Identification of novel neuroendocrine-specific tumour genes

E Hofsli*1,2, TE Wheeler1, M Langaa2, A Lægreid1 and L Thommesen1,4
1Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway; 2Oncology Unit, St Olavs Hospital HF, Trondheim, Norway; 3Department of Mathematical Sciences, Norwegian University of Science and Technology, Trondheim, Norway; 4Department of Food and Medical technology, Sør-Trøndelag University College, Trondheim, Norway

Neuroendocrine tumours (NETs) comprise a heterogenous group of malignancies with an often unpredictable course, and with limited treatment options. Thus, new diagnostic, prognostic, and therapeutic markers are needed. To shed new lights into the biology of NETs, we have by cDNA transcript profiling, sought to identify genes that are either up- or downregulated in NE as compared with non-NF tumour cells. A panel of six NET and four non-NET cell lines were examined, and out of 12 743 genes examined, we studied in detail the 200 most significantly differentially expressed genes in the comparison. In addition to potential new diagnostic markers (NEFM, CLDN4, PEROX2), the results point to genes that may be involved in the tumorigenesis (BEX1, TMEPAI, FOSSL, RAB32), and in the processes of invasion, progression and metastasis (MME, STAT3, DCCBLD2) of NETs. Verification by real time qRT–PCR showed a high degree of consistency to the microarray results. Furthermore, the protein expression of some of the genes were examined. The results of our study has opened a window to new areas of research, by uncovering new candidate genes and proteins to be further investigated in the search for new prognostic, predictive, and therapeutic markers in NETs.

Keywords: neuroendocrine tumours; gene expression; microarray; neuroendocrine markers; cell lines

Neuroendocrine (NE) tumours (NETs) belong to a heterogenous group of neoplasms arising from malignant transformation of various types of NE cells (Falkmer, 1993; Wick, 2000; DeLellis, 2001; Hofsli, 2006). Although the majority of NETs are rather slow growing, their biology is often unpredictable, making their management a great challenge (Stephenson, 2006; Vilar et al, 2007). Thus, new insight into the biology of these fascinating tumours could not only make prognostication easier, but also guide in the selection for the right treatment strategy, and contribute in the search for new drug targets. This last issue is of vital importance, as up till now, only surgery has the potential to cure patients with NET disease.

Prediction of the biological behaviour of NETs may be difficult based upon histological criteria alone (Wick, 2000; Stephenson, 2006). Well-differentiated NETs are easily recognised by routine tissue staining and conventional light microscopic (LM) examination, combined with immunohistochemical (IHC) detection of NE markers such as chromogranin A (CHGA) and synaptophysin (SYP). However, dealing with poorly differentiated tumours, it may be difficult to decide whether a tumour exhibits an NE character. Thus, new diagnostic markers are warranted.

In addition to classical NETs, it has been increasingly recognised that both mixed endocrine–exocrine malignant tumours, as well as NE differentiation in common epithelial cancers, may occur (Capella et al, 2000; Sørhaug et al, 2007). The picture is even more complex, as recent research has indicated that use of more sensitive methods such as the tyramide signal amplification technique, will identify more NE tumour cells than today's routine diagnostic procedures manage to do (Sørhaug et al, 2007). With respect to prognosis and treatment, the impact of such NE differentiation in epithelial cancers is mostly unknown.

To shed new lights into the biology of NETs, we have compared the gene expression pattern of a selection of NE tumour cells, with that of a group of non-NF tumour cells. By this approach, we have identified genes that are differentially expressed in NE vs non-NF tumour cells. We propose that some of the genes and their gene products may represent interesting new molecular factors with regard to tumorigenesis, prediction of prognosis and treatment response, as well as may represent novel therapeutic targets.

MATERIALS AND METHODS

Cell culture

Six NE and four non-NF cell lines were used in the gene expression analysis. All cell lines, except the BON cell line, were obtained from the American Type Culture Collection (ATCC, Manassas, VA, USA). BON cells (Evers et al, 1991) were a generous gift from Professor Kjell Öberg, Department of Medical Science, Uppsala University Hospital, Uppsala, Sweden, and cultured as described in Hofsli et al (2005). The six NE cell lines represent various NETs: neuroblastomas (SK-N-AS, SK-N-FI), bronchial carcinoids (NCH727, UMC-11), gastrointestinal carcinoid (BON), and medullary thyroid carcinoma (TT). The non-NF cell lines were colorectal adenocarcinomas (WiDr, SW480), lung adenocarcinoma (A-427) and glioblastoma (A-172). All these cell lines were cultured according to the requirements given by ATCC.
Isolation of RNA

Cells were cultured in 75 cm² culture flasks until 80% confluence, harvested and directly subjected to RNA isolation. Total RNA was isolated using RNeasy midi kit (Qiagen, Germantown, MD, USA), according to the manufacturer’s instruction. Two independent biological experiments were performed with each cell line. The quality of the RNA was examined by use of Agilent 2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA, USA). The samples were kept frozen at –80°C until further processing.

Microarray hybridisation

Human cDNA arrays with 15,000 probes in duplicate were obtained from Norwegian Microarray Consortium, Oslo, Norway (http://www.microarray.no). These arrays were prepared using sequence-verified human genes (Research Genetics, Huntsville, AL, USA). Additional information of cDNA clone preparation and printing is described in detail within the platform GPL3313, of the Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL3313). Two negative controls and ten different cDNA spike-in controls from Arabidopsis thaliana (Stratagene SpotReporter, La Jolla, CA, USA) were included in all arrays. Total RNA (2 μg) from the cell lines and from Universal Human Reference RNA (Stratagene, La Jolla, CA, USA), was reverse transcribed and labelled with Cy3- and Cy5-attached dendrimer, respectively, using the Genisphere 3DNA Array 350 Expression Array Detection kit (Genisphere, Montvale, NJ, USA), as described in the manufacturer’s protocol and previously by us (Yadetie et al, 2003; Norsett et al, 2004; Hofsi et al, 2005). To reduce the artefacts because of different sensitivity to photo-bleaching, the biologic replicates of each of the 10 cell lines were randomised by dye-swaps. The arrays were scanned separately by two wavelengths (532 and 633 nm) using ScanArray Express HT scanner (Packard BioScience, Billerica, MA, USA).

