Review

Reporter gene assays for screening and identification of novel molting hormone- and juvenile hormone-like chemicals

Sayoko Ito-Harashima* and Takashi Yagi

Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1–1 Gakuen-cho, Naka-ku, Sakai city, Osaka 599–8531, Japan

(Received November 18, 2020; Accepted December 23, 2020)

A reporter gene assay (RGA) is used to investigate the activity of synthetic chemicals mimicking the molting hormones (MHs) and juvenile hormones (JHs) of insects, so-called insect growth regulators (IGRs). The MH receptor, a heterodimer of the ecdysone receptor (EcR) and ultraspiracle (USP), and the JH receptor Methoprene-tolerant (Met) are ligand-dependent transcription factors. Ligand-bound EcR-USP and Met bind to specific cis-acting DNA elements, referred to as the ecdysone-responsive element (EcRE) and the JH-responsive element (JHRE), respectively, in order to transactivate target genes. Insect hormone-induced transactivation systems have been reconstituted by the introduction of reporter genes under the control of EcRE and JHRE, or two-hybrid reporter genes, into insect, mammalian, and yeast cells expressing receptor proteins. RGA is easy to use and convenient for examining the MH- and JH-like activities of synthetic chemicals and is suitable for the high-throughput screening of novel structural classes of chemicals targeting EcR-USP and Met.

Keywords: reporter gene assay, ecdysone receptor, juvenile hormone receptor, agonist, insect growth regulator.

Introduction

Insect species that belong to a large class of Arthropoda utilize unique endocrine systems consisting of two peripheral hormones, molting hormones (MHs) and juvenile hormones (JHs). These hormones are important for regulating the growth and development of insects. The steroid 20-hydroxyecdysone (20E) and sesquiterpenoid JH III are a representative MH and JH, respectively. Synthetic nonsteroidal ecdysone agonists and juvenile hormone agonists (JHAs) have recently been developed as insecticides and categorized as insect growth regulators (IGR).1,2)

Since these synthetic insect hormones interfere with insect-specific hormone responses, they are considered to be safer for mammals than other classes of insecticides.1) Nonsteroidal ecdysone agonists exhibit insect-selective toxicity for certain taxonomic orders. These IGRs may be ideal compounds for pest control.1,3,4)

The activities of synthetic MHs and JHs were previously analyzed in the whole body using classical in vivo bioassay methods.5–11) Experimental procedures to examine hormone-dependent morphological changes and the stimulation/inhibition of proliferation using cultured insect cell lines have also been developed as in vitro bioassays.12–18) The measurement of ligand-receptor binding affinity using insect cell extracts or in vitro translated receptor proteins is another procedure for detecting natural and synthetic hormones.19–28) In the 1990s, genes encoding the ecdysone receptor (EcR) and its partner protein ultraspiracle (USP), a homolog of mammalian retinoid X receptor (RXR), and the JH receptor Methoprene-tolerant (Met) were initially identified in the fruit fly Drosophila melanogaster.29–32) EcR-USP and Met are ligand-dependent transcription factors belonging to the nuclear receptor (NR) superfamily and the basic helix-loop-helix Per/Arnt/Sim (bHLH-PAS) family, respectively (Fig. 1a and Fig. 4a). The genes encoding EcR-USP and Met are conserved among various insect species and have
been functionally characterized.33–35) The reporter gene assay (RGA) is a versatile experimental method for monitoring gene expression associated with signal transduction cascades in response to intra- and extracellular stimuli. RGA has been employed to elucidate the molecular mechanisms of signal transduction via EcR-USP and Met, and it has also played important roles in the development of high-throughput screening systems for IGRs with MH- and JH-like activities. In this review, we summarized the application of RGA to the study of IGRs.

1. RGA

The term reporter gene refers to a gene encoding a protein product with unique and readily measurable enzymatic activity or that is distinguishable from a large amount of various proteins expressed in cells.36–38) The following reporter genes are frequently and commonly used: genes for bacterial chloramphenicol acetyltransferase (CAT), \(\beta\)-galactosidase (\(\beta\)-gal), and \(\beta\)-glucuronidase (GUS); luciferase from bacteria, firefly, or \textit{Renilla}; green fluorescent protein (GFP) of jellyfish; and the secretable form of alkaline phosphatase (SEAP) derived from the human placenta.36–40) These reporter gene products have been characterized in detail, and their advantages and disadvantages as well as detection methods have been reviewed elsewhere.36,39,40)

Reporter genes are placed downstream of promoters that function in host cells. RGA is a versatile experimental method for examining various cellular events. The reporter gene may be used as a marker of gene transfer or in promoter analysis, the identification of cis- and trans-acting DNA elements of genes of interest, the spatiotemporal imaging of gene expression patterns, the characterization of receptors and their ligands, and analyses of signaling pathways.41)

2. Molecular mechanisms underlying the activation of EcR-USP by MHs

The RGA procedure has been applied in many studies to investigate the molecular mechanisms underlying signal transduction initiated by MHs. Riddihough \textit{et al.} reported that the transcription of the \textit{D. melanogaster} heat shock protein 27 (\textit{hsp27}) gene was induced by ecdysone as well as heat shock. A deletion analysis of the \textit{hsp27} promoter identified ecdysone-specific cis-acting DNA elements, referred to as the ecdysone-responsive element (EcRE), with a putative palindrome structure (Fig. 1b).42,43) A gene for the MH receptor EcR was cloned as the first member of the NR superfamily in \textit{D. melanogaster}. The EcR protein was shown to bind to active MH 20E as well as DNA with high specificity at EcRE.29) MH-bound EcR forms a heterodimer with its partner protein, USP, on EcRE.30,31,44) Furthermore, the steroid receptor coactivator (SRC), Taiman of \textit{D. melanogaster} (DmTai), was identified as an important component in the transduction of MH signals to downstream effectors.45)

EcREs with distinct sequences were subsequently identified in the regulatory region of \textit{D. melanogaster} \textit{Fbp1}, \textit{Eip28}/29, and \textit{Aedes aegypti} vitellogenin (Vg) genes.46–49) Previous studies also indicated that EcR-USP induced reporter gene expression \textit{via} asymmetric RE, a direct repeat of the core sequence (half site) in African green monkey CV-1 cells.50,51) The heterodimeriza-
Table 1. *In vitro* RGA systems for the screening of EcR-USP ligands

Host cells	Organism and cell lines	Transfected receptor genes	EcRE	Reporter gene	Types of test compounds	Ref.
Insect cells*	*Drosophila melanogaster* Kc	—	Dm hsp27 promoter	Luc	20E, α-ecdysone	55)
D. melanogaster Kc	—	Dm hsp27 promoter	Luc	3,5-di-tert-butyl-4-hydroxy-N-isobutyl-benzamide (DTBHIB)	56)	
D. melanogaster Kc	—	Dm hsp27 promoter	Luc	Diacylhydrazine (DAH) compounds	57)	
D. melanogaster Schneider 2 (S2)	—	Dm hsp27	lacZ	Curcubitacins	134)	
D. melanogaster Schneider SL2	—	Dm hsp27	EcRE	Insect and plant ecdysteroids	139)	
Spodoptera frugiperda Sf9	—	Dm hsp27	EcRE	20E, ponasterone A (pon A), chromafenozide	67)	
D. melanogaster Kc	—	Dm hsp27	EcRE	Plant compounds	58)	
Bombyx mori Bm5	—	Dm hsp27	CAT	DAH library	67)	
S. frugiperda Sf9	CjEcR	Dm hsp27	CAT	RG-102240	68)	
Lymantria dispar (Ld652Y)	CjEcR MnRXR	GAL4 RE (two-hybrid)	CAT	RG-102240	68)	
B. mori Bm5	—	Dm hsp27	GFP	DAHs	70)	
D. melanogaster S2	—	Dm hsp27	EcRE	Chromafenozide	69)	
B. mori Bm5	—	Dm hsp27	EcRE	Chromafenozide	69)	
Anthonomus grandis BRL-AG-3A	—	Dm hsp27	EcRE	Methoxyfenozide	70)	
BRL-AG-3C *Leptinotarsa decemlineata* BCRL-Lepd-SL1	—	Dm hsp27	EcRE	DAHs, acylaminoketone (AAK) analogs, tetrahydroquinoline (THQ) compounds, piperidiamine analogs	80)	
D. melanogaster S2	—	Dm hsp27	EcRE	DAHs, AAK analogs, THQs	71)	
B. mori Bm5	—	Dm hsp27	EcRE	DAHs, AAK analogs, THQs	71)	
S. littoralis SL2, SLj2b	—	Dm hsp27	EcRE	DAHs, AAK analogs, THQs	71)	
S. frugiperda Sf9	—	Dm hsp27	EcRE	Non-steroidal compounds	78)	
L. decemlineata BCRL-Lepd-SL1	—	Dm hsp27	EcRE	DAHs	77)	
D. melanogaster S2	—	Dm hsp27	EcRE	Ecdysteroids	135)	
B. mori Bm5	—	Dm hsp27	EcRE	Ecdysteroids	135)	
S. frugiperda Sf9	—	Dm hsp27	EcRE	N-tert-butylphenyl thenoylhydrazide compounds	140)	
D. melanogaster S2	—	Dm hsp27	EcRE	Compounds registered in Maybridge database	79)	
B. mori Bm5	—	Dm hsp27	EcRE	Compounds registered in Maybridge database	79)	
Mammalian cells	*Cricetulus griseus* CHO	VgEcR	E/GRE	lacZ	Phytochemicals	90)
CHO	HsRXR					
Mus musculus NIH 3T3	AaEcR	GAL4 RE (two-hybrid)	Luc	THQs	3)	
NIH 3T3	MnRXR					
Table 1. Continued

