Unified and Isomer-Specific NMR Metabolomics Database for the Accurate Analysis of 13C−1H HSQC Spectra

Kerem Bingol,† Da-Wei Li,‡ Lei Bruschweiler-Li,‡ Oscar A. Cabrera,§ Timothy Megraw,§ Fengli Zhang,¶ and Rafael Brüschiweiler†,‡,¶

†Department of Chemistry and Biochemistry, ‡Campus Chemical Instrument Center, The Ohio State University, Columbus, Ohio 43210, United States
§Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32306, United States
¶National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States

Supporting Information

ABSTRACT: A new metabolomics database and query algorithm for the analysis of 13C−1H HSQC spectra is introduced, which unifies NMR spectroscopic information on 555 metabolites from both the Biological Magnetic Resonance Data Bank (BMRB) and Human Metabolome Database (HMDB). The new database, termed Complex Mixture Analysis by NMR (COLMAR) 13C−1H HSQC database, can be queried via an interactive, easy to use web interface at http://spin.ccic.ohio-state.edu/index.php/hsqc/index. Our new HSQC database separately treats slowly exchanging isomers that belong to the same metabolite, which permits improved query in cases where slowly populated isomers are below the HSQC detection limit. The performance of our new database and query web server compares favorably with the one of existing web servers, especially for spectra of samples of high complexity, including metabolite mixtures from the model organisms Drosophila melanogaster and Escherichia coli. For such samples, our web server has on average a 37% higher accuracy (true positive rate) and a 82% lower false positive rate, which makes it a useful tool for the rapid and accurate identification of metabolites from 13C−1H HSQC spectra at natural abundance. This information can be combined and validated with NMR data from 2D TOCSY-type spectra that provide connectivity information not present in HSQC spectra.

INTRODUCTION

The rapid and reliable identification of tens to hundreds of different metabolites in a single biological sample is a principal task of any metabolomics investigation. Nuclear Magnetic Resonance (NMR) spectroscopy has become one of the standard tools to study metabolic complex mixtures without requiring extensive extraction, purification, and physical separation procedures. The high-resolution information provided by NMR is key for the identification and quantification of metabolites. One-dimensional (1D) 1H NMR spectroscopy is the most commonly used NMR technique in metabolomics studies, which can involve the analysis of hundreds of samples in high-throughput mode requiring only a few minutes per sample, for example, with the help of automatic sample changers. However, 1D 1H NMR spectra of complex metabolic mixtures often display strong peak overlaps that can severely hamper unambiguous metabolite identification. These issues can be addressed via the use of two-dimensional (2D) NMR techniques by spreading out cross-peaks of resonances along the indirect dimension that overlap in a 1D NMR spectrum, which considerably reduces the likelihood of peak overlap. A popular 2D NMR experiment for this task is the 13C−1H HSQC experiment as it provides excellent spectral resolution along the indirect 13C dimension allowing separation of many of the peaks that overlap in the 1D 1H NMR spectrum. In the recent past, different metabolite identification and quantification strategies have been proposed for the analysis of HSQC spectra. Metabolomics studies based on 2D 13C−1H HSQC spectra generally follow these steps. First, a manual or automated peak picking is performed, which provides a list of all cross-peaks of all detectable compounds in the sample. The peak list is then queried against HSQC databases, typically in batch mode, which returns a list of potential mixture components. The advantage of this strategy is that it is fast and has the potential for high-throughput, since it does not require the identification of sets of NMR signals that belong to the same metabolite in the mixture prior to querying. However, the approach is prone to false positive identifications particularly for metabolites with chemical shift values that lie mostly in the crowded regions of the HSQC spectrum, which are typically around 3.2−4.5 ppm.

