HOMOTOPY TRANSFER THEOREM FOR LINEARLY COMPATIBLE DI-ALGEBRAS

YONG ZHANG

Abstract. This paper studies the operad of linearly compatible di-algebras, denoted by \mathcal{A}_2, which is a nonsymmetric operad encoding the algebras with two binary operations that satisfy individual and sum associativity conditions. We also prove that the operad \mathcal{A}_2 is exactly the Koszul dual operad of the operad $^{2}\mathcal{A}$ encoding totally compatible di-algebras. We show that the operads \mathcal{A}_2 and $^{2}\mathcal{A}$ are Koszul by rewriting method. We make explicit the Homotopy Transfer Theorem for \mathcal{A}_2-algebras.

Contents

1. Introduction
2. Linearly compatible di-algebras
3. Totally compatible di-algebra and the operad \mathcal{A}_2
4. Homotopy Transfer Theorem for linearly compatible di-algebras.

References

1. Introduction

The notion of associative algebra up to homotopy has been introduced by Jim Stasheff in [JS] under the name A_∞-algebra. It has the following important property: starting with a differential graded associative (dga) algebra (A, d_A), if (V, d_V) is a deformation retract of (A, d_A), then (V, d_V) is not a dga algebra in general, but an A_∞-algebra. This is Kadeishvili’s theorem [IK], which is also called the Homotopy Transfer Theorem for associative algebras.

In this paper we are interested into replacing the associative operation on A by two associative operations $x \ast y$ and $x \bullet y$ which are linearly compatible, that is, any linear combination of \ast and \bullet is associative. We are going to determine the algebraic structure which is transferred to V. It consists in n n-ary operations, for any $n \geq 2$, which satisfy some relations analogous to the relations satisfied by the n-ary operations in an A_∞-algebra. In [LV] Loday and Vallette have given a generalization of the Homotopy Transfer Theorem for algebras over a Koszul operad, with explicit formulas. The key point is to make the Koszul dual cooperad explicit, and then to make also the differential map explicit in the cobar construction. First, we give a new proof of the theorem which says that the Koszul dual operad of linear compatible di-algebras is the operad of totally compatible di-algebras and that these two operads are Koszul. Second, we describe explicitly the composition in this operad $^{2}\mathcal{A}$, so we obtain the relations satisfied by the generating operations.

Let k be a commutative unitary ring. The tensor product over k is denoted by \otimes_k or simply by \otimes if it causes no confusion.

2. Linearly compatible di-algebras

We first recall the definition of linearly compatible di-algebra introduced in [St] by H. Strohmayer.
Remark 2.1. The operad of linearly compatible di-algebras is denoted by $A_{\mathcal{S}}^{(2)}$ in [Zinb] and denoted by A_{s}^{2} in [St], in which Strohmayer has studied the compatible structures for various symmetric operads. From now on, in our paper, we choose the symbol A_{s}^{2} to denote the operad of linearly compatible di-algebras in nonsymmetric case.

Definition 2.1. A linearly compatible di-algebra is defined to be a k-module V with two binary operations $*$ and \cdot that are associative and satisfy the relation
\[(x \cdot y) \ast z + (x \ast y) \cdot z = x \cdot (y \ast z) + x \ast (y \cdot z), \quad \forall x, y, z \in V.\]

Remark 2.1. We observe that these three relations are equivalent to the associativity relation for the operation $(x, y) \mapsto \lambda (x \cdot y) + \mu (x \ast y)$ for any parameters $\lambda, \mu \in k$.

3. Totally compatible di-algebra and the operad A_{s}^{2}

In this section, we give the definition of totally compatible di-algebra and describe its associated nonsymmetric (ns) operad $A_{\mathcal{S}}^{2}$. We also show that the operad $A_{\mathcal{S}}^{2}$ is Koszul by the rewriting method.