Host cells	Organism and cell lines	Transfected receptor genes	EcRE	Reporter gene	Types of test compounds	Ref.
Mammalian cells	*Homo sapiens*	BmEcR	Dm hsp27 EcRE	β-gal	AAKs	72(
HEK293		BmEcR	Dm hsp27 EcRE	β-gal	AAKs	60(
H. sapiens		CIEcR	GAL4 RE (two-hybrid)	Luc	DAHs, THQs	61(
HEK293		DmEcR	GAL4 RE (two-hybrid)	Luc	THQs	4(
C. griseus	CHO	CIEcR	GAL4 RE (two-hybrid)	Luc	Natural and semi-synthetic ecdysteroids (hydroxylation)	62(
M. musculus	NIH 3T3	AaEcR	E/GRE	Luc	Natural and semi-synthetic ecdysteroids (alkylation)	63(
NIH 3T3		CIIEcR	GAL4 RE (two-hybrid)	Luc	Natural and semi-synthetic ecdysteroids (alkylation)	63(
M. musculus	NIH 3T3	VgEcR	E/GRE	Luc	Natural and semi-synthetic ecdysteroids (alkylation)	63(
NIH 3T3		HsRXR	GAL4 RE (two-hybrid)	Luc	Steroidal ecdysterones, DAHs	64(
H. sapiens	HEK293	BmaEcR	Dm hsp27 EcRE	β-gal	Nonsteroidal ecdysone agonists	85(
S. cerevisiae		CIEcR	Dm hsp27 EcRE	β-gal	Ecdysteroids, nonsteroidal ecdysone agonists	84(
S. cerevisiae		DmEcR	IR0	β-gal	Ecdysteroids, DAHs, THQ	87(

Abbreviations: *Aa*: *Aedes aegypti*; *Ama*: *Amblyomma americanum*; *Ba*: *Bemisia argentifolii*; *Bm*: *Bombyx mori*; *Bma*: *Brugia malayi*; *Ce*: *Choristoneura fumiferana*; *Cs*: *Chilo suppressalis*; *Dm*: *Drosophila melanogaster*; *E/GRE*: ecdysone/glucocorticoid responsive element (hybrid RE); *Hs*: *Homo sapiens*; *Lm*: *Locusta migratoria*; *Ms*: *Manduca sexta*; *Nc*: *Nephotettix cincticeps*; *Tc*: *Tribolium castaneum*; *Tm*: *Tenebrio molitor*; *Mm*: *Mus musculus*; CHO; Chinese hamster ovary; GAL4 RE: DNA element for binding of the GAL4 DNA binding domain (DBD); VgEcR: hybrid of *D. melanogaster* EcR carrying modified DBD and VP16 AD that recognizes an E/GRE. *Reporter gene assays in insect cells expressing endogenous EcR and USP. Only the reporter plasmid was introduced.
and induce reporter gene expression in host cells. VP16, respectively (and vice versa fused to Gal4-DBD and transcriptional activation domain (AD) of Gal4 or USP). Two-hybrid-based RGA for EcR-USP. EcR and USP (LBD or full length) by recruiting RNA pol II general transcription factors of host cells. (b) Two-hybrid-based RGA for EcR-USP. EcR and USP (LBD or full length) fused to Gal4-DBD and transcriptional activation domain (AD) of Gal4 or VP16, respectively (and vice versa), interact in an MH-dependent manner and induce reporter gene expression in host cells.

Fig. 2. RGA for EcR-USP. (a) Schematic summary of RGA for EcR-USP. RGA using a reporter gene under the control of EcRE, in which multiple copies of EcRE are integrated upstream of the promoter (EcRE×n). Ligand-bound EcR and USP form a heterodimer on EcRE. The interaction of transcriptional coactivator SRC enhances reporter gene expression by recruiting RNA pol II general transcription factors of host cells. (b) Two-hybrid-based RGA for EcR-USP. EcR and USP (LBD or full length) fused to Gal4-DBD and transcriptional activation domain (AD) of Gal4 or VP16, respectively (and vice versa), interact in an MH-dependent manner and induce reporter gene expression in host cells.

3. RGA for detecting Synthetic ecdysone agonists by surveying gene expression mediated by EcR-USP

The identification of EcR and USP on DR-RE (Fig. 1c) was confirmed using a biochemical approach, the electrophoretic mobility shift assay (EMSA).

The activation mechanism of EcR-USP revealed in D. melanogaster was conserved in other insect species (Fig. 1d). The heterodimerization of ligand-bound EcR and USP enables the transactivation of two-hybrid reporter genes.

Pioneering studies using RGA on insect cell lines were conducted by Mikitani, who introduced a Luc reporter plasmid connected to a Dm hsp27 promoter into D. melanogaster Kc cells that were highly sensitive to ecdysteroids. The ecdysteroid-dependent expression of luciferase by endogenous EcR-USP was reproducibly observed. This procedure was very sensitive, rapid, and simple, suggesting that RGA of insect cells is a valuable tool in the search for new ecdysteroid compounds.

The findings obtained using RGA correlated with the effects of synthetic ecdysteroid compounds on ligand-binding affinity, efficacy toward cellular morphological changes, and larvicidal activity. To date, a number of RGA systems for EcR-USP have been developed in several cell lines from insect species in distinct phylogenetic orders.

RHS849, a diacylhydrazine (DAH)-type lead compound exhibiting MH-like activity, was identified as the first nonsteroidal ecdysone agonist. DAHs exhibited in vivo toxicity in a lepidopteran insect–selective manner, which correlated with the transactivation activity observed in RGA. α-Acylaminoketone and its analogs were identified as novel types of nonsteroidal ecdysone agonists with potent selectivity on lepidopteran EcR-USP, while tetrahydroquinoline (THQ) compounds were shown to strongly activate dipteran EcR-USP. The insect order-selective activity of nonsteroidal ecdysone agonists was associated with the divergence of the primary sequence of the ligand-binding domain (LBD) of EcR. Differences in the three-dimensional (3D) structure of the ligand-binding pocket affected the binding potency of nonsteroidal ecdysone agonists; however, the binding mode of natural ecdysteroids was similar among different phylogenetic orders of insects.

To discover new classes of ecdysone agonists for non-lepidopteran insect pests, RGA was established in coleopteran cell lines from Leptinotarsa decemlineata and Anthonomus grandis, and various nonsteroidal ecdysone agonists were tested by methods combined with (quantitative) structure–activity relationship ((Q) SAR) studies and/or the 3D-modeling of the ligand-binding pocket and ligand docking studies (virtual screening). Similarly, the agonist/antagonist activities for dipter-
an and lepidopteran EcR-USP of several compounds identified by ligand-based virtual screening were confirmed by RGA. Approaches combining (QS)AR and RGA were also used to examine the ligand potencies of semi-synthetic ecdysteroids for EcR-USP of various insect species.

