RESEARCH ARTICLE

HAEMATOLOGICAL PROFILE OF SEVERE ACUTE MALNOURISHED CHILDREN ADMITTED AT OUR INSTITUTION

Dr. Sushil Kumar Bakolia¹, Dr. Dinesh Kumar Barolia², Dr. Renu Agarwal¹ and Dr. P.K. Berwal¹
1. Department of Paediatric Medicine, Sardar Patel Medical College and Associated Group of Hospital, Bikaner (Rajasthan).
2. Assistant Professor, Department of Paediatric surgery, J.L.N. Medical College, Ajmer, Rajasthan, India.

Manuscript Info

Abstract

Background: Severe acute malnourished children are prone to deranged pathophysiology. Their haematological profile affected mild to severe degree. Our study was done to observe the haematological profile of severe acute malnourished children admitted at P.B.M. Hospital Bikaner, Rajasthan.

Material And Methods: This prospective observational study was designed for severe acute malnourished 178 children. Duration of this study was one year from 01.01.2013 to 31.12.2013. This study was done in special concern of haematological profile of severe acute malnourished children.

Results: Our study showed that oedematous malnourished children had anaemia more common than non-oedematous malnourished children. Microcytic hypochromic anaemia and dimorphic anaemia were more common in non-oedematous and oedematous malnourished children.

Conclusion: We concluded that Microcytic hypochromic anaemia and dimorphic anaemia is common in severe acute malnourished children. So, our primary target should be prevent malnourishment and secondary should be early diagnosis and management of sequelae by proper monitoring to avoid complications.

Corresponding Author: Dr. Sushil Kumar Bakolia
Address: Department of Paediatric Medicine, Sardar Patel Medical College and Associated Group of Hospital, Bikaner (Rajasthan).

Introduction:-
Malnourishment is more prevalent in under developed and developing countries. Malnourished children have micronutrient deficiency also. Overall these severe acute malnourished children got altered genesis of hematopoietic cells by depletion of progenitor cells and leads to anaemia [1]. Malnutrition is the major health problem for under five years children not only in India other countries of world. Malnourishment affects multi-organ physiology. In malnourished children haematopoiesis affected by autophagy mechanism, decreased haematopoietic cell growth, and altered extracellular matrix or vascular nodules. These changes lead to decrease red blood cell and white blood cell formation and compromised immune response. Thus these immune compromised children more prone for infection and mortality [2]. Anaemia in malnourished children is due to poor intake of food, indirectly poor intake of macro or micronutrients. This leads to children live in deficient condition and body physiology adapt by compromising the haematological profile with poor immune system [3].
Material and Methods:
This is a prospective observational study. We did this study in department of paediatric medicine, at Sardar Patel Medical College and Associated Group of Hospitals, Bikaner (Rajasthan). This study was done from 01.01.2013 to 31.12.2013. We enrolled 178 severe acute malnourished children for this study according to WHO definition.

We collect the data related to nourishment of children. We record the anthropometry, mile stone development, mid arm circumference, breast feeding pattern, weaning pattern, parental care history, types of food given, and base line blood investigations. Special concern in complete blood count (CBC), peripheral blood film (PBF), and mean haematological values.

Results:
In this study 145 (81.46%) children were anaemic. Out of 145 sixteen children (8.99%) were severe anaemic and mild anaemia was present in 72 children (40.45%). There were 31 children who had oedematous malnourishment. Anaemia was more common in oedematous malnutrition (93.55%, p<0.05) with more severity (p<0.01, median hemoglobin 5.7 gm%, range 2.59 – 12.4).

Our study shows that among total 145 anaemic SAM children, Microcytic hypochromic anaemia and dimorphic anaemia were more common. There was no significant difference in distribution of anaemia (RBC Morphology) in oedematous and non-oedematous malnutrition.

There were no significant difference of (Total leucocyte count, platelet Count, hematocrit value, mean corpuscular volume, mean corpuscular haemoglobin, mean corpuscular haemoglobin concentrator, erythrocyte sedimentation rate, Reticulocytes count, red cell distribution width) mean hematological values between oedematous and non- oedematous malnutrition.

There were no significant differences of mean biochemical values between oedematous and non oedematous malnutrition children in this study.

Table 1: Showing presence of anaemia among study group.

