Гемолитико-уремический синдром (ГУС) характеризуется триадой, представленной механической гемолитической анемией, тромбоцитопенией и почечной недостаточностью. Атипичным ГУС (аГУС) считается ГУС, не связанный с действием Шига-токсина, и хотя ряд авторов выделяет вторичный аГУС, обусловленный S. pneumoniae или другими причинами, аГУС представляет собой первичное заболевание, обусловленное нарушением регуляции альтернативного пути активации комплемента. Среди случаев ГУС у детей только 5–10% можно отнести к атипичным, тогда как у взрослых атипичными являются подавляющее число случаев ГУС. Частота встречаемости комплемент-зависимого аГУС на сегодняшний день точно неизвестна. Тем не менее, сообщается более чем о 1000 пациентах с аГУС, обследованных на наличие нарушений системы комплемента. Развитие заболевания возможно от неонatalного периода и до взрослого возраста. У большинства пациентов аГУС манифестируется гемолитической анемией, тромбоцитопенией и почечной недостаточностью, и у 20% отмечаются внепочечные проявления. От 2 до 10% больных умирают, у одной трети пациентов развивается терминальная почечная недостаточность при первой атаке. У половины пациентов отмечаются рецидивы заболевания. Обнаружено наличие мутаций генов, кодирующих регуляторные белки системы комплемента, фактора H, мембранный кофакторный белок (MCP), фактора I и тромбомодулина, у 5–10% соответственно и мутации генов кодирующих белки С3-конвертазы, С3 и фактора В – у 2–10% и 1–4%. Кроме того, у 5–10% пациентов выявляются антитела к фактору H. Критериями постановки диагноза аГУС являются: 1) отсутствие ассоциированного заболевания; 2) отсутствие критериев ГУС, связанного с Шига-токсином (посев кала и ПЦР на Шига-токсин); серологическая сывороточная антилипополисахаридные антитела); 3) отсутствие критериев тромботической тромбоцитопенической пурпуры (активность ADAMTS13 сыворотки больше 10%). Необходимо исследование системы комплемента (С3, С4, концентрации в плазме фактора Н и фактора I, экспрессии на лейкоцитах MCP и антител к фактору Н; генетический скрининг факторов риска). При анализе родословных, по крайней мере, у 20% заболевание имело наследственный характер с аутосомно-рекессивным или доминантным путем наследования. В связи с тем, что пенетрантность заболевания составляет 50%, генетическое консультирование крайне затруднено. До настоящего времени терапией первой линии является плазмотерапия, при отсутствии бесспорных доказательств её эффективности. При трансплантации, за исключением случаев MCP-ГУС, существует высокий риск посттрансплантационных рецидивов. Описаны клинические случаи и два исследования второй фазы демонстрируют впечатляющую эффективность блокатора C5 компонента комплекта экулизумаб, предполагая, что он будет являться следующим стандартом терапии. За исключением пациентов, получающих интенсивную плазмовосстановительную терапию или терапию экулизумаб, наихудший прогноз отмечается у пациентов с H-фактором – ГУС, при котором смертность может достигать 20%, а у 50% выживших пациентов функция почек не восстанавливается. Терминальная почечная недостаточность развивается у половины больных с I-фактором ГУС. У большинства пациентов с MCP-ГУС функция почек, напротив, остается сохраненной. У пациентов с ГУС, обусловленным действием антител к фактору H (анти-H-ГУС) при раннем начале терапии отмечается благоприятный исход.

Ключевые слова: атипичный гемолитико-уремический синдром, C3, фактор Н, фактор I, фактор В, мембранный кофакторный белок, тромбомодулин, плазмоинфекция, плазмообмен, экулизумаб, трансплантация почки, комбинированная трансплантация почки и печени.

ABSTRACT
Hemolytic uremic syndrome (HUS) is defined by the triad of mechanical hemolytic anemia, thrombocytopenia and renal impairment. Atypical HUS (aHUS) defines non Shiga-toxin-HUS and even if some authors include secondary aHUS due to Streptococcus pneumoniae or other causes, aHUS designates a primary disease due to a disorder in complement alternative pathway regulation. Atypical HUS represents 5–10% of HUS in children, but the majority of HUS in adults. The incidence of complement-aHUS is not known precisely. However, more than 1000 aHUS patients investigated for complement abnormalities have been reported. Onset is from the neonatal period to the adult age. Most patients present with hemolytic anemia, thrombocytopenia and renal failure and 20% have extra renal manifestations. Two to 10% die and one third progress to end-stage renal failure at first episode. Half
Название болезни и синонимы

Европейской педиатрической исследовательской группой по гемолитико-уремическому синдрому (ГУС) была предложена этиологическая классификация ГУС и тромботической тромбоцитопенической пурпуры (ТТП) — двух основных вариантов тромботических микроангиопатий (ТМА) и ассоциированных с ними состояний [1]. В обычном медицинском языке термин типичный или пост-диарейный (D +) ГУС описывает наиболее частую форму ГУС у детей, обусловленную действием Шига-токсина (Stx), продуцируемого Е.coli (STEC), в основном штаммами E.coli 0157:H7. На против, термин атипичный ГУС (аГУС) исторически использовался для описания любых случаев ГУС, не связанных с STEC, и, таким образом, включал: «вторичный» аГУС, обусловленный мно жеством причин, включая различные инфекционные агенты, отличные от STEC, главным образом Streptococcus pneumonia (S. pneumoniae) (в результате воздействия нейраминидазы S. pneumoniae и T-антигена), вирус иммунодефицита человека (ВИЧ) и грипп А H1N1; онкопатологии, химотерапии и инъекцию аглютинина, плазмокофе- реза и плазмафереза, гемотрансфузий, пероральных контрацептивов) [17, 21–23]. Это может быть причиной, включая и нас самих в этой статье, использовать термин аГУС для обозначения этиологически обоснованного варианта названия (например S.pneumoniae ГУС) [1].

аГУС классифицировался как первичный, по крайней мере, до 2000-х годов, при отсутствии идентифицированной экзогенной причины и неизвестного механизма развития. Тем не менее, уже около четырех десятилетий признавался тот факт, что ГУС может быть семейным, затрагивающим членов семьи с разницей в несколько лет [15]. Именно поэтому он также описывается как наследственный ГУС. В течение последнего десятилетия было установлено, что эта форма аГУС является болезнью нарушения регуляции системы комплемента. Поэтому в настоящее время она описывается как «а ГУС, ассоциированный с нарушением регуляции системы комплемента» или, в сокращенном варианте, комплемент-ГУС. Следует заметить, что большинство авторов, включая и нас самих в этой статье, используют термин аГУС для обозначения только комплемент-ГУС [16].

Другим обозначением аГУС до настоящего времени являлся не-пост-диарейный (D−)ГУС, по скольку наиболее характерный для STEC-ГУС предшествующий болезни понос с кровью, лишь в редких случаях является главным симптомом. Однако, учитывая тот факт, что гастроинтестинально- го фактора роста), беременность, HELLP-синдром (гемолитическая анемия, повышение уровня пече- ноchnых трансаминаз и тромбоцитопении), злокачественную гипертензию, глюмерулопатии, системных заболеваний (СКВ и антифосфолипидный синдром, склеродермия) или у детей метотрексатовую ацидурию с гомоцистинурией типа — редкий наследственный дефект обмена кобаламина [1–14]. Примечательно, что на сегодняшний день призна но неверным использование термина аГУС вместо
жет объяснить различия в результатах. И, наконец, учитывая то, что и для ГУС, и для ТТП характерно сочетание гемолитической анемии и тромбоцитопении, с доминирующим поражением центральной нервной системы (ЦНС) в случае ТТП и преимущественной заинтересованностью почек в случае ГУС, оба эти заболевания зачастую объединяются под наименованием ТТП/ГУС. Это также возможно из-за перекреста симптомов – вовлечения ЦНС при ГУС и вовлечения почек при ТТП. ТТП и аГУС в настоящее время могут быть отграничены на основе их различных патофизиологий, т.е. недостаточностью протеаз, расщепляющих фактор фон Виллебранда ADAMTS (дезинтегрин и металлопротеиназа с последовательностью тромбоспондина типа 1, 13) при ТТП (обычно приобретенной из-за циркуляции антител у взрослых и реже наследуемой (синдром Упшо–Шульмана) из-за рецессивной мутации ADAMTS-13 у новорожденных и маленьких детей) и нарушением регуляции комплемента при аГУС. Однако биологические методы исследования могут не подтвердить клинический диагноз, так как, по крайней мере, 10–25% пациентов с ТТП имеют нормальную активность ADAMTS-13, и у 30% пациентов с аГУС аномалии системы комплемента не выявляются, что позволяет предположить наличие других, пока неизвестных патофизиологических механизмов [16, 24, 35].

ОПРЕДЕЛЕНИЕ

ГУС представляет собой триаду, включающую механическую, неиммунного генеза (отрицательная реакция Кумбса, за исключением случаев ложноположительных результатов при S. pneumoniae ГУС, см. раздел Дифференциальный диагноз) гемолитическую анемию (гемоглобин <10 г/дл) с фрагментированными эритроцитами (шизоциты), тромбоцитопению (тромбоциты <150,000/mm3 × 109 л) и почечную дисфункцию (креатинин сыворотки выше нормальных значений для данного возраста). Повышение уровня лактатдегидрогеназы (ЛДГ), с одной стороны, и неопределяемый гаптоглобин – с другой стороны, подтверждают факт внутрисосудистого гемолиза. При гистологическом анализе пораженных сосудов выявляется ТМА, характеризующаяся утолщением стенок артериол и капилляров, с выраженным повреждением эндотелия (отек и отслойка), субэндотелиальным накоплением протеинов и клеточного детрита, и фибриноидными и тромбоцитарными тромбами, обтурирующими просвет сосуда. ТМА преимущественно поражает микрососуды почек, хотя в патологический процесс могут вовлекаться микрососуды головного мозга, сердца, легких и желудочно-кишечного тракта. В тех случаях, когда ни один из рассмотренных в предыдущей главе этиологических факторов выявить не удается, становится наиболее вероятным диагноз первичного аГУС, являющегося по современным данным заболеванием, связанным с дисрегуляцией системы комплемента. Целью этой работы является освещение огромного прогресса, сделанного в последнее десятилетие в понимании этой болезни, а также продемонстрировать, как эти новые знания открыли путь к разработке новых методов терапии.

ЭПИДЕМИОЛОГИЯ

Заболеваемость аГУС в США составляет 2 чел. на 1 млн, что рассчитано исходя из встречаемости (D-)ГУС у детей, включая S. pneumoniae -ГУС [19]. В действительности, достоверная заболеваемость комплемент-аГУС точно неизвестна. Однако, по данным 5 европейских регистров или серийных наблюдений [17, 18, 20–22, 26–28] и одного реестра США [23], более чем у 1000 пациентов с аГУС отмечались аномалии системы комплемента.

Клиническая картина

Пол и возраст начала заболевания

При начале заболевания в детском возрасте аГУС встречается с одинаковой частотой у мальчиков и девочек [17], в то время как во взрослом возрасте аГУС превалирует у женщин [20]. аГУС может проявляться в любом возрасте, начиная с неонatalного периода и до старческого возраста (крайние значения от 1 дня до 83 лет) [17, 18].

Дебют заболевания в детском возрасте (≤ 18 лет) отмечается несколько чаще, чем во взрослом (при мерно 60 и 40% соответственно) [18, 21]. У 70% детей заболевание манифестирует в возрасте до 2 лет, и приблизительно у 25% – в возрасте до 6 мес [17]. Начало заболевания в возрасте до 6 мес с высокой вероятностью позволяет предполагать аГУС, поскольку у детей до 6 мес STEC-ГУС встречается лишь в 5% случаев [29, 30, и личные контакты LisaKing, Institute Veille Sanitaire, StMoris, France, с разрешения].

Провоцирующие факторы

Инфекция, главным образом, верхних дыхательных путей или диарея/гастроэнтерит вызывают развитие аГУС, на крайней мере, у половины пациентов [18], а в педиатрических когортах – у 80% пациентов [17, 31]. Интересно, что диарея предшествовала развитию аГУС у 23 и 28% пациентов детского возраста во Франции [17] и у детей и взрослых
в Италии [18] соответственно. Это показывает, что классификация ГУС на (D+) и (D-) может дезориентировать, и что начало заболевания после диареи не исключает диагноз аГУС. У пациентов с фульминантным течением заболевания, при семейных случаях и при рецидивах, при обследовании на аГУС выявлялись и другие триггеры, такие как ветряная оспа [32], вирус гриппа H1N1 [6, 33–35] и, что интересно, STEC-диарея [17, 18, 36, 37]. Беременность является частым триггером у женщин [18, 38, 39], причем у 20% женщин с аГУС проявляется и, как правило, манифестируется во время беременности, а у 80% из них – в постэпидемиологическом периоде [39].

Указанные наблюдения подчеркивают всю сложность определения границы между аГУС, вызванного случайным фактором, и вторичным ГУС.

Клинические проявления

Начало заболевания, как правило, внезапное. Симптомами заболевания у детей раннего возраста являются бледность, общее недомогание, плохой аппетит, рвота, усталость, сонливость и иногда отеки. Взрослые жалуются на утомляемость и плохое общее самочувствие. У большинства пациентов при первом лабораторном исследовании выявляется полная диагностическая триада ГУС: гемоглобин <10 г/дл (не исключены и более низкие значения до 3–4 г/дл), тромбоциты <150,000/мм³ × 10⁹ л (обычно между 30,000 и 60,000/мм³, с отсутствием или с небольшим риском геморрагических осложнений) и почечная дисфункция (креатинин сыворотки выше нормальных значений для данного возраста), с наличием или отсутствием анурии или олигурии, протеинурии при сохраненном диурезе. Наличие шизоцитов, а также неопределяемый гаптоглобин, в сочетании с высоким уровнем ЛДГ подтверждают микроангиопатический внутрисосудистый генез гемолиза. В случае запоздалой диагностики могут наблюдаться опасные для жизни осложнения: гиперкалциемия (≥ 6 ммоль/л), ацидоз (сырооротовый бикарбонат < 15 ммоль/л) и перегрузка объёмом с развитием артериальной гипертензии и гипонатриемии (<125 ммоль/л). Артериальная гипертензия встречается часто, имеет тяжелое течение и связана как с перегрузкой объёмом в случаях олигурии/анурии, так и с вторичной, по отношению к почечной ТМА, гипергеминемией. Возможно развитие сердечной недостаточности или неврологических осложнений (судороги) вследствие гипертензии. Большинство взрослых и половина всех пациентов детского возраста нуждаются в проведении гемодиализа при поступлении.

Внепочечные проявления заболевания наблюдаются у 20% пациентов [17, 18]. Наиболее частым из них является поражение ЦНС (10% пациентов), манифестирующее раздражительностью, сонливостью, судорогами, диплопией, корковой слепотой, гемипарезом или гемиплегией, ступором, комой. С помощью магнитно-резонансной томографии (МРТ) головного мозга возможно проведение дифференциальной диагностики поражений ЦНС, обусловленных артериальной гипертензией (синдром обратимой задней лейкоэнцефалопатии с задней гиперинтенсивностью белого вещества в теменно-затылочных областях) и поражениями, обусловленными церебральной ТМА (в режимах FLAIR и T2 выявляется двусторонняя симметричная гипертензивная базальные ганглиев, ножек мозга, хвостатого ядра, склер, латерамуса, гиппокампа, островка, возможно, ствола мозга) [40]. Сообщается об инфаркте миокарда вследствие микроангиопатии сосудов сердца примерно у 3% пациентов, что объясняет случаи внезапной смерти [18, 41]. Также может встречаться дистальная ишемическая гангrena, приводящая к ампутации пальцев рук и ног [42]. Примерно у 5% пациентов отмечается угрожающая жизни полиорганная недостаточность, связанная с диффузной ТМА с поражением ЦНС, инфарктами миокарда, легочным кровотечением и дыхательной недостаточностью, панкреатитом, печеночным цитолитическим синдромом, желудочно-кишечным кровотечением [17, 18].

У ряда пациентов (около 20% детей [17] и примерно такой же процент взрослых) отмечается постепенное начало с субклинической анемией и колебаниями тромбоцитопении в течение недель или месяцев и сохранной функцией почек на момент постановки диагноза. У них может возникнуть ремиссия, а затем – острый рецидив заболевания, или же течение заболевания характеризуется прогрессирующей гипертензией, протеинурией, вплоть до развития нефротического синдрома, и повышением уровня креатинина сыворотки в течение нескольких недель или месяцев. У некоторых пациентов анемия или тромбоцитопения могут отсутствовать вовсе, и единственными проявлениями почечной ТМА в таком случае будут являться артериальная гипертензия, протеинурия и прогрессирующее нарастание креатинина сыворотки.

У детей возраст, клинические обстоятельства и симптомы заболевания в большинстве случаев позволяют дифференцировать ТТИ и ГУС, и в случае предполагаемого ГУС его вариантами могут быть: постдиарейный STEC-ГУС, инфекция
S. pneumoniae или комплемент-ГУС. У взрослых пациентов, напротив, анализ клинической картины затруднен и комплемент-ГУС следует подозревать всегда, независимо от клинических данных.

ПАТОГЕНЕЗ

Еще в 1970–1980 гг. было замечено, что ряд пациентов с аГУС имели низкий уровень С3 плазмы крови [43]. Впечатляющий прогресс был достигнут в течение последних 10 лет, продемонстрировавший, что 4 регуляторных белка альтернативного пути активации комплемента – фактор H (CFH), мембранный кофакторный белок (MCP или CD46), фактор I (CFI) и тромбомодулин (THBD), а также 2 протеина С3-конвертазы, С3 и фактор B (CFB) играют роль в патогенезе аГУС.

Рис. 1. Три пути активации комплемента. Классический, лектиновый и альтернативный пути сходятся в точке активации С3. Затем лигнеческий путь ведет к образованию мембраноатакующего комплекса, разрушающего инфекционный агент. Регуляторы альтернативного пути CFH, CFI и MCP кооперируют для инактивации С3b, связанного с эндотелиальной клеткой, защищая таким образом эндотелиальные клетки от атаки комплемента. CFH: фактор H, CFI: фактор I, CFB: фактор D, MCP: мембранный кофакторный протеин.

