Efavirenz Promotes β-Secretase Expression and Increased Aβ₁₋₄₀,₄₂ via Oxidative Stress and Reduced Microglial Phagocytosis: Implications for HIV Associated Neurocognitive Disorders (HAND)

Lecia A. M. Brown¹,², Jingji Jin¹, Darren Ferrell¹,², Edin Sadic¹, Demian Obregon³, Adam J. Smith³, Jun Tan²,³,⁴,⁵, Brian Giunta¹,²,⁴,⁵,⁶

¹ Department of Psychiatry and Behavioral Neurosciences, Neuroimmunology Laboratory, University of South Florida, Morsani College of Medicine, Tampa, Florida, United States of America, ² Department of Molecular Medicine, University of South Florida, Morsani College of Medicine, Tampa, Florida, United States of America, ³ Department of Psychiatry and Neurosciences, Rashid Developmental Neurobiology Laboratory, Silver Child Development Center, University of South Florida, Morsani College of Medicine, Tampa, Florida, United States of America, ⁴ Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, Florida, United States of America, ⁵ James A. Haley Veterans Administration Hospital, Tampa, Florida, United States of America

Abstract
Efavirenz (EFV) is among the most commonly used antiretroviral drugs globally, causes neurological symptoms that interfere with adherence and reduce tolerability, and may have central nervous system (CNS) effects that contribute in part to HIV associated neurocognitive disorders (HAND) in patients on combination antiretroviral therapy (cART). Thus we evaluated a commonly used EFV containing regimen: EFV/zidovudine (AZT)/lamivudine (3TC) in murine N2a cells transfected with the human “Swedish” mutant form of amyloid precursor protein (SweAPP N2a cells) to assess for promotion of amyloid-beta (Aβ) production. Treatment with EFV or the EFV containing regimen generated significantly increased soluble amyloid beta (Aβ), and promoted increased β-secretase-1 (BACE-1) expression while 3TC, AZT, or, vehicle control did not significantly alter these endpoints. Further, EFV or the EFV containing regimen promoted significantly more mitochondrial stress in SweAPP N2a cells as compared to 3TC, AZT, or vehicle control. We next tested the EFV containing regimen in Aβ producing Tg2576 mice combined or singly using clinically relevant doses. EFV or the EFV containing regimen promoted significantly more BACE-1 expression and soluble Aβ generation while 3TC, AZT, or, vehicle control did not. Finally, microglial Aβ phagocytosis was significantly reduced by EFV or the EFV containing regimen but not by AZT, 3TC, or vehicle control alone. These data suggest the majority of Aβ promoting effects of this cART regimen are dependent upon EFV as it promotes both increased production, and decreased clearance of Aβ peptide.

Introduction
There has been considerable growth in patient’s receiving combination antiretroviral therapy (cART) in recent years [1]. Up to 50% of long-term HIV-infected patients experience HIV associated neurocognitive disorders (HAND) [2]. Most recently it was shown the Non-Nucleoside Reverse Transcriptase Inhibitor (NNRTI) efavirenz (EFV) is associated with cognitive disorders even in asymptomatic HIV-infected patients [3]. A randomized controlled study [4] found subjects receiving EFV-containing regimens showed less improvement from baseline on instruments examining speed of information processing and executive function than patients not on EFV. Further, patients with preserved immune function on EFV regimens showed greater improvement on Trail-Making Tests A and B and the Wechsler Adult Intelligence Scale digital symbol test after EFV interruption than the non-EFV control group [5]. EFV has substantial rates of central nervous system (CNS) side effects aside of cognitive impairment including sleep and dreaming disturbances and anxiety [6–8] that interfere with adherence and tolerability as well [9].

Amyloid-beta (Aβ) peptide generation and aggregation as plaques are traditionally known as key events in the development of Alzheimer’s Disease (AD; [10–13]). The peptides have been evidenced to be neurotoxic, as they are reported mediators of inflammation [14,15], and oxidative stress [16]. Aβ peptides are produced via the amyloidogenic pathway of amyloid precursor protein (APP) proteolysis, which involves the actions of β and γ-secretases [13,17]. Initially, β-secretase (BACE-1) cleaves APP, creating an Aβ-containing carboxyl-terminal fragment known as β-C-terminal fragment (β-CTF) [18]. This proteolysis also...
Neuronal Aβ Production Assay

This was performed according to our previous works [44]. Briefly, SweAPP N2a cells were treated with EFV, AZT, and 3TC both alone (10 μM) and in combination (10 μM) for 18 hours. Aβ1-40, 42 peptides were detected directly from the conditioned media and quantified in these samples using Aβ1-40, 42 ELISA kits (Life Technologies) in accordance with the manufacturer’s instructions.

