INTRODUCTION

A giant cell tumor (GCT) of bone is an osteolytic lesion made up of mononuclear stromal cells and multinucleated giant cells that typically affect younger adults. GCTs constitute 5% of all primary bone tumors. Approximately 85% of GCTs occur in the metaphyseal region of long bones, especially in the distal femur, proximal tibia, and distal radius.1-3 GCTs present in the axial skeleton, such as the skull and spine, in approximately 10% of cases. Whereas most GCTs are locally aggressive, a few show pulmonary metastases, and even fewer show malignant transformation.4

Various treatments have been developed to address the challenge posed by the propensity for GCTs to recur.5 The applicability and effectiveness of each option is often limited by the location of the tumor, given that the goal of complete resection needs to be balanced with minimizing damage to adjacent structures and maintaining function. Although adjuvants have been used to enhance existing surgical treatments, en bloc resection remains the best surgical option for complete cure.6,7 Skull and spine GCTs highlight these treatment selection dilemmas because they are commonly very difficult or impossible to completely resect without morbidity.8 Denosumab was approved by the U.S. Food and Drug Administration for use in the treatment of these surgically challenging GCTs in 2012.9 Since that time it has been tried as a salvage treatment or a neoadjuvant preoperative measure, but recent reviews indicate that it usually results in only partial response and can in fact increase the risk of postoperative recurrence after later curettage.10-12

A recent report by Shiels and Mayerson13 introduced doxycycline sclerotherapy as an alternative to surgical resection in definitive curative treatment of ABCs, which are histopathologically very similar to GCTs. Both of these tumors comprise locally destructive osteoclast-like giant cells coupled with unique mononuclear stromal cells that are osteoblast-like in GCTs and fibroblast-like in ABCs.14-16 Doxycycline is a locally toxic agent when used as a sclerosant but also promotes osteoblast function and inhibits angiogenesis and osteoclast function, all aiding in the healing of bone lesions.17-19 We posited that doxycycline sclerotherapy would be analogously definitively effective in treating GCTs, and we now report the treatment of 2 challenging neurosurgical cases using this technique. We wish to report the definitive success of doxycycline sclerotherapy in treating these 2 GCTs, 1 in the skull and 1 in the cervical spine, with 4 and 10 years, respectively, of disease-free follow-up.

REFERENCES

1. Shiels C, Mayerson JS. Spinal aneurysmal bone cyst treated with doxycycline sclerotherapy. J Neurosurg. 2013;119:1203-1207.
2. Shiels C, Mayerson JS. Spinal aneurysmal bone cyst treated with doxycycline sclerotherapy: A case report and review of the literature. Neurosurgery. 2013;72:857-862.
3. Shiels C, Mayerson JS. Spinal aneurysmal bone cyst treated with doxycycline sclerotherapy: A case report and review of the literature. Neurosurgery. 2013;72:857-862.
4. Shiels C, Mayerson JS. Spinal aneurysmal bone cyst treated with doxycycline sclerotherapy: A case report and review of the literature. Neurosurgery. 2013;72:857-862.
5. Shiels C, Mayerson JS. Spinal aneurysmal bone cyst treated with doxycycline sclerotherapy: A case report and review of the literature. Neurosurgery. 2013;72:857-862.
6. Shiels C, Mayerson JS. Spinal aneurysmal bone cyst treated with doxycycline sclerotherapy: A case report and review of the literature. Neurosurgery. 2013;72:857-862.
7. Shiels C, Mayerson JS. Spinal aneurysmal bone cyst treated with doxycycline sclerotherapy: A case report and review of the literature. Neurosurgery. 2013;72:857-862.
8. Shiels C, Mayerson JS. Spinal aneurysmal bone cyst treated with doxycycline sclerotherapy: A case report and review of the literature. Neurosurgery. 2013;72:857-862.
9. Shiels C, Mayerson JS. Spinal aneurysmal bone cyst treated with doxycycline sclerotherapy: A case report and review of the literature. Neurosurgery. 2013;72:857-862.
10. Shiels C, Mayerson JS. Spinal aneurysmal bone cyst treated with doxycycline sclerotherapy: A case report and review of the literature. Neurosurgery. 2013;72:857-862.
11. Shiels C, Mayerson JS. Spinal aneurysmal bone cyst treated with doxycycline sclerotherapy: A case report and review of the literature. Neurosurgery. 2013;72:857-862.
12. Shiels C, Mayerson JS. Spinal aneurysmal bone cyst treated with doxycycline sclerotherapy: A case report and review of the literature. Neurosurgery. 2013;72:857-862.
CASE DESCRIPTIONS

Patient 1
A 58-year-old woman was referred to our institution in May 2014 for percutaneous treatment of a recurrent right sphenoid wing lytic bone tumor (Figure 1). In January 2011, 3 years before coming to us, she had undergone partial tumor resection at another major medical center. The presumptive clinical, radiologic, and pathologic diagnosis was GCT versus solid ABC. Postoperatively the residual tumor gradually increased in size, and the patient experienced progressive debilitating daily pain.