In mammalian cell-based RGA, EcR-USP derived from several different orders of insects was expressed to examine the MH-like activity of test compounds. RGA was also utilized to compare the species-selective in vivo toxicities and in vitro transactivation activities of synthetic compounds in the lepidopteran insects *B. mori* and *Spodoptera littoralis.*

4. Reconstitution of MH-induced transactivation systems in yeast

RGA has been established in the yeast *Saccharomyces cerevisiae* as another heterologous host system. *S. cerevisiae* is the simplest eukaryote possessing highly conserved gene expression mechanisms of higher eukaryotes. Previous studies reported that the ligand–dependent transactivation activity of *D. melanogaster* EcR-USP via *hsp27* EcRE was not confirmed, whereas the EcR protein expressed in yeast was capable of binding to ecdysteroid ligands with the co-expression of USP. Tran et al. showed that the expression of mouse SRC GRIP1 was required to reconstitute the ligand-dependent transactivation of EcR-USP from *Choristoneura fumiferana* and *Aedes aegypti.* The ligand-induced heterodimerization of the LBDs of EcR and USP from *D. melanogaster* was also demonstrated by a two-hybrid method and EMSA in yeast. Based on these findings, we recently established a new yeast RGA system for detecting MHs. EcR and USP derived from three insect species belonging to different taxonomic orders—the dipteran *D. melanogaster,* lepidopteran *Chilo suppressalis,* and coleopteran *L. decemlineata*—were expressed in yeast in conjunction with the SRC DmTai (Fig. 3). The ligand-induced transactivation in arthropods

5. Molecular mechanisms underlying JH-dependent transactivation in arthropods

JH receptor Met proteins are members of the bHLH-PAS family that function as ligand-dependent transcription factors as well as EcR-USP (Fig. 4a). The Met gene was originally cloned as a gene that complemented the methoprene resistance of a mutant fly. The Met protein was shown to bind to JH III with high affinity. The GAL4-DBD-Met fusion protein directed to GAL4 RE transactivated the Luc reporter in a JH/JHA-dependent manner. Met homologs have since been identified in various insects, such as holo-, hemi-, and ametabolous species. The paralogous gene germ cell–expressed (Gce), which is conserved in *Drosophila* species, is also involved in signal transduction for the exertion of JH effects. Met-Met and Met-Gce dimer complexes are formed as inactive states in the absence of JHs. Upon ligand binding to the PAS-B domain of Met and Gce, Met-Met and Met-Gce complexes are rapidly dissociated. Met/Gce proteins then form a heterodimer with other bHLH-PAS protein SRCs, such as DmTai, *A. aegypti* FISC, and *Tribolium castaneum* TeSRC. The Met-SRC and Gce-SRC heterodimer complex binds to a specific DNA element (JHRE) in a JH-dependent manner and activates the transcription of early JH-inducible genes, such as Krüppel homolog 1 (*Kr-h1*) and early trypsin (*ET*) (Fig. 4b). Previous studies...
on the expression of anti-metamorphic gene Kr-h1 identified a 13-nucleotide motif containing an E-box (CAC GTG) as JHRE, which was essential for the binding of Met-SRC to mediate the effects of JH. This motif is highly conserved in the Kr-h1 regulatory region of a wide range of insect species (Fig. 4c). In A. aegypti, Met and Cycle (Cyc) have been shown to form a heterodimer on response elements containing an imperfect E-box-like (CACGCG) sequence in female mosquitos. The Met-Cyc complex induces the JH-dependent expression of the Kr-h1 gene, as well as the Met-FISC heterodimer. JH-regulated gene expression is shared in microcrustacea Daphnia pulex and D. magna, in which Met and SRC form a heterodimer in response to various juvenoids. Although Met and SRC play essential roles in normal embryogenesis, the expression of D. pulex Kr-h1 is not regulated by the JH-Met signaling cascade, as it is in insects.

6. RGA systems for detecting JHs and JHAs

Table 2 summarizes RGAs previously established in studies on JH receptors. The strategy of constructing reporter plasmids is similar to that of constructing RGAs for EcR-USP: DNA fragments containing JHRE identified in genes such as Kr-h1, juvenile hormone esterase (jhe), and early trypsin (ET) were integrated upstream of basal promoters (Table 2).
Ligand-bound Met heterodimerizes with SRC and binds to JHRE in order to transactivate reporter gene expression (Fig. 5a). The JH-dependent expression of reporter genes by Met and/or Gce has been measured in various insect cell lines (Table 2). Although two-hybrid-based RGAs have been used frequently to examine JH-dependent heterodimer formation between Met and SRC in heterologous host systems (Fig. 5b), insect Kr-h1 JHRE-regulated transactivation was successfully reconstituted using mammalian cells in three studies (Table 2). Some of these RGAs indicated dose-dependent responses against various juvenoids, such as JH III, methyl farnesoate, methoprene, pyriproxyfen, and fenoxycarb. RGAs for Met from Daphnia species also have been established. D. pulex Met exhibited dose-dependent responses against several juvenoids via T. castaneum Kr-h1 JHRE, while the Kr-h1 homolog of D. pulex was not regulated by JH-Met signaling. This finding suggests that the DNA-binding properties of Met proteins are conserved in insects and daphnids. RGA for Met derived from non-insect species will be useful.

Table 2. RGA systems for arthropod JHRs

Host cells	Organisms and cell lines	Transfected receptor genes	Response element	Reporter gene	Ref.
Insect cells	C. fumiferana CF-203*	—	Cfjhe JHRE	Luc	114
	D. melanogaster S2	DmMet	GAL4 RE (one-hybrid)	Luc	24
	D. melanogaster L57	AaMet-AaFISC	GAL4 RE (two-hybrid)	Luc	102
	D. melanogaster L57*	—	AaET JHRE	Luc	102
	B. mori NIAS-Bm-aF3*	—	BmKr-h1 JHRE	Luc	105
	Tribolium castaneum Tc81*	—	TcKr-h1 JHRE	Luc	106
	D. melanogaster S2	TcMet-TcSRC	TcKr-h1 JHRE	Luc	106
	Aedes aegypti Agr2*	—	Synthetic AaMFBS	Luc	104
	Aedes aegypti Agr2*	—	AaKr-h1 JHRE	Luc	107
	D. melanogaster Kc*	—	DmKr-h1 JHRE	Luc	115
	D. melanogaster S2	BmMet-BmSRC	BmKr-h1 JHRE	Luc	116
	D. melanogaster S2	DmMet/Gce-DmTai	AaET JHRE	Luc	27
	D. melanogaster S2*	—	AaET JHRE	Luc	28
Mammalian cells	M. musculus	TcMet-TcSRC	GAL4 RE (two-hybrid)	Luc	103
NIH 3T3	H. sapiens HEK293	BmMet2-BmSRC	GAL4 RE (two-hybrid)	Luc	105
	H. sapiens HEK293*	BmMet2-BmSRC	BmKr-h1 JHRE	Luc	105
	H. sapiens HEK293*	TcMet-TcSRC	GAL4 RE (two-hybrid)	Luc	106
	C. griseus CHO	DapmaMet-DapmaSRC	GAL4 RE (two-hybrid)	Luc	109
	DapuMet-DappuSRC	TcMet-TcSRC	GAL4 RE (two-hybrid)	Luc	120
	H. sapiens HEK293*	BmMet2-BmSRC	BmKr-h1 JHRE	Luc	116
	H. sapiens HEK293*	BmMet1-BmSRC	GAL4 RE (two-hybrid)	Luc	116
	C. griseus CHO	DapmaMet-DapmaSRC	GAL4 RE (two-hybrid)	Luc	119
	DapuMet-DappuSRC	TcMet-TcSRC	GAL4 RE (two-hybrid)	Luc	120
	C. griseus CHO	DapuMet-DappuSRC	TcKr-h1 JHRE	Luc	118
	H. sapiens HEK293T	DmMet-DmTai	GAL4 RE (two-hybrid)	Luc	28
	C. griseus CHO	DapuMet-DappuSRC	GAL4 RE (two-hybrid)	Luc	117
Yeast	S. cerevisiae	AaMet-AaCYC	GAL4 RE (two-hybrid)	β-gal	122
	S. cerevisiae	AaMet-AaFISC	GAL4 RE (two-hybrid)	β-gal	123

