Phase Structure of Thermal QCD/QED

— A Gauge Invariant Solution of the HTL Resummed Improved Ladder Dyson-Schwinger Equation —

奈良大学
中川 寿夫, 横田 浩, 吉田 光次
2007.9.5〜9.7 熱場の量子論とその応用
有限温度（および有限密度）における相構造を硬熱ループ（HTL）近似Dyson-Schwinger方程式に基づく解析をしてきた

PTP 107 (2002) 759 & 110 (2003) 777

•場の理論に範囲で厳密に導出される非摂動論的な結論を得るための基礎方程式である
•その積分核に対する近似が解析的処方に基づいて逐次的に改善可能である
解を求めるのは大変なので、近似を行う

1. HTL resummed gauge boson propagator

2. Ladder approximation \((Z_1 = 1)\)
\[\delta \Gamma_{\alpha\beta\gamma} = 0 \]

3. Modified IE (MIE) approximation
* transverse modeはIE近似をとらない
\[G^{\mu\nu}(K) \text{ で } k_0 = 0 \]

これらの近似のもとで、解析を行う

A, B, Cの6元連立方程式の解を求める
Hard-Thermal-Loop Resummed Dyson-Schwinger Equations

PTP 107 (2002) 759

\[-i \Sigma_R(P) = -\frac{e^2}{2} \int \frac{d^4 K}{(2\pi)^4} \times \left[*\Gamma_{RAA}^\mu(-P, K, P - K) S_{RA}(-K, K) *\Gamma_{RAA}^\nu(-K, P, K - P) *G_{RR, \mu\nu}(K - P, P - K) \right. \\
+ *\Gamma_{RAA}^\mu(-P, K, P - K) S_{RR}(-K, K) *\Gamma_{AAR}^\nu(-K, P, K - P) *G_{RA, \mu\nu}(K - P, P - K) \left. \right] \]

*G_{R}^{\mu\nu}(K) \equiv *G_{RA}^{\mu\nu}(-K, K) \\
= \frac{1}{*\Pi_{T}^{R}(K) - K^2 - i\epsilon k_0} A^{\mu\nu} + \frac{1}{*\Pi_{L}^{R}(K) - K^2 - i\epsilon k_0} B^{\mu\nu} - \frac{\xi}{K^2 + i\epsilon k_0} D^{\mu\nu}

*G_{C}^{\mu\nu}(K) \equiv *G_{RR}^{\mu\nu}(-K, K) \\
= (1 + 2n_B(k_0)) [*G_{R}^{\mu\nu}(K) - *G_{A}^{\mu\nu}(K)]

n_B(k_0) = \frac{1}{\exp(k_0/T) - 1}
\[A_{\mu \nu} = g^{\mu \nu} - B_{\mu \nu} - D^{\mu \nu}, \quad B_{\mu \nu} = -\frac{\tilde{K}^{\mu} \tilde{K}^{\nu}}{K^2}, \quad D_{\mu \nu} = \frac{K^{\mu} K^{\nu}}{K^2} \]
\[\tilde{K} = (k, k_0 \frac{\vec{k}}{k}) \]

\[S_R(P) \equiv S_{RA}(-P, P) = \frac{1}{\not{p} + i\epsilon \gamma_0 - \Sigma_R} \]
\[S_O(P) \equiv S_{RR}(-P, P) = (1 - 2n_F(p_0)) [S_R(P) - S_A(P)] \]
\[n_F(p_0) = \frac{1}{\exp(p_0/T) + 1} \]
\[\Sigma_R(P) = (1 - A(P)) p_i \gamma^i - B(P) \gamma^0 + C(P) \]

\[^* \Gamma^\mu_{\alpha \beta \gamma} = \gamma^\mu_{\alpha \beta \gamma} + \delta \Gamma^\mu_{\alpha \beta \gamma} \]
\[\gamma^\mu_{RAA} = \gamma^\mu_{AAR} = \gamma^\mu, \quad \text{その他はすべて 0} \]
Ladder approximation

\[p^2 [1 - A(P)] \]

\[= e^2 \int \frac{d^4 K}{(2\pi)^4} \left[\left\{ 1 + 2n_B(p_0 - k_0) \right\} \text{Im} \left[*G^\rho_\sigma_R (P - K) \right] \times \right. \]

