Digital technologies and information translucence in healthcare management: An institutional theory perspective for adopting electronic incidence reporting systems

Received: September 1, 2022
Accepted: October 12, 2022

Abstract

The purpose of this study was to provide an institutional theory perspective on the adoption of electronic IRS technology for healthcare management. This research employs institutional theory to investigate the adoption of electronic IRS for healthcare management. The study’s conceptual analysis demonstrates that coercive, normative, and imitative forces influence the adoption of electronic IRS for healthcare management. International healthcare regulations and standards reflect the presence of coercive forces. International healthcare societies and professional networks mirror normative forces. Imitative forces exert pressure on smaller enterprises and developing nations to adopt electronic IRS. This research contributes to the literature and theory by extending the application of institutional theory to the adoption of digital technologies such as the electronic IRS. In addition, the study has practical implications because it demonstrates the importance of digital technologies such as electronic IRS for information translucence and healthcare management. Small businesses in developing nations can learn from large businesses in developed nations to adopt electronic IRS for efficient and effective healthcare management.

Keywords: Digital technologies, Institutional theory, information translucence, healthcare management, electronic incidence reporting systems.

How to Cite:
Alhamad, I.A., & Singh, H.P. (2022). Digital technologies and information translucence in healthcare management: An institutional theory perspective for adopting electronic incidence reporting systems. Amazonia Investiga, 11(57), 30-38. https://doi.org/10.34069/AI/2022.57.09.3
Introduction

Digital technologies have considerably altered the way modern institutions operate and have added significant value to business processes (Gregori & Holzmann, 2020). Digital technologies have transformed data collection, information and knowledge creation, and decision-making processes (Singh & Alshammari, 2021). Digital technologies enable dynamic decision-making in the information age (Klonoff, 2013; Gopal et al., 2018) and enable sustainable development (Singh et al., 2022a). Information transluence is one of the most significant benefits of digital technologies. Information transluence results in information availability, information clarity, decreases errors and eliminates impediments (Albu & Flyverbom, 2016). Information transluence eliminates superfluous secrecy and provides the necessary lucidity, awareness, and effectiveness (Danker, 2013). Information transluence is about accessibility, communication, cooperation, liaison, and concerted decision-making (Barth & Schipper, 2008). Thus, information transluence significantly aids professionals in the decision-making process (Winkler, 2000). As a result, digital technologies are increasingly being used in banks, educational institutions, and hospitals, among other places.

Digital technologies are transforming medical practices in the field of healthcare. Using new tools and the creation of new types of information, digital technologies enable the collection of rich and real-time medical data. They contribute to the creation of novel and distinct knowledge for healthcare management. The use of digital technologies enables the remote storage, analysis, and prediction of healthcare data. Thus, the application of digital technologies to healthcare has established itself as a critical enabler of the digital health revolution (Klonoff, 2013). Healthcare institutions can get up-to-date and streamlined information using digital technologies (Gagnon et al., 2016). Digital technologies are playing a vital role in healthcare transformation during and post COVID-19 (Wang et al., 2021; Mburge et al., 2022; Singh et al., 2022b). Thus, digital technologies can enable effective healthcare management.

The incidence reporting system (IRS) has emerged as a crucial healthcare technology. IRS is widely acknowledged as a crucial system to facilitate healthcare learning and improve patient safety (Kumari & Singh, 2022). An effective IRS catalyzes health safety practices (Pfeiffer, 2010). IRS gathers information regarding the safety of patients, which forms a backbone for creating learning capabilities in organizations for patient safety (Stavropoulou et al., 2015). IRS help to create new healthcare policies and practices to stop the repetition of earlier incidents (Braithwaite, 2008). Prior research suggests that IRS is utilized less due to a variety of reasons, like high workload, fear of liability, inability to judge reporting usefulness, etc. (Pfeiffer, 2010; Hwang et al., 2012). Electronic IRS overcomes many of these challenges (Uyob, 2020). The increase in adoption of the internet (Alshammari & Singh, 2018; Alhamad & Singh, 2021a) and web-based technologies (Alhamad & Singh, 2021b; Singh & Alhamad, 2021) have propelled the adoption of digital technologies in healthcare, resulting in the adoption of electronic IRS. Electronic IRS eliminates the paper-based recording of hospital incidents and avoids manual data entry delays and errors (Walsh et al., 2010). Electronic IRS can be web-based or incorporated along with an electronic health records technology (Walsh et al., 2010). Literature suggests that electronic IRS adoption improves incident reporting (Elliott et al., 2014), however, the majority of the studies have employed technology adoption theories such as user experience and social influence (Shin & Biocca, 2018), Unified Theory of Acceptance and Use of Technology (UTAUT) (Venkatesh et al., 2003; Venkatesh et al., 2016), Technology Acceptance Model (TAM) (Davis, 1989). Institutional theory can provide a novel perspective and decipher forces that lead to the adoption of digital technology like electronic IRS for effective healthcare management. However, prior research has not made enough efforts in this regard. This study endeavors to bridge these research gaps. In this research, we explore the influence of coercive, normative, and imitative forces of institutional theory on the adoption of digital technologies such as electronic IRS for information transluence and healthcare management.

