Selection and Validation of Appropriate Reference Genes for Quantitative Real-Time PCR Analysis of Gene Expression in Lycoris aurea

Rui Ma¹†, Sheng Xu¹†, Yucheng Zhao², Bing Xia¹ and Ren Wang¹*

¹ Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China, ² State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China

Lycoiris aurea (L’ Hér.) Herb, a perennial grass species, produces a unique variety of pharmacologically active Amaryllidaceae alkaloids. However, the key enzymes and their expression pattern involved in the biosynthesis of Amaryllidaceae alkaloids (especially for galanthamine) are far from being fully understood. Quantitative real-time polymerase chain reaction (qRT-PCR), a commonly used method for quantifying gene expression, requires stable reference genes to normalize its data. In this study, to choose the appropriate reference genes under different experimental conditions, 14 genes including YLS8 (mitosis protein YLS8), CYP2 (Cyclophilin 2), CYP 1 (Cyclophilin 1), TIP41 (TIP41-like protein), EXP2 (Expressed protein 2), PTBP1 (Polypyrimidine tract-binding protein 1), EXP1 (Expressed protein 1), PP2A (Serine/threonine-protein phosphatase 2A), β-TUB (β-tubulin), α-TUB (α-tubulin), EF1-α (Elongation factor 1-α), UBC (Ubiquitin-conjugating enzyme), ACT (Actin) and GAPDH (Glyceraldehyde 3-phosphate dehydrogenase) were selected from the transcriptome datasets of L. aurea. And then, expressions of these genes were assessed by qRT-PCR in various tissues and the roots under different treatments. The expression stability of the 14 candidates was analyzed by three commonly used software programs (geNorm, NormFinder, and BestKeeper), and their results were further integrated into a comprehensive ranking based on the geometric mean. The results show the relatively stable genes for each subset as follows: (1) EXP1 and TIP41 for all samples; (2) UBC and EXP1 for NaCl stress; (3) PTBP1 and EXP1 for heat stress, polyethylene glycol (PEG) stress and ABA treatment; (4) UBC and CYP2 for cold stress; (5) PTBP1 and PP2A for sodium nitroprusside (SNP) treatment; (6) CYP1 and TIP41 for methyl jasmonate (MeJA) treatment; and (7) EXP1 and TIP41 for various tissues. The reliability of these results was further enhanced through comparison between part qRT-PCR result and RNA sequencing (RNA-seq) data. In summary, our results identified appropriate reference genes for qRT-PCR in L. aurea, and will facilitate gene expression studies under these conditions.

Keywords: gene quantification, quantitative real-time PCR (qRT-PCR), reference gene, abiotic stress, Lycoris aurea
INTRODUCTION

Lycoris aurea (L. Hér.) Herb, also called Golden Magic Lily, is an ornamental and medicinally important species of the Amaryllidaceae family. It belonged to the genus Lycoris which composed of approximately 20 species of flowering plants native to the moist warm temperate woodlands of eastern and southern Asia (Hsu et al., 1994; Shi et al., 2006; Unver, 2007). Like other species of genus Lycoris, L. aurea is very durable, tolerating the extremes of drought and waterlogging, as well as poor soil conditions (Wang et al., 2013; Xu et al., 2015). It also accumulates Amaryllidaceae alkaloids such as lycorine and galanthamine, which have been reported to exhibit medical values (Bores et al., 1996; Lilienfeld, 2002; Marco and do Carmo Carreiras, 2006; Lamoral-Theys et al., 2010). In general, Amaryllidaceae alkaloids are regarded as derivatives of the common precursor 4′-O-methylnorbelladine (Eichhorn et al., 1998; Bastida et al., 2011). There are three different groups of Amaryllidaceae alkaloids that are biosynthesized by three modes of intramolecular oxidative C–C phenol coupling (para-ortho, para-para and ortho-para) (Bastida et al., 2011). Although many detailed insights in biosynthetic steps of Amaryllidaceae alkaloids production have been revealed by the biochemical approaches labeling intermediates, the key enzymes involved in the biosynthesis of Amaryllidaceae alkaloids (especially for galanthamine) are far from being fully understood (Wang et al., 2013). In order to better identify the determinants in production of Amaryllidaceae alkaloids, studies on their inducible phenotype have been performed. For example, the improved production of Amaryllidaceae alkaloids was observed in some Amaryllidaceae plants when treated with elicitors including methyl jasmonate (MeJA), sodium nitroprusside (SNP) and ethylene (Colque et al., 2004; Mu et al., 2009; Ptak et al., 2010; Jiang et al., 2011). Known as a derivative of jasmonate metabolism, MeJA was shown to be an important signal molecules detected in a wide spectrum of plant species and function on a lot of biological processes including growth inhibition, senescence, wound response, plant defense and secondary mechanism (Wasternack, 2007; De Geyter et al., 2012; Wasternack and Hause, 2013). For example, three major classes of plant secondary metabolites defined as the terpenoids, alkaloids and phenylpropanoids were induced by jasmonates (De Geyter et al., 2012; Wasternack and Hause, 2013). Nevertheless, the detailed processes of MeJA-stimulated Amaryllidaceae alkaloids production and concomitant transcriptome changes associated with response to MeJA in L. aurea remain poorly understood. Furthermore, the precise regulation mechanisms controlling the biosynthesis of Amaryllidaceae alkaloids highly interconnected at the metabolic level and a possible transcriptional/post-transcriptional regulation still need to be elucidated.

RNA sequencing (RNA-seq) has been applied prevalently on transcriptomes analysis of various species for a wide range of purposes (Wang et al., 2009; Metzker, 2010; Stone and Storchova, 2015). The main outcome of RNA-seq data is to identify the differentially expressed genes, while it was also used to search for reference genes (Zhuang et al., 2015). Meanwhile, quantitative real-time polymerase chain reaction (qRT-PCR) technique, with quantitative accuracy, high sensitivity, low cost, and high-throughput characteristics, has also been widely used to determine gene expression levels and to validate transcriptomic data (Bustin, 2002; Radonic et al., 2004; Caldana et al., 2007; Van Guelder et al., 2008). For accurate qRT-PCR evaluation, it is necessary to select suitable reference genes as internal control under different experimental conditions because several factors including the starting material, RNA integrity, reverse transcription efficiency, cDNA quality, sample amount, and/or extraneous tissue and cell activities can significantly influence the accuracy of gene expression (Bustin, 2002; Huggett et al., 2005).