Abbreviations: JHR: juvenile hormone receptor; Aa: Aedes aegypti; Bm: Bombyx mori; Cf: Choristoneura fumiferana; Dm: Drosophila melanogaster; Tc: Tribolium castaneum; Dapma: Daphnia magna; Dappu: Daphnia pulex; jhe: juvenile hormone esterase; ET: early trypsin; MFBS: Met-FISC binding site. * Reporter gene assays in insect cells expressing endogenous JHRs and a transcriptional coactivator. Only the reporter plasmid was introduced.
nists, derivatives of imidazothiadiazole,124 1-phenyl-4-cyano- 5-aminopyrazoles,125 heptacyclic pyrazolamide,126 methylene lactams,127 oxadiazolines,128 and imidazoles129 have been lined up by (Q)SAR studies and/or virtual screening methods. These compounds have potential as candidates of new classes of EcR-targeting insecticides. An \textit{in silico} screening method was also used to obtain novel bioactive juvenoids.130 Previous studies have reported several thousand synthetic compounds with JH-like effects, and chemically divergent compounds act as juvenoids.131–133 Therefore, a novel class of JHAs, ideally insect-selective juvenoids, may be obtained in the future. Furthermore, RGA can confirm the antagonist activity of chemicals of interest.58,78,79,90,122,123,134,135 In comparison with agonist screening, however, the general cytotoxicity of test chemicals that may repress reporter gene expression in a receptor-independent manner should be carefully considered in antagonist assays.80 RGA using a specifically engineered reporter gene construct to positively select for a decrease in receptor activity may allow for the effective screening of antagonists from a large pool of chemical compounds. RGA systems are suitable and advantageous for the high-throughput screening of chemicals that affect the activity of EcR and Met.

\textbf{Acknowledgements}

This work was supported by Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (JSPS) (KAKENHI #19K06092) in 2019–2021 (S. I.-H.), and by an A-STEP Grant from the Japan Science and Technology Agency (JST) in 2014–2015 (T. Y.).

\textbf{References}

1) T. S. Dhadiialla, G. R. Carlson and D. P. Le: New insecticides with ecdysteroidal and juvenile hormone activity. \textit{Annu. Rev. Entomol.} \textbf{43}, 545–569 (1998).
2) H. Tunaz and N. Uygun: Insect growth regulators for insect pest control. \textit{Turk. J. Agric. For.} \textbf{28}, 377–387 (2004).
3) H. C. Smith, C. K. Cavanaugh, J. L. Fritz, C. S. Thompson, J. A. Sagers, E. L. Michelotti, J. Garcia and C. M. Tice: Synthesis and SAR of \textit{cis}-1-benzoyl-1,2,3,4-tetrahydroquinoline ligands for control of gene expression in ecdysone responsive systems. \textit{Biorg. Med. Chem. Lett.} \textbf{13}, 1943–1946 (2003).
4) S. R. Palli, C. M. Tice, V. M. Margam and A. M. Clark: Biochemical mode of action and differential activity of new ecdysone agonists against mosquitoes and moths. \textit{Arch. Insect Biochem. Physiol.} \textbf{58}, 234–242 (2005).
5) E. Becker: Über versuche zur anreicherung und physiologischer charakterisierung des wirkstoffes der puparisierung. \textit{Biol. Zbl.} \textbf{61}, 360–388 (1941).
6) Y. Sato, M. Sakai and S. Fujioka: Ecdysone activity of plant-originated molting hormones applied on the body surface of lepidopterous larvae. \textit{Appl. Entomol. Zool.} \textbf{3}, 49–51 (1968).
7) M. Ashburner: Effects of juvenile hormone on adult differentiation of \textit{Drosophila melanogaster}. \textit{Nature} \textbf{227}, 187–189 (1970).
8) M. J. Fain and L. M. Riddiford: Juvenile hormone titers in the hemolymph during late larval development of the tobacco hornworm, \textit{Manduca sexta (L.)}. \textit{Biol. Bull.} \textbf{149}, 506–521 (1975).
9) C. A. Henrick, W. E. Willy and G. B. Staal: Insect juvenile hormone activity of alkyl (2,4,6)-3,7,11-trimethyl-2,4-dodecadienoates. Vari-
ations in the ester function and in the carbon chain. *J. Agric. Food Chem.* 24, 207–218 (1976).

10) T. J. Kelly, T. S. Adams, M. B. Schwartz, M. J. Birnbaum, E. C. Rubeinstein and R. B. Imberski: Juvenile hormone and ovarian maturations in the Diptera: A review of recent results. *Insect Biochem.* 17, 1089–1093 (1987).

11) T.-Y. Chen and T.-X. Liu: Susceptibility of immature stages of *Chrysoperla rufilabris* (Neurup., Chrysopidae) to pyriproxyfen, a juvenile hormone analog. *J. Appl. Entomol.* 126, 125–129 (2002).

12) S. Imoto, T. Nishioka, T. Fujita and M. Nakajima: Hormonal requirements for the larval-pupal ecdysis induced in the cultured integument of *Chilo suppressalis*. *J. Insect Physiol.* 28, 1025–1033 (1982).

13) K. Kitahara, T. Nishioka and T. Fujita: Cultured integment of *Chilo suppressalis* as a bioassay system for juvenile hormones. *Agric. Biol. Chem.* 47, 2841–2847 (1983).

14) C. Y. Clement, D. A. Bradbrook, R. Lafont and L. Dinan: Assessment of a microplate-based bioassay for the detection of ecdysteroid-like or antecdysteroid activities. *Insect Biochem. Mol. Biol.* 23, 187–193 (1993).

15) J. Harmatha and L. Dinan: Biological activity of natural and synthetic ecdysteroids in the *B. mori* bioassay. *Arch. Insect Biochem. Physiol.* 35, 219–225 (1997).

16) H. Oberlander, C. E. Leach and E. Shaaya: Juvenile hormone and juvenile hormone mimics inhibit proliferation in a lepidopteran imaginal disc cell line. *J. Insect Physiol.* 46, 259–265 (2000).

17) L. Dinan, P. C. Bourne, Y. Meng, S. D. Sarker, R. B. Tolentino and P. Whiting: Assessment of natural products in the *Drosophila melanogaster* *B3* cell bioassay for ecdysteroid agonist and antagonist activities. *Cell. Mol. Life Sci.* 58, 321–342 (2001).

18) L. Dinan, P. Bourne, P. Whiting, T. S. Dhadialla and T. H. Hutchinson: Screening of environmental contaminants for ecdysteroid agonist and antagonist activity using the *Drosophila melanogaster* *B3* cell in vitro assay. *Environ. Toxicol. Chem.* 20, 2038–2046 (2001).

19) G. D. Prestwich, W. S. Eng, M. F. Boehm and C. Wawrzeniczyk: High specific activity tritium- and iodine-labeled *JH* homologs and analogs for receptor binding studies. *Insect Biochem.* 17, 1033–1037 (1987).

20) J.-P. Charles, H. Wojtasek, A. J. Lentz, B. A. Thomas, B. C. Bonning, S. R. Palli, A. G. Parker, G. Dorman, B. D. Hammock, G. D. Prestwich and L. M. Riddiford: Purification and reassessment of ligand binding by the recombinant, putative juvenile hormone receptor of the tobacco hornworm, *Manduca sexta*. *Arch. Insect Biochem. Physiol.* 31, 371–393 (1996).

21) Y. Nakagawa, C. Minakuchi and T. Ueno: Inhibition of [*H]* ponasterone A binding by ecdysone agonists in the intact SF-9 cell line. *Steroids* 65, 537–542 (2000).

22) Y. Nakagawa, C. Minakuchi, K. Takahashi and T. Ueno: Inhibition of [*H]* ponasterone A binding by ecdysone agonists in the intact Kc cell line. *Insect Biochem. Mol. Biol.* 32, 175–180 (2002).

23) C. Minakuchi, Y. Nakagawa, M. Kamimura and H. Miyagawa: Binding affinity of nonsteroidal ecdysone agonists against the ecdysone receptor complex determines the strength of their molting hormonal activity. *Eur. J. Biochem.* 270, 4095–4104 (2003).