Western immunoblotting

Western blot was performed as described previously [50,51]. Briefly, total protein content was estimated using the Bio-Rad protein assay in strict accordance with manufacturer’s directions. Immunoblotting was performed with a primary antibody followed by an anti-mouse HRP-conjugated IgG secondary antibody as a tracer. Primary antibodies used included: 6E10 monoclonal anti-Aβ antibody (Covance, 1:1000), polyclonal Rabbit anti-BACE-1 (Sigma1:1000), C-terminus monoclonal anti-BACE-1 (Millipore 1:1000), and anti-actin antibody (Sigma, 1:1500).

For the in vitro studies of Aβ associated pathology we employed our previous methods [50,51]. Left hemispheres of 3 month old transgenic and nontransgenic mouse brains were lysed in ice-cold lysis buffer and aliquots were electrophoretically separated using 16.5% Tris–tricine gels. Electrophoresed proteins were then transferred to PVDF membranes (Bio-Rad), washed in dH2O, then blocked in Tris-buffered saline containing 5% (w/v) non-fat dry milk. Membranes were then hybridized with various primary antibodies followed by washing in dH2O and then incubation for 1 h at ambient temperature with the appropriate HRP-conjugated secondary antibody (1:1000). For both in vitro and in vivo studies, blots were developed and then assessed densitometrically analyzed using the Fluor-S MultiImager with Quantity One software (Bio-Rad).

Materials and Methods

All animal work was approved by the University of South Florida Institutional Animal Care and Use Committee (IACUC).

Reagents

Aβ1-40 and Aβ1-42 peptides and control peptide (Aβ10-1) were obtained from QCB (Hopkinton, MA) and freshly solubilized in distilled H2O immediately before use. To determine the oligomeric state of Aβ in our assays, Aβ was immunoprecipitated from cell supernatants after incubation with microglia and/or neurons, and Western blot analysis was performed at time points of 12, 24, and 48 hr. Data revealed that both Aβ1-40 and Aβ1-42, irrespective of the time points assayed, existed as a ladder of SDS-stable oligomers, with a predominant species of ~32 kDa. Immunoblot polyvinylidene difluoride (PVDF) membranes were purchased from Bio-Rad (Hercules, CA). Tris-buffered saline was obtained from Bio-Rad (Hercules, CA) and luminol reagent was obtained from Pierce Biotechnology. Anti-actin antibody was obtained from Roche. Antiretrovirals were obtained from The National Institutes of Health (NIH) AIDS Research and Reference Reagent Program (Rockville, MD). Regarding dosages administered, cART effects in vivo are likely to occur over long-term exposures [43]. Thus, chronic, low dose, in vivo effects of any reagent are often very appropriately modeled in vitro, by proportionally higher doses of the same reagent, over more acute time frames [43]. For these reasons we used 10 μM cART doses throughout our in vitro works and per our previous study [44]. The doses of cART administered in vivo were based on based on human clinical therapy [45], the body weight of the mice, the short dosing period of 10 ten days, the administration method being in chow as opposed to intravenous administration, as well as those reported in previous publications: AZT 50 mg/kg [46-48], 3TC 40 mg/kg [47,48], and EFV 15 mg/kg [46,49].

Mitochondrial Stress Analysis: Adenosine triphosphate (ATP), mitochondrial membrane potential (MMP), and reactive oxygen species (ROS)

ATP determination was performed using the Invitrogen ATP determination kit (A22066). MMP analysis was performed using a JC-1 (excitation filter 530/25, emission filter 590/35) MMP detection kit (Biotium). Cellular ROS generation was analyzed using 2,7-dichloro dihydrofluorescin diacetate (excitation filter 485/20, emission filter528/20) from the Invitrogen ROS detection kit. For all three analyses of mitochondrial stress, the reagents and reaction mixture were combined according to the supplied protocol. All fluorescence measurements were read using a Biotek Synergy H1 microplate reader.

