ON THE GROWTH OF SOLUTIONS TO THE MINIMAL SURFACE EQUATION OVER DOMAINS CONTAINING A HALFPLANE

ERIK LUNDBERG AND ALLEN WEITSMAN

Abstract. We consider minimal graphs $u = u(x, y) > 0$ over unbounded domains D with $u = 0$ on ∂D. Assuming D contains a sector properly containing a halfplane, we obtain estimates on growth and provide examples illustrating a range of growth.

Keywords: minimal surface, harmonic mapping, asymptotics
MSC: 49Q05

Corresponding author: Erik Lundberg
email: elundber@math.purdue.edu, elundberg9@gmail.com
phone: (765) 494-1965
fax: (765) 494-0548

1. Introduction

Let D be an unbounded plane domain. In this paper we consider the boundary value problem for the minimal surface equation

$$\begin{cases}
\text{div} \frac{\nabla u}{\sqrt{1 + |\nabla u|^2}} = 0 \quad \text{and} \quad u > 0 \quad \text{in } D \\
u = 0 \quad \text{on } \partial D
\end{cases}
$$

(1.1)

We shall study the constraints on growth of nontrivial solutions to (1.1) as determined by the maximum

$$M(r) = \max u(x, y),$$

where the max is taken over the values $r = \sqrt{x^2 + y^2}$ and $(x, y) \in D$.

Perhaps the first relevant theorem in this direction was proved by Nitsche [7, p. 256] who observed that if D is contained in a sector of opening strictly less than π, then $u \equiv 0$. For domains contained in a half plane, but not contained in any such sector, there are a host of solutions to (1.1) which will be discussed later. However, in this case, it has been shown [11] that if D is bounded by a Jordan arc,

$$Cr \leq M(r) \leq e^{Cr} \quad (r > r_0)$$

for some positive constants C and r_0.

If, on the other hand, the domain D contains a sector of opening α bigger than π, we shall show that the growth of $M(r)$ is at most linear (see Theorem 2.1 in Section 2). Regarding the bound from below, with the order ρ of u defined by

$$\rho = \lim_{r \to \infty} \sup \frac{\log M(r)}{\log r},$$

it follows by using the module estimates of Miklyukov [5] (see also chapter 9 in [6]) as in [10] that if D omits a sector of opening $2\pi - \alpha$, ($\pi \leq \alpha \leq 2\pi$, the omitted set in the case $\alpha = 2\pi$ being a line), then the order of any nontrivial solution to (1.1) is at least π/α.

The paper concludes with a list of problems and conjectures.

2. Estimates on Growth

For later convenience we shall use complex notation $z = x + iy$ for points (x, y) when describing solutions to the minimal surface equation. As such, we are given a minimal graph with positive height function $u(z)$ over a domain D as in (1.1).

Theorem 2.1. Let D be a domain whose boundary is a Jordan arc, and D contains a sector $S_{\lambda} := \{ z : |\arg z| \leq \lambda \}$, with $\lambda > \pi/2$. With $M(r)$ defined as above, if u satisfies (1.1) in D and vanishes on the boundary ∂D, then there exist positive constants K and R such that

$$M(r) \leq Kr, \quad |z| > R.$$

Throughout, we will make use of the parametrization in isothermal coordinates by the Weierstrass functions $(x(\zeta), y(\zeta), U(\zeta))$ with ζ in the right half plane H, $U(\zeta) = u(x(\zeta), y(\zeta))$ and (up to additive constants)

$$\begin{cases}
 x(\zeta) = \Re \frac{1}{2} \int_{\zeta_0}^{\zeta} \omega(\zeta)(1 - G^2(\zeta))d\zeta \\
 y(\zeta) = \Re \frac{i}{2} \int_{\zeta_0}^{\zeta} \omega(\zeta)(1 + G^2(\zeta))d\zeta \\
 U(\zeta) = \Re \int_{\zeta_0}^{\zeta} \omega(\zeta) G(\zeta)d\zeta
\end{cases}$$

With this parameterization, the height function $U(\zeta)$ pulled back to the halfplane H becomes a positive harmonic function in H which is 0 on the imaginary axis, and thus is simply $U(\zeta) = C\Re\{\zeta\}$ for a real positive constant C. We may assume without loss of generality that $C = 2$.

