Enumeration for the total number of all spanning forests of complete tripartite graph based on the combinatorial decomposition

Sung Sik U

Faculty of Mathematics, Kim Il Sung University, D.P.R Korea
e-mail address : usungsik@yahoo.com

Abstract

This paper discusses the enumeration for the total number of all rooted spanning forests of the labeled complete tripartite graph. We enumerate the total number by a combinatorial decomposition.

Keywords: Tree, Forest, Join graph
MSC(2010): 05C05; 05C17; 05C30

1 Introduction

Y. Jin and C. Liu have enumerated the number of spanning forests of the labeled complete bipartite graph $K_{m,n}$ on m and n vertices by combinatorial method and by using the exponential generating function respectively ([2],[3]). And D. Stark [5] has found the asymptotic number of labeled spanning forests of the complete bipartite graph $K_{m,n}$ as $m \to \infty$ when $m \leq n$ and $n = o(m^{6/5})$. L. A. Szekely [6] gave a simple proof to the formula in [2] and a generalization for complete multipartite graphs. In [1], [4] a bijective proof of the enumeration of spanning trees of the complete tripartite graphs and the complete multipartite graphs has been given respectively.

Let H_m, H_n, H_p denote the three disjoined vertex sets of the complete tripartite graph $K_{m,n,p}$, that is, $K_{m,n,p} = (H_m, H_n, H_p)$. Let $V(K_{m,n,p}) = H_m \cup H_n \cup H_p$ denote the vertex set of $K_{m,n,p}$. The out-degree of a vertex z will be denoted by $d^+(z)$, while the in-degree of z will be denoted by $d^-(z)$. Let $V(G)$ denote the vertex set of graph G. The goal of this paper is to give a closed formula of the enumeration for the total number of all spanning trees, forests of the labeled complete tripartite graph $K_{m,n,p}$ by the combinatorial method. Throughout this paper, we will consider only the labeled graphs.
2 Counting the number of spanning trees and forests of a labeled complete tripartite graph $K_{m,n,p}$

Let $T(m, n, p)$ denote the set of all labeled spanning trees of the complete tripartite graph $K_{m,n,p}$. Each tree T in $K_{m,n,p}$ gives rise to labeled directed spanning tree T' with z as a root, and all edges are directed to towards z. Let $D(m, 0; n, 0; p, \{|z_1\}|)$ denote the set of all such directed trees with $z_1 \subset H_p$ as a root. Clearly, $|T_{m,n,p}| = |D(m, 0; n, 0; p, \{|z_1\}|)|.

For any $T \in D(m, 0; n, 0; p, \{|z_1\}|)$, $d^+(z_1) = 0, d^+(z) = 1, z \in V(K_{m,n,p})\{z_1\}$.

It is well known [1] that the number $f(m, l; n, k)$ of labeled spanning forests of $K_{m,n} = (H_m, H_n)$, where in the forest every tree is rooted, there are l roots in H_m, k roots in H_n, and the tree in the forest are not ordered, is equal to

$$f(m, l; n, k) = \frac{m^l}{l!} \frac{n^k}{k!} (m+n-l-k)^{m+n-l-k-1}.$$

Our proof is based on the following combinatorial decomposition. Given a rooted spanning tree of the complete tripartite graph $K_{m,n,p}$ where the root is in H_p, we remove the root vertex from the tree to obtain a spanning forest of the another tripartite graph. The roots of trees in this forest are in H_m or H_n.

Theorem 2.1. The number $|T_{m,n,p}|$ of labeled spanning trees of the complete tripartite graph $K_{m,n,p}$ is as follows:

$$|T_{m,n,p}| = (m+n)^{p-1}(m+p)^{n-1}(n+p)^{m-1}(m+n+p).$$

Proof. We observe that a directed subgraph of $K_{m,n,p}$ belongs to $D(m, 0; n, 0; p, \{|z_1\}|)$ if and only if, in the subgraph,

$$d^+(z_1) = 0, d^+(z) = 1, z \in V(K_{m,n,p})\{z_1\}$$

and the subgraph is (weakly)connected. Let $D(m, l; n, k)$ denote the set of all spanning forests of complete bipartite graph $K_{m,n}$, with l roots in H_m and k roots in H_n, that is,