Рис. 2 Регулируемая и нерегулируемая активация альтернативного пути системы комплемента. Рисунок и пояснения воспроизведены из работы Zuber at al. [131]. a – CFH конкурирует с CFB за связывание С3b, что препятствует образованию С3 конвертазы. CFH связывается с гликозаминогликанами на поверхности эндотелиальных клеток, и такие как MCP факторы могут выступать как кофакторы для CFI-опосредованного расщепления С3б с образованием iC3b (инактивированного С3б). THBD связывается с С3б и CFH, может усиливать CFI-опосредованную инактивацию С3б. b – неконтролируемая активация альтернативного пути комплемента приводит к образованию MAK (С5b-9) посредством действия CFB, CFD, а также через образование С5 конвертазы и С3 конвертазы. Повреждение и активация эндотелиальных клеток, как результат этого процесса, в свою очередь инициируют процесс тромботической микроангиопатии. CFH: фактор H, CFI: фактор I, CFB: фактор B, CFD: фактор D; MCP: мембранный кофакторный протеин; THBD: тромбомодулин. C5, C3 convertase - C3, C5 конвертаза.
Система комплемента и её регуляция

Система комплемента является основным механизмом антибактериальной защиты. Существуют три пути активации системы комплемента: классический, лектиновый и альтернативный [44] (рис. 1). Все эти три пути сходятся в точке расщепления C3 фракции комплемента. В то время как активация классического и лектинового путей начинается после связывания с иммунными комплексами или микроорганизмами соответственно, альтернативный путь активируется постоянно с образованием C3b, который беспорядочно связывается с патогенами и клетками хозяина. На чужеродной поверхности, например бактериальной, C3b связывает CFB, который затем расщепляется фактором D с формированием C3-конвертазы C3bBb. C3bBb в геометрической прогрессии расщепляет C3 (петля усиления) и формирует C5-конвертазу (C3bBb (C3b)n). Компонент C5b, получаемый в результате расщепления C5, принимает участие в образовании мембраноатакующего комплекса (МАК) C5b9, который вызывает опсонизацию, фагоцитоз и лизис бактерий (см. рис. 1). Указанная реакция в норме строго контролируется на поверхности клеток хозяина, которые защищены от локальной амплификации депозитов C3b рядом контролирующих систему комплемента протеинов: CFH (гликопротеин плазмы, кофактор для CFI), CFI (сериновая протеаза плазмы), которая расщепляет и инактивирует C3b с формированием iC3b в присутствии кофакторов, включающих MCP (нециркулирующий гликопротеин, встроенный в мембраны всех клеток, кроме эритроцитов) и, возможно, THBD. THBD – эндотелиальный гликопротеин, обладающий антикоагулянтными, противовоспалительными и цитопротективными свойствами, также являющийся регуляторным белком системы комплемента [45]. В присутствии CFH отмечается конкуренция CFH и CFB за связывание C3b, что ограничивает образование C3-конвертазы. Когда CFH связан с C3b, закрепленным на поверхности клетки, CFB более не имеет возможности принимать участие в формировании C3-конвертазы (рис. 2).

CFH является наиболее важным протеином в системе регуляции альтернативного пути активации комплемента. CFH состоит из 20 коротких консенсусных повторов (SCRs) (рис. 3) и содержит не менее двух C3b-связывающих участков. Первый участок, связывающийся с C3b, регулирующий жидкую fazу амплификации альтернативного пути, располагается в N-терминальном конце SCR1–4. Второй C3b-связывающий участок расположен в SCR19–20 C-терминального домена. CFH также содержит два полианионных связывающих участка в SCR7 и SCR19–20. Эндотелиальные клетки богаты полианионными молекулами, в частности, гликозаминогликанами. Защита клеток хозяина зависит от инактивации поверхностно-связанного C3b, вторичной по отношению к связыванию CFH с поверхностью-связанным C3b. Все последние научные исследования наглядно продемонстрируют роль SCR19–20 в защите эндотелиальных клеток [46–48]. Четыре протеина – CFH, CFI, MCP и THBD локально взаимодействуют для расщепления C3b до неактивной молекулы (iC3b). Предполагается, что мутации в генах CFH, MCP, CFI и THBD локально взаимодействуют для расщепления C3b до неактивной молекулы (iC3b). Предполагается, что мутации в генах CFH, MCP, CFI и THBD, обнаруженные у пациентов с аГУС, приводят к образованию дефекта защиты эндотелиальных клеток от активации системы комплемента [46, 49–51]. В целом, все идентифицированные генетические дефекты приводят к усиленнию образования C3-конвертазы, а следовательно, и C5-конвертазы, и расщеплению C5. Вследствие этого усиливается высвобождение С5α и МАК на поверхности клеток эндотелия, вызывающее дополнительное повреждение эндотелий и образование тромбов. Это приводит к потреблению тромбоцитов и повреждению эритроцитов (см. рис. 2). Любое повреждение эндотелиальных клеток (воспаление, апоптоз) может участвовать в этом процессе. Кроме того, продемонстрирована значительная роль CFH в регуляции структуры и функции тромбоцитов [52, 53]. При наличии C-концевых мутаций способность CFH связываться с тромбоцитами снижается, что приводит к
активации компонента на поверхности тромбоцитов. Это, в свою очередь, вызывает активацию тромбоцитов, их агрегацию, высвобождение тканевого фактора, экспрессирующего микрочастицы, и содействует образованию тромбов в микроциркуляторном русле [52].

Данная патофизиологическая модель подтверждается моделями на трансгенных животных. У мышей, экспрессирующих вариант CFH с недостатком С-концевых 16–20 доменов, развивается ГУС, похожий на ГУС у людей, включая гломерулонефрит типа ТМА [54]. В этой модели на мышах CFH регулирует активацию C3 в плазме, но не может связываться с эндотелиальными клетками, так же как и мутантный CFH у пациентов с аГУС. Знаменательно, что эта модель на мышах позволила продемонстрировать ключевую роль С5 компонента комплемента в развитии ГУС. Когда эти мыши были скрещены с мышами с дефицитом C5, наблюдалась полная защита от гломерулонефрита и ГУС [55]. Это показывает, что активация С5, вероятно через неконтролируемое образование С5 конвертазы, является краеугольным камнем в развитии аГУС.

Нарушение регуляции системы комплемента при аГУС

Мутации CFH

Мутации CFH были первыми выявленными мутациями. Снижение уровня С3 плазмы впервые было обнаружено в 1973 г. у 5 пациентов с тяжелым ГУС [43]. В 1981 г. была продемонстрирована связь аГУС с низким уровнем CFH плазмы [56]. Тем не менее, лишь в 1998 г. Р. Warwicker и соавт., проведя генетическое обследование трёх семей, смогли установить связь между аГУС и локусом RCA (регуляторы активации комплемента) хромосомы 1q32, где расположены гены CFH и MCP. Первым исследованным кандидатным геном был CFH, и впервые была продемонстрирована гетерозиготная мутация в SCR20 [57]. Позже несколько исследовательских групп показали, что у ряда пациентов с аГУС, несмотря на нормальные уровни CFH плазмы, имелись мутации в гене CFH, в основном в SCR19 и 20 [18, 21, 31, 46]. В настоящее время известно более 100 различных мутаций гена CFH у взрослых и детей со спорадическим или семейным ГУС [58]. Более 50% мутаций CFH располагаются в SCR20 [38]. Функциональные исследования, анализирующие взаимодействие между CFH и его лигандами (C3b, гликозаминогликаны, гепарин и эндотелиальные клетки), часто выявляют нарушения этой связи при мутациях CFH19–20 [50, 59–61]. Ряд мутаций (именуемые мутациями 1-го типа) ассоциированы с количественным дефицитом CFH (низкий уровень CFH в плазме крови), но многие, в том числе большинство мутаций SCR19 и 20, ассоциированы с нормальными уровнями CFH плазмы, в этом случае имеется функциональный дефицит CFH (мутация 2-го типа). Наконец, CFH находится в близком родстве с генами CFHR1-5, кодирующими пять CFH-связанных протеинов (рис. 4). CFH и CFH-RS имеют высокую степень идентичности в последовательности цепочки, которая предрасполагает к сложным перестройкам, ведущим к нефункциональному CFH, как, например, гибридный CFH, утративший SCR19 и 20 из-за комбинации первых 21 N-концевых экзонов CFH (ко-
Таблица 1

Мутация	Мутация	Мутация	Мутация	Мутация	Мутация	Анти-CFH	Без	
C3	CFH	CI	CFI	MCP	CFV	THBD	мутаций	
Снижение концентрации С3 (<2SD) (% пациентов)	30–50%	20–30%	0–27%	70–80%	100%	50%	40–60%	До 20%

Примечание. Нормальная концентрация С3 плазмы не исключает мутации системы комплемента или наличия анти-CFH антител. Сниженный уровень С3, напротив, напрямую свидетельствует о наличии аномалии системы комплемента. CFH: фактор H, CFI: фактор I; MCP: мембранный кофакторный протеин; CFV: фактор В; THBD: тромбомодулин; Ab: антитела.

Таблица 2

Уровень протеина или его экспрессия
C4

Мутация CFH
Мутация CFI
Мутация MCP
Мутация CFV
Мутация THBD
Анти-CFH Ab

Примечание. Очень низкие уровни С3 отмечаются у пациентов с гомозиготной мутацией CFH (абсолютная недостаточность CFH) или в случае сложной гетерозиготной мутации CFH, а также у пациентов с мутациями CFI или C3 с приобретением ими новых аномалий функций. У большинства остальных пациентов концентрация C3 снижена умеренно или находится в пределах нормальных значений. Неопределенными концентрацией CFH являются только у пациентов с гомозиготной CFH мутацией. Сниженная концентрация CFH может наблюдаться у пациентов с гетерозиготной мутацией CFH первого типа, а также при обострении ГУС, обусловленном антителами к C3. Низкие концентрации CFH отмечаются от нуля до очень небольшого процента у пациентов с гомозиготной подгруппы [18]. «Норма» и «снижение» без скобок означает – «чаще всего» норма или снижение, те же слова в скобках означают – возможно, но нечасто. «Норма или снижение» без скобок означает – норма или снижение одинаково часто. CFH: фактор H, CFI: фактор I; MCP: мембранный кофакторный протеин; CFV: фактор В; THBD: тромбомодулин; Ab: антитела. NД: не документированы.

Таблица 3

Ген или подгруппа	Частота при аГУС	Минимальный возраст начала	Риск смерти или ТПН при 1-м эпизоде или в течение <1 года	Риск рецидивов	Риск рецидива после трансплантации почки	Показана плазмозамещающая терапия
CFH	20–30%	При рождении, любой возраст	50–70%	50%	75–90%	Да
CFI	4–10%	При рождении, любой возраст	50%	10–30%	45–80%	Да
MCP	5–15%	> 1 год, любой возраст	0–6%	70–90%	<20%	Сомнительный
C3	2–10%	7 мес, любой возраст	60%	50%	40–70%	Да
CFB	1–4%	1 мес, любой возраст	50%	3 / 3 в ТПН	100%	Да
THBD	3–5%	6 мес, редко	50%	30%	1 пациент	Да (+ IS)
Анти-CFHAb	6%	В большинстве случаев в 7–11 лет	30–40%	40–60%	Да, если высокий титр AT	Да (+ IS)

Примечание. CFH: фактор H, CFI: фактор I; MCP: мембранный кофакторный протеин; CFB: фактор В; THBD: тромбомодулин; Ab: антитела; ТПН: терминальная стадия почечной недостаточности; IS: иммуносупрессивная терапия.

dирующих SCR1–18) и двух C-концевых экзонов CFH-R1 [62, 63] (см. рис. 4). Могут наблюдаться гомозиготные мутации. У пациентов отмечаются очень низкие концентрации C3 и CFH плазмы. Но большинство мутаций являются гетерозиготными. У 30–50% гетерозиготных пациентов с мутациями CFH отмечается снижение уровня С3 плазмы, причем чаще при мутациях первого, а не второго типа. Уровень С3 плазмы может быть снижен, в то время как уровень CFH не изменен и наоборот [18, 31, 64] (табл. 1, 2). Мутации CFH являются наиболее частой генетической аномалией у пациентов с аГУС, и на их долю приходится от 20 до 30% случаев (табл. 3) [18, 23, 31, 50]. Частота встречаемости гибридной CFH составляет примерно 1–3% при скрининге пациентов с аГУС, ис-
пользуя CFH MLPA (мультиплексная амплификация с лиганд-зависимой пробой – см. раздел Диагностические методы) [18].

Анти-CFH аутоантитела

Впервые приобретенная дисфункция CFH, связанная с наличием анти-CFH антител, была описана в 2005 г. [65]. Анти-CFH IgG связываются с CFH SCR19 и 20 и таким образом ингибируют связывание CFH с C3b и с поверхностью клеток [66–68]. У 90% пациентов с анти-CFH антителами отмечается тотальный дефицит CFHR1 и CFHR3, ассоциированный с гомозиготной делецией CFHR1 и CFHR3 (см. рис. 4), что предполагает патогенетическую роль указанной делеции в формировании анти-CFH аутоантител [27, 37, 69, 79]. У пациентов с анти-CFH антителами также могут иметь место мутации [18, 71]: из 13 пациентов с анти-CFH антителами у 5 отмечались мутации CFH, CFI, MCP или C3 [71]. Концентрация C3 плазмы снижена у 40–60% пациентов с анти-CFH антителами [18, 37], и у пациентов с высокими титрами анти CFH IgG она ниже по сравнению с пациентами с умеренными титрами [37]. Концентрация CFH плазмы была снижена в дебюте заболевания у 22% пациентов, исследованных M.A. Dragon-Durey и соавт., и не коррелировала с титрами анти-CFH IgG [37] (см. табл. 1, 2). Частота встречаемости мутации CFI у пациентов с аГУС колеблется от 4 до 10%, в зависимости от серий наблюдений. У 30% пациентов с мутациями CFI имеется, по крайней мере, один дополнительный известный генетический фактор риска развития аГУС [28].

Мутации CFB

В 2007 и 2009 г. E. Goicoechea Jorge и соавт. [80] и L.T. Roumenina и соавт. [81] сообщили о наличии четырёх гетерозиготных мутаций CFB у пациентов с аГУС. При этих мутациях, усиливающих функцию конечного продукта, белковый продукт экспрессии мутантного гена избыточно связывается с C3b, увеличивая стабильность и повышенную активность C3-конвертазы, устойчивой к расщеплению CFH, что приводит к усилению формирования комплексов C5b-9 и отложению C3-фрагментов на поверхности клеток эндотелия [81]. У пациентов с мутацией CFB отмечается постоянная активация альтернативного пути с очень низким уровнем C3. Плазменные уровни CFB могут быть нормальными или низкими (см. табл. 1, 2). Мутации CFB являются редкими, и отмечаются только у 1–4% пациентов с аГУС [18, 23, 31, 81, 82].
Мутации C3

Впервые гетерозиготные мутации C3 были описаны в 2008 г. у 13 пациентов из 11 семей [83]. Большинство мутаций C3 приводят к нарушению способности C3 связываться с регуляторным протеином MCP и являются непрямыми мутациями, приводящими к усилению способности CFB связываться С3b и к усилению образования С3 конвертазы. У 70–80% пациентов уровни С3 плазмы низкие (см. табл. 1, 2) [18, 83, 84]. Мутации С3 составляют 2–10% у пациентов с аГУС (см. табл. 3) [18, 23, 83].

Мутации тромбомодулина

Недавно наличие гетерозиготных мутаций THBD было продемонстрировано у 13 пациентов из итальянской когорты [18, 45]. In vitro THBD связывается с C3b и CFH и отрицательно регулирует систему комплемента, ускоряя CFI-зависимую инактивацию C3b в присутствии кофакторов CFH или C4b-связывающего протеина. Авторам удалось продемонстрировать, что варианты THBD были менее эффективны, чем немутантные типы THBD в отношении усиления CFI-зависимой инактивации C3b. Клетки, экспрессирующие мутантный THBD, имеют сниженную способность к деградации C3b и к образованию активируемого тромбом ингибитора фибринолиза, который расщепляет С3a и С5a. Уровень С3 снижен у половины пациентов с мутантным THBD (см. табл. 1).

Мутации THBD встречаются у 3 и 5% пациентов с аГУС в регистрах США [23] и Италии [18, 45] соответственно.

Комбинированные мутации

До 12% пациентов с аГУС имеют различные комбинации двух и более мутаций CFH, CFI, MCP, C3, CFB или THBD [18, 23, 28, 31].

Заключение

В настоящее время у 70% пациентов с аГУС, как взрослых, так и детей, выявляется одна или несколько аномалий системы комплемента у 30% пациентов с аГУС этиология остаётся неясной. Вполне ожидаемо, что процент пациентов в различных подгруппах варьирует от года к году в зависимости от стран и регистров.

Наследственный аГУС, неполная пенетрантность и генетическая изменчивость

При анализе родословных, приблизительно в 20%, наблюдаются семейные случаи заболевания [17, 18]. В случае семейного аГУС заболевание имеет аутосомно-рецессивный или доминантный тип наследования. Отсутствие семейной истории ГУС не исключает возможность генетической передачи заболевания. Случаи семейного аГУС наблюдаются у пациентов с мутациями системы комплемента, а также в группе неясной этиологии.

У пациентов с аГУС большинство мутаций являются гетерозиготными. Мутации de novo являются исключением, и та же мутация практически постоянно присутствует у одного из родителей, обычно здорового, пробанда [18]. Установлено, что пенетрантность комплемент-аГУС составляет примерно 50%, поскольку у половины членов семьи, не-
сущих мутацию, заболевание не манифестирует до 45 лет [20, 50]. Данная особенность наблюдается у всех мутаций, т.е. CFH, MCP, CFI [18, 38, 46, 85], CFB [80], C3 [18, 83, 84] и THBD [18, 45]. Таким образом, обнаружение мутации является скорее фактором риска заболевания, чем его непосредственной и единственной причиной. Кроме того, возраст начала заболевания и его тяжесть могут варьировать у членов семьи с одной и той же мутацией (рис. 5). Роль разнообразных полиморфизмов, как независимых или дополнительных факторов предрасположенности к аГУС, была продемонстрирована для генов, кодирующих CFH [18, 26, 85–87], MCP [26, 86], CFHR1 [88] или C4b-ВР [89]. Эти варианты последовательности в человеческом геноме являются в основном результатом изменения одного азотистого основания (SNP), что может быть связано с изменением в белке аминокислоты, индуцируя частичное усиление или ослабление функции. Более 30 SNP локализованы в локусе RCA. К примеру, частота встречаемости гаплотипа CFH (CFH gtgt), определяемая четырьмя SNP, локализованными в SCR 1, 7, 11 и 16, и одного гаплотипа MCP (MCP gggac), определяемого пятью SNP, локализованными в гене промоторе и интронном гене MCP, была значительным образом увеличена у пациентов по сравнению со здоровым контролем. Оказалось, что в некоторых семьях пробанд наследовал мутацию системы комплемента от одного родителя, а аллель, несущий полиморфизм CFH и/или MCP, – от другого родителя, в то время как здоровые носители мутации не наследовали полиморфизм CFH и MCP, ассоциированные с аГУС [26, 85, 86]. Однако даже в тех случаях, когда происходит сочетание вместе неблагоприятных факторов риска, заболевание может не манифестировать вплоть до среднего возраста, что предполагает наличие триттера (такого как инфекция или бере-менность), вызывающего, вероятно, повреждение эндотелиальной клетки, что необходимо для инициирования заболевания у лиц, неспособных контролировать активацию комплемента. Атипичный ГУС, таким образом, представляет мультифакторное заболевание, возникающее в результате воздействия факторов внешней среды, инициирующих повреждение эндотелия, и генетических факторов (мутации и представляющие риск полиморфизации), определяющих прогрессию заболевания.