Since $f(\zeta) := x(\zeta) + iy(\zeta)$ is harmonic in H, there exist analytic functions $h(\zeta)$ and $g(\zeta)$ in H such that
\[f(\zeta) = h(\zeta) + g(\zeta). \]

With this formulation, the height function then satisfies
\[U(\zeta) = 2 \Re i \int \sqrt{h'(\zeta)g'(\zeta)} \, d\zeta, \]
and since \(U(\zeta) = \zeta \) in (2.2), it follows that
\[g'(\zeta) = -\frac{1}{h'(\zeta)}. \]

2.1. **Proof of Theorem 2.1.** First we establish the bound (2.1) inside a sector.

Lemma 2.2. Let \(S_\alpha := \{ z : |\arg z| \leq \alpha < \pi/2 \} \) be a sector contained in \(H \subset D \). Then for some \(K > 0 \) the upper bound (2.1) holds in \(S_\alpha \) for all \(r \) sufficiently large:
\[\max_{|z| = r, z \in S_\alpha} u(z) \leq Kr. \]

Proof of Lemma. Let \(f(\zeta), U(\zeta) \) be as above. So, \(u(f(\zeta)) = U(\zeta) = \Re \zeta \).

Let \(P := \{ \zeta : \Re f(\zeta) > 0 \} \) be the preimage of the right halfplane, and introduce a new variable \(\tilde{\zeta} \) and let \(\psi(\tilde{\zeta}) \) be a conformal map from the right half \(\tilde{\zeta} \)-plane \(H := \{ \tilde{\zeta} : \Re (\tilde{\zeta}) > 0 \} \) onto \(P \).

Define
\[
\begin{align*}
\tilde{f}(\tilde{\zeta}) &:= f(\psi(\tilde{\zeta})) \\
\tilde{g}(\tilde{\zeta}) &:= g(\psi(\tilde{\zeta})) \\
\tilde{h}(\tilde{\zeta}) &:= h(\psi(\tilde{\zeta}))
\end{align*}
\]

Then \(\tilde{f} \) is a harmonic map, and
\[\tilde{f}(\tilde{\zeta}) = \tilde{h}(\tilde{\zeta}) + \tilde{g}(\tilde{\zeta}). \]

We wish to show that for all \(|z| > R \) in \(S_\alpha \),
\[\frac{u(z)}{|z|} = \frac{U(\zeta)}{|f(\zeta)|} = \frac{\Re \zeta}{|f(\zeta)|} = \frac{\Re \psi(\tilde{\zeta})}{|f(\zeta)|} < K. \]

Let \(\tilde{F}(\tilde{\zeta}) = \tilde{h}(\tilde{\zeta}) + \tilde{g}(\tilde{\zeta}) \) be the analytic function with the same real part as \(\tilde{f} \). Then \(\Re \tilde{F} \) is positive in \(H \) and vanishes on \(\partial H \), and therefore, without loss of generality we may write (see [9, p. 151])
\[\tilde{F}(\tilde{\zeta}) = \tilde{\zeta} \implies \tilde{F}'(\tilde{\zeta}) = 1. \]

The proof hinges on (2.4) along with the chain rule combined with (2.3). Now,
\[\tilde{h}'(\tilde{\zeta}) = h'(\psi(\tilde{\zeta})) \cdot \psi'(\tilde{\zeta}). \]
and

\[(2.5) \quad \tilde{g}'(\tilde{\zeta}) = -\frac{\psi'(\tilde{\zeta})}{h'(\psi(\tilde{\zeta}))} = -\frac{\psi'(\tilde{\zeta})^2}{h'(\tilde{\zeta})}.\]

Combining this with (2.4) we have

\[1 = \tilde{F}'(\tilde{\zeta}) = \tilde{h}'(\tilde{\zeta}) - \frac{\psi'(\tilde{\zeta})^2}{h'(\tilde{\zeta})},\]

which implies

\[\tilde{h}'(\tilde{\zeta})^2 - \tilde{h}'(\tilde{\zeta}) - \psi'(\tilde{\zeta})^2 = 0.\]

Thus,

\[(2.6) \quad \tilde{h}'(\tilde{\zeta}) = \frac{1 + \sqrt{1 + 4\psi'(\tilde{\zeta})^2}}{2}.\]

Since \(\psi(\tilde{\zeta})\) is a conformal map with \(\Re\psi(\tilde{\zeta}) > 0\) in \(H\), there exists a real constant \(0 \leq c < \infty\) such that in any sector \(S_\beta := \{\tilde{\zeta} : |\arg \tilde{\zeta}| \leq \beta < \pi/2\}\) the limit \(\psi'(\tilde{\zeta}) \to c\) exists as \(\tilde{\zeta} \to \infty\) in \(S_\beta\). (see [9, p. 152])

Case 1: \(\psi'(\tilde{\zeta}) \to c = 0\) as \(\tilde{\zeta} \to \infty\) (with \(\tilde{\zeta}\) in \(S_\beta\)).

