Demographics of the injury pattern in severely injured patients with an associated clavicle fracture: a retrospective observational cohort study

Jacqueline JEM van Laarhoven1*, Steven Ferree1, R Marijn Houwert2, Falco Hietbrink1, Egbert Jan MM Verleisdonk2 and Luke PH Leenen1

Abstract

Background: Despite an increasing interest in the treatment of clavicle fractures, this is still a not yet defined area in severely injured patients as most studies exclude these patients. Analyzing fracture type and evaluate accompanying injuries can provide valuable information in an early stage of trauma care.

Objective: To identify prevalence, fracture type and accompanying injuries of clavicle fractures in the severely injured patient.

Methods: We included all severely injured patients (ISS ≥ 16) with a clavicle fracture from January 2007 - December 2011. We prospectively collected data about demographics, injuries, trauma mechanism and mortality. Fractures were classified using the Robinson classification.

Results: A total of 1534 patients had an ISS ≥ 16, of which 164 (10.7%) patients had a clavicle fracture. Traffic related accidents were the main cause of injury (65%). Most fractures were midshaft fractures (66.5%) of which 56% were displaced. Seven patients were treated operatively. There was no significant difference in ISS between the three fracture types. 83% of the patients sustained additional injury to the head and neck; the most prevalent injuries were skull or skull base fractures (41.5%) and maxillofacial fractures (29%). Furthermore 77% of the patients had additional thoracic injury; the most prevalent injuries were rib fractures (59%) and a pneumothorax (38%). The mortality rate was 21.4%.

Conclusion: A clavicle fracture was present in more than 10% of the severely injured patients. Displaced midshaft clavicle fractures were the most common type of fracture. Additional injuries to the head and neck region occurred in 83% of the patients and thoracic injuries occurred in 77% of the patients.

Keywords: Clavicle fracture, Trauma care, ISS, Severely injured, Associated injury pattern

Introduction

Clavicle fractures account for approximately 5% of all fractures. Most often it concerns a midshaft clavicle fracture (80%) of which 50% is dislocated [1,2]. In the past years there has been increasing interest in the treatment of clavicle fractures, especially in the midshaft fractures. However, most studies evaluating treatment of clavicle fractures exclude severely injured trauma patients [3,4]. Therefore the clavicle fracture in the severely injured patient is a not yet defined area.

Advanced Trauma Life Support (ATLS) principles advocate that in all severely injured trauma patients a chest x-ray is made to identify potential thoracic injuries [5]. Treatment-dictating injuries are frequently missed at the chest x-ray as 50% of all rib fractures and a significant number of hemato- and pneumothorax are not identified [6,7]. Clavicle fractures, on the other hand, can almost always be diagnosed at chest x-ray. Therefore it is
of great interest to analyze which accompanying injuries most frequently occur in severely injured patients with a clavicle fracture. These “expected” associated injuries can be taken into account in an early stage of trauma care for severely injured patients.

The aim of this study is to identify prevalence, fracture type and accompanying injuries of clavicle fractures in the severely injured patient.

Materials and methods

Patients included in this study were those admitted in a level 1 trauma center from January 2007 until December 2011. The organisation of trauma care in the Netherlands is based on the American model of trauma regionalization. The Netherlands is divided in 11 separate trauma regions, each region contains a level one trauma center [8].

In this study prospective data from the Dutch National Trauma Database (DNTD) for the area Central Netherlands were used. The DNTD contains documentation on all trauma patients that are treated at the emergency department and subsequently admitted. Data in the DNTD were collected in a standardized manner and include detailed information on demographics, trauma event and mechanism, primary trauma survey, initial treatment and injuries. Injuries were diagnosed at

Table 1 Demographics of the studied population of severely injured patients with a clavicle fracture

Clavicle fracture	Age overall (years)	Gender (M/F)	Trauma mechanism	Injured side (L/R/both)	HET* (%)	ISS **	Admission at Intensive Care Unit	Admission at Medium Care Unit	Direct transport to OR	Mortality	Mortality	During admission
	45.8 (± 21.9)	110/54	Traffic	92/70/2	115 (70.1%)	29.4 (± 10.4)	64 (39.0%)	40 (24.4%)	22 (13.4%)	2 (1.2%)	17 (10.4%)	16 (9.8%)
			Car									
			Motor									
			Bike									
			Sports									
			Fall									
			Other									

*Patients involved in an high energy trauma ** Injury of Severity Score.

