Trial Watch
Adaptive cell transfer immunotherapy

Lorenzo Galluzzi,1,2,3,† Erika Vacchelli,1,2,3,† Alexander Eggermont,2 Wolf Hervé Fridman,4,7 Jerome Galon,4,6
Catherine Sauté-Fridman,4,6,† Eric Tartour,5,7,† Laurence Zitvogel2,10 and Guido Kroemer1,2,5,7,11,†

1INSERM; UB48; Villejuif, France; 2Institut Gustave Roussy; Villejuif, France; 3Université Paris-Sud/Paris XI; Le Kremlin-Bicêtre, France; 4INSERM; U872; Paris, France;
5Université Paris Descartes; Sorbonne Paris Cité; Paris, France; 6Centre de Recherche des Cordeliers; Paris, France; 7Pôle de Biologie; Hôpital Européen Georges Pompidou; AP-HP; Paris, France; 8Université Pierre et Marie Curie/Paris VI; Paris, France; 9INSERM; U970; Paris, France; 10INSERM; U1015; Villejuif, France; 11Metabolomics Platform; Institut Gustave Roussy; Villejuif, France

†These authors contributed equally to this article.

During the last two decades, several approaches for the activation of the immune system against cancer have been developed. These include rather unselective maneuvers such as the systemic administration of immunostimulatory agents (e.g., interleukin-2) as well as targeted interventions, encompassing highly specific monoclonal antibodies, vaccines and cell-based therapies. Among the latter, adoptive cell transfer (ACT) involves the selection of autologous lymphocytes with antitumor activity, their expansion/activation ex vivo, and their reinfusion into the patient, often in the context of lymphodepleting regimens (to minimize endogenous immunosuppression). Such autologous cells can be isolated from tumor-infiltrating lymphocytes or generated by manipulating circulating lymphocytes for the expression of tumor-specific T-cell receptors. In addition, autologous lymphocytes can be genetically engineered to prolong their in vivo persistence, to boost antitumor responses and/or to minimize side effects. ACT has recently been shown to be associated with a consistent rate of durable regressions in melanoma and renal cell carcinoma patients and holds great promises in several other oncological settings. In this Trial Watch, we will briefly review the scientific rationale behind ACT and discuss the progress of recent clinical trials evaluating the safety and effectiveness of adoptive cell transfer as an anticancer therapy.

Introduction

For a long time, the immune system has been believed to participate in oncogenesis, tumor progression and response to therapy as a mere bystander, a notion that has now been invalidated. On one hand, components of the immune system, such as B lymphocytes and macrophages, have been shown to facilitate inflammation-driven carcinogenesis, while others, such as CD8 T and natural killer (NK) cells, ensure a constant barrier (immunosurveillance) that malignant precursors must break to develop tumors. On the other hand, the therapeutic efficacy of several anticancer regimens, including conventional chemotherapeutics as well as targeted agents, appear to rely (at least in part) on the activation of innate or cognate immune effector mechanisms. Thus, the abundance of intratumoral CD8 T and natural killer (NK) cells, have been shown to dramatically affect the clinical outcome in multiple oncological settings. Along with this conceptual shift, which occurred during the last three decades, therapeutic interventions aimed at activating the immune system against tumors begun to attract an ever increasing interest, from both researchers and clinicians. The promising field of anticancer immunotherapy had been established.

Nowadays, cancer immunotherapy can be subdivided into three major branches: (1) approaches for the relatively “unselective” stimulation of the immune system against tumors, (2) anticancer vaccines (including protein-, peptide- and cell-based vaccines), and (3) adoptive cell transfer (ACT) protocols. Immuno-stimulatory interventions are exemplified by the systemic administration of lymphocyte-targeting growth factors such as interleukin-2 (IL-2), other pro-immunogenic cytokines such as interferon α (IFNα), or compounds that block immunosuppressive mechanisms, including monoclonal antibodies that are specific for the cytotoxic T lymphocyte antigen 4 (CTLA4) or chemotherapeutics that selectively depletes immunoregulatory cell populations. Immunostimulatory agents given as monotherapy have been associated with consistent rates of tumor regression...
in melanoma and renal carcinoma patients, perhaps because these cancers are able to elicit per se elevated levels of antitumor lymphocytes. Of note, several anticancer agents that are currently used in the clinic also mediate immunostimulatory effects, either by actively triggering immune effector mechanisms or by selectively inhibiting/ killing immunosuppressive cells such as FOXP3 regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs). These chemotherapeutics might de facto function as combination therapies, mediating both a cytotoxic/cytostatic effect on tumor cells and a stimulatory effect on the immune system.

Vaccines constitute a very appealing approach to cancer immunotherapy, presumably because they would be relatively easy to administer, cheap (especially in the case of peptide vaccines) and virtually devoid of side effects. Nonetheless, cancer vaccines, encompassing both peptides and dendritic cell (DC)-based approaches, so far have failed to meet the high expectations that they had raised, being associated with modest and often non-reproducible clinical benefits. Perhaps, this can be attributed to the fact that end-stage cancer patients often exhibit immune defects that can compromise their ability to mount a vaccine-driven antitumor response. One notable exception is provided by sipuleucel-T (Provenge®), a DC-based vaccine that has been granted FDA approval for the treatment of asymptomatic or minimally symptomatic, metastatic castration-resistant (hormone refractory) prostate cancer. In addition, promising results have been observed in prostate cancer patients receiving prostate-specific antigen (PSA)-targeted poxviral vaccines (PROSTVAC-FS), as well as in melanoma patients treated with a peptidic vaccine combined with high-dose IL-2.

ACT has emerged as an effective form of immunotherapy, with rates of complete durable responses (in specific clinical settings) as high as 40%. As a note, ACT must be conceptually differentiated from other cell-based immunotherapies, including the re-infusion of autologous DCs pulsed ex vivo with tumor antigens or tumor cell lysates (aimed at eliciting an antitumor T cell response in vivo) and the infusion of allogeneic T and NK cells (aimed at obtaining a curative graft-versus-disease effect).

