Chordal Graphs are Fully Orientable

Hsin-Hao Lai
Department of Mathematics
National Kaohsiung Normal University
Yanchao, Kaohsiung 824, Taiwan
Email:hsinhaolai@nknucc.nknu.edu.tw

Ko-Wei Lih∗
Institute of Mathematics
Academia Sinica
Nankang, Taipei 115, Taiwan
Email:makwlih@sinica.edu.tw

February 28, 2012

Abstract
Suppose that D is an acyclic orientation of a graph G. An arc of D is called dependent if its reversal creates a directed cycle. Let $d_{\min}(G)$ ($d_{\max}(G)$) denote the minimum (maximum) of the number of dependent arcs over all acyclic orientations of G. We call G fully orientable if G has an acyclic orientation with exactly d dependent arcs for every d satisfying $d_{\min}(G) \leq d \leq d_{\max}(G)$. A graph G is called chordal if every cycle in G of length at least four has a chord. We show that all chordal graphs are fully orientable.

Keyword: acyclic orientation; full orientability; simplicial vertex; chordal graph.

∗The corresponding author
1 Introduction

Let G be a finite graph without multiple edges or loops. We use $|G|$ and $\|G\|$ to denote the number of vertices and the number of edges of G, respectively. An orientation D of a graph G is obtained by assigning a fixed direction, either $x \to y$ or $y \to x$, on every edge xy of G. The original undirected graph is called the underlying graph of any such orientation.

An orientation D is called acyclic if there does not exist any directed cycle. A directed graph having no directed cycle is commonly known as a directed acyclic graph, or DAG for short. DAGs provide frequently used data structures in computer science for encoding dependencies. An equivalent way of describing a DAG is the existence of a particular type of ordering of the vertices called a topological ordering. A topological ordering of a directed graph G is an ordering of its vertices as $v_1, v_2, \ldots, v_{\|G\|}$ such that for every arc $v_i \to v_j$, we have $i < j$. The reader who is interested in knowing more about DAGs is referred to reference [1] which supplies a wealth of information on DAGs.

Suppose that D is an acyclic orientation of G. An arc of D, or its underlying edge, is called dependent (in D) if its reversal creates a directed cycle in the resulted orientation. Note that $u \to v$ is a dependent arc if and only if there exists a directed walk of length at least two from u to v. Let $d(D)$ denote the number of dependent arcs in D. Let $d_{\text{min}}(G)$ and $d_{\text{max}}(G)$ be, respectively, the minimum and the maximum values of $d(D)$ over all acyclic orientations D of G. It is known (\cite{8}) that $d_{\text{max}}(G) = \|G\| - |G| + c$ for a graph G having c connected components.

An interpolation question asks whether G has an acyclic orientation with exactly d dependent arcs for every d satisfying $d_{\text{min}}(G) \leq d \leq d_{\text{max}}(G)$. Following West (\cite{20}), we call G fully orientable if its interpolation question has an affirmative answer. Note that forests
are trivially fully orientable. It is also easy to see ([13]) that a graph is fully orientable if all of its connected components are. West [20] showed that complete bipartite graphs are fully orientable. Let \(\chi(G) \) denote the chromatic number of \(G \), i.e., the least number of colors to color the vertices of \(G \) so that adjacent vertices receive different colors. Let \(g(G) \) denote the girth of \(G \), i.e., the length of a shortest cycle of \(G \) if there is any, and \(\infty \) if \(G \) is a forest. Fisher, Fraughnaugh, Langley, and West [8] showed that \(G \) is fully orientable if \(\chi(G) \leq g(G) \). They also proved that \(d_{\min}(G) = 0 \) when \(\chi(G) < g(G) \). In fact, \(d_{\min}(G) = 0 \) if and only if \(G \) is a cover graph, i.e., the underlying graph of the Hasse diagram of a partially ordered set. ([16], Fact 1.1).

A number of graph classes have been shown to consist of fully orientable graphs in recent years. Here, we give a brief summary of some results.

A graph is called 2-degenerate if each of its subgraphs contains a vertex of degree at most two. Lai, Chang, and Lih [12] have established the full orientability of 2-degenerate graphs that generalizes a previous result for outerplanar graphs ([15]). A Halin graph is a plane graph obtained by drawing a tree without vertices of degree two in the plane, and then drawing a cycle through all leaves in the plane. A subdivision of an edge of a graph is obtained by replacing that edge by a path consisting of new internal vertices. A subdivision of a graph is obtained through a sequence of subdivisions of edges. Lai and Lih [13] showed that subdivisions of Halin graphs and graphs with maximum degree at most three are fully orientable. In [15], Lai, Lih, and Tong proved that a graph \(G \) is fully orientable if \(d_{\min}(G) \leq 1 \). This generalizes the results in [8] mentioned before.

