Conservative Management of Severe Cerebral Trauma

Christoph Castellani and Hans-Georg Eder

Contents

Introduction .. 2
Etiology .. 2
Pathophysiology .. 2
Classification .. 3
Initial (Shock-Room) Management ... 3
Neuroimaging ... 4
Monitoring and Thresholds for Cerebral Perfusion and Intracranial Pressure . . . 5
Advanced Neuromonitoring ... 6
General Remarks on ICU Treatment of TBI Patients 7
Positioning ... 7
Fluid Management .. 7
Analgesia and Sedation ... 7
Glucose Control ... 7
Anti-seizure Prophylaxis ... 8
Treatment of Intracranial Hypertension 8
Hyperosmolar Therapy ... 8
Temperature Control ... 9
Hyperventilation .. 9
Liquor Drainage .. 10
Barbiturate Coma ... 10
Corticosteroids ... 11

C. Castellani (*)
Pediatric Intensive Care Unit, Department of Pediatric and Adolescent Surgery, Medical University of Graz, Graz, Austria
e-mail: christoph.castellani@medunigraz.at

H.-G. Eder
Department of Neurosurgery, Medical University of Graz, Graz, Austria
e-mail: hans.eder@medunigraz.at

© Springer-Verlag GmbH Germany, part of Springer Nature 2020
P. Puri (ed.), Pediatric Surgery,
https://doi.org/10.1007/978-3-642-38482-0_200-1
Abstract

Traumatic brain injury (TBI) is a common cause for death in children and adolescents. The underlying brain injury can be categorized into primary lesions caused by the immediate effects of the trauma and secondary lesions due to inflammation, hypoxia, hypotension, hyperthermia, and other metabolic processes. Modern intensive care lies in the prevention of these secondary lesions by correct patient positioning, monitoring of intracranial pressure with rapid therapy of intracranial hypertension (deep sedation, osmotic therapy, barbiturates, liquor drainage), early neurosurgical intervention, and glucose and temperature control. This chapter summarizes current literature and guidelines for conservative management of TBI patients from shock room to advanced intensive care.

Keywords

Traumatic brain injury · Intracranial pressure · Intracranial hypertension · Intensive care · Neuromonitoring

Introduction

Traumatic brain injury (TBI) ranks among the most common causes of death and disability in childhood and adolescence. Modern intensive care, however, grants improvements in the survival rate of TBI patients. This chapter will focus on the conservative management of TBI patients in the ICU setting and pick out the most important issues concerning their management. Additionally, some important pathologies associated with TBI will be discussed.

Etiology

Regarding TBI etiology, falls are the predominant cause for TBI in all children aged 0–14 years (Bhalla et al. 2012). However, different mechanisms of injury have to be considered depending on patient age: inflicted TBI (shaken baby syndrome or child abuse) are possible causes in infants and younger children (Duhaime et al. 1998). School-aged children often sustain bicycle-related injuries. With increasing age, the rate of motor vehicle- and sports-related traumas and assault increases (Langlois et al. 2005). Although the mortality of TBI has decreased within the past 30 years, its incidence has more than tripled (Bhalla et al. 2012). Both sports- and vehicle-related accidents open a field for accident prevention. In this regard recent biomechanical examinations of human skulls could clearly demonstrate an 87% reduction of acceleration forces experienced during force impact by bicycle helmets advocating the use of bicycle helmets as important preventive tool to reduce severity of associated TBI (Mattei et al. 2012, McLean et al. 2017).

Pathophysiology

Brain injury in patients with TBI can be categorized into a primary and a secondary lesion. The primary injury is a direct result of the trauma itself and is caused by acceleration-deceleration or rotational forces resulting in skull fractures, brain contusion, intracranial hemorrhage, hematoma, or diffuse axonal injury (Bhalla et al. 2012; Greve and Zink 2009). Since the primary lesion is a direct result of the initial trauma, it is not accessible to any therapeutic measures. The outcome of
TBI patients, however, is also influenced by the secondary lesion resulting from inflammatory and excitotoxic processes with edema and further increase of intracranial pressure (ICP), hypotension, hypoxemia, hypo- or hypercarbia, and hypo- or hyperglycemia (Chesnut et al. 1993; Hardcastle et al. 2014; Werner and Engelhard 2007). Compared to adults, children exhibit important anatomical differences: the head-to-torso ratio is larger, the neck is more unstable and immature, and the skull is more compliant. Furthermore, it is speculated that children react to inflammation with a more significant edema compared to adults (Kochanek 2006). The prevention of this secondary injury lies in the focus of modern intensive care medicine specifically targeting cerebral perfusion, ICP/edema management, and adequate ventilation.

Classification

The severity of TBI is classified according to the Glasgow Coma Scale (GCS):

- Mild TBI: GCS 13–15
- Moderate TBI: GCS 9–12
- Severe TBI: GCS <9

This chapter will exclusively focus on the conservative management of severe TBI (sTBI). It is important to note that the following strategies rely on sTBI guidelines already published in the literature (Bhalla et al. 2012; Hardcastle et al. 2014; Kochanek et al. 2012). Despite numerous articles in the literature, the evidence levels of most of the recommendations published lie between II and III.

Initial (Shock-Room) Management

Children with isolated sTBI or polytraumatized patients should be referred to a specialized center providing pediatric intensive care medicine, trauma surgery, and neurosurgery as soon as possible. Due to differences in primary healthcare, some of the measures addressed below may be covered by healthcare professionals at the site of the accident or during transport. Briefly, in this sensitive phase, care should be taken to grant adequate ventilation (especially avoiding hypoxemia as well as hypo-/hypercarbia) and cardiocirculatory support avoiding hypotension.

In our institution, the primary shock-room team consists of a general pediatric surgeon, a pediatric trauma surgeon, a pediatric anesthesiologist, a nurse with shock-room training, and an anesthesiology nurse. This team grants initial management, stabilization, and diagnostics – further specialists (e.g., neurosurgeon, cranio-maxillo-facial surgeon, ophthalmologist, ear-nose-throat specialist) are called in depending on the results of trauma imaging (usually blood sampling, FAST sonography, and head or polytrauma CT scan).

Patients with sTBI have a high risk of developing progressive cerebral edema (Davis et al. 2011), requiring immediate endotracheal intubation and respiratory support. Until proven otherwise, all (sTBI) patients should be considered to have a full stomach, and intubation should be carried out by rapid sequence induction. A gastric tube should be inserted for gastric decompression. In case of fractures at the base of the skull, nasogastric placement should be avoided to prevent intracranial malpositioning of the tube through the fracture line (Psarras et al. 2012).

Additionally, it has been shown that TBI patients have a higher incidence of cervical spine injuries than the general trauma population, especially with increasing severity (Holly et al. 2002). Thus, every TBI patient should be suspected to have cervical spine injuries until proven otherwise, and the cervical spine should be protected by (manual) stabilization during intubation whenever possible (Tobias 1998).

