Fundamentals of Vehicular Communication Networks With Vehicle Platoons

Kaushlendra Pandey, Member, IEEE, Kanaka Raju Perumalla, Abhishek K. Gupta, Senior Member, IEEE, and Harpreet S. Dhillon, Fellow, IEEE

Abstract—Vehicular platooning is a promising way to facilitate efficient movement of vehicles with a shared route. Despite its relevance, the interplay of platooning and the communication performance in the resulting vehicular network (VN) is largely unexplored. Inspired by this, we develop a comprehensive approach to statistical modeling and system-level analysis of VNs with platooned traffic. Modeling the network of roads using the by-now well-accepted Poisson line process (PLP), we place vehicles on each road according to an independent Matérn cluster process (MCP) that jointly captures randomness in the locations of platoons on the roads and vehicles within each platoon. The resulting triply-stochastic point process is a PLP-driven-Cox process, which we term the PLP-MCP. We first present this new point process’s distribution and derive several fundamental properties essential for the resulting VN’s analysis. Assuming that the cellular base-stations (BSs) are distributed as a Poisson point process (PPP), we derive the distribution of the loads served by the typical BS and the BS associated with the typical user. In deriving the latter, we also present a new approach to deriving the length distribution of a tagged chord in a Poisson point process (PPP), we derive the distribution of the loads served by the typical BS and the BS associated with the typical user. Using the derived results, we present the rate coverage of the typical user while considering partial loading of the BSs. We also provide a comparative analysis of VNs with and without platooning of traffic.

Index Terms—Stochastic geometry, vehicular platooning, load distribution.

I. INTRODUCTION

VEHICULAR platooning refers to the cooperative movement of closely located vehicles having a shared route or a part of route. As part of intelligent transportation systems, platooning has enormous potential for collision avoidance among vehicles, optimization of the road capacity and fuel consumption, and reduction in pollutant gases including CO₂ emissions [1], [2]. Platooning and vehicular communication have a two way relationship. On one hand, platooning almost always ensures line-of-sight between two proximate vehicles, thereby improving the reliability of vehicle-to-vehicle (V2V) communication between them compared to independently moving vehicles [3]. Such V2V communications can help in collision and hazard warning and traffic planning [4]. Further, if one vehicle in the platoon is able to receive information via vehicle-to-infrastructure (V2I) communication, V2V communication can help relay this data to all vehicles in the platoon. On the other hand, vehicular communication is also essential in enabling platooning to reduce collision risks due to smaller intra-vehicular distance. Given the intertwined nature of these two seemingly disparate ideas, it is essential to understand their synergism, which we do here by carefully integrating platooning in the system-level analysis of vehicular networks.

A. Related Work

Recently, there has been a significant interest in studying different types of vehicular communication including V2V...
and V2I. Interested readers are advised to refer to [4] and [5], and the references therein, for a comprehensive survey of this research direction. In this paper, our specific interest is on the system-level analysis of vehicular communications networks using stochastic geometry, which has attracted significant attention recently, e.g., see [6], [7], [8], [9], and [10]. However, the focus of almost all of this prior work has been on conventional non-platooning traffic scenarios (N-PTS), where vehicles do not form platoons and hence move without any coordination with each other. For instance, in [6] and [7] authors modeled the vehicular traffic on a fixed road by a 1D Poisson point process (PPP). To incorporate multiple road vehicular traffic, [8], [9] considered grid type urban roads (roads are either perpendicular, or parallel to the x-axis) modeled using the Manhattan Poisson line process (MPLP). Each road has an independent vehicular traffic distributed as 1D PPP. The authors analyzed the blockage and coverage in such networks. To include the irregularity in the layout of roads, in [10], authors suggested to model roads as Poisson line process (PLP) and vehicles as 1D PPP on each road. In this model, the combined vehicular traffic across roads forms a Cox process that can be termed PLP-PPP (i.e., a PLP driven PPP). A thorough investigation of various properties of PLP-PPP and its applications to vehicular communications was presented in [11].

A vehicular communication network consists of vehicular traffic overlaid with a cellular network to provide infrastructure connectivity to vehicular traffic. Such a network with N-PTS can be modeled using PLP-PPP overlaid with an independent PP modeling the locations of BSs, owing to the mathematical tractability of these processes. In [12], [13], and [14], authors derived the distribution of signal-to-noise-plus-interference ratio (SINR) for similar models. In [15], [16], and [17] authors derived the SINR distribution for vehicle-to-everything (V2X) networks consisting of communications between different types of network entities, such as between BSs and vehicles, and roadside units and vehicles. Another important metric dictating the overall performance of a network is the rate distribution of the typical user. The achievable rate depends critically on the per-BS load, i.e., the number of vehicles present in the BS’s serving region. In [15], authors derived the distribution of the per BS load and per-user rate for N-PTS. In [18], the area spectral efficiency for the N-PTS was presented. In [19], authors derived the rate coverage for cellular vehicle-to-everything (V2X) networks for N-PTS.

Although past works have analyzed the vehicular communication network with N-PTS, analytical tools have not been fully explored yet to study the platooned vehicular traffic scenario (PTS) and its impact on the performance of a vehicular communication. Consequently, there is limited work focusing on the analysis of PTS [20], [21], [22]. For example, in [20], authors considered a single road vehicular traffic consisting of independent vehicles and platoons, both modeled as points of 1D PPP and derived the probability that vehicles can communicate with each other. In [21], authors considered platooned traffic on a single road with BSs deployed on the side of the road and derived approximate coverage. In [22], authors considered platooned traffic on a single road with road side BSs and performed a joint communication and control analysis to study the stability and delay in the network. One main limitation of the above works is that they considered vehicular traffic on a single road. In practice, the “support” of a vehicular network is a complicated layout of roads that needs to be accounted for and is one of the key reasons for the popularity of the PLP-based models. A vehicular traffic on such a road network is further complicated by the randomness in the number and locations of platoons and locations of vehicles in each platoon. As indicated above, the wireless performance of a vehicular user depends critically on the per BS load which has not been analyzed in the previous work for PTS. Overall, the interplay of platooning and the vehicular network performance is largely unexplored from the perspective of rigorous system-level analysis. This paper attempts to bridge this gap. In particular, we try to explore how we can model a complete vehicular communication network consisting of 2D network of BSs and the vehicles moving in platoons and analyze the performance of this network in terms of load and rate distribution.

B. Contributions

In this paper, we develop an analytical framework for a vehicular communication system (in particular, a V2I scenario) with platooned traffic. We propose a novel point process for modeling the platoon movement of vehicles. We then examine the impact of platooning on V2I communication by observing the load that appears on the infrastructure network. We present a comparative study of the rate coverage for PTS and N-PTS. The important contributions of this paper are listed below.

1) We propose a novel point process termed PLP-MCP for the modeling and analysis of the platooned movement of the vehicles. It is a Cox process driven by the PLP that captures three layers of randomness: i) irregularity in the road layout, (ii) randomness in the locations of the platoons, and (iii) randomness in the locations of vehicles within a platoon. In this sense, this process can be thought of as a triply-stochastic process that generalizes doubly-stochastic PLP-PPP used in the literature [11]. We present its distribution and key properties essential for the analysis of the vehicular traffic.

2) We then present an analytical framework to characterize the performance of the typical user in a V2I communication network consisting of BSs and platooned traffic.

3) We derive the load distribution for the typical and the tagged BSs along with the means and variances. Here, tagged BS is the BS that serves the typical user. As a key intermediate result, we derive a new expression for the distribution of the tagged chord in the Voronoi cell of the tagged BS.

4) Using the derived results, we present the rate coverage of the typical user while considering the partial loading of BSs. We perform a comparative analysis of load distribution and rate coverage of communication systems with platooned movement with non-platooned movement to understand the impact of vehicular platooning.
A. Road Network

The network of roads can be modeled by a PLP \(\Phi_L = \{\ell_1, \ell_2, \cdots \} \) with density \(\lambda_L \) where \(\ell_i \) denotes the \(i \)th road [11]. The line \(\ell = L(\rho, \phi) \) can also be represented as an element \((\rho, \phi)\) of the set \(\mathbb{C}^* \equiv \mathbb{R} \times [0, \pi) \). We term the element \((\rho, \phi)\) as L-atom and \(\mathbb{C}^* \) as L-space. Further, the point \((\rho, \phi)\) in \(\mathbb{C}^* \) is corresponding to \((\rho \cos \phi, \rho \sin \phi)\) in \(\mathbb{R}^2 \), where \(\rho \) denotes the distance of the point \((\rho \cos \phi, \rho \sin \phi)\) from origin and \(\phi \) represents the angle between the positive x-axis of \(\mathbb{R}^2 \) and the line joining the point with origin \(\alpha \equiv (0, 0) \). Therefore the \(i \)th line \(\ell_i \) can be denoted by the L-atom \(\alpha_i = (\rho_{i1}, \phi_{i1}) \) in the L-space \(\mathbb{C}^* \). The L-atoms \(\alpha_i \)'s form a PPP in \(\mathbb{C}^* \) with density \(\lambda_L \). This means that the mean number of lines hitting a convex body \(K \) with perimeter \(L(K) \) is \(\lambda_L L(K) \) [11]. The validity of modeling roads via a PLP was studied and verified in the past work, e.g., [24], [25], and [26]. The analysis of this paper can be extended to include scenarios with different types of roads including the Manhattan line process.

B. Platooned Vehicles

For each road \(\ell_i \), vehicular platoons can be seen as the clusters of vehicles in a finite spread. Cluster processes (with MCP being a special case) offer a natural way of modeling platooned traffic, wherein vehicles in the same platoon are close by (hence clustered). The MCP was a natural cluster process to choose because of its bounded support and tractability. We model the vehicles on the road \(\ell_i \) by an independent MCP \(\Psi_i \) with parent PP density \(\lambda_P \), mean number of points per cluster \(m \) and cluster radius \(a \). In particular, the platoon centers are distributed as the parent PP \(\Psi_i^{(m)} \). For a platoon centered at \(x_{j,i} \in \Psi_i^{(m)} \), the constituent vehicles are distributed as the PPP \(\Omega_{x_{j,i}} \) in \(a \)-neighborhood of it. Let \(\mu_m \) denote the per-road vehicle density i.e. \mu_m = m \lambda_P .

