Expression of Aldo-keto Reductase 1C23 in the Equine Corpus Luteum in Different Luteal Phases

Keisuke KOZAI1), Takuo HOJO1), Shota TOKUYAMA2), Anna Z SZÓSTEK3), Masashi TAKAHASHI4, 5), Miki SAKATANI4), Yasuo NAMBO6), Dariusz J SKARZYNSKI3) and Kiyoshi OKUDA1, 2)

1)Laboratory of Reproductive Physiology, Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
2)Laboratory of Reproductive Physiology, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
3)Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-747 Olsztyn, Poland
4)Kyushu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization (NARO), Kumamoto 861-1192, Japan
5)Department of Animal Science, Hokkaido University, Hokkaido 060-8589, Japan
6)Equine Science Division, Hidaka Training and Research Center Japan Racing Association, Hokkaido 057-0171, Japan

Abstract. Regression of the corpus luteum (CL) is characterized by a decay in progesterone (P₄) production (functional luteolysis) and disappearance of luteal tissues (structural luteolysis). In mares, structural luteolysis is thought to be caused by apoptosis of luteal cells, but functional luteolysis is poorly understood. 20α-hydroxysteroid dehydrogenase (20α-HSD) catabolizes P₄ into its biologically inactive form, 20α-hydroxyprogesterone (20α-OHP). In mares, aldo-keto reductase (AKR) 1C23, which is a member of the AKR superfamily, has 20α-HSD activity. To clarify whether AKR1C23 is associated with functional luteolysis in mares, we investigated the expression of AKR1C23 in the CL in different luteal phases. The luteal P₄ concentration and levels of 3β-hydroxysteroid dehydrogenase (3β-HSD) mRNA were higher in the mid luteal phase than in the late and regressed luteal phases (P<0.05), but the level of 3β-HSD protein was higher in the late luteal phase than in the regressed luteal phase (P<0.05). The luteal 20α-OHP concentration and the level of AKR1C23 mRNA were higher in the late luteal phase than in the early and mid luteal phases (P<0.05), and the level of AKR1C23 protein was also highest in the late luteal phase. Taken together, these findings suggest that metabolism of P₄ by AKR1C23 is one of the processes contributing to functional luteolysis in mares.

Key words: 20α-hydroxysteroid dehydrogenase, Corpus luteum, Functional luteolysis, Mares, Progesterone

The corpus luteum (CL) is a mammalian endocrine organ that is formed in the ovary after ovulation. The CL produces progesterone (P₄), which is essential for the establishment and maintenance of pregnancy. In the absence of pregnancy, the CL progresses following the pulsatile release of uterine prostaglandin F₂α (PGF). Regression of the CL is characterized by a decay in P₄ production (functional luteolysis) and the disappearance of luteal tissue (structural luteolysis) [1]. In mares, structural luteolysis has been suggested to be caused by apoptosis of luteal cells [2], while functional luteolysis is poorly understood.

P₄ is catabolized into its biologically inactive form, 20α-hydroxyprogesterone (20α-OHP), by 20α-hydroxysteroid dehydrogenase (20α-HSD). In rodents, ovarian 20α-HSD plays a role in functional luteolysis at term of pseudopregnancy as well as during the estrous cycle [3, 4]. Recently, it has also been demonstrated in the bovine CL that 20α-HSD is expressed throughout the estrous cycle and that 20α-HSD expression is remarkably higher in the late stage than in the other stages of the estrous cycle [5].

Aldo-keto reductases (AKRs) are multifunctional enzymes that act on a wide range of substrates including steroid hormones [6]. In mares, AKR1C23 has 20α-HSD activity and converts P₄ to 20α-OHP [7]. Although it is reported that AKR1C23 is expressed in the equine CL [7], the role of AKR1C23 in the equine CL remains unclear. In the present study, to clarify the possible mechanism of functional luteolysis in mares, we investigated the 20α-OHP concentrations and expression of AKR1C23 in the equine CL in different luteal phases.

