Teodor Banica

A Note on Free Quantum Groups

Volume 15, no 2 (2008), p. 135-146.

<http://ambp.cedram.org/item?id=AMBP_2008__15_2_135_0>

© Annales mathématiques Blaise Pascal, 2008, tous droits réservés. L’accès aux articles de la revue « Annales mathématiques Blaise Pascal » (http://ambp.cedram.org/), implique l’accord avec les conditions générales d’utilisation (http://ambp.cedram.org/legal/). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.
A Note on Free Quantum Groups

Teodor Banica

Abstract

We study the free complexification operation for compact quantum groups, \(G \to G^c \). We prove that, with suitable definitions, this induces a one-to-one correspondence between free orthogonal quantum groups of infinite level, and free unitary quantum groups satisfying \(G = G^c \).

Introduction

In this paper we present some advances on the notion of free quantum group, introduced in [3]. We first discuss in detail a result mentioned there, namely that the free complexification operation \(G \to G^c \) studied in [2] produces free unitary quantum groups out of free orthogonal ones. Then we work out the injectivity and surjectivity properties of \(G \to G^c \), and this leads to the correspondence announced in the abstract. This correspondence should be regarded as being a first general ingredient for the classification of free quantum groups.

We include in our study a number of general facts regarding the operation \(G \to G^c \), by improving some previous work in [2]. The point is that now we can use general diagrammatic techniques from [4], new examples, and the notion of free quantum group [3], none of them available at the time of writing [2].

Keywords: Free quantum group.
Math. classification: 16W30.
The paper is organized as follows: 1 contains some basic facts about the operation $G \to G^c$, and in 2-5 we discuss the applications to free quantum groups.

1. Free complexification

A fundamental result of Voiculescu [6] states if (s_1, \ldots, s_n) is a semicircular system, and z is a Haar unitary free from it, then (zs_1, \ldots, zs_n) is a circular system. This makes appear the notion of free multiplication by a Haar unitary, $a \to za$, that we call here free complexification. This operation has been intensively studied since then. See Nica and Speicher [5].

This operation appears as well in the context of Wang’s free quantum groups [7], [8]. The main result in [1] is that the universal free biunitary matrix is the free complexification of the free orthogonal matrix. In other words, the passage $O_n^+ \to U_n^+$ is nothing but a free complexification: $U_n^+ = O_n^{+c}$. Moreover, some generalizations of this fact are obtained, in an abstract setting, in [2].

In this section we discuss the basic properties of $A \to \tilde{A}$, the functional analytic version of $G \to G^c$. We use an adaptation of Woronowicz’s axioms in [9].

Definition 1.1. A finitely generated Hopf algebra is a pair (A, u), where A is a C^*-algebra and $u \in M_n(A)$ is a unitary whose entries generate A, such that

\[
\Delta(u_{ij}) = \sum u_{ik} \otimes u_{kj}, \\
\varepsilon(u_{ij}) = \delta_{ij}, \\
S(u_{ij}) = u_{ji}^*
\]

define morphisms of C^*-algebras (called comultiplication, counit and antipode).

In other words, given (A, u), the morphisms Δ, ε, S can exist or not. If they exist, they are uniquely determined, and we say that we have a Hopf algebra.

The basic examples are as follows:

(1) The algebra of functions $A = C(G)$, with the matrix $u = (u_{ij})$ given by $g = (u_{ij}(g))$, where $G \subset U_n$ is a compact group.
(2) The group algebra $A = C^*(\Gamma)$, with the diagonal matrix $u = \text{diag}(g_1, \ldots, g_n)$, where $\Gamma = \langle g_1, \ldots, g_n \rangle$ is a finitely generated group.

Let \mathbb{T} be the unit circle, and let $z : \mathbb{T} \to \mathbb{C}$ be the identity function, $z(x) = x$. Observe that $(C(\mathbb{T}), z)$ is a finitely generated Hopf algebra, corresponding to the compact group $\mathbb{T} \subset U_1$, or, via the Fourier transform, to the group $\mathbb{Z} = \langle 1 \rangle$.