The locations of all vehicles form a new PP, which we term as PLP-MCP. It can be formally defined as follows.

Definition 1 (PLP-MCP): Let \(\Phi_L = \{\ell_1, \ell_2, \cdots \} \) be a PLP with density \(\lambda_L \) with the \(i \)th line \(\ell_i = L(\rho_{i1}, \phi_{i1}) \). Let \(\{\Psi_i\} \) be a set of independent and identically distributed 1D MCP in \(\mathbb{R} \) with parameter \((m, \lambda_P, \lambda)\) such that

\[
\Psi_i = \bigcup_{x_{j,i} \in \Psi_i} \Omega_{x_{j,i}}
\]

where \(\Psi_i^{(m)} \) is a PPP with density \(\lambda_P \). \(\Psi_i^{(m)} \) is called the parent point process of \(\Psi_i \) as it consists of parent points \(x_{j,i} \) in \(\mathbb{R} \). Further, \(\Omega_{x_{j,i}} \) denotes the daughter PP of \(x_{j,i} \) and is a PPP with density \(\lambda_{d} = m/(2a) \) in \(B_1(x_{j,i}, a) \). We assign \(i \)th MCP \(\Psi_i \) to the \(i \)th line \(\ell_i \) and transform the points of \(\Psi_i \) to be on the line to get

\[
\Psi_{\ell_i} = \bigcup_{x_{j,i} \in \Psi_i} \Omega_{x_{j,i}} = \bigcup_{x_{j,i} \in \Psi_i} \Omega_{x_{j,i}} \ni x_{k,j,i} \in \Omega_{x_{j,i}}
\]

(1)

where \(\Omega_{x_{j,i}} \) represents \(\Omega_{x_{j,i}} \) transformed on line \(\ell_i \) and \(f_\ell() \) denotes the transformation of \(L(0, 0) \) to the line \(\ell = L(\rho_0, \phi_0) \) given as

\[
f_\ell(x) = (\rho_\ell \cos \phi_\ell + x \sin \phi_\ell, \rho_\ell \sin \phi_\ell - x \cos \phi_\ell).
\]

(2)

This means that if \(x \) is a scalar quantity denoting the location of a point in the line \(\ell \) relative to its base, its 2D coordinates (i.e. absolute location in \(\mathbb{R}^2 \)) are given as \(x = f_\ell(x) \). Now, a PLP-MCP \(\Psi_m \) is defined as the union of all \(\Psi_{\ell_i} \)'s i.e.

\[
\Psi_m = \bigcup_{i \in \Phi_L} \Psi_{\ell_i},
\]

(3)

and includes all the points located on every line of \(\Phi_L \).

Hence, the platoon vehicular traffic can be modeled using points of the proposed PLP-MCP \(\Psi_m \). The absolute location of \(k \)-th vehicles in \(j \)th platoon of \(i \)th road is given as \(x_{k,j,i} \). As suggested PP allows for varying the platoon parameter, and has the advantage of mathematical tractability, we expect that the main results presented in the paper will show similar trends when compared to slightly different variants of this model (capturing different distributions of the roads and vehicles on them).

C. Properties of PLP-MCP

We now describe some key properties of the PLP-MCP that are helpful in the analysis of vehicular communication.

1) **Stationarity:** The PLP-MCP \(\Psi_m \) is a stationary PP. The stationarity of \(\Psi_m \) follows from the stationarity of PLP and 1D MCP.

2) **Density:** The density \(\lambda_m \) of \(\Psi_m \) is \(m \lambda_P \lambda_L \pi \). The density of \(\Psi_m \) can be derived by counting the mean
number of points in a unit area using the Campbell’s theorem [27].

3) It is a Cox process driven by a PLP.

For a stationary PP, we can take the typical point at the origin [27]. Further, if the typical point is located at the origin, the tagged line ℓ_o passes through the origin.

III. CHARACTERIZATION OF PLP-MCP

In this section, we will present several key properties of the proposed PLP-MCP.

A. Extended Slivnyak Theorem

Since PLP-MCP is derived from PLP (which is a PPP in L-space), Slivnyak theorem can be extended to describe the conditional distribution of PLP-MCP. Even though this extension is not overly challenging, we decided to present it separately upfront so that we can easily refer to it throughout the paper rather than repeating this same argument everywhere.

Lemma 1 (Extended Slivnyak Theorem): Conditioned on the typical point z_o, the distribution of the rest of the PLP-MCP Ψ_m is equal to the distribution of an independent copy of Ψ_m superposed with an independent copy of the MCP Ψ_{ℓ_o} on the tagged line ℓ_o and an independent copy of the cluster PPP Ω_{x_o} (which is Ψ_{x_o}, transformed on ℓ_o). Here, x_o denotes the parent point of the typical point and distributed uniformly in the 1D $a-$neighborhood of $z_o = \int_{\ell_o}^{-1}(z_o)$. In other words,

$$\Psi_m(z_o \in \Psi_m) = \Psi_m \cup \Psi_{\ell_o} \cup \Omega_{x_o}. \tag{4}$$

Proof: Conditioning on the occurrence of the typical point fixes the tagged parent point x_o and the tagged line ℓ_o. Since PLP Φ_L is a PPP in L-space, conditioned on ℓ_o, Φ_L is equivalent to the union of ℓ_o and an independent copy of Φ_L (which generates an independent copy of Ψ_m). Now, Ψ_{ℓ_o} is also a PPP containing x_o, hence, conditioned on x_o, it is equivalent to the union of x_o and an independent copy of Ψ_{ℓ_o} which generates Ψ_{x_o}. Again, Ω_{x_o} is a PPP, hence, conditioned on x_o, Ω_{x_o} is equivalent to the union of x_o and an independent copy of Ω_{x_o}. \(\square\)

B. Laplace Functional

Since the distribution of a PP is completely characterized by its Laplace functional (LF), we now derive the LF for PLP-MCP. We will first require the PGFL of the MCP Ψ_{ℓ_o} transformed on the line ℓ_o which is given in Lemma 2. Let there be a function $v : \mathbb{R}^2 \rightarrow [0, 1]$.

Lemma 2: The PGFL of Ψ_{ℓ_o} on road ℓ is given as

$$G_{\ell, \Psi_{\ell_o}}(v) = e^{-\lambda_{\ell_o} \int \left(1 - H_{x_o, \ell}(v)\right) dx}, \tag{5}$$

where $H_{x_o, \ell}(v) = \exp \left(-\lambda_d \int_{B_1(o, a)} \left(1 - v(x + y)\right) dy\right)$.

Under reduced Palm (i.e. conditioned on occurrence of a point at z_o excluding z_o), PGFL of Ψ_{ℓ_o} on road ℓ is

$$G^{'(z_o)}_{\ell, \Psi_{\ell_o}}(v) = \frac{G_{\ell, \Psi_{\ell_o}}(v)}{2a} \int_{B_1(f_{\ell_o}^{-1}(z_o), a)} H_{x_o, \ell}(v) dx_o. \tag{6}$$

Here, x_o denotes the untransformed center of the parent cluster of z_o.

The following remark explains how the LF and its Palm version enable us to examine the platooned vehicular networks from two different perspectives.

Remark 1: In the uplink analysis of a wireless network, when the received power attenuates in accordance with the distance-based path loss model, the LF may be utilized to determine the LF of total interference from the vehicles seen by any point in \mathbb{R}^2 plane.

Moreover, if we want to capture the interference seen by any vehicle from all the other vehicles in V2V communication, the Palm version of the LF may be used to get the LF of interference. We now derive the LF for PLP-MCP which is given in the following two Theorems. See Appendix A for the proofs.

Theorem 1: The LF for Ψ_m is given as

$$L_{\Psi_m}(v) = E\left[e^{-\sum_{x \in \Psi_m} v(x)}\right] = \exp \left(-\lambda \int \int_\pi \left(1 - G_{\Psi_{(\rho, \phi)}, L(\rho, \phi)}^{\Psi_m}(e^{-v})\right) d\rho d\phi\right), \tag{7}$$

where $G_{\Psi_{(\rho, \phi)}}^{\Psi_m}(v)$ is given in (5).

Theorem 2: The LF for Ψ_m under the reduced Palm distribution is

$$L_{\Psi_m}^{(\ell)}(v) = \exp \left(-\sum_{x \in \Psi_m} v(x)\right) = L_{\Psi_m}(v) \int_\pi \pi^{-1} G_{\Psi_{(\rho, \phi)}, L(0, \phi)}^{\Psi_m}(e^{-v}) d\phi. \tag{8}$$

C. Distribution of Number of Points (Vehicles) of Ψ_m in a Set

The PP Ψ_m can also be characterized by the distribution of the number of its points in a set which is crucial in computing the load distribution in vehicular communication networks which will be discussed in the next section. To derive this distribution, we will first require the PGF of the number N_{ℓ} of points of the MCP Ψ_{ℓ} on the line ℓ which is given in Lemma 3.

