The Isotropy Representation of a Real Flag Manifold: Split Real Forms

Mauro Patrão * Luiz A. B. San Martin †

Abstract

We study the isotropy representation of real flag manifolds associated to simple Lie algebras that are split real forms of complex simple Lie algebras. For each Dynkin diagram the invariant irreducible subspaces for the compact part of the isotropy subgroup are described. Contrary to the complex flag manifolds the decomposition into irreducible components is not in general unique, since there are cases with infinitely many invariant subspaces.

AMS 2010 subject classification: Primary: 14M15, Secondary: 57R22.

Key words and phrases. Flag manifold (generalized), Isotropy representation, Real semi-simple Lie groups, Split-real forms of complex semi-simple Lie algebras.

1 Introduction

This paper studies the isotropy representation of (generalized) real flag manifolds associated to a noncompact real simple Lie algebra \(\mathfrak{g} \). Here we consider the case where \(\mathfrak{g} \) is a split real form of a complex simple Lie algebra.

A flag manifold of \(\mathfrak{g} \) is a coset space \(\mathbb{F}_\Theta = G/P_\Theta \) where \(G \) is any connected Lie group with Lie algebra \(\mathfrak{g} \) and \(P_\Theta \subset G \) is a parabolic subgroup. The Lie
algebra \(p_\Theta \) of \(P_\Theta \) is a parabolic subalgebra which is the sum of the eigenspaces of the nonnegative eigenvalues of \(\text{ad}(H_\Theta) \) with \(H_\Theta \in g \) a suitable chosen element. If \(K \subset G \) is a maximal compact subgroup and \(K_\Theta = K \cap P_\Theta \) then \(\mathbb{F}_\Theta = K/K_\Theta \) as well.

The two presentations \(\mathbb{F}_\Theta = G/P_\Theta \) and \(\mathbb{F}_\Theta = K/K_\Theta \) yield the isotropy representations of \(P_\Theta \) and \(K_\Theta \) on the tangent space \(T_{b_\Theta}\mathbb{F}_\Theta \) at the origin \(b_\Theta \). The \(K_\Theta \)-representation is obtained by restricting the \(P_\Theta \)-representation.

Our objective in this paper is to describe the isotropy representation of \(K_\Theta \). This means that the invariant and irreducible subspaces of \(T_{b_\Theta}\mathbb{F}_\Theta \) must be obtained as well as the possible decompositions

\[
T_{b_\Theta}\mathbb{F}_\Theta = V_1 \oplus \cdots \oplus V_k \tag{1}
\]

into \(K_\Theta \)-invariant irreducible components.

The description of the isotropy representation of \(K_\Theta \) is essential to get \(K \)-invariant geometries on \(\mathbb{F}_\Theta \). For example the \(K \)-invariant Riemannian metrics on \(\mathbb{F} \) are given by the \(K_\Theta \)-invariant inner products on \(T_{b_\Theta}\mathbb{F}_\Theta \), which in turn are direct sum of invariant inner products on the components of a decomposition (1).

Too look at the \(K_\Theta \)-representation we consider first the the isotropy representation of \(P_\Theta \). It is completely determined by the restriction to its Levi component \(Z_\Theta \), which is the centralizer in \(G \) of \(H_\Theta \). The group \(Z_\Theta \) is reductive, so that its representation decomposes as a sum of invariant irreducible subspaces. This decomposition is unique and coincide with the decomposition for the ensuing representation of the Lie algebra \(z_\Theta \) of \(Z_\Theta \). In fact, each \(z_\Theta \)-irreducible component is a sum of root spaces (for a Cartan subalgebra) associated to different roots for different components. This implies uniqueness of the decomposition. For the moment we write the \(z_\Theta \)-decomposition as

\[
T_{b_\Theta}\mathbb{F}_\Theta = W_1^3 \oplus \cdots \oplus W_n^3.
\]

The subspaces \(W_i^3 \) are invariant by \(K_\Theta \) since \(K_\Theta \subset Z_\Theta \). Hence we are faced to the following problems:

1. Find the \(K_\Theta \)-invariant irreducible subspaces inside each \(W_i^3 \). This includes the question of deciding whether \(W_i^3 \) is \(K_\Theta \)-irreducible.

2. Among the invariant subspaces of item (1), find those pairs \(U_1, U_2 \) such that the \(K_\Theta \)-representations on them are equivalent. Given such a pair
we get further invariant irreducible subspaces contained in $U_1 \oplus U_2$ as graphs of operators $T : U_1 \to U_2$, intertwining the representations on U_1 and U_2.

The answers to these two questions give the full picture of the K_Θ-invariant subspaces.

At this point it is worthwhile to compare the real flag manifolds with the complex ones. In the complex case the above questions have trivial answers: The subspaces W^1_z are K_Θ-irreducible and no two of them are equivalent. This is due to the fact that in a complex Lie group K_Θ is a compact real form of the semi-simple component $G(\Theta)$ of Z_Θ, which is also a complex group. So that the equivalence classes of K_Θ-representations are in bijection to the $G(\Theta)$-representations.

On the contrary for real flag manifolds new phenomena occur: There are \mathfrak{z}_Θ-irreducible subspaces that are not K_Θ-irreducible and there are equivalent K_Θ-invariant irreducible subspaces. Such equivalence gives rise to continuous sets of invariant subspaces and to the nonuniqueness of the decompositions (1).

The basic differences of the real case to the complex one is that K is not in general simple and K_Θ is not connected (if \mathfrak{g} is a split real form). When K is not simple we get a supply of K_Θ-invariant subspaces as tangent spaces to the orbits through the origin b_Θ of the simple components of K. In many cases these tangent spaces decompose the \mathfrak{z}_Θ-irreducible subspaces. The fact that K_Θ is not connected requires a separate analysis of the representations of its group of connected components, the so called M-group.

Now we describe the contents of the paper. Section 2 contains generalities about isotropy representations.

The main technical part of the paper starts at Section 3 where we look at the representations of the discrete group M. This is the centralizer in K of the Cartan subalgebra \mathfrak{a} and contains information about the group of connected components of any K_Θ. Also $M = K_\Theta$ if F_Θ is the maximal flag manifold. The one dimensional root spaces \mathfrak{g}_α are M-invariant thus defining representations of M. For the roots α and β we put $\alpha \sim_M \beta$ if the representations of M on \mathfrak{g}_α and \mathfrak{g}_β are equivalent. The purpose of Section 3 is to find M-equivalence classes of roots. After some preparations we proceed to a case by case analysis of the diagrams. For each case the M-equivalence classes are described at the beginning of the corresponding subsection. For the classical diagrams there are exceptions since in low dimension the sizes of
the classes tend to increase. The determination of the M-equivalence classes furnishes the complete picture of the isotropy representation on the maximal flag manifolds. They will be also a basic tool to detect inequivalent subrepresentations in the other flag manifolds.

Section 4 is preparatory. There we prove several lemmas to be applied in the study of isotropy representations on the partial flag manifolds. Some of these lemmas have independent interest, like Lemma 4.3 which ensures transitivity of the Weyl group on the set of weights of a given representation. This fact is far from to be true for general representations.

In Section 5 we go through the isotropy representations of the partial flag manifolds, again in a case by case analysis. For the classical diagrams we use their standard realizations as algebras of matrices: $A_l = \mathfrak{sl}(l + 1, \mathbb{R})$, $B_l = \mathfrak{so}(l, l + 1)$, $C_l = \mathfrak{sp}(l, \mathbb{R})$ and $D_l = \mathfrak{so}(l, l)$. These realizations allow the use of nice expressions for the roots. The analysis of the classical diagrams have the following pattern: First we describe the \mathfrak{g}-irreducible components. Then we check their K_Θ-irreducibility and finally we look at equivalence between irreducible subspaces. The results are summarized at the end of each corresponding subsection. Regarding to the exceptional diagrams, G_2 is clear by its low dimensionality. For E_6, E_7 and E_8, it follows easily by the general lemmas of Section 4 that the K_Θ-invariant subspaces are the \mathfrak{g}-irreducible components. As to F_4 we refrain to make a detailed and annoying description of the fifteen flag manifolds. Besides the maximal flag manifold, where the picture is given by the M-equivalence classes, we just look at a minimal flag manifold.

In conclusion we say that our initial motivation to study the isotropy representation came from the attempt to understand the K-invariant Riemannian metrics on the real flag manifolds. There is an extensive literature on invariant Riemannian geometry on complex flag manifolds. See for example Burstall-Rawnsley [1], Burstall-Salamon [2], Negreiros [6], San Martin-Negreiros [8], San Martin-Silva [9], and Wang-Ziller [10], and references therein. In a complex flag manifold the isotropy representation has a unique decomposition into invariant irreducible components, which makes the set of invariant Riemannian metrics a finite dimensional manifold. Our results in this paper show the existence of infinitely many decompositions on a real flag manifold, pointing to a great richness of the invariant Riemannian geometry.
2 Isotropy representation

Let \(\mathfrak{g} \) be a split real form of a complex simple Lie algebra, \(\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{s} \) be a Cartan decomposition and \(\mathfrak{a} \subset \mathfrak{s} \) be a maximal abelian subalgebra. Denote by \(\Pi \) the associated set of roots and by

\[
\mathfrak{g} = \mathfrak{g}_0 \oplus \sum_{\alpha \in \Pi} \mathfrak{g}_\alpha
\]

the associated root space decomposition. Denote by \(G \) the group of inner automorphisms of \(\mathfrak{g} \), which is the subgroup of \(\text{Gl}(\mathfrak{g}) \) generated by \(\exp \text{ad}(\mathfrak{g}) \). Let \(K \) be the subgroup of \(G \) generated by \(\text{ad}(\mathfrak{k}) \). Fixing a set \(\Pi^+ \) of positive roots let \(\Sigma \) be the corresponding set of simple roots. We denote by \(\mathfrak{a}^+ = \{ H \in \mathfrak{a} : \forall \alpha \in \Sigma, \alpha(H) > 0 \} \) the Weyl chamber associated to \(\Sigma \).

A subset \(\Theta \subset \Sigma \) defines the parabolic subalgebra of type \(\Theta \) given by

\[
\mathfrak{p}_\Theta = \mathfrak{g}_0 \oplus \sum_{\alpha \in \Pi^+} \mathfrak{g}_\alpha \oplus \sum_{\alpha \in \langle \Theta \rangle^-} \mathfrak{g}_\alpha,
\]

where \(\langle \Theta \rangle^- \) is the set of negative roots generated by \(\Theta \). The standard parabolic subgroup \(P_\Theta \) defined by \(\Theta \) is the normalizer of \(\mathfrak{p}_\Theta \) in \(G \). The associated flag manifold is defined by \(F_\Theta = G/P_\Theta \). Since \(K \) acts transitively on \(F_\Theta \), this flag manifold can be given by \(F_\Theta = K/K_\Theta \), where \(K_\Theta = P_\Theta \cap K \).

When \(\Theta = \emptyset \) we get the minimal parabolic subalgebra \(\mathfrak{p} = \mathfrak{p}_\emptyset \). In this case the subscript is omitted and the maximal flag manifold is written \(F = G/P \).

We have \(F = K/M \), where \(M = K_\emptyset \) is the centralizer of \(\mathfrak{a} \) in \(K \).

For an alternative description of the parabolic subalgebra write

\[
\mathfrak{a}_\Theta = \{ H \in \mathfrak{a} : \forall \alpha \in \Theta, \alpha(H) = 0 \}
\]

for the anihilator of \(\Theta \). Let \(H_\Theta \) be characteristic for \(\Theta \), that is \(H_\Theta \) is in the “partial chamber” \(\mathfrak{a}_\Theta \cap \mathfrak{a}^+ \) and satisfies

\[
\Theta = \{ \alpha \in \Sigma : \alpha(H_\Theta) = 0 \}.
\]

Then

\[
\mathfrak{p}_\Theta = \sum_{\lambda \geq 0} V_\lambda(H_\Theta)
\]

where \(V_\lambda(H_\Theta) = \sum_{\alpha(H_\Theta) = \lambda} \mathfrak{g}_\alpha \) is the \(\lambda \)-eigenspace of \(\text{ad}(H_\Theta) \). Clearly any \(H_\Theta \) satisfying \(\langle ?? \rangle \) yield the same \(\mathfrak{p}_\Theta \), although the eigenspaces \(V_\lambda(H_\Theta) \) may change.
The centralizer of \(H_\Theta \), \(\mathfrak{z}_\Theta = \text{cent}_g (H_\Theta) = \sum_{\alpha(H_\Theta) = 0} g_\alpha \) is the Levi component of \(p_\Theta \). It is a reductive Lie algebra that decomposes as

\[
\mathfrak{z}_\Theta = g(\Theta) \oplus a_\Theta
\]

where the semi-simple component \(g(\Theta) \) is the subalgebra generated by \(g_\alpha \), \(\alpha \in \pm \Theta \). Since \(g \) is a split real form, it follows that \(g(\Theta) \) is also a split real form, having Cartan subalgebra the subspace \(a(\Theta) \) spanned by \(H_\alpha \), \(\alpha \in \Theta \) (where \(\alpha (\cdot) = \langle H_\alpha, \cdot \rangle \)). Put \(G(\Theta) = \langle \exp g(\Theta) \rangle \) for the connected subgroup with Lie algebra \(g(\Theta) \).

With this notation we have that \(K_\Theta = \text{Cent}_K (H_\Theta) \) is the centralizer of \(H_\Theta \) in \(K \) and its Lie algebra \(\mathfrak{k}_\Theta = \text{Cent}_\mathfrak{k} (H_\Theta) = \mathfrak{z}_\Theta \cap \mathfrak{k} \). Also, \((K_\Theta)_0 \subset G(\Theta) \).

The nilpotent subalgebra

\[
\mathfrak{n}_\Theta = \sum_{\alpha \in \Pi^{-} \setminus \langle \Theta \rangle^{-}} g_\alpha = \sum_{\lambda < 0} V_\lambda (H_\Theta)
\]

complements \(p_\Theta \) in \(g \). Hence we identify \(\mathfrak{n}_\Theta \) with the tangent space \(T_{b_\Theta} F_\Theta \) at the origin \(b_\Theta \). Under this identification the isotropy representations of \(K_\Theta \) and \(G(\Theta) \) are just the adjoint representation, since \(\mathfrak{n}_\Theta \) is normalized by these groups. The same statement holds for the representations of the Lie algebras \(\mathfrak{t}_\Theta \), \(g(\Theta) \) and \(\mathfrak{z}_\Theta \).

Since \(\mathfrak{z}_\Theta \) is reductive its representation on \(\mathfrak{n}_\Theta \) is a direct sum

\[
\mathfrak{n}_\Theta = \sum_{\sigma} \mathfrak{V}_\Theta^\sigma
\]

where the subspaces \(\mathfrak{V}_\Theta^\sigma \) are \(\mathfrak{z}_\Theta \)-invariant and irreducible. Here we use \(\sigma \) to distinguish the different invariant subspaces.

Proposition 2.1 Each \(\mathfrak{z}_\Theta \)-invariant and irreducible subspace \(\mathfrak{V}_\Theta^\sigma \) is a direct sum of root spaces,

\[
\mathfrak{V}_\Theta^\sigma = \sum g_\alpha
\]

where the sum extended to a subset of roots \(\Pi_\Theta^\sigma \subset \Pi^{-} \setminus \langle \Theta \rangle^{-} \). Conversely if \(\alpha \in \Pi^{-} \setminus \langle \Theta \rangle^{-} \) then \(g_\alpha \) is contained in a unique \(\mathfrak{z}_\Theta \)-component denoted by \(V_\Theta (\alpha) \). We write \(\Pi_\Theta (\alpha) \) for the roots \(\beta \) with \(g_\beta \subset V_\Theta (\alpha) \).

Proof: This follows by a standard argument using the fact that \(a \subset \mathfrak{z}_\Theta \). In fact, if \(V \) is a \(\mathfrak{z}_\Theta \)-invariant subspace and \(X = \sum X_\alpha \in V \) then

\[
\text{ad} (H) X = \sum \alpha (H) X_\alpha \in V
\]
if $H \in \mathfrak{a}$. By taking suitable values of $H \in \mathfrak{a}$ one concludes that each component $X_\alpha \in V$, so that $\mathfrak{g}_\alpha \subset V$. The last statement follows directly from the fact that \mathfrak{n}_Θ is the direct sum of the roots spaces as well as the \mathfrak{z}_Θ-components.

The restriction to $\mathfrak{g}(\Theta)$ of the \mathfrak{z}_Θ-representation on V_Θ^g is also irreducible. This is because $\mathfrak{z}_\Theta = \mathfrak{g}(\Theta) \oplus \mathfrak{a}_\Theta$ with \mathfrak{a}_Θ the center of $\mathfrak{g}(\Theta)$, so that $\text{ad}(H)$ is a scalar $\lambda \cdot \text{id}$ in V_Θ^g for any $H \in \mathfrak{a}_\Theta$. Hence, any $\mathfrak{g}(\Theta)$-invariant subspace $U \subset V_\Theta^g$ is also \mathfrak{z}_Θ-invariant, ensuring that V_Θ^g is $\mathfrak{g}(\Theta)$-irreducible.

The weight spaces of the representation of $\mathfrak{g}(\Theta)$, w.r.t. $\mathfrak{a}(\Theta)$, are root spaces of \mathfrak{g}, so that the weights of the representation are restrictions to $\mathfrak{a}(\Theta)$ of some roots $\alpha \in \Pi \setminus \langle \Theta \rangle^-$. There is just one highest weight, say μ, and two representations of $\mathfrak{g}(\Theta)$ on $V_{\Theta}^{g_1}$ and $V_{\Theta}^{g_2}$ are equivalent if and only if $\mu_{g_1} = \mu_{g_2}$. (We note that different representations of \mathfrak{z}_Θ on $V_{\Theta}^{g_1}$ and $V_{\Theta}^{g_2}$ cannot be equivalent, even if the $\mathfrak{g}(\Theta)$-representations are equivalent.)

