Activated and inactivated immune responses in Caenorhabditis elegans against Photorhabdus luminescens TT01

Kazuki Sato1,2,3, Toyoshi Yoshiga1,2 and Koichi Hasegawa4*

Abstract

The Gram-negative bacterium Photorhabdus luminescens which symbiotically associates with the entomopathogenic nematode Heterorhabditis bacteriophora, has a broad insecticidal and nematicidal activity. The virulence of P. luminescens toward the non-mutualistic nematode Caenorhabditis elegans has not been described. We showed that when fed on P. luminescens, the intestinal cells of C. elegans worms become delicate and some crystal-like structure was developed within the intestinal lumen. Next, we examined the requirement of the p38 mitogen-activated protein kinase (MAPK) and insulin/IGF-1 signaling pathway against P. luminescens. Depletion of pmk-1 by RNAi enhances susceptibility to P. luminescens, and numerous downstream targets regulated by the p38 MAPK pathway were induced when fed on P. luminescens. On the other hand, knockdown of daf-16 has no effects on C. elegans lifespan, but knockdown of daf-2 dramatically increased resistance to P. luminescens in a daf-16-dependent manner. We also revealed one of the daf-2 ligands ins-7 was induced and ins-7 deletion mutant survived longer when fed on P. luminescens. These results suggest the p38 MAPK pathway is activated and required for the host defense against P. luminescens. Insulin/IGF-1 signaling pathway is inactivated by P. luminescens through the overexpression of insulin-like gene.

Keywords: Entomopathogenic nematode; Photorhabdus luminescens; Caenorhabditis elegans; Insulin/IGF-1; Heterorhabditis bacteriophora; Pathogenicity

Background

Photorhabdus luminescens is an enteric Gram-negative bacterium which can be a pathogen producing a broad-spectrum toxins with antibacterial, antifungal insecticidal, and nematicidal activities, or a symbiont of the entomopathogenic nematode (EPN) Heterorhabditis bacteriophora orchestrating insect pathogenicity (Waterfield et al. 2009). A highly specialized mechanism of the bacterium-EPN association and adaptation has evolved and well established. Infective juveniles (IJs) of the EPNs invade the insect hosts and release their symbiotic bacteria into the hemocoel (Ciche and Ensign 2003). The bacteria suppress insect host defenses via production of phenoloxidase inhibitor (Eleftherianos et al. 2007), and produce insecticidal toxins to kill insect hosts within 48 hours after infection. EPNs consume bacteria and insect tissues to support their growth and reproduction. Meanwhile, the bacteria produce antibiotics and deterrent chemicals to protect the insect cadaver from microorganisms and other scavenger animals (Richardson et al. 1988; Williams et al. 2005; Gulcu et al. 2012). IJs emerge under the control of H. bacteriophora-producing pheromone (Noguez et al. 2012), are released from the insect cadaver carrying their aggressive symbiotic bacteria in the intestine and seek for new hosts (Ciche 2007).

Several toxin proteins produced by P. luminescens and other pathogenic bacteria have been identified, e.g. the toxin complex (Tc), the “Makes caterpillars floppy” (Mcf), Photox, and Photorhabdus insect related (Pir) toxins (Bowen et al. 1998; Daborn et al. 2002; Duchaud et al. 2003; Visschedyk et al. 2010). Even though the pathogenicity of several P. luminescens toxins is under active investigation (Dowling et al. 2004, 2007; ffrench-Constant et al. 2007; Vlisidou et al. 2009; Lang et al. 2010, 2011, 2013; Gatsogiannis et al. 2013; Yang and Waterfield 2013) and the genome data of P. luminescens
are available (Duchaud et al. 2003), the underlying mechanism of their virulence remains unclear.

The mechanisms of host defense response against bacterial pathogens have been recently studied using the genetic model organism Caenorhabditis elegans. This approach successfully identifies the broadly conserved pathways involved in the host responses, e.g. Toll-like receptor pathway (Pujol et al. 2001; Tenor and Aballay 2008), p38 MAPK pathway (Kim et al. 2002; Troemel et al. 2006; Shivers et al. 2009, 2010), insulin/IGF-1 signaling pathway (Garsin et al. 2003; Murphy et al. 2003; Kawli and Tan 2008), and SKN-1/NRF oxidative stress pathway (van der Hoeven et al. 2011; Papp et al. 2012).

Although several studies have indicated that some P. luminescens strains displayed pathogenicity toward C. elegans (Couillault and Ewbank 2002; Sicard et al. 2007; Engelmann et al. 2011; Fischer et al. 2012, 2013; Julien-Gau et al. 2014), detailed phenotypes and the roles of host defenses have not been characterized. In this study we tested the pathogenicity of P. luminescens TT01, a mutualistic bacterial strain of the H. bacteriophora TT01 to C. elegans. Here we reported the phenotypes observed in C. elegans when infected by P. luminescens and revealed a similar molecular strategy with other pathogens to exert its pathogenicity.

Results

P. luminescens TT01 causes drastic damage to C. elegans intestine

C. elegans can be infected by many other bacterial strains (Couillault and Ewbank 2002; Sicard et al. 2007; Engelmann et al. 2011; Fischer et al. 2012, 2013; Julien-Gau et al. 2014). Here we showed that P. luminescens TT01 was also highly pathogenic to C. elegans. More than 90% of L4-staged C. elegans feeding on P. luminescens died within 5 days (Figure 1, Table 1, Blank RNAi). Body and brood size were largely reduced and the hatched larvae are developmentally retarded; most of the F1 did not develop to adulthood (data not shown). C. elegans intestinal cells were delicate. After 2 hours of feeding, the intestinal lumen started to swell and some crystal-like structures began to form (Figure 2A-D). This layered crystal-like structure was also observed in another bacteriovorous nematode Rhabditidae sp. (Additional file 1). Next we cultured L4 stage C. elegans on P. luminescens-seeded plates for 12 hours followed by recovery on Escherichia coli OP50. After 24 and 48 hour feeding on E. coli OP50, the crystal-like structure remained in the intestinal lumen (Table 2) and didn’t change the crystal size (Additional file 2), but the body morphology seemed healthy (Additional file 2), and reproduced normally (data not shown).

