Entrapment of the temporal horn secondary to postoperative gamma-knife radiosurgery in intraventricular meningioma: A case report

Jia Liu, Sheng-Rong Long, Guang-Yu Li

Abstract

BACKGROUND
Entrapment of the temporal horn (ETH) is a rare pathologic condition. It is a kind of focal hydrocephalus caused by obstruction of flow pathway of cerebrospinal fluid. It is caused by various conditions, but ETH secondary to postoperative gamma-knife radiosurgery (GKS) is extremely rare.

CASE SUMMARY
A 52-year old previously healthy woman underwent resection of a large intraventricular meningioma. A small fragment of residual tumor with no obvious enlargement of the temporal horn was observed 3 mo after surgery, and she was referred for GKS. Two months after GKS, she complained of headache and progressive paralysis of the left limb. Magnetic resonance imaging revealed enlargement of the temporal horn. There was a second procedure to resect the residual tumor 8 mo after GKS. After the second procedure, she recovered smoothly. As of the date of this writing, she has remained in good condition.

CONCLUSION
This case reminds us that ETH should be considered in the treatment of intraventricular meningiomas, especially before GKS.

Key words: Entrapment of the temporal horn; Gamma-knife radiosurgery; Intraventricular meningioma; Case report
after first operation of intraventricular meningioma due to residual tumor. Then, ETH occurred 2 mo after GKS. A second operation to resect the residual tumor 8 mo after GKS was performed and the patient recovered smoothly. This case reminded us that ETH should be considered in the treatment of intraventricular meningiomas, especially before GKS.

Citation: Liu J, Long SR, Li GY. Entrapment of the temporal horn secondary to postoperative gamma-knife radiosurgery in intraventricular meningioma: A case report. World J Clin Cases 2019; 7(18): 2894-2898
URL: https://www.wjgnet.com/2307-8960/full/v7/i18/2894.htm
DOI: https://dx.doi.org/10.12998/wjcc.v7.i18.2894

INTRODUCTION

Entrapment of the temporal horn (ETH) is characterized by dilation of the temporal horn of the lateral ventricle, caused by cerebrospinal fluid (CSF) obstruction at the trigone level. It is secondary to several pathological conditions, including infection[1], intraventricular hematoma[2], parasitic infection[3], arteriovenous malformation[4], and intraventricular tumors[5]. Most reported cases of ETH were secondary to these pathological conditions. However, gamma-knife radiosurgery (GKS) also can lead to ETH, although this situation has been rarely reported. Here we report the first case of ETH secondary to postoperative GKS.

CASE PRESENTATION

Chief complaints
A 52-year old woman was admitted to our hospital with a complaint of weakness of the left limb and lethargy.

History of present illness
She felt weakness of the left limb 3 mo before admission and became lethargy 3 d before admission.

History of past illness
No past illness was complained by the patient.

Physical examination
On admission, the patient was somnolent. Physical examination showed weakness of the left limbs and bilateral papilledema. After admission, her condition deteriorated rapidly.

Laboratory examinations
No obvious abnormality was revealed in laboratory examinations.

Imaging examinations
A computed tomography (CT) scan showed a homodensity lesion in the right trigon of the ventricle, and magnetic resonance imaging (MRI) showed a lesion with homogenous enhancement in the right trigone of the ventricle. No enlargement of the ventricle was observed (Figure 1).

TREATMENT

She underwent intraventricular meningioma resection under general anesthesia via a transcortical approach. A small piece of tumor remained during the operation because of unstable vital signs. Postoperative pathological diagnosis confirmed meningioma. The patient recovered smoothly after surgery and symptoms disappeared gradually. A follow-up at 3 mo after surgery revealed residual tumor. She was in good condition at the time. She was then referred for GKS. Radiosurgery was performed with 32 Gy of five central points and a marginal dose of 16 Gy to 50% isodose curve, which lasted 2325 s. Two months after GKS, she developed a headache and progressive paralysis of
Figure 1 Entrapment of the temporal horn secondary to postoperative gamma-knife radiosurgery in intraventricular meningioma. A: A computed tomography scan showing a lesion in the right trigon of the ventricle; B: Magnetic resonance imaging (MRI) before the first operation showing a lesion with homogenous enhancement in the right trigone of the ventricle; C: MRI at 3 mo after the first operation showing residual tumor without substantial dilation of the temporal horn; D: MRI at 1 mo after gamma-knife radiosurgery (GKS) showing slight dilation of the temporal horn; E: MRI at 8 mo after GKS showing substantial dilation of the temporal horn; F: MRI at 1 mo after the second operation showing a normal temporal horn.

