I. Collisional evolution and reddening of asteroid surfaces: The problem of conflicting timescales and the role of size-dependent effects

S. Marchi1, P. Paolicchi2 and D. C. Richardson3

1Département Cassiopée, Université de Nice - Sophia Antipolis, Observatoire de la Côte d’Azur, CNRS, Nice, France
2Dipartimento di Fisica, Università di Pisa, 56127 Pisa, Italy
3Department of Astronomy, University of Maryland, College Park, MD 20742 USA

ABSTRACT

Space weathering is the generic term used for processes that modify the optical properties of surfaces of atmosphereless rocky bodies under exposure to the space environment. The general agreement about the relevance of the effects of space weathering on the spectral properties of S-complex asteroids fails when some basic quantitative estimates are attempted. In particular, there is severe disagreement regarding the typical timescales for significant spectral reddening to occur, ranging from 1 Myr to 1 Gyr.

Generally speaking, the spectral reddening of an individual object can be considered as the sum of three terms, one (which is relevant for statistical analyses) depending on the exposure of the object to space weathering during its lifetime, a second one due to the original surface composition, and a third one (a noise term) due to the combination of poorly constrained effects (e.g., structure and texture of the surface). The surface of an asteroid is usually covered by regolith, and its presence and properties presumably play a critical role in the weathering processes. In this paper we discuss the role played by collisional evolution in affecting the spectral properties of asteroids and refreshing the surfaces due to the formation of ejecta, and the necessity of a simultaneous modeling of collisions and weathering processes. We introduce a new idea, based on the possibility of a sort of saturation of the refreshing process whenever a massive reaccumulation of the impact ejecta takes place. In this case, a dependence of the overall reddening on the asteroid size should naturally come out. We show that this conclusion is indeed supported by available main belt asteroid spectroscopic data.

Key words: minor planets, asteroids: general; meteorites, meteors, meteoroids

1 INTRODUCTION

The spectral reddening of asteroidal surfaces is of fundamental importance to understanding the spectral properties derived from remote observations of asteroids and for making a reliable comparison with the corresponding laboratory meteorite data. The process of spectral reddening for S-complex asteroids has been recognized for a long time (Chapman and Salisbury 1973; Gaffey et al. 1993), and it has been attributed to the alteration of surface optical properties under exposure to the space environment. More recently, several contributions from laboratory experiments (Hiroi et al. 2001; Strazzulla et al. 2004), in addition to dedicated asteroid observations and modeling, have disclosed several intriguing aspects of the reddening processes (Jedicke et al. 2004; Marchi et al. 2006a; Paolicchi et al. 2007). It has also been shown that, to some extent, the overall results obtained from S-complex asteroids may play a non-negligible role also for other main taxonomic complexes and spectral types (Lazzarin et al. 2006; Marchi et al. 2010).

On the basis of a statistical analysis of a large sample of visible spectra of S-complex asteroids (Marchi et al. 2006a) (hereinafter P1), suggested that the solar wind is the dominant cause of the reddening. This conclusion was based on the significant dependence of the spectral slope on the exposure (E) to the solar wind, namely the integrated
ion flux that an asteroid received from the Sun during its past evolution. This analysis is based on a large sample of both near-Earth asteroids (NEAs) and main belt asteroids (MBAs). In a series of papers (Marchi et al. 2006a, Paolicchi et al. 2007), additional details of the process were determined, and an estimate of the reddening timescale was given. It was found that 80% of the slope reddening is reached after about 200 Myr at 1 AU; or 800 Myr at 2 AU (Paolicchi et al. 2007). In general, the derived correlation between the slope and the asteroid age, the latter estimated by the collisional lifetime, requires that the time derivative exhibit an exponential decay: a fast initial reddening (leading to almost 50% of the final reddening in a few tens Myr) is followed by a slower increase, asymptotically pointing to saturation. Note, however, that the estimated reddening timescale due to heavy ion bombardment is of the order of $0.01 - 1$ Myr at 1 AU (Strazzulla et al. 2005).

A recent analysis based on S-complex MBA families (Vernazza et al. 2009, hereinafter P2) claims that the solar wind is the dominant cause of the reddening. This conclusion was derived on the basis of the fast reddening timescale (~ 1 Myr) observed for two young asteroid families. Moreover, a slower residual reddening is present in their data for older families. Despite P2 agrees on the what already found by P1 about the solar wind-driven space weathering, the derived timescales differs by orders of magnitude.

To make the story more complicated, a recent analysis (Willman et al. 2010) suggests that space weathering timescales may be very large (of the order of $10^2 - 10^3$ Myr for MBAs), claiming agreement with a different series of laboratory experiments that assume micrometeorite bombardment is the dominant weathering process (Willman et al. 2011, and references therein). While the timescales found by Willman et al. are partially in agreement with some P1 results, the physical process that is the claimed cause of the reddening is completely different.

