NONCONFORMING VECTOR FINITE
ELEMENTS FOR $H(\text{curl}; \Omega) \cap H(\text{div}; \Omega)$

JEAN-MARIE MIREBEAU

Abstract. We present a family of nonconforming vector finite elements of
arbitrary order for problems posed on the space $H(\text{curl}; \Omega) \cap H(\text{div}; \Omega)$, where
$\Omega \subset \mathbb{R}^2$. This result was first stated as a conjecture by Brenner and Sung
in [1]. In contrast an extension of the same conjecture to domains of \mathbb{R}^3 is
disproved.

Let Ω be a domain of \mathbb{R}^d where $d \in \{2, 3\}$. As explained in [1] several problems
involving the space $H(\text{curl}; \Omega) \cap H(\text{div}; \Omega)$, such as the cavity resonance problem and
the acoustic fluid-structure interaction problem, can be solved using nonconforming
finite element methods. In contrast conforming finite element methods cannot
capture the solution of these problems under certain conditions.

The accuracy of the approximate numerical solution of these problems can be
improved if one uses finite elements which are not piecewise linear, but piecewise
quadratic or of higher degree. For that purpose a quadratic nonconforming vector
finite element for $H(\text{curl}; \Omega) \cap H(\text{div}; \Omega)$ was introduced in [1], in the case of a
two dimensional domain $\Omega \subset \mathbb{R}^2$. The paper [1] also contains a conjecture which
suggests a way of constructing nonconforming vector finite elements of arbitrary
degree k for $H(\text{curl}; \Omega) \cap H(\text{div}; \Omega)$, for domains of \mathbb{R}^2 and of \mathbb{R}^3.

In order to state this conjecture and to formulate our results, we need to intro-
duce some notations. We use boldfaced letters to represent vectors. The space
of polynomials of total degree $\leq k$ in d variables is denoted by $P_k(\mathbb{R}^d)$, and the
space of homogeneous harmonic polynomials of degree k in d variables is denoted
by $H_k(\mathbb{R}^d)$. For each $k \geq 1$ and $d \in \{2, 3\}$ we define a space $\mathcal{P}_{k,d}$ of vector fields on
\mathbb{R}^d as follows

\begin{equation}
\mathcal{P}_{k,d} := [P_k(\mathbb{R}^d)]^d \oplus (\nabla H_{k+2}(\mathbb{R}^d) \oplus \cdots \oplus \nabla H_{2k}(\mathbb{R}^d))
\end{equation}

For any triangle T if $d = 2$ (resp. tetrahedron T if $d = 3$) we consider a collection
$\mathcal{N}_{k,d} = \mathcal{N}_{k,d}^1 \cup \mathcal{N}_{k,d}^2$ of linear functionals on $\mathcal{P}_{k,d}$, which is defined as follows. The
elements of $\mathcal{N}_{k,d}^1(T)$ define the moments on T up to order $k - 2$, for the d com-
ponents of the vector fields. Denoting by $\lambda_0, \cdots, \lambda_d$ the barycentric coordinates
on the simplex T, and by e_1, \cdots, e_d a fixed basis of \mathbb{R}^d, these functionals have the
expression

$M_{i,\alpha}(v) := \int_T \lambda_0^{\alpha_0} \cdots \lambda_d^{\alpha_d} (\nabla v \cdot e_i)$,

for all $1 \leq i \leq d$ and all $\alpha = (\alpha_0, \cdots, \alpha_d) \in \mathbb{Z}_{+}^{d+1}$ such $\alpha_0 + \cdots + \alpha_d = k - 2$. The
elements of $\mathcal{N}_{k,d}^2(T)$ define the moments up to order $k - 1$ on the $d + 1$ edges (resp.
faces) of T, defined by $F_j := \{ z \in T : \lambda_j(z) = 0 \}$, $0 \leq j \leq d$, again for the d components of the vector fields. These functionals have the expression

$$M_{i,j,\beta}(v) := \int_{F_j} \lambda_0^j \cdots \lambda_d^j (v \cdot e_i),$$

for all $1 \leq i \leq d$, all $0 \leq j \leq d$, and all $\beta = (\beta_0, \cdots, \beta_d) \in \mathbb{Z}_+^{d+1}$ such that $\beta_0 + \cdots + \beta_d = k - 1$ and $\beta_j = 0$. We used in this definition the convention $\lambda_0^j = 0^0 = 1$ on F_j.

