RESEARCH

Structured education programme for women with polycystic ovary syndrome: a randomised controlled trial

Hamidreza Mani1,2, Yogini Chudasama1, Michelle Hadjiconstantinou1, Danielle H Bodicoat1, Charlotte Edwardson1,3, Miles J Levy4, Laura J Gray4, Janette Barnett2, Heather Daly5, Trevor A Howlett2, Kamlesh Khunti1 and Melanie J Davies1

1Diabetes Research Centre, Leicester Diabetes Centre, University of Leicester, Leicester General Hospital, Leicester, UK
2Department of Diabetes and Endocrinology, Leicester Royal Infirmary, University Hospitals of Leicester NHS Trust, Leicester, UK
3The Leicester Biomedical Research Centre, Leicester and Loughborough, UK
4Department of Health Sciences, University of Leicester, Leicester, UK
5Leicester Medical Group, Thurmaston Health Centre, Leicester, UK

Correspondence should be addressed to H Mani: Hamidreza.mani@uhl-tr.nhs.uk

Abstract

Objective: To evaluate the effectiveness of a structured education programmes in women with polycystic ovary syndrome (PCOS).

Methods: Single-centre, randomised controlled trial, testing a single exposure to a group-based, face-to-face, structured education programme. Inclusion criteria were women with PCOS, aged 18–49 years inclusive and body mass index ≥23 kg/m² for black and minority ethnicities or ≥25 kg/m² for white Europeans. Primary outcome was step-count/day at 12 months. Secondary outcomes included indices of physical activity, cardiovascular risk factors, quality of life (QoL) and illness perception (IP).

Results: 161 women were included (78 control, 83 intervention); 69% white; mean age 33.4 (s.d. 7.6) years, of whom 100 (48 intervention; 52 control) attended their 12-month visit (38% attrition). 77% of the intervention arm attended the education programme. No significant change in step-count was observed at 12 months (mean difference: +351 steps/day (95% confidence interval −481, +1183); P= 0.40). No differences were found in biochemical or anthropometric outcomes. The education programme improved participants’ IP in 2 dimensions: understanding their PCOS (P<0.001) and sense of control (P<0.01) and improved QoL in 3 dimensions: emotions (P<0.05), fertility (P<0.05), weight (P<0.01) and general mental well-being (P<0.01).

Discussion: A single exposure to structured education programme did not increase physical activity or improve biochemical markers in overweight and obese women with PCOS. However, providing a structured education in parallel to routine medical treatment can be beneficial for participants’ understanding of their condition, reducing their anxiety and improving their QoL.

Introduction

The diagnosis of polycystic ovary syndrome (PCOS) has a major impact on a woman’s life in relation to their reproductive health (infertility and pregnancy complication), metabolic health (increased risk of type 2 diabetes (T2D) and cardiovascular risk factors) and mental health issues (reduced QoL, depression and
anxiety) (1, 2, 3). Women with PCOS have described their challenges in living with PCOS (4) and their dissatisfaction with lack of information around their condition (5). Structured education programmes increase patients’ understanding of their condition (6, 7) and can address the expressed needs of women with PCOS about lack of information (4, 5). Current PCOS guidelines (2) recommend lifestyle change but do not routinely recommend the use of structured education programmes. There is, however, a potential need for this (5, 8, 9), and we hypothesised that an educational programme using the tested models for T2D (http://www.desmond-project.org.uk), might assist in lifestyle change (for example, increase physical activity) for women with PCOS by improving their understanding of their condition.

**Subjects and methods**

We conducted a single-centre, parallel randomised controlled trial (Ethical approval by East Midlands’ Research Ethics Committee 11/EM/0141, Clinical Trials.Gov registration number NCT01462864). The intervention was a single seven-hour, group-based, face-to-face structured education programme. The study was powered to detect a mean difference of 2000 steps/day between the arms, based on a previous study in people at risk of diabetes (10), where a similar intervention had increased step-counts by 2000 steps/day (standard deviation (s.d.) = 4000 steps/day). Aiming for 80% power, \( \alpha = 0.05 \), s.d. = 4000 steps/day and allowing for 20% drop out, 80 participants per arm were needed. All participants consented after full explanation of the study procedure.

**Inclusion/exclusion criteria**

Women with a confirmed diagnosis of PCOS (2), body Mass Index (BMI) (≥23 kg/m² for black and minority; ≥25 kg/m² for white Europeans) (11), aged 18–49 years inclusive, who had stable PCOS treatment in the previous 6 months were eligible. Exclusion criteria were pregnancy, diabetes, use of corticosteroids, disabling physical or mental condition and inability to speak English.

Participants were recruited (July 2012 to July 2013) from primary care as identified by Read codes in the electronic record, PCOS clinics in the local university hospital and media advertisements.

**Study visits and outcome measures**

Visits were performed at the local research centre. At baseline, information on smoking status, ethnicity, medical and family history was obtained by self-report. Fasting blood test and oral glucose tolerance test was performed and questionnaires were filled in.