A recent comprehensive review by Gaffey (2010) points out that the consequences of space weathering may vary strongly among bodies, due, possibly, both to different physical processes and to different properties of the affected surfaces. For instance, it has been found that the space weathering of lunar regolith is likely due to the formation of nanophase iron particles (Pieters et al. 2000) produced by the vaporization of surface particles by microimpacts. It is noteworthy to recall that lunar ray craters (e.g., Tycho and Copernicus) show a moderate reddening even if their estimated age (or the corresponding exposure to the Sun) is relatively large, of the order of hundreds of Myr (Stoффler et al. 2001). Microimpact vaporization, however, might have nothing to do with the reddening of asteroids, perhaps due to much lower mean impact speeds in the main belt (5 km/s) compared to that on the Moon (18 km/s). Moreover, even if we decide to restrict our analysis to the asteroids, severe differences come out in the weathering properties of objects that should be -in principle- rather similar (e.g., Eros and Ida). According to conclusions of Gaffey (2011), it is not easy, and probably potentially misleading, to define a simple -uniparametric- asteroid weathering scenario.

On the other hand, both the solar wind and micrometeorite bombardment weathering processes coexist for all asteroids, even if their relative efficiency may vary depending on the heliocentric distance. The different effects of space weathering should be foremost dependent on the different properties of the impacted surfaces (composition, texture, presence of regolith and so on). Unless we are able to find a well-defined selection criterion, which divides the asteroids into different groups, with different values of all the variables affecting the individual reaction of the bodies to the space environment, the weathering properties of individual bodies are difficult to assess, but the possibility of a statistical analysis and the search for a unitary statistical model remains open.

In this series of papers we discuss the role of mini- and micro-collisions, as a potential solution to the two-timescales conundrum (as already suggested, at a very qualitative level, in Paolicchi et al. 2009).

The role of gardening in affecting weathering properties has been discussed in the literature (see, for instance, Gil-Hutton et al. 2002), and a quantitative model has been introduced by Willman et al. (2008, 2010). However, their models, based on some ad hoc assumptions (see later) seem not to be capable of fitting together the properties of the asteroids with those of ordinary chondrites (OCs). In a recent improvement (Willman & Jedidk 2011), the fit with ordinary chondrites could be attained, but the reddened surfaces of young asteroid families do not fit with the inferred space weathering timescale. Note that, however, not all S-type asteroids are expected to be genetically linked to ordinary chondrites. Indeed, several observed S-types have inferred compositions incompatible with ordinary chondrites (Gaffey et al. 1993; Marchi et al. 2005); while laboratory analysis show that OCs may have originated from a comparatively small number of parent bodies (Burbine et al. 2002). Therefore, we caution that the average unweathered spectral slope of S-types may be different from that of ordinary chondrites.

Apart from the technical details, the essence of the problem can be qualitatively sketched in the following way. We have, on one side, some evidence for a short (~ 1 Myr) timescale for substantial reddening: experiments on ion implantation and the observed reddening of some of the youngest asteroid family members. On the other side, we have also hints for a longer timescale ($\sim 10^2 - 10^3$ Myr), both from micrometeorite bombardment experiments and from a significant continuation of the reddening on old asteroids. However, at a microphysical scale, both processes must be present simultaneously. Thus if the short timescale holds, there is no conflict, while, in the opposite case, one should understand why the faster process does not work. Moreover, if we introduce a de-weathering effect due to collisions, we can have two extreme cases: if the collisional timescale is by far shorter than that of the weathering, no significant reddening can happen at all; if it is by far longer, the collisions do not much affect the reddening. Thus, the role of collisions, within this scheme, may be relevant only if the gardening has a timescale comparable to the weathering: this may be the case, as suggested by Willman et al. (2010), but this is not enough to solve the two-timescales conundrum.

Thus, the solution may require an additional effect to be considered. In our model, this effect is connected to the saturation of the spectral properties, which can take
place even in the presence of frequent gardening of the surface, due to the reaccumulation of the ejecta created by an impact; this reaccumulation can partially cover the surface with already reddened layers. The relevance of the reaccumulation may differ in importance, depending on the target’s size: thus a different behavior for small vs. large objects has to be expected.

In this paper, we show new observational results in support of the above mechanism. Detailed numerical simulations of the regolith evolution and impact processes will be deferred to the next paper in the series.

