Supplementary Material

1 RNA-seq analysis

The whole pancreas transcriptomes 1 and 2

Preprocessing

The need for trimming of the raw RNA-seq reads was assessed with the high throughput quality control tool FastQC [1]. Low quality reads in both whole pancreas transcriptome datasets were trimmed using the TrimGalore! [2] software tool with the default settings: Quality Phred score cutoff 20, Illumina TruSeq, Sanger iPCR; auto-detected adapter sequences, Stringency 1 bp and 20 bp minimum required sequence length for both reads.

The trimmed RNA-seq reads were mapped to the University of California, Santa Cruz (UCSC) human reference genome Genome Reference Consortium Human Build 38 (GRCh38) [3] using the STAR aligner [4] version 2.5.2b. The featureCounts tool [5] included in the Subread [6] software package was applied to generate the read counts.

For further analysis, the lowly expressed genes were filtered using the uniquely mapped reads. For the differential expression analysis of the whole pancreas transcriptome 1, only genes with at least a count per million (cpm) expression over the threshold value in at least three samples (corresponding to the smallest experimental group size) were retained in the analysis. The threshold value used in the analysis was the cpm value corresponding to a read count value of 10 in the sample with the smallest library size [7]. For examining the differences in the gene expression between the Diabetes Virus Detection (DiViD) cases, a gene was required to have a cpm expression over the same threshold value in at least one sample to be retained in the analysis. Both whole pancreas transcriptomic datasets were processed similarly. The trimmed mean of M-values (TMM) normalization from the Bioconductor package edgeR [7, 8] was used to normalize the filtered gene counts. After normalization, the datasets were transformed to cpm, offsetted by 1 and log2 transformed.

2 RNA Microarray analysis

The pancreatic islet transcriptome

Data preparation

The laser-capture microarray data was generated and normalized as described before by [9, 10].

Preprocessing

All probes not related to the experimental design were excluded from further analysis of the normalized annotated data using the annotation (HuGene-2_0-st-v1, release 36) downloaded from the Thermo Fisher (AffyMetrix) web site. Following, the data was log2 transformed and filtered for lowly expressed genes. As much as 50% of the probes in the microarray data can be expressing a background noise signal instead of a true signal [11]. Filtering of the noisy measurements prior to
differential expression (DE) analysis is recommended [11–13]. To retain a proper FDR control in the DE analysis, the filtering should be independent (i.e. blind) of the group labels of the samples [12, 13]. The pancreatic islet microarray data was thus filtered to retain only probes with expression larger than the median expression in the whole data in at least five samples (the size of the smallest experimental group) for further analysis. Similar to the filtering of RNASeq data, the group labels were not used for the low expression filtering satisfying the marginal independence criterion [12].

After low expression filtering, the microarray data was summarized to gene level by selecting a representative probe set for each gene in the filtered data. The selected probe set for each gene was the probe set with the largest mean intensity over all the samples.

3 Additional details regarding the data analysis of the preprocessed datasets

All data analyses of the preprocessed datasets were performed using the R statistical programming software environment version 3.6.0 [14].

Comparison of the DiViD cases

To compare the expression of genes between the DiViD cases, the gene expression in each dataset was z-score standardized. Furthermore, to allow for the comparison of expression patterns between cases over the examined different datasets, only the DiViD cases (not the varying non-diabetic organ donor controls) were used in the z-score standardization within each dataset. Thus, the z-score standardized expression z_{ij} for gene i in sample j in any examined dataset was defined as:

$$z_{ij} = \frac{x_{ij} - \mu_{cases}}{\sigma_{cases}}$$

where x_{ij} is the expression of gene i in sample j, μ_{cases} is the averaged expression of gene i over the DiViD cases and σ_{cases} is the standard deviation of gene i over the DiViD cases.

Cell type proportion estimation

Following the recommendations in the CIBERSORT software, the quantile normalization option was disabled for the RNASeq dataset. Measurements from the acinar, alpha, beta, delta, and ductal pancreatic cell types of 20-40 year old individuals were utilized, excluding cells labeled as low quality.

Functional enrichment analysis

For Figure 3A, the expression of the differentially expressed genes in the whole pancreas transcriptome 1 and the pancreatic islet transcriptome involved in the terms GO:0006955 (immune response) and GO:0006954 (inflammatory response) were explored and compared.

To determine the subcellular localization of gene products in the terms GO:0006955 (immune response) and GO:0006954 (inflammatory response) for Figure 3B, Ingenuity Pathway Analysis (IPA) (QIAGEN Inc.) [15] was applied. The interactions, expression and subcellular localization among the immune and inflammatory response gene products for Figure 3B were visualized using Cytoscape version 3.7.2 [16].
4 Supplementary References