Review of Literature

IRS provides critical insights into patient safety at a healthcare organization. The use of IRS in healthcare organizations is relatively recent, but they have long been utilized in other industries (such as railways, aviation, and nuclear power) (Pham et al., 2013; Allen, 2021). The IRS provides a mechanism for identifying hazards so that hospitals can take steps to mitigate them (Ramírez et al., 2018). IRS provides useful
information for identifying risks and learning opportunities for healthcare professionals (Wu et al., 2007; Laurenza et al., 2018; Tortorella et al., 2021). The traditional IRS, on the other hand, has some drawbacks, such as difficulty monitoring error rates, inability to track changes over time, development of overlapping and contradicting reports, lack of in-depth patient safety evaluations, excessive time, and cost, and so on (Padilla et al., 2019). There is evidence to suggest that traditional IRS has been less effective in reporting and reducing preventable harm (Shearer et al., 2012; Pham et al., 2013; Al-Rayes et al., 2020). Because of these limitations, healthcare providers are debating whether the traditional IRS has supported the goal of patient safety.

Traditional IRS constraints are being bypassed with the use of electronic IRS. Electronic IRS improves tracking, comprehension, and privacy of incident reporting (Elliott et al., 2014). The use of electronic IRS minimizes the number of missing incident events (Elliott et al., 2014). Electronic IRS enables decision-makers to view the status of incidents in real-time and analyze incident reports to discern incident patterns (Levtzion-Korach et al., 2009). Electronic IRS provides healthcare providers with larger access to the required information, enabling them to take remedial action (Herchline et al., 2022). Effective IRS is user-friendly and provides the necessary privacy for safeguarding sensitive patient information. Electronic IRS provides these features and results in increased patient satisfaction and improves system usability and security (Alrub et al., 2021). Electronic IRS can automate clinical processes and play a pivotal role in clinical governance (Ubogagu-Israel et al., 2022). Electronic IRS improves hospital quality management, which leads to improved patient outcomes (Hewitt et al., 2016). Electronic IRS can play a pivotal role to improve patient safety in high-risk situations and improve error resilience (Stavropoulou et al., 2015; Howell et al., 2016). Electronic IRS supports the voluntary reporting of incidents by physicians and other support staff, which can lead to significant improvement in patient safety and provide valuable insights to prevent the recurrence of incidents (Lurvey et al., 2021). Electronic IRS provides a lucid and structured framework for incident reporting and evaluation to promote patient safety (Dhamantia et al., 2020; Awad et al., 2021).

Various theories have been employed in prior research to explain the user adoption of technologies. Some popular theories include user experience and social influence (Shin & Biocca, 2018), Unified Theory of Acceptance and Use of Technology (UTAUT) (Venkatesh et al., 2003; Venkatesh et al., 2016), Technology Acceptance Model (TAM) (Davis, 1989). However, we are interested in the adoption of technology (electronic IRS) by healthcare institutions in this study. Institutional theory can serve this research goal. So, we propose to employ institutional theory in this study.

Theoretical Framework

In the current research, we would employ the institutional theory model of DiMaggio & Powell (1983). According to this model, businesses gradually adopt similar practices and behaviors. DiMaggio and Powell (1983) identified three forces that contribute to this convergence: coercive, normative, and imitative forces. The origin of coercive forces is political power and legitimacy by businesses. They can be conveyed via legislations, rules, procedures, standardization, supervision, or compliance requirements of an external agency (Kim et al., 2016). The normative forces are associated with professional values. They can result from gaining knowledge from others through professional networks (Appari et al., 2009). Imitative forces involve emulating or copying the other's behavior. These actions result from a business’s response to uncertainty (Safa et al., 2016). According to DiMaggio and Powell (1983), coercive, normative, and imitative forces shape businesses' convergence toward standardized practices and recognized behaviors. Therefore, the institutionalization of businesses is guided by coercive, normative, and imitative forces.

