Elevated IL-6R on CD4+ T cells promotes IL-6 driven Th17 cell responses in patients with T1R leprosy reactions

Chaman Saini1,2*, Rupesh K. Srivastava3, Mohd. Tarique2, Santosh Kurra2, Neena Khanna3, V. Ramesh4 & Alpana Sharma2*

Th17 cells play vital role during pathogenesis of leprosy reactions. Previously, we have reported that IL-23 is involved in Th17 cells differentiation. Subsequently, our group also showed that IL-6 induces Th17 cell differentiation along with TGF-β in leprosy reactions. Here, we next asked the question that whether IL-6 or IL-23 induced Th17 cells are different in nature? In this study, Type 1 Reactions (T1R) showed significantly (p < 0.001) higher percentage of IL-17A producing CD4+IL6R+ T cells as compared to non-reaction (NR) patients. Furthermore, recombinant IL-6, IL-23 and TGF-β promoted IL-17A secretion by CD4+IL6R+ T cells. Subsequently, IL-6R and IL-23R blocking experiments showed significantly (p < 0.002) down regulated IL-17A in T1R reaction as compared to NR leprosy patients. The present study for the first time establishes that pathogenic Th17 cells produce IL-17 in an IL-6 dependent manner in leprosy T1R reactions. Thus, present approaches that specifically target Th17 cells and/or the cytokines that promote their development, such as IL-6, TGF-β and IL-23A may provide more focused treatment strategies for the management of Mycobacterium leprae and its reactions.

Type 1 reaction (T1R) of leprosy can develop acute episodes of inflammation leading to severe morbidity, nerve damage and irreversible disability. T1R, classified as type IV hypersensitivity reaction mainly occurs during the course of Multi Drug Therapy (MDT) or after completion of MDT. In Indian scenario, approximately 25–30% borderline leprosy (BT, BB and BL) patients undergo in T1R, which is characterized by acute inflammation of pre-existing skin lesions or by the appearance of new lesions and/or neuritis1. These reactions are the consequence of dynamic nature of immune response against Mycobacterium leprae (M. leprae). From the point of clearing bacteria, such increased cellular immune responses may be beneficial, because they promote bacterial killing mechanisms. However, the accompanying inflammation in and around the infected nerve tissue can result in severe and irreversible damage within few days. It is not clear how immune response initiates this spontaneous and natural T cell activation. During reactions, leprosy patients show increased lympho-proliferation against M. leprae antigens as well as increased expression and release of pro-inflammatory cytokines such as IL-1β, IL-2, IL-12, IFN-γ and TNF-α2,3. Some cytokines such as IP-10, TNF-α, IL-6, IL-10, IL-12, IL-17F and soluble receptors of IL-2 have also been reported in circulation4-7.

The role of Th1 and Th2 cells has been well studied in leprosy reactions. Recently a new avatar of pro-inflammatory cells called as Th17 which secrete IL-17 has also been reported in leprosy8. Previously, we showed that patients with non-polarized Th0 (IFN-γ-IL-4+) subset had increased percentage of IL-17+ cells which may constitute the third subset i.e. Th17 cells in leprosy patients who failed to show either Th1 and Th2 polarization. We previously reported that Th17 cells produces IL-17A, IL-17F and IL-21, thereby playing important role in the immunopathology of tissue8. Subsequently, we have also reported that double IL17A+/F+ cells recruit to IL-17 producing neutrophils in reversal reactions of leprosy9. On the other hand TGF-β producing FOXP3+ Treg cells have role in maintaining tolerance and inflammation regulation in leprosy10. Th17 and Treg cells regulate immune

1Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India. 2Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India. 3Department of Dermatology, All India Institute of Medical Sciences, New Delhi, India. 4Department of Dermatology, Safdarjung Hospital, New Delhi, India. 5Email: chamansaini82@gmail.com; dralpanasharma@gmail.com
subset. Several studies have shown that murine naïve CD4+ T cells differentiate into Th17 cells via simultaneous downstream target of signal transducer and activator of transcription 3 (STAT3)13–15. Saini et al.8, reported that through a cytokine-independent mechanism17. Among these differentiating cytokines, TGF-β is essential for indicate that cytokine network determines the progression or regression of leprosy24. In the present study, using and not IL-6R with IL-17+ cells in NR leprosy patients is not well studied. IL-6R and IL-23R are key players in involved in Th17 differentiation in non-reaction (NR) leprosy patients. Surprisingly, the association of IL-23R and IL-6 coordinately induce Th17 differentiation11,12 via induction of transcription factor ROR-γt, which is a system and are also activated by various cytokines, such as IL-1β, IL-6, IL-23 and TGF-β. The differentiation of naive T cells into Th17 cells is regulated by several mechanisms. Mainly, it has been reported that TGF-β and IL-6 coordinately induce Th17 differentiation11,12 via induction of transcription factor ROR-γt, which is a downstream target of signal transducer and activator of transcription 3 (STAT3)13–15. Saini et al.8, reported that IL-23 is also identified as an essential cytokine for Th17 cells differentiation in leprosy diseases. Furthermore, our group has also reported that rIL-23 modulates the plasticity of Tregs in leprosy patients which are converted into Th17 like cells16. Moreover, aryl hydrocarbon receptor (AHR) contributes to the Th17 cells differentiation through a cytokine-independent mechanism17. Among these differentiating cytokines, TGF-β is essential for polarizing naïve T cells towards Th17 and Treg cells. Interestingly, our previous report showed synergistic effect of TGF-β with the pro-inflammatory cytokine IL-6 in inducing Th17 differentiation18. Moreover, IL-23 is also involved in Th17 differentiation in non-reaction (NR) leprosy patients. Surprisingly, the association of IL-23R and not IL-6R with IL-17+ cells in NR leprosy patients is not well studied. IL-6R and IL-23R are key players in the development and maintenance of Th17 cells19. A recent study demonstrated increased percentage of CD4+ T cells expressing IL-6R in chronic hepatitis B patients and higher levels of IL-17 upon stimulation with the HBV core antigen (HBcAg) in vitro20. IL-6 cytokine has the ability to polarize Th1/Th2 cells balance towards Th2 cell subset. Several studies have shown that murine naïve CD4+ T cells differentiate into Th17 cells via simultaneous treatment with IL-6 and low doses of TGF-β21.