Received: August 12, 2014
Accepted: October 21, 2014
Published: October 21, 2014

This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
in the 1H dimension and 62–82 ppm in the 13C dimension, or for the metabolites having very similar structures and chemical shifts such as saccharides and mono-, di-, and triphosphorylated nucleotides (e.g., AMP, ADP, ATP). Identification of these compounds can be achieved by combining HSQC data with TOCSY-based connectivity information, which allows the identification of the subsets of HSQC peaks that belong to each metabolite. The HSQC peaks of each metabolite can be directly queried against a HSQC database. Moreover, the combination of HSQC and TOCSY spectra yields information about chemical bonds and the possibility for de $novo$ elucidation of the backbone topology and eventually the structure of metabolites, which is particularly valuable for unknown metabolites that are not catalogued in any of the existing NMR databases.\(^{17}\)

Identification of metabolites from 2D 13C–1H HSQC is a very active area of research.\(^{5–9}\) The performance of 2D 13C–1H HSQC databases is still far from optimum with true positive discovery rates of the best performing databases around 45–65% as compared to manual identification and false discovery rates at 0–18%,\(^{6}\) which suggests significant room for improvement. The major 2D 13C–1H HSQC metabolomics databases, each with its own query algorithm, are the BMRB (Biological Magnetic Resonance Data Bank),\(^5\) HMDB (Human Metabolome Database),\(^8\) MMCD (Madison Metabolomics Consortium Database),\(^6\) PRIME (Platform for RIKEN Metabolomics) database,\(^9\) and the Metabominer database.\(^7\) All of these databases were compiled by recording the 2D 13C–1H HSQC spectra of solutions of isolated (pure) compounds and they all perform cross-peak by cross-peak matching of the database spectra to the experimental 2D 13C–1H HSQC spectrum to identify metabolites. These databases differ from each other in terms of metabolite content and the underlying querying algorithm. A common feature of all these databases is that the HSQC spectrum of each isolated compound has been measured at high concentration and all HSQC cross-peaks of a metabolite are treated together. For example, cross-peaks stemming from different, slowly inter-converting isomers are not assigned to individual isomers.

In our own efforts to construct increasingly accurate NMR metabolomics databases,\(^{18,19}\) we found that higher and more accurate metabolite identification rates from HSQC spectra is possible by improving both the data structure of the database and the querying algorithm. On the data structure side, we observed that ~10% of all metabolites in these databases consist of more than one isomeric state. For the majority of these metabolites, the populations of the different isomers are quite different. For instance, the metabolite pyruvate, which is important in energy metabolism, has two isomeric states with 84% and 16% relative abundance, glucose exists in two isomeric states with 63% and 37% relative abundance, coenzyme A exists in two isomeric states, and ribose exists in four different isomeric states. These metabolites along with six other metabolites and their relative isomer populations are shown in Figure 1. The chemical shifts of these isomers can be found in Supporting Information Table S-1. Since in real-world metabolic samples, metabolite concentrations are often much lower, in a 2D 13C–1H HSQC spectrum one often only detects the isomer(s) with the highest population. As a consequence, this creates a mismatch when HSQC peak lists are queried against conventional HSQC databases: if an HSQC database has two isomers of a metabolite stored as a single entry and if only one of the isomers is experimentally detected, while the other isomer is below the detection limit, only 50% of the expected cross-peaks are detected, which creates a 50% mismatch. Since most of the HSQC query programs use mismatch as a key criterion for identification, a 50% mismatch might result in no identification or misidentification of the target metabolite. This problem can be addressed by sorting the molecules and their cross-peaks into their slowly exchanging isomers for separate queries. For this purpose, we present a HSQC database where we systematically assign each HSQC peak to its specific isomeric state. This allows the accurate identification of metabolites regardless whether all or only some of the isomers can be observed in the HSQC spectrum of the

![Figure 1. Relative isomer populations of ten representative metabolites. The isomer populations are calculated by integrating 1D NMR spectra of the metabolites taken from the BMRB and HMDB databases. The 1D NMR spectra were recorded in H$_2$O/D$_2$O at pH 7.0–7.4 at 298 K.](image-url)
mixture. In this way, the database allows improved identification of metabolites existing in multiple isomeric states by providing an optimal match for each compound. On these principles, we constructed a unified database from entries of two of the largest public databases, namely the BMRB and the HMDB. Combining these with our improved query algorithm, we reach a higher correct identification rate (37% increase in true positives) with fewer false identifications (false positives) than the best performing existing HSQC databases. We name this new database and query tool COLMAR (Complex Mixture Analysis by NMR)\(^{13}\C\)−1\(\text{H}\) HSQC database.

