Dominated and Bounded Convergence Results of Sequential Henstock Stieltjes Integral in Real Valued Space

V. O. Iluebe¹, A. A. Mogbademu²

¹ victorodalochi1960@gmail.com, Department of Mathematics, University of Lagos, Akoka
² amogbademu@unilag.edu.ng, Department of Mathematics, University of Lagos, Akoka

Correspondence to: V. O. Iluebe, Email: victorodalochi1960@gmail.com

Abstract: In this paper, we prove the dominated and bounded convergence results for real-valued Sequential Henstock Stieltjes integral.

Keywords: Sequential Henstock integrable, Increasing functions, Guages, Dominated and bounded convergence, Uniform-integrability

DOI: https://doi.org/10.3126/jnms.v3i1.32999

1 Introduction and Preliminaries

In 1955 and 1957 respectively, R. Henstock and J. Kursweil independently gave a Riemann-type integral called the Henstock integral. It is a kind of non-absolute integral which includes the Riemann, Improper Riemann, Newton and Lebesgue integral. Many authors have studied Henstock integral which is now known as the Kursweil-Henstock integral, since Kursweil defined the same integral though they went different ways in developing and applying the theory. For simplicity, we shall refer the Kursweil-Henstock integral and its general form as the Henstock integral in this paper, see [1]-[6]. It is well known that the Henstock integral is equivalent to the Denjoy integral, Perron integral and Denjoy-Perron integrals. The equivalence of the Henstock integral and Sequential Henstock integral has been discussed in [5]. In this paper, we prove the dominated and bounded convergence theorems for the Sequential Henstock Stieltjes integral.

The symbols used in this paper are as follows: \(\mathbb{R} \) and \(\mathbb{N} \) for a set of real and natural numbers respectively, \(\{\delta_n(x)\}_{n=1}^{\infty} \) as set of gauge functions of \(x \in [a,b] \), and \(P_n \) as set of partitions of subintervals of a compact interval \([a,b] \) for \(n = 1,2,3,\cdots \).

The following useful definitions of Sequential Henstock integral are needed.

Definition 1.1. [5](Sequential Henstock Integral). A function \(f : [a,b] \to \mathbb{R} \) is Sequential Henstock integrable on \([a,b] \) if there exists a number \(\alpha \in \mathbb{R} \) and a sequence of gauge functions \(\delta_n(x) \in \{\delta_n(x)\}_{n=1}^{\infty} \) such that for each \(\delta_n(x) \)-fine tagged partitions \(P_n = \{(u_{(i-1)}n, u_in), t_in\} \) we have

\[
U(f, P_n) = \sum_{i=1}^{n} f(t_in) (u_in - u_{(i-1)}n) \to \alpha, n \to \infty,
\]

i.e. \(\alpha = \int_{[a,b]} f \).

Sequel to Definition 1.1, we give a new definition as follows for Sequential Henstock Stieltjes integral.

Definition 1.2. (Sequential Henstock Stieltjes Integral). A function \(f : [a,b] \to \mathbb{R} \) is Sequential Henstock Stieltjes integrable on \([a,b] \) with respect to an increasing function \(g : [a,b] \to \mathbb{R} \) if there exists a number \(\alpha \in \mathbb{R} \) such that for \(\varepsilon > 0 \) there exists a sequence of gauge functions \(\delta_{\mu}(x) \in \{\delta_n(x)\}_{n=1}^{\infty} \) such that \(\mu \leq n \) and for every \(\delta_n(x) \)-fine tagged partitions \(P_n = \{(u_{(i-1)}n, u_in), t_in\} \) and \(u_{(i-1)}n \leq t_in \leq u_in \) we have

\[
U(f, g, P_n) = \sum_{i=1}^{n} f(t_in) [g(u_in) - g(u_{(i-1)}n)] \to \alpha, \text{ as } n \to \infty.
\]
Dominated and Bounded Convergence Results of Sequential Henstock Stieltjes Integral in Real Valued Space

