Poset Ramsey number $R(P, Q_n)$. I.
Complete multipartite posets

Christian Winter*
April 8, 2022

Abstract

A poset $(P', \leq_{P'})$ contains a copy of some other poset (P, \leq_P) if there is an injection $f: P' \to P$ where for every $X, Y \in P$, $X \leq_P Y$ if and only if $f(X) \leq_{P'} f(Y)$. For any posets P and Q, the poset Ramsey number $R(P, Q)$ is the smallest integer N such that any blue/red coloring of a Boolean lattice of dimension N contains either a copy of P with all elements blue or a copy of Q with all elements red. We denote by K_{t_1, \ldots, t_ℓ} a complete ℓ-partite poset, i.e. a poset consisting of ℓ pairwise disjoint sets A_i of size t_i, $1 \leq i \leq \ell$, such that for any $i, j \in \{1, \ldots, \ell\}$ and any two $X \in A_i$ and $Y \in A_j$, $X < Y$ if and only if $i < j$. In this paper we show that $R(K_{t_1, \ldots, t_\ell}, Q_n) \leq n + \frac{(2+o(1))\log n}{\log \log n}$.

1 Introduction

Ramsey theory is a field of combinatorics that asks whether in any coloring of the elements in a discrete host structure we find a particular monochromatic substructure. This question offers a lot of variations depending on the chosen sub- and host structure. While originating from a result of Ramsey [7] on uniform hypergraphs from 1930, the most well-known setting considers monochromatic subgraphs in edge-colorings of complete graphs. In contrast, this paper considers a Ramsey-type problem using partially ordered sets, or posets for short, as the host structure. A poset is a set P which is equipped with a relation \leq_P on the elements of P that is transitive, reflexive, and antisymmetric. Whenever it is clear from the context we refer to such a poset (P, \leq_P) just as P. Given a non-empty set X, the poset consisting of all subsets of X equipped with the inclusion relation \subseteq is the Boolean lattice $Q(X)$ of dimension $|X|$. We use Q_n to denote a Boolean lattice with an arbitrary n-element ground set.

We say that a poset P_1 is an induced subposet of another poset P_2 if $P_1 \subseteq P_2$ and for every two $X, Y \in P_1$, $X \leq_{P_1} Y$ if and only if $X \leq_{P_2} Y$.

A copy of P_1 in P_2 is an induced subposet P' of P_2 which is isomorphic to P_1.

Here we consider color assignments of the elements of a poset P using the colors blue and red, i.e. mappings $c: P \to \{\text{blue}, \text{red}\}$, which we refer to as a blue/red coloring of P. A poset is colored monochromatically if all its elements have the same color. If a poset is colored monochromatically in blue [red], we say that it is a blue [red] poset. The elements of a poset P are usually referred to as vertices.

*Karlsruhe Institute of Technology, Karlsruhe, Germany, E-mail: christian.winter@kit.edu. Research was partially supported by DFG grant FKZ AX 93/2-1.
Axenovich and Walzer \[1\] were the first to consider the following Ramsey variant on posets. For posets P and Q, the poset Ramsey number of P versus Q is given by

$$R(P,Q) = \min\{N \in \mathbb{N} : \text{ every blue/red coloring of } Q_N \text{ contains either}
\text{ a blue copy of } P \text{ or a red copy of } Q\}.$$

As a central focus of research in this area, bounds on the poset Ramsey number $R(Q_n,Q_n)$ were considered and gradually improved with the best currently known bounds being $2n + 1 \leq R(Q_n,Q_n) \leq n^2 - n + 2$, see listed chronologically Walzer \[8\], Axenovich and Walzer \[1\], Cox and Stolee \[4\], Lu and Thompson \[6\], Bohman and Peng \[3\]. The related off-diagonal setting $R(Q_m,Q_n)$, $m < n$, also received considerable attention over the last years.

