Genetic detection of Chinese hereditary nonpolyposis colorectal cancer

Long Cui, Hei-Ying Jin, Hui-Yu Cheng, Yu-Di Yan, Rong-Gui Meng, De-Hong Yu

INTRODUCTION

Hereditary nonpolyposis colorectal cancer (HNPPC) is characterized by early onset of colorectal cancer, location of tumors in the proximal colon, and an increased risk of neoplasms of extracolonic organs, including endometrium, stomach, urothelium, small intestine, and ovary[1-6]. The International Collaborative Group on HNPPC (ICG-HNPPC) proposed a set of clinical diagnostic criteria (Amsterdam Criteria I) for HNPPC in 1990 and has revised them recently (Amsterdam Criteria II) to provide a uniformity in collaborative studies[7,8]. According to these criteria, there should have at least three patients in two consecutive generations who had colorectal cancer or the other extracolonic malignancies including endometrial cancer, small bowel cancer, cancer of the uterine and cancer of the renal pelvis. One of them should be a first-degree relative of the other two, one cancer should be diagnosed before age 50, and familial adenomatous polyposis (FAP) should be excluded. In Asia, on the other hand, the Japan Research Society for Cancer of the Colon and Rectum developed the clinical criteria (Japanese criteria) for HNPPC in 1991[9]. According to these criteria, at least two relatives in at least two successive generations should have colorectal cancer, and one of them should be a first-degree relative of the other, also, we called them atypical HNPPC.

Subjects

MATERIALS AND METHODS

Subjects

The project was approved by the Institutional Review Board and informed consent was obtained from each participant before the procedures were carried out. Personal and family cancer history was obtained from the proband and participating relatives, and cancer diagnosis and deaths were confirmed by review of medical records, pathological reports or death certificates. Families were identified by the Amsterdam or Japanese criteria for HNPPC. Patients and families were classified as the HNPPC group according to the Amsterdam criteria, suspected HNPPC group according to the Japanese criteria and control group without any family history.
Genetic testing
Preparation of peripheral blood samples and DNA amplification Genetic analysis was performed on a blood specimen from the proband in each family. Specimens were collected and immediately frozen in liquid nitrogen. DNA was extracted from blood specimens using the Wizard genomic purification kit (Qiagen, Shanghai) according to the manufacturer’s instructions. Each of the exons from hMSH2 and hMLH1 genes was amplified by polymerase chain reaction (PCR). Next, the samples were heat-treated at 95 °C for 5 minutes to inactivate the enzyme, and used as the template DNA. All DNA amplification was performed in a 50 µl volume containing 100 ng template DNA, 10^{-3} M Tris-HCl (pH 8.9), 50^{-3} M KCl, 2.5 mmol MgCl2, 0.2^{-3} M of each dNTP, 10 pmol each primer, and 1U Taq polymerase was subjected to 35 PCR cycles (5 mins at 94 °C, 40 s at 94 °C, 60 s at 55 °C, and 40 s at 72 °C). Oligonucleotide sequences were designed from the sequences published in Genebank.

PCR-SSCP analysis and direct sequencing
Single-strand conformation polymorphism (SSCP) The technique of single-strand conformational polymorphism (SSCP) was used to identify mutations in the mismatch repair genes. Each exon of hMSH2 and hMLH1 was amplified specifically using PCR (details of oligonucleotide sequences and conditions are available from the authors). PCR products were electrophoresed on 10% non-denaturing polyacrylamide gels with an acrylamide: bisacrylamide ratio of 30:0.8 at 70 volt for 12 h at room temperature. DNA was detected by silver staining according to the methods described by others. Those single stranded DNAs that took up an altered conformation appeared as aberrantly migrating bands on the electrophoresis gel.

Direct sequencing The nucleotide sequence of PCR products showing an abnormal mobility on SSCP was determined by direct sequencing. The PCR products were purified with 1.5% low melt point agarose, and then performed using automated DNA sequencer. Sequence alterations with an allele frequency of at least 5% were considered as normal variants (polymorphisms) and not reported.

Statistical analysis
The genetic differences of the typical HNPCC groups and the suspected HNPCC groups were analyzed for statistical significance using the chi square test. P<0.05 was considered statistically significant.

