Structure and properties of a novel fulleride Sm_6C_{60}

X. H. Chen, Z. S. Liu and S. Y. Li
Structural Research Laboratory and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China

H. C. Dam, and Y. Iwasa
Japan Advanced Institute of Science and Technology
Tatsunokuchi, Ishikawa 923-1292, Japan
(March 12, 1999)

Abstract

A novel fulleride Sm_6C_{60} has been synthesized using high temperature solid state reaction. The Rietveld refinement on high resolution synchrotron X-ray powder diffraction data shows that Sm_6C_{60} is isostructural with body-centered cubic A_6C_{60} ($A=K$, Ba). Raman spectrum of Sm_6C_{60} is similar to that of Ba_6C_{60}, and the frequencies of two A_g modes in Sm_6C_{60} are nearly the same as that of Ba_6C_{60}, suggesting that Sm is divalent and hybridization between C_{60} molecules and the Sm atom could exist in Sm_6C_{60}. Resistivity measurement shows a weak T-linear behavior above 180 K, the transport at low temperature is mainly dominated by granular-metal theory.

PACS numbers: 71.20.Tx, 78.30.-j, 67.57.Hi

Alkali intercalation into the C_{60} host lattice is a successful technique for synthesizing new fullerides. Hereafter, an extensive research has been concentrated on the intercalation of a wide variety of atoms or molecules in the C_{60} solids. Intercalation of alkali metals in the C_{60} solids yields various structural compounds A_xC_{60} ($x=1$, 3, 4, 6) with different physical property. Among these, the superconducting compounds, A_3C_{60}, has attracted considerable interest. In this system, the fcc lattice parameter and band filling are tunable by changing the intercalants, T_c goes up with increasing lattice parameter, while it rapidly decreases when the nominal valence (n) shifts from the half-filling n=3 of t_{1u} band.

The study was then extended to the alkali-earth series of AE_xC_{60} the electrons are introduced by intercalation of alkali-earth metals into the next lowest unoccupied molecular orbital with t_{1g} symmetry. The superconducting compounds with various structures and critical temperatures were prepared (Ca_5C_{60}, Ba_4C_{60}, Sr_4C_{60}). Such tolerance for the C_{60} molecular valence in t_{1g} superconductors makes a striking contrast with the strict constraint for the valence state in the case of t_{1u} superconductors.

The rare-earth metals were also intercalated into the C_{60} solids, but only one phase $RE_{2.75}C_{60}$ ($RE=Yb$, Sm) was discovered so far. In this system, the basic structure of
$RE_{2.75}C_{60}$ is face-centered cubic, but the cation vacancy ordering in tetrahedral sites leads to a superstructure accompanied with slight lattice deformation from cubic to orthorhombic. The RE cations occupying the octahedral sites experience off-center displacements since one out of every eight tetrahedral sites in the subcell is vacant. Such vacancy-ordered structure of $RE_{2.75}C_{60}$ can be understood within a simple electrostatic energy model. In this paper, we report synthesis and structure of a novel Sm-intercalated compound Sm_6C_{60}, which is isostructural with bcc A_6C_{60} ($A=K, Ba$). It suggests that the cation vacancy ordering could not exist in the highly doped C_{60} with rare earth metals. Raman scattering indicates that the positions of the two A_g modes in Sm_6C_{60} are the same as that of Ba_6C_{60}, suggesting that the Sm is divalent and hybridization between C_{60} and Sm atoms could exist in Sm_6C_{60}. The highly Sm-doped Sm_6C_{60} was confirmed to be metallic by resistivity measurement.