Microglial Phagocytosis Assay

This was performed according to our previous studies [44,50]. Briefly, primary mouse microglia were treated with “aged” Aβ1-42 peptide conjugated with FITC (BioSource Life Technologies) with antiretroviral drugs both alone (10 μM) and in combination (10 μM). The total cellular protein of all groups was quantified and adjusted using the Bio-Rad protein assay. Extracellular and cell associated FITC-tagged Aβ was quantified using an SPECTRAMAX GEMINI microplate fluorometer (Molecular Devices Corp.) with an emission wavelength of 538 nm and an excitation wavelength of 483 nm. Microglial cells were rinsed 3 times in Aβ-free complete medium, and the media was exchanged with fresh Aβ-free complete medium for 10 min both to allow for removal of non-incorporated Aβ and to promote concentration of the Aβ into phagosomes. The relative mean fluorescence values...
for each sample at 37°C and 4°C at the indicated time points were determined by fluorometric analysis. Relative mean values were calculated as (mean fluorescence value for each sample at 37°C - mean fluorescence value for each sample at 4°C). In this manner, both extracellular and cell associated FITC-labeled Aβ were quantified.

Statistical analysis

All data were normally distributed; therefore, in instances of single mean comparisons, Levene’s test for equality of variances followed by t-test for independent samples was used to assess significance. In instances of multiple mean comparisons, analysis of variance (ANOVA) was used, followed by post-hoc comparison using Bonferroni’s method/correction. Alpha levels were set at 0.05 for all analyses. The statistical package for the social sciences release 10.0.5 (SPSS Inc., Chicago, IL, USA) was used for all data analysis.

Results

Epidemiological reports indicate that HAND persists in patients even with good viremic control who take EFV [3]. Previous studies have shown that cART imparts mitochondrial toxicity in the form of elevate ROS [23,24]. A high ROS microenvironment has been shown to promote the activity of BACE-1, a key enzyme the generation of Aβ in the brain [52]. Brain oligomeric [53] and Aβ1-40,42 [54] have been correlated with cognitive impairment. Since the EFV containing regimen may promote mitochondrial dysfunction [23,24,27,34,55] which could result in increased BACE-1 activity, we investigated the effect of a commonly used EFV containing cART regimen [29–31] for its ability to upregulate Aβ production via activation of BACE-1 and amyloidogenic APP processing and also for its ability to reduce microglial phagocytosis of Aβ1-40,42.

BACE-1 is involved in Aβ generation promoted by the EFV containing cART regimen in cultured SweAPP N2a cells (Fig. 1)

Using similar conditions as in our prior investigations [44], SweAPP N2a cells were treated with the EFV containing regimen: 3TC, AZT, EFV or each drug singly at 10 μM in addition to PBS control for 18 hours. Aβ1-40 and Aβ1-42 peptides were then measured in conditioned media from these cells by ELISA (Fig. 1A–C) while EFV containing cART regimen increased Aβ1-40,42 expression was measured in cell lysates by Western Blot and Aβ1-40,42 peptides were then measured in conditioned media from these cells by ELISA (Fig. 1A–C) while Western blot analysis of brain homogenates revealed significantly increased Aβ species in both the EFV and EFV containing regimen groups (**P<0.01 and 0.05 respectively); again suggesting that EFV accelerates cerebral amyloidosis as opposed to having a cumulative effect with 3TC and AZT. Indeed AZT is most likely behind the reduced potency of the EFV containing regimen compared to EFV alone in terms of Aβ pathology in light of reports that it may be neuroprotective [56–50]. Additionally EFV or the EFV containing regimen increased BACE-1 expression in SweAPP N2a cells significantly (***P<0.001).

