Japanese structure survey of radiation oncology in 2013

Hodaka Numasaki1,*, Teruki Teshima2, Yasuo Okuda3, Kazuhiko Ogawa4 and Japanese Society for Radiation Oncology Database Committee

1 Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
2 Department of Radiation Oncology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka-shi, Osaka, 541-8567, Japan
3 National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
4 Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
*Corresponding author. Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita-shi, Osaka 565-0871, Japan. Tel/Fax: +81-668792575; Email: numasaki@sahs.med.osaka-u.ac.jp

(Received 23 April 2020; revised 1 June 2020; editorial decision 6 June 2020)

ABSTRACT

This paper describes the ongoing structure of radiation oncology in Japan in terms of equipment, personnel, patient load and geographic distribution to identify and overcome any existing limitations. From December 2014 to July 2017, the Japanese Society for Radiation Oncology conducted a questionnaire based on the Japanese national structure survey of radiation oncology in 2013. Data were analyzed based on institutional stratification by the annual number of new patients treated with radiotherapy per institution. The estimated annual numbers of new and total (new plus repeat) patients treated with radiation were 216,000 and 257,000, respectively. Additionally, the estimated cancer incidence was 862,452 cases with ~25.0% of all newly diagnosed patients being treated with radiation. The types and numbers of treatment devices actually used included linear accelerator (LINAC; n = 880), Gamma Knife (n = 45), 60Co remote afterloading system (RALS; n = 23) and 192Ir RALS (n = 128). The LINAC system used dual-energy functions in 675 units, 3D conformal radiotherapy functions in 785 and intensity-modulated radiotherapy (IMRT) functions in 494. There were 831 Japan Radiological Society/Japanese Society for Radiation Oncology-certified radiation oncologists, 1130.6 full-time equivalent (FTE) radiation oncologists, 2214.6 FTE radiotherapy technologists, 196.6 FTE medical physicists, 183.8 FTE radiotherapy quality managers and 856.7 FTE nurses. The frequency of IMRT use significantly increased during this time. In conclusion, the Japanese structure of radiation oncology has clearly improved in terms of equipment and utility although there was a shortage of personnel in 2013.

Keywords: structure survey; radiotherapy institution; radiotherapy personnel; radiotherapy equipment

INTRODUCTION

In 1991, the Japanese Society for Radiation Oncology (JASTRO) conducted the first national survey of the structure of radiotherapy institutions in Japan based on their status in 1990, and the results were reported by Tsunemoto et al. [1]. The Japanese structure has gradually changed since a greater number of cancer patients are treated with radiation and public awareness of the importance of radiotherapy has grown. JASTRO has conducted national structure surveys every 2 years since 1991 [2–23]. The consecutive structural data gathered and published by JASTRO have been useful in gaining an understanding of our current position and future direction in Japan. Despite some delays, the updated Japanese national structure survey data of radiation oncology in 2013 is now available.

MATERIALS AND METHODS

From December 2014 to July 2017, a questionnaire regarding the 2013 national structure survey of radiation oncology was conducted that included the number of treatment systems by type, number of personnel by category, and number of patients by type, site and treatment modality. To measure variables over a longer time period, data for the year 2013 were also considered. In total, 717 of 798 active institutions attempted the survey; the response rate was 89.8%.

The current report analyzes these institutional structure data (equipment, personnel, patient load and geographic distribution) based on institutional stratification by the annual number of new patients treated with radiotherapy at each institution. Clinical working hours of each staff member performing radiotherapy were derived...
Table 1. Category of radiotherapy institution

Institution category	U	G	N	P	O	H
University hospital						
Cancer center (including national centers)						
National hospital organization (excluding cancer centers)						
Public hospital (excluding cancer centers)						
Red cross hospital, saiseikai hospital, company hospital, public corporation hospital, national health insurance hospital, social insurance hospital, mutual insurance hospital, industrial accident hospital, association hospital and Japan agricultural co-operatives hospital						
Medical corporation hospital, medical association hospital, private hospital and other hospital						

Table 2. Number of radiotherapy institutions by scale classification and institution category

Scale category (annual no. of new patients)	U	G	N	P	O	H	Total	Institution ratio (%)
A (≤ 99)	5	1	16	51	38	26	137	19.1
B (100–199)	11	1	24	69	62	39	206	28.7
C (200–299)	12	2	9	50	50	29	152	21.2
D (300–399)	22	3	8	15	21	14	83	11.6
E (400–499)	16	0	2	10	6	12	46	6.4
F (≥ 500)	48	18	1	11	4	11	93	13.0
Total	114	25	60	206	181	131	717	100.0

Table 3. Annual number of new patients by scale classification and institution category

Scale category (no. of institutions)	Institution category (no. of institutions)	Total (717)	Average					
	U (114)	G (25)	N (60)	P (206)	O (181)	H (131)		
A (137)	229	59	1024	3153	2665	1743	8873	64.8
B (206)	1586	112	3605	9925	9136	5418	29782	144.6
C (152)	3049	501	2129	11992	12199	7199	37069	243.9
D (83)	7837	1047	2809	5293	7141	4896	29023	349.7
E (46)	7273	0	828	4243	2591	5362	20297	441.2
F (93)	34786	16618	700	6346	2754	7616	68820	740.0
Total (717)	54760	18337	11095	40952	36486	32234	193864	270.4
Average	480.4	733.5	184.9	198.8	201.6	246.1	270.4	
Median	460	724	154	154	185	201	209	

from full-time equivalent (FTE; 40 h per week for radiation oncology work only) data. The Japanese Blue Book Guidelines (JBBG) [24, 25] were used for comparison with the results of this study. These guidelines pertain to the structure of radiation oncology in Japan based on Patterns of Care Study (PCS) [26, 27] data. The standard guidelines were set at 250–300 (warning level, 400) for annual patient load per external beam machine, at 200 (warning level, 300) for annual patient load per FTE radiation oncologist (RO) and at 120 (warning level, 200) for annual patient load per FTE radiotherapy technologist (RTT).