Samples of Sm_6C_{60} was synthesized by reacting stoichiometric amount of powers of Sm and C_{60}. A quartz tube with mixed powder inside was sealed under high vacuum of about 2×10^{-6} torr. The sample of Sm_6C_{60} were calcined at 550 °C for 216 hours with intermediate grindings of two times. X-ray diffraction(XRD) measurements were carried out with synchrotron radiation at the photon Factory of the National Laboratory for High Energy Physics (KEK-PF, Tsukuba). The synchrotron beam was monochromatized to 0.8500 Å. Rietveld refinements for the XRD patterns were carried out using Fullprof-98. X-ray diffractograms showed that all samples were single phase, which is also confirmed by the single peak feature of the pentagonal pinch $A_g(2)$ mode in the Raman spectra.

Raman scattering experiments were carried out using the 632.8 nm line of a He-Ne laser in the Brewster angle backscattering geometry. The scattering light was detected with a Dilor xy multichannel spectrometer using a spectral resolution of 3 cm$^{-1}$. In order to obtain good Raman spectra, the samples were ground and pressed into pellets with pressure of about 20 kg/cm2, which were sealed in Pyrex tubes under a high vacuum of 10^{-6} torr.

Resistivity measurements were carried out using four-probe method. Electrical contacts of less than 2 Ω resistance were established by silver paste. Preparation of samples and electrical contacts was carried out in a controlled argon glove box where the oxygen and water vapor levels were maintained below a few parts per million.

Figure 1 shows the XRD pattern of the Sm_6C_{60} sample. The pattern is similar to that for the well-known bcc structure found in A_6C_{60} ($A=K, Rb, Cs, and Ba$). All the observed peaks are indexed with bcc lattice of $a=10.890$ Å. The diffraction pattern of Sm_6C_{60} samples fits well to a single body-centered cubic structure. We have carried out a Rietveld refinement of the structure using the Fullprof-98. The solid line in Fig.1 shows fitted data to a model of the bcc structure (space group $I_{m\bar{3}}$). Refinement of 220 peaks yielded an intensity R factor of $R_w=9.9\%$ and $R_p=9.4\%$, and the following coordinates: C1 at 0.0660, 0.0, 0.3201; C2 at 0.1320, 0.1070, 0.2796; C3 at 0.0660, 0.2140, 0.2392; and Sm at 0.0, 0.5, 0.2749. Mean-square thermal amplitudes of the isotropic Debye-Waller factors were refined to 0.016 and 0.103 Å2 for C and Sm, respectively, and all samarium sites were found to be occupied. The refined lattice constant, $a=10.890$ Å, however, is significantly smaller than measured values for K_6C_{60} and Cs_6C_{60} and Ba_6C_{60} and Rb_6C_{60} and suggests a 9.43 Å nearest-neighbor separation for the molecules. The atomic coordinates of C1, C2, C3 and Sm are nearly the same as that of A_6C_{60} ($A=K, Rb, Cs, and Ba$).

For the low Sm-doped C_{60}, $Sm_{2.75}C_{60}$ is isostructural with $Yb_{2.75}C_{60}$ and different from the fcc A_3C_{60} ($A=K, Rb$). In this structure, the fcc-based subcell of four C_{60} molecules has...
Sm cations occupying all four octahedral (O) interstitial sites but only seven of the eight tetrahedral (T) sites. The unoccupied site alternates between adjacent T sites in each direction, leading to an unit-cell doubling with eight ordered vacancies. The O-site Sm cations are displaced from the centers of their interstices towards the nearest neighbor vacancy, effectively reducing the nearest neighbor coordination of C_{60} anions around the O-site cation from six to three. Thus, in the unit cell there are three types of C_{60} molecules. In contrast to the $RE_{2.75}C_{60}$, the highly Sm-doped Sm_6C_{60} is isostructural with A_6C_{60} ($A=K$, Rb, Cs, and Ba). It suggests that further intercalation of Sm into C_{60} solids leads to disappearance of cation-vacancy ordering and formation of a cation-disordered phase. The number of interstitial sites increases from three per C_{60} in a faced-centred cubic (fcc) structure to six in the bcc structure. Additionally, the distinction between octahedral and tetrahedral sites is removed in the bcc structure, all interstitial sites becoming equivalent with distorted tetrahedral symmetry. For the $RE_{2.75}C_{60}$, the vacancies create three inequivalent types of C_{60} anions. Each anion rotates about an internal axis to maximize the number of pentagon orientated towards the surrounding cations. In the highly Sm-doped Sm_6C_{60}, all interstitial sites are filled by six samarium atoms. All C_{60} balls are equivalent and orientationally uniform, and all the tetrahedral holes are surrounded by two pentagons and two hexagons.