Figure 1 Two pathways contribute to C. elegans resistance against P. luminescens. (A) pmk-1-knocked down C. elegans decreased resistance against P. luminescens (P < 0.005). (B) daf-16-knocked down did not affect C. elegans resistance against P. luminescens (P > 0.05). (C) daf-2-knocked down C. elegans increased resistance against P. luminescens (P < 0.005). (D) Null mutation of daf-16 did not affect C. elegans lifespan (P > 0.05), and knockdown of daf-2 didn’t affect daf-16 null mutant (P > 0.05). Survival curves are presented based on three or two trials (see Table 1). P values were calculated by log-rank test compared with the blank(RNAi).
C. elegans ground E. coli in the terminal bulb, digested them and absorbed the nutrition in the intestinal cells (Figure 3A-D). However, C. elegans couldn’t grind the P. luminescens, intact bacterial cells remained but the bacteria did not proliferate in the intestinal lumen (Figure 3E-H).

Two pathways influence C. elegans resistance to P. luminescens

Given that the insulin/IGF-1 signaling pathway and the p38 MAPK pathway in C. elegans are required for the defense response against several bacterial infections in intestine (Tan and Shapira 2011), we examined the role of these pathways against P. luminescens. The bZIP transcription factor ATF-7 is phosphorylated by the MAP kinase PMK-1 (Shivers et al. 2010), which activates numerous antimicrobial enzymes and peptides such as LYS-2 and CLEC-67 (Troemel et al. 2006). When the pmk-1 was knocked down by RNAi, C. elegans lifespan decreased significantly ($P < 0.005$) (Figure 1A, Table 1). The FOXO transcription factor DAF-16 is negatively regulated under the control of the insulin/IGF-1 receptor DAF-2 (Murphy et al. 2003), regulating the expression of antimicrobial enzymes and peptides such as SPP-1, LYS-7 and THN-2 (Murphy et al. 2003; Evans et al. 2008). Knockdown and null mutation of daf-16 did not affect C. elegans lifespan ($P > 0.05$) (Figure 1B, D, Table 1). On the other hand, C. elegans lifespan significantly increased when daf-2 was knocked down ($P < 0.005$) (Figure 1C, Table 1). Moreover, knockdown of daf-2 didn’t extend lifespan in daf-16 null mutant (Figure 1D, Table 1). The size of crystal-like structure was not affected by these pathways (data not shown).

P. luminescens suppresses some daf-16-regulated antimicrobial genes in C. elegans

Next, we tested the expression of seven enzymes and peptides which are thought to work against microbial infection under the controls of these insulin/IGF-1 and p38 MAPK pathways after 6, 12 or 24 hours of P. luminescens exposure. We found that all four p38 MAPK-regulated genes, F08G5.6, T24B8.5, lys-2, and clec-67, were induced in each time point (Figure 4). The insulin/IGF-1-regulated genes, however, were differentially expressed. lys-7 was induced and spp-1 was suppressed in all time points; thn-2 was induced at 6 hours, unchanged at 12 hours, then repressed at 24 hours (Figure 4). The expression of one of the insulin/IGF-1 peptides, INS-7,

Table 1 Effect of P. luminescens on C. elegans lifespan

Trial	Genotype	Lifespan*	% increase	n	P value**
1	N2, Blank(RNAi)	63.7	-33.4	93	< 0.005
	N2, pmk-1(RNAi)	42.4	-12.2	73	> 0.05
	N2, daf-16(RNAi)	55.9	+119.8	47	< 0.005
2	N2, pmk-1(RNAi)	48.5	-25.8	79	< 0.005
	N2, daf-16(RNAi)	55.6	-14.8	71	> 0.05
3	N2, pmk-1(RNAi)	38.6	-48.5	84	< 0.005
	N2, daf-2(RNAi)	125.3	+67.1	51	< 0.005
4	N2, pmk-1(RNAi)	53.9	-9.2	84	< 0.005
	N2, daf-16(RNAi)	56.7	+5.2	79	> 0.05
	N2, daf-2(RNAi)	117.4	+118.0	75	< 0.005
5	daf-16(mu86), Blank(RNAi)	57.5	-7.3	39	> 0.05
	daf-16(mu86), daf-2(RNAi)	65.4	+5.3	58	> 0.05
6	daf-16(mu86), Blank(RNAi)	62.1	-14.6	70	> 0.05
	daf-16(mu86), daf-2(RNAi)	62.5	-14.1	68	> 0.05
7	ins-7(tm1907)	64.6	+18.3	83	< 0.01
8	ins-7(tm1907)	64.0	+20.6	88	< 0.05

*Mean lifespan (hour).
**P values of each trial were calculated by log rank test compared with controls.
a ligand of DAF-2 which suppresses DAF-16 activity (Murphy et al. 2003; Kawli and Tan 2008), was induced at all time points (Figure 4).

Several external stresses, such as starvation, heat, and oxidative stresses induce DAF-16 translocation from cytosol to nucleus, inducing several stress responsive and antimicrobial peptides (Henderson and Johnson 2001). Depletion of daf-16 clearly diminished cytosolic DAF-16::GFP (Figure 5A-D). When daf-2 was knocked down, DAF-16::GFP was accumulated into nuclei (Figure 5E, F). Exposure to P. luminescens TT01 fails to promote DAF-16::GFP translocation (Figure 5G, H).