Teo et al. (2003) have applied the institutional model to the firm-level espousal of financial electronic data interchange (FEDI). Shi et al. (2008) have taken the institutional model and applied it to the adoption of Internet banking by individuals. Ugrin (2009) has applied the institutional model to the process of adopting enterprise resource planning (ERP) at the firm level. Sherer (2010) used the institutional model to analyze how doctors adopted electronic health records (EHRs). The institutional model was utilized by Burnett et al. (2015) to investigate how hospitals in five different European nations responded to external financial and quality demands. Singh & Alshammarri (2020) applied institutional theory model of DiMaggio & Powell (1983) for developing a cyber-security legal framework.
The preceding discussion demonstrates that institutional theory has been applied to digital technologies and the healthcare industry. Therefore, we would use institutional theory in this study.

Conceptual Analysis

The previous discussion elucidates that the institutionalization of firms is guided by coercive, normative, and imitative forces. We endeavor to decipher these forces in the international healthcare industry context.

Therefore, we employ conceptual analysis to investigate the role of coercive, normative, and imitative forces in the adoption of electronic IRS (Table 1).

Table 1.

Institutional Theory for Adopting Electronic Incidence Reporting Systems

Force	Electronic IRS Adoption Framework for Healthcare Industry (Conceptual Analysis)
Coercive	In the healthcare industry, coercive forces are reflected in international health regulations and standards. International Health Regulations (IHR), 2005 have been ratified by 196 countries across the globe and oblige countries to detect and report public health incidents (WHO, 2019). International Organization for Standardization (ISO) has developed several standards to monitor the vital signs of patients and prevent the occurrence of incidents (ISO, 2019). Healthcare professionals across the globe rely on these standards to contain incidents and provide quality healthcare. Electronic IRS facilitates compliance with international healthcare regulations and standards by healthcare institutions. In the healthcare industry, normative forces are reflected in healthcare societies and professional networks. The most prominent international society in healthcare is the International Society for Quality in Health Care (ISQua) (ISQua, 2022). ISQua seeks to enhance the quality and security of healthcare by fostering international collaborations and soliciting the cooperation of healthcare stakeholders. ISQua has an institutional and professional network of members worldwide. ISQua promotes healthcare innovations, information translucence, digital technology adoption, and knowledge sharing. Electronic IRS satisfies these ISQua objectives, so healthcare providers get encouragement to adopt this digital technology. There are other noticeable professional networks like the global health network (GHN, 2022) and the global network for simulation in healthcare (GNSH, 2022), which encourage the adoption of digital technologies like electronic IRS. Developed nations have taken the lead in adopting electronic IRS while developing nations lag behind (Kumari & Singh, 2022). In developing countries, large hospitals are more likely to adopt electronic IRS than smaller hospitals. Since hospitals are part of a larger healthcare ecosystem (Aubin & King, 2018; Viswanadham, 2021), the adoption of electronic IRS by larger enterprises creates imitative pressure on smaller enterprises to do the same. Healthcare in both developed and developing nations is a component of the global healthcare ecosystem (Asakura et al., 2015), so the adoption of electronic IRS by developed countries encourages developing nations to do the same.
Normative	In the healthcare industry, normative forces are reflected in healthcare societies and professional networks. The most prominent international society in healthcare is the International Society for Quality in Health Care (ISQua) (ISQua, 2022). ISQua seeks to enhance the quality and security of healthcare by fostering international collaborations and soliciting the cooperation of healthcare stakeholders. ISQua has an institutional and professional network of members worldwide. ISQua promotes healthcare innovations, information translucence, digital technology adoption, and knowledge sharing. Electronic IRS satisfies these ISQua objectives, so healthcare providers get encouragement to adopt this digital technology. There are other noticeable professional networks like the global health network (GHN, 2022) and the global network for simulation in healthcare (GNSH, 2022), which encourage the adoption of digital technologies like electronic IRS. Developed nations have taken the lead in adopting electronic IRS while developing nations lag behind (Kumari & Singh, 2022). In developing countries, large hospitals are more likely to adopt electronic IRS than smaller hospitals. Since hospitals are part of a larger healthcare ecosystem (Aubin & King, 2018; Viswanadham, 2021), the adoption of electronic IRS by larger enterprises creates imitative pressure on smaller enterprises to do the same. Healthcare in both developed and developing nations is a component of the global healthcare ecosystem (Asakura et al., 2015), so the adoption of electronic IRS by developed countries encourages developing nations to do the same.
Imitative	In the healthcare industry, normative forces are reflected in healthcare societies and professional networks. The most prominent international society in healthcare is the International Society for Quality in Health Care (ISQua) (ISQua, 2022). ISQua seeks to enhance the quality and security of healthcare by fostering international collaborations and soliciting the cooperation of healthcare stakeholders. ISQua has an institutional and professional network of members worldwide. ISQua promotes healthcare innovations, information translucence, digital technology adoption, and knowledge sharing. Electronic IRS satisfies these ISQua objectives, so healthcare providers get encouragement to adopt this digital technology. There are other noticeable professional networks like the global health network (GHN, 2022) and the global network for simulation in healthcare (GNSH, 2022), which encourage the adoption of digital technologies like electronic IRS. Developed nations have taken the lead in adopting electronic IRS while developing nations lag behind (Kumari & Singh, 2022). In developing countries, large hospitals are more likely to adopt electronic IRS than smaller hospitals. Since hospitals are part of a larger healthcare ecosystem (Aubin & King, 2018; Viswanadham, 2021), the adoption of electronic IRS by larger enterprises creates imitative pressure on smaller enterprises to do the same. Healthcare in both developed and developing nations is a component of the global healthcare ecosystem (Asakura et al., 2015), so the adoption of electronic IRS by developed countries encourages developing nations to do the same.

