Wide Quantum Circuit Optimization with Topology Aware Synthesis

Mathias Weiden
Department of Computer Science
University of California, Berkeley
Berkeley, USA
mtweiden@berkeley.edu

Justin Kalloor
Department of Computer Science
University of California, Berkeley
Berkeley, USA
jkalloor3@berkeley.edu

John Kubiatowicz
Department of Computer Science
University of California, Berkeley
Berkeley, USA
kubitron@cs.berkeley.edu

Ed Younis
Computational Research Division
Lawrence Berkeley National Laboratory
Berkeley, USA
edyounis@lbl.gov

Costin Iancu
Computational Research Division
Lawrence Berkeley National Laboratory
Berkeley, USA
cicianu@lbl.gov

Abstract—Unitary synthesis is an optimization technique that can achieve optimal gate counts while mapping quantum circuits to restrictive qubit topologies. Synthesis algorithms are limited in scalability by their exponentially growing run times. Application to wide circuits requires partitioning into smaller components. In this paper, we explore methods to reduce depth and multi-qubit gate count of wide, mapped quantum circuits using synthesis. We present TopAS, a topology aware synthesis tool that preconditions quantum circuits before mapping. Partitioned subcircuits are optimized and fitted to sparse subtopologies to balance the opposing demands of synthesis and mapping algorithms. Compared to state of the art wide circuit synthesis algorithms, TopAS is able to reduce depth on average by 35.2% and CNOT count by 11.5% for mesh topologies. Compared to the optimization and mapping algorithms of Qiskit and Tket, TopAS is able to reduce CNOT counts by 30.3% and depth by 38.2% on average.

Index Terms—quantum computing, hardware aware software, compilation, synthesis

I. INTRODUCTION

Modern quantum machines are subject to high levels of environmental noise, are difficult to control, and consist of only tens of qubits. Because long program run times increase the likelihood that qubits will decohere and the implementations of quantum gates are imperfect, modern non-error-corrected machines require compilers that minimize run time and instruction count.

Operations that involve multiple qubits, such as the CNOT, iSWAP, and CZ gates, are far more error prone and expensive to implement compared to single qubit gates [6]. Optimization techniques that aim to decrease the multi-qubit gate count of quantum circuits are becoming increasingly used and studied [12], [16], [23]. Unitary synthesis is one such technique that simultaneously maps and reduces the gate count of circuits.

The runtime of unitary synthesis algorithms scales exponentially with the number of qubits n. To handle more qubits, a compiler must partition wide circuits into smaller subcircuits. After synthesizing each subcircuit independently, subcircuits in the original circuit are replaced with their optimized versions.

Other than sensitivity to environmental noise, machines in the Noisy Intermediate Scale Quantum (NISQ) era are defined by their limited sizes and connectivities (which qubits are allowed to interact). This connectivity or physical qubit topology is described using a graph. Each vertex in the graph represents a hardware qubit, while each edge represents a supported multi-qubit interaction. Quantum algorithms are typically designed assuming that each qubit is able to interact directly with all other qubits. In order for a quantum processor to execute these densely connected algorithms, a compiler must map the circuit by inserting SWAP gates to route all interactions along edges in the physical topology. Examples of realistic and popular superconducting qubit physical topologies are illustrated in Fig 1.

As quantum circuits become wider and physical topologies remain sparse, the number of routing gates inserted by these mapping algorithms grows quickly. It is therefore desirable to approximate and transform wide quantum circuits using unitary synthesis so that the total number of multi-qubit gates and the depth of quantum circuits are reduced.

We present TopAS, a qubit topology aware synthesis compilation flow that reduces the multi-qubit gate count and depth of wide, mapped, quantum circuits. TopAS first partitions a logical quantum circuit, synthesizes each partitioned subcircuit independently, reassembles the optimized logical circuit, then uses a mapping algorithm to ensure that all operations are legal according to some specified qubit topology. When targeting the mesh physical topology, TopAS is able to produce circuits with an average of 30.1% fewer CNOT gates than Qiskit [4] and $t|ket\rangle$ [18], and 11.5% fewer CNOT gates than other large
scale synthesis techniques such as QGo [21]. TopAS improves upon the QGo algorithm by optimizing before mapping and by preconditioning circuit partitions so that the fully mapped results are less deep and require fewer multi-qubit gates.

The remainder of this paper is structured as follows: Section II discusses the general processes of unitary optimization, quantum circuit partitioning, and compares tools that apply synthesis before and after mapping. Section III presents the design choices made for the TopAS tool. Section IV compares the TopAS tool to other optimization and mapping techniques. Finally, Section V provides commentary and discussion about advancements that could further improve the performance of wide quantum circuit synthesis tools.

