Mechanistic insights into the peroxisome proliferator-activated receptor alpha as a transcriptional suppressor

Tomoki Yagai* and Takahisa Nakamura1,2,3,4*

1Department of Metabolic Bioregulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan, 2Division of Endocrinology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States, 3Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States, 4Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States

Non-alcoholic fatty liver disease (NAFLD) is one of the most prevalent hepatic disorders that 20-30% of the world population suffers from. The feature of NAFLD is excess lipid accumulation in the liver, exacerbating multiple metabolic syndromes such as hyperlipidemia, hypercholesterolemia, hypertension, and type 2 diabetes. Approximately 20-30% of NAFLD cases progress to more severe chronic hepatitis, known as non-alcoholic steatohepatitis (NASH), showing deterioration of hepatic functions and liver fibrosis followed by cirrhosis and cancer. Previous studies uncovered that several metabolic regulators had roles in disease progression as key factors. Peroxisome proliferator-activated receptor alpha (PPARα) has been identified as one of the main players in hepatic lipid homeostasis. PPARα is abundantly expressed in hepatocytes, and is a ligand-dependent nuclear receptor belonging to the NR1C nuclear receptor subfamily, orchestrating lipid/glucose metabolism, inflammation, cell proliferation, and carcinogenesis. PPARα agonists are expected to be novel prescription drugs for NASH treatment, and some of them (e.g., Lanifibranor) are currently under clinical trials. These potential novel drugs are developed based on the knowledge of PPARα-activating target genes related to NAFLD and NASH. Intriguingly, PPARα is known to suppress the expression of subsets of target genes under agonist treatment; however, the mechanisms of PPARα-mediated gene suppression and functions of these genes are not well understood. In this review, we summarize and discuss the mechanisms of target gene repression by PPARα and the roles of repressed target genes on hepatic lipid metabolism, fibrosis and carcinogenesis related to NAFLD and NASH, and provide future perspectives for PPARα pharmaceutical potentials.

KEYWORDS
NAFLD, NASH, PPARα, transcriptional suppressor, transcriptional suppression
Introduction

Peroxisome proliferator-activated receptors (PPARs) are ligand-dependent nuclear receptors belonging to the NR1C nuclear receptor subfamily, involved in lipid/glucose metabolism, inflammation, cell proliferation, and carcinogenesis (1, 2). There are three PPAR isoforms, PPARα, PPARβ/δ, and PPARγ, each with different tissue distribution and expression patterns. PPARα is abundantly expressed in the energy-producing tissues such as the liver, heart, kidney, and brown adipose tissue, whereas PPARγ is mainly expressed in the adipose tissue and macrophages, and PPARβ/δ is more widely expressed compared with PPARα (3, 4). The intense interest in PPARα is driven in part to its activation by agonists that promote upregulation of target genes related to lipid catabolism, modulating microsomal, peroxisomal, and mitochondrondial fatty acid oxidation, lipoprotein metabolism, triglyceride synthesis, and gluconeogenesis (5). In the liver, these target genes are significantly involved in the pathogenesis of liver steatosis, including non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) (6, 7). Specifically, PPARα activation may contribute to the prevention of NAFLD and NASH aggravation because the PPARα-activated target genes have roles in anti-inflammation and reduction of lipid accumulation in the liver. PPARα activation could, therefore, be a primary pharmaceutical target (8). PPARα agonists also repress target genes (9–11) but the contribution of these “repressed target genes” to NAFLD and NASH and the mechanisms involved are not well understood. In this review, we focus on the target genes repressed by PPARα and the repression mechanisms elucidated hitherto, and discuss the potential significance of PPARα as a transcriptional suppressor.

Main

Physiology of peroxisome proliferator-activated receptor α

Peroxisome proliferator-activated receptor α was discovered in rodents as a primarily a carnogenic-responsible peroxisome proliferator (12). Peroxisome, a membrane-bound organelle in the cytoplasm of eukaryotic cells, performs key functions in multiple metabolic pathways such as purine catabolism, fatty acid β-oxidation, and phospholipid synthesis, in addition to the conversion of reactive oxygen species (13). PPARα is abundantly expressed in tissues metabolizing fatty acids such as liver, skeletal muscle, heart, and brown adipose tissue, in addition to inflammatory immune cells such as monocytes and macrophages (14–17). In hepatocytes, PPARα regulates peroxisomal and mitochondrial β-oxidation, lipid biogenesis and transport, cholesterol and glucose metabolism, and inflammation (18). Although PPARα protein is known to localize in the nucleus regardless of the activation state (19), in some cell types such as chondrocytes (20) and differentiated human macrophages (21), PPARα can also be found in the cytoplasm. The PPARα expression is regulated in transcriptional and post-transcriptional manners. HNF4α activates PPARα transcription by binding to the response element DR-1 in the promoter region (22), whereas COUP-TFI antagonizes the HNF4α transcriptional activity by competing with the binding to DR-1 in the promoter (23). A transcription factor KLF6 induces miR-10b that inhibits PPARα protein translation (24). A recent study showed that hepatic Argonaute 2 (Ago2) inhibits PPARα expression, suggesting that Ago2-mediated microRNA processing and RNA silencing have significant roles in PPARα repression (25).