Lemma 3: Let Ψ_{ℓ} denote a 1D MCP on line $\ell = L(\rho, \phi)$. The PGF for the number N_{ℓ} of points of Ψ_{ℓ} falling inside $B_2(o, r)$ is

$$P_{N_{\ell}}(s, r) = \exp \left(g(s, \sqrt{r^2 - r^2})\right) \tag{9}$$

where, $g(s, t) = 2\lambda_{\ell} \left[t - a\right] e^{\lambda_{\ell}^{(s-t)}} - (t + a) + (e^{\lambda_{\ell}^{(s-t)}} - 1)/\lambda_{\ell}^{(s-t)} \right]. \tag{10}$

Note that $\rho = 0$ gives the PGF of N_{ℓ} when the line passes through the origin with an angle of ϕ. The k-th derivative of $g(s, t)$ with respect to s is given as

$$g^{(k)}(s, t) = 2\lambda_{\ell} \left[\begin{array}{c}
(\lambda_{\ell}^{(s-t)})^k \left[t - a\right] e^{(s-t)\lambda_{\ell}^{(s-t)}} + \frac{1}{\lambda_{\ell}^{(s-t)}} \left(\sum_{j=0}^{k} \binom{k}{j} \right)

\frac{d^j}{ds^j} \left(\frac{1}{s^j-1}\right) \left(\lambda_{\ell}^{(s-t)}\right)^{k-j} e^{(s-t)\lambda_{\ell}^{(s-t)}} - \frac{k!}{(s-1)^{k+1}} \right]. \tag{11}$$
To derive the mean and variance, we need \(\lim_{s \to -1} g^{(s)}(s, t) \). Let \(\lim_{s \to -1} g^{(s)}(s, t) = \kappa(t, k) \) which is given as

\[
\lim_{s \to -1} g^{(s)}(s, t) = \kappa(t, k) = 2\lambda_p (\lambda_d \beta(t))^k \left[t - a + \frac{\beta(t)}{k+1} \right].
\]

We now present the distribution of the number \(S(r) \) of points of \(\Psi_m \) in a 2D ball of radius \(r \) i.e. \(S(r) = \Psi_m(B_2(o, r)) \) in terms of its PGF and PMF along with its mean and variance. The PGF of \(S(r) \) may be used to calculate the distribution of contact distance, which is defined as the distance between the closest \(\Psi_m \) point and any randomly chosen point in \(\mathbb{R}^2 \). For the approximated load distribution study, we will directly use the formulas stated in Theorem 3 and Corollary 1. The mean and variance of \(S(r) \) calculated in Corollary 2 may be used directly to calculate the approximated mean load and variance of the load distribution on the BS. Note that the PMF, the mean and the variance of a discrete RV \(X \) can be computed from its PGF using the following relation

\[
p_X(k) = P[X = k] = \frac{1}{k!} \left[\mathcal{P}_X(s, r) \right]_{s=0}^{s=k} \forall k,
\]

\[
E[X] = \left. \mathcal{P}_X^{(1)}(s) \right|_{s=1},
\]

\[
\text{Var}[X] = \left. \mathcal{P}_X^{(2)}(s) \right|_{s=1} + E[X] - (E[X])^2.
\]

Therefore, we get the following result. See Appendix B for the proofs of the following results.

Theorem 3: The PGF of the number \(S(r) \) of points of \(\Psi_m \) inside \(B_2(o, r) \) is

\[
P_{S(r)}(s) = \exp\left(-2\pi \lambda_L \left(r - \int_{0}^{r} \frac{\exp(g(s, t))}{\sqrt{t^2 - t^2}} \, dt \right) \right),
\]

where \(g(s, t) \) is given in (10).

Corollary 1: The PMF of \(S(r) \) is given by

\[
P[S(r) = n] = \frac{1}{n!} \left. \mathcal{P}_{S(r)}(0) b \left(f^{(1)}_m(r), \ldots, f^{(n)}_m(r) \right) \right|_{r=a},
\]

with \(f^{(k)}_m(r) = \int_{0}^{r} \frac{\exp(g(0, t))}{\sqrt{t^2 - t^2}} b \left(g^{(1)}(0, t), \ldots, g^{(k)}(0, t) \right) \, dt \),

and \(g^{(k)}(0, t) \) can be evaluated from (11).

Corollary 2: The mean and variance of \(S(r) \) is

\[
E[S(r)] = \left. \mathcal{P}_{S(r)}^{(1)}(s) \right|_{s=1} = \lambda_m \pi r^2,
\]

\[
\text{Var}(S(r)) = \left\{ \begin{array}{ll}
\lambda_m \pi r^2 + 2\pi \lambda_L \left[\frac{\pi}{2} (a \lambda_p \lambda_d)^2 r^3 \\
+ 8\lambda_p \lambda_d^2 \left(\frac{3}{2} \pi r^3 - \frac{1}{2} \pi r^4 \right) \right], & a > r \\
\lambda_m \pi r^2 + \frac{8\lambda_p \lambda_d^2}{3} \pi \lambda_d r^3 \\
+ 4\pi \lambda_p \lambda_d \lambda_d^2 \left(3 \pi r^3 - \pi r^4 \right) \\
+ \left(2a^2 r^2 + \frac{\pi}{4} \right) \times \sin^{-1} \left(\frac{\sqrt{\pi r^2 - a^2}}{r} \right), & a < r,
\end{array} \right.
\]

D. Distribution of Number of Points of \(\Psi_m \) in a Set Under Palm distribution

We also present the distribution of number of points inside a set under Palm distribution (conditioned on occurrence of a point at the origin i.e. \(o \in \Psi_m \)). Similar to previous section, we can compute the PMF and the mean of \(S(r) \) from its PGF. The PGF of \(S(r) \) can be used directly to derive the CDF of nearest neighbor distance (NND) which is defined as the distance of the nearest point from any typical point of \(\Psi_m \). Further, it is crucial to comprehend the distribution of vehicles around the typical vehicle in a platooned vehicular network where the vehicles continuously broadcast information about their speed and location. Using Theorem 4, we can easily derive performance metrics such as the mean number of vehicles falling within the typical vehicle’s broadcast radius. See Appendix C for the proof of the following results.

Theorem 4: The PGF of the number \(S(r) \) of points of \(\Psi_m \) \{0\} conditioned on \(o \in \Psi_m \), falling inside \(B_2(o, r) \) is

\[
P_{S(r)}(s) = \frac{\mathcal{P}_{S(r)}(s)}{s} \int_{0}^{a} e^{s-1} \lambda_d A_1(r, a, x) \, dx,
\]

where \(\mathcal{P}_{S(r)}(s) \) is presented in Theorem 3, \(g(s, \cdot) \) is given in (10) and \(A_1(a, b, x) \) is [28]

\[
A_1(a, b, x) = \left\{ \begin{array}{ll}
2 \min(a, b), & \text{if } 0 \leq x \leq |a-b| \\
\frac{a+b-x}{a+b}, & \text{if } |a-b| < x \leq a+b.
\end{array} \right.
\]

Corollary 3: The PMF of \(\tilde{S}(r) \) is

\[
P(\tilde{S}(r) = n) = \frac{1}{n!} \sum_{k_1+k_2+k_3=n} \frac{1}{k_1! k_2! k_3!} \prod_{1\leq t \leq 3} f^{(k)}_1(t, 0, r),
\]

where \(f^{(k)}_1(t, 0, r) = \mathcal{P}_{S(r)}(0) \)

\[
f^{(k)}_2(0, r) = e^{g(0, r)} b \left(g^{(1)}(0, r), \ldots, g^{(k)}(0, r) \right)
\]

\[
f^{(k)}_3(0, r) = \int_{0}^{a} \left(\lambda_d A_1(r, a, x) \right)^k e^{-\lambda_d A_1(r, a, x)} \, dx,
\]

with \(g(\cdot) \) is given in (10) and \(f^{(k)}_m(0, r) \) in (18).

Corollary 4: The expected value of \(\tilde{S}(r) \) is \(E(\tilde{S}(r)) = \lambda_m \pi r^2 + 2\lambda_p \lambda_d r + \lambda_d (2r - r^2 / (2a)) \).

In this section, we have presented several key properties of PLP-MCP. These properties are PGFL, density, PF under the reduced Palm distribution, the PGF (and PMF) for the number of points falling inside ball \(B_2(o, r) \) both under normal and Palm distributions. In the next section, we introduce the vehicular communication network providing connectivity to the platooned vehicles and present the distribution for the length of the typical and the tagged chord of the typical cell, and 0-cell respectively of a homogeneous 2D PPP. These distributions are essential to derive the load distribution on the typical and tagged BS.
IV. VEHICULAR COMMUNICATION NETWORK

The complete vehicular communication network consists of vehicular traffic (as defined in Section II) overlaid with the BSs forming a cellular network (See Fig. 2). The role of the cellular BS network is to provide cellular V2I connectivity to vehicular users. We model the locations of BSs as a 2D PPP \(\Phi_b \equiv \{ y_i : y_i \in \mathbb{R}^2, \forall i \in \mathbb{N} \} \) with density \(\lambda_b \) [27]. Each BS transmits with the same power. The user association is based on the maximum average received power from the BSs and each user is connected to its nearest BS. Furthermore, we assume that the BS without any associated user will stay silent and not create interference. The active BSs point process \(\Phi'_b \) can be approximated as PPP with the active BS density \(p_{\text{on}} \lambda_b \) where \(p_{\text{on}} \) is the active probability [29]. Now, in order to study the average property seen by the points of a stationary PP, a general methodology is to hold a point of the PP at the origin and average the property seen from this point over all realizations. Such a point is termed the typical point of the PP, a general methodology is to hold a point of the PP at the origin and average the property seen from this point over all realizations. It captures the ensemble average in the same way as one would get a spatial average in a large realization of a PP by observing the quantity of interest at each point and then averaging over all the points. Here, we consider the typical vehicle defined as the typical point in \(\Psi_m \). We consider the typical vehicle to be at the origin, owing to the stationarity of \(\Psi_m \). Now, the signal to interference ratio (SIR) at the typical vehicle is given by

\[\text{SIR} = \frac{h_0 R^{-\alpha}}{\sum_{y \in \Phi'_b} h_y |y|^\alpha}, \]

where \(R \) denotes the distance of the nearest BS, \(\alpha \) is path loss exponent, \(h_0 \) denotes the fading gain of the typical receiver link and \(h_y \) denotes the fading gains of the rest of the links. Further, we have assumed that the fading coefficients \(h(y) \) are exponentially distributed with unit mean.

