Children with Heart Conditions and Their Special Health Care Needs — United States, 2016

Meng-Yu Chen, MD1,2; Tiffany Riehle-Colarusso, MD2; Lorraine F. Yeung, MD2; Camille Smith, EdS2; Sherry L. Farr, PhD2

Children with heart conditions often use more health care services and specialized care than children without a heart condition (1); however, little is known about the number of U.S. children with heart conditions and their special health care needs. CDC used data from the 2016 National Survey of Children's Health (NSCH) to estimate the prevalence of heart conditions among U.S. children aged 0–17 years, which indicated that 1.3% had a current heart condition and 1.1% had a past heart condition (representing approximately 900,000 and 755,000 children, respectively). Sixty percent and 40% of children with current and past heart conditions, respectively, had one or more special health care needs, compared with 18.7% of children without a heart condition (adjusted prevalence ratios [aPRs] = 3.1 and 2.1, respectively). Functional limitations were 6.3 times more common in children with current heart conditions (30.7%) than in those without heart conditions (4.6%). Among children with current heart conditions, males, children with lower family income, and children living in other than a two-parent household had an increased prevalence of special health care needs. These findings highlight the importance of developmental surveillance and screening for children with heart conditions and might inform public health resource planning.

Heart conditions in children can be congenital or acquired and range from asymptomatic to life-threatening. Congenital heart defects (CHDs) are the most common type of birth defect in the United States, affecting approximately 1% of live births (2). Children with CHDs often use more health care or educational services than do children without CHDs and might require specialized care (1,3,4). Less is known about the prevalence or needs of children with acquired heart conditions. Previously, there have been no known U.S. population-based estimates of the number of children with heart conditions or their special health care needs.

NSCH is a population-based, nationally representative survey of parents or primary caregivers (parents) of noninstitutionalized U.S. children aged 0–17 years.* NSCH asks parents about a selected child’s health, health care access, and family characteristics. In 2016, a total of 364,150 households were

*https://mchb.hrsa.gov/data/national-surveys.
sampled; 138,009 (37.9%) parents completed screener surveys, and 50,212 (36.4%) of those completed topical surveys. The overall weighted response rate was 40.7%.

Parents were asked if they had ever been told by a health care provider that their child had a heart condition. Those who responded affirmatively were asked if their child currently had a heart condition. Children’s heart condition status was categorized as “current,” “past,” or “none.” Parents were also asked about their child’s special health care needs using a standardized five-item screener that included 1) need for or use of medications (other than vitamins) prescribed by a doctor; 2) need for or use of medical care, mental health, or educational services beyond those of a similarly aged child (referred to as “average use”); 3) limitation in the child’s ability to do things most children of the same age can do; 4) need for or receipt of treatment or counseling for an emotional, behavioral, or developmental problem. If any special health care need was attributable to a medical, behavioral, or other health condition that had lasted, or was expected to last, 12 months or longer, the child was considered to have a special health care need. The questionnaire also inquired about 26 other health conditions.§

The numbers and percentages of children with current, past, and no heart conditions were calculated. Chi-square tests were used to examine the differences in demographic characteristics (sex, age, race/ethnicity, family income as a percentage of the federal poverty level [FPL], highest parental education level achieved, health insurance type, and household structure); other health conditions; and special health care needs, by heart condition status. Marginal prediction approach to logistic regression was used to assess the association between heart condition status and one or more special health care needs, adjusted for demographic characteristics. Among children with a current heart condition, characteristics associated with having one or more special health care needs also were examined. All analyses were repeated excluding children with Down syndrome or other genetic conditions because these children’s heart conditions might be related to the syndromes. All analyses included design parameters to account for complex sampling.

§Allergies, anxiety problems, arthritis, asthma, attention deficit disorder/attention deficit hyperactivity disorder, autism spectrum disorder, behavioral/conduct problems, blood disorders, brain injury, cerebral palsy, cystic fibrosis, depression, developmental delay, diabetes, Down syndrome, epilepsy/seizure disorder, headaches/migraines, hearing impairment, learning disability, mental retardation/intellectual disability, other genetic/inherited conditions, other mental health conditions, speech/language disorder, substance abuse, Tourette syndrome, and vision impairment.
TABLE 1. Characteristics of children aged 0–17 years, by parent-reported heart condition status — National Survey of Children’s Health, United States, 2016

