Bioinformatics analysis of SARS-CoV-2 infection-associated immune injury and therapeutic prediction for COVID-19

Haomin Zhang, Haoran Chen, Jundong Zhang, Xineng Chen, Bin Guo, Peng Zhu, Zhuoyang Li, Geliang Liu, Bo Yang, Xiaohua Chi, Yixing Wang, Feng Cao, Jun Ren, Xuechun Lu

Abstract

Background: Severe acute respiratory syndrome coronavirus 2 is a highly contagious viral infection, without any available targeted therapies. The high mortality rate of COVID-19 is speculated to be related to immune damage.

Methods: In this study, clinical bioinformatics analysis was conducted on transcriptome data of coronavirus infection.

Results: Bioinformatics analysis revealed that the complex immune injury induced by coronavirus infection provoked dysfunction of numerous immune-related molecules and signaling pathways, including immune cells and toll-like receptor cascades. Production of numerous cytokines through the Th17 signaling pathway led to elevation in plasma levels of cytokines (including IL6, NF-kB, and TNF-α) followed by concurrent inflammatory storm, which mediates the autoimmune response. Several novel medications seemed to display therapeutic effects on immune damage associated with coronavirus infection.

Conclusions: This study provided insights for further large-scale studies on the target therapy on reconciliation of immunological damage associated with COVID-19.

Keywords: Bioinformatics, Coronavirus, COVID-19, Drug prediction, Immune injury

Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly contagious virus, leading to a poor prognosis and high mortality rate.[1] Symptoms vary following coronavirus infections, although most patients present clinical complaints of fever, fatigue, respiratory symptoms, gastrointestinal symptoms, and chest imaging changes (Table 1). Most patients have a good prognosis, but some severe cases may develop acute respiratory distress syndrome or septic shock, leading to fatality.[2] At present, clinical treatment strategies for SARS-CoV-2 infections are mainly organ function support and prevention of complications. The lack of specific and target antiviral treatments remains a challenge, and there are no effective therapeutics for critically ill patients. A drug relocation study was conducted based on molecular docking technology using a coronavirus crystal structure. However, the predicted outcome suggested a single target compound that cannot be credited for all clinical problems, especially for SARS-CoV-2 infection-related immune damage. In fact, the omics impact of SARS-CoV-2 infection on human health is closely related to prognosis, clinical manifestation, and efficacy. Existing literature has confirmed that changing the microenvironment and epigenetics, as well as regulating the associated immune signaling pathways are effective ways to treat coronavirus infection.[3–6] Hence, this study took advantage of SARS-CoV-2 transcriptome data from the GEO database to conduct integrated multi-omics analysis to screen out molecules such as IL6 and TNF that are associated with immune damage during SARS-CoV-2 infection. Signaling pathways such as Th17 signaling, T cell...
receptor signaling, and B cell receptor signaling pathway may play important roles in SARS-CoV-2 infection-associated immune damage. Our study found that drugs such as Polygonum cuspidatum, etanercept, nevirapine, famciclovir, cidofovir, and fluvastatin may exert antiviral effects through targeting molecules such as IL6, TNF, and IL1β and simultaneously regulate the immune system. This study attempted to offer direction and guidance for future basic and clinical research, in particular drug development against COVID-19.

Materials and methods

Data

Data employed in this study were downloaded from the GEO database, with detailed information provided in Table 2. The Impute package in Bioconductor was applied to normalize the acquired expression profiles, in order to normalize data of individual sample.[7] Meanwhile, the annotation packet in Bioconductor was employed to annotate the data, and probes were corresponding to the gene. Finally, use the biomaRt software package to standardize gene names.[8]

Differential expression analysis

According to the experimental description and sample type, data were divided into four groups: NHBE cell line (Human Bronchial Epithelial Cells) infection and control group, A549 cell line (adenocarcinomic human alveolar basal epithelial cells) infection and control group. For different cell lines, a differential analysis was performed on the transcriptome data of SARS-CoV-2 infected and control cell line. The Limma software package in

Table 1

Comparison of Symptoms in Different Subtypes of Coronavirus Infections[31–33]

| Symptoms                      | SARS                                 | SARS-CoV-2                           |
|-------------------------------|--------------------------------------|--------------------------------------|
| Systemic symptoms             | Fever; fatigue; septic shock; metabolic acidosis; coagulation dysfunction | Chest pain; unconsciousness; muscle aches |
| Respiratory symptoms          | Joint/systemic soreness; headache; chest pain cough | chest pain; unconsciousness; muscle aches |
| Gastrointestinal symptoms     | Rapid breathing; respiratory distress | Diarrhea, nausea, vomiting           |
| Circulatory system symptoms   | Extensive ground glass or consolidation of both lungs | Arrhythmia; heart failure; abnormal myocardial enzymes |
| Chest X-ray, CT imaging       |                                      | Multiple ground glass shadows on both lungs, infiltrates, lung consolidation |

SARS, severe acute respiratory syndrome; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.

