A Quasi-Multilevel Gate Driver for Fast Switching and Crosstalk Suppression of SiC Devices

XUANLYU WU, (Member, IEEE), HAIDER ZAMAN, PANPAN WU, RONGYOU JIA, XIN ZHAO, (Member, IEEE), AND XIAOHUA WU, (Member, IEEE)

School of Automation, Northwestern Polytechnical University, Xian 710072, China

Corresponding author: Xiaohua Wu (wxh@nwpu.edu.cn)

This work was supported by the National Natural Science Foundation of China under Grant 51707160.

ABSTRACT The crosstalk phenomenon in a phase-leg configuration forbids the operation of SiC devices at high switching speed. A multilevel gate driver (MGD) is well-known for crosstalk mitigation, however, it requires two driver ICs and two voltage supplies to generate four different levels in the gate-source waveform. This paper presents a low-cost quasi-multilevel gate driver (QMGD) for crosstalk suppression which can be implemented on a single driver IC using only positive supply voltage. With a simple auxiliary circuit of the parallel-connected transistor, zener diode, and a capacitor, the proposed driver can generate multilevel output. The auxiliary transistor governs the charging and discharging of the capacitor, controlling voltage at the source terminal of SiC MOSFET and thus generating different voltage levels essential for crosstalk suppression. Performance of the proposed gate driver is validated through Spice based simulation as well as experimental tests conducted with Cree C2M0025120D. It is concluded that the proposed QMGD can replace a complicated MGD without any loss of performance.

INDEX TERMS Crosstalk suppression, quasi-multilevel gate driver (QMGD), SiC MOSFET.

I. INTRODUCTION Wide bandgap devices have revolutionized the power electronics technology and gained rapid acceptance due to improved characteristics like fast-switching, high-voltage, high-temperature, and high-efficiency. However, these devices have relatively restricted gate voltage range, which introduces gate driver design challenges [1]. Particularly, due to low gate threshold voltage of SiC MOSFET, a phase-leg configuration encounters the crow-bar current which increases switching losses and thus degrades the converter efficiency. Therefore, to fully utilize SiC MOSFET to its potential, the spurious voltage spikes should be restricted.

Phase-leg configuration with low-side MOSFET S_L and a high-side MOSFET S_H is shown in Figure 1(a) with related list of symbols given in Table 1. The crosstalk occurs due to fast-rising or falling of drain-source voltage, which induces a current in the parasitic capacitance and introduces spurious spike in the gate-source voltage [2]. When v_{GSH} climbs above V_{TH}, it initiates the turn-on transient of S_H and the steep slope of the drain-source voltage of S_L induces a positive spike in v_{GSL} as illustrated in Figure 1(b). Spurious turn-on of S_L occurs if the peak of the gate voltage spike is more than the threshold voltage, causing shoot-through and increasing switching losses. Figure 1(b) also shows a negative spike in v_{GSL} which occurs during S_H turn-off transient, when v_{GSH} drops below the miller voltage. The negative voltage spike in v_{GSL} can damage the oxide layer, leading to failure of the device. Therefore, it is equally important to protect a SiC MOSFET against the negative excursion of gate-source voltage. To justify the cost of SiC MOSFET by fully capitalizing its advantages, several techniques have been proposed [3], [4]. The conventional technique uses an external gate-source capacitance to suppress spurious spikes, however, it prolongs the rise time of the gate voltage and thus degrades the converter efficiency.

An MGD proposed in [5], has been proven to be the most suitable choice for driving a SiC MOSFET to ensure crosstalk suppression. Moreover, it accelerates the switching transition from blocking to conduction state by applying a maximum allowed gate-source voltage which reduces the switching losses. On the other hand, it relaxes the gate oxide stress by setting gate-source voltage to zero before the transition to the turn-on level. In [6], the authors proposed an active...
MGD by connecting driver ICs in series. Similarly, a 3-level turn-off waveform is generated in [7] by driving the negative pole of one driver IC with the output of another. It means that a combination of driver ICs powered by two voltage supplies is required for the generation of multilevel output, raising cost, and layout design complexity. Other techniques listed in Table 2 are developed employing auxiliary circuits to generate multilevel gate-source voltage waveform.