Furthermore, we analyzed data from the designated cancer care hospitals accredited by the Ministry of Health, Labor and Welfare. As of 1 April 2018, Japan had 437 designated cancer care hospitals [28]. A total of 46 institutions did not return the survey; therefore, the structure data for 391 designated cancer care hospitals were analyzed and compared with the data for all radiotherapy hospitals. The analysis was conducted in two groups: institutions with <1.0 FTE RO and those with ≥1.0 FTE RO.

RESULTS
In this report, all results have been presented as tables and figures (Tables 1–18 and Figs 1–6). We have briefly summarized the Japanese national structure survey of radiation oncology for 2013. The values obtained by dividing the real numbers of new patients (193 864)
and total (new plus repeat) patients (230 747) by the response rate were 215 765.0 and 256 814.7, respectively. In addition, there may be radiotherapy institutions not perceived by JASTRO. Therefore, the estimated number of new patients was $\sim 216 000$, i.e. 215 765.0 rounded up to the nearest 1000. In the same way, the estimated number of total patients was $\sim 257 000$ (Fig. 1).

DISCUSSION

In this report, the estimated number of new patients and total patients were $\sim 216 000$ and 257 000 by a simple calculation using the response rate. However, it is necessary to carefully consider that the estimated numbers of new patients and total patients reported also vary widely according to the difference in the calculation method used as follows.

Table 4. Annual number of total (new plus repeat) patients by scale classification and institution category

Scale category (no. of institutions)	Institution category (no. of institutions)	Total (717)	Average				
	U (114)	G (25)	N (60)	P (206)	O (181)	H (131)	
	240	97	1206	3595	2994	2249	10 381
A (137)	1786	133	4306	11 364	10 504	6635	168.6
B (206)	3487	565	2311	14 286	14 635	8758	289.8
C (152)	8 01	0	917	5082	3164	6358	427.2
D (83)	9 337	1326	3168	6494	8758	6372	537.8
E (46)	9 218	0	917	5082	3164	6358	24 739
F (93)	40 404	20 198	775	7372	3084	9569	875.3
Total (717)	64 472	22 319	12 683	48 193	43 139	39 941	321.8
Average	565.5	892.8	211.4	233.9	238.3	304.9	321.8
Median	532.5	785	194.5	189.5	203	235	236

Table 5. Number of treatment devices and their functions by scale classification

Treatment devices and their functions	Scale category (no. of institutions)	Total (717)
	A (137)	B (206)
LINAC	131	200
With dual energy function	78	147
With 3D CRT function (MLC width ≤ 1.0 cm)	99	168
With IMRT function	27	74
With cone beam CT or CT on rail	27	68
With treatment position verification system (X-ray perspective image)	32	62
With treatment position verification system (other than those above)	24	66
Annual no. patients/LINAC	79.2	173.6
CyberKnife	2	5
Novalis	1	1
Tomotherapy	1	5
Particle	1	0
Microtorton	1	3
Telecobalt (actual use)	0 (0)	1 (0)
Gamma Knife	5	10
Other accelerator	0	2
Other external irradiation device	0	1
New type 60Co RALS (actual use)	1 (0)	3 (4)
Old type 60Co RALS (actual use)	0 (0)	2 (1)
10Ir RALS (actual use)	2 (2)	6 (5)
137Cs RALS (actual use)	0 (0)	0 (0)

LINAC = linear accelerator, 3D CRT = 3D conformal radiotherapy, MLC = multileaf collimator, IMRT = intensity-modulated radiotherapy, CT = computed tomography, Co = cobalt, RALS = remote-controlled after-loading system, Ir = iridium, Cs = Cesium.
Table 6. Number of treatment planning equipment and accessories by scale classification

Treatment planning equipment and accessories	Scale category (no. of institutions)	Total (717)
	A (137)	B (206)
X-ray simulator (≥1)	58 (58)	73 (73)
CT simulator (≥1)	113 (110)	179 (172)
RTP computer (≥2)	169 (22)	279 (53)
X-ray CT (≥2)	251 (87)	466 (167)
MRI (≥2)	172 (39)	290 (90)
Computer use for RT recording	81	115
Water phantom (≥2)	147 (25)	239 (53)
Film densitometer (≥2)	43 (5)	93 (1)
Dosimeter (≥3)	340 (61)	690 (131)

	C (152)	D (83)
X-ray simulator (≥1)	38 (36)	36 (36)
CT simulator (≥1)	147 (140)	83 (74)
RTP computer (≥2)	272 (64)	251 (56)
X-ray CT (≥2)	450 (139)	272 (72)
MRI (≥2)	279 (113)	174 (67)
Computer use for RT recording	112	64
Water phantom (≥2)	89	61
Film densitometer (≥2)	83 (2)	69 (5)
Dosimeter (≥3)	614 (107)	466 (52)

	E (46)	F (93)
X-ray simulator (≥1)	36 (24)	26 (24)
CT simulator (≥1)	83 (45)	51 (45)
RTP computer (≥2)	182 (39)	582 (88)
X-ray CT (≥2)	191 (44)	470 (88)
MRI (≥2)	122 (41)	277 (79)
Computer use for RT recording	43	43
Water phantom (≥2)	80 (44)	693 (79)
Film densitometer (≥2)	94 (11)	428 (30)
Dosimeter (≥3)	318 (52)	693 (79)

*No. of institutions.

CT = computed tomography, RTP = radiotherapy planning, MRI = magnetic resonance imaging, RT = radiotherapy.

Fig. 1. Estimate of increase in demand for radiotherapy in Japan, based on statistical correction of annual change in the number of new patients per year at Patterns of Care Study survey facilities [24]. x and o denote the estimated number of total (new plus repeat) and new patients from the results of structure surveys by JASTRO.