In addition, gene expression can be highly tissue-specific and often varies based on the physiological status of the organism or experimental treatments, and not a single gene can act as a universal reference reported so far (Nicot et al., 2005; Gutierrez et al., 2008a; Gimeno et al., 2014; Zhuang et al., 2015). Hence, the selection of appropriate reference genes is important for obtaining valid results and proper interpretation from the analysis (Bustin, 2002; Bustin et al., 2009). Numerous studies have documented the selection of reference genes in various plants including Arabidopsis (Czechowski et al., 2005; Remans et al., 2008; Hong et al., 2010; Llly et al., 2011), grasses (Hong et al., 2008; Lee et al., 2010), fruits (Reid et al., 2006; Tong et al., 2009; Clancy et al., 2013; Die and Rowland, 2013; Imai et al., 2014), vegetables (Expósito-Rodríguez et al., 2008; Sun et al., 2010; Xu et al., 2012), some desert plants (Li et al., 2012, 2015; Zhu et al., 2013), and crops such as soybean (Jian et al., 2008; Libault et al., 2008; Hu et al., 2009; Kulcheski et al., 2010), rice (Kim et al., 2003; Jain et al., 2006; Narsai et al., 2010), wheat (Paolacci et al., 2009), barley (Burton et al., 2004), buckwheat (Demidenko et al., 2011), potato (Nicot et al., 2005), and sugarcane (Iskandar et al., 2004). Of some Lycoris species, comparison and selection of reference genes in different tissues and floral development stages has been performed (Cui et al., 2011; Jiang et al., 2015). However, none has been assessed for a systematic selection of reference genes in L. aurea under abnormal condition (especially for abiotic stress and hormone treatments). Beside, one of our major research interests concerns the study of the galanthamine biosynthesis pathways, and we have characterized a number of candidate genes referring to this process in L. aurea (Wang et al., 2013). The need for suitable reference genes is thus urgent for qRT-PCR detection of gene expression especially regarding galanthamine biosynthesis and its regulation processes under various experimental conditions in L. aurea.

In this study, we selected 14 candidate reference genes based on the transcriptome datasets of L. aurea by RNA-seq (Wang et al., 2013; unpublished data). The expression profiles of these candidate reference genes were tested under various treatments and further validated the expression stability by qRT-PCR and evaluated using statistical algorithms including geNorm (Vandesompele et al., 2002), NormFinder (Andersen et al., 2004), and BestKeeper (Pfaffl et al., 2004). The comprehensive stability ranking of these reference genes under each specific experimental condition were also performed. Additionally, one target gene, secologanin synthase (cytochrome P450 CYP72A1), was used to validate the effectiveness of the selected reference
genes. Finally, this work provides the basis for further research in exploring gene expression profiling and the regulation mechanism of galanthamine biosynthesis of *L. aurea* under different experimental conditions.

MATERIAL AND METHODS

Plant Materials and Stress Treatments

The bulbs of *Lycoris aurea* were planted in the same greenhouse at the research station of Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (118°83′E; 32°05′N), Nanjing, China. For various abiotic stress and hormone treatments, seedlings (with 2–3 leaves) were transferred into plastic pot (15.0 cm top diameter and 14.5 cm deep) containing half-strength Hoagland’s nutrient solution. Plants were placed in a chamber with a mean temperature of 25.0 ± 1.4°C, a relative humidity of 60.0% ± 10%, and a day/night rhythm of 14/10 h. After 7 days maintenance, *L. aurea* seedlings were subjected to various experimental treatments following the methods described previously (Tian et al., 2015; Xiao et al., 2015). For drought treatment, 20% PEG-6000 solution (w/v, polyethylene glycol, Sangon, China) was applied to incubate the plants for 0, 1, 6, and 24 h. For cold and heat stress, plants in the pots were placed at chamber with the temperature of 4°C and 42°C respectively for 0, 1, 6, and 24 h. For salinity treatment, seedlings were transferred to solution with 400 mM NaCl for 0, 1, 6, and 24 h. For sodium nitroprusside (SNP) and hormone treatments, plants were imposed in 500 mL diluted cDNA, 7.5 μL AceQ qPCR SYBR Green Master Mix (Vazyme, Nanjing, China), 0.4 μM of each primer and ddH₂O in a final volume of 15 μL. Two biological replicates for all of the samples and three technical replicates of each biological replicate with a no-template control (NTC) were used. The qRT-PCR protocol was as follows: 95°C for 10 min, 40 cycles of 95°C for 15 s, 60°C for 30 s. To verify the specificity of each primer, a melting-curve analysis was included. The mean amplification efficiency of each primer pair was checked by the LinRegPCR program (Ruijter et al., 2009).

Selection of Candidate Reference Genes and Primer Design

We performed transcriptome sequencing of *L. aurea* root samples exposed to 100 μM MeJA at 0 (control) and 6 h (MJ100) using Illumina-paired-end sequencing technology on an Illumina Hi-Seq 2000 platform. After assembly and annotation, the read counts of unigenes were converted to fragments per kilobase of exon model per million mapped reads (FPKM values). To estimate expression stability of each gene, the following indices of FPKM values, including mean expression value (MV), standard deviation (SD) and coefficient of variation (CV) value (dividing SD by MV) were calculated according to the methods described previously (de Jonge et al., 2007; Zhuang et al., 2015). Based on previous qRT-PCR reports in the model plants *Arabidopsis*, 14 corresponding unigenes, which have credible protein annotation (Nr and Swiss-Prot databases), appropriate expression level, and a low CV of FPKM, were screened and selected from the *L. aurea* transcriptome for candidate reference genes (*Table S2*). According to the sequences of these unigenes (*Data Sheet 1*), specific primers were designed using Primer-BLAST in NCBI. The criteria for primer design were set as follows: primer lengths of 20–24 bp, GC contents of 45–55%, melting temperature (Tm) in a range of 55–60°C and amplicon lengths of 100–250 bp.

Total RNA Isolation and cDNA Synthesis

The total RNA was extracted from the samples using RNAprep Pure Plant Kit (Tiangen Biotech, Beijing, China). To eliminate DNA contamination, total RNA was digested with DNase I (Ambion, USA) and then purified according to the manufacturer’s protocol. The integrity of total RNA samples was verified by performing 1.5% (w/v) agarose gel electrophoresis, and the quantity and quality of RNA samples were measured with the NanoDrop 2000 Spectrophotometer (NanoDrop Technologies, ThermoScientific, USA). Only the RNA samples with absorption ratios of A260/280 = 1.8–2.2 and A260/230 higher than 1.8 were used for cDNA synthesis.

In order to perform qRT-PCR, an aliquot of 1 μg of total RNA was used for cDNA synthesis with a final volume of 20 μL using PrimeScript™ RT reagent Kit with gDNA Eraser (TaKaRa Bio Inc., Dalian, China) following the manufacturer’s instructions. The cDNA was diluted 10-fold with nuclease-free water for qRT-PCR.