When both m and n are large, the best known upper bound is due to Lu and Thompson \[6\], yielding together with a trivial lower bound that $m + n \leq R(Q_m,Q_n) \leq (m - 2 + o(1))n + m$. When m is fixed and n is large, an exact result is only known in the trivial case $m = 1$ where $R(Q_1,Q_n) = n + 1$. For $m = 2$, after earlier estimates by Axenovich and Walzer \[1\] as well as Lu and Thompson \[6\], the best known upper bound is due to Grósz, Methuku, and Tompkins \[5\], which is complemented by a lower bound shown recently by Axenovich and the present author \[2\]:

$$n \left(1 + \frac{1}{15 \log n}\right) \leq R(Q_2,Q_n) \leq n \left(1 + \frac{2 + o(1)}{\log n}\right).$$

In this paper we generalize the upper bound of Grósz, Methuku and Tompkins \[5\] on $R(Q_2,Q_n)$ to a broader class of posets, namely we discuss the poset Ramsey number of a complete multipartite poset versus the Boolean lattice Q_n. A complete ℓ-partite poset K_{t_1,\ldots,t_ℓ} is a poset on $\sum_{i=1}^\ell t_i$ vertices obtained as follows. Consider ℓ pairwise disjoint layers A^1,\ldots,A^ℓ of vertices, where layer A^j consists of t_j distinct vertices. Now for any two indexes $i,j \in \{1,\ldots,\ell\}$ and any vertices $X \in A^i, Y \in A^j$, let $X < Y$ if and only if $i < j$. Such a poset can be seen as a complete blow-up of a chain. Note that $Q_2 = K_{1,2,1}$.

![Hasse diagram of the complete 3-partite poset $K_{3,4,2}$](image)

Theorem 1. For $n \in \mathbb{N}$, let $\ell \in \mathbb{N}$ be an integer such that $\ell = o(\log n)$ and for $i \in \{1,\ldots,\ell\}$, let $t_i \in \mathbb{N}$ be integers with $\sup_i t_i = n^{o(1)}$. Then

$$R(K_{t_1,\ldots,t_\ell},Q_n) \leq n \left(1 + \frac{2 + o(1)}{\log n}\right)^\ell \leq n + \frac{(2 + o(1))\ell n}{\log n}.$$

Here and throughout this paper, the O-notation is used exclusively depending on n, i.e. $f(n) = o(g(n))$ if and only if $\frac{f(n)}{g(n)} \to 0$ for $n \to \infty$. For parameters as above, this theorem implies that $R(K_{t_1,\ldots,t_\ell},Q_n) = n + o(n)$. Under the precondition that ℓ is fixed, we even obtain a bound that is asymptotically tight in the first and second summand: We say that a complete
ℓ-partite poset \(K = K_{t_1,\ldots,t_\ell} \) is non-trivial, if it is neither a chain nor an antichain, i.e. if \(\ell \geq 2 \) and \(t_i \geq 2 \) for some \(i \in \{1,\ldots,\ell\} \). Observe that such a non-trivial \(K \) contains either a copy of \(K_{1,2} \) or \(K_{2,1} \), so Theorem 2 of \cite{2} yields \(R(K, Q_n) \geq n + \frac{n}{15 \log n} \). Thus for non-trivial \(K \),

\[
R(K, Q_n) = n + \Theta \left(\frac{n}{\log n} \right).
\]

For trivial \(K \), it is known that \(R(K, Q_n) = n + \Theta(1) \). In detail, if \(K \) is a chain on \(\ell \) vertices, then \(R(K, Q_n) = n + \ell - 1 \), where the upper bound is a consequence of Lemma 4 stated later on and the lower bound is easy to see using a layered coloring of the host lattice. If \(K \) is an antichain on \(t \) vertices, then a trivial lower bound, Lemma 3 in Axenovich and Walzer’s \cite{1}, and Sperner’s Theorem imply \(n \leq R(K, Q_n) \leq n + \alpha(t) \) where \(\alpha(t) \) is the smallest integer such that

\[
\left\lfloor \frac{\alpha(t)}{2} \right\rfloor \geq t.
\]

We shall first consider a special complete multipartite poset that we call a spindle. Given \(r \geq 0, s \geq 1 \) and \(t \geq 0 \), an \((r,s,t)\)-spindle \(S_{r,s,t} \) is defined as the complete multipartite poset

\[
K_{t'_1,\ldots,t'_r+1+1,\ldots,t'_{r+1+t}} = 1 \quad \text{and} \quad t'_{r+1+t} = s.
\]

In other words this poset on \(r+s+t \) vertices is constructed using an antichain \(A \) of size \(s \) and two chains \(C_r, C_t \) on \(r \) and \(t \) vertices, respectively, combined such that every vertex of \(A \) is larger than every vertex from \(C_r \) but smaller than every vertex from \(C_t \).

