$N = 3$ SCFTs in 4 dimensions and non-simply laced groups

Mikhail Evtikhiev

Department of Particle Physics and Astrophysics, Weizmann Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel

E-mail: Mikhail.Evtikhiev@weizmann.ac.il

ABSTRACT: In this paper we discuss various $N = 3$ SCFTs in 4 dimensions and in particular those which can be obtained as a discrete gauging of an $N = 4$ SYM theories with non-simply laced groups. The main goal of the project was to compute the Coulomb branch superconformal index and moduli space Hilbert series for the $N = 3$ SCFTs that are obtained from gauging a discrete subgroup of the global symmetry group of $N = 4$ Super Yang-Mills theory. The discrete subgroup contains elements of both SU(4) R-symmetry group and the S-duality group of $N = 4$ SYM. This computation was done for the simply laced groups (where the S-duality groups is $\text{SL}(2,\mathbb{Z})$ and Langlands dual of the algebra $\mathbb{L}g$ is simply g) by Bourton et al. [1], and we extended it to the non-simply laced groups. We also considered the orbifolding groups of the Coulomb branch for the cases when Coulomb branch is relatively simple; in particular, we compared them with the results of Argyres et al. [2], who classified all $N \geq 3$ moduli space orbifold geometries at rank 2 and with the results of Bonetti et al. [3], who listed all possible orbifolding groups for the freely generated Coulomb branches of $N \geq 3$ SCFTs. Finally, we have considered sporadic complex crystallographic reflection groups with rank greater than 2 and analyzed, which of them can correspond to an $N = 3$ SCFT with a principal Dirac pairing.

KEYWORDS: Extended Supersymmetry, Conformal Field Theory, Supersymmetric Gauge Theory

ArXiv ePrint: 2004.03919
1 Introduction

In the last few years there have been many advances in the studies of superconformal field theories with extended supersymmetry in 4 dimensions. A particularly fruitful area of research was research of $N = 3$ SCFTs; for example, in [4] it was shown, that the relation between dimensions of Coulomb branch operators and $2a - c$ [5] is only true if theory doesn’t possess a discrete gauge group, and in [6] it was shown, that, contrary to a long-standing belief, Coulomb branch doesn’t have to be freely generated or even to be a complete intersection manifold and, in fact, may even be not a complete intersection manifold (see also [7] for the further discussion). Moreover, in [1] Bourton et al. have shown that a “generic” $N = 3$ SCFT Coulomb branch is not a complete intersection manifold.

Large progress has also been made in classifying superconformal field theories. In the series of papers [2, 8–11] by Argyres et al. authors have studied the Coulomb branches of $N \geq 2$ SCFTS and have employed various methods to probe the relations in the holomorphic polynomial ring and the orbifolding structure of the Coulomb branch manifold. In particular, in [8] Argyres and Martone have suggested a method to refine the Coulomb limit of the superconformal index, that simplifies tracking the relations in the coordinate ring. In [2] they have classified Coulomb branches for rank-2 SCFTS with $N > 2$ supersymmetry. It is also possible to study Coulomb branch manifold in a “bottom-up” approach; in [3] Bonetti et al. have considered a class of $N = 2$ vertex operator algebras W_G labeled by crystallographic complex reflection groups, that are extensions of the $N = 2$ super Virasoro algebra obtained by introducing additional generators; they have also found a way to recover the Macdonald limit of the superconformal index of the parent 4d theory from the corresponding vertex operator algebra, when such a theory exists. Their construction
is also interesting because for every rank-r $N > 2$ SCFT with a freely generated Coulomb branch its complex structure can be written as C^r/Γ, where Γ is a crystallographic complex reflection group acting irreducibly on C^r. However, not every crystallographic complex reflection group Γ will correspond to an $N = 3$ SCFT with a principal Dirac pairing. For example, none of the rank-2 crystallographic complex reflection groups G_4, G_5, G_8\(^1\) can be an orbifolding group for $N > 2$ SCFT with a principal Dirac pairing [2, 12].

Another way to analyze the landscape of superconformal field theories is by constructing them and then computing their index. A particular example of such study can be found in a paper by Bourton et al. [1], where authors have computed Coulomb limit of the superconformal index and Higgs branch Hilbert series for various $N = 3$ and $N = 4$ SCFTs and analyzed the Coulomb branches of these theories. To construct new theories, they have considered $N = 4$ SCFTs with simply laced gauge groups and noticed, that these theories have an enhanced discrete global symmetry at certain values of the gauge coupling. They then refined obtained superconformal index by a fugacity for the enhanced discrete symmetry. The index of the discretely gauged daughter theory is then obtained by “integrating” over the additional fugacity, which takes values in the discrete group. The enhanced discrete symmetry is constructed from a subgroup of S-duality group,\(^2\) so authors restricted their studies to the case of simply laced gauge groups, leaving the non-simply laced groups for the further studies.

In this paper we continued studying the landscape of $N > 2$ SCFTs in 4 dimensions, found more new $N = 3$ theories in the spirit of [1] and bridged some of the gaps between the research of Argyres et al. [2, 8], Bonetti et al. [3], and Bourton et al. [1]. In order to do that, we extended the results of [1] to the non-simply laced groups. We also analyzed the geometry of the moduli space of the theories we obtained; for the cases when the Coulomb branch is freely generated the orbifolding group is a complex reflection group in agreement with [3]. The Coulomb branches of the rank-2 theories we found are in agreement with the results of [2]. Finally, we considered sporadic crystallographic complex reflection groups\(^3\) and, using the methods of [12], checked, which of them can correspond to $N = 3$ SCFTs with principal Dirac pairing; we compute moduli space Hilbert series for $N = 3$ SCFTs that can originate from these groups.