Brenner and Sung formulated in [1] a series of conjectures, which depend on the two parameters $d \in \{2, 3\}$ and $k \geq 1$.

$$\text{Conj}(k, d) : \text{For any } T \text{ the elements of } \mathcal{P}_{k,d} \text{ are uniquely determined by the linear functionals in } \mathcal{N}_{k,d}(T).$$

The conjectures $\text{Conj}(1, 2)$ and $\text{Conj}(1, 3)$ are true and correspond to the nonconforming Crouzeix-Raviart P_1 vector finite element. It was established in [1] that $\text{Conj}(2, 2)$ is true, thus defining piecewise quadratic nonconforming vector finite elements in two space dimensions.

The purpose of this paper is to establish the following result:

Theorem. For any $k \geq 3$ the conjecture $\text{Conj}(k, 2)$ holds. In contrast the conjecture $\text{Conj}(2, 3)$ does not hold.

Our result therefore validates the construction of bi-dimensional vector finite elements of arbitrary degree proposed in [1]. On the contrary the three-dimensional quadratic vector finite element is invalid. Our result does not completely close the conjecture as the cases of three-dimensional vector finite elements of cubic or higher degree remain unsolved.

It was established in [1] that for all $d \in \{2, 3\}$, all $k \geq 1$ and all T, one has

$$\dim \mathcal{P}_{k,d} = \# \mathcal{N}_{k,d}(T).$$

Hence the conjecture $\text{Conj}(k, d)$ is equivalent to the following property:

$$\text{For all } T \text{ and all } v \in \mathcal{P}_{k,d}, \text{ if } (l(v) = 0 \text{ for all } l \in \mathcal{N}_{k,d}(T)) \text{ then } v = 0.$$

In the first section of this paper we establish this property in the bi-dimensional case $d = 2$ and for an arbitrary $k \geq 1$. In contrast we give in the second section a counter example in the three-dimensional case $d = 3$ and $k = 2$.

1. **Proof of the bi-dimensional result**

In this section the integer $k \geq 1$ is arbitrary but fixed. If $v = (v_1, v_2) \in \mathcal{P}_{k,2}$ we remark that

$$\nabla \times v = \frac{\partial v_2}{\partial x_1} - \frac{\partial v_1}{\partial x_2} \in P_{k-1}(\mathbb{R}^2) \text{ and } \nabla \cdot v = \frac{\partial v_1}{\partial x_1} + \frac{\partial v_2}{\partial x_2} \in P_{k-1}(\mathbb{R}^2).$$

Our first lemma extends to degree k an argument used in the initial paper [1].

Lemma. Let $v \in \mathcal{P}_{k,2}$. Let T be a triangle and let us assume that $l(v) = 0$ for all $l \in \mathcal{N}_{k,2}(T)$. Then

$$\nabla \cdot v = \nabla \times v = 0.$$
Proof. We first notice that \(\nabla \cdot \mathbf{v} \) and \(\nabla \times \mathbf{v} \) are polynomials of degree \(k - 1 \), and that the components of \(\nabla \times (\nabla \times \mathbf{v}) \) and of \(\nabla (\nabla \cdot \mathbf{v}) \) are polynomials of degree \(k - 2 \). In view of Green’s theorem and the vanishing moments of \(\mathbf{v} \), we have
\[
\int_T (\nabla \times \mathbf{v}) \cdot (\nabla \times \mathbf{v}) \, dx = \int_{\partial T} (\mathbf{n} \cdot (\nabla \times \mathbf{v})) \, ds + \int_T \mathbf{v} \cdot \nabla \times (\nabla \times \mathbf{v}) \, dx = 0,
\]
where \(\mathbf{n} \) is the outer unit normal along \(\partial T \). Similarly, we have
\[
\int_T (\nabla \cdot \mathbf{v}) \cdot (\nabla \cdot \mathbf{v}) \, dx = \int_{\partial T} (\mathbf{n} \cdot (\nabla \cdot \mathbf{v})) \, ds - \int_T \mathbf{v} \cdot \nabla (\nabla \cdot \mathbf{v}) \, dx = 0.
\]
The results follow. \(\diamond \)

We now rephrase the conjecture (2) in terms of complex functions, and for that purpose we introduce some definitions.

