Long and Very Long Lamellar Phases in Model Stratum Corneum Lipid Membranes

Running title: Asymmetric Building Unit in Skin Lipid Lamellae

Petra Pullmannová¹, Elena Ermakova², Andrej Kováčik¹, Lukáš Opálka¹, Jaroslav Maixner³,
Jarmila Zbytovská¹, Norbert Kučerka², Kateřina Vávrová¹

¹Skin Barrier Research Group, Charles University, Faculty of Pharmacy in Hradec Králové, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic

²Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna 141980, Russia

³University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic

⁴Department of Physical Chemistry of Drugs, Comenius University in Bratislava, Faculty of Pharmacy, Odbojárov 10, 832 32 Bratislava, Slovak Republic

Corresponding author:

Petra Pullmannová, Skin Barrier Research Group, Charles University, Faculty of Pharmacy in Hradec Králové, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic, pullmanp@faf.cuni.cz, Tel.: +420495067638, Fax: +420495067166

ABBREVIATIONS

Cer, ceramide/s; CerEOS, N-(32-linoleoyoxy)dotriacontanoyl-D-erythro-sphingosine; CerNS24, N-tetracosanoyl-D-erythro-sphingosine; Chol, cholesterol; CholS, sodium cholesteryl sulfate/cholesteryl sulfate; ω-O-acylCer, ceramides having 30-34C acyl chains with a linoleic acid ester linked to an ω-hydroxyl; FFA(16-24), mixture of free fatty acids with 16, 18, 20, 22 and 24 carbons; LLP, long lamellar phase; MLP, medium lamellar phase; RXLI, recessive X-linked ichthyosis; SC, stratum corneum; SLP, short lamellar phase; VLLP, very long lamellar phase; XRD, X-ray diffraction.
ABSTRACT

Membrane models of the stratum corneum (SC) lipid barrier, either healthy or affected by recessive X-linked ichthyosis, constructed from ceramide (Cer; non-hydroxyacyl sphingosine CerNS24 alone or with omega-acylceramide CerEOS), free fatty acids (C16-24), cholesterol (Chol) and cholesteryl sulfate (CholS) were investigated. X-ray diffraction (XRD) revealed a previously unreported polymorphism of the membranes. In the absence of Cer EOS, the membranes formed a short lamellar phase (SLP; the repeat distance \(d = 5.3 \) nm), a medium lamellar phase (MLP; \(d = 10.6 \) nm) or very long lamellar phases (VLLP; \(d = 15.9 \) and 21.2 nm). An increased CholS-to-Chol ratio modulated the membrane polymorphism, although the CholS phase separated at \(\geq 7 \) weight % (of total lipids). The presence of CerEOS led to the stable long lamellar phase (LLP) with \(d = 12.2 \) nm and prevented VLLP formation. Our XRD results agree well with recently published cryo-electron microscopy data for vitreous skin sections, while also revealing new structures. Thus, lamellar phases with long repeat distances (MLP and VLLP) may be formed in the absence of omega-acylceramide, whereas these ultralong Cer species likely stabilize the final SC lipid architecture of LLP by riveting the adjacent lipid layers.

KEYWORDS: ceramide, skin, extracellular matrix, membranes/model, X-ray crystallography, cholesterol, cholesteryl sulfate, skin barrier.
INTRODUCTION

The stratum corneum (SC) has evolved to protect the body from desiccation and thus to ensure the terrestrial life of mammals, including humans (1). This outermost skin layer also hampers the entry of possibly harmful substances from the environment. SC consists of several layers of cornified cells - corneocytes, and extracellular lipid matrix, which represents the major skin permeability barrier (2). The SC extracellular lipid matrix consists mainly of ceramides (Cer), free fatty acids (FFA) and cholesterol (Chol) at an ~1:1:1 molar ratio (Supplemental Figure S1). These lipids are highly organized in the lamellae aligned parallel to the skin surface (3, 4). Skin Cer are a class of sphingolipids comprising, to date, 15 classes of free Cer including the ultralong ω-O-acylceramides (ω-O-acylCer), which contain 30-34C acyl chains with a linoleic acid ester-linked to the ω-hydroxyl terminus (5–9), for a review, see (10).

The lipid matrix of isolated SC has a lamellar characteristic and a long repeat distance (d) of ~13 nm, as was revealed by electron microscopy (11–13) and/or by X-ray diffraction (XRD) (12, 14, 15). The so-called long periodicity phase with d ~13 nm was reconstructed in vitro from isolated skin lipids (16–18) and lipids synthesized in a laboratory (19). A separated Chol with d ~3.4 nm and a short periodicity phase with d ~6.4 nm were found to coexist with the long periodicity phase in isolated SC by XRD (20). Chol also separates in vitro in model SC lipid membranes, creating a distinct phase that is detectable by XRD (21, 22). A key role of ω-O-acylCer for formation of the long periodicity phase was demonstrated in vitro in model lipid membranes with isolated pig skin Cer (18). A correlation was found ex vivo between a decreased fraction of ω-O-acylCer and changes in the XRD patterns of SC in healthy humans (23) and in patients with atopic dermatitis (24). Several models of the molecular arrangement of the SC extracellular lipid domains have been proposed; however, they remain under discussion (25–28).

In this work, we investigated the lamellar organization in a membrane model of recessive X-linked ichthyosis (RXLI). RXLI is a genetic skin disease with impaired processing of CholS to Chol. In healthy skin, CholS is gradually distributed across the SC, from 5 weight % at the stratum granulosum/SC boundary to 1 weight % in the outer SC (29, 30). In RXLI, mean CholS levels in the SC are ~5–10-fold
elevated, whereas free Chol levels are ~50% reduced in comparison to healthy skin (4). The disruption of CholS desulfation leads to an abnormal permeability barrier, abnormal desquamation, and the presence of nonlamellar domains within the SC extracellular spaces (31, 32). A high CholS level in model lipid mixtures induces the formation of an additional less ordered phase (33) and alterations in the electron spin probe microenvironment (34). Rehfeld et al. proposed that different H-bonding of CholS relative to Chol may play a role in RXLI pathogenesis (34). However, the contributions of increased CholS and decreased Chol to the abnormalities in lipid organization and permeability in RXLI are unclear.