The main purpose of this paper is to show that the class of fully orientable graphs includes the important class of chordal graphs.

Let \(C \) be a cycle of a graph \(G \). An edge \(e \) of \(G \) is called a chord of \(C \) if the two endpoints of \(e \) are non-consecutive vertices on \(C \). A graph
A graph G is called chordal if each cycle in G of length at least four possesses a chord. Chordal graphs are variously known as triangulated graphs \cite{2}, rigid-circuit graphs \cite{6}, and monotone transitive graphs \cite{17} in the literature. Chordal graphs can be characterized in a number of different ways. (For instance, \cite{3}, \cite{6}, \cite{9}, \cite{10}, and \cite{17}).

Chordal graphs have applications in areas such as the solution of sparse symmetric systems of linear equations \cite{18}, data-base management systems \cite{19}, knowledge based systems \cite{7}, and computer vision \cite{5}. The importance of chordal graphs primarily lies in the phenomenon that many NP-complete problems can be solved by polynomial-time algorithms for chordal graphs.

We need the following characterization of chordal graphs to prove our main result. A complete subgraph of a graph G is called a clique of G. A vertex v of a graph G is said to be simplicial if v together with all its adjacent vertices induce a clique in G. An ordering v_1, v_2, \ldots, v_n of all the vertices of G forms a perfect elimination ordering of G if each v_i, $1 \leq i \leq n$, is simplicial in the subgraph induced by $v_i, v_{i+1}, \ldots, v_n$.

Theorem 1 \cite{18} A graph G is a chordal graph if and only if it has a perfect elimination ordering.

The reader is referred to Golumbic’s classic \cite{11} for more information on chordal graphs.

2 Results

Up to the naming of vertices, any acyclic orientation D of K_n produces the topological ordering v_1, \ldots, v_n such that the arc $v_i \to v_j$ belongs to D if and only if $i < j$. Moreover, $v_i \to v_j$ is a dependent arc in D if and only if $j - i > 1$. A vertex is called a source (or sink) if it has no ingoing (or outgoing) arc. The following observation is very useful in the sequel. Let D be an acyclic orientation of the
complete graph K_n where $n \geq 3$. The number of dependent arcs in D incident to a vertex v is $n - 2$ if v is the source or the sink of D and is $n - 3$ otherwise.

In this section, we assume that the clique Q of a graph G has q vertices. Let G' be the graph obtained from G by adding a new vertex v adjacent to all vertices of Q. We see that $d_{\text{max}}(G') = \|G'\| - |G'| + 1 = (\|G\|+q) - (|G|+1) + 1 = (\|G\| - |G| + 1) + q - 1 = d_{\text{max}}(G) + q - 1$. Furthermore, we have the following.

Lemma 2

(1) If G has an acyclic orientation D with $d(D) = d$, then G' has an acyclic orientation D' with $d(D') = d + q - 1$.

(2) We have $d_{\text{min}}(G') = d_{\text{min}}(G) + q - 2$ or $d_{\text{min}}(G) + q - 1$.

Proof. The statements hold trivially when $q = 1$. Assume $q \geq 2$.

(1) Let D' be the extension of D into G' by making v into a source. Clearly, D' is an acyclic orientation. Let v_1, \ldots, v_q be the topological ordering of vertices of Q with respect to D. Suppose that $x \rightarrow y$ is a dependent arc in D'.

Case 1. If this arc is in D, then it is already dependent in D since v is a source in D'.

Case 2. If this arc is $v \rightarrow v_1$, then, for some $2 \leq i \leq q$, a directed path $v \rightarrow v_i \rightarrow z_1 \rightarrow \cdots \rightarrow z_i \rightarrow v_1$ of length at least three would be produced such that z_1, \ldots, z_i are all vertices in G. It follows that $v_1 \rightarrow v_i \rightarrow z_1 \rightarrow \cdots \rightarrow z_i \rightarrow v_1$ is a directed cycle in D, contradicting to the acyclicity of D.

Case 3. If this arc is $v \rightarrow v_k$ for $2 \leq k \leq q$, then it is a dependent arc in D' since $v \rightarrow v_{k-1} \rightarrow v_k$ is a directed path of length two.

Therefore, $d(D') = d + q - 1$.