Because she was deemed ineligible for more surgery, she was referred to the interventional radiology (IR) service for percutaneous doxycycline injections, which is our routine management of pediatric ABCs. During her first treatment, in August 2014, multiple core biopsy specimens were obtained, and they were interpreted as GCT (Figure 2).

The lesion was accessed under computed tomography (CT) guidance with 2 14G Bonopty bone biopsy needles (AprioMed, Uppsala, Sweden). One of the access points was through the roof of the temporomandibular joint, and the second was through a tumor-related dehiscence in the temporal bone (Figure 3A). After the core biopsy specimens were obtained, doxycycline was injected under CT guidance. Using the technique previously described by Shiels and Mayerson, doxycycline was mixed with 25% human serum albumin (Grifols Therapeutics, Clayton, North Carolina, USA) and then agitated with an equal volume of air to generate a stable foam with a final doxycycline concentration of 10 mg/mL. The doxycycline foam is extremely easy to visualize by CT because its density is air, so no additional radiographic contrast material is needed (Figure 3B).

Care was taken to use a double-needle injection technique to allow pressure to release out the second needle during injection of the first, rather than build within the tumor and extravasate to surrounding tissue. To prevent back bleeding after needle removal, Surgifoam pledgets (Ethicon, Somerville, New Jersey, USA) were pushed through the needles as they were withdrawn. The procedure was performed on an outpatient basis, and the patient had no significant pain postoperatively.

CT-guided percutaneous needle access and doxycycline injection were performed 2 additional times by a similar technique, in October 2014 and May 2015, without complication. During that time, her pain resolved, and her CT scans showed progressive ossification of the lesion. No other interventions or medications were used. Routine yearly imaging has been performed, and her most recent scan, in May 2019, 4 years after the last procedure, showed no recurrence (Figure 4). At that last follow-up visit, she remained symptom free.

Patient 2
An 8-year-old girl was brought to our institution in April 2008 with a 6-month history of progressive neck pain and right arm weakness and numbness. Magnetic resonance imaging (MRI) and CT showed an 8-cm-diameter mixed cystic and solid C7 mass causing vertebra plana and collapse of the right C7 articular pillar. The tumor replaced the right pedicle, lamina, and spinous process at C7, with extraosseous extension into the soft tissues around the right brachial plexus and into the superior sulcus of the right hemithorax (Figure 5). She was referred to

Figure 1. Axial contrast-enhanced T1W magnetic resonance image (MRI) (A) and axial non—contrast-enhanced computed tomography (CT) view (B) showing recurrent tumor 3 years after initial surgical resection. MRI shows contrast enhancing tumor in the right sphenoid bone (A, white arrow), and CT shows lytic bone lesion in the corresponding area (B, white star).
IR for percutaneous sclerotherapy because her case was deemed surgically challenging, with a significant risk of permanent loss of arm function. Analysis of a percutaneous biopsy specimen taken during the first ultrasound and fluoroscopic-guided treatment in May 2008 identified the mass as a GCT with some areas of associated ABC (Figure 6A). A total of 10 percutaneous treatments were performed over the next 16 months, with the early procedures done under ultrasound and fluoroscopic guidance, and the later procedures done under CT guidance (Figure 6B). In all treatments, independent of the modality used for image guidance, doxycycline foam was injected throughout the tumor without complication. During the course of treatment, the tumor melted away, and most of the pain and the brachial plexopathy resolved, allowing her to return to normal activities. She has been monitored by the IR and neurosurgery services with yearly imaging and clinical follow-up for over 10 years, primarily because of persistent reports of occasional neck pain and arm paresthesia. Her last follow-up MRI, in January 2019, showed no evidence of residual or recurrent tumor and solid osseous fusion of the right C6/C7 and C7/T1 facets across the collapsed C7 articular pillar (Figure 7). Her neurosurgeons have found no compelling reasons for any operative intervention.