II. BACKGROUND

A. Quantum Computing Basics

The fundamental unit of information in a quantum computer is the qubit, which can be represented as a vector of the form

$$|\psi\rangle = \alpha \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \beta \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

where α and β are complex numbers such that $|\alpha|^2 + |\beta|^2 = 1$ and $[1 \ 0]^T$ and $[0 \ 1]^T$ are orthonormal basis vectors representing two distinct quantum states. The state of a quantum system with n qubits lies in a $2^n \times 2^n$ Hilbert space, and can be evolved by use of $2^n \times 2^n$ unitary operators [14].

The quantum circuit model represents this unitary as a series of quantum gates [3]. Single qubit and multi-qubit gates act on qubits which are drawn as horizontal wires (see Fig 3). The number of wires (qubits) n is the circuit width and the critical path length or depth of the circuit is T. For the scope of this paper, a universal gate set of {U3, CNOT} is assumed. Note that SWAP gates can trivially be decomposed into 3 CNOTs as shown in Fig 2.

B. Quantum Circuit Synthesis

Given a target $2^n \times 2^n$ unitary U and an error threshold ϵ, a unitary synthesis algorithm builds a new circuit whose unitary U_S satisfies the inequality $\|U - U_S\| \leq \epsilon$ [23]. Most recent synthesis tools base their distance metric off the Hilbert-Schmidt inner product as it is computationally inexpensive [2], [9], [11]:

$$\|U - U_S\|_{HS} = Tr(U^\dagger U_S).$$

There are broadly two types of synthesis: top-down and bottom-up. Top-down synthesis techniques are rule-based, and aim to break down large unitaries into smaller ones. These algorithms are quick, but the resultant circuit depth grows exponentially, which limits their effectiveness. Bottom-up synthesis starts with an empty circuit and gradually adds gate until a solution is found. Techniques such as QSearch/LEAP use an A* heuristic search to find an optimal depth approximation for the overall unitary [19].

Synthesis algorithms such as QSearch also accept a coupling graph as input so that the connectivity between qubits may be specified. The coupling graph restricts the synthesis algorithm by requiring that it only place multi-qubit gates along edges in the graph. Doing so means that the resulting circuit is fully mapped to the coupling graph. Previous work [19] has demonstrated that for small circuits, synthesis algorithms are able to map circuits to restrictive qubit topologies using fewer gates than other compiler tools such as Qiskit [4] and tensor contraction [18]. Thus when provided a coupling graph and a small width circuit, synthesis is able to completely remove the need for a mapping algorithm. Synthesis algorithms are ultimately limited by the size of the solution search trees, and the size of the unitary matrices for which the Hilbert-Schmidt distance must be calculated.

C. Quantum Circuit Fidelity and Performance

The NISQ era is defined by multi-qubit gates that have a high probability of introducing noise into the system as well as quantum states that tend to decohere very quickly [8]. Producing quantum circuit implementations with both fewer multi-qubit gates and lower depth is therefore desirable, and serves as an indicator for the final state fidelity.

Synthesis adds an additional unitary error to each partition of a circuit. For N partitions and a synthesis threshold $\epsilon = 10^{-10}$ per partition, the total circuit approximation error $N\epsilon$ is typically between 10^{-8} to 10^{-7} in Hilbert-Schmidt

Fig. 2: How to implement a SWAP operation using a SWAP gate, 3 CNOTs, and 3 CNOTs and 4 Hadamards.
distance for our selection of benchmarks. This means although synthesis introduces approximation errors into circuit implementations, the error threshold is sufficiently low that gate and decoherence errors will dominate overall error. For this reason, we present both CNOT gate counts and circuit depth to evaluate circuit implementations (see Section IV).

D. Mapping Quantum Circuits

Quantum circuits are typically designed with the assumption that the underlying hardware can support interactions between any pair of qubits. However, due to physical restrictions, modern quantum machines typically have very sparse interphysical qubit connectivity (illustrated in Fig 1).

