SPECTRAL THEORY FOR A MATHEMATICAL MODEL OF
THE WEAK INTERACTION: THE DECAY OF THE
INTERMEDIATE VECTOR BOSONS W^\pm, II.

WALTER H. ASCHBACHER, JEAN-MARIE BARBAROUX, JÉRÉMY FAUPIN,
AND JEAN-CLAUDE GUILLOT

Abstract. We do the spectral analysis of the Hamiltonian for the weak lepton-
tonic decay of the gauge bosons W^\pm. Using Mourre theory, it is shown that
the spectrum between the unique ground state and the first threshold is purely
absolutely continuous. Neither sharp neutrino high energy cutoff nor infrared
regularization are assumed.

1. Introduction

We study a mathematical model for the weak decay of the intermediate vector
bosons W^\pm into the full family of leptons. The full family of leptons involves
the electron e^- and the positron e^+, together with the associated neutrino ν_e and
antineutrino $\bar{\nu}_e$, the muons μ^- and μ^+ together with the associated neutrino ν_{μ}
and antineutrino $\bar{\nu}_{\mu}$ and the tau leptons τ^- and τ^+ together with the associated
neutrino ν_{τ} and antineutrino $\bar{\nu}_{\tau}$. The model is patterned according to the Standard
Model in Quantum Field Theory (see [19, 25]).

A representative and well-known example of this general process is the decay
of the gauge boson W^- into an electron and an antineutrino of the electron that
occurs in β-decay,

\begin{equation}
W^- \rightarrow e^- + \bar{\nu}_e.
\end{equation}

If we include the corresponding antiparticles in the process \[\text{(1.1)}\], the interaction
described in the Schrödinger representation is formally given by (see [19] (4.139)]
and [25, (21.3.20)])

\[I = \int \! d^3x \Psi_e(x) \gamma^\alpha (1 - \gamma_5) \Psi_{\nu_e}(x) W_\alpha(x) + \int \! d^3x \Psi_{\nu_e}(x) \gamma^\alpha (1 - \gamma_5) \Psi_e(x) W_\alpha(x)^*,\]
where γ^α, $\alpha = 0, 1, 2, 3$, and γ_5 are the Dirac matrices, $\Psi_e(x)$ and $\Psi_\nu(x)$ are the Dirac fields for e_\pm, ν_e, and $\bar{\nu}_e$, and W_α are the boson fields (see $[24$, §5.3$]$) given by

$$\Psi_e(x) = (2\pi)^{-\frac{d}{2}} \sum_{s = \pm} \int d^d p \left(b_{e,+}^s(p, s) \frac{u(p, s)}{(2(|p|^2 + m_e^2)^{\frac{d}{2}})} e^{ip.x} + b_{e,-}^s(p, s) \frac{v(p, s)}{(2(|p|^2 + m_e^2)^{\frac{d}{2}})} e^{-ip.x} \right),$$

$$\Psi_\nu_e(x) = (2\pi)^{-\frac{d}{2}} \sum_{s = \pm} \int d^d p \left(c_{e,+}(p, s) \frac{u(p, s)}{(2|p|)^{\frac{d}{2}}} e^{ip.x} + c_{e,-}(p, s) \frac{v(p, s)}{(2|p|)^{\frac{d}{2}}} e^{-ip.x} \right),$$

and

$$W_\alpha(x) = (2\pi)^{-\frac{d}{2}} \sum_{\lambda = -1, 0, 1} \int \frac{d^d k}{(2(|k|^2 + m_W^2)^{\frac{d}{2}})} \left(\epsilon_\alpha(k, \lambda) a_+(k, \lambda) e^{ik.x} + \epsilon^*_\alpha(k, \lambda) a_-^*(k, \lambda) e^{-ik.x} \right).$$

Here $m_e > 0$ is the mass of the electron and $u(p, s)/(2(|p|^2 + m_e^2)^{\frac{d}{2}})$ and $v(p, s)/(2(|p|^2 + m_e^2)^{\frac{d}{2}})$ are the normalized solutions to the Dirac equation (see $[19$, Appendix$]$), $m_W > 0$ is the mass of the bosons W^\pm and the vectors $\epsilon_\alpha(k, \lambda)$ are the polarizations of the massive spin 1 bosons (see $[24$, Section 5.2$]$), and as follows from the Standard Model, neutrinos and antineutrinos are considered to be massless particles.

The operators $b_{e,+}(p, s)$ and $b_{e,-}^*(p, s)$ (respectively $c_{e,+}(p, s)$ and $c_{e,-}^*(p, s)$), are the annihilation and creation operators for the electrons (respectively for the neutrinos associated with the electrons), satisfying the anticommutation relations. The index $-\lambda$ in $b_{e,\lambda}(p, s)$, $b_{e,\lambda}^*(p, s)$, $c_{e,\lambda}(p, s)$ and $c_{e,\lambda}^*(p, s)$ are used to denote the annihilation and creation operators of the corresponding antiparticles. The operators $a_+(k, \lambda)$ and $a_+^*(k, \lambda)$ (respectively $a_-(k, \lambda)$ and $a_-^*(k, \lambda)$) are the annihilation and creation operators for the bosons W^- (respectively W^+) satisfying the canonical commutation relations.

If one considers the full interaction describing the decay of the gauge bosons W^\pm into leptons (see $[19$, (4.139$]$) and if one formally expands this interaction with respect to products of creation and annihilation operators, we are left with a finite sum of terms associated with kernels of the form

$$\delta(p_1 + p_2 - k) g(p_1, p_2, k).$$

The δ-distributions that occur here shall be approximated by square integrable functions. Therefore, in this article, the interaction for the weak decay of W^\pm into the full family of leptons will be described in terms of annihilation and creation operators together with kernels which are square integrable with respect to momenta (see $[24$, and $[23$, $[22$]).

Under this assumption, the total Hamiltonian, which is the sum of the free energy of the particles (see $[21$) and of the interaction, is a well-defined self-adjoint operator in the Fock space for the leptons and the vector bosons (Theorem $[22$). This allows us to study its spectral properties.
Among the four fundamental interactions known up to now, the weak interaction does not generate bound states, which is not the case for the strong, the electromagnetic and the gravitational interactions. Thus we are expecting that the spectrum of the Hamiltonian associated with every model of weak decays is purely absolutely continuous above the ground state energy.

With additional assumptions on the kernels that are fulfilled by the model described in theoretical physics, we can prove (Theorem 3.2; see also [9, Theorem 3.3]) that the total Hamiltonian has a unique ground state in Fock space for a sufficiently small coupling constant, corresponding to the dressed vacuum. The strategy for proving existence of a unique ground state dates back to the early works of Bach, Fröhlich, and Sigal [5] and Griesemer, Lieb, and Loss [20], for the Pauli-Fierz model of non-relativistic QED. Our proofs follow these techniques as adapted to a model of quantum electrodynamics [6, 7, 13] and a model of the Fermi weak interactions [2].

Moreover, under natural regularity assumptions on the kernels, we establish a Mourre estimate (Theorem 5.1) and a limiting absorption principle (Theorem 7.1) for any spectral interval above the energy of the ground state and below the mass of the electron, for small enough coupling constants. As a consequence, the spectrum between the unique ground state and the first threshold is shown to be purely absolutely continuous (Theorem 3.3).

To achieve the spectral analysis above the ground state energy, our methods are taken largely from [4], [14], and [10]. More precisely, we begin with approximating the total Hamiltonian H by a cutoff Hamiltonian H_σ which has the property that the interaction between the massive particles and the neutrinos or antineutrinos of energies $\leq \sigma$ has been suppressed. The restriction of H_σ to the Fock space for the massive particles together with the neutrinos and antineutrinos of energies $\geq \sigma$ is denoted by H^{σ}_σ in this paper. Adapting the method of [4], we prove that, for some suitable sequence $\sigma_n \to 0$, the Hamiltonian $H^{\sigma_n}_\sigma$ has a gap of size $c_\sigma \sigma_n$ in its spectrum above its ground state energy for all $n \in \mathbb{N}$. In contrast to [9], we do not require a sharp neutrino high energy cutoff here.

Next, as in [14], [9] and [10], we use the gap property in combination with the conjugate operator method developed in [3] and [23] in order to establish a limiting absorption principle near the ground state energy of H. In [9], the chosen conjugate operator is the generator of dilatations in the Fock space for neutrinos and antineutrinos. As a consequence, an infrared regularization is assumed in [9] in order to be able to implement the strategy of [14]. Let us mention that no infrared regularization is required in [14] since, for the model of non-relativistic QED with a fixed nucleus which is studied in that paper, a unitary Pauli-Fierz transformation can be applied with the effect of regularizing the infrared behavior of the interaction.

In the present paper, we choose a conjugate operator which is the generator of dilatations in the Fock space for neutrinos and antineutrinos with a cutoff in the momentum variable. Hence our conjugate operator only affects the massless particles of low energies. A similar choice is made in [10], where the Pauli-Fierz model of non-relativistic QED for a free electron at a fixed total momentum is studied. Due to the complicated structure of the interaction operator in this context, the authors in [10] make use of some Feshbach-Schur map before proving a Mourre estimate for an effective Hamiltonian. Here we do not need to apply such a map, and we prove a
Mourre estimate directly for H. Compared with [14], our method involves further estimates, which allows us to avoid any infrared regularization.

As mentioned before, some of the basic results of this article have been previously stated and proved, under stronger assumptions, in [8, 9]. The main achievement of this paper in comparison with [9] is that no sharp neutrino high energy cutoff and no infrared regularization are assumed here.

The nature of the spectrum above the first threshold and the scattering theory of this model remain to be studied elsewhere.

The paper is organized as follows. In the next section, we give a precise definition of the Hamiltonian. Section 3 is devoted to the statements of the main spectral properties. In sections 4 to 8 and in Appendix B are given for the particular process depicted in (1.1). The general situation can be recovered by a straightforward generalization.

2. Definition of the model

According to the Standard Model, the weak decay of the intermediate bosons W^+ and W^- involves the full family of leptons together with the bosons themselves (see [19, Formula (4.139)] and [25]). As mentioned in the Introduction, the full family of leptons consists of the electron e^-, the muon μ^-, the tau lepton τ^-, their associated neutrinos ν_e, ν_μ, ν_τ and all their antiparticles e^+, μ^+, τ^+, $\bar{\nu}_e$, $\bar{\nu}_\mu$, and $\bar{\nu}_\tau$. In the Standard Model, neutrinos and antineutrinos are massless particles with helicity $-1/2$ and $+1/2$, respectively. Here we shall assume that both neutrinos and antineutrinos have helicity $\pm 1/2$.

The mathematical model for the weak decay of the vector bosons W^\pm is defined as follows. The index $\ell \in \{1, 2, 3\}$ denotes each species of leptons: $\ell = 1$ denotes the electron e^-, the positron e^- and the associated neutrinos ν_e, $\bar{\nu}_e$; $\ell = 2$ denotes the muons μ^-, μ^+ and the associated neutrinos ν_μ and $\bar{\nu}_\mu$; and $\ell = 3$ denotes the tau-leptons and the associated neutrinos ν_τ and $\bar{\nu}_\tau$.

Let $\xi_1 = (p_1, s_1)$ be the quantum variables of a massive lepton, where $p_1 \in \mathbb{R}^3$ and $s_1 \in \{-1/2, 1/2\}$ is the spin polarization of particles and antiparticles. Let $\xi_2 = (p_2, s_2)$ be the quantum variables of a massless lepton, where $p_2 \in \mathbb{R}^3$ and $s_2 \in \{-1/2, 1/2\}$ is the helicity of particles and antiparticles, and, finally, let $\xi_3 = (k, \lambda)$ be the quantum variables of the spin 1 bosons W^+ and W^-, where $k \in \mathbb{R}^3$ and $\lambda \in \{-1, 0, 1\}$ accounts for the polarization of the vector bosons (see [24] section 5.2).

Moreover, we set $\Sigma_1 = \mathbb{R}^3 \times \{-1/2, 1/2\}$ for the configuration space of the leptons and $\Sigma_2 = \mathbb{R}^3 \times \{-1, 0, 1\}$ for the bosons. Thus $L^2(\Sigma_1)$ is the Hilbert space of each lepton and $L^2(\Sigma_2)$ is the Hilbert space of each boson. In the sequel, we shall use the notations $\int_{\Sigma_1} d\xi = \sum_{s=+1/2}^{s=-1/2} \int d^3p$ and $\int_{\Sigma_2} d\xi = \sum_{\lambda=0,1,-1} \int d^3k$.

