Application of Conditioning to the Gaussian-with-Boundary Problem in the Unified Approach to Confidence Intervals

Robert D. Cousins

Department of Physics and Astronomy, University of California, Los Angeles, CA 90095

(January 14, 2000)

Abstract

Roe and Woodroofe (RW) have suggested that certain conditional probabilities be incorporated into the “unified approach” for constructing confidence intervals, previously described by Feldman and Cousins (FC). RW illustrated this conditioning technique using one of the two prototype problems in the FC paper, that of Poisson processes with background. The main effect was on the upper curve in the confidence belt. In this paper, we attempt to apply this style of conditioning to the other prototype problem, that of Gaussian errors with a bounded physical region. We find that the lower curve on the confidence belt is also moved significantly, in an undesirable manner.

PACS numbers: 06.20.Dk, 14.60.Pq
I. INTRODUCTION

Roe and Woodroofe [1] have made an interesting suggestion for modifying the “uni-

fied approach” to classical confidence intervals which Feldman and I advocated in Ref. [2].

They invoke the use of “conditioning”, namely replacing frequentist coverage probabilities

with conditional probabilities, still calculated in a frequentist manner, but conditioned on

knowledge gained from the result of the particular experiment at hand.

Roe and Woodroofe (RW) illustrate their suggestion using one of the two prototype prob-

lems, that of Poisson processes with background. Suppose, for example that an experiment

observes 3 events (signal plus background). Then the experimenters know that, in that

particular experiment, there were 3 or fewer background events. RW therefore calculate the

frequentist coverage using an ensemble of experiments with 3 or fewer background events,

rather than the larger unrestricted ensemble which we used. Thus, the RW ensemble changes

from experiment to experiment. Conditioning on an equality has a long history in classical

statistics. (Ref. [1] contains key references.) However, conditioning on an inequality, as RW

do when the number of events is greater than zero, is perhaps less well founded, and it is

interesting to explore the consequences.

In this paper, we attempt to apply RW-like conditioning to the other prototype problem,

that of Gaussian errors with a bounded physical region. The result is similar to the Poisson

problem analyzed by RW, but difficulties which were apparently masked by the discrete

nature of the Poisson problem now arise. In particular, the lower endpoints of confidence

intervals are moved significantly in an undesirable direction.

II. THE UNIFIED APPROACH TO THE GAUSSIAN-WITH-BOUNDARY

PROBLEM

As in Ref. [2], we consider an observable x which is the measured value of parameter μ

in an experiment with a Gaussian resolution function with known fixed rms deviation σ, set

here to unity. I.e.,

$$P(x|\mu) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2}\right). \quad (2.1)$$

We consider the interesting case where only non-negative values for μ are physically allowed

(for example, if μ is a mass).

The confidence-belt construction in Ref. [2] proceeded as follows. For a particular x, we let μ_{best} be the physically allowed value of μ for which $P(x|\mu)$ is maximum. Then

$\mu_{\text{best}} = \max(0, x)$, and

$$P(x|\mu_{\text{best}}) = \begin{cases} \frac{1}{\sqrt{2\pi}}, & x \geq 0 \\ \exp(-x^2/2)/\sqrt{2\pi}, & x < 0. \end{cases} \quad (2.2)$$

We then compute the likelihood ratio R,

$$R(x) = \frac{P(x|\mu)}{P(x|\mu_{\text{best}})} = \begin{cases} \exp(-(x-\mu)^2/2), & x \geq 0 \\ \exp(x\mu - \mu^2/2), & x < 0. \end{cases} \quad (2.3)$$
During our Neyman construction of confidence intervals, R determines the order in which values of x are added to the acceptance region at a particular value of μ. In practice, this means that for a given value of μ, one finds the interval $[x_1, x_2]$ such that $R(x_1) = R(x_2)$ and

$$
\int_{x_1}^{x_2} P(x|\mu) dx = \alpha,
$$

(2.4)

where α is the confidence level (C.L.). We solve for x_1 and x_2 numerically to the desired precision, for each μ in a fine grid. With the acceptance regions all constructed, we then read off the confidence intervals $[\mu_1, \mu_2]$ as in Ref. [2].