Structure

PPARα has four structural domains, designed A/B, C, D, and E/F domains. The N-terminal A/B domain harbors a ligand-independent transcriptional activating function (AF-1). The C domain includes DNA binding domain (DBD) essential for binding to the PPAR response element (PPRE) in the target gene promoter/enhancer sites (26). The D domain is a hinge region that includes binding sites for co-repressors such as NCoR and SMRT. The E/F domains carry ligand binding domains (LBD) that harbor a relatively larger cavity of ligands compared with other nuclear receptors (17). The binding of agonists to LBD induces the conformation change, which results in the recruitment of transcriptional complexes with co-activators and subsequent transcriptional activation (27–29).

Selective agonists

Free fatty acids (FFAs) have been identified as endogenous agonists for PPARα. The n-3 polyunsaturated fatty acids (PUFAs), such as Eicosapentaeonic acid (EPA) and Docosahexaenoic acid (DHA), in particular, have been shown to be potent agonism compared with other FFAs (30). Such endogenous agonists come from dietary nutrients when feeding or from adipose tissues during fasting. In addition to endogenous agonists, synthetic amhipathic carboxylic acids such as fibrates that are frequently used for the treatment of hyperlipidemia and hypercholesterolemia, are demonstrable PPARα selective agonists (5). The first fibrate drugs were developed during the 1960s-1980s, although PPARα was not identified as the direct molecular target at that time. Currently, several synthetic PPARα agonists developed have been used clinically and experimentally (e.g., Fenofibrate, Clofibrate, Bezafibrate, Gemfibrozil, Pemafibrate, Wy-14,643, GW9578, GW7647) (5).
Transcriptional gene activation by peroxisome proliferator-activated receptor α

Studies over the past decades elucidated gene transcription mechanisms of PPARα (2, 5, 31–33). Retinoid X receptor alpha (RXRa), a nuclear receptor belonging to the NR2B subfamily, is an obligate heterodimer partner for PPARα. RXR family consists of three distinct members, known as RXRa, RXRβ, and RXRγ (34, 35). RXRα (NR2B1) was the first identified RXR that is abundantly expressed in the liver. While RXRα is activated by the endogenous agonist 9-cis retinoid acid, ligand-independent RXRα forms a transcription complex with PPARα for the transcriptional activation. One of the significant physiological roles of PPARα is as a transcription factor activating target gene expressions (36–39). When a selective agonist binds to the LBD of PPARα, PPARα can bind to PPRE sites via heterodimerization with RXRa. PPRE sites consist of direct repeat type 1 (DR-1), which is a tandem repeat of recognition motif 5′-AGGTCA-3′ separated by a single nucleotide (40). PPARα binds to the 5′ extended half-site of the response element, whereas RXRα binds to the 3′ half-site (41, 42). Although PPARα can bind to PPRE without agonists, the interaction is not stable because of the chromatin condensed state (27–29). Furthermore, the lack of an agonist inhibits transcriptional activity of PPARα as co-repressors, such as NCOR1 and SMRT, are bound (43). Binding of the agonists PPARα releases bound co-repressors as PPARα conformation changes, and with co-activator recruitment of components, such as CBP1/P300, SRC-1, and PGC1, target gene transcription is activated (44). The binding of co-activator CBP1 is known to induce HAT activity, resulting in chromatin remodeling, which opens condensed genomic DNA to exposed PPRE sites and allows access of PPARα/RXRa heterodimer to the PPRE tightly (45). Taken together, a canonical function of PPARα is to induce target gene transcription by forming the transcription complex with RXRa and other transcriptional co-activators when the agonist binds and modifies the conformation of PPARα.

Peroxisome proliferator-activated receptor α-mediated transcriptional gene repression

In addition to transcriptional activation, transcriptomic studies in the PPARα-activated cells and tissues indicate that there are numerous target genes whose expression is repressed by PPARα, and these repressed genes have significant roles in various homeostasis (10), although the molecular mechanisms of how PPARα suppresses target genes remain poorly studied. Gene repression mechanisms have been reported for other nuclear receptors, such as the Thyroid receptor and Glucocorticoid receptor (46), from which it is deduced that the repression mechanisms can be classified as Trans-acting, Cis-acting, or indirect manner.