In order to ensure that a quantum circuit can be run on a quantum computer, a mapping algorithm is used to transform the circuit so that it conforms to some restricted qubit connectivity. The process of mapping quantum circuits to physical topologies happens in two stages: placement/layout and routing. During the placement phase, an assignment of logical qubits in the quantum circuit to physical qubits in the qubit topology is created. In the next phase, routing, quantum SWAP operations are inserted to ensure that all multi-qubit interactions specified in the quantum circuit take place along edges in the physical topology [12], [16]. Throughout both phases of circuit mapping, the goal is to minimize the number of SWAP operations inserted into the final circuit. SWAP implementations using the \{CNOT, U3\} gate set are shown in Fig 2. As quantum circuits become wider and more densely connected, the overhead in CNOT count due to routing SWAP gates quickly rises. Minimizing the number of SWAP operations is NP-Hard [17], so algorithms targeting wide circuits use sub-optimal heuristic-based approaches.

E. Quantum Circuit Partitioning

Given a quantum circuit and a positive integer \(k \) (called the partition width or block size), a partitioning algorithm divides the circuit into subcircuits (also called blocks or partitions) of width at most \(k \). Valid partitions consist only of gates that act on those specific qubits in the partition. An example circuit with width 3 partitions is shown in Fig 3.

For the purposes of unitary synthesis, the goal of a partitioning algorithm is to form as few partitions as possible, and ensure that each of these partitions is as large as possible. Our experiments show that these large partitions tend to see a larger reduction in CNOTs as compared to smaller partitions. This effect is illustrated in Fig 6.

F. Post-Mapping vs. Logical Circuit Synthesis

Previous tools to apply unitary synthesis optimization to wide quantum circuits, such as QGo [21], follow a post-mapping synthesis flow as illustrated in Fig 4a. After preliminary circuit optimizations, the logical circuit is mapped to a physical qubit topology. This mapped quantum circuit is then partitioned into subcircuits, which are each independently synthesized. The synthesized subcircuits are reassembled to form the complete optimized and mapped circuit.

Although post-mapping synthesis schemes are able to reduce depth and multi-qubit gate count, there are several pitfalls that limit their effectiveness. First, because mapped circuits typically contain more gates than their unmapped counterparts, partitioning algorithms tend to form far more partitions on mapped circuits. As each of these partitions must be individually synthesized, this approach is in practice more time consuming than partitioning and synthesizing the logical, unmapped, circuit. Second, the amount of optimization possible by synthesis is very sensitive to the quality of mapping; these methods primarily reduce inefficiencies introduced by mapping algorithms.

These points motivate the reasoning behind adopting a pre-mapping, or logical circuit synthesis flow to precondition circuits before mapping. The process of logical circuit synthesis for wide quantum circuits is illustrated in Fig 4b. After some initial quick circuit optimizations, the logical circuit is partitioned. Each partition is paired with a synthesis subtopology to which the subcircuit is mapped. After synthesis, the circuit is reconstructed from the optimized subcircuits and finally fully mapped to the specified physical qubit topology.

G. Synthesis Subtopology Selection

Each partitioned subcircuit must be assigned a graph \(G_S = (V, E_S) \) that specifies the connectivity between qubits in the partition. The synthesis algorithm chooses multi-qubit gates that correspond to edges in the set \(E_S \), mapping the subcircuit to this synthesis subtopology \(G_S \). Since post-mapping tools assume circuits are routed, the interactions between qubits in a partition are guaranteed to fit the physical topology. We can thus simply choose \(G_S \) to be the subgraph induced by the physical qubits in a partition.

Pre-mapping synthesis affords more choice here as the partitioned circuit is not yet routed to obey the restrictions of the physical hardware. A candidate synthesis subtopology is a connected graph of order equal to the number of qubits in some partition. Synthesis subtopologies must be connected to ensure qubits may interact, even if they do so indirectly. As synthesis algorithms are mostly limited to operating in the 3-5 qubit partition width ranges, the number of possible synthesis subtopologies is relatively limited.
Our experiments show that the choice of synthesis subtopology can have drastic effects on the number of multi-qubit gates in the optimized subcircuit, as well as on the performance of the routing algorithm during the final mapping process. The goal of the synthesis subtopology selection process is thus to choose graphs so that the synthesis algorithm is able to produce low gate count subcircuits and the mapping algorithm is able to more efficiently place and route the subcircuit. The structure of the subtopology G_S also heavily impacts the depth of synthesized subcircuits. Depth is heavily dependent on the degrees of vertices in the subtopology G_S. Subtopology selection thus must carefully consider the connectivity within a partition to ensure that the depth of the optimized circuits is minimized. Section III-C further details the choices made for the subtopology selection algorithm for the TopAS tool.

