ON THE SPLITTING FIELDS OF GENERIC ELEMENTS
IN ZARISKI DENSE SUBGROUPS

SUPRIYA PISOLKAR AND C. S. RAJAN

Abstract. Let G be a connected, absolutely almost simple, algebraic group defined over a finitely generated, infinite field K, and let Γ be a Zariski dense subgroup of $G(K)$. We show, apart from some few exceptions, that the commensurability class of the field F given by the compositum of the splitting fields of characteristic polynomials of generic elements of Γ determines the group G up to isogeny over the algebraic closure of K.

1. Introduction

The inverse spectral theory problem in Riemannian geometry, is to recover properties of a Riemannian manifold from the knowledge of the spectra of natural differential operators associated to the manifold. This problem has been intensely studied in the context of Riemannian locally symmetric spaces by various authors.

In ([PR2]) G. Prasad and A. S. Rapinchuk introduced the notion of weak commensurability for Zariski dense subgroups in absolutely almost simple connected algebraic groups. This notion is weaker than commensurability, but they showed that weak commensurability of arithmetic lattices implies commensurability in many instances.

As an application, and assuming the validity of Schanuel’s conjecture on transcendental numbers in the case of higher rank lattices, they obtained commensurability results for the corresponding locally symmetric space defined by the arithmetic lattices, which are isospectral with respect to the Laplacian associated to the invariant metric acting on the space of smooth functions.

In ([BPR]), the authors considered representation equivalent lattices. If two uniform lattices are representation equivalent, then the corresponding Riemannian locally symmetric spaces are ‘strongly isospectral’; in particular, they are isospectral for the Laplacian.

One of the major advantages for considering the stronger but natural notion of representation equivalence is that commensurability type results for representation equivalent lattices can be obtained without appealing to Schanuel’s conjecture.

It can be seen by an application of the trace formula, that representation equivalent uniform lattices are characteristic equivalent. For an algebraic group G defined over a field K and an element $\gamma \in G(K)$, let $P(\gamma, Ad)$ denote the characteristic polynomial
of γ in $G(K)$ with respect to the adjoint representation Ad of G on its Lie algebra. Let G_1, G_2 be connected absolutely almost simple algebraic groups defined over a number field K. Two Zariski dense subgroups $\Gamma_i \subset G_i(K), \ i = 1, 2$ are said to be characteristic equivalent if the collection of characteristic polynomials $P(\gamma, Ad)$ of elements γ in Γ_1 (resp. Γ_2) are equal.

The concept of characteristic equivalence is stronger than that of weak commensurability. From characteristic equivalence, the commensurability results of ([PR2]) follows more directly and easily using the methods of ([PR2]).

For an arithmetic lattice, the lengths of closed geodesics can be expressed as a sum of logarithms of algebraic numbers. In a subsequent paper ([PR3]), Prasad and Rapinchuk studied the compositum of the fields generated over the field of algebraic numbers, by the lengths of closed geodesics on the locally Riemannian symmetric space defined by the lattice. Upon certain hypothesis on the Weyl group and conditional on the validity of Schanuel’s conjecture on transcendental numbers, they showed that the fields are quite different, provided the lattices are not commensurable.

In this paper, we examine an analogous question, in the context of characteristic equivalence. We consider the compositum of the splitting fields of the characteristic polynomials of generic elements of $G(K)$ contained in the Zariski dense subgroup $\Gamma \subset G(K)$. Apart from some few exceptions, we show that this field determines the ‘commensurability class’ of Γ, i.e., the group G up to isogeny over the algebraic closure of K. The advantage is that the question in a purely algebraic setting, and Schanuel’s conjecture need not be invoked.

2. Generic elements

Let G be a connected, semisimple, algebraic group defined over an infinite field K. Fix an algebraic closure \bar{K} of K. Let T be a maximal torus in G defined over K, and let $X^*(T) = \text{Hom}(T, G_m)$ be the character group of T over \bar{K}. The Galois group $G_K := \text{Gal}(\bar{K}/K)$ acts on $X^*(T)$ by the action,

$$\sigma \chi(t) = \sigma(\chi(\sigma^{-1}(t))), \ \sigma \in G_K, \ t \in T(\bar{K}), \ \chi \in X^*(T).$$

Let g, t denote the Lie algebras of G and T respectively, and denote by $\Phi = \Phi(G, T) \subset X^*(T)$ the root system corresponding to the pair (G, T):

$$g \otimes \bar{K} = t \otimes \bar{K} \bigoplus_{\chi \in \Phi} g_{\chi},$$

where $g_{\chi} = \{X \in g \otimes \bar{K} \mid Ad(t)(X) = \chi(t)(X), \ g \in G(\bar{K})\}$. The absolute Galois group G_K preserves the root system Φ, inducing an injective homomorphism

$$\theta_T : G_K \rightarrow \text{Aut}(\Phi(G, T)).$$

Suppose $g \in G(K)$ be a semi-simple regular element. Denote by T_g the connected component of its centralizer $Z(g)$ in G. Let K_g denote minimal splitting field of T_g in \bar{K}.
Definition 1. Let \(g \in G(K) \) be a regular semisimple element. Define \(g \) to be **generic** (or \(K \)-generic, or generic \(K \)-regular), if the image \(\theta_{T_g}(G_K) \) contains the Weyl group \(W \).

Equivalently, the Galois group \(G(K_g/K) \) contains a subgroup isomorphic to the Weyl group \(W \). The notion of genericity is sensitive to the underlying field \(K \), and is not stable under base change to a larger field \(L \).

Example. An element \(g \in SL_n(K), \ n \geq 2 \) is generic if and only if the Galois group over \(K \) of the splitting field of its characteristic polynomial with respect to the natural representation is isomorphic to the symmetric group \(S_n \) on \(n \)-symbols.

Remark. Generic tori was studied by Voskresenskii ([V]) and called by him as **tori without effect**. The nomenclature generic used here, stems from the fact that generic (in the sense of algebraic geometry) tori, satisfy this hypothesis. We refer to [PR4, Section 9] and the references contained in it for detailed discussions about generic tori and elements and their properties.

2.1. **Splitting fields of characteristic polynomials.** We relate the notion of generic elements to characteristic polynomials. Let \(P(x, g, Ad) \) be the characteristic polynomial of the linear transformation \(Ad(g) \), corresponding to the adjoint representation \(Ad \) of \(G \) acting on its Lie algebra. For an element \(g \in G(K) \), denote by \(K(g, Ad) \) the splitting field \(P(x, g, Ad) \) over \(K \).

Proposition 1. Let \(G \) be a connected, absolutely almost simple algebraic group defined over an infinite field \(K \). Let \(g \in G(K) \) be a generic \(K \)-regular element of infinite order. With the above notation, \(K(g, Ad) = K_g \).

Proof. Since \(g \) is a regular semisimple element, \(g \in T_g(K) = Z_G(g)^0(K) \). By definition, the tori \(T_g \) splits over \(K_g \). For \(\alpha \in \Phi = \Phi(G, T_g) \), the value \(\alpha(g) \in K_g \). Since the non-zero roots of the characteristic polynomial of the transformation \(Ad(g) \) are given by \(\alpha(g) \) for \(\alpha \in \Phi \), this implies that \(K(g, Ad) \subset K_g \).

For the reverse inclusion, the elements \(\alpha(g^n) \in K(g, Ad) \) for \(n \in \mathbb{Z} \) and \(\alpha \in \Phi \). Since \(G \) is absolutely almost simple, the action of the Weyl group \(W \) on \(X^*(T) \otimes \mathbb{Q} \) is irreducible. From the correspondence between tori and its character groups considered as modules for the Galois group, it follows that a generic regular \(K \)-torus is irreducible over \(K \), in that it cannot be written as an almost direct product of two \(K \)-tori. Hence if \(g \in G(K) \) is generic \(K \)-regular, then \(T_g \) is a \(K \)-irreducible torus.

Since \(g \) is of infinite order, the group generated by \(g \) is Zariski dense in \(T_g \). Hence every root \(\alpha \in \Phi \) is \(K(g, Ad) \)-rational character of the \(K \)-torus \(T_g \). Since \(\Phi \) is a basis for \(X^*(T_g) \otimes \mathbb{Q} \), it follows that every character of \(T_g \) is \(K(g, Ad) \)-rational. Hence \(K_g \subset K(g, Ad) \).