No ACT-based approach is currently approved by FDA for use in humans. In this Trial Watch, we will briefly review the scientific rationale behind ACT and discuss the progress of recent clinical studies evaluating the safety and efficacy of cell immunotherapy in oncological settings.

Scientific Background

ACT entails the (re)introduction into a conditioned patient of large amounts (often up to 10^11) of lymphocytes exhibiting antitumor activity. When possible, notably in the case of melanoma and renal cell carcinoma (RCC) patients (which spontaneously manifest high number of antitumor lymphocytes), the starting material for ACT is constituted by a surgery specimen or biopsy, from which tumor-infiltrating lymphocytes (TILs) are isolated and (in some instances) selected for T-cell receptor (TCR) specificity. Before reinfusion, such lymphocytes are expanded ex vivo in the presence of IL-2 and other growth factors, and optionally activated with immunostimulatory compounds such as anti-CD3 antibodies, alone or combined with tumor-specific antigens. This said, melanoma and RCC constitute relatively privileged settings for immunotherapy, as suggested by the high rate of spontaneous TILs and by fact that immunostimulatory interventions alone are efficient against these tumors but not others.

To extend the benefits of ACT to other types of cancer that are not associated with an intense endogenous immune response, genetic engineering can be employed to convert circulating lymphocytes into cells that exhibit antitumor activity. Thus, normal lymphocytes are isolated from the peripheral blood and genetically manipulated for the expression of TCRs that recognize tumor antigens with high affinity. The implementation of this strategy requires the isolation of very few endogenous cells with antitumor activity, from which rearranged TCR genes can be cloned and incorporated into highly efficient retroviral or lentiviral vectors. Upon transduction newly generated antitumor cells are amplified and treated similar to their tumor-derived counterparts. Importantly, as the TIL phenotype has been shown to affect both their in vivo persistence and their clinical efficacy, genetic engineering can be employed to confer additional features to lymphocytes, including (1) increased in vivo persistence, owing to the (over)expression of anti-apoptotic proteins like BCL-2 or telomerase, the enzyme that prevents the senescence-associated physiological attrition of telomeres; (2) increased proliferative potential, due to the (over)expression of growth factors, like IL-2, or their receptors; (3) enhanced homing to tumor sites, as a result of the expression of molecules involved in trafficking such as CD62L and CCR7; (4) enhanced antitumor potential, upon the (over)expression of co-receptors such as CD8 or co-stimulatory molecules like CD80 or the blockade of potentially immunosuppressive signals, such as those mediated by transforming growth factor β (TGFβ). Finally, as an alternative to TCRs, the so-called chimeric antigen receptors (CARs) can be employed. These chimeric receptors bind to tumor antigens via antibody-derived complementarity-determining regions (CDRs), yet are coupled to the intracellular machinery for TCR signaling, de facto mediating the functional activation of T cells even when antigens are not displayed in the context of MHC molecules.

In the context of genetically engineered T cells, the choice of the tumor antigen specifically recognized by the TCR (or CAR) is critical, as it dictates both the efficacy and the safety of ACT. So far, encouraging results have been obtained with TCRs recognizing the melanocyte-specific markers MART1 and MELOE-1 and gp100, the carcinoembryonic antigen (CEA), and cancer-testes antigens (which are expressed by a variety of epithelial cancers) such as NY-ESO-1, MAGE-A1 and MAGE-A3, as well as with CARs targeting the B-cell antigen CD19 and the vascular endothelial growth factor receptor 2 (VEGFR2) (Table 1). In early trials, upon ex vivo expansion and activation, autologous TILs were re-administered to virtually untreated patients, resulting in transitory tumor regression but no durable responses. Perhaps, this was due to the fact that inoculated cells are subjected to a consistent degree of immunosuppression by
endogenous Tregs and MDSCs, and normally fail to persist over long periods in vivo. Moreover, endogenous B, T and NK cells might compete with re-infused TILs for limited amounts of critical cytokines, including IL-7 and IL-15, a phenomenon known as “cytokine sink.” To circumvent these critical issues, pre-conditioning regimens based on cyclophosphamide (an alkylating agent that at high doses exert consistent immunosuppressive effects), fludarabine (a nucleoside analog commonly used for the therapy of hematological malignancies) and total body irradiation have been developed, resulting in different extents of lymphodepletion. Importantly, the intensity of lymphodepletion has been shown to directly correlate with ACT antitumor efficacy, leading to the introduction of pre-conditioning lymphodepletion into the clinical practice for ACT.

Re-infusion protocols have also been progressively refined to improve the persistence of TILs in vivo and to exacerbate their antitumor efficacy. Thus, although the co-infusion of cells with IL-2 is now a routine approach, several other possibilities are being explored. IL-2 has indeed been shown to correct the intrinsic anergy or TILs, and to promote the expansion of antitumor T cells in vivo. However, recent results indicate that this cytokine also stimulates immunosuppressive cell populations including Tregs, a phenomenon that may compromise its clinical benefits. New approach include, but are not limited to: (1) the co-infusion of cytokines other than IL-2, encompassing IL-7, IL-12, IL-15 and IFNγ, which stimulate immune effector and memory functions; (2) the co-infusion of angiogenesis inhibitors, which facilitate the extravasation of re-infused cells into the tumor; (3) the co-infusion of Toll-like receptor (TLR) agonists, to limit endogenous immunosuppression; and (4) the co-infusion of immunostimulatory chemotherapeutics, such as metronomic cyclophosphamide.