RESULTS
Results of genetic testing
Characterization of the variants of PCR-SSCP and DNA sequencing analysis found in the 12 families/individuals in the study is presented in Table 1. A total of seven abnormal motilities were identified in PCR-SSCP including five in typical group and two in atypical group (part of PCR-SSCP analysis is shown in Figure 1). DNA sequencing found 6/7 (85.7%) abnormal motilities of PCR-SSCP, which were proven to be pathogenic germline mutations of hMSH2 and hMLH1. The other abnormal mobility, an “A” insertion in hMLH1 intron 10 occurred in the C10-1 patient, was proven to be polymorphism.

Table 1 Characterization of variants in PCR-SSCP and sequence detection

Family	Abnormal mobility	DNA change	Mutation	Group
C4-1	hMLH1 exon18	T insert in 2 081	Frameshift	Typical HNPCC
	hMSH2 exon15	C insert in 2 469	Frameshift	Typical HNPCC
		G insert in 2 471	Frameshift	Typical HNPCC
C13-1	hMSH2 exon11	T insert in 1 760	Frameshift	Typical HNPCC
		A→C missense in 1 688	Tyr563Ser	Typical HNPCC
C11-1	hMSH2 exon13	T to A missense in 2 091	Cys697	Typical HNPCC
C1-1	hMLH1 exon11	A insert in 934	Frameshift	Atypical HNPCC
C8-2	hMLH1 exon12	C to G missense in 1 198	Leu400Val	Atypical HNPCC
		C to G missense in 1 261	Val421Leu	Atypical HNPCC
		C insert in 1 364 and 1 372	Frameshift	Atypical HNPCC
C10-1	hMLH1 intron10	—	Polymorphism	Atypical HNPCC

Figure 1 Results of PCR-SSCP in C13 family (hMSH2-exon11). Arrow shows the abnormal mobility.

Figure 2 Results of direct sequencing of exon 11 of hMSH2 in C13 family (A to C substitution in 1 688 and T insertion in 1 706).
patients with HNPCC and 2/6 (33%) patients with suspected HNPCC were found to harbor mutations. However, we found the mutations were complicated as the total number of mutations was more than five and all the mutations we found were novel and of unknown pathogenicity (part of sequence analysis is shown in Figure 2).

In typical HNPCC, the germline mutation of hMLH1 and hMSH2 was detected in 3 of 6 HNPCC families. Seven novel mutations were found in 3 exons of hMSH2 and 1 exon of hMLH1, two mutations were detected at 11 exons of hMSH2 in C13 family, one was the frame shift mutation resulted from an insertion of “T” at 1 760 so that a terminate cordon appeared ahead, the other was “A to C” missense mutation at 1 688 leading to Tyr-Ser substitution. A “T to A” substitution at 2 091 of exon 13 of hMSH2 in C11 family resulted in a terminate cordon at 697. The mutations in C4 family were worthy of specific comment, as the mutation occurred in hMLH1 as well as hMSH2, there was a frame shift mutation resulted from an insertion of T at 2 081 of exon 18 of hMLH1, there were “C, G” inserts at 2 469, 2 471 respectively. However, all families without germline hMSH2 and hMLH1 mutations were combined with extracolon tumors.

In atypical HNPCC, only the germline mutation of hMLH1 was detected in 2 of 6 HNPCC families, one was the frame shift mutation in exon 11 resulted from an insertion of “A” at 934 in C13 family. In C8 family, the mutation occurred at four locations, one was “C to G” missense mutation at 1 198 leading to Leu400Val substitution, one was “C to G” missense mutation at 1 261 leading to Val421Leu substitution and the other two shift mutations occurred at 1 364 and 1 372 resulted from the A insertion at the two locations respectively. The detailed results of sequencing are shown in Table 2.

Table 2 Comparison of two kinds of HNPCC with PCR-SSCP and sequencing
Typical HNPCC (n=6)

PCR-SSCP
Sequencing

DISCUSSION

To date, HNPCC is defined either by the so-called Amsterdam I+II criteria or by detection of a mutation in one of the mismatch repair genes. Once the positive mutation is identified, predictive testing of family members at risk is available. Screening recommendations for clinically identified families, mutation carriers, and their unaffected relatives at risk must be defined for clinical management[40].

Recently, Watson et al[31] published their results about that carrier risk status changes resulted from mutation testing in hereditary non-polyposis colorectal cancer and hereditary breast-ovarian cancer. They concluded that mutation testing could raise the accuracy of carrier risk assessments, and lower the number of persons at high carrier risk. The most common risk assessment change resulted from DNA testing was a change from those at risk to non-carriers. To the extent that these persons were aware of their carrier risk and were obtaining heightened cancer surveillance test, this could be expected to lead to a reduced emotional toll and a reduced pressure on limited medical resources.