P. luminescens partially suppresses **C. elegans** resistance by **ins-7** induction

Some daf-16-regulated antimicrobial genes were suppressed, and one of the daf-2 ligand ins-7 was induced by **P. luminescens**, given that **P. luminescens** may suppress **C. elegans** resistance by **ins-7** inductions. We next examined if the loss of ins-7 function would not suppress **C. elegans** resistance and extend life span. The deletion ins-7(tm1907) mutant significantly increased lifespan (Figure 6, Table 1), suggesting that **P. luminescens** partially suppresses **C. elegans** resistance by **INS-7** induction.

Discussion

We showed that when **C. elegans** was fed on **P. luminescens** TT01, intestinal cells became delicate and eventually collapsed (Figure 2C-D). Some insecticidal toxins such as Tc and Mcf produced by **P. luminescens** W14 were reported to cause destructions of midgut epithelium in insects (Bowen et al. 1998; Daborn et al. 2002). When **C. elegans** was fed on the recombinant **E. coli** expressing the **P. asymbiotica mcf1** gene, severe feeding delay was observed (Waterfield et al. 2008) suggesting the possibility of damage on nematodes intestine. And a toxin complex TcaA was necessary but not sufficient for **C. elegans**-killing ability in **Yersinia enterocolitica** (Spanier et al. 2010). Such possible toxins produced by **P. luminescens** might be responsible for the intestinal cell deformation.

To our knowledge, there is no report about the formation of crystal-like structure in nematode intestinal lumen followed by bacterial infection including other **Photorhabdus** strains. **P. luminescens** is reported to produce two types of intracellular protein inclusions, CipA.
and CipB, which support growth and reproduction of the mutualistic EPN but have no effect on insect pathogenesis (Bintrim and Ensign 1998). Because Cip proteins are so small in size and produced inside of the bacterial cell, these inclusion proteins might be different from the crystal-like structure in the present study. The crystal-like structure still remains in *C. elegans* intestinal lumen after transferred onto *E. coli* lawn and their growth and reproduction are resumed (Additional file 2, Table 2); this crystal was unlikely to be toxic for *C. elegans*.

Many pathogenic bacteria colonize and proliferate in the intestinal lumen of *C. elegans* to exert their pathogenicity (Tan et al. 1999; Garsin et al. 2001; Kurz et al. 2003). Our result clearly showed that *P. luminescens* was not ground up by *C. elegans* terminal bulb, and remained intact into the intestinal lumen without proliferation. This may suggest that *P. luminescens* adopts a different strategy to kill nematodes, for example, via production of toxins without colonization.

Four antimicrobial genes (F08G5.6, T24B8.5, lys-2, clec-67) under the control of the p38 MAPK pathway, were up-regulated when fed on *P. luminescens* for 6, 12 and 24 hours (Figure 4). Up-regulation of these genes was also observed when infected by other pathogenic

Figure 3 Intact *P. luminescens* gets to the *C. elegans* intestinal lumen. Nomarski DIC (A, B, E, F) or fluorescence (C, D, G, H) images of *C. elegans*, fed on GFP-labeled *E. coli* (A-D) or GFP-labeled *P. luminescens* (E-H) for 24 hours. Intestinal lumen was filled with ground cells when cultured on *E. coli* (A-D). Intestinal lumen had intact cells when nematodes were cultured on *P. luminescens* (E-H). Arrows indicate the terminal bulb. Anterior is left. Scale bars, 50 μm.
bacteria e.g. Gram-negative bacterium *Pseudomonas aeruginosa* (Troemel et al. 2006; Evans et al. 2008; Shivers et al. 2010). In addition, when *pmk-1* was knocked down by RNAi, *C. elegans* became more susceptible to *P. luminescens* (Figure 1A, Table 1), which suggests that this pathway contributed resistance against *P. luminescens* but didn’t affect enough for survival. This pathway is reported to act in a cell-autonomous manner in intestine to regulate innate immunities against bacterial infections (Kim et al. 2002; Troemel et al. 2006; Shivers et al. 2009, 2010; Engelmann et al. 2011).

On the other hand, three antimicrobial genes (*spp-1*, *thn-2*, *lys-7*) regulated by the insulin/IGF-1 signaling pathway showed different expression patterns when fed on *P. luminescens* (Figure 4). This pathway is also related to host defense against several pathogens (Garsin et al. 2003; Murphy et al. 2003), and its activation is regulated in a non-cell-autonomous manner by secretion of INS-7 from the nervous system, which negatively regulates infection-related genes expression via the transcription factor DAF-16 (Kawli and Tan 2008; Tan and Shapira 2011). Infection of *P. aeruginosa* PA14 suppressed the expression of these three genes through the induction of INS-7 expression (Evans et al. 2008). However, transcriptional analysis using tiling arrays and RNA-sequencing showed the *spp-1* and *thn-2* were down-regulated, but *lys-7* and *ins-7* were not affected when *C. elegans* was fed on *P. luminescens* strain Hb (Engelmann et al. 2011).

We couldn’t observe translocation of DAF-16::GFP into cell nuclei after *P. luminescens* infection (Figure 5). As shown in our experiments, resistance of *C. elegans* against *P. luminescens* was increased when DAF-16 was activated by *daf-2* RNAi (Figure 1C-D, Table 1). However, DAF-16 was not activated by the bacteria, which is consistent with the fact that *daf-16* RNAi did not significantly decrease *C. elegans* lifespan on *P. luminescens* (Figure 1B, Table 1).

Up-regulation of *ins-7* and the importance of *ins-7* for DAF-16 nuclear delocalization during the infection of *P. aeruginosa* to *C. elegans* have been reported (Evans et al. 2008). *P. luminescens* induced overexpression of INS-7 in *C. elegans* (Figure 3), which might keep DAF-16 in the cytoplasm via the insulin/IGF-1 signaling pathway. This mechanism seems unique to *P. luminescens* and *P. aeruginosa*. Gram-positive bacterial pathogen *Enterococcus faecalis* V583 induces the DAF-16-controlling genes in *C. elegans* (Evans et al. 2008), and Gram-negative bacterium *Salmonella typhimurium* induces *spp-1* in *C. elegans*, which contribute to suppress bacterial proliferation in the intestine (Alegado and Tan 2008). Although *P. luminescens* and *P. aeruginosa* suppress the nematode immune response in the same way, they don’t...
share their natural hosts. They might have developed the immune-suppressive mechanism independently.