![Figure 2: Hasse diagram of the spindle \(S_{2,5,3} \)](image)

Theorem 2. Let \(r, s, t \) be non-negative integers with \(r + t = o(\sqrt{\log n}) \) and \(1 \leq s = n^{o(1)} \) for \(n \in \mathbb{N} \). Then

\[
R(S_{r,s,t}, Q_n) \leq n + \frac{(1 + o(1))(r + t)n}{\log n}.
\]

The spindle \(S_{1,s,1} \) is known in the literature as an \(s \)-diamond \(D_s \), while the poset \(S_{1,s,0} \) is usually referred to as an \(s \)-fork \(V_s \).

Corollary 3. Let \(s \in \mathbb{N} \) with \(s = n^{o(1)} \) for \(n \in \mathbb{N} \). Then

\[
R(D_s, Q_n) \leq n + \frac{(2 + o(1))n}{\log n} \quad \text{and} \quad R(V_s, Q_n) \leq n + \frac{(1 + o(1))n}{\log n}.
\]

For a positive integer \(n \in \mathbb{N} \), we use \([n]\) to denote the set \(\{1,\ldots,n\} \), additionally let \([0] = \emptyset \). Here ‘log’ always refers to the logarithm with base 2. We omit floors and ceilings where appropriate.

The structure of the paper is as follows. First, in Section 2 we introduce some notation and two preliminary lemmas. In Section 3 we show the bound for spindles and afterwards the generalization for general complete multipartite posets.
2 Preliminaries

2.1 Red Q_n versus blue chain

Let \mathcal{X} and \mathcal{Y} be disjoint sets. Then the vertices of the Boolean lattice $Q(\mathcal{X} \cup \mathcal{Y})$, i.e. the subsets of $\mathcal{X} \cup \mathcal{Y}$, can be partitioned with respect to \mathcal{X} and \mathcal{Y} in the following manner. Every $Z \subseteq \mathcal{X} \cup \mathcal{Y}$ has an \mathcal{X}-part $X_Z = Z \cap \mathcal{X}$ and a \mathcal{Y}-part $Y_Z = Z \cap \mathcal{Y}$. In this setting, we refer to Z alternatively as the pair (X_Z, Y_Z). Conversely, for all $X \subseteq \mathcal{X}$, $Y \subseteq \mathcal{Y}$, the pair (X,Y) corresponds uniquely to the vertex $X \cup Y \in Q(\mathcal{X} \cup \mathcal{Y})$. One can think of such pairs as elements of the Cartesian product $2^X \times 2^Y$ which has a canonical bijection to $2^{\mathcal{X} \cup \mathcal{Y}} = Q(\mathcal{X} \cup \mathcal{Y})$. Observe that for $X_i \subseteq \mathcal{X}$, $Y_i \subseteq \mathcal{Y}$, $i \in [2]$, we have $(X_1, Y_1) \subseteq (X_2, Y_2)$ if and only if $X_1 \subseteq X_2$ and $Y_1 \subseteq Y_2$.

We shall need the following lemma.

Lemma 4. Let \mathcal{X}, \mathcal{Y} be disjoint sets with $|\mathcal{X}| = n$ and $|\mathcal{Y}| = k$, for some $n, k \in \mathbb{N}$. Let $Q = Q(\mathcal{X} \cup \mathcal{Y})$ be a blue/red colored Boolean lattice. Fix some linear ordering $\pi = (y_1, \ldots, y_k)$ of \mathcal{Y} and define $Y(0), \ldots, Y(k)$ by $Y(0) = \emptyset$ and $Y(i) = \{y_1, \ldots, y_i\}$ for $i \in [k]$. Then there exists at least one of the following in Q:

(a) a red copy of Q_n, or

(b) a blue chain of length $k + 1$ of the form $(X_0, Y(0)), \ldots, (X_k, Y(k))$ where $X_0 \subseteq X_1 \subseteq \cdots \subseteq X_k \subseteq \mathcal{X}$.

Note that a version of this lemma was used implicitly in a paper of Grósz, Methuku and Tompkins [5]. It was stated explicitly and reproved by Axenovich and the author, see Lemma 8 in [2].