DISCUSSION

GCTs are benign, locally aggressive tumors with a great propensity for post-operative local recurrence. They consist of mononuclear stromal cells, multinucleated giant cells, and hemosiderin-laden macrophages. Diagnosis of a GCT relies on both histopathologic and radiologic evidence. Location of the lesion and age of the patient help to narrow the differential diagnosis. Other bone lesions, like ABCs, have similar histopathologic characteristics with osteolytic components that can make definitive diagnosis of a GCT more challenging. Different treatment options for GCTs exist, but these tumors remain difficult to
definitively cure. Surgical intervention is currently the best option. Complete resection has the lowest recurrence rate (0% to 12%) but is often not possible without causing loss of function, especially in tumors of the axial skeleton. Curettage is the most common surgical approach when complete resection is not possible, but its high recurrence rate (12% to 34%) diminishes its complete success as a curative treatment. Embolization, radiotherapy, and denosumab are used as adjuvants to bolster the effectiveness of curettage. However, some studies have shown that these adjuvants, although they possibly facilitate more effective or safe surgery, have limited influence on decreasing the recurrence rate. Recent studies report that neoadjuvant treatment with denosumab actually increases the risk of recurrence after surgery, making its use for this indication problematic.

Whereas GCTs typically occur in the metaepiphyseal region of long bones in adults aged 30 to 50 years, ABCs commonly manifest in the juxaphyseal region of bones in children. Despite the differing clinical presentations, GCTs and ABCs demonstrate similar pathogenesis and histologic characteristics, manifesting similar radiologic appearances. One main difference between these lesions lies in the identity of their mononuclear stromal cells, with GCT stromal cells resembling osteoblasts and ABC stromal cells...
resembling fibroblasts. However, factors essential to osteoclastogenesis, such as vascular endothelial growth factor and receptor-activator of nuclear \(\kappa \)B ligand, are found in both types of stromal cells, where they retain comparable osteoclast-stimulating functions. The analogous functions of the stromal cells in ABCs and GCTs suggest that the osteolytic behavior of both tumors may be regulated by similar cellular mechanisms.

Shiels and Mayerson and Shiels et al. successfully treated ABCs using percutaneous doxycycline sclerotherapy with a low recurrence rate (6%). Clinical cure was achieved in their patients with long-term follow-up and without the need of surgical resection or orthopedic fixation. The shared osteoclast-stimulating factors in ABC and GCT stromal cells suggest that doxycycline sclerotherapy, which successfully treated ABCs, could similarly be applied to definitively treat GCTs. We have demonstrated in these 2 axial skeleton GCT cases that definitive treatment is indeed possible with disease-free, long-term follow-up.

Clinically and radiologically, our 2 patients with GCT showed healing similar to that previously reported for patients with ABC. Long-term follow-up imaging showed continued ossification of our 2 lesions, with no residual areas of cystic or active disease observed. Patient 1 was successfully treated for a surgically inaccessible skull GCT, and patient 2 was cured of a cervical spine GCT without...
need for resection or spine fusion. More importantly, both patients maintained their preoperative functionality after treatment.

This report describes the success of doxycycline sclerotherapy in the treatment of 2 different axial skeleton GCTs. Although a larger study with more patients is required to confirm our findings and to elucidate any limitations of this treatment, we wish to present this percutaneous technique as a new option for treating GCTs. We particularly recommend consideration of this minimally invasive treatment for patients with GCTs for whom standard surgical approaches may be overly risky or nearly impossible.

DEMAND OF COMPETING INTEREST
The authors declare that the article content was composed in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

ACKNOWLEDGMENT
Dr. W. E. Shiels, II, served as the primary investigator for most of the life of this research study. He was integral to developing the experimental design and acquiring data. Unfortunately, he passed away before the writing of the manuscript.