For the induction of anesthesia, various drugs are available. Etomidate has a limited effect on the mean arterial pressure (MAP), decreases the cerebral metabolic rate for oxygen (CMRO₂), and thereby decreases the ICP (Bramwell et al. 2006). Etomidate may only be used as bolus for induction (for dosage recommendations, see Table 1). Although limited to patients with sepsis, even single doses of etomidate have been reported to
negatively influence adrenocortical performances (den Brinker et al. 2008). Overall, etomidate is a valuable agent for rapid sequence induction (in patients without sepsis) in TBI patients (Bhalla et al. 2012). Next to bronchodilatation, S-ketamine was found to increase heart rate and blood pressure due to release of endogenous catecholamines (Chernow et al. 1982). While past literature accused ketamine of increasing ICP (Schulte am Esch et al. 1978), newer data has shown that ketamine may even decrease ICP when used to prevent pain during invasive procedures (Bar-Joseph et al. 2009). Therefore, Hardcastle et al. suggest the use of ketamine to mitigate ICP increases during stressful procedures and treat refractory ICP elevations (Hardcastle et al. 2014). Neuromuscular blockade can be achieved by succinylcholine or rocuronium (Perry et al. 2008). Although hyperkalemia (Larach et al. 1997), fasciculations, and mild ICP elevations (Minton et al. 1986) are possible side effects of succinylcholine, there is no contraindication for its use in TBI patients (Hardcastle et al. 2014). In particular, if the antagonist sugammadex is available, rocuronium may be a valuable alternative (Bhalla et al. 2012). Due to their vasodilatatory and negative inotropic side effects, thiopental and propofol should be carefully considered in critically ill trauma patients.

A detailed description of ventilator support and hemodynamic stabilization can be found in the following sections.

Following stabilization and depending on the diagnosis, the patient is transferred from the shock room to either the operating room or directly to the intensive care unit. In recent years, evidence-based recommendations have provided guidance for the development of local protocols to treat pediatric patients with severe traumatic brain injury (Kochanek et al., 2019).

Neuroimaging

Appropriate imaging is essential to determine the extent and severity of sTBI in children. Computed tomography (CT) is widely available and allows rapid detection of hematomas (subdural, epidural, intracerebral), acute hydrocephalus, and fractures. Although magnetic resonance imaging (MRI) is superior to CT in the detection of intracranial lesions (Pinto et al. 2012), it is currently not as easily available. Additionally, there is little evidence supporting MRI in influencing the management of patients with sTBI (Kochanek et al. 2012). Currently, there are studies reporting progressive lesions in 1–50% of TBI patients (Tabori et al. 2000). Progressive sub- or epidural hematomas (Fig. 1) may develop within hours or even days after the initial trauma. Therefore, repeated imaging might appear beneficial for sTBI patients. In a retrospective study, Da Silva et al. addressed this question and found out that unchanged or improving neurologic examination alone in children after moderate or severe TBI may be adequate to exclude the necessity of neurosurgical intervention (Da Silva et al. 2007; their findings were confirmed by another investigation in pediatric sTBI patients (Figg et al. 2006).

Additional to induction of malignomas (Brenner et al. 2001), ionizing radiation in childhood was demonstrated to cause long-term cognitive defects in adulthood (Hall et al. 2004). Considering these facts and the risks of transport (ICU to imaging) with possible deterioration of the patient, repeated imaging is reserved for selected cases and should be considered if (Hollingworth et al. 2007):

- There is no evidence of neurological improvement.
- Patients demonstrate persisting high or increasing ICP.

Table 1 Dosage recommendations for rapid sequence induction

Drug component	Dose recommendation
Etomidate	0.15–0.3 mg/kg
Propofol	1–2 mg/kg
Rocuronium	0.6 mg/kg
S-ketamine	0.5–1.0 mg/kg
Succinylcholine	1.0–2.0 mg/kg
Sugammadex	2 mg/kg
Thiopental	2–5 mg/kg

4 C. Castellani and H.-G. Eder
There is an inability to assess the clinical status (sedation).

Monitoring and Thresholds for Cerebral Perfusion and Intracranial Pressure

Intracranial pressure (ICP) is a key variable in the development of secondary brain injuries (Sharples et al. 1995). Presently, many studies demonstrate a high incidence of elevated ICP in children with sTBI (Cruz et al. 2002; Pfenninger and Santi 2002; White et al. 2001) and relate elevated ICP (and systemic hypotension) to poor outcome or death (Chesnut et al. 1993; Jagannathan et al. 2008; Schoon et al. 2002; Wahlstrom et al. 2005). ICP monitoring is achieved by placing intraparenchymal or intraventricular catheters. Measurements of both methods have been shown to correlate (Exo et al. 2011). While the former has the advantage of less tissue damage, the latter allows liquor drainage in case of refractory ICP elevations. Continuous measurements of ICP and MAP allow the calculation of the cerebral perfusion pressure (CPP) as simple global measure for cerebral perfusion (Chambers et al. 2001).

\[
\text{CPP} = \frac{\text{MAP}}{\text{ICP}}
\]

Regarding complications, infections are rarely documented after catheter placement; neither seizures nor hemorrhage have been reported (Padayachy et al. 2010). As there is evidence that improved clinical outcomes are associated with successful control of intracranial hypertension (Alberico et al. 1987; Jagannathan et al. 2008), ICP monitoring is recommended for all sTBI patients (level of evidence: III (Kochanek et al. 2012)).

Invasive monitoring methods are the current gold standard for monitoring ICP; however, complications caused by their invasive nature are of concern. Of all the noninvasive methods based on the literature, transcranial Doppler and optic
nerve sheath diameter assessment are reported to be the best tools to monitor ICP in pediatric TBI. The promising results and developments of noninvasive ICP monitoring modalities with its ideal features of high sensitivity, diagnostic accuracy, and simple acquisition technique may make it the future of neurointensive monitoring in pediatric TBI (Narayan et al. 2018).

Maintaining CPP by controlling intracranial hypertension with elevated ICP is one of the key goals of intensive care medicine in sTBI patients. Investigations concerning cerebral autoregulation in children have shown that younger children appear to have less autoregulatory reserve than older children (Vavilala et al. 2003), probably requiring lower ICP targets in infants and younger children. Despite this knowledge, there are currently no published studies examining the impact of age-dependent ICP thresholds on outcome measures. Thus, current guidelines set the target ICP to 20 mmHg (Bhalla et al. 2012, Kochanek et al. 2012). With this target, brief ICP increases >20 mmHg returning to normal within 5 min may be insignificant. However, elevations persisting longer than 5 min warrant treatment (McLaughlin and Marion 1996).

Both systemic hypotension and intracranial hypertension have negative influences by reducing the CPP leading to cerebral ischemia and secondary damage. CPP is the pressure gradient for the cerebral blood flow (CBF), which is coupled to CMRO2 and underlies autoregulation (Kochanek et al. 2012). While the relationship between systemic hypotension and reduced CBF was found to be inconsistent, clear evidence exists that increased ICP is related to low CBF (Allen et al. 2014). Since MAP, CBF, and CMRO2 depend on patient age, age-related thresholds for CPP are also suggested (Kochanek et al. 2012). An investigation by Allen et al. (Allen et al. 2014) addressed this question and defined the following CPP thresholds:

- Children/infants 0–5 years old: >40 mmHg
- Children/adolescents 6–17 years old: >50 mmHg

This study also found entrance in the anesthesiology guidelines for the management of sTBI (Hardcastle et al. 2014).