2.2 Gluing two posets

By identifying vertices of two posets, they can be “glued together” creating a new poset. We will later construct complete multipartite posets by gluing spindles on top of each other using the following definition. Given a poset P_1 with a unique maximal vertex Z_1 and a poset P_2 disjoint from P_1 with a unique minimal vertex Z_2, let $P_1 \dot\cup P_2$ be the poset obtained by identifying Z_1 and Z_2. Formally speaking, $P_1 \dot\cup P_2$ is the poset $(P_1 \setminus \{Z_1\}) \cup (P_2 \setminus \{Z_2\}) \cup \{Z\}$ for a $Z \notin P_1 \cup P_2$ where for any two $X, Y \in P_1 \dot\cup P_2$, $X \prec_{P_1 \dot\cup P_2} Y$ if and only if one of the following five cases hold: $X, Y \in P_1$ and $X \prec_{P_1} Y$; $X, Y \in P_2$ and $X \prec_{P_2} Y$; $X \in P_1$ and $Y \in P_2$; $X \in P_1$ and $Y = Z$; or $X = Z$ and $Y \in P_2$.

![Figure 3: Creating $P_1 \dot\cup P_2$ from P_1 and P_2](image-url)
Lemma 5. Let P_1 be a poset with a unique maximal vertex and let P_2 be a poset with a unique minimal vertex. Then $R(P_1 \mapsto P_2, Q_n) \leq R(P_1, Q_{R(P_2, Q_n)}).

Proof. Let $N = R(P_1, Q_{R(P_2, Q_n)})$. Consider a blue/red colored Boolean lattice Q of dimension N which contains no blue copy of $P_1 \mapsto P_2$. We shall prove that there exists a red copy of Q_n in this coloring. We say that a blue vertex X in Q is P_1-clear if there is no red copy of P_1 in Q containing X as its maximal vertex. Similarly, a blue vertex X in Q is P_2-clear if there is no blue copy of P_2 in Q with minimal vertex X. Observe that every blue vertex is P_1-clear or P_2-clear (or both), since there is no blue copy of $P_1 \mapsto P_2$.

We introduce an auxiliary coloring of Q using colors green and yellow. Color all blue vertices which are P_1-clear in green and all other vertices in yellow. Then this coloring does not contain a monochromatic green copy of P_1, since otherwise the maximal vertex of such a copy is not P_1-clear. Recall that $N = R(P_1, Q_{R(P_2, Q_n)})$, thus Q contains a monochromatic yellow copy of $Q_{R(P_2, Q_n)}$, which we refer to as Q'.

Consider the original blue/red coloring of Q'. Every blue vertex of Q' is yellow in the auxiliary coloring, i.e. not P_1-clear. Thus every blue vertex of Q' is P_2-clear. This coloring of Q' does not contain a blue copy of P_2, since otherwise the minimal vertex of such a copy is not P_2-clear. Note that the Boolean lattice Q' has dimension $R(P_2, Q_n)$, thus there exists a monochromatic red copy of Q_n in Q', hence also in Q.

Corollary 6. Let P_1 be a poset with a unique maximal vertex and let P_2 be a poset with a unique minimal vertex. Suppose that there are functions $f_1, f_2 : \mathbb{N} \to \mathbb{R}$ with $R(P_1, Q_n) \leq f_1(n)n$ and $R(P_2, Q_n) \leq f_2(n)n$ for any $n \in \mathbb{N}$ and such that f_1 is monotonically non-increasing. Then for every $n \in \mathbb{N},

\[R(P_1 \mapsto P_2, Q_n) \leq f_1(n)f_2(n). \]

Proof. For an arbitrary $n \in \mathbb{N}$, let $n' = f_2(n)n$. Note that for any poset P, $R(P, Q_n) \geq n$, so $n' \geq n$. Hence $f_1(n') \leq f_1(n)$, and Lemma 5 provides

\[R(P_1 \mapsto P_2, Q_n) \leq R(P_1, Q_{n'}) \leq f_1(n')n' \leq f_1(n)f_2(n)n \]

3 Proofs of Theorem 2 and Theorem 1

Proof of Theorem 2

Let $\epsilon = \frac{\log s}{\log n}$, so $s = n^\epsilon$ and $\epsilon = o(1)$. We can suppose that n is large and hence $\epsilon < 1$. Then let $c = \frac{r+2s}{2(\log n)}$ where $\delta = \frac{2(r+1)}{\log n}$. Since $r + t = o(\sqrt{\log n})$, $\delta = o(1)$. Let $k = \frac{cn}{\log n}$. We show for sufficiently large n that $R(S_{r,s,t}, Q_n) \leq n + k$.

