Prescribing cascades in community-dwelling adults: A systematic review

Ann S. Doherty1 | Faiza Shahid2 | Frank Moriarty3 | Fiona Boland1,4 | Barbara Clyne1 | Tobias Dreischulte2 | Tom Fahey1 | Seán P. Kennelly5,6 | Emma Wallace7

1Department of General Practice, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland
2Institute of General Practice and Family Medicine, University Hospital of Ludwig-Maximilians-University Munich, Munich, Germany
3School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland
4Data Science Centre, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland
5Department of Medical Gerontology, Trinity College Dublin, Dublin 2, Ireland
6Department of Age-related Healthcare, Tallaght University Hospital, Dublin 24, Ireland
7Department of General Practice, University College Cork, Cork, Ireland

Correspondence
Emma Wallace, Department of General Practice University College Cork, Cork Ireland.
Email: ewallace@ucc.ie

Funding information
Health Research Board (HRB) Ireland Emerging Clinician Scientist Award, Grant/ Award Number: HRB-ECSCA-2020-002; HRB Emerging Investigator Award, Grant/ Award Number: EIA-2019-09

Abstract
The misattribution of an adverse drug reaction (ADR) as a symptom or illness can lead to the prescribing of additional medication, referred to as a prescribing cascade. The aim of this systematic review is to identify published prescribing cascades in community-dwelling adults. A systematic review was reported in line with the PRISMA guidelines and pre-registered with PROSPERO. Electronic databases (Medline [Ovid], EMBASE, PsycINFO, CINAHL, Cochrane Library) and grey literature sources were searched. Inclusion criteria: community-dwelling adults; risk-prescription medication; outcomes-initiation of new medicine to “treat” or reduce ADR risk; study type-cohort, cross-sectional, case-control, and case-series studies. Title/abstract screening, full-text screening, data extraction, and methodological quality assessment were conducted independently in duplicate. A narrative synthesis was conducted. A total of 101 studies (reported in 103 publications) were included. Study sample sizes ranged from 126 to 11,593,989 participants and 15 studies examined older adults specifically (≥60 years). Seventy-eight of 101 studies reported a potential prescribing cascade including calcium channel blockers to loop diuretic (n = 5), amiodarone to levothyroxine (n = 5), inhaled corticosteroid to topical antifungal (n = 4), antipsychotic to anti-Parkinson drug (n = 4), and acetylcholinesterase inhibitor to urinary incontinence drugs (n = 4). Identified prescribing cascades occurred within three months to one year following initial medication. Methodological quality varied across included studies. Prescribing cascades occur for a broad range of medications. ADRs should be included in the differential diagnosis for patients presenting with new symptoms, particularly older adults and those who started a new medication in the preceding 12 months.

KEYWORDS
appropriate prescribing, community-dwelling adults, prescribing cascades, systematic review

Abbreviations: ADR, adverse drug reaction; ATC, Anatomical Therapeutic Classification; CCB, calcium channel blocker; ED, Emergency Departments; PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-analysis; TRIP, Turning Research Into Practice.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2022 The Authors. Pharmacology Research & Perspectives published by British Pharmacological Society and American Society for Pharmacology and Experimental Therapeutics and John Wiley & Sons Ltd.

Pharmacol Res Perspect. 2022;10:e01008. https://doi.org/10.1002/prp2.1008
1 | BACKGROUND

A prescribing cascade occurs when a medication is used to treat or prevent the adverse effects of another medication. An unintentional prescribing cascade occurs when the adverse drug reaction (ADR) is misinterpreted as a new medical condition, leading to the prescription of new medication to treat the emerging symptoms. For example, calcium channel blocker (CCB) induced lower extremity oedema may be misinterpreted as a sign of congestive heart failure and result in the inappropriate prescribing of a loop diuretic to alleviate the oedema instead of simply switching the CCB to an alternative class antihypertensive agent. Intentional prescribing cascades occur when the ADR is recognised and a subsequent medication is prescribed to combat this ADR either via treatment of the ADR or prevention of it in the first instance. Prescribing cascades can be further characterised as either appropriate (potential benefits > risks), or inappropriate (risks > potential benefits). Furthermore, this characterisation of appropriateness is a dynamic entity; an appropriate prescribing cascade can become inappropriate over time, particularly should the clinical circumstances of the patient change.

It is not clear what drives prescribing cascades. Older adults may be more vulnerable due to the nonspecific nature of ADR symptoms in older adults, e.g. falls, fatigue or constipation, all of which have multiple potential causes. Multimorbidity, which is more common in older adults, may also make the identification of new onset ADRs more challenging. However, the failure to correctly identify an ADR and the resultant prescribing cascade compounds the risk for medication-related harm.

To date prescribing cascades have remained under-researched. A previous scoping review identified only 10 original investigations and seven case reports that examined prescribing cascades. In order to optimise prescribing, it is vital that clinically relevant prescribing cascades that commonly occur in practice are identified. The objective of this systematic review was to identify published prescribing cascades in community-dwelling adults.

2 | MATERIALS AND METHODS

2.1 | Search protocol

The study protocol was previously published and pre-registered with PROSPERO [CRD42021243163]. This study was reported according to the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines. (eTable 1 and eTable 2 in Appendix S1).

2.2 | Search strategy

Searches were conducted in the following databases: Medline (Ovid), EMBASE, PsycInfo, CINAHL and the Cochrane Library. Searches were initially conducted from inception to March 2021 and updated in February 2022. The search strategy (eBox 1 in Appendix S1) was developed in consultation with an experienced librarian. No restrictions were placed on language or publication year. Grey literature database searches were conducted in MedNar, Dart Europe, Open Grey, and the Turning Research Into Practice (TRIP) databases using keyword searches. Forwards and backwards citation searching of articles selected for full text review was also conducted. Retrieved results were exported to EndNote X9 prior to screening and study selection using Covidence® systematic review management system. Following duplicates removal, titles and abstracts were independently screened by two reviewers (AD and EW, OC or FS) according to inclusion criteria. Disagreements were managed by consensus. Additional information was sought from study authors where necessary.

Studies were included if they met the following criteria:

1. Population: community-dwelling adults (≥18 years).
2. Risk: prescription of medication that had the potential to cause an ADR that resulted in the prescription of further medication.
3. Outcome: prescribing cascade defined as the initiation of a new medication to ‘treat’ an ADR (unintentional cascade) or to reduce the risk of an ADR (intentional cascade).
4. Study type: prospective or retrospective cohort, cross-sectional, case-crossover, case-control or case-series studies.
5. Setting: primary care and community settings, including ambulatory care.

2.2.1 | Exclusion criteria

The following studies were excluded:

1. Population of interest <18 years;
2. Studies conducted solely in nursing homes, residential care, inpatient settings or Emergency Departments (ED);
3. Case reports

2.3 | Data extraction and quality assessment

Data extraction was conducted by two independent reviewers (AD and EW, OC or FS) using a standardised Microsoft Excel proforma. (see eBox 2, Appendix S1). The methodological quality of included publications was independently performed in duplicate (AD and EW, OC or FS) using the appropriate JBI- Critical Appraisal checklist (eBox 3, Appendix S1). Data synthesis was conducted using a narrative synthesis. Alluvial plots of drug pair combinations were created, using R-Studio 2021.09.2 statistical software using the ggalluvial package, to identify the drug-pair combinations examined and to summarise the overall quantitative association reported.
3 | RESULTS

3.1 | Study identification

The study identification flow diagram is presented in Figure 1. A total of 103 publications relating to 101 studies met the inclusion criteria. Three publications included data from the same study relating to updated data collection time periods (2000–2006; 2000–2010; and 2000–2012). Thus, only the final study publication, which contained the entire data collection period, was included in the narrative synthesis.

3.2 | Study population demographics

Seventy-nine studies presented study participants demographics, of which 15 specifically examined older adults (≥60 years), with different age-related thresholds (e.g., ≥60; ≥65; ≥66 years) used across studies. Thirteen studies reported analyses stratified by age, with most studies (n = 88) being retrospective cohort studies, of which 5 specifically incorporated a case–control study within the study design. Five were case–control studies, and one that conducted a preliminary cross-sectional study. Two broad range of medication types were examined as potentially precipitating a prescribing cascade (see Table 1 and column 1, Figure 2A). Ninety-four studies were hypothesis-driven or examined a predefined list of medications (Table 2 and Figure 2A). Seven studies conducting exploratory analyses to identify new signals of potential prescribing cascades are not represented in

3.4 | Initial medication(s) prescribed to patient

All studies used routine data (health insurance claims, prescription dispensing, clinical databases, national health surveys and pharmacovigilance data). In total, 83 studies examined dispensed prescriptions whereas 18 studies examined prescribed medications (see eTable 3, Appendix S1).

Of 101 studies, 62 used prescription sequence symmetry analysis (PSSA) to determine the ratio of participants who initiated two medications in both possible sequences (i.e., Drug A → Drug B vs. Drug B → Drug A), with the majority (n = 52) adjusting for prescribing trends. Several studies reported stratified results by dosage, concomitant medication use or polypharmacy, duration, comorbidity, race and nursing home residence. For other studies, analyses were adjusted by age, sex, dose, nursing home residence, concomitant medication or polypharmacy, with some studies conducting adjusted analyses but not reporting the independent association of these covariates.

Length of follow up ranged from one month to seven years, with the majority over one year (n = 33 studies).
TABLE 1 Primary results of included studies by ATC pharmacological classification (n = 101)

Primary author (year)	Initial medication(s)	Suspected ADR	New medication(s)	Quantitative association (primary analysis or association at 1 year)
Alimentary tract and metabolism				
Adimadhyam (2019)47	Sodium/Glucose cotransporter-2 inhibitors (SGLT2-I)	Genital mycotic infections	Antifungal	PSSA SGLT2-I → Antifungal ± 365 days aSR 1.24 (95%CI 1.20–1.28)
Avorn (1995)20	Metoclopramide	Extrapyramidal symptoms (EPS)	Anti-Parkinson drug (APD)	Metoclopramide → APD (<90 days) aOR 3.04 (95%CI 2.22–4.17)
Gadzhanova (2017)88	SGLT2-I Dipeptidyl peptidase 4 inhibitor (DPP4-I)	Urinary or genital infections	Trimethoprim Nitrofurantoin Norfloxacin	SGLT2-I users (3.6%) compared to DPP4-I users (4.9%), aHR 0.90 (95%CI 0.66–1.24) Risk of UTI (<6 months) SGLT2-I users (2.9%) compared with DPP4-I users (0.9%), aHR 3.50 (95%CI 1.95–5.89)
Janetzki (2021)99	PPI	Development or exacerbation of chronic obstructive pulmonary disease (COPD)	Long-acting muscarinic antagonist (LAMA) or long-acting beta-2 agonist (LABA) listed for the treatment of COPD	PSSA: PPI → LAMA/LABA ± 1 year Omeprazole: aSR = 1.29 (95%CI 1.22–1.36) Esomperazole: aSR = 1.25 (95%CI 1.22–1.29) Rabeprazole: aSR = 1.15 (95%CI 1.08–1.21) Pantoprazole: aSR = 1.08 (95%CI 1.05–1.12) Lansoprazole: aSR = 1.08 (95%CI 0.96–1.22)
Lund (2021)111	SGLT2-I Glucagon-like peptide-1 receptor agonists (GLP1-RA)	Gout	Any uric acid lowering therapy, colchicine or first hospital diagnosis of gout (composite)	Risk of gout (<3 years): intention to treat analysis HR: 0.58 (0.44 to 0.75) [GLP1-RA as referent] Risk of gout (<3 years): per-protocol analysis HR: 0.48 (0.33 to 0.70) [GLP1-RA as referent] PSSA: SGLT2-I → Gout ± 365 days aSR 0.63 (95%CI 0.47–0.84) PSSA: GLP1-RA → Outcome ± 365 days aSR 0.94 (95%CI 0.78–1.13)
Park (2018)32	PPI Histamine 2 receptor antagonist (H2RA)	Dementia	Anti-dementia medication (secondary outcome)	PSSA: PPI → Anti-dementia medication ± 3 years aSR 1.38 (95%CI 1.28–1.48); n = 3025 PSSA: H2RA → Anti-dementia medication ± 3 years aSR 2.35 (2.13–2.59); n = 2308
Roughead (2015)96	Pioglitazone Rosiglitazone	Oedema	Furosemide	PSSA: Rosiglitazone → Furosemide ± 1 year Pooled (Australia and Canada): aSR 1.15 (95%CI 1.58–1.72) Pooled (Asia): aSR 1.21 (95%CI 1.01–1.45) PSSA: Pioglitazone → Furosemide ± 1 year Pooled (Australia and Canada): aSR 1.47 (95%CI 1.41–1.91) Pooled (Asia): aSR 1.11 (95%CI 0.86–1.32)
TABLE 1 (Continued)