Results and Discussion

The electronic IRS is a crucial digital technology for healthcare management, as it facilitates information translucence, information accessibility, information clarity, and error reduction (Danker, 2013; Albu & Flyverbom, 2016). Understanding the forces that lead to the adoption of digital technologies such as electronic IRS for healthcare management can be greatly aided by institutional theory. According to institutional theory, coercive, normative, and imitative forces (DiMaggio and Powell, 1983) influence the adoption of digital technologies, such as the electronic IRS. Therefore, the role of coercive, normative, and imitative forces in the
adoption of electronic IRS is conceptually analyzed in the present study.

The institutional theory perspective demonstrates that coercive forces are reflected in laws, rules, procedures, standardization, supervision, and compliance requirements (Kim et al., 2016). The present study’s conceptual analysis shows that coercive forces are manifested in international health regulations (e.g., international health regulations (IHR), 2005) (WHO, 2019) and standards (e.g., International Organization for Standardization (ISO), 2019). Such coercive forces lead healthcare organizations to adopt digital technologies like electronic IRS for healthcare management.

Institutional theory suggests that normative forces are mirrored in professional networks (Appari et al., 2009). The current research conceptual analysis shows that normative forces are manifested in international healthcare societies (e.g., International Society for Quality in Health Care (ISQua), 2022) and professional networks (e.g., global health network (GHN, 2022) and global network for simulation in healthcare (GNSH, 2022)). Such normative forces encourage healthcare organizations to adopt digital technologies like electronic IRS for healthcare management.

The institutional theory posits that imitative forces manifest themselves in emulating or copying the behavior of others (Safa et al., 2016). The present study’s conceptual analysis shows that imitative forces create imitative pressure on smaller enterprises (Aubin & King, 2018; Viswanadham, 2021) and developing nations (Asakura et al., 2015) to adopt electronic IRS.

Conclusions

The emergence of digital technology like electronic IRS serves the critical need for information translucence in the healthcare industry. Electronic IRS technology facilitates healthcare management, improves patient safety, and promotes health safety practices. Electronic IRS technology overcomes the limitations of traditional IRS and improves tracking, comprehension, and privacy of incident reporting. The current research employs the institutional theory model of DiMaggio & Powell (1983) to study the adoption of electronic IRS for healthcare management. The present research uses institutional theory as it has been applied to digital technologies and the healthcare industry. The present study examines the role of institutional theory’s coercive, normative, and imitative forces in the adoption of electronic IRS.

The current research conceptual analysis shows that coercive, normative, and imitative forces guide the adoption of electronic IRS for healthcare management. Coercive forces are reflected in international health regulations (e.g., international health regulations (IHR), 2005) (WHO, 2019) and standards (e.g., International Organization for Standardization (ISO), 2019). Normative forces are manifested in international healthcare societies (e.g., International Society for Quality in Health Care (ISQua) and professional networks (e.g., global health network). Imitative forces exert pressure on smaller businesses and developing nations to adopt electronic IRS.

