) (Co$_A$$_{120}$K)

Crystal data

$[\text{Co(NCS)}$_2$(\text{C}_$_{12}H_{10}N_6$)$_2$]$

$M_r = 651.61$

Monoclinic, $P2_1/n$

$a = 8.4792$ (6) Å

$b = 10.1307$ (7) Å

$c = 16.3774$ (11) Å

$\beta = 93.485$ (1)$^\circ$

$V = 1404.22$ (17) Å3

$Z = 2$

$F(000) = 666$

$D_r = 1.541$ Mg m$^{-3}$

Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å

Cell parameters from 6392 reflections

$\theta = 2.4$–28.4°

$\mu = 0.81$ mm$^{-1}$

$T = 120$ K

Block, orange

$0.24 \times 0.16 \times 0.11$ mm

Data collection

Bruker SMART CCD 1K area detector diffractometer

Radiation source: sealed X-ray tube

Graphite monochromator

Detector resolution: 7.9 pixels mm$^{-1}$

ω scans

Absorption correction: multi-scan

(SADABS; Bruker, 2008)

$R_{\text{min}} = 0.793$, $R_{\text{max}} = 0.919$

Refinement

Refinement on F^2

$wR(F^2) = 0.093$

Least-squares matrix: full

$S = 1.06$

$R[F^2 > 2\sigma(F^2)] = 0.039$

2884 reflections
202 parameters
1 restraint
Primary atom site location: structure-invariant direct methods
Hydrogen site location: mixed
H atoms treated by a mixture of independent and constrained refinement
\[w = 1/[\sigma(F_o^2) + (0.0335P)^2 + 1.6189P] \]
where \(P = (F_o^2 + 2F_c^2)/3 \)

(\(\Delta/\sigma\))\text{max} < 0.001
\(\Delta\rho_{\text{max}} = 0.58 \text{ e Å}^{-3}\)
\(\Delta\rho_{\text{min}} = -0.27 \text{ e Å}^{-3}\)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²)

	x	y	z	\(U_{\text{iso}}^*/U_{\text{eq}}\)
Co1	0.50000	0.50000	0.50000	0.01882 (13)
S1	0.26353 (8)	0.71891 (7)	0.25547 (4)	0.03309 (19)
N1	0.3933 (2)	0.5708 (2)	0.38833 (13)	0.0251 (5)
N2	0.7191 (2)	0.5974 (2)	0.47456 (12)	0.0229 (5)
N3	0.4751 (2)	0.6892 (2)	0.54812 (13)	0.0252 (5)
N4	0.3563 (2)	0.7585 (2)	0.58160 (12)	0.0212 (4)
N5	0.5684 (2)	0.8849 (2)	0.57976 (13)	0.0245 (5)
N6	0.6795 (3)	0.9902 (2)	0.59404 (15)	0.0300 (5)
H6A	0.729 (3)	0.965 (3)	0.6428 (13)	0.036*
H6B	0.623 (4)	1.062 (3)	0.6070 (18)	0.036*
N7	0.3920 (3)	1.0989 (2)	0.64769 (13)	0.0265 (5)
C1	0.3384 (3)	0.6316 (2)	0.33321 (15)	0.0220 (5)
C2	0.8335 (3)	0.5446 (3)	0.43168 (16)	0.0260 (6)
H2	0.816515	0.460189	0.407395	0.031*
C3	0.9764 (3)	0.6089 (3)	0.42150 (17)	0.0294 (6)
H3	1.054378	0.569724	0.389995	0.035*
C4	1.0025 (3)	0.7307 (3)	0.45807 (17)	0.0320 (6)
H4	1.099888	0.775451	0.452950	0.038*
C5	0.8846 (3)	0.7871 (3)	0.50249 (16)	0.0279 (6)
H5	0.900354	0.870360	0.528377	0.033*
C6	0.7438 (3)	0.7189 (3)	0.50807 (15)	0.0238 (5)
C7	0.6017 (3)	0.7659 (3)	0.54623 (15)	0.0238 (5)
C8	0.4140 (3)	0.8759 (3)	0.60107 (15)	0.0234 (5)
C9	0.3236 (3)	0.9796 (2)	0.64092 (15)	0.0242 (5)
C10	0.3130 (3)	1.1925 (3)	0.68644 (16)	0.0303 (6)
H10	0.359647	1.277459	0.692737	0.036*
C11	0.1660 (3)	1.1714 (3)	0.71792 (16)	0.0286 (6)
H11	0.115389	1.240223	0.745801	0.034*
C12	0.0949 (3)	1.0493 (3)	0.70808 (16)	0.0288 (6)
H12	-0.006542	1.033270	0.727696	0.035*
C13	0.1757 (3)	0.9496 (3)	0.66852 (15)	0.0263 (6)
H13	0.130906	0.864169	0.660766	0.032*
Atomic displacement parameters (Å²)

	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Co1	0.0144 (2)	0.0185 (2)	0.0237 (2)	−0.00017 (19)	0.00195 (17)	0.00061 (19)
S1	0.0313 (4)	0.0345 (4)	0.0324 (4)	0.0062 (3)	−0.0072 (3)	0.0043 (3)
N1	0.0206 (11)	0.0265 (12)	0.0283 (11)	−0.00003 (9)	0.0016 (9)	0.0013 (9)
N2	0.0171 (10)	0.0242 (11)	0.0271 (11)	0.0009 (9)	−0.0003 (8)	0.0040 (9)
N3	0.0205 (11)	0.0264 (12)	0.0289 (11)	0.0008 (9)	0.0030 (9)	0.0014 (9)
N4	0.0170 (10)	0.0202 (11)	0.0264 (11)	0.0007 (8)	0.0014 (8)	0.0001 (8)
N5	0.0219 (11)	0.0228 (11)	0.0286 (11)	−0.0052 (9)	0.0002 (9)	−0.0010 (9)
N6	0.0246 (12)	0.0260 (12)	0.0391 (13)	−0.0069 (10)	−0.0004 (10)	−0.0006 (11)
N7	0.0254 (12)	0.0240 (12)	0.0301 (11)	−0.0018 (10)	0.0004 (9)	−0.0014 (9)
C1	0.0154 (12)	0.0234 (13)	0.0277 (13)	−0.0019 (10)	0.0045 (10)	−0.0036 (11)
C2	0.0205 (13)	0.0245 (13)	0.0332 (14)	0.0040 (11)	0.0017 (10)	0.0046 (11)
C3	0.0195 (13)	0.0306 (15)	0.0386 (15)	0.0045 (11)	0.0062 (11)	0.0060 (12)
C4	0.0185 (13)	0.0367 (16)	0.0409 (16)	−0.0031 (12)	0.0021 (11)	0.0082 (13)
C5	0.0229 (13)	0.0303 (14)	0.0301 (13)	−0.0040 (12)	−0.0009 (10)	0.0019 (11)
C6	0.0178 (12)	0.0268 (13)	0.0264 (13)	−0.0001 (11)	−0.0008 (10)	0.0053 (11)
C7	0.0214 (13)	0.0235 (13)	0.0263 (13)	−0.0037 (11)	−0.0010 (10)	0.0019 (10)
C8	0.0205 (13)	0.0264 (14)	0.0232 (12)	−0.0010 (11)	−0.0003 (10)	0.0022 (10)
C9	0.0244 (13)	0.0266 (13)	0.0268 (13)	0.0021 (10)	−0.0013 (10)	0.0035 (10)
C10	0.0313 (15)	0.0322 (14)	0.0012 (13)	0.0003 (12)	−0.0006 (11)	−0.0054 (11)
C11	0.0301 (15)	0.0287 (14)	0.0270 (14)	0.0029 (12)	0.0029 (11)	−0.0054 (11)
C12	0.0307 (15)	0.0293 (14)	0.0268 (13)	−0.0011 (12)	0.0040 (11)	0.0032 (11)
C13	0.0277 (14)	0.0223 (13)	0.0284 (13)	−0.0030 (11)	−0.0021 (11)	0.0030 (11)

Geometric parameters (Å, °)