Thus, we aimed at studying the effects of CholS on SC lipid membranes based on N-tetracosanoyl D-erythro-sphingosine (CerNS24). During the initial experiments, we observed an extraordinary and yet unreported polymorphic behavior of our SC lipid membranes, which was modulated by the Chol/CholS content variation and sample preparation method. Here, we show, for the first time, that SC lipids without ω-O-acylCer can self-organize in patterns with not only a short repeat distance but also with medium or very long repeat distances. The formation of these structures is further compared with the structural behavior of the SC model containing N-(32-linoleyloxy)dotriacontanoyl-D-erythro-sphingosine (CerEOS). The experiments with various Chol/CholS ratio further show that the simple SC model of RXLI can mimic structural defects similar to those reported in the SC of RXLI patients.
MATERIAL AND METHODS

Chemicals and material

\(N\)-tetracosanoyl-\(D\)-erythro-sphingosine d18:1/24:0 (CerNS24) was purchased from Avanti Polar Lipids (Alabaster, AL, USA). \(N\)-(32-linoleyloxy)dotriacontanoyl-\(D\)-erythro-sphingosine d18:1/h32:0/18:2 (CerEOS) was synthesized as described in (35). Cholesterol from lanolin (Chol), sodium cholesteryl sulfate (CholS), hexadecanoic acid, octadecanoic acid, eicosanoic acid, docosanoic acid, tetracosanoic acid and solvents (all analytical or HPLC grade) were purchased from Sigma-Aldrich Chemie GmbH (Schnelldorf, Germany). Single side polished Si substrates (111, N-type/Phos-dopant) 25×50×0.5 mm\(^3\) were purchased from Crystal GmbH (Berlin, Germany). Esco® microscope cover glasses 22×22 mm\(^2\) were from Erie Scientific LLC (Portsmouth, NH, USA).

Preparation of model lipid membranes

Free fatty acids (FFA(16-24)) were mixed at a molar ratio corresponding to the native composition of human skin FFA: 1.8% hexadecanoic acid, 4.0% octadecanoic acid, 7.6% eicosanoic acid, 47.8% docosanoic acid and 38.8% tetracosanoic acid (36). The lipids (CerNS24 or CerEOS/CerNS24 mixture, FFA(16-24), Chol and CholS) were dissolved in 2:1 chloroform/methanol (v/v) and mixed at the molar fractions specified in Table 1. The lipid solutions were dried, redissolved (see below) and applied on cover glasses or Si substrates in either of the following manners:

Spraying: The dry lipid was dissolved in 2:1 hexane/96% ethanol (v/v) at 4.5 mg/mL, and 3×100 \(\mu\)L of the lipid solution was sprayed on a wafer under a stream of nitrogen at a flow rate of 10.2 \(\mu\)L/min using a Linomat V (Camag, Muttenz, Switzerland) equipped for additional y-axis movement.

Dropping at 50 °C: The 17-60 \(\mu\)L of 2:1 hexane/96% ethanol (v/v) was added per 1 mg of dry lipid. The mixture was homogenized using an ultrasound bath at 50 °C until a homogeneous transparent viscous liquid was created. The concentration depended on the solubility of each lipid sample. The liquid, which was continuously heated to 50 °C, was applied in several subsequent steps on a wafer preheated to 50 °C.
using a 100-µL gastight syringe preheated to 50 °C. Before each application, the syringe and wafer were preheated again.

The prepared lipid membranes were dried overnight under a vacuum over P₂O₅ and solid paraffin in a desiccator and then annealed according to the following two protocols:

Annealed at 90 °C: The samples were heated to 90 °C, equilibrated at this temperature for 10 min and slowly (~3 h) cooled to room temperature.

Annealed at 70 °C/H₂O: The samples underlaid with aluminum rings were sealed in aluminum containers with distilled water at the bottom (water was not in contact with the lipids) and heated to 70 °C, equilibrated at this temperature for 10-30 min and slowly (~3 h) cooled to room temperature.

The prepared membranes were not specifically hydrated and were stored at 2-6 °C. Before the XRD measurements, they were equilibrated at room temperature for 24 h.

X-ray diffraction (XRD)

The XRD data were collected at ambient room temperature and humidity with an X'Pert PRO θ-θ diffractometer (PANalytical B.V., Almelo, Netherlands) with parafocusing Bragg-Brentano geometry using CuKα radiation (λ = 1.5418 Å, U = 40 kV, I = 30 mA) or CoKα radiation (λ = 1.7903 Å, U = 35 kV, I = 40 mA) in modified sample holders over the angular range of 0.6-30° (2θ). Data were scanned with an ultrafast position-sensitive linear (1D) X'Celerator detector with a step size of 0.0167° (2θ) and a counting time of 20.32 s.step⁻¹. Certain samples were measured in an elevated position against the origin using an Empyrean θ-θ diffractometer (Malvern Panalytical B.V., Almelo, Netherlands) with Bragg-Brentano geometry using CuKα radiation (λ = 1.5418 Å, U = 40 kV, I = 20-40 mA). The shift of the origin was subtracted from the resulting XRD patterns mathematically. The data were evaluated using X'Pert Data Viewer software (PANalytical B.V., Almelo, Netherlands) and Jandel Scientific Peakfit 2.01 software (AISN Software). The peaks were fitted by the Lorentzian function above a linear background. The XRD patterns show the unscaled raw scattered intensities as a function of the scattering vector Q [nm⁻¹].
repeat distance \(d \) [nm] characterizes the spacing between adjacent scattering planes for parallel lipid layers arranged in a one-dimensional lattice. The XRD patterns of the lamellar phases exhibit a set of Bragg reflections with reciprocal spacings in the characteristic ratios of \(Q_n = 2\pi n/d \) (Miller index \(n = 1, 2, 3 \ldots \)). The \(d \) was obtained from the slope \(a \) of a linear regression of the dependence \(Q_n = a_n + q_0 \), according to the equation \(d = 2\pi/a \), where \(q_0 \) is a constant corresponding to a shift of the origin. The XRD reflection positions of all the lamellar structure types are listed in Supplemental table ST1.
RESULTS

Polymorphism of CerNS24-based model membranes: formation of MLP and VLLP in the absence of ω-O-acylCer

First, we constructed simple SC lipid models using CerNS24, FFA(16-24) and Chol in equimolar ratios with 1 and 5 weight % of CholS (samples labeled 1/0.03 and 1/0.13, respectively, Table 1). The lipids were deposited by spraying and were annealed at 90 °C (17). The XRD pattern of the 1/0.13 sample (Figure 1a) contained several reflections (Supplemental table ST1) attributed to the orders 1, 2, 3…up to 10 of the diffraction from the periodically arranged lipid lamellae forming the short lamellar phase (SLP) with a repeat distance $d = 5.3$ nm (Figure 1d). The region of long-range arrangement further contained reflections attributed to separated Chol. In the region of short-range arrangement (Q–range 14 – 18 nm$^{-1}$ in Figure 1a), we detected two reflections that provided the repeat distances 0.41 and 0.37 nm, which were most likely derived from the orthorhombic packing of lipid polymethylene chains. This behavior was in accordance with (17).