1. Andrews S, Krueger F, Segonds-Pichon A, Biggins L, Krueger C, Wingett S (2012) {FastQC}
2. Krueger F (2012) {Trim Galore!}
3. Schneider VA, Graves-Lindsay T, Howe K, et al (2017) Evaluation of GRCh38 and de novo haploid genome assemblies demonstrates the enduring quality of the reference assembly. Genome Res 27(5):849–864. https://doi.org/10.1101/gr.213611.116
4. Dobin A, Davis CA, Schlesinger F, et al (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1):15–21. https://doi.org/10.1093/bioinformatics/bts635
5. Liao Y, Smyth GK, Shi W (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30(7):923–930. https://doi.org/10.1093/bioinformatics/btt656
6. Liao Y, Smyth GK, Shi W (2013) The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Res 41(10):e108. https://doi.org/10.1093/nar/gkt214
7. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140. https://doi.org/10.1093/bioinformatics/btp616
8. McCarthy DJ, Chen Y, Smyth GK (2012) Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res 40(10):4288–4297. https://doi.org/10.1093/nar/gks042
9. Holm LJ, Krogvold L, Hasselby JP, et al (2018) Abnormal islet sphingolipid metabolism in type 1 diabetes. Diabetologia 61(7):1650–1661. https://doi.org/10.1007/s00125-018-4614-2
10. Richardson SJ, Rodriguez-Calvo T, Gerling IC, et al (2016) Islet cell hyperexpression of HLA class I antigens: a defining feature in type 1 diabetes. Diabetologia 59(11):2448–2458. https://doi.org/10.1007/s00125-016-4067-4
11. Hackstadt AJ, Hess AM (2009) Filtering for increased power for microarray data analysis. BMC Bioinformatics 10:11. https://doi.org/10.1186/1471-2105-10-11
12. Bourgon R, Gentleman R, Huber W (2010) Independent filtering increases detection power for high-throughput experiments. Proc Natl Acad Sci U S A 107(21):9546–9551. https://doi.org/10.1073/pnas.0914005107
13. Marczyk M, Jaksik R, Polanski A, Polanska J (2013) Adaptive filtering of microarray gene expression data based on Gaussian mixture decomposition. BMC Bioinformatics 14:101. https://doi.org/10.1186/1471-2105-14-101
14. R Core Team (2019) R: A Language and Environment for Statistical Computing
15. Kramer A, Green J, Pollard JJ, Tugendreich S (2014) Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics 30(4):523–530.
16. Shannon P, Markiel A, Ozier O, et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504. https://doi.org/10.1101/gr.1239303
Supplementary Figure 1. RNA for the DiViD case 2 was degraded, and an adjusted protocol was used in the RNA-sequencing analysis of the sample.
Supplementary Figure 2. The enriched GO FAT biological processes (BP) among the differentially expressed genes in whole pancreas transcriptome 1. The DE genes have been identified using the reproducibility optimized test statistic (ROTS) with a false discovery rate of ≤ 0.05 and $|FC| \geq 2$. Functional enrichment within the DE genes was examined using the Database for Annotation, Visualization and Integrated Discovery (DAVID).
Supplementary Figure 3. Related to Figure 4A. A signature of 45 genes was discovered differentiating DiViD case 6 from the other DiViD patients and also the non-diabetic organ donor controls. The Z-score standardized expression of these genes is shown in the whole pancreas transcriptome.
Supplementary Table 1. The Commercial Human Pancreas total RNA preparations used as controls for RNA sequencing in the whole pancreas transcriptome 1.

Sample ID	Commercial pancreas tissue RNA preparate	Gender	Age (years)	Cause of death
CTRL A	Ambion FirstChoice Human Pancreas Total RNA, #AM7954	Male	78	Cardiac arrest
CTRL B	Agilent Technologies MVP Total RNA, Human Pancreas, #540023	Female	76	NA
CTRL C	Clontech, Human Pancreas Total RNA #636577	Male	35	Sudden death
Supplementary Table 2. The differentially expressed (DE) genes between the DiViD cases and the controls in the whole pancreas transcriptome 1. The DE genes have been identified using the reproducibility optimized test statistic (ROTS) with a false discovery rate (FDR) of \(\leq 0.05 \) and \(|\text{FC}| \geq 2\). Additionally, the FDR between the DiViD cases and controls are shown for the same genes when the DE analysis is performed with the partly degraded DiViD case 2 excluded. CPM refers to Counts Per Million, logFC to logarithmic Fold Change (log2 transformed CPM data) and FDR to False Discovery Rate.

