An effective two-body model for spectra of clusters of \(^2\)H, \(^3\)H, \(^3\)He, and \(^4\)He with \(^4\)He, and \(^2\)H-\(^4\)He scattering.

P. R. Fraser\(^1\), K. Massen-Hane\(^1\), A. S. Kadyrov\(^1\), K. Amos\(^2,3\), I. Bray\(^1\), and L. Canton\(^4\)

\(^1\) Department of Physics, Astronomy and Medical Radiation Sciences, Curtin University, GPO Box U1987, Perth 6845, Australia
\(^2\) School of Physics, University of Melbourne, Victoria 3010, Australia
\(^3\) Department of Physics, University of Johannesburg, P.O. Box 524, Auckland Park, 2006, South Africa
\(^4\) Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131, Italy

(Dated: August 9, 2018)

Abstract

Four light-mass nuclei are considered by an effective two-body clusterisation method; \(^7\)Li as \(^3\)H+\(^4\)He, \(^7\)Be as \(^3\)He+\(^4\)He, \(^8\)Be as \(^4\)He+\(^4\)He, and \(^6\)Li as \(^2\)H+\(^4\)He. The low-energy spectra of the former three are determined from single-channel Lippmann-Schwinger equations. For the latter, two uncoupled sets of equations are considered; those involving the \(^3\)S\(_1\) and those of the posited \(^1\)S\(_0\) states of \(^2\)H. Low-energy elastic scattering cross sections are calculated from the same \(^2\)H+\(^4\)He Hamiltonian, for many angles and energies for which data are available. While some of these systems may be more fully described by many-body theories, this work establishes that a large amount of data may be explained by these two-body clusterisations.

PACS numbers: 21.60.Gx, 24.30.-v, 25.45.-z, 25.55.-e

I. INTRODUCTION

The scattering and cluster spectra formed by an \(\alpha\)-particle with each of the four light mass nuclei considered herein constitute basic information required for studies of nuclear reactions responsible for the relative abundances of light atomic nuclei observed throughout the universe. These arose from the big bang, and in light stars (\(\leq 1.5 \, M_\odot\)) proton-proton chain reactions lead to the formation of nuclei up to mass-8. Once the \(\alpha\) particles generated in those reactions are present in sufficient number, the triple-\(\alpha\) process can produce \(^{12}\)C; the crucial feature being the energy of the Hoyle state in \(^{12}\)C lying just above the break-up threshold. In the triple \(\alpha\)-process, the first two \(\alpha\)-particles fuse to form \(^8\)Be whose instability to \(\alpha\)-decay results in an equilibrium concentration of \(^8\)Be in stellar environments.

In recent years, the spectra and elastic scattering of these light mass cluster systems has become of interest as test beds for modern theoretical techniques. For example, Refs. \([1-3]\) used a RGM/NCSM method and Ref. \([4]\) used a Alt-Grassberger-Sandhas three-body approach to that end. An interesting method of analytic continuation of the elastic scattering data at positive energies to negative energies was investigated in Ref. \([5]\), and applied to extract bound-state properties of the \(^2\)H+\(^4\)He system. Herein we consider these systems in a much simpler way. We assume them to be describable with an effective two-body, single-channel model. None of the four nuclei forming the clusters have low lying excited states below nucleon breakup thresholds. However the compound systems formed, \(^6\)Li, \(^7\)Li, \(^7\)Be, and \(^8\)Be, do. We use a Sturmian expansion approach to solve Lippmann-Schwinger (LS) equations; an approach that provides a low energy spectrum (bound and continuum states) of the compound nucleus formed by each cluster considered, as well as giving the relevant S-matrices with which scattering cross sections can be eval-
In this investigation, we calculate the low-energy spectrum of ^6Li as the cluster $^4\text{He}+^2\text{H}$, and the low-energy elastic scattering cross section both using the same interaction potential. Investigation of the low-energy scattering of deuterons from ^4He dates back to experimental work in the 1930s [6]. As noted, Refs. [1–3] used a RGM/NCSM method and considered $^2\text{H}-^4\text{He}$ scattering, amongst other reactions. Ref. [4] used a Alt-Grassberger-Sandhas three-body method in momentum space at deuteron energies of 4.81 and 17.0 MeV also for the $^2\text{H}-^4\text{He}$ system. While details of this scattering may be investigated in a more fundamental way, e.g. by using three- or six-body approaches, it remains useful to investigate how much of the spectrum and cross section may be explained by a simpler two-body clusterization. A similar model phenomenological semi-microscopic model has been used recently to calculate phase shifts, for which a good match to data was obtained [7] as was the calculated S-factor for capture.