The Hilbert space for the weak decay of the vector bosons W^\pm is the Fock space for leptons and bosons describing the set of states with indefinite number of particles or antiparticles which we define below.
For every ℓ, \mathfrak{F}_ℓ is the fermionic Fock space for the corresponding species of leptons including the massive particle and antiparticle together with the associated neutrino and antineutrino, i.e., for $\ell = 1, 2, 3$,

$$\mathfrak{F}_\ell = \bigotimes_{n=0}^{4} \mathfrak{F}_n(L^2(\Sigma_1)) = \bigotimes_{n=0}^{4} \mathfrak{F}_n(L^2(\Sigma_1)),$$

where \otimes_n denotes the antisymmetric n-th tensor product and $\otimes_0 L^2(\Sigma_1) = \mathbb{C}$. The fermionic Fock space \mathfrak{F}_L for the leptons is

$$\mathfrak{F}_L = \otimes_{\ell=1}^{3} \mathfrak{F}_\ell,$$

and the bosonic Fock space \mathfrak{F}_W for the vector bosons W^+ and W^- reads

$$\mathfrak{F}_W = \bigotimes_{n=0}^{2} \mathfrak{F}_n(L^2(\Sigma_2)) = \bigotimes_{n=0}^{2} \mathfrak{F}_n(L^2(\Sigma_2)),$$

where \otimes_n denotes the symmetric n-th tensor product and $\otimes_0 L^2(\Sigma_2) = \mathbb{C}$. Finally, the Fock space for the weak decay of the vector bosons W^+ and W^- is thus

$$\mathfrak{F} = \mathfrak{F}_L \otimes \mathfrak{F}_W.$$

Furthermore, for each $\ell = 1, 2, 3$, $b_{\ell,\epsilon}(\xi_1)$ (resp. $b^*_{\ell,\epsilon}(\xi_1)$) is the annihilation (resp. creation) operator for the corresponding species of massive particle if $\epsilon = +$ and for the corresponding species of massive antiparticle if $\epsilon = -$. Similarly, for each $\ell = 1, 2, 3$, $c_{\ell,\epsilon}(\xi_2)$ (resp. $c^*_{\ell,\epsilon}(\xi_2)$) is the annihilation (resp. creation) operator for the corresponding species of neutrino if $\epsilon = +$ and for the corresponding species of antineutrino if $\epsilon = -$. Finally, the operator $a_{\epsilon,\ell}(\xi_3)$ (resp. $a^*_{\epsilon,\ell}(\xi_3)$) is the annihilation (resp. creation) operator for the boson W^- if $\epsilon = +$, and for the boson W^+ if $\epsilon = -$. The operators $b_{\ell,\epsilon}(\xi_1)$, $b^*_{\ell,\epsilon}(\xi_1)$, $c_{\ell,\epsilon}(\xi_2)$, and $c^*_{\ell,\epsilon}(\xi_2)$ fulfil the usual canonical anticommutation relations (CAR), whereas $a_{\epsilon,\ell}(\xi_3)$ and $a^*_{\epsilon,\ell}(\xi_3)$ fulfil the canonical commutation relation (CCR), see e.g. [24]. Moreover, the a’s commute with the b’s and the c’s. In addition, following the convention described in [24] section 4.1 and [24] section 4.2, we will assume that fermionic creation and annihilation operators of different species of leptons anticommute (see e.g. [9] arXiv for explicit definitions). Therefore, the following canonical anticommutation and commutation relations hold,

$$\{b_{\ell,\epsilon}(\xi_1), b^*_{\ell',\epsilon'}(\xi'_1)\} = \delta_{\ell\ell'}\delta_{\epsilon\epsilon'}\delta(\xi_1 - \xi'_1),$$

$$\{c_{\ell,\epsilon}(\xi_2), c^*_{\ell',\epsilon'}(\xi'_2)\} = \delta_{\ell\ell'}\delta_{\epsilon\epsilon'}\delta(\xi_2 - \xi'_2),$$

$$[a_{\epsilon,\ell}(\xi_3), a^*_{\epsilon',\ell'}(\xi'_3)] = \delta_{\epsilon\epsilon'}\delta(\xi_3 - \xi'_3),$$

$$\{b_{\ell,\epsilon}(\xi_1), b_{\ell',\epsilon'}(\xi'_1)\} = \{c_{\ell,\epsilon}(\xi_2), c_{\ell',\epsilon'}(\xi'_2)\} = 0,$$

$$[a_{\epsilon,\ell}(\xi_3), a_{\epsilon',\ell'}(\xi'_3)] = 0,$$

$$\{b_{\ell,\epsilon}(\xi_1), c_{\ell',\epsilon'}(\xi'_2)\} = \{b^*_{\ell,\epsilon}(\xi_1), c^*_{\ell',\epsilon'}(\xi'_2)\} = 0,$$

$$[b_{\ell,\epsilon}(\xi_1), a_{\epsilon',\ell'}(\xi'_3)] = [b^*_{\ell,\epsilon}(\xi_1), a^*_{\epsilon',\ell'}(\xi'_3)] = [c_{\ell,\epsilon}(\xi_2), a_{\epsilon',\ell'}(\xi'_3)] = [c^*_{\ell,\epsilon}(\xi_2), a^*_{\epsilon',\ell'}(\xi'_3)] = 0,$$

where $\{b, b'\} = bb' + b'b$ and $[a, a'] = aa' - a'a$. Moreover, we recall that, for $\varphi \in L^2(\Sigma_1)$, the operators

$$b_{\ell,\epsilon}(\varphi) = \int_{\Sigma_1} b_{\ell,\epsilon}(\xi)\varphi(\xi)d\xi,$$

$$c_{\ell,\epsilon}(\varphi) = \int_{\Sigma_1} c_{\ell,\epsilon}(\xi)\varphi(\xi)d\xi,$$

$$b^*_{\ell,\epsilon}(\varphi) = \int_{\Sigma_1} b^*_{\ell,\epsilon}(\xi)\varphi(\xi)d\xi,$$

$$c^*_{\ell,\epsilon}(\varphi) = \int_{\Sigma_1} c^*_{\ell,\epsilon}(\xi)\varphi(\xi)d\xi,$$
are bounded operators on \(\mathcal{F} \) satisfying
\[
\|b_{\ell,\epsilon}^{\alpha}(\varphi)\| = \|c_{\ell,\epsilon}^{\alpha}(\varphi)\| = \|\varphi\|_{L^2},
\]
where \(b^\alpha \) (resp. \(c^\alpha \)) is \(b \) (resp. \(c \)) or \(b^* \) (resp. \(c^* \)).

The free Hamiltonian \(H_0 \) is given by
\[
(2.1) \quad H_0 = \sum_{\ell=1}^{3} \sum_{\epsilon=\pm} \int w^{(1)}_\ell (\xi_1) b_{\ell,\epsilon}^{\alpha}(\xi_1) b_{\ell,\epsilon}(\xi_1) d\xi_1 + \sum_{\ell=1}^{3} \sum_{\epsilon=\pm} \int w^{(2)}_\ell (\xi_2) c_{\ell,\epsilon,\epsilon'}^{\alpha}(\xi_2) c_{\ell,\epsilon}(\xi_2) d\xi_2
\]
\[
+ \sum_{\epsilon=\pm} \int w^{(3)}(\xi_3) a_{\epsilon}^{\alpha}(\xi_3) a_{\epsilon}(\xi_3) d\xi_3,
\]
where the free relativistic energy of the massive leptons, the neutrinos, and the bosons are respectively given by
\[
w^{(1)}_\ell (\xi_1) = (|p_1|^2 + m_\ell^2)^{\frac{1}{2}}, \quad w^{(2)}_\ell (\xi_2) = |p_2|, \quad \text{and} \quad w^{(3)}(\xi_3) = (|k|^2 + m_W^2)^{\frac{1}{2}}.
\]
Here \(m_\ell \) is the mass of the lepton \(\ell \) and \(m_W \) is the mass of the bosons, with \(m_1 < m_2 < m_3 < m_W \).

The interaction \(H_I \) is described in terms of annihilation and creation operators together with kernels \(G_{\ell,\epsilon,\epsilon'}^{(\alpha)}(\xi_1,\xi_2,\xi_3) \) (\(\alpha = 1,2 \)).

As emphasized previously, each kernel \(G_{\ell,\epsilon,\epsilon'}^{(\alpha)}(\xi_1,\xi_2,\xi_3) \), computed in theoretical physics, contains a \(\delta \)-distribution because of the conservation of the momentum (see [19, 24 section 4.4]). Here, we approximate the singular kernels by square integrable functions. Therefore, we assume the following

Hypothesis 2.1. For \(\alpha = 1,2, \ell = 1,2,3, \epsilon,\epsilon' = \pm, \) we assume
\[
(2.2) \quad G_{\ell,\epsilon,\epsilon'}^{(\alpha)}(\xi_1,\xi_2,\xi_3) \in L^2(\Sigma_1 \times \Sigma_1 \times \Sigma_2).
\]

Based on [19] p159, (4.139) and [24] p308, (21.3.20), we define the interaction as
\[
(2.3) \quad H_I = H_I^{(1)} + H_I^{(2)},
\]
where
\[
H_I^{(1)} = \sum_{\ell=1}^{3} \sum_{\epsilon=\pm} \int G_{\ell,\epsilon,\epsilon'}^{(1)}(\xi_1,\xi_2,\xi_3) b_{\ell,\epsilon}^{\alpha}(\xi_1) b_{\ell,\epsilon}(\xi_1) c_{\ell,\epsilon,\epsilon'}^{\alpha}(\xi_2) c_{\ell,\epsilon}(\xi_2) a_{\epsilon}^{\alpha}(\xi_3) a_{\epsilon}(\xi_3) d\xi_1 d\xi_2 d\xi_3
\]
\[
+ \sum_{\ell=1}^{3} \sum_{\epsilon=\pm} \int G_{\ell,\epsilon,\epsilon'}^{(1)}(\xi_1,\xi_2,\xi_3) b_{\ell,\epsilon}^{\alpha}(\xi_1) b_{\ell,\epsilon}(\xi_1) c_{\ell,\epsilon,\epsilon'}^{\alpha}(\xi_2) c_{\ell,\epsilon}(\xi_2) a_{\epsilon}^{\alpha}(\xi_3) a_{\epsilon}(\xi_3) d\xi_1 d\xi_2 d\xi_3,
\]
\[
H_I^{(2)} = \sum_{\ell=1}^{3} \sum_{\epsilon=\pm} \int G_{\ell,\epsilon,\epsilon'}^{(2)}(\xi_1,\xi_2,\xi_3) b_{\ell,\epsilon}^{\alpha}(\xi_1) b_{\ell,\epsilon}(\xi_1) c_{\ell,\epsilon,\epsilon'}^{\alpha}(\xi_2) c_{\ell,\epsilon}(\xi_2) a_{\epsilon}^{\alpha}(\xi_3) a_{\epsilon}(\xi_3) d\xi_1 d\xi_2 d\xi_3
\]
\[
+ \sum_{\ell=1}^{3} \sum_{\epsilon=\pm} \int G_{\ell,\epsilon,\epsilon'}^{(2)}(\xi_1,\xi_2,\xi_3) b_{\ell,\epsilon}^{\alpha}(\xi_1) b_{\ell,\epsilon}(\xi_1) c_{\ell,\epsilon,\epsilon'}^{\alpha}(\xi_2) c_{\ell,\epsilon}(\xi_2) a_{\epsilon}^{\alpha}(\xi_3) a_{\epsilon}(\xi_3) d\xi_1 d\xi_2 d\xi_3.
\]
The operator \(H_I^{(1)} \) describes the decay of the bosons \(W^+ \) and \(W^- \) into leptons, and \(H_I^{(2)} \) is responsible for the fact that the bare vacuum will not be an eigenvector of the total Hamiltonian, as expected from physics.
For $\ell = 1, 2, 3$, all terms in $H^{(1)}_\ell$ and $H^{(2)}_\ell$ are well defined as quadratic forms on the set of finite particle states consisting of smooth wave functions. According to [22, Theorem X.24] (see details in [9]), one can construct a closed operator associated with the quadratic form defined by (2.3)-(2.5).

The total Hamiltonian is thus $(\alpha$ is a coupling constant),

$$H = H_0 + gH_1, \quad g > 0.$$

Theorem 2.2. Let $g_1 > 0$ be such that

$$\frac{6g_1^2}{m_W} \left(\frac{1}{m_1^2} + 1 \right) \sum_{\alpha=1,2} \sum_{\ell=1}^3 \sum_{\epsilon' \neq \epsilon} \|G^{(\alpha)}_{\ell,\epsilon,\epsilon'}\|_{L^2(\Sigma_1 \times \Sigma_1 \times \Sigma_2)}^2 < 1.$$

Then, for every g satisfying $g \leq g_1$, H is a self-adjoint operator in \mathcal{F} with domain $\mathcal{D}(H) = \mathcal{D}(H_0)$.

This result has been proven in [9, Theorem 2.6] (with a prefactor 2 missing).

3. Location of the Spectrum, Existence of a Ground State, Absolutely Continuous Spectrum, and Dynamical Properties

In the sequel, we shall make some of the following additional assumptions on the kernels $G^{(\alpha)}_{\ell,\epsilon,\epsilon'}$.

Hypothesis 3.1. There exist $\tilde{K}(G)$ and $\tilde{K}(G)$ such that for $\alpha = 1, 2$, $\ell = 1, 2, 3$, $\epsilon, \epsilon' = \pm$, $i, j = 1, 2, 3$, and $\sigma \geq 0$,

(i) \hspace{1cm} \int_{\Sigma_1 \times \Sigma_1 \times \Sigma_2} \frac{|G^{(\alpha)}_{\ell,\epsilon,\epsilon'}(\xi_1, \xi_2, \xi_3)|^2}{|p_2|^2} d\xi_1 d\xi_2 d\xi_3 < \infty,

(ii) \hspace{1cm} \left(\int_{\Sigma_1 \times \{ |p_2| \leq \sigma \} \times \Sigma_2} |G^{(\alpha)}_{\ell,\epsilon,\epsilon'}(\xi_1, \xi_2, \xi_3)|^2 d\xi_1 d\xi_2 d\xi_3 \right)^{\frac{3}{4}} \leq \tilde{K}(G) \sigma,

(iii-a) \hspace{1cm} \int_{\Sigma_1 \times \{ |p_2| \leq \sigma \} \times \Sigma_2} \left(|p_2 \cdot \nabla_{p_2} G^{(\alpha)}_{\ell,\epsilon,\epsilon'}(\ldots, \ldots)|^2 + \right) d\xi_1 d\xi_2 d\xi_3 < \tilde{K}(G) \sigma,

(iii-b) \hspace{1cm} \int_{\Sigma_1 \times \Sigma_1 \times \Sigma_2} p_2^2 p_2^2 p_2^2 d\xi_1 d\xi_2 d\xi_3 < \tilde{K}(G) \sigma.

