Production of Potent Antimicrobial Compounds from *Streptomyces cyaneofuscatus* Associated with Fresh Water Sediment

Zothanpuia, Ajit K. Passari, Preeti Chandra, Vincent V. Leo, Vineet K. Mishra, Brijesh Kumar and Bhim P. Singh*

1 Molecular Microbiology and Systematics Laboratory, Department of Biotechnology, Mizoram University, Aizawl, India,
2 CSIR-Central Drug Research Institute, Sophisticated Analytical Instrument Facility Lucknow, India

The genus *Streptomyces* under phylum actinobacteria has been recognized as a prolific source for the production of bioactive secondary metabolites. An actinobacterial strain designated as DST103 isolated from a wetland fresh water sediment of Tamdil Lake, Mizoram, Northeast, India was identified as *Streptomyces cyaneofuscatus* using 16SrRNA gene sequencing which shares 99.87% sequence similarity with *Streptomyces cyaneofuscatus* NRRL B-2577T. The strain showed broad spectrum antimicrobial activities against Gram negative bacteria (*Escherichia coli* MTCC 739 and *Pseudomonas aeruginosa* MTCC 2453), Gram positive bacteria (*Micrococcus luteus* NCIM 2170 and *Staphylococcus aureus* MTCC 96) and yeast pathogen *Candida albicans* MTCC 3017. The methanolic extract of the strain DST103 exhibited highest antimicrobial activity against *E. coli* (IC$_{50}$ = 2.10 µg/mL) and minimum activity against *S. aureus* (IC$_{50}$ = 43.63 µg/mL). Five antibiotics [trimethoprim (18 µg/g), fluconazole (6 µg/g), ketoconazole (18 µg/g), nalidixic acid (135 µg/g), and rifampicin (56 µg/g)] were detected and quantified using ultra-performance liquid chromatography (UPLC-ESI-MS/MS). Further, biosynthetic potential genes [polyketide synthases type II, non-ribosomal peptide synthetases, and aminodeoxyisochorismate synthase (*phzE*)] were also detected in strain DST103 which may possibly be responsible for the production of antimicrobial compounds. Additionally, gas chromatography-mass spectrometry analysis showed the presence of four volatile compounds which might be responsible for their diverse biological activity. The present study revealed the presence of bioactive compounds in strain DST103, which may be a promising resource for the discovery of novel bioactive metabolites against wide range of pathogens.

Keywords: *Streptomyces cyaneofuscatus*, antimicrobial activity, biosynthetic genes, GC-MS, UPLC-ESI-MS/MS

INTRODUCTION

Microbial secondary metabolites are the organic compounds having potential for the discovery of new drugs to fight against antibiotic resistance (David et al., 2014). They are increasingly required with the emergence and continued persistence of multiple drug resistant (MDR) disease causing microorganisms and still the bacterial infections remain the second leading cause of
death worldwide (Procopio et al., 2012). To overcome this, an attempt has been made by various researchers to improve the existing antibiotics or discover the new antibiotics with improved effectiveness (Parungao et al., 2007). Among the microorganisms, phylum Actinobacteria (order - Actinomycetales), represent an outstanding and notable source for the production of new bioactive secondary metabolites including antibiotics (Stach et al., 2003; Goodfellow and Fiedler, 2010). The phylum alone is accounting for the production of an approximately 75% of the total bioactive compounds including antibiotics with more than 70% produced by member of the genus Streptomyces (Berdy, 2005; Das et al., 2010; Subramani and Aalbersberg, 2012). Genus Streptomyces remains prolific producers of novel compounds with a variety of biological activities including antimicrobial, anti-cancer agents and other pharmaceutically useful compounds (Berdy, 2005; Kim et al., 2008; Saurav and Kannabiran, 2012; Wang et al., 2013; Rajan and Kannabiran, 2014; Ser et al., 2015). They are widely distributed in various ecosystems like soils, fresh waters, marine environments and lakes (Goodfellow and Williams, 1983). A continuous screening of potential bacterial taxa for secondary metabolite production is crucial for the discovery of novel compounds (Lazzarini et al., 2000).

Bio-prospecting studies on actinobacteria are mostly confined to the terrestrial and marine ecosystems and less significance has given to fresh water systems (Radhika et al., 2011). However, there are few reports about the presence of actinobacteria from fresh water ecosystems worldwide (Sibanda et al., 2010; Radhika et al., 2011; Saravanan et al., 2015) where they play an important role in carbon cycle and degradation of recalcitrant organic matter (Kuznetsov, 1970). At present, there is a significant decline in discovering novel bioactive compounds from terrestrial actinobacteria (Alvan et al., 2011) which signifies the need to search for biologically active compounds from such alternative sources like fresh water resources.