From (2.6) we have \(\tilde{h}'(\tilde{\zeta}) \to 1\) as \(\tilde{\zeta} \to \infty\), and using (2.5) we have \(\tilde{g}'(\tilde{\zeta}) \to 0\). Thus, \(\tilde{h}(\tilde{\zeta}) \approx \tilde{\zeta}\) and \(\tilde{g}(\tilde{\zeta}) = o(1)\), which implies that \(\tilde{f}(\tilde{\zeta}) = \tilde{h}(\tilde{\zeta}) + \tilde{g}(\tilde{\zeta}) \approx \tilde{\zeta}\).

Since \(\tilde{f} : H \to H\) is asymptotic to the identity map, given \(\alpha\), we may choose \(\beta < \pi/2\) so that \(S_\alpha \cap \{|z| > R\}\) is contained in the image of the sector \(S_\beta\) for \(R\) large enough. Thus, the estimate \(\psi'(\tilde{\zeta}) \to 0\) applies in the region \(S_\alpha\); and we have

\[\frac{u(z)}{|z|} = \frac{\Re\psi(\tilde{\zeta})}{|\tilde{f}(\tilde{\zeta})|} < \frac{|\psi(\tilde{\zeta})|}{|\tilde{f}(\tilde{\zeta})|} = o(1), \quad \text{for} \quad z \in S_\alpha \cap \{|z| > R\},\]

since \(\tilde{f}(\tilde{\zeta}) \approx \tilde{\zeta}\), and \(\psi'(\tilde{\zeta}) = o(1)\).

Case 2: \(\psi'(\tilde{\zeta}) \to c > 0\) as \(\tilde{\zeta} \to \infty\).

From (2.4) we have \(\Re\{\tilde{h}(\tilde{\zeta}) + \tilde{g}(\tilde{\zeta})\} = \Re\tilde{\zeta}\). Let us also estimate \(\Im \tilde{f}(\tilde{\zeta}) = \Im \tilde{h}(\tilde{\zeta}) - \Im \tilde{g}(\tilde{\zeta})\). We use (2.6) and (2.5):

\[\tilde{h}'(\tilde{\zeta}) \to \frac{1 + \sqrt{1 + 4c^2}}{2},\]
\[\tilde{g}'(\tilde{\zeta}) \to \frac{-2c^2}{1 + \sqrt{1 + 4c^2}},\]

which imply

\[\tilde{h}'(\tilde{\zeta}) - \tilde{g}'(\tilde{\zeta}) \to \frac{(1 + \sqrt{1 + 4c^2})^2 + 4c^2}{2(1 + \sqrt{1 + 4c^2})} = 1 + \frac{4c^2}{1 + \sqrt{1 + 4c^2}}.\]
Putting this together, we have
\[\hat{h}(\zeta) + \hat{g}(\zeta) = \Re \zeta + i \left(1 + \frac{4c^2}{1 + \sqrt{1 + 4c^2}} + o(1) \right) \Im \zeta. \]

As in the first case, given \(\alpha \), we may thus choose \(\beta < \pi/2 \) and \(R > 0 \) so that \(S_\alpha \cap \{|z| > R\} \) is contained in the image \(\hat{f}(S_\beta) \) of the sector \(S_\beta \). Then we have
\[u(z) = \left| \frac{\Re \psi(\zeta)}{|\hat{f}(\zeta)|} < \frac{|\psi(\zeta)|}{|\hat{f}(\zeta)|} = O(1), \quad \text{for } z \in S_\alpha \cap \{|z| > R\}. \]
Indeed, \(|\hat{f}(\zeta)| = \left| \Re \zeta + i \left(1 + \frac{4c^2}{1 + \sqrt{1 + 4c^2}} + o(1) \right) \Im \zeta \right|, \) and \(\psi'(\zeta) = O(1) \implies \psi(\zeta) = O(|\zeta|). \)

Applying Lemma 2.2 to two sectors, one rotated clockwise and the other counterclockwise, in order that their union covers \(S_\lambda \), the upper bound (2.1) is established in \(S_\lambda \). It remains to prove the estimate in the rest of \(D \).