This paper presents a low-cost four-level QMGD for SiC MOSFET by adding an active switch to the auxiliary circuit of [10] and the capacitor which acts as a local source is charged from driver output instead of driver supply, reducing driver losses. Applying maximum allowable drive voltage accelerates switching transition and clamping the gate voltage to zero reduces the risk of gate breakdown due to negative gate voltage spike. The proposed driver offers several advantages over reported work in literature. First, and the most important feature is its ability to generate a multilevel gate voltage using only a positive supply voltage. This feature eases the layout design of a power converter, leading to low parasitic inductances and reduction in electromagnetic interference (EMI). Second, the proposed circuit enables a four-level output using only one active switch which reduces complexity in implementation because the active switches also need gate signals for their driving to perform the desired operation.

The rest of the paper is organized as follows. Section II presents the operating principle of the QMGD. Also, mathematical relations are derived. The parameters design is given in Section III. Simulation and experimental results verify the performance of the proposed driver in section IV, followed by the conclusion in section V.

II. OPERATING PRINCIPLE OF QMGD

In order to overcome the aforementioned shortcomings, a simple gate driver for SiC MOSFET is proposed in Figure 2(a), with auxiliary circuit comprising a transistor M, a zener diode D_Z, current limiting resistors R_M and R_C, and a capacitor C_Z. Due to charging and discharging operation of C_Z, the transition between gate voltage levels for a given switching state is smooth, therefore, the effect of parasitic inductance in the driver loop is minimized. Since the proposed QMGD enables four-level output using one additional active switch M driven by signal u_M which is a delayed version of u_{DL}, thus the auxiliary circuit doesn’t add much complexity. In addition, the source terminal of M is connected to driver ground, which eases its driving as compared to the floating source case.

Since C_Z is connected between the source terminal of SiC MOSFET and driver ground, levels in v_{GSL} can be introduced

Specification	Value
V_{IN}, V_G	Converter source voltage and driver supply voltage
L	Output stage inductive filter
f_S, T_S	Switching frequency and period
$V_{TH}, V_{MIL}, V_{ML}, V_{HL}$	Threshold and miller voltage
u_{DSL}, u_{DL}	Logic signal for M, S_L, and S_H
C_{GS}, C_{GD}	Gate-source, drain-gate, and drain-source capacitance
C_{DS}, R_{ON}, R_{OFF}	Gate resistances $\alpha_C = R_C/(R_C + R_{M})$, $\alpha_M = R_M/(R_C + R_M)$
R_{BH}	$R_{BH} = R_{G(ON)} + R_{ON} + \alpha_C R_{M}$
V_{GSL}, V_{GSH}	Capacitor and zener diode of auxiliary circuit
V_{NL}, V_Z	Voltage across C_Z and zener voltage
i_{RC}	C_Z charging current

TABLE 2. Auxiliary circuit based MGD circuits.

Auxiliary circuit	Output	Drawback
1. Voltage divider circuit [8] [9]	two-level	Additional gate-source capacitor is required for suppression of negative voltage spike
2. Parallel connection of zener diode and capacitor [10]	two-level	Due to voltage oscillations requires RC snubber
3. Circuit comprising pair of Schottky diode, zener diode, MOSFET and capacitor [11]	three-level	Requires dedicated negative voltage supply
4. Circuit comprising zener diode, MOSFET and capacitor [12]	four-level	Continuous charging current from driver supply
by controlling the voltage \(v_N \). Due to parallel connection of \(C_Z \) with active switch \(M \) and zener diode \(D_Z \), \(v_N \) has steady-state values of \(V_Z \) and \(\alpha_M V_G \). Thus, voltage \(v_N \) raises when \(u_{DL} = 1 \) and \(u_M = 0 \) and saturates at \(V_Z \) due to parallel connection with \(D_Z \). When \(u_{DL} \) changes to 0, the driver circuit applies \(-V_Z\) to the gate of SiC MOSFET, generating negative turn-off voltage. Therefore, the QMGD enables four-levels, that are \(\alpha_M V_G \), \((V_G - V_Z)\), \(-V_Z\), and 0 in the \(v_{GSL} \) waveform as shown in Figure 2(b), where \(V_G \) is the driver supply voltage and \(\alpha_M \) is the scaling factor determined by \(R_M \) and \(R_C \). The switching signal \(u_M \) is a time-shifted version of \(u_{DL} \) having same time-period, therefore, perform the desired operation without any significant power losses.