A better understanding of the molecular basis of hereditary colorectal cancer syndromes such as hereditary nonpolyposis colorectal cancer syndrome (HNPCC) and familial adenomatous polyposis (FAP) would have profound consequences for both the diagnosis and (prophylactic) treatment of (pre)malignant neoplastic lesions[32]. Clinically, when we see a patient with colorectal cancer with a family history of suspected HNPCC, we need to work out our surgical strategies for this patient, the same as we do for the patients with HNPCC, in whom colonoscopy surveillance or prophylaxis surgeries such as total collective are needed. One of the evidences of special surgical treatment has been found to be genetic detection[33,34]. Since HNPCC is resulted from the dysfunction of mismatch repair genes and some reports indicated that mutation of hMSH2 and hMLH1 accounted for 40%-70% HNPCC[35-39], we decided to detect the germline mutation of hMSH2 and hMLH1 in this study. In PCR-SSCP analysis of genomic DNA of 12 probands, we identified seven abnormal mobilities, five in typical HNPCC and two in suspected HNPCC and six of them were testified to be mutations by DNA sequencing. When we compared the genetic investigation of two groups we studied, we also concluded that there were no statistical differences in the results of both PCR-SSCP and direct sequence.

We also found that the mutations occurred both in typical HNPCC group and in atypical HNPCC group. Beck et al found germline HNPCC mutations in six families in which none fulfilled the Amsterdam criteria. They highlighted that if germline mutations of the mismatch repair genes were common in families with features of HNPCC, but not fulfilling the Amsterdam criteria, then it was very important that all such families were also referred to cancer clinics for assessment and possible genetic testing[40]. It was suggested that many suspected HNPCC patients might not be recognized and might be excluded from genetic counseling[41,42].

Upon reviewing the literature and checking the variants registred in the ICG-HNPCC mutation database (http://www.nfdht.nl), we found that all the mutations were novel. It is rarely reported that there exist multiple mutations in the same exons. However, it seemed to be common in our analysis, two mutations were found at 11 exons of hMSH2 in C13 family and C8 family. The mutation occurred at four locations, one was “C to G” missense mutation at 1 198 leading to Leu400Val substitution, one was “C to G” missense mutation at 1 261 leading to Val421Leu substitution and the other two shift mutations occurred at 1 364 and 1 372 resulted from the A insertion at the two locations respectively. The detailed results of sequencing are shown in Table 2.

Several techniques for genetic detection of HNPCC have been developed including MSI, immunohistochemistry, SSCP, denaturing gradient gel electrophoresis (DGGE) and sequencing. SSCP was considered inefficient in detecting mutations[43,44] and was expected to miss approximately 20% of point and frameshift mutations. Furthermore, it was unable to detect the whole exon deletions, which occurred in some HNPCC families[45]. We chose SSCP first because it was relatively simple, quick and cheap, and did not require special reagents and data analysis time and not 100% efficient. It is much more acceptable clinically to take the screening techniques, such as SSCP, first and use sequencing to analyze the details of the mutation. Recently, some studies demonstrated that large genomic rearrangements accounted for 10%-20% of all hMSH2 mutations, and a lower proportion of all hMLH1 mutations. Nakagawa[46] used the multiplex ligation-dependent probe amplification (MLPA) method to screen hMSH2 and hMLH1 deletions in 70 patients whose colorectal or endometrial tumors were MSI positive, yet no mutation was found by genomic exon-by-exon sequencing of hMSH2, hMLH1 and hMSH6. They
identified five candidates with four different hMSH2 deletions and one candidate with an hMLH1 deletion.

In summary, our study demonstrates that the Amsterdam criteria are important but inappropriate for the establishment of diagnosis, some atypical families not fulfilling all the Amsterdam criteria probably possess the similar genetic alterations. We conclude that the mutation detection of patients is of benefit to the analysis of HNPC. and, PCR-SSCP is as effective as direct DNA sequence in detecting the mutations of HNPC. Furthermore, it seems that there exist more complicated genetic alterations in Chinese HNPC patients than in Western countries.

However, there are also some cases without any mutation, further investigations should be carried out such as detection of other mismatch repair genes as well as detection of gene methylation of hMLH1.