The subspaces V_Θ^g are also invariant and irreducible by $G(\Theta)$, since by definition this group is connected. Hence V_Θ^g is invariant by the identity component $(K_\Theta)_0$ of K_Θ, because $(K_\Theta)_0 \subset G(\Theta)$. As to K_Θ we have $K_\Theta = M \cdot (K_\Theta)_0$ which ensures that V_Θ^g is K_Θ-invariant, because M leaves invariant each root space.

Our objective is to get the invariant irreducible subspaces of \mathfrak{n}_Θ by the K_Θ representation, which is equivalent to the isotropy representation of the flag \mathcal{F}_Θ.

In view of the above discussion we are reduced to the following questions:

1. Describe the irreducible components V_Θ^g of the \mathfrak{z}_Θ representation.
2. Find the K_Θ-invariant subspaces of each V_Θ^g.
3. Find the pairs of irreducible subspaces having equivalent K_Θ-representations.

Finally we note that if $H_\Theta \in \mathfrak{a}_\Theta \cap \mathfrak{cl} \mathfrak{a}^+$ then an eigenspace $V_\lambda(\mathfrak{H}_\Theta) = \sum_{\alpha(H_\Theta) = \lambda} \mathfrak{g}_\alpha$ is contained in \mathfrak{n}_Θ if $\lambda < 0$ and is invariant by \mathfrak{z}_Θ. Hence $V_\lambda(\mathfrak{H}_\Theta)$ is the direct sum of some irreducible components V_Θ^g. This remark will be used later to determine the irreducible components V_Θ^g. Actually, in some cases an eigenspace $V_\lambda(\mathfrak{H}_\Theta)$ is irreducible and hence is itself a component.
3 M-equivalence classes

Let $M = \text{Cent}_K(a)$ be the centralizer of a in K. It is known that $M \subset K_\Theta = M(K_\Theta)_0$. Also, any root space g_α is M-invariant. In this section we determine the pairs of root spaces g_α, g_β having equivalent representations of M. This will be used later to check equivalence or nonequivalence of K_Θ-representations on invariant subspaces.

Definition 3.1 The roots α and β are said to be M-equivalent (in symbols $\alpha \sim_M \beta$) if the representations of M on g_α and g_β are equivalent. We write $[\alpha]_M$ for the M-equivalence class of the root α.

If g is a split real form of a complex semi-simple Lie algebra then M is a discrete abelian subgroup equals to

$$M = \{m_\gamma = \exp(\pi i H_\gamma^\vee) : \gamma \in \Pi}\,$$

where $H_\gamma^\vee = \frac{2H_\gamma}{\langle \gamma, \gamma \rangle}$ is the co-root associated to γ and H_γ is defined by $\gamma(H) = \langle H_\gamma, H \rangle$, $H \in \mathfrak{a}$. In the above formula the exponential $\exp(\pi i H_\gamma^\vee)$ is in the complex group $\text{Aut}(\mathfrak{g}_C)$, where \mathfrak{g}_C is the complexification of \mathfrak{g} (see [5, Theorems 7.53 and 7.55]).

The following statement gives a necessary and sufficient condition for the M-equivalence between the roots α and β.

Proposition 3.2 The root α and β are M-equivalent if and only if, for every $\gamma \in \Pi$ we have

$$\frac{2\langle \gamma, \alpha \rangle}{\langle \gamma, \gamma \rangle} \equiv \frac{2\langle \gamma, \beta \rangle}{\langle \gamma, \gamma \rangle} \mod 2.$$

Proof: Take a root γ and write as above $m_\gamma = \exp(\pi i H_\gamma^\vee)$. If $X \in \mathfrak{g}_\alpha$ and $Y \in \mathfrak{g}_\beta$ then

$$\text{Ad}(m_\gamma)X = e^{\pi i \alpha(H_\gamma^\vee)}X \quad \text{and} \quad \text{Ad}(m_\gamma)Y = e^{\pi i \beta(H_\gamma^\vee)}Y,$$

by definition of m_γ. It follows that $\alpha \sim_M \beta$ if and only if $e^{\pi i \alpha(H_\gamma^\vee)} = e^{\pi i \beta(H_\gamma^\vee)}$, which is equivalent to

$$\frac{2\langle \gamma, \alpha \rangle}{\langle \gamma, \gamma \rangle} \equiv \frac{2\langle \gamma, \beta \rangle}{\langle \gamma, \gamma \rangle} \mod 2$$

as desired. \qed

As a corollary we get the following necessary condition.
Corollary 3.3 If $\alpha \sim_M \beta$ then $\langle \alpha, \beta \rangle = 0$.

Proof: Suppose that $\langle \alpha, \beta \rangle \neq 0$. Then we have the following possibilities for the Killing numbers:

1. α and β have the same length and the angle between them is 60° or 120°. Then
 \[
 \frac{2\langle \alpha, \alpha \rangle}{\langle \alpha, \alpha \rangle} = 2 \quad \text{and} \quad \frac{2\langle \alpha, \beta \rangle}{\langle \alpha, \alpha \rangle} = \pm 1
 \]
 showing that α and β are not M-equivalent.

2. The angle between α and β is 45° or 135°. If α is the long root then
 \[
 \frac{2\langle \alpha, \alpha \rangle}{\langle \alpha, \alpha \rangle} = 2 \quad \text{and} \quad \frac{2\langle \alpha, \beta \rangle}{\langle \alpha, \alpha \rangle} = \pm 1
 \]
 and α and β are not M-equivalent. If otherwise β is the long root then we interchange the roles of α and β to get the same result.

3. The angle between α and β is 30° or 150°. Then
 \[
 \frac{2\langle \alpha, \alpha \rangle}{\langle \alpha, \alpha \rangle} = 2 \quad \text{and} \quad \frac{2\langle \alpha, \beta \rangle}{\langle \alpha, \alpha \rangle} = \pm 1, \pm 3
 \]
 concluding the proof.

In the sequel we apply the above proposition and its corollary to find for each Dynkin diagram the classes of M-equivalence between roots. The following simple remarks are used throughout with no further reference.

1. $\alpha \sim_M (-\alpha)$. In fact the Cartan involution θ is an equivalence between the M-representations in g_α and $g_{-\alpha}$ because $\theta(m) = m$ if $m \in M$. This implies that $\text{Ad}(m) \circ \theta = \theta \circ \text{Ad}(m)$ if $m \in M$ and since $\theta(g_\alpha) = g_{-\alpha}$ the equivalence follows. Hence we are reduced to check M-equivalence between positive roots alone.

2. The criterion of Proposition 3.2 implies easily that if $w \in W$ then $\alpha \sim_M \beta$ if and only if $w\alpha \sim_M w\beta$. Hence it will will be enough to get the M-equivalence classes for just one element in each orbit of the Weyl group, that is, for one root in the simply laced diagrams and for one long root and a short root in diagrams with multiple edges.

We proceed now to look at the M-equivalences for each Dynkin diagram.
3.1 Diagram A_l, $l \geq 1$

We use the standard realization of A_l where the positive roots are written as $\lambda_i - \lambda_j$, $1 \leq i < j \leq l + 1$. There are two cases:

3.1.1 A_l, $l \neq 3$

The classes of M-equivalence on the positive roots are singletons. (That is the M-representation on different root spaces are not equivalent.)

Since the Weyl group is transitive on the set of roots it is enough to fix a specific root α and check that any positive root $\beta \neq \alpha$ is not M-equivalent to α.

Suppose that $l > 3$ and take $\alpha = \lambda_1 - \lambda_2$. The positive roots orthogonal to α are $\lambda_i - \lambda_j$ with $3 \leq i < j$. By Corollary 3.3 we are reduced to check that these roots are not M-equivalent to $\alpha = \lambda_1 - \lambda_2$. There are the following cases for $3 \leq i < j$:

1. If $j < l+1$ then $\langle \gamma, \lambda_i - \lambda_j \rangle \neq 0$ but $\langle \gamma, \lambda_1 - \lambda_2 \rangle = 0$ where $\gamma = \lambda_j - \lambda_{j+1}$. Hence

$$\frac{2\langle \gamma, \lambda_1 - \lambda_2 \rangle}{\langle \gamma, \gamma \rangle} = 0$$

so that $\lambda_1 - \lambda_2$ is not M-equivalent to $\lambda_i - \lambda_j$, $3 \leq i < j$.

2. If $i > 3$ then $\langle \gamma, \lambda_i \pm \lambda_j \rangle \neq 0$ but $\langle \gamma, \lambda_1 - \lambda_2 \rangle = 0$ where $\gamma = \lambda_i - \lambda_j$, and again $\lambda_1 - \lambda_2$ is not M-equivalent to $\lambda_3 - \lambda_j$, $3 < j$.

3. If $i = 3$ and $j = l+1$ then $\lambda_4 - \lambda_{l+1}$ is a root orthogonal to $\lambda_1 - \lambda_2$ but not orthogonal to $\lambda_3 - \lambda_{l+1}$.

Finally if $l = 1$ there is just one positive root. If $l = 2$ then the positive roots are not orthogonal to each other so by Corollary 3.3 they are not M-equivalent.

3.1.2 A_3

The M-equivalence classes on the positive roots are $\{\lambda_1 - \lambda_2, \lambda_3 - \lambda_4\}$, $\{\lambda_1 - \lambda_3, \lambda_2 - \lambda_4\}$ and $\{\lambda_1 - \lambda_4, \lambda_2 - \lambda_3\}$.

In this case the unique root orthogonal to $\alpha = \lambda_1 - \lambda_2$ is $\lambda_3 - \lambda_4$ and hence, by Corollary 3.3, $\lambda_3 - \lambda_4$ is the only candidate to be M-equivalent to
\(\lambda_1 - \lambda_2\). To see that indeed \(\lambda_3 - \lambda_4 \sim_M \lambda_1 - \lambda_2\) note that a root \(\gamma = \lambda_i - \lambda_j\) with \((i,j) \neq (1,2)\) or \((3,4)\) is not orthogonal to \(\lambda_1 - \lambda_2\) neither to \(\lambda_3 - \lambda_4\). So that the Killing numbers \(\frac{2(\gamma,\lambda_1-\lambda_2)}{(\gamma,\gamma)}\) and \(\frac{2(\gamma,\lambda_3-\lambda_4)}{(\gamma,\gamma)}\) are \(\pm 1\), that is, the condition of Proposition 3.2 is satisfied showing that \(\lambda_3 - \lambda_4 \sim_M \lambda_1 - \lambda_2\), By applying the Weyl group (permutation group) we see that the classes of \(\lambda_i\) with \((i,j)\) satisfying the condition of Proposition 3.2 is satisfied showing that \(\lambda_3 - \lambda_4 \sim_M \lambda_1 - \lambda_2\), By applying the Weyl group (permutation group) we see that the classes of \(\lambda\)-equivalences are as stated.

3.2 Diagram \(B_l, l \geq 2\)

In the standard realization of \(B_l = \mathfrak{so}(l, l+1)\) the positive roots are written as \(\lambda_i \pm \lambda_j, 1 \leq i < j \leq l\) and \(\lambda_i, 1 \leq i \leq l\). These are the long and short roots respectively.

The \(M\)-equivalence classes depend on the rank \(l\), according to the following cases:

3.2.1 \(B_l, l \geq 5\)

The \(M\)-equivalence classes on the positive roots are \(\{\lambda_i - \lambda_j, \lambda_i + \lambda_j\}\) and \(\{\lambda_i\}, 1 \leq i < j \leq l\).

We find the equivalence classes of the long and short roots.

Take long root \(\lambda_1 - \lambda_2\). We must check \(M\)-equivalence only for the roots orthogonal to it, namely \(\lambda_1 + \lambda_2, \lambda_i \pm \lambda_j\) and \(\lambda_i\) with \(3 \leq i < j\). The roots \(\lambda_i, 3 \leq i\), are not \(M\)-equivalent to \(\lambda_1 - \lambda_2\). In fact, \(\lambda_i \pm \lambda_{i+1}\) is a root because \(l \geq 5\). Now, \(\langle \lambda_i, \lambda_i \pm \lambda_{i+1} \rangle \neq 0\) and the Killing number \((\langle \lambda_i \pm \lambda_{i+1} \rangle, \lambda_i) = \pm 1\) because \(\lambda_i\) is a short root. Since \(\langle \lambda_i, \lambda_1 - \lambda_2 \rangle = 0\) the condition of Proposition 3.2 is violated by \(\gamma = \lambda_i \pm \lambda_{i+1}\). The same argument used in the \(A_l\) case show that \(\lambda_i \pm \lambda_j, 3 \leq i < j\), is not \(M\)-equivalent to \(\lambda_1 - \lambda_2\) (when \(l \geq 5\)). On the other hand \(\lambda_1 - \lambda_2 \sim_M \lambda_1 + \lambda_2\) because for any root \(\gamma\) it holds \(\langle \gamma, \lambda_1 - \lambda_2 \rangle = \pm \langle \gamma, \lambda_1 + \lambda_2 \rangle\). It follows that \(\{\lambda_1 - \lambda_2, \lambda_1 + \lambda_2\}\) is an \(M\)-equivalence class. To conclude this case we note that \(w \in \mathcal{W}\) acts on \(\lambda_i\) by a permutation followed by a change of sign, that is, \(w\lambda_i = \pm \lambda_j\), for some index \(j\). Hence \(\lambda_i - \lambda_j \sim_M \lambda_i + \lambda_j, 1 \leq i < j \leq l\) and the sets \(\{\lambda_i - \lambda_j, \lambda_i + \lambda_j\}\) are the only \(M\)-equivalence classes containing a long root.

By the previous paragraph no long root is \(M\)-equivalent to the short root \(\lambda_i\). Finally two short roots \(\lambda_i\) and \(\lambda_j\), \(i \neq j\), are not \(M\)-equivalent. For example \(\gamma = \lambda_i + \lambda_k\), \(k \neq i, j\) satisfies \(\langle \gamma, \lambda_i \rangle = 1\) while \(\langle \gamma, \lambda_j \rangle = 0\).
3.2.2 \(B_4 \)

The \(M \)-equivalence classes on the positive roots are \(\{\lambda_1 - \lambda_2, \lambda_1 + \lambda_2, \lambda_3 - \lambda_4, \lambda_3 + \lambda_4\}, \{\lambda_1 - \lambda_3, \lambda_1 + \lambda_3, \lambda_2 - \lambda_4, \lambda_2 + \lambda_4\}, \{\lambda_1 - \lambda_4, \lambda_1 + \lambda_4, \lambda_2 - \lambda_3, \lambda_2 + \lambda_3\} \), and the short roots \(\{\lambda_i\}, 1 \leq i \leq 4 \).

The difference from the general case is that \(\lambda_3 - \lambda_4 \sim_M \lambda_1 - \lambda_2 \). In fact if \(\lambda_i \) is a short root then \(\langle \lambda_i^\vee, \lambda_1 - \lambda_2 \rangle \) and \(\langle \lambda_i^\vee, \lambda_3 - \lambda_4 \rangle \) equals 0 or 2. Also if \(\gamma \) is a long root different from \(\lambda_1 - \lambda_2 \) and \(\lambda_3 - \lambda_4 \) then \(\langle \gamma^\vee, \lambda_1 - \lambda_2 \rangle \) and \(\langle \gamma^\vee, \lambda_3 - \lambda_4 \rangle \) equals \(\pm 1 \).

Again the same arguments show that a long root and a short root as well as two short roots are not \(M \)-equivalent.

3.2.3 \(B_3 \)

The \(M \)-equivalence classes on the positive roots are \(\{\lambda_1 - \lambda_2, \lambda_1 + \lambda_2, \lambda_3\} \), \(\{\lambda_1 - \lambda_3, \lambda_1 + \lambda_3, \lambda_2\} \) and \(\{\lambda_2 - \lambda_3, \lambda_2 + \lambda_3, \lambda_1\} \).

Here \(\lambda_3 \sim_M \lambda_1 - \lambda_2 \). The point is that if \(\gamma \neq \lambda_1 - \lambda_2 \) is a long root then \(\langle \gamma^\vee, \lambda_1 - \lambda_2 \rangle = \pm 1 \) and since \(\gamma \) cannot be orthogonal to \(\lambda_3 \) we have \(\langle \gamma^\vee, \lambda_3 \rangle = \pm 1 \) as well. On the other hand if \(\gamma \) is short then \(\langle \gamma^\vee, \lambda_1 - \lambda_2 \rangle \) and \(\langle \gamma^\vee, \lambda_3 \rangle \) are even.

3.2.4 \(B_2 \)

The \(M \)-equivalence classes on the positive roots are the long roots \(\{\lambda_1 - \lambda_2, \lambda_1 + \lambda_2\} \) and the short roots \(\{\lambda_1, \lambda_2\} \).

3.3 Diagram \(C_l, l \geq 3 \)

In the standard realization of \(C_l = \mathfrak{sp}(l, \mathbb{R}) \) the positive roots are written as \(\lambda_i \pm \lambda_j, 1 \leq i < j \leq l \) and \(2\lambda_i, 1 \leq i \leq l \). These are the short and long roots respectively.

Here any two long roots \(2\lambda_i \) and \(2\lambda_j \) are \(M \)-equivalent. In fact, for any root \(\gamma \) the Killing number \(\langle \gamma^\vee, 2\lambda_i \rangle \) is even (0 or \(\pm 2 \)). In fact, if \(\gamma \) is a short root then \(\langle \gamma^\vee, 2\lambda_i \rangle \) is either 0 (orthogonal roots) or \(\pm 2 \) (Killing number between a short root and a long root). On the other hand two long roots are either equal or orthogonal.

As in the previous diagrams the \(M \)-equivalence classes increase for small ranks. For \(C_l \) the exception is when \(l = 4 \).
3.3.1 \(C_l, l \neq 4 \)

The \(M \)-equivalence classes are \(\{ \lambda_i - \lambda_j, \lambda_i + \lambda_j \} \) and the set of long roots \(\{ 2\lambda_1, \ldots, 2\lambda_l \} \).