Definition 3.1. [St, ZBG] A totally compatible di-algebra is a k-module A with two binary operations:
\[*, \cdot : A \otimes A \to A,\]
satisfying the TCD axioms:
(a) $*$ and \cdot are associative.
(b) $(x \ast y) \cdot z = x \ast (y \cdot z) = (x \cdot y) \ast z = x \cdot (y \ast z), \quad \forall x, y, z \in A.$

Proposition 3.2. The vector space $A_{s}^{2}A_{n}$ is n-dimensional. Let μ_{ij} be the operation, given by
\[\mu_{ij}(x_{1} \cdots x_{n}) = x_{1} \ast \cdots \ast x_{i+1} \cdot \cdots \cdot x_{n}\]
with i copies of \ast and j copies of \cdot. Then the composition in the operad A_{s}^{2} is given by
\[\gamma(\mu_{ij}, \mu_{i_{1} j_{1}}, \cdots, \mu_{i_{k} j_{k}}) = \mu_{i_{1}+i_{2}+\cdots+i_{k} j_{1}+\cdots+j_{k}}.\]

Proof. In [ZBG], we show that the triple $(A_{s}^{2}(X) := \overline{k < X > \otimes k < X >}, *, \cdot)$ is the free totally compatible dialgebra on the set X, showing that the operad A_{s}^{2} is n-dimensional in arity n. Here $k < X >$ denotes the free associative algebra over the set X, and $\overline{k < X >}$ is its augmentation ideal.

Without loss of generality, for operations μ_{ij} and μ_{kl}, given any element $x_{1} \cdots x_{n}$ in $A_{s}^{2}(X)$, we have
\[\gamma(\mu_{ij}; \mu_{i_1 j_1}, \ldots, \mu_{i_k j_k})(x_1 \cdots x_n) = \mu_{ij}(\mu_{i_1 j_1}(x_1 \cdots x_{i_1+j_1+1}), \ldots, \mu_{i_k j_k}(x_{i_1+\cdots+i_{k-1}+j_1+\cdots+j_{k-1}+1} \cdots x_n)) = \mu_{ij}(x \ast \cdots \ast x_{i_1+j_1+1} \cdots \cdots x_{i_1+\cdots+i_{k-1}+j_1+\cdots+j_{k-1}+1+i_k \cdots \cdots x_n)
\]

with \(n - (i_1 + \cdots + i_k + i + 1) = j_1 + \cdots + j_k + j\), implying the composition \(\gamma\) of \(2\)As. Then we get the ns operad \(2As = (\bigoplus_n A_{sn}, \gamma)\).

In [S], Strohmayer has proved that the operad \(2As\) is Koszul by using the weight partition method. Here we give a different proof based on rewriting systems.

Theorem 3.3. The operad \(2As\) is Koszul.

Proof. Let \(E\) be the generating space of binary operations with an ordered basis \(\{*, \cdot\}\) such that \(* > \cdot\). Let \(\mu_1 := *\) and \(\mu_2 := \cdot\).

Let \(R\) be the space of relations, which is spanned by a set of relators written as in the following basis by the definition of totally compatible di-algebra in [LV](def:tda):

Let \(\circ_1 := (\cdot, \cdot, \cdot)\) and \(\circ_2 := (\cdot, (\cdot, \cdot))\).

1. \[\mu_1 \circ_1 \mu_1 - \mu_1 \circ_2 \mu_1 = 0, \quad \text{(eq: (re)1)}\]
2. \[\mu_1 \circ_1 \mu_2 - \mu_1 \circ_2 \mu_2 = 0, \quad \text{(eq: (re)2)}\]
3. \[\mu_2 \circ_1 \mu_1 - \mu_2 \circ_2 \mu_1 = 0, \quad \text{(eq: (re)3)}\]
4. \[\mu_2 \circ_1 \mu_2 - \mu_2 \circ_2 \mu_2 = 0, \quad \text{(eq: (re)4)}\]
5. \[\mu_1 \circ_2 \mu_2 - \mu_2 \circ_2 \mu_1 = 0. \quad \text{(eq: (re)5)}\]

Let the monomials \(\mu_1 \circ_1 \mu_1, \mu_1 \circ_1 \mu_2, \mu_2 \circ_1 \mu_1, \mu_2 \circ_1 \mu_2, \mu_1 \circ_2 \mu_2\) be the leading terms of relations \(\[\text{eq: (re)1}\) - \(\text{eq: (re)5}\), respectively.