Results and Discussion

1. Generation of the COLMAR \(^{13}\C\)−1\(\text{H}\) HSQC Database and Query

The new HSQC database contains (presently) 555 compounds derived primarily from the BMRB\(^{5}\) and HMDB\(^{8}\) metabolomics databases. A complete list of database compounds with their number of isomeric states is provided on our web server. With 52 of these compounds existing in multiple isomeric states, an estimated 10% of all metabolites cannot be accurately matched by conventional HSQC databases when one or more of their isomeric states falls below the detection limit.

In the new HSQC database, the assignment of the \(^{13}\C\)−1\(\text{H}\) HSQC peaks of all metabolites is performed by using the NMR spectra of isolated compounds in the BMRB, the HMDB, and the literature. Next, the cross-peaks of the HSQC spectrum are sorted into the different isomeric states allowing separate querying of each isomeric state. Only NMR data of compounds dissolved in H\(_2\)O/D\(_2\)O at pH 7.0 or 7.4 were included in the new database.

The querying algorithm used for the matching of compounds was developed by testing the query criteria used by each different existing HSQC database. For each database compound, or isomer, the average of \(^1\text{H}\) and \(^{13}\text{C}\) chemical shift differences (1st and 2nd output parameters) are computed.
to the closest cross-peaks of the mixture. If the database cross-
peak is within a given frequency cutoff, it is considered a
“matched peak”. The “matching ratio” is then defined as the
ratio of the matched peaks to the total number of peaks (3rd
output parameter). For example, if a certain metabolite has 5
cross-peaks in the database and 4 of them have corresponding
“matched” peaks in the HSQC spectrum of the mixture, the
matching ratio for this metabolite is 0.8. While these 3
parameters have been already part of many HSQC databases,
they are often not sufficiently selective to reliably discriminate
between true and false identifications (see false positive rates
of various databases in the results section). In addition, some
HSQC databases use a “database uniqueness value”, which
reflects how unique a matched peak is in the database.\(^a\)\(^b\) This
parameter is not as selective as the first 3 parameters and the
combination of the 4 parameters still produces many false
positives (see also Metabominer false positive rates in the
results section).

To address these short-comings, we introduce an additional
parameter, which we term the ‘assignment uniqueness value’. It
gives the number of cross-peaks in the HSQC spectrum of the
mixture that are uniquely assigned to metabolite A. For
instance, a uniqueness value of 3 means that 3 of the HSQC
peaks of the mixture are only assigned to metabolite A. Three
unique matches out of 4 total matches for metabolite A is
considered a good hit. We find that the combination of this
novel parameter with the other parameters significantly reduces
the number of false positives.

We set the default cutoff parameters for the average \(^1\)H and
\(^13\)C chemical shift differences at 0.03 and 0.3 ppm, respectively.
For a matching ratio of 1.0, the cutoff for the assignment
uniqueness value is set to 1 (i.e., at least one of the cross-peaks
must be unique). For a matching ratio below 1.0 but higher
than 0.6, the cutoff for the assignment uniqueness value is set to
3. An exception is made for metabolites with a total number of
3 or 4 cross-peaks for which the cutoff for the assignment
uniqueness is set to 2. If none of the database entries satisfies
the above criteria, the query returns “no match”.

