Energy quantization for biharmonic maps

Paul Laurain & Tristan Rivi`ere

december 2011

Abstract

In the present work we establish an energy quantization (or energy identity) result for solutions to scaling invariant variational problems in dimension 4 which includes biharmonic maps (extrinsic and intrinsic). To that aim we first establish an angular energy quantization for solutions to critical linear 4th order elliptic systems with antisymmetric potentials. The method is inspired by the one introduced by the authors previously in [LaR] for 2nd order problems.

Introduction

Let N be a C^3-submanifold of \mathbb{R}^k. Let B_1 the unit ball of \mathbb{R}^n and $u \in W^{1,2}(B_1, N)$ then we can define the Dirichlet energy of u as

$$D(u) = \frac{1}{2} \int_{B_1} |\nabla u|^2 \, dx.$$

The critical point of D are the so called harmonic maps for which there have been an extensive theory developed. In particular, when $n = 2$ since in that case the functional is conformally invariant, it has been proved that the harmonic maps have some special properties, in particular an energy quantization for sequences of bounded energy, see [Pa] for instance.

In this paper, we consider still quadratic scaling invariant problems but in dimension $n = 4$ this time. In that case, there is several way to define an equivalent of the Dirichlet functional. Since we look for a scaling invariant quadratic functional the gradient has to be replaced by some expression involving second derivatives. The simplest example is given by

$$E(u) = \frac{1}{4} \int_{B_1} |\Delta u|^2 \, dx.$$

The critical point of this functional are called extrinsic biharmonic maps. The term extrinsic comes from the fact that this functional (and consequently its critical points) depends on the choice of the embedding of N into \mathbb{R}^k. Trying to remedy to this lack of intrinsic nature of the problem, one can instead consider the following functional

$$I(u) = \frac{1}{4} \int_{B_1} |(\Delta u)^T|^2 \, dx,$$

where $(\Delta u)^T$ is the projection of Δu onto $T_u N$. The critical point of I will be called intrinsic biharmonic maps. We can further introduce other functionals of similar nature and we refer to [Mo] for more examples. The Euler Lagrange equation satisfied by the biharmonic maps have been computed in particular in [Wa2]. One shows that $u \in W^{2,2}(B_1, N)$ is an extrinsic (resp. intrinsic) biharmonic map if and only if u satisfies

$$T_e(u) \equiv \Delta^2 u - \Delta(B(u)(\nabla u, \nabla u)) - 2\nabla \cdot (\Delta u, \nabla P(u)) + \langle \Delta(P(u)), \Delta u \rangle = 0,$$

where P is a suitable potential.
Then there exists \(f \) where \(P \) and \(B \) are the orthogonal projection onto \(T_uN \) and the second fundamental form of \(\mathbb{M} \). Since our result applies indistinctly to extrinsic as well as to intrinsic biharmonic maps, except when it is necessary, in what follow we will

indifferently employ the denomination biharmonic map for both extrinsic biharmonic map and intrinsic biharmonic map. We observe that these equations are of the form,

\[
\Delta^2 u = \sum_{\alpha_1 + \cdots + \alpha_4 = 4} \sum_{0 \leq \alpha_i < 4} c_{\alpha}(u) \partial^{\alpha_1} u \partial^{\alpha_2} u \partial^{\alpha_3} u \partial^{\alpha_4} u,
\]

which make them critical in the sense that there is no hope to use directly standard \(L^p \)-theory for proving regularity or compactness results. The critical nature of an elliptic problem is characterized by possible loss of compactness at isolated points. In order to fully describe this concentration-compactness phenomenon one has to understand “how much” energy is lost at these isolated points. Energy quantization means that the energy lost corresponds exactly to the sum of the energies of the so called bubbles - or rescaled elementary solutions on \(S^4 \) - concentrating at these points. The word quantization refers to the fact that the bubbles cannot have arbitrary small energy and in some problems it is even known that they can realize only a discrete set of values.

Our main result in this paper is the energy quantization result for biharmonic maps. In fact we are proving something stronger considering more generally sequences of approximate solutions of biharmonic regularity or compactness results. The critical nature of an elliptic problem is characterized by possible

\[\text{Definition 0.1.} \text{ Let } N \text{ be a } C^3 \text{-submanifold of } \mathbb{R}^k, p \geq 1, f \in L^p(B_1, \mathbb{R}^k) \text{ and } u \in W^{2,2}(B_1, N). \text{ } u \text{ is } \textit{f-approximate biharmonic maps if } u \text{ satisfies }
\]

\[T_i(u) = f \text{ or } T_e(u) = f.\]

Hence, we are in position to state our main result.

\[\text{Theorem 0.1.} \text{ Let } N \text{ be a } C^3 \text{-submanifold of } \mathbb{R}^k, p > 1, f_n \in L^p(B_1, \mathbb{R}^k) \text{ and } u_n \in W^{2,2}(B_1, N) \text{ be a sequence of } f_n \text{-approximate biharmonic maps with bounded energy, i.e.}
\]

\[
\int_{B_1} (|\nabla^2 u_n|^2 + |\nabla u_n|^4 + |f_n|^p) \, dz \leq M. \tag{1}
\]

Then there exists \(f \in L^p(B_1, \mathbb{R}^k), u_\infty \in W^{2,1}(B_1, N) \) a f-approximate biharmonic map and

\[\text{i)} \omega^1, \ldots, \omega^i \text{ some biharmonic maps of } \mathbb{R}^4 \text{ to } N,\]

\[\text{ii)} a_n^1, \ldots, a_n^i \text{ a family of converging sequences of points of } B_1,\]

\[\text{iii)} \lambda_n^1, \ldots, \lambda_n^i \text{ a family of sequences of positive reals converging all to zero, such that, up to a subsequence,}
\]

\[u_n \to u_\infty \text{ in } W^{2,q}_{loc}(B_1 \setminus \{a^1_\infty, \ldots, a^i_\infty\}) \text{ for all } q < \frac{2p}{2 - p}\]

\[\text{1 see section I for precise definitions.}\]
and
\[
\begin{align*}
\|\nabla^2 \left(u_n - u_\infty - \sum_{i=1}^l \omega^i_n \right) \|_{L^2_{\text{loc}}(B_1)} + \|\nabla \left(u_n - u_\infty - \sum_{i=1}^l \omega^i_n \right) \|_{L^4_{\text{loc}}(B_1)} &\to 0,
\end{align*}
\]
where \(\omega^i_n = \omega^i (\alpha^i_n + \lambda^i_n \cdot) \). Moreover, if \(N \) is \(C^{l+3} \) and \(f_n \) is bounded in \(C^{l,\eta}(B_1, \mathbb{R}^k) \) then the convergence of \(u_n \) to \(u_\infty \) is in \(C^{l+\nu}(B_1 \setminus \{ \alpha^i_\infty, \ldots, \alpha^L_\infty \}) \) for any \(0 \leq \nu < \eta \).

Observe that sequences of biharmonic maps into a smooth manifold holds in \(C_{\text{loc}}^{0,\infty} \). Such a result was already known for intrinsic biharmonic maps, see [HP1] and [HP2], or for extrinsic biharmonic maps into a sphere, see [Wa1]. Here, the method employed seems particularly robust since, not only it is identical for both intrinsic and intrinsic biharmonic maps but it applies moreover to a larger class of scaling invariant problems. As an illustration of this fact we prove that the method applies to the following general lagrangians
\[
\int_{B_1} \left(|\Delta u|^2 \, dx + u^* \Omega \right) \text{ or } \int_{B_1} \left(|(\Delta u)^T|^2 \, dx + u^* \Omega \right),
\]
where \(\Omega \) is an arbitrary smooth 4-form of \(\mathbb{R}^k \).

The method we use goes first through the proof of an angular energy quantization result for sequences of solutions to the general critical 4th order elliptic system with antisymmetric potentials introduced by Lamm and Riviere [LR]. We follow in fact the approach that we originally introduced in [LaR] for second order problems. We have good reasons to think that the method could further be extended for proving a general energy quantization result for polyharmonic maps in critical dimension, (see the \(\varepsilon \)-regularity for polyharmonic maps in [QSZG] and [GasSc] for the general case, see also [Ru]).

