ON A PROOF OF THE BOUCHARD-SULKOWSKI CONJECTURE

SHENGMAO ZHU

Abstract. In this short note, we give a proof of the free energy part of the BKMP conjecture of \(\mathbb{C}^3 \) proposed by Bouchard and Sulkowski [4]. Hence the proof of the full BKMP conjecture for the case of \(\mathbb{C}^3 \) has been finished.

1. Introduction

Motivated by B. Eynard and his collaborators’ series works on matrix model [9, 7, 8], V. Bouchard, A. Klemm, M. Mariño and S. Pasquetti [1] proposed a new approach (Remodeling the B-model) to compute the topological string amplitudes for local Calabi-Yau manifolds and conjectured that the remodeling approach is equivalent to the Gromov-Witten theory of corresponding toric Calabi-Yau manifolds [2]. In particular, for the case of \(\mathbb{C}^3 \), V. Bouchard and M. Mariño [3] calculated the correlation functions by remodeling approach and conjectured that they are equal to the topological vertex computed by Gromov-Witten theory. Later, L. Chen and J. Zhou [6, 15] gave the rigorous proof independently based on the symmetric form of cut-and-join equation of Mariño-Vafa formula proved in [12] (see also [10] for a new proof).

Recently, V. Bouchard and P. Sulkowski [4] proposed the following free energy part of the BKMP conjecture for the case of \(\mathbb{C}^3 \) (Conjecture 2 in [4]).

Conjecture 1.1. Let \(\Sigma_f \) be the framed curve mirror to \(X = \mathbb{C}^3 \). Then the free energies obtained through the Eynard-Orantin recursion are given by:

\[
F^{(g)} = \frac{1}{2} (-1)^g \times \frac{|B_{2g}||B_{2g-2}|}{2g(2g-2)(2g-2)!}.
\]

In this note, we will give a proof of the Conjecture 1.1 based on a Hodge integral identity and some residue calculations. After finished the draft of this paper and contacted with Prof. V. Bouchard, the author knew that this conjecture has also been proved by V. Bouchard and his collaborators [5] at the same time.

2. The BKMP Conjecture

Let us consider a Riemann surface with genus \(g \),

\[
\Sigma = \{ x, y \in \mathbb{C}^* | H(x, y; z_a) = 0 \} \subset \mathbb{C}^* \times \mathbb{C}^*
\]

where \(z_a, a = 1, \ldots, k \) are the deformation parameters of the complex structure of \(\Sigma \). \(H(x, y; z_a) \) is a polynomial in \((x, y) \) which are \(\mathbb{C}^* \)-variables. Let \(q_i, i = 1, \ldots, 2g+2 \) be the ramification points of \(\Sigma \) and on the neighborhood of \(q_i \), one can find two distinct points \(q, \bar{q} \in \Sigma \) such that \(x(q) = x(\bar{q}) \).

We mention that the mirror curve of a toric Calabi-Yau 3-fold satisfies these conditions.

The recursion process starts with the following ingredients.

2.1. Ingredients. First, one needs the meromorphic differential \(\omega(p) = \log y(p) \frac{dx(p)}{x(p)} \) on \(\Sigma \).

One also needs the Bergmann kernel \(B(p, q) \) on \(\Sigma \) defined by the following conditions.

\[
B(p, q) \sim_{p \to q} \frac{dpdq}{(p-q)^2} + \text{finite}.
\]
B(p, q) is holomorphic except \(p = q \).

\[
\oint_{A_\alpha} B(p, q) = 0, \quad \alpha = 1, \ldots, \bar{g}.
\]

where \((A_\alpha, B^\alpha)\) is a canonical symplectic basis of one-cycles on \(\Sigma \).