Let \(\pi/2 < \alpha < \lambda \). We will show that the upper bound (2.1) holds in \(D \setminus \overline{S_\alpha} \).

In order to prove this, we will apply the following result from [1, Main Theorem]:

Theorem A. Let \(\Omega \subset \Omega_1 = \{(x,y) : x > 0, -f(x) < y < f(x)\} \), where \(f, g \in C[0,\infty), f, g \geq 0, g(0) = 0, f(t), g(t)/t \) increase as \(t \) increases, and let \(u \in C(\Omega) \cap C^2(\Omega) \). Suppose that

i) \(\text{div} \frac{\nabla u}{\sqrt{1 + |
abla u|^2}} \geq 0 \) in \(\Omega \),

ii) \(u|_{\partial \Omega \cap \{|-f(t), f(t)|\}} \leq g(x) \) for \(x \in [0, \infty) \),

iii) \(0 < \kappa(x) := f(x)/(2g(x)) < 1 \) for all \(x \) larger than some \(x_1 > 0 \),

iv) \(\kappa(x) \) is decreasing on \([x_1, \infty) \).

Then \(u(x, y) \leq g(x/(1 - \kappa(x))) \) for every \((x, y) \in \Omega \) with \(x > x_1 \).

We apply this to \(\Omega = D \setminus \overline{S_\alpha} \), while taking \(\Omega_1 = \mathbb{C} \setminus \overline{S_\alpha} \). In order to relate to the setup in the theorem, reflect these domains about the y-axis, so that \(\Omega \) and \(\Omega_1 \) are in the right halfplane. Then \(\Omega_1 = \{(x, y) : x > 0, -f(x) < y < f(x)\} \), where \(f(x) = \tan(\pi - \alpha)x \). If \(C > 0 \) is sufficiently large, then \(g(x) = Cx(1 - \exp(-x)/2) \) satisfies both (iii) and (iv). We check that for \(C \) large enough, (ii) is also satisfied. Note that \(\partial \Omega \) contains points on \(\partial D \) and points on \(\partial S_\alpha \). For points on \(\partial D \), \(u = 0 \), and for points on \(\partial S_\alpha \), \(u \) has at most linear growth by Lemma 2.2. Thus, in both cases (ii) is satisfied, and
Theorem A may be applied. The result is that \(u(x, y) \leq g(x/(1 - \kappa(x))) \) for all large enough \(x \in \Omega \). Since

\[
\frac{x}{1 - \kappa(x)} = \frac{x}{1 - \tan(\pi - \alpha)/C} (1 + o(1)),
\]

and \(\tan(\pi - \alpha)/C \) is a small constant provided \(C \) is large, we have

\[u(x, y) < Cx, \]

for all large enough \(x \in \Omega \). This completes the proof of (2.1).

2.2. A lower bound.

Proposition 2.3. Suppose \(D \) is a domain with \(\partial D \neq \emptyset \), and \(u(z) > 0 \) satisfies (1.1) with \(u(z) = 0 \) on \(\partial D \). Then \(u(z) \) has at least logarithmic growth.

Proof. Without loss of generality assume that \(0 \in \partial D \), and consider the top half of the vertical catenoid centered at \(z = 0 \) as a “barrier” (cf. [8, p. 92]). Explicitly, let \(\cosh^{-1} \) denote the positive branch of the inverse of \(\cosh : \mathbb{R} \to \mathbb{R} \), and define

\[
G(z; r_1) := r_1 \cosh^{-1} \left(\frac{|z|}{r_1} \right), \quad |z| \geq r_1.
\]

For each \(r_1 \), \(G(z; r_1) \) satisfies (1.1).

Let \(\varepsilon > 0 \) and choose a \(\delta \)-neighborhood \(B(\delta, 0) \) of \(z = 0 \) small enough that \(u(z) < \varepsilon \) throughout \(B(\delta, 0) \cap D \).

Define \(u_\varepsilon(z) = u(z) - \varepsilon \). For \(r_1 > 0 \) small enough, \(G(|z|; r_1) > u_\varepsilon(z) \) on \(\partial B(\delta, 0) \cap D \).