2 CONFLICTING TIMESCALES

2.1 The “short-time” camp and the problem of near-Earth asteroids

The most explicit statement of a fast reddening of S-complex asteroids is presented in P2, where the analysis is restricted to a set of MBAs, namely members of dynamical families. The reddening timescale is obtained, in P2, by the correlation of the spectral slope of asteroids (corrected to eliminate compositional effects) and their family age. The timescale obtained, for most of the reddening, using data concerning two young MBA families (namely, Datura and Lucascavin), is of the order of 1 Myr. This value is consistent with the estimates from ion bombardment laboratory experiments (Strazzulla et al. 2003), therefore the authors of P2 claim that the reddening of young asteroid families is due to the solar wind. However, they find also a slower further increase of the spectral slope, which, according to the authors, might be due to different physical processes. Note that the observed initial fast reddening is based on the assumption that the unweathered slopes of the S-type Datura and Lucascavin families are the same as that observed in ordinary chondrites. Otherwise, the resulting reddening time dependence may be different, even showing no intrinsic evidence of a double timescale. However, the existence of a fast reddening process and the observed peculiar properties of Q-type NEAs (Marchi et al. 2006b; Binzel et al. 2010) do not support this extreme possibility.

The reddening, if mainly caused by the Sun, has to be related to the exposure E to the solar wind, as defined in Marchi et al. (2006a):

\[E \simeq \frac{1}{a^2(1 - e^2)^{1/2} \cdot \text{age}}. \]

For the data sample used in P2, the slope-age and slope-E plots are rather similar, since the range of heliocentric distances is rather narrow (2.23 – 2.87 AU). The slope-E relation, obtained from the same data used by Vernazza et al. (2009), is represented in Fig. 1. On the same plot, we also report the average data point from the NEAs dataset of Paolicchi et al. (2007). For a more detailed comparison between NEAs and MBAs, we correct the average NEA’s data point for surface composition and perihelion de-reddening effects due to close encounters with terrestrial planets. For the composition effect, a mean relative abundance of olivine and pyroxene \(ol/(ol + opx) \sim 0.7 \) was estimated for NEAs (Vernazza et al. 2008). Thus, using the formula given in Vernazza et al. (2009) to correct the slope for a different composition, the mean spectral slope of NEAs has to be slightly increased by \(+0.07 \mu \text{m}^{-1}\) (Fig. 1). This data point was further corrected in order to take into account the perihelion de-reddening correction, as introduced in Paolicchi et al. (2007).

We see that, in all cases, the NEA data points are too low compared to MBAs for a similar exposure. On the other hand, the average NEA slope is similar to those of the Datura and Lucascavin families, thus implying a similar exposure. Due to the different heliocentric distance, this exposure corresponds to a typical age of the order of 0.1 Myr for NEA.

This timescale is very short compared to all the relevant evolutionary timescales concerning NEAs:

(i) their average ages (or collisional lifetimes) taking also into account the time passed in the main belt (the latter may exceed the dynamical lifetime of a typical NEA and have a dominant role in determining the reddening; see Marchi et al. (2006a);
(ii) their timescales as NEAs;
(iii) the time interval between significant de-weathering close encounters [Marchi et al. (2006b); Binzel et al. (2010)].

In other words, the NEAs should be almost completely reddened, a conclusion that is in stark contradiction with observations.

A drastic solution to the problem assumes that the short timescale for reddening estimated by P2 is a fluke, and the correct timescale is of the order of hundreds of Myr. In this case, the NEAs problem would be solved; however, to match ordinary chondrites and young family objects is far less easy. In fact, the typical slope of the youngest known asteroids is, for the most part, significantly redder than that of the ordinary chondrites.

It is also possible to suggest that the timescale estimated in P2, and based only on a couple of observational points, is underestimated by, say, one order of magnitude. In this case the de-weathering effect due to close planetary passes [Marchi et al. (2006b); Binzel et al. (2010)] might do the job. This possibility should be enforced by weakening, as discussed before, the link between the slopes of ordinary chondrites and unweathered S-types.

Another, and more intriguing, possibility, will be discussed in greater detail below, namely that the main difference between NEAs and MBAs should be the size: most NEAs are small and, if the gardening refreshing is rather fast but can be significantly weakened by the self-reaccumulation of the ejecta, then small bodies cannot become too red. See Sect. 3 for further discussion.

2.2 The “long-time” camp

The long-time camp is mainly represented by Willman et al. (2008, 2010). Their timescales are of the order of several hundreds of Myr, and a different laboratory counterpart
(namely, micrometeorite impacts) is suggested by Hiroi et al. (2001). The long-time camp is partially supported also by the results of our group (P1). We have found that a residual reddening (20%) takes place over very long ages, even of the order of 1 Gyr. However, in our model most of the reddening takes place in the first period, according to the analysis and plots presented in Paolicchi et al. (2007). Moreover, there is evidence for a fast reddening of some young objects (such as those of the Karin family), in substantial agreement with the short-time camp suggestions by Marchi et al. (2006). Finally, the apparent Sun-dependence of the weathering (the slope is more strongly dependent on the exposure than on the age: Paolicchi et al. 2007) strongly supports the dominance of the solar wind-driven ion-implantation processes, even if it cannot be considered as final, unequivocal proof: in fact, the micrometeoritic bombardment may also depend on the distance from the Sun (Cintala 1992), as claimed by Willman et al. (2010). Note, also, that the total fluxes used in experiments are tuned to those expected to come from the Sun, even if the laboratory rate of ion bombardment is, obviously, by far larger. Thus, if the ion-implantation process is not the main cause of weathering, one should find a theoretical explanation of it.