Conclusions
We showed here the high pathogenicity of the EPN mutualistic bacterium *P. luminescens* TT01 to the model organism *C. elegans*. The insulin/IGF-1 signaling pathway is highly effective for the resistance against *P. luminescens*, albeit DAF-16 is inactivated by the bacteria via INS-7 induction, which was also reported in human opportunistic pathogen *Pseudomonas aeruginosa* PA14.

This infection strategy of *P. luminescens* might also be applied to infect insects.

Methods
Nematodes and bacteria strains and culturing
C. elegans and Rhabditidae sp. culturing and handling were performed as described previously (Brenner 1974), except when otherwise noted. Strains used in this study were: *Caenorhabditis elegans* N2 (Bristol strain), TJ356 [zls356[Pdaf-16::daf-16::gfp, pRF4]IV] (Henderson and Johnson 2001), CF1038 daf-16(mu86)I (Lin et al. 1997),

![Figure 5 DAF-16::GFP does not respond to P. luminescens.](image-url)

(A, B) DAF-16::GFP was located in cytosol when *C. elegans* was grown on *E. coli* OP50. (C, D) Cytosolic DAF-16::GFP was diminished when daf-16 was knocked down. (E, F) Cytosolic DAF-16::GFP was accumulated into the cell nuclei when daf-2 was knocked down. (G, H) DAF-16::GFP translocation was not seen when *C. elegans* was exposed to *P. luminescens* TT01. Scale bars, 100 μm.
ins-7(tm1970) (provided by the National BioResource Project, Japan), Rhabditidae sp. KHA410. *Heterorhabditis bacteriophora* TT01 (kindly provided by Ann Burnell, National University of Ireland-Maynooth) was maintained by infecting the greater wax moth *Galleria mellonella* larvae as following the methods described previously (Kaya and Stock 1997). The symbiotic bacteria *P. luminescens* TT01 was isolated from *G. mellonella* infected with *H. bacteriophora* TT01, spread on MacConkey agar plates to select the primary phase colonies. The primary phase *P. luminescens* TT01 colony was picked up, transferred into LB media and grown overnight at 28°C with 200 rpm shaking. About 200 μl or 400 μl of the liquid cultured bacteria was spread on a 6 cm or 9 cm NGM plate, respectively, without clearance space, incubated 32 hours at 28°C, and then cooled down to 20°C. All fresh *P. luminescens* TT01 plates were prepared just before use.

Construction of gfp-labeled bacteria

GFP-labeled *E. coli* OP50 and *P. luminescens* TT01 were constructed by the miniTn7-transposon system pBK-miniTn7-gfp2 and pUX-BF13 (Lambertsen et al. 2004; Easom et al. 2010). Briefly, *E. coli* S17-1 (λ pir) carrying pBK-miniTn7-gfp2 (donor) and *E. coli* SM10 (λpir) carrying pUX-BF13 (helper), and *E. coli* OP50 rifampicin resistance (RifR) or *P. luminescens* TT01 RifR (recipients) growing in LB medium containing 10 mM MgCl₂ with appropriate antibiotics (MgLB) (OD₆₀₀ = 0.5) were mixed in a 1:1:4 ratio (donor: helper: recipient = 50 μl: 50 μl: 200 μl), dropped on the center of MgLB agar plate and then incubated overnight at 30°C. Thereafter, bacterial cells were collected with MgLB and plated on MgLB agar containing 50 μg/ml rifampicin and 5 μg/ml chloramphenicol, and incubated for 48 hours at 30°C. Correct position of the Tn7 insertion in the colonies acquired were confirmed by PCR with the primers, Tn7-Pl_glmS, 5’–CGT AAT TTG GCT AAA TCA GTG AC–3’ and Tn7R109, 5’–CAG CAT AAC TGG ACT GAT TTC AG–3’.

Survival test

All survival tests were carried out at 20°C. Synchronized L1 stage *C. elegans* were obtained by treating egg-containing adults with sodium hypochlorite (Porta-de-la-Riva et al. 2012) and allowed to grow on NGM plates seeded with *E. coli* OP50 at 20°C for 48 hours until the late L4 stage. L4 stage *C. elegans* were washed with M9 buffer and transferred onto the 6 cm NGM plates completely covered with *P. luminescens* TT01, and checked every 12 hours until nematode death. Preparation of the NGM plate seeded with fresh *P. luminescens* TT01 was described as above. The time point of nematode transfer onto the *P. luminescens* plate represented the zero hour of life-span analysis. Nematodes began to lay a few eggs after about 12 hours, but the hatched larvae couldn't grow and were easily distinguish from their parents. Nematode was considered dead when it no longer responded to light prodding with a platinum wire. Nematodes that crawled-up to the dish wall and desiccated were excluded from the data. Experiments were performed two or three times. Survival curves were analyzed by the Kaplan-Meier procedure, and significant differences between survival curves were calculated by the log-rank test with statistical software Excel Tokei 2006 (SSRI, Tokyo, Japan).

Figure 6 Deletion ins-7 mutant significantly increased lifespan. Deletion ins-7(tm1907) mutant increased resistance against *P. luminescens* (*P* < 0.001). Survival curves are presented based on two trials (see Table 1). *P* values were calculated by log-rank test compared with the N2.
Formation of crystal-like structure
Synchronized L4 stage *C. elegans* were transferred onto the 9 cm NGM plates completely covered with *P. luminescens* TT01, prepared as described above, and incubated at 20°C for 12 hours. Then nematodes were collected and washed with M9 buffer twice and transferred onto the 9 cm NGM plates seeded with *E. coli* OP50, and incubated at 20°C for 24 and 48 hours. After 24 or 48 hour incubation, 10–20 nematodes were randomly picked up and observed the formations of crystal-like structure with the differential interference contrast (DIC) microscopy. Each observation was performed three times independently.