\section{$N = 3$ SCFTs from gauging $N = 4$ SCFTs with non-simply laced gauge groups}

\subsection{Coulomb branch index computation}

The first part of the computation is to compute Coulomb branch limit index. It is more instructing to do these computations along the lines of [8], since the results are similar to

\(^1\)Notation for the complex crystallographic reflection groups is in agreement with Shephard and Todd [13].

\(^2\)It is important to notice that analysis of Bourton et al. doesn’t account for the line operators, so the discrete global symmetry isn’t always present and not every $N = 3$ theory they list actually exists [14], see appendix A for more details.

\(^3\)The non-sporadic groups were considered in [12].
the computations done as in [1], but the method from [8] gives more refined version of the
index that simplifies analysis of the Coulomb branch manifold. The computation method
as follows:

1. We start with an $N = 4$ SYM theory with a non-simply laced gauge group $(B_n, C_n, F_4$
 or $G_2)$; the simply laced cases have been discussed in [1]. The non-simply laced case
 is more complicated than the simply laced one, so writing the S-duality group and
 finding the discrete symmetry group is slightly trickier. For the simply laced groups
 the S-duality group is simply $\text{SL}(2,\mathbb{Z})$, while for the non-simply laced groups it is
 rather $\Gamma_0(q) \subset \text{SL}(2,\mathbb{Z})$\footnote{With a caveat for G_2, F_4 we mention in the next item.} where q is the square of length ratio of the short roots to
 the long ones; $q = 2$ for B_n, C_n, F_4 and $q = 3$ for G_2. $\text{SL}(2,\mathbb{Z})$ is generated by
 the three elements $S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, $T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, $C = -1$, while $\Gamma_0(q)$ is generated by $C, T, A = \text{ST}^q S$. \text{SL}(2,\mathbb{Z}) generators obey the relations $C^2 = 1, S^2 = (ST)^3 = C$, while
 for $\Gamma_0(q) (AT)^q = C$. It is important to notice that for almost every algebra (with the
 exception of A_n) C is a part of Weyl group and so acts on the theory trivially; only
 the quotient of the S-duality group by its center acts faithfully on the theory. For
 B_n, C_n the only global discrete symmetry subgroup of S-duality group (apart from
 the trivial transformation generated by C) is generated by AT. As B_n, C_n theories
 have the same Coulomb and Higgs branches, superconformal indices we consider in
 this paper cannot distinguish between these theories, so we will restrict ourselves to
 considering B_n theories from now on.

2. For G_2 and F_4 the S-duality group is extended to the Hecke group $H(2q)$ (see [15] for
 more details) generated by C, T, \tilde{S}, where \tilde{S} is such that $\tilde{S}TS = \text{ST}^q S$. C, T, \tilde{S} obey
 the relations $C^2 = 1, S^2 = (\tilde{S}T)^q = C$. This extension happens because for G_2
 and F_4 \tilde{S} takes us back to the same group, while for B_n it moves us to C_n. \tilde{S} is not a part
 of the Weyl group, so it acts on the moduli space non-trivially; in [15] it was shown
 that for G_2 the Coulomb branch operators transform as $(U_2, U_6) \xrightarrow{\tilde{S}} (U_2, -U_6)$, and
 for F_4 the rule is $(U_2, U_6, U_8, U_{12}) \xrightarrow{\tilde{S}} (U_2, -U_6, U_8, -U_{12})$.

3. Now we can find, for which values of the coupling τ the discrete subgroups of the
 S-duality group for the various theories we have considered above will leave τ
 unchanged. As C belongs to the Weyl group and is therefore a trivial operation, only
 the quotient of the S-duality group subgroup by its center acts faithfully on the $N = 4$
 theory, and from now on we will consider only the quotients. For G_2 we have three
 different options [15]: we can consider either $\tau = \frac{1}{\sqrt{3}}$, which is fixed under Z_2
 generated by \tilde{S}, or $\tau = -\frac{1}{2} \pm \frac{1}{2\sqrt{3}}$\footnote{Apparently there is a typo in [15].} for which we have two options for the symmetry
group: Z_6, generated by $(\tilde{S}T)$, and $Z_3 \subset Z_6$ discrete symmetry with Z_3
 generated by $(\tilde{S}T)^2$. For F_4 we also have three different options: we have enhanced Z_2
symmetry at $\tau = \frac{1}{\sqrt{3}}$ (generated by \tilde{S}), Z_4 symmetry at $\tau = -\frac{1}{2} \pm \frac{1}{2}$ (generated by $(\tilde{S}T)$),
 and a $Z_2 \subset Z_4$ discrete symmetry with the generator $(\tilde{S}T)^2$, it is realized differently
comparing to the \(\mathbb{Z}_2 \) generated by \(\tilde{S} \). For \(B_n \) groups we only have \(\mathbb{Z}_2 \) at \(\tau = -\frac{1}{2} \pm \frac{i}{2} \), generated by \((AT) \).