Gene Symbol	CPM LogFC	FDR	FDR Case 2 Discarded
FOSB	4.454	0.000	0.000
GDF15	-3.392	0.000	0.000
CDKN1A	-2.877	0.000	0.000
ARNTL	-2.252	0.000	0.000
NNMT	-2.888	0.000	0.000
EGR1	2.266	0.000	0.000
REG3A	-5.680	0.000	0.000
CLDN2	-3.089	0.000	0.000
CHAD	1.958	0.000	0.000
PTX3	-2.108	0.000	0.000
FN1	-2.462	0.000	0.000
TNC	-2.130	0.000	0.000
PAPPα	-1.914	0.000	0.000
ATP4α	3.098	0.000	0.000
C2CD4A	-2.274	0.000	0.000
SERPINA3	-3.857	0.000	0.000
FREM1	1.983	0.000	0.000
VCAN	-2.718	0.000	0.000
F11	1.866	0.000	0.017
SIGLEC11	3.255	0.000	0.000
EPN3	2.265	0.000	0.000
APCS	-1.583	0.000	0.021
AGT	-2.190	0.000	0.000
ABAT	2.207	0.000	0.000
CYP1B1	-2.141	0.000	0.017
GREM1	-2.145	0.000	0.000
INHBB	-1.628	0.000	0.000
THBS1	-2.461	0.000	0.000
HLA-DRB1	-1.448	0.000	0.021
NGFR	-1.611	0.000	0.021
gene	log2FC	p-value	FDR
-----------	--------	---------	-------
NOS1	1.600	0.000	0.021
RAB31	-1.560	0.000	0.026
DBP	2.543	0.000	0.000
ADCYAP1	-1.613	0.000	0.021
THEMIS2	-1.538	0.000	0.026
FOS	1.910	0.000	0.021
DDB2	-1.190	0.000	0.028
TGFB3	-1.491	0.000	0.021
TPM3	2.056	0.000	0.000
AKR7A3	-2.098	0.000	0.021
DRAM1	-1.383	0.000	0.028
LAPTM5	-1.887	0.000	0.021
DES	-2.232	0.000	0.021
PTP4A1	-1.593	0.000	0.021
GAREM	-1.536	0.000	0.021
GCNT4	1.433	0.000	0.026
TNFRSF12A	-1.762	0.000	0.026
CYP3A4	-2.501	0.000	0.021
PER3	2.060	0.000	0.021
CTRL	2.670	0.000	0.000
LINC00963	-1.605	0.000	0.028
TIMP1	-2.175	0.000	0.021
EEF1A2	-1.590	0.000	0.028
MYPN	1.774	0.000	0.026
SYCP2	2.410	0.000	0.017
COL6A3	-1.436	0.000	0.028
RNASE1	3.293	0.000	0.000
TMOD1	-1.538	0.000	0.028
PIEZO2	-1.360	0.000	0.028
LDHA	-1.786	0.000	0.028
VDR	-1.244	0.000	0.033
ALDOB	-3.421	0.000	0.017
NMUR1	1.904	0.008	0.021
ADD3	1.525	0.008	0.021
AEN	-1.503	0.008	0.028
B4GALT1	-1.255	0.008	0.028
EGF	1.999	0.008	0.021
LFNG	1.547	0.008	0.028
MSR1	-1.700	0.008	0.028
MMP2	-1.581	0.008	0.028
NPTX2	-1.892	0.008	0.026
CABP7	-1.242	0.008	0.029
CEMIP	-1.475	0.008	0.028
KRT7	-1.626	0.008	0.021
SAT1	-1.552	0.008	0.000
MEP1A	1.833	0.008	0.017
IL10RA	-1.458	0.008	0.028
Gene	Log2 Fold Change	P-value	FDR
------------	-----------------	---------	-------
CNN1	-1.409	0.008	0.029
C11orf96	-2.640	0.008	0.021
SMOC1	-1.873	0.008	0.021
TTYH1	1.320	0.008	0.029
NPHS1	1.422	0.008	0.029
ANKRD22	-1.799	0.008	0.029
ZNF737	1.187	0.008	0.035
MUC5B	-2.572	0.008	0.026
FAM159B	-1.022	0.008	0.035
CD44	-1.656	0.008	0.028
PLCB1	1.068	0.008	0.035
AQP12A	1.730	0.008	0.028
ADAMTS4	-2.322	0.008	0.021
LEFTY1	1.553	0.008	0.029
FCGR3A	-1.937	0.008	0.028
FAM107B	-1.011	0.008	0.036
FGG	-2.195	0.008	0.026
LGALS2	2.669	0.008	0.000
C1S	-1.357	0.008	0.035
FGA	-3.327	0.008	0.021
VCAM1	-1.424	0.008	0.035
ACTA2	-1.562	0.008	0.029
C4BPA	-1.746	0.008	0.028
FOSL2	-1.449	0.008	0.028
NWD1	1.098	0.008	0.036
COL3A1	-1.175	0.008	0.035
HOGA1	1.351	0.008	0.035
CRLF1	-1.276	0.008	0.035
LTBP4	1.303	0.008	0.035
CRP	-2.644	0.008	0.026
DEFB1	-1.530	0.008	0.029
PNLP1PR2	3.945	0.008	0.000
RBBP8NL	1.283	0.008	0.035
LMO3	2.071	0.008	0.017
REG1B	-4.268	0.008	0.021
CP	-2.411	0.008	0.026
ANGPTL4	-2.155	0.008	0.000
SLITRK1	1.246	0.008	0.035
FHOD3	1.152	0.008	0.035
C1R	-1.417	0.008	0.035
CXCR4	-1.573	0.008	0.028
NCKAP1L	-1.256	0.008	0.035
SGK1	1.717	0.008	0.029
ITIH4	-2.509	0.008	0.000
TMEM2	-1.104	0.008	0.035
CITED2	1.578	0.013	0.021
PDZK1	1.487	0.013	0.029
Gene	Log2 Fold Change	p-value	FDR
----------	------------------	---------	-----------
THBS2	-1.527	0.013	0.035
SCN1B	-1.346	0.013	0.035
ARNTL2	-1.263	0.013	0.035
NRG4	1.502	0.013	0.017
ACY3	1.599	0.013	0.028