Our second study on leprosy reactions demonstrated that elevated expression of IL-6 and lower TGF-β in leprosy reaction initiated synergistic effect in differentiation of Th17 cells18. In brief emergencies in reversal reactions is increased by Th17 cells which may be triggered by subsequently decreased Treg cell activity through low TGF-β producing FOXP3+ Treg cells. The synergistic effect of down regulated TGF-β and upregulated IL-6 in both reactions may play an important role in the balance of Treg and Th17 cell differentiation and thereby lead to the immunopathology associated with leprosy reactions18. Th17 and Treg cells are key players in immunopathology of leprosy reaction and leprosy as reported by us and others8,10,18,22–24. Their role in leprosy reactions and the differentiation and signaling pathways of these cells are yet to be fully determined. Therefore, by elucidating the molecular mechanisms that link Th17 differentiation and immuno-pathogenesis in leprosy reactions, a novel therapeutic strategy could be provided. Various kinds of cytokines and receptor can positively or negatively regulate the development of leprosy reactions. In contrast, interferon (IFN) -γ, a Th1 cytokine, is considered a positive regulator of leprosy, as disruption or low production of IFN-γ enhances the severity in leprosy4. These findings indicate that cytokine network determines the progression or regression of leprosy24. In the present study, using IL-6 receptor (IL-6R)-blocking antibody, we examined the effects of IL-6 blockade on leprosy reactions, in light of Th17 cell differentiation. Consequently, we report that IL-6 is essential for the initiation of leprosy reactions, rather than its progression, through Th17 differentiation. The present study thus for the first time establishes that specifically targeting Th17 cells along with its cytokine IL17 may provide more focused treatment strategies for the management of M. leprae and its reaction.

Materials and methodology

Patient recruitment and ethics statement. A total of 56 new patients (Untreated; without MDT and steroid) were investigated. Samples were obtained from patients who were clinically and historically proven for leprosy type according to Ridley–Jopling classification25,26. All methods were carried out in accordance with relevant guidelines and regulations of the ethical permission (Ref. No. IEC-275/02.06.2017, RP-25/2017), AIIMS, New Delhi. Informed written consent was taken prior to recruitment (Table 1).

Table 1. Demographic details of leprosy patients included from Department of Dermatology, AIIMS, New Delhi. Patients were typed on the basis of Ridley–Jopling classification25,26. M; male, F; female.

S. no	Leprosy classification	No of cases investigated	Sex	Age range
1	Borderline tuberculoid (BT; NR)	29	M	18–30
2	Reversal reaction (RR) or Type I reaction (T1R)	29	M	18–36
Total	58	27	M	18–36

Isolation of peripheral blood mononuclear cells (PBMCs) from blood samples. Six ml heparinized venous blood samples were layered on Ficoll-Hypaque (Sigma Aldrich, USA) after diluting with 1:1 in RPMI 1640. PBMCs were isolated by density gradient centrifugation at 800×g for 20 min. Cells in the interphase were collected into a new tube and washed thrice in sterile 1×HBSS by centrifugation at 1,600 rpm for 10 min. After the last wash cells were re-suspended in RPMI 1640 along with 10% FBS (Sigma, USA), cell viability and enumeration were estimated by 0.2% trypan blue exclusion using hemocytometer.

Cell culture. 2 × 10⁶ cells/ml were stimulated with or without Mycobacterium leprae sonicated antigen (MLSA; 10 µg/ml) and recombinant-IL-6 (10 ng/ml; Peprotech NJ, USA), r-TGF-β (2.0 ng/ml, Peprotech NJ, USA) and r-IL-23 (6.0 ng/ml, R&D, USA) were added with different combinations. Cultures were also stimulated with phytohemagglutinin (PHA; 5 µg/ml, Sigma, USA). Cells were stimulated in tissue culture media containing 10% FBS (Sigma, USA) and RPMI 1640 (Gibco, USA) and incubated in 5% CO₂ incubator at 37 °C for 48 h.
our previous study we already performed and standardized stimulation at various time points of 6, 24 and 48 h stimulation with MLSA in leprosy patients and we observed that Th17 related genes, phenotypic characterization, cytokine release etc. in ex-vivo antigen stimulated PBMC cultures were optimum at 48 h. After these cells were used for FACS analysis and other experiments.

IL-6R and IL23R blockade treatment. PBMCs from non-reactions (NR) and reactions (T1R) leprosy patients were incubated in RPMI-1640 medium alone or stimulated with MLSA (10 µg/ml) for 48 h, neutralizing antibody against IL-6R and IL-23R (R&D Systems, Minneapolis, MN) were added at a concentration of 0.5 and 2.0 µg/ml respectively, 30 min before the addition of MLSA. Prior to 6 h cells harvesting, GolgiStopTM protein transport inhibitor (BD, biosciences, USA) was added for intracellular cytokine staining and analyzed by flow cytometry. Moreover, a separate culture setup without GolgiStopTM was also performed for IL-17 protein estimation through ELISA.

Cell surface and intracellular staining for flowcytometry analysis. All anti-human antibodies were obtained by BioLegend, USA. Staining was done within 1 h after harvesting and washing three times as above and cell viability determined. In brief, for cell surface staining, 0.1×10^6 cells/50 µl in staining buffer were incubated with a cocktail containing anti-human antibodies against CD3 (APC-H7, clone SK7), CD4 (PerCP/Cy5.5, clone HIT8a and FITC, clone RPA-T4), IL-6R (PE-Cy7, cloneUV4) and IL-23R (PE, clone 218213) for 45 min at 4°C. After cell surface staining, cells were incubated with BD Cytofix/CytoperimTM buffer for 20 min at room temperature. The cells were washed twice resuspended in stain buffer and incubated with anti-human fluorochrome labeled antibodies against IL-17A (APC, clone BL168). Subsequently, after the surface staining 1XFOX3 buffer A for 10 min at room temperature; cells were then washed twice and permeabilized with buffer C for 30 min at room temperature. The cells were further washed twice, resuspended in stain buffer and incubated with anti-human fluorochrome labeled antibodies against IL-17A (APC, FOX3 (PE, clone 259D), TGF-β (Perpcy5.5, clone TW4-2F8) and IFN-γ (PE-Cy7, clone 45.S3) at room temperature for 30 min in the dark, followed by two washes as before and resuspended in 500 µl with appropriate FMO and isotype controls. Multi-color flow cytometry analysis was performed on FACS canto with DIVA software (BD Bioscience, USA).