$$f(m, l; n, k) = |D(m, l; n, k)|.$$

Let F belongs to $D(m, l; n, k)$. From F, we will construct the rooted spanning forests of $K_{m,n,p}$ with root $z_1 \in H_p$ as follows. First, link an edge (z, v) between every $z \in H_p\{z_1\}$ and some $v \in V(F)$ (where $V(F)$ denotes the vertex set of graph F).
There are \((m+n)^{p-1}\) ways. Notice that the obtained graph \(G\) has \(k+l\) (weakly) connected components each of which has a unique vertex in \(H_m \cup H_n\) of out-degree zero. Now, for any fixed integer \(t\), let \(G'\) denote a graph obtained by adding \(t\) edges consecutively to \(G\) as follows.

At each step we add an edge of the form \((a, b)\) where \(b\) is any vertex of \(H_p \setminus \{z_1\}\) and \(a \in H_m \cup H_n\) is a vertex of out-degree zero in any component not containing \(b\) in the graph already constructed.

The number of components decreases by one each time such an edge is added.

Since \(|H_p \setminus \{z_1\}| = p - 1\) and the number of components not containing \(b\) in the graph \(G\) already constructed is \(l + k - 1\), there are \((l-1)(l+k-1)\) choices for the first such edge. Similarly, there are \((l-1)(l+k-2)\) choices for the second edge and in general \((l-1)(l+k-t)\) choices for the \(t\)th edge, where, \(0 \leq t \leq l + k - 1\), because the number of components in the graph \(G\) is \(l + k\). The graph \(G'\) constructed like this has \(l + k - t\) components each of which has a unique vertex in \(H_m \cup H_n\) of out-degree zero and the remaining vertices all have out-degree; if we add edges from these vertices of out-degree zero to \(z_1\), we obtain a tree \(T'\) in \(D(m, 0; n, 0; p, \{\{z_1\}\})\) that contains \(G\) and in which \(d^-(z_1) = l + k - t\). The order in which the \(t\) edges are added to \(G\) to form \(G'\) is immaterial, so it follows that there are

\[
\frac{(p-1)(l+k-1)(p-1)(l+k-2) \cdots (p-1)(l+k-t)}{t!} = \binom{l+k-1}{t}(p-1)^t
\]

rooted spanning trees \(T'\) for fixed integer \(t\).

This implies that there are

\[
\sum_{t=0}^{l+k-1} \binom{l+k-1}{t}(p-1)^t = p^{l+k-1}
\]

spanning trees \(T\) in \(D(m, 0; n, 0; p, \{\{z_1\}\})\) that contain \(G\).

Hence

\[
|T_{m,n,p}| = |D(m, 0; n, 0; p, \{\{z_1\}\})| = \sum_{l=0}^{m} \sum_{k=0}^{n} f(m, l; n, k)(m+n)^{p-1}p^{l+k-1}
\]

\[
= \sum_{l=0}^{m} \sum_{k=0}^{n} \binom{m}{l} \binom{n}{k} m^{l-1} n^{k-1} (km + nl - kl)(m+n)^{p-1} p^{l+k-1}
\]

\[
= (m+n)^{p-1}(m+p)^{n-1}(n+p)^{m-1}(m+n+p).
\]

Therefore, we get the required result.

\[\square\]

Corollary 2.2. The number \(f(m, 0; n, 0; p, 1)\) of the labeled spanning trees of \(K_{m,n,p}\) with a root in \(H_p\) as follows:

\[
f(m, 0; n, 0; p, 1) = p(m+n)^{p-1}(m+p)^{n-1}(n+p)^{m-1}(m+n+p).
\]
Let $D(m, 0; n, 0; p, |\{z_{i_1}, z_{i_2}, \ldots, z_{i_r}\}|)$ be the set of the spanning forests of $K_{m,n,p}$ with roots $z_{i_1}, z_{i_2}, \ldots, z_{i_r}$ in H_p.

