Ability of Real-time PCR in diagnose Differentiation Various Forms of Cutaneous Leishmaniasis: A Comparative Study with Histopathology

CURRENT STATUS: ACCEPTED

Name	Affiliation
Maryam Fekri Soofi Abadi	Kerman University of Medical Sciences
Meisam Fekri	Kerman University of Medical Sciences
alireza moradabadi	Kerman University of Medical Sciences
Reza Vahidi	Kerman University of Medical Sciences
Simin Shamsi Meymandi	Kerman University of Medical Sciences
Donya Dabiri	Kerman University of Medical Sciences

Corresponding Author

DOI: 10.21203/rs.2.12885/v1

SUBJECT AREAS
- Infectious Diseases

KEYWORDS
- Leishmaniasis, Real-time PCR, Ridley Scoring System
Abstract

Objective: Histopathological studies suggest that parasite load is different between acute and chronic forms of cutaneous leishmaniasis (CL). However, highly sensitive detection methods are still needed to distinguish different forms of leishmaniasis. In the present study, we developed a quantitative real-time polymerase chain reaction (PCR) to detect and quantify Leishmania tropica parasites in paraffin-embedded tissue samples. Results: The ability of real-time PCR for leishmania detection was higher than histopathological evaluation. The parasite loads were quantified by qPCR assay and microscopic evaluation were highly correlated (r = 0.598; P < 0.001). Among patients, the parasite load was inversely correlated with disease duration (acute CL lesions had very higher parasite loads than chronic CL lesions), but there was no difference in parasite load according to the patients’ age and sex as well as location of the lesions. In contrast to Ridley scoring system (P < 0.001), there were no statistically significant differences in the relative number of parasites among the lupoid and non-lupoid forms of chronic lesions in real-time PCR (P = 0.549), which indicates the superiority of histopathological evaluation in CL forms differentiation.

Introduction

Dry cutaneous leishmaniasis (CL) caused by Leishmania tropica is a significant parasitic disease in Iran (1). The clinical phenotype, histopathology, and the number of organisms are diverse among acute, chronic lupoid, and chronic non-lupoid forms of this infectious disease (2). In histopathology of acute CL, plasma cells, histiocytes, epithelioid cells, and occasionally eosinophils and giant cells, and dense dermal infiltrate of lymphocytes are seen. Also, numerous intracytoplasmic Leishman bodies parasitized macrophages and sometimes neutrophils are seen throughout the reticular dermis. A small number of
infected macrophages and multifocal small tuberculoid granulomas composed of epithelioid cells, histiocytes, and occasional giant cells are seen more in chronic form. Mild to moderate mononuclear infiltrates (lymphocytes and plasma cells) adjacent to the granuloma along with fibrosis and telangiectasia are present. Low numbers of organisms, erythematous papules at the periphery of a scar of a healed acute lesion, and granulomas consisting of tubercles surrounded by lymphocytes, histiocytes, and giant cells are the most pathological findings in the lupoid forms of the disease; although, for scanty organisms in cutaneous lesions specifically in chronic leishmaniasis, microscopic studies has less sensitivity (2-9).

Laboratory diagnosis of CL relies on either the microscopic detection of Leishman bodies in cutaneous tissue or the culture and isolation of parasites from lesions biopsy samples (10, 11). Apart from high specificity, inadequate sensitivity, difficulty, and time consuming nature are among disadvantages of these methods (12). Nowadays, PCR-based testing of skin lesion biopsies is known as a sensitive and specific test for diagnosis and quantification of leishmaniasis (13-16). The analysis of the load of leishmania parasites within the skin lesions would be important not only for diagnostic purposes, but also for an eventual follow-up of a patient’s response to treatment (17). Accordingly, in the present study we applied a standardized qPCR assay to detect Leishmania. tropica load in paraffin blocks of various CL forms. The differentiation ability of this quantitative method was compared with semi quantitative pathological scoring system.

Materials And Methods

Materials and Methods

Patients and Sampling

Forty patients presenting with acute (n=10), chronic lupoid (n=14), and chronic non-lupoid (n=16) forms of CL who attended the Dermatopathology Department of Afzalipour
Hospital (2010-2013) were selected to participate in our study. It should be noted that the study design, consent form, and sampling procedure were approved by the Ethics Committee of Afzalipour Hospital and patient selection was performed after evaluation of inclusion/exclusion criteria. The patients were considered to be included in the study if they presented with parasitologically confirmed CL with long-term illness (≥3 years), had received at least 3 times glucantime treatment, and were able to give contact information for the follow-up. We excluded patients with other skin diseases or with small biopsy samples. Informed consent was obtained from all the participants prior to enrolment.