Quantitative Real-Time PCR Analysis

qRT-PCR was conducted in 96-well plates and performed on the LightCycler 480 (Roche Molecular Biochemicals, Mannheim, Germany). The reaction mix contained 2 μL diluted cDNA, 7.5 μL AceQ qPCR SYBR Green Master Mix (Vazyme, Nanjing, China), 0.4 μM of each primer and ddH₂O in a final volume of 15 μL. Two biological replicates for all of the samples and three technical replicates of each biological replicate with a no-template control (NTC) were used. The qRT-PCR protocol was as follows: 95°C for 10 min, 40 cycles of 95°C for 15 s, 60°C for 30 s. To verify the specificity of each primer, a melting-curve analysis was included. The mean amplification efficiency of each primer pair was checked by the LinRegPCR program (Ruijter et al., 2009).

Ranking the Stabilities of Candidate Reference Genes

Three software programs, geNorm (Vandesompele et al., 2002), NormFinder (Andersen et al., 2004) and BestKeeper (Pfaffl et al., 2004) were used statistically to rank the stability of the 14 selected reference genes across all the experimental subsets. All analyses using these packages occurred according to the manufacturers’ instructions. For geNorm and NormFinder algorithms, the raw cycle threshold (Ct) value of each gene were transformed into relative expression levels according to the formula $2^{-\Delta Ct}$ ($\Delta Ct = Ct_{Target} - Ct_{Reference}$).
Orthologous *L. aurea* sequences were retrieved after performing BLASTX on *L. aurea* transcriptome datasets (Wang et al., 2013; unpublished data). The qRT-PCR primer sequences and amplicon characteristics of 14 candidate reference genes are described in Table 1. The expression stability of candidate reference genes (*GAPDH, ACT, α-TUB, β-TUB, EF1-α, UBC, EXP1, EXP2, CYP1, CYP2, TIP41, PTBP1, YLS8, and PP2A*) named according Arabidopsis orthologs and *Nr* annotation, was assessed under various conditions, such as abiotic stress (NaCl, PEG, heat, and cold stress), hormone treatment, and different tissues. The primer specificities were confirmed by agarose gel electrophoresis, sequencing and melting curves, which showed the single amplicon of the expected size and the single peak melting curves (Figure S1; Data sheet 1). The qRT-PCR products ranged from 137 to 213 bp. For each gene, the mean PCR efficiency of each primer pair ranged from 1.775 to 1.880, and the linear R² (correlation coefficients) ranged from 0.9989 to 0.9997 (Table 1).

Expression Profiles of the Candidate Reference Genes

To evaluate stability of the reference genes across all experimental samples, the transcript abundances of the 14 candidate reference genes were detected by their mean Ct values. The mean Ct values for the 14 candidate reference genes ranged between 13 and 25, with most lying between 18 and 22 across all tested samples. The average Ct value of all the tested samples was 22.9 cycles. Across all samples, *α-TUB* was the most abundantly expressed gene, with the lowest average Ct values of 13.44 ± 3.29 (mean ± SD), followed by *UBC* (17.80 ± 4.37), *ACT* (18.02 ± 3.34), *GAPDH* (18.05 ± 4.70), *YLS8* (18.49 ± 3.31), *EF1-α* (18.79 ± 2.90), *CYP1* (18.91 ± 3.17), and *β-TUB* (20.79 ± 2.85). *EXP2* was found to have the lowest level of expression of any of the genes tested, with a mean Ct values of 25.01 ± 2.99, followed by *CYP2* (22.93 ± 1.88) and *PP2A* (22.39 ± 3.45) (Figure 1). The genes with higher SD of Ct values indicated more variable expression compared to these with lower SD. *CYP2* showed the smallest variation in gene expression (22.93 ± 1.88), while *GAPDH* with the most variable levels of expression (Figure 1).

Expression Stability Analysis of the Candidate Reference Genes

In order to obtain a reliable dataset of the optimal reference genes under our experimental conditions, three of the most popular software programs were used: geNorm, NormFinder, and BestKeeper.

geNorm Analysis

By using geNorm to assess the best reference genes in *Lycoris aurea*, the Ct values were transformed to relative expression levels and then calculated according to the manual. The *M* value was calculated at each step during stepwise exclusion of the least stable reference gene until two best genes were obtained (Table S3). In our analysis, a chart of the *M* value was generated that indicated the stability rank of the tested genes (Figure S2). The top two reference genes for qRT-PCR normalization were *CYP1* and *TIP41* for NaCl stress, *EXP1* and *PTBP1* for PEG stress,
TABLE 1 | Genes and primer sets used for qRT-PCR.

Gene name	Gene ID	Gene symbol	Arabidopsis homolog locus	Primer sequence (forward/reverse)	Size (bp)	E (%)	R²
Glyceraldehyde-3-phosphate dehydrogenase	CL7040.Contig2_All	GAPDH	AT1G13440	AAATTAAGGCTGCAATCAAG	149	1.880	0.9992
Actin	CL1444.Contig2_All	ACT	AT3G18780	CAAACCTCTTCGCAATGTCGAGTAAG	173	1.873	0.9995
Ubiquitin-conjugating enzyme	CL6627.Contig8_All	UBC	AT4G27960	CTCACTACTGCTCATCAGTAAG	200	1.865	0.9995
Elongation factor 1-α	CL3597.Contig3_All	EF1-α	AT1G07920	AAGATGGCCAGACCGTGAAGCA	161	1.823	0.9991
α-tubulin	CL544.Contig2_All	α-TUB	AT1G50010	TGTCAGATTGTGTGTTGTA	139	1.872	0.9994
β-tubulin	Unigene13345_All	β-TUB	AT5g12250	ATCCAAAGTACAGGGAGCATGAA	213	1.853	0.9995
Serine/threonine-protein phosphatase PP2A	CL6570.Contig9_All	PP2A	AT1G13320	GTGCCGAAATATTCATTATT	176	1.863	0.9994
Expressed protein 1	CL7794.Contig1_All	EXP1	AT2G32170	TTGATGTTGCTACCAAGAAGTC	133	1.872	0.9996
Polypyrromidine tract-binding protein 1	CL6418.Contig1_All	PTBP1	AT3G01150	GTATTTGGAAGAATTGTTGAGTG	131	1.876	0.9996
Expressed protein 2	CL670.Contig8_All	EXP2	AT4G33380	AACATCGAAATGTGCTGACAG	198	1.779	0.9996
TIP41-like protein	Unigene3100_All	TIP41	AT4G34270	GAAACATCAAAAGTTATAGCTGCA	157	1.847	0.9996
Cyclophilin 1	CL6321.Contig1_All	CYP1	AT2g16600	TCCTGAGGCGGCACTGAGAGGT	137	1.897	0.9997
Cyclophilin 2	CL8032.Contig1_All	CYP2	AT4g33060	TCCAAGTTTGGACTAGAAGG	181	1.880	0.9996
mitosis protein YLS8	CL7523.Contig2_All	YLS8	AT3G08290	CGACTGGAAGCAGACCGTGAAGCTGCGTCA	138	1.775	0.9996
Secologanin synthase	CL4267.Contig6_All	CYP72A1	AT3G14690	TTGAGGCGTTTGTGTTTCTTGTGTA	150	1.820	0.9996

Unigenes were selected from the transcriptome of L. aurea and searched in sequences of Arabidopsis thaliana using Blastn in GenBank. The sequences of Unigenes can be found in Data Sheet 1. The mean efficiency (E) of PCR amplification and the regression coefficient (R²) for each primer pair were calculated by LinRegPCR software.