The equations for \(v_{GSL} \) and \(v_N \) are derived by applying KVL to the equivalent circuits during each interval, which is essential to determine the optimized parameters of QMGD. The equivalent circuits for each interval are given in Figure 3. To ease the analysis, the conduction resistance of \(M \) and parasitic inductances of SiC MOSFET are neglected.

A. INTERVAL I: \(t_0 \leq t \leq t_1 \)

Turn-on transient of SiC MOSFET occurs in this interval. Since \(u_{DL} = u_M = 1 \), the driver supply voltage enforces a charging current \(i_{GS} \) through \(C_{GS} \), which in addition to gate resistances \(R_{ON} \) and \(R_{G(in)} \), also flows through \(R_M \). Applying KVL to the driver loop in the equivalent circuit, the dynamic equation is given in (1).

\[
\begin{align*}
\alpha_C V_G &= R_{th} C_{GS} \frac{dv_{GS}}{dt} + v_{GS} \\
\frac{d}{dt} v_N &= \alpha_M R_C C_{GS} \frac{dv_{GS}}{dt} + \alpha_M V_G
\end{align*}
\]

Solving with initial condition \(v_{GS}(t_0) = 0 \) (stored energy released in \(R_M \) before time \(t_0 \)) results in (2). Equation indicates that \(v_{GS} \) approaches \(\alpha_M V_G \), with time-constant given by the product \(R_{th} C_{GS} \), where \(R_{th} = (R_{G(in)} + R_{ON} + \alpha_C R_M) \) and \(\alpha_C = R_C/(R_M + R_C) \). Since, the time-constant of equivalent circuit depends on \(R_M \), it should be relatively smaller to ensure minimal effect on slope of \(v_{GS} \), meaning that \(\alpha_C \) should be close to 1. Also, the voltage \(v_N \) increases to attain a steady-state value determined by \(\alpha_M = R_M/(R_M + R_C) \), therefore, \(R_M \) should keep \(v_N \) negligibly small in this interval.

\[
\begin{align*}
v_{GS}(t) &= \alpha_C V_G \left[1 - \exp \left(-\frac{t}{R_{th} C_{GS}} \right) \right] \\
v_N(t) &= \alpha_M V_G \left[1 + \alpha_C \frac{R_M}{R_{th}} \exp \left(-\frac{t}{R_{th} C_{GS}} \right) \right]
\end{align*}
\]

B. INTERVAL II: \(t_1 \leq t \leq t_2 \)

By the end of interval I, \(i_{GS} \) decays to 0 and \(v_{GS} \) and \(v_N \) achieve the steady-state values of \(\alpha_C V_G \) and \(\alpha_M V_G \), respectively. Meaning that only current \(i_{RC} = V_G(1 - \alpha_M)/R_C \) flows in \(R_C \), regulating \(v_{GS} \) and \(v_N \). Since \(i_{RC} \) contributes to power dissipation, optimal value of \(R_C \) needs to be chosen.