If all non-responding institutions were in category A (≤99), the estimated numbers of new patients and total patients were 199 110 and 236 885 by calculation using the average number of new patients in category A. On the other hand, the estimated numbers of new patients and total patients were 253 804 and 301 646 if all non-responding institutions were in category F (≥500).

In 2013, based on Japanese cancer registries, the cancer incidence was estimated at 862 452 cases [39] with ~25.0% (216 000 of 862 452) of all newly diagnosed patients being treated with radiation.

Regarding the case scale of institution, ~52.2% of all radiotherapy institutions had ≥200 new radiotherapy patients per year, whereas 31.0% of the institutions had ≥300. Additionally, 38.9% of all radiotherapy institutions had <1.0 FTE ROs. Compared with the findings of similar data surveys conducted in 2007 [14–17] and 2012 [23], the percentage of institutions that had ≥1.0 FTE RO had improved a little (2007: 43.8%, 2012: 58.5%, 2013: 61.1%), but was not yet sufficient.

When viewed from the perspective of geographic distribution, radiotherapy institutions cover each region in Japan, although there are considerable differences in the number of radiotherapy institutions in prefectures. Concerning equipment, much of the equipment had been rapidly replaced with instruments with excellent functions, although there are differences depending on the scale of the institution. The numbers of staff (ROs, RTTs, medical physicists (MPs), radiotherapy
Table 7. Number of personnel and annual number of patients by scale classification

Scale category (no. of institutions)	A (137)	B (206)	C (152)	D (83)	E (46)	F (93)	Total (717)
Scale (annual no. of new patients)	≤99	100–199	200–299	300–399	400–499	⩾500	
Institution ratio (%)	19.1%	28.7%	21.2%	11.6%	6.4%	13.0%	100%
New patients	8873	29 782	37 069	29 023	20 297	68 820	193 864
New patients/institution	64.8%	144.6%	243.9%	349.7%	441.2%	740.0%	270.4%
Total patients	10 381	34 728	44 042	35 455	24 739	81 402	230 747
Total patients/institution	75.8%	168.6%	289.8%	427.2%	537.8%	875.3%	321.8%
Beds	46 495	79 882	75 560	46 963	29 306	68 530	346 736
Institutions with RT beds (%)	22 (16.1)	41 (19.9)	40 (26.3)	29 (34.9)	25 (54.3)	57 (61.3)	214 (29.8)
RT beds	102.5%	172.0%	227.0%	135.5%	214.0%	835.7%	1686.7%
RT beds/total beds (%)	0.2%	0.2%	0.3%	0.3%	0.7%	1.2%	0.5%
RT beds/institution	0.7%	0.8%	1.5%	1.6%	4.7%	9.0%	2.4%
RT beds/institution with RT beds	4.7%	4.2%	5.7%	4.7%	8.6%	14.7%	7.9%
JRS-certified institutions (%)	3 (2.2%)	20 (9.7%)	46 (30.3)	38 (54.8)	32 (69.6)	79 (48.9)	218 (30.4)
JRS-cooperation institutions (%)	48 (35%)	105 (51%)	68 (44.7)	54 (17.4)	26 (8.4)	289 (40.3)	
JASTRO-certified institutions (%)	5 (3.6%)	36 (17.5)	63 (41.4)	54 (62.1)	32 (69.6)	85 (91.4)	275 (38.4)
JRS membership (full-time)	64	147	159	141	120	466	1097
JASTRO membership (full-time)	53	138	153	137	121	464	1066
JRS/JASTRO-certified ROs (full-time)	29	116	134	117	93	342	831
Institutions with full-time ROs (%)	59	136 (64.1)%	129 (84.9)%	78 (94)	45 (97.8)	93 (100)	536 (74.8)
ROs (full-time)	83	168	174	147	124	478	1174
ROs (full-time)/institution	0.6	0.8	1.1	1.8	2.7	5.1	1.6
FTE ROs (full-time)	24.4	140.1	125.0	121.9	103.1	359.4	878.9
FTE ROs (full-time)/institution	0.30	0.65	1.00	1.54	2.30	4.31	1.34
ROs (part-time)	121	218	148	64	50	137	738
ROs (part-time)/institution	0.88	1.06	0.97	0.77	1.09	1.47	1.03
FTE ROs (part-time)	23.1	40.2	27.8	12.9	13.2	52.8	169.8
FTE ROs (part-time)/institution	0.2	0.2	0.2	0.2	0.3	0.6	0.2
FTE ROs (full-plus part-time)	64.2	173.3	179.4	140.9	119.2	453.6	1130.6
FTE ROs (full-plus part-time)/institution	0.47	0.84	1.18	1.70	2.59	4.88	1.58
Radiologists (full-time)	164.0	357.0	459.8	347.0	301.0	951.0	2579.8
Radiologists (part-time)	152.0	314.7	324.5	120.3	114.0	246.0	1271.5
Radiologists (full-time)/institution	1.2	1.7	3.0	4.2	6.5	10.2	3.6
RTTs (full-time)*	421	716	681	447	316	834	3415
FTE RTTs	210.1	413.0	403.0	311.7	230.4	646.5	2214.6
MPs (full-time)*	29	64	78	59	55	148	433
FTE MPs	8.8	28.3	33.8	24.6	23.6	77.6	196.6
RTQMs (full-time)*	5.0	111	120	94	52	130	557
FTE RTQMs	16.4	35.1	41.9	32.0	15.9	42.7	183.8
Dosimetrists (full-time)*	16	33	41	14	26	57	187
FTE dosimetrists	4.9	7.1	9.3	5.7	6.7	13.5	47.2
Craftworkers (full-time)*	31	49	63	13	40	67	263
FTE craftworker	7.4	11.4	14.2	2.4	6.9	12.8	55.1
Nurses (full-time)	160	272	271	196	133	302	1334
FTE nurses	65.32	156.54	174.95	124.89	89.7	245.3	856.7
Nursing assistants	6.8	7.5	12.2	16	14.8	23.24	80.5
Clerks	25.9	58.4	84.55	66.3	59.4	142.7	437.3