На практике невозможно предсказать риск возникновения ГУС у членов семьи, имеющих ту же мутацию, что и пробанд. Еще одной проблемой является то, что в одной семье может отмечаться несколько генетических аномалий, ряд из которых неизвестен. Например, у трех семей из Педиатрического Регистра Франции у одного ребенка с аГУС имелась CFH или CFI-мутация соответственно, в то время как его сиблинг, также страдающего аГУС, не было выявлено мутаций [17 + неопубликованные данные] (рис. 6). Это свидетельствует о том, что у пациентов и здоровых членов их семей могут иметь место не идентифицированные генетические факторы риска.

Корреляции генотип–фенотип

Вне зависимости от типа аномалии комплемента возраст начала заболевания у взрослых одинаков. У детей, напротив, возраст начала варьирует в зависимости от аномалии комплемента [17, 18]. Во французской педиатрической когорте начало заболевания в очень раннем возрасте отмечалось преимущественно у пациентов с мутациями CFH (в среднем 6 мес, от 3 дней до 3,6 года) или CFI (в среднем 2 мес, от 1 дня до 3,8 года), тогда как у детей с мутациями MCP не отмечалось начала заболевания до годовалого возраста (в среднем 4,6 года, от 1,6 до 11,3 года [17]). У пациентов из итальян-
Диагностические методы

Методы исследования системы комплемента приведены в табл. 4 и 5. За исключением определения плазменной концентрации С3 и С4 исследования системы комплемента требуют наличия специализированных лабораторий [61]. Список лабораторий, выполняющих специализированные исследования системы комплемента, доступен в ссылках [38, 90]. Кроме случаев исследования экспрессии MCP на периферических лейкоцитах и скрининга мутаций, об разцы крови необходимо взять до инфузии плазмы (ПИ) или плазмообмена (ПО). Нормальный диапазон значений для каждого белка должен быть определен для каждой лаборатории с использованием 100 здоровых доноров той же этнической принадлежности, что и пациенты. Основной проблемой является отсутствие международных стандартов для CFH и CFI. В дополнение к физиологической вариабельности концентрации CFH плазмы доза CFH представляет особую проблему, что объясняет различия результатов в разных лабораториях [61]. Определение уровней С3, С4, CFH, CFI и CFB плазмы, экспрессии MCP на мембранах лейкоцитов крови и скрининг анти-CFH антител являются обязательными и получение результатов необходимо в кратчайшие сроки.

Таблица 4

Белки комплемента плазмы или мембраны	Концентрация в плазме (мг/л) (–2 до + 2 SD)	Методика	Лаборатория	Интерпретация
C3	660–1250	Нефелометрия	Начальный базовый скрининг комплемента	Активное потребление компонентов комплемента при его активации по альтернативному пути, о чем говорят низкие уровни C3 и CFB плазмы. Часто наблюдается умеренное изолирование снижение уровня C3 при нормальном уровне CFB
CFB	93–380	Нефелометрия	Специализированная диагностика	
CFH	330–680 (мультиродного стандарта нет)	Elisa (иммуноферментный анализ)	Специализированная диагностика	Уровни CFH или CFI менее 60% от нормы соответствуют их количественной недостаточности
CFI	40–80 (мультиродного стандарта нет)	Elisa (иммуноферментный анализ)	Специализированная диагностика	
Анти-CFHAb	Скрининг	Elisa (иммуноферментный анализ)	Специализированная диагностика	Титр выражен в условных единицах (у.е.)
MCP	Средняя интенсивность флуоресценции (MPI)	FACS® с анти-MCP фиксирующимися антителами	Специализированная диагностика	У пациентов с гомозиготным дефицитом MCP экспрессия MCP не выявляется, МFI у пациентов с гетерозиготным дефицитом MCP – около 50% от нормального уровня

Примечание. (а) Обычно осуществляется с использованием периферических гранулоцитов или мононуклеарных клеток в образце крови с ЭДТА. Elisa – иммуноферментный анализ, ЭДТА – этилен-диамин тетра-уксусная кислота; FACS – клеточный сортер активации флуоресценции.

Генетический скрининг системы комплемента

Ген	Локус	Метод выбора для скрининга мутаций	Количество экзонов
CFH	RCA, Chr 1q32	Метод прямого секвенирования	22
CFI	Chr 4q25	Метод прямого секвенирования	13
MCP	RCA, Chr 1q32	Метод прямого секвенирования	14
C3	Chr 19p13.3	Метод прямого секвенирования	42
CFB	Chr 6p21.3	Метод прямого секвенирования	18
THBD	Chr 20p11.2	Метод прямого секвенирования	1

Примечание. Chr, хромосома; CFH, фактор H; CFHR1, фактор H-связанныйпротеин 1; CFI, фактор I, MCP, мембранный кофакторный протеин; CFB, фактор В; THBD, тромбомодулин.
У детей возраст начала указывает на необходимость выполнения конкретных генетических исследований (табл. 6): у пациентов с началом заболевания в возрасте до одного года в первую очередь необходимо производить скрининг CF, CFI и C3, вне зависимости от того, снижена концентрация C3 плазмы или нет. В случае начала заболевания в возрасте старше одного года и нормальной концентрации C3 требуется в первую очередь исключение мутации MCP. Учитывая тот факт, что анти-CFH-ГУС встречается, как правило, после семилетнего возраста и в раннем подростковом и подростковом периодах, приоритетным в этих возрастных группах является скрининг анти-CFH антител, особенно если снижена концентрация C3. Скрининг мутаций CFB и THBD необходим, если не выявлено мутаций CFH, CFI, MCP и C3, независимо от возраста начала заболевания. На рис. 7 отражена стратегия при генетическом скрининге в зависимости от уровня C3, CFH и CFI плазмы и экспрессии MCP. Данная стратегия теоретически обоснована, хотя на практике выполнение её довольно затруднительно.

Несколько важных тезисов: 1). Нормальный уровень C3 и низкий уровень C4 плазмы указывают на активацию альтернативного пути в жидкую фазу. Очень низкие уровни C3 и CFB являются показателями чрезмерной активации альтернативного пути, умеренно сниженный уровень C3, при нормальном уровне CFB, отражает умеренную активацию в жидкую фазу. 2). Нормальные уровни C3 и CFB не исключают аномалию системы комплемента с нарушением регуляции его активации на поверхности клетки. 3). Определения уровня концентрации белков системы комплемента в плазме недостаточно, и у любого пациента с аГУС необходимо выполнение генетического анализа, даже при нормальных уровнях C3, CFH, CFI.

Рис. 7. Стратегия скрининга аномалий системы комплемента при аГУС. Данные о концентрации протеинов системы комплемента в плазме указывают ген, подлежащий исследованию в первую очередь, и объективизируют генетический скрининг. Важно: 1). Уровень C3 может быть низким, несмотря на нормальные уровни CFH или CFI у пациентов с мутациями CFH или CFI соответственно. 2). У пациентов с выявленным посредством MLPA гибридным CFH уровни С3 и CFH плазмы находятся в норме. STEC: Шига-токсин, продуцируемый E.coli; ADAMTS 13: Дезинтегрин и металлопротеиназа с последовательностью тромbospondина типа 13 (A Desintegrin And Metalloproteinase with a ThromboSpondin type 1 motif, member 13); CFH: фактор H; CFI: фактор I; MCP: мембранный кофакторный протеин; THBD: тромбомодулин . MLPA – multiplex ligation dependent probe amplification.
и CFB плазмы и экспрессии MCP 4). Однако информация об уровне в плазме белков системы комплемента показывает исследователю, на какой ген проводить скрининг в первую очередь (см. рис. 7), и помогает ему подтвердить достоверность генетического скрининга. Например, в случае низкого уровня CFI и не обнаруженной мутации CFI результаты секвенирования анализируются повторно, а при необходимости осуществляется повторное секвенирование с целью поиска пропущенной мутации; если уровень C3 низкий, а уровни CFH и CFI нормальные и антитела к CFH не обнаружены, необходимо производить поиск мутаций C3, а затем CFB; если у пациента имеется мутация MCR в сочетании с низким уровнем C3, необходимо произвести поиск другой мутации, помимо MCR. 5). Уровни C3 и CFB плазмы не изменены у пациентов с гибридным CFH, выявляемым только посредством MLPA, методом, показанным в наше время всем пациентам с аГУС неясной этиологии. 6). Так как мутации обнаружены в разных участках различных генов, оправдан скрининг всех экзонов. 7). Учитывая, что, по крайней мере, 10% пациентов имеют мутации двух и более регуляторов системы комплемента, а у некоторых имеется мутация в дополнение к наличию анти-CFH антител, обнаружение одной мутации или анти-CFH антител не исключает необходимости исследования всех генов, хотя специфическая роль каждой аномалии системы комплемента в исходе заболевания до конца не ясна. 8). Скрининг мутаций и анти-CFH антител является обязательным перед трансплантацией, в особенности у пациентов, наблюдаемых в течение длительного времени и планируемых на трансплантацию (см. раздел Трансплантация). 9). Функциональное последствие каждой генетической аномалии должно быть определено in vitro путем мутагенеза, если оно уже не определено [61]. Взаимодействие между практикующим врачом и исследователем, работающим в специализированной лаборатории, касательно патогенности мутаций (доказано/ возмож но/ маловероятно/ неизвестно), является плодотворным и должно быть настоятельно рекомендовано.

ДИФФЕРЕНЦИАЛЬНЫЙ ДИАГНОЗ

Компллемент-аГУС необходимо дифференцировать от других форм ГУС и от ТТП. Возраст начала заболевания (рис. 8), семейный анамнез, обстоятельства и клиническая картина являются особенно информативными у детей, в то время как у взрослых клинические проявления могут быть менее очевидными (табл. 7). В настоящее время для
большинства пациентов доступно биологическое подтверждение диагноза [90, 91].

У новорожденных и детей в возрасте до 6 мес, комплемент-ГУС является диагнозом первой очевидности, однако неонатальная смерть у сибов/сиблингов также требует незамедлительной диагностики и лечения [92–94], тогда как врожденные наследственные ТТР и метилмалоновая ацидурия – оба – чрезвычайно редкие заболевания – являются альтернативными диагнозами и требуют специальных методов диагностики и лечения. У детей в возрасте от 6 мес до 5 лет также необходима незамедлительная диагностика и лечение пневмококк-индуцированного ГУС. Постдиарейный STEC-ГУС значительно преобладает в этой возрастной группе, но за ним по частоте следует комплемент-ГУС. У детей предполостного возраста и у подростков в большинстве случаев встречается комплемент-ГУС, преимущественно МСР-ГУС и с анти- СГН ГУС. Интересно, что для этого возраста также типично развитие приобретенной ТТР, обусловленной анти-ADAMTS13 антителами [95] (рис. 8). Взрослые, имеющие аГУС, могут иметь общие признаки, такие как аутоиммунные заболевания [см. рис. 8]. Беременность может являться триггером как ГУС, так и ТТР, хотя ТТР, обусловленная беременностью, проявляется в основном во втором и третьем триместрах, а ГУС, связанный с беременностью, развивается в основном в послеродовом периоде [39]. ТТР и ГУС, как правило, имеют различную клиническую картину, с превалированием неврологической симптоматики в случае ТТР

Возраст дебюта и клинические проявления	Вероятный диагноз	Исследования для подтверждения диагноза
Неонатальный период		
Тяжелая желтуха		
Моча цвета портуэйна без макрогематурии		
Генетически родственные семьи или схожие симптомы, или неонатальная смерть у сибов/сиблингов		
Неонатальный период < 6 мес		
Недостаточная прибавка массы тела, трудности с кормлением, гипотония ± задержка развития. Генетически родственные семьи	Врожденная ТТР (синдром Апшоу–Шульмана)	Легкопозитивный тест Кумбса. Положительный тест РК, ЛИПФ или ПЦР. Положительная реакция активации Т-лимфоцитов (экспозиция антигенов Томсен–Фридрихка на красных клетках крови) подтверждают диагноз
< 2 лет		
Лиходарака		
Инвазивная инфекция S. pneumoniae (доказанная или подозреваемая): пневмония, менингит, свищи, в осо-	ГУС связанный с S. pneumoniae	Легкопозитивный тест Кумбса. Положительный тест РК, ЛИПФ или ПЦР. Положительная реакция активации Т-лимфоцитов (экспозиция антигенов Томсен–Фридрихка на красных клетках крови) подтверждают диагноз
> 6 месяцев до 5 лет		
Диарея ± мелена в течение последних 2 нед, Эндемичные регионы по STEC или Shigella dysenteriae	STEC-ГУС (Shigella dysenteriae	Анализ кала или ректальных отпечатков: полоса на STEC (MacConkey для штаммов 0157: H7); ПЦР сыворотки на Stx: анти-ЛПС антитела против наиболее распространенных серо- типов в данном регионе
Подростки и взрослые		
Лиходарака		
Признаки поражения центральной нервной системы	Иммунная ТТП	Дефицит ADAMTS 13 (<10%) с анти- ADAMTS13 антителами
От рождения до подросткового и взрослого возраста	Комплект-аГУС	Полное исследование системы комплемента

Примечание. ГУС: гемолитико-уремический синдром; HTTP: тромботическая тромбоцитопеническая пурпура; ADAMTS13: АДезинтегрин и металлопротеиназа с тромбоспондином типа 1 13; MMACHC: метилмалоновая ацидуря и гомоцистинурия; ПЦР: полимеразная цепная реакция; STEC: E.coli, продуцирующая Шига-токсин; STX: шигаподобный токсин; LPS: липополисахарид.

Таблица 7

Возраст дебюта и клинические проявления	Вероятный диагноз	Исследования для подтверждения диагноза
Неонатальный период		
Тяжелая желтуха		
Моча цвета портуэйна без макрогематурии		
Генетически родственные семьи или схожие симптомы, или неонатальная смерть у сибов/сиблингов	Врожденная ТТР (синдром Апшоу–Шульмана)	Легкопозитивный тест Кумбса. Положительный тест РК, ЛИПФ или ПЦР. Положительная реакция активации Т-лимфоцитов (экспозиция антигенов Томсен–Фридрихка на красных клетках крови) подтверждают диагноз
Неонатальный период < 6 мес		
Недостаточная прибавка массы тела, трудности с кормлением, гипотония ± задержка развития. Генетически родственные семьи	ГУС ассоциированный с метил-малоновой ацидурией	Гипергомоцистениемия, гипометионинемия, метил-малоновая ацидуря. Мутация MMACHC (аутосомно-резессивная)
< 2 лет		
Лиходарака		
Инвазивная инфекция S. pneumoniae (доказанная или подозреваемая): пневмония, менингит, свищи, в осо-	ГУС связанный с S. pneumoniae	Легкопозитивный тест Кумбса. Положительный тест РК, ЛИПФ или ПЦР. Положительная реакция активации Т-лимфоцитов (экспозиция антигенов Томсен–Фридрихка на красных клетках крови) подтверждают диагноз
> 6 месяцев до 5 лет		
Диарея ± мелена в течение последних 2 нед, Эндемичные регионы по STEC или Shigella dysenteriae	STEC-ГУС (Shigella dysenteriae	Анализ кала или ректальных отпечатков: полоса на STEC (MacConkey для штаммов 0157: H7); ПЦР сыворотки на Stx: анти-ЛПС антитела против наиболее распространенных серо- типов в данном регионе
Подростки и взрослые		
Лиходарака		
Признаки поражения центральной нервной системы	Иммунная ТТП	Дефицит ADAMTS 13 (<10%) с анти- ADAMTS13 антителами
От рождения до подросткового и взрослого возраста	Комплект-аГУС	Полное исследование системы комплемента

Примечание. ГУС: гемолитико-уремический синдром; HTTP: тромботическая тромбоцитопеническая пурпура; ADAMTS13: АДезинтегрин и металлопротеиназа с тромбоспондином типа 1 13; MMACHC: метилмалоновая ацидуря и гомоцистинурия; ПЦР: полимеразная цепная реакция; STEC: E.coli, продуцирующая Шига-токсин; STX: шигаподобный токсин; LPS: липополисахарид.
Обследования, рекомендованные у пациентов с верифицированным aГУС, адаптировано из [90]

Обследования
1. STEC-инфекция
Анализ кала и ректальных мазков: посев на STEC (MacConkey для 0157:H7); ПЦР наStx. Сыворотка: анти-ЛПС антитела к наиболее распространенным серотипам в данной местности
2. Нарушения регуляции системы комплемента
СЗ, С4 (плазма / сыворотка) Фактор H, фактор I, фактор B (плазма / сыворотка) Антитела к фактору H MСР (экспрессия на поверхности поли- и мононуклеарных лейкоцитов, выявленных с помощью FACS) Анализ мутаций генов фактора H, фактора I, MСР, СЗ, фактора B
3. Классификация наследственной или приобретенной недостаточности ADAMTS13
Активность или количество ADAMTS13 плазмы (ИФА) ± ингибитор
4. Метаболизм кобаламина: метилмалоновая ацидурия
Хроматография аминокислот плазмы (высокий уровень гомоцистеина, низкий метионина); хроматография органических кислот мочи (метилмалоновая ацидурия) ± анализ мутаций в гене MMACHC
5. ВИЧ
Серология
6. Беременность, HELLP-синдром
Тест на беременность, энзимы печени, обследование как в пункте 2 и 3
7. Другие причины
Антителы к факторам H, I, MCP, CЗ, фактору В; антицыклозимы, антифосфолипидные антитела

и с преимущественным поражением почек в случае ГУС, хотя может отмечаться перекрест симптомов, и во всех случаях ТТР с неподтвержденной недостаточностью ADAMTS13 необходимо подразумевать комплемент-ГУС.

Пациенты с установленным aГУС нуждаются в полном биологическом обследовании (табл. 8).

