RENORMALIZED HIGHER POWERS OF WHITE NOISE AND THE VIRASORO–ZAMOLODCHIKOV–w_∞ ALGEBRA

LUIGI ACCARDI AND ANDREAS BOUKAS

Abstract. Recently (cf. [1] and [2]) L. Accardi and A. Boukas proved that the generators of the second quantized Virasoro–Zamolodchikov–w_∞ algebra can be expressed in terms of the Renormalized Higher Powers of White Noise and conjectured that this inclusion might in fact be an identity, in the sense that the converse is also true. In this paper we prove that this conjecture is true. We also explain the difference between this result and the Boson representation of the Virasoro algebra, which realizes, in the 1–mode case (in particular without renormalization), an inclusion of this algebra into the full oscillator algebra. This inclusion was known in the physical literature and some heuristic results were obtained in the direction of the extension of this inclusion to the 1–mode Virasoro–Zamolodchikov–w_∞ algebra. However the possibility of an identification of the second quantizations of these two algebras was not even conjectured in the physics literature.

1. Introduction

Definition 1. The standard d–dimensional Fock scalar White Noise is defined by a quadruple \{$\mathcal{H}, b_t, b_t^+, \Phi$\}, where $t \in \mathbb{R}^d$, \mathcal{H} is a Hilbert space, $\Phi \in \mathcal{H}$ is a unit vector called the Fock vacuum, and b_t, b_t^+ are operator valued Hida distributions satisfying the Boson commutation relations

\[[b_t, b_s^+] = \delta(t - s) \]

and having the Fock property

\[b_t \Phi = 0 \]

and the adjoint property

\[(b_t^+)^\dagger = b_t \]

plus additional domain properties (not specified here).

Date: March 27, 2022.

1991 Mathematics Subject Classification. 60H40, 81S05, 81T30, 81T40.

Key words and phrases. Renormalized powers of white noise, second quantization, w_∞-algebra, Virasoro algebra, Zamolodchikov algebra, Conformal field theory.

The material in this paper was presented by Professor Luigi Accardi at the “International Workshop on White Noise Theory and its Applications” held at Meijo University in Nagoya, Japan, on September 18, 2006 and at the “Workshop: Non-Commutative Harmonic Analysis with applications to Probability” held in Bedlevo, Poland, September 30 – October 5, 2006.
Theorem 1. Denoting S_0 the space of right–continuous step functions $f : \mathbb{R} \rightarrow \mathbb{C}$ with compact support and satisfying $f(0) = 0$, there exists a $*$–Lie algebra with generators given by:

$$\{B^n_k(f) : k, n \in \mathbb{N}, f \in S_0\}$$

involution given by:

$$(B^n_k(f))^* = B^n_k(\bar{f})$$

and brackets given by:

$$[B^n_k(g), B^N_k(f)]_{RHPWN} := (kN - Kn) B^{n+N-1}_{k+K-1}(gf)$$

Proof. The $*$–property is clear by construction. By direct calculations one shows that the brackets $[\cdot, \cdot]_{RHPWN}$ satisfy the Jacobi relations. For details see [1] and [2]. □

The $*$–Lie algebra defined by the above theorem is called the Renormalized Higher Powers of White Noise (RHPWN) $*$–Lie algebra. The following problems arise:

(i) Construct a concrete mathematical model for the abstractly defined (RHPWN) $*$–Lie algebra.

(ii) Construct Hilbert space representations for the (RHPWN) $*$–Lie algebra.

(iii) Prove exponentiability of the symmetric generators of the (RHPWN) $*$–Lie algebra in a given Hilbert space representation and identify the corresponding (Lie) group.

Heuristic results in the physics literature (cf. [3]), and the results presented in this paper, suggest that a natural candidate for the corresponding (Lie) group is the group of area preserving diffeomorphisms on a (special) 2–manifold (there are classical realizations on the cylinder $\mathbb{R} \times S^1$).

The above given definition of the RHPWN $*$–Lie algebra was motivated by the discovery that, if the powers of the Dirac delta function are renormalized by the prescription

$$\delta^l(t - s) = \delta(s) \delta(t - s), \quad l = 2, 3, \ldots$$

then the resulting Renormalized Higher Powers of White Noise

$$B^n_k(f) := \int f(t) b^n_t b^k_{-} dt \quad ; \quad k, n \in \mathbb{N}$$

$$B^0_k(f) := \int f(t) dt \cdot 1 \quad \text{(multiple of the unique central element)}$$

which are well defined as sesquilinear forms (matrix elements) on the algebraic span of the number vectors $\prod_{i=1}^m B^i_0(f_i) \Phi$ of the usual Boson Fock space, satisfy weakly on that domain, the defining relations of the RHPWN $*$–Lie algebra in the following sense:

– the adjoint $B_n^k(f)^*$ of the sesquilinear form $B^n_k(f)$ is defined in the obvious way

– the brackets (commutator) $[B^n_k(f), B^N_k(g)]$ of the sesquilinear forms $B^n_k(f)$ and $B^N_k(g)$ is defined by bringing to normal order the products $B^n_k(f) B^N_k(g)$ and $B^N_k(g) B^n_k(f)$ by applying
the RHPWN commutation relations, including the renormalization prescription, and letting the resulting normally ordered form act on the 1–st order number vectors through the usual prescriptions.