Anaemia	Total	%	Non Oedematous	Oedematous	χ^2	P value
	No.	%	n = 147	n = 31		
Severe (< 4gm/dl)	16	8.99	9	7	8.477	<0.01
Moderate (4-7gm/dl)	57	32.02	44	13	1.695	>0.05
Mild (7.1-10gm/dl)	72	40.45	63	9	2.031	>0.05
Total	145	81.46	116	29	3.631	<0.05
Mean	8	8.48	5.70			

Table 2: Distribution of anaemia in study population according PBF expert with relation to nutritional diagnosis.

Anaemia	Total (n=145)	%	Non oedematous	Oedematous	
Microcytic hypochromic	69	38.76	58	11	35.48
Dimorphic	45	25.28	37	8	25.80
Megaloblastic	19	10.67	16	3	9.68
Normocytic hypochromic	11	06.18	9	2	6.45
Microcytic normochromic	1	0.68	1	0	3.22

Table 3: Mean values of hematological profile of study group.

Signs of malnutrition (unit)	Non Oedematous	Oedematous	Reference values (range)
Haemoglobin (gm/dl)	8.13 ± 2.46	8.39 ± 2.76	12 - 15
TLC (cells/mm3)	11,526.93 ± 7075.15	8912.00 ± 3719.78	4.11 X 103
Platelet Count (lac/ltr)	2.96 ± 2.01	1.63 ± 1.29	1.5 - 4.1
Table 4: Comparative table of mean hematological values of this study group with Arya AK, Dwivedi D, Khan S, et al. studies.

Parameters	Presenting study	Arya AK, et. al (2017)	Dwivedi D, et. al (2017)	Khan S, et. al (2020)
Haemoglobin (gm/dl)	8.13 ± 2.46	7.17 ± 2.265	8.94 ± 0.26	8.703 ± 1.9271
TLC (10^3 x cells/mm^3)	11.5 ± 7.0	12.1 ± 1.1	10.7 ± 7.0	11.9 ± 4.3
Platelet Count (lac/ltr)	2.96 ± 2.01	2.89 ± 1.32	2.74 ± 0.02	3.24 ± 2.07
HCT (%)	26.34 ± 7.44	21.27 ± 6.63	26.74 ± 0.79	20.17 ± 2.13
MCV (Femtoliter)	79.76 ± 17.42	73.70 ± 14.85	84.1 ± 1.94	72.70 ± 13.90
MCH (Pictogram)	25.01 ± 6.29	25.00 ± 5.85	28.86 ± 0.82	24 ± 5.25
MCHC (gm/dl)	30.23 ± 4.13	33.36 ± 3.00	34.45 ± 0.64	32.34 ± 2.9
ESR (mm/hr)	27.52 ± 19.94	-	-	-
Reticulocytes count (%)	0.70 ± 0.58	-	-	-
RDW (Femtoliter)	55.12 ± 14.97	39.62 ± 78.08	22.89 ± 0.75	-

Table 5: Mean Values of Haematological Profile of study group.

Parameters	Nutritional Diagnosis	Unit	
	Non Oedematous	Oedematous	
RBS	Mean ± SD	Mean ± SD	mg/dl
Blood Urea	73.38 ± 18.85	71.68 ± 17.55	
Serum Creatinine	35.05 ± 26.97	35.77 ± 21.75	mg/dl
SGOT	0.88 ± 0.34	0.94 ± 0.72	mg/dl
SGPT	43.78 ± 64.39	49.23 ± 65.89	IU/L
Total Protein	40.27 ± 42.63	48.21 ± 47.69	IU/L
Serum Albumin	6.68 ± 0.46	5.75 ± 0.89	gm/dl
Cholesterol	3.53 ± 0.43	2.98 ± 0.68	gm/dl
Calcium	148.79 ± 32.11	151.16 ± 28.41	mg/dl
Alkaline. Phosphate	9.74 ± 0.83	9.58 ± 0.76	mg/dl
Sodium	237.52 ± 168.51	246.35 ± 137.64	IU/L
Potassium	134.29 ± 6.44	129.64 ± 5.38	mEq/L
	3.69 ± 0.71	3.41 ± 0.84	mEq/L

Discussion:
Malnutrition is a global health problem. It affects the physical and mental health of children of nation. In North West Rajasthan children below 2 years are more affected population of severe acute malnourishment. There are various factors that affect the nutritional status of children in North West Rajasthan. These are lack of knowledge in caregivers about feeding and weaning, poor hygiene, low socio-economic and education status [4].