1). Исследование на STEC-инфекцию в дебюте ГУС необходимо у всех пациентов, в том числе у пациентов с aГУС, так как возможна нетипичная клиническая картина STEC-ГУС (необычный возраст начала или отсутствие диареи).

2). У всех пациентов с подозрением на aГУС необходимо определение активности ADAMTS13, поскольку проявления aГУС и ТТР могут быть схожими. Кроме того, имеются данные о сочетании CFH и полной наследственной недостаточностью ADAMTS13 [96]. Образцы крови необходимо забирать до ПИ и ПО. При диагностике ТТР значимой является только снижение активности ADAMTS13 ниже 10% от нормы. В настоящее время с помощью методики Elisa возможно определение концентрации ADAMTS13 в плазме в течение менее чем 24 ч [97]. Список лабораторий, определяющих ADAMTS13, указан в [38, 90].

3). Скрининг нарушения метаболизма кобаламина (гомоцистениурия с метилмалоновой ацидурией) является обязательным у всех детей с aГУС. У пациентов с неонатальной формой этой внутриклеточной аномалии метаболизма витамина В12 при развитии ГУС отмечается чрезвычайно высокий уровень смертности, обусловленный полиорганной недостаточностью [12, 14]. Рекомендуется выполнить диагностические тесты на это заболевание у всех детей с aГУС является результатом сообщения о нескольких случаях умеренной метилмалоновой ацидурии без неврологической симптоматики, выявленной у пациентов с aГУС в позднем детском периоде. Исход подобных случаев как в отношении ГУС, так и в отношении метаболического заболевания, при постоянной терапии B12 предсказывается благоприятным [13]. Следует отметить также, что сообщается о сочетании метилмалоновой ацидурии с мутацией MCP [98] или CFH [99], что еще раз подчеркивает мультифакториальную природу aГУС.

4). Взрослых с aГУС необходимо систематически обследовать на ВИЧ-инфекцию и аутоиммунные заболевания (см. табл. 8).

5). Женщины с HELLP-синдромом или послеродовым ГУС, а также пациенты с посттрансплантационным ГУС требуют обследования системы комплемента. У пациентов с ВИЧ-ГУС или ГУС после трансплантации костного мозга не выявлялись дисфункции комплемента, в то время как у 36% женщин с HELLP-синдромом [100], у 86% женщин с ГУС, ассоциированным с беременностью [39], и у 29% пациентов, с de novo диагностиро-
ванным ГУС после трансплантации почки [101], были обнаружены мутации системы комплемента. Примечательно, что мутации системы комплемента также были выявлены у 18% пациентов с СКВ и/или АФС, у которых развивалась пренэклампсия, а также у 8.5% пациентов с пренэклампсией и отсутствием данных в пользу аутоиммунного заболевания [102]. Частота встречаемости прене-сущих аномалий системы комплемента в случаях аГУС, осложняющего течение эпилепсии, не исследовалась.

ГЕНЕТИЧЕСКОЕ КОНСУЛЬТИРОВАНИЕ И ПРЕНАТАЛЬНАЯ ДИАГНОСТИКА

Выявление мутации de novo чаще является исключением, и при обследовании одного из родителей пробанда, как правило, выявляется мутация. Вероятность наследования мутации сиблингами и детьми пробанда составляет 50%. Однако, учитывая тот факт, что пенетрантность заболевания составляет примерно 50%, а возраст начала и клиническая картина заболевания зачастую варьируют у пациентов из одной семьи с одинаковой мутацией, определение риска развития заболевания и его исходов у представителей группы риска представляется несомненно трудной задачей. При генетическом консультировании необходимо также принимать во внимание то, что ГУС может являться результатом множества генетических факторов, некоторые из которых известны, а некоторые нет. Выявление одного фактора не исключает этиологической роли другого. Другими словами, также трудно быть уверенными в том, что индивидуум не имеет риска развития ГУС, как и быть уверенными, что он этот риск имеет.

Несмотря на эти оговорки, будущим родителям и взрослым, страдающим этим заболеванием или находящимся в группе риска, необходимо рекомендовать генетическое консультирование. Врачи должны предпринимать все меры, чтобы способствовать генетическому консультированию. Врач, обнаруживший мутацию, должен быть готовым проконсультировать пациента и его семью о возможных рисках. Врач также должен быть готовым проконсультировать пациента о том, что он может быть носителем мутации и что его дети могут быть также носителями мутации.

ТАКТИКА ВЕДЕНИЯ, ВКЛЮЧАЯ ЛЕЧЕНИЕ

Поддерживающая терапия

Поддержание жизни является приоритетной задачей у пациентов с ГУС. Основными методами поддержания жизни являются интенсивная терапия и диализ. Интенсивная терапия включает в себя внутривенные инфузии, а также использование медицинского оборудования для поддержания уровня кислорода, углекислого газа и других параметров, необходимых для жизни. Диализ - это метод лечения, который помогает удалять из организма токсины и воды, а также поддерживать уровень кислорода и углекислого газа в крови.

Сосудистый доступ осуществляется в большинстве случаев посредством венозного катетера, позволяющего проводить гемодиализ и плазмообмен. Выбор вены (бедренной, подключичной или внутренней яремной) зависит от возраста пациента и практики конкретного учреждения. Постановка двухходового катетера должна быть выполнена опытным врачом. Бережное отношение к перфузным центральным венам (не использовать лигатуры) является чрезвычайно важным у этих пациентов, учитывая высокую вероятность необходимости длительного сосудистого доступа для гемодиализа и ПО.

Учитывая частоту рецидивов, провоцируемых инфекциями, клиницисты должны иметь настороженность в отношении симптомов инфекций и при необходимости лечить их. Данные о провоцировании ГУС вакцинацией неубедительны. Положительные стороны вакцинации, в особенности против гриппа (сезонный и H1N1, с использованием вакцины без адъюванта), скорее всего, перевешивают возможный риск.

Плазмитерапия

Плазмитерапия оставалась лечением первой очереди пациентов с ГУС до 2010 г., и основывалась в большей степени на мнении экспертов, чем на результатах клинических исследований [31, 90, 91, 103]. На сегодняшний день не выполнялись проспективных исследований. При ретроспективном
анализе данных [17, 18] неблагоприятный исход в отношении похек может быть обусловлен запоздалой, недостаточной или слишком непродолжительной плазмотерапией. В вирус-инактивированной свежезамороженной плазме (СЗП) содержится нормальное количество CFH, CFI, CFB и C3. ПО удаляет мутантные CFH, CFI, CFB и C3, анти-CFH антитела и другие триттеры дисфункции эндотелия и гиперагрегации тромбоцитов, а возмещение объема посредством СЗП привносит функционально полноценные белики. Кроме того, ПО предотвращает перегрузку объемом и сердечную недостаточность в случаях инфузии большого количества СЗП. Он также предотвращает гиперпротеинемию, развивающуюся при инфузии больших количеств плазмы несколько раз в неделю.

Плазмотерапия у пациентов с мутацией CFH

В целом, у 63% пациентов с мутацией CFH, получавших плазмотерапию в какой-либо форме (инфекции плазмы или плазмообмен), по данным Регистра Италии, отмечался положительный ответ на плазмотерапию (полный или частичный – гематологическая ремиссия и последствия со стороны похек). Однако процент случаев полного выздоровления на фоне плазмотерапии составил только 5%, тогда как процент случаев прогрессирования заболевания до терминальной почечной недостаточности или смертельного исхода составил 37% [18]. Двенацать наблюдений, в основном у детей, показывают, что раньше начало интенсивной плазмотерапии может вылечить ГУС, а продолжительная плазмотерапия предотвращает рецидивы и прогрессирование до терминальной почечной недостаточности (ТПН) у пациентов с мутацией CFH [17, 103–115]. Эти пациенты получали ПО (40–60 мл/кг с замещением СЗП) или ПИ (10–15 мл/кг) в острую фазу, большинство из них ежедневно в течение, по крайней мере, 5 дней, а в ряде случаев до 2 нед, с постепенным урежением до длительной поддерживающей плазмотерапии (ПО или ПИ ежедневно или каждые 2–4 нед). У большинства пациентов отмечались рецидивы, связанные с инфекциями, с которыми удалось справиться интенсификацией плазмотерапии. У десяти из двенацати пациентов функция почек была сохранена через 1–6 лет наблюдения после плазмотерапии, но у двух после 4 лет [107] и 7 лет [115] развилась ТПН, что демонстрирует неопределенность в отношении того, может ли благоприятный эффект плазмотерапии поддерживаться на протяжении десятилетий. С другой стороны – у большинства пациентов, получавших плазмотерапию, только в период обострения заболевания отмечалось развитие ТПН или смерти в течение менее одного года [103, 113, 116–118]. Эффект, оказываемый плазмотерапией, может различаться в зависимости от генотипа. Ряд наблюдений позволяет предположить, что использование ПО может оказаться предпочтительнее, чем ПИ, у пациентов с нарушением функции мутантного СFN (мутация 2-го типа), возможно потому, что в ходе ПО происходит удаление нефункционирующего СН [113, 114].

Плазмотерапия у пациентов с мутацией CFI

Только у 25% пациентов с мутацией CFI, получавших плазмотерапию, по данным Регистра Италии, отмечался положительный эффект, а у 75% заболевание прогрессировало с развитием ТПН или смерти [18]. У пятн пациентов с мутацией CFI (три из них — с ассоциированными факторами риска), получавших ПО или ПИ [36, 77, 103, 119], в острую фазу отмечалась полная или частичная ремиссия. У всех пациентов возникли рецидивы и у всех, за исключением одного, в течение нескольких недель или месяцев развилась ТПН. Для того, чтобы подтвердить эффект плазмотерапии у пациентов с мутацией CFI, а также роль ассоциированных мутаций в ответе на плазмотерапию, необходимо большее число пациентов.

Плазмотерапия у пациентов с мутацией MCP

Так как MCP не является циркулирующим протеином, у пациентов с MСР не приходится ожидать положительного эффекта плазмотерапии. По крайней мере у 90% пациентов отмечаются ремиссии после развития обострений, независимо от того, получали они плазмотерапию или нет [17, 18, 21]. Тем не менее, при обострениях ГУС процедура ПО применяется самым активным образом для удаления токсичных факторов, таких как факторы агрегации/триггеры эндотелиального повреждения. Долговременные ПО, как представляется, не имеют преимуществ у пациентов с MСР-ГУС [120].

Плазмотерапия у пациентов с мутациями C3, CFB или THBD

Данные о пользе плазмотерапии у пациентов этих подгрупп мало документированы. У 57% пациентов с мутацией C3 и у 88% с мутацией THBD, получавших плазмотерапию, по данным Регистра Италии, отмечен ответ на терапию (полная или частичная ремиссия, гематологическая ремиссия с осложнениями со стороны похек), и у 43% и 13% пациентов соответственно отмечалось прогрессирование с развитием ТПН или летального исхода.
Плазмотерапия и иммуносупрессивная терапия у пациентов с аГУС с анти-CFH антителами.

Плазмаобмен с удалением антител является терапией первой линии у пациентов с ГУС, индуцированным анти-CFH антителами. Однако после прекращения сеансов ПО часто вновь происходит нарастание титра антител, и часто развивается рецидив ГУС. В связи с этим рекомендуется комбинация с иммуносупрессивной терапией и с использованием глюкокортикостероидов и азатиоприна, микофенолата мофетила, внутривенных циклосфамида или анти-CD20 [37, 68, 72, 122–124]. Длительность плазмотерапии и выбор иммуносупрессивного препарата в настоящее время не регламентированы. В обоих случаях следует руководствоваться динамикой титра анти-CFH антител. Высокий титр антител коррелирует с риском рецидива, который, в свою очередь, увеличивает риск почечных осложнений [37].

Практические рекомендации

Так как на момент манифестации аГУС информация о системе комплемента и ADAMTS13 обычно отсутствует, по мнению экспертов, рекомендуется эмпирическое начало плазмотерапии в максимально ранние сроки, желательно в первые 24 ч [90, 91, 125]. Терапией первой линии должен явиться ПО, с обменом до 1,5 л плазмы (60–75 мл/кг) за сеанс с замещением СЗП. В случае невозможности выполнения ПО в первые 24 ч госпитализации, при отсутствии у пациента перегрузки объёмом и/или гипертензии, а также симптомов сердечной недостаточности, целесообразно выполнение ПИ (10–20 мл/кг).

ПО должен выполняться ежедневно до нормализации уровня тромбоцитов, ЛДГ, гемоглобина и отчетливого улучшения функции почек в течение нескольких дней. Персистирование гемолиза или отсутствие значимого улучшения функции почек после 3–5 ежедневных сеансов ПО должно быть рассечено как критерий неконтролируемой ТМА, даже в случае нормализации уровня тромбоцитов (тем более, если тромбоцитопения сохраняется) и является показанием к продолжению ежедневных сеансов ПО или, по последним данным, переходу на терапию экулизимабом (см. раздел Ингибиторы системы комплемента: новые методы лечения в 2010–2011 гг.). В случае успешного контроля заболевания ежедневными ПО последующая рекомендованная частота проведения ПО/ПИ составляет пять раз в неделю в течение 2 нед и три сеанса в неделю в течение последующих 2 нед. В дальнейшем частота проведения сеансов плазмотерапии определяется индивидуально, в соответствии с характером течения заболевания, характером и динамикой выявленного фактора риска. Выявление мутации гена ПСР позволяет отказаться от плазмотерапии. Для пациентов с мутациями CFH, CFI, C3 или CFB выбор конкретного метода лечения (ПО/ПИ), а также интервал между сеансами определяются в индивидуальном порядке. У пациентов с мутацией CFH, а также, возможно, и у пациентов с мутацией CFI в комбинации с другими аномалиями системы комплемента, а также с мутациями C3 или CFB, плазмотерапию, с высокой вероятностью, необходимо будет продолжать постоянно. Тем не менее, у пациентов с отсутствием проявлений ГУС на фоне постепенного, в течение нескольких месяцев или лет, уменьшения частоты сеансов ПО/ПИ до одного или менее раз в месяц, как правило, обсуждается попытка отмены плазмотерапии. В случае присоединения инфекции необходим тщательный биологический контроль для ранней диагностики и лечения возможного рецидива интенсификации плазмотерапии с проведением ежедневных сеансов.

Ограничения в плазмотерапии

Ряд трудностей, касающихся материально-технического обеспечения, может ограничить возможность выполнения ПО в течение длительного времени. Для выполнения ПО необходимо наличие квалифицированного персонала, особенно при проведении плазмотерапии у детей [126, 127]. В случае отсутствия у пациента артериовенозного шунта, необходима постановка центрального венозного катетера, схожего с тем, который используется для проведения гемодиализа, что увеличивает риск центрального венозного тромбоза, особенно у детей, и инфекционных осложнений. У ряда пациентов развивается анафилактическая реакция на СЗП, что может потребовать прекращения любой формы плазмотерапии.

Трансплантация почки: показания, риски и новые проблемы и решения

Риск рецидива аГУС после трансплантации в зависимости от аномалии комплемента

Теоретически любой пациент с аГУС, течение которого осложнилось ТПН, является потенциальным кандидатом на трансплантацию почки. Одна-
ко общий риск рецидива аГУС после трансплантации почки составляет 50%, а риск отторжения трансплантата у пациентов с рецидивом составляет 80–90% [18, 128–131] (см. табл. 3). У детей сообщается также о высоком риске отторжения трансплантата вследствие артериального тромбоза [17]. Риск посттрансплантационного рецидива аГУС у пациентов с мутацией CFH составляет 75–90%, у пациентов с мутацией CFI – 45–80% и у пациентов с мутацией C3 – 40–70% [83, 131]. Три пациента с мутацией CFB [80, 81] и один с мутацией THBD [45] после трансплантации почки – потеряли трансплантат в связи с рецидивом. Напротив, низкий риск рецидива (от 0% [18] до 15–20% [131]) отмечается у пациентов с мутацией MCP, поскольку, с логической точки зрения, трансплантат несёт MCP белок без мутации. Вариабельность риска посттрансплантационного рецидива, например, у пациентов с мутациями CFH, C3 или MCP, должна интерпретироваться в соответствии с современными представлениями о широком распространении ассоциированных генетических факторов риска. Так как более чем у половины носителей мутации CFI, как показано, имеются дополнительные факторы предрасположенности к аГУС, то риск рецидива у пациентов с изолированными мутациями CFI должен быть пересмотрен [28]. С этой же точки зрения, несколько пациентов с мутацией MCP, у которых сообщается о посттрансплантационном рецидиве, должны быть бы обследованы на наличие аномалий системы комплемента, ответственных за рецидив.

Посттрансплантационный рецидив у пациентов с CFH мутациями обычно отмечается в очень ранние сроки – в течение первых дней или первого месяца в половине случаев и между вторым и шестым месяцем у остальных больных (данные, полученные из ссылок в [129]). Однако у ряда пациентов рецидив развивается лишь через несколько лет. Наиболее вариабелен период времени до рецидива, как представляется, у пациентов с мутацией CFI – он возникает или в течение первых дней после трансплантации, или после нескольких месяцев или даже лет [129, 132]. Клиническая картина рецидива иногда не соответствует развернутой классической картине ГУС, а проявляется массивной протеинурией и прогрессирующей потерей функции трансплантата без гемолиза и тромбоцитопении, с признаками ТМА при биопсии трансплантата. В большинстве случаев нелеченный рецидив приводит к утрате функции трансплантата, что обычно происходит в течение первого года после трансплантации.

Риск посттрансплантационного рецидива у пациентов с анти-CFH антителами в достаточной мерее не документирован, но можно ожидать развитие рецидива при наличии высокого титра антител на момент трансплантации. Снижение уровня анти-CFH антител с использованием ПО и терапии ритуксимабом позволили успешно произвести трансплантацию у двух пациентов [37, 122, 133]. Имеются публикации о выполнении трансплантации без последующих рецидивов у пациентов с анти-CFH антителами в отсутствии специфической терапии [71, 134]. Однако претрансплантационный скрининг анти-CFH антител или определение их титра не были представлены в этих наблюдениях. Определение риска посттрансплантационного рецидива осложняется тем, что у пациентов с анти-CFH антителами также могут выявляться мутации CFH, CFI, MCP или C3 [71].

Риск рецидива также существует у пациентов без мутаций и анти-CFH антител, хотя он достоверно не установлен.