We have also used the same method to specify the spectra of ^7Li and ^7Be from the clusters of $^3\text{H},^3\text{He}$, and ^4He with ^4He respectively. Spectra of ^7Li and ^7Be have been found previously [8] by solving the coupled-channel problems of nucleons coupling to ^6He and ^7Be nuclei allowing for the nucleons to interact with low excitation states of the nuclei. The results agreed well with known states in the spectra. Here we do not have a coupled-channel problem since, for the range of energies we consider, all nuclei involved can be taken to be in their ground states. The spectra of the two mass-7 nuclei have two bound states and two resonance states below ~ 7 MeV excitation.

The last system we consider, ^8Be, has only two resonance states in its low excitation spectrum, the ground and first excited state at 3.03 MeV. The next resonance state has a centroid of 11.35 MeV. The ground state resonance lies just 0.0918 MeV above the two α breakup threshold and is very narrow (5.57 eV); both features crucially important in the three-α stellar process. The $^4\text{He}-^4\text{He}$ cluster calculation is of the simplest form in the effective two-body approach and the two resonance states can be found with appropriate energy values.

In the next section we give a précis of the method used and follow that with a short statement on the forms of charge distributions used to ascertain the Coulomb interactions of the clusters. Then in Sec. IV we report on the spectra of the clusters ^7Li and ^7Be found with the method we have used. The spectra and scattering cross sections for the $^2\text{H}-^4\text{He}$ cluster are then given and discussed in Sec. V. Conclusions are drawn in Sec. VI.

II. STURMIAN EXPANSION SOLUTIONS OF LIPPMANN-SCHWINGER EQUATIONS

The method uses separable expansions of the assumed interaction potentials between two nuclei. The form factors in that expansion are derived from Sturmian functions defined from the chosen two-cluster interaction potentials. In the cases of ^4He coupled with $^3\text{H},^3\text{He}$, and another ^4He cluster, the two nuclei have no excited states of low excitation. For example ^4He has resonance states, but they lie above 20 MeV excitation. Thus, we deal with single channel interactions of a spin-$\frac{1}{2}$ or spin-0 particle with a spin-0 ^4He. With the $^2\text{H}-^4\text{He}$ clusterisation, we consider that there are two uncoupled sets of equations to solve; those formed by the 3S_1 and, separately, the 1S_0 states of the ^2H.
the single channel T-matrices have the form,
\[
T_{cc'}(p, q; E) = V_{cc'}(p, q) + \mu \sum_{c''} \int_0^\infty V_{cc''}(p, x) \frac{x^2}{k^2 - x^2 + i\epsilon} T_{cc''}(x, q; E) \, dx,
\]
where the momentum $k = \sqrt{\mu E}$, with μ designating $2m_{red}/\hbar^2$; m_{red} being the reduced mass. Solutions of Eq. (1) are sought using the (finite sum) expansion
\[
V_{cc'}(p, q) \sim \sum_{n=1}^{N} \hat{\chi}_{cn}(p) \eta_n^{-1} \hat{\chi}_{cn}(q).
\]

To evaluate scattering cross sections, one needs the S-matrices which are linked to the T-matrices as [9, 10]
\[
S_{cc'} = \delta_{cc'} - i\pi \mu k_{cc'} \, T_{cc'} = \delta_{cc'} - i(\ell_{c'} - \ell_{c}) \pi \mu \sum_{n,n'=1}^{N} \sqrt{k_{c}} \hat{\chi}_{cn}(k_{c}) \left((\eta - G_0)^{-1}\right)_{nn'} \hat{\chi}_{c'n}(k_{c'}) \sqrt{k_{c'}},
\]

In this representation, G_0 and η have matrix elements
\[
[G_0]_{nn'} = \mu \sum_{c} \int_0^\infty \hat{\chi}_{cn}(x) \frac{x^2}{k^2 - x^2 + i\epsilon} \hat{\chi}_{cn'}(x) \, dx; \quad [\eta]_{nn'} = \eta_n \delta_{nn'}.
\]

Bound states of the compound system, if they exist, are defined by the zeros of the matrix determinant in Eq. (3) when the energy, E, is less than zero.

The input matrices of potentials are taken to have the form
\[
V_{cc'}(r) = V_{cc'}^{\text{coul}}(r) + \left[V_0 \delta_{cc'} f(r) + V_{\ell\ell'} f(r) [\ell \cdot \ell] + V_{H} f(r) [I \cdot I] + V_{\ell I} g(r) [\ell \cdot I]\right]_{cc'}
\]

wherein local form factors (Woods-Saxon functions),
\[
f(r) = \left[1 + e^{(\frac{r-a}{w})}\right]^{-1}; \quad g(r) = \frac{1}{r} \frac{df(r)}{dr},
\]
are used. If needed, the surface can be deformed $R = R(\theta \phi) = R_0 [1 + \epsilon]$). Details of this and of the relevant matrix elements are given in Ref. [11]. $V_{cc'}^{\text{coul}}(r)$ are elements of the Coulomb potential matrix. The forms we use are given in the next section.