The family of these sesquilinear forms is clearly a complex vector space with the pointwise operations and, with the above defined involution and brackets, it becomes a representation of the RHPWN $*$–Lie algebra introduced in Theorem 1.

Definition 2. On the space of all sesquilinear forms on the algebraic span of the number vectors of the usual Boson Fock space, we define a topology by the semi–norms:

\[(1.2) \quad |q|_{x,y} := |q(x, y)|\]

where q is a sesquilinear form and x, y are number vectors.

Lemma 1. Let $A_{n,k}$ be an arbitrary double sequence of complex numbers and let $f_{n,k}$ be an arbitrary double sequence in S_0. Then the sesquilinear form

\[(1.3) \quad q := \sum_{n,k} A_{n,k} B^n_k(f_{n,k})\]

is well defined (weakly) on the algebraic span of the number vectors of the usual Boson Fock space.

Proof. For any pair of number vectors x, y

\[q(x, y) = \sum_{n,k} A_{n,k} \langle x, B^n_k(f_{n,k})y \rangle\]

is a finite sum of complex numbers. \qed

It follows from Lemma 1 that the completion of the RHPWN $*$–Lie algebra with respect to the family of seminorms (1.2) is the family of formal series of the form (1.3). In the following when speaking of the RHPWN $*$–Lie algebra we will mean this larger family. Lemma 1 allows one to give a meaning to a rather general class of functions of the renormalized white noise.

Definition 3. Let $F(b_+^t, b_t)$ be a formal power series in the noncommutative indeterminates b_+^t, b_t. If, by applying the RHPWN commutation relations, including the renormalization prescriptions, one can write this series in the form

\[\sum_{n,k} A_{n,k} b_+^n b_t^k\]

where each coefficient $A_{n,k}$ is a complex number (in particular finite!), then we say that the formal power series $F(b_+^t, b_t)$ defines a function of b_+^t, b_t. The meaning of this function is that by multiplying by test functions $f_{n,k}(t)$ and integrating term by term in dt, one obtains the sesquilinear form $\sum_{n,k} A_{n,k} B^n_k(f_{n,k})$, which is well defined by Lemma 1.
In the following we will produce concrete examples of functions of b^t_1, b_t.

2. The Virasoro–Zamolodchikov–w_∞ *–Lie algebra

Following a completely different line of thought, people in conformal field theory and in string theory were led to introduce another *–Lie algebra (cf. [3], [4]).

Theorem 2. There exists a *–Lie algebra with generators

$$\{ \hat{B}^n_k : n \in \mathbb{N}, n \geq 2, k \in \mathbb{Z} \}$$

involution given by:

$$\left(\hat{B}^n_k \right)^* = \hat{B}^n_{-k}$$

and brackets given by:

$$[\hat{B}^n_k, \hat{B}^N_K]_{w_\infty} = (k(N-1) - K(n-1)) \hat{B}^{n+N-2}_{k+K}$$

Proof. See [4].

Definition 4. The *–Lie algebra defined in Theorem 2 is called the Virasoro–Zamolodchikov–w_∞ *–Lie algebra.

Notice that no test functions appear in the above definition. In our language, we can say that the above *–Lie algebra is the 1–mode version of the algebra we are interested in, or equivalently, that the algebra we are interested in, is a second quantization of the w_∞ *–Lie algebra. As usual, the existence of such an object has to be proved.

Theorem 3. There exists a *–Lie algebra with generators

$$\{ \hat{B}^n_k(f) : n \in \mathbb{N}, n \geq 2, k \in \mathbb{Z}, f \in S_0 \}$$

involution given by:

$$(\hat{B}^n_k(f))^* = \hat{B}^n_{-k}(\bar{f})$$

and brackets given by:

$$(2.1) \quad [\hat{B}^n_k(g), \hat{B}^N_K(f)]_{w_\infty} = (k(N-1) - K(n-1)) \hat{B}^{n+N-2}_{k+K}(gf)$$