Table 2 Robinson classification of clavicle fractures in severely injured patients

Robinson classification	No. of patients (% of population)	Mean age ± SD	Mean ISS* ± SD
1A	8 (4.9%)	33.9 (± 20.6)	36.3 (± 11.2)
1B	2 (1.2%)	60.0 (± 24.0)	27.5 (± 9.1)
2A	51 (31.1%)	48.9 (± 22.7)	29.2 (± 9.5)
2B	61 (37.2%)	39.5 (± 22.3)	29.8 (± 11.8)
3A	32 (19.5%)	57.5 (± 21.0)	29.0 (± 9.7)
3B	10 (6.1%)	51.3 (± 18.3)	23.7 (± 4.8)

*Injury of Severity Score.
primary survey, subsequent surgery or during admission. Thoracic and pelvic x-ray imaging were performed for all trauma patients and when indicated supplemented with ultrasound and computed tomography (CT). The database accuracy is constantly evaluated by two database managers.

All injuries were coded using Abbreviated Injury Scale (AIS) location codes allocated to one of the six body regions (head and neck, face, chest, abdomen, extremities and external) to calculate the Injury of Severity Score (ISS) [9]. Patients with a clavicle fracture were selected using AIS location codes. The ISS provides an overall score for patients with multiple injuries and is used to determine injury severity; 0 corresponds with no injury, the maximum score of 75 corresponds with injury leading to death [10]. Patients with an ISS ≥16, obtained from ≥2 AIS regions and physiological alterations due to the injuries are considered severely injured and were included in our analysis [11].

For these patients, age, gender, trauma mechanism, injured side, additional injuries, department of admission (Intensive care Unit, Medium Care Unit, Operation Room) and discharge facility were collected from the DNTD. In all patients trauma mechanism was analysed and determined if it was a high energy trauma. The ATLS definition for high energy trauma was used [5]. Furthermore death associated with the trauma was obtained from the electronic patient documentation (EPD).

To evaluate the clavicle fractures we used the imaging studies performed. These radiological tests allowed for clear images of the fracture and of possible dislocation in anterior-posterior or cranial-caudal direction.

Fractures were classified by the researchers (JL, SF and MH) using the Robinson classification. This classification divides the clavicle in a medial fifth (type 1), a diaphyseal part (type 2) and a lateral fifth (type 3). This is further divided by three other variables: intra-articular extent, degree of comminution, and degree of displacement [12].

Table 3 Treatment of clavicle fractures in severely injured patients treated at the University Medical Center Utrecht, classified by the Robinson classification

Robinson classification	Operative	Conservative
1A	0	8
1B	1	1
2A	0	50
2B	5	54
3A	0	32
3B	1	9
Total	7	154

Table 4 Additional injuries in severely injured patients per type of clavicle fracture

	Upper extremity	Lower extremity	Abdominal injury	Thorax injury	Face injury	Head & neck injury
Type I fracture (n = 10)	3 (30.0 %)	4 (40.0%)	4 (40.0%)	9 (90.0%)	1 (10.0%)	6 (60.0%)
Type II fracture (n = 112)	33 (29.7%)	36 (32.4%)	38 (34.2%)	88 (79.3%)	43 (38.7%)	90 (82.6%)
Type III fracture (n = 42)	7 (16.7%)	13 (31.0%)	11 (26.2%)	28 (66.7%)	16 (38.1%)	37 (88.1%)
No of patients (% of population)	43 (26.4 %)	53 (32.5%)	53 (32.5%)	125 (76.7%)	60 (36.8%)	133 (82.6%)
no significant difference in ISS between the three groups and no significant difference in ISS in patients with a displaced or non-displaced fracture.

In 7 patients, the clavicle fracture was treated operatively, the mean time was admission day 5 (range 1-11 days). All patients received plate fixation. In one case it concerned a type 1B fracture, in 5 cases a type 2B fracture and in one case a type 3B fracture. One patient was directly transferred and the remaining 153 patients were treated conservatively (Table 3).