Trans-acting repression

Several studies reported that the activated PPARα directly binds to transcription factors and interferes the transcriptional activity. The protein-protein interaction-mediated transcription repression is known as trans-acting repression (Figure 1A). It has been elucidated that PPARα has roles in the repression of hepatic inflammation by inhibiting Activator protein 1 (AP-1) and Nuclear factor-κB (NF-κB) pathways through trans-repression. Ligand-activated PPARα directly binds to a NF-κB component p65 and the N-terminus JNK-responsive part of c-Jun, resulting in the prevention of the unique response element binding of NF-κB and AP-1 (47). Bougarne et al. uncovered that the PPARα interaction of p65 is synergistically induced with trans-repression by GR binding to p50 (48). Another study involving mice carrying mutant PPARα lacking the DBD region showed significant suppression of chronic liver inflammation by NF-κB and AP-1 pathway, suggesting that NF-κB and AP-1 suppression by PPARα is independent of the DNA binding, and that PPARα directly interacts with NF-κB and AP-1 (49). Since NF-κB and AP-1 pathways regulate the expression of pro-inflammatory cytokines, these findings suggest that PPARα may exert its anti-inflammatory effects by suppressing these pathways in the liver. Previous studies reported that saturated fatty acids activate JNK in hepatocytes (50, 51), whereas the hepatic JNK is required for AP-1 activation and NCOR1 expression (52). As NCOR1 is a potent co-repressor for PPARα, these findings suggest that the JNK-NCOR1 axis reciprocally affects the PPARα anti-inflammatory effect. In addition to NF-κB and AP-1, it was revealed that activated PPARα also binds to GRIP1/TIF2, which is a co-activator of C/EBPβ. The PPARα’s interaction with GRIP1/TIF2 results in interference of C/EBPβ binding to the response element (53). Blanquart et al. reported that the protein kinase C pathway-mediated phosphorylation of C/EBPβ at Ser179 and Ser230 residues suppresses C/EBPβ activity in the fibrinogen-β promoter (54). Oka et al. reported that PPARα and SIRT1 form a heterodimer and bind to ERR-responsive elements, leading to competitive inhibition of ERR pathway related to mitochondria respiration (55, 56). Several studies reported HNF4α inhibition by PPARα. Shin et al showed that PPARα activation decreases HNF4α protein but not mRNA, resulting in transcriptional inhibition of the HNF4α target gene ACMSD (57). Another study showed that an HNF4α target gene, Gls2, is significantly repressed by PPARα with HNF4α protein degradation (58). Recently, it was reported that PPARα/RXRα heterodimer binds to HNF4α and promotes ubiquitination, resulting in the HNF4α protein degradation and repression of the HNF4α target gene 5ds promoter activity (59). Of note, Leuenberger et al reported that SUMOylated but
Transcriptional repression manners by PPARα. (A) Trans-acting repression manner by direct interaction between PPARα and the target transcription factors (TF). (B) Cis-acting repression manner depending on PPARα binding to the PPAR responsive element (PPRE). (C) Indirect repression manner, upregulating transcriptional suppressors, long non-coding RNAs, microRNAs and epigenetic modulators.

Cis-acting repression

Previous studies revealed that DNA-bound PPARα could prevent the transcription of target genes in a number of different systems. The repression manner based on protein-DNA interaction is known as cis-acting repression (Figure 1B). Mogilenko et al. uncovered that transcriptional activity in complement C3 promoter is inhibited by physical interactions between PPRE-bound PPARα and p65. They showed that PPARα binding to PPRE is not limited only to transcriptional activation but repression (61). ChIP-chip analysis by van der Meer et al. proposed that PPARα binding to PPRE near STAT response elements interferes with the STAT1 and STAT3 transcriptional activation in the target gene promoters such as STARD13 and TOX3 in HepG2 cells (62). You et al reported that activated PPARα binds to a PPRE located on the Glut-1 promoter, resulting in the inhibition of transcriptional activity and cancer cell proliferation (63). A recent study supported that the Glut-1 inhibition by PPARα contributes to tumor growth and chemo-resistance (64). Zhang et al showed that PPARα activation by fenofibrate recruits NCOR and associated HDAC to the INFγ gene locus, resulting in the repression of IFNγ expression in mouse T cells (65). Although the functional detail of “repressive PPRE” as a transcriptional silencer is still controversial, these studies clearly suggest that PPARα has cis-element-dependent gene repression mechanisms.