Then the above choices provide rewriting rules of the form

\[
\begin{align*}
\mu_i \circ_1 \mu_j & \mapsto \\
\mu_1 \circ_2 \mu_2 & \mapsto
\end{align*}
\]

leading terms \(\mapsto\) lower and non leading terms

with \(i, j \in \{1, 2\}\), which give rise to the following critical monomials

\[
\begin{cases}
\mu_i \circ_1 \mu_j \circ_1 \mu_k, i, j, k \in \{1, 2\} & \text{if all the leading terms are in } \[\text{eq: (re)1}\) - \(\text{eq: (re)4}\); \\
\mu_1 \circ_2 \mu_2 \circ_1 \mu_2, \mu_1 \circ_1 \mu_1 \circ_2 \mu_2, \mu_2 \circ_1 \mu_1 \circ_2 \mu_2, \mu_1 \circ_2 \mu_2 \circ_1 \mu_1 & \text{if there leading terms are in } \[\text{eq: (re)5}\).
\end{cases}
\]

(eq:cri)

According to the rewriting method in chapter 8 in [LV], it is enough to check that all the critical monomials in \(\[\text{eq:cri}\) are confluent. We can see that relations \(\[\text{eq: (re)1}\) - \(\text{eq: (re)4}\) are of associative type. We know that the critical monomials of associative type are confluent. Since their diamond is the following pentagon, see (figure 1).
In order to prove that the critical monomials of relation 5 (eq: (re)₅) are confluent, we take the first one in Eq 5 (eq: (re)₅) as an example and the others can be proved in a similar way, see (figure 2).

Since all the critical monomials are confluent, the operad $^2A^s$ is a Koszul operad.

Remark 3.1.
(a) The rewriting method is due to E. Hoffbeck [EH].
(b) The reader can find more details about rewriting method of ns operad in chapter 8 of [LV].

Proposition 3.4. In \mathbf{St} (St), the operad A^s of linearly compatible di-algebras is the Koszul dual operad of the operad $^2A^s$.

□
Remark 3.2. In [St], this result is a special case in Prop1.7. Here we give a different proof when considered all the operads being nonsymmetric.

Proof. Let $(\cdot, \cdot)_1$ denote the operation which sends (x, y, z) to $(x \cdot_1 y \cdot_2 z)$ and $(\cdot, \cdot)_2$ denote the operation which sends (x, y, z) to $(x \cdot_1 (y \cdot_2 z))$, with $\cdot_1, \cdot_2 \in \{\ast, \bullet\}$. The space R of relations of 2As is determined by the relators

$$\begin{align*}
\{(\ast, \ast)_2 - (\ast, \ast)_1, \\
(\ast, \bullet)_2 - (\ast, \bullet)_1, \\
(\ast, \bullet)_2 + (\bullet, \bullet)_2 - (\bullet, \bullet)_1 - (\ast, \bullet)_2.
\end{align*}$$

It is immediate to verify that its annihilator R^\perp, with respect to the given product in chapter 7 in [LV], is the subspace determined by the following relators

$$\begin{align*}
(\ast, \ast)_2 - (\ast, \ast)_1, \\
(\bullet, \bullet)_2 - (\bullet, \bullet)_1,
\end{align*}$$

These are precisely the expected relations in definition [2.1] (def:ica) \qed

By [GR] and [St], since the binary quadratic operad 2As is a Koszul operad, it follows that its Koszul dual operad As^2 is also Koszul.

4. Homotopy Transfer Theorem for Linearly Compatible Di-Algebras.

In this section, we make explicit the notion of As^2-algebra up to homotopy i.e. As^2_{∞}-algebra by describing the dg operad As^2_{∞}.

Since the operad As^2 is Koszul, the dg operad As^2_{∞} is given by $\text{As}^2_{\infty} := \Omega((\text{As}^2)^{\ast})$. So we need to describe $(\text{As}^2)^{\ast} = \text{2As}^\ast$, which is the co-operad linearly dual to 2As. By proposition 3.2 (prop:td), we know that the space 2As^\ast is n-dimensional. In order to describe the differential of the cobar construction As^2_{∞}, we need to introduce the following definition and lemma.