2. Application to Model Mixture and Model Organ-isms. The difficulty to detect all isomeric states of a metabolite
exists both in model mixtures and biological cell extracts. In the
\(^13\)C−\(^1\)H HSQC spectrum (Supporting Information Figure S-1)
of a fully \(^13\)C-labeled sugar mixture consisting of glucose,
galactose, ribose, fructose, and galactono-1,4-lactone, we
observed two isomers each of glucose and galactose, four
isomers of ribose, three isomers of fructose, and one isomer of
galactono-1,4-lactone. Although the HSQC spectrum of
isolated galactono-1,4-lactone shows two isomeric states (see
HSQC taken from BMRB in Supporting Information Figure S-
2A), one of the isomers was below the detection limit in the
mixture spectrum as shown in Figure 2A, where the cross-peak
locations of the highly populated and lowly populated isomeric
states of galactono-1,4-lactone are indicated by yellow and cyan
boxes, respectively. Other problems with differentially popu-
lated isomeric states have been observed in HSQC spectra of
fruit fly (Drosophila melanogaster). In Figure 2B, in a metabolite
extract of wild-type fruit fly, one can see two isomers of
fructose, which are the two highest populated isomers, but not
the third isomer (Figure 2B). The cross-peaks of all three
fructose isomers are indicated by colored boxes in Figure 2B,
where the blue boxes belong to the missing isomer and the red
and green boxes belong to the detectable isomers with higher
populations. All three isomers of fructose can be seen in the
HSQC spectrum of isolated fructose taken from the BMRB
database (Supporting Information Figure S-2B). When only one
or two isomers of fructose are detected, the query of these
peaks against a database peaks containing fructose without
discriminating between the different isomers will lead to an
ambiguity because of cross-peak mismatch. Another example
from Drosophila is shown in Figure 2C, D where HSQC spectra
of two different metabolic extracts show different pyruvate
concentrations (Figure 2C, D). The second isomer of pyruvate
is seen only in the second sample, but not in the first one,
whereas both isomers of pyruvate can be seen in the HSQC
spectrum of pyruvate taken from the BMRB database (Supporting Information Figure S-2C).

We manually picked HSQC cross-peaks of the sugar model
mixture (Supporting Information Figure S-1), the Drosophila
melanogaster extract (Supporting Information Figure S-3), and
an Escherichia coli cell extract (Supporting Information Figure S-
4), which resulted in 88, 165, and 567 HSQC cross-peaks,
respectively. We queried these three peak lists one by one
against various HSQC databases. The results provide some
insights into how current HSQC databases perform for
metabolic mixtures of different levels of complexity. The
query results for our new database, COLMAR \(^13\)C−\(^1\)H HSQC,
are shown for the sugar mixture in Supporting Information
Table S-2, for the Drosophila extract in Supporting Information
Table S-3, and for E. coli cell extract in Supporting Information
Table S-4. Our query program identified 5, 28, and 56
metabolites in these samples, respectively (whereby compounds
with multiple isomers are counted only once). For reference,
we also overlaid the \(^13\)C−\(^1\)H spectra of isolated standards over
the experimental spectrum and performed manual identifica-
tion. Manual identifications identified 5, 28, and 58 metabolites
in the sugar mixture, Drosophila, and E. coli, respectively.
Therefore, our database identified more than 95% of what can
be identified manually. It should be noted that even manual
identification cannot fully assign all peaks in these spectra. We
identified 88% of all HSQC peaks in Drosophila and 58% of all
HSQC peaks in E. coli, with the remaining peaks belonging to
unknown compounds, that is, compounds not contained in the
databases.

We compared our results with the other HSQC databases
each with its own querying algorithm. HSQC query of HMDB
is excluded from our comparison, because it only allows
querying of HSQC peaks of individual metabolites. Since in
HSQC spectra of a metabolic mixture, peak assignment of
individual compounds is not known in advance, this query is
not suitable for the analysis of mixtures. All the other HSQC
databases, including ours, permit querying of both individual
compounds and of mixtures (batch mode). When we queried
our three sets of HSQC peaks (see above), the PRIME and
BMRB databases returned an unusually large number of false
positives. For instance, when we queried the 165 peaks of
Drosophila against the PRIME and BMRB databases with
chemical shift tolerances of 0.02 ppm for \(^1\)H and 0.2 ppm for
\(^13\)C, they returned 99 and 123 metabolites, respectively. By
contrast, based on manual analysis we were able to assign 88%
of the 165 peaks to only 28 metabolites (and DSS). Therefore,
only \(~\)33 metabolites are expected to be detectable in this
spectrum.

The false positive identification rates of Metabominer and
MMCD database are much lower. When we queried the 88
peaks of the sugar mixture using Metabominer and MMCD,
they still returned 3 and 4 true positives, respectively
(Supporting Information Table S-5). The fact that even for a 5-compound sugar mixture the accuracy is less than 100% demonstrates the intrinsic challenge for the querying of metabolites that exist in multiple isomers.