Indirect repression

Several studies have reported that PPARα had mechanisms of transcriptional inhibition not only by direct interaction but also indirectly through involvement/regulation of other transcriptional regulators, long non-coding RNA (lncRNA), microRNA and epigenetic modulators (Figure 1C). Previous studies uncovered that Cyp7a1 and Cyp27a1 expression are repressed by PPARα agonism in human and rodent cells (66–68). These cytochrome P450 proteins have significant roles in bile acid synthesis, resulting in a decline in the output of bile acids and an increase in cholesterol secretion. It was reported that PPARα agonism increases a nuclear receptor Rev-erbα expression, and Rev-erβ inhibits Apoα gene transcription in rodents (69–71). The PPARα-activated Rev-erbα also represses Apo3 gene expression by binding to the enhancer/promoter region (72–74). As genetic deletion of Rev-erβα leads to hepatic
TABLE 1	Summary of repressed target genes of PPARα.		
Trans-acting repression	**Target TFs**	**Function**	**References**
p65 (NF-κB)	Transcription of pro-inflammatory genes	(47–49)	
c-jun (AP-1)	Transcription of cell proliferation and apoptosis related genes	(47, 49)	
GRIP1/TIF2	Co-activator for nuclear receptors	(53)	
SIRT1	Deacetylation of transcription factors	(55, 56)	
HNF4α	Transcription of metabolism related genes	(57–59)	
GABPA	Transcription of metabolism related genes	(60)	

Cis-acting repression	**Target cis-element**	**Repressed gene expression**	**References**
Complement C3 promoter	Complement C3	(61)	
STAT response element	STAT target genes	(62)	
Glut-1 promoter	Glut-1	(63, 64)	
IFNγ gene locus	IFNγ	(65)	

Indirect repression	**Direct targets**	**Repression mechanism**	**Repressed indirect target**	**Function**	**References**
Unknown	Unknown	Cyp7a1, Cyp27a1	Decrease of bile acid synthesis and increase of cholesterol secretion	(66–68)	
Rev-erbα	Suppression of the target transcription	Apoal, Apoc3	Modification of lipid metabolism	(69–74)	
Unknown	Unknown	TGF-β1, PDGF-BB	Repression of PAI-1, Smad-3 expressions	(76, 77)	
TAK-1	Prevention of TAK-1 phosphorylation	TGF-β target genes	Repression of TGF-β pathway	(78)	
Gm15441 IncRNA	Inhibition of antisense transcript in the locus	TXNIP	Inflammasome activation, CASP1 cleavage, IL-1β maturation	(9)	
Unknown	Unknown	Fatpl	Attenuation of fatty acid and triglyceride accumulation in macrophage	(79)	
Unknown	Unknown	let-7 microRNA family	Promotion of RXRa ubiquitination through RNF8	(81)	
RB1	DNA methylation and histone H3R2 modification through DNM1 and PRMT6	Cdkn1a, Cdkn1b	Inhibition of tumor suppression	(82)	
E2F8	DNA methylation through Uhrf1 and unknown	Cdh1	Enhancement of tumor growth through myc activation	(83)	
unknown	let-7C macroRNA	E2F1	Inhibition of cancer cell proliferation	(84)	
Unknown	Unknown	E2F2	Inhibition of cancer cell proliferation	(85)	
miR-214	mRNA decay and translational inhibition	E2F2	Inhibition of cancer cell proliferation	(86)	
steatosis in mice, PPARα-mediated Rev-erba induction appears to exert a protective role in the development of NAFLD, at least in part, by suppressing the expression of ApoA1 and ApoC3 that control lipid transport in hepatocytes (75). Makled et al. reported that a pan-agonist for PPARα/γ (a.k.a. Saroglitazar) downregulates pro-fibrotic gene expressions such as TGF-β1 and PDGF-BB, followed by the downstream target gene repression such as PAI-1 and Smad-3 in rat liver fibrosis model (76, 77). The results suggest that PPARα (and also PPARγ) can transcriptionally repress the TGF-β signaling pathway, Bansal et al identified that the AF-1 domain of activated PPARα directly binds to the kinase domain of TAK-1 protein and prevents phosphorylation. Phosphorylation of TAK-1 is a molecule switch of the TGF-β signal cascade, indicating that the inhibition of phosphorylation results in the prevention of the TGF-β pathway (78). Brocker et al. unveiled that hepatic PPARα directly upregulates a lncRNA Gm15441. Gm15441 expression suppresses its antisense transcript encoding TXNIP, resulting in inflammasome activation, CASP1 cleavage and proinflammatory IL-1β maturation (9). These findings suggest that PPARα regulates the expression of lincRNAs relevant to the development of steatohepatitis. Although precise mechanisms are still unclear, it was reported that PPARα activation represses Oleate-inducible Fatp1 expression, attenuating total free fatty acid and triglyceride accumulation in macrophages (79). Triglyceride accumulation is related to macrophage activation (80), suggesting that the Fatp1 repression by PPARα is related to inflammation. Furthermore, a recent study unveiled that the let-7 microRNA family is significantly repressed by PPARα agonism and the let-7 microRNA prevented RXRα ubiquitination through RNF8 mRNA decay. RXRα degradation results in the inhibition of the transcriptional activity of the PPARα/RXRα complex, indicating that PPARα - let-7 microRNA - RNF8 - RXRα axis is a negative feedback loop in the hepatic lipid metabolism (81).