Table 2

Data Source Information for Transcriptome Analysis

| Data number | Species | Platform | Cell line | Cases | Treatment       | Reference |
|-------------|---------|----------|-----------|-------|-----------------|-----------|
| GSE147507   | Homo    | GPL18573 | NHBE      | 3     | SARS-CoV-2 infected | [34]     |
|             |         |          | A549      | 3     | SARS-CoV-2 infected |          |
|             |         |          | NHBE      | 3     | Control         |           |
|             |         |          | A549      | 3     | Control         |           |

SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.

Figure 1. Difference analysis of transcriptome data of SARS-CoV-2 infected cell lines. The threshold was set as FDR < 0.05, Log2FC > 1. Red indicates up-regulated, whereas green indicates down-regulated. FDR, false discovery rate; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.
Bioconductor was used to screen the differential genes in transcriptome data of SARS-CoV-2 infected and control cell line. First, a preliminary screening was performed using $P < 0.05$, and thereafter the Bonferroni algorithm was used to correct original $P$ values of the false discovery rate (FDR) and calculate fold change (FC). In this study, the screening criteria for differential genes were $\text{FDR} < 0.05$ and $|\log_2 \text{FC}| > 1$. Subsequently, results of the preliminary screening were sorted out, the intersection genes with opposite regulatory effects in the differential genes of the NHBE and A549 groups were removed, and gene expressions with same regulatory effects of the differential genes of the NHBE and A549 groups were averaged using the R program. Thus, characteristic expression gene of SARS-CoV-2 infection was obtained.

**Enrichment analysis and screening of key genes**

The clusterProfiler software package in R is a cluster analysis tool commonly used in bioinformatics. It includes the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Figure 2 shows enrichment analysis results and immune-related signaling pathways. (A) GO enrichment analysis results. The x-axis represents the number of genes enriched in each GO, and the y-axis represents the GO name. (B) The top 20 KEGG enrichment analysis results. The x-axis represents the number of genes enriched in the pathway, and the y-axis represents the pathway name. (C) Some important signaling pathways are shown, wherein red indicates the up-regulated genes and green indicates the down-regulated genes among the differential genes. The displayed pathways included TNF signaling pathway and IL17 receptor signaling pathway that were speculated to be closely related to the increase in plasma cytokines after coronavirus infection and pulmonary fibrosis in severe patients. Go, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.

---

**Figure 2.** Enrichment analysis results and immune-related signaling pathways. (A) GO enrichment analysis results. The x-axis represents the number of genes enriched in each GO, and the y-axis represents the GO name. (B) The top 20 KEGG enrichment analysis results. The x-axis represents the number of genes enriched in the pathway, and the y-axis represents the pathway name. (C) Some important signaling pathways are shown, wherein red indicates the up-regulated genes and green indicates the down-regulated genes among the differential genes. The displayed pathways included TNF signaling pathway and IL17 receptor signaling pathway that were speculated to be closely related to the increase in plasma cytokines after coronavirus infection and pulmonary fibrosis in severe patients. Go, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
Encyclopedia of Genes and Genomes (KEGG) (http://www.genome.jp/kegg/pathway.html)[12] analyses. Here, SARS-CoV-2 characteristic expression genes screened above were clustered separately, and clustering results were preliminarily screened with $P < 0.05$ as the threshold. Subsequently, based on symptoms of COVID-19 patients, immune-related signaling pathways were screened, and differential genes enriched in these signaling pathways were extracted as key genes for further analysis. Finally, results were visualized using the R language.[13]