In summary, we are facing a process characterized by two reddening timescales: the former, of the order of a few Myr, is characterized by a further reddening, towards saturation of the effect. While there is no reason to suggest that two different micrometaphysical effects are at work (why is the faster one not able to reden after the first few Myr?), the possibility of a complex process, in which weathering and de-weathering effects are simultaneously active, seems to deserve serious scrutiny.

3 GARDENING VS. WEATHERING: THE MODEL

The timescale of collisional gardening is not easy to compute, since it depends on several (partially unknown) parameters. This is also the basic reason for the forthcoming numerical simulations (see Sect. 5). Recent estimates, presented in the literature, differ by several orders of magnitude (Willman et al. 2010, Melita et al. 2007), and it is not easy to solve the apparent discrepancies. In this Section, rather than present a new computation, we identify the main parameters of the problem. Essentially, the basic questions are:

- Q1. For a given asteroid size, what is the ratio between the collisional disruption timescale (t_{disp}) and the global resurfacing timescale -not automatically entailing a general spectral refreshing (see later in the text)- due to an individual impact (t_{impact})?
- Q2. Given the size distribution of the projectiles, what is the gardening timescale (t_{gard}) due to all projectiles? The result is obtained by integrating between a maximum projectile size (D_{max}) and a minimum size (D_{min}). When is the integral dominated by the value of D_{min}?
- Q3. What is the minimum impactor size to be considered?
- Q4. If a crater is formed on a reddened region, what is the fraction of the ejecta which, refalling onto the asteroid surface, gives rise to a -partially or completely- reddened surface? This possibility has not been taken into account in previous computations. The relevance of the effect depends, obviously, on the size of the asteroid, thus introducing differences between small and large objects.

Let us consider Q1 first. According to the analysis presented in Willman et al. (2010) and Melita et al. (2009), the size of the resurfaced region (d_{res}) is roughly proportional to that of the impacting projectile (D), namely $d_{\text{res}} \approx \alpha D$. Thus the resurfaced area is α^2 times larger than the projectile cross section. The value of α depends on various parameters, but the linear relation seems rather reasonable and robust for the typical conditions of asteroidal impacts: in fact the size of the resurfaced region is proportional to the size of the crater (Melosh 1989), and this latter is proportional to that of the projectile (at least in the strength regime; Melosh 1980). Thus we can adopt this as a basic rule. Consequently, it is possible also to discuss the first question: a global resurfacing follows from the impact of a projectile whose size is about $2/\alpha$ times that of the target (the factor 2 comes out from the factor 4 relating the surface of a sphere and the area of a circle with the same radius).

The value of α is not easy to estimate. According to Willman et al. (2010) and references therein, the size of the crater $d_{\text{cr}} \approx 13D$, and the size of the resurfaced region is about 2.3 times larger than the crater size. The mean size of the resurfaced region is thus about 30 times that of the projectile (or, in terms of area vs. the cross-section of the projectile, we have a factor around 10^3). However, the size of the crater might be larger: for instance, the scaling laws suggest a value approximately twice as large; moreover, the Deep Impact experiment (Richardson et al. 2007) suggests a transient crater, say, more than 100 times larger than the projectile. On the other hand, to compute the ratio between the resurfaced area and the crater area is even more difficult: the estimates might be a factor ≈ 30 (Willman et al. 2010), or ≈ 25 (Melita et al. 2007), which is intermediate between those suggested by Gill-Hutton et al. (2002), according to which the ratio between the sizes (to be squared to convert to areas) is between 2 and 10. The above uncertainties, all together, may affect the value of α, increasing it from a minimum value of about 30 (see above), by even more than an order of magnitude, consequently strongly decreasing the gardening timescale.

Therefore, the minimum projectile/target mass ratio causing a complete gardening is $\approx 3 \times 10^{-5}$ in the conservative case, while going down to 10^{-8} in the extreme opposite; the former value is, according to current collisional theories (Bottke et al. 2003, Holsapple 2009), smaller than that causing a catastrophic disruption but larger than that causing a complete shattering of the target (Willman et al. 2010).

If, as usual, the size distribution is a monotonic decreasing function of size, it entails $t_{\text{disp}} \approx t_{\text{gard}}$ (maybe $t_{\text{disp}} \ll t_{\text{gard}}$). Moreover, especially when considering large targets, the role of gravity has to be taken into account.

