Effectiveness of generic direct-acting agents for the treatment of hepatitis C: systematic review and meta-analysis

Hugo Perazzo,a Rodolfo Castro,a Paula M Luz,a Mariana Banholi,a Rafaela V Goldenzon,a Sandra W Cardoso,a Beatriz Grinsztejna & Valdilea G Veloso,a

Systematic reviews

Abstracts in العربية, 中文, Français, Русский and Español at the end of each article.

Introduction

An estimated 70 million people worldwide are chronically infected by the hepatitis C virus (HCV).1 The clinical presentation of HCV infection can vary from minimal fibrosis to cirrhosis and its complications.2 The disease is one of the most frequent reasons for liver transplantation and more than 1 million deaths were due to HCV infection in 2013,3 most of which were related to cirrhosis and hepatocellular carcinoma.4 A sustained virological response to treatment has been associated with lower rates of liver-related complications,5 better quality of life,6 and a shorter waiting list for liver transplantation.7

The introduction of direct-acting antiviral agents has revolutionized the treatment of chronic hepatitis C – all-oral, interferon-free regimens have been shown to be highly effective.8 In 2016, the World Health Organization (WHO) outlined strategies for eliminating HCV infection and for reducing the number of viral hepatitis-related deaths by 65% by 2030.9 However, the use of direct-acting agents has had a substantial economic impact in several countries due to high drug costs. Nevertheless, the adoption of a test-and-treat-all strategy is cost-effective and has been shown to be essential for reaching global treatment goals.8 Access to direct-acting agents varies widely across the world.10 Several countries have provided access with minimal co-payments or have negotiated large discounts with the pharmaceutical industry to provide universal treatment for everyone living with HCV.11 Despite the availability of highly effective therapeutic regimens, however, WHO’s target of eliminating HCV infection by 2030 will probably be difficult to achieve for several reasons, including:

(i) the high rate of new infections; (ii) HCV-infected individuals remaining untreated due to a lack of screening; (iii) patent restrictions that affect generic medicines; and (iv) the high price of direct-acting agents in middle-income countries with large HCV epidemics.12 Generic versions of direct-acting agents could be provided at a much lower cost than brand-name medicines and could contribute to eradicating HCV infection in coming years. Optimally, generic HCV direct-acting agents should be prequalified by WHO.13

Our hypothesis was that generic direct-acting agents are highly effective for the treatment of hepatitis C. Generic agents should be considered in resource-constrained settings for decreasing the burden of liver disease in HCV-infected patients.

Methods

We performed a systemic search of the PubMed®, Embase®, Scopus and LILACS (Literatura Latino Americana em Ciências da Saúde) databases to 31 August 2018, without language restrictions. The search string was: [“sofosbuvir” OR “sovaldi” OR “simeprevir” OR “olysio” OR “daclatasvir” OR “daklinza” OR “ledipasvir” OR “harvoni” OR “elbasvir” OR “grazoprevir” OR “zepatier” OR “velpatasvir” OR “epclusa” OR “direct-acting agents”] AND [“hepatitis C” OR “HCV”] AND [“Generic” OR “Drug substitution” OR “Therapeutic equivalency”]. Table 1, Table 2 and Box 1 describe the study inclusion and exclusion criteria.
This systematic review and meta-analysis was performed in accordance with the Preferred Reporting Items for Systematic reviews and Meta-Analyses statement. 13 The quality of the studies included was appraised using the National Institute of Health’s quality assessment tool (i.e. the DerSimonian–Laird model (i.e. the DerSimonian–Laird random-effects model (i.e. the DerSimonian–Laird random-effects model). 13 The following study types were excluded: (i) studies of HCV prevalence or screening; and (ii) clinical trials or cohort studies that evaluated the effectiveness of brand-name direct-acting agents only.

Table 1. Study inclusion criteria, systematic review and meta-analysis of generic direct-acting agents for treating hepatitis C

Characteristic	Inclusion criteria	Notes
Study population	People living with a chronic HCV infection	None
Study intervention	Treatment of HCV infection using generic direct-acting agents	Table 2 lists eligible drugs and their licensed doses and Box 1 lists eligible treatment regimens
Comparison treatment	Either: (i) brand-name direct-acting agents for HCV infection; or (ii) no comparator treatment	The following study types were excluded: (i) studies of HCV prevalence or screening; and (ii) clinical trials or cohort studies that evaluated the effectiveness of brand-name direct-acting agents only
Study outcome	Sustained virological response 12 weeks after the end of treatment	The outcome used in intention-to-treat and per-protocol analyses was the eradication of HCV virus, as indicated by a sustained virological response 12 weeks after the end of treatment
Study design	Randomized or open-label clinical trials and real-life cohort studies	The following study types were eligible for inclusion: (i) randomized or open label clinical trials that compared the effectiveness of generic and brand-name direct-acting agents for the treatment of HCV infection; and (ii) cohort studies that reported the effectiveness of generic direct-acting agents for HCV eradication

HCV: hepatitis C virus.

Table 2. Eligible drugs, systematic review and meta-analysis of generic direct-acting agents for treating hepatitis C

Drug	Formulation	Brand name
Sofosbuvir	Tablets containing 400 mg	Sovaldi®
Simeprevir	Capsules containing 150 mg	Olysio®
Daclatasvir	Tablets containing 30 or 60 mg	Daklinza®
Sofosbuvir–ledipasvir combination	Tablets containing 400 mg of sofosbuvir and 90 mg of ledipasvir	Harvoni®
Sofosbuvir–velpatasvir combination	Tablets containing 400 mg of sofosbuvir and 100 mg of velpatasvir	Epclusa®
Grazoprevir–elbasvir combination	Tablets containing 100 mg of grazoprevir and 50 mg of elbasvir	Zepatier®

Box 1. Eligible drug treatment regimes, systematic review and meta-analysis of generic direct-acting agents for treating hepatitis C, 2019

- Sofosbuvir and daclatasvir, with or without ribavirin for 12 or 24 weeks.
- Sofosbuvir and simeprevir, with or without ribavirin for 12 or 24 weeks.
- Sofosbuvir–daclatasvir combination, with or without ribavirin for 12 or 24 weeks.
- Sofosbuvir–ledipasvir combination, with or without ribavirin for 8 or 12 weeks.
- Sofosbuvir–velpatasvir combination, with or without ribavirin for 12 weeks.
- Grazoprevir–elbasvir combination, with or without ribavirin for 12 weeks.

The quality of the studies included was appraised using the National Institute of Health’s quality assessment tool for observational cohort and cross-sectional studies. 13 This tool’s 14-item checklist was designed to focus on factors important for evaluating a study’s internal validity. Studies were rated as being of good, fair or poor quality. Those with 0 to 6, 7 to 10, or 11 or more “yes” responses to the 14 items were considered as having a high, moderate or low risk of bias, respectively.