4. The S-duality transformations transform the chiral supercharges by a phase \[16 \]. Namely, if an element of the S-duality group transforms the SYM coupling as

\[
\sigma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}; \quad \tau \rightarrow \frac{a\tau + b}{c\tau + d},
\]

then the chiral supercharges transform as

\[
Q^i \alpha \rightarrow e^{ix}Q^i \alpha; \quad e^{ix} = \left(\frac{|c\tau + d|}{c\tau + d} \right)^{1/2}.
\]

In particular, the transformations we have found above transform the chiral supercharges as following:

\(g \)	\(\tilde{S} \)	\(\tilde{ST} \)	\((\tilde{ST})^2 = AT \)
\(G_2 \)	\(Q^i_\alpha \rightarrow e^{-ix/4}Q^i_\alpha \)	\(Q^i_\alpha \rightarrow e^{-\pi/12}Q^i_\alpha \)	\(Q^i_\alpha \rightarrow e^{-\pi/6}Q^i_\alpha \)
\(F_4 \)	\(Q^i_\alpha \rightarrow e^{-ix/4}Q^i_\alpha \)	\(Q^i_\alpha \rightarrow e^{-i\pi/8}Q^i_\alpha \)	\(Q^i_\alpha \rightarrow e^{-i\pi/4}Q^i_\alpha \)
\(B_n \)	\(- \)	\(- \)	\(Q^i_\alpha \rightarrow e^{-i\pi/4}Q^i_\alpha \)

Now we need to offset the action of the S-duality transformation; to do that, we will use elements of the R-symmetry group \(SU(4)_R = SO(6)_R \). We can organize six real adjoint scalar fields \(\phi^I, I \in 6 \) of \(SU(4)_R \) into a triplet of complex scalars \(\varphi^a, a \in 3 \) of \(U(3) \); \(\varphi^a = \phi^{2a-1} + i\phi^{2a} \). The R-symmetry group element \(\rho \) can be represented by a simultaneous rotation in three orthogonal planes in \(\mathbb{R}^6 \simeq \mathbb{C}^3 \):

\[
\rho = \begin{pmatrix} e^{i\psi_1} \\ e^{i\psi_2} \\ e^{i\psi_3} \end{pmatrix} \in U(3) \subset SU(4)_R.
\]

Then \(\rho \) rotates the complex scalars by a phase \(\varphi^a \rightarrow e^{i\psi_a} \varphi^a \), and the four chiral supercharges transform as

\[
\begin{align*}
Q^1_\alpha \rightarrow & \ e^{i(\psi_1 + \psi_2 + \psi_3)/2}Q^1_\alpha \quad (2.4) \\
Q^2_\alpha \rightarrow & \ e^{i(\psi_1 - \psi_2 - \psi_3)/2}Q^2_\alpha \quad (2.5) \\
Q^3_\alpha \rightarrow & \ e^{i(-\psi_1 + \psi_2 - \psi_3)/2}Q^3_\alpha \quad (2.6) \\
Q^4_\alpha \rightarrow & \ e^{i(-\psi_1 - \psi_2 + \psi_3)/2}Q^4_\alpha \quad (2.7)
\end{align*}
\]

Now we can choose \(\psi_a \) in such a fashion that the combination of \(\rho, \sigma \) will leave \(Q^1, Q^2, Q^3 \) invariant; this means that for a given \(\sigma \), \(\rho \) should be equal to \(\rho = \)
diag(e^{2i\pi/n}, e^{2i\pi/n}, e^{-2i\pi/n}), where n is the value of the denominator in the exponent at the corresponding cell of the (2.1). All in all, resulting Coulomb branch will be described by C^r/(\Gamma \rtimes \Gamma_k), where \Gamma_k can be \mathbb{Z}_2, \mathbb{Z}_3, \mathbb{Z}_6 for G_2, \mathbb{Z}_2, \mathbb{Z}_2' (different from \mathbb{Z}_2), and \mathbb{Z}_4 for F_4, and \mathbb{Z}_2 for B_n theories, with \Gamma denoting the orbifolding group of the original theory.

5. Using this knowledge, we can now compute the refined Molien series as in [8] (see equation (4.13) and derivation around it):

$$P_{\mathcal{J}_k}(t_1, \ldots, t_l) = \frac{1}{|\Gamma_k|} \sum_{g \in \Gamma_k} \frac{1}{\det(1 - g \text{diag}(t_1, \ldots, t_l))},$$

where t_i are coordinates that correspond to the Coulomb branch operators of the original theory. Applying the plethystic logarithm\(^6\) to \(P_{\mathcal{J}_k}\) one obtains the generators of the Coulomb branch of the resulting theory, as well as the relations between them in the form

$$\mathcal{F}_\Gamma(t) = \sum_k c^+_k t^k - \sum_{k'} c^-_k t^{k'},$$

where the positive coefficients count the number of generators of degree k and the negative ones count the number of relations at degree k'. If the Coulomb branch turns out to be not a complete intersection manifold, then \(\mathcal{F}_\Gamma(t)\) should not be a polynomial, but rather an infinite power series.\(^7\)

6. We can now do a cross-check of the results we have obtained by considering the orbifolding group of the Coulomb branch directly. The orbifolding group \(\Gamma\) of the Coulomb branch in the original \(N = 4\) theory is a Weyl group of a Lie algebra and, therefore, a crystallographic Coxeter group. If the Coulomb branch is freely generated, \(\Gamma \rtimes \Gamma_k\) should be a crystallographic complex reflection group (see [3] table 1 for the table of the irreducible crystallographic complex reflection groups, divided into non-Coxeter and Coxeter groups; from it one can also read the dimensions of the Coulomb branch generators). Thus the cross-check is done by computing \(\Gamma \rtimes \Gamma_k\) and checking, if the resulting group is a crystallographic complex reflection group; if it is, then the degrees of its fundamental invariants should match the dimensions of the Coulomb branch operators obtained from the Molien series computations results.

2.2 Moduli space Hilbert series computation

Next we can move on to the computation of moduli space Hilbert series. The algorithm for the computation is as follows:

\(^6\)Plethystic logarithm PLog is PLog(f(t)) = \sum_{m=1}^{\infty} \mu(m) \log f(t^m), where \(\mu(m)\) is the Möbius function.