Due to the considered association policy, the serving region of each BS is its Voronoi cell. For a BS located at \(y \), its Voronoi cell \(V_y \) is \(V_y = \{ x \in \mathbb{R}^2 : y = \arg \min_{y_i \in \Phi_b} |x - y_i| \} \). Let \(\Phi_Y \) denote the union of Voronoi edges. The users connected to any BS constitute the load on that BS. The typical BS is the typical point of the BS PPP \(\Phi_b \). The Voronoi cell associated with the typical BS is known as the typical Voronoi cell denoted as \(V_t \). Its area \(|V_t| \) is empirically distributed as a generalized Gamma RV [30]. The PDF of the generalized Gamma distribution with parameters \(a_1, b_1, c_1 \) is denoted by

\[g_x(x; a_1, b_1, c_1) = a_1 b_1^{c_1/a_1} (\Gamma(c_1/a_1))^{-1} x^{c_1-1} e^{-b_1 x^{c_1}}. \]

For the typical Voronoi cell, the parameters are \(a_1 = 1.07950, b_1 = 3.03226 \) and \(c_1 = 3.31122 \) [31]. Hence, its PDF is

\[g_{|V_t|}(v_t) = \lambda_b g_x (\lambda_b v_t; a_1, b_1, c_1). \]

Similarly, the perimeter of \(Z = L(V_t) \) has the empirical distribution [30]

\[p_z(z) = \frac{\sqrt{\lambda_b}}{4} g_x \left(\frac{\sqrt{\lambda_b} z}{4} ; 2.33609, 2.97006, 7.58806 \right). \]

A line \(\ell_o \) of \(\Phi_L \) that passes through the typical point of PP \((\Psi_m) \) is termed as the tagged line. Here, \(\ell_o = L(0, \phi) \) with \(\rho = 0 \) and \(\phi \) is a uniform RV between 0 to \(\pi \). Now, let us consider the typical vehicle at the origin. The BS which is associated with the typical vehicle is termed the tagged BS. The Voronoi cell of the tagged BS is termed as the zero cell or the tagged cell [32] given as \(V_o = \{ x \in \mathbb{R}^2 : \arg \min_{y_i \in \Phi_b} |x - y_i| = \arg \min_{y_i \in \Phi_b} |y_i| \} \). Owing to Ext-Slivnyak theorem (Lemma 1), the load on the tagged BS consists of users of an independent copy of PLP-MCP falling in the tagged cell, plus a set of additional users falling on a part of the tagged line inside the tagged cell. As mentioned earlier, the tagged line or the road is the line on which the typical vehicle lies. The part of the tagged line falling inside the tagged cell is termed the tagged chord \(C_o \), i.e. \(C_o = \ell_o \cap V_o \). The tagged chord can also be defined as the chord of the tagged cell passing through the origin. Since the tagged chord’s length \(C_o \) plays an important role in the BS’s load distribution, we derive its distribution \(f_{c_o} \) next. While this specific result exists in [15] within the context of the load distribution in a PLP-PPP, we derive it using a new approach that yields an easy-to-use expression that does not involve higher-order derivatives. We emphasize here that this chord length distribution is not our main contribution but just an important intermediate result that will facilitate further analysis.

A. Distribution of Tagged Chord Length in the Voronoi Tessellation

We adapt an approach presented in [33] to derive the joint PDF of the length of the residual chords in both sides of the origin. Using the joint PDF, we derive the PDF of the length of the tagged chord. We draw two lines from the origin in two opposite directions, (can be taken as positive and negative \(x \)-axis without loss of generality). Further, the points \(Q_1 \) and \(Q_2 \) where these two lines intersect \(X_o \), are the two endpoints of tagged chord (as shown in Fig. 3). Let \(l_1 \) and \(l_2 \) be the distance of \(Q_1 \) and \(Q_2 \) from the origin, respectively. We first require the following result.

![Fig. 2. (a) An illustration showing the complete vehicular network with platooned vehicles. The vehicles (shown as blue circles) on the road (shown as dotted line). Each BS (presented by points) has an associated serving area (bounded by the lines). As shown in the figure, the cluster movement of vehicles may assist them in connecting with the nearby vehicles for data, and content sharing. (b) A vehicular communication network with independently moving vehicles is shown for comparison.](image-url)
argument that provided the following expression,
\[f_{C_o}(c_o) = e^{-c_o} = \frac{4\sqrt{\lambda_o}}{\pi} \frac{2\lambda_o}{\pi} \int_0^\infty \int_0^\infty \left[\lambda_b \left((1) (c, y, r(c)) \right)^2 - (2) (c, y, r(c)) \right] e^{-\lambda_b V(c, y, r(c)) y \cos \theta} dy \cos \theta, \]

which involved higher-order partial derivatives. The expression given above in Theorem 5 is slightly simpler in that sense. Further, since this specific proof idea involving the joint distribution of two chords segments has not appeared in the literature, we decided to include it here. Another advantage of the proposed approach is that it can also be extended to the case where the BS locations are distributed as a non-homogeneous PPP.

Equipped with the expressions of PDF of the tagged chord length and the number of vehicles in a set, we now analyze the vehicular communication networks in terms of the load per BS.

V. LOAD DISTRIBUTION IN A PLATOONED VEHICULAR COMMUNICATION NETWORK

In this section, we present the per-BS load distribution. The per-BS load in a communication system refers to the number of vehicles served by the BS which is defined as the number of vehicles falling inside its Voronoi region. The distribution of per-BS load is an important performance metric as it critically affects the distribution of SINR, per-user available resources and finally the rate in the following way. If a particular BS does not have any user associated with it, it may stay silent which reduces interference to the users of other BSs, and improves their SINR distribution. Conversely, as the time-frequency resources are split across the users associated with the serving BS, the load on the tagged BS reduces the resources available to the typical user. As the rate distribution depends on the per-user resources and the SINR distribution, the load on both the typical and the tagged BS plays a key role in the system’s performance. Hence, we will focus on distribution of the following important metrics:

1) \(S_m = \Psi_m(V_{c(t)}): \) Load on the typical BS.
2) \(M_m = \Psi_m(V_0): \) Load on the tagged BS.

The load distribution may help us decide the size of platoon and/or the number of vehicles in a platoon to improve performance. It may also provide us insights into the load distribution across the BSs that may help in optimizing the resource allocation, bandwidth sharing, and BS association. This is especially important in the case of PTS that may exhibit larger disparity in the per-BS load, especially for smaller values of \(a. \) Since vehicles in a platoon drive in close proximity of each other, it is highly likely that vehicles in a given platoon are served by the same BS. This may lead to situations in which one BS serves multiple platoons and hence a large number of vehicles, whereas another BS does not serve any platoon and hence no vehicle. Therefore, it is crucial to understand the nature of load distribution on BSs. As mentioned already, we will assume that the BS remains
silent (and hence does not create interference) if its load is zero. We will look at an approximation (S_m and M_m respectively) of these variable. To approximate the load in a Voronoi cell of area $|V_1|$, we will replace the cell with a 2D ball of equal area, i.e. the radius of this ball is $\sqrt{|V_1|/\pi}$ and instead compute the load in this ball. The PDF of the radius R of this ball is zero. We will look at an approximation (ball of equal area, i.e. Voronoi cell of area $|V|$),

$$f_{R_k}(r) = 2\pi r x g_{V_1}(\pi r^2), \quad f_{R_k}(r_a) = 2\pi r_a x g_{V_1}(\pi r_a^2) = 2\pi r_a x \lambda x g_{V_1}(\pi r_a^2).$$

(34) (35)

A. Load Distribution on the Typical BS

Theorem 6: The PGF of the load S_m on typical Voronoi V_t is (see Appendix E for proof)

$$P_{S_m}(s) = \frac{\sqrt{\lambda b}}{4} \int_{z=0}^{\infty} \text{exp} \left(-\lambda b z \right) \left(1 - \int_{0}^{\infty} \text{exp} \left(g(s, 5c) f_C(c) dc \right) \right) g_{V_1} \left(\frac{\sqrt{\lambda b}}{4} z \right) dz,$$

(36)

where $g(s, \cdot)$ is given in (10). The PMF of S_m is

$$P[S_m = k] = \frac{1}{k!} P_{S_m}(0^{(k)}) = \frac{\sqrt{\lambda b}}{4} \int_{z=0}^{\infty} P_{S_m}^{(k)}(z=0) g_{V_1} \left(\frac{\sqrt{\lambda b}}{4} z \right) dz,$$

where $P_{S_m|z}^{(k)}(0)$

$$= \text{exp} \left(-\lambda b z \int_{0}^{\infty} \text{exp} \left(g(0, c/2) f_C(c) dc \right) \right) g_{V_1} \left(\frac{\sqrt{\lambda b}}{4} z \right) dz,$$

where $g(s, \cdot)$ is given in (10). Further, $g^{(k)}(s, \cdot)$ provided in (11) can be evaluated at $s = 0$.

Note that the mean load is equal to vehicular density times the mean size of the typical cell. Since the mean area of typical cell is $1/\lambda b$, we get

$$E[S_m] = \lambda m / \lambda b.$$

We can approximate S_m by $S_m = \Psi_m(B_2(o, R_o))$. Note that conditioned on R_t, $P_{S_m(R_t)}(r) = P_{S_m}^{(r)}(s)$. Deconditioning using the distribution of $f_{R_t}(r_t)$, we get the following result.

Theorem 7: The approximate PGF and PMF of the typical BS load are

$$P_{S_m}(s) = \int_{r_t=0}^{\infty} P_{S(r_t)}(s) f_{R_t}(r_t) dr_t$$

= $2\pi \int_{r_t=0}^{\infty} P_{S(r_t)}(s) r_t g_{V_1}(\pi r_t^2) dr_t,$

(37)

$$P[S_m = k] = 2\pi \int_{r_t=0}^{\infty} P[S(r_t) = k] r_t g_{V_1}(\pi r_t^2) dr_t,$$

(38)

where $P_{S(r)}(\cdot)$ and $P[S(r_0) = k]$ are given in Theorem 3 and (17), respectively. The PDF $g_{V_1}^{(r)}(\cdot)$ is given in (29).

Corollary 5: The mean of S_m is $E[S_m] = \lambda_m \pi E[r_1^2] = \lambda_m / \lambda b$, where $E[r_1^2] = \frac{1}{\lambda_m}$. Similarly, to find the variance of S_m, we need the second derivative of PGF conditioned on $s = 1$ which is given as

$$\lim_{s \to 1} P_{S_m}^{(2)}(s) = \int_{r=0}^{\infty} \left((F_{m}^{(1)}(r)^2 + F_{m}^{(2)}(r)) f_{R}(r) \right) dr.$$

$$F_{m}^{(1)}(r) = 2\pi \lambda b \int_{0}^{r} \frac{\kappa(t, 1)}{\sqrt{r^2 - t^2}} dt,$$

$$F_{m}^{(2)}(r) = 2\pi \lambda b \int_{0}^{r} \frac{\kappa(t, 1) + \kappa(t, 2)}{\sqrt{r^2 - t^2}} dt,$$

where $\kappa(t, k)$ is given in (12). Using the second derivative, mean and variance equation present in (15), we get the variance of S_m.