CYP2 and UBC for cold stress, CYP1 and YLS8 for heat stress, EXP1 and PTBP1 in ABA treatment, CYP2 and TIP41 in MeJA treatment, PP2A and PTBP1 in SNP treatment, and EXP1 and TIP41 in different tissues (Figure S2). Additionally, in the context of the total sample set, EXP1 and TIP41 ranked as the most stable two genes. Therefore, these two reference genes were deemed the most suitable for the widest range of test conditions in the current study.

The Vn/n+1 between normalization factors calculated by the geNorm algorithm also determines the optimal number of reference genes for accurate normalization. A cut-off value of Vn/n+1 < 0.15 indicates that an additional reference gene makes no significant contribution to the normalization (Vandesompele et al., 2002). In the subset of PEG stress, the V2/3 value was below 0.15 (0.149), which suggested that two reference genes should be used for normalization. In the NaCl stress subset, three reference genes were sufficient for accurate normalization, as the V3/4 value was lower than 0.15. In the ABA and MeJA treatment subsets, four reference genes were needed for accurate normalization, as the V4/5 value was lower than 0.15. When the SNP-treated and cold-stressed samples were taken into account, the V5/6 value was lower than the cut-off value of 0.15, which indicated that five genes were suitable for all samples in this study. Additionally, when tissue and total samples were considered, the lowest pairwise variation value was still above 0.15 (Figure 2, Table S4).

NormFinder Analysis

The results of the candidate reference gene stability ranking constructed by NormFinder are shown in Figure S3 for each subset and the SV is provided in Table S5. For all samples subset, NormFinder demonstrated that EXP1 was the most stable (also ranked first by geNorm) followed by TIP41, CYP1, PTBP1. Similar to geNorm, PP2A was the least stable gene. In the subset of NaCl stress, EXP1 and UBC were the most stable. In the PEG-stressed, cold-stressed and MeJA-treated subsets, UBC was the most stable gene. For ABA-treated subset, NormFinder suggested that EXP1 and PTBP1 were the most stable genes, and β-TUB was the least stable. In heat stress subset, EXP1 and PTBP1 were the most stable. GAPDH was the best gene for the SNP group. For the tissue samples subset, EXP1 was the most stably expressed gene.
BestKeeper Analysis
In both the NaCl stress subset and SNP treatment subset, PTBP1 with the lowest CV ± SD values of 1.80 ± 0.36 and 3.19 ± 0.60, respectively, were identified as the most stable gene. In the PEG stress subset, PTBP1 (2.93 ± 0.57) and EXP1 (2.93 ± 0.60) were identified as the best reference genes for normalization. In the cold stress subset, TIP41 (3.82 ± 0.75) had the lowest CV ± SD values, and showed remarkably stable expression. In the heat stress subset, only ACT showed SD < 1, which were considered as the most stable genes. In the ABA-treated subset, ACT had the lowest CV ± SD values of 2.70 ± 0.43, and showed the most stable expression. In MeJA-treated subset, the BestKeeper analysis suggested that EXP1 was the most stable reference gene followed by TIP41 and CYP1, while α-TUB was the least stable reference gene. Additionally, in both the all samples subset and tissue samples subset, no reference gene showed SD < 1, while CYP2 had the lowest CV ± SD values of 6.62 ± 1.52 and 5.51 ± 1.34, respectively, were considered as the most stable genes (Table S6; Figure S4).

Comprehensive Stability Analysis of Reference Genes
To obtain a consensus result of the most stable reference genes as recommended by the three methods according to the RefFinder approach (Xie et al., 2012; http://fulxie.0fees.us/?type=reference), the geometric mean of three algorithms corresponding rankings for each candidate gene were calculated (Table 2; Figure 3; Table S7). EXP1 and TIP41 were ranked as the top two stable reference genes in the all samples subset and tissue samples subset; EXP1 also comprehensively ranked first in the NaCl stress subset, heat stress subset and ABA treatment subset. In cold stress subset, CYP2 was stably expressed most. For both the heat stress subset and the SNP treatment subset, PTBP1 was the most stable gene. Additionally, under MeJA treatment, TIP41 was the best reference gene. The expression of PP2A was extremely unstable under cold stress and heat stress. α-TUB was unstably expressed in the majority of tested subsets, especially in the NaCl stress subset, PEG stress subset, MeJA treatment subset and SNP treatment subset.

Reference Genes Validation
To validate the selected reference genes, the stability of the candidate genes in qRT-PCR was compared with RNA-seq-based gene expression profiling. L. aurea samples treated with 100 µM MeJA and control were mapped, and their unigenes were quantified by RNA-seq as in this study (Table S2; unpublished data). FPKM represents the expression quantities of the unigenes, and the CV of FPKM represents the variability in gene expression. As shown in Figure 4A, YLS8, α-TUB, β-TUB, and EXP2 showed a high CV value, indicating they were not stable genes. In contrast, TIP41, PTBP1, and CYP1 had a lower CV, indicating that they were more stable under MeJA treatment. The ranking of gene stability in the MeJA treatment subset and the ranking of these genes in the RNA-seq data was also...
TABLE 2 | Expression stability ranking of the 14 candidate reference genes.