CD4+ T cells sorting by FACS. The following anti-human fluorochrome labeled antibodies against CD3 (Perpcy-5.5, clone: UCHT1), CD4 (APC-H7, clone: SK3), CD8 (PE-Cy7, clone: RPA-T8), CD25 (FITC, clone: MA251) and FOXP3 (APC, clone: 259D/C7) for cell sorting by flow cytometry on BD FACS AriaTM as per manufacturer's instructions. Using 48 h MLSA stimulated PBMCs for staining by above anti-human antibodies (see “Methodology”) with relevant isotype controls, accordingly we set up the following gating strategy for sorting (Supplementary Fig. 1): (a) Lymphocytes were gated as FSC vs SSC (b) FSC vs CD3 and (c) CD4+ vs CD8+ T cells. After gating, CD4+ T cells were further gated as CD25FOXP3+ and CD25negFOXP3neg cells, deriving each gate as a daughter of the gate set up in the previous step as FSC vs. SSC. Two 15 ml centrifuge tubes were prepared by adding 2 ml complete medium as collection tubes for sorting and recorded ~20,000 events from each gate as a daughter of the gate set up in the previous step as FSC vs. SSC. Two 15 ml centrifuge tubes were prepared by adding 2 ml complete medium as collection tubes for sorting and recorded ~20,000 events from each staining control sample. Gates, if necessary were adjusted, based upon the staining controls. Once the gates were standardized and satisfactory, samples were loaded and sorting performed. Sorted cells were resuspended in complete medium. To assess the purity of the sorted cells, a small aliquot was run on flowcytometry, under the same template as was used for the sorting. Purity of more than 96.2% was routinely observed. The sorted CD4+ T cells were later cryo-preserved for qPCR analysis.

RNA isolation and reverse transcriptase PCR reaction. RNeasy Mini Kit (Qiagen, USA) used for RNA isolation from sorted CD4+CD25negFOXP3neg cells according to manufacturer’s instructions. Nanodrop spectrophotometer (Nanodrop Technologies, USA) was used for quantification of RNA. RNA purity at 260/280 from 1.8 to 2.0 was considered to be best. RNA (28S and 18S) was also checked for quality, RIN value of ≥7 was considered to be optimum by using Bioanalyzer (Agilent Technologies, Singapore). For reverse transcriptase PCR reaction, 500 ng total RNA was transcribed into cDNA using RT First strand kit (SA Biosciences, USA). RT-PCR was performed according to the manufacturer’s instructions and cDNA stored at −20°C till further use.

Real time PCR (q-PCR) array. Commercially customized PCR array (Qiagen, USA) was employed as per manufacturer’s instructions with the following primers of IL-6R, IL23R, IL-1β, Stat3, TNF-α, CCL22, RORC, JAK1, IL-2, IL-17F, JAK2, CCL20, IL-17D, IL-23, IL-17A, IL-23R, IL-10, IL-17C, IL-6, IL-25, IL-21, IL-22 for gene expression. 500 ng of cDNA was used per array containing the ready to use PCR master mix. These were then subjected to q-PCR (ABI 7000, Applied Bio-systems, Singapore) for 2 h. Threshold cycle (Ct) values of specific gene were normalized with housekeeping genes (β2M, HPRT1, RPL13A, GAPDH and ACTB) and expressed as ΔCt (Table 2). SA Biosciences (Qiagen) online software (http://pcrdataanalysis.sabiosciences.com) was used for creating heat maps showing intensity of expression of genes. Patients with T1R were compared with NR patients.

Estimation of cytokines by ELISA. For IL-17A estimation, sandwich ELISA (Ready Set Go, eBioscience, USA) was performed as per manufacturer’s instructions. Briefly, at 4°C after overnight coating (un-conjugated) with 100 µl/well capture antibody in 96-well plates (Nunc, USA), was performed followed by 3× wash with washing buffer, and subsequently blocked with 1× assay diluent at room temperature for 1 h. After blocking, subsequently five times washing was performed with 1× washing buffer. 100 µl/well of 48 h stimulated PBMC culture supernatants were added in triplicate and incubated for another 2 h at room temperature. After incubation, washing was done and 100 µl/well of detection antibody (biotin-conjugated) diluted in 1× Assay Diluent
CCL20 along with migratory and signaling (that IL-6 and we found to have no correlation in NR patients (Fig. 2). Table 3 lists correlation on the other hand, IL-6R gene expression of Th17 associated markers such as, showed significantly high intensity in T1R as compared to NR patients. Table 2 provides data on the statistical inflammation associated with localized T1R reactions via qPCR assay (Fig. 1). Heat maps of gene expression lineage and associated molecules with a rationale to understand the differences between the immunopathology/Th17 development (defined 3 groups with IL-6R gene expression with Th17 cells markers. These genes have already been established for clinically erythematous plaques with hyperesthesia and tenderness. Surprisingly, hierarchical clustering identified similar and distinct genes into independent groups (for complete list see “Methodology”). Of interest, all markers were significantly (range: p < 0.001–0.0004) upregulated in T1R as compared to NR leprosy patients. Although, among the T1R patients, two of them showed high intensity gene expression as they showed interest, all markers were significantly (range: p < 0.001–0.0004) upregulated in T1R as compared to NR leprosy clustering to show similar and distinct genes into independent groups (for complete list see “Methodology”). Of

Table 2. In situ gene expression (Mean ± SD) of Th17 signature and associated molecules in CD3+CD4+ T cells isolated from 48 h MLSA stimulated PBMCs. Classification of patients according to Ridley–Jopling25,26 as in legend to Table 1.*p < 0.01, **p < 0.001, ***p < 0.0001 by two tailed Mann–Whitney test. P < 0.05 was considered significant, ns = non significant.

S. no	Gene	Accession number	Gene expression (ΔCt) Mean±SD	TIR (19)	NR(19)	P value
1	IL-1β	Hs.126256	2.25 ± 1.3	2.97 ± 1.3	ns	
2	Stat3	Hs.463059	2.55 ± 0.8	2.97 ± 0.6	p < 0.04	
3	TNF-α	Hs.241570	3.91 ± 1.3	4.62 ± 0.8	ns	
4	CCL22	Hs.534347	3.13 ± 1.0	4.82 ± 1.2	p < 0.001	
5	RORC	Hs.256022	3.98 ± 2.1	7.07 ± 2.2	p < 0.001	
6	JAK1	Hs.207538	2.04 ± 0.6	2.62 ± 0.3	p < 0.005	
7	IL-2	Hs.89679	4.29 ± 1.7	8.12 ± 3.6	p < 0.003	
8	IL-17F	Hs.272295	4.1 ± 1.8	8.0 ± 3.3	p < 0.001	
9	JAK2	Hs.656213	2.77 ± 1.1	3.92 ± 0.9	p < 0.001	
10	CCL20	Hs.75498	3.54 ± 1.6	6.42 ± 2.1	p < 0.0001	
11	IL-17D	Hs.655142	6.8 ± 2.5	10.8 ± 2.7	p < 0.001	
12	IL-23A	Hs.98369	3.38 ± 1.7	6.22 ± 1.7	p < 0.001	
13	IL-17A	Hs.41724	4.68 ± 2.6	9.02 ± 4.1	p < 0.002	
14	IL-23R	Hs.677426	4.01 ± 2.9	7.87 ± 3.7	p < 0.0005	
15	IL-10	Hs.193717	3.32 ± 1.4	4.77 ± 1.0	p < 0.0005	
16	IL-17C	Hs.278911	4.87 ± 2.1	7.77 ± 2.7	p < 0.006	
17	IL-6R	Hs.709220	2.95 ± 1.0	3.72 ± 0.6	p < 0.003	
18	IL-6	Hs.654458	3.79 ± 1.5	6.82 ± 2.3	p < 0.0001	
19	IL-25	Hs.302036	5.26 ± 2.6	9.52 ± 3.5	p < 0.0002	
20	IL-21	Hs.567559	3.64 ± 2.5	7.32 ± 3.1	p < 0.003	
21	IL-22	Hs.287369	3.45 ± 2.7	8.02 ± 4.0	p < 0.0001	

