Effect of the effluent released from the canine internal mammary artery after intraluminal and extraluminal perfusion of acetylcholine and adenosine diphosphate

Nilce Mitiko Matsuda1, Paul J Pearson2, Hartzell V Schaff2, Carlos E Piccinato1, Alfredo J Rodrigues1 and Paulo Roberto Barbosa Evora*1

Address: 1Department of Surgery and Anatomy, Ribeirão Preto Faculty of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil and 2Division of Cardiovascular Surgery, Mayo Clinic Foundation, Rochester, Minnesota, USA

Email: Nilce Mitiko Matsuda - nmmatsuda@uol.com.br; Paul J Pearson - paulpe@prevea.com; Hartzell V Schaff - schaff@mayo.edu; Carlos E Piccinato - cepiccin@fmrp.usp.br; Alfredo J Rodrigues - alfredo@fmrp.usp.br; Paulo Roberto Barbosa Evora* - prbevora@netsite.com.br

* Corresponding author

Abstract

Segments of the canine internal mammary artery (35 mm in length) were suspended in vitro in an organ chamber containing physiological salt solution (95% O2/5% CO2, pH = 7.4, 37°C). Segments were individually cannulated and perfused at 5 ml/minute using a roller pump. Vasorelaxant activity of the effluent from the perfused internal mammary arteries was bioassayed by measuring the decrease in tension induced by the effluent of the coronary artery endothelium-free ring which had been contracted with prostaglandin F2α (2 × 10^-6 M). Intraluminal perfusion of adenosine diphosphate (10^-5 M) induced significant increase in relaxant activity in the effluent from the perfused blood vessel. However, when adenosine diphosphate (10^-5 M) was added extraluminally to the internal mammary artery, no change in relaxant activity in the effluent was noted. In contrast, acetylcholine produced significant increase in the relaxant activity on the effluent of the perfused internal mammary artery with both intraluminal and extraluminal perfusion. The intraluminal and extraluminal release of endothelium-derived relaxing factor (EDRF) by acetylcholine (10^-5 M) can be inhibited by site-specific administration of atropine (10^-5 M). These experiments indicate that certain agonists can induce the release of EDRF only by binding to intravascular receptors while other agonists can induce endothelium-dependent vasodilatation by acting on neural side receptors.

Background

Accumulated evidence indicates that both the perivascular nerves located in the adventitia layer and endothelial cells control the tone of vascular smooth muscle [1,2]. Luminal release of the endothelium-derived relaxing factor (EDRF) or the endothelium-derived nitric oxide (EDNO) from the endothelium stimulated by acetylcholine has been extensively demonstrated [1,3-5].

Previous studies have been described that the coronary arteries are supplied by cholinergic nerves that modulate a non-adrenergic and non-cholinergic relaxation in iso-
lated small coronary arteries suggesting that acetylcholine is also able to stimulate inhibitory non-adrenergic and non-cholinergic mediators released from the perivascular neural receptor [6-8].

Even though some authors have demonstrated that certain agonists induce the release of EDRF only by binding to endothelium side receptors [1,3-5], others have demonstrated inhibitory mediators released by agonists acting on perivascular nerves located in the adventitia layer [6-8]. Therefore, the purpose of our work was to determine the biologic activity of the effluent released from the canine internal mammary artery after intraluminal and extraluminal perfusion of acetylcholine and adenosine diphosphate. The biologic activity of the effluent released from the canine internal mammary artery was bioassayed on the coronary artery from which the endothelium had been previously removed and pre-contracted with prostaglandin.