\(^7\)This is not always true: there can be “unexpected” cancellations between factors in the numerator and denominator of the Molien series (2.8) [8]. This can happen when the degree of a relation happens to be the same as that of an affine parameter in the coordinate ring, or if the degree of a syzygy happens to coincide with that of a relation, etc. As the Coulomb branch rank increases, such accidental cancellations become more likely, but, at least for the low-rank examples, one might expect that the plethystic logarithm will accurately capture the degrees and counting of generators and relations.
1. The Higgs branch Hilbert series can be constructed in a fashion similar to the
Coulomb branch index. We can use the fact that
\(N = 2 \) Higgs branch and \(N = 2 \) Coulomb branch are parts of the moduli space that is defined as
\[
\mathcal{M}_\Gamma = \mathbb{C}^{3r}/\rho_\Gamma(\Gamma) = \mathbb{C}^{3r}/(1_3 \otimes \mu_\Gamma(\Gamma)),
\] (2.10)
where \(\rho_\Gamma : \Gamma \to \text{GL}(3r, \mathbb{C}), \mu_\Gamma : \Gamma \to \text{GL}(r, \mathbb{C}) \). The complex structure of \(\mathcal{M}_\Gamma \) is
determined by picking one left-handed supercharge in the \(N = 3 \) algebra and calling the complex scalars which are taken to left-handed Weyl spinors by the action of that supercharge the holomorphic coordinates on \(\mathcal{M}_\Gamma \). The special coordinates on \(\mathcal{M}_\Gamma \) are not holomorphic; from every SU(3)\(_R\) triplet two can be taken to be holomorphic and the third anti-holomorphic. Thus, for example,
\[
(z_1^1, z_1^2, z_3^3) \equiv (u_{11}, a_{12}^1, a_{33}^3); 1 \leq i \leq r,
\] (2.11)
can be taken as the holomorphic coordinates (see discussion near eq. (2.7)). When we choose a \(N = 2 \) subalgebra of \(N = 3 \), we choose a minimally embedded SU(2)\(_R\)SU(3)\(_R\). Then the subspace fixed by the SU(2)\(_R\) is the \(N = 2 \) Coulomb branch. If we now assume that \(\mathcal{M}_\Gamma \) is an orbifold, and \(\mu_\Gamma : \Gamma \to \text{GL}(r, \mathbb{C}) \) then it can be written as
\[
\mathcal{M}_\Gamma \equiv \mathbb{C}^{3r}/\mu_\Gamma(\Gamma) \oplus \mu_\Gamma(\Gamma) \oplus \bar{\mu}_\Gamma(\Gamma),
\] (2.12)
with the Coulomb branch \(\mathcal{C}_\Gamma \equiv \mathbb{C}^r/\mu_\Gamma(\Gamma) \) and Higgs branch
\[
\mathcal{H}_\Gamma \equiv \mathbb{C}^{2r}/\mu_\Gamma(\Gamma) \oplus \bar{\mu}_\Gamma(\Gamma).
\] (2.13)
Therefore, we can construct the Higgs branch Hilbert series in a fashion similar to the Coulomb branch (see [8] for more details).

2. The usual Higgs branch Hilbert series (the unreined version) has only one fugacity that tracks scaling dimensions of the operators. Since \(\mathcal{M}_\Gamma \) carries a non-holomorphic U(3)\(_R\) isometry, we can refine the Hilbert series as
\[
H_{\mathcal{M}_\Gamma}(t, v, u_1, u_2) = \frac{1}{|\Gamma|} \sum_{g \in \Gamma} \frac{1}{\det(1 - tvu_1 \mu_\Gamma(g))} \frac{1}{\det(1 - tv \frac{u_2}{u_1} \mu_\Gamma(g))} \frac{1}{\det(1 - t \frac{u_2}{u_1} \bar{\mu}_\Gamma(g))}
\] (2.14)
The fact that the Hilbert series factorizes in three pieces is an immediate consequence of the fact that the group action on \(\mathbb{C}^{3r} \) is chosen to be a direct sum of three factors \(\rho = \mu_\Gamma \oplus \mu_\Gamma \oplus \bar{\mu}_\Gamma \), each of which acts independently on \(\mathbb{C}^r \). The choice of fugacities is in agreement with the U(3)\(_R\) weights of the holomorphic coordinates ([1; 0] for \(z_1^1 \), [-1; 1] for \(z_1^2 \), [0; 1] for \(z_3^3 \); \(u_1, u_2 \) fugacities powers are the SU(3)\(_R\) weights, \(t \) corresponds to the scaling dimension and \(v \) tracks the U(1)\(_R\) charge. We can now reduce (2.14) to obtain Molien formula for Higgs and Coulomb branches:
\[
H_{\mathcal{C}_\Gamma}(t, v, u_1, u_2) = \frac{1}{|\Gamma|} \sum_{g \in \Gamma} \frac{1}{\det(1 - tvu_1 \mu_\Gamma(g))}
\] (2.15)
\[
H_{\mathcal{H}_\Gamma}(t, v, u_1, u_2) = \frac{1}{|\Gamma|} \sum_{g \in \Gamma} \frac{1}{\det(1 - tv \frac{u_2}{u_1} \mu_\Gamma(g))} \frac{1}{\det(1 - t \frac{u_2}{u_1} \bar{\mu}_\Gamma(g))}
\] (2.16)
In [2] authors consider the whole moduli space Hilbert series (2.14), while in [1] the authors restrict to the smaller Higgs branch series (2.16); this can be seen by comparing eq. (6.14) of [1] to eq. (4.10) of [2]. We will stick to the definition chosen in [2], since it is formulated in the $N = 3$ language.