Implications and Limitations

The current research has important implications for theory and practice. One, it deciphers the role of institutional theory for adopting digital technologies like electronic IRS. Prior research proposes the use of technology adoption theories like user experience and social influence, Unified Theory of Acceptance and Use of Technology (UTAUT), Technology Acceptance Model (TAM), etc. in adopting digital technologies. The conceptual analysis of the current research demonstrates that organizational theory, such as institutional theory, can provide an appropriate theoretical lens to decipher coercive, normative, and imitative forces in the adoption of digital technologies such as electronic IRS. Second, the current research demonstrates the role of digital technology like electronic IRS for information translucence and healthcare management. The small enterprises in developing nations can take learnings from large enterprises in developed nations to adopt electronic IRS for efficient and effective healthcare management.

Though this study has important implications, however, there are some limitations. The study employs conceptual analysis to depict the role of institutional theory’s coercive, normative, and imitative forces in guiding the adoption of digital technology like electronic IRS for healthcare management. Empirical analysis can validate the research findings. The current research employs an international perspective to build its case. However, every country can have its own set of institutional forces that guide the adoption of digital technology like electronic IRS. Therefore, future research can be conducted on a country-by-country basis and can provide a thorough knowledge of the role of digital technologies
such as electronic IRS in effective healthcare management in accordance with local conditions.

Bibliometric references

Albu, O. B., & Flyverbom, M. (2016). Organizational Transparency: Conceptualizations, Conditions, and Consequences. Business & Society, 58(2), 268-297. https://doi.org/10.1177/0007650316659851

Alhamad, I. A., & Singh, H. P. (2021a). Predicting Key Factors Impacting Online Hotel Ratings Using Data Mining Approach: A Case Study of the Makkah City of Saudi Arabia. International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies, 12(2), 12A2N, 1-12. https://doi.org/10.14456/ITJEMAST.2021.35

Alhamad, I. A., & Singh, H. P. (2021b). Decoding Significant and Trivial Factors Influencing Online Hotel Ratings: The Case of Saudi Arabia’s Makkah City. International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies, 12(7), 12A7H, 1-11. https://doi.org/10.14456/ITJEMAST.2021.34

Allen, D. (2021). Weaponised incident reporting and what to do to prevent it. Nursing Standard, 36(11), 8–10. https://doi.org/10.7748/ns.36.11.8.s6

Al-Rayes, S. A., Aldar, F. A., al Nasif, N. S., Alkhadrawi, Z. I., Al-Fuyezi, A., & Alumran, A. (2020). The use of electronic incident reporting system: Influencing factors. Informatics in Medicine Unlocked, 21, 100477. https://doi.org/10.1016/j.imu.2020.100477

Alrub, A. M. A., Amer, Y. S., Titi, M. A., May, A. C. A., Shaikh, F., Baksh, M. M., & El-Jardali, F. (2021). Barriers and enablers in implementing an electronic incident reporting system in a teaching hospital: A case study from Saudi Arabia. The International Journal of Health Planning and Management, 37(2), 854–872. https://doi.org/10.1002/hpm.3374

Alshammari, T. S., & Singh, H. P. (2018). Preparedness of Saudi Arabia to Defend Against Cyber Crimes: An Assessment with Reference to Anti-Cyber Crime Law and GCI Index. Archives of Business Research, 6(12), 131–146. https://doi.org/10.14738/abr.612.5771

Appari, A., Johnson, M. E., & Anthony, D. L. (2009). HIPAA Compliance: An Institutional Theory Perspective. In Proceedings of the Fifteenth Americas Conference on Information Systems San Francisco, California, USA, August 6–9 (pp. 252–261).

Asakura, T., Mallee, H., Tomokawa, S., Moji, K., & Kobayashi, J. (2015). The ecosystem approach to health is a promising strategy in international development: lessons from Japan and Laos. Globalization and Health, 11(1), 3. https://doi.org/10.1186/s12992-015-0093-0

Aubin, D., & King, S. (2018). The Healthcare Environment: A Perfect Ecosystem for Growing Shame. Healthcare Quarterly, 20(4), 31–36. https://doi.org/10.12927/hcq.2018.25426

Awad, A., Trenfield, S. J., Pollard, T. D., Ong, J. J., Elbadawi, M., McCoubrey, L. E., Goyanes, A., Gaisford, S., & Basit, A. W. (2021). Connected healthcare: Improving patient care using digital health technologies. Advanced Drug Delivery Reviews, 178, 113958. https://doi.org/10.1016/j.addr.2021.113958

Barth, M. E., & Schapper, K. (2008). Financial Reporting Transparency. Journal of Accounting, Auditing & Finance, 23(2), 173-190. https://doi.org/10.1177/0148558x0802300203

Braithwaite, J., Westbrook, M., & Travaglia, J. (2008). Attitudes toward the large-scale implementation of an incident reporting system. International Journal for Quality in Health Care, 20(3), 184–191. https://doi.org/10.1093/intqhc/mzn004

Burnett, S., Mendel, P., Nunes, F., Wiig, S., Bovenkamp, H. V., Karltun, A., Robert G., Anderson, J., Vincent, C., & Fulop, N. (2015). Using institutional theory to analyze hospital responses to external demands for finance and quality in five European countries. Journal of Health Services Research & Policy, 21(2), 109-117. https://doi.org/10.1177/1355819615622655

Danker, M. (2013). Understanding Stakeholder Activism, Managing Transparency Risk. The Governance of Risk (Vol. 5, Developments in Corporate Governance and Responsibility, pp. 33-72). Emerald Group Publishing Limited.

Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319. https://doi.org/10.2307/249008

Dhamanti, I., Leggat, S., Barraclough, S., Liao, H. H., & Abu Bakar, N. (2020). Comparison of Patient Safety Incident Reporting Systems in Taiwan, Malaysia, and...
Indonesia. Journal of Patient Safety, 17(4), e299–e305.
https://doi.org/10.1097/pts.0000000000000622

DiMaggio, P. J., & Powell, W. W. (1983). The Iron Cage Revisited: Institutional Isomorphism and Collective Rationality in Organizational Fields. American Sociological Review, 48(2), 147-160. https://doi.org/10.2307/2095101

Elliott, P., Martin, D., & Neville, D. (2014). Electronic Clinical Safety Reporting System: A Benefits Evaluation. JMIR Medical Informatics, 2(1). e12. https://doi.org/10.2196/medinform.3316

Gagnon, M., Simonyan, D., Ghandour, E. K., Godin, G., Labrecque, M., Ouimet, M., & Rousseau, M. (2016). Factors influencing electronic health record adoption by physicians: A multilevel analysis. International Journal of Information Management, 36(3), 258-270. https://doi.org/10.1016/j.ijinfomgt.2015.12.002

GHN. (2022). The Global Health Network. Retrieved April 4, 2022, from https://tghn.org/

GNSH. (2022). GNSH – Shaping Simulation to Improve Healthcare. Global Network for Simulation in Healthcare. Retrieved April 3, 2022, from https://www.gnsh.org/

Gopal, G., Suter-Cazzolara, C., Toldo, L., & Eberhardt, W. (2018). Digital transformation in healthcare – architectures of present and future information technologies. Clinical Chemistry and Laboratory Medicine (CCLM), 57(3), 328–335. https://doi.org/10.1515/cclm-2018-0658

Gregori, P., & Holzmann, P. (2020). Digital sustainable entrepreneurship: A business model perspective on embedding digital technologies for social and environmental value creation. Journal of Cleaner Production, 272, 122817. https://doi.org/10.1016/j.jclepro.2020.122817

Herchline, D., Rojas, C., Shah, A. A., Fairchild, V., Mehta, S., & Hart, J. (2022). A Quality Improvement Initiative to Improve Patient Safety Event Reporting by Residents. Pediatric Quality & Safety, 7(1), e519. https://doi.org/10.1097/pq9.0000000000000519

Hewitt, T., Chreim, S., & Forster, A. (2016). Incident reporting systems: a comparative study of two hospital divisions. Archives of Public Health, 74(1). https://doi.org/10.1186/s13690-016-0146-8

Howell, A. M., Burns, E. M., Hull, L., Mayer, E., Sevdalis, N., & Darzi, A. (2016). International recommendations for national patient safety incident reporting systems: an expert Delphi consensus-building process. BMJ Quality & Safety, 26(2), 150–163. https://doi.org/10.1136/bmjqs-2015-004456

Hwang, J. I., Lee, S. I., & Park, H. A. (2012). Barriers to the Operation of Patient Safety Incident Reporting Systems in Korean General Hospitals. Healthcare Informatics Research, 18(4), 279. https://doi.org/10.4258/hiro.2012.18.4.279

ISO. (2019). ISO and Health. International Organization for Standardization. Retrieved May 1, 2022, from https://www.iso.org/files/live/sites/iso/en/store/enu/PU100343.pdf

ISQua. (2022). ISQua - The International Society for Quality in Health Care. International Society for Quality in Healthcare (ISQua). Retrieved April 2, 2022, from https://isqua.org/

Kim, D.-J., Hwang, I.-H., & Kim, J.-S. (2016). A Study on Employees Compliance Behavior to-wards Information Security Policy: A Modified Triandis Model. Journal of Digital Convergence, 14(4), 209–220. https://doi.org/10.14400/jdc.2016.14.4.209