Materials and Methods

Collection of equine CLs

Fifty-eight Anglo-Norman mares of various ages and weighing approximately 1,000 kg, which were imported from Canada and then fattened at a ranch adjacent to an abattoir (~N32°) in Kumamoto, Japan, for at least two years before exsanguination, were utilized in
the present study. Fifty-eight ovaries containing a CL were collected from randomly designated cyclic nonpregnant mares at the abattoir in accordance with protocols approved by the local institutional animal care and use committee from April until the end of August. Mares possessing ovaries with a macroscopic abnormality including anovulatory hemorrhagic follicles were eliminated. After mid-sagittal sectioning, the CLs were classified as being in the early, mid, late or regressed luteal phase (n=3–8/phase) by macroscopic observation of the CLs and follicles (Table 1) as described previously [8, 9]. Following determination of the phases, CL tissues were immediately separated from the ovaries, rinsed with cold sterile saline, frozen rapidly in liquid nitrogen and then stored at −80°C until being processed for P₄, 20α-OHP, RNA and protein extraction.

P₄ and 20α-OHP extraction

P₄ and 20α-OHP were extracted from luteal tissues as described previously [10]. Briefly, 2 ml of ethanol was added to the minced luteal tissue samples (approximately 0.2 g). The tissues were then homogenized 5 times for 10 sec on ice by a tissue homogenizer (Phyoxtron; NITON, Chiba, Japan; NS-50) and 3 times for 1 min on ice by an ultrasonic homogenizer (VCX400 Vibra-Cell; Sonics & Materials, Newtown, CT, USA). After centrifugation (1,700 rpm for 30 min at 4°C), the supernatant was evaporated in a vacuum oven at 50°C, and the residue was dissolved in 2 ml of enzyme immunoassay (EIA) buffer (7.12 g Na₂HPO₄·2H₂O, 8.5 g NaCl in 1,000 ml ultrapure water, pH 7.2).

P₄ and 20α-OHP determination

The concentrations of P₄ in the tissue extracts were determined directly by EIA as described previously [11]. The P₄ standard curve ranged from 0.391 to 100 ng/ml, and the ED₅₀ of the assay was 2.0 ng/ml. The intra- and interassay coefficients of variation were on average 5.4 and 7.0%, respectively. The cross-reactivity of the antibody was 100% for P₄ and 0.03% for 20α-OHP.

The concentrations of 20α-OHP in the tissue extracts were determined directly by EIA. The 20α-OHP EIA was based on the EIA for P₄ with some modifications. Standards or samples (20 μl) were incubated with 50 μl polyclonal antibody (raised in a rabbit against 20α-OH-Progesterone-3-CMO-BSA; Cosmo Bio, Tokyo, Japan) solution (1:800,000) and 50 μl 20α-OH-Progesterone-3-CMO-HRP (1:400,000; Cosmo Bio) for 16 h at 4°C. The standard curve ranged from 0.0976 to 50 ng/ml, and the ED₅₀ of the assay was 2.5 ng/ml. The intra- and interassay coefficients of variation were on average 6.8 and 8.6%, respectively. The cross-reactivity of the antibody was 100% for 20α-OHP, 1.22% for P₄, 0.99% for pregnenolone and 0.35% for testosterone.

RNA isolation and cDNA synthesis

Total RNA was prepared from luteal tissues using TRIzol Reagent according to the manufacturer’s directions (no. 15596-026; Invitrogen, Carlsbad, CA, USA). Total RNA (1 μg) was reverse transcribed using a ThermoScript RT-PCR System (no. 11146-016; Invitrogen).

Real-time PCR

Gene expression was determined by real-time PCR using a MyQ system (no. 170-9740, Bio-Rad Laboratories, Melville, NY, USA) and SYBR® Premix Ex Taq™ II (RR081B, TaKaRa, Shiga, Japan) starting with 2 ng of reverse-transcribed total RNA as described previously [12]. Briefly, for quantification of the mRNA expression levels, the primer length (20–25 bp) and GC contents of each primer (50–60%) were synthesized (Table 2) and were chosen using an online software package [13]. To determine the most stable internal control gene under our experimental conditions, three potential housekeeping genes were initially considered (β2-microglobulin (B2M), glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and β-actin), and geNorm analysis was performed using the geNorm software (version 3.5). The M values of B2M, GAPDH and β-actin were 0.784, 0.505 and 0.501, respectively. Therefore, β-actin was identified as the most stable gene. The primers for 3β-HSD, AKR1C23 and β-actin generated specific 132-bp, 148-bp and 113-bp products, respectively. Each PCR yielded only a single amplification product. PCR was performed under the following conditions: 95°C for 3 min, followed by 45 cycles of 94°C for 15 sec, 55°C for 20 sec and 72°C for 15 sec. Use of SYBR® Premix Ex Taq™ II at elevated temperatures resulted in reliable and sensitive quantification of the RT-PCR products with high linearity (Pearson correlation coefficient r > 0.99). To correct for differences in RNA quality and quantity between samples, the expression levels of target gene mRNA were normalized by dividing the quantity of the target gene by the quantity of β-actin in each sample.