III. CHARGE DISTRIBUTIONS FOR THE NUCLEI AND THE COULOMB INTERACTION BETWEEN THEM.

We assume both nuclei in the cluster have finite charge distributions of three parameter Fermi ($3p\text{F}$) form, *viz*
\[
\rho_{ch}(r) = \rho_0 \left[1 + \frac{\rho_c}{R_c} \left(\frac{r}{R_c}\right)^2 \frac{1}{1 + \exp\left(\frac{r-R_c}{a_c}\right)}\right],
\]
where R_c and a_c are the radius and diffuseness parameters for a Woods-Saxon distribution, and w_c is a scaling parameter. The central charge density is that with which the volume integral of the distribution equates to the charge of the nucleus represented.

To define the Coulomb interaction between such charge distributions, first consider that felt by a positively-charged point test particle with charge δe and a general spherical charge distri-
bution, \(\rho_0 f(r) \), i.e.
\[
V^{(p)}_{\text{coul}}(r) = \delta e \int \rho_0 f(r') \frac{1}{|r' - r|} dr'.
\] (8)

After expanding in multipoles and performing angular integration, the only non-zero component comes from the s-wave (\(\ell = 0 \)), whence
\[
V^{(p)}_{\text{coul}}(r) = 4\pi(\delta e)\rho_0 \int_0^\infty f(r') v_{\ell=0}(r', r) r'^2 dr'.
\] (9)

where \(v_{\ell=0}(r', r) = \frac{1}{r'} \) with \(r_\text{> and } r_\text{<} \) being the greater and lesser of \(r' \) and \(r \), respectively. The radial integration splits into two terms, giving
\[
V^{(p)}_{\text{coul}}(r) = 4\pi(\delta e)\rho_0 \left[\frac{1}{r} \int_0^r f(s) s^2 ds \right. \\
+ \left. \int_r^\infty \frac{1}{s} f(s) s^2 ds \right].
\] (10)

With both nuclei in the clusterisation having 3pF charge distributions, the field given in Eq. (10) is folded with the 3pF charge distribution for the second body. The geometry is as shown in Fig. 1.

\[
\delta e = \rho_0 f(r') r'^2 \sin(\theta) \, dr' \, d\phi \, d\theta
\]

FIG. 1: The geometry for two interacting nuclei, both having a 3pF charge distribution.

With \(s = \sqrt{r^2 + r'^2 - 2rr' \cos(\theta)} \), the Coulomb potential is
\[
V_{\text{coul}}(r) = 2\pi \int_0^\infty r'^2 f(r') dr' \int_0^\pi V^{(p)}_{\text{coul}}(s) \sin(\theta) \, d\theta.
\] (11)

For \(^4\text{He}\), the parameter values of the 3pF charge distribution are as given in Ref. [12, 13]. They are \(R_c = 1.008 \text{ fm}, \ a_c = 0.327 \text{ fm}, \) and \(w = 0.445 \). As \(^3\text{H}\) is listed [12, 13] as also having a root-mean-square (rms) charge radius of 1.7 fm, the \(^4\text{He}\) parameter set has been used for its charge distribution as well. \(^3\text{He}\) is listed [12, 13] as having a slightly larger rms charge radius, 1.88 fm. As there is no specified set of 3pF parameters given, we considered a range of values for them, since, as shown in Ref. [14], variation in the three parameters leads to minimal difference in results provided the rms charge radius is kept constant. The set used are listed in Table II.

For \(^2\text{H}\), the rms charge radius has been determined [15] to be 2.13 fm. To have that value with the average distribution of the single proton smeared out over an appreciable distance, that rms radius is met using the set of 3pF parameters, \(R = 0.012 \text{ fm}, \ a_c = 0.592 \text{ fm}, \) and \(w_c = 0.\)

IV. STUDIES OF THE \(^3\text{H} + ^4\text{He}, ^3\text{He} + ^4\text{He} AND ^4\text{He} + ^4\text{He}\) SYSTEMS

These cases are taken to be single channel problems given that the components are quite strongly bound and have no excited states below nucleon emission thresholds. However, the compound systems do have well established spectra and, for the \(^3\text{H} + ^4\text{He}\) and \(^3\text{He} + ^4\text{He}\) systems, the states that we might expect to obtain with a potential model are those indicated in Table II. The reactions involving \(^4\text{He}\) that lead to them, or have the mass-7 states as a compound system, are indicated by the check marks.