Statistical analysis

Our primary outcome was the pooled proportions of treated patients with sustained virological response for generic direct-acting agents, reported with a 95% confidence interval (CI). In addition, where data were available, we performed a meta-analysis of proportions using a random-effects model (i.e. the DerSimonian–Laird statistical method).
Results

Study characteristics

The database and manual searches identified 341 and 4 records, respectively. Subsequent screening of titles and abstracts led to 19 studies being eligible for inclusion in the meta-analysis (Fig. 1).23–41 These 19 published full articles reported sustained virological response proportions for generic direct-acting agents in a total of 57,433 individuals and all except one were published in English.38 The studies were performed in seven territories – Egypt (seven studies), India (three studies), China (four studies), the Islamic Republic of Iran (two studies), Argentina (one study) and Chile (one study) – and one was a multiregional study in Australia, eastern Europe and South-East Asia (Table 3; available at: http://www.who.int/bulletin/volumes/98/3/19-231522). Four studies compared the effectiveness of generic and brand-name direct-acting agents.23,24,32,38 Patients were treated with generic versions of: (i) sofosbuvir and ribavirin; (ii) sofosbuvir and daclatasvir, with or without ribavirin; (iii) sofosbuvir and ledipasvir, with or without ribavirin; or (iv) sofosbuvir and velpatasvir. Cirrhosis was identified by liver biopsy, liver stiffness measurement, serological biomarkers, clinical signs or imaging. Generic direct-acting agents originated from Egypt (nine studies), India (seven studies), the Islamic Republic of Iran (two studies), Argentina (one study) and Bangladesh (two studies), though one study had multiregional sources (Table 4; available at: http://www.who.int/bulletin/volumes/98/3/19-231522).

Study quality was good in 37% (7/19), fair in 26% (5/19) and poor in 37% (7/19) and the risk of bias was low in 26% (5/19) and high in 75% (14/19). The likelihood of bias was low in 26% (5/19) and high in 21% (4/19). Three studies used WHO prequalified medicines or medicines listed for use in mass-treatment programmes by the Expert Review Panel of the Global Fund to Fight AIDS, Tuberculosis and Malaria (Table 4).23 In addition, another three studies used generic direct-acting agents whose bioequivalence with the original versions had previously been demonstrated in pharmacokinetics studies.

Sustained virological response

Overall

The pooled proportion of patients with sustained virological response for generic direct-acting agents overall was 98% (95% CI: 97–99; $I^2 = 94.1\%$) in per-protocol analyses (18 studies including 57,249 patients; Fig. 2) and 96% (95% CI: 93–98; $I^2 = 68.1\%$) in intention-to-treat analyses (8 studies including 1420 patients; Fig. 3). The likelihood of a sustained virological response with brand-name medicines was similar to that with generic direct-acting agents (RR: 1.00; 95% CI: 0.98–1.02; $F = 0.00\%$) in the four studies (including 1026 patients) that compared the two types of direct-acting agent (Fig. 4). Among the 55,778 patients treated with sofosbuvir and daclatasvir, with or without ribavirin, the pooled proportion was 98% (95% CI: 97–99; $I^2 = 96.1\%$) in per-protocol analyses (Fig. 5; avail-
Fig. 2. Sustained virological response to hepatitis C treatment by generic direct-acting agents, per-protocol analysis, systematic review and meta-analysis, 2019

Author, year	Treated (no.)	Sustained virological responsea (no.)	%	Weight	Sustained virological responsea, % (95% CI)
Yakoot et al. 2016	48	46	3.10	96 (86–99)	
Hill et al. 2017	250	247	6.90	99 (97–100)	
Menat et al. 2017	94	92	4.65	99 (95–99)	
Nagai et al. 2017	29	29	2.15	100 (99–100)	
Sharfi et al. 2017	30	29	2.21	97 (83–99)	
Vergas et al. 2017	26	25	1.98	96 (81–99)	
Yakoot et al. 2017	118	117	5.20	99 (95–100)	
Zeng et al. 2017	187	186	6.28	97 (94–98)	
Abozeid et al. 2018	395	388	7.44	98 (96–99)	
El-Nahas et al. 2018	133	133	5.49	99 (96–100)	
Elsharkawy et al. 2018	36186	35663	9.76	100 (97–100)	
Gupta et al. 2018	393	376	7.73	99 (99–100)	
Kumar et al. 2018	71	71	3.97	97 (95–99)	
Liu et al. June 2018	226	223	6.70	99 (96–100)	
Liu et al. September 2018	508	493	8.12	97 (95–99)	
Li et al. 2018	137	135	5.56	99 (95–100)	
Omar et al. 2018	18378	17473	9.73	97 (95–99)	
Shousha et al. 2018	40	39	2.73	98 (87–100)	
Overall (I² = 94.1%, P = 0.00)	100.00				98 (97–99)

CI: confidence interval.
* A sustained virological response 12 weeks after the end of treatment.

Fig. 3. Sustained virological response to hepatitis C treatment by generic direct-acting agents, intention-to-treat analysis, systematic review and meta-analysis, 2019

Author, year	Treated (no.)	Sustained virological responsea (no.)	%	Weight	Sustained virological responsea, % (95% CI)
Yakoot et al. 2016	50	46	8.14	92 (81–97)	
Menat et al. 2017	100	92	11.61	92 (85–96)	
Nagai et al. 2017	29	29	5.71	100 (88–100)	
Yakoot et al. 2017	120	117	12.50	98 (93–99)	
Zeng et al. 2017	192	186	14.60	97 (93–99)	
Liu et al. June 2018	228	223	15.28	98 (93–99)	
Liu et al. September 2018	517	493	17.74	95 (93–97)	
Marciano et al. 2018	184	164	14.42	89 (84–93)	
Overall (I² = 68.1%, P = 0.00)	100.00				96 (93–98)

CI: confidence interval.
* A sustained virological response 12 weeks after the end of treatment.

The generic version of the pan-genotypic regimen of sofosbuvir and velpatasvir, the proportion was 98% (95% CI: 95–99) and 99% (95% CI: 97–100), respectively. Subgroups

A single study exclusively included individuals with cirrhosis, 31 11 studies included patients with and without cirrhosis, two excluded cirrhotic patients and five did not report the prevalence of cirrhosis. Of the eight studies that reported proportions of sustained virological response in patients with cirrhosis, seven reported proportions for cirrhotic and noncirrhotic patients separately. The pooled proportion for patients without and with cirrhosis was 98% (95% CI: 97–99; I² = 34.2%; 7 studies; 1199 patients; Fig. 7; available at: http://www.who.int/bulletin/volumes/98/3/19-231522). The likelihood of a sustained virologi-
Fig. 4. Relative risk of a sustained virological response to hepatitis C treatment by brand-name versus generic direct-acting agents, systematic review and meta-analysis, 2019

Author, year	% Weight	RR (95% CI)
Vargas et al. 2017	4.40	1.00 (0.91–1.10)
Abozeid et al. 2018	61.59	1.00 (0.98–1.02)
El-Nahhas et al. 2018	15.44	0.99 (0.96–1.01)
Marcuno et al. 2018	18.57	1.02 (0.95–1.10)
Overall (I² = 0%); P = 0.725	100.00	1.00 (0.98–1.02)

CI: confidence interval; RR: relative risk.

Table 5. Effect of cirrhosis on the likelihood of a sustained virological response* to generic direct-acting agents in patients with hepatitis C, meta-analysis, 2019

Studya	No. of patients with a response/no. treated	RR (95% CI)	Study weighting (%)	
	Without cirrhosis	With cirrhosis		
Yakoot et al., 2016b	37/37	9/11	1.19 (0.90–1.58)	1.87
Nagral et al., 2017b	22/22	3/4	1.20 (0.77–1.87)	0.88
Zeng et al., 2017b	125/129	61/63	1.00 (0.95–1.06)	11.00
Abozeid et al., 2018b	245/247	143/148	1.03 (0.99–1.06)	24.00
Gupta et al., 2018b	248/259	128/134	1.00 (0.96–1.05)	22.64
Liu et al., 2018b	173/175	49/52	1.05 (0.98–1.12)	10.14
Liu et al., 2018b	330/331	172/187	1.06 (1.01–1.11)	29.47
Pooled datac	1180/1190	565/599	1.03 (1.01–1.06)	100.00

CI: confidence interval; RR: relative risk.

