Search for Dihoton Events with Large Missing Transverse Energy in $p p$ Collisions at $\sqrt{s} = 1.8$ TeV*
A search for signals of new physics has been carried out in the channel $p\bar{p} \rightarrow \gamma\gamma + \not{E}_T$. This signature is expected in various recently proposed supersymmetric (SUSY) models. We observe 842 events with two photons having transverse momentum $E_{T\gamma} > 12$ GeV and pseudorapidity $|\eta\gamma| < 1.1$. Of these, none have missing transverse energy (\not{E}_T) in excess of 25 GeV. The distribution of \not{E}_T is consistent with that of the expected background. We therefore set limits on production cross sections for selectron, sneutrino and neutralino pairs, decaying into photons. The limits range from about 400 fb to 1 pb depending on the sparticle masses. A general limit of 185 fb (95% C.L.) is set on $\sigma \cdot B(p\bar{p} \rightarrow \gamma\gamma \not{E}_T + X)$, where $E_{T\gamma} > 12$ GeV, $|\eta\gamma| < 1.1$, and $\not{E}_T > 25$ GeV.

* Submitted to Physical Review Letters
We have searched for new physics in the channel $p\bar{p} \rightarrow \gamma\gamma E_T + X$ (where E_T denotes missing transverse energy). This was motivated by recent suggestions \cite{1,2} that low-energy supersymmetry (SUSY) may result in signatures involving one or more photons together with missing transverse energy. The predicted cross sections were suggested to be high enough to lead to several tens of events in present data, making signals easily detectable. The recent theoretical analyses were motivated by a desire to explain a single $ee\gamma\gamma + E_T$ event observed by the CDF collaboration \cite{3}.

For this analysis, data corresponding to an integrated luminosity of 93.3 ± 11.2 pb$^{-1}$, recorded during 1992–95 with the DØ detector \cite{4}, were used. Photons were identified using the uranium-liquid argon sampling calorimeter, which covers the region of pseudorapidity $|\eta| = | - \ln \tan \frac{\theta}{2} | \leq 4$. The electromagnetic (EM) energy resolution is $\sigma_{E}/E = 15\% / \sqrt{E_{\text{GeV}}} \oplus 0.3\%$. The EM calorimeter is segmented into four longitudinal sections, and transversely into towers in pseudorapidity and azimuthal angle, of size $\Delta\eta \times \Delta\phi = 0.1 \times 0.1$ (0.05 \times 0.05 at shower maximum). Drift chambers in front of the calorimeter were used to distinguish photons from electrons and photon conversions. A three-level triggering system was employed. The first level used scintillation counters near the beam pipe to detect an inelastic interaction; the second level summed the EM energy in calorimeter towers of size $\Delta\eta \times \Delta\phi = 0.2 \times 0.2$. The third level was a software trigger which formed clusters of calorimeter cells and applied loose cuts on the shower shape.

Events were selected which had two photon candidates, each with transverse energy $E_{T}^{\gamma} > 12$ GeV and $|\eta^{\gamma}| < 1.1$. Each cluster was required to pass photon-selection requirements \cite{5}, namely to have a shape consistent with that of a single EM shower, to have more than 96% of its energy in the EM section of the calorimeter, and to be isolated. The latter was based on the transverse energy E_{T}^{iso} in the annular region between $R = \sqrt{\Delta\eta^2 + \Delta\phi^2} = 0.2$ and $R = 0.4$ around the cluster, requiring $E_{T}^{\text{iso}} < 2$ GeV. Candidates were rejected if the cluster was near an azimuthal module boundary, if there was a track (or a significant number of drift-chamber hits) in a tracking road $\Delta\theta \times \Delta\phi = 0.2 \times 0.2$ between the cluster and the vertex, if the invariant mass of the photon pair was between 80 and 100 GeV/c2 (to reject misidentified $Z \rightarrow ee$ events), or if the azimuthal angle between the two photons was less than 90° (to reduce the background from $W\gamma$ production and radiative $W \rightarrow ee\gamma$ decays, with the electron misidentified as a photon). The beam pipe of the Main Ring accelerator passes through the outermost layer of the calorimeter. Losses of accelerated particles from the Main Ring can lead to energy deposits in the calorimeter and thus to spurious missing transverse energy. To eliminate this source of background the E_T was required to have an azimuthal separation $20^\circ < \Delta\phi < 160^\circ$ from the Main Ring. To eliminate events where the E_T was due to mismeasured jet energy, it was also required to have an azimuthal separation $\Delta\phi < 160^\circ$ from either of the leading two jets (provided $E_{T}^{\text{jet}} > 12$ GeV).