Microarray data analysis

The microarray data were prepared according to the MIAME recommendations (Brazma et al, 2001). Image analysis was carried out using the GenePix Pro 4.1 software (Axon Instruments, Union City, CA, USA). All subsequent statistical analysis was performed using the statistical package R (R Development Core Team, 2004), dendrimer, respectively, using the Genisphere 3DNA Array 350 Expression Array Detection kit (Genisphere, Montvale, NJ, USA), as described in the manufacturer’s protocol and previously by us (Yadetie et al, 2003; Norsett et al, 2004; Hofsi et al, 2005). To reduce the artefacts because of different sensitivity to photo-bleaching, the biologic replicates of each of the 10 cell lines were randomised by dye-swaps. The arrays were scanned separately by two wavelengths (532 and 633 nm) using ScanArray Express HT scanner (Packard BioScience, Billerica, MA, USA).

Table 1 Primers and probes

Symbol/gene Bank Accession No.	Sequence (5’→3’)	Forward reverse probe	Product length
BAALC NM_024812	actgcccatggcatgtctct	S	66
FOSL1 NM_005438	tccagccatggagagcgc	AS	
GSTP1 NM_000852	tggagggtgcctggaagcttc	Probe	
SCG2 NM_003469	acctcgccgacagcccccc	F	81
M160 NM_174941	aaggtctgtaagcccc	AS	
GAPD NM_002046	aatgcaacggctctcctcacttt	Probe	

Genes, primers, and probe sequences of selected genes for confirmation studies. The length, product length, and orientation are given here.
Belgium, and had an optimal annealing temperature of 56 and 68°C, respectively. TaqMan real-time PCR was performed with 1 x Quantitect Probe PCR Master Mix (Qiagen, Germantown, MD, USA), 400 nM of each primer, 200 nM TaqMan Probe (Eurogentech) or sybergreen and cDNA equivalent to 62.5 ng total RNA in a total reaction volume of 25 µl. The Real-Time PCR was performed in Stratagene’s Mx3000P Real Time PCR system; 15 min at 95°C followed by 40 cycles of 15 s at 94°C, 40 thermal cycles of 15 s at 94°C, 30 min at 56°C and 30 s at 72°C. Each sample was measured in triplicate. A negative control without the cDNA template was included, and contamination by genomic DNA was ruled out by performing PCR analysis on template where reverse transcriptase had been omitted in the RT reactions. GAPDH was run in parallel as controls to monitor RNA integrity reverse transcriptase had been omitted in the RT reactions. Fold induction of gene expression level was estimated by the 2-DDCt method, where: Fold change = 2-DDCt and ΔΔCt = (CtGEN−CtGAPDH)treated − (CtGEN−CtGAPDH)treated (Livak and Schmittgen, 2001). This was accomplished by using the same universal human reference RNA in both the microarray and the real-time RT–PCR analysis;

Western blot

Whole cell lysates were prepared from 5–7 × 10⁶ cells which were washed two times in PBS, scraped and harvested directly in 2000 µl SDS-sample buffer (62.5 mM Tris-HCl, pH 6.8; 8.7% glycerol; 2% w/v SDS; 5% v/v 2-β mercaptoethanol; 0.09% w/v bromophenol blue). Viscosity was reduced by drawing the suspension through a 21-G needle, cell debris were removed by centrifugation (15 000 g, 15 min), and the supernatant was stored at −80°C. Each extract (15 µl) was boiled and separated on an SDS 10% polyacrylamide gel (running buffer: 25 mM Tris-HCl, pH 8.3; 190 mM glycine, 0.1% w/v SDS) before electrophoresis onto Hybond-P membranes (Amersham Pharmacia Biotech, Pittsburgh, PA, USA). The transfer was performed in 25 mM Tris-HCl, 190 mM glycine and 20% methanol, pH 8.3, for 1 h at 175 mA. The membranes were treated with 5% nonfat dry milk (Nestlé, Vevey, Switzerland) in TBS (50 mM Tris-HCl, pH 7.5 and 150 mM NaCl) for 1 h at room temperature and incubated with primary antibodies diluted (1:500:1:1000) in TBS with 1% BSA and 0.05% Tween 20 for 2 h, 20°C. The blots were then incubated with peroxidase-conjugated secondary antibodies (1:1000) in TBS with 1% BSA and 0.05% Tween 20 for 1 h at room temperature. After washing (4 × 15 min in TBS with 0.05% Tween 20), binding of secondary antibodies was visualised by the ECL-detection system (Amersham) before they were digitally exposed with the KODAK Image Station 2000R (Kodak, Rochester, NY, USA) for 5 min. GAPDH levels were used to verify protein loading.

The following antibodies were used: mouse anti-human GAPDH (1:1000) (Abcam, Cambridge, UK); mouse anti-human PRDX2 (1:1000) (Abcam); rabbit anti-human HPN (1:1000) (Cayman, Michigan, USA); rabbit anti-human SCG2 (1:500) (Abcam); and a secondary antibody conjugated to horseradish peroxidase (Fierce, Rockford, IL, USA).

Immunohistochemical and ultrastructural examinations

For IHC investigations, cell pellet was conventionally fixed in 10% neutral formalin, dehydrated, and embedded in paraffin. Sections, about 4–5 micron thick, were employed for the IHC examinations, using the Vectastain ABC kit (Vector Lab., Burlingame, CA, USA), and/or Tyramide signal amplification technique (NEN LifeScience Products, Boston, MA, USA), as previously described (Ovrigstad et al, 1999). Chromogranin A antiserum (1:500) was provided by Incstar (Stillwater, MN, USA), monoclonal mouse antisyntaptophysin antiserum (1:20) by Dako (Glostrup, Denmark), anti rat neuron-specific enolase (1:500) by Polysciences (Warrington, PA, USA), and antineurofilament M (1:4000) by Fitzgerald (MA, USA).

For the electron microscopic (EM) investigations, the pellet was fixed in 2% neutral glutaraldehyde, post-fixed in 2% osmium tetroxide, contrasted with 1% lead citrate and 4% uranyl acetate, and conventionally embedded in Epon. Finally, conventional ultra thin sections were cut and analysed by means of our transmission EMs (JEOL 100CX and Phillips SEI Tecnai 12).

RESULTS

Confirmation of the NE character

To confirm the NE and non-NE character of the cell lines, respectively, IHC and EM investigations were performed in addition to conventional LM examination. The employed NE cell lines (NCI-H727, UMC-11, SK-N-AS, SK-N-FI, TT, BON) encompass NE features with the expression of CHGA and SYP as the confined NE marker. The four cell lines known to be of non-NE character (WiDr, A-172, A-427, SW480), showed no staining with CHGA and SYP (data not shown). In addition, the cells were examined for the expression of ENO2 (enolase 2/neuron-specific enolase), an NE marker thought to be less specific than the conventional NE markers CHGA and SYP. All the presumed NE cell lines showed positive immunoreactivity to enolase 2, and this was also the case for the non-NE cell lines A-427 and SW480 (data not shown). EM investigations demonstrated occurrence of typical NE secretion granules in all the NE tumour cells, but not in any of the non-NE tumour cells, thus confirming the predefined NE/non-NE characteristics of the cell lines used.