C. INTERVAL III: \(t_2 \leq t \leq t_3 \)

At time \(t_2 \), \(u_{DL} \) is still high while \(u_M \) toggles to the low logic level, turning-off \(M \). \(C_Z \) begins to charge by currents \(i_{GS} \) and \(i_{RC} \), raising \(v_N \). This reduces \(v_{GS} \) as indicated in equation (3), where \(RC_{GS} \) determine the transition time. To ensure that \(v_{GS} \) attain next voltage level before the transition of \(u_{DL} \) to 0 logic level, time-constant \(RC_{GS} \ll D_m t_3 \), where \(D_m \) is the minimum duty ratio of SiC MOSFET. Interval III ends when \(v_N \) and \(v_{GS} \) get to voltage level \(V_Z \) and \((V_G - V_Z) \), respectively.

\[
\begin{align*}
v_{GS}(t) &= \alpha_C V_G - v_N(t) \\
v_N(t) &= V_G \left[1 - \exp \left(-\frac{t}{R_C C_{GS}} \right) \right]
\end{align*}
\]

D. INTERVAL IV: \(t_3 \leq t \leq t_4 \)

At time \(t_3 \), \(C_Z \) is pre-charged to voltage \(V_Z \). Due to parallel connection, zener current \(i_Z \) flows in \(D_Z \), regulating \(v_{GS} \) and \(v_N \) at \((V_G - V_Z)\) and \(V_Z \), respectively. Therefore, \(i_{GS} = 0 \) and \(i_Z = i_{RC} = (V_G - V_Z)/R_C \).

E. INTERVAL V: \(t_4 \leq t \leq t_5 \)

Turn-off transient of SiC MOSFET occurs in this interval. The logic level of \(u_{DL} \) toggles to 0, internally connecting

FIGURE 2. Proposed QMGD for SiC MOSFET (a) circuit diagram (b) operating waveforms.

the out of driver IC to the ground. Therefore, current i_{RC} is 0 and C_{GS} and C_Z discharges in R_{OFF}. Since, C_Z acts as a local source to generate negative turn-off voltage, negligible change in v_N should be ensured which requires $C_Z \gg C_{GS}$. If we assume $v_N = V_Z$ in interval V, transition time of v_{GS} from $(V_G - V_Z)$ to $-V_Z$ is determined by R_{OFF} as indicated by equation (4). v_{GS} and v_N saturates at $-V_Z$ and V_Z, respectively, when i_{GS} reduces to 0. The QMGD generates a negative turn-off voltage, that is $-V_Z$ without using an additional voltage supply. To eliminate switching crosstalk, the other SiC MOSFET in the phase-leg must be turned-on in this interval.

$$\begin{align*}
 v_{GS} (t) &= V_G \exp \left(-\frac{t}{R_{OFF} \cdot C_{GS}} \right) - V_Z \\
 v_N (t) &= V_Z
\end{align*}$$

(4)

F. INTERVAL VI: $t_5 \leq t \leq t_6$

The signal u_M toggles to its high logic level at t_5, turning-on auxiliary switch M and thus discharging C_Z. Equation (5) indicates that v_{GS} raises from $-V_Z$ to 0. Since the fast

\[v_{GS} (t) = V_G \exp \left(-\frac{t}{R_{OFF} + R_{G(in)}} \cdot C_{GS} \right) - V_Z \]
transition in this interval doesn’t offer any advantage, R_{ON} is chosen based on the operation in the interval I. Afterwards, both v_{GS} and v_{N} regulates at 0. Therefore, SiC MOSFET can safely operate when the negative gate voltage spike occurs due to the turn-off transient of complementary device.

$$
\begin{align*}
v_{GS}(t) &= -V_Z \exp \left(-\frac{t}{(R_{ON} + R_{G(in)}) C_{GS}} \right) \\
v_{N}(t) &= V_Z \exp \left(-\frac{t}{R_M C_{GS}} \right)
\end{align*}
$$

(5)

III. SELECTION OF QMGD PARAMETERS

In this section, design rules for C_Z, R_C, and R_M are presented. Auxiliary circuit waveforms in Figure 4 indicates four important constraints on QMGD parameters. First, the turn-on voltage is $v_{GS} = \alpha V_G$, which is less than V_G as the drop across resistor R_M is $\alpha M V_G$. Second, during turn-off transient, C_Z releases some of its energy, which can be reduced if $C_Z \gg C_{GS}$. Third, the time required for charging of C_Z to voltage V_Z is determined by $\frac{C_Z}{R_C}$, thereby R_C cannot be selected freely to reduce the power losses, otherwise, the capacitor will charge to a level lower than V_Z which can compromise crosstalk suppression. Fourth, V_Z comes out to be the negative turn-off gate voltage, thus it is important to select diode with zener voltage less than the allowable negative voltage.