\(\square \)
2.2. A theorem of Prasad-Rapinchuk. The following theorem of G. Prasad and A. Rapinchuk ([PR1], [PR4]) guarantees the existence of generic regular elements in Zariski dense subgroups:

Theorem 1. [PR4, Theorem 9.6] Let G be a connected absolutely almost simple algebraic group over a finitely generated, infinite field K. Let $\Gamma \subset G(K)$ be a Zariski dense subgroup in G. Then Γ contains a K-generic element of infinite order.

3. Main theorems and a preliminary reduction

Let K be a finitely generated, infinite field, and G be a connected, absolutely almost simple algebraic group defined over K. Fix an algebraic closure \bar{K} of K. By the classification results of Killing, Cartan and Chevalley, the class of the group G over \bar{K} up to isogeny, will be called the type of G.

Let G_1, G_2 be connected, absolutely almost simple algebraic groups defined over K. Call the pair (G_1, G_2) to be **Weyl iso-trivial** if one of the following conditions hold:

- Both G_1 and G_2 are of type B_n or C_n ($n \geq 2$).
- $n \geq 5$ is odd, and one of G_1 or G_2 is of type B_n/C_n and the other group is of type D_n.
- One of G_1 or G_2 are of type A_2 and the other is of type G_2.

In these cases, we have the following isomorphisms:

$$W(B_n) \simeq W(C_n),$$

$$W(B_n) \simeq W(D_n) \times \mathbb{Z}/2\mathbb{Z}, \quad n \text{ odd, } n \geq 3, \quad (1)$$

$$W(G_2) \simeq W(A_2) \times \mathbb{Z}/2\mathbb{Z}.$$

The first of the above equations follows from the fact that the root systems of B_n and C_n are dual to each other. For a proof of the second equation, see Corollary 4. The third equation follows from the fact that the Weyl group of G_2 can be identified with the dihedral group D_6.

Definition 2. Two fields L, M contained inside \bar{K} are **commensurable** if both L and M are of finite degree over the intersection $L \cap M$.

Equivalently, L and M are not commensurable if the compositum LM inside \bar{K} is of infinite degree over either L or M.

Our main theorem is the following:

Theorem 2. Let G_1, G_2 be connected, absolutely almost simple algebraic groups defined over a finitely generated infinite field K. Assume that they do not form a Weyl iso-trivial pair as defined above.
Suppose $\Gamma_i \subset G_i(K)$, $i = 1, 2$ are Zariski dense subgroups. For $i = 1, 2$, let $\mathcal{F}_i = \mathcal{F}(\Gamma_i, K)$ be the subfield of \bar{K} given by the compositum of the fields K_γ as $\gamma \in \Gamma_i$ varies over the set of generic K-regular elements in Γ_i.

Suppose the fields \mathcal{F}_1 and \mathcal{F}_2 are commensurable. Then G_1 and G_2 are of the same Killing-Cartan type over \bar{K}.

3.1. Commensurable arithmetic lattices. In this subsection, we relate Theorem 2 to commensurability of arithmetic lattices. Let K be a number field, and \mathbb{A}_f be the ring of finite adeles of K. Let G be a semisimple algebraic group defined over K, which for simplicity will be assumed to be of adjoint type.

Let F be a field with an embedding of K into F. A Zariski dense subgroup $\Gamma \subset G(F)$ will be said to a (G, K)-arithmetic group, if it is commensurable with the image in $G(F)$ of a group of the form $\Gamma_M := G(K) \cap M$, where M is a compact open subgroup of the group $G(\mathbb{A}_f)$.

A simple consequence of Theorem 2 is the following theorem:

Theorem 3. Let G_1, G_2 be connected, split, absolutely simple algebraic groups defined over a number field K. Assume that G_1 and G_2 do not form a Weyl iso-trivial pair.

Suppose $\Gamma_i \subset G_i(K)$, $i = 1, 2$ are arithmetic subgroups. Assume that the fields \mathcal{F}_1 and \mathcal{F}_2 are commensurable.

Then the lattices Γ_1 and Γ_2 are commensurable, i.e., there exists an isomorphism $\phi : G_1 \rightarrow G_2$ defined over K, such that $\phi(\Gamma_1)$ is commensurable with Γ_2.

Proof. By Theorem 2, the groups G_1 and G_2 are of the same Killing-Cartan type. Since they are adjoint and split, there is an isomorphism $\phi : G_1 \rightarrow G_2$ defined over K. This preserves the group of finite adele points and hence the lattices $\phi(\Gamma_1)$ and Γ_2 are commensurable. \square

Remark. It would be interesting to extend this theorem to not necessarily split groups and to arbitrary S-arithmetic lattices.

3.2. Compositum of groups. The proof of Theorem 2 is achieved by an argument involving Galois theory and the structure of Weyl groups.

Definition 3. A finite group U is a *compositum* of the finite groups U_1, \cdots, U_r if there exists surjective maps $p_i : U \rightarrow U_i$ such that the natural induced map $p : U \rightarrow \prod_{i=1}^{r} U_i$ is injective.

When all the U_i are isomorphic to a given group say U', we refer to U as a compositum (or composite) of U'.

The example we have in mind is given by the Galois group of a compositum of Galois extensions:
Example. Suppose K is a field and L_1, \cdots, L_r are finite Galois extensions of K contained inside an algebraic closure \bar{K} of K. Let $U_i \simeq G(L_i/K)$ and $U \simeq G(L_1 \cdots L_r/K)$. Then U is a compositum of the groups U_i.

The following proposition says that the field theoretic example is not restrictive:

Proposition 2. Let U be a compositum of the finite groups U_1, \cdots, U_r, with respect to the maps $p_i : U \to U_i$. Then there exists a field K and finite Galois extensions L_1, \cdots, L_r of K contained inside an algebraic closure \bar{K} of K such that $U_i \simeq G(L_i/K)$ and $U \simeq G(L_1 \cdots L_r/K)$.

Proof. There exists a field K_0 and a Galois extension L of K_0 with $G(L/K_0) \simeq U_1 \times U_2 \times \cdots \times U_r$. Let $K = L^U$, the field of U-invariants of L. For $i = 1, \cdots, r$, let $R_i = \text{Ker}(p_i)$, and let $L_i = L^{R_i}$. Then L_i is a Galois extension of K, with $G(L_i/K) \simeq U/R_i \simeq U_i$. □

In this paper, we will mainly use the field theoretic language while dealing with compositums of groups.

3.3. A reduction

The following (lack of) relationship between Weyl groups is the key group theoretic statement required for the proof of Theorem 2

Theorem 4. Let G_1, G_2 be connected, absolutely almost simple algebraic groups defined over a finitely generated, infinite field K. Assume that G_1 and G_2 are not isogenous over \bar{K}, and are not Weyl iso-trivial. Let W_1 (resp. W_2) be the Weyl group of G_1 (resp. G_2) with respect to some maximal torus in G_1 (resp. G_2).

Then, either W_1 (or W_2) is not a quotient of a compositum of normal subgroups of W_2 (resp. W_1).

We now deduce Theorem 2 from Theorem 4

Proposition 3. Suppose W_1 is not a quotient of a compositum of normal subgroups of W_2. Then $\mathcal{F}_1\mathcal{F}_2$ is of infinite degree over \mathcal{F}_2.

In particular, Theorem 2 follows from the validity of Theorem 4.

Proof. Suppose that $\mathcal{F}_1\mathcal{F}_2$ is a finite extension of \mathcal{F}_2. Being algebraic extensions of K, this implies that there is a finite Galois extension L of K such that $\mathcal{F}_1\mathcal{F}_2 \subset L\mathcal{F}_2$. In particular, $\mathcal{F}_1 \subset L\mathcal{F}_2$, and there is a surjection $G(L\mathcal{F}_2/L) \to G(L\mathcal{F}_1/L)$.

We can assume that the groups G_1 and G_2 are split over L. Consider Γ_1 as a subgroup of $G_1(L)$. It is Zariski dense in G_1 considered as an algebraic group over L. By Theorem 4, there exists a generic L-regular element $\gamma \in \Gamma_1$. Since G_1 is split over L, by ([PR2 Lemma 4.1]), $G(L_{T_\gamma}/L) \simeq W_1$. The element γ is generic K-regular, and the splitting field of T_γ is contained in \mathcal{F}_1. Hence there is a surjection $G(L\mathcal{F}_1/L) \to W_1$, and consequently from $G(L\mathcal{F}_2/L) \to W_1$.
Without loss of generality, we can assume that \mathcal{F}_2 is a compositum of finitely many Galois extensions K_η over K, where $\eta \in \Gamma_2$ is a generic K-regular element in $G_2(K)$. The Galois group $G(K_\eta/K)$ contains W_2 as a normal subgroup, and there is a surjection from $G(L\mathcal{F}_2/L) \rightarrow W_1$.