Method	1	2	3	4	5	6	7	8	9	10	11	12	13	14
(A) RANKING ORDER UNDER ALL SAMPLES (BETTER-GOOD-AVERAGE)	exp1/TIP41	CYP1	PTBP1	ACT	exp2	CYP2	YLS8	UBC	GAPDH	EF1-α	α-TUB	β-TUB	PP2A	
geNorm	expr1	TIP41	CYP1	PTBP1	ACT	exp2	CYP2	YLS8	EF-1α	UBC	β-TUB	GAPDH	α-TUB	PP2A
NormFinder	expr1	TIP41	CYP1	PTBP1	ACT	exp2	CYP2	YLS8	EF-1α	UBC	β-TUB	GAPDH	α-TUB	PP2A
BestKeeper	CYP2	EXP1	EXP2	β-TUB	TIP41	PP2A	EF1-α	PTBP1	CYP1	ACT	YLS8	UBC	GAPDH	α-TUB
Comprehensive Ranking	TIP41	CYP2	EXP2	PTBP1	ACT	β-TUB	EF1-α	YLS8	UBC	GAPDH	α-TUB	PP2A		
(B) RANKING ORDER UNDER NACL STRESS (BETTER-GOOD-AVERAGE)	CYP1/PTBP1	PP2A	CYP2	EXP1	UBC	GAPDH	EXP2	EF1-α	PTBP1	YLS8	ACT	α-TUB	PP2A	
geNorm	UBC	EXP1	PTBP1	EXP-1a	CYP2	TIP41	EXP2	CYP2	GAPDH	CYP1	ACT	YLS8	β-TUB	α-TUB
NormFinder	CYP2	EXP1	UBC	PTBP1	EF1-α	ACT	TIP41	PP2A	EXP2	YLS8	CYP2	GAPDH	CYP1	β-TUB
BestKeeper	EXP1	UBC	PTBP1	EXP1	UBC	CYP2	EF1-α	ACT	PP2A	TIP41	YLS8	PTBP1	GAPDH	β-TUB
Comprehensive Ranking	UBC	EXP1	PTBP1	TIP41	CYP1	EXP2	CYP2	EF1-α	PP2A	GAPDH	ACT	YLS8	β-TUB	
(C) RANKING ORDER UNDER PEG STRESS (BETTER-GOOD-AVERAGE)	CYP2/UBC	EXP1	GAPDH	ACT	TIP41	CYP1	PTBP1	γ-TUB	EF1-α	α-TUB	PP2A			
geNorm	CYP2	EXP1	CYP1	GAPDH	ACT	TIP41	CYP1	PTBP1	γ-TUB	EF1-α	α-TUB	PP2A		
NormFinder	UBC	EXP1	PTBP1	EXP1	CYP1	GAPDH	ACT	TIP41	PTBP1	EF1-α	α-TUB	PP2A		
BestKeeper	CYP2	UBC	EXP1	ACT	CYP1	EXP1	CYP1	ACT	UBC	EXP2	GAPDH	γ-TUB	β-TUB	
Comprehensive Ranking	CYP2	UBC	PTBP1	TIP41	EXP1	ACT	PTBP1	CYP1	GAPDH	γ-TUB	EXP2	EF1-α	γ-TUB	
(D) RANKING ORDER UNDER COLD STRESS (BETTER-GOOD-AVERAGE)	CYP2/UBC	EXP1	GAPDH	ACT	TIP41	CYP1	PTBP1	γ-TUB	EF1-α	α-TUB	PP2A			
geNorm	CYP2	EXP1	CYP1	GAPDH	ACT	TIP41	CYP1	PTBP1	γ-TUB	EF1-α	α-TUB	PP2A		
NormFinder	UBC	EXP1	PTBP1	EXP1	CYP1	GAPDH	ACT	TIP41	PTBP1	EF1-α	α-TUB	PP2A		
BestKeeper	CYP2	UBC	EXP1	ACT	CYP1	EXP1	CYP1	ACT	UBC	EXP2	GAPDH	γ-TUB	β-TUB	
Comprehensive Ranking	CYP2	UBC	PTBP1	TIP41	EXP1	ACT	PTBP1	CYP1	GAPDH	γ-TUB	EXP2	EF1-α	γ-TUB	
(E) RANKING ORDER UNDER HEAT STRESS (BETTER-GOOD-AVERAGE)	CYP2/UBC	EXP1	GAPDH	ACT	TIP41	CYP1	PTBP1	γ-TUB	EF1-α	α-TUB	PP2A			
geNorm	CYP2	EXP1	CYP1	GAPDH	ACT	TIP41	CYP1	PTBP1	γ-TUB	EF1-α	α-TUB	PP2A		
NormFinder	UBC	EXP1	PTBP1	EXP1	CYP1	GAPDH	ACT	TIP41	PTBP1	EF1-α	α-TUB	PP2A		
BestKeeper	CYP2	UBC	EXP1	ACT	CYP1	EXP1	CYP1	ACT	UBC	EXP2	GAPDH	γ-TUB	β-TUB	
Comprehensive Ranking	CYP2	UBC	PTBP1	TIP41	EXP1	ACT	PTBP1	CYP1	GAPDH	γ-TUB	EXP2	EF1-α	γ-TUB	
(F) RANKING ORDER UNDER ABA TREATMENT (BETTER-GOOD-AVERAGE)	CYP2/UBC	EXP1	GAPDH	ACT	TIP41	CYP1	PTBP1	γ-TUB	EF1-α	α-TUB	PP2A			
geNorm	CYP2	EXP1	CYP1	GAPDH	ACT	TIP41	CYP1	PTBP1	γ-TUB	EF1-α	α-TUB	PP2A		
NormFinder	UBC	EXP1	PTBP1	EXP1	CYP1	GAPDH	ACT	TIP41	PTBP1	EF1-α	α-TUB	PP2A		
BestKeeper	CYP2	UBC	EXP1	ACT	CYP1	EXP1	CYP1	ACT	UBC	EXP2	GAPDH	γ-TUB	β-TUB	
Comprehensive Ranking	CYP2	UBC	PTBP1	TIP41	EXP1	ACT	PTBP1	CYP1	GAPDH	γ-TUB	EXP2	EF1-α	γ-TUB	
(G) RANKING ORDER UNDER MEJA TREATMENT (BETTER-GOOD-AVERAGE)	CYP2/UBC	EXP1	GAPDH	ACT	TIP41	CYP1	PTBP1	γ-TUB	EF1-α	α-TUB	PP2A			
geNorm	CYP2	EXP1	CYP1	GAPDH	ACT	TIP41	CYP1	PTBP1	γ-TUB	EF1-α	α-TUB	PP2A		
NormFinder	UBC	EXP1	PTBP1	EXP1	CYP1	GAPDH	ACT	TIP41	PTBP1	EF1-α	α-TUB	PP2A		
BestKeeper	CYP2	UBC	EXP1	ACT	CYP1	EXP1	CYP1	ACT	UBC	EXP2	GAPDH	γ-TUB	β-TUB	
Comprehensive Ranking	CYP2	UBC	PTBP1	TIP41	EXP1	ACT	PTBP1	CYP1	GAPDH	γ-TUB	EXP2	EF1-α	γ-TUB	
(H) RANKING ORDER UNDER SNP TREATMENT (BETTER-GOOD-AVERAGE)	CYP1/UBC	EXP1	GAPDH	ACT	TIP41	CYP1	PTBP1	γ-TUB	EF1-α	α-TUB	PP2A			
geNorm	CYP1	EXP1	TIP41	CYP1	PTBP1	GAPDH	EXP1	EXP2	CYP1	GAPDH	UBC	γ-TUB	α-TUB	
NormFinder	UBC	EXP1	TIP41	CYP1	PTBP1	GAPDH	EXP1	EXP2	CYP1	GAPDH	UBC	γ-TUB	α-TUB	
BestKeeper	CYP1	EXP1	TIP41	CYP1	PTBP1	GAPDH	EXP1	EXP2	CYP1	GAPDH	UBC	γ-TUB	α-TUB	
Comprehensive Ranking	CYP1	EXP1	TIP41	CYP1	PTBP1	GAPDH	EXP1	EXP2	CYP1	GAPDH	UBC	γ-TUB	α-TUB	
(I) Ranking order UNDER DIFFERENT TISSUES (BETTER-GOOD-AVERAGE)	CYP1/UBC	EXP1	GAPDH	ACT	TIP41	CYP1	PTBP1	γ-TUB	EF1-α	α-TUB	PP2A			
geNorm	CYP1	EXP1	TIP41	CYP1	PTBP1	GAPDH	EXP1	EXP2	CYP1	GAPDH	UBC	γ-TUB	α-TUB	
NormFinder	UBC	EXP1	TIP41	CYP1	PTBP1	GAPDH	EXP1	EXP2	CYP1	GAPDH	UBC	γ-TUB	α-TUB	
BestKeeper	CYP1	EXP1	TIP41	CYP1	PTBP1	GAPDH	EXP1	EXP2	CYP1	GAPDH	UBC	γ-TUB	α-TUB	
Comprehensive Ranking	CYP1	EXP1	TIP41	CYP1	PTBP1	GAPDH	EXP1	EXP2	CYP1	GAPDH	UBC	γ-TUB	α-TUB	
FIGURE 3 | Aggregation of three rankings. The comprehensive ranking of candidate genes was calculated by the geometric mean of three types of rankings (geNorm, NormFinder, and BestKeeper) in each subset.