Figure 2 shows room temperature Raman spectrum for the polycrystalline sample of Sm_6C_{60}. In the spectrum, only one peak of pentagonal pinch $A_g(2)$ mode is observed, providing an evidence that the sample is a single phase. This agrees fairly well with the x-ray diffraction patterns. It is worthy to note that the Raman spectrum of Sm_6C_{60} is amazingly similar to that of Ba_6C_{60}, suggesting that the electronic states of Sm_6C_{60} is similar to that of Ba_6C_{60}. The positions (ω) and halfwidths (γ) of the Raman modes observed are listed in Table I. For comparison, the lines for pure C_{60} and Ba_6C_{60} are included in Table I. The frequencies of the two A_g derived modes are 505.5 and 1371 cm$^{-1}$, respectively. Which are different from 498.3 and 1432.8 cm$^{-1}$ observed for the corresponding A_g modes in $Sm_{2.75}C_{60}$. It also provides a direct evidence for an existence of new phase in Sm-doped C_{60} system. It is seen in Table I that the frequencies of the two A_g modes are nearly the same as those in Ba_6C_{60}. It suggests that C_{60} in Sm_6C_{60} is hexavalent, being in a fair agreement with a simple expectation assuming that Sm cation is divalent. This is consistent with the results of near-edge and extended X-ray absorption fine structure in $Yb_{2.75}C_{60}$ and Raman scattering results of $Sm_{2.75}C_{60}$ in which Sm cation is confirmed to be divalent.

Two theoretical calculations based the local density approximation have shown a strong hybridization between the alkaline-earth-atom states and the C_{60} π states. Recent photoemission studies have also indicated the presence of a hybrid band with incomplete charge transfer from alkaline-earth metals to C_{60}, as a consequence of the competition between covalent $Ba-C_{60}$ bonding and ionic contribution. The same frequency of the $A_g(2)$ mode as that in Ba_6C_{60}, which is known as a sensitive probe for the degree of charge transfer on C_{60} molecule, indicates that the hybridization between Sm atom and C_{60} molecules could exist in Sm_6C_{60}. In fact, the size of the divalent samarium, 1.18 Å, placed at (0.22, 0.5, 0) requires a lattice constant of about 11.5 Å assuming spherically symmetric molecules. The relatively small lattice constant measured also may indicate strong orbital overlap between the neighboring molecules. This hybridization may play an essential role for a larger Raman downshift of the pentagonal pinch $A_g(2)$ mode than that expected by the simple relation between Raman shift and charge transfer widely observed in K_xC_{60}.

In the table I, the positions and halfwidths were obtained by fitting the experimental data with Lorentzian line shape. It is easily seen that the lowest frequency \(H_g \) modes are split into several components. The similar behavior has been observed in single crystal \(K_3C_{60} \) at low temperature and in \(Ba_xC_{60} \) (x=4 and 6).\(^{15}\) \(H_g(2) \) mode is apparently split into five components in \(Sm_6C_{60} \). The inset of Fig.2 shows the results of a line-shape analysis for \(H_g(2) \) mode. It suggests that the five-fold degeneracy is completely lift. This splitting of \(H_g(2) \) mode in \(Sm_6C_{60} \) is unexpected since the group theoretical consideration predicts a splitting into two in the space group \(I_m3^- (T'_5) \). The splitting might suggest a symmetry lowering which is not detected in the X-ray diffraction. This type of disagreement between microscopic spectroscopy and structural analysis was observed in \(Rb_xC_{60} \)\(^{16}\) and \(Ba_6C_{60} \).\(^{17}\) From Table I, we can find that the positions for most of modes are the same, and the similar splitting is observed in \(Sm_6C_{60} \) and \(Ba_6C_{60} \). This strongly indicates that \(Sm_6C_{60} \) and \(Ba_6C_{60} \) have a similar crystal structure and electronic states.