3. Now let us compute the moduli space Hilbert series. In order to do that, one has to find the embedding of the group Γ in $\text{GL}(r, \mathbb{C})$. In our case $\Gamma = \mathcal{W}(\mathfrak{g}) \rtimes \mathbb{Z}_n$, so we only need to find how to embed \mathbb{Z}_n properly. To check whether the \mathbb{Z}_n embedding we’ve chosen is correct we can plug in Γ into (2.15) and compare the results with the ones we obtained with the other method in subsection 2.1. One more sanity check is to consider terms up to t^3 in the (2.14) expansion; according to [2] the expansion for $N = 3$ SCFTs should go as

$$I_H = t^2 \left(u_1 u_2 + \frac{u_2^3}{u_1^2} \right) + O(t^3).$$

(2.17)

2.3 Results

2.3.1 Gauging $N = 4$ G_2 SYM

The action of the generators C_i of the \mathbb{Z}_i groups on the Coulomb branch coordinates is

$$C_2 = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \quad C_3 = \begin{pmatrix} \exp(\frac{4\pi}{3}) & 0 \\ 0 & 1 \end{pmatrix}, \quad C_6 = \begin{pmatrix} \exp\left(\frac{2\pi}{3}\right) & 0 \\ 0 & -1 \end{pmatrix},$$

(2.18)

and the dimensions of the Coulomb branch operators are $\Delta = 4, 6$ for G_2 gauging of the theory, $\Delta = 6, 6$ for Γ_3 gauging and $\Delta = 6, 12$ for Γ_6 gauging. In every case Coulomb branch is freely generated.

The orbifolding group for the original manifold is $\text{Weyl}(\mathfrak{g}_2) = G(6,6,2)$ (we use Shephard and Todd notation for the complex reflection groups), and it is easy to check directly that $G(6,6,2) \rtimes \mathbb{Z}_2 = G(6,3,2)$, $G(6,6,2) \rtimes \mathbb{Z}_3 = G(6,2,2)$, $G(6,6,2) \rtimes \mathbb{Z}_6 = G(6,1,2)$. These groups are also present in the table 1 of [2], so our result match theirs and fill some of the gaps in the classification of the $N \geq 3$ SCFTs with rank-2 moduli spaces.

The moduli space Hilbert series for \mathbb{Z}_2 gauging is

$$t^2 \left(\frac{u_2}{u_1} + u_1 u_2 \right) + t^4 \left(\frac{u_1^4}{u_1^4} + \frac{u_2^4}{u_2^4} + \frac{u_2^3}{u_1^3} + \frac{u_3}{u_2^3} + \frac{u_1^3}{u_1^3} + \frac{u_2^3}{u_1^3} + \frac{u_3}{u_1^3} + \frac{u_2^3}{u_1^3} \right) + O(t^6),$$

(2.19)

for \mathbb{Z}_3 gauging it is given by

$$t^2 \left(\frac{u_2}{u_1} + u_1 u_2 \right) + t^4 \left(\frac{u_1^4}{u_1^4} + u_2^3 + u_1^3 u_2^2 \right) + O(t^6),$$

(2.20)

and for \mathbb{Z}_6 gauging it is given by

$$t^2 \left(\frac{u_2}{u_1} + u_1 u_2 \right) + t^4 \left(\frac{u_1^4}{u_1^4} + u_3^3 + u_1^3 u_2^3 \right) + O(t^6);$$

(2.21)

we can use C_2, C_3, C_6 as the generators of \mathbb{Z}_n; indices for $\mathbb{Z}_3, \mathbb{Z}_6$ gaugings differ at the t^6 order.

\footnote{$G(6,2,2)$ is written in [2] as $\text{Weyl}(\mathfrak{su}_3) \rtimes \mathbb{Z}_6$.}
\subsection*{2.3.2 Gauging $N = 4 \ F_4$ SYM}

The action of the generators C_i of the \mathbb{Z}_i groups on the Coulomb branch coordinates is

\[C_2 = \text{diag}(-1, 1, 1, -1), \quad C_4 = \text{diag}(i, i, 1, 1), \quad C'_2 = \text{diag}(-1, 1, 1, 1), \]

\hspace{1cm} (2.22)

where C_2 corresponds to the discrete symmetry related to \tilde{S} and C'_2 corresponds to the discrete symmetry related to $(\tilde{S} T)^2$. The Coulomb branch is not freely generated in any of these three cases, for \mathbb{Z}_4 it is not a complete intersection:

\[\mathbb{Z}_4: \quad \text{PLog} \left\{ \frac{1 + U_2 U_6 (U_2^2 + U_2 U_6 + U_6^2)}{(1 - U_2^2)(1 - U_6^4)(1 - U_8)(1 - U_{12})} \right\}, \]

\hspace{1cm} (2.23)

and in the two other cases the generators obey the relations

\[\mathbb{Z}_2: \quad \tilde{u}_1 = U_2^2, \quad \tilde{u}_2 = U_6, \quad \tilde{u}_3 = U_8, \quad \tilde{u}_4 = U_{12}^2, \quad \tilde{u}_5 = U_2 U_{12}; \quad \tilde{u}_5^2 = \tilde{u}_1 \tilde{u}_4, \]

\hspace{1cm} (2.24)

\[\mathbb{Z}_2': \quad \tilde{u}_1 = U_2^2, \quad \tilde{u}_2 = U_6^2, \quad \tilde{u}_3 = U_8, \quad \tilde{u}_4 = U_{12}, \quad \tilde{u}_5 = U_2 U_6; \quad \tilde{u}_5^2 = \tilde{u}_1 \tilde{u}_2. \]

\hspace{1cm} (2.25)

The orbifolding group for the original manifold is Weyl$(f_4) = G_{28}$, and its semidirect product with $\mathbb{Z}_2, \mathbb{Z}_4$ doesn’t yield a complex reflection group.

