The Formation of Bulges, Discs and Two Component Galaxies in the CANDELS Survey at $z < 3$

Berta Margalef Bentabol

Joint work with Christopher Conselice and the CANDELS Team

Discs in Galaxies

July 2016 - Garching
1 Introduction
 • Motivation
 • CANDELS

2 Method
 • Light Decomposition of Galaxies
 • Selecting a Model

3 Results
 • Method Comparison and Basic Trends
 • Number Density
 • Mass Density
 • Size Evolution
 • Multiwavelength Analysis

4 Summary
Galaxies in the nearby universe can be distinguished between:

- Disc-dominated (e.g. spirals)
- Spheroid-dominated (e.g. ellipticals)
Introduction

Significant evolution in the fraction of galaxies of different morphologies.

Peculiar population is dominant at $z > 2$, with substantial spheroid population.

The combined fraction of spheroidal and disc galaxies is equal to that of the peculiar population at $z_{trans} \sim 1.86$
At ~ 2.3 disc-like galaxies are a factor of 2.6 smaller than present-day equal-mass galaxies.

- Spheroid-like galaxies at the same z are 4.3 times smaller than present-day equal-mass elliptical galaxies.

- At $z > 2$ the results are compatible with both a leveling off or a mild evolution in size.
Introduction

Bruce et al. 2012

\[z > 2 \]: Disc-dominated galaxies. Significant fraction of pure discs.

\[z < 2 \]: Bulge-dominated galaxies. Pure bulges are rare.
The survey covers about $800 \ arcmin^2$.

It is divided into two parts:
- CANDELS/Deep Survey (GOODS-N and GOODS-S).
- CANDELS/Wide Survey (GOODS-S, EGS, COSMOS and UDS).

Two cameras of the Hubble Space Telescope:
- WFC3 (Near-Infrared).
- ACS (Visible-Light).
Our Sample

- **CANDELS/UDS**
- H-band
- Magnitude limit ~ 27

About 1500 galaxies:
- Redshift: $1 < z < 3$
- Mass: $\log \frac{M_*}{M_\odot} > 10$
Sérsic Profile
Surface brightness of galaxies can be described by a Sérsic profile:
\[\Sigma(r) = \Sigma_e \exp \left[-\kappa \left(\frac{r}{r_e} \right)^{1/n} - 1 \right] \]

Exponential profile
Discs are well described by an Exponential profile:
\[\Sigma(r) = \Sigma_0 \exp \left(-\frac{r}{r_s} \right) \]

Two models for all our galaxies:
- Model 1: Sérsic profile.
- Model 2: Sérsic profile + Exponential profile.
Selecting a Model

1. Visual Inspection.

2. Residual Flux Fraction (RFF).

3. F-test.
Fraction of 2-component galaxies as a function of mass and redshift.
Number density of disc-like galaxies is the highest for all redshifts.

Rise of 2-component galaxies by a factor of 30.

$1 < z < 3$ is the epoch when 2-component galaxies form and dominate the abundance of massive galaxies.
Results. Mass Density

- Mass density of disc- and spheroid-like galaxies similar at all redshifts.
- Mass density of 2-component galaxies increases by a factor of 100.
- The most massive galaxies preferentially become the 2-component systems.
Results. Size Evolution

Disc-like galaxies

Spheroid-like galaxies

Discs of 2-comp. galaxies

Bulges of 2-comp. galaxies

B. Margalef Bentabol — Bulges, discs and 2-component galaxies at high redshift.
Flux ratio of disc to bulges does not evolve with redshift, but there is a change with size.
Multiwavelength Analysis

H, J, i, V bands + SED fittings = Masses and rest-frame colours

B. Margalef Bentabol — Bulges, discs and 2-component galaxies at high redshift.
Multiwavelength Analysis

1-component galaxies

	SF	QS
$n < 2.5$	77%	33%
$n > 2.5$	44%	66%

2-component galaxies

	SF	QS
Discs	80%	20%
Bulges	77%	23%

SF bulges have lower Sérsic index than passive bulges.
We investigate the formation history of bulges and discs within massive galaxies in CANDELS/UDS. Two models for the surface brightness (Sérsic profile and Sérsic + Exponential profile. Three methods (visual classification, R_{FF} and F-test) to decide which model is the best for each galaxy.

The fraction of 2-component galaxies increases with higher mass. There is also an evolution with redshift.

2-component systems form and dominate the abundance of massive galaxies at $1 < z < 3$.

The most massive galaxies preferentially become the 2-component galaxies.

Discs seem to grow later than bulges.
Thank you for your attention

Margalef-Bentabol et al., *The Formation of Bulges, Discs and Two Component Galaxies in the CANDELS Survey at $z < 3$, MNRAS accepted. [arXiv:1606.07405]"