* A response was defined as a sustained virological response 12 weeks after the end of treatment.
*b The Merat et al.33 study was not included in this subanalysis because it involved only patients with cirrhosis.
*c The I² value for between-study heterogeneity was 0.0% (P = 0.435).

Sensitivity analysis

Our sensitivity analysis showed that heterogeneity was lower in studies performed in Asia than in Egypt (Fig. 12). In addition, we found that heterogeneity was lower in studies of patients with cirrhosis (Fig. 8) and when studies were stratified by quality (Fig. 13); available at: http://www.who.int/bulletin/volumes/98/3/19-231522) or risk of bias (Fig. 14; available at: http://www.who.int/bulletin/volumes/98/3/19-231522).

Discussion

Through a systematic review and meta-analysis approach, we derived pooled proportions of sustained virological response in patients treated for HCV infection using generic direct-acting agents. We found that generic direct-acting agents were highly effective. The overall pooled proportion of patients with a sustained virological response was 98% in real-life observational studies that included over 57 000 individuals, which was similar to that reported for brand-name direct-acting agents in large, real-life, observational cohort studies around the world.8,44,45 In particular, we found that a sustained virological response with generic direct-acting agents was similar to brand-name medicines. Additionally, in sensitivity analyses, we found that sustained virological response was also high with specific regimens, such as sofosbuvir with daclatasvir and sofosbuvir with ledipasvir. Although neither an HIV coinfection nor previous treatment was associated with a high treatment failure, the presence of cirrhosis at baseline was associated with a significantly lower sustained virological response in patients treated...
with generic direct-acting agents. The results of this study can help in the elaboration of public health strategies for using generic direct-acting agents to treat HCV infection.

Our study findings have implications for achieving the goal of eliminating HCV infection by 2030. Universal access to direct-acting agents is essential for decreasing viral transmission as well as for reducing mortality and the risk of liver-related complications associated with chronic hepatitis C worldwide. However, HCV treatment has entailed a substantial financial burden, especially as direct-acting agents are expensive. The nominal price of a 12-week course of sofosbuvir ranges from $6766 in Brazil to $64680 in the United States. In contrast, a course of a generic direct-acting agent regimen can be produced for approximately $200 per patient in countries such as Egypt and India.

The production of generic direct-acting agents has been challenged in various local intellectual property jurisdictions because some pharmaceutical components may still be patented. In most countries, local drug regulatory authorities can approve the marketing of a generic version of a patented drug only after the relevant patent has expired, generally after 20 years. In several countries, local intellectual property offices have evaluated requests to cancel patent claims previously granted to pharmaceutical companies, thereby opening up the possibility that affordable generic versions of direct-acting agents could be produced. Opposition pharmaceutical companies have defended their patents and, in the meantime, have collaborated with local companies to produce authorized versions of generic medicines for HCV treatment. The cost of these authorized versions will most likely exceed that of generic direct-acting agents produced by independent companies. Authorized, generic versions of sofosbuvir–ledipasvir and sofosbuvir–velpatasvir combinations were expected to be available in the United States in 2019 at a cost of $24000 per treatment course.

Our study has limitations. First, there was high between-study heterogeneity for pooled overall proportions of sustained virological response. High heterogeneity might have resulted from differences in the ethnic or clinical characteristics of study participants. Most studies were conducted either in Egypt, where most patients have an HCV genotype-4 infection, or in various parts of Asia. Our sensitivity analysis showed that the region where the study took place and characteristics of patients and study design influenced the heterogeneity. Second, there was a lack of a pooled proportion of patients with a sustained virological response for pan-genotypic interferon-free regimens. We acknowledge that few studies included patients treated with sofosbuvir and velpatasvir, or patients with an HIV–HCV coinfection. Most studies included in our analysis were real-life cohort studies in-

Table: Sustained virological response to hepatitis C treatment with generic direct-acting agents, by geographical location, systematic review and meta-analysis, 2019

Author, year	Treated (no.)	Sustained virological response (no.)	% Weight	Sustained virological response, % (95% CI)
Egypt				
Yakoot et al. 2016	48	46	3.10	96 (86–99)
Yakoot et al. 2017	118	117	5.26	99 (95–100)
Abdel et al. 2018	395	388	7.74	98 (96–99)
El-Nahhas et al. 2018	133	133	5.49	100 (97–100)
Elsharkawy et al. 2018	36186	35863	9.76	98 (96–98)
Omar et al. 2018	18378	17473	9.73	95 (95–95)
Shousha et al. 2018	40	39	2.73	98 (96–96)
Subtotal (I² = 97.8%, P = 0.00)	43.75			98 (96–99)
Asia				
Meraz et al. 2017	94	92	4.65	98 (95–99)
Nagpal et al. 2017	29	29	2.75	100 (98–99)
Shariati et al. 2017	30	29	2.21	97 (83–99)
Zeng et al. 2017	187	186	6.28	99 (97–100)
Gupta et al. 2018	393	376	7.73	96 (95–97)
Kumar et al. 2018	71	71	3.97	100 (95–100)
Liu et al. June 2018	226	223	6.70	99 (96–100)
Liu et al. September 2018	508	493	8.12	97 (95–98)
Li et al. 2018	137	135	5.56	99 (95–100)
Subtotal (I² = 43.0%, P = 0.08)	47.37			98 (97–99)
Other				
Hill et al. 2017	250	247	6.90	99 (97–100)
Vergara et al. 2017	26	25	1.98	96 (81–99)
Heterogeneity between groups: P = 0.80			100.00	
Overall (I² = 94.1%, P = 0.00)			98 (97–99)	
The main strength of our study is the large number of patients in real-life scenarios included in the meta-analysis. This large sample size enabled us to estimate the pooled overall proportion of patients with a sustained virological response rates and proportions for different direct-acting agent regimens and for the presence of conditions such as cirrhosis. Moreover, we were able to perform sensitivity analyses that explored the effect on pooled estimates of geographical location, study quality and clinical and demographic characteristics.

In conclusion, we found that the proportion of patients treated with generic direct-acting agents with sustained virological response was high. The proportion was also high in patients treated with sofosbuvir and daclatasvir, and with sofosbuvir and ledipasvir, and in those with cirrhosis or an HIV coinfection. Recent cost-effectiveness studies of generic direct-acting agents in India suggest that their use can reduce costs, especially if pan-genotypic regimens are used (though efficacy estimates for brand-name medicines were used in these studies). Our results corroborate these economic analyses by showing that the effectiveness of generic and brand-name direct-acting agents is indeed the same. Future cost-effectiveness analyses are needed to investigate the specific characteristics of different countries and regions. Nevertheless, generic direct-acting agents are effective and should be considered in public health strategies for HCV elimination.