In recent years, an attempt has been made by many researchers in search of new antibiotics from different unexplored habitats (Mitra et al., 2008; Goodfellow and Fiedler, 2010). Investigation of antimicrobial secondary metabolites producing actinomycetes from various ecosystems of Northeast India is reported by a number of researchers (Talukdar et al., 2012; Sharma et al., 2014, 2016; Passari et al., 2015; Zothanpuia et al., 2015). After literature review, Tamdil, a fresh water lake of Mizoram, North east India, which is one of the 115 wetlands in India has been found unexplored ecosystem for actinobacterial research. Even though this lake was reported earlier (Zothanpuia et al., 2015) as a significant source for bacterial isolation.

In this perspective the present study was carried out that resulted in the selection of a promising Streptomyces strain DST103 from the fresh water sediment samples of wetland, Tamdil lake Mizoram, India. The present study is intended to examine the antimicrobial biosynthetic potential of Streptomyces cyaneofuscatus against various Gram positive and Gram negative bacterial pathogens, to detect the genes (PKSII, NRPS and pheE) responsible for it, to characterize antibiotic production using ultra-performance liquid chromatography (UPLC-ESI-MS/MS) and to determine the volatile compounds by using Gas chromatography-mass spectrometry (GC-MS).

MATERIALS AND METHODS

Sample Collection

Water sediment samples were collected from a wetland, fresh water Tamdil Lake (23° 44’N; 92° 57’E) of Mizoram, India during the month of May 2013. Samples were stored in a sterile screw capped tube and brought into Molecular Microbiology and Systematic Laboratory, Department of Biotechnology, Mizoram University. The samples were preserved at 4°C till it was processed.

Isolation and Enumeration of Actinobacteria

Actinobacteria were isolated by serial dilution and spread plate technique in eight different media [Starch Casein Agar (SCA), Yeast Extract Malt Extract Agar (ISP2), Actinomycetes Isolation Agar (AIA), Streptomycyes Agar (SA), glycerol Aspargine agar (ISPS), Tyrosine agar medium (ISP4), Tap water Yeast Extract Agar (TWYE), Tryptcase soy agar (TSA)]. Serial dilution was performed by preparing stock solution with 1 mL of water sediment sample and 10 mL of sterile distilled water in a test tube and agitated for 10 min. The suspension was serially diluted up to dilutions of 10^-5 and spread on different media supplemented with cycloheximide (30 µg/ml) to inhibit fungal growth and nalidixic acid (30 µg/ml) to inhibit the growth of Gram negative bacteria. Plates were incubated at 28°C for 14 days and the pure culture of isolates were preserved on 20% glycerol and on their respective slant at 4°C for further studies.

Phenotypic Characterization of Actinobacterial Isolates

The isolates were characterized after 14 days of incubation at 28°C. The cultural characteristics such as color of aerial and substrate mycelium, characteristics of the colony, color, and morphology of the spore chain and diffusible pigments production were studied (Goodfellow and Haynes, 1984). The purified strains were analyzed and identified as described in the International Streptomyces Project (ISP) (Shirling and Gottlieb, 1966). Using oil immersion microscope, the mycelium structures was observed and the organism was identified according to Bergey’s Manual of Determinative Bacteriology, 9th edition. The spore chain morphology and ornamentation of the selected potential strain was also analyzed by field emission gun- scanning electron microscope (FEG-SEM) (Passari et al., 2016).

Evaluation of Antimicrobial Activity of Actinobacterial Isolates

Antimicrobial screening of actinobacterial isolates were performed against five pathogenic bacteria such as Gram positive bacteria, Staphylococcus aureus MTCC-96, Bacillus subtilis NCIM-2097, and Micrococcus luteus NCIM-2170; Gram negative bacteria viz., Pseudomonas aeruginosa MTCC-2453, Escherichia coli MTCC-739 and yeast Candida albicans MTCC-3017. All the pathogens were obtained from Microbial Type Culture Collection (MTCC), Chandigarh, and National Collection of Industrial Microorganisms (NCIM), Pune, India and maintained.
Molecular Identification and Phylogenetic Analysis
Genomic DNA Isolation and 16S rRNA Gene Amplification
Genomic DNA of selected strain was extracted using In-vitrogen DNA isolation kit (K182002) following the manufacturer’s protocol. The DNA quantity was checked at 260/280 using spectrophotometer (Thermo scientific Multiskan GO microplate reader). PCR amplification of 16S rRNA gene was carried out using universal bacterial primers PA (5′- AGAGTTTGATCCTGGCTCAG -3′) as forward primer and PH (5′- AAGGAGGTGATCAGCCGGCA -3′) as reverse primer (Weisburg et al., 1991). Reaction was performed on Veriti thermal cycler (Applied Biosystem, Singapore) in a total volume of 10 µl containing 50 ng of template DNA, 10 pmol of each primer, 2.5 mM of dNTPs, 1X PCR buffer with 1.5 mM MgCl2, 1 U/µl of Taq DNA polymerase. Reaction was performed under the following conditions: initial denaturation at 95°C for 2 min, followed by 30 cycles of denaturation at 94°C for 30 s, annealing at 57.5°C for 40 s and extension at 72°C for 1.5 min with final extension step at 72°C for 10 min. The amplified PCR products were checked using 1.3% agarose gel electrophoresis using TAE buffer. The bacteria and yeast strains were cultured in LB modified agar plate, and 6 mm diameter wells were prepared by using sterile cork borer. In each well, 70 µl clear actinobacteria cell free supernatant was dispensed, and the plates were incubated at 37°C for 24 h. The antimicrobial activities of the isolates were determined by measuring the inhibition zone around each well. All experiments were performed in triplicates and mean was calculated.

