Enhancement of the Josephson current by an exchange field in superconductor-ferromagnet structures

F. S. Bergeret $^1$, A. F. Volkov$^{1,2}$ and K. B. Efetov$^{1,3}$

(1) Theoretische Physik III, Ruhr-Universität Bochum, D-44780 Bochum, Germany
(2) Institute of Radioengineering and Electronics of the Russian Academy of Sciences, 103907 Moscow, Russia
(3) L.D. Landau Institute for Theoretical Physics, 117940 Moscow, Russia

We calculate the dc Josephson current for two superconductor-ferromagnet (S/F) bilayers separated by a thin insulating film. It is demonstrated that the critical Josephson current $I_c$ in the junction strongly depends on the relative orientation of the effective exchange field $h$ of the bilayers. We found that in the case of antiparallel orientation, $I_c$ increases at low temperatures with increasing $h$ and at zero temperature has a singularity when $h = \Delta$ the superconducting gap. This striking behavior contrasts with the suppression of the critical current by the magnetic moments aligned in parallel and is an interesting new effect of the interplay between superconductors and ferromagnets. PACS: 74.80.Dm, 74.50.+r, 75.70.Cn

The possibility of various applications and the appearance of new interesting physics makes the experimental and theoretical study of ferromagnetic and superconducting-ferromagnetic hybrid structures a popular topic. One of the properties that has attracted attention in the last years is a magnetoresistance due to the presence of the magnetic order. In some structures the magnetoresistance can reach very large values. This effect has been termed “giant magnetoresistance” (GMR). First discovered in magnetic multilayers, where the typical values of MR were of order of 10%, the GMR effect can be as large as 200% - 300% in Ni - Ni or Co - Co point contacts.

A typical device studied in such experiments consists of two separated ferromagnets. One measures the resistivity for different relative directions of the magnetization. The large values of the MR is due to an additional scattering of electrons at the boundary between adjacent layers (in the case of antiparallel orientation, an electron crossing this boundary goes from one sub-band to another and experiences a reflection from an effective potential related to the different positions of the sub-bands).

If the normal metals of the reservoirs are replaced by superconductors, another mechanism causes differing resistances for the antiparallel and the parallel alignment of the magnetization. This mechanism is due to Andreev reflection which occurs at the S/F interfaces, and which implies a zero spin current through them. In the case of very thin magnetic layers separating the superconducting reservoirs, the resistance of the structure drops to zero and it becomes more appropriate to consider the supercurrent (or Josephson current). It was shown that if the exchange field $h$ in the magnetic layer exceeds a certain value, the state energetically more favorable corresponds not to a zero phase difference between the reservoirs (in the absence of an external current), but to a phase difference of $\varphi = \pi$ (the so-called $\pi$-junction). The predicted $\pi$-state in a S/F/S Josephson junction apparently was observed by Ryazanov et al.

In this Letter we demonstrate that, in contrast to the common knowledge, the exchange field can under certain conditions enhance the Josephson critical current in a S/F-I-S/F tunnel junction rather than reduce it (here I is an insulating layer). As a result, the critical current $I_c$ may considerably exceed the critical current of the Josephson junction in the absence of the exchange field. The conditions are quite simple: one needs low temperatures and the antiparallel alignment of the magnetization in the different parts of the superconductor. At the same time, if the magnetization in the bilayers are parallel the critical current is suppressed. This leads to a high sensitivity of the critical current to the mutual alignment of the magnetic moments and, hence, to a possibility of an experimental observation.

To be specific we consider a system consisting of two superconductor-ferromagnet (S/F) bilayers (F here is a thin film) separated by a thin insulating layer (see Fig.1), i.e. the Josephson S/F-I-F/S junction. This system can be studied using quasiclassical equations complemented with the boundary conditions. This approach allows one to describe the system completely and was used to get the main results of the present paper.

However, the Josephson current and other thermodynamic quantities can be derived in a considerably simpler way if the thicknesses of the layers $d_S$ and $d_F$ in Fig.1 are smaller than the superconducting coherence length $\xi_S \sim \sqrt{D/2\pi T_c}$ and the length of the condensate penetration into the ferromagnet $\xi_F \sim \sqrt{D/h}$, respectively. These conditions can be met experimentally.