Definition 1.2. Associated to (A, u) is the pair (\tilde{A}, \tilde{u}), where $\tilde{A} \subset C(\mathbb{T})^*$ is the C^*-algebra generated by the entries of the matrix $\tilde{u} = zu$.

It follows from the general results of Wang in [7] that (\tilde{A}, \tilde{u}) is indeed a finitely generated Hopf algebra. Moreover, \tilde{u} is the free complexification of u in the free probabilistic sense, i.e. with respect to the Haar functional. See [2].

A morphism between two finitely generated Hopf algebras $f : (A, u) \to (B, v)$ is by definition a morphism of \ast-algebras $A_s \to B_s$ mapping $u_{ij} \to v_{ij}$, where $A_s \subset A$ and $B_s \subset B$ are the dense \ast-subalgebras generated by the elements u_{ij}, respectively v_{ij}. Observe that in order for such a morphism to exist, u, v must have the same size, and that if such a morphism exists, it is unique. See [2].

Proposition 1.3. The operation $A \to \tilde{A}$ has the following properties:

1. We have a morphism $(\tilde{A}, \tilde{u}) \to (A, u)$.

2. A morphism $(A, u) \to (B, v)$ produces a morphism $(\tilde{A}, \tilde{u}) \to (\tilde{B}, \tilde{v})$.

3. We have an isomorphism $(\tilde{\tilde{A}}, \tilde{\tilde{u}}) = (\tilde{A}, \tilde{u})$.

Proof. All the assertions are clear from definitions, see [2] for details. □

Theorem 1.4. If $\Gamma = \langle g_1, \ldots, g_n \rangle$ is a finitely generated group then $\tilde{C}^*(\Gamma) \simeq C^*(\mathbb{Z} \ast \Lambda)$, where $\Lambda = \langle g_i^{-1}g_j | i, j = 1, \ldots, n \rangle$.

Proof. By using the Fourier transform isomorphism $C(\mathbb{T}) \simeq C^*(\mathbb{Z})$ we obtain $\tilde{C}^*(\Gamma) = C^*(\tilde{\Gamma})$, with $\tilde{\Gamma} \subset \mathbb{Z} \ast \Gamma$. Then, a careful examination of generators gives the isomorphism $\tilde{\Gamma} \simeq \mathbb{Z} \ast \Lambda$. See [2] for details. □

At the dual level, we have the following question: what is the compact quantum group G^c defined by $C(G^c) = \tilde{C}(G)$? There is no simple answer to this question, unless in the abelian case, where we have the following result.
Theorem 1.5. If $G \subset U_n$ is a compact abelian group then $\tilde{C}(G) = C^*(\mathbb{Z} \ast \hat{L})$, where L is the image of G in the projective unitary group PU_n.

Proof. The embedding $G \subset U_n$, viewed as a representation, must come from a generating system $\hat{G} = \langle g_1, \ldots, g_n \rangle$. It routine to check that the subgroup $\Lambda \subset \hat{G}$ constructed in Theorem 1.4 is the dual of L, and this gives the result. \hfill \Box

2. Free quantum groups

Consider the groups $S_n \subset O_n \subset U_n$, with the elements of S_n viewed as permutation matrices. Consider also the following subgroups of U_n:

1. $S'_n = \mathbb{Z}_2 \times S_n$, the permutation matrices multiplied by ± 1.
2. $H_n = \mathbb{Z}_2 \wr S_n$, the permutation matrices with \pm coefficients.
3. $P_n = \mathbb{T} \times S_n$, the permutation matrices multiplied by scalars in \mathbb{T}.
4. $K_n = \mathbb{T} \wr S_n$, the permutation matrices with coefficients in \mathbb{T}.

Observe that H_n is the hyperoctahedral group. It is convenient to collect the above definitions into a single one, in the following way.

Definition 2.1. We use the diagram of compact groups

$$
\begin{array}{ccc}
U_n & \supset & K_n & \supset & P_n \\
\cup & & \cup & & \cup \\
O_n & \supset & H_n & \supset & S^*_n
\end{array}
$$

where S^* denotes at the same time S and S'.

