Integrated Molecular-Morphologic Meningioma Classification: A Multicenter Retrospective Analysis, Retrospectively and Prospectively Validated

Sybren L. N. Maas, MD, PhD1,2; Damian Stichel, PhD1; Thomas Hielscher, MSc3; Philipp Sievers, MD1; Anna S. Berghoff, MD, PhD4,5; Daniel Schrimpf, PhD1; Martin Sill, PhD2; Philipp Euskirchen, MD7; Christina Blume, MSc1; Areeba Patel, MSc1; Helin Dogan, BSc1; David Reuss, MD1; Hildegard Dohmen, MD8; Marco Stein, MD6,9; Philipp Euskirchen, MD7; Christina Blume, MSc1; Areeba Patel, MSc1; Helin Dogan, BSc1; David Reuss, MD1; Hildegard Dohmen, MD8; Marco Stein, MD6,9; Philipp Euskirchen, MD7; Matthias Preusser, MD5; Andreas von Deimling, MD1; and Felix Sahm, MD, PhD1,6; For the German Consortium on Aggressive Meningiomas (KAM)

PURPOSE Meningiomas are the most frequent primary intracranial tumors. Patient outcome varies widely from benign to highly aggressive, ultimately fatal courses. Reliable identification of risk of progression for individual patients is of pivotal importance. However, only biomarkers for highly aggressive tumors are established (CDKN2A/B and TERT), whereas no molecularly based stratification exists for the broad spectrum of patients with low- and intermediate-risk meningioma.

METHODS DNA methylation data and copy-number information were generated for 3,031 meningiomas (2,868 patients), and mutation data for 858 samples. DNA methylation subgroups, copy-number variations (CNVs), mutations, and WHO grading were analyzed. Prediction power for outcome was assessed in a retrospective cohort of 514 patients, validated on a retrospective cohort of 184, and on a prospective cohort of 287 multicenter cases.

RESULTS Both CNV- and methylation family–based subgrouping independently resulted in increased prediction accuracy of risk of recurrence compared with the WHO classification (c-indexes WHO 2016, CNV, and methylation family 0.699, 0.706, and 0.721, respectively). Merging all risk stratification approaches into an integrated molecular-morphologic score resulted in further substantial increase in accuracy (c-index 0.744). This integrated score consistently provided superior accuracy in all three cohorts, significantly outperforming WHO grading (c-index difference P < .005). Besides the overall stratification advantage, the integrated score separates more precisely for risk of progression at the diagnostically challenging interface of WHO grade 1 and grade 2 tumors (hazard ratio 4.34 [2.48-7.57] and 3.34 [1.28-8.72] retrospective and prospective validation cohorts, respectively).

CONCLUSION Merging these layers of histologic and molecular data into an integrated, three-tiered score significantly improves the precision in meningioma stratification. Implementation into diagnostic routine informs clinical decision making for patients with meningioma on the basis of robust outcome prediction.

J Clin Oncol 39:3839-3852. © 2021 by American Society of Clinical Oncology

ASSOCIATED CONTENT
Data Supplement
Author affiliations and support information (if applicable) appear at the end of this article.
Accepted on August 31, 2021 and published at ascpubs.org/journal/jco on October 7, 2021; DOI https://doi.org/10.1200/JCO.21.00784

INTRODUCTION Molecular markers have amended or replaced histologic classification and grading criteria for many brain tumor types. For meningioma, TERT promoter mutation or homozygous deletion of CDKN2A/B is included in the 2021 WHO classification as independent criteria of WHO grade 3 meningioma.1-3 However, the most pressing clinical need is to identify high-grade meningioma, but to distinguish patients with low or virtually none from those with intermediate risk of recurrence.4,5
CONTEXT

Key Objective
The WHO classification of meningiomas stratifies patient cohorts into three groups with low to high risk of progression. However, outcome for individual patients often deviates from the prediction based on conventional grading. Various approaches to increase risk prediction accuracy for individual patients with meningioma exist. Copy-number variations are enriched in aggressive meningiomas, and methylation-based classification was introduced as a novel tool for meningioma stratification. Yet, these approaches lack both comprehensive validation and integration into one unified classification concept, preventing their routine application.

Knowledge Generated
Our data delineate and comparatively validate the independent predictive power of WHO grading, specific copy-number variations, and methylation-based classification. Based on three independent cohorts, we devised and validated a superior, integrated grading algorithm (integrated score) leveraging the advantages of all three classification approaches.

Relevance
The significant increase in prediction accuracy of the integrated score, including a majorly more precise segregation of patients at the clinically challenging interface at WHO grade 1 and 2, provides a robust basis for clinical decision making.

METHODS
Details on sample collection, cohort composition, and mutational profiling are provided in the Data Supplement (online only). Lasso-selected CNVs (Data Supplement) were aggregated into a risk stratification (CNV-Lasso model) based on sum of CNVs (low: none, intermediate: 1-2, high: 3), given equal weight to all CNVs for practicability. The CNV-Literature model was similarly defined as a sum score based on the deletion of 1p, 6q, 10q, and 14q (low: none, intermediate: 1-2, high: ≥ 3).