III. INVOKING CONDITIONING IN THE GAUSSIAN-WITH-BOUNDARY PROBLEM

In order to formulate the conditioning, we find it helpful to think of the measured value x as being the sum of two parts, the true mean μ_t and the random “noise” which we call ϵ:

$$
x = \mu_t + \epsilon.
$$

(3.1)

We are considering the case where it is known on physical grounds that $\mu_t \geq 0$. Thus, if an experimenter obtains the value x_0 in a particular experiment, then he or she knows that, in that particular experiment,

$$
\epsilon \leq x_0.
$$

(3.2)

For example, if the experimenter measures μ and obtains $x_0 = -2$, then the experimenter knows that $\epsilon \leq -2$ in that particular experiment. This information is analogous to the information in the Poisson problem above in which one knows that in the particular experiment, the number of background events is 3 or fewer. We thus use it the manner analogous to that of RW: our particular experimenter will consider the ensemble of experiments with $\epsilon \leq x_0$ when constructing the confidence belt relevant to his or her experiment.

We let $P(x|\mu, \epsilon \leq x_0)$ be the (normalized) conditional probability for obtaining x, given that $\epsilon \leq x_0$. In notation similar to that of RW, this can be denoted as $q_{\mu_0}^x(x)$:

$$
q_{\mu_0}^x(x) \equiv P(x|\mu, \epsilon \leq x_0) = \begin{cases}
\frac{2}{\sqrt{2\pi}} \exp(-(x - \mu)^2/2)/(\text{erf}(x_0/\sqrt{2}) + 1), & x \leq \mu + x_0 \\
0, & \text{otherwise}
\end{cases}
$$

(3.3)

Given x_0, at each x we find μ_{best}, that value of μ which maximizes $P(x|\mu, \epsilon \leq x_0)$:

$$
\mu_{\text{best}} = \begin{cases}
x, & x_0 \geq 0 \text{ and } x \geq 0 \\
x - x_0, & x_0 < 0 \text{ and } x \geq x_0 \\
0, & \text{otherwise}
\end{cases}
$$

(3.4)

In the notation of Ref. [1], $P(x|\mu_{\text{best}}, \epsilon \leq x_0)$ is then

$$
\max_{\mu} q_{\mu_0}^x(x) = \frac{2}{\sqrt{2\pi} \text{erf}(x_0/\sqrt{2}) + 1} \times \begin{cases}
1, & x_0 \geq 0 \text{ and } x \geq 0 \\
\exp(-x_0^2)/2, & x_0 < 0 \text{ and } x \geq x_0 \\
\exp(-x^2)/2, & \text{otherwise}
\end{cases}
$$

(3.5)
Then the ratio R of Eqn. 2.3 is replaced by

$$
\tilde{R}^{x_0}(\mu, x) = \frac{q_\mu^{x_0}(x)}{\max_\mu' q_\mu^{x_0}(x)},
$$

which vanishes if $x > \mu + x_0$, and otherwise is given by

$$
\tilde{R}^{x_0}(\mu, x) = \begin{cases}
\exp\left(-\frac{(x - \mu)^2}{2}\right), & x_0 \geq 0 \text{ and } x \geq 0 \\
\exp\left(-\frac{(x - \mu)^2 + x_0^2}{2}\right), & x_0 < 0 \text{ and } x \geq x_0 \\
\exp(x\mu - \mu^2/2), & \text{otherwise}
\end{cases}
$$

(3.6)

Figures 1 through 3 show graphs of $q_\mu^{x_0}(x)$, $\max_\mu' q_\mu^{x_0}(x)$, and $\tilde{R}^{x_0}(\mu, x)$, for three values of μ, for each of three values of x_0.

We let $\tilde{c}_{x_0}(\mu)$ be the value of c for which

$$
\int_{x : \tilde{R}^{x_0}(\mu, x) < c} q_\mu^{x_0}(x) \, dx = \alpha.
$$

(3.8)

The modified confidence interval consists of those μ for which

$$
\tilde{R}^{x_0}(\mu, x_0) \geq \tilde{c}_{x_0}(\mu).
$$

(3.9)

Note that this entire construction depends on the value of x_0 obtained by the particular experiment. An experiment obtaining a different value of x_0 will have a different function in Eqn. 3.3, and hence a different confidence belt construction. Figure 4 shows examples of such constructions for six values of x_0. The vertical axis gives the endpoints of the confidence intervals. Each different confidence belt construction is used only for an experiment obtaining the value x_0 which was used to construct the belt. The interval $[\mu_1, \mu_2]$ at $x = x_0$ is read off for that experiment; the rest of that plot is not used.