The roots orthogonal to the short root \(\lambda_1 - \lambda_2 \) are \(\lambda_1 + \lambda_2, \lambda_i \pm \lambda_j \) and \(2\lambda_i \) with \(3 \leq i < j \). As in the \(B_l \) case (with \(l \geq 5 \)) the roots \(\lambda_i \pm \lambda_j, 3 \leq i < j \), are not \(M \)-equivalent to \(\lambda_1 - \lambda_2 \). On the other hand if \(3 \leq i \) then \(\gamma = \lambda_1 - \lambda_j \) with \(j \neq i \) violates the criterion of Proposition 3.2 for \(M \)-equivalence between \(\lambda_1 - \lambda_2 \) and \(2\lambda_i \). In fact, \(\langle \gamma^\vee, \lambda_1 - \lambda_2 \rangle = \pm 1 \) (non orthogonal roots of same length) and \(\langle \gamma^\vee, 2\lambda_i \rangle = 0 \).

Since the long roots are equivalent to each other it follows that \(\lambda_1 - \lambda_2 \) is not \(M \)-equivalent to any long root. Hence we get the classes stated above.

These arguments remain true if \(l = 3 \). (Differently from \(B_3 \) in \(C_3 \) long roots are not \(M \)-equivalent to short roots.)

3.3.2 \(C_4 \)

The \(M \)-equivalence classes are \(\{ \lambda_1 - \lambda_2, \lambda_1 + \lambda_2, \lambda_3 - \lambda_4, \lambda_3 + \lambda_4 \} \), \(\{ \lambda_1 - \lambda_3, \lambda_1 + \lambda_3, \lambda_2 - \lambda_4, \lambda_2 + \lambda_4 \} \), \(\{ \lambda_1 - \lambda_4, \lambda_1 + \lambda_4, \lambda_2 - \lambda_3, \lambda_2 + \lambda_3 \} \) and the long roots \(\{ 2\lambda_1, 2\lambda_2, 2\lambda_3, 2\lambda_4 \} \).

This is seen as in \(B_4 \) where \(\lambda_3 - \lambda_4 \sim_M \lambda_1 - \lambda_2 \).

3.4 Diagram \(D_l, l \geq 4 \)

In the standard realization of \(D_l = \mathfrak{so} (l, l) \) the positive roots are written as \(\lambda_i \pm \lambda_j, 1 \leq i < j \leq l \).

3.4.1 \(D_l, l > 4 \)

The \(M \)-equivalence classes on the positive roots are \(\{ \lambda_i - \lambda_j, \lambda_i + \lambda_j \} \), \(1 \leq i < j \leq l \).

This is verified by arguments similar to the \(B_l \) case, simplified by the fact that the roots have the same length.

First the only root \(M \)-equivalent to \(\lambda_1 - \lambda_2 \) is \(\lambda_1 + \lambda_2 \). In fact, the roots orthogonal to \(\lambda_1 - \lambda_2 \) are \(\lambda_1 + \lambda_2 \) and \(\lambda_i \pm \lambda_j, 3 \leq i < j \). A root \(\lambda_i \pm \lambda_j \) with \(3 \leq i < j \) is not \(M \)-equivalent to \(\lambda_1 - \lambda_2 \) by the following reasons:

1. If \(j < l \) and \(\gamma = \lambda_j - \lambda_{j+1} \) then \(\langle \gamma, \lambda_1 - \lambda_2 \rangle = 0 \) and \(\langle \gamma, \lambda_i \pm \lambda_j \rangle \neq 0 \) which implies that \(\langle \gamma^\vee, \lambda_i \pm \lambda_j \rangle = \pm 1 \). Thus by Proposition 3.2 \(\lambda_1 - \lambda_2 \) is not \(M \)-equivalent to \(\lambda_i \pm \lambda_j \).
2. If $i > 3$ and $\gamma = \lambda_{i-1} - \lambda_i$ then $\langle \gamma, \lambda_1 - \lambda_2 \rangle = 0$ and $\langle \gamma^{\vee}, \lambda_i \pm \lambda_j \rangle = \pm 1$.

3. Since $l > 4$, $\lambda_4 - \lambda_l$ is a root satisfying $\langle \gamma, \lambda_1 - \lambda_2 \rangle = 0$ and $\langle \gamma^{\vee}, \lambda_3 \pm \lambda_l \rangle = \pm 1$.

Finally $\lambda_1 - \lambda_2 \sim_M \lambda_1 + \lambda_2$, because $\langle \gamma, \lambda_1 - \lambda_2 \rangle = 0$ if and only if $\langle \gamma, \lambda_1 + \lambda_2 \rangle = 0$ for any root γ. Also, if γ is not orthogonal to both roots then the Killing numbers are ± 1, since the roots have the same length.

Since the Weyl group is transitive on the set of roots we get the equivalence classes stated above.

3.4.2 D_4

The M-equivalence classes on the positive roots are $\{\lambda_1 - \lambda_2, \lambda_1 + \lambda_2, \lambda_3 - \lambda_4, \lambda_3 + \lambda_4\}$, $\{\lambda_1 - \lambda_3, \lambda_1 + \lambda_3, \lambda_2 - \lambda_4, \lambda_2 + \lambda_4\}$ and $\{\lambda_1 - \lambda_4, \lambda_1 + \lambda_4, \lambda_2 - \lambda_3, \lambda_2 + \lambda_3\}$.

In this case, apart from $\lambda_1 + \lambda_2$ the roots $\lambda_3 - \lambda_4$ and $\lambda_3 + \lambda_4$ are M-equivalent to $\lambda_1 - \lambda_2$ (see the discussion for B_4). Hence an application of the Weyl group yield the stated classes.

3.5 Diagram G_2

The M-equivalence classes on the positive roots are the pairs $\{\alpha_1, \alpha_1 + 2\alpha_2\}$, $\{\alpha_1 + \alpha_2, \alpha_1 + 3\alpha_2\}$ and $\{\alpha_2, 2\alpha_1 + 3\alpha_2\}$ where α_1 and α_2 are the simple roots with α_1 the long one.

The reason is that these are the only pairs of positive roots orthogonal to each other. Moreover if two roots are not orthogonal then their Killing are odd (± 1 ou ± 3).

3.6 Diagrams E_6, E_7 and E_8

For these diagrams the M-equivalence classes on the positive roots are singletons.

Since these diagrams are simply-laced it is enough to find a positive root which is not M-equivalent to any other positive root.

In any of the diagrams E_6, E_7 and E_8 we choose the highest root μ. To check that $\{\mu\}$ is an M-equivalence class we prove the
• **Claim:** For every $\beta > 0$ with $\langle \mu, \beta \rangle = 0$ there exists $\gamma \neq \beta$ such that $\langle \mu, \gamma \rangle = 0$ and $\langle \beta, \gamma \rangle \neq 0$.

From the claim we get $\langle \gamma^\vee, \mu \rangle = 0$ and $\langle \gamma^\vee, \beta \rangle$ odd because the diagrams are simply laced. Hence, by Proposition 3.2, no β orthogonal to μ is M-equivalent to μ. By Corollary 3.3 we conclude that $\{\mu\}$ is an M-equivalence class.

Now the roots orthogonal to the highest root μ have the following simple description: Denote by $\Sigma = \{\alpha_1, \ldots, \alpha_l\}$ the simple system of roots, and let $\{\omega_1, \ldots, \omega_l\}$ be the fundamental weights, defined by

$$\langle \alpha_i^\vee, \omega_j \rangle = \delta_{ij}.$$

It is known that in the diagrams E_6, E_7 and E_8 the highest root $\mu = \omega_i$ for some fundamental weight. (The formula for μ in terms of the fundamental weights can be read off from the affine Dynkin diagrams. The extra root is precisely $-\mu$, see [4], Chapter X, Table of Diagrams S(A).) Let $\alpha = b_1\alpha_1 + \cdots + b_l\alpha_l$, $b_i \geq 0$, be a positive root. Since $\mu = \omega_i$ we have by definition

$$\langle \alpha, \mu \rangle = \frac{\langle \alpha_i, \alpha_i \rangle}{2} a_i b_i.$$

So that $\langle \alpha, \mu \rangle = 0$ if and only if $a_i b_i = 0$. Therefore the roots orthogonal to μ are those spanned by $\Sigma \setminus \{\alpha_i\}$. This set of roots is a root system whose Dynkin diagram is the subdiagram of Σ given by $\Sigma \setminus \{\alpha_i\}$. A glance at the affine Dynkin diagrams provides the diagrams $\Sigma \setminus \{\alpha_i\}$, namely,

- $\Sigma \setminus \{\alpha_i\} = A_5$ if $\Sigma = E_6$.
- $\Sigma \setminus \{\alpha_i\} = D_6$ if $\Sigma = E_7$.
- $\Sigma \setminus \{\alpha_i\} = E_7$ if $\Sigma = E_8$.

Now it is clear that in any of the root systems spanned by $\Sigma \setminus \{\alpha_i\}$ (A5, D6 or E7), the conclusion of the claim holds, that is, given β there exists γ with $\langle \beta, \gamma \rangle \neq 0$. This concludes the proof that the M-equivalence classes on the positive roots are singletons.
3.7 F_4

The 24 positive roots of

$$F_4 \xrightarrow{\alpha_1} \xrightarrow{\alpha_2} \xrightarrow{\alpha_3} \xrightarrow{\alpha_4}$$

split into the following M-equivalence classes:

- 12 singletons $\{\alpha\}$ with α running through the set of short roots.
- 3 sets of long roots $\{2\alpha_1 + 3\alpha_2 + 4\alpha_3 + 2\alpha_4, \alpha_2, \alpha_2 + 2\alpha_3 + 2\alpha_4\}$,
 $\{\alpha_1 + 3\alpha_2 + 4\alpha_3 + 2\alpha_4, \alpha_1 + \alpha_2, \alpha_1 + \alpha_2 + 2\alpha_3 + 2\alpha_4\}$ and
 $\{\alpha_1 + 2\alpha_2 + 4\alpha_3 + 2\alpha_4, \alpha_1, \alpha_1 + 2\alpha_2 + 2\alpha_3, \alpha_1 + 2\alpha_2 + 2\alpha_3 + 2\alpha_4\}$.

We let $\{\omega_1, \omega_2, \omega_3, \omega_4\}$ be the fundamental weights. The fundamental weight ω_4 is also the short positive root

$$\omega_4 = \alpha_1 + 2\alpha_2 + 3\alpha_3 + 2\alpha_4.$$

We look at its M-equivalence class by the same method of the E_l’s. The set of roots orthogonal to the fundamental weight ω_4 is spanned by $\{\alpha_1, \alpha_2, \alpha_3\}$ which is a B_3 Dynkin diagram. Now if β is a root of B_3 then there exists a root γ (in B_3) such that $\langle \gamma^\vee, \beta \rangle$ is odd. It follows by Proposition 3.2 and its Corollary 3.3 that $\{\omega_4\}$ is an M-equivalence class. This gives the classes of the short roots.

As to the long roots we first recall that they form a D_4 root system (see ???). Now if γ is a short root and α a long root then $\langle \gamma^\vee, \alpha \rangle$ is even. Hence to check if $\alpha \sim_M \beta$ for the two long roots α and β it is enough to test the condition of Proposition 3.2 when γ is also a long root. This means that two long roots are M-equivalent if and only if they are equivalent as roots of D_4. Since no short root is M-equivalent to a long root we conclude that the classes of D_4 are also M-equivalence classes in F_4. These are the three sets with four orthogonal roots each as stated. (To get these sets start with the highest root $\omega_1 = 2\alpha_1 + 3\alpha_2 + 4\alpha_3 + 2\alpha_4$. Then the first set is ω_1 together with the long roots orthogonal to it. The next two sets are obtained by applying first the reflection r_{α_1} and then r_{α_2}.)

16
4 Auxiliary lemmas

In this section we prove some lemmas to be used later in the determination of the irreducible K_{Θ}-invariant subspaces of \mathfrak{n}_Θ. We choose once and for all a generator $E_\alpha \in \mathfrak{g}_\alpha$ for each root space.

Recall that in Section 2 we denoted the irreducible components for the adjoint representation of \mathfrak{z}_Θ on \mathfrak{n}_Θ by $V_\sigma^{\mathfrak{z}_\Theta}$. Write $\Pi_\sigma^{\mathfrak{z}_\Theta} \subset \Pi^- \backslash \langle \Theta \rangle^-$ for the set of roots such that

$$V_\sigma^{\mathfrak{z}_\Theta} = \sum_{\alpha \in \Pi_\sigma^{\mathfrak{z}_\Theta}} \mathfrak{g}_\alpha.$$

The subgroup K_{Θ} leave invariant $V_\sigma^{\mathfrak{z}_\Theta}$, hence $\Pi_\sigma^{\mathfrak{z}_\Theta}$ is W_Θ-invariant.

Our first results give conditions ensuring that a \mathfrak{z}_Θ-invariant subspace is K_{Θ}-irreducible.

Lemma 4.1 Let $V = \sum_{\alpha \in \Pi_V} \mathfrak{g}_\alpha$ be a \mathfrak{z}_Θ-invariant subspace and suppose that $W \subset V$ is a K_{Θ}-invariant subspace. Take $X = \sum_{\alpha \in \Pi_V} a_\alpha E_\alpha \in W$ and let α be a root such that $a_\alpha \neq 0$. Define

$$V_{[\alpha]} = \sum_{\beta \in [\alpha] \cap \Pi_V} \mathfrak{g}_\beta.$$

Then $W \cap V_{[\alpha]} \neq \{0\}$.

Proof: Let $c_{X,\alpha}$ be the cardinality of $\{\beta \notin [\alpha]_M : a_\beta \neq 0\}$. If $c_{X,\alpha} = 0$ we are done. Otherwise we find $0 \neq Y \in U$ with $c_{Y,\alpha} < c_{X,\alpha}$. In fact, if $c_{X,\alpha} > 0$ then there are $\beta \notin [\alpha]_M$ with $a_\alpha, a_\beta \neq 0$. So that there exists $m \in M$ with $mE_\alpha = E_\alpha$ and $mE_\beta = -E_\beta$.

Now, $M \subset K_{\Theta}$, hence $Y = X + mX \in W$. Clearly $Y \neq 0$ and since the β component of Y is zero we have $c_{Y,\alpha} < c_{X,\alpha}$. Repeating this argument successively we arrive at $Z \in W$ such that $c_{Z,\alpha} = 0$, concluding the proof. \(\square\)

Lemma 4.2 Take a subset $\Pi_V \subset \Pi^- \backslash \langle \Theta \rangle^-$ such that the subspace $V = \sum_{\alpha \in \Pi_V} \mathfrak{g}_\alpha$ is \mathfrak{z}_Θ-invariant. Suppose that

1. W_Θ acts transitively on Π_V, and
2. two different roots in Π_V are not M-equivalent.
Then V is K_Θ-irreducible.

Proof: Let $U \subset V$ be a nontrivial K_Θ-invariant subspace. By transitivity of $W_\Theta \subset K_\Theta$ it is enough to prove that U contains a root space g_α, $\alpha \in \Pi_V$. But this follows by the previous lemma and the assumption that different roots in Π_V are not M-equivalent. \qed

As a complement of the above lemma we exhibit next general cases where W_Θ acts transitively on sets of roots.

Lemma 4.3 Let $\Pi^\sigma_\Theta \subset \Pi^\sigma - \langle \Theta \rangle^-$ be the set of roots corresponding to an irreducible component $V^\sigma_\Theta = \sum_{\alpha \in \Pi^\sigma_\Theta} g_\alpha$. In each of the following cases W_Θ acts transitively on Π^σ_Θ.

1. The Dynkin diagram of \mathfrak{g} has only simple edges (A_l, D_l, E_6, E_7 and E_8).

2. For the diagrams B_l, C_l and F_4 there are the cases:

 (a) The roots in $\Theta \subset \Sigma$ are long.

 (b) The roots in Π^σ_Θ are short.

Proof: Let μ be the highest root of Π^σ_Θ. By representation theory we know that any other root $\beta \in \Pi^\sigma_\Theta$ (weight of the representation) is given by

$$
\beta = \mu - \alpha_1 - \cdots - \alpha_k
$$

with $\alpha_i \in \Theta$ and such that any partial difference $\mu - \alpha_1 - \cdots - \alpha_i$, $i \leq k$, is also a root. Fix $i \leq k$ put $\delta = \mu - \alpha_1 - \cdots - \alpha_{i-1}$ and let r_{α_i} be the reflection with respect to α_i.

We claim that $\delta - \alpha_i = r_{\alpha_i}(\delta)$. This follows by the Killing formula applied to the string of roots $\delta + k\alpha_i$. There are the following cases:

1. In the simply laced diagrams of (1) the Killing number

$$
\langle \alpha_i^\vee, \delta \rangle = \frac{2\langle \alpha_i, \delta \rangle}{\langle \alpha_i, \alpha_i \rangle}
$$

is 0 or ± 1. Since $\delta - \alpha_i$ is a root we have $\langle \alpha_i^\vee, \delta \rangle = 1$, and hence $r_{\alpha_i}(\delta) = \delta - \alpha_i$. \hfill 18
2. If the roots in Θ are long as in (2a) then α_i is a long root implying that
$\langle \alpha_i^\vee, \delta \rangle$ is 0 or ± 1. Again, the fact that $\delta - \alpha_i$ is a root implies that
$\langle \alpha_i^\vee, \delta \rangle = 1$, so that $r_{\alpha_i}(\delta) = \delta - \alpha_i$.

3. If the roots in Π^σ_Θ are short in a double laced diagram as in (2b) then δ and $\delta - \alpha_i$ are short roots. If α_i is a long root then δ and $\delta - \alpha_i$ are the only roots of the form $\delta + k\alpha_i$, $k \in \mathbb{Z}$. Hence by the Killing formula
$\langle \alpha_i^\vee, \delta \rangle = 1$, that is $r_{\alpha_i}(\delta) = \delta - \alpha_i$.

On the other hand if α_i is short then there are two possibilities for the string of roots $\delta + k\alpha_i$: i) $\delta - \alpha_i$, δ and $\delta + \alpha_i$ are roots in which case
$\langle \alpha_i, \delta \rangle = 0$ and $\delta - \alpha_i$ and $\delta + \alpha_i$ are long roots; ii) $\delta - \alpha_i$ and δ are roots and
$\langle \alpha_i, \delta \rangle = 1$. The first case is ruled out because otherwise we would
have the long roots $\delta - \alpha_i, \delta + \alpha_i \in \Pi^\sigma_\Theta$, contradicting the assumption.
Therefore $\langle \alpha_i, \delta \rangle = 1$, that is, $r_{\alpha_i}(\delta) = \delta - \alpha_i$.