For the integrated score, a multivariable Cox regression model with WHO grading, methylation family (MF), and the CNV-Lasso model was fitted (Data Supplement). No specific cutoff was used for MF allocation (Data Supplement). Hazard ratios of the model were translated into individual risk points based on the corresponding nomogram, with risk points for each risk factor restricted to a maximum of 4 (Data Supplement) and rounded to integers for practicability and interpretation. Patients were classified based on the sum into low (0-2), intermediate (3-5), and high (> 5) integrated risk. Cutpoints were selected based on clinically reasonable proportions and discriminative ability. Patients in validation cohorts were classified based on the scores and cutpoints as derived on the discovery cohort. Heterogeneity of prognostic effect of risk stratification between males and females was tested with the likelihood ratio test between a Cox model with and without interaction term.

RESULTS
Correlation of WHO Grade, CNVs, DNA Methylation, and Mutations
We analyzed 3,031 meningioma samples (Data Supplement), spanning all WHO grades and subtypes, for CNVs. Number of CNVs per sample increased with WHO grade (Data Supplement). All cases were allotted to one of the previously introduced six epigenetic MCs of meningioma. These six MCs encompass three MCs with benign outcome (ben-1, ben-2, and ben-3), two MCs with intermediate outcome (int-A and int-B), and one malignant MC with highly aggressive outcome (mal). Accordingly, these six MCs can be merged into three overarching groups, formerly referred to as combined clinical groups, for consistency with recent literature in the field herein now called methylation families: MF benign including MC ben-1, -2, and -3, MF intermediate encompassing int-A and -B, and MF malignant. In line with previous studies, the CNVs were highly distinct for the MCs: ben-1 shows consistently
deletions of 22q, ben-2 has virtually flat copy-number profiles, and ben-3 is characterized by whole-chromosomal gains. The number of whole-chromosome deletions increases in MC int-A/B (or the combined MF intermediate, respectively), and finally MC mal is characterized by numerous CNVs including focal homozygous deletions on 9p at the CDKN2A/B locus (Data Supplement). Virtually all CNVs either affect the whole arm or are absent (Data Supplement).

Distinct mutations also align with CNV patterns: Isolated NF2 mutations are frequently associated with WHO grade 1, isolated 22q deletion, and MC ben-1. AKT1, SMO, KLF4, and TRAF7 mutations are common in WHO grade 1 meningioma of MC ben-2 with flat copy-number profiles. Additional CNVs besides 22q deletion are accumulated in MC int-A and int-B, along with NF2 mutations and increasing WHO grade. Finally, meningiomas with highly perturbed genomes, including CDKN2A/B homozygous deletions, have mostly WHO grade 3 and MC mal classification, and are enriched for TERT promoter mutations (Fig 1B).

The most frequent alterations besides 22q deletion were deletions of 1p, 6q, 10q, and 14q. Their distribution indicates that the cascade of CNV accumulation is limited to NF2-altered meningiomas (Fig 1B). Accordingly, cases for which mutational data were available and which harbored AKT1, SMO, KLF4, and/or TRAF7 mutations rarely carried any CNVs (Fig 1B). Hence, these data on CNVs and mutations confirm the conclusions about characteristics of MCs and overarching MFs from the initial study.6 Oncogenetic trees support initiating 22q deletion in 68% of cases, followed by 1p deletion, and subsequently (in order of frequency) 6q, 18q, 14q, 7p, 10q, 4p, or 2p deletion, or combinations thereof (Figs 1C and 1D, Data Supplement).

Comparison of WHO Grading, CNVs, and MFs as a Model for Clinical Outcome Prediction

Next, we assessed the power of outcome prediction of these molecular parameters.

Within the 3,031 meningioma samples, retrospective clinical outcome data were available for one cohort of 514 individual cases, with a median follow-up time of 45 months and 169 events during follow-up (details on WHO grades, MCs, clinical parameters, and gene mutations are given in the Data Supplement). The two separate, fully independently gathered sets of other retrospectively (n = 287) cases were not included in these analyses to subsequently serve as validation cohorts (clinical parameters are given in the Data Supplement). WHO grade, sex, and extent of resection (Simpson grade 1-3 v 4 or 5) were significantly associated with progression. NF2 insertion or deletion, TERT promoter mutation, and homozygous deletion of CDKN2A/B were associated with unfavorable outcome (Data Supplement). Interestingly, TRAF7 and KLF4, or the compound non-NF2 group with TRAF7, AKT1, and/or KLF4 mutations were significantly associated with lower risk of progression (Data Supplement).

Univariable analysis corrected for multiple testing yielded significant prognostic effects for 14 different CNVs, including deletions proposed as risk markers before,10,11 such as 1p, 6q, 10q, and 14q (Data Supplement). Upon adjustment for WHO grade, age, sex, and localization, most of these markers remained significant (Table 1, Data Supplement). Of note, we also implemented the novel WHO criteria (TERT promoter mutation and CDKN2A/B homozygous deletion as criteria for anaplasia) throughout our analyses here (patient characteristics of cases for which the WHO 2021 grading criteria were available and prognostic impact of CNVs for WHO 2021 cases are provided in the Data Supplement). After further adjustment for methylation, only deletion of 1p remained an independent marker (Table 1, Data Supplement).