Characteristic	Current	Past	None	Chi-square	p value		
	Unweighted no.	Weighted % (95% CI)	Unweighted no.	Weighted % (95% CI)	Unweighted no.	Weighted % (95% CI)	
Total	634	—	498	—	47,347	—	
Sex							
Male	356	58.3 (50.0–66.1)	267	53.5 (42.6–64.1)	24,189	50.8 (49.8–51.8)	0.17
Female	278	41.7 (33.9–50.0)	231	46.5 (35.9–57.4)	23,158	49.2 (48.2–50.2)	
Age group (yrs)							
0–5	185	28.9 (22.9–35.7)	136	27.9 (20.5–36.7)	13,717	32.4 (31.5–33.4)	0.16
6–11	194	44.0 (35.9–52.4)	144	32.7 (23.2–43.7)	14,139	33.9 (32.9–34.9)	
12–17	255	27.1 (21.6–33.5)	218	39.5 (29.1–50.9)	19,491	33.7 (32.8–34.6)	
Race/Ethnicity							
White, non-Hispanic	455	55.7 (47.3–63.8)	356	52.0 (41.0–62.8)	33,510	52.5 (51.5–53.6)	0.75
Other*	179	44.3 (36.2–52.7)	142	48.0 (37.2–59.0)	13,837	47.5 (46.4–48.5)	
Family income as a percentage of federal poverty level†							
<100%	72	21.5 (15.5–28.9)	58	28.7 (17.6–43.3)	4,309	20.5 (19.5–21.5)	0.28
100%–199%	112	27.4 (19.6–36.8)	81	19.4 (13.2–27.6)	7,375	21.9 (21.0–22.9)	
200%–399%	208	27.4 (21.8–33.9)	169	27.6 (20.6–36.0)	14,693	27.2 (26.3–28.0)	
≥400%	242	23.7 (18.7–29.7)	190	24.2 (17.6–32.3)	20,970	30.4 (29.6–31.2)	
Parental education level§							
High school graduate or less	107	35.2 (26.9–44.6)	77	29.3 (19.9–40.9)	6,772	28.4 (27.3–29.6)	0.38
More than high school	527	64.8 (55.4–73.1)	421	70.7 (59.1–80.1)	40,575	71.6 (70.4–72.7)	
Household structure							
Two parents	503	72.3 (65.1–78.5)	393	77.6 (69.6–83.9)	38,606	75.8 (74.9–76.7)	0.54
Other	131	27.7 (21.5–34.9)	105	22.4 (16.1–30.4)	8,741	24.2 (23.3–25.1)	
Insurance type‡							
Any private, unspecified, or uninsured	459	55.4 (47.0–63.5)	354	50.7 (39.9–61.5)	36,679	61.6 (60.5–62.6)	0.10
Public, unspecified, or uninsured	173	44.6 (36.5–53.0)	141	49.3 (38.5–60.1)	10,544	38.4 (37.4–39.5)	

Abbreviation: CI = confidence interval.
* Includes Hispanic, non-Hispanic black, American Indian/Alaska Native, Native Hawaiian or Other Pacific Islander, and Asian.
† Based on the U.S. Department of Health and Human Services Poverty Guidelines.
§ Highest education level among two parents or child’s primary caregivers.
‡ 129 had missing information on insurance type.
TABLE 2. Percentage and adjusted prevalence ratio* of special health care needs† among children aged 0–17 years, by parent-reported heart condition status — National Survey of Children’s Health, United States, 2016

Special health care needs	Current	Current aPR* (95% CI)	Past	Past aPR* (95% CI)	None	None aPR* (95% CI)
Has one or more special health care needs	60.0 (51.6–67.8)	3.1 (2.7–3.6)	40.0 (29.9–50.9)	2.1 (1.6–2.7)	18.7 (18.0–19.5)	
Needs or uses prescription medicines	42.8 (35.3–50.7)	3.0 (2.5–3.6)	26.6 (17.5–38.1)	1.9 (1.3–2.8)	13.8 (13.2–14.5)	
Above average use of health care or educational services‡	41.8 (34.5–49.4)	4.2 (3.5–5.1)	23.9 (17.2–32.2)	2.4 (1.8–3.3)		
Has functional limitations	30.7 (24.3–38.0)	6.3 (5.0–8.1)	17.4 (11.5–25.5)	3.7 (2.4–5.6)	4.6 (4.1–5.0)	
Needs or uses physical, occupational, or speech therapies	22.4 (16.9–29.0)	4.3 (3.2–5.7)	14.4 (9.2–21.8)	2.9 (1.8–4.6)	4.7 (4.3–5.2)	
Needs or receives treatment or counseling for emotional, developmental or behavioral conditions	23.4 (17.8–30.0)	2.7 (2.1–3.5)	22.5 (15.9–30.9)	2.7 (1.9–3.8)		