No orthogonalizing pseudo-potential (OPP) [17] to effect inclusion of the Pauli principle has been used in treating these clusters as single-channel problems since all states found thereby are orthogonal. Thus any state that should be blocked because it requires the 7 or 8 nucleons to lie in the 0s-shell simply can be ignored. Only if there is channel coupling does a problem arise in ensuring that the Pauli principle is satisfied [11]. With channel coupling, all resultant states of the cluster are linear combinations of all states of the same spin-parity defined in the potentials for each of
TABLE I: Diverse 3pF parameter values giving a root-mean-square charge radius of 1.88 fm.

R_c	1.02	1.02	1.04	1.04	1.06	1.06	1.08	1.08	1.1
a_c	0.358	0.362	0.358	0.362	0.356	0.36	0.356	0.36	0.356
w	0.49	0.43	0.48	0.42	0.5	0.44	0.49	0.46	0.48

TABLE II: States in ^7Li and of ^7Be relevant to this investigation and known reactions [16] involving ^4He that populate them.

J^π	^7Li	^7Be				
	$^3\text{H}(^4\text{He},n)$	$^4\text{He}(^3\text{He},\pi^+)$	$^4\text{He}(^3\text{He},p)$	$^4\text{He}(^3\text{He},\gamma)$	$^4\text{He}(^3\text{He},^3\text{He})$, ($^3\text{He},p$)	$^4\text{He}(^{4}\text{He},n)$
$^1\text{S}_0$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$^1\text{D}_2$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

the target states considered.

A. The $^3\text{H} + ^4\text{He}$ and $^3\text{He} + ^4\text{He}$ systems

Spectra of ^7Li and ^7Be have been found previously [8] using the multi-channel algebraic scattering (MCAS) program written for spin-$\frac{1}{2}$ particles coupling to a nucleus. The results agreed well with known states in the spectra. A program has now been written for ^4He (spin-0) particles coupling to a nucleus. This has been used to again calculate the spectra for the compound nuclei, ^7Li and ^7Be, as a check against the results found earlier [8].

For the check run, the interaction with strength parameter values (in MeV), $V_0 = -76.8$, $V_{\ell\ell} = 1.15$, and $V_{\ell I} = 2.34$ was used. The geometry of the Woods-Saxon form was set with $R_0 = 2.39$ and $a = 0.68$ fm. The Coulomb potential was set, as in Ref. [8], to be that from a uniformly charged sphere. The charge radius for the $^4\text{He}+^3\text{H}$ calculation was taken as $R_c = 2.34$ fm, while a slightly larger charge radius (2.39) was used for the $^3\text{He}+^4\text{He}$ calculation. These values differ (slightly) from those used previously [8] in a study of the same compound systems but taken as ^3H and ^3He projectiles coupled to an ^4He target. The differences are due primarily to our current use of the nuclear masses listed in Ref. [19] rather than the nucleon mass numbers. Using this interaction, we obtained the results listed in Table III and in the columns with the heading ‘check’. The comparison between the results given in Ref. [8] and by these check runs is sufficiently good that the two codes used we deem to give equivalent results.

Using 3pF distributions for both nuclei in the clusters instead of the uniform sphere approach above, and with adjusted nuclear potential parameter values, the results listed in Table III in the columns specified as 'present' were obtained. For these results, the nuclear interaction parameter values were $V_0 = -80.15$ MeV, $V_{\ell\ell} = 1.1$ MeV, and $V_{\ell I} = 3.0$ MeV with a Woods-Saxon geometry, $R_0 = 2.35$ fm and $a_0 = 0.64$ fm. The 3pF parameter set defined above to give an rms charge radius of 1.7 fm was used for both ^3H and ^3He, while that used for ^3He we choose to be the first set in Table I, namely $R_c = 1.02$ fm, $a_c = 0.358$ fm, and $w_c = 0.49$. Using the other sets of parameter values listed in Table I (all of which gave an rms charge radius of 1.88 fm) varied the spectral energies from those listed by no more 25 keV (centroids and widths).

The ‘present’ results agree to within 200 keV (energies and widths). This is encouraging
TABLE III: Spectra of 7Li and 7Be from a 4He coupled to 3H and 3He respectively. The energies are in MeV while the widths are in keV. The experimental values are those listed in Ref. [18].