EFV promotes mitochondrial stress in SweAPP N2a cells (Fig. 3)

To determine if EFV or the EFV containing cART regimen could promote mitochondrial stress in an amyloid producing model, SweAPP N2a cells were treated with EFV, 3TC, AZT, or all three antiretrovirals combined in addition to vehicle control (PBS) for 48 hours. We performed three separate assays to determine general mitochondrial function. These included analyses of cellular ATP production, MMP, and ROS production. EFV or the EFV containing regimen were most potent in reducing mitochondrial function. Mitochondria produce approximately 90% of the total cellular ATP in neurons [65]. We therefore first examined ATP levels in SweAPP N2a cells as a measure of mitochondrial function. Cells treated with EFV or the EFV-containing regimen had greatly decreased ATP levels (***P<0.001) although the EFV containing regimen had slightly less ATP depletion than EFV alone. Mitochondria from SweAPP N2a cells treated with EFV or the EFV containing regimen showed significantly reduced maximal respiratory rates compared to 3TC or AZT treated SweAPP N2a cells; mirroring the results with the ATP analysis. The MMP is an indicator of electron transport chain function [65].

Mitochondria are the main source of cellular ROS in the brain, thus the rate of ROS reflects the efficiency of mitochondrial function as well [65] (Fig. 3C–F). EFV or the EFV containing regimen caused a large increase in ROS production (P<0.001 and P<0.05 respectively). AZT and 3TC did not cause a significant rise thus explaining the reduced potency in terms of promoting ROS production of the three drug combination versus EFV alone.

From the three cell-based assays that were utilized to monitor different parameters of mitochondrial function, EFV was identified as the most deleterious compound in our screen of this commonly used cART regimen [29–31]. From all three assays we see that AZT and 3TC reduce this effect promoted by EFV.

Microglial phagocytosis of Aβ1-42 Peptides is opposed by EFV (Fig. 4)

Amyloid load in the brain is affected not only by production, but also by its clearance from the brain via microglia mediated mechanisms [66]. To determine whether the EFV containing regimen could affect microglial clearance of Aβ and further promote amyloidosis, we performed a phagocytosis assay with primary mouse microglia in the presence of EFV, 3TC, AZT or all three antiretrovirals combined in addition to PBS control.
Following detection of FITC-tagged Aβ1-42 in extracellular and cell associated fractions, we again found that EFV or the EFV containing regimen inhibited microglial phagocytosis/clearance. These two treatments significantly inhibited microglial phagocytosis of Aβ1-42 peptides as determined by high levels of peptide remaining in the cultured media (extracellular) (p<0.001 and p<0.05 respectively). In addition, EFV or the EFV containing regimen tested also significantly reduced levels of phagosomal (cell associated) Aβ1-42 (p<0.001 and p<0.05 respectively). Also, when comparing cell associated Aβ1-42 levels of the EFV compared to the three drug combination to levels of these compound alone, the differences suggest the major reduction in phagocytosis is imparted by EFV and the addition of the other two antiretrovirals of the regimen are not additive in nature. Importantly, when comparing the levels of extracellular Aβ1-42 to that of cell associated we can see that the phagocytosis/clearance profiles are relatively congruent for each treatment condition. That is to say, when a given treatment maintains high levels of extracellular Aβ1-42, the corresponding cell associated levels are relatively low. Not only does this apparent relationship between extracellular and cell associated Aβ1-42 levels confirm the accuracy of the assay, but also furthers the overall significance of the inhibition of microglial phagocytosis by the antiretrovirals [44].

Discussion

Here, we elucidate a potential mechanism whereby EFV may have neurotoxic effects via promotion of brain Aβ. As shown in Figure 3, our present study has led to the proposed mechanism of neurotoxicity in which EFV promotes an increase in Aβ in vivo and in vitro on both the production and clearance fronts via its inhibition of proper MMP resulting in reduced ATP stores and thus a high ROS environment in the CNS. It is proposed that EFV induced high ROS microenvironments (Fig. 3) in the CNS promote BACE-1 APP processing ([18]; Fig. 1) and also inhibits microglial phagocytic functions ([67]). These events in turn all promote production of Aβ species.

EFV has been associated with serious adverse reactions, most of which can in part be attributed directly or indirectly to dysfunction of mitochondria [22–25,33]. We found that EFV, or the EFV containing regimen consistently and significantly promoted mitochondrial oxidative stress in the form of reduced cellular ATP stores and thus a high ROS environment in the CNS. It is proposed that EFV induced high ROS microenvironments (Fig. 3) in the CNS promote BACE-1 APP processing ([18]; Fig. 1) and also inhibits microglial phagocytic functions ([47]). These events in turn all promote production of Aβ species.