Finally, we can form the graph shown in Fig. 3 by taking the modified confidence interval for each x_0, and plotting them all on one plot. These are tabulated in Table 4, which includes for comparison the unconditioned intervals from Table X of Ref. [2].

Fig. 4 shows the modified intervals plotted together with the unified intervals of Ref. [2]. The modified upper curve is shifted upward for negative x, which results in a less stringent upper limit when ϵ is known to be negative; this feature is considered desirable by some. The lower curve, however, is also shifted upward: for all $x_0 > 0$, the interval is two-sided. We find this to be a highly undesirable side-effect.

It is interesting to consider what happens if one applies Fig. 3 to an unconditioned ensemble. The result can be seen by drawing a horizontal line at any μ in Fig. 3 and integrating $P(x | \mu)$ (Eqn 2.1) along that line between the belts. For small μ, there is significant undercoverage, while for μ near 1.0, there is significant overcoverage. The undercoverage was surprising, since the conditioned intervals always cover within the relevant subset of the ensemble. However, conditioning on an inequality means that these subsets are not disjoint.

The undesirable raising of the lower curve is present in the Poisson case, as can be seen in Figure 1 of Ref. [4]. However, there the discreteness of the Poisson problem apparently prevents the curve from being shifted so dramatically, and the two-sided intervals do not extend to such low values of the measured n.

4
IV. CONCLUSION

In this paper, we apply conditioning in the style Roe and Woodroofe to the Gaussian-with-boundary problem. We find that the transition from one-sided intervals to two-sided intervals undesirably moves to the origin. This reflects a general feature of confidence interval construction: when moving one of the two curves, the other curve moves also. In the Poisson-with-background problem, the undesirable movement was not large, but in the Gaussian-with-boundary problem, the effect is quite substantial.

ACKNOWLEDGMENTS

I thank Gary Feldman, Byron Roe, and Michael Woodroofe for comments on the paper. This work was supported by the U.S. Department of Energy.
REFERENCES

† cousins@physics.ucla.edu
[1] B.P. Roe and M.B. Woodroofe, Phys. Rev. D60 053009 (1999).
[2] G.J. Feldman and R.D. Cousins, Phys. Rev. D57 3873 (1998).
FIG. 1. Graphs of $q^x_\mu(x)$ (top row), $\max_{\mu'}q^x_\mu'(x)$ (middle row), and $\tilde{R}^x(\mu, x)$ (bottom row), for $\mu = 0.01$. The columns are for $x_0 = -1, 0,$ and 1. Each graph in the bottom row is the quotient of the two graphs above it.
FIG. 2. Graphs of $q_{\mu}(x)$ (top row), $\max_{\mu'} q_{\mu'}^{x_0}(x)$ (middle row), and $\tilde{R}^{x_0}(\mu, x)$ (bottom row), for $\mu = 0.5$. The columns are for $x_0 = -1, 0, \text{ and } 1$. Each graph in the bottom row is the quotient of the two graphs above it.
FIG. 3. Graphs of $q_{\mu}^{x_0}(x)$ (top row), $\max_{\mu'} q_{\mu'}^{x_0}(x)$ (middle row), and $\tilde{R}(\mu, x)$ (bottom row), for $\mu = 2.5$. The columns are for $x_0 = -1, 0,$ and 1. Each graph in the bottom row is the quotient of the two graphs above it.
FIG. 4. Conditional confidence belts for the six sample values of x_0 indicated. Each plot is used only to find the $[\mu_1, \mu_2]$ interval at x equal to the x_0 used to construct it; that interval is transferred to Fig. 5.
FIG. 5. Plot of RW-inspired 90% conditional confidence intervals for mean of a Gaussian, constrained to be non-negative, described in the text.
FIG. 6. Plot of RW-inspired 90% conditional confidence intervals (solid curves), superimposed on the unconditioned intervals of Ref. [2] (dotted curves).
TABLE I. 90% C.L. confidence intervals for the mean μ of a Gaussian, constrained to be non-negative, as a function of the measured mean x_0, for the RW conditioning method, and for the unified approach of Feldman and Cousins. All numbers are in units of σ. The conditioned numbers may be inaccurate at the level of ± 0.01 due to the computational grid used.