Theorem 2.3. The number $f(m, 0; n, 0; p, r)$ of the labeled spanning forests of the complete tripartite graph $K_{m,n,p}$ with r roots in H_p is as follows:

$$f(m, 0; n, 0; p, r) = \binom{p}{r} r(m + n)^{p-r}(m + p)^{n-1}(m + n + p).$$

Proof. Let $z_{i_1}, z_{i_2}, \cdots, z_{i_r}$ in H_p be vertices given as roots, $Z' = H_p \setminus \{z_{i_1}, z_{i_2}, \cdots, z_{i_r}\}$ and F belongs to $D(m, l; n, k)$. There are $\binom{p}{r}$ ways to choose the r root in H_p. As in theorem 2.1, link an edge (z, v) between every $z \in Z'$ and some $v \in V(F)$. There are $(m + n)^{p-r}$ ways.

Notice that the obtained graph G has $k + l$ (weakly)connected components each of which has a unique vertex in $H_m \bigcup H_n$ of out-degree zero. As in the proof of theorem 2.1, for any fixed integer t such that $0 \leq t \leq l + k - 1$, link an edge (v, z) between any $z \in Z'$ and a vertex $v \in H_m \bigcup H_n$ of out-degree zero in any component not containing z in the graph already constructed, we repeat this procedure t times. There are

$$\frac{(p - 1)(l + k - 1)(p - 1)(l + k - 2) \cdots (p - 1)(l + k - t)}{t!} = \binom{l + k - 1}{t} (p - 1)^t$$

rooted spanning forests F'. The every forests F' thus obtained has $l + k - t$ (weakly)connected components each of which has a unique vertex in $H_m \bigcup H_n$ of out-degree zero. The number of the ways linking edges from $l + k - t$ vertices of out-degree zero in these components to r vertices $z_{i_1}, z_{i_2}, \ldots, z_{i_r}$ in $H_p \setminus Z'$ is equals to r^{l+k-t}.

The number of the spanning forests with r roots $z_{i_1}, z_{i_2}, \cdots, z_{i_r}$ in H_p of $K_{m,n,p}$ obtained from F is as follows:

$$\sum_{t=0}^{l+k-1} \binom{l + k - 1}{t} (p - 1)^t r^{l+k-t} = p^{l+k-1} r.$$

Hence

$$|D(m, 0; n, 0; p, |\{z_{i_1}, z_{i_2}, \cdots, z_{i_r}\}|)| = \sum_{l=0}^{m} \sum_{k=0}^{n} f(m, l; n, k)(m + n)^{p-r} p^{l+k-1} r$$

$$= \sum_{l=0}^{m} \sum_{k=0}^{n} \binom{m}{l} \binom{n}{k} n^{m-l-1} m^{n-k-1} (km + nl - kl)(m + n)^{p-r} p^{l+k-1} r$$

$$= (m + n)^{1-r} r |D(m, 0; n, 0; p, |\{z_{i_1}\}|)|$$

$$= r(m + n)^{p-r} (m + p)^{n-1}(n + p)^{m-1}(m + n + p).$$
Therefore,

\[f(m, 0; n, 0; p, r) = \binom{p}{r} |D(m, 0; n, 0; p, \{z_{i_1}, z_{i_2}, \ldots, z_{i_r}\})| \]
\[= \binom{p}{r} r(m + n)^{p-r}(m + p)^{n-1}(n + p)^{m-1}(m + n + p). \]

\[\square \]

3 Counting the total number of all spanning forests of \(K_{m,n,p} \)

Theorem 3.1. The total number \(S(m, n, p) \) of all spanning forests of \(K_{m,n,p} \) is as follows:

\[S(m, n, p) = (m + n + 1)^{p-1}(m + p + 1)^{n-1}(n + p + 1)^{m-1}(m + n + p + 1)^2. \]

Proof. Let \(B(p, r) \) denote the set of spanning forests of the complete tripartite graph \(K_{m,n,p} \) in which \(r \) roots are in \(H_p \) and remain roots in \(H_m \) or \(H_n \). Let \(F \) belongs to \(D(n, l; n, k) \). From \(F \), we will construct the rooted spanning forests of \(K_{m,n,p} \) with \(r \) roots in \(H_p \) as follows. Let \(z_{i_1}, z_{i_2}, \ldots, z_{i_r} \in H_p \) be vertices given as roots. The number of ways which select \(r \) roots in \(H_n \) is equal to \(\binom{p}{r} \). Let \(Z' = H_p \setminus \{z_{i_1}, z_{i_2}, \ldots, z_{i_r}\} \).