Reactive microgliosis can be associated with the formation of microglial phenotypes that are unfavorable to phagocytic activities [68]. ROS are an important signal for cellular activation and proliferation. Over the long term lead to microglial dysfunction, rendering the phagocytes unable to perform their vital clearance functions [68]. This may underlie the reduced microglial phagocytosis of Aβ observed in microglia treated with EFV or the EFV containing regimen (Fig. 4).

Several lines of epidemiological evidence signal a role for Aβ in HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contributor to HAND development while some studies have not yet fully implicated over production of the protein as a contribu
Figure 2. EFV/3TC/AZT increases soluble Aβ levels in Tg2576 mice via BACE-1 activation in vivo. (A) Aβ40, 42 peptides were analyzed in brain homogenates from 8 month old Tg2576 mice by ELISA (n = 5 mice for each group). One-way ANOVA followed by post hoc comparison revealed significant differences between control (Tg2576 mice treated with PBS) and EFV or EFV/3TC/AZT-treated Tg2576 mice (P<0.001 and 0.05 respectively with n = 5 mice/group). (B) Western Blot of brain homogenates using anti-Aβ1-17 antibody (6E10) shows total APP and a bands corresponding to soluble Aβ oligomer species. β-actin was an internal control. A t-test revealed significant differences in soluble Aβ species between EFV-treated compared to 3TC/AZT/EFV, 3TC or AZT treated Tg2576 mice (P<0.01). (C) BACE-1 expression in brain homogenate of Tg2576 mice significantly was increased in EFV or EFV/3TC/AZT-treated Tg2576 mice (P<0.001).

doi:10.1371/journal.pone.0095500.g002

Figure 3. cART treatment of SweAPP N2a cells promotes mitochondrial dysfunction. (A) ATP levels are reduced in EFV or EFV/3TC/AZT treated SweAPP N2a neuron cells: SweAPP N2a cells were grown with 10 µM of each medication or all three medications combined for 48 h. We found a significant decrease in ATP levels in cells treated with EFV or 3TC/AZT/EFV (***P<0.001). (B) MMP is reduced in EFV or EFV/3TC/AZT SweAPP N2a cells: In accord with reduced ATP levels we found a similar reduction in MMP in the EFV or EFV/3TC/AZT treated groups (***P<0.001). (C–F) ROS levels are increased in EFV or EFV/3TC/AZT treated SweAPP N2a cells: EFV-treated primary neuron cells have significantly higher ROS contents (**P<0.001) after incubation for 60 min than untreated primary neuron. (C–E) The average relative fluorescence units of DCFDA in neurons from each treatment group as indicated by the mean ± standard deviations (D, F) The ROS content in the antiretroviral treatment is expressed as % RFU ± standard deviations for each group compared to untreated control primary neuron cells (100%). (*P<0.05, ***P<0.001).

doi:10.1371/journal.pone.0095500.g003
HAND. It is known that pathological similarities exist between HAND and AD [37–42]. The latter is more so characterized by extracellular deposits of Aβ1-42 in the form of plaques and aggregations of microtubule-associated tau yielding neurofibrillary tangles (NFT). In contrast, with HIV infection, the plaques are more diffuse [38] rather than neuritic [41].

Cerebrospinal fluid (CSF) biomarkers can mirror pathogenic cerebral amyloid deposition. Decreased CSF Aβ1-42 and increased CSF tau can differentiate symptomatic AD participants and cognitively normal individuals at high risk for symptomatic AD from cognitively normal individuals at low risk for symptomatic AD [69,70]. In that regard, at least some HAND patients have CSF Aβ1-42 values comparable to symptomatic AD individuals, that is, reduced [34,41]. This is salient because reductions in CSF Aβ1-42 have been found in almost all individuals with increased fibrillar amyloid deposition within the brain as assessed with positron emission tomography (PET) amyloid binding of N-methyl-[11C]2-(4-methylaminophenyl)-6-hydroxybenzothiazole (11C-PiB) [71–73]. Likewise, AIDS dementia complex (ADC) patients had significantly decreased CSF Aβ1-42 and increased total and phospho t-tau and p-tau respectively concentrations similar to AD [38]. Achim and colleague’s (2009) reported increased Aβ by both autopsy examination and PET imaging of HIV patients. Specifically, cases with HIV encephalitis (HIV-E) were about twice as likely to have amyloid detected (72%) than HIV+ patients without HIV-E (38%; [37]). In the same year Clifford and colleagues reported Aβ1-42 measurements in CSF of cognitively impaired patients with HIV were similarly reduced as in patients with mild dementia of the Alzheimer type (DAT). Normal or slightly depressed CSF tau and p-tau measurements distinguished these patients with HAND from patients with DAT [42].