Figure 3 show the temperature dependence of resistivity for the sample \(Sm_6C_{60} \). No superconducting transition is observed at the temperature down to 4.2 K. A minimum resistivity appears at about 180 K. The temperature coefficient of resistivity is positive over 180 K, while is negative below 180 K. The data in Fig.3 are fitted by the following formula:

\[
\rho = ae^{-bT^{1/2}} + cT + d
\]

where a, b, c, and d are the fitting parameters. It is found that data can be well fitted over the whole temperature range of 4.2-300 K by the formula. The first item in the formula is written according to the granular metal theory, in which the \(ln\rho \) is proportional to the \(T^{-1/2} \). The linear-T item is used to fit the metallic behavior at the high temperature. The inset of Fig.3 plots the same data as \(ln\rho \) vs \(T^{-1/2} \), and almost shows a linear relation below 180 K.

It suggests that the transport is dominated by the granular-metal theory. Stepniak et al. have reported that the thin film samples of \(Rb_xC_{60} \) can be described within the framework of granular metal theory.\(^{16}\) The sample \(Sm_6C_{60} \) shows a weak localization behavior at low temperature and the ratio \(\rho(4.2K)/\rho(290K) \) is only 1.7. In addition, the transport at low temperature can be explained by the granular metal theory. These results indicate that the sample \(Sm_6C_{60} \) is metallic. This is in apparent contradiction to the insulating electronic structure if the charge complete transfer from the rare-earth divalent Sm atom to \(C_{60} \) molecules could result in the full occupation of the \(t_{1g} \) band. The metallic behavior of \(Sm_6C_{60} \) suggests that there could exist a hybridization between rare-earth Sm \(f \) orbitals and \(C_{60} \) \(\pi \) orbitals, being similar to the case of \(Ba_6C_{60} \). In the case of \(Ba_6C_{60} \), the theoretical calculation based on the local-density approximation shows that the hybridization between the Ba atom \(s \) states and the \(C_{60} \) \(\pi \) states is essential for the metallic electronic structure.\(^{17}\) In addition, the same Raman shift of the \(A_g(2) \) pinch mode for \(Sm_6C_{60} \) and \(Ba_6C_{60} \) also provides a direct evidence for a hybridization between Sm atoms and \(C_{60} \) molecules. In order to further confirm the hybridization in \(Sm_6C_{60} \), a theoretical calculation or photoemission study is necessary.

In summary, we synthesized a novel fulleride \(Sm_6C_{60} \), which was characterized by X-ray diffraction, Raman scattering and resistivity measurement. \(Sm_6C_{60} \) adopts body-centered cubic structure, being similar to that of \(A_xC_{60} \) (\(A=K, Rb, Ba \)). Raman spectrum of \(Sm_6C_{60} \) is strikingly similar to that of \(Ba_6C_{60} \). The same Raman shift of the \(A_g(2) \) pinch mode in \(Sm_6C_{60} \) and \(Ba_6C_{60} \) suggests that Sm is divalent and there exists a hybridization between
rare-earth Sm atom and the C_{60} molecules, which could be responsible for the metallic behavior of Sm_6C_{60} observed by resistivity measurement. A weak T-linear metallic behavior is observed down to 180 K, the resistivity data at low temperature can be explained by the granular-metal theory.