Table 2. In situ gene expression (Mean ± SD) of Th17 signature and associated molecules in CD3+CD4+ T cells isolated from 48 h MLSA stimulated PBMCs. Classification of patients according to Ridley–Jopling25,26 as in legend to Table 1.*p < 0.01, **p < 0.001, ***p < 0.0001 by two tailed Mann–Whitney test. P < 0.05 was considered significant, ns = non significant.

(anti-mouse antibody) was added, and plates were further incubated at room temperature for 1 h. After 5 times washing, 100 µl/well of Avidin-HRP diluted in 1× assay diluent was added and incubated at room temperature for 30 min. Color development step was done with peroxidase color substrate TMB (Tetra Methyl Benzidine). After developing, the plate reaction was stopped by stopping solution containing 1 N H2SO4. The optical density (OD) was taken at 450 nm.

Results

Isolated CD4+ T helper cells were investigated in 19 of each Type 1 reactions (T1R) patients and non-reactions (NR) leprosy patients by Real Time PCR (qPCR) for RNA estimation. 48 h, MLSA stimulated PBMCs cultures, were studied in patients with Type 1 reactions (T1R, n = 10) and non-reactions (BT, n = 10) leprosy patients and further evaluated by flow cytometry for Th17 cell characterization. Furthermore, ELISA was performed for measuring cytokines in culture supernatants. The enrolled patients details of the T1R reaction and NR clinical groups of leprosy are listed in Table 1.

Hierarchical clustering identified inflammation associated genes correlation with IL-6R. Gene expression of isolated CD4+ T cells of leprosy patients (NR vs T1R) were analyzed for 21 signature genes of Th17 lineages and associated molecules with a rationale to understand the differences between the immunopathology/inflammation associated with localized T1R reactions via qPCR assay (Fig. 1). Heat maps of gene expression showed significantly high intensity in T1R as compared to NR patients. Table 2 provides data on the statistical significance of the fold changes in gene expression in patients with these two reaction types. Further, we analyzed gene expression of Th17 associated markers such as IL-1β, Stat3, TNF-α, CCL22, RORC, JAK1, IL-2, IL-17F, JAK2, CCL20, IL-17D, IL-23, IL-17A, IL-23R, IL-10, IL-17C, IL-6R, IL-6, IL-25, IL-21, and IL-22 by hierarchical clustering to show similar and distinct genes into independent groups (for complete list see “Methodology”). Of interest, all markers were significantly (range: p < 0.001–0.0004) upregulated in T1R as compared to NR leprosy patients. Although, among the T1R patients, two of them showed high intensity gene expression as they showed clinically erythematous plaques with hyperesthesia and tenderness. Surprisingly, hierarchical clustering identified 3 groups with IL-6R gene expression with Th17 cells markers. These genes have already been established for Th17 development (IL-6, IL-25, IL-21 and IL-22), inflammation (IL-17C, IL-10, IL-23R, IL-17A, IL-23A, IL-17D) along with migratory and signaling (CCL20, JAK2, IL-17F and IL-2) molecules. Taken together these data point that IL-6 gene expression showed significant (p < 0.006) positive correlation with IL-6R in T1R patients. On the other hand, IL-6 and IL-6R we found to have no correlation in NR patients (Fig. 2). Table 3 lists correlation between IL-6R and IL-23R gene expression with other Th17 related inflammatory markers. Moreover, IL-6R
gene expression was also found to have significant \(p < 0.01 \) to \(p < 0.005 \) positive correlation with IL-17 isomers in T1R but not in NR patients. On the other hand, IL-23R showed significant \(p < 0.0001 \) positive correlation with IL-17 isomers in NR but not in T1R patients. Surprisingly, IL-17C showed positive correlation in both T1R and NR patients (Table 3). This may be due to variation in kinetics of secretion and thus further study is warranted.

Type 1 reactions showed high CD4+IL6R+ T cells. Figure 3A flow cytometry dot plot is showing FMO control for IL6R+ and IL23R+ with respective fluorochrome. Figure 3B-E shows analyzed 48 h MLSA stimulated PBMC by flow cytometry in T1R and NR patients. Of interest, we have also compared in-vitro MLSA stimulated with unstimulated cultures to know how IL-6R and IL-23R expression respond under these conditions. Interestingly, we didn’t find any significant difference (data not shown). Dot plot shows CD4+IL-6R+ (Fig. 3B)
and IL23R+ cells (Fig. 3E). CD4+IL6R+ cells (Fig. 3C) were significantly high (p < 0.0003) in T1R (mean% ± SD; 9.0 ± 0.6) as compared to NR (5.0 ± 0.8) patients. However, CD4+IL23R+ (Fig. 3F) cells were detected without any difference between T1R and NR leprosy patients. Moreover, we further analyzed co-expression of IL-6R+ and IL-23R+ on CD4+ cells but no significant co-expression was detected (data not showed). Of interest, gene expression of IL-6R+ Th17 cells in T1R (15.8 ± 1.8) leprosy patients as compared to NR (11.1 ± 3.7) leprosy patients.

Moving ahead we next estimated the protein levels of IL-17A by sandwich ELISA in supernatants of all combinations of T1R and NR patients. Figure 6 depicts significantly up-regulated IL-17A (pg/ml) (p < 0.001) in IL-6 + IL-23 + TGF-β group as compared to all combinations in T1R patients. Subsequently, NR patients also showed up-regulated IL-17A (p < 0.03) in all combinations as compared MLSA alone. Interestingly, the combination of IL-6 and IL-23 induce IL-17A production via TGF-β independent manner in T1R leprosy patients.

Table 3. Correlation between IL-6R and IL-23R gene expression and other Th17 related inflammatory markers. Classification of patients according to Ridley–Jopling25,26 as in legend to Table 1. Significant correlation calculated by two tailed Spearman test. P < 0.05 was considered significant, ns = non significant.