As an immediate consequence of theorem 1.1 we get the asymptotic behavior of biharmonic maps flow. A weak solution to the extrinsic biharmonic map flow is a map \(u \in W^{2,2}(\mathbb{R}^4 \times [0, +\infty] \times B_1, N) \) satisfying
\[
\begin{align*}
\frac{\partial u}{\partial t} + \Delta^2 u &= \Delta (B(u)(\nabla u, \nabla u)) + 2 \nabla \cdot (\Delta u, \nabla P(u)) - \langle (\Delta (P(u)), \Delta u) \rangle \quad \text{on } [0, +\infty] \times B_1 \\
u &= u_0 \quad \text{on } \{0\} \times B_1
\end{align*}
\]
where \(u_0 \in W^{2,2}(B_1, N) \). Several existence results have been established for [3], see for instance [Lam] for small initial data or [Gas] and [Wa3] for solution with finitely many singular times and arbitrary initial data. All these solutions satisfy the following energy identity
\[
2 \int_0^T \int_{B_1} \left| \frac{\partial u}{\partial t} \right|^2 \, dx \, dt + \int_{B_1} |\Delta u|^2 \, dx \leq \int_{B_1} |\Delta u_0|^2 \, dx \quad \text{for all } T \geq 0.
\]

Corollary 0.1. Let \(N \) be a \(C^3 \)-submanifold of \(\mathbb{R}^k \) and \(u_0 \in W^{2,1}(B_1, N) \) and \(u \in W^{2,2}([0, +\infty] \times B_1, N) \) be a global solution of (3) satisfying the energy inequality (4). Then there exist a sequence of positive real such that \(t_n \to +\infty \), a biharmonic map \(u_\infty \in W^{2,1}(B_1, N) \), \(t \in \mathbb{N} \), \(\omega^1, \ldots, \omega^l \) some biharmonic maps of \(\mathbb{R}^4 \) to \(N \) and \(\alpha^1_\infty, \ldots, \alpha^l_\infty \) a family of of points of \(B_1 \) converging to \(\alpha^1_\infty, \ldots, \alpha^l_\infty \), such that
\[
\begin{align*}
u(t_n, \cdot) &\to u_\infty \quad \text{on } W^{2,p}_0(B_1 \setminus \{ \alpha^1_\infty, \ldots, \alpha^l_\infty \}) \quad \text{for all } p \geq 1
\end{align*}
\]
and
\[
\begin{align*}
\left\| \nabla^2 \left(u(t_n, \cdot) - u_\infty - \sum_{i=1}^l \omega^i \right) \right\|_{L^2_{\text{loc}}(B_1)} + \left\| \nabla \left(u(t_n, \cdot) - u_\infty - \sum_{i=1}^l \omega^i \right) \right\|_{L^4_{\text{loc}}(B_1)} &\to 0,
\end{align*}
\]
where \(\omega^i_n = \omega^i (\alpha^i_n + \lambda^i_n \cdot) \).

\[\text{ see the end of section 4 for a precise statement}\]

3
In fact, thanks to \(\Pi\), we easily prove that there exists \(t_n\) such that \(u(t_n, \cdot)\) satisfies the hypothesis of theorem \(\text{[14]}\) with \(p = 2\).

The paper is organized as follows: in section 1 we rewrite the equations in order to apply the theory of Lamm and Riviere, in section 2 we recall the main results of Lamm and Riviere and we prove an \(\varepsilon\)-regularity result for biharmonic maps, in section 3 we derive the key estimate in Lorentz space for the angular derivatives in an annular region of arbitrary conformal type, finally in section 4 we prove our main result postponing technical result to section 5 and 6.

Acknowledgements: This work was initiated as the first author was visiting the Forschungsinstituts für Mathematik at E.T.H. (Zurich). He would like to thank the institute for its hospitality and the excellent working conditions.

1 Biharmonic equation in normal form

Let \(N \subset \mathbb{R}^k\) be a \(C^3\)-submanifold, there exists \(\delta > 0\) such that \(\Pi : N_\delta \rightarrow N\), the nearest projection map, is well defined and \(C^3\), where \(N_\delta = \{y \in \mathbb{R}^k \mid d(y, N) \leq \delta\}\). Let, for \(y \in N\), \(P(y) \equiv \nabla \Pi(y) : \mathbb{R}^k \rightarrow T_yN\) be the orthogonal projection, and \(P^\perp(y) \equiv I_d - \nabla \Pi(y) : \mathbb{R}^k \rightarrow (T_yN)^\perp\). In the following, we will write \(P(\cdot, \cdot)\) instead of \(P(y)(\cdot)\) and we will identify these linear transformations with their matrix representations in \(\mathcal{M}_k\). We also note that these projections are in \(W^{2,2}(B_1, \mathcal{M}_k)\) as soon as \(u\) is in \(W^{2,2}(B_1, N)\).

Finally, let \(B(\cdot)(\cdot, \cdot)\) be the second fundamental form of \(N \subset \mathbb{R}^k\), which is defined by

\[
B(y)(Y, Z) = D_Y P^\perp(y)(Z), \ \forall y \in N, Y, Z \in T_yN.
\]

We know that, see \([\text{Wa}1]\), that \(u \in W^{2,2}(B_1, N)\) is an extrinsic biharmonic map if and only if

\[
\Delta^2 u \perp T_u N \text{ almost everywhere},
\]

which can be rewritten as follows

\[
\Delta^2 u = P^\perp \Delta^2 u = \text{div}(P^\perp \nabla \Delta u) - \nabla P^\perp \nabla \Delta u. \tag{5}
\]

Then we rewrite the second term of the right hand side as follows

\[
\nabla P^\perp \nabla \Delta u = \nabla P^\perp \nabla \Delta u + \nabla P^\perp P \nabla \Delta u
= \nabla P^\perp \nabla \Delta u - P^\perp \nabla P \nabla \Delta u
= 2 \nabla P^\perp \nabla \Delta u + (\nabla PP^\perp - P^\perp \nabla P) \nabla \Delta u. \tag{6}
\]

But

\[
2 \nabla P^\perp \nabla \Delta u = 2 \nabla P^\perp \nabla \Delta u - 2 \nabla P^\perp \text{div}(P^\perp \nabla u)
= -2 \nabla P^\perp \nabla \Delta u + 2 \text{div}(\nabla P^\perp (\nabla P^\perp \nabla u)) - 2 \Delta P^\perp \nabla P^\perp \nabla u \tag{7}
\]

Thanks to (5), (6) and (7), we get

\[
\Delta^2 u = \text{div}(P^\perp \nabla \Delta u) - \text{div}(2 \nabla P^\perp (\nabla P^\perp \nabla u))
+ 2 \nabla P^\perp \nabla \Delta u + 2 \Delta P^\perp \nabla P^\perp \nabla u
- (\nabla PP^\perp - P^\perp \nabla P) \nabla \Delta u
= \Delta (P^\perp \Delta u) - \text{div}(\nabla P^\perp \Delta u) + 2 \nabla P^\perp (\nabla P^\perp \nabla u)
+ 2 \nabla P^\perp \nabla \Delta u + 2 \Delta P^\perp \nabla P^\perp \nabla u
- (\nabla PP^\perp - P^\perp \nabla P) \nabla \Delta u,
\]
which finally gives the equation of extrinsic biharmonic maps
\[
\Delta^2 u = -\Delta(\nabla P^\perp \nabla u) - \text{div}(\nabla P^\perp \Delta u) + 2\nabla P^\perp \nabla (\nabla P^\perp \nabla u) + 2\nabla P^\perp \nabla P^\perp \Delta u - (\nabla P P^\perp - P^\perp \nabla P)\nabla \Delta u.
\] (8)

For intrinsic biharmonic maps, we need to add some tangent terms, see [Wa2] for details, which gives
\[
\Delta^2 u = -\Delta(\nabla P^\perp \nabla u) - \text{div}(\nabla P^\perp \Delta u)
+ 2\nabla P^\perp \nabla (\nabla P^\perp \nabla u) + 2\nabla P^\perp \nabla P^\perp \Delta u - (\nabla P P^\perp - P^\perp \nabla P)\nabla \Delta u
+ P (\nabla P^\perp \nabla u \nabla (\nabla P^\perp \nabla u) + 2\nabla P^\perp \nabla u \nabla P^\perp \nabla P).
\] (9)

Proposition 1.1. The equation (8) and (9) can be rewritten in the form
\[
\Delta^2 u = \Delta(V \nabla u) + \text{div}(w \nabla u) + \nabla \omega \nabla u + F \nabla u,
\] (10)
where \(V \in W^1,2(B_1, M_k \otimes \Lambda^1 \mathbb{R}^4)\), \(w \in L^2(B_1, \mathcal{M}_k)\), \(\omega \in L^2(B_1, \mathcal{M}_k)\) and \(F \in L^2 \cdot W^1,2(B_1, M_k \otimes \Lambda^1 \mathbb{R}^4)\) with
\[
\begin{align*}
|V| & \leq C (||\nabla u||) \\
|F| & \leq C \left((||\nabla^2 u|| + ||\nabla u^2||) ||\nabla u||\right) \text{ almost everywhere}, \\
|w| + |\omega| & \leq C (||\nabla^2 u|| + ||\nabla u^2||)
\end{align*}
\] (11)
where \(C\) is a positive constant which depends only on \(N\).

Proof of proposition 1.1.

We give a proof for equation (8), the intrinsic case will follow easily.