Histopathology:

After making diagnosis for three different clinical forms based on Azadeh classification (18):

I- Anergic macrophage reaction

II- Focalized histiocytic reaction

III- Diffuse necrotizing reaction

IV- Diffuse lympho-histiocytic reaction

V- Lupoid granulomatous reaction

We also did Ridley scoring for parasite loads as follows from 0 to +4: (19)

+1: one or more amastigotes

+2: 10 or more amastigotes

+3: 100 or more amastigotes

+4: 1000 or more amastigotes

DNA extraction

For DNA extraction, 5 μm sections from paraffin-embedded blocks were cut using disposable blades and deparaffinized by hot xylene and then, they were hydrated (descending grades of alcohol) and incubated in proteinase K (20 μg/μL, at 60°C). After
digestion completed (3 days), the DNA was isolated using a QIAamp® DNA Mini Kit (QIAGEN, 51304), according to the manufacturer’s protocol.

Real-time PCR assay

We applied a probe-based assay targeting rRNAITS region to detect and quantify parasites in the samples. PCR amplification reaction was fulfilled using ABI StepOne system (Applied Biosystems, USA) and in a 25 μL of reaction mixture, containing 12.5 μL of master mix, 2 μL of forward and reverse primers for beta-actin and rRNAITS regions, 1.5 μL probe, 2 μL of H₂O, and 5 μL of extracted DNA. Thermal cycling conditions started at 95°C for 2 minutes followed by 95°C for 20 seconds (denaturation), and 60°C for 30 seconds (annealing and extension), which were programmed for 45 cycles. A cycle threshold (Ct) for each sample was determined based on the required cycles for the fluorescent signal to cross the background level.

Primers	Sequences (5’-3’)
L.ITS.F	5’-CAAATACACGCATGCACTCTC-3’
L.ITS.R	5’-TTTAATAATCCTGGTCACAGCC-3’
L.ITS.P	FAM-5’AGCGTGCAGAGTCTCTCTGAGCTC3’-TAMRA
Actin.F	5’-ACCACCTTCAACTCCATCATG-3’
Actin.R	5’-CTCCTTCTTGATCTGCGTAC3’
Actin.P	JOE-5’ ACATCCGCAAAGACCTGTACGCC 3’-TAMRA

F=Forward, R=Reverse, P=Probe, L.ITS=Leishmania ITS (internal transcribed spacer) gene

Quantification of parasite DNA load

For absolute quantification, the standard strain (MHOM/Sudan/58/OD) of *L. tropica* was cultured in RPMI1640 medium and serial dilutions (10 to 10⁷) were prepared. Subsequently, a standard curve was set by plotting the Ct values against each standard of known concentration of the parasite’s DNA.
Statistical analysis

The differences between experimental groups were analyzed using the ANOVA (Tukey test) and Spearman's rank correlation coefficient was used for evaluation of the relationship between real-time PCR and histopathological results. SPSS software (version 22) was used in this study.

Results

Histopathology and real-time PCR results in studied patients with different forms of CL are summarized in table 2. 40 patients with confirmed CL were enrolled: 25 (62.5%) men and 15 (37.5%) women, with mean age of 32 years (range 6-73 years). To evaluate the correlation between the qPCR assay and histopathological evaluation, collected samples were analyzed in parallel by both methods. The linearity of qPCR results was approved (diagram slope of -3.23 and correlation coefficient (r^2) of ≥0.997) (20) and this assay allowed the quantification of the parasite load in all samples, while the microscopic evaluation allowed this in 32 samples (80%, 8 negative samples corresponded to lupoid patients), which is indicating that the former method is more sensitive than the latter.