In the preliminary experiments, one of the 1/0.13 samples was allowed to evaporate more slowly during the spraying process. The XRD pattern of this sample (Figure 1b) showed a set of reflections (Supplemental table ST1) of the orders II, IV, V…up to XIV corresponding to $d = 10.6$ nm (in addition to separated Chol). The 1st order reflection of this phase was not detected due to the instrument limitations. The used XDR experimental configuration and its effects on the shape of the XRD patterns are thoroughly discussed in the Supplemental discussion. The 3rd order reflection coincided with the separated Chol peak at $Q = 1.86$ nm$^{-1}$. The dependence of the peak positions in $1/d$ on their order (h) was nevertheless clearly linear (Figure 1e), confirming a lamellar phase denoted the medium lamellar phase, MLP. The peak indices (II, IV, V … up to XIV) were attributed according to the scheme proposed in (37) and will be further discussed. In the region of the short-range arrangement, a weak reflection at the repeat distance of 0.41 nm was detected.
The MLP formation was further reproduced using a modified preparation protocol (Figure 1c). To avoid the overlap of Chol and MLP reflections, the Chol content was decreased to 45%, and no CholS was used (0.45/0 sample). The membrane was prepared by dropping the lipid solution at 50 °C instead of spraying at room temperature, followed by annealing at 70 °C/H₂O for 10 min. This sample enabled us to resolve the 3rd order MLP peak from Chol (only two shoulders at the 3rd and 6th order MLP reflections indicated separated Chol) to further confirm this lamellar structure.

Next, we prepared the 1/0.03 and 1/0.13 samples by dropping the lipid solution at 50 °C, but the annealing at 70 °C/H₂O was prolonged to 30 min. These samples displayed substantially different XRD patterns relative to those in Figure 1. The 1/0.03 sample (i.e., with 1% CholS; Figure 2a and dark blue line in Figure 4) showed separated Chol and a set of strong reflections resembling SLP and weak reflections apparently arranged in pairs in the gaps between the strong reflections (Supplemental Table ST1). Analysis revealed that all these reflections belonged to a lamellar phase as the 1/d dependence on the order (h) was clearly linear (Figure 2b). These reflections were assigned the orders IIIν, IVν, Vν ... up to XXXν, and they provided a very long $d = 15.9$ nm. This d was three times longer than d_{SLP}, and we denoted this lamellar phase as a very long lamellar phase (VLLP$_{15.9}$, subscripts “ν” in the order numbers mark the assignment to VLLP). The formation of VLLP$_{15.9}$ instead of MLP in these membranes was most likely induced by the longer annealing at 70 °C/H₂O. The region of the short-range arrangement contained a weak reflection at the repeat distance of 0.41 nm and an insufficiently resolved reflection at the repeat distance of 0.37 nm.

The XRD pattern of the 1/0.13 sample (i.e., with 5% CholS) formed VLLP$_{15.9}$, which coexisted with another set of weak, regularly spaced reflections (Figure 4, light blue line). The positions of these reflections (Supplemental table ST1) corresponded to another VLLP$_{21.2}$ with $d = 21.2$ nm, which was four times longer than d_{SLP}. The formation of VLLP$_{21.2}$ was also confirmed in the 0.45/0 sample with reduced Chol after additional annealing at 70 °C for 20 min (Supplemental Figure S2a, b). The VLLP$_{21.2}$ together with VLLP$_{15.9}$ was also detected in another control sample 1/0.13 prepared by spraying and annealing at
70 °C/H₂O for 30 min (Supplemental Figure S2c, d). Thus, the slow evaporation of the solvent seemed to be decisive for the formation of MLP, and the long (~30 min) annealing in the presence of H₂O controlled the formation of VLLP_{15.9} and VLLP_{21.2}.

The Chol/CholS ratio modulates the polymorphism of SC lipid membranes

In the next experiment, an impairment of CholS-to-Chol processing in RXLI was simulated using the CerNS24/FFA(16-24)/Chol/CholS samples with increased CholS and reduced Chol content (the Chol/CholS molar ratios were varied from 0.85/0.15 to 0.4/0.6). The samples 1/0.03 and 1/0.13 (mimicking normal CholS levels in healthy SC), as well as 1/0 (without CholS), served as controls. All the samples prepared by spraying and annealing at 90 °C formed SLP with d ~5.3–5.4 nm with orthorhombic packing of polymethylene chains detected in the region of the short-range arrangement (Figure 3).

Separated Chol was also present, except in sample 0.4/0.6, i.e., that with Chol content reduced to 40%, which agrees with previous findings concerning the Chol miscibility with SC lipids (21). Even the significant CholS increment (from 0 to 60%) did not considerably change the lipid lamellar structure under these conditions. It has been previously reported that CholS improves the miscibility of Chol with other lipids in the fully hydrated SC model composed of isolated pig skin Cer/FFA/Chol/CholS at pH = 7.4 and 5. Better Chol miscibility was apparent based on the disappearance of the 1st order Chol reflection at the Chol/CholS molar ratio = 1:0.3 (38). If we solely examined the Chol/CholS molar ratio in our samples, we should expect the Chol reflection to disappear at the latest in sample 0.7/0.3, corresponding to 1 mol of Chol per 0.42 mol CholS. However, disappearance of the Chol reflections was observed only in the membrane with the Chol/CholS molar ratio = 0.4/0.6. This phenomenon was caused by a low Chol fraction in the whole mixture rather than a high CholS fraction. The XRD patterns did not confirm an improved Chol miscibility with other SC lipids due to the higher CholS content. Different Cer species and different sample treatments and environments could explain the discrepancy between our findings and previously reported results (38).
In contrast, the same lipid samples as in Figure 3 prepared by dropping at 50 °C and annealing at 70 °C/H₂O for 30 min formed MLP and VLLP, some with resolved reflections of the orthorhombic polymethylene chain packing (0.37 and 0.41 nm) (Figure 4). The VLLP₁₅.₉ and separated Chol appeared in the XRD patterns of the samples with the Chol/CholS molar ratio in the range from 1/0–0.8/0.2. In the 1/0.13 sample (i.e., that mimicking the CholS content in deeper layers of healthy SC), both VLLP₁₅.₉ and VLLP₂₁.₂ were found, as mentioned above. At 10 weight % CholS (the 0.7/0.3 sample), the VLLP₁₅.₉ coexisted with MLP and separated Chol. Further increases of the CholS level in the 0.6/0.4, 0.5/0.5 and 0.4/0.6 membranes resulted in the formation of MLP without any resolved signs of VLLP. Thus, a CholS content ≥ 14 weight % appears to suppress VLLP formation.