Remark 3.1. Note that Hypothesis 3.1. (i) is stronger than Hypothesis 3.1. (ii), of course.

Our first main result is devoted to the existence of a ground state for H together with the location of the spectrum of H and of its absolutely continuous spectrum.

Theorem 3.2. Assume that the kernels $G^{(\alpha)}_{\ell,\epsilon,\epsilon'}$ satisfy Hypotheses (3.1) and (3.2). Then, there exists $g_2 \in (0, g_1]$ such that H has a unique ground state for $g \leq g_2$. Moreover, for $E = \inf \text{Spec}(H)$,

the spectrum of H fulfils

$$\text{Spec}(H) = \text{Spec}_{ac}(H) = [E, \infty),$$

with $E \leq 0$.

Proof. The proof of Theorem 3.2 is done in [9]. The main ingredients of this proof are the cutoff operators and the existence of a gap above the ground state energy for these operators (see (4.7) and Proposition 4.1 below and [9, Proposition 3.5]). Note that a more general proof of the existence of a ground state can also be achieved by mimicking the proof given in [7].

Let \(b \) be the operator in \(L^2(\Sigma_1) \) accounting for the position of the neutrino

\[
b = i\nabla_{p_2},
\]

and let

\[
\langle b \rangle = (1 + |b|^2)^{1/2}.
\]

Its second quantized version \(d\Gamma(\langle b \rangle) \) is self-adjoint in \(\mathfrak{F}_d(L^2(\Sigma_1)) \). We thus define the “total position” operator \(B \) for all neutrinos and antineutrinos by

\[
B_{\ell} = 1 \otimes 1 \otimes d\Gamma(\langle b \rangle) \otimes 1 + 1 \otimes 1 \otimes 1 \otimes d\Gamma(\langle b \rangle) \quad \text{on} \quad \mathfrak{F}_\ell,
\]

\[
B = (B_{\ell} \otimes 1 \otimes 1 \otimes 1 \otimes B_{\ell} \otimes 1 \otimes 1 \otimes 1 \otimes B_{\ell} \otimes 1 \otimes 1 \otimes 1 \otimes B_{\ell}) \otimes (1 \otimes 1) \quad \text{on} \quad \mathfrak{F}.
\]

Theorem 3.3. Assume that the kernels \(G_{\ell,\ell',\epsilon}^{(\alpha)} \) satisfy Hypotheses [2.1] and [3.1] (ii)-(iii). For any \(\delta > 0 \) satisfying \(0 < \delta < m_1 \), there exists \(g_\delta > 0 \) such that for \(0 < g < g_\delta \):

(i) The spectrum of \(H \) in \((E, E + m_1 - \delta) \) is purely absolutely continuous.

(ii) For \(s > 1/2, \varphi \in \mathfrak{F}, \) and \(\psi \in \mathfrak{F} \), the limits

\[
\lim_{\epsilon \to 0} (\varphi, \langle B \rangle^{-s}(H - \lambda \pm i\epsilon)(B)^{-s}\psi)
\]

exist uniformly for \(\lambda \) in every compact subset of \((E, E + m_1 - \delta) \).

(iii) For \(s \in (1/2, 1) \) and \(f \in C_0^\infty((E, E + m_1 - \delta)) \), we have

\[
\|(B + 1)^{-s}e^{-itH}f(H)(B + 1)^{-s}\| = O(t^{-(s-1/2)}).
\]

The assertions (i), (ii), and (iii) of Theorem 3.3 are based on a limiting absorption principle stated in section [7] obtained by a positive commutator estimate, called Mourre estimate (section [5]), and a regularity property of \(H \) (section [6]).

The proof of Theorem 3.3 is detailed in section [8].

Remark 3.2. As a representative example of the general process described above, we consider the decay \(1 \) of the intermediate vector boson \(W \) into an electron and an electron antineutrino. All Theorems stated in sections [2] and [3] will obviously remain true for this simplified model, as well as for any other reduced model involving only one species of leptons, i.e., for a fixed value of \(\ell \in \{1, 2, 3\} \), and with or without the inclusion of their corresponding antiparticles (\(\epsilon = \pm \) and \(\epsilon' = \pm \)). Moreover, the proofs of these results, based on the theorems stated in sections [4], [5], and [7], follow exactly the same arguments and estimates in the general case as in the case of fixed \(\ell, \epsilon \) and \(\epsilon' \). For this reason, and for the sake of clarity, we shall fix \(\ell = 1, \epsilon = + \) and \(\epsilon' = - \) in the next sections, and we shall adopt the following obvious notations

\[
(3.1) \ b^\ell(\xi_1) = b^\ell_{1,+}(\xi_1), \quad c^\ell(\xi_2) = c^\ell_{1,-}(\xi_2), \quad a^\ell(\xi_3) = a^\ell_{1,+}(\xi_3), \quad G^{(\ell)} = G^{(\ell,\epsilon,\epsilon')}.
\]

Remark 3.3. Let us comment on two alternative approaches. The first one consists in confining the interaction to a large box. This is actually exactly the first step in the procedure introduced by Glimm and Jaffe in their attempt to define a Hamiltonian in Fock space. In our case, this approach has been described in the
introduction of Barbaroux and Guillot [9]. It is well-known that such a simple con-
finement is unfortunately not sufficient to make the Hamiltonian well-defined in
Fock space (see the reference [16] to the work of Glimm and Jaffe given in [9]). In
order to achieve this goal, one is obliged to introduce ultraviolet cutoffs in the mo-
mentum variables. In this way, one then gets square integrable interaction kernels
which is exactly the setup we are using in the present paper. The second approach
consists in fibering out total momentum. Indeed, some time ago, two of the authors
tried to implement this approach but, unfortunately, the obstacles appearing in the
estimates which were supposed to lead to a well-defined setup in Fock space could
not be surmounted and, hence, the main theorem of the present paper could not be
established. This problem remains an open and difficult question, and we intend to
come back to its study in near future. In conclusion, to the best of our knowledge,
the conditions on the interaction kernels given in the present paper constitute the
most general criterion for our main theorem to hold true.

Remark 3.4. We would like to underline the importance of our result and to po-
osition it w.r.t. similar results on the absolute continuity of the spectrum above the
ground state. Fröhlich, Griesemer, and Sigal have recently proved absolute contin-
uity of the spectrum between the ground state energy and the first threshold for
a system of confined atoms interacting with a quantized electromagnetic field (see
[14]). In order to do so, they used the Pauli-Fierz transformation (called the Power-
Zienau-Woolley transformation by the physicists) which is of great use for the study
of the infrared problem. Unfortunately, this transformation does not have an ana-
logue for the quantum field theoretical models we are studying. Hence, although our
paper is strongly inspired by [14], and the overall scheme of [14] and ours are simi-
lar, our method yields a more general approach to this class of problems leading to
an alternative proof of the results by the above-mentioned authors. Very recently,
Chen, Faupin, Fröhlich, and Sigal [10] studied the same problem as ours in the
case of a model describing an electron which interacts with a quantized electromagnetic field. They showed absolute continuity of the spectrum of the corresponding
Hamiltonian at fixed total momentum by using the Feshbach-Shur map. We have
verified that the same approach can be used for our case. But the proof we give in
our paper is much simpler than the one using the Feshbach-Shur map. However,
the use of the Feshbach-Shur map seems not to be avoidable in the work of the
above-mentioned authors.

4. Spectral gap for cutoff operators

A key ingredient of the proof of Theorem 3.2 and Theorem 3.3 is the study
of cutoff operators associated with infrared cutoff Hamiltonians with respect to
the momenta of the neutrinos. The main result of this section is Proposition 4.1
where we prove that the cutoff operators have a gap in their spectrum above the
ground state energy. This property was already derived in [9] in the case of a sharp
ultraviolet cutoff. We show here that this result remains true in the present case
where no sharp ultraviolet cutoff assumption is made. According to Remark 3.2
for the sake of clarity, we will consider only the case of one species $\ell = 1$ of leptons,
and pick $\epsilon = +$, and $\epsilon' = -$. We thus use the notations (3.1).

Let us first define the cutoff operators which are the Hamiltonians with infrared
cutoff with respect to the momenta of the neutrinos. For that purpose, let $\chi_0(\cdot) \in$
\(C^\infty(\mathbb{R}, [0, 1]) \) with \(\chi_0 = 1 \) on \((-\infty, 1]\), and, for \(\sigma > 0 \) and \(p \in \mathbb{R}^3 \), we set
\[
\chi_\sigma(p) = \chi_0(|p|/\sigma),
\]
\[
\widetilde{\chi}_\sigma(p) = 1 - \chi_\sigma(p).
\]
(4.1)

Moreover, the operator \(H_{1,\sigma} \) is the interaction given by (2.3), (2.4), and (2.5) associated with the kernels \(\widetilde{\chi}_\sigma(p_2)G^{(\alpha)}(\xi_1, \xi_2, \xi_3) \). We then set
\[
H_\sigma = H_0 + gH_{1,\sigma}.
\]
(4.2)

Next, let
\[
\Sigma_{1,\sigma} = \Sigma_1 \cap \{(p_2, s_2); |p_2| < \sigma\}, \quad \Sigma_{1}^\sigma = \Sigma_1 \cap \{(p_2, s_2); |p_2| \geq \sigma\},
\]
\(\mathfrak{F}_\sigma = \mathfrak{F}_a(L^2(\Sigma_{1,\sigma})) \), \(\mathfrak{F}_\sigma^2 = \mathfrak{F}_a(L^2(\Sigma_{1}^\sigma)) \).

The space \(\mathfrak{F}_a(L^2(\Sigma_1)) \) is the Fock space for the massive leptons and \((\mathfrak{F}_\sigma \otimes \mathfrak{F}_\sigma^2) \) is the Fock space for the antineutrinos. Now, we set
\[
\mathfrak{F}_L = \mathfrak{F}_a(L^2(\Sigma_1)) \otimes \mathfrak{F}_2^\sigma, \quad \mathfrak{F}_{L,\sigma} = \mathfrak{F}_2^\sigma ,
\]
and, we thus have
\[
\mathfrak{F}_L \simeq \mathfrak{F}_\sigma^2 \otimes \mathfrak{F}_{L,\sigma}.
\]

Moreover, with
\[
\mathfrak{F}_\sigma^\sigma = \mathfrak{F}_L^\sigma \otimes \mathfrak{F}_W, \quad \text{and} \quad \mathfrak{F}_\sigma = \mathfrak{F}_{L,\sigma},
\]
we can write
\[
\mathfrak{F} \simeq \mathfrak{F}_\sigma^\sigma \otimes \mathfrak{F}_\sigma.
\]

Next, we set
\[
H_0^{(1)} = \int w^{(1)}(\xi_1) b^*(\xi_1)b(\xi_1)d\xi_1 ,
\]
\[
H_0^{(2)} = \int w^{(2)}(\xi_2) c^*(\xi_2)c(\xi_2)d\xi_2 ,
\]
\[
H_0^{(3)} = \int w^{(3)}(\xi_3)a^*(\xi_3)a(\xi_3)d\xi_3 ,
\]
and
\[
H_0^{(2)} = \int_{|p_2| > \sigma} w^{(2)}(\xi_2)c^*(\xi_2)c(\xi_2)d\xi_2 ,
\]
\[
H_0^{(2),\sigma} = \int_{|p_2| \leq \sigma} w^{(2)}(\xi_2)c^*(\xi_2)c(\xi_2)d\xi_2 .
\]
(4.3)