Definition 4.1 (chapter 6 in [LV]). For any co-operad $(\mathcal{C}, \Delta, \eta)$ with counit $\eta : \mathcal{C} \to I$, we consider the projection of the decomposition map to the infinitesimal part of the composite product $\mathcal{C} \circ \mathcal{C}$. This map is called the infinitesimal decomposition map of \mathcal{C} and is defined by the following composite

$$\Delta_{(1)} := \mathcal{C} \xrightarrow{\Delta} \mathcal{C} \circ \mathcal{C} \xrightarrow{\text{Id}_{\circ} \circ \text{Id}_{\circ}} \mathcal{C} \circ (\mathcal{C} \circ \mathcal{C}) \xrightarrow{\text{Id}_{\circ} \circ \eta \circ \text{Id}_{\circ}} \mathcal{C} \circ (I; \mathcal{C}) \xrightarrow{\mathcal{C} \circ (1; \mathcal{C})} \mathcal{C},$$

where the notation $\text{Id}_{\circ} \circ \text{Id}_{\circ}$ is the infinitesimal composite of Id_{\circ} and Id_{\circ} and the notation $\mathcal{C} \circ (1; \mathcal{C})$ denotes the infinitesimal composite of \mathcal{C} and \mathcal{C}.

Remark 4.1. $\Delta_{(1)}$ is also called the linear part of the co-composition Δ.

Lemma 4.2 (chapter 6 in [LV]). For a given co-operad $(\mathcal{C}, \Delta, \eta)$, the dg cobar construction of the co-operad \mathcal{C} is given by

$$\Omega(\mathcal{C}) := (\mathcal{C}(s^{-1} \bar{\mathcal{C}}), d),$$

with d induced by $\Delta_{(1)}$ as follows

$$d : k s^{-1} \otimes \bar{\mathcal{C}} \xrightarrow{\Delta_{(1)} \otimes 1} (k s^{-1} \otimes k s^{-1})(\mathcal{C} \circ (1; \mathcal{C})) \xrightarrow{\text{Id}_{\circ} \circ \text{Id}_{\circ}} (k s^{-1} \otimes \mathcal{C}) \circ (1; \mathcal{C}) \sim \mathcal{T}(s^{-1} \bar{\mathcal{C}}) \to \mathcal{T}(s^{-1} \bar{\mathcal{C}}),$$

where s is the decoration, modifying the degree of the objects in $\bar{\mathcal{C}}$. (lemma:cbd)

From lemma 4.2 (lemma:cbd), it is sufficient to make explicit the infinitesimal part $\Delta_{(1)}$ in the operad 2As^\ast to get the differential map ∂ of cobar construction $\text{As}^2_{\infty} = \mathcal{T}(\text{As}^2)^{\ast}$, without decoration s.

Theorem 4.3. The linear part of the co-composition \(\Delta \) in \(\mathbb{A}^{2} \) is given by

\[
\Delta_{(1)}(\mu_{c,d}^{c}) = \sum_{c=i+a, d=j+b}^{c+i+a, d=j+b} \mu_{i,j}(id, \ldots, id, \mu_{a,b}, id, \ldots, id)
\]

excluding \((a, b) = (i, j) = (0, 0) \) with \(\mu_{i,j} \in \mathbb{A}_{n}^{2}, i + j = n - 1 \).

Proof. By the property of linearly dual basis, it is a straightforward computation. Since

\[
\gamma(\mu_{i,j}: id, \ldots, id, \mu_{a,b}, id, \ldots, id) = \mu_{i+a, j+b},
\]

then

\[
\Delta_{(1)}(\mu_{c,d}^{c}) = \sum_{c=i+a, d=j+b}^{c+i+a, d=j+b} \mu_{i,j}(id, \ldots, id, \mu_{a,b}, id, \ldots, id).
\]

Let \(m_{i,j} := \mu_{i,j} \) be the generator of the cobar construction \(\mathbb{A}_{n}^{2} \). Then we get the following result.

Theorem 4.4. The operad \(\mathbb{A}_{n}^{2} \) is generated by the operations \(m_{i,j} \), with \(|m_{i,j}| = n - 2 \) for \(i + j = n - 1, i, j \geq 0 \), which satisfy the following formula:

\[
\partial(m_{i,j}) = \sum_{\substack{a+c=i, \ b+d=j \\ q=c+d+1, \ p+q+r=i+j+1}} (-1)^{p+qr} m_{a,b}(id, \ldots, id, m_{c,d}, id, \ldots, id).
\]

Proof. From the definition of \(\mathbb{A}_{n}^{2} \) and Theorem 4.3 (thm:tcd), it follows that \(\mathbb{A}_{n}^{2} \) is generated by the operations \(m_{i,j} \).

