Signal readout for Transition-Edge Sensor X-ray imaging spectrometers

H. Akamatsu ∗, W.B. Doriese, J.A.B. Mates, B.D. Jackson

Abstract Arrays of low-temperature microcalorimeters provide a promising technology for X-ray astrophysics: the imaging spectrometer. A camera with at least several thousand pixels, each of which has an energy-resolving power (E/ΔE_{FWHM}) of a few thousand across a broad energy range (200 eV to 10 keV or higher), would be a revolutionary instrument for the study of energetic astrophysical objects and phenomena. Signal readout is a critical enabling technology. Multiplexed readout, in which signals from multiple pixels are combined into a single amplifier channel, allows a kilopixel-scale microcalorimeter array to meet the stringent requirements for power consumption, mass, volume, and cooling capacity in orbit. This chapter describes three different multiplexed-readout technologies for transition-edge-sensor microcalorimeters: time-division multiplexing, frequency-domain multiplexing, and microwave-SQUID multiplexing. For each multiplexing technique, we present the basic method, discuss some design considerations and parameters, and show the state of the art. The chapter concludes with a brief discussion of future prospects.

Keywords X-ray spectrometer, microcalorimeter, cryogenic electronics, signal readout, multiplexed readout, semiconductor calorimeter, transition-edge sensor, metallic-magnetic calorimeter, SQUID

H. Akamatsu
SRON Netherlands Institute for Space Research, Niels Bohrweg 4 2333 CA Leiden, The Netherlands e-mail: h.akamatsu@sron.nl

W.B. Doriese
National Institute of Standards and Technology (NIST), United States Department of Commerce, Boulder, CO, USA e-mail: william.doriese@nist.gov

J.A.B. Mates
National Institute of Standards and Technology (NIST), United States Department of Commerce, Boulder, CO, USA e-mail: john.mates@nist.gov

B.D. Jackson
SRON Netherlands Institute for Space Research, Landleven 12, 9747 AD Groningen, The Netherlands e-mail: B.D.Jackson@sron.nl

∗ corresponding author
1 The cryogenic X-ray imaging spectrometer

High-energy-resolution X-ray spectroscopy is a powerful probe of elemental and chemical composition that is used across many scientific disciplines, from materials science to the physics of hot plasma in the Universe. Wavelength-dispersive (WD) X-ray spectrometers, such as gratings, Bragg crystals, and multi-layer materials, can achieve the highest energy-resolving powers \(\frac{E}{\Delta E} \sim 1,000 \) to \(10,000 \). WD spectrometers have been deployed previously for X-ray astronomy, such as the Reflection Grating Spectrometer (RGS) on board the XMM-Newton satellite[39] and Chandra’s High Energy Transmission Grating Spectrometer[103]. However, WD spectrometers have important drawbacks for astronomy, such as a limited simultaneous energy range, a low collecting efficiency (solid-angle coverage times quantum efficiency), and a lack of any inherent imaging capability. Another common technology, the solid-state energy-dispersive (ED) detector (e.g., the silicon-drift detector, or SDD, and the charged-coupled device, or CCD), which measures the X-ray energy directly during detection, can combine high collecting efficiency with imaging capability across a wide energy band; however the energy resolution is limited \(\frac{E}{\Delta E} \leq 50 @ 6 \text{ keV} \) for the best SDDs and somewhat lower for X-ray CCD cameras.

![Diagram](image_url)

Fig. 1 The microcalorimeter array as a cryogenic imaging spectrometer. *Left:* comparison of cryogenic spectrometers to wavelength-dispersive and solid-state energy-dispersive spectrometers on a plane of energy-resolving power vs. collecting efficiency[55]. Here, collecting efficiency is the solid angle subtended by the spectrometer multiplied by the cumulative quantum efficiency of all components of the spectrometer. *Middle:* cartoon diagram of a single cryogenic microcalorimeter pixel. An X-ray absorber is connected to a thermal bath via a weak thermal link, and also to a thermometer. Measurement of a pulsed change in the absorber temperature yields the energy of the X-ray. *Right, top to bottom:* \(R \) vs. \(T \) of a semiconductor calorimeter, \(R \) vs. \(T \) of a transition-edge sensor, and \(B \) vs. \(T \) of a metallic-magnetic calorimeter.

A technology that has been developed over the last few decades for a variety of present and future astronomical missions is the microcalorimeter array[119, 110]
Signal readout for Transition-Edge Sensor X-ray imaging spectrometers

A microcalorimeter array is an imaging spectrometer that combines some of the best features of WD spectrometers and ED detectors: $E/\Delta E \geq 2.400 \text{ @ 6 keV}$ and a high collecting efficiency. A microcalorimeter pixel consists of a sensitive thermometer and an X-ray absorber connected weakly to a cryogenic thermal bath. When an X-ray strikes the X-ray absorber, the thermometer measures the magnitude of the resulting temperature pulse to determine the energy of the X-ray.

The energy resolution of a cryogenic spectrometer is estimated as follows:

$$\Delta E \sim \sqrt{\frac{k_B T^2 C}{|\alpha|}}.$$ \hspace{1cm} (1)

where $k_B, T, C,$ and $\alpha \equiv d\ln R / d\ln T$ are the Boltzmann constant, detector temperature, heat capacity, and thermometer sensitivity, respectively. The keys to achievement of high energy-resolving power (low ΔE) are a low operating temperature, a small heat capacity, and a high sensitivity.

Table 1 Summary of the three main types of X-ray microcalorimeters: semiconductor, transition-edge sensor (TES), and metallic-magnetic calorimeter (MMC). The upper section lists some basic characteristics of each type of microcalorimeter. Semiconductor microcalorimeters use junction-gate field-effect transistors (JFETs) to read out their voltage, while TESs and MMCs employ superconducting quantum-interference devices (SQUIDs) to read out the device current. The lower section gives the best energy resolution achieved in a single pixel and the largest operating detector array (as of the publication of this book).

	Semiconductor	TES	MMC
T of sensor bath [K]	0.05	0.05	0.03
resistance [\(\Omega\)]	10^6	0.001 to 1	0.1
readout amplifier	JFET	SQUID	SQUID
T of readout amplifier [K]	140	0.05	0.03
multiplexing	difficult	highly developed	possible
amp. bandwidth	NA	10 MHz (SQUID)	10 MHz (HEMT)
$\Delta E \text{ @ 6 keV [eV]}$	3.7 [88, 128, 129]	1.6 [140, 36]	1.6 [89]
largest array [pixels]	36 [83]	992 [147, 148]	64 [102]

TES: transition-edge sensor

MMC: metallic-magnetic calorimeter

JFET: Junction Field Effect Transistor

SQUID: superconducting quantum interference device (see Sect.2.2)

HEMT: High Electron Mobility Transistor (see Sect.3.5)
While many types of cryogenic thermometers have been proposed and studied, only a few are developed enough to be considered for space-borne instrumentation: semiconductor calorimeters, transition-edge sensors (TESs), and metallic-magnetic calorimeters (MMCs). Table 1 summarizes the basic properties of each type of microcalorimeter, while Table 4 in Sec. 4 lists present and future missions for each.

The semiconductor calorimeter has a negative thermal coefficient (thermistor R decreases as T increases), a high impedance ($\sim M\Omega$), and a moderate sensitivity ($|\alpha| \sim 7$). Semiconductor calorimeters have been used in many projects, including the X-ray Quantum Calorimeter (XQC) sounding rocket experiment[111] and the ASTRO-E2, ASTRO-E2 (Suzaku[115]/ XRS[87])3, and ASTRO-H (Hitomi[149]/ SXS[116])4 satellites. They will also be employed for the Resolve[83] instrument on XRISM[154]. McCammon[109] gives a detailed review of the technology.

The transition-edge sensor (TES) works in the superconducting transition from the normal to superconducting states, which provides a high temperature sensitivity ($\alpha \sim 100$). The operating impedance of a TES microcalorimeter ranges from ~ 1 to 10 mΩ, depending on the TES design and the material chosen for the superconducting film. The sensor is voltage biased and its current is read out via a SQUID. There are several excellent reviews of the TES X-ray microcalorimeter in the literature[79, 157, 59]. TES calorimeters are in use in or planned for many present and future X-ray astronomy projects, including Micro-X (the first TES array and readout system operated in space)[3], the X-IFU instrument[13] onboard the ESA Athena mission, HUBS[28], Super-DIOS[137], and LEM5, and the TES is one of the proposed technologies for the Lynx[155] imaging spectrometer[12].

Unlike other resistance calorimeters, the metallic-magnetic calorimeter (MMC) utilizes a non-resistive, paramagnetic temperature sensor; a MMC converts a temperature change into a change in magnetization, which is then measured as a change in magnetic flux in a dc SQUID[53]. MMCs have two interesting differences from resistive microcalorimeters: (1) no power is dissipated in the sensor and (2) the readout makes no galvanic contact to the sensor. MMCs also exhibit excellent energy resolution, high dynamic range, and high linearity in their energy-gain scale. MMCs will be used in the International Axion Observatory[2] and are also one of the proposed detector technologies for the Lynx imaging spectrometer[143].

Because cryogenic X-ray microcalorimeters are formed as small patches of thin films on a silicon substrate, they are naturally fabricated in a two-dimensional array of pixels to create an imaging spectrometer. An international effort is underway to develop large arrays of low-temperature X-ray microcalorimeters. The following two technologies are particularly active areas of research and development:

2 ASTRO-E was the first satellite to be equipped with a cryogenic X-ray spectrometer, but it was lost during launch.

3 ASTRO-E2/ XRS was the first microcalorimeter instrument to reach orbit on a satellite, but was lost due to rapid evaporation of the cryogens.

4 Hitomi/ SXS was a pioneer in low-temperature X-ray microcalorimetry and successfully observed X-ray emission from astronomical objects[71]. Unfortunately, however, the satellite was lost due to a malfunction in its attitude-control system.

5 https://lem.physics.wisc.edu/
1. arrays of the scale of 10^4 pixels via microfabrication technology;
2. signal-multiplexing techniques that read out multiple pixels per readout channel, which is necessary to reduce the volume of electronics on the low-temperature (typically about 50 mK to 100 mK) stage of the spectrometer and the number of wires to that low-temperature stage (see Sec. 3.1).

This chapter presents issues and recent progress in signal-readout technology for arrays of X-ray microcalorimeters.

2 Basic concepts of signal readout

2.1 Impedance matching

When two circuit elements are connected, such as a microcalorimeter pixel to its readout, a difference in impedance will cause some signal power to be reflected. This loss of signal in the readout decreases the signal-to-noise ratio. This can be compared to exchanging water between two hoses of different diameters: different hose diameters result in water loss.

The following simple calculation illustrates the concept of impedance matching. A signal voltage, V, drives a current, I, through the circuit shown in Fig. 2(left), given by:

$$I = \frac{V}{R+r}, \quad (2)$$

where r and R are the output impedance of an X-ray microcalorimeter pixel and input impedance of its readout, respectively. Therefore, the voltage drop across R is:

$$V_R = RI = V \frac{R}{R+r}, \quad (3)$$

Fig. 2 Left: Electrical schematic showing the output impedance, r, of an X-ray microcalorimeter and the input impedance, R, of its readout. Right: Power transmitted to the readout vs. R for $r = 100 \, \Omega$. Transmitted power is maximized when the output impedance of the microcalorimeter and the input impedance of the readout electronics are equal.
The power dissipated in \(R \), \(P_R \equiv I V_R \), and its first derivative with respect to \(R \) are:

\[
P_R = \frac{V^2 R}{(R + r)^2} \quad \text{and} \quad \frac{dP_R}{dR} = \frac{V^2}{(R + r)^3} \left[r - R \right]. \tag{4}
\]

Thus, power transmission to the readout is maximized \((dP_R/dR = 0)\) when the output impedance of the microcalorimeter pixel is equal to the input impedance of the readout (when the impedances are matched). Fig. 2(right) plots \(P_R \) vs. \(R \) for \(r = 100 \Omega \).

As shown in Table 1, the various microcalorimeter types have different output impedances, and so require different readout circuits.

2.2 dc Superconducting quantum interference device (dc-SQUID)

Superconducting quantum interference devices (SQUIDs) are a class of highly sensitive magnetic sensors that use ring-shaped superconductors containing Josephson junctions to measure extremely weak magnetic fields\([10, 85, 26]\). When two superconductors are brought close enough together that their wave functions overlap, a tunnel current flows that is proportional to the phase difference between the two superconducting wave functions. A modern Josephson junction is a sandwich of a few-nanometer-thick insulator or normal-conductive metal between two superconducting films. SQUIDs can reach magnetic field sensitivities as low as \(\sim 10^{-15} \) T\([48]\); by contrast, the strength of a refrigerator magnet is about 0.02 T, while the magnetic fields of the human heart and brain are orders of magnitude lower \((\sim 10^{-12} \) T\)[27]. There are two main types of SQUIDs: direct current (dc) and radio frequency (rf). The latter are easier to manufacture but are less sensitive because they operate with a single Josephson junction.

The dc-SQUID is a sensitive magnetometer with a wide inherent frequency bandwidth from dc up to the gigahertz range. It has two Josephson junctions in a washer-shaped superconducting loop (see Fig. 3-left). An external magnetic flux applied to the loop drives a screening current that maintains the total flux enclosed by the loop as an integral number of flux quanta (the magnetic-flux quantum is \(\Phi_0 = h/2e = 2.07 \times 10^{-15} \) Wb, where \(h \) is the Planck constant and \(e \) is the charge of the electron). This modulates the maximum supercurrent that can flow across the loop periodically, with a period of \(\Phi_0 \). When the current through either Josephson junction exceeds its critical current, a voltage develops. The voltage-vs.-current (V-I) curve (see Fig. 3-middle) is thus modulated as a periodic function of the external magnetic field. When the external flux is zero, the phase difference of the superconducting wave functions in the two sides of the SQUID is small (high critical current and thus lower voltage; \(\Phi = n \Phi_0 \) case, where \(n \) is an integer), while when the external magnetic field is close to \((n + 1/2)\Phi_0\), the critical current is suppressed and the generated voltage is higher. When the current bias applied to the device is higher
3 Principles of multiplexed readout of X-ray TES microcalorimeters

3.1 Why is multiplexed readout necessary?

X-ray astronomy differs significantly from other fields in that X-ray signals from celestial objects do not reach the ground due to atmospheric absorption. Thus, X-ray observatories (and also, generally, gamma-ray observatories) must be placed on space-borne platforms such as rockets and satellites.