J^p	7Li				7Be			
	Exp. present	check	Ref. [8]		Exp. present	check	Ref. [8]	
$^3_1^−$	spurious	−31.1	−29.6	−29.4	spurious	−29.7	−27.8	−28.0
$^3_1^+$	spurious	−29.6	−28.0	−27.8	spurious	−28.3	−26.3	−26.4
$^3_2^−$	−2.47	−2.49	−2.59	−2.47	−1.59	−1.55	−1.53	−1.53
$^3_2^+$	−1.99	−1.81	−1.87	−1.75	−1.16	−0.90	−0.85	−0.84
$^5_2^−$	2.18 (69)	2.23 (83)	2.09 (80)	2.12 (83)	2.98 (175)	3.19 (180)	3.14 (204)	3.07 (180)
$^5_2^+$	4.13 (918)	4.16 (717)	4.05 (800)	4.12 (834)	5.14 (1200)	5.15 (1040)	5.13 (1250)	5.09 (1194)

since only the 4He break-up thresholds (2.47 and 1.59 MeV for 7Li and 7Be) lie in the range shown.

V. RESULTS FOR THE 2H + 4He SYSTEM; SPECTRUM OF 6Li AND SCATTERING.

We consider the 2H-4He system as two single-channel problems; one for the 3S_1 (ground) state and the other for the posited 1S_0 state of the deuteron. We do not consider the states to be coupled by a spin-isospin changing interaction. The deuteron states are both of positive parity and the low excitation spectrum of 6Li only has positive parity states so the dominant character of the interaction potentials is of positive parity. The results were obtained using $V_0 = -64.775$, $V_{ll} = 0.93$, $V_{ll} = 1.97$, and $V_{ll}^* = -2.0$ (all in MeV) with a geometry of $R_0 = 2.3$ and $a_0 = 0.43$ fm. We also allowed the potential to have second order deformation contribution with $\beta_2 = 0.22$. No negative parity interaction has been used, as no such states are known.

6Li has a known low-energy spectrum containing six states: a 1^+; 0 ground state, followed by $3^+:0; 0^+:1; 2^+:0; 2^+:1$ states, and finally a second $1^+:0$ at 5.65 MeV. The next state is 17.98 MeV above the ground state. The 3^+ state appears as a clear resonance in the 2H+4He cross section, 2.186 MeV above the ground state (or 0.7171 MeV above the scattering threshold, at $E_d = 1.067$ MeV or $E_n = 2.135$ MeV) [17, 26]. Also evident is the 2^+ resonance 4.31 MeV above the 6Li ground state (or 2.8375 MeV above the scattering threshold, at
$E_d = 4.253$ MeV or $E_a = 8.507$ MeV) \cite{21, 27-29}. Present but less pronounced is the 1$^+$ resonance 5.65 MeV above the 6Li ground state (or 4.1757 MeV above the scattering threshold at $E_d = 6.264$ MeV or $E_a = 12.527$) \cite{30, 31}. It is possible that Ref. \cite{32} shows data for the 0$^+$ resonance of 6Li 3.563 MeV above the ground state (or 2.0887 MeV above the scattering threshold at $E_d = 3.133$ MeV or $E_a = 6.266$ MeV), but the data points are sparse. The 2$^+_2$ state of 6Li 4.31 MeV above the ground state (or 2.8357 MeV above the scattering threshold) does not appear in data. Data also exists for higher energies \cite{33-38}.

In Fig. 2 the experimentally known spectrum is compared with that resulting from the calculation. The calculation finds all six known low-energy states of 6Li. Spurious minimal energy states were eliminated when an OPP contribution of $\lambda = 10^5$ MeV was used to block the 1s_2 single-nucleon orbit from having more than the four allowed nucleons. They can also simply be discarded, since they are orthogonal to the all others.

Owing to the absence of coupling between channel involving the the 2H triplet and singlet states, the 0$^+\!_1$ and 2$^+_1$ states are purely found from coupling of the 3H singlet state to the 4He ground state partial waves. All other states are purely found from coupling of the deuteron triplet state to the 4He ground state. The first three excited states are found to within a few tens of eV. The final $T = 0$ state, the 1$^+_2$, is too low in energy by an MeV. The singlet state was assumed to be at the 3H breakup threshold, i.e., 2.224 MeV above the ground state. As there is no mixing between the 6Li $T = 0$ and $T = 1$ states in this calculation, the excitation energies of the two $T = 1$ states depend linearly on the energy of the 3H singlet state, though the gap between them is set by the interaction potential parameters. This gap is too large by ~ 1.1 MeV, and while the energy of the 2$^+_2$ state is recreated well, the calculated energy of the 0$^+$ state is too low. It is likely that the antibound singlet state would have a different charge distribution and a different nuclear interaction with the α-particle than the triplet state. However, in this work we opt to use a single interaction as experimental data is not available to guide selection of the relevant parameters.