Further analysis as to why low CSF Aβ1-42 in patients with HAND is needed. However, there are several reasons which may explain altered Aβ metabolism in HIV disease [42] in addition to the data presented in this report. First, HIV-1 transactivator of transcription (Tat) protein may compete with APP and/or apolipoprotein E (an Aβ chaperone) for binding to the low density lipoprotein receptor related protein (LRP), thus inhibiting LRP mediated clearance of Aβ from brain interstitial fluid to periphery [74]. Second, APP cleavage products (sAPPα and sAPPβ) have been reported to be reduced in the CSF of patients with HAND compared to those with DAT or HIV-negative controls, with sAPPα (a neurotrophic protein) showing a slight decline in the asymptomatic HIV state [75].

In 2010 Ances and colleagues reported cognitively unimpaired HIV+ participants, even with low CSF Aβ1-42 (<500 pg/mL), did not have (11C-PiB parameters suggesting brain fibrillar amyloid deposition. This dissimilarity between cognitively unimpaired HIV+ and preclinical AD may reflect differences in Aβ1-42 production and/or formation of diffuse plaques [76]. This same group, in 2012, reported symptomatic AD patients were significantly older, had significantly lower CSF Aβ1-42, and had significantly higher CSF tau levels than other groups. Regardless
of degree of impairment, HIV patients did not have increased 11C-PiB [77]. Possible reasons for the absence of 11C-PiB in HIV patients are: 1) decreased Aβ$_{1-42}$ production secondary to decreased synaptic activity, 2) increased intraneuronal Aβ$_{1-42}$ deposition that is undetectable by 11C-PiB [37]; and/or 3) increased Aβ$_{1-42}$ brain deposition but in a more diffuse, non-fibrillar form that is undetectable by 11C-PiB [36,39]. Future longitudinal examinations within older HIV+ participants are required to determine if diffuse or oligomeric forms could with time subsequently become fibrillar (11C-PiB positive) deposits [38,42]. Future longitudinal examinations within older HIV+ participants are required to determine if diffuse or oligomeric forms could with time subsequently become fibrillar (11C-PiB positive) deposits [38,42].

The current research has several strengths and weaknesses. Regarding the former, we observed consistent findings in both in vitro and in vivo model systems in that EFV or the EFV containing regimen caused increase amyloidogenic APP processing as a function of increased BACE-1 expression and decreased microglial clearance of Aβ. Additionally, we find the level of mitochondrial dysfunction imparted by each antiretroviral medication correlates consistently with the increased level of BACE-1 expression and Aβ production, and the decreased microglial phagocytosis of Aβ peptide. Second our results coincide with other reports indicating the mitochondrial toxicity of antiretrovirals [23–27,32–34], and reports that increased ROS can result in increased BACE-1 activity [22].

This report has limitations as well. First, it describes a mechanism for a subset of HAND cases since not all HIV infected individuals are taking EFV or an EFV containing regimen. It should be noted that in the present study, we did not investigate the plasma or CSF concentrations of antiretrovirals or their metabolites. However, all three drugs seem to have good CNS penetration [22,78,79], which could support the the neurologic symptoms [3,5,8] noted by others.

In sum, our present work suggests that EFV promotes an increase in Aβ on both the production and clearance fronts through oxidative stress. We hypothesize that a disrupted MMP with resultant lowered neuronal ATP stores promotes a high ROS environment in the CNS. Previous studies indicate such high ROS microenvironments in the CNS promote BACE-1 APP processing and also inhibit microglial Aβ clearance functions. These events in turn all promote production of Aβ species. (*Note: Red arrows = inhibition, Green arrows = promotion).

doi:10.1371/journal.pone.0095500.g005

Figure 5. Proposed mechanism of EFV neurotoxicity. Our present work suggests that EFV promotes an increase in Aβ in vitro and in vivo on both the production and clearance fronts via its inhibition of neuronal MMP resulting in reduced ATP stores and thus a high ROS environment in the CNS. Previous studies indicate such high ROS microenvironments in the CNS promote BACE-1 APP processing and also inhibit microglial Aβ clearance functions. These events in turn all promote production of Aβ species. (*Note: Red arrows = inhibition, Green arrows = promotion).
References

1. Schouten EJ, Jahn A, Ben-Smith A, Malombe SD, Harries AD, et al. (2011) Antiretroviral drug supply challenges in the era of scaling up ART in Malawi. Int J Health Plann Mgmt 26 Suppl 1: 84.