In the MLP-forming samples with high CholS content, additional reflections at \(Q = 1.57\text{–}1.59 \text{ nm}^{-1} \) and 6.19–6.20 nm\(^{-1}\) were observed. An examination of the short-range arrangement of the samples also revealed a peak at \(Q = 15.46 \text{ nm}^{-1} \), the intensity of which increased with increasing CholS content. This feature could be observed in the low CholS content samples, while it became clearly evident in the high CholS content samples. Thus, the peaks at \(Q = 1.57\text{–}1.59 \text{ nm}^{-1} \), 6.19–6.20 nm\(^{-1}\) and 15.46 nm\(^{-1}\) were assigned to the 1\(^{\text{st}}\), 4\(^{\text{th}}\) and 10\(^{\text{th}}\) order reflections, respectively, of separated crystalline CholS dihydrate with a spacing of 4.07 nm (39). This observation is corroborated by previous results, according to which a complete replacement of Chol by CholS in SC model membranes led to a phase-separation of CholS to provide \(d = 4.1 \text{ nm} \) (40).

CerEOS abolishes the CerNS24-based membrane polymorphism

To probe the effects of an \(\omega-O\)-acylCer, namely, CerEOS, on the abovementioned membrane polymorphism, we prepared the 0.45/0+EOS sample (i.e., CerEOS/CerNS/FFA(16-24)/Chol with the 0.3/0.7/1/0.45 molar ratio; Table 1). A similar membrane has been reported to form LLP exclusively (41). Chol was reduced to 45% to prevent an overlap with the LLP reflections. The sample was prepared by dropping at 50 °C and annealing once or twice at 70 °C/H₂O for 10 min or 10 and 20 min, respectively. In the XRD patterns of this sample (Figure 5), we detected reflections of the orders II, III, IV… up to XIV,
providing LLP with $d = 12.2$ nm after the first (Supplemental Table ST1) and second annealing. There was only a small indication that an additional structure, most likely VLLP, formed after the second annealing (Figure 5b). Weak reflections of separated Chol and very weak reflections of the orthorhombic polymethylene chain packing (unresolvable in Figure 5a) were also found.
DISCUSSION

The XRD and electron microscopy results have provided essential information about the SC lipid barrier structure, i.e., that the dominant repeating unit is ~13 nm long (14, 15, 42) and contains repeating patterns of broad/narrow/broad electron-lucent bands bordered by electron-dense segments (25). A recent study using cryo-electron microscopy of vitreous skin sections without staining showed a different pattern, consisting of narrow (4.5 nm) and broad (6.5 nm) lucent bands, together revealing an asymmetric repeating unit of 11 nm (10–12 nm) (26).

Until recently, ω-O-acylCer were thought to be essential for the formation of lamellar lipid phases with long d, as only complex model membranes containing ω-O-acylCer formed a long periodicity phase with d ~ 13 nm along with other phases (18, 43). Here, we report, for the first time, that CerNS24-based model membranes in the absence of ω-O-acylCer form not only the SLP but also MLP and VLLP and that their lamellae can be arranged with even longer repeat distances than in membranes with ω-O-acylCer. The formation of MLP has recently also been observed in model lipid systems based on CerNH (44) or the CerNH/CerNS mixture (45). These models were prepared by spraying and annealing at 90 °C. Thus, there might be an intrinsic susceptibility of various Cer species to form MLP under specific conditions.

MLP and VLLP can macroscopically coexist with a certain fraction of SLP (e.g., coexistence of MLP (d = 10.6 nm) and SLP (d = 5.3 nm), and they are indistinguishable in XRD patterns due to an overlap of their reflections. The phase separation on a macroscopic scale can be recognized in the diffraction patterns only in the cases of incommensurate phases (e.g., MLP and VLLP15.9, VLLP15.9 and VLLP21.2 in Figure 4). On a microscopic scale however, the coexistence may also conform to a different scenario, in which the shorter phase would serve as a base unit for all the longer phases (i.e., MLP=2×SLP, VLLP15.9=3×SLP, VLLP21.2=4×SLP). We suggest a possible simplified arrangement of the lamellar phases in the CerNS24-based model (Figure 6) based on following: the length of the fully extended (splayed-chain) CerNS24 molecule is very close to dSLP = 5.3 nm (26). The extended conformation of CerNS24 in SC lipid model membranes has been indicated previously (46). Furthermore,
the average length of lipid chains is known to affect the resulting \(d \) of lamellar phases in SC model membranes (22).

The single base unit is most likely asymmetric with acyl chain-rich and sphingosine chain-rich domains. In SLP, the base unit with \(d = 5.3 \) nm can be repeated with translational symmetry, but the resulting structure would not be centrosymmetric. The sphingosine chains would point in the same direction in all the repeating units. However, we cannot exclude the possibility that SLP could be based on a different molecular arrangement than the other longer phases, with acyl and sphingosine chains mixed in the same domain. Such a symmetric unit could be repeated with translational symmetry and creates a centrosymmetric structure (Figure 6).

The MLP can be constructed from the asymmetric base units arranged alternately so that sphingosine chains of two adjacent layers point to each other. In artificial asymmetric lipid bilayers, asymmetry in the region of polar headgroups as well as of polymethylene chains became evident due to weak reflections attributed to odd-numbered orders in the XRD patterns (37). A similar pattern was evident in the XRD of the MLP described herein. The ever-present base unit would be one of the reasons for the large diffraction intensities recorded at positions \(h \times 1/5.3 \) nm.