EPHX1	1.653	0.013	0.000
STEAP4	-1.811	0.013	0.026
LOC102723344	1.758	0.013	0.029
CFB	-2.007	0.013	0.028
ING2	1.104	0.013	0.035
MAP1LC3B	-1.154	0.013	0.035
CD163	-2.259	0.013	0.021
SLC2A2	-1.321	0.013	0.035
PDPN	-1.361	0.013	0.035
Clorf162	-1.307	0.013	0.035
AMY2B	2.817	0.013	0.000
NUCB2	1.787	0.013	0.000
SGSM1	1.176	0.013	0.036
COL8A1	-1.017	0.013	0.041
PFKFB2	-1.398	0.013	0.035
SLC2A3	-1.516	0.013	0.029
TOX	-1.023	0.013	0.041
AMHR2	1.530	0.013	0.021
TMC5	-1.721	0.013	0.029
TNFRSF10B	-1.420	0.013	0.021
DUSP4	-1.980	0.013	0.000
CELA2B	3.651	0.013	0.000
GCAT	1.698	0.013	0.017
GEM	-1.107	0.013	0.041
MT1H	1.583	0.013	0.026
SLC4A7	-1.121	0.017	0.028
USP2	1.282	0.017	0.035
MPP1	1.152	0.017	0.035
ADAMTS16	1.492	0.017	0.035
MCAM	-1.331	0.017	0.035
DIAPH1	-1.100	0.017	0.035
BCAT2	1.265	0.017	0.028
BDH1	1.180	0.017	0.035
SDC1	-1.120	0.017	0.041
SLC11A1	-1.727	0.017	0.028
ME1	-1.274	0.017	0.035
HLA-DQB1	-1.824	0.017	0.017
MT1G	1.846	0.017	0.026
BTG3	-1.108	0.017	0.041
DPP10	1.492	0.017	0.035
PM20D1	1.993	0.017	0.033
ERP27	2.218	0.017	0.000
Gene	Log2 Fold Change	SD	P-Value
------------	------------------	------	---------
LAPTM4B	-1.061	0.017	0.037
SMURF1	-1.085	0.017	0.035
EGR3	1.229	0.017	0.041
CHST11	-1.502	0.017	0.035
MYH11	-1.790	0.017	0.028
G6PC2	-2.219	0.017	0.021
MOXD1	-1.053	0.018	0.046
FLJ38122	1.467	0.018	0.035
PHLDA3	-1.199	0.018	0.041
SYCN	2.813	0.018	0.017
GABARAPL1	-1.082	0.018	0.041
ACTG2	-1.287	0.018	0.035
CTHRC1	-1.186	0.018	0.037
SHC3	-1.538	0.018	0.035
CES3	1.191	0.018	0.035
PACSIN1	1.635	0.018	0.033
COL4A2	-1.111	0.018	0.028
SYT13	-1.250	0.018	0.035
IFR8	-1.296	0.018	0.041
EGLN3	-1.222	0.018	0.041
CNIH3	1.423	0.018	0.021
F3	-1.594	0.018	0.035
FPR1	-1.500	0.018	0.035
IZUMO4	1.182	0.018	0.044
F2R	-1.049	0.018	0.046
SERPINI2	1.750	0.018	0.000
GALT	1.034	0.018	0.050
HLA-DQA1	-1.004	0.018	0.037
SYNPO2	-1.406	0.018	0.035
MMP1	-1.164	0.018	0.041
PDGFRA	-1.070	0.018	0.046
CLPS	2.532	0.018	0.000
YIPF4	1.117	0.018	0.028
ASAH2	1.270	0.018	0.035
LOC101927188	1.119	0.018	0.029
PLEKHG1	-1.138	0.018	0.028
TMED11P	1.984	0.021	0.021
GUCA1C	1.726	0.021	0.017
SLC6A17	-1.155	0.021	0.041
ELOVL5	-1.098	0.021	0.037
ACKR1	-1.110	0.021	0.041
LMOD1	-1.199	0.021	0.035
OLFML2B	-1.000	0.021	0.051
PAPLN	-1.170	0.021	0.028
PLCH2	-1.564	0.021	0.029
APOC1	-1.313	0.021	0.041
ASCC1	-1.087	0.021	0.046
Gene	Ratio	P-value	FDR
-------------	--------	---------	------
USP51	1.072	0.021	0.051
TACSTD2	-1.281	0.021	0.041
C1QC	-1.495	0.021	0.037
NFIL3	-1.604	0.021	0.035
CTRB2	1.686	0.021	0.028
GPX3	-1.128	0.021	0.049
FSTL3	-1.620	0.021	0.028
BBC3	-1.045	0.024	0.051
TET1	1.001	0.024	0.055
NDST1	1.011	0.024	0.035
EMILIN2	-1.133	0.024	0.046
KIAA0040	-1.398	0.024	0.041
OSMR	-1.614	0.024	0.028
DOC2B	-1.428	0.024	0.035
LINC01251	1.545	0.024	0.041
MVP	-1.190	0.024	0.043
MT1F	1.347	0.024	0.028
B4GALT5	-1.080	0.024	0.050
WBSCR17	1.404	0.027	0.028
ANGPTL1	1.442	0.027	0.036
BACH2	-1.124	0.027	0.029
NUPR1	1.629	0.027	0.035
VEPH1	1.017	0.027	0.059
ICAM1	-1.664	0.027	0.035
ABHD5	-1.120	0.029	0.046
C5AR1	-1.419	0.029	0.037
PDIA2	1.718	0.029	0.028
CREB3L1	-1.263	0.029	0.046
PIGR	-1.526	0.029	0.041
KIF5C	-1.151	0.029	0.035
TNFRSF11B	-1.188	0.029	0.043
DNASE1	2.358	0.029	0.028
GALNT11	1.328	0.029	0.028
LCP1	-1.403	0.029	0.041
GPHA2	2.666	0.029	0.000
F13A1	-1.858	0.029	0.035
CSGALNACT1	-1.131	0.029	0.041
KDM8	1.083	0.029	0.051
SLC3A2	-1.301	0.029	0.044
SLC16A3	-1.391	0.029	0.041
SLC16A10	1.365	0.029	0.028
TEX11	2.554	0.029	0.000
LCN2	-1.826	0.029	0.036