These selections yielded 842 events, whose E_T distribution is plotted in Fig. 1. No events are observed with $E_T > 25$ GeV. The resolution of the detector in E_T is about 4 GeV for diphoton final states passing these kinematic selections.

The dominant background to diphotons with large E_T arises from QCD events where jet or vertex mismeasurement leads to excess E_T. Therefore, starting with the same trigger and dataset, a background sample was selected which was expected to suffer from the same mismeasurements. Two EM clusters, satisfying the same kinematic and fiducial cuts as the signal, were required. Both were required to have more than 90% of their energy in the EM section of the calorimeter. At least one of the two EM clusters was required to fail the strict photon isolation criterion ($E_{T}^{\text{iso}} < 2$ GeV) but both were required to have $E_{T}^{\text{iso}} < 5$ GeV; at least one of the clusters was required to have a bad shower shape, and both were required to have either no track in the road, or a track with a bad match to the cluster. Electron backgrounds

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure1}
\caption{Distribution of E_T for $\gamma\gamma$ data (shaded histogram), and for the total expected background (black circles).}
\end{figure}
are evaluated separately. The resulting sample was expected to contain both QCD multijet events where two jets fluctuated into highly-EM clusters, and the E_T was due to mismeasurement; and QCD photon+jets events, where one photon was real and the other a fluctuated jet, and the E_T was again due to mismeasurement. This selection yielded 1678 events. The distribution was normalized to the $\gamma\gamma$ sample over the range $E_T < 20$ GeV to estimate the background at higher E_T. The resulting number of events expected with $E_T > 25$ GeV is 1.0 ± 0.7.

Processes such as $W \rightarrow e\nu$, $\tau \rightarrow eX$ and even $t\bar{t} \rightarrow eX$ contain genuine E_T and an electron whose track may be lost. If these are combined with a real or fake photon, an apparent $\gamma\gamma E_T + X$ signal can result. Again, starting with the same trigger and dataset, a sample of $e\gamma + X$ events was selected, having two EM clusters satisfying the same kinematic and fiducial cuts as the signal; both of the clusters were required to pass the strict photon selection (isolation, shower shape, EM fraction); one of the two clusters had to have exactly one drift chamber track in the road, with a good match to the cluster, and the other cluster had to have no associated drift chamber hits or track. These selections yielded 321 $e\gamma + X$ events. To estimate the contribution of such events to the $\gamma\gamma E_T + X$ signal, it is first necessary to remove the QCD background component from the $e\gamma + X$ candidate sample. This was done by normalizing these two distributions in the region of low missing transverse energy ($E_T < 20$ GeV), then subtracting the QCD distribution from that of the $e\gamma + X$ candidates. The resulting distribution was then multiplied by the ratio of probabilities for a genuine electron to be reconstructed as a photon or as an electron, which is estimated (from $Z \rightarrow ee$ events) to be 0.14 ± 0.01 for the selection criteria used here. The resulting $e\gamma + X$ contribution to the $\gamma\gamma E_T + X$ sample is estimated to be 1.1 ± 0.1 events.

The total expected background is shown in Fig. 1, and agrees well with the observed data. There is no evidence for non-standard sources of $\gamma\gamma$ events. The expected number of background events with $E_T > 25$ GeV is 2.0 ± 0.9 and none is observed. If we extend the pseudorapidity coverage for photons to $|\eta| < 2.5$, we observe only one event with $E_T > 30$ GeV, with an expected