Low-temperature microcalorimeters make excellent X-ray imaging spectrometers, as described by Gottardi & Smith in this book. However, readout of large arrays of microcalorimeters is nontrivial due to the electrical power and cooling capacity available in a satellite. For example, the total electrical draw of a typical communi-
Fig. 4 Schematic of the readout of a TES via a single-stage dc-SQUID. Cryogenic components are inside the dashed box. This is the simplest reasonable implementation of (non-multiplexed) readout of a TES, and requires three cryogenic wire pairs per TES (for TES bias, SQUID bias/output, and SQUID feedback). However, typically, a two-stage SQUID architecture is needed to achieve the required gain without dissipation of too much Joule power on the coldest cryogenic stage (see Fig. 7); in this case, at least five cryogenic wire pairs per TES are needed.

The power draw of the Athena satellite is about 1 kW to 1.5 kW\(^6\) (about the same as a standard household microwave oven), while the Hubble Space Telescope uses about 2.8 kW\(^7\). For X-ray astronomy, the Athena satellite has a planned power draw of \(\sim 6\) kW, of which the X-IFU instrument will draw about 1.3 kW\[^130\].

As discussed in Fig. 4, readout of a single TES microcalorimeter pixel requires a minimum of three cryogenic wire pairs, while five pairs per TES are typical. Thus, brute-force readout of X-IFU’s \(\sim 2,400\) TESs\[^13\] would require more than 10,000 wire pairs. The power draw from 2,400 channels of room-temperature electronics plus a cryogenic system capable of overcoming the thermal conductivity of this many wires would overwhelm any feasible satellite platform. Future arrays of X-ray microcalorimeters will be even larger. To solve this problem, signal-multiplexing techniques that read signals from multiple sensors with fewer wires are essential.

\[3.2\] General considerations

Multiplexed readout should introduce minimal noise and signal degradation. The noise budget is application-dependent: e.g. in Athena X-IFU, about 3% of the energy-resolution budget is allocated to readout. Successful multiplexing generally entails these three considerations:

1. The signal and noise bandwidths of the sensor should be made as narrow as feasible for the astronomical application. The signal and noise currents

\[^{6}\) https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Power_Systems
\[^{7}\) https://www.nasa.gov/content/goddard/hubble-space-telescope-electrical-power-system
of a TES X-ray microcalorimeters generally obey two low-pass time constants: the electrical time constant (determines behavior on the leading edge of an X-ray pulse) and the thermal time constant (determines the pulse’s decay behavior). Irwin and Hilton[79] discuss the theory of TES signals, including how electrothermal feedback (ETF) governs the interaction between the electrical and thermal time constants. Here, we refer to the TES’s ETF-modified time constants on the leading and falling edges of a pulse as τ_{rise} and τ_{decay}, respectively. The achievable X-ray count rate is governed by τ_{decay}; a faster-decaying detector exhibits less pulse pileup for a given input rate of X-rays. The signal bandwidth of the TES is governed by τ_{rise}. The ratio between τ_{rise} and τ_{decay}, is generally adjusted via inductance in the TES-bias loop (see, e.g., L_{Ny} in Fig. 7). Fig. 5 shows simulated TES-current pulses under various damping conditions. The critically damped (or just a bit overdamped) condition is often the design goal for the TES-bias circuit: for a given TES model, critical damping provides the largest τ_{rise}, and thus the narrowest overall signal bandwidth, and so is often preferred for multiplexed readout. Also, because τ_{rise} cannot be longer than τ_{decay}, per-pixel X-ray counting capability is in natural tension with multiplexing factor (and thus with array size). Finally, filtering limits sensor noise from being aliased within a multiplexer pixel or from leaking into neighboring multiplexer pixels: the TES-current noise due to phonon exchange with the bath is low-pass filtered with the time constants τ_{decay} and τ_{rise}, while the TES-Johnson noise is low-pass filtered with the time constant τ_{rise}.

2. The readout system should have a wide bandwidth. Multiplexed readout is essentially an exercise in stuffing many low-bandwidth TES signals into a high-bandwidth readout system. Higher readout bandwidth generally allows more TESs per readout channel.

3. The multiplexer should be built from an orthogonal basis set to prevent signal leakage from pixel to pixel. Fig. 6 shows the basis sets used by the main multiplexing techniques for TESs to be discussed in Secs. 3.3 to 3.5: time-division multiplexing (TDM), frequency-domain multiplexing (FDM), and microwave-SQUID multiplexing (μmux). In addition, this figure shows the basis set of code-division
Table 2 Summary information for four multiplexed-readout technologies for TESs X-ray calorimeters: time-division (TDM), code-division (CDM), MHz-frequency-division (FDM), and microwave-SQUID (µmux) multiplexing. The top section lists the type of TES bias and the type of modulation. The second section discusses the front-end SQUID. The third section discusses the 2nd-stage amplifier; in µmux readout, a high-electron-mobility transistor (HEMT) amplifier is traditionally used, but the recently developed kinetic-inductance traveling-wave parametric amplifier (KITWPA) offers an attractive lower-power alternative. Finally, the fourth section lists the state of the art in the readout of X-ray-TES arrays.

TES Bias	TDM [24, 52]	CDM [81, 118]	MHz FDM [173, 95]	µmux [80, 104]
how modulated?	dc	dc	ac	dc
front-end SQUID	SQUIDs on/off	Walsh codes [167]	resonating TESs	resonating SQUIDs
FE SQUID: P_{Joule}	450 pW [51]	450 pW [46]	450 pW [95]	20 pW
2nd-stage amplifier	SQUID array	SQUID array	SQUID array	HEMT [49]
2nd stage: P_{T}	~300 nW @ 2 K	~300 nW @ 2 K	~300 nW @ 2 K	~5 mW @ 4 K
demonstrated $\Delta E_{FWHM} @ E$	2.23 eV @ 6 keV	2.77 eV @ 6 keV	2.23 eV @ 6 keV	3.3 eV @ 6 keV
@ channels \times mux factor	@ 1 \times 40 [50]	@ 1 \times 32 [118]	@ 1 \times 37 [12]	@ 1 \times 37 [121]
	1.98 eV @ 6 keV	2.14 eV @ 6 keV	3.4 eV @ 6 keV	
	@ 8 \times 32 [142]	@ 1 \times 31 [12]	@ 1 \times 28 [173]	
	2.04 eV @ 1.25 keV			
	@ 1 \times 88 [16]			
	10 eV @ 6 $^*_{1}$ keV			
	@ 1 \times 116 [pre-pub. comm.]			

* KITWPA power dissipation depends on pump power and therefore scales with compression point of the amplifier.

$^+$ TOMCAT [145] TESs were optimized for very high count rates and not for energy resolution.

multiplexing (CDM) [81, 82, 118, 46, 175]. Irwin, et al. [78] discuss, in the context of information theory, the number of pixels that can be multiplexed via the various techniques. A summary of these techniques is given in Table 2.

TDM and µmux for TESs are under development by the Quantum Sensors Group at NIST’s Boulder Labs. FDM for TESs was initially demonstrated [29] by a team from Lawrence Livermore National Lab, UC Berkeley, and Lawrence Berkeley National Lab, and is under development by UC Berkeley, McGill University, and SRON. CDM for TESs was pursued by NIST as an early option for Athena X-IFU and Lynx, but is not presently under development for any mission and so is not discussed further in this chapter. MMCs can be read out via µmux [170].
Fig. 6 Multiplexer modulation functions vs. time for the basis vectors of four-channel versions of time-division (TDM), code-division (CDM), MHz-band frequency-domain (FDM), and microwave-SQUID multiplexing (µmux). Colors indicate the different pixels. Modulation in TDM is via switching SQUIDs on and off, so the basis set is the identity matrix. In CDM, TESs are coupled to different SQUIDs with different polarities to create orthogonal Walsh codes. In FDM, different TESs are biased at different megahertz frequencies. In µmux, different rf SQUIDs are biased at different gigahertz frequencies. Both FDM and µmux thus use sine waves to form their orthogonal basis sets.

3.3 Time-division multiplexing (TDM)

In the time-division-multiplexing (TDM) technique, each TES has its own first-stage dc-SQUID (SQ1). The TESs are dc-biased and are always on, while the SQ1s are turned on and off such that one SQ1 is on at a time per readout column\(^8\). Only the signal current from the TES whose SQ1 is on is read out, instantaneously, by the column.

The TDM scheme was proposed in 1999\cite{25} for the readout of arrays of TES bolometers and microcalorimeters for various astronomical applications. In the 20+ years since, several TDM-based bolometric arrays\cite{72, 144, 65, 56}, each of the kilopixel to multi-kilopixel scale, have been deployed for far-IR, millimeter-wave, and submillimeter-wave astronomy. In addition, about 15 TDM-based X-ray spectrometers\cite{45, 172, 97}, each of the few-hundred-pixel scale (to be discussed further in Sec. 3.3.4), have been deployed to X-ray-science facilities around the world. A 128-pixel TDM X-ray array flew on the Micro-X sounding rocket in 2018\cite{4} and again in August 2022. Presently, TDM is undergoing refinement\cite{142, 52} for the multi-kilopixel X-IFU imaging spectrometer for ESA’s Athena mission (see Sec. 3.3.5).

How does TDM compare to the other main multiplexing technologies for TES microcalorimeters, philosophically and at the systems level? Philosophically, in TDM, the SQ1s are the modulated elements, while the TESs themselves are not modulated; this is the same as in the microwave-multiplexing (µmux; Sec. 3.5) scheme, while the frequency-domain scheme (FDM; Sec. 3.4) takes the opposite approach. At the systems level, in TDM the cryogenic electronics are the most compli-

\(^8\) In TDM, an amplifier chain is usually referred to as a readout “column.” Throughout this chapter, we use the terms “amplifier chain,” “readout channel,” “multiplexer channel,” and “readout column” interchangeably to refer to the logical readout unit that is divided into detector pixels via multiplexing.
cated, followed by those in µmux and then FDM, while the TDM room-temperature electronics are simpler than those of either FDM or µmux.

3.3.1 Principles of TDM operation

![Fig. 7](image)

Fig. 7 Readout of a dc-biased TES by a dc-SQUID chain. (a) A single TES under dc bias is read out by a first-stage dc SQUID (SQ1) and a series array of dc SQUIDs (SSA). The signal of interest, the TES current, is converted to flux in SQ1 via its input coil (M_{in1}). The SSA reads out the SQ1 current in the same manner. The elements in the grey box are located on the same temperature stage as the TES, which for X-ray TESs is typically around 50 mK. TES-related circuit elements (the TES shunt resistor, or R_{sh}, and the bandwidth-limiting Nyquist inductor, or L_{Ny}) are blue, while the SQUID-related circuit elements are in black. The SSA is usually located at a higher-temperature cryogenic stage to accommodate its Joule-power dissipation. (b) The same circuit diagram as (a), but with the addition of a superconducting switch (red) to turn on and off the SQ1. When the switch is closed, the SQ1-bias current bypasses SQ1, so the TES signal current is not transmitted up the readout chain. When the switch is open, circuit (b) behaves like circuit (a).

Fig. 7 shows circuit diagrams that contain the building blocks of a TDM readout system. Fig. 7(a) shows readout of a single dc-biased TES by two stages of dc SQUIDs (see Fig. 3). The signal of interest in a TES X-ray microcalorimeter is its current, which is modulated as a pulsed decrement by each incident X-ray; the amplitude of the TES-current pulse is roughly proportional to the energy of the X-ray. A change in the TES current modulates the flux in the first-stage dc-SQUID (SQ1), which in turn modulates the SQ1 bias current. The current-biased SQUID-series-array[74, 75] (SSA) amplifier transduces the SQ1 current to a voltage at the SSA output, which is amplified further by a room-temperature low-noise amplifier (LNA).

Because the (quasi-sinusoidal) transfer function of the combined V-Φ curve of the SQ1 and the SSA is highly nonlinear, the readout is run as a flux-locked loop...
Signal readout for Transition-Edge Sensor X-ray imaging spectrometers

(FLL) to linearize the response. Thus, the “output” signal of this readout system is the feedback voltage, V_{FB}, that is applied to null the TES-signal current to maintain a constant flux in its SQ1.

Fig. 7(b) shows the addition of a superconducting switch to turn on and off the SQ1. The switch chosen for modern TDM implementations[20, 44] is based on the dc-SQUID-like Zappe interferometer[176]. An interferometer element consists of several Josephson junctions in parallel (with the number of junctions varying across implementations). The “row-address” (RA) current (I_{RA}) is coupled to the SQUID loops such that with $I_{RA} = 0$ the interferometer acts as a superconducting wire (the switch is “closed”), while with $I_{RA} = \Phi_0/2$ the junctions are perfectly out of phase and the nominal current-carrying capacity of the interferometer is zero (the switch is “open”). In the NIST implementation[82], each interferometer element contains four junctions with equal critical currents for ease of fabrication and wide operating margins. Tens of these interferometric elements are wired in series to create an operating dynamic resistance of this “flux-actuated switch” (FAS) that is much larger than that of the signal SQ1.

Fig. 8 (left) Schematic of a two-column by two-row TDM. Each colored block is a unit pixel and contains the same cryogenic components as shown in the grey box in Fig. 7(b). Rows of SQ1s are sequentially turned on via application of a row-address current (I_{RA}) to their flux-actuated switches. Thus, only one TES at a time per column is read out. To keep the non-linear, two-stage SQUID amplifier in a quasi-linear range, each column is run as a set of digitally interleaved flux-locked loops. (right) Color-coded, simulated data streams showing the interleaved V_{FB} signals for Columns 1 and 2 as the four TESs respond in current pulses to X-ray events.

Fig. 8(left) shows a cartoon circuit schematic of a 2-column × 2-row TDM system. In a general M-column × N-row array of TESs, both the count of cryogenic wires and the number of amplifier chains would scale as MN under brute-force
(non-multiplexed) readout; with TDM readout these scale only as \(\sim (M + N) \) and \(M \), respectively. These savings in channels and wires are the main reason to use a multiplexed-readout scheme.