We present TopAS, a qubit topology aware synthesis tool. By partitioning and synthesizing the logical circuit, the number of multi-qubit operations in a quantum circuit is reduced before mapping begins. The choice to synthesize logical quantum circuits enables TopAS to produce mapped circuits with fewer total CNOTs and lower depth than many other optimization tools. TopAS selects synthesis subtopologies for partitioned subcircuits that are sparse and easily embedded within the underlying physical qubit topology to reduce the number of operations needed for both computation and mapping.

The TopAS tool uses a scan partitioning strategy introduced by the authors of QGo [21]. The synthesis algorithm used is the QSearch/LEAP algorithm [19]. Working versions of the partitioning and synthesis algorithms are provided by the BQSkit tool [22]. A flowchart of the TopAS tool’s execution is displayed in Fig 5.
Fig. 6: Partition frequency and mean normalized partition size after optimization as a function of CNOT count. Normalized partition size is calculated using the number of CNOTs in the synthesized subcircuit divided by CNOTs in the original partition. A value less than 1 indicates that synthesis reduces those partitions. The partitioner predominately forms subcircuits with 6-11 CNOTs, but is also able to form many subcircuits with 16-17 CNOTs.

A. Logical Quantum Circuit Partitioning

The partitioning algorithm views the input circuit as a two dimensional grid, where qubits are represented by rows, and time steps in the circuit are represented by columns. Each element of the grid either contains a quantum operation or is empty. The width of this grid is n, the number of qubits in the circuit. The length is T, the depth or critical path length of the circuit. The scan partitioner algorithm sequentially scans through all as yet unpartitioned gates in a circuit, examines each possible grouping of k or fewer qubits, and picks the one that lends the largest partition. This scheme tends to form few partitions, often with a high average number of multi-qubit gates. As mentioned in Section II-E and illustrated in Fig 6, subcircuits with more multi-qubit gates tend to yield more reduction by synthesis. The distribution of partitions produced by the scan partitioning algorithm for a subset of benchmarks is also shown in Fig 6.

Note that partitions consist only of subcircuits with interacting qubits, so each partition has a connected logical connectivity graph. Given a blocksize of k, in the worst case the partitioner must consider $O(n^k)$ candidate partitions.

B. Synthesizing Logical Quantum Circuits

TopAS follows a pre-mapping synthesis flow. As logical circuits do not contain routing gates, they are never deeper than their mapped counterparts. Shorter circuits often yield fewer partitioned subcircuits, as they usually contain fewer total gates to partition. Partitioning circuits before mapping thus conserves the number of subcircuits produced by partitioning. Though subcircuits are independently synthesized, in practice this often means less time is needed to optimize circuits that are partitioned before mapping. Circuits with fewer partitions also tend to have more accurate output circuits. Each partitioned circuit is synthesized independently, so each synthesis procedure will produce a mapped circuit whose unitary representation will be within some Hilbert-Schmidt norm distance ϵ away from the target unitary. The authors of [15] showed that the total error in a circuit that consists of synthesized subcircuits is bounded by the sum of each subcircuit’s distance. If a circuit is partitioned into N subcircuits, because each partition is synthesized to within a distance ϵ, the total distance of the partitioned and synthesized circuit is bounded by $N\epsilon$. Decreasing N, as is done in the logical partitioning case, thus improves the accuracy of the synthesized circuit. Results comparing the upper bound on total circuit errors for several synthesized benchmarks are shown in Table I.

C. Topology Aware Subtopology Selection

The main contribution of this work is a subtopology selection strategy and compilation workflow built around it. It allows for circuits to be preconditioned in such a way that balances the opposing demands of synthesis and mapping. As discussed in Section II-G, the goal of the subtopology selection process is to assign a graph G_S to each partitioned subcircuit. The vertices in G_S represent qubits in the subcircuit, while edges describe the allowed interactions between qubits in the output synthesized subcircuit. Ideally, a quantum circuit is synthesized so that it uses only edges present in the physical topology for multi-qubit interactions. Before mapping, the placement and thus allowed interactions between qubits is not known. However, synthesizing densely connected subcircuits to sparse graph structures can decrease the need for SWAP operations during the mapping phase. Limiting the set of synthesis subtopologies and carefully selecting sparse subtopologies for each subcircuit allows us to balance the opposing demands of the routing and synthesis algorithms, leading to fewer total CNOT gates.
Fig. 8: Possible order 4 synthesis subtopologies. The graphs a, b, and c are embedded within the mesh physical topology. Graphs d, e, and f are not. Only a and b are embedded in the falcon topology, while c are embedded within the mesh physical topology. Graphs d, e, and f are not. Only a and b are embedded in the falcon topology, while c are embedded within the mesh physical topology.