Of all patients, 83% sustained additional injuries to head and neck. The most prevalent injury was a skull or skull base fracture (41.5%) followed by maxillofacial fractures in 29%. Seventy-seven percent had additional thoracic injuries (Table 4; Figure 2), 59% of the patients had rib fractures and 38% of the patients had a pneumothorax. There was no significant difference in displaced and undisplaced fractures concerning additional injuries.

Discussion
The main findings of this study were that 10% of all severely injured patients had a clavicle fracture and 21.4% of multitrauma patients with a clavicle fracture died during trauma care or admission. Midshaft clavicle fractures were most common and 44% of all fractures were displaced. Eighty-three percent of our patients had additional head and neck injuries and 77% had additional thoracic injuries.

Two large epidemiologic studies report incidence rates of clavicle fractures in the normal population between 2.6 and 4% [1,2]. Therefore clavicle fractures seem to occur at least twice as common in severely injured patients. In comparison to the study of Robinson et al, less fractures in our population were displaced. This difference might be explained by the fact that in severely injured patients, energy forces are distributed over the body. This is different compared to the direct energy on the clavicle in case of a single fracture [13,14]. Results of this study indicate that the clavicle is the gate-keeper of the thorax in severely injured patients. This hypothesis can be supported by the high rate of additional thoracic injuries.

The overall mortality of the study population was 21.4%, which includes deaths at the emergency room. Our results are similar to an abstract published by McKee et al, which showed that in multitrauma patients the presence of a clavicle fracture was found to be associated with a mortality rate of 32% (thirty-four of 105 patients), mainly due to concomitant chest and head injuries [15].

Previous studies have been performed to identify associated injury in patients with upper extremity injury. Analysis showed significantly more rib fractures (52.9%), lung injuries (47.1%) and spinal fractures (29.1%) in patients with scapula fractures [16]. Also a correlation
between shoulder girdle injuries and rates of head (31.5%), great vessel (3.9%) and thoracic injury (36.8%) has been described [17]. Compared to scapula and upper extremity injury a clavicle fracture is more likely to be identified on chest x-ray. Therefore clavicle fractures are a good predictor for additional injury and can be better identified and used in an early stage. Horst et al. found a correlation between a clavicle fracture and additional upper extremity injuries in polytrauma patients [18]. Therefore the clavicle fracture can also play an important role in the tertiary survey.

This study represents an analysis based on a prospective database, although retrospectively analyzed, and is one the first to analyze clavicle fractures in the severely injured patients. Because of the detailed description of all injuries, we were able to perform a profound analysis.

The DNTD includes patients who were treated at the Emergency Room of our hospital and subsequently admitted. Therefore patients with a clavicle fracture and an ISS ≥ 16 who were not admitted, are not included in our database. Considering the additional injuries in case of an ISS ≥ 16 we can safely assume that the number of patients we missed is small and this database provides a representative study population.

Conclusion

Clavicle fractures occur frequently (10%) in severely injured patients and 21.4% of the patients died during trauma care or admission. Midshaft clavicle fractures were most common and 44% of all fractures were displaced. Eighty-three percent of our patients had additional head and neck injuries and 77% had additional thoracic injuries.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors: 1) have made substantial contributions to conception and design, or acquisition of data, or analysis and interpretation of data; 2) have been involved in drafting the manuscript or revising it critically for important intellectual content; 3) have given final approval of the version to be published. JL: Study conception and design, acquisition of data, analysis and interpretation of data, drafting of manuscript. SF: Acquisition of data, analysis and interpretation of data, drafting of manuscript. MH: Study conception and design, analysis and interpretation of data, drafting of manuscript. FH: Study conception and design, analysis and interpretation of data, critical revision. LL: Study conception and design, critical revision of manuscript. All authors have given final approval for this manuscript to be published.

Author details

1Department of Surgery, University Medical Center Utrecht, Heidelberglaan 100, 3584, CX Utrecht, The Netherlands. 2Department of Surgery, Diakonessenhuis Utrecht, Bossboomstraat 1, 3582, KE Utrecht, The Netherlands.

