A ~0.2–solar–mass protostar with a Keplerian disk in the very young L1527 IRS system

John J. Tobin1, Lee Hartmann2, Hsin-Fang Chiang3,4, David J. Wilner5, Leslie W. Looney3, Laurent Loinard6,7, Nuria Calvet2 & Paola D’Alessio6

In their earliest stages, protostars accrete mass from their surrounding envelopes through circumstellar disks. Until now, the smallest observed protostar-to-envelope mass ratio was about 2.1 (ref. 1). The protostar L1527 IRS is thought to be in the earliest stages of star formation2. Its envelope contains about one solar mass of material within a radius of about 0.05 parsecs (refs 3, 4), and earlier observations suggested the presence of an edge-on disk5. Here we report observations of dust continuum emission and 13CO (rotational quantum number $J = 2 \to 1$) line emission from the disk around L1527 IRS, from which we determine a protostellar mass of 0.19 \pm 0.04 solar masses and a protostar-to-envelope mass ratio of about 0.2. We conclude that most of the luminosity is generated through the accretion process, with an accretion rate of about 6.6×10^{-7} solar masses per year. If it has been accreting at that rate through much of its life, its age is approximately 300,000 years, although theory suggests larger accretion rates earlier4, so it may be younger. The presence of a rotationally supported disk is confirmed, and significantly more mass may be added to its planet-forming region as well as to the protostar itself in the future.

The protostar L1527 IRS (hereafter L1527), at a distance of about 140 pc, is one of the nearest class 0 protostars; this is the earliest phase of the star formation process7, and we show a schematic diagram of a protostellar system in Fig. 1. Observations of dust continuum emission towards L1527 were obtained with the Submillimeter Array (SMA) and Combined Array for Millimeter-wave Astronomy (CARMA) at wavelengths of 870 μm, 1.3 mm and 3.4 mm, following up indications from previous Gemini results8 that L1527 harboured an edge-on disk. The 870-μm and 3.4-mm data are shown in Fig. 2 with sufficient resolution to resolve the emission from the disk midplane, finding it to be extended north–south, like the 3.8-μm dark lane. The observed disk is $\sim 180 \pm 12$ astronomical units (AU) in diameter (radius $R = 90$ AU), measured from inside the outer contour plotted in Fig. 2; the dust emission appears smaller than the mid-infrared dark lane because the lower-density outer disk is fainter than the sensitivity limit. (1 AU is the distance from the Earth to the Sun, 1.496 $\times 10^{13}$ cm.) Other studies did not conclusively detect disks around L1527 and other class 0 protostars because the spatial resolution was too low to distinguish the disk emission from the envelope and/or the disks were too small9,10. We estimate a disk mass of $0.007 \pm 0.0007 M_\odot$ from the 870-μm flux density ($F_{870\mu m} = 213.6 \pm 8.1$ mJy); details are given in Supplementary Information section 3. We consider this mass a lower limit because the adopted dust opacity is large (3.5 cm2 g$^{-1}$ at 850 μm), and we have not accounted for spatial filtering by the interferometer.

We observed the 13CO ($J = 2 \to 1$) molecular line transition with CARMA at a wavelength of 1.3 mm. This line traces the outflow in most class 0 protostars11; however, Fig. 3 shows that the 13CO emission primarily traces the inner envelope and disk in L1527. The outflow is detected at velocities less than ± 1 km s$^{-1}$, but does not affect our analysis (Supplementary Information section 2). The 13CO data have lower resolution than the 870-μm and 3.4-mm observations (1$''$, 140 AU); however, the positional accuracy of line emission is comparable to the resolution divided by the signal-to-noise ratio (typically 5 or higher), enabling us to determine the location of emission accurately in each velocity channel. Figure 3 shows the 13CO emission from the blueshifted and redshifted components to be on opposite sides of protostar, consistent with Keplerian rotation. The emission from the disk is most probably confined to ± 1; at larger radii and lower velocities we expect the flattened envelope to contribute to the kinematics, as shown by lower-resolution 13CO ($J = 1 \to 0$) observations12. The observations shown in Figs 2 and 3 as a whole provide definitive evidence for a large, rotationally supported disk in this class 0 protostellar system. Such a disk at this early phase may be inconsistent with some disk formation models that consider strong magnetic braking12,13; however, large disks can form at this stage in models with weak magnetic fields11,14,15, or if the magnetic field is not aligned with the rotation axis16.