Cross sections calculated at fixed scattering angles using the associated S-matrices of Eq. (3) angles, are compared to measured data in Figs. 3 and 4. The angles at which calculations have been made are shown in each segment of these figures. The data shown in these figures are taken from Ref. \cite{32} (filled circles) at 37.2, 50.0, 51.67, 90.0, and 120.0$^\circ$, from Ref. \cite{22} (open circles) at 38.75, 48.9, 90.0, and 125.0$^\circ$, from Ref. \cite{27} (filled squares) at 51.9, 90.0, 125.3, and 139.1$^\circ$, from Ref. \cite{30} (open squares) at 50.36, 87.23, 120.1, 137.5, 163.0, and 164.5$^\circ$, from Ref. \cite{22} (upside down triangles) at 38.75, 48.9, 90.0, and 125.0$^\circ$, from Ref. \cite{20} filled triangles) at 90.0 and 120.0$^\circ$, and from Ref. \cite{21} (open triangles) at 90.1, 125.2, 140.7, and 167.7$^\circ$. They are given in the segments in which they are closest to the calculation angle. All cross sections are in centre-of-mass frame, and projectile energies are all in laboratory frame with an α-particle target. While the calculation is defined with a deuteron target, the appropriate change of frames has been performed.

In both Fig. 3 and 4 two calculated resonance features are evident. They coincide with the first excited, isoscalar, 3$^+$, and the isovector 2$^+$ states of 10Be. In the middle panel of Fig. 3 the locations of the experimentally known and calculated states of 10Be are shown. In Fig. 4 wherein our results are compared with data taken at backward scattering angles, to more clearly see the structures, the plots are fully logarithmic. Again the 3$^+$ and 2$^+$ resonances are most evident and the calculated results for energies above ~ 5 MeV are too small, not revealing any resonance effect due to formation of the isoscalar 1$^+$ and of the isovector 2$^+$ states. Also shown in the bottom panel is a second calculated result taken from Ref. \cite{3}. Their model gives a better description of the data in the 4 to 8 MeV region. More specifically, the shape of the 3$^+$ resonance is recreated well at most scat-
The former shows differential cross sections for eight deuteron energies, ranging from 0.88 to 6.3 MeV. For clarity, the results and data in the left hand panel are depicted semi-logarithmically, those in the right hand panel are shown on linear scales. In Fig. 6 we examine five data sets, four of which were also studied in Ref. [3], at 2.935, 6.695, 8.971 and 12 MeV, and the fifth that was studied in Ref. [4]. The notation is as given for Figs. 3 and 4 with additional data depicted as follows; Ref. [39] (filled inverted triangles), Ref. [31] (open inverted triangles), Ref. [40] (left filled triangles), Ref. [41] (open left triangles), and Ref. [42] (filled diamonds).

With some exceptions, this two-body calculation tends to reproduce the small-angle scattering better than data at larger angles, matching small angle data slightly better than the results given in Ref. [3]. However the results found in scattering angles; centroids, widths and with reasonable strengths. The exception is the result for \(\theta_{cm} = 125^\circ \) where, while the resonance effect is noted at the correct centroid energy, the magnitude is too low. Off resonance, our calculated results agree by and large with the available low energy data. For the higher energy region, the resonance feature due to formation of the \(2^+ \) state is well recreated at 50° and 164°, and reasonably well at some of the other angles. The non-resonant background calculated at energies above this resonance usually is underestimated and the \(1^+ \) resonance present in the data is not reflected in our calculated results. This resonance was found by the six-body calculation of \(^2\)H-\(^2\)He scattering by Ref. [3], however, and so is a distinctive difference in the results of a more sophisticated calculation than ours.

Cross sections calculated at fixed energies are compared to experiment in Figs. 5 and 6.
FIG. 3: (Color online.) Experimental elastic cross sections for 2H+4He scattering, at fixed angles, compared with the calculations. The data are from Refs. [20–22, 27, 30, 32]. The 50° panel shows energies where resonances are found in the spectrum, both observed and calculated.
FIG. 4: (Color online.) Experimental elastic cross sections for 2H$^+$4He, at fixed angles, compared with the calculations of this work and Ref. [3]. The data are from Refs. [20, 22, 27, 30, 32].
FIG. 5: (Color online.) Experimental elastic cross sections for 2H+4He scattering, at fixed deuteron energies, compared with the calculations. The data are taken from Refs. [27, 31, 39, 40].
Ref. [3] are superior to ours at the large scattering angles.

For the lower set of energies, as shown in Fig. 5 our calculated results agree quite well with the data, especially at the four lowest energy values that span the region of the 3^+ resonance. The 4.6 MeV result, near the 2^+ resonance, is quite a good match to data. Above this energy, where the 1^+ resonance is expected to influence results, our results are poorer, as may be expected. In general, at deuteron energies from 4.5 to 6.3 MeV, the calculated cross sections have shapes more pronounced than in the data.