ACKNOWLEDGMENTS

This work is supported by Grant from Natural Science Foundation of China.
REFERENCES

1 R.C. Haddon, A.F. Hebard, M.J. Rosseinsky, D.W. Murphy, S.J. Duclos, K.B. Lyons, B. Miller, J.M. Rosamillia, R.M. Fleming, A.R. Kortan, S.H. Glarum, A.V. Makhija, A.J. Muller, R.H. Eick, S.M. Zahurak, R. Tycko, G. Dabbagh, and F.A. Thiel, Nature 350, 320(1991).
2 P.W. Stephens, G. Bortel, G. Faigel, M. Tegze, A. Janossy, S. Pekker, G. Oszlanyki, L. Forro, Nature 370, 636(1994).
3 A.F. Hebard, M.J. Rosseinsky, R.C. Haddon, D.W. Murphy, S.H. Glarum, T.T.M. Palstra, A.P. Ramirez, and A.R. Kortan, Nature 350, 600(1991).
4 P.W. Stephens, L. Mihaly, P.L. Lee, R.L. Wheten, S.M. Huang, R.B. Kaner, F. Diederich, and K. Holczer, Nature 351, 632(1991).
5 R.M. Fleming, M.J. Rosseinsky, A.P. Ramirez, D.W. Murphy, J.C. Tully, R.C. Haddon, T. Siegrist, R. Tycko, H. Glarum, P. Marsh, G. Dabbagh, S.M. Zahurak, A.V. Makhija, and C. Hampton, Nature 352, 701(1991).
6 O. Zhou, J.E. Fisher, N. Coustel, S. Kycia, Q. Zhu, A.R. McGhie, W.J. Romanow, J.P.Jr. McCauley, A.B. Smith, and D.E. Cox, Nature 351, 462(1991).
7 R.M. Fleming, A.P. Ramirez, M.J. Rosseinsky, D.W. Murphy, R.C. Haddon, S.M. Zahurak, and A.V. Makhija, Nature 352, 787(1991).
8 T. Yildirim, L. Barbedette, J.E. Fisher, C.L. Lin, J. Robbert, P. Petit, and T.T.M. Palstra, Phys. Rev. Lett. 77, 167(1996).
9 A.R. Kortan, N. Kopylov, S. Glarum, E.M. Gyorgy, A.P. Ramirez, R.M. Fleming, F.A. Thiel, and R.C. Haddon, Nature 355, 529(1992).
10 A.R. Kortan, N. Kopylov, S. Glarum, E.M. Gyorgy, A.P. Ramirez, R.M. Fleming, O. Zhou, F.A. Thiel, P.L. Trevor, and R.C. Haddon, Nature 360, 566(1992).
11 A.R. Kortan, N. Kopylov, E. Özdas, A.P. Ramirez, R.M. Fleming, and R.C. Haddon, Chem. Phys. Lett. 233, 501(1994).
12 A.R. Kortan, N. Kopylov, R.M. Fleming, O. Zhou, F.A. Thiel, and R.C. Haddon, Phys. Rev. B 47, 13070(1993).
13 M. Baenitz, M. Heinze, K. Lüders, H. Werner, R. Schögl, M. Weiden, G. Sparn, and F. Steglich, Solid State Commun. 96, 539(1995).
14 E. Özdas, A.R. Kortan, N. Kopylov, A.R. Ramirez, T. Siegrist, K.M. Rabe, H.E. Bair, S. Schuppler, and P.H. Citrin, Nature 375, 126(1995).
15 X.H. Chen and G. Roth, Phys. Rev. B 52, 15534(1995).
16 K.M. Rabe and P.H. Citrin, Phys. Rev. B 58, 551(1998).
17 Q. Zhu, O. Zhou, N. Coustel, G.B.M. Vaughan, J.P.Jr. McCauley, W.J. Romanov, J.E. Fisher, and A.B. Smith, Science 254, 545(1991).
18 X.H. Chen, S. Taga, and Y. Iwasa, Phys. Rev. B (to be published).
19 X.H. Chen, T. Takenobu, T. Muro, H. Fudo, and Y. Iwasa, submitted to Phys. Rev. B
20 P.H. Citrin, E. Özdas, S. Schuppler, A.R. Kortan, and K.B. Lyons Phys. Rev. B 56, 5213(1997).
21 S. Saito and A. Oshiyama, Phys. Rev. Lett. 71, 121(1993).
22 S.C. Erwin and M.R. Pederson, Phys. Rev. B 47, 8249(1993).
23 Th. Schedel-Niedrig, M.C. Bohm, H. Werner, J. Schulte, and R. Schlogl, Phys. Rev. B 55, 13542(1997).
24 S.J. Duclos, R.C. Haddon, S.H. Glarum, A.F. Hebard, and K.B. Lyons, Science 254, 1625(1991).
25 H. Kuzmany, M. Matus, B. Burger, and J. Winter, Adv. Mater. 6, 731(1994).
26 J. Winter and H. Kuzmany, Phys. Rev. B 53, 655(1996).
27 R.E. Walstedt, D.W. Murphy, and M.J. Rosseinsky, Nature 362, 611(1993).
28 F. Stepniak, P.J. Benning, D.M. Poirier, and J. Weaver, Phys. Rev. B 48, 1899(1993).
TABLE I. Positions and linewidths (in parentheses) for the Raman modes in C_{60} and Ba_6C_{60}