In the MLP, the asymmetry inheres in regions rich in acyl chains (24C, approximate length of the fully stretched chain is 3.1 nm) and sphingosine chains (18C, 2.3 nm). If we divide the \(d_{\text{SLP}} = 5.3 \) nm according to the ratio of 24:18, we obtain 3.03 nm and 2.27 nm fractions. Thus, the sphingosine chain domain in the MLP would have a width of 4.54 nm and the acyl chain domain a width of 6.06 nm. The 4.54 nm width of the supposed sphingosine domain agrees well with a width of the narrow electron-lucent band (4.5 nm) reported in SC micrographs (26). The broad electron-lucent band in the SC micrographs was 6.5 nm wide, which is 0.44 nm longer than the calculations based on our XRD data. If we subtract the width of the sphingosine domain (4.54 nm) from the LLP \(d = 12.2 \) nm in the membrane with CerEOS, we obtain a length of 7.66 nm, which is more than 1 nm larger than the broad lucent band in the SC micrographs reported by Iwai et al. (26). However, the CerEOS fraction in our model was increased to 30
molar % (of total Cer pool) because this composition ensures LLP formation without other lamellar phases. The physiological content of ω-O-acylCer is approximately 10 molar % of the total Cer fraction (47). Thus, if we assume a linear relationship between the average lipid chain length and \(d \), we can interpolate the theoretical widths in the membrane with 10% of ω-O-acylCer: the acyl chain domain of 6.59 nm and \(d = 11.13 \) nm. Such widths would be in an excellent agreement with the micrographs and the model proposed in (26). Our CerNS24-based model also formed VLLP with \(d \) values three or four times larger than \(d_{\text{SLP}} \). The putative arrangements of those units were derived from the existence of an asymmetric base unit and require regular assembly of the lipid sheets on a large scale.

This membrane polymorphism was significantly affected by the CholS concentration in the RXLI model when annealed at 70 °C/H\(_2 \)O. The increasing CholS/Chol ratio changed the propensity of the lipid mixture to self-organize into VLLP; at 14–20 weight % CholS, the lipids created MLP instead of VLLP. The mechanism of the CholS effect on the SC model polymorphism is unknown and requires further studies. In addition, CholS separation was already detected at 7 weight % CholS and became more pronounced at 14 weight % CholS. These abilities of increased CholS concentrations to modulate the SC lipid architecture and to phase separate appear to be consistent with the altered organization of the SC barrier in RXLI patients (31, 32). CholS applied topically onto the isolated murine stratum corneum caused extensive nonlamellar domain formation and disruption of the lamellar membrane structure (31). Lamellar-phase separation was also detected in RXLI patients (32). The phase-separation of CholS in our model could be relevant to the nonlamellar domains and phase-separation in the skin, which is attributed to the skin barrier abnormality. However, the pathophysiology of RXLI patient skin is more complex, comprising the inhibition of serine proteases by CholS and, consequently, diminished degradation of the corneodesmosomes that bind corneocytes, leading to abnormal desquamation (48). Furthermore, CholS acts as an acidifier of the SC interstices in RXLI patients relative to the pH in healthy individuals (49). Increased Ca\(^{2+} \) levels in the SC of RXLI patients also contribute to corneocyte retention by increasing corneodesmosome and interlamellar cohesion (32). Although our model simulated some important
properties of the SC lipid barrier (it contained the main SC lipid classes at a proper molar ratio and attained the lamellar characteristic of the lipid matrix), we are aware of the model limitations. For example, the formation of extracellular lipid domains in the epidermal differentiation concurs with the cornification of granular cells to corneocytes and formation of the corneocyte lipid envelope. The corneocyte lipid envelope is an external membrane monolayer of lipids that is covalently bound to corneocytes and serves as a template for the orientation of SC lipids (50, 51). It would be interesting to study the templating function of the corneocyte lipid envelope on the formation of the lamellar phases described herein in healthy and RXLI models. However, no in vitro membrane models are currently available that would include corneocytes with a cornified envelope and corneocyte lipid envelope.

An interesting aspect of the SC model membranes was the occurrence of peaks in the region of short-range arrangement, indicating an orthorhombic packing of the polymethylene chains. These peaks with spacings of 0.41 nm and 0.37 nm were resolved when the samples were applied by spraying and annealing at 90 °C in the absence of H$_2$O. The other preparation and annealing methods led to obviously lower relative intensity peaks of 0.41 nm and 0.37 nm or their complete disappearance. We do not have an explanation for this effect, and thus it will be further assessed in our future studies.

Our results suggest that CerEOS (and possibly also other ω-O-acylCer) suppresses lipid arrangements other than LLP in a CerNS24-based model. The elongated acyl chains with ester-linked linoleic acid in CerEOS likely act as a molecular rivet, literally sticking together the opposing lipid sheets and reinforcing the LLP structure. Such cross-linking can contribute to the barrier function by hampering the diffusion of molecules along lipid layers, as indicated by (41). We consider this feature of the CerEOS-containing membrane to be a key point in understanding the fundamental properties of Cer-based lipid systems and the involvement of ω-O-acylCer therein.
ACKNOWLEDGMENTS

This work was supported by project EFSA-CDN (No. CZ.02.1.01/0.0/0.0/16_019/0000841) co-funded by ERDF, Czech Science Foundation (19-09135J) and a Grant of the Representative of the Czech Republic in the Committee of Plenipotentiaries of JINR and JINR topical theme 04-4-1121-2015/2020.
REFERENCES

1. Matsui, T., and M. Amagai. 2015. Dissecting the formation, structure and barrier function of the stratum corneum. *Int. Immunol.* 27: 269–280.

2. Wertz, P. W. 2004. Stratum corneum lipids and water. *Exog. Dermatol.* 3: 53–56.

3. Elias, P. M. 1981. Epidermal Lipids, Membranes, and Keratinization. *Int. J. Dermatol.* 20: 1–19.

4. Williams, M. L., and P. M. Elias. 1981. Stratum corneum lipids in disorders of cornification: increased cholesterol sulfate content of stratum corneum in recessive x-linked ichthyosis. *J. Clin. Invest.* 68: 1404–1410.

5. Masukawa, Y., H. Narita, E. Shimizu, N. Kondo, Y. Sugai, T. Oba, R. Homma, J. Ishikawa, Y. Takagi, T. Kitahara, Y. Takema, and K. Kita. 2008. Characterization of overall ceramide species in human stratum corneum. *J. Lipid Res.* 49: 1466–1476.