Since $r_{\alpha_i} \in \mathcal{W}_\Theta$, it follows by induction that β belongs to the \mathcal{W}_Θ-orbit
of μ, proving transitivity of \mathcal{W}_Θ. \hfill \square

We turn now to the equivalence of irreducible representations.

Lemma 4.4 Let V^σ_Θ and V^τ_Θ be \mathfrak{g}_Θ-irreducible components. Suppose that
there exists $\alpha \in \Pi^\sigma_\Theta$ which is not M-equivalent to any $\beta \in \Pi^\tau_\Theta$. Then V^σ_Θ and
V^τ_Θ are not K_Θ-equivalent.

Proof: Suppose to the contrary that there exists an isomorphism $T : V^\sigma_\Theta \rightarrow V^\tau_\Theta$ intertwining the K_Θ-representations. In particular

$$TmX = mTX,$$

for all $m \in M \subset K_\Theta$ and $X \in V^\sigma_\Theta$.

Take $0 \neq E_\alpha \in \mathfrak{g}_\alpha$. Then for every $m \in M$ we have $mE_\alpha = \varepsilon_mE_\alpha$ with
$\varepsilon_m = \pm 1$. Write

$$TE_\alpha = \sum_{\beta \in \Pi^\sigma_\Theta} a_\beta E_\beta.$$

Then for $m \in M$ we have

$$\varepsilon_m \sum_{\beta \in \Pi^\sigma_\Theta} a_\beta E_\beta = \varepsilon_mE_\alpha = mTE_\alpha = \sum_{\beta \in \Pi^\sigma_\Theta} a_\beta mE_\beta.$$
Since \(mE_\beta = \pm E_\beta \) and the set \(E_\beta \) is linearly independent, it follows that \(mE_\beta = \varepsilon mE_\alpha \) if \(a_\beta \neq 0 \). For any such \(\beta \) the representation of \(M \) on \(g_\beta \) is equivalent to the representation on \(g_\alpha \). This contradicts the assumption that \(\alpha \) is not \(M \)-equivalent to \(\beta \in \Pi_\Theta \).

The next statement gives a sufficient condition for equivalence.

Proposition 4.5 Let \(V^\sigma_\Theta \) and \(V^\tau_\Theta \) be \(\mathfrak{g}_\Theta \)-irreducible components. Suppose that there is a bijection \(\iota : \Pi^\sigma_\Theta \to \Pi^\tau_\Theta \) such that \(g_\alpha \) and \(g_{\iota(\alpha)} \) are \(M \)-equivalent for every \(\alpha \in \Pi^\sigma_\Theta \). Assume also that the linear map \(T : V^\sigma_\Theta \to V^\tau_\Theta \), given by \(TE_\alpha = E_{\iota(\alpha)} \), commutes with \(\text{ad} (X) \), \(X \in \mathfrak{t}_\Theta \) for every \(\alpha \in \Pi^\sigma_\Theta \). Then \(T \) is an intertwining operator for the \(K_\Theta \)-representations on \(V^\sigma_\Theta \) and \(V^\tau_\Theta \). Moreover the subspaces

\[
V_{[(x,y)]} = \{ xX + yTX : X \in V^\sigma_\Theta \},
\]

where \([(x,y)] \in \mathbb{R}P^2 \), are the only \(K_\Theta \)-invariant subspaces in \(V^\sigma_\Theta \oplus V^\tau_\Theta \).

Proof: The first assumption implies that \(T \) intertwines the \(M \)-representations, while the second assumption means that \(T \) intertwines the representations of \((K_\Theta)_0 \). Since \(K_\Theta = M (K_\Theta)_0 \), we conclude that \(T \) is in fact an intertwining operator for the \(K_\Theta \)-representations.

This implies that \(V_{[(x,y)]} \) is a \(K_\Theta \)-invariant subspace in \(V^\sigma_\Theta \oplus V^\tau_\Theta \) for any \([(x,y)] \in \mathbb{R}P^2 \).

Now, if \(V \) is a \(K_\Theta \)-invariant subspace in \(V^\lambda_\Theta \oplus V^\mu_\Theta \) different from \(V^\sigma_\Theta = V_{[(1,0)]} \) or \(V^\tau_\Theta = V_{[(0,1)]} \), then there exist a linear isomorphism \(L : V^\sigma_\Theta \to V^\tau_\Theta \) such that

\[
V = \{ X + LX : X \in V^\lambda_\Theta \}
\]

and

\[
LkX = kLX,
\]

for every \(k \in K_\Theta \). Since \(M \) is a subset of \(K_\Theta \) and since \(mE_\alpha = \varepsilon mE_\alpha \), we can argue as in the proof of the previous Lemma to show that

\[
LE_\alpha = y_i E_{\iota(i)}.
\]

Since \(W_\Theta \) acts transitively in the set of the directions \(\{ g^\lambda_1, \ldots, g^\lambda_{n_\lambda} \} \), we conclude that \(y_i = y \), is independent of the index \(i \in \{ 1, \ldots, n_\lambda \} \). Thus we have that \(V = V_{[(1,y)]} \), concluding the proof.

The previous results are complemented by the following standard basic fact in representation theory.
Proposition 4.6 Let V be the space of a finite dimensional representation of a group L. Suppose that

$$V = V_1 \oplus \cdots \oplus V_s$$

with V_i invariant and irreducible. If the representations of L on different components $V_i, V_j, i \neq j$, are not equivalent then the only L-invariant subspaces are sums of the components.

Proof: (Sketch) If $\{0\} \neq W \subset V$ is an invariant subspace then the projection W_i to V_i is invariant and hence either $\{0\}$ or V_i. Suppose that there are $i \neq j$ such that $W_i = V_i$ and $W_j = V_j$ and write W_{ij} for the projection on $V_i \oplus V_j$. Then $W_{ij} \cap V_i = \{0\}$ or V_i. If $W_{ij} \cap V_i = V_i$ then $W_{ij} = V_i \oplus V_j$, which implies that $V_i \oplus V_j \subset W$. Otherwise $W_{ij} \cap V_i = W_{ij} \cap V_j = \{0\}$. In this case W_{ij} is the graph of an isomorphism $V_i \to V_j$, intertwining the representations on V_i and V_j.

Finally for several split simple Lie algebras the compact subalgebra \mathfrak{k} is not simple. Via the next lemma we exploit this fact to get K_Θ-invariant subspaces in n^-_Θ.

Lemma 4.7 Let $U \subset K$ be a normal subgroup and denote by $V \subset n^-_\Theta$ the tangent space to the U-orbit $U \cdot b_\Theta$ through the origin. Then V is K_Θ-invariant.

Proof: The orbit $U \cdot b_\Theta$ is invariant by K_Θ. In fact, if $u \cdot b_\Theta \in U \cdot b_\Theta$ and $k \in K_\Theta$ then $ku^{-1} \in U$ so that $ku \cdot b_\Theta = kuk^{-1} \cdot b_\Theta = kuk^{-1} \cdot b_\Theta$ belongs to $U \cdot b_\Theta$. Hence its tangent space at b_Θ is invariant by the isotropy representation.

5 Irreducible K_Θ-invariant subspaces

In this section we describe the previous results to each diagram.
5.1 Flags of $A_l = \mathfrak{sl}(l+1, \mathbb{R})$

As checked in Section 3, no two different negative roots of A_l are M-equivalent if $l \neq 3$. On the other hand by Lemma 4.3, on any flag manifold of A_l, the subgroup W_Θ acts transitively on each set of roots Π_Θ corresponding to an irreducible representation of \mathfrak{z}_Θ on V_Θ^σ. Therefore by Lemma 4.2 we conclude that K_Θ is irreducible on each V_Θ^σ. Looking again the M-equivalence classes we see that two different irreducible subspaces are not K_Θ-equivalent. Hence we get the following description of the K_Θ-invariant irreducible subspaces in a flag manifold of A_l.

Proposition 5.1 For any flag manifold F_Θ of A_l, $l \neq 3$, the K_Θ-invariant irreducible subspaces are the irreducible components V_Θ^σ for the \mathfrak{z}_Θ representation. Two such representations are not K_Θ-equivalent.

The irreducible components V_Θ^σ are easily described in terms of the matrices in $\mathfrak{sl}(n, \mathbb{R})$, $n = l + 1$. In fact, let

$$H_\Theta = \text{diag}\{a_1, \ldots, a_n\} \in \mathfrak{a}_\Theta \cap \text{cl} \mathfrak{a}^+ \quad a_1 \geq \cdots \geq a_n$$

be characteristic for Θ. The multiplicities of the eigenvalues of H_Θ determine the sizes of a block decomposition of the $n \times n$ matrices. With respect to this decomposition the matrices in \mathfrak{z}_Θ are block diagonal while a block outside the diagonal determines a \mathfrak{z}_Θ-irreducible component. These are also the K_Θ-irreducible components.

Now we look at the case $l = 3$. The matrix

$$\begin{pmatrix}
\ast & a & b & c \\
a & \ast & c & b \\
b & c & \ast & a \\
c & b & a & \ast
\end{pmatrix}$$

summarizes the M-equivalence classes of $\mathfrak{sl}(4, \mathbb{R})$, where root spaces represented by the same letter are M-equivalent (see Section 3).

This shows that in the maximal flag manifold F_Θ, $\Theta = \emptyset$, the $K_\Theta = M$ invariant irreducible subspaces are the one-dimensional subspaces of $\mathfrak{g}_{21} \oplus \mathfrak{g}_{43}$, $\mathfrak{g}_{31} \oplus \mathfrak{g}_{42}$ or $\mathfrak{g}_{32} \oplus \mathfrak{g}_{41}$. The irreducible subspaces in the other flag manifolds are easily obtained from this M-equivalence.
We discuss further the instructive case when $\mathbb{F}_\Theta = \text{Gr}_2(4)$, the Grassmanian of two dimensional subspaces of \mathbb{R}^4. In this case \mathfrak{n}_Θ is the subalgebra of matrices written in 2×2 blocks as

$$X = \begin{pmatrix} 0 & 0 \\ B & 0 \end{pmatrix}.$$

The representations of \mathfrak{z}_Θ and $\mathfrak{g}(\Theta)$ on \mathfrak{n}_Θ are irreducible. Here $K_\Theta = \text{SO}(2) \times \text{SO}(2)$ whose representation on \mathfrak{n}_Θ decomposes into two 2-dimensional irreducible subspaces. This is due to the fact that $\mathfrak{so}(4) = \mathfrak{so}(3)_1 \oplus \mathfrak{so}(3)_2$ is a sum of two copies of $\mathfrak{so}(3)$. The matrices in these components have the form

$$\mathfrak{so}(3)_1 : \begin{pmatrix} A & -B^T \\ B & A \end{pmatrix} \quad \mathfrak{so}(3)_2 : \begin{pmatrix} A & -B^T \\ B & -A \end{pmatrix}$$

with $A + A^T = 0$ where B is symmetric with $\text{tr}B = 0$ for $\mathfrak{so}(3)_1$ while

$$B = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$$

for $\mathfrak{so}(3)_2$. Hence by Lemma 4.7, the tangent spaces V_i to orbits of $\text{SO}(3)_i = \langle \exp \mathfrak{so}(3)_i \rangle$, $i = 1, 2$, are K_Θ-invariant. The subspace V_i, $i = 1, 2$, is given by the matrices in \mathfrak{n}_Θ with B as $\mathfrak{so}(3)_1$ or $\mathfrak{so}(3)_2$, respectively.

5.2 Flags of $B_l = \mathfrak{sl}(l + 1, l)$

In the standard realization $\mathfrak{sl}(l + 1, l)$ is the algebra of matrices

$$\begin{pmatrix} 0 & a & b \\ -b^T & A & B \\ -a^T & C & -A^T \end{pmatrix} \quad B + B^T = C + C^T = 0.$$

In this case \mathfrak{a} is the subalgebra of matrices

$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & \Lambda & 0 \\ 0 & 0 & -\Lambda \end{pmatrix}$$

with $\Lambda = \text{diag}\{a_1, \ldots, a_l\}$. The set of roots are i) the long ones $\pm(\lambda_i - \lambda_j)$ and $\pm(\lambda_i + \lambda_j)$, $1 \leq i < j \leq l$ and ii) the short ones $\pm \lambda_i$, $1 \leq i \leq l$. The
set of simple roots is \(\Sigma = \{ \lambda_1 - \lambda_2, \ldots, \lambda_{l-1} - \lambda_l, \lambda_l \} \), which we write also as
\(\Sigma = \{ \alpha_1, \ldots, \alpha_l \} \), that is, \(\alpha_i = \lambda_i - \lambda_{i+1} \) if \(i < l \) and \(\alpha_l = \lambda_l \).

The Weyl chamber \(a^+ \subset a \) is defined by the inequalities

\[a_1 > a_2 > \cdots > a_{l-1} > a_l > 0, \]

and a partial chamber \(a_\Theta \cap \text{cl} a^+ \) is defined by a similar relations where some of the strict inequalities are changed by equalities (e.g. if \(\lambda_i - \lambda_j \in \Theta \) then \(a_i = a_j \)). In particular a characteristic element \(H_\Theta \) for the subset \(\Theta = \{ \alpha \in \Sigma : \alpha (H_\Theta) = 0 \} \subset \Sigma \) is defined by one of these relations.

The subalgebra \(k \) is composed of the skew-symmetric matrices in \(\mathfrak{sl}(l, l) \), that is,

\[
\begin{pmatrix}
0 & a & a \\
-a^T & A & B \\
-a^T & B & A
\end{pmatrix}
\]

\(A + A^T = B + B^T = 0 \).

It is isomorphic to \(\mathfrak{so}(l + 1) \oplus \mathfrak{so}(l) \). The isomorphism is provided by the decomposition

\[
\begin{pmatrix}
0 & a & a \\
-a^T & A & B \\
-a^T & B & A
\end{pmatrix} = \begin{pmatrix}
0 & a & a \\
-a^T (A + B) / 2 & (A + B) / 2 \\
-a^T (A + B) / 2 & (A + B) / 2
\end{pmatrix} + \begin{pmatrix}
0 & 0 & 0 \\
0 & (A - B) / 2 & -(A - B) / 2 \\
0 & -(A - B) / 2 & (A - B) / 2
\end{pmatrix},
\]

so that \(\mathfrak{k} = \mathfrak{k}_{l+1} \oplus \mathfrak{k}_l \approx \mathfrak{so}(l + 1) \oplus \mathfrak{so}(l) \) where the ideals are given by matrices as follows

\[
\mathfrak{k}_{l+1} : \begin{pmatrix}
0 & a & a \\
-a^T & A & A \\
-a^T & A & A
\end{pmatrix}, \quad \mathfrak{k}_l : \begin{pmatrix}
0 & 0 & 0 \\
0 & A & -A \\
0 & -A & A
\end{pmatrix}.
\]

In both cases \(A \) is skew-symmetric. We write \(K_{l+1} = \langle \exp \mathfrak{k}_{l+1} \rangle \) and \(K_{l+1} = \langle \exp \mathfrak{k}_l \rangle \).

We start our analysis by describing the irreducible components \(V_\Theta^* \) defined by the set of roots \(\Pi_\Theta^* \). For this we separate the cases where \(\lambda_l \) belongs or not to \(\Theta \).

Lemma 5.2 Suppose that \(\lambda_l \notin \Theta \) and let

\[
V_\Theta^* = \sum_{\alpha \in \Pi_\Theta^*} g_\alpha
\]

be an irreducible component. Then \(\Pi_\Theta^* \) contains only short roots or long roots. These sets are described as follows:
1. **Short roots:** Take a simple root $\alpha_i \not\in \Theta$. Then there are two possibilities:

 (a) $\alpha_{i-1} \not\in \Theta$. Then $g_{-\lambda_i}$ is z_{Θ}-invariant and hence is an irreducible component.

 (b) $\alpha_{i-1} \in \Theta$. Let $j(i) < i$ be the smallest index such that $\{\alpha_{j(i)}, \ldots, \alpha_{i-1}\} \subset \Theta$. Then $\Pi_{\Theta}^\sigma = \{-\lambda_{j(i)}, \ldots, -\lambda_{i-1}\}$ defines a z_{Θ}-irreducible component.

 These sets form a disjoint union of the negative short roots $-\lambda_i$, $1 \leq i \leq l$. (Note that this disjoint union completely determines Θ.)

2. **Long roots:** A subset Π_{Θ} contains only roots of the type $\lambda_i - \lambda_j$ or of the type $-\lambda_i - \lambda_j$.

 Proof: To see the components corresponding to the short roots take an index i with $\alpha_i \not\in \Theta$. An easy check shows that the only simple roots α such that $-\lambda_i + \alpha$ is a root are $\alpha = \lambda_i - \lambda_{i+1}$ or $\alpha = \lambda_l$. By assumption these simple roots are not in Θ. This implies that $-\lambda_i$ is the highest weight of an irreducible representation of $g(\Theta)$. The weights of this representation are restrictions of $\Delta(\Theta)$ of roots. They have the form $-\lambda_i - \beta_1 - \cdots - \beta_k$ with $\beta_i \in \Theta$. But these successive differences are roots only when $\beta_1 = \lambda_{i-1} - \lambda_i$, $\beta_2 = \lambda_{i-2} - \lambda_{i-1}$, and so on, obtaining the $-\lambda_i, -\lambda_{i-1}, \ldots, -\lambda_{j(i)}$ with $j(i)$ as in (b). This concludes the case of the short roots.