the left limb. Follow-up magnetic resonance imaging revealed progressive expansion of the ventricular temporal horn. She then underwent a second operation 11 mo after the first procedure. At the second operation, the residual tumor was resected completely and the choroid plexus was coagulated (Figure 2).

OUTCOME AND FOLLOW-UP

After the second operation, she recovered rapidly with disappearance of headache and hemiparesis. She has remained well until the most recent follow-up 9 mo after the second surgery (Figure 3).

DISCUSSION

Recently, ETH after operation of the trigone meningioma has been brought into focus, which was seldom discovered before. As the development of imaging plays an important role in neurosurgery\(^{(6,7)}\), dilation of the ventricle can be monitored by CT and MRI. In fact, dilation of the temporal horn of the lateral ventricle is not rare after surgery for intraventricular lesions\(^{(8)}\), especially for trigone meningioma\(^{(9)}\). However, most are asymptomatic or can be treated with conservative therapy. Only few cases require surgical intervention because of progressive intracranial hypertension and mass effect caused by dilated temporal horn. Several factors were reported to be related to the occurrence of postoperative ETH, including meningitis after surgery, neurologic deficits after operation, and inappropriate ventricular drainage\(^{(10)}\). In our case, a large trigon meningioma was resected. None of the factors mentioned above were present in our case. Despite a small residual piece of tumor, no substantial dilation of the temporal horn occurred 3 mo after surgery. Nevertheless, two months after GKS, she suffered from headache and gradual symptom worsening. In our case, no high-risk factor related with ETH was observed; therefore, we speculated that ETH in our case was secondary to radiation damage induced by GKS. Radiation led to brain damage, including to the ventricular wall; this may have led to occlusion of CSF...
Figure 2 Entrapment of the temporal horn secondary to postoperative gamma-knife radiosurgery in intraventricular meningioma. A: Pathology after first operation. Microscopically, the tumor cells were spindle-shaped and bundle-shaped with slightly larger and darker nuclei, and the diagnosis was meningioma; B: Pathology after second operation. Microscopically, the tumor cells were patchy, densely arranged, and slightly atypical, with massive necrosis and hemorrhage locally. The diagnosis was atypical meningioma.

Flow. Radiation-associated ETH was reported in only a girl with a diffuse parietoccipital AVM who underwent GKS[10]. GKS also can cause tumor edema and increase tumor volume, leading to ETH. To the best of our knowledge, ETH secondary to GKS in trigone meningioma has not been reported previously.

There are many methods to manage ETH, including V-P shunt[2], endoscopic temporal ventriculocisternostomy[11,12], frontal-to-temporal horn shunt[13], and temporal horn to prepontine cistern shunt[14]. In this case, resection of residual tumor was performed, and the patient recovered smoothly thereafter.

CONCLUSION

In conclusion, to the best of our knowledge, this is the first case of ETH after GKS in an intraventricular meningioma. This case reminds us that ETH should be considered when treating intraventricular meningiomas, especially before GKS.
Figure 3 Timeline showing events starting from the onset of symptoms until ultimate outcome.