Recently, ACT attempts based on B cells and NK cells have been investigated. On one hand, adoptively transferred B cells that exhibit antitumor activity in vitro reportedly mediate the generation of T-cell responses against xenografted breast cancer in mice. However, B cell-based ACT protocols have not yet been evaluated in clinical settings, perhaps due to the fact that B cells also mediate immunosuppressive and pro-tumorigenic effects, at least in some models of carcinogenesis. On the other hand, in spite of encouraging preclinical results and of the established efficacy of allogeneic NK cells for the therapy of acute myeloid leukemia (AML), NK cells failed to mediate antitumor effects in metastatic melanoma and RCC patients, perhaps owing to their limited persistence in vivo. Conversely, promising results have been obtained with the infusion of so-called “young TILs,” i.e., unselected, minimally cultured, bulk TILs whose production is relatively rapid and does not involve individualized tumor-reactivity screening steps. By reducing the costs and technical constraints that are associated with the ex vivo amplification and activation of TILs, this new approach may de facto increase the number of centers that will be able to offer ACT immunotherapy to eligible cancer patients. Of note, while the clinical efficacy of ACT is largely believed to depend on CD8+ T cells, the infusion of CD4+ T cells alone also mediates durable responses in melanoma patients. The cellular and molecular circuity that underlie these observations remain to be precisely elucidated. As a possibility, infused cells (be they CD8+ or CD4+ cells) may initiate antitumor responses that result in the expansion of the tumor-specific TCR repertoire, and hence in the elicitation of robust immune reaction against cancer cells.

Recent preclinical data demonstrate that oncogene-targeting T cells are superior to oncogene-specific drugs in the eradication of oncogene-addicted tumors, as the latter (but not the former) leave the tumor vasculature intact, allowing for the generation of resistant tumor clones. Perhaps, this superiority relies on the paracrine effects of IFNγ secreted by T cells, provoking the destruction of tumor vessels and impeding the growth or resistant cells.

At least theoretically, the most prominent side effects of ACT relate to: (1) the specificity of re-infused cells, which might destroy normal tissues expressing the same antigen recognized by genetically engineered TCRs (or CARs); (2) the secretion by re-infused TILs of large amounts of cytokines/chemokines; (3) the possibility that transduced TCR chains might recombine with endogenous ones, resulting in the acquisition of unwarranted antigen specificity and graft-versus-host disease. So far, only a few cases of severe/lethal adverse reactions have been reported, suggesting that, in the vast majority of settings, ACT constitutes a safe clinical procedure.

Published Clinical Trials

Since the advent of ACT, the efficacy and safety of this intervention has been evaluated in multiple oncological settings, and the results of these early (Phase I/II) clinical studies have been published in some 30 high impact papers. Half of these studies were performed in small cohorts of (often metastatic) melanoma patients, while the other half tested ACT in clinical settings as diverse as...
hematological malignancies, \(23, 43, 47, 52, 77, 82, 92-94\) RCC, \(47, 95, 96\) hepatocellular carcinoma, \(97\) ovarian cancer, \(98\) neuroblastoma, \(99\) metastatic colorectal carcinoma, \(45\) and head and neck squamous cell carcinoma. \(100\)

In about one third of these studies, patients were re-infused with autologous cells that had been non-specifically activated in vitro, for instance by the administration of IL-2 or anti-CD3 antibodies, alone or in combination with anti-CD28 antibodies. \(23, 86, 92, 95, 96, 101-105\) Alternatively, patients received lymphocytes that had been specifically activated against the tumor by the ex vivo administration of dead cancer cells in the presence of the Calmette-Guerin bacillus, \(95\) or by the co-culture with living tumor cells, \(93\) with DCs pulsed with tumor antigens, \(87, 91\) with DCs pulsed with cancer cell lysates, \(97\) with an artificial antigen-presenting cell (APC) system that can educate antitumor lymphocytes to acquire both a central memory and an effector memory phenotype. \(94\) In two studies, patients received young TILs, \(77, 79\) whereas in one trial ex vivo expanded \(\alpha\text{GalCer}-\text{pulsed APCs.}\) \(100\) In the remaining studies, the re-infused material consisted in genetically modified cells, including peripheral blood mononuclear cell (PBMC)-derived T cells engineered to express tumor antigen-specific TCRs, \(43, 45, 47, 82, 92, 98\) CARs \(51, 52, 99, 106\) or IL-2. \(88\)

In most cases, patients received classical lymphodepleting regimens based on cyclophosphamide + fludarabine, alone or in combination with total body irradiation, \(23, 47, 52, 77, 82, 86, 89, 92, 101, 104, 106\) and were given cells together with high-dose IL-2. \(23, 25, 43, 45, 47, 51, 52, 77, 79, 82, 86, 88, 89, 91, 92, 94-98, 100-102, 104-106\) As an alternative, cells were co-infused with a course of low-dose IL-2 over 6 d, \(87\) or low-dose IFNy. \(93\)

In two of these trials no antitumor effects were observed, \(97, 98\) and in two other studies ACT was associated with limited (though assessable) therapeutic responses. \(96, 105\) Apart from these notable exceptions, the results of the clinical trials conducted so far on ACT are very encouraging, reporting response rates as high as 70% and a very low incidence of severe side effects (Table 2). Although they were often performed in small patient cohorts and the therapeutic protocols often differed from trial to trial, these phase I/II studies demonstrate that ACT is efficient and safe for the treatment of some types of cancer, in particular melanoma. This paved the way for ongoing studies that evaluate alternative ACT protocols or the applicability of ACT to other oncological settings.

Ongoing Clinical Trials

At present, there are around 35 ongoing, early (Phase I/II) clinical trials that test the safety and efficacy of ACT in oncological indications (source www.clinicaltrials.gov). Thirteen of these studies are performed in melanoma and RCC patients. In addition, ACT, alone or combined with established procedures, is being evaluated as a therapy for tumors as different as hematological malignancies (including multiple myeloma and several types of leukemia and lymphoma), sarcomas, cancers of the reproductive tract (including cervical, Fallopian tube, ovarian and prostate cancer), neoplasms of the central nervous system and head and neck squamous cell carcinoma. In the remaining studies, the re-infused material consisted in genetically modified cells, including peripheral blood mononuclear cell (PBMC)-derived T cells engineered to express tumor antigen-specific TCRs, \(43, 45, 47, 82, 92, 98\) CARs \(51, 52, 99, 106\) or IL-2. \(88\)