Phylogenetic Analysis Based on 16S rRNA Gene Sequences
DNA sequences were compared with the sequences retrieved from NCBI database by using BLASTn search tool (Tamura et al., 2011). Type strains of top fifteen sequences with highest scores were retrieved from EzTaxon database (Kim et al., 2012) and multiple sequence alignment was performed using the Clustal W software packaged in MEGA 6.0 (Thompson et al., 1997). The evolutionary models were selected based on the lowest Bayesian Information Criterion (BIC) scores and highest Akaike Information Criterion (AIC) values using MEGA 6.0 (Saitou and Nei, 1987). Phylogenetic tree was constructed by neighbor joining method using MEGA 6.0 software with Tamura 3 parameters model (R = 1.25) (Saitou and Nei, 1987; Tamura et al., 2011), using E. coli as an out group. The significance of the branching order was determined by bootstrap analysis of 1000 replicates using p-distance model (Felsenstein, 1985). The obtained nucleotide sequence of the 16S rRNA gene of the potential strain was deposited in NCBI GenBank and trees were analyzed and checked using program FigTree 1.3.1.

Detection of Minimum Inhibitory Concentration (MIC) of Potential Isolates
Minimum inhibitory concentration (MIC) of selected strain was determined by following broth micro dilution technique using 96-well microtiter plate (Brook 1998). Crude extract of the selected strain was prepared with 10% DMSO in different concentrations (100, 25, 500, and 1000 µg/ml) with 10% dimethyl sulphoxide (DMSO) and used for antimicrobial activity following agar well diffusion method (Saadoun and Muhana, 2008; Gebreyohannes et al., 2013).

Detection of Antibiotics using Ultra-Performance Liquid Chromatography (UPLC-MS/MS)
Preparation of Standard Solution
Mixed stock solution containing standard antibiotics (trimethoprim, fluconazole, ketoconazole, nalidixic acid, and rifampicin) were prepared in methanol. Mixed standards were diluted with methanol within the ranges from 0.5 to 500 ng/mL to prepare the working standard solution used for plotting calibration curve. The standard stock and working solutions were all stored at –20°C until use and vortexed prior to injection.

Instrumentation and Analytical Conditions
An acuity ultra-performance liquid chromatography (UPLC™) system consisting of autosampler and a binary pump (Waters,
Detection and PCR Amplifications of Biosynthetic Gene Fragments (PKS II, NRPS and phzE):

The potential antimicrobial isolates were subjected for the amplification of genes for Polyketide synthase type II (PKS II), aminodeoxyisochorismate synthase (NRPS) and the biosynthetic gene fragments (PKS II, NRPS and phzE) according to Yuan et al. (2014). The action was carried out in the Veriti thermal cycler (Applied Biosystems, Singapore) under the following conditions.

Gene	Primer	Length (bp)	Reference
PKS II (KS1F, KS1R)	5′-TSGCSTGCTGGTGAAGYGSATC-3′	554	Wawrik et al., 2005
	5′-TGGAGGCCGCCAGAABCTCTC-3′		
phzE (phzEf, phzEr)	5′-GAGGGGCGCAAATCGTATGCAA-3′	450	Schneemann et al., 2011
	5′-GCCYCTGAAGTGACTCTGCTGGT-3′		
NRPS (A3F, A7R)	5′-GCGTACSYTSTACACSTSCTG3′-3′	700	Ayuso-Sacido and Genilloud, 2005
	5′-SASGTCVCCSCTGCTGAT-3′		