REFERENCES

1. Lynch HT, Lynch JF. Hereditary nonpolyposis colorectal cancer. Smin Surg Oncol 2000; 18: 305-313

2. Vasan HF, Watson P, Mecklin JP, Jass JR, Green JS, Nomizu T, Mullor H, Lynch HT. The epidemiology of endometrial cancer in hereditary nonpolyposis colorectal cancer. Anticancer Res 1994; 14(4B): 1675-1678

3. Jass JR. Pathology of hereditary nonpolyposis colorectal cancer. Ann N Y Acad Sci 2000; 910: 62-73; 73-74

4. Vasan HF, Sanders EA, Taal BG, Nagengast FM, Griffioen G, Menko FH, Kleibeuker JH, Hovius-Duistemajt J, Meera Khan P. The risk of brain tumours in hereditary nonpolyposis colorectal cancer. Int J Cancer 1996; 65: 422-425

5. Song YM, Zheng S. Analysis of phenotype of HNPC in China. World J Gastroenterol 2002; 8: 837-940

6. Dunlop MG, Farrington SM, Carothers AD, Wylle AH, Sharp L, Burn J, Liu B, Kinzler KW, Vogelstein B. Cancer risk associated with germline DNA mismatch repair gene mutations. Hum Mol Genet 1997; 6: 105-110

7. Vasan HF, Mecklin JP, Khan PM, Lynch HT. The International Collaborative Group on HNPC. Anticancer Res 1994; 14(4B): 1061-1064

8. Vasan HF, Watson P, Mecklin JP, Lynch HT. New clinical criteria for hereditary nonpolyposis colorectal cancer (HNPCC, Lynch syndrome) proposed by the International Collaborative group on HNPC. Gastroenterology 1999; 116: 1453-1456

9. Fujita S, Moriya Y, Sugihara K, Akasu T, Ushio K. Prognosis of hereditary nonpolyposis colorectal cancer (HNPCC) and the role of Japanese Criteria for HNPC. Jpn J Oncol 1996; 26: 351-355

10. Lynch HT, Lynch JF. The Lynch Syndrome: Melding natural history and molecular genetics to genetic counseling and cancer control. Cancer Control 1996; 3: 13-19

11. Peltomaki P, Aaltonen L, Sistonen P, Pylkkainen L, Mecklin J-P, Jarvinen H, Green JS, Jass JR, Weber J, Leach FS, Petersen GM, Hamilton SR, de la Chapelle A, Vogelstein B. Genetic mapping of a locus predisposing to human colorectal cancer. Science 1993; 260: 810-812

12. Leach FS, Nicolaides NC, Papadopoulos N, Liu B, Jen J, Parsons R, Petelton P, Sistonen P, Aaltonen LA, Nyström-Lahti M, Guan XY, Zhang J, Mezler FS, Yu JW, Kao FT, Chen DJ, Ceresaletti KM, Fournier REX, Todd S, Lewis T, Leach RJ, Naylor SL, Weissenbach J, Mecklin JP, Jarvinen H, Petersen GM, Hamilton SR, Green J, Jass J, Watson P, Lynch HT, Trent JM, de la Chapelle A, Kinzler KW, Vogelstein B. Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer. Cell 1993; 75: 1215-1225

13. Fishel R, Leeser MK, Rao MR, Copeland NG, Jenkins NA, Garber J, Kane M, Kolodner R. The human mutant gene homolog MSH2 and its association with hereditary nonpolyposis colorectal cancer. Cell 1993; 75: 1027-1038

14. Nicolaides NC, Papadopoulos N, Liu B, Wei YF, Carter KC, Ruben SM, Rosen CA, Haseltine WA, Fleischmann RD, Fraser CM, Adams MD, Venter JC, Dunlop MG, Hamilton SR, Petersen GM, de la Chapelle A, Vogelstein B, Kinzler KW. Mutations of two PMS homologs in hereditary nonpolyposis colorectal cancer. Nature 1994; 371: 75-80

15. Nyström-Lahti M, Parsons R, Sistonen P, Pylkkänen L, Aaltonen LA, Leach FS, Hamilton SR, Watson P, Bronson E, Fursaro R. Mismatch repair genes on chromosomes 2p and 3p account for a major share of hereditary nonpolyposis colorectal cancer families evaluable by linkage. Am J Hum Genet 1994; 55: 659-665

16. Papadopoulos N, Nicolaides NC, Wei YF, Ruben SM, Carter KC, Rosen CA, Haseltine WA, Fleischmann RD, Fraser CM, Adams MD. Mutation of a mutL homolog in hereditary colon cancer. Science 1994; 263: 1625-1629