Primary author (year)	Initial medication(s)	Suspected ADR	New medication(s)	Quantitative association (primary analysis or association at 1 year)
Blood and blood forming organs				
Roughhead (2016)⁹⁵	PPI	Clostridium difficile infection	Oral vancomycin	PSSA: PPI → Oral vancomycin ± 1 year
Pooled estimate: aSR 2.40 (95% CI 1.88–3.05)				
Pooled estimate (Asia only): aSR 3.16 (95% CI 1.95–5.10)				
Wahab (2014)¹¹³	Rosiglitazone	Heart failure	Furosemide	PSSA: Rosiglitazone → Furosemide (Jul 2000 to Dec 2007)
aSR = 1.73 (99% CI 1.34–2.24)				
Hachiken (2013)¹⁰⁹	Low dose aspirin (LDA)	Gastrointestinal (GI) complications	H2RAs	
PPIs	PSSA: LDA → PPIs ± 365 days			
Enteric coated LDA: aSR 1.87 (95% CI 1.26–2.83)				
Buffered LDA: aSR 0.95 (95% CI 0.75–1.20)				
Buffered LDA: aSR 1.25 (95% CI 1.22–1.28)				
Maura (2018)⁹³	Direct oral anticoagulants (DOACs; excluding edoxaban)	GI events (composite)		
Nausea				
Constipation				
Depression				
Glaucoma	Gastrointestinal medications (composite)			
Gastrointestinal medications without acid disorder drugs				
Antiemetics				
Drugs for constipation	PSSA: DOAC → Gastrointestinal medications (composite) ± 360 days			
aSR 0.95 (95% CI 0.92–0.97); n = 24 916				
Apixaban → Gastrointestinal medications ± 360 days				
aSR 1.18 (95% CI 1.10–1.26); n = 34 440				
PSSA: DOAC → Gastrointestinal medications (without acid disorder drugs ± 360 days)				
aSR 1.26 (95% CI 1.24–1.29); n = 37 764				
PSSA: DOAC → Antiemetic ± 360 days				
aSR 1.25 (95% CI 1.22–1.28); n = 27 080				
PSSA: DOAC → Drugs for constipation ± 360 days				
aSR 1.25 (95% CI 1.22–1.27); n = 43 112				
DOAC → Antidepressant medication ± 360 days				
aSR 1.26 (95% CI 1.23–1.30); n = 20 613				
DOAC → Glaucoma medication ± 360 days				
aSR 1.01 (95% CI 0.97–1.05); n = 9 473				
Takada (2014)⁶⁷	Low dose aspirin (LDA)			
Enteric coated				
Buffered	GI complications	H2RAs		
PPIs	PSSA: LDA → PPIs ± 12 months			
Enteric coated LDA: aSR 1.20 (95% CI 0.97–1.49)				
Buffered LDA: aSR 0.59 (95% CI 0.33–1.05)				
PSSA: LDA → H2RAs ± 12 months				
Enteric coated LDA: aSR 0.83 (95% CI 0.67–1.02)				
Buffered LDA: aSR 0.78 (95% CI 0.50–1.21)				
Yokoyama (2020)⁸⁴	Oral anticoagulants	Osteoporosis	Bisphosphonate	PSSA: Warfarin → Bisphosphonate ± 12 months
aSR 1.43 (95% CI 1.02–2.03); n = 148				
Cardiovascular system				
Bowman (1995)⁷³	Angiotensin converting enzyme inhibitor (ACEI)	Cough	Antitussive	ACEI → Antitussive (<1 year; adjusted)
aOR 1.53 (95% CI 1.17–2.01) |

(Continues)
Primary author (year)	Initial medication(s)	Suspected ADR	New medication(s)	Quantitative association (primary analysis or association at 1 year)
Fujimoto (2014) 50	Statins	Lower urinary tract symptoms (LUTS)	Drugs for storage LUTS	PSSA: Statins → Drugs for storage LUTS ±365 days
All statins: aSR 1.17 (95% CI 1.05–1.30)				
Pravastatin: aSR 1.27 (95% CI 1.05–1.54)				
Statins → Solfenacin: aSR 1.47 (95% CI 1.25–1.73)				
Statins → Oxybutynin: aSR 1.71 (95% CI 1.09–2.72)				
Gurwitz (1997) 23	Antihypertensive medication (see Appendix S1)	Gout	Anti-gout medication (see Appendix S1)	Antihypertensive → Anti-gout medication <365 days
Non-thiazide antihypertensive alone: aRR 1.00 (95% CI 0.65–1.53)				
Thiazide diuretic alone: aRR 1.99 (95% CI 1.21–3.26)				
Thiazide diuretic plus non-thiazide antihypertensive: aRR 2.29 (95% CI 1.55–3.37)				
Hallas (1996) 52	Beta blockers Cardiovascular drugs (see Appendix S1)	Depression	Antidepressants	Beta-blocker → Antidepressant (study period)
aRR 1.09 (95% CI 0.95, 1.26)				
ACEIs → Antidepressant				
aRR 1.29 (95% CI 1.08, 1.56)				
Calcium channel blockers → Antidepressant				
aRR 1.31 (95% CI 1.14, 1.51)				
Lindberg & Hallas (1998) 98	Cholesterol-lowering medication	Depression	Antidepressants	PSSA: Cholesterol-lowering drug → Antidepressant (study period)
All drugs: aSR 0.90 (95% CI 0.68–1.22); n = 184				
Simvastatin: aSR 1.59 (1.08–2.45); n = 91				
Morris (2021) 116	Dihydropyridine calcium channel blockers (DH-CCBs)	Oedema	Loop diuretic	Among 5458467 DH CCB users (weighted), 185130 individuals (3.4% weighted) were identified with new loop diuretic use.
Pouwels (2013) 128	ACEI	Urinary tract infection (UTI)	Nitrofurantoin	PSSA: ACEI → Nitrofurantoin ±4weeks
aSR 1.68 (95% CI 1.21–2.36); n = 161				
Pouwels (2014) 118	ACEI	UTI	Nitrofurantoin	ACEI → Nitrofurantoin (<30 days vs <60–90 days)
Crude OR = 1.84 (95% CI 1.51–2.25)				
Pouwels (2016) 29	Statin	Infection	Antibiotic	PSSA: Statin → Antibiotic ±13 months
Any antibiotic: aSR 0.86 (95% CI 0.81–0.91)				
Pratt (2015) 61	Amiodarone	Hypothyroidism	Thyroxine	PSSA: Amiodarone → Thyroxine ±12 months
Pooled aSR 2.63 (95% CI 1.47–4.72)				
Primary author (year)	Initial medication(s)	Suspected ADR	New medication(s)	Quantitative association (primary analysis or association at 1 year)
-----------------------	-----------------------	---------------	-------------------	---
Savage (2020)⁵	Calcium channel blockers (CCBs) ACEIs or Angiotensin receptor blockers (ARBs) (comparator)	Oedema	Loop diuretic	CCB \rightarrow Loop diuretic \leq90 days
Incident CCB users had a higher cumulative incidence of loop diuretic than the comparators (1.4% vs. 0.7% [other antihypertensive comparator] and 0.5% [general comparator], $p < .001$).				
CCB versus other antihypertensive (ACEI or ARB)				
1–30 days: aHR 1.68 (95%CI 1.38–2.05)				
31–60 days: aHR 2.26 (95%CI 1.76–2.92)				
61–90 days: aHR 2.40 (95%CI 1.84–3.13)				
91–180 days: aHR 2.24 (95%CI 1.86–2.71)				
181–365 days: aHR 1.64 (95%CI 1.38–1.94)				
Silver (2006)⁹²	Statin	Muscle pain	NSAID	PSSA: Statin \rightarrow NSAID \pm 365 days
aSR 0.94 (95%CI 0.85–1.05)				
Singh (2021)⁵⁴	CCBs	Lower extremity oedema	Diuretics	CCB \rightarrow Diuretic day 8 \rightarrow day 365
Cohort 1: 161 incident diuretic users among 3304 incident CCB users (4.9%, 95%CI 4.2–5.7).				
Cohort 2: 1586 incident diuretic users among 36 462 prevalent CCB users (1.3%, 95%CI 1.4–4.6).				
Cohort 3: 130 incident diuretic use among 2525 participants with polypharmacy at the day of incident CCB dispensing (5.1, 95%CI 4.3–6.0).				
Takada (2014)¹²⁹	Statins	Sleep disturbance	Hypnotic drugs	PSS: Statin \rightarrow Hypnotic drugs \pm 365 days
aSR 1.18 (95%CI 1.11–1.25)				
Thiessen (1990)¹¹²	Beta-blocker	Depression	Antidepressants	Beta-blocker: Antidepressant <34 days (concurrent use)
Beta-blocker: RR 2.6 (95%CI 2.3–3.0)				
Vegter (2013)¹⁸	ACEI	Cough	Cough medication	PSSA: ACEI \rightarrow Cough medication \pm 6months
2000–2012: SR 2.0 (95%CI 1.8–2.2)				
Vouri (2018)⁷–⁶	DH-CCBs	Lower extremity oedema	Loop diuretic	DH-CCB \rightarrow Loop diuretic (2014)
The potential prescribing cascade was identified in 2.2 million visits (4.6%) using the primary definition of prescribing cascade.				
Vouri (2019)⁷	DH-CCBs	Lower extremity oedema	Loop diuretic	PSSA: DH-CCB \rightarrow Loop diuretic (2014) \pm 360 days
aSR 1.87 (95%CI 1.84–1.90)				
Vouri (2021)³⁰⁵	DH-CCBs	DH-CCB induced oedema	Loop diuretic	PSSA: DH-CCB \rightarrow Loop diuretic \pm 360 days
aSR 2.27 (95% CI 1.44–3.58) |

(Continues)
Primary author (year)	Initial medication(s)	Suspected ADR	New medication(s)	Quantitative association (primary analysis or association at 1 year)
Vouri (2021)	DH-CCB	DH-CCB induced oedema	Loop diuretic	PSSA: DH-CCB → Loop diuretic ±360 days Relative to levothyroxine initiators: aSR 1.72 (95%CI 1.66–1.78) Relative to ACEI/ARBs initiators: aSR 1.45 (1.41–1.49)
Vouri (2022)	Beta-blocker	Oedema	Loop diuretic	PSSA: Beta-blocker → Loop diuretic ±90 days aSR 1.78 (99%CI 1.72–1.84)
Yokoyama (2021)	Amiodarone	Hypothyroidism	Thyroid preparations	PSSA: Amiodarone → Thyroid preparations ±12 months aSR 12.8 (95%CI 8.44–20.28)

Dermatologicals

Primary author (year)	Initial medication(s)	Suspected ADR	New medication(s)	Quantitative association (primary analysis or association at 1 year)
Azoulay (2007)	Isotretinoin	Depression	Antidepressants	Isotretinoin → Antidepressant (5 month risk and control windows) aRR 2.68 (95%CI 1.10–6.48)
Hersom (2003)	Isotretinoin Minocycline	Depression	Antidepressants (MAOIs excluded)	Isotretinoin → Antidepressant (study period) aRR 0.97 (95%CI 0.92–1.02) Minocycline → Antidepressant (study period) aRR 0.90 (95%CI 0.95–1.02)
Sturkenboom (1995)	Acitretin	Vulvo-vaginal infection	Vulvo-vaginal anti-infective drug	Acitretin → Vulvo-vaginal anti-infective (study period) Pooled Mantel–Haenszel IRR: 3.3 (95%CI 1.1–9.6)

Genito urinary system and sex hormones

Primary author (year)	Initial medication(s)	Suspected ADR	New medication(s)	Quantitative association (primary analysis or association at 1 year)
Dyson (2020)	5-α reductase inhibitors (5-ARI)	Depression	Antidepressant	PSSA: 5-ARI → Antidepressant ±365 days Crude SR 0.84 (95% CI 0.80–0.89)
Hagberg (2017)	5-ARI Alpha blocker (AB)	Depression	Antidepressant (<90 days of depression diagnosis)	SARI → Antidepressant (compared with AB only users) 5-ARIs only: aIRR = 0.94 (95%CI 0.85–1.04) 5-ARIs + ABs: aIRR = 1.04 (95%CI 0.89–1.21) Nested case–control analysis (compared with AB only users) 5-ARIs only: aOR 0.88 (95%CI 0.78–1.01) 5-ARIs+ABs: aOR 0.90 (95%CI 0.73–1.10).

Anti-infectives for systemic use
Primary author (year)	Initial medication(s)	Suspected ADR	New medication(s)	Quantitative association (primary analysis or association at 1 year)
Corrao (2005)49	Antibacterial drugs for systemic use	Arrhythmia triggered by prolonged QT interval	Antiarrhythmic	PSSA: Antibacterial → Antiarrhythmic (study period)
Erythromycin: aSR 1.78 (95% CI 1.09–2.89); n = 73
Ciprofloxacin: aSR 1.17 (95% CI 1.02–1.33); n = 870
Cohort analysis (standardised incidence ratio)
Erythromycin: 1.96 (95% CI 1.45–2.59; n = 8956
Clarithromycin: 1.18 (95% CI 1.08–1.29); n = 97900
Rokitamycin: 1.27 (95% CI 1.00–1.66; n = 15247
Ciprofloxacin: 1.25 (95% CI 1.14–1.37; n = 58070
Norfloxacain: 1.17 (95% CI 1.00–1.36; n = 22421
Levofoxicin: 1.33 (95% CI 1.03–1.38; n = 14159
Case-control analysis
Erythromycin: OR 1.89 (95% CI 1.33–2.68)
Clarithromycin: OR 1.18 (95% CI 1.04–1.34)
Ciprofloxacin: OR 1.21 (95% CI 1.05–1.39)
Levofoxicin: OR 1.33 (95% CI 1.04–1.70) |

Antineoplastic and immunomodulating agents

| Farkas (2021)21 | Aromatase inhibitors (AI) | For the treatment of menopausal symptoms
Vasomotor symptoms, vaginal dryness, arthralgias, pain | See Appendix S1 | Medication use in 12 months before AI:
Any new side effect medication: 7436 (40.2%)
Opiates 31.5%; SSRIs 16.1%; Gabapentin 7.0%
Medication use in the 24 months after AI:
Any new side effect medication: 13179 (71.2%)
Opiates 55.1%; SSRIs 22.6%; Benzodiazepines 18.4%; Tramadol 17.7%; Gabapentin 14.6% |

Musculo-skeletal system

| Gurwitz (1994)22 | NSAID | Hypertension | Antihypertensive | NSAI → Antihypertensive (<365 days)
OR = 2.01 (95% CI 1.89–2.14) |

| Avorn (1995)19 | Neuroleptics | Extrapyramidal symptoms | APD (excluding a amantadine monotherapy) | Any Anti-Parkinson drug (<90 days)
Any neuroleptic: aOR 5.4 (95% CI 4.8–6.1)
Anticholinergic Anti-Parkinson drug (<90 days)
Any neuroleptic: aOR 8.5 (95% CI 4.8–6.1)
Dopaminergic agent (<90 days)
Any neuroleptic: aOR 2.2 (95% CI 1.9–2.7) |

| Brandt-Christensen (2007)37 | APD
Control 1: Antidiabetics
Control 2: unexposed | Depression | Antidepressants | Anti-Parkinson drug → Antidepressant (versus unexposed)
APD cohort: RR 2.10 (95% CI 2.04–2.16)
Antidiabetic cohort: RR 1.34 (95% CI 1.32–1.36) |