Spectroscopy (GC-MS) Analysis of Strain DST103

The chemical compounds present in the selected strain was analyzed and identified using GC-MS as described by Ser et al. (2015) and Sharma et al. (2016) with some modifications. Crude extract of the strain was dissolved in spectroscopy-grade methanol. GC-MS analysis was performed on Perkin Elmer
A total of 50 strains of actinobacteria were isolated from fresh water sediment samples collected from Tamdil Lake of Mizoram, Northeast India. All the obtained isolates were purified and identified based on morphological characteristics after two to three weeks of incubation on different media. Most of the isolates showed strain specific morphological characters such as slow growth, color of mycelia from yellow, brownish white to blackish white, while, some isolates formed brown colored pigments on the media (Figure 1A). The field emission gun-scanning electron microscopy (FEG-SEM) analysis revealed that the aerial mycelia produced spore chains that were spiral and long (Figure 1B).

Phylogenetic Analysis Based on Biosynthetic Genes Sequences

Amino acid sequences of PKS type II, NRPS and phzE genes were compared with the sequences obtained from NCBI GenBank with the BLASTp algorithm and aligned using Muscle software packaged in MEGA 6.0 (Edgar, 2004). The evolutionary models were selected based on the lowest Bayesian Information Criterion (BIC) score values using MEGA 6.0 (Saitou and Nei, 1987). All positions containing gaps and missing data were removed from the phylogenetic analysis. Maximum likelihood (ML) phylogenetic tree for PKS type II and NRPS gene were constructed using WAG model whereas Jones Taylor Thomton (JTT model) was used for constructing ML phylogenetic tree for phzE gene (Saitou and Nei, 1987).

Statistical Analysis

The antimicrobial assay was performed in triplicate process and repeated for three times. Readings was taken as the mean ± standard deviation of mean of three replicates calculated using Microsoft Excel XP 2010. One way analysis of variance (ANOVA) was employed to test the significant differences (P ≤ 0.05) between antimicrobial activities of different isolates using SPSS software version 20.0.

RESULTS

Isolation and Characterization of Actinobacterial Strains

A total of 50 strains of actinobacteria were isolated from fresh water sediment samples collected from Tamdil Lake of Mizoram, Northeast India. All the obtained isolates were purified and identified based on morphological characteristics after two to three weeks of incubation on different media. Most of the isolates showed strain specific morphological characters such as slow growth, color of mycelia from yellow, brownish white to blackish white, while, some isolates formed brown colored pigments on the media (Figure 1A). The field emission gun-scanning electron microscopy (FEG-SEM) analysis revealed that the aerial mycelia produced spore chains that were spiral and long (Figure 1B).

Evaluation of Antimicrobial Activity

The isolated actinobacterial isolates were evaluated for their in vitro antimicrobial activity against five bacterial pathogens: S. aureus, M. luteus, B. subtilis, P. aeruginosa, E. coli, and yeast C. albicans. From a total of 50 isolates tested, 10 isolates showed positive antibacterial activity against at least 3 of the tested 6 pathogens (Supplementary Table S-1). The isolate DST103 showed positive activity against 5 tested pathogens, which was indicated by its activity (15 mm inhibition diameter) against E. coli followed by C. albicans (12.6 mm), B. subtilis (11.2 mm), P. aeruginosa (8 mm), S. aureus (7 mm) and relatively no activity against M. luteus (Table 3). All the isolates showed positive activity against E. coli, while most of the isolates were susceptible to S. aureus and M. luteus. Isolate DST103 having a broad spectrum antimicrobial activity was selected for further investigations (Figure 1C).

Characterization and Phylogenetic Affiliation of Isolate DST103

Selected isolate DST103 was subjected to amplification of partial 16S rRNA gene and the obtained sequence (1404 bp) having an average G+C content of 58.4% was identified as Streptomyces cyaneofuscatus (NCBI GenBank accession number KY287599) which shares 99.87% sequence similarity with Streptomyces cyaneofuscatus NRRL B-2570. The sequence was aligned by the BLAST analysis tool along with the type strains retrieved from EzTaxon databases. Phylogenetic tree was constructed to check the unique molecular taxonomic position of the strain based on neighbor joining method with Tamura 3-parameter model according to lowest BIC values using Mega 6.0. Gaps were treated by pair wise deletion and the estimated
Zothanpuia et al. Antimicrobial Compounds from S. cyaneofuscatus

TABLE 3 | Antimicrobial activity of strain DST103 against selected pathogens.

Strain no.	S. aureus	E. coli	P. aeruginosa	B. Subtilis	M. luteus	C. albicans
DST103	07.0 ± 0.10	15.0 ± 0.03	08.0 ± 0.25	11.2 ± 0.10	00.00 ± 0.0	12.60 ± 0.05

FIGURE 2 | Phylogenetic tree of *Streptomyces cyaneofuscatus* strain DST103 showing phylogenetic relationships maximum likelihood method with Tamura 3-parameter model with bootstrap value based on 1000 replicates.