Advanced Neuromonitoring

Children after TBI may have abnormal hemodynamics, cerebral hypoxia, altered electrophysiology, and impaired autoregulation (Kochanek et al. 2012). These effects may be regionally different throughout the brain leading to focal hypoxia with consecutive ischemic events, despite adequate ICP and CPP and adherence to therapy guidelines (Figaji et al. 2009; Lang et al. 2007; Rohlwink et al. 2012; van den Brink et al. 2000). The problem with these effects lies in their diagnosis. Methods such as positron emission tomography (PET) or xenon-enhanced computed tomography can identify altered cerebral blood flow (Bouma et al. 1992; Vespa et al. 2005). However, despite showing good spatial resolution, these methods have the disadvantage that they represent a snapshot with poor temporal resolution and they require transport of the patient (Padayachy et al. 2012). In contrast, ICU-based methods such as brain tissue oxygenation (PbtO2), near-infrared spectroscopy (NIRS), and jugular venous oxygenation (SvjO2) have good temporal but poor spatial resolution (Padayachy et al. 2012). Studies in adult patients demonstrated poor outcomes in the case of jugular venous desaturation (<50%) and low values for PbtO2 (Kochanek et al. 2012). Similar results could be shown for PbtO2 decreases in pediatric TBI, where poor outcome was associated with a reduced PbtO2 (Rohlwink et al. 2012). Moreover, the authors demonstrated a variable correlation between PbtO2 and ICP, based on complex interactions (Figaji et al. 2009, Rohlwink et al. 2012). Currently, it is recommended to keep PbtO2 above 10 mmHg in children (level III) (Kochanek et al. 2012). However, up to now it remains unclear how to react in a case of desaturation, especially in cases with normal ICP and/or CPP (especially in association with their low spatial resolution).
Although promising, there is still very limited data of these methods in pediatric TBI, especially regarding their use to guide therapy (Kochanek et al. 2012).

General Remarks on ICU Treatment of TBI Patients

Positioning

Positioning of the head influences the venous drainage of the head and brain. Flexion or rotation in the cervical spine or Trendelenburg position can impair venous drainage and lead to significant ICP increases (Hung et al. 2000; Ng et al. 2004). Therefore, patients with TBI should be positioned with slight elevations of the head (15–30°), with the head in midline position (Bhalla et al. 2012).

Fluid Management

Hypotension has been shown to worsen outcome of TBI patients. As hypovolemia may be a cause for hypotension, TBI patients should initially receive volume resuscitation aiming at euvoolemia (Bhalla et al. 2012; Kochanek et al. 2012). In patients with normal ICP, isotonic fluid should be chosen. It is important to note that the sodium concentration of Ringer’s lactate is below serum levels, leading to a decrease in serum sodium and osmolarity when compared to physiologic saline solution (Williams et al. 1999). Similar effects result from administration of semi-isotonic solutions (e.g., Elomel®) and solutions containing glucose (e.g., Elomel-OPG®). In the initial management, solutions containing glucose should be reserved for patients with serum glucose levels <70 mg/dl (Bhalla et al. 2012). Further management of the sTBI patient requires an individually tailored parenteral nutrition, depending on lab parameters. Albumin data from adult patients with sTBI has shown higher mortality in patients receiving albumin (Investigators et al. 2007). Thus, current guidelines suggest using isotonic solutions (e.g., NaCl 0.9% or Elomelisoton®) for initial fluid management (Bhalla et al. 2012).

Analgesia and Sedation

In the current guidelines, there is little information regarding the continuous sedation required in intubated TBI patients. It is evident that patients require analgesia, sedation, and eventually neuromuscular blockade (the last has already been addressed above). While continuous use of propofol(R) in the ICU setting is prohibited by the FDA (Food and Drug Administration 2015), there are numerous strategies for analgesia and sedation. Table 2 gives an overview of the different agents used in our center in various combinations.

All of our patients are equipped with continuous BIS monitoring (Infinity® BISx® SmartPod® by Draeger), allowing the determination of the bispectral index as a measure for the depth of narcosis. In cases of elevated ICP, the aim of sedation is to achieve burst suppression (usually BIS levels 15–30); analgesia and sedation should be adapted accordingly.

Glucose Control

Various studies have demonstrated that (early) hyperglycemia is associated with poor outcome after TBI (Cochran et al. 2003). Additionally, persisting hyperglycemia has been shown to be a powerful predictor for mortality in children and adults with TBI (Seyed Saadat et al. 2012).

Drug	Purpose	Dose recommendation
Midazolam	Sedation	0.03–0.2 mg/kg/h
Clonidine	Sedation	0.5–1.0 mcg/kg/h
Fentanyl	Analgesia	0.35–1.8 mcg/kg/h
Morphine	Analgesia	10–40 (~60) mcg/kg/h
S-ketamine	Sedation and analgesia	0.2–0.5 (~1.5) mg/kg/h
Anti-seizure Prophylaxis

Early (within 7 days) post-traumatic seizures (EPTS) are possible complications in patients with TBI. EPTS increase cerebral metabolic demands and cerebral blood flow with consecutive increase of the secondary damage (Arndt et al. 2013). An investigation by Arndt et al. (2013) has shown an increased risk of EPTS in younger children (especially those <1 year) and after abusive head trauma. Of their cohort, 16.1% suffered clinical and subclinical seizures and 6.9% subclinical seizures only (corresponding risk factors were younger age, abusive head trauma, and intra-axonal bleeding). This data allows the conclusion that in 7% of their cohort, seizures would have been missed in the absence of continuous EEG monitoring. By recommending prophylactic treatment with phenytoin, the current guidelines pursue a different approach to EPTS (Kochanek et al. 2012). Recent data from adult studies, however, questions the use of phenytoin prophylaxis to prevent EPTS in TBI patients and suggests suppressed functional outcomes in the prophylaxis group (Bhullar et al. 2014). Where there are clear benefits in continuous EEG monitoring to detect (and treat) subclinical seizures (especially in cases with risk factors), there is limited evidence for the benefit of anticonvulsive prophylaxis in TBI patients.

Treatment of Intracranial Hypertension

Hyperosmolar Therapy

Investigations in the early twentieth century proved pressure changes in the cerebral spinal fluid, after administration of hypertonic solutions (Weed and McKibben 1919). Current therapy focuses on the application of mannitol and/or hypertonic saline solutions.

Mannitol

The reduction of ICP by mannitol is based on two different mechanisms: (1) transient reduction of blood viscosity leading to reflex vasoconstriction with decreased cerebral blood volume but maintenance of CBF (Muizelaar et al. 1984, 1986) and (2) mannitol exhibiting an osmotic effect shifting water from the parenchyma into blood vessels (James 1980). In cases of disturbed blood-brain barrier (as found in the region of cerebral lesions), mannitol was suggested to accumulate in the parenchyma leading to a reversed osmotic effect and possible ICP increases (Kaieda et al. 1989) – a phenomenon described especially after repeated use of mannitol (Kaufmann and Cardoso 1992). Additionally, investigations in adult patients suggest acute tubular necrosis and renal failure in cases of mannitol administration, when serum osmolarity was >320 mosmol/l (The Brain Trauma Foundation et al. 2000). Additional side effects include natriuresis, osmotic diuresis, hypervolemia, and hypotension (Hardcastle et al. 2014).

Despite being one of the most commonly used agents in the management of intracranial hypertension, there are no controlled clinical trials comparing mannitol versus placebo or other agents in children (Kochanek et al. 2012). Moreover, a Cochrane review of mannitol in adults could not reach any conclusions concerning its efficacy compared to placebo or any other therapy (Schierhout and Roberts 2000). Thus, current guidelines (Hardcastle et al. 2014; Kochanek et al. 2012) state that there is currently insufficient evidence to propagate or refute the use of mannitol in children with TBI.