For the case of \(\bar{g} = 0 \), the Bergman kernel is given by

\[
B(p_1, p_2) = \frac{dy_1 dy_2}{(y_1 - y_2)^2}, \quad y_i = y(x_i).
\]

2.2. BKMP’s construction. Inspired by the work [14], Bouchard, Klemm, Mariño and Pasquetti [11, 12] defined the free energy \(F^{(g,h)}(p_1, \ldots, p_h) \) on the mirror curve \(H(x, y; z_0) = 0 \) based on the topological recursions constructed by B. Eynard and N. Orantin [7] as follows.

\[
F^{(g,h)}(p_1, \ldots, p_h) = \int W^{(g,h)}(p_1, \ldots, p_h),
\]

\[
W^{(0,1)}(p) = \omega(p),
\]

\[
W^{(0,2)}(p_1, p_2) = B(p_1, p_2) - \frac{dp_1 dp_2}{(p_1 - p_2)^2},
\]

\[
W^{(g,h)}(p_1, \ldots, p_h) = \bar{W}^{g,h}(p_1, \ldots, p_h), \quad \text{for } (g, h) \neq (0, 1), (0, 2).
\]

where \(\bar{W}^{(g,h)}(p_1, \ldots, p_h) \) is a multilinear meromorphic differential defined by the following topological recursions.

\[
\bar{W}^{(0,1)}(p) = 0, \quad \bar{W}^{(0,2)}(p, q) = B(p, q),
\]

\[
\bar{W}^{(g,h+1)}(p_1, \ldots, p_h) = \sum_{q \neq p} Res_{q = \bar{q}} \frac{dE_q \sigma(p)}{\omega(q) - \omega(\bar{q})} \left(\bar{W}^{(g-1,h+2)}(q, \bar{q}, p_1, \ldots, p_h) \right)
\]

\[+ \sum_{l=0}^{g} \sum_{J \subset H} \left(\bar{W}^{(g-l,|J|+1)}(q, p_J) \bar{W}^{(l,|H|-|J|+1)}(\bar{q}, p_{H \setminus J}) \right)\]

\[H = \{1, \ldots, h\}, \quad J = \{i_1, \ldots, i_j\} \subset H, \quad p_J = \{p_{i_1}, \ldots, p_{i_j}\},
\]

\[dE_q \sigma(p) = \frac{1}{2} \int q B(p, \psi), \quad \text{near a ramification point } q_i.
\]

Moreover, in [2], they defined \(F^{(g)} \quad (g \in \mathbb{Z}, \quad g \geq 2) \) on \(\Sigma \) by

\[
F^{(g)} = \frac{(-1)^g}{2 - 2g} \sum_{q_i} Res_{q = q_i} \theta(q) W^{(g,1)}(q),
\]

where \(\theta(q) \) is any primitive of \(\omega(q) \) given by \(d\theta(q) = \omega(q) \). And \(F^{(1)} \) is defined separately as

\[
F^{(1)} = -\frac{1}{2} \log \tau_B - \frac{1}{24} \log \prod_i \omega'_{q_i}.
\]

where \(\omega'_{q_i} = \frac{1}{d \bar{z}_i(p)} \left(\frac{d \log y_i(x)}{x} \right) \bigg|_{p=q_i}, \quad z_i(p) = \sqrt{x(p) - x(q_i)} \) and \(\tau_B \) is the Bergmann tau-function [7].

Then the BKMP conjecture for toric Calabi-Yau 3-fold can be formulated as follow (Conjecture 1 in [3]).

Conjecture 2.1. Let \(\Sigma_f \) be the framed mirror curve to a toric Calabi-Yau threefold \(X \).

1. The free energies \(F^{(g)} \) constructed by the Eynard-Orantin recursion are mapped by the mirror map to the genus \(g \) generating functions of Gromov-Witten invariants of \(X \).
2. The correlation functions $F^{(g,h)}$ are mapped by the open/closed mirror map to the generating functions of framed open Gromov-Witten invariants.