REFERENCES

1. Chakarun CJ, Forrester DM, Gottsegen CJ, Patel DB, White EA, Matcuk GR Jr. Giant cell tumor of bone: review, mimics, and new developments in treatment. Radiographics. 2013;33:197-211.
2. van der Heijden L, Dijkstra S, van de Sande MA, et al. The clinical approach toward giant cell tumor of bone. Onkolist. 2014;19:559-561.
3. Errani C, Ruggieri P, Asenzo MA, et al. Giant cell tumor of the extremity: a review of 349 cases from a single institution. Cancer Treat Res. 2010;361:7.
4. Klenke FM, Wenger DE, Inwards CY, Rose PS, Sim FH. Recurrent giant cell tumor of long bones: analysis of surgical management. Clin Orthop Relat Res. 2011;469:118-1187.
5. Yu X, Xu M, Xu S, Fu Z. Long-term outcome of giant cell tumor of bone involving sacroiliac joint treated with selective arterial embolization and curettage: a case report and literature review. World J Surg Oncol. 2013;11:72.
6. Singh AS, Chawla NS, Chawla SP. Giant-cell tumor of bone: treatment options and the role of denosumab. Biologis. 2015;69:74.
7. Charrete-Morin R, Boriani S, Fisher CG, et al. Benign tumors of the spine: has new chemotherapy and interventional radiology changed the treatment paradigm? Spine. 2016;41:578:585.
8. Chindon PS, Hindskere S, Doddarangappa S, Pal U. Evaluation of local recurrence in giant-cell tumor of bone treated by neoadjuvant denosumab. Clin Orthop Surg. 2019;11:352-360.
9. Errani C, Tsukamoto S, Leone G, et al. Denosumab may increase the risk of local recurrence in patients with giant-cell tumor of bone treated with curettage. J Bone Joint Surg Am. 2018;100:496-504.
10. Shiels WE II, Mayerson JL. Percutaneous doxycycline treatment of aneurysmal bone cysts with low recurrence rate: a preliminary report. Clin Orthop Relat Res. 2011;469:2673-2683.
11. Thomas DM, Shubitz KM. Giant cell tumour of bone. Curr Opin Oncol. 2009;21:338-344.
12. Pelle DW, Ringler JW, Peacock JD, et al. Targeting receptor-activator of nuclear kappaB ligand in aneurysmal bone cysts: verification of target and therapeutic response. Tumour Res. 2014;164:139-148.
13. Zehtabi F, Ispas-Szabo P, Djerez S, et al. Chitosan-doxycycline hydrogel: an MMP inhibitor/sclerosing embolizing agent as a new approach to endoleak prevention and treatment after endovascular aneurysm repair. Acta Biomater. 2017;64:94-105.
14. Gomes KDN, Alves APNN, Dutra PGP, Viana GSB. Doxycycline induces bone repair and changes in Wnt signalling. Int J Oral Sci. 2017;9:158-166.
15. Peul S, Aref H, Brunelle F. Double-needle sclerotherapy of lymphangiomatous and venous angiomatous in children: a simple technique to prevent complications. AJR Am J Roentgenol. 2003;180:1299-1301.
16. Werner M. Giant cell tumour of bone: morphological, biological and histogenetical aspects. Int Orthop. 2006;30:454-456.
17. van der Heijden L, Dijkstra PD, Campanacci DA, Gibbons CL, van de Sande MA. Giant cell tumor with pathologic fracture: should we curette or resect? Clin Orthop Relat Res. 2013;472:820-829.
18. Ruggieri P, Mavrogenis A, Ussia G, et al. Recurrence after and complications associated with adjuvant treatments for sacral giant cell tumor. Clin Orthop Relat Res. 2010;468:2954-2961.
19. Kumta SM, Huang L, Cheng YY, et al. Expression of VEGF and MMP-9 in giant cell tumor of bone and other osteolytic lesions. Life Sci. 2003;73:1427-1436.
20. Shiels WE II, Beebe AC, Mayerson JL. Percutaneous doxycycline treatment of juxtaphysal aneurysmal bone cysts. J Pediatr Orthop. 2016;36:205-212.
21. Lee CZ, Xu B, Hashimoto T, et al. Doxycycline suppresses cerebral matrix metalloproteinase-9 and angiogenesis induced by focal hyperstimulation of vascular endothelial growth factor in a mouse model. Stroke. 2004;35:1725-1730.
22. Naghsh N, Razavi SM, Maniayan M, et al. Evaluation of the effects of two different bone resorption inhibitors on osteoclast numbers and activity: an animal study. Dent Res J. 2006;1530:507.

Received 17 September 2019; accepted 18 September 2019
Citation: World Neurosurg. X (2020) 1-10.0061.
Available online: www.sciencedirect.com
www.sciencedirect.com
https://doi.org/10.1016/j.wnsx.2019.100061
Published by Elsevier Inc.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).