BOUNDARY VALUE PROBLEM FOR HYBRID GENERALIZED HILFER FRACTIONAL DIFFERENTIAL EQUATIONS

ABDELKRIM SALIM, BASHIR AHMAD*, MOUFAK BENCHOHRA AND JAMAL EDDINE LAZREG

Abstract. This manuscript is concerned with the existence of solutions for a class of boundary value problems for nonlinear fractional hybrid differential equations involving generalized Hilfer fractional derivative. The main result is based on a fixed point theorem due to Dhage, which is illustrated with examples.

Mathematics subject classification (2020): 34A08, 26A33, 34B15.

Keywords and phrases: Generalized Hilfer fractional derivative, boundary value problem, existence, hybrid fractional differential equations, fixed point.

REFERENCES

[1] S. ABBAS, M. BENCHOHRA, J. R. GRAEF, J. HENDERSON, Implicit Differential and Integral Equations: Existence and stability, Walter de Gruyter, London, 2018.
[2] S. ABBAS, M. BENCHOHRA, J. E. LAZREG, A ALSAEDY, Y. ZHOU, Existence and Ulam stability for fractional differential equations of Hilfer-Hadamard type, Adv. Difference Equ. (2017), Paper No. 180, 14 pp.
[3] S. ABBAS, M. BENCHOHRA, J. E. LAZREG, G. N’GUÉRÉKATA, Hilfer and Hadamard functional random fractional differential inclusions, Cubo 19 (2017), 17–38.
[4] S. ABBAS, M. BENCHOHRA, J. E. LAZREG, Y. ZHOU, A survey on Hadamard and Hilfer fractional differential equations: analysis and stability, Chaos Solitons Fractals 102 (2017), 47–71.
[5] S. ABBAS, M. BENCHOHRA, G. M. N’GUÉRÉKATA, Topics in Fractional Differential Equations, Springer-Verlag, New York, 2012.
[6] S. ABBAS, M. BENCHOHRA, G. M. N’GUÉRÉKATA, Advanced Fractional Differential and Integral Equations, Nova Science Publishers, New York, 2014.
[7] B. AHMAD, A. ALSAEDY, S. K. NTOUYAS, J. TARIBOON, Hadamard-type Fractional Differential Equations, Inclusions and Inequalities, Springer, Cham, 2017.
[8] B. AHMAD, S. K. NTOUYAS, Fractional differential inclusions with fractional separated boundary conditions, Fract. Calc. Appl. Anal. 15 (2012), 362–382.
[9] B. AHMAD, S. K. NTOUYAS, Initial value problems for hybrid Hadamard fractional differential equations, Electron. J. Differential Equations (2014), no. 161, 8 pp.
[10] R. ALMEIDA, A. B. MALINOWSKA, T. ODZIJEWICZ, Fractional differential equations with dependence on the Caputo–Katugampola derivative, J. Comput. Nonlinear Dynam 11 (2016), 1–11.
[11] D. BALEANU, Z. B. GÜVENÇ, J. A. T. MACHADO, New Trends in Nanotechnology and Fractional Calculus Applications, Springer, New York, 2010.
[12] Z. BAITICHE, K. GUERBATI, M. BENCHOHRA, Y. ZHOU, Boundary value problems for hybrid Caputo fractional differential equations, Mathematics (2019), 7, 282.
[13] M. BENCHOHRA, S. BOURIAH, M. BENCHOHRA, Y. ZHOU, Terminal value problem for differential equations with Hilfer-Katugampola fractional derivative, Symmetry, (2019), 11, 672.
[14] M. BENCHOHRA, J. E. LAZREG, Existence and Ulam stability for nonlinear implicit fractional differential equations with Hadamard derivative, Stud. Univ. Babes-Bolyai Math. 62 (2017), 27–38.
[15] C. DERBAZI, H. HAMMOUCHE, M. BENCHOHRA, Y. ZHOU, Fractional hybrid differential equations with three-point boundary hybrid conditions, Adv Difference Equ. (2019), Paper No. 125, 11 pp.
[16] B. C. Dhage, *On a fixed point theorem in Banach algebras with applications*, Appl. Math. Lett. 18 (2005), 273–280.

[17] K. Hilal, A. Kajouni, *Boundary value problems for hybrid differential equations with fractional order*, Adv. Difference Equ. (2015), 2015:183, 19 pp.

[18] U. Katugampola, *A new approach to a generalized fractional integral*, Appl. Math. Comput. 218 (2011), 860–865.

[19] D. S. Oliveira, E. Capelas de Oliveira, *Hilfer–Katugampola fractional derivatives*, Comput. Appl. Math. 37 (2018), 3672–3690.

[20] A. Salim, M. Benchohra, E. Karapinar, J. E. Lazreg, *Existence and Ulam stability for impulsive generalized Hilfer-type fractional differential equations*, Adv. Difference Equ. 2020, Paper No. 601, 21 pp.

[21] A. Salim, M. Benchohra, J. E. Lazreg, J. Henderson, *Nonlinear implicit generalised Hilfer-type fractional differential equations with non-instantaneous impulses in Banach spaces*, Adv. Theory Nonl. Anal. Appl. 4 (2020), 332–348.

[22] A. Salim, M. Benchohra, J. R. Graef, J. E. Lazreg, *Boundary value problem for fractional generalised Hilfer-type fractional derivative with non-instantaneous impulses*, Fractal Fract. (2021), 5 (1): 1.

[23] Y. Zhao, S. Sun, Z. Han, Q. Li, *Theory of fractional hybrid differential equations*, Comput. Math. Appl. 62 (2011), 1312–1324.