A ‘Plug and Play’ Platform for the Production of Diverse Monoterpenoid Hydrocarbon Scaffolds in *Escherichia coli*.

Nicole G. H. Leferink, Adrian J. Jervis, Ziga Zebec, Helen S. Toogood, Sam Hay, Eriko Takano, and Nigel S. Scrutton*
Supporting Information

Table of contents

Experimental Section
Bacterial strains and media ... 2
Construction of plasmids .. 2
Monoterpene production conditions, product capture and detection .. 3
Figure S1: Plasmid maps of pMVA and pBbB2a-trAgGPPS(co)-trMsl5 ... 4
Table S1: Strains used in this study .. 5
Table S2: Primers used in this study .. 6
Table S3: Monoterpene synthases used in this study .. 7
Table S4: Plasmids used in this study .. 8

Supporting Results
Figure S2: Limonene production titres in different E. coli strains .. 9
Figure S3: GCMS analysis of authentic monoterpenoid standards used in this study .. 10
Figure S4: GCMS analysis of monoterpenoid production strains .. 12
A) (-)aPinS_Pt .. 13
B) SLimS_Ms .. 14
C) RLimS_Cl .. 15
D) gTerS_Ov .. 16
E) (+)aPinS_Pt .. 17
F) CinS_Sf .. 18
G) (-)bPinS_Aa .. 19
H) GerS_Pc .. 20
I) CinS_At .. 21
J) FenS_Lv .. 22
K) SabS_Sp .. 23
L) aTerS_Mg .. 24
M) OciS_Am .. 25
N) CamS_SI .. 26
O) CinS_Cu .. 27
P) (-)aPinS_Ps .. 28
Q) CarS_Pa .. 29
R) GerS_Ob .. 30
S) GerS_Ct .. 31
T) RLinS_Aa .. 32
Table S5: Product profiles and monoterpenoid titres of production strains .. 33
Table S6: Overview of all linear monoterpenoids produced .. 34
Table S7: Overview of all monocyclic monoterpenoids produced .. 35
Table S8: Overview of all bicyclic monoterpenoids produced .. 36
Table S9: Overview of all additional terpenoids produced .. 37
Figure S5: Titres produced in the platform vs. previously published titres .. 38
Figure S6: Monoterpenoid, geranoid and farnesol titres for each strain .. 39

References ... 40
Experimental Section

Bacterial strains and media
All *E. coli* strains (Table S1) were routinely grown in Lysogeny Broth (LB) or on LB agar plates including antibiotic supplements as appropriate (ampicillin, 100 μg ml⁻¹; kanamycin, 50 μg mL⁻¹). Cloning and plasmid propagation was performed using *E. coli* α-Select (Bioline).

Construction of plasmids
To construct plasmid pMVA (Figure S1, panel A), the hybrid MVA pathway and *E. coli* idi (*Ecidi*), including 5' PlacUV5 was PCR amplified using primers MVA-F and MVA-R (Table S9) from pJBEI-6410[1]. The p15a origin of replication was similarly amplified using primers p15a-F and p15a-R and a kanamycin resistance cassette was amplified from pBbA1k-RFP[2] using primers kan-F and kan-R. These fragments were phosphorylated and assembled using the ligase cycling reaction with bridging oligos brMBAori, brorikan, crkanMVA (Table S2) as previously described[3].

pBbB2a-trAgGPPS(co)-trMsLS (Figure S1, panel B) was constructed by insertion of *Abies grandis* GPPS2 (GPPS_Ag) and *Mentha spicata* (limS_Ms) into plasmid pBbB2a-RFP[2]. The predicted plastidial signal sequence was removed from both LimS_Ms and GPPS_Ag, as previously reported[1, 4] and were codon-optimised for expression in *E. coli* (GeneArt, Life Technologies) and The Ribosome Binding Site Calculator[5] was used to design bespoke 5’ untranslated regions (UTRs) encoding a RBS sites for each gene (A.U.=15,000) and to remove any potential aberrant, mid-gene translational start sites (A.U.<1,000). The limS_Ms unit (including 5’ UTR) was flanked with HindIII and BamHI restriction sites and both gene units were synthesised together (GeneArt) flanked by EcoRI and XhoI restriction sites, for subcloning into pBbB2a-GFP.