Definition. For any pair \(\mathbf{v} = (v_1, v_2) \) of real valued functions we define a complex valued function \(P_{\mathbf{v}} \) as follows
\[
P_{\mathbf{v}}(x + iy) := v_1(x, y) - i v_2(x, y) \text{ for all } (x, y) \in \mathbb{R}^2.
\]

We now note that the equations \(\nabla \cdot \mathbf{v} = \nabla \times \mathbf{v} = 0 \) are equivalent to the Cauchy-Riemann equations of \(P_{\mathbf{v}} \), namely
\[
\frac{\partial \mathfrak{R}(P_{\mathbf{v}})}{\partial x} = \frac{\partial \mathfrak{I}(P_{\mathbf{v}})}{\partial y} \quad \text{and} \quad \frac{\partial \mathfrak{R}(P_{\mathbf{v}})}{\partial y} = - \frac{\partial \mathfrak{I}(P_{\mathbf{v}})}{\partial x}
\]
where \(\mathfrak{R} : \mathbb{C} \to \mathbb{R} \) and \(\mathfrak{I} : \mathbb{C} \to \mathbb{R} \) respectively refer to the real and imaginary part. These equations characterize holomorphic functions. Let us introduce for all \(m \geq 1 \) the space \(\mathcal{C}_m \) of polynomials in the complex variable \(z = x + iy \) and of degree less or equal to \(m \)
\[
\mathcal{C}_m := \left\{ P = \sum_{r=0}^{m} a_r z^r ; (a_0, \cdots, a_r) \in \mathbb{C}^m \right\}.
\]
If \(\mathbf{v} \in \mathcal{P}_{k,2} \) satisfies \(l(\mathbf{v}) = 0 \) for all \(l \in \mathcal{N}_{k,2} \), then \(P_{\mathbf{v}} \) satisfies the Cauchy-Riemann equations according to (4), and therefore \(P_{\mathbf{v}} \in \mathcal{C}_{2k-1} \).

Definition. For any continuous function \(P : \mathbb{C} \to \mathbb{C} \) and any \(z_1, z_2 \in \mathbb{C} \) we define
\[
I_{z_1, z_2}(P) = \int_{t=0}^{1} P(z_1 + t(z_2 - z_1))(z_2 - z_1)dt = \int_S P(z)dz
\]
where \(S \subset \mathbb{C} \) is the oriented segment from \(z_1 \) to \(z_2 \).

Let \(S \) be an edge of a triangle \(T \) with endpoints \((x_1, y_1) \) and \((x_2, y_2) \) and let \(z_1 = x_1 + iy_1 \) and \(z_2 = x_2 + iy_2 \) be their complex coordinates. Let \(\mathbf{v} = (v_1, v_2) \in \mathcal{P}_{k,2} \) be such that \(l(\mathbf{v}) = 0 \) for all \(l \in \mathcal{N}_{k,2}(T) \), and let \(Q(x + iy) := R_1(x, y) + iR_2(x, y) \) where \(R_1, R_2 \in \mathcal{P}_{k-1}(\mathbb{R}^2) \) are arbitrary. Since \(\mathbf{v} \) has vanishing moments up to order \(k - 1 \) on the edges of \(T \) we have
\[
I_{z_1, z_2}(P_{\mathbf{v}}Q) = (z_2 - z_1) \int_{t=0}^{1} (v_1 R_1 + v_2 R_2 + i(v_1 R_2 - v_2 R_1))|_{x(t),y(t)}dt = 0,
\]
where we used the notations \(x(t) := x_1 + t(x_2 - x_1) \) and \(y(t) := y_1 + t(y_2 - y_1) \).

We now define a bilinear form which is related to our conjecture.