(Continues)
Primary author (year)	Initial medication(s)	Suspected ADR	New medication(s)	Quantitative association (primary analysis or association at 1 year)
DoHerT et al. (2020)	Selective serotonin reuptake inhibitors (SSRI)	Restless leg syndrome (RLS)	Dopamine agonist Quinine	PSSA: SSRI → RLS drug ± 365 days
Any drug: aSR 0.99 (95% CI 0.95–1.02)				
Dopamine agonist only: aSR 1.21 (95% CI 1.12–1.32); n = 2267				
Gau (2010)	Lithium Carbamazepine Valproate	Hypothyroidism	Thyroxine, liothyronine or thyroid hormone and hypothyroidism diagnosis (composite)	Likelihood for incident hypothyroidism (study period)
Lithium: OR 1.41 (95% CI 1.14–1.74)				
Carbamazepine: OR 1.37 (95% CI 1.13–1.65)				
Valproate: OR 1.72 (95% CI 1.40–2.11)				
Gill (2005)	Acetylcholinesterase inhibitors (AChEI)	Urge urinary incontinence	Urinary anticholinergics	AChEI → Anticholinergic
Patients dispensed cholinesterase inhibitors were more likely to receive an anticholinergic medication in follow-up (4.5% vs. 3.1%; p < .001).				
Hirano (2020)	Anxiolytic Hypnotic Antidepressants Antipsychotics	EPS	Diagnosis of EPS and APD prescription in same month (composite)	PSSA: Psychotropic medication → EPS and APD ± 12 months
Anxiolytic: aSR 2.48 (95% CI 2.16–2.85); n = 992				
Hypnotic: aSR 2.28 (95% CI 1.97–2.64); n = 872				
Antidepressant: aSR 2.26 (95% CI 1.93–2.64); n = 728				
Antipsychotic: aSR 9.24 (95% CI 7.35–11.8); n = 817				
Kalisch Ellett (2018)	Antipsychotics	EPS	Anticholinergic Hyperprolactinaemia Diabetes mellitus	Concomitant medication use
Anticholinergic: n = 51 (0.7%)				
Hyperprolactinaemia medications: n = 8 (0.1%)				
Oral diabetes medicines: n = 874 (11.8%)				
Kroger (2015)	AChEI	Urinary incontinence	Drugs for urinary frequency and incontinence	AChEI → Drugs for urinary frequency < 90 days
All patients (n = 2700): aHR 1.13 (95% CI 0.97–1.32)				
Rivastigmine patients (n = 1853): aHR 1.13 (95% CI 0.95–1.34)				
Galantamine patients (n = 1043): aHR 1.10 (95% CI 0.81–1.50)				
Lai (2013)	Antiepileptic drugs (AEDs)	Hypothyroidism	Levothyroxine	PSSA: AEDs → Levothyroxine ± 12 months
Any AED: aSR 1.13 (99% CI 1.09–1.18)				
Carbamazepine: aSR 1.21 (99% CI 1.08–1.34)				
Phenobarbital: aSR 1.25 (99% CI 1.15–1.36)				
Phenytoin: aSR 1.75 (99% CI 1.58–1.94)				
Valproate: aSR 1.34 (99% CI 1.20–1.49)				
Oxcarbazepine: aSR 1.22 (99% CI 1.03–1.46)				
Lampela (2016)	AChEI or Memantine	Urinary incontinence	Urinary anticholinergics	AChEI → Urinary anticholinergics (versus memantine users)
<6 months: aHR 1.47 (95% CI 1.17–1.86)				
<12 months: aHR 1.41 (95% CI 1.17–1.69)				
Marras (2016)	Lithium Valproic acid Antidepressant	Drug induced tremor diagnosed as Parkinson’s Disease (PD)	Anti-Parkinson drug or PD diagnosis (see Appendix S1)	Start of dopaminergic drug (no previous antipsychotic use)
Lithium (versus antidepressant): aHR 1.68 (95% CI 1.13–2.48) |

TABLE 1 (Continued)
Primary author (year)	Initial medication(s)	Suspected ADR	New medication(s)	Quantitative association (primary analysis or association at 1 year)
Masurkar (2021)²⁴	AChEI	Overactive bladder	Urinary anticholinergic	AChEI → Anticholinergic cascade <6months
				Rivastigmine: aHR = 1.0
				Donepezil: aHR = 1.55 (95%CI 1.31–1.83)
				Galantamine: aHR = 1.17 (95%CI 0.87–1.58)
Movig (2002)⁴¹	SSRI	Urinary incontinence	Spasmolytic agent or 30 or more units of incontinence wear	SSRI → Spasmolytic agent/incontinence wear <3month
				During SSRI (versus before SSRI): IDR 1.57 (95%CI 1.38–1.79)
				During SSRI (versus after SSRI): IDR 2.03 (95%CI 1.76–2.34)
				During SSRI (versus before and after SSRI): IDR 1.75 (95%CI 1.56–1.97)
				Risk for incontinence during exposed period (versus non-exposed) aRR 1.61, 95%CI 1.42–1.82
Narayan (2019)²⁵	AChEI or Memantine	Several ADRs examined relating to anticholinergic medication use	Anticholinergics (see Appendix S1)	Anti-dementia drug → Marker medication ± 180 days
				Exposed to at least one anticholinergic ±180 days: n = 1439
				Exposed to at least one anticholinergic after anti-dementia drug: n = 416
Onder (2014)c⁴⁶	Anti-Parkinson drugs and antipsychotics (concomitant use)	Parkinsonism (side effect of antipsychotics); Behavioural disorders (side effect of anti-Parkinson drugs)	Anti-Parkinson drugs and antipsychotics (concomitant use)	Prevalence of concomitant use of anti-Parkinson and antipsychotic medication (2011)
				Total population: n = 25949 (0.2%)
				65–74 years: n = 10 200 (0.2%)
				75–84 years: n = 10 625 (0.2%)
				≥85 years: n = 5124 (0.3%)
Park (2016)⁶⁴	Benzodiazepines	Dementia	Anti-dementia drugs	PSSA: Benzodiazepines → Anti-dementia drugs ± 3 years
				aSR 2.19 (95%CI 1.92–2.49); n = 1285
Petri (1988)⁵⁶	Flunarizine	Depression	Antidepressant	Flunarizine → Antidepressant <30 days
				Number of antidepressant starts during or within 30 days after flunarizine use was 5 out of a total of 34 histories
Petri (1990)⁵⁷	Flunarizine	Depression or Parkinsonism	Antidepressant or Anti-Parkinson drug	Flunarizine → Antidepressant (study period) Incidence Rate = 1.342 (95%CI 1.00–1.80)
				Flunarizine → Anti-Parkinson drug
				In a subset of 777 flunarizine recipients there were 10 participants who received anti-Parkinson drugs
Pratt (2013)⁹⁰	Antipsychotics	Acute hyperglycaemia	Insulin	PSSA: Olanzapine → Insulin ± 12 months
				USA Public: aSR 1.14 (95%CI 1.1–1.17)
				Sweden: aSR 1.53 (95%CI 1.33–2.06)
				Risperidone → Insulin ± 12 months
				USA Public: aSR 1.09 (95%CI 1.07–1.12)
Read (2021)³⁸	Gabapentinoid	Oedema	Diuretic	Gabapentinoid → Diuretic <90 days (versus non-users)
				aHR 1.44 (95%CI 1.23–1.70).

(Continues)
Primary author (year)	Initial medication(s)	Suspected ADR	New medication(s)	Quantitative association (primary analysis or association at 1 year)
Rochon (2005)	Antipsychotic	Parkinsonism	Anti-Parkinson drug or Parkinson diagnosis (composite)	Antipsychotic → Anti-Parkinson drug/diagnosis <1 year (versus typical antipsychotic); Typical antipsychotics: adjusted HR 1.30 (95%CI 1.04–1.58); No therapy: aHR 0.40 (95%CI 0.29–0.43)
Takada (2016)	Benzodiazepine	Dementia	Anti-dementia drug	PSSA: Benzodiazepine → Anti-dementia drug ± 12 months 12 months: aSR 1.23 (95%CI 1.11–1.37)
Takeuchi (2015)	Atypical antipsychotics	Hyperlipidemia	Anti-hyperlipidemic drugs	PSSA: Atypical antipsychotics → Anti-hyperlipidemic drugs Olanzapine ±360 days: aSR 2.19 (95%CI 1.55–3.12)
Thacker (2006)	AChEI	Drug-induced airways complications	Antibacterial and oral corticosteroid	AChEI → Antibacterial and oral corticosteroid <1 month Fully-adjusted RR = 1.19 (95%CI 0.52–2.74)
Venalainen (2017)	AChEI	Nausea	Antiemetics	AChEI → Marker drug ± 1 year Loperamide/Oral rehydration: aSR 1.42 (95%CI 1.14–1.77); n = 348
		Diarrhoea	Loperamide/H2RAs	Anxiolytics: aSR 1.16 (95%CI 1.01–1.34); n = 807
		Urinary incontinence	Loperamide/Oral rehydration sachets Oxybutynin	Hypnotics and sedatives: aSR 1.19 (95%CI 1.05–1.36); n = 963
		Seizures	Anxiolytics	Antipsychotics: aSR 1.18 (95%CI 1.05–1.32); n = 1202
		Anxiety	Anticonvulsants	Anticonvulsants: aSR 1.26 (95%CI 1.03–1.55); n = 389
		Insomnia	Hypnotics and sedatives	PPI/H2RAs: aSR 0.87 (95%CI 0.77–0.98); n = 1079
		Depression	Antidepressants	Antidepressant: aSR 0.77 (95%CI 0.70–0.85); n = 1698
			Oxybutynin: aSR 1.04 (95%CI 0.81–1.34); n = 261	
Vouri (2020)	AChEI or Memantine	Rhinorrhea	Rhinorrhea medications	AChEI/Memantine → Rhinorrhea medications (concomitant use) AChEI users were more likely to use a rhinorrhea medication compared to non-AChEI users, OR 7.16 (95%CI 2.25–22.73); adjusted OR = 4.7 (95%CI 1.53–14.43)
Wang (2021)	Varenicline	Neuropsychiatric adverse events: Depression	Antidepressant	PSSA: Varenicline → Any NPAE drug ±365 days aSR 1.00 (95%CI 0.89–1.13)
		Anxiety	Anxiolytics	PSSA: Varenicline → Hypnotics and sedatives ± 365 days Sleep disorder drug: aSR = 1.25 (95%CI 1.05–1.48)
		Sleep disorders	Hypnotics and sedatives (composite outcome)	General population with psychiatric disorders <24 weeks Any NPAE medication: adjusted OR 0.82 (95% CI 0.68 to 0.99) General population without psychiatric disorders <24 weeks Any NPAE medication: adjusted OR 0.85, (95% CI 0.72 to 1.00) COPD population with psychiatric disorders <24 weeks Any NPAE medication: adjusted OR 0.97 (95% CI 0.66 to 1.44) COPD population without psychiatric disorders <24 weeks Any NPAE medication: adjusted OR 0.81 (95% CI 0.54 to 1.20)
Yokoyama (2020)	Antipsychotics	Osteoporosis	Bisphosphonate	PSSA: Antipsychotic → Bisphosphonate No association identified.
Primary author (year)	Initial medication(s)	Suspected ADR	New medication(s)	Quantitative association (primary analysis or association at 1 year)
-----------------------	------------------------	---------------	-------------------	---
Respiratory system				
Fox (2022)34	Montelukast	Neuropsychiatric adverse events (NPAE)	Antidepressants Benzodiazepines Hypnotics Antipsychotics Mood stabilisers Buspirone (composite outcome)	PSSA: Montelukast → Any NPAE medication ± 14–365 days SR 0.84 (95%CI 0.80–0.89)
Henriksen (2017)39	Inhaled corticosteroids	Oral candidiasis	Systemic or topical antifungal	PSSA: Inhaled corticosteroid → Topical antifungal ± 12months Crude SR 2.89 (95%CI 2.80–2.97) PSSA: Inhaled corticosteroid → Systemic antifungal ± 12months Crude SR 1.50 (95%CI 1.46–1.54)
Petri (1991)56	Inhaled corticosteroids	Oral candidiasis	Topical antifungal	Inhaled corticosteroids → Topical antifungal ± 90 days Crude OR = 1.66 (n = 21)
Van Boven (2013)71	Inhaled corticosteroids	Oral candidiasis	Topical antifungal	PSSA: Inhaled corticosteroids → Topical antifungal ± 12months Crude SR 1.94 (95%CI 1.71–2.21)
Winkel (2018)60	Montelukast	Depression	Antidepressant (excluding bupropion)	PSSA: Montelukast → Antidepressant ± 1 year Crude SR 1.19 (95%CI 1.11–1.28)
Sensory organs				
Roughead (2012)97	Timolol Latanoprost Bimatoprost Pilocarpine Brimonidine	Exacerbation of airways disease Exacerbation of depression	Inhaled beta-agonists Inhaled corticosteroids Oral corticosteroids SSRI	PSSA: Glaucoma → marker medications ± 1 year Timolol → Inhaled beta agonist: aSR 1.48 (95%CI 1.22–1.78); n = 786 Timolol → Inhaled corticosteroid: aSR 1.43 (95%CI 1.13–1.81); n = 494 Latanoprost → Inhaled beta agonist: aSR 1.24 (95%CI 1.11–1.38); n = 2251 Latanoprost → Oral corticosteroid: aSR 1.14 (95%CI 1.00–1.29); n = 1671 Timolol → Antidepressant: aSR 1.24 (95%CI 1.07-1.43); n = 1253 Timolol → SSRI: aSR 1.30 (95%CI 1.08–1.56); n = 791 Latanoprost → Antidepressant: aSR 1.16 (95%CI 1.03–1.31); n = 1871 Latanoprost → SSRI: aSR 1.20 (95%CI 1.03–1.39); n = 1155
Multiple medication groups examined				
Brandt-Christensen (2006)82	Antidepressant Lithium Antidiabetic Parkinsonism APD	(see Appendix S1 for exclusions)		Index drug → Anti-Parkinson drug (versus unexposed) Antidepressant: RR 1.79 (95%CI 1.72-1.86) Lithium: RR 1.88 (95%CI 1.60–2.20) Antidiabetic: RR 0.80 (95%CI 0.74–0.86)