x_0	conditioned	unconditioned
-3.0	(0.00, 0.63)	0.00, 0.26
-2.9	(0.00, 0.66)	0.00, 0.27
-2.8	(0.00, 0.68)	0.00, 0.28
-2.7	(0.00, 0.68)	0.00, 0.29
-2.6	(0.00, 0.70)	0.00, 0.30
-2.5	(0.00, 0.73)	0.00, 0.32
-2.4	(0.00, 0.75)	0.00, 0.33
-2.3	(0.00, 0.77)	0.00, 0.34
-2.2	(0.00, 0.78)	0.00, 0.36
-2.1	(0.00, 0.80)	0.00, 0.38
-2.0	(0.00, 0.84)	0.00, 0.40
-1.9	(0.00, 0.86)	0.00, 0.43
-1.8	(0.00, 0.89)	0.00, 0.45
-1.7	(0.00, 0.92)	0.00, 0.48
-1.6	(0.00, 0.94)	0.00, 0.52
-1.5	(0.00, 0.97)	0.00, 0.56
-1.4	(0.00, 1.01)	0.00, 0.60
-1.3	(0.00, 1.04)	0.00, 0.64
-1.2	(0.00, 1.07)	0.00, 0.70
-1.1	(0.00, 1.11)	0.00, 0.75
-1.0	(0.00, 1.15)	0.00, 0.81
-0.9	(0.00, 1.19)	0.00, 0.88
-0.8	(0.00, 1.23)	0.00, 0.95
-0.7	(0.00, 1.27)	0.00, 1.02
-0.6	(0.00, 1.32)	0.00, 1.10
-0.5	(0.00, 1.37)	0.00, 1.18
-0.4	(0.00, 1.42)	0.00, 1.27
-0.3	(0.00, 1.47)	0.00, 1.36
-0.2	(0.00, 1.53)	0.00, 1.45
-0.1	(0.00, 1.58)	0.00, 1.55
0.0	(0.00, 1.65)	0.00, 1.64
0.1	(0.00, 1.71)	0.00, 1.74
0.2	(0.01, 1.77)	0.00, 1.84
0.3	(0.02, 1.84)	0.00, 1.94
0.4	(0.04, 1.91)	0.00, 2.04
0.5	(0.06, 1.98)	0.00, 2.14
0.6	(0.08, 2.06)	0.00, 2.24
0.7	(0.11, 2.13)	0.00, 2.34
---	---	---
0.8	(0.13, 2.21)	0.00, 2.44
0.9	(0.16, 2.29)	0.00, 2.54
1.0	(0.19, 2.38)	0.00, 2.64
1.1	(0.22, 2.46)	0.00, 2.74
1.2	(0.26, 2.55)	0.00, 2.84
1.3	(0.29, 2.64)	0.02, 2.94
1.4	(0.33, 2.76)	0.12, 3.04
1.5	(0.38, 2.90)	0.22, 3.14
1.6	(0.42, 3.04)	0.31, 3.24
1.7	(0.47, 3.18)	0.38, 3.34
1.8	(0.52, 3.30)	0.45, 3.44
1.9	(0.57, 3.43)	0.51, 3.54
2.0	(0.63, 3.55)	0.58, 3.64
2.1	(0.69, 3.67)	0.65, 3.74
2.2	(0.75, 3.79)	0.72, 3.84
2.3	(0.82, 3.90)	0.79, 3.94
2.4	(0.89, 4.01)	0.87, 4.04
2.5	(0.96, 4.12)	0.95, 4.14
2.6	(1.04, 4.22)	1.02, 4.24
2.7	(1.12, 4.33)	1.11, 4.34
2.8	(1.20, 4.43)	1.19, 4.44
2.9	(1.28, 4.54)	1.28, 4.54
3.0	(1.37, 4.64)	1.37, 4.64
3.1	(1.47, 4.74)	1.46, 4.74