In most cases, patients received classical lymphodepleting regimens based on cyclophosphamide + fludarabine, alone or in combination with total body irradiation, \(23, 47, 52, 77, 82, 86, 89, 92, 101, 104, 106\) and were given cells together with high-dose IL-2. \(23, 25, 43, 45, 47, 51, 52, 77, 79, 82, 86, 88, 89, 91, 92, 94-98, 100-102, 104-106\) As an alternative, cells were co-infused with a course of low-dose IL-2 over 6 d, \(87\) or low-dose IFNy. \(93\)

In two of these trials no antitumor effects were observed, \(97, 98\) and in two other studies ACT was associated with limited (though assessable) therapeutic responses. \(96, 105\) Apart from these notable exceptions, the results of the clinical trials conducted so far on ACT are very encouraging, reporting response rates as high as 70% and a very low incidence of severe side effects (Table 2). Although they were often performed in small patient cohorts and the therapeutic protocols often differed from trial to trial, these phase I/II studies demonstrate that ACT is efficient and safe for the treatment of some types of cancer, in particular melanoma. This paved the way for ongoing studies that evaluate alternative ACT protocols or the applicability of ACT to other oncological settings.

Ongoing Clinical Trials

At present, there are around 35 ongoing, early (Phase I/II) clinical trials that test the safety and efficacy of ACT in oncological indications (source www.clinicaltrials.gov). Thirteen of these studies are performed in melanoma and RCC patients. In addition, ACT, alone or combined with established procedures, is being evaluated as a therapy for tumors as different as hematological malignancies (including multiple myeloma and several types of leukemia and lymphoma), sarcomas, cancers of the reproductive tract (including cervical, Fallopian tube, ovarian and prostate cancer), neoplasms of the central nervous system

Table 2. Published clinical trials evaluating adoptive cell transfer in cancer patients

Site	Tumor type(s)	Phase	Notes	Ref.
Hematological neoplasms	BCL	I	IL-2-activated T cells + IL-2 2 PRs + 5 SDs out of 7 patients	103
	CLL	I	Anti-CD19 CAR-engineered T cells + IL-2 1 PD, 2 SDs and 3 PRs out of 9 patients	51
	Follicular lymphoma	I/II	Anti-CD19 CAR-engineered T cells + IL-2 1 CR, 1 SD, 6 ORs out of 8 patients	52, 106
	LCL		CD3/CD28-costimulated T cells ± vaccine upon HSCT No ORs but some immunological responses	105
	MCL		CD3/CD28-costimulated T cells following HSCT 5 CRs, 7 PRs, 4 SDs out of 16 patients Transient dose-dependent infusion toxicities	102
	SLL		CD3/CD28-costimulated T cells ± vaccine upon HSCT No ORs but some immunological responses	105
Kidney	Renal cell carcinoma	I	CD3/CD28-costimulated T cells + IL-2 Some metastatic regression Mild toxicity	96
	Renal cell carcinoma	II	CD3-activated, dead tumor cells + Calmette-Guerin bacillus-primed CD4+ cells + IL-2 9 CRs + 5 PRs out of 39 patients	95
	Metastatic melanoma	II	Anti-NY-ESO-1 TCR-engineered T cells + IL-2 ORs in 4/6 SCC patients and 5/11 melanoma patients	47
	Metastatic SCC	II	CD3-stimulated CD4+ cells + IL-2 1 CR, 2 PRs and 8 MRs out of 31 patients	101
	Advanced solid tumors	I		
	NHL			
Table 2. Published clinical trials evaluating adoptive cell transfer in cancer patients (cont.)

Site	Tumor type(s)	Phase	Notes	Ref.
Melanoma			MART-1-specific CTLs generated in vitro using aAPCs	
			1 CR, 3 PRs, 3 SDs out of 10 patients	
			Some IL-2- and lymphopenia-associated toxicity	
		I	CD8\(^+\)-enriched young TILs ± myeloablative lymphodepletion	94
			9/33 ORs (3 CRs) without TBI; 11/23 ORs (2 CRs) with TBI	
		I	TILs + IL-2 upon non-myeloablative lymphodepletion	86
			18 ORs (3 CRs + 15 PRs) out of 35 patients	
			Some IL-2- and lymphopenia-associated toxicity	
		I	Anti-MART-1 TCR-engineered PBMCs	43
			2 ORs out of 15 patients and durable engraftment	
		I	MART-1-specific cells generated upon co-culture	87
			with MART-1-pulsed DCs + low dose IL-2	
			3 ORs out of 11 patients	
			Mild (grade 1–2) adverse effects	
		I	Autologous CTLs upon previous fludarabine or not	104
			3 MRs or SDs out of 9 patients	
			Fludarabine improved in vivo persistence	
		I	TILs + IL-2 upon non-myeloablative lymphodepletion	23
			20 CRs out of 93 patients, which exhibited 100% 3 y survival	
		I/II	IL-2-engineered TILs + IL-2	88
			1 PR out of 12 patients and persistent IL-2 expression	
		I/II	MART-1-specific T cells + IL-2 and IFN\(\alpha\)	91
			6 ORs (2 LTCRs) out of 14 patients	
		I/II	PBMC-derived T cells generated upon co-culture	93
			with melanoma cells + low dose IFN\(\alpha\)	
			1 CR, 1 PR, 3 SDs out of 10 patients	
		II	Autologous TILs + IL-2 ± myeloablative lymphodepletion Up to 72% ORs (with TBI)	89
			(with TBI) out of 93 patients	
			1 death	
		II	Anti-MART-1 and anti-gp100 human or murine TCR-engineered PBMCs	82
			30% (human TCR) and 19% (murine TCR) ORs	
			Toxicity to normal melanocytes in the ear and skin	
		II	Young TILs + IL-2	77
			10 ORs and 4 SDs out of 20 patients	
			Transient and manageable toxicity	
		II	Autologous TILs or MART1-specific	92
			PBMC-derived T cells + IL-2	
			9 CRs and PRs in the brain out of 26 patients	
			1 subarachnoid hemorrhage without consequences	
Various		I	Anti-CEA murine TCR-engineered T cells	45
			1 ORs out of 3 patients	
			Transient colitis in all patients	
		I/II	iDCs, CIK cells and CTLs + tumor lysate-pulsed DCs	97
			Early increase in the CD8\(^+\)/FOXP3\(^+\) ratio	
		II	NKT cells in combination with alphaGalCer-pulsed DCs	100
			5 ORs out of 10 patients	
		I	Anti-GD2 CAR-engineered EBV-specific CTLs	99
			ORs in 50% of patients	
		I	Anti-FR TCR-engineered T cells + IL-2	98
			No anticancer responses	
			IL-2 related mild (grade 3–4) toxicity in 5/8 patients	