Genes differentially expressed in NE vs non-NE tumour cells

Having confirmed the NE and non-NE character of the cell lines, respectively, we performed transcript profiling by cDNA micro-array analysis in an effort to identify new NE-specific genes, and by this, get more insight into the biology of NETs. By using the convex decreasing density estimator for the proportion of true null hypotheses as presented in Langgaas (2005), we expect 5.5% of the genes studied to be differentially expressed in NE vs non-NE cells. The 200 most significant genes (P-value 0.008/FDR 0.49) in the comparison of the NE vs non-NE tumour cell groups are sequence verified, and 153 genes are given as Supplementary Information in the gene expression omnibus (GEO) GSE4328.

Based on information from the GO annotation database and literature search, these genes are displayed with the log ratio and biological processes in which they are likely to be involved. The up- and downregulated genes range from log2 5.87 to −2.92, respectively. The 70 most highly up- and downregulated genes, are shown in Table 2. A hierarchical cluster analysis of the 48 most significantly differentially expressed genes (P-value 0.0014/FDR 0.2823) is shown in Figure 1.

The three most highly overexpressed genes: SCG3 (26.6 fold), SCG2 (15.3 fold) and DDC (9.6 fold) (Table 2), have previously been shown to be linked to NE tumour biology, thus confirming the reliability of our study design. SCG3 and SCG2 are both members of the chromogranin–secretogranin family of NE secretory, acidic glycoproteins (Taupenot et al, 2003), and DDC has more recently been shown to be expressed in various NETs (Uccella et al, 2006). Furthermore, the high expression of MAOA in our study, support previous findings of high expression of monoaminooxidase A in various NETs (Orlefors et al, 2003).

NETs in general are relatively slow growing tumours with a less invasive character than many epithelial cancers. Several genes thought to play a role in the processes of invasion, tumour
Table 2 Differentially expressed genes in NE vs non-NE tumour cells

Gene symbol	Gene name	UGCluster	Ratio
Upregulated			
SCG3	Secretogranin III	Hs.232618	26.56
SCG2	Secretogranin II (chromogranin C)	Hs.516726	15.29
DDC	Dopa decarboxylase (aromatic L-amino acid decarboxylase)	Hs.359698	9.65
BAALC	Brain and acute leukemia, cytoplasmic	Hs.533446	7.78
NEF3	Neurofilament 3	Hs.58657	7.66
C8orf13	Chromosome 8 open reading frame 13	Hs.24299	7.27
BEK1	Brain expressed, X-linked	Hs.33470	6.76
RAPGEF5	Rap guanine nucleotide exchange factor (GEF)	Hs.174768	6.01
PLXNA2	Plecin A2	Hs.497626	5.88
MGC17299	Hypothetical protein MGC17299	Hs.104476	5.11
PRDX2	Peroxiredoxin 2		5.04
M160	Scavenger receptor cysteine-rich type I protein M160	Hs.49636	5.01
DNAJC12	DnaJ (Hsp40) homologue, subfamily C, member 12	Hs.260720	4.50
MAOA	Monoamine oxidase A	Hs.183109	4.48
FAM6A	Family with sequence similarity 46, member A	Hs.10784	4.29
NEF3	Neurofilament 3		3.70
ITGA10	Integrin, α 10	Hs.158237	3.88
HLA-DOA	Major histocompatibility complex, class II, DO-α	Hs.351874	3.15
CNTN1	Contactin 1	Hs.14536	3.12
NR0B2	Nuclear receptor subfamily 0, group B, member 2	Hs.27055	3.57
TAGLN3	Transgelin 3	Hs.169330	3.45
FEG10	Paternally expressed 10	Hs.147492	3.37
EGLN3	Egfl nine homologue 3 (C. elegans)	Hs.41599	3.36
MBP	Myelin basic protein	Hs.551713	3.36
ABC6C	ATP-binding cassette, subfamily C (CFTR/MRP), member 6	Hs.13188	3.26
SPHBT2	Smc-like with four mbt domains 2	Hs.407983	3.17
C9orf150	Chromosome 9 open reading frame 150	Hs.12319	3.15
HIPK2	Homeodomain interacting protein kinase 2	Hs.39746	3.10
C1orf28	Chromosome 17 open reading frame 28	Hs.11067	3.05
C3orf14	Chromosome 3 open reading frame 14	Hs.49716	2.94
UMDQ1	UIM domains containing 1	Hs.193370	2.92
HPN	Hepsin (transmembrane protease, serine 1)	Hs.182385	2.82
MDS010	x 010 protein	Hs.231750	2.77
MSH1	Membrane-spanning 4-domains, subfamily A, member 1	Hs.438040	2.75
NAPB	N-ethylmaleimide-sensitive factor attachment protein, β	Hs.92671	2.69
PBX1	Pre-B-cell leukemia transcription factor 1	Hs.493096	2.63
APG4A	APG4 autophagy 4 homologue A	Hs.8763	2.60
ARHGAP26	Rho GTPase-activating protein 26	Hs.293593	2.56
GAB2	GRB2-associated binding protein 2	Hs.429434	2.53
AQP3	Aquaporin 3	Hs.234642	2.45
MGC4645	Hypothetical protein MGC4645	Hs.395306	2.44
PTP4A3	Protein tyrosine phosphatase type IVA, member 3	Hs.43666	2.40
TP53I1I	Tumour protein p53-inducible protein 11	Hs.554791	2.36
C14orf132	Chromosome 14 open reading frame 132	Hs.64934	2.33
SCSOD1	Sterol C5-desaturase	Hs.287749	2.29
CENTB5	Centaurin, β 5	Hs.535257	2.15
ARHGAP5	Rho GTPase-activating protein 5	Hs.25287	2.13
KIAA0924	KIAA0924 protein	Hs.50656	2.10
C6orf1	Chromosome 6 open reading frame 1	Hs.381300	2.10
SCFTB	Small glutamine-rich tetratricopeptide repeat (TPR)	Hs.87871	2.05
NNT	Nicotinamide nucleotide transhydrogenase	Hs.482043	2.05
BRPF3	Bromodomain and PHD finger containing, 3	Hs.520096	1.99
TBC1D16	TBC1 domain family, member 16	Hs.36989	1.98
IF2BP2	Interferon regulatory factor 2-binding protein 2	Hs.350268	1.94
DIFCPZpH34H226	Limb1 domain containing 2 (DIFCPZpH34H226)	Hs.294103	1.93
CALM1	Calmodulin 1 (phosphorylase kinase, delta)	Hs.282410	1.82
C6orf209	Chromosome 6 open reading frame 209	Hs.271643	1.79
ZCCHC3	Zinc finger, CCHC domain containing 3	Hs.28608	1.78
IRS2	Insulin receptor substrate 2	Hs.442344	1.76
RGS18	Regulator of G-protein signalling 18	Hs.440890	1.70
SCFD1	Sec1 family domain containing 1	Hs.369168	1.69
TCEAL8	Transcription elongation factor A (SII)-like 8	Hs.389734	1.67
SEC23B	Sec23 homologue B (S. cerevisiae)	Hs.369373	1.59
MECP2	Methyl CpG-binding protein 2	Hs.200716	1.59