In what follows we describe the free analogues of these 7 groups. For this purpose, we recall that a square matrix $u \in M_n(A)$ is called:

1. Orthogonal, if $u = \bar{u}$ and $u^t = u^{-1}$.
2. Cubic, if it is orthogonal, and $ab = 0$ on rows and columns.
3. Magic', if it is cubic, and the sum on rows and columns is the same.
A Note on Free Quantum Groups

(4) Magic, if it is cubic, formed of projections \((a^2 = a = a^*)\).

(5) Biunitary, if both \(u\) and \(u^t\) are unitaries.

(6) Cubik, if it is biunitary, and \(ab^* = a^*b = 0\) on rows and columns.

(7) Magik, if it is cubik, and the sum on rows and columns is the same.

Here the equalities of type \(ab = 0\) refer to distinct entries on the same row, or on the same column. The notions (1, 2, 4, 5) are from [7, 3, 8, 7], and (3, 6, 7) are new. The terminology is of course temporary: we have only 7 examples of free quantum groups, so we don’t know exactly what the names name.

Theorem 2.2. \(C(G_n)\) with \(G = OHS^*UKP\) is the universal commu-
tative \(C^*\)-algebra generated by the entries of a \(n \times n\) orthogonal, cubic, magic*, biunitary, cubik, magik matrix.

Proof. The case \(G = OHSU\) is discussed in [7, 3, 8, 7], and the case \(G = S'KP\) follows from it, by identifying the corresponding subgroups. \(\square\)

We proceed with liberation: definitions will become theorems and vice versa.

Definition 2.3. \(A_g(n)\) with \(g = ohs^*ukp\) is the universal \(C^*\)-algebra generated by the entries of a \(n \times n\) orthogonal, cubic, magic*, biunitary, cubik, magik matrix.

The \(g = ohsu\) algebras are from [7, 3, 8, 7], and the \(g = s'kp\) ones are new.

Theorem 2.4. We have the diagram of Hopf algebras

\[
\begin{array}{ccc}
A_u(n) & \rightarrow & A_k(n) & \rightarrow & A_p(n) \\
\downarrow & & \downarrow & & \downarrow \\
A_o(n) & \rightarrow & A_h(n) & \rightarrow & A_{s^*}(n)
\end{array}
\]

where \(s^*\) denotes at the same time \(s\) and \(s'\).

Proof. The morphisms in Definition 1.1 can be constructed by using the universal property of each of the algebras involved. For the algebras \(A_{ohsu}\) this is known from [7, 3, 8, 7], and for the algebras \(A_{s'kp}\) the proof is similar. \(\square\)
3. Diagrams

Let $F = \langle a, b \rangle$ be the monoid of words on two letters a, b. For a given corepresentation u we let $u^a = u, u^b = \bar{u}$, then we define the tensor powers u^α with $\alpha \in F$ arbitrary, according to the rule $u^{\alpha \beta} = u^\alpha \otimes u^\beta$.

Definition 3.1. Let (A, u) be a finitely generated Hopf algebra.

(1) CA is the collection of linear spaces $\{Hom(u^\alpha, u^\beta)|\alpha, \beta \in F\}$.

(2) In the case $u = \bar{u}$ we identify CA with $\{Hom(u^k, u^l)|k, l \in \mathbb{N}\}$.

A morphism $(A, u) \to (B, v)$ produces inclusions

$$Hom(u^\alpha, u^\beta) \subset Hom(v^\alpha, v^\beta)$$

for any $\alpha, \beta \in F$, so we have the following diagram:

$$CA_u(n) \subset CA_k(n) \subset CA_p(n)$$

$$\cap \quad \cap \quad \cap$$

$$CA_o(n) \subset CA_h(n) \subset CA_s^*(n)$$

We recall that $CA_s(n)$ is the category of Temperley-Lieb diagrams. That is, $Hom(u^k, u^l)$ is isomorphic to the abstract vector space spanned by the diagrams between an upper row of $2k$ points, and a lower row of $2l$ points. See [3].

In order to distinguish between various meanings of the same diagram, we attach words to it. For instance \capab, \capba are respectively in $D_s(\emptyset, ab), D_s(\emptyset, ba)$.