**Construction of key gene protein-protein interaction network**

A STRING v9.1 (http://www.stringdb.org/) open-source database was used to construct a protein-protein interaction (PPI) network.[14] The reliability threshold in this study was set at $>0.7$. Cytoscape software (http://cytoscape.org/) was used to build the PPI network.[15] In a PPI network, each node represents a gene, protein, or other molecule, and the connection between nodes represents the interaction between biological molecules. PPI networks can be used to identify interactions between proteins encoded by key genes that are closely related to immune damage associated with SARS-CoV-2 infection. Core nodes are proteins with important biological functions, which are determined by calculating the number of connections between proteins and whether each node is directly connected to another specific node while providing rankings. In this study, cytohubba software was used to screen the core nodes, which yielded the top 10 genes as the output.[16]

**Drug association analysis**

Based on the theories of “systems biology” and “comparative functional genomics”, we designed an “Integrated Multi-omics Analysis” algorithm, which was used to establish a clinical bioinformatics analysis platform named Epi-precision Medicine Prediction Platform (EpiMed) that included human functional genomics big data of all diseases, 9000 commonly employed clinical drugs, 1000 Chinese medicines, and nearly 100,000 compounds. The platform was used to perform multi-omics association analysis of the abovementioned key genes to identify drugs or compounds that can effectively regulate the immune damage associated with SARS-CoV-2 infection among known compounds, commonly used drugs in clinical practice and traditional Chinese medicine. First, negative correlation outcomes were selected to indicate any drug with therapeutic effects, based on a correlation coefficient $>0.1$. A $P$ value of $<0.05$ was set as the threshold for screening.

**Results**

**The transcriptome signature of SARS-CoV-2 infected cell line**

Differential gene screening threshold was set to FDR $<0.05$ and $\text{Log}_2FC > 1$. A total of 154 differentially expressed genes were screened, among which 114 were up-regulated and 40 were down-regulated in the HNBE cell line group. A total of 128 differential genes were screened, of which 97 were up-regulated and 31 were down-regulated in the A549 cell line group (Fig. 1).

**Enrichment analysis and screening of immune-related genes**

Next, enrichment analysis was performed on the sorted differential genes. GO analysis showed that the enrichment of these genes could be divided into three domains, including biological processes, cell components, and molecular function. In terms of biological processes, these genes are involved in viral infection, leukocyte proliferation and migration, intercellular signal transduction, and cytokine secretion. In terms of cellular components, most genes are related to endocytosis, exocytosis, vesicle synthesis, and secretion. In terms of molecular function, most of genes are related to the production and binding of cytokines, chemokines, and toll-like receptors (Fig. 2A).
establish a clinical bioinformatics analysis platform that would include human functional genomics big data of all diseases, 9000 commonly used clinical drugs, 1000 Chinese medicines, and nearly 100,000 compounds – such system was named EpiMed. A total of 5000 negative correlation results were obtained using this platform for association analysis. According to the correlation coefficient $>0.1$ and $P<0.05$, a total of 200 drugs with potential therapeutic effects were screened for negative correlation results. As shown in Table 3, the top 10 drugs were selected and were listed below.

### Table 3

**Top 10 Correlation Analysis Results**

| Name                  | Type       | Correlation Coefficient | P Value | Therapeutics Molecular Targets                      |
|-----------------------|------------|-------------------------|---------|-----------------------------------------------------|
| Patrinia scabiosaefolia | Herb      | $-0.208$                | $<0.05$ | IL1B, TNF                                           |
| Famiclovir             | Drug       | $-0.204$                | $<0.05$ | CTSF, STAT2, PYCARD,C10Q, MARCKSL1, NFE2, LGALS3BP, PSMA5, CHD4, UBL3, PSM9, IRF7, ITPA, SPL40,S100A4, PSME1, NEDD4, TNF |
| Cidofovir              | Drug       | $-0.186$                | $<0.05$ | OSTC, DSP,S100A10, SMOC1, TIMP1, SNRPF, FAM102B, CXS1B, DYNC1I2, ALDH1A3, GADD45A, IRF3,S100A14, MAMDC2, IFITM3,S100A4, IL1B, ISG15, TUBB6, PLAU, ASS1, CENPW, CSTA, GOC7,C1orf198, NAA20, IFI9, GFBP3, C0X1, DYNLL1 |
| Natural alpha interferon | Drug      | $-0.152$                | $<0.05$ | COX7C, QAS1, DYNLL1, PARP12, LY6E, OAS3, PSMA5, ISG20, PALLD, IRF9, LAP3, PSM8B, TAP1, IFIT3, SNRPF, ISG15, APOL1, PML, PSM9B, DSP, IFITM3, TRED1, TRIM5, LGALS3BP, IGFBP6, IFIT2, EIF2AK2, NAMPT, CCL2, ADAR, PLAU, S100A10, GFR, RSA2, OASL, UBE2L6, MX1, PSME1, XAF1, AIDA, IFI35, OAS2, HERO6, DDX58, NMI, STAT1, IFI1, IRF7 |
| Ritonavir              | Drug       | $-0.149$                | $<0.05$ | CXL10, ITPA, CYP2E1, Gadd45a, AIF, IGBP3, CTSF, GDFL5, LGALS3, PSME1, SATM, NR2F2, UBL3, Rab11B, C10Q, IRF7, NEDD4, PDK2, ADA, FM01 |
| Forsythia              | Herb       | $-0.129$                | $<0.05$ | TNF, BAX, PRTN3                                      |