2. Hirschel B, Aprikian D, McCutchan JA, Letendre SL, et al. (2011) HIV-associated neurocognitive disorders before and during the era of combination antiretroviral therapy: differences in rates, nature, and predictors. J Neurovirol 17: 3–16.

3. Ciccarrelli N, Fabbiani M, Di Giannibenedetto S, Fanti I, Baldonero E, et al. (2011) Efavirenz associated with cognitive disorders in otherwise asymptomatic HIV-infected patients. Neurology 76: 1403–1409.

4. Winston A, Duncombe C, Li PC, Gill JM, Kerr SJ, et al. (2010) Does choice of combination antiretroviral therapy (cART) alter changes in cerebral functional testing after 48 weeks in treatment-naïve, HIV-1-infected individuals commencing cART? A randomized, controlled study. Clin Infect Dis 50: 920–929.

5. Robertson KR, Smurozny M, Parsons TD, Wu K, Bosch RJ, et al. (2007) The prevalence and incidence of neurocognitive impairment in the HAART era. AIDS 21: 1915–1921.

6. Velasco M, Pareja JA, Losa JE, Valderfe J, Espinosa A, Gutierrez C (2009) Changes following initiation of elavirex treatment. Med Clin (Barc) 135: 103–105.

7. Waters L, Fisher M, Winston A, Hadley W, et al. (2001) A phase IV, double-blind, multicentre, randomized, placebo-controlled, pilot study to assess the feasibility of switching individuals receiving elavirex with receiving a central nervous system adverse events to etravirex. AIDS 25: 65–71.

8. Romao PR, Lemos JC, Moreira J, de Chaves G, Moretti M, et al. (2011) Anti-HIV drugs nevirapine and elavirex affect anxiety-related behavior and social interactive performance in mice. Neuroreport 22: 73–78.

9. Wintergerst U, Hoffmann F, Jansson A, Notheis G, Huss K, et al. (2008) Antiviral efficacy, tolerability and pharmacokinetics of elavirex in an unselected cohort of HIV-infected children. J Antimicrob Chemother 62: 1356–1359.

10. Sambamurti K, Greig NH, Lahiri DK (2002) Advances in the cellular and biochemical properties of the beta-amyloid protein in Alzheimer’s disease. Neumoremedicin 1: 1–31.

11. Goldie TE, Eckman CB, Younkin SG (2000) Biochemical detection of Abeta isoforms: implications for pathogenesis, diagnosis, and treatment of Alzheimer’s disease. Biochim Biophys Acta 1502: 172–187.

12. Huse JT, Doms RW (2000) Closing in on the amyloid cascade: recent insights into the cell biology of Alzheimer’s disease. Mol Neurobiol 22: 81–98.

13. Schouten EJ, Ben-Smith A, Makombe SD, Harries AD, et al. (2011) Compromising mitochondrial function with the antiretroviral drug efavirenz induces cell survival-promoting autophagy. Hepatology 54: 1009–1019.

14. Bradt BM, Kolb WP, Cooper NR (1998) Complement-dependent proinflammatory properties of the beta-amyloid protein in Alzheimer’s disease. Acta Neuropathol 111: 529–538.

15. Achim CL, Adame A, Duman W, Everall IP, Masliah E (2009) Increased tau deposition in the brains of infants infected with human immunodeficiency virus-1 before and after the advent of highly active anti-retroviral therapy. Acta Neuropathol 119: 529–538.

16. Huse JT, Doms RW (2000) Closing in on the amyloid cascade: recent insights into the cell biology of Alzheimer’s disease. Mol Neurobiol 22: 81–98.