For production of other monoterpenoids the limS_Ms gene was replaced by genes encoding various other monoterpen synthases (Table S3). Synthetic genes encoding monoterpen synthases without plastidial signal sequences were codon-optimised for expression in *E. coli* and sub-cloned into the Ncol-XhoI restriction sites of pETM-11 (a modified version of the pET24-b vector, Novagen), fused to a TEV protease cleavable N-terminal His₆-tag. Monoterpen synthase genes, including RBS, were amplified from the pETM-11 plasmids using primers pETM-11_Fw and pETM-11_Rv (Table S2). PCR fragments were cloned between the HindIII and BamHI sites of the pBbB2a-trAgGPPS(co)-trMsLS, thereby removing the original limS_Ms gene. The 3 geraniol synthase genes (GerS_Ob, GerS_PC and GerS_Ct) were cloned by Infusion (Takara) after PCR amplification (primer pairs trObGES_Fv-over / trObGES_Rv-over, trPcGES_Fv-over / trPcGES_Rv-over, trCtGES_Fv-over / trCtGES_Rv-over, Table S2) into plasmid pGPPSmTC/S15 which was PCR linearized (pLimS_inverse_rev/ pLimS_inverse_Fw, Table S2).

The control plasmid pBbGPPS, without mTC/S was constructed by amplification of the complete tp pSBC000339 plasmid except LimS_Ms using primers pBbGPPS_Fw and pBbGPPS_Rv, the resulting PCR product was digested with HindIII and subsequently self-ligated.
Monoterpene production conditions, product capture and detection

Expression strains were inoculated with freshly transformed colonies into 3 ml terrific broth (TB) supplemented with 0.4 % glucose and antibiotics in 28 ml glass screw capped vials. Cultures were grown for 7 h at 37 °C with shaking at 200 rpm before transferring to 30 °C and induction with 50 μM (isopropyl β-D-1-thiogalactopyranoside) IPTG and 25 nM anhydro-tetracycline (aTet) and overlaid with a 20 % n-nonane layer followed by incubation for 72 h with shaking at 200 rpm.

A₆₀₀ readings were taken of the aqueous phase, and nonane layers were harvested and clarified by centrifugation (14,000 rpm, 3 min, 4°C), dried over anhydrous MgSO₄ and mixed 1:1 with ethyl acetate containing 0.1 % sec-butyl benzene.

Monoterpenes were analysed by GCMS using an Agilent Technologies 7890B GC equipped with an Agilent Technologies 5977A MSD. The products were separated on a DB-WAX column (30 m x 0.32 mm i.d., 0.25 μM film thickness, Agilent Technologies). The injector temperature was set at 240°C with a split ratio of 20:1 (1 μL injection). The carrier gas was helium with a flow rate of 1 mL/min and a pressure of 5.1 psi. The following oven program was used: 50°C (1 min hold), ramp to 68°C at 5°C/min (2 min hold), and ramp to 230°C at 25°C/min (2 min hold). The ion source temperature of the mass spectrometer (MS) was set to 230°C and spectra were recorded from m/z 50 to m/z 250. Compound identification was carried out using authentic standards and comparison to reference spectra in the NIST library of MS spectra and fragmentation patterns.