Materials and methods

Tissue

According to the procedures and the handling of the animals approved by the Institutional Animal Care and Use Committee of the Mayo Foundation, mongrel dogs (25 to 30 Kg) of either sex were anesthetized with intravenously injected pentobarbital sodium (30 mg/kg bolus injection; Fort Dodge Laboratories, Fort Dodge, IA) and exsanguinated. The beating heart, internal mammary artery was excised and immersed in cold oxygenated physiologic salt solution with the following composition: NaCl, 118.3 mmol/L; KCl, 4.7 mmol/L; MgSO4, 1.2 mmol/L; KH2PO4, 1.22 mmol/L; CaCl2, 2.5 mmol/L; NaHCO3, 25.0 mmol/L; and glucose, 11.1 mmol/L.

Bioassay experiments

The internal mammary artery was cleaned of connective tissue, with care taken not to touch the intimal surface. The biologic activity from the perfused of the internal mammary artery was bioassayed on the coronary artery from which the endothelium had been previously removed and pre-contracted with prostaglandin.

Drugs

The following drugs were used: acetylcholine chloride, atropine sulphate, pirenzepine, 4-(m-chlorophenylcarbamoyloxy)-2-butynyltrimethylammonium (McN-A-343), adenosine diphosphate, prostaglandin F2α (2 × 10^-6 M), obtained from the Sigma Chemical Company (St. Louis, MO), and N^G-monomethyl-arginine (L-NMMA), obtained from Calbiochem Corp (La Jolla, CA). All drugs were prepared daily with distilled water. The concentrations were expressed as the final molar concentration in the organ chamber.

Statistics

All data are expressed as mean ± SEM. In all experiments, n referred to the number of animals from which blood vessels were harvested. For bioassay experiments, relaxations were expressed as the percentage change in tension from the contraction of the bioassay ring in response to prostaglandin F2α (2 × 10^-6 M). Statistical evaluation of the data was performed by analysis of variance and Student’s t test for either paired or unpaired observations. Values were considered statistically significant when p < 0.05.

Results

The effluent released from the canine internal mammary artery produced relaxation of the coronary artery endothelium-free ring pre-contracted with prostaglandin when stimulated by both intraluminal and extraluminal perfusion of acetylcholine (10^-5 M) but only by intraluminal perfusion of adenosine diphosphate (10^-5 M) and McN-A-343 (10^-5 M, Figure 1, n = 6; p < 0.05).
The relaxation of the coronary artery endothelium-free ring pre-contracted with prostaglandin caused by the effluent released from the canine internal mammary artery stimulated by intraluminal perfusion of acetylcholine (10^{-5} M) was inhibited only by intraluminal treatment with atropine (10^{-5} M, Figure 2, n = 6; p < 0.05), pirenzepine (10^{-5} M, Figure 3, n = 6; p < 0.05) and L-NNA (10^{-4} M, Figure 4, n = 6; p < 0.05). On the other hand, the relaxation stimulated by extraluminal perfusion of acetylcholine (10^{-5} M) was inhibited by both the intraluminal and extraluminal treatment with atropine (10^{-5} M, Figure 2, n = 6; p < 0.05), pirenzepine (10^{-5} M, Figure 3, n = 6; p < 0.05) and L-NNA (10^{-4} M, Figure 4, n = 6; p < 0.05).

Figure 1
Effect of the effluent from canine internal mammary artery on coronary artery endothelium-free ring. Relaxation of the coronary artery endothelium-free ring induced by the effluent released from canine internal mammary artery stimulated by intraluminal and extraluminal perfusion of acetylcholine (10^{-5} M), intraluminal and extraluminal adenosine diphosphate (10^{-5} M) and intraluminal and extraluminal McN-A-343 (10^{-5} M). Values represent mean ± SEM; n = 6. Relaxation magnitude is expressed as % of initial tonus. * p < 0.05.