Then, on \(\mathfrak{F}_\sigma^\sigma \otimes \mathfrak{F}_\sigma \), we have
\[
H_0^{(2)} = H_0^{(2)} \otimes 1_\sigma + 1^\sigma \otimes H_0^{(2),\sigma},
\]
where \(1^\sigma \) (resp. \(1_\sigma \)) is the identity operator on \(\mathfrak{F}_\sigma^\sigma \) (resp. \(\mathfrak{F}_\sigma \)). Next, using the definitions
\[
H_\sigma = H_\sigma \big|_{\mathfrak{F}_\sigma^\sigma} \quad \text{and} \quad H_0^\sigma = H_0 \big|_{\mathfrak{F}_\sigma^\sigma},
\]
we get
\[
H_\sigma = H_0^{(1)} + H_0^{(2)} + H_0^{(3)} + gH_{1,\sigma} \quad \text{on} \quad \mathfrak{F}_\sigma^\sigma ,
\]
and
\[
H_\sigma = H_\sigma \otimes 1_\sigma + 1^\sigma \otimes H_0^{(2)} \quad \text{on} \quad \mathfrak{F}_\sigma^\sigma \otimes \mathfrak{F}_\sigma.
\]
(4.4)
Moreover, for $\delta \in \mathbb{R}$ with $0 < \delta < m_1$, we define the sequence $(\sigma_n)_{n \geq 0}$ by
\[
\begin{align*}
\sigma_0 &= 2m_1 + 1, \\
\sigma_1 &= m_1 - \frac{\delta}{2}, \\
\sigma_{n+1} &= \gamma \sigma_n \quad \text{for } n \geq 1,
\end{align*}
\]
where
\[
\gamma = 1 - \frac{\delta}{2m_1 - \delta}.
\]
For $n \geq 0$, we then define the cutoff operators on $F^n = F^{\sigma_n}$ by
\[
H^n = H^{\sigma_n}, \quad H^0_n = H^{\sigma_n}_0,
\]
and we denote, for $n \geq 0$,
\[
E^n = \inf \text{Spec}(H^n).
\]
Furthermore, we set
\[
\bar{D}_{\delta}(G) = \max \left\{ \frac{4(2m_1 + 1)\gamma}{2m_1 - \delta}, 2 \right\} \tilde{K}(G)(2m_1 \tilde{C}_{\beta \eta} + \tilde{B}_{\beta \eta}),
\]
where $\tilde{K}(G)$ is given by Hypothesis A(iii-a) and $\tilde{B}_{\beta \eta}$ and $\tilde{C}_{\beta \eta}$ are defined for given $\eta > 0$ and $\beta > 0$ as in [9, (3.29)] by the relations
\[
\begin{align*}
C_{\beta \eta} &= \left(\frac{3}{m_W} \left(1 + \frac{1}{m_1^2} \right) + \frac{3\beta}{m_W m_1^2} + \frac{12\eta}{m_1} \right) \frac{1}{4} (1 + \beta) \right) \frac{1}{4}, \\
B_{\beta \eta} &= \left(\frac{3}{m_W} \left(1 + \frac{1}{4\beta} \right) + 12 \left(\frac{1}{4\beta} + \frac{1}{4\eta} \right) \right) \frac{1}{4},
\end{align*}
\]
\[
\tilde{C}_{\beta \eta} = C_{\beta \eta} \left(1 + \frac{g_1 K(G) C_{\beta \eta}}{1 - g_1 K(G) C_{\beta \eta}} \right),
\]
\[
\tilde{B}_{\beta \eta} = \left(1 + \frac{g_1 K(G) C_{\beta \eta}}{1 - g_1 K(G) C_{\beta \eta}} \right) \left(2 + \frac{g_1 K(G) B_{\beta \eta} C_{\beta \eta}}{1 - g_1 K(G) C_{\beta \eta}} \right) B_{\beta \eta},
\]
and
\[
K(G) = \left(\sum_{\alpha=1,2} \|G^{(\alpha)}\|^2 \right)^{\frac{1}{2}}.
\]
Finally, let $g_{\delta}^{(1)}$ be such that
\[
0 < g_{\delta}^{(1)} < \min \left\{ 1, g_1, \frac{\gamma - \gamma^2}{3\bar{D}_{\delta}(G)} \right\}.
\]
We then have

Proposition 4.1. Suppose that the kernels $G^{(\alpha)}$ satisfy Hypotheses [27] and [34](ii). Then, there exists $g_{\delta}^{(2)} > 0$ with $g_{\delta}^{(2)} \leq g_{\delta}^{(1)}$ such that, for $g \leq g_{\delta}^{(2)}$, E^n is a simple eigenvalue of H^n for $n \geq 1$, and H^n does not have spectrum in the interval $(E^n, E^n + (1 - 3g\bar{D}_{\delta}(G)/\gamma)\sigma_n)$.
Proof: The proof of Proposition 4.1 is a slight modification of the proof of [10 Proposition 3.5] which was based on the method develop in [4]. The only difference to the proof of [10 Proposition 3.5] is that we have to deal with the absence of the sharp ultraviolet cutoff. To do so, we define, for \(n \geq 0 \),
\[
\Sigma^{n+1} = \Sigma_1 \cap \{ (p_2, s_2); \sigma_{n+1} \leq |p_2| < \sigma_n \},
\]
and
\[
\tilde{\Sigma}^{n+1} = \tilde{\Sigma}_{n} \left(L^2(\Sigma^{n+1}_{n}) \right),
\]
and we get
\[
\tilde{\sigma}^{n+1} \simeq \tilde{\sigma}^n \otimes \tilde{\sigma}^{n+1}.
\]
Now, let \(\Omega^n \) (respectively \(\Omega^{n+1} \)) be the vacuum state in \(\mathfrak{F}^n \) (respectively in \(\mathfrak{F}^{n+1} \)), and set
\[
H^{n+1}_{1,n} = \int_{\sigma_{n+1} \leq |p_2| < \sigma_n} \tilde{w}^{(2)}(\xi_2)c^*(\xi_2)c(\xi_2)d\xi_2,
\]
which is self-adjoint in \(\mathfrak{F}^{n+1}_n \). Moreover, we denote by \(H^n \) and \(H^{n+1}_{1,n} \) the operators defined as the interaction \(H_1 \) given by (2.3)-(2.4) (for \(\ell = 1, \epsilon = + \) and \(\epsilon' = - \)), but associated, respectively, with the kernels
\[
\tilde{\chi}^{\sigma_n}(p_2)G^{(\alpha)}(\xi_1, \xi_2, \xi_3),
\]
and
\[
(\tilde{\chi}^{\sigma_{n+1}}(p_2) - \tilde{\chi}^{\sigma_n}(p_2))G^{(\alpha)}(\xi_1, \xi_2, \xi_3),
\]
where \(\tilde{\chi}^{\sigma_n} \) and \(\tilde{\chi}^{\sigma_{n+1}} \) are defined as in (4.1). We also consider
\[
H^n_+ = H^n - E^n,
\]
\[
\tilde{H}_+ = H^n_+ \otimes 1^{n+1} + 1_n \otimes H^{n+1}_{1,n},
\]
which are self-adjoint operators in \(\mathfrak{F}^n \) and \(\mathfrak{F}^{n+1} \), respectively. Combining (4.14) of Lemma A.5 with (4.10) and (4.11), we obtain, for \(n \geq 0 \) and \(\psi \in \mathcal{D}(H^n_0) \subset \mathfrak{F}^n \),
\[
g\| H^n_+ \psi \| \leq gK(G) (C_{\beta \eta} \| H_0 \psi \| + B_{\beta \eta} \| \psi \|).
\]
It then follows from [21 Section V, Theorem 4.11] that
\[
H^n \geq - \frac{gK(G)B_{\beta \eta}}{1 - g_1 K(G)C_{\beta \eta}} \geq - \frac{g_1 K(G)B_{\beta \eta}}{1 - g_1 K(G)C_{\beta \eta}},
\]
\[
E^n \geq - \frac{gK(G)B_{\beta \eta}}{1 - g_1 K(G)C_{\beta \eta}}.
\]
Since we have
\[
(\Omega^n, H^n \Omega^n) = 0,
\]
we get
\[
E^n \leq 0, \quad \text{and} \quad |E^n| \leq \frac{gK(G)B_{\beta \eta}}{1 - g_1 K(G)C_{\beta \eta}}.
\]
Let now
\[
K^{n+1}_n(G) = K(1_{\sigma_{n+1} \leq |p_2| \leq 2\sigma_n} G).
\]
Combining (4.14) with (4.10) and (4.11), we obtain, for \(n \geq 0 \) and \(\psi \in \mathcal{D}(H^{n+1}_{0,n}) \subset \mathfrak{F}^{n+1} \),
\[
g\| H^{n+1}_{1,n} \psi \| \leq gK^{n+1}_n(G) (C_{\beta \eta} \| H^n_0 \psi \| + B_{\beta \eta} \| \psi \|).
\]
Moreover, we have
\[H_0^{n+1} = H^n + E^n = g(H_1^n \otimes 1_n^{n+1}) \psi, \]
and by (4.13),
\[g\|(H_1^n \otimes 1_n^{n+1})\psi\| \leq gK(G)(C_{\beta \gamma} \|H_0^{n+1}\| + B_{\beta \gamma}\|\psi\|). \]

In view of (4.14) and (4.16), it follows from (4.17) that
\[g\|(H_1^n \otimes 1_n^{n+1})\psi\| \leq gK(G)(C_{\beta \gamma} \|H_0^{n+1}\| + B_{\beta \gamma}\|\psi\|). \]

Therefore, we obtain
\[g\|H_1^{n+1}\psi\| \leq gK_n^{n+1}(G) \left(\tilde{C}_{\beta \gamma}\|H_0^n\| + \tilde{B}_{\beta \gamma}\|\psi\| \right). \]

Moreover, due to Hypothesis 3.1(ii), we have
\[K_n^{n+1}(G) \leq 2\sigma_n\tilde{K}(G). \]

Now, recall that for \(n \geq 0 \), we have \(\sigma_{n+1} < m_1 \). Therefore, by (4.18) and (4.19), we get
\[g\|H_1^{n+1}\psi\| \leq gK_n^{n+1}(G) \left(\tilde{C}_{\beta \gamma}\|H_0^n\| + m_1\tilde{C}_{\beta \gamma} + \tilde{B}_{\beta \gamma}\right)\|\phi\|. \]

and, for \(\phi \in \mathfrak{F}, \)
\[g\|H_1^{n+1}(\tilde{H}_0^n + \sigma_{n+1})^{-1}\phi\| \leq gK_n^{n+1}(G) \left(\tilde{C}_{\beta \gamma} + m_1\tilde{C}_{\beta \gamma} + \tilde{B}_{\beta \gamma}\right)\|\phi\|. \]

Thus, by (4.20), the operator \(H_1^{n+1}(\tilde{H}_0^n + \sigma_{n+1})^{-1} \) is bounded and
\[g\|H_1^{n+1}(\tilde{H}_0^n + \sigma_{n+1})^{-1}\| \leq g\frac{\tilde{D}_\delta(G)}{\gamma}, \]
where \(\tilde{D}_\delta(G) \) is given by (4.9). This yields, for \(\psi \in \mathcal{D}(\tilde{H}_0^n), \)
\[g\|H_1^{n+1}\psi\| \leq g\frac{\tilde{D}_\delta(G)}{\gamma}\|\tilde{H}_0^n + \sigma_{n+1}\psi\|. \]

Hence, it follows from [21] §V, Theorems 4.11 and 4.12] that
\[g\|(H_1^{n+1}, \psi)\| \leq g\frac{\tilde{D}_\delta(G)}{\gamma}\left(\tilde{H}_0^n + \sigma_{n+1}\psi, \psi \right). \]

For \(g_\delta \) given by (4.12), let \(g_\delta^{(2)} > 0 \) be such that
\[g_\delta^{(2)}\frac{\tilde{D}_\delta(G)}{\gamma} < 1 \quad \text{and} \quad g_\delta^{(2)} \leq g_\delta^{(1)}. \]

By (4.21), we then get, for \(g \leq g_\delta^{(2)}, \)
\[H^{n+1} = \tilde{H}_0^n + E^n + gH_1^{n+1} \geq E^n - \frac{g\tilde{D}_\delta(G)}{\gamma}\sigma_{n+1} + \left(1 - \frac{g\tilde{D}_\delta(G)}{\gamma} \right)\tilde{H}_0^n. \]
Because \((1 - g \tilde{D}_\delta(G)/\gamma) \hat{H}_n^+ \geq 0\), it follows from (1.22) that, for \(n \geq 0\),

\[
E^{n+1} \geq E^n - \frac{g \tilde{D}_\delta(G)}{\gamma} \sigma_{n+1}.
\] (4.23)

Suppose now that \(\psi^n \in \mathfrak{F}^n \) with \(\|\psi^n\| = 1\) satisfies, for \(\epsilon > 0\),

\[
E^n \leq (\psi^n, H^n \psi^n) \leq E^n + \epsilon.
\] (4.24)

Then, for

\[
\psi^{n+1} = \psi^n \otimes \Omega_{n+1}^{n+1} \in \mathfrak{F}^{n+1},
\]

we obtain

\[
E^{n+1} \leq E^n + \epsilon \left(1 + \frac{g \tilde{D}_\delta(G)}{\gamma} + \frac{g \tilde{D}_\delta(G)}{\gamma} \sigma_{n+1},
\]

where \(g \leq \gamma^{(2)}\). This yields

\[
E^{n+1} \leq E^n + \frac{g \tilde{D}_\delta(G)}{\gamma} \sigma_{n+1},
\] (4.27)

and by (4.23), we obtain

\[
|E^n - E^{n+1}| \leq \frac{g \tilde{D}_\delta(G)}{\gamma} \sigma_{n+1}.
\]

Let us first check that, for \(\sigma_0\) given by (4.3), \(E^0\) is a simple isolated eigenvalue of \(H^0\) with

\[
\inf \text{Spec}(H^0) \setminus \{E^0\} \geq m_1.
\] (4.28)

Since

\[
g \|H_1(1_{\sigma_0 \leq \gamma_2}(G)\psi)\| \leq gK(G)(C_{\gamma_2} \|H^0_0\psi\| + B_{\gamma_2} \|\psi\|)
\]

\[
\leq gK(G)(C_{\gamma_2} \|H^0_0 + 1\psi\| + (C_{\gamma_2} + B_{\gamma_2}) \|\psi\|),
\]

we get

\[
g \|H_1(1_{\sigma_0 \leq \gamma_2}(G)\psi)\| \leq gK(G)(2C_{\gamma_2} + B_{\gamma_2}) \|H^0_0 + 1\psi\|,
\] (4.29)

and

\[
g \left| (\psi, H_1(1_{\sigma_0 \leq \gamma_2}(G)\psi)) \right| \leq gK(G)(2C_{\gamma_2} + B_{\gamma_2}) (\psi, (H^0_0 + 1)\psi).
\] (4.30)