The Brief Illness Perceptions Questionnaire (BIPQ) (12) was used to test PCOS perception. This nine-item instrument is based on an 11 point scale (0=no effect, 10=complete effect) to measure five cognitive illness representations (consequences, timeline, personal control, treatment control and identity), two emotional representations (concern and emotion) and illness comprehensibility (perceived knowledge).

Health-related QoL (HRQoL) was measured using disease-specific and independent generic tools. The disease-specific PCOS questionnaire (PCOSQ) (13), which contains 26 items measures five areas; emotions, body hair, weight, infertility problems and menstrual problems. The independent generic HRQoL questionnaire, version 2 of the Short form F12 (SF12V2) health survey (Optum.com), includes one question for each of the total eight domains (physical functioning, social functioning, physical impairment, emotional impairment, emotions, vitality, pain and global health) (14). The composite score in SF12V2 was calculated using the approved software by the company (Quality.Metrics).

Step-counts and other activity data were objectively measured by the Actigraph GT3X accelerometer (Penascola Florida, USA). At least four days of ≥10h of accelerometer movement data were required for analysis. KineSoft (version 3.3.76) was used to process the data.

All participants left the centre wearing their accelerometer with a log-book to register their activities. They were instructed to wear the accelerometer for 10 days during the waking hours and return it in a prepaid envelope.

Randomisation occurred after the baseline visit by an independent administrator. Randomisation was 1:1 to the intervention or control arm, stratified for age (<35 years or ≥35 years), ethnicity (white or non-white) and current use of metformin (yes or no). The study was un-blinded due to the nature of the intervention. Participants were blind to their baseline step-counts. They were informed of randomisation after their accelerometer was returned.

The intervention group was then invited to attend the next available structured education. The study team did not change the medical treatment for PCOS; both arms continued as before with their own doctors and both
received a generic information sheet about PCOS and the benefits of lifestyle change.

Those with blood tests indicative of diabetes had a repeat test and if confirmed, were excluded from the study and referred to their general practitioner.

Follow-up visits had the same structure and were at 6 and 12 months after the baseline visit, irrespective of the education date for the intervention arm; both arms returned at a similar period, eliminating the seasonal effect on outdoor physical activity. The study was concluded in August 2014.

**Intervention**

A ‘structured education programme to improve cardiovascular risk in women with PCOS, SUCCESS’. The curriculum of the programme considered the available literature (2, 8, 15, 16, 17, 18, 19, 20) and was informed by quantitative and qualitative analysis of the target population (3, 4, 21). The initial drafts of the education programme were piloted in two different cohorts of women with PCOS (N=5 in each cohort) and their feedback was sought and implemented into the final draft (22, 23).

The final programme consisted of 7h of interactive discussions including patient and professional story, diet and physical activity, balancing life with PCOS and self-management plan (Supplementary Table 1, see section on supplementary data given at the end of this article). Each education session was delivered by two trained educators. Each participant received a resource pack including summary of the points from each section as well as the results of their glucose, lipids, BMI and average walking steps from their baseline visit so they could reflect on their results during the programme. In the section ‘Balancing life with PCOS’ (Supplementary Table 1), participants had the opportunity to share their feelings towards PCOS.

At the end of the session, participants were asked to reflect on the day.

**Statistical analysis**

Descriptive characteristics are presented as means and s.d. or medians with ranges for continuous variables depending on their distribution, and as number and percentages for categorical variables. Outcome data were assessed for normality using visual inspection of histograms. Per-protocol analysis was used, which excluded the participants who did not attend the structured education or were lost to follow-up. For the primary outcome, the mean change in steps per day at 12 months was compared between treatment arms using a linear regression model, adjusted for the stratification variables, change in accelerometer wear time and baseline step-count (Stata, version 14.0). Sensitivity analyses included complete case and intention-to-treat analysis. Subgroup analyses and secondary outcomes were analysed in a similar manner and graphically displayed with the estimated difference of steps between treatment groups with 95% confidence interval. Statistical significance was set at 5% for main effects with two-sided P values. Statistical analyses were performed using Stata (version 14.0).

The Supplementary Methods contains further details of the methodology of sensitivity analyses as well as 6-month data.

**Results**

We recruited 161 participants (78 controls, 83 intervention) (Fig. 1), mean age 33.4 (s.d. 7.6) years and 68.9% white ethnicity. Overall, 47.5% were working full time, 31.9% part time and 6.3% were students. Median baseline step-counts for the control and intervention arms were 6294 and 6353 steps/day, respectively (Table 1). Overall, 22% of the participants were current smokers.

Mean (s.d.) days from baseline to six- and 12-month visits were 217 (39) and 399 (44) for the education arm, and 207 (39) and 389 (30) days for the control arm (P=0.117 and P=0.179 for six and 12 months, respectively). For the 65 (77%) women who attended education, the mean (s.d.) time from baseline appointment to education was 90 (54) days. At 12 months, attendance was 58% (n=48) in control arm and 67% (n=52) in the education (intervention) arm amounting to 38% total dropout.