Трансплантация от живых родственников не рекомендуется

Принимая во внимание тот факт, что существует риск развития отторжения трансплантата в связи с рецидивом ГУС, родственную трансплантацию почки следует считать противопоказанной у пациентов с мутациями CFH, CFI, CFB, C3 или THBD, неоднозначной – у пациентов с необъяснимыми случаями аГУС и спорной – для пациентов с мутацией MCP. Также необходимо принимать во внимание риск развития аГУС после трансплантации у донора. Есть сообщение о развитии ГУС у четырёх доноров в сроки от 3 нед до 10 мес после операции [129]. Впоследствии у одного из доноров и его реципиента была обнаружена мутация CFH. Учитывая неполную пенетрантность мутации, роль полиморфизма генов системы комплемента, а также генетическую вариабельность членов одной семьи, невозможно со стопроцентной уверенностью заявить об отсутствии риска аГУС у родственных доноров.

Профилактика/лечение рецидивов аГУС после трансплантации почек

Часто до трансплантации, в связи с гипертензией или продолжающимся гемолизом и тромбоцитопенией, выполняется билатеральная нефрэктомия. К сожалению, это не уменьшает риск посттрансплантационного рецидива аГУС [17].

Отказ от ингибиторов кальциневрина

Ряд исследователей предположили, что отказ от применения ингибиторов кальциневрина, обладающих эндотелиальной токсичностью, может оказывать...
ся полезным [135], в то время как результаты других – оказываются противоречивы [128, 129, 131]. Одним из объяснений этого может являться то, что схемы лечения, не включающие кальциневрин, часто используют сиролимус, который, как показано в настоящее время, оказывает токсическое действие на эндотелии, через подавление VEGF [7–11]. Учитывая эти данные, а также повышение риска отторжения при использовании схем, не включающих ингибиторы кальциневрина, аГУС сам по себе не является противопоказанием к использованию ингибиторов кальциневрина [125].

Плазмотерапия для профилактики или лечения рецидива аГУС после трансплантации почки

При анализе длительных наблюдений большое количество пациентов во время рецидивов получали ту или иную форму плазмотерапии [17, 128–131]. Однако так как время начала плазмотерапии, её вариант (ПО или ПП), введенный или замененный объемом СЗП, частота и продолжительность сеансов значительно различались, оценить эффект плазмотерапии сложно. Тем не менее, по данным большинства исследований, плазмотерапия во время рецидива часто не способна спасти функцию почки и предотвратить потерю трансплантата [128–131]. Поэтому в настоящее время рекомендуется превентивная плазмотерапия [125]. Как и для плазмотерапии, рекомендованной для пациентов с аГУС и нативными почками, следует провести один сеанс ПО непосредственно перед трансплантацией, инфузию СЗП во время трансплантации и продолжить сеансы ПО ежедневно в течение, по крайней мере, 5 дней, с последующим уменьшением количества сеансов до 5 в неделю в течение 2 нед, затем до 3 сеансов в неделю в течение 2 нед, и последующим постепенным уменьшением их числа в зависимости от особенностей течения данного клинического случая (рис. 9). Насколько нам известно, превентивная плазмотерапия оказалась успешной для профилактики рецидивов у десяти реципиентов почки, в том числе у 5 с мутацией гена CFH [113, 131, 136, 138], у трех с мутацией CFI [131,139] и у двух с мутацией С3 [121, 131].

Рис. 9. Рекомендации к проведению плазмотерапии для предотвращения рецидивов ГУС после трансплантации почки в соответствии с Consensus Study Group [125]. Следует подчеркнуть, что в настоящее время для пациентов с очень высоким риском рецидива должна обсуждаться превентивная терапия экулизумабом (начальная терапия) и постоянное введение экулизумаба. ПО: плазмобмен; СЗП: свежезамороженная плазма.
Комбинированная трансплантация печени-почки в лечении аГУС

Так как CFH, CFI, CFB и C3 синтезируются в печени, логически обоснованной является трансплантация печени или комбинированная трансплантация печени – почки. По нашим сведениям было выполнено 20 таких трансплантаций (19 у пациентов с мутацией CFH, 1с мутацией CFB) [51, 125, 140–147] (10 неопубликованных случаев). У большинства (18) пациентов имелась ТПН, в связи с чем была выполнена комбинированная трансплантация печени и почки. Первый опыт трансплантации у 3 детей с мутацией CFH был неудачным, так у 2 пациентов отмечалось первичное отсутствие функции трансплантата печени с обширным микрососудистым тромбозом и отложением комплемента [140, 141]. У одного из них после повторной трансплантации печени отмечалась ремиссия с отсутствием симптомов ГУС в течение 3 лет, подтвердив, что трансплантация печени действительно вылечивает ГУС, но, конечно, итоге, пациент скончался от неврологических осложнений [140, 141]. У одного из них после повторной трансплантации печени отмечалась ремиссия с отсутствием симптомов ГУС в течение 3 лет, подтвердив, что трансплантация печени действительно вылечивает ГУС, но, конечном итоге, пациент скончался от неврологических осложнений [140, 141]. У одного из них после повторной трансплантации печени отмечалась ремиссия с отсутствием симптомов ГУС в течение 3 лет, подтвердив, что трансплантация печени действительно вылечивает ГУС, но, конечном итоге, пациент скончался от неврологических осложнений [140, 141]. У одного из них после повторной трансплантации печени отмечалась ремиссия с отсутствием симптомов ГУС в течение 3 лет, подтвердив, что трансплантация печени действительно вылечивает ГУС, но, конечном итоге, пациент скончался от неврологических осложнений [140, 141]. У одного из них после повторной трансплантации печени отмечалась ремиссия с отсутствием симптомов ГУС в течение 3 лет, подтвердив, что трансплантация печени действительно вылечивает ГУС, но, конечном итоге, пациент скончался от неврологических осложнений [140, 141]. У одного из них после повторной трансплантации печени отмечалась ремиссия с отсутствием симптомов ГУС в течение 3 лет, подтвердив, что трансплантация печени действительно вылечивает ГУС, но, конечном итоге, пациент скончался от неврологических осложнений [140, 141]. У одного из них после повторной трансплантации печени отмечалась ремиссия с отсутствием симптомов ГУС в течение 3 лет, подтвердив, что трансплантация печени действительно вылечивает ГУС, но, конечном итоге, пациент скончался от неврологических осложнений [140, 141]. У одного из них после повторной трансплантации печени отмечалась ремиссия с отсутствием симптомов ГУС в течение 3 лет, подтвердив, что трансплантация печени действительно вылечивает ГУС, но, конечном итоге, пациент скончался от неврологических осложнений [140, 141]. У одного из них после повторной трансплантации печени отмечалась ремиссия с отсутствием симптомов ГУС в течение 3 лет, подтвердив, что трансплантация печени действительно вылечивает ГУС, но, конечном итоге, пациент скончался от неврологических осложнений [140, 141]. У одного из них после повторной трансплантации печени отмечалась ремиссия с отсутствием симптомов ГУС в течение 3 лет, подтвердив, что трансплантация печени действительно вылечивает ГУС, но, конечном итоге, пациент скончался от неврологических осложнений [140, 141]. У одного из них после повторной трансплантации печени отмечалась ремиссия с отсутствием симптомов ГУС в течение 3 лет, подтвердив, что трансплантация печени действительно вылечивает ГУС, но, конечном итоге, пациент скончался от неврологических осложнений [140, 141]. У одного из них после повторной трансплантации печени отмечалась ремиссия с отсутствием симптомов ГУС в течение 3 лет, подтвердив, что трансплантация печени действительно вылечивает ГУС, но, конечном итоге, пациент скончался от неврологических осложнений [140, 141]. У одного из них после повторной трансплантации печени отмечалась ремиссия с отсутствием симптомов ГУС в течение 3 лет, подтвердив, что трансплантация печени действительно вылечивает ГУС, но, конечном итоге, пациент скончался от неврологических осложнений [140, 141]. У одного из них после повторной трансплантации печени отмечалась ремиссия с отсутствием симптомов ГУС в течение 3 лет, подтвердив, что трансплантация печени действительно вылечивает ГУС, но, конечном итоге, пациент скончался от неврологических осложнений [140, 141]. У одного из них после повторной трансплантации печени отмечалась ремиссия с отсутствием симптомов ГУС в течение 3 лет, подтвердив, что трансплантация печени действительно вылечивает ГУС, но, конечном итоге, пациент скончался от неврологических осложнений [140, 141]. У одного из них после повторной трансплантации печени отмечалась ремиссия с отсутствием симптомов ГУС в течение 3 лет, подтвердив, что трансплантация печени действительно вылечивает ГУС, но, конечном итоге, пациент скончался от неврологических осложнений [140, 141]. У одного из них после повторной трансплантации печени отмечалась ремиссия с отсутствием симптомов ГУС в течение 3 лет, подтвердив, что трансплантация печени действительно вылечивает ГУС, но, конечном итоге, пациент скончался от неврологических осложнений [140, 141]. У одного из них после повторной трансплантации печени отмечалась ремиссия с отсутствием симптомов ГУС в течение 3 лет, подтвердив, что трансплантация печени действительно вылечивает ГУС, но, конечном итоге, пациент скончался от неврологических осложнений [140, 141]. У одного из них после повторной трансплантации печени отмечалась ремиссия с отсутствием симптомов ГУС в течение 3 лет, подтвердив, что трансплантация печени действительно вылечивает ГУС, но, конечном итоге, пациент скончался от неврологических осложнений [140, 141]. У одного из них после повторной трансплантации печени отмечалась ремиссия с отсутствием симптомов ГУС в течение 3 лет, подтвердив, что трансплантация печени действительно вылечивает ГУС, но, конечном итоге, пациент скончался от неврологических осложнений [140, 141]. У одного из них после повторной трансплантации печени отмечалась ремиссия с отсутствием симптомов ГУС в течение 3 лет, подтвердив, что трансплантация печени действительно вылечивает ГУС, но, конечном итоге, пациент скончался от неврологических осложнений [140, 141]. У одного из них после повторной трансплантации печени отмечалась ремиссия с отсутствием симптомов ГУС в течение 3 лет, подтвердив, что трансплантация печени действительно вылечивает ГУС, но, конечном итоге, пациент скончался от неврологических осложнений [140, 141]. У одного из них после повторной трансплантации печени отмечалась ремиссия с отсутствием симптомов ГУС в течение 3 лет, подтвердив, что трансплантация печени действительно вылечивает ГУС, но, конечном итоге, пациент скончался от неврологических осложнений [140, 141]. У одного из них после повторной трансплантации печени отмечалась ремиссия с отсутствием симптомов ГУС в течение 3 лет, подтвердив, что трансплантация печени действительно вылечивает ГУС, но, конечном итоге, пациент скончался от неврологических осложнений [140, 141]. У одного из них после повторной трансплантации печени отмечалась ремиссия с отсутствием симптомов ГУС в течение 3 лет, подтвер...
ми. Тем не менее, 2 ребенка умерли вследствие интраоперационных сосудистых осложнений (тромбоз печеночной артерии в одном случае, ишемия головного мозга вследствие синдрома верхней полой вены при манипуляции на нижней полой вене в другом) [личные контакты с Дж. Саланд, с разрешения]. Это свидетельствует о 14% смертности во время операции среди пациентов с комбинированной трансплантацией печень – почки на фоне плазмотерапии. Таким образом, решение о комбинированной трансплантации для лечения этого заболевания требует точной оценки рисков/преимуществ в каждом отдельном случае.

ИНГИБИТОРЫ СИСТЕМЫ КОМПЛЕМЕНТА: НОВОЕ ЛЕЧЕНИЕ В 2010–2011 гг.

Экулизумаб (Eculizumab)

Для развития аГУС необходимо активация C5 фракции компонента [55, 148]. Экулизумаб (Soliris®, Alexion Pharmaceuticals, Cheshire, CT, USA) представляет собой рекомбинантное гуманизированное иммуноглобулин G антитело к C5 компоненту комплемента. Экулизумаб блокирует расщепление C5 до C5b, предотвращая, в конечном итоге, образование провоспалительного пептида C5b и цитотоксического мембраноатакующего комплекса C5b-9 (рис. 10).

Экулизумаб одобрен по всему миру для лечения пароксизмальной ночной гемоглобинурии (НПГ), и его эффективность и хорошая переносимость были доказаны на примере сотен пациентов с этим заболеванием, некоторые из которых получали терапию с десятилетнего возраста [149–151]. Экулизумаб получил одобрение Управления по контролю за продуктами и лекарствами, США (U.S. Food and Drug Administration) для лечения аГУС, как лекарственное средство, эффективное при редких, угрожающих жизни или инвалидизирующих заболеваниях (Orphan Medicinal Product) в мае 2009 г., а в августе 2009 г. – Европейского агентства по лекарственным средствам (European Medicines Agency). В течение последних лет этот новый препарат был объектом напряженного ожидания со стороны пациентов и врачей [115, 152, 153]. Впервые экулизумаб был использован для лечения пациентов с аГУС в 2009 и 2010 г.

Блокада терминальных путей активации комплемента вызывает повышенный риск развития инфекции Neisseria meningitidis [154]. В связи с этим, перед началом терапии экулизумабом требуется проводить вакцинацию пациентов против Neisseria meningitidis. Однако, учитывая, что в настоящее время не существует вакцины против серотипа В, пациенты и врачи должны знать о возможности появления симптомов, которые потребуют срочного начала диагностических мероприятий и антибиотикотерапии. В некоторых странах (таких как Франция) всем пациентам, получающим терапию экулизумабом, наряду с вакцинацией, назначается антибиотикопрофилактика.

Рекомендованные дозы экулизумаба для лечения пациентов с аГУС превышают дозы, используемые в лечении ПНГ на 30%, с тем, чтобы полностью блокировать терминальные пути активации комплемента. Схема назначения такая же, как и для НПГ: для взрослых 900 мг (внутривенно в течение 30 мин), еженедельно в течение 4 нед (суммарно 4 инъекции с недельным интервалом), затем пять инъекций 1200 мг и затем в течение длительного периода времени по одной инъекции каждые 2 нед.[150 <10% от ожидаемого] будет важным в этой возрастной группе.

Клинический опыт применения экулизумаба у пациентов с аГУС

В настоящее время опубликованы и представлены на конгрессах (рефераты, доступные в сети Интернет) данные о применении экулизумаба у 17 пациентов с аГУС с нативными почками [155–161] (табл. 9) или профилактики [167–169], или лечения [121, 131, 137, 162–166] посттрансплантационных рецидивов (табл.10). Из 17 пациентов 8 были детьми (в возрасте от 19 мес до 18 лет), у 6 пациентов имела место мутация C3, у 2 – мутация CFI, у 1 – мутация C1q, у 4 пациентов мутации выявлены не были, у 2 данные генетического исследования не были документированы. У 7 пациентов с нативными почками, получавших терапию по поводу аГУС (см. табл. 9), отмечалось повышение уровня тромбоцитов, прекращение гемолиза и улучшение функции почек в течение лишь нескольких дней после начала терапии экулизумабом. У всех пяти пациентов, длительное время получавших поддерживающую терапию экулизумабом, при наблюдении в динамике от 10 нед до 2 лет 4 мес отмечалась сохранная функция почек. У двух пациентов, получивших однократную дозу
Таблица 9

Библиографическая ссылка	Мутация	Возраст начала ГУС, его развитие, ответ на плазмотерапию	
Gruppo et al. 2009 [155]	CFH	4 года	Частичная чувствительность к ПО
Fremont et al. 2009 [156]	CFH	4 года	Частичная чувствительность к ПО
Macrae et al. 2009 [157]	CFH	17,8 года	Чувствительно к ПО
Kose et al. 2010 [158]	CFH	18 лет	Чувствительно к ПО
Prescott et al. 2010 [159]	CFH	47 лет	Резистентен к ПО
Ohanian et al. 2011 [160]	CFH	50 лет	Без плазмотерапии

Примечание. ЛК: личные контакты, с разрешения; Screat – креатинин сыворотки; CFH: фактор H; CFI: фактор I; NI: не обнаружено; ND: не документировано; ТПН: терминальная почечная недостаточность; ПО: плазмообмен; ПИ: инфузия плазмы; ЛДГ – лактатдегидрогеназа.

Экулизумаб, после рецидива ГУС после отмены препарата через 1 мес [157] и 2 мес [158] отмечалось прогрессирование заболевания до ТПН. Необходимо отметить также, что один из них получал терапию на поздних стадиях заболевания, после приблизительно пятидневных дей на гемодиализе [157]. Из 10 пациентов, получавших терапию с целью профилактики или лечения посттрансплантационных рецидивов, у 6 ранее была потеря одного или двух трансплантатов вследствие рецидивов (табл. 10). Ремиссии были достигнуты в течение нескольких дней, и у трех пациентов, лечившихся профилактически, рецидивов не было. У всех 8 пациентов, находившихся на длительной поддерживающей терапии экулизумабом, была сохранная функция трансплантата и ремиссия ГУС в течение периода наблюдения от 4 мес до 2 лет 5 мес. У двух пациентов, получивших разовую дозу, впоследствии, через 11 мес и 21 мес, развился рецидив ГУС, со провождавшийся, в конечном итоге, потерей трансплантата [162, 165].