(Continues)
Primary author (year)	Initial medication(s)	Suspected ADR	New medication(s)	Quantitative association (primary analysis or association at 1 year)
Bytzer & Hallas (2000)	Predefined list of 32 index medications (see Appendix S1)	Dyspepsia or nausea	Cisapride or Metoclopramide	NSAIDS: aSR = 1.33 (95%CI 1.02–1.77); n = 211
Methylxanthines: aSR = 2.36 (1.00–8.44); n = 18				
PSSA: Index medication → Cisapride < 100 days				
Dyspepsia or nausea				
Cisapride or Metoclopramide				
PSSA: Index medication → Metoclopramide < 100 days				
Insulin: aSR = 2.91 (95%CI 1.40–8.11); n = 28				
Opioids: aSR = 2.84 (95%CI 2.48–3.28); n = 1017				
Potassium supplement: 1.42 (95%CI 1.15–1.79); n = 324				
Digoxin: 2.87 (95%CI 2.01–4.35); n = 138				
Nitrates: 1.74 (95%CI 1.16–2.77); n = 88				
Loop diuretics: 1.50 (95%CI 1.23–1.85); n = 383				
ACEIs: 2.27 (95%CI 1.46–3.85); n = 77				
Oral corticosteroids: 1.33 (95%CI 1.11–1.60); n = 458				
Antibiotics: 1.40 (95%CI 1.24–1.60); n = 974				
Penicillins: 1.38 (95%CI 1.21–1.59); n = 868				
Macrolides: 1.58 (95%CI 1.31–1.94); n = 414				
NSAIDs: 1.48 (95%CI 1.28–1.74); n = 307				
Methylxanthines: 2.03 (95%CI 1.25–3.65); n = 63				
Caughey (2010)	Medicines commonly associated with dizziness identified (see Appendix S1)	Dizziness	Prochlorperazine	PSSA: Index medication → Prochlorperazine ± 12 months
Cardiac therapy: aSR = 1.14 (95%CI 1.06–1.22); n = 3017				
Nitrates: aSR = 1.11 (95%CI 1.03–1.21); n = 2224				
Isosorbide mononitrate: aSR = 1.21 (95%CI 1.07–1.38); n = 918				
Diuretic: aSR = 1.07 (95%CI 1.01–1.14); n = 3845				
Beta-blocker: aSR = 1.13 (95%CI 1.05–1.21); n = 3156				
CCBs: aSR = 1.22 (95%CI 1.16–1.36); n = 2696				
ACE inhibitors: aSR = 1.22 (95%CI 1.14–1.31); n = 3162				
ARB: aSR = 1.20 (95%CI 1.11–1.30); n = 2577				
Statins: aSR = 1.50 (95%CI 1.40–1.61); n = 3411				
NSAIDs: aSR = 1.37 (95%CI 1.27–1.47); n = 3079				
Opioids: aSR = 1.24 (95%CI 1.17–1.31); n = 5266				
Sedatives: aSR = 1.18 (95%CI 1.11–1.26); n = 3470				
de Jong (2003)	Antidepressant with or without NSAID	GI adverse effects	H2RAs	Antidepressant → Ulcer drugs (compared with TCA only)
SSRI: IRR 1.2 (95%CI 0.5–2.8); n = 1181				
PPIs				
Prostaglandins				
SSRI + NSAID: IRR 12.4 (95%CI 3.2–48.0); n = 86				
Primary author (year)	Initial medication(s)	Suspected ADR	New medication(s)	Quantitative association (primary analysis or association at 1 year)
-----------------------	-----------------------	--------------	-------------------	--
Garrison (2012)³³	Statin, Diuretic	Nocturnal leg cramps	Quinine	PSSA: Index drug → Quinine ± 1 year
All statins: aSR 1.16 (95%CI 1.04–1.29); n = 1326				
All LABAs: aSR 2.42 (95%CI 2.02–2.89); n = 576				
LABA alone: aSR 2.17 (95%CI 1.56–3.02); n = 137				
LABA-corticosteroid: aSR 2.55 (95%CI 2.06–3.12); n = 439				
All diuretics: aSR 1.47 (95%CI 1.33–1.63); n = 1590				
Loop diuretic: aSR 1.20 (95%CI 1.00–1.44); n = 447				
Thiazide diuretic: aSR 1.48 (95%CI 1.29–1.68); n = 977				
Potassium-sparing diuretic: aSR 2.12 (95%CI 1.61–2.78); n = 206				
Halas & Bytzer (1998)³⁹	Predefined list of 33 medications (see Appendix S1)	Dyspepsia	Ulcer drug prescription	PSSA: Index drug → Ulcer drug prescription ± 100 days
NSAIDs: aSR 1.80 (95%CI 1.64–1.99)				
CCBs: aSR 1.40 (95%CI 1.18–1.67)				
Oral corticosteroids: aSR 1.15 (95%CI 1.02–1.30)				
ACEIs: aSR 1.38 (1.12–1.73)				
Methyloxanthines: aSR 1.49 (1.05–2.19)				
Hashimoto (2015)³³	Medicines that cause storage symptoms; Medicines that cause voiding symptoms	LUTS	Medications for (LUTS)	PSSA: Index drug → Medications for LUTs ± 12 months
Oxycodone: aSR 1.20 (95%CI 1.03–1.41)				
Morphine: aSR 1.29 (95%CI 1.14–1.45)				
Donepezil: aSR 1.98 (95%CI 1.57–2.50)				
Intestinal lavage solution: aSR 1.86 (95%CI 1.65–2.10)				
Cyclophosphamide: aSR 1.52 (95%CI 1.14–2.04)				
Levodopa/benserazide: aSR 1.82 (95%CI 1.18–2.81)				
Amantadine: aSR 1.53 (95%CI 1.12–2.09)				
Paroxetine: aSR 1.77 (95%CI 1.33–2.36)				
Milnacipran: aSR 2.10 (95%CI 1.28–3.45)				
Diazepam: aSR 1.73 (95%CI 1.46–2.06)				
Risperidone: aSR 1.55 (95%CI 1.34–1.79)				
Levomepromazine: aSR 2.20 (95%CI 1.34–1.79)				
Sulpiride: aSR 1.32 (95%CI 1.01–1.72)				
Cimetidine: aSR 1.99 (95%CI 1.24–3.20)				
Scopolamine butylbromide: aSR 1.72 (95%CI 1.55–1.92)				
Tiotropium bromide: aSR 1.75 (95%CI 1.42–2.16)				
Ciclosporine: sSR 2.97 (95%CI 1.92–4.59)				
Amezinium metilsulfate: aSR 1.89 (95%CI 1.10–3.26)				
Huh (2019)³¹	Metoclopramide or levosulpiride	Drug induced Parkinsonism	Levodopa	PSSA: Metoclopramide → Levodopa < 90 days
aOR 2.94 (95%CI 2.35, 3.67)				
PSSA: Levosulpiride → Levodopa < 90 days				
aOR 3.30 (95%CI 2.52, 4.32)				
Primary author (year)	Initial medication(s)	Suspected ADR	New medication(s)	Quantitative association (primary analysis or association at 1 year)
---------------------------	--	-----------------------------	------------------------------------	--
Kalisch Ellett (2014)⁷⁴	See Appendix S1	Urinary incontinence	Oxybutynin	PSSA: Index medication → Oxybutynin ±12 months
				Prazosin (women only): aSR 1.84 (95% CI 1.29–2.63); n = 135
				Low-ceiling diuretics, excluding thiazides: aSR 1.22 (95% CI 1.06–1.41); n = 750
				CCBs: aSR 1.45 (95% CI 1.33–1.57); n = 2230
				ACEIs: aSR 1.28 (95% CI 1.19–1.39); n = 2616
				ACEIs + diuretic: aSR 1.35 (1.15–1.58); n = 620
				ARBs: aSR 1.42 (1.30–1.55); n = 2040
				ARBs + diuretic: aSR 1.32 (1.16–1.49); n = 999
				HRT: aSR 1.54 (95% CI 1.42–1.67); n = 2446
				Antipsychotics: aSR 0.83 (95% CI 0.78–0.89); n = 2121
				Low-ceiling diuretics, excluding thiazides: aSR 1.22 (95% CI 1.06–1.41); n = 750
				CCBs: aSR 1.45 (95% CI 1.33–1.57); n = 2230
				ACEIs: aSR 1.28 (95% CI 1.19–1.39); n = 2616
				ACEIs + diuretic: aSR 1.35 (1.15–1.58); n = 620
				ARBs: aSR 1.42 (1.30–1.55); n = 2040
				ARBs + diuretic: aSR 1.32 (1.16–1.49); n = 999
				HRT: aSR 1.54 (95% CI 1.42–1.67); n = 2446
				Antipsychotics: aSR 0.83 (95% CI 0.78–0.89); n = 2121
				Low-ceiling diuretics, excluding thiazides: aSR 1.22 (95% CI 1.06–1.41); n = 750
				CCBs: aSR 1.45 (95% CI 1.33–1.57); n = 2230
				ACEIs: aSR 1.28 (95% CI 1.19–1.39); n = 2616
				ACEIs + diuretic: aSR 1.35 (1.15–1.58); n = 620
				ARBs: aSR 1.42 (1.30–1.55); n = 2040
				ARBs + diuretic: aSR 1.32 (1.16–1.49); n = 999
				HRT: aSR 1.54 (95% CI 1.42–1.67); n = 2446
				Antipsychotics: aSR 0.83 (95% CI 0.78–0.89); n = 2121
				Statistical significance was observed at α < 0.05

Table 1 (Continued)
Primary author (year)	Initial medication(s)	Suspected ADR	New medication(s)	Quantitative association (primary analysis or association at 1 year)
Nishtala & Chyou (2017)	Amiodarone, Lithium, Frusemide, Fluticasone, Simvastatin	Hypothyroidism, Hyperthyroidism, Hypokalaemia, Oral candidiasis, Muscle cramps	Thyroxine, Carbidzole, Potassium, Nystatin, Quinine sulphate	PSSA: Amiodarone → Thyroxine ± 360 days
aSR 3.37 (95% CI 3.17–4.02)				
Lithium → Thyroxine ± 360 days				
aSR 3.43 (95% CI 2.55–4.70)				
Amiodarone → Carbidzole ± 360 days				
aSR 8.81 (95% CI 5.86–13.77)				
Simvastatin → Quinine sulphate ± 360 days				
aSR 1.69 (95% CI 1.61–1.77)				
Fluticasone → Nystatin ± 360 days				
aSR 2.34 (95% CI 2.19–2.50)				
Frusemide → Potassium ± 360 days				
aSR 2.94 (95% CI 2.83–3.05)				
Pouwels (2013)	SSRI with or without NSAID	Peptic ulcer	Peptic ulcer drug treatment	PSSA: SSRI +/- NSAID → Peptic ulcer treatment ± 4 weeks
SSRI: aSR 0.83 (95%CI 0.65–1.06)				
NSAID: aSR 2.50 (95%CI 2.27–2.76)				
SSRI + NSAID: aSR 1.48 (95%CI 0.90–2.49)				
Rasmussen (2015)	Antithrombotic drugs, Cardiovascular drugs (see Appendix S1)	Erectile dysfunction	5-phosphodiesterase inhibitor	PSSA: Cardiovascular drugs → 5-phosphodiesterase inhibitor ± 6 months
Thiazides: aSR 1.28 (95%CI 1.20, 1.38); NNTH 370 (95%CI 300, 500); n = 3118				
β-blockers: aSR 1.18 (95%CI 1.09, 1.28); NNTH 680 (95%CI 480, 1200); n = 2511				
CCBs: aSR 1.29 (95%CI 1.21, 1.38); NNTH 330 (95%CI 270, 440); n = 3379				
ACEIs: aSR 1.29 (95%CI 1.21, 1.37); NNTH 350 (95%CI 290, 440); n = 4182				
ARBs: aSR 1.16 (95%CI 1.06, 1.26); NNTH 540 (95%CI 360, 1200); n = 2082				
Singh (2021)	Antipsychotic or Metoclopramide	Parkinsonism	Anti-Parkinson drug	Antipsychotic/metoclopramide → Anti-Parkinson drug < day 8–365
Cohort 1: 36 (0.8%) incident anti-Parkinson drug users among 4534 incident antipsychotic/metoclopramide users				
Cohort 2: 20 (0.5%) incident users of anti-Parkinsonian drugs among 3485 antipsychotic/metoclopramide users				
Trenaman (2021)	AChEs, Metoclopramide, CCBs	Urinary incontinence, Parkinsonism, Pedal oedema	Urinary medications, Anti-Parkinson drug, Diuretic	AChEI → Urinary medications <6months
60 cases of prescribing cascade were identified. Extending to 365 days resulted in 52 additional cases.				
Metoclopramide → Anti-Parkinson drug <6months				
11 cases of the prescribing cascade were identified. Extending to 365 days resulted in 5 additional cases.				
CCB → Diuretic <6months				
289 cases of prescribing cascade were identified. Extending to 365 days resulted in 369 cases.				
Primary author (year)	Initial medication(s)	Suspected ADR	New medication(s)	Quantitative association (primary analysis or association at 1 year)
-----------------------	------------------------	--------------	-------------------	---
Exploratory studies				
Tsiropoulos (2009)68	AEDs	Exploratory analysis	Any other medication presented in the same period	PSSA: All AEDs → Marker medication
Propulsives ±183 days: aSR 1.31 (95%CI 1.11–1.56); n = 571				
Laxatives ±183 days: aSR 1.57 (95%CI 1.29–1.92); n = 432				
Topical corticosteroids ±183 days: aSR 1.32 (95%CI 1.16–1.52); n = 900				
				PSSA: Carbamazepine → Marker medication
Propulsives ±183 days: aSR 1.57 (95%CI 1.14–2.19); n = 163				
Laxatives ±183 days: aSR 1.61 (95%CI 1.01–2.59); n = 82				
Topical corticosteroids ±183 days: aSR 1.48 (95%CI 1.17–1.87); n = 305				
				Anti-acne preparations ±183 days: aSR 3.66 (95%CI 1.31–2.62); n = 23
				Bone disease treatment ±548 days: aSR 1.98 (95%CI 1.03–3.92); n = 43
				PSSA: Oxcarbazepine → Marker medication
Propulsives ±183 days: aSR 2.54 (95%CI 1.71–3.85); n = 119				
Laxatives ±183 days: aSR 3.74 (95%CI 2.31–6.29); n = 103				
Topical corticosteroids ±183 days: aSR 1.40 (95%CI 1.08–1.83); n = 245				
				Phenobarbital → Marker medication
Bone disease treatment ±548 days: aSR 4.51 (95%CI 1.42–8.82); n = 18 |