TABLE 4 | Validation parameters used for the detection of antibiotics in strain DST103.

Analytes	Regression equation	r²	Linear range ng/ml	LOD ng/ml	LOQ ng/ml	Precision RSD (%)	Stability	Recovery RSD (%)
Trimethoprim	y = 1116.5 x + 2399.2	0.9999	1–100	0.52	0.78	1.23	1.55	1.44
Fluconazole	y = 16698 x – 989.72	0.9999	0.5–60	0.11	0.42	1.11	2.45	1.27
Ketoconazole	y = 641.95 x + 109.06	0.9999	0.5–60	0.13	0.38	1.08	1.29	1.45
Naldixic acid	y = 55514 x + 9163.3	0.9999	0.5–100	0.18	0.42	0.78	2.01	1.35
Rifamycin	y = 7410.6 x – 5216.5	0.9999	0.5–60	0.10	0.36	0.81	1.67	0.79

Transition/Transversion bias (R) is 1.25. The phylogenetic tree clearly showed that strain DST103 is closely related to *Streptomyces cyaneofuscatus* NRRL B-2570\(^T\), as they formed a distinct clade under a bootstrap support value of 89%. The 16S rRNA gene sequence analysis demonstrates that strain DST103 was intimately similar to the type strains *Streptomyces setonii* NBRC 13085\(^T\) (99.85% similarity) followed by *Streptomyces halstedii* NBRC 12783\(^T\) (99.82%), *Streptomyces flavovirens* NBRC 3716\(^T\) (99.8%) (Figure 2).

Determination of MIC of Strain DST103

The crude methanolic extract of strain DST103 exhibited strong antimicrobial activity against *E. coli* (5.42 to 15.89 µg/mL) followed by *C. albicans* (4.12 to 12.6 µg/mL), *B. subtilis* (3.96 to 11.2 µg/mL) and *P. aeruginosa* (3.17 to 8.0 µg/mL), respectively. In 96 well plate assay, strain DST103 showed highest MIC values against *E. coli* (EC\(_{50}\) = 2.1 µg/mL) whereas, lowest MIC values was recorded against *S. aureus* (EC\(_{50}\) = 43.63 µg/mL). Standard known antibiotic ampicillin was used as positive control and 10% DMSO solvent was used as negative control.

Detection and Quantification of Antibiotics using UPLC-MRM Method

Validation of Analytical Method

As per the guidelines of international conference on harmonization (ICH, Q2(R1)) by linearity, solution stability,
quantifications and limit of detections, precision and recovery, UPLC-MRM method was validated for quantitative analysis.

Linearity, Limits of Detection (LOD) and Quantification (LOQ)

A series of concentrations of standard solute ion were prepared for the establishing calibration curves. The peak areas were plotted against the corresponding concentrations to obtain the calibration curves. LOD and LOQ were determined by calibration curve method. LOD and LOQ were calculated by using following equations. LOD = (3.3 × Sy.x)/S; LOQ = (10 × Sy.x)/S (Where, Sy.x is standard deviation of residuals from line; S is slope). The results were listed in Table 4. All the calibration curves indicated good linearity with correlation coefficients (r^2) from 0.9989 to 0.9999 within the test ranges. The LOD and LOQ for each reference analyte were less than 0.52 ng/mL and 0.78 ng/ml, respectively.

Precision, Solution stability, and Recovery

Relative standard deviation (RSD) was employed for precision evaluation. Analytes were determined in six replicates on a single day and by duplicating the experiments over three consecutive days to evaluate intra-day and inter-day variations. The overall precision was not more than 2.01%. Sample solutions stability kept at room temperature was measured at 0, 2, 4, 8, 12, and 24 h by replicate injections. The stability RSD value of analytes is ≤2.45%. Recovery test was applied to evaluate the accuracy by spiking high, middle and lower concentration level of the analytical standards into the samples. Experiments were performed in triplicates at each level. The overall recovery of analytical method developed is in the range of 97.98%–102.12% (RSD ≤ 1.45%) for all analytes which signifies a good accuracy (Table 4).

Quantitative Analysis

In this study UPLC-ESI-MS/MS method was used to quantify five standard antibiotics, i.e., trimethoprim, fluconazole, ketoconazole, nalidixic acid, and rifampicin in isolate DST103. Antibiotics like Nalidixic acid (135.0 µg/g) were present in highest amount followed by rifamycin (56.0 µg/g), ketoconazole (18.0 µg/g), trimethoprim (18.0 µg/g) while fluconazole
(6.0 µg/g) was lowest among all. MS spectra and MRM extracted ion chromatogram of five standards and strain DST103 was shown in Figures 3 and 4, respectively.