compared (Figure 4B). To some extent, the two types of rankings were consistent and had a positive correlation coefficient of $r = 0.64$. CYP1 and TIP41, which were two most stable genes in MeJA treatment were also shown relative stable expression through transcriptome analysis. Unstable genes, such as α-TUB and YLS8 also had similar rank in MeJA treatment subset and transcriptome analysis.

Additionally, to further validate the selected reference genes, the relative expression levels of a target gene, CYP72A1 in L. aurea under different experimental conditions were evaluated using qRT-PCR. It was normalized using the most stable reference genes found in each subset both singly and in combination as well as two least stable reference genes as an internal control (Figure 5). A substantial divergence can occur in the relative transcript abundance of CYP72A1 when normalized to different kinds of reference genes. Under NaCl treatment, the expression level of CYP72A1 was down-regulated first then increased when normalized using the two stable genes (EXP1 and UBC), while the expression level was down-regulated dramatically when normalized using the least stable combination (α-TUB and β-TUB). Under PEG stress, the highest expression level of CYP72A1 appeared at 1 h and was 4.56- and 6.35-fold higher than control (0 h) by using the most stable reference genes (PTBP1 and EXP1) as the internal control. In response to cold
stress, CYP72A1 exhibited a clear up-regulation to the highest level by 1 h of treatment and then declined thereafter when the two most stable references (UBC and CYP2) were used, while the expression level of CYP72A1 fluctuated dramatically during cold stress when the least stable reference genes (PP2A and YLS8) were used for normalization. We also examined the reference genes in the ABA treatment and heat stress subsets. The results showed that both PTBP1 and EXP1 could serve as stable reference genes for normalization, while the relative expression folds of CYP72A1 normalized by α-TUB were slightly decreased compared to the stable genes PTBP1 and EXP1 under ABA treatment. With SNP treatment, the expression level of CYP72A1 was not affected significantly when normalized using the two stable genes (PTBP1 and PP2A), while the expression level was overestimated and underestimated when normalized using the least stable reference genes α-TUB and YLS8 respectively. In the same way, for the MeJA treatment subset, the expression level of CYP72A1 increased to a peak at 6 h and then decreased when normalized using two most stable genes (TIP41 and CYP1) and an unstable gene α-TUB, but the expression value of CYP72A1 was much higher when normalized by α-TUB. Additionally, the maximum expression level occurred at 24 h when YLS8 was used as a reference. To validate the results, the expression levels of CYP72A1 in qRT-PCR were compared with the FPKM values in RNA-seq data under MeJa treatment. When TIP41 and CYP1 were used as the reference genes, the expression level of CYP72A1 was generally identified with the expression profile in RNA-seq (Figure S5). Contrastingly, when the least stable reference gene α-TUB was used as normalization factor, the expression level of CYP72A1 was significantly overestimated (Figure 5). Our tissue type analysis revealed that the transcript abundance of CYP72A1 was the highest in the leaf, followed by the petal when normalized by the most stable genes (EXP1 and TIP41).

DISCUSSION

Due to its high sensitivity, specificity, accuracy and reproducibility, qRT-PCR is commonly regarded as the most appropriated method for high-throughput analysis of gene expression profiling (Gutierrez et al., 2008b). However, random selection of reference genes, which may be influenced by different tissue types and experimental treatments, could cause the misinterpretation of results (Dheda et al., 2005). Therefore, validation of suitable reference genes for data normalization is mandatory to obtain reliable results for each experimental condition in different species (Schmittgen and Zakrzayek, 2000).

In this study, we had performed the large-scale transcriptome data of L. aurea (Wang et al., 2013; unpublished data) serving as the source of the reference gene selection. The expression levels and stability of 14 candidate reference genes were measured in L. aurea roots submitted to different conditions as well as in different tissues of L. aurea seedlings. By using three different software programs (geNorm, NormFinder, and BestKeeper), the 14 candidate reference genes exhibited various performance in their stability in L. aurea. Additionally, because of the different algorithms, the rankings generated by the three softwares were not completely identical (Table 2; Figure 3; Table S7). For example, in the cold stress subset, UBC was ranked first by geNorm and NormFinder, while it was ranked seventh by BestKeeper. In the NaCl stress subset and heat stress subset, the most stable gene in geNorm, such as CYP1, was ranked at a medium position or even a bottom position in NormFinder or BestKeeper. This apparent divergence is probably due to the discrepancies in the three statistical algorithms to calculate stability (Niu et al., 2015). geNorm identifies two reference genes with the highest degree of similarity in expression profile and the lowest intra-group variation (Vandesompele et al., 2002; Jian et al., 2008; Cruz et al., 2009). In contrast, NormFinder takes both the inter- and intra-group variations into account, and combines them into a stability value, and finally ranks the top genes with minimal inter- and intra-group variation (Andersen et al., 2004). As for BestKeeper, it determines the stability ranking of the reference genes according to their CV and SD values (Chang et al., 2012; Xiao et al., 2015). It has been recommended more than two algorithms should be used for reference gene stability evaluation (Jacob et al., 2013; Štajner et al., 2013; Xiao et al., 2015). Besides, a comprehensive tool RefFinder was developed to generate the final overall ranking of tested reference genes based on the geometric mean of the weights of every gene calculated...
FIGURE 5 | Relative quantification of CYP72A1 expression using the validated reference gene(s). The results are represented as mean fold changes in relative expression when compared to the first sampling stage (0 h). cDNA samples were taken from the same subset used for gene expression stability analysis. Roots were collected from L. aurea seedlings subjected to various treatments after 0, 1, 6, and 24 h. For tissue samples, different tissue types were collected from different development stage of L. aurea.