3. BKMP conjecture for the case of \mathbb{C}^3

In this section, we restrict us to consider the special toric Calabi-Yau 3-fold \mathbb{C}^3 which has the framed mirror curve

$$
\Sigma_f = \{ H(x,y) := x + y^f + y^{f+1} = 0 \} \subset (\mathbb{C}^*)^2.
$$

Σ_f has only one ramification point

$$
y_* = -\frac{f}{f+1}, \quad x_* = \frac{f+f}{(-1-f)^{-1-f}}.
$$

By the definition of $\theta(q)$ given in Section 2, we have

$$
\theta(y) = \frac{f}{2}(\log y)^2 + \log y \log(1+y) + Li_2(-y).
$$

We define the differential form $\Psi_n(y; f)$ for $n \geq 0$ as follow:

$$
\Psi_n(y; f) = -dy \frac{(1+f)y + f}{y(y+1)} \left(\frac{y(y+1)}{1+f} \frac{d}{dy} \right)^{n+1} \frac{1}{(1+f)((1+f)y + f)}.
$$

For examples, when $n = 0$ and 1:

$$
\Psi_0(y; f) = dy \frac{1}{(f+(f+1)y)^2};
\Psi_1(y; f) = -dy \frac{3(1+f)y(y+1) - (1+2y)(f+f+1)y)}{(f+f+1)y^4}.
$$

For convenience, in the following exposition, we also introduce the notation $\hat{\Psi}_n(y; f)$ by the relationship $\Psi_n(y; f) = \hat{\Psi}_n(y; f)dy$.

By the Eynard-Orantin topological recursions introduced in Section 2, we have

$$
W^{(0,3)}(y_1, y_2, y_3) = -(f(f+1))^2 \Psi_0(y_1; f) \Psi_0(y_2; f) \Psi_0(y_3; f);
$$

$$
W^{(0,4)}(y_1, y_2, y_3, y_4) = (f(f+1))^2 \sum_{i=1}^4 \Psi_1(y_i; f) \prod_{j \neq i} \Psi_0(y_j; f);
$$

$$
W^{(1,1)}(y) = \frac{1}{24} \left((1+f+f^2) \Psi_0(y; f) - f(f+1) \Psi_1(y; f) \right);
$$

$$
W^{(1,2)}(y_1, y_2) = \frac{1}{24} \left((1+f+f^2) \Psi_0(y_1; f) \Psi_1(y_2; f) + f(1+f) \Psi_0(y_1; f) \Psi_2(y_2; f) + (y_1 \leftrightarrow y_2) + f(1+f) \Psi_1(y_1; f) \Psi_1(y_2; f) \right);
$$

$$
W^{(2,1)}(y) = \frac{1}{5760} \left(2f(f+1) \Psi_1(y; f) - 7(1+f+f^2)^2 \Psi_2(y; f) + 12f(1+2f+2f^2+f^3) \Psi_3(y; f) - 5f^2(1+f)^2 \Psi_4(y; f) \right).
$$

For the general $g \geq 2$ and $h \geq 1$, L. Chen [14] and J. Zhou [15] have proved the following identity independently (See also [14]).

$$
W^{(g,h)}(y_1, \ldots, y_h) = (-1)^{g+h}(f(f+1))^{h-1} \sum_{n_i \geq 0} \prod_{i=1}^h \tau_{n_i} \Lambda_g^\vee(1) \Lambda_g^\vee(-f-1) \Lambda_g^\vee(f) \ conjugate of \prod_{i=1}^h \Psi_{n_i}(y_i; f)
$$

where $\Lambda_g^\vee(t) = t^g - t^{g-1} \lambda_1 + \cdots + (-1)^g \lambda_g$.
In particular,\
\[W^{(g, 1)}(y) = (-1)^{g+1} \sum_{n \geq 0} 2^{g-2} \langle \tau_n \Lambda^\vee_g(1) \Lambda^\vee_g(-f - 1) \Lambda^\vee_g(f) \rangle_g \Psi_b(y; f). \]