We say that $\alpha \in \mathbb{R}$ is the Sequential Henstock Stieltjes integral of f with respect to g on $[a,b]$ with $\alpha = \int_a^b f \, dg$

Definition 1.3. [5] (Uniform Integrability). Let $f_k : [a, b] \to \mathbb{R}$ be a sequence of functions for $k \in \mathbb{N}$ and a function $g : [a, b] \to \mathbb{R}$. Then f_k is uniformly Sequential Henstock Stieltjes integrable with respect to g on $[a, b]$ if

i. the integral $\int_a^b f_k \, dg$ exists for each $k \in \mathbb{N}$,

ii. for $\varepsilon > 0$ there exists a sequence of gauges $\delta_n(x) = \sup_{\mu \in \mathbb{N}} \{\delta_n(x)\}^{\infty}$ and $n \geq \mathbb{N}$ on $[a, b]$ such that the inequality

$$\left| \int_a^b f_k \, dg - U(f_k, dg, P_n) \right| < \varepsilon,$$

(1.1)

holds for each $\delta_n(x)$- fine partition P_n of $[a, b]$ for $n = 1, 2, 3, \ldots$.

Now, we state the following lemma which was proved in [4], and useful in the proof of our main theorems.

Lemma 1.1. [4] Let $f_n : [a, b] \to \mathbb{R}$ be a sequence of functions and $g : [a, b] \to \mathbb{R}$ be an increasing function satisfying the following conditions:

i. The integral $\int_a^b f_n \, dg$ exists for each $k \in \mathbb{N}$.

ii. $\lim_{k \to \infty} f_k(x) = f(x)$ for all $x \in [a, b]$.

iii. There exist $\beta, \gamma \in \mathbb{R}$ such that the inequalities

$$\beta \leq \sum_{i=1}^{n} \int_{s_{i-1}}^{s_i} f_s \, dg \leq \gamma,$$

holds for all partitions P_n of $[a, b]$ and all $s_1, s_2, \ldots, s_n \in \mathbb{N}$. Then, f_k is uniformly Sequential Henstock Stieltjes integrable with respect to g. Then, the integral $\int_a^b f \, dg$ exists and

$$\lim_{k \to \infty} \int_a^b f_k \, dg = \int_a^b f \, dg.$$

Moreover, we have

$$\lim_{k \to \infty} \left(\sup_{t \in [a, b]} \left| \int_a^t f_k \, dg - \int_a^t f \, dg \right| \right) = 0.$$

2 Main Results

We state and give the proof of theorems in our main results.

Theorem 2.1. (Dominated Convergence). Let $f_k : [a, b] \to \mathbb{R}$ be a sequence of functions which is Sequential Henstock Stieltjes integrable with respect to an increasing function $g : [a, b] \to \mathbb{R}$ and is satisfying the following conditions:

i. The integral $\int_a^b f_k \, dg$ exists for each $k \in \mathbb{N}$,

ii. $\lim_{k \to \infty} f_k(x) = f(x)$ for all $x \in [a, b]$.

iii. There exist Sequential Henstock Stieltjes integrable functions $h_1, h_2 : [a, b] \to \mathbb{R}$ such that $\int_a^b h_1 \, dg$ and $\int_a^b h_2 \, dg$ exist, where $h_1 \leq f_k \leq h_2$ on $[a, b]$ for each $k \in \mathbb{N}$.
exists and
Then, \(f_k \) is uniformly Sequential Henstock Stieltjes integrable with respect to \(g \). Then, the integral \(\int_a^b f dg \) exists and
\[
\lim_{k \to \infty} \int_a^b f_k dg = \int_a^b f dg.
\]
Moreover, we have
\[
\lim_{k \to \infty} \left(\sup_{t \in [a,b]} \left| \int_a^t f_k dg - \int_a^t f dg \right| \right) = 0.
\]