Co1—N1	2.116 (2)	N7—C10	1.342 (3)		
Co1—N1i	2.116 (2)	C2—H2	0.9500		
Co1—N2i	2.166 (2)	C2—C3	1.394 (4)		
Co1—N2	2.166 (2)	C3—H3	0.9500		
Co1—N3	2.088 (2)	C3—C4	1.384 (4)		
Co1—N3i	2.088 (2)	C4—H4	0.9500		
S1—C1	1.646 (3)	C4—C5	1.394 (4)		
N1—C1	1.166 (3)	C5—H5	0.9500		
N2—C2	1.343 (3)	C5—C6	1.388 (4)		
N2—C6	1.358 (3)	C6—C7	1.470 (4)		
N3—N4	1.370 (3)	C8—C9	1.475 (4)		
N3—C7	1.327 (3)	C9—C13	1.393 (4)		
N4—C8	1.318 (3)	C10—H10	0.9500		
N5—N6	1.433 (3)	C10—C11	1.394 (4)		
N5—C7	1.361 (3)	C11—H11	0.9500		
N5—C8	1.378 (3)	C11—C12	1.382 (4)		
N6—H6A	0.915 (18)	C12—H12	0.9500		
N6—H6B	0.90 (3)	C12—C13	1.401 (4)		
N7—C9	1.343 (3)	C13—H13	0.9500		
Bond	Angle (°)	Bond	Angle (°)		
----------------------	-----------------	----------------------	-----------------		
N1—Co1—N1i	180.00 (11)	C2—C3—H3	120.6		
N1—Co1—N2i	89.66 (8)	C4—C3—C2	118.9 (3)		
N1i—Co1—N2	90.34 (8)	C4—C3—H3	120.6		
N1i—Co1—N2i	89.66 (8)	C3—C4—H4	120.3		
N1—Co1—N2	90.34 (8)	C3—C4—C5	119.3 (3)		
N2—Co1—N2i	180.0	C5—C4—H4	120.3		
N3i—Co1—N1	91.88 (8)	C4—C5—H5	120.7		
N3i—Co1—N1i	88.12 (8)	C6—C5—C4	118.5 (3)		
N3—Co1—N1i	91.88 (8)	C6—C5—H5	120.7		
N3—Co1—N1	88.12 (8)	N2—C6—C5	122.4 (2)		
N3—Co1—N2	76.22 (8)	N2—C6—C7	110.8 (2)		
N3i—Co1—N2i	76.22 (8)	C5—C6—C7	126.7 (2)		
N3i—Co1—N2	103.78 (8)	N3—C7—N5	108.8 (2)		
N3—Co1—N2i	103.78 (8)	N3—C7—C6	120.3 (2)		
N3—Co1—N3i	180.0	N5—C7—C6	130.9 (2)		
C1—N1—Co1	167.9 (2)	N4—C8—N5	110.0 (2)		
C2—N2—Co1	125.03 (18)	N4—C8—C9	123.6 (2)		
C2—N2—C6	118.3 (2)	N5—C8—C9	126.3 (2)		
C6—N2—Co1	116.60 (16)	N7—C9—C8	116.4 (2)		
N4—N3—Co1	135.68 (16)	N7—C9—C13	124.2 (2)		
C7—N3—Co1	115.38 (17)	C13—C9—C8	119.4 (2)		
C7—N3—N4	108.9 (2)	N7—C10—H10	118.3		
C8—N4—N3	106.8 (2)	N7—C10—C11	123.4 (3)		
C7—N5—N6	125.1 (2)	C11—C10—H10	118.3		
C7—N5—C8	105.5 (2)	C10—C11—H11	120.4		
C8—N5—N6	129.2 (2)	C12—C11—C10	119.2 (3)		
N5—N6—H6A	101 (2)	C12—C11—H11	120.4		
N5—N6—H6B	107 (2)	C11—C12—H12	120.7		
H6A—N6—H6B	104 (3)	C11—C12—C13	118.5 (3)		
C10—N7—C9	116.7 (2)	C13—C12—H12	120.7		
N1—C1—S1	179.1 (2)	C9—C13—C12	117.9 (2)		
N2—C2—H2	118.8	C9—C13—H13	121.0		
N2—C2—C3	122.4 (3)	C12—C13—H13	121.0		
C3—C2—H2	118.8				

Notes:

- Co1—N2—C2—C3: $-175.97 (19)$
- Co1—N2—C6—C5: $174.34 (19)$
- Co1—N2—C6—C7: $-7.9 (3)$
- Co1—N3—N4—C8: $179.89 (18)$
- Co1—N3—C7—N5: $-179.68 (15)$
- Co1—N3—C7—N6: $8.03 (3)$
- N2—C2—C3—C4: $1.2 (4)$
- N2—C6—C7—N3: $-173.2 (2)$
- N3—N4—C8—N5: $0.8 (3)$
- N3—N4—C8—C9: $-178.4 (2)$
- N4—N3—C7—N5: $1.2 (3)$
- N4—N3—C7—C6: $-175.9 (2)$
N4—C8—C9—N7 −172.1 (2) C8—N5—C7—N3 −0.7 (3)
N4—C8—C9—C13 7.6 (4) C8—N5—C7—C6 176.0 (3)
N5—C8—C9—N7 8.8 (4) C8—C9—C13—C12 178.3 (2)
N5—C8—C9—C13 −171.4 (2) C9—N7—C10—C11 −0.9 (4)
N6—N5—C7—N3 175.1 (2) C10—N7—C9—C8 −177.7 (2)
N6—N5—C7—C6 −8.2 (4) C10—N7—C9—C13 2.5 (4)
N5—C8—C9—N7 8.8 (4) C10—C11—C12—C13 1.7 (4)
N5—C8—C9—C13 −171.4 (2) C11—C12—C13—C9 −0.3 (4)
N7—C9—C13—C12 −2.0 (4)

Symmetry code: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
N6—H6B···N7	0.90 (3)	2.14 (3)	2.861 (3)	136 (3)
C5—H5···N6	0.95	2.53	3.135 (4)	122

Bis[4-amino-3,5-bis(pyridin-2-yl)-1,2,4-triazole-κ²N²,N³]bis(thiocyanato-κN)cobalt(II) (Co_B_120K)

Crystal data

[Co(NCS)₂(C₁₂H₁₀N₆)₂]

$M_r = 651.61$

Monoclinic, $P2_1/n$

$a = 11.4978$ (5) Å

$b = 9.5235$ (4) Å

$c = 12.7179$ (5) Å

$β = 100.771$ (1)°

$V = 1368.07$ (10) Å³

$Z = 2$

F(000) = 666

$D_x = 1.582$ Mg m⁻³

Mo $Kα$ radiation, $λ = 0.71073$ Å

Cell parameters from 7088 reflections

$θ_{max} = 28.3°$

$θ_{min} = 2.7°$

h = −14→14

k = −11→11

l = −15→15

Data collection

CCD area detector

diffractometer

Graphite monochromator

Detector resolution: 7.9 pixels mm⁻¹

phi and ω scans

Absorption correction: multi-scan

(SADABS; Bruker, 2008)

$T_{min} = 0.755$, $T_{max} = 0.884$

Refinement

Refinement on F^2

Least-squares matrix: full

$R(F^2 > 2σ(F^2)) = 0.028$

$wR(F^2) = 0.065$

$S = 1.03$

2799 reflections

202 parameters

0 restraints

Primary atom site location: structure-invariant direct methods

Hydrogen site location: mixed

H atoms treated by a mixture of independent and constrained refinement

$w = 1/[σ^2(F^2) + (0.0223P)^2 + 0.9469P]$

where $P = (F^2 + 2F'^2)/3$

$(Δ/σ)_{max} < 0.001$

Δρ_{max} = 0.26 e Å⁻³

Δρ_{min} = −0.39 e Å⁻³
Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²)

	x	y	z	U(eq)
Co1	0.500000	0.500000	0.500000	0.01662 (10)
S1	0.47702 (4)	0.70612 (5)	0.14549 (4)	0.02147 (12)
N1	0.51090 (14)	0.58552 (17)	0.35006 (12)	0.0226 (3)
N2	0.54062 (13)	0.70429 (16)	0.57154 (11)	0.0184 (3)
N3	0.33257 (12)	0.59797 (16)	0.48313 (11)	0.0185 (3)
N4	0.21930 (13)	0.56657 (16)	0.43186 (12)	0.0190 (3)
N5	0.22659 (12)	0.78694 (15)	0.48602 (11)	0.0164 (3)
N6	0.19418 (14)	0.92348 (16)	0.51462 (14)	0.0212 (3)
H6A	0.1431 (18)	0.911 (2)	0.5580 (16)	0.025*
H6B	0.1556 (18)	0.963 (2)	0.4536 (18)	0.025*
N7	−0.00410 (13)	0.82632 (16)	0.35394 (12)	0.0207 (3)
C1	0.49638 (15)	0.63560 (19)	0.26536 (14)	0.0180 (4)
C2	0.64830 (16)	0.7492 (2)	0.61788 (14)	0.0215 (4)
H2	0.713997	0.688352	0.619097	0.026*
C3	0.66794 (16)	0.8809 (2)	0.66415 (14)	0.0232 (4)
H3	0.745571	0.909506	0.696411	0.028*
C4	0.57273 (16)	0.9697 (2)	0.66257 (15)	0.0234 (4)
H4	0.583973	1.059817	0.694983	0.028*
C5	0.46048 (16)	0.9265 (2)	0.61328 (14)	0.0204 (4)
H5	0.394057	0.986769	0.609838	0.024*
C6	0.44783 (15)	0.79323 (19)	0.56929 (13)	0.0175 (4)
C7	0.33619 (15)	0.72999 (19)	0.51515 (13)	0.0167 (4)
C8	0.15649 (15)	0.68144 (19)	0.43460 (14)	0.0175 (4)
C9	0.02990 (15)	0.69740 (18)	0.38880 (14)	0.0171 (4)
C10	−0.11930 (16)	0.8441 (2)	0.31474 (15)	0.0242 (4)
H10	−0.144940	0.934109	0.287596	0.029*
C11	−0.20318 (16)	0.7402 (2)	0.31123 (15)	0.0255 (4)
H11	−0.284590	0.759252	0.285291	0.031*
C12	−0.16601 (17)	0.6076 (2)	0.34634 (15)	0.0259 (4)
H12	−0.221505	0.533282	0.344512	0.031*
C13	−0.04681 (16)	0.5844 (2)	0.38420 (14)	0.0221 (4)
H13	−0.018285	0.493504	0.406456	0.027*

Atomic displacement parameters (Å²)