Several target genes repressed by PPARα are related to cancer progression and tumor growth. A study unveiled that intestinal PPARα upregulated RB1 expression in mouse colon, resulting in the repression of DNMT1 and PRMT6. DNMT1 and PRMT6 contribute to the inhibition of tumor suppressor genes such as CDkn1a and CDkn1b via DNA methylation and histone H3R2 dimethylation (82). Another study reported that hepatic PPARα upregulates a transcription factor E2F8 in mice. The E2F8 increases Uhrf1 expression, contributing to DNA methylation in the Cdhl1 promoter and the inhibition of expression (83). CDH1 represses proto-oncogene Myc expression through the Wnt pathway, suggesting that the PPARα-CDH1 pathway may enhance tumor growth. Shah et al. uncovered that PPARα agonism repressed at least twelve microRNA expressions in mouse liver. Especially the repressed target gene let-7C microRNA targets Myc mRNA and decays the stability (84). These studies indicate that rodent PPARα has multiple roles in the promotion of carcinogenesis. It is consistent with previous publications showing that long-term activation of rodent PPARα induces carcinogenesis (5). In contrast, Shi et al suggested that PPARα activation represses E2F1 transcriptional activity and the target gene expressions via the p21 pathway, modulating transcriptional complexes of E2F1 and pRB in human glioma cells (85). In human glioma cells, another study showed that PPARα upregulated miR-214 expression, resulting in E2F2 mRNA decay and inhibition of cell proliferation (86). These studies suggest that PPARα-repressed target genes contribute to the inhibition of cancer progression and tumor growth in humans.

Discussion

Studies about repressed target genes of PPARα are not sufficiently understood compared with those of the activated target genes. However, it has become obvious that one of the critical functions of PPARα is to exert transcriptional suppression of its target genes through multiple mechanisms (Table 1). The repressed target genes include various master regulators related to inflammation, fibrosis, and carcinogenesis, which contribute to, at least in part, the physiological roles of PPARα and the beneficial effects of PPARα agonist treatment. Given that PPARα represses the major pro-inflammatory transcriptional regulators, NF-xB and AP-1 pathways, the mechanisms of PPARα-mediated gene suppression may play a significant role in exacerbating hepatic inflammation (87). In addition, PPARα represses other transcriptional regulators/pathways, such as GRIP1/TIF2, HNF4α, IFNγ and TGF-β, that are related to lipid metabolism and inflammation, which appear to contribute to the beneficial effects of PPARα activation in hepatocytes. When PPARα is active as a transcription activator, the activated PPARα generally forms a transcriptional activation complex with co-activators, and the physical contact with the transcription factors accelerates their transcriptional activities. Conversely, the molecular mechanisms of how PPARα suppresses the target gene transcription and whether PPARα requires to form a specific transcriptional suppression complex to be a transcriptional suppressor remain to be elucidated. Although several previous studies identified PPREs located near repressed target gene promoter/enhancer, the sequential and positional differences between activating and repressing PPREs are still unclear. In addition, PPARα-mediated gene repression and activation occur at approximately the same time upon agonist treatment. As several epigenetic repression mechanisms have been shown in rodent cancer models and inflammation, the differences in epigenetic modifications in PPREs may be involved in the regulation of gene repression or activation of PPARα's target genes. Identifications of the elements that distinguish PPRE enhancers from silencers would drastically advance our knowledge of PPARα biology. In addition, PPARα protein modifications, including SUMOylation and phosphorylation, may also impact PPARα-mediated gene repression and
activation. One study demonstrated that SUMOylation of PPARs accelerates trans-acting repression (60), whereas another showed that post-translational phosphorylation of PPARs has a significant role in the trans-repression (54). Although the detail of mechanisms needs further analyses, such protein modifications could be related to the binding affinity of PPARs to the PPRE enhancer or silencer, or the other repressed target genes. At present, one PPARa agonist (a.k.a. Fenofibrate) and three pan-PPAR agonists (a.k.a. Lanifibranor, Pioglitazone, and Saroglitazar) are under clinical trials as drugs for NASH treatment respectively (88–91). Novel insights into the mechanisms will help the process of current clinical trials.

Author contributions

Both authors listed have made a substantial, direct, and intellectual contribution to the work, and approved it for publication.