\[\left\{ K_\sigma P_\rho + K_\rho P_\sigma - p_0 (K_\sigma g_{\rho 0} + K_\rho g_{\sigma 0}) - k_0 (P_\sigma g_{\rho 0} + P_\rho g_{\sigma 0}) + pk z g_{\sigma \rho} \right. \]

\[+ 2p_0 k_0 g_{\sigma 0} g_{\rho 0} \right\} \frac{A(K)}{[k_0 + B(K) + i\epsilon]^2 - A(K)^2 k^2 - C(K)^2} \]

\[+ \left\{ P_\sigma g_{\rho 0} + P_\rho g_{\sigma 0} - 2p_0 g_{\sigma 0} g_{\rho 0} \right\} \frac{k_0 + B(K)}{[k_0 + B(K) + i\epsilon]^2 - A(K)^2 k^2 - C(K)^2} \]

\[+ \left\{ 1 - 2n_F(k_0) \right\} *G^\rho_\sigma_R (P - K) \times \]

\[\text{Im} \left[\left\{ K_\sigma P_\rho + K_\rho P_\sigma - p_0 (K_\sigma g_{\rho 0} + K_\rho g_{\sigma 0}) - k_0 (P_\sigma g_{\rho 0} + P_\rho g_{\sigma 0}) + pk z g_{\sigma \rho} \right. \right. \]

\[+ 2p_0 k_0 g_{\sigma 0} g_{\rho 0} \right\} \frac{A(K)}{[k_0 + B(K) + i\epsilon]^2 - A(K)^2 k^2 - C(K)^2} \]

\[+ \left\{ P_\sigma g_{\rho 0} + P_\rho g_{\sigma 0} - 2p_0 g_{\sigma 0} g_{\rho 0} \right\} \frac{k_0 + B(K)}{[k_0 + B(K) + i\epsilon]^2 - A(K)^2 k^2 - C(K)^2} \right] \]
\begin{align*}
B(P) &= e^2 \int \frac{d^4 K}{(2\pi)^4} \left[\{1 + 2n_B(p_0 - k_0)\} \text{Im} \left[*G_{\rho}^{\rho} (P - K) \right] \times \\
&\quad \left\{ K_\sigma g_{\rho 0} + K_\rho g_{\sigma 0} - 2k_0g_{\sigma 0}g_{\rho 0} \right\} \frac{A(K)}{[k_0 + B(K) + i\epsilon]^2 - A(K)^2k^2 - C(K)^2} \\
&\quad + \left\{ 2g_{\rho 0}2g_{\sigma 0} - g_{\sigma \rho} \right\} \frac{k_0 + B(K)}{[k_0 + B(K) + i\epsilon]^2 - A(K)^2k^2 - C(K)^2} \right] \\
&\quad + \{1 - 2n_F(k_0)\} *G_{\rho}^{\rho} (P - K) \times \\
&\quad \text{Im} \left[\frac{A(K)}{[k_0 + B(K) + i\epsilon]^2 - A(K)^2k^2 - C(K)^2} \left\{ K_\sigma g_{\rho 0} + K_\rho g_{\sigma 0} - 2k_0g_{\sigma 0}g_{\rho 0} \right\} \\
&\quad + \frac{k_0 + B(K)}{[k_0 + B(K) + i\epsilon]^2 - A(K)^2k^2 - C(K)^2} \left\{ 2g_{\rho 0}2g_{\sigma 0} - g_{\sigma \rho} \right\} \right] \\
C(P) &= -e^2 \int \frac{d^4 K}{(2\pi)^4} g_{\rho \sigma} \left[\{1 + 2n_B(p_0 - k_0)\} \text{Im} \left[*G_{\rho}^{\rho\sigma} (P - K) \right] \times \\
&\quad \frac{C(K)}{[k_0 + B(K) + i\epsilon]^2 - A(K)^2k^2 - C(K)^2} + \{1 - 2n_F(k_0)\} \times \\
&\quad *G_{\rho}^{\rho\sigma} (P - K) \text{Im} \left[\frac{C(K)}{[k_0 + B(K) + i\epsilon]^2 - A(K)^2k^2 - C(K)^2} \right] \right]
\end{align*}
cutoff を導入する

