Dimethyl Fumarate Can Enhance the Potential Therapeutic Effects of Epidermal Neural Crest Stem Cells in COVID-19 Patients

Anahid Safari 1 · Zahra Khodabandeh 1 · Afshin Borhani-Haghighi 2

Accepted: 24 November 2020 / Published online: 7 January 2021 © Springer Science+Business Media, LLC, part of Springer Nature 2021

Dear editor,

We found Salehi et al.’s letter [1] very interesting. They proposed to investigate the potential therapeutic effects of epidermal neural crest stem cells (EPI-NCSCs) in COVID-19 disease. There are ongoing trials investigating the efficacy of mesenchymal stem cells (MSCs) in treatment of COVID-19. Salehi et al. believed that EPI-NCSCs might be superior to MSCs due to their high proliferation ability, multi-lineage potential, and lower risk of carcinogenicity. EPI-NCSCs are potent sources of growth factors including fibroblast growth factor (FGF), Transforming growth factor (TGF), Insulin-like growth factor 1 (IGF), Vascular endothelial growth factor (VEGF), Brain derived neurotrophic factors (BDNF), Neurotrophin-3 (NT-3), Nerve growth factor (NGF) and glial cell-derived neurotrophic factor (GDNF). The results of a very recent clinical trial which investigated the therapeutic effects of mesenchymal stem cells (MSCs) in covid-19 patients showed the overexpression of major growth factors in transplanted MSCs [2].

Salehi et al. very briefly described, the beneficial effects of the combination of stem cells and pharmacologic agents in various diseases. This writing is a complementary letter on the potential therapeutic benefits of Dimethyl fumarate (DMF) and EPI-NCSCs combination therapy in covid-19 infection.

Dimethyl fumarate (DMF) and its dynamic metabolite mono methyl fumarate (MMF) have been firstly introduced as a treatment of psoriasis. Its anti-inflammatory and anti-oxidants effects, particularly through activating nuclear factor erythroid-derived 2 (Nrf-2) have been reported [3]. Suppressing nuclear translocation of nuclear factor-κB (NF-κB) and enhancing the expression of hydroxyl carboxylic acid receptor (HCAR) were also introduced as the other main mechanisms of action. Regulation of NF-κB activity was reported to be effective in treating Covid-19 infection [4]. The vast anti-inflammatory effects of HCAR in various organs were also reported [5].

DMF, was recently proposed as a potential therapeutic option for Covid-19 patients. Its potential benefits in reducing alveolar cell injury were explained thoroughly with a focus on its Nrf-2 activating mechanisms of action [6]. Virus entry and replication were also explained to be negatively affected by DMF. Activating secretory leukocyte protease inhibitor (SLPI) as an anti-protease and inhibiting transmembrane protease serine 2 (TMRPSS2) as a protease protein were the main mechanisms introduced. Enhancing the expression of antiviral genes retinoic acid-inducible gene-I (RIG-I) and Interferon beta (IFN-β) were presented as the other potential benefits of DMF therapy in covid-19 patients [6]. DMF and MMF also exert a huge immunomodulatory effects through regulating a wide range of immune cells that determine the host innate and acquired immune response. DMF can effectively change the T-helper cells profile from type 1 to type 2. Not only B and T cells but also macrophages, dendritic and natural killer cells are affected [6]. The final result of these vast regulatory effects can be the inhibition of cytokine storm which is known as the main triggered factor for the disease severity in covid-19 patients. The results of a new case series recommended the continuation of DMF therapy in younger MS patients with normal lymphocyte count who become infected with COVID-19 in their course of therapy [7]. Other researchers also confirmed the safety of starting DMF treatment in healthy young or pediatric MS patients [7].

Combination of stem cell therapy with pharmacologic agents have been vastly investigated in a wide range of disease...
models. Our recent investigation demonstrated that DMF effectively induced the over expression of EPI-NCSCs trophic factors profile, particularly those with neurotrophic effects [8]. The enhanced trophic factor profile of MSCs applied in treatment of covid-19 patients [2] can be assumed as a potential therapeutic effect of stem cells in this infection.

According to above-mentioned findings, it can be assumed that DMF-treated EPI-NCSCs may have even more beneficial effects in treatment of SARS-Cov-2 infection than EPI-NCSCs. Considering the previous reports on the beneficial effects of both EPI-NCSCs [9] and DMF [10] in neurological disorders, DMF-treated EPI-NCSCs may possess the greater advantages in neurological complications of SARS-Cov-2 infection.

References

1. Salehi, M. S., Pandamooz, S., & Jurek, B. (2020). Epidermal neural crest stem cells as a perspective for COVID-19 treatment. Stem Cell Reviews and Reports, 1–2. https://doi.org/10.1007/s12267-020-10028-3.

2. Leng, Z., Zhu, R., Hou, W., Feng, Y., Yang, Y., Han, Q., & Zhao, R. C. (2020). Transplantation of ACE2(-) mesenchymal stem cells improves the outcome of patients with COVID-19 pneumonia. Aging and Disease, 11(2), 216–228.

3. Safari, A., Badeli-Sarkala, H., Namavar, M. R., Kargar-Abarghouei, E., Anssari, N., Izadi, S., & Borhani-Haghighi, A. (2019). Neuroprotective effect of dimethyl fumarate in stroke: The role of nuclear factor erythroid 2-related factor 2. Iranian Journal of Neurology, 18(3), 108–113.

4. Elkhodary, M. (2020). Treatment of COVID-19 by controlling the activity of the nuclear factor-Kappa B. CellBio, 09, 109–121.

5. Graff, E. C., Fang, H., Wanders, D., & Judd, R. L. (2016). Anti-inflammatory effects of the hydroxycarboxylic acid receptor 2. Metabolism: Clinical and Experimental, 65(2), 102–113.

6. Hassan, S. M., Jawad, M. J., Ahjel, S. W., Singh, R. B., Singh, J., Awad, S. M., & Hadi, N. R. (2020). The Nrf2 activator (DMF) and Covid-19: Is there a possible role? Medical Archives (Sarajevo, Bosnia and Herzegovina), 74(2), 134–138. https://doi.org/10.5455/medarh.2020.74.134-138.

7. Mantero, V., Abate, L., Basilico, P., Balgera, R., Salmaggi, A., Nourbaksh, B., & Cordano, C. (2020). COVID-19 in dimethyl fumarate-treated patients with multiple sclerosis. Journal of Neurology. https://doi.org/10.1007/s00415-020-10015-1.

8. Salehi, M. S., Borhani-Haghighi, A., Pandamooz, S., Safari, A., Dargahi, L., Dianatpour, M., & Tanideh, N. (2019). Dimethyl fumarate up-regulates expression of major neurotrophic factors in the epidermal neural crest stem cells. Tissue and Cell, 56, 114–120.

9. Salehi, M. S., Pandamooz, S., Safari, A., Jurek, B., Tamadon, A., Namavar, M. R., & Borhani-Haghighi, A. (2020). Epidermal neural crest stem cell transplantation as a promising therapeutic strategy for ischemic stroke. CNS Neuroscience & Therapeutics, 26(7), 670–681.

10. Safari, A., Fazeli, M., Namavar, M. R., Tanideh, N., Jafari, P., & Borhani-Haghighi, A. (2017). Therapeutic effects of oral dimethyl fumarate on stroke induced by middle cerebral artery occlusion: An animal experimental study. Restorative Neurology and Neuroscience, 35(3), 265–274.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.