Monoterpenoids were quantified using authentic standards wherever possible, using experimentally determined relative response factors in relation to the internal standard used. In the absence of an authentic standard concentrations were estimated using a relative response factor of 1.
Figure S1: Plasmid maps of pMVA (A) and pBbB2a-trAgGPPS(co)-trMsLS (B). Figures were prepared using the SnapGene software package.
Table S1: Strains used in this study

Strain name	Strain	Reference
Chassis		
DH5α (α-Select)	K-12	Bioline
MG1655	K-12	[6]
W3110	K-12	[7]
DH1	K-12	[8]
MDS42 Meta	K-12	Scarab Genomics
BL21 (λ-DE3)	B	New England Biolabs
Mach1	W	Thermo-Fisher
Production strain		
DH5α (α-Select)	K-12	Bioline
Table S2: Primers used in this study

Primer	Sequence (5’-3’)
JBEIMVA-F	ATTTAGAAAAATAAAACATATAGGGGCC
JBEIMVA-R	TTATTTAAGCTGGTAAATGCA
p15a-F	GGATCCAAACTCGAGTAAAGG
p15a-R	GTTAACTGTCAGACCAAGTTTAC
kan-F	TCGACGTGGAATTGCCGAC
kan-R	TCAGAGAAACTCGTCAAGAAGG
brMVAori	CCCAGAAAACGATTATCTGCAATTACCCAGCTAAAAATGAGATCAAACATCGAGAGAGATCTCCAG
brorikan	AAAGCGAGCTCGTAACTTGGTACAGTTACCTCAGAAAGAACTCGTCAAGAGGCGATAGAGG
brkanMVA	CCCAGCTGGCAATTCGACGTCAATTTAGAAAAATAACCAAATAGGGGTCGCCACATTTTC
pETM-11_Fw	CGCGCGAAGCTCTAATTTTTGAGTTAAC
pETM-11_Rv	ATGGATCCCTTTTGGCTAACAGCCGATCN
pBbGPPS_Fw	CCCAGCTTAAATCTGACGAAATGC
pBbGPPS_Rv	CCCAGCTTAAATCTGACGAAATGC
pLimS_inverse_rev	GGCGCCCTGAAATAAAAGAT
pLimS_inverse_Fw	TAATACGAGCACCACCACC
trObGES_Rv	CTGGTTTTTTTAACAGCCGAC
trObGES_Fv	ATGGAAGAACAGCAGCC
trObGES_Fv-over	ATCTTTATTTTCAGGGGGCCATGGAAGAACAGCAGCAG
trObGES_Rv-over	TGGTGGGCTGGCTTATTACCGTTGTAATTACACGGCC
trPcGES_Fv-over	ATCTTTATTTTCAGGGGGCCATGGAAGAACAGCAGCAG
trPcGES_Rv-over	TGGTGGGCTGGCTTATTACCGTTGTAATTACACGGCC
trCtGES_Fv-over	ATCTTTATTTTCAGGGGGCCATGGAAGAACAGCAGCAG
trCtGES_Rv-over	TGGTGGGCTGGCTTATTACCGTTGTAATTACACGGCC
Table S3: Monoterpene synthase genes used in this study. All synthetic genes were codon optimised for use in *E. coli*, fused to a cleavable N-terminal His₆-tag, and, if present, the N-terminal plastid sequence was omitted.