Hypertonic Saline Solutions

Similar to mannitol, hypertonic sodium affects blood viscosity and exerts osmotic effects. Additionally, it has been postulated to restore resting membrane potentials, stimulate the secretion of atrial natriuretic peptide, inhibit inflammation, and increase inotropy (Arjamaa et al. 1992; Bhalla et al. 2012; Qureshi and Suarez 2000). Possible side effects mentioned in the guidelines (Bhalla et al. 2012; Kochanek et al. 2012) include ICP rebound, central pontine myelinolysis, renal impairment, subarachnoid hemorrhage, natriuresis, osmotic diuresis, hyperchloremic acidosis, and masking of the beginning of diabetes insipidus (Qureshi and Suarez 2000). For therapy,
thresholds of 145–160 mmol/l serum sodium and 360 mosmol/l serum osmolarity have been recommended (Dominguez et al. 2004; Himmelseher 2007; Khanna et al. 2000). Generally, a 3% solution is applied, without evidence for beneficial effects of higher concentrations (Kochanek et al. 2012), with effective bolus doses reported between 6.5 and 10.0 ml/kg (Fisher et al. 1992); additionally, beneficial effects for continuous infusion of a 3% sodium solution at a rate between 0.1 and 1.0 ml/kg/h have been reported (Peterson et al. 2000) (Table 3). Despite the lack of evidence for benefits of concentrations higher than 3%, we prefer to use a 10% solution (but apply the recommended amount of sodium/bolus) to save volume.

Temperature Control

Hyperthermia

Hyperthermia is defined as a core body temperature <35.0°C. Hyperthermia decreases the cerebral rate of oxygen consumption (CMRO₂) leading to vasoconstriction and thus decrease of cerebral blood flow (CBF) and consecutively ICP (Bhalla et al. 2012). Additionally, stabilization of the blood-brain barrier and decreases in the release of excitatory transmitters, inflammation, cell death, and lipid peroxidation are discussed (Adelson 2009; Adelson et al. 1997; Clark et al. 1996; Mansfield et al. 1996; Metz et al. 1996). A study investigating the effect of short (24 h) moderate hypothermia (32–33°C) and rapid rewarming at a rate of 0.5–1.0°C/h showed good ICP control in the phase of hypothermia, but rebound ICP increases in the rewarming phase (Hutchison et al. 2008). Additionally, the hypothermia group had a trend toward higher morbidity and mortality as well as higher incidence of hypotension demanding cardiovascular support (Hutchison et al. 2008). Studies with longer duration (48 h) of hypothermia and slower rewarming showed more favorable outcomes with reduced mortality (Adelson et al. 2005). Current guidelines recommend avoidance of short hypothermia with rapid rewarming. They state that moderate hypothermia, beginning within 8 h after the trauma for up to 48 h, with slow rewarming may be considered (level II) (Kochanek et al. 2012). Since the release of these guidelines, the results of the “cool kids” trial were published (Adelson et al. 2013). This trial had to be terminated early for futility – the interim data analysis showed no improvements in mortality or functional outcome in pediatric patients with sTBI by hypothermia for 48 h with slow rewarming (Adelson et al. 2013). This data is summarized in a review stating that there is still a lack of evidence to recommend hypothermia as first tier therapy in children or adults with sTBI (Sandestig et al. 2014).

Hyperventilation

Hyperventilation leads to a reduction in the arterial partial pressure of carbon monoxide (paCO₂)
and causes hypocapnia-induced vasoconstriction. Besides ICP reduction, this may also cause a decrease in cerebral oxygenation and may induce ischemia thus increasing secondary damage (Muizelaar et al. 1991; Skippen et al. 1997). Despite its retrospective character, a large study in 464 patients showed a strong association between severe hypocarbia and poor outcome (Curry et al. 2008). Thus, the 2012 guidelines recommend avoidance of (prophylactic) severe (<30 mmHg) hypocarbia (in the first 48 h). If refractory hypertension is treated by hyperventilation, advanced neuromonitoring should be considered to evaluate cerebral oxygenation (Kochanek et al. 2012).

Liquor Drainage

Drainage of cerebrospinal fluid (CSF) reduces intracranial volume and subsequently decreases ICP. Both continuous and intermittent approaches have been reported (Shore et al. 2004). Drainage can be achieved by placing either an intraventricular catheter (which may also be used for ICP measurement) or lumbar drainage (Baldwin and Rekate 1991; Jagannathan et al. 2008; Levy et al. 1995; Shapiro and Marmarou 1982). CSF drainage can be associated with an increased risk of hemorrhage and cerebral malpositioning (Kochanek et al. 2012). Presently, studies report effective ICP control in 60–87.5% of cases (Baldwin and Rekate 1991; Levy et al. 1995). Also, three of these studies confirm that refractory intracranial hypertension is associated with 100% mortality (Baldwin and Rekate 1991; Jagannathan et al. 2008; Levy et al. 1995). Resulting from this data, the 2012 guidelines give a level III recommendation for the use of CSF drainage for ICP control (Kochanek et al. 2012). Furthermore, a lumbar drain (only in conjunction with a cerebral drain) may be considered in cases of refractory intracranial hypertension (in patients with open cisterns and without mass lesions or shift) (Kochanek et al. 2012).

Barbiturate Coma

Children with severe TBI may experience refractory intracranial hypertension with an incidence of up to 43% (Guerra et al. 2010). In cases with intracranial hypertension, refractory to other measures (i.e., adequate positioning, deep analgesia, and sedation with neuromuscular blockade and hyperosmolar therapy), high-dose barbiturate therapy may be considered in hemodynamically stable patients (Kochanek et al. 2012). Barbiturates lower ICP by coupling blood flow to metabolic demands with higher brain oxygenation, lower CBF, and decreased ICP (Chen et al. 2008). Additionally, reduced lipid peroxidation and excitotoxicity have been postulated (Goodman et al. 1996). Barbiturates lead to severe cardiovascular side effects with reduced cardiac output, hypotension, and increased intrapulmonal shunting (Kasoff et al. 1988). Thus, patients subjected to high-dose barbiturates have to be equipped with continuous arterial monitoring. A large proportion of patients (up to 90%) undergoing this treatment will require cardiovascular support (Kasoff et al. 1988). Dose recommendations are listed in Table 4. However, there is evidence that barbiturate levels correlate poorly with electrical activity (Turcant et al. 1985) and guidelines recommend EEG monitoring to achieve burst suppression (Kochanek et al. 2012). Overall, there is very little data on the use of high-dose barbiturates in children (Kochanek et al. 2012). There seems to be evidence that barbiturates effectively lower the ICP in cases of refractory intracranial hypertension; nevertheless, there is no proof for beneficial effects on improved survival or outcome (Kochanek et al. 2012).

Table 4 Barbiturate dose according to the literature

Source	Bolus	Continuous infusion
Kasoff et al. (1988)	4–7 mg/kg	1–4 mg/kg/h
Pittman et al. (1989)	5 mg/kg	1–2 mg/kg/h
Corticosteroids

Corticosteroids have demonstrated beneficial aspects in a variety of neurological conditions, such as brain tumors and meningitis. Currently, only dexamethasone has been investigated in the setting of pediatric TBI (Kochanek et al. 2012). Similar to adult studies, dexamethasone at 1 mg/kg/d for 3 days did not influence ICP, CPP, and 6-month Glasgow Outcome Scale. However, there were a suppression of endogenous cortisol production and a trend toward increased rates of bacterial pneumonia in the dexamethasone group compared to placebo (Fanconi et al. 1988). Due to this data, corticosteroids are not recommended to improve outcome or reduce ICP in children with sTBI, in the current guidelines (Kochanek et al. 2012).

Other Pathologies Associated with TBI

Hyponatremia and TBI: Syndrome of Inappropriate Antidiuresis and Cerebral Salt Wasting Syndrome (CSWS)

Hyponatremia is a common disorder in patients after TBI (Harrigan 1996). Two different pathologies may lead to hyponatremia in this context: SIADH (Ishibashi and Yokokura 1999) and CSWS (Nelson et al. 1981) – both are differentiated by the volume status of the patient (Palmer 2003).