Anaemia is the most commonly associated morbidity in severe acute malnourished children of this study. This study showed that total 145 children (81.46%) out of 178 have anaemia. Similar finding was found in Thakur et al study, in which 81.1% children were anaemic [5]. In our study severe anaemia was present in 16 children (8.99%). 72 children (40.45%) had mild anaemia. Anaemia is common in oedematous severe acute malnourished children (29.93.55%, n=31) than non-oedematous children (116, 78.91%, n=147).
We compare our results with three studies (Arya AK et al. 2017, Dwivedi D et al. 2017, Khan S et al. 2020) done at different area in severe acute malnourished children [6,7,8]. All comparative data were shown in table 4. We found that mean haemoglobin in all study and our study is 7 to 8 gm%. We found that all red cell indices were decrease in our study and similar results were found Arya AK et al., Dwivedi D et al., Khan S et al. studies. White cell counts were normal in all studies including this study [6,7,8]. Anaemia is the common comorbidity associated with severe acute malnourished children nearly all patients. They were moderate to severe anaemic [9]. We found 145 (81.46%) children out of 178 were anaemic. They were mild to moderate anaemic in our study. Saka AO et al. in 2012 concluded in their study that Children with protein energy malnutrition had altered haematological profile. They had low haemoglobin, hematocrit, MCV, MCHC, MCH and platelets. White blood cell count was higher in their study [10]. Our study showed low haemoglobin, hematocrit, MCV, MCHC, MCH and platelets. But, white blood cell counts were with in normal limits.

Conclusion:
we found that anaemia is the commonly associated comorbidity in severe acute malnourished children. This is due to deficient micro and macro nutrient intake. We concluded that Microcytic hypochromic anaemia and dimorphic anaemia is common in severe acute malnourished children. So, our primary target should be prevent malnourishment and secondary should be early diagnosis and management of sequelae by proper monitoring to avoid complications.

References:
1. Borelli P, Barros FEV, Nakajima K, Blatt SL, Beutler B, Pereira J. et al. Protein-energy malnutrition halts hemopoietic progenitor cells in the G0/G1 cell cycle stage, thereby altering cell production rates. Braz J Med Biol Res. 2009;42(6):523–530.
2. Santos EW, Oliveira DC, Silva GB, Tsujita M, Beltran JO, Hastreiter A, Fock RA, Borelli P. Hematological alterations in protein malnutrition. Nutr Rev. 2017 Nov 1;75(11):909-919.
3. Kraemer K, Zimmermann MB. Nutritional anaemia. Sight and life press;2007:228.
4. Bakolia SK, Agarwal R, Tanwar GS, Barolia DK, Bithu KS, Saini TC. Demographic study of severe acute malnourished children at our institution. International journal of scientific research. 2021;10(5):19-22.DOI : 10.36106/ijsr
5. Thakur N, Chandra J, Pendle H, Singh V. Anaemia in severe acute malnutrition. Nutrition. 2014;30(4):440-2
6. Arya AK, Kumar P, Midha T, Singh M. Hematological profile of children with severe acute malnutrition: a tertiary care centre experience. Int J Contemp Pediatr 2017;4:1577-80.
7. Dwivedi D, Singh V, Singh J, Sharma S. Study of Anaemia in Children with Severe Acute Malnutrition. J Nepal Pediatr Soc. 2017;37(3):250-3.
8. Khan S, Rubab Z, Hussain S, Abbas A, Arshad R, Tareen MBK. Hematological profile of children with severe acute malnutrition at the Tertiary care hospital in Multan. Isra Med J. 2020; 12(1): 12-16.
9. Shah S, Prajapati N. Anaemia among SAM children and its effect on outcome in nutritional rehabilitation centre at tertiary care centre of Gujarat. MedPulse International Journal of Pediatrics. November 2020; 16(2): 21-24.
10. Saka AO, Saka MJ, Ojuawo A, Abdulkarim A, Bilamin S, Latubosun L. Haematological profile in children with protein energy malnutrition in North Central Nigeria. Glob J Med Res. 2012;12(4):1-7.