Funding: This work was supported by the Fundação Carlos Chagas Filho de Amaparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Bolsa de Iniciação Científica 2017/2, grant number 235083 for authors HP and RVG, by PIBIC-FIOCRUZ (Programa Institucional de Bolsa de Iniciação Científica 2018, for HP, RC and MB) and by INI-FIOCRUZ (Programa de Incentivo à Jovens Pesquisadores do INI, grant number INI-003-19-2-5 for HP).

Competing interests: None declared.
通用直接药物治疗丙型肝炎的效果：系统评审和元分析

目的 通过开展系统评审和元分析，比较使用通用直接药物和品牌药物治疗丙型肝炎病毒（HCV）感染的疗效。

方法 我们搜索了在线数据库中报告的使用直接药物进行HCV治疗12周后的持续病毒性应答方面的研究。我们从意向性治疗和按方案分析中得出了治疗后表现的持续病毒性应答的概率。此外，我们还使用现有数据的随机效果模型（DerSimonian－Laird）计算了品牌药物和通用直接药物的持续病毒性应答的总相对风险（RR）。通过I²统计对研究间异质性进行了评估。

结果 我们确定了19份研究，涉及来自8个国家或地区的57433名个体。显示出持续病毒性应答的患者的比例为：意向性治疗：RR = 1.03；95%CI：0.81–1.29；11份研究；按方案分析：RR = 0.97；95%CI：0.89–1.05；18份研究。

结论 通用直接药物治疗丙型肝炎的效果：系统评审和元分析

摘要

Efficacité des antiviraux à action directe génériques pour le traitement de l’hépatite C. revue systématique et méta-analyse

Objective Comparer l’efficacité des antiviraux à action directe génériques et des médicaments de marque pour traiter l’infection par le virus de l’hépatite C (VHC) à l’aide d’une revue systématique et d’une métanalyse.

Méthodes Nous avons recherché dans les bases de données en ligne des études qui décrivaient une réponse virologique à l’aide d’un modèle de données de prises de décision de DerSimonian－Laird calculée par l’utilisation de logiciels spécialisés. Nous avons utilisé la statistique de I² pour l’analyse de la hétérogénéité entre les études.

Résultats Nous avons identifié 19 études portant sur un total de 57433 personnes réparties dans huit territoires ou régions. Les proportions totales combinées de patients présentant une réponse virologique à l’aide de ces données étaient de 98% (IC à 95% : 93–98; 8 études; I² = 94,1%) dans les analyses per protocole et 96% (IC à 95% : 93–98; 8 études; I² = 68,1%) dans les analyses en intention de traiter. La probabilité d’une réponse virologique à l’aide de ces données était sensiblement plus élevée chez les patients sans cirrhose que chez ceux ayant une cirrhose (RR : 1,03; IC à 95% : 1,01–1,06; 7 études), mais elle n’était pas significativement affectée par la prise d’un traitement antérieur (3 études) ou par une co-infection par le virus de l’immunodéficience humaine (3 études).

Conclusion Les antiviraux à action directe génériques sont très efficaces pour traiter l’hépatite C. Les médicaments génériques devraient être envisagés en cas de ressources limitées afin de réduire la charge des affections hépatiques chez les patients infectés par l’hépatite C.
Resumen

Eficacia de los antivirales genéricos de acción directa para el tratamiento de la hepatitis C: revisión sistemática y metanálisis

Objetivo
Comparar la eficacia de los antivirales genéricos de acción directa y los medicamentos de marca para el tratamiento de la infección por el virus de la hepatitis C (VHC) mediante la realización de una revisión sistemática y un metaanálisis.

Métodos
Se realizaron búsquedas en las bases de datos en línea de estudios que notificaron respuestas virológicas sostenidas 12 semanas después del final del tratamiento contra el VHC con antivirales genéricos de acción directa. Se derivaron las proporciones agrupadas de los pacientes tratados con una respuesta virológica sostenida de los análisis por intención de tratar y por protocolo. Además, se calculó el riesgo relativo (RR) agrupado de un medicamento de marca de respuesta virológica sostenida versus antivirales genéricos de acción directa mediante un modelo de efectos aleatorios (DerSimonian–Laird) a partir de los datos disponibles. Se evaluó la heterogeneidad entre los estudios mediante la estadística I².

Resultados
Se identificaron 19 estudios con un total de 57.433 individuos de ocho territorios o regiones. Las proporciones generales agrupadas de pacientes con una respuesta virológica sostenida fueron del 98 % (intervalo de confianza del 95 %: 97–99; 18 estudios; I² = 94,1 %) en los análisis por protocolo y del 96 % (IC del 95 %: 93–98; 8 estudios; I² = 68,1 %) en los análisis por intención de tratar. La probabilidad de una respuesta virológica sostenida con medicamentos de marca fue similar a la de los antivirales genéricos de acción directa (RR: 1,00; IC del 95 %: 0,98–1,02; I² = 0,0 %). La probabilidad de una respuesta virológica sostenida fue significativamente mayor en los pacientes sin cirrosis que con cirrosis (RR: 1,03; IC del 95 %: 1,01–1,05; 7 estudios), pero no se vio afectada significativamente por el tratamiento previo (3 estudios) o la coinfección por el virus de la inmunodeficiencia humana (3 estudios).

Conclusión
Los antivirales genéricos de acción directa son altamente efectivos para el tratamiento de la hepatitis C. Los antivirales genéricos deben ser considerados en entornos con recursos limitados para disminuir la carga de la enfermedad hepática en pacientes infectados por el VHC.

Referencias

1. Blach S, Zeuzem S, Manns M, Altraif I, Duberg A-S, Muljono DH, et al.; Polaris Observational HCV Collaborators. Global prevalence and genotype distribution of hepatitis C virus infection in 2015: a modelling study. Lancet Gastroenterol Hepatol. 2017 03(2):161–76. doi: http://dx.doi.org/10.1016/S2468-1253(16)30181-9 PMID: 28404132

2. Reggiardo MV, Fay F, Tanno M, García-Camacho G, Bottaso C, Ferretti S, et al. Natural history of hepatitis C virus infection in a cohort of asymptomatic post-transfused subjects. Ann Hepatol. 2012 Sep-Oct;11(5):659–66. doi: http://dx.doi.org/10.1016/j.anh.2012.06.007 PMID: 22947526

3. Adam R, Karam V, Delvart V, O’Grady J, Mirza D, Klempnauer J, et al.; CO12 CirVir Group. Eradication of hepatitis C virus infection in patients with chronic liver disease: a systematic review and meta-analysis. J Hepatol. 2012 Sep;57(3):675–88. doi: http://dx.doi.org/10.1016/j.jhep.2012.04.015 PMID: 22690307

4. Combating hepatitis B and C to reach elimination by 2030. Advocacy brief 2016. Geneva: World Health Organization, 2016. Available from: https://www.who.int/hepatitis/publications/hep-elimination-by-2030-brief/en/ [cited 2019 Jan 31].