Corollary 6: The active probability (or the on probability) of the typical BS is given as

$$p_{on} = 1 - P[S_m = 0] = 1 - 2\pi \int_{r=0}^{\infty} P[S(r_0) = 0] r_t g_{V_1}(\pi r_t^2) dr_t$$

with

$$P[S(r_0) = 0] = \text{exp} \left(-2\pi \lambda b \left(r - \int_{0}^{r} \frac{\exp \left(g(0, t) t \right)}{\sqrt{r^2 - t^2}} dt \right) \right).$$

The off probability $p_{off} = 1 - p_{on}$.

B. Load Distribution on the Tagged BS

In this section, we derive the approximate additional load \tilde{M}_m on the tagged cell. Unlike Theorem 6, we will directly present the approximate load for the tagged cell. Here, the load \tilde{M}_m is equal to the sum of the number of vehicles on the tagged chord (of length C_o) and the number of vehicles falling inside a ball of radius R_o. From Lemma 1,

$$\tilde{M}_m \overset{d}{=} \Psi'_m(B_2(o, R_o)) + \Psi'_m(C_o) + \Omega'_m(C_o)$$

where $'$ denotes the independent unconditional instances of the processes. Note that the total load counting the typical vehicle on tagged cell is $M_m + 1$.

Theorem 8: The PGF $P_{\tilde{M}_m}(s)$ for the \tilde{M}_m excluding the typical vehicle is

$$P_{\tilde{M}_m}(s) = \int_{r_0=0}^{\infty} \int_{r_0=0}^{\infty} P_{M_m|R_n, C_o}(s, r_0, c_0) \times f_{R_n}(r_0) f_{C_o}(c_0) dr_0 dc_0,$$

(39)

where

$$P_{M_m|R_n, C_o}(s, r_0, c_0) = P_{N_{r_0}}(s, c_0) P_{S(r_0)}(s) \times \int_{x_o=-\infty}^{x_o=\infty} e^{-s(1)x_o} \left(\frac{\Psi', a_1|x_o-x_a|}{c_o 2a_2} \right) dx_o,$$

where $P_{N_{r_0}}(s, c_0)$ and $P_{S(r)}(s)$ is provided in (9) and (16).
Proof: See Appendix F.

Lemma 5: The PMF of \(\tilde{M}_m \) is given as \(\mathbb{P} [\tilde{M}_m = n] = \frac{1}{n!} \sum_{k_1+k_2+k_3=n} \binom{n}{k_1,k_2,k_3} \prod_{1 \leq i \leq 3} h_i^{(k_i)}(0) \) \(\times f_{\tilde{R}_m}(r_0) f_{\tilde{C}_m}(c_0) dr_0 dc_0 \),

where \(h_1^{(k)}(0, r_0) = P_N^{(k)}(0, r_0) \) is obtained in (24) and \(h_2^{(k)}(0, c_0/2) = e^{g(0, c_0/2)b} \left(g^{(1)}(0, c_0/2), \ldots , g^{(k)}(0, c_0/2) \right) \), \(h_3^{(k)}(0, c_0/2) = \frac{1}{ac_0} \int_{x_o=-a}^{a} \int_{x_o=-a}^{a} \lambda dA_1 \left(c_0/2, a, |x_o - x_0| \right) e^{(s-1)\lambda dA_1(c_0/2, a, |x_o - x_0|)} dx_o \), and \(g(0, \cdot) \) is given in (10), \(g^{(k)}(0, \cdot) \) is given in (11).

As the conditional PDF \(P_{\tilde{M}_m | R_n, c_o} \) is a product of three PGFs, the mean and variance of \(\tilde{M}_m \) can be written as summation of the mean and variance of the three individual RVs.

Corollary 7: The mean of \(\tilde{M}_m \) conditioned on \(c_o \) is

\[
\mathbb{E} \left[\tilde{M}_m | c_o \right] = \frac{1.28\lambda_m}{\lambda_b} + m\lambda_pc_o + \frac{1}{2ac_0} \int_{x_o=-a}^{a} \int_{x_o=-a}^{a} \lambda dA_1 \left(\frac{c_0}{2}, a, |x_o - x_0| \right) dx_o \]

We can further deconvolution using the PDF of \(C_o \) as given in (33). Similar to the variance of \(\tilde{S}_m \), we first find the second derivative of the PDF of \(\tilde{M}_m \) and then using the variance equation present in (15), we find the variance of \(\tilde{M}_m \).

C. Load Distribution for the Vehicular Traffic Under N-PTS

Since this paper also provides a comparative analysis of PTS with N-PTS, we also provide the load distribution for a vehicular communication network with N-PTS for completeness. We use the PGFs for load on the typical and the tagged cell presented in [34] to derive the mean and the variance of load. Here, the vehicles on each road form an independent 1D PPP with density \(\lambda \). Hence, the overall vehicular traffic \(\Psi_p \) formed by taking the union of all the vehicles on all roads is a PLP-PPP, as discussed earlier already. Its density is \(\lambda_L = \pi\lambda_L\lambda \). Let \(\mu_p \) denote the per-road vehicular density i.e. \(\mu_p = \lambda \). The mean approximate load on the typical and tagged BS in vehicular traffic under N-PTS is given as follows.

Corollary 8: The mean and variance of the approximate load \(S_p \) on the typical BS is

\[
\mathbb{E} \left[\tilde{S}_p \right] = \lambda_p \mathbb{E} \left[r_2^1 \right] = \frac{\lambda_i}{\lambda_b},
\]

\[
\text{Var} \left[\tilde{S}_p \right] = (\lambda_p)^2 \mathbb{E} \left[r_2^1 \right] + \frac{16}{3} \pi\lambda_L\lambda^2 \mathbb{E} \left[r_3^1 \right] + \frac{\lambda_i}{\lambda_b} \left(\frac{\lambda_i}{\lambda_b} \right)^2,
\]

where \(\lambda_i = \pi\lambda_L\lambda \), \(\mathbb{E} \left[r_2^1 \right] = \frac{1}{\pi\lambda_b} \), and \(\mathbb{E} \left[r_3^1 \right] = \int_{r_0}^{\infty} r_0^3 f_{R_m}(r_0) dr_0 \).

Similarly, we can find the variance of \(\tilde{M}_m \).

VI. RATE COVERAGE IN A PLATOONED VEHICULAR COMMUNICATION NETWORK

The rate coverage is defined as the probability that the rate achievable by the typical user is greater than a certain threshold i.e. \(r_c(\tau) = \mathbb{P}(R > \tau) \). Assuming that the available bandwidth \(B \) is equally shared by all user associated with the tagged BS, the achievable rate of typical receiver is given by

\[
R = B/(1 + M_m) \log_2 (1 + \text{SIR}),
\]

where \(M_m \) is the load on the tagged BS. Also note that the SIR depends on the active BS density which is further dependent on the load distribution on the typical cell. Hence, it is evident that the rate coverage depends on the distributions of the user load on both the typical and the tagged BS. Hence, the rate coverage is

\[
r_c(\tau) = \mathbb{P} \left(B/(1 + M_m) \log_2 (1 + \text{SIR}) > \tau \right) = \sum_{k=0}^{\infty} \mathbb{P}(M_m = k) \mathbb{P} \left(\text{SIR} > 2^{(k+1)/\mu_p} - 1 \right). \quad (40)
\]

Here, \(\mathbb{P}(\text{SIR} > \tau) \) is the coverage probability of the typical user of a cellular network. For the channel and SIR model considered in (27), the coverage is given as [27], [29].

\[
\mathbb{P}(\text{SIR} > \tau) = 2\pi\lambda_b \int_{0}^{\infty} \exp \left(-\lambda_{b}\pi\tau^2 - p_{on} \int_{0}^{\infty} \frac{2\pi\lambda_{b}\pi \tau y dy}{1 + \frac{y}{\pi\tau}} \right) dr
\]

\[
= \int_{0}^{\infty} \exp \left(-v - p_{on} \int_{0}^{1} \frac{dt}{1 + t^{3/2}} \right) dv
\]

\[
= \frac{1}{1 + p_{on} \int_{1}^{\infty} \frac{dt}{1 + t^{3/2}}},
\]

where the first two steps are due to the substitutions \(\pi\lambda_by^2 = u \) and \(u = vt \). Using (40), we get the following result.

Theorem 9: The rate coverage of the typical vehicular user in a vehicular communication network with platooned vehicles is

\[
r_c(\tau) = \sum_{k=0}^{\infty} \mathbb{P}(\tilde{M}_m = k) \left(1 + p_{on} \int_{1}^{\infty} \frac{dt}{1 + t^{3/2}\gamma_k^{-1}} \right)^{-1}, \quad (41)
\]

where \(\gamma_k = \left(\frac{2^{(k+1)/\mu_p} - 1}{\mu_p} \right) \) and \(p_{on} \) is given in Corollary 6.

Note that the rate coverage for a typical user in N-PTS can also be computed using (41) by replacing \(M_m \) with \(M_p \) and \(\tilde{S}_m \) with \(\tilde{S}_p \), respectively.
VII. NUMERICAL RESULTS

In this section, we first present numerical results using the derived expressions. We will first verify the accuracy of the PMFs of S_m and M_m by comparing them with the exact simulation results. We also discuss the impact of various parameters on the load distribution. After that, we will present a comparative analysis between PTS and N-PTS in terms of the energy efficiency, load imbalance and their impact on the rate coverage. Since the locations of vehicles are independent of each other because of the underlying PPP model, it is possible that the two proximate vehicles might come arbitrarily close to each other. Hence it is desirable to have a guard distance between the vehicles to improve traffic safety. One possible that the two proximate vehicles might come arbitrarily close to each other because of the underlying PPP model, it is observed further that the variance grows quadratically with density $\lambda_m = \mu_p = \mu$. Here, for N-PTS, λ is varied as $\lambda = \mu$ per km, while for PTS, λ is varied as $\lambda = \mu/\lambda_p$, while keeping $\lambda_p = 1$ platoon/km. Here, $\lambda_p = 5$ BS/km2, $\lambda_t = 5$ /km, and a is in meters. As a increases, the variance of S_m and M_m converge to variance of S_p and M_p, respectively.