Resistor R_M should be of smaller value in order to ensure fast turn-on, however, the C_Z discharging current during interval V will be significantly high. Thus, the power ratings of resistor R_M and transistor M are considered based on the operation in interval I and V. To find R_M for a given value of t_1, required for the transition of i_{GS} from V_G/R_{th} to $0.1 V_G/R_{th}$, using (1) gives

$$
R_M = \frac{t_1}{\ln (0.1) \alpha C_{GS}} - \frac{(R_{ON} + R_{G(in)})}{\alpha C}
$$

(6)

IV. RESULTS AND DISCUSSION

The performance of the proposed QMGD is validated using Spice based simulation as well as with experimental setup. SiC MOSFET employed for the performance verification of driver is C2M0025120D from Cree. Considering the gate-source voltage limits (25 V/−10 V), a 25 V gate driver supply is used to generate drive waveform with levels $+24.67$ V, $+19.57$ V, -5.1 V and 0 V. A double pulse test (DPT) with parameters listed in Table 3 are used to evaluate the performance of gate driver. Parameters of the QMGD circuit, optimized using mathematical relations are given in Table 4.
X. Wu et al.: QMGD for Fast Switching and Crosstalk Suppression of SiC Devices

FIGURE 6. Simulation results (a) Waveforms at full load (b) v_N and v_{GSL} for different values of R_{OFF} (c) v_N and v_{GSL} for different values of R_C (d) Zoomed view of (c).

FIGURE 7. Experimental setup of the proposed QMGD.

1) SIMULATION RESULTS

The Spice model of SiC MOSFET provided by Cree Inc. is tailored to match the simulation response with that in the actual circuit. Parameters of the Spice model are listed in Table 5, simulated with step size and dead-time of 1 ns and 600 ns, respectively. u_M is delayed by 24 μs relative to u_{DL}, meaning that v_{GSL} stays at 24.67 V for nearly 4 μs as shown in the simulation result of Figure 6(a). It can be observed from

TABLE 3. Parameters of DPT.

Specification	Value
Input voltage (V_{IN})	400 V
Width of second pulse (t_w)	20 μs
Inductor (L)	100 μH
Current (I_L)	20 A

TABLE 4. Parameters of the QMGD.

Specification	Value
R_C	150 Ω
R_M	2 Ω
R_{ON}	10 Ω
R_{OFF}	10 Ω
C_T	100 mF
V_T	5.1 V
the simulation results that positive spurious spike is below the gate threshold voltage and thus doesn’t cause crosstalk. Figure 6(b) shows that for higher values of R_{OFF} it takes v_{GSL} longer time to reach $-V_Z$. Figure 6(c) and 6(d) show that higher values of R_C result in lower charging current and longer falling time. Therefore, longer dead-time is required, which increases power losses as body diode of SiC MOSFET is not best in characteristics compared to Si counterpart.

2) EXPERIMENTAL RESULTS

To conduct the experimental tests, a DPT platform is constructed using Cree C2M0025120D SiC MOSFET. Prototype of the proposed gate driver is given in Figure 7. The QMGD is implemented using ADuM4135, which is an isolated gate driver IC having 4 A drive capability. For short circuit protection of power MOSFET, the driver IC embodies the desaturation detection circuit. Also, it features an Under Voltage Lock Out (UVLO) which protects the power circuit when the driver supply voltage drops below the specified threshold. The logic signals u_{DL} and u_{M} are generated from a digital signal processor. Two tests are conducted on the prototype: first, the effect of parameters C_Z, R_C, and R_{OFF} on the waveform of v_N and v_{GSL} is captured and second, the waveforms of v_N, v_{DSL}, v_{GSL}, and i_L are recorded to verify the crosstalk suppression.