 Now, take a long root, e.g. $\lambda_i - \lambda_j$. Then $\Pi_{\Theta} (\lambda_i - \lambda_j)$ does not contain short roots that were already exhausted. On the other hand, by assumption Θ is contained in the set of roots of the type $\lambda_r - \lambda_s$. Since this set is closed by sum we conclude that the roots in $\Pi_{\Theta} (\lambda_i - \lambda_j)$ have the type $\lambda_r - \lambda_s$. The same argument applies to $\Pi_{\Theta} (-\lambda_i - \lambda_j)$. \square

Lemma 5.3 Suppose that $\lambda_l \in \Theta$ and let i_0 be the largest index such that $\lambda_{i_0} - \lambda_{i_0+1} \not\in \Theta$, that is, $\{\alpha_{i_0+1}, \ldots, \alpha_l = \lambda_l\}$ is the connected component of Θ containing λ_l. Then the sets of roots defining the z_{Θ}-irreducible components are as follows:

1. **Components containing short roots:** If $i \leq i_0$ then $\Pi_{\Theta} (-\lambda_i)$ contains $-\lambda_i + \lambda_k$ and $-\lambda_i - \lambda_k$ for all $k \geq i_0 + 1$. (The short roots $-\lambda_i, i > i_0$, belong to $\langle \Theta \rangle^\ast$.)
Moreover the sets of short roots belonging to the same component are as in Lemma 5.2 (1), namely \(-\lambda_{j(i)}, \ldots, -\lambda_{i-1}\) where \(\alpha_{j(i)}, \ldots, \alpha_{i-1}\) is a connected component of \(\Theta\).

2. **Components containing only long roots**: If \(i < j \leq i_0\) then \(\Pi_\Theta (-\lambda_i + \lambda_j)\) has only roots \(\lambda_r - \lambda_s\) and \(\Pi_\Theta (-\lambda_i - \lambda_j)\) has only roots \(-\lambda_r - \lambda_s\).

(These sets exhaust the roots because \(-\lambda_i, -\lambda_i \pm \lambda_j \in \langle \Theta \rangle\) if \(i_0 + 1 \leq i < j\).)

Proof: By assumption \(\Theta\) contains the subdiagram simple roots \(B_{l-i_0} = \{\alpha_{i_0+1}, \ldots, \alpha_l\}\). This implies that the roots \(\pm \lambda_k \pm \lambda_j\) belong to \(\langle \Theta \rangle\) if \(i_0 + 1 \leq k < j\). Take a short root \(-\lambda_i\) with \(i \leq i_0\), which is not in \(\langle \Theta \rangle\). For any root \(\alpha \in \langle \Theta \rangle\) such that \(-\lambda_i + \alpha\) is a root we have \(-\lambda_i + \alpha \in \Pi_\Theta (-\lambda_i)\). If we take \(\alpha = \pm \lambda_k\), \(k \geq i_0 + 1\), we see that \(-\lambda_i \pm \lambda_k \in \Pi_\Theta (-\lambda_i)\), proving the first part of (1). By the same argument of the proof Lemma 5.2 we get the statement about the short roots.

Now, a long root \(-\lambda_i + \lambda_j\), \(i < j \leq i_0\), is orthogonal to every root in \(B_{l-i_0}\). Hence the only way to get new roots from \(-\lambda_i + \lambda_j\) is by adding or subtracting roots in \(\Theta \setminus B_{l-i_0}\). These roots have the type \(\lambda_r - \lambda_s\), so that as in the proof of Lemma 5.2 we see that \(\Pi_\Theta (-\lambda_i + \lambda_j)\) contains only roots of the type \(\lambda_r - \lambda_s\). The same argument works for \(-\lambda_i - \lambda_j\), \(i < j \leq i_0\), showing (2).

The next step is to look at the \(K_\Theta\)-irreducibility of the \(\mathfrak{z}_\Theta\)-irreducible components. For this we use the \(M\)-equivalence classes so we are led to consider separately different values of \(l\).

Lemma 5.4 Take \(B_l\) with \(l \geq 5\).

1. **Suppose that** \(\lambda_l \notin \Theta\). **Then any component** \(V_\sigma^\Theta\) **is** \(K_\Theta\)-irreducible.

2. **If** \(\lambda_l \in \Theta\) **then** \(K_\Theta\) **is irreducible in the components** \(V_\sigma^\Theta\) **such that** \(\Pi_\Theta^\sigma\) **contains only long roots as in Lemma 5.3 (2).**

Proof: We just piece together different facts proved previously. First if \(\lambda_l \notin \Theta\) then \(\Theta\) contains only long roots. Hence by Lemma 4.3 the subgroup \(W_\Theta\) acts transitively on the sets \(\Pi_\Theta^\sigma\) for any irreducible component \(V_\sigma^\Theta\). Now
if \(l \geq 5 \) then the \(M \)-equivalence classes are the short roots \(\{ -\lambda_i \} \) and \(\{ -\lambda_i + \lambda_j, -\lambda_i - \lambda_j \} \), \(i < j \). Hence by Lemma 5.2 the intersection of a \(M \)-equivalence class with a set \(\Pi_\Theta^\sigma \) has just one root. Therefore, the assumptions of Lemma 4.2 are satisfied, and we get the conclusion that any \(V_\Theta^\sigma \) is \(K_\Theta \)-irreducible, proving (1).

The proof of (2) is similar. Take a subset \(\Pi_\Theta^\sigma \) as in the statement. Again no two roots in \(\Pi_\Theta^\sigma \) are \(M \)-equivalent. As to the transitive action of \(W_\Theta \) consider the subset \(B_l-i_0 = \{ \alpha_{i_0+1}, \ldots, \alpha_l \} \) defined in the proof of Lemma 5.3. Then \(W_\Theta \) is the direct product \(W_\Theta = W_{\Theta \setminus B_l-i_0} \times W_{B_l-i_0} \), and any \(w \in W_{B_l-i_0} \) is the identity in \(\Pi_\Theta^\sigma \), because the sets \(\Pi_\Theta^\sigma \) and \(B_l-i_0 \) are orthogonal (see the proof of Lemma 5.3). Now \(W_{\Theta \setminus B_l-i_0} \) acts transitively on \(\Pi_\Theta^\sigma \) since \(\Theta \setminus B_l-i_0 \) has only long roots (see the proof of Lemma 4.3).

It remains to analyze the components \(V_\Theta (-\lambda_i) \) containing short roots \(-\lambda_i \) in case \(\lambda_i \in \Theta \). Contrary to the others these are not \(K_\Theta \)-irreducible. Let us write them explicitly as follows: Let \(i_0 \) be, as in Lemma 5.3, the largest index such that \(\alpha_{i_0} = \lambda_{i_0} - \lambda_{i_0+1} \notin \Theta \), so that \(-\lambda_i \notin \langle \Theta \rangle^- \). For \(i \leq i_0 \) and \(k > i_0 \) put

\[
W_{ik}^i = g_{-\lambda_i + \lambda_k} \oplus g_{-\lambda_i} \oplus g_{-\lambda_i - \lambda_k} \quad \text{and} \quad W_i^i = \sum_{k \geq i_0 + 1} W_{ik}^i.
\]

(Note that the last sum is not direct.)

By Lemma 5.3 (2) we have one irreducible component \(V_\Theta (-\lambda_i) \) for each index \(i \leq i_0 \) such that \(\alpha_i = \lambda_i - \lambda_{i+1} \notin \Theta \). To write it in terms of the subspaces \(W_i^i \) let \(j (i) \leq i \) be defined by

1. \(j (i) = i \) if \(\alpha_{i-1} \notin \Theta \), and
2. \(j (i) \) is such that \(\{ \alpha_{j(i)}, \ldots, \alpha_{i-1} \} \) is a connected component of \(\Theta \) if \(\alpha_{i-1} \in \Theta \).

Then

\[
V_\Theta (-\lambda_i) = \sum_{k=j(i)}^i W_i^k.
\]

Now for \(i, j \) let

\[
E_{ij}^- = \begin{pmatrix} 0 & 0 & 0 \\ 0 & E_{ij} & 0 \\ 0 & 0 & -E_{ji} \end{pmatrix}, \quad E_{ij}^+ = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & E_{ij} - E_{ji} & 0 \end{pmatrix}, \quad E_i^0 = \begin{pmatrix} 0 & e_i & 0 \\ 0 & 0 & 0 \\ -e_i^T & 0 & 0 \end{pmatrix}
\]

(5)
where E_{ij} and e_i are basic $l \times l$ and $1 \times l$ matrices. These matrices are generators of $\mathfrak{g}_{-\lambda_i+\lambda_j}$, $\mathfrak{g}_{-\lambda_i-\lambda_j}$, and $\mathfrak{g}_{-\lambda_i}$, respectively. So that \{ $E_{ik}^{-}, E_{ik}^{+}, E_{ik}^{0}$ \} is a basis of W_{Θ}^{ik} and \{ $E_{ik}^{-}, E_{ik}^{+}, E_{ik}^{0} : k \geq i_0+1$ \} is a basis of W_{Θ}^{i}.

Before proceeding we note that the subspace W_{Θ}^{ik} is invariant and irreducible by adjoint representation of the subalgebra $\mathfrak{g}(\lambda_k) \approx \mathfrak{sl}(2, \mathbb{R})$ generated by $\mathfrak{g}_{\pm \lambda_k}$, thus defining an irreducible representation of $\mathfrak{sl}(2, \mathbb{R})$. By dimensionality this representation is equivalent to the adjoint representation of $\mathfrak{sl}(2, \mathbb{R})$, which in turn is not $\mathfrak{so}(2)$-irreducible: It decomposes into the subspaces of skew-symmetric (1-dimensional) and symmetric (2-dimensional) matrices. The equivalence $\mathfrak{g}(\lambda_k) \approx \mathfrak{sl}(2, \mathbb{R})$ maps $\mathfrak{g}_{-\lambda_i+\lambda_k}$ and $\mathfrak{g}_{-\lambda_i-\lambda_k}$ onto the upper and lower triangular matrices, respectively and $\mathfrak{g}_{-\lambda_i}$ onto the diagonal matrices. So we get

Lemma 5.5 The representation of $\mathfrak{g}(\lambda_k)$ decomposes W_{Θ}^{ik} into two $\mathfrak{t}_{\{\lambda_k\}}$-invariant subspaces, namely

\[
(W_{\Theta}^{ik})_1 = \text{span}\{E_{ik}^{-}, E_{ik}^{+}\} \quad \text{and} \quad (W_{\Theta}^{ik})_2 = \text{span}\{E_{ik}^{-}, E_{ik}^{+}, E_{ik}^{0}\}.
\]

Now we can decompose $V_{\Theta}(-\lambda_i), i \leq i_0$ when $\lambda_i \in \Theta$ into K_{Θ}-irreducible subspaces.

Lemma 5.6 In B_l, $l \geq 5$, suppose $\lambda_l \in \Theta$ and let i_0 be the largest index such that $\lambda_{i_0} - \lambda_{i_0+1} \notin \Theta$. If $i \leq i_0$ then $-\lambda_i \notin (\Theta)^-$ and the \mathfrak{g}_{Θ}-irreducible component $V_{\Theta}(-\lambda_i)$ is the direct sum of the following K_{Θ}-irreducible and invariant subspaces

\[
(W_{\Theta}^{i})_1 = \sum_{j=j(i)}^{i} \sum_{k \geq i_0+1} (W_{\Theta}^{jk})_1 \quad \text{and} \quad (W_{\Theta}^{i})_2 = \sum_{j=j(i)}^{i} \sum_{k \geq i_0+1} (W_{\Theta}^{jk})_2
\]

with $\dim (W_{\Theta}^{i})_1 = l-i_0+i-j(i)+1$ and $\dim (W_{\Theta}^{i})_2 = 2(l-i_0+i-j(i)+1)$.

Furthermore, $(W_{\Theta}^{i})_1 = V_{\Theta}(-\lambda_i) \cap T_{b_{\Theta}} K_l \cdot b_{\Theta}$ and $(W_{\Theta}^{i})_2 = V_{\Theta}(-\lambda_i) \cap T_{b_{\Theta}} K_{l+1} \cdot b_{\Theta}$.

Proof: The intersections in the last statement with the tangent space to the orbits $K_l \cdot b_{\Theta}$ and $K_{l+1} \cdot b_{\Theta}$ are readily obtained from the matrices in \mathfrak{t}_l and \mathfrak{t}_{l+1} given in (H) and the definition of the subspaces $(W_{\Theta}^{i})_1$ and $(W_{\Theta}^{i})_2$. It follows by Lemma 4.7 that these subspaces are K_{Θ}-invariant.

To check irreducibility consider $(W_{\Theta}^{i})_2$ and take a nonzero K_{Θ}-invariant subspace $Z \subset (W_{\Theta}^{i})_2$.

28
We claim that there are \(j \in [j(i), i] \) and \(k \geq i_0 + 1 \) such that \((W_{\Theta}^{jk})_2 \subset Z \).

By Lemma 4.1 we have a nontrivial intersection of \(Z \) with a subspace \(\sum_{\alpha} g_{\alpha} \), with the sum extended to a \(M \)-equivalence class. Since we are assuming that \(l \geq 5 \), the \(M \)-equivalence classes are \(\{ -\lambda_s + \lambda_r, -\lambda_s - \lambda_r \} \) and \(\{ -\lambda_s \} \). Hence either there exists \(j \in [j(i), i] \) such that \(Z \cap g_{-\lambda_j} \neq \{0\} \) or there are \(j \in [j(i), i] \) and \(k \geq i_0 + 1 \) such that \(Z \cap (g_{-\lambda_i + \lambda_j} + g_{-\lambda_j - \lambda_k}) \neq \{0\} \). In both cases we have

\[
Z \cap (W_{\Theta}^{jk})_2 \neq \{0\}
\]

However, \((W_{\Theta}^{jk})_2 \) is invariant and irreducible for \(\mathfrak{g}_{\{\lambda_s\}} \). Since \(k \geq i_0 + 1 \) we have \(\lambda_k \in \langle \Theta \rangle \) and \(\mathfrak{g}_{\{\lambda_k\}} \subset \mathfrak{g}_\Theta \). By \(K_{\Theta} \)-invariance of \(Z \) we conclude that \((W_{\Theta}^{jk})_2 \subset Z \).

Now let \(B_{l-i_0+1} \) be the connected component of \(\Theta \) containing \(\lambda_i \). Then its Weyl group \(\mathcal{W}_{B_{l-i_0+1}} \subset \mathcal{W}_\Theta \) acts transitively on the set of its short root. This means that if \(k_1, k_2 \geq i_0 + 1 \) then there exists \(w \in \mathcal{W}_{B_{l-i_0+1}} \) such that \(w\lambda_{k_1} = \lambda_{k_2} \). Combining this transitivity with the claim it follows that \((W_{\Theta}^{jk})_2 \subset Z \) for every \(k \geq i_0 + 1 \). Consequently, there exists \(j \in [j(i), i] \) such that \(\sum_{k \geq i_0 + 1} (W_{\Theta}^{jk})_2 \subset Z \).

To finish the proof we use the subgroup \(\mathcal{W}_{[j(i), i-1]} \) of \(\mathcal{W}_\Theta \) generated by the reflections with respect to the roots in the connected component \(\{\alpha_{j(i)}, \ldots, \alpha_{i-1}\} \subset \Theta \). This subgroup is the permutation group of \(\{j(i), \ldots, i-1, i\} \). Since \(\sum_{k \geq i_0 + 1} (W_{\Theta}^{jk})_2 \subset Z \) for some \(j \in [j(i), i] \) we conclude \(\sum_{k \geq i_0 + 1} (W_{\Theta}^{jk})_2 \subset Z \) for all \(s \in [j(i), i] \), so that \((W_{\Theta}^{jk})_2 \subset Z \), showing irreducibility of \((W_{\Theta}^{jk})_2 \).

The proof for \((W_{\Theta}^{jk})_1\) is similar. \(\square \)

Summarizing the above discussion we have the following \(K_{\Theta} \)-invariant irreducible subspaces for \(B_l, l \geq 5 \):

1. A \(\mathfrak{z}_\Theta \)-component \(V_\Theta (-\lambda_i) \) containing only short roots. These components occur only when \(\lambda_i \notin \Theta \).

2. \(\mathfrak{z}_\Theta \)-components \(V_\Theta (-\lambda_i + \lambda_j) \) and \(V_\Theta (-\lambda_i - \lambda_j), i < j \), containing only long roots. These subspaces occur in both cases when \(\lambda_i \) belongs or not to \(\Theta \). When \(\lambda_i \in \Theta \) the indexes \(i, j \) satisfy \(i < j \leq i_0 \) where \(\{\alpha_{i_0}, \ldots, \alpha_i = \lambda_i\} \) is the connected component of \(\Theta \) containing \(\lambda_i \).
3. The subspaces \((W^i_\Theta)_1\) and \((W^i_\Theta)_2\) contained in a \(j_\Theta\)-component \(V_\Theta(-\lambda_i)\) when \(\lambda_i \in \Theta\).

These are not the only invariant irreducible subspaces of \(K_\Theta\), since among them some pairs \(V_1 \neq V_2\) are \(K_\Theta\)-equivalent, enabling the existence of invariant subspaces inside \(V_1 \oplus V_2\). Among these pairs we can discard the following by \(M\)-equivalence we discard the following pairs: i) \(V_1\) is a subspace in item (1) and \(V_2\) in (1) or (2); ii) \(V_1\) is a subspace in (2) and \(V_2\) in (3); iii) \(V_1\) is a subspace \((W^i_\Theta)_{1,2}\) and \(V_2 = (W^j_\Theta)_{1,2}\) if \(i \neq j\). Since (1) and (3) are subspaces for different \(\Theta\) and \((W^i_\Theta)_{1,2}\) and \((W^j_\Theta)_{1,2}\) do not have the same dimension, it remains the subspaces \(V_\Theta(-\lambda_i + \lambda_j)\) and \(V_\Theta(-\lambda_i - \lambda_j)\) of (2). These are indeed equivalent.

Lemma 5.7 In \(B_l\), \(l \geq 5\), the subspaces \(V_\Theta(-\lambda_i + \lambda_j)\) and \(V_\Theta(-\lambda_i - \lambda_j)\) as in (2) above are \(K_\Theta\)-equivalent if both roots \(-\lambda_i + \lambda_j\) and \(-\lambda_i - \lambda_j\) do not belong to \((\Theta)^-\).