17. Schouten EJ, Ben-Smith A, Makombe SD, Harries AD, et al. (2011) Compromising mitochondrial function with the antiretroviral drug efavirenz induces cell survival-promoting autophagy. Hepatology 54: 1009–1019.

18. Steiner H, Capell A, Haass C (1999) Proteolytic processing and degradation of the Alzheimer’s disease-associated presenilins. J Biol Chem 272: 3590–3598.

19. Steiner H, Capell A, Haass C (1999) Proteolytic processing and degradation of the Alzheimer’s disease-associated presenilins. J Biol Chem 272: 3590–3598.

20. Steiner H, Capell A, Haass C (1999) Proteolytic processing and degradation of the Alzheimer’s disease-associated presenilins. J Biol Chem 272: 3590–3598.

21. Steiner H, Capell A, Haass C (1999) Proteolytic processing and degradation of the Alzheimer’s disease-associated presenilins. J Biol Chem 272: 3590–3598.

22. Cossarizza A, Moyle G (2004) Antiretroviral nucleoside and nucleotide analogues and mitochondria. AIDS 18: 137–151.

23. Apostolova N, Blas-Garcia A, Esplugues JV (2011) Mitochondrial interference with the antiretroviral drug elavirex induces cell survival-promoting autophagy. Hepatology 54: 1009–1019.

24. Apostolova N, Blas-Garcia A, Esplugues JV (2011) Compromising mitochondrial function with the antiretroviral drug elavirex induces cell survival-promoting autophagy. Hepatology 54: 1009–1019.

25. Apostolova N, Blas-Garcia A, Esplugues JV (2011) Compromising mitochondrial function with the antiretroviral drug elavirex induces cell survival-promoting autophagy. Hepatology 54: 1009–1019.

26. Apostolova N, Blas-Garcia A, Esplugues JV (2011) Compromising mitochondrial function with the antiretroviral drug elavirex induces cell survival-promoting autophagy. Hepatology 54: 1009–1019.

27. Blas-Garcia A, Apostolova N, Esplugues JV (2011) Oxidative stress and mitochondrial impairment after treatment with anti-HIV drugs: clinical implications. Curr Pharm Des 17: 4076–4086.
54. Graff-Radford NR, Crook JE, Lucas J, Boeve BF, Knopman DS, et al. (2007) Association of low plasma Abeta42/Abeta40 ratios with increased imminent risk for mild cognitive impairment and Alzheimer disease. Arch Neurol 64: 354–362.

55. Gomez-Sucerquia LJ, Blaz-Garcia A, Marti-Cabrera M, Esplugues JV, Apostolova L (2012) Profile of stress and toxicity gene expression in human hepatic cells treated with Efavirenz. Antiviral Res 94: 232–241.

56. Pizzo PA, Eddy J, Falloon J, Balis FM, Murphy RF, et al. (1988) Effect of continuous intravenous infusion of zidovudine (AZT) in children with symptomatic HIV infection. N Engl J Med 319: 869–896.

57. Rausch DM, Heyes M, Eiden LE (1994) Effects of chronic zidovudine administration on CNS function and virus burden after perinatal SIV infection in rhesus monkeys. Adv Neuroimmunol 4: 233–237.

58. Schmitt FA, Bigley JW, McKinnis R, Logue PE, Evans RW, et al. (1988) Neuropsychological outcome of zidovudine (AZT) treatment of patients with AIDS and AIDS-related complex. N Engl J Med 319: 1573–1578.

59. Selkoe DJ (2001) Alzheimer’s disease results from the cerebral accumulation and cytotoxicity of amyloid beta-protein. J Alzheimers Dis 3: 75–80.

60. Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, et al. (2002) Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416: 535–539.

61. Ances BM, Benzinger TL, Christensen JJ, Xiong C, Venkat R, et al. (2012) 11C-PiB imaging of human immunodeficiency virus-associated neurocognitive disorder. Arch Neurol 69: 72–77.

62. Wynn HE, Brundage RC, Fletcher CV (2002) Clinical implications of CNS penetration of antiretroviral drugs. CNS Drugs 16: 595–609.

63. Gibbs JE, Gilfen Z, Thomas SA (2006) Nevirapine uptake into the central nervous system of the Guinea pig: in situ brain perfusion study. J Pharmacol Exp Ther 317: 746–751.