In Fig. 6 we compare a select set of data and our results with the differential cross sections given in Refs. [3, 4]. The latter results, shown by the dashed curves, are in excellent agreement with the data at all of the selected energies. Our results are not in as good agreement, but the shapes and magnitudes of them are acceptable in comparison with those revealed in the data.

VI. CONCLUSION

The methodology we have used enables all low excitation compound system properties, spin-parities, energies and widths, extractable from a specific Hamiltonian to be found. With it, allowance can be made for the effects of the Pauli principle in regards to assumed occupancies of nucleon orbits in the target states. For single channel problems such as those addressed herein, without such accounting (via orthogonalizing pseudo-potentials), spurious states are unique and orthogonal to those that are not. Thus, they can simply be discarded. With the cases studied, all spectral properties are found by solving Lippmann-Schwinger equations. Resonance properties are defined by the poles of the T-matrix associated with the chosen Hamiltonian.

The first cases considered were 7Li and 7Be formed as the clusters of 4He with 3H and 3He respectively. As the α break-up thresholds are 2.47 and 1.49 MeV respectively, states above those energies were found that are resonances.
in the cluster evaluations with widths that agree quite well with observation. The widths of resonance states are reaction specific but as only the 4He break-up channels are relevant in the energy range considered (the next threshold is 7.25 MeV for neutron emission from 7Li and 5.61 MeV for proton emission from 7Be), those widths then are also the total widths. The good agreement with experimental values is evidence of the model’s utility.

The next study made was that of the spectrum for 8Be formed as a cluster of two 4He; a process at the heart of the so-called three α formation of the Hoyle state in 12C in stellar environments. With our two-body approach, we find two low-excitation resonance states in 8Be. They are the ground state (0^+) resonance having centroid and width energies of 0.092 MeV and 5 eV [c/f experimental values[18] 0.092 MeV and 5.96 eV] and a first excited (2^+) resonance state with centroid and width energies of 3.16 MeV and 1.11 MeV compared with experimental values of 3.03 MeV and 1.51 MeV respectively. Starting with this, we plan full coupled-channel calculations of the 4He+8Be cluster leading to the Hoyle state.

We then considered 6Li as a 2H+4He cluster. We considered the two states of the 2H, the ground 3S$_1$ and the 1S$_0$, as uncoupled states and solved two single channel LS equations to obtain estimates of the isoscalar and isovector states in the low-excitation spectrum of 6Li. Four of the possible six states were found in good agreement with the known values [18], with only the two highest ones, the 2^+_2 and 1^+_1 differing by an MeV from the correct energies.

We have also made calculations of 2H+4He scattering at low energies, treating both as single bodies. It was found that this approach recreates many of the features observed experimentally, though some require a more sophisticated approach. The 4He ground state was coupled to the 2H ground state treated as a pure 3S$_1$ state, and separately to a 1S$_0$ resonance, to calculate the spectrum of 6Li. Channels of the 3S$_1$ and 1S$_0$ states were not coupled. All six known low-energy 6Li states were recreated, with the first four very close to their known energies and the two most energetic being found at energies that deviate from the measured states by \sim1 MeV. The 2H and 4He ground states were coupled to calculate elastic scattering cross sections, and the match to data was overall good. The observed 3^+ and 2^+ resonances were recreated, and had the correct shapes and reasonable magnitudes at most angles. The non-resonant cross section was also well reproduced. The observed 1^+ resonance, however, was not evident in calculated cross sections, though the state is found in the calculated spectrum. Cross sections at fixed angles were good near the two observed resonance energies, though in general results at low angles were a better match to data than those at high angles.

A gauge invariant theory to evaluate capture cross sections using the bound and continuum wave functions derivable from solutions of the Lippmann-Schwinger equations has been developed (and used) for 3H+4He system [43]. Studies of the other cases discussed herein, being important astrophysical quantities, are planned for a future publication.

Acknowledgments

The authors gratefully acknowledge G. Hupin, S. Quaglioni, P. Navrátíl and A. Deltuva for providing numerical results of their published cross sections. This work is supported by the Australian Research Council and U.S. National Science Foundation under Award No. PHY-1415656.