S. no	Gene	IL-6R	IL-23R						
		NR	T1R	p<value	p<value	NR	T1R	p<value	p<value
1	IL-18	0.23	ns	0.08	ns	0.05	ns	0.66	p < 0.003
2	IL-10	0.36	ns	0.44	ns	0.60	ns	0.61	p < 0.009
3	IL-23R	0.20	ns	0.35	ns	0.24	ns	0.43	ns
4	IL-23A	0.34	ns	0.43	ns	0.90	p < 0.0001	0.87	p < 0.0001
5	IL-6R				ns	0.24	ns		ns
6	IL-6	0.3	ns	0.6	p < 0.006	0.79	p < 0.0001	0.79	p < 0.0001
7	JAK1	0.47	p < 0.03	0.50	p < 0.03	0.29	ns	0.70	p < 0.001
8	JAK2	0.55	p < 0.01	0.17	ns	0.60	p < 0.006	0.61	p < 0.009
9	Stat-3	0.41	ns	0.61	p < 0.008	0.10	ns	0.66	p < 0.003
10	IL-17A	0.17	ns	0.61	p < 0.005	0.90	p < 0.0001	0.24	ns
11	IL-17F	0.17	ns	0.58	p < 0.007	0.87	p < 0.0001	0.26	ns
12	IL-17C	0.28	ns	0.47	p < 0.04	0.91	p < 0.0001	0.57	p < 0.01
13	IL-17D	0.21	ns	0.54	p < 0.01	0.90	p < 0.0001	0.31	ns
14	RORC	0.23	ns	0.21	ns	0.92	p < 0.001	0.64	p < 0.004
15	IL-21	0.22	ns	0.29	ns	0.94	p < 0.0001	0.78	p < 0.0002
16	IL-22	0.19	ns	0.44	ns	0.92	p < 0.0001	0.71	p < 0.001
17	CCL20	0.13	ns	0.27	ns	0.90	p < 0.0001	0.62	p < 0.007
18	CCL22	0.33	ns	0.51	p < 0.03	0.78	p < 0.0001	0.43	ns
19	IL-25	0.25	ns	0.43	ns	0.90	p < 0.0001	0.79	p < 0.001
20	IL-2	0.21	ns	0.19	ns	0.91	p < 0.0001	0.81	p < 0.0001
21	TNF-α	0.53	p < 0.01	0.22	ns	0.43	ns	0.70	p < 0.002

Higher production of IL-17A by CD4+IL6R+ T cells in T1R. After checking the status of IL-6R+ and IL23R+ T cells in reactional states, we were next interested in the secretion status of IL-17 via Th17 cells with or without MLSA, r-IL-6, r-TGF-β and r-IL-23 in both T1R and NR leprosy patients. Figure 5A shows lymphocytes gated T cells and Fig. 5B showing isotype control and Fig. 5C FMO control respectively for APC labeled IL-17A. Representative, flowcytometry histograms showed comparison of IL-17A in 48 h stimulated PBMC with different combination of recombinant proteins (Fig. 5D). Scattered plot showed significantly (p < 0.001) high percentage (Mean ± SD) of IL-17A in IL-6 (18.5 ± 5.6), IL-23 (19.3 ± 4.8), IL-6 + IL23 + TGF-β (22.7 ± 2.7) stimulated cells as compared to MLSA (12.3 ± 3.3) alone stimulated cells in T1R patients (Fig. 5E). Of interest, combination of IL6 + TGF-β (14.4 ± 3.1) showed significant down regulation of IL-17A secretion as compared to all combinations in T1R patients. Subsequently, NR patients showed significantly (p < 0.001) high Th17 cells in IL-6 + TGF-β + IL23 (16.3 ± 3.9) group as compared to MLSA (10.7 ± 2.4) stimulated cells alone, but not with other combinations.

Moving ahead we next estimated the protein levels of IL-17A by sandwich ELISA in supernatants of all combinations of T1R and NR patients. Figure 6 depicts significantly up-regulated IL-17A (p < 0.001) in IL-6 (mean% ± SD; 244 ± 47.4), IL-23 (352 ± 87.3) and IL-6 + IL-23 + TGF-β (622 ± 183.9) combination supernatants as compared to MLSA alone (110 ± 25.8) within the T1R group. Similarly, NR patients also showed up-regulated IL-17A (p < 0.03) in all combinations as compared MLSA alone. Interestingly, the combination of

https://doi.org/10.1038/s41598-020-72148-7
Figure 3. IL-6R showed high expression in T1R patients. (A) Dot plot is showing FMO control for IL6R+ and IL23R+ with respective fluochrome. (B) Dot plot is showing CD3+ gated CD4+IL-6+ and (E) CD4+ IL-23R+ T cells in T1R and NR patients respectively in 48 h MLSA stimulated PBMC cultures. (C) Scattergram showing mean% ± SD of IL-6R+ cells were significantly (p < 0.0003) upregulated cells in T1R as compared to Non-reactions leprosy patients. (F) IL-23R+ cell not showing any significant change as compared to T1R and NR patients (D, G) Representative Scattergram showing gene expression of IL-6R and IL-23R in T1R and NR patients respectively. Abbreviations: Mann Whitney T-test was performed for the statistical difference, p < 0.05 value was considered as significant. (); Parenthesis shows patients number, NR; Non-reactions, T1R; Type 1 reactions), MLSA; Mycobacterium leprae sonicated antigen.
IL-6 + TGF-β showed significantly down regulated IL-17A protein as compared to all other combinations in both NR and T1R patients. We further analyzed these results between the T1R and NR patients. T1R showed significantly high IL-17A (p < 0.002-p < 0.0005) as compared to NR patients. Only (IL-6 + TGF-β) group showed significantly high IL-17A (p < 0.002) in NR as compared to T1R patients (Fig. 6). These results (IL-17A protein data) thereby fully support our previous flowcytometry data.