24) K. Miura, M. Oda, S. Makita and Y. Chinezi: Characterization of the *Drosophila* Methoprene-tolerant gene product: Juvenile hormone binding and ligand-dependent gene regulation. *FEBS J.* 272, 1169–1178 (2005).

25) T. Ogura, Y. Nakagawa, C. Minakuchi and H. Miyagawa: QSAR for binding affinity of substituted dibenzozyldihydrazone to intact SF-9 cells. *J. Pestic. Sci.* 30, 1–6 (2005).

26) J.-P. Charles, T. Iwema, V. C. Epa, K. Takaki, J. Rynes and M. Jindra: Ligand-binding properties of a juvenile hormone receptor, Methoprene-tolerant. *Proc. Natl. Acad. Sci. U.S.A.* 108, 21128–21133 (2011).

27) M. Jindra, M. Uhlirova, J.-P. Charles, V. Smykal and R. J. Hill: Genetic evidence for function of the bHLH-PAS protein Gce/Met as a juvenile hormone receptor. *PLoS Genet.* 11, e1005394 (2015).

28) L. Bittova, P. Jelicka, M. Dracinsky, P. Kirubakaran, J. Vondrasek, R. Hansa and M. Jindra: Exquisite ligand stereoselectivity of a *Drosophila* juvenile hormone receptor contrasts with its broad agonist repertoire. *J. Biol. Chem.* 294, 410–423 (2019).

29) M. R. Koelle, W. S. Talbot, W. A. Segraves, M. T. Bender, P. Cherbas and D. S. Hogness: The *Drosophila* EcR gene encodes an ecdysone receptor, a new member of the steroid receptor superfamily. *Cell* 67, 59–77 (1991).

30) T. P. Yao, W. A. Segraves, A. E. Oro, M. McKeown and R. M. Evans: *Drosophila* ultraspiracle modulates ecdysone receptor function via heterodimer formation. *Cell* 71, 63–72 (1992).

31) T. P. Yao, B. M. Forman, Z. Jiang, L. Cherbas, J. D. Chen, M. McKeown, P. Cherbas and R. M. Evans: Functional ecdysone receptor is the product of *EcR* and ultraspiracle genes. *Nature* 366, 476–479 (1993).

32) M. Ashok, C. Turner and T. G. Wilson: Insect juvenile hormone resistance gene homology with the bHLH-PAS family of transcriptional regulators. *Proc. Natl. Acad. Sci. U.S.A.* 95, 2761–2766 (1998).

33) Y. Nakagawa and V. C. Henrich: Arthropod nuclear receptors and their role in molting. *FEBS J.* 276, 6128–6157 (2009).

34) T. I. Bernardo and E. B. Dubrovsky: Molecular mechanisms of transcription activation by juvenile hormone: A critical role for bHLH-PAS and nuclear receptor proteins. *Insects* 3, 324–338 (2012).

35) M. Jindra, X. Bellés and T. Shioda: Molecular basis of juvenile hormone signaling. *Curr. Opin. Insect Sci.* 11, 39–46 (2015).

36) J. Alam and J. L. Cook: Reporter genes: Application to the study of mammalian gene transcription. *Anal. Biochem.* 188, 245–254 (1990).

37) K. V. Wood: Marker proteins for gene expression. *Curr. Opin. Biotechnol.* 6, 50–58 (1995).

38) C. Suto and D. Ignar: Selection of an optimal reporter gene for cell-based high throughput screening assay. *J. Biomol. Screen.* 2, 7–9 (1997).

39) D. C. New, D. M. Miller-Martini and Y. H. Wong: Reporter gene assays and their applications to bioassays of natural products. *Phytother. Res.* 17, 439–448 (2003).

40) T. Jiang, B. Xing and J. Rao: Recent developments of biological reporter technology for detecting gene expression. *Biotechnol. Genet. Eng. Rev.* 25, 41–76 (2008).

41) L. H. Naylor: Reporter gene technology: The future looks bright. *Biochem. Pharmacol.* 58, 749–757 (1999).

42) G. Riddihough and H. R. B. Pelham: Activation of the *Drosophila* hsp27 promoter by heat shock and by ecdysone involves independent and remote regulatory sequences. *EMBO J.* 5, 1653–1658 (1986).

43) G. Riddihough and H. R. Pelham: An ecdysone response element in the *Drosophila* hsp27 promoter. *EMBO J.* 6, 3729–3734 (1987).

44) H. E. Thomas, H. G. Stunnenberg and A. F. Stewart: Heterodimerization of the *Drosophila* ecdysone receptor with retinoid X receptor and ultraspiracle. *Nature* 362, 471–475 (1993).

