iTRAQ-based proteomics profiling of Schwann cells before and after peripheral nerve injury

Gui-Dong Shi 1,2, Xin Cheng 1,2, Xian-Hu Zhou 1,2, Bao-You Fan 1,2, Yi-Ming Ren 1,2, Wei Lin 1,2, Xiao-Lei Zhang 1,2, Shen Liu 1,2, Yan Hao 1,2, Zhi-Jian Wei 1,2, Shi-Qing Feng 1,2*

1 Department of Orthopedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, China
2 Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China

Article type: Original article
Article history: Received: Oct 16, 2017 Accepted: Mar 11, 2018

Keywords: Biomarkers Peripheral nerve injury Proteomics Schwann cells

Abstract

Objective(s): Schwann cells (SCs) have a wide range of applications as seed cells in the treatment of nerve injury during transplantation. However, there has been no report yet on kinds of proteomics changes that occur in Schwann cells before and after peripheral nerve injury.

Materials and Methods: Activated Schwann cells (ASCs) and normal Schwann cells (NSCs) were obtained from adult Wistar rat sciatic nerves. After immunofluorescence identification, we identified differentially expressed proteins in the ASCs and NSCs using iTRAQ tags for relative and absolute quantitation (iTRAQ) combined with high-resolution Orbitrap liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). In addition, all the differentially expressed proteins were analyzed by Gene ontology (GO) analysis and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis. Finally, several differently expressed proteins were selected for Western blot verification.

Results: A total of 122 differentially expressed proteins in ASCs and NSCs were screened. GO analysis suggested that these different proteins are likely to accumulate in the cytoplasm and are associated with single-multicellular organism processes. The KEGG pathway analysis suggested that proteins related to purine metabolism were significantly enriched. The expression of Transmembrane glycoprotein NMB (GPNMB), Ectonucleotide pyrophosphatase/phosphodiesterase family member 3 (ENPP3), and other proteins were consistent with the proteomics data obtained by Western blot analysis.

Conclusion: GPNMB, ENPP3, GFPT2, and other proteins may play an important role in the repair of peripheral nerve injury. This study may provide new insights into changes in SCs after peripheral nerve injury.

Introduction

With the development of innovative technologies in the medical field worldwide, treatment of nerve injury tends to be diversified. In addition to the central nervous system (CNS) damage, peripheral nerve injury has become a common concern among scientists and doctors around the world (1-3). Since the previous drug and surgical treatments to the emergence of cell therapies today, treatment technology has been constantly updated, but there is also a corresponding emergence of some problems (4-6). In this study, we assess the differential protein expression of Schwann cells before and after peripheral nerve injury and proceed to explore some of the changes in protein expression occurring in the cell.

Schwann cells have gained increasing attention in the field of nerve regeneration owing to their ability to repair nerve injury and promote axonal regeneration and myelination (7-10). Recently, treatment with SCs combined with other stem cells, such as mesenchymal or neural stem cells, and other treatment strategies have also been more widely recognized (11-14). However, the role of SCs in repair of the peripheral nerves and the underlying specific pathophysiological mechanisms are still unknown. Furthermore, after peripheral nerve injury and Wallerian degeneration (15, 16), changes in the proteomics of SCs have not yet been clearly reported through specific studies.

Isobaric tags for relative and absolute quantitation (iTRAQ) is an equal weight labeling technique for relative and absolute quantification of protein (17-19). This technique allows comparison between proteins in varied samples, such as differences in protein expression levels in tissue samples under different pathological conditions or at different developmental stages (20). After iTRAQ labeling, high-precision mass spectrometer in series analysis can be performed and protein expression of up to 8 samples can be compared (21). Based on the above techniques, we selected SCs before and after peripheral nerve injury for iTRAQ labeling and mass spectrometry.

In summary, we isolated and purified SCs before and after peripheral nerve injury. After extracting the protein from SCs and labeling with iTRAQ, the samples were subjected to mass spectrometry to reveal a differentially...
expressed protein in the sample. The differentially expressed proteins were subjected to gene ontology (GO) annotation and Kyoto encyclopedia of genes and genomes (KEGG) analyses, and several proteins were identified by Western blotting. This study revealed the changes in SCs before and after peripheral nerve injury and formed a basis for subsequent cell therapy.

Materials and Methods

Animals and experimental groups

Nine Wistar rats (4-week-old, approx. 100±10 g, provided by Radiation Study Institute-Animal Center, Tianjin, China) were used in this study. Sciatic nerve injury surgeries were done as described previously (22). Rats were sacrificed and the sciatic nerves of each Wistar rat were isolated and the SCs were extracted. This study contained two major groups—Group A: ASCs from the ligation of the sciatic nerves and Group B: NSCs from the untreated sciatic nerves. All animal breeding experiments were performed according to the Guidelines for Laboratory Animal Safety and Care as issued by the United States National Institutes of Health. All procedures performed in the study involving animals were consistent with the ethical standards set by the above-mentioned institutions.