Thus the free energy part of the BKMP conjecture for the case of \(\mathbb{C}^3 \) is given by
\[F(g) = \frac{(-1)^g}{2 - 2g} \text{Res}_{y=\frac{f}{1+f}} \frac{\theta(y) W^{(g, 1)}(y)}{y}, \]
\[= \frac{1}{2g - 2} \sum_{n \geq 0} \langle \tau_n \Lambda^\vee_g(1) \Lambda^\vee_g(-f - 1) \Lambda^\vee_g(f) \rangle_g \text{Res}_{y=\frac{f}{1+f}} \theta(y) \Psi_n(y; f). \]

Then Conjecture 1.1 will be finished by the following two lemmas and the Hodge integral identity [11], [13],
\[\langle \lambda_g \lambda_{g-1} \lambda_{g-2} \rangle_g = \frac{1}{2(2g - 2)!} \frac{|B_{2g-2}|}{2g - 2} \frac{|B_{2g}|}{2g}. \]

Lemma 3.1. The degree 3\(g - 3 \) part of \(\Lambda^\vee_g(1) \Lambda^\vee_g(-f - 1) \Lambda^\vee_g(f) \) is given by
\[(-1)^{g-1} f(f + 1) \lambda_g \lambda_{g-1} \lambda_{g-2}. \]

Proof. By Mumford’s relation: \(\Lambda^\vee_g(1) \Lambda^\vee_g(-1) = (-1)^g \), we have \(\lambda_{g-1}^2 = 2 \lambda_g \lambda_{g-2}, \lambda_g^2 = 0 \). Then the degree 3\(g - 3 \) part of \(\Lambda^\vee_g(1) \Lambda^\vee_g(-f - 1) \Lambda^\vee_g(f) \) is equal to
\[\langle (\lambda^g_1 + (-1)^{g-1} \lambda_{g-1} + (-1)^{g-2} \lambda_{g-2}) \rangle (-1)^g (\lambda_g + (f + 1) \lambda_{g-1} + (f + 1)^2 \lambda_{g-2}) \times \langle (\lambda^g_1 + f(-1)^{g-1} \lambda_{g-1} + f^2(-1)^{g-2} \lambda_{g-2}) \rangle \]
\[= (-1)^{g-1} f(f + 1) \lambda_g \lambda_{g-1} \lambda_{g-2}. \]

Lemma 3.2.
\[\text{Res}_{y=\frac{f}{1+f}} \theta(y) \Psi_n(y; f) = \begin{cases}
-\frac{1}{f(1+f)}, & n = 1, \\
0, & n \geq 2 \text{ or } n = 0.
\end{cases} \]

Proof. Let \(z = y + \frac{f}{1+f} \), by formula (1)
\[\theta(z) = \frac{f}{2} \left(\log \left(z - \frac{f}{1+f} \right) \right)^2 + \log \left(z - \frac{f}{1+f} \right) \log \left(z + \frac{1}{1+f} \right) + Li_2 \left(-z + \frac{1}{1+f} \right). \]
Hence,
\[d\theta(z) = \frac{(1+f)z \log \left(z - \frac{f}{1+f} \right)}{(z - \frac{f}{1+f})(z + \frac{1}{1+f})} dz. \]
From formula (2),
\[\hat{\Psi}_n(z; f) = -\frac{d}{dz} \left(\hat{\Psi}_{n-1}(z; f) \frac{z - \frac{f}{1+f}}{(1+f)z} \right) \text{ for } n \geq 1. \]
and
\[\hat{\Psi}_0(z; f) = -\frac{1}{(1+f)^2 z}. \]
By the recursion formula (4), it is easy to show that \(\hat{\Psi}_n(z; f) \) has the following form

\[
\hat{\Psi}_n(z; f) = \frac{a_0(f) + a_1(f)z + \cdots + a_{2n}(f)z^{2n}}{(1 + f)z^{2n+2}}
\]

where \(a_0(f), \ldots, a_{2n}(f) \) are some polynomials of framing \(f \).

From the residue identity,

\[
0 = \text{Res}_{x=0} d(f(x)g(x)) = \text{Res}_{x=0} g(x)df(x) + \text{Res}_{x=0} f(x)dg(x)
\]

We have

(5) \(\text{Res}_{x=0} g(x)df(x) = -\text{Res}_{x=0} f(x)dg(x) \).