(2) By statement (1), we have $d_{\text{min}}(G') \leq d_{\text{min}}(G) + q - 1$. Let D' be an acyclic orientation of G' with $d(D') = d_{\text{min}}(G')$. Since the subgraph induced by Q and $\{v\}$ is a clique of order $q + 1$, the number of dependent arcs in D' incident to v is $q - 1$ or $q - 2$. Let D be
the restriction of D' to $V(G)$. Then we have $d_{\min}(G') = d(D') \geq d(D) + q - 2 \geq d_{\min}(G) + q - 2$.

Since every number d satisfying $d_{\min}(G) + q - 1 \leq d \leq d_{\max}(G) + q - 1$ is achievable as $d(D')$ for some acyclic orientation D' of G' by (1), the following is a consequence of (2).

Corollary 3 If G is fully orientable, so is G'.

The above theorem amounts to preserving full orientability by the addition of a simplicial vertex. Hence, by successively applying it to the reverse of a perfect elimination ordering of a connected chordal graph, every such graph is fully orientable. Our main result thus follows.

Theorem 4 If G is a chordal graph, then G is fully orientable.

Remark. Adding a simplicial vertex may not increase the maximum and the minimum numbers of dependent edges by the same amount. For instance, any acyclic orientation of a triangle gives rise to exactly one dependent arc. However, the graph K_4 minus an edge, which is obtained from a triangle by adding a simplicial vertex, has minimum value one and maximum value two.

Now we want to give a characterization to tell which case in (2) of Lemma 2 will happen. A dependent arc in Q is said to be non-trivial with respect to the acyclic orientation D if it is dependent in D but not in the induced orientation $D[Q]$. Equivalently, any directed cycle obtained by reversing that arc contains vertices not in Q.

Lemma 5 Assume $q \geq 2$. There is an acyclic orientation D of G such that Q has a dependent arc that is non-trivial with respect to D if and only if D can be extended to an acyclic orientation D' of G' with $d(D') = d(D) + q - 2$.

6
Proof. (\Rightarrow) Assume that D is an acyclic orientation of G such that Q has a dependent arc that is non-trivial with respect to D. Let v_1, \ldots, v_q be the topological ordering of the vertices of Q with respect to D. The arcs in the set $\{v_i \to v_j \mid j - i > 1\}$ are dependent arcs that are not non-trivial with respect to D.

By our assumption, we can find $1 \leq k < q$ such that $v_k \to v_{k+1}$ is a dependent arc in D. We obtain an extension D' of D into G' by defining $v_a \to v$ for all $a < k$ and $v \to v_b$ for all $b > k$. This D' must be acyclic for otherwise a directed path would be produced in D, contradicting the acyclicity of D. The set $\{vv_r \mid r \neq k, k+1\}$ gives rise to a set of dependent arcs in D' and both vv_k and vv_{k+1} are not dependent in D'. Moreover, an edge of G is dependent in D if and only if it is dependent in D'. Therefore, $d(D') = d(D) + q - 2$.

(\Leftarrow) Assume that D can be extended to an acyclic orientation D' of G' with $d(D') = d(D) + q - 2$. If the vertex v is a source or a sink, then $d(D') = d(D) + q - 1$, contradicting our assumption. Without loss of generality, we may suppose that, for some $1 \leq k < q$, $v_a \to v$ for all $1 \leq a \leq k$ and $v \to v_{k+1}$. The acyclicity of D' implies that $v \to v_b$ for all $b > k$. Hence, the arc $v_k \to v_{k+1}$ is dependent in D' for $v_k \to v \to v_{k+1}$ is a directed path of length two. Since the $q - 2$ arcs $vv_r (r \neq k, k+1)$ incident to v are already dependent in D', it forces $v_k \to v_{k+1}$ to be a dependent arc in D. Therefore, $v_k \to v_{k+1}$ is non-trivial with respect to D.

Corollary 6 Assume $q \geq 2$. There is an acyclic orientation D of G such that $d(D) = d_{\min}(G)$ and Q has a dependent arc that is non-trivial with respect to D if and only if $d_{\min}(G') = d_{\min}(G) + q - 2$.

Remark. For the complete graph K_n on n vertices, $d_{\min}(K_n) = d_{\max}(K_n) = (n - 1)(n - 2)/2$ is a well-known fact (20). Hence, the condition in Theorem 5 and Corollary 6 that Q has a dependent arc that is non-trivial with respect to D can be replaced by the condition that Q has more than $(q - 1)(q - 2)/2$ arcs that are dependent in D. 7
In contrast to the addition of a simplicial vertex, the deletion of a simplicial vertex may destroy full orientability. The following example attests to this possibility.