Isolation and culture of normal Schwann cells and activated Schwann cells

SCs were obtained from the 7-day pre-degenerated sciatic nerve of adult male Wistar rats (n = 9) according to a previous study (23). Briefly, nine adult Wistar rats were anesthetized with 10% chloral hydrate (0.3 ml/100 g). After anesthesia satisfaction, the unilateral sciatic nerve was ligated in each rat. After one week, nine rats were sacrificed and the bilateral sciatic nerves of each rat were isolated. After removal of the epineurium, the nerve was washed three times with PBS and 2% antibiotic solution (penicillin, streptomycin) was added. Next, the remaining nerve tissue was cut into small pieces (0.5–1.0 mm²). The nerve tissue was digested in a 2-ml mixture for 10–15 min using an equal volume of medium containing 10% FBS was added and the cells were centrifuged (300 × g, 5 min) to remove the supernatant. An appropriate amount of DMEM/F-12, the tissue pieces were gently dispersed by pipetting and were centrifuged (300 × g, 5 min) to remove the supernatant. An appropriate amount of DMEM/F-12 medium containing 10% FBS was added and the cells were inoculated in a 25-cm² culture flask at 37 °C and 5% CO₂. After washing in DMEM/F-12, the tissue pieces were gently dispersed by pipetting and were centrifuged (300 × g, 5 min) to remove the supernatant. An appropriate amount of DMEM/F-12 medium containing 10% FBS was added and the cells were inoculated in a 25-cm² culture flask at 37 °C and 5% CO₂. After three weeks, the cells reached 90% confluency and were used in this experiment after three passages.

Immunofluorescence staining of Schwann cells

Cells were seeded at a density of 30,000 cells/well in a 24 Well Clear TC-Treated Multiple Well Plate. After 72 hr, they were fixed for 30 min in 4% (w/v) paraformaldehyde at room temperature. Then, the cells were washed in phosphate buffered saline before the addition of 5% (v/v) normal donkey serum together with 0.1% Triton X-100 (v/v) in PBS for a further 20 min at room temperature. After the blocking serum was removed, the primary antibodies, rabbit monoclonal anti-S100 (Gibco) at respective dilutions of 1:100 were added and the samples were incubated overnight at 4 °C. The cells were then washed in PBS, FITC conjugated donkey anti-rabbit IgG (1:200 dilution) was added and the samples were incubated for 2 hr at room temperature. After the reaction, the cells were washed three times with PBS, and the DAPI nuclear label (Sigma) was applied for 10 min. The Schwann cells were then examined under a fluorescence microscope (Leica DM2500, Germany).

Sample preparation and iTRAQ labeling

The medium was removed and the cells were washed three times with 1× phosphate buffered saline (PBS). 300 μl lysis buffer (10% SDS and TEAB) was added to the mixed sample and subjected to tissue homogenization and sonication on ice. After centrifugation at 17,000 × g for 10 min at 4 °C, the supernatant was collected and transferred to a new tube. The obtained protein extract was quantified by BCA assay (Transgene Biotech) according to the manufacturer’s protocol. To ensure that the data are available for technical and biological duplication, each group includes at least 3 repeated protein extracts. The final volume of the protein mixture was adjusted to 300 μl with 100 mM TEAB (triethylammonium bicarbonate, Santa Cruz, USA). The extracted protein was labeled with a lightly modified iTRAQ® reagent (AB Sciex Inc., MA, USA) according to the manufacturer’s instructions. Each sample was labeled with an isobaric tag for 3 hr at room temperature as follows: the proteins from ASCs were labeled with iTRAQ reagents 127, 129, and 131 and those from NSCs were labeled with iTRAQ reagents 126, 128, and 130. Finally, all samples were pooled before being subjected to separation techniques and analysis by tandem mass spectrometry.

Orbitrap LC-MS/MS analysis

For LC-MS/MS analysis, approximately 200 ng of each fraction was injected. Peptides were separated by LC-MS/MS coupled to an LTQ Orbitrap Velos mass spectrometer. At a resolution of 60,000, the MS spectra were acquired on Orbitraps in the range of 300–2000 m/z. The five most intense ions per survey were selected for collision-induced dissociation fragmentation to be analyzed in the linear trap.

Data analysis and quantitation

The masses of the peptide modifying the Tandem Mass Tags (TMT) zero, duplex, and sixplex reagents are present in the UNIMOD database (www.unimod.org Accessed 8 April 2017). Thermo Scientific Proteome Discoverer 1.1 and other software packages directly support the modification of the TMT reagent and the relative quantification of the reporter ions released from the labeled peptide. For data obtained using a combination of segmentation methods, the proteome discoverer may need to combine the spectra used for identification and quantification.

Bioinformatics analysis

Proteins/peptide sequences were imported into Cytoscape (version 3.4.0) for GO annotation. The screening of 122 differentially expressed proteins for GO annotation was performed from the biological process, molecular function, and cellular component. The KEGG-GENES corresponding to the differentially expressed
proteins were then analyzed by KEGG Orthology (KOs) and were mapped to KEGG pathways. Protein-protein networks that reveal significantly differentially expressed proteins were analyzed using the Cytoscape software.

Western blotting

Of the 122 differentially expressed proteins, several proteins were randomly selected for Western blot analysis validation. Briefly, the same amount of protein (20 μg) of each sample was loaded on 10% sodium dodecyl sulfate-polyacrylamide gel (SDS-PAGE). After blocking with 5% bovine serum albumin, the membrane was incubated with GPNMB (Anti-GPNMB antibody, Abcam, ab98856), ENPP3 (Anti-ENPP3 antibody, Abcam, ab190823), GFPT2 (Anti-GFPT2 antibody, Abcam, ab190966), and SDPR (Anti-SDPR antibody, Abcam, ab113876), and then incubated with the secondary antibody (1:5000 dilutions, Transgene Biotech). Detection of protein bands was performed using the ECL assay kit. Protein quantification was analyzed using the Image-Pro Plus (version 6.0) software.