MMP7	-1.849	0.029	0.036
HRASLS5	1.733	0.029	0.000
CCDC186	1.093	0.029	0.051
AQP9	-1.250	0.029	0.046
Gene	Log2FC	FDR	adjusted FDR
-----------	--------	-------	--------------
ADAMTS2	-1.004	0.029	0.051
INSIG1	1.582	0.029	0.000
REG1P	-4.139	0.029	0.028
ACE	1.251	0.029	0.041
SCNN1G	-1.096	0.029	0.041
ZMAT3	-1.112	0.029	0.050
SULF2	-1.383	0.029	0.041
AQP11	1.646	0.029	0.017
SLC7A5	-1.577	0.029	0.035
FCGR2A	-1.510	0.029	0.041
IGFBP4	-1.537	0.029	0.033
COL6A6	1.134	0.029	0.051
ID3	-1.292	0.031	0.037
PTGER4	1.832	0.031	0.035
COL4A1	-1.260	0.031	0.029
RBBP5	1.004	0.031	0.041
IL15RA	-1.095	0.031	0.041
HMOX1	-1.059	0.031	0.053
RHBG	1.097	0.031	0.050
PDZD8	-1.048	0.031	0.051
ZNF302	1.126	0.031	0.055
CRISPLD2	-1.007	0.031	0.035
SLC8A2	1.348	0.031	0.021
APOE	-1.588	0.031	0.037
TYROBP	-1.072	0.031	0.057
IGFBP2	2.349	0.033	0.021
SERPINA1	-1.606	0.033	0.035
STAT3	-1.083	0.033	0.055
IRF1	-1.331	0.033	0.044
S100A9	-1.716	0.033	0.041
CRY1	-1.044	0.033	0.055
LRRTM3	-1.192	0.038	0.041
RBPJL	1.800	0.038	0.037
CENPC	1.157	0.038	0.055
NPY1R	1.536	0.038	0.046
CELA3A	1.776	0.038	0.026
HPX	-1.365	0.038	0.041
DDIT4	-1.548	0.038	0.035
S1PR5	1.120	0.038	0.035
EFEMP1	-1.034	0.038	0.065
MAFF	-1.013	0.038	0.046
AGA	1.463	0.038	0.028
RARRES2	1.728	0.038	0.028
CXCL2	-2.230	0.038	0.035
CNKSR2	1.005	0.038	0.069
GBP2	-1.072	0.038	0.053
MYCL	2.103	0.038	0.035
Gene	Fold Change	p-value	q-value
----------	-------------	---------	---------
AMY2A	2.548	0.038	0.026
POSTN	-1.242	0.038	0.053
WNK2	1.459	0.038	0.046
DGR5	1.166	0.038	0.051
EPHA8	1.419	0.038	0.021
RN7SL1	1.080	0.038	0.069
REG3G	-3.186	0.039	0.035
SLC7A1	-1.017	0.039	0.068
DMD	1.002	0.039	0.046
MAP1B	-1.212	0.039	0.035
SPON1	-1.097	0.039	0.064
PALD1	-1.029	0.042	0.035
MSC-AS1	-1.059	0.042	0.068
RGMA	1.059	0.042	0.069
RNA45S5	1.772	0.042	0.041
PPPIR10	1.114	0.042	0.065
KLK11	1.881	0.042	0.026
SPSB4	1.314	0.042	0.029
CTRC	2.261	0.042	0.028
SOD2	-1.856	0.042	0.043
PEX5L	1.230	0.042	0.063
FGFRL1	1.095	0.042	0.062
TGM2	-2.064	0.042	0.041
OLFML2A	1.217	0.042	0.037
PSMD5-AS1	1.180	0.042	0.063
C3	-1.970	0.042	0.036
CD68	-1.172	0.042	0.063
KSR1	-1.281	0.042	0.028
C1QB	-1.692	0.042	0.047
LENG9	1.024	0.046	0.035
SIK1	-1.388	0.046	0.021
TEF	1.183	0.046	0.041
DDX21	-1.036	0.046	0.069
AQP12B	2.108	0.046	0.036
SAA1	-1.177	0.048	0.063
TFF2	-1.133	0.048	0.062
OBSOCN	1.216	0.048	0.065
PNPLA7	1.457	0.048	0.051
APLP1	1.155	0.048	0.035
ANKR62	1.194	0.048	0.050
RGS1	-1.639	0.048	0.036
GCNT3	-1.458	0.049	0.047
FAM105A	-1.083	0.049	0.035
ENPP1	1.532	0.049	0.029
FAM46C	1.328	0.049	0.028
PALLD	-1.283	0.049	0.035
LAMB1	-1.117	0.049	0.041
Gene	Value	P-value	Bonferroni-corrected P-value
-----------	--------	---------	-----------------------------
C1orf127	-1.116	0.049	0.041
PBLD	1.159	0.049	0.041
TGFBI	-1.037	0.049	0.069
DMBT1	-1.277	0.049	0.059
RAB3B	-1.412	0.049	0.035
CDHR5	1.089	0.049	0.043
Supplementary Table 3 related to Figure 3A. Immune and inflammatory responses in the whole pancreas transcriptome 1 and the pancreatic islet transcriptome. The up-regulated and down-regulated immune and inflammatory response genes between the DiViD patients and the controls in each tissue type and those commonly regulated. The differentially expressed (DE) genes were identified using the reproducibility optimized test statistic (ROTS) [33] with a false discovery rate of \(\leq 0.05 \) and \(|FC| \geq 2 \). Genes in the biological processes GO:0006955 (immune response) and GO:0006954 (inflammatory response) were examined.