SIADH (SIADH) is a volume-expander state due to renal water retention by inadequately high levels of vasopressin (=adiuretin). It is characterized by hyponatremia, inappropriately concentrated urine, increased urine sodium levels, and slightly increased intravascular volume (hypervolemic hyponatremia) (Palmer 2003). Additionally, there is a tendency toward diminished uric acid and urea nitrogen due to reduced renal reabsorption (Palmer 2003), although this proved inconsistent and unreliable in differentiating between these two entities in an analysis by Lohani et al. (Lohani and Devkota 2011).

Parameter	CSWS	SIADH
Extracellular fluid volume	Decreased	Increased
Hematocrit	Increased	Normal
Plasma albumin	Increased	Normal
Plasma urea nitrogen/creatinine ratio	Increased	Decreased
Plasma potassium	Normal/increased	Normal
Plasma uric acid	Normal/decreased	Decreased

In contrast, CSWS results from renal salt wasting, but the underlying mechanism is poorly understood. Either disruption of the neural input to the kidney or central elaboration of circulating natriuretic factors (atrial natriuretic peptide, ANP, or brain natriuretic peptide, BNP) is postulated (Palmer 2003). CSWS leads to increased sodium secretion in the urine followed by decreased blood volume (hypovolemic hyponatremia). This causes an appropriate (in contrast to SIADH) release of vasopressin as response to volume depletion (Palmer 2003).

The differentiation between these two syndromes (Table 5) is essential as SIADH is managed by fluid restriction and CSWS by vigorous salt replacements (Jimenez et al. 2006; Palmer 2003).

Diabetes Insipidus (DI) After TBI

DI is caused by insufficient production (hypothalamus) or secretion (posterior hypophysis) of vasopressin (=adiuretin). This leads to polyuria and increases of serum sodium and osmolarity in combination with decreased urine sodium and osmolarity (hypovolemic hypernatremia). When the abovementioned findings raise suspicion, it is possible to administer vasopressin and wait for the response (desmopressin test) and/or to determine serum levels of copeptin (the C-terminal part of the arginine-vasopressin precursor peptide (Dong et al. 2011)), to prove the diagnosis. DI, after TBI, is uncommon and almost always occurs in the early (up to 30 days) post-traumatic...
If diagnosed, DI may be a poor prognostic factor (Barzilay and Somekh 1988). For the therapy of DI, nasal, oral, and intravenous desmopressin are available. However, there is a wide variation of dose requirements and dosing intervals (Ooi et al. 2013). In the literature, a median nasal dose of 0.7 (range of 0.4–1.4) mcg/kg/d in 2–3 doses and a median oral dose of 9.5 (range of 4.2–17.0) mcg/kg/d in 2–3 doses have been reported (Ooi et al. 2013). In any case, the dose should be titrated and adapted to fluid input, diuresis, and sodium levels (Oiso et al. 2013). The authors prefer intravenous continuous vasopressin because this attenuates fluctuations in serum sodium and diuresis frequently seen in repeated boluses. For a continuous infusion, 4 mcg vasopressin is diluted to 50 ml and started at a rate of 1 ml/h (=0.08 mcg/h). The dose is then adjusted according to serum sodium and diuresis, taking care that urine output stays above 1 ml/kg/h.

Conclusions and Future Directions

Overall, the management of children with severe traumatic brain injury is challenging. There is no level I evidence for any of the therapies mentioned in this chapter. Much research will be required to gain this knowledge in the different approaches for the treatment of TBI.

First-line management in our department consists of adequate positioning, deep analgesia and sedation (if required additional neuromuscular blockade), ICP and CPP monitoring, avoidance of hyperglycemia, hyperthermia and incidental hyperventilation, and hyperosmolar therapy. Additionally, CSF drainage can be considered.

In case of refractory intracranial hypertension, neurosurgeons are involved in the decision for decompressive craniectomy (see chapter “Surgical Treatment of Severe Head Trauma”). Furthermore, a barbiturate coma is initiated when tolerated by the patient.

Hyperventilation is reserved for patients in whom all other measures fail. Hypothermia is currently not considered due to lacking evidence for benefits and possible side effects.

Cross-References

- Anesthesia and Pain Management
- Facial Trauma
- Fluids and Electrolyte Balance in Infants and Children
- Principles of Pediatric Surgical Imaging
- Surgical Treatment of Severe Head Trauma

References

Adelson PD. Hypothermia following pediatric traumatic brain injury. J Neurotrauma. 2009;26(3):429–36.
Adelson PD, Dixon CE, Robichaud P, Kochanek PM. Motor and cognitive functional deficits following diffuse traumatic brain injury in the immature rat. J Neurotrauma. 1997;14(2):99–108.
Adelson PD, Ragheb J, Kanev P, Brockmeyer D, Beers SR, Brown SD, Cassidy LD, Chang Y, Levin H. Phase II clinical trial of moderate hypothermia after severe traumatic brain injury in children. Neurosurgery. 2005;56(4):740–54; discussion 740–754.
Adelson PD, Wisniewski SR, Beja J, Brown SD, Bell M, Muizelaar JP, Okada P, Beers SR, Balasubramani GK, Hirtz D, Paediatric Traumatic Brain Injury Consortium. Comparison of hypothermia and normothermia after severe traumatic brain injury in children (Cool Kids): a phase 3, randomised controlled trial. Lancet Neurol. 2013;12(6):546–53.
Alberico AM, Ward JD, Choi SC, Marmarou A, Young HF. Outcome after severe head injury. Relationship to mass lesions, diffuse injury, and ICP course in pediatric and adult patients. J Neurosurg. 1987;67(5):648–56.
Allen BB, Chiu YL, Gerber LM, Ghajar J, Greenfield JP. Age-specific cerebral perfusion pressure thresholds and survival in children and adolescents with severe traumatic brain injury*. Pediatr Crit Care Med. 2014;15(1):62–70.
Arjamaa O, Karlqvist K, Kanervo A, Vainionpaa V, Vuolteenaho O, Leppaluoto J. Plasma ANP during hypertonic NaCl infusion in man. Acta Physiol Scand. 1992;144(2):113–9.
Ardnt DH, Lerner JT, Matsumoto JH, Madikians A, Yudovin S, Valino H, McArthur DL, Wu JY, Leung M, Buxey F, Szeliga C, Van Hirtum-Das M, Sankar R, Brooks-Kayal A, Giza CC. Subclinical early post-traumatic seizures detected by continuous EEG monitoring in a consecutive pediatric cohort. Epilepsia. 2013;54(10):1780–8.
Baldwin HZ, Rekate HL. Preliminary experience with controlled external lumbar drainage in diffuse pediatric head injury. Pediatr Neurosurg. 1991;17(3):115–20.

Bar-Joseph G, Guilburd Y, Tamir A, Guilburd JN. Effectiveness of ketamine in decreasing intracranial pressure in children with intracranial hypertension. J Neurosurg Pediatrics. 2009;4(1):40–6.

Barzilay Z, Somekh E. Diabetes insipidus in severely brain damaged children. J Med. 1988;19(1):47–64.

Bhalla T, Dewhirst E, Sawardekar A, Dairo O, Tobias JD. Perioperative management of the pediatric patient with traumatic brain injury. Paediatr Anaesth. 2012;22(7):627–40.

Bhullar IS, Johnson D, Paul JP, Kerwin AJ, Tepas JJ 3rd, Barzilay Z, Somekh E. Diabetes insipidus in severely brain damaged children. J Med. 1988;19(1):47–64.