Downregulated			
MME	Membrane metallo-endopeptidase	Hs.307734	0.12
STAT3	Signal transducer and activator of transcription 3 (acute-phase response factor)	Hs.463059	0.13
Gene symbol	Gene name	UGCluster	Ratio
MEOX1	Homeobox protein MOX-1	Hs.438	0.14
TMEM41	Transmembrane, prostate androgen induced RNA	Hs.517155	0.16
RAB3B	RAB3B, member RAS oncogene family	Hs.2886714	0.17
KL2	Kruppel-like factor 2 (lung)	Hs.107740	0.17
ZNF354A	Zinc finger protein 354A	Hs.486254	0.17
LOC255104	Hypothetical protein LOC255104	Hs.517155	0.17
S100A10	S100 calcium-binding protein A10 (annexin II ligand, calpactin I, light polypeptide (p11))	Hs.148783	0.18
DCBLD2	Discoidin, CUB and LCCL domain containing 2	Hs.203691	0.18

Table 2 (Continued)

Gene symbol	Gene name	UGCluster	Ratio
ZF	HCF-binding transcription factor Zhangfei	Hs.535319	0.25
AMOTL2	Angiomotin like 2	Hs.426312	0.25
LMO2	LIM domain only 2	Hs.34560	0.25
CETN2	Cenitin, EF-hand protein, 2	Hs.82799	0.27
RUNX1	Runt-related transcription factor 1 (acute myeloid leukaemia 1; amll oncogene)	Hs.149261	0.27
HRASL3	HRAS-like suppressor 3	Hs.502775	0.28
APEH	N-acetylaspartyl-aspartate dipeptidase	Hs.715969	0.28
ERBB2	V-erb-b2 erythroblastoma viral oncogene homologue 2, neuro/glioblastoma derived oncogene homologue	Hs.446352	0.28
YAP1	Yes-associated protein 1, 65kDa	Hs.503692	0.31
CD9	CD9 antigen (p24)	Hs.114286	0.31
TNNT2	Troponin I, skeletal, fast	Hs.523403	0.32
FBN1	Fibulin 1	Hs.24601	0.32
S100A8	S100 calcium binding protein A8 (calgranulin A)	Hs.416073	0.33
LOC388990	Novel 58.3 KDA protein	Hs.29090	0.34
CTSL	Cathepsin L	Hs.418123	0.34
PRPS2	Phosphoribosyl pyrophosphate synthetase 2	Hs.104123	0.35
TM8B10	Thymosin, β 10	Hs.446574	0.37
TSPM2	Trophoblast motility 2 (β)	Hs.30077	0.37
SHKBP1	SH3-domain kinase-binding protein 1	Hs.447770	0.38
FOSL1	FOS-like antigen 1	Hs.283565	0.39
ODCL1	Omidine decarboxylase I	Hs.467701	0.39
MRLC2	Myosin regulatory light chain MRLC2	Hs.464472	0.39
LOC527228	Hypothetical protein from clone 643	Hs.558253	0.39
CD164	CD164 antigen, salomucin	Hs.520313	0.41
CAMK1	Calcium/calmodulin-dependent protein kinase I	Hs.438475	0.41
RPA3	Replication protein A3, 14kDa	Hs.487540	0.41
VIL2	Villin 2 (ezrin)	Hs.487027	0.42
IFRD2	Interferon-related developmental regulator 2	Hs.315177	0.42
NLGN2	Neurexin 2	Hs.26229	0.43
CD59	CD59 antigen p18-20	Hs.278573	0.43
ZBTB4	Zinc finger and BTB domain containing 4	Hs.35096	0.45
TXNRD1	Thioredoxin reductase I	Hs.337766	0.46
MAT2B	Methionine adenosyltransferase II, 5	Hs.546462	0.46
BMP1	Bone morphogenetic protein 1	Hs.12374	0.46
HRB2	HIV-1 rev binding protein 2	Hs.205558	0.47
APPBP1	Amyloid β precursor protein binding protein 1, 59kDa	Hs.460978	0.48
CTNNA1	Catenin (cadherin-associated protein), α 1, 102kDa	Hs.445981	0.49
COMMD6	COMM domain containing 6	Hs.508266	0.51
MAP4	Microtubule-associated protein 4	Hs.501799	0.51
PSMD1D2	Proteasome (prosome, macropain) 26S subunit, non-ATPase, 12	Hs.4295	0.51
PLP2	Proteolipid protein 2 (colonic epithelium-enriched)	Hs.77422	0.52
GPX1	Glutathione peroxidase 1	Hs.76686	0.52
SYT1	Synaptophysin-like protein	Hs.202166	0.54
PICALM	Phospholipid-interacting clathrin assembly protein	Hs.69893	0.56
PTTP12	Protein tyrosine phosphatase, non-receptor type 12	Hs.61812	0.56
PSMA5	Proteasome (prosome, macropain) subunit β type5	Hs.485246	0.58
ST13	Suppression of tumorigenicity 13 (colon carcinoma) (Hsp70 interacting protein)	Hs.546303	0.58
S140	U2-associated S140 protein	Hs.25977	0.58
PAWR	PRKC, apoptosis, WT1, regulator	Hs.406074	0.59
EGR3	Early growth response 3	Hs.534313	0.60
HNRP4H1	Heterogeneous nuclear ribonucleoprotein H1 (H)	Hs.202166	0.60
GLTSCR2	Gloma tumour suppressor candidate region gene 2	Hs.421907	0.61
P38CA	Proliferating cell nuclear antigen	Hs.47433	0.61
PSMB3	Proteasome (prosome, macropain) subunit β type 3	Hs.82793	0.61
EMR3	EGF-like module containing, mucin-like, hormone receptor-like 3	Hs.295626	0.62