In line with early emergence in the oncogenetic trees, presence or absence of 1p can further stratify histologically WHO grade 1, grade 2, and the compound WHO grade 1 or 2 cases (Figs 2A and 2B). If 1p deletion is present, the outcome is similar to WHO grade 2 or MF int. This indicates that any meningioma with 1p deletion should be considered as at least WHO grade 2 (all cases in Fig 2B, WHO 1 or 2 only cases only in Fig 2C). Hence, 1p status is an attractive target for analysis because of its prognostic relevance, abundance in a large share of meningiomas, and assay availability.

To identify a three-tiered scheme based on CNVs only, we used a Lasso Cox model. This returned losses of 1p, 6q, and 14q as the most informative combination (c-index 0.715). On the other hand, testing a model based on CNVs that had been consistently proposed in the literature before,10,13,14 this model included deletion of 1p, 6q, 10q, and 14q. Accordingly, absence of any of these was categorized as low, up to two CNVs as intermediate, and three or more as high risk. Although largely identical to those CNVs arising from our data-driven approach, regarding them as a priori given reduces the need for overfitting correction because of variable selection in the discovery data set (c-index 0.715).

We also tested a model based on CNVs that had been consistently proposed in the literature before,10,13,14. This model included deletion of 1p, 6q, 10q, and 14q. Accordingly, absence of any of these was categorized as low, up to two CNVs as intermediate, and three or more as high risk. Although largely identical to those CNVs arising from our data-driven approach, regarding them as a priori given reduces the need for overfitting correction because of variable selection in the discovery data set (c-index 0.715).

As expected, these markers also clearly stratify by DNA methylation alone also yielded clinically distinct strata, confirming previous reports on the prediction power of methylation in meningioma15,16 (log-rank P < .0001, Fig 3E).
FIG 1. (continued on following page)
Next, we compared the prediction performance of the different models (Fig 3F, Data Supplement). The data-derived CNV-Lasso model has a c-index of 0.701, the CNV-Literature model 0.709, and the MFs 0.719 (Data Supplement). These three were all favorable compared with the WHO classification 2016 with a c-index at 0.683 and WHO classification 2021 with a c-index of 0.697 (Data Supplement). Brier prediction errors at 10 years are similar for all models (0.170-0.178) except for MFs with again a lower error (0.158, Data Supplement). The difference in prediction accuracy was significant for MFs versus WHO with \(P < .01 \) at 5 and \(P < .001 \) at 10 years. No significance was reached for the CNV models compared with the WHO grading (Data Supplement). This performance analysis focused on cases with \(TERT \) status available, as this is a requirement for WHO 2021, and same results were obtained when comparing to WHO 2016 grading available, also including cases with unknown \(TERT \) status (Data Supplement).

For validation, the superior performance of molecular approaches compared with WHO grading alone was confirmed in an independent retrospective cohort, with c-indices of 0.673 for WHO grading, 0.698 CNV-Lasso model, 0.701 CNV-Literature model, and 0.685 MFs. Intriguingly, while the molecular models were again superior to the WHO grades, the CNV models performed better than the MFs in this retrospective validation cohort (risk stratification for the different models in the Data Supplement).

Combining the Outcome Prediction Models Toward an Integrated Classification

Collectively, the molecularly guided approaches were consistently stronger in predicting risk of progression than the WHO grading. However, all models, including histologic grading, remained strong independent predictors (Data Supplement). Hence, a combined approach leveraging the strength of all these layers of information may yield an essential further advance in risk prediction.

We combined all three models into an integrated, also three-tiered grading approach, using a multivariable Cox regression model. For each category, points from 0 to 4 are allotted (nomogram in the Data Supplement, algorithm in Fig 4A, correlation with other models Fig 4B, and decision tree in the Data Supplement). The sum of these morphologic and molecular alterations results in the grade (ie, low, intermediate, and high). This integrated model significantly stratified for outcome (Fig 4C) and has a significantly higher prediction accuracy in c-index (Fig 4D and Data Supplement) and lower prediction error than WHO grading alone in the discovery cohort at 5 (\(P = .002 \)) and at 10 years (\(P = .0001 \)) (Data Supplement). This holds true in a comparison of the integrated model to the 2021 WHO grading.