	U^11	U^22	U^33	U^12	U^13	U^23
Co1	0.01448 (17)	0.01855 (18)	0.01672 (17)	0.00225 (14)	0.00261 (13)	0.00024 (14)
S1	0.0220 (2)	0.0208 (2)	0.0215 (2)	0.00129 (19)	0.00387 (18)	0.00472 (18)
N1	0.0232 (8)	0.0235 (9)	0.0219 (8)	0.0013 (7)	0.0058 (7)	0.0004 (7)
N2 0.0165 (7) 0.0221 (8) 0.0163 (7) 0.0003 (6) 0.0029 (6) 0.0009 (6)
N3 0.0153 (7) 0.0204 (8) 0.0191 (7) 0.0000 (6) 0.0016 (6) 0.0007 (6)
N4 0.0146 (7) 0.0208 (8) 0.0208 (8) 0.0017 (6) 0.0011 (6) 0.0003 (6)
N5 0.0140 (7) 0.0164 (7) 0.0187 (7) 0.0010 (6) 0.0034 (6) 0.0006 (6)
N6 0.0194 (8) 0.0170 (8) 0.0270 (9) 0.0034 (6) 0.0040 (7) 0.0032 (7)
N7 0.0184 (8) 0.0197 (8) 0.0224 (8) 0.0009 (6) 0.0002 (6) 0.0012 (6)
C1 0.0135 (8) 0.0174 (9) 0.0235 (10) 0.0003 (6) 0.0046 (7) 0.0028 (8)
C2 0.0163 (9) 0.0267 (10) 0.0213 (9) 0.0015 (8) 0.0036 (7) 0.0004 (8)
C3 0.0196 (9) 0.0286 (11) 0.0210 (9) 0.0035 (8) 0.0026 (8) 0.0013 (8)
C4 0.0242 (10) 0.0248 (10) 0.0210 (9) 0.0035 (8) 0.0038 (8) 0.0045 (8)
C5 0.0190 (9) 0.0210 (10) 0.0214 (9) 0.0018 (7) 0.0044 (7) 0.0010 (7)
C6 0.0163 (9) 0.0221 (9) 0.0149 (8) 0.0002 (7) 0.0051 (7) 0.0024 (7)
C7 0.0153 (8) 0.0196 (9) 0.0158 (8) 0.0020 (7) 0.0047 (7) 0.0018 (7)
C8 0.0155 (9) 0.0202 (9) 0.0171 (8) 0.0003 (7) 0.0035 (7) 0.0007 (7)
C9 0.0167 (9) 0.0183 (9) 0.0164 (8) 0.0012 (7) 0.0031 (7) 0.0010 (7)
C10 0.0202 (9) 0.0232 (10) 0.0276 (10) 0.0046 (8) 0.0004 (8) 0.0015 (8)
C11 0.0159 (9) 0.0338 (11) 0.0258 (10) 0.0000 (8) 0.0016 (8) 0.0008 (8)
C12 0.0227 (10) 0.0294 (11) 0.0241 (10) 0.0103 (8) 0.0003 (8) 0.0009 (8)
C13 0.0247 (10) 0.0192 (9) 0.0210 (9) 0.0015 (8) 0.0003 (8) 0.0003 (7)

Geometric parameters (Å, °)

Bond	Distance (Å)	Angle (°)	
Co1—N1	2.0987 (15)	N7—C10	1.336 (2)
Co1—N1i	2.0987 (15)	C2—H2	0.9500
Co1—N2i	2.1616 (15)	C2—C3	1.385 (3)
Co1—N2	2.1616 (15)	C3—H3	0.9500
Co1—N3i	2.1137 (14)	C3—C4	1.381 (3)
Co1—N3	2.1138 (14)	C4—H4	0.9500
S1—C1	1.6425 (18)	C4—C5	1.388 (3)
N1—C1	1.161 (2)	C5—H5	0.9500
N2—C2	1.338 (2)	C5—C6	1.383 (3)
N2—C6	1.358 (2)	C6—C7	1.468 (2)
N3—N4	1.376 (2)	C8—C9	1.471 (2)
N3—C7	1.320 (2)	C9—C13	1.386 (3)
N4—C8	1.315 (2)	C10—H10	0.9500
N5—N6	1.419 (2)	C10—C11	1.377 (3)
N5—C7	1.358 (2)	C11—H11	0.9500
N5—C8	1.375 (2)	C11—C12	1.381 (3)
N6—H6A	0.89 (2)	C12—H12	0.9500
N6—H6B	0.90 (2)	C12—C13	1.383 (3)
N7—C9	1.339 (2)	C13—H13	0.9500

N1—Co1—N1i | 180.0 | C2—C3—H3 | 120.6 |
N1—Co1—N2 | 89.33 (6) | C4—C3—C2 | 118.86 (17)|
N1—Co1—N2i | 90.67 (6) | C4—C3—H3 | 120.6 |
N1—Co1—N2 | 90.67 (6) | C3—C4—H4 | 120.3 |
N1—Co1—N2i | 89.33 (6) | C3—C4—C5 | 119.49 (18)|
N1—Co1—N3i | 93.19 (6) | C5—C4—H4 | 120.3 |

Acta Cryst. (2021). C77, 777-781 sup-7
N1—Co1—N3 86.81 (6) C4—C5—H5 120.9
N1—Co1—N3 93.19 (6) C6—C5—C4 118.27 (17)
N1—Co1—N3i 86.81 (6) C6—C5—H5 120.9
N2—Co1—N2i 180.0 N2—C6—C5 122.73 (16)
N3—Co1—N2i 76.49 (6) N2—C6—C7 111.63 (15)
N3—Co1—N2 103.50 (6) N3—C7—N5 108.79 (15)
N3—Co1—N2 76.50 (6) N3—C7—C6 120.67 (15)
N3—Co1—N3 180.0 N5—C7—C6 130.51 (16)
C1—N1—Co1 168.40 (14) N4—C8—N5 110.16 (15)
C2—N2—Co1 125.63 (12) N4—C8—C9 125.67 (16)
C2—N2—C6 117.92 (16) N5—C8—C9 124.16 (16)
C6—N2—Co1 116.44 (11) N7—C9—C8 115.60 (15)
N4—N3—Co1 135.69 (11) N7—C9—C13 123.64 (16)
C7—N3—Co1 114.43 (11) C13—C9—C8 120.76 (16)
C7—N3—N4 109.01 (14) C13—C9—C13 120.8
C8—N4—N3 106.41 (14) C13—C12—C13 119.03 (18)
C7—N5—N6 124.80 (15) C10—N7—C13—C12 120.5
C7—N5—C8 105.63 (14) C10—N7—C13—H13 120.9
C8—N5—N6 129.29 (14) N7—C10—C11—C12 119.03 (18)
N5—N6—H6A 105.7 (14) N7—C10—C11—H11 120.8
N5—N6—H6B 105.8 (13) N7—C10—C11—C12 119.33 (17)
C10—N7—C9 116.60 (16) C9—C13—C12—C13 120.8
N1—C1—S1 179.51 (17) N7—C10—C11—H12 120.5
N2—C2—H2 118.6 C9—C13—C12—H12 120.9
N2—C2—C3 122.71 (17) N7—C10—C11—C12 120.9
C3—C2—C3 118.6
Co1—N2—C2—C3 −178.73 (13) N7—C10—C11—C12 2.7 (3)
Co1—N2—C6—C5 179.12 (13) N7—C10—C11—C12 −0.5 (2)
Co1—N2—C6—C7 −1.01 (18) C2—N2—C6—C5 179.41 (15)
Co1—N3—N4—C8 −168.52 (13) C2—N2—C6—C7 −1.1 (3)
Co1—N3—C7—N5 171.13 (10) C3—C4—C5—C6 1.5 (3)
Co1—N3—C7—C6 −6.9 (2) C4—C5—C6—N2 −0.7 (3)
N2—C2—C3—C4 0.0 (3) C4—C5—C6—C7 179.48 (16)
N2—C6—C7—N3 5.3 (2) C5—C6—C7—N3 −174.83 (16)
N2—C6—C7—N5 −172.26 (16) C5—C6—C7—N5 7.6 (3)
N3—N4—C8—N5 0.31 (19) C6—N2—C2—C3 0.8 (3)
N3—N4—C8—C9 179.70 (15) C7—N3—C4—C5 0.27 (19)
N4—N3—C7—N5 0.12 (19) C7—N5—C8—N4 0.24 (19)
N4—N3—C7—C6 −177.92 (14) C7—N5—C8—C9 179.64 (16)
N4—C8—C9—N7 −149.33 (17) C8—N5—C7—N3 0.06 (18)
N4—C8—C9—C13 31.2 (3) C8—N5—C7—C6 177.85 (17)
N5—C8—C9—N7 30.0 (2) C8—C9—C13—C12 176.13 (16)
N5—C8—C9—C13 −149.47 (17) C9—N7—C10—C11 1.8 (3)
N6—N5—C7—N3 174.49 (15) C10—N7—C9—C8 −178.21 (15)
N6—N5—C7—C6 −7.7 (3) C10—N7—C9—C13 1.2 (3)
N6—N5—C8—N4 −174.33 (16)
N6—N5—C8—C9 6.3 (3)
N7—C9—C13—C12 −3.3 (3)
Symmetry code: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
N6—H6A···S1ii	0.89 (2)	2.63 (2)	3.4758 (17)	159.9 (18)
N6—H6B···N7	0.90 (2)	2.41 (2)	2.914 (2)	115.6 (18)
C5—H5···N6	0.95	2.46	3.084 (2)	123

Symmetry code: (ii) x−1/2, −y+3/2, z+1/2.