Abbreviations: aAPC, artificial antigen-presenting cell; BCL, B cell lymphoma; CAR, chimeric antigen receptor; CEA, carcinoembryonic antigen; CIK, cytokine-induced killer; CLL, chronic lymphocytic leukemia; CR, complete response; CTL, cytotoxic lymphocyte; DC, dendritic cell; EBV, Epstein-Barr virus; FR, folate receptor; HCC, hepatocellular carcinoma; HNSCC, head and neck squamous cell carcinoma; HSCT, hematopoietic stem cell transplantation; iDC, immature DC; LCL, large cell lymphoma; LTCR, long-term complete response; MCL, mantle cell lymphoma; n.a., not available; NHL, non-Hodgkin lymphoma; NK, natural killer; NKT, V\(\alpha\)24 NK; IFN, interferon; IL, interleukin; MR, minor response; n.a., not available; OR, objective response; PBMC, peripheral blood mononuclear cell; PD, progressive disease; PR, partial response; SCC, synovial cell carcinoma; SD, stable disease; SLL, small lymphocytic leukemia; TBI, total body irradiation; TIL, tumor infiltrating lymphocyte.
(including malignant glioma, glioblastoma, medulloblastoma and neuroectodermal tumors), as well as nasopharyngeal, breast, lung and hepatocellular carcinomas (Table 3).

In many cases, the infused material consists of ex vivo expanded and activated TILs, though the use of young TILs (NCT01118091; NCT01319565; NCT01369888) and of cytokine-induced killer (CIK, CD3+CD56+ non-MHC-restricted, NK-like T lymphocytes)107 cells (NCT00815321; NCT01232062; NCT01395056) is also being investigated. Sometimes, TILs are collected a few weeks after the administration of tumor antigen-specific vaccines (NCT00791037; NCT00834665; NCT01312376). Moreover, distinct approaches of genetic engineering are being undertaken, including the production of lymphocytes expressing tumor antigen-specific TCRs (NCT00720031; NCT00871481; NCT00910650; NCT01212887), CARs (NCT00968760; NCT01218867; NCT01318317; NCT01416974) IL-12 (NCT01236573) or IFNγ (NCT01082887). One particularly interesting study entails the engineering of lymphocytes for the expression of an inducible suicide fusion protein, which might be employed to resolve ACT-related toxicity (NCT00730613). Conditioning regimens largely overlap with those employed in previous successful studies, with a high prevalence of non-myeloablative lymphodepletion (cyclophosphamide + fludarabine), alone or combined with total body irradiation. In one instance, cells are infused in the absence of conditioning and after three cycles of low-dose (sub-efficient) radiotherapy, aimed at stimulating immune responses.

Table 3. Ongoing clinical trials evaluating adoptive cell transfer in cancer patients*
Site
Breast
CNS
Hematological neoplasms
Multiple sites
Reproductive tract
(NCT01194609). Most often patients receive cells together with high-dose IL-2, though the co-infusion of IL-15 (NCT01369888) or DC-based vaccines (NCT00693095; NCT00910650; NCT01326104) is also being tested.

Concluding Remarks

Thanks to the work from several laboratories worldwide, our knowledge on the molecular and cellular circuitries that underlie the long-term effectiveness of ACT has greatly advanced. ACT based on autologous TILs has already been associated with consistent rates of durable remissions in exquisitely immunosensitive cancers such as melanoma. Moreover, the use of genetically engineered circulating T cells constitutes a promising approach for the treatment of several other (solid and hematological) malignancies. Results from ongoing trials will clarify whether the clinical benefits of ACT truly extend to poorly immunosensitive tumors. Unfortunately, ACT is far from becoming a routine clinical practice, as its implementation is laborious and associated with elevated costs. In this sense, the development of simplified techniques for the ex vivo expansion, activation and genetic engineering of lymphocytes might allow an increasing number of cancer centers to offer ACT as a therapeutic option.

Acknowledgments

Authors are supported by the Ligue contre le Cancer (équipes labelisées), AXA Chair for Longevity Research, Cancéropôle Ile-de-France, Institut National du Cancer (INCa), Fondation Bettencourt-Schueller, Fondation de France, Fondation pour la Recherche Médicale, Agence National de la Recherche, the European Commission (Apo-Sys, ArtForce, ChemoRes. Death-Train) and the LabEx Immuno-Oncology.

References

1. de Visser KE, Korets LV, Coussens LM. De novo carcinogenesis promoted by chronic inflammation is B lymphocyte dependent. Cancer Cell 2005; 7:411-23; PMID:15894262; http://dx.doi.org/10.1016/j.ccr.2005.04.014

2. Doedens AL, Stockmann C, Rubinstein MP, Liao D, Zhang N, DeNardo DG, et al. Macrophage expression of hypoxia-inducible factor-1 alpha suppresses T-cell function and promotes tumor progression. Cancer Res 2010; 70:7465-75; PMID:20841473; http://dx.doi.org/10.1158/0008-5472.CAN-10-1439

3. Schioppa T, Moore R, Thompson RG, Roser EC, Kulhe H, Nedosposav S, et al. B regulatory cells and the tumor-promoting actions of TNF-α during squamous carcinogenesis. Proc Natl Acad Sci U S A 2011; 108:106627; PMID:21670304; http://dx.doi.org/10.1073/pnas.1100994108

4. Zitvogel L, Tesniere A, Kroemer G. Cancer despite immunosurveillance: immunoselection and immunosubversion. Nat Rev Immunol 2006; 6:715-27; PMID:16977338; http://dx.doi.org/10.1038/nri1936