By definition of the cobar construction in Lemma 4.2 (lemma:cbd), the boundary map on \(\Omega((\mathbb{A}^{2})^{j}) \) is induced by the co-operad structure of \((\mathbb{A}^{2})^{j} \), and more precisely by \(\Delta_{(1)} \) of linear dual co-operad \(\mathbb{A}^{2} \) given by Theorem 4.3 (thm:tcd) as:

\[
\Delta_{(1)}(\mu_{c,d}^{c}) = \sum_{c=i+a, d=j+b}^{c+i+a, d=j+b} \mu_{i,j}(id, \ldots, id, \mu_{a,b}, id, \ldots, id)
\]

excluding \((a, b) = (i, j) = (0, 0) \) with \(\mu_{i,j} \in \mathbb{A}_{n}^{2}, i + j = n - 1 \).

By the construction of the differential given in Lemma 4.2 (lemma:cbd), we have

\[
\partial(m_{i,j}) = \sum_{\substack{a+c=i, \ b+d=j \\ q=c+d+1, \ p+q+r=i+j+1}} (-1)^{p+qr} m_{a,b}(id, \ldots, id, m_{c,d}, id, \ldots, id).
\]

The signs are obtained by comparison with the dg operad \(A_{\infty} \).

From the above results, we get the Homotopy Transfer Theorem for the operad \(\mathbb{A}^{2} \).

Theorem 4.5. Let

\[
\xymatrix{\h (A, d_{A}) \ar[r]^{p} & (V, d_{V})}
\]

\(i = \text{quasi-isomorphism} \quad Id_{A} - ip = d_{A}h + hd_{A}, \)

be a deformation retract. If \((A, d_{A}) \) is a dg \(\mathbb{A}^{2} \)-algebra, then \((V, d_{V}) \) inherits an \(\mathbb{A}^{2}_{\infty} \)-algebra structure \(\{m_{i,j}\}_{i+j=n-1} \) with \(n \geq 2 \), which extends functorially the binary operations of \(A \).

Proof. The conclusion is a direct consequence of the Homotopy Transfer Theorem given in chapter 10 in [LV] applied to the Koszul operad \(\mathbb{A}^{2} \).
Acknowledgements I am greatly indebted to my supervisors professor Jean-Louis Loday (CNRS and Strasbourg University) and professor Fang Li (Zhejiang University) for their constant support. Part of this work was achieved in Strasbourg, France, during a visit sponsored by the Centre National de la Recherche Scientifique.

References

[DK] V. Dotsenko and S. Khoroshkin, Gröbner bases for operads, Duke Math. J. 153 (2010), no. 2, 363–396.
[GK] V. Ginzburg and M. Kapranov, Koszul duality for operads. Duke Math. J. 76 (1994), no. 1, 203–272.
[Eh] E. Hoffbeck, A Poincaré-Birkhoff-Witt criterion for Koszul operads. Manuscripta Math. 131 (2010), 87–110.
[Tk] T. V. Kadeishvili, The algebraic structure in the homology of an A(1)- algebra. Soobshch. Akad. Nauk Gruzin. SSR 108 (1982), no. 2, 249–252(1983).
[LV] J.-L. Loday and B. Vallette, Algebraic operads, Grundlehren Math. Wiss. 346, Springer, Heidelberg, 2012 (in press).
[Js] J. D. Stasheff, Homotopy associativity of H-spaces. I, II. Trans. Amer. Math. Soc. 108 (1963), 275-292; ibid. 108 (1963), 293–312.
[St] H. Strohmayer, Operads of compatible structures and weighted partitions. J.Pure Appl. Algebra 212 (2008) 2522–2534.
[ZBG] Yong Zhang, Chengming Bai and Li Guo, Totally compatible associative and Lie dialgebras, Tridendriform algebras and PostLie algebras. Preprint.
[Zinb] G.W. Zinbiel, Encyclopedia of types of algebras 2010. Proc. Int. Conf., in Nankai Series in Pure, Applied Mathematics and Theoretical Physics, Vol. 9 (World Scientific, Singapore, 2012), 219–298.