*Overlap is included in the total number of each staff type (RTT, MP, RTQM, dosimetrists and craftworker).
Table 8. Population, number of patients, institutions and patient load according to prefecture

Prefecture	Population \(\times 10^3 \) [30]	Institutions	New patients	New patients/institution	Total patients	Total patients/institution
Hokkaido	5431	30	9013	300.4	11766	392.2
Aomori	1335	10	2207	220.7	2457	245.7
Iwate	1295	8	1837	229.6	2410	301.3
Miyagi	2328	12	4089	340.8	4844	403.7
Akita	1050	10	1815	181.5	2087	208.7
Yamagata	1141	7	1687	241.0	2147	306.7
Fukushima	1946	9	2975	330.6	3408	378.7
Ibaraki	2931	14	3706	264.7	4206	300.4
Tochigi	1986	9	2649	294.3	3249	361.0
Gunma	1984	14	4380	312.9	4822	344.4
Saitama	1722	21	7244	345.0	8412	400.6
Chiba	6192	24	8427	351.1	9859	410.8
Tokyo	13300	67	24427	364.6	29915	446.5
Kanagawa	9079	39	12342	316.5	14050	360.3
Niigata	2330	14	3496	249.7	4259	304.2
Tottori	1076	8	1584	198.0	1815	226.9
Ishikawa	1159	7	1975	282.1	2281	325.9
Fukushima	795	6	1325	220.8	1525	254.2
Yamanashi	847	5	1178	235.6	1423	284.6
Nagano	2122	15	3264	217.6	3959	263.9
Gifu	2051	13	2925	225.0	3502	269.4
Shizuoka	3723	22	5772	262.4	7260	330.0
Aichi	7443	39	10784	276.5	13144	337.0
Mie	1833	12	2000	166.7	2395	199.6
Shiga	1416	10	1875	187.5	2321	232.1
Kyoto	2617	13	4096	315.1	4925	378.8
Osaka	8849	55	14681	266.9	17138	311.6
Hyogo	5558	32	8896	278.0	10331	322.8
Nara	1383	9	2253	250.3	2582	286.9
Wakayama	979	10	1496	149.6	1780	178.0
Tottori	578	7	1072	153.1	1238	176.9
Shimane	702	5	988	197.6	1111	222.2
Okayama	1930	11	2807	255.2	3269	297.2
Hiroshima	2840	19	4631	243.7	5769	303.6
Yamaguchi	1420	14	2009	143.5	2418	172.7
Tokushima	770	5	1262	252.4	1444	288.8
Kagawa	985	6	1,196	199.3	1394	232.3
Ehime	1405	10	2,291	229.1	2658	265.8
Kochi	745	6	1,252	208.7	1446	241.0
Fukuoka	5090	26	8456	325.2	9915	381.3
Saga	840	5	985	197.0	1116	223.2
Nagasaki	1397	9	2298	255.3	2766	307.3
Kumamoto	1801	13	3029	233.0	3538	272.2
Oita	1178	11	1,455	132.3	1858	168.9
Miyazaki	1120	7	1,508	215.4	1800	257.1
Kagoshima	1680	12	2,690	224.2	2993	249.4
Okinawa	1415	7	1537	219.6	1742	248.9
Total	127297	717	193864	270.4	230747	321.8
Table 9. Number of total patients, radiation oncologists and patient load according to prefecture

Prefecture	Total patients	JRS/JASTRO-certified ROs	FTE ROs	Total patients/FTE RO
Hokkaido	11 766	39	55.1	213.5
Aomori	2457	10	13.2	186.1
Iwate	2410	7	10.6	227.4
Miyagi	4844	13	20.0	242.8
Akita	2087	3	6.5	323.6
Yamagata	2147	6	9.3	230.9
Fukushima	3408	11	19.3	176.6
Ibaraki	4206	13	22.1	190.3
Tochigi	3249	12	14.1	230.4
Gunma	4822	30	32.4	148.8
Saitama	8412	23	29.2	288.1
Chiba	9859	40	51.3	192.4
Tokyo	29 915	95	139.9	213.8
Kanagawa	14 050	47	65.3	215.2
Niigata	4259	16	20.6	206.7
Tojima	1815	4	6.7	270.9
Ishikawa	2281	7	9.4	242.7
Fukui	1525	12	11.6	131.5
Yamanashi	1423	7	8.1	175.7
Nagano	3959	9	15.0	263.9
Gifu	3502	9	13.4	261.3
Shizuoka	7260	24	29.8	243.6
Aichi	13 144	45	61.7	213.0
Mie	2395	7	11.6	206.5
Shiga	2321	8	14.0	166.4
Kyoto	4925	19	29.4	167.5
Osaka	17 138	70	90.8	188.7
Hyogo	10 331	41	60.1	171.9
Nara	2582	11	14.4	179.3
Wakayama	1780	8	9.2	193.5
Tottori	1238	6	5.3	233.6
Shimane	1111	6	8.7	127.7
Okayama	3269	15	20.0	163.5
Hiroshima	5769	21	25.0	230.8
Yamaguchi	2418	10	13.2	183.2
Tokushima	1444	7	6.3	229.2
Kagawa	1394	5	6.5	214.5
Ehime	2658	10	15.6	170.4
Kochi	1446	5	4.6	314.3
Fukuoka	9915	38	49.2	201.5
Saga	1116	9	10.9	102.4
Nagasaki	2766	10	13.8	201.2
Kumamoto	3538	13	18.4	192.3
Oita	1858	4	8.0	232.3
Miyazaki	1800	8	7.5	240.0
Kagoshima	2993	11	14.1	212.3
Okinawa	1742	7	9.6	181.5
Total	**230 747**	**831**	**1130.6**	**204.1**
Table 10. Number of total patients, staff and patient load according to prefecture