Bis[4-amino-3,5-bis(pyridin-2-yl)-1,2,4-triazole-κ²N₂,N₃]bis(thiocyanato-κN)nickel(II) (Ni_A_120K)

Crystal data

[Ni(NCS)₂(C₁₂H₁₀N₆)₂]
F(000) = 668
Mᵣ = 651.39
Monoclinic, P₂₁/n
a = 8.4041 (7) Å
b = 10.0681 (9) Å
c = 16.2360 (14) Å
β = 93.060 (2)°
V = 1371.8 (2) Å³
Z = 2
Dₐ = 1.577 Mg m⁻³
Mo Kα radiation, λ = 0.71073 Å
Cell parameters from 5417 reflections
θ = 2.4–28.3°
µ = 0.91 mm⁻¹
T = 120 K
Block, violet
F(000) = 668
Dₐ = 1.577 Mg m⁻³
Mo Kα radiation, λ = 0.71073 Å
Cell parameters from 5417 reflections
θ = 2.4–28.3°
µ = 0.91 mm⁻¹
T = 120 K
Block, violet
0.2 × 0.12 × 0.08 mm

Data collection

Bruker D8 VENTURE diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
Tmin = 0.781, Tmax = 0.936
h = −10→10
k = −12→12
l = −20→20
15450 measured reflections
2819 independent reflections
2161 reflections with I > 2σ(I)
Rint = 0.046
θmax = 26.4°, θmin = 2.4°
Rmax = 2.4°
h = −10→10
k = −12→12
l = −20→20

Refinement

Refinement on F²
Least-squares matrix: full
R[F² > 2σ(F²)] = 0.037
wR(F²) = 0.085
S = 1.02
2819 reflections
202 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Hydrogen site location: mixed
H atoms treated by a mixture of independent and constrained refinement
Hydrogen atom parameters constrained
where P = (F² + 2Fc²)/3
(w = 1/[(σ²(Fc²) + (0.037P)² + 0.9816P)]
(Δσ/σ)max < 0.001
Δρmax = 0.48 e Å⁻³
Δρmin = −0.27 e Å⁻³
Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²)

Atom	x	y	z	Uiso*/Ueq
Ni1	0.50	0.50	0.50	0.0186 (13)
S1	0.26	0.72	0.26	0.0308 (18)
N1	0.39	0.57	0.39	0.0232 (5)
N2	0.72	0.59	0.47	0.0215 (5)
N3	0.47	0.69	0.54	0.0227 (5)
N4	0.35	0.76	0.59	0.0206 (5)
N5	0.57	0.89	0.58	0.0221 (5)
N6	0.68	0.98	0.59	0.0283 (5)
H6A	0.74	0.96	0.65	0.034*
H6B	0.63	1.06	0.61	0.0266 (6)
N7	0.97	1.09	0.42	0.0213 (5)
C1	1.01	0.52	0.43	0.0238 (6)
C2	1.01	0.61	0.45	0.0281 (6)
H2	0.81	0.45	0.40	0.029*
C3	0.97	0.60	0.41	0.0266 (6)
H3	1.05	0.56	0.39	0.032*
C4	1.00	0.72	0.45	0.0281 (6)
H4	1.10	0.77	0.45	0.034*
C5	0.89	0.78	0.50	0.0252 (6)
H5	0.90	0.86	0.53	0.030*
C6	0.74	0.71	0.51	0.0221 (5)
C7	0.60	0.77	0.65	0.0216 (5)
C8	0.42	0.87	0.60	0.0223 (5)
C9	0.32	0.98	0.67	0.0223 (6)
C10	0.31	1.19	0.69	0.0246 (6)
H10	0.36	1.28	0.69	0.032*
C12	0.16	1.18	0.72	0.0256 (6)
H12	0.12	1.24	0.75	0.031*
C11	0.09	1.05	0.71	0.0266 (6)
H11	−0.01	1.03	0.73	0.032*
C13	0.17	0.95	0.67	0.0247 (6)
H10	0.13	0.86	0.66	0.030*

Atomic displacement parameters (Å²)

Atom	U¹¹	U²²	U³³	U¹²	U¹³	U²³
Ni1	0.0143 (2)	0.0209 (2)	0.0211 (2)	−0.00047 (19)	0.00328 (17)	0.0002 (2)
S1	0.0281 (4)	0.0350 (4)	0.0286 (4)	0.0053 (3)	−0.0039 (3)	0.0032 (3)
N1	0.0168 (10)	0.0280 (12)	0.0248 (11)	0.0015 (9)	0.0026 (9)	0.0006 (10)
Geometric parameters (Å, °)

Bond	Distance (Å)	Angle (°)	
Ni1—N1i	2.079 (2)	N7—C13	1.333 (3)
Ni1—N1	2.079 (2)	C2—H2	0.9500
Ni1—N2	2.1076 (19)	C2—C3	1.386 (3)
Ni1—N2i	2.1076 (19)	C3—H3	0.9500
Ni1—N3	2.043 (2)	C3—C4	1.373 (4)
Ni1—N3i	2.043 (2)	C4—H4	0.9500
S1—C1	1.644 (3)	C4—C5	1.384 (4)
N1—C1	1.159 (3)	C5—H5	0.9500
N2—C2	1.331 (3)	C5—C6	1.380 (3)
N2—C6	1.356 (3)	C6—C7	1.462 (3)
N3—N4	1.358 (3)	C8—C9	1.463 (3)
N3—C7	1.320 (3)	C9—C10	1.392 (3)
N4—C8	1.310 (3)	C13—H13	0.9500
N5—N6	1.426 (3)	C13—C12	1.388 (4)
N5—C7	1.352 (3)	C12—H12	0.9500
N5—C8	1.373 (3)	C12—C11	1.381 (4)
N6—H6A	0.98 (3)	C11—H11	0.9500
N6—H6B	0.88 (3)	C11—C10	1.384 (4)
N7—C9	1.337 (3)	C10—H10	0.9500

N1i—Ni1—N1 180.0 C2—C3—H3 120.4
N1—Ni1—N2i 89.60 (8) C4—C3—C2 119.1 (2)
N1i—Ni1—N2 89.60 (8) C4—C3—H3 120.4
N1—Ni1—N2 90.40 (8) C3—C4—H4 120.3
N1i—Ni1—N2i 90.40 (8) C3—C4—C5 119.4 (2)
N2i—Ni1—N2 180.0 C5—C4—H4 120.3
Bond	Distance (Å)	Bond	Distance (Å)
N3—Ni1—N1	88.21 (8)	C4—C5—H5	120.8
N3—Ni1—Ni1i	91.79 (8)	C6—C5—C4	118.4 (2)
N3i—Ni1—N1i	88.21 (8)	C6—C5—H5	120.8
N3i—Ni1—N1	91.79 (8)	N2—C6—C5	122.4 (2)
N3i—Ni1—N2i	102.19 (8)	N2—C6—C7	110.9 (2)
N3i—Ni1—N2i	77.81 (8)	C5—C6—C7	126.6 (2)
N3i—Ni1—N2	77.81 (8)	N3—C7—N5	108.7 (2)
N3i—Ni1—N3i	102.19 (8)	N3—C7—C6	119.9 (2)
N3—Ni1—N3i	180.0	N5—C7—C6	131.2 (2)
C1—N1—Ni1	167.9 (2)	N4—C8—N5	109.7 (2)
C2—N2—Ni1	125.68 (18)	N4—C8—C9	124.3 (2)
C2—N2—C6	118.3 (2)	N5—C8—C9	126.0 (2)
C6—N2—Ni1	115.94 (16)	N7—C9—C8	116.9 (2)
N4—N3—Ni1	136.40 (16)	N7—C9—C10	123.9 (2)
C7—N3—Ni1	114.70 (16)	C10—C9—C8	119.2 (2)
C7—N3—N4	108.9 (2)	N7—C13—H13	118.2
C8—N4—N3	107.07 (19)	N7—C13—C12	123.6 (2)
C7—N5—N6	124.9 (2)	C12—C13—H13	118.2
C7—N5—C8	105.5 (2)	C13—C12—H12	120.7
N5—N6—H6A	129.4 (2)	C11—C12—C13	118.6 (2)
N5—N6—H6B	101.7 (17)	C11—C12—H12	120.7
H6A—N6—H6B	106.7 (19)	C12—C11—H11	120.5
C13—N7—C9	116.9 (2)	C12—C11—C10	119.1 (2)
N1—C1—S1	179.4 (2)	C10—C11—H11	120.5
N2—C2—H2	118.9	C9—C10—H10	121.0
N2—C2—C3	122.3 (2)	C11—C10—C9	117.9 (2)
C3—C2—H2	118.9	C11—C10—H10	121.0
Ni1—N2—C2—C3	−175.85 (18)	N7—C13—C12—C11	−0.8 (4)
Ni1—N2—C6—C5	174.22 (19)	C2—N2—C6—C5	−2.9 (4)
Ni1—N2—C6—C7	−8.4 (3)	C2—N2—C6—C7	174.4 (2)
Ni1—N3—N4—C8	−179.20 (18)	C2—C3—C4—C5	−1.6 (4)
Ni1—N3—C7—N5	179.72 (15)	C3—C4—C5—C6	−0.2 (4)
Ni1—N3—C7—C6	3.4 (3)	C4—C5—C6—N2	2.5 (4)
N2—C2—C3—C4	1.3 (4)	C4—C5—C6—C7	−174.4 (2)
N2—C6—C7—N3	3.5 (3)	C5—C6—C7—N3	−179.3 (2)
N2—C6—C7—N5	−172.0 (2)	C5—C6—C7—N5	5.2 (4)
N3—N4—C8—N5	0.4 (3)	C6—N2—C2—C3	1.0 (4)
N3—N4—C8—C9	−178.4 (2)	C7—N3—N4—C8	−0.8 (3)
N4—N3—C7—N5	0.9 (3)	C7—N5—C8—N4	0.2 (3)
N4—N3—C7—C6	−175.4 (2)	C7—N5—C8—C9	178.9 (2)
N4—C8—C9—N7	−172.2 (2)	C8—N5—C7—N3	−0.7 (3)
N4—C8—C9—C10	7.6 (4)	C8—N5—C7—C6	175.1 (3)
N5—C8—C9—N7	9.2 (4)	C8—C9—C10—C11	178.4 (2)
N5—C8—C9—C10	−171.0 (2)	C9—N7—C13—C12	−1.5 (4)
N6—N5—C7—N3	175.5 (2)	C13—N7—C9—C8	−177.4 (2)
N6—N5—C7—C6	−8.7 (4)	C13—N7—C9—C10	2.8 (4)
N6—N5—C8—N4 −175.7 (2) C13—C12—C11—C10 1.7 (4)
N6—N5—C8—C9 3.0 (4) C12—C11—C10—C9 −0.5 (4)
N7—C9—C10—C11 −1.9 (4)

Symmetry code: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
N6—H6A···S1ii	0.98 (3)	2.54 (3)	3.404 (3)	146 (2)
N6—H6B···N7	0.88 (3)	2.14 (3)	2.848 (3)	137 (3)
C2—H2···N4i	0.95	2.55	3.347 (3)	141
C5—H5···N6	0.95	2.52	3.124 (4)	122

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1/2, −y+3/2, z+1/2.