REFERENCES

1. Tsugane R, Shimoda M, Yamaguchi T, Yamamoto I, Sato O. Entrapment of the temporal horn: a form of focal non-communicating hydrocephalus caused by intraventricular block of cerebrospinal fluid flow--report of two cases. *Neurol Med Chir (Tokyo)* 1992; 32: 210-214 [PMID: 1378565 DOI: 10.2176/nmc.32.210]

2. Maurice-Williams RS, Choksey M. Entrapment of the temporal horn: a form of focal obstructive hydrocephalus. *J Neurol Neurosurg Psychiatry* 1986; 49: 238-242 [PMID: 3958736 DOI: 10.1136/jnnp.49.3.238]

3. Kamali NI, Huda MF, Srivastava VK. Intraventricular hydatid cyst causing entrapped temporal horn syndrome: Case report and review of literature. *Trop Parasitol* 2011; 1: 113-115 [PMID: 23508788 DOI: 10.4103/2229-5070.86953]

4. Paredes I, Orduna J, Fustero D, Salgado JA, de Diego JM, de Mesa FG. Endoscopic temporal ventriculocisternostomy for the management of temporal horn entrapment: report of 4 cases. *J Neurosurg* 2017; 126: 298-303 [PMID: 27051903 DOI: 10.3171/2016.1.JNS152248]

5. Wang Y, Lin Z, Li Z, Zhao M, Hu M, Zhang H, Chen X, Jiang Z. The Incidence and Risk Factors of Postoperative Entrapped Temporal Horn in Trigone Meningiomas. *World Neurosurg* 2016; 90: 511-517 [PMID: 27012837 DOI: 10.1016/j.wneu.2016.03.040]

6. Abdel Razek AAK, El-Serougy L, Abdelsalam M, Gaballa G, Talaat M. Differentiation of Primary Central Nervous System Lymphoma From Glioblastoma: Quantitative Analysis Using Arterial Spin Labeling and Diffusion Tensor Imaging. *World Neurosurg* 2019; 123: e303-e309 [PMID: 30502475 DOI: 10.1016/j.wneu.2018.11.155]

7. Razek AAKA, El-Serougy L, Abdelsalam M, Gaballa G, Talaat M. Differentiation of residual/recurrent gliomas from postradiation necrosis with arterial spin labeling and diffusion tensor magnetic resonance imaging-derived metrics. *Neuroradiology* 2018; 60: 169-177 [PMID: 29218370 DOI: 10.1007/s00234-017-1955-3]

8. Zhang B, Wang X, Li C, Li Z. Neuroendoscopic Fenestration for Entrapped Temporal Horn After Surgery: Report of 3 Cases. *World Neurosurg* 2018; 112: 77-80 [PMID: 29371166 DOI: 10.1016/j.wneu.2018.01.096]

9. Ma J, Cheng L, Wang G, Lin S. Surgical management of meningioma of the trigone area of the lateral ventricle. *World Neurosurg* 2014; 82: 757-769 [PMID: 24878623 DOI: 10.1016/j.wneu.2014.05.026]

10. Yeon JY, Shin HJ, Kim JS, Hong SC, Lee JL. Clinico-radiological outcomes following gamma knife radiosurgery for pediatric arteriovenous malformations. *Childs Nerv Syst* 2011; 27: 1109-1119 [PMID: 21286750 DOI: 10.1007/s00381-011-1401-5]

11. Krähenbühl AK, Baldauf J, Gaab MR, Schroeder HW. Endoscopic temporal ventriculocisternostomy: an option for the treatment of trapped temporal horns. *J Neurosurg Pediatr* 2013; 11: 568-574 [PMID: 23521153 DOI: 10.3171/2013.2.PEDS12417]

12. Arenas-Ruiz JA, Martinez-Maldonado H, Gonzalez-Carranza V, Torres-Garcia S, Chico-Ponce de Leon F. Endoscopic ventriculo-cisterno-ventricular approach in the treatment of bilateral trapped temporal horn related to fungal infection in a child: case report and review of the literature. *Childs Nerv Syst* 2018; 34: 1593-1597 [PMID: 29557111 DOI: 10.1007/s00381-018-3776-z]

13. Hervey-Jumper St, Ziewacz JE, Heth JA, Sullivan SE. Frontal-to-temporal horn shunt as treatment for temporal horn entrapment. *J Neurosurg* 2010; 112: 410-413 [PMID: 19408983 DOI: 10.3171/2009.3]

14. Chen CC, Kasper EM, Zinn PO, Warnke PC. Management of entrapped temporal horn by preoptic cistern shunting. *World Neurosurg* 2013; 79: 404.e7-404.10 [PMID: 22120406 DOI: 10.1016/j.wneu.2011.02.025]