Since G_2 is split over L, by ([PR2, Lemma 4.1]), the image $\theta_{T_\eta}(G(LK_\eta/L))$ is contained in W_2. Since this is a normal subgroup of W_2, we see that $G(L\mathcal{F}_2/L)$ is a compositum of groups each of which is isomorphic to a normal subgroup of W_2.

Theorem 4 implies that W_1 cannot be a quotient of $G(L\mathcal{F}_2/L)$. This yields a contradiction and proves the proposition. \square

Remark. By Equation (1), Theorem 4 does not hold when the groups G_1 and G_2 are iso-trivial. Our methods do not help in distinguishing between the fields \mathcal{F}_1 and \mathcal{F}_2 in these cases.

In Section 4, we study the finer structure of Weyl groups of orthogonal groups, especially its normal subgroups, and in the remaining sections we give a proof of Theorem 4. The proof, in a rough sense, rests on ‘semisimple’ properties of Weyl groups.

4. WEYL GROUPS OF ORTHOGONAL GROUPS

In this section, we study the structure of the Weyl groups of orthogonal groups, especially the lattice of its normal subgroups.

The Weyl groups of B_n and C_n are isomorphic. The Weyl group $W(B_n)$ can be seen as signed permutations on the collection of basis vectors $\{e_1, \cdots, e_n\}$ of \mathbb{R}^n. The group $V = (\mathbb{Z}/2\mathbb{Z})^n$ sits as a normal subgroup of $W(B_n)$ by assigning to an element $\varepsilon = (\varepsilon_1, \cdots, \varepsilon_n) \in (\mathbb{Z}/2\mathbb{Z})^n$, the signed permutation

$$\sigma_\varepsilon(e_i) = \varepsilon_i e_i. \quad (2)$$

There is an exact sequence,

$$1 \rightarrow (\mathbb{Z}/2\mathbb{Z})^n \rightarrow W(B_n) \rightarrow S_n \rightarrow 1. \quad (3)$$

A splitting of this exact sequence is given by the symmetric group S_n sits inside $W(B_n)$ as permutations without changing the sign. This makes $W(B_n) \simeq (\mathbb{Z}/2\mathbb{Z})^n \rtimes S_n$,

a semidirect product of S_n by $(\mathbb{Z}/2\mathbb{Z})^n$. The conjugacy action of W on the abelian normal subgroup $(\mathbb{Z}/2\mathbb{Z})^n$ descends to give the standard permutation action of S_n on $(\mathbb{Z}/2\mathbb{Z})^n$. Given two elements $(\varepsilon_1, \sigma_1)$ and $(\varepsilon_2, \sigma_2)$ in the set $V \times S_n$, the group multiplication is given as,

$$(\varepsilon_1, \sigma_1)(\varepsilon_2, \sigma_2) = (\varepsilon_1 + \sigma_1\varepsilon_2, \sigma_1\sigma_2),$$

where we have used the additive notation for the group multiplication restricted to V. The inverse of (ε, σ) is $(-\sigma^{-1}\varepsilon, \sigma^{-1})$.
The Weyl group of D_n, $(n \geq 4)$ is isomorphic to the subgroup of $W(B_n)$ consisting of permutations and sign changes involving only even number of sign changes of the set $\{e_1, \cdots, e_n\}$, i.e., the number of $\varepsilon_i = -1$ in Equation (2) is even.

Consider the exact sequence of S_n-modules

$$1 \rightarrow V_e \rightarrow (\mathbb{Z}/2\mathbb{Z})^n \xrightarrow{\phi} \mathbb{Z}/2\mathbb{Z} \rightarrow 1,$$

where $\phi(\varepsilon) = \sum_{i=1}^{n} \varepsilon_i$ and V_e is the kernel of ϕ. We have an isomorphism,

$$W(D_n) \simeq V_e \rtimes S_n.$$

Lemma 1. Let $n \geq 3$. If n is a power of 2, then the exponent of $W(D_n)$ is equal to the exponent $e(S_n)$ of the symmetric group S_n.

In all other cases, the exponent of the Weyl groups of B_n and D_n is twice the exponent of the symmetric group S_n.

Proof. Let $\sigma \in S_n$ be of order k. For any $\varepsilon \in V = (\mathbb{Z}/2\mathbb{Z})^n$,

$$(\varepsilon, \sigma) = (\varepsilon + \sigma(\varepsilon) + \cdots + \sigma^{k-1}(\varepsilon), 1).$$

Since every element in V is of order 2, the exponent of $W(B_n)$ or $W(D_n)$ is either $e(S_n)$ or $2e(S_n)$.

Since the exponent is the least common multiple of the orders of the elements in a group, in order for the exponent to be $2e(S_n)$, we need to produce an element in the Weyl group of order 2^{l+1}, where 2^l is the maximum power of 2 that divides n (and there is an element of that order in S_n).

Suppose $n = 2^lm$, with $m > 1$. Consider the element $\sigma = (1 \cdots 2^l) \in S_n$, and $\varepsilon = (1, 0, \cdots, 0, 1) \in V_e \subset V$. In this case, the element ε_{σ} will have co-ordinate 1 at the first 2^l indices, and all other co-ordinates are 0. It follows that $(\varepsilon, \sigma) \in W(D_n)$ has order 2^{l+1}.

Let $n = 2^l$. For the group D_n, if we require an element of order 2^{l+1}, without loss of generality, we can take σ and ε as in the foregoing paragraph. In this case, the element (σ, ε) has order 2^l, and thus there are no elements of order 2^{l+1} in $W(D_n)$.

For the group B_{2^l}, consider σ as above, and let $\varepsilon = (1, 0, \cdots, 0)$. Then $\varepsilon_{\sigma} = (1, 1, \cdots, 1)$, and the element (σ, ε) has order 2^{l+1}. \qed

Let Δ denote the S_n-stable subgroup $\mathbb{Z}/2\mathbb{Z}$ sitting diagonally inside $(\mathbb{Z}/2\mathbb{Z})^n$. Let K_4 denote the normal subgroup of S_4, consisting of even permutations which are products of two disjoint transpositions in S_4.

Lemma 2. Let $n \geq 3$, and H be a non-trivial normal subgroup of S_n. The only proper subspaces of $(\mathbb{Z}/2\mathbb{Z})^n$ which are invariant under H are Δ and V_e.

Note that these subspaces are also invariant under S_n.

Further, as follows: let \(\{1,\cdots,n\}\) consisting of the indices \(i\), where \(\varepsilon_i = 0\). Let \(Z'_\varepsilon\) denote the complement of \(Z\varepsilon\) in \(\{1,\cdots,n\}\).

Let \(W \subset V\) be a \(H\)-invariant subspace of \(V\) which is not equal to \(\Delta\). Suppose \(\varepsilon \in W\) is not an element of \(\Delta\). Then both \(Z\varepsilon\) and \(Z'_\varepsilon\) are non-empty.

We consider first the special case, \(n = 4\), and \(|Z\varepsilon| = |Z'_\varepsilon| = 2\). Since the group \(H \supset K_4\), and \(K_4\) acts two transitively on the set \(\{1,\cdots,4\}\), it follows that \(W = V_\varepsilon\).

We now consider the general case, and assume we are not in the above case when \(n = 4\). Choose a subset \(I = \{i,j,k,l\} \subset \{1,\cdots,n\}\) of cardinality 4 when \(n \geq 4\), as follows: let \(i \in Z\varepsilon\), \(j \in Z'_\varepsilon\), and \(k, l\) both are in the same set \(Z\varepsilon\) or \(Z'_\varepsilon\). Let \(\sigma = (ij)(kl)\), and when \(n = 3\), let \(\sigma\) be any even permutation. It can be seen that the element \(\sigma(\varepsilon) \neq \varepsilon\).

Consider the non-zero element \(\varepsilon' = \varepsilon + \sigma(\varepsilon) \in W\). Since the map \(\phi\) is \(S_n\)-invariant, \(\varepsilon'\) lies in the even subspace \(V_\varepsilon\).