Process	Masses (GeV/c^2)	σ (95% C.L.)			
$\tilde{c}\tilde{c}$	100	90	50	0.715	
$\tilde{\nu}\tilde{\nu}$	70	50	30	0.995	
$\tilde{\nu}\tilde{\nu}$	70	60	30	0.805	
$\tilde{\nu}\tilde{\nu}$	70	60	50	—	
$\tilde{\nu}\tilde{\nu}$	80	65	55	21.6	
$\tilde{\nu}\tilde{\nu}$	80	70	60	20.8	
$\tilde{\nu}\tilde{\nu}$	90	70	65	—	
$\tilde{\nu}\tilde{\nu}$	90	80	65	2.13	
$\tilde{\nu}\tilde{\nu}$	90	80	70	54.7	
$\tilde{\nu}\tilde{\nu}$	100	90	70	0.765	
$\tilde{\nu}\tilde{\nu}$	100	90	80	4.65	
$\tilde{\chi}_2^0\tilde{\chi}_2^0$	—	—	60	30	0.688
$\tilde{\chi}_2^0\tilde{\chi}_2^0$	—	—	60	30	0.715
$\tilde{\chi}_2^0\tilde{\chi}_2^0$	—	—	60	40	0.935
$\tilde{\chi}_2^0\tilde{\chi}_2^0$	—	—	70	30	0.555
$\tilde{\chi}_2^0\tilde{\chi}_2^0$	—	—	70	40	0.680
$\tilde{\chi}_2^0\tilde{\chi}_2^0$	—	—	70	50	1.03
$\tilde{\chi}_2^0\tilde{\chi}_2^0$	—	—	80	30	0.471
$\tilde{\chi}_2^0\tilde{\chi}_2^0$	—	—	80	40	0.610
$\tilde{\chi}_2^0\tilde{\chi}_2^0$	—	—	80	50	0.750
$\tilde{\chi}_2^0\tilde{\chi}_2^0$	—	—	90	40	0.424
$\tilde{\chi}_2^0\tilde{\chi}_2^0$	—	—	90	50	0.478

TABLE I. Upper limits on pair production cross section (95% C.L.) obtained for each of the Monte Carlo samples generated for this analysis, based on zero observed events. (A dash in the limits column indicates that there was insufficient acceptance for a limit to be set on this combination of masses.)
background of 4.6 ± 0.8.

Simulated superrsymmetry events were generated using the ISAJET Monte Carlo, version 7.20. The events were then processed through the detector simulation, trigger simulation and the reconstruction software. One thousand events were generated for each of the processes and mass combinations listed in Table I. For the sneutrino-pair events, parameters were selected to keep the chargino mass large enough so that the decay $\tilde{\nu} \rightarrow \chi_1^0 \ell$ remained kinematically forbidden. In all cases the decay $\chi_2^0 \rightarrow \chi_1^0 \gamma$ was forced. The mean E_T and the mean photon E_T in these events is typically $\sim m_{\chi_2^0} - m_{\chi_1^0}$, so we will primarily be sensitive to cases where this mass difference exceeds about 20 GeV/c2. Both photons are usually produced centrally, motivating our requirement that $|\eta| < 1.1$.

The product of signal acceptance and efficiency, as estimated from these Monte Carlo samples, is typically 0.05--0.10 for $m_{\chi_2^0} - m_{\chi_1^0} \gtrsim 20$ GeV/c2. In addition to the Monte Carlo statistical error, a systematic uncertainty of 8% has been included (based on the level of agreement between Monte Carlo and data-based estimates of the photon selection efficiencies).

Upper limits on the allowed cross sections for the process $p\overline{p} \rightarrow \tilde{\chi}_2^0 \tilde{\chi}_1^0 \rightarrow \tilde{\tilde{\nu}} \tilde{\nu}$ were evaluated, based on no events being observed for $E_T > 25$ GeV. (This range of E_T is found to maximize the significance of the Monte Carlo supersymmetry signals, given the observed background distribution.) Here $\tilde{\tilde{\nu}}, \tilde{\nu}, \chi_1^0, \tilde{\nu}$, with subsequent decays $\tilde{\tilde{\nu}} \rightarrow \chi_1^0 \gamma$ and $\chi_1^0 \rightarrow \gamma \chi_0^0$. No background contribution was subtracted. The results are shown in Table I and Fig. 2. The 95% C.L. upper limits range from about 400 fb to 1 pb for the cases with $m_{\chi_2^0} - m_{\chi_1^0} \geq 20$ GeV/c2.

The results quoted above are somewhat model-dependent. They are also difficult to relate to the light gravitino scenario of Ref. 5 and Ref. 6. A general limit on final states with similar topologies has therefore been derived. It is found that, provided $m_{\chi_2^0} - m_{\chi_1^0} \geq 20$ GeV/c2, the acceptance for events with two photons having $E_T^\gamma > 12$ GeV and $|\eta| < 1.1$, and with measured $E_T > 25$ GeV, is independent of the production process ($e^+e^-, \tilde{\nu} \tilde{\nu}, \chi_1^0 \chi_0^0$) and the sparticle masses (see Fig. 2). The acceptance \times efficiency is 0.183 \pm 0.016. (This includes a diphoton acceptance and topological cut efficiency of 0.55, an identification efficiency per photon of 0.75, an azimuthal acceptance of 0.78 for the E_T, and an efficiency of 0.79 for the E_T not to lie too close to a jet direction.) The resulting limits are:

$$\sigma \cdot B(p\overline{p} \rightarrow \gamma \gamma E_T + X) < 185 \text{ fb (95\%) C.L.}$$
$$< 140 \text{ fb (90\%) C.L.}$$

where $E_T^\gamma > 12$ GeV, $|\eta| < 1.1$, and $E_T > 25$ GeV. These limits are stricter than those placed on the pair-production cross sections (Table I) because typically only 25--50% of the supersymmetry events satisfy these kinematic requirements. Comparison with Figs. 3 and 7 in Ref. 1 shows that this limit is sufficient to rule out a large fraction of the proposed parameter space for light gravitino models.

In obtaining this limit we used our simulated supersymmetry events to estimate the efficiency loss due to the relative azimuthal angle requirement between the E_T and the leading two jets ($E_T^j > 12$ GeV). In the simulated events there were an average of 1.2 jets per event with $E_T^j > 12$ GeV. For final states with higher jet multiplicity we would expect a small additional loss of efficiency ($\sim 10\%$) due to the exclusion of additional multiplicity.

To summarize, a search for signals of new physics has been carried out in the channel $p\overline{p} \rightarrow \gamma \gamma E_T + X$. This signature is expected in various recently proposed supersymmetric models. We observe 842 events with two photons having $E_T^\gamma > 12$ GeV and $|\eta| < 1.1$. Of these, none have $E_T > 25$ GeV. The distribution of E_T is consistent with that of the expected background. We therefore set limits on production cross sections for selectron, sneutrino and neutralino pairs decaying into photons and non-interacting particles; limits range from about 250 fb to 1 pb, depending on the sparticle masses. A general limit of 185 fb (95\% C.L.) may also be set on $\sigma \cdot B(p\overline{p} \rightarrow \gamma \gamma E_T + X)$ where $E_T^\gamma > 12$ GeV, $|\eta| < 1.1$, and $E_T > 25$ GeV. This is sufficient to exclude a considerable fraction of the parameter space of recently proposed models.

We thank the staffs at Fermilab and the collaborating institutions for their contributions to the success of this work, and acknowledge support from the Department of Energy and National Science Foundation (U.S.A.), Commissariat à l’Energie Atomique (France), Ministries for Atomic Energy and Science and Technology Policy (Russia), CNPq (Brazil), Departments of Atomic Energy and Science and Education (India), Colciencias (Colombia), CONACYT (Mexico), Ministry of Education and KOSEF (Korea), CONICET and UBACyT (Argentina), and the A.P. Sloan Foundation.

* Visitor from IIHEP, Beijing, China.
† Visitor from Univ. San Francisco de Quito, Ecuador.

[1] S. Ambrosanio et al., Phys. Rev. Lett. 76 (1996) 3498.
[2] S. Dimopoulos, S. Thomas and J.D. Wells, Phys. Rev. D 54 (1996) 3283.
[3] S. Dimopoulos et al., Phys. Rev. Lett. 76 (1996) 3494.
[4] S. Ambrosanio et al., Phys. Rev. D 54 (1996) 5395.
[5] S. Ambrosanio, et al., “Low energy supersymmetry with a neutralino LSP and the CDF $ee\gamma\gamma+$ missing E_T event,” [hep-ph/9607414] to be published in Phys. Rev. D.
[6] H. Baer, et al., “Signals for the Minimal Gauge-Mediated Supersymmetry Breaking Model at the Fermilab Tevatron Collider,” [hep-ph/9610358].
[7] S. Park, “Search for New Phenomena in CDF,” 10th Topical Workshop on Proton-Antiproton Collider Physics,
D. Toback, “Diphoton Missing E_T Distribution at CDF,” to appear in proceedings of DPF’96, Minneapolis, MN, August 1996.

[8] DØ Collaboration, S. Abachi et al., Nucl. Instrum. Methods A338 (1994) 185.

[9] DØ Collaboration, S. Abachi et al., “The Isolated Photon Cross Section in the Central and Forward Rapidity Regions in $p\bar{p}$ Collisions at $\sqrt{s} = \text{TeV},”$ FERMILAB-PUB-96/072-E, to be published in Phys. Rev. Lett.

[10] F.E. Paige and S.D. Protopopescu, ‘ISAJET: A Monte Carlo Event Generator for pp and $p\bar{p}$ reactions.’

http://penguin.phy.bnl.gov/~paige/isajet.doc