Statistical analysis

Prism statistical software (Graph Pad v6.01, CA) was employed for data analysis. All data were reported as the mean±standard deviation (SD) in this study. The data were analyzed using one-way analysis of variance (ANOVA). *P*<0.05 was considered as statistically significant.

Results

Culture and identification of Schwann cells

At 10 days post-isolation of cells, the cells proliferated and covered the entire T75 bottom (Figure 1A). Both the ASCs and NSCs showed positive immunoreactivity for the S100 Schwann cell markers. Figure 1 (B, C, D) shows the expression of these mature markers in Schwann cells, whereas there were no significant differences between these two groups. The specific differences between these two groups can be found in our previous study (24). In conclusion, Schwann cells were prepared for protein extraction after immunofluorescence identification.

Figure 1. Immunofluorescence staining of Schwann cells. A. The shape of activated Schwann cells (ASCs) and normal Schwann cells (NSCs) under an optical microscope. Both of these SCs, long spindle cells, all were arranged in a fish shape and nuclei were ovoid or oblong. Scale bar: 200 μm. B. SCs were marked with S100 by immunofluorescence. C. The nucleus of SCs was marked with DAPI by immunofluorescence. D. SCs and nuclei of SCs were merged together by immunofluorescence. Scale bar: 100 μm

Figure 2. Differentially expressed proteins identified in Schwann cells before and after peripheral nerve injury. A. Proteins that showed increased levels in ASCs are shown in red and those that showed decreased levels are shown in green. B. The upregulated and down-regulated proteins were analyzed by functional clustering.
Table 1. The differentially expressed proteins between normal Schwann cells and activated Schwann cells (up-regulated)

Accession	Protein names	t-test P-value	Fold change
F1M3X5	Maestro heat-like repeat family member 6	6.3315E-25	15.38461538
CE162	Centrosomal protein of 162 kDa	9.0020E-28	10.98901999
FETU1A	Alpha-2-HS-glycoprotein	1.7734E-19	4.69435681
A0A0G2JSN5	Serum albumin	9.6575E-21	4.42477861
GP4MB	Transmembrane glycoprotein NMB	4.8676E-20	4.16666667
S3A8A	Zinc transporter ZIP8	4.5425E-20	3.95256917
ASM3A	Acid sphingomyelinase-like phosphodiesterase 3a	6.6147E-22	3.86100386
MORBU0	Cartilage oligomeric matrix protein	7.4025E-19	3.63636363
Q64599	Hemiferrin	1.6973E-19	3.46020761
D3ZAD9	NLR family, pyrin domain-containing 9	6.0388E-19	3.10539062
D3ZAT4	Serine (Or cysteine) peptidase inhibitor, clade A, member 9	5.6704E-20	3.06748466
A0A0G2JST6	Hexokinase 3, isofrom CRA_a,	9.1401E-22	2.87356218
CATC	Dipeptidyl peptidase 1	6.2874E-16	2.74725747
Q9QQW0	Peroxisome proliferator activated receptor delta	7.0965E-17	2.73972627
Q5Z2R8	Interferon activated gene 204	9.9933E-20	2.61780104
D3ZFH5	Uncharacterized protein	8.8415E-19	2.48756218
Q5MB60	Rho GDP dissociation inhibitor beta	1.9513E-13	2.42718466
A0A0G2JXB1	Galectin	1.9674E-17	2.39234498
D4A2Z6	Thrombospondin 2	2.1905E-16	2.36406619
Q5A857	Phosphatase and tensin homolog	6.1274E-17	2.20750519
Q6I3G7	GM2 ganglioside activator	6.8476E-17	2.19780129
A0A0H2UHE2	Interleukin 1 receptor antagonist, isofrom CRA_c	2.0353E-09	2.18340611
G3VS2	Neurofilament medium polypeptide	1.3383E-11	2.08333333
A0A0G2K3W2	Coagulation factor V	1.4240E-11	2.08333333
A0A0G2JSV6	Globin c2	4.1312E-19	2.04498977
A0A0G2K014	Lymphocyte cytosolic protein 1	5.4135E-17	2.02429498
ENPP3	Ectonucleotide pyrophosphatase/phosphodiesterase family member 3	1.2369E-13	2.01612903
E9PSM5	72 kDa type IV collagenase	2.0859E-17	1.97628458
A0A0G2K5B6	Fatty acid-binding protein, adipocyte	1.8102E-12	1.94931773
DPP2	Dipeptidyl peptidase 2	1.1589E-13	1.93798496
D4AB2E3	Ferric-chelate reductase 1	2.4754E-17	1.83150831
A0A0G2JSB5	Peroxiredoxin 5, isofrom CRA_c	2.9507E-16	1.75438596
A0A0G2K0T6	Gamma-synuclein	2.426E-10	1.74520069
ILE3A	Leukocyte elastase inhibitor A	7.2965E-12	1.71526586
Q9QD1	Chemokine (C-X-C motif) ligand 12	4.4999E-10	1.71526586
CATZ	Cathepsin Z	6.0410E-09	1.71232876
OCA1	Collagen alpha-1(XII) chain	3.7569E-07	1.70357753
A0A0G2JSW3	Globin a4	9.8412E-16	1.68634064
A0A0G2JSW2	3-hydroxybutyrate dehydrogenase, type 1, isofrom CRA_a	8.2164E-16	1.67504187
Q4QOY6	Lymphoycte specific 1, isofrom CRA_a	4.3649E-15	1.67224080
A0A0G2K0T2	Tetratspin	2.2943E-10	1.66112958
B4F7D5	RGD1566403 protein	2.3743E-14	1.65016501
AMACR	Alpha-methylacyl-CoA racemase	6.3277E-12	1.63132137
D4AB2O	Cytochrome P450, family 2, subfamily s, polypeptide 1	6.6806E-10	1.61812297
A0A0G2KAJ7	Collagen alpha-1(XII) chain	4.8802E-14	1.60771042
G3V83	Frizzled homolog 1	3.217E-09	1.60513643
A0A0G2K4V4	3-ketohydrosphingosine reductase	3.4489E-16	1.60256410
Continued Table 1.