Bouma GJ, Muizelaar JP, Stringer WA, Choi SC, Fatouros P, Young HF. Ultra-early evaluation of regional cerebral blood flow in severely head-injured patients using xenon-enhanced computerized tomography. J Neurosurg. 1992;77(3):360–8.

Bramwell KJ, Haizlip J, Pribble C, VanDerHeyden TC, Witte M. The effect of etomidate on intracranial pressure and systemic blood pressure in pediatric patients with severe traumatic brain injury. Pediatr Emerg Care. 2006;22(2):90–3.

Brenner D, Elliston C, Hall E, Berdon W. Estimated risks of radiation-induced fatal cancer from pediatric CT. AJR Am J Roentgenol. 2001;176(2):289–96.

Chambers IR, Treadwell L, Mendelow AD. Determination of threshold levels of cerebral perfusion pressure and intracranial pressure in severe head injury by using receiver-operating characteristic curves: an observational study in 291 patients. J Neurosurg. 2001;94(3):412–6.

Chen HI, Malhotra NR, Oddo M, Heuer GG, Levine JM, LeRoux PD. Barbiturate infusion for intractable intracranial hypertension and its effect on brain oxygenation. Neurosurgery. 2008;63(5):880–8; discussion 886–887.

Chernow B, Lake CR, Cruess D, Coyle J, Hughes P, Balestrieri F, Casey L, Rainey TG, Fletcher JR. Plasma, urine, and CSF catecholamine concentrations during and after ketamine anesthesia. Crit Care Med. 1982;10(9):600–3.

Chesnut RM, Marshall LF, Klauber MR, Blunt BA, Baldwin N, Eisenberg HM, Jane JA, Marmarou A, Foulkes MA. The role of secondary brain injury in determining outcome from severe head injury. J Trauma. 1993;34(2):216–22.

Clark RS, Kochanek PM, Marion DW, Schiding JK, White M, Palmer AM, DeKosky ST. Mild posttraumatic hypothermia reduces mortality after severe controlled cortical impact in rats. J Cereb Blood Flow Metab. 1996;16(2):253–61.

Cochran A, Scaife ER, Hansen KW, Downey EC. Hyperglycemia and outcomes from pediatric traumatic brain injury. J Trauma. 2003;55(6):1035–8.

Cruz J, Nakayama P, Imamura JH, Rosenfeld KG, de Souza HS, Giorgetti GV. Cerebral extraction of oxygen and intracranial hypertension in severe, acute, pediatric brain trauma: preliminary novel management strategies. Neurosurgery. 2002;50(4):774–9; discussion 779–780.

Curry R, Hollingworth W, Ellenbogen RG, Vavilala MS. Incidence of hypo- and hypercarbia in severe traumatic brain injury before and after 2003 pediatric guidelines. Pediatr Crit Care Med. 2008;9(2):141–6.

Da Silva PSL, Reis ME, Aguiar VE. Value of repeat cranial computed tomography in pediatric patients sustaining moderate to severe traumatic brain injury. J Trauma. 2007;65(5):1293–7.

Davis DP, Koprowicz KM, Newgard CD, Daya M, Bulger EM, Stiell I, Nichol G, Stephens S, Dreyer J, Minei J, Kerby JD. The relationship between out-of-hospital airway management and outcome among trauma patients with Glasgow Coma Scale Scores of 8 or less. Prehosp Emerg Care. 2011;15(2):184–92.

den Brinker M, Hokken-Koelega AC, Hazelzet JA, de Jong FH, Hop WC, Joosten KF. One single dose of etomidate negatively influences adrenocortical performance for at least 24h in children with meningococcal sepsis. Intensive Care Med. 2008;34(1):163–8.

Domínguez TE, Priestley MA, Huh JW. Caution should be exercised when maintaining a serum sodium level >160 meq/L. Crit Care Med. 2004;32(6):1438–9; author reply 1439–1440.

Dong XQ, Huang M, Yang SB, Yu WH, Zhang ZY. Copeptin is associated with mortality in patients with traumatic brain injury. J Trauma. 2011;71(5):1194–8.

Duhaime AC, Christian CW, Rorke LB, Zimmerman RA. Nonaccidental head injury in infants – the “shaken-baby syndrome”. N Engl J Med. 1998;338(25):1822–9.

Exo J, Kochanek PM, Adelson PD, Greene S, Clark RS, Bayir H, Wisniewski SR, Bell MJ. Intracranial pressure-monitoring systems in children with traumatic brain injury: combining therapeutic and diagnostic tools. Pediatr Crit Care Med. 2011;12(5):560–5.

Fanconi S, Kloti J, Meuli M, Zaugg H, Zachmann M. Dexamethasone therapy and endogenous cortisol production in severe pediatric head injury. Intensive Care Med. 1988;14(2):163–6.

Figaji AA, Zwane E, Thompson C, Fiegen AG, Argent AC, Le Roux PD, Peter JC. Brain tissue oxygen tension monitoring in pediatric severe traumatic brain injury. Part 1: relationship with outcome. Childs Nerv Syst. 2009;25(10):1325–33.

Figg RE, Stouffer CW, Vander Kolk WE, Connors RH. Clinical efficacy of serial computed tomographic scanning in pediatric severe traumatic brain injury. Pediatr Surg Int. 2006;22(3):215–8.

Fisher B, Thomas D, Peterson B. Hypertonic saline lowers raised intracranial pressure in children after head trauma. J Neurosurg Anesthesiol. 1992;4(1):4–10.
Food and Drug Administration. http://www.fda.gov/Safety/MedWatch/SafetyInformation/SafetyAlertsforHumanMedicalProducts/ucm172351.htm. Last accessed 2015.

Goodman JC, Valadka AB, Gopinath SP, Cormio M, Robertson CS. Lactate and excitatory amino acids measured by microdialysis are decreased by pentobarbital coma in head-injured patients. J Neurotrauma. 1996;13(10):549–56.

Grewe MW, Zink BJ. Pathophysiology of traumatic brain injury. Mt Sinai J Med. 2009;76(2):97–104.

Guerra SD, Carvalho LF, Affonsoca CA, Ferreira AR, Freire HB. Factors associated with intracranial hypertension in children and teenagers who suffered severe head injuries. J Pediatr. 2010;86(1):73–9.

Hall P, Adami HO, Trichopoulos D, Pedersen NL, Lagiou P, Ekbom A, Ingvar M, Lundell M, Granath F. Effect of low doses of ionising radiation in infancy on cognitive function in adulthood: Swedish population based cohort study. BMJ. 2004;328(7430):19.

Hardcastle N, Benzon HA, Vavilala MS. Update on cerebral salt wasting syndrome: a review. Neurosurgery. 1996;38(1):152–60.

Himmelseher S. Hypertonic saline solutions for treatment of intracranial hypertension. Curr Opin Anaesthesiol. 2007;20(5):414–26.

Hollingworth W, Vavilala MS, Jarvik JG, Chaudhry S, Johnston BD, Layman S, Tontisirin N, Muangman SL, Wang MC. The use of repeated head computed tomography in pediatric blunt head trauma: factors predicting new and worsening brain injury. Pediatr Crit Care Med. 2007;8(4):348–56; CEU quiz 357.

Holly LT, Kelly DF, Counelis GJ, Blinman T, McArthur DL, Cryer HG. Cervical spine trauma associated with moderate and severe head injury: incidence, risk factors, and injury characteristics. J Neurosurg. 2002;96(3 Suppl):285–91.

