Fabrication of robust superconducting granular aluminium/palladium bilayer microbolometers with sub-nanosecond response

T E Wilson
Department of Physics, Marshall University, One John Marshall Drive, Huntington, WV 25755-2570 USA
E-mail: wilsont@marshall.edu

Abstract. We provide a convenient recipe for fabricating reliable superconducting microbolometers as acoustic phonon detectors with sub-nanosecond response, using image-reversal optical lithography and dc-magnetron sputtering, and our recipe requires no chemical or plasma etching. Our approach solves the traditional problem for granular aluminium bolometers of unreliable (i.e., non-Ohmic) electrical contacts by sequentially sputtering the granular aluminium film and then a palladium capping layer. We use dc calibration data, the method of Danilchenko et al. [1], and direct nanosecond-pulsed photoexcitation to obtain the microbolometer’s characteristic current, thermal conductance, characteristic relaxation time, and heat capacity. We also demonstrate the use of the deconvolution algorithm of Edwards et al. [2] to obtain the phonon flux in a heat pulse experiment with nanosecond resolution.

1. Introduction
In studies of phonon transport in solids [3], the need for time resolution of less than 1 μs [4] requires that the bolometer be operated in a constant bias-current mode. Superconducting (SC) granular aluminium (GA) microbolometers are often employed for this application with typical response times ranging from 20-100 nanoseconds [5,6,7]. A deconvolution algorithm has been developed to improve the time resolution to approximately 10 ns [2]. SCGA microbolometers however do have shortcomings, including their fragility [8], the difficulty in making reliable Ohmic contact to the superconducting films [9], and their relatively slow response (compared to niobium hot electron bolometer [10]). We report on a convenient recipe for the fabrication of GA microbolometers that incorporates a novel palladium capping layer. The addition of the palladium capping layer produces three noticeable improvements to SCGA microbolometry: (1) a surprising reduction in response time to sub-nanosecond (temperature- and bias current- dependent), (2) easily-made Ohmic contacts, and (3) robust durability with no noticeable degradation or performance change after repeated thermal cycling between room- and liquid helium- temperatures. We attribute the latter two improvements to the prevention of the oxidation of the surface of the GA by the palladium capping layer.

2. Fabrication recipe for SC GA/Pd bilayer microbolometers
The microbolometers have been patterned on polished 0.50 mm thick [100] float zone Si:B (30-60 Ω-cm) die of dimension 12 mm x 16 mm. The microbolometers are each of nominal thickness 80 nm with an active region consisting of a 10 μm x 20 μm GA/palladium bilayer that links two larger overlying 1 mm x 2 mm chromium/gold contact pads (nominal thickness 140 nm). We fabricate the
bolometers using an all lift-off process with image-reversal optical lithography employing AZ 5214E photoresist and AZ Developer, as partially described in the literature [11].

We use a load-lock dual-target dc-magnetron sputter deposition system retrofitted with an oxygen lecture bottle and a precision needle valve arrangement. All metal films are sputtered at a dc-magnetron power of 400 W in an 8.5 mTorr argon plasma with an argon flow rate of 28 sccm through the chamber. For the GA deposition, the chamber is evacuated to a base pressure of 1 μTorr, oxygen is introduced and carefully adjusted to a pressure of 170 μTorr, then argon is introduced and the plasma struck; Al is then sputtered to a nominal thickness of 80 nm, immediately followed by a palladium film of nominal thickness 5 nm, sputtered from a second target prior to breaking vacuum. Test runs are first made on clean glass cover slips in order to verify that the resulting room temperature resistivity of the sputtered GA/Pd bilayer is in the range 25-50 μOhm-cm, as measured with a portable four-point probe. Lift-off is easily accomplished by immersion in an acetone ultrasonicated bath for 30 seconds. Subsequent patterning of the chromium/gold contact pads, spaced 20 μm apart and with the midpoint of the opening between the two pads centered on top of the 1 mm long GA/Pd bilayer, then completes the fabrication. Figure 1 shows the microbolometer.

![Figure 1. Optical micrograph of a portion of the microbolometer.](image)

3. Characterization of the SC GA/Pd bilayer microbolometers

When linear changes of the signal voltage of a superconducting bolometer under the condition of constant biasing current i_0 are considered, the response to a given time-dependent energy flux is completely determined by the bolometer’s sensitivity parameter α, characteristic current I_{m}, and characteristic relaxation time Λ (at zero bias-current, $\Lambda = \tau = C/G$) [1,12]. From measurements of the latter three parameters, the heat conductance G and heat capacity C can then be estimated. The frequency-dependent absorptive responsivity $R(\omega)$ can then also be estimated [7]. Measurements of the bolometer resistance-current calibration curves for a discrete set of bath temperatures (Figure 2 shows one at $T=1.759$ K) have been collected using a 4-wire technique, and the transition temperature is near 1.8 K, in agreement with previous investigations of the superconductivity of GA alone [13]. The Pd capping layer is apparently sufficiently thin that there is no substantial suppression of the SC transition of the underlying GA layer due to the proximity effect [14]. Figure 3 shows the bolometer response (at two different temperatures and bias currents) to photoexcitation with an attenuated nanosecond-pulsewidth JDS NanoGreen NG-10320-010 mini-YAG laser; measured τ’s are <0.74 and 2.7 ns, respectively. The relevant operational parameters for our SC GA/Pd microbolometer are listed in Table 1 below. Bias current is supplied through an Avtech AVX-T bias tee (<60ps risetime), the ac-coupled signal voltage is amplified by a 1 GHz Ortec 9306 (30-dB) pulse

![Figure 2. (color online) Curve fit as per [1] to obtain the bolometer’s characteristic current $I_{m} = 43.6 \mu A$ at 1.759 K.](image)
amplifier, and signal averaged for 4000 pulses with a 1 GHz LeCroy WavePro950 digital oscilloscope. The effective risetime of the bolometer signal recovery electronics is 400 ps. For comparison, the mini-YAG signal has also been acquired by a Newport 818-BB-20 Si PIN diode detector (risetime <200 ps) and an SRS boxcar (245, 250, 255, 280 modules) signal averager with 3.5 GHz bandwidth.