RNA interference (RNAi)
Gene fragments of *C. elegans daf-2, daf-16* and *pmk-1* were prepared by PCR amplification of *C. elegans* N2 cDNA and cloned into the RNAi vector pPD129.36 (kindly provided by Fire, A., Stanford University). The PCR fragment-ligated plasmid or the blank vector pPD129.36 was used to transform *E. coli* HT115 (Kamath et al. 2001). Primers for RNAi constructs were listed in Table 3. For RNAi experiments, synchronized L1 stage nematodes were cultured until L4 stage for 48 hours at 20°C on NGM (containing 50 μg/mL ampicillin and 20 μg/mL tetracycline) plates seeded with *E. coli* OP50, and incubated at 20°C for 12 hours. Then nematodes were transformed with each different RNAi plasmid. Synchronized L4 stage nematodes were then collected and transferred onto survival test plates.

Feeding test
Synchronized L4 stage *C. elegans* were washed with M9 buffer and transferred onto the 6 cm NGM plates completely covered with *gfp*-tagged *P. luminescens* TT01, or *E. coli* OP50. Nematodes were picked up at every time point and observed with the Nikon E600 microscope equipped with Nomarski DIC system and a fluorescence filter.

Quantitative RT-PCR
Gene expression of *spp-1, thn-2, lys-7* (reported to be controlled by the insulin/IGF-1 signaling pathway, Murphy et al. 2003; Evans et al. 2008), F08G5.6, T24B8.5, *lys-2, clec-67* (reported to be controlled by the p38 MAPK pathway, Troemel et al. 2006) and *ins-7* (an insulin/IGF-1 peptide and DAF-2 ligand) were analyzed by qRT-PCR using SYBR® green assay (Takara bio, Shiga, Japan). Synchronized L4 stage *C. elegans* grown on the NGM seeded with *E. coli* OP50 were collected, washed with M9 buffer and transferred onto the 9 cm NGM plates completely covered with *P. luminescens* TT01 (prepared as described above) or *E. coli* OP50, and grown at 20°C. After 6, 12 or 24 hours, nematodes were collected, washed twice with M9 buffer, then immediately frozen in liquid nitrogen, and stored in −80°C freezer. Total RNA was extracted by the RNeasy® Plus Micro Kit (Qiagen, Venlo, Netherlands) following the manufacturer’s protocol. Total RNA (adjusted for concentration of 50 ng/μl) was reverse transcribed using Oligo d’T primer and PrimeScript RT reagent Kit (Takara bio). Quantitative RT-PCR was performed using SYBR® Premix Ex Taq™ II (Tli RNaseH Plus) (Takara bio) on CFX96™ Real-Time PCR Detection System (Bio-Rad, Berkeley, CA, USA). Primers were designed using Primer 3 software (http://simgene.com/Primer3) and tested for specificity prior to qRT-PCR. The housekeeping *snb-1* gene was used as an internal control gene for calculation of relative expression levels of each gene. Primers for qRT-PCR were listed in Table 4. A single peak at the melting temperature of the PCR-product confirmed primer specificity. Experiments were performed at least three times using independent nematode samples. Relative gene expression of each gene was analyzed using 2−ΔΔCT method (Livak and Schmittgen 2001).

Table 3 Primers used for RNAi constructs.

Primer name	Sequence
1. daf-16a_ BamHI_For	5′−GGGGATCCGGCGGAGCGGACGGTGACGGTTG−3′
2. daf-16a_ SalI_Rev	5′−ATACGCGTCGACTCAGCTCATGTCTGATCAATG−3′
3. daf-16a_ SalI_For	5′−GGGAATTCCACAGACAACAATGACATAT−3′
4. XbaI_Rev	5′−GGCTAGCTATTGATGACGGACACGGCA−3′
5. pmk-1_ EcoRI_For	5′−GGGAATTCCACAGACAACTGATGTACCAATAT−3′
6. pmk-1_ EcoRI_Rev	5′−AAGGAATTCCTTCATCTGGTGTTCC−3′

Table 4 Primers used for qRT-PCR analysis.

Primer name	Sequence
1. F08G5.6_For	5′−ATCGCTCCGACATGAGTGTTGAC−3′
2. F08G5.6_Rev	5′−GCCGATTTCACTGCTGAAAGTG−3′
3. T24B8.5_For	5′−AAACCTGTTGTCTGCGTTAC−3′
4. T24B8.5_Rev	5′−TTGCAAGTTTTTGGGACATT−3′
5. lys-2_For	5′−TGCAATTCTTCGCTGTTCC−3′
6. lys-2_Rev	5′−TTCCAACAGCATACAGCTACG−3′
7. cec-67_For	5′−AATGGCTACATGGCGCCACCCTG−3′
8. cec-67_Rev	5′−TGGCTAGTGGAGAAAGTGTTCC−3′
9. spp-1_For	5′−TTGCCCTGAGCTATGCTGTTGCC−3′
10. spp-1_Rev	5′−AAGACTGCTGACCGCCGCTGC−3′
11. thn-2_For	5′−TCCAACCTACGGCTGGACATC−3′
12. thn-2_Rev	5′−TGAACCTGTCAGGATTTTGTC−3′
13. lys-7_For	5′−AATGTGGCCTGCAACCTGCCC−3′
14. lys-7_Rev	5′−TGCACAAAGAAACTGCAAC−3′
15. ins-7_For	5′−TTAGCTCCAGCAGACAGCGGAC−3′
16. ins-7_Rev	5′−CGATGCTTTTTCACACACC−3′
17. snb-1_For	5′−TGGAGCTGATGAGGAAGTTG−3′
18. snb-1_Rev	5′−TCCACAAATCGTGCCCTAG−3′
Additional files

Additional file 1: Crystal-like structure is also constructed in another bacteriovorous nematode. L4 stage Rhabditidae sp. was cultured on P. luminescens for 24 hours at 25°C. Arrow indicates crystal-like structure inside the intestinal lumen.