Abbreviations: aPR = adjusted prevalence ratio; CI = confidence interval.
* Prevalence ratio of special health care needs for current and past heart conditions versus no heart condition, adjusted for sex, age group, race/ethnicity, family income as a percentage of the federal poverty level, parental education level, and household structure.
† Based on having one or more of the following five conditions: needing or using prescription medicine; needing or using more medical care, mental health, or educational services than other children their age; having limitations in doing things, compared with other children their age; needing special therapy (e.g., physical, occupational, or speech therapy); or having an emotional, developmental, or behavioral problem in need of counseling or treatment. These conditions must be related to a medical, behavioral, or other health condition that has lasted or is expected to last 12 months or longer.
‡ Beyond those of a similarly aged child.
§ Highest relative differences observed for functional limitations (current aPR = 6.3; 95% CI = 5.0–8.1) (past aPR = 3.7; 95% CI = 2.4–5.6).

Among children with current heart conditions, an increased prevalence of special health care needs was observed among males (aPR = 1.3; 95% CI = 1.1–1.7), children with family income <100% of FPL (aPR = 1.4; 95% CI = 1.0–2.0), and children living in other than a two-parent household (aPR = 1.3; 95% CI = 1.0–1.6) (Table 3). Findings did not change substantially after excluding 1,650 children with Down syndrome or other genetic conditions, 181 (11%) of whom had a heart condition.

Discussion

According to the 2016 NSCH, 1.3% and 1.1% of U.S. children had a current or past heart condition, respectively. Because the specific types of heart conditions were unknown (i.e., congenital versus acquired), comparing current findings with published estimates of CHDs or acquired heart conditions is difficult. The birth prevalence of CHDs is nearly 1%, and approximately 1 million U.S. children have CHDs (2). Although U.S. estimates of some acquired heart diseases such as those resulting from Kawasaki disease (5) and rheumatic heart disease (6) exist, the prevalence of other acquired heart conditions in children is unknown.

Children with CHDs are at increased risk for developmental disabilities and speech, motor, behavior, or learning problems (7), whereas the risk for children with acquired heart conditions has not been quantified. The higher prevalence of special health care needs among children with heart conditions, particularly

TABLE 3. Associations between selected demographic characteristics and special health care needs among children aged 0–17 years who have a current heart condition — National Survey of Children’s Health, United States, 2016

Characteristic	One or more special health care needs	Weighted % (95% CI)	aPR* (95% CI)
Sex			
Male	68.9 (60.5–76.3)	1.3 (1.1–1.7)	
Female	47.4 (34.5–60.7)	Referent	
Age group (yrs)			
0–5	57.8 (45.9–68.9)	Referent	
6–11	58.5 (42.7–72.7)	1.0 (0.7–1.2)	
12–17	64.4 (53.4–74.4)	1.1 (0.9–1.3)	
Race/Ethnicity			
White, non-Hispanic	62.4 (54.6–69.7)	Referent	
Other	56.8 (41.3–71.1)	0.9 (0.7–1.1)	
Family income as a percentage of federal poverty level§			
<100%	80.5 (67.3–89.3)	1.4 (1.0–2.0)	
100%–199%	52.8 (32.6–72.2)	1.0 (0.7–1.5)	
200%–399%	59.5 (47.8–70.2)	1.1 (0.9–1.5)	
≥400%	50.1 (38.5–61.7)	Referent	
Parental education level†			
High school graduate or less	62.0 (41.6–78.9)	1.0 (0.8–1.3)	
More than high school	58.8 (51.6–65.7)	Referent	
Household structure			
Two parents	54.2 (44.2–63.8)	Referent	
Other	75.1 (63.3–84.0)	1.3 (1.0–1.6)	

Abbreviations: aPR = adjusted prevalence ratio; CI = confidence interval.
* Prevalence ratios adjusted for sex, age group, race/ethnicity, family income, parental education level, and household structure.
† Includes Hispanic, non-Hispanic black, American Indian/Alaska Native, Native Hawaiian or Other Pacific Islander, and Asian.
‡ Based on the U.S. Department of Health and Human Services Poverty Guidelines.
§ Highest education level among two parents or child’s primary caregivers.
functional limitations identified in this study, supports the American Academy of Pediatrics’ guidance on developmental surveillance and screening for early identification and intervention (7), particularly for children with complex CHDs (e.g., single ventricle defects) (7).