Rows of SQ1s are sequentially turned on via application of a RA current \((I_{RA}) \) to their FASs. TDM columns are read out in parallel. The signal from one TES at a time per column is passed to that column’s SSA. During a row, the LNA’s output voltage, or error signal \((V_{er}) \), is digitally sampled, and then the proportional-integral \((P,I)\) flux-feedback signal \((V_{FB}) \) that would servo the row’s \(V_{er} \) to a constant value is digitally calculated and stored to be applied inductively (via \(M_{FB} \)) on the digital FLL’s next visit to the row. The digital-readout electronics (DRE; to be discussed further in Sec. 3.3.3) synchronize the RA and D-FLL signals and stream the TES-current data to the back-end processor. The TDM system samples each TES once per frame time \((t_{fr} = t_{row} N_{rows}) \); if the frame time is short compared to the time constants of the TES-current signals, then the system can reconstruct each TES’s current with high fidelity. Fig. 8(right) shows the multiplexed time streams of the flux-feedback signals of the two two-pixel TDM columns.

3.3.2 Circuit parameters, multiplexing factor, and noise scaling

For the dimensioning of a TDM system, an important characteristic of the TES signal-current \((I_{TES}) \) is its slew rate. The highest required TES-current slew-rate, \(I_{max} \), will occur at the leading edge of an X-ray pulse and is a function of the TES design and its bias-circuit inductance and the highest X-ray energy of interest. If the D-FLL system is to function correctly, the flux difference in any SQ1 from one sample to the next, injected into \(M_{in1} \) by \(I_{TES} \), must result in an error signal that remains within a quasi-linear region of the combined SQ1-SSA \(V-\Phi \) curve (see Fig. 3 for an example curve). Thus, the flux difference must obey \(\Delta \Phi \leq F \Phi_0 \). The fraction, \(F \), of the flux quantum over which the SQUID curve is roughly linear depends on the details of the SQUID designs and is usually between 0.2 and 0.5. The flux difference between frames is \(\Delta \Phi = \dot{I}_{max} M_{in1} t_{fr} N_{rows} \). Thus,\[43\]

\[
I_{max} M_{in1} t_{row} N_{rows} \leq F \Phi_0 \quad (5)
\]

sets a joint condition on \(M_{in1} \) and \(N_{rows} \). If all else is equal, a larger multiplexing factor requires a proportionally smaller input coupling of TES current to SQ1 flux.

The second important consideration in dimensioning a TDM system is readout noise. A given TES X-ray microcalorimeter design will have a value of the spectral density of (white) multiplexed readout noise \((\sqrt{S_{I-mux}}; \text{referred to the TES current; units of } \text{A}/\sqrt{\text{Hz}}) \) above which it is unable to meet the mission/experimental specification on energy resolution. A goal of the system design, then, is to keep \(\sqrt{S_{I-mux}} \) below this maximum-allowed value. The SQUID-amplifier system’s noise (including contributions from both stages of dc-SQUIDs and the room-temperature electronics) is approximated as being white (with spectral density \(\sqrt{S_{\Phi}} \); referred to SQ1 flux; units of \(\Phi_0/\sqrt{\text{Hz}} \)) out to a high-frequency, with a single-pole, low-pass rolloff with
time constant τ_{OL}. In a modern TDM system[44] values of $\sqrt{S_F} = 0.2\mu\Phi_0/\sqrt{\text{Hz}}$ and $f_{OL} \sim 8\text{ MHz}$ to 10 MHz are reasonable. The large open-loop bandwidth, f_{OL}, needed to switch quickly from row to row in TDM, combined with the readout strategy that samples each row only once per frame, means the Nyquist anti-aliasing criterion, $1/t_{fr} \geq 2f_{OL}$, is not met for the readout noise. As a result, high-frequency amplifier noise is aliased into the TES-signal band. This noise aliasing is an inherent condition of the TDM method and is generally what limits the multiplexing factor for a given application. The TES-referred, multiplexed readout-noise level is given by[43]:

$$\sqrt{S_{I_{\text{mux}}}} = \sqrt{AN_{\text{rows}}}S_{\Phi}/M_{\text{in1}.}$$

(6)

Here, $A \geq 1$ is an alias-scaling factor that depends on the digital-sampling strategy and the ratio t_{row}/τ_{OL}. For the common operational case in which $t_{row} \sim 2\pi\tau_{OL}$ and the digital sampling occupies a small fraction of t_{row} at the end of the row period[43], $A \sim \pi$. In the limit of $f_{OL} \to \infty$, in which the digital sampling can occupy the full row period, $A \to 1$. In both the modern lab systems (see Sec. 3.3.4) and the proposed design of Athena X-IFU (see Sec. 3.3.5), the row time is chosen to be $t_{row} = 160\text{ ns}$; this is well matched to the achievable open-loop bandwidth in standard dc-coupled twisted-pair and flexible-microstrip circuits of $f_{OL} \sim 8\text{ MHz}$ to 10 MHz.

Eq. 6 shows that the TES-referred readout noise scales as $\sqrt{N_{\text{rows}}}S_{\Phi}/M_{\text{in1}}$, while Eq. 5 shows that M_{in1} scales as $1/N_{\text{rows}}$. Thus, in a TDM system, TES-referred readout noise scales with the multiplexing factor as $\sqrt{S_{I_{\text{mux}}}} \propto N_{\text{rows}}^{3/2}$.

3.3.3 Room-temperature electronics

The room-temperature electronics for TDM readout separate neatly into two functional pieces: the warm-front-end electronics (WFEE) and the digital-readout electronics (DRE).

The WFEE contains the LNA and generates various low-frequency analog-bias signals for the SQUIDs and TESs. Because the pre-LNA SSA-output signals are small (a few millivolts) and thus EMI-sensitive, the WFEE often shares a Faraday cage with the cryostat. For high-performance TDM readout of TES X-ray microcalorimeters, the LNA is challenging to implement. Its needed specifications are $f_{OL} \geq 10\text{ MHz}$ and input-voltage noise below $1\text{ nV}/\sqrt{\text{Hz}}$; this combination is on the edge of what is available in commercial op-amps, so the front end of the LNA is often assembled from discrete transistors. Various groups have produced WFEE modules that have been used for TDM readout over the last 20+ years[14, 47, 131, 44, 136, 58].

The DRE generates the fast RA signals to drive the FASs and runs the D-FLL for each column. In most ground-based applications, raw D-FLL data are streamed to a host computer for demultiplexing, triggering, filtering, and other signal processing; however, on Athena X-IFU, these higher-level functions will be performed within the DRE. Various versions of TDM-DRE have been produced and used over the last 20+ years[14, 131, 132, 136].
3.3.4 Laboratory TDM systems

Between 2010 and 2022, the NIST Quantum Sensors Group (Boulder, CO, USA) has deployed about 15 TDM-based TES-microcalorimeter arrays to various X-ray-spectroscopy experiments and facilities around the world[45]. This development effort has allowed TDM technology to be tested in real-world conditions beyond the traditional environment of the detector lab. Application areas have included time-resolved absorption and emission spectroscopy with a tabletop, broadband source[156, 113, 124], synchrotron-based X-ray-emission and absorption spectroscopy[172, 97], synchrotron-based energy-resolved scattering[96], particle-induced X-ray-emission spectroscopy[127], spectroscopy of hadronic and muonic atoms[66, 123], the metrology of X-ray-line energies [54, 146], and X-ray tomography of integrated circuits[147]. Similar arrays of gamma-ray TESs have been used for the assay of special-nuclear materials[17].

![Fig. 9 The 50 mK snout package. (a) Photograph of the snout. The circular pedestal at the bottom of the image has a diameter of 58.4 mm and the snout has a height of 67 mm. (b) CAD image of the snout, with various parts highlighted in different colors. Yellow: The TES chip and X-ray aperture sit on top. Green: on flexible circuits, a total of 512 Al traces (256 pairs) run from the detector plane to the four side panels. Purple: The “interface chips” contain the TES-shunt resistors and the Nyquist inductors; there is one of these chips per TDM column, or 8 chips total. Cyan: The TDM multiplexer chips contain the SQ1s and FASs. Orange: A rigid-flexible printed-circuit board (PCB) connects to the interface and TDM chips via Al wirebonds and wraps around the snout to carry signal lines from panel to panel. A trio of 65-lead “Nano-D” connectors on the inside of the rigid-flex PCB connect to twisted-pair cables that carry signals to and from higher-temperature cryogenic circuitry. From Doriese, et al., Rev. Sci. Instrum. (2017)[142]; re-printed with permission.](image-url)

The NIST lab TDM system for X-ray TESs accommodates up to 8 TDM columns and up to 32 TDM rows (up to 256 TES pixels). The heart of each spectrometer is the 50 mK “snout” package (see Fig. 9). This package contains the TES array, the biasing circuitry for the TESs (blue components in Fig. 7), and the SQ1s and FASs.
The 8x32 TDM snout system has also been used to develop TDM readout to meet the stringent performance requirements for Athena’s X-IFU. As Fig. 10 illustrates, by late 2019 TDM had achieved the needed performance for X-IFU.

3.3.5 Optimizations for space flight: Athena X-IFU

TDM has been improved in three significant ways from its 8x32-lab configuration[45, 44] to optimize it for Athena X-IFU.

The first optimization was to increase the open-loop bandwidth in the link between the SQ1s and the SSA. This bandwidth is \(R_{\text{dyn}}/(2\pi L_{\text{tot}}) \), and for X-IFU, the desired value is 15 MHz (12 MHz specification plus a 25% margin). Here, \(R_{\text{dyn}} \equiv dV/dI \) is the dynamic resistance of the components in the SQ1-bias loop (SQ1, \(R_{\text{ser}} \), \(R_{b1} \); see Figs. 7 and 8), while \(L_{\text{tot}} \) is the series inductance in the SQ1-bias loop (dominated by the self inductance of the SSA input coil and the wiring.
that connects the TES/SQ1 stage to the SSA stage). In X-IFU, it is desired to allow $L_{\text{wiring}} \leq 350 \, \text{nH}$, which is higher than in the 8x32 TDM-snout systems. In early 2022, $R_{\text{dyn}} \geq 35 \, \Omega$ was demonstrated (Durkin, et al.[52] give an intermediate report of progress toward this milestone).

The second set of optimizations was to the packaging of the TDM componen-
try. Cryogenic components, such as the TES-shunt resistors[46] and SQ1s, were shrunk in area. The various wire coils (SQ1-input transformer and Nyquist inductors) were designed in “even” and “odd” versions to allow close-packing of TDM cells in a 2-dimensional grid without an increase in cell-to-cell inductive crosstalk. Most importantly, a cold-indium bump-bonding process[99] was developed to allow attachment of the X-IFU TDM chips to the FPA side panels without the need for a challenging number of wirebonds.

The third optimization was a change in the architecture of the flux-actuated switches. X-IFU has baselined a “two-level-switching” scheme in which each TDM pixel retains its own “pixel-select” switch and a second layer of switch, a “cluster-select” switch, shorts out a larger cluster of pixels. This scheme’s chief advantage is a significant reduction in the number of wires needed for row addressing. Dawson, et al.[33] describe the idea further and provide some preliminary demonstrations.

3.4 MHz frequency-domain multiplexing (FDM)

In the MHz-FDM scheme, signals from the TESs are multiplexed in frequency space and the TESs are biased with megahertz-frequency alternating currents (ac bias)[173, 29, 93, 158, 42, 150]. Each TES is connected to a passive LC resonator. The resonators are sufficiently separated in frequency space to avoid interferences (e.g. Fig. 11). Signals from the different TESs are summed in the front-end SQUID amplifier. There are three major advantages of the MHz-FDM architecture. First, the cold electronics are relatively simple (there is one dc-SQUID front-end amplifier per multiplexer chain). Second, MHz-FDM is relatively robust to electromagnetic interference (EMI) because the signals are transported at frequencies well above the electromagnetic disturbances due to the cryocoolers and the frequency dependence of the skin depth makes shielding easier and lighter. Third, MHz-FDM has lower environmental susceptibility[161] (see also Gottardi&Smith in this book). The X-IFU demonstration model (Sec. 3.4.4), on which we base this presentation of MHz-FDM, will use a second-stage series-array SQUID[95] located on the 2 K stage. Multiplexed signals are demodulated per TES (per assigned frequency) in the room temperature electronics.

The sum of signals can be achieved in several ways in SQUID readout: current summing[94], flux summing[114, 91], and voltage summing[173, 29]. Traditionally, voltage summing has been performed via summing loops; however, because SQUIDs are inherently sensitive to changes in magnetic flux, and current is straightforwardly transduced to flux via a wire coil, it is more straightforward to sum the signals via current or magnetic flux. The flux-summing approach requires a sepa-
Fig. 11 Cartoon of the distribution of signals in frequency space in FDM. (top panel) In the TDM and µmux readout schemes, the TESs are biased via a dc current so the signals are distributed around zero frequency. (bottom panel) In the FDM scheme, each TES is biased by its own MHz ac current and therefore the signals are distributed in frequency space. The bias frequencies of the TESs should be separated enough to avoid cross-talk between TESs. The signals are demodulated by the room temperature electronics.

rate input coil for each TES. This complicates the design of the SQUID and may cause electrical crosstalk between input coils via mutual inductance. On the other hand, the current-summing method does not require a complicated SQUID design, and crosstalk can be avoided via careful implementation of the coils. This section focuses mainly on the current-summing method.

The multiplexed signal is demodulated (at the assigned frequency) for each TES in the room-temperature electronics. The modulation (bias) frequency must be much higher than the signal bandwidth of the TES response (\(\sim 50\) kHz). Therefore, a readout bandwidth of several megahertz is necessary to ensure a reasonable multiplexing factor. As mentioned in the previous section, dc-SQUID amplifiers combine sufficient bandwidth (\(\sim 10\) MHz) with a high flux dynamic range (\(\sim 10^8\) or \(\sim 0.01\mu \Phi_0/\sqrt{\text{Hz}}\)). This allows multiplexing of tens of TES X-ray microcalorimeter signals, or more than 100 lower-bandwidth bolometric TESs, in a single readout chain.

In the FDM method, the signal-to-noise ratio is not degraded by an increased multiplexing factor as it is in the TDM method (see Eq. 6 in Sec. 3.3.2). However, in FDM each TES must be activated by a megahertz-frequency ac bias, which introduces additional physical phenomena into the TES, such as the ac Josephson effect due to the lateral proximity effect of the superconducting leads[134, 135, 60, 62].
(see also the chapter by Gottardi & Smith in this book for details). Subsections 3.4.1 and 3.4.2 below detail some important technologies needed to realize FDM readout, while subsections 3.4.3 and 3.4.4 describe some experimental demonstrations of FDM readout of X-ray-TES arrays.

3.4.1 Room temperature electronics

The FDM room-temperature electronics consist of two main components: the analog electronics (Front-End Electronics, or FEE) and the digital electronics (DEMUX board).