Since \(\sigma\) fixes the indices which are not in \(I\), for any index \(m\) not in \(I\), \(\varepsilon'_m = 0\). Further, \(\varepsilon'_k = \varepsilon'_l = 0\). Thus \(\varepsilon'\) is supported on two indices, i.e., is of the form \(e_{i_1} + e_{i_2}\), \(i_1 \neq i_2\), where \(e_1,\cdots,e_n\) form the standard basis for \(\mathbb{F}_2^n\).

Since \(H\) acts doubly transitively on the set \(\{1,\cdots,n\}\), it follows that \(W\) contains all elements of the form \(e_i + e_j\) with \(1 \leq i < j \leq n\). Hence \(W\) contains \(V_\varepsilon\), and this proves the lemma.

\(\square\)

We now describe the normal subgroups of the Weyl group \(W(D_n)\).

Lemma 3. Let \(n \geq 3\). The proper normal subgroups of \(W(D_n)\) are,

\[\Delta, \ V_\varepsilon, \ V_\varepsilon \rtimes A_n, \text{ and } V_\varepsilon \rtimes K_4\text{ when }n = 4.\]

Proof. Let \(N\) be a proper, normal subgroup of \(W = W(D_n)\). Denote by \(\overline{N}\) the image of \(N\) in \(S_n\) and \(V_N = V \cap N\) the kernel of the projection map to \(S_n\).

Suppose \(\overline{N} = (\varepsilon)\) is trivial. Then \(N \subset V_\varepsilon\) and has to be an invariant subspace for the action of \(S_n\). By Lemma 2 \(V_N = \{0\}, \Delta\) or \(V_\varepsilon\).

Assume now that \(\overline{N}\) is non-trivial. We claim that \(V_N = V_\varepsilon\). If this is so, then \(N\) will be isomorphic to the semi-direct product \(V_\varepsilon \rtimes \overline{N}\).

For every \(\sigma \in \overline{N}\), choose \(\varepsilon_\sigma \in V_\varepsilon\) such that \((\varepsilon_\sigma, \sigma) \in N\). Since \(N\) is normal, for any \(\varepsilon \in V_\varepsilon\), the element

\[(\varepsilon, 1)(\varepsilon_\sigma, \sigma)(\varepsilon, 1)^{-1}(\varepsilon_\sigma, \sigma)^{-1} = (\varepsilon + \varepsilon_\sigma - \sigma(\varepsilon), \sigma)(-\sigma^{-1}(\varepsilon_\sigma), \sigma^{-1}) = (\varepsilon - \sigma(\varepsilon), 1),\]

belongs to \(N\), where 1 denotes the identity element in \(S_n\).
Thus for any \(\varepsilon \in V_e \) and any \(\sigma \in \mathbb{N} \), the element \(\varepsilon - \sigma(\varepsilon) \in V_N \). Choose \(\varepsilon = (1, 0, \cdots, 0) \). When \(n \geq 4 \), let \(i, j, k \) be distinct elements in the set \(\{2, \cdots, n\} \), and take \(\sigma_i = (1, i)(j, k) \) belongs to \(\mathbb{N} \). When \(n = 3 \), let \(\sigma_i = (1, 2, 3) \).

The elements \(\varepsilon - \sigma_i(\varepsilon) = (1, 0, \cdots, 1, 0, \cdots, 0) \) where \(1_i \) denotes 1 at the \(i \)-th co-ordinate generate the subspace \(V_e \). Hence \(V_N = V_e \) and this proves the lemma.

\[\square \]

Corollary 1. Let \(n = 3 \) or \(n \geq 5 \). Then the following holds:

1. If \(n \) is odd, \(\Delta \cap V_e \) is the identity subgroup. Hence,
 \[W(B_n) \simeq W(D_n) \times \Delta, \quad n \text{ odd}. \]
2. When \(n \) is even, \(\Delta \subset V_e \), and \(W(B_n) \) cannot be expressed as a product of two non-trivial groups.

5. Proof of Theorem 4: Initial cases

The proof of Theorem 4 breaks up into different cases depending on the relative structure of the Weyl group. In this section, we use general group theoretic techniques to establish the theorem in some cases.

5.1. Simple components

Let \(U \) be a finite group. A simple group \(S \) is said to be a component of \(U \), if there exists subgroups \(V_1 \subset V_2 \subset U \), with \(V_1 \) normal in \(V_2 \) and \(V_2/V_1 \simeq S \). Denote by \(JH_s(U) \) the simple components (counted up to isomorphism and without multiplicity) that occur in \(U \).

Lemma 4. Let \(U \) be a compositum of groups \(U_1, \ldots, U_r \). Then

\[JH_s(U) = \bigcup_{i=1,\ldots,r} JH_s(U_i). \]

Proof. Since \(U \) surjects onto each \(U_i \) by definition of a compositum of groups, we have \(\bigcup_{i=1,\ldots,r} JH_s(U_i) \subset JH_s(U) \).

Conversely suppose there exists subgroups \(V_1 \subset V_2 \subset U \), with \(V_1 \) normal in \(V_2 \) and \(V_2/V_1 \simeq S \). If for all projections \(U \to U_i \), the images of \(V_1 \) and \(V_2 \) coincide in \(U_i \), then \(V_1 = V_2 \). Hence there exists some \(i \), for which the images of \(V_1 \) and \(V_2 \) are not equal. This implies that \(S \in JH_s(U_i) \) and this gives us the reverse inclusion. \(\square \)

Corollary 2. With the notation of Theorem 4, suppose that \(JH_s(W_1) \) is not a subset of \(JH_s(W_2) \). Then \(F_1 F_2 \) is of infinite degree over \(F_2 \).

5.2. Simple components of Weyl groups

From the explicit knowledge of Weyl groups of a simple root system, the Weyl groups of the simple root systems \(A_{n-1}, B_n, D_n \) for \(n \geq 5 \) have the simple groups \(\mathbb{Z}/2\mathbb{Z} \) and \(A_n \) as the simple Jordan-Holder components, where \(A_n \) is the alternating group on \(n \)-symbols. We will refer to these groups as JH-type \(A_n \).
Using the notation of the ATLAS, the Weyl groups of the exceptional groups E_6 (resp. E_7, E_8) have $U_4(2)$ (resp. $Sp_6(2)$, $O_7^+(2)$) and $\mathbb{Z}/2\mathbb{Z}$ as the simple components. These will be called as groups of JH-type \mathbb{E}.

The Weyl groups of the root systems A_n ($n = 2, 3$), B_n/C_n ($n = 3, 4$), D_n ($n = 4$), F_4, G_2 have $\mathbb{Z}/2\mathbb{Z}$ and $\mathbb{Z}/3\mathbb{Z}$ as the simple components. We will refer to this as abelian of JH-type $\mathbb{Z}/3\mathbb{Z}$.

Finally, $\mathbb{Z}/2\mathbb{Z}$ is the only simple component for the Weyl groups of the root system A_1, B_2/C_2. These will be referred to as of JH-type $\mathbb{Z}/2\mathbb{Z}$.

Hence we obtain the following corollary (we have assumed that G_1 and G_2 are not isogenous):

Corollary 3. With the above notation, suppose G_1 is of JH-type either A_n or E and G_2 is of JH-type either A_m with $n \neq m$, E or $\mathbb{Z}/3\mathbb{Z}$. Assume that the groups G_1 and G_2 are not isogenous over \bar{K} (required when both are of E-type). Then $\mathcal{F}_1\mathcal{F}_2$ is of infinite degree over \mathcal{F}_1 and \mathcal{F}_2.

Corollary 4. With the above notation, suppose G_1 is not of JH-type $\mathbb{Z}/2\mathbb{Z}$, and G_2 is of JH-type $\mathbb{Z}/2\mathbb{Z}$. Then $\mathcal{F}_1\mathcal{F}_2$ is of infinite degree over \mathcal{F}_2.

5.3. JH type $\mathbb{Z}/2\mathbb{Z}$.

Corollary 5. Suppose G_1 is of type B_2 or C_2, and G_2 is of type A_1. Then $\mathcal{F}_1\mathcal{F}_2$ is of infinite degree over \mathcal{F}_2.

Proof. The Weyl group of G_1 is non-abelian whereas that of G_2 is abelian. Hence Theorem 4 is valid in this case, and the corollary follows from Proposition 3. □

5.4. Exponent of Weyl groups. For a finite group H, let $e(H)$ denote the exponent, i.e., the least natural number n such that $h^n = e$ for all elements $h \in H$.