Name	Source	Main product	Uniprot nr.	Reference
CamS_Ag	*Abies grandis*	Camphene	Q948Z0	[9]
CamS_SI	*Solanum lycopersicum*	Camphene	G1JUH1	[10]
CarS_Pa	*Picea abies*	3-Carene	Q84SM8	[11]
CarS_Ps	*Picea sitchensis*	3-Carene	F1CK16	[12]
CinS_Sf	*Salvia fruticosa*	1,8-Cineole	A6XH05	[13]
CinS_Cu	*Citrus unshiu*	1,8-Cineole	Q5CDB2	[14]
CinS_At	*Arabidopsis thaliana*	1,8-Cineole	P0DI76	[15]
FenS_Ob	*Ocimum basilicum*	Fenchol	Q5SBP2	[16]
FenS_Lv	*Lavandula viridis*	Fenchol	T1RR72	[16]
GerS_Pc	*Perilla citriodora*	Geraniol	Q4JHG3	[17]
GerS_Ob	*Ocimum basilicum*	Geraniol	Q6USK1	[18]
GerS_Ct	*Cinnamomum tenuipilum*	Geraniol	Q8GUE4	[19]
RLimS_Cl	*Citrus lemon*	(+)-(4R)-Limonene	Q8L5K3	[20]
RLimS_La	*Lavandula angustivola*	(+)-(4R)-Limonene	Q2XSC6	[21]
SLimS_Ms	*Mentha spicata*	(-)-(4S)-Limonene	Q40322	[22]
RLinS_Aa	*Artemisia annua*	(-)-(3R)-linalool	Q95P0N0	[23]
SLinS_At	*Arabidopsis thaliana*	(+)-(3S)-linalool	Q84UV0	[24]
MyrS_Ag	*Abies grandis*	β-Mycene	Q24474	[9, 25]
MyrS_Ca	*Coffee arabica*	β-Mycene	R4YXW8	[26]
MyrS_At	*Arabidopsis thaliana*	β-Mycene	Q9ZUH4	[27]
OcIS_Cu	*Citrus unshiu*	(E)-β-ocimene	Q5CDB1	[14]
OcIS_At	*Cinnamomum majus*	(E)-β-ocimene	Q84NC8	[28]
PheS_Ag	*Abies grandis*	β-phellandrene	Q9M7D1	[9]
PheS_La	*Lavandula angustivola*	β-phellandrene	E9N3U9	[29]
PheS_SI	*Solanum lycopersicum*	β-phellandrene	C1K5M3	[30]
(-)aPinS_Ps	*Picea sitchensis*	(-)-α-pinene	Q84K6L	[31]
(-)aPinS_Pt	*Pinus taeda*	(-)-α-pinene	Q84K6L	[32]
(+)aPinS_Pt	*Pinus taeda*	(+)-α-pinene	Q84K3L	[32]
(-)bPinS_Aa	*Artemisia annua*	(-)-β-pinene	Q94G53	[33]
SabS_Ps	*Picea sitchensis*	Sabinene	F1CKJ1	[32]
SabS_Sp	*Salvia pomifera*	Sabinene	A6XH06	[33]
gTerS_Cs	*Coriandrum sativum*	γ-Terpineene	A0A059SVE6	[34]
gTerS_Ov	*Origanum vulgare*	γ-Terpineene	E2E2P0	[35]
aTerS_Mg	*Magnolia grandiflora*	α-Terpineol	B3TPQ7	[36]
aTerS_Sa	*Santalum album*	α-Terpineol	B5A434	[37]
TerS_Ob	*Ocimum basilicum*	Terpinolene	Q5SBP0	[16]
TerS_Pm	*Pseudotsuga menziesii*	Terpinolene	Q4QSN6	[38]
Table S4: Plasmids used in this study