5. Galluzzi L, Senovilla L, Zitvogel L, Kroemer G. The secretive ally: immunostimulation by anticancer drugs. Nat Rev Drug Discov 2012; 11:215-33; PMID:22301798; http://dx.doi.org/10.1038/nrd3626

6. Page F, Berger A, Camus M, Sanchez-Cabo F, Costes A, Molidor R, et al. Effector memory T cells, early metastasis, and survival in colorectal cancer. N Engl J Med 2005; 353:2654-66; PMID:16371631; http://dx.doi.org/10.1038/NEJMoa051424

Table 3. Ongoing clinical trials evaluating adoptive cell transfer in cancer patients

Site	Tumor type(s)	Phase	Notes	Ref.
Skin	Metastatic melanoma	II	TILs + IL-2 upon non-myeloblative lymphodepletion	NCT00604136
		I/II	MART-1-specific TILs + IL-2 followed by IL-2 and IFNα	NCT00720031
		I/II	NY-ESO-1-specific TILs + IL-2 + ipilimumab	NCT00871481
		II	Anti-MART-1 TCR-engineered PBMCs plus MART-126-35 peptide-pulsed DCs + IL-2	NCT00910650
		I	Melanoma reactive (DMF5) TILs + IL-2	NCT00924001
		n.a.	TILs + IL-2 upon non-myeloblative lymphodepletion	NCT01005745
		I/II	IFNγ-engineered TILs + IL-2	NCT01082887
		II	CD8+ enriched young TILs + IL-2	NCT01118091
		I/II	IL-12-engineered TILs + IL-2	NCT01236573
		II	Young TILs + IL-2	NCT01319565
		I/II	Young TILs + IL-15	NCT01369888
		II	TILs + IL-2 upon non-myeloblative lymphodepletion	NCT01468818
Soft tissues	Adult liposarcoma	I	NY-ESO-1-specific CD8+ T cells + IL-2, upon conditioning with low-dose IFNγ and cyclophosphamide	NCT01477021
	Adult soft tissue sarcoma			
	Adult synovial sarcoma			

Abbreviations: AML, acute myeloid leukemia; BCL, B cell lymphoma; B-CLL, B cell chronic lymphocytic leukemia; CAE, carcinoembryonic antigen; CAR, chimeric antigen receptor; CIK, cytokine-induced killer; CML, chronic myeloid leukemia; CMV, cytomegalovirus; CNS, central nervous system; DC, dendritic cell; HCC, hepatocellular carcinoma; HSCT, hematopoietic stem cell transplantation; IFN, interferon; IL, interleukin; MDS, myelodysplastic syndrome; n.a., not available; NHL, non-Hodgkin lymphoma; PBMC, peripheral blood mononuclear cell; PBSCT, peripheral blood stem cell transplantation; PSMA, prostate-specific membrane antigen; TBI, total body irradiation; TCR, T-cell receptor; TILs, tumor-infiltrating lymphocytes; TNBC, triple negative breast cancer; VEGFR2, vascular endothelial growth factor receptor 2. *started after January, 1st 2008 and not completed or terminated at the day of submission.*
57. Klebanoff CA, Khong HT, Antony PA, Palmer DC, Brentjens RJ, Rivière I, Park JH, Davila ML, Wang X, Robbins PF, Morgan RA, Feldman SA, Yang JC, Robbins PF, Morgan RA, et al. IL-2 administration increases IL-23R+ Fas+ regulatory T cells in cancer patients. Blood 2006; 107:2409-14; PMID: 16304057; http://dx.doi.org/10.1182/blood-2005-06-32399

58. Saadoun D, Rosenzweig M, Joly F, Six A, Carrat F, Thibault V, et al. Regulatory T-cell responses to low-dose interleukin-2 in HCV-induced vasculitis. N Engl J Med 2011; 365:2067-77; PMID:22219253; http://dx.doi.org/10.1056/NEJMoa1105143

59. Koreth J, Matsusaka K, Kim HT, McDonough SM, Bindra B, Aleya EP, 3rd, et al. Interleukin-2 and regulatory T cells in graft-versus-host disease. N Engl J Med 2011; 365:2055-66; PMID:22219252; http://dx.doi.org/10.1056/NEJMoa1108188

60. Mignot G, Ullrich E, Bonnomet M, Nénard C, Apetoh L, Taieb J, et al. The critical role of IL-15 in the antitumor effects mediated by the combination therapy imatinib and IL-2. J Immunol 2008; 180:6477-83; PMID:18453565

61. Liu DL, Håkansson CH, Seifert J. Immunotherapy in liver tumors: II. Intratumoral injection with activated tumor-infiltrating lymphocytes, intrasplenic administration of recombinant interferon-2 and interferon alpha causes tumor regression and lysis. Cancer Lett 1994; 85:39-46; PMID:7923100; http://dx.doi.org/10.1016/0304-9142(94)90256-4

62. Helms WM, Prechtl JA, Cao Y, Schaffert S, Contag CH. IL-12 enhances efficacy and shortens enrichment time in cytokine-induced killer cell immunotherapy. Cancer Immunol Immunother 2010; 59:1325-34; PMID:20532883; http://dx.doi.org/10.1007/s00262-010-0860-0

63. Dings RP, Yang KB, Castermans K, Popescu F, Zhang Y, Oude Egbrink MG, et al. Enhancement of T-cell-mediated antitumor response: angiostatic agent to immunotherapy against cancer. Clin Cancer Res 2011; 17:6314-21; PMID:21522519; http://dx.doi.org/10.1158/1078-0432.CCR-10-2443

64. Yang Y, Huang CT, Huang X, Pardoll DM. Persistent Toll-like receptor signals are required for reversal of regulatory T-cell-mediated CD8+ T-cell tolerance. Nat Immunol 2008; 9:508-15; PMID:18564759; http://dx.doi.org/10.1038/ni1059