Set now

\[
\mu_2 = \sup_{\phi \in \mathfrak{F}^0} \inf_{\phi \in \mathfrak{D}(H^0)} \frac{(\psi, (H^0_0)\psi)}{\|\psi\| = 1}.
\] (4.31)

By (4.30) and (4.31), we have, for \(\Omega^0\) being the vacuum state in \(\mathfrak{F}^0\),

\[
\mu_2 \geq \inf_{\psi \in \mathfrak{D}(H^0)} (\psi, (H^0_0)\psi) \geq \sigma_0 - gK(G)(2C_{\gamma_2} + B_{\gamma_2}) (\sigma_0 + 1).
\]
MATHEMATICAL MODEL OF THE WEAK INTERACTION

Using the definition
\[g_3 = \frac{1}{2K(G)(2C_{\beta\eta} + B_{\beta\eta})}, \]
we get, for \(g \leq g_3 \),
\[\mu_2 \geq \frac{\sigma_0 - 1}{2} \geq E^0 + m_1, \]
since \(\sigma_0 = 2m_1 + 1 \) and \(E^0 \leq 0 \). Therefore, by the min-max principle, \(E^0 \) is a simple eigenvalue of \(H^0 \) and \(\sigma_0 = 2m_1 + 1 \) holds true. We now conclude the proof of Proposition 4.1 by induction in \(n \in \mathbb{N} \). Suppose that \(E^n \) is a simple isolated eigenvalue of \(H^n \) such that, for \(n \geq 1 \),
\[\inf (\text{Spec}(H^n) \setminus \{0\}) \geq (1 - \frac{3g\tilde{D}_\delta(G)}{\gamma})\sigma_n. \]
Due to (4.5)-(4.12), we have, for \(0 < g \leq g_3^{(1)} \) and \(n \geq 1 \),
\[0 < \sigma_{n+1} < (1 - \frac{3g\tilde{D}_\delta(G)}{\gamma})\sigma_n. \]
Therefore, for \(g \leq g_3^{(2)} \), \(0 \) is also a simple isolated eigenvalue of \(\tilde{H}_{n+1} \) such that
\[\inf (\text{Spec}(\tilde{H}_{n+1}) \setminus \{0\}) \geq \sigma_{n+1}. \]
We now prove that \(E^{n+1} \) is a simple isolated eigenvalue of \(H^{n+1} \) such that
\[\inf (\text{Spec}(H^{n+1} \setminus \{0\}) \geq (1 - \frac{3g\tilde{D}_\delta(G)}{\gamma})\sigma_{n+1}. \]
To this end, let
\[\lambda^{(n+1)} = \sup_{\substack{\psi \in \mathfrak{F}^{n+1} \\ \psi \neq 0}} \inf_{\phi \in D(H^{n+1})} (\phi, H^{n+1} \psi). \]
By (12.22) and (1.21), we obtain, in \(\mathfrak{F}^{n+1} \),
\[H^{n+1}_{\gamma} \geq E^n - E^{n+1} - \frac{g\tilde{D}_\delta(G)}{\gamma} \sigma_{n+1} + \left(1 - \frac{g\tilde{D}_\delta(G)}{\gamma}\right)\tilde{H}_n \]
(4.33)
\[\geq \left(1 - \frac{g\tilde{D}_\delta(G)}{\gamma}\right)\tilde{H}_n - \frac{2g\tilde{D}_\delta(G)}{\gamma} \sigma_{n+1}. \]
By (1.23), \(\tilde{\psi}^{n+1} \) is the unique ground state of \(\tilde{H}_n \) and by (4.32) and (4.33), we have, for \(g \leq g_3^{(2)} \),
\[\lambda^{(n+1)} \geq \inf_{(\phi, \tilde{\psi}^{n+1} \phi) \neq (0,0)} \inf_{\phi \in D(H^{n+1})} (\phi, H^{n+1} \phi) \]
\[\geq \left(1 - \frac{g\tilde{D}_\delta(G)}{\gamma}\right)\sigma_{n+1} - \frac{2g\tilde{D}_\delta(G)}{\gamma} \sigma_{n+1} = \left(1 - \frac{3g\tilde{D}_\delta(G)}{\gamma}\right)\sigma_{n+1} > 0. \]
This concludes the proof of Proposition 4.1 if one proves that for \(\tilde{g}_3^{(2)} = \min \{ g_3^{(2)}, g_3 \} \).
the operator H^1 satisfies the gap condition

$$\inf \left(\text{Spec}(H^1_+) \setminus \{0\} \right) \geq \left(1 - \frac{3g \tilde{D}_\delta(G)}{\gamma} \right) \sigma_1. $$

By noting that 0 is a simple isolated eigenvalue of $\tilde{H}_0^+ + \{0\}$ with $\inf(\text{Spec}(\tilde{H}_0^+) \setminus \{0\}) \geq \sigma_1$, we prove that E^1 is indeed an isolated simple eigenvalue of H^1 such that (4.34) holds, by mimicking the proof given above for H^{n+1}_+. □

5. Mourre inequality

Let us set

$$\tau = 1 - \frac{\delta}{2(2m_1 - \delta)}. $$

According to (4.10), we have

$$0 < \gamma < \tau < 1 \quad \text{and} \quad \frac{\tau - \gamma}{2} < \gamma. $$

Moreover, let $\chi^{(\tau)} \in C^\infty(\mathbb{R}, [0, 1])$ be such that

$$\chi^{(\tau)}(\lambda) = \begin{cases} 1 & \text{for } \lambda \in (-\infty, \tau], \\ 0 & \text{for } \lambda \in [1, \infty). \end{cases}$$

With the definition (4.3) of $(\sigma_n)_{n \geq 0}$, we set, for all $p_2 \in \mathbb{R}^3$ and $n \geq 1$,

$$\chi_n^{(\tau)}(p_2) = \chi^{(\tau)} \left(\frac{|p_2|}{\sigma_n} \right),$$

(5.2)

$$a_n^{(\tau)} = \chi_n^{(\tau)}(p_2) \frac{1}{2} \left(p_2 \cdot i \nabla_{p_2} + i \nabla_{p_2} \cdot p_2 \right) \chi_n^{(\tau)}(p_2),$$

and

(5.3)

$$A_n^{(\tau)} = 1 \otimes d\Gamma(a_n^{(\tau)}) \otimes 1,$$

where $d\Gamma(.)$ refers to the usual second quantization of one particle operators. The operators $a_n^{(\tau)}$ and $A_n^{(\tau)}$ are self-adjoint, and we also have

(5.4)

$$a_n^{(\tau)} = \frac{1}{2} \left(\chi_n^{(\tau)}(p_2)^2 p_2 \cdot i \nabla_{p_2} + i \nabla_{p_2} \cdot p_2 \chi_n^{(\tau)}(p_2)^2 \right).$$

Next, let N be the smallest integer such that

$$N \gamma \geq 1. $$

Due to (4.3)-(4.12), we have, for $0 < g \leq g_\delta^{(1)}$,

$$0 < \gamma < \left(1 - \frac{3g \tilde{D}_\delta(G)}{\gamma} \right). $$

Therefore, according to (5.6) and (5.5), we have

$$\gamma < \gamma + \frac{1}{N} \left(1 - \frac{3g \tilde{D}_\delta(G)}{\gamma} - \gamma \right) \leq 1 - \frac{3g \tilde{D}_\delta}{\gamma}, $$

(5.7)

$$\frac{\gamma}{N} \leq \gamma - \frac{1}{N} \left(1 - \frac{3g \tilde{D}_\delta(G)}{\gamma} - \gamma \right) < \gamma. $$
Let us next define
\begin{equation}
\epsilon_{\gamma} = \min \left\{ \frac{1}{2N} \left(1 - \frac{3g\tilde{D}_{\delta}}{\gamma} \right), \frac{\tau - \gamma}{4} \right\},
\end{equation}
and choose \(f \in C_0^\infty(\mathbb{R}) \) such that \(0 \leq f \leq 1 \) and
\begin{equation}
f(\lambda) = \begin{cases}
1 & \text{if } \lambda \in [(\gamma - \epsilon_{\gamma})^2, \gamma + \epsilon_{\gamma}], \\
0 & \text{if } \lambda > \gamma + 2\epsilon_{\gamma}, \\
0 & \text{if } \lambda < (\gamma - 2\epsilon_{\gamma})^2.
\end{cases}
\end{equation}
Note that using the definition (5.9) of \(\epsilon_{\gamma} \), (5.7), (5.1), and (5.8), we have, for \(g \leq g_{\delta}^{(1)} \),
\begin{equation}
\gamma + 2\epsilon_{\gamma} < 1 - \frac{3g\tilde{D}_{\delta}}{\gamma},
\end{equation}
where \(g_{\delta}^{(1)} \) is defined by (4.12). Moreover, we also have \(\gamma + 2\epsilon_{\gamma} < \tau \), and
\begin{equation}
(5.11)
\gamma - \epsilon_{\gamma} > \frac{\gamma}{N}.
\end{equation}
Next, for \(n \geq 1 \), we define
\begin{equation}
f_n(\lambda) = f(\lambda) / \sigma_n,
\end{equation}
and
\begin{equation}
H_n = H_{\sigma_n}, \quad E_n = \inf \text{Spec}(H_n) \quad \text{and} \quad H_{0,n}^{(2)} = H_{0,\sigma_n}^{(2)},
\end{equation}
where we used the definitions (4.30) and (4.4) for \(H_{0,n}^{(2)} \) and \(H_{\sigma_n} \). Note that \(E_n = E^n \), where \(E^n \) is defined by (4.5). Let \(P^n \) denote the ground state projection of \(H^n \). It follows from Proposition 4.1 that, for \(n \geq 1 \) and \(g \leq \tilde{g}_{\delta}^{(2)} \),
\begin{equation}
f_n(H_n - E_n) = P^n \otimes f_n(H_{0,n}^{(2)}).
\end{equation}
For \(E = \inf \text{Spec}(H) \) being the ground state energy of \(H \) defined in Theorem 3.2 and any interval \(\Delta \), let \(E_{\Delta}(H - E) \) be the spectral projection for the operator \((H - E) \) onto \(\Delta \). Consider, for \(n \geq 1 \),
\begin{equation}
\Delta_n = [(\gamma - \epsilon_{\gamma})^2\sigma_n, (\gamma + \epsilon_{\gamma})\sigma_n].
\end{equation}
We are now ready to state the Mourre inequality.

Theorem 5.1 (Mourre inequality). Suppose that the kernels \(G^{(s)} \) satisfy Hypotheses 2.7 (ii), and 3.7(iii.a). Then, there exists \(C_{\delta} > 0 \) and \(\tilde{g}_{\delta}^{(3)} > 0 \) with \(\tilde{g}_{\delta}^{(3)} < \tilde{g}_{\delta}^{(2)} \) such that, for \(g < \tilde{g}_{\delta}^{(3)} \) and \(n \geq 1 \),
\begin{equation}
E_{\Delta_n}(H - E) [H, iA_n^{(r)}] E_{\Delta_n}(H - E) \geq C_{\delta} \frac{\gamma^2}{N^2} \sigma_n E_{\Delta_n}(H - E).
\end{equation}

Proof. Let us define
\begin{equation}
\mathcal{D}_1 = \{ \psi \in F_0(L^2(\Sigma_1)) \mid \psi^{(n)} \in C_0^\infty \text{ for all } n \in \mathbb{N}, \text{ and } \psi^{(n)} = 0 \text{ for almost all } n \},
\end{equation}
\begin{equation}
\mathcal{D}_2 = \mathcal{D}_1,
\end{equation}
\begin{equation}
\mathcal{D}_W = \{ \psi \in F_W \mid \psi^{(n)} \in C_0^\infty \text{ for all } n \in \mathbb{N}, \text{ and } \psi^{(n)} = 0 \text{ for almost all } n \},
\end{equation}
and consider the algebraic tensor product
\[\mathcal{D} = \mathcal{D}_1 \otimes \mathcal{D}_2 \otimes \mathcal{D}_W. \]

According to [11] Lemma 28 and [12] Theorem 13 (see also [11] Proposition 2.11), one easily shows that the sesquilinear form defined on \(\mathcal{D} \times \mathcal{D} \) by
\[(\varphi, \psi) \mapsto (H\varphi, iA_n^{(\tau)}\psi) - (A_n^{(\tau)}\varphi, iH\psi), \]
is the one associated with the following symmetric operator denoted by \([H, iA_n^{(\tau)}], \]
\[[H, iA_n^{(\tau)}] \psi = \left(\text{d}\Gamma((\lambda_n^{(\tau)})^2w^{(2)}) + g H_1(-i(a_n^{(\tau)}G)) \right) \psi. \]

Let us prove that \([H, iA_n^{(\tau)}] \) is continuous for the graph topology of \(H \). Combining (A.14) of Lemma A.3 with (4.10) and (4.11), we get, for \(g \leq g_1, n \geq 1 \), and for \(\psi \in \mathcal{D}, \)
\[g\|H_1(-i(a_n^{(\tau)}G))\psi\| \leq gK(-i\sigma_n(G))(C_{\beta\eta}\|H_0\psi\| + B_{\beta\eta}\|\psi\|). \]

It follows from Hypothesis 3.1(iii-a) that there exists a constant \(\tilde{C}(G) \) such that, for \(n \geq 1, \)
\[K(-i(a_n^{(\tau)}G)) \leq \tilde{C}(G)\sigma_n. \]

Moreover, we have, for \(g \leq g_1, \)
\[\|H_0\psi\| \leq \|H\psi\| + g\|H_1(G)\psi\| \leq \|H\psi\| + gK(G)(C_{\beta\eta}\|H_0\psi\| + B_{\beta\eta}\|\psi\|), \]
and, by definition of \(g_1, \)
\[g_1K(G)C_{\beta\eta} < 1. \]

Using (5.21) and (5.22), we get
\[\|H_0\psi\| \geq \frac{1}{1 - g_1K(G)C_{\beta\eta}}(\|H\psi\| + g_1K(G)B_{\beta\eta}\|\psi\|). \]

Therefore, for \(\psi \in \mathcal{D}, \)
\[\|d\Gamma((\lambda_n^{(\tau)})^2w^{(2)})\psi\| \leq \|H_0\psi\| \leq \frac{1}{1 - g_1K(G)C_{\beta\eta}}(\|H\psi\| + g_1K(G)B_{\beta\eta}\|\psi\|). \]

By (5.19), (5.20), and (5.23), we get, for \(g \leq g_1, n \geq 1 \) and \(\psi \in \mathcal{D}, \)
\[g\|H_1(-i(a_n^{(\tau)}G))\psi\| \leq g\tilde{C}(G)\sigma_n \left(\frac{C_{\beta\eta}}{1 - g_1K(G)C_{\beta\eta}}\|H\psi\| + \left(\frac{g_1K(G)C_{\beta\eta}}{1 - g_1K(G)C_{\beta\eta}} + 1 \right)B_{\beta\eta}\|\psi\| \right). \]

Since \(\mathcal{D} \) is a core for \(H, \) (5.24) and (5.25) are fulfilled for \(\psi \in \mathcal{D}(H) \). Moreover, it follows from [9] Proposition 3.6(iii) that \(H \) is of class \(C^1(A_n^{(\tau)}) \) (see [3] Theorem 6.3.4 and condition (M') in [13] for \(g \leq g_1 \) and \(n \geq 1 \). Therefore, (5.18) holds for \(\psi \in \mathcal{D}(H) \).