The mean difference in change in step-counts/day at 12 months was +351 (95% confidence interval: −481, 1183) in those receiving the intervention compared to control, with similar results in sensitivity analyses (Table 2). Subgroup analysis for stratification factors, source of recruitment and duration of the PCOS (<5, 5–10, and >10 years) showed no difference in outcome (Supplementary Fig. 1). The activity log indicated that almost half of the participants had taken off their monitors during potentially relevant activities such as swimming, spinning class, running and partying: 47% in the education arm and 50% in the control. None, however, had recorded the time duration for these activities.
**Figure 1**
CONSORT flow diagram (http://www.consort-statement.org/) for the participants in SUCCESS study. BMI, Body Mass Index. *Participants with diabetes were referred to a diabetes education programme. †Did not meet the BMI eligibility criteria and had been incorrectly randomised.*
No clinically significant changes in BMI, lipids, glucose indices and other indices of physical activity were found (Table 3 and also Supplementary Tables 2 and 3).

The education programme significantly improved participants’ ‘understanding’ (P<0.001) and ‘control’ (P=0.002) of their condition (Table 4). The intervention also improved their QoL in three dimensions of PCOSQ; ‘emotions’, ‘fertility’ and ‘weight’ (P=0.035, P=0.035 and P=0.009 respectively) as well as the mental component score from the SF-12 questionnaire; mean difference 5.79 (95% CI 1.74, 9.84, P=0.006).

Participants’ had feelings of ‘loneliness’, ‘annoyance’, ‘ashamed’, ‘confused’, ‘depressed’ or ‘fear’ about their PCOS as well as sense of ‘relief’ after having a diagnosis. Supplementary Figure 2 shows an example of their reflection and Fig. 2 the word cloud summary (http://www.wordle.net/).

On reflection on the education programme, participants’ ‘best bits’ were ‘meeting others with PCOS’ and ‘gaining knowledge about the condition and lifestyle’ and ‘key messages’ were ‘being positive about PCOS’, ‘benefits of the diet and exercise’ and the ‘concept of insulin resistance’.

### Table 1 Baseline characteristics of participants; values are presented as means (s.d.), medians (lower and upper quartiles) or as otherwise stated.

| Characteristics                          | Control (n=78) | Intervention (n=83) |
|------------------------------------------|----------------|---------------------|
| Age (years)                              | 33.3 (8.1)     | 33.4 (7.1)          |
| No (%)                                   |                |                     |
| European                                 | 53 (67.9)      | 58 (69.9)           |
| South Asian                              | 17 (21.8)      | 14 (16.9)           |
| Other                                    | 8 (10.3)       | 11 (13.3)           |
| No (%) working full time                 | 48 (62.3)      | 46 (55.4)           |
| No (%) current smokers                   | 15 (19.2)      | 21 (25.3)           |
| No (%) depression                        | 28 (35.9)      | 29 (34.9)           |
| No (%) metformin                         | 15 (19.2)      | 17 (20.5)           |
| Recruitment                              |                |                     |
| Primary care                             | 44 (56.4)      | 51 (61.5)           |
| Secondary care                           | 13 (16.7)      | 9 (10.8)            |
| Self-referral                            | 21 (26.9)      | 23 (27.7)           |
| Year of PCOS diagnosis                   |                |                     |
| <5 years                                  | 25 (32.1)      | 25 (30.1)           |
| 5–10 years                                | 13 (16.7)      | 26 (31.3)           |
| >10 years                                 | 40 (51.3)      | 32 (38.6)           |
| Biometric measurements                   |                |                     |
| Weight (kg)                              | 89.0 (19.6)    | 90.9 (18.9)         |
| Body Mass Index (kg/m²)                  | 33.2 (6.2)     | 34.2 (7.2)          |
| Systolic blood pressure (mmHg)           | 121.7 (11.5)   | 122.5 (13.1)        |
| Diastolic blood pressure (mmHg)          | 77.1 (10.6)    | 80.4 (11.9)         |
| Fasting glucose (mmol/L)                 | 4.8 (0.4)      | 4.8 (0.5)           |
| 2-h glucose (mmol/L)                     | 5.9 (1.4)      | 5.8 (1.8)           |
| Haemoglobin A1c (%)                      | 5.7 (0.4)      | 5.7 (0.4)           |
| Haemoglobin A1c (mmol/mol)               | 38.7 (4.2)     | 39.2 (4.0)          |
| Total cholesterol (mmol/L)               | 5.2 (0.9)      | 5.0 (1.0)           |
| HDL (mmol/L)                             | 1.5 (0.5)      | 1.4 (0.4)           |
| LDL (mmol/L)                             | 3.2 (0.9)      | 3.0 (0.8)           |
| Triglycerides (mmol/L)                   | 1.3 (0.6)      | 1.4 (0.7)           |
| HOMA-IR                                  | 2.5 (1.6)      | 2.8 (2.3)           |
| Sex Hormone Binding Globulin (mmol/L)    | 47.0 (40.3)    | 56.9 (48.4)         |
| Free Androgen Index (%)                  | 6.5 (6.0)      | 6.8 (5.4)           |
| Physical activity                        |                |                     |
| Steps (counts/day)                       | 6294 (4785–8478) | 6353 (5147–7521)   |
| Light PA (min/day)                       | 262.3 (226.8–318.2) | 278.5 (228.2–341.9) |
| MVPA (min/day)                           | 28.7 (12.5–40.7) | 26.5 (16.2–41.1)   |
| Sedentary (min/day)                      | 526.3 (479.0–580.9) | 532.4 (473.1–578.4) |
| Accelerometer wear time (min/day)        | 832.4 (779.6–886.0) | 849.7 (799.5–877.6) |