TABLE 1. Prognostic Impact of Single Copy-Number Alterations in the Discovery Cohort

CNV	N	HR (95% CI)	\(P \)	Adjusted \(P \) Value
1p loss adjusted for WHO grade, age, sex and location	514	3.68 (2.45-5.51)	< .001	< .001
6q loss	514	2.36 (1.70-3.29)	< .001	< .001
10q loss	514	2.39 (1.65-3.46)	< .001	< .001
7p loss	514	2.04 (1.42-2.93)	< .001	.002

CNV	N	HR (95% CI)	\(P \)	Adjusted \(P \) Value
1p loss adjusted for WHO amended for \(TERT \) promoter and homozygous CDKN2A/B loss status adjusted for age, sex, and location	399	3.43 (2.27-5.19)	< .001	< .001
6q loss	399	2.16 (1.55-3.02)	< .001	< .001
10q loss	399	2.05 (1.39-3.01)	< .001	.005
1q gain	399	1.97 (1.36-2.85)	< .001	.006

CNV	N	HR (95% CI)	\(P \)	Adjusted \(P \) Value
1p loss adjusted for WHO grade, MF, age, sex and location	514	2.57 (1.64-4.05)	< .001	< .001
6q loss	514	1.67 (1.19-2.34)	.003	.064
10q loss	514	1.67 (1.14-2.45)	.009	.175

Abbreviations: CNV, copy-number variation; HR, hazard ratio; MF, methylation family.
grading for both c-index ($P = .004$) and prediction error at 5 and 10 years ($P = .0021$ and $P = .0001$ respectively, Data Supplement). The integrated model is also significantly superior in c-index when compared with the CNV-Lasso model ($P = .008$) and to the CNV-Literature model ($P = .044$) (Data Supplement). Despite higher c-index for the integrated score, there was no significant difference to methylation ($P = .06$, Data Supplement) in this cohort.

In the retrospective validation cohort, the integrated model also resulted in significant outcome risk stratification ($P < .0001$, Data Supplement), and both the superior c-indices and Brier scores compared with WHO are replicated (Fig 4E, Data Supplement). In addition to being superior to WHO and CNV in the discovery cohort, the integrated score also significantly exceeds the predictive power of methylation families in the retrospective validation.

Table A

CNV	WHO	n	Rec	CNVs	HR	P	IAp
loss1p	1	235	41	64	2.83	.001	
	2	217	86	124	3.48	<.001	
	1 or 2	452	127	188	3.81	<.001	
	3	62	42	55	6.02	.014	
	All	514	169	243	4.67	<.001	.417
loss6q	1	235	41	29	4.74	<.001	
	2	217	86	68	2.04	.001	
	1 or 2	452	127	97	3.19	<.001	
	3	62	42	28	2.04	.023	
	All	514	169	125	3.35	<.001	.174
loss14q	1	235	41	27	2.69	.013	
	2	217	86	73	2.26	<.001	
	1 or 2	452	127	100	2.99	<.001	
	3	62	42	33	0.98	.947	
	All	514	169	133	2.90	<.001	.040
loss10q	1	235	41	16	2.98	.006	
	2	217	86	26	2.41	<.001	
	1 or 2	452	127	42	2.75	<.001	
	3	62	42	32	1.73	.086	
	All	514	169	74	3.42	<.001	.676

FIG 2. Risk on progression stratified for WHO grades in the presence of 1p, 6q, 14q, or 10q losses. (A) Forest plots on association of risk-of-progression with single CNVs stratified for the three WHO grades. (B) Comparative Kaplan-Meier analysis for time-to-progression stratified for WHO grade, combined methylation classes, and cases with and without deletion of chromosome 1p in all cases of the discovery cohort. (C) Separating WHO grade 1 cases with chromosome 1p loss among all WHO grade 1 cases and in turn delineating all WHO grade 2 cases without a chromosome 1p loss among the WHO grade 2 cases, identifies subgroups with majorly different outcome as expected from WHO grade alone. IAp denotes P value of test on interaction between WHO grade and CNV. CNV, copy-number variation; HR, hazard ratio; IAp, interaction test P value; MF-ben, methylation family benign; MF-int, methylation family intermediate; MF-mal, methylation family malignant; Rec, recurrences; TTP, time to progression.
FIG 3. (continued on following page)
validation cohort (difference in c-index \(P = .011 \), in Brier score \(P = .016 \)).

Finally, the integrated score also provides significant risk stratification in the prospective cohort (\(P = .0249 \), risk stratification is provided in the Data Supplement). In line with the other cohorts, the integrated score had the highest c-index (0.665 v 0.596-0.652 of the others). However, in this first prospectively collected data set on methylation in meningioma, the data set is not yet mature to reach significance (Data Supplement).

Neither sex (\(P = .7 \)) nor extent of resection (EOR; \(P = .5 \)) remained an independent prognostic factor when adjusting for the integrated score in Cox regression. Additionally, the prognostic effect of the integrated risk scores was not significantly different in male or female patients (\(P = .93 \)).

Among the compound WHO grade 1 and 2 meningiomas, cases with low risk in the integrated model had outcomes similar to the average WHO grade 1, despite having been diagnosed as WHO grade 2 (Fig 4F). In turn, histologically inconspicuous cases but with higher integrated model scores had outcomes identical to the average WHO grade 2. Of note, the integrated score separates low-risk from high-risk cases among WHO grade 1 or 2 cases more clearly than 1p status (Fig 2C v Fig 4F). Accordingly, the hazard ratio for low versus higher integrated scores among WHO grade 1 or 2 cases was 4.56 (2.97-7.00), 4.34 (2.48-7.57), and 3.34 (1.28-8.72) in the discovery, the retrospective, and the prospective validation cohorts, respectively (Data Supplement).