Recall from (6.12) that \(f_\lambda(\lambda) = f(\lambda/\sigma_n), \) where \(f \) is given by (5.10). Let \(\tilde{f}(\cdot) \) be an almost analytic extension of \(f(\cdot) \) satisfying
\[\left| \frac{\partial \tilde{f}}{\partial \tau}(x + iy) \right| \leq C g^2. \]

Note that
\[\tilde{f}(x + iy) \in C_0^\infty(\mathbb{R}^2), \]
and that
\[f(s) = \int \frac{df(z)}{z - s}, \quad d\tilde{f}(z) = -\frac{1}{\pi} \frac{\partial \tilde{f}}{\partial z} \, dx \, dy. \]

It follows from (5.11) that, for \(g \leq \tilde{g}_b^{(2)} \),
\[
\|d\Gamma((\chi_n^{(r)})^2w^{(2)}) f_n(H_n - E_n)\| = \|P_n \otimes d\Gamma((\chi_n^{(r)})^2w^{(2)}) f_n(H_n^{(2)})\|
\leq \|H_{0,n} f_n(H_n^{(2)})\|.
\]

Therefore, there exists \(C_1^{(f)} > 0 \), depending on \(f \), such that for \(g \leq \tilde{g}_b^{(2)} \),
\[
(5.28) \quad \|d\Gamma((\chi_n^{(r)})^2w^{(2)}) f_n(H_n - E_n)\| \leq C_1^{(f)} \sigma_n.
\]

Recall (see (4.2) and (5.13)) that \(H_n = H_0 + g H_{1,n} \), where \(H_{1,n} = H_{1,\sigma_n} \) is the interaction given by (2.24), (2.21), and (2.23) associated with the kernels \(\tilde{\chi}^{\sigma_n}(p_2)G^{(\alpha)}(\xi_1, \xi_2, \xi_3) \).

Now, in (4.14), it is stated
\[
(5.29) \quad |E^n| \leq \frac{g K(G) B_{\beta \eta}^n}{1 - g_1 K(G) C_{\beta \eta}}.
\]

Moreover, for \(z \in \text{supp}(\tilde{f}) \), we have
\[
(5.30) \quad (H_0 + 1)(H_n - E_n - z \sigma_n)^{-1} = 1 + (E_n + z \sigma_n)(H_n - E_n - z \sigma_n)^{-1} - g H_{1,n}(H_n - E_n - z \sigma_n)^{-1} + (H_n - E_n - z \sigma_n)^{-1}.
\]

Mimicking the proof of (4.28) and (4.21) and using (5.29), we get for \(g \leq g_1 \),
\[
(5.31) \quad g \|H_{1,n}(H_n - E_n - z \sigma_n)^{-1}\|
\leq \frac{g_1 K(G) C_{\beta \eta}^n}{1 - g_1 K(G) C_{\beta \eta}} \left(1 + \frac{g_1 K(G) B_{\beta \eta}^n}{1 - g_1 K(G) C_{\beta \eta}} + |z| \sigma_n + \frac{g_1 K(G) B_{\beta \eta}^n}{1 - g_1 K(G) C_{\beta \eta}} \right) \frac{1}{|\text{Im}z| \sigma_n}
\]
\[+ \frac{g_1 K(G) B_{\beta \eta}^n}{|\text{Im}z| \sigma_n}. \]

It follows from (5.29), (5.30), and (5.31) that there exists \(\tilde{C}_2(G) > 0 \) such that, for \(g \leq g_1 \) and \(n \geq 1 \),
\[
(5.32) \quad \|(H_0 + 1)(H_n - E_n - z \sigma_n)^{-1}\| \leq \tilde{C}_2(G) \frac{1 + |z| \sigma_n}{|\text{Im}z| \sigma_n}.
\]

Mimicking the proof of (5.32), we show that there exists \(\tilde{C}_3(G) > 0 \) such that, for \(g \leq g_1 \) and \(n \geq 1 \),
\[
(5.33) \quad \|(H_0 + 1)(H - E - z \sigma_n)^{-1}\| \leq \tilde{C}_3(G) \frac{1 + |z| \sigma_n}{|\text{Im}z| \sigma_n}.
\]

Furthermore, we have
\[
(5.34) \quad g H_{1,-i(a_3^{(r)} G)) f_n(H_n - E_n)
\]
\[= -\sigma_n \int d\tilde{f}(z) H_{1,-i(a_3^{(r)} G))(H_0 + 1)^{-1} (H_0 + 1)(H_n - E_n - z \sigma_n)^{-1}.
\]
By (5.21), (5.25), (5.32), and (5.34), there exists \(\tilde{C}_4^f (G) > 0 \) depending on \(f \), such that for \(g \leq g_1 \),
\[
(5.35) \quad g \left\| H_f (-i(a_n^{(r)} G)) f_n(H_n - E_n) \right\| \leq g \tilde{C}_4^f (G) \sigma_n .
\]
Similarly, by (5.33), we easily show that there exists \(\tilde{C}_6^f (G) > 0 \), depending on \(f \), such that, for \(g \leq g_1 \),
\[
(5.36) \quad g \left\| H_f (-i(a_n^{(r)} G)) f_n(H - E) \right\| \leq g \tilde{C}_6^f (G) \sigma_n .
\]
By (5.14), we have, for \(g \leq \tilde{g}_2 \),
\[
(5.37) \quad f_n(H_n - E_n) d \Gamma ((\chi_n^{(r)})^2 w^{(2)}) f_n(H_n - E_n) = P^n \otimes f_n(H_{0,n}^{(2)}) d \Gamma ((\chi_n^{(r)})^2 w^{(2)}) f_n(H_{0,n}^{(2)}).
\]
Since \(\chi_n^{(r)} (\lambda) = 1 \) if \(\lambda \leq (\gamma + 2 \epsilon) \sigma_n \), we have
\[
(5.38) \quad f_n(H_{0,n}^{(2)}) d \Gamma ((\chi_n^{(r)})^2 w^{(2)}) f_n(H_{0,n}^{(2)}) = f_n(H_{0,n}^{(2)}) H_{0,n}^{(2)} f_n(H_{0,n}^{(2)}).
\]
Now, by (5.10), (5.11), (5.37), and (5.38), we obtain, with \(g \leq \tilde{g}_2 \) and \(n \geq 1 \),
\[
(5.39) \quad f_n(H_n - E_n) f_n(H_n - E_n) \geq (\inf \text{supp}(f_n)) f_n(H_n - E_n)^2 \
\geq \frac{\gamma^2}{N^2} \sigma_n f_n(H_n - E_n)^2 .
\]
Note that
\[
(5.40) \quad \| f_n(H_n - E_n) \| = \| f_n(H - E) \| = \sup_{\lambda} f_n(\lambda) = 1 .
\]
By (5.35) and (5.40) we get, for \(g \leq g_1 \),
\[
(5.41) \quad f_n(H_n - E_n) g H_f (-i(a_n^{(r)} G)) f_n(H_n - E_n) \geq -g \tilde{C}_4^f (G) \sigma_n .
\]
Thus, using (5.39) and (5.41), we get, for \(g \leq \tilde{g}_2 \),
\[
(5.42) \quad f_n(H_n - E_n) f_n(H_n - E_n) \geq \frac{\gamma^2}{N^2} \sigma_n f_n(H_n - E_n)^2 - g \tilde{C}_6^f (G) \sigma_n .
\]
Next, let us make the decomposition
\[
(5.43) \quad f_n(H - E) f_n(H_n - E_n) f_n(H_n - E_n) \
= f_n(H_n - E_n) f_n(H_n - E_n) f_n(H_n - E_n) \
+ (f_n(H - E) - f_n(H_n - E_n)) f_n(H_n - E_n) f_n(H_n - E_n) \
+ f_n(H_n - E_n) f_n(H_n - E_n) f_n(H_n - E_n) .
\]
Using (5.28) and Lemma A.3 we get, for \(g \leq \tilde{g}_2 \),
\[
(5.44) \quad (f_n(H - E) - f_n(H_n - E_n)) d \Gamma ((\chi_n^{(r)})^2 w^{(2)}) f_n(H_n - E_n) \geq -g \tilde{C}_4^f (G) \tilde{C}_6^f (G) \sigma_n .
\]
By (5.33) and Lemma A.3 we obtain, for \(g \leq g_2 \),
\[
(5.45) \quad g (f_n(H - E) - f_n(H_n - E_n)) H_f (-i(a_n^{(r)} G)) f_n(H_n - E_n) \geq -gg_2 \tilde{C}_4^f (G) \tilde{C}_6^f (G) \sigma_n .
\]
Thus, it follows from (5.44) and (5.46) that, for $g \leq \inf (g_2, \tilde{g}_0^{(2)})$,

\[(f_n(H - E) - f_n(H_n - E_n)) [H, iA_n^{(r)}] f_n(H_n - E_n) \geq -g\tilde{C}_4^f(G) (C_4^f + g_2\tilde{C}_6^f(G)) \sigma_n. \]

(5.46)

Similarly, by Lemma A.4 and (5.39), we obtain, for $g \leq \inf (g_2, \tilde{g}_0^{(2)})$,

\[f_n(H - E) \mathfrak{d} \Gamma \left((\chi_n^{(r)})^2 w^{(2)} \right) (f_n(H - E) - f_n(H_n - E_n)) \geq -g\tilde{C}_7^f(G) \sigma_n. \]

(5.47)

Moreover, by (5.36) and Lemma A.3 we get, for $g \leq g_2$,

\[g f_n(H - E) H_1 (-i(a_n^{(r)})) (f_n(H - E) - f_n(H_n - E_n)) \geq -g g_1 \tilde{C}_5^f(G) \tilde{C}_6^f(G) \sigma_n. \]

(5.48)

Thus, it follows from (5.47) and (5.48) that, for $g \leq \inf (g_2, \tilde{g}_0^{(2)})$,

\[f_n(H - E) [H, iA_n^{(r)}] (f_n(H - E) - f_n(H_n - E_n)) \geq -g \left(\tilde{C}_4^f(G) + g_1 \tilde{C}_5^f(G) \tilde{C}_6^f(G) \right) \sigma_n. \]

(5.49)

Furthermore, by Lemma A.3 and (5.40), we easily get, for $g \leq g_2$,

\[f_n(H_n - E_n)^2 = f_n(H - E)^2 + (f_n(H_n - E_n) - f_n(H - E))^2 \]

\[+ f_n(H - E) (f_n(H_n - E_n) - f_n(H - E)) \]

\[+ (f_n(H_n - E_n) - f_n(H - E)) f_n(H - E) \]

\[\geq f_n(H - E)^2 - g\tilde{C}_6^f(G) (g_2\tilde{C}_6^f(G) + 2). \]

(5.50)

It then follows from (5.44) and (5.50) that, for $g \leq \inf (g_2, \tilde{g}_0^{(2)})$,

\[f_n(H_n - E_n) [H, iA_n^{(r)}] f_n(H_n - E_n) \geq \frac{\gamma^2}{N^2} \sigma_n f_n(H - E)^2 - g \sigma_n \left(\tilde{C}_4^f(G) + \frac{\gamma^2}{N^2} \tilde{C}_6^f(G) (g_2\tilde{C}_6^f(G) + 2) \right). \]

(5.51)

Combining (5.43) with (5.46), (5.49), and (5.51), we obtain, for $g \leq \inf (g_2, \tilde{g}_0^{(2)})$,

\[f_n(H - E) [H, iA_n^{(r)}] f_n(H - E) \geq \frac{\gamma^2}{N^2} \sigma_n f_n(H - E)^2 - g \sigma_n \tilde{C}_\delta, \]

with $\tilde{C}_\delta = \tilde{C}_6^f(G) (C_1^f + g_1\tilde{C}_4^f(G)) + \tilde{C}_5^f(G) \tilde{C}_6^f(G) + g_5 \tilde{C}_5^f(G) \tilde{C}_6^f(G) + \gamma^2 / N^2 \tilde{C}_6^f(G) (g_1 \tilde{C}_6^f(G) + 2)$. Multiplying both sides of (5.52) with $E_{\Delta_n}(H - E)$, we get

\[E_{\Delta_n}(H - E) [H, iA_n^{(r)}] E_{\Delta_n}(H - E) \geq \left(\frac{\gamma^2}{N^2} - g \tilde{C}_\delta \right) \sigma_n E_{\Delta_n}(H - E). \]

Picking a constant $\tilde{g}_0^{(3)}$ such that

\[\tilde{g}_0^{(3)} < \min \left\{ g_2, \tilde{g}_0^{(2)}, \frac{\gamma^2}{N^2} \frac{1}{\tilde{C}_\delta} \right\}. \]

(5.53)

Theorem 5.1 is proved, for $g \leq \tilde{g}_0^{(3)}$ and $n \geq 1$, with $C_\delta = \gamma^2 (1 - N^2 \tilde{C}_\delta \tilde{g}_0^{(3)}/\gamma^2)/N^2$. \(\square\)
6. $C^2(A_n^{(\tau)})$-regularity

Theorem 6.1. Suppose that the kernels $G^{(\alpha)}$ satisfy Hypotheses 2.1 and 3.1 (iii). Then, H is locally of class $C^2(A_n^{(\tau)})$ in $(-\infty, m_1 - \frac{\delta}{2})$ for every $n \geq 1$.