King (2020)75
654 different medications examined
New onset heart failure
Furosemide

TABLE 1 (Continued)
Primary author (year)	Initial medication(s)	Suspected ADR	New medication(s)	Quantitative association (primary analysis or association at 1 year)
Wahab (2016) 106	691 different medications examined	Heart failure	Furosemide	PSSA: Index medication → Furosemide ± 1 year
				Teriparatide: aSR 5.02 (95% CI 1.07–23.7); n = 10
				Lodoxamide: aSR 2.50 (95% CI 1.06–5.91); n = 27
				Famotidine: aSR 1.69 (95% CI 1.38–2.08); n = 423
				Latanoprost: aSR 1.48 (95% CI 1.38–1.59); n = 3107
				Pilocarpine: aSR 1.43 (95% CI 1.16–1.77); n = 632
				Brinzolamide: aSR 1.37 (95% CI 1.16–1.62); n = 564
				Betahistine: aSR 1.31 (95% CI 1.07–1.62); n = 359
				Ranitidine: aSR 1.24 (95% CI 1.17–1.31); n = 5554
				Paracetamol: aSR 1.06 (95% CI 1.04–1.09); n = 24210
Chen (2021) 87	Confirmatory analysis	Hypothyroidism	Thyroxine	Confirmatory PSSA ± 1 year
	Amiodarone	Gout	Allopurinol	Amiodarone → Thyroxine: aSR 3.77 (95% CI 3.43–4.14); n = 2667
	Exploratory analysis	Cough	Exploratory PSSA ± 1 year	Amiodarone → Allopurinol: aSR 0.83 (95% CI 0.76–0.90); n = 2071
	ACEIs	UTH	ACEIs → Antitussive: aSR 1.33 (95% CI 1.31–1.34); n = 141924	
	Statins	Storage LUTS	Statins → Drugs for urinary frequency: aSR 1.17 (95% CI 1.16–1.19); n = 107422	
	Buffered LDA	Depression	Statins → Antidepressants: aSR 1.19 (95% CI 1.18–1.21); n = 117443	
	Enteric-coated LDA	Sleep disturbances		Statins → Hypnotics: aSR 1.10 (95% CI 1.09–1.12); n = 124061
	DH-CCBs	Hepatotoxicity		Statins → Ursoodeoxycholic acid: aSR 1.26 (95% CI 1.21–1.31); n = 11231
		Muscle pain		Statins → NSAIDs: aSR 1.02 (95% CI 1.02–1.03); n = 430774
		Skin and soft tissue infection		Statins → Dicloxacillin/Flucloxacinil: aSR 1.18 (95% CI 1.15–1.22); n = 23068
		Infection in those with type-2 diabetes		Statins → Antibiotic treatment (those with type 2 diabetes): aSR 1.38 (95% CI 1.36–1.39); n = 150016
		GI complications		DH-CCBs → Loop diuretic: aSR 1.46 (95% CI 1.45–1.48); n = 139375

(Continues)
Primary author (year)	Initial medication(s)	Suspected ADR	New medication(s)	Quantitative association (primary analysis or association at 1 year)
Lai (2014)	Sulpiride Non-sulpiride antipsychotics	EPS Diabetes Hyperprolactinaemia Cardiac arrhythmias	Confirmatory analyses: Anticholinergics Oral hyperglycaemics Prolactine inhibitors Class 1B antiarrhythmics Exploratory analyses: all medications prescribed after the index date	Confirmatory PSSA analyses ± 12 months Sulpiride → Anticholinergics: aSR 1.73 (95% CI 1.46–2.06); n = 568 Haloperidol → Anticholinergics: aSR 1.99 (95% CI 1.68–2.35); n = 611 Risperidone → Anticholinergics: aSR 1.21 (95% CI 1.04–1.41); n = 702 Olanzapine → Anticholinergics: aSR 0.73 (95% CI 0.58–0.93); n = 281 Amisulpiride → Anticholinergics: aSR 0.54 (95% CI 0.40–0.73); n = 188 Sulpiride → Prolactine inhibitors: aSR 12.0 (95% CI 1.59–91.2); n = 16 Amisulpiride → Prolactine inhibitors: aSR 8.05 (95% CI 1.00–65.4); n = 8 Haloperidol → Class 1b antiarrhythmics: sSR 2.81 (95% CI 1.03–7.66); n = 21 Exploratory PSSA analyses: Sulpiride → Marker medication ± 12 months Stomatological preparations: aSR 1.86 (95% CI 1.13–3.07); n = 71 Corticosteroids for local oral treatment: aSR 1.71 (95% CI 1.00–2.91); n = 59 Beta blockers, any: aSR 1.42 (95% CI 1.12–1.71); n = 371 Beta blockers, non-selective: aSR 1.61 (95% CI 1.28–2.03); n = 304 Dermatological preparations, corticosteroids: aSR 2.18 (95% CI 1.21–3.92); n = 57 Corticosteroids weak, other combinations: aSR 2.15 (95% CI 1.08–4.28); n = 42 Quinolones: aSR 1.50 (95% CI 1.00–2.24); n = 101 Fluroquinolones: aSR 1.81 (95% CI 1.03–3.17); n = 55 Anti-inflammatory preparations, non-steroidal for topical use: aSR 1.36 (95% CI 1.01–1.84); n = 173
Primary author (year)	Initial medication(s)	Suspected ADR	New medication(s)	Quantitative association (primary analysis or association at 1 year)
----------------------	-----------------------	---------------	-------------------	---
Hallas (2018)	186 758 associations tested in the main analysis; 30 best signals reported	Exploratory analysis	30 strongest signals reported	PSSA: Index → Marker medication ± 12 months Opoids → Drugs for constipation (crude SR 2.34, 95%CI 2.31–2.38; n = 84020 High ceiling diuretics → Potassium SR 3.31 (95%CI 3.24–3.38); n = 48 539 Thiazide → Potassium SR 3.46 (95%CI 3.39–3.54); n = 45 175 Opioids → Propulsives SR 2.14 (95%CI 2.10–2.17); n = 62 139 NSAIDS → Anti-ulcer drugs SR 1.71 (95%CI 1.67–1.74); n = 49 646 Antithrombotic → Anti-ulcer drugs SR 1.41 (95%CI 1.39–1.44); n = 54 841 Cough suppressants → Drugs for constipation SR 1.95 (95%CI 1.90–2.00); n = 260 015 Corticosteroids, systemic use → Drugs affecting bone structure and mineralisation SR 3.40 (95%CI 3.27–3.54); n = 13 023
Hellfritzsch (2018)	Non-vitamin K oral anticoagulants (NOAC)	Exploratory analysis	20 strongest signals reported	PSSA: NOAC → Marker drug ± 6 months Benzodiazepines, hypnotic: cSR 8.28 (95%CI 6.01–12.05); NNTH 193 Osmotic laxatives: cSR 1.35 (95%CI 1.25–1.46); NNTH 133 Benzodiazepines, sedative: cSR 1.99 (95%CI 1.74–2.30); NNTH 174 Corticosteroids, anal use: cSR 2.03 (95%CI 1.76–2.35); NNTH 176 SSRI: cSR 1.57 (95%CI 1.37–1.77); NNTH 202 Other antidepressant: cSR 1.59 (95%CI 1.41–1.80); NNTH 207 PPi: cSR 1.39 (95%CI 1.11–1.28); NNTH 209 Phenylpiridine opioids: cSR 2.12 (95%CI 1.81–2.51); NNTH 215 Propulsives: cSR 1.51 (95%CI 1.35–1.71); NNTH 216 Iron bivalent, oral: cSR 1.62 (95%CI 1.42–1.86); NNTH 238 Contact laxatives: cSR 1.29 (95%CI 1.17–1.43); NNTH 253

Abbreviations: aHR, adjusted hazard ratio; aIRR, adjusted incidence rate ratio; aOR, adjusted odds ratio; aSR, adjusted sequence ratio; cSR, crude sequence ratio; HR, hazard ratio; IDR, incidence density ratio; IRR, incidence rate ratio; NNTH, number needed to harm; PSSA, prescription sequence symmetry analysis.

*aCase–control study.
*bCase-crossover study.
*cCross-sectional study.
*dIncludes case–control study.
*eIncludes cross-sectional study.
Initial medication Anatomical Therapeutic Classification (ATC) codes were not reported for 66 studies and were assigned by our research team.

3.5 | Suspected adverse reaction(s)

Throughout the included studies, suspected ADRs were presumed to have occurred based on the initiation of the second medication as a treatment. In one study examining the CCB→loop diuretic prescribing cascade, an additional medical chart review was also conducted.\(^{105}\)

The suspected ADRs, symptoms or new diagnoses explored were broad-ranging (see Table 2) most commonly depression (\(n = 13\))\(^{33,37,40,45,52,55,77,72,93,97,98,110,112}\); peripheral oedema (\(n = 11\))\(^{5,7,28,30,36,44,96,103-105,116}\); urinary incontinence (\(n = 9\))\(^{24,26,30,41,44,50,53,74,117}\) and parkinsonism (\(n = 9\))\(^{27,29,31,46,57,63,82,119}\).
Initial medication	Suspected ADR	Second medication	Main findings
DH-CCB	Oedema	Loop diuretic	<1 year: aSR 1.46 (95% CI 1.45–1.48); n = 13937587⁸⁷
<360 days: aSR 1.87 (95% CI 1.84–1.90); 558187⁷			
<360 days: aSR 2.27 (95% CI 1.44–3.58); n = 90¹⁰⁵			
<360 days: aSR 1.72 (95% CI 1.66–1.79) relative to levethyroxine negative control; aSR 1.45 (1.41–1.49) relative to ACEI/ARB negative control³⁵			
Amiodarone	Hypothyroidism	Thyroxine	<1 year: aSR 3.77 (95% CI 3.43–4.14); n = 266787⁵
<360 days: aSR 3.57 (95% CI 3.17–4.02)			
Inhaled corticosteroids	Oral candidiasis	Topical antifungals	<90 days OR 1.66; n = 21⁵⁶
<1 year: SR 2.89 (95% CI 2.80–2.97)			
<1 year: SR 1.94 (95% CI 1.71–2.21)			
<360 days: aSR 2.34 (95% CI 2.19–2.50)⁵⁴			
Neuroleptics/ Antipsychotic	Parkinsonian symptoms/ extrapyramidal symptoms	Anti-parkinson medication or Parkinson diagnosis	<90 days: aOR 5.4 (95% CI 4.8–6.1)¹⁹
<1 year (1 antipsychotic): aSR 9.24 (7.35–11.8); n = 817¹⁰⁰			
<1 year (2 antipsychotics): aSR 22.2 (9.94–61.7); n = 137			
<1 year (≥3 antipsychotics): aSR 34.8 (5.87–141.8); n = 37			
Never use: aOR 1.0 (referent); n = 10714¹¹⁹			
Very-late use (≥181 days): aOR 1.1 (95% CI 0.6–1.8); n = 61			
Late use (31–180 days): aOR 2.0 (95% CI 1.2–3.3); n = 94			
Early use (8–30 days): aOR 6.0 (95% CI 2.3–15.9); n = 43			
Current use (≤7 days): aOR 3.0 (95% CI 1.7–5.4); n = 80			
Typical: aOR 6.4 (95% CI 1.4–28.2); n = 17			
Haloperidol: aOR 4.3 (95% CI 0.9–20.1); n = 12			
Atypical: aOR 2.4 (95% CI 1.2–4.9); n = 56			
Quetiapine: aOR 0.9 (95% CI 0.4–2.2); n = 26			
Risperidone: aOR 13.5 (95% CI 1.8–102.1); n = 23			
Combined use: aOR 3.2 (95% CI 0.6–17.9); n = 7			
Typical antipsychotics: aHR 1.30 (95% CI 1.04–1.58) versus atypical antipsychotic use²⁹			
No therapy: aHR 0.40 (95% CI 0.29–0.43)			
Acetylcholinesterase inhibitors	Urinary incontinence	Drugs for urinary frequency and incontinence	During follow-up (1st June 1999–31st March 2003): older adults dispensed acetylcholinesterase inhibitors had a higher risk of subsequently receiving an anticholinergic medication to treat urge urinary incontinence (aHR, 1.55; 95% CI, 1.39–1.72)²⁶
Donepezil—Medication for managing Lower Urinary Tract Symptoms (LUTS)⁵³
<3 months: 1.32 (95% CI 1.00–3.50); n = 243
<12 months: aSR: 1.98 (95% CI 1.57–2.50); n = 319
<6 months: aHR 1.47 (95% CI 1.17–1.86) versus memantine users⁶⁴
<12 months: aHR 1.41 (95% CI 1.17–1.69) versus memantine users
Donepezil: aHR 1.55 (95% CI 1.31–1.83) versus rivastigmine use²⁴
Galantamine: aHR 1.17 (95% CI 0.87–1.58) versus rivastigmine use |