DISCUSSION

To identify robust markers for risk stratification of patients with meningiomas, and devise a grading schema thereof, we here interrogated a comprehensive set of meningiomas on multiple levels, from copy number through epigenomics to mutations. First, we further substantiated that meningioma can be separated into two major subsets: one with initiating 22q/NF2 alteration and the potential to acquire additional CNVs and to progress, and one with AKTI/KLF4/TRA7/SMO/Pik3CA mutations and no recurrent CNVs. This is in line with previous studies on the molecular landscape and genomic instability of NF2-mutant meningiomas.15-24

Among the CNVs arising in NF2-mutant cases, the most informative single marker is deletion of 1p. The addition of 1p assessment in WHO grade 1 and 2 cases substantially increases the prediction accuracy (Figs 2A and 2B): Histologically inconspicuous cases, thus compatible with WHO grade 1, but prone to progression or recurrence, can be singled-out by identification of 1p deletion. In turn, meningioma with higher mitotic count, thus allotted to WHO grade 2, but lack of 1p alteration, can be categorized as WHO grade 1 (Fig 2C).

However, 1p status alone does not adequately dissect for the full range of meningioma. In three cohorts, we here validated that methylation stratifies the entire landscape of meningioma with higher accuracy than the WHO grading approach. These data emphasize the role of methylation in meningioma that has been proposed by several studies before15,16,25 and provides the first methylation-based classification that has now been validated over multiple cohorts, including prospectively accrued cases, after its introduction in 2017.6

Alternative to methylation, CNVs can serve as a strong prediction model, assessing only three (Lasso model) or four (Literature model) chromosomal arms. The strength of pre-existing data in this field is reflected by the fact that our data sets on > 3,000 meningiomas heuristically yielded virtually the same selection of markers (1p, 6q, and 14q) that could also be derived from our survey of literature on smaller cohorts. Previous technologic obstacles to implement CNV assessment are now overcome by increased use of high-throughput platforms.

However, all three approaches (histology, methylation, and CNVs) have their specific value and advantages. For instance, an anaplastic meningioma with RB1 deletion or a rhabdoid meningioma WHO grade 3 with deletion on chromosome 3 encompassing BAP1 do not qualify for a high-risk tier by CNV, but are identified as MF mal by methylation (Data Supplement).

In turn, some meningiomas cannot unequivocally be assigned to one of the MFs,26 yielding comparatively low, but still informative scores in the meningioma methylation classifier (Data Supplement). For parenchymal brain tumor samples with low scores, CNVs are already leveraged to render a clear diagnosis (eg, 7/10 alteration in glioblastoma). This was not available for meningioma as yet.

To harmonize the integration of these three layers, histology, CNVs, and methylation, we developed the integrated score. Although both MFs and CNVs have independently...
WHO grading

Grade	Value
Grade 1	0
Grade 2	1
Grade 3	2

MF

Category	Value
Ben	0
Int	2
Mal	4

Losses chromosome 1p, 6q, 14q

Present	Value
None	0
1-2	2
3	3

Integrated model score

Integrated Score	Value
Low	0
Int	1
High	2

Integrated Score for Meningioma Classification

FIG 4. (continued on following page)
FIG 4. (Continued). The integrated model combines WHO grading, CNVs, and MFs. For each of the three components of the integrated model (WHO grading, methylation, and CNVs), a value between 0 and 4 is added to the total score. (A) The combined score ranges from 0 to 9 and stratifies low (0-2), intermediate (3-5), and high (6-9) risk for progression meningiomas. (B) Cross-over model illustrating the distribution of cases in the discovery cohort over the different components of the integrated model. (C) Kaplan-Meier analysis of progression-free survival for cases stratified for based on the integrated model. (D) Brier prediction score analysis shows lower error rate, thus higher prediction accuracy, for the integrated model in the discovery and (E) retrospective validation cohorts. (F) Separating WHO grade 1 intermediate-risk and WHO grade 2 low-risk cases identifies true high-risk cases among WHO grade 1, and true low-risk cases among WHO grade 2 cases. ben, benign; CNV, copy-number variation; int, intermediate; mal, malignant; MF, methylation family.

FIG 5. Overview on clinical, histologic, epigenetic, and genetic characteristics in the three risk groups of the integrated model. Histologic subtypes present in < 5% of the cases are grouped under other. The outer ring in the histology subtype plots represents the corresponding WHO grade. *Indicates a homozygous loss of CDKN2A/B. ben, benign; CNV, copy-number variation; F, female; int, intermediate; M, male; mal, malignant; MF, methylation family.
proven strong predictors in the cohorts analyzed here, the integrated score was consistently superior, delineating three distinct risk groups (Fig 5). Intriguingly, the CNV models are more accurate in early follow-up, most pronounced in the retrospective validation cohort, whereas the benefit of methylation arises later. This
is in line with the concept that epigenetic characteristics can predate other genetic or morphologic changes. An unfavorable MF may indicate ultimately aggressive growth, but does not stratify between those that are already in an aggressive stage or are just prone to transformation. The short-term course is more accurately reflected by CNVs and histology.