UpRegulated genes whole tissue transcriptome 1	DownRegulated genes whole tissue transcriptome 1	UpRegulated genes islet transcriptome	DownRegulated genes islet transcriptome	Commonly UpRegulated	Commonly DownRegulated
FOS	THEMIS2	CXCL9	PSMD7	EGR1	APCS
EGR1	AGP	STAT1	SERPIN3A	SERPIN3A	
LFNG	AGT	CXCL10	PSMB6	ADCYAP1	
NDST1	TGFβ3	CCL5	PRELID1	DEFB1	
NUPR1	SERPIN3A	B2M	C6	CXCL2	
PTGER4	THBS1	CD74	PRDX1	REG3G	
RARRES2	NGFR	DDX58	AMBP		
ENPP1	ADCYAP1	HLA-DQA2	IGLL1		
REG3A	RSAD2	HLA-DQA1	SHC1		
FN1	HLA-DQA1	HIST1H2BD			
PTX3	DDX60	PSMD14			
HLA-DRB1	HLA-DRA	FFAR3			
VCAM1	HLA-DPA1	SLPI			
CRP	MX1	CD24			
FCGR3A	HLA-E	BCL6			
C4BPA	SLAMF7	DEFB1			
CD44	PTPRC	SERPINF1			
C1S	FYB	REG3G			
C1R	IFIT3	ADCYAP1			
NCKAP1L	GZMA	CXCL17			
MMP2	XAF1	APCS			
CXCR4	TRIM22	SPP1			
COL3A1	IGKV1-39	CXCL2			
ITIH4	GBP1	NPY			
FGA	IGHG4				
DEFB1	ISG15				
B4GALT1	IL2RG				
CD163	TAP1				
CFB	IGFSf6				
TNFRSF10B	HLA-A				
GEM	IGKC				
SDC1	IGKV1-16				
Gene	Gene				
------------	------------				
SLC11A1	CD3D				
HLA-DQB1	CCL4L1				
F3	LCP2				
IRF8	HLA-B				
FPR1	IGHG1				
F2R	IGKV3-15				
HLA-DQA1	CCL4				
C1QC	IGHM				
ACKR1	IGLV1-44				
NFIL3	IFI6				
OSMR	CXCR4				
ICAM1	RGS1				
TNFRSF1B	EGR1				
PIGR	CTSS				
LCP1	IGLC7				
C5AR1	LYZ				
FCGR2A					
AQP9					
IGFBP4					
LCN2					
TYROBP					
APOE					
HMOX1					
S100A9					
SERPINA1					
STAT3					
IRF1					
HPX					
GBP2					
CXCL2					
REG3G					
C1QB					
C3					
TGM2					
SAA1					
RGS1					
GCNT3					
DMBT1					
Supplementary Data 1. The utilized signature matrix for the estimation of the cell type proportions with the online deconvolution tool CIBERSORT in the whole pancreas transcriptome 1. The signature matrix was constructed from a pancreatic single-cell data under accession ID E-MTAB-5061 in ArrayExpress.