6. Robson, K. J., M. E. Stewart, S. Michelsen, N. D. Lazo, and D. T. Downing. 1994. 6-Hydroxy-4-sphingenine in human epidermal ceramides. *J. Lipid Res.* 35: 2060–2068.

7. t’Kindt, R., L. Jorge, E. Dumont, P. Couturon, F. David, P. Sandra, and K. Sandra. 2012. Profiling and Characterizing Skin Ceramides Using Reversed-Phase Liquid Chromatography–Quadrupole Time-of-Flight Mass Spectrometry. *Anal. Chem.* 84: 403–411.

8. Rabionet, M., A. Bayerle, C. Marsching, R. Jennemann, H.-J. Gröne, Y. Yildiz, D. Wachten, W. Shaw, J. A. Shayman, and R. Sandhoff. 2013. 1-O-acylceramides are natural components of human and mouse epidermis. *J. Lipid Res.* 49: 1466–1476.

9. van Smeden, J., W. A. Boiten, T. Hankemeier, R. Rissmann, J. A. Bouwstra, and R. J. Vreeken. 2014. Combined LC/MS-platform for analysis of all major stratum corneum lipids, and the profiling of skin substitutes. *Biochim. Biophys. Acta BBA - Mol. Cell Biol. Lipids.* 1841: 70–79.

10. Rabionet, M., K. Gorgas, and R. Sandhoff. 2014. Ceramide synthesis in the epidermis. *Biochim. Biophys. Acta BBA - Mol. Cell Biol. Lipids.* 1841: 422–434.

11. Elias, P. M., and D. S. Friend. 1975. The permeability barrier in mammalian epidermis. *J. Cell Biol.* 65: 180–191.

12. Hou, S. Y. E., A. K. Mitra, S. H. White, G. K. Menon, R. Ghadially, and P. M. Elias. 1991. Membrane Structures in Normal and Essential Fatty Acid-Deficient Stratum Corneum: Characterization by Ruthenium Tetroxide Staining and X-Ray Diffraction. *J. Invest. Dermatol.* 96: 215–223.

13. Elias, P. M., and G. K. Menon. 1991. Structural and lipid biochemical correlates of the epidermal permeability barrier. *Adv. Lipid Res.* 24: 1–26.

14. Bouwstra, J. A., G. S. Gooris, J. A. van der Spek, and W. Bras. 1991. Structural Investigations of Human Stratum Corneum by Small-Angle X-Ray Scattering. *J. Invest. Dermatol.* 97: 1005–1012.

15. White, S. H., D. Mirejovsky, and G. I. King. 1988. Structure of lamellar lipid domains and corneocyte envelopes of murine stratum corneum. An x-ray diffraction study. *Biochemistry.* 27: 3725–3732.

16. McIntosh, T. J., M. E. Stewart, and D. T. Downing. 1996. X-ray Diffraction Analysis of Isolated Skin Lipids: Reconstitution of Intercellular Lipid Domains. *Biochemistry.* 35: 3649–3653.
17. Bouwstra, J. A., G. S. Gooris, K. Cheng, A. Weerheim, W. Bras, and M. Ponec. 1996. Phase behavior of isolated skin lipids. J. Lipid Res. 37: 999–1011.

18. Bouwstra, J. A., G. S. Gooris, F. E. R. Dubbelaar, A. M. Weerheim, A. P. IJzerman, and M. Ponec. 1998. Role of ceramide 1 in the molecular organization of the stratum corneum lipids. J. Lipid Res. 39: 186–196.

19. de Jager, M., G. S. Gooris, I. P. Dolbnya, W. Bras, M. Ponec, and J. A. Bouwstra. 2003. The phase behaviour of skin lipid mixtures based on synthetic ceramides. Chem. Phys. Lipids. 124: 123–134.

20. Bouwstra, J. A., G. S. Gooris, M. A. S. Vries, J. A. van der Spek, and W. Bras. 1992. Structure of human stratum corneum as a function of temperature and hydration: A wide-angle X-ray diffraction study. Int. J. Pharm. 84: 205–216.

21. Sochorová, M., P. Audrlícka, M. Červená, A. Kováčik, M. Kopečná, L. Opálka, P. Pullmannová, and K. Vávrová. 2019. Permeability and microstructure of cholesterol-depleted skin lipid membranes and human stratum corneum. J. Colloid Interface Sci. 535: 227–238.

22. Školová, B., B. Janůšová, J. Zbytovská, G. Gooris, J. Bouwstra, P. Slepička, P. Berka, J. Roh, K. Palát, A. Hrabálek, and K. Vávrová. 2013. Ceramides in the Skin Lipid Membranes: Length Matters. Langmuir 29: 15624–15633.

23. Schreiner, V., G. S. Gooris, S. Pfeiffer, G. Lanzendörfer, H. Wenck, W. Diembeck, E. Proksch, and J. Bouwstra. 2000. Barrier Characteristics of Different Human Skin Types Investigated with X-Ray Diffraction, Lipid Analysis, and Electron Microscopy Imaging. J. Invest. Dermatol. 114: 654–660.

24. Janssens, M., J. van Smeden, G. S. Gooris, W. Bras, G. Portale, P. J. Caspers, R. J. Vreeken, S. Kezic, A. P. M. Lavrijsen, and J. A. Bouwstra. 2011. Lamellar Lipid Organization and Ceramide Composition in the Stratum Corneum of Patients with Atopic Eczema. J. Invest. Dermatol. 131: 2136–2138.

25. Swartzendruber, D. C., P. W. Wertz, D. J. Kitko, K. C. Madison, and D. T. Downing. 1989. Molecular models of the Intercellular Lipid Lamellae in Mammalian Stratum Corneum. J. Invest. Dermatol. 92: 251–257.

26. Iwai, I., H. Han, L. den Hollander, S. Svensson, L.-G. Öfverstedt, J. Anwar, J. Brewer, M. Bloksgaard, A. Laloeuf, D. Nosek, S. Masich, L. A. Bagatolli, U. Skoglund, and L. Norlén. 2012. The Human Skin Barrier Is Organized as Stacked Bilayers of Fully Extended Ceramides with Cholesterol Molecules Associated with the Ceramide Sphingoid Moiety. J. Invest. Dermatol. 132: 2215–2225.