As presented in table 2 (see Supplementary Files), acute form has higher parasite load than chronic ones (P<0.001) by real-time PCR. The mean parasite load in chronic lesions (n=30) was 0.08×10^3 parasites, compared with 13.064×10^3 in acute lesions (n=10) (P<0.001). Interestingly, there was no significant difference in parasite load between chronic- lupoid and non-lupoid lesions by real-time PCR (P=0.549). According to histopathological analysis, there were statistically significant differences in the relative number of parasites among the acute and chronic (P<0.01) and chronic -lupoid and non-lupoid forms (P<0.001). These results indicate the superiority of histopathological evaluation (Ridley scoring system) for differentiation of various forms of CL.
Discussion

In order to accurately and confidently quantify parasites in paraffin-embedded biopsy samples, we evaluated the parasitic load in acute and chronic forms using real-time PCR and histopathological scoring system. The focus of the present study was to compare the diagnostic ability of two common methods in a relatively large number of patients with CL. The power of the used qPCR assay (21) has allowed the quantification of a broad range of parasite load levels in tissue lesions. In terms of diagnostic sensitivity, our results confirmed that the sensitivity of real-time PCR is indeed higher than histopathological scoring system. Our findings are also consistent with the findings of previous studies that focused on parasite abundance in various forms of CL, pointing to inversely correlation of parasite load with the disease duration. Namely, in both methods of this study, acute form has higher parasite load than chronic ones. Interestingly, in contrast to Ridley scoring system (P<0.001), there were no statistically significant differences in the relative number of parasites among the lupoid and non-lupoid forms of chronic lesions in real-time PCR (P=0.549), which indicates the superiority of histopathological evaluation in differentiation of various forms of CL.

It should be noted that the analysis performed here revealed no significant differences in parasite load with regard to the age, sex, and location of skin lesions. These findings were consistent with other studies (22-25). For example, Mashayekhi and colleagues in a study on 11 male and 9 female patients with a mean age of 17.5 years showed that PCR was positive in 60% of the samples and no correlation was found between the results of PCR and age, sex, duration, and location of the lesions (26). Venkataram and co-workers indicated that 65% of acute, subacute, and chronic lesions manifested leishmania parasites in tissues. But they could not find the relationship between the duration of lesions and PCR results (25).
Weigle and others showed that PCR sensitivity was higher than the conventional assays for the diagnosis of acute lesions while for chronic samples, the sensitivity of PCR was much higher than the conventional assays (27).

Sandeep Verma and colleagues conducted real-time assay to estimate parasite burden in clinical samples of visceral leishmaniasis and patients with post kala-azar dermal leishmaniasis. The study for diagnosis as well as prognosis of both visceral leishmaniasis and post kala-azar dermal leishmaniasis, provided a simple molecular instrument to show the efficacy of anti-leishmanial drugs or vaccines (28).

Another study done by Dabiri and others compared the effect of different treatments on parasite (leishmania) DNA load following treatments using real-time PCR method (29). Jara and colleagues improved a quantitative real-time PCR (qPCR) method targeting mini-circle kinetoplast DNA (kDNA) to find and quantify Leishmania (Viannia) parasites. According to the parasite species, the patients’ age, and number or area of lesions, there was no difference in parasite load (30). Sirian and co-workers conducted a comparison between conventional, molecular, and immunohistochemical methods for CL detection and reported that immunohistochemical and molecular techniques were more sensitive (31-33). Our observations support the validity of using real-time PCR to simultaneously detect and quantify the leishmania load in tissues from human lesions, particularly in chronic lesions. This highly sensitive quantitative technique (10, 20, 21) can be employed also for monitoring the parasite load during treatment and follow-up as a way to assess the outcome of treatment.

Limitations

Our observations support the validity of using real-time PCR to simultaneously detect and quantify the leishmania load in tissues from human lesions, particularly in chronic lesions. This highly sensitive quantitative technique (10, 20, 21) can be employed also for
monitoring the parasite load during treatment and follow-up as a way to assess the outcome of treatment.

Declarations

Ethics approval and consent to participate
The study approved in Kamran university of medical science ethical committee and The Ethic Approval Cod is IR.KMU.REC.1397.813.

Consent for publication
All authors consent for publication in Parasites & Vectors journal.

Availability of data and material
Please contact author for data requests.

Competing interests
The authors declare that they have no conflict of interests.

Funding
No funding sources used in this study.

Authors' contributions
And it was designed on Kerman university of medical science, all authors read and approve the final manuscript.

Acknowledgments
The authors would like to thank all friends and colleagues of Pathology and Stem Cell Research Center of Kerman University of Medical Sciences for their relentless hard work and efforts.

References
1. Murray HW, Berman JD, Davies CR, Saravia NG. Advances in leishmaniasis. The Lancet. 2005;366(9496):1561-77.
2. Meymandi S, Dabiri S, Dabiri D, Crawford RI, Kharazmi A. A quantitative study of epidermal Langerhans cells in cutaneous leishmaniasis caused by Leishmania tropica. International journal of dermatology. 2004;43(11):819-23.