Genes	acinar	alpha	beta	delta	ductal																																										
CTRB2	7554.83929	0.33070866	0.21276596	0.375	11.0785714																																										
PRSS3P2	2699.98214	0.18110236	0.09219858	0.42857143	20.5071429																																										
CTRB1	3102.60714	0.17519685	0.12765957	0.23214286	4.21428571																																										
CPA1	4235.66071	1.33464567	3.39716312	1.10714286	10.5285714																																										
RNASE1	1565.55357	0.13385827	0.15602837	0.10714286	90.6142857																																										
CPA2	2222.30357	0.67519685	0.17021277	0.21428571	4.21428571																																										
CPB1	2891.08929	0.75393701	0.13475177	161.625	2.77142857																																										
DUOXA2	3259.80357	0.52559055	0.27659574	0.33928571	170.285714																																										
CXCL17	659.714286	0.11614173	0.04255319	0.07142857	9.83571429																																										
ALDOB	1195.60714	0.82283465	1.34042553	0.05357143	10.5714286																																										
REG1B	18938.6786	4.35433071	8.34042553	6.16071429	608.478571																																										
REG3A	25584.6786	1.47637795	1.04255319	1.48214286	6.34285714																																										
PRSS1	22717.6786	1.8011811	3.46099291	1.30357143	92.9642857																																										
MGST1	717.5	20.3444882	0.08510638	0.07142857	9.01428571																																										
SPINK1	10716.4286	65.7086614	0.9929078	1.39285714	102.35																																										
CTRC	1155.83929	0.1003937	0.06382979	0.03571429	1.34285714																																										
PRSS3	4939.60714	25.0295276	0.26241135	2.25	36.9071429																																										
RARRES2	814.785714	0.0492126	0.09219858	0.05357143	20.9428571																																										
CELA3A	2363.5	0.10629921	0.09219858	0.10714286	4.53571429																																										
OLFM4	7949.26786	0.72440945	1.23428571	0.10714286	895.121429																																										
GSTA2	596.714286	0.40944882	0.05673759	0.05357143	8.1																																										
ANPEP	1501.14286	9.42125984	0.14893617	0.07142857	99.0714286																																										
PNLIPRP2	714.625	0.06102362	0.07092199	0.01785714	15.1142857																																										
LDHB	397.339286	7.73228346	46.8723404	5.25714286	5.25714286																																										
PLA2G1B	645.803571	1.08661417	0.06382979	0.10714286	2.36428571																																										
UGDH	726.678571	36.2047244	82.805106	55.142857	58.5285714																																										
AKR1C3	1057.03571	2.89173228	1.18439716	0.08928571	157.7																																										
DUOX2	1605.125	0.81889764	0.14184397	0.07142857	253.192857																																										
DPEP1	1463.32143	0.66338583	0.15602837	0.10714286	296.078571																																										
LYZ	1020.78571	1.29724409	0.5248227	0.80357143	134.857143																																										
SOD2	1421.78571	0.30543307	83.7446809	6.85714286	428.514286																																										
UBD	655.428571	5.33267717	0.16312057	0.08571429	242.785714																																										
BCAT1	197.839286	0.23031496	0.0	0	0.08571429																																										
Gene	Expression Level																																														
--------	------------------																																														
MT1G	1455.26786																																														
DUSP4	224.982143																																														
B3GNT7	263.375																																														
ANGPTL4	965.589286																																														
CELA2A	285.625																																														
PGM1	278.160714																																														
VIM	325.125																																														
TMC5	260.857143																																														
TPST2	162.928571																																														
GCG	1488.57143																																														
F10	3.33928571																																														
SMIM24	37.125																																														
GC	62																																														
RGS4	20.9107143																																														
TTR	756.053571																																														
CRYBA2	37.5714286																																														
TM4SF4	60.6964286																																														
LOXL4	50.875																																														
FAP	4.76785714																																														
VGF	30.5535714																																														
SERPIN2	10.3928571																																														
CD99L2	18.2678571																																														
PCSK2	31.3571429																																														
TMEM176B	212.464286																																														
FXYD5	46.0357143																																														
GLS	41.8035714																																														
SCG2	40.7678571																																														
TMEM176A	115.392857																																														
SLC22A17	17.4642857																																														
PDK3	23.0714286																																														
PLC1E	13.5537143																																														
IRX2	0.96428571																																														
SLC38A4	2.23214286																																														
CHGA	56.8392857																																														
PALLD	49.5																																														
ARX	1.05357143																																														
PLK2	61.9285714																																														
FEV	2.55357143																																														
ALDH1A1	591.696429																																														
CLU	1379.73214																																														
C10orf10	184.321429																																														
FXYD3	94.875																																														
SLC7A2	92.8035714																																														
GRIA3	1.71428571																																														
GPX3	123.535714																																														
CHGB	234.767857																																														
KCTD12	1.92857143																																														
Gene	Count1	Count2	Count3	Count4	Count5																																										