If $s = 1$, $S_{r,s,t}$ is a chain and $R(S_{r,s,t}, Q_n) \leq n + r + s \leq n + k$ by Lemma 4, so suppose $s \geq 2$.

Claim: For sufficiently large n, $k! > 2^{(r+t)(n+k)} \cdot (s-1)^{k+1}$.

Note that $k! > \left(\frac{k}{e}\right)^k = 2^{k(k - \log 2)}$ and $(s - 1)^{k+1} = 2^{k+1}(s-1)^{k+1}$. Thus we shall prove that $k(k - \log 2) > (r + t + \log(s - 1))k + \log(s - 1) + (r + t)n$. Using that $k = \frac{cn}{\log n}$ and
\(s - 1 \leq n^\epsilon \), we obtain
\[
\begin{align*}
k \cdot \left(\log k - \log (s - 1) \right) - k \cdot \left(r + t + \log \epsilon \right) - \log (s - 1) - (r + t)n \\
\geq \frac{cn}{\log n} \left(\log c + \log n - \log \log n - \epsilon \log n \right) - \frac{cn}{\log n} \left(r + t + \log \epsilon \right) - \epsilon \log n - (r + t)n \\
\geq cn(1 - \epsilon) - (r + t)n - \frac{cn}{\log n} \left(\log \log n + r + t + \log \epsilon \right) - \epsilon \log n \\
> \delta n - \frac{2(r + 1)n}{\log n} \left(\log \log n + r + t \right) = 0,
\end{align*}
\]
where the last inequality holds for sufficiently large \(n \).

Let \(\mathcal{X} \) and \(\mathcal{Y} \) be disjoint sets with \(|\mathcal{X}| = n \) and \(|\mathcal{Y}| = k \). We consider a blue/red coloring of \(Q = Q(\mathcal{X} \cup \mathcal{Y}) \) with no red copy of \(Q_n \). We shall show that there is a monochromatic blue copy of \(S_{r,s,t} \) in \(Q \). For every linear ordering \(\pi = (y_1^r, \ldots, y_k^r) \) of \(\mathcal{Y} \), Lemma 4 provides a blue chain \(C^\pi \) of the form \(Z_0^\pi = (X_0^\pi, \emptyset), Z_1^\pi = (X_1^\pi, \{y_1^r\}), \ldots, Z_k^\pi = (X_k^\pi, \mathcal{Y}) \), where \(X_k^\pi \subseteq \mathcal{X} \).

For every ordering \(\pi \) of \(\mathcal{Y} \), we consider the \(r \) smallest vertices \(Z_0^\pi, \ldots, Z_{r-1}^\pi \) and the \(t \) largest vertices \(Z_{k-t+1}^\pi, \ldots, Z_k^\pi \) of its corresponding chain \(C^\pi \), so let \(I = \{0, \ldots, r-1\} \cup \{k-t+1, \ldots, k\} \). Each \(Z_i^\pi \) is a vertex of \(Q \), so one of the \(2^{r+k} \) distinct combinations of the \(Z_i^\pi \), \(i \in I \). Recall that \(k! > 2^{(r+t)(n+k)} \cdot (s-1)^{k+1} \). By pigeonhole principle, we find a collection \(\pi_1, \ldots, \pi_m \) of \(m = (s-1)^{k+1} + 1 \) distinct linear orderings of \(\mathcal{Y} \) such that for all \(j \in [m] \) and \(i \in I \), \(Z_i^{\pi_j} = Z_i \) for some \(Z_i \subseteq \mathcal{X} \cup \mathcal{Y} \) independent of \(j \). In other words, we find many chains with same \(r \) smallest vertices \(Z_i, i \in \{0, \ldots, r-1\} \), and same \(t \) largest vertices \(Z_i, i \in \{k-t+1, \ldots, k\} \). Let \(\mathcal{P} \) be the poset induced in \(Q \) by the chains \(C^{\pi_j}, j \in [m] \).