References

1. Postacchini F, Gumina S, De Santis P, Albo F: Epidemiology of clavicle fractures. J Shoulder Elbow Surg 2002, 11(5):452–456.
2. Nordqvist A, Petersson C: The incidence of fractures of the clavicle. Clin Orthop Relat Res 1994, 300:127–132.
3. Wijdicks FJ, Houwert RM, Dijkgraaf MG, De Lange DH, Meyaerts SAG, Verhofstad MHJ, Verleidendonk EJIM: Rationale and design of the plate or pin (POP) study for dislocated midshaft clavicular fractures: study protocol for a randomised controlled trial. Trials 2011, 15(1):177.
doi:10.1186/1745-6215-12-177.
4. Steegeman SA, De Jong M, Sier CF, Krijnen P, Duifj JW, Van Thielt TP, De Rijke PAH, Soeeman NMR, Hagenas T, Boekhout FD, De Vries MR, Roukema GR, Tanka AFX, Van Den Bremer J, Van Der Meulen HGWM, Bronkhorst MWGA, Van Dijkman BA, Van Zutphen SWAM, Vos DI, Schep NWL, Eversdijk MG, Van Olden GDJ, Van Den Brand JGH, Hillen RJ, Frölke JPM, Schipper IIB: Displaced midshaft fractures of the clavicle: nonoperative treatment versus plate fixation (Sleutel-TRIAL). A multicentre randomised controlled trial. BMC Musculoskelet Disord 2011, 24(1):196.
5. American College of Surgeons: Advanced trauma life support for doctors. Student course manual. 7th edition. Chicago, IL: American College of Surgeons; 2004.
6. Aukema TS, Beerlen LF, Hiertbrink F, Leenen LPH: Initial assessment of chest X-ray in thoracic trauma patients: awareness of specific injuries. World J Radiol 2012, 4(2):48–52. doi:10.4329/wjr.v4i2.4248.
7. Livingston DH, Shogun B, John P, Laevy RF: CT diagnosis of Rib fractures and the prediction of acute respiratory failure. J Trauma 2008, 64(4):905–911. United States.
8. Spijkers ATE, Meyaerts SAG, Leenen LPH: Mortality Decreases by Implementing a Level I Trauma Center in a Dutch Hospital. J Trauma-Injury Infec Crit Care 2010, 69(3):1138–1142.
9. Committee on Injury Scaling: The Abbreviated Injury Scale. 1998, revision (AIS-98). Des Plaines (IL): Association for the Advancement of Automotive Medicine; 1998.
10. Baker SP, O’Neill B, Haddon W, Long WB: The injury severity score: a method for describing patients with multiple injuries and evaluating emergency care. J Trauma 1974, 14(3):187–196. United States.
11. American College of Surgeons: Resources for the Optimal Care of the Injured Patient. Chicago, IL: 1987.
12. Robinson CM: Fractures of the clavicle in the adult. Epidemiology and classification. J Bone Joint Surg Br 1998, 80(3):476–484.
13. Nowak J, Mallmin H, Larsson S: The aetiology and epidemiology of clavicular fractures. A prospective study during a two-year period in Uppsala, Sweden. Injury 2000, 31:536–358.
14. Stanley D, Trowbridge EA, Norris SH: The mechanism of clavicular fracture. A clinical and biomechanical analysis. J Bone Joint Surg Br 1988, 70(3):461–464.
15. McKeel MD, Schemitsch EH, Stephen DJ, Kredier HJ, Yoo D, Harrington J: Functional outcome following clavicle fractures in polytrauma patients [abstract]. J Trauma 1999, 47:516.
16. Baldwin KD, Ohman-Strickland P, Mehta S, Humen E: Scapula fractures: a marker for concomitant injury? A retrospective review of data in the National Trauma Database. J Trauma 2008, 65(2):430–435. United States.
17. Gottschalk HP, Browne RH, Starr AJ: Shoulder girdle; patterns of trauma and associated injuries. J Orthop Trauma 2011, 25(5):266–271. United States.
18. Horst K, Dienstknecht T, Pfeifer R, Pichhammer M, Hildebrand F, Pape HC: Risk stratification by injury distribution in polytrauma patients – does the clavicle fracture play a role? Patient Saf Surg 2013, 7(1):23.