The action of the generators A_i of the \mathbb{Z}_i groups on the fields ϕ can be chosen to be

\[A_2 = i \cdot R, \quad A_4 = e^{i \pi / 4} R, \quad A'_2 = i \mathbb{1}; \quad R = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & 1 \end{pmatrix} \]

\hspace{1cm} (2.26)

and the moduli space Hilbert series is given by

\[I_{H}^{F_4, \mathbb{Z}_2} = i^2 \left(\frac{u_2^2}{u_1} + u_1 u_2 \right) + t^4 \left(\frac{u_1^4 v^4 + u_2^4 v^4 + u_3^4 v^4}{u_1^4} + \frac{u_2^3 v^4}{u_1^3} + \frac{u_3^3 v^4}{u_1^3} \right), \]

\hspace{1cm} (2.27)

\[+ 2 u_2^2 v^4 + u_2^2 u_1 u_2 v^4 + \frac{u_2^3}{v^3} + \frac{u_3^3}{u_2^3} + u_2^2 + u_1^2 u_2 \right) + O(t^6) \]

\[I_{H}^{F_4, \mathbb{Z}_2'} = i^2 \left(\frac{u_2^2}{u_1} + u_1 u_2 \right) + t^4 \left(\frac{u_1^4 v^4 + u_2^4 v^4 + u_3^4 v^4}{u_1^4} + \frac{u_2^3 v^4}{u_1^3} + \frac{u_3^3 v^4}{u_1^3} \right), \]

\hspace{1cm} (2.28)

\[+ 2 u_2^2 v^4 + u_2^2 u_1 u_2 v^4 + \frac{u_2^3}{v^3} + \frac{u_3^3}{u_2^3} + u_2^2 + u_1^2 u_2 \right) + O(t^6) \]

\[I_{H}^{F_4, \mathbb{Z}_4} = i^2 \left(\frac{u_2^2}{u_1} + u_1 u_2 \right) + t^4 \left(\frac{u_1^4 v^4 + u_2^4 v^4 + u_3^4 v^4}{u_1^4} + \frac{u_2^3 v^4}{u_1^3} + \frac{u_3^3 v^4}{u_1^3} \right), \]

\hspace{1cm} (2.29)

\[+ 2 u_2^2 v^4 + u_2^2 u_1 u_2 v^4 + \frac{u_2^3}{v^3} + \frac{u_3^3}{u_2^3} + u_2^2 + u_1^2 u_2 \right) + O(t^6) \]

$I_{H}^{F_4, \mathbb{Z}_2}$ and $I_{H}^{F_4, \mathbb{Z}_2'}$ differ at the t^6 order.

\subsection*{2.3.3 Gauging $N = 4 \ B_n$ SYM}

These gauge groups haven’t been analyzed in [15]. As for the theories with B_n (or C_n) gauge groups S transformation takes us to another theory [14], from the S-duality side we should only consider \mathbb{Z}_2 generated by AT. This transformation leaves the Coulomb branch
invariant, so when we mix it with the R-symmetry part, we get that the action of the generator C_2 of the Γ_2 groups on the Coulomb branch operators is given by

$$C_2 = \text{diag}(-1, 1, \ldots, (-1)^n),$$

(2.30)

where n corresponds to the B_n gauge group.

For B_2 gauge group we get that the Coulomb branch is freely generated, the dimensions of Coulomb branch operators are $\Delta = 4, 4$, and the orbifolding group is $G(4, 2, 2)$, which is in agreement with [2].

For B_3, B_4 gauge groups we found that the Coulomb branch is not freely generated, and the generators obey the relations

$$B_3 : \quad \tilde{u}_2 = U_2^2, \quad \tilde{u}_4 = U_4, \quad \tilde{u}_6 = U_6^2, \quad \tilde{u}_c = U_2 U_6; \quad \tilde{u}_c^2 = \tilde{u}_2 \tilde{u}_6$$

(2.31)

$$B_4 : \quad \tilde{u}_2 = U_2^2, \quad \tilde{u}_4 = U_4, \quad \tilde{u}_6 = U_6^2, \quad \tilde{u}_8 = U_8, \quad \tilde{u}_c = U_2 U_6; \quad \tilde{u}_c^2 = \tilde{u}_2 \tilde{u}_6$$

(2.32)

For $n \geq 5$ gauging Γ_4 yields a theory with Coulomb branch that is not a complete intersection manifold, the Molien series for e.g. B_5 is given by

$$B_5 : \quad \frac{1 + U_2 U_6 + U_2 U_10 + U_6 U_10}{(1 - U_2^2) (1 - U_4) (1 - U_6^2) (1 - U_8) (1 - U_{10}^2)}$$

(2.33)

The action of the generators A_2 of the Z_2 groups on the fields ϕ can be chosen to be

$$A_2 = i \mathbb{1}.$$ \hfill (2.34)

The Hilbert series for $B_2 - B_5$ $N = 4$ theories with Γ_2 gauged is

$$I_H^B = t^2 \left(\frac{u_2^2}{u_1} + u_2 u_2 \right) + t^4 \left(2u_1^4 v^4 + \frac{2u_1^2 v^4}{u_1^2} + \frac{2u_2^2 v^4}{u_1^2} + \frac{2u_2^2 v^4}{u_1^2} + \frac{2u_2^2 v^4}{u_1^2} + \frac{2u_2^2 v^4}{u_1^2} \right) + O(t^6).$$

(2.35)

The difference between B_2 and B_3 indices appears at t^6 order, between B_3 and B_4 — at t^8 order and between B_4 and B_5 — at t^{10} order.