Bis[4-amino-3,5-bis(pyridin-2-yl)-1,2,4-triazole-κ²N₂,N₃]bis(thiocyanato-κN)nickel(II) (Ni_B_120K)

Crystal data

[Ni(NCS)₂(C₁₂H₁₀N₆)₂]
F(000) = 668
M_r = 651.39
Monoclinic, P2₁/n
a = 11.5860 (14) Å
b = 9.5489 (12) Å
c = 12.8132 (16) Å
β = 100.806 (2)°
V = 1392.4 (3) Å³
Z = 2

Data collection

Bruker SMART CCD 1K area detector
Diffractionometer
Radiation source: sealed X-ray tube
Graphite monochromator
Detector resolution: 7.9 pixels mm⁻¹
ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
T_min = 0.746, T_max = 0.948

Refinement

Refinement on F²
Least-squares matrix: full
R[F² > 2σ(F²)] = 0.058
wR(F²) = 0.136
S = 1.06
2552 reflections
202 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Hydrogen site location: mixed
H atoms treated by a mixture of independent and constrained refinement
where P = (F² + 2F_C²)/3
(Δ/σ)max < 0.001
Δρ_max = 0.61 e Å⁻³
Δρ_min = −0.66 e Å⁻³

Acta Cryst. (2021). C77, 777-781
Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²)

	x	y	z	Ueq
Ni1	0.500000	0.500000	0.500000	0.0168 (3)
S1	0.47860 (11)	0.70416 (15)	0.14676 (11)	0.0220 (3)
N1	0.5113 (3)	0.5822 (5)	0.3520 (4)	0.0227 (10)
N2	0.5425 (3)	0.6994 (4)	0.5705 (3)	0.0208 (10)
N3	0.3342 (3)	0.5953 (5)	0.4815 (3)	0.0190 (10)
N4	0.2208 (3)	0.5626 (4)	0.4299 (3)	0.0195 (10)
N5	0.2283 (3)	0.7837 (4)	0.4860 (3)	0.0171 (9)
N6	0.1968 (4)	0.9206 (5)	0.5157 (4)	0.0209 (10)
H6A	0.149 (5)	0.912 (6)	0.557 (4)	0.025*
H6B	0.170 (5)	0.957 (6)	0.456 (5)	0.025*
N7	0.0044 (4)	0.8256 (4)	0.3548 (4)	0.0245 (11)
C1	0.4981 (4)	0.6330 (5)	0.2662 (4)	0.0176 (11)
C2	0.6509 (4)	0.7460 (6)	0.6167 (4)	0.0235 (12)
H2	0.716363	0.685978	0.616705	0.028*
C3	0.6708 (5)	0.8768 (6)	0.6638 (4)	0.0241 (13)
H3	0.747743	0.904941	0.696617	0.029*
C4	0.5754 (4)	0.9656 (5)	0.6617 (4)	0.0223 (12)
H4	0.586519	1.055540	0.693738	0.027*
C5	0.4632 (4)	0.9227 (6)	0.6125 (4)	0.0227 (12)
H5	0.397440	0.982974	0.609409	0.027*
C6	0.4505 (4)	0.7909 (5)	0.5685 (4)	0.0187 (11)
C7	0.3383 (4)	0.7267 (5)	0.5142 (4)	0.0191 (11)
C8	0.1580 (4)	0.6780 (5)	0.4334 (4)	0.0174 (11)
C9	0.0311 (4)	0.6930 (5)	0.3886 (4)	0.0190 (12)
C13	−0.1184 (4)	0.8423 (6)	0.3164 (4)	0.0245 (13)
H13	−0.144454	0.932317	0.290414	0.029*
C12	−0.2017 (4)	0.7375 (6)	0.3116 (4)	0.0259 (13)
C11	−0.1646 (5)	0.6039 (6)	0.3465 (4)	0.0277 (13)
H11	−0.219834	0.530072	0.345327	0.033*
C10	−0.0454 (4)	0.5804 (5)	0.3831 (4)	0.0225 (12)
H10	−0.017019	0.489329	0.403935	0.027*

Atomic displacement parameters (Å²)

	U^11	U^22	U^33	U^12	U^13	U^23
Ni1	0.0117 (4)	0.0160 (5)	0.0217 (5)	0.0020 (4)	0.0005 (4)	−0.0001 (5)
S1	0.0186 (7)	0.0204 (7)	0.0262 (8)	0.0022 (6)	0.0021 (6)	0.0045 (6)
N1	0.011 (2)	0.025 (3)	0.031 (3)	−0.0021 (19)	0.0010 (19)	−0.006 (2)
supporting information

\[
\begin{array}{cccccccc}
\text{N2} & 0.014 (2) & 0.023 (3) & 0.024 (3) & 0.0006 (19) & -0.0003 (18) & 0.002 (2) \\
\text{N3} & 0.013 (2) & 0.020 (2) & 0.022 (2) & 0.0003 (18) & -0.0021 (18) & -0.001 (2) \\
\text{N4} & 0.014 (2) & 0.016 (2) & 0.026 (3) & -0.0044 (18) & -0.0023 (18) & 0.001 (2) \\
\text{N5} & 0.013 (2) & 0.014 (2) & 0.023 (2) & 0.0011 (18) & 0.0010 (17) & -0.001 (2) \\
\text{N6} & 0.019 (2) & 0.016 (3) & 0.028 (3) & 0.004 (2) & 0.005 (2) & -0.002 (2) \\
\text{N7} & 0.014 (2) & 0.017 (3) & 0.040 (3) & 0.0047 (18) & -0.001 (2) & 0.002 (2) \\
\text{C1} & 0.011 (2) & 0.017 (3) & 0.025 (3) & -0.001 (2) & 0.004 (2) & -0.001 (2) \\
\text{C2} & 0.019 (3) & 0.025 (3) & 0.025 (3) & 0.003 (2) & -0.002 (2) & -0.002 (2) \\
\text{C3} & 0.020 (3) & 0.024 (3) & 0.025 (3) & -0.005 (2) & -0.003 (2) & -0.001 (3) \\
\text{C4} & 0.018 (3) & 0.018 (3) & 0.030 (3) & -0.002 (2) & 0.004 (2) & -0.005 (2) \\
\text{C5} & 0.016 (3) & 0.023 (3) & 0.028 (3) & 0.000 (2) & 0.001 (2) & -0.004 (3) \\
\text{C6} & 0.017 (3) & 0.019 (3) & 0.019 (3) & 0.001 (2) & 0.000 (2) & -0.003 (2) \\
\text{C7} & 0.016 (3) & 0.017 (3) & 0.023 (3) & 0.004 (2) & 0.002 (2) & 0.002 (2) \\
\text{C8} & 0.012 (2) & 0.017 (3) & 0.022 (3) & 0.001 (2) & -0.001 (2) & -0.003 (2) \\
\text{C9} & 0.017 (3) & 0.018 (3) & 0.020 (3) & 0.004 (2) & 0.000 (2) & -0.001 (2) \\
\text{C13} & 0.018 (3) & 0.021 (3) & 0.033 (3) & 0.004 (2) & -0.001 (2) & -0.003 (3) \\
\text{C12} & 0.011 (3) & 0.032 (3) & 0.032 (3) & -0.002 (2) & -0.002 (2) & -0.002 (3) \\
\text{C11} & 0.025 (3) & 0.028 (3) & 0.029 (3) & -0.010 (3) & 0.003 (2) & 0.005 (3) \\
\text{C10} & 0.027 (3) & 0.013 (3) & 0.025 (3) & 0.001 (2) & -0.002 (2) & -0.001 (2) \\
\end{array}
\]

\[Geometric\ parameters\ (\text{Å}, {^\circ})\]