Western blot analysis

Each protein in the luteal tissues was assessed by Western blot analysis. The luteal tissues were homogenized on ice in homogenization buffer (25 mM Tris-HCl, 300 mM sucrose, 2 mM EDTA, Complete [protease inhibitor cocktail; no. 11 697 498 001; Roche Diagnostics, Mannheim, Germany], pH 7.4) by the tissue homogenizer, followed by filtration with a metal wire mesh (150 μm). For protein analysis, tissue homogenates were centrifuged at 600 × g for 10 min at 4°C. The supernatants were then centrifuged at 9,000 × g for 30 min at 4°C, and the resulting supernatants were used as cytoplasmic fraction. Protein concentrations were determined by the BCA method [14] using BSA as a standard.

The protein samples (50 μg protein) were then solubilized in SDS gel-loading buffer (50 mM Tris-HCl, 2% SDS [no. 31607-94; Nacalai Tesque, Kyoto, Japan], 10% glycerol, 1% β-mercaptoethanol [no. 137-06862; Wako Pure Chemical Industries, Osaka, Japan], pH 6.8), heated at 95°C for 10 min and subjected to 15% SDS-PAGE for 1 h at 250 V. Separated proteins were electrophoretically transferred to polyvinylidene difluoride membranes (RPN303F; GE Healthcare, Milwaukee, WI, USA) for 40 min at 200 mA using a Trans-Blot® SD Semi-Dry Electrophoretic Transfer Cell (no. 170-3940, Bio-Rad Laboratories). The membranes were incubated in blocking buffer (5% nonfat dry milk in TBS [25 mM Tris-HCl, 137 mM NaCl, pH 7.5] with 0.1% Tween 20 [TBST]) for 1 h at room temperature and then incubated separately with specific primary antibodies to 3β-HSD (40 kDa; 1:6,000; ab75710; Abcam plc., Cambridge, UK), AKR1C1 (37 kDa; 1:5,000; LS-B6269; LifeSpan BioSciences, Seattle, WA, USA) and β-actin (42 kDa; 1:4,000; A2228; Sigma-Aldrich, St. Louis, MO, USA) in TBST overnight at 4°C. After primary antibody incubation, the membranes were washed in TBST for 10 min 3 times at room temperature. After washing, the membranes were incubated...
with secondary antibody (anti-mouse, HRP-linked whole antibody produced in sheep [NA931; Amersham Biosciences, San Francisco, CA, USA]; 1: 6,000 for 3β-HSD, 1: 10,000 for AKR1C2, 1: 40,000 for β-actin) in TBST for 1 h at room temperature, washed in TBST for 10 min 3 times at room temperature and then incubated with Immobilon Western Chemiluminescent HRP Substrate (WBKLS0500; Merck KGaA, Darmstadt, Germany). Images were captured using a ChemiDoc™ XRS+ System (#170-8265; Bio-Rad Laboratories). The intensity of the immunological reaction was estimated by measuring the optical density in the defined area by computerized densitometry using NIH Image (National Institutes of Health, Bethesda, MD, USA).

Statistical analysis

The results are expressed as mean ± SEM values obtained from 3–8 luteal tissues/phase. The statistical significance of differences in luteal P4 and 20α-OHP concentrations, the levels of 3β-HSD and AKR1C23 mRNA, and 3β-HSD and AKR1C23 protein levels was analyzed by a one-way analysis of variance (ANOVA). The comparisons between phases were performed using the Tukey-Kramer multiple comparison test. P values < 0.05 were considered significant.

Results

Luteal P4 and 20α-OHP concentration in the different luteal phases

The luteal P4 concentration was higher in the mid luteal phase than in the late and regressed luteal phases (Fig. 1a: P<0.05). The luteal 20α-OHP concentration was higher in the late luteal phase than in any other luteal phases (Fig. 1b: P<0.05).