Missing data: 0 age, ethnicity, depression, multimorbidity, weight, BMI, metformin; 1 working, systolic blood pressure, diastolic blood pressure; 2 total cholesterol, HDL, triglycerides, SHBG; 3 fasting glucose, HbA1c, LDL; 4 2-h glucose; 13 HOMA-IR; 23 steps, light PA, MVPA, sedentary, FAI; 80 current smoker.
Table 2  Change in the number of steps at 6- and 12-months and treatment difference between participants randomised to usual care (control) or the structured education (intervention).

|                  | Number of participants | Mean change from baseline (95% CI) | Model summary* |
|------------------|------------------------|-----------------------------------|----------------|
|                  | Control | Intervention | Control | Intervention | Coefficient (95% CI) P value|                  |
| Per protocolc,d  |         |              |         |              |                             |                  |
| 6-months         | 42      | 40           | −240 (−869, 390) | 792 (134, 1450) | 751 (−80, 1529) | 0.076           |
| 12-months        | 38      | 34           | 325 (−365, 1016) | 651 (51, 1251) | 351 (−481, 1183) | 0.402           |
| Complete casec   |         |              | −240 (−869, 390) | 751 (122, 1380) | 721 (−88, 1530) | 0.080           |
| 12-months        | 38      | 34           | 325 (−364, 1015) | 651 (51, 1251) | 351 (−480, 1183) | 0.402           |
| Intention totreat |         |              | −205 (−856, 446) | 707 (84, 1331) | 703 (−71, 1476) | 0.074           |
| 12-months        | 78      | 83           | 238 (−428, 904) | 744 (−8, 1497) | 318 (−566, 1203) | 0.473           |

*aMean difference, adjusted for baseline value, stratification categories (age, ethnicity, metformin) and change in accelerometer wear time; bsignificance of the intervention term in the model; cthose with missing data excluded; dthose who did not attend the structured education programme have been excluded from the intervention arm; *multiple imputation for missing data.

CI, confidence interval.

Discussion

A single exposure to a structured education programme did not increase physical activity or improve biochemical markers in overweight and obese women with PCOS. It did, however, improve mental health and well-being in secondary outcome analyses.

To our knowledge, no other structured education programme exists, which addresses multidimensional needs of women with PCOS and therefore direct comparison with literature was not possible. However, elements of the programme can be compared.

In a single arm study (24), women with PCOS were encouraged to increase their walking activity, which improved fitness but not BMI or cholesterol.

Successful studies in women with PCOS have had multiple sessions of supervised exercise (18), which is not pragmatic in routine clinical practice. Structured education programmes in non-PCOS cohorts have had mixed outcomes: improved physical activity in an older cohort (average age >60 years) (10) or no change in a younger, mixed gender group (average age <35 years) (25). Multiple, weekly sessions in women (not necessarily those with PCOS) have increased walking activity by 2000 steps (26). In our study, we aimed for a larger cohort and offered one exposure to the education programme, following the then recommendations for diabetes (27). Current recommendations are different and suggest a minimum of 16 h/year contact time.

Table 3  Changes in anthropometric and biomedical outcomes at 12 months follow-up.