From the one hand, we proceed to the following Hodge decomposition
\[
dPP^\perp - P^\perp dP = d\alpha + d^* \beta,
\]
where \(\alpha \in W^{1,2}(B_1, \mathcal{M}_k)\), \(\beta \in W^{1,2}_0(B_1, \Lambda^2(\mathbb{R}^4) \otimes M_k)\). Hence \(\alpha\) and \(\beta\) satisfy
\[
\Delta \alpha = \Delta PP^\perp - P^\perp \Delta P,
\]
and
\[
\Delta \beta = dP \wedge dP^\perp - dP^\perp \wedge dP.
\]
Then \(\alpha \in W^{2,2}(B_1, \mathcal{M}_k)\), \(d^* \beta \in W^{2,2}_0(B_1, \Lambda^2(\mathbb{R}^4) \otimes M_k)\) and we get
\[
(\nabla PP^\perp - P^\perp \nabla P) \nabla \Delta u = d\Delta \alpha \nabla u + \Delta d^* \beta \nabla u + \Delta((\nabla PP^\perp - P^\perp \nabla P) \nabla u)
- 2d\text{div}(\nabla (\nabla PP^\perp - P^\perp \nabla P) \nabla u)
= \nabla \omega_1 \nabla u + F_1 \nabla u + \Delta(V_1 \nabla u) + \text{div}(w_1 \nabla u),
\]
with \(\omega_1 \in L^2(B_1, \mathcal{M}_k)\), \(F_1 \in L^2 \cdot W^{1,2}(B_1, M_k \otimes \Lambda^1 \mathbb{R}^4)\), \(V_1 \in W^{1,2}(B_1, M_k \otimes \Lambda^1 \mathbb{R}^4)\) and \(w_1 \in L^2(B_1, M_k)\).
From the other hand, we have
\[2\nabla P^2 \nabla (\nabla P^2 \nabla u) = F_2 \nabla u, \]
with \(F_2^4 = 2 \frac{\partial \nabla}{\partial y} \nabla (\nabla P^2 \nabla u) \in L^2 : W^{1,2}(B_1, M_k \otimes \Lambda^1 \mathbb{R}^4) \) and
\[2\nabla P^2 \nabla P^2 \Delta u = F_3 \nabla u, \]
with \(F_3^4 = 2 \frac{\partial \nabla}{\partial y} \nabla P^2 \Delta u \in L^2 : W^{1,2}(B_1, M_k \otimes \Lambda^1 \mathbb{R}^4) \), which achieves the proof. \(\square \)

For general Lagrangian of the form (12), the equation becomes,
\[T_e(u) = H \left(\frac{\partial u}{\partial x_1}, \frac{\partial u}{\partial x_2}, \frac{\partial u}{\partial x_3}, \frac{\partial u}{\partial x_4} \right) \text{ or } T_e(u) = H \left(\frac{\partial u}{\partial x_1}, \frac{\partial u}{\partial x_2}, \frac{\partial u}{\partial x_3}, \frac{\partial u}{\partial x_4} \right), \]
where \(H \) is the 4-form on \(\mathbb{R}^k \) into \(\mathbb{R}^k \) defined by
\[d\Omega(U, V, W, X, Y) = U, H(V, W, X, Y) \text{ for all } U, V, W, X, Y \in \mathbb{R}^k. \]

Hence we have
\[H \left(\frac{\partial u}{\partial x_1}, \frac{\partial u}{\partial x_2}, \frac{\partial u}{\partial x_3}, \frac{\partial u}{\partial x_4} \right) = F \nabla u, \]
with \(F \in L^2 : W^{1,2}(B_1, M_k \otimes \Lambda^1 \mathbb{R}^4) \).

2 Preliminaries

First, we recall the main result of [LR] that provides a divergence form to elliptic 4th order system of the kind (10) under small energy assumption. This will be one of the main tools in order to obtain the estimate needed for the energy quantization.

Theorem 2.1 (Theorem 1.4 [LR]). There exists \(\varepsilon > 0 \) and \(C > 0 \) depending only on \(N \), such that the following holds: Let \(V \in W^{1,2}(B_1, M_k \otimes \Lambda^1 \mathbb{R}^4) \), \(w \in L^2(B_1, M_k) \), \(\omega \in L^2(B_1, \mathbb{R}^4) \) and \(F \in L^2 : W^{1,2}(B_1, M_k \otimes \Lambda^1 \mathbb{R}^4) \) such that
\[\| V \|_{W^{1,2}} + \| w \|_2 + \| \omega \|_2 + \| F \|_{L^2 : W^{1,2}} < \varepsilon, \]
then there exists \(A \in L^\infty \cap W^{2,2}(B_1, \mathbb{R}^k) \) and \(B \in W^{1,2}(B_1, M_k \otimes \Lambda^2 \mathbb{R}^4) \) such that
\[\nabla \Delta A + \Delta AV - \nabla Aw + A(\nabla \omega + F) = \text{curl} B, \]
and
\[\| A \|_{W^{1,2}} + d(A, \mathcal{SO}_n) + \| B \|_{W^{1,2}} \leq C (\| V \|_{W^{1,2}} + \| w \|_2 + \| \omega \|_2 + \| F \|_{L^2 : W^{1,2}}). \]

Thanks to the previous theorem, we are in position to rewrite equations of the form (10) in divergence form.

Theorem 2.2 (Theorem 1.2 and 1.4 [LR]). There exists \(\varepsilon > 0 \) and \(C > 0 \) depending only on \(N \), such that if \(u \in W^{2,2}(B_1, \mathbb{R}^k) \) satisfies
\[\Delta^2 u = \Delta(V \nabla u) + \text{div}(w \nabla u) + \nabla \omega \nabla u + F \nabla u + f, \]
where \(V \in W^{1,2}(B_1, M_k \otimes \Lambda^1 \mathbb{R}^4) \), \(w \in L^2(B_1, M_k) \), \(\omega \in L^2(B_1, \mathbb{R}^4) \), \(F \in L^2 : W^{1,2}(B_1, M_k \otimes \Lambda^1 \mathbb{R}^4) \) and \(f \in L^1(B_1, \mathbb{R}^k) \) with
\[\| V \|_{W^{1,2}} + \| w \|_2 + \| \omega \|_2 + \| F \|_{L^2 : W^{1,2}} < \varepsilon, \]
then there exists \(A \in L^\infty \cap W^{2,2}(B_1, G_k) \) and \(B \in W^{1, \frac{4}{3}}(B_1, M_k \otimes \Lambda^2 \mathbb{R}^4) \) such that
\[
\| A \|_{W^{2,2}} + d(A, SO_n) + \| B \|_{W^{1, \frac{4}{3}}} \leq C (\| V \|_{W^{1,2}} + \| w \|_2 + \| \omega \|_2 + \| F \|_{L^2, W^{1,2}})
\]
and
\[
\Delta(A\Delta u) = \text{div} (2\nabla A\Delta u - \Delta A\nabla u) + A\omega \nabla u + \nabla A (V \nabla u) - A\nabla (V \nabla u) - B \nabla u + Af.
\]

A first consequence of the previous theorem, is the \(\varepsilon \)-regularity for biharmonic maps. It can also be compared with the corresponding result established for second order problems in theorem 3.2 of [LaR].

Theorem 2.3. Let \(p > 1 \), there exists \(\varepsilon > 0 \) and \(C_p > 0 \) such that if \(u \in W^{2,2}(B_1, \mathbb{R}^k) \) (resp. \(u \in W^{2,2}(\mathbb{R}^4, \mathbb{R}^k) \)), \(f \in L^p(B_1, \mathbb{R}^k) \) (resp. \(f \in L^p(\mathbb{R}^4, \mathbb{R}^k) \)), \(V \in W^{1,2}(B_1, M_k \otimes \Lambda^1 \mathbb{R}^4) \) (resp. \(V \in W^{1,2}(\mathbb{R}^4, M_k \otimes \Lambda^1 \mathbb{R}^4) \)), \(w \in L^2(B_1, M_k) \) (resp. \(w \in L^2(\mathbb{R}^4, M_k) \)), \(\omega \in L^2(B_1, \text{so}_k) \) (resp. \(\omega \in L^2(\mathbb{R}^4, \text{so}_k) \)) and \(F \in L^2 \cdot W^{1,2}(B_1, M_k \otimes \Lambda^1 \mathbb{R}^4) \) (resp. \(F \in L^2 \cdot W^{1,2}(\mathbb{R}^4, M_k \otimes \Lambda^1 \mathbb{R}^4) \)) satisfy (11) and
\[
\| \nabla^2 u \|_2 + \| \nabla u \|_4 \leq \varepsilon,
\]

then

1. (\(\varepsilon \)-regularity) If \(u \in W^{2,2}(B_1, \mathbb{R}^k) \) is a solution of
\[
\Delta^2 u = \Delta (V \nabla u) + \text{div}(w \nabla u) + \nabla \omega \nabla u + F \nabla u + f \text{ on } B_1,
\]
then we have \(u \in W^{2,\tilde{p}}(B_{\tilde{r}}, \mathbb{R}^k) \), where \(\tilde{r} = \frac{2n}{p-2} \) if \(p < 2 \) else any \(\tilde{r} \geq 2 \) and
\[
\| \nabla^2 u \|_{L^p(B_{\tilde{r}})} + \| \nabla u \|_{L^{2p}(B_{\tilde{r}})} \leq C_p (\| \nabla^2 u \|_{L^2(B_1)} + \| \nabla u \|_{L^4(B_1)} + \| f \|_p).
\]

Moreover, if \(N \) is smooth and \(f \in C^{l,\eta} \) for \(l \in \mathbb{N} \) and \(\eta > 0 \) then we can replace \(W^{4,\tilde{p}} \) by \(C^{l+4,\eta} \).

2. (Energy gap) If \(u \in W^{2,2}(\mathbb{R}^4, \mathbb{R}^k) \) is a solution of
\[
\Delta^2 u = \Delta (V \nabla u) + \text{div}(w \nabla u) + \nabla \omega \nabla u + F \nabla u \text{ on } \mathbb{R}^4,
\]
then \(u \) is identically equal to zero.

The proof of theorem 2.3 could be achieved almost following lemma 3.1 of [LR]. We give however an independent proof of this fact that shed new lights on the problem.

Proof of theorem 2.3:

Let \(0 < \varepsilon < 1 \) such that, thanks to (11), hypothesis of theorem 2.2 are satisfied. Then we can rewrite our equation as
\[
\Delta(A\Delta u) = \text{div}(K) + Af,
\]
where \(A \in L^\infty \cap W^{2,2}(B_1, G_k) \) and \(K \in L^2 \cdot W^{1,2} \subset L^{\frac{4}{3},1} \) satisfy
\[
\| A \|_{W^{2,2}} + d(A, SO_n) + \| K \|_{L^{\frac{4}{3},1}} \leq C (\| \nabla^2 u \|_2 + \| \nabla u \|_4 + \| V \|_{W^{1,2}} + \| w \|_2 + \| \omega \|_2 + \| F \|_{L^2, W^{1,2}})
\]
where \(C \) is independent of \(u \).