Klonoff, D. C. (2013). Twelve Modern Digital Technologies That are Transforming Decision Making for Diabetes and All Areas of Health Care. Journal of Diabetes Science and Technology, 7(2), 291-295. https://doi.org/10.1177/193229681300700201

Kumari, R., & Singh, H. P. (2022). Role of Incident Reporting System in Healthcare Management: A Case of Multispeciality Tertiary Hospital in India. International Journal of Information Movement, 6(IX), 12–18. http://www.ijim.in/paper-3-role-of-incident-reporting-system-in-healthcare-management-a-case-of-multispeciality-tertiary-hospital-in-india/

Laurenza, E., Quintano, M., Schiavone, F., & Vrontis, D. (2018). The effect of digital technologies adoption in healthcare industry: a case based analysis. Business Process Management Journal, 24(5), 1124–1144. https://doi.org/10.1108/bpmj-04-2017-0084

Levtzion-Korach, O., Alcalai, H., Orav, E. J., Graydon-Baker, E., Keohane, C., Bates, D. W., & Frankel, A. S. (2009). Evaluation of the Contributions of an Electronic Web-based Reporting System. Journal of Patient Safety, 5(1), 9–15. https://doi.org/10.1097/pts.0b013e318198dc8d
Lurvey, L. D., Fassett, M. J., & Kanter, M. H. (2021). Self-Reported Learning (SRL), a Voluntary Incident Reporting System Experience Within a Large Health Care Organization. The Joint Commission Journal on Quality and Patient Safety, 47(5), 288–295. https://doi.org/10.1016/j.jcjq.2021.01.002

Mbunge, E., Batani, J., Gaobote, G., & Muchemwa, B. (2022). Virtual healthcare services and digital health technologies deployed during coronavirus disease 2019 (COVID-19) pandemic in South Africa: a systematic review. Global Health Action, 6(2), 102–113. https://doi.org/10.1080/16549716.2022.2003001

Padilla, E. A. (2019). Sentinel Event (1st ed.). Bowker. https://www.barnesandnoble.com/w/sentinel-event-aa-padilla/1130681601

Pfeiffer, Y., Manser, T., & Wehner, T. (2010). Conceptualising barriers to incident reporting: a psychological framework. BMJ Quality & Safety, 19(6), e60. https://doi.org/10.1136/qshc.2008.030445

Pham, J. C., Girard, T., & Pronovost, P. J. (2013). What to do with healthcare Incident Reporting Systems. Journal of Public Health Research, 2(3), 27. https://doi.org/10.4081/jphr.2013.e27

Ramírez, E., Martín, A., Villán, Y., Lorente, M., Ojeda, J., Moro, M., Vara, C., Avenza, M., Domingo, M. J., Alonso, P., Asensio, M. J., Blázquez, J. A., Hernández, R., Frias, J., & Frank, A. (2018). Effectiveness and limitations of an incident-reporting system analyzed by local clinical safety leaders in a tertiary hospital. Medicine, 97(38), e125099. https://doi.org/10.1097/md.0000000000012509

Safa, N. S., Solms, R. V., & Furnell, S. (2016). Information security policy compliance model in or-ganizations. Computers & Security, 56, 70–82. https://doi.org/10.1016/j.cose.2015.10.006

Shearer, B., Marshall, S., Buist, M. D., Finnigan, M., Kitto, S., Hore, T., Sturgess, T., Wilson, S., & Ramsay, W. (2012). What stops hospital clinical staff from following protocols? An analysis of the incidence and factors behind the failure of bedside clinical staff to activate the rapid response system in a multi-campus Australian metropolitan healthcare service. BMJ Quality & Safety, 21(7), 569–575. https://doi.org/10.1136/bmjqs-2011-000692

Sherer, S. A. (2010). Information Systems and Healthcare XXXIII: An Institutional Theory Perspective on Physician Adoption of Electronic Health Records. Communications of the Association for Information Systems, 26(1), 127-140. https://doi.org/10.17705/1cias.02607

Shi, W., Shambare, N., & Wang, J. (2008). The adoption of internet banking: An institutional theory perspective. Journal of Financial Services Marketing, 12(4), 272-286. https://doi.org/10.1057/palgrave.fsm.4760081

Shin, D., & Biocca, F. (2018). Impact of Social Influence and Users’ Perception of Coolness on Smartwatch Behavior. Social Behavior and Personality: An International Journal, 46(6), 881–890. https://doi.org/10.2224/sbp.5134