Hung OR, Hare GM, Brien S. Head elevation reduces head-rotation associated increased ICP in patients with intracranial tumours. Can J Anaesth. 2000;47(5):415–20.

Hutchinson JS, Ward RE, Lacroix J, Hebert PC, Barnes MA, Bohn DJ, Dirks PB, Doucette S, Fergusson D, Gottesman R, Joffe AR, Kirpalani HM, Meyer PG, Morris KP, Moher D, Singh RN, Skippen PW. Hypothermia Pediatric Head Injury Trial Investigators and the Canadian Critical Care Trials Group. Hypothermia therapy after traumatic brain injury in children. N Engl J Med. 2008;358(23):2447–56.

Investigators SS, Australian, New Zealand Intensive Care Society Clinical Trials Group, Australian Red Cross Blood Service, George Institute for International Health, Myburgh J, Cooper DJ, Finfer S, Bellomo R, Norton R, Bishop N, Kai Lo S, Vallance S. Saline or albumin for fluid resuscitation in patients with traumatic brain injury. N Engl J Med. 2007;357(9):874–84.

Ishibashi A, Yokokura Y. Asymptomatic hyponatremia in a patient with mild head injury due to syndrome of inappropriate diuretic hormone – a case report. Kurume Med J. 1999;46(2):123–5.

Jagannathan J, Okonkwo DO, Yeoh HK, Dumont AS, Saulle D, Hazilzip J, Barth JT, Jane JA Sr, Jane JA Jr. Long-term outcomes and prognostic factors in pediatric patients with severe traumatic brain injury and elevated intracranial pressure. J Neurosurg Pediatr. 2008;2(4):240–9.

James HE. Methodology for the control of intracranial pressure with hypertonic mannitol. Acta Neurochir. 1980;51(3–4):161–72.

Jimenez R, Casado-Flores J, Nieto M, Garcia-Teresa MA. Cerebral salt wasting syndrome in children with acute central nervous system injury. Pediatri Neurol. 2006;35(4):261–3.

Kaieda R, Todd MM, Cook LN, Warner DS. Acute effects of changing plasma osmolality and colloid oncotic pressure on the formation of brain edema after cryogenic injury. Neurosurgery. 1989;24(5):671–8.

Kassoff SS, Lansen TA, Holder D, Filippo JS. Aggressive physiologic monitoring of pediatric head trauma patients with elevated intracranial pressure. Pediatri Neurosci. 1988;14(5):241–9.

Kaufmann AM, Cardoso ER. Aggravation of vasogenic cerebral edema by multiple-dose mannitol. J Neurosurg. 1992;77(4):584–9.

Khanna S, Davis D, Peterson B, Fisher B, Tung H, O’Quigley J, Deutsch R. Use of hypertonic saline in the treatment of severe refractory posttraumatic intracranial hypertension in pediatric traumatic brain injury. Crit Care Med. 2000;28(4):1144–51.

Kochanek PM. Pediatric traumatic brain injury: quo vadis? Dev Neurosci. 2006;28(4–5):244–55.

Kochanek PM, Carney N, Adelson PD, Ashwal S, Bell MJ, Bratton S, Carson S, Chesnut RM, Ghajar J, Goldstein B, Grant GA, Kisson N, Peterson K, Selden NR, Tasker RC, Tong KA, Vavilala MS, Wainwright MS, Warden CR, American Academy of Pediatrics-Section on Neurological Surgery, American Association of Neurological Surgeons/Congress of Neurological Surgeons, Child Neurology Society, European Society of Pediatric, Neonatal Intensive Care, Neurocritical Care Society, Pediatric Neurocritical Care Research Group, Society of Critical Care Medicine, Paediatric Intensive Care Society UK, Society for Neuroscience in Anesthesiology and Critical Care, World Federation of Pediatric Intensive and Critical Care Societies. Guidelines for the acute medical management of severe traumatic brain injury in infants, children, and adolescents – second edition. Pediatri Crit Care Med. 2012;13(Suppl 1):S1–82.

Kochanek PM, Tasker RC, Carney N, et al. Guidelines for the management of pediatric severe traumatic brain injury, third edition: update of the brain trauma
Conservative Management of Severe Cerebral Trauma

Muizelaar JP, Wei EP, Kontos HA, Becker DP. Cerebral Minton MD, Grosslight K, Stirt JA, Bedford RF. Metz C, Holzschuh M, Bein T, Woertgen C, Frey A, Frey I, McLean L, Russell K, McFaull S, et al. Age and the risk McLaughlin MR, Marion DW. Cerebral blood Levy DI, Rekate HL, Cherny WB, Manwaring K, Moss SD, Baldwin HZ. Controlled lumbar drainage in pediatric head injury. J Neurosurg. 1995;83(3):453–60. Lohani S, Devkota UP. Hyponatremia in patients with traumatic brain injury: etiology, incidence, and severity correlation. World Neurosurg. 2011;76(3–4):355–60. Mansfeld RT, Schiding JK, Hamilton RL, Kochanek PM. Effects of hypothermia on traumatic brain injury in immature rats. J Cereb Blood Flow Metab. 1996;16(2):244–52. Mattei TA, Bond BJ, Goulart CR, Sloffer CA, Morris MJ, Lin JJ. Performance analysis of the protective effects of bicycle helmets during impact and crush tests in pediatric skull models. J Neurosurg Pediatr. 2012;10(6):490–7. McLaughlin MR, Marion DW. Cerebral blood flow and vasoresponsivity within and around cerebral contusions. J Neurosurg. 1996;85(5):871–6. McLean L, Russell K, McFaul S, et al. Age and the risk of All-Terrain Vehicle-related injuries in children and adolescents: a cross sectional study. BMC Pediatr. 2017;17(1):81. Metz C, Holzschuh M, Bein T, Woertgen C, Frey A, Frey I, Taeger K, Brawanski A. Moderate hypothermia in patients with severe head injury: cerebral and extracerebral effects. J Neurosurg. 1996;85(4):533–41. Minton MD, Grosslight K, Stirt JA, Bedford RF. Increases in intracranial pressure from succinylcholine: prevention by prior nondepolarizing blockade. Anesthesiology. 1986;65(2):165–9. Muizelaar JP, Lutz HA 3rd, Becker DP. Effect of mannitol on ICP and CBF and correlation with pressure autoregulation in severely head-injured patients. J Neurosurg. 1984;61(4):700–6. Muizelaar JP, Wei EP, Kontos HA, Becker DP. Cerebral blood flow is regulated by changes in blood pressure and in blood viscosity alike. Stroke. 1986;17(1):44–8. Muizelaar JP, Marmarou A, Ward JD, Kontos HA, Choi SC, Becker DP, Gruemer H, Young HF. Adverse effects of prolonged hyperventilation in patients with severe head injury: a randomized clinical trial. J Neurosurg. 1991;75(5):731–9. Narayan V, Mohammed N, Savardekar AR, et al. Noninvasive intracranial pressure monitoring for severe traumatic brain injury in children: a concise update on current methods. World Neurosurg. 2018;114:293–300. Nelson PB, Seif SM, Maroon JC, Robinson AG. Hyponatremia in intracranial disease: perhaps not the syndrome of inappropriate secretion of antidiuretic hormone (SIADH). J Neurosurg. 1981;55(6):938–41. Ng I, Lim J, Wong HB. Effects of head posture on cerebral hemodynamics: its influences on intracranial pressure, cerebral perfusion pressure, and cerebral oxygenation. Neurosurgery. 2004;54(3):593–7; discussion 598. Oiso Y, Robertson GL, Norgaard JP, Juul KV. Clinical review: treatment of neurohypophysal diabetes insipidus. J Clin Endocrinol Metab. 2013;98(10):3958–67. Ooi HL, Maguire AM, Ambler GR. Desmopressin administration in children with central diabetes insipidus: a retrospective review. J Pediatr Endocrinol Metab. 2013;26(11–12):1047–52. Padayachy LC, Figaji AA, Bullock MR. Intracranial pressure monitoring for traumatic brain injury in the modern era. Childs Nerv Syst. 2010;26(4):441–52. Padayachy LC, Rohlwkink U, Zwane E, Fieggen G, Peter JC, Figaji AA. The frequency of cerebral ischemia/hypoxia in pediatric severe traumatic brain injury. Childs Nerv Syst. 2012;28(11):1911–8. Palmer BF. Hyponatremia in patients with central nervous system disease: SIADH versus CSW. Trends Endocrinol Metab. 2003;14(4):182–7. Perry JJ, Lee JS, Sillberg VA, Wells GA. Rocuronium versus succinylcholine for rapid sequence induction intubation. Cochrane Database Syst Rev. 2008;16(2):CD002788. Peterson B, Khanna S, Fisher B, Marshall L. Prolonged hyponatremia controls elevated intracranial pressure in head-injured pediatric patients. Crit Care Med. 2000;28(4):1136–43. Pfenninger J, Santi A. Severe traumatic brain injury in children – are the results improving? Swiss Med Wkly. 2002;132(9–10):116–20. Pinto PS, Poretti A, Meoded A, Tekes A, Huisman TA. The unique features of traumatic brain injury in children. Review of the characteristics of the pediatric skull and brain, mechanisms of trauma, patterns of injury, complications and their imaging findings – part 1. J Neuroimaging. 2012;22(2):e1–e17. Pittman T, Bucholz R, Williams D. Efficacy of barbiturates in the treatment of resistant intracranial hypertension in severely head-injured children. Pediatr Neurosci. 1989;15(1):13–7. Psarras K, Lalountas MA, Symeonidis NG, Baltatzis M, Pavlidis ET, Ballas K, Pavlidis TE, Sakantamis AK. Inadvertent insertion of a nasogastric tube into the brain: case report and review of the literature. Clin Imaging. 2012;36(5):587–90. Qureshi AI, Suarez JJ. Use of hypertonic saline solutions in treatment of cerebral edema and intracranial hypertension. Crit Care Med. 2000;28(9):3301–13. Rohlwkink UK, Zwane E, Fieggen AG, Argent AC, le Roux PD, Figaji AA. The relationship between intracranial
pressure and brain oxygenation in children with severe traumatic brain injury. Neurosurgery. 2012;70(5):1220–30; discussion 1231.