Proof: To prove equivalence we shall exhibit a proper \(K_\Theta\)-invariant subspace \(\{0\} \neq V \subset V_\Theta(-\lambda_i + \lambda_j) \oplus V_\Theta(-\lambda_i - \lambda_j)\) different from the irreducible components \(V_\Theta(-\lambda_i + \lambda_j)\) and \(V_\Theta(-\lambda_i - \lambda_j)\). This implies equivalence by Proposition 4.6.

The required subspace \(V\) will be obtained from the tangent space at the origin of the orbit of the normal subgroup \(K_l\). By (4) the matrices in the Lie algebra \(\mathfrak{t}_l\) of \(K_l\) are

\[
\begin{pmatrix}
0 & 0 & 0 \\
0 & A & -A \\
0 & -A & A
\end{pmatrix}
\]

Looking at these matrices we see that after identifying \(T_{b_\Theta} \mathbb{F}_\Theta\) with \(\mathfrak{n}_\Theta^-\), the tangent space \(T_{b_\Theta} (K_l \cdot b_\Theta)\) is identified to the subspace \(T_l \subset \mathfrak{n}_\Theta^-\) spanned by \(\text{pr} (E_{rs}^- - E_{rs}^+)\), \(r > s\), where \(E_{rs}^\pm\) were defined in [5] and \(\text{pr} : \mathfrak{n}^- \rightarrow \mathfrak{n}_\Theta^-\) is the projection w.r.t. the root spaces decomposition.

The tangent space \(T_{b_\Theta} (K_l \cdot b_\Theta)\) is invariant by the isotropy representation of \(K_\Theta\), by Lemma 4.7. Hence \(T_l\) is invariant by the adjoint action of \(K_\Theta\).

Now if \(-\lambda_r + \lambda_s\), \(-\lambda_r - \lambda_s\) \(\in \Pi^- \setminus (\Theta)^-\) then \(E_{rs}^- - E_{rs}^+ = \text{pr} (E_{rs}^- - E_{rs}^+)\). Hence the following vectors form a basis of \(T_l\):

1. \(E_{rs}^-\) such that \(-\lambda_r + \lambda_s \in \Pi_\Theta (-\lambda_i + \lambda_j)\) and \(-\lambda_r - \lambda_s \notin \Pi_\Theta (-\lambda_i - \lambda_j)\).
2. $E_{rs}^+ \text{ such that } -\lambda_r - \lambda_s \in \Pi_\Theta (-\lambda_i - \lambda_j)$ and $-\lambda_r + \lambda_s \notin \Pi_\Theta (-\lambda_i + \lambda_j)$.

3. $E_{rs}^- - E_{rs}^+ \text{ such that } -\lambda_r + \lambda_s \in \Pi_\Theta (-\lambda_i + \lambda_j)$ and $-\lambda_r - \lambda_s \in \Pi_\Theta (-\lambda_i - \lambda_j)$.

The third case is not empty (e.g. $(r, s) = (i, j)$ fall in this case), which means that $E_{rs}^- - E_{rs}^+ \in T_i$ for some pair (r, s). For this pair $T_i \cap V_\Theta (\lambda_r - \lambda_s) = T_i \cap V_\Theta (-\lambda_r - \lambda_s) = \{0\}$, which shows that T_i is proper and different from $V_\Theta (-\lambda_i + \lambda_j)$ and $V_\Theta (-\lambda_i - \lambda_j)$. By Proposition 4.6 it follows that these irreducible subspaces are K_Θ-equivalent.

In conclusion we have:

Theorem 5.8 Let F_Θ be a flag manifold of $B_l = \mathfrak{so}(l + 1, l), l \geq 5$. Then the K_Θ-invariant irreducible subspaces of n_Θ are in the following classes:

1. **Isolated subspaces:**

 (a) $V_\Theta (-\lambda_i)$ when $\lambda_i \notin \Theta$. These subspaces contain root spaces of short roots only.

 (b) $V_\Theta (-\lambda_i + \lambda_j), i < j$, when $-\lambda_i - \lambda_j \notin \langle \Theta \rangle^-$. Any such pair occur if $-\lambda_i \in \Theta$. Otherwise we have $i < j \leq i_0$, where $\{\alpha_{i_0+1}, \ldots, \alpha_l = \lambda_i\}$ is the connected component of Θ containing λ_i.

 (c) The same as (b) interchanging the roles of $-\lambda_i + \lambda_j$ and $-\lambda_i - \lambda_j$.

 (d) The subspaces

 $$(W_\Theta^i)_1 = \sum_{j=j(i)}^{i} \sum_{k \geq i_0+1} (W_\Theta^{jk})_1 \quad \text{and} \quad (W_\Theta^i)_2 = \sum_{j=j(i)}^{i} \sum_{k \geq i_0+1} (W_\Theta^{jk})_2$$

 defined in Lemma 5.6. These subspaces decompose $V (-\lambda_i)$ when $\lambda_i \in \Theta$.

2. **A continuum of invariant subspaces** parametrized by $[(x, y)] \in \mathbb{R}P^2$ given by

 $$V_{[x,y]}^{ij} = \{xX + yTX : X \in V_\Theta (-\lambda_i + \lambda_j)\} \quad i < j.$$

 The indexes ij are as in (1.b), and here both $-\lambda_i + \lambda_j$ and $-\lambda_i - \lambda_j$ are not in $\langle \Theta \rangle^-$.

31
The low dimensional cases \(l = 2, 3, 4 \) must be treated separately because of the difference in the \(M \)-equivalence classes.

For instance \(B_2 \) has three flag manifolds. The maximal one whose irreducible components are detected by the \(M \)-equivalence classes \(\{ \lambda_1 - \lambda_2, \lambda_1 + \lambda_2 \} \) and \(\{ \lambda_1, \lambda_2 \} \). Hence, there are two continuous families of 1-dimensional irreducible subspaces. In the flag \(F_{\{\lambda_1-\lambda_2\}} \) there are two \(\mathfrak{z}_{\Theta} \)-irreducible components defined by the sets \(\{ -\lambda_2, -\lambda_1 \} \) and \(\{ -\lambda_1 - \lambda_2 \} \). Both are \(K_{\Theta} \)-irreducible and clearly they are not equivalent. On the other hand the flag \(F_{\{\lambda_2\}} \) has just one 3-dimensional \(\mathfrak{z}_{\Theta} \)-irreducible component which decomposes into a 1-dimensional plus a 2-dimensional irreducible subspaces of \(K_{\Theta} \) (as happens to the adjoint representation of \(\mathfrak{sl}(2, \mathbb{R}) \)).

For \(B_3 \) and \(B_4 \) the compact subalgebra \(\mathfrak{k} = \mathfrak{so}(3) \oplus \mathfrak{so}(4) \) and \(\mathfrak{so}(4) \oplus \mathfrak{so}(5) \), respectively) splits once more because \(\mathfrak{so}(4) = \mathfrak{so}(3) \oplus \mathfrak{so}(3) \). By Lemma \(\ref{lem:split} \) these simple components of \(\mathfrak{k} \) can yield new \(K_{\Theta} \)-invariant subspaces. The example with \(D_4 \) below, which has a similar splitting, illustrates this occurrence of new invariant subspaces. Another aspect that differs \(B_3 \) and \(B_4 \) from the general case are the \(M \)-equivalence classes that have more elements. This can introduce more \(K_{\Theta} \)-equivalence than the general case. The example with \(C_4 \) below illustrates this fact.

5.3 Flags of \(C_l = \mathfrak{sp}(l, \mathbb{R}) \)

The symplectic Lie algebra \(\mathfrak{sp}(l, \mathbb{R}) \) is composed of the real \(2l \times 2l \) matrices

\[
\begin{pmatrix}
A & B \\
C & -A^T
\end{pmatrix}
\]

\(B - B^T = C - C^T = 0 \)

written in the basis \(\{ e_1, \ldots, e_l, f_1, \ldots, f_l \} \). In this case \(\mathfrak{a} \) is the subalgebra of matrices

\[
\begin{pmatrix}
\Lambda & 0 \\
0 & -\Lambda
\end{pmatrix}
\]

with \(\Lambda = \text{diag}\{a_1, \ldots, a_l\} \). The set of roots are i) the long ones \(\pm 2\lambda_i, 1 \leq i \leq l \) and ii) the short ones \(\pm (\lambda_i - \lambda_j) \) and \(\pm (\lambda_i + \lambda_j), 1 \leq i < j \leq l \). The set of simple roots is \(\Sigma = \{ \lambda_1 - \lambda_2, \ldots, \lambda_{l-1} - \lambda_l, 2\lambda_l \} \), which we write also as \(\Sigma = \{ \alpha_1, \ldots, \alpha_l \} \), that is, \(\alpha_i = \lambda_i - \lambda_{i+1} \) if \(i < l \) and \(\alpha_l = 2\lambda_l \).

The Weyl chamber \(\mathfrak{a}^+ \subset \mathfrak{a} \) is defined by the inequalities

\[
a_1 > a_2 > \cdots > a_{l-1} > a_l > 0,
\]
and a partial chamber \(a_\Theta \cap \text{cl} \alpha^+ \) is defined by a similar relations where some of the strict inequalities are changed by equalities (e.g. if \(\lambda_i - \lambda_j \in \Theta \) then \(a_i = a_j \)). In particular a characteristic element \(H_\Theta \) for the subset \(\Theta = \{ \alpha \in \Sigma : \alpha (H_\Theta) = 0 \} \subset \Sigma \) is defined by one of these relations.

The subalgebra \(\mathfrak{t} \) is composed of the skew-symmetric matrices in \(\mathfrak{sp} (l, \mathbb{R}) \), that is,

\[
\begin{pmatrix}
 A & -B \\
 B & A
\end{pmatrix} \quad A + A^T = B - B^T = 0.
\]

It is isomorphic to \(\mathfrak{u} (l) = \mathfrak{su} (l) + \mathbb{R} \), where the isomorphism associates the above matrix the complex matrix \(A + iB \).

To describe the \(\mathfrak{g}_\Theta \)-irreducible components \(V^g_\Theta \) defined by the set of roots \(\Pi^g_\Theta \) we consider first the components \(V_\Theta (-2\lambda_i) \) containing the long roots.

Lemma 5.9 Let \(i = 1, \ldots, l \) be an index such that \(\alpha_i \notin \Theta \).

1. If \(i = 1 \) or \(\alpha_{i-1} \notin \Theta \) then \(V_\Theta (-2\lambda_i) = \mathfrak{g}_{-2\lambda_i} \).

2. Otherwise let \(j(i) < i \) be such that \(\{ \alpha_{j(i)}, \ldots, \alpha_{i-1} \} \) is the connected component of \(\Theta \) containing \(\alpha_{i-1} \). Then

\[
V_\Theta (-2\lambda_i) = \sum_{k,r=j(i)}^i \mathfrak{g}_{-\lambda_k - \lambda_r}.
\]

If \(\alpha_i \in \Theta \) then either \(-2\lambda_i \in \langle \Theta \rangle\) if \(2\lambda_i \in \Theta \) and \(\alpha_i \) and \(2\lambda_i \) are in the same connected component of \(\Theta \) or \(-2\lambda_i \in \Pi_\Theta (-2\lambda_j) \) where \(j > i \) is the smallest index such that \(\alpha_j \notin \Theta \).

Proof: Since \(\alpha_i = \lambda_i - \lambda_{i+1} \notin \Theta \) the only way that \(-2\lambda_i \pm \alpha \) is a root with \(\alpha \in \Theta \) is in the string \(-2\lambda_i - (\lambda_{i-1} - \lambda_i) = -\lambda_{i-1} - \lambda_i \) and \(-2\lambda_i - 2 (\lambda_{i-1} - \lambda_i) = -2\lambda_{i-1} \). Hence if \(\alpha_{i-1} \notin \Theta \) (or \(i = 1 \)) no such sum occurs and \(V_\Theta (-2\lambda_i) = \mathfrak{g}_{-2\lambda_i} \).

On the other hand if \(\alpha_{i-1} = \lambda_{i-1} - \lambda_i \in \Theta \) then the roots \(-\lambda_{i-1} - \lambda_i = -2\lambda_i - (\lambda_{i-1} - \lambda_i) \) and \(-2\lambda_i = -2\lambda_i - 2 (\lambda_{i-1} - \lambda_i) \) belong to \(\Pi_\Theta (-2\lambda_i) \). Proceeding successively it follows that \(-\lambda_k - \lambda_{k+1}, -2\lambda_k \in \Pi_\Theta (-2\lambda_i) \) if \(k = j(i), \ldots, i-1 \). The roots \(-\lambda_k - \lambda_r, j(i) \leq k < r-1 \leq i-1 \), also belong to \(\Pi_\Theta (-2\lambda_i) \), since \(-\lambda_k - \lambda_r = (\lambda_k - \lambda_{k+1}) + (\lambda_{k+1} - \lambda_r) \) and \(\lambda_{k+1} - \lambda_r \in \langle \Theta \rangle \). Hence \(V_\Theta (-2\lambda_i) \) contains the subspace \(\sum_{k,r=j(i)}^{i-1} \mathfrak{g}_{-\lambda_k - \lambda_r} \). This subspace is
plectic matrices in the subspace spanned by

\{ \text{Sp} (j(i), \ldots, i_{i-1}) \} \text{ is orthogonal to the roots } -\lambda_k - \lambda_r, \ k, r = j(i), \ldots, i.

The last statement is a consequence of the expression for \(V_\Theta (-2\lambda_i) \) in (2).

\[\square \]

\textbf{Remark:} The first case of the above lemma is included in the second case by taking \(j(i) = i \).

To look at the representation of \(K_\Theta \) on the subspace \(V(-2\lambda_i) \) of \(\mathfrak{g} \) we make use of the following geometric meaning: Let \(\text{sp} (j(i), i) \) be the subalgebra generated by the root spaces \(\mathfrak{g}_{\pm(\lambda_k \pm \lambda_r)} \), \(k, r = j(i), \ldots, i \). Its elements are symplectic matrices

\[
\begin{pmatrix}
A & -B \\
B & A
\end{pmatrix}
\]

with \(A, B \) and \(C \) having non-zero entries only at the positions \(k, r = j(i), \ldots, i \), which shows that it is isomorphic to the Lie algebra of symplectic matrices in the subspace spanned by \{ \(e_{j(i)}, \ldots, e_i, f_{j(i)}, \ldots, f_i \} \). Let \(\text{Sp} (j(i), i) = \langle \exp \text{sp} (j(i), i) \rangle \) be the connected subgroup with Lie algebra \(\text{sp} (j(i), i) \) and put \(U (j(i), i) = \text{Sp} (j(i), i) \cap K \) for its maximal compact subgroup, which is isomorphic to the unitarian group \(U (i - j(i) + 1) \).

The inclusion \(\{ \alpha_{j(i)}, \ldots, \alpha_{i-1} \} \subset \Theta \) shows that the root spaces \(\mathfrak{g}_{\lambda_k - \lambda_r} \), \(k, r = j(i), \ldots, i \), are contained in the isotropy subalgebra at the origin \(b_\Theta \in \mathbb{F}_\Theta \). From this it is easily seen that the orbit \(\text{Sp} (j(i), i) \cdot b_\Theta = U (j(i), i) \cdot b_\Theta \) is a flag manifold of \(\text{Sp} (j(i), i) \) and identifies to the coset \(U (j(i), i) / \text{SO} (j(i), i) \) where \(\text{SO} (j(i), i) \) is the subgroup isomorphic to \(\text{SO} (i - j(i) + 1) \), whose Lie algebra is contained in \(\sum_{k=r=j(i)}^i \mathfrak{g}_{\lambda_k - \lambda_r} \). Further \(V_\Theta (-2\lambda_i) = \sum_{k,r=j(i)}^i \mathfrak{g}_{-\lambda_k - \lambda_r} \) is the tangent space at the origin \(b_\Theta \in \mathbb{F}_\Theta \) of the orbit \(\text{Sp} (j(i), i) \cdot b_\Theta = U (j(i), i) \cdot b_\Theta \).

Now we can get the \(K_\Theta \)-irreducible components of \(V_\Theta (-2\lambda_i) \).

\textbf{Lemma 5.10} The \(\mathfrak{g}_\Theta \)-irreducible subspace \(V_\Theta (-2\lambda_i) = \sum_{k,r=j(i)}^i \mathfrak{g}_{-\lambda_k - \lambda_r} \) has two \(K_\Theta \)-irreducible components if \(j(i) < i \). They are given as follows:

1. The one-dimensional subspace \(V_\Theta (-2\lambda_i) \) cent \(\subset \sum_{k=j(i)}^i \mathfrak{g}_{-2\lambda_k} \) spanned by the matrix

\[
\begin{pmatrix}
0 & 0 \\
0 & I_{j(i), i}
\end{pmatrix} \in \text{sp} (j(i), i) \subset \text{sp} (l, \mathbb{R})
\]

34
where $I_{(j(i), i)}$ is the diagonal matrix with 1 in the positions $j(i), \ldots, i$ and 0 otherwise.

2. The subspace $V_{\Theta}(-2\lambda_i)_{su(j(i), i)}$ given by the matrices

$$
\begin{pmatrix}
 A & 0 \\
 B & -A^T
\end{pmatrix} \in \mathfrak{sp}(j(i), i)
$$

with A lower triangular and $tr B = 0$.

Proof: The compact group $U(j(i), i)$ being isomorphic to $U(i - j(i) + 1)$ is the product of its center $Z_{(j(i), i)}$ by $SU(j(i), i)$. The Lie algebra of the center is given by matrices

$$
\begin{pmatrix}
 0 & -B \\
 B & 0
\end{pmatrix}
$$

with $B \in \mathbb{R} \cdot I_{(j(i), i)}$ (corresponding to the scalar matrices in $u(i - j(i) + 1)$).

The Lie algebra $su((j(i), i))$ of $SU(j(i), i)$ is given by matrices

$$
\begin{pmatrix}
 A & -B \\
 B & A
\end{pmatrix} \in \mathfrak{sp}(j(i), i)
$$

with A skew symmetric and B symmetric with $tr B = 0$. It follows that the tangent spaces to the orbits $Z_{(j(i), i)} \cdot b_{\Theta}$ and $SU(j(i), i)$ are $V_{\Theta}(-2\lambda_i)_{cont}$ and $V_{\Theta}(-2\lambda_i)_{su(j(i), i)}$, respectively.