Lemma 5. Suppose that the exponent of W_1 does not divide the exponent of W_2. Then Theorem 4 holds. In particular, $\mathcal{F}_1\mathcal{F}_2$ is of infinite degree over \mathcal{F}_2.

Proof. Suppose U is a compositum of groups U_i $i = 1, \ldots, r$, each of which is isomorphic to a normal subgroup of W_2. By definition of the compositum,

$$U \subset \prod_{i=1}^r U_i \subset \prod_{i=1}^r W_2.$$

Thus the exponent of U divides the exponent of W_2. By hypothesis, there cannot be a surjection from U to W_1. Hence the lemma follows. □

This lemma allows us to take care of a few more cases, especially when both G_1 and G_2 are of JH-type $\mathbb{Z}/3\mathbb{Z}$. From the calculation of the exponent of the Weyl groups of orthogonal groups given by Lemma 1 and the calculation of the exponent of $W(F_4)$ by Lemma 10, we have the following:
Lemma 6. (1) The exponents of \(W(A_2) \) and \(W(G_2) \) is 6.
(2) The exponents of the Weyl groups of rank 3-simple Lie algebras (of Killing-Cartan type \(A_3, B_3 \) or \(C_3 \)) is 12.
(3) The exponent of \(W(D_4) \) is 12.
(4) The exponent of \(W(B_4) \) and \(W(F_4) \) is 24.

Consequently we have the following corollary:

Corollary 6. With the above notation, \(F_1F_2 \) is of infinite degree over \(F_2 \) in the following cases:

1. The rank of \(G_2 \) is two, and rank of \(G_1 \) is greater than two.
2. The rank of \(G_2 \) is three, and rank of \(G_1 \) is greater than three, except when \(G_1 \) is of type \(D_4 \).
3. \(G_2 \) is of type \(D_4 \) and \(G_1 \) is either of type \(B_4 \) and \(F_4 \).

Remark. It follows from Lemma 1, that Theorem 2 holds when \(G_1 \) is of type \(W(B_2^l) \) and \(G_2 \) is of type \(W(D_2^l), l \geq 2 \).

5.5. JH-type \(\mathbb{Z}/3\mathbb{Z} \). We now prove the theorem when \(G_1 \) is of type \(D_4 \) and \(G_2 \) is of rank 3. The group \(G_2 \) is of type either \(A_3, B_3 \) or \(C_3 \). The Weyl group \(W_2 \) of \(G_2 \) is isomorphic to either \(S_4 \) or \(S_4 \times \mathbb{Z}/2\mathbb{Z} (\simeq W(B_3)) \).

For a group \(H \), let \(H^{(r)} \) denote the \(r \)-th derived subgroup of \(H \). We have,
\[
S_4^{(1)} \simeq A_4, \quad S_4^{(2)} \simeq K_4 \quad \text{and} \quad S_4^{(3)} \simeq (1).
\]
Suppose there is a surjection \(G(L/K) \to W_1 \). For each \(t \geq 1 \), the \(r \)-th derived group \(G(L/K)^{(r)} \) surjects onto \(W_1^{(r)} \).

The group \(G(L/K) \) embeds into \(\prod_{i=1}^t G(L_i/K) \), where each \(G(L_i/K) \) is a normal subgroup of \(W_2 \). Since \(W_2^{(3)} \) is the trivial group, it follows that \(G(L/K)^{(3)} \) is trivial.

The group \(W(D_4) \) surjects onto \(S_4 \). Hence there is a surjection \(W(D_4)^{(2)} \to K_4 \). Since \(W(D_4)^{(2)} \) is a normal subgroup of \(W(D_4) \), by Lemma 3, \(W(D_4)^{(2)} \) is non-abelian. Hence \(W(D_4)^{(3)} \) is non-trivial, and this proves Theorem 4 in this case.

5.6. Corollaries 3, 4, 5 and 6 prove Theorem 2 in many cases. The cases left in order to prove Theorem 2 are the following:

1. Both \(G_1 \) and \(G_2 \) are of JH-type \(A_n \).
2. \(G_1 \) and \(G_2 \) are of type \(B_4 \) or \(F_4 \).

6. A VS B AND D

We consider the case where \(G_1 \) is either of type \(B_n \) or \(D_n \) and \(G_2 \) is of type \(A_{n-1} \).
Proposition 4. In the notation of Theorem 2, let G_1 be of type either B_n/C_n or D_n for $n \geq 3, n \neq 4$. Let G_2 be of type A_{n-1}. Then F_1F_2 is of infinite degree over F_2.

Proof. By Proposition 3 it is enough to show that there is no surjective map from N to $W_1 = W(G_1)$, where N is the Galois group of a compositum of Galois extensions L_i/K for $i = 1, \cdots, r$, and each Galois group $G(L_i/K)$ is isomorphic to a normal subgroup of S_n.

Upto reordering of the indices, assume that $G(L_i/K) \simeq S_n$ for $i = 1, \cdots, s$ and $G(L_i/K) \simeq A_n$ for $i > s$. For $i = 1, \cdots, s$, let E_i be the unique quadratic extension of K contained inside L_i, and E be the compositum of the E_i. There is an exact sequence,

$$1 \rightarrow G(L/E) \rightarrow G(L/K) \rightarrow G(E/K) \rightarrow 1,$$

where $G(E/K) \simeq (\mathbb{Z}/2\mathbb{Z})^t$ for some $t \geq 0$. The group $G(L/E)$ is a compositum of the Galois groups $G(L_iE/E)$ each of which is isomorphic to the group A_n. Since A_n is simple, there are no proper Galois extensions of E contained inside L_iE. Hence,

$$G(L/E) \simeq A_n^u$$

for some natural number $u \leq r$.

Suppose there is a surjection ϕ from N to W_1. By Lemma 3, W_1 has no normal subgroups isomorphic to A_n, the subgroup $G(L/E)$ of N lies in the kernel of ϕ. This implies that the map ϕ factors via the abelian group $G(E/K)$, which is impossible as W_1 is non-abelian.

Hence there does not exist any surjective homomorphism from N to W_1. By Proposition 3 the proposition is proved. \qed

7. D vs B

We consider the case where G_1 is either type B_n, or C_n, and G_2 is of type D_n, and n is even.

Let N be the Galois group of a compositum L of Galois extensions L_i/K for $i = 1, \cdots, r$, with each $G(L_i/K)$ a normal subgroup of $W_2 = W(D_n)$. We need to show that there is no surjective map from $N = G(L/K)$ to $W_1 = W(B_n)$.

The Galois group $G(L_i/K)$ is a normal subgroup of W_2. There is an extension,

$$1 \rightarrow G(L_i/E_i) \rightarrow G(L_i/K) \rightarrow G(E_i/K) \rightarrow 1,$$

where $G(L_i/E_i)$ is the maximal abelian normal subgroup of $G(L_i/K)$ and $G(E_i/K)$ is isomorphic to either the trivial, or the alternating group A_n or the symmetric group S_n on n-symbols. Let E be the compositum of the fields E_i.

Over E, the field L can be considered as the compositum of the abelian extensions L_iE of E. Hence $G(L/E)$ is abelian and there is an exact sequence,

$$1 \rightarrow G(L/E) \rightarrow G(L/K) \rightarrow G(E/K) \rightarrow 1.$$ (6)
This induces an action of $G(E/K)$ on $G(L/E)$. Since E/K is a compositum of Galois extensions of K, there is a natural inclusion of the Galois groups,

$$G(E/K) \subset \prod_{i=1}^r G(E_i/K), \quad (7)$$

Similarly, the Galois group $G(L/E)$ is contained in a product of groups,

$$G(L/E) \subset \prod_{i=1}^r G(L_iE/E) \simeq \prod_{i=1}^r G(L_i/L_i \cap E) \subset \prod_{i=1}^r G(L_i/E_i), \quad (8)$$

where the equality arises from restriction.

Lemma 7. The action of $G(E/K)$ on $G(L/E)$ defined by the extension Equation (6) is compatible via the inclusions defined by Equations (7) and (7), with the component wise action of $\prod_{i=1}^r G(E_i/K)$ on $\prod_{i=1}^r G(L_i/E_i)$.