45) J. Bai, Y. Uehara and D. J. Montell: Regulation of invasive cell behavior by Taiman, a *Drosophila* protein related to AIB1, a steroid
receptor coactivator amplified in breast cancer. Cell 103, 1047–1058 (2000).
46) L. Cherbas, K. Lee and P. Cherbas: Identification of ecdysone response elements by analysis of the Drosophila Eip28/29 gene. Genes Dev. 5, 120–131 (1991).
47) C. Antoniewski, B. Mugat, F. Delbac and J. A. Lepesant: Direct repeats bind the EcR/USP receptor and mediate ecdysoider responses in Drosophila melanogaster. Mol. Cell. Biol. 16, 2977–2986 (1996).
48) D. Martin, S. F. Wang and A. S. Raikhel: The vitellogenin gene of the mosquito Aedes aegypti is a direct target of ecdysoester receptor. Mol. Endocrinol. 17, 75–86 (2001).
49) S.-F. Wang, S. Ayer, W. A. Segraves, D. R. Williams and A. S. Raikhel: Molecular determinants of differential ligand sensitivities of insect ecdysteroid receptors. Mol. Cell. Biol. 20, 3870–3879 (2000).
50) S. F. Wang, K. Miura, R. J. Miksiciek, W. A. Segraves and A. S. Raikhel: DNA binding and transactivation characteristics of the mosquito ecdysone receptor-ultraspiracle complex. J. Biol. Chem. 273, 27531–27540 (1998).
51) S.-F. Wang, C. Li, J. Zhu, K. Miura, R. J. Miksiciek and A. S. Raikhel: Differential expression and regulation by 20-hydroxyecdysone of mosquito ultraspiracle isoforms. Dev. Biol. 218, 99–113 (2000).
52) S. C. Perera, S. Zheng, Q. L. Feng, P. J. Krell, A. Retnakaran and S. S. Khokhar: Heterodimerization of ecdysone receptor and ultraspiracle on symmetric and asymmetric response elements. Arch. Insect Biochem. Physiol. 60, 55–70 (2005).
53) L. Swevers, L. Cherbas, P. Cherbas and K. Iatrou: Bombyx EcR (BmEcR) and Bombyx USP (BmCF1) combine to form a functional ecdysone receptor. Insect Biochem. Mol. Biol. 26, 217–221 (1996).
54) J. Zhu, L. Chen, G. Sun and A. S. Raikhel: The competence factor fFire-F1 potentiates ecdysone receptor activity via recruiting a p160/SRC coactivator. Mol. Cell. Biol. 26, 9402–9412 (2006).
55) K. Mikitani: Sensitive, rapid and simple method for detection of ecdysteroid agonist activity based on the mode of action of the hormone. J. Seric. Sci. Jpn. 64, 534–539 (1995).
56) K. Mikitani: A new nonsteroidal chemical class of ligand for the ecdysteroid receptor 3, 5-di-tolyl-4-hydroxy-N-isobutyl-benzamide shows apparent insect molting hormone activities at molecular and cellular levels. Biochem. Biophys. Res. Commun. 227, 427–432 (1996).
57) K. Mikitani: Ecdysteroid receptor binding activity and ecdysteroid agonist activity at the level of gene expression are correlated with the activity of dibenzoyl hydrazines in larvae of Bombyx mori. J. Insect Physiol. 42, 937–941 (1996).
58) L. Swevers, L. Krarvari, S. Ciofi, M. Xenou-Kokoletsi, N. Ragousis, G. Smaggehe, Y. Nakagawa, B. Mazomenos and K. Iatrou: A cell-based high-throughput screening system for detecting ecdysteroid agonists and antagonists in plant extracts and libraries of synthetic compounds. FASEB J. 18, 134–136 (2004).
59) S. T. Suhr, E. B. Gil, M.-C. Senut and F. H. Gage: High level transactivation by a modified Bombyx ecdysone receptor in mammalian cells without exogenous retinoid X receptor. Proc. Natl. Acad. Sci. U.S.A. 95, 7999–8004 (1998).
60) C. M. Tice, R. E. Hornman, C. S. Thompson, J. L. Friz, C. K. Cavanaugh, E. L. Michelotti, J. Garcia, E. Nicolas and F. Albericio: Synthesis and SAR of α-acrylamino ketone ligands for control of gene expression. Bioorg. Med. Chem. Lett. 13, 1883–1886 (2003).
61) M. B. Kumar, D. W. Potter, R. E. Hornman, A. Edwards, C. M. Tice, H. C. Smith, M. A. Dipietro, M. Polley, M. Lawless, P. R. Wolohan, D. R. Kethidi and S. R. Palli: Highly flexible ligand binding pocket of ecdysone receptor: A single amino acid change leads to discrimination between two groups of nonsteroidal ecdysone agonists. J. Biol. Chem. 279, 27211–27218 (2004).
62) S. Lapenna, J. Friz, A. Barlow, S. R. Palli, L. Dinan and R. E. Hornman: Ecdysteroid ligand-receptor selectivity-exploring trends to design orthogonal gene switches. FEBS J. 275, 5785–5809 (2008).
63) S. Lapenna, L. Dinan, J. Friz, A. J. Hopfinger, J. Liu and R. E. Hornman: Semi-synthetic ecdysteroids as gene-switch actuators: Synthesis, structure-activity relationships, and prospective ADME properties. ChemMedChem 4, 55–68 (2009).
64) A. S. Mhashilkar, S. L. Vankayala, C. Liu, F. Kearns, P. Mehrutra, G. Tzetzinisis, S. R. Palli, H. L. Woodcock and T. R. Unnasch: Identification of ecdysone hormone receptor agonists as a therapeutic approach for treating filarial infections. PLoS Negl. Trop. Dis. 10, e0004772 (2016).
65) K. D. Wing: RH 5849, a nonsteroidal ecdysone agonist: Effects on a Drosophila cell line. Science 241, 467–469 (1988).
66) K. D. Wing, R. A. Slawecki and G. R. Carlson: RH 5849, a nonsteroidal ecdysone agonist: Effects on larval Lepidoptera. Science 241, 470–472 (1988).
67) T. Toya, H. Fukasawa, A. Masui and Y. Endo: Potent and selective partial ecdysone agonist activity of chromafnonozide in S9 cells. Biochem. Biophys. Res. Commun. 292, 1087–1091 (2002).
68) X. Dai, L. G. Willis, S. R. Palli and D. A. Theilmann: Tight transcriptional regulation of foreign genes in insect cells using an ecdysone receptor-based inducible system. Protein Expr. Purif. 42, 236–245 (2005).
69) H. Mosallanejad, T. Soin, L. Swevers, K. Iatrou, Y. Nakagawa and G. Smaggehe: Non-steroidal ecdysteroid agonist chromafnonozide: Gene induction activity, cell proliferation inhibition and larvicidal activity. Pestic. Biochem. Physiol. 92, 70–76 (2008).
70) C. E. Wheelock, Y. Nakagawa, T. Harada, N. Okawa, M. Akamatsu, G. Smaggehe, D. Stefanou, K. Iatrou and L. Swevers: High-throughput screening of ecdysone agonists using a reporter gene assay followed by 3-D QSAR analysis of the molting hormonal activity. Bioorg. Med. Chem. 14, 1143–1159 (2006).
71) T. Soin, E. De Geyter, H. Mosallanejad, M. Iga, D. Martin, S. Ozaki, S. Kitsuda, T. Harada, H. Miyagawa, D. Stefanou, G. Kotzila, R. Efrose, V. Labropoulou, D. Geelen, K. Iatrou, Y. Nakagawa, C. R. Janssen, G. Smaggehe and L. Swevers: Assessment of species specificity of moulting accelerating compounds in Lepidoptera: Comparison of activity between Bombyx mori and Spodoptera littoralis by in vitro reporter and in vivo toxicity assays. Pest Manag. Sci. 66, 526–535 (2010).
72) C. M. Tice, R. E. Hornman, C. S. Thompson, J. L. Friz, C. K. Cavanaugh, E. L. Michelotti, J. Garcia, E. Nicolas and F. Albericio: Synthesis and SAR of α-acrylamino ketone ligands for control of gene expression. Bioorg. Med. Chem. Lett. 13, 475–478 (2003).
73) J.-M. Wurtz, B. Guillet, J. Fagart, D. Moras, K. Tietjen and M. Schindler: A new model for 20-hydroxyecdysone and dibenzoylhydrazine binding: A homology modeling and docking approach. Protein Sci. 9, 1073–1084 (2000).
74) M. B. Kumar, T. Fujimoto, D. W. Potter, Q. Deng and S. R. Palli: A single point mutation in ecdysone receptor leads to increased ligand specificity: Implications for gene switch applications. Proc. Natl. Acad. Sci. U.S.A. 99, 14710–14715 (2002).
75) I. M. Billas, T. Iwema, J. M. Garnier, A. Mitschler, N. Rochel and D. Moras: Structural adaptability in the ligand-binding pocket of the ecdysone hormone receptor. Nature 426, 91–96 (2003).
76) T. Soin, M. Iga, L. Swevers, P. Rough, C. R. Janssen and G. Smaggehe: Towards Coleoptera-specific high-throughput screening systems for
comounds with ecdysone activity: Development of EcR reporter assays using weevil (Anthonomus grandis)-derived cell lines and in silico analysis of ligand binding to A. grandis EcR ligand-binding pocket. *Insect Biochem. Mol. Biol.* **39**, 523–534 (2009).

77) T. Ogura, Y. Nakagawa, L. Swevers, G. Smagghe and H. Miyagawa: Quantitative evaluation of the molting hormone activity in coleopteran cells established from the Colorado potato beetle, *Leptinotarsa decemlineata*. *Pestic. Biochem. Physiol.* **104**, 1–8 (2012).

78) T. Harada, Y. Nakagawa, T. Ogura, T. Ohe and H. Miyagawa: Virtual screening for ligands of the insect molting hormone receptor. *J. Chem. Inf. Model.* **51**, 296–305 (2011).

79) X. Hu, B. Yin, K. Cappelle, L. Swevers, G. Smagghe, X. Yang and L. Zhang: Identification of novel agonists and antagonists of the ecdysone receptor by virtual screening. *J. Mol. Graph. Model.* **81**, 77–85 (2018).

80) T. Soin, L. Swevers, G. Kotzia, K. Iatrou, C. R. Jansen, P. Rouge, T. Harada, Y. Nakagawa and G. Smagghe: Comparison of the activity of non-steroidal ecdysone agonists between dipteran and lepidopteran insects, using cell-based EcR reporter assays. *Pest Manag. Sci.* **66**, 1215–1229 (2010).

81) S. Ito-Harashima and T. Yagi: Unique molecular mechanisms for maintenance and alteration of genetic information in the budding yeast *Saccharomyces cerevisiae*. *Genes Environ.* **39**, 28 (2017).

82) F. Dela Cruz and P. Mak: *Drosophila* ecdysone receptor functions as a constitutive activator in yeast. *J. Steroid Biochem. Mol. Biol.* **62**, 353–359 (1997).

83) F. E. Dela Cruz, D. R. Kirsch and J. N. Heinrich: Transcriptional activity of *Drosophila melanogaster* ecdysone receptor isoforms and ultraspricle in *Saccharomyces cerevisiae*. *J. Mol. Endocrinol.* **24**, 183–191 (2000).

84) H. T. Tran, S. Shaaban, H. B. Askari, P. G. Walfish, A. S. Raikhel and T. R. Butt: Requirement of co-factors for the ligand-mediated activity of the insect ecdysoid receptor in yeast. *J. Mol. Endocrinol.* **27**, 191–209 (2001).

85) H. T. Tran, H. B. Askari, S. Shaaban, L. Price, S. R. Palli, T. S. Bhadulla, G. R. Carlson and T. R. Butt: Reconstruction of ligand-dependent transactivation of *Choristoneura fumiferana* ecdysone receptor in yeast. *J. Mol. Endocrinol.* **15**, 1140–1153 (2001).