\[
\begin{array}{cccc}
\text{Ni1—N1} & 2.080 (5) & \text{N7—C13} & 1.331 (6) \\
\text{Ni1—N1i} & 2.080 (5) & \text{C2—H2} & 0.9500 \\
\text{Ni1—N2} & 2.126 (4) & \text{C2—C3} & 1.388 (7) \\
\text{Ni1—N2} & 2.126 (4) & \text{C3—H3} & 0.9500 \\
\text{Ni1—N3} & 2.098 (4) & \text{C3—C4} & 1.390 (7) \\
\text{Ni1—N3i} & 2.098 (4) & \text{C4—H4} & 0.9500 \\
\text{S1—C1} & 1.651 (5) & \text{C4—C5} & 1.395 (7) \\
\text{N1—C1} & 1.184 (6) & \text{C5—H5} & 0.9500 \\
\text{N2—C2} & 1.359 (6) & \text{C5—C6} & 1.376 (7) \\
\text{N2—C6} & 1.375 (6) & \text{C6—C7} & 1.487 (7) \\
\text{N3—N4} & 1.391 (5) & \text{C8—C9} & 1.482 (7) \\
\text{N3—C7} & 1.321 (6) & \text{C9—C10} & 1.386 (7) \\
\text{N4—C8} & 1.325 (6) & \text{C13—H13} & 0.9500 \\
\text{N5—N6} & 1.429 (6) & \text{C13—C12} & 1.383 (7) \\
\text{N5—C7} & 1.371 (6) & \text{C12—H12} & 0.9500 \\
\text{N5—C8} & 1.389 (6) & \text{C12—C11} & 1.393 (8) \\
\text{N6—H6A} & 0.84 (5) & \text{C11—H11} & 0.9500 \\
\text{N6—H6B} & 0.84 (6) & \text{C11—C10} & 1.392 (7) \\
\text{N7—C9} & 1.376 (6) & \text{C10—H10} & 0.9500 \\
\end{array}
\]

\[
\begin{array}{cccc}
\text{N1—Ni1—N1i} & 180.0 & \text{C2—C3—H3} & 120.8 \\
\text{N1—Ni1—N2} & 89.98 (17) & \text{C2—C3—C4} & 118.3 (5) \\
\text{N1—Ni1—N2} & 90.02 (17) & \text{C4—C3—H3} & 120.8 \\
\text{N1—Ni1—N2i} & 90.02 (17) & \text{C3—C4—H4} & 120.0 \\
\text{N1—Ni1—N2i} & 89.98 (17) & \text{C3—C4—C5} & 120.0 (5) \\
\text{N1—Ni1—N3} & 86.93 (16) & \text{C5—C4—H4} & 120.0 \\
\end{array}
\]
Bond/Rotation	Value (°)	Value (°)	Value (°)
N1—Ni1—N3 i	93.07 (16)	C4—C5—H5	120.9
N1 i—Ni1—N3 i	86.93 (16)	C6—C5—C4	118.2 (5)
N1 i—Ni1—N3	93.07 (16)	C6—C5—H5	120.9
N2—Ni1—N2 i	180.0	N2—C6—C5	123.4 (5)
N3—Ni1—N2	78.10 (16)	N2—C6—C7	110.7 (4)
N3 i—Ni1—N2	101.90 (16)	C5—C6—C7	125.9 (5)
N3 i—Ni1—N2 i	101.90 (16)	N3—C7—N5	108.5 (4)
N3—Ni1—N3 i	86.93 (16)	N3—C7—C6	121.1 (4)
N4—N3—Ni1	136.0 (3)	N5—C7—C6	130.4 (5)
C7—N3—Ni1	113.5 (3)	N4—C8—N5	110.2 (4)
C7—N3—N4	109.7 (4)	N4—C8—C9	125.3 (5)
C8—N4—N3	105.9 (4)	N5—C8—C9	124.5 (4)
C7—N5—N6	124.3 (4)	C5—C6—C7	115.3 (4)
C7—N5—C8	105.7 (4)	C12—C13—H13	120.7
C8—N5—N6	129.7 (4)	C12—C13—H13	117.8
C8—N6—H6A	108 (4)	C13—C12—C11	118.6 (5)
N5—N6—H6B	102 (4)	C13—C12—C11	120.7
H6A—N6—H6B	116 (5)	C10—C11—C12	118.8 (5)
C13—N7—C9	116.4 (5)	C10—C11—H11	120.6
N1—C1—S1	179.5 (5)	C9—C10—C11	118.5 (5)
N2—C2—H2	118.4	C9—C10—H10	120.8
N2—C2—C3	123.2 (5)	C11—C10—H10	120.8
C3—C2—H2	118.4		

Bond/Rotation	Value (°)
Ni1—N2—C2—C3	−178.1 (4)
Ni1—N2—C6—C5	178.8 (4)
Ni1—N2—C6—C7	−0.7 (5)
Ni1—N3—N4—C8	−169.4 (4)
Ni1—N3—C7—N5	172.2 (3)
Ni1—N3—C7—C6	−6.0 (6)
N2—C2—C3—C4	−1.4 (8)
N2—C6—C7—N3	4.5 (7)
N2—C6—C7—N5	−173.3 (5)
N3—N4—C8—N5	0.0 (6)
N3—N4—C8—C9	−179.7 (5)
N4—N3—C7—N5	0.5 (6)
N4—N3—C7—C6	−177.7 (4)
N4—C8—C9—N7	−150.3 (5)
N4—C8—C9—C10	30.6 (8)
N5—C8—C9—N7	30.0 (7)
N5—C8—C9—C10	−149.1 (5)
N6—N5—C7—N3	174.7 (4)
N6—N5—C7—C6	−7.4 (8)
N6—N5—C8—N4 -174.5 (5) C13—C12—C11—C10 -1.0 (8)
N6—N5—C8—C9 5.2 (8) C12—C11—C10—C9 3.3 (8)
N7—C9—C10—C11 -3.1 (8)

Symmetry code: (i) $-x+1, -y+1, -z+1$.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
N6—H6A···S1ii	0.84 (5)	2.70 (5)	3.496 (5)	159 (5)
N6—H6B···N7	0.84 (6)	2.52 (5)	2.950 (6)	112 (4)
C2—H2···N4i	0.95	2.59	3.403 (7)	144
C5—H5···N6	0.95	2.48	3.104 (7)	123
C10—H10···S1iii	0.95	2.85	3.710 (5)	151

Symmetry codes: (i) $-x+1, -y+1, -z+1$; (ii) $x-1/2, -y+3/2, z+1/2$; (iii) $-x+1/2, y-1/2, -z+1/2$.

Bis[4-amino-3,5-bis(pyridin-2-yl)-1,2,4-triazole-κ^2N_2,N_3]bis(thiocyanato-κ^N)cobalt(II) (Co_A_300K)

Crystal data
[Co(NCS)$_2$(C$_{12}$H$_{10}$N$_6$)$_2$]
$F(000) = 666$

$M_r = 651.61$

Monoclinic, $P2_1/n$

Cell parameters from 1789 reflections

$a = 8.487$ (5) Å

$D_x = 1.507$ Mg m$^{-3}$

Radiation source: sealed X-ray tube

$\lambda = 0.71073$ Å

Cell parameters from 1789 reflections

$\theta = 2.3$–23.5°

$\mu = 0.79$ mm$^{-1}$

$\beta = 93.419$ (13)°

$T = 300$ K

$V = 1435.9$ (14) Å3

$Z = 2$

$\Delta \rho_{\text{max}} = 0.36$ e Å$^{-3}$

Data collection

Bruker SMART CCD 1K area detector diffractometer

7130 measured reflections

2605 independent reflections

1378 reflections with $I > 2\sigma(I)$

$\theta_{\text{max}} = 25.3^\circ$, $\theta_{\text{min}} = 2.3^\circ$

ω scans

$R_{\text{int}} = 0.087$

Absorption correction: multi-scan

(SADABS; Bruker, 2008)

$T_{\text{min}} = 0.683, T_{\text{max}} = 0.921$

Refinement

Refinement on F^2

Least-squares matrix: full

$R[F^2 > 2\sigma(F^2)] = 0.059$

$wR(F^2) = 0.166$

$S = 1.02$

2605 reflections

202 parameters

0 restraints

Primary atom site location: structure-invariant direct methods

Hydrogen site location: mixed

H atoms treated by a mixture of independent and constrained refinement

$w = 1/[\sigma^2(F^2) + (0.0716P)^2 + 0.6349P]$

where $P = (F^2 + 2F^2)/3$

$(\Delta F)_{\text{max}} < 0.001$

$\Delta F_{\text{max}} = 0.36$ e Å$^{-3}$

$\Delta F_{\text{min}} = -0.47$ e Å$^{-3}$

Acta Cryst. (2021). C77, 777-781
Special details

Experimental. The data collection nominally covered a full sphere of reciprocal space by a combination of 3 sets of ω scans each set at different ϕ and/or 2θ angles and each scan (12 s exposure) covering -0.300° degrees in ω. The crystal to detector distance was 4.424 cm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^2)

	x	y	z	U_{eq}/U_{eq}
Co1	0.500000	0.500000	0.500000	0.0445 (4)
S1	0.26053 (19)	0.71708 (19)	0.25941 (11)	0.0746 (6)
N1	0.3930 (5)	0.5697 (5)	0.3897 (3)	0.0568 (13)
N2	0.7168 (5)	0.5995 (5)	0.4751 (3)	0.0508 (12)
N3	0.4749 (5)	0.6868 (4)	0.5487 (3)	0.0500 (12)
N4	0.3570 (5)	0.7562 (4)	0.5823 (3)	0.0493 (12)
N5	0.5682 (5)	0.8814 (5)	0.5806 (3)	0.0501 (12)
N6	0.6770 (6)	0.9865 (5)	0.5939 (4)	0.0659 (15)
H6A	0.729 (8)	0.971 (6)	0.644 (4)	0.079*
H6B	0.641 (7)	1.063 (6)	0.605 (4)	0.079*
N7	0.3926 (5)	1.0926 (5)	0.6491 (3)	0.0598 (13)
C1	0.3378 (6)	0.6297 (6)	0.3362 (4)	0.0508 (15)
C2	0.8306 (6)	0.5461 (6)	0.4329 (4)	0.0569 (16)
H2	0.815022	0.464032	0.409826	0.068*
C3	0.9707 (6)	0.6115 (7)	0.4232 (4)	0.0635 (18)
H3	1.047683	0.574782	0.392547	0.076*
C4	0.9953 (6)	0.7307 (7)	0.4591 (4)	0.0668 (18)
H4	1.090460	0.773923	0.453560	0.080*
C5	0.8797 (6)	0.7881 (6)	0.5037 (4)	0.0616 (17)
H5	0.895020	0.869013	0.528319	0.074*
C6	0.7417 (6)	0.7193 (6)	0.5096 (3)	0.0492 (14)
C7	0.6005 (6)	0.7637 (6)	0.5467 (3)	0.0502 (14)
C8	0.4133 (6)	0.8721 (6)	0.6019 (3)	0.0488 (14)
C9	0.3251 (6)	0.9744 (5)	0.6414 (4)	0.0511 (15)
C10	0.3131 (7)	1.1837 (6)	0.6880 (4)	0.0669 (18)
H10	0.359430	1.265472	0.694835	0.080*
C11	0.1694 (7)	1.1648 (6)	0.7181 (4)	0.0646 (18)
H11	0.119229	1.231076	0.745130	0.077*
C12	0.1002 (7)	1.0424 (6)	0.7069 (4)	0.0638 (17)
H12	0.001279	1.026239	0.726126	0.077*
C13	0.1781 (7)	0.9442 (6)	0.6671 (4)	0.0571 (15)
H13	0.133117	0.862298	0.658234	0.068*