For \(R > 0 \), let

\[
K_R := D \cap B(R, 0) \setminus B(\delta, 0).
\]

Fix \(R = R_0 \). Suppose \(\max_{|z|=R} |u(z)| \) grows slower than logarithmically, so it grows slower than \(G(|z|, r_1) \). Then for \(R > R_0 \) sufficiently large, \(G(|z|; r_1) > u_\varepsilon(z) \) on \(\partial K_R \). This implies the same inequality throughout \(K_{R_0} \subset K_R \). In particular, \(u_\varepsilon(z) < r_1 \cosh^{-1} \left(\frac{R_0}{r_1} \right) \) in \(K_{R_0} \). But \(r_1 > 0 \) is arbitrary, and \(r_1 \cosh^{-1} \left(\frac{R_0}{r_1} \right) \to 0 \) as \(r_1 \to 0 \). Thus, \(u_\varepsilon(z) \leq 0 \) in \(K_{R_0} \) which implies that \(u(z) \leq 0 \) since \(\varepsilon \) was arbitrary. This contradicts that \(u(z) > 0 \) in \(D \). \(\square \)

3. Examples

In this Section, we provide examples that together with the above (and previously known) results give a broad picture of the possible growth rates of minimal graphs. One notices three “regimes” illustrated in Fig. [1]. When \(D \) contains a halfplane we find nontrivial examples, but their growth rates appear to be determined by the asymptotic angle \(\pi < \beta < 2\pi \). This is reminiscent of the behavior of positive harmonic functions, hence we deem this the “Phragmén-Lindelöf regime”. However, the geometry of
D plays a subtle role, since if D is a true sector of opening β, even in the range $\pi < \beta < 2\pi$, then (1.1) has only the trivial solution $u \equiv 0$ [4, p.993].

When D is contained in a sector $\beta < \pi$, we have a “completely rigid regime”, due to Nitsche’s theorem. At the critical angle $\beta = \pi$, an interesting phase transition occurs; there are examples with D contained in a halfplane with $\beta = \pi$ exhibiting a full spectrum of possible growth rates anywhere from linear to exponential thus interpolating the known upper and lower bounds.

![Figure 1. A plot of the boundary of D labeled with order ρ. Phragmén-Lindelöf regime: $\pi < \beta < 2\pi$, Critical regime: $\beta = \pi$, and Rigid regime: $\beta < \pi$. For the curves, from left to right the angles are $\beta = 2\pi$, $7\pi/4$, and $3\pi/2.$](image)

3.1. Examples in the “Phragmén-Lindelöf” regime $\pi < \beta < 2\pi$: In [4], there appears an example of a minimal graph with height function (pulled back to ζ-plane) $U(\zeta) = 2\Re \zeta$, and harmonic map from the half plane $H := \{z = x + iy : x > 0\}$

$$z(\zeta) = \frac{(\zeta + 1)^2}{2} - \log(\overline{\zeta} + 1).$$
This example has asymptotic angle 2π and growth of order $1/2$. (See §4 for the definition of asymptotic angle.)

Let us demonstrate a whole one-parameter family of examples with asymptotic angles $\pi < \beta < 2\pi$ having growth of orders π/β. Let $\gamma = \beta/\pi$ (so $1 < \gamma < 2$). Then such a minimal surface is given by the harmonic map from the half plane H to a region D

$$z(\zeta) = (\zeta + 1)^\gamma - \frac{1}{\gamma(2 - \gamma)}(\zeta + 1)^{2-\gamma}$$

together with the height function $U(\zeta) = 2\Re \zeta$.

Assuming $z(\zeta)$ is univalent, then we have growth of order $1/\gamma = \pi/\beta$ as desired, since

$$u(z) = \frac{U(\zeta)}{|z|^{1/\gamma}} = \frac{2\Re \zeta}{|z(\zeta)|^{1/\gamma}} = \frac{2\Re \zeta}{|(\zeta + 1)^\gamma - \frac{1}{\gamma(2 - \gamma)}(\zeta + 1)^{2-\gamma}|^{1/\gamma}}.$$