FEE: The primary role of the FEE is to amplify the signal from the cryogenic SQUID array so its signal size and output-voltage noise are compatible with the room-temperature ADC. A low-noise amplifier (LNA) is thus needed. The FEE developed at SRON, pictured in Fig. 12, has an input-voltage noise of $\sim 300 \text{ pV/} \sqrt{\text{Hz}}$. Information about the SRON FEE can be found in the literature[168].

DEMUX board: The DEMUX board handles many functions, including demodulation of signals and generation of the TESs’ ac-bias carrier combs and the feedback signal applied to the front-end SQUID. In addition, the DEMUX board must be capable of handling delays and phase shifts introduced by the environment. In the presence of the long wiring harnesses that are expected in satellites, standard feedback methods (e.g., the conventional flux-locked-loop, or FLL) do not properly compensate the input signal to the SQUIDs amplifier due to the phase difference between the input signal and the feedback signal. The lack of phase margin in a standard FLL would thus make the feedback loop unstable above some maximum frequency, f_{max}. The gain-bandwidth product, $f_{\text{max}} \ast G_{\text{FB}}$, of a standard FLL con-

9 For Athena X-IFU instrument, the length of the harness between the 50 mK stage and the room-temperature digital electronics may be as long as 5 m. For other similar cryogenic instruments such as SPICA/SAFARI[133], even longer harnesses (\sim 12 m) have been proposed.
Fig. 13 Block diagram of the FDM readout architecture. The ac-bias carrier is generated in the FPGA and converted to an analog signal by a DAC in the digital electronics (DEMUX board). Each TES in the readout channel is equipped with an LC filter with a unique frequency; the two-stage SQUID is read out by an LNA (low-noise amplifier) at room temperature. Signals are converted from analog to digital by an ADC and demodulated by an FPGA. The demodulated signal is decimated by a 4-stage filter to reduce the data volume. The final sampling rate is 156.3 kSample/s. The feedback signal is calculated and fed back to the system after compensating for phase delays caused by electronics and the length of the wiring harness in the system. From den Hartog, et al., (2009)[37]; re-printed with permission.

Controller is limited by the phase shift due to signal travel time through a total travel length in the cable, l, as

$$f_{\text{max}} \cdot G_{FB} = \frac{c}{8l\sqrt{\eta}},$$

where G_{FB}, c, and η are the loop gain of the feedback, the speed of light, and the dielectric constant of the cable’s dielectric material, respectively. Assuming $G_{FB} = 10$ (which is required to keep the total flux in the linear regime of SQUID response) and $\eta=3$, for a 1 m cable harness ($l = 2$ m for the round-trip travel distance of signal and feedback) the maximum frequency will be about 1 MHz. With even longer cables and FDM’s higher bias frequencies, standard FLLs cannot work.

Baseband feedback (BBFB[37]; Fig. 13) is one way to overcome this limitation\(^\text{10}\). The BBFB method sends the signal from the TES back to the SQUID after correcting for delay and phase rotation at each carrier frequency. BBFB significantly improves the bandwidth, linearity, and dynamic range of the SQUID amplifier. At SRON, the DEMUX board consists of an AD9726 16-bit DAC and a Xilinx XC7V585T Virtex 7 Field Programmable Gate Array (FPGA). Signals are mea-

\(^{10}\) Another method is digital-active nulling (DAN[34]). The main difference is that in BBFB there is feedback to the summing junction shared by the carrier voltage. DAN is or will be implemented in the SPT-3G instrument[117] and the LiteBird satellite[67, 35]
sured at 20 MSample/s and decimated to 156.3 kSample/s by a 4-stage filter. The DAC performance is described by den Hartog, et al.[38]. The firmware of the DEMUX board will allow up to 64 X-ray microcalorimeters or up to 172 bolometers.

3.4.2 Lithographic LC filter

![Image of a lithographic LC filter chip containing 2 × 40 resonators. The chip size is 36 mm × 60 mm². Upper right: an enlarged photograph of one capacitor (left) and one 2 µH spiral coil with back-spiraling return line (right). Bottom Right: Effective series resistance (blue diamonds) and quality factor (red squares) of the LC resonators vs. frequency[21, 22]. The blue-dashed and red-solid lines indicate the contribution of the shunt resistance and the Q specification of this design.](image)

High-quality LC resonators/filters are one of the key cryogenic components to achieve high multiplexing factors in FDM readout; a higher density of LC filters allows more efficient use of the available bandwidth. However, there is a trade-off between fabrication accuracy due to technology limitations and performance metrics such as crosstalk and stability. For a single-pole LC filter, the resonator bandwidth (Δf_{BW}), resonant frequency (f_c), and quality (Q) factor are described as follows:

\[
\Delta f_{BW} = \frac{R}{2\pi L}, \quad f_c = \frac{1}{2\pi\sqrt{LC}}, \quad \text{and} \quad Q = \frac{1}{R\sqrt{\frac{L}{C}}},
\]

where \(R \) and \(L \) represent the total resistance and inductance, respectively. Typically, the same inductance value is used for different LC filters and the resonant frequencies are tuned via the capacitance. In this way, the design and uniformity of the LC
filter can be well controlled. It is common for proposed satellite-borne FDM systems to have a minimum bias frequency of about 1 MHz. This is because at lower frequencies, the area required for the capacitors begins to dominate the overall area of the cryogenic components. At the higher-frequency end of the readout band, challenges arise due to the equivalent series resistance (ESR) generated in the dielectric medium within the capacitor, the analog bandwidth in the full chain, and power dissipation in the warm electronics.

SRON uses an \(LC \) filter with a 2 \(\mu \)H coil. A superconducting transformer is also used to adjust the detector bandwidth via the damping inductance. SRON’s \(LC \) filter is fabricated via lithographic technology\[21, 22\].

Fig. 15 Upper left: photograph of the 2-column FDM-readout demonstrator. The gray cylinder is the Nb superconducting magnetic shield. Upper right: Photograph of the focal plane showing the SRON kilo-pixel TES array\[120\], superconducting transformers, \(LC \) filters, and FE SQUIDs. Two FDM columns are connected. Lower left: co-added energy spectrum of the Mn-K\(\alpha \) complex from 37 TES pixels under FDM readout with a combined energy resolution of 2.2 eV at 6 keV\[9\]. The spectral data were fitted to the Mn-K\(\alpha \) line model of Hölzer, et al.\[73\] convolved with the Gaussian detector response. Cash statistics \[23, 86\] are employed to avoid fitting bias. Lower right: resonator distribution vs. frequency for column-1 (top) and column-2 (bottom) of the 2-column FDM system.
3.4.3 Demonstrations

Achievement of the best energy resolution in TES X-ray microcalorimeters under FDM readout has required resolution of several deep and difficult issues related to the fundamental physics of superconductivity and SQUID readout[8]. The three main areas of research over the last 10+ years have been 1) the physics of superconducting thin films under ac bias[134, 135, 7, 61, 62], 2) performance degradation due to carrier leakage[164, 8], and 3) performance degradation due to intermodulation products[165, 159, 163]. As of late 2021, all issues were resolved; Akamatsu, et al.[9] give more information on these issues and their resolution.

Fig. 15 (upper) shows a 2-column FDM demonstrator developed at SRON. It employs magnetic shields of both high-µ and superconducting (Nb) materials against the earth’s magnetic field[19]. The system is installed in a dry dilution-refrigerator with a vibration-reduction mechanism[63]. Forty LC resonators, each consisting of a 2 µH coil[21, 22], a capacitor, and a superconducting transformer, were implemented to tune the electrical circuits seen by selected TESs in a kilopixel array of SRON X-ray TESs[120, 152, 32]. The effective inductance seen by the TES (equivalent to \(L_{N} \) in TDM) is tuned to be 60% of the critical inductance at a TES resistance of 15% of \(R_{n} \). The resonator centers span the 1 MHz to 5 MHz readout bandwidth with 100 kHz separation, meaning there are 40 resonators per column. The rms scatter of the frequency centers is about 4 kHz and is dominated by lithographic accuracy. A 2-stage SQUID is employed, which is provided by VTT/Finland[92, 95].

Fig. 15 (lower left) shows a co-added X-ray spectrum of the Mn-K\(\alpha \) complex from 37 multiplexed pixels (two resonators did not yield and one pixel was turned off); the achieved energy resolution was \(\Delta E_{\text{FWHM}} = 2.23 \) eV at 6 keV. In a different experiment performed in a different cryo-module[7], 31 multiplexed TESs achieved a summed spectral resolution of \(\Delta E_{\text{FWHM}} = 2.14 \) eV. The level of the thermal cross-talk is evaluated to be \(\sim 10^{-4} \)[162] for pixels that are physically nearest neighbors, which surpasses the Athena X-IFU instrument requirement of \(< 10^{-3} \).

The performance degradation due to readout is estimated to be 0.9 eV in quadrature (see Fig. 3 in Akamatsu et al.[9]) and is dominated by known and non-fundamental problems such as thermal gradients in the cryogenic stage. In other words, there is ample room for further improvement and increasing multiplexing factor in future experiments. A two-column FDM demonstration is currently underway (see Fig. 15 bottom right).

3.4.4 Demonstration Model of Focal Plane Assembly of Athena X-IFU

An important application of FDM readout of TES X-ray microcalorimeters is verification of the the Demonstration model (DM) of the Athena X-IFU Focal Plane Assembly (FPA)[84]; see Fig. 16. The X-IFU FPA DM is designed to investigate various technological challenges. The X-IFU FPA DM hosts a kilo-pixel TES array that was extensively characterized under ac bias[152, 32, 153], an anti-coincidence
Fig. 16 Top left: CAD-rendered image of the X-IFU FPA DM. Inside the gold-plated-copper housing are two magnetic shields (high-µ metal and superconducting Nb) and a prototype of the 50 mK detector assembly. The FPA is suspended by Kevlar wires to damp micro-vibrations from the mechanical cryocoolers and to thermally isolate the 50 mK stage from the 2 K environment. Top right: Photograph of some disassembled components of the X-IFU FPA DM. The triangular component is the mechanical supporting structure based on Kevlar wires. Bottom left: photograph of the flexible-interconnect chip[166]. Bottom right: photograph of the 50 mK detector assembly. The central kilopixel TES array is connected to 4 FDM columns with 20 pixels per column.

detector[100, 30, 31] and 4 FDM columns with 20 pixels per column connected (i.e., 80 TESs in total). The X-IFU FPA DM has three main purposes:

1. A test-bed for key technology items that have not yet been demonstrated at all, or have not been demonstrated in combination with other parts of the FPA. Examples are the dual-stage SQUID amplifiers which are divided over two temperature stages, the magnetic shields, and the Kevlar suspension (see Fig. 16 top left).[11]

11 Micro-vibration can degrade the performance of the instrument significantly. It is of importance to isolate the instrument from the source of the vibration. See Takei et al.[151] for more details of a similar investigation for Hitomi/SXS.
2. A physical reference for thermal, magnetic, and mechanical simulations that will guide the design of the engineering model and eventually the flight model. Measurements obtained from the FPA DM allow the simulations to be checked and, when necessary, can guide improvements to the simulations.

3. A demonstrator for the environments in which the TES sensor array needs to perform. As the main task of the FPA is to shield the TES array from adverse thermal, magnetic, and mechanical influences from outside, the FPA DM will provide a test in the environment of a cryostat. In particular, it will serve as a demonstrator of the 2K core in the CEA Cryostat XIII, where the FPA will be operated in proximity to an adiabatic demagnetization refrigerator and flight-representative Joule-Thomson coolers.

As of August 2022, following milestones had been met:

1. the thermal loads on the various cryogenic stages were measured;
2. temperature stability of the detector stage was 0.9 μK with 1 s sampling repetition over the required period of more than one hour; and
3. on the first cool-down of the system, energy resolution better than 2.5 eV at 6 keV was demonstrated.

These results verify that the thermal and mechanical environment provided by the FPA is suitable for the needed performance in X-IFU.

3.5 Microwave SQUID multiplexing (μmux)

![Fig. 17 Survey of microwave transmission $|S_{21}|$](image)

Multiplexing techniques utilizing gigahertz of bandwidth became possible with the development of low-thermal-conductance cryogenic microwave cables, in the form of narrow gauge Cu-Ni and Nb-Ti coaxial cables, and a low-noise cryogenic microwave amplifier, in the form of the High Electron-Mobility Transistor (HEMT) amplifier[49].
Microwave SQUID multiplexing (µmux)[104, 70, 106, 6] is a form of frequency-domain multiplexing that allocates this bandwidth between input channels by the use of distinct, high-Q microwave resonances, each coupled to its own rf-SQUID and reading out the current signal from its own detector. As a superposition of microwave tones passes through the circuit, each tone is modulated by its own SQUID/resonator circuit before being amplified by the HEMT and brought to room temperature on a single coaxial cable.

An example circuit is shown in Figure 19. In this circuit, distributed quarter-wave resonators of different lengths are capacitively coupled to a common microwave “feedline” at one end and inductively coupled to their individual SQUIDs at the
other end. Two notable variations utilize lumped-element resonators[6] rather than quarter-wave resonators and direct incorporation of the SQUID into the resonator[70] rather than inductive coupling to the SQUID.

In any implementation, the multiplexer works by loading the resonator with the flux-variable inductance of a Josephson junction:

\[L_J(\phi) = \frac{\Phi_0}{2\pi I_c \cos(\phi)} \]

(9)

where \(I_c \) is the critical current of the Josephson junction, \(\Phi_0 \) is the magnetic flux quantum, and \(\phi \equiv 2\pi(\Phi/\Phi_0) \) is the difference in phase of the superconducting wave function across the junction.

As the flux in the rf-SQUID varies, the inductive load it applies to the resonator varies, both positively and negatively, causing the resonance frequency \(f_0 \) to change without significant change in microwave loss (Figure 20). For a fixed microwave probe tone the complex transmission traverses an arc on a circle with the angular position on this arc being a periodic function of magnetic flux.

One key parameter of the rf-SQUIDs is the “screening-parameter”[98], sometimes denoted \(\beta_L \), which gives the ratio of SQUID self-inductance to Josephson inductance:

\[\lambda \equiv \frac{L_S}{L_J} = \frac{2\pi I_c L_S}{\Phi_0} \]

(10)

For \(\lambda < 1 \) the SQUID response is single-valued, while for \(\lambda > 1 \) the SQUID may switch hysteretically between multiple states[98]. An rf-SQUID may be operated in the hysteretic regime, but it requires damping to make its behavior predictable. Because this damping would limit resonator \(Q \)-factors, microwave-SQUID multiplexers operate in the non-hysteretic regime, typically targeting \(\lambda \approx 1/3 \).