Figure 2
Effect of the effluent from canine internal mammary artery on coronary artery endothelium-free ring. Relaxation of the coronary artery endothelium-free ring induced by the effluent released from canine internal mammary artery stimulated by intraluminal and extraluminal perfusion of acetylcholine (10^{-5} M) before (control) and after intraluminal and extraluminal atropine (10^{-5} M). Values represent mean ± SEM; n = 6. Relaxation magnitude is expressed as % of initial tonus. * p < 0.05.
Discussion
Vascular smooth muscle tissue is surrounded internally by the endothelium cells layer and externally by the adventitia layer containing sympathetic, parasympathetic and sensorial nerves [1,2,10]. It has been proposed also that NO is a messenger mediating vascular smooth muscle relaxation released by the activation of endothelium by acetylcholine and NANC mediators released from nerves [3-8]. Our results also suggest that acetylcholine increased both nerve- and endothelium-dependent EDNO release since acetylcholine produced significant increase in the relaxant activity of the effluent of the perfused internal mammary artery with both intraluminal and extraluminal

Figure 3
Effect of the effluent from canine internal mammary artery on coronary artery endothelium-free ring. Relaxation of the coronary artery endothelium-free ring induced by the effluent released from canine internal mammary artery stimulated by intraluminal and extraluminal perfusion of acetylcholine (10^{-5} M) before (control) and after intraluminal and extraluminal pirenzepine (10^{-5} M). Values represent mean ± SEM; n = 6. Relaxation magnitude is expressed as % of initial tonus. * p < 0.05.

Figure 4
Effect of the effluent from canine internal mammary artery on coronary artery endothelium-free ring. Relaxation of the coronary artery endothelium-free ring induced by the effluent released from canine internal mammary artery stimulated by intraluminal and extraluminal perfusion of acetylcholine (10^{-5} M) before (control) and after intraluminal and extraluminal L-NMMA (10^{-4} M). Values represent mean ± SEM; n = 6. Relaxation magnitude is expressed as % of initial tonus. * p < 0.05.
perfusion and a NO-synthase inhibitor L-NMMA inhibited both.

Even though it has been demonstrated that both NO and ATP can be released from NANC nerves [11], the inhibitory response in circular smooth muscle of chicken anterior mesenteric artery was caused only by NO released from endothelium cells stimulated by neuronally ATP and not by NO or ATP released directly from perivascular NANC nerves [12]. In our experiments, intraluminal perfusion of adenosine diphosphate induced significant increase in relaxant activity in the effluent from the perfused blood vessel while extraluminal perfusion of adenosine diphosphate caused no change in relaxant activity of the effluent, suggesting that purinergic receptor related to EDNO release is present only on endothelial cells of canine internal mammary artery.

It has been demonstrated that muscarinic receptors mediate diverse effects on the vasculature and three major subtypes of receptors are present in endothelial cells, nervous tissue and also smooth muscle cells [13-15]. While M1 receptors contract canine venous smooth muscle tissue, M3 receptors contract porcine and bovine coronary arteries and rabbit aorta smooth muscle [13,14]. And also both M1 and M3 receptors mediate EDRF-dependent relaxant responses in canine coronary artery and rabbit aorta respectively [14,15]. In our experiments, acetylcholine seemed to act on the endothelium cells and nerves of the canine internal mammary artery by different muscarinic receptor since atropine inhibited EDRF release by both intraluminal and extraluminal perfusion of acetylcholine whereas McN-A-343 stimulated EDRF release only by intraluminal perfusion.

Intraluminal release of EDRF was stimulated by acetylcholine, McN-A-343 and adenosine diphosphate while extraluminal release of EDRF was stimulated only by acetylcholine. And both intraluminal and extraluminal perfusion of acetylcholine were inhibited by intraluminal but not by extraluminal perfusion of a NO-synthase inhibitor L-NMMA, suggesting that extraluminal perfusion of acetylcholine stimulated muscarinic receptor on nerves while intraluminal perfusion of acetylcholine stimulated muscarinic receptor on endothelium cells and both adventitia layer and endothelial cells activation stimulated EDNO release only from endothelium.