Note that in order to evaluate the global effects of collisions, it may also be important to consider the so-called "global-jolt", namely regolith displacement over the entire target surface due to impact-generated seismic waves. These
effects can be estimated according to \cite{O'Brien et al. 2006}, by the following equation:

\[D^*(g/g_t) \propto (d_t^2/v^2)^{1/3} \]

(1)

where \(D^* \) is the size of the projectile producing, as a consequence of the impact, an acceleration \(g \) (in units of the acceleration of gravity \(g_t \)) to all surface particles, and is a function of the target diameter \(d_t \) and of the impact speed \(v \). Assuming that similar consequences follow from a similar value of \(g/g_t \), the above formula indicates that the size of a projectile able to produce global-jolt scales as \(d_t^{2/3} \). Therefore, for the same impact speed, smaller asteroids are affected by progressively smaller impactors than larger ones. Previous arguments showed that the physics of the impact processes plays a major role in understanding the collisional disruption rate and the rate of global resurfacing. Since the outcome of a collision depends on the physical properties of the target, maybe a simple recipe for all asteroids does not hold. More likely, small rubble-pile asteroids will have a different response compared to large rubble piles or monoliths.

The answer to question Q2 requires the choice of an asteroid size-frequency distribution. The problem is not simple and will not be discussed in detail here. However, we can take a simple power law, such as the traditional “Donhanyi slope” (Donhanyi, 1969) obtained by simplified assumptions regarding a stationary collisional cascade:

\[dN = Am^{-q} \frac{dm}{dD} = A'D^{-q'} \frac{dD}{dD} \]

(2)

where \(A \) and \(A' \) are constant quantities and \(m \) is the mass. In general \(q' = 3q - 2 \); for the Donhanyi slope \(q = 11/6 \), \(q' = 7/2 \). If we combine this assumption with the above-quoted ansatz \(d_{\text{res}} = \alpha D \) (and thus \(S_{\text{res}} = (\pi/4)\alpha^2 D^2 \); \(S_{\text{res}} \) is the resurfaced surface) we obtain the relation:

\[dS_{\text{res}} = S_{\text{res}}(D)dN \propto D^{-3q+1+4} dD. \]

(3)

The integral has to be performed between a maximum size \(D_{\text{max}} \) of the order of that causing the collisional disruption (with a corresponding timescale \(t_{\text{coll}} \)), or, better, of the order of the projectile size that causes global resurfacing \(D_g \), and a minimum \(D_{\text{min}} \) to be defined. With the above assumptions, we obtain something proportional to \(D_{\text{min}}^{-3q+5} - D_g^{-3q+5} \). If so, whenever \(q > 5/3 \) (or, equivalently, whenever the differential size distribution has an exponent steeper than \(-3\)), the small impacts dominate the timescale:

\[t_{\text{ga}} \approx t_{\text{ga}}(D_g/D_{\text{min}})^{3q-5} < t_{\text{coll}}(D_{\text{max}}/D_{\text{min}})^{3q-5}. \]

(4)

Assuming a Donhanyi slope \((3q - 5 = 1/2) \), for an asteroid of size a few km, which should be disrupted by a \(\approx \) km-sized projectile, the gardening time is of the order of \(t_{\text{ga}}/20 \) (or less) if the minimum useful size of the impactor, to cause damage, is assumed of the order of a few meters (as in \cite{Willman et al. 2008, 2010}), while decreasing below \(10^{-3} t_{\text{coll}} \) assuming \(D_{\text{min}} \approx 1 \) mm (as in \cite{Melita et al. 2009}). The values can change also assuming a different size distribution or altering other parameters of the model.

Figure 2 compares the analytic distribution with that of MBAs derived by a collisional evolution model \cite{Bottke et al. 2004}. The plot also shows the MBA size distribution derived by SUBARU observations \cite{Yoshida & Nakamura 2005}, which is valid down to \(\sim 1 \) km. All distributions are normalized at 5 km. The plot shows that the Donhanyi slope is a good approximation of the MBA size-frequency distribution for the purpose of this work, although, there may be significant local slope variations.

The discussion above shows that gardening is usually dominated by small impacts and that the estimate of the minimum impactor size causing resurfacing (Q3) is crucial for estimating the gardening timescale.

The last question of the list (Q4), however, may affect the above conclusions. In the case of an impact followed by the recapture of all the ejected fragments, one may imagine that a non-negligible fraction of the fragments (\(\sigma \)) will show an already-reddened surface. This fraction should be particularly large in the limit of a very small crater. We assume that a newly formed crater excavates material from pre-existing ejecta layers. This material will be mixed-up and then spread around to form a new ejecta blanket. Let \(\beta \) be the volume ratio of reddened particles to non-redened particles present in the ejected material (\(\beta = 0.1 \) for non-redened and totally reddened particles, respectively). Thus, the resulting fraction of reddened particles exposed in the new ejecta blanket is \(\sigma = 0.5 \beta \), assuming that half of the particles should fall showing the reddened surface.