Proof. Clearly, for all test functions $f, g \in S_0$ and $n, k, N, K \geq 0$,

$$[\hat{B}^N_K(g), \hat{B}^N_K(f)]_{w_\infty} = 0$$

and

$$[\hat{B}^N_K(g), \hat{B}^n_k(f)]_{w_\infty} = -[\hat{B}^n_k(f), \hat{B}^N_K(g)]_{w_\infty}$$
To show that commutation relations (2.2) satisfy the Jacobi identity we must show that for all test functions \(f, g, h \) and \(n, k_i \geq 0 \), where \(i = 1, 2, 3 \),

\[
\left[\hat{B}^{n_1}_{k_1}(f), [\hat{B}^{n_2}_{k_2}(g), \hat{B}^{n_3}_{k_3}(h)]_{w_\infty} \right]_{w_\infty} + \left[\hat{B}^{n_3}_{k_3}(h), [\hat{B}^{n_1}_{k_1}(f), \hat{B}^{n_2}_{k_2}(g)]_{w_\infty} \right]_{w_\infty} \\
+ \left[\hat{B}^{n_2}_{k_2}(g), [\hat{B}^{n_3}_{k_3}(h), \hat{B}^{n_1}_{k_1}(f)]_{w_\infty} \right]_{w_\infty} = 0
\]

i.e. that

\[
\{(k_2(n_3 - 1) - k_3(n_2 - 1))(k_1(n_2 + n_3 - 3) - (k_2 + k_3)(n_1 - 1)) + \\
(k_1(n_2 - 1) - k_2(n_1 - 1))(k_3(n_1 + n_2 - 3) - (k_1 + k_2)(n_3 - 1)) + \\
(k_3(n_1 - 1) - k_1(n_3 - 1))(k_2(n_3 + n_1 - 3) - (k_3 + k_1)(n_2 - 1))\} \hat{B}^{n_1+n_2+n_3-4}_{k_1+k_2+k_3}(fg) = 0
\]

which is true, since

\[
(k_2(n_3 - 1) - k_3(n_2 - 1))(k_1(n_2 + n_3 - 3) - (k_2 + k_3)(n_1 - 1)) + \\
(k_1(n_2 - 1) - k_2(n_1 - 1))(k_3(n_1 + n_2 - 3) - (k_1 + k_2)(n_3 - 1)) + \\
(k_3(n_1 - 1) - k_1(n_3 - 1))(k_2(n_3 + n_1 - 3) - (k_3 + k_1)(n_2 - 1)) = 0
\]

Finally, in order to show that, with involution defined by (2.1),

\[
[\hat{B}^n_k(f), \hat{B}^N_K(g)]_{w_\infty} = [(\hat{B}^N_K(g))^*, (\hat{B}^n_k(f))^*]_{w_\infty}
\]

i.e that

\[
[\hat{B}^n_k(f), \hat{B}^N_K(g)]_{w_\infty} = [\hat{B}^N_{-k}(\bar{g}), \hat{B}^n_{-k}(\bar{f})]_{w_\infty}
\]

we notice that both sides of the above equation are equal to

\[
(k(N - 1) - K(n - 1)) \hat{B}^{n+N-2}_{-(k+K)}(\bar{f}g)
\]

\[\square\]

Definition 5. The \(* \)-Lie algebra defined in Theorem 3 is called the second quantized Virasoro–Zamolodchikov– \(w_\infty \) \(* \)-Lie algebra.

The term Zamolodchikov is due to the fact that \(w_\infty \) is a large \(N \) limit of Zamolodchikov’s \(W_N \) algebra (cf [4] and [5]). The term Virasoro is justified by the following theorem.
Theorem 4. The family of operators

\[\{ \hat{B}_k^2 : k \in \mathbb{Z} \} \]

forms a \(*\)-Lie sub–algebra of the \(w_\infty \) Lie algebra with involution

\[\left(\hat{B}_k^2 \right)^* = \hat{B}_{-k}^2 \]

and brackets

\[[\hat{B}_k^2, \hat{B}_K^2]_{\text{Vir}} := (k - K) \hat{B}_{k+K}^2 \]

Remark 1. These are precisely the defining relations of the centerless Virasoro (or Witt) algebra.

Proof. The proof follows directly from Theorem 2 for \(n = N = 2 \).

The following second quantized version of the above theorem also holds.

Theorem 5. The family of operators

\[\{ \hat{B}_k^2(f) : f \in \mathcal{S}_0 ; k \in \mathbb{Z} \} \]

forms a \(*\)-Lie sub–algebra of the second quantized \(w_\infty \) Lie algebra with involution

\[\left(\hat{B}_k^2(f) \right)^* = \hat{B}_k^2(\bar{f}) \]

and brackets

\[[\hat{B}_k^2(g), \hat{B}_K^2(f)]_{\text{Vir}} := (k - K) \hat{B}_{k+K}^2(gf) \]

Proof. The proof follows directly from Theorem 3 for \(n = N = 2 \).

Definition 6. The \(*\)-Lie algebra defined in Theorem 3 is called the second quantized centerless Virasoro (or Witt) algebra.