Table 3 lays out some of the equations[108] describing the behavior of an rf-SQUID and resonator pair. Although these equations are only strictly valid in the
Table 3 Table of equations describing the behavior of a SQUID-resonator pair. Most variables are defined in Figure 19. Φ_{rf} is the amplitude of microwave flux excitation in the SQUID, ΔL_{pp} is the peak-to-peak variation in load inductance with flux, Δf_{BW} is the resonator bandwidth, and P_{feed} is the power per tone on the feedline. For a lumped-element design, L and C are the lumped inductance and capacitance of the resonator, respectively.

For example, the equations show how M_c and C_c may be adjusted in tandem to achieve designs with different pixel bandwidths while holding the ratio of peak-to-peak frequency shift to bandwidth ($\eta \equiv \Delta f_{pp}/\Delta f_{BW}$) constant. They further show that the microwave-flux excitation (on-resonance and in the inductive coupling, quarter-wave-resonator configuration of Figure 19) in the SQUID is related to the power-per-tone on the feedline as:

$$P_{feed} = \frac{\Phi_{rf}^2}{\eta} \frac{\pi^2 f_0 L_e}{\Phi_0 (1 - \lambda^2)}.$$ \hspace{1cm} (11)

In Section 3.5.2 we will use this information to derive expected readout noise and discuss the trade-off between noise and maximum signal slew-rate. In Section 3.5.3 we will discuss the trade-off between frequency packing and crosstalk. This analysis will show what capabilities we can expect of a µmux system designed for any particular application.

3.5.1 Flux-ramp modulation

With microwave-SQUID multiplexing there is no practical way to apply feedback without the addition of a large number of wires. Instead, a flux-ramp modulation scheme[105] is typically employed that sweeps rapidly across the SQUID response such that the input signal is transduced into a phase shift of the response function (Figure 21). This phase may then be extracted at room temperature either with a
fit or with Fourier techniques over an integral number of oscillations. The initial section of the flux-ramp response is usually contaminated with a transient from the reset and must be discarded, with analysis only over a useful fraction α.

![Image](image.png)

Fig. 21 Illustration of the principle of flux-ramp modulation, which transforms (a) the input flux signal into (b) a phase-shift of the SQUID response, shown as blue lines with the baseline response as dashed-red lines. The flux-ramp reset transient is visible at the start of each ramp response window.

This both linearizes the SQUID readout and upconverts it above the significant low-frequency noise that is due to two-level systems, while reducing the readout signal power by approximately $\frac{1}{2}$, where the factor of $\frac{1}{2}$ arises from averaging across the roughly sinusoidal SQUID response curve and the factor of α arises from discarding transient-contaminated data.

The flux-ramp repetition rate f_r thus becomes the sampling rate of the input signal. To fit the SQUID modulation within the resonator bandwidth it must obey $f_r n \Phi_0 < \Delta f_{BW}/2$, where $n \Phi_0$ is the number of flux quanta per ramp. It must also substantially exceed the frequency content of the input signals in order to read them out accurately, as the fidelity of the modulation scheme begins to degrade at an input signal slew rate of order $f_r \Phi_0/2$. These considerations determine the resonator bandwidth necessary for readout of a detector system.

3.5.2 µmux readout noise

There are multiple sources of noise in a microwave-SQUID multiplexer: HEMT-amplifier noise is generally dominant, two-level system noise becomes significant for narrow resonator bandwidths, and digital noise limits the number of tones we can cleanly generate and digitize in a set of room temperature electronics.

The HEMT amplifier produces broadband white noise with typical noise temperatures on the order of $T_N \approx 4 \text{ K}$ ($k_B T_N \approx -193 \text{ dBm/Hz}$). To convert this noise to units of magnetic flux we must find the power in the microwave probe tone, which should be as large as possible, up to the limits of SQUID non-linearity.

Determination of the optimal value of P_{feed} requires analysis beyond the linear, small-signal approximations of the equations in Table 3, including non-linear
and non-equilibrium dynamics. As Φ_{rf} grows to a significant fraction of Φ_0, the SQUID inductance stops being effectively constant over the microwave excitation and siphons power from the microwave-probe frequency into higher harmonics. This behavior can be analyzed in expansion[169], but to include all complicating phenomena generally requires simulation.

Figure 22 shows the results of simulations that include different sets of complicating factors, and in which we find the optimal microwave flux amplitude to be 0.25 Φ_0 to 0.4 Φ_0, depending on design parameters. For an example set of design parameters ($\eta = 1$, $f_0 = 6$ GHz, $I_c = 5 \mu$A, $\lambda = 1/3$), this yields a tone power on the feedline of -73 dBm to -70 dBm, or approximately 120 dB above the 1 Hz noise power of the HEMT, and an arc of approximately ± 1 radians.

This gives a noise spectrum in θ, the angle on the resonance arc (Figure 20) of:

$$\theta = \frac{(1 - Q/Q_i)^{-2}}{2} \frac{k_B T_N}{P_{\text{feed}}} \approx 2 \frac{k_B T_N}{P_{\text{feed}}}$$ \hspace{1cm} (12)

where the first term gives the radius of the resonance circle in terms of the total quality factor Q and internal quality factor Q_i. The approximation assumes $Q_i \gg Q$, but for narrow resonance applications (<100 kHz) Q_i may approach the total Q, which increases this noise contribution.

We can then assume a sinusoidal SQUID response, as shown in Figure 21, with an amplitude of $\theta_{\text{max}} \approx 1$ and apply the flux-ramp modulation penalty to get:

$$S_{\text{HEMT}}^{\Phi} = S_\theta \left(\frac{\Phi_0}{2 \pi \theta_{\text{max}}} \right)^2 \frac{2}{\alpha} \approx \frac{k_B T_N}{P_{\text{feed}}} \frac{2}{\pi^2} \Phi_0^2$$ \hspace{1cm} (13)

where in the final approximation we have assumed a 2Φ_0 flux ramp and have discarded the first oscillation for $\alpha = 1/2$. This implies a HEMT contribution to readout noise of approximately 0.5 $\mu\Phi_0/\sqrt{\text{Hz}}$. Although this theoretical limit is rarely achieved, total readout noise of (1.0 to 2.0) $\mu\Phi_0/\sqrt{\text{Hz}}$ is common and sufficient for
most low-temperature detector applications (see chapter by Gottardi & Smith in this book).

Two-level-system (TLS) noise arises from the coupling of the microwave fields in the resonator to two-level systems in the dielectrics. This produces a fractional-frequency noise that depends on temperature, internal power, material, and geometry[57]. The power spectrum of this noise has a characteristic $1/\sqrt{f}$ frequency dependence, which the flux-ramp modulation of Section 3.5.1 helps to avoid.

The TLS noise is not stationary over the period of the SQUID response, but we may bound its contribution by considering the equivalent flux noise at the steepest slope of the SQUID response, where:

$$\frac{d\theta}{d\Phi} = \frac{2\pi}{\theta_{\text{max}}} \quad \text{and} \quad \frac{4}{\Delta f_{\text{BW}}} = \frac{4Q}{f_0}$$

so that (again assuming $\theta_{\text{max}} \approx 1$) the implied contribution to flux noise is:

$$S_{\Phi}^{\text{TLS}} = \frac{S_{\delta f_0}}{f_0^2} \left(\frac{2Q}{\pi}\right)^2$$

which scales with Q or inversely with the resonance bandwidth.

The number of factors determining the TLS noise makes it difficult to make a general statement about its level, but measured fractional-frequency noise for the geometry, materials, and internal power of a typical µmux device is less than $S_{\delta f_0}/f_0^2 \approx 10^{-19}$ Hz$^{-1}$ at 1 kHz. For example, in a 2 MHz resonator at 6 GHz, modulated at 1 MHz, we therefore expect a TLS noise contribution of less than 0.1 $\mu\Phi_0/\sqrt{\text{Hz}}$. For multiplexers optimized for typical X-ray applications, with 1 MHz to 10 MHz resonator bandwidths, this contribution tends to be substantially less than the contribution of the amplifier chain.

Finally, any system for synthesizing and digitizing a large number of microwave tones adds its own noise: digital-quantization noise, clipping noise, and a pseudo-white-noise of intermodulation products due to the imperfect linearity of the DACs and ADCs. This is usually described by a dynamic range between the tone powers and the digital-noise floor. A careful analysis of this noise[18] is beyond the scope of this chapter, except to say that multiplexing factors of ~ 1000 push the limits of existing digitizers, which requires multiple digitizers to cover the full band with sufficient dynamic range, but that digitizer capabilities are advancing rapidly and can be expected to continue to both improve in capability and fall in cost.

3.5.3 µmux crosstalk

There are three main mechanisms of crosstalk in the microwave-SQUID multiplexer[107]: Lorentzian-tail crosstalk, coupled-harmonic-oscillator crosstalk, and broadband-non-linearity crosstalk. Each constrains the multiplexer design in a different way.

Lorentzian-tail crosstalk arises from the quadratic falloff of the Lorentzian resonance shape, which allows one resonance to affect the transmission of a probe tone
at the frequency of a neighboring resonance. For inductive coupling:

$$\chi_{\text{Lorentz}} \approx \frac{|S_{21}|^2}{2} \left(\frac{\Delta f_{\text{BW}}}{f_2 - f_1} \right)^2$$

(16)

where χ gives the fractional crosstalk between the flux-ramp-modulated signals.

This mechanism dictates the minimum frequency-spacing between resonances as a multiple of their bandwidths and therefore the ultimate bandwidth efficiency. For part-per-thousand crosstalk between frequency neighbors, a target frequency spacing of $(7 \text{ to } 10) \Delta f_{\text{BW}}$ is typically necessary.

Coupled-harmonic-oscillator crosstalk arises when resonances are both electromagnetically coupled and close in frequency, such that the eigen modes of the system are actually linear combinations of the uncoupled-resonance modes:

$$\chi_{\text{CHO}} \approx \left(\frac{4 f_2^2 - M_x}{f_2 - f_1 Z_0} \right)^2$$

(17)

where M_x is the mutual inductance between resonance terminations. Other mechanisms of electromagnetic coupling add similar terms.

This mechanism motivates a design feature seen in all multiplexers that utilize superconducting resonators, which is the placement of frequency-adjacent resonators far apart in physical space and of physically-adjacent resonators far apart in frequency space[122].

Broadband-non-linearity crosstalk occurs within the broadband microwave components, such as the HEMT amplifier and room-temperature mixers, whose slight non-linearity allows a 3rd-order mixing process to transfer a fraction χ_{nonlin} of the modulation sidebands of one carrier tone to another:

$$\chi_{\text{nonlin}} \approx 4 \frac{P_{\text{feed}}|S_{21}|^2}{P_{\text{IP3}}}$$

(18)

where P_{IP3} is the 3rd-order intercept point (here, referred to the input of the HEMT), which is the standard measure of cubic non-linearity in amplifiers and mixers.

While this crosstalk is typically less than that of the other mechanisms, it is all-into-all and therefore remains of serious design concern. To reduce this crosstalk we must use broadband components with high P_{IP3} or reduce the microwave power per tone at the cost of readout noise.

3.5.4 \(\mu\text{mux}$$ optimization for X-ray applications

For each application, the following optimization should be performed:

1. Design the input coupling M_{in} such that the readout noise will not significantly degrade the detector signal.
2. Calculate the flux-ramp rate necessary to accommodate the signal slew rate, which determines the resonance bandwidth.
3. Space the resonance frequencies by a multiple of their bandwidths that is sufficient to meet the required crosstalk limits.

For a $2\Phi_0$ flux-ramp and $10 \Delta f_{BW}$ spacing for part-per-thousand crosstalk, this implies a multiplexing factor of:

$$N \approx \frac{\Delta f_{BW \to tot}}{80} \frac{\Phi_0}{M_{in} \frac{dI}{dt}_{max}}$$

which is the number of detectors that can be read out using one HEMT, a pair of coaxial cables, and a flux-ramp line.

As an abstract example, a signal with a maximum slew-rate of $0.05 \Phi_0/\mu s$ would require a flux-ramp rate of 100 kHz, a resonance bandwidth of 400 kHz, and achieve a multiplexing factor of $\sim 1,000$ in a 4 GHz to 8 GHz HEMT. This is more than an order of magnitude higher than can be provided by conventional multiplexing technologies ($N \sim 40$ by TDM and FDM).

Traditional X-ray applications with relatively high count-rates are generally well-matched to the practical range of μmux designs. As the count rate falls substantially below ~ 100 Hz, it becomes difficult to match the μmux bandwidth (to less than 100 kHz) and resonance frequency placement (to better than 1 MHz). Reliable μmux designs have been proven for a range of bandwidths from 100 kHz to 30 MHz.

3.5.5 Example μmux systems

The first fielded application of μmux readout for TES microcalorimetry was the SLEDGEHAMMER instrument at Los Alamos National Laboratory[106], in which 128 gamma-ray microcalorimeters were read out in 1 GHz of bandwidth in the initial demonstration. The system is used to perform high-resolution gamma-ray spectroscopy of samples of nuclear materials. To appropriately sample the microcalorimeter pulses, the resonators were designed to have bandwidths of 300 kHz at a spacing of 3 MHz. The typical readout noise is approximately 30 pA/\sqrt{Hz}, a factor of ~ 5 below the noise of the TES. The pixel count has since been expanded to 256.

A large X-ray spectrometer is presently being assembled at NIST as part of the TOMCAT tomographic imaging system[145], which has demonstrated readout of ~ 1000 detectors and will expand to 3000 detectors in the near future. To match the ~ 1 A s$^{-1}$ slew rate of the detectors, the resonators have bandwidths of 1 MHz on a 7.5 MHz spacing. The detector assembly utilizes multiple modular “microsnouts” (Figure 18), with 248 detectors per microsnout in 2 GHz of bandwidth.

Most relevant to the topic of cryogenic X-ray imaging spectrometers for astronomy is that μmux readout has been proposed for the Lynx LXM[12] and the planning documents provide a useful guide to expected readout capability. The proposal calls for readout of $\sim 100,000$ pixels via a combination of thermal and electrical multiplexing, so that the main array would require 4,000 μmux channels with 1.4 MHz resonator bandwidths and 400 resonators per HEMT amplifier. Other sub-
arrays have different readout requirements, which are laid out by Bandler[12] and Bennett[16]. While Lynx is not yet a funded mission, technology advancement is ongoing to increase the readiness level of the readout and to simplify its application to future large-scale cryogenic X-ray astronomy instruments.