Formula (5) will be used iteratively in the following exposition.

When \(n = 0 \),

\[
\text{Res}_{y=-\frac{f}{1+f}} \theta(y)\Psi_0(y; f)
\]

\[
= -\text{Res}_{y=-\frac{f}{1+f}} \theta(y)\hat{\Psi}_0(y; f)dy
\]

\[
= -\text{Res}_{z=0} \theta(z)\hat{\Psi}_0(z; f)dz
\]

\[
= -\text{Res}_{z=0} \theta(z) \frac{1}{(1 + f)^2} d\left(\frac{1}{z} \right)
\]

\[
= \text{Res}_{z=0} \frac{1}{(1 + f)^2} \frac{1}{z} dz
\]

\[
= \text{Res}_{z=0} \frac{\log \left(z - \frac{f}{1+f} \right)}{(1 + f) \left(z - \frac{f}{1+f} \right) \left(z + \frac{1}{1+f} \right)} dz
\]

\[
= 0.
\]

When \(n = 1 \),

\[
\text{Res}_{y=-\frac{f}{1+f}} \theta(y)\Psi_1(y; f)
\]

\[
= -\text{Res}_{y=-\frac{f}{1+f}} \theta(y)\hat{\Psi}_1(y; f)dy
\]

\[
= -\text{Res}_{z=0} \theta(z)\hat{\Psi}_1(z; f)dz
\]

\[
= \text{Res}_{z=0} \theta(z) d \left(\frac{\hat{\Psi}_0(z; f) \left(z - \frac{f}{1+f} \right) \left(z + \frac{1}{1+f} \right)}{(1 + f)z} \right)
\]

\[
= -\text{Res}_{z=0} \hat{\Psi}_0(z; f) \log \left(z - \frac{f}{1+f} \right) dz
\]

\[
= \text{Res}_{z=0} \frac{1}{(1 + f)^2z^2} \log \left(z - \frac{f}{1+f} \right) dz
\]

\[
= -\frac{1}{f(1 + f)}
\]

More generally, when \(n \geq 2 \)

\[
\text{Res}_{y=-\frac{f}{1+f}} \theta(y)\Psi_n(y; f)
\]

\[
= -\text{Res}_{y=-\frac{f}{1+f}} \theta(y)\hat{\Psi}_n(y; f)dy
\]

\[
= -\text{Res}_{z=0} \theta(z)\hat{\Psi}_n(z; f)dz
\]
\[\text{Res}_{z=0} \theta(z) d \left(\hat{\Psi}_{n-1}(z; f) \frac{(z - \frac{f}{1+f})}{(1 + f)z} \left(z + \frac{1}{1+f} \right) \right) \]

\[= -\text{Res}_{z=0} \hat{\Psi}_{n-1}(z; f) \frac{(z - \frac{f}{1+f})}{(1 + f)z} d\theta(z) \]

\[= -\text{Res}_{z=0} \hat{\Psi}_{n-1}(z; f) \frac{(z + \frac{1}{1+f})}{(1 + f)z} \log \left(z - \frac{f}{1+f} \right) dz \]

\[= -\text{Res}_{z=0} d \left(\hat{\Psi}_{n-2}(z; f) \frac{(z + \frac{1}{1+f})}{(1 + f)z} \right) \log \left(z - \frac{f}{1+f} \right) \]

\[= -\text{Res}_{z=0} \hat{\Psi}_{n-2}(z; f) \frac{(z + \frac{1}{1+f})}{(1 + f)z} \]

\[= -\text{Res}_{z=0} a_0(f) + a_1(f)z + \cdots + a_{2n-4}(f)z^{2n-4} \frac{1}{(1 + f)^2 z} \]

\[= 0. \]

Now, we can finish the proof of Conjecture 1.1 by lemma 3.1 and 3.2.