A. Validation

To test the accuracy of the derived distributions of the approximate load S_m and M_m, we evaluate the Bhattacharyya coefficient (BC) [35] between the PMFs of the approximate load and the respective exact PMFs obtained using simulations. Note that for any two PMFs $p(\omega)$ and $q(\omega)$, the BC is defined as $D_{BC}(p,q) = \sum \sqrt{p(x)q(x)}$. The BC $D_{BC}(p,q)$, lies between 0 to 1, and a value close to 1 indicates good approximation. Fig. 4 presents the BC for the load on the typical (D$_{BC}(S_m, S_m)$) and the tagged cell (D$_{BC}(M_m, M_m)$) cell with varying per-road vehicular density $\mu_m = \mu_p = \mu$. Here, for N-PTS, λ is varied as $\lambda = \mu$ per km, while for PTS, λ is varied as $\lambda = \mu/\lambda_p$, while keeping $\lambda_p = 1$ platoon/km. Here, $\lambda_p = 5$ BS/km2, $\lambda_t = 5$ /km, and a is in meters. As a increases, the variance of S_m and M_m converge to variance of S_p and M_p, respectively.

B. Mean and Variance of the Load on the Typical Cell

Fig. 5(a) shows the mean and variance for the approximate load on the typical cell with respect to per-road vehicular density $\mu_m = m \lambda_p$ for different values of the platoon radius a. From Corollary 5, the mean load on the typical cell depends linearly on density $\lambda_m = \mu_p \lambda_t$ but does not depend on a. This is also evident from the numerical results. It can be observed further that the variance grows quadratically with μ_m which is consistent with (20). For small a, vehicles are concentrated close to the platoon centers because of which all the vehicles of a given platoon will very likely contribute to the load of a single BS. However, as we increase a, vehicles are more spread out, which decreases the variance of load on the typical BS. We also present the respective metrics for N-PTS. Here, we keep $\mu_p = \mu_m$ such that the mean load will be the same for N-PTS and PTS. Further, the variance for the PTS case is higher than N-PTS, and it becomes equal to N-PTS for very large a. This convergence is due to the fact that the MCP (λ_p, m, a) converges to PPP ($m \lambda_p$), as $a \to \infty$ [36].
C. Mean and Variance of the Load on the Tagged Cell

Fig. 5(b) presents the mean and variance for the approximate load on the tagged cell with respect to per-road vehicular density \(\mu_m = m \lambda_p \) for different values of the platoon radius \(a \). Here, mean and variance of \(\bar{M}_m \) are higher than those of \(\bar{M}_p \). In PTS, the occurrence of the typical point adds points of the associated platoon in the load. Therefore, the mean and the variance of the load is higher in PTS compared to N-PTS. Further, as \(a \to \infty \), the two scenarios become equivalent and the effect of the additional factor vanishes.

D. Impact of Platooning on the Energy Efficiency of the Typical Cell

To further understand the typical BS load, we will evaluate two additional metrics \(s_{\text{avg}} \) and \(p_u \). Here, \(s_{\text{avg}} \) is defined as the mean load of the typical BS when it is active, i.e.,

\[
s_{\text{avg}} = \mathbb{E} \left[\bar{S} | \bar{S} > 0 \right] = \mathbb{E} \left[\bar{S} \right] / p_{\text{on}}.
\]

The second metric \(p_u \) denotes the probability that the load on the typical active BS is less than the \(s_{\text{avg}} \), i.e.,

\[
p_u = \mathbb{P} \left[\bar{S} \leq s_{\text{avg}} | \bar{S} > 0 \right].
\]

Note that \(p_u \) represents the fraction of time the system is in a very safe operational regime. Fig 6(a) presents the off probability \(p_{\text{off}} \) of the typical BS (which also represents the fraction of BSs staying silent) in PTS and N-PTS scenario with respect to per-road vehicular density \(\mu = \mu_m = \mu_p \). We further observe that the off probability values \(p_{\text{off}} \) obtained using the analytical expression and simulation are close. The gap occurs due to approximation of the typical cell by a disk with an equal area.

We observe that \(p_{\text{off}} \) is higher in PTS as compared to the N-PTS indicating that the energy consumption in PTS is less than N-PTS. Fig. 6(b) shows the variation of \(p_u \) with active load \(s_{\text{avg}} \) by varying \(\lambda_b \) from 2 – 30 BS/km² while keeping the rest of the parameters fixed. As expected, the load \(s_{\text{avg}} \) on active BSs decreases with \(\lambda_b \). Further, \(s_{\text{avg}} \) is high in PTS due to a lower fraction of BSs staying active as compared to N-PTS. Due to relatively higher load in PTS, safe-operating probability \(p_u \) gets lower in PTS.

Fig. 7(a)-(c) presents variation of \(p_u \) with respect to BS density, active BS density and off probability for N-PTS and PTS. Here, \(p_u \) decreases with the densification of BSs which is intuitive. Small increments found in \(p_u \) at some densities are due to the discrete nature of summation in the definition of \(p_u \). Elaborating further, first note that the \(S \) can take only integer values. When \(s_{\text{avg}} \) decreases, the number of individual PMF terms may not decrease if the change in \(s_{\text{avg}} \) is fractional. However due to a decrease in the mean, the individual PMF terms increase, resulting in a net increase in \(p_u \). In Fig. 7(c), we compare \(p_u \) between PTS and N-PTS by equating the off probability. We can see that for the same level of off probability, \(p_u \) is almost the same in both the cases. In Fig. 7(c), we compare \(p_u \) between PTS and N-PTS by equating the active BS density. Since the active probability is significantly lower in PTS, we can observe that at the same value of \(\lambda_{\text{avg}} = \lambda_b \), \(p_u \) in N-PTS is lower.

E. Load Balance in the Tagged Cell

Note that the mean load is not the only criteria for comparing two systems. For instance, it may not be optimal from the energy utilization perspective to activate a BS to just serve a single vehicle. In order to understand the effect of load distribution, we define the following metrics: single user probability \(p_1 \), the average load on tagged cell \(m_{\text{avg}} \), and tagged safe-operating probability \(p_s \), as follows

\[
p_1 = \mathbb{P} \left[\bar{M} = 1 \right], \quad m_{\text{avg}} = \mathbb{E} \left[\bar{M} \right], \quad p_s = \mathbb{P} \left[\bar{M} \leq m_{\text{avg}} \right].
\]

Note that, a high \(p_1 \) represents that many BSs in the system are severely underloaded. From Fig 8(a), we can observe that \(p_1 \) in lower in PTS. This indicates that it is more likely in PTS that a BS is not wasting its power to just serve a single user. Fig 8(b) shows the variation of mean load in the tagged cell which decreases with \(\lambda_b \). Unlike the typical cell, the mean load on the tagged cell differs in PTS and N-PTS. Fig. 8(c) shows \(p_s \) with respect to \(m_{\text{avg}} \) using the data obtained from Fig. 8(b). We can observe that \(p_s \) is higher in N-PTS for the same value of \(m_{\text{avg}} \). Together with Fig. 5(b), which shows that the variance of the load on the tagged cell is higher in PTS, we can see that the spread of load distribution is higher in PTS. This means that the tagged BS may have to support a higher number of users in PTS compared to N-PTS.

F. Rate Coverage Analysis

From the results thus far, we have observed that while the PTS has a higher off probability, it also has a higher per-BS
load. Hence, if the system bandwidth is enough to support the load, the PTS is expected to perform better than N-PTS in terms of rate coverage. Fig. 9(a) shows the variation of rate coverage with respect to BS density for PTS and N-PTS with equal vehicular density ($\lambda_m = \lambda_L$). As expected, the rate coverage increases with the BS density. However, at any BS density, the rate coverage in PTS and N-PTS is almost equal, which may appear counter-intuitive. However, it must be noted that the active probability is significantly lower in PTS, which means that PTS can achieve almost the same rate coverage but at a much lower active BS density. This effect can be observed in Fig. 9(b) which shows the variation of the rate coverage with respect to the active BS density for PTS and N-PTS. Here, we can observe that PTS can achieve significantly higher coverage than N-PTS. Further, the densification of BSs in PTS does not impact the power budget, but still results in an improvement in the rate coverage. To quantitatively characterize the proximity of vehicles in platooned and non-platooned vehicles, we can utilize NND of MCP and PPP given in [36] and [27]. Note that the NND of a process is defined as the distance of the closest point from the typical point of the process. Comparing the two, we can see that platooning reduces the NND and hence increases the proximity of vehicles which is useful for two important reasons. First, it improves the road capacity by accommodating more vehicles in the same spread of a road. Second, a close proximity makes V2V communication among them more efficient and reliable. For example, in vehicular applications, like sending safety messages, the SINR/SNR distributions are crucial as the goal is to quickly establish a connection to transmit a short message. Due to smaller inter-vehicle distance, it can be shown that PTS is more efficient than an NPTS. To examine the effect of clustering, we plot the rate coverage as a function of vehicular density (μ) while maintaining the platoon density and radius fixed as presented in Fig. 9(c). Now, for low values of μ, the clustering is minimal. Hence, the rate coverage is almost the same in PTS and N-PTS. For high values of μ, platooning causes more vehicles to be associated with the tagged BS, thereby increasing load and decreasing the rate coverage. We have shown in Fig. 9(a) that the number of active BSs in PTS is less as compared to N-PTS, which decreases interference. Hence, with less number of active BSs, we may serve each vehicle in a platoon with a rate coverage almost similar to N-PTS.
VIII. CONCLUSION AND FUTURE SCOPE

In this paper, we have developed a comprehensive approach to the modeling and analysis of platooned vehicular traffic. The approach relies on a novel point process that captures vehicular platooning by explicitly capturing three layers of randomness: (i) irregular layout of the roads by modeling them as a PLP, (ii) randomness in the placement of the platoons on each road by modeling them as a PPP, and (iii) randomness in the location of each vehicle in a platoon by modeling them collectively as an MCP. After deriving several foundational results for this triple stochastic process, which we called PLP-MCP, we focused explicitly on the V2I communication network for platooned traffic consisting of BSs that serve the platooned traffic. For this setting, we present several key results related to the load distributions on the typical and the tagged BSs. Using these results, we derived the per-user rate coverage of this network and provided a detailed comparative analysis of the PTS and N-PTS cases to understand the effect of vehicular platooning on the performance of the resulting vehicular network. While the rate coverage of these two cases appear similar at the first glance, we defined and studied specific distributional properties of the underlying setup to expose subtle performance trends. Our results collectively demonstrated that the rate coverage of PTS is actually higher when we account for the active BS density. Since this paper presents the very first comprehensive analytical approach to the study of platooned vehicular traffic, there are naturally many extensions possible. Most importantly, it will be interesting to consider an additional tier of roadside units, which are an important component of the emerging vehicular networks. This will require an almost new analysis starting from the distributional results for the load on the typical and the tagged cells. It will also be useful to extend this framework to consider realistic scheduling algorithms.