Proof. The proof is achieved by substituting $A_n^{(\tau)}$ for A_σ in the proof of Theorem 3.7 in [9].

Remark 6.1. It is likely that the operator H is of class $C^2(A_n^{(\tau)})$, i.e., not only locally.

7. **Limiting Absorption Principle**

For $A_n^{(\tau)}$ defined by (5.3), we set

$$\langle A_n^{(\tau)} \rangle = (1 + (A_n^{(\tau)})^2)^{\frac{1}{2}}.$$

Recall that $[\sigma_{n+2}, \sigma_{n+1}] \subset \Delta_n = [(\gamma - \epsilon_\gamma)^2 \sigma_n, (\gamma + \epsilon_\gamma)\sigma_n]$ for $n \geq 1$.

Theorem 7.1 (Limiting Absorption Principle). Suppose that the kernels $G^{(\alpha)}$ satisfy Hypotheses 2.4, 2.7 (ii), and 3.1 (iii). Then, for any $0 < \delta < m_1$, there exists $g_5 > 0$ such that, for $0 < g \leq g_5$, for $s > 1/2$, $\varphi, \psi \in \mathfrak{S}$ and for $n \geq 1$, the limits

$$\lim_{\epsilon \to 0} \varphi, \langle A_n^{(\tau)} \rangle^{1-s}(H - \lambda \pm i\epsilon)\langle A_n^{(\tau)} \rangle^{-s}\psi$$

exist uniformly for $\lambda \in \Delta_n$. Moreover, for $1/2 < s < 1$, the map

$$\lambda \mapsto \langle A_n^{(\tau)} \rangle^{-s}(H - \lambda \pm i\epsilon)^{-1}\langle A_n^{(\tau)} \rangle^{-s}$$

is Hölder continuous of degree $s - 1/2$ in Δ_n.

Proof. Theorem 7.1 follows from the $C^2(A_n^{(\tau)})$-regularity in Theorem 6.1 and the Mourre inequality in Theorem 5.1 with $g_5 = \tilde{g}_5^{(3)}$ (defined by (5.53)), according to Theorems 0.1 and 0.2 in [23] (see also [18], [16], and [14]).

8. **Proof of Theorem 8.3**

- We first prove (i) of Theorem 8.3. According to (4.6), we have

$$[\sigma_{n+2}, \sigma_{n+1}] \subset [(\gamma - \epsilon_\gamma)^2 \sigma_n, (\gamma + \epsilon_\gamma)\sigma_n] = \Delta_n,$$

thus $\bigcup_n \Delta_n$ is a covering by open sets of any compact subset of $(\inf \text{Spec}(H), m_1 - \delta)$. Therefore, [23] Theorem 0.1 and Theorem 0.2] together with the Mourre inequality (5.10) in Theorem 5.1 and the local $C^2(A_n^{(\tau)})$ regularity in Theorem 6.1 imply that (i) of Theorem 8.3 holds true.

- For the proof of (ii) of Theorem 8.3, let us first note that since $\bigcup_n \Delta_n$ is a covering by intervals of $(E, E + m_1 - \delta)$, using subadditivity, it suffices to prove the result for any $n \geq 1$ and $f \in C_0^\infty(\Delta_n)$.

For $a_n^{(\tau)} = \chi_n^{(\tau)}(p_2)\frac{1}{2} \{p_2 \cdot i\nabla p_2 + i\nabla p_2 \cdot p_2\} \chi_n^{(\tau)}(p_2)$ as given by (5.2), and $b = i\nabla p_2$, we have, for all $\varphi \in \mathcal{D}(b)$,

$$\|a_n^{(\tau)}\varphi\| = \|\chi_n^{(\tau)}(p_2)\frac{1}{2} (p_2 \cdot i\nabla p_2 + i\nabla p_2 \cdot p_2) \chi_n^{(\tau)}(p_2)\varphi\|$$

$$\leq \frac{1}{2} (\|\chi_n^{(\tau)}(p_2)\|_2 + \|p_2 \chi_n^{(\tau)}(p_2)\|_2) \|i\nabla p_2 \varphi\| + \frac{1}{2} \|i\nabla p_2 \chi_n^{(\tau)}\| \|\varphi\|,$$
Therefore, there exists $c_n > 1$ such that
\[|a_n^{(\tau)}|^2 \leq c_n |\langle b \rangle|^2. \]

Since $\langle b \rangle$ is a nonnegative operator, \[7.1\] Proposition 3.4 ii) implies
\[d\Gamma(a_n^{(\tau)})^2 \leq c_n d\Gamma(\langle b \rangle)^2, \]
and thus
\[(A_n^{(\tau)})^2 \leq c_n B^2. \]

This implies
\[\|(B + 1)^{-1} \langle A_n^{(\tau)} \rangle \| < \infty \quad \text{and} \quad \|(A_n^{(\tau)}) (B + 1)^{-1}\| < \infty. \]

The map
\[F(z) = e^{-z \ln(B + 1)} e^{z \ln(A_n^{(\tau)})} \phi \]
is analytic on the strip $S = \{ z \in \mathbb{C} \mid 0 < \text{Re} \ z < 1 \}$ for all $\phi \in \mathcal{D}(B) \subset \mathcal{D}(\langle A_n^{(\tau)} \rangle)$. For $\text{Re} \ z = 0$, the operator $F(z)$ is bounded by $\|\phi\|$ and, for $\text{Re} \ z = 1$, according to \[8.1\], $F(z)$ is bounded by $\|(B + 1)^{-1} \langle A_n^{(\tau)} \rangle \| \|\phi\|$. Therefore, due to Hadamard’s three-line theorem, $F(z)$ is a bounded operator on the strip S. In particular, for all $s \in (0, 1)$, we obtain
\[\|(B + 1)^{-s} \langle A_n^{(\tau)} \rangle^s \| < \infty \quad \text{and} \quad \|(A_n^{(\tau)})^s (B + 1)^{-s}\| < \infty. \]

Using \[8.2\], we can write
\[(\varphi, (B + 1)^{-s} (H - \lambda \pm \epsilon)^{-1} (B + 1)^{-s} \psi) \]
\[= (\langle A_n^{(\tau)} \rangle^s (B + 1)^{-s} \varphi, (A_n^{(\tau)})^{-s} (H - \lambda \pm \epsilon)^{-1} (A_n^{(\tau)})^{-s} \langle A_n^{(\tau)} \rangle^s (B + 1)^{-s} \psi). \]

We thus conclude the proof of Theorem 5.3 (ii) by using Theorem 7.1.

- We finally prove (iii) of Theorem 3.3. For that sake, we first need to establish the following lemma.

Lemma 8.1. Suppose that $s \in (1/2, 1)$ and that for some n, $f \in C_0^\infty(\Delta_n)$. Then,
\[\| \langle A_n^{(\tau)} \rangle^{-s} e^{-itH} f(H) \langle A_n^{(\tau)} \rangle^{-s} \| = O \left(t^{-\frac{s}{2}} \right). \]

Proof. The proof is the same as the one in \[14\] Theorem 25 for the Pauli-Fierz model of non-relativistic QED. It makes use of the local Hölder continuity stated in Theorem 7.1. \qed

We now prove (iii) of Theorem 3.3 by using \[8.2\], Lemma 8.1, and writing
\[||(B + 1)^{-s} e^{itH} f(H)(B + 1)^{-s}|| \]
\[\leq ||(B + 1)^{-s} \langle A_n^{(\tau)} \rangle^s \| \| \langle A_n^{(\tau)} \rangle^{-s} e^{itH} f(H) \langle A_n^{(\tau)} \rangle^{-s} \| \| \langle A_n^{(\tau)} \rangle^s (B + 1)^{-s} \|. \]

Appendix A.

In this section, we establish several lemmata that are useful for the proof of the Mourre estimate in Section 5.

Lemma A.1. Suppose that the kernels $G^{(\alpha)}$ satisfy Hypotheses \[2\] and \[3\] (ii). Then, there exists a constant $D_1(G)$ such that, for $g \leq g_2$ and $n \geq 1$,
\[|E - E_n| \leq g D_1(G) \sigma_n. \]
Proof. For \(g \leq g_2 \), where \(0 < g_2 \) is given by \([9\) Theorem 3.3], we consider \(\phi \) (respectively \(\phi_n \)), the unique normalized ground state of \(H \) (respectively \(H_n \) (see again \([9\) Theorem 3.3]). We thus have
\[
E - E_n \leq (\phi_n, (H - H_n) \phi_n),
\]
(A.3)
\[
E_n - E \leq (\phi, (H_n - H) \phi),
\]
with
\[
H - H_n = gH_1(\chi_{\sigma_n/2}(p_2)G)
\]
where
\[
\chi_{\sigma_n/2}(p) = \chi_0 \left(\frac{|p|}{\sigma_n/2} \right),
\]
and \(\chi_0(.) \in C^\infty(\mathbb{R}, [0, 1]) \) is fixed. Combining \((A.14)\) of Lemma \(A.5 \) with \((4.10)\) and \((1.1)\), we get, together with \((A.4)\), for \(g \leq g_2 \),
\[
\|(H - H_n) \phi_n\| \leq gK(\chi_{\sigma_n/2}(p_2)G)(C_{\beta_0}\|H_0 \phi_n\| + B_{\beta_0}),
\]
and
\[
\|(H - H_n) \phi\| \leq gK(\chi_{\sigma_n/2}(p_2)G)(C_{\beta_0}\|H_0 \phi\| + B_{\beta_0}).
\]
It follows from Hypothesis \((5.1)\), \([9\) (4.9)], and with \((5.29)\) that there exists a constant \(D_1(G) > 0 \) depending on \(G \), such that, for \(n \geq 1 \) and \(g \leq g_2 \),
\[
\sup\|(H - H_n) \phi_n\|, \|(H - H_n) \phi\| \leq gD_1(G)\sigma_n.
\]
By \((A.3)\), this proves Lemma \(A.1 \). \(\Box \)

Lemma A.2. We have
\[
\|d\Gamma((\chi_{\sigma_n}^\tau)^2 w^{(2)}) (H_n - E_n - z\sigma_n)^{-1}\|
\]
\[
\leq \|\|H_n - E_n\| (H_n - E_n - z\sigma_n)^{-1}\| \leq 1 + \frac{|z|}{\text{Im} z}.
\]
Proof. We have
\[
1 \otimes d\Gamma((\chi_{\sigma_n}^\tau)^2 w^{(2)}) \leq 1 \otimes H_{\phi_n}^{(2)} \leq H_n - E_n.
\]
\(A.7 \)
Set
\[
M_1 = 1 \otimes H_{\phi_n}^{(2)}, \quad M_2 = (H^n - E^n) \otimes 1, \quad \text{and} \quad M = M_1 + M_2 = H_n - E_n,
\]
and let \(\psi \) be in the algebraic tensor product \(\mathcal{D}(M_1) \hat{\otimes} \mathcal{D}(M_2) \). We obtain
\[
\|((M_1 \otimes 1 + 1 \otimes M_2)\psi\|^2
\]
\[
= \|((M_1 \otimes 1)\psi\|^2 + \|(1 \otimes M_2)\psi\|^2 + 2 \text{Re}(\psi, (M_1 \otimes 1)(1 \otimes M_2)\psi)
\]
\[
= \|((M_1 \otimes 1)\psi\|^2 + \|(1 \otimes M_2)\psi\|^2 + 2((M_1 \hat{\otimes} 1)\psi, (1 \otimes M_2)(M_1 \hat{\otimes} 1)\psi)
\]
\[
\geq \|((M_1 \otimes 1)\psi\|^2.
\]
Thus, we get
\[
\|d\Gamma((\chi_{\sigma_n}^\tau)^2 w^{(2)})\psi\| \leq \|(H_n - E_n)\psi\|.
\]
(A.8)
The set \(\mathcal{D}(M_1) \hat{\otimes} \mathcal{D}(M_2) \) is a core for \(M \), thus \((A.8)\) is satisfied for every \(\psi \in \mathcal{D}(H_n - E_n) = \mathcal{D}(H_0) \). Setting
\[
\psi = (H_n - E_n - z\sigma_n)^{-1}\phi,
\]
in \((A.8)\), we immediately get \((A.6)\). \(\Box \)
Lemma A.3. Suppose that the kernels $G^{(a)}$ verify Hypotheses 2.1 and 3.1(ii). Then, there exists a constant $\tilde{C}_1^f(G) > 0$ such that, for $g \leq g_2$ and $n \geq 1$,
\[\| f_n(H_n - E_n) - f_n(H - E) \| \leq g \tilde{C}_1^f(G). \]