86) M. Lezzi, T. Bergman, V. C. Henrich, M. Vogtli, C. Fromel, M. Grebe, S. Przibilla and M. Spindler-Barth: Ligand-induced heterodimerization between the ligand binding domains of the *Drosophila* ecdysoid receptor and ultraspricle. *Eur. J. Biochem.* **269**, 3237–3245 (2002).

87) S. Ito-Harashima, M. Matsuura, M. Kawanishi, Y. Nakagawa and T. Yagi: New reporter gene assays for detecting natural and synthetic molting hormone agonists using yeasts expressing ecdysone receptors of various insects. *FEBS Open Bio* **7**, 995–1008 (2017).

88) K. S. Christopherson, M. R. Mark, V. Bajaj and P. J. Godowski: Ecdysoid-dependent regulation of genes in mammalian cells by a *Drosophila* ecdysone receptor and chimeric transactivators. *Proc. Natl. Acad. Sci. U.S.A.* **89**, 6314–6318 (1992).

89) D. No, T. P. Yao and R. M. Evans: Ecdysone-inducible gene expression in mammalian cells and transgenic mice. *Proc. Natl. Acad. Sci. U.S.A.* **93**, 3346–3351 (1996).

90) E. Oberdörster, M. A. Clay, D. M. Cottam, F. A. Wilmut, J. A. MCLachlan and M. J. Milner: Common phytochemicals are ecdysoid agonists and antagonists: A possible evolutionary link between vertebrate and invertebrate steroid hormones. *J. Steroid Biochem. Mol. Biol.* **77**, 229–238 (2001).

91) S. Ito-Harashima, K. Shizikai, M. Kawanishi, K. Kakiuchi, K. Onishi, T. Nomura, S. Nakajima, S. Ebata, K. Shizikai, M. Kawanishi and T. Yagi: Construction of reporter gene assays using CWP and PDR mutants for enhanced detection of various sex steroids. *Genes Environ.* **42**, 20 (2020).

92) S. Ito-Harashima, M. Matano, K. Onishi, T. Nomura, S. Nakajima, S. Ebata, K. Shizikai, M. Kawanishi and T. Yagi: Construction of sensitive reporter assay yeasts for comprehensive detection of ligand activities of human corticosteroid receptors through inactivation of CWP and PDR genes. *J. Pharmacol. Toxicol. Methods* **74**, 41–52 (2015).

93) H. T. Tran, S. Shaaban, H. B. Askari, P. G. Walfish, A. S. Raikhel and T. R. Butt: Reconstruction of ligand-dependent transactivation of *Choristoneura fumiferana* ecdysone receptor in yeast. *J. Mol. Endocrinol.* **24**, 183–191 (2000).

94) A. Goffeau, B. G. Barrett, H. Bussey, R. W. Davis, B. Dujon, H. Feldmann, F. Galibert, J. D. Hoheisel, C. Jacq, M. Johnston, E. J. Louis, H. W. Mewes, Y. Murakami, P. Philippsen, H. Tettelin and S. G. Oliver: Life with 6000 genes. *Science* **274**, 546–567, 563–567 (1996).

95) S. Wang, A. Baumann and T. G. Wilson: *Drosophila melanogaster* Methoprene-tolerant (Met) gene homologs from three mosqui-to species: Members of PAs transcriptional factor family. *J. Insect Physiol.* **53**, 246–253 (2007).

96) Z.-Q. Li, D.-J. Cheng, L. Wei, P. Zhao, X. Shu, L. Tang, Z.-H. Xiang and Q.-Y. Xia: The silkworm homolog of Methoprene-tolerant (Met) gene reveals sequence conservation but function divergence. *Insect Sci.* **17**, 313–324 (2010).

97) B. Konopova, V. Smykal and M. Jindra: Common and distinct roles of juvenile hormone signaling genes in metamorphosis of holometabolous and hemimetabolous insects. *PLoS One* **6**, e28728 (2011).

98) A. Baumann, J. Barry, S. Wang, Y. Fujisawa and T. G. Wilson: Paralogous genes involved in juvenile hormone action in *Drosophila melanogaster*. *Genetics* **185**, 1327–1336 (2010).

99) A. Baumann, Y. Fujisawa and T. G. Wilson: Evolutionary divergence of the paralogs Methoprene tolerant (Met) and germ cell expressed (Gce) within the genus *Drosophila*. *J. Insect Physiol.* **56**, 1445–1455 (2010).

100) M. A. Abdou, Q. He, D. Wen, O. Zyaan, J. Wang, I. Xu, A. A. Baumann, J. Joseph, T. G. Wilson, S. Li and J. Wang: *Drosophila* Met and Gce are partially redundant in transducing juvenile hormone action. *Insect Biochem. Mol. Biol.* **41**, 938–945 (2011).

101) J. Godlewski, S. Wang and T. G. Wilson: Interaction of bHLH-PAS proteins involved in juvenile hormone reception in *Drosophila*. *Biochem. Biophys. Res. Commun.* **342**, 1305–1311 (2006).

102) M. Li, E. A. Mead and J. Zhu: Heterodimer of two bHLH-PAS proteins mediates juvenile hormone-induced gene expression. *Proc. Natl. Acad. Sci. U.S.A.* **108**, 638–643 (2011).

103) Z. Zhang, J. Xu, Z. Sheng, Y. Sui and S. R. Palli: Steroid receptor co-activator is required for juvenile hormone signal transduction through a bHLH-PAS transcription factor, Methoprene tolerant. *J. Biol. Chem.* **286**, 8437–8447 (2011).

104) M. Li, P. Liu, J. D. Wiley, R. Ojani, D. R. Bevan, J. Li and J. Zhu: A steroid receptor coactivator acts as the DNA-binding partner of the Methoprene-tolerant protein in regulating juvenile hormone response genes. *Mol. Cell. Endocrinol.* **394**, 47–58 (2014).

105) T. Kayukawa, C. Minakuchi, T. Namiki, T. Togawa, M. Yoshiyama, M. Kamimura, K. Mita, S. Imanishi, M. Kiuchi, Y. Ishikawa and T. Shinoda: Transcriptional regulation of juvenile hormone-mediated induction of *Krüppel homolog 1*, a repressor of insect metamorphosis. *Proc. Natl. Acad. Sci. U.S.A.* **109**, 11729–11734 (2012).

106) T. Kayukawa, K. Tateishi and T. Shinoda: Establishment of a versatile cell line for juvenile hormone signaling analysis in *Triolobium castaneum*. *Sci. Rep.* **3**, 1570 (2013).

107) Y. Cui, Y. Sui, J. Xu, F. Zhu and S. R. Palli: Juvenile hormone regul-
latess *Aedes aegypti* Krüppel homolog 1 through a conserved E box motif. *Insect Biochem. Mol. Biol.* 52, 23–32 (2014).

108) S. W. Shin, Z. Zou, T. T. Saha and A. S. Raikhel: bHLH-PAS heterodimer of Methoprene-tolerant and Cycle mediates circadian expression of juvenile hormone-induced mosquito genes. *Proc. Natl. Acad. Sci. U.S.A.* 109, 16576–16581 (2012).

109) H. Miyakawa, K. Toyota, I. Hirakawa, Y. Ogino, S. Miyagawa, S. Oda, N. Tatarazako, T. Miura, J. K. Colbourne and T. Iguchi: A mutation in the receptor Methoprene-tolerant alters juvenile hormone response in insects and crustaceans. *Nat. Commun.* 4, 1856 (2013).

110) A. W. Olmstead and G. A. Leblanc: Juvenoid hormone methyl farnesoate is a sex determinant in the crustacean *Daphnia magna*. *J. Exp. Zool.* 293, 736–739 (2002).

111) A. W. Olmstead and G. A. LeBlanc: Insecticidal juvenile hormone analogs stimulate the production of male offspring in the crustacean *Daphnia magna*. *Environ. Health Perspect.* 111, 919–924 (2003).

112) N. Tatarazako, S. Oda, H. Watanabe, M. Morita and T. Iguchi: Juvenile hormone agonists affect the occurrence of male *Daphnia*. *Chemosphere* 53, 827–833 (2003).