Although, generally speaking, solutions for the superconducting order parameter $\Delta$ of the quasiclassical equations depend on the coordinates, the assumption about
the superconducting order parameter $\Delta_{\text{eff}}$. Eqs. (2-4) may describe superconductors with a homogeneous exchange field with a reduced value. Of course, the other physical quantities characterizing the superconductor should be modified, too.

$$
\Delta_{\text{eff}}/\Delta = \lambda_{\text{eff}}/\lambda = \nu_A d_A (\nu_A d_A + \nu_J d_J)^{-1},
$$

$$
h_{\text{eff}}/h = \nu_J d_J (\nu_A d_A + \nu_J d_J)^{-1}
$$

where $\nu_A$ and $\nu_J$ are the densities of states in the superconductor and ferromagnet, respectively.

Assuming that the exchange field acts only on spin of electrons (which implies that the magnetizations are parallel to the interface) one can write the Gor'kov equations for the S/F layers

$$
(i\varepsilon_n + \xi - \sigma\hbar) \hat{G}_e + \Delta \hat{F}_e = 0
$$

$$
(-i\varepsilon_n + \xi - \sigma\hbar) \hat{F}_e + \Delta \hat{G}_e = 0
$$

where $\sigma$ are Pauli matrices and $\xi = \varepsilon (p) - \varepsilon_F$, $\varepsilon_F$ is the Fermi energy, $\varepsilon_n = (2n + 1)\pi T$ are Matsubara frequencies, and $G_e$ and $F_e$ are normal and anomalous Green functions. (We omit the subscript eff in Eqs. (2) and below). Eqs. (2) should be complemented by the self-consistency equation

$$
\Delta = \lambda T \sum \varepsilon \text{Tr} \hat{f}_e
$$

where trace Tr should be taken over the spin variables and

$$
\hat{f}_e = \frac{1}{\pi} \int \hat{F}_e d\xi
$$

Eqs. (2-4) may describe superconductors with a homogeneous exchange field as well. We neglect influence of the magnetic moments on the orbital electron motion, which is definitely legitimate for the thin ferromagnetic layers considered here. As soon as the S/F system is described by Eqs. (2-4) the Josephson current $I_j$ can be expressed in terms of $\hat{f}_e$

$$
I_j = (2\pi T/eR) \sum_n \hat{f}_1(h_1) \hat{f}_2(h_2) \sin \varphi
$$

where $R$ is the barrier resistance in the normal state. This formula can be easily obtained by using the standard tunneling Hamiltonian method or boundary conditions (15,16). $h_1$ and $h_2$ are the exchange fields to the left and to the right of the junction.

In the case of the conventional singlet superconducting pairing the matrix $\Delta$ has the form $\Delta = i\sigma_y \Delta$. Solving Eqs. (2) and using Eq. (4) we find easily for the function $\hat{f}_e$

$$
\hat{f}_e = \Delta \left( (\varepsilon_n + i\sigma h)^2 + \Delta^2 \right)^{-1/2}
$$

With Eq. (1) one can calculate the Josephson current $I_j$ for any direction of the magnetic moments $\mathbf{h}_1$ and $\mathbf{h}_2$. The most interesting are the cases of the parallel and antiparallel alignments of the magnetic moments. In the both cases computation of the current $I_j$ in Eq. (1) is very simple and we obtain for the parallel configuration

$$
I_j^{(p)} = \frac{\Delta^2 (T) 4\pi T}{eR} \sum \varepsilon \frac{\varepsilon_n^2 + \Delta^2 (T, h) - h^2}{(\varepsilon_n^2 + \Delta^2 (T, h) - h^2)^2 + 4\varepsilon_n^2 h^2},
$$

whereas the Josephson current $I_j^{(a)}$ for the antiparallel configuration takes the form

$$
I_j^{(a)} = \frac{\Delta^2 (T) 4\pi T}{eR} \sum \varepsilon \frac{1}{\sqrt{(\varepsilon_n^2 + \Delta^2 (T, h) - h^2)^2 + 4\varepsilon_n^2 h^2}}.
$$

In Eqs. (7,8), $\Delta (T, h)$ is the superconducting gap which depends on both the temperature $T$ and the exchange field $h$ (for simplicity we assume that the moduli of the exchange field are equal to each other). The value of the superconducting order parameter $\Delta (T, h)$ is determined by Eqs. (3,4) that can be reduced to the form

$$
1 = \lambda T \sum \varepsilon \text{Re} \frac{1}{\sqrt{(\varepsilon_n + i\hbar)^2 + \Delta^2 (T, h)}}.
$$

Eqs. (7,8) solve completely the problem of calculation of the Josephson energy and the critical current of the junction with the parallel and antiparallel alignment of the magnetic moments and all new interesting results of the present paper are described by these equations.
It is clear without further calculations that the current $I_c^{(p)}$ of the parallel configuration is always smaller than the current $I_c^{(a)}$ corresponding to the antiparallel one. So, rotating experimentally the magnetic moment of one of the S/F bilayer one might considerably change the critical current.