Additional file 2: Crystal-like structures do not disappear once constructed. (A) Frequency of the crystal-like structure construction. There is no significant difference between before and after culturing on E. coli OP50 (P = 0.05, Fisher’s exact test). Integrated data of three independent experiments are shown. (B) C. elegans body shape, grown on E. coli for 24 hours after 12-hour incubation on P. luminescens from the L4 stage. Scale bar, 200 μm. (C) Crystal-like structure in the C. elegans intestine, grown on P. luminescens for 12 hours from the L4 stage. Scale bar, 50 μm. (D) Crystal-like structure in the C. elegans intestine, grown on E. coli for 48 hours after 12-hour incubation on P. luminescens from the L4 stage. Arrows indicate crystal structure. Scale bar, 50 μm.

Competing interests

The authors declare that they have no competing interests.

Authors’ contribution

Conceived and designed the experiments: KS, KH. Performed the experiments: KS, KH. Analyzed the data: KS, KY, KH. Wrote the paper: KS, KY, KH. All authors read and approved the final manuscript.

Authors’ information

JSPS Research Fellow.

Acknowledgements

Some C. elegans strains were provided by the Caenorhabditis Genetics Center (University of Minnesota, Minneapolis, MN) and Professor Shohei Mitani of the National Bioresource Project, Tokyo Women’s Medical University. The plasmids, pdk-5rin7::gfp2, pUX-8F13 were provided by Professor Søren Molin, Danmarks Tekniske Universitet. We thank to Dr. David Chi K Leung and Dr. Cláudia SL Vicente for useful comment on this manuscript. This work was supported by the Chubu University special research fund.

Author details

1Laboratory of Nematology, Department of Applied Biological Sciences, Saga University, Saga 840-8502, Japan. 2Laboratory of Terrestrial Microbial Ecology, Graduate School of Agriculture, Kyoto University, Kyōto, Kyoto 606-8502, Japan. 3The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-8580, Japan. 4Department of Environmental Biology, College of Bioscience & Biotechnology, Chubu University, 1200 Matsumoto, Kasugai 487-8501, Japan.

Received: 25 December 2013 Accepted: 26 May 2014

Published: 1 June 2014

References

Alegado RA, Tan M-W (2008) Resistance to antimicrobial peptides contributes to persistence of Salmonella typhimurium in the C. elegans intestine. Cell Microbiol 10:1259–1273, doi:10.1111/j.1462-5822.2008.0124x

Bintrim SB, Ensign JC (1998) Insertional inactivation of genes encoding the crystalline inclusion proteins of Photorhabdus luminescens results in mutants with pleiotropic phenotypes. J Bacteriol 180:1261–1269

Bowen D, Rocheleau T, Blackburn M, Andreev O, Golubeva E, Bhartia R, ffrench-Constant RH (2003) For the insect pathogen Photorhabdus luminescens –2132, doi:10.1126/science.280.5372.2129

Brenner S (1974) The genetics of the nematode Caenorhabditis elegans. Genetics 77:71–94

Ciche T (2007) The biology and genome of Heterorhabditis bacteriophora. WormBook, doi:10.1895/wormbook.1.135.1

Ciche TA, Ensign J (2003) For the insect pathogen Photorhabdus luminescens, which end of a nematode is out? Appl Environ Microbiol 69:1890, doi:10.1128/AEM.69.4.1890-1897.2003

Couillault C, Ewbank JJ (2002) Diverse bacteria are pathogens of Caenorhabditis elegans. Infect Immun 70:4705–4707, doi:10.1128/IAI.70.8.4705-4707.2002

Daborn PJ, Waterfield N, Silva CP, Au CPY, Sharma S, ffrench-Constant RH (2002) A single Photorhabdus gene, makes caterpillars floppy (mch), allows Escherichia coli to persist within and kill insects. Proc Natl Acad Sci U S A 99:10742–10747, doi:10.1073/pnas.02068099

Dowling AJ, Daborn PJ, Waterfield NR, Wang P, Streuli CH, ffrench-Constant RH (2004) The insecticidal toxin Mce makes caterpillars floppy (Mcf) promotes apoptosis in mammalian cells. Cell Microbiol 6:345–353, doi:10.1046/j.1462-5822.2003.00357.x

Dowling AJ, Waterfield NR, Haes MC, Goff GL, Streuli CH, ffrench-Constant RH (2007) The Mcf1 toxin induces apoptosis via the mitochondrial pathway and apoptosis is attenuated by mutation of Bcl-2-like domain. Cell Microbiol 9:2470–2488, doi:10.1111/j.1462-5822.2007.00974.x

Duchaud E, Rook N, Franque L, Buchrieser C, Guisaudan A, Taoutt S, Bocc S, Boursaux-Eude C, Chandler M, Charles JF, Daisa E, Derose R, Dezelle S, Freysnet G, Gaudruat S, Mévidique C, Lanos A, Powell K, Siguer P, Vincent R, Wingate V, Zouine M, Glaser P, Boereme N, Danchin A, Kunst F (2003) The genome sequence of the entomopathogenic bacterium Photorhabdus luminescens. Nat Biotechnol 21:1307–1313, doi:10.1038/nbt886

Easorn CA, Joyce SA, Clarke DJ (2010) Identification of genes involved in the mutualistic colonization of the nematode Heterorhabditis bacteriophora by the bacterium Photorhabdus luminescens. BMC Microbiol 10:45, doi:10.1186/1471-2180-10-45