113) H. Miyakawa, M. Watanabe, M. Araki, Y. Ogino, S. Miyagawa and T. Iguchi: Juvenile hormone-independent function of *Krüppel homolog* 1 in early development of water flea *Daphnia pulex*. *Insect Biochem. Mol. Biol.* 93, 12–18 (2018).

114) D. R. Kethidi, S. C. Perera, S. Zheng, Q.-L. Feng, P. Krell, A. Retnakaran and S. R. Palli: Identification and characterization of a juvenile hormone (JH) response region in the JH esterase gene from the spruce budworm, *Choristoneura fumiferana*. *J. Biol. Chem.* 279, 19634–19642 (2004).

115) Q. He, D. Wen, Q. Jia, C. Cui, J. Wang, S. R. Palli and S. Li: Heat shock protein 83 (Hsp83) facilitates Methoprene-tolerant (Met) nuclear import to modulate juvenile hormone signaling. *J. Biol. Chem.* 289, 27874–27885 (2014).

116) T. Kayukawa and T. Shiobara: Functional characterization of two paralogous JH receptors, Methoprene-tolerant 1 and 2, in the silkworm, *Bombyx mori* (Lepidoptera: Bombycidae). *Appl. Entomol. Zool.* 50, 383–391 (2015).

117) T. Yoko, T. Nabe, C. Ishizuka, Y. Hayashi, S. Ito-Harashima, T. Yagi, Y. Nakagawa and H. Miyagawa: Transcription-inducing activity of natural and synthetic juvenile hormone agonists through the *Drosophila* Methoprene-tolerant protein. *Pest Manag. Sci.* 76, 2316–2323 (2020).

118) T. Tanaka, T. Iguchi and H. Miyakawa: Establishment of a high-sensitivity reporter system in mammalian cells for detecting juvenoids using juvenile hormone receptors of *Daphnia pulex*. *J. Appl. Toxicol.* 39, 241–246 (2019).

119) R. Abe, K. Toyota, H. Miyakawa, H. Watanabe, T. Okka, S. Miyagawa, H. Nishide, I. Uchiyama, K. E. Tollefsen, T. Iguchi and N. Tatarazako: Diofenolan induces male offspring production through binding to the juvenile hormone receptor in *Daphnia magna*. *Aquat. Toxicol.* 159, 44–51 (2015).

120) H. Miyakawa and T. Iguchi: Comparative luciferase assay for establishing reliable *in vitro* screening system of juvenile hormone agonists. *J. Appl. Toxicol.* 37, 1082–1090 (2017).

121) T. S. Dhadialla, A. Retnakaran and G. Smagghe: Insect growth- and development-disrupting insecticides. In “Comprehensive Insect Molecular Science, Volume 6: Control,” ed. by L. I. Gilbert, I. Kostas, and S. Gill, Pergamon Press, New York, 2005.

122) S.-H. Lee, H.-W. Oh, Y. Fang, S.-B. An, D.-S. Park, H.-H. Song, S.-R. Oh, S.-Y. Kim, S. Kim, N. Kim, A. S. Raikhel, Y. H. Je and S. W. Shin: Identification of plant compounds that disrupt the insect juvenile hormone receptor complex. *Proc. Natl. Acad. Sci. U.S.A.* 112, 1733–1738 (2015).

123) S.-H. Lee, K. B. Ha, D. H. Park, Y. Fang, J. H. Kim, M. G. Park, R. M. Woo, W. J. Kim, I.-K. Park, J. Y. Choi and Y. H. Je: Plant-derived compounds regulate formation of the insect juvenile hormone receptor complex. *Pestic. Biochem. Physiol.* 150, 27–32 (2018).

124) T. Yokoi, S. Minami, Y. Nakagawa and H. Miyagawa: Structure, activity relationship of imidazothiadiazole analogs for the binding to the ecdysone receptor of insect cells. *Pestic. Biochem. Physiol.* 120, 40–50 (2015).

125) X. Hu, X. Ma, J. Cui, H. Liu, B. Zhu, J. Xie, P. Liang and L. Zhang: Identification of 1-phenyl-4-cyano-5-aminopyrrole as novel ecdysone receptor ligands by virtual screening, structural optimization, and biological evaluations. *Chem. Biol. Drug Des.* 97, 184–195 (2021).

126) B. Jiang, X. Jin, Y. Dong, B. Guo, L. Cui, X. Deng, L. Zhang, Q. Yang, Y. Li, X. Yang and G. Smagghe: Design, synthesis, and biological activity of novel heptacyclic pyrazolamidine derivatives: A new candidate of dual-target insect growth regulators. *J. Agric. Food Chem.* 68, 6347–6354 (2020).

127) W. Birru, R. T. Fernley, L. D. Graham, J. Grusovin, R. J. Hill, A. Hofmann, L. Howell, P. J. James, K. E. Jarvis, W. M. Johnson, D. A. Jones, C. Leitner, A. J. Liepa, G. O. Lovrecz, L. Lu, R. H. Nearn, B. J. O’Driscoll, T. Phan, M. Pollard, K. A. Turner and D. A. Winkler: Synthesis, binding and bioactivity of γ-methylene γ-lactam ecdysone receptor ligands: Advantages of QSAR models for flexible receptors. *Bioorg. Med. Chem.* 18, 5647–5660 (2010).

128) R. E. Hormann, O. Chortyk and D. P. Le: Oxadiazoline ligands for modulating the expression of exogenous genes via an ecdysone receptor complex. US 8895306 B2 (2014).

129) G. Holmwood and M. Schindler: Protein structure based rational design of ecdysone agonists. *Bioorg. Med. Chem.* 17, 4064–4070 (2009).

130) P. Sharma, S. Thakur and P. Awashti: *In silico* and bio assay of juvenile hormone analogs as an insect growth regulator against *Galleria mellonella* (wax moth), part I. *J. Biomol. Struct. Dyn.* 34, 1061–1078 (2016).

131) P. Ramaseshadr, R. Farkas and S. R. Palli: Recent progress in juvenile hormone analogs (JHA) research. In “Advances in insect physiology,” ed. by T. S. Dhadialla, Academic Press, pp. 353–436, 2012.

132) C. A. Henrick: Methoprene. *J. Am. Mosq. Control Assoc.* 23(Suppl), 225–239 (2007).

133) K. Slama and C. M. Williams: Juvenile hormone activity for the bug *Pyrrhocoris apterus*. *Proc. Natl. Acad. Sci. U.S.A.* 54, 411–414 (1965).

134) L. Dinan, P. Whiting, J.-P. Girault, R. Lafont, S. T. Dhadialla, E. D. Cress, B. Mugat, C. Aantoniewski and J.-A. Lepesant: Cucurbitacins are insect steroid hormone antagonists acting at the ecysteoid receptor. *Biochem. J.* 327, 643–650 (1997).

135) M. J. Zotti, E. De Geyter, L. Swevers, A. S. Braz, L. P. B. Scott, P. Rougé, J. Coll, A. D. Grutzmacher, E. J. Lenardáo and G. Smagghe: A cell-based reporter assay for screening for EcR agonist/antagonist activity of natural ecdysteroids in *Lepidoptera* (Bm5) and *Diptera* (S) cell cultures, followed by modeling of ecysteoid-EcR interactions and normal mode analysis. *Pestic. Biochem. Physiol.* 107, 309–320 (2013).

136) D. L. Bain, A. F. Heneghan, K. D. Connaugh-Jones and M. T. Miura: Nuclear receptor structure: Implications for function. *Annu. Rev. Physiol.* 69, 201–220 (2007).

137) J. M. Olefsky: Nuclear receptor minireview series. *J. Biol. Chem.* 276, 36863–36864 (2001).
138) A. Aranda and A. Pascual: Nuclear hormone receptors and gene expression. *Physiol. Rev.* 81, 1269–1304 (2001).

139) K. D. Baker, J. T. Warren, C. S. Thummel, L. I. Gilbert and D. J. Mangelsdorf: Transcriptional activation of the *Drosophila* ecdysone receptor by insect and plant ecdysteroids. *Insect Biochem. Mol. Biol.* 30, 1037–1043 (2000).

140) G.-P. Song, D.-K. Hu, H. Tian, Y.-S. Li, Y.-S. Cao, H.-W. Jin and Z.-N. Cui: Synthesis and larvicidal activity of novel thenoylhydrazide derivatives. *Sci. Rep.* 6, 22977 (2016).