Let \(p \in B_{\tilde{r}} \) and \(0 < \rho < \frac{1}{2} \). We decompose \(A\Delta u \) on \(B_\rho(p) \) as \(A\Delta u = C + D \) where \(C \in W^{0,2}_{0,\rho}(B_\rho(p)) \) and \(D \in W^{1,2}(B_\rho(p)) \). Then \(C \) satisfies
\[
\Delta C = \text{div}(K) + Af \text{ on } B_\rho(p)
\]
and D satisfies

$$\Delta D = 0 \text{ on } B_p(p).$$

Thanks to the standard L^p-theory and Sobolev embeddings, we get

$$\left(\int_{B_p(p)} |C|^2 \, dx \right)^{\frac{1}{2}} \leq C \left(\|K\|_4 + \rho^{\frac{4(p-1)}{p}} \|f\|_p \right) \leq C \left(\varepsilon \|\nabla^2 u\|_2 + \frac{\varepsilon}{\rho} \|\nabla u\|_2 + \rho^{\frac{4(p-1)}{p}} \|f\|_p \right), \quad (12)$$

where C is a positive constant in dependent of u.

Using the fact that D is harmonic, we have that

$$\delta \mapsto \frac{1}{(\delta \rho)^4} \int_{B_{\delta \rho}(p)} |D|^2 \, dx$$

is an increasing function and hence for all $\delta \in]0, 1[$ we deduce,

$$\int_{B_{\delta \rho}(p)} |D|^2 \, dx \leq \delta^4 \int_{B_{\rho}(p)} |D|^2 \, dx. \quad (13)$$

We then decompose u as follows: $u = E + F$ where $E \in W^{1,4}_0(B_p(p))$ and $F \in W^{1,4}(B_p(p))$ satisfy

$$\Delta E = A^{-1}(C + D) \text{ on } B_p(p)$$

and F satisfies

$$\Delta F = 0 \text{ on } B_p(p).$$

Thanks to the standard L^p-theory and Sobolev embeddings, we get

$$\frac{1}{\rho} \left(\int_{B_{\rho}(p)} |\nabla E|^2 \, dx \right)^{\frac{1}{2}} \leq C \left(\left(\int_{B_{\rho}(p)} |C|^2 \, dx \right)^{\frac{1}{2}} + \left(\int_{B_{\rho}(p)} |D|^2 \, dx \right)^{\frac{1}{2}} \right), \quad (14)$$

where C is a positive constant in dependent of u.

The function $\delta \mapsto \frac{1}{(\delta \rho)^2} \int_{B_{\delta \rho}(p)} |\nabla F|^2 \, dx$ is increasing since F is harmonic and we have have again, for all $\delta \in]0, 1[$,

$$\frac{1}{(\delta \rho)^2} \int_{B_{\delta \rho}(p)} |\nabla F|^2 \, dx \leq \frac{\delta^2}{\rho^2} \int_{B_{\rho}(p)} |\nabla F|^2 \, dx. \quad (15)$$

Then, thanks to (12), (13), (14) and (15), for δ and ε small enough (with respect to some constant independent of u), we have

$$\int_{B_{\delta \rho}(p)} \left(|\nabla^2 u|^2 + \frac{1}{(\delta \rho)^2} |\nabla u|^2 \right) \, dx \leq \frac{1}{2} \int_{B_{\rho}(p)} \left(|\nabla^2 u|^2 + \frac{1}{\rho^2} |\nabla u|^2 \right) \, dx + C \delta^{\frac{4(p-1)}{p}} \|f\|_p^2.$$}

Iterating this inequality gives the following Morrey type estimate: there exists $\alpha > 0$ and $C > 0$ such that

$$\sup_{p \in B_{\rho}, 0 < \rho < \frac{1}{2}} \rho^{-\alpha} \left(\int_{B_{\rho}(p)} \left(|\nabla^2 u|^2 + \frac{1}{\rho^2} |\nabla u|^2 \right) \, dx \right) \leq C \|f\|_p.$$
Then a classical estimate on Riesz potentials gives, for all \(p \in B_{\frac{3}{2}} \)

\[
|\Delta u|(p) \leq (C\|f\|_p)^{\frac{1}{2}} \cdot |\chi_{B_{\frac{3}{2}}}| \cdot |\Delta^2 u| + C\|\nabla^2 u\|_{L^2(B_1)},
\]

\[
|\nabla u|(p) \leq (C\|f\|_p)^{\frac{1}{2}} \cdot |\chi_{B_{\frac{3}{2}}}| \cdot |\Delta u| + C\|\nabla u\|_{L^2(B_1)},
\]

where \(\chi_{B_{\frac{3}{2}}} \) is the characteristic function of the ball \(B_{\frac{3}{2}} \). Together with injections proved by Adams in [Ad], see also 6.1.6 of [Gra], the latter shows that

\[
\|\nabla^2 u\|_{L^r(B_{\frac{3}{2}})} + \|\nabla u\|_{L^{2r}(B_{\frac{3}{2}})} \leq C \left(\|f\|_p + \|\nabla^2 u\|_2 + \|\nabla u\|_4 \right),
\]

for some \(r > 1 \). Then bootstrapping this estimate, we get

\[
\|\nabla^2 u\|_{L^p(B_{\frac{3}{2}})} + \|\nabla u\|_{L^{2p}(B_{\frac{3}{2}})} \leq C \left(\|f\|_p + \|\nabla^2 u\|_2 + \|\nabla u\|_4 \right),
\]

where \(p \) is the limiting exponent of the bootstrapping given by the Sobolev injection of \(W^{2,p} \) into \(L^p \) if \(p < 2 \). Indeed, thanks to (11), the only limiting term for the bootstrap is the regularity of \(f \).

Now, we can easily derive the proof of the energy gap. Indeed, thanks to the previous estimate, we easily see that for some \(q > 2 \) we get

\[
\|\nabla^2 u\|_{L^q(B_R)} + \|\nabla u\|_{L^{2q}(B_R)} \leq C\left(\frac{\|u\|_{W^{2,q}}}{R^{2-rac{q}{2}}} \right) \text{ for all } R > 0,
\]

which proves that \(u \equiv 0 \). \(\square \)

3 Uniform estimate in annular region

In this section, we derive a strong estimate for angular derivatives in an annular region independently of the conformal class.

Theorem 3.1. There exist \(\varepsilon > 0 \) and \(C > 0 \) depending only on \(k \), such that if \(0 < r < \frac{1}{k}, p > 1 \) and \(u \in W^{2,2}(B_1 \setminus B_r, \mathbb{R}^k) \) satisfies

\[
\Delta^2 u = \Delta(V u) + \text{div}(w \nabla u) + \nabla \omega \nabla u + F \nabla u + f,
\]

where \(V \in W^{1,2}(B_1 \setminus B_r, \mathcal{M}_k \otimes \Lambda^1 \mathbb{R}^4), w \in L^2(B_1 \setminus B_r, \mathcal{M}_k), \omega \in L^2(B_1 \setminus B_r, \mathcal{M}_k), F \in L^2 \cdot W^{1,2}(B_1 \setminus B_r, \mathcal{M}_k \otimes \Lambda^1 \mathbb{R}^4) \) and \(f \in L^p(B_1, \mathbb{R}^k) \) with

\[
\|V\|_{W^{2,2}} + \|w\|_2 + \|\omega\|_2 + \|F\|_{L^2 \cdot W^{1,2}} < \varepsilon,
\]

then

\[
\|\nabla^T \nabla u\|_{L^{2,1}(B_{\frac{1}{k}} \setminus B_r)} \leq C \left(1 + \|\nabla^2 u\|_{L^2(B_1 \setminus B_r)} + \|\nabla u\|_{L^4(B_1 \setminus B_r)} + \|f\|_{L^p(B_1 \setminus B_r)} \right),
\]

where \(\nabla^T f = \nabla f - \frac{\partial f}{\partial r} \frac{\partial}{\partial r} \).