If we neglect this effect, the maximum attainable spectral slope, due to the combined effect of weathering (with a timescale of \(t_{\text{sw}} \)) and collisions, should be a function of \(t_{\text{sw}}/t_{\text{ga}} \) \cite{Willman et al. 2008, 2010}. A similar analytic toy model is discussed in \cite{Paolicchi et al. 2009}. Conversely, if we take it into account, one can imagine a progressive slope saturation, with a timescale of the order of \(t_{\text{ga}}/\sigma \). However, in the meantime, larger impacts take place, affecting deeper -and fresher- regions; the resurfacing causes a partial refreshing (the fraction is related to the fraction of deep, unweathered ejecta) and the slope does not completely saturate. After a longer time, these layers also become completely or extensively reddened, and the saturation is limited only from the consequences of even larger -and rarer- events. Thus the slope saturation may take an asymptotic behavior; one can guess that the final timescale to approach the slope saturation may be of the order of \(t_{\text{sw}} \) \cite{Paolicchi et al. 2009}. In principle one might suggest that the reddest asteroids should be those whose typical age (or lifetime) is close to the age of the Solar System. Smaller asteroids should be bluer -for the reasons discussed above- than intermediate sized bodies; the same holds true for the larger bodies being farther from the asymptotic saturation. In the next Section we compare our ideas with observations.

4 COMPARISON WITH THE OBSERVATIONS

The discussion presented in the previous Section is rather challenging. Some suggestions may be verified only with the aid of a detailed model of surface evolution, requiring numerical simulations. In this Section we introduce some observational data that seem to support, at a semi-quantitative level, our ideas.

One of the most interesting points in our model is, certainly, the different behavior between small and large asteroids. For the former, gardening is more effective, since the reaccumulation of partially reddened ejecta is absent or strongly reduced. If the asteroids are a little bit larger,
gardening is less effective, and the surface, for a given exposure, might be redder. This trend should continue as far as the asteroid size increases, reaching a plateau when the reaccumulation becomes massive or almost total. The value of the corresponding size depends on the physics of collisional processes; it has certainly to be within the 1–10s of km size range, since reaccumulation requires the typical speeds of the ejecta to be smaller than the escape speed.

For larger bodies, as a first approximation, we imagine the spectral slope to remain close to the plateau value, but, if the arguments presented at the end of the last section are valid, the complete “slope saturation” is reached in a time which is of the order of the collisional lifetime. Thus, if the lifetime is larger than the possible age of the body (which cannot exceed the age of the Solar System), the slope might be slightly under the saturation value. The transition is for bodies of the order of a few tens of kilometers (see, for instance, Bottke et al. 2005). In Fig. 3 we show the exposure-corrected slope as a function of size for MBAs. The exposure-corrected slope is computed multiplying the observed slope of a particular object by the ratio between its estimated exposure (function of the orbital parameters and of the age) and the mean (among all asteroids) exposure. Thus, the obtained exposure-corrected slopes are scattered around an average value with no correlation with the asteroid sizes. We find a statistically significant increase up to around 15 km (2-tailed probability of 2.2×10^{-11}), followed by a significant decrease beyond 15 km (2-tailed probability of 3.5×10^{-9}). Note that the exposure, used to obtain the data represented in the figure, assumes constant orbital elements (a, e) and an age computed according to the prescriptions of Marchi et al. (2006a) (applied to all objects regardless their family membership). However, for family asteroids a different age estimate, obtained from the analysis of the overall properties of the related family, can be obtained. We verified that the quality of the trend is not affected by the definition of the age. With all the uncertainties in the model, Fig. 3 supports our ideas.

5 NUMERICAL SIMULATIONS

As discussed in the previous sections, the basic problem to be solved for a reliable assessment (or falsification) of the ideas sketched above, and partially supported by observational evidence, is to understand what happens when a crater is formed on the surface of an asteroid. In particular, the critical issues are:

- **I1.** What happens when the projectile impacts onto a fractured (regolith, imbricated) surface and the size of the projectile is smaller or comparable to that of the surface components? (This projectile size is represented by D_{min} in Sect. 3.)
- **I2.** What is the size and velocity distribution of the ejecta (and, possibly, the size-velocity relation); in other words, given the size of the target, how many -and which- ejecta will fall again onto the target, and where (within the crater, close to the crater, everywhere on the surface)?
- **I3.** Is there any effect due to the rotational properties of the ejecta? In other words, do they, re-falling, show approximately the same external surface in about 50% of the cases (consistent with common sense), or is there some subtle reason for a different value?

The handling of these problems, with the use of numerical simulations, might be successful, as indirectly shown by the possibility of explaining some observed features of Eros in terms of a dynamical model of crater ejecta (Durda 2000).

Direct simulation of regolith dynamics is becoming more feasible with advances in computer speed and numerical algorithms. Sánchez et al. (2011) and Richardson et al. (2011) have begun development of discrete element methods tailored for the low-gravity environment of small asteroids. Key advances include efficient collision handling, proper accounting of surface friction, and implementation of weak non-gravitational forces that may play a critical role in the evolution of surface regolith.