First, link an edge \((z,v)\) between every \(z \in Z' \) and some \(v \in V(F) \) (i.e., vertex \(v \) of forest \(F \)). There are \((m + p)^{p-r}\) ways. Notice that the obtained graph \(G \) has \(k + l + r \) (including components consisting of \(z_{i_1}, z_{i_2}, \ldots, z_{i_r} \in H_p \)) weakly connected components.

Let \(t \) denote any fixed integer such that \(0 \leq t \leq l + k - 1 \), \(H \) denote a graph obtained by adding \(t \) edges consecutively to \(G \) as follows. At each step we add an edge of the form \((a,b)\) where \(b \) is any vertex of \(Z' \) and \(a \in H_m \cup H_n \) is a root of any component not containing \(b \) in the graph already constructed. The number of components decreases by one each time an edge is added. Since \(|Z'| = p - r\) and the number of components not containing \(b \) in the graph \(G \) already constructed is \(l + k - 1 \), there are \((p-r)(l+k-1)\) choices for the first such edge, \((p-r)(l+k-2)\) choices for the second edge, \(\ldots \), and \((p-r)(l+k-t)\) choices for the \(t \)th edge. The order in which the \(t \) edges are added to \(G \) to form \(H \) is immaterial, so it follows that there are

\[\frac{(p-r)(l+r-1)(p-r)(l+r-2)\cdots(p-r)(l+r-t)}{t!} = \binom{l+r-1}{t} \binom{p-r}{t} \]

ways.

The graph \(H \) constructed like this has \(l + k - t \) components(with the exception of components consisting of \(H_p \setminus Z' \)) each of which has a unique vertex in \(H_m \cup H_n \).
of out-degree zero and the remaining vertices all have out-degree one; if we add edges from some vertices of these vertices of out-degree zero to \(z_i, z_{i2}, \ldots, z_{ik} \), we obtain a forest in \(B(p, r) \) that contains \(G \). There are \((r + 1)^{l+k-t}\) ways. Therefore, this implies that there are

\[
\sum_{l=0}^{l+k-1} \binom{l + k - 1}{t} (p - r)^l (r + 1)^{l+k-t} = (r + 1)(p + 1)^{l+k-1}
\]

forests in \(B(n, r) \) that contain \(G \).

Hence,

\[
S(m, n, p) = \sum_{l=0}^{m} \sum_{k=0}^{n} \sum_{r=0}^{p} f(m, l; n, k)(m + n)^{p-r}(r + 1)(p + 1)^{l+k-1}
\]

\[= \sum_{l=0}^{m} \sum_{k=0}^{n} \sum_{r=0}^{p} \binom{m}{l} \binom{n}{k} \binom{p}{r} (m + n)^{m-l-1} n^{n-k-1} (km + ln - lk)(m + n)^{p-r}(r + 1)(p + 1)^{l+k-1}
\]

\[= (m + n + 1)^{p-1}(m + p + 1)^{n-1}(n + p + 1)^{m-1}(m + n + p + 1)^2.
\]

Therefore, we get the required result.

Acknowledgement I would like to thank the editors and anonymous reviewers for their help and advices for this article.

References

[1] O.Egecioglu and J.B.Remmel, Bijections for Cayley trees, spanning trees, and their q-analogues, Journal of Combinatorial Theory, Series A 42 (1986) 15–30.

[2] Y.Jin and C.Liu, Enumeration for spanning forests of complete bipartite graphs, Ars Combinatoria 70 (2004) 135–138.

[3] Y.Jin and C.Liu, The enumeration for labeled spanning forests \(K_{m,n} \), Australasian Journal of Combinatorics 28 (2003) 73–79.

[4] R.P.Lewis, The number of spanning trees of a complete multipartite graph, Discrete Math. 197/198 (1999) 537–541

[5] D.Stark, The asymptotic number of spanning forests of complete bipartite labelled graphs, Discrete Math. 313 (2013) 1256–1261

[6] L.A.Szekely, Counting rooted spanning forests in complete multipartite graphs, Ars Combinatoria, 73 (2004) 97–100.