4 Summary and future prospects

The operation of large-scale arrays of cryogenic X-ray microcalorimeters in a satellite environment requires the minimization of heat loads and cryogenic complexity of the readout wiring. There are three main multiplexing technologies for accomplishing this: TDM, MHz-FDM, and \(\mu \)mux. All of these technologies are currently deployed to multiple ground-based instruments and planned for use in additional future satellite and ground-based instruments, as shown in Table 4.

Table 4
An overview of missions that have flown (upper section) or will fly/employ (lower section) cryogenic X-ray spectrometers.

Mission	Launch date	Detector type	Total # of sensors	Readout type	# of sensors per readout
XQC [111]	2002	semiconductor	18	JFET	1
Hitomi/SXS [116]	2016	semiconductor	36	JFET	1
Micro-X [3]	2018, 2022	TES	128	TDM	16
XRISM/Resolve [83]	2023	semiconductor	36	JFET	1
Athena/X-IFU [13]	mid-2030	TES	\(\sim 2,500 \)	TDM	33
BabylAXO* [2]	2025	MMC	TBD	\(\mu \)mux	NA
HUBS* [28]	\(\sim 2030 \)	TES	\(\sim 3,500 \)	TDM or FDM	TBD
LEM*	mid-2030s	TES	\(\sim 14,000 \)	TDM	60
Lynx* [12, 143]	early 2040s	TES or MMC	\(\sim 100,000 \)	\(\mu \)mux	TBD
Super-DIOS* [137]	early 2040s	TES	\(\sim 30,000 \)	\(\mu \)mux	\(\sim 400 \)

*: Missions in the conceptual or proposing phase.

In the near future, work on TDM will focus on the achievement of technology-readiness level (TRL)-6 and beyond for Athena X-IFU. TRL-6 involves verification of the needed performance in a high-fidelity prototype that is tested in a relevant environment. The X-IFU Engineering Model (EM) is intended to provide such verification of all X-IFU systems. Aspects of TDM to be tested in the X-IFU EM will include a fully differential wiring architecture, X-IFU’s long cable harnesses and how they impact the open-loop bandwidth needed to operate with 160 ns row times,
and the yield of the 50 mK TDM components. Beyond X-IFU, TDM may hybridized to \(\mu \text{mux} \) as discussed further below.

Future work on MHz-FDM will target increasing the multiplexing factor per column, via narrowing the detector bandwidth without losing performance, increasing the upper limit of the usable bandwidth, and stabilizing the TES performance under high-frequency ac bias (see also Gottardi & Smith in this book for the state-of-art single-pixel performance under ac bias). It will also require improvements to the firmware and electronics to realize a lower-mass and simpler system. A multiplexing factor of \(\sim 50 \) to 60 seems feasible improvement in the near future\[160\]. In parallel, the linearity of the energy-gain scale will be demonstrated in a full spectrometer under multi-column readout.

Future work on \(\mu \text{mux} \) will continue to advance its technological readiness to match TDM and MHz-FDM. It will also attempt to improve fabrication capability to reliably achieve \(Q_i \) values above 200,000 and to define resonance frequencies more accurately than \(\pm 0.02\% \), as well as improve consistency of the fabrication quality and yield. Finally, it will require a microwave packaging solution (e.g. bump-bonded unit cells that confine the microwave fields) that allow it to be readily integrated into a TES focal plane without risking degradation of microwave performance.

For space and ground projects, TDM and FDM are planned for arrays of up to about \(10^4 \) pixels, while \(\mu \text{mux} \) is planned for arrays of more than \(10^4 \) pixels (or for smaller arrays of very fast detectors). However, while \(\mu \text{mux} \) provides multiple gigahertz of output bandwidth, because of the current limitations on quality factor and frequency placement it is difficult to optimize for very large numbers (>2,000) of low-bandwidth input signals. The bandwidth-utilization efficiency of \(\mu \text{mux} \) with resonator bandwidths of greater than \(\sim 300 \text{kHz} \) is comparable to that of TDM and MHz-FDM, but it cannot maintain that efficiency for slower input signals that require bandwidths narrower than can currently be fabricated.

For this reason several groups have begun working on hybrid multiplexing solutions\[138, 175\], in which TDM, CDM, or MHz-FDM are used as a front end to combine multiple slow input signals into a single \(\mu \text{mux} \) “pixel.” These hybrid solutions could potentially enable multiplexing factors in the tens of thousands, which will probably be necessary for instruments measuring faint astronomical X-ray objects, in which the optimization will tend toward large (megapixel-scale) arrays of slow TESs to tile the focal plane.

The development time for new technologies to be space ready is about 20 to 30 years, as seen in the gap between terrestrial and space projects in Fig. 23. Beyond X-ray astronomy, these developments will also have terrestrial X-ray spectroscopic applications in basic physics and materials analysis.
Signal readout for Transition-Edge Sensor X-ray imaging spectrometers

Fig. 23 Number of pixels per microcalorimeter or microbolometer array vs. time. In 1995, the modern scheme for TES bias and readout (voltage bias to provide negative electrothermal feedback and current readout via a SQUID ammeter) was proposed [77], which led quickly to the use of TESs in real instruments. Filled markers indicate deployed instrumentation, while open markers indicate future projects. Circles and stars represent arrays semiconductor calorimeters and TES microcalorimeters, respectively, while squares represent arrays of sub-millimeter or microwave TES bolometers. Grey markers represent terrestrial experiments (bolometers for astronomy and X-ray microcalorimeters for laboratory science), while black markers represent space-borne missions. Two of the future X-ray missions show the effective number of TES absorbers in the “Hydra” configuration [141]: for LEM and Lynx [12], the number of Hydra pixels per TES is 4 and 5 respectively (not all TESs are configured as Hydras). TES bolometers require much less bandwidth than do microcalorimeters, and thus have higher multiplexing factors and larger arrays. For both space and ground projects, TDM and FDM are used up to $\sim 10^4$ pixels, while μMUX will be used for larger arrays. References for projects (not perfect list): FIBRE [15], APEX-SZ [112], MUSTANG [40], BICEP2 [125], POLARBEAR [90, 76], MUSTANG2 [41], ACT-Pol [64], Adv-ActPol [68], SPT-Pol [11], SPT-3G [69], SCUBA-2 [72], Simons Observatory [5], CMB S4 [1], LiteBird [126], CMB HD [139], TOMCAT [147, 148]
References

[1] Abazajian Ko (2022) CMB-S4: Forecasting Constraints on Primordial Gravitational Waves. The Astrophysical Journal926(1):54, DOI 10.3847/1538-4357/ac1596, 2008.12619

[2] Abeln A, et al. (2021) Conceptual Design of BabyIAXO, the intermediate stage towards the International Axion Observatory. Journal of High Energy Physics 2021(5):1–80

[3] Adams JS, et al. (2020) First Operation of TES Microcalorimeters in Space with the Micro-X Sounding Rocket. Journal of Low Temperature Physics 199(3-4):1062–1071, DOI 10.1007/s10909-019-02293-5, 1908.09689

[4] Adams JS, et al. (2021) First operation of transition-edge sensors in space with the Micro-X sounding rocket. In: Holland AD, Beletic J (eds) X-Ray, Optical, and Infrared Detectors for Astronomy IX, International Society for Optics and Photonics, SPIE, vol 11454, pp 195 – 203, DOI 10.1117/12.2562645

[5] Ade P, et al. (2019) The Simons Observatory: science goals and forecasts. Journal of Cosmology and Astroparticle Physics 2019(2):056, DOI 10.1088/1475-7516/2019/02/056, 1808.07445

[6] Ahrens F, Wegner M, Paluch P, Fleischmann A, Enss C, Kempf S (2019) Superconducting ghz resonators for microwave squid multiplexing of metallic magnetic calorimeters. Verhandlungen der Deutschen Physikalischen Gesellschaft

[7] Akamatsu H, et al. (2014) Performance of TES X-ray Microcalorimeters with AC Bias Read-Out at MHz Frequencies. Journal of Low Temperature Physics 176:591–596, DOI 10.1007/s10909-014-1130-8

[8] Akamatsu H, et al. (2020) Progress in the Development of Frequency-Domain Multiplexing for the X-ray Integral Field Unit on Board the Athena Mission. Journal of Low Temperature Physics 199(3-4):737–744, DOI 10.1007/s10909-020-02351-3

[9] Akamatsu H, et al. (2021) Demonstration of MHz frequency domain multiplexing readout of 37 transition edge sensors for high-resolution x-ray imaging spectrometers. Applied Physics Letters 119(18):182601, DOI 10.1063/5.0066240, 2111.01797

[10] Anderson PW, Rowell JM (1963) Probable Observation of the Josephson Superconducting Tunneling Effect. PRL10(6):230–232, DOI 10.1103/PhysRevLett.10.230

[11] Austermann JEO (2012) SPTpol: an instrument for CMB polarization measurements with the South Pole Telescope. In: Holland WS, Zmuidzinas J (eds) Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VI, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol 8452, p 84521E, DOI 10.1117/12.927286, 1210.4970
[12] Bandler SR, et al. (2019) Lynx x-ray microcalorimeter. Journal of Astronomical Telescopes, Instruments, and Systems 5:021017, DOI 10.1117/1.JATIS.5.2.021017

[13] Barret D, et al. (2018) The ATHENA X-ray Integral Field Unit (X-IFU). In: SPIE, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol 10699, p 106991G, DOI 10.1117/12.2312409

[14] Battistelli ES, et al. (2008) Functional description of read-out electronics for time-domain multiplexed bolometers for millimeter and sub-millimeter astronomy. Journal of Low Temperature Physics 151(3):908–914

[15] Benford DJo (2002) First astronomical use of multiplexed transition edge bolometers. In: Porter FS, McCammon D, Galeazzi M, Stahle CK (eds) Low Temperature Detectors, American Institute of Physics Conference Series, vol 605, pp 589–592, DOI 10.1063/1.1457715

[16] Bennett DA, Mates JA, Bandler SR, et al. (2019) Microwave squid multiplexing for the lynx x-ray microcalorimeter. Journal of Astronomical Telescopes, Instruments, and Systems 5(2):021007

[17] Bennett DA, et al. (2012) A high resolution gamma-ray spectrometer based on superconducting microcalorimeters. Review of Scientific Instruments 83(9):093113

[18] Bennett DA, et al. (2014) Integration of tes microcalorimeters with microwave squid multiplexed readout. IEEE Transactions on Applied Superconductivity 25(3):1–5

[19] Bergen A, et al. (2016) Design and validation of a large-format transition edge sensor array magnetic shielding system for space application. Review of Scientific Instruments 87(10):105109, DOI 10.1063/1.4962157

[20] Beyer J, Drung D (2008) A squid multiplexer with superconducting-to-normalconducting switches. Superconductor Science and Technology 21(10):105022

[21] Bruijn MP, et al. (2014) Tailoring the High-Q LC Filter Arrays for Readout of Kilo-Pixel TES Arrays in the SPICA-SAFARI Instrument. Journal of Low Temperature Physics 176(3-4):421–425, DOI 10.1007/s10909-013-1003-6

[22] Bruijn MP, et al. (2018) LC Filters for FDM Readout of the X-IFU TES Calorimeter Instrument on Athena. Journal of Low Temperature Physics 193(5-6):661–667, DOI 10.1007/s10909-018-1951-y

[23] Cash W (1979) Parameter estimation in astronomy through application of the likelihood ratio. The Astrophysical Journal228:939–947, DOI 10.1086/156922

[24] Chervenak JA, et al. (1999) Superconducting multiplexer for arrays of transition edge sensors. Applied Physics Letters 74(26):4043, DOI 10.1063/1.123255

[25] Chervenak JA, et al. (1999) Superconducting multiplexer for arrays of transition edge sensors. Applied Physics Letters 74(26):4043–4045

[26] Chesca B, Kleiner R, Koelle D (2004) SQUID Theory, John Wiley & Sons, Ltd, chap 2, pp 29–92. DOI https://doi.org/10.1002/3527603646.ch2
[27] Cohen D, Givler E (1972) Magnetomyography: magnetic fields around the human body produced by skeletal muscles. Applied Physics Letters 21(3):114–116, DOI 10.1063/1.1654294
[28] Cui W, et al. (2020) HUBS: a dedicated hot circumgalactic medium explorer. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol 11444, p 114442S, DOI 10.1117/12.2560871
[29] Cunningham MF, et al. (2002) High-resolution operation of frequency-multiplexed transition-edge photon sensors. Applied Physics Letters 81(1):159, DOI 10.1063/1.1489486
[30] D’Andrea M, et al. (2017) The Cryogenic AntiCoincidence detector for ATHENA X-IFU: a scientific assessment of the observational capabilities in the hard X-ray band. Experimental Astronomy 44(3):359–370, DOI 10.1007/s10686-017-9543-4
[31] D’Andrea M, et al. (2020) The Demonstration Model of the ATHENA X-IFU Cryogenic AntiCoincidence Detector. Journal of Low Temperature Physics 199(1-2):65–72, DOI 10.1007/s10909-019-02300-9
[32] D’Andrea M, et al. (2021) Single Pixel Performance of a 32 × 32 Ti/Au TES Array With Broadband X-Ray Spectra. IEEE Transactions on Applied Superconductivity 31(5):3065303, DOI 10.1109/TASC.2021.3065303
[33] Dawson CS, et al. (2019) Two-level switches for advanced time-division multiplexing. IEEE Transactions on Applied Superconductivity 29(5):2500205
[34] de Haan T, Smecher G, Dobbs M (2012) Improved performance of TES bolometers using digital feedback. In: Holland WS, Zmuidzinas J (eds) Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VI, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol 8452, p 84520E, DOI 10.1117/12.925658
[35] de Haan T, et al. (2020) Recent Advances in Frequency-Multiplexed TES Readout: Vastly Reduced Parasitics and an Increase in Multiplexing Factor with Sub-Kelvin SQUIDs. Journal of Low Temperature Physics 199(3-4):754–761, DOI 10.1007/s10909-020-02403-8
[36] de Wit M, et al. (2022) Performance of the SRON Ti/Au Transition Edge Sensor X-ray Calorimeters. arXiv e-prints arXiv:2208.12556, 2208.12556
[37] den Hartog R, et al. (2009) Baseband Feedback for Frequency-Domain-Multiplexed Readout of TES X-ray Detectors. In: Young B, Cabrera B, Miller A (eds) American Institute of Physics Conference Series, vol 1185, pp 261–264, DOI 10.1063/1.3292328
[38] den Hartog R, et al. (2018) Performance of a state-of-the-art DAC system for FDM readout. In: den Herder JWA, Nikzad S, Nakazawa K (eds) Space Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol 10699, p 106994Q, DOI 10.1117/12.2312793
[39] den Herder JW, et al. (2001) The Reflection Grating Spectrometer on board XMM-Newton. Astronomy & Astrophysics 365:L7–L17, DOI 10.1051/0004-6361:20000058
[40] Dicker SRo (2006) A 90-GHz bolometer array for the Green Bank Telescope. In: Zmuidzinas J, Holland WS, Withington S, Duncan WD (eds) Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol 6275, p 62751B, DOI 10.1117/12.672166