UniProt ID	Protein Name	Description
Q60772	Desmin	Actin binding protein
A0A069MPJ9	Sodium/potassium-transporting ATPase subunit beta	Transporter
A0A06GK8H6	Pro-cathepsin H	Cathepsin
G3V636	Scavenger receptor class B member 1	Receptor
G3V624	Insulin-like growth factor 2 receptor	Growth factor
G3V715	Aldolase A, mitochondrial	Aldolase
G6Y4A8	Poly (RC) binding protein 3	RNA binding
NDRG1	Serpin NDRG1	Serpin
A0A06GK9H6	Ceruloplasmin	Copper binding
RAC3D3	BTB/POZ domain-containing adapter for CUL3-mediated RhoA degradation	Adapter
B5DF80	Leprecan-like 2 (Predicted), isoform CRA_h	Leprecan
TIS8	mRNA decay activator protein ZFP36L1	mRNA decay
SERPH	Serpin H1	Serpin
A0A06G2Y66	Aminopeptidase	Aminopeptidase
LAMP2	Lysozyme-associated membrane glycoprotein 2	Lysozyme
D32W38	Exosome component 6	Exosome
HXK2	Hexokinase-2	Hexokinase
NDC1	Nucleoporin NDC1	Nucleoporin
G6PD	Glucose-6-phosphate 1-dehydrogenase	Glucose dehydrogenase
NAGAB	Alpha-N-acetylgalactosaminidase	Galactosidase
Q60766	Cathepsin D	Cathepsin
TMED3	Transmembrane emp24 domain-containing protein 3	Transmembrane

UniProt accession numbers that can be found on www.uniprot.org. Accessed 8 April, 2017

Fold change: The quantity changes of protein abundance between the two groups

Integrated proteome information

The proteins expressed differentially between NSCs and ASCs were identified by the proteomics approach using iTRAQ. For each sample of SCs before and after peripheral nerve injury, the unique reporter in the low mass region of the MS/MS spectrum was used to measure the relative protein expression level during peptide fragmentation. Eventually, 4473 proteins were identified to be differentially expressed in groups A and B. The screening of differential protein and the selection of fold change were according to previous research (25). A total of 122 proteins were identified (fold ≥ 1.5, P-value ≤ 0.05) to be differentially regulated, of which 72 were upregulated (Table 1) and 50 were down-regulated (Table 2). Figure 2A shows the level of up-regulated and down-regulated proteins in ASCs. Moreover, we performed functional clustering analysis of up-regulated and down-regulated proteins (Figure 2B).

GO annotation of differentially expressed proteins

The above differential proteins were further analyzed by Cytoscape (version 3.4.0) software, divided into ‘Molecular function’, ‘Cellular component’, and ‘Biological process’ subcategories (Figure 3).

A biological process is a series of events resulting from an orderly combination of one or more molecules. Of the 122 differentially expressed proteins that were analyzed, most of the proteins were found to be enriched in the single-multicellular organism process (GO-ID:44707) and developmental process (GO-ID:32502). In addition, 57.14% differential expression proteins

Figure 3. Gene ontology annotation of differentially expressed proteins. Most of the proteins of differential abundance analyzed for the biological process, molecular function, and cellular component were single-multicellular organism process, protein binding, and cytoplasm, respectively.

836

Iran J Basic Med Sci, Vol. 21, No. 8, Aug 2018
Table 2. The differentially expressed proteins between normal Schwann cells and activated Schwann cells (down-regulated)