Let $K_{r(n)}$ denote the complete r-partite graph each of whose partite sets has n vertices. It is proved in [4] that $K_{r(n)}$ is not fully orientable when $r \geq 3$ and $n \geq 2$. Any acyclic orientation of $K_{3(2)}$ has 4, 6, or 7 dependent arcs. Figure 1 shows an acyclic orientation of $K_{3(2)}$ with 6 dependent arcs. Two dependent arcs appear in the innermost triangle 146. Let K' be the graph obtained from $K_{3(2)}$ by adding a vertex v adjacent to vertices 1, 4, and 6. By Lemma 2 there exist acyclic orientations of K' with 6, 8, or 9 dependent arcs. Actually, $d_{\text{max}}(K') = 9$. Applying Lemma 5 to Figure 1 we obtain an acyclic orientation of K' with 7 dependent arcs. Any acyclic orientation of $K_{3(2)}$ with 4 dependent arcs cannot have two dependent arcs from the triangle 146 since there are three triangles each of which is edge-disjoint from the triangle 146 and we know that every triangle must have one dependent arc. It follows from Corollary 6 that $d_{\text{min}}(K') = 6$. Hence, K' is fully orientable. The deletion of the simplicial vertex v from K' produces $K_{3(2)}$ that is not fully orientable.
Acknowledgment. The authors are indebted to an anonymous referee for constructive comments leading to great improvements.

References

[1] J. Bang-Jensen and G. Gutin, *Digraphs: Theory, Algorithms and Applications*, 2nd ed., Springer-Verlag, London, 2009.

[2] C. Berge, Some classes of perfect graphs, in *Graph Theory and Theoretical Physics*, (F. Harary, ed.), pp. 155–166, Academic Press, New York, 1967.

[3] P. Buneman, A characterization of rigid circuit graphs, *Discrete Math.* **9** (1974) 205–212.

[4] G. J. Chang, C.-Y. Lin, and L.-D. Tong, Independent arcs of acyclic orientations of complete r-partite graphs, *Discrete Math.* **309** (2009) 4280–4286.

[5] F. R. K. Chung and D. Mumford, Chordal completions of planar graphs, *J. Combin. Theory Ser. B* **31** (1994) 96–106.

[6] G. Dirac, On rigid circuit graphs, *Abh. Math. Sem. Univ. Hamburg* **25** (1961) 71–76.

[7] R. E. England, J. R. S. Blair, and M. G. Thomason, Independent computations in a probabilistic knowledge-based system, Technical Report CS-91-128, Department of Computer Science, The University of Tennessee, Knoxville, Tennessee, 1991.

[8] D. C. Fisher, K. Fraughnaugh, L. Langley, and D. B. West, The number of dependent arcs in an acyclic orientation, *J. Combin. Theory Ser. B* **71** (1997) 73–78.

[9] D. R. Fulkerson and O. A. Gross, Incidence matrices and interval graphs, *Pacific J. Math.* **15** (1965) 835–855.
[10] F. Gavril, The intersection graphs of subtrees in trees are exactly the chordal graphs, *J. Combin. Theory Ser. B* 16 (1974) 47–56.

[11] M. C. Golumbic, *Algorithmic Graph Theory and Perfect Graphs*, 2nd ed., North-Holland, Amsterdam, 2004.

[12] H.-H. Lai, G. J. Chang, and K.-W. Lih, On fully orientability of 2-degenerate graphs, *Inform. Process. Lett.* 105 (2008) 177–181.

[13] H.-H. Lai and K.-W. Lih, On preserving full orientability of graphs, *European J. Combin.* 31 (2010) 598–607.

[14] H.-H. Lai, K.-W. Lih, and L.-D. Tong, Full orientability of graphs with at most one dependent arc, *Discrete Appl. Math.* 157 (2009) 2969–2972.

[15] K.-W. Lih, C.-Y. Lin, and L.-D. Tong, On an interpolation property of outerplanar graphs, *Discrete Appl. Math.* 154 (2006) 166–172.

[16] V. Rödl and L. Thoma, On cover graphs and dependent arcs in acyclic orientations, *Combin. Probab. Comput.* 14 (2005) 585–617.

[17] D. J. Rose, Triangulated graphs and the elimination process, *J. Math. Analys. Appl.* 32 (1970) 597–609.

[18] D. J. Rose, A graph-theoretic study of the numerical solution of sparse positive definite systems of linear equations, in *Graph Theory and Computing*, (R. C. Read, ed.), pp. 183–217, Academic Press, New York, 1972.

[19] R. E. Tarjan and M. Yannakakis, Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs, *SIAM J. Comput.* 13 (1984) 566–579.
[20] D. B. West, Acyclic orientations of complete bipartite graphs,
Discrete Math. 138 (1995) 393–396.