Plasmid reference	Plasmid name	Description (Origin of replication, Antibiotic marker, Reference(s), Promoters and Operons)	Reference(s)
pBEI-6410	pBBBa5a-MTSAe-T1f-MB1(f)-T1002i-Ptrc-trGPPS(co)-L5	p15A, Ampr, PlacUV5, MTSA, T1, MB1-f, T1002, Ptrc, trGPPS, L5	[1]
pSBC000338	pBBBa5a-MTSAe-T1f-MB1(f)-T1002i	p15A, Kanr, PlacUV5, MTSA, T1, MB1-f, T1002	This study
pSBC000339	pBBBa2a-trAgGPPS(co)-trMsLS	pBRR, Ampr, Ptet, trAgGPPS(co)-trMsLS	This study
pGPPS	pBBBa2a-trAgGPPS(co)	pBRR, Ampr, Ptet, trAgGPPS(co)	This study
pGPPSsmTC/S1	pBBBa2a-trAgGPPS(co)-trCamS_Ag	pBRR, Ampr, Ptet, trAgGPPS(co)-trCamS_Ag	This study
pGPPSsmTC/S2	pBBBa2a-trAgGPPS(co)-trCamS_SI	pBRR, Ampr, Ptet, trAgGPPS(co)-trCamS_SI	This study
pGPPSsmTC/S3	pBBBa2a-trAgGPPS(co)-trCarS_Pa	pBRR, Ampr, Ptet, trAgGPPS(co)-trCarS_Pa	This study
pGPPSsmTC/S4	pBBBa2a-trAgGPPS(co)-trCarS_Ps	pBRR, Ampr, Ptet, trAgGPPS(co)-trCarS_Ps	This study
pGPPSsmTC/S5	pBBBa2a-trAgGPPS(co)-trCinS_SF	pBRR, Ampr, Ptet, trAgGPPS(co)-trCinS_SF	This study
pGPPSsmTC/S6	pBBBa2a-trAgGPPS(co)-trCinS_Cu	pBRR, Ampr, Ptet, trAgGPPS(co)-trCinS_Cu	This study
pGPPSsmTC/S7	pBBBa2a-trAgGPPS(co)-trCinS_At	pBRR, Ampr, Ptet, trAgGPPS(co)-trCinS_At	This study
pGPPSsmTC/S8	pBBBa2a-trAgGPPS(co)-trFenS_Ob	pBRR, Ampr, Ptet, trAgGPPS(co)-trFenS_Ob	This study
pGPPSsmTC/S9	pBBBa2a-trAgGPPS(co)-trFenS_Lv	pBRR, Ampr, Ptet, trAgGPPS(co)-trFenS_Lv	This study
pGPPSsmTC/S10	pBBBa2a-trAgGPPS(co)-trGerS_Pc	pBRR, Ampr, Ptet, trAgGPPS(co)-trGerS_Pc	This study
pGPPSsmTC/S11	pBBBa2a-trAgGPPS(co)-trGerS_Ob	pBRR, Ampr, Ptet, trAgGPPS(co)-trGerS_Ob	This study
pGPPSsmTC/S12	pBBBa2a-trAgGPPS(co)-trGerS_Ct	pBRR, Ampr, Ptet, trAgGPPS(co)-trGerS_Ct	This study
pGPPSsmTC/S13	pBBBa2a-trAgGPPS(co)-trLimS_CI	pBRR, Ampr, Ptet, trAgGPPS(co)-trLimS_CI	This study
pGPPSsmTC/S14	pBBBa2a-trAgGPPS(co)-trLimS_LA	pBRR, Ampr, Ptet, trAgGPPS(co)-trLimS_LA	This study
pGPPSsmTC/S15	pBBBa2a-trAgGPPS(co)-trLimS_MS	pBRR, Ampr, Ptet, trAgGPPS(co)-trLimS_MS	This study
pGPPSsmTC/S16	pBBBa2a-trAgGPPS(co)-trLipS_Aa	pBRR, Ampr, Ptet, trAgGPPS(co)-trLipS_Aa	This study
pGPPSsmTC/S17	pBBBa2a-trAgGPPS(co)-trLimS_At	pBRR, Ampr, Ptet, trAgGPPS(co)-trLimS_At	This study
pGPPSsmTC/S18	pBBBa2a-trAgGPPS(co)-trMyrS_Ag	pBRR, Ampr, Ptet, trAgGPPS(co)-trMyrS_Ag	This study
pGPPSsmTC/S19	pBBBa2a-trAgGPPS(co)-trMyrS_Ca	pBRR, Ampr, Ptet, trAgGPPS(co)-trMyrS_Ca	This study
pGPPSsmTC/S20	pBBBa2a-trAgGPPS(co)-trMyrS_At	pBRR, Ampr, Ptet, trAgGPPS(co)-trMyrS_At	This study
pGPPSsmTC/S21	pBBBa2a-trAgGPPS(co)-trOciS_Cu	pBRR, Ampr, Ptet, trAgGPPS(co)-trOciS_Cu	This study
pGPPSsmTC/S22	pBBBa2a-trAgGPPS(co)-trOciS_Am	pBRR, Ampr, Ptet, trAgGPPS(co)-trOciS_Am	This study
pGPPSsmTC/S23	pBBBa2a-trAgGPPS(co)-trPheS_Ag	pBRR, Ampr, Ptet, trAgGPPS(co)-trPheS_Ag	This study
pGPPSsmTC/S24	pBBBa2a-trAgGPPS(