Proof of theorem 3.1.
We easily see that \(\tilde{\nu} \in W^{1,2}(B_1, \mathcal{M}_k \otimes \Lambda^1 \mathbb{R}^4) \), \(\tilde{\omega} \in L^2(B_1, \mathcal{M}_k) \) and \(\tilde{F} \in L^2 \cdot W^{1,2}(B_1, \mathcal{M}_k \otimes \Lambda^1 \mathbb{R}^4) \) such that \(\tilde{V} = V \), \(\tilde{w} = w \), \(\tilde{\omega} = \omega \) and \(\tilde{F} = F \) on \(B_1 \setminus B_r \) and
\[
\|\tilde{V}\|_{W^{1,2}} + \|\tilde{\nu}\|_2 + \|\tilde{\omega}\|_2 + \|\tilde{F}\|_{L^2 \cdot W^{1,2}} < 2\varepsilon.
\]

Thanks to theorem 2.1, for \(0 < \varepsilon < \frac{1}{2} \) small enough, there exist \(A \in L^\infty \cap W^{2,2}(B_1, \mathcal{G}_k) \) and \(B \in W^{1,4}(B_1) \) such that
\[
d(A, \mathcal{S}\mathcal{O}_k) + \|A\|_{W^{1,2}} + \|B\|_{W^{1,4}} \leq C \left(\|\tilde{V}\|_{W^{1,2}} + \|\tilde{\nu}\|_2 + \|\tilde{\omega}\|_2 + \|\tilde{F}\|_{L^2 \cdot W^{1,2}} \right)
\]
and
\[
\nabla \Delta A + \Delta AV - \nabla Aw + A(\nabla \omega + F) = \text{curl}B.
\]

Then we extend \(u \) by \(\tilde{u} \in W^{2,2}(B_1) \) such that
\[
\|\nabla^2 \tilde{u}\|_{L^2(B_1)} + \|\nabla \tilde{u}\|_{L^4(B_1)} \leq 2 \left(\|\nabla^2 u\|_{L^2(B_1 \setminus B_r)} + \|\nabla u\|_{L^4(B_1 \setminus B_r)} \right).
\]

We easily see that \(\tilde{u} \) satisfies
\[
\Delta (A\Delta \tilde{u}) = \text{div}(K) + A \text{ on } B_1 \setminus B_r,
\]
with \(K = 2\nabla A\Delta \tilde{u} - 2\Delta A\nabla \tilde{u} + 2Aw\nabla \tilde{u} + 2A(V\nabla \tilde{u}) - 2\nabla \nabla \tilde{u} + 2B\nabla \tilde{u} \in L^{\frac{4}{3},1}(B_1) \) such that
\[
\|K\|_{L^\frac{4}{3},1} \leq C \left(1 + \|\nabla^2 \tilde{u}\|_{L^2(B_1 \setminus B_r)} + \|\nabla \tilde{u}\|_{L^4(B_1 \setminus B_r)} \right).
\]

Then, we extend \(A\tilde{f} \) by \(\tilde{f} \in L^p(B_1) \) such that
\[
\|\tilde{f}\|_p \leq 2\|A\tilde{f}\|_p.
\]

Then let \(D \in W^{1,4}(B_1) \) which satisfies
\[
\Delta D = \text{div}(K) + \tilde{f} \text{ on } B_1.
\]

Hence, thanks to the standard \(L^p \)-theory, there exists \(C \) a positive constant independent of \(r \), such that
\[
\|D\|_{2,1} \leq C \left(\|K\|_{L^\frac{4}{3},1} + \|f\|_p \right).
\]

Finally, thanks to lemma 5.1, there exists \(a, b \in \mathbb{R}^k \) and \(C \) a positive constant independent of \(r \), such that
\[
\left\| D - A\Delta u - a - \frac{b}{|x|^2} \right\|_{L^{2,1}(B_\frac{3}{2} \setminus B_r)} \leq C \|D - A\Delta u\|_2 \leq C \left(1 + \|\nabla^2 \tilde{u}\|_2 + \|K\|_{L^\frac{4}{3},1} + \|f\|_p \right).
\]

Hence we have
\[
\text{div}(A\nabla \tilde{u}) = a + \frac{b}{|x|^2} + F \text{ on } B_1 \setminus B_r
\]
with
\[
\|F\|_{L^{2,1}(B_\frac{3}{2} \setminus B_2)} \leq C \left(1 + \|\nabla^2 \tilde{u}\|_{L^2(B_1 \setminus B_r)} + \|\nabla u\|_{L^4(B_1 \setminus B_r)} + \|f\|_p \right).
\]

Let us proceed to the following Hodge decomposition,
\[
A\tilde{u} = d\alpha + d^* \beta,
\]
where \(\alpha \) and \(\beta \) are smooth respectively \((k-1) \)-forms and \((k+1)\)-forms on \(B_1 \).
where \(\alpha \in W^{1,2}_0(B_{\frac{r}{2}}) \) and \(\beta \in W^{1,2}(B_{\frac{r}{2}}) \) satisfy
\[
\Delta \alpha = a + \frac{b}{|x|^2} + F \text{ on } B_{\frac{r}{2}} \setminus B_2r
\]
and
\[
\Delta \beta = dA \wedge d\bar{u} - d\bar{u} \wedge dA \text{ on } B_{\frac{r}{2}}.
\]
From the one hand, we extend \(F \) by \(\tilde{F} \in W^{1,2}_0(B_{\frac{r}{2}}) \) such that
\[
\| \tilde{F} \|_{L^{2,1}(B_{\frac{r}{2}})} \leq 2 \| F \|_{L^{2,1}}.
\]
Then, let \(\tilde{\alpha} \in W^{1,2}_0(B_{\frac{r}{2}}) \) which satisfies
\[
\Delta \tilde{\alpha} = \tilde{F} \text{ on } B_{\frac{r}{2}}.
\]
Hence, thanks to the standard \(L^p \)-theory, there exists \(C \) a positive constant independent of \(r \), such that
\[
\| \nabla^2 \tilde{\alpha} \|_{2,1} \leq C \| F \|_{2,1}.
\]
then, thanks to lemma 5.4, there exists \(C \) a positive constant independent of \(r \), such that
\[
\| \nabla^T \nabla (\alpha - \tilde{\alpha}) \|_{L^{2,1}(B_{\frac{r}{2}} \setminus B_{4r})} \leq C \| \nabla^2 (\alpha - \tilde{\alpha}) \|_2
\]
\[
\leq C \left(\| F \|_{2,1} + \| \nabla^2 \beta \|_2 + \| \nabla A \nabla \bar{u} \|_2 + \| A \nabla \bar{u} \|_2 \right).
\]
From the other hand, thanks to the standard-\(L^p \)-theory and Sobolev embeddings, we get
\[
\| \nabla^2 \beta \|_{L^{2,1}(B_{\frac{r}{2}})} \leq C \left(1 + \| \nabla^2 u \|_{L^2(B_1 \setminus B_{4r})} + \| \nabla u \|_{L^4(B_1 \setminus B_{4r})} \right).
\]
Here we use the injection of \(W^{1,2} \) into \(L^{4,2} \). Finally, thanks to (17), (18), (19) and the fact that
\[
\| \nabla^T \nabla u \|_{L^{2,1}} \leq C \left(\| \nabla^T (A \nabla u) \|_{L^{2,1}} + \| \nabla^T A \nabla u \|_{L^{2,1}} \right),
\]
we get the desired estimate. \(\square \)

4 Proof of theorem 0.1

First we are going to separate \(B_1 \) in three parts: one where \(u_n \) converges to a limiting solution, an other composed of some small neighborhoods where the energy concentrates and where some bubbles blow and a third part which consists of some neck regions which join the first two parts. This ”bubble-tree” decomposition is by now classical, see [Pa] for instance, hence we just sketch briefly how to proceed.

Step 1 : Finding the points of concentration

Let \(\varepsilon_0 \) be such that the \(V, w, \omega \) and \(F \) given by the section 1 satisfy, thanks to (11), the hypothesis of theorem 2.3 as soon as \(\| \nabla^2 u \|_2^2 + \| \nabla u \|_4^4 \leq \varepsilon_0 \). Then, thanks to (11), we easily proved that there exist finitely many points \(a^1, \ldots, a^n \) where
\[
\int_{B(a^r, r)} \left(|\nabla^2 u|^2 + |\nabla u|^4 \right) \, dx \geq \varepsilon_0 \text{ for all } r > 0.
\]

11
Moreover, using theorem 2.3, we prove that there exist \(f \in L^p(B_1, \mathbb{R}^k) \) and a \(f \)-approximate biharmonic maps \(u_\infty \in W^{2,2}(B_1, N) \), such that, up to a subsequence,
\[
f_n \rightharpoonup f \quad \text{in} \quad L^p(B_1, \mathbb{R}^k)
\]
and
\[
\nabla u_n \rightharpoonup \nabla u_\infty \quad \text{in} \quad W^{1,p}_{loc}(B_1 \setminus \{a^1, \ldots, a^n\}).
\]

Step 2 : Blow-up around \(a^i \)

We choose \(r_i > 0 \) such that
\[
\int_{B(a^i, r_i)} \left(|\nabla^2 u_\infty|^2 + |\nabla u_\infty|^4 \right) \, dx \leq \varepsilon_0 \frac{4}{2}.
\]

Then, we define a center of mass of \(B(a^i, r_i) \) with respect to \(u_n \) in the following way
\[
a^i_n = \left(\int_{B(a^i, r_i)} x^\alpha |\nabla^2 u_n|^2 \, dx \right) / \left(\int_{B(a^i, r_i)} |\nabla u_n|^2 \, dx \right)_{\alpha=1,\ldots,4}.
\]

Let \(\lambda_n^i \) be a positive real such that
\[
\int_{B(a^i_n, r_i) \setminus B(a^i_n, \lambda_n^i)} \left(|\nabla^2 u_n|^2 + |\nabla u_n|^4 \right) \, dx = \varepsilon_0.
\]

Then we set \(\tilde{u}_n^i(x) = u_n(a_n^i + \lambda_n^i x) \) and \(N^i_n = B(a_n^i, r_i) \setminus B(a_n^i, \lambda_n^i) \). Thanks to the conformal invariance, we easily see that
\[
\int_{B(0, \frac{r_i}{\lambda_n^i})} \left(|\nabla^2 \tilde{u}_n^i|^2 + |\nabla \tilde{u}_n^i|^4 \right) \, dx = \int_{B(a_n^i, r_i)} \left(|\nabla^2 u_n|^2 + |\nabla u_n|^4 \right) \, dx \leq M
\]
and \(\tilde{u}_n^i \) still satisfies the equation of approximate biharmonic maps with the approximation \((\lambda_n^i)^4 \tilde{f}_n \) which goes to zero in \(L^p \)-norm. Let \(a_n^i \) be the possible points of concentration of \(\tilde{u}_n^i \) where
\[
\int_{B(a_n^i, r_i)} \left(|\nabla^2 \tilde{u}_n^i|^2 + |\nabla \tilde{u}_n^i|^4 \right) \, dz \geq \varepsilon_0 \quad \text{for all} \quad r > 0,
\]
(21)

Then, up of a subsequence, for each \(i \),
\[
\nabla \tilde{u}_k^i \rightharpoonup \nabla u_\infty^i \quad \text{in} \quad W^{1,p}_{loc}(B_1 \setminus \{a^1, \ldots, a^n\}),
\]
where \(u_\infty^i \in W^{2,2}(\mathbb{R}^4, N) \) is a biharmonic map.