Expressions of 3β-HSD mRNA and protein in the equine CL in the different luteal phases

Specific transcripts for 3β-HSD were detected in the equine CL throughout the luteal phase. The level of 3β-HSD mRNA was higher in the early and mid luteal phases than in the late and regressed luteal phases (Fig. 2a: P<0.05). 3β-HSD protein was expressed in the equine CL throughout the luteal phase. The level of 3β-HSD protein was higher in the late luteal phase than in the regressed luteal phase (Fig. 2b: P<0.05).

Expressions of AKR1C23 mRNA and protein in the equine CL in the different luteal phases

Specific transcripts for AKR1C23 were detected in the equine CL throughout the luteal phase. The level of AKR1C23 mRNA was higher in the late luteal phase than in the early and mid luteal phases (Fig. 3a: P<0.05). AKR1C23 protein was expressed in the equine CL throughout the luteal phase. The level of AKR1C23 protein was higher in the late luteal phase than in the early luteal phase (Fig. 3b: P<0.05).

Discussion

In the present study, P4 concentrations in the luteal tissues were high in the mid luteal phase and low in the late and regressed luteal phases. This result is consistent with previous reports that showed changes in circulating P4 concentration throughout the luteal phase in mares [15, 16], indicating that functional luteolysis occurs in the late luteal phase. As in the case of the P4 concentrations in the luteal tissues, the mRNA expression of 3β-HSD, which converts pregnenolone into P4, was higher in the early and mid luteal phases than in the late and regressed luteal phases. However, unexpectedly, the level of 3β-HSD protein was highest in the late luteal phase. In cattle [17, 18] and sheep [19, 20], the level of mRNA for 3β-HSD decreased in parallel with circulating P4 concentrations during PGF-induced luteolysis, but 3β-HSD protein expression or activity in the CL did not change. Based on the above findings, 3β-HSD activity in the CL may not play a role in functional luteolysis in mares.

The 20α-OHP concentrations in the luteal tissues were higher in
EXPRESSION OF AKR1C23 IN THE EQUINE CL

the late luteal phase than in any other luteal phases. This finding strongly suggests that P₄ is converted into 20α-OHP in the late luteal tissues. In rodents, 20α-HSD expressed in luteal cells catalyzes P₄ into 20α-OHP at the termination of pregnancy to allow parturition to occur [21]. In mares, AKR1C23 has 20α-HSD activity; i.e., it converts P₄ into 20α-OHP [7]. In the present study, the mRNA and protein expressions of AKR1C23 were highest in the late luteal phase when the 20α-OHP concentration in the luteal tissues reached a peak. These results are consistent with previous observations in the bovine CL [5]. Together, our findings suggest that AKR1C23 converts P₄ into 20α-OHP in the late luteal phase, resulting in a decrease in the luteal P₄ concentration (Fig. 1a). In addition, Fas ligand (FASL) expressed in the late CL reduces P₄ production and stimulates PGF production by equine luteal cells [23]. In rodents, PGF has been demonstrated to induce 20α-HSD expression in the CL, which is accompanied by a significant reduction in the circulating levels of P₄ and a rise in the levels of 20α-OHP [21]. Based on the above findings, AKR1C23 expression in the equine CL may be induced by PGF and FASL, leading to functional luteolysis. Further study is needed to clarify the mechanism of the regulation of AKR1C23 expression in the equine CL.

The overall findings in the present study strongly suggest that conversion of P₄ into 20α-OHP by AKR1C23 is one of the processes contributing to functional luteolysis in mares.

Acknowledgments

This study was supported by the Japanese-Polish Joint Research Project under an agreement between the Japan Society for the Promotion of Science and Polish Academy of Sciences and was supported in part by the Equine Research Institute, Japan Racing Association.