(Continues)
Initial medication	Suspected ADR	Second medication	Main findings
Metoclopramide	Parkinsonian symptoms	Levodopa	<90 days: aOR 3.04 (95% CI 2.22–4.17)\(^{20}\) <90 days: aOR 2.94 (95% CI 2.35–3.67)\(^{21}\) Anti-Parkinson medication or diagnosis <1 year: aOR 2.7 (95% CI 1.8–4.1); n = 121\(^{119}\)
ACE inhibitors	Cough	Antitussive	<1 year OR = 1.58 (95% CI 1.21–2.07)\(^{73}\) <6 months: SR 2.0 (95% CI 1.8–2.2); n = 1898; estimated 13.4% mistreated cough\(^{18}\) <1 year: aSR 1.33 (95% CI 1.31–1.34); n = 141924\(^{37}\)
NSAID	GI symptoms	Anti-ulcer medication	<4 weeks: aSR 2.50 (95% CI 2.27–2.76); n = 2016\(^{132}\) <100 days: aSR 1.80 (95% CI 1.64–1.99); n = 1814\(^{39}\) <1 year: SR 1.71 (95% CI 1.67–1.74); n = 4964\(^{101}\)
Ranitidine	Heart failure	Furosemide	<1 year: aSR 1.08 (95% CI 1.04–1.12); n = 10875\(^{75}\) <1 year: aSR 1.24 (95% CI 1.17–1.31); n = 5554\(^{106}\)
Rosiglitazone	failure	Furosemide	<1 year Australia-1: aSR 1.70 (95% CI 1.34–2.15)\(^{96}\) <1 year Australia-2: aSR 1.63 (95% CI 1.51–1.76) <1 year Canada: aSR 1.65 (95% CI 1.57–1.73) <1 year Pooled estimate (Australia & Canada): aSR 1.65 (95% CI 1.58–1.72) <1 year Hong Kong: aSR 3.37 (95% CI 1.69–6.72) <1 year Korea: aSR 1.14 (95% CI 1.08–1.21) <1 year Taiwan: aSR 1.12 (95% CI 0.99–1.25) <1 year Pooled estimate (Asia): aSR 1.21 (95% CI 1.01–1.45) July 2000–December 2007: aSR 1.73 (95% CI 1.34–2.24)\(^{113}\)
SGLT2-I	Genital infections	Antifungal	<30 days: aSR 1.35 (95% CI 1.26–1.44)\(^{47}\) <60 days: aSR 1.48 (95% CI 1.40–1.56) <90 days: aSR 1.53 (95% CI 1.43–1.60) <180 days: aSR 1.42 (95% CI 1.37–1.47) <365 days: aSR 1.24 (95% CI 1.20–1.28) Genetic infection occurred more frequently among SGLT2-I users than DPP-4 users (2.9% vs. 0.9%, aHR 3.50, 95% CI 1.95–5.89)\(^{88}\)
DOAC	Depression	Antidepressant	<3 months: aSR 1.29 (95% CI 1.23–1.35); n = 7253\(^{93}\) <6 months: aSR 1.28 (95% CI 1.24–1.33); n = 12530 <12 months: aSR 1.26 (95% CI 1.23–1.30); n = 20613 SSRI <6 months: SR 1.57 (1.37–1.77); n = 1137; NNTH 207\(^{102}\) Other antidepressant <6 month: SR 1.59; 1076; (1.41–1.80); NNTH 207
High ceiling diuretics	Hypokalaemia	Potassium	Furosemide <360 days: aSR 2.94 (95% CI 2.83–3.05)\(^{34}\) High ceiling diuretic <1 year: SR 3.31 (95% CI 3.24–3.38); n = 48539\(^{101}\)
Statins	Lower urinary tract symptoms (LUTS)	Drugs for urinary frequency and incontinence	<91 days: aSR 1.21 (95% CI 1.00, 1.46); n = 445\(^{50}\) <182 days: aSR 1.19 (95% CI 1.04, 1.38); n = 785 <365 days: aSR 1.17 (95% CI 1.05, 1.30); n = 1373 <1 year: aSR 1.17 (95% CI 1.16–1.19); n = 107422\(^{37}\)
Statins	Skin soft tissue infection	Antibiotic (Dicloxacillin or Flucloxacillin)	<1 year: aSR 1.18 (95% CI 1.15–1.22); n = 23068\(^{87}\) <91 days: aSR 1.40 (95% CI 1.29–1.52); n = 2498\(^{76}\) <182 days: aSR 1.41 (95% CI 1.33–1.50); n = 4277 <365 days: aSR 1.40 (95% CI 1.34–1.47); n = 7726
Statins	Depression	Antidepressant	<1 year: aSR 1.19 (95% CI 1.18–1.21); n = 117443\(^{37}\) Simvastatin → Antidepressant (April 1991–December 1995): aSR 1.59 (1.08–2.45); n = 91\(^{88}\)
Statins	Muscle cramps	Quinine	<360 days: aSR 1.69 (95% CI 1.61–1.77)\(^{70}\) <1 year: aSR 1.16 (95% CI 1.04–1.29); n = 1326\(^{51}\)
Brinzolamide	Heart failure	Furosemide	<1 year Brinzolamide: aSR 1.18 (95% CI 1.06–1.32); n = 130\(^{75}\) <1 year Brinzolamide: aSR 1.37 (95% CI 1.16–1.62); n = 564\(^{106}\)
Latanoprost	Heart failure	Furosemide	<1 year Latanoprost: aSR 1.11 (95% CI 1.04–1.19); n = 3619\(^{75}\) <1 year Latanoprost: aSR 1.48 (95% CI 1.38–1.59); n = 3107\(^{106}\)
Carbamazepine	Hypothyroidism	Levothyroxine	1998–2004: aOR 1.37 (95% CI 1.13–1.65)\(^{330}\) <1 year: aSR 1.21 (99% CI 1.08–1.34)\(^{79}\)
TABLE 2 (Continued)

Initial medication	Suspected ADR	Second medication	Main findings
Valproate	Hypothyroidism	Levothyroxine	1998–2004: aOR 1.72 (95%CI 1.40–2.11)\(^{130}\)
<1 year: aSR 1.34 (99% CI 1.20–1.49)\(^{79}\)			
Lithium	Drug induced tremor Parkinson	Anti-parkinson drug	Jan 1995–December 1999: RR 1.88 (95%CI 1.60–2.20)\(^{82}\)
Up to 2 year follow-up (referent valproic acid): aHR 1.50 (95%CI 0.68–3.36)\(^{27}\)			
Up to 2 year follow-up (referent antidepressant): aHR 1.56 (95%CI 0.98–2.48)			
Lithium	Hypothyroidism	Thyroxine	1998–2004: aOR 1.41 (95%CI 1.14–1.74)\(^{130}\)
<360 days: aSR 3.43 (95% CI 2.55–4.70)\(^{54}\)			
Benzodiazepine	Dementia	Anti-dementia drug	<3months: aSR 1.24 (95%CI 1.05–1.45); n = 625\(^{46}\)
<6months: aSR 1.20 (95%CI 1.06–1.37); n = 973			
<12months: aSR 1.23 (95%CI 1.11–1.37); n = 1450			
<24months: aSR 1.34 (95%CI 1.23–1.47); n = 2049			
<36months: aSR 1.41 (95%CI 1.29–1.53); n = 2408			
<48months: aSR 1.44 (95%CI 1.33–1.56); n = 2653			
<3years: aSR 2.19 (95%CI 1.92–2.49); n = 1285\(^{94}\)			
<2years: aSR 2.00 (95%CI 1.71–2.34); n = 780			
<1year: aSR 1.77 (95%CI 1.39–2.27); n = 286			
SSRI	Urinary incontinence	Drugs for urinary frequency and incontinence (or incontinence products)\(^{91}\)	Paroxetine <1 year: aSR 1.77 (95%CI 1.33–2.36)\(^{53}\)
During SSRI (before SSRI as referent): IDR 1.57 (95%CI 1.38–1.79)\(^{41}\)
During SSRI (after SSRI as referent): IDR 2.03 (95%CI 1.76–2.34)
During SSRI (before and after SSRI as referent): IDR 1.75 (95%CI 1.56–1.97)
Patients had a 61% higher risk for incontinence (aRR 1.61, 95%CI 1.42–1.82) |

Abbreviations: aHR, adjusted hazard ratio; aOR, adjusted odds ratio; aSR, adjusted sequence ratio; IDR, incidence density ratio; NTH, number needed to harm; SR, crude sequence ratio.

3.6 | New medication(s) prescribed

The medication sub-classifications most frequently initiated as a new medication in the 94 studies are summarised in Figure 2A. Seventy-eight studies reported at least one significant positive association, indicating a potential prescribing cascade (Table 1 and Figure 2A–C).

The most commonly identified prescribing cascades are summarised in Table 2. These include; amiodarone associated with subsequent thyroid hormone prescriptions for hypothyroidism (n = 5),\(^{54,61,79,85,87}\) CCBs associated with diuretic prescriptions to treat peripheral oedema (n = 5),\(^{5,7,8,7,104}\) topical antifungals to treat oral candidiasis following inhaled corticosteroids (n = 4),\(^{39,54,56,71}\) anti-Parkinson medication to treat Parkinsonian symptoms following antipsychotic initiation (n = 4),\(^{19,29,100,119}\) urinary anticholinergics to treat urinary incontinence following acetylcholinesterase inhibitors (n = 4),\(^{24,26,44,53}\) and antitussives to treat cough following angiotensin-converting enzyme inhibitors (ACEIs) (n = 3).\(^{18,73,87}\) Additional prescribing cascades identified included metoclopramide to anti-Parkinson medication (n = 3).\(^{20,31,119}\) and NSAID to anti-ulcer medication.\(^{89,91,101}\)

No association between drug pairs could be determined for several studies, largely due to either a cross-sectional study design examining concurrent drug use, insufficient drug-pair sample size to determine a sequence ratio or reporting of incidence rates with no incidence rate ratio (labelled N/A in Figure 2).\(^{5,21,25,30,43,46,53,55,63,64,78,79,112,114,115}\) Several studies reported at least one negative association between drug pairs, indicating a reduced likelihood of the second medication being initiated (see eTable 3 Appendix S1).\(^{33,60,68–70,74,81,87,89,93,111}\)

3.7 | Modifiers of identified associations

Older people (aged ≥65 years) were more likely to receive; (i) anticholinergics for urinary incontinence following SSRI initiation,\(^{41}\) (ii) ulcer drug therapy within 100 days of NSAID initiation,\(^{89}\) (iii) diuretic to treat beta-blocker induced oedema,\(^{36}\) and, (iv) thyroxine for hypothyroidism following amiodarone initiation.\(^{85}\) Females were more likely to receive an antitussive for cough following ACEI initiation,\(^{73}\) anticholinergic medication for urinary incontinence following acetylcholinesterase inhibitors,\(^{24,30}\) and SSRI initiation,\(^{45}\) and levothyroxine following amiodarone initiation.\(^{85}\)

Differential associations were identified for initial medication dosage in nine studies. Those who received higher doses of CCBs,\(^{5,7}\) and gabapentinoids were more likely to receive a diuretic for oedema,\(^{28}\) higher doses of inhaled corticosteroids were associated with a greater likelihood of treatment for oral candidiasis,\(^{39}\); and higher metoclopramide dosage was found to increase the likelihood for dopaminergic treatment initiation.\(^{20}\)
Polypharmacy (≥5 drugs) was associated with a greater likelihood of receiving thyroid hormones for amiodarone induced hypothyroidism.85

3.8 | Intentional and unintentional cascades

The intentionality of potential prescribing cascades was not reported in any study nor was the intended duration (if any) of the prescription of the second medication. One study provided a breakdown of prescriptions for the initial drug by prescriber type: 23% private cardiologist, 35.5% hospital practitioner, 30.3% General Practitioner, and 11.3% other private specialist, but did not provide details of the prescriber of the second drug.93 Another study reported that of the sample who initiated the second drug (irrespective of initiating the first drug), 87.1% of prescriptions were started by family physicians.51

3.9 | Clinical importance of prescribing cascade

Two studies reported a number needed to harm (NNTH) for investigated cascades.62,102 (See Table 1). One study (n = 90) conducted a medical chart validation study of those initiated a loop diuretic after initiating a dihydropyridine CCB (n = 64) and determined that 54.7% (n = 35) experienced a prescribing cascade.105

3.10 | Quality assessment

Overall, the methodological quality varied across included studies (Figure 3 and eTables 4–6, Appendix S1). Among the retrospective cohort studies (eTable 4, Appendix S1) there was a lack of clarity surrounding the similarity of exposed and unexposed groups at baseline and the presence of the outcome at the start of the study. For case–control studies (eTable 5, Appendix S1), reporting of baseline

FIGURE 3 Quality appraisal summary of included studies (n = 98): (A) cohort studies; (B) case–control studies; (C) cross-sectional studies.
comparison of cases and controls was inadequate as well as the appropriateness of matching cases with controls.

4 | CONCLUSION AND IMPLICATIONS

4.1 | Principal findings

This systematic review identified 101 studies across 103 publications that examined potential prescribing cascades across a broad range of pharmacological drug groups. All studies used routine administrative data that included either medication prescribing or dispensed medications data. Of the 101 included studies, 78 (77%) reported at least one significant positive quantitative association that indicates a potential prescribing cascade. The most commonly identified prescribing cascades include: (i) CCBs → loop diuretics to treat peripheral oedema (n = 5); (ii) amiodarone → thyroxine to treat hypothyroidism (n = 5); inhaled corticosteroids → topical antifungal to treat candidiasis (n = 4); (iii) antipsychotics → anti-Parkinson medication to treat Parkinsonism (n = 4); and (iv) acetylcholinesterase inhibitors → drugs for urinary frequency (n = 4).