Atomic displacement parameters (\AA^2)

	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Co1	0.0312 (5)	0.0473 (6)	0.0557 (7)	-0.0001 (5)	0.0077 (4)	0.0023 (6)
Geometric parameters (Å, °)

Co1—N1	2.113 (5)	N7—C10	1.338 (7)			
Co1—N1i	2.113 (5)	C2—H2	0.9300			
Co1—N2i	2.164 (4)	C2—C3	1.383 (8)			
Co1—N2	2.164 (4)	C3—H3	0.9300			
Co1—N3i	2.093 (5)	C3—C4	1.368 (9)			
Co1—N3	2.093 (5)	C4—H4	0.9300			
S1—C1	1.657 (7)	C4—C5	1.393 (8)			
N1—C1	1.154 (7)	C5—H5	0.9300			
N2—C2	1.342 (7)	C5—C6	1.375 (7)			
N2—C6	1.365 (7)	C6—C7	1.451 (7)			
N3—N4	1.372 (6)	C8—C9	1.464 (8)			
N3—C7	1.327 (6)	C9—C13	1.377 (7)			
N4—C8	1.314 (6)	C10—H10	0.9300			
N5—N6	1.427 (6)	C10—C11	1.358 (8)			
N5—C7	1.366 (7)	C11—H11	0.9300			
N5—C8	1.384 (6)	C11—C12	1.393 (8)			
N6—H6A	0.92 (6)	C12—H12	0.9300			
N6—H6B	0.86 (6)	C12—C13	1.391 (8)			
N7—C9	1.343 (7)	C13—H13	0.9300			

N1—Co1—N1i 180.00 (15) C2—C3—H3 120.2
N1—Co1—N2i 89.83 (17) C4—C3—C2 119.5 (6)
N1—Co1—N2 90.17 (17) C4—C3—H3 120.2
N1—Co1—N2 89.82 (17) C3—C4—H4 119.6
Bond	Distance (Å)	Bond	Distance (Å)	Bond	Distance (Å)
N1—Co1—N2	90.18 (17)	C3—C4—C5	120.8 (6)		
N2—Co1—N2i	180.0	C5—C4—H4	119.6		
N3—Co1—N1	88.54 (19)	C4—C5—H5	121.6		
N3—Co1—N1i	91.46 (19)	C6—C5—C4	116.8 (6)		
N3—Co1—N1	88.54 (19)	C6—C5—H5	121.6		
N3—Co1—N2	104.51 (17)	N2—C6—C7	110.3 (5)		
N3—Co1—N2i	104.51 (17)	N2—C6—C7	126.7 (6)		
N3—Co1—N2	75.49 (17)	N3—C7—N5	109.4 (5)		
N3—Co1—N2i	75.49 (17)	N3—C7—N5	120.6 (5)		
N3—Co1—N3	180.0	N5—C7—C6	129.9 (5)		
C1—N1—Co1	167.5 (5)	N4—C8—N5	109.7 (5)		
C2—N2—Co1	123.6 (4)	N4—C8—C9	124.7 (5)		
C2—N2—C6	119.1 (5)	N5—C8—C9	125.6 (5)		
C6—N2—Co1	117.2 (3)	N7—C9—C8	117.5 (5)		
N4—N3—Co1	136.3 (3)	N7—C9—C13	124.2 (5)		
C7—N3—Co1	115.6 (4)	C13—C9—C8	118.3 (5)		
C7—N3—N4	108.0 (5)	C13—C9—C8	118.3 (5)		
C8—N4—N3	107.7 (4)	N7—C10—H10	117.7		
C7—N5—N6	125.9 (4)	N7—C10—C11	124.5 (6)		
C7—N5—C8	105.1 (4)	C11—C10—H10	117.7		
C8—N5—N6	128.9 (5)	C10—C11—H11	121.3		
N5—N6—H6A	106 (4)	C10—C11—C12	117.4 (6)		
N5—N6—H6B	119 (4)	C12—C11—H11	121.3		
H6A—N6—H6B	97 (6)	C11—C12—H12	119.8		
C10—N7—C9	116.8 (5)	C13—C12—C11	120.4 (6)		
N1—C1—S1	179.3 (6)	C13—C12—H12	119.8		
N2—C2—H2	119.5	C9—C13—C12	116.6 (6)		
N2—C2—C3	120.9 (6)	C9—C13—H13	121.7		
C3—C2—H2	119.5	C12—C13—H13	121.7		
Co1—N2—C2—C3	−176.0 (4)	N7—C10—C11—C12	−0.6 (10)		
Co1—N2—C6—C5	174.9 (4)	C2—N2—C6—C5	−0.6 (8)		
Co1—N2—C6—C7	−9.1 (6)	C2—N2—C6—C7	175.5 (4)		
Co1—N3—N4—C8	−179.8 (4)	C2—C3—C4—C5	−1.4 (9)		
Co1—N3—C7—N5	−179.6 (3)	C3—C4—C5—C6	0.0 (9)		
Co1—N3—C7—C6	2.4 (7)	C4—C5—C6—N2	1.0 (8)		
N2—C2—C3—C4	1.8 (9)	C4—C5—C6—C7	−174.4 (5)		
N2—C6—C7—N3	4.5 (7)	C5—C6—C7—N3	−179.6 (5)		
N2—C6—C7—N5	−173.1 (5)	C5—C6—C7—N5	2.8 (10)		
N3—N4—C8—N5	0.8 (6)	C6—N2—C2—C3	−0.8 (8)		
N3—N4—C8—C9	−178.4 (5)	C7—N3—N4—C8	−1.6 (6)		
N4—N3—C7—N5	1.7 (6)	C7—N5—C8—N4	0.3 (6)		
N4—N3—C7—C6	−176.3 (4)	C7—N5—C8—C9	179.5 (5)		
N4—C8—C9—N7	−172.5 (5)	C8—N5—C7—N3	−1.2 (6)		
N4—C8—C9—C13	6.6 (9)	C8—N5—C7—C6	176.5 (5)		
N5—C8—C9—N7	8.4 (8)	C8—C9—C13—C12	177.7 (5)		
N5—C8—C9—C13	−172.5 (5)	C9—N7—C10—C11	−1.4 (9)		
Hydrogen-bond geometry (Å, †)

D—H···A	D—H	H···A	D···A	D—H···A
N6—H6A···S1ii	0.92 (6)	2.72 (6)	3.481 (7)	140 (5)
N6—H6B···N7	0.86 (6)	2.29 (6)	2.847 (7)	122 (5)
C5—H5···N6	0.93	2.51	3.103 (8)	122

Symmetry code: (ii) x+1/2, y+3/2, z+1/2.

Crystal data

Bis[4-amino-3,5-bis(pyridin-2-yl)-1,2,4-triazole-κ²N₂,N³]bis(thiocyanato-κN)cobalt(II) (Co_B_300K)

F(000) = 666

\[M_r = 651.61 \]

Monoclinic, \(P2_1/n \)

\[a = 11.5855 (6) \, \text{Å} \]

\[b = 9.5998 (5) \, \text{Å} \]

\[c = 12.8411 (6) \, \text{Å} \]

\[\beta = 101.300 (1) ^\circ \]

\[V = 1400.48 (12) \, \text{Å}^3 \]

\[Z = 2 \]

\(\mu = 0.81 \, \text{mm}^{-1} \)

\(T = 300 \, \text{K} \)

Prism, orange

0.48 \times 0.22 \times 0.1 \, \text{mm}

Data collection

Bruker SMART CCD 1K area detector

Graphite monochromator

Detector resolution: 7.9 pixels mm\(^{-1}\)

\(\omega \) scans

Absorption correction: multi-scan

(SADABS; Bruker, 2008)

\(T_{\text{min}} = 0.805, T_{\text{max}} = 0.887 \)

\(I = -9 \rightarrow 15 \)

Refinement

Refinement on \(F^2 \)

Least-squares matrix: full

\(R(F^2) = 0.034 \)

\(wR(F^2) = 0.079 \)

\(S = 1.03 \)

2565 reflections

202 parameters

0 restraints

Primary atom site location: structure-invariant direct methods

Hydrogen site location: mixed

H atoms treated by a mixture of independent and constrained refinement

\(w = 1/\sigma^2(F_c^2) + (0.0314P)^2 + 0.514P \)

\(P = (F_c^2 + 2F_s^2)/3 \)