Table 1. Parameters of the SC GA/Pd Bilayer Microbolometers (See [1,7] for definitions)

Parameter	1.757 K	1.791 K	Note
T_S	1.757 K	1.791 K	
I_b	20 μA	10 μA	
R_b	0.91 Ω	4.3 Ω	
I_m	43.6+/−0.3 μA	31.0+/−0.9 μA	
$G	θ_0$	2.98 x 10⁻⁶ W/K	1.10 x 10⁻⁷ W/K
$α	θ_0$	131+/−3 Ω/K	114+/−2 Ω/K
$Λ(τ)$	<0.94 (0.74) ns	3.2 (2.9) ns	
C	<1.85 x 10⁻¹⁶ J/K	See Note:	
$R(I_b, T_S)$ (f=0)	1.3 x 10⁵ V/W	1.2 x 10⁵ V/W	
$R(I_b, T_S)$ (f=1 GHz)	>2.2 x 10⁵ V/W	>6.0 x 10³ V/W	

The slower response in Fig.3 occurs at a higher temperature 1.791 K and results from a smaller G (1.1 x 10⁻⁷ W/K), as determined from a fit to the calibration data at 1.791 K (not shown). We have used LabView to implement the algorithm of Edwards et al. [2] using our calibration data, and

Figure 3. (color online) Left: Bolometer (a) and Si PIN diode (b) responses to same photoexcitation. Bias current 20μA, $T=1.757$. Note: $τ<0.74$ ns. Right: bolometer (a), Si PIN diode (b), and deconvoluted bolometer (c) responses to same photoexcitation. Bias current 10μA, $T=1.791$ K. Note $τ=2.7$ ns

our values of G and $τ$ (2.7 ns in this case) to deconvolute the bolometer signal to obtain the incident power. We note that deconvolution approximately recovers the laser temporal profile.

We have also performed a heat pulse experiment. Pulsed mini-YAG laser radiation is focused (50μm diameter) and partially absorbed in a niobium film fabricated on the front face of the 0.5 mm die opposite the bolometer. Figure 4 shows the microbolometer signal and deconvoluted phonon flux...
corresponding to the arrival of [100] longitudinal (ballistic) and transverse (ballistic and diffusive) acoustic phonons. The phonon pulsewidths are comparable to the laser pulsewidth.

Acknowledgements: We acknowledge the support of the US Army Research Office under contract DAAD19-01-1-0466 and the US National Science Foundation under grant ECS-0622060.

Figure 4. (color online) Normalized bolometer response (a) and deconvoluted absorbed power (b) in a heat pulse experiment. Note: Upon deconvolution TA phonon arrival can be clearly resolved and ballistic LA and TA time-of-flights agree (to 1%) with those expected for a 0.544 mm thick substrate; the phonon pulse widths are comparable to the laser pulse excitation. Phonon focusing accounts for the increased TA peak height and a diffusive TA tail is observed.

References
[1] Danilchenko B, Jaziukiewicz C, Paszkeiewicz T and Wolski S 2003 Acta Physica Polonica A 103 325
[2] Edwards S C, Rani H bin and Wigmore J K 1989 J. Phys. E: Sci. Instrum 22 582
[3] Wolfe J P 1998 Imaging Phonons: Acoustic Wave Propagation in Solids (New York, NY USA, Cambridge University Press)
[4] Irwin K D, Hilton G C, Wollman D A and Martinis J M 1998 J. Appl. Phys. 83 3978
[5] Rani H bin, Edwards S C, Wigmore J K and Collins R A 1988 J. Phys. C: Solid State Phys. 21 L701
[6] Shields J A, Msall M E, Carroll M S and Wolfe J P 1993 Phys. Rev. B 47 12510
[7] Sanna G, Nardi M and L Martinis 1999 Rev. Sci. Instrum. 61 1379
[8] Kraus H 1996 Supercond. Sci. Technol. 9 827
[9] Giltrow M, Blylett M J, Lawson N S, Hammiche A, Griffths O J, Wigmore J K and Efimov V 2003 Meas. Sci. Technol. 14 N69
[10] Santavicca D F, Reese M O, True A B, Schmuttenmaer C A and Prober D E 2007 IEEE Trans. Appl. Supercond. 17 (in press)
[11] Meier D L, Przybysz J X and Kang J 1991 IEEE Trans. Magnetics 27 3121; Product Data Sheet “AZ 5214 E Image Reversal Photoresist”, AZ Electronic Materials, 70 Meister Avenue, Somerville, NJ 08876 USA
[12] Fuson N 1943 J. Appl. Phys. 20 59
[13] Dynes R C and Gurno J P 1980 Phys. Rev. Lett. 46 137
[14] Brammertz G, Golubov A A, Verhoeve P, den Hartog R, Peacock A and Rogalla H 2002 App. Phys. Lett. 80 2955
[15] Swartz E T and Pohl R O 1987 Appl. Phys. Lett. 51 2200
[16] Filler R L, Lindenfeld P and Worthington T 1979 Phys. Rev. B 21 5031