Accession	Protein names	t-test P-value	Fold change
Q4V8N0	Lipocalin 7, isoform CRA_a	1.396E-07	0.664893617
B0BMU8	Musculo-skeletal, embryonic nuclear protein 1	2.81912E-05	0.663129973
FH12	Four and a half LIM domains protein 2	4.20985E-09	0.658761528
A0A0G2K9W7	Zinc finger, MYND-type containing 8	0.001160328	0.657462196
D4ADG9	Collagen type V11 alpha 2 chain	3.31488E-07	0.656598818
ANX1A	Annexin A3	0.000105632	0.654022237
CEND	Cell cycle exit and neuronal differentiation protein 1	4.91826E-06	0.651645798
M0RAJE	Proline-rich 14-1-like	9.66231E-07	0.650195059
D4A3ZB8	Transmembrane and coiled-coil domain-containing protein 3	2.57001E-05	0.644329897
B0VXR8	JIP3 protein	2.01593E-05	0.643915003
A0A096MK24	MORC family CW-type zinc finger 4	1.60452E-06	0.643086817
A2MG	Alpha-2-macroglobulin	0.000167324	0.642260758
F1LPM3	Sorbin and SH3 domain-containing protein 2	6.13675E-10	0.641025641
HPRT	Hypoxanthine-guanine phosphoribosyltransferase	3.01248E-12	0.639795266
B6DY8	Glutathione S-transferase	0.000461515	0.636132316
CYBR1	Cytochrome b reductase 1	0.000313257	0.635324015
Q6HRK8	Spectrin alpha chain, non-erythrocytic 1	1.54138E-07	0.631313131
F1MOG3	Ectonucleoside triphosphate diphosphohydrolase 1	1.90675E-09	0.630914826
A0A0G2K9Y0	Uncharacterized protein	2.70265E-05	0.62774639
A0A146J2K6	Lasp-2	5.79706E-08	0.624219725
FZD8	Frizzled-8	3.28205E-06	0.623830318
D3ZBS2	Inter-alpha-trypsin inhibitor heavy chain H3	1.02664E-06	0.612369871
PXDC1	PX domain-containing protein 1	4.33643E-06	0.612369871
B9PTU4	Myosin-11	9.78468E-13	0.610648717
Q6HRK3	Syndecan	2.71733E-06	0.597371565
MUC18	Gel surface glycoprotein MUC18	3.79694E-09	0.586510264
FBWFL6	Protein FAM13B	1.09524E-15	0.582411182
AKA12	A-kinase anchor protein 12	4.54799E-14	0.582072177
AQP1	Aquaporin-1	6.2957E-05	0.580383053
D4A1D2	Rho guanine nucleotide exchange factor 26	1.00711E-07	0.580046404
A0A0GZ3K38	Four and a half LIM domains protein 1	1.79426E-05	0.574712644
ANPRC	Atrophin-1 like 3	3.79533E-08	0.565672328
Q5FGS2	Similar to tropomyosin 1, embryonic fibroblast rat isoform CRA_c	6.48235E-10	0.564334086
G3V831	Maximerization protein 3	1.43191E-10	0.563697858
Q56A29	Visinin-like 1	1.12729E-06	0.555555556
M0RS2	Apolipoprotein D	1.48461E-06	0.547345375
A0A096MJ01	LIM domain-binding 3	9.90342E-06	0.543478261
Q6P92	Four and a half LIM domains 1	2.29744E-07	0.529661017
NQ01	NAD(P)H dehydrogenase [quinone] 1	0.000698527	0.529661017
A0A0G2JEB7	Neuron navigator 3	1.46506E-08	0.518134715
D3Z8US	Metalloendopeptidase	1.03836E-10	0.51875282
A1M	Alpha-1-macroglobulin	8.78141E-06	0.44727191
A0A096MN4	Septin 4	4.76859E-12	0.44660333
RLA2	60S acidic ribosomal protein P2	1.25097E-08	0.430848772
D3ZRD9	Allograft inflammatory factor 1-like	3.31644E-06	0.40371417
D4A9W1	Glied-coil domain-containing 8C	3.85007E-10	0.394477318
GLDN	Gliomedin [cleaved into: gliomedin sheddectodomain]	1.71803E-09	0.37355248
SDPR	Serum deprivation-response protein	3.99342E-13	0.348109415
GSTP	Osteopontin	1.41268E-07	0.345781466
A0A0G2K714	RSCD domain containing 1	1.27673E-14	0.211292485

UniProt accession numbers that can be found on www.uniprot.org. Accessed 8 April, 2017

Fold change: The quantity changes of protein abundance between the two groups
were located in the cytoplasm (GO-ID:5737), followed by the extracellular space (GO-ID:5615). In the GO annotation analysis, ‘Molecular function’ can provide the function of the gene at the molecular level. In the differentially expressed proteins that were screened, it was found that most of the differential proteins were enriched in enzyme inhibitor activity (GO-ID:4857), followed by identical protein binding (GO-ID:42802), and peptidase regulator activity (GO-ID:61134). Of the 122 differentially expressed proteins, 53 most relevant proteins were screened out and a protein-protein interaction (PPI) network was prepared (Figure 5). In this PPI network, several proteins were further selected for analysis. Moreover, several of these proteins (Thbs2, Lgals3, Cathepsin D (Ctsd), and Sptan1) were chosen for analysis.

KEGG analysis

Protein expression data were mapped to KEGG Mapper-Search & Colour Pathway (http://www.kegg.jp/ Accessed 10 April 2017) to further analyze changes in biological processes. In addition, we counted the most meaningful 16 KEGG pathways, including purine metabolism, biosynthesis of antibiotics, amino sugar and nucleotide sugar metabolism, and Thiamine metabolism. (Figure 4A). In addition, one of the pathways, ‘Purine metabolism’, was chosen for analysis, in which different colors represent different enzymes (Figure 4B).

Protein verification by Western blot analysis

GPNMB, ENPP3, GFPT2, and SDPR were selected in ASC (Group A) and SC (Group B) samples by Western blot analysis. The change in protein abundance as detected in Western blot analysis and protein quantification was highly consistent with that in the proteomics data of SCs (Figures 6A and 6B).

Figure 4. Kyoto encyclopedia of genes and genomes pathway analysis of differentially expressed proteins A. The purine metabolism pathway was enriched in the majority of the differentially expressed proteins. The vertical bars represent the number of the differentially expressed proteins. B. Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis maps of the Purine metabolism pathway. The proteins in different color frames are differentially expressed proteins identified in this study. The box represents proteins; the arrow represents activation.
Discussion

In this study, the proteomics of SCs before and after peripheral nerve injury were studied by using iTRAQ and high-resolution Orbitrap LC-MS/MS. Compared with that in NSCs, 122 differentially expressed proteins were identified in ASCs, of which 72 were upregulated and 50 were down-regulated. In addition, several proteins were randomly selected for Western blot analysis, and the results were consistent with those of proteomics analysis.