Blocking IL-6R with blocking IL-6R antibody reduces IL-17A production. To validate whether enhanced IL-6R expression on CD4+ T cells is causative of elevated IL-17A response in T1R leprosy patients, we studied the effect of blocking of IL-6R and IL-23R in MLSA induced IL-17A production by PBMCs cells in-vitro. Figure 7 depicts significantly reduced mean florescence intensity (MFI) (p < 0.002) of IL-17A (MFI; 171.7 ± 18) in blocking IL-6R as compared to MLSA (MFI; 287.8 ± 49.4) in CD4+ T cells (Fig. 7A,B). Moreover, IL-17A (pg/ml) protein level was also significantly (p < 0.001) decreased in blocking IL-6R cells (71.4 ± 15.3) as compared to (110.1 ± 25.8) MLSA stimulated supernatant of cell cultures respectively (Fig. 7C). Interestingly, blocking IL-23R showed no significant difference as compared to MLSA in cell cultures, but supernatant showed significantly down regulated IL-17A (70.9 ± 13.5 pg/ml) (p < 0.001) as compared to MLSA stimulated supernatant. Interestingly, we also took a group with combination of both blocking-IL-6R and blocking-IL-23R which showed significantly inhibited (MFI; 131.2 ± 17.1) (p < 0.01) MLSA induced IL-17A production by CD4+ T cells. IL-17A protein level was further validated by MFI data which is significantly low (49.8 ± 11.7) (p < 0.001) as compared to other combinations. Altogether, these data confirmed that enhancement of IL-6R expression on CD4+ T cells accounted, at least partially, for the elevated Th17 responses in patients with T1R.

Blocking IL-6R and IL-23R with blocking- antibodies induced TGF-β but not FOXP3 expression. Figure 8 shows MFI of IFN-γ (Fig. 8A) TGF-β (Fig. 8B), FOXP3 (Fig. 8C) in CD4+ T cells. Intriguingly, FOXP3 a regulatory cell marker showed no difference after blocking of IL-6R and IL-23R. On the other hand, TGF-β showed significantly (p < 0.002) increased induction after blocking with blocking-IL-6R and blocking-IL23R antibodies. Moreover, no effect of IL-6R blocking with blocking-IL-6R on IFN-γ production by CD4+ T cells was observed.
Discussion

The role of inflammatory Th17 cells in pathogenesis have already been explored in many bacterial27–29 and viral infections30 along with autoimmunity31,32 and cancer33–35. Differentiation of inflammatory Th17 cells depends upon a specific cytokine milieu and specific signaling via receptors. Our earlier study Saini et al.8 showed that when T helper cells polarization is not occurring against \textit{M. leprae} antigen, Th17 cells play a protective role in stable leprosy (NR) patients. Moreover IL-23 and its receptor are involved in differentiation of Th17 cells in NR patients8.

\textit{M. leprae} specific T-cell mediated immunity is the main cause of T1R and it has already been assessed by in-vitro studies against \textit{M. leprae} antigens33. T1R leprosy reactions occur for clearing bacteria and such increased cellular immune responses may be beneficial because they promote bacterial killing mechanisms. However, the accompanying inflammation in and around the infected nerve tissue can result in severe and irreversible damage and is a matter of debate. Our group earlier reported Saini et al.8 that Th17 response was significantly high in T1R patients as compared to NR. Moreover, the present study showed that its not IL-23 and TGF-β but IL-6 and its receptor IL-6R which are high in T1R producing CD4+ cells by different combinations in T1R (10) and NR (10) patients. Abbreviations: Mann Whitney T-test was performed for the statistical difference p < 0.05 value was considered as significant. NR; Non-reactions, T1R; Type 1 reactions), MLSA; \textit{Mycobacterium leprae} sonicated antigen.

Figure 5. IL-6 and IL-23 induces IL-17 productionnot TGF-β in T1R leprosy patients. (A) shows lymphocytes gated as FSC vs SSC and CD3+ vs CD4+ T cells. After gating, CD3+CD4+ T cells were further gated as IL-17A+ cells. (B) Shows isotype control and (C) FMO control respectively for APC labeled IL-17A. Representative (D) shows histogram of flow cytometry showing 48 h stimulated MLSA and different combinations of recombinants IL-6, IL-23 and TGF-β stimulated CD4+IL17A+ cells. (E) Scatter plot is showing mean% ± SD of IL-17A producing CD4+ cells by different combinations in T1R (10) and NR (10) patients. Abbreviations: Mann Whitney T-test was performed for the statistical difference p < 0.05 value was considered as significant. NR; Non-reactions, T1R; Type 1 reactions), MLSA; \textit{Mycobacterium leprae} sonicated antigen.
The present study attempts to investigate the pathway underlying the induced Th17 response in T1R patients. We first observed cytokine milieu which was involved in IL-17 production and found that IL-6 and IL-23 play a major role in immunopathology of T1R patients. Additionally, decreasing or absence of Th1 associated IL-12/IFN-γ promotes IL-23/IL-17 for protective immune response observed in primary infection by *M. tuberculosis* and *M. leprae*[^34,35]. IL-6 is a pleiotropic cytokine which can control immune regulation in infectious diseases. In the context of autoimmune disease, IL-6 in combination with TGFβ1 promotes the differentiation of Th17 cells. On the other hand IL-6 also suppresses the differentiation of Treg cells. A report by Heink et al.[^36] showed many sources of IL-6 production via different mechanisms involved in generation of pathogenic Th17 cells and the inhibition of Treg cells in-vivo. Another significant report considered Th17 lineage with protective nature in infectious diseases. Some important reports found that IL-17+ cells are a part of the innate T-cell immune response like neutrophils activation during the primary response to intracellular pathogens[^9,37,38]. However, findings diverge on the association of traditional CD4+IL-17+ T cells and showed adaptive immune response to these infections[^39]. Many studies showed that IL-17 helps to create bridge between innate and adaptive immune responses with the help IFN-γ. TGF-β plays distinct role during Th17 immune responses in *M. leprae* infection, by assisting the differentiation and production of Th17 responses in leprosy. However, TGF-β is associated with FOXP3+ Treg differentiation and stability and also our previous study have already reported that TGF-β is low in T1R as compared to NR leprosy patients[^18]. The absolute function of TGF-β in regulating and balancing Th17 and Treg response in T1R patients remains to be elucidated. Subsequently, TGF-β was maintained in homeostatic differentiation of Th17 cells with IL-6. This can be another homeostatic kinetics in T1R and NR patients and it

Figure 6. Combination of IL-6 + TGF-β showed significantly down regulated IL-17A protein as compare to all combinations in T1R and NR patients. Representative scatter plot is showing mean% ± SD of IL-17 (pg/ml) in 48 h MLSA and different combinations of recombinants IL-6, IL-23 and TGF-β stimulated culture supernatant in T1R (10) and NR (10). Abbreviations: Mann Whitney T-test was performed for the statistical difference, *p* < 0.05 value was considered as significant NR; Non-reactions, T1R; Type 1 reactions), MLSA; *Mycobacterium leprae* sonicated antigen.
should be explored further. Consistent with these findings, 48 h in-vitro stimulation (MLSA, IL-6 and IL-23) experiments showed that PBMCs produced significant amount of IL-17A. Thus, further investigations are necessary to understand the mechanism underlying the increased IL-6R expression on CD4+ T cells, as well as the induced Th17 responses in T1R patients. Subsequently, consistent with our previous findings in patients with T1R leprosy, we found IL-6R and IL-6 expression in stimulated PBMC cells, correlated with the Th17 response in T1R. However, we did not find any difference unlike M. leprae antigens which down-regulated IL-6R expression on CD4+ T cells from patients with NR patients. Among the IL-6R and IL-23R, increased CD4+IL-6R+ T cells showed T cell activation via T cell receptor (TCR) engagement or upon binding of IL-6 to IL-6R. Because proliferation of M. leprae antigen-specific Th17 cells depend on TCR engagement with high IL-6R expression and is correlated with specific IL-17A response in our study, this mechanism explains the increased IL-6R expression in T1R as compared to NR leprosy individuals in this study. Therefore, increased IL-6R expression might be due to engagement of IL-6, the production of which is able to reduce Mycobacterium infection. More significantly, our in-vitro data showed that blocking of IL-6R signaling on CD4+ T cells significantly inhibited