Lemma 3.2. The categories for $A_g(n)$ with $g = ohsukp$ are as follows:

(1) $CA_o(n) = \langle \cap \rangle$.

(2) $CA_h(n) = \langle \cap, \cap | \cup \rangle$.

(3) $CA_s'(n) = \langle \cap, \cup | \cap, \cap \rangle$.

(4) $CA_s(n) = \langle \cap, \cup | \cap, \cap \rangle$.

(5) $CA_u(n) = \langle \capab, \capba \rangle$.
A Note on Free Quantum Groups

(6) \(CA_k(n) = \langle \bigcap_{ab}, \bigcap_{ba}, \bigcup_{ab}, \bigcup_{ba} \rangle. \)

(7) \(CA_p(n) = \langle \bigcap_{ab}, \bigcap_{ba}, \bigcup_{ab}, \bigcup_{ba}, \bigcap_a, \bigcap_b \rangle. \)

Proof. The case \(g = ohs \) is discussed in [3], and the case \(g = u \) is discussed in [4]. In the case \(g = s'kp \) we can use the following formulae:

\[
\bigcup = \sum_{ij} e_{ij} \\
\bigcap = \sum_{i} e_{ii} \otimes e_{ii}
\]

The commutation conditions \(\bigcup, \bigcap \in \text{End}(u \otimes \bar{u}) \) and \(\bigcup, \bigcap \in \text{End}(\bar{u} \otimes u) \) correspond to the cubik condition, and the extra relations \(\bigcup, \bigcap \in \text{End}(u) \) and \(\bigcup, \bigcap \in \text{End}(\bar{u}) \) correspond to the magik condition. Together with the fact that orthogonal plus magik means magic', this gives all the \(g = s'kp \) assertions.

We can color the diagrams in several ways: either by putting the sequence \(xyyxxyyx \ldots \) on both rows of points, or by putting \(\alpha, \beta \) on both rows, then by replacing \(a \to xy, b \to yx \). We say that the diagram is colored if all the strings match, and half-colored, if there is an even number of unmatches.

Theorem 3.3. For \(g = ohs^*ukp \) we have \(CA_g(n) = \text{span}(D_g) \), where:

(1) \(D_s(k, l) \) is the set of all diagrams between \(2k \) points and \(2l \) points.

(2) \(D_{s'}(k, l) = D_s(k, l) \) for \(k - l \) even, and \(D_{s'}(k, l) = \emptyset \) for \(k - l \) odd.

(3) \(D_h(k, l) \) consists of diagrams which are colorable \(xyyxxyyx \ldots \).

(4) \(D_o(k, l) \) is the image of \(D_s(k/2, l/2) \) by the doubling map.

(5) \(D_p(\alpha, \beta) \) consists of diagrams half-colorable \(a \to xy, b \to yx \).

(6) \(D_k(\alpha, \beta) \) consists of diagrams colorable \(a \to xy, b \to yx \).

(7) \(D_u(\alpha, \beta) \) consists of double diagrams, colorable \(a \to xy, b \to yx \).

Proof. This is clear from the above lemma, by composing diagrams. The case \(g = ohsu \) is discussed in [3, 4], and the case \(g = s'kp \) is similar. □
Theorem 3.4. We have the following isomorphisms:

1. \(A_u(n) = \tilde{A}_o(n) \).
2. \(A_h(n) = \tilde{A}_k(n) \).
3. \(A_p(n) = \tilde{A}_{s^*}(n) \).

Proof. It follows from definitions that we have arrows from left to right. Now since by Theorem 3.3 the spaces \(\text{End}(u \otimes \bar{u} \otimes u \otimes \ldots) \) are the same at right and at left, Theorem 5.1 in [2] applies, and gives the arrows from right to left. \(\square \)

Observe that the assertion (1), known since [1], is nothing but the isomorphism \(U_n^+ = O_n^{+c} \) mentioned in the beginning of the first section.