Hence, by Lemma 4.7 these subspaces are invariant by the isotropy representation of $SO(j(i), i) = U(j(i), i) \cap K_{\Theta}$. They are K_{Θ}-invariant as well because the connected components of Θ besides $\{\alpha_{j(i)}, \ldots, \alpha_{i-1}\}$ are orthogonal to $\Pi_{\Theta}(-2\lambda_i)$. Hence the simple components of K_{Θ} different from $SO(j(i), i)$ act trivially on $V_{\Theta}(-2\lambda_i)$.

Finally, both subspaces $V_{\Theta}(-2\lambda_i)_{cont}$ and $V_{\Theta}(-2\lambda_i)_{su(j(i), i)}$ are irreducible. This is obvious for $V_{\Theta}(-2\lambda_i)_{cont}$ which is one dimensional. On the other hand the representation of $SO(j(i), i)$ on $V_{\Theta}(-2\lambda_i)$ is equivalent to the isotropy representation of the symmetric space $U(j(i), i)/SO(j(i), i)$, which is known to be irreducible.

The z_{Θ}-irreducible components described in Lemma 5.9 contain all the root spaces of the long roots not in $\langle \Theta \rangle$. They include also the short roots $-\lambda_i - \lambda_j$ such that $\lambda_i - \lambda_j \in \langle \Theta \rangle$. The other z_{Θ}-components are given as follows.
Lemma 5.11 Suppose the root $\lambda_i - \lambda_j$, $i < j$, does not belong to $\langle \Theta \rangle$.

1. If $2\lambda_i \notin \Theta$ then the set $\Pi_\Theta (-\lambda_i + \lambda_j)$ corresponding to the 3_Θ-irreducible component $V_\Theta (-\lambda_i + \lambda_j)$ contains only short roots of the type $-\lambda_r + \lambda_s$.

2. In case $2\lambda_i \in \Theta$ let i_0 be such that $C_{l-i_0+1} = \{ \alpha_{i_0+1}, \ldots, \alpha_i = 2\lambda_i \}$ is the connected component of Θ containing $2\lambda_i$. Then $V_\Theta (-\lambda_i + \lambda_j) = V_{\Theta \setminus \{2\lambda_i\}} (-\lambda_i + \lambda_j)$ and $V_\Theta (-\lambda_i - \lambda_j) = V_{\Theta \setminus \{2\lambda_i\}} (-\lambda_i - \lambda_j)$ if $j \leq i_0$.

3. On the other hand if $j \geq i_0 + 1$ then

\[
V_\Theta (-\lambda_i + \lambda_j) = V_\Theta (-\lambda_i - \lambda_j) = V_{\Theta \setminus C_{l-i_0+1}} (-\lambda_i + \lambda_j) \oplus V_{\Theta \setminus C_{l-i_0+1}} (-\lambda_i - \lambda_j).
\]

Moreover these 3_Θ-irreducible components are K_Θ-irreducible.

Proof: The first statement is proved as Lemma 5.2 for B_l. The proof of Lemma 5.3 also works for the components in (2) with $j \leq i_0$. The direct sum in (7) comes from the pair of roots $-\lambda_i + \lambda_j$, $(-\lambda_i + \lambda_j) - 2\lambda_j$ and the fact that $2\lambda_j \in \langle \Theta \rangle^- \text{ if } j \geq i_0 + 1$.

The K_Θ-irreducibility of the subspaces in (1) is a consequence of Lemma 4.2. In fact no two roots in $\Pi_\Theta (-\lambda_i + \lambda_j)$ or in $\Pi_\Theta (-\lambda_i - \lambda_j)$ are M-equivalent and by Lemma 4.3 2b, W_Θ acts transitively on these sets of short roots.

The same argument hold for the subspaces $V_\Theta (-\lambda_i + \lambda_j) = V_{\Theta \setminus \{2\lambda_i\}} (-\lambda_i + \lambda_j)$ and $V_\Theta (-\lambda_i - \lambda_j) = V_{\Theta \setminus \{2\lambda_i\}} (-\lambda_i - \lambda_j)$ when $j \leq i_0$, which are indeed $K_{\Theta \setminus \{2\lambda_i\}}$-irreducible.

Finally, in (2) if $j \geq i_0 + 1$ then $2\lambda_j \in \langle \Theta \rangle$. From the equality $-\lambda_i - \lambda_j = -\lambda_i + \lambda_j - 2\lambda_j$ we see that $g_{-\lambda_i + \lambda_j} \oplus g_{-\lambda_i - \lambda_j}$ is an irreducible subspace for the three dimensional subalgebra $g (2\lambda_j)$, isomorphic to $sl(2, \mathbb{R})$, generated by $g_{\pm 2\lambda_j}$. In this two dimensional subspace the compact part $t (2\lambda_j)$ of $g (2\lambda_j)$ is also irreducible. Now let $\{0\} \neq U \subset V_\Theta (-\lambda_i + \lambda_j)$ be a K_Θ-invariant subspace. Since the roots $-\lambda_i \pm \lambda_j \in \Pi_\Theta (-\lambda_i + \lambda_j) = \Pi_\Theta (-\lambda_i - \lambda_j)$ are M-equivalent, it follows by Lemma 4.1 that $U \cap (g_{-\lambda_i + \lambda_j} \oplus g_{-\lambda_i - \lambda_j}) \neq \{0\}$. This subspace is $t (2\lambda_j)$-invariant, hence $g_{-\lambda_i + \lambda_j} \oplus g_{-\lambda_i - \lambda_j} \subset U$. Hence irreducibility of $V_\Theta (-\lambda_i + \lambda_j)$ is a consequence of Lemma 4.2 combined with the fact that $W_{\Theta \setminus \{2\lambda_i\}} \subset W_\Theta$ acts transitively on the sets $\Pi_{\Theta \setminus \{2\lambda_i\}} (-\lambda_i + \lambda_j)$ and $\Pi_{\Theta \setminus \{2\lambda_i\}} (-\lambda_i - \lambda_j)$. \qed
With this lemma we finish the description of the irreducible K_{Θ}-components. Among them the only K_{Θ}-equivalents are the following:

1. The one dimensional subspaces $V_\Theta (-2\lambda_i)_{\text{cont}}$ of Lemma 5.10 (1). The representation of K_{Θ} on each one of them is trivial.

2. $V_\Theta (-\lambda_i + \lambda_j) \approx V_\Theta (-\lambda_i - \lambda_j)$ when $2\lambda_l / \in \Theta$ as in Lemma 5.11 (1). This equivalence follows by Proposition 4.5, since there is a bijection between $\Pi_\Theta (-\lambda_i + \lambda_j)$ and $\Pi_\Theta (-\lambda_i - \lambda_j)$ mapping a root $-\lambda_r + \lambda_s \in \Pi_\Theta (-\lambda_i + \lambda_j)$ to the M-equivalent root $-\lambda_r - \lambda_s \in \Pi_\Theta (-\lambda_i - \lambda_j)$.

3. The subspaces $V_\Theta (-\lambda_i + \lambda_j) = V_{\Theta \setminus \{2\lambda_l\}} (-\lambda_i + \lambda_j)$ and $V_\Theta (-\lambda_i - \lambda_j) = V_{\Theta \setminus \{2\lambda_l\}} (-\lambda_i - \lambda_j)$ with $j \leq i_0$ as in Lemma 5.11 (2).

Any other pair of subspaces are not K_{Θ}-equivalent because the lack of M-equivalence in the corresponding sets of roots (cf. Lemma 4.4).

Summarizing we get the K_{Θ}-invariant subspaces for the flags of C_l, $l > 4$.

Theorem 5.12 Let F_Θ be a flag manifold of $C_l = \mathfrak{sp}(l, \mathbb{R})$, $l \geq 5$. Then the K_{Θ}-invariant irreducible subspaces of n_Θ are the following:

1. Continuous families:

 (a) One dimensional subspaces spanned by matrices

 $\begin{pmatrix} 0 & 0 \\ \Lambda & 0 \end{pmatrix}$

 where Λ is a diagonal matrix $a_1 I_{[j(i_1),i_1]} + \cdots + a_k I_{[j(i_k),i_k]}$ where $[j(i_1),i_1], \ldots, [j(i_k),i_k]$ are the connected components of Θ not containing $2\lambda_l$, and $I_{[j(i_k),i_k]}$ is the identity matrix corresponding to these indexes.

 (b) The subspaces parametrized by $[(x,y)] \in \mathbb{R}P^2$ given by

 $V_{[x,y]}^{ij} = \{ xX + yTX : X \in V_\Theta (-\lambda_i + \lambda_j) \}$

 where $T : V_\Theta (-\lambda_i + \lambda_j) \to V_\Theta (-\lambda_i - \lambda_j)$ is an intertwining operator for the K_{Θ}-representations. Here the indexes ij are arbitrary if $2\lambda_l / \in \Theta$. Otherwise $j \leq i_0$, where $\{ \alpha_{i_0+1}, \ldots, \alpha_l = 2\lambda_l \}$ is the component of Θ containing $2\lambda_l$.

37
2. Isolated subspaces:

(a) The subspaces $V_\Theta (-2\lambda_i)_{su(j\iota,i)}$ of codimension 1 contained in $V_\Theta (-2\lambda_i)$ as defined in Lemma 5.10.

(b) The subspaces

$$V_\Theta (-\lambda_i + \lambda_j) = V_\Theta (-\lambda_i - \lambda_j)$$

$$= V_{\Theta\setminus C_l-i_{o+1}} (-\lambda_i + \lambda_j) \oplus V_{\Theta\setminus C_l-i_{o+1}} (-\lambda_i - \lambda_j),$$

when $2\lambda_i \in \Theta$ and $i < i_o + 1 \leq j$ where $\{\alpha_{i_o+1}, \ldots, \alpha_l = 2\lambda_i\}$ is the component of Θ containing $2\lambda_i$.

When $l = 4$ the M-equivalence classes of the short roots increase to \{\{\lambda_1 - \lambda_2, \lambda_1 + \lambda_2, \lambda_3 - \lambda_4, \lambda_3 + \lambda_4\}, \{\lambda_1 - \lambda_3, \lambda_1 + \lambda_3, \lambda_2 - \lambda_4, \lambda_2 + \lambda_4\}, \{\lambda_1 - \lambda_4, \lambda_1 + \lambda_4, \lambda_2 - \lambda_3, \lambda_2 + \lambda_3\}\} while the long roots are kept the same \{2\lambda_1, 2\lambda_2, 2\lambda_3, 2\lambda_4\}. Since there are more M-equivalent pair of roots we can have more K_Θ-equivalent subspaces than in the general case.

For example consider flag $\mathbb{F}_{\{\lambda_2 - \lambda_3\}}$. By the general result the subspaces $V_{\{\lambda_2 - \lambda_3\}} (-\lambda_1 + \lambda_2)$ and $V_{\{\lambda_2 - \lambda_3\}} (-\lambda_1 - \lambda_2)$ are K_Θ-equivalent. Their corresponding roots are $\Pi_{\{\lambda_2 - \lambda_3\}} (-\lambda_1 + \lambda_2) = \{-\lambda_1 + \lambda_2, -\lambda_1 + \lambda_3\}$ and $\Pi_{\{\lambda_2 - \lambda_3\}} (-\lambda_1 - \lambda_2) = \{-\lambda_1 - \lambda_2, -\lambda_1 - \lambda_3\}$. For $l = 4$ we have $(-\lambda_1 + \lambda_2) \sim_M (-\lambda_3 + \lambda_4)$ and $(-\lambda_1 + \lambda_3) \sim_M (-\lambda_2 + \lambda_4)$. Since the set of root for $V_{\{\lambda_2 - \lambda_3\}} (-\lambda_3 + \lambda_4)$ is $\Pi_{\{\lambda_2 - \lambda_3\}} (-\lambda_3 + \lambda_4) = \{-\lambda_3 + \lambda_4, -\lambda_2 + \lambda_4\}$ we conclude that $V_{\{\lambda_2 - \lambda_3\}} (-\lambda_1 + \lambda_2)$ is also K_Θ-equivalent to $V_{\{\lambda_2 - \lambda_3\}} (-\lambda_3 + \lambda_4)$. The same way $V_{\{\lambda_2 - \lambda_3\}} (-\lambda_1 - \lambda_2)$ and $V_{\{\lambda_2 - \lambda_3\}} (-\lambda_3 - \lambda_4)$ are K_Θ-equivalent. Thus we get new continuous families of invariant subspaces that are not present in the general case.

5.4 Flags of $D_l = so (l,l)$

The Dynkin diagram D_l has no multiple edges. Hence on any flag manifold \mathbb{F}_Θ we have, by Lemma 4.3, that W_Θ acts transitively on each set of roots Π_Θ corresponding to an irreducible representation of \mathfrak{g}_Θ on $V_\Theta^\mathfrak{g} \subset \mathfrak{n}_\Theta^\mathfrak{g}$. This transitivity is one of the conditions of Lemma 4.2, ensuring that the subspaces $V_\Theta^\mathfrak{g}$ are K_Θ-irreducible. To look at the condition involving the M-equivalence classes we work, as in Section 3, with the standard realization of $D_l = so (l,l)$.

In this realization \mathfrak{a} is the subalgebra of matrices

$$\begin{pmatrix} \Lambda & 0 \\ 0 & -\Lambda \end{pmatrix}$$
with $\Lambda = \text{diag}\{a_1, \ldots, a_l\}$ and the set of simple roots is $\Sigma = \{\lambda_l - \lambda_2, \ldots, \lambda_l - \lambda_{l-1}, \lambda_{l-1} + \lambda_l\}$.

The Weyl chamber $a^+ \subset a^*$ is defined by the inequalities

$$a_1 > a_2 > \cdots > a_{l-1} > a_l > -a_{l-1}.$$ \hspace{1cm} (8)

A partial chamber $a_\Theta \cap \text{cla}^+$ is defined by a similar relation where some of the inequalities are changed by equalities. In particular a characteristic element H_Θ for the subset $\Theta = \{\alpha \in \Sigma : \alpha(H_\Theta) = 0\} \subset \Sigma$ is defined by one of these relations.

The following statement is specific for D_l and will be used soon to check that M-equivalent root spaces are not contained in an irreducible component.

Lemma 5.13 Given a subset $\Theta \subset \Sigma$ there exists characteristic element

$$H_\Theta = \begin{pmatrix} \Lambda_\Theta & 0 \\ 0 & -\Lambda_\Theta \end{pmatrix} \in a_\Theta \cap \text{cla}^+$$

with $\Lambda_\Theta = \text{diag}\{a_1, \ldots, a_l\}$ such that $a_i \neq 0$, $i = 1, \ldots, l$.

Proof: By the last two inequalities in (8) we have $a_{l-1} \geq -a_{l-1}$, that is, $a_{l-1} \geq 0$. Also, $a_{l-1} = 0$ if and only if $a_{l-1} = a_l = -a_{l-1}$, that is, $a_{l-1} - a_l = a_{l-1} + a_l = 0$, which means that both roots $\lambda_{l-1} - \lambda_l$ and $\lambda_l - \lambda_{l-1}$ belong to Θ. This being so we consider the possibilities:

1. $\{\lambda_{l-1} - \lambda_l, \lambda_{l-1} + \lambda_l\} \subset \Theta$. Let $i < l-1$ be the maximum such that $\lambda_i - \lambda_{i+1} \notin \Theta$ (it is tacitly assumed that $\Theta \neq \Sigma$). Then the conditions to define a characteristic element for Θ have the form

$$a_1 \geq \cdots \geq a_i > a_{i+1} = a_{i+2} = \cdots = a_l.$$

Thus we can choose a characteristic element having $a_{i+1} = a_{i+2} = \cdots = a_l > 0$, so that all the entries of Λ_Θ will be > 0.

2. One of the roots $\lambda_{l-1} - \lambda_l$ or $\lambda_{l-1} + \lambda_l$ does not belong to Θ. In this case $a_{l-1} > 0 > -a_{l-1}$ for any H_Θ so that $a_i > 0$ for any $i \leq l-1$. Also the relations defining $a_\Theta \cap \text{cla}^+$ end with

$$a_{l-1} > a_l > -a_{l-1} \quad \text{or} \quad a_{l-1} \geq a_l > -a_{l-1} \quad \text{or} \quad a_{l-1} > a_l \geq -a_{l-1}.$$

In each case we can choose $a_l \neq 0$ without violating the conditions.
From now on we distinguish the cases where \(l > 4 \) and \(l = 4 \).

If \(l > 4 \) then \(M \)-equivalence classes in the positive roots are \(\{ \lambda_i - \lambda_j, \lambda_i + \lambda_j \}, \ i < j \), and \(\{ \lambda_i - \lambda_j, -\lambda_i - \lambda_j \}, \ i > j \), in the negative roots. By the previous lemma we get easily that the corresponding \(M \)-equivalent root spaces are not contained in a single irreducible component.

Lemma 5.14 Let \(V_{\sigma}^g \) be an irreducible component containing the root spaces \(g_{\alpha} \) and \(g_{\beta}, \alpha \neq \beta \). If \(l > 4 \) then \(\alpha \) and \(\beta \) are not \(M \)-equivalent.

Proof: Take a characteristic element \(H_{\Theta} \) with \(a_i \neq 0 \) as in the previous lemma. Then \((\lambda_i - \lambda_j)(H_{\Theta}) \neq -(\lambda_i + \lambda_j)(H_{\Theta})\) for otherwise \(a_i - a_j = -a_i - a_j \), that is, \(a_i = 0 \). The result follows, since \(V_{\sigma}^g \) is contained in an eigenspace of \(\text{ad}(H_{\Theta}) \).

Combining this lemma with Lemma 4.3 (about the transitivity of \(W_{\Theta} \)) we get at once \(K_{\Theta} \)-irreducibility of \(V_{\sigma}^g \), by Lemma 4.2.