Although this phenomenon is interesting on its own, Eq. (3) written for the antiparallel alignment describes at low temperatures a much more striking effect. In the limit $T \to 0$, the sums over the Matsubara frequencies can be replaced by integrals and one obtains

$$\Delta(0,h) = \begin{cases} \Delta_0, & h < \Delta_0 \\ 0, & h > \Delta_0 \end{cases}$$ (10)

where $\Delta_0$ is the BCS superconducting gap at $T = 0$ in the absence of the exchange field. There is another solution for $\Delta(h) < \Delta_0$ in the interval $1/2 < h < 1$ [11,10], but this solution is unstable.

Inserting Eq. (10) in Eq. (8) one can see that the Josephson critical current $I_c^{(a)}$ grows with increasing exchange field and even formally logarithmically diverges when $h \to \Delta_0$.

$$I_c^{(a)}(h \to \Delta_0) \simeq \frac{I_c(0)}{\pi} \ln(\Delta_0/\omega_0),$$ (11)

where $I_c(0)$ is the critical current in the absence of the magnetic moment at $T = 0$, and $\omega_0$ is a cutoff at low energies.

At finite temperatures $\omega_0 \sim T$ but, in principle, it should remain finite also at $T = 0$. The formal divergence seen in Eq. (8) can apparently be removed by considering any damping in the excitation spectrum of the superconductors or higher orders in expansion in the tunneling rate.

The enhancement of the Josephson current by the presence of ordered magnetic moments in superconductors, Eq. (11), is the main result of our paper and is, to the best of our knowledge a novel effect. It occurs if the magnetic moments are aligned antiparallel. In contrast, at finite temperatures the Josephson critical current for a parallel alignment of the magnetic moments is always smaller than the corresponding values without the magnetic moments. At $T = 0$, the calculation of the integral over the frequencies in Eq. (8) shows that $I_c^{(p)}$ does not depend on $h$, coinciding with $I_c(0)$.

In principle, the dependence of the critical currents on the exchange field can be more complicated due to a possibility of a transition to the nonhomogeneous LOFF phase predicted by Larkin and Ovchinnikov (LO) [11] and Fulde and Ferrell [10] for the region $0.755\Delta_0 < h < \Delta_0$. Nevertheless, Eqs. (3,8) are applicable for $h < 0.755\Delta_0$, and a possible transition to the LOFF state would manifest itself in a drop of the critical current. Even for $h > 0.755\Delta_0$ the predicted effect may survive because the state with homogeneous $\Delta$ may exist as a metastable one.

The enhancement of the Josephson current occurs only at sufficiently low temperatures. Near the transition temperature $T_c$ and for small $h$ one obtains

$$I_c^{(a)} = (\pi/2) (eR)^{-1} (\Delta_0^2/h) \sinh(h/2T_c),$$

$$I_c^{(p)} = (\pi/2) (eR)^{-1} (\Delta_0^2/T_c) \cosh^{-2}(h/2T_c),$$

$$I_c^{(a)/I_c^{(p)}} = (T_c/h) \sinh(h/T_c),$$ (12)

where $\Delta = \Delta(T, h)$ is determined from Eq. (6). The dependence of $T_c$ on $h$ is presented in Ref. [10]. At arbitrary temperatures the dependence of the critical currents on the exchange field $h$ can be obtained from Eqs. (8) only numerically. The results are represented in Fig.2 for the antiparallel configuration and in Fig.3 for the parallel one.

**FIG. 2.** Dependence of the normalized critical current on $h$ for different temperatures in the case of an antiparallel orientation. Here $eV_c = eR I_c$, $h_F$ is the effective exchange field, $t = T/\Delta_0$ and $\Delta_0$ is the superconducting order parameter at $T = 0$ and $h = 0$.

**FIG. 3.** The same dependence as in Fig.2 in the case of a parallel orientation.
If the angle $\alpha$ between the directions of the magnetization is arbitrary the critical current $I_c^\alpha$ can be written in the form
$$I_c^\alpha = I_c^{(p)} \cos^2 (\alpha/2) + I_c^{(s)} \sin^2 (\alpha/2).$$  (13)
Eq. (13) shows that the singular part of the critical current is always present and its contribution may reach 100% at $\alpha = \pi$.

All the conclusions presented above also for two magnetic superconductors with uniformly oriented magnetization in each layer. Eqs. (6,8) could be obtained from formulae written in Ref. [17] for magnetic superconductors with a spiral structure. However, the effects found in our work were not discussed in Ref. [17].