[41] Dicker SRo (2014) MUSTANG2: a large focal plan array for the 100 meter Green Bank Telescope. In: Holland WS, Zmuidzinas J (eds) Millimeter, Sub-millimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol 9153, p 91530J, DOI 10.1117/12.2056455

[42] Dobbs M, Bissonnette E, Spieler H (2008) Digital Frequency Domain Multiplexer for Millimeter-Wavelength Telescopes. IEEE Transactions on Nuclear Science 55(1):21–26, DOI 10.1109/TNS.2007.911601

[43] Doriese WB, et al. (2006) Progress toward kilopixel arrays: 3.8 ev microcalorimeter resolution in 8-channel squid multiplexer. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 559(2):808–810

[44] Doriese WB, et al. (2016) Developments in time-division multiplexing of x-ray transition-edge sensors. Journal of low temperature physics 184(1):389–395

[45] Doriese WB, et al. (2017) A practical superconducting-microcalorimeter x-ray spectrometer for beamline and laboratory science. Review of Scientific Instruments 88(5):053108

[46] Doriese WB, et al. (2019) Optimization of time-and code-division-multiplexed readout for athena X-ifu. IEEE Transactions on Applied Superconductivity 29(5):2500305

[47] Drung D, et al. (2005) dc squid readout electronics with up to 100 mhz closed-loop bandwidth. IEEE Transactions on Applied Superconductivity 15(2):777–780

[48] Drung D, et al. (2007) Highly Sensitive and Easy-to-Use SQUID Sensors. IEEE Transactions on Applied Superconductivity 17(2):699–704, DOI 10.1109/TASC.2007.897403

[49] Duh KG, et al. (1988) Ultra-low-noise cryogenic high-electron-mobility transistors. IEEE transactions on electron devices 35(3):249–256

[50] Durkin M, et al. (2019) Demonstration of Athena X-IFU Compatible 40-Row Time-Division-Multiplexed Readout. IEEE Transactions on Applied Superconductivity 29(5):2904472, DOI 10.1109/TASC.2019.2904472

[51] Durkin M, et al. (2020) A Predictive Control Algorithm for Time-Division-Multiplexed Readout of TES Microcalorimeters. Journal of Low Temperature Physics 199(1-2):275–280, DOI 10.1007/s10909-020-02342-4

[52] Durkin M, et al. (2021) Mitigation of finite bandwidth effects in time-division-multiplexed SQUID readout of TES arrays. IEEE Transactions on Applied Superconductivity 31(5):1600905

[53] Fleischmann A, Enss C, Seidel G (2005) Metallic Magnetic Calorimeters, Springer, pp 151–216
Fowler JW, et al. (2021) Absolute energies and emission line shapes of the l x-ray transitions of lanthanide metals. Metrologia 58(1):015016

Friedrich S (2006) Cryogenic x-ray detectors for synchrotron science. Journal of synchrotron radiation 13(2):159–171

Gandilo NN, et al. (2016) The primordial inflation polarization science. Journal of Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VIII, vol 9914, pp 372–379

Gao J, et al. (2008) Experimental evidence for a surface distribution of two-level systems in superconducting lithographed microwave resonators. Applied Physics Letters 92(15):152505

Gonzales M, et al. (2022) Fully differential broadband lna with active impedance matching for squid readout. Journal of Low Temperature Physics in review

Gottardi L, Nagayashi K (2021) A review of x-ray microcalorimeters based on superconducting transition edge sensors for astrophysics and particle physics. Applied Sciences 11(9), DOI 10.3390/app11093793, URL https://www.mdpi.com/2076-3417/11/9/3793

Gottardi L, et al. (2014) Josephson effects in an alternating current biased transition edge sensor. Applied Physics Letters 105(16):162505, DOI 10.1063/1.4890665

Gottardi L, et al. (2014) Weak-Link Phenomena in AC-Biased Transition Edge Sensors. Journal of Low Temperature Physics 176:279–284, DOI 10.1007/s10909-014-1093-9

Gottardi L, et al. (2018) Josephson Effects in Frequency-Domain Multiplexed TES Microcalorimeters and Bolometers. Journal of Low Temperature Physics 193(3-4):209–216, DOI 10.1007/s10909-018-2006-0

Gottardi L, et al. (2019) A six-degree-of-freedom micro-vibration acoustic isolator for low-temperature radiation detectors based on superconducting transition-edge sensors. Review of Scientific Instruments 90(5):055107, DOI 10.1063/1.5088364

Grace Eo (2014) ACTPol: on-sky performance and characterization. In: Holland WS, Zmuidzinas J (eds) Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol 9153, p 915310, DOI 10.1117/12.2057243

Harper DA, et al. (2018) Hawc+, the far-infrared camera and polarimeter for sofia. Journal of Astronomical Instrumentation 7(04):1840008

Hashimoto T, et al. (2022) Measurements of strong-interaction effects in kaonic-helium isotopes at sub-ev precision with x-ray microcalorimeters. Physical review letters 128(11):112503

Hazumi M, et al. (2020) LiteBIRD satellite: JAXA’s new strategic L-class mission for all-sky surveys of cosmic microwave background polarization. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol 11443, p 114432F, DOI 10.1117/12.2563050
[68] Henderson SWo (2016) Advanced ACTPol Cryogenic Detector Arrays and Readout. Journal of Low Temperature Physics 184(3-4):772–779
[69] Henning Jo (2015) SPT-3G: The third generation camera and survey for the South Pole Telescope. In: American Astronomical Society Meeting Abstracts #225, American Astronomical Society Meeting Abstracts, vol 225, p 220.02
[70] Hirayama F, et al. (2013) Microwave squid multiplexer for tees readout. IEEE transactions on applied superconductivity 23(3):2500405–2500405
[71] Hitomi Collaboration, et al. (2016) The quiescent intracluster medium in the core of the Perseus cluster. Nature535(7610):117–121, DOI 10.1038/nature18627
[72] Holland WS, et al. (2013) SCUBA-2: the 10,000 pixel bolometer camera on the James Clerk Maxwell telescope. Monthly Notices of the Royal Astronomical Society 430(4):2513–2533
[73] Hölzer G, et al. (1997) Kα1,2 and Kβ1,3 x-ray emission lines of the 3d transition metals. Phys. Rev. A56(6):4554–4568, DOI 10.1103/PhysRevA.56.4554
[74] Huber ME, et al. (1997) Dc squid series arrays with intracoil damping to reduce resonance distortions. Applied Superconductivity 5(7-12):425–429
[75] Huber ME, et al. (2001) Dc squid series array amplifiers with 120 mhz bandwidth (corrected). IEEE Transactions on Applied Superconductivity 11(2):4048–4053
[76] Inoue Yo (2016) POLARBEAR-2: an instrument for CMB polarization measurements. In: Holland WS, Zmuidzinas J (eds) Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VIII, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol 9914, p 99141I, DOI 10.1117/12.2231961, 1608.03025
[77] Irwin KD (1995) An application of electrothermal feedback for high resolution cryogenic particle detection. Applied Physics Letters 66(15):1998–2000, DOI 10.1063/1.113674
[78] Irwin KD (2009) Shannon Limits for Low-Temperature Detector Readout. In: Young B, Cabrera B, Miller A (eds) The Thirteenth International Workshop on Low Temperature Detectors - LTD13, American Institute of Physics Conference Series, vol 1185, pp 229–236, DOI 10.1063/1.3292320
[79] Irwin KD, Hilton GC (2005) Transition-edge sensors. Springer, pp 63–150
[80] Irwin KD, Lehnert KW (2004) Microwave SQUID multiplexer. Applied Physics Letters 85(11):2107, DOI 10.1063/1.1791733
[81] Irwin KD, et al. (2010) Code-division multiplexing of superconducting transition-edge sensor arrays. Superconductor Science Technology 23(3):034004, DOI 10.1088/0953-2048/23/3/034004
[82] Irwin KD, et al. (2012) Advanced code-division multiplexers for superconducting detector arrays. Journal of Low Temperature Physics 167(5):588–594
[83] Ishisaki Y, et al. (2018) Resolve Instrument on X-ray Astronomy Recovery Mission (XARM). Journal of Low Temperature Physics 193(5-6):991–995, DOI 10.1007/s10909-018-1913-4
[84] Jackson BD, et al. (2016) The focal plane assembly for the Athena X-ray Integral Field Unit instrument. In: den Herder JWA, Takahashi T, Bautz M (eds)
Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol 9905, p 99052I, DOI 10.1117/12.2232544

[85] Jaklevic RC, et al. (1964) Quantum Interference Effects in Josephson Tunneling. PRL 12(7):159–160, DOI 10.1103/PhysRevLett.12.159

[86] Kaastra JS, Bleeker JAM (2016) Optimal binning of X-ray spectra and response matrix design. Astronomy & Astrophysics 587:A151, DOI 10.1051/0004-6361/201527395, 1601.05309

[87] Kelley RL, et al. (2007) The Suzaku High Resolution X-Ray Spectrometer. Publications of the Astronomical Society of Japan 59:77–112, DOI 10.1093/pasj/59.sp1.S77

[88] Kelley RL, et al. (2008) Ion-Implanted Silicon X-Ray Calorimeters: Present and Future. Journal of Low Temperature Physics 151(1-2):375–380, DOI 10.1007/s10909-007-9663-8

[89] Kempf S, et al. (2018) Physics and Applications of Metallic Magnetic Calorimeters. Journal of Low Temperature Physics 193(3-4):365–379, DOI 10.1007/s10909-018-1891-6

[90] Kermish Zo (2012) The POLARBEAR experiment. In: Holland WS, Zmuidzinas J (eds) Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VI, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol 8452, p 84521C, DOI 10.1117/12.926354, 1210.7768

[91] Kimura S, et al. (2008) Performance Measurement of the 8-Input SQUIDs for TES Frequency Domain Multiplexing. Journal of Low Temperature Physics 151(3-4):946–951, DOI 10.1007/s10909-008-9771-0

[92] Kiviranta M, Grönberg L, van der Kuur J (2018) Two SQUID amplifiers intended to alleviate the summing node inductance problem in multiplexed arrays of Transition Edge Sensors. arXiv e-prints arXiv:1810.09122

[93] Kiviranta M, et al. (2002) SQUID-based readout schemes for microcalorimeter arrays. In: Porter FS, McCammon D, Galeazzi M, Stahle CK (eds) Low Temperature Detectors, American Institute of Physics Conference Series, vol 605, pp 295–300, DOI 10.1063/1.1457649

[94] Kiviranta M, et al. (2004) Design and performance of multiloop and washer SQUIDs intended for sub-kelvin operation. Superconductor Science Technology 17(5):S285–S289, DOI 10.1088/0953-2048/17/5/038

[95] Kiviranta M, et al. (2021) Two-Stage SQUID Amplifier for the Frequency Multiplexed Readout of the X-IFU X-Ray Camera. IEEE Transactions on Applied Superconductivity 31(5):3060356, DOI 10.1109/TASC.2021.3060356

[96] Lee S, et al. (2022) Generic character of charge and spin density waves in superconducting cuprates. Proceedings of the National Academy of Sciences 119(15):e2119429119

[97] Lee SJ, et al. (2019) Soft x-ray spectroscopy with transition-edge sensors at stanford synchrotron radiation lightsourse beamline 10-1. Review of Scientific Instruments 90(11):113101, DOI 10.1063/1.5119155
[98] Likharev KK (2022) Dynamics of Josephson junctions and circuits. Routledge
[99] Lucas TJ, et al. (2022) Indium bump process for low-temperature detectors and readout. Journal of Low Temperature Physics pp 1–6
[100] Macculi C, et al. (2016) The Cryogenic AntiCoincidence detector for ATHENA X-IFU: a program overview. In: den Herder JWA, Takahashi T, Bautz M (eds) Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol 9905, p 99052K, DOI 10.1117/12.2231298
[101] Malnou M, et al. (2022) Performance of a kinetic inductance traveling-wave parametric amplifier at 4 kelvin: Toward an alternative to semiconductor amplifiers. Physical Review Applied 17(4):044009
[102] Mantegazzini F, et al. (2022) Metallic magnetic calorimeter arrays for the first phase of the ECHo experiment. Nuclear Instruments and Methods in Physics Research A 1030:166406, DOI 10.1016/j.nima.2022.166406, 2111.09945
[103] Markert TH, et al. (1994) High-Energy Transmission Grating Spectrometer for the Advanced X-ray Astrophysics Facility (AXAF). In: Siegmund OH, Vallerga JV (eds) EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy V, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol 2280, pp 168–180, DOI 10.1117/12.186812
[104] Mates J, et al. (2008) Demonstration of a multiplexer of dissipationless superconducting quantum interference devices. Applied Physics Letters 92(2):023514
[105] Mates J, et al. (2012) Flux-ramp modulation for squid multiplexing. Journal of Low Temperature Physics 167(5):707–712
[106] Mates J, et al. (2017) Simultaneous readout of 128 x-ray and gamma-ray transition-edge microcalorimeters using microwave squid multiplexing. Applied Physics Letters 111(6):062601
[107] Mates J, et al. (2019) Crosstalk in microwave squid multiplexers. Applied Physics Letters 115(20):202601
[108] Mates JAB (2011) The microwave squid multiplexer. PhD thesis
[109] McCammon D (2005) Semiconductor Thermistors, Springer, pp 35–62
[110] McCammon D (2005) Thermal Equilibrium Calorimeters - An Introduction, vol 99, Springer, p 1
[111] McCammon D, et al. (2002) A High Spectral Resolution Observation of the Soft X-Ray Diffuse Background with Thermal Detectors. The Astrophysical Journal576(1):188–203, DOI 10.1086/341727
[112] Mehl Jo (2008) TES Bolometer Array for the APEX-SZ Camera. Journal of Low Temperature Physics 151(3-4):697–702, DOI 10.1007/s10909-008-9713-1
[113] Miaja-Avila L, et al. (2016) Ultrafast time-resolved hard x-ray emission spectroscopy on a tabletop. Phys Rev X 6:031047
[114] Mitsuda K, et al. (1999) Multi-pixel readout of transition-edge sensors using a multi-input SQUID. Nuclear Instruments and Methods in Physics Research A 436(1-2):252–255, DOI 10.1016/S0168-9002(99)00630-0
[115] Mitsuda K, et al. (2007) The X-Ray Observatory Suzaku. Publications of the Astronomical Society of Japan 59:1–7, DOI 10.1093/pasj/59.sp1.S1

