Abstract

There are different algorithms for vocal fold pathology diagnosis. These algorithms usually have three stages which are Feature Extraction, Feature Reduction and Classification. While the third stage implies a choice of a variety of machine learning methods, the first and second stages play a critical role in performance and accuracy of the classification system. In this paper we present initial study of feature extraction and feature reduction in the task of vocal fold pathology diagnosis. A new type of feature vector, based on wavelet packet decomposition and Mel-Frequency-Cepstral-Coefficients (MFCCs), is proposed. Also Principal Component Analysis (PCA) is used for feature reduction. An Artificial Neural Network is used as a classifier for evaluating the performance of our proposed method.

References

- Alonso, J. B., Leon, J. D., Alonso, I. and Ferrer, M. A. 2001. Automatic Detection of Pathologies in the Voice by HOS Based Parameters. EURASIP Journal on Applied Signal Processing, 2001:4, 275-284.
- Ceballos, L. G., Hansen, J. and Kaiser, J. 2005. A Non-Linear Based Speech Feature
An ANN-based Method for Detecting Vocal Fold Pathology

- Ceballos, L. G., Hansen, J. and Kaiser, J. 1996. Vocal Fold Pathology Assessment Using AM Autocorrelation Analysis of the Teager Energy Operator. ICSLP-1996 Proc., 757-760.

- Adnene, C. and Lamia, B. 2003. Analysis of Pathological Voices by Speech Processing. Signal Processing and Its Applications. 2003 Proc., 1(1): 365-367.

- Manfredi, C. 2000. Adaptive Noise Energy Estimation in Pathological Speech Signals. IEEE Trans. Biomedical Engineering, 47(11):1538-1543.

- Llorente, J. I. G. and Vilda, P. G. 2004. Automatic Detection of Voice Impairments by Means of Short-Term Cepstral Parameters and Neural Network Based Detectors. IEEE Trans. Biomedical Engineering, 51(2):380-384.

- Rosa, M. D. O, Pereira, J. C. and Grellet M. 2000. Adaptive Estimation of Residue Signal for Voice Pathology Diagnosis. IEEE Trans. Biomedical Engineering, 47(1): 96-104.

- Mallat, S. G. 1989. A Theory for Multi-resolution Signal Decomposition: the Wavelet Representation. IEEE Trans Pattern Analysis and Machine Intelligence, 11(7):674-693.

- Majidnezhad, V. and Kheidorov, I. A Novel Method for Feature Extraction in Vocal Fold Pathology Diagnosis. In the Proceeding of the 3rd International Conference on Wireless Mobile Communication and Healthcare. 2012, in press.

- Wallen, E. J. and Hansen, J. H. 1996. A Screening Test for Speech Pathology Assessment Using Objective Quality Measures. ICSLP 96. Proc., 2: 776-779.

- Chen, W., Peng, C., Zhu, X., Wan, B. and Wei, D. 2007. SVM-based identification of pathological voices. Proceedings of the 29th Annual International Conference of the IEEE EMBS.

- Go´mez, P., D?´az, F., A´lvarez, A., Murphy, K., Lazaro, C., Martinez, R. and Rodellar, V. 2005. Principal component analysis of spectral perturbation parameters for voice pathology detection. Proceedings of the 18th IEEE Symposium on Computer-Based Medical Systems, pp. 41–46.

- Michaelis, D., Frohlich, M. and Strube, H. W. 1998. Selection and combination of acoustic features for the description of pathologic voices. Journal of the Acoustical Society of America, 103, 1628–1639.

- Marinaki, M., Kotropoulos, C., Pitas, I. and Maglaveras, N. 2004. Automatic detection of vocal fold paralysis and edema. Proceedings of Eighth International Conference on Spoken Language Processing—ICSLP.

- Majidnezhad, V. and Kheidorov, I. 2012. A HMM-Based Method for Vocal Fold Pathology Diagnosis. IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 2, 135-138.

- Li, T., Oginara, M. and Li, Q. 2003. A comparative study on content based music genre classification. In the Proc. Of the 26th annual int. ACM SIGIR conf. on Research and development in information retrieval, pp. 282–289.

- Tzanetakis, G. and Cook, P. 2002. Musical genre classification of audio signals. IEEE Trans. on Speech and Audio Processing, vol. 10, no. 5, pp. 293-302.

- Kukharchik, P., Martynov, D., Kheidorov, I. and Kotov, O. 2007. Vocal fold pathology detection using modified wavelet-like features and support vector machines. 15th European Signal Processing Conference (EUSIPCO 2007), 2214-2218.

- Cavalcanti, N., Silva, S., Bresolin, A., Bezerra, H. and Guerreiro, A. 2010.
An ANN-based Method for Detecting Vocal Fold Pathology

Comparative Analysis between Wavelets for the Identification of Pathological Voices. Proceedings of the 15th Iberoamerican congress conference on Progress in pattern recognition, image analysis, computer vision, and applications.

- Herisa, H. K., Aghazadeh, B. S. and Bahrami, M. N. 2009. Optimal feature selection for the assessment of vocal fold disorders. Computers in Biology and Medicine, 39, 860-868.
- Fonseca, E., Guido, R. C., Pereira, J. C., Scalassarsa, P. R., Maciel, C. D. and Pereira, J. C. 2007. Wavelet time frequency analysis and least squares support vector machines for identification of voice disorders. Computers in Biology and Medicine, 37, 571–578.
- Guido, R. C., Pereira, J. C., Fonseca, E., Sanchez, F. L. and Vierira, L. S. 2005. Trying different wavelets on the search for voice disorders sorting. Proceedings of the 37th IEEE International Southeastern Symposium on System Theory, pp. 495–499.
- Umapathy, K. and Krishnan, S. 2005. Feature analysis of pathological speech signals using local discriminant bases technique. Medical and Biological Engineering and Computing, 43, 457–464.
- Lee, K. Y., Cha, Y. T. and Park, J. H. 1992. SHORT-TERM LOAD FORECASTING USING AN ARTIFICIAL NEURAL NETWORK. Transactions on Power Systems, Vol. 7, No. 1, pp. 124-132.

Index Terms

Computer Science

Neural Networks

Keywords

Wavelet Packet Decomposition
Mel-Frequency-Cepstral-Coefficient (MFCC)
Principal Component Analysis (PCA)

Artificial Neural Network (ANN)