|                  | No. of participants | Mean change from baseline (95% CI) | Model summary* |
|------------------|---------------------|-----------------------------------|----------------|
|                  | Control | Intervention | Control | Intervention | Coefficient (95% CI) P value|                  |
| Weight (kg)      | 52      | 48           | −0.43 (−2.54, 1.69) | −1.74 (−3.61, 0.14) | −1.33 (−4.14, 1.48) | 0.351 |
| BMI (kg/m²)      | 52      | 48           | −0.12 (−0.88, 0.63) | −0.66 (−1.34, 0.02) | −0.56 (−1.57, 0.45) | 0.273 |
| Systolic BP (mmHg)| 52      | 48           | −3.17 (−6.24, −0.10) | −2.70 (−5.00, 0.57) | 0.49 (−3.31, 4.30) | 0.797 |
| Diastolic BP (mmHg)| 52    | 48           | −1.13 (−3.70, 1.43) | −2.24 (−4.78, −0.30) | 0.40 (−3.14, 3.94) | 0.822 |
| Fasting glucose (mmol/L) | 52  | 48           | 0.04 (−0.07, 0.16) | 0.03 (−0.06, 0.11) | −0.01 (−0.16, 0.13) | 0.865 |
| 2-h glucose (mmol/L) | 51   | 47           | −0.66 (−1.06, −0.25) | −0.26 (−0.77, 0.25) | 0.42 (−0.12, 0.97) | 0.128 |
| Haemoglobin A1c (mol/mol) | 52  | 48           | −4.06 (−4.92, −3.20) | −5.66 (−7.41, −3.90) | −1.08 (−2.87, 0.70) | 0.232 |
| Insulin (IU/L)   | 47      | 40           | −1.73 (−3.23, −0.24) | −1.48 (−4.10, 0.13) | 0.54 (−1.74, 2.81) | 0.640 |
| HOMA-IR          | 47      | 40           | −0.38 (−0.73, −0.04) | −0.29 (−0.92, 0.34) | 0.17 (−0.39, 0.73) | 0.554 |
| Total cholesterol (mol/L) | 51  | 48           | −0.13 (−0.33, 0.07) | −0.23 (−0.44, −0.02) | −0.12 (−0.38, 0.15) | 0.385 |
| HDL cholesterol (mol/L) | 51   | 47           | 0.02 (−0.06, 0.09) | −0.02 (−0.10, 0.06) | −0.03 (−0.13, 0.07) | 0.558 |
| LDL cholesterol (mol/L) | 51   | 46           | 0.16 (−0.34, 0.01) | −0.17 (−0.34, −0.002) | −0.04 (−0.26, 0.18) | 0.726 |
| Triglyceride (mol/L) | 51   | 48           | 0.06 (−0.13, 0.24) | −0.20 (−0.38, 0.02) | −0.15 (−0.36, 0.06) | 0.169 |
| SHBG (mol/L)     | 51      | 47           | −1.45 (−10.02, 7.12) | 1.70 (−8.89, 12.30) | 5.01 (−7.08, 17.10) | 0.413 |
| Testosterone (mol/L) | 49   | 47           | 0.10 (−0.20, 0.40) | −0.002 (−0.20, 0.20) | 0.01 (−0.34, 0.35) | 0.968 |
| Vitamin D (ng/mL)| 51      | 47           | 12.90 (6.28, 19.52) | 5.83 (−0.28, 11.94) | −7.85 (−16.15, 0.45) | 0.063 |

*aDifference between treatment groups, adjusted for baseline value, stratification categories (age, ethnicity, metformin); bsignificance of the intervention term in the model.

CI, confidence interval; SHBG, Sex Hormone-Binding Globulin.
In our cohort, the 6-month results are slightly more favourable than 12 months. This is perhaps an indication of the short-term impact of such educational interventions and the need for reminder sessions or breaking the 7-h education to shorter session to be delivered over a longer period of time.

Structured education in other chronic conditions has shown to improve IP and/or QoL (29, 30, 31).

Table 4  Scores for belief in illness, health-related quality of life and SF-12 at 12 months follow.