Funding

This work was supported by the National Institute of Health (NIH) R01 DK123181 (TN), R21 OD031906 (TN), and P30DK078392 for the Digestive Disease Research Core Center in Cincinnati, and JSPS KAKENHI 20H03445 (TN), 20K16152 (TY), a grant-in-aid of ONO Medical Research Foundation (TY) and Takeda Science Foundation (TY).

Acknowledgments

We thank Saki Okamoto for assistance with the studies.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

1. Peters JM, Shah YM, Gonzalez FJ. The role of peroxisome proliferator-activated receptors in carcinogenesis and chemoprevention. Nat Rev Cancer. (2012) 12:141–55. doi: 10.1038/nrc3214
2. Wang Y, Nakajima T, Gonzalez FJ, Tanaka N. Ppar as metabolic regulators in the liver: lessons from liver-specific Ppar-null mice. Int J Mol Sci. (2020) 21:2061. doi: 10.3390/ijms21062061
3. Cabrero A, Laguna JC, Vázquez M. Peroxisome proliferator-activated receptors and the control of inflammation. Curr Drug Targets Inflamm Allergy. (2002) 1:243–8. doi: 10.2174/1568010023344616
4. Grygiel-Górniak B. Peroxisome proliferator-activated receptors and their ligands: nutritional and clinical implications—a review. Nutr J. (2014) 13:17. doi: 10.1186/1475-2891-13-17
5. Bourgarne N, Weyers B, Desmet SI, Deckers J, Ray DW, Staels B, et al. Molecular actions of Ppar in lipid metabolism and inflammation. Endocr Rev. (2018) 39:760–802. doi: 10.1210/er.2018-00064
6.Greco D, Kotronen A, Westerbacka J, Puig O, Arkila P, Kivisaato T, et al. Gene expression in human NAFLD. Am J Physiol Liver Physiol. (2008) 294:G281–7. doi: 10.1152/ajpgil.00074.2008
7. Wang R, Wang X, Zhuang L. Gene expression profiling reveals key genes and pathways related to the development of non-alcoholic fatty liver disease. Ann Hepatol. (2016) 15:190–9. doi: 10.5604/16656281.1193709
8. Kersten S, Sienstra R. The role and regulation of the peroxisome proliferator-activated receptor alpha in human liver. Biochimie. (2017) 136:75–84. doi: 10.1016/j.bioch.2016.12.019
9. Brocker CN, Kim D, Melia T, Karri K, Velenosi TJ, Takahashi S, et al. Long non-coding Rna Gm15441 attenuates hepatic inflammasome activation in response to Ppara agonism and fasting. Nat Commun. (2020) 11:5847. doi: 10.1038/s41467-020-19554-7
10. Janssen AW, Betzel B, Stoopen G, Berends FJ, Janssen IM, Peijnenburg AA, et al. The impact of Ppar activation on whole genome gene expression in human precision cut liver slices. BMC Genomics. (2015) 16:760. doi: 10.1186/s12864-015-1969-3
11. Yan T, Luo Y, Yan N, Hamada K, Zhao N, Xia Y, et al. Intestinal peroxisome proliferator-activated receptor A fatty acid-binding protein 1 axis modulates nonalcoholic steatohepatitis. Hepatology. (2022) Epub ahead of print. doi: 10.1002/hep.32538
12. Issemann I, Green S. Activation of a member of the steroid hormone receptor superfamaly by peroxisome proliferators. Nature. (1990) 347:645–50. doi: 10.1038/347645a0
13. Islinger M, Cardoso MJ, Schrader M. Be different—the diversity of peroxisomes in the animal kingdom. Biochim Biophys Acta. (2010) 1803:881–97. doi: 10.1016/j.bbamcr.2010.03.013
14. Feige JN, Gelman L, Michalik L, Desvergne B, Wahli W. From molecular action to physiological outputs: peroxisome proliferator-activated receptors are nuclear receptors at the crossroads of key cellular functions. Prog Lipid Res. (2006) 45:120–59. doi: 10.1016/j.plipres.2005.12.002
15. Hamblin M, Chang L, Fan Y, Zhang J, Chen YE. Pparalpha: energy combustion, hypolipidemia, inflammation and cancer. Mol Aspects Med. (2014) 41:125–55. doi: 10.1016/j.mamarev.2013.09.002
16. Lefebvre P, Chinetti G, Frucht JC, Staels B. Sorting out the roles of Ppar alpha in energy metabolism and vascular homeostasis. J Clin Invest. (2006) 116:571–80. doi: 10.1172/jci27989
17. Pyper SR, Yiuakarmara N, Yu S, Reddy JK. Pparalpha: energy combustion, hypolipidemia, inflammation and cancer. Nucl Recept Signal. (2010) 8:e002. doi: 10.1621/nrs.08002
18. Rajkeshandehroo M, Knoch B, Muller M, Kersten S. Peroxisome proliferator-activated receptor alpha target genes. PPAR Res. (2010) 2010:612089. doi: 10.1155/2010/612089
19. Feige JN, Gelman L, Tudor C, Engelborghs Y, Wahli W, Desvergne B. Fluorescence Imaging reveals the nuclear behavior of peroxisome proliferator-activated receptor-alpha in liver and presence of ligand. *J Biol Chem*. (2005) 280:17880–90. doi: 10.1074/jbc.M500786208