Международные многоцентровые проспективные исследования второй фазы были проведены в 2009–2010 гг. среди взрослых и подростков (≥ 12 лет) с аГУС (первичное заболевание или посттрансплантационный рецидив) как у пациентов, резистентных к плазмотерапии (17 человек), так
Описание клинических случаев посттрансплантационного рецидива аГУС у пациентов получавших терапию экулизумабом

Библиографическая ссылка	Ген	Период ранее трансплантации	Продолжительность от рецидива до начала терапии экулизумабом	Скрет на начало терапии экулизумабом (мкмоль/л)	Скрет на начало терапии экулизумабом (мкмоль/л)	Скрет на начало терапии экулизумабом (мкмоль/л)	Примечание	Изменение Скрет на фоне терапии экулизумабом
Nurnberger, 2009 [162] J.Nurnberger PC	CFH Y475S	1 ТХ: рецидив через 5 нед, резистентность к ПО, потеря трансплантата	Период времени от рецидива до начала терапии экулизумабом	Период времени до повышения уровня тромбоцитов	Скрет на начало терапии экулизумабом	Скрет на начало терапии экулизумабом	Время рецидива после прекращения терапии экулизумабом	Изначальное Скрет на фоне терапии экулизумабом
Chatelle, 2009 [121] 2010 [163] V.Chatelet PC	C3 R570Q	1 ТХ: рецидив через 5 мес, потеря трансплантата через 2 года	Рецидив через 3 года	Резистентность к ПО	Скрет на начало терапии экулизумабом	Скрет на начало терапии экулизумабом	Вероятно, но не доказано биопсией (21 мес)	Потеря трансплантата
Legault, 2009 [164]	ND	Нет	Рецидив через 1 и 5 мес	Время рецидива после прекращения терапии экулизумабом	Скрет на начало терапии экулизумабом	Скрет на начало терапии экулизумабом	Ремиссия	Ремиссия
Davin, 2010 [137] J.C. Davin PC	CFH S119L	1 ТХ: рецидив через 3 дня, потеря трансплантата	Превентивный ПО	Скрет на начало терапии экулизумабом	Скрет на начало терапии экулизумабом	Скрет на начало терапии экулизумабом	Ремиссия	Ремиссия
Larrea, 2010 [165] M.Lozano PC	NI	Нет	Рецидив через 12 дней	Время рецидива после прекращения терапии экулизумабом	Скрет на начало терапии экулизумабом	Скрет на начало терапии экулизумабом	Ремиссия	Ремиссия
Zuber, 2010 [131] J. Zuber PC	CFH	1 ТХ: рецидив, потеря трансплантата	Превентивный ПО	Скрет на начало терапии экулизумабом	Скрет на начало терапии экулизумабом	Скрет на начало терапии экулизумабом	Ремиссия	Ремиссия
Al-Akash, 2010 [166] S.I. Al-Akash PC	C3 R570W	1 ТХ: рецидив через 3 дня, потеря трансплантата	Превентивный ПО	Скрет на начало терапии экулизумабом	Скрет на начало терапии экулизумабом	Скрет на начало терапии экулизумабом	Ремиссия	Ремиссия
Zimmerhakl, 2010 [167] M.Riedl PC	CFH W1183C	Нет	Превентивный ПО	Экулизумаб превентивно	Экулизумаб превентивно	Экулизумаб превентивно	Не установлено	Не установлено
Weitz, 2011 [168]	CFH E1198 Stop	Нет	7 лет, 1-й ТХ	Экулизумаб превентивно	Экулизумаб превентивно	Экулизумаб превентивно	Не установлено	Не установлено
Nester, 2011 [169]	H y b r i d CFH	Нет	12 лет, 1-й ТХ	Экулизумаб превентивно	Экулизумаб превентивно	Экулизумаб превентивно	Не установлено	Не установлено

Примечание. Превентивный: начатый до трансплантации или до рецидива; Скрет – креатинин сыворотки; PC: личные контакты, с разрешения; CFH: фактор Н; TX: трансплантация; NI: не идентифицировано; ND: не документировано; NA: не установлено; ПО: плазмообмен.
и чувствительных к ней (хроническая плазмотерапия) (20 человек), которых переключили с плазмотерапии на экулизумаб [170, 171]. Эти исследования подтвердили, что экулизумаб ингибирует развитие ТМА у пациентов с аГУС, с обратным развитием тромбоцитопении, прекращением гемолиза и улучшением функции почек, вне зависимости от того, были они резистентны к плазмотерапии или получали её постоянно перед началом терапии экулизумабом. Ответ на терапию экулизумабом наблюдался уже после введения первой дозы, а улучшение функции почек продолжалось при продолжении терапии. У обеих групп пациентов не требовалась терапия по поводу ТМА (плазмотерапия или очередной сеанс гемодиализа) при их нахождении на терапии экулизумабом. Переносимость экулизумаба была хорошая. Подобный положительный ответ на терапию наблюдался как у пациентов с идентифицированной мутацией системы комплемента, так и без неё. Проспективное исследование у детей в возрасте от 1 мес до 18 лет, а также новое исследование у взрослых были начаты в конце 2010 г., включающее пациентов с первичным ГУС или с посттрансплантационным рецидивом, получающих плазмотерапию или без неё [172].

В целом, эти результаты свидетельствуют о перспективе экулизумаба, как препарата, являющегося новым стандартом лечения пациентов с аГУС. 2011 г., возможно, станет переломным годом. Многие врачи, особенно педиатры, вследствие трудностей в проведении ПО у детей, считают, что экулизумаб может назначаться без предварительной плазмотерапии. Вне зависимости от возраста пациента, резистентности или неполного ответа на плазмотерапию (определенного по наличию стойкой тромбоцитопении и/или гемолитической ане-мии и/или отсутствию улучшения функции почек после 3–5 дней ежедневного ПО) возможное возникновение рецидива при снижении или полной отмене плазмотерапии, непереносимость плазмы или трудности в обеспечении сосудистого доступа уже являются или будут являться, при его возможности, показаниями к смене плазмотерапии на экулизумаб.

Этот новый терапевтический подход также меняет стратегию трансплантации почки. Трансплантология в настоящее время должны понимать, что в случае рецидива ГУС, несмотря на превентивную плазмотерапию, необходимо переходить на терапию экулизумабом. В случае особенно высокого риска рецидива (утрата функции предыдущего трансплантата ввиду рецидива, наличие члена семьи или пациента с такой же мутацией в списках и реестрах) вопрос о превентивном назначении экулизумаба с целью профилактики рецидива вряд ли вызывает сомнение. Наконец, показания к комбинированной трансплантации печень—почки под прикрытием плазмотерапии или экулизумаба, блокирующего активацию системы комплемента при реперфузии печени, сегодня являются ограниченными, хотя возможность подобного лечения необходимо принимать во внимание.

Новые методы лечения на ближайшее будущее

В ближайшем будущем станут доступны другие блокаторы системы комплемента, блокирующие активацию комплемента на эндотелиальной поверхности, без его блокады в жидкую фазу [173]. Человеческий плазменный концентрат CFH, полученный исследователями из Laboratoire Français du Fractionnementetdes Biotechnologies, получил европейский знак Orphan Drug ("офранное" или "сиротское" лекарственное средство для лечения редкого заболевания) в январе 2007 г. и в скором времени будет доступен для клинических испытаний. Действие концентрата CFH было исследовано на нокаутных по Cfh-гену мышах, у которых развивалась недостаточность С3 плазмы и массивные отложения С3 на гломерулярной базальной мембране. В результате действия CFH-концентрата отмечалась быстрая нормализация уровня С3 плазмы и растворение депозитов С3 на гломерулярной базальной мембране [174]. Возможно, в будущем также будет доступен рекомбинантный CFH [175, 176].

ИСХОДЫ

Данные относительно прогнозов и исходов основываются, главным образом, на временных сериях, включающих пациентов, которые либо не получали плазмотерапию, или получали варианты плазмотерапии, которые в настоящее время признаются неадекватными [слишком позднее начало, неагрессивное лечение (ПИ вместо ПО), слишком раннее прекращение плазмотерапии]. Тем не менее, эти данные отражают естественный исход заболевания или лучший вариант его эволюции, возможно достигнутый при помощи различных вариантов плазмотерапии, наиболее часто используемых и доступных.

Среди французской педиатрической когорты пациентов смертность в острый этап ГУС составила 8,6%, а у 24% выживших пациентов развивалась терминальная почечная недостаточность (ТПН) при первом эпизоде ГУС [17]. В итальянской когорте смертность при первом эпизоде составила 8,4%, с колебаниями от 12% у детей до 2% у взрослых; у
32% выживших пациентов после первого эпизода функция почек не восстановилась [18]. Рецидивы ГУС наблюдаются в основном у пациентов с мутациями МСР (70–90% больных имеют рецидивы) [17, 18], СФН (50%) [17, 18], С3 (50%) [18, 83, 84] и анти-СФН антителами (40–60%) [18, 37]. У пациентов с мутацией МСР временные интервалы появления рецидивов непредсказуемы и варьируют от нескольких месяцев до нескольких лет и чаще всего провоцируются инфекциями. Рецидивы с полным выздоровлением наиболее характерны для МСР-ГУС у детей [17, 18] (см. табл. 3).

Было замечено, что у пациентов с аГУС рецидивы осложняются сердечно-сосудистыми ишемическими явлениями [18, 41]. У 10-летнего мальчика с аГУС и мутацией СФВ были выявлены стенозы интра- и экстракраниальных артерий, крупных ветвей грудной и брюшной аорты, легочных и коронарных артерий [177], у 15-летнего пациента с мутацией СФН был выявлен стеноз церебральной артерии [178]. Эти наблюдения позволяют предположить, что аГУС с нарушением регуляции системы комплемента может также поражать крупные сосуды, что подтверждает логику ингибирования системы комплемента анти-С5 антителами.

ПРОГНОЗ

Данная статья представляет данные из двух основных когорт пациентов: французской педиатрической когорты [17] и итальянской когорты, включающей как детей, так и взрослых [18]. Обе когорты включали как ретроспективно проанализированных, так и пациентов текущего времени, но ни один из них не получал лечение экулизумабом. В целом, среднесрочный прогноз при аГУС неблагоприятный, причем более серьезный у взрослых по сравнению с детьми. Через 3–5 лет после начала заболевания у 44 [17] – 48% [18] детей и у 67% взрослых [18] развивались либо ТПН, либо летальный исход.

Прогноз меняется в зависимости от генотипа (см. табл. 3). Худший прогноз отмечается у пациентов с мутацией СФН, тогда как наиболее благоприятный — у пациентов с мутацией МСР. При мутации СФН смертность при первом эпизоде ГУС составила 20–30% у детей (эти цифры сейчас имеют историческое значение) и 4% у взрослых, у выживших заболевание прогрессировало до ТПН при первом эпизоде у 20–40% детей и у 48% взрослых [17, 18]. Для сравнения ни один пациент с мутацией МСР ни из одной когорты не умер при первом эпизоде, ТПН развивалась лишь у 25% взрослых пациентов с мутацией МСР, у пациентов детского возраста с мутацией МСР ТПН не развивалась вовсе.

Среди пациентов с мутациями СФН при первом эпизоде или в течение первого года от начала заболевания у 50–60% развивалась ТПН, тогда как у другой половины в основном при отсутствии последующих рецидивов отмечалось сохранение функции почек [17, 18]. Через 3–5 лет наблюдения процент умерших или достигших ТПН пациентов составил примерно 75% пациентов с мутацией СФН и 50–60% пациентов с мутацией СФН как взрослых, так и детей [17, 18]. В то время как 38% пациентов детского возраста с мутацией МСР из французской педиатрической когорты в течение 5 лет наблюдения достигли ТПН после ряда рецидивов, только 6% пациентов с мутацией МСР из итальянского регистра достигли ТПН на этой стадии, варьируя от 0% у детей до 25% у взрослых [18]. Прогноз ГУС у пациентов с мутацией СЗ [18, 83] или СФВ [18, 80, 81] такой же плохой, как и у пациентов с СФН-ГУС, независимо от возраста начала заболевания. У пациентов с THBD-мутациями также отмечается неблагоприятный исход, с прогрессией заболевания до ТПН у 46% пациентов в течение 1 года и у 54% в течение 3 лет наблюдения [18]. Среди пациентов с анти-СФН антителами у 35 [37] – 60% [18] в течение 3 лет наблюдения развивалась ТПН.

Достигнутый за последнее время прогресс в диагностике (к примеру, раннее выявления анти-СФН антител), а также терапевтические возможности, включающие раннюю агрессивную и пролонгированную плазмотерапию и использование экулизумаба, скорее всего, приведут к более благоприятным исходам заболевания. Вполне реалистичным является предположение, что неблагоприятный прогноз, показанный в представленных когортах, в скором времени будет казаться достоянием истории.

ЗАКЛЮЧЕНИЕ

Прогресс в понимании патофизиологии аГУС в течение последних 10 лет открыл пути к новым видам терапии, которые, следует надеяться, смогут предотвратить прогрессирование заболевания до ТПН у пациентов, входящих в группу риска, а также обеспечат успешные трансплантации у пациентов, уже находящихся на диализе. Недавние исследования и клинические данные подтверждают эффективность блокатора системы компенсации экулизумаба. В настоящее время необходимо решить проблему выбора наилучшего для каждого пациента индивидуального вида терапии, основанную на выявленной аномалии/аномалиях ком-
плекты в фазе заболевания, проводя выбор между плазмотерапией, экулизумабом, трансплантацией печени или комбинированной трансплантацией печени и почки и в ближайшем будущем использованием концентратов СФН или рекомбинантного СФН. Таким образом, благодаря прогрессу в понимании этого заболевания и накоплению знаний заболевание вступило в новую эру.

Сокращения
ADAMTS 13: денситрин и металлопротеиназа с последовательной тромбоспондиной типа 1, 13; аГУС: атипичный гемолитико-уреамический синдром; АФЛ: антифосфолипидный; СФН: фактор H системы комплемента; СФИ: фактор I системы комплемента; ЦНС: центральная нервная система; ДГУС: тотальная гемолитико-уреамический синдром; ДГУС: не тотальный гемолитико-уреамический синдром; Элиса: энзим-зависимое иммунное исследование; ТНН: терминальная почечная недостаточность; СПИД: свежезамороженная плазма; HELLP-синдром: гемолитическая анемия, повышение уровня печеночных энзимов, а также низкий уровень тромбоцитов; HLA: человеческий лейкоцитарный антиген; ГУС: гемолитико-уреамический синдром; ЛДГ: лактатдегидрогеназа; МАК: мембраноатакующий комплекс; МСР: мембранный кофакторный протеин; MLRA: мультиплексная аmplификация с лиганд-зависимой пробы; ПО: плазмообмен; РСА: регуляторы активации комплемента; SCR: короткие консенсусные повторы; СКВ: системная красная волчанка; SNP: полиморфизм одного нуклеотида; ПО: плазмообмен; RCA: регуляторы активации комплемента; RCA: регуляторы активации комплемента; ТМ: тромбоксансинтетический; ТМА: тромботическая микроангиопатия; ТМА: тромботическая микроангиопатия; ТМА: тромботическая микроангиопатия; ТМА: тромботическая микроангиопатия; УВ: эндотелиальный сосудистый фактор роста.

Благодарности
Dr Fadi Fakhouri, Dr Julien Zuber et la Groupe d’Etude du SHU et des Glomérulonéphrites membranoïdées pour l’etude des maladies rénales Génétiques (AIRG) for financial support and Dr. Fakhouri at Alexion Pharmaceuticals.

Вклад авторов
CL et VFB обсудили содержание статьи, написали оригинальную редактировали его и утвердили окончательный вариант. VFB выполнил исследование системы комплемента и генетического скрининга.

Конфликт интересов
C. Loirat была координатором французского исследования «Безопасность и эффективность экулизумаба у взрослых пациентов с аГУС, рецидивирующих/чувствительных к плазмотерапии» «C08-002A и C08-003A», является координатором французских исследований «Применение экулизумаба у взрослых и детей с аГУС «С10-004 и C10-003», а также является членом научно-консультативного совета при Alexion Pharmaceuticals

БИБЛИОГРАФИЧЕСКИЙ СПИСОК
1. Besbas N, Karpman D, Landau D, Loirat C, Proesmans W, Remuzzi G, Rizzoni G, Taylor CM, Van de Kar N, Zimmerhackl LB. A classification of hemolytic uremic syndrome and thrombotic thrombocytopenic purpura and related disorders. Kidney Int 2006;70:423–431
2. Noris M, Remuzzi G. Hemolytic uremic syndrome. J Am Soc Nephrol 2005;16:1035–1050. doi: 10.1681/ASN.2004100861
3. Johnson S, Taylor CM. What’s new in haemolytic uraemic syndrome? Eur J Pediatr 2008;167:965–971
4. Scheiring J, Rosales A, Zimmerhackl LB. Clinical practice. Today’s understanding of the haemolytic uraemic syndrome. Eur J Pediatr 2010;169:7–13
5. Keir L, Coward RJ. Advances in our understanding of the pathogenesis of glomerular thrombotic microangiopathy. Pediatr Nephrol 2011;26:523–532
6. Allen U, Licht C. Pandemic H1N1 influenza A infection and (atypical) HUS-more than just another trigger? Pediatr Nephrol 2011;26:3–5
7. Sartelet H, Toupane O, Lorenzato M, Fadel F, Noel LH, Lagonotte E, Birembaut P, Chanard J, Rieu P. Sirolimus-induced thrombotic microangiopathy is associated with decreased expression of vascular endothelial growth factor in kidneys. J Transplan 2005;5:2441–2447
8. Rodrigue R, Nakamura R, Palmer JM, Parker P, Shayani S, Nademanee A, Snyder D, Pullarkat V, Kogut N, Rosenthal J, Smith E, Karanes C, O’Donnell M, Krishnan AX, Senitzer D, Forman SJ. A phase II pilot study of tacrolimus/sirolimus GVHD prophylaxis for sibling donor hematopoietic stem cell transplantation using 3 conditioning regimens. Blood 2010;115:1098–1105
9. Izid C, Rixe O, Billemont B, Baumeil A, Deray G. Angiogenesis inhibitor therapies: focus on kidney toxicity and hypertension. Am J Kidney Dis 2007;5:203–218
10. Eremina V, Jefferson JA, Kowalewska J, Hochster H, Haas M, Weisstuch J, Richardson C, Kopp JB, Kabir MG, Backx PH, Gerber HR, Ferrara N, Barisoni L, Alpers CE, Quaggin SE. VEGF inhibition and renal thrombotic microangiopathy. N Engl J Med 2008;358:1129–1136
11. Bouli G, Patey N, Cazajous G, Robert C, Goujon JM, Fakhouri F, Brunel F, Noel LH, Knebelmann B. Thrombotic microangiopathy secondary to VEGF pathway inhibition by sunitinib. Nephrol Dial Transplant 2009;24:682–685
12. Sharma AP, Greenberg CR, Prasad AN, Prasad C. Hemolytic uremic syndrome (HUS) secondary to cobalamin C (cblC) disorder. Pediatr Nephrol 2000;22:2097–2103
13. Van Hove JL, Van Damme-Lombaerts R, Gränewald S, Peters H, Van Damme B, Froyns JP, Armout J, Wevers R, Baumgartner ER, Fowler B. Cobalamin disorder cbl-C presenting with late-onset thrombotic microangiopathy. Am J Med Genet 2002;111:195–201
14. Adams D, Venditti CP. In: Disorders of Intracellular Cobalamin Metabolism. Pagon RA, Bird TC, Dolan CR, Stephens K, editor. GeneReviews [Internet]. Seattle (WA): University of Washington, Seattle 1993; 2008 [updated 2009 Aug 11]
15. Kaplan BS, Chesney RW, Drummond KN. Hemolytic uremic syndrome in families. N Engl J Med 1975;292:1090–1093
16. Fakhouri F, Fremeaux-Bacchi V. Does hemolytic uremic syndrome differ from thrombotic thrombocytopenic purpura? Nat Clin Pract Nephrol 2007;3:679–687
17. Sellier-Leclerc AL, Fremeaux-Bacchi V, Macher MA, Niaudet P, Guest G, Boudaillez B, Bouissou F, Deschenes G, Gie S, Tsimaratos M, Fishbach M, Morin D, Nivet H, Alberti C, Loirot C. Differential impact of complement mutations on clinical characteristics in atypical hemolytic uremic syndrome. J Am Soc Nephrol 2007;18:2392–2400.