Assuming that the disk is rotationally supported and that the mass of the protostar is dominant, we can use the position–velocity information from the molecular line data to determine the protostellar mass.

1National Radio Astronomy Observatory, Charlottesville, Virginia 22903, USA. 2Department of Astronomy, University of Michigan, Ann Arbor, Michigan 48109, USA. 3Department of Astronomy, University of Illinois, Urbana, Illinois 61801, USA. 4Institute for Astronomy and NASA Astrobiology Institute, University of Hawaii at Manoa, Hilo, Hawaii 96720, USA. 5Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138, USA. 6Centro de Radioastronomía y Astrofísica, UNAM, Apartado Postal 3-72 (Xangari), 58089 Morelia, Michoacán, Mexico. 7Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany.

©2012 Macmillan Publishers Limited. All rights reserved
This has been done for more evolved sources, but not for a class 0 protostar. To determine the mass, we measured the positional offset of the line emission relative to the protostar (1.3-mm continuum source) in each velocity channel (binned to 0.3 km s\(^{-1}\)) and the position–velocity data were fitted with a Keplerian rotation curve (velocity \(v = (GM/r)^{1/2}\), where \(G\) is the gravitational constant, \(M\) is the protostellar mass and \(r\) is the radius at which the velocity is being measured). These data are plotted in Fig. 4 and least-squares fitting yields a protostellar mass of \(0.19 \pm 0.04\ M_\odot\); the flattening of radius at velocities less than \(~1.5\) km s\(^{-1}\) can be attributed to the superposition of rotation velocities projected along the line of sight at large radii. We do not expect contributions from the envelope to affect the fit because its emission is at lower velocities and larger scales\(^1\). The almost edge-on nature of L1527 facilitates this analysis because the \(~85^\circ\) inclination\(^3,9\) does not significantly affect any calculations. Although the model fit in Fig. 4 is simplistic, it highlights the important physics of the problem, and the method is consistent with simulated observations of more complicated line radiative transfer models that require many assumptions (Supplementary Information section 4).

Masses have previously been estimated for binary Class 0 protostellar systems using proper motion measurements at very high resolution\(^20\), but with substantial uncertainty due to unconstrained orbital parameters. The primary uncertainty in our measurement is whether the protostellar mass is dominant over the disk/envelope mass at the scales we are probing. The disk mass of \(0.007\ M_\odot\) could be up to a few times higher owing to opacity uncertainties, and the envelope mass within \(R = 150\) AU is only expected to be \(~0.01\ M_\odot\), because most mass is on large scales. If we allow for a factor of four times higher disk and envelope masses, they would combine to contribute at most \(~35\%\) to the total mass. The kinematic effect of this additional mass should become apparent at larger disk radii, but the current data are insufficient to distinguish this effect. Moreover, the possibility of additional mass would only cause the protostellar mass to be underestimated.

The ratio of protostellar mass to envelope mass in L1527 is only \(~20\%\); all other protostellar systems with dynamical mass measurements from disk rotation have protostellar masses greater than twice the surrounding envelope mass\(^1\). Therefore, in contrast to these more evolved systems, L1527 will probably accumulate significantly more mass. Accreting protostars are expected to follow a ‘birthline’, with rising effective temperature and luminosity with increasing mass; the birthline is also the starting point of pre-main-sequence evolution once the protostar has stopped accreting significantly\(^21\). If L1527 is on the birthline, we can estimate its stellar parameters from the mass. We use the birthline model\(^21\) with an accretion rate of \(2 \times 10^{-6}\ M_\odot\) yr\(^{-1}\) for a \(0.19\ M_\odot\) protostar, this model gives a radius of \(1.7\ R_\odot\), an effective temperature of \(3,300\) K, and a luminosity of \(0.3\ L_\odot\). This indicates that \(~90\%\) of the protostar’s total luminosity \((2.75\ L_\odot)\); ref. 19) is supplied by accretion of mass onto the protostar. Thus, the accretion rate of the disk onto the protostar is \(~6.6 \times 10^{-7}\ M_\odot\) yr\(^{-1}\), assuming \(L_{\text{acc}} = GM\mu M_\ast\) (here \(L_{\text{acc}}\) is the luminosity generated by accretion, the protostellar system. The outflow direction is indicated by the red and blue arrows in a denoting the respective directions of the outflow. The white cross in c marks the central position of the disk from the SMA images. The contours in the 870-μm and 3.4-mm images start at three times the noise level and increase at this interval; the noise level is 5.0 mJy per beam and 0.24 mJy per beam for the SMA and CARMA data, respectively. The ellipses in the lower right corner of each image give the resolution of the observations, approximately 0.25" (a), 0.35" (b) and 0.35" (c). RA, right ascension; dec, declination.
and R is the radius of the protostar). If the protostar has been accreting at this rate throughout its life, its age is only $\sim 300,000$ yr, within the expected lifetime of the class 0 phase22. However, theoretical studies indicate that mass infall/accretion rates may be larger initially and decrease with time23; in addition, protostars are expected to have variable accretion rates24, so L1527 could be younger. The dynamical time of the 0.3 pc outflow (red and blue sides) as measured by a recent survey of the Taurus star-forming region is $\sim 30,000$ yr (ref. 24). This time, calculated from the outflow’s velocity and size, gives an estimate of the age of the outflow, a rough proxy for the protostellar age.