3. The connection between the second quantized \(w_\infty \) and the RHPWN \(*\)-Lie algebras

The striking similarity between the brackets of the RHPWN \(*\)-Lie algebra

\[[B_k^n(g), B_K^N(f)]_{\text{RHPW}} := (k N - K n) B_{k+K-1}^{n+N-1}(gf) \]

and the brackets of the second quantized \(w_\infty \) \(*\)-Lie algebra

\[[\hat{B}_k^n(g), \hat{B}_K^N(f)]_{w_\infty} = (k (N - 1) - K (n - 1)) \hat{B}_{k+K}^{n+N-2}(gf) \]

strongly suggests that there should be a connection between the two. However there are also strong dissimilarities. The sets, indexing the generators of the two algebras, are different:
\{B^n_k (f) : k, n \in \mathbb{N}, f \in S_0\}

for the RHPWN \(*\)-Lie algebra, and

\{\hat{B}^n_k (f) : n \in \mathbb{N}, n \geq 2, k \in \mathbb{Z}, f \in S_0\}

for the second quantized \(w_\infty\) \(*\)-Lie algebra. The involutions in the two algebras also look quite different:

\((\hat{B}^n_k (f))^* = \hat{B}^k_n (\bar{f})\)

for the RHPWN \(*\)-Lie algebra, and

\((\hat{B}^n_k (f))^* = \hat{B}^n_{-k} (\bar{f})\)

for the second quantized \(w_\infty\) \(*\)-Lie algebra. The following Theorem 6, obtained in [1], was the first definite result in the direction of establishing a connection between the RHPWN and \(w_\infty\) \(*\)-Lie algebras.

Theorem 6. In the sense of formal power series the following identity holds:

(3.1) \[\hat{B}^n_k (f) = \int_{\mathbb{R}} f(t) e^{\frac{b^*_t - b_t}{2}} \left(\frac{b^*_t + b^*_t}{2}\right)^{-1} e^{\frac{b^*_t (b^*_t - b^*_t)}{2}} dt\]

Proof. The proof can be found in [1]. \(\square\)

The following Lemma (cf. [2]) on the generators of the Heisenberg–Weyl Lie algebra, is the basic tool used in the proofs of Theorems 6 above and 7, 9 below.

Lemma 2. Let \(x, D\) and \(h\) satisfy the Heisenberg commutation relations

\([D, x] = h, \ [D, h] = [x, h] = 0\)

Then, for all \(s, a, c \in \mathbb{C}\)

\[e^{s (x + aD + ch)} = e^{sx} e^{saD} e^{(sc + \frac{c^2 a^2}{2})h}\]

and

\[e^{sD} e^{ax} = e^{ax} e^{sD} e^{ash}\]
Theorem 7. Let \(n \geq 2 \) and \(k \in \mathbb{Z} \). Then, for all \(f \in \mathcal{S}_0 \),

\[
\hat{B}_k^n(f) = \frac{1}{2^{n-1}} \sum_{m=0}^{n-1} \binom{n-1}{m} \sum_{p=0}^{\infty} \sum_{q=0}^{\infty} (-1)^p \frac{k^{p+q}}{p! q!} B_{n-1-m+q}^m(f)
\]

where convergence of infinite sums is understood in the topology introduced in Definition 4 and the case \(k = 0 \) is interpreted as

\[
\hat{B}_0^n(f) = \frac{1}{2^{n-1}} \sum_{m=0}^{n-1} \binom{n-1}{m} B_{n-1-m}(f)
\]

Proof. For fixed \(t, s \in \mathbb{R} \), we will make repeated use of Lemma 2 with \(D = b_t \), \(x = b_x \) and \(h = \delta(t-s) \). We have

\[
\hat{B}_k^n(f) = \int_{\mathbb{R}^d} f(s) e^{\frac{k}{2} (b_t - b_s)} \left(\frac{b_s + b_x}{2} \right)^{n-1} e^{\frac{k}{2} (b_x - b_s)} ds
\]

\[
= \frac{1}{2^{n-1}} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} f(t) e^{\frac{k}{2} (b_t - b_s)} (b_s + b_x)^{n-1} e^{\frac{k}{2} (b_x - b_s)} \delta(t-s) dt ds
\]

\[
= \frac{1}{2^{n-1}} \int_{\mathbb{R}^d} \frac{\partial^{n-1}}{\partial w^{n-1}} \bigg| w=0 \int_{\mathbb{R}^d} f(t) e^{-\frac{k}{2} (b_t - b_s)} w(b_t + b_x) e^{\frac{k}{2} (b_x - b_s)} \delta(t-s) dt ds
\]

\[
= \frac{1}{2^{n-1}} \int_{\mathbb{R}^d} \frac{\partial^{n-1}}{\partial w^{n-1}} \bigg| w=0 \int_{\mathbb{R}^d} f(t) e^{-\frac{k}{2} (b_t - b_s)} e^{w(b_t + b_x)} e^{\frac{k}{2} (b_x - b_s)} \delta(t-s) dt ds
\]