Fig 7 shows the average number of internal SWAP gates per CNOT for a variety of synthesis subtopologies targeting three physical topologies. Internal SWAP gates are routing operations that are inserted between the first and last gate of a partition. If each subcircuit is synthesized to an embedded subgraph of the physical topology and is executed atomically, there is a solution to the mapping problem that requires zero SWAP operations on the subcircuit’s qubits during its execution. However, because routing often disrupts the execution of subcircuits, internal SWAP operations appear regardless of synthesis subtopology choice. The number of internal SWAP gates observed for a partition is normalized by the number of CNOTs in the partition to allow for more effective comparisons between subcircuits. Sparser subtopologies often yield more gates during optimization than denser subtopologies, but they require fewer SWAP gates during mapping.

As described in Fig 5, TopAS restricts the set of graphs from which to choose synthesis subtopologies to the set of connected graphs that are embedded in the target physical topology. For this evaluation, TopAS was used only with a partition width of 4 qubits. The order 4 candidate subtopologies are illustrated in Fig 8.

QSearch, the synthesis algorithm at the core of the TopAS optimization flow, aims to synthesize circuits using as few multi-qubit gates as possible. Often times, circuit depth is minimized as a consequence of this goal but is not the primary metric of success. Subtopology selection is the only variable that TopAS uses to reduce circuit depth directly. For certain subtopologies choices, circuits produced tend to contain many gates that must be executed sequentially. The most significant contributor to this property is the possible graph matchings present in a given subtopology. In topologies such as the star (Fig 8b), any choice of a single edge is a maximum matching. This means that for the star subtopology, no two CNOTs can be executed in parallel. Other subtopologies like the line and ring (Fig 8a and 8c) have larger maximum matchings, and thus allow more parallelism within synthesized subcircuits. Although they typically require more routing gates, subtopologies containing more edges tend to allow for lower depth circuits.

The qubit interactions within a partitioned subcircuit can be described using a weighted undirected graph $G_L = (V, E_L)$.

For each multi-qubit interaction that occurs between qubits $k_1, k_2 \in [K]$ in the subcircuit, there is an edge $(k_1, k_2, w) \in E_L$, where the weight w corresponds to the number of times that interaction occurs. Synthesis algorithms such as QSearch allow for the connectivity between qubits to be specified by an unweighted undirected graph $G_S = (V, E_S)$. For a maximum partition size of $k, V = [k]$ and $E_S \subseteq V \times V$.

Our experiments indicate that synthesis is best able to reduce the multi-qubit gate count of subcircuits when the logical connectivities and synthesis subtopologies match. A kernel function [7] is used to quantify the similarity between the graphs. The scoring function $K : G_L \times G_S \rightarrow [0, 1]$ examines each edge in the synthesis subtopology G_S and logical connectivity G_L. From the edges, two vectors $v_L, v_P \in B^{k(k-1)/2}$ are constructed. The vector v_P is simply an indicator vector, with a 1 at each element that corresponds to a present edge in G_S. Element i of v_L contains the weight w associated with edge i in G_L. The normalized inner product

$$\text{similarity}(v_P, v_L) = \frac{\sum_i v_P(i) \cdot v_L(i)}{\sum_i v_L(i)}$$

is then returned to quantify the similarity between the graphs. For each partition, all $k!$ permutations of qubit labels are evaluated for each of the candidate synthesis subtopologies. The permuted subtopology with the highest kernel function score is considered the best candidate subtopology for the purposes of producing the smallest output subcircuit. The effectiveness of the similarity kernel function was evaluated by synthesizing partitions of width 4 to all order 4 subgraphs embedded within the mesh physical topology (Fig 8a, 8b, and 8c). In this scenario, the similarity function was able to identify the subtopology that would produce the synthesized subcircuits with the fewest CNOT gates 89% of the time.

If multiple subtopologies have the same similarity score, that with the fewest edges is preferred. In order favor sparse subtopologies, each similarity is multiplied by a bias factor. The biases that produced the best results for the mesh topology were 1.0 (line), 1.0 (star), and 0.8 (ring).