Genes significantly (P<0.007) up- or downregulated in the neuroendocrine cell lines compared with the non-neuroendocrine cell lines. The first half of the table shows downregulated genes whereas the last part of the table shows the upregulated genes. The genes are all given with unigene cluster id’s, official gene name and symbols in addition to their respective ratio (NE vs non-NE).
followed by a similar expression pattern at the protein level, we investigated whether the difference in gene expression level was reflected by the protein level. To this end, we performed protein expression analysis of at least three selected genes using the same RNA samples as those used in the microarray analysis. The three most highly downregulated genes in our study were MME (0.12 fold), STAT3 (0.13) and DCBLD2 (0.14 fold). Our results also point to differences in expression of several genes thought to be involved in the process of tumorigenesis (BEX1, TMEPAI, FOSL1, RAB32, ERBB2) (Table 2 and Supplementary Information). Well-differentiated NETs are in general relatively insensitive to various chemoheurapeutic drugs, and thus it is interesting to note variations between the two groups in the expression of genes known to be involved in the process of drug resistance (STAT3, PRKD2 ABCC6, GSTP1) (Table 2 and Supplementary Information). Nearly 50% of the upregulated, and 16% of the downregulated genes are in the GO database defined as having an unknown function (Supplementary Information).

Validation by real-time qRT–PCR

To validate the microarray results, we performed real-time quantitative RT–PCR analysis of five selected genes using the same RNA samples as those used in the microarray analysis. The selection of the genes (BAALC, SCG2, GSTP1, FOSL1, M160) were based upon a combination of P-value, differential expression, and biological function. In general, 70% of the genes found to be differentially expressed in the microarray study were confirmed by RT–PCR (Figure 2). This seems to be in accordance with previous studies using cDNA arrays (Kothapalli et al, 2002; Hofsli et al, 2005), and underlines the need to verify microarray data by additional methods.

Protein expression analysis

To investigate whether the difference in gene expression level was followed by a similar expression pattern at the protein level, we first performed western blot analysis of cell lysates. The selection of gene products analysed (secretogranin II, peroxiredoxin 2, hepsin) was based upon a combination of the expression level found in the microarray analysis, biological relevance, and availability of antibodies. As seen in Figure 3, the protein expression of the NE marker secretogranin II, correlated well with the gene expression level of SCG2 found in the microarray analysis (15-fold upregulated)(Table 2), and in the real-time RT – PCR analysis (Figure 2). All the NE tumour cell lines express a high level of SCG2, whereas the expression level in the non-NE cell group is almost undetectable. Hepsin (2.8 fold upregulated in the micro-array analysis) was found to be expressed in all cell lines and without any significant difference in NE vs non-NE cells (Figure 3). Thus, hepsin is ruled out as a possible new diagnostic marker of NET disease. On the contrary, the level of peroxiredoxin 2 expression (5 fold upregulated in the microarray analysis) was significantly different in the two groups (Figure 3). Peroxiredoxin 2 was clearly detectable in the NE cell line group, but almost undetectable in the non-NE cell group, thus pointing out peroxiredoxin 2 as an interesting new NE biomarker. The difference in secretogranin II and peroxiredoxin 2 expression was also confirmed by IHC analysis (data not shown).

In addition to secretogranin II and peroxiredoxin 2, our study points to NEFM as another interesting candidate marker of NET disease. NEFM, which was upregulated by a factor of 7.7 in the microarray analysis (Table 2), was by IHC shown to be expressed only in the NE tumour cells group (data not shown).

DISCUSSION

Although last year’s genomic and proteomic research have uncovered some genes and gene products thought to have an important function in the context of NET tumour biology (Hofsli, 2006), still much is unknown concerning which factors that are important with regard to the causes and behaviours of NET disease.
diseases. The results of this study contribute to an increased insight into the biology of these tumours, by identifying genes that are differentially expressed in NE tumour cells as compared with non-NE tumour cells. We believe that some of these genes and gene products represent interesting candidates in the search for new prognostic, predictive and therapeutic markers. The study also point to genes that may play a role in the tumorigenesis of NETs.

The three most highly overexpressed genes in the NE vs the non-NE tumour cell group (SCG3, SCG2 and DDC) (Table 2), have all previously been described in the context of NE tumour biology, thus confirming the reliability of our study design. Although secretogranin II and one of its split product (Taupenot et al, 2003; Guillemot et al, 2006) have been shown to be expressed in various types of NETs, investigations of the expression of secretogranin III in NETs have so far not been reported. The enzyme dopa decarboxylase (DDC)(catecholamine biosynthesis) has more recently been shown to be expressed in various NETs, such as bronchial carcinoids and poorly differentiated NE carcinomas of the lung (Uccella et al, 2006). It has also been shown to be a marker of neuroblastoma in children (Bozzi et al, 2004), and of NE differentiation in prostate carcinoma (Wafa et al, 2007). Another gene known to be involved in catecholamine metabolism, MAOA (Toninello et al, 2006), was also identified as highly expressed in the NET group (Table 2), a finding that was confirmed by IHC analysis (not shown). This supports previous findings demonstrating a high expression of MAOA in gastroenteropancreatic (GEP) tumours (Orlefors et al, 2003). To conclude, we believe that SCG3, SCG2 and DDC could represent useful additional biomarkers in NET diseases, and that they perhaps should be implemented in the standard diagnostic panel of NE biomarkers. Furthermore, measurement of MAOA activity may, as recently shown in a baboon model, aid in understanding the pathophysiology of NETs (Murthy et al, 2007).

Figure 2 RT–PCR confirmation of microarray results. A selection of genes (A–E) was also analysed by semi quantitative real-time RT–PCR (grey), and compared to the respective ratios of the microarray analysis (white). The two methods correlated at 9/10 cell lines at best, and the lowest correlated at 6/10 cell lines. Y axis shows the log-transformed ratio of both the microarray and the RT–PCR, based on the fold change ratios and the delta–delta \(\Delta C_t \) calculation, respectively.
expression of this gene in brain, but also in peripheral organs such as liver, pancreas, testis, and ovary (Yang et al, 2002a, b; Alvarez et al, 2005). It has more recently been suggested that BEX1 may play a role as a tumour suppressor in malignant glioma (Foltz et al, 2006). A very low expression was observed for the TMEPAI gene (Table 2), which is involved in androgen receptor signaling, and is proposed to play a role in prostate tumorigenesis (Xu et al, 2003). TMEPAI has been shown to be overexpressed in various solid tumours, probably because of abnormal activation of the EGF pathway (Giannini et al, 2003). Also the oncogenic transcription factor FOSS1, was downregulated in the NE tumour cell group. FOSS1 is upregulated in several solid cancers, and is becoming a new target for cancer intervention (Young and Colburn 2006). The ras family member RAB32, has been proposed to represent a context of the oncogenic pathway of microtubule instability and high gastrointestinal adenocarcinomas (Shibata et al, 2006). In our study, RAB32 was highly downregulated in the NE vs the non-NE group. Also the ERBB2 gene expression level was significantly lower in the NE tumour cell group than in the non-NE group. The expression level of this member of the oncogenic EGF receptor family, has previously been reported as a variable in various NETs (cf. Hofski, 2006). So far, there is no strong evidence that ERBB2 amplification/overexpression could play an important role in NET pathogenesis, or that it could be a potential target for treatment, as is the case in various epithelial cancers (Hsieh and Moasser 2007).