65. North RJ. Cyclophosphamide-mediated facilitating immunotherapy of an established tumor depends on elimination of tumor-induced suppressor T cells. J Exp Med 1982; 155:1056-74; PMID:6408311; http://dx.doi.org/10.1083/jem.155.3.1056

66. Li Q, Lao X, Pan Q, Ning N, Yue J, Xi Y, et al. Adoptive transfer of tumor reactive B cells confers host T-cell immunotherapy and tumor regression. Clin Cancer Res 2011; 17:4987-95; PMID:21690573; http://dx.doi.org/10.1158/1078-0432.CCR-11-0207

67. Pegram HJ, Jackson JT, Smyth MJ, Kershaw MH, Dacey PK. Adoptive transfer of gene-modified primary NK cells can specifically inhibit tumor progression in vivo. J Immunol 2008; 181:3449-55; PMID:18714017

68. Ruggeri L, Capanni M, Urbani E, Perruccio K, Sliomovich WD, Tost T, et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 2002; 295:2097-100; PMID:11896281; http://dx.doi.org/10.1126/science.1068440

69. Velardi A, Ruggeri L, Mancusi A, Aversa F, Christiansen FT. Natural killer cell allorecognition of missing self in allogeneic hematopoietic transplantations: a tool for immunotherapy of leukemia. Curr Opin Immunol 2009; 21:525-30; PMID:19717293; http://dx.doi.org/10.1016/j.coi.2009.07.015

70. Parkhurst MR, Riley JP, Dudley ME, Rosenberg SA. Adoptive transfer of autologous natural killer cells leads to high levels of circulating natural killer cells but does not mediate tumor regression. Clin Cancer Res 2011; 17:6287-97; PMID:21844012; http://dx.doi.org/10.1158/1078-0432.CCR-11-1347

71. Geller MA, Cooley S, Judson PL, Glebne R, Carson LF, Angenta PA, et al. A phase II study of allogeneic natural killer cell therapy to treat patients with recurrent ovarian and breast cancer. Cytotherapy 2011; 13:98-107; PMID:20849361; http://dx.doi.org/10.1016/j.jcyt.2010.12.001

72. Beuser MJ, Shapia-Frommer R, Treves AJ, Zippel D, Izhaki O, Hershkovitz L, et al. Clinical responses in a phase II study using adoptive transfer of short-term cultured tumor infiltration lymphocytes in metastatic melanoma patients. Clin Cancer Res 2010; 16:2664-55; PMID:20406835; http://dx.doi.org/10.1158/1078-0432.CCR-10-0041

73. Donia M, Junker N, Ellebæk E, Andersen MH, Straten PT, Svane IM. Characterization and comparison of “Standard” and “Young,” tumor infiltrating lymphocytes for adoptive cell therapy at a Danish Translational Research Institute. Scand J Immunol 2011. in press. PMID:21955245

74. Dudley ME, Gross CA, Langhan MM, Garcia MR, Sherry RM, Yang JC, et al. CD8+ enriched “young” tumor infiltrating lymphocytes can mediate regression of metastatic melanoma. Clin Cancer Res 2010; 16:6122-31; PMID:20668805; http://dx.doi.org/10.1158/1078-0432.CCR-10-1297

75. Vignard V, Lemercier B, Lim A, Pandolfino MC, Guillaud Y, Khammari A, et al. Adoptive transfer of tumor-reactive Melan-A-specific CTL clones in melanoma patients is followed by increased frequencies of additional Melan-A-specific T cells. J Immunol 2005; 175:4777-805; PMID:16177129

76. Anders K, Buschow C, Herrmann A, Milojkovic A, Loddenkemper C, Kammtens T, et al. Oncogene-targeting T cells reject large tumors while oncogene inactivation selects escape variants in mouse models of cancer. Cancer Cell 2011; 20:753-67; PMID:22172721; http://dx.doi.org/10.1016/j.ccr.2011.10.019

77. Johnson LA, Morgan RA, Dudley ME, Cassard L, Yang JC, Hughes MS, et al. Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood 2009; 114:535-46; PMID:19451940; http://dx.doi.org/10.1182/blood-2009-03-211714
83. Brentjens R, Yeh R, Bernal Y, Riviere I, Sadelain M. Treatment of chronic lymphocytic leukemia with genetically targeted autologous T cells: case report of an unforeseen adverse event in a phase I clinical trial. Mol Ther 2010; 18:666-8; PMID:20357779; http://dx.doi.org/10.1038/m.2010.31

84. Morgan RA, Yang JC, Kattan M, Dudley ME, Lauretano CM, Rosenberg SA. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther 2010; 18:843-51; PMID:20179677; http://dx.doi.org/10.1038/m.2010.24

85. Dedo GM, Leunemans C, Howikja A, Bies L, de Witte MA, Jorritsma A, et al. Lethal graft-versus-host disease in mouse models of T cell receptor gene therapy. Nat Med 2010; 16:565-70. 1p following 70.

86. Dudley ME, Wunderlich JR, Yang JC, Sherry RM, Topalian SL, Rastine NP, et al. Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J Clin Oncol 2005; 23:2346-57; PMID:15800326; http://dx.doi.org/10.1200/JCO.2005.00.240

87. Mackensen A, Meidenhauer N, Vogl S, Laumer M, Berger J, Andreesen R. Phase I study of adoptive T-cell therapy using antigen-specific CD8+ T cells for the treatment of patients with metastatic melanoma. J Clin Oncol 2006; 24:5060-9; PMID:17075125; http://dx.doi.org/10.1200/JCO.2006.07.1108

88. Heemskerk B, Liu K, Dudley ME, Johnson LA, Kaiser A, Downey S, et al. Adaptive cell therapy for patients with melanoma, using tumor-infiltrating lymphocytes genetically engineered to secrete interleukin-2. Hum Gene Ther 2008; 19:496-510; PMID:18444786; http://dx.doi.org/10.1089/hum.2007.0171

89. Dudley ME, Yang JC, Sherry R, Hughes MS, Royal R, Kammla U, et al. Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemotherapy preparative regimens. J Clin Oncol 2008; 26:5233-9; PMID:18809613; http://dx.doi.org/10.1200/JCO.2008.16.5449