I_h mode	C_{60} ω (γ) (cm$^{-1}$)	Ba_6C_{60} ω (γ) (cm$^{-1}$)	Sm_6C_{60} ω (γ) (cm$^{-1}$)
$A_g(1)$	493 (5.0)	506.5 (5.0)	505.5 (3.3)
$A_g(2)$	1469 (12.1)	1372.5 (12.1)	1371.0 (7.0)
$H_g(1)$	270 (5.2)	274.5 (5.2)	263.4 (7.8)
		281.8 (2.6)	280.0 (13.9)
$H_g(2)$	431 (4.4)	385.6 (4.4)	367.2 (7.1)
		405.8 (2.2)	391.6 (5.1)
		415.6 (2.4)	400.8 (4.1)
		428 (16.8)	415.9 (28.2)
		438.8 (2.8)	426.8 (6.4)
$H_g(3)$	709 (4.8)	585.2 (4.8)	587.5 (28.0)
		602.1 (5.2)	603.2 (10.8)
		622.3 (3.7)	638.0 (32.0)
		651.8 (12.0)	
$H_g(4)$	773 (8.5)	732.5 (8.5)	740.0 (9.0)
$H_g(5)$	1099 (6.0)	1082 (6.0)	1084.0 (12.0)
			1110.2 (10.8)
$H_g(6)$	1248 (26)	1224 (26)	1210.5 (6.5)
			1227.2 (10.3)
$H_g(7)$	1426		
$H_g(8)$	1573 (25.0)	1437 (25.0)	1440.5 (20.2)
FIGURE CAPTIONS

Figure 1:
X-ray diffraction pattern of the sample Sm_6C_{60} collected with synchrotron radiation. The synchrotron beam was monochromatized to 0.8500 Å. The crosses are experimental points and the solid line is a Rietveld fit to the model Sm_6C_{60} in the space group $I_{m\overline{3}}$. The allowed reflection positions are denoted by ticks.

Figure 2:
Room temperature Raman spectrum of Sm_6C_{60}. The results of a line-shape analysis for $H_g(2)$ mode are shown (inset). The dash lines are computer fits for the individual components, which add up to the full line on the top of the experimental results.

Figure 3:
The temperature dependence of resistivity for the polycrystalline Sm_6C_{60}. Inset plots the same data as $ln\rho$ vs $T^{-1/2}$. A linear relation would be expected if the charge transport did follow the granular-metal theory.
Fig. 1

X.H. Chen et al.
X.H. Chen et al.
Fig. 3