Proof. Let $\sigma \in G(E/K)$ and $\tau \in G(L/E)$. The action of σ on τ is given by $\sigma(\tau) = \tilde{\sigma} \tau \tilde{\sigma}^{-1}$, where $\tilde{\sigma}$ is any extension of σ to an automorphism of L/K. Then

$$\sigma(\tau)_i = \tilde{\sigma}_i \tau_i \tilde{\sigma}_i^{-1},$$

where the subscript index i denotes the restriction of the Galois automorphisms to $L_i E$. Considering $G(L_iE/E) \subset G(L_i/E_i)$, this action depends only on the restriction of σ to E_i/K, and this proves the lemma. \qed

7.1. Image of abelian part.

In order to prove Theorem 4, we first show that the image of the ‘abelian part’ $G(L/E)$ of $G(L/K)$ does not cover the abelian part $V \subset W_1$:

Lemma 8. Suppose $\theta : G(L/K) \to W(B_n)$ is a surjective homomorphism. Then $\theta(G(L/E)) \subset V_\epsilon$, where V_ϵ is the ‘even’ subspace of $V = (\mathbb{Z}/2\mathbb{Z})^n$ defined by Equations (4) and (4).

Proof. Since $G(L/E)$ is an abelian normal subgroup of $G(L/K)$, the image $\theta(G(L/E))$ is contained inside V, the maximal abelian normal subgroup of $W(B_n)$. Let $\tilde{\theta}$ denote the induced, surjective map from $G(E/K) \to S_n$.

Let the indexing be such that for $i = 1, \cdots, s$, the extension E_i/K is non-trivial, and for $s < i \leq r$ the extension E_i/K is trivial. This is the same as saying that for $i \leq s$ (resp. $i > s$), the extension L_i/K is non-abelian (resp. nonabelian). The $G(E/K)$-module $G(L_iE/E)$ can be considered as a submodule of $G(L_i/E_i) \subset V_\epsilon$ with respect to the projection $G(E/K) \to G(E_i/K)$.

For $i \leq s$, by Lemma 3 on the classification of normal subgroups of $W(D_n)$, $G(L_i/E_i) \simeq V_\epsilon$, this as $G(E_i/K)$-module. We continue to denote by V_ϵ the isomorphism class of $G(L_i/E_i)$ as $G(E/K)$-module.

For $i \geq s$, since $G(E_i/K)$ is trivial, the group $G(E/K)$ acts trivially on $G(L_iE/E)$. In particular, $G(L_iE/E)$ is a direct sum of $\mathbb{Z}/2\mathbb{Z}$-groups with trivial $G(E/K)$-action.
Thus,

\[\prod_{i=1}^{r} G(L_i E/E) \simeq V_e^s \times \prod_{i>s} G(L_i E/E) \simeq V_e^s \times (\mathbb{Z}/2\mathbb{Z})^t, \]

as \(G(E/K)\)-modules for some \(t \geq 0\).

For \(i \geq s\), the quotient module \(V_e/\Delta\) is a simple \(G(E/K)\)-module, since it is simple as \(A_n\) or \(S_n\)-module. Hence the quotient \(G(E/K)\)-module

\[\left(\prod_{i=1}^{r} G(L_i E/E) \right) / \Delta^s \simeq (V_e/\Delta)^s \times (\mathbb{Z}/2\mathbb{Z})^t, \]

is a semisimple \(G(E/K)\)-module.

Consider the \(G(E/K)\)-module \(G(L/E) \cap \Delta^s\). Since this is trivial as a \(G(E/K)\)-module, and \(\bar{\theta}\) is a surjection onto \(S_n\), the image \(\theta(G(L/E) \cap \Delta^s) \subset V\) is trivial as a \(S_n\)-module. It follows that \(\theta(G(L/E) \cap \Delta^s) \subset \Delta\).

Now the \(G(E/K)\)-module \(G(L/E)/(G(L/E) \cap \Delta^s)\) is a submodule of the semisimple \(G(E/K)\)-module \((V_e/\Delta)^s \times (\mathbb{Z}/2\mathbb{Z})^t\). This implies that it is semisimple, and there are numbers \(s', t' \geq 0\) such that

\[G(L/E)/(G(L/E) \cap \Delta^s) \simeq (V_e/\Delta)^{s'} \times (\mathbb{Z}/2\mathbb{Z})^{t'}, \]

as a \(G(E/K)\)-module. Each of the \(G(E/K)\)-summands on the right is of cardinality at most \(2^{n-2}\).

Again by the surjectivity \(\bar{\theta} : G(E/K) \to S_n\), the image

\[\theta(G(L/E)/(G(L/E) \cap \Delta^s)) \subset V/\Delta, \]

is a sum of \(S_n\)-modules, each of which has cardinality at most \(2^{n-2}\). By Lemma 2, the image of each irreducible summand is contained inside \(V_e/\Delta\). Hence the image \(\theta(G(L/E))\) is contained inside \(V_e\), and this proves the lemma. \(\square\)

7.2. A splitting property. Although each of the groups \(G(L_i/K)\) is a semidirect product of \(G(E_i/K)\) by \(G(L_i/E_i)\), it is not clear that \(G(L/K)\) is a semidirect product of \(G(E/K)\) by \(G(L/E)\). The following lemma serves as a replacement for this property.

Lemma 9. Given the extension,

\[1 \to G(L/E) \to G(L/K) \to G(E/K) \to 1, \]

there is a group \(Q\) satisfying the following:

1. \(Q\) is obtained from \(G(E/K)\) recursively by a sequence of central extensions with kernel \(\mathbb{Z}/2\mathbb{Z}\), i.e., there is a sequence of maps

 \[Q = Q_k \to Q_{k-1} \to \cdots \to Q_0 = G(E/K) \]

 such that for \(i = 0, \cdots, k - 1\), there is a central extension

 \[0 \to \mathbb{Z}/2\mathbb{Z} \to Q_{i+1} \to Q_i \to 1. \]
(2) \(Q \) splits the extension given by Equation (6)

\[
1 \to G(L/E) \to G(L/K) \to G(E/K) \to 1,
\]

i.e., there is a map \(s : Q \to G(L/K) \) such that composed with the projection to \(G(E/K) \) is the map \(\pi : Q \to Q_0 = G(E/K) \).

Proof. We prove this by induction on \(\sigma, \tau \). This proves the claim.

To check that the image of \(Q \) lands inside the subgroup \(G(L/K) \), we need to show that for \((\sigma, \tau) \in G(L'/K) \times G(L/K) \), then \(\sigma|_{L' \cap L_r} = \tau|_{L' \cap L_r} \). But \(L' \cap L_r = E' \cap E_r \).

Since \(Q \) is an extension of \(G(E/K) \), the projection of the image of \(Q \) to the group \(G(E'/K) \times G(E_r/K) \) lands inside \(G(E/K) \). This proves the compatibility of \(\sigma \) and \(\tau \), and establishes the lemma in this case.

We argue now using cohomological language. Let \(c \) denote the cohomology class in \(H^2(G(E/K), G(L/E)) \) corresponding to the extension given by Equation (6). We are required to show that there exists an extension \(p : Q \to G(E/K) \) of \(G(E/K) \)

(i) \(E' \neq E \)

Suppose \(E' \cap E_r = F \), and \(E_r \) is a non-normal extension of \(K \). From the structure of normal subgroups of \(W(D_n) \), \(G(E_r/K) \) is isomorphic to either \(A_n \) or \(S_n \). It follows that \(E' \cap E_r = F \) is either \(K \) or a quadratic extension of \(K \).

We claim that \(L' \cap L_r = F \). Suppose not. Since \(L' \cap L_r \) is a normal extension contained inside \(L_r \), if it is not equal to \(F \), then it has to contain \(E_r \). This is equivalent to a surjective homomorphism from \(G(L'/K) \to G(E_r/K) \). Since \(G(E_r/K) \) does not contain any abelian normal subgroups, the map factors \(G(L'/K) \to G(E'/K) \to G(E_r/K) \). But this means \(E' \supset E_r \), contradicting the assumption that \(E' \cap E_r = F \). This proves the claim.

By definition, \(G(E/K) \) is the subgroup of \(G(E'/K) \times G(E_r/K) \) consisting of pairs \((\sigma, \tau) \in G(E'/K) \times G(E_r/K) \) satisfying \(\sigma|_{E' \cap E_r} = \tau|_{E' \cap E_r} \). Let \(Q \) be the extension of \(G(E/K) \) obtained as a pullback restricted to \(G(E/K) \) of the extension \(Q' \times G(E_r/K) \to G(E'/K) \times G(E_r/K) \). The composite map

\[
Q \to Q' \times G(E_r/K) \to G(L'/K) \times G(L_r/K),
\]

splits the extension \(G(L'/K) \times G(L_r/K) \to G(E'/K) \times G(E_r/K) \), by the inductive hypothesis.