Querying of the 165 HSQC peaks of *Drosophila* in Metabominer and MMCD (Supporting Information Table S-6) identified 14 and 21 metabolites, respectively. COLMAR correctly identified 28 metabolites, which is a 33% (or higher) improvement. Querying of the 567 HSQC peaks of the *E. coli* mixture with Metabominer and MMCD (Supporting Information Table S-7) identified 22 and 40 metabolites, respectively. COLMAR identified 56 metabolites corresponding to a 40% (or higher) improvement. Therefore, for the real-world metabolic extracts, our new database allowed an increase of true positive identifications by 37%.

Besides the highest true positive rate achieved by our new database, a low false positive rate is similarly important. As mentioned in the introduction, HSQC spectra are particularly prone to false positives; therefore, the task is to minimize the false positives and at the same time maximize the true positives. Highest true positive rates were achieved by COLMAR, which is followed by MMCD. However, MMCD also provided alarmingly high false positive rates, 5 and 14 false positives in *Drosophila* and *E. coli*, respectively. False positive rates in COLMAR were much lower, 0 and 5 false positives in *Drosophila* and *E. coli*, respectively. Therefore, COLMAR reduced the false positive rates by 82% as compared to MMCD. A summary of the overall true positive and false positive rates of all databases tested is compiled in Figure 3. In addition, we use a new category termed “ambiguous identifications” (Figure 3 and Supporting Information Table S-8), which comprises identifications whose verification requires additional NMR experiments such as TOCSY, HSQC-TOCSY, or HMBC, because the cross-peaks appear mostly or exclusively in the crowded regions of the HSQC spectrum or their chemical shifts and structures are very similar to a handful of other compounds (such as saccharides and nucleotide mono-, di-, and triphosphates e.g., AMP, ADP, ATP). Therefore, additional connectivity information can differentiate between these molecules and resolve ambiguities.

Although, in this paper, we only used HSQC cross-peak lists that were manually picked, the COLMAR 13C−1H HSQC server also accepts automatically generated cross-peak lists. It is recommended, however, that users visually inspect their peak lists and curate them before uploading for query to avoid problems with peaks originating from t_i noise and other artifacts.

A specifically designed web portal at http://spin.ccic.ohio-state.edu/index.php/hsqc/index allows querying of the 2D 13C−1H HSQC spectra of metabolic mixtures in batch mode as well as querying of the 2D 13C−1H HSQC spectra against individual metabolites in the COLMAR 13C−1H HSQC database. As an example, the 165 peaks of *Drosophila* were queried against the COLMAR in batch mode on the web server (Figure 4A). The query successfully returned the list of compounds in the sample (Figure 4B). The interactive user interface based on a JavaScript allowed overlaying of 13C−1H HSQC peaks of individual compounds in the database with the experimental peaks upon clicking the “Show Me” button (Figure 4B) of the matched compound, which allows direct visual inspection of the presence of the matched compound in the experimental 2D spectrum. To our knowledge, this is the first 13C−1H HSQC metabolomics database allowing such quick visual checks online, which is very useful to maximize confidence of identifications. Matched compounds are always shown in ‘Number_Metabolite Name’ format, where the integer in front of the metabolite name is used to denote different isomeric states of the metabolite. Metabolites with only one isomeric state are always shown as ‘1_Metabolite-name’, such as ‘1_Alanine’, whereas metabolites with more than one isomeric state are shown as ‘n_Metabolite-name’, where $n = 1, 2, 3, \ldots$ are different isomers of the metabolite (e.g., 1_Maltose and 2_Maltose).

Reliable identification of metabolites is one of the most critical steps in metabolomics. Here, we introduced the first HSQC metabolomics database, which allows querying of individual states of metabolites. This allows identification of metabolites regardless of the contribution of each isomeric state to the acquired HSQC spectrum. Combining this more accurate and more specific database with a more selective querying approach provided the highest true positive and the lowest false positive identification rate among all the databases and their querying algorithms tested. The new database serves as an alternative to conventional HSQC databases, which rely on the simultaneous query of all cross-peaks of all isomers.

Ideally, the most accurate HSQC query should take into account absolute concentrations of the compounds in the sample with their relative isomeric populations. Such information can be combined with the detection limit of HSQC peaks so that the query can assess how many of the
isomeric states of each compound are expected in the experimental HSQC spectra before actually performing the query. Such information can be used to adaptively combine detectable isomeric states of a compound as a single entry for querying to boost the matching accuracy. However, this requires additional information that may not be readily available. For these cases, our approach, which queries individual isomeric states of compounds independently, will provide the highest accuracy.