Study methodological quality was variable with a considerable proportion of studies not reporting participant demographics. Almost two-thirds of included studies used PSSA methodology in which all included participants have experienced the outcome at the start of the study. A recent scoping review reported that whilst the PSSA method is a useful tool in detecting prescribing cascades, such cascades need careful clinical review as there is a risk of both false positive and false negative findings. This is particularly problematic when screening for cascades without predefined hypotheses. In our systematic review, the vast majority of included studies (n = 94, 93%) examined predefined medications as potentially contributing to a prescribing cascade. However, PSSA analyses cannot determine causality and should be interpreted with caution.

Several well-designed cohort and case–control studies examining prescribing cascades were identified. For example, a Canadian population-based study reported that incident CCB users had a higher cumulative incidence of loop diuretic use at one year follow up compared to patients dispensed ACEIs or angiotensin-II-receptor blocker antihypertensives (adjusted hazards ratio 1.4% vs. 0.7%, p < 0.001). In a US case–control study, metoclopramide users were three times more likely to begin use of a levodopa-containing medication compared with nonusers (OR = 3.09; 95% CI 2.25 to 4.26). Risk increased with increasing daily metoclopramide dose and the effect persisted after adjustment for demographic, health service utilization, and medication use variables.

Fifteen of 101 studies focused specifically on older populations, with 11 reporting a significant association between increasing age and prescribing cascade occurrence. Older adults are more likely to experience medication-related harm due to increasing prevalence of multimorbidity, polypharmacy and age-related physiological changes that affect drug metabolism. Furthermore, ADRs are more difficult to diagnose in older adults due to their often non-specific presentation and overlap with pre-existing conditions or conditions likely to develop among older adults.

4.2 | Comparison with existing literature

Two scoping reviews of prescribing cascades have been conducted to date, one that focused on literature surrounding the prevention, detection and reversal of prescribing cascades and the second that focused on the use of PSSA as a potential pharmacovigilance tool. In 2018, Brath et al retrieved 10 original investigations and seven case reports pertaining to prescribing cascades. A considerable number of studies have been published since, indicating that this is a rapidly developing field. Morris et al. concluded that PSSA methodology demonstrated only moderate sensitivity and specificity in identifying prescribing cascades and more consistency was required in how these studies were reported. As described previously, similar issues with methodological quality were identified in this systematic review.

4.3 | Clinical and research implications

Multi-country studies have shown variation in prescribing cascade likelihood both within and across countries, underscoring the need to consider the local prescribing context. Differences in sample demographics, medication availability, approved clinical indications, help-seeking behaviour and prescribing cultures or genetic polymorphisms may influence the incidence of prescribing cascades.

The complexity of optimising prescribing for patients with multimorbidity presents challenges for the prescriber due to the preponderance of single-disease guidelines, resultant polypharmacy, fragmentation and lack of continuity of care and resourcing constraints. Identification of ADRs remains a clinically challenging area, particularly in relation to older adults. Non-specific presentation of ADR symptoms in older adults, such as delirium, falls, fatigue and constipation, can be challenging to identify as being medication-related as such symptoms have several causes and may overlap with existing multimorbidity. The failure to recognise an ADR may result in a prescribing cascade, furthering the risk for additional medication-related harm. The potential for ADRs should be considered as part of the differential diagnosis for all patients reporting new symptoms, particularly among those who have started a new medication within the previous year.

Developing an explicit list of evidence-based prescribing cascades is one way of supporting clinicians’ awareness and detection of this issue. The iKASCADE international consortium are currently developing an inventory of prescribing cascades affecting older adults, through a modified Delphi procedure where international experts in medicines management for older adults will rank a list of prescribing cascades as to their clinical importance. The development of an explicit list of clinically important and common prescribing cascades is an important step in raising awareness of this
issue and in supporting clinicians to detect cascades. To maximise use in clinical practice will require explicit criteria of prescribing cascades be incorporated into existing electronic health record and prescribing support systems. Such systems will need to be able to detect the sequential prescription of drugs known to represent potentially inappropriate prescribing cascades.

The use of routine administrative data in included studies means that information on the broader clinical context and the rationale for medication prescribing is lacking. The identification of significant negative associations between drug pairs may indicate that prescribers are aware of certain prescribing cascades and proactively avoid their development or that therapeutic alternatives were prescribed. However, no exploration of intentionality of identified cascades could be made based on the data used in included studies.

Overall, it is difficult to determine the clinical importance of prescribing cascades identified as few studies examined clinical endpoints. One study examined the association between prescribing cascades that resulted in prochlorperazine initiation and reported a subsequent 49% increased risk of hip fracture. Future research is required to determine the relative clinical impact of increased medication exposure and the clinical appropriateness of prescribing cascades.

4.4 | Strengths and limitations

This systematic review extends the work of previously published scoping reviews by conducting a comprehensive literature search using several databases, including several grey literature searches.

This study also has some limitations. The lack of a MeSH term for prescribing cascades meant broad search terms were used, which led to a high yield of citations to be searched. Additional information was sought from study authors but a small number of studies (n = 10) could not be retrieved for eligibility assessment due to the lack of access to the full text or a translated version. The information collated is somewhat limited by the methodological and reporting quality of included studies.

5 | CONCLUSION

Prescribing cascades are of increasing interest to the research and clinical communities, with a broad range of medications involved. The identification of the most common prescribing cascades can support optimising prescribing as one part of identifying potentially inappropriate prescribing. Few studies have examined the clinical importance or the broader clinical context, including intentionality of prescribing cascades, thereby limiting the inferences that can be drawn about the implications for clinical practice. Challenges remain in differentiating ADR symptoms from that of new onset disease and advancing age and frailty. ADRs should be considered as part of the differential diagnosis in patients presenting with new symptoms, particularly for those who have started a new medication in the preceding 12 months.

AUTHOR CONTRIBUTIONS
Conception and funding acquisition: EW. Study design EW, AD, FM, FB, BC, SK, and TF. Data acquisition: AD, FS, and EW. Data interpretation: AD, FS, TD, FM, FB, BC, TF, SK, and EW. Drafting of manuscript: AD, and EW. Revising of manuscript and agreement of final manuscript: AD, FS, FM, FB, BC, SK, TF, TD, and EW.

ACKNOWLEDGMENTS
The authors would like to thank Mr Paul Murphy Information Specialist in the RCSI University of Medicine and Health Sciences for his advice and input in generating the search string and Dr Orla Cotter Health Services Executive (HSE) GP Fellow in Medicines Optimisation (2021–2022) for her work in data extraction and methodological assessment of included articles. Open access funding provided by IReL. WOA Institution: N/A. Consortia Name: IReL gold OA 2022.

FUNDING INFORMATION
This work was funded by a Health Research Board (HRB) Ireland Emerging Clinician Scientist Award awarded to EW [HRB-ECSA-2020-002]. BC is funded by the HRB Emerging Investigator Award [EIA-2019-09].

CONFLICT OF INTEREST
The authors have no conflicts of interest to declare.

DATA AVAILABILITY STATEMENT
Additional systematic review data is available from the authors on request.

ETHICS STATEMENT
Ethical approval was not required for this systematic review.

ORCID
Frank Moriarty https://orcid.org/0000-0001-9838-3625
Emma Wallace https://orcid.org/0000-0002-9315-2956

REFERENCES
1. Rochon PA, Gurwitz JH. Optimising drug treatment for elderly people: the prescribing cascade. Br Med J. 1997;315(7115):1096-1099.
2. Rochon PA, Gurwitz JH. The prescribing cascade revisited. Lancet. 2017;389(10081):1778-1780.
3. Rochon PA, Gurwitz JH. Drug therapy. Lancet. 1995;346(8966):32-36.
4. McCarthy LM, Visentin JD, Rochon PA. Assessing the scope and appropriateness of prescribing cascades. J Am Geriatr Soc. 2019;67(5):1023-1026.
5. Savage RD, Visentin JD, Bronskill SE, et al. Evaluation of a common prescribing cascade of calcium channel blockers and diuretics in older adults with hypertension. JAMA Intern Med. 2020;180(5):643-651.
edema-loop diuretic prescribing cascade. *J Am Pharm Assoc.* 2018;58(5):534-539.

7. Vourri SM, Jiang X, Manini TM, et al. Magnitude of and characteristics associated with the treatment of calcium channel blocker-induced lower-extremity edema with loop diuretics. *JAMA Netw Open.* 2019;2(12):e1918425.

8. Lavan AH, Gallagher P. Predicting risk of adverse drug reactions in older adults. *Ther Adv Drug Saf.* 2016;7(1):11-22.

9. Palladino R, Taysu Lee J, Ashworth M, Triassi M, Millett C. Associations between multimorbidity, healthcare utilisation and health status: evidence from 16 European countries. *Age Ageing.* 2016;45(3):431-435.

10. Salisbury C, Johnson L, Purdy S, Valderas JM, Montgomery AA. Epidemiology and impact of multimorbidity in primary care: a retrospective cohort study. *Br J Gen Pract.* 2011;61(582):e12-e21.

11. Brath H, Mehta N, Savage RD, et al. What is known about preventing, detecting, and reversing prescribing cascades: a scoping review. *J Am Geriatr Soc.* 2018;66(11):2079-2085.

12. Moher D, Shamseer L, Clarke M, et al. Preferred reporting items for systematic review and meta-analyses (PRISMA-P) statement. *Syst Rev.* 2015;2015:4.

13. Doherty A, Moriarty F, Boland F. et al. Prescribing cascades in community-dwelling adults: protocol for a systematic review. *HRB Open Res.* 2021;4:72.

14. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. *BMJ.* 2021;372:n71.

15. Vegter S, De Jong-Van Den Berg LTW. Misdiagnosis and mistreatment of a common side-effect—Anticholinesterase-inhibiting enzyme inhibitor-induced cough. *Br J Clin Pharmacol.* 2010;69(2):200-203.

16. Vegter S, De Boer P, Van Dijk KW, Visser S, De Jong-Van Den Berg LTW. Misdiagnosis and mistreatment of ACE-inhibitor-induced cough occurs frequently and decreases therapy compliance. *Pharm Weekbl.* 2012;147(42):177-180.

17. Vegter S, De Boer P, van Dijk KW, Visser S, de Jong-van den Berg LTW. The effects of antitussive treatment of ACE-inhibitor-induced cough on therapy compliance: a prescription sequence symmetry analysis. *Drug Saf.* 2013;36(6):435-439.

18. Avorn J, Bohn RL, Mogun H, et al. Neuroleptic drug exposure and treatment of parkinsonism in the elderly: a case-control study. *Am J Med.* 1995;99(1):48-54.

19. Avorn J, Gurwitz JH, Bohn RL, Mogun H, Monane M, Walker A. Increased incidence of levodopa therapy following metoclopramide use. *JAMA.* 1995;274(22):1780-1782.

20. Farkas AH, Winn A, Pezzin LE, Fergestrom N, Laud P, Neuner JM. The use and concurrent use of side effect controlling medications among women on oral contraceptive use. *J Women’s Health.* 2021;30(1):131-136.

21. Gurwitz JH, Avorn J, Bohn RL, Glynn RJ, Monane M, Mogun H. Initiation of antihypertensive treatment during nonsteroidal anti-inflammatory drug therapy. *JAMA.* 1994;272(10):781-786.

22. Gurwitz JH, Kalish SC, Bohn RL, et al. Thiazide diuretics and the initiation of anti-gout therapy. *J Clin Epidemiol.* 1997;50(8):953-959.

23. Masurkar PP, Chatterjee S, Sherrer JT, Aparasu RR. Antimuscarinic cascade across individual cholinesterase inhibitors in older adults with dementia. *Drugs Aging.* 2021;38(7):593-602.

24. Narayan SW, Pearson SA, Litchfield M, et al. Anticholinergic medications use among older adults before and after initiating dementia medicines. *Br J Clin Pharmacol.* 2019;85(9):1957-1963.

25. Gill SS, Mandani M, Naglie G, et al. A prescribing cascade involving cholinesterase inhibitors and anticholinergic drugs. *Arch Intern Med.* 2005;165(7):808-813.

26. Gill SS, Mandani M, Naglie G, et al. A prescribing cascade involving cholinesterase inhibitors and anticholinergic drugs. *Arch Intern Med.* 2005;165(7):808-813.

27. Marras C, Herrmann N, Fischer HD, et al. Lithium use in older adults is associated with increased prescribing of Parkinson medications. *Am J Geriatr Psychiatry.* 2016;24(4):301-309.

28. Read SH, Giannakaeas V, Pop P, et al. Evidence of a gabapentinoid and diuretic prescribing cascade among older adults with lower back pain. *J Am Geriatr Soc.* 2021;69(10):2842-2850.

29. Rochon PA, Stukel TA, Sykora K, et al. Atypical antipsychotics and Parkinsonism. *Arch Intern Med.* 2005;165(16):1882-1888.

30. Trenaman SC, Bowles SK, Kirkland S, Andrew MK. An examination of three prescribing cascades in a cohort of older adults with dementia. *BMC Geriatr.* 2021;21(1):1-11.

31. Huh Y, Kim DH, Choi M, et al. Metoclopramide and levosulpiride use and subsequent levodopa prescription in the Korean elderly: the prescribing cascade. *J Clin Med.* 2019;8(9):1496.

32. Park SK, Baek YH, Pratt N, Kalisch Ellett L, Shin YJ. The uncertainty of the association between proton pump inhibitor use and the risk of dementia: prescription sequence symmetry analysis using a Korean healthcare database between 2002 and 2013. *Drug Saf.* 2018;41(6):615-624.

33. Dyson TE, Cantrell MA, Lund BC. Lack of association between 5x-reductase inhibitors and depression. *J Urol.* 2020;204(4):793-798.

34. Fox CW, Khaw CL, Gerke AK, Lund BC. Montelukast and neuropsychiatric events—a sequence symmetry analysis. *J Asthma.* 2022:1-7.