3. Choi CM, Lerner EA, editors. Leishmaniasis as an emerging infection. Journal of Investigative Dermatology Symposium Proceedings; 2001: Elsevier.

4. Lallas A, Apalla Z, Argenziano G, Longo C, Moscarella E, Specchio F, et al. The dermatoscopic universe of basal cell carcinoma. Dermatology practical & conceptual. 2014;4(3):11.

5. Salman SM, Rubeiz NG, Kibbi A-G. Cutaneous leishmaniasis: clinical features and diagnosis. Clinics in dermatology. 1999;17(3):291-6.

6. Zvulunov A, Cagnano E, Frankenburg S, Barenholz Y, Vardy D. Topical treatment of persistent cutaneous leishmaniasis with ethanolic lipid amphotericin B. The Pediatric infectious disease journal. 2003;22(6):567-9.

7. Oliveira-Neto MP, Mattos M, da Silva C, de Souza F, Fernandes O, Pirmez C. Leishmaniasis recidiva cutis in New World cutaneous leishmaniasis. International journal of dermatology. 1998;37(11):846-9.

8. Gurel MS, Ulukaniligil M, Ozbilge H. Cutaneous leishmaniasis in Sanliurfa: epidemiologic and clinical features of the last four years (1997-2000). International journal of dermatology. 2002;41(1):32-7.

9. Ardehali S, Sodeiphy M, Haghighi P, Rezai H, Vollum D. Studies on chronic (lupoid) leishmaniasis. Annals of Tropical Medicine & Parasitology. 1980;74(4):439-45.

10. Sundar S, Rai M. Laboratory diagnosis of visceral leishmaniasis. Clinical and diagnostic laboratory immunology. 2002;9(5):951-8.

11. Ramírez JR, Agudelo S, Muskus C, Alzate JF, Berberich C, Barker D, et al. Diagnosis of cutaneous leishmaniasis in Colombia: the sampling site within lesions influences the
sensitivity of parasitologic diagnosis. Journal of clinical microbiology.
2000;38(10):3768-73.

12. Beheshti N, Ghafarifar F, dalimiasl a, Eslamirad Z, Sharifi Z, Farivar Sadri M. Detection of cutaneous leishmanioasis isolated from Iranian patients by using ITS1 gene and apol enzyme via PCR-RFLP molecular method. scientific journal of ilam university of medical sciences. 2013;20(4):71-8.

13. Mohammadiha A, Mohebali M, Haghighi A, Mahdian R, Abadi A, Zarei Z, et al. Comparison of real-time PCR and conventional PCR with two DNA targets for detection of Leishmania (Leishmania) infantum infection in human and dog blood samples. Experimental parasitology. 2013;133(1):89-94.

14. Al-Jawabreh A, Schnur L, Nasereddin A, Schwenkenbecher J, Abdeen Z, Barghuthy F, et al. The recent emergence of Leishmania tropica in Jericho (A'riha) and its environs, a classical focus of L. major. Tropical Medicine & International Health. 2004;9(7):812-6.

15. Khosravi S, Hejazi H, Hashemzadeh-Chaleshtori M, Eslami G, Yousofi Darani H. Molecular diagnosis of Old World leishmaniasis: real-time PCR based on tryparedoxin peroxidase gene for the detection and identification of Leishmania spp. Journal of vector borne diseases. 2012;49(1):15-8.

16. Nasreen SA, Hossain MA, Paul SK, Mahmud MC, Ahmed S, Ghosh S, et al. PCR-based detection of Leishmania DNA in skin samples of post kala-azar dermal leishmaniasis patients from an endemic area of Bangladesh. Japanese journal of infectious diseases. 2012;65(4):315-7.

17. Suárez M, Valencia BM, Jara M, Alba M, Boggild AK, Dujardin J-C, et al. Quantification of Leishmania (Viannia) kinetoplast DNA in ulcers of cutaneous leishmaniasis reveals inter-site and inter-sampling variability in parasite load. PLoS neglected tropical
diseases. 2015;9(7):e0003936.

18. Azadeh B, Samad A, Ardehali S. Histological spectrum of cutaneous leishmaniasis due to Leishmania tropica. Transactions of the Royal Society of Tropical Medicine and Hygiene. 1985;79(5):631-6.