\[
= \frac{1}{2^{n-1}} \int_{\mathbb{R}^d} \frac{\partial^{n-1}}{\partial w^{n-1}} \bigg| w=0 \int_{\mathbb{R}^d} f(t) e^{(\frac{w}{2} - \frac{k}{2}) b_t} e^{\frac{w}{2} b_t} e^{-\frac{k}{2} b_t} e^{\frac{k}{2} b_t} e^{(\frac{w^2 - k^2}{2})} \delta(t-s) \delta(t-s) dt ds
\]

\[
= \frac{1}{2^{n-1}} \int_{\mathbb{R}^d} \frac{\partial^{n-1}}{\partial w^{n-1}} \bigg| w=0 \int_{\mathbb{R}^d} f(t) e^{(\frac{w}{2} - \frac{k}{2}) b_t} e^{\frac{k}{2} b_t} e^{-\frac{k}{2} b_t} e^{\frac{k}{2} b_t} e^{(\frac{w^2 - k^2}{2})} \delta(t-s) \delta(t-s) dt ds
\]

\[
= \frac{1}{2^{n-1}} \int_{\mathbb{R}^d} \frac{\partial^{n-1}}{\partial w^{n-1}} \bigg| w=0 \int_{\mathbb{R}^d} f(t) e^{(\frac{w}{2} - \frac{k}{2}) b_t} e^{\frac{k}{2} b_t} e^{-\frac{k}{2} b_t} e^{\frac{k}{2} b_t} e^{(\frac{w^2 - k^2}{2})} \delta(t-s) \delta(t-s) dt ds
\]
\[
\hat{B}_k^n (f) = \frac{1}{2^{n-1}} \frac{\partial^{n-1}}{\partial w^{n-1}} \bigg|_{w=0} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} f(t) e^{(w-k) b^*_t} e^{(w+k) b_t} e^{\left(\frac{w^2}{2} - \frac{k^2}{2}\right) \delta(t-s)} \delta(t-s) \, dt \, ds \\
= \frac{1}{2^{n-1}} \frac{\partial^{n-1}}{\partial w^{n-1}} \bigg|_{w=0} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} f(t) e^{(w-k) b^*_t} e^{(w+k) b_t} \sum_{m=0}^{\infty} \left(\frac{w^2}{2} - \frac{k^2}{2}\right)^m m! \delta^m(t-s) \delta(t-s) \, dt \, ds \\
= \frac{1}{2^{n-1}} \frac{\partial^{n-1}}{\partial w^{n-1}} \bigg|_{w=0} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} f(t) e^{(w-k) b^*_t} e^{(w+k) b_t} \sum_{m=0}^{\infty} \left(\frac{w^2}{2} - \frac{k^2}{2}\right)^m m! \delta^{m+1}(t-s) \, dt \, ds \\
= \frac{1}{2^{n-1}} \frac{\partial^{n-1}}{\partial w^{n-1}} \bigg|_{w=0} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} f(t) e^{(w-k) b^*_t} e^{(w+k) b_t} \left(\delta(t-s) + \sum_{m=1}^{\infty} \left(\frac{w^2}{2} - \frac{k^2}{2}\right)^m m! \delta^m(t-s) \right) \, dt \, ds \\
\text{since, by the assumption } f(0) = 0, \text{ all } \delta(s) \delta(t-s) \text{ terms vanish. Thus, using Leibniz’s rule,} \\
\hat{B}_k^n (f) = \frac{1}{2^{n-1}} \frac{\partial^{n-1}}{\partial w^{n-1}} \bigg|_{w=0} \int_{\mathbb{R}^d} f(s) e^{(w-k) b^*_s} e^{(w+k) b_s} \, ds \\
= \frac{1}{2^{n-1}} \sum_{m=0}^{n-1} \binom{n-1}{m} \int_{\mathbb{R}^d} f(s) \frac{\partial^m}{\partial w^m} \bigg|_{w=0} \left(e^{(w-k) b^*_s}\right) \frac{\partial^{n-1-m}}{\partial w^{n-1-m}} \bigg|_{w=0} \left(e^{(w+k) b_s}\right) \, ds \\
= \frac{1}{2^{n-1}} \sum_{m=0}^{n-1} \binom{n-1}{m} \int_{\mathbb{R}^d} f(s) b^*_s b^*_s \sum_{p=0}^{\infty} (-k)^p p! b^*_s b_s^{n-1} \sum_{q=0}^{\infty} \frac{k^q}{q!} b^*_s b_s^q \, ds \\
= \frac{1}{2^{n-1}} \sum_{m=0}^{n-1} \binom{n-1}{m} \sum_{p=0}^{\infty} \sum_{q=0}^{\infty} (-1)^p \frac{k^{p+q}}{p! q!} \int_{\mathbb{R}^d} f(s) b_s^{m+p} b_s^{n-1-m+q} \, ds \\
= \frac{1}{2^{n-1}} \sum_{m=0}^{n-1} \binom{n-1}{m} \sum_{p=0}^{\infty} \sum_{q=0}^{\infty} (-1)^p \frac{k^{p+q}}{p! q!} B_{n-1-m+q}^{m+p}(f) \\
\square
From the identity (3.2), it is clear that one can analytically continue the parameter k, in the definition of $\hat{B}_n^k(f)$, to an arbitrary complex number $k \in \mathbb{C}$ and $n \geq 1$. After this extension the identity

$$[\hat{B}_1^k(g), \hat{B}_K^1(f)]_{w_\infty} = 0$$

still holds. Moreover, the proof of Theorem 7 immediately extends to $k \in \mathbb{C}$ and we have:

Theorem 8. Let $n \geq 2$ and $z \in \mathbb{C}$. Then, for all $f \in S_0$,

$$\hat{B}_n^z(f) = \frac{1}{2^{n-1}} \sum_{m=0}^{n-1} \binom{n-1}{m} \sum_{p=0}^\infty \sum_{q=0}^\infty (-1)^p \frac{z^{p+q}}{p! q!} B_{n-1-m+q}^m(f)$$

where convergence of infinite sums is understood in the topology introduced in Definition 2, and the case $z = 0$ is interpreted as

$$\hat{B}_0^0(f) = \frac{1}{2^{n-1}} \sum_{m=0}^{n-1} \binom{n-1}{m} B_{n-1-m}^m(f)$$

Corollary 1. For $z \in \mathbb{C}$ and $k \in \{0, 1, \ldots\}$,

$$\frac{\partial^k}{\partial z^k} \bigg|_{z=0} \hat{B}_n^z(f) := \sum_{m=0}^k \binom{k}{m} \int_{\mathbb{R}^d} f(t) \left(b_t - b_t^\dagger \right)^m \left(b_t + b_t^\dagger \right)^{n-1} \left(b_t - b_t^\dagger \right)^{k-m} \, dt$$

Moreover, for $k \geq 1$

$$\frac{\partial^k}{\partial z^k} \bigg|_{z=0} \hat{B}_n^z(f) = \frac{1}{2^{n-1}} \sum_{m=0}^{n-1} \binom{n-1}{m} \sum_{p=0}^\infty (-1)^p \binom{k}{p} B_{n+k-m-1-p}^{m+p}(f)$$

Proof. (3.4) is obtained from (3.1) with the use of Leibniz’s rule. Finally, (3.5) follows from (3.3), by differentiating term-by-term k-times with respect to z, and noticing that only the terms $p + q = k$ will contribute.

3.2. The inclusion: RHPWN \subseteq analytic continuation of the second quantized w_∞.

In this subsection we will find the expression of the generators $B_n^k(f)$ of the RHPWN $*$–Lie–algebra in terms of the generators $\hat{B}_n^z(f)$ of the analytically continued $w_\infty*$–Lie–algebra, thus completing the identification of the two algebras.

Theorem 9. Let $n, k \in \mathbb{N} \cup 0$. Then, for all $f \in S_0$,

$$B_n^k(f) = \sum_{\rho=0}^k \sum_{\sigma=0}^n \binom{k}{\rho} \binom{n}{\sigma} \frac{(-1)^\rho}{2^{\rho+\sigma}} \frac{\partial^{\rho+\sigma}}{\partial z^{\rho+\sigma}} \bigg|_{z=0} \hat{B}_z^{k+n+1-(\rho+\sigma)}(f)$$
where, as in Theorem 4, convergence of infinite sums is understood in the topology introduced in Definition 2. Moreover, the right hand side of (3.6) is well defined in the sense of derivative with respect to \(\lambda \), where, as in Theorem 7, convergence of infinite sums is understood in the topology introduced in Definition 4.

Proof. For \(t, s \geq 0 \), let \(p_{t,s} := b_t - b_s^\dagger \) and \(q_{t,s} := b_t + b_s^\dagger \). Then

\[
B_k^n(f) = \int_{\mathbb{R}^d} f(t) b_t^\dagger b_t^k dt
\]

\[
= \frac{1}{2n+k} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} f(s) (p_{t,s} + q_{t,s})^n (q_{t,s} - p_{t,s})^k \delta(s-t) ds dt
\]

\[
= \frac{1}{2n+k} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} f(s) \frac{\partial^n}{\partial \lambda^n} \mid_{\lambda=0} \left(e^{\lambda (p_{t,s} + q_{t,s})} \right) \frac{\partial^k}{\partial \mu^k} \mid_{\mu=0} \left(e^{\mu (q_{t,s} - p_{t,s})} \right) \delta(s-t) ds dt
\]

\[
= \frac{1}{2n+k} \frac{\partial^{n+k}}{\partial \lambda^n \partial \mu^k} \mid_{\lambda=0=\mu=0} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} f(s) e^{\lambda p_{t,s}} e^{\lambda q_{t,s}} e^{\lambda q_{t,s}} e^{\lambda q_{t,s}} e^{\lambda q_{t,s}} e^{\lambda q_{t,s}} e^{\lambda q_{t,s}} \delta(s-t) \delta(s-t) ds dt
\]