| Brief IP | Control | Intervention | Model summary<sup>a</sup> | P value<sup>b</sup> |
|----------|---------|--------------|---------------------------|-------------------|
|          | Median (IQR) | Coefficient (95% CI) |                       |       |
| Consequences (How much does your PCOS affects your life?) | | | | |
| Baseline | 7 (5–8) | 7 (5–8) | −0.15 (−1.10, 0.81) | 0.761 |
| 12 months | 6 (4–7) | 6 (3.5–6) | | |
| Timeline (How long do you think your PCOS will continue?) | | | | |
| Baseline | 10 (8–10) | 10 (8–10) | −0.21 (−1.20, 0.77) | 0.663 |
| 12 months | 10 (8–10) | 10 (7.5–10) | | |
| Personal control (How much control do you believe you have over your PCOS?) | | | | |
| Baseline | 4 (3–5) | 4 (2–5) | 1.65 (0.62, 2.69) | 0.002 |
| 12 months | 4 (2–6) | 6 (4–7) | | |
| Treatment control (How much do you think treatment can help your PCOS?) | | | | |
| Baseline | 7 (5–7) | 6 (4–8) | −0.42 (−1.58, 0.74) | 0.474 |
| 12 months | 5 (5–8) | 5 (4–7) | | |
| Identity (How much do you experience symptoms from your PCOS?) | | | | |
| Baseline | 6 (5–7) | 7 (6–8) | −0.32 (−1.24, 0.59) | 0.482 |
| 12 months | 5 (6–5) | 7 (5.5–7) | | |
| Concern (How concerned are you about your PCOS?) | | | | |
| Baseline | 7 (6–9) | 7 (6–9) | −0.21 (−1.28, 0.76) | 0.691 |
| 12 months | 6 (4–8) | 6 (4–7) | | |
| Coherence (How well do you feel you understand your PCOS?) | | | | |
| Baseline | 6 (5–7) | 8 (7–9) | 1.35 (0.62, 2.07) | <0.001 |
| 12 months | 5 (5–8) | 8 (5–7) | | |
| Emotional representation (How much does your PCOS affect you emotionally? E.g. Does it make you angry, scared, upset, or depressed?) | | | | |
| Baseline | 7 (5–9) | 7 (4.5–8.5) | −0.67 (−1.58, 0.25) | 0.151 |
| 12 months | 7 (5–8) | 5 (3.5–7) | | |
| Health-related quality of life<sup>d</sup> | | | | |
| PCOSQ emotions | | | | |
| Baseline | 4.5 (3.4–5.3) | 4.9 (3.8–5.7) | 0.47 (0.04, 0.91) | 0.035 |
| 12 months | 4.7 (3.6–5.6) | 5.6 (4.3–6.1) | | |
| PCOSQ fertility | | | | |
| Baseline | 4.1 (2.8–6.0) | 5.0 (2.9–6.5) | 0.52 (0.04, 1.00) | 0.035 |
| 12 months | 4.9 (3.5–6.3) | 6.3 (4.6–6.8) | | |
| PCOSQ hair | | | | |
| Baseline | 4.4 (2.1–6.2) | 3.2 (2.2–5.1) | 0.19 (−0.29, 0.67) | 0.441 |
| 12 months | 4.0 (2.7–5.8) | 4.0 (2.8–5.3) | | |
| PCOSQ menstruation | | | | |
| Baseline | 3.9 (2.6–4.9) | 3.8 (2.8–5.0) | 0.20 (−0.42, 0.82) | 0.520 |
| 12 months | 4.3 (3.0–5.3) | 4.5 (3.4–5.6) | | |
| PCOSQ weight | | | | |
| Baseline | 2.4 (1.2–3.5) | 2.4 (1.2–3.4) | 0.62 (0.16, 1.09) | 0.009 |
| 12 months | 2.4 (1.6–3.9) | 3.8 (2.2–4.4) | | |
| SF-12<sup>e</sup> physical component score | | | | |
| Baseline | 53.0 (45.6–56.3) | 54.1 (51.1–57.3) | −0.57 (−3.49, 2.36) | 0.701 |
| 12 months | 54.5 (48.2–59.0) | 54.5 (49.9–58.3) | | |
| SF-12<sup>e</sup> mental component score | | | | |
| Baseline | 47.3 (39.5–52.5) | 47.3 (40.2–52.8) | 5.79 (1.74, 9.84) | 0.006 |
| 12 months | 39.9 (32.6–51.7) | 49.4 (42.3–55.5) | | |

<sup>a</sup>Difference between treatment groups, adjusted for baseline value, stratification categories (age, ethnicity, metformin);<sup>b</sup>significance of the intervention term in the model;<sup>c</sup>brief illness perception questionnaire: scoring out of 10 (<i>N</i>=68, control 31, intervention 37);<sup>d</sup>PCOS questionnaire: scoring out of 7 (<i>N</i>=89, control 44, intervention 45); higher scores suggests that PCOS does not have an impact on the quality of life;<sup>e</sup>SF-12 questionnaire: scoring out of 100 (<i>N</i>=89, control 45, intervention 44); higher scores indicate a better level of health.

CI, confidence interval; IQR, interquartile range; PCOSQ, PCOS questionnaire.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Reported feelings of living with PCOS, namely anger, confusion and frustration (Fig. 2), were examples of the psychological challenge that some of the participants experienced. Sense of relief after being diagnosed with PCOS was perhaps a reflection of the psychological impact of the symptoms and an indication of the reported lack of information for these women (5, 8, 9). It is suggested that such psychological factors are potential barriers for successful lifestyle interventions and require further addressing (9). It is therefore possible to assume that provision of an education programme like our study, at an earlier opportunity as close to the time of diagnosis, can improve well-being by improving IP (coherence and control) and reducing their anxiety around emotions, fertility and weight.

Participants in the SUCCESS education programme indicated meeting other people with PCOS as one of the ‘best bits’ of the education. Attending group education has had the potential benefit of meeting others with a similar condition, which in fact reduced their anxiety of ‘why me’, ‘unfair’ and feeling ‘lonely’. Providing structured group education for chronic conditions with a potential element of peer support can improve the outcome of other treatment interventions.

Strength and limitations
The major limitation of the study was the high attrition rate (38%) at the end of study (32% at 6 month follow-up). It is worth noting that only 23% of the intervention arm did not attend the education. This could be an indication of their information need; they spared time for the education, while competing life activities (85% employed or student) perhaps prevented attendance at the clinical visits.

Second major limitation for the primary outcome was the use of the accelerometer. Although a useful tool to capture physical activities, it contributed to substantial
missing data in our study due to loss in the post, strict validity criteria and inability to capture some activities (e.g. cycling and swimming).