--------	--------	--------	--------	--------	--------																																										
SMOC1	25.4285714	79.1102362	1.43262411	18.375	0.75																																										
CNTN1	1.57142857	123.222441	75.7234043	44.875	3.98571429																																										
CPLX2	1.23214286	92.4724409	32.212766	40.5892857	0.52857143																																										
PEMT	47.4464286	625.824803	314.496454	96.2142857	41.1142857																																										
MOB1B	6.03571429	77.1870079	33.751773	21.4642857	12.2357143																																										
SSX2IP	6.33928571	70.8799213	20.9716312	19	7.50714286																																										
KIAA1324	133.321429	561.665354	299.985816	237.178571	8.53571429																																										
PDK4	75.5357143	366.21063	23.0780142	34.8571429	29.6642857																																										
PCDH17	1.71428571	56.1771654	18.5602837	17.2857143	6.59285714																																										
ERO1LB	61	244.393701	754.985816	252.375	7.98571429																																										
ELF4A2	191.517857	180.253937	441.22695	227.678571	159.028571																																										
RASD1	5.76785714	99	257.524823	94.4285714	45.1571429																																										
FAM159B	0.01785714	0.44094488	95.5744681	1.33928571	0.02142857																																										
ATF2A3	36.6071429	81.8326772	206.304965	122.714286	3.51428571																																										
PPT1	76.4107143	185.830709	332.93617	111.228571	57.65																																										
TMEM37	114.196429	16.5137795	181.51773	49.3571429	124.892857																																										
FAM105A	7.98214286	28.9370079	151.787234	32.4107143	1.75714286																																										
PSEN1	19.8214286	23.9232283	93.988156	51.0535714	17.8																																										
VPS37A	22.125	33.8937008	71.858156	28.0892857	27.2714286																																										
RRAGD	24.25	35.6673228	70.893617	19.9821429	23.1785714																																										
SURF2	27.1071429	31.8582677	58.751773	28.8035714	22.2642857																																										
RGS2	14.8928571	25.8858268	61.3829787	492.375	29.2																																										
SST	25.517857	510.427165	38.6808511	190088.375	13.6857143																																										
LEPR	2.23214286	1.92125984	7.0141844	167.017857	2.55714286																																										
RBP4	2.48214286	17.1811024	2129.41844	4935.33929	10.4714286																																										
MS4A8	3.48214286	15.9153543	0.07801418	75.25	3.84285714																																										
Gene	UCP2	SEC11C	UNCSB	GABRB3	BCHE	HEPACAM2	PCP4	PCLO	BAIAP3	PRKACB	TENM3	DHR5S	DIRAS3	LOC728392	TPP3	PKIB	GPC5-AS1	PSIP1	HHEX	AKAP12	LINC00643	ARID5B	CLK1	MAP9	SYT4	CBFB	CELF4	KCNH2	TINAG1L	SPP1	MMP7	AQP1	CFTR	COL18A1	VTCN1	TSPAN8	KRT19	KRT23	PMEPA1	ALDH1A3	PPAP2C	SERPING1	SERPINA1	TRPV6	PDLM3	CMTM7	LY6E
--------	--------	---------	--------	--------	--------	----------	--------	--------	--------	--------	--------	--------	--------	--------	----------	--------	--------	----------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------													
Gene	HSD17B2	1.05357143	0.03937008	0.04255319	0.05357143	214.414286																																									
-------	------------	-------------	-------------	-------------	-------------	-------------																																									
	IGFBP7	43.8214286	176.175197	50.1560284	21.875	1112.42143																																									
	SLC4A4	58.9821429	0.23818898	1.4822695	17.75	268.285714																																									
	SERPINA5	341.267857	0.19488189	0.11347518	0.05357143	693.721429																																									
	DEFB1	79.5714286	0.11023622	0.14184397	0.07142857	666.35																																									
	ANXA3	84.25	2.96456693	9.18439716	0.96428571	287.95																																									
	TFPI2	2.39285714	0.05314961	0.0141844	0.01785714	167.407143																																									
	LGALS4	107.285714	0.07677165	0.0212766	0.03571429	302.9																																									
	ANXA4	971.214286	42.7440945	4.55319149	20.4642857	1882.59286																																									
	CTSH	176.303571	8.71850394	3.24113475	1.75	596.807143																																									
	PROM1	44.3035714	0.32874016	0.04255319	0.01785714	119.264286																																									
	CALD1	53.6964286	1.12401575	18.7092199	38	198.4																																									
	NRP1	9.83928571	17.4271654	2.61702128	15.6785714	160.214286																																									
	SLC3A1	5.94642857	0.25590551	0.09929078	0.16071429	272.014286																																									
	ANXA2P2	242.785714	33.4663534	26.4893617	2.35714286	704.857143																																									
	ANXA2	487.571429	73.6102362	52.8652482	4.30357143	1369.9																																									
	FLNA	114.428571	3.77165354	1.4893617	2.25	309.814286																																									
	WWTR1	46.3214286	0.52362205	0.87234043	1.14285714	122.8																																									
	CLDN10	128.214286	0.15551181	0.09929078	6.39285714	427.392857																																									
	CCND1	21.5892857	0.95866142	13.2340426	0.48214286	181.235714																																									
	RBPI	224.482143	75.1358268	85.1205674	177.928571	603.678571																																									
	HSPB8	61	0.03149606	0.18439716	6.96428571	159.9																																									
	WFDC2	29.3392857	7.64370079	6.68085106	6.80357143	155.414286																																									
	SDC1	54.0357143	1.44094488	0.0212766	3.01785714	176.735714																																									
	PFKP	58.5892857	76.3740157	35.2340426	44.2321429	202.071429																																									
	CD9	103.535714	0.95087874	13.4184397	83.2857143	283.585714																																									
	SLPI	38.1964286	0.86220472	0.03546099	2.14285714	324.95																																									
	GAS6	11.125	0.0984252	1.07092199	1.08928571	133.778571																																									
	LITAF	108.946429	1.8976378	5.07801418	25.2142857	343.778571																																									
	FSTL1	6.53571429	5.76377953	0.09929078	0.17857143	118.95																																									
	ONECUT2	25.9642857	2.02755906	7.43971631	0.46428571	102.364286																																									