When selecting subtopologies, TopAS also considers the impact of subtopology choice for the immediately preceding and succeeding partitions. Although partitions are synthesized separately, they are not executed in isolation. If a partition assumes a physical edge exists between two qubits, and the partition immediately following also assumes this physical edge exists, fewer total SWAPs may be needed between the execution of these two partitions. The TopAS tool therefore checks each subcircuit’s neighboring partitions for qubits that are shared. If interactions from the neighboring partitions occur between shared qubits, they are added as edges to the current partition’s logical connectivity graph G_L. Interactions from neighboring partitions carry the same weight as interactions within a partition, even if the qubits in the neighbor partitions do not interact directly within the partition itself. This policy was chosen as larger amounts of edge sharing between partitions greatly reduced the final CNOT count of
optimized circuits. TopAS uses this *neighbor aware* version of the logical connectivity graph in the computation of the similarity function. An example of two sequentially executing partitions with subtopologies that have been selected to reuse an edge is shown in Fig 5.

D. Partition Replacement and Mapping

As indicated in Fig 6, it is sometimes the case that synthesized subcircuits grow instead of reduce in size. When this happens, TopAS considers replacing the synthesized subcircuit with the original subcircuit. Always choosing the logical subcircuit when it has fewer CNOTs can be problematic in the final routing pass, as the original subcircuit may be more difficult to route than the synthesized version. Thus, TopAS considers differences in both the number of CNOTs and logical connectivities of the two subcircuits. TopAS adopts a policy of replacing the synthesized subcircuit with the original if it shows more than 30% (an empirically determined threshold) fewer CNOTs or has a more routable logical connectivity. The routability of a subcircuit’s logical connectivity is determined by the average number of of internal SWAP operations per CNOT for a given physical topology (see Fig 7).

After subtopology selection and synthesis take place, TopAS maps the synthesized quantum circuit to a physical topology. For placement and routing, the SABRE Layout and SABRE mapping tools by measuring the depth and total CNOT operation counts of optimized and mapped circuits. Here, we compare TopAS (as described in Section III) to the Qiskit, ‖ket⟩‖, and QGo tools. In all cases, circuits are optimized using ‖ket⟩‖’s full peephole optimization. Afterwards, either Qiskit or ‖ket⟩‖ are used to map the quantum circuit to the specified physical topology. The QGo tool was used to optimize either the Qiskit or ‖ket⟩‖ mapped circuits, whichever contained fewer CNOT operations. The synthesis tool used is the QSearch/LEAP algorithm [19]. The original QGo algorithm was re-implemented using the partitioning and synthesis algorithms provided by the *BQiskit* toolkit [22].

Performance was evaluated using a variety of wide quantum circuit benchmarks. The SupermarQ benchmark suite [20] proposed a *volume* metric to describe a benchmark suite’s diversity. Our selection of benchmarks has a SupermarQ volume of 7.46 × 10⁻⁹, meaning our benchmark selection is sufficiently diverse compared to many others.

The *qft* and *shor* circuits were generated using Qiskit. The *add* and *mult* circuits were generated with [10]. The *hubbard* benchmark was generated with help from [13]. TFIM circuits were generated using the ArQtic tool [1]. Benchmarks are labeled so that the number following the benchmark name indicates the number of qubits in the circuit. These benchmarks were selected as they were found to be easily generated for large widths, and represent a variety of wide circuits that may soon be executable on quantum machines.

Benchmark	Mapping	Topology	Total Error	CNOTs per Partition
mult 16	QGo	Falcon	1.38E-08	15.3
	QGo	Mesh	1.51E-08	12.9
	TopAS	-	7.20E-09	15.4
mult_32	QGo	Falcon	1.17E-07	12.5
	QGo	Mesh	1.13E-07	11.7
	TopAS	-	4.96E-08	15.1
qft_64	QGo	Falcon	5.83E-08	7.3
	QGo	Mesh	5.18E-08	7.8
	TopAS	-	2.32E-08	8.1
qft_100	QGo	Falcon	8.09E-08	8.1
	QGo	Mesh	8.72E-08	7.4
	TopAS	-	3.85E-08	8.0
add_65	QGo	Falcon	9.09E-08	6.5
	QGo	Mesh	7.02E-08	7.3
	TopAS	-	5.53E-08	7.0
add_101	QGo	Falcon	1.20E-07	11.8
	QGo	Mesh	1.21E-07	9.4
	TopAS	-	6.18E-08	7.0
tfim_40	QGo	Falcon	1.42E-07	7.6
	QGo	Mesh	1.57E-07	6.3
	TopAS	-	1.05E-07	8.1
tfim_100	QGo	Falcon	5.17E-07	8.4
	QGo	Mesh	4.71E-07	7.7
	TopAS	-	2.70E-07	8.0
hubbard_18	QGo	Falcon	1.83E-07	8.0
	QGo	Mesh	1.60E-07	6.5
	TopAS	-	9.56E-08	3.7
shor_26	QGo	Falcon	3.86E-07	10.3
	QGo	Mesh	3.32E-07	11.6
	TopAS	-	1.52E-07	13.9
Fig. 9: Comparison of relative CNOT count (top) and depth (bottom) for circuits mapped to the Google style mesh physical topology. CNOT count and depth is shown relative to optimized circuits mapped using Qiskit’s SABRE Swap algorithm. Lower depth corresponds directly to better program runtimes on machines with parallel gate execution, lower depth and CNOT count correspond to improved execution probability on noisy machines.