GC-MS Analysis of DST103 Strain

Methanolic extract of strain DST103 was analyzed using GC-MS and identified four volatile compounds by comparison of their mass spectra with the NIST library based on their molecular weight, molecular formula, and retention time. The four compounds were (1) 2-propen-1-amine, n-2-propenyl; (2) 2-propenal, 3-(1-aziridinyl)-3-(dimethylamino)-; (3) 2-decene, 3-methyl-, (z)-; (4) 5-pyrrolidino-2-pyrrolidone (Table 5). The peak area is directly proportional to the amount of compound present in the sample.

Detection of PKS II, NRPS, and phzE Gene in DST103 Strain

Biosynthetic potential genes encoding PKS type II, NRPS and aminodeoxyisochorismate synthase (phzE) were detected in DST103 strain, which may be responsible for the production of antimicrobial compounds. All the genes were sequenced and sequences were deposited in GenBank accession number (KX595189 for PKSII, KX595190 for NRPS and KX894555 for phzE). PCR amplifications using degenerate primers showed the expected bands size of 600, 700, and 400 bp for PKSII, NRPS and phzE genes, respectively (Figure 5).

Phylogenetic Analysis Based on Biosynthetic Genes Sequences

BLASTp analysis of the amino acid biosynthetic genes (PKSII, NRPS, and phzE) of strain DST103 revealed 63 to 100% identity with known type strains in the NCBI database. The maximum likelihood phylogenetic tree was constructed using the amino acid sequences of PKS type II gene showed that the strain DST103 was closely related to *Streptomyces* sp. SCAUS110 PKS type II (with sequence similarity of 78%) and *Streptomyces carnosus* (ALP32528) PKS with bootstrap value of 64%. In case of NRPS gene the strain DST103 was clustered with *Streptomyces* sp. 10-28-3A (BAH68821) with sequence similarity of 63% and *Streptomyces lavendulae* subsp. *lavendulae* (BAH68484) with sequence similarity of 61 with 77% of bootstrap supported values, respectively. The phzE gene sequences of strain DST103 was 100% identical with *Streptomyces* sp. HB291 (Figure 6).
TABLE 5 | Chemical compounds detected in strain DST103 by GC-MS analysis.

Sl No.	Compound name	Retention time (min)	Area (%)	Formula	Molecular weight (MW)	Quality (%)	Activity	Reference
1	2-propen-1-amine, n-2-propenyl-	17.545	8	C6H11N	97	71	Antibacterial	Senbagam et al., 2016
2	2-propenal, 3-(1-aziridinyl)-3-(dimethylamino)-	17.820	8.96	C7H12ON2	140	76	Antimicrobial	Sheoran et al., 2015
3	2-decene, 3-methyl-, (z)-	18.995	30.00	C11H22	154	78	Antimicrobial	Kalaiselvan et al., 2012; Idramsa et al., 2016
4	5-pyrrolidino-2-pyrrolidone	19.991	28.03	C9H14ON2	154.209	74	–	–

FIGURE 5 | Detection of antimicrobial biosynthetic genes in strain DST103; (A) polyketide synthases (PKS) type II; (B) Non-ribosomal peptide synthetases (NRPS); (C) Aminodeoxyisochorismate (phzE) synthase.

DISCUSSION

Secondary metabolites, mainly new and novel antibiotics are in great demand with the increase in multi-drug resistant pathogens. A total of 50 actinobacteria were recovered in the present study using seven different media and among the media employed, SCA proved to be the best medium for isolation of fresh water actinobacteria supported by the findings of Rifaat (2003), Radhika et al. (2011), Zothanpuia et al. (2015). Preliminary screening of the isolates for their antimicrobial activities led to the selection of potential strain DST103 having strong activity against almost all the tested pathogens. The nature of colony of the strain was observed with hard and rough velvety texture on solid media with faint diffusible pigment. The strain showed optimum growth at 28°C on AIA, TSA, and SCA media. A slow growth was also observed on ISP2, AIA, SA, ISP5, and ISP7 media except TWYE medium which was also reported earlier by Passari et al. (2015).