$$\int_0^L dk \int_{-k}^k dk_0 \Rightarrow \int_0^1 dk \int_{-1}^1 dk_0$$

massの次元を持つ量 は を単位で

初期値等により複数の値が得られることがあるため、

S_R に対する有効ポテンシャル $V[S_R]$ を用いて解を求める

$$V[S_R] = i \text{Tr} [\mathcal{P} S_R] + i \text{Tr} \ln [i S_R^{-1}]$$
$$\quad - \frac{e^2}{2} \int \frac{d^4K}{(2\pi)^4} \int \frac{d^4P}{(2\pi)^4} \frac{1}{2} \text{tr} [\gamma_\mu S_R(K) \gamma_\nu S_R(P) D^{\mu\nu}_C (P - K)]$$
$$\quad + \gamma_\mu S_C(K) \gamma_\nu S_R(P) D^{\mu\nu}_R (P - K) + \gamma_\mu S_R(K) \gamma_\nu S_C(P) D^{\mu\nu}_A (P - K)$$

以下では $p_0 = 0$, $p = 0.1$ でのデータを図示する
Ladder近似の場合、結果のゲージ不変性が失われる

Ladder近似では、$Z_1 = 1$であるが、Ward恒等式 $Z_2 = Z_1$を満たすためには、$Z_2 = 1/ \Lambda(P)$であるから、mass $(\Pi_A \Lambda)$を定義するmomentum Pで

$$A(P) = 1$$

でなければならない

以下で見るように、Landau gaugeでは $\Lambda(P) = 1$にはならない

PTP 110 (2003) 777 & arXiv:0709.0323

さらに、covariant Λ gaugeでも状況は同じ
arXiv:0709.0323

・ Ward恒等式を満足する解を求める

nonlinear gauge $\Lambda(q0,q)$
covarinat gauge の結果

\[\square = 4.0 \]
□をq_0, qに依存させる

$(q_0, q$はゲージ粒子のエネルギー・運動量)

$$\xi(q_0, q) = \sum_{mn} C_{mn} F_m(q_0) G_n(q)$$

$F_m(q_0), G_n(q)$は完全系をはる既知関数

$$\delta A = \int d^4P |A - 1|^2 \Rightarrow \frac{\partial \delta A}{\partial C_{mn}} = 0$$

C_{mn}としてcomplex (hep-ph/0703134 & arXiv:0707.0929)

およびrealの両方を考える
=4.0
fixed の結果 (Best fit) \[\text{Re}[C] \propto (T_c - T)^\nu \]
fixed 項の結果（average 項による fit）
固定温度の結果 (average によ る fit)
$\alpha=4.0$, $T=0.127$, $q=0.1$
□ のq-依存性

\[\alpha = 4.0, \ T = 0.127, \ q_0 = 0.0 \]
Phase Diagram in $(T, 1/\xi)$-plane

\[\xi(q_0, q) \]

Symmetric Phase

Broken Phase

\[\xi = 0 \]
Phase Diagram in (T, 1/ξ)-plane

Symmetric Phase

\(\xi(q_0, q) \)

\(\xi = 0 \)

Broken Phase
Phase Diagram in \((T, 1/\alpha)\)-plane

(Landau gauge : PTP 110 (2003) 777)
まとめ

\(\xi(q_0, q) \) を用いて解析すると

1. \(A(P) \sim 1 \) の解が得られる
2. Complex と Real で、よく一致している
 □ ベージ「不変」な解！

3. 臨界指数
 □ ～0.395 : coupling に依存する？
 □ ～0.522 : 温度にほとんど依存しない

4. 複雑な相構造がある？ (Landau ベージでも)
 □ 本当に複雑な構造があるのか？
 数値計算上の問題か？
 現在、検討中
今後の課題

・相構造の解析
 （複数のラインの分析も必要）

・QCD (running coupling □) での解析

・有限密度 (化学ポテンシャル □ □ 0) での解析
covarinat ∆ gaugeの結果 arXiv:0709.0323

∆ = 4.0
fixed Tの結果 (Best fit)