Figure 8 shows the operation of proposed driver at no-load comparing v_N and v_{GSL} for different circuit parameters. Waveforms for 50 nF, 100 nF and 200 nF values of C_Z are compared in Figure 8(a) and two regions are highlighted where the effect is evident. First the v_{GSL} transition time from...
24.67 V to 19.57 V increases with C_Z, minimum of 3 μs for 50 nF (shown in red) and 8.3 μs for 200 nF (shown in green). Second is the turn-off voltage which gets more negative with C_Z, that are -3.3 V and -5.01 V for 50 nF and 200 nF case, respectively. Since R_C sets the C_Z charging current, its effect on the waveform is quite similar as shown in the comparison of Figure 8(b), for R_C of 150 Ω, 499 Ω and 1 kΩ. The zoomed view of Figure 8(b) is presented in Figure 8(c), which indicates that bigger R_C cannot charge C_Z to the voltage level V_Z before turn-off transient. For $R_C = 1$ kΩ, v_N has reduced to 2.5 V, which may not be enough to suppress crosstalk because the positive spike can violate the MOSFET threshold voltage. Another parameter that affects the operating waveforms is R_{OFF}, which controls the turn-off transient as shown in Figure 8(d). The time required for v_{GSL} transition from 19.57 V to 0 V is 65 ns and 113 ns for R_{OFF} of 150 Ω and 1 kΩ, respectively. Please note that reducing R_{OFF} suppresses the peak of positive gate voltage spike, accelerates the turn-off transient and lowers the switching losses.

The second set of results are given in Figure 9(a), measured at operating condition 400 V/20 A, with $R_{OFF} = 10 \Omega$. The negative spike in v_{GSL} during turn-off transient of the high-side SiC MOSFET is observed to be -8.1 V that is well above the allowable negative gate voltage (-10 V for C2M0025120D) as shown in Figure 9(b). Similarly, it is observed from turn-on transient of high-side device shown in Figure 9(c) that v_{GSL} can go as high as 2.2 V which is less than the threshold voltage (2.6 V for C2M0025120D), suppressing crosstalk.

V. CONCLUSION

A QMGD has been proposed in this paper for crosstalk suppression. The simulation and experimental results using Cree C2M0025120D indicate that QMGD can successfully
generate a multilevel gate-source waveform using only positive driver supply. Spurious turn-on of SiC MOSFET is avoided as the gate voltage spike is level shifted and is kept below 2.2 V at full load condition, that is lower than the threshold voltage of 2.6 V. Similarly, using zero-voltage clamping, SiC MOSFET is protected against the negative gate voltage spike, measured as ~8 V at full load condition. Being a simple, low-cost and implementable with one driver IC, the QMGD is an excellent alternative to the conventional MGD. It is worth mentioning that the proposed QMGD is also applicable to GaN cascode transistors.

REFERENCES

[1] J. Wang and H. S.-H. Chung, “Impact of parasitic elements on the spurious triggering pulse in synchronous buck converter,” IEEE Trans. Power Electron., vol. 29, no. 12, pp. 6672–6685, Dec. 2014, doi: 10.1109/TPEL.2014.2304454.

[2] Z. Zhang, F. Wang, L. M. Tolbert, and B. J. Blalock, “Active gate driver for crosstalk suppression of SiC devices in a phase-leg configuration,” IEEE Trans. Power Electron., vol. 29, no. 4, pp. 1986–1997, Apr. 2014, doi: 10.1109/TPEL.2013.2268058.

[3] H. Chen and D. Divan, “High speed switching issues of high power rated silicon carbide devices and the mitigation methods,” in Proc. IEEE Energy Convers. Congr. Expo. (ECCE), Montreal, QC, Canada, Sep. 2015, pp. 2254–2260, doi: 10.1109/ECCE.2015.7308977.

[4] H. Zaman, X. Zheng, M. Yang, H. Ali, and X. Wu, “A SiC MOSFET based high efficiency interleaved boost converter for more electric aircraft,” J. Power Electron., vol. 18, no. 1, pp. 23–33, Jan. 2018, doi: 10.6113/JPE.2018.18.1.23.