35. Vouri SM, Jiang X, Brumback B, Winterstein AG. Use of negative controls in a prescription sequence symmetry analysis used to mitigate time-varying bias. *Pharmacoepidemiol Drug Saf.* 2020;29(suppl 3):390-391.

36. Vouri SM, Morris EJ, Jiang X, et al. Evaluation of a beta-blocker–edema-loop diuretic prescribing cascade: a prescription sequence symmetry analysis. *Am J Hypertens.* 2022;35:601-609.

37. Brandt-Christensen M, Kvist K, Nilsson FM, Andersen PK, Kessing LV. Treatment with antiparkinson and antidepressant drugs: a register-based, pharma-epidemiological study. *Mov Disord.* 2007;22(14):2037-2042.

38. Dunvald ACD, Henriksen DP, Hallas J, Christensen MMH, Lund LC. Selective serotonin reuptake inhibitors and the risk of restless legs syndrome: a symmetry analysis. *Eur J Clin Pharmacol.* 2020;76(5):719-722.

39. Henriksen DP, Davidsen JR, Christiansen A, Laursen CB, Damkier P, Hallas J. Inhaled corticosteroids and systemic or topical antifungal therapy: a symmetry analysis. *Ann Am Thorac Soc.* 2017;14(6):1045-1047.

40. Winkel JS, Damkier P, Hallas J, Henriksen DP. Treatment with montelukast and antidepressive medication—a symmetry analysis. *Pharmacoepidemiol Drug Saf.* 2018;27(12):1409-1415.

41. Movig KLL, Leufkens HGM, Belitser SV, Lenderink AW, Egberts ACG. Selective serotonin reuptake inhibitor-induced urinary incontinence. *Pharmacoepidemiol Drug Saf.* 2002;11(4):271-279.

42. Wang Y, Bos JH, Schuiling-Veninga CCM, et al. Neuropsychiatric safety of varenicline in the general and COPD population with and without psychiatric disorders: a retrospective cohort study in a real-world setting. *BMJ Open.* 2021;11(5):e042417.

43. Takeuchi Y, Kajiyama K, Ishiguro C, Uyama Y. Atypical antipsychotics and the risk of hyperlipidemia: a sequence symmetry analysis. *Drug Saf.* 2015;38(7):641-650.

44. Lampela P, Taipale H, Hartikainen S. Use of cholinesterase inhibitors increases initiation of urinary anticholinergics in persons with Alzheimer’s disease. *J Am Geriatr Soc.* 2016;64(7):1510-1512.

45. Azoulay L, Blais L, Koren G, Le Lorier J, Béard A. Isotretinoin and the risk of depression in patients with acne vulgaris: a case-crossover study. *J Clin Psychiatry.* 2008;69(4):526-532.

46. Onder G, Bonnassi S, Abbatecola AM, et al. High prevalence of poor quality drug prescribing in older individuals: a nationwide report from the Italian Medicines Agency (AIFA). *J Gerontol Series A: Biol Sci Med Sci.* 2014;69(4):430-437.
47. Adimadhyam S, Schumock GT, Calip GS, Smith Marsh DE, Layden BT, Lee TA. Increased risk of mycotic infections associated with sodium-glucose co-transporter 2 inhibitors: a prescription sequence symmetry analysis. Br J Clin Pharmacol. 2019;85(1):160-168.

48. Caughey GE, Roughhead EE, Pratt N, Shakib S, Vitry AI, Gilbert AL. Increased risk of hip fracture in the elderly associated with prochlorperazine: is a prescribing cascade contributing? Pharmacoepidemiol Drug Saf. 2010;19(9):977-982.

49. Corraro G, Botteri E, Bagnardi V, et al. Generating signals of drug-adverse effects from prescription databases and application to the risk of arrhythmia associated with antibacterials. Pharmacoepidemiol Drug Saf. 2005;14(1):31-40.

50. Fujimoto M, Higuchi T, Hosomi K, Takada M. Association of statin use with storage lower urinary tract symptoms (LUTS): data mining of prescription database. Int J Clin Pharmacol Ther. 2014;52(9):762-769.

51. Garrison SR, Dormuth CR, Morrow RL, Carney GA, Khan KM. Nocturnal leg cramps and prescription use that precedes them: a sequence symmetry analysis. Arch Intern Med. 2012;172(2):120-126.

52. Hallas J. Evidence of depression provoked by cardiovascular medication: a prescription sequence symmetry analysis. Epidemiology. 1996;7(5):478-484.

53. Hashimoto M, Hashimoto K, Ando F, Kimura Y, Nagase K, Arai K. Prescription rate of medications potentially contributing to lower urinary tract symptoms and detection of adverse reactions by prescription sequence symmetry analysis. J Pharm Health Care Sci. 2015;1(1):7.

54. Nishtala PS, Chyou TY. Exploring New Zealand prescription data using sequence symmetry analyses for predicting adverse drug reactions. J Clin Pharm Ther. 2017;42(2):189-194.

55. Petri H, de Vet HC, Naus J, Urquhart J. Prescription sequence analysis: a new and fast method for assessing certain adverse reactions of prescription drugs in large populations. Stat Med. 1988;7(11):1171-1175.

56. Petri H, Kessels F, Kamakura T. Markers of adverse drug reactions in medication histories. An analysis of inhaled steroid utilization. Pharmaceutisch Weekbl. 1991;13(2):97-106.

57. Petri H, Leufkens H, Naus J, Silken R, Van Hessen P, Urquhart J. Rapid method for estimating the risk of acutely controversial side effects of prescription drugs. J Clin Epidemiol. 1990;43(5):433-439.

58. Pouwels K, Visser S, Bos J, Hak E. Angiotensin-converting enzyme inhibitor treatment and the development of urinary tract infection. Pharmacoepidemiol Drug Saf. 2013;22:127-128.

59. Adrian Kym P, Elizabeth Ellen R, Nicole LP. Sequence symmetry analysis graphic adjustment for prescribing trends. BMC Med Res Methodol. 2019;19(1):143.

60. Pratt N, Andersen M, Bergman U, et al. Multi-country rapid adverse drug event assessment: the Asian Pharmacoepidemiology Network (AsPEN) antipsychotic and acute hyperglycaemia study. Pharmacoepidemiol Drug Saf. 2013;22(9):915-924.

61. Pratt N, Chan EW, Choi NK, et al. Prescription sequence symmetry analysis: assessing risk, temporality, and consistency for adverse drug reactions across datasets in five countries. Pharmacoepidemiol Drug Saf. 2015;24(8):858-864.

62. Rasmussen L, Hallas J, Madsen KG. Cardiovascular drugs and erectile dysfunction—a symmetry analysis. Br J Clin Pharmacol. 2015;80(5):1219-1223.

63. Singh S, Cocoros NM, Haynes K, et al. Antidopaminergic-Antiparkinsonian medication prescribing cascade in persons with Alzheimer's disease. J Am Geriatr Soc. 2021;69:1328-1333.

64. Singh S, Cocoros NM, Haynes K, et al. Identifying prescribing cascades in Alzheimer's disease and related dementias: the calcium channel blocker-diuretic prescribing cascade. Pharmacoepidemiol Drug Saf. 2021;30:1066-1073.

65. Sturkenboom MC, Middelbeek A, de Jong van den Berg LT, van den Berg PB, Stricker BH, Wesseling H. Vulvo-vaginal candidiasis associated with acitretin. J Clin Epidemiol. 1995;48(8):991-997.

66. Takada M, Fujimoto M, Hosomi K. Association between benzodiazepine use and dementia: data mining of different medical databases. Int J Med Sci. 2016;13(11):825-834.

67. Takada M, Fujimoto M, Hosomi K. Difference in risk of gastrointestinal complications between users of enteric-coated and buffered low-dose aspirin. Int J Clin Pharmacol Ther. 2014;52(3):181-191.

68. Tsiroupolos I, Andersen M, Hallas J. Adverse events with use of antiepileptic drugs: a prescription and event symmetry analysis. Pharmacoepidemiol Drug Saf. 2009;18(6):483-491.

69. Pouwels KB, Widyakusuma NN, Bos JHJ, Hak E. Association between statins and infections among patients with diabetes: a cohort and prescription sequence symmetry analysis. Pharmacoepidemiol Drug Saf. 2016;25(10):1124-1130.

70. Venalainen O, Bell JS, Kirkpatrick CM, Nishtala PS, Liew D, Ilomaki J. Adverse drug reactions associated with cholinesterase inhibitors-sequence symmetry analyses using prescription claims data. J Am Med Dir Assoc. 2017;18(2):186-189.

71. van Boven JFM, de Jong-van den Berg LTW, Veget S. Inhaled corticosteroids and the occurrence of oral candidiasis: a prescription sequence symmetry analysis. Drug Saf. 2013;36(4):231-236.

72. Hersom K, Neary MP, Levaux HP, Klaskala W, Strauss JS. Isotretinoin and antidepressant pharmacotherapy: a prescription sequence symmetry analysis. J Am Acad Dermatol. 2003;49(3):424-432.

73. Bowman L, Carlstedt BC, Miller ME, McDonald CJ. Evaluation of ACE-inhibitor (ACE-I) associated cough using modified prescription sequence analysis (PSA). Pharmacoepidemiol Drug Saf. 1995;4(1):17-22.

74. Kalisch Ellett LM, Pratt NL, Barratt JD, Rowett D, Roughhead EE. Risk of medication-associated initiation of oxybutynin in elderly men and women. J Am Geriatr Soc. 2014;62(4):690-695.

75. King CE, Pratt NL, Craig N, et al. Detecting medicine safety signals using prescription sequence symmetry analysis of a national prescribing data set. Drug Saf. 2020;43(8):787-795.

76. Ko HHT, Lareu RR, Dix BR, Hughes JD, Parsons RW. A sequence symmetry analysis of the interrelationships between statins, diabetes and skin infections. Br J Clin Pharmacol. 2019;85:2559-2567.

77. Knowledge and confidence in medication management. Nurs Manag. 2017;24(5):14.

78. Lai EC-C, Hsieh C-Y, Yang Y-HK, Lin S-J. Detecting potential adverse reactions of sulpiride in schizophrenic patients by prescription sequence symmetry analysis. PLoS One. 2014;9(2):e89795.

79. Lai EC-C, Yang Y-HK, Lin S-J, Hsieh C-Y. Use of antiepileptic drugs and risk of hypothyroidism. Pharmacoepidemiol Drug Saf. 2013;22(10):1071-1079.

80. Wang Y, van Boven JFM, Bos JHJ, et al. Risk of neuropsychiatric adverse events associated with varenicline treatment for smoking cessation among Dutch population: a sequence symmetry analysis. Pharmacoepidemiol Drug Saf. 2022;31(2):158-166.

81. Bytzer P, Hallas J. Drug-induced symptoms of functional dyspepsia and nausea. A symmetry analysis of one million prescriptions. Aliment Pharmacol Ther. 2000;14(11):1479-1484.

82. Brandt-Christensen M, Kvist K, Nilsson FM, Andersen PK, Kessing LV. Treatment with antidepressants and lithium is associated with increased risk of treatment with antiparkinson drugs: a pharmacoepidemiological study. J Neurol Neurosurg Psychiatry. 2006;77(6):781-783.

83. Iwasawa M, Sagami K, Yokoyama S, Hosomi K, Takada M. Adherence to guidelines for antilucre drug prescription in patients receiving low-dose aspirin therapy in Japan. Int J Clin Pharmacol Ther. 2019;57(4):197-206.
123. Guthrie B, Makubate B, Hernandez-Santiago V, Dreischulte T. The rising tide of polypharmacy and drug-drug interactions: population database analysis 1995–2010. BMC Med. 2015;13:74.

124. Petrovic M, van der Cammen T, Onder G. Adverse drug reactions in older people. Drugs Aging. 2012;29(6):453-462.

125. Wallace E, Salisbury C, Guthrie B, Lewis C, Fahey T, Smith SM. Managing patients with multimorbidity in primary care. Br Med J. 2015;350:h176.

126. Sternberg SA, Petrovic M, Onder G, Cherubini A, O’Mahony D, Gurwitz JH, Pegreffi F, Mason R, Akerman J, McCarthy L, Lawson A, Li J, Wu W, Rochon PA. Identifying key prescribing cascades in older people (iKASCADE): a transnational initiative on drug safety through a sex and gender lens-rationale and design. Eur Geriatr Med 2021 Jun;12(3):475–483. doi: 10.1007/s41999-021-00480-w. Epub 2021 Apr 9. PMID: 33835427.

127. O’Mahony D, Rochon PA. Prescribing cascades: we see only what we look for, we look for only what we know. Age Ageing. 2022;51(7):afac138. doi:10.1093/ageing/afac138

128. Pouwels KB, Visser ST, Bos HJ, Hak E. Angiotensin-converting enzyme inhibitor treatment and the development of urinary tract infections: a prescription sequence symmetry analysis. Drug Saf. 2013;36(11):1079-1086.

129. Takada M, Fujimoto M, Yamazaki K, Takamoto M, Hosomi K. Association of statin use with sleep disturbances: data mining of a spontaneous reporting database and a prescription database. Drug Saf. 2014;37(6):421-431.

130. Gau CS, Chang CJ, Tsai FJ, Chao PF, Gau SS. Association between mood stabilizers and hypothyroidism in patients with bipolar disorders: a nested, matched case-control study. Bipolar Disord. 2010;12(3):253-263.

131. Vouri SM, Possinger MC, Usmani S, Solberg LM, Manini T. Evaluation of the potential acetylcholinesterase inhibitor-induced rhinorrhea prescribing cascade. J Am Geriatr Soc. 2020;68(2):440-441.

132. Bouwens KB, Kalkman GA, Schagen D, Visser ST, Hak E. Is combined use of SSRIs and NSAIDs associated with an increased risk of starting peptic ulcer treatment? Br J Clin Pharmacol. 2014;78(1):192-193.

SUPPORTING INFORMATION

Additional supporting information can be found online in the Supporting Information section at the end of this article.