which, using Lemma 2 with \(D = p_{t,s}, x = q_{t,s} \) and \(h = 2 \delta(s-t) \), is equal to

\[
= \frac{1}{2n+k} \frac{\partial^{n+k}}{\partial \lambda^n \partial \mu^k} \mid_{\lambda=0=\mu=0} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} f(s) e^{\lambda p_{t,s}} e^{\lambda q_{t,s}} e^{\lambda q_{t,s}} e^{\lambda q_{t,s}} e^{\lambda q_{t,s}} e^{\lambda q_{t,s}} e^{\lambda q_{t,s}} \delta(s-t) \delta(s-t) ds dt
\]

which, again by Lemma 2, is equal to

\[
= \frac{1}{2n+k} \frac{\partial^{n+k}}{\partial \lambda^n \partial \mu^k} \mid_{\lambda=0=\mu=0} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} f(s) e^{\lambda p_{t,s}} e^{\lambda q_{t,s}} e^{\lambda q_{t,s}} e^{\lambda q_{t,s}} e^{\lambda q_{t,s}} e^{\lambda q_{t,s}} e^{\lambda q_{t,s}} \delta(s-t) \delta(s-t) ds dt
\]

\[
= \frac{1}{2n+k} \frac{\partial^{n+k}}{\partial \lambda^n \partial \mu^k} \mid_{\lambda=0=\mu=0} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} f(s) e^{\lambda p_{t,s}} e^{\lambda q_{t,s}} e^{\lambda q_{t,s}} e^{\lambda q_{t,s}} e^{\lambda q_{t,s}} e^{\lambda q_{t,s}} e^{\lambda q_{t,s}} \delta(s-t) \delta(s-t) ds dt
\]

and since, as in the proof of Theorem 4, only the constant term 1 in the exponential series \(e^{(\lambda+\mu)^2 \delta(s-t)} \) will eventually make a nonzero contribution, the above is equal to

\[
= \frac{1}{2n+k} \frac{\partial^{n+k}}{\partial \lambda^n \partial \mu^k} \mid_{\lambda=0} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} f(s) e^{\lambda p_{t,s}} e^{\lambda q_{t,s}} e^{\lambda q_{t,s}} e^{\lambda q_{t,s}} e^{\lambda q_{t,s}} e^{\lambda q_{t,s}} e^{\lambda q_{t,s}} \delta(s-t) ds dt
\]

which, using Leibniz’s rule first for the derivative with respect to \(\mu \) and then for the derivative with respect to \(\lambda \), is equal to

\[
= \frac{1}{2n+k} \sum_{\rho=0}^k \binom{k}{\rho} (-1)^\rho \frac{\partial^n}{\partial \lambda^n} \mid_{\lambda=0} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} f(s) p_{t,s}^\rho e^{\lambda p_{t,s}} q_{t,s} e^{\lambda q_{t,s}} \delta(s-t) ds dt
\]
\[
\frac{1}{2^{n+k}} \sum_{\rho=0}^{k} \sum_{\sigma=0}^{n} \binom{k}{\rho} \binom{n}{\sigma} (-1)^{\rho} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} f(s) \, p_{t,s}^{\rho} \, p_{t,s}^{\sigma} \, q_{t,s}^{k-n+\rho} \, q_{t,s}^{n-\sigma} \, \delta(s-t) \, ds \, dt
\]

\[
= \frac{1}{2^{n+k}} \sum_{\rho=0}^{k} \sum_{\sigma=0}^{n} \binom{k}{\rho} \binom{n}{\sigma} (-1)^{\rho} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} f(s) \, p_{t,s}^{\rho+\sigma} \, q_{t,s}^{k+n-(\rho+\sigma)} \, \delta(s-t) \, ds \, dt
\]

\[
= \frac{1}{2^{n+k}} \sum_{\rho=0}^{k} \sum_{\sigma=0}^{n} \binom{k}{\rho} \binom{n}{\sigma} (-1)^{\rho} \frac{\partial^{\rho+\sigma}}{\partial z^{\rho+\sigma}} \bigg|_{z=0} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} f(s) \, e^{z \, p_{t,s}} \, q_{t,s}^{k+n-(\rho+\sigma)} \, \delta(s-t) \, ds \, dt
\]

which, by Lemma 2, is equal to

\[
= \frac{1}{2^{n+k}} \sum_{\rho=0}^{k} \sum_{\sigma=0}^{n} \binom{k}{\rho} \binom{n}{\sigma} (-1)^{\rho} \times
\]