Regarding underlying technology, the implementation of methylation into the WHO classification will foster its wider availability. In low-throughput settings, nanopore sequencing provides results identical to arrays for assigning MF and identification of prognostic copy-number alterations (Data Supplement).

Subjecting every meningioma to a comprehensive work-up may still not be feasible. We thus identified histologic subtypes in which further assessment is required (Data Supplement) and devised an efficient, stepwise workflow for diagnostic routine (Fig 6).

Further studies may even incorporate the molecular layers into risk-prediction before surgery. A risk prediction score obtained from circulating DNA, potentially extended with radiologic features, may identify the growth and transformation potential of incidental meningioma, guiding therapy decisions.27

The integrated molecular-morphologic score has immediate effect on risk stratification for a substantial number of patients (Data Supplement) and holds potential to transform the work-up of diagnostic meningioma samples similar to the extent that molecular profiling has changed assessment and consecutive treatment decisions for parenchymal brain tumors.

AFFILIATIONS
1Department of Neuropathology, University Hospital Heidelberg and CCU Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
2Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
3Department of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
4Institute of Neurology, Medical University of Vienna, Vienna, Austria
5Department of Medicine I, Clinical Division of Oncology, Medical University of Vienna, Vienna, Austria
6Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
7Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
8Department of Neuropathology, University Gießen, Giessen, Germany
9Department of Neurosurgery, University Gießen, Giessen, Germany
10Department of Neurosurgery, University Hospital Magdeburg, Magdeburg, Germany
11Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
12Department of Neurosurgery, University Hospital Düsseldorf, Düsseldorf, Germany
13Genome and Proteome Core Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
14Department of Neurosurgery, University Hospital Gießen, Giessen, Germany
15Department of Neurosurgery, University Hospital Frankfurt, Frankfurt, Germany
16Department of Neurosurgery, University Hospital Hamburg-Eppendorf, Hamburg, Germany
17Department of Neuropathology, University Hospital Zurich, Zürich, Switzerland
18Genome and Proteome Core Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
19Department of Neuropathology, University Hospital Hamburg, Hamburg, Germany
20Department of Neurosurgery, University Hospital Tübingen, Tübingen, Germany
21Division of Neuropathology, National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, London, United Kingdom
22Department of Clinical and Movement Neurosciences and Queen Square Brain Bank for Neurological Disorders, Queen Square Institute of Neurology, University College London, London, United Kingdom
23Department of Neuropathology, University Hospital Basel, Basel, Switzerland
24Department of Neurosurgery, St George’s Hospital, London, United Kingdom
25Department of Cellular Pathology, St George’s Hospital, London, United Kingdom
26Department of Neurosurgery, NYU Langone Hospital, New York, NY
27Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University, Heidelberg, Germany
28Department of Pathology, NYU Grossman School of Medicine, New York, NY
29Laboratory of Pathology, National Cancer Institute, Bethesda, MD
30Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, United Kingdom
31Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
32Department of Pediatrics, Heidelberg University Hospital, Heidelberg, Germany
33Institute of Neuropathology, Heinrich Heine University Medical Faculty, Düsseldorf, Germany
34German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Germany
35Clinical Cooperation Unit Neurooncology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
36Department of Neurology and Neurooncology Program, National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
CORRESPONDING AUTHOR
Felix Sahm, MD, PhD, Department of Neuropathology, University Hospital Heidelberg and Clinical Cooperation Unit Neuropathology (B300), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 224, 69120 Heidelberg, Germany; e-mail: felix.sahm@med.uni-heidelberg.de.

EQUAL CONTRIBUTION
S.L.N. Maas, D. Stichel, T. Hielscher, and P. Sievers contributed equally to this work.
A. von Deimling and F. Sahm co-supervised this work.

SUPPORT
Supported by the Else Krönner Fresenius Foundation (EKFS, Grant Nos. 2015_A_60 and 2017_EKES.24), the German Cancer Aid (Grant No. 70112956), and the Hertie Foundation (Hertie Network of Excellence in Clinical Neuroscience).

AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST
Disclosures provided by the authors are available with this article at DOI https://doi.org/10.1200/JCO.21.00784.

DATA SHARING STATEMENT
Upon reasonable request, the DNA methylation, mutational, and clinical outcome data can be shared.