\(\Delta r_{\text{max}} = 0.22 \, \text{e} \, \text{Å}^{-3} \)

\(\Delta r_{\text{min}} = -0.27 \, \text{e} \, \text{Å}^{-3} \)
Special details

Experimental. The data collection nominally covered a full sphere of reciprocal space by a combination of 3 sets of ω scans each set at different φ and/or 2θ angles and each scan (5 s exposure) covering -0.300° degrees in ω. The crystal to detector distance was 4.424 cm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²)

	x	y	z	Uiso */ Ueq
Co1	0.500	0.500	0.500	0.03629 (14)
S1	0.47957 (6)	0.70374 (7)	0.14959 (5)	0.04980 (19)
N1	0.51074 (18)	0.5839 (2)	0.35102 (17)	0.0491 (5)
N2	0.54071 (15)	0.7033 (2)	0.57087 (14)	0.0383 (5)
N3	0.33383 (15)	0.5982 (2)	0.48281 (15)	0.0386 (5)
N4	0.22058 (16)	0.5665 (2)	0.43212 (15)	0.0401 (5)
N5	0.22794 (15)	0.7846 (2)	0.48682 (14)	0.0345 (4)
N6	0.19643 (19)	0.9198 (2)	0.5153 (2)	0.0463 (5)
H6A	0.145 (2)	0.906 (3)	0.558 (2)	0.056*
H6B	0.157 (2)	0.957 (3)	0.459 (2)	0.056*
N7	-0.00343 (16)	0.8221 (2)	0.35788 (16)	0.0454 (5)
C1	0.49760 (19)	0.6333 (2)	0.2676 (2)	0.0372 (5)
C2	0.6480 (2)	0.7483 (3)	0.61693 (19)	0.0460 (6)
H2	0.7119	0.6894	0.6181	0.055*
C3	0.6675 (2)	0.8784 (3)	0.6628 (2)	0.0508 (7)
H3	0.7431	0.9061	0.6946	0.061*
C4	0.5742 (2)	0.9659 (3)	0.6607 (2)	0.0497 (7)
H4	0.5856	1.0536	0.6919	0.060*
C5	0.4619 (2)	0.9230 (3)	0.61174 (19)	0.0446 (6)
H5	0.3974	0.9816	0.6084	0.053*
C6	0.44896 (18)	0.7913 (3)	0.56825 (17)	0.0355 (5)
C7	0.33730 (18)	0.7286 (2)	0.51491 (16)	0.0336 (5)
C8	0.15832 (18)	0.6798 (2)	0.43610 (17)	0.0350 (5)
C9	0.03193 (18)	0.6947 (2)	0.39031 (17)	0.0349 (5)
C10	-0.1180 (2)	0.8388 (3)	0.3180 (2)	0.0543 (7)
H10	-0.1440	0.9266	0.2930	0.065*
C11	-0.1991 (2)	0.7346 (3)	0.3116 (2)	0.0571 (8)
H11	-0.2784	0.7519	0.2854	0.069*
C12	-0.1611 (2)	0.6038 (3)	0.3448 (2)	0.0585 (8)
H12	-0.2145	0.5308	0.3414	0.070*
C13	-0.0428 (2)	0.5817 (3)	0.3833 (2)	0.0466 (6)
H13	-0.0143	0.4933	0.4039	0.056*

Atomic displacement parameters (Å²)

	U₁₁	U₂₂	U₃₃	U₁₂	U₁₃	U₂₃
Co1	0.0296 (2)	0.0432 (3)	0.0355 (3)	0.0059 (2)	0.00493 (17)	0.0005 (2)

Acta Cryst. (2021). C77, 777-781
Geometric parameters (Å, °)

Bond / Angle	Distance / Angle		
Co1—N1i	2.102 (2)		
Co1—N1	2.102 (2)		
Co1—N2	2.166 (2)		
Co1—N2i	2.166 (2)		
Co1—N3i	2.1161 (18)		
Co1—N3	2.1161 (18)		
S1—C1	1.635 (3)		
N1—C1	1.154 (3)		
N2—C2	1.339 (3)		
N2—C6	1.355 (3)		
N3—N4	1.380 (2)		
N3—C7	1.316 (3)		
N4—C8	1.312 (3)		
N5—N6	1.416 (3)		
N5—C7	1.359 (3)		
N5—C8	1.371 (3)		
N6—H6A	0.89 (3)		
N6—H6B	0.85 (3)		
N7—C9	1.330 (3)		
N1—Co1—N1	180.0		
N1—Co1—N2	89.45 (8)		
N1—Co1—N2i	90.56 (8)		
N1—Co1—N2i	90.55 (8)		
Bond/Rotation	Distance (Å)	Angle (°)	Temperature Factor (Å²)
--------------	-------------	-----------	------------------------
N1—Co1—N2	89.44 (8)	C3—C4—C5	119.6 (2)
N1—Co1—N3	92.91 (8)	C4—C5—C6	120.2
N1—Co1—N3'	92.91 (8)	C4—C5—H5	120.9
N1—Co1—N3	87.09 (8)	C6—C5—C4	118.2 (2)
N1—Co1—N3'	87.09 (8)	C6—C5—H5	120.9
N2—Co1—N2	180.0	C5—C6—C7	122.7 (2)
N3—Co1—N2	103.83 (7)	N2—C6—C7	111.8 (2)
N3—Co1—N2'	103.83 (7)	N2—C6—C7	111.8 (2)
N3—Co1—N3	180.0	C5—C6—C7	125.5 (2)
N3—Co1—N3'	180.0	N3—C7—N5	108.88 (19)
N4—Co1—N3	169.07 (19)	N4—C8—N5	110.48 (18)
C2—N2—Co1	125.66 (16)	N4—C8—C9	125.1 (2)
C2—N2—C6	117.8 (2)	N5—C8—C9	124.4 (2)
C6—N2—Co1	116.54 (14)	N7—C9—C8	115.8 (2)
N4—N3—Co1	135.45 (15)	N7—C9—C13	123.5 (2)
C7—N3—Co1	114.82 (14)	C13—C9—C8	120.8 (2)
C7—N3—N4	109.00 (18)	C7—C10—H10	118.1
C8—N4—N3	106.27 (19)	N7—C10—C11	123.8 (3)
C7—N5—N6	124.66 (19)	C11—C10—H10	118.1
C7—N5—C8	105.48 (18)	C10—C11—H11	120.7
C8—N5—N6	129.62 (18)	C10—C11—C12	118.6 (2)
N5—N6—H6A	105.2 (18)	C12—C11—H11	120.7
N5—N6—H6B	106.7 (19)	C11—C12—H12	120.4
H6A—N6—H6B	106 (3)	C11—C12—C13	119.2 (2)
C9—N7—C10	116.9 (2)	C13—C12—C13	120.4
N1—C1—S1	179.7 (3)	C9—C13—H13	121.0
N2—C2—H2	118.6	C12—C13—C9	118.0 (2)
N2—C2—C3	122.7 (2)	C12—C13—H13	121.0
C3—C2—H2	118.6		
Co1—N2—C2—C3	−178.53 (19)	N7—C10—C11—C12	−2.2 (4)
Co1—N2—C6—C5	179.02 (18)	C2—N2—C6—C5	−0.7 (3)
Co1—N2—C6—C7	−0.7 (2)	C2—N2—C6—C7	179.64 (19)
Co1—N3—N4—C8	−169.85 (17)	C2—C3—C4—C5	−0.7 (4)
Co1—N3—C7—N5	171.98 (13)	C3—C4—C5—C6	1.1 (4)
Co1—N3—C7—C6	−6.0 (3)	C4—C5—C6—N2	−0.4 (4)
N2—C2—C3—C4	−0.5 (4)	C5—C6—C7—N3	−175.2 (2)
N2—C6—C7—N3	4.5 (3)	C5—C6—C7—N5	7.3 (4)
N2—C6—C7—N5	−173.0 (2)	C6—N2—C2—C3	1.1 (3)
N3—N4—C8—N5	0.7 (2)	C7—N3—N4—C8	−0.5 (2)
N3—N4—C8—C9	179.2 (2)	C7—N5—C8—N4	−0.5 (2)
N4—N3—C7—N5	0.2 (2)	C7—N5—C8—C9	−179.1 (2)
N4—N3—C7—C6	−177.79 (18)	C8—N5—C7—N3	0.2 (2)
N4—C8—C9—N7	−150.0 (2)	C8—N5—C7—C6	177.9 (2)
N4—C8—C9—C13	30.4 (3)	C8—C9—C13—C12	176.7 (2)
N5—C8—C9—N7	28.3 (3)	C9—N7—C10—C11	1.8 (4)
N5—C8—C9—C13	−151.3 (2)		
N6—N5—C7—N3 175.0 (2) C10—N7—C9—C8 −178.7 (2)
N6—N5—C7—C6 −7.2 (4) C10—N7—C9—C13 0.8 (4)
N6—N5—C8—N4 −175.0 (2) C10—C11—C12—C13 0.0 (4)
N6—N5—C8—C9 6.5 (4) C11—C12—C13—C9 2.3 (4)
N7—C9—C13—C12 −2.9 (4)

Symmetry code: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

\[
\begin{array}{cccccc}
D—H···A & D—H & H···A & D···A & D—H···A \\
N6—H6A···S1ii & 0.89 (3) & 2.66 (3) & 3.520 (3) & 162 (2) \\
N6—H6B···N7 & 0.85 (3) & 2.43 (3) & 2.914 (3) & 117 (2) \\
C5—H5···N6 & 0.93 & 2.47 & 3.083 (3) & 123 \\
\end{array}
\]

Symmetry code: (ii) x−1/2, −y+3/2, z+1/2.