18. Noris M, Caprioli R, Bresin E, Mossalci A, Pianetti G, Gamba S, Daina E, Fenili C, Castelletti F, Sorosina A, Piras R, Donadelli R, Maranta R, van der Meer I, Conway EM, Zipfel PF, Goodship TH, Remuzzi G. Relative role of genetic complement abnormalities in sporadic and familial aHUS and their impact on clinical phenotype. Clin J Am Soc Nephrol 2010;5:1844–1859.

19. Constantinescu AR, Bitzan M, Weiss LS, Christen E, Kaplowitz N, Trachman H. Non-enteropathic hemolytic uremic syndrome: causes and short-term course. Am J Kidney Dis 2004;43:976–982.

20. Sullivan M, Eric L, Hoffmann MM, Arbeiter K, Patzer L, Buddke K, Hoppe B, Zeier M, Lhotta K, Rhybicki LA, Bock A, Berisha G, Neumann HP. Epidemiological approach to identifying genetic predispositions for atypical hemolytic uremic syndrome Ann Hum Genet 2010;74:741–748.

21. Caporali J, Noris M, Brioschi S, Pianetti G, Castelletti F, Bettinaglio P, Mele C, Bresin E, Cassis L, Gamba S, Porrati F, Bucchiioni S, Monteferrante G, Fang C, Liszewski MK, Kavanagh D, Atkinson JP, Remuzzi G. Genetics of HUS: the impact of MCP, CFH and IF mutations on clinical presentation, response to treatment, and outcome. Blood 2006;108:1267–1279.

22. Westra D, Volokhina E, van der Heijden E, Vos A, Huigen M, van der Velden T, van den Kar N, van den Heuvel E. Genetic disorders in complement (regulating) genes in patients with atypical haemolytic uraemic syndrome (aHUS) Nephrol Dial Transplant 2010;25:2195–2202.

23. Maga TK, Nishimura CJ, Weaver AE, Frees KL, Smith RJ. Mutations in alternative pathway complement proteins in American patients with atypical hemolytic uremic syndrome. Hum Mutat 2011;32:E1–13.

24. Coppo P, Schwarzinger M, Buffet M, Wynckel A, Clabaut K, Presne C, Poulain P, Malot S, Vanhille P, Azoulay E, Galicier L, Lemiale V, Mira JP, Ridel C, Rondeau E, Pourrat J, Girault S, Bordesoule D, Saheb S, Ramakers M, Hamidou M, Vernant JP, Guidet B, Wolf M, Veyradier A. French Reference Center for Thrombotic Microangiopathies. Predictive features of severe acquired ADAMTS13 deficiency in idiopathic thrombotic microangiopathies through each TMA reference center experience. PLoS One 2010;5:e10208.

25. Hovinga JA, Vesely SK, Terrell DR, Lämmlle B, George JN. Survival and relapse in patients with thrombotic thrombocytopenic purpura. Blood 2010;115:1500–1511.

26. Esparza-Gordillo J, Goicoechea de Jorge E, Buil A, Carreras Berges L, López-Trascas M, Sánchez-Corral P, Rodriguez de Córdoba S. Predisposition to atypical hemolytic uremic syndrome involves the concurrence of different susceptibility alleles in the regulators of complement activation gene cluster in 1q32. Mol Hum Reprod 2005;11:1431–1437.

27. Dragon-Durey MA, Blanch C, Marliol F, Loirot C, Blouin J, Sautes-Fridman C, Fridman WH, Fremeaux-Bacchi V. The high frequency of Complement Factor H-Related CHRF1 Gene deletion is restricted to specific subgroups of patients with atypical Haemolytic Uraemic Syndrome. J Med Genet 2009;46:447–450.

28. Bienaimé F, Dragon-Durey M-A, Regnier CH, Nilsson SC, Kwan WH, Blouin J, Jablonski M, Renault N, Rameix-Welti M-A, Loirot C, Sautes-Fridman C, Villoutreix BO, Blom AM, Fremeaux-Vacchioni B. Mutations in components of complement influence the outcome of Factor lassociated atypical hemolytic uremic syndrome. Kidney Int 2009;77:239–349.

29. Milford DV, Taylor CM, Guttridge B, Hall SM, Rowe B, Kleanthous H. Haemolytic uraemic syndromes in the British Isles 1985–8: association with verocytotoxin producing Escherichia coli. Part 1: Clinical and epidemiological aspects. Arch Dis Child 1990;65:716–721.

30. Surveillance of post-diarrhoeal hemolytic uremic syndrome in children less than 15 years of age in France. Institut de Veille Sanitaire, Ministère de la Santé, France; http://www.invs.sante.fr.

31. Loirot C, Noris M, Fremeaux-Bacchi V. Complement and the atypical hemolytic uremic syndrome. Pediatr Nephrol 2008;23:1957–1972.

32. Kwon T, Belot A, Rancin B, Baudouin V, Fremeaux-Bacchi V, Dragon-Durey MA, Cochat P, Loirot C. Varicella as a trigger of atypical haemolytic uremic syndrome associated with complement dysfunction: two cases. Nephrol Dial Transplant 2009;24:2752–2754.

33. Bento D, Mapril J, Rocha C, Marchank K, Kavanagh D, Barge D, Strain L, Goodship TH, Meneses-Oliveira C. Triggering of atypical hemolytic uremic syndrome by influenza A (H1N1) Ren Fail 2010;32:753–756.

34. Trachman H, Sethna C, Epstein R, D’Souza M, Rubin LG, Ginocchio CC. Atypical hemolytic uremic syndrome associated with H1N1 influenza A virus infection. Pediatr Nephrol 2011;26:145–146.

35. Caltik A, Akyüz SG, Erdogan O, Demircin G. Hemolytic uremic syndrome triggered with a new pandemic virus: influenza A (H1N1) Pediatr Nephrol 2011;26:147–148.

36. Fang CJ, Fremeaux-Bacchi V, Liszewski MK, Pianetti G, Noris M, Goodship TH, Atkinson JP. Membrane cofactor protein mutations in atypical hemolytic uremic syndrome (aHUS), fatal Stx-HUS, C3 glomerulonephritis and the HELLP syndrome. Blood 2007;111:624–632.

37. Dragon-Durey MA, Sethi SK, Bagga A, Blanc C, Blouin J, Rancin B, André JL, Takagi N, Cheong H, Hari P, Le Quintrec M, Niaudet P, Loirot C, Fridman WH, Fremeaux-Bacchi V. Clinical features of anti-factor H autoantibody-associated hemolytic uremic syndrome. J Am Soc Nephrol 2010;21:2180–2187.

38. Noris M, Remuzzi G. Atypical hemolytic-uremic syndrome. N Engl J Med 2009;361:1676–1687.

39. Fakhouri F, Roumenina L, Provot F, Sallé M, Caillard S, Couzi L, Essig M, Ribes D, Dragon-Durey MA, Bridoux F, Rondeau E, Fremeaux-Bacchi V. Pregnancy-associated hemolytic-uremic syndrome revisited in the era of complement gene mutations. J Am Soc Nephrol 2010;21:1659–1665.

40. Koehl B, Boyer O, Biebuyck-Gougé N, Kossorotoff M, Fremeaux-Bacchi V, Boddaert N, Niaudet P. Neurological involvement in a child with atypical hemolytic uremic syndrome. Pediatr Nephrol 2010;25:2539–2542.

41. Sallé M, Daniel L, Pierrecchio MD, Jaubert D, Fremeaux-Bacchi V, Berland Y, Burtey S. Myocardial infarction is a complication of factor H-associated atypical HUS. Nephrol Dial Transplant 2010;25:2202–2208.

42. Kaplan BS, Garcia CD, Chesney RW, Segar WE, Giogno K, Chem R. Peripheral gangrene complicating idiopathic and recessive hemolytic uremic syndromes. Pediatr Nephrol 2000;14:985–989.

43. Cameron JS, Vick R. Letter: Plasma-C3 in haemolytic-uraemic syndrome and thrombotic thrombocytopenic purpura. Lancet 1973;2:975.

44. Walport MJ. Complement. First of two parts. N Engl J Med 2001;344:1058–1066.

45. Delvaeye M, Noris M, De Vrieze A, Esmon CT, Esmon NL, Ferrell G, Del-Favelo J, Plaisance S, Claes B, Lambrechts D, Zoja C, Remuzzi G, Conway EM. Thrombomodulin mutations in atypical Hemolytic-Ureemic Syndrome. N Engl J Med 2009;361:345–357.

46. Rodrigues de Córdoba SR, de Jorge EG. Translational mini-review series on complement factor H: genetics and disease associations of human complement factor H. Clin Exp Immunol 2008;151:1–13.

47. Kajander T, Lehtinen MJ, Hyvärinen S, Bhattacharjee A, Leung E, Isenman DE, Meri S, Goldman A, Jokiranta TS. Dual interaction of factor H with C3d and glycosaminoglycans in host-nonhost discrimination by complement. Proc Natl Acad Sci USA 2011;108:2987–2992.

48. Morgan HP, Schmidt CQ, Guairanto M, Blaum BS, Gillespie D, Herbert AP, Kavanagh D, Mertens HD, Svergun DI, Johansson CM, Uhrin D, Barlow PN, Hannan JP. Structural basis for engagement by complement factor H of C3b on a self surface. Nat Struct Mol Biol 2011;18:463–470.

49. Kavanagh D, Richards A, Atkinson J. Complement regul-
latory genes and haemolytic uremic syndromes. *Annu Rev Med* 2008;59:293–309
50. Kavanagh D, Goodship T. Genetics and complement in atypical HUS. *Pediatr Nephrol* 2010;25:2431–2442
51. Sánchez-Corrall P, Melgosa M. Advances in understanding the aetiology of atypical Haemolytic Uræmic Syndrome. *Br J Haematol* 2010;150:529–542
52. Stahl AL, Vaziri-Sani F, Heinen S, Kristofferson AC, Gydel KH, Raaff R, Gutierrez A, Beringer O, Zipfel PF, Karpman D. Factor H dysfunction in patients with atypical hemolytic uremic syndrome contributes to complement deposition on platelets and their activation. *Blood* 2008;111:5307–5315
53. Licht C, Pluthero FG, Li L, Christensen H, Habbig S, Hoppe B, García-Ezpelet-Rafael F, Kah WH. Platelet-associated complement factor H in normal individuals and patients with atypical HUS. *Blood* 2009;114:4538–4545
54. Pickering MC, de Jorge EG, Martinez-Barricarte R, Recalde S, García-Layana A, Rose KL, Moss J, Walport MJ, Cook HT, de Córdoba SR, Botto M. Spontaneous hemolytic uremic syndrome triggered by complement factor H lacking surface function mutations. *Blood* 2007;109:3717–3724
55. Noris M, Ponce Castro IM, Remuzzi G. Familial haemolytic uraemic syndrome. *J Immunol Methods* 1999;231:163–119
56. Warwicker P, Goodship TH, Donn RL, Pirson Y, Nichols AW, Ward RM, Turnpenny P, Goodship JA. Genetic studies into inherited and sporadic haemolytic uremic syndrome. *Kidney Int* 1998;53:836–844
57. Saunders RE, Abarrategui-Garrido C, Fremeaux-Bacchi V, Goicoechea de Jorge E, Goodship TH, López Trascasa M, Noris M, Ponce Castro IM, Remuzzi G. Hemolytic uremic syndrome associated with complement factor H variants: a cause of atypical HUS? *Hum Mutat* 2007;28:222–234
58. Ferreira VP, Herbert AP, Cortes C, McKee KA, Blaum BS, Esswein ST, Uhrm D, Barlow PN, Pangburn MK, Kavanagh D. The binding of factor H to a complex physiological polyanions and C3b by three mechanisms in atypical hemolytic uremic syndrome. *J Immunol* 2009;182:7009–7018
59. Lehtinen MJ, Rops AL, Iseman DE, van der Vlag J, Jokiranta TS. Mutations in factor H impair regulation of surface-bound C3b by three mechanisms in atypical hemolytic uremic syndrome. *Biol Chem* 2009;284:15650–15658
60. Roumenina LT, Loirat C, Dragon-Durey MA, Halbwachs-Mecarelli L, Sautès-Fridman C, Fremeaux-Bacchi V. Alternative complement pathway assessment in patients with atypical HUS. *J Immunol Methods* 2011;365:8–26
61. Heinen S, Sanchez-Corrall P, Jackson MS, Strain L, Goodship JA, Kemp EJ, Skerka C, Jokiranta TS, Myers K, Wagner E, Robitaille P, Esparza-Gordillo J, Rodríguez de Córdoba S, Zipfel PF, Goodship TH. De novo gene conversion in the RCA gene cluster (1q32) causes mutations in complement factor H associated with atypical hemolytic uremic syndrome. *Hum Mutat* 2006;27:292–293
62. Venables JP, Strap L, Routledge D, Bourn D, Powell HM, Warwicker P, Díaz-Torres ML, Sampson A, Webb M, Pirson Y, Jackson MS, Hughes A, Wood KM, Goodship JA, Goodship TH. Atypical haemolytic uremic syndrome associated with a hybrid complement gene. *Plos Med* 2006;3:e431
63. Neumann HP, Salzmann M, Bohmer-Iwan B, Mannuelian T, Skerka C, Lenk D, Bender BU, Cybulia M, Riegler P, Königsrainer A, Neyer U, Bock A, Wdmer U, Male DA, Franke G, Zipfel PF. Haemolytic uremic syndrome and mutations of the factor H gene: a registry-based study of German speaking countries. *J Med Genet* 2003;40:676–681
64. Dragon-Durey MA, Loirat C, Cioarec S, Machet MA, Blouin J, Nivet H, Weiss L, Fridman WH, Fremeaux-Bacchi V. Anti-Factor H autoantibodies associated with atypical hemolytic uremic syndrome. *J Am Soc Nephrol* 2005;16:555–563
65. Józsi M, Strobel S, Dahse HM, Liu WS, Hoyer PF, Oppermann M, Skerka C, Zipfel PF. Anti factor H autoantibodies block C-terminus recognition function of factor H in hemolytic uremic syndrome. *Blood* 2007;110:1516–1518
66. Skerka C, Józsi M, Zipfel PF, Gamba S, Remuzzi G, Goodship JA, Fremeaux-Bacchi V. Autoantibodies in haemolytic uraemic syndrome (HUS). *Thromb Haemost* 2009;101:227–232
67. Strobel S, Hoyer PF, Mache CJ, Sulyok E, Liu WS, Richter H, Oppermann M, Zipfel PF, Józsi M. Functional analyses indicate a pathogenic role of factor H autoantibodies in atypical haemolytic uraemic syndrome. *Nephrol Dial Transplant* 2010;25:136–144
68. Zipfel PF, Edey M, Heinen S, Józsi M, Richter H, Misselwitz J, Hoppe B, Routledge D, Strain L, Hughes AE, Goodship JA, Licht C, Goodship TH, Skerka C. Deletion of Complement Factor H related genes CFHR1 and CFHR3 is associated with atypical haemolytic uraemic syndrome. *Plos Genetics* 2007;3:e41
69. Józsi M, Licht C, Strobel S, Zipfel SF, Skerka C. Factor H autoantibodies in atypical hemolytic uremic syndrome correlate with CFHR1, CFHR3 deficiency. *Blood* 2008;111:1512–1514
70. Moore I, Strain L, Pappworth I, Kavanagh D, Barlow PN, Herbert AP, Schmidt CQ, Strobel S, Morgan L, Goodship TH, Marchank B. Association of factor H autoantibodies with deletions of CFHR1, CFHR3, CFHR4 and with mutations in CFI, CFH, CD46, and C3 in patients with atypical haemolytic uraemic syndrome. *Blood* 2010;115:378–387
71. Lee BH, Kwak SH, Shin JI, Lee SH, Choi HJ, Kang HG, Ha IS, Lee JS, Dragon-Durey MA, Choi Y, Cheong H. Atypical hemolytic uremic syndrome associated with complement factor H autoantibodies and CFHR1/CFHR3 deficiency. *Pediatr Res* 2009;66:336–340
72. Richards A, Kemp EJ, Liszewski MK, Goodship JA, Lampe AK, Decorte R, Miskowski L, Skerka C, Zipfel PF, Perkins SJ, et al. The interactive Factor H-atypical hemolytic uremic syndrome mutation database and website: update and integration of membrane cofactor protein and Factor I mutations with structural models. *Hum Mutat* 2007;28:222–234
73. Noris M, Briosi S, Caprioli J, Todeschini M, Bresin E, Porrati F, Gamba S, Remuzzi G. Familial haemolytic uraemic syndrome and an MCP mutation. *Lancet* 2003;362:1542–1547
74. Fremeaux-Bacchi V, Porrati F, Gamba S, Remuzzi G. Gain-of-function mutations in complement factor I as found in atypical hemolytic uremic syndrome lead to altered secretion or altered function of factor I. *Eur J Immunol* 2010;40:172–185
75. Goicoechea de Jorge E, Harris CL, Esparza-Gordillo J, Carreras L, Arranz EA, Garrido CA, López-Trascasa M, Sánchez-Corrall P, Morgan BP, Rodríguez de Córdoba S. Gain-of-function mutations in complement factor B are associated with "atypical" haemolytic uraemic syndrome. *J Med Genet* 2004;41:e84
76. Kavanagh D, Kemp EJ, Mayland E, Winney RJ, Duffield JS, Warwick G, Richards A, Ward R, Goodship JA, Goodship TH. Mutations in complement factor I predispose to development of atypical haemolytic uremic syndrome. *J Am Soc Nephrol* 2005;16:2150–2155
77. Kavanagh D, Richards A, Noris M, Hauhart R, Liszewski MK, Karpman D, Goodship JA, Fremeaux-Bacchi V, Remuzzi G, Goodship TH, Atkinson JP. Characterization of mutations in complement factor I (CFI) associated with hemolytic uremic syndrome. *Mol Immunol* 2008;45:95–105
78. Nilsson SC, Nilsson SK, Kalchshmidt N, Trouw LA, Fremeaux-Bacchi V, Villoutreix BO, Blom AM. Mutations in complement factor I as found in atypical haemolytic uraemic syndrome lead either to altered secretion or altered function of factor I. *Eur J Immunol* 2010;40:172–185
79. Goicoechea de Jorge E, Harris CL, Esparza-Gordillo J, Carreras L, Arranz EA, Garrido CA, López-Trascasa M, Sánchez-Corrall P, Morgan BP, Rodríguez de Córdoba S. Gain-of-function mutations in complement factor B are associated with "atypical" haemolytic uraemic syndrome.
atypical hemolytic uremic syndrome. *Proc Natl Acad Sci USA* 2007;104:240–245
81. Roumenina LT, Jablonski M, Hue C, Blouin J, Dimitrov JD, Dragon-Durey MA, Cayla M, Fridman WH, Machet RA, Ribes D, Moulonguet L, Rostaing L, Satchell SC, Mathieson PW, Sautes-Fridman C, Loirat C, Regnier CH, Halbwachs-Mecarelli L, Fremeaux-Bacchi V. Hyperfunctional C3 convertase leads to complement deposition on endothelial cells and contributes to atypical hemolytic uremic syndrome. *Blood* 2009;114:2837–2845
82. Tawadrous H, Maga T, Sharma J, Kupferman J, Smith RJ, Schoeneman M. A novel mutation in the complement factor B gene (CFB) and atypical hemolytic uremic syndrome. *Pediatr Nephrol* 2010;25:189–195
83. Fremeaux-Bacchi V, Miller EC, Liszewski MK, Strain L, Loirat C, Van De Wall J, Tomson C, Franchini M, Edey M, Diaz-Torres M, Kavanagh D, Roumenina L, Branch DW, Goodship TH, Fremeaux-Bacchi V. Factor H mutation associated de novo thrombotic microangiopathy following kidney transplantation. *Am J Transplant 2009;9:1177–1181
84. Kokame K, Nobe Y, Kokubu O, Oyamaya A, Miyata T. FRET-WF73, a first fluorogenic substrate for ADAMS13 assay. *Br J Haematol 2005;129:93–100
85. Bouts AH, Roofthooft MT, Salomons GS, Davin JC. CD46-associated atypical hemolytic uremic syndrome with uncommon cause caused by cibc deficiency. *Pediatr Nephrol* 2010;25:2547–2548
86. Guitonis V, Frémeaux-Bacchi V, Giraudier S, Favier R, Borderie D, Massy Z, Mougenot B, Rosenblatt DS, Deschênes G. Late-onset thrombotic microangiopathy caused by cibc disease: association with a factor H mutation. *Am J Kidney Dis 2005;45:588–595
87. 2009;4:1356–1362
88. Esperanza-Górdillo J, Jorge EG, Garrido CA, Carreras L, López-Trascasa M, Sánchez-Coral P, de Córdoba SR. Insights into three independent predisposition factors in a large, multiple affected pedigree. *Mol Immunol 2006;43:1769–1775
89. Fremeaux-Bacchi V, Kemp EJ, Goodship JA, Dragon-Durey MA, Strain L, Loirat C, Deng HW, Goodship TH. The development of atypical HUS is influenced by susceptibility factors in factor H and complement factor protein-encoding genes from two independent cohorts. *J Med Genet 2005;42:852–856
90. Caprioli J, Castelletti F, Bucchioni S, Bettinaglio P, Bresin E, Pianetti G, Gamba S, Broiochi S, Daina E, Remuzzi G, Noris M. International Registry of Recurrent and Familial HUS/HTP. Complement factor H mutations and gene polymorphisms in haemolytic uraemic syndrome: the C-257T, the A2089G and the G2881T polymorphisms are strongly associated with the disease. *Hemost J Pediatr 2003;12:3385–3395
91. Gómez-Macías MC, de Ccontexte AK, Schmuhl J, Tally F, Wältner T, Zimmerhackl LB, Mayer G, Fremeaux-Bacchi V. A large family with a gain-of-function mutation of complement C3 predisposing to atypical hemolytic uremic syndrome, microhematuria, hypertension and chronic renal failure. *Clin J Am Soc Nephrol 2009;4:1356–1362
92. Abarrategui-Górdillo C, Martínez-Barricarte R, López-Trascasa M, de Córdoba SR, Sánchez-Coral P. Characterization of complement factor H-related (CFHR) proteins in plasma reveals novel genetic variations of CFHR1 associated with atypical hemolytic uremic syndrome. *Blood* 2009;114:4261–4271
93. Blom AM, Bergström F, Edery M, Díaz-Torres M, Kavanagh D, Lampé A, Goodship JA, Strain L, Moghal N, McHugh M, Inward C, Tomson C, Frémeaux-Bacchi V, Villoutreix BO, Goodship TH. A novel non-synonymous polymorphism (p.Arg240His) in C4b-binding protein domain 15. *Hum Mol Genet 2003;12:3385–3395
94. Anceta G, Besbas N, Johnson S, Landau D, Ariceta G, Besbas N, Johnson S, Karpman D, Landau D, Ariceta G. Late-onset thrombotic microangiopathy caused by factor H mutations in patients with hemolysis, elevated liver enzymes, and low platelet count syndrome. *Blood* 2008;112:4542–4545
95. Le Quintrec M, Lionet A, Kamar N, Karras A, Barbier S, Buchler M, Fakhouri F, Provost F, Fridman WH, Tervet E, Legendre C, Zuber J, Frémeaux-Bacchi V. Complement mutations associated with nephrotic syndrome and complement factor H mutations in patients with hemolysis, elevated liver enzymes, and low platelet count syndrome. *Blood* 2008;112:4542–4545
96. Fremeaux-Bacchi V, Miller EC, Liszewski MK, Strain L, Loirat C, Van De Wall J, Tomson C, Franchini M, Edey M, Diaz-Torres M, Kavanagh D, Roumenina L, Branch DW, Goodship TH, Fremeaux-Bacchi V, Atkinson JP. Mutations in Complement Regulatory Proteins Predispose to Preeclampsia: A Genetic Analysis of the PROMISSE Cohort. *PLoS Med 2011;8:e1001013
97. Loirat C, Garnier A, Seller-Leclerc AL, Kwon T Plasma therapy in atypical hemolytic uremic syndrome. *Semin Thromb Hemost 2010;36:673–681
98. Pichette V, Quirin S, Schürch W, Brun G, Lehnert-Netsch G, Delage J-M. Familial hemolyticuremic syndrome and homozygous factor H deficiency 1994;24:936–941
99. Landau D, Shalev H, Levy-Finer G, Polonsky A, Segev Y, Katchko L. Familial hemolytic-uremic syndrome associated with factor H deficiency owing to a novel mutation in the complement factor H gene. *J Pediatr 2001;138:412–417
100. Nathanson S, Frémeaux-Bacchi V, Deschênes G. Successful plasma therapy in atypical hemolytic uremic syndrome with factor H deficiency. *Pediatr Nephrol 2001;16:554–556
101. Nathanson S, Ulinskis T, Frémeaux-Bacchi V, Deschênes G. Secondary failure of plasma therapy in factor H deficiency. *Pediatr Nephrol 2006;21:1769–1771
102. Licht C, Weyersberg A, Heinen S, Stapenholtz LD, Devenge J, Beck B, Waldherr R, Kirschfink M, Zipfel PF. Successful plasma therapy for atypical hemolytic uremic syndrome caused by factor H deficiency owing to a novel mutation in the complement factor protein domain 15. *Am J Kidney Dis 2005;45:415–421
103. Choi HY, Lee BS, Moon KC, Ha IS, Cheong HI, Choi Y. Complete factor H deficiency associated with atypical hemolytic uremic syndrome in a neonate. *Pediatr Nephrol 2007;22:874–880
104. Stratton JD, Warwicker P. Successful treatment of factor H-related haemolytic uraemic syndrome. *Nephrol Dial Transplant 2002;17:684–685
105. Gerber A, Kirchhoff-Moradpour AH, Obieglo S, Brandis M, Kirschfink M, Zipfel PF, Goodship JA, Zimmerhackl LB. Successful (?) therapy of hemolytic-uremic syndrome with factor H abnormality. *Pediatr Nephrol 2003;18:952–955
106. Filler G, Radnakrishnan S, Strain L, Hill A, Knoll G, Good-
ship TH. Challenges in the management of infantile factor H associated hemolytic uremic syndrome. *Pediatr Nephrol* 2004;19:908-913.