17. Bronner CE, Baker SM, Morrisan PT, Warren G, Smith LG, Lescoe MK, Kane M, Earabino C, Lipford J, Lindblom A. Mutation in the DNA mismatch repair gene homologue hMLH1 is associated with hereditary non-polyposis colon cancer. Nature 1994; 368: 258-261

18. Peltomaki P, de la Chapelle A. Mutations predisposing to hereditary nonpolyposis colorectal cancer. Adv Cancer Res 1997; 71: 93-119

19. Wijnen J, Vasan H, Khan PM, Menko FH, van der Klift H, van Leeuwen C, van den Broek M, van Leeuwen-Cornelisse I, Nagengast F, Meijers-Heijboer A. Seven new mutations in hMSH2, an HNPC gene, identified by denaturing gradient-gel electrophoresis. Am J Hum Genet 1995; 56: 1060-1066

20. Ikenaga M, Tomita N, Sekimoto M, Ohue M, Yamamoto H, Miyake Y, Mishima H, Nishio K, Kikkawa N, Monden M. Use of microsatellite analysis in young patients with colorectal cancer to identify those with hereditary nonpolyposis colorectal cancer. J Surg Oncol 2002; 79: 157-165

21. Merkelbach-Bruse S, Kose S, Losen I, Bosscher AK, Budtrtter R. High throughput genetic screening for the detection of hereditary non-polyposis colon cancer (HNPCC) using capillary electrophoresis. Comb Chem High Throughput Screen 2000; 3: 519-524

22. Holinski-Feder E, Muller-Koch Y, Friedl W, Moeslein G, Kellel G, Pleischke J, Ballhausen W, Gross M, Baldwin-Jedele K, Jungk MD, Mangold E, Vogelsang H, Schackert HK, Loehsa P, Murken J, Meitinger T. DHPLC mutation analysis of the hereditary nonpolyposis colon cancer (HNPCC) genes hMLH1 and hMSH2. J Biolumin Phosphor M 2002; 47: 21-32

23. Kurzawski G, Safranow K, Suchy J, Chudek D, Scott RJ, Lubinski J. Mutation analysis of MLH1 and MSH2 genes performed by denaturing high-performance liquid chromatography. J Biolumin Phosphor M 2002; 51: 89-100

24. Wahlberg SS, Schmitals, Thomas G, Loda M, Garber J, Syngal S, Kolodner RD, Fox E. Evaluation of microsatellite instability and immunohistochemistry for the prediction of germlineMSH2 and MLH1 mutations in hereditary nonpolyposis colon cancer families. Cancer Res 2002; 62: 3485-3492

25. Cai SJ, Xu Y, Cai GX, Lian P, Guan QZ, Mo SJ, Sun MH, Cai Q, Shi DR. Clinical characteristics and diagnosis of patients with hereditary nonpolyposis colorectal cancer. World J Gastroenterol 2003; 9: 284-287

26. Cai Q, Sun MH, Lu HF, Zhang TM, Mo SJ, Xu Y, Cai SJ, Zhu XZ, Shi DR. Clinicopathological and molecular genetic analysis of 4 typical Chinese HNPC families. World J Gastroenterol 2001; 7: 805-810

27. Beck NE, Tomlinson IP, Homfray T, Frayling I, Hodgson SV, Harcopos C, Bodmer WF. Use of SSCP analysis to identify germline mutations in HNPC families fulfilling the Amsterdam criteria. Hum Genet 1997; 99: 219-224

28. Viel A, Genuardi M, Capozzi E, Leonardo F, Bellacosa A, Paravatou-Petsotas M, Pomponi MG, Fornasari M, Percesepe A, Ronucci L, Tamassia MG, Benatti P, Ponz de Leon M, Valenti V, Paravatou-Petsotas M, Pomponi MG, Fornasarig M, Percesepe M, Germano A, Covino M, Anti M, Foleto M, Boiocchi M, Neri G. Characterization of MSH2 and MLH1 mutations in Italian families with hereditary nonpolyposis colorectal cancer. Genes Chromosom Cancer 1997; 18: 8-18

29. Moslein G. Clinical implications of molecular diagnosis in hereditary nonpolyposis colorectal cancer. Reant Cancer Res 2003; 162: 73-78