5. Nahon P, Boucher V, Layese R, Audureau E, Cagnost C, Marcellin P, et al.; ANRS CO12 CirVir Group. Eradication of hepatitis C virus infection in patients with cirrhosis reduces risk of liver and non-liver complications. Gastroenterology. 2017 01;152(1):142–56.e2. doi: http://dx.doi.org/10.1016/j.gastro.2016.09.009 PMID: 27641509

6. Sequeira FM, Ferreira VL, Borba HHL, Pontarolo R. Quality of life of chronic hepatitis C patients treated with interferon-free therapies. Rev Inst Med Trop São Paulo. 2018 11 14;60(01):e072. doi: http://dx.doi.org/10.1590/s1678-94692018600072 PMID: 30462795

7. Ferrarese A, Germann G, Gambato M, Russo FP, Senzolo M, Zanetto A, et al. Hepatitis C virus related cirrhosis decreased as indication to liver transplantation since the introduction of direct-acting antivirals: a single-center study. World J Gastroenterol. 2018 Oct 14;24(38):4403–11. doi: http://dx.doi.org/10.3748/wjg.v24.i38.4403 PMID: 30944424

8. Falade-Nwulia D, Suarez-Cuervo C, Nelson DR, Fried MW, Segal JB, Suikowski MS. Oral direct-acting agent therapy for hepatitis C virus infection: a systematic review. Ann Intern Med. 2017 May 2;166(9):637–48. doi: http://dx.doi.org/10.7326/M16-2575 PMID: 28319966

9. Cipriano LE, Goldhaber-Fiebert JD. Population health and cost-effectiveness implications of a “treat all” recommendation for HCV: a review of the model-based evidence. MDM Policy Pract. 2018 05;26(3):238:1-238:15. doi: http://dx.doi.org/10.18433/jpps30220 PMID: 30407908

10. Myers S, Khosa G, Kuo IF, Janzen D, Alessi-Severini S. Moving towards universal coverage of direct-acting antiviral therapies for hepatitis C infection in Canada: an environmental scan of Canadian provinces and international jurisdictions. J Pharm Pharm Sci. 2018 01;21(1):271–308s. doi: http://dx.doi.org/10.18433/jpps30320 PMID: 30407908

11. Iyengar S, Tay-Teo K, Vogler S, Beyer P, Wiktor S, de Joncheere K, et al. Prices, costs, and affordability of new medicines for hepatitis C in 30 countries: an economic analysis. PLoS Med. 2016 05;13(5):e1002032. doi: http://dx.doi.org/10.1371/journal.pmed.1002032 PMID: 27243629

12. Lombardi A, Mondelli MV, ESCMID Study Group for Viral Hepatitis (ESGHV). Hepatitis C: can it be cured? What is the best economical possible? Liver Int. 2019 Mar;39(3):416–26. doi: http://dx.doi.org/10.1111/liv.14011 PMID: 30472772

13. Hill A, Tahat L, Mohammed MK, Tayyem RF, Khwairakpam G, Nath S, et al. Bioequivalence pharmokinetics for generic and originator hepatitis C direct-acting antivirals. J Virus Erad. 2018 04;1(2):128–31. PMID: 29682307

14. Perazzo H, Castro R, Luo P, Bantoli M, Valentin R, Cardoso SW, et al. Supplementary material – effectiveness of generic direct-acting agents for HCV treatment with or without comparison to brand name medicines: a systematic review and meta-analysis [data repository]. Geneva: Zenodo; 2019. Available from: doi: http://dx.doi.org/10.5281/zenodo.3476933 [cited 2019 Jan 31].

15. National Institute of Health Research. PROSPERO. International prospective register of systematic reviews [website]. York: University of York; 2019. Available from: https://www.crd.york.ac.uk/prospero/ [cited 2019 Oct 28].

16. Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan—a web and mobile app for systematic reviews. Syst Rev. 2016 12 5;5(1):210. doi: http://dx.doi.org/10.1186/s13643-016-0384-4 PMID: 27912725

17. Ouazzani M, Hammad M, Fedorowicz Z, Elmagarmid A. Rayyan-a web and mobile app for systematic reviews. Syst Rev. 2016 12 5;5(1):210. doi: http://dx.doi.org/10.1186/s13643-016-0384-4 PMID: 27912725

18. Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009 Aug 18;151(4):264–9. doi: http://dx.doi.org/10.7326/0003-4819-151-4-200908180-00135 PMID: 19625111
Table 3. Characteristics of included studies in the systematic review and meta-analysis of generic direct-acting agents for treating hepatitis C, 2016–2018

Study	Location	Multicentre study	Study period	Comparison with brand-name direct-acting agent treatment regimen	Treatment duration, weeks	Method of cirrhosis diagnosis	No. of patients	No. (%) of patients with specific HCV genotypesa	No. (%) of male patients	No. (%) of previously treated patients	No. (%) of patients with cirrhosis	No. (%) of patients with an HIV coinfection	
Yakoot et al., 2016	Egypt	Yes	ND	No	SOF and RBV	12 or 24	FIB-4 or APRI	50	genotype 4: 50 (100)	26 (52)	12 (24)	11 (22)	0 (0)
Hill et al., 2017	Multiregional (Australia, Eastern Europe and South-East Asia)	Yes	ND	No	(i) SOF and DCV; and (ii) SOF–LDV combination	ND	ND	250	ND	ND	ND	ND	ND
Merat et al., 2017	Iran (Islamic Republic of)	No	Sep 2015 to Nov 2015	No	SOF–DCV combination and RBV	12	Liver biopsy, liver stiffness measurement, clinical signs or imaging	100	genotype 1: 56 (56); genotype 3: 44 (44)	65 (65)	ND	100 (100)	0 (0)
Nagral et al., 2017	India	Yes	ND	No	(i) SOF and DCV ± RBV; and (ii) SOF–LDV combination ± RBV	12 or 24	Liver stiffness measurement, clinical signs or imaging	29	genotype 1: 17 (55); genotype 3: 12 (41)	16 (55)	7 (24)	6 (21)	0 (0)
Sharafi et al., 2017	Iran (Islamic Republic of)	No	ND	No	SOF–LDV combination ± RBV	12 or 24	Liver stiffness measurement, clinical signs or imaging	30	genotype 1: 29 (97); genotype 4: 1 (3)	22 (73)	18 (60)	16 (53)	0 (0)
Vargas et al., 2017	Chile	Yes	Jun 2013 to May 2017	Yes	(i) SOF and DCV ± RBV; and (ii) SOF–LDV combination ± RBV	ND	Liver biopsy, liver stiffness measurement, clinical signs or imaging	76	ND	ND	ND	ND	ND
Yakoot et al., 2017	Egypt	ND	ND	No	SOF and DCV	8 or 12	Liver stiffness measurement, FIB-4 or APRI	120	genotype 4: 120 (100)	48 (40)	29 (24)	0 (0)	0 (0)
Zeng et al., 2017	China	ND	ND	No	SOF–LDV combination ± RBV	8 or 12	Liver stiffness measurement, clinical signs or imaging	192	genotype 1: 192 (100)	38 (20)	ND	63 (33)	0 (0)