Proposition 5.15 In any flag manifold \(F_{\Theta} \) of \(D_l \), \(l > 4 \), the \(z_{\Theta} \)-irreducible components \(V_{\sigma}^g \) are also \(K_{\Theta} \)-irreducible.

To get the full picture of the invariant subspaces we must find the pairs of \(z_{\Theta} \)-irreducible components that are mutually \(K_{\Theta} \)-equivalent. Our method to check \(K_{\Theta} \)-equivalence is via the orbits on \(F_{\Theta} \) of the simple components of the maximal compact subgroup \(K \) of \(G \).

To this purpose we need some further notation concerning the standard realization of \(D_l \). The Lie algebra \(\mathfrak{so}(l, l) \) is the algebra of \(2l \times 2l \) matrices of the form

\[
\begin{pmatrix}
A & B \\
C & -A^T
\end{pmatrix}
\]

\(B + B^T = C + C^T = 0 \).

We have that \(\mathfrak{f} \) is the subalgebra of skew-symmetric matrices in \(\mathfrak{so}(l, l) \), that is,

\[
\begin{pmatrix}
A & B \\
B & A
\end{pmatrix}
\]

\(A + A^T = B + B^T = 0 \).

\(\mathfrak{f} \) is the direct sum of two copies of \(\mathfrak{so}(l) \). In fact, via the decomposition

\[
\begin{pmatrix}
A & B \\
B & A
\end{pmatrix}
= \begin{pmatrix}
(A + B)/2 & (A + B)/2 \\
(A + B)/2 & (A + B)/2
\end{pmatrix} + \begin{pmatrix}
(A - B)/2 & -(A - B)/2 \\
-(A - B)/2 & (A - B)/2
\end{pmatrix}
\]
we get $\mathfrak{g} = \mathfrak{so}(l)_1 \oplus \mathfrak{so}(l)_2$ with

$$\mathfrak{so}(l)_1 : \begin{pmatrix} A & A \\ A & A \end{pmatrix} \quad \mathfrak{so}(l)_2 : \begin{pmatrix} A & -A \\ -A & A \end{pmatrix}$$

where in both cases A is skew-symmetric. We write $\text{SO}(l)_i = \langle \exp \mathfrak{so}(l)_i \rangle$, $i = 1, 2$.

As to the root spaces we write

$$E_{ij}^- = \begin{pmatrix} E_{ij} & 0 \\ 0 & -E_{ij}^t \end{pmatrix} \quad \text{and} \quad E_{ij}^+ = \begin{pmatrix} 0 & 0 \\ E_{ij} - E_{ij}^t & 0 \end{pmatrix}$$

(9)

where E_{ij} is a basic $l \times l$ matrix. Then E_{ij}^- spans the root space $\mathfrak{g}_{\lambda_i - \lambda_j}$ and E_{ij}^+ spans $\mathfrak{g}_{-\lambda_i - \lambda_j}$.

We can return now to the question of K_Θ-equivalence of the \mathfrak{g}_Θ-components V^σ_Θ.

For a root $\alpha \in \Pi^- \setminus \langle \Theta \rangle^-$ write $V_\Theta(\alpha)$ for the irreducible component containing g_α (cf. Proposition 2.1). By Lemma 5.14 we have $V_\Theta(\alpha) \neq V_\Theta(\beta)$ if $\alpha \sim_M \beta$ and $\alpha \neq \beta$. Moreover, by Lemma 4.4 a component V^σ_Θ is not K_Θ-equivalent to $V_\Theta(\alpha)$ unless there exists $\beta \sim_M \alpha$ such that $V^\sigma_\Theta = V_\Theta(\beta)$.

Now by Section 3 we have that if $l \neq 4$ then the M-equivalent classes of D_l (on the negative roots) has exactly two elements. If $\{\alpha, \beta\}$ is a M-equivalence class with say $\alpha \in \Pi^- \setminus \langle \Theta \rangle^-$ and $\beta \in \langle \Theta \rangle^-$ then $V_\Theta(\alpha)$ is not K_Θ-equivalent to any other irreducible component V^σ_Θ. On the other hand if both $\alpha, \beta \in \Pi^- \setminus \langle \Theta \rangle^-$ we have K_Θ-equivalence between $V_\Theta(\alpha)$ and $V_\Theta(\beta)$.

Lemma 5.16 In D_l, $l > 4$, let $\{\alpha, \beta\}$ be a M-equivalence class contained in $\Pi^- \setminus \langle \Theta \rangle^-$. Then the K_Θ representations on $V_\Theta(\alpha)$ and $V_\Theta(\beta)$ are equivalent.

Proof: To prove equivalence we shall exhibit a K_Θ-invariant subspace $\{0\} \neq V \subset V_\Theta(\alpha) \oplus V_\Theta(\beta)$ which is different from the irreducible components $V_\Theta(\alpha)$ and $V_\Theta(\beta)$. This will imply that the components are indeed K_Θ-equivalent (see Proposition 4.6).

The required subspace V will be obtained from the tangent space at the origin of the orbit of one of the normal subgroups $\text{SO}(l)_j$, $j = 1, 2$.

Take for instance $\text{SO}(l)_1$ whose Lie algebra $\mathfrak{so}(l)_1$ constitutes of the matrices

$$\begin{pmatrix} A & A \\ A & A \end{pmatrix} \quad A + AT = 0.$$
Looking at these matrices we see that after identifying $T_{b_{\Theta}}F_{\Theta}$ with n_{Θ}^- the tangent space $T_{b_{\Theta}}(SO(l) \cdot b_{\Theta})$ to the orbit $SO(l) \cdot b_{\Theta}$ is identified to the subspace $W_1 \subset n_{\Theta}^-$ spanned by $\text{pr}(E_{rs}^- + E_{rs}^+)$, $r > s$, where E_{rs}^\pm were defined in (9) and $\text{pr}: n^- \rightarrow n_{\Theta}^-$ is the projection w.r.t. the root spaces decomposition.

The tangent space $T_{b_{\Theta}}(SO(l) \cdot b_{\Theta})$ is invariant by the isotropy representation of K_{Θ}, by Lemma 4.7. Hence W_1 is invariant by the adjoint action of K_{Θ}.

Now a M-equivalence class is given by $\{\lambda_i - \lambda_j, -\lambda_i - \lambda_j\}, i > j$, whose root spaces are spanned by E_{ij}^- and E_{ij}^+, so that $E_{ij}^- \in V_{\Theta} (\lambda_i - \lambda_j)$ and $E_{ij}^+ \in V_{\Theta} (-\lambda_i - \lambda_j)$. If both roots are in $\Pi^- \setminus \langle \Theta \rangle^-$ we have

$$E_{rs}^- + E_{rs}^+ = \text{pr}(E_{rs}^- + E_{rs}^+) \in W_1 \cap (V_{\Theta} (\lambda_i - \lambda_j) \oplus V_{\Theta} (-\lambda_i - \lambda_j)).$$

Hence $W_1 \cap (V_{\Theta} (\lambda_i - \lambda_j) \oplus V_{\Theta} (-\lambda_i - \lambda_j)) \neq \{0\}$. This is a K_{Θ}-invariant subspace different from $V_{\Theta} (\lambda_i - \lambda_j)$ and $V_{\Theta} (-\lambda_i - \lambda_j)$. It follows that the representation of K_{Θ} on the irreducible subspaces $V_{\Theta} (\lambda_i - \lambda_j)$ and $V_{\Theta} (-\lambda_i - \lambda_j)$ are equivalent by Proposition 4.6.

Summarizing we get the K_{Θ}-invariant subspaces for the flags of D_l, $l > 4$.

Theorem 5.17 In a flag F_{Θ} of D_l, $l > 4$, there are the following two classes of K_{Θ}-invariant subspaces in n_{Θ}.

1. The z_{Θ}-irreducible component $V_{\Theta} (\alpha)$, containing the root space g_{α} in case $\alpha \in \Pi^- \setminus \langle \Theta \rangle^-$ is not M-equivalent to $\beta \in \Pi^- \setminus \langle \Theta \rangle^-$. (These are isolated invariant subspaces.)

2. Let $\{\alpha, \beta\}$ be a M-equivalence class contained in $\Pi^- \setminus \langle \Theta \rangle^-$. Then there is a continuum of invariant subspaces parametrized by $[(x, y)] \in \mathbb{R}P^1$ given by

$$V_{[(x,y)]} = \{xX + yTX : X \in V_{\Theta} (\alpha)\}$$

where $T: V_{\Theta} (\alpha) \rightarrow V_{\Theta} (\beta)$ is an isomorphism intertwining the K_{Θ}-representations.

The case $l = 4$ differs from the general one in two aspects, namely each M-equivalence class has now 4 elements and the compact subalgebra $\mathfrak{k} = \mathfrak{so}(4) \oplus \mathfrak{so}(4)$ decomposes further into four copies of $\mathfrak{so}(3)$. These simple components of \mathfrak{k} yield new invariant subspaces.

42
To see what can happen let us consider the example with $\Theta = \{\lambda_1 - \lambda_2, \lambda_2 - \lambda_3, \lambda_3 - \lambda_4\}$. Then \mathfrak{n}_Θ is formed by matrices

$$Y = \begin{pmatrix} 0 & 0 \\ X & 0 \end{pmatrix}$$

with X a 4×4 skew-symmetric matrix. Here \mathfrak{t} is the Lie algebra of matrices

$$\begin{pmatrix} \alpha & \beta \\ \beta & \alpha \end{pmatrix}$$

which is isomorphic to $\mathfrak{so}(4) \oplus \mathfrak{so}(4)$ by

$$\begin{pmatrix} \alpha & \beta \\ \beta & \alpha \end{pmatrix} \mapsto \begin{pmatrix} \alpha + \beta & 0 \\ 0 & \alpha - \beta \end{pmatrix}.$$

Now $\mathfrak{so}(4)$ is the direct sum of two copies of $\mathfrak{so}(3)$ as in \[2\] (see the case A_3, above). Thus we can see that if we take X in each one of the sets of matrices in \[2\] we get subspaces V_1 and V_2 of \mathfrak{n}_Θ that are the tangent spaces to the orbits of the simple components of K. Hence $\mathfrak{n}_\Theta = V_1 \oplus V_2$ is a decomposition into two 3-dimensional K_Θ-invariant subspaces. These two representations are equivalent, since they are just the adjoint representation of $\mathfrak{so}(3)$ on each component.

5.5 Flags of E_6, E_7 and E_8

For a flag manifold \mathbb{F}_Θ of one of these exceptional Lie algebras the K_Θ-invariant irreducible subspaces finite and coincide with the invariant irreducible components $V^\sigma_{\Theta} \subset \mathfrak{n}_\Theta$ for the representation of \mathfrak{b}_Θ.

This is because the Dynkin diagrams are simply laced. Hence, by Lemma \[1.3\] it follows that \mathcal{W}_Θ acts transitively on each set of roots Π^σ_{Θ} corresponding to V^σ_{Θ}. Also, as checked in Section \[3\] the classes of M-equivalence for these Lie algebras are singletons. Hence by Lemma \[4.2\] we have K_Θ-irreducibility of each V^σ_{Θ}. Furthermore the representations of K_Θ on different subspaces $V^\sigma_{\Theta1}$ and $V^\sigma_{\Theta2}$ are not M-equivalent, as follows by combining Lemma \[4.4\] and the fact that the M-equivalence classes are singletons.

5.6 Flags of G_2

Let α_1 and α_2 be the simple roots of G_2 with α_1 the long one. There are three flag manifolds, \mathbb{F}_\emptyset, $\mathbb{F}_{\{\alpha_1\}}$ and $\mathbb{F}_{\{\alpha_2\}}$. The irreducible components on them are
easily obtained by direct inspection of the positive roots. Recall that the M-equivalence classes on the positive roots are \{\alpha_1, \alpha_1 + 2\alpha_2\}, \{\alpha_1 + \alpha_2, \alpha_1 + 3\alpha_2\} and \{\alpha_2, 2\alpha_1 + 3\alpha_2\}. They are listed below:

1. In $F = \mathbb{F}_g$ there are three families of \mathfrak{g}_Θ and K_Θ-irreducible subspaces, parametrized by $\mathbb{R}P^1$, corresponding to the three M-equivalence classes on the negative roots.

2. For $F_{\{\alpha_1\}}$ there are three \mathfrak{g}_Θ-irreducible components corresponding to the sets of roots \{\alpha_2, \alpha_1 + \alpha_2\}, \{\alpha_1 + 2\alpha_2\} and \{\alpha_1 + 3\alpha_2, 2\alpha_1 + 3\alpha_2\}. They are K_Θ-irreducible because the 2-dimensional irreducible representation of $\mathfrak{sl}(2, \mathbb{R})$ is $\mathfrak{so}(2)$-irreducible. By checking the M-equivalence classes we see that the 2-dimensional subspaces are equivalent. Hence, we have the irreducible subspace $g_{-\alpha_1 - 2\alpha_2}$ and a family of 2-dimensional irreducible subspaces parametrized by $\mathbb{R}P^1$, contained in $g_{-\alpha_2} \oplus g_{-\alpha_1 - \alpha_2} g_{-\alpha_1 - 3\alpha_2} \oplus g_{-2\alpha_1 - 3\alpha_2}$.

3. For $F_{\{\alpha_2\}}$ the \mathfrak{g}_Θ-irreducible components correspond to the sets of roots \{\alpha_1, \alpha_1 + \alpha_2, \alpha_1 + 2\alpha_2, \alpha_1 + 3\alpha_2\} and \{2\alpha_1 + 3\alpha_2\}. The 4-dimensional irreducible representation of $\mathfrak{g}_\Theta \approx \mathfrak{sl}(2, \mathbb{R})$ decomposes into two $K_\Theta \approx \text{SO}(2)$-invariant irreducible 2-dimensional inequivalent representations. Hence there are three K_Θ-invariant irreducible subspaces.

5.7 **Flags of F_4**

Recall that the M-equivalence classes on the positive roots of F_4 are given by

- 12 singletons \{\alpha\} with α running through the set of short roots.
- 3 sets of long roots \{2\alpha_1 + 3\alpha_2 + 4\alpha_3 + 2\alpha_4, \alpha_2, \alpha_2 + 2\alpha_3, \alpha_2 + 2\alpha_3 + 2\alpha_4\}, \{\alpha_1 + 3\alpha_2 + 4\alpha_3 + 2\alpha_4, \alpha_1 + \alpha_2, \alpha_1 + \alpha_2 + 2\alpha_3, \alpha_1 + \alpha_2 + 2\alpha_3 + 2\alpha_4\} and \{\alpha_1 + 2\alpha_2 + 4\alpha_3 + 2\alpha_4, \alpha_1, \alpha_1 + 2\alpha_2 + 2\alpha_3, \alpha_1 + 2\alpha_2 + 2\alpha_3 + 2\alpha_4\}.

Hence in the maximal flag manifold the invariant subspaces are $g_{-\alpha}$, α short root, and the one dimensional subspaces contained in $g_{-\alpha} \oplus g_{-\beta} \oplus g_{-\gamma} \oplus g_{-\delta}$ with \{\alpha, \beta, \gamma, \delta\} a M-equivalence class of long roots.

We will not make an extensive analysis of the other 14 flag manifolds but look only at the specific flag manifold F_Θ where $\Theta = \{\alpha_2, \alpha_3, \alpha_4\}$ which
C_3 subdiagram. In this case the \mathfrak{z}_Θ-representation decomposes into two irreducible components V^1_Θ and V^2_Θ with $\dim V^1_\Theta = 14$ and $\dim V^2_\Theta = 1$. The sets of roots Π^i_Θ corresponding to V^i_Θ are those having coefficient $-i$ ($i = 1, 2$) with respect to α_1. Namely, $-\Pi^2_\Theta = \{2\alpha_1 + 3\alpha_2 + 4\alpha_3 + 2\alpha_4\}$ (the highest root) and $-\Pi^1_\Theta$ contains the remaining positive roots outside $\langle \Theta \rangle$.

Clearly the K_Θ-representation on V^2_Θ is irreducible. The representation on V^1_Θ is irreducible as well. In fact, $-\alpha_1$ is the highest weight for the \mathfrak{z}_Θ-representation. Since $\langle -\alpha_1, \alpha_2^\vee \rangle = 1$ and $\langle -\alpha_1, \alpha_3^\vee \rangle = \langle -\alpha_1, \alpha_4^\vee \rangle = 0$, it follows that this is a fundamental weight of $\mathfrak{sp}(3, \mathbb{R})$, namely the weight $\lambda_1 + \lambda_2 + \lambda_3$, where λ_i has the same meaning as in Section 5. Hence V^1_Θ is the space of a basic representation of $\mathfrak{sp}(3, \mathbb{R})$. It is known that this basic representation is irreducible by the compact subalgebra $\mathfrak{u}(3)$. Hence V^1_Θ is K_Θ-irreducible.

References

[1] Burstall, F. E. and J. H. Rawnsley: Twistor Theory for Riemannian Symmetric Spaces, Springer Lect. Notes in Math. 1424 (1990).

[2] Burstall, F.E. and S. Salamon: Tournaments, flags and harmonics maps, Math. Ann. 277 (1987), 249-265.

[3] Fulton, W. and J. Harris: Representation Theory. A first course. Springer-Verlag.

[4] Helgason, S.: Differential Geometry, Lie groups and Symmetric spaces. Ac. Press (1978).

[5] Knapp, A.W.: Lie Groups. Beyond an Introduction. Progress in Mathematics 140, Birkhäuser, 2004.

[6] Negreiros, C. J. C.: Some remarks about harmonic maps into flag manifolds, Indiana Univ. Math. J. 37 (1988), 617-636.

[7] San Martin, L.A.B.: Álgebras de Lie. Editora Unicamp (2010).

[8] San Martin, L. A. B. and C. J. C. Negreiros, Invariant almost Hermitian structures on flag manifolds, Advances in Math., 178 (2003), 277-310.
[9] San Martin, L. A. B. and R. C. J. Silva: Invariant nearly-Kahler structures, Geom. Dedicata 121 (2006), 143-154.

[10] Wang, M. and W. Ziller: On normal homogeneous Einstein metrics, Ann. Sci. Ecole norm. Sup.18(1985), 563-633.