The detection of a proto-planetary disk and a measurement of protostellar mass have made L1527 one of the best characterized class 0 protostellar systems. Its high accretion rate is nearly a factor of 100 greater than those of the more evolved pre-main-sequence stars with disks; this rate is high enough to heat the inner disk to temperatures consistent with early Solar System conditions25. Although we cannot say definitively what L1527 will look like at the end of its formation phase, it does have the potential to gain as much mass as the Sun from its envelope and it already has a proto-planetary disk of at least seven Jupiter masses, similar to presumed planet-forming disks26. Therefore, L1527 already has all the elements of a solar system in the making.

Received 6 June; accepted 19 September 2012.

1. Takakuwa, S. et al. A Keplerian circumbinary disk around the protostellar system L1551 NE. Astrophys. J. 754, 52 (2012).
2. Andre, P., Ward-Thompson, D. & Barsony, M. Submillimeter continuum observations of Rho Ophiuchi A — the candidate protostar VLA 1623 and prestellar clumps. Astrophys. J. 406, 122–141 (1993).
3. Chandler, C. J. & Richer, J. S. The structure of protostellar envelopes derived from submillimeter continuum images. Astrophys. J. 530, 851–866 (2000).
4. Tobin, J. J. et al. Complex structure in class 0 protostellar envelopes. II. Kinematic structure from single-dish and interferometric molecular line mapping. Astrophys. J. 740, 45 (2011).
5. Tobin, J. J., Hartmann, L. & Loinard, L. The inner envelope and disk of L1527 revealed: Gemini L-band-scattered light imaging. Astrophys. J. 722, L12–L17 (2010).
6. Foster, P. N. & Chevalier, R. A. Gravitational collapse of an isothermal sphere. Astrophys. J. 416, 303–311 (1993).
7. Terebey, J. et al. PROSAC: a submillimeter array survey of low-mass protostars. I. Overview of program: envelopes, disks, outflows, and hot cores. Astrophys. J. 659, 479–498 (2007).
8. Maury, A. J. et al. Toward understanding the formation of multiple systems. A pilot IRAM-PCyB survey of Class 0 objects. Astron. Astrophys. 512, A40 (2010).
9. Andrews, S. M. & Williams, J. P. Circumstellar dust disks in Taurus-Auriga: the astrophysical perspective. Astrophys. J. 631, 1136–1160 (2005).
10. Arce, H. G. & Sargent, A. I. The evolution of outflow-envelope interactions in low-mass protostars. Astrophys. J. 646, 1070–1085 (2006).
11. Ohashi, N., Hayashi, M., Ho, P. T. P. &Momose, M. Interferometric imaging of IRAS 04368+2557 in the L1527 molecular cloud core: a dynamically inflating envelope with rotation. Astrophys. J. 475, 211–223 (1997).
12. Dapp, W. B. & Basu, S. Averting the magnetic braking catastrophe on small scales: disk formation due to Ohmic dissipation. Astron. Astrophys. 521, L56 (2010).
13. Hennebelle, P. & Fromang, S. Magnetic processes in a collapsing dense core. I. Accretion and ejection. Astron. Astrophys. 477, 9–24 (2008).
14. Yorke, H. W. & Bodenheimer, P. The formation of protostellar disks. III. The influence of gravitationally induced angular momentum transport on disk structure and appearance. Astrophys. J. 525, 330–342 (1999).
15. Vorobyov, E. I. Embedded protostellar disks around (sub-solar) protostars. I. Disk structure and evolution. Astrophys. J. 723, 1294–1307 (2010).
16. Joos, M., Hennebelle, P. & Ciardi, A. Protostellar disk formation and transport of angular momentum during magnetized core collapse. Astron. Astrophys. 543, A128 (2012).
17. Simon, M., Dutrey, A. & Guilloteau, S. Dynamical masses of T Tauri stars and calibration of pre-main-sequence evolution. Astrophys. J. 545, 1034–1043 (2000).
18. Jørgensen, K. E. et al. PROSAC: a submillimeter array survey of lower mass protostars. II. The mass evolution of envelopes, disks, and stars from the Class 0 through I stages. Astron. Astrophys. 507, 861–879 (2009).
19. Tobin, J. J., Hartmann, L., Calvet, N. & Álessio, P. Constraining the envelope structure of L1527 IRS: infrared scattered light modeling. Astrophys. J. 679, 1364–1384 (2008).
20. Rodriguez, L. F. et al. Very Large Array observations of proper motions in L1551 IRS 5. Astrophys. J. 583, 330–333 (2003).
21. Hartmann, L., Cassen, P. & Kenyon, S. J. Disk accretion and the stellar birthline. Astrophys. J. 475, 770–785 (1997).
22. Evans, N. J. et al. The Spitzer 24 μm legacy results: star-formation rates and efficiencies; evolution and lifetimes. Astrophys. J. 181 (Suppl.), 321–350 (2009).
23. Dunham, M. M., Evans, N. J., Terebey, S., Dullemond, C. P. & Young, C. H. Evolutionary signatures in the formation of low-mass protostars. II. Toward reconciling models and observations. Astrophys. J. 720, 470–500 (2010).
24. Narayanan, D., Snell, R. & Bemis, A. Molecular outflows identified in the FCRAO CO survey of the Taurus molecular cloud. Mon. Not. R. Astron. Soc. 425, 2641 (2012).
25. Bell, K. R., Cassen, P. M., Wasson, J. T. & Woolf, D. S. in Protostars and Planets IV (eds Mannings, V., Boss, A. P. & Russell, S. S.) 897–926 (Univ. Arizona Press, 2000).
26. Andrews, S. M., Wilner, D. J., Hughes, A. M., Qi, C. & Dullemond, C. P. Proto-planetary disk structures in Ophiuchus. II. Extension to fainter sources. Astrophys. J. 723, 1241–1254 (2010).
27. Tobin, J. J., Hartmann, L., Looney, L. W. & Chiang, H. Complex structure in class 0 protostellar envelopes. Astrophys. J. 712, 1010–1028 (2010).