To check that the image of \(Q \) lands inside the subgroup \(G(L/K) \), we need to show that for \((\sigma, \tau) \in G(L'/K) \times G(L_r/K) \), then \(\sigma|_{L' \cap L_r} = \tau|_{L' \cap L_r} \). But \(L' \cap L_r = E' \cap E_r \).

Since \(Q \) is an extension of \(G(E/K) \), the projection of the image of \(Q \) to the group \(G(E'/K) \times G(E_r/K) \) lands inside \(G(E/K) \). This proves the compatibility of \(\sigma \) and \(\tau \), and establishes the lemma in this case.

(ii) \(E' = E \)

There is an isomorphism \(G(L/L') \cong G(L_rE/L' \cap L_rE) \), and the latter group is a module for the \(G(E_r/K) \), contained inside \(V_e \). By Lemma 2, \(G(L_rE/L' \cap L_rE) \) is isomorphic to either \(V_e \) or \(\Delta \) or 0.

If it is 0, then \(L = L' \), and there is nothing to prove.

We argue now using cohomological language. Let \(c \) denote the cohomology class in \(H^2(G(E/K), G(L/E)) \) corresponding to the extension given by Equation (6). We are required to show that there exists an extension \(p : Q \to G(E/K) \) of \(G(E/K) \)
satisfying Property (1), such that the pullback $\pi^*(c) \in H^2(\mathbb{Q}, G(L/E))$ is trivial, i.e., the pullback to Q of the extension given by Equation (6) splits.

Suppose $G(L_r E/L' \cap L_r E) \simeq V_e$ as $G(E_r/K)$-module. In this case, the fields L' and $L_r E$ are linearly disjoint over E, and there is an isomorphism of $G(E/K)$-modules, $G(L/E) \simeq G(L'/E) \times G(L_r E/E)$. Hence,

$$H^2(G(E/K), G(L/E)) \simeq H^2(G(E/K), G(L'/E)) \oplus H^2(G(E/K), G(L_r E/E)).$$

By Lemma 7, the cohomology class in $H^2(G(E/K), G(L'/E))$ defined by the extension is inflated from the cohomology class in $H^2(G(E_r/K), G(L_r/L' \cap L_r))$. By Lemma 8, the extension of $G(E_r/K)$ defined by $G(L_r E/L' \cap L_r E)$ splits. The lemma follows by taking $Q = Q'$ and $\pi = \pi'$.

We come to the interesting case, when

$$G(L/L') \simeq G(L_r E/L_r E \cap L') \simeq \Delta.$$

As a group $\Delta \simeq \mathbb{Z}/2\mathbb{Z}$. Since $G(L/L')$ is a $G(E/K)$-module, by projecting to each $G(L_r E/E)$, it is seen that $G(E/K)$ acts trivially on $G(L/L') \simeq (\mathbb{Z}/2\mathbb{Z})^t$ for some $t \geq 0$. The exact sequence,

$$1 \to G(L/L') \to G(L/E) \to G(L'/E) \to 1,$$

considered as $G(E/K)$-modules, yields the following exact sequence of cohomology groups,

$$H^2(G(E/K), G(L/L')) \to H^2(G(E/K), G(L/E)) \to \Delta H^2(G(E/K), G(L'/E)).$$

By induction, there exists an extension $\pi' : Q' \to G(E/K)$ satisfying Property (1) of the lemma, such that the class $\pi'^*(c') \in H^2(Q', G(L'/E))$ is trivial. Pulling back the sequence given by Equation (9) to Q', it follows that the cohomology class $\pi'^*(c') \in H^2(Q', G(L/E))$ is the image of a cohomology class c'' in $H^2(Q', G(L/L'))$.

Since $G(E/K)$ acts trivially on $G(L/L')$, the cohomology class of c'' defines a central extension,

$$1 \to G(L/L') \to Q \to Q' \to 1.$$

The cohomology class c'' can be killed by going to the central extension Q. Since $G(L/L') \simeq (\mathbb{Z}/2\mathbb{Z})^t$ for some $t \geq 0$, this proves both parts of the lemma.

This proves the lemma, except in the cases when the field extensions L_i/K are abelian. In this case, the Galois group $G(L_i/K)$ is isomorphic to either $\mathbb{Z}/2\mathbb{Z}$ or $(\mathbb{Z}/2\mathbb{Z})^{n-1}$. Let L' (resp. L'') be the compositum of all the non-abelian (resp. abelian) extensions L_i/K. The field L'' can be decomposed as $L'' = F'F''$, where $F' = F \cap L'$ and F'' is disjoint from L'. The Galois group $G(L/K) \simeq G(L'/K) \times G(F''/K)$, and this maps to $G(E'/K) \simeq G(E/K)$, where E and E'' are as notation used in the foregoing paras. Taking $Q = Q'$, satisfies the conditions of the lemma, and this proves the lemma in all cases. \qed
7.3. **Proof of Theorem 4**. We now come to the proof of Theorem 4 in the case when G_2 is either type B_n, C_n and G_2 is of type D_n, and n is even. Suppose there is a surjective map $\theta : G(L/K) \to W(B_n)$. By Lemma 8, the image $\theta(G(L/E)) \subset V_e$.

Consider the homomorphism $\theta \circ s : Q \to W(B_n)$, where $Q \to G(L/K)$ is as in Lemma 9. There is a sequence of maps

$$Q = Q_k \to Q_{k-1} \to \cdots \to Q_0 = G(E/K),$$

where each of the extensions $Q_i \to Q_{i-1}$ is a central $Z/2Z$-extension. Arguing as in the proof of Lemma 8 by downward induction on i, it follows that the image under $\theta \circ s$ of the kernel of the projection $p : Q \to G(E/K)$ lands inside the subgroup $\Delta \subset W(B_n)$.

Going modulo Δ, we have a map $G(E/K) \to W(B_n)/\Delta$, which we continue to denote by θ. Since V/Δ has no S_n-invariant subspace, arguing as in the proof of Lemma 8, it follows that the image of $G(E/K)$ intersects V/Δ trivially. It follows that the image of Q intersection V is contained inside Δ.

Going modulo V_e, we have that the map $\theta : G(L/K) \to W(B_n)$ factors via $Q \to (V/V_e) \times S_n$. But the projection of the image of Q to the first factor V/V_e is trivial. Hence it follows that θ cannot be a surjection, and Theorem 4 follows in this case.

8. **B_4 vs F_4**

8.1. **F_4-root system.** We study now the root system F_4 and its Weyl group $W(F_4)$ following ([Bou]). Consider the four dimensional vector space over \mathbb{R}^4 with standard basis vectors e_1, \ldots, e_4. Let $L_0 = \mathbb{Z}^4$, and L_1 denote the sublattice of L_0 consisting of vectors $x \in \mathbb{Z}^4$ such that $||x||^2 \in 2\mathbb{Z}$. Denote by $L_2 = L_0 + \mathbb{Z}(\frac{1}{2}(\sum_{i=1}^4 e_i))$, the dual lattice of L_1 inside \mathbb{R}^4.

The root system R of F_4 can be described as those elements $x \in L_2$ with $||x||^2$ equal to either 1 or 2. The element ε (with a subscript) will denote either 1 or -1. The root system of F_4 has 24 long roots of the form $\varepsilon_i e_i + \varepsilon_j e_j$, $1 \leq i < j \leq 4$. For the short roots, 8 of them are of the form $\varepsilon_i e_i$, $1 \leq i \leq 4$, and 16 of them are of the form $(\sum_{i=1}^4 \varepsilon_i e_i)/2$.

The long (resp. short) roots form a root system R_l (resp. R_s) of type D_4. There is a homomorphism $W(F_4) \to \text{Aut}(R_l) \simeq \text{Aut}(D_4)$, which is injective since R_l is of the same rank as F_4. Since R_l generates L_1, any automorphism of R_l will leave L_1 and L_2 invariant. Hence,

$$W(F_4) \simeq \text{Aut}(D_4) \simeq W(D_4) \rtimes S_3,$$

where the second isomorphism follows from the fact that the outer automorphism group of D_4 is isomorphic to S_3. It follows that the order of $W(F_4)$ is 1152.