\[
\frac{\partial^{\rho+\sigma}}{\partial z^{\rho+\sigma}} \bigg|_{z=0} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} f(s) \, e^{z \, p_{t,s}} \, \frac{\partial^{k+n-(\rho+\sigma)}}{\partial w^{k+n-(\rho+\sigma)}} \bigg|_{w=0} (e^{w \, q_{t,s}} \, e^{w \, z \, \delta(s-t)}) \, \delta(s-t) \, ds \, dt
\]

and since, only the constant term 1 in the exponential series \(e^{w \, z \, \delta(s-t)}\) will eventually make a nonzero contribution, the above is equal to

\[
= \frac{1}{2^{n+k}} \sum_{\rho=0}^{k} \sum_{\sigma=0}^{n} \binom{k}{\rho} \binom{n}{\sigma} (-1)^{\rho} \times
\]

\[
\frac{\partial^{\rho+\sigma}}{\partial z^{\rho+\sigma}} \bigg|_{z=0} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} f(s) \, e^{z \, p_{t,s}} \, \frac{\partial^{k+n-(\rho+\sigma)}}{\partial w^{k+n-(\rho+\sigma)}} \bigg|_{w=0} (e^{w \, q_{t,s}} \, e^{z \, p_{t,s}}) \, \delta(s-t) \, ds \, dt
\]

\[
= \frac{1}{2^{n+k}} \sum_{\rho=0}^{k} \sum_{\sigma=0}^{n} \binom{k}{\rho} \binom{n}{\sigma} (-1)^{\rho} \frac{\partial^{\rho+\sigma}}{\partial z^{\rho+\sigma}} \bigg|_{z=0} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} f(s) \, e^{z \, p_{t,s}} \, q_{t,s}^{k+n-(\rho+\sigma)} \, e^{z \, p_{t,s}} \, \delta(s-t) \, ds \, dt
\]

\[
= \frac{1}{2^{n+k}} \sum_{\rho=0}^{k} \sum_{\sigma=0}^{n} \binom{k}{\rho} \binom{n}{\sigma} (-1)^{\rho} \frac{\partial^{\rho+\sigma}}{\partial z^{\rho+\sigma}} \bigg|_{z=0} \int_{\mathbb{R}^d} f(t) \, e^{z \, p_{t,t}} \, q_{t,t}^{k+n-(\rho+\sigma)} \, e^{z \, p_{t,t}} \, dt
\]
Finally, using (3.5), (3.6) becomes

\[
B^k_n(f) = \sum_{\rho=0}^{k} \sum_{\sigma=0}^{n} \binom{k}{\rho} \binom{n}{\sigma} (-1)^\rho - \frac{1}{2^{\rho+\sigma}} \frac{\partial^\rho+\sigma}{\partial z^{\rho+\sigma}} \bigg|_{z=0} \hat{B}^{k+n+1-(\rho+\sigma)}_z(f)
\]

Letting \(N := m + p \), (3.7) becomes

\[
B^k_n(f) = \sum_{\rho=0}^{k} \sum_{\sigma=0}^{n} \binom{k}{\rho} \binom{n}{\sigma} (-1)^\rho - \frac{1}{2^{\rho+\sigma}} \frac{1}{2^{k+n-(\rho+\sigma)}} \sum_{m=0}^{k+n-(\rho+\sigma)} \binom{k+n-(\rho+\sigma)}{m} \times \sum_{p=0}^{\infty} (-1)^p \binom{\rho+\sigma}{p} B^{m+p}_{n+k-m-p}(f)
\]

Since \(n, k \) are fixed, we notice that for each \(N \) the coefficient of \(B^N_{n+k-N}(f) \) is finite. Thus (3.8) is meaningful in the sense of Definition 3.

\[
\sum_{N=m}^{\infty} (-1)^{N-m} \binom{\rho+\sigma}{N-m} B^N_{n+k-N}(f)
\]

References

[1] Accardi, L., Boukas, A.: Renormalized higher powers of white noise (RHPWN) and conformal field theory, Infinite Dimensional Anal. Quantum Probab. Related Topics 9, No. 3, (2006) 353-360.

[2] ________: The emergence of the Virasoro and \(w_\infty \) Lie algebras through the renormalized higher powers of quantum white noise, International Journal of Mathematics and Computer Science (2006).

[3] Bakas, I., Kiritsis, E.B.: Structure and representations of the \(W_\infty \) algebra, Prog. Theor. Phys. Supp. 102 (1991) 15.

[4] Ketov, S. V.: Conformal field theory, World Scientific, 1995.

[5] Zamolodchikov, A.B.: Infinite additional symmetries in two-dimensional conformal quantum field theory, Teo. Mat. Fiz. 65 (1985), 347–359.

Centro Vito Volterra, Università di Roma Tor Vergata, via Columbia 2, 00133 Roma, Italy
E-mail address: accardi@volterra.mat.uniroma2.it
URL: http://volterra.mat.uniroma2.it

Department of Mathematics and Natural Sciences, American College of Greece, Aghia Paraskevi, Athens 15342, Greece
E-mail address: andreasboukas@acgmail.gr