Currently, many researchers use multiple HSQC databases for the querying of their data in order to maximize the number of identified metabolites in their samples, because the metabolites of different databases only partially overlap requiring an additional effort by the user to go back and forth between databases. Here, we combined database information from the BMRB and the HMDB into a unified database, which can be queried in an isomer-specific manner in a single step. This facilitates the analysis of complex mixtures, while at the same time increasing the number of correct hits. We expect this resource to be of wide usefulness to metabolomics researchers.

METHODS

Sample Preparation. The uniformly 13C-labeled carbohydrate mixture was prepared by dissolving ribose, galactose, glucose and fructose in D$_2$O each with a 10 mM final concentration. The final mixture was transferred to a 3 mm NMR tube. Galactono-1,4-lactone appeared as a degradation product or impurity in the spectrum with a relatively lower concentration as compared to the other four carbohydrates in the mixture.

Two male *Drosophila* samples were prepared, one from 50 wild type (*w*1118) flies and one from 100 wild type flies. Four to six-day old flies were reared at 25°C on standard cornmeal/yeast/molasses food for 5 days with 12 h light (6:00 AM to 6:00 PM) and 12 h dark cycles and then harvested at 10:00 AM on the fifth day for metabolite extraction. For each sample, the flies were collected and snap-frozen in liquid nitrogen. The flies were then placed in 400 μL ice-cold 50% acetonitrile and subjected to homogenization with Bullet Blender 24 Gold (Next Advance) for metabolite extraction. The resulting mixture was centrifuged at 10 000 g for 5 min. The supernatant was then filtered by centrifugation at 14 000 g at 4°C for 30 min with Amicon Ultra-0.5 mL 10 K (EMD Millipore). The resulting filtrate was lyophilized and resuspended in 50 mM phosphate buffer at pH 7.4 in D$_2$O for NMR measurements.

E. coli DH5α cells were cultured at 37°C, at 250 rpm in M9 minimum medium with glucose (natural abundance, 5 g/L) added as sole carbon source. One liter of culture at OD$_{600}$ ~3 was centrifuged at 5000 g for 20 min at 4°C, and the cell pellet was resuspended in 50 mL of 50 mM phosphate buffer at pH 7.0. The cell suspension was then subjected to centrifugation for cell pellet collection. The cell pellet was resuspended in 10 mL of ice cold water and exposed to freeze-thaw procedure 3 times. The sample was centrifuged at 20 000 g at 4°C for 15 min to remove the cell debris. Prechilled methanol and chloroform were sequentially added to the supernatant under vigorous vortex at H$_2$O:methanol:chloroform ratios of 1:1:1 (v/v/v). The mixture was then left at −20°C overnight for phase separation. Next, it was centrifuged at 4000 g for 20 min at 4°C, and the clear top hydrophilic

![Figure 4. Screenshots taken from the interactive COLMAR 13C–1H HSQC web server. (A) The HSQC peak list with 165 cross-peaks of *Drosophila melanogaster* metabolite extract (upper left) is queried against the database. The lower left shows the cross-peak positions (blue circles and black crosses) in a 2D plane corresponding to the 2D HSQC spectrum. The thin blue circles correspond to HSQC cross-peaks that match a single compound in the database, the thick blue circles correspond cross-peaks that match multiple compounds, and the black crosses correspond to cross-peaks that do not match any compound in the database. (B) List of matching compounds returned by the query. The results served as input for Supporting Information Table S-3.](image)
phase was collected and subjected to rotary evaporator processing to have the methanol content reduced. Finally, the liquid was lyophilized. The NMR sample was prepared by dissolving the lyophilized material in D$_2$O and transferred to a 5 mm NMR tube.

NMR Experiments and Processing. The 2D 13C–1H HSQC spectrum of the carbohydrate mixture was collected with $N_1 = 512$ and $N_2 = 1024$ complex points by using a cryogenically cooled probe at 800 MHz proton frequency. The spectral widths along the indirect and the direct dimensions were 22135.197 and 9615.385 Hz, respectively. The number of scans per t_1 increment was set to 4. The transmitter frequency offsets were 55 ppm in the 1C dimension and 4.7 ppm in the 1H dimension. The total measurement time was 3 h.