30. Watson P, Narod SA, Fodde R, Wagner A, Lynch JF, Tinley ST, Snyder CL, Coronel SA, Riley B, Kinarisky Y, Lynch HT. Carrier risk status changes resulting from mutation testing in hereditary non-polyposis colorectal cancer and hereditary breast-ovarian cancer. J Med Genet 2003; 40: 591-596
31 Church JM. Prophylactic colectomy in patients with hereditary nonpolyposis colorectal cancer. Ann Med 1996; 28: 479-482
32 Hanna NN, Mentrez RM Jr. Molecular genetics and management strategies in hereditary cancer syndromes. J Ky Med Assoc 2003; 101: 100-107
33 Lynch HT, Watson P, Shaw TG, Lynch JF, Harty AE, Franklin BA, Kapler CR, Tinley ST, Liu B, Lereman C. Clinical impact of molecular genetic diagnosis, genetic counseling, and management of hereditary cancer. Part II: Hereditary nonpolyposis colorectal carcinoma as a model. Cancer 1999; 86(11 Suppl): 2457-2463
34 Boland CR. Molecular genetics of hereditary nonpolyposis colorectal cancer. Ann N Y Acad Sci 2000; 910: 50-61
35 Jacob S, Praz F. DNA mismatch repair defects: role in colorectal carcinogenesis. Biochimie 2002; 84: 27-47
36 Bocker T, Ruschoff J, Fishel R. Molecular diagnostics of cancer predisposition: hereditary non-polyposis colorectal carcinoma and mismatch repair defects. Biochim Biophys Acta 1999; 1423: 1-10
37 Planck M, Koul A, Fernebro E, Borg A, Kristoffersson U, Olsson H, Wenngren E, Mangel P, Nilbert M. hMLH1, hMSH2 and hMSH6 mutations in hereditary non-polyposis colorectal cancer families from southern Sweden. Int J Cancer 1999; 83: 197-202
38 Kruger S, Plaschke J, Jeske B, Gorgens H, Pistorius SR, Bier A, Kreuz FR, Theissig F, Aust DE, Saeger HD, Schackert HK. Identification of six novel MSH2 and MLH1 germline mutations in HNPCC. Hum Mutat 2003; 21: 445-446
39 Beck NE, Tomlinson IP, Homfray T, Hodgson SV, Harocopos CJ, Bodmer WF. Genetic testing is important in families with a history suggestive of hereditary non-polyposis colorectal cancer even if the Amsterdam criteria are not fulfilled. Br J Surg 1997; 84: 233-237
40 Wang Q, Desseigne F, Lasset C, Saurin JC, Navarro C, Yagci T, Keser I, Bagci H, Luleci G, Gelen T, Chaylvie JA, Puisieux A, Oztkr M. Prevalence of germline mutations of hMLH1, hMSH2, hPM1, hPM2, and hM6 genes in 75 French kindreds with nonpolyposis colorectal cancer. Hum Genet 1999; 105: 79-85
41 Wagner A, Hendriks Y, Meijers-Heijboer E, de Leeuw WJ, Morreau H, Hofstra R, Tops C, Bik E, Brocker-Vriends AH, van der Meer C, Lindhout D, Vlas HF, Breuning MH, Cornelisse CJ, van Krimpen C, Niermeijer MF, Zwijnderman AH, Wijnen J, Fodde R. Atypical HNPCC owing to MSH6 germline mutations: analysis of a large Dutch pedigree. J Med Genet 2001; 38: 318-322
42 Moslein G, Pistorius S, Saeger HD, Schackert HK. Preventive surgery for colon cancer in familial adenomatous polyposis and hereditary nonpolyposis colorectal cancer syndrome. Langenbecks Arch Surg 2003; 388: 9-16
43 Syngal S, Fox EA, Eng C, Kolodner RD, Garber JE. Sensitivity and specificity of clinical criteria for hereditary non-polyposis colorectal cancer associated mutations in MSH2 and MLH1. J Med Genet 2000; 37: 641-645
44 Liu B, Parsons R, Papadopoulos N, Nicolaides NC, Lynch HT, Watson P, Jass JR, Dunlop M, Wylie A, Peltomaki P, de la Chapelle A, Hamilton SR, Vogelstein B, Kintzer CW. Analysis of mismatch repair genes in hereditary non-polyposis colorectal cancer patients. N At M ed 1996; 2: 169-174
45 Nakagawa H, Hampil H, Chapelle Ad Ade L. Identification and characterization of genomic rearrangements of MSH2 and MLH1 in Lynch syndrome (HNPCC) by novel techniques. Hum Mutat 2003; 22: 258

Edited by Ma JY and Wang XL