A total of 122 differentially expressed proteins were obtained from protein mass spectrometry. GO annotation analysis was performed using 'Molecular function,' 'Cellular component,' and 'Biological process.' GO annotation analysis results show that these different proteins are likely to accumulate in the cytoplasm and are associated with single-multicellular organism processes. Moreover, we found that pyruvate metabolism, biosynthesis of antibiotics, and amino sugar and nucleotide sugar metabolism pathways were significantly enriched in the KEGG pathway analysis. In the PPI network, Thbs2, Lgals3, Ctsd, and Sptan1 are four proteins related to the development of the CNS and peripheral nervous system (26-30). Previous research reported that Thbs2 can promote axonal regeneration and synaptic formation (31). Researchers found that Sprague-Dawley pregnant rats exposed to drinking water containing glycidol could show axonopathy and hippocampal nerve distortion (28). While in the hippocampal dentate gyrus, they found that Thbs2 could regulate the plasticity of neurons. Galectins control the important pathophysiological processes of the CNS. In addition, Lgals3 can promote the differentiation of oligodendrocyte, maintain the integrity of myelin, and promote the recovery of inflammatory demyelinating disease (32). Ctsd-knockout can lead to changes in the ultrastructure of myelin and metabolic disorders of cholesterol and the extreme absence of neurons in the brains of mice (33). In summary, the above proteins were found to be closely related to the pathophysiological processes of the nervous system, consistent with the results of the proteins we screened.

ENPP3 is a member of the ectonucleotide pyrophosphatase/phosphodiesterase family (E-NPPs). It has been reported that ENPP3 is present in almost all systems in the human body (34). Abnormal expression of ENPP3 can affect intracellular transduction pathways, leading to cellular dysfunction. A recent study has found the presence of ENPP1 and ENPP3 in rat podocytes and assessed their expression in rat podocytes cultured with 5 mM (normal glucose) or 30 mM glucose (high glucose) (35). In another study, the investigators examined the effect of endotoxin on nucleotide catabolism in the kidneys of mice by lipopolysaccharide (LPS) injection (36). The expression pattern of exogenous nucleotides showed that the level of Enpp3 mRNA was increased after LPS injection. Purine metabolic analysis by high-performance liquid chromatography assay confirmed this result. In our research, quantities of ENPP3 proteins were measured by Western blotting analysis, we found that the level of ENPP3 expression in SCs was significantly correlated with the peripheral nerve injury. Changes in protein abundance were consistent with proteomics data from SCs by Western blot analysis and protein quantification.

In dendritic cells (DC), the GPNMB is a transmembrane protein that acts as a coinhibitory molecule strongly inhibiting the responses of T cell (37). Major histocompatibility complex class II (MHCII) molecules similarly expressed in DC subsets. In addition, MHCII was upregulated in cultured SCs and degenerated nerve tissue (38). Therefore, we speculated whether GPNMB and MHCII co-controlled the antigen presentation of DC.
cells. However, the specific mechanism and the immune regulation need further exploration. In addition, many studies reported a number of new markers for Schwann cells as early as 2012 (39), for example, TUBB3, ATG5, and NEFM. A study on spinal muscular atrophy (SMA) showed that ubiquitin-like modification 1 (Uba1) and ubiquitin-dependent pathways play an important role in maintaining Schwann cell homeostasis and provide important additional experimental evidence (40). The above proteins were also detected in this research, but the objective of this study was determining what kind of proteomics changes have occurred in Schwann cells before and after peripheral nerve injury, thus validating only four related proteins. Similarly, Lgals3 was detected in relation to the pathophysiological processes of the CNS or the peripheral nerves (41, 42), while the other two proteins were screened (Ctsd and Sptan1), and there was no clear literature to support its role in the nervous system. Thus, studies on the function of the proteins in nerve injury are urgently needed for further exploration.

Similar to previous studies, our research is based on the in vitro culture of SCs to study the changes in the microenvironment of SCs after peripheral nerve injury (43-45). Additionally, we explored the application of sciatic nerve pre-injury model, which is generally recognized, in Wistar rats (46). However, we first used iTRAQ technology to label potential biomarkers in SCs to explore the possible changes in SCs after peripheral nerve injury. Although important discoveries were revealed in this study, there are also some limitations. First, the sample size of this study needs to be further expanded, and the selected peripheral nerves should be more diverse. Second, the pathways selected in this study need to be further validated. The changes in SCs before and after nerve injury require further exploratory mechanisms. Finally, we just explored SCs in vitro; the transplantation of SCs in conjunction with other cells into animals is the next major task.

Marking proteins based on iTRAQ technology is a popular topic in the current studies on protein labeling (47-49). We hope that this study further explored the changes in SCs in the peripheral environment after injury and provide a new approach for better clinical application of SCs.

Conclusion

We used iTRAQ-Orbitrap LC-MS/MS technique and bioinformatics analysis to conduct a proteomics study to identify proteins that were differentially expressed between ASCs and NSCs. Based on our findings, GPNMB, ENPP3, Thbs2, and Lgals3 may play a key role in repair of SCs after peripheral nerve injury. Here, we report a new finding on SCs after nerve injury and warrants further studies in the future.