The 2D 13C–1H HSQC spectra of *Drosophila* extracts were collected with $N_1 = 512$ and $N_2 = 1024$ complex points. The spectral widths along the indirect and the direct dimensions were 34209.9 and 8802.8 Hz, respectively. The number of scans per t_1 increment was set to 16. The transmitter frequency offsets were 85 ppm in the 1C dimension and 4.7 ppm in the 1H dimension. The total measurement time for each sample was 10 h. The NMR spectrum was collected using a cryogenically cooled probe at 800 MHz proton frequency. The 2D 13C–1H HSQC spectrum of *E. coli* extract was collected with $N_1 = 512$ and $N_2 = 1024$ complex points. The spectral widths along the indirect and the direct dimensions were 29934.5 and 7692.3 Hz, respectively. The number of scans per t_1 increment was 64. The transmitter frequency offsets were 85 ppm in the 1C dimension and 4.7 ppm in the 1H dimension. The total measurement time was 36 h. The NMR spectrum was collected using a cryogenically cooled probe at 700 MHz proton frequency. All NMR spectra were collected at 298 K, and the data were zero-filled, Fourier transformed, and phase and baseline corrected using NMRPipe.

![ASSOCIATED CONTENT](http://pubs.acs.org)

Supporting Information

13C–1H HSQC spectra of carbohydrates and their mixture; entire 13C–1H HSQC spectra of *Drosophila melanogaster* samples and of *E. coli* cell lysate; four tables with 13C–1H HSQC cross-peak list and COLMAR HSQC query results of carbohydrate model mixture, *drosophila* sample, and *E. coli* cell lysate; four tables with comparison of COLMAR query results with results obtained using other public query web servers. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

E-mail: bruschweiler.1@osu.edu.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank the authors of the BMRB and HMDB databases for publicly sharing their data. This work was supported by the National Institutes of Health (grant R01 GM 066041 and SECEM (Southeast Center for Integrated Metabolomics) grant U24 DK097209-01A1).

REFERENCES

1. Nicholson, J. K., Holmes, E., Kinross, J. M., Darzi, A. W., Takats, Z., and Lindon, J. C. (2012) Metabolic phenotyping in clinical and surgical environments. *Nature* 491, 384–392.

2. Lenz, E. M., and Wilson, I. D. (2007) Analytical strategies in metabolomics. *J. Proteome Res.* 6, 443–458.

3. Bingol, K., and Bruschweiler, R. (2014) Multidimensional approaches to NMR-based metabolomics. *Anal. Chem.* 86, 47–57.

4. Bodenhausen, G., and Ruben, D. J. (1980) Natural abundance nitrogen-15 NMR by enhanced heteronuclear spectroscopy. *Chem. Phys. Lett.* 69, 185–189.

5. Ulrich, E. L., Akutsu, H., Doreleijers, J. F., Harano, Y., Ioannidis, Y. E., Lin, J., Livny, M., Mading, S., Maziuk, D., Miller, Z., Nakatan, E., Schulte, C. F., Tolmiae, D. E., Wenger, R. K., Yao, H. Y., and Markley, J. L. (2008) BioMagResBank. *Nucleic Acids Res.* 36, D402–D408.

6. Cui, Q., Lewis, I. A., Hegeman, A. D., Anderson, M. E., Li, J., Schulte, C. F., Westler, W. M., Egdahl, H. R., Sussman, M. R., and Markley, J. L. (2008) Metabolite identification via the Madison Metabolomics Consortium Database. *Nat. Biotechnol.* 26, 162–164.

7. Xia, J., Bjorndahl, T. C., Tang, P., and Wishart, D. S. (2008) MetaboMiner- semi-automated identification of metabolites from 2D NMR spectra of complex bioloids. *BMC Bioinf.* 9, S07.

