Proportional comparison of the Gram-negative bacterial species identified in patients with recurrent and non-recurrent bloodstream infections.

Conclusion. Recurrent GNB-BSI is an uncommon complication of GNB-BSI. Recurrent GNB-BSI is most often driven by relapse, as opposed to reinfection, and is associated with black race, implanted cardiac devices and admission to surgical service.

Disclosures. Vance G. Fowler, Jr., MD, MHS, Achaogen (Consultant)Advanced Liquid Logics (Grant/Research Support)Affinity (Consultant, Grant/Research Support)Affinium (Consultant)Akagara (Consultant)Allergan (Grant/Research Support)Ammolphi Biosciences (Consultant)Aridis (Consultant)Armata (Consultant)Basilea (Consultant, Grant/Research Support)Bayer (Consultant)C3J (Consultant)Cerexa (Consultant, Other Financial or Material Support, Educational fees)Contrafect (Consultant, Grant/Research Support)Debiopharm (Consultant, Other Financial or Material Support, Educational fees)Destiny (Consultant)Durata (Consultant, Other Financial or Material Support, Educational fees)Genentech (Consultant, Grant/Research Support)Green Cross (Other Financial or Material Support, Educational fees)Integrated Biotherapeutics (Consultant)Jansen (Consultant, Grant/Research Support)Karius (Grant/Research Support)Locus (Grant/Research Support)Medical Biosurfaces (Grant/Research Support)Medicines Co. (Consultant)MedImmune (Consultant, Grant/Research Support)Merc (Grant/Research Support)NIH (Grant/Research Support)Novavigm (Consultant)Novartis (Consultant, Grant/Research Support)Pfizer (Grant/Research Support)Regeneron (Consultant, Grant/Research Support)Sepsis (Other Financial or Material Support, Pending patent for host gene expression signature diagnostic for sepsis)Spero (Consultant, Grant/Research Support)Spero (Consultant)Trius (Consultant)UpToDate (Other Financial or Material Support, Educational fees)Valanbio (Consultant)Achill (Other Financial or Material Support, Educational fees)Achill (Other Financial or Material Support, Educational fees)Achill (Other Financial or Material Support, Educational fees)

60. Creation and Comparison of a Machine Learning Decision Tree and Traditional Risk Score to Predict Ceftriaxone Resistance in Cancer Patients with *E. coli* Bacteremia

Courtney Moc, PharmD, MSc; William Shopshire, MPH, PhD; Patrick McDonnell, PharmD; Samuel A. Shuburne, MD, PhD; Samuel L. Aitken, PharmD, MPH, BCIDP; Samuel L. Aitken, PharmD, MPH, BCIDP; UT MD Anderson Cancer Center, Houston, Texas; University of Texas MD Anderson Cancer Center, Houston, TX; The University of Texas MD Anderson Cancer Center, Houston, TX; Michigan Medicine, Ann Arbor, TX

Session: O-13. GNB bacteremia

Background. There are several clinical tools that have been developed to predict the likelihood of extended-spectrum β-lactamase producing *Enterobacteriaceae*; however, the creation of these tools included few patients with cancer or otherwise immunosuppressed. The objectives of this retrospective cohort study were to develop a decision tree and traditional risk score to predict ceftriaxone resistance in cancer patients with *Escherichia coli* (*E. coli*) bacteremia as well as to compare the predictive accuracy between the tools.

Methods. Adults age ≥ 18 years old with *E. coli* bacteremia at The University of Texas MD Anderson Cancer Center from 1/2018 to 12/2019 were included. Isolates recovered within 1 week from the same patient were excluded. The decision tree was constructed using classification and regression tree analysis, with a minimum node size of 10. The risk score was created using a multivariable logistic regression model derived by using stepwise variable selection with backward elimination at level 0.2. The decision tree and risk score statistical metrics were compared.