Proof. From Lemma 1.1, following from condition (iii). Let \(\beta = U(h_1, dg, P_n) \) and \(\gamma = U(h_2, dg, P_n) \).
If \(P_n \) is a sequence of divisions on \([a, b]\) and \(s_1, s_2, \cdots, s_n \in \mathbb{N} \), i.e. \(P_n = (u_{(i-1)}n, u_{in}) \in [a, b] \) for \(n = 1, 2, 3, \cdots \), then
\[
\beta = U(h_1, dg, P_n) \leq \sum_{i=1}^n \int_{u_{(i-1)}n}^{u_{in}} f_s dg \leq U(h_2, dg, P_n) = \gamma.
\]
This shows that the assumption of Lemma 1.1 is satisfied and the proof is complete.

Theorem 2.2. (Bounded Convergence). Let \(f_n : [a, b] \to \mathbb{R} \) be a sequence of function and \(g : [a, b] \to \mathbb{R} \) be an increasing function satisfying the following conditions:

i. The integral \(\int_a^b f_k dg \) exists for each \(k \in \mathbb{N} \)

ii. \(\lim_{k \to \infty} f_k(x) = f(x) \) for all \(x \in [a, b] \),

iii. There exist a constant \(M \geq 0 \) such that \(|f_k(x)| \leq M \) for all \(k \in \mathbb{N} \) and \(x \in [a, b] \). Then, \(f_k \) is uniformly Sequential Henstock Stieltjes integrable with respect to \(g \), the integral \(\int_a^b f dg \) exists and
\[
\lim_{k \to \infty} \int_a^b f_k dg = \int_a^b f dg.
\]
Moreover, we have
\[
\lim_{k \to \infty} \sup_{t \in [a,b]} \left(\left| \int_a^t f_n dg - \int_a^t f dg \right| \right) = 0.
\]

Proof. If \(P_n \) is a sequence of partitions on \([a, b]\) and \(s_1, s_2, \cdots, s_n \in \mathbb{N} \) where \(P_n = (u_{(i-1)}n, u_{in}) \in [a, b] \) for \(n = 1, 2, 3, \cdots \), then
\[
\left| \sum_{i=1}^n \int_{u_{(i-1)}n}^{u_{in}} f_s dg \right| \leq \sum_{i=1}^n \int_{u_{(i-1)}n}^{u_{in}} f_n dg \leq \sum_{i=1}^n M \text{var}_{u_{(i-1)}n}u_{in} g = M \text{var}_a^b g.
\]
by the assumptions of Lemma 1.1, which is also satisfied with
\[
-M \text{var}_a^b g \leq \left| \sum_{i=1}^n \int_{u_{(i-1)}n}^{u_{in}} f_k dg \right| \leq M \text{var}_a^b g.
\]
This completes the proof.

References

[1] Abbot, S., 2001, Understanding analysis, *Springer Science and Business Media*, New York, 200-250.

[2] Bartle, R., 2000, Modern theory of integration, graduate studies in mathematics, *American Mathematical Society*, 32, Providence RI, 12-40.

[3] Gordon, R., 1994, The Integral of Lebesgue, Denjoy, Perron and Henstock, Graduate studies in Mathematics. *American Mathematical Society*, 4, Providence RI, 121-150.
[4] Hamid, M. E, Xu, L. and Gong, Z., 2017, The Henstock-Stieltjes integral for set valued functions, *Inter. J. Pure Appl. Math.*, 114(2), 261-275.

[5] Laramie, P. A., 2016, Sequential approach to the Henstock integral, *Washington State University*, arXiv:1609.05454v1 [maths.CA], 3-5.

[6] Supriya, D., Lee, Y. and Ganguli, D. A., 2008, Generalised Henstock Stieltjes integral in division functions, *Math. Slovaca.*, 58(4), 653-660.