8. Wishart, D. S., Knox, C., Guo, A. C., Eisner, R., Young, N., Gautam, B., Hau, D. D., Psychogios, N., Dong, E., Bouatra, S., Mand, R., Sinelnikov, I., Xia, J. G., Jia, L., Cruz, J. A., Lim, E., Sobsey, C. A., Shrivastava, S., Huang, P., Liu, P., Fang, L., Peng, J., Fradette, R., Cheng, D., Tzur, D., Clements, M., Lewis, A., De Souza, A., Zuniga, A., Dawe, M., Xiong, Y. P., Clive, D., Greiner, R., Nazyrova, A., Shakhutdinov, R., Li, L., Vogel, H. J., and Forsythe, I. (2009) HMDB: A knowledgebase for the human metabolome. *Nucleic Acids Res.* 37, D603–D610.

9. Chikayama, E., Sekiyama, Y., Okamoto, M., Nakanishi, Y., Tsuboi, Y., Akiyama, K., Saito, K., Shinozaki, K., and Kikuchi, J. (2010) Statistical indices for simultaneous large-scale metabolite detections for a single NMR spectrum. *Anal. Chem.* 82, 1653–1658.

10. Lewis, I. A., Schommer, S. C., Hodis, B., Robb, K. A., Tonelli, M., Westler, W. M., Sussman, M. R., and Markley, J. L. (2007) Method for determining molar concentrations of metabolites in complex solutions from two-dimensional 1H–13C NMR spectra. *Anal. Chem.* 79, 9385–9390.

11. Gronwald, W., Klein, M. S., Kaspar, H., Fagerer, S. R., Nurnberger, N., Dettmer, K., Bertsch, T., and Oefner, P. J. (2008) Urinary metabolite quantification employing 2D NMR spectroscopy. *Anal. Chem.* 80, 9288–9297.

12. Rai, R. K., Tripathi, P., and Sinha, N. (2009) Quantification of metabolites from two-dimensional nuclear magnetic resonance spectroscopy: Application to human urine samples. *Anal. Chem.* 81, 10232–10238.

13. Hu, K., Westler, W. M., and Markley, J. L. (2011) Simultaneous quantification and identification of individual chemicals in metabolite mixtures by two-dimensional extrapolated time-zero 1H–13C HSQC (HSQC-TOCSY). *J. Am. Chem. Soc.* 133, 1662–1665.

14. Halouska, S., Fenton, R. J., Zinniel, D. K., Marshall, D. D., Barletta, R. G., and Powers, R. (2014) Metabolomics analysis identifies α-alanine–α-alanine ligase as the primary lethal target of α-cyanoacetate in mycobacteria. *J. Proteome Res.* 13, 1065–1076.

15. Lei, S., Zavala-Flores, L., Garcia-Garcia, A., Nandakumar, R., Huang, Y., Madayiputhiya, N., Stanton, R. C., Dodds, E. D., Powers, R., and Franco, R. (2014) Alterations in energy/redox metabolism induced by mitochondrial and environmental toxins: A specific role for glucose-6-phosphate-dehydrogenase and the pentose phosphate pathway in paraquat toxicity. *ACS Chem. Biol.* 9, 2032–2048.

16. Brunschweiler, L., and Ernst, R. R. (1983) Coherence transfer by isotropic mixing: Application to proton correlation spectroscopy. *J. Magn. Reson.* 53, 521–528.

17. Bingol, K., Zhang, F., Bruschweiler-Li, L., and Bruschweiler, R. (2012) Carbon backbone topology of the metabolome of a cell. *J. Am. Chem. Soc.* 134, 9006–9011.

18. Bingol, K., Zhang, F., Bruschweiler-Li, L., and Bruschweiler, R. (2012) TOCCATA: A customized carbon total correlation spectroscopy NMR metabolomics database. *Anal. Chem.* 84, 9395–9401.

19. Bingol, K., Bruschweiler-Li, L., Li, D. W., and Bruschweiler, R. (2014) Customized metabolomics database for the analysis of NMR 1H–13C TOCSY and 13C–1H HSQC-TOCSY spectra of complex mixtures. *Anal. Chem.* 86, 5494–5501.
Delaglio, F., Grzesiek, S., Vuister, G. W., Zhu, G., Pfeifer, J., and Bax, A. (1995) NMRPipe: A multidimensional spectral processing system based on UNIX pipes. *J. Biomol. NMR* 6, 277–293.