Considering that this was the first attempt at developing a tailored education programme for women with PCOS and the high prevalence of overweight and obesity in PCOS (2, 21), the inclusion criteria were limited to overweight and obese women to ensure a more metabolically homogenous cohort. The study design, however, avoided any interference with participants’ routine medical care and therefore the education programme can potentially be implemented in the specialty clinics or primary care services similarly.

**Conclusion and implications**

The outcomes of our study are important in the provision of care for women affected by PCOS; providing information in a structured approach to ensure improved IP should be part of the treatment offered to women with PCOS especially in the context of patient-centred care. Although a single exposure to structured education did not improve physical activity, BMI or biochemical markers. It did, however, improve their understanding of their disease and their QoL. Interim reminder sessions might have improved these outcomes and should be further explored in future research.

In implementation of our findings, we aim to make education sessions available for all of our patients with PCOS in a more regular basis; sign post them to the currently available support groups and in future funding interventions to support attitude and behaviour change at population and community levels. NICE Public health guideline 6 [PH6]. London, UK: NICE, 2007. (available at: http://www.health.org.uk/sites/health/files/HelpingPeopleHelpThemselves.pdf)

7 NICE . The most appropriate means of generic and specific interventions to support attitude and behaviour change at population and community levels. NICE Public health guideline 6 [PH6]. London, UK: NICE, 2007. (available at: https://www.nice.org.uk/ph6)

8 Mani H, Khunti K, Daly H, Barnett J & Davies M. Education and self-management for women with polycystic ovary syndrome: a narrative review of literature. *Bhnosia Journal of Medicine and Biomedical Sciences* 2015 7 1–9. (https://doi.org/10.4103/1947-489X.210263)

9 Brennan L, Teede H, Skouteris H, Linardon J, Hill B & Moran L. Lifestyle and behavioral management of polycystic ovary syndrome. *Journal of Women’s Health* 2017 26 836–848. (https://doi.org/10.1089/jwh.2016.5792)

10 Yates T, Davies M, Gorely T, Bull F & Khunti K. Effectiveness of a pragmatic education program designed to promote walking activity in individuals with impaired glucose tolerance: a randomized controlled trial. *Diabetes Care* 2009 32 1404–1410. (https://doi.org/10.2337/dc09-0130)
11 NICE. Assessing body mass index and waist circumference thresholds for intervening to prevent ill health and premature death among adults from black, Asian and other minority ethnic groups in the UK. NICE Public health guideline [PH46]. London, UK: NICE, 2013. (available at: https://www.nice.org.uk/guidance/ph46)

12 Broadbent E, Petrie KJ, Main J & Weinman J. The brief illness perception questionnaire. *Journal of Psychosomatic Research* 2006 60 631–637. (https://doi.org/10.1016/j.jpsychores.2005.10.020)

13 Cronin L, Guyatt G, Griffith L, Wong E, Aziz R, Butterweck W, Cook D & Dunaf A. Development of a health-related quality-of-life questionnaire (PCOSQ) for women with polycystic ovary syndrome (PCOS). *Clinical Journal of Endocrinology and Metabolism* 1998 83 1976–1987. (https://doi.org/10.1210/cjem.83.6.4990)

14 Ware J Jr, Kosinski M & Keller SD. A 12-item short-form health survey: construction of scales and preliminary tests of reliability and validity. *Medical Care* 1996 34 220–231. (https://doi.org/10.1097/00005650-199603000-00003)

15 Mani H, Potsdar N & Gleeson H. How to manage an adolescent girl presenting with features of polycystic ovary syndrome (PCOS): an exemplar for adolescent health care in endocrinology. *Clinical Endocrinology* 2014 81 652–656. (https://doi.org/10.1111/cen.12501)

16 Mani H, Khunti K, Levy M & Davies M. Diabetes advice for women with polycystic ovary syndrome: prevention, prevention, prevention. *Diabetes Management* 2013 3 1–14. (https://doi.org/10.2217/ dmt.13.54)

17 Moran LJ, Ko H, Misso M, Marsh K, Talbot M, Frearson M, Thondan M, Speno N & Teede HJ. Dietary composition in the treatment of polycystic ovary syndrome: a systematic review to inform evidence-based guidelines. *Journal of the Academy of Nutrition and Dietetics* 2013 113 520–545. (https://doi.org/10.1016/j. jand.2012.11.018)

18 Moran LJ, Hutchison SK, Norman RJ & Teede HJ. Lifestyle changes in women with polycystic ovary syndrome. *Cochrane Database of Systematic Reviews* 2011 CD007506. (https://doi.org/10.1002/14651858.CD007506.pub3)

19 Moran LJ, Pasquari R, Teede HJ, Hoeger KM & Norman RJ. Treatment of obesity in polycystic ovary syndrome: a position statement of the Androgen Excess and Polycystic Ovary Syndrome Society. *Fertility and Sterility* 2009 92 1966–1982. (https://doi.org/10.1016/j. fertnstert.2008.09.018)