Eleftherianos I, Bouny S, Joyce SA, Aslan S, Marshall JW, Cox RJ, Simpson TJ, Clarke DJ, ffrench-Constant RH, Reynolds SE (2007) An antibiotic produced by an insect-pathogenic bacterium suppresses host defenses through phenoloxidase inhibition. Proc Natl Acad Sci U S A 92:7764–7768, doi:10.1073/pnas.0610525104

Engelmann I, Griffin A, Tich T, Montañana-Sanchis F, Wang G, Reinke V, Waterston RH, Hillier LW, Ewbank JJ (2011) A comprehensive analysis of gene expression changes provoked by bacterial and fungal infection in C. elegans. PLoS One 6:e19055

Evan EA, Kawi T, Tan M-W (2008) Pseudomonas aeruginosa suppresses host immunity by activating the DAF-1-Fas-like Signaling Pathway in Caenorhabditis elegans. PLoS Pathog 4:e1000215, doi:10.1371/journal.ppat.1000215

Fischer M, Regitz C, Kahl M, Werthebach M, Boll M, Wenzel U (2012) Phytotoxins genisten and daidzein affect immunity in the nematode Caenorhabditis elegans via alterations of vitellogenin expression. Mol Nutr Food Res 56:957–965, doi:10.1002/mnfr.201200006

Fischer M, Regitz C, Kuhl R, Werthebach M, Boll M, Wenzel U (2012) Vitellogenins increase stress resistance of Caenorhabditis elegans after Photorhabdus luminescens infection depending on the steroid-signaling pathway. Microbiol Cell 5:576–578, doi:10.1111/micc.2013.50022

Garin DS, Sfiri CD, Mylonakis E, Qin X, Singh KV, Murray BE, Calderwood SB, Ausbel FM (2001) A simple model host for identifying Gram-positive virulence factors. Proc Natl Acad Sci U S A 98:10892–10897, doi:10.1073/pnas.191378698

Garin DS, Villanueva JM, Begun J, Kim DH, Sfiri CD, Calderwood SB, Ruvkun G, Ausbel FM (2003) Long-lived C. elegans daf-2 mutants are resistant to bacterial pathogens. Science 300:192, doi:10.1126/science.1080147

Gatsogiannis C, Lang AE, Meusch D, Pfaumann V, Hofnagel O, Benz R, Aktories K, Raunser S (2013) A syringe-like injection mechanism in Photorhabdus luminescens toxins. Nature 495:520–523, doi:10.1038/nature11987

Gulcu B, Hazir S, Yaya HK (2012) Scavenger receptor activator (SDF) from symbiotic bacteria of entomopathogenic nematodes. J Invertbr Pathol 110:326–333, doi:10.1016/j.jip.2012.03.014

Henderson ST, Johnson TE (2001) daf-16 integrates developmental and environmental inputs to mediate aging in the nematode Caenorhabditis elegans. Curr Biol 11:1975–1980, doi:10.1016/S0960-9822(01)00559-4

Julien-Gau I, Schmidt M, Kurz CL (2014) f574e-4::gfp as a fluorescent reporter for analysis of the C. elegans response to bacterial infection. Dev Comp Immunol 42:132–137, doi:10.1016/j.dci.2013.08.024

Karnath RS, Martinez-Campos M, Zipperlen P, Fraser AG, Ahringer J (2001) Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans. Genome Biol 2:research0002.1-research0002.10, doi:10.1186/gb-2000-2-1-research0002