Many parameters are uncertain, even if critical information and constraints may come out from the analysis of space missions (see, for instance, Richardson et al. 2007). However, new interest in sample return from and possible human exploration of small asteroids is spurring development of laboratory and computer experiments that may ultimately shed light on the weathering processes being discussed here. We will devote a forthcoming paper to the implementation of the required numerical simulations and to the discussion of the results. Simulations being developed will allow a portion of the granular surface of an asteroid to be modeled as a collection of discrete, possibly non-spherical particles in resting contact. Impacts and/or seismic shaking of the region will be simulated to determine the extent of ejecta redistribution and overturning as a function of impactor size, speed, and incidence angle.

6 CONCLUSIONS AND FUTURE WORK

The purpose of the present series of papers is to establish a complete model of the space weathering processes for S-complex asteroids, in terms of a balance between the reddening due to weathering and the refreshment of the surface due to collisional processes, introducing also the possibility of a reduced refreshment arising from the reaccumulation of collisional ejecta. In this paper we have outlined the general features of the scenario and the most relevant uncertainties of the theory. In spite of these uncertainties, we have suggested a way to overcome the apparent conundrum of the relevant timescales coming out from the data. The suggested explanation is also -at least qualitatively- supported by a particular analysis of the data. However, the overall complexity of the impact/cratering/ejection/reaccumulation processes requires a more detailed analysis in terms of numerical simulations, which we intend to perform.

The realistic goal of this future study is a more quantitative estimate of the involved timescales, allowing a better general model and a more detailed statistical analysis of the data. However, we guess that the detailed interactions between external disturbances and the surface properties of any individual asteroid may lead to a wide spread of results. Their interpretation, and the related possibility of deriving some relevant surface properties for a given object, requires
very sophisticated modeling. In this sense, the verification or falsification of the suggestions presented in the last Section may be of some preliminary use. Finally, we remark that a reliable model of space weathering of asteroids is not only interesting per se, but also represents a fundamental step to understanding the overall surface evolution of asteroids, including collisions, thus cratering and erosion, formation of regolith layers, and so on.

Figure 1. A slope-exposure relation corrected for chemical composition, based on the data of Vernazza et al. (2009). Average NEA datapoints are also included (triangles), represented with its nominal age as estimated in Marchi et al. (2006a, 2006b) and Paolicchi et al. (2007). The three points correspond to the nominal mean slope, to the same data corrected for the perihelion term (labeled as “pcs”), and also with a further compositional correction due to the different mean value of the olivine-pyroxene parameter between MBAs and NEAs (labeled as “pcs+ccs”); See text for further details.

ACKNOWLEDGMENTS
DCR acknowledges support from the National Aeronautics and Space Administration under Grant No. NNX08AM39G issued through the Office of Space Science. PP has been funded by ASI. Authors are grateful to the referee M.J. Gaffey for useful comments.

REFERENCES
Binzel, R.P., Morbidelli, A., Merouane, S., DeMeo, F.E., Birlan, M., Vernazza, P., Thomas, C.A., Rivkin, A.S., Bus, S.J., Tokunaga, A.T., Earth encounters as the origin of fresh surfaces on near-Earth asteroids, Nature, 463, 331–334 (2010).
Bottke Jr., W.F.; Durda, D.D.; Nesvorný, D.; Jedicke, R.; Morbidelli, A.; Vokrouhlický, D.; Levison, H., The fossilized size distribution of the main asteroid belt, Icarus, 175, 111–140 (2005).
Burbine, T. H., McCoy, T. J., Meibom, A., Gladman, B., & Keil, K. Meteoritic Parent Bodies: Their Number and Identification. Asteroids III, W. F. Bottke Jr., A. Cellino, P. Paolicchi, and R. P. Binzel (eds), University of Arizona Press, Tucson, p.653-667 (2002).
Chapman, C.R. and Salisbury J.W., Comparisons of me-
Figure 2. Main belt asteroids cumulative size-frequency distributions according to Bottke et al. (2005) model (solid black), to SUBARU observations (green, significant only for bodies larger than 1 km, Yoshida et al. 2007), and to the analytic Donnanyi relation (red). All curves are normalized at 5 km.

Figure 3. The exposure-corrected slope for the S-complex main belt asteroids as a function of size. The sample is limited and incomplete at the small size end, due to observational biases. Red dots indicate average slope values for binned intervals of asteroid sizes. A best fit has been performed with a linear trend increasing up to 20 km and a following decrease. Both trends are statistically significant. See text for discussion.

of the solar system: A review of strength theories and their implementation for analyses of impact disruptions, Planetary and Space Science, 57, 127–141 (2009).

Jedicke, R.; Nesvorný, D.; Whiteley, R.; Ivezić, Z.; Jurić, M., An age–colour relationship for main–belt S–complex asteroids, Nature, 429, 275–277 (2004).