Prefecture	Total patients	FTE RTTs	Total patients/FTE RTTs	FTE MPs	FTE RTQM
Hokkaido	11 766	84.6	139.0	10.7	7.3
Aomori	2457	25.0	98.3	3.4	3.5
Iwate	2410	25.6	94.3	2.4	1.3
Miyagi	4844	37.0	130.9	2.9	3.4
Akita	2087	23.3	89.6	1.2	2.6
Yamagata	2147	21.2	101.3	1.4	0.9
Fukushima	3408	34.0	100.4	1.0	1.3
Ibaraki	4206	51.5	81.7	3.1	2.7
Tochigi	3249	32.5	100.0	2.4	1.5
Gunma	4822	49.6	97.2	3.8	2.5
Saitama	8412	64.2	131.1	5.1	6.0
Chiba	9859	93.8	105.1	7.2	2.7
Tokyo	29 915	263.0	113.7	26.8	14.2
Kanagawa	14 050	139.9	100.4	15.2	10.8
Niigata	4259	46.3	92.0	2.4	2.3
Toyama	1815	20.0	90.8	0.7	2.5
Ishikawa	2281	23.4	97.5	1.7	2.2
Fukui	1525	23.2	65.9	2.7	1.3
Yamanashi	1423	10.5	136.2	0.9	1.5
Nagano	3959	33.5	118.4	2.4	1.0
Gifu	3502	35.6	98.4	1.8	3.2
Shizuoka	7260	82.3	88.3	9.8	8.1
Aichi	13 144	126.7	103.7	12.1	11.0
Mie	2395	24.2	99.0	4.6	3.3
Shiga	2321	27.8	83.5	1.9	4.3
Kyoto	4925	43.7	112.7	4.4	6.8
Osaka	17 138	176.1	97.3	21.0	16.6
Hyogo	10 331	103.7	99.6	6.6	6.1
Nara	2582	25.0	103.3	2.8	3.9
Wakayama	1780	22.2	80.2	0.3	1.4
Tottori	1238	13.6	91.0	1.0	2.2
Shimane	1111	12.2	91.1	0.0	2.7
Okayama	3269	34.6	94.6	3.1	3.2
Hiroshima	5769	48.6	118.7	2.9	4.4
Yamaguchi	2418	26.4	91.6	1.2	3.1
Tokushima	1444	15.5	93.2	1.2	0.6
Kagawa	1394	13.6	102.9	0.6	1.3
Ehime	2658	25.5	104.2	3.4	5.6
Kochi	1446	10.8	133.9	1.3	0.8
Fukuoka	9915	87.5	113.3	7.2	9.0
Saga	1116	14.4	77.5	0.4	2.9
Nagasaki	2766	19.9	139.3	3.7	3.1
Kumamoto	3538	36.0	98.3	3.0	3.2
Oita	1858	18.9	98.3	1.8	2.0
Miyazaki	1800	17.1	105.3	0.8	1.3
Kagoshima	2993	32.7	91.5	2.4	2.3
Okinawa	1742	18.3	95.1	0.5	0.6
Total	230 747	2214.6	104.2	196.6	183.8
Specific therapy	2013	2012			
--	---------	---------			
	A (137)	B (206)			
Intracavitary radiotherapy					
Treatment institutions	1	8			
Patients	10	85			
	20	213			
	27	338			
	26	415			
	73	2067			
	155	3128			
Total (717)	146				
Interstitial radiotherapy					
Treatment institutions	4	8			
Patients	46	147			
	15	365			
	20	505			
	18	360			
	60	2535			
	125	3958			
Total (717)	117				
¹²³I seed implantation therapy for prostate					
Treatment institutions	3	5			
Patients	36	140			
	13	359			
	15	389			
	14	186			
	57	2182			
	107	3292			
Total (717)	103				
Radioactive iodine therapy for thyroid cancer					
Treatment institutions	1	7			
Patients	2	63			
	7	102			
	10	513			
	16	496			
	29	1156			
	70	2332			
Total (717)	65				
Total body radiotherapy					
Treatment institutions	12	9			
Patients	105	24			
	32	368			
	28	230			
	25	378			
	68	1222			
	174	2327			
Total (717)	175				
Intraoperative radiotherapy					
Treatment institutions	0	0			
Patients	0	0			
	1	0			
	0	0			
	4	6			
	11	76			
	16	83			
Total (717)	23				
Stereotactic brain radiotherapy					
Treatment institutions	14	40			
Patients	632	2807			
	55	2930			
	55	3487			
	30	2036			
	57	3936			
	251	15 828			
Total (717)	233				
Stereotactic body radiotherapy					
Treatment institutions	5	44			
Patients	12	412			
	64	745			
	60	809			
	32	817			
	79	2228			
	284	5023			
Total (717)	284				
IMRT					
Treatment institutions	3	26			
Patients	51	1336			
	36	2631			
	43	2178			
	34	2594			
	77	6329			
	219	15 119			
Total (717)	198				
Thermoradiotherapy					
Treatment institutions	1	7			
Patients	19	59			
	5	19			
	5	5			
	22	246			
Total (717)	21				
¹⁰⁶Sr radiotherapy for pterygia					
Treatment institutions	1	1			
Patients	6	1			
	10	9			
	2	0			
	2	21			
Total (717)	7				
Internal¹⁰⁶Sr radiotherapy					
Treatment institutions	8	34			
Patients	23	112			
	41	176			
	25	116			
	25	125			
	46	311			
	179	863			
Total (717)	195				
Internal¹⁰³Y radiotherapy					
Treatment institutions	2	3			
Patients	12	9			
	5	16			
	3	7			
	4	19			
	13	55			
Total (717)	29				

I = iodine, IMRT = intensity-modulated radiotherapy, Sr = strontium, Y = yttrium.
Table 12. Annual number of new patients by disease site

Primary site	n	%
Cerebrospinal	7854	4.2
Head and neck (including thyroid)	16857	9.0
Esophagus	9623	5.2
Lung, trachea and mediastinum	36014	19.3
Lung	32597	17.5
Breast	43365	23.3
Liver, biliary tract, pancreas	7770	4.2
Gastric, small intestine, colorectal	9297	5.0
Gynecological	8845	4.7
Urogenital	29904	16.0
Prostate	24196	13.0
Hematopoietic and lymphatic	8117	4.4
Skin, bone and soft tissue	3914	2.1
Other (malignant)	2252	1.2
Benign disease	2632	1.4
Pediatric ≤ 15 years (included in totals above)	892	0.5
Pediatric 16–19 years (included in totals above)	275	0.1
Total	186444	100.0

*Total number of new patients in Table 3 differ from these data because no data on primary sites were reported by some institutions.