The Weyl group $W(D_4)_l$ (resp. $W(D_4)_s$) generated by the reflections in the long (resp. short) roots are normal subgroups in $W(F_4)$. The Weyl group $U_l \simeq S_3$ of the
\(\mathbb{A}_2 \) root system formed by the two long vectors \(e_2 - e_1, e_3 - e_2 \) surjects onto the outer automorphism group of \((\mathbb{D}_4)_s \) with base given by \(-e_1, -e_2, -e_3, (e_1 + \cdots + e_4)/2 \). Similarly, the Weyl group \(U_s \cong S_3 \) of the \(\mathbb{A}_2 \)-root system formed by the two short vectors \(u = (e_1 + e_2 + e_3 + e_4)/2, -e_4 \) surjects onto the outer automorphism group of \((\mathbb{D}_4)_t \) with base given by \(-e_1 - e_3, -e_2 + e_3, e_2 - e_4, e_2 + e_4 \). Since the base roots defining \(U_t \) and \(U_s \) are mutually orthogonal, the groups \(U_t \) and \(U_s \) commute with each other. This yields a semidirect product,

\[
W(\mathbb{F}_4) \cong A \rtimes (S_3 \times S_3).
\]

The group \(A \) is of cardinality 32 and is the intersection of the two normal subgroups \(W(\mathbb{D}_4)_t \) and \(W(\mathbb{D}_4)_s \). In \(W(\mathbb{D}_4)_t \), the normal subgroup \(A \) is given by the semidirect product \(V_e \rtimes K_4 \), where \(K_4 \) is the normal subgroup of order 4 contained inside \(S_4 \), and \(V_e \) is the even subspace contained inside \((\mathbb{Z}/2\mathbb{Z})^4 \).

Lemma 10. The exponent of \(W(\mathbb{F}_4) \) is 24.

Proof. The exponent of the group \(A \) is 4, and thus the exponent of \(W(\mathbb{F}_4) \) can be at most 24. On the other hand, the roots \(e_1 - e_2, e_2 - e_3, e_3 - e_4, e_4 \) forms a base for a \(\mathbb{B}_4 \)-root system. By Lemma 1, the exponent of the \(W(\mathbb{B}_4) \) is 24 and this proves the lemma. \(\Box \)

The center \(\Delta \cong \mathbb{Z}/2\mathbb{Z} \) of \(W(\mathbb{F}_4) \) is the commutator subgroup of \(A \) consisting of the transformations \(\pm Id \). The main observation is the following:

Lemma 11. The \(S_3 \times S_3 \)-module \(A/\Delta \) is irreducible.

Proof. The only non-trivial invariant subspace of \(A \) with respect to the action of \(U \) is the group \(V_e \) consisting of transformations with even number of sign changes on the standard basis vectors. For \(u = (e_1 + e_2 + e_3 + e_4)/2 \) and \(x = (x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \), the reflection \(s_u \) based at \(u \) is given by,

\[
s_u(x) = x - \left(\sum_{i=1}^{4} x_i \right) u.
\]

Let \(T_{12} \) be a transformation in \(V_e \) sending \(e_1 \) and \(e_2 \) to \(-e_1 \) and \(-e_2 \) respectively and fixing \(e_3, e_4 \). Now,

\[
s_uT_{12}s_u(e_1) = s_uT_{12}(e_1 - u) = s_u(-e_1 - (-e_1 - e_2 + u)) = s_u(e_2 - u) = e_2.
\]

Thus the group \(V \) does not leave \(V_e \) invariant, and this proves the lemma. \(\Box \)

8.2. Proof of Theorem 4 We now come to the proof of Theorem 4 in the case when \(G_1 \) is of type \(\mathbb{F}_4 \) and \(G_2 \) is of type \(\mathbb{B}_4 \). Let \(L \) be the compositum of Galois extensions \(L_1, \cdots, L_r \) over \(K \), such that \(G(L_i/K), i = 1, \cdots, r \) is isomorphic to a normal subgroup of \(W(\mathbb{B}_4) \). Let \(E_i \subset L_i \) be the Galois extension of \(K \), such that \(G(L_i/E_i) \) is the maximal normal 2-group in \(G(L_i/E_i) \). The Galois group \(G(E_i/K) \) is a normal subgroup of \(S_3 \). Let \(E = E_1 \cdots E_r \) denote the compositum of the fields \(E_i \).
The group $G(L_iE/E)$ is a normal 2-subgroup of $N_i = G(L_i/K)$, which is a normal subgroup of $W(B_4)$. Denote by \overline{N}_i the image of N_i with respect to the projection $W(B_4) \simeq C \rtimes S_3 \to S_3$, where C is a 2-group. Let $C_i = C \cap N_i$. It follows from the structure of $W(B_4)$, that there is a filtration of C_i by \overline{N}_i-stable subgroups, such that the graded components are abelian 2-groups of cardinality at most 4.

For any i, consider the projection map $G(L/E) \to G(L_iE/E)$. By Lemma 7, this map is equivariant as modules for the projection map $G(E/K) \to G(E_i/K)$. It follows that there is a filtration of that there is a filtration of $G(L/E)$ by $G(E/K)$-stable subgroups, such that the graded components are abelian 2-groups of cardinality at most 4.

Suppose there is a surjection from $G(L/K) \to W(F_4)$. Since $G(L/E)$ is a normal 2-group, its image will land inside the subgroup A of $W(F_4)$. This induces a surjection from $G(E/K) \to S_3 \times S_3$. By Lemma 11 the image of $G(L/E)$ is contained inside the center Δ of $W(F_4)$.

Going modulo Δ, we get a surjection from $G(E/K) \to W(F_4)/\Delta$. Since $W(F_4)/\Delta$ has no normal 3-groups, the normal 3-group contained inside $G(E/K)$ maps trivially to $W(F_4)/\Delta$. The quotient of $G(E/K)$ by this normal 3-group is a 2-group, and there cannot be a surjection to $W(F_4)/\Delta$. This proves Theorem 4 in this case.

Acknowledgement. We thank Dipendra Prasad for useful discussions.

References

[BPR] C. Bhagawat, S. Pisolkar, C. S. Rajan, Commensurability and representation equivalent arithmetic lattices, Int. Math. Res. Not., no. 8 (2014) 2017–2036.

[Bou] N. Bourbaki, Groupes et algèbres de Lie, Chap. IV, V, VI, 2ème édition, Masson, Paris, 1981.

[PR] V. P. Platonov and A. S. Rapinchuk, Algebraic Groups and Number Theory, Academic Press, New York, 1994.

[PR1] G. Prasad and A. S. Rapinchuk, Existence of irreducible \mathbb{R}-regular elements in Zariski dense subgroups, Math. Res. Letters, 10 (2003) 21–32.

[PR2] G. Prasad and A. S. Rapinchuk, Weakly commensurable arithmetic groups and isospectral locally symmetric spaces, Publ. Math. Inst. Hautes tudes Sci. 109 (2009), 113–184.

[PR3] G. Prasad and A. S. Rapinchuk, On the fields generated by the lengths of closed geodesics in locally symmetric spaces, Geom. Dedicata 172 (2014), 79–120.

[PR4] G. Prasad and A. S. Rapinchuk, Generic elements in Zariski-dense subgroups and isospectral locally symmetric spaces. Thin groups and superstrong approximation, Math. Sci. Res. Inst. Publ., 61, Cambridge Univ. Press, Cambridge, (2014) 211–252.

[T] J. Tits, Classification of algebraic semisimple groups, Algebraic Groups and Discontinuous Groups, Proc. Sym. Pure Math. 9 33–62, Amer. Math. Soc., Providence, 1966.

[V] V. E. Voskresenskii, Maximal tori without effect in semisimple algebraic groups, Mat. Zametki, 44:3 (1988), 309-318; Mathematical notes of the Academy of Sciences of the USSR 1988, Volume 44, Issue 3, pp 651-655.
INDIAN INSTITUTE OF SCIENCE, EDUCATION AND RESEARCH (IISER), HOMI BHABHA ROAD, PASHAN, PUNE - 411008, INDIA

E-mail address: supriya@iiserpune.ac.in

SCHOOL OF MATHEMATICS, TATA INSTITUTE OF FUNDAMENTAL RESEARCH, HOMI BHABHA ROAD, MUMBAI- 400005, INDIA

E-mail address: rajan@math.tifr.res.in