Lazzarin, M., Marchi, S., Moroz, L. V., Brunetto, R., Magrin, S., Paolicchi, P., & Strazzulla, G., Space Weathering in the Main Asteroid Belt: The Big Picture, ApJL, 647, L179 (2006).

Marchi, S., Brunetto, R., Magrin, S., Lazzarin, M., & Gandolfi, D. Space weathering of near-Earth and main belt silicate-rich asteroids: observations and ion irradiation experiments. A&A 443, 769-775 (2005).

Marchi, S., Paolicchi, P., Lazzarin, M., and Magrin, S. A General Spectral Slope-Exposure Relation for S-Type Main Belt and Near-Earth Asteroids. AJ 131, 1138-1141 (2006a).

Marchi, S., Magrin, S., Nesvorný, D., Paolicchi, P., and Lazzarin, M. A spectral slope versus perihelion distance correlation for planet-crossing asteroids. MNRAS 368, L39–42 (2006b).

Marchi, S., De Sanctis, M. C., Lazzarin, M., & Magrin, S., On the Puzzle of Space Weathering Alteration of Basaltic Asteroids, ApJL, 721, L172 (2010).

Melita, M.D., Strazzulla, G, and Bar-Nun, A., Collisions, cosmic radiation and the colors of the Trojan asteroids, Icarus 203, 134–139 (2009).
I. Collisional evolution and reddening of asteroid surfaces

Nesvorný, D.; Vokrouhlický, D., New Candidates for Recent Asteroid Breakups, AJ, 132, 1950–1958 (2006).

O’Brien D.P., Greenberg, R., Richardson, J.E., Craters on asteroids: Reconciling diverse impact records with a common impacting population, Icarus 183, 79–92 (2006).

Paolicchi P., Marchi S., Nesvorný D., Magrin S., and Lazzarini M. Towards a general model of space weathering of S-complex asteroids and ordinary chondrites. A&A 464,1139-1146 (2007).

Paolicchi, P., Marchi, S., Lazzarini, M., and Magrin, S. Collisional timing of asteroids space weathering: A first approach. P&SS 57, 216–220 (2009).

Pieters, C. M.; Taylor, L. A.; Noble, S. K.; Keller, L. P.; Hapke, B.; Morris, R. V.; Allen, C. C.; McKay, D. S.; Wentworth, S., Space Weathering on Asteroids: A Mystery Resolved with Lunar Samples, Meteoritics & Planetary Science,35, Suppl., A127 (2000).

Richardson, D.C., Walsh, K.J., Murdoch, N., Michel, P., Numerical simulations of granular dynamics: I. Hard-sphere discrete element method and tests. Icarus 212, 427-437 (2011).

Richardson, J.E., Melosh, H. J., Lisse, C. M. and Carcich, B., A ballistics analysis of the Deep Impact ejecta plume: Determining Comet Tempel 1’s gravity, mass, and density, Icarus, 190, 357–390 (2007).

Sánchez, P., Scheeres, D. J., Simulating asteroid rubble piles with a self-gravitating soft-sphere distinct element method model. Astrophys. J. 727, 120 (2011).

Stoffler, D.; Ryder, G., Stratigraphy and Isotope Ages of Lunar Geologic Units: Chronological Standard for the Inner Solar System, Space Science Reviews, 96, Issue 1/4, 9–54 (2001).

Strazzulla, G.; Dotto, E.; Binzel, R.; Brunetto, R.; Barucci, M. A.; Blanco, A.; Orofino, V., Spectral alteration of the Meteorite Epinal (H5) induced by heavy ion irradiation: a simulation of space weathering effects on near-Earth asteroids, Icarus, 174, 31–35 (2005).

Vernazza, P., Binzel, R. P., Thomas, C. A., DeMeo, F. E., Bus, S. J., Rivkin, A. S., & Tokunaga, A. T., Compositional differences between meteorites and near-Earth asteroids, Nature, 454, 858 (2008).

Vernazza, P., Binzel, R.P., Rossi, A., Fulchignoni, M., and Birlan, M., Solar wind as the origin of rapid reddening of asteroid surfaces. Nature 458, 993-995 (2009).

Yoshida, F., & Nakamura, T., Subaru Main Belt Asteroid Survey (SMBAS)Size and color distributions of small main-belt asteroids, PSS, 55, 1113 (2007).

Willman, M., Jedicke, R., Nesvorný, D.,Moskovitz, N., Ivezić, Z., Fevig, R., Redetermination of the space weathering rate using spectra of Iannini asteroid family members. Icarus, 195, 663–673 (2008).

Willman, M., Jedicke, R., Moskovitz, N., Nesvorný, D., Vokrouhlický, D., Mothe-Diniz, T. Using the youngest asteroid clusters to constrain the space weathering and gardening rate on S–complex asteroids. Icarus, 208, 758–772 (2010).

Willman, M., & Jedicke, R., Asteroid age distributions determined by space weathering and collisional evolution models, Icarus, 211, 504 (2011).