Table 13. Annual number of total patients (new plus repeat) treated for any brain metastasis and bone metastasis by scale classification

Metastasis	Scale category (no. of institutions)	A (137)	B (206)	C (152)	D (83)	E (46)	F (93)	Total (717)								
	n	%	N	%	n	%	n	%	n	%	n	%	n	%	n	%
Brain	1222	11.8	3928	11.3	4294	9.7	4086	11.5	3252	13.1	7108	8.7	23890	10.4		
Bone	1546	14.9	5192	15.0	6405	14.5	4763	13.4	2866	11.6	9744	12.0	305516	13.2		

Table 14. Classification of institutions by number of FTE ROs in all radiotherapy institutions and designated cancer care hospitals

Institution category	Description	No. of Institutions
RH-A	All radiotherapy hospitals (FTE RO ≥ 1.0)	438
RH-B	All radiotherapy hospitals (FTE RO < 1.0)	279
Total		717
DCCH-A	Designated cancer care hospitals (FTE RO ≥ 1.0)	299
DCCH-B	Designated cancer care hospitals (FTE RO < 1.0)	92
Total		391
Table 15. Annual numbers of patients receiving radiotherapy, numbers of LINACs, numbers of staff, patient load per LINAC and patient load per personnel according to institution categories shown Table 14; all radiotherapy hospitals

	RH-A (438)	RH-B (279)	Total (717)			
	Average per hospital	Total number	Average per hospital	Total number	Average per hospital	Total number
Total patient	427.0	187 045	156.6	43 702	321.8	230 747
New patient	357.7	156 677	133.3	37 187	270.4	193 864
LINAC	1.4	614	1.0	266	1.2	880
Annual no. of total patients/LINAC	304.6	1643	262.2	1130.6		
Annual no. of new patients/LINAC	255.2	139.8	220.3	1130.6		
FTERO	2.3	1015.7	0.4	1149.9	1.6	831
JRS/JASTRO-certified ROs (full-time)	1.7	763	0.2	68	1.2	831
Annual No. of total patients/FTERO	184.2	380.3	204.1			
Annual no. of new patients/FTERO	154.3	323.6	171.5			
FTERT	3.9	1709.5	1.8	505.1	3.1	2214.6
Annual no. of total patients/FTER T	109.4	86.5	1.4			
Annual no. of new patients/FTERTT	91.7	73.6	87.5			
FTE RTTs/LINAC	2.8	1.9	2.5			
FTE MPs	0.39	172.8	0.09	23.8	0.27	196.6
Annual no. of total patients/FTE MP	1082.3	1835.4	1173.5			
Annual no. of new patients/FTE MP	906.6	1561.8	985.9			
FTE RTQMs	0.34	149.9	0.12	33.9	0.26	83.8
Annual no. of total patients/FTE RTQM	1248.2	1289.1	1255.8			
Annual no. of new patients/FTE RTQM	1045.6	1097.0	1055.1			
FTE RTQMs/LINAC	0.24	0.13	0.21			
Table 16. Annual numbers of patients receiving radiotherapy, numbers of LINACs, numbers of staff, patient load per LINAC and patient load per personnel according to institution categories shown Table 14; designated cancer care hospitals

	DCCH-A (299)	DCCH-B (92)	Total (391)			
	Average per hospital	Total number	Average per hospital	Total number	Average per hospital	Total number
Total patients	491.3	146 893	189.7	17 453	420.3	164 346
New patients	411.2	122 963	164.3	15 113	353.1	138 076
LINAC	1.6	468	1.0	95	1.4	563
Annual no. of total patients/LINAC	313.9	183.7	291.9			
Annual no. of new patients/LINAC	262.7	159.1	245.3			
FTERO	2.5	752.6	0.5	47.6	2.0	800.1
JRS/JASTRO-certified ROs (full-time)	1.9	576	1.4	563	1.6	611
Annual no. of total patients/FTERO	195.2	367.0	205.4			
Annual no. of new patients/FTERO	163.4	317.8	172.6			
FTERTs	4.3	1279.3	2.1	190.9	3.8	1470.1
Annual no. of total patients/FTERTT	114.8	91.4	111.8			
Annual no. of new patients/FTERTT	96.1	79.2	93.9			
FTERTs /LINAC	2.7	2.0	2.6			
FTE MPs	0.43	129.3	0.12	10.7	0.36	140.0
Annual no. of total patients/FTE MP	1,136.5	1,629.6	1,174.2			
Annual no. of new patients/FTE MP	951.4	1,411.1	986.5			
FTE RTQMs	0.38	112.9	0.18	16.5	0.33	129.4
Annual no. of total patients/FTE RTQM	1,301.7	1,057.8	1,270.6			
Annual no. of new patients/FTE RTQM	1,089.6	915.9	1,067.5			
FTE RTQMs/LINAC	0.24	0.17	0.23			
Table 17. Number of items of equipment and their functions according to institution categories shown Table 14

Equipment Category	RHA (n = 438)	%	RH-B (n = 279)	%	Total (n = 717)	%
LINAC						
with dual energy function	614	97.5	266	93.9	880	96.1
with 3DCRT function (MLC width ≤ 1.0 cm)	573	91.6	212	74.6	785	84.9
With IMRT function	418	66.7	76	26.9	494	51.2
With cone beam CT or CT on rail	333	59.4	69	24.4	402	45.7
With treatment position verification system	306	53.0	66	22.9	372	41.3
(X-ray perspective image)						
With treatment position verification system	213	39.0	70	24.7	283	33.5
(other than those above)						
CT simulator	445	91.6	243	83.2	688	88.3