with fewer CNOTs and much lower depth than the QGo tool, especially for the mesh physical topology. On average, TopAS outperforms QGo by 11.5% in CNOT count and 34.3% in depth when targeting the mesh physical topology. For the falcon physical topology, TopAS only outperforms QGo by an average of 0.8% in CNOT count, but maintains a 37.3% average depth reduction.

QGo optimized circuits always reduce CNOT count compared to unsynthesized input circuits, but sometimes lead to deeper circuits. This is because when synthesizing pure SWAP gates, the QSearch algorithm tends to find the more expensive depth 5 implementation illustrated in Fig 2. TopAS is able to avoid this pitfall by synthesizing partitions that do not contain SWAP gates, thus resulting in much reduced circuit depths.

As discussed in Section III-B, working on the logical, unmapped, quantum circuit also allows TopAS to form fewer partitions compared to QGo. This results lower upper bounds on the amount of synthesis error for each benchmark, as shown in Table I. This table also lists the average number of CNOTs per partition for all benchmarks. TopAS is able to outperform QGo in CNOT count for all benchmarks when targeting the mesh physical topology except for the hubbard_18 circuit benchmark. The discrepancy in performance for this benchmark is primarily explained by the average size of partitions formed. Table I shows that for this circuit, TopAS is only able to form partitions with an average of 3.7 CNOT gates. Fig 6 illustrates that typically, partitions with this number of CNOTs tend not to reduce. Partitions formed by QGo tend to include SWAP gates, which greatly increases the number of CNOTs per partition (6.5 CNOT gates on average for hubbard_18). Using a larger partition width, or a partitioning algorithm that is able to produce larger partitions on average would likely improve the performance of TopAS for the hubbard benchmark. This point also partially explains the drop in TopAS’ performance compared to QGo for benchmarks targeting the falcon physical topology.

The scalability of the TopAS tool compared to Qiskit, l|ket⟩, and QGo is illustrated in Fig 11. Each tool was used to optimize and map QFT and TFIM circuits with widths of 10-100 qubits. Despite performing poorly in comparison at small circuit widths, TopAS maintains an advantage compared to other optimization tools as the circuit width increases. In the case of certain circuits such as the TFIM circuits, TopAS’ advantage increases with circuit width.

V. DISCUSSION

TopAS is able to produce circuits with fewer multi-qubit gates and lower depth by partitioning logical quantum circuits
and matching subcircuits with sparse qubit subtopologies in a way that balances the demands of synthesis and mapping algorithms. In the case of the \textit{tfim} 40 and \textit{tfim} 100 benchmarks, the logical connectivity graphs are simply linear path graphs of order 40 and 100 respectively. These circuits have mappings that do not require any SWAP operations, as they are directly embeddable within the mesh physical topology. However, heuristic mapping algorithms implemented in Qiskit and \textit{tket} are unable to find these placements, likely due to the large widths and depths of these circuits. By optimizing before mapping, TopAS is able shorten circuits in such a way that allows for these algorithms to find better placements. This advantage in mapping performance is maintained in the falcon topology case, where the TFIM circuits are no longer directly embeddable in the physical topology.

Using synthesis to map partitions to restrictive subtopologies also improves the performance of the mapping algorithm. Mapping to subtopologies that are easily embedded within the physical topology means that fewer SWAPs are needed within the execution time of partitions. This effect is illustrated in Fig 7. The \textit{neighbor aware} subtopology selection mechanism illustrated in Fig 5 helps to maximize the reuse of edges in the physical topology between the execution of partitions. The combination of these design choices allows for TopAS to outperform other optimization and mapping tools.

Section IV demonstrates how TopAS is able to reduce both CNOT count and circuit depth significantly compared to other tools. These metrics both play a major role in the likelihood that a circuit will be executed correctly. The amount of error due to synthesis (shown in Table I) is far lower than that introduced by gate noise and decoherence. In total, optimizing wide circuits with TopAS therefore greatly increases circuit fidelity compared to other tools.