Rose SR, Auble BA. Endocrine changes after pediatric traumatic brain injury. Pituitary. 2012;15(3):267–75.

Sandestig A, Romner B, Grande PO. Therapeutic hypothermia in children and adults with severe traumatic brain injury. Ther Hypothermia Temp Manag. 2014;4(1):10–20.

Schierhout G, Roberts I. Mannitol for acute traumatic brain injury. Cochrane Database Syst Rev. 2000;(2):CD001049.

Schoon P, Benito Mori L, Orlandi G, Larralde C, Radrizzani M. Incidence of intracranial hypertension related to jugular bulb oxygen saturation disturbances in severe traumatic brain injury patients. Acta Neurochir Suppl. 2002;81:285–7.

Schulte am Esch J, Pfeifer G, Thiemig I, Entzian W. The influence of intravenous anaesthetic agents on primarily increased intracranial pressure. Acta Neurochir. 1978;45(1–2):15–25.

Seyed Saadat SM, Bidabadi E, Seyed Saadat SN, Mashouf M, Salamat F, Yousefzadeh S. Association of persistent hyperglycemia with outcome of severe traumatic brain injury in pediatric population. Childs Nerv Syst. 2012;28(10):1773–7.

Shapiro K, Marmarou A. Clinical applications of the pressure-volume index in treatment of pediatric head injuries. J Neurosurg. 1982;56(6):819–25.

Sharples PM, Stuart AG, Matthews DS, Aynsley-Green A, Eyre JA. Cerebral blood flow and metabolism in children with severe head injury. Part 1: relation to age, Glasgow Coma Score, outcome, intracranial pressure, and time after injury. J Neurol Neurosurg Psychiatry. 1995;58(2):145–52.

Shore PM, Thomas NJ, Clark RS, Adelson PD, Wisniewski SR, Janesko KL, Bayir H, Jackson EK, Kochanek PM. Continuous versus intermittent cerebrospinal fluid drainage after severe traumatic brain injury in children: effect on biochemical markers. J Neurotrauma. 2004;21(9):1113–22.

Skippen P, Seeal M, Poskitt K, Kestle J, Cochrane D, Annex G, Handel J. Effect of hyperventilation on regional cerebral blood flow in head-injured children. Crit Care Med. 1997;25(8):1402–9.

Tabori U, Kornecki A, Sofer S, Constantini S, Paret G, Beck R, Sivan Y. Repeat computed tomographic scan within 24–48 hours of admission in children with moderate and severe head trauma. Crit Care Med. 2000;28(3):840–4.

The Brain Trauma Foundation, The American Association of Neurological Surgeons, The Joint Section on Neurotrauma and Critical Care. Use of mannitol. J Neurotrauma. 2000;17(6–7):521–5.

Tobias JD. Airway management in the pediatric trauma patient. J Intensive Care Med. 1998;13:1–14.

Tucan A, Delhumeau A, Premel-Cabic A, Granry JC, Cottineau C, Six P, Allain P. Thiopental pharmacokinetics under conditions of long-term infusion. Anesthesiology. 1985;63(1):50–4.

van den Brink WA, van Santbrink H, Steyerberg EW, Avezzaat CJ, Szuza JO, Hogestee C, Jansen WJ, Kloos LM, Vermeulen J, Maas AI. Brain oxygen tension in severe head injury. Neurosurgery. 2000;46(4):868–76; discussion 876–868.

Vavilala MS, Lee LA, Lam AM. The lower limit of cerebral autoregulation in children during sevofoflurane anesthesia. J Neurosurg Anesthesiol. 2003;15(4):307–12.

Vespa P, Bergsneider M, Hattori N, Wu HM, Huang SC, Martin NA, Glenn TC, McArthur DL, Hovda DA. Metabolic crisis without brain ischemia is common after traumatic brain injury: a combined microdialysis and positron emission tomography study. J Cereb Blood Flow Metab. 2005;25(6):763–74.

Wahlstrom MR, Olivecrona M, Koskinen LO, Rydenhag B, Naredi S. Severe traumatic brain injury in pediatric patients: treatment and outcome using an intracranial pressure targeted therapy – the Lund concept. Intensive Care Med. 2005;31(6):832–9.

Wesley L, McKibben P. Pressure changes in cerebrospinal fluid following intravenous injection of solutions of various concentrations. Am J Phys. 1919;48:512–30.

Werner C, Engelhard K. Pathophysiology of traumatic brain injury. Br J Anaesth. 2007;99(1):4–9.

White JR, Farukhi Z, Bull C, Christensen J, Gordon T, Paidas C, Nichols DG. Predictors of outcome in severely head-injured children. Crit Care Med. 2001;29(3):534–40.

Williams EL, Hildebrand KL, McCormick SA, Bedel MJ. The effect of intravenous lactated Ringer’s solution versus 0.9% sodium chloride solution on serum osmolality in human volunteers. Anesth Analg. 1999;88(5):999–1003.