Singh, A., Singh, H. P., Alam, F., & Agrawal, V. (2022a). Role of Education, Training, and E-Learning in Sustainable Employment Generation and Social Empowerment in Saudi Arabia. Sustainability, 14(14), 8822. https://doi.org/10.3390/su14148822

Singh, H. P., & Alshammari, K. (2021). Impacts of Digital Technology-Enabled Personalized and Adaptive Learning on Student Learning Performance: A TOE Framework for Saudi Arabia. International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies, 12(13), 1–12. https://doi.org/10.14456/ITJEMAST.2021.262

Singh, H. P., & Alshammari, T. S. (2020). An Institutional Theory Perspective on Developing a Cyber Security Legal Framework: A Case of Saudi Arabia. Beijing Law Review, 11(03), 637–650. https://doi.org/10.4236/blr.2020.113039

Singh, H., Singh, A., Alam, F., & Agrawal, V. (2022b). Impact of Sustainable Development Goals on Economic Growth in Saudi Arabia: Role of Education and Training. Sustainability, 14(21), 14119. https://doi.org/10.3390/su141114119

Singh, H. P., & Alhamad, I. A. (2021). Deciphering Key Factors Impacting Online Hotel Ratings Through the Lens of Two-Factor Theory: A Case of Hotels in Makkah City of Saudi Arabia. International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies, 12(8), 12A8M, 1–12. https://doi.org/10.14456/ITJEMAST.2021.160

Stavropoulou, C., Doherty, C., & Tosey, P. (2015). How Effective Are Incident-Reporting Systems for Improving Patient Safety? A Systematic Literature Review. The Milbank Quarterly, 93(4), 826–866. https://doi.org/10.1111/1468-0009.12166
Teo, H. H., Wei, K. K., & Benbasat, I. (2003). Predicting Intention to Adopt Inter-organizational Linkages: An Institutional Perspective. MIS Quarterly, 27(1), 19-50. https://doi.org/10.2307/30036518

Tortorella, G. L., Saurin, T. A., Fogliatto, F. S., Rosa, V. M., Tonetto, L. M., & Magrabi, F. (2021). Impacts of Healthcare 4.0 digital technologies on the resilience of hospitals. Technological Forecasting and Social Change, 166, 120666. https://doi.org/10.1016/j.techfore.2021.120666

Ubogagu-Israel, E., Kolandaismey, A., & Abubaker, M. (2022). Using Datix Electronic Incident Reporting System to Develop a Palliative and End-of-Life Care Patient-Centered Auditing, Quality Assessment and Reporting System. Palliative Medicine and Hospice Care – Open Journal, 8(1), 8–14. https://doi.org/10.17140/pmhcoj-8-145

Ugrin, J. C. (2009). The Effect of System Characteristics, Stage of Adoption, and Experience on Institutional Explanations for ERP Systems Choice. Accounting Horizons, 23(4), 365-389. https://doi.org/10.2308/acch.2009.23.4.365

Uyob, R. (2020). Application of Technology Acceptance Model (TAM) in predicting user intention to use Malaysian Business Reporting System (MBRS): A Conceptual Paper. International Journal of Business and Management, 4(4), 21–30. https://doi.org/10.26666/rmp.jbim.2020.4.4

Viswanadham, N. (2021). Ecosystem model for healthcare platform. in Sadhana [Sādhanā], 46(4). https://doi.org/10.1007/s12046-021-01708-y

Walsh, K., Burns, C., & Antony, J. (2010). Electronic adverse incident reporting in hospitals. Leadership in Health Services, 23(4), 292–303. https://doi.org/10.1108/17511871011079047

Wang, Q., Su, M., Zhang, M., & Li, R. (2021). Integrating Digital Technologies and Public Health to Fight Covid-19 Pandemic: Key Technologies, Applications, Challenges and Outlook of Digital Healthcare. International Journal of Environmental Research and Public Health, 18(11), 6053. https://doi.org/10.3390/ijerph18116053

WHO. (2019, December 11). International health regulations. Centre for Disease Prevention and Control. Retrieved April 15, 2022, from https://www.who.int/health-topics/international-health-regulations#tab=tab_1

Winkler, B. (2000, August). Which Kind of Transparency? On the Need for Clarity in Monetary Policy-Making (Working paper No. 26). European Central Bank website. https://ssrn.com/abstract=355587

Wu, J. H., Shen, W. S., Lin, L. M., Greenses, R. A., & Bates, D. W. (2007). Testing the technology acceptance model for evaluating healthcare professionals’ intention to use an adverse event reporting system. International Journal for Quality in Health Care, 20(2), 123–129. https://doi.org/10.1093/intqhc/mzm074