Methanolic extract of the strain showed broad spectrum antimicrobial activity in secondary screening by agar well diffusion method which is in agreement with the finding of Gebreyohannes et al. (2013). It also exhibited good activity in 96 well plates inhibited the growth of pathogenic bacteria (E. coli, S. aureus, P. aeruginosa, and B. subtilis) and yeast pathogen C. albicans responsible for different food borne diseases. Strain DST103 showed positive activity against B. subtilis and P. aeruginosa with MIC values ranging from 3.96 to 11.2 and 3.17 to 8.0 μg/mL, respectively. The strain DST103 exhibited highest antibacterial activity against E. coli (5.42 to 15.89 μg/mL). Similar studies were reported by other researchers as well (Mukai et al., 2009; Kavitha et al., 2010; Atta, 2015; Sharma et al., 2016). This result showed that bioactive compounds having antimicrobial activities were extracellular and could be isolated and quantified that may help in the discovery of new drug (Passari et al., 2015). To best of our knowledge, this is the first report of S. cyaneofuscatus having strong antimicrobial activity against bacteria and yeast pathogens.

Results from 16S rRNA gene sequence and phylogenetic analyses revealed that the strain having strong antimicrobial properties was identified as Streptomyces cyaneofuscatus.
FIGURE 6 | Maximum likelihood (ML) phylogenetic tree constructed using amino acid sequences based on WAG model for PKS type II gene (A) and NRPS gene (B) and JTT model for phzE gene (C). The scale bar represents the amino acid changes.

strain DST103 which was closely related to *Streptomyces cyaneofuscatus* NRRL B-2570 with 99.87% sequence similarity. This is in agreement with results obtained by Hamedi and Papiran (2015). *Streptomyces cyaneofuscatus* M-27 having antitumor and anti-inflammatory compounds was also isolated from the Central Cantabrian Sea (Afredo et al., 2014).

The antibiotics content of the strain DST103 was quantified using UPLC-ESI-MS/MS method using five standard antibiotics, i.e., trimethoprim, fluconazole, ketoconazole, nalidixic acid and rifampicin. All the five antibiotics used in the study were detected and quantified, antibiotics like nalidixic acid and rifampicin were present with 135.0 and 56.0 µg/g respectively. This finding was similarly reported recently (Passari et al., 2016) that nalidixic acid and rifampicin was quantified with 0.951 and 0.017 mg/g, respectively. The antibiotics content of the strain needs to be checked with more standard antibiotics for further investigation.

Gas chromatography-mass spectrometry is one of the most reliable techniques to identify the constituents of volatile compounds which were employed by a number of researchers (Jog et al., 2014; Tan et al., 2015; Sharma et al., 2016). The GC-MS chromatogram of the strain DST103 crude extract showed four major peaks with different retention time. Four volatile compounds were identified that were grouped into amine, ketones, aldehyde, and alkenes, which were renowned to have antimicrobial properties. Among them 2-decene, 3-methyl- (z)- an alkene group was detected in highest amount which alone constituted 30% of the total constituents present in
Retracted
Kalaiselvan, A., Gokulakrishnan, K., and Anand, T. (2012). Gas chromato-mass spectrometry analysis of constituent components of the essential oil extract of Andrographis paniculata. J. Pharm. Biomed. Sci. 20.

Kavitha, A., Prabhakar, P., Narasimulu, M., Vijayalakshmi, M., Venkateswarlu, Y., Rao, K. V., et al. (2010). Isolation, characterization and biological evaluation of bioactive metabolites from Nocardia levis MK-113. Microbiol. Res. 165, 199–210. doi: 10.1016/j.micres.2009.05.002

Kim, K. J., Kim, M. A., and Jung, J. H. (2008). Antitumor and antioxidant activity of protocatechu aldehyde produced from Streptomyces lincolnensis M-20. Arch. Pharm. Res. 31, 1572–1577. doi: 10.1007/s12272-001-2153-7

Kim, T. U., Cho, S. H., Han, J. H., Shin, Y. M., Lee, H. B., and Kim, S. B. (2012). Diversity and physiological properties of root endophytic actinobacteria in native herbaceous plants of Korea. J. Microbiol. 50, 50–57. doi: 10.4017/jm.12427.012-1417-x

Kuznetsov, S. I. (1970). Microflora of Lakes and its Geochemical Activity. Leningrad: Nauka.

Lazzarinì, A., Cavalletti, L., Toppo, G., and Marinelli, F. (2000). Rare genera of actinomycetes as potential producers of new antibiotics. Antonie Van Leeuwenhoek 78, 399–405. doi: 10.1023/A:10021082670557

Minowa, Y., Araki, M., and Kanehisa, M. (2007). Comprehensive analysis of antibiotic producing actinomycetes isolated from mangrove sediments. J. Med. Microbiol. 56, 685–695. doi: 10.1099/jmm.0.62883-0

Mitra, A., Santra, S. C., and Mukherjee, J. (2008). Distribution of actinomycetes, their antagonistic behaviour and the physico chemical characteristics of the world’s largest tidal mangrove forest. Appl. Microbiol. Biotechnol. 80, 685–695. doi: 10.1007/s00253-008-1626-8

Mukai, A., Fukui, T., Hoshino, Y., Yazawa, K., Harada, K., and Mikami, Y. (2009). Nocardithiocin, a novel thioppeptide antibiotic, produced by pathogenic Nocardia pseudobrasiliensis IFM 0757. J. Antibiot. 62, 613–619. doi: 10.1038/ja.2009.90

Parungao, M. M., Maceda, E. B. G., and Villano, M. A. F. (2007). Screening of antibiotic producing actinomycetes from marine, brackish and terrestrial sediment of Samal Island, Philippines. J. Res. Sci. Comput. Eng. 4, 29–38.