4. Freeness, level, doubling

We use the notion of free Hopf algebra, introduced in [3]. Recall that a morphism \((A, u) \to (B, v) \) induces inclusions \(\text{Hom}(u^\alpha, u^\beta) \subset \text{Hom}(v^\alpha, v^\beta) \).

Definition 4.1. A finitely generated Hopf algebra \((A, u) \) is called free if:

1. The canonical map \(A_u(n) \to A_s(n) \) factorizes through \(A \).
2. The spaces \(\text{Hom}(u^\alpha, u^\beta) \subset \text{span}(D_s(\alpha, \beta)) \) are spanned by diagrams.

It follows from Theorem 3.3 that the algebras \(A_{ohn^+u,kp} \) are free.

In the orthogonal case \(u = \bar{u} \) we say that \(A \) is free orthogonal, and in the general case, we also say that \(A \) is free unitary.

Theorem 4.2. If \(A \) is free orthogonal then \(\tilde{A} \) is free unitary.

Proof. It is shown in [2] that the tensor category of \(\tilde{A} \) is generated by the tensor category of \(A \), embedded via alternating words, and this gives the result. \(\square \)

Definition 4.3. The level of a free orthogonal Hopf algebra \((A, u) \) is the smallest number \(l \in \{0, 1, \ldots, \infty\} \) such that \(1 \in u^\otimes_{2l+1} \).

As the level of examples, for \(A_s(n) \) we have \(l = 0 \), and for \(A_{ohn^+u,kp}(n) \) we have \(l = \infty \). This follows indeed from Theorem 3.3.
Theorem 4.4. If \(l < \infty \) then \(\tilde{A} = C(\mathbb{T}) \ast A \).

Proof. Let \(< r > \) be the algebra generated by the coefficients of \(r \). From \(1 \in < u > \) we get \(z \in < zu_{ij} > \), hence \(< zu_{ij} > = < z, u_{ij} > \), and we are done. \[\]

Corollary 4.5. \(A_p(n) = C(\mathbb{T}) \ast A_s(n) \).

Proof. For \(A_s(n) \) we have \(1 \in u \), hence \(l = 0 \), and Theorem 4.4 applies. \[\]

We can define a “doubling” operation \(A \to A_2 \) for free orthogonal algebras, by using Tannakian duality, in the following way: the spaces \(\text{Hom}(u^k, u^l) \) with \(k - l \) even remain by definition the same, and those with \(k - l \) odd become by definition empty. The interest in this operation is that \(A_2 \) has infinite level.

At the level of examples, the doublings are \(A_{ohs^*}(n) \to A_{ohs'}(n) \).

Proposition 4.6. For a free orthogonal algebra \(A \), the following are equivalent:

1. \(A \) has infinite level.
2. The canonical map \(A_2 \to A \) is an isomorphism.
3. The quotient map \(A \to A_s(n) \) factorizes through \(A_{s'}(n) \).

Proof. The equivalence between (1) and (2) is clear from definitions, and the equivalence with (3) follows from Tannakian duality. \[\]

5. The main result

We know from Theorem 3.4 that the two rows of the diagram formed by the algebras \(A_{ohs^*ukp} \) are related by the operation \(A \to \tilde{A} \). Moreover, the results in the previous section suggest that the correct choice in the lower row is \(s^* = s' \). The following general result shows that this is indeed the case.

Theorem 5.1. The operation \(A \to \tilde{A} \) induces a one-to-one correspondence between the following objects:

1. Free orthogonal algebras of infinite level.
2. Free unitary algebras satisfying \(A = \tilde{A} \).
Proof. We use the notations $\gamma_k = abab\ldots$ and $\delta_k = baba\ldots$ (k terms each).