A hallmark of NETs in general, are that they are relatively slow growing and less invasive in character. Thus, its interesting to note that several genes thought to play a role in the processes of invasion, tumour progression and metastasis (MME, STAT3, DCBLD2, S100A10, CD9, S100A8) were highly downregulated in the NE vs the non-NE tumour group (Table 2). The most highly downregulated gene was MME. A loss or decrease in MME has been reported in a variety of malignancies, and reduced expression results in the accumulation of higher peptide concentrations that could mediate neoplastic progression (Sumitomo et al, 2005). Loss of this endopeptidase also leads to AKT1 (protein kinase B) activation, and contributes to the clinical progression of prostate cancer (Osman et al, 2006). STAT3 (the signal-transducer and activator of transcription 3) is known to play an important role in both tumorigenesis and tumour progression, and is often constitutively activated in tumour cells (Aggarwal et al, 2006). Thus, inhibitors of STAT3 activation have potential for both prevention and therapy of cancer (Huang, 2007). In lung cancer, DCBLD2 has been shown to be highly upregulated in the cell line NCI-H460-LNM35, in association with its acquisition of metastatic phenotype, and also upregulated in high frequency in metastatic lesions from lung cancers (Koshikawa et al, 2002). It is also shown that DCBLD2 may play a role in cell motility (Nagai et al, 2007), and thus it is suggested that this novel gene may become a target of therapy to inhibit metastasis of lung cancers.

The plasminogen receptor S100A10 is found overexpressed in many cancer cells, and seems to play an important role in cancer cell invasiveness and metastasis (Kwon et al, 2005). RNA interference-mediated downregulation of S100A10 gene expression in colorectal cancer cells, has been shown to result in a complete loss in plasminogen-dependent cellular invasiveness (Zhang et al, 2004). More recently it has been shown by IHC analysis that S100A10 expression in thyroid neoplasms contributes to the aggressive characteristic of anaplastic carcinoma (Ito et al, 2007). To conclude, the very low levels of various genes known to be involved in the processes of invasion, tumour progression and metastasis could perhaps reflect the in general more slow growing and less invasive character of NETs.

In addition to the already mentioned STAT3 and PRX2, other genes that have been linked to the phenomenon of drug resistance,

Figure 3 Western blot. Western blot analysis was performed on cell lines (NE and non-NE) with the antibodies against secretogranin II, hepsin, peroxiredoxin 2 and GAPDH. Cells were harvested and prepared as described in Materials and methods.
were identified as differentially expressed (ABCC6, GSTP1). Well-differentiated NETs are in general relatively insensitive to various chemotherapeutic drugs. Thus, it is interesting to note that our study reveals a relatively high expression of ABCC6 (ATP-binding cassette, subfamily C (CFTR/MRP), member 6), one member of the MRP subfamily involved in multi-drug resistance (Beck et al., 2005). Endocrine G-cells in the stomach has been shown to express high level of ABCC6 (Beck et al., 2005). However, our study is the first to report ABCC6 expression in NE tumour cells. The antiapoptosis gene GSTP1 was, however, downregulated in the NET group (Table 2). In prostate cancer, the loss of expression of GSTP1 is the most common genetic alteration reported (Meiers et al., 2007). A comprehensive survey of GSTP1 expression in NETs has so far not been performed, but one study has been undertaken, showing that the expression of this drug-resistant protein is significantly lower in large cell NE carcinoma of the lung than in the other more common histological types of lung cancer (Okada et al., 2003).

In conclusion, the results of our study add new important lights into the understanding of NE tumour biology, by identifying genes differentially expressed in NE as compared with non-NE tumour cells. In addition to potential new diagnostic markers (SCG2, SCG3, DDC, MAOA, NEFM, CLDN4, PEROX2), genes critical in the processes of tumour invasion, progression and metastasis (MME, STAT3, DCBLD2, S100A10, CD9, S100A4B), tumorigenesis (BEX1, TMEPA1, FOSL1, RAB32) and drug-resistance (ABCC6, GSTP1) were identified, as well as several genes with hitherto unknown functions.

ACKNOWLEDGEMENTS

This work was supported by the Norwegian Foundation for Health and Rehabilitation, The Norwegian Cancer Society, The Norwegian Research Council and the Cancer Fund at the St Olavs Hospital HF, Trondheim. We gratefully acknowledge the advice given by professor Ursula Falkmer, Oncology Unit, St Olavs Hospital HF, Trondheim, Norway, and professor Sture Falkmer, Department of Laboratory Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, for his excellent assistance in the ultra structural investigations. We also thank Ole Jonny Steffensen, Department of pathology, Ålesund Hospital, Ålesund, Norway, for help with the IHC analysis.

Supplementary Information accompanies the paper on British Journal of Cancer website (http://www.nature.com/bjc)

REFERENCES

Aggarwal BB, Sethi G, Ahn KS, Sandur SK, Pandey MK, Kunnunakkara AB, Sung B, Ichikawa H (2006) Targeting signal-transducer-and-activator-of-transcription-3 for prevention and therapy of cancer: modern target but ancient solution. *Ann N Y Acad Sci* 1094: 151 – 169

Alvarez E, Zhou W, Witta SE, Freed CR (2005) Characterization of the Bex gene family in humans, mice, and rats. *Gene* 357: 18 – 28

Baldus CD, Martus P, Burmeister T, Schwartz S, Glockner N, Bloomfield CD, Hoelzer D, Thiel E, Hofmann WK (2007) Low ERG and BAALC expression identifies a new subgroup of adult T-lymphoblastic leukemia with a highly favorable outcome. *J Clin Oncol* 25: 3739 – 3745

Beck K, Hayashi K, Dang K, Hayashi M, Boyd CD (2005) Analysis of ABCC6 (MRP6) in normal human tissues. *Histochem Cell Biol* 123: 517 – 528

Bozzi F, Luksch R, Collini P, Gambirasio F, Barzano E, Polastri D, Podda M, Brando B, Fossati-Bellani F (2004) Molecular detection of dopamine decarboxylase expression by means of reverse transcriptase and polymerase chain reaction in bone marrow and peripheral blood: utility as a tumor marker for neuroblastoma. *Diagn Mol Pathol* 13: 135 – 143

Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C, Aach J, Ansorge W, Ball CA, Causton HC, Glenisson P, Holstege FC, Kim IF, Markowitz V, Matese JC, Parkinson H, Robinson A, Sarkans U, Schulze-Kremer S, Stewart J, Taylor R, Viljo J, Vingron M (2001) Minimum information about a microarray experiment (MIAME) - toward standards for microarray data. *Nat Genet* 29: 365 – 371

Capella C, La Rosa S, Uccella S, Billo P, Cornaggia M (2000) Mixed endocrine-exocrine tumours of the gastrointestinal tract. *Semin Diagn Pathol* 17: 91 – 103

DeLellis RA (2001) The neuroendocrine system and its tumours: an overview. *Ann J Clin Pathol* 115(Suppl): S5 – S16

Evers BM, Townsend Jr CM, Upp JR, Allen E, Hrubut SC, Kim SW, Rajaraman S, Singh P, Reubi JC, Thompson JC (1991) Establishment and characterization of a human carcinoid in nude mice and effect of various agents on tumor growth. *Gastroenterology* 101: 303 – 311

Falkmer S (1993) Phylogeny and ontogeny of the neuroendocrine cells of the gastrointestinal tract. *Endocrinol Metab Clin North Am* 22: 731 – 752

Foltz G, Ryu GY, Yoon JG, Nelson T, Fahey J, Frakes A, Lee H, Field L, Zander K, Sibenaller Z, Ryken TC, Vibhakar R, Hood L, Madan A (2006) Genome-wide analysis of epigenetic silencing identifies BEX1 and BEX2 as candidate tumor suppressor genes in malignant glioma. *Cancer Res* 66: 6665 – 6674

Giannini G, Ambrosini MI, Di Marcotullio L, Cerignoli F, Zani M, MacKay AR, Scerpati I, Frati L, Galino A (2003) EGF- and cell-cycle-regulated *STAG1*/*PEPA1*/ERG1.2 belongs to a conserved gene family and is overexpressed and amplified in breast and ovarian cancer. *Mol Carcinog* 38: 188 – 200

Guillomet J, Barbier L, Thouennon E, Vallet-Erdtmann V, Montero-Hadjadje M, Lefebvre H, Klein M, Muresan M, Plouin PF, Seidah N, Vaudry H, Anoura Y, Ton L (2006) Expression and processing of the neuroendocrine protein secretogranin II in benign and malignant pheochromocytomas. *Ann N Y Acad Sci* 1073: 527 – 532

Hofsli E (2006) Genes involved in neuroendocrine tumour biology. *Pituitary* 9: 165 – 178

Hofsli E, Thommesen L, Yadetie F, Langaa M, Kusnierczyk W, Falkmer U, Sandvik AK, Laegreid A (2005) Identification of novel growth factor-responsive genes in neuroendocrine gastrointestinal tumour cells. *Br J Cancer* 92: 1506 – 1516

Hsieh AC, Moasser MM (2007) Targeting HER proteins in cancer therapy and the role of the non-target HER3. *Br J Cancer* 97: 453 – 457

Huang S (2007) Regulation of metastases by signal transducer and activator of transcription 3 signaling pathway: clinical implications. *Clin Cancer Res* 13: 1362 – 1366

Ito Y, Arai K, Nozawa R, Yoshida H, Higashiyama T, Takamura Y, Miyia A, Kobayashi K, Kuma M, Miyaiuchi A (2007) *S100A10* expression in thyroid neoplasms originating from the follicular epithelium: contribution to the aggressive characteristic of anaplastic carcinoma. *Anticancer Res* 27: 2679 – 2683

Kominsky SL, Tyler B, Sosnowski J, Brady K, Doucet M, Nell D, Smedley III JG, McClane B, Brem H, Sukumar S (2007) Clostridium perfringens enterotoxin as a novel-targeted therapeutic for brain metastasis. *Cancer Res* 67: 7797 – 7782

Koshikawa K, Osada H, Kozaki K, Konishi H, Masuda A, Tatematsu Y, Mitsudomi T, Nakao A, Takahashi T (2002) Significant up-regulation of a novel gene, *CLCPI*, in a highly metastatic lung cancer subtype as well as in lung cancers in vivo. *Oncogene* 21: 2822 – 2828

Kothapalli R, Yoder SJ, Mane S, Loughran Jr TP (2002) Microarray results: how accurate are they? *BMC Bioinformatics* 3: 22