Supplementary Information is available in the online version of the paper.

Acknowledgements We thank E. Bergin for comments on the manuscript and W. Kwon for discussions improving the data reduction. J.J.T. was supported by NASA through Hubble Fellowship grant HST-HF-51300.1-A awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS 5-26555. L.H. and J.J.T. acknowledge partial support from the University of Michigan. H.-F.C. was supported by NASA through the NASA Astrobiology Institute under cooperative agreement NNA09DA77A issued through the Office of Space Science. L.W.L. and H.-F.C. acknowledge support from the Laboratory for Astronomical Imaging at the University of Illinois and the NSF under grant AST-07-09206. P.D. acknowledges a grant from PAPIIT-UNAM. L.L. was supported by DGAPA, UNAM, CONACyT (México) and the Alexander-von Humboldt Stiftung. Support for CARMA construction was derived from the states of Illinois, California and Maryland, the James S. McDonnell Foundation, the Gordon and Betty Moore Foundation, the Kenneth T. and Eileen L. Norris Foundation, the University of Chicago, the Associates of the California Institute of Technology, and the NSF. Continuing CARMA development and operations are supported by the NSF under a cooperative agreement, and by the CARMA partner universities. The Submillimeter Array is a joint project between the Smithsonian Astrophysical Observatory and the Academia Sinica Institute of Astronomy and Astrophysics and is funded by the Smithsonian Institution and the Academia Sinica. The National Radio Astronomy Observatory is a facility of the NSF operated under cooperative agreement with Associated Universities, Inc.

Author Contributions J.J.T., H.-F.C., D.J.W. and L.W.L. participated in data acquisition and reduction. All authors contributed to the data analysis, discussed the results and commented on the manuscript.

Author Information Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests. Readers are welcome to comment on the online version of the paper. Correspondence and requests for materials should be addressed to J.J.T. (tobin@nrao.edu).

©2012 Macmillan Publishers Limited. All rights reserved