Results. A total of 629 *E. coli* isolates were screened, of which 580 isolates met criteria. Ceftriaxone-resistant (CRO-R) *E. coli* accounted for 36% of isolates. The machine-learning-derived decision tree included 5 predictors whereas the logistic regression-derived risk score included 7 predictors. The risk score cutoff point of ≥ 5 points demonstrated the most optimized overall classification accuracy. The positive predictive value of the decision tree was higher than that of the risk score (88% vs 74%, respectively, but the area under the receiver operating characteristic curve and model accuracy of the risk score was higher than that of the decision tree (0.85 vs 0.73 and 82% vs 74%, respectively).

Conclusion. The decision tree and risk score can be used to determine the likelihood of whether a cancer patient with *E. coli* bacteremia has a CRO-R infection. In both clinical tools, the strongest predictor was a history of CRO-R *E. coli* colonization or infection in the last 6 months. The decision tree was more user-friendly, has fewer variables, and has a better positive predictive value in comparison to the risk score. However, the risk score has a significantly better discrimination and model accuracy than that of the decision tree.

Disclosures. Samuel L. Aitken, PharmD, MPH, BCIDP, Melinta Therapeutics (Individual(s) Involved: Self); Consultant, Grant/Research Support

61. Short- versus prolonged-courses of antimicrobial therapy for patients with uncomplicated *Pseudomonas aeruginosa* bloodstream infection

Moonsuk Bae, n/a; Yun-Seo Jeong, n/a; Seongman Bae, MD; Min Jae Kim, MD; Yong Pil Chong, MD; Sung Han Kim, PhD; Sang-Oh Lee, MD; Sang-Ho Choi, MD; Yang Soo Kim, MD; Jiwon Jung, MD; Pusan National University Yangsan Hospital, Yangsan-si, Kyongsangnam-do, Republic of Korea

Session: O-13. GNB bacteremia

Background. The optimal duration of antimicrobial therapy for uncomplicated *Pseudomonas aeruginosa* bloodstream infection (BSI) is unknown. We compared the outcomes of short and prolonged courses of antimicrobial therapy in adults with uncomplicated pseudomonal BSI.

Methods. All patients with uncomplicated *P. aeruginosa* BSI admitted at a tertiary-care hospital from May 2016 to September 2020 were included. We compared the rate of recurrent *P. aeruginosa* infection and 30-day mortality among patients who underwent short (7-11 days) and prolonged (12-21 days) courses of antimicrobial therapy using propensity score analysis with the inverse probability of treatment weighting (IPTW) method.

Table 1. Regression Model and Assigned Points for Clinical Risk Score

Variable	Odds Ratio (95% CI)	Assigned Points
Ceftriaxone-resistant E. coli colonization or infection in the last 6 months	10.62 (2.90-39.12)	11
Ceftriaxone-resistant E. coli colonization or infection in the last 6 months	4.61 (1.75-11.98)	6
Long-term care facility (in the last 6 months)	4.95 (1.71-14.66)	5
Hospitalization in the last 6 months	2.00 (1.61-4.45)	3
AKI/5000 pack days	2.00 (1.49-4.32)	2
Pseudomonas infection source: genitourinary system	2.06 (1.42-3.30)	2

Table 2. Statistical Metrics of Clinical Decision Tree and Clinical Risk Score

	Decision Tree	Risk Score
Number of variables	5	7
Sensitivity, %	54%	97%
Specificity, %	67%	92%
Positive predictive value, %	80%	74%
Negative predictive value, %	71%	76%
Area under the receiver operating characteristic curve	0.73	0.85

Conclusion. The decision tree and risk score can be used to determine the likelihood of whether a cancer patient with *E. coli* bacteremia has a CRO-R infection. In both clinical tools, the strongest predictor was a history of CRO-R *E. coli* colonization or infection in the last 6 months. The decision tree was more user-friendly, has fewer variables, and has a better positive predictive value in comparison to the risk score. However, the risk score has a significantly better discrimination and model accuracy than that of the decision tree.

Disclosures. Samuel L. Aitken, PharmD, MPH, BCIDP, Melinta Therapeutics (Individual(s) Involved: Self); Consultant, Grant/Research Support

Abstracts • OFID 2021 (Suppl 1) • S41