Step 3 : Iteration

Two cases have to be considered separately:

Either \(\tilde{u}_n^i \) is subject to some concentration phenomenon as (21), and then we find some new points of concentration, in such a case we apply step 2 to our new concentration points. Or, \(\tilde{u}_n^i \) converges in
Of course this process has to stop, since we are assuming a uniform bound on \(\|\nabla^2 u_n\|_2 + \|\nabla^2 u_n\|_4 \) and each step is consuming at least the energy of a non trivial biharmonic map which is bounded from below thanks to the energy gap proved in theorem \(\text{2.3} \).

Analysis of a neck region:

A neck region is an annular region which is a union of a finite number of annuli \(N_n^i = B(a_n^i, \mu_n^i) \setminus B(a_n^i, \lambda_n^i) \) such that

\[
\lim_{k \to +\infty} \mu_n^i = 0,
\]
\[
\lim_{k \to +\infty} \lambda_n^i = 0,
\]

and

\[
\int_{N_n^i} (|\nabla^2 u_n|^2 + |\nabla u_n|^4) \, dx \leq \frac{\varepsilon_0}{2} \quad (22)
\]

In order to prove theorem \(\text{1.1} \) we start by proving a weak estimate on the energy of gradient and the hessian in the region \(N_n^i \).

First we remark that, for all \(\varepsilon > 0 \), there exists \(r > 0 \) such that for all \(\rho > 0 \) such that

\[
B_{2\rho}(a_n^i) \setminus B_{\rho}(a_n^i) \subset N_n^i(r)
\]

where \(N_n^i(r) = B(a_n^i, r\mu_n^i) \setminus B(a_n^i, \frac{\lambda_n^i}{r}) \), we have

\[
\int_{B_{2\rho}(a_n^i) \setminus B_{\rho}(a_n^i)} (|\nabla^2 u_n|^2 + |\nabla u_n|^4) \, dx \leq \varepsilon \quad . (23)
\]

If this is not the case there would exist a sequence \(\rho_n^i \to 0 \) such that, up to a subsequence, \(\tilde{u}_n = u_n(a_n^i + \rho_n^i z) \) converges in \(W_{2,\text{loc}}^2(\mathbb{R}^4 \setminus \{0\}) \) to \(\tilde{u}_\infty \), a non-trivial biharmonic map. Using the fact that the \(W^{2,2} \)-norm of \(u_\infty \) is bounded, we deduce using Schwartz lemma that it has to be in fact a solution on the whole space. Using the energy gap proved in theorem \(\text{2.3} \) we deduce that \(\tilde{u}_\infty \) is such that

\[
\int_{N_n^i} (|\nabla^2 u_\infty|^2 + |\nabla u_\infty|^4) \, dx \geq \varepsilon_0, \quad (24)
\]

which contradicts \(\text{22} \).

Then for all \(\varepsilon > 0 \), there exists \(r > 0 \) such that

\[
\|\nabla^2 u_n\|_{L^2(N_n^i(r))} + \|\nabla u_n\|_{L^4(N_n^i(r))} \leq \varepsilon. \quad (25)
\]

Indeed, let \(0 < \varepsilon < \varepsilon_0 \) and \(r > 0 \) such that, for all

\[
B_{2\rho}(a_n^i) \setminus B_{\rho}(a_n^i) \subset N_n^i(r)
\]

we have

\[
\int_{B_{2\rho}(a_n^i) \setminus B_{\rho}(a_n^i)} (|\nabla^2 u_n|^2 + |\nabla u_n|^4) \, dx \leq \varepsilon \quad . (26)
\]
Then, thanks to ε-regularity in theorem 22, there exist $q > 2$ and C a positive constant, independent of r and u, such that for all $\rho > 0$ such that

$$B_{2\rho}(a_n') \setminus B_{\rho}(a_n') \subset N^i_n \left(\frac{r}{2} \right),$$

and n big enough, we have

$$\rho^{2 - \frac{4}{q}} \|
abla^2 u\|_{L^q(B_{2\rho} \setminus B_{\rho})} + \rho^{1 - \frac{2}{q}} \|u\|_{L^2(B_{2\rho} \setminus B_{\rho})} \leq C \left(\sqrt{\varepsilon} + (\rho \mu_n^q)^{\frac{4(q-1)}{q}} |f_n|^p \right) \leq C \sqrt{\varepsilon}.$$ (27)

Let $\lambda > 0$, $f(x) = |\nabla^2 u(x)|$ if $x \in N^i_n \left(\frac{r}{2} \right)$ and $f = 0$ otherwise. For any $\rho > 0$, we denote

$$U(\lambda, \rho) \equiv \{ x \in B_{2\rho} \setminus B_{\rho} \text{ s.t. } f(x) > \lambda \}.$$

Thanks to (24), we have

$$\lambda^q |U(\lambda, \rho)| \leq C \varepsilon \rho^{q-2q}.$$

Let $k \in \mathbb{Z}$ and $j \geq k$, we apply the previous inequality with $\rho = 2^{-j} \lambda^{-1}$ and we sum for $j \geq k$, which gives

$$\lambda^q |\{ x \in R^4 \setminus B_{2k\lambda^{-1}} \text{ s.t. } f(x) > \lambda \}| \leq C 2^{-k(4-2q)} \varepsilon \rho^{q-2q}.$$

Hence, for any $k \in \mathbb{Z}$, we have

$$\lambda^q |\{ x \in R^4 \text{ s.t. } f(x) > \lambda \}| \leq C \left(2^{-k(4-2q)} \varepsilon \rho^{q-2q} + 2^4k \right).$$

Taking $2^4k \sim \varepsilon^{\frac{2}{q}}$ we have

$$\| \nabla^2 u_n \|_{L^{2,q}\left(N^i_n(r) \right)} \leq C \varepsilon^{\frac{2}{q}},$$

We prove a similar inequality for $\| \nabla u_n \|_{L^{4,\infty}}$, and then we have (25).

Finally using theorem 3.1 and the duality for Lorentz spaces, we see that, for all $\varepsilon > 0$, there exists $r > 0$ such that

$$\| \nabla^T u \|_{L^{2}(N^i_n(r))} \leq \varepsilon.$$ (28)

Then using the Pohozaev identity (36) for extrinsic biharmonic maps (reps. (37) for intrinsic biharmonic maps) and the fact that the convergence is strong on the boundary of a neck region, we get that for all $\varepsilon > 0$, there exists $r > 0$ such that

$$\| \nabla^2 u \|_{L^2(N^i_n(r))} + \| \nabla u \|_{L^4(N^i_n(r))} \leq \varepsilon.$$ (29)

Which achieves the proof of theorem 4.1. \hfill \Box

Following step by step the proof of theorem 4.1, we can prove the following theorem about the angular energy quantization of solution of fourth order elliptic system in the form of Lamm Riviere. [LR].

Theorem 4.1. Let $V_n \in W^{1,2}(B_1, \mathcal{M}_k \otimes \Lambda^1 \mathbb{R}^4)$, $w_n \in L^2(B_1, \mathcal{M}_k)$, $\omega_n \in L^2(B_1, \mathcal{S}_k)$, $F_n \in L^2 \setminus W^{1,2}(B_1, \mathcal{M}_k \otimes \Lambda^1 \mathbb{R}^4)$ and $u_n \in W^{2,1}(B_1, \mathbb{R}^n)$ be a sequence of solutions of

$$\Delta^2 u_n = \Delta(V_n \nabla u_n) + \text{div}(w_n \nabla u_n) + \nabla \omega_n \nabla u_n + F_n \nabla u_n,$$ (30)

with bounded energy, i.e.

$$\| \nabla^2 u_n \|_2 + \| \nabla u_n \|_4 + \| V_n \|_{W^{1,2}} + \| w_n \|_2 + \| \omega_n \|_2 + \| F_n \|_{L^2 \setminus W^{1,2}} \leq M.$$ (31)
Then there exists \(V_\infty \in W^{1,2}(B_1, M_k \otimes \Lambda^1 \mathbb{R}^4) \), \(w_\infty \in L^2(B_1, M_k) \), \(\omega_\infty \in L^2(B_1, so_k) \), \(F_\infty \in L^2 \cdot W^{1,2}(B_1, M_k \otimes \Lambda^1 \mathbb{R}^4) \) and let \(u_\infty \in W^{2,1}(B_1, \mathbb{R}^n) \) a solution of
\[
\Delta^2 u_\infty = \Delta(V_\infty \nabla u_\infty) + \text{div}(w_\infty \nabla u_\infty) + \nabla \omega_\infty \nabla u_\infty + F_\infty \nabla u_\infty \text{ on } B_1,
\]
\(l \in \mathbb{N}^* \) and