90. Dias ML, Bernhard H, Jaffe EM. Use of tumour-responsive T cells as cancer treatment. Lancet 2009; 373:673-83; PMID:19223164; http://dx.doi.org/10.1016/S0140-6736(09)60404-9

91. Khammari A, Labarrière N, Vignard V, Nguyen JM, Pandolfini MC, Knol AC, et al. Treatment of metastatic melanoma with autologous Melan-A/MART-1-specific cytotoxic T lymphocyte donors. J Invest Dermatol 2009; 129:2835-42; PMID:19554023; http://dx.doi.org/10.1038/jid.2009.144

92. Hong JJ, Rosenberg SA, Dudley ME, Yang JC, White DE, Butman JA, et al. Successful treatment of melanoma brain metastases with adoptive cell therapy. Clin Cancer Res 2010; 16:4892-8; PMID:20719934; http://dx.doi.org/10.1158/1078-0432.CCR-10-1507

93. Verdugo EM, Visser M, Ramwadihoebel TH, van der Minne CE, van Steijn JA, Kapteijn E, et al. Successful treatment of metastatic melanoma by adoptive transfer of blood-derived polyclonal tumour-specific CD4+ and CD8+ T cells in combination with low-dose interferon-alpha. Cancer Immunol Immunother 2011; 60:593-63; PMID:21431917; http://dx.doi.org/10.1007/s00262-011-0904-8

94. Butler MO, Friedlander P, Miletine M, Mooney MM, Metzler G, Murray AP, et al. Establishment of antitumor memory in humans using in vitro-educated CD8+ T cells. Sci Transl Med 2011; 3:80ra34; PMID:21525398; http://dx.doi.org/10.1126/scitranslmed.3002207

95. Chang AE, Li Q, Jiang G, Sayre DM, Btaun TM, Redman BG. Phase II trial of autologous tumor vaccination, anti-CD3-activated vaccine-primed lymphocytes, and interleukin-2 in stage IV renal cell cancer. J Clin Oncol 2003; 21:884-90; PMID:12610189; http://dx.doi.org/10.1200/JCO.2003.08.023

96. Thompson JA, Figlin RA, Sfiri-Steel C, Berenson RJ, Frohlich MW. A phase I trial of CD3/CD28-activated T cells (Excellerated T cells) and interleukin-2 in patients with metastatic renal cell carcinoma. Clin Cancer Res 2003; 9:3562-70; PMID:14506142

97. Zhou P, Liang P, Dong B, Yu X, Han Z, Xu Y. Phase I clinical study of combination therapy with microwave ablation and cellular immunotherapy in hepatocellular carcinoma. Cancer Biol Ther 2011; 11:450-6; PMID:21258206; http://dx.doi.org/10.4161/cit.11.5.14669

98. Kershaw MH, Westwood JA, Parker LL, Wang G, Eshkar Z, Mavroukakis SA, et al. A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin Cancer Res 2006; 12:6106-15; PMID:17062687; http://dx.doi.org/10.1158/1078-0432.CCR-06-1183

99. Pule MA, Savoldo B, Myers GD, Rossig C, Russell HV, Dorgi G, et al. Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. Nat Med 2008; 14:1264-70; PMID:18978797; http://dx.doi.org/10.1038/nm.1882

100. Yamakasi K, Horiguchi S, Kurosaki M, Kunii N, Nagato K, Hanaoka H, et al. Induction of NKT cell-specific immune responses in cancer tissues after NKT cell-targeted adoptive immunotherapy. Clin Immunol 2011; 138:255-65; PMID:21185934; http://dx.doi.org/10.1038/clmt.2010.24

101. Curti BD, Ochoa AC, Powers GC, Kopp WC, Alwood WG, Janik JE, et al. Phase I trial of anti-CD3-stimulated CD4+ T cells, infusional interleukin-2, and cyclophosphamide in patients with advanced cancer. J Clin Oncol 1998; 16:2752-60; PMID:9704728

102. Laport GG, Levine BL, Stadtmueller EA, Schuster SJ, Luger SM, Grupp S, et al. Adoptive transfer of costimulated T cells induces lymphocytosis in patients with relapsed/refractory non-Hodgkin lymphoma following CD34+-selected hematopoietic cell transplantation. Blood 2003; 102:2004-13; PMID:12769394; http://dx.doi.org/10.1182/blood-2003-01-0095

103. Benedja JC, Hess A, Lucas DM, O'Donnell P, Ambinder RF, Diehl LF, et al. Systemic interleukin-2 and adoptive transfer of lymphokine-activated killer cells improves body-dependent cellular cytotoxicity in patients with relapsed B-cell lymphoma treated with rituximab. Clin Cancer Res 2007; 13:2392-9; PMID:17438098; http://dx.doi.org/10.1158/1078-0432.CCR-06-1860

104. Wallen H, Thompson JA, Reilly JZ, Rodmyre RM, Cao J, Yee C. Fludarabine modulates immune response and extends in vivo survival of adoptively transferred CDF1 T cells in patients with metastatic melanoma. PLoS One 2009; 4:e9749; PMID:19720751; http://dx.doi.org/10.1371/journal.pone.0009749

105. Rapoport AP, Aqui NA, Stadtmueller EA, Vogl DT, Fang HB, Cai L, et al. Combination immunotherapy using adoptive T-cell transfer and tumor antigen vaccination on the basis of hTERT and survivin after ASCT for myeloma. Blood 2011; 117:788-97; PMID:21030558; http://dx.doi.org/10.1182/blood-2010-08-299396

106. Kochenderfer JN, Dudley ME, Feldman SA, Wilson WH, Sporer DE, Marie I, et al. B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood 2011, in press. PMID:22160384; http://dx.doi.org/10.1182/blood-2011-10-384388

107. Sangiolo D. Cytokine induced killer cells as promising immunotherapy for solid tumors. J Cancer 2011; 2:363-8; PMID:21716717; http://dx.doi.org/10.1159/00032636