Proof.

\[F^{(g)} = \frac{(-1)^g}{2 - 2g} \text{Res}_{y=\frac{f}{1+f}} \theta(y)W^{(g,1)}(y) \]

\[= \frac{1}{2g-2} \sum_{n=1}^{3g-2} \langle \tau_1 \lambda_g \gamma(1) \lambda_g^\gamma(-f - 1) \lambda_g^\gamma(f) \rangle_g \text{Res}_{y=\frac{f}{1+f}} \theta(y)\Psi_n(y; f) \]

\[= -\frac{1}{2g-2} \frac{1}{f(1 + f)} \langle \tau_1 \lambda_g \gamma(1) \lambda_g^\gamma(-f - 1) \lambda_g^\gamma(f) \rangle_g \]

\[= \frac{(-1)^g}{2g-2} \langle \tau_1 \lambda_g \lambda_{g-1} \lambda_{g-2} \rangle_g \]

\[= \frac{(-1)^g}{2g-2} \langle \lambda_g \lambda_{g-1} \lambda_{g-2} \rangle_g \]

\[= \frac{(-1)^g}{2g-2} \frac{1}{2(2g-2)!} \frac{1}{2g-2} \frac{1}{2g} \]

where we have used the dilaton equation for Hodge integrals

\[\langle \tau_1 \lambda_g \lambda_{g-1} \lambda_{g-2} \rangle_g = (2g-2)\langle \lambda_g \lambda_{g-1} \lambda_{g-2} \rangle_g. \]

Thus the Conjecture 1.1 is proved.

Acknowledgements. The author would like to thank Professor Kefeng Liu for his interest in this work.
References

[1] V. Bouchard, A. Klemm, M. Mariño, and S. Pasquetti, Remodeling the B-model, Commun. Math. Phys. 287, 117-178 (2009).
[2] V. Bouchard, A. Klemm, M. Mariño, and S. Pasquetti, Topological open string on orbifolds, Commun. Math. Phys. 296, 589-623 (2010).
[3] V. Bouchard and M. Mariño, Hurwitz numbers, matrix models and enumerative geometry, Proc. Symposia Pure Math. 78, 263–283 (2008).
[4] V. Bouchard and P. Sulkowski, Topological recursion and mirror curves, arXiv: 1105.2052.
[5] V. Bouchardy, A. Catuneanuy, O. Marchaly and P. Sulkowski, The remodeling conjecture and Faber-Pandharipande formula, preprint.
[6] L. Chen, Bouchard-Klemm-Mariño-Pasquetti Conjecture for \mathbb{C}^3, arXiv:0910.3739v1.
[7] B. Eynard and N. Orantin, Invariants of algebraic curves and topological expansion, arXiv:math-th/0702045.
[8] B. Eynard and N. Orantin, Algebraic methods in random matrices and enumerative geometry, arXiv:0811.3531.
[9] B. Eynard, Topological expansion for 1-hermitian matrix model correlation functions, arXiv:hep-th/0407261.
[10] B. Eynard, Intersection numbers of spectral curves, arXiv:1104.0176.
[11] C. Faber and R. Pandharipande, Hodge integrals and Gromov-Witten theory, Invent. Math. 139 (2000), no. 1, 173C199.
[12] C.-C. Liu, K. Liu and J. Zhou, A proof of a conjecture of Mariño-Vafa on Hodge integrals, J. Differential Geom. 65 (2003).
[13] C.-C. Liu, K. Liu and J. Zhou, Mariño-Vafa formula and Hodge integral identities, J. Algebraic Geom. 15, 379-398 (2006).
[14] M. Mariño, open string amplitudes and large order behavior in topological string theory, arXiv:hep-th/0612127.
[15] J. Zhou, Local Mirror Symmetry for One-Legged Topological Vertex, arXiv:0910.4320.
[16] S. Zhu, The Laplace transform of the cut-and-join equation of Mariño-Vafa formula and its applications, arXiv:1001.0618.

Department of Mathematics and Center of Mathematical Sciences, Zhejiang University, Hangzhou, Zhejiang 310027, China
E-mail address: zhushengmao@gmail.com