27. Mojumdar, E. H., G. S. Gooris, D. Groen, D. J. Barlow, M. J. Lawrence, B. Demé, and J. A. Bouwstra. 2016. Stratum corneum lipid matrix: Location of acyl ceramide and cholesterol in the unit cell of the long periodicity phase. Biochim. Biophys. Acta BBA - Biomembr. 1858: 1926–1934.

28. Lundborg, M., A. Narangifard, C. L. Wennberg, E. Lindahl, B. Daneholt, and L. Norlén. 2018. Human skin barrier structure and function analyzed by cryo-EM and molecular dynamics simulation. J. Struct. Biol. 203: 149–161.

29. Elias, P. M., M. L. Williams, M. E. Maloney, J. A. Bonifas, B. E. Brown, S. Grayson, and E. H. Epstein. 1984. Stratum corneum lipids in disorders of cornification. Steroid sulfatase and cholesterol sulfate in normal desquamation and the pathogenesis of recessive X-linked ichthyosis. J. Clin. Invest. 74: 1414–1421.

30. Ranasinghe, A. W., P. W. Wertz, D. T. Downing, and I. C. MacKenzie. 1986. Lipid composition of
cohesive and desquamated corneocytes from mouse ear skin. *J. Invest. Dermatol.* **86**: 187–190.

31. Zettersten, E., M.-Q. Man, A. Farrell, R. Ghadially, M. L. Williams, K. R. Feingold, P. M. Elias, J. Sato, and M. Denda. 1998. Recessive x-Linked Ichthyosis: Role of Cholesterol-Sulfate Accumulation in the Barrier Abnormality. *J. Invest. Dermatol.* **111**: 784–790.

32. Elias, P. M., D. Crumrine, U. Rassner, J.-P. Hachem, G. K. Menon, W. Man, C. Wun, L. Leyboldt, K. R. Feingold, and M. L. Williams. 2004. Basis for Abnormal Desquamation and Permeability Barrier Dysfunction in RXLI. *J. Invest. Dermatol.* **122**: 314–319.

33. Groen, D., D. S. Poole, G. S. Gooris, and J. A. Bouwstra. 2011. Investigating the barrier function of skin lipid models with varying compositions. *Eur. J. Pharm. Biopharm.* **79**: 334–342.

34. Rehfeld, S. J., W. Z. Plachy, M. L. Williams, and P. M. Elias. 1988. Calorimetric and Electron Spin Resonance Examination of Lipid Phase Transitions in Human Stratum Corneum: Molecular Basis for Normal Cohesion and Abnormal Desquamation in Recessive X-Linked Ichthyosis. *J. Invest. Dermatol.* **91**: 499–505.

35. Opálka, L., A. Kováčik, M. Sochorová, J. Roh, J. Kuneš, J. Lenčo, and K. Vávrová. 2015. Scalable Synthesis of Human Ultralong Chain Ceramides. *Org. Lett.* **17**: 5456–5459.

36. Groen, D., G. S. Gooris, and J. A. Bouwstra. 2010. Model Membranes Prepared with Ceramide EOS, Cholesterol and Free Fatty Acids Form a Unique Lamellar Phase. *Langmuir*. **26**: 4168–4175.

37. McIntosh, T. J., R. C. Waldbillig, and J. D. Robertson. 1977. The molecular organization of asymmetric lipid bilayers and lipid-peptide complexes. *Biochim. Biophys. Acta BBA - Biomembr.* **466**: 209–230.

38. Bouwstra, J. A., G. S. Gooris, F. E. R. Dubbelaar, and M. Ponec. 1999. Cholesterol sulfate and calcium affect stratum corneum lipid organization over a wide temperature range. *J. Lipid Res.* **40**: 2303–2312.

39. Abrahamsson, J., S. Abrahamsson, B. Hellqvist, K. Larsson, I. Pascher, and S. Sundell. 1977. Cholesteryl sulphate and phosphate in the solid state and in aqueous systems. *Chem. Phys. Lipids.* **19**: 213–222.

40. McIntosh, T. J. 2003. Organization of Skin Stratum Corneum Extracellular Lamellae: Diffraction Evidence for Asymmetric Distribution of Cholesterol. *Biophys. J.* **85**: 1675–1681.

41. Opálka, L., A. Kováčik, J. Maixner, and K. Vávrová. 2016. Omega- O-Acylceramides in Skin Lipid Membranes: Effects of Concentration, Sphingoid Base, and Model Complexity on Microstructure and Permeability. *Langmuir*. **32**: 12894–12904.

42. Madison, K. C., D. C. Swartzendruber, P. W. Wertz, and D. T. Downing. 1987. Presence of intact intercellular lipid lamellae in the upper layers of the stratum corneum. *J. Invest. Dermatol.* **88**: 714–718.

43. de Jager, M. W., G. S. Gooris, I. P. Dolbnya, W. Bras, M. Ponec, and J. A. Bouwstra. 2004. Novel lipid mixtures based on synthetic ceramides reproduce the unique stratum corneum lipid organization. *J. Lipid Res.* **45**: 923–932.

44. Kováčik, A., M. Šilarová, P. Pullmannová, J. Maixner, and K. Vávrová. 2017. Effects of 6-Hydroxyacylceramides on the Thermotropic Phase Behavior and Permeability of Model Skin Lipid Membranes. *Langmuir*. **33**: 2890–2899.
45. Kováčík, A., A. Vogel, J. Adler, P. Pullmannová, K. Vávrová, and D. Huster. 2018. Probing the role of ceramide hydroxylation in skin barrier lipid models by 2H solid-state NMR spectroscopy and X-ray powder diffraction. *Biochim. Biophys. Acta - Biomembr.* **1860**: 1162–1170.

46. Školová, B., K. Hudská, P. Pullmannová, A. Kováčík, K. Palát, J. Roh, J. Fleddermann, I. Estrela-Lopis, and K. Vávrová. 2014. Different Phase Behavior and Packing of Ceramides with Long (C16) and Very Long (C24) Acyls in Model Membranes: Infrared Spectroscopy Using Deuterated Lipids. *J. Phys. Chem. B* **118**: 10460–10470.

47. Masukawa, Y., H. Narita, H. Sato, A. Naoe, N. Kondo, Y. Sugai, T. Oba, R. Homma, J. Ishikawa, Y. Takagi, and T. Kitahara. 2009. Comprehensive quantification of ceramide species in human stratum corneum. *J. Lipid Res.* **50**: 1708–1719.