AUTHOR CONTRIBUTIONS
Conception and design: Sybren L. N. Maas, Damian Stichel, Philipp Sievers, Andreas von Deimling, Felix Sahm
Provision of study materials or patients: Marco Stein, Annekathrin Reinhardt, Franz Rickliefks, Elisabeth J. Rushing, Zane Jaunmuktane, Conor Grady, John Golfinos, Chandra Sen, Christine Jungk, Manfred Westphal, Katrin Lamszus, Gerhard Jungwirth, Christel Herold-Mende, Patrick N. Harter, Marian Neidert, Miriam Ratliff, Sebastian Brandner, Jürgen Hench, Stephan Frank, Guido Reifenberger, Till Acker, Michael Weller, Matthias Preusser, Andreas von Deimling, Felix Sahm
Collection and assembly of data: Sybren L. N. Maas, Damian Stichel, Philipp Sievers, Anna S. Berghoff, Helin Dogan, David Reuss, Hildegard Dohmen, Marco Stein, Annekathrin Reinhardt, Abigail K. Suwala, Annika K. Wefers, Peter Baumgarten, Franz Rickliefks, Elisabeth J. Rushing, Melanie Bewerunge-Hudler, Ralf Ketter, Jens Schittenhelm, Zane Jaunmuktane, Severina Leu, Fay E. A. Greenway, Leslie R. Bridges, Timothy Jones, Conor Grady, Jonathan Serrano, John Golfinos, Chandra Sen, Christian Mawrin, Christine Jungk, Daniel Hänggi, Katrin Lamszus, Nima Ethminian, Gerhard Jungwirth, Christel Herold-Mende, Andreas Unterberg, Patrick N. Harter, Hans-Georg Wirsching, Marian Neidert, Miriam Ratliff, Michael Platten, Matija Snuderl, Sebastian Brandner, Jürgen Hench, Stephan Frank, Guido Reifenberger, Till Acker, Wolfgang Wick, Michael Weller, Matthias Preusser, Andreas von Deimling, Felix Sahm
Data analysis and interpretation: Sybren L. N. Maas, Damian Stichel, Thomas Hielscher, Philipp Sievers, Anna S. Berghoff, Daniel Schrimpf, Martin Sill, Philipp Euskirchen, Christina Blume, Areeba Patel, Abigail K. Suwala, Franz Rickliefks, Zane Jaunmuktane, John Golfinos, Manfred Westphal, Christel Herold-Mende, Stephan Frank, Stefan M. Pflister, David T. W. Jones, Guido Reifenberger, Michael Weller, Andreas von Deimling, Felix Sahm
Manuscript writing: All authors
Final approval of manuscript: All authors
Accountable for all aspects of the work: All authors

ACKNOWLEDGMENT
The authors thank Laura Dörner, Lea Hofmann, Lisa Kreinbihl, and Moritz Schalles for excellent technical assistance, and the DKFZ Genome and Proteome Core Facility for support in DNA methylation analysis.

REFERENCES
1. Sahm F, Schrimpf D, Olar A, et al: TERT promoter mutations and risk of recurrence in meningioma. J Natl Cancer Inst 108:djv377, 2016
2. Sievers P, Hielscher T, Schrimpf D, et al: CDKN2A/B homozygous deletion is associated with early recurrence in meningiomas. Acta Neuropathol 140:409-413, 2018
3. Louis DN, Perry A, Wesseling P, et al: The 2021 WHO classification of tumors of the central nervous system: A summary. Neuro Oncol 23:1231-1251, 2021
4. Golbrunner R, Minniti G, Preusser M, et al: EANO guidelines for the diagnosis and treatment of meningiomas. Lancet Oncol 17:e383-e391, 2016
5. Patil N, Kelly ME, Yeboa DN, et al: Epidemiology of brainstem high-grade gliomas in children and adolescents in the United States, 2000-2017. NeuroOncol 23:012-019, 2021
6. Sahm F, Schrimpf D, Stichel T, et al: DNA methylation-based classification and grading system for meningioma: A multicentre, retrospective analysis. Lancet Oncol 18:682-694, 2017
7. Louis DN, Ellison DW, Brat DJ, et al: cIMPACT-NOW: a practical summary of diagnostic points from round 1 updates. Brain Pathol 29:469-472, 2019
8. Brat DJ, Aldape K, Colman H, et al: cIMPACT-NOW update 5: recommended grading criteria and terminologies for IDH-mutant astrocytomas. Acta Neuropathol 139:603-608, 2020
9. Brat DJ, Aldape K, Colman H, et al: cIMPACT-NOW update 3: recommended diagnostic criteria for “Diffuse astrocytic glioma, IDH-wildtype, with molecular features of glioblastoma, WHO grade IV”. Acta Neuropathol 136:805-810, 2018
10. Maillo A, Orfao A, Sayagues JM, et al: New classification scheme for the prognostic stratification of meningioma on the basis of chromosome 14 abnormalities, patient age, and tumor histopathology. J Clin Oncol 21:3285-3295, 2003
11. Domingues PH, Sousa P, Otero A, et al: Proposal for a new risk stratification classification for meningioma based on patient age, WHO tumor grade, size, localization, and karyotype. Neuro Oncol 16:735-747, 2014
12. Linsler S, Kraemer D, Dries C, et al: Molecular biological determinations of meningioma progression and recurrence. PLoS One 9:e94087, 2014
13. Riemenschneider MJ, Perry A, Reifenberger G: Histological classification and molecular genetics of meningiomas. Lancet Neurol 5:1045-1054, 2006
14. Ketter R, Urbach S, Herrn W, et al: Application of oncogenic trees mixtures as a biostatistical model of the clonal cytogenetic evolution of meningiomas. Int J Cancer 121:1473-1480, 2007
15. Olar A, Wani KM, Wilson CD, et al: Global epigenetic profiling identifies methylation subgroups associated with recurrence-free survival in meningioma. Acta Neuropathol 133:431-444, 2017
16. Nassiri F, Mamatjan Y, Suppiah S, et al: DNA methylation profiling to predict recurrence risk in meningioma: Development and validation of a nomogram to optimize clinical management. Neuro Oncol 21:901-910, 2019
17. Clark VE, Erson-Ormay EZ, Serin A, et al: Genomic analysis of non-NF2 meningiomas reveals mutations in TRAF7, KLF4, AKT1, and SMO. Science 339:1077-1080, 2013
18. Bai H, Harmanci AS, Erson-Omay EZ, et al: Integrated genomic characterization of IDH1-mutant glioma malignant progression. Nat Genet 48:59-66, 2016
19. Clark VE, Harmanci AS, Bai H, et al: Recurrent somatic mutations in POLR2A define a distinct subset of meningiomas. Nat Genet 48:1253-1259, 2016
20. Harmanci AS, Youngblood MW, Clark VE, et al: Integrated genomic analyses of de novo pathways underlying atypical meningiomas. Nat Commun 8:14433, 2017
21. Brastianos PK, Horowitz PM, Santagata S, et al: Genomic sequencing of meningiomas identifies oncogenic SMO and AKT1 mutations. Nat Genet 45:285-289, 2013
22. Prager BC, Vasudevan HN, Dixit D, et al: The meningioma enhancer landscape delineates novel subgroups and drives druggable dependencies. Cancer Discov 10:1722-1741, 2020
23. Paramasivam N, Hubschmann D, Toprak UH, et al: Mutational patterns and regulatory networks in epigenetic subgroups of meningioma. Acta Neuropathol 138:295-308, 2019
24. Jurati TA, McCabe D, Nayar N, et al: DMD genomic deletions characterize a subset of progressive/higher-grade meningiomas with poor outcome. Acta Neuropathol 136:779-792, 2018
25. Gao F, Shi L, Russin J, et al: DNA methylation in the malignant transformation of meningiomas. PLoS One 8:e54114, 2013
26. Euskirchen P, Bielle F, Labreche K, et al: Same-day genomic and epigenomic diagnosis of brain tumors using real-time nanopore sequencing. Acta Neuropathol 134:691-703, 2017
27. Nassiri F, Chakravarthy A, Feng S, et al: Detection and discrimination of intracranial tumors using plasma cell-free DNA methylomes. Nat Med 26:1044-1047, 2020
AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