1. \(\theta^1, \ldots, \theta^l \) a family of solutions to system of the form
\[
\Delta^2 \theta^i = \Delta(V^i_\infty \nabla \theta^i) + \text{div}(w^i_\infty \theta^i) + \nabla \omega^i_\infty \nabla \theta^i + F^i_\infty \nabla \theta^i \text{ on } \mathbb{R}^4
\]
where \(V^i_\infty \in W^{1,2}(\mathbb{R}^4, M_k \otimes \Lambda^1 \mathbb{R}^4) \), \(w^i_\infty \in L^2(\mathbb{R}^4, M_k) \), \(\omega^i_\infty \in L^2(\mathbb{R}^4, so_k) \) and \(F^i_\infty \in L^2 \cdot W^{1,2}(\mathbb{R}^4, M_k \otimes \Lambda^1 \mathbb{R}^4) \),

2. \(a^1_n, \ldots, a^l_n \) a family of converging sequences of points of \(B_1 \),

3. \(\lambda^1_n, \ldots, \lambda^l_n \) a family of sequences of positive reals converging all to zero, such that, up to a subsequence,
\[
V_n \to V_\infty \text{ in } W^{1,2}_\text{loc}(B_1, M_k \otimes \Lambda^1 \mathbb{R}^4),
\]
\(w_n \to w_\infty \text{ in } L^2_\text{loc}(B_1, M_k) \),
\(\omega_n \to \omega_\infty \text{ in } L^2_\text{loc}(B_1, so_k) \),
\(F_n \to F_\infty \text{ in } L^2_\text{loc} \cdot W^{1,2}_\text{loc}(B_1, M_k \otimes \Lambda^1 \mathbb{R}^4) \),
\(u_n \to u_\infty \text{ on } W^{2,2}_\text{loc}(B_1 \setminus \{a^1_n, \ldots, a^l_n\}) \)
and
\[
\left\| \left\langle \nabla \left(\nabla \left(u_n - u_\infty - \sum_{i=1}^l \theta^i_k \right) \right), X_n \right\rangle \right\|_{L^2_\text{loc}(B_1)} + \left\| \left\langle \nabla \left(u_n - u_\infty - \sum_{i=1}^l \theta^i_k \right), X_n \right\rangle \right\|_{L^2_\text{loc}(B_1)} \to 0,
\]
where \(\omega^i_n = \omega^i(a^i_n + \lambda^i_n \cdot) \) and \(X_n \) is any vector field whose image is in \((\nabla d_n)^\perp \) with \(d_n = \min_{1 \leq i \leq l} (\lambda^i_n + d(a^i_n, \cdot)) \).

5 A lemma about harmonic maps on an annular regions

Lemma 5.1. Let \(0 < r < \frac{1}{2} \) and \(u \in W^{1,2}(B_1 \setminus B_r) \) be a harmonic function such that
\[
\int_{\partial B_1} u \, d\sigma = 0,
\]
\[
\int_{\partial B_r} u \, d\sigma = 0.
\]

Then there exists \(C \) a positive constant independent of \(r \) and \(u \) such that
\[
\|u\|_{L^{2,1}(B_{\frac{1}{2}} \setminus B_r)} \leq C \|u\|_2
\]
and
\[
\|\nabla^T u\|_{L^{2,1}(B_{\frac{1}{2}} \setminus B_r)} \leq C \|\nabla^T u\|_2.
\]
Proof of lemma 5.1:

Since \(u \) is harmonic, it can be decomposed with respect to the spherical harmonics as follows

\[
 u = \sum_{l=1}^{+\infty} \sum_{k=1}^{N_l} (d_k^l r^l + d_k^{-l} r^{-l-2}) \phi_k^l,
\]

where \((\phi_k^l)_{l,k}\) are a \(L^2\)-basis of eigenfunction of the Laplacian on \(S^3\). In particular we get

\[
 \Delta \phi_k^l = -l(l+2) \phi_k^l \text{ on } S^3.
\]

Thanks to this equation, \(L^p\)-theory for singular operators gives the existence of a positive constant \(C\), independent of \(l\) such that

\[
 \|\phi_k^l\|_{L^\infty} \leq C(l(l+2))^2.
\]

Moreover we know that \(N_l\), the dimension of the eigenspace associated to the eigenvalue \(-l(l+2)\) of the Laplacian, is equal to \((l+1)^2\). Hence, computing the \(L^2\)-norm and \(L^{2,1}\)-norm of the function \(f_j : x \mapsto |x|^j\), we get

\[
 \|f_j\|_2 \geq \frac{\frac{r^{2+j}}{2\sqrt{-2j-4}}}{2\sqrt{2j+4}} \quad \text{if } j < -2
\]

\[
 \|f_j\|_2 \geq \frac{1}{2\sqrt{2j+4}} \quad \text{if } j \geq 0
\]

\[
 \|f_j\|_{L^{2,1}(B_{1/2} \setminus B_r)} \leq (2r)^{2+j} \quad \text{if } j < -2
\]

\[
 \|f_j\|_{L^{2,1}(B_{1/2} \setminus B_r)} \leq \left(\frac{1}{2} \right)^{\frac{3}{2}+1} \quad \text{if } j \geq 0
\]

where \(C\) is independent of \(j\).

Then

\[
 \|u\|_{L^{2,1}(B_{1/2} \setminus B_r)} \leq C \sum_{l=1}^{+\infty} \sum_{k=1}^{N_l} \left(d_k^l \left(\frac{1}{2} \right)^{\frac{3}{2}+1} + d_k^{-l} (2r)^{-l} \right) (l(l+2))^2
\]

\[
 \leq C \left(\sum_{l=1}^{+\infty} \sum_{k=1}^{N_l} \left(d_k^l \frac{1}{4(2l+4)} \right)^{\frac{3}{2}} \left(\sum_{l=1}^{+\infty} \sum_{k=1}^{N_l} 4(2l+4)(l(l+2))^4 \left(\frac{1}{2} \right)^{\frac{3}{2}+2} \right) \right)
\]

\[
 + \left(\sum_{l=1}^{+\infty} \sum_{k=1}^{N_l} \left(d_k^{-l} \frac{1}{8l} \right)^{\frac{3}{2}} \left(\sum_{l=1}^{+\infty} \sum_{k=1}^{N_l} 8l((l(l+2))^4 \left(\frac{1}{4} \right)^l \right) \right)
\]

Thanks to the fact that \(N_l\), the dimension of the eigenspace associated to the eigenvalue \(-l(l+2)\) of the Laplacian, is equal to \((l+1)^2\), we get the first estimate. The second identity is obtained in the same way. \(\Box\)
6 Požaev identities

In this section, we prove a Požaev identity for extrinsic and intrinsic biharmonic maps in order to rely the radial derivatives to the angular ones. First we multiply our equation by \(x^k \partial_k u \) and we integrate by part.

\[
\int_{B(0,r)} (x^k \partial_k u) (\Delta^2 u) \, dx = - \int_{B(0,r)} \langle \nabla u, \nabla (\Delta u) \rangle \, dx - \int_{B(0,r)} (x^k \partial_k \partial^i u) (\partial_i (\Delta u)) \, dx \\
+ \int_{\partial B(0,r)} (x^k \partial_k u) \partial_r (\Delta u) \, d\sigma \\
= 2 \int_{B(0,r)} (\Delta u)^2 \, dx + \int_{B(0,r)} x^k \partial_k (\Delta u) (\Delta u) \, dx \\
+ \int_{\partial B(0,r)} ((r \partial_r u) \partial_r (\Delta u) - (\partial_r u) (\Delta u) - r (\partial^2_r u) (\Delta u)) \, d\sigma \\
= \int_{\partial B(0,r)} \frac{r}{2} (\Delta u)^2 \, d\sigma \\
+ \int_{\partial B(0,r)} ((r \partial_r u) \partial_r (\Delta u) - (\partial_r u) (\Delta u) - r (\partial^2_r u) (\Delta u)) \, d\sigma
\]

Using the fact that for an extrinsic harmonic maps we have \(\Delta^2 u \perp T_u N \) almost everywhere, we get for all \(r \) that

\[
\int_{\partial B(0,r)} \left(\frac{1}{2} (\Delta u)^2 - (\partial^2_r u) \Delta u + (\partial_r u) \partial_r (\Delta u) - \frac{1}{r} (\partial_r u) (\Delta u) \right) \, d\sigma = 0 \tag{33}
\]

But

\[
\Delta u = \partial^2_r u + \frac{3}{r} \partial_r u + \frac{1}{r^2} \Delta_{S^3} u.
\]

Hence

\[
(\Delta u)^2 = (\partial^2_r u)^2 + \frac{9}{r^2} (\partial_r u)^2 + \frac{1}{r^4} (\Delta_{S^3} u)^2 + 6 \frac{1}{r^2} (\partial_r u)(\partial^2_r u) + \frac{2}{r^2} (\Delta_{S^3} u)(\partial^2_r u) + \frac{6}{r^3} (\partial_r u)(\Delta_{S^3} u).
\]