113. Davin JC, Strain L, Goodship THJ. Plasma therapy in atypical haemolytic uremic syndrome: lessons from a family with a factor H mutation. *Pediatr Nephrol* 2008;23:1517–1521.

114. Lapeyraque AL, Wagner E, Phan V, Clermont MJ, Merdouli A, Frémeaux-Bacchi V, Goodship TH. Effect of plasma therapy in atypical haemolytic uremic syndrome with complement factor H mutations. *Pediatr Nephrol* 2008;8:1363–1366.

115. De S, Waters AM, Segal AO, Trautmann A, Harvey EA, Lich C. Severe atypical HUS caused by CFH S1191L: case presentation and review of treatment options. *Pediatr Nephrol* 2010;25:97–104.

116. López Chairez M, Shahel H, Schlesinger M, Katz Y, Kachko L, Carmi R, Sofer S, Landau D. Hypocomplementemic autosomal recessive hemolytic uremic syndrome with decreased factor H. *Pediatr Nephrol* 1998;12:619–624.

117. Abarrategui-Garrido C, Melgosa M, Peña-Carrion A, de Jorge EG, de Cordoba SR, Lopez-Trascasa M, Sanchez-Corral P. Mutations in proteins of the alternative pathway of complement and the pathogenesis of atypical haemolytic uremic syndrome. *Am J Kidney Dis* 2008;51:171–180.

118. Sethi SK, Dragon-Durey MA, Thaker N, Hari P, Bagga A. Hemolytic uremic syndrome due to homozygous factor H deficiency. *Clin Exp Nephrol* 2009;13:526–530.

119. Nilsson SC, Karpman D, Vaziri-Sani F, Kristoffersson AC, Salomon R, Provot F, Frémeaux-Bacchi V, Trous W, Luan KL, Blom AM. A mutation in factor I that is associated with atypical haemolytic uremic syndrome does not affect the function of factor I in complement regulation. *Mol Immunol* 2007;44:1835–1844.

120. Davin JC, Buter N, Groothoff J, van Wijk J, Bouts A, Strain L, Goodship T. Propylphylactic plasma exchange in CD46-associated atypical haemolytic uremic syndrome. *Pediatr Nephrol* 2009;24:1757–1760.

121. Chatelet V, Frémeaux-Bacchi V, Llobetbedez T, Ficheux M, Hayez Y. Eculizumab and discontinuation of plasma exchange after a third kidney transplantation patient with recurrent atypical haemolytic uremic syndrome. *Am J Transplant* 2009;9:2644–2645.

122. Kwon T, Dragon-Durey MA, Macher MA, Baudouin V, Maisin A, Peuchmaur M, Fremeaux-Bacchi V, Imai M, Grinyó JM. Eculizumab and long-term efficacy of eculizumab in a renal transplant patient with recurrent atypical haemolytic uremic syndrome. *Am J Transplant* 2009;9:2644–2645.

123. Boyer O, Balzano E, Charbit M, Biebuyck-Gougou M, Salomon R, Dragon-Durey MA, Frémeaux-Bacchi V, Loirat C. Successful pre-transplant management of a patient with anti-factor H autoantibodies-associated haemolytic uraemic syndrome. *Pediatr Nephrol* 2008;23:2088–2090.

124. Provot F, Glowacki F, Veronique Frémeaux-Bacchi V, Hazzan M. A case of adult atypical haemolytic uremic syndrome related to anti-factor H autoantibodies successfully treated by plasma exchange, corticosteroids and rituximab. *NDT Plus* 2009;2:458–460.

125. Chatelet V, Frémeaux-Bacchi V, Bobo P, Pulse cyclophosphamide therapy and clinical remission in atypical haemolytic uremic syndrome with anti-complement factor H autoantibodies. *Am J Kidney Dis* 2010;55:923–927.

126. Saldan RM, Ruggenenti P, Remuzzi G. Consensus Study Group. Liver-kidney transplantation to cure atypical haemolytic uremic syndrome. *J Am Soc Nephrol* 2009;20:940–949.

127. Michon B, Moghrabi A, Winikoff R, Barrette S, Bernstein S, Jokiranta TS. Successful liver-kidney transplantation in two children with aHUS caused by a mutation in CFHR1 and 3 deficiency and CFH variant G2850T. *Am J Transplant* 2010;10:168–172.

128. Ohali M, Shalev S, S坷j Y, Kachko L, Achor G, Chiavasso M, Remuzzi G, Ruggenenti P, Colledan M, Gridelli B. Combined kidney and liver transplantation for Atypical Hemolytic Uremic Syndrome Associated With a CFH Mutation. *Am J Kidney Dis* 2010;55:708–711.

129. Albertazzi V, Bonucci D, De Amicis S, Americo C, Ghiandai G, Cappelli G. A favorable 3-year outcome of kidney transplantation in atypical hemolytic uremic syndrome associated with a factor H mutation: case report. *Transplant Proc* 2010;42:1352–1354.

130. Cruzado JM, de Cordoba SR, Mellili E, Bestard O, Rama I, Sanchez-Corral P, Lopez-Trascasa M, Navarro I, Torras J, Gomà M, Grinyó JM. Successful renal transplantation in a patient with atypical hemolytic uremic syndrome carrying mutations in both factor I and MCP. *Am J Transplant* 2009;9:1477–1483.

131. Remuzzi G, Ruggenenti P, Codazzi D, Noris M, Caprioli J, Locatelli G, Gridelli B. Combined kidney and liver transplantation for familial haemolytic uremic syndrome. *Lancet* 2002;359:1671–1672.

132. Remuzzi G, Ruggenenti P, Collodel M, Gridelli B, Bertani A, Bettinaglio P, Bucchiioni S, Sonzogni A, Bonanomi E, Sonzogni V, Plat JL, Perico N, Noris M. Hemolytic uremic syndrome: a fatal outcome after kidney and liver transplantation performed to correct factor H gene mutation. *Am J Transplant* 2005;5:1146–1150.

133. Cheong HI, Lee BS, Kang HG, Hahn H, Suh KS, Ha IS, Choi Y. Attempted treatment of factor H deficiency by liver transplantation. *Pediatr Nephrol* 2004;19:454–458.

134. Saldan RM, Emre SH, Shneider BL, Benchimol C, Ames S, Bromberg JS, Remuzzi G, Strain L, Goodship TH. Favorable long-term outcome after liver-kidney transplant for recurrent hemolytic uremic syndrome associated with a factor H mutation. *Am J Transplant* 2006;6:1948–1952.

135. Jalkheto H, Pettonen S, Koskinen A, Punttila J, Isoniemi H, Holmberg C, Pinomäki A, Armstrong E, Koivusalo H, Tukianen E, Määskö H, Saldan J, Remuzzi G, de Cordoba S, Lassila R, Meri S, Jokiranta TS. Successful liver-kidney transplantation in two children with aHUS caused by a mutation in complement factor H. *Am J Transplant* 2008;8:216–221.

136. Saldan RM, Shneider BL, Bromberg JS, Shi PA, Ward
SC, Magid MS, Benchimol C, Seikaly MG, Emre SH, Bresin E, Remuzzi G. Successful split liver-kidney transplant for factor H associated hemolytic uremic syndrome. *Clin J Am Soc Nephrol* 2009;4:201–206

146. Haller W, Milford DV, Goodship TH, Sharif K, Mirza DF, McKiernan PJ. Successful Isolated Liver Transplantation in a Child with Atypical Hemolytic Uremic Syndrome and a Mutation in Complement Factor H. *Am J Transplant* 2010;10:2142–2147

147. Wilson C, Torpey N, Jacques B, Strain L, Talbot D, Manas D, Goodship T. Successful simultaneous liver-kidney transplant in an adult with atypical hemolytic uremic syndrome associated with a mutation in complement factor H. *Am J Kidney Dis* 2011;58:109–112

148. Brodsky RA. Advances in the diagnosis and therapy of paroxysmal nocturnal hemoglobinuria. *Blood Rev* 2008;22:65–74

149. Parker C. Eculizumab for paroxysmal nocturnal haemoglobinuria. *Lancet* 2009;373:759–767

150. Kelly RJ, Hill A, Arnold LM, Brooksbank GL, Richards SJ, Cullen M, Mitchell LD, Cohen DR, Gregory WM, Hillmen P. Long-term survival with eculizumab in paroxysmal nocturnal hemoglobinuria: sustained efficacy and improved survival. *Blood* 2011;117:6786–6792

151. Rosales A, Riedl M, Zimmerhackl LB. Thrombotic microangiopathy: atypical HUS: current diagnostic and therapeutic approaches. *Nat Rev Nephrol* 2010;6:504–506

152. Waters AM, Licht C. aHUS caused by complement dysregulation: new therapies on the horizon. *Pediatr Nephrol* 2011;26:41–57

153. Ram S, Lewis LA, Rice PA. Infections of people with complement deficiencies and patients who have undergone splenectomy. *Clin Microbiol Rev* 2010;23:740–780

154. Gruppo RA, Rother RP. Eculizumab for congenital atypical hemolytic-uremic syndrome. *N Engl J Med* 2009;360:544–546

155. Kirschfink M. Eculizumab for atypical hemolytic-uremic syndrome. *Semin Thromb Hemost* 2010;36:669–672

156. Lapeyrque AL, Frémeaux-Bacchi V, Robitaille P. Efficacy and safety of eculizumab in atypical hemolytic-uremic syndrome. *Pediatr Nephrol* 2011;26:3421–3425

157. Schmidt CQ, Slingsby FC, Richards A, Barlow PN. Production of biologically active recombinant human factor H in Physcomitrella. *Plant Biotechnol J* 2011;9:373–383

158. Savatovsky J, Moret J, Fremeaux-Bacchi V, Deschênes G, Goodship TH, Majoie C, Bouts A, Majoie H, Hartmann A, Bouts A. Production of biologically active recombinant human factor H in Physcomitrella. *Plant Biotechnol J* 2011;9:373–383

159. Eitner F, Delmas Y, Loirat C, Greenbaum LA, Zimmerhackl LB. Safety and efficacy of Eculizumab in aHUS resistant to plasma therapy: interim analysis from a Phase II trial. *FC 406, 43rd Annual Meeting of the American Society of Nephrology, Denver, CO, USA, 2010. pp. 16–21

160. Muus P, Legendre C, Douglas K, Hourmant M, Delmas Y, Herthelius BM, Trivelli A, Loirat C, Goodship TH, Licht C. Safety and efficacy of eculizumab in aHUS patients on chronic plasma therapy: Interim analysis of a phase II trial. *Poster 1274, 43rd Annual Meeting of the American Society of Nephrology, Denver, CO, USA, 2010. pp. 16–21

161. Ohanian M, Cable C, Halka K. Eculizumab safely reverses renal dysregulation in atypical hemolytic-uremic syndrome. *Pediatr Nephrol* 2011;26:155–157