Similar to the present findings among children with CHDs, male sex, lower family income, and other than two-parent household structure have been associated with special health care needs in the general pediatric population (8). The differences in the prevalence of special health care needs by sex, family income, and household structure could reflect a difference in health status or differential ascertainment. Associations between special health care needs and family income and household structure might be attributable to stress and financial issues associated with the child’s health and treatment (9). More information is needed to know what resources might support families and benefit children.

The findings in this report are subject to at least five limitations. First, data are parent-reported and unconfirmed by medical records; however, according to findings from a study that used medical records to verify parental report of a diagnosis of autism (10), parental report of their child’s medical history might be valid. Second, separate analyses for congenital, acquired, or other heart conditions could not be conducted because information on the type of heart condition was not available. Third, the composition of heart conditions relies on what the responding parent considered a “heart condition” or a “current heart condition,” which might underestimate or overestimate the prevalence of heart conditions. Fourth, although the data were weighted for nonresponse, bias might remain. Finally, the temporality of special health care needs and family income or household structure is unknown.

These first population-based prevalence estimates of children with heart conditions and their special health care needs highlight the importance of guidelines for developmental surveillance and screening for early identification and intervention (4,7). These estimates could inform national and state child health programs to ensure that children with heart conditions receive necessary services.

Acknowledgment

Karrie F. Downing.
Corresponding author: Sherry Farr, bwa0@cdc.gov, 404-498-3877.

1Epidemic Intelligence Service, CDC; 2Division of Congenital and Developmental Disabilities, National Center on Birth Defects and Developmental Disabilities, CDC.

All authors have completed and submitted the ICMJE form for disclosure of potential conflicts of interest. No potential conflicts of interest were disclosed.

References

1. Marino BS, Lipkin PH, Newburger JW, et al. Neurodevelopmental outcomes in children with congenital heart disease: evaluation and management: a scientific statement from the American Heart Association. Circulation 2012;126:1143–72. https://doi.org/10.1161/CIR.0b013e318265ce8a
2. Gilboa SM, Devine OJ, Kucik JE, et al. Congenital heart defects in the United States: estimating the magnitude of the affected population in 2010. Circulation 2016;134:101–9. https://doi.org/10.1161/CIRCULATIONAHA.115.019307
3. Razzaghi H, Oster M, Reethuis J. Long-term outcomes in children with congenital heart disease: National Health Interview Survey. J Pediatr 2015;166:119–24. https://doi.org/10.1016/j.jpeds.2014.09.006
4. Riehle-Colarusso T, Autry A, Razzaghi H, et al. Congenital heart defects and receipt of special education services. Pediatrics 2015;136:496–504. https://doi.org/10.1542/peds.2015-0259
5. McGrindle BW, Rowley AH, Newburger JW, et al.; American Heart Association Rheumatic Fever, Endocarditis, and Kawasaki Disease Committee of the Council on Cardiovascular Disease in the Young; Council on Cardiovascular and Stroke Nursing; Council on Cardiovascular Surgery and Anesthesia; Council on Epidemiology and Prevention; Diagnosis, treatment, and long-term management of Kawasaki disease: a scientific statement for health professionals from the American Heart Association. Circulation 2017;135:e927–99. https://doi.org/10.1161/CIR.0000000000000484
6. Carapetis JR, Steer AC, Mulholland JK, Weber M. The global burden of group A streptococcal diseases. Lancet Infect Dis 2005;5:685–94. https://doi.org/10.1016/S1473-3099(05)70267-X
7. Council on Children With Disabilities; Section on Developmental Behavioral Pediatrics; Bright Futures Steering Committee; Medical Home Initiatives for Children With Special Needs Project Advisory Committee. Identifying infants and young children with developmental disorders in the medical home: an algorithm for developmental surveillance and screening. Pediatrics 2006;118:405–20. https://doi.org/10.1542/peds.2006-1231
8. Newacheck PW, Strickland B, Shonkoff JP, et al. An epidemiologic profile of children with special health care needs. Pediatrics 1998;102:117–23. https://doi.org/10.1542/peds.102.1.117
9. McClung N, GildeWELL J, Farr SL. Financial burdens and mental health needs in families of children with congenital heart disease. Congenital Heart Dis 2018;4:554–62. https://doi.org/10.1111/chd.12605
10. Daniels AM, Rosenberg RE, Anderson C, Law JK, Marvin AR, Law PA. Verification of parent-report of child autism spectrum disorder diagnosis to a web-based autism registry. J Autism Dev Disord 2012;42:257–65. https://doi.org/10.1007/s10803-011-1236-7