3 $N = 3$ SCFTs from complex crystallographic reflection groups

Another area of interest in $N = 3$ SCFT studies is theories that have freely generated Coulomb branch. Until a few years ago it was commonly believed that every $N \geq 2$ theory possesses a freely generated Coulomb branch, but in [1, 8] it was shown that there exist many $N = 3$ SCFTs that possess a non-freely generated Coulomb branch. In [12] Caorsi and Cecotti argued that for every $N = 3$ SCFT with a freely generated Coulomb branch the Coulomb branch is given by \mathcal{C} / G, where G is complex crystallographic reflection group (CCRG).\footnote{If G is real, SUSY is enhanced to $N = 4$.} However, these CCRGs split into two different classes: the ones that can correspond to an $N = 3$ SCFT with a principal Dirac pairing and those that can correspond
only to an \(N = 3 \) SCFT with a non-principal Dirac pairing. The distinction is important, because theories with non-principal Dirac pairing have a non-maximal spectrum of line operators and are very peculiar.\(^{10}\) In \([14]\) it was shown that Lagrangian \(N = 2 \) SCFTs cannot have a non-maximal spectrum of line operators, while in \([12]\) authors claim that an \(N = 2 \) SCFT with non-principal Dirac pairing cannot come from a stringy construction and its special geometry cannot be described by a Seiberg-Witten curve. All in all, it is unclear how to generate a theory with non-principal Dirac pairing in 4 dimensions, and it might be that such a theory can only be a relative field theory \([2]\).

If a rank-\(k \) CCRG \(G \) corresponds to an \(N = 3 \) SCFT with a principal Dirac pairing, then consistency with Dirac quantization requires that \(G \subseteq \text{Sp}(2k, \mathbb{Z}) \).\(^{11}\) Caorsi and Cecotti argued that non-sporadic groups complex crystallographic reflection groups can always be embedded into \(\text{Sp}(2k, \mathbb{Z}) \), and in \([2]\) the issue of rank-2 sporadic groups has been addressed, so the groups left to analyze are \(G_{24}, G_{25}, G_{26}, G_{29}, G_{31}, G_{32}, G_{33}, G_{34} \). In order to do that, we considered embedding of these groups into \(\text{GL}(k, \mathbb{Z}[[\zeta]]) \), where \(k \) is the rank of the group and \(\zeta \) is primitive third root of 1 for \(G_{25}, G_{26}, G_{32}, G_{33}, G_{34}; \zeta = i \) for \(G_{29}, G_{31} \) and \(\zeta = \sqrt{-7} \) for \(G_{24} \).\(^{12}\) Then we computed an invariant \((k \times k)\) Hermitian form \(H \) for each of these groups. Afterwards we constructed \(2k \times 2k \) skew-symmetric form \(\Omega \) from \(H \) by considering

\[
\frac{1}{\zeta - \zeta} H_{ij} \psi^i \wedge \bar{\psi}^j, \tag{3.1}
\]

where \(\psi^i = x^i + \zeta y^i \in \mathbb{Z}[\zeta]^k \). \(\Omega \) is then obtained by clearing denominators and dividing by a non-trivial common factor for all the entries of the matrix in consideration if needed. Then the necessary and sufficient condition on whether the embedding \(G \hookrightarrow \text{GL}(k, \mathbb{Z}[[\zeta]]) \) induces an embedding \(G \hookrightarrow \text{Sp}(2k, \mathbb{Z}) \) is simply \(\det \Omega = 1 \); otherwise \(\text{Sp}(2k, \mathbb{Z}) \) should be replaced by the arithmetic group:

\[
S(\Omega) = \{M \in \text{GL}(2k, \mathbb{Z}) : M^T \Omega M = \Omega\} \tag{3.2}
\]

The direct computation shows that for \(G = G_{24}, G_{25}, G_{26}, G_{32}, G_{33} G \not\subseteq \text{Sp}(2k, \mathbb{Z}) \). Let us list lowest terms of the moduli space Hilbert series expansion for \(G_{29}, G_{31} \).\(^{13}\)

\[
G_{29} : \quad \mathcal{I}_H = t^2 \left(\frac{u_2^2}{u_1} + u_1 u_2 \right) + t^4 \left(u_4 v^4 + \frac{u_2 v^4}{u_1^2} + \frac{u_3 v^4}{u_1^2} \right) + O(t^6)
\]

\[
G_{31} : \quad \mathcal{I}_H = t^2 \left(\frac{u_2^2}{u_1} + u_1 u_2 \right) + O(t^8). \tag{3.4}
\]

We can identify that at the \(t^2 \) order the only contribution to the index comes from the \(N = 3 \) stress-tensor multiplet. The index expansion for \(G_{31} \) has contributions at \(t^2 \) order and then only at \(t^8 \).

\(^{10}\)I am grateful to Yuji Tachikawa and Gabi Zafrir for clarifying this.

\(^{11}\)If this requirement is satisfied, it still doesn’t mean there exist a corresponding \(N = 3 \) SCFT.

\(^{12}\)One should also take into account that \(G_{25}, G_{26}, G_{32} \) have two inequivalent embeddings into \(\text{Sp}(2k, \mathbb{Z}) \), both of which should be considered \([17]\).

\(^{13}\)\(G_{34} \) has about \(3.9 \times 10^7 \) elements, so it is computationally unfeasible to calculate moduli space Hilbert series for it.
Acknowledgments

I would like to thank Shlomo Razamat, Petr Kravchuk, Gabi Zafrir, Yuji Tachikawa, and Andrey Feldman for useful discussions, and especially Ofer Aharony for useful discussions, general guidance and comments on a draft of this manuscript. This work was supported in part by an Israel Science Foundation center for excellence grant (grant number 1989/14) and by the Minerva foundation with funding from the Federal German Ministry for Education and Research.

A Existence of theories listed in Bourton et al.