[5] Z. Zhang, J. Dix, F. F. Wang, B. J. Blalock, D. Costinett, and L. M. Tolbert, “Intelligent gate drive for fast switching and crosstalk suppression of SiC devices,” IEEE Trans. Power Electron., vol. 32, no. 12, pp. 9319–9332, Dec. 2017, doi: 10.1109/TPEL.2017.2655496.

[6] H. C. P. Dymond, D. Liu, J. Wang, J. J. O. Dalton, and B. H. Stark, “Multi-level active gate driver for SiC MOSFETs,” in Proc. IEEE Energy Convers. Congr. Expo. (ECCE), Cincinnati, OH, USA, Oct. 2017, pp. 5107–5112, doi: 10.1109/ECCE.2017.8096860.

[7] S. Zhao, A. Derarien, Y. Wu, C. Farnell, A. U. Rashid, F. Luo, and H. A. Mantooth, “Adaptive multi-level active gate drivers for SiC power devices,” IEEE Trans. Power Electron., vol. 35, no. 2, pp. 1882–1898, Feb. 2020, doi: 10.1109/TPEL.2019.2922112.

[8] J. Wang and H. S.-H. Chung, “A novel RCD level shifter for elimination of spurious turn-on in the bridge-leg configuration,” IEEE Trans. Power Electron., vol. 30, no. 2, pp. 976–984, Feb. 2015, doi: 10.1109/TPEL.2014.2310898.

[9] F. Gao, Q. Zhou, P. Wang, and C. Zhang, “A gate driver of SiC MOSFET for suppressing the negative voltage spikes in a bridge circuit,” IEEE Trans. Power Electron., vol. 33, no. 3, pp. 2339–2353, Mar. 2018, doi: 10.1109/TPEL.2017.2690938.

[10] H. Zaman, X. Wu, X. Zheng, S. Khan, and H. Ali, “Suppression of switching crosstalk and voltage oscillations in a SiC MOSFET based half-bridge converter,” Energies, vol. 11, no. 11, pp. 3118, 2018, doi: 10.3390/en1111311.

[11] C. Liu, Z. Yang, Y. Liu, and Q. Lei, “Smart self-driving multi-level gate driver for fast switching and crosstalk suppression of SiC MOSFET,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 8, no. 1, pp. 442–453, Mar. 2020, doi: 10.1109/JESTPE.2019.2947366.

[12] Q. He, Y. Zhu, H. Zhang, A. Huang, Q.-M. Cai, and H. Kim, “A multilevel gate driver of SiC MOSFETs for mitigating coupling noise in bridge-leg converter,” IEEE Trans. Electromagn. Compat., vol. 61, no. 6, pp. 1988–1996, Dec. 2019, doi: 10.1109/TEM.2019.2953186.

[13] H. Li and V. R. K. Kamaraludin, “A generic gate driver for SiC MOSFETs with adjustable positive and negative rail voltage,” in Proc. Asian Conf. Energy, Power Transp. Electrific. (ACEPT), Singapore, Oct. 2018, pp. 1–5, doi: 10.1109/ACEPT.2018.8610828.

[14] H. Li, Y. Jiang, C. Feng, and Z. Yang, “A voltage-injected active gate driver for improving the dynamic performance of SiC MOSFET,” in Proc. IEEE Energy Convers. Congr. Expo. (ECCE), Baltimore, MD, USA, Sep. 2019, pp. 6943–6948, doi: 10.1109/ECCE.2019.8912602.

[15] A. Anurag, S. Acharya, Y. Prabowo, G. Golih, and S. Bhattacharya, “Design considerations and development of an innovative gate driver for medium-voltage power devices with high dv/dt,” IEEE Trans. Power Electron., vol. 34, no. 6, pp. 5256–5267, Jun. 2019, doi: 10.1109/TPEL.2018.2870084.

[16] J. V. P. S. Chenmu, R. Maheshwari, and H. Li, “New resonant gate driver circuit for high-frequency application of silicon carbide MOSFETs,” IEEE Trans. Ind. Electron., vol. 64, no. 10, pp. 8277–8287, Oct. 2017, doi: 10.1109/TIE.2017.2677307.