DCCH-A (n = 299)			DCCH-B (n = 92)		Total (n = 391)	
LINAC						
with dual energy function	449	100.0	98	100.0	547	100.0
with 3DCRT function (MLC width ≤ 1.0 cm)	363	92.7	75	77.1	438	88.8
With IMRT function	428	96.5	83	85.4	511	93.7
With cone beam CT or CT on rail	310	73.5	38	38.5	348	64.8
With treatment position verification system	227	62.4	28	28.1	255	53.8
(X-ray perspective image)	206	55.1	29	29.2	235	48.6
With treatment position verification system	147	40.1	26	27.1	173	36.8
(other than those above)						
CT simulator	303	96.5	90	87.5	393	94.3

LINAC = linear accelerator, 3DCRT = 3D conformal radiotherapy, MLC = multileaf collimator, IMRT = intensity-modulated radiotherapy, CT = computed tomography.
Table 18. Number of radiotherapy institutions, treatment devices, patient load and personnel: trend 1990–2013

Survey year	1990	1993	1995	1997	1999	2001	2003	2005	2007	2009	2010	2011	2012	2013
Institutions	378	629	504	568	636	603	726	712	721	700	705	694	709	717
Response rate (%)	48.5	88.3	73.9	78.6	86.3	85.3	100	96.9	94.2	90.9	90.4	88.2	90.0	89.8
New patients	62,829	—	71,696	84,379	107,150	118,016	149,793	156,318	170,229	182,390	190,322	185,455	190,910	193,864
Total patients	—	—	—	—	—	—	—	191,173	205,087	217,829	226,851	220,092	225,818	230,747
Average no. of new patients	166	—	142	149	168	196	206	220	236	261	270	267	269	270
Treatment devices (actual use)														
LINAC	311	508	407	475	626	626	744	765	807	816	829	836	864	880
Telecobalt	170	213	127	98	83	45	42	11	15	11	9	9	3	0
192Ir RALS	—	—	29	50	73	93	117	119	123	130	131	125	130	128
Full-time ROs	547	748	821	889	925	878	921	1003	1007	1085	1123	1102	1122	1174
FTE ROs	—	—	—	—	—	—	—	774	826	939	959	1,019	1,062	1,131
Full-time JRS/JASTRO-certified ROs	—	—	—	—	—	—	—	308	369	426	477	529	564	756
JRS/JASTRO-certified RTs	592	877	665	733	771	918	1555	1635	1634	1836	1841	2027	2124	2215
Treatment planning equipment														
X-ray simulators	295	430	394	452	512	464	532	502	445	361	348	320	305	291
CT simulators	30	75	55	96	164	247	329	407	497	575	633	654	677	688
RTP computers	238	468	374	453	682	680	874	940	1070	1271	1381	1484	1611	1,735

LINAC = linear accelerator, Ir = iridium, RO = radiation oncologist, FTE = full-time equivalent, JRS = Japan Radiological Society, JASTRO = Japanese Society for Radiation Oncology, RT = radiotherapy, CT = computed tomography, RTP = radiotherapy planning, RALS = remote-controlled after-loading system.
Fig. 2. Distribution of annual total (new plus repeat) patient load per linear accelerator (LINAC) in radiotherapy institutions. The horizontal axis represents institutions arranged in order of increasing value of annual number of total patients per LINAC within the institution. Q1: 0–25, Q2: 26–50, Q3: 51–75 and Q4: 76–100%.

Fig. 3. Distribution of annual total (new plus repeat) patient load per FTE RO according to the institution categories shown Table 14; all radiotherapy hospitals. The horizontal axis represents institutions arranged in order of increasing value of annual number of total patients per FTE RO within the institution. Q1: 0–25, Q2: 26–50, Q3: 51–75 and Q4: 76–100%.
Fig. 4. Distribution of annual total (new plus repeat) patient load per FTE RTT according to institution categories shown Table 14; all radiotherapy hospitals. The horizontal axis represents institutions arranged in order of increasing value of annual number of total patients per FTE RTT within the institution. Q1: 0–25, Q2: 26–50, Q3: 51–75 and Q4: 76–100%.

Fig. 5. Distribution of annual total (new plus repeat) patient load per FTE RO according to institution categories shown Table 14; designated cancer care hospitals. The horizontal axis represents institutions arranged in order of increasing value of annual number of total patients per FTE RO within the institution. Q1: 0–25, Q2: 26–50, Q3: 51–75 and Q4: 76–100%.
quality manager (RTQMs) and nurses] steadily increased. Annual total patient load per radiation oncologist was 204.1, which was lower than the 243.8 of the 2007 survey. However, this patient load exceeds 200.0, which is the standard value recommended in the JBBG [24, 25]. With regard to other staff, the numbers of MPs and RTQMs are absolutely insufficient. Compared with the other types of staff mentioned above, a sufficient number of RTTs is ensured in Japan. Therefore, RTTs partially act as MPs and RTQMs in most institutions.

The average of structure data (the average number of new patients, total patients, LINACs, FTE RO, FTE RTT, FTE MP, and FTE RTQM) of designated cancer care hospitals was better than those of all radiotherapy hospitals (the national average). Annual patient load per designated cancer care hospital was ~100 patients more than the national average, however annual patient load per FTE RO and annual patient load per FTE RTT were almost the same as the national average. These data suggest that the number of radiotherapy patients in all radiotherapy hospitals may be near to saturation. On the other hand, 23.5% of designated cancer care hospitals had <1.0 FTE RO. Compared with the findings of similar data surveys conducted in 2007 [17] and 2012 [23], the above percentages had decreased by 13.8% from 2007 data and 1.5% from 2012 data, but was not yet sufficient. It is conceivable that the more the number of radiotherapy staff (especially ROs, MPs and RTQMs) increases, the greater the number of patients who can undergo radiotherapy.