Passari, A. K., Chandra, P., Zothanpuia, Mishra, V. K., Leo, V. V., Gupta, V. K., et al. (2016). Detection of biosynthetic gene and phytohormone production by endophytic actinobacteria associated with Solanum lycopersicum and their plant growth-promoting effect. Res. Microbiol. 167, 692–705. doi: 10.1016/j.resmic.2016.07.001

Passari, A. K., Mishra, V. K., Saikia, R., Gupta, V. K., and Singh, B. P. (2015). Isolation, abundance and phylogenetic affiliation of endophytic actinomycetes associated with medicinal plants and screening for their in vitro antitumor bioactive potential. Front. Microbiol. 6:273. doi: 10.3389/fmicb.2015.00273

Sheoran, N., Agisha, V. N., Vibhuti, M., Aditi, K., Kesavan, S., Vihina, V., et al. (2015). Genetic analysis of plant endophytic Pseudomonas putida BP25 and chemo-profiling of its antimicrobial volatile organic compounds. Microbiol. Res. 173, 66–78. doi: 10.1016/j.micres.2015.02.001

Shirlng, E. B., and Gottlieb, D. (1966). Methods for characterization of Streptomyces species. Int. J. Syst. Bacteriol. 16, 313–340. doi: 10.1099/00221208-16-3-313

Subramani, R., and Aubeersberg, W. (2012). Marine Actinomycetes: an ongoing source of novel bioactive metabolites. Microbiol. Res. 167, 571–580. doi: 10.1016/j.micres.2012.06.005

Subramani, R., Angmar, M., Daluhr, A., Talukdar, S., Gohain, M. B., Deb Nath, R., Yadav, A., et al. (2012). Bioprospecting Microcionospora from Kaziranga National Park of India and their anti-fungal potential. World J. Microbiol. Biotechnol. 28, 2703–2712. doi: 10.1007/s11274-012-1080-8

Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739. doi: 10.1093/molbev/msr121

Tan, L. T. H., Ser, H. L., Yin, W. F., Chan, K. G., Lee, L. H., and Goh, B. H. (2015). Investigation of antioxidant and anticancer potentials of Streptomyces sp. MUM256 isolated from Malaysian mangrove soil. Front. Microbiol. 6:1316. doi: 10.3389/fmicb.2015.01316

Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., and Higgins, D. G. (1997). The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24, 4876–4882. doi: 10.1093/nar/25.24.4876

Wang, C., Wang, Z., Qiao, X., Li, Z., Li, F., Chen, M., et al. (2013). Antibacterial and biofilm inhibitory activity of volatile organic compounds from Streptomyces albofascus TD-1. FEMS Microbiol. Lett. 341, 45–51. doi: 10.1111/1574-6968.12088

Wawrik, B., Kerkhof, L., Zylstra, G. J., and Kukor, J. J. (2005). Identification of secondary metabolites using ribosomal DNA amplification for phylogenetic study. Appl. Environ. Microbiol. 71, 2232–2238. doi: 10.1128/AEM.71.5.2232-2238.2005

Weisburg, W. G., Barns, S. M., Pelletier, D. A., and Lane, D. J. (1991). 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173, 697–703. doi: 10.1128/JB.173.2.697-703.1991

Yuan, M., Yu, Y., Li, H. R., Dong, N., and Zhang, X. H. (2014). Phylogenetic diversity and biological activity of actinobacteria isolated from the Chuukchi Self marine sediments in the Arctic Ocean. Mar. Drugs 12, 1281. doi: 10.3390/md12031281

Zothanpuia, P., Passari, A., and Singh, B. P. (2015). Molecular characterization of actinomycetes isolated from Tuichang river and their biosynthetic potential. Sci. Vis. 15:136.
Zothanpuia, Passari, A. K., Gupta, V. K., and Singh, B. P. (2016). Detection of antibiotic-resistant bacteria endowed with antimicrobial activity from a freshwater lake and their phylogenetic affiliation. Peer J. 4:e2103. doi: 10.7717/peerj.2103

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2017 Zothanpuia, Passari, Chandra, Leo, Mishra, Kumar and Singh. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.