In [1] Bourton et al. classify various $N = 3$ SCFTs obtained from $N = 4$ SCFTs with ADE or $U(n)$ gauge groups. In particular, they have mixed finite cyclic subgroups of $\text{SL}(2,\mathbb{Z})$ self-duality groups with the $\mathbb{Z}_n \subset \text{SU}(R)_4$ of the R-symmetry group and then gauged the resulting group; for $n = 3, 4, 6$ they have obtained $N = 3$ SCFTs, while for $n = 2$ they have got $N = 4$ SCFTs. However, there is a fine point first observed in [14] related to the fact that there might be more than one theory for a given gauge algebra \mathfrak{g}, depending on the line operators present in the theory. S, T transformations then may transform a theory with one set of line operators to a physically distinct theory with another set of line operators; an $N = 4$ SCFT with gauge algebra \mathfrak{g} (listed in [1]) will have a $\mathbb{Z}_k \subset \text{SL}(2,\mathbb{Z})$ if there is a theory which is self-dual under the corresponding S-duality transformation. Therefore, it turns out that not every $N = 3$ SCFT listed in [1] exists; using [14] and [8], one can find that the following $N = 3$ SCFTs exist:

\mathbb{Z}_2	\mathbb{Z}_3	\mathbb{Z}_4	\mathbb{Z}_6	
SU(2)	+	-	+	-
SU(3)	+	+	-	+
SU(4)	+	+	+	+
SU(5)	+	-	+	-
SO(2d), $d > 1$	+	+	+	+
U(d)	+	+	+	+
E_6	+	+	-	+
E_7	+	-	+	-
E_8	+	+	+	+

These results are in agreement with [2], with the superficial exception of the $U(2)$ and $SO(4)$ $\mathbb{Z}_3, \mathbb{Z}_4, \mathbb{Z}_6$ gaugings. The classification of Argyres et al. contains the Coulomb branch orbifold geometries for these theories (table 3, entry 32 for \mathbb{Z}_3 gauging of $U(2)$, table 3, entry 33 for \mathbb{Z}_4 gauging of $U(2)$, $SO(4)$ and table 4, entry 52 for \mathbb{Z}_6 gauging of $U(2)$ and $\mathbb{Z}_3, \mathbb{Z}_6$ gauging of $SO(4)$). These entries were ruled out by Argyres et al. because the corresponding theories have two stress tensors (this can be seen from the Hilbert series analysis). However, as the mother $N = 4$ theory had a non-simple gauge group, getting
theory with two stress tensors after gauging a discrete subgroup is the expected outcome and does not mean the geometries in question should be discarded.

Open Access. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

[1] T. Bourton, A. Pini and E. Pomoni, 4d $N = 3$ indices via discrete gauging, JHEP 10 (2018) 131 [arXiv:1804.05396] [nSPIRE].
[2] P.C. Argyres, A. Bourget and M. Martone, Classification of all $N \geq 3$ moduli space orbifold geometries at rank 2, arXiv:1904.10969 [nSPIRE].
[3] F. Bonetti, C. Meneghelli and L. Rastelli, VOAs labelled by complex reflection groups and 4d SCFTs, JHEP 05 (2019) 155 [arXiv:1810.03612] [nSPIRE].
[4] O. Aharony and Y. Tachikawa, S-folds and 4d $N = 3$ superconformal field theories, JHEP 06 (2016) 044 [arXiv:1602.08638] [nSPIRE].
[5] A.D. Shapere and Y. Tachikawa, Central charges of $N = 2$ superconformal field theories in four dimensions, JHEP 09 (2008) 109 [arXiv:0804.1957] [nSPIRE].
[6] A. Bourget, A. Pini and D. Rodríguez-Gómez, Gauge theories from principally extended disconnected gauge groups, Nucl. Phys. B 940 (2019) 351 [arXiv:1804.01108] [nSPIRE].
[7] G. Arias-Tamargo, A. Bourget, A. Pini and D. Rodríguez-Gómez, Discrete gauge theories of charge conjugation, Nucl. Phys. B 946 (2019) 114721 [arXiv:1903.06662] [nSPIRE].
[8] P.C. Argyres and M. Martone, Coulomb branches with complex singularities, JHEP 06 (2018) 045 [arXiv:1804.03152] [nSPIRE].
[9] P.C. Argyres, C. Long and M. Martone, The singularity structure of scale-invariant rank-2 Coulomb branches, JHEP 05 (2018) 086 [arXiv:1801.01122] [nSPIRE].
[10] P.C. Argyres and M. Martone, 4d $N = 2$ theories with disconnected gauge groups, JHEP 03 (2017) 145 [arXiv:1611.08602] [nSPIRE].
[11] P. Argyres, M. Lotito, Y. Lü and M. Martone, Geometric constraints on the space of $N = 2$ SCFTs. Part III: enhanced Coulomb branches and central charges, JHEP 02 (2018) 003 [arXiv:1609.04404] [nSPIRE].
[12] M. Caorsi and S. Cecotti, Geometric classification of 4d $N = 2$ SCFTs, JHEP 07 (2018) 138 [arXiv:1801.04542] [nSPIRE].
[13] G.C. Shephard and J.A. Todd, Finite unitary reflection groups, Canad. J. Math. 6 (1954) 274.
[14] O. Aharony, N. Seiberg and Y. Tachikawa, Reading between the lines of four-dimensional gauge theories, JHEP 08 (2013) 115 [arXiv:1305.0318] [nSPIRE].
[15] P.C. Argyres, A. Kapustin and N. Seiberg, On S-duality for non-simply-laced gauge groups, JHEP 06 (2006) 043 [hep-th/0603048] [nSPIRE].
[16] A. Kapustin and E. Witten, Electric-magnetic duality and the geometric Langlands program, Commun. Num. Theor. Phys. 1 (2007) 1 [hep-th/0604151] [nSPIRE].
[17] W. Feit, Some integral representations of complex reflection groups, J. Alg. 260 (2003) 138.