Experimentally, it might be convenient to measure the coefficient $D$
$$D = \frac{I_c^{(a)} - I_c^{(p)}}{I_c^{(p)}}$$  (14)
as a function of temperature. We draw in Fig. 4 several curves characterizing the temperature dependence $D(T)$ for different $h$. One can change $h$ by varying the thickness of the magnetic layers. We see that the coefficient $D$ can reach values of the order of unity. We note that at a given $h$ ($h > 1/2$) a first order transition takes place when $T$ reaches a certain critical value. In this case either $\Delta$ drops to a smaller value or the normal state is realized. If the S/F interface resistance per unit area $R_{S/F}$ exceeds the value $\rho_F d_F$ ($\rho_F$ is the specific resistance of the ferromagnet), the condensate functions experience a jump at the S/F interface and a sub gap $\epsilon_{sg} = (D\rho_F)_F / R_{S/F} d_F < \Delta$ arises in the ferromagnet [18]. In this case a singularity appears when $h \rightarrow h_{sg}$.

![FIG. 4. Temperature dependence of the coefficient D. Here $h_F$ is the effective exchange field and $t = T/\Delta_0$.](image)

All the results presented in this paper can be obtained by using the quasiclassical Green’s function technique generalized for spin-dependent interaction. The details of the calculations will be presented elsewhere. It is important to mention that the enhancement of the Josephson current by the antiparallel alignment of the magnetic moments is obtained only for the singlet pairing.

In conclusion, we have shown that in contrast to the common view, the presence of an exchange field $h$ can increase the critical current $I_c$ in a Josephson tunnel junction S/F-I-F/S in the case of an antiparallel alignment of the magnetization in the ferromagnets.

We thank SFB 491 Magnetische Heterostrukturen for financial support.

[1] M.N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dan, and F. Petroff, Phys. Rev. Lett. 61, 2472 (1988)
[2] G. Binasch, P. Grünberg, F. Saurenbach, and W. Zinn, Phys. Rev. B 39, 4828 (1989)
[3] N. García, M. Muñoz, and Y.-W. Zhao, Phys. Rev. Lett. 82, 2923 (1999)
[4] G. Tatara, Y.-W. Zhao, M. Muñoz, And N. García, Phys. Rev. Lett. 83, 2030 (1999)
[5] M. J. de Jong, and C. W. J. Beenakker, Phys. Rev. Lett. 74, 1657 (1995); V. I. Fal’ko, A. F. Volkov and C. J. Lambert, JETP Lett. 69, 532 (1999); F. Taddei et al., Phys. Rev. Lett. 82, 4938 (1999).
[6] A. I. Buzdin, L. N. Bulaevskii, and S. V. Pan’yukov, JETP Lett. 35, 178 (1982);A. I. Buzdin, and M. Yu. Kupriyanov, JETP Lett., 52, 487 (1990); L.N.Bulaevskii, V.V.Kuzii, and A.A.Sobyanyin, JETP Lett. 25, 290(1977); T. T. Hekkila, F. K. Wilhelm and G. Schön, cond-mat/0003383.
[7] V. V. Ryazanov, V. A. Óbozov, A. Yu. Rusanov, A. V. Veretennikov, A. A. Golubov, and J. Aarts, cond-mat.0008364
[8] L. N. Bulaevskii, A. I. Buzdin, Sov.Phys.JETP 67, 576 (1988).
[9] F. S. Bergeret, K. B. Efetov, A. I. Larkin, Phys Rev. B 62, 11872 (2000) (to be published).
[10] P. Fulde and R. A. Ferrell, Phys. Rev. A 135, 550 (1965).
[11] A. I. Larkin and Yu. N. Ovchinnikov, JETP 20, 762 (1965).
[12] G. Eilenberger, Z. Phys. 214, 195 (1968).
[13] A. I. Larkin and Yu. N. Ovchinnikov, JETP 26, 1200 (1968); A. I. Larkin and Yu. N. Ovchinnikov, in Nonequilibrium Superconductivity, edited by D. N. Langenberg and A. I. Larkin, (Elsevier, Amsterdam, 1984).
[14] K.L. Usadel, Phys. Rev. Lett. 25, 507 (1970)
[15] A. V. Zaitsev, JETP 59, 1015 (1984).
[16] M. Yu. Kupriyanov and V. F. Lukichev, JETP 67, 1163 (1988).
[17] M. L. Kulic and J. M. Kulic, cond-mat/0001092 (2000).
[18] W. L. Mc Millan, Phys. Rev. 175, 537 (1968).
[19] G. Sarma, J. Phys. Chem. Solids 24, 1029 (1963).