(continues...)
Study	Location	No. of patients	No. (%) of patients with specific HCV genotypes	No. (%) of male patients	No. (%) of previously treated patients	No. (%) of patients with cirrhosis	No. (%) of patients with an HIV coinfection					
Abozeid et al., 2018²³	Egypt	No	Jan 2016 to Dec 2017	Yes	(i) SOF and DCV ± RBV, and (ii) SOF–LDV combination ± RBV	12 or 24	395	ND	226 (57)	27 (7)	148 (37)	ND
El-Nahaas et al., 2018²⁴	Egypt	No	ND	Yes	SOF and DCV ± RBV	12	234	ND	139 (59)	50 (21)	61 (26)	0 (0)
Elsharkawy et al., 2018²⁵	Egypt	Yes	Oct 2015 to Mar 2016	No	SOF and DCV ± RBV	12	ND	36 186	ND	ND	ND	ND
Gupta et al., 2018²⁶	India	No	May 2015 to Jan 2017	No	(i) SOF and RBV, (ii) SOF and DCV ± RBV, and (iii) SOF–LDV combination ± RBV	12 or 24	393	genotype 1: 83 (21); genotype 3: 310 (79)	ND	ND	ND	0 (0)
Kumar et al., 2018²⁸	India	ND	Sep 2015 to Feb 2017	No	(i) SOF and RBV; (ii) SOF and DCV; and (iii) SOF–LDV combination	12 or 24	71	genotype 1: 44 (62); genotype 3: 27 (38)	54 (76)	13 (18)	17 (24)	ND
Liu et al., 2018²⁹	Taiwan, China	No	Aug 2016 to Apr 2017	No	SOF–VEL combination ± RBV	12	228	genotype 1: 113 (50); genotype 2: 89 (39); genotype 3: 7 (3); genotype 4: 3 (1)	137 (60)	58 (25)	52 (23)	69 (30)
Liu et al., 2018³⁰	Taiwan, China	Yes	May 2016 to Jun 2017	No	(i) SOF and RBV; (ii) SOF–DCV combination ± RBV; (iii) SOF–LDV combination ± RBV, and (iv) SOF–VEL combination ± RBV	12 or 24	517	genotype 1: 297 (57); genotype 2: 185 (36); genotype 3: 8 (2); genotype 4: 2 (1)	252 (49)	147 (28)	187 (36)	61 (12)

(continues . . .)
Study	Location	Multicentre study	Study period	Comparison with brand-name direct-acting agent	Generic direct-acting agent treatment regimen	Treatment duration, weeks	Method of cirrhosis diagnosis	No. of patients	No. (%) of patients with specific HCV genotypesa	No. (%) of male patients	No. (%) of previously treated patients	No. (%) of patients with cirrhosis	No. (%) of patients with an HIV coinfection
Li et al., 2018	China	Yes	Jun 2015 to Dec 2016	No (i) SOF and RBV; (ii) SOF and DCV ± RBV; and (iii) SOF–LDV combination ± RBV	12 or 24	Clinical signs or imaging	137	genotype 1: 44 (32); genotype 2: 3 (2); genotype 3: 71 (52)	110 (80)	ND	26 (19)	137 (100)	
Marciano et al., 2018	Argentina	Yes	Mar 2016 to Jun 2016	No (i) SOF and RBV; and (ii) SOF and DCV ± RBV	12 or 24	Liver biopsy, liver stiffness measurement, clinical signs or imaging	321	genotype 1: 240 (75); genotype 2: 27 (8); genotype 3: 47 (15); genotype 4: 7 (2)	189 (59)	136 (42)	292 (91)	58 (18)	
Omar et al., 2018	Egypt	Yes	Nov 2015 to Dec 2015	No	12	Liver stiffness measurement or FIB-4	18 378	genotype 4: 40 (100)	17 (43)	ND	0 (0)	0 (0)	
Shousha et al., 2018	Egypt	ND	Feb 2017 to Jul 2017	No	8 or 12	Liver stiffness measurement	40	genotype 4: 40 (100)	17 (43)	ND	0 (0)	0 (0)	

APRI: aspartate aminotransferase-to-platelet ratio index; DCV: daclatasvir; FIB-4: fibrosis-4 score; HCV: hepatitis C virus; HIV: human immunodeficiency virus; LDV: ledipasvir; ND: not determined; RBV: ribavirin; SOF: sofosbuvir; VEL: velpatasvir.

a The number of patients with specific HCV genotypes does not always equal the total number of patients because data on HCV genotype were missing for some patients in a few studies.
Table 4. Generic medicines used, systematic review and meta-analysis of generic direct-acting agents for treating hepatitis C, 2019

Study and generic direct-acting agents used	Commercial name	Manufacturer	Quality assessment		
		WHO prequalification	Listed by the Global Fund’s Expert Review Panel	Other	
Yakoot et al., 2016*	SOF (400 mg)	Gratisovir®	No	No	
	SOF (400 mg)	Pharco Pharmaceutical (Egypt) European Egyptian Pharmaceutical Industries (Egypt)	No (reference: HP003)	No	
Hill et al., 2017*	SOF (400 mg), DCV (60 mg), LDV (90 mg)	Numerous Direct-acting agents from 24 different companies, 34% from Cipla Ltd (Egypt) and 30% from Hetero Laboratory Ltd (India)	Yes (SOF from Cipla Ltd and Hetero Laboratory Ltd)	Yes (DCV from Cipla Ltd and Hetero Laboratory Ltd)	No
Merat et al., 2017*	SOF–DCV combination (400/60 mg)	Sovodak® Fanavar Rojan Mohaghegh Darou (Islamic Republic of Iran)	No	No	No
Nagral et al., 2017*	SOF (400 mg), DCV (60 mg), SOF–LDV combination (400/90 mg)	Not reported All direct-acting agents manufactured in India	ND	ND	ND
Sharafi et al., 2017*	SOF–LDV combination (400/90 mg)	Sobopasvir® Sobhan Medicine Trade Development Co. (Islamic Republic of Iran)	No	No	No
Vargas et al., 2017*	SOF (400 mg), DCV (60 mg), SOF–LDV combination (400/90 mg)	Not reported Most direct-acting agents manufactured in India	ND	ND	ND
Yakoot et al., 2017*	SOF (400 mg)	Gratisovir®	No	No	
	DCV (60 mg)	Daktavira®	No	No	
	Pharco Pharmaceutical (Egypt) European Egyptian Pharmaceutical Industries (Egypt)	No	No	No	
	MPH-ViroPack-Plus® Marcyl Pharmaceutical Industries (Egypt)	No	No	No	
		Bioequivalence shown for SOF–LDV combination versus Harvoni®			
El-Nahaas et al., 2018*	SOF (400 mg)	Sofolanork®	No	No	
	DCV (60 mg)	Mash Premiere (Egypt)	No	No	
		Mash Premiere (Egypt)	No	No	No
Elsharkawy et al., 2018*	SOF (400 mg), DCV (60 mg)	Not reported All direct-acting agents manufactured in Egypt	ND	ND	ND
Gupta et al., 2018*	SOF (400 mg)	Hepcvir® Cipla Ltd (Egypt)	Yes (reference: HP004)	ND	

(continues . .)
Systematic reviews

Generic direct-acting agents for hepatitis C

Study and generic direct-acting agents used	Commercial name	Manufacturer	Quality assessment
DCV (60 mg)	Hepdaci*	Cipla Ltd (Egypt)*	Yes (reference: HP008)
SOF–LDV combination (400/90 mg)	Not reported	The direct-acting agent combination was manufactured in India*	No
Kumar et al., 2018			ND
SOF (400 mg), DCV (60 mg), SOF–LDV combination (400/90 mg)	Not reported	All direct-acting agents manufactured in India	ND
Liu et al., 2018			ND
SOF–VEL combination (400/100 mg)	Sofosvel*	Beacon Pharmaceuticals (Bangladesh)	No
Liu et al., 2018			No
SOF (400 mg)	Hepcinat*	Natco Pharma (India)	No
Marciano et al., 2018			No
SOF–DCV combination (400/60 mg)	Darvoni*	Beacon Pharmaceuticals (Bangladesh)	No
SOF–LDV combination (400/90 mg)	Hepcinat-LP*	Natco Pharma (India)	No
SOF–LDV combination (400/90 mg)	Ledifos*	Hetero Laboratory Ltd (India)	No
SOF–VEL combination (400/100 mg)	Velpanat*	Natco Pharma (India)	No
SOF–VEL combination (400/100 mg)	Velasof*	Hetero Laboratories Ltd (India)	No
Li et al., 2018			No
SOF (400 mg), DCV (60 mg), SOF–LDV combination (400/90 mg)	Not reported	All direct-acting agents manufactured in India	ND
Omar et al., 2018			ND
SOF (400 mg), DCV (60 mg)	Probirase*	Laboratorios Richmond SACIF (Argentina)	No
Shousha et al., 2018			No
SOF–LDV combination (400/90 mg)	MPI-Vitopack Plus*	Marcyrl Pharmaceutical Industries (Egypt)	No

DCV: daclatasvir; Global Fund: Global fund to Fight AIDS, Tuberculosis and Malaria; LDV: ledipasvir; NA: not applicable; ND: not determined; SOF: sofosbuvir; VEL: velpatasvir.