Figure 7. Blocking of IL-6R and IL-23R reduce IL-17A production. (A) Representative flow dot plot is showing MLSA stimulated CD3+ gated CD4+ cells in 48 h cultured PBMCs with and without blocking IL-6R, IL-23R and combination of IL-6R + IL-23R by blocking antibodies. (B) Histograms are showing IL-17A MFI (Mean ± SD) in CD4+ cells (C) Scattergram is showing mean ± SD of IL-17 (pg/ml) in 48 h culture supernatant of MLSA stimulated PBMCs with and without blocking IL-6R, IL-23R and combination of IL-6R + IL-23R by blocking antibodies. Abbreviations: Mann Whitney T-test was performed for the statistical difference, p < 0.05 value was considered as significant. (); Parenthesis shows patients number, NR; Non-reactions, T1R; Type 1 reactions), MLSA; Mycobacterium leprae sonicated antigen.

Figure 8. Blocking of IL-6R and IL-23R enhance TGF-β not IFN-γ and FOXP3 expression. Representative histograms are showing CD3+ gated CD4+ cells in 48 h cultured MLSA stimulated PBMCs with and without blocking IL-6R, IL-23R and combination of IL-6R + IL-23R by blocking antibodies. (A) Histograms are showing IFN-γ MFI (Mean ± SD) in CD4+ cells (B) Histograms are showing TGF-β MFI (Mean ± SD) in CD4+ cells. (C) Histograms are showing FOXP3 MFI (Mean ± SD) in CD4+ cells. Abbreviations: Mann Whitney T-test was performed for the statistical difference, p < 0.05 value was considered as significant. (); Parenthesis shows patients number, NR; Non-reactions, T1R; Type 1 reactions), MLSA; Mycobacterium leprae sonicated antigen.
non-specific (PHA-stimulated) and MLSA specific production of IL-17A, but not IFN-γ as IL-6 is not involved in Th1 cell differentiation. As expected, TGF-β production was significantly enhanced after blocking with IL-6R and IL-23R along with significantly down regulated IL-17. These findings further validate our previous findings thereby establishing synergistic and opposite regulation between Treg and Th17 cells. We found no significant co-expression between the IL-6R and IL-23R in MLSA stimulated cells (data not shown). Also, these cells are different in nature and further investigation is needed.

In summary, our present study for the first time reports that CD4+IL6R+ T cells are involved in IL-17A production in T1R leprosy patients. Thus, it can be a key mechanism for Th17 responses in patients with T1R. Firstly, CD4+IL-6R+ and not CD4+IL-23R+ T cells increase the production of IL-17A in T1R. Secondly, M. leprae (MLSA) antigen activates IL-6R to produce IL-17A by CD4+ T cells from T1R leprosy patients. Thirdly, the production of IL-17A depends on IL-6R signaling. Thus, understanding the immuno-pathogenic nature of Th17 cell responses in T1R patients is of prime importance, and would thus lead to opening of novel avenues in the treatment and management of inflammatory response which are lethal for T1R patients.

Data availability

All relevant data are within the paper.

Received: 9 June 2020; Accepted: 24 August 2020
Published online: 15 September 2020