If there is an antichain \(A \) of size \(s \) in \(\mathcal{P} \), then none of the vertices \(Z_i, i \in A \), because they are contained in every chain \(C^\pi \) and therefore comparable to all other vertices in \(\mathcal{P} \). Now \(A \) together with the vertices \(Z_i, i \in A \), form a copy of \(S_{r,s,t} \) in \(\mathcal{P} \). Recall that all vertices in every \(C^\pi \) are blue, i.e. \(\mathcal{P} \) is monochromatic blue. Thus we obtain a blue copy of \(S_{r,s,t} \), which we are done. From now on, suppose that there is no antichain of size \(s \) in \(\mathcal{P} \).

By Dilworth’s Theorem we obtain \(s - 1 \) chains \(C_1, \ldots, C_{s-1} \) which cover all vertices of \(\mathcal{P} \), i.e. all vertices of the \(C^{\pi_j} \)’s. Note that the chains \(C_i \) might consist of significantly more vertices than the \((k + 1) \)-element chains \(C^{\pi_j} \).

Now we consider the restriction to \(\mathcal{Y} \) of each vertex in \(\mathcal{P} \), i.e. the sets \(Z_i^\pi \cap \mathcal{Y} \), in order to apply the pigeonhole principle once again. Assume for a contradiction that for some \(i \in [s-1] \) there are \(Z, Z' \in C_i \) with \(Z \cap \mathcal{Y} = |Z \cap \mathcal{Y}| = |Z' \cap \mathcal{Y}| \) but \(Z \cap \mathcal{Y} \neq Z' \cap \mathcal{Y} \). This implies that \(Z \cap \mathcal{Y} \subseteq Z' \cap \mathcal{Y} \) and \(Z \cap \mathcal{Y} \supseteq Z' \cap \mathcal{Y} \), so \(Z \) and \(Z' \) are incomparable, a contradiction as they are both contained in the chain \(C_i \). Consequently, there is only at most one \(\ell \)-element set \(Y^\ell \subseteq Y^s \), \(\ell \in \{0, \ldots, k\} \), for which there exists a \(Z \in C_i \) with \(Z \cap \mathcal{Y} = Y^\ell \).

Note that for all \(j \in [m] \) and for all \(\ell \in \{0, \ldots, k\} \), \(|Z_i^{\pi_j} \cap \mathcal{Y}| = \ell \), i.e. \(Z_i^{\pi_j} \cap \mathcal{Y} = Y^\ell \) for some \(i \in [s-1] \). In other words, for fixed \(j \), each of the \(k + 1 \) sets \(Z_i^{\pi_j} \cap \mathcal{Y}, i \in \{0, \ldots, k\} \), is equal to one of at most \(s - 1 \) \(Y^\ell \)’s. Recall that we have chosen \(m = (s-1)^{k+1} + 1 \) distinct linear orderings \(\pi_j \) of \(\mathcal{Y} \). Using pigeonhole principle we find two indexes \(j_1, j_2 \) such that \(Z_i^{\pi_j_1} \cap \mathcal{Y} = Z_i^{\pi_j_2} \cap \mathcal{Y} \) for all \(\ell \in \{0, \ldots, k\} \). This implies that \(y_i^{\pi_j_1} = y_i^{\pi_j_2} \), i.e. \(\pi_{j_1} \) and \(\pi_{j_2} \) are equal. But this is a contradiction to the fact that all orderings \(\pi_j \) are distinct.

\(\square \)
Now we extend Theorem 2 to general complete multipartite posets using Corollary 6.