Acknowledgment

This work was supported by grants from the State Key Program of National Natural Science Foundation of China (81620108018), State General Program National Natural Science Foundation of China (81371957), and Key Program Sponsored by the Tianjin Science and Technology Committee, China (14RCGSFSY00044, 13RCCFSY19000).

Conflict of Interest

The authors have no conflicts of interest to declare.

References

1. Birbeck GL, Meyer AC, Oggunniyi A. Nervous system disorders across the life course in resource-limited settings. Nature 2015; 527:167-171.
2. Martinez AR, Faber I, Nucci A, Appenzeller S, Franca MC. Autoimmune neuropathies associated to rheumatic diseases. Autoimmun Rev 2017; 16:335-342.
3. Huang H, Mao G, Chen L, Liu A. Progress and challenges with clinical cell therapy in neurorestoratology J Neurorestoratol 2015; 3:91-95.
4. Gross G, Eshhar Z. Therapeutic potential of T-cell chimeric antigen receptors (CARs) in cancer treatment: counteracting off-tumor toxicities for safe CAR T-cell therapy. Annu Rev Pharmacol Toxicol 2016; 56:59-83.
5. Sarljar P, Rice CM, Scolding NJ. Cell therapy for multiple sclerosis. CNS Drugs 2017; 31:453-469.
6. Ansari S, Seagroves JT, Chen C, Shah K, Aghafoo T, Wu BM, et al. Dental and orofacial mesenchymal stem cells in craniofacial regeneration: the prosthodontist’s point of view. J Prosthet Dent 2017; 118:455-461.
7. Boilly B, Faulkner S, Jobling P, Hondermarck H. Nerve dependence: from regeneration to cancer. Cancer Cell 2007; 31:342-354.
8. Zawadzka M, Rivers LE, Fancy SP, Zhao C, Tripathi R, Jamen E, et al. CNS-resident glial progenitor/stem cells produce Schwann cells as well as oligodendrocytes during repair of CNS demyelination. Cell Stem Cell 2010; 6:578-590.
9. Koenig HL, Schumacher M, Ferzaz B, Thi AN, Ressouches F, et al. Progesterone synthesis and myelin formation by Schwann cells. Science 1995; 268:1500-1503.
10. Pearse DD, Pereira FC, Marcillo AE, Bates ML, Berrocal YA, Filbin MT, et al. cAMP and Schwann cells promote axonal growth and functional recovery after spinal cord injury. Nat Med 2004; 10:610-616.
11. Park HW, Lim MJ, Jung H, Lee SP, Paik KS, Chang MS. Human mesenchymal stem cell-derived Schwann cell-like cells exhibit neurotrophic effects, via distinct growth factor production, in a model of spinal cord injury. Glia 2010; 58:1118-1132.
12. Carlson KB, Singh P, Feaster MM, Ramnarain A, Pavlides C, Chen ZL, et al. Mesenchymal stem cells facilitate axon sorting, myelination, and functional recovery in paralyzed mice deficient in Schwann cell-derived laminin. Glia 2011; 59:267-277.
13. Lai BQ, Che MT, Du BL, Zeng X, Ma YH, Feng B, et al. Transplantation of tissue engineering neural network and formation of neuronal relay into the transected rat spinal cord. Biomaterials 2016; 109:40-54.
14. Lavdas AA, Papastefanaki E, Thomaidou D, Matsas R. Cell adhesion molecules in gene and cell therapy approaches for nervous system repair. Curr Gene Ther 2011; 11:90-100.
15. Yi S, Tang X, Ju S, Liu J, Ding F, Gu X. Microarray and qPCR analyses of wallerian degeneration in rat sciatic nerves. Front Cell Neurosci 2017; 11:22.
16. Yu J, Gu X, Yi S. Ingenuity pathway analysis of gene expression profiles in distal nerve stump following nerve injury: insights into wallerian degeneration. Front Cell Neurosci 2016; 10:274.
17. Zhang L, Jia X, Jin JQ, Lu H, Tan Z. Recent 5-year findings and technological advances in the proteomic study of HIV-associated disorders. Genomics Proteomics Bioinformatics 2017; 15:110-120.
18. Zhang P, Zhu S, Li Y, Zhao M, Liu M, Gao J, et al. Quantitative proteomics analysis to identify diffuse axonal injury biomarkers in rats using iTRAQ coupled LC-MS/MS. J Proteom 2016; 133:93-99.
19. Chen J, Ge L, Liu A, Yuan Y, Ye J, Zhong J, et al. Identification of pathways related to FA1/F, pylori-associated gastric carcinogenesis through an integrated approach based on iTRAQ quantification and literature review. J Proteom 2016; 131:163-176.
20. Mehrotra S, Goyal V. Evaluation of designer crops for biosafety—A scientist’s perspective. Gene 2013; 515:241-248.
21. Yang S, Pei Y, Zhao A. iTRAQ-based proteomic analysis of porcine kidney epithelial PKK5 cells infected with pseudorabies virus. Sci Rep 2017; 7:45922.
22. Woodhoo A, Alonso MBD, Drooght A, Turmaine M, D’Antonio M, Parkinson DB, et al. Notch controls embryonic Schwann cell differentiation, postnatal myelination and adult plasticity. Nat Neurosci 2009; 12:839-847.
23. Kelhoff G, Fansa H, Schneider W, Wolf G. In vivo predegeneration of peripheral nerves: an effective technique to obtain activated Schwann cells for nerve conduits. J Neurosci Methods 1999; 89:17-24.