References

1. NLEP (2015–2016).
2. Laal, S., Bhutani, L. K. & Nath, I. Natural emergence of antigen-reactive T cells in lepromatous leprosy patients during erythema nodosum leprosum. *Infect. Immun.* 50, 887–892 (1985).
3. Sreenivasan, P., Misra, R. S., Wilfred, D. & Nath, I. Lepromatous leprosy patients show T helper 1-like cytokine profile with differential expression of interleukin-10 during type 1 and 2 reactions. *Immunity* 95, 529–536 (1998).
4. Nath, I. & Chaduvula, M. Immunological aspects. In *Immunology* (eds Kar, H. K. & Kumar, B.) 60–73 (Jaypee Brothers Medical Publishers (P) Ltd, New Delhi, 2010).
5. Nath, I., Jayaraman, J., Sathish, M., Bhutani, L. K. & Sharma, A. K. Inhibition of interleukin-2 production by adherent cell factors from lepromatous leprosy patients. *Clin. Exp. Immunol.* 58, 531–538 (1984).
6. Scollard, D. M. et al. Increased CXC ligand 10 levels and gene expression in type 1 leprosy reactions. *Clin. Vaccine Immunol.* 18, 947–953 (2011).
7. Chaitanya, S., Lavanya, M., Turankar, R. P., Karri, S. R. & Sengupta, U. Increased serum circulatory levels of interleukin 17F in type 1 reactions of leprosy. *J. Clin. Immunol.* 32, 1415–1420 (2012).
8. Saini, C., Ramesh, V. & Nath, I. CD4+ Th17 cells discriminate clinical types and constitute a third subset of non Th1, Non Th2 T cells in human leprosy. *PLoS Negl. Trop. Dis.* 7, e2338 (2013).
9. Saini, C., Srivastava, R. K., Kumar, P., Ramesh, V. & Sharma, A. A distinct double positive IL-17A+FoxP3+ T helper 17 cells induced in T1R leprosy patients. Thirdly, the production of IL-17A depends on IL-6R signaling. Thus, understanding the immuno-pathogenic nature of Th17 cell responses in T1R patients is of prime importance, and would thus lead to opening of novel avenues in the treatment and management of inflammatory response which are lethal for T1R patients.
10. Bettelli, E. et al. Reciprocal developmental pathways for the generation of pathogenic effector Th17 and regulatory T cells. *Nature Immunol.* 41, 233–238 (2006).
11. Ivanov, I. I. et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T cells in human leprosy. *Cell 126*, 1121–1133 (2006).
12. Ivanov, I. I., Zhou, L. & Littman, D. R. Transcriptional regulation of Th17 cell differentiation. *Semin. Immunol.* 19, 409–417 (2007).
13. Yang, X. O. et al. STAT3 regulates cytokine-mediated generation of inflammatory helper T cells. *J. Biol. Chem.* 282, 9358–9363 (2007).
14. Tarique, M. et al. IL-12 and IL-23 modulate plasticity of FoxP3+ regulatory T cells in human leprosy. *Mol. Immunol.* 83, 72–81 (2017).
15. Veldhoen, M. et al. The aryl hydrocarbon receptor links Th17-cell-mediated autoimmunity to environmental toxins. *Nature 453*, 106–109 (2008).
16. Saini, C., Siddiqui, A., Ramesh, V. & Nath, I. Leprosy reactions show increased Th17 cell activity and reduced FOXP3+ Tregs with concomitant decrease in TGFBeta and Increase in IL-6. *PLoS Negl. Trop. Dis.* 10, e0004592 (2016).
17. Jung, I. H. et al. Predominant activation of IAK/STAT3 pathway by interleukin-6 is implicated in hepatocarcinogenesis. *Neoplasia 17*, 586–597 (2015).
18. Zhang, F. et al. Elevated IL-6 receptor expression on CD4+ T cells contributes to the increased Th17 cell activity in patients with chronic hepatitis B. *Virol. J.* 7, 270 (2011).
19. Dinz, O. & Rincón, M. The effects of IL-6 on CD4 T cell responses. *Clin. Immunol. 130*, 27–33 (2009).
20. Tarique, M., Saini, C., Naqvi, R. A., Khanna, N. & Rao, D. N. Increased IL-35 producing Tregs and CD19(+)IL-35(+) cells are associated with disease progression in leprosy patients. *Cytokine* 91, 82–88 (2017).
21. Tarique, M. et al. Fate of T Cells and their Secretory Proteins During the Progression of Leprosy. *Curr. Protein Pept. Sci. 19*, 889–899 (2018).
22. Nath, I., Saini, C. & Valluri, V. L. Immunology of leprosy and diagnostic challenges. *Clin. Dermatol.* 33, 90–98 (2015).
23. Ridley, D. S. Reactions in leprosy. *Lepr. Rev.* 40, 77–81 (1969).
24. Ridley, D. S. & Jopling, W. H. Classification of leprosy according to immunity: A five-group system. *Int. J. Lepro. Other Mycobact. Dis.* 34, 255–273 (1966).
25. Sallusto, F. & Lanzavecchia, A. Human Th17 cells in infection and autoimmunity. *Microbes Infect.* 11, 620–624 (2009).
26. Torrado, E. & Cooper, A. M. IL-17 and Th17 cells in tuberculosis. *Cytokine Growth Factor Rev.* 21, 455–462 (2010).
27. Saini, C., Kumar, P., Tarique, M., Sharma, A. & Ramesh, V. Regulatory T cells antagonize proinflammatory response of IL-17 during cutaneous tuberculosis. *J. Inflamm. Res.* 11, 377–388 (2018).
28. Ma, W., Tian, X., Peng, Q. & Chen, D. K. The protective and pathogenic roles of IL-17 in viral infections: friend or foe?. *Open Biol.* 9, 190109 (2019).
29. Tesmer, L. A., Lundy, S. K., Sarkar, S. & Fox, D. A. Th17 cells in human disease. *Immunol. Rev.* 223, 87–113 (2008).
30. Ye, J., Livergood, R. S. & Peng, G. The role and regulation of human Th17 cells in tumor immunity. *Ann. J. Pathol.* 182, 10–20 (2013).
31. Sathish, M., Bhutani, L. K., Sharma, A. K. & Nath, I. Monocyte-derived soluble suppressor factor(s) in patients with lepromatous leprosy. *Infect. Immun.* 42, 890–899 (1983).
34. Flesch, I. E. & Kaufmann, S. H. Stimulation of antibacterial macrophage activities by B-cell stimulatory factor 2 (interleukin-6). *Infect. Immun.* **58**, 269–271 (1990).

35. Wilson, N. J. *et al.* Development, cytokine profile and function of human interleukin 17-producing helper T cells. *Nat. Immunol.* **8**, 950–957 (2007).

36. Heink, S. *et al.* Trans-presentation of IL-6 by dendritic cells is required for the priming of pathogenic TH17 cells. *Nat. Immunol.* **18**, 74–85 (2017).

37. Hamada, S. *et al.* IL-17A produced by gammadelta T cells plays a critical role in innate immunity against listeria monocytogenes infection in the liver. *J. Immunol.* **181**, 3456–3463 (2008).

38. Schulz, S. M., Kohler, G., Holscher, C., Iwakura, Y. & Alber, G. IL-17A is produced by Th17, gammadelta T cells and other CD4+ lymphocytes during infection with *Salmonella enterica* serovar Enteritidis and has a mild effect in bacterial clearance. *Int. Immunol.* **20**, 1129–1138 (2008).

39. Heink, S. *et al.* Trans-presentation of IL-6 by dendritic cells is required for the priming of pathogenic TH17 cells. *Nat. Immunol.* **18**, 74–85 (2017).

40. Betz, U. A. & Muller, W. Regulated expression of gp130 and IL-6 receptor alpha chain in T cell maturation and activation. *Int. Immunol.* **10**, 1175–1184 (1998).

41. Ogawa, T. *et al.* Increase in tumor necrosis factor alpha- and interleukin-6-secreting cells in peripheral blood mononuclear cells from subjects infected with *Mycobacterium tuberculosis*. *Infect. Immun.* **59**, 3021–3025 (1991).

42. Appelberg, R., Castro, A. G., Pedrosa, J. & Minoprio, P. Role of interleukin-6 in the induction of protective T cells during mycobacterial infections in mice. *Immunology* **82**, 361–364 (1994).

Acknowledgements

Drs Anupma, and Sandeep Gera of Department of Dermatology, Safdarjung Hospital is gratefully acknowledged. CS thanks to Department of Science and Technology (DST-SERB) for national postdoctoral fellowship (PDF/2016/001997) and Departments of Biochemistry and Biotechnology, AIIMS New Delhi for infrastructural support. RKS thanks to Department of Biotechnology, AIIMS for infrastructural support.

Author contributions

C.S., R.K.S. and M.T. designed experiments; C.S., M.T., and S.K., performed experiments and analyzed the data. C.S., M.T., R.K.S., A.S. wrote the manuscript, and N.K. and V.R. contributed to clinical diagnosis. A.S., R.K.S., and C.S. critically reviewed the manuscript. All authors discussed the results and contributed to the final manuscript and reviewed manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/s41598-020-72148-7.

Correspondence and requests for materials should be addressed to C.S. or A.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020