APPENDIX

A. Proof of LF of Ψ_m. Unconditioned and Under Palm

The LF of Ψ_m is

$$
\mathcal{L}_{\Psi_m}(v) = \mathbb{E}_{\Psi_m} \left[e^{\left(-\sum_{z_{k,j,i} \in \Psi_m} v(z_{k,j,i}) \right)} \right]
$$

(a) $\mathcal{L}_{\Psi_m}(v) = \mathbb{E}_{\Psi_m} \left[\prod_{\ell_i \in \Phi_L, \ell_i} \mathbb{E}_{\Psi_{\ell_i}, \ell_i} \left[\prod_{z_{k,j,i} \in \Psi_{\ell_i}, \ell_i} e^{-v(z_{k,j,i})} \right] \right]
$

(b) $\mathcal{L}_{\Psi_m}(v) = \mathbb{E}_{\Psi_m} \left[\prod_{\ell_i \in \Phi_L} \mathbb{E}_{\Psi_{\ell_i}} \left[G_{\Psi_{\ell_i}, \rho_{\ell_i}, \phi_{\ell_i}}(e^{-v}) \right] \right]
$

where (a) is conditioned on Φ_L, and (b) is obtained by applying the PGFL of 1D MCP located on a line ℓ_i. Finally, applying the PGFL of the PLP, we get the LF of Ψ_m. For LF under Palm, we assume that the typical point of Ψ_m is located at the origin without loss of generality. The LF under Palm consists of the product of two terms - the LF of an independent and “unconditioned copy” of Ψ_m, and the LF of the MCP on the tagged line $\ell_o = L(0, \phi)$. Hence,

$$
\mathcal{L}_{\Psi_m}^{(o)}(v) = \mathbb{E}_{\Psi_m}^{(o)} \left[\exp \left(-\sum_{z_{k,j,i} \in \Psi_m \setminus \{o\}} v(z_{k,j,i}) \right) \right]
$$

(b) $\mathcal{L}_{\Psi_m}^{(o)}(v) \mathbb{E}_{\Psi_{\ell_i}}^{(o)} \left[\prod_{z_{k,j,i} \in \Psi_{\ell_i} \setminus \{o\}} \exp \left(-v(z_{k,j,i}) \right) \right]
$

(c) $\mathcal{L}_{\Psi_m}(v) \mathbb{E}_{\Psi_{\ell_i}} \left[\prod_{z_{k,j,i} \in \Psi_{\ell_i} \setminus \{o\}} \exp \left(-v(z_{k,j,i}) \right) \right]
$

Here, (a) is obtained by applying the PGFL for Ψ_m (b) is due to conditioning on the orientation of tagged line $L(0, \phi)$, and (c) is obtained by applying the PGFL of 1D MCP followed by deconditioning over the RV ρ_{ℓ_i} and $G_{\Psi_{\ell_i}, \ell_i}(\cdot)$ is given in (6).

B. Distribution of $S(r)$

Proof of Theorem 3: The number of vehicles $S(r)$ inside ball $B_2(o, r)$ is

$$
S(r) = \sum_{\ell_i \in \Phi_L, \rho_{\ell_i} \in [-r, r]} N_{\ell_i}
$$

Recall that $N_{\ell_i} = \Psi_{\ell_i}(B_2(o, r))$ denotes the number of vehicles on $\ell_i = L(\rho_{\ell_i}, \phi_{\ell_i})$ falling inside $B_2(o, r)$. The condition indicates that the distance of the line from the origin (ρ_{ℓ_i}) needs to be inside the range $[-r, r]$ for that line to have at least one point inside $B_2(o, r)$ [32]. Now, RVs $\{N_{\ell_1}, N_{\ell_2}, \ldots\}$ are independent and identically distributed (iid), hence PGF of $S(r)$ is

$$
P_{S(r)}(s) = \mathbb{E} \left[\prod_{\ell_i \in \Phi_L, \rho_{\ell_i} \in [-r, r]} P_{N_{\ell_i}}(s, r) \right]
$$

= $\mathbb{E} \left[\prod_{\ell_i \in \Phi_L, \rho_{\ell_i} \in [-r, r]} \exp \left(g(s, \sqrt{r^2 - \rho_{\ell_i}^2}) \right) \right],
$$

where the PGF of N_{ℓ_i} is given by (9). Since $\rho_{\ell_i}, \phi_{\ell_i}$ are points of a PPP in C^*, using PGFL of PPP [27], we get the desired result.

To get probability $P[S(r) = k]$, we require the k-th derivative of PGF. If we define

$$
f_m(s, r) = 2\pi \lambda_L \int_0^r \left(\exp(g(s, \sqrt{r^2 - \rho^2})) - 1 \right) d\rho,
$$

PGF $P_{S(r)}(s)$ takes the form of $\exp(f_m(s, r))$. Hence, we use the Faà di Bruno’s formula [37] to get (17). To get k-th derivative $f_m^{(k)}(r)$ of $f_m(s, r)$ at $s = 0$, we need to apply the Faà di Bruno’s formula one more time to get (18).

Proof of Corollary 2: The first derivative of $P_{S(r)}(s)$ is

$$
P_{S(r)}(s) = 2\pi \lambda_L P_{S(r)}(s) \frac{d}{ds} \int_0^r \exp(g(s, \sqrt{r^2 - \rho^2})) d\rho.
$$

(42)

Replacing $s = 1$ in (42) and solving further, we get the mean of $S(r)$. Similarly, the second derivative $P_{S(r)}^{(2)}(s)$ of $P_{S(r)}(s)$ is

$$
P_{S(r)}^{(2)}(s) = P_{S(r)}(s) \left(\frac{d}{ds} \int_0^r 2\pi \lambda_L \left(\exp(g(s, \sqrt{r^2 - \rho^2})) \right) d\rho \right)^2
$$

+ $P_{S(r)}(s) \frac{d^2}{ds^2} \int_0^r 2\pi \lambda_L \left(\exp(g(s, \sqrt{r^2 - \rho^2})) \right) d\rho
$$

Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply.
= (E[S(r)])^2 + 2\pi \lambda L \int_0^r \left((g^{(1)}(1, \sqrt{r^2 - \rho^2}))^2 + g^{(2)}(1, \sqrt{r^2 - \rho^2}) \right) d\rho.

Using the second derivative of PGF of S(r), we derive the variance \text{Var}(S(r)) of S(r) as

\text{Var}(S(r)) = P_{S(r)}^2(s) + \mathbb{E}[S(r)] - (E[S(r)])^2
= 2\pi \lambda L \int_0^r \left[(g^{(1)}(1, \sqrt{r^2 - \rho^2}))^2 + g^{(2)}(1, \sqrt{r^2 - \rho^2}) \right] d\rho + \rho \pi \lambda r^2.

From (11), \(g^{(1)}(1, \sqrt{r^2 - \rho^2})\) and \(g^{(2)}(1, \sqrt{r^2 - \rho^2})\) is

\(g^{(1)}(1, \sqrt{r^2 - \rho^2}) = 2\lambda p \left[\lambda \beta \sqrt{r^2 - \rho^2} \right]
+ \frac{\lambda^4}{2} \left(\beta \sqrt{r^2 - \rho^2} \right)^2 \right],
\quad (43)

\(g^{(2)}(1, \sqrt{r^2 - \rho^2}) = 2\lambda p \left[\left(\lambda \beta \sqrt{r^2 - \rho^2} \right)^2 \right]
+ \frac{\lambda^2}{3} \left(\beta \sqrt{r^2 - \rho^2} \right)^3 \right].
\quad (44)

We can simplify the integrals presented in (43) based on the value of \(a\) as follows,

Case I: If \(a > r\), \(\beta \sqrt{r^2 - \rho^2} = 2\alpha \sqrt{r^2 - \rho^2}\). Hence,

\[
\frac{\lambda^3}{2} \left(\frac{3}{2} a^2 \alpha - \frac{1}{16} \pi \rho^4 \right).
\]

Substituting the above values in (43), we get the variance of \(S(r)\) for \(a > r\).

Case II: If \(a < r\), for \(0 < \rho < \sqrt{r^2 - \alpha^2}\), \(\beta \sqrt{r^2 - \rho^2} = 2\alpha \), and when \(\sqrt{r^2 - \alpha^2} < \rho < r\), \(\beta \sqrt{r^2 - \rho^2} = 2\alpha \sqrt{r^2 - \rho^2}\). Hence,

\[
\frac{8\alpha^2 r^3}{3} \int_0^{\sqrt{r^2 - a^2}} (g^{(2)}(1, \sqrt{r^2 - \rho^2}) \right) d\rho
+ \frac{\lambda^2}{3} \left(\beta \sqrt{r^2 - \rho^2} \right)^3 \right].
\]

On substituting \(\beta \sqrt{r^2 - \alpha^2}\)'s value and further manipulations, we get the desired result.