Definition.
Definition. For all \(Z = (z_1, z_2, z_3) \in \mathbb{C}^3 \) we define a bilinear form \(q_Z : \mathbb{C}_{2k-1} \times (\mathbb{C}_{k-1} \times \mathbb{C}_{k-1}) \to \mathbb{C} \) as follows
\[
q_Z(P, (Q_1, Q_2)) := I_{z_1, z_2}(PQ_1) + I_{z_1, z_3}(PQ_2).
\]

Let \(T \) be a triangle and let \(z_1 = x_1 + iy_1, z_2 = x_2 + iy_2 \) and \(z_3 = x_3 + iy_3 \) be the complex coordinates of the vertices of \(T \). If \(\nu \in \mathcal{P}_{k,2} \) is such that \(l(\nu) = 0 \) for all \(l \in \mathcal{N}_{k,2}(T) \) then \(P_\nu \in \mathbb{C}_{2k-1} \) as previously noted. Furthermore, specializing \((8)\) to polynomials \(Q \in \mathbb{C}_{k-1} \) we obtain
\[
q_Z(P_\nu, (Q_1, Q_2)) = 0 \quad \text{for all} \quad (Q_1, Q_2) \in \mathbb{C}_{k-1} \times \mathbb{C}_{k-1}.
\]
The purpose of the rest of this section is to show that the bilinear form \(q_Z \) is nondegenerate. It then follows from \((7)\) that \(P_\nu = 0 \) and therefore that \(\nu = 0 \) which concludes the proof of the conjecture Conj\((k, 2)\).

We denote by \(B := (1, z, \cdots, z^{2k-1}) \) the canonical basis of \(\mathbb{C}_{2k-1} \), and by \(B^* := ((1, 0), (z, 0), \cdots, (z^{k-1}, 0), (0, 1), \cdots, (0, z^{k-1})) \) the canonical basis of \(\mathbb{C}_{k-1} \times \mathbb{C}_{k-1} \). We denote by \(M(Z) \), or \(M(z_1, z_2, z_3) \), the matrix of \(q_Z \) in the basis \(B \) and \(B^* \). Hence for all \(1 \leq i \leq 2k \) and all \(1 \leq j \leq k \) we have
\[
M(Z)_{i, j} = I_{z_1, z_2}(z^{i-1}z^{j-1}) \quad \text{and} \quad M(Z)_{i, j+k} = I_{z_1, z_3}(z^{i-1}z^{j-1})
\]
It follows that
\[
M(Z)_{i, j} = z_2^{i+j-1} - z_1^{i+j-1} \quad \text{and} \quad M(Z)_{i, j+k} = z_3^{i+j-1} - z_1^{i+j-1}.
\]
The explicit expression of the matrix \(M(Z) = M(z_1, z_2, z_3) \), in the special case \(k = 2 \), is given right after the end of the proof.

Our next proposition gives an explicit expression of \(\det M(Z) \), therefore showing that \(q_Z \) is non-degenerate. In the following \(Z \) always refers to the triplet of complex variables \(Z = (z_1, z_2, z_3) \).

Proposition. One has
\[
\det M(Z) = \alpha (z_1 - z_2)^2 (z_2 - z_3)^2 (z_3 - z_1)^2
\]
where \(\alpha = \frac{((\prod_{1 \leq i < k-1} z_i)^5}{\prod_{1 \leq i < k-1} |z_i|^2} > 0 \). Therefore \(q_Z \) is non-degenerate whenever \(z_1, z_2 \) and \(z_3 \) are pairwise distinct.

Proof. We denote by \(\mathcal{S} \) the collection of all permutations \(\sigma \) of the set \(\{1, \cdots, 2k\} \), and by \(\varepsilon(\sigma) \) be the algebraic signature of such a permutation. We recall that
\[
\det M(Z) := \sum_{\sigma \in \mathcal{S}} \varepsilon(\sigma) \prod_{j=1}^{2k} M(Z)_{\sigma(j), j}.
\]
For any permutation \(\sigma \in \mathcal{S} \) one has
\[
\sum_{j=1}^{k} (j + \sigma(j) - 1) + \sum_{j=1}^{k} (j + \sigma(k + j) - 1) = 3k^2.
\]
It follows from \((8)\) that \(\det M(Z) \) is a homogeneous polynomial in the variables \(z_1, z_2, z_3 \) and of degree \(3k^2 \). We also note for future use that
\[
\sum_{j=1}^{k} (j + \sigma(j) - 1) \geq k^2
\]
with equality if and only if σ leaves invariant the sets $\{1, \cdots, k\}$ and $\{k+1, \cdots, 2k\}$. For any $c \in \mathbb{C}$ we define two $2k \times 2k$ triangular matrices $P(c)$ and $P^*(c)$ associated with the following changes of basis on \mathbb{C}_{2k-1} and $\mathbb{C}_{k-1} \times \mathbb{C}_{k-1}$ respectively:

$$P(c)B = \begin{pmatrix} 1, & z + c, & \cdots, & (z + c)^{2k-1} \\ \end{pmatrix}$$

$$P^*(c)B^* = \begin{pmatrix} (1,0), & \cdots, & ((z + c)^{k-1},0), & (0,1), & \cdots, & (0,(z + c)^{k-1}) \end{pmatrix}$$

One easily sees that the matrices $P(c)$ and $P^*(c)$ are upper-triangular and have ones on the diagonal, hence $\det P(c) = \det P^*(c) = 1$.

Since

$$I_{1+c, z_2+c}(z^iz^j) = I_{z_1, z_2}((z + c)^i(z + c)^j)$$

we obtain

$$M(z_1 + c, z_2 + c, z_3 + c) = P(c)^T M(Z) P^*(c).$$

Recalling that $\det P(c) = \det P^*(c) = 1$, and choosing $c = -z_1$, we obtain

$$\det M(0, z_2 - z_1, z_3 - z_1) = \det M(Z).$$

The explicit expression of the matrix $M(0, z_2 - z_1, z_3 - z_1)$, in the special case $k = 2$, is given right after the end of the proof. It follows from (8), (9) and (10) that the polynomial $\det M(Z)$ is a multiple of $(z_2 - z_1)^k$. Similarly, $\det M(Z)$ is a multiple of $(z_3 - z_2)^k$. Substracting column $k + i$ from column i, for all $1 \leq i \leq k$, we find that

$$\det M(z_3, z_2, z_1) = (-1)^k \det M(Z)$$

and therefore $\det M(Z)$ is also a multiple of $(z_3 - z_2)^k$. Since $\det M(Z)$ is a polynomial of degree $3k^2$ in the complex variables z_1, z_2, z_3, and since $(z_1 - z_2)^k$, $(z_2 - z_3)^k$ and $(z_3 - z_1)^k$ have no common factors, there exists a constant $\alpha \in \mathbb{C}$ such that

$$\det M(Z) = \alpha (z_1 - z_2)^k (z_2 - z_3)^k (z_3 - z_1)^k.$$

In order to compute the constant α, and to show that $\alpha \neq 0$, we remark that it is the coefficient of z^k in the polynomial $\det M(0, z, 1) = \alpha(-z)^k(z - 1)^k$. The explicit expression of this matrix, in the special case $k = 2$, is given right after the end of the proof.

The contribution of a permutation $\sigma \in S$ to $\det M(0, z, 1)$ is a monomial which has degree k^2 if and only if (10) is an equality. Denoting by S^* the collection of permutations of the set $\{1, \cdots, k\}$, we obtain that $\det M(0, z, 1)$ equals

$$\left(\sum_{\sigma_1 \in S^*} \epsilon(\sigma_1) \prod_{j=1}^{k} M(0, z, 1)_{j, \sigma_1(j)}\right) \left(\sum_{\sigma_2 \in S^*} \epsilon(\sigma_2) \prod_{j=1}^{k} M(0, z, 1)_{j+k, \sigma_2(j)+k}\right) + O(z^{k^2+1}).$$

Hence using (8)

$$\det M(0, z, 1) = z^{k^2} \det \left(\frac{1}{i + j - 1}\right)_{1 \leq i, j \leq k} \det \left(\frac{1}{i + j + k - 1}\right)_{1 \leq i, j \leq k} + O(z^{k^2+1})$$

This expression gives the value of α as the product of two Cauchy determinants, which can be computed using the formula, established in [2] §1.3,

$$\det \left(\frac{1}{a_i + b_j}\right)_{1 \leq i, j \leq k} = \prod_{1 \leq i < j \leq k} (a_i - a_j) \prod_{1 \leq i < j \leq k} (b_i - b_j) \prod_{1 \leq i, j \leq k} (a_i + b_j).$$
This concludes the computation of $\det M(Z)$.