Thus, the only thing to check is that $z(\zeta)$ is univalent in H. Its Jacobian is

$$\gamma^2 |\zeta + 1|^{2(\gamma - 1)} - \frac{1}{\gamma^2 |\zeta + 1|^{2(\gamma - 1)}} > 0$$

since

$$\gamma^2 |\zeta + 1|^{2(\gamma - 1)} > 1.$$

Thus, global univalence can be ensured by checking the boundary behavior. We will show that the imaginary part of $z(\zeta)$ is increasing on the boundary $\zeta = it$, $-\infty < t < \infty$. The imaginary part of $z(it)$ is

$$\Im \{z(it)\} = (1 + t^2)^{\gamma/2} \sin(\gamma \tan^{-1} t) + \frac{1}{\gamma(2 - \gamma)}(1 + t^2)^{(2-\gamma)/2} \sin((2 - \gamma) \tan^{-1} t).$$

This is an odd function, so we just consider the interval $0 < t < \infty$. The second term is increasing, since it is a product of increasing functions. Indeed, $0 < 2 - \gamma < 1$ and $(1 + t^2)^{(2-\gamma)/2}$ is increasing on $0 < t < \infty$. The second term is increasing. In order to show that $(1 + t^2)^{\gamma/2} \sin(\gamma \tan^{-1} t)$ is increasing, we check that the derivative

$$\gamma(1 + t^2)^{\gamma/2 - 1} t \sin(\gamma \tan^{-1} t) + \gamma(1 + t^2)^{\gamma/2 - 1} \cos(\gamma \tan^{-1} t)$$

is positive, or equivalently that

$$t \sin(\gamma \tan^{-1} t) + \cos(\gamma \tan^{-1} t) > 0.$$

For this let $0 < \theta < \pi/2$ and take $t = \tan \theta$. Then we see that

$$\tan \theta \sin(\gamma \theta) + \cos(\gamma \theta) = \frac{\cos(\gamma - 1) \theta}{\cos \theta},$$

which is positive since $0 < \theta < \pi/2$ and $1 < \gamma < 2$.

3.2. The critical angle $\beta = \pi$: Examples from linear growth to exponential. A plane and a horizontal catenoid sliced by a plane parallel to its axis provide two examples of minimal graphs over a domain contained in a half plane. These examples have linear and exponential growth respectively.

For each given $\rho > 1$, we provide an example contained in a halfplane (each having asymptotic angle $\beta = \pi$) with order of growth ρ. Let $b = 1/\rho$. Then, once again, $z(\zeta)$ has the form

$$z(\zeta) = h(\zeta) - \int h'(\zeta) d\zeta,$$

so that $U(\zeta) = 2\Re e \zeta$.

Taking $h(\zeta) = \zeta + \frac{1}{b} \zeta^b$,

$$z(\zeta) = \zeta + \frac{1}{b} \zeta^b - \bar{\zeta} + \int \frac{1}{1 + \zeta^{1-b}} d\zeta,$$

Assuming $z(\zeta)$ is univalent, $u(z)$ has order ρ, since

$$\frac{u(z)}{|z|^\rho} = \frac{U(\zeta)}{|z(\zeta)|^\rho} = \frac{2\Re e \zeta}{|z(\zeta)|^\rho},$$

which tends to a constant on the real axis.

It remains to check that $z(\zeta)$ is univalent in H. Its Jacobian is

$$|1 + \zeta^{b-1}|^2 - \frac{1}{|1 + \zeta^{b-1}|^2} > 0$$

since

$$|1 + \zeta^{b-1}|^2 > 1, \text{ for } \zeta \in H.$$

Thus, global univalence can be ensured by checking the boundary behavior. As in the previous examples we show that $\Im m \{z(\zeta)\}$ is increasing on the boundary $\zeta = it$, $-\infty < t < \infty$. This is an odd function, so we just consider the interval $0 < t < \infty$. It suffices to show that the derivative

$$\frac{d}{dt} \Im m \{z(it)\}$$

is positive. We use the identity

$$\frac{d}{dt} \Im m \{z(it)\} = \frac{d}{dt} \Im m \{h(it)\} - \frac{d}{dt} \Im m \{g(it)\} = \Re e \{h'(it)\} - \Re e \{g'(it)\},$$

to compute

$$\frac{d}{dt} \Im m \{z(it)\} = 1 + \Re e \frac{1}{(it)^{1-b}} + 1 - \Re e \frac{1}{1 + (it)^{1-b}}$$

$$> 2 - \frac{1}{1 + \Re e \{(it)^{1-b}\}} > 1.$$
We note that the domain D for this example has a corner at the point $z(0)$. This can be removed by shifting the minimal graph $(x, y, u(x, y))$ in the negative u-direction.