* The generic drug was produced by Cipla Ltd in collaboration with the Bristol-Myers Squibb Co. through the Medicines Patent Pool.

** The SOF–LDV combination was produced by Indian companies using voluntary manufacturing licences from Gilead Sciences Inc.

† In this study, patients received generic sofosbuvir (Probirase*) and brand-name daclatasvir (Daklinza*) from the Bristol-Myers Squibb Co.

(. . . continued)
Fig. 5. **Sustained virological response to hepatitis C treatment with generic sofosbuvir and daclatasvir, with or without ribavirin, systematic review and meta-analysis, 2019**

Author	Treated (no.)	Sustained virological response (no.)	%	Weight	Sustained virological responsea, % (95% CI)
Hill et al. 2017	146	143	8.64		98 (94–99)
Merat et al. 2017	100	92	7.30		92 (85–96)
Nagral et al. 2017	12	12	1.63		100 (76–100)
Yakovtsev et al. 2017	118	117	7.89		99 (95–100)
Abozaid et al. 2018	315	308	11.00		98 (95–99)
El-Nahaas et al. 2018	133	133	8.32		100 (97–100)
Elsharkawy et al. 2018	36186	35363	14.37		98 (98–98)
Gupta et al. 2018	178	171	9.31		96 (92–98)
Kumar et al. 2018	19	19	2.40		100 (83–100)
Liu et al. September 2018	123	119	8.04		97 (92–99)
Li et al. 2018	86	86	6.76		100 (96–100)
Omar et al. 2018	18378	17473	14.33		95 (95–95)
Overall (I² = 95.9%, P = 0.00)			100.00		98 (97–99)

CI: confidence interval.

* A sustained virological response 12 weeks after the end of treatment.

Fig. 6. **Sustained virological response to hepatitis C treatment with generic sofosbuvir and ledipasvir, with or without ribavirin, systematic review and meta-analysis, 2019**

Author	Treated (no.)	Sustained virological response (no.)	%	Weight	Sustained virological responsea, % (95% CI)
Hill et al. 2017	104	104	12.96		100 (96–100)
Nagral et al. 2017	17	17	5.15		100 (82–100)
Sharifi et al. 2017	30	29	7.44		97 (83–99)
Zeng et al. 2017	187	186	14.99		99 (97–100)
Abozaid et al. 2018	80	80	11.88		100 (95–100)
Gupta et al. 2018	57	32	8.39		86 (72–94)
Kumar et al. 2018	26	26	6.82		100 (87–100)
Liu et al. September 2018	135	130	13.94		96 (92–98)
Li et al. 2018	49	47	9.68		96 (86–99)
Shousha et al. 2018	40	39	8.74		98 (87–100)
Overall (I² = 59.2%, P = 0.01)			100.00		99 (96–100)

CI: confidence interval.

* A sustained virological response 12 weeks after the end of treatment.
Fig. 7. **Sustained virological response in patients without cirrhosis to hepatitis C treatment with generic direct-acting agents, systematic review and meta-analysis, 2019**

Author	Treated (no.)	Sustained virological response (no.)	%	Weight	Type of analysis	Sustained virological response, % (95% CI)
Yakoot et al. 2016	37	37	4.81		Per-protocol	100 (91–100)
Nagral et al. 2017	22	22	3.02		Per-protocol	100 (85–100)
Zeng et al. 2017	129	125	13.12		Intention-to-treat analysis (ITT)	97 (92–99)
Abozeid et al. 2018	247	245	19.75		Per-protocol	99 (97–100)
Gupta et al. 2018	259	248	20.27		Per-protocol	96 (93–98)
Liu et al. June 2018	175	173	16.09		Intention-to-treat analysis (ITT)	99 (96–100)
Liu et al. September 2018	330	321	22.95		Intention-to-treat analysis (ITT)	97 (95–99)
Overall (I²=34.2%, P=0.17)			100.00			98 (97–99)

CI: confidence interval.

* A sustained virological response 12 weeks after the end of treatment.

Fig. 8. **Sustained virological response in patients with cirrhosis to hepatitis C treatment with generic direct-acting agents, systematic review and meta-analysis, 2019**

Author, year	Treated (no.)	Sustained virological response (no.)	%	Weight	Type of analysis	Sustained virological response, % (95% CI)
Yakoot et al. 2016	11	9	2.15		Per-protocol	82 (52–95)
Merat et al. 2017	94	92	14.47		Per-protocol	98 (93–99)
Nagral et al. 2017	4	4	0.86		Per-protocol	100 (51–100)
Zeng et al. 2017	63	61	10.42		Intention-to-treat analysis (ITT)	97 (89–99)
Abozeid et al. 2018	148	143	20.37		Per-protocol	97 (92–99)
Gupta et al. 2018	134	128	18.97		Per-protocol	96 (91–98)
Liu et al. June 2018	52	49	8.84		Intention-to-treat analysis (ITT)	94 (84–98)
Liu et al. September 2018	187	172	23.92		Intention-to-treat analysis (ITT)	92 (87–95)
Overall (I²=18.0%, P=0.29)			100.00			97 (95–98)

CI: confidence interval.

* A sustained virological response 12 weeks after the end of treatment.

Table 6. **Effect of previous treatment on the likelihood of a sustained virological response* to generic direct-acting agents in patients with hepatitis C, meta-analysis, 2019**

Study	No. of patients with a response/no. treated	RR (95% CI)	Study weighting (%)	
	Treatment-naive/Previously treated			
Abozeid et al., 2018	362/368	26/27	1.02 (0.95–1.10)	14.51
Liu et al., 2018	166/170	57/58	0.99 (0.95–1.04)	25.46
Liu et al., 2018	353/370	140/147	1.00 (0.96–1.06)	60.03
Pooled data*	881/908	223/232	1.00 (0.97–1.03)	100.00

CI: confidence interval; RR: relative risk.

* A response was defined as a sustained virological response 12 weeks after the end of treatment.

* The I² value for between-study heterogeneity was 0.0% (P=0.810).
Systematic reviews

Generic direct-acting agents for hepatitis C

Hugo Perazzo et al.

Fig. 9. Sustained virological response in treatment-naïve patients to hepatitis C treatment with generic direct-acting agents, systematic review and meta-analysis, 2019

Author, year	Treated (no.)	Sustained virological responsea (no.)	%	Type of analysis	Sustained virological responsea, % (95% CI)
Abozeid et al. 2018	368	352	36.50	Per-protocol analysis	98 (96–99)
Liu et al. June 2018	170	166	26.93	Intention-to-treat analysis (ITT)	98 (94–99)
Liu et al. September 2018	370	353	36.56	Intention-to-treat analysis (ITT)	95 (93–97)
Overall (I²=64.0%, P=0.06)		100.00			97 (95–99)

CI: confidence interval.
* A sustained virological response 12 weeks after the end of treatment.

Fig. 10. Sustained virological response in previously treated patients to hepatitis C treatment with generic direct-acting agents, systematic review and meta-analysis, 2019

Author, year	Treated (no.)	Sustained virological responsea (no.)	%	Type of analysis	Sustained virological responsea, % (95% CI)
Abozeid et al. 2018	27	26	11.78	Per-protocol analysis	96 (82–99)
Liu et al. June 2018	58	57	25.05	Intention-to-treat analysis (ITT)	98 (91–100)
Liu et al. September 2018	147	140	63.17	Intention-to-treat analysis (ITT)	95 (90–98)
Overall (I²= 0.0%, P= 0.65)		100.00			97 (94–99)

CI: confidence interval.
* A sustained virological response 12 weeks after the end of treatment.

Table 7. Effect of an HIV coinfection on the likelihood of a sustained virological responsea to generic direct-acting agents in patients with hepatitis C, meta-analysis, 2019

Studyb	No. of patients with a response/ no. treated	RR (95% CI)	Study weighting (%)	
-----------------------------	---	-------------		
	With an HCV monoinfection	With an HIV–HCV coinfection		
Liu et al., 2018	156/159	67/69	1.01 (0.97–1.06)	47.31
Liu et al., 2018	434/456	59/61	0.98 (0.94–1.04)	52.69
Pooled datac	590/615	126/130	1.00 (0.96–1.03)	100.00

CI: confidence interval; HCV: hepatitis C virus; HIV: human immunodeficiency virus; RR: relative risk.

* A response was defined as a sustained virological response 12 weeks after the end of treatment.

b The Li et al. study was not included in this subanalysis because it involved only patients with an HIV–HCV coinfection.

c The F value for between-study heterogeneity was 0.0% (P=0.842).

197H Bull World Health Organ 2020;98:188–197K doi: http://dx.doi.org/10.2471/BLT.19.231522
Systematic reviews
Generic direct-acting agents for hepatitis C

Fig. 11. Sustained virological response in patients with an HIV coinfection to hepatitis C treatment with generic direct-acting agents, systematic review and meta-analysis, 2019

Author, year	Treated (no.)	Sustained virological response* (no.)	%	Weight	Type of analysis	Sustained virological response*, % (95% CI)
Liu et al. June 2018	69	67	25.88	Intention-to-treat analysis (ITT)	97 (86–99)	
Liu et al. September 2018	61	59	22.91	Intention-to-treat analysis (ITT)	97 (89–99)	
Li et al. 2018	137	115	51.21	Per-protocol analysis	99 (95–100)	
Overall ($I^2 = 0.0\%, P = 0.61$)	**100.00**				**98 (96–99)**	

CI: confidence interval; HIV: human immunodeficiency virus.
* A sustained virological response 12 weeks after the end of treatment.

Fig. 13. Sustained virological response to hepatitis C treatment with generic direct-acting agents, by study quality, systematic review and meta-analysis, 2019

Author, year	Treated (no.)	Sustained virological response* (no.)	%	Weight	Sustained virological response*, % (95% CI)
Good					
Zeng et al. 2017	187	186	6.28		99 (97–100)
Abouzaid et al. 2018	395	388	7.74		98 (96–99)
Gupta et al. 2018	393	376	7.73		96 (93–97)
Liu et al. June 2018	226	223	6.70		99 (96–100)
Liu et al. September 2018	508	493	8.12		97 (95–98)
Li et al. 2018	137	115	5.56		99 (95–100)
Subtotal ($I^2 = 54.08\%, P = 0.05$)					42.13
Fair					
Menat et al. 2017	94	92	4.65		98 (93–99)
Yakoot et al. 2017	118	117	5.20		99 (95–100)
El-Nahaas et al. 2018	133	133	5.49		100 (97–100)
Elsharkawy et al. 2018	35186	33563	9.76		98 (98–98)
Kumar et al. 2018	71	71	3.97		100 (95–100)
Subtotal ($I^2 = 57.65\%, P = 0.05$)					29.06
Poor					
Yakoot et al. 2016	48	46	3.10		99 (97–100)
Hill et al. 2017	250	247	6.90		96 (88–95)
Nagral et al. 2017	29	29	2.15		99 (97–100)
Sharafi et al. 2017	30	29	2.21		100 (88–100)
Vargas et al. 2017	26	25	1.98		97 (83–99)
Omar et al. 2018	18178	17473	9.73		96 (81–99)
Shousha et al. 2018	40	39	2.73		95 (95–95)
Subtotal ($I^2 = 54.75\%, P = 0.04$)					28.81
Heterogeneity between groups: $P = 0.164$					100.00
Overall ($I^2 = 94.1\%, P = 0.001$)					**98 (97–99)**

CI: confidence interval.
* A sustained virological response 12 weeks after the end of treatment.
Notes: The quality of each study was rated as good, fair or poor (see main text for details).
Table 1.

Sustained virological response to hepatitis C treatment with generic direct-acting agents, by risk of study bias, systematic review and meta-analysis, 2019

Author, year	Treated (no.)	Sustained virological response (no.)	%	Weight	Sustained virological response, % (95% CI)
Low risk of bias					
Zeng et al. 2017	187	186	6.28		99 (97–100)
Abozeid et al. 2018	395	388	7.74		98 (96–99)
Gupta et al. 2018	393	376	7.73		96 (93–97)
Liu et al. June 2018	226	223	6.70		96 (93–97)
Liu et al. September 2018	508	493	8.12		97 (95–98)
Li et al. 2018	137	135	5.56		99 (95–100)
Subtotal (I² = 54.08%, P = 0.05)			82.13		98 (97–99)
Moderate risk of bias					
Yakoot et al. 2016	48	46	3.10		96 (86–99)
Merat et al. 2017	94	92	4.65		98 (91–99)
Naqvi et al. 2017	29	29	2.15		100 (88–100)
Sharif et al. 2017	30	29	2.21		97 (83–99)
Vargas et al. 2017	26	25	1.98		96 (81–99)
Yakoot et al. 2017	118	117	5.20		99 (95–100)
El-Rahaei et al. 2018	133	133	5.49		100 (97–100)
Elsharkawy et al. 2018	30186	30563	9.76		98 (98–98)
Kumar et al. 2018	71	71	3.97		100 (95–100)
Shousha et al. 2018	40	39	2.73		98 (87–100)
Subtotal (I² = 28.14%, P = 0.19)			41.24		98 (98–100)
High risk of bias					
Hill et al. 2017	250	247	6.90		99 (97–100)
Omar et al. 2018	18378	17473	9.73		95 (95–95)
Overall (I² = 94.1%, P = 0.00)			100.00		98 (97–99)

CI: confidence interval.

* A sustained virological response 12 weeks after the end of treatment.

Notes: The risk of bias in each study was rated as low, moderate or high (see main text for details).