20 Harrison CL, Lombard CB, Moran LJ & Teede HJ. Exercise therapy in polycystic ovary syndrome: a systematic review. *Human Reproduction Update* 2011 17 171–183. (https://doi.org/10.1093/humupd/dmq045)

21 Mani H, Davies MJ, Bodicoat DH, Levy MJ, Gray LJ, Howlett TA & Khunti K. Clinical characteristics of polycystic ovary syndrome: investigating differences in White and South Asian women. *Clinical Endocrinology* 2015 83 542–549. (https://doi.org/10.1111/cen.12784)

22 Mani H. Development of a structured education programme to improve cardiovascular risk in women with polycystic ovary syndrome. PhD Thesis, University of Leicester, 2014. (available at: https://ir.lra.ac.uk/handle/2381/28638)

23 Mani H, Daly H, Barnett J, Levy M, Khunti K, Howlett T & Davies M. The development of a structured education programme to improve cardiovascular risk in women with polycystic ovary syndrome (SUCCESS Study). *Endocrine Abstracts* 2013 31 P228. (https://doi.org/10.1530/endoabs.31.P228)

24 Randeva HS, Lewandowski KC, Dzwowski J, Brooke-Wavell K, O’Callaghan C, Czuprynjak, Hillhouse EW & Prelevic GM. Exercise decreases plasma total homocysteine in overweight young women with polycystic ovary syndrome. *Journal of Clinical Endocrinology and Metabolism* 2002 87 4496–4501. (https://doi.org/10.1210/jc.2001-012056)

25 Biddle SJ, Edwardson CL, Wilmot EG, Yates T, Gorely T, Bodicoat DH, Ashra N, Khunti K, Nimmo MA & Davies MJ. A randomised controlled trial to reduce sedentary time in young adults at risk of type 2 diabetes mellitus: project STAND (Sedentary Time And Diabetes). *PLoS ONE* 2015 10 e0143398. (https://doi.org/10.1371/journal.pone.0143398)

26 Clarke KK, Freeland-Graves J, Klohe-Lehman DM, Milani TJ, Nass HJ & Laffrey S. Promotion of physical activity in low-income mothers using pedometers. *Journal of the American Dietetic Association* 2007 107 962–967. (https://doi.org/10.1016/j.jada.2007.03.010)

27 Haas L, Maryniak M, Beck J, Cox CE, Duker P, Edwards L, Fisher EB, Hanson L, Kent D, Kolb L, et al. National standards for diabetes self-management education and support. *Diabetes Care* 2012 35 2393–2401. (https://doi.org/10.2337/dc12-1707)

28 NICE. Preventing type 2 diabetes: risk identification and interventions for individuals at high risk. NICE Public health guidance [PH38]. London, UK: NICE, 2012. (available at: https://www.nice.org.uk/guidance/ph38)

29 Davies MJ, Heller S, Skinner TC, Campbell MJ, Carey ME, Craddock S, Dallosso HM, Daly H, Doherty Y, Eaton S, et al. Effectiveness of the diabetes education and self-management for ongoing and newly diagnosed (DESMOND) programme for people with newly diagnosed type 2 diabetes: cluster randomised controlled trial. *BMJ* 2008 336 491–495. (https://doi.org/10.1136/bmj.39474.922025.BE)

30 Zwerver M, Brusse-Keizer M, van der Valk BD, Zielhuis GA, Mominkhof EM, van der Palen J, Frith PA & Effing T. Self management for patients with chronic obstructive pulmonary disease. *Cochrane Database of Systematic Reviews* 2014 CD002990. (https://doi.org/10.1002/14651858.CD002990.pub3)

31 Kroon FP, van der Burg LR, Buchbinder R, Osborne RH, Johnston RV & Pitt V. Self-management education programmes for osteoarthritis. *Cochrane Database of Systematic Reviews* 2014 CD008963. (https://doi.org/10.1002/14651858.CD008963.pub2)
Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:
Mani, H; Chudasama, Y; Hadjiconstantinou, M; Bodicoat, DH; Edwardson, C; Levy, MJ; Gray, LJ; Barnett, J; Daly, H; Howlett, TA; Khunti, K; Davies, MJ

Title:
Structured education programme for women with polycystic ovary syndrome: a randomised controlled trial.

Date:
2018-01

Citation:
Mani, H., Chudasama, Y., Hadjiconstantinou, M., Bodicoat, D. H., Edwardson, C., Levy, M. J., Gray, L. J., Barnett, J., Daly, H., Howlett, T. A., Khunti, K. & Davies, M. J. (2018). Structured education programme for women with polycystic ovary syndrome: a randomised controlled trial. Endocr Connect, 7 (1), pp.26-35. https://doi.org/10.1530/EC-17-0274.

Persistent Link:
http://hdl.handle.net/11343/270688

File Description:
Published version

License:
CC BY-NC