[1] S. Quaglioni and P. Navrátíl, Phys. Rev. Lett. 101, 092501 (2008).
[2] P. Navrátíl and S. Quaglioni, Phys. Rev. C 83, 044609 (2011).
[3] G. Hupin, S. Quaglioni, and P. Navrátil, Phys. Rev. Lett. 114, 212502 (2015).
[4] A. Deltuva, Phys. Rev. C 74, 064001 (2006).
[5] L. D. Blokhintsev, A. S. Kadyrov, A. M. Mukhamedzhanov, and D. A. Savin, https://arxiv.org/abs/1611.09088 (2016).
[6] E. Pollard and H. Margenau, Phys. Rev. 47, 833 (1935).
[7] S. B. Dubovuchenko and Yu. N. Uzikov, Phys. Part. Nucl. 251, 42 (2011).
[8] L. Canton, G. Pisent, K. Amos, S. Karataglidis, J. P. Svenne, and D. van der Knijff, Phys. Rev. C 74, 064605 (2006).
[9] G. Cattapan, L. Canton, and G. Pisent, Phys. Rev. C 43, 1395 (1991), and references cited therein.
[10] G. Pisent and J. P. Svenne, Phys. Rev. C 51, 3211 (1995).
[11] K. Amos et al., Nucl. Phys. A728, 65 (2003).
[12] C. W. de Jager, H. de Vries, and C. de Vries, At. Data. Nucl. Data 14, 479 (1974).
[13] H. de Vries, C. W. de Jager, and C. de Vries, At. Data. Nucl. Data 36, 495 (1987).
[14] P. R. Fraser, A. S. Kadyrov, K. Massenhane, K. Amos, L. Canton, S. Karataglidis, D. van der Knijff, and I. Bray, J. Phys. G 43, 095104 (2016).
[15] M. Garcon and J. W. V. Orden, Adv. Nucl. Phys 26, 293 (2001).
[16] R. B. Firestone et al., Table of Isotopes (John Wiley & Sons, New York, 1996), eighth ed.
[17] K. Amos, L. Canton, P. R. Fraser, et al., Nucl. Phys. A912, 7 (2013).
[18] D. R. Tilley et al., Nucl. Phys. A 708 (2002).
[19] G. Audi, A. H. Wapstra, and C. Thibault, Nucl. Phys. A 729, 337 (2003).
[20] T. Lauritsen, T. Huus, and S. G. Nilsson, Phys. Rev. 92, 1501 (1953).
[21] A. Galonsky et al., Phys. Rev. 98, 586 (1955).
[22] I. Y. Barit et al., Soviet J. Nucl. Phys. 29, 585 (1979).
[23] S. Nagata, S. Yamaguchi, Y. Fujino, Y. Hori, and N. Sugiyama, Nucl. Instr. Meth. B 6, 533 (1985).
[24] F. Besenbacher, I. Stensgaard, and P. Vase, Nucl. Instr. Meth. B 15, 459 (1986).
[25] A. J. Kellock and J. E. E. Baglin, Nucl. Instrum. Meth. B 79, 493 (1993).
[26] V. Quillet, F. Abel, and M. Schott, Nucl. Instrum. Meth. B 83, 47 (1993).
[27] G. G. Ohlsen and P. G. Young, Nucl. Phys. 52, 134 (1964).
[28] M. Bruno, F. Cannata, M. D’Agostino, C. Maroni, and I. Massa, Il Nuovo Cim. 68, 35 (1982).
[29] R. Ishigami et al., J. Nucl. Sci. Tech. 41, 953 (2004).
[30] G. Mani and A. Tarratts, Nucl. Phys. A107, 624 (1968).
[31] R. A. Hardekopf et al., Nucl. Phys. A287, 237 (1977).
[32] L. Senhouse and T. Tombrello, Nucl. Phys. 57, 624 (1964).
[33] J. C. Allred et al., Phys. Rev. C 82, 786 (1951).
[34] R. G. Freemantle et al., Philos. Mag. 45, 1090 (1954).
[35] W. T. H. van Oers and K. W. Brockman, Nucl. Phys. 44, 546 (1963).
[36] T. Kambara, M. Takai, M. Nakamura, and S. Kobayashi, J. Phys. Soc. Jpn. 44, 704 (1978).
[37] W. Gruebler et al., Nucl. Phys. A242, 265 (1975).
[38] E. J. Stephenson et al., Phys. Rev. C 21, 44 (1980).
[39] J. M. Blair, G. Freier, E. E. Lampi, and W. Sleator, Phys. Rev. 75, 1678 (1949).
[40] L. Stewart, J. E. Brolley, and L. Rosen, Phys. Rev. 128 (1962).
[41] M. Bruno, F. Cannata, M. D’Agostino, C. Maroni, and I. Massa, Lett. Nuovo Cim. 29, 265 (1980).
[42] H. Jett, J. J. L. Detch, and N. Jarmie, Phys. Rev. C 7, 1769 (1971).
[43] L. Canton and L. G. Levchuk, Nucl. Phys. A 808, 192 (2008).