We know from Theorem 4.2 that the operation $A \to \tilde{A}$ is well-defined, between the algebras in the statement. Moreover, since by Tannakian duality an orthogonal algebra of infinite level is determined by the spaces $\text{Hom}(u^k, u^l)$ with $k-l$ even, we get that $A \to \tilde{A}$ is injective, because these spaces are:

$$\text{Hom}(u^k, u^l) = \text{Hom}((zu)^\gamma_k, (zu)^\gamma_l)$$

It remains to prove surjectivity. So, let A be free unitary satisfying $A = \tilde{A}$. We have $CA = \text{span}(D)$ for certain sets of diagrams $D(\alpha, \beta) \subset D_s(\alpha, \beta)$, so we can define a collection of sets $D_2(k, l) \subset D_s(k, l)$ in the following way:

1. For $k - l$ even we let $D_2(k, l) = D(\gamma_k, \gamma_l)$.
2. For $k - l$ odd we let $D_2(k, l) = \emptyset$.

It follows from definitions that $C_2 = \text{span}(D_2)$ is a category, with duality and involution. We claim that C_2 is stable under \otimes. Indeed, for k, l even we have:

$$D_2(k, l) \otimes D_2(p, q) = D(\gamma_k, \gamma_l) \otimes D(\gamma_p, \gamma_q) \subset D(\gamma_k \gamma_p, \gamma_l \gamma_q) = D(\gamma_{k+p}, \gamma_{l+q}) = D_2(k + p, l + q)$$

For k, l odd and p, q even, we can use the canonical antilinear isomorphisms $\text{Hom}(u^{\gamma_K}, u^{\gamma_L}) \simeq \text{Hom}(u^{\delta_K, \delta_L})$, with K, L odd. At the level of diagrams we get equalities $D(\gamma_k, \gamma_l) = D(\delta_K, \delta_L)$, that can be used in the following way:

$$D_2(k, l) \otimes D_2(p, q) = D(\delta_k, \delta_l) \otimes D(\gamma_p, \gamma_q) \subset D(\delta_k \gamma_p, \delta_l \gamma_q) = D(\delta_{k+p}, \delta_{l+q}) = D_2(k + p, l + q)$$
Finally, for k, l odd and p, q odd, we can proceed as follows:

\[
D_2(k, l) \otimes D_2(p, q) = D(\gamma_k, \gamma_l) \otimes D(\delta_p, \delta_q)
\]

\[
\subset D(\gamma_k \delta_p, \gamma_l \delta_q)
\]

\[
= D(\gamma_{k+p}, \gamma_{l+q})
\]

\[
= D_2(k + p, l + q)
\]

Thus we have a Tannakian category, and by Woronowicz’s results in [10] we get an algebra A_2. This algebra is free orthogonal, of infinite level. Moreover, the spaces $\text{End}(u \otimes \bar{u} \otimes u \otimes \ldots)$ being the same for A and A_2, Theorem 5.1 in [2] applies, and gives $\hat{A}_2 = \hat{A}$. Now since we have $A = \hat{A}$, we are done. \qed

References

[1] T. Banica, *Le groupe quantique compact libre $U(n)$*, Comm. Math. Phys. 190 (1997), 143–172.

[2] _____, *Representations of compact quantum groups and subfactors*, J. Reine Angew. Math. 509 (1999), 167–198.

[3] T. Banica, J. Bichon, and B. Collins, *The hyperoctahedral quantum group*, J. Ramanujan Math. Soc. 22 (2007), 345–384.

[4] T. Banica and B. Collins, *Integration over compact quantum groups*, Publ. Res. Inst. Math. Sci. 43 (2007), 377–302.

[5] A. Nica and R. Speicher, *Lectures on the combinatorics of free probability*, Cambridge University Press, Cambridge, 2006.

[6] D.V. Voiculescu, *Circular and semicircular systems and free product factors*, Progress in Math. 92 (1990), 45–60.

[7] S. Wang, *Free products of compact quantum groups*, Comm. Math. Phys. 167 (1995), 671–692.

[8] _____, *Quantum symmetry groups of finite spaces*, Comm. Math. Phys. 195 (1998), 195–211.

[9] S.L. Woronowicz, *Compact matrix pseudogroups*, Comm. Math. Phys. 111 (1987), 613–665.

[10] _____, *Tannaka-Krein duality for compact matrix pseudogroups. Twisted $SU(N)$ groups*, Invent. Math. 93 (1988), 35–76.
T. Banica

Teodor Banica
Department of Mathematics
Paul Sabatier University
118 route de Narbonne
31062 Toulouse, France
banica@picard.ups-tlse.fr