Kwon M, MacLeod TJ, Zhang Y, Waisman DM (2005) *S100A10*, annexin A2, and annexin a2 heterotramer as candidate plasminogen receptors. *Front Biosci* 10: 300 – 325
Langas M (2005) Estimating the proportion of true null hypotheses, with application to DNA microarray data. J R Stat Soc 67: 558 – 572
Lee W, Choi KS, Riddell J, Ip C, Ghosh D, Park JH, Park YM (2007) Human peroxiredoxin 1 and 2 are not duplicate proteins: the unique presence of CY583 in Prx1 underscores the structural and functional differences between Prx1 and Prx2. J Biol Chem 282: 22011 – 22022
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402 – 408
Marsucci G, Mrozek K, Bloomfield CD (2005) Molecular heterogeneity and prognostic biomarkers in adults with acute myeloid leukemia and normal cytogenetics. Curr Opin Hematol 12: 68 – 75
Meiers I, Shanks JH, Bestwick DG (2007) Glutathione S-transferase pi (GSTPI) hypermethylation in prostate cancer: review 2007. Pathology 39: 299 – 304
Moldvay J, Jackel M, Paska C, Soltész I, Schaff Z, Kiss A (2007) Distinct claudin expression profile in histologic subtypes of lung cancer. Lung Cancer 57: 159 – 167
Morin PJ (2005) Claudin proteins in human cancer: promising new targets for diagnosis and therapy. Cancer Res 65: 9603 – 9606
Murthy R, Erlandsson K, Kumar D, Van Heerum R, Mann J, Parsey R (2007) Biodistribution and radiation dosimetry of 11C-harmine in baboons. Nucl Med Commun 28: 748 – 754
Nagai H, Sugito N, Matsubara H, Tatematsu Y, Hida T, Sekido Y, Nagino M, Nimura Y, Takahashi T, Osada H (2007) CLCP1 interacts with semaphorin 4B and regulates motility of lung cancer cells. Oncogene 26: 4025 – 4035
Nerstet KG, Laegreid A, Mørkved S, Westre B, Waldum HL (1999) Clinical and histological study of the expression of drug-resistant proteins in vivo in colorectal cancer. Anti-Cancer Drugs 10: 227 – 237
Okada D, Kawamoto M, Koizumi K, Tanaka S, Fukuda Y (2003) Immunohistochemical study of the expression of drug-resistant proteins in large cell neuroendocrine carcinoma of the lung. Jpn J Thorac Cardiovasc Surg 51: 272 – 276
Orlefovs F, Sundin A, Fasth KJ, Berg K, Langstrom B, Eriksson B, Bergstrom M (2003) Demonstration of high monoaminoxidase-A levels in neuroendocrine gastroenteropancreatic tumors in vitro and in vivo – tumor visualization using positron emission tomography with 11C-harmine. Nucl Med Biol 30: 669 – 679
Osman I, Dai J, Mikhail M, Navarro D, Taneja SS, Lee P, Christos P, Shen R, Nanus DM (2006) Loss of neutral endopeptidase and activation of protein kinase B (Akt) is associated with prostate cancer progression. Cancer 107: 2628 – 2636
Perez MA, Saul SH, Trojanowski QJ (1999) Neurofilament and chromogranin expression in normal and neoplastic neuroendocrine cells of the human gastrointestinal tract and pancreas. Cancer 65: 1219 – 1227
Quigstad G, Falkmer S, Westre B, Waldum HL (1999) Clinical and histopathological tumour progression in ECL cell carcinoids (‘ECLomas’). APMIS 107: 1085 – 1092
R Development Core Team (2004) R: A Language and Environment for Statistical Computing. InR Foundation for Statistical Computing Vienna: Austria, ISBN 3-900051-00-3 http://www.r-project.org
Shibata D, Mori Y, Cai K, Zhang L, Yin J, Elahi A, Hamelin R, Wong YF, Lo WK, Chung TK, Sato F, Karpeh Jr MS, Meitzler SJ (2006) RAB32 hypermethylation and microsatellite instability in gastric and endometrial adenocarcinomas. Int J Cancer 119: 801 – 806
Smyth GK (2005) Limma: linear models for microarray data. In Bioinformatics and Computational Biology Solutions using R and Bioconductor, Gentleman R, Carey V, Dudoit S, Irizarry R & Huber W (eds), pp 397 – 420. Springer: New York
Smyth GK, Michaud J, Scott H (2005) The use of within-array replicate spots for assessing differential expression in microarray experiments. Bioinformatics 21: 2067 – 2075
Sorhaug S, Steinsmann S, Haaveraerd R, Nordrum IS, Martinisen TC, Waldum HL (2007) Expression of neuroendocrine markers in non-small cell lung cancer. APMAIS 115: 152 – 163
Stephenson Tj (2006) Prognostic and predictive factors in endocrine tumours. Histopathology 48: 629 – 643
Storey JD (2002) A direct approach to false discovery rates. J Royal Stat Soc 64: 479 – 498
Sumimoto M, Shen R, Nanus DM (2005) Involvement of neutral endopeptidase in neoplastic progression. Biochim Biophys Acta 1751: 52 – 59
Tanner SM, Austin JL, Lehne G, Rush LJ, Plass C, Heinonen K, Mrozek K, Sill H, Knuutila S, Kolitz JE, Archer KJ, Caligiuri MA, Bloomfield CD, de La Chapelle A (2001) BAALC, the human member of a novel mammalian neuroectodermal gene lineage, is implicated in hematopoiesis and acute leukemia. Proc Natl Acad Sci USA 98: 13901 – 13906
Taupenot L, Harper KL, O’Connor DT (2003) The chromogranin-secretogranin family. N Engl J Med 348: 1134 – 1149
Toninello A, Pietrangeli P, De Marchi U, Salvi M, Mondovi B (2006) Amine oxidases in apoptosis and cancer. Biochim Biophys Acta 1765: 1 – 13
Uccella S, Cerutti R, Vegisti D, Furlan D, Oldrini B, Carnelli I, Pelosi G, La Rosa S, Passi A, Capella C (2006) Histidine decarboxylase, DOPA decarboxylase, and vesicular monoamine transporter 2 expression in neuroendocrine tumors: immunohistochemical study and gene expression analysis. J Histochem Cytochem 54: 863 – 875
Ueda J, Sembia S, Chiba H, Sawada N, Seo Y, Kasuga M, Yokozaki H (2007) Heterogeneous expression of claudin-4 in human colorectal cancer: decreased claudin-4 expression at the invasive front correlates cancer invasion and metastasis. Pathobiology 74: 52 – 41
Vilar E, Salazar R, Perez-Garcia J, Cortes J, Oberg K, Tabernero J (2007) Chemotherapy and role of the proliferation marker Ki-67 in digestive neuroendocrine tumors. Endocr Relat Cancer 14: 221 – 232
Wafa LA, Palmer J, Fazli L, Hurtado-Coll A, Bell RH, Nelson CC, Gleave ME, Cox ME, Rennie PS (2007) Comprehensive expression analysis of L-dopa decarboxylase and established neuroendocrine markers in neoadjuvant hormone-treated vs varying Gleason grade prostate tumors. Hum Pathol 38: 161 – 170
Wick MR (2000) Neuroendocrine neoplasia. Current concepts. Am J Clin Pathol 113: 331 – 335
Xu LU, Shi Y, Petrovics G, Sun C, Makarem M, Zhang W, Sesterhenn IA, McLeod DG, Sun L, Moul JW, Srivastava S (2003) PMEPA1, an androgen-regulated NEDD4-binding protein, exhibits cell growth inhibitory function and decreased expression during prostate cancer progression. Cancer Res 63: 4299 – 4304
Yadetie F, Laegreid A, Bakke I, Kusnierczyk W, Komorowski J, Waldum HL, Sandvik AK (2003) Liver gene expression in rats in response to the peroxisome proliferator-activated receptor-alpha agonist ciprofibrate. Physiol Genomics 13: 9 – 19
Yang QS, Xia F, Gu SH, Yuan HL, Chen JZ, Yang QS, Ying K, Xie Y, Mao YM (2002a) Cloning and expression pattern of a spermatogenesis-related gene, BEX1, mapped to chromosome Xq22. Biochem Genet 40: 1 – 12
Yang YH, Dudoit S, Luu P, Lin DM, Peng V, Ngai J, Speed TP (2002b) Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nuclei Acids Res 30: e15
Young MB, Colburn NH (2006) Fra-1 a target for cancer prevention or intervention. Gene 379: 1 – 11
Zhang L, Fogg DK, Waisman DM (2004) RNA interference-mediated silencing of the S100A10 gene attenuates plasmin generation and invasiveness of Colo 222 colorectal cancer cells. J Biol Chem 279: 2053 – 2062