These experiments indicate that certain agonists can induce EDRF release from canine internal mammary artery only by binding on the endothelial surface receptors (direct effect), while other agonists can induce EDRF-dependent vasodilation by acting on the adventitia surface receptors (indirect effect).

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
NMM has been involved in analysis and interpretation of data, drafting the manuscript and acquisition of funding to prepare the manuscript. PJP helped to design the study and collecting data. HVS helped to design the study and collecting data. CEP helped to design the study. AJR helped to design the study. PRBE participated in the design of the study, collecting data and revising the manuscript and has given final approval of the version to be published.

Acknowledgements
This manuscript was supported by grants from Fundação de Amparo a Pesquisas do Estado de São Paulo (FAPESP 2006/50084-2) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq 474531/2008-2) to NM Matsuda.

References
1. Furchgott RF, Zawadzki JV: The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 1980, 288(5789):373-376.
2. Burnstock G: Local mechanism of blood flow control by perivascular nerves and endothelium. J Hypertension 1990, 8:192-203.
3. Ignarro LJ, Byrns RE, Buga GM, Wood KS: Endothelium-derived relaxing factor from pulmonary artery and vein possesses pharmacologic and chemical properties identical to those of nitric oxide radical. Circ Res 1987, 61(6):866-879.
4. Khan MT, Furchgott RF: Similarities of behaviour of nitric oxide (NO) and endothelium-derived relaxing factor in a perfusion cascade system. Fed Proc 1987, 46:385.
5. Furchgott RF, Vanhoutte PM: Endothelium-derived relaxing and contracting factors. FASEB J 1989, 3:2007-2018.
6. Dunn MJ, Stone HL: Autonomic innervation of dog coronary arteries. J Appl Physiol 1976, 41:30-35.
7. Wharton J, Polack JM, Gordon L, Banner NR, Springall DR, Rose M, Khangani A, Wallwork J, Yacoub MH: Immunohistochemical demonstration of human cardiac innervation before and after transplantation. Circ Res 1990, 66(4):900-912.
8. Simonsen U, Triguero D, García-Sacristán A, Prieto D: Cholinergic modulation of non-adrenergic, non-cholinergic relaxation in isolated, small coronary arteries from lambs. Pflugers Arch 1999, 438(2):177-186.
9. Pearson PJ, Evora PR, Schiff HV: Bioassay of EDRF from internal mammary arteries: implications for early and late bypass graft patency. Ann Thorac Surg 1992, 54(6):1078-1084.
10. Kawasaki H: Pharmacology and Physiology of perivascular nerves regulating vascular function: Regulation of vascular function by perivascular calcitonin gene-related peptide-containing nerves. Jpn J Pharmacol 2002, 88:39-43.
11. Park JJ, Shin CY, Lee YW, Huh IH, Sohn UD: Endothelium-dependent sensory non-adrenergic non-cholinergic vasodilatation in rat thoracic aorta: involvement of ATP and a role for NO. J Pharm Pharmacol 2000, 52(4):409-416.
12. Draid M, Shina T, El-Mahmoudy A, Boudaka A, Shimiizu Y, Takewaki T: Neurally released ATP mediates endothelium-dependent hyperpolarization in the circular smooth muscle cells of chicken anterior mesenteric artery. Br J Pharmacol 2005, 146(7):983-989.
13. Eglen RM, Whiting RLJ: Heterogeneity of vascular muscarinic receptors. J Auton Pharmacol 1990, 10(4):233-245.
14. Jaiswal N, Lambrecht G, Muschler E, Tacke R, Maile KJ: Pharmacological characterization of the vascular muscarinic receptors mediating relaxation and contraction in rabbit aorta. J Pharmacol Exp Ther 1991, 258(3):842-850.
15. Evora PR, Cable DG, Chua YL, Rodrigues AJ, Pearson PJ, Schaff HV: 
Nitric oxide and prostacyclin-dependent pathways involvement on in vitro induced hypothermia. Cryobiology 2007, 
54(1):106-113.