The following explicit expressions of the matrix M, if $k = 2$ and $z, z_1, z_2, z_3 \in \mathbb{C}$, may be useful to the reader

$$M(z_1, z_2, z_3) = \begin{pmatrix}
 z_2 - z_1 & z_2^2 - z_1^2 & z_3 - z_1 & z_3^2 - z_1^2 \\
 z_2^2 - z_1^2 & z_3^2 - z_1^2 & z_2 - z_1 & z_2^2 - z_1^2 \\
 z_3 - z_1 & z_3^2 - z_1^2 & z_2 - z_1 & z_2^2 - z_1^2 \\
 z_3^2 - z_1^2 & z_2^2 - z_1^2 & z_3 - z_1 & z_3^2 - z_1^2
\end{pmatrix}$$

$$M(0, z_2 - z_1, z_3 - z_1) = \begin{pmatrix}
 z_2 - z_1 & (z_2 - z_1)^2 & z_3 - z_1 & (z_3 - z_1)^2 \\
 (z_2 - z_1)^2 & (z_3 - z_1)^2 & z_2 - z_1 & (z_2 - z_1)^2 \\
 z_3 - z_1 & (z_3 - z_1)^2 & z_2 - z_1 & (z_2 - z_1)^2 \\
 (z_3 - z_1)^2 & (z_2 - z_1)^2 & z_3 - z_1 & (z_3 - z_1)^2
\end{pmatrix}$$

$$M(0, z, 1) = \begin{pmatrix}
 z & z^2 & 1 & \frac{1}{2} \\
 z^2 & z & \frac{1}{2} & z \frac{1}{3} \\
 1 & \frac{1}{2} & z \frac{1}{3} & \frac{1}{4} \\
 \frac{1}{2} & z \frac{1}{3} & \frac{1}{4} & z \frac{1}{5}
\end{pmatrix}$$

2. A COUNTER EXAMPLE IN THREE SPACE DIMENSIONS

Let T_0 be the simplex of vertices $(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)$ and let P_0 be the harmonic polynomial of degree 4

$$P_0 := 3x + 10x^3 - 15x^4 + 3y - 18xy - 15x^2y + 30x^3y - 15xy^2 + 45x^2y^2 + 10y^3 + 30xy^3 - 15y^4 + 3z - 18xz - 15x^2z + 30x^3z - 18yz + 240xyz - 180x^2yz - 15y^2z - 180xy^2z + 30y^3z - 15xz^2 + 45x^2z^2 - 15yz^2 - 180xyz^2 + 45y^2z^2 + 10z^3 + 30x^3z + 30yz^3 - 15z^4.$$

We define

$$u_0 := \nabla P_0 \in \mathcal{P}_{2,3}.$$

One can easily check using a formal computing program that all the linear functionals in $\mathcal{N}_{2,3}(T_0)$ vanish on u_0, which shows that the conjecture Conj(2,3) on quadratic vector fields in three dimensions, is not valid. The interested reader can download on the website arxiv.org, jointly to the preprint of this paper, a file that contains these verifications.

Finding a quadratic vector finite element for $H(\text{curl}; \Omega) \cap H(\text{div}; \Omega)$ in dimension 3 thus remains an open question. Let us finally mention that, up to a multiplicative constant, u_0 is the only element of $\mathcal{P}_{2,3}$ on which all the linear functionals $\mathcal{N}_{2,3}(T_0)$ vanish.

REFERENCES

[1] S. C. Brenner and L. Y. Sung, A Quadratic Nonconforming Element for $H(\text{curl}; \Omega) \cap H(\text{div}; \Omega)$, Appl. Math. Lett., 22:892–896, 2009.

[2] V. Prasolov, Problems and Theorems in Linear Algebra, American Mathematical Society, 1994

Jean-Marie Mirebeau