[116] Mitsuda K, et al. (2014) Soft x-ray spectrometer (SXS): the high-resolution cryogenic spectrometer onboard ASTRO-H. In: Takahashi T, den Herder JW A, Bautz M (eds) Space Telescopes and Instrumentation 2014: Ultraviolet to Gamma Ray, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol 9144, p 91442A, DOI 10.1117/12.2057199

[117] Montgomery J, et al. (2022) Performance and characterization of the SPT-3G digital frequency-domain multiplexed readout system using an improved noise and crosstalk model. Journal of Astronomical Telescopes, Instruments, and Systems 8(1):014001, DOI 10.1117/1.JATIS.8.1.014001, 2103.16017

[118] Morgan KM, et al. (2016) Code-division-multiplexed readout of large arrays of TES microcalorimeters. Applied Physics Letters 109(11):112604, DOI 10.1063/1.4962636

[119] Moseley SH, Mather JC, McCammon D (1984) Thermal detectors as x-ray spectrometers. Journal of Applied Physics 56(5):1257–1262, DOI 10.1063/1.334129

[120] Nagayoshi K, et al. (2020) Development of a Ti/Au TES Microcalorimeter Array as a Backup Sensor for the Athena/X-IFU Instrument. Journal of Low Temperature Physics 199(3-4):943–948, DOI 10.1007/s10909-019-02282-8

[121] Nakashima Y, et al. (2020) Low-noise microwave SQUID multiplexed readout of 38 x-ray transition-edge sensor microcalorimeters. Applied Physics Letters 117(12):122601, DOI 10.1063/5.0016333

[122] Noroozian O, et al. (2012) Crosstalk reduction for superconducting microwave resonator arrays. IEEE Transactions on Microwave Theory and Techniques 60(5):1235–1243

[123] Okumura T, et al. (2021) Deexcitation dynamics of muonic atoms revealed by high-precision spectroscopy of electronic k x rays. Physical Review Letters 127(5):053001

[124] O’Neil GC, et al. (2017) Ultrafast time-resolved x-ray absorption spectroscopy of ferrioxalate photolysis with a laser plasma x-ray source and microcalorimeter array. The Journal of Physical Chemistry Letters 8(5):1099–1104

[125] BICEP2Collaborationand others (2014) Detection of B-Mode Polarization at Degree Angular Scales by BICEP2. PRL112(24):241101, DOI 10.1103/PhysRevLett.112.241101, 1403.3985

[126] LiteBIRDCollaborationand others (2022) Probing Cosmic Inflation with the LiteBIRD Cosmic Microwave Background Polarization Survey. arXiv e-prints arXiv:2202.02773, 2202.02773

[127] Palosaari MRJ, et al. (2016) Broadband ultrahigh-resolution spectroscopy of particle-induced x rays: extending the limits of nondestructive analysis. Physical Review Applied 6(2):024002

[128] Porter FS, et al. (2009) The Astro-H Soft X-ray Spectrometer (SXS). In: Young B, Cabrera B, Miller A (eds) The Thirteenth International Workshop
on Low Temperature Detectors - LTD13, American Institute of Physics Conference Series, vol 1185, pp 91–94, DOI 10.1063/1.3292564

[129] Porter FS, et al. (2010) The detector subsystem for the SXS instrument on the ASTRO-H Observatory. In: Arnaud M, Murray SS, Takahashi T (eds) Space Telescopes and Instrumentation 2010: Ultraviolet to Gamma Ray, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol 7732, p 77323J, DOI 10.1117/12.857888

[130] Ravera L, et al. (2014) The X-ray Integral Field Unit (X-IFU) for Athena. In: Space Telescopes and Instrumentation 2014: Ultraviolet to Gamma Ray, SPIE, vol 9144, p 91442L, DOI 10.1117/12.2055884

[131] Reintsema CD, et al. (2003) Prototype system for superconducting quantum interference device multiplexing of large-format transition-edge sensor arrays. Review of Scientific Instruments 74(10):4500–4508

[132] Reintsema CD, et al. (2009) Electronics for a next-generation squid-based time-domain multiplexing system. In: AIP Conference Proceedings, vol 1185, pp 237–240

[133] Roelfsema P, et al. (2012) The SAFARI imaging spectrometer for the SPICA space observatory. In: Clampin MC, Fazio GG, MacEwen HA, Oschmann J Jacobus M (eds) Space Telescopes and Instrumentation 2012: Optical, Infrared, and Millimeter Wave, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol 8442, p 84420R, DOI 10.1117/12.927010

[134] Sadleir JE, et al. (2010) Longitudinal Proximity Effects in Superconducting Transition-Edge Sensors. PRL104(4):047003, DOI 10.1103/PhysRevLett.104.047003

[135] Sadleir JE, et al. (2011) Proximity effects and nonequilibrium superconductivity in transition-edge sensors. PRB84(18):184502, DOI 10.1103/PhysRevB.84.184502

[136] Sakai K, et al. (2022) Developments of laboratory-based transition-edge sensor readout electronics using commercial-off-the-shelf modules. Journal of Low Temperature Physics p in review

[137] Sato K, et al. (2020) Super DIOS mission for exploring “dark baryon”. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol 11444, p 11444450, DOI 10.1117/12.2561681

[138] Schuster C, et al. (2022) Flux ramp modulation based hybrid microwave squid multiplexer. Applied Physics Letters 120(16):162601

[139] Sehgal No (2019) CMB-HD: An Ultra-Deep, High-Resolution Millimeter-Wave Survey Over Half the Sky. In: Bulletin of the American Astronomical Society, vol 51, p 6, 1906.10134

[140] Smith SJ, et al. (2012) Small Pitch Transition-Edge Sensors with Broadband High Spectral Resolution for Solar Physics. Journal of Low Temperature Physics 167(3-4):168–175, DOI 10.1007/s10909-012-0574-y
[141] Smith SJ, et al. (2020) Toward 100,000-Pixel Microcalorimeter Arrays Using Multi-absorber Transition-Edge Sensors. Journal of Low Temperature Physics 199(1-2):330–338, DOI 10.1007/s10909-020-02362-0

[142] Smith SJ, et al. (2021) Performance of a broad-band, high-resolution, transition-edge sensor spectrometer for x-ray astrophysics. IEEE Transactions on Applied Superconductivity 31(5):2100806

[143] Stevenson TR, et al. (2019) Magnetic calorimeter option for the Lynx x-ray microcalorimeter. Journal of Astronomical Telescopes, Instruments, and Systems 5(2):1 – 9, DOI 10.1117/1.JATIS.5.2.021009

[144] Swetz DS, et al. (2011) Overview of the Atacama Cosmology Telescope: receiver, instrumentation, and telescope systems. The Astrophysical Journal Supplement Series 194(2):41, DOI 10.1088/0067-0049/194/2/41

[145] Szypryt P, Bennett DA, et al. (2021) Design of a 3000-pixel transition-edge sensor x-ray spectrometer for microcircuit tomography. IEEE Transactions on Applied Superconductivity 31(5):1–5

[146] Szypryt P, et al. (2019) A transition-edge sensor-based x-ray spectrometer for the study of highly charged ions at the national institute of standards and technology electron beam ion trap. Review of Scientific Instruments 90(12):123107

[147] Szypryt P, et al. (2021) Design of a 3000-pixel transition-edge sensor x-ray spectrometer for microcircuit tomography. IEEE Transactions on Applied Superconductivity 31(5):2100405

[148] Szypryt P, et al. (2022) A tabletop x-ray tomography instrument for nanometer-scale imaging: demonstration of the 1,000-element transition-edge sensor subarray. IEEE Transactions on Applied Superconductivity (in preparation)

[149] Takahashi T, et al. (2012) The ASTRO-H X-ray Observatory. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol 8443, DOI 10.1117/12.926190

[150] Takei Y, et al. (2009) SQUID multiplexing using baseband feedback for space application of transition-edge sensor microcalorimeters. Superconductor Science Technology 22(11):114008, DOI 10.1088/0953-2048/22/11/114008

[151] Takei Y, et al. (2018) Vibration isolation system for cryocoolers of soft x-ray spectrometer on-board ASTRO-H (Hitomi). Journal of Astronomical Telescopes, Instruments, and Systems 4:011216, DOI 10.1117/1.JATIS.4.1.011216

[152] Taralli E, et al. (2020) Characterization of High Aspect-Ratio TiAu TES X-ray Microcalorimeter Array Under AC Bias. Journal of Low Temperature Physics 199(1-2):80–87, DOI 10.1007/s10909-019-02254-y

[153] Taralli E, et al. (2021) Ti/Au TES 32 × 32 Pixel Array: Uniformity, Thermal Crosstalk and Performance at Different X-Ray Energies. IEEE Transactions on Applied Superconductivity 31(5):3061022, DOI 10.1109/TASC.2021.3061022
[154] Tashiro M, et al. (2018) Concept of the X-ray Astronomy Recovery Mission. In: SPIE, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol 10699, p 1069922, DOI 10.1117/12.2309455
[155] The Lynx Team (2018) The Lynx Mission Concept Study Interim Report. arXiv e-prints arXiv:1809.09642
[156] Uhlig J, et al. (2013) Table-top ultrafast x-ray microcalorimeter spectrometry for molecular structure. Phys Rev Lett 110:138302
[157] Ullom JN, Bennett DA (2015) Review of superconducting transition-edge sensors for x-ray and gamma-ray spectroscopy. Superconductor Science Technology 28(8):084003, DOI 10.1088/0953-2048/28/8/084003
[158] Ullom JN, et al. (2003) A frequency-domain read-out technique for large microcalorimeter arrays demonstrated using high-resolution γ-ray sensors. IEEE Transactions on Applied Superconductivity 13(2):643–648, DOI 10.1109/TASC.2003.813981
[159] Vaccaro D, et al. (2021) Frequency Shift Algorithm: Application to a Frequency-Domain Multiplexing Readout of X-ray Transition-Edge Sensor Microcalorimeters. arXiv e-prints arXiv:2102.06092
[160] Vaccaro D, et al. (2022) Frequency domain multiplexing readout for large arrays of transition-edge sensors. arXiv e-prints arXiv:2208.12604, 2208.12604
[161] Vaccaro D, et al. (2022) Susceptibility study of TES micro-calorimeters for X-ray spectroscopy under FDM readout. arXiv e-prints arXiv:2208.10875, 2208.10875
[162] Vaccaro D, et al. (2022) Thermal Crosstalk of X-Ray Transition-Edge Sensor Micro-Calorimeters Under Frequency Domain Multiplexing Readout. IEEE Transactions on Applied Superconductivity 32(1):3128710, DOI 10.1109/TASC.2021.3128710
[163] van der Hulst P, et al. (2021) Frequency shift algorithm: Design of a base-band phase locked loop for frequency-domain multiplexing readout of x-ray transition-edge sensor microcalorimeters. Review of Scientific Instruments 92(7):073101, DOI 10.1063/5.0044968
[164] van der Kuur J, et al. (2004) Implementation of frequency domain multiplexing in imaging arrays of microcalorimeters. Nuclear Instruments and Methods in Physics Research A 520(1-3):551–554, DOI 10.1016/j.nima.2003.11.312
[165] van der Kuur J, et al. (2016) Optimising the multiplex factor of the frequency domain multiplexed readout of the TES-based microcalorimeter imaging array for the X-IFU instrument on the Athena x-ray observatory. In: den Herder JWA, Takahashi T, Bautz M (eds) Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol 9905, p 99055R, DOI 10.1117/12.2232830
[166] van Weers HJ (2013) Niobium flex cable for low temperature high density interconnects. Cryogenics 55:1–4, DOI 10.1016/j.cryogenics.2012.10.006
[167] Walsh JL (1923) A closed set of normal orthogonal functions. American Journal of Mathematics 45(1):5–24
[168] Wang Q, et al. (2020) Noise Measurements of a Low-Noise Amplifier in the FDM Readout System for SAFARI. Journal of Low Temperature Physics 199(3-4):817–823, DOI 10.1007/s10909-019-02328-x
[169] Wegner M, Enss C, Kempf S (2022) Analytical model of the readout power and squid hysteresis parameter dependence of the resonator characteristics of microwave squid multiplexers. Superconductor Science and Technology 35(7):075011
[170] Wegner M, et al. (2018) Microwave SQUID Multiplexing of Metallic Magnetic Calorimeters: Status of Multiplexer Performance and Room-Temperature Readout Electronics Development. Journal of Low Temperature Physics 193(3-4):462–475, DOI 10.1007/s10909-018-1878-3
[171] Welty RP, Martinis JM (1991) A series array of dc squids. IEEE Transactions on Magnetics 27(2):2924–2926
[172] Yamada S, et al. (2021) Broadband high-energy resolution hard x-ray spectroscopy using transition edge sensors at spring-8. Review of Scientific Instruments 92(1):013103
[173] Yoon J, et al. (2001) Single superconducting quantum interference device multiplexer for arrays of low-temperature sensors. Applied Physics Letters 78(3):371, DOI 10.1063/1.1338963
[174] Yoon W, et al. (2018) Toward Large Field-of-View High-Resolution X-ray Imaging Spectrometers: Microwave Multiplexed Readout of 28 TES Microcalorimeters. Journal of Low Temperature Physics 193(3-4):258–266, DOI 10.1007/s10909-018-1917-0
[175] Yu C, et al. (2020) An impedance-modulated code-division microwave SQUID multiplexer. Engineering Research Express 2(1):015011, DOI 10.1088/2631-8695/ab68a4
[176] Zappe H (1977) Josephson quantum interference computer devices. IEEE Transactions on Magnetics 13(1):41–47