From the one hand, we have

\[
\frac{1}{2} (\Delta u)^2 - (\partial^2_r u) \Delta u = - \frac{1}{2} (\partial^2_r u)^2 + \frac{9}{2r^2} (\partial_r u)^2 + \frac{1}{2r^4} (\Delta_{S^3} u)^2 + \frac{3}{r^2} (\partial_r u) (\Delta_{S^3} u)
\]

which gives

\[
\int_{B_r \setminus B_r} \left(\frac{1}{2} (\Delta u)^2 - (\partial^2_r u) \Delta u \right) \, dx = \int_{B_r \setminus B_r} \left(- \frac{1}{2} (\partial^2_r u)^2 + \frac{9}{2r^2} (\partial_r u)^2 + \frac{1}{2r^4} (\Delta_{S^3} u)^2 + \frac{3}{r^3} (\partial_r u) (\Delta_{S^3} u) \right) \, dx \tag{34}
\]

From the other hand

\[
(\partial_r u) \partial_r (\Delta u) - \frac{1}{r} (\partial_r u) (\Delta u) = (\partial_r u) (\partial^3_r u) + \frac{2}{r} (\partial_r u) (\partial^2_r u) - \frac{6}{r} (\partial_r u)^2 + \frac{1}{r^2} (\partial_r \Delta_{S^3} u) (\partial_r u) - \frac{3}{r^3} (\Delta_{S^3} u) (\partial_r u)
\]
Integrating by part, we get

\[
\int_{B \setminus B_r} \left((\partial_\nu u) \partial_r (\Delta u) - \frac{1}{r} (\partial_\nu u) (\Delta u) \right) \, dx = \int_{B \setminus B_r} \left((\partial_\nu u) (\partial_\nu^2 u) + \frac{2}{r} (\partial_\nu u) (\partial^2_r u) - \frac{6}{r} (\partial_\nu u)^2 \right) \, dx \\
+ \int_{B \setminus B_r} \left(\frac{1}{r^2} (\partial_\nu u) (\partial_\nu^2 u) - \frac{3}{r^3} (\Delta S^3 u) (\partial_\nu u) \right) \, dx \\
= \int_{\partial(B \setminus B_r)} (\partial_\nu u) (\partial^2_r u) \, d\sigma \\
+ \int_{B \setminus B_r} \left(-\frac{1}{2r} (\partial_\nu (\partial_\nu u)^2) - (\partial^2_r u)^2 - \frac{6}{r} (\partial_\nu u) \right) \, dx \\
+ \int_{B \setminus B_r} \left(\frac{1}{r^2} (\partial_\nu u) (\Delta S^3 u) (\partial_\nu u) - \frac{3}{r^3} (\Delta S^3 u) (\partial_\nu u) \right) \, dx \\
= \int_{\partial(B \setminus B_r)} \left((\partial_\nu u) (\partial^2_r u) - \frac{1}{2r} (\partial_\nu u)^2 \right) \, d\sigma \\
- \int_{B \setminus B_r} \left((\partial^2_r u)^2 + \frac{5}{r^2} (\partial_\nu u)^2 \right) \, dx \\
+ \int_{B \setminus B_r} \left(\frac{1}{r^2} (\partial_\nu u) (\Delta S^3 u) (\partial_\nu u) - \frac{3}{r^3} (\Delta S^3 u) (\partial_\nu u) \right) \, dx \\
(35)
\]

Finally, thanks to (33), (34) and (35), we have

\[
\int_{B \setminus B_r} \left(\frac{3}{2} (\partial^2_r u)^2 + \frac{1}{2} (\partial_\nu u)^2 \right) \, dx = \int_{B \setminus B_r} \left(\frac{1}{2r^4} (\Delta S^3 u)^2 \right) \, dx \\
+ \int_{B \setminus B_r} \left(\frac{1}{r^2} (\partial_\nu u) (\partial_\nu^2 u) \right) \, dx \\
+ \int_{\partial(B \setminus B_r)} \left((\partial_\nu u) (\partial^2_r u) - \frac{1}{2r} (\partial_\nu u)^2 \right) \, d\sigma \\
(36)
\]

Since the equations of extrinsic and intrinsic biharmonic maps differ only by \(P(u) (B(u)(\nabla u, \nabla u) \nabla v B(u)(\nabla u, \nabla u)) + 2B(u)(\nabla u, \nabla u) B(u)(\nabla u, \nabla P(u))\), we multiply this term by \(x^k \partial_k u\) which gives

\[
x^k \partial_k u \left(P(u) (B(u)(\nabla u, \nabla u) \nabla v B(u)(\nabla u, \nabla u)) + 2B(u)(\nabla u, \nabla u) B(u)(\nabla u, \nabla P(u)) \right) \\
= B(u)(\nabla u, \nabla u) \nabla x^k \partial_k u B(u)(\nabla u, \nabla u) + 2B(u)(\nabla u, \nabla u) B(u)(\nabla u, \nabla (x^k \partial_k u)) \\
= x^k \partial k \left(\frac{|B(u)(\nabla u, \nabla u)|^2}{2} \right) + 2 |B(u)(\nabla u, \nabla u)|^2 \\
= \frac{1}{|x|^3} \partial |x| \left[\frac{r^4}{2} |B(u)(\nabla u, \nabla u)|^2 \right].
\]
Then integrating, we get the following Pohoždev identity for intrinsic biharmonic maps

\[
\int_{B_R \setminus B_r} \left(\frac{3}{2} \left(\partial^2 u \right)^2 + \frac{1}{2r^2} \left(\partial_r u \right)^2 \right) dx = \int_{B_R \setminus B_r} \left(\frac{1}{2r^4} \left(\Delta_{S^3} u \right)^2 \right) dx \\
+ \int_{B_R \setminus B_r} \left(\frac{1}{r^2} \left(\partial_r \Delta_{S^3} u \right) \left(\partial_r u \right) \right) dx \\
+ \int_{\partial(B_R \setminus B_r)} \left(\left(\partial_r u \right) \left(\partial^2_{\nu} u \right) \right) \\
- \frac{1}{2r} \left(\partial_r u \right)^2 - \frac{r}{2} |B(u)(\nabla u, \nabla u)|^2 \right) d\sigma
\]

We also get a Pohoždev identity for the critical point of general functional, since

\[
\int_{B_R \setminus B_r} (x^k \partial_k u)H \left(\frac{\partial u}{\partial x_1}, \frac{\partial u}{\partial x_2}, \frac{\partial u}{\partial x_3}, \frac{\partial u}{\partial x_4} \right) dx = \int_{B_R \setminus B_r} d\Omega \left(x^k \frac{\partial u}{\partial x_k}, \frac{\partial u}{\partial x_1}, \frac{\partial u}{\partial x_2}, \frac{\partial u}{\partial x_3}, \frac{\partial u}{\partial x_4} \right) dx = 0.
\]

References

[Ad] Adams, David R. "A note on Riesz potentials." Duke Math. J. 42 (1975), no. 4, 765–778.

[Gas] Gastel, A. (2006). The extrinsic polyharmonic map heat flow in the critical dimension. Adv. Geom. 6:501521.

[GasSch] Gastel, Andreas; Scheven, Christoph Regularity of polyharmonic maps in the critical dimension. Comm. Anal. Geom. 17 (2009), no. 2, 185226.

[GSZG] P. Goldstein, P. Strzelecki and A. Zatorska-Goldstein, On polyharmonic maps into spheres in the critical dimension, Ann. IHP, Anal. Non Linaire, to appear.

[Gra] L. Grafakos Classical Fourier Analysis. Graduate Texts in Mathematics 249, Springer (2009).

[HP1] Hornung, P. and Moser, R., Intrinsically biharmonic maps into homogeneous spaces, 2011, Advances in Calculus of Variations, Online first.

[HP2] Hornung, P. and Moser, R., Energy identity for intrinsically biharmonic maps in four dimensions. to appear in Analysis & PDE.

[Lam] Lamm, Tobias , Heat flow for extrinsic biharmonic maps with small initial energy,Ann. Global Anal. Geom.,26,2004,4,369–384.

[LaR] Laurain, Paul and Riviè re, Tristan "Angular energy quantization for linear elliptic systems with antisymmetric potentials and Applications " submitted.

[LR] Lamm, Tobias and Riviè re, Tristan "Conservation laws for fourth order systems in four dimensions" Comm. Partial Differential Equations 33 (2008), no. 1-3, 245262.

[Mo] Moser, Roger A variational problem pertaining to biharmonic maps. Comm. Partial Differential Equations 33 (2008), no. 7-9, 16541689.

[Pa] T.Parker, “Bubble tree convergence for harmonic maps”, J. Diff. Geom. 44 (1996), 545–633.

[Ru] Rupflin, Melanie Uniqueness for the heat flow for extrinsic polyharmonic maps in the critical dimension. Comm. Partial Differential Equations 36 (2011), no. 7, 11181144.
[SaU] J. Sacks and K. Uhlenbeck, The existence of minimal immersions of 2-spheres, Ann. of Math. 113 (1981), 1–24.

[Wa1] Wang, Changyou “Biharmonic maps from \mathbb{R}^4 into a Riemannian manifold”, Math. Z. 247, (2004), 65–87.

[Wa2] Wang, Changyou “Stationary biharmonic maps from \mathbb{R}^m into a Riemannian manifold”, Comm. Pure Appl. Math., 57, (2004), 419–444.

[Wa3] Wang, C. (2007). Heat flow of biharmonic maps in dimension four and its application. Pure Appl. Math. Q. 3:595613.

[Wa4] Wang, Changyou and Shenzhen, Zheng, Energy identity for a class of approximate biharmonic maps into sphere in dimension four, preprint.