19. Hassan AE, Kadaru A, Khalil E, Fadl A, Hassan ME. The pathology of cutaneous leishmaniasis in the Sudan: a comparison with that in other geographical areas. Annals of Tropical Medicine & Parasitology. 1996;90(5):485-90.

20. FEKRI SM, Dabiri S, FOTOHII AR, FANI ML, AMIRPOOR RS, Ziasistani M, et al. Design and Validation of Real-Time PCR: Quantitative Diagnosis of Common Leishmania Species in Iran. 2016.

21. Jara M, Adaui V, Valencia BM, Martinez D, Alba M, Castrillon C, et al. A real-time PCR assay for detection and quantification of Leishmania (Viannia) in skin and mucosal lesions: an exploratory study of parasite load and clinical parameters. Journal of clinical microbiology. 2013:JCM. 00208-13.

22. Noazin S, Khamesipour A, Moulton LH, Tanner M, Nasser K, Modabber F, et al. Efficacy of killed whole-parasite vaccines in the prevention of leishmaniasis—A meta-analysis. Vaccine. 2009;27(35):4747-53.

23. Momeni AZ, Yotsumoto S, Mehregan DR, Mehregan AH, Mehregan DA, Aminjavaheri M, et al. Chronic lupoid leishmaniasis: Evaluation by polymerase chain reaction. Archives of dermatology. 1996;132(2):198-202.

24. El-On J, Weinrauch L, Livshin R, Even-Paz Z, Jacobs G. Topical treatment of recurrent cutaneous leishmaniasis with ointment containing paromomycin and methylbenzethonium chloride. British medical journal (Clinical research ed). 1985;291(6497):704.

25. Venkataram M, Moosa M, Devi L. Histopathological spectrum in cutaneous
leishmaniasis: A study in Oman. Indian Journal of Dermatology, Venereology, and Leprology. 2001;67(6):294.

26. MASHAYEKHI V, MAHMOUDI M, RASTIN M, TAYEBI N, TAHERI AR, TAVAKOLI M.
Detection of Leishmania DNA in paraffin embedded specimens of chronic lupoid leishmaniasis using polymerase chain reaction. 2012.

27. Weigle KA, Labrada LA, Lozano C, Santrich C, Barker DC. PCR-based diagnosis of acute and chronic cutaneous leishmaniasis caused by Leishmania (Viannia). Journal of clinical microbiology. 2002;40(2):601-6.

28. Verma S, Bhandari V, Avishek K, Ramesh V, Salotra P. Reliable diagnosis of post-kala-azar dermal leishmaniasis (PKDL) using slit aspirate specimen to avoid invasive sampling procedures. Tropical Medicine & International Health. 2013;18(3):268-75.

29. Dabiri S, Manafi Anari H, Shamsi Meymandi S, Fotouhi Ardakani R, Amirpour Rostami S, Meymandi MS, et al. DNA Load Analysis Using Real Time PCR In Comparison With Immunohistochemical Findings of Dry Type Cutaneous Leishmaniasis; Before and After Treatment by Imiquimode, Glucantime and Combination of Both Drugs. Iranian Journal of Pathology. 2013;8(4):247-54.

30. Suárez M, Valencia BM, Jara M, Alba M, Boggild AK, Dujardin J-C, et al. Quantification of Leishmania (Viannia) Kinetoplast DNA in Ulcers of Cutaneous Leishmaniasis Reveals Inter-site and Inter-sampling Variability in Parasite Load. PLoS Negl Trop Dis. 2015;9(7):e0003936.

31. Shirian S, Oryan A, Hatam G-R, Panahi S, Daneshbod Y. Comparison of conventional, molecular, and immunohistochemical methods in diagnosis of typical and atypical cutaneous leishmaniasis. Archives of Pathology and Laboratory Medicine. 2014;138(2):235-40.

32. Shirian S, Oryan A, Hatam GR, Daneshbod Y. Three Leishmania/L. species-L.
infantum, L. major, L. tropica—as causative agents of mucosal leishmaniasis in Iran. Pathogens and global health. 2013;107(5):267-72.

33. Daneshbod Y, Oryan A, Davarmanesh M, Shirian S, Negahban S, Aledavood A, et al. Clinical, histopathologic, and cytologic diagnosis of mucosal leishmaniasis and literature review. Archives of pathology & laboratory medicine. 2011;135(4):478-82.

Table 2

Due to technical limitations, table 2 is only available as a download in the supplemental files section.

Supplementary Files

This is a list of supplementary files associated with the primary manuscript. Click to download.

Table 2.jpg