by each program (Xie et al., 2012). A lower geometric mean of rankings indicates that the gene is more stable, and more narrow error bars indicate that the result is more reliable (Xiao et al., 2015). Therefore, by calculating the geometric mean of three rankings, a clear comprehensive ranking for each gene was generated (Table 2; Figure 3; Table S7). It showed that the comprehensively ranked first gene EXP1 in all samples subset, NaCl stress subset, heat stress subset, ABA treatment subset, and tissue samples subset has lower geometric mean and narrower error bars because it all ranked top in geNorm, NormFinder, and BestKeeper. It is more reliable that the ranked first gene was the relative most stable gene in corresponding subset. Specifically, we also noticed that β-TUB and GAPDH displayed relatively low expression stability in the tissue samples subset, which is
similar to the previous result in *Lycoris longituba* (Cui et al., 2011).

Traditionally, reference genes are usually cellular maintenance genes, which play housekeeping roles in basic cellular components and functions, such as tubulin (*TUB*), elongation factor 1-α (*EF1-α*), glyceraldehyde-3-phosphate dehydrogenase (*GAPDH*), ubiquitin (*UBQ*), 18S ribosomal RNA (*18S rRNA*), and actin (*ACT*). However, a growing number of studies indicated that the expression levels of most of these classic reference genes are somewhat can vary greatly and are unsuitable for gene normalization in many species under specific conditions (Thellin et al., 1999; Czechowski et al., 2005; Nicot et al., 2005; Jian et al., 2008; Die et al., 2010; Yang et al., 2010; Lilly et al., 2011; Li et al., 2012; Zhu et al., 2013). So housekeeping genes used as internal reference genes in each species should be taken with some caution under a given subset of experimental conditions (Gutierrez et al., 2008a; Ma et al., 2013; Lin et al., 2014). In this study, *ACT* ranked neither the top three most stable genes nor the least stable genes under tested experimental conditions. *EF1-α* and *GAPDH* displayed a less stable expression pattern. *α-TUB* and *β-TUB* were always the least stable reference genes under almost all the tested experimental conditions. Additionally, *UBC*, an ubiquitin-conjugating enzyme gene, was ranked first in both PEG stress subset and cold stress subset. It was also top gene in the all samples subset (*Table 2; Figure 3*). The strong stability of *UBC* in *L. aurea* was consistent with the results in *Corchorus olitorius* and *Platycladus orientalis* (Chang et al., 2012; Niu et al., 2015); However, it was not satisfactory for qRT-PCR normalization in different tissues of bamboo (Fan et al., 2013). Some studies have identified several new reference genes that could be more stably expressed under specific conditions as compared with classic ones (Czechowski et al., 2005; Libault et al., 2008; Lovdal and Lillo, 2009; Zhu et al., 2013). In the present study, four new reference genes *YLS8*, *PP2A*, *EXP1*, and *TIP41* were tested. *EXP1* was highly stable within developing stages of rice anthers and pollens (Ji et al., 2014). We also observed that *EXP1* was ranked first in the tissue samples subset as well as in the all samples subset, NaCl stress subset, heat stress subset, and ABA treatment subset. Meanwhile, it is notable that *EXP1* ranked head of *EXP2* in our study (*Figure 3*). The *YLS8* gene is also reported to be a stable reference gene (Morgante et al., 2011; Han et al., 2013; Štajner et al., 2013) while it was expressed stably only in the heat stress subset. Similar to chicory (Delporte et al., 2015), our results showed that *TIP41* is the most suitable gene among all the reference genes we have tested within samples elicited with MeJA. For the study with different tissues of *L. aurea*, *TIP41* was also identified as a good reference gene which ranked the second. It was also somehow stable in the cold stress subset, NaCl stress subset and SNP treatment subset (*Figure 3*). Former studies showed that *TIP41* was expressed stably at different developmental stages of olive plants and in various tissues of bamboo (Fan et al., 2013; Resetic et al., 2013). Although it was recommended as a reference gene under abiotic stress in *Brassica juncea* and *Salicornia europaea* (Chandna et al., 2012; Xiao et al., 2015), *TIP41* was suitable for *Coffea arabica* under nitrogen starvation, salt stress or heat stress (de Carvalho et al., 2013).

RNA-seq has been applied prevalently on analyzing the transcriptomes of various species for a range of purposes (Wang et al., 2009; Li et al., 2015; Stone and Storchova, 2015). A large amount of transcript information as well as expression profiling of thousands of genes could be obtained by RNA-seq. It was also used to search for reference genes. Any gene with a minimal expression level variation in every analyzed sample is considered as candidate reference gene. To validate the results of qRT-PCR, we compared the result with RNA-seq data whose samples were also under the MeJA treatment. The two results (qRT-PCR and RNA-seq) supported each other, as they had a significant positive correlation coefficient (*r* = 0.64; *Figure 4*). Therefore, the results of this experiment are credible. Additionally, under chosen experimental conditions, good reference genes are stably expressed and should have a kind of expression level comparable to those of the target genes. In this study, a validation test using the most stable reference genes found in each subset both singly and combined as well as two least stable genes as an internal control in qRT-PCR analysis of target gene expression patterns, *CYP72A1*, was also performed (*Figure 5*). Our results showed that expression of *CYP72A1* was induced by NaCl, Cold, and PEG stress as well as MeJA treatment. Additionally, when *α-TUB* and *β-TUB* was validated as a reference gene for normalization the target gene *CYP72A1*, the expression pattern was obviously overestimated or underestimated (*Figure 5*). So the appropriate selection of reference genes is critically important for the normalization of target gene expression with qRT-PCR in *Lycoris aurea*.