[17] M. M. Swamy, T. Kume, and N. Takada, “An efficient resonant gate-drive scheme for high-frequency applications,” IEEE Trans. Ind. Appl., vol. 48, no. 4, pp. 1418–1431, Jul. 2012, doi: 10.1109/TIA.2012.2200227.

[18] H. Obara, K. Wada, K. Miyazaki, M. Takamiy, and T. Sakurai, “Active gate control in half-bridge inverters using programmable gate driver ICs to improve both surge voltage and converter efficiency,” IEEE Trans. Ind. Appl., vol. 54, no. 5, pp. 4603–4611, Sep. 2018, doi: 10.1109/TIA.2018.2835812.

[19] J. Brandelero, J. Ewanchuk, and S. Mollow, “Selective gate driving in intelligent power modules,” IEEE Trans. Power Electron., vol. 36, no. 1, pp. 898–910, Jan. 2021, doi: 10.1109/TPEL.2020.3002188.

[20] S. Zhao, X. Zhao, Y. Wei, Y. Zhao, and H. A. Mantooth, “A review on switching slew rate control for silicon carbide devices using active gate drivers,” IEEE J. Emerg. Sel. Topics Power Electron., early access, Jul. 9, 2020, doi: 10.1109/JESTPE.2020.3008344.

[21] XUANYU WU (Member, IEEE) received the B.S. and Ph.D. degrees in electrical engineering from Xian Jiaotong University, Xian, China, in 2009 and 2016, respectively. He was a joint Ph.D. student with the Center for Ultrawide-Area Resilient Electric Energy Transmission Networks, The University of Tennessee, Knoxville, TN, USA, from 2014 to 2015. He joined Northwestern Polytechnical University, Xian, China, as an Assistant Professor, in 2016. His research interests include renewable energy, smart grid, electric vehicle, wide band gap devices, and control strategy for power electronics systems.

[22] HAIDER ZAMAN received the B.Sc. and M.Sc. degree in electrical engineering from Abbottabad, Pakistan, in 2008 and 2013, respectively, and the Ph.D. degree from the School of Automation, Northwestern Polytechnical University, Xian, China. Since March 2019, he has been working as a Lecturer with the Electronics Engineering Department, UET Peshawar, also working with NPU as a Research Assistant. His current research interests include resonant converters, characterization of Silicon Carbide devices, gate driver design, and application wide bandgap devices in high-power density converters. He was awarded as outstanding graduate for his Ph.D. degree from Northwestern Polytechnical University.

[23] PANPAN WU was born in Anhui, China, in 1995. He received the B.S. and M.S. degrees in Northwestern Polytechnical University, Xian, China, in 2010 and 2013, respectively, where he is currently pursuing the Ph.D. degree. His research interests include high-frequency planar magnetics design and integration, resonant converter design, analysis, and control.
RONGYOU JIA received the B.S. degree in electrical engineering from Northwestern Polytechnical University, Xian, China, in 2019, where he is currently pursuing the master’s degree in power electronics. His research interests include high-frequency power conversion and planar magnetics design.

XIN ZHAO (Member, IEEE) received the B.S. and M.S. degrees in power electronics and electrical drives from Northwestern Polytechnical University, Xian, China, in 2010 and 2013, respectively, and the Ph.D. degree in electrical engineering from Aalborg University, Aalborg, Denmark, in 2017. Since 2017, he has been with Northwestern Polytechnical University, as an Associate Professor. His research interests include power quality, distributed generation systems, power electronic converter design, analysis, and control.

XIAOHUA WU (Member, IEEE) received the B.Sc., M.Sc., and Ph.D. degrees in electrical engineering from Northwestern Polytechnical University (NPU), Xian, China, in 1991, 1994, and 2004, respectively. In 1994, she joined NPU, where she is currently working as a Professor with the School of Automation. Her current research interests include modern control in power electronics, the modeling and simulation of power electronic devices, and the application of power electronics.