D. Proof of Theorem 5: Distribution of the Tagged Chord Length

The joint CCDF of the lengths \(L_1 = oQ_1\) and \(L_2 = oQ_2\) can be written as

\[
\mathcal{P}_{L_1, L_2}(l_1, l_2) = P(L_1 > l_1, L_2 > l_2) = \mathbb{P}[A],
\]

where event \(A = \{Q_1, Q_2\) and \(o\) belong to the same cell). If we let \(A_i\) be the event that \(Q_1, Q_2,\) and the origin \(o\), all three locations lie in a single cell \(V_{y_i}\) of point \(P_i\) located at \(y_i\), then

\[
\mathbb{I}(A) = \sum_{y_i \in \Phi_0} \mathbb{I}(A_i).
\]

Now, \(A_i = \{B_2(o, y_i), B_2(Q_1, |P_i, Q_1|)\) and \(B_2(Q_2, |P_i, Q_2|)\) have no other point except \(P_i\).

\[
\mathcal{P}_{L_1, L_2}(l_1, l_2) = P[A] = E \left[\sum_{y_i \in \Phi_0} \mathbb{I}(A_i) \right]
\]

\[
(\alpha) \lambda_b \int_{\mathbb{R}^2} P(\Phi_i) \text{ has no point in } B_2(Q_1, r(l_1))
\]

\[
= \mathbb{B}_2(Q_2, r(l_2)) \text{ dy}
\]

\[
(\beta) \lambda_b \int_0^{2\pi} \int_0^{\infty} \exp(-\lambda_b \mathcal{V}(l_1 + l_2, r(l_1), l_2)) y dy d\theta.
\]

where \((\alpha)\) is due to the Campbell-Mecke theorem [27] and \((\beta)\) is due to conversion in polar coordinates. Now, we can compute the joint PDF \(f_{L_1, L_2}(l_1, l_2)\) from the joint CDF as

\[
f_{L_1, L_2}''(l_1, l_2) = \frac{\partial^2 \mathcal{P}_{L_1, L_2}(l_1, l_2)}{\partial l_1 \partial l_2},
\]

which gives (32). Now, since \(C_o = L_1 + L_2\), the PDF of \(C_o\) can be derived by integrating the joint PDF over the line.
E. Proof of Theorem 6: Distribution of Load on the Typical Cell

The number of points falling in the typical cell is \(S_m = \sum_{c \in \mathcal{P}} \psi_t(V_i) \). Let \(N \) be the number of chords intersecting with the typical cell \(V_i \). Here, \(N \) is a Poisson RV with mean \(\lambda L Z \), where \(Z \) is also a RV denoting the perimeter of the typical cell. Since the number of points on each chord is iid, the PGF of \(S_m \) conditioned on \(N \) is

\[
P_{S_m|N=n}(s) = \mathbb{E}_{\psi_t}[s^{S_m} | N = n] = \left[\int_0^\infty e^{g(s,c/2) f_L(c) dc} \right]^n.
\]

Deconditioning over \(n \), we get

\[
P_{S_m|Z=z}(s) = e^{-\lambda L z \left(1 - \int_0^\infty \exp \left(g(s, z) f_L(c) dc \right) \right)}.
\]

Now, deconditioning over the distribution of \(Z \) (using the PDF of \(Z \) given in (30)), we obtain the PGF. From (13), we can compute \(\mathbb{P}(S_m = k) \) from the \(k \)-th derivative of PGF \(P_{S_m}(s) \). The \(k \)-th derivative of \(P_{S_m|Z}(s) \) is

\[
P_{S_m|Z}(s) = \frac{d^k}{dz^k} \left(\exp(g_m(s)) \right),
\]

where \(g_m(s) = \left(-\lambda L z \left(1 - \int_0^\infty \exp \left(g(s, z) f_L(c) dc \right) \right) \right) \). As it is in the form of \(f(h(s)) \), we use the Faà di Bruno’s formula [37] to get

\[
P_{S_m|Z}(s) = \exp(g_m(s)) b \left(g_m^{(1)}(s), \ldots, g_m^{(k)}(s) \right),
\]

where \(b \) is the \(k \)-th derivative of \(g_m(s) \), we apply the Faà di Bruno’s formula again and substitute \(s = 0 \) to get the value of \(g_m^{(k)}(s) \). Now, deconditioning over \(Z \) gives the desired result.

F. Proof of Theorem 8: Approximate Tagged Load Distribution

Note that \(\tilde{M}_m = \psi_{e'}(B_2(\alpha, R_o)) \). The tagged chord and its parent point associated with the typical point. Further note that if the tagged chord has length \(c_o \), its center \(x_o \) is uniformly distributed in \([-c_o/2, c_o/2] \). We also note that \(x_o \) is uniformly distributed in \([-\alpha, \alpha] \) [36]. We already know the distribution of the first term. From (16), the PGF for \(\psi_{e'}(B_2(\alpha, R_o)) \) is

\[
P_{\psi_{e'}(B_2(\alpha, R_o))}(s) = P_{S(R_o)}(s).
\]

For the second term, we have \(C_o \) as the tagged chord and \(x_o \), its parent point associated with the typical point. Due to stationarity of \(\psi_{e'} \) relative to the line \(\ell_{\psi_{e'}} \), \(\psi_{e'}(B_1(x_o, c_o/2)) = \psi_{e'}(B_1(0, c_o/2)) \). The PGF of RV \(\psi_{e'}(B_1(0, c_o/2)) \) is

\[
P_{\psi_{e'}(B_1(0, c_o/2))}(s) = P_{N_{\psi_e}}(s, c_o/2),
\]

where \(P_{N_{\psi_e}}(s, c_o/2) \) is provided in (9). For the third term, we note that \(\Omega_{\psi_{e'}}(c_o/2) \) varies depending on \(B_1(x_o, a/2) \). Hence, \(\Omega_{\psi_{e'}}(c_o/2) \) is a PPP in the region \(B_1(x_o, a) \) with density \(\lambda_{\psi_{e'}} \). The mean number of points in this PPP is \(\lambda_{\psi_{e'}}(c_o/2, a, x_o) \). Hence, its PGF is

\[
\exp \left((s-1)\lambda_{\psi_{e'}}(c_o/2, a, x_o) \right).
\]

Using the law of total probability, deconditioning over \(x_o \), and \(x_o \), the PGF of the third term is given as

\[
P_{\Omega_{\psi_{e'}}(c_o/2)}(s|C_o = c_o) = \int_{x_o = -c_o/2}^{c_o/2} \int_{x_o = -c_o/2}^{c_o/2} \frac{e^{-(s-1)\lambda_{\psi_{e'}}(c_o/2, a, x_o)}}{2ac_o} dx_o.
\]

References

[1] S. Zeadally, M. A. Javed, and E. B. Hamida, “Vehicular communications for ITS: Standardization and challenges,” IEEE Commun. Stand. Mag., vol. 4, no. 1, pp. 11–17, Dec. 2020.

[2] D. Y. Jia, K. Lu, J. Wang, X. Zhang, and X. Shen, “A survey on platoon-based vehicular cyber-physical systems,” IEEE Commun. Surveys Tuts., vol. 18, no. 1, pp. 263–284, 1st Quart., 2016.

[3] C. Perfecto, J. Del Ser, and M. Bennis, “Millimeter-wave V2Y communications: Distributed association and beam alignment,” IEEE J. Sel. Areas Commun., vol. 35, no. 9, pp. 2148–2162, Jun. 2017.

[4] E. Ahmed and H. Ghareh, “Cooperative vehicular networking: A survey,” IEEE Trans. Intell. Transp. Syst., vol. 19, no. 3, pp. 996–1014, Mar. 2018.

[5] J. E. Siegel, D. C. Erb, and S. E. Sarma, “A survey of the connected vehicle landscape—Architectures, enabling technologies, applications, and development areas,” IEEE Trans. Intell. Transp. Syst., vol. 19, no. 8, pp. 2391–2406, Oct. 2017.

[6] B. Blaszczyszyn, P. Mühlethaler, and Y. Toor, “Maximizing throughput of vehicular ad-hoc NETworks (VANETs)—A stochastic approach,” in Proc. Eur. Wireless Conf., May 2009, pp. 32–36.

[7] B. Blaszczyszyn, P. Mühlethaler, and Y. Toor, “Stochastic analysis of Aloha in vehicular ad hoc networks,” Ann. Telecommunications-Annales des Télécommunications, vol. 68, pp. 95–106, Feb. 2013.

[8] Y. Wang, K. Venugopal, R. W. Heath Jr., and A. F. Molisch, “MmWave vehicle-to-infrastructure communication: Analysis of urban microcellular networks,” IEEE Trans. Veh. Technol., vol. 67, no. 8, pp. 7086–7100, Aug. 2018.

[9] Y. Wang, K. Venugopal, A. F. Molisch, and R. W. Heath, “Blockage and coverage analysis with mmWave cross street BSs near urban intersections,” in Proc. IEEE Int. Conf. Commun. (ICC), May 2017, pp. 1–6.

[10] F. Baccelli and S. Zuyev, “Stochastic geometry models of mobile communication networks,” in Frontiers in Queueing: Models and Applications in Science and Engineering, Boca Raton, FL, USA: CRC Press, 2016, pp. 227–243.

[11] H. S. Dhillon and V. V. Chetlur, Poisson Line Process: Foundations and Applications to Vehicular Networks. San Rafael, CA, USA: Morgan & Claypool Publishers, 2020.

[12] S. Guha, “Cellular-assisted vehicular communications: A stochastic geometric approach,” M.S. thesis, Virginia Tech, Blacksburg, VA, USA, 2016.

[13] V. V. Chetlur and H. S. Dhillon, “Coverage analysis of a vehicular network modeled as Cox point process driven by Poisson line process,” IEEE Trans. Wireless Commun., vol. 17, no. 7, pp. 4401–4416, Jul. 2018.

[14] V. V. Chetlur, S. Guha, and H. S. Dhillon, “Characterization of V2V coverage in a network of roads modeled as Poisson line process,” in Proc. IEEE Int. Conf. Commun. (ICC), May 2018, pp. 1–6.

[15] V. V. Chetlur and H. S. Dhillon, “On the load distribution of vehicular users modeled by a Poisson line Cox process,” IEEE Wireless Commun. Lett., vol. 9, no. 12, pp. 2121–2125, Dec. 2020.

[16] M. N. Sial, Y. Deng, J. Ahmed, A. Nallanathan, and M. Dohler, “Stochastic geometry modeling of cellular U2X communication over shared channels,” IEEE Trans. Veh. Technol., vol. 68, no. 12, pp. 11873–11887, Dec. 2019.

[17] C.-S. Choi and F. Baccelli, “An analytical framework for coverage in cellular networks leveraging vehicles,” IEEE Trans. Commun., vol. 66, no. 10, pp. 4950–4964, Oct. 2018.

[18] V. V. Chetlur and H. S. Dhillon, “Success probability and area spectral efficiency of a VANET modeled as a Cox process,” IEEE Wireless Commun. Lett., vol. 7, no. 5, pp. 856–859, Oct. 2018.