CONCLUSION

The selection of suitable reference genes is a prerequisite to quantifying gene expression by qRT-PCR. Here, we presented a systematic attempt to validate a set of candidate reference genes for the normalization of gene expression using qRT-PCR in *L. aurea* subjected to a wide range of experimental conditions as well as across different tissues. The expression stability of the 14 candidates was analyzed by the three commonly used programs (geNorm, NormFinder, and BestKeeper), and their results were further integrated into a comprehensive ranking based on the geometric mean. For the study of gene expression under NaCl stress, we recommend *UBC* and *EXP1* to normalize the qRT-PCR data. For gene expression study under cold stress, *UBC* and *CYP2* are the two most suitable reference genes. We also got the stable reference genes as *EXP1* and *PTBP1* for heat stress, PEG stress and ABA treatment, *PTBP1* and *PP2A* for SNP treatment, and *TIP41* and *CYP1* for MeJA treatment, respectively. For gene expression study in the various tissues, *EXP1*, *TIP41*, and *PTBP1* are recommended as the best reference genes for normalization. In addition, the two least stable reference genes *α-TUB* and *β-TUB* should be carefully used for normalization. The reliability of these results was enhanced by comparing part qRT-PCR result with RNA-seq data, and the selected reference genes can significantly reduce errors in genes quantification. Our results demonstrate that transcriptome sequencing data is a useful source for candidate reference genes screening and
signify the importance of identification of specific reference genes for specific conditions in *L. aurea*. Furthermore, the reference genes selected in current study will be helpful for accurate normalization of qRT-PCR data and facilitate the future work on gene expression studies in *L. aurea*.

AUTHOR CONTRIBUTIONS

RW and BX designed the research; RM, SX, YZ performed most of the experiments and data analysis; RM, SX, RW wrote the draft of the paper. YZ and BX participated in the preparation of the manuscript. All authors have read and approved the final manuscript.

ACKNOWLEDGMENTS

This work was funded by the National Natural Science Foundation of China (Grant No. 31270339, 31301798 and 31572151), the Industry-Academy Joint Technological Innovations Foundation of Jiangsu Province (Grant No. BY2014131), Jiangsu Government Scholarship for Overseas Studies (2014), and Jiangsu Provincial Key LAB Foundation for Plant EX SITU Conservation (Grant No. QD201302).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: http://journal.frontiersin.org/article/10.3389/fpls.2016.00536

REFERENCES

Andersen, C. L., Jensen, J. L., and Ørntoft, T. F. (2004). Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 64, 5245–5250. doi: 10.1158/0008-5472.CAN-04-0496

Bastida, J., Berkov, S., Torres, L., Pigní, N. B., de Andrade, J. P., Martinez, V., et al. (2011). “Chemical and biological aspects of Amaryllidaceae alkaloids,” in Recent Advances in Pharmaceutical Sciences, ed D. Muñoz-Torrero (Trivandrum: Transworld Research Network), 65–100.

Bores, G. M., Huger, F. P., Petko, W., Mutlub, A. E., Camacho, F., Rush, D. K., et al. (1996). Pharmacological evaluation of novel Alzheimer’s disease therapeutics: acetylcholinesterase inhibitors related to galanthamine. J. Pharmacol. Exp. Ther. 277, 728–738.

Burton, R. A., Shirley, N. J., King, B. J., Harvey, A. J., and Fincher, G. B. (2004). The CesA gene family of barley. Quantitative analysis of transcripts reveals two groups of co-expressed genes. Plant Physiol. 134, 224–236. doi: 10.1104/pp.103.032904

Bustin, S. (2002). Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J. Mol. Endocrinol. 29, 23–39. doi: 10.1677/jme.0.0290023

Figure S1 | Melting curves and agarose gel electrophoresis of PCR products. (A) Melting gel of 14 candidate reference genes tested in this study. (B) Agarose gel (1.5%) electrophoresis showing amplification of a single PCR product of the expected size. M represents DNA marker having bands of 2000 bp, 1500 bp, 1000 bp, 750 bp, 500 bp, 250 bp, and 100 bp.

Figure S2 | Expression stability values (M) and ranking of the candidate reference genes as calculated by geNorm. A lower M-value indicates more stable expression.

Figure S3 | Stability value and ranking of the candidate reference genes based on NormFinder. A lower stability value (SV) indicates more stable expression.

Figure S4 | Expression stability and ranking of the candidate reference genes calculated by BestKeeper. CV, coefficient of variation; SD, standard deviation. The gene with lower CV and SD shows more stable expression.

Figure S5 | The expression level of the target gene CYP72A1 under control and MeJA treatment in RNA-seq. The samples exposed to control and MeJA at 6 h were used for transcriptome sequencing. FPKM: fragments per kilobase of exon model per million mapped reads.

Table S1 | The detailed information of samples collected from various tissues/experimental conditions.

Table S2 | Selected unigenes from the transcriptome data of *Lycoris aurea*. Specific primers for qRT-PCR were designed based on these sequences in Text S1. Amplification of PCR products were verified by sequencing.

Table S3 | geNorm ranking of 14 candidate reference genes. M-value: expression stability value. The stability of genes was ranked according to the M-value.

Table S4 | Pairwise variation (Vn/n+1) analysis of 14 candidate reference genes calculated by geNorm to determine the optimal number of reference genes for normalization. The threshold value was proposed to be 0.15, below which the inclusion of an additional reference genes is not necessary.

Table S5 | NormFinder ranking of 14 candidate reference genes. SV: stability value. The stability of genes was ranked according to the SV.

Table S6 | BestKeeper ranking of 14 candidate reference genes. CV, coefficient of variation; SD, standard deviation. The stability of genes was ranked according to CV and SD.

Table S7 | Comprehensive stability ranking of 14 candidate reference genes based on the results of the three software programs. The comprehensive ranking of each gene was calculated by the geometric mean of the rankings in geNorm, NormFinder, and BestKeeper.

Data Sheet 1 | Sequences of unigenes in the transcriptome of *L. aurea*.
Xu, S., Jiang, M., Fu, J., Liang, L., Xia, B., and Wang, R. (2015). Physiological and antioxidant parameters in two Lycoris species as influenced by water deficit stress. *HortScience* 50, 1702–1708.

Xu, Y. Y., Zhu, X. W., Gong, Y. Q., Xu, L., Wang, Y., and Liu, L. W. (2012). Evaluation of reference genes for gene expression studies in radish (*Raphanus sativus* L.) using quantitative real-time PCR. *Biochem. Biophys. Res. Commun.* 424, 398–403. doi: 10.1016/j.bbrc.2012.06.119

Yang, Y., Hou, S., Cui, G., Chen, S., Wei, J., and Huang, L. (2010). Characterization of reference genes for quantitative real-time PCR analysis in various tissues of *Salvia miltiorrhiza*. *Mol. Biol. Rep.* 37, 507–513. doi: 10.1007/s11033-009-703-3

Zhu, J., Zhang, L., Li, W., Han, S., Yang, W., and Qi, L. (2013). Reference gene selection for quantitative real-time PCR normalization in *Caragana intermedia* under different abiotic stress conditions. *PLoS ONE* 8:e53196. doi: 10.1371/journal.pone.0053196

Zhuang, H., Fu, Y., He, W., Wang, L., and Wei, Y. (2015). Selection of appropriate reference genes for quantitative real-time PCR in *Oxypolis ochrocephala* Bunge using transcriptome datasets under abiotic stress treatments. *Front. Plant Sci.* 6:475. doi: 10.3389/fpls.2015.00475

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2016 Ma, Xu, Zhao, Xia and Wang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.