20. Bordji K, Grillacas JP, Gouze JN, Magdalou J, Schoon H, Keller JM, et al. Evidence for the presence of peroxisome proliferator-activated receptor (Ppar) alpha and gamma and retinoid Z receptor in cartilage. Ppar gamma activation modulates the effects of interleukin-1beta on rat chondrocytes. *J Biol Chem*. (2000) 275:12243–50. doi: 10.1074/jbc.275.16.12243

21. Chinetti G, Griglio S, Antonucci M, Torra JP, Delerive P, Majd Z, et al. Activation of proliferator-activated receptors alpha and gamma induces apoptosis of human monocyte-derived macrophages. *J Biol Chem*. (1999) 274:25573–80. doi: 10.1074/jbc.274.40.25573

22. Hayhurst GP, Lee YH, Lambert G, Ward JM, Gonzalez FJ. Hepatocyte nuclear factor 4alpha (nuclear receptor 2a1) is essential for maintenance of hepatic gene expression in lipid homeostasis. *Mol Cell Biol*. (2001) 21:1393–403. doi: 10.1128/mbc.21.4.1393-1403.2001

23. Pineda Torra I, Jamshidi Y, Flavell DM, Frucht JC, Staels B. Characterization of the human pparalpha promoter: identification of a functional nuclear receptor response element. *Mol Endocrinol*. (2002) 16:1013–28. doi: 10.1210/mend.16.5.0833

24. Bechmann LP, Vetter D, Ishida J, Hannivoot RV, Lang UE, Kocabayoglu P, et al. Post-transcriptional activation of Ppar alpha by Klf6 in hepatic steatosis. *Hepatology*. (2013) 58:1000–6. doi: 10.1002/hep.23103.01.020

25. Bhattacharjee J, Torra VJ, Salem ESB, Zhang C, Murakami K, Gill RK, et al. Hepatocyte nuclear factor-2 regulates Ppar{s} for oxidative metabolism linked to glycemic control in obesity and post-bariatric surgery. *Endocrinology*. (2021) 162.109007. doi: 10.1210/endo/bqaq007

26. Lee WS, Kim J. Peroxisome proliferator-activated receptors and the heart: lessons from the past and future directions. *PPAR Res*. (2015) 2015:271983. doi: 10.1155/2015/271983

27. Dowell P, Peterson VJ, Zabriskie TM, Leid M. Lysosomal crosstalk. *Int J Mol Sci*. (2020) 22:43. doi: 10.3390/ijms22010043

28. Juge-Aubry CE, Gorla-Bajszczak A, Pernin A, Lemberger T, Wahli W, Burger M, et al. Pparalpha blocks glucocorticoid receptor alpha-mediated transactivation but cooperates with the activated glucocorticoid receptor alpha for transactivation on NF-Kappab and Ap-1. *J Biol Chem*. (1999) 274:32048–54. doi: 10.1074/jbc.274.45.32048

29. Bougarne P, Naumelle P, Caron S, Hennuyer N, Mansouri R, Gervois F, et al. Pparalpha blocks glucocorticoid receptor alpha-mediated transactivation but cooperates with the activated glucocorticoid receptor alpha for transactivation on NF-Kappab. *Proc Natl Acad Sci USA*. (2009) 106:7397–402. doi: 10.1073/pnas.0806421106

30. Pavlak M, Bauge E, Bourguet W, De Bosscher K, Lallooy F, Tailleux A, et al. The transrepressive activity of peroxisome proliferator-activated receptor alpha is necessary and sufficient to prevent liver fibrosis in mice. *Hepatology*. (2014) 59:1593–606. doi: 10.001/hep.27297

31. Holzer RG, Park J, Li E, Liu N, Tran H, Chen M, Choi C, et al. Saturated fatty acids induce C-Src clustering within membrane subdomains, leading to Jnk activation. *Cell*. (2011) 147:173–84. doi: 10.1016/j.cell.2011.08.034

32. Min BWJM, Aung FMW, Liu B, Ayya A, Sin W. Mechanism and therapeutic targets of C-Jun-N-terminal kinases activation in nonalcoholic fatty liver disease. *Biomedicines*. (2022) 10.3390/biomedicines10080235