Proof. We have
\[f_n(H_n - E_n) - f_n(H - E) = \sigma_n \int \frac{1}{H_n - E_n - z \sigma_n} (H_n - H + E - E_n) \frac{1}{H - E - z \sigma_n} \, \tilde{f}(z). \]

Combining (A.13) of Lemma A.3, (4.10), (4.11), and Hypothesis 3.1(ii), we obtain, for $\psi \in D(H_0)$ and for $g \leq g_2$,
\[g \| H_1(\chi_{\sigma_n/2} G) \psi \| \leq g \sigma_n \tilde{K}(G)(C_{\beta n}(H_0 + 1) \| \psi \| + (C_{\beta n} + B_{\beta n}) \| \psi \|). \]

This yields
\[g \| H_1(\chi_{\sigma_n/2} G)(H_0 + 1) \| \leq g D_2(G) \sigma_n, \]

for some constant $D_2(G)$ and for $g \leq g_2$. Combining Lemma A.1 with (5.33) and (A.10)-(A.12), we obtain, for $g \leq g_2$,
\[\| f_n(H_n - E_n) - f_n(H - E) \| \leq g D_2(G) \tilde{C}_3(G) \int \frac{\| \partial \tilde{f} \| (x + iy)}{y^2} (1 + |z|m_1) \, dx \, dy. \]

Using (5.26) and (5.27), we conclude the proof of Lemma A.3 with
\[\tilde{C}_1^f(G) = D_2(G) \tilde{C}_3(G) \int \frac{\| \partial \tilde{f} \| (x + iy)}{y^2} (1 + |z|m_1) \, dx \, dy. \]

□

Lemma A.4. Suppose that the kernels $G^{(a)}$ satisfy Hypotheses 2.1 and 3.1(ii). Then, there exists a constant $\tilde{C}_1^f(G) > 0$ such that, for $g \leq g_2$ and $n \geq 1$,
\[\| d \Gamma ((\chi_n^{(r)} w^{(2)})(f_n(H_n - E_n) - f_n(H - E))) \| \leq g \tilde{C}_1^f \sigma_n. \]

Proof. We have
\[d \Gamma ((\chi_n^{(r)} w^{(2)})(f_n(H_n - E_n) - f_n(H - E))) \]
\[= \sigma_n \int d \Gamma ((\chi_n^{(r)} w^{(2)}) \frac{1}{H_n - E_n - z \sigma_n} (H_n - H + E - E_n) \frac{1}{H - E - z \sigma_n} \, \tilde{f}(z). \]

Combining Lemmata A.3 and A.2 with (5.33) and (A.10)-(A.12), we obtain
\[\| d \Gamma ((\chi_n^{(r)} w^{(2)})(f_n(H_n - E_n) - f_n(H - E))) \|
\[\leq g D_2(G) \tilde{C}_3(G) \sigma_n \int \frac{\| \partial \tilde{f} \| (x + iy)}{y^2} (1 + \frac{|z|}{y}) \left(\frac{1 + |z|m_1}{y} \right) \, dx \, dy. \]

Using (5.26) and (5.27), we conclude the proof of Lemma A.4 with
\[\tilde{C}_1^f(G) = D_2(G) \tilde{C}_3(G) \int \frac{\| \partial \tilde{f} \| (x + iy)}{y^2} (1 + \frac{|z|}{y}) \left(\frac{1 + |z|m_1}{y} \right) \, dx \, dy. \]

□
The following lemma was proved in [9, (2.53)-(2.54)], and gives explicitly the relative bound for H_I with respect to H_0. Note that this bound holds for any interaction operator H_I of the form (2.3)-(2.5), as soon as the kernels $G^{(\alpha)}$ fulfill Hypothesis 2.1.

Lemma A.5. For any $\eta > 0$, $\beta > 0$, and $\psi \in \mathcal{D}(H_0)$, we have

$$\|H_I\psi\|
\leq 6 \sum_{\alpha=1,2} \|G^{(\alpha)}\|^2 \left(\frac{1}{2mW} \left(\frac{1}{m_1^2} + 1 \right) + \frac{\beta}{2mW m_1^2} + \frac{2\eta}{m_1^2 (1 + \beta)} \right) \|H_0\psi\|^2$$

$$+ \left(\frac{1}{2mW} \left(1 + \frac{1}{4\beta} \right) + 2\eta \left(1 + \frac{1}{4\beta} \right) + \frac{1}{2\eta} \right) \|\psi\|^2.$$

Appendix B.

Intervals/sequences
\[
\begin{align*}
\gamma &= 1 - \delta/(2m_1 - \delta) \\
\sigma_0 &= 2m_1 + 1, \quad \sigma_1 = m_1 - \delta/2, \quad \sigma_{n+1} = \gamma \sigma_n \quad (n \geq 1) \\
\tau &= 1 - \delta/(2(2m_1 - \delta))
\end{align*}
\]

Functions
\[
\begin{align*}
w^{(1)}(\xi_1) &= (|p_1|^2 + m_1^2)^{1/2}, \quad w^{(2)}(\xi_2) = |p_2|, \quad w^{(3)}(\xi_3) = (|\xi|^2 + m_W^2)^{1/2} \\
\chi_0 &\in C^\infty(\mathbb{R}, [0, 1]), \quad \chi_0 = 1 \text{ on } (-\infty, 1].
\end{align*}
\]

Spaces
\[
\begin{align*}
\Sigma_1 &= \mathbb{R}^3 \times \{-1/2, 1/2\} \\
\Sigma_2 &= \Sigma_1 \cap \{p_2, s_2\}; \quad |p_2| \geq \sigma_2, \quad \Sigma_{1,\sigma} = \Sigma_1 \cap \{(p_2, s_2); \ |p_2| < \sigma\} \\
\Sigma_n &= \Sigma_1 \cap \{(p_2, s_2); \sigma_{n+1} \leq |p_2| \leq \sigma_n\} \\
\Sigma_n^{(1)} &= \Sigma_n \cap \{(p_2, s_2); \sigma_{n+1} \leq |p_2| \leq \sigma_n\} \\
\Sigma_n^{(2)} &= \Sigma_n \cap \{(p_2, s_2); \sigma_{n+1} \leq |p_2| \leq \sigma_n\}
\end{align*}
\]

Electron Fock space: $\mathfrak{F}_a(L^2(\Sigma_1))$
Neutrino Fock space: $\mathfrak{F}_a(L^2(\Sigma_2))$
Boson Fock space: $\mathfrak{F}_a(L^2(\Sigma_2))$

Hamiltonians
\[H^{(2)}_0 = \int_{|p_2| > \sigma} w^{(2)}(\xi_2) c^*(\xi_2)c(\xi_2)d\xi_2 \]
\[H^{(2)}_\sigma = \int_{|p_2| \leq \sigma} w^{(2)}(\xi_2) c^*(\xi_2)c(\xi_2)d\xi_2 \]
\[H^{0}_\sigma(G) = H_1(\chi^\sigma(p_2)G) \]
\[H_\sigma = H_0 + gH_1,\sigma \]
\[H_n = H_{\sigma_n} \]
\[H_0^n = H_0^n - E^n = H^n - \inf \text{Spec}(H^n) \]
\[H_{n,n}^{n+1} = \int_{\sigma_n \leq |p_2| < \sigma} w^{(2)}(\xi_2) c^*(\xi_2)c(\xi_2)d\xi_2 \]
\[\hat{H}_n = H_{n} \otimes 1_n^{n+1} + 1_n \otimes H_{0,n}^{n+1} \]
\[\hat{H}_{n+1}^n = H_{1}\left(\hat{\chi}^{\sigma_{n+1}}(p_2) - \hat{\chi}^{\sigma_n}(p_2)\right)G \]

Conjugate operators
\[a^{(\tau)}_n = \chi^{(\tau)}_n(p_2)\left(1\cdot \nabla_{p_2} + i\nabla_{p_2} \cdot p_2\right)\chi^{(\tau)}_n(p_2) \]
\[A^{(\tau)}_n = 1 \otimes d\Gamma(a^{(\tau)}_n) \otimes 1 \]

Acknowledgements

The work was done partially while J.-M. B. was visiting the Institute for Mathematical Sciences, National University of Singapore in 2008. The visit was supported by the Institute. The authors also gratefully acknowledge the Erwin Schrödinger International Institute for Mathematical Physics, where part of this work was done. W.H. A. is supported by the German Research Foundation (DFG). J.-M. B. gratefully acknowledges financial support from Agence Nationale de la Recherche, via the project HAM-MARK ANR-09-BLAN-0098-01

References

[1] Z. Ammari. Scattering theory for a class of fermionic Pauli-Fierz model. J. Funct. Anal., 208(2) (2004), 302–359.
[2] L. Amour, B. Grébert, and J.-C. Guillot. A mathematical model for the Fermi weak interactions. Cubo, 9(2) (2007), 37–57.
[3] W. O. Amrein, A. Boutet de Monvel, and V. Georgescu. C_0-groups, commutator methods and spectral theory of N-body Hamiltonians, volume 135 of Progress in Mathematics. Birkhauser Verlag, Basel, 1996.
[4] V. Bach, J. Fröhlich, and A. Pizzo. Infrared-finite algorithms in QED: the groundstate of an atom interacting with the quantized radiation field. Comm. Math. Phys., 264(1) (2006), 145–165.
[5] V. Bach, J. Fröhlich, and I. M. Sigal. Spectral analysis for systems of atoms and molecules coupled to the quantized radiation field. Comm. Math. Phys., 207(2) (1999), 249–290.
[6] J.-M. Barbaroux, M. Dimassi, and J.-C. Guillot. Quantum electrodynamics of relativistic bound states with cutoffs II. Contemporary Mathematics, 307(6) (2002), 9–14.
[7] J.-M. Barbaroux, M. Dimassi, and J.-C. Guillot. Quantum electrodynamics of relativistic bound model of weak interactions: the decay of a boson. C. R. Acad. Sci. Paris, Ser. I 347, Issues 17-18 (2009), 1087–1092.
[8] J.-M. Barbaroux and J.-C. Guillot. Limiting absorption principle at low energies for a mathematical model of weak interaction: The decay of the intermediate vector bosons W^\pm. I. Advances in Mathematical Physics ID 978903 (2009), and arXiv:0904.3171
[9] T. Chen, J. Faupin, J. Fröhlich and I.M. Sigal, Local decay in non-relativistic QED arXiv:0911.0828 (2009).
[10] J. Dereziński and C. Gérard. Asymptotic completeness in quantum field theory. Massive Pauli-Fierz Hamiltonians. Rev. Math. Phys., 11(4) (1999), 383–450.
[12] J. Dereziński, *Introduction to representations of the canonical commutation and anticommutation relations*, Large Coulomb systems, Lecture Notes in Phys. 695, 63–143, Springer, Berlin, 2006.

[13] M. Dimassi and J.C. Guillot, *The quantum electrodynamics of relativistic states with cutoffs. I*, *Appl. Math. Lett.* 16, no.4 (2003), 551–555.

[14] J. Fröhlich, M. Griesemer, and I. M. Sigal. Spectral theory for the standard model of non-relativistic QED. *Comm. Math. Phys.* 283(3) (2008), 613–646.

[15] V. Georgescu, C. Gérard, On the virial theorem in quantum mechanics *Comm. Math. Phys.* 208 (1999), 275–281.

[16] C. Gérard, A proof of the abstract limiting absorption principles by energy estimates *J. Funct. Anal.* 254 (2008), no. 11, 2707–2724.

[17] V. Georgescu, C. Gérard, J. S. Møller. Spectral theory of massless Pauli-Fierz models. *Comm. Math. Phys.*, 249(1) (2004), 29–78.

[18] S. Golénia, T. Jecko, A new look at Mourre’s commutator theory, *Complex and Oper. Theory* 1 (2007), no 3, 399–422.

[19] W. Greiner and B. Müller. *Gauge Theory of weak interactions* Springer, Berlin, 1989.

[20] M. Griesemer, E.H. Lieb and M. Loss, Ground states in non-relativistic quantum electrodynamics, *Inv. Math* 145 (2001), 557–595.

[21] T. Kato. *Perturbation Theory for Linear Operators*, volume 132 of *Grundlehren der mathematischen Wissenschaften*. Springer-Verlag, Berlin, 1 edition, 1966.

[22] M. Reed and B. Simon. *Methods of modern mathematical physics. II. Fourier analysis, self-adjointness*. Academic Press, New York, 1975.

[23] J. Sahbani. The conjugate operator method for locally regular Hamiltonians. *J. Operator Theory*, 38(2) (1997), 297–322.

[24] S. Weinberg. *The quantum theory of fields. Vol. I*. Cambridge University Press, Cambridge, 2005. Foundations.

[25] S. Weinberg. *The quantum theory of fields. Vol. II*. Cambridge University Press, Cambridge, 2005. Modern applications.