References

1. McCracken JA, Custer EE, Lamsa JC. Luteolysis: a neuroendocrine-mediated event. Physiol Rev 1999; 79: 263–323. [Medline]
2. Al-Zi’abi MO, Fraser HM, Watson ED. Cell death during natural and induced luteal regression in mares. Reproduction 2002; 123: 67–77. [Medline] [CrossRef]
3. Ishida M, Choi JH, Hiramatsu K, Matsuzaki T, Yamanouchi K, Horai R, Sudo K, Iwakura Y, Nishihara M. Reproductive phenotypes in mice with targeted disruption of the 20α-hydroxysteroid dehydrogenase gene. J Reprod Dev 2007; 53: 499–508. [Medline] [CrossRef]
4. Matsuda J, Noda K, Shiotani K, Takahashi M. Participation of ovarian 20 alpha-hydroxysteroid dehydrogenase in luteotrophic and luteolytic processes during rat pseudo-

Fig. 1. Luteal P₄ (a) and 20α-OHP (b) concentrations in the different luteal phases. All experimental data are shown as means ± SEM. Different letters indicate significant differences (P<0.05) as determined by ANOVA followed by the Tukey-Kramer multiple comparison test.

Fig. 2. Expressions of 3β-HSD mRNA (a) and protein (b) in the equine CL in the different luteal phases. All experimental data are shown as means ± SEM. Different letters indicate significant differences (P<0.05) as determined by ANOVA followed by the Tukey-Kramer multiple comparison test.
Expressions of AKR1C23 mRNA (a) and protein (b) in the equine CL in the different luteal phases. All experimental data are shown as means ± SEM. Different letters indicate significant differences (P<0.05) as determined by ANOVA followed by the Tukey-Kramer multiple comparison test.

Fig. 3. Expressions of AKR1C23 mRNA (a) and protein (b) in the equine CL in the different luteal phases. All experimental data are shown as means ± SEM. Different letters indicate significant differences (P<0.05) as determined by ANOVA followed by the Tukey-Kramer multiple comparison test.

5. Naidansuren P, Park CW, Kim SH, Nanjidsuren T, Park JJ, Yun SJ, Sim BW, Hwang S, Kang MH, Ryu BY, Hwang SY, Yoon JT, Yamanouchi K, Min KS. Molecular characterization of bovine placental and ovarian 20α-hydroxysteroid dehydrogenase. Reproduction 2011; 142: 723–731. [Medline] [CrossRef]

6. Jez JM, Bennett MJ, Schlegel BP, Lewis M, Penning TM. Comparative anatomy of the aldo-keto reductase superfamily. Biochim J 1997; 326: 625–636. [Medline]

7. Brown KA, Boerboom D, Bouchard N, Doré M, Lussier JC, Siros J. Human choricron gonadotropin-dependent induction of an equine aldo-keto reductase (AKR1C23) with 20α-hydroxysteroid dehydrogenase activity during follicular luteinization in vivo. J Mol Endocrinol 2006; 36: 449–461. [Medline] [CrossRef]

8. Gnth J. Characteristics of the ovulatory season. In: Reproductive Biology of the Mare: Basic and Applied Aspects. 2nd ed. Wisconsin: Equiservices; 1992: 173–232.

9. Ferreira-Dias G, Bravo PP, Mateus L, Redner MA, Medeiros JA. Microvascularization and angiogenic activity of equine corpora lutea throughout the estrous cycle. Domest Anim Endocrinol 2006; 30: 247–259. [Medline] [CrossRef]

10. Wijayaganawadane MPB, Miyamoto A, Cebito WA, Acosta TJ, Takagi M, Sato K. Local distributions of oviductal estradiol, progesterone, prostaglandins, oxytocin and endothelin-1 in the cyclic cow. Theriogenology 1998; 49: 697–716. [Medline] [CrossRef]

11. Okuda K, Uenoyma Y, Fujita Y, Iga K, Sakamoto K, Kimura T. Functional oxytocin receptors in bovine granulosa cells. Biol Reprod 1997; 56: 625–631. [Medline] [CrossRef]

12. Sakamoto R, Komatsu T, Kasaui E, Saito T, Okuda K. Expression of mRNAs for interleukin-4, interleukin-6 and their receptors in porcine corpus luteum during the estrous cycle. Domest Anim Endocrinol 2006; 31: 246–257. [Medline] [CrossRef]

13. Rozen S, Skalesky H. Primer on the WWW for general users and for biologist program- mers. Methods Mol Biol 2000; 132: 385–386. [Medline]

14. Osnes T, Sandstad O, Skar V, Osnes M, Kierulf P. Total protein in common duct bile measured by acetonitrile precipitation and a micro bicinchoninic acid (BCA) method. Scand J Clin Lab Invest 1993; 53: 757–763. [Medline] [CrossRef]