33. Vernia S, Cavanagh-Kyros J, Garcia-Haro L, Sabio G, Barrett T, Jung DY, et al. The Ppar-Fgf21 hormone axis contributes to metabolic regulation by the hepatic Jnk signalling pathway. *Cell Metab*. (2014) 20:512–25. doi: 10.1016/j.cmet.2014.06.010

34. Gervois F, Vu-Dac N, Kleemann R, Kochk M, Dubois G, Laine B, et al. Negative regulation of human fibronogen gene expression by peroxisome proliferator-activated receptor alpha agonists via inhibition of C/Emes enhancer-promoter binding protein. *J Biol Chem*. (2001) 276:33471–7. doi: 10.1074/jbc.M108279020

35. Blanquart C, Mansouri R, Pauemelle R, Frucht JC, Staels B, Glinner C. The protein kinase c signaling pathway regulates a molecular switch between transactivation and transrepression activity of the peroxisome proliferator-activated receptor alpha. *Mol Endocrinol*. (2004) 18:1906–18. doi: 10.1210/me.2003.0327

36. Oka S, Alegor R, Zhao P, Park YJ, Shao D, Cho J, et al. Ppar-Sirt1 complex mediates cardiac hypertrophy and failure through suppression of the Err transcriptional pathway. *Cell Metab*. (2011) 14:948–91. doi: 10.1016/j.cmet.2011.10.001

37. Oka S, Zhao P, Alegor R, Park YJ, Tian B, Sadohima J. Suppression of Err targets by a Ppar-Sirt1 complex in the failing heart. *Cell Cycle*. (2012) 11:856–64. doi: 10.4161/cc.20477.011207

38. Shin M, Kim I, Inoue Y, Kimura S, Gonzalez FJ. Regulation of mouse hepatic alpha-amino-beta-carboxymuconate-episol-semialdehyde decarboxylase, a key enzyme in the tryptophan-nicotinamide adenine dinucleotide pathway, by hepatocyte nuclear factor alpha and peroxisome proliferator activated receptor alpha. *Mol Pharmacol*. (2006) 70:1281–90. doi: 10.1124/mol.106.0628294

39. Velázquez-Villegas LA, Charabati T, Contreras AV, Alemán G, Torres N, Tovar AR. Ppar downregulates hepatic glutaminase expression in mice fed diets with high fat or high fructose.
in human apolipoprotein a-i transgenic mice. The interaction of the peroxisome proliferator-activated receptor with its regulation of the human apolipoprotein a-I promoter by fibrates can be attenuated and rev-erb alpha mediate the species-specific regulation of apolipoprotein a-I transcription. Identification of rev-erb alpha as a physiological repressor of apoc-Iii gene induction of peroxisomal acyl coenzyme a oxidase. A potential mechanism for the species-specific regulation of apolipoprotein a-I transcription. Peroxisome proliferator-activated receptor alpha (Pparalpha) and agonist inhibit cholesterol 7alpha-hydroxylase gene. Peroxisome proliferator-activated receptor alpha-mediated downregulation of cholesterol 7alpha-hydroxylase and sterol 27alpha-hydroxylase expression. Peroxisome proliferator-activated receptor alpha (Pparalpha) and agonist inhibit cholesterol 7alpha-hydroxylase gene (Cyp7a1) expression. Peroxisome proliferator-activated receptor alpha (Pparalpha) and agonist, for treatment of NAFld: a randomized controlled double-blind phase 2 trial. Hepatitis. (2021) 87:1849–59. doi: 10.1111/jhiv.12744. Hepatitis B virus infection induces hepatic fibrosis by activation of TGF-B/Smad signaling pathway. Hepatol Commun. (2018) 2:354–64. doi: 10.1002/hcc3.755. Arsenic oxide ameliorates renal fibrosis by blocking Il-1 driven autoinflammation. Wörns MA, et al. Hepatocyte-specific deletion of Il1-R1 attenuates liver injury by blocking Il-1 driven autoinflammation. J Hepatol. (2018) 68:986–95. doi: 10.1016/j.jhep.2018.01.008. Saroglitazar ameliorates thioacetamide-induced liver fibrosis in rats through regulating leptin. Science. (2011) 331:1315–9. doi: 10.1126/science.1203471. Combination of tofogliflozin and pioglitazone for Nafld. J Hepatol. (2022) 72:238–45. doi: 10.1016/j.jhep.2021.07.015. Fibrates downregulate apolipoprotein C-iii expression independent of transcription. Identification of rev-erb alpha as a physiological repressor of apoc-Iii gene expression. Peroxisome proliferator-activated receptor alpha (Pparalpha) and agonist, for treatment of NAFld: a randomized controlled double-blind phase 2 trial. Hepatol Commun. (2022) 6:2273–85. doi: 10.1002/hep.4993.