48. Elias, P. M., M. L. Williams, E.-H. Choi, and K. R. Feingold. 2014. Role of cholesterol sulfate in epidermal structure and function: Lessons from X-linked ichthyosis. *Biochim. Biophys. Acta BBA - Mol. Cell Biol. Lipids.* **1841**: 353–361.

49. Öhman, H., and A. Vahlquist. 1998. The pH Gradient over the Stratum Corneum Differs in X-Linked Recessive and Autosomal Dominant Ichthyosis: A Clue to the Molecular Origin of the “Acid Skin Mantle”? *J. Invest. Dermatol.* **111**: 674–677.

50. Elias, P. M., R. Gruber, D. Crumrine, G. Menon, M. L. Williams, J. S. Wakefield, W. M. Holleran, and Y. Uchida. 2014. Formation and Functions of the Corneocyte Lipid Envelope (CLE). *Biochim. Biophys. Acta.* **1841**: 314–318.

51. Wertz, P. W., and B. van den Bergh. 1998. The physical, chemical and functional properties of lipids in the skin and other biological barriers. *Chem. Phys. Lipids.* **91**: 85–96.
TABLES

Table 1: The composition of the model lipid membranes.

Sample labeling (Chol/CholS molar ratio)	Molar fraction	weight % CholS (of total lipids)					
CerNS24	CerEOS	FFA(16-24)	Chol	CholS			
1/0	1	0	1	1	0	0	
0.45/0	1	0	1	0.45	0	0	
0.45/0+EOS	no CholS	0.7	0.3	1	0.45	0	0
1/0.13	controls	1	0	1	1	0.13	5
1/0.03	RXLI model	1	0	1	1	0.03	1
0.85/0.15	1	0	1	0.85	0.15	5	
0.8/0.2	1	0	1	0.8	0.2	7	
0.7/0.3	1	0	1	0.7	0.3	10	
0.6/0.4	1	0	1	0.6	0.4	14	
0.5/0.5	1	0	1	0.5	0.5	17	
0.4/0.6	1	0	1	0.4	0.6	20	
FIGURES AND FIGURE LEGENDS

Figure 1: Formation of the short lamellar phase (SLP – panel a) and medium lamellar phase (MLP – panels b, c) in the SC model membranes. XRD patterns in the regions corresponding to the long- (left-hand side) and short-range arrangement (right-hand side) of the 1/0.13 sample (i.e., CerNS24/FFA(16-24)/Chol/CholS at the 1/1/1/0.13 molar ratio) forming a short lamellar phase (SLP) (a) or medium lamellar phase (MLP) (b). The 0.45/0 sample with the molar ratio CerNS24/FFA(16-24)/Chol/CholS = 1/1/0.45/0 forming MLP (c) measured at two configurations of the diffractometer providing small differences in the background of overlapping regions. Linear regressions of the dependence of $1/d$ on the reflection order h for SLP (d) and MLP (e). Arabic numerals, Roman numerals and asterisks indicate SLP, MLP and separated cholesterol (Chol), respectively. Arrows indicate the reflections of orthorhombic chain packing. Full and dashed grid lines predict the positions of SLP and odd MLP reflections, respectively. The intensities of different measurements are not scaled and are shown in arbitrary units.
Figure 2: Formation of the very long lamellar phase (VLLP\textsubscript{15.9}) in SC model membranes. XRD pattern of the VLLP\textsubscript{15.9} in the 1/0.03 sample (i.e., CerNS24/FFA(16-24)/Chol/CholS at the 1/1/1/0.03 molar ratio) (a) in the region of long-range arrangement (left-hand side) and short-range arrangement (right-hand side). Roman numerals with the subscript "v" indicate the VLLP\textsubscript{15.9} reflections; asterisks indicate separated cholesterol (Chol), arrows indicate the reflections of orthorhombic chain packing. Full grid lines predict the position of VLLP\textsubscript{15.9} reflections. The intensity in arbitrary units is shown on a logarithmic scale. A linear regression of the dependence of 1/d on the reflection order h (b).
Figure 3: Short lamellar phases (SLP) formed in lipid membranes modeling the increased CholS-to-Chol ratio in RXLI disease, prepared by spraying and annealing at 90 °C. XRD patterns of the CerNS24/FFA(16-24)/Chol/CholS samples with the molar ratio Chol/CholS = 1/0 – 0.4/0.6 in the region of long- (bottom) and short-range arrangement (top). Arabic numerals indicate the reflections of SLP; asterisks indicate the separated cholesterol (Chol); arrows indicate the reflections of orthorhombic chain packing. The intensities of different measurements are not scaled and are shown in arbitrary units.
Figure 4: Polymorphism of the lipid membranes modeling the increased CholS-to-Chol ratio in RXLI disease, prepared by dropping and annealing at 70 °C/H$_2$O. XRD patterns of the CerNS24/FFA(16-24)/Chol/CholS samples with the molar ratio Chol/CholS = 1/0 – 0.4/0.6 in the region of long- (bottom) and short-range arrangement (top). Grid lines predict the position of VLLP$_{15.9}$ reflections (full), specific MLP reflections (dashed) and specific VLLP$_{21.2}$ reflections (dotted); asterisks, plus
symbols and arrows indicate separated cholesterol (Chol), separated cholesteryl sulfate (CholS) and reflections of orthorhombic chain packing. The intensities of different measurements are not scaled and are shown in arbitrary units. The intensities in the region of the long-range arrangement are shown on a logarithmic scale.
Figure 5: The effect of CerEOS on the structure of SC model membranes. XRD patterns of the sample 0.45/0 + EOS with the molar ratio CerEOS/CerNS24/FFA(16-24)/Chol/CholS = 0.3/0.7/1/0.45/0 after the first annealing (a) and after the second annealing (b) in the region of long-range arrangement (left-hand side) and short-range arrangement (right-hand side). Roman numerals indicate the reflections of LLP, asterisks indicate separated cholesterol (Chol), and arrows indicate weak additional reflections, which most likely belong to a VLLP. The intensities of different measurements are not scaled and are shown in arbitrary units. A linear regression of the dependence of $1/d$ on the reflection order h for LLP (c).
Figure 6: The proposed simplified models of the repeating units of the CerNS24-based and CerEOS/CerNS24-based SC model membranes.