Integrated Molecular-Morphologic Meningioma Classification: A Multicenter Retrospective Analysis, Retrospectively and Prospectively Validated

The following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated unless otherwise noted. Relationships are self-held unless noted. I = Immediate Family Member, Inst = My Institution. Relationships may not relate to the subject matter of this manuscript. For more information about ASCO’s conflict of interest policy, please refer to www.asco.org/wc or ascopubs.org/jco/authors/author-center.

Open Payments is a public database containing information reported by companies about payments made to US-licensed physicians (Open Payments).

Elisabeth J. Rushing
Consulting or Advisory Role: Bayer Suisse
Research Funding: Lilly, Bayer, Roche, PharmaMar, Pfizer
Patents, Royalties, Other Intellectual Property: patent on using DNA methylation profiling for tumor classification

Stefan M. Pfister
Research Funding: Lilly, Bayer, Roche, PharmaMar, Pfizer

Michael Weller
Honorary: Merck Serono, MSD, Philogen, Nerviano Medical Sciences, Adastra Pharmaceuticals
Consulting or Advisory Role: Bristol Myers Squibb, Orbus Therapeutics, Tocagen, Karyopharm Therapeutics, Ymabs Therapeutics Inc, Medac
Research Funding: Merck Serono, Novocure, Merck Sharp & Dohme, Apogenix, Queregen Pharmaceuticals

Matthias Preusser
Honorary: Roche, GlaxoSmithKline, Bayer, Bristol Myers Squibb, Novartis, Gerson Lehrman Group, CMC Contrast, Mundipharma, BMU Journals, MedMedia, AstraZeneca, AbbVie, Lilly, MEDahead, Daiichi Sankyo, Sanofi, Merck Sharp & Dome, Tocagen, Adastra Pharmaceuticals
Consulting or Advisory Role: Roche, Bristol Myers Squibb, Novartis, Gerson Lehrman Group, CMC Contrast, GlaxoSmithKline, Mundipharma, AbbVie
Research Funding: Roche, GlaxoSmithKline, Boehringer Ingelheim, Merck Sharp & Dohme, Bristol Myers Squibb, Daiichi Sankyo, AbbVie
Travel, Accommodations, Expenses: Roche, GlaxoSmithKline, Bristol Myers Squibb, MSD, Mundipharma

Andreas von Deimling
Consulting or Advisory Role: Bristol Myers Squibb
Research Funding: Roche
Patents, Royalties, Other Intellectual Property: Patent for IDH1R132H antibody H09 administered by the German Cancer Center (DKFZ), Patent for BRAFV600E antibody VE1 administered by the German Cancer Center (DKFZ), DNA methylation-based method for classifying tumor species EP16710700
Travel, Accommodations, Expenses: Roche

Felix Sahm
Honorary: Illumina, AbbVie, Bayer
No other potential conflicts of interest were reported.