Proof of Theorem 2. Let \(t = \sup_i t_i \). Then Theorem 2 shows the existence of a function \(\epsilon(n) = o(1) \) with \(R(K_{1,t,1}, Q_n) \leq n \left(1 + \frac{2 + \epsilon(n)}{\log n} \right) \). We can suppose that \(\epsilon \) is monotonically non-increasing by replacing \(\epsilon(n) \) with \(\max_{N > n} \{ \epsilon(N), 0 \} \) where necessary. In order to prove the theorem, we show a stronger statement using the auxiliary \((2\ell + 1)\)-partite poset \(P = K_{1,t,1,t,...,1,t,1} \). Note that \(K_{t,1,t,...,t} \) is an induced subposet of \(P \), thus \(R(K_{t,1,t,...,t}, Q_n) \leq R(P, Q_n) \). In the following we verify that

\[
R(P, Q_n) \leq n \left(1 + \frac{2 + \epsilon(n)}{\log n} \right) ^\ell.
\]

We use induction on \(\ell \). If \(\ell = 1 \), then \(P = K_{1,t,1} \), so \(R(P, Q_n) \leq n \left(1 + \frac{2 + \epsilon(n)}{\log n} \right) \). If \(\ell \geq 2 \), we “deconstruct” the poset into two parts. Consider \(P_1 = K_{1,t,1} \) and the complete \((2\ell - 1)\)-partite poset \(P_2 = K_{1,t,1,t,...,1,t,1} \). Then \(P_1 \) has a unique maximal vertex and \(P_2 \) has a unique minimal vertex. Observe that \(P_1 \uplus P_2 = P \). Using the induction hypothesis

\[
R(P_1, Q_n) \leq n \left(1 + \frac{2 + \epsilon(n)}{\log n} \right) \text{ and } R(P_2, Q_n) \leq n \left(1 + \frac{2 + \epsilon(n)}{\log n} \right) ^{\ell-1}.
\]

Now Corollary 6 provides the required bound. \(\square \)

4 Conclusive remarks

In this paper we considered \(R(K, Q_n) \) where \(K \) is a complete multipartite poset. Although the presented bounds hold if the parameters of \(K \) depend on \(n \), the original motivation for these results concerned the case where \(K \) is fixed, i.e. independent from \(n \):

After \(R(Q_2, Q_n) \) was bounded asymptotically sharply by Grósz, Methuku and Tompkins [5] and Axenovich and the present author [2], the examination of \(R(Q_3, Q_n) \) is an obvious follow-up question. The best known upper bound is due to Lu and Thompson [6], while the best known lower bound can be deduced from a bound on \(R(K_{1,2}, Q_n) \) in [2],

\[
n + \frac{n}{15 \log n} \leq R(K_{1,2}, Q_n) \leq R(Q_3, Q_n) \leq 37 \frac{n}{16} + 39 \frac{n}{16}.
\]

In order to find better bounds and answer the question whether or not \(R(Q_3, Q_n) = n + o(n) \), the consideration of \(R(P, Q_n) \) for small posets \(P \) might prove helpful as building blocks for Boolean lattices. For example, \(Q_3 \) can be partitioned into a copy of \(K_{1,3} \) and a copy of \(K_{3,1} \) which interact in a proper way. Both of these posets are complete 2-partite posets with, as shown here, Ramsey numbers bounded by

\[
R(K_{1,3}, Q_n) = R(K_{3,1}, Q_n) = n + \Theta \left(\frac{n}{\log n} \right).
\]

However, it remains open how to use our estimate to tighten the bounds on \(R(Q_3, Q_n) \).

Acknowledgments: The author would like to thank Maria Axenovich for helpful discussions and comments on the manuscript.
References

[1] M. Axenovich, and S. Walzer. Boolean lattices: Ramsey properties and embeddings. Order 34(2), 287–298 (2017).

[2] M. Axenovich, and C. Winter. Poset Ramsey numbers: large Boolean lattice versus a fixed poset. Submitted, preprint available at arXiv:2110.07648v1, 2021.

[3] T. Bohman, and F. Peng. A Construction for Cube Ramsey. Preprint, available at arXiv:2102.00317v1, 2021.

[4] C. Cox, and D. Stolee. Ramsey Numbers for Partially-Ordered Sets. Order 35(3), 557–579, 2018.

[5] D. Grósz, A. Methuku, and C. Tompkins. Ramsey numbers of Boolean lattices. Submitted, preprint available at arXiv:2104.02002v1, 2021.

[6] L. Lu, and C. Thompson. Poset Ramsey Numbers for Boolean Lattices. Order (2021).

[7] F. P. Ramsey. On a Problem of Formal Logic. Proceedings of the London Mathematical Society s2-30(1), 264–286, 1930.

[8] S. Walzer. Ramsey Variant of the 2-Dimension of Posets. In: Master Thesis, Karlsruhe Institute of Technology (2015).