Kawi T, Tan M-W (2008) Neuroendocrine signals modulate the innate immunity of Caenorhabditis elegans through insulin signaling. Nat Immunol 9:1415–1424, doi:10.1038/ni.1672
Kaya HK, Stock SP (1997) Techniques in insect nematology. In: Lacey LA (ed) Manual of Techniques in Insect Pathology. Academic Press, San Diego, pp 281–324
Kim DH, Feinbaum R, Alloing G, Emerson FE, Garsin DA, Inoue H, Tanaka-Hino M, Hisamoto N, Matsumoto K, Tan M-W, Ausubel FM (2002) A conserved p38 MAPK pathway in Caenorhabditis elegans innately immune. Science 297:623–626, doi:10.1126/science.1073795
Kurz CJ, Chauvet S, Andrés E, Aurozue M, Vallet I, Michel GP, Lh M, Celli J, Fililoux A, De Bentzmann S, Steinmetz I, Hoffmann JA, Finlay BB, Gorvel JP, Ferrandon D, Ebvank J (2003) Virulence factors of the human opportunistic pathogen Seratia marcescens identified by in vivo screening. EMBO J 22:1451–1460, doi:10.1093/emboj/cdg159
Lambertz L, Stemborg C, Molin S (2004) Mini-Tn7 transposons for interspecies tagging of bacteria with fluorescent proteins. Environ Microbiol 6:726–732, doi:10.1111/j.1462-2920.2004.00605.x
Lang AE, Schmidt G, Schlosser A, Hey TD, Larrina BM, Sheets JJ, Mannherz HG, Aktories K (2011) Targeting of the actin cytoskeleton by insecticidal toxins from Photorhabdus luminescens. N Schmied Arch Pharmaco 383:227–235, doi:10.1002/jbp2.2010010579-9
Lang AE, Konukiewitz I, Aktories K, Benz R (2013) TcDa1 of Photorhabdus luminescens: electrophysiological analysis of pore formation and effector binding. Biophys J 105:376–384, doi:10.1016/j.bpj.2013.06.003
Lin K, Dorman JB, Rodan A, Kenyon C (1997) daf-16: An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science 278:1319–1322, doi:10.1126/science.278.5341.1319
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2^-DeltaDeltaCT method. Methods 25:402–440, doi:10.1006/meth.2001.1262
Murphy CT, McCaroll SA, Bargmann CI, Fraser A, Kamath RS, Ahringer J, Li JH, Kenyon C (2003) Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 424:277–284, doi:10.1038/nature01789
Noguez JH, Conner ES, Zhou Y, Ciche TA, Ragains R, Butcher RA (2012) A novel ascaroside controls the parasitic life cycle of the entomopathogenic nematode Heterorhabditis bacteriophora. Environ Microbiol 14:673–683, doi:10.1111/j.1462-2920.2011.02491.x
Papp D, Csermely P, Soti C (2012) A role for SKN-1/NF in pathogen resistance and immunosenescence in Caenorhabditis elegans. PLoS Pathog 8:e1002673, doi:10.1371/journal.ppat.1002673
Porta-de-la-Riva M, Fontrodona L, Villanueva A, Cerón J (2012) Basic Caenorhabditis elegans Methods: Synchronization and Observation. J Vis Exp 64:e40191, doi:10.3791/40191
Pujol N, Link EM, Liu LX, Kurz CJ, Alloing G, Tan M-W, Ray KP, Solari R, Johnson CD, Evbank JI (2001) A reverse genetic analysis of components of the Toll signaling pathway in Caenorhabditis elegans. Curr Biol 11:809–821, doi:10.1016/S0960-9822(01)00241-x
Richardson WH, Schmidt TM, Nealson KH (1988) Identification of an anthraquinone 2,3-dioxygenase in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 85:1319–1322, doi:10.1073/pnas.85.4.1319
Shivers RP, Kooistra T, Chu SW, Pagano DJ, Kim DH (2009) Tissue-specific activities of an immune signaling module regulate physiological responses to pathogenic and nutritional bacteria in C. elegans. Cell Host Microbe 6:321–330, doi:10.1016/j.chom.2009.09.001
Shivers RP, Pagano DJ, Kooistra T, Richardson CE, Reddy KC, Whitney JK, Karnan O, Matsumoto K, Hisamoto N, Kim DH (2010) Phosphorylation of the conserved transcription factor ATF-7 by PMK-1 p38 MAPK regulates innate immunity in Caenorhabditis elegans. PLoS Genet 6:e1000892, doi:10.1371/journal.pgen.1000892
Sicard M, Hering S, Schulte R, Gaudriault S, Schulenburg H (2007) The effect of Photorhabdus luminescens (Enterobacteriaceae) on the survival, development, reproduction and behaviour of Caenorhabditis elegans (Nematoda: Rhabditidae). Environ Microbiol 9:12–25, doi:10.1111/j.1462-2920.2006.00999.x
Spanier B, Starke M, Higel F, Scherer S, Fuchs TM (2010) Versina enterococcal infection and socA-dependent killing of Caenorhabditis elegans. Appl Environ Microbiol 76:6277–6285, doi:10.1128/AEM.0174-10
Tan M-W, Shapira M (2011) Genetic and molecular analysis of nematode-microbe interactions. Cell Microbiol 13:497–507, doi:10.1111/j.1462-5822.2011.01570x
Tan M-W, Mahajan-Miklos S, Ausubel FM (1999) Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. Proc Natl Acad Sci U S A 96:715–720, doi:10.1073/pnas.96.2,715
Tenor JL, Abalay A (2008) A conserved Toll-like receptor is required for Camarhodobid elegans innate immunity. EMBO Rep 9:103–109, doi:10.1038/sj.embor.740104
Troemel ER, Chu SW, Reinke V, Lee SS, Ausubel FM, Kim DH (2006) p38 MAPK regulates expression of immune response genes and contributes to longevity in C. elegans. PLoS Genet 2:e183
van der Hoeven R, McCallum KC, Cruz NR, Garvin DA (2011) Ce-Dux1.8L1 generates reactive oxygen species trigger protective SKN-1 activity via p38 MAPK signaling during infection in C. elegans. PLoS Pathog 7:e1002453
Visschedyk D, Perierianu AA, Turgeon ZJ, Fieldhouse RJ, Dawson JJ, Merrill AR (2010) Photos, a novel actin-targeting mono-ADP-riboseyltransferase from Photorhabdus luminescens. J Biol Chem 285:13525–13534, doi:10.1074/jbc.M110077339
Vlsidou I, Dowling AJ, Evans IR, Waterfield N, ffrench-Constant RH, Wood W (2009) Drosophila embryos as model systems for monitoring bacterial infection in real time. PLoS Pathog 5:e1000518, doi:10.1371/journal.ppat.1000518
Waterfield NR, Sanchez-Conterenas M, Eleftherianos I, Dowling A, Yang G, Wilkinson P, Parkhill J, Thomson N, Reynolds SE, Bode HB, Dorus S, ffrench-Constant RH (2008) Rapid Virulence Annotation (RVA): identification of virulence factors using a bacterial genome library and multiple invertebrate hosts. Proc Natl Acad Sci U S A 105:15967–15972, doi:10.1073/pnas.071114105
Waterfield NR, Ciche T, Clarke D (2009) Photorhabdus and a host of hosts. Annu Rev Microbiol 63:557–574, doi:10.1146/annurev.micro.091208.073507
Williams JS, Thomas M, Clarke DJ (2005) The gene sta4 encodes a phenylalanine ammonia-lyase that is involved in the production of a stilbene antibiotic in Photorhabdus luminescens. TQ71. Microbiology 151:2543–2550, doi:10.1099/mic.0.28136-0
Yang G, Waterfield NR (2013) The Role of TcdB and TccC Subunits in Secretion of the Photobacterium Tcd Toxin Complex. PLoS Pathog 9:e1003644, doi:10.1371/journal.ppat.1003644

Cite this article as: Sato et al. Activated and inactivated immune responses in Caenorhabditis elegans against Photorhabdus luminescens TT01. Springerplus 2014 3:274.

Submit your manuscript to a SpringerOpen journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at → springeropen.com