Because mapping is done after partitioning and synthesis in the TopAS program flow, it is not limited to using a single mapping algorithm. We observed that although TopAS synthesizes partitions to subtopologies embedded within the physical topology, it is often the case that the mapping algorithm disrupts the execution of synthesized subcircuits. When partitions are executed atomically, there is a solution to the routing problem such that no SWAP gates are needed during the partition’s execution. A mapping algorithm that is aware of higher level structures than the primitive gate set may therefore further improve the performance of TopAS. Such a tool was put forth by the authors of [5], but it is only able to consider Toffoli gates instead of arbitrary \(k \) qubit unitary operations. A full \textit{partition aware} mapping algorithm is therefore likely necessary to reap the full benefits of this
strategy.

Although TopAS’ set of valid synthesis subtopologies only includes graphs that are embedded within the physical topology, it does not consider whether a set of subtopologies can be packed into the physical topology simultaneously. This fact explains the discrepancy in TopAS’ performance between the mesh and the falcon physical topologies. For example, although the star subtopology is embedded within the falcon physical topology, far fewer star graphs can be packed into the falcon topology than the mesh. A subtopology selection process that accounts for the frequency with which subgraphs appear in a physical topology would likely improve the performance of TopAS.

The two primary factors that limit the scalability of TopAS are the runtime of the partitioning algorithm used and the runtime of the synthesis algorithm used. In the case where qubits in the logical circuit interact with all other qubits, the runtime of the scan partitioner is $O(n^2)$, where n is the circuit width and k is the partition width. This poor scaling limited the width of benchmark circuits tested to 100 qubits. Other partitioning schemes capable of forming large partitions on average are therefore needed to optimize larger quantum circuits with TopAS. Algorithms such as QFAST [23] effectively increase the width of circuits that can be optimized, but in our experience tend not to perform as well as QSearch/LEAP in the range of 1-25 CNOT gates. Increasing the partition width tends to increase the number of CNOTs per partition, which may provide more opportunity for improvement. Increasing the partition width also has the effect of adding more graphs to the set of valid synthesis subtopologies. Supposing that the optimization algorithm scales, this may further improve the performance of TopAS by allowing for a greater amount of mapping to be handled by synthesis.

As shown in Fig 11, the number of CNOTs in QFT circuits optimized with the TopAS tool grows roughly linearly with the number of qubits in the range shown. As the QFT is a common component of more complex quantum algorithms, the scaling of this circuit is of particular importance. With a width of 100 qubits, the TopAS optimized QFT circuit contains 23.9% and 11.7% fewer CNOTs than the Qiskit and $t|ket\rangle$ optimized and mapped circuits. Notably, the rate of increase in CNOTs per qubit in the QFT circuit seems to grow more slowly for TopAS than for Qiskit and $t|ket\rangle$. Because QGo only optimizes circuits that have already been mapped by these tools, we expect that TopAS’ performance advantage over QGo can improve at larger (100-1000 qubit) circuit widths. This effect can clearly be seen in the TFIM circuit scaling results.

Although out of the scope for the current paper, an obvious next question would be to see what happens when TopAS is combined with QGo. We have clearly shown that a single application of TopAS’ logical circuit synthesis almost always outperforms a single round of QGo optimization. When applying both TopAS and QGo to the hubbard_18 benchmark mapped to the 2D mesh physical topology (a benchmark which TopAS fails to reduce CNOT count more than QGo for the mesh topology), CNOT count was reduced by approximately 5% compared to QGo alone. Thus, combining multiple levels of optimization has the potential to further improve the performance of quantum circuits.

VI. CONCLUSION

We have presented TopAS, a topology aware synthesis tool that optimizes wide quantum circuits. By optimizing quantum circuits using unitary synthesis before they are mapped, TopAS preconditions circuits so that they are reduced by synthesis and made easier to place and route. TopAS is able to reduce CNOT count and circuit depth, and thus improves circuit performance, compared to other state of the art synthesis based optimization tools targeting wide circuit optimization and the optimization frameworks provided by Qiskit and $t|ket\rangle$. Because CNOT count and circuit depth are significantly reduced, the likelihood that circuits optimized with TopAS execute successfully on noisy, realistic, near term qubit topologies is greatly increased. Further reduction is possible on TopAS optimized circuits by applying successive rounds of post-mapping circuit optimization.

REFERENCES

[1] L. Bassman, C. Powers, and W. A. De Jong, “Arqtic: A full-stack software package for simulating materials on quantum computers,” ACM Transactions on Quantum Computing, vol. 3, no. 3, jul 2022. [Online]. Available: https://doi.org/10.1145/3511715