4. Problems and conjectures

I. When dealing with a nonlinear equation, issues of existence and uniqueness are often complex. A survey of uniqueness results can be found in [3]. A natural question to ask here is

Problem 1. Is it possible for (1.1) to have more than one nontrivial solution?

II. As discussed in the introduction, for domains D contained in the half plane, at least when bounded by a Jordan arc, the growth of solutions to (1.1) is at most exponential. However, it seems likely that this is true in general.

Problem 2. If u is a solution to (1.1), then does its maximum $M(r)$ satisfy

$$M(r) \leq e^{Cr} \quad (r > r_0),$$

for some positive constants C and r_0.

III. In the case where D contains a half plane, we have been unable to ascertain a good upper bound for the maximum. However, it seems reasonable to conjecture that Theorem 2.1 holds here as well.

Problem 3. If u is a solution to (1.1) and D contains a half plane, then is it true that

$$M(r) \leq Cr \quad (r > r_0)$$

for some positive constants C and r_0?

IV. In this paper we have shown that if D contains a sector of opening $\alpha > \pi$, then any nontrivial solution has order at most 1. However, it seems likely that this might be be improved.

Problem 4. If D contains a sector of opening $\alpha > \pi$, then is it true that the order of any nontrivial solution to (1.1) is bounded above by $\pi/(2\pi - \alpha)$? The interpretation as with the minimum bound discussed in §1 has the case $\alpha - 2\pi$ taken to mean that the omitted set is a line.

V. The results in [11] are phrased in terms of the asymptotic angle β defined as follows. Let $\Theta(r)$ be the angular measure of the set $D \cap \{|z| = r\}$, and $\Theta^*(r) = \Theta(r)$ if D does not contain the circle $|z| = r$, and $+\infty$ otherwise. Then

$$\beta = \lim_{r \to \infty} \sup_r \Theta^*(r).$$

Consideration of the case $\beta = 2\pi$ raises the following question.
Problem 5. If D is an unbounded region bounded by a Jordan arc (taken to mean a proper curve which does not self intersect or close), then is it true that the maximum of a nontrivial solution satisfies

$$M(r) \geq C \sqrt{r} \quad (r > r_0)$$

for some positive constants C and r_0?

VI. Returning to Nitsche’s theorem as mentioned in §1, in terms of the asymptotic angle β it seems likely that a corresponding result should hold.

Problem 6. If D has asymptotic angle $\beta < \pi$, and u is a solution to (1.1), then must it be that $u \equiv 0$?

References

1. J-F Hwang, *Phragmén Lindelöf theorem for the minimal surface equation*, Proc. Amer. Math. Soc. **104** (1988), 825-828.
2. J-F Hwang, *Catenoid-like solutions for the minimal surface equation*, Pacific Jour. Math. **183** (1998), 91-102.
3. J-F Hwang, *How many theorems can be derived from a vector function - on uniqueness theorems for the minimal surface equation*, Taiwanese Jour. Math. **7** (2003), 513-539.
4. R. Langevin, G. Levitt, H. Rosenberg, *Complete minimal surfaces with long line boundaries*, Duke Math. Jour. **55** (1987), 985-995.
5. V. Miklyukov, *Some singularities in the behavior of solutions of equations of minimal surface type in unbounded domains*, Math. USSR Sbornik **44** (1983), 61-73.
6. V. Miklyukov, *Conformal maps of nonsmooth surfaces and their applications*, Exlibris Corp. (2008).
7. J.C.C. Nitsche, *On new results in the theory of minimal surfaces*, Bull. Amer. Mat. Soc. **71** (1965), 195-270.
8. R. Osserman, *A survey of minimal surfaces*. Dover Publications Inc. (1986).
9. M. Tsuji, *Potential Theory in Modern Function Theory*, Maruzen Co., Ltd., Tokyo (1959).
10. A. Weitsman, *On the growth of minimal graphs*, Indiana Univ. Math. J. **54** (2005), 617-625.
11. A. Weitsman, *Growth of solutions to the minimal surface equation over domains in a half plane*, Communications in Analysis and Geometry **13** (2005), 1077-1087.

Department of Mathematics, Purdue University, West Lafayette, IN 47907-1395

Email: elundber@math.purdue.edu

Email: weitsman@purdue.edu