24. Zhou XH, Lin W, Ren YM, Liu S, Fan BY, Wei ZJ, et al. Comparison of DNA methylation in Schwann cells before and after peripheral nerve injury in rats. BioMed Res Int 2017; 2017.
25. Hu X, Li N, Wu L, Li C, Li C, Zhang L, et al. Quantitative iTRAQ-based proteomic analysis of phosphoproteins and ABA-regulated phosphoproteins in maize leaves under osmotic stress. Sci Rep 2015; 5:15626.
26. Ma J, Yao Y, Wang P, Liu Y, Zhao L, Li Z, et al. MiR-152 functions as a tumor suppressor in glioblastoma stem cells by targeting Kruppel-like factor 4. Cancer Lett 2014; 355:85-95.
27. Burnside MN, Pyatt RE, Hughes A, Baker PB, Pierson CR. Complex brain malformations associated with chromosome 6q27 gain that includes THBS2, which encodes thrombospondin 2, an astrocyte-derived protein of the extracellular matrix. Pediatr Dev Pathol 2015; 18:59-65.
28. Akane H, Saito F, Shiraki A, Imatanaka N, Akahori Y, Itahashi K, et al. The novel monoclonal antibody 9F5 reveals expression of a fragment of GPNMB/osteocardin processed by furin-like protease(s) in a subpopulation of microglia in neonatal rat brain. Glia 2016; 64:1938-1961.
29. Shen M, Ji Y, Zhang S, Shi H, Chen G, Gu X, et al. A proteome map of primary cultured rat Schwann cells. J Proteome Sci 2012; 10:20.
30. Aghamaleky Sarvestany A, Hunter G, Tavendale A, Lamont DJ, Llaverio Hurtado M, Graham LC, et al. Label-free quantitative proteomic profiling identifies disruption of ubiquitin homeostasis as a key driver of Schwann cell defects in spinal muscular atrophy. J Proteome Res 2014; 13:4546-4557.
31. Kawahara K, Hirata H, Obuchi K, Nishi K, Maeda A, Kuniyasu A, et al. The role of nerve microenvironment for neurofibroma development. Oncotarget 2016; 7:61500-61508.
32. Wang Y, Liu H, Liang D, Huang Y, Zeng Y, Xing X, et al. The transcription factor MITF is a critical regulator of GPNMB expression in dendritic cells. Cell commun signal 2015; 13:19.
33. Weiss T, Taschner-Mandl S, Bileck A, Slany A, Kromp F, Rifatbegovic F, et al. Proteomics and transcriptomics of peripheral nerve tissue and cells unravel new aspects of the human Schwann cell repair phenotype. Glia 2016; 64:2133-2153.
34. Coughlin L, Morrison RS, Horner PJ, Inman DM. Mitochondrial morphology differences and mitophagy deficit in murine glaucomatous optic nerve. Invest Ophthalmo Vis Sci 2015; 56:1437-1446.
35. Du J, Liu J, Yao S, Mao H, Peng J, Sun X, et al. Prompt peripheral nerve regeneration induced by a hierarchically aligned fibrin nanofiber hydrogel. Acta Biomater 2017; 55:296-309.
36. Liao CP, Pradhan S, Chen Z, Patel AJ, Booker RC, Le LQ. The role of nerve microenvironment for neurofibroma development. Oncotarget 2016; 7:61500-61508.
37. Dey I, Midha N, Singh G, Forsyth A, Walsh SK, Singh B, et al. Diabetic Schwann cells suffer from nerve growth factor and neurotrophin-3 underproduction and poor associability with axons. Glia 2013; 61:1990-1999.
38. Civit S, Emmez G, Dere UA, Borcek AO, Emmez H. Effects of quercetin on chronic constriction nerve injury in an experimental rat model. Acta Neurochir 2016; 158:959-965.
39. Wu Z, Ding N, Yu M, Wang K, Luo S, Zou W, et al. Identification of potential biomarkers for the rat models of different sizes by iTRAQ-based proteomic profiling. J Mol cell Sci 2017; 10:2052.
40. Subbanayya Y, Mir SA, Renuse S, Manda SS, Pinto SM, Puttamallesh VN, et al. Identification of differentially expressed serum proteins in gastric adenocarcinoma. J Proteom 2015; 127:80-88.
41. Wang Y, Liu H, Liang D, Huang Y, Zeng Y, Xing X, et al. The novel monoclonal antibody 9F5 reveals expression of a fragment of GPNMB/osteocardin processed by furin-like protease(s) in a subpopulation of microglia in neonatal rat brain. Glia 2016; 64:1938-1961.
42. Coughlin L, Morrison RS, Horner PJ, Inman DM. Mitochondrial morphology differences and mitophagy deficit in murine glaucomatous optic nerve. Invest Ophthalmo Vis Sci 2015; 56:1437-1446.
43. Du J, Liu J, Yao S, Mao H, Peng J, Sun X, et al. Prompt peripheral nerve regeneration induced by a hierarchically aligned fibrin nanofiber hydrogel. Acta Biomater 2017; 55:296-309.
44. Liao CP, Pradhan S, Chen Z, Patel AJ, Booker RC, Le LQ. The role of nerve microenvironment for neurofibroma development. Oncotarget 2016; 7:61500-61508.
45. Dey I, Midha N, Singh G, Forsyth A, Walsh SK, Singh B, et al. Diabetic Schwann cells suffer from nerve growth factor and neurotrophin-3 underproduction and poor associability with axons. Glia 2013; 61:1990-1999.