In conclusion, the Japanese structure of radiation oncology has clearly and steadily improved over the past 20 years in terms of installation and use of equipment and its functions, ∼, nevertheless there are still problems with shortages of manpower and the difference in equipments due to difference of institution types. We expect that this updated national structure survey of radiation oncology for 2013 will aid the continuous improvement of all aspects of radiation oncology in Japan.

ACKNOWLEDGMENTS
We wish to thank all radiation oncologists, radiation technologists and other staff throughout Japan who participated in this survey for their efforts in providing us with valuable information to make this study possible.

FUNDING
This study was supported by the JASTRO and Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science [JSPS KAKENHI Grant No. JP17K10475].

CONFLICT OF INTEREST
None declared.

REFERENCES
1. Tsunemoto H. Present status of Japanese radiation oncology: National survey of structure in 1990 (in Japanese). J Jpn Soc Ther Radiol Oncol Special Report 1992;1–30.
2. Sato S, Nakamura Y, Kawashima K et al. Present status of radiotherapy in Japan – a census in 1990- finding on radiotherapy facilities (in Japanese with an English abstract). J Jpn Soc Ther Radiol Oncol 1994;6:83–9.
3. Morita K, Uchiyama Y. Present status of radiotherapy in Japan – the second census in 1993- (in Japanese with an English abstract). J Jpn Soc Ther Radiol Oncol 1995;7:251–61.
4. JASTRO Database Committee. Present status of radiotherapy in Japan –the regular census in 1995- (in Japanese with an English abstract). J Jpn Soc Ther Radiol Oncol 1997;9:231–53.
5. JASTRO Database Committee. Present status of radiotherapy in Japan – the regular census in 1997 - (in Japanese with an English abstract). Jpn J Soc Ther Radiol Oncol 2001;13:175–82.

6. JASTRO Database Committee. Present status of radiotherapy in Japan – the regular structure survey in 1999 - (in Japanese with an English abstract). Jpn J Soc Ther Radiol Oncol 2001;13:227–35.

7. JASTRO Database Committee. Present status of radiotherapy in Japan – the regular structure survey in 2001 - (in Japanese with an English abstract). Jpn J Soc Ther Radiol Oncol 2003;15:51–9.

8. JASTRO Database Committee. Present status of radiotherapy in Japan – the regular structure survey in 2003 - (in Japanese with an English abstract). Jpn J Soc Ther Radiol Oncol 2005;17:115–21.

9. Shibuya H, Tsujii H. The structural characteristics of radiation oncology in Japan in 2003. Int J Radiat Oncol Biol Phys 2005;62:1472–6.

10. Teshima T, Numasaki H, Shibuya H et al. Japanese structure survey of radiation oncology in 2005 (first report) (in Japanese with an English abstract). Jpn J Soc Ther Radiol Oncol 2007;19:181–92.

11. Teshima T, Numasaki H, Shibuya H et al. Japanese structure survey of radiation oncology in 2005 (second report) (in Japanese with an English abstract). Jpn J Soc Ther Radiol Oncol 2007;19:193–205.

12. Teshima T, Numasaki H, Shibuya H et al. Japanese structure survey of radiation oncology in 2005 based on institutional stratification of patterns of care study. Int J Radiat Oncol Biol Phys 2008;72:144–52.

13. Numasaki H, Teshima T, Shibuya H et al. National structure of radiation oncology in Japan with special reference to designated cancer care hospitals. Strahlenther Onkol 2011;187:167–74.

14. Numasaki H, Shibuya H, Nishio M et al. National medical care system may impede fostering of true specialization of radiation oncologists: Study based on structure survey in Japan. Int J Radiat Oncol Biol Phys 2012;82:e111–7.

15. Teshima T, Numasaki H, Nishio M et al. Japanese structure survey of radiation oncology in 2009 based on institutional stratification of patterns of care study. J Radiat Res 2012;53:710–2.

16. Numasaki H, Nishio M, Ikeda H et al. Japanese structure survey of radiation oncology in 2009 with special reference to designated cancer care hospitals. Int J Clin Oncol 2013;18:775–83.

17. Numasaki H, Teshima T, Nishimura T et al. Japanese structure survey of radiation oncology in 2010. J Radiat Res 2019;60:80–97.

18. Numasaki H, Teshima T, Nishimura T et al. Japanese structure survey of radiation oncology in 2011. J Radiat Res 2019;60:786–802.

19. Japanese PCS Working Group. Radiation oncology in multidisciplinary cancer therapy -Basic structure requirement for quality assurance of radiotherapy based on Patterns of Care Study in Japan. Osaka: Ministry of Health, Labor, and Welfare Cancer Research Grant Planned Research Study 14–6. 2005, 1–77.

20. Japanese PCS Working Group. Radiation oncology in multidisciplinary cancer therapy -Basic structure requirement for quality assurance of radiotherapy based on Patterns of Care Study in Japan. Kyoto: Ministry of Health, Labor, and Welfare Cancer Research Grant Planned Research Study 18–4. 2010, 1–99.

21. Tanisada K, Teshima T, Ohno Y et al. Patterns of care study quantitative evaluation of the quality of radiotherapy in Japan. Cancer 2002;95:164–71.

22. Teshima T, Japanese PCS working group. Patterns of care study in Japan. Jpn J Clin Oncol 2005;35:497–506.

23. Ministry of Health, Labor and Welfare. A list of designated cancer hospitals. http://www.mhlw.go.jp/ (1 December 2018, date last accessed).

24. Cancer Information Service, National Cancer Center. Cancer Registry and Statistics. http://ganjojo.jp/reg_stat/statistics/dl/index.html (1 December 2018, date last accessed).

25. Statistics Bureau, Ministry of Internal Affairs and Communications. 2013 population census. http://www.stat.go.jp/data/jinsui/2012np/index.htm (1 December 2018, date last accessed).