Table 3: Top 10 Correlation Analysis Results

**Construction of key gene protein-protein interaction network**

The PPI network was constructed for 254 key genes involved in 36 key pathways using the STRING online software. A total of 134 key genes coding various proteins were revealed in the PPI network. Figure 3A shows the interaction among these proteins. The interaction network was further analyzed, and core genes were screened according to the number of interacting gene connections. STAT1, IL6, IRF7, TNF, MX1, IFIH1, IFIT3, DDX58, ISG15, and IRF9 were the top 10 most abundantly expressed genes in the PPI network. The graphic display of statistical results is shown in Figure 3B.

**Screening of potential therapeutic drugs**

Based on the theories of “systems biology” and “comparative functional genomics”, we designed an “Integrated Multi-omics Analysis” algorithm, which was used to establish a clinical bioinformatics analysis platform that would include human functional genomics big data of all diseases, 9000 commonly used clinical drugs, 1000 Chinese medicines, and nearly 100,000 compounds – such system was named EpiMed. A total of 5000 negative correlation results were obtained using this platform for association analysis. According to the correlation coefficient $>0.1$ and $P<0.05$, a total of 200 drugs with potential therapeutic effects were screened for negative correlation results. As shown in Table 3, the top 10 drugs were selected and were listed below.

**Discussion**

Using clinical bioinformatics analysis of coronavirus transcriptome data, the salient findings from our study showed that coronavirus affects expression patterns of numerous genes, especially immune-related molecules, such as STAT1, IL6, IRF7, TNF, MX1, IFIH1, IFIT3, DDX58, ISG15, and IRF9. Previous evidence has confirmed that the abnormal expression of molecules such as IL6 and TNF is closely related to the elevation of plasma cytokines in patients with coronavirus infection$^{17-19}$ (Fig. 4), which is consistent with our results. In addition, the results from the enrichment analysis show that these molecules are also closely related to cardiac dysfunction, neurological symptoms, and metabolic and coagulation dysfunction in patients with coronavirus infection (Fig. 5). Further study on these signaling pathways should reveal the molecular mechanisms of the clinical manifestations and complications associated with immune impairment in coronavirus infection. The essence of coronavirus infection
involves the virus and the body, and the molecular interactions between susceptible cells after virus enters the body as well as intercepts various molecules, signaling pathways, and transcriptional regulation of whole genome. The influence of immune injury is closely related to anomalies of multiple molecules and signaling pathways, which can be categorized as a genomic network process.

Figure 4. Signaling pathways associated with plasma cytokine elevations. (A) Th17 signaling pathway. (B) TNF signaling pathway.
Earlier evidence has depicted that the function of immune cells such as T cells, B cells, and dendritic cells can be affected by immune-related signaling pathways such as Toll-like receptor and RIG-I-like receptor signaling cascades following coronavirus infection, with simultaneous production of Th17-associated cytokines, ultimately resulting in disorders of the innate and acquired immune systems. Li et al. found that molecules such as IL6 and NF-κB are lined with coronavirus-mediated innate immune antagonism. Padhan et al. revealed that SARS coronaviruses can promote cell apoptosis through STAT3 activation of MAPK signaling pathway. We noticed that SARS-CoV-2 infection may affect numerous immune-related molecules and signaling cascades including IL6, TNF, IL1B, IL10, STAT3, MAPK3, IL17, Toll-like receptor, B-cell receptor, and JAK-STAT signaling cascades, consistent with previous studies. Several previous studies did not mention molecules and signal pathways, such as ICAM1, Th1 and Th2 cell differentiation, leukocyte transendothelial migration, and PI3K-AKT signaling pathways. Coronavirus infection may have distinct effects on the proliferation, differentiation, migration, and chemotaxis of immune cells, and further studies on these molecules and signaling pathways are warranted to elucidate the underlying molecular mechanisms.

At present, development of drugs for SARS-CoV-2 immunoregulatory therapy is mostly limited to antibody
development. Although researchers have identified several antiviral drugs that target molecules and signaling pathways such as ACE2 or interferon signaling, they possess limited clinical utility and cannot resolve all clinical problems.\textsuperscript{[22,23]} In this study, clinical bioinformatics was used to conduct a multi-omics analysis of immune-related molecules following SARS-CoV-2 infection, in order to identify drugs that not only resist coronavirus infection but also regulate coronavirus-related immune abnormalities. Chang et al.\textsuperscript{[24]} found that Polygonum cuspidatum could be used as an anti-SARS virus therapy. Chu et al.\textsuperscript{[25]} demonstrated that ritonavir displayed therapeutic benefits against the SARS virus. The aforementioned results are in line with the results of our current study. Although other predicted drugs have not yet been confirmed, it may be predicted from correlation targets that these drugs can regulate the expression of immune-related molecules such as TNF, IL1B, IL6, and CXCL10. Their therapeutic effects and mechanisms need to be explored in future studies.

With the advance of clinical bioinformatics and the accumulation of coronavirus infection-related immunogenomic data, future studies are required to fully reveal the mechanism of immune damage following coronavirus infection. In this context, drug development should highly target and significantly inhibit coronavirus infection-related immune damage. Since 2000, we have been using clinical bioinformatics to study the diagnosis, treatment, and prognosis of blood diseases. During 20 years of clinical bioinformatics research based on “systems biology” and “functional genomics” theories of innovative design of the “integration of multiple omics analysis” algorithm, we have established the EpimMed. Using this platform, we reported six innovative treatment systems, proposed and optimized treatment schemes for aging myelodysplastic syndrome, severe aplastic anemia and refractory/recurrent malignant tumors, and successfully predicted new anti-HBV drugs.\textsuperscript{[26–30]} This method is also applicable to prediction and screening of antiviral drug design precision therapy drugs.

In summary, SARS-CoV-2 is capable of influencing the entire genome. This omics effect can lead to immunologic disorders and provoke release of numerous cytokines that attack and damage human body. Moreover, it can suppress the antiviral response of the immune system and make the microenvironment of human body conducive to the survival of coronavirus in vivo. Given these noted changes, the clinical manifestations of SARS-CoV-2 infection may be complicated. The treatment is difficult with poor prognosis. Our present work showed that examining SARS-CoV-2 infection from a genome-wide perspective should further deepen our understanding of the pathogenesis of coronavirus mortality, thus clarifying the mechanism of SARS-CoV-2 infection-related immune damage, and providing a new direction for subsequent clinical treatment and medical research.

**Conflicts of interest statement**

Jun Ren is an Associate Editor of *Emergency and Critical Care Medicine*. The article was subject to the journal’s standard procedures, with peer review handled independently of this Associate Editor and their research groups. The authors declare no conflict of interest.

**Author contributions**

Haomin Zhang, Haoran Chen, Jundong Zhang, and Bin Guo participated in the performance of the research and data analysis. Xinmeng Chen, Peng Zhi, Zhuoyang Li, Geliang Liu, Bo Yang, Xiaoshua Chi, and Yixing Wang participated in the data analysis. Feng Cao and Xuechun Lu participated in the study design and the writing of manuscript, respectively. Jun Ren participated in the writing of manuscript.

**Funding**

This study was supported by the 2017 National Geriatrics Clinical Medical Research Center Bidding Project (NCRCG-PLAGH-20170111), the Translational Medicine Project of Chinese PLA General Hospital (2017TM-020), Pudong New Area Health and Health Committee Subject Leader Program (PWRd2019-04), Pudong New Area TCM Peak Disease Subject (PDZY-2018-0603), and the Innovation Project of Chinese PLA General Hospital (CX19028).

**Ethical approval of studies and informed consent**

Not applicable.

**Acknowledgements**

None.

**Availability of data and materials**

The datasets used and/or analyzed for supporting the findings of this study are available from the corresponding authors upon reasonable request.

**References**

1. Zhu N, Zhang D, Wang W, et al. China Novel Coronavirus Investigating and Research Team. A novel coronavirus from patients with pneumonia in China, 2019. *N Engl J Med*. 2020;382:727–733.
2. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. *Lancet*. 2020;395:497–506.
3. Dickey LL, Worne CI, Glover JL, et al. MicroRNA-155 enhances T cell trafficking and antiviral effector function in a model of coronavirus-induced neurologic disease. *J Neuroinflammation*. 2016;13:240.
4. Schafer A, Baric RS. Epigenetic landscape during coronavirus infection. *Pathogens*. 2017;6:8.
5. Morales L, Oliveros JC, Fernandez-Delgado R, et al. SARS-CoV-encoded small RNAs contribute to infection-associated lung pathology. *Cell Host Microbe*. 2017;21:344–355.
6. Poppe M, Wittig S, Jurida L, et al. The NF-kB-dependent and independent transcriptome and chromatin landscapes of human coronavirus 229E-infected cells. *PLoS Pathog*. 2017;13:e1006286.
7. Hastie T, Tibshirani R, Narasiman B, et al. Impute: imputation for microarray data. *Bioinformatics*. 2001;17:520–525.
Zhang et al. [22] Tang XC, Marasco WA. Human neutralizing antibodies against SARS coronavirus: implications for future immunotherapy. Immunotherapy. 2015;7:591–594.

Yu JS, Tseng CK, Lin CK, et al. Celastrol inhibits dengue virus replication via up-regulating type I interferon and downstream interferon-stimulated responses. Antiviral Res. 2017;137:49–57.

Chang JS, Liu HW, Wang KC, et al. Ethanol extract of Polygonum cuspidatum inhibits hepatitis B virus in a stable HBV-producing cell line. Antiviral Res. 2005;66:29–34.

Chu CM, Cheng VC, Hung IF, et al. Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax. 2004;59:252–256.

Yu X, Bo Y, Chi X, et al. A novel etiology of aplastic anemia: the uncontrolled adipogenic differentiation of mesenchymal stem cells in bone marrow induced by an abnormal immunological reaction. Med J Chin PLA. 2014;39:173–179.

Wang HT, Yang B, Hu B, et al. The effect of amifostine on differentiation of the human megakaryoblastic Dami cell line. Cancer Med. 2016;5:2012–2021.

Yang B, Wang HT, Cai LL, et al. Successful management of acute myeloid leukemia transformed from myelodysplastic syndromes in an elderly patient aged over 80 years old by ultralow dose decitabine combined with amifostine and autologous CIK cells. Ann Hematol. 2014;93:1233–1235.

Yang B, Lu XC, Yu RL, et al. Repeated transfusions of autologous cytokine-induced killer cells for treatment of haematological malignancies in elderly patients: a pilot clinical trial. Hematol Oncol. 2012;30:115–122.

Lu XC, Yang B, Yu RL, et al. Clinical study of autologous cytokine-induced killer cells for the treatment of elderly patients with diffuse large B-cell lymphoma. Cell Biochem Biophys. 2012;62:257–265.

Ding Y, He L, Zhang Q, et al. Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: implications for pathogenesis and virus transmission pathways. J Pathol. 2004;203:622–630.

Feng D, Jia N, Fang LQ, et al. Duration of symptom onset to hospital admission and admission to discharge or death in SARS in mainland China: a descriptive study. Trop Med Int Health. 2009;14:28–35.

Chen ZL, Zhang WJ, Lu Y, et al. From severe acute respiratory syndrome-associated coronavirus to 2019 novel coronavirus outbreak: similarities in the early epidemics and prediction of future trends. Chin Med J (Engl). 2020;133:1112–1114.

Blanco-Melo D, Nilsson-Payant BE, Liu WC, et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell. 2020;181:1036.e9–1045.e9.

How to cite this article: Zhang H, Chen H, Zhang J, Chen X, Guo B, Zhi P, Li Z, Liu G, Yang B, Chi X, Wang Y, Cao F, Ren J, Lu X. Bioinformatics analysis of SARS-CoV-2 infection-associated immune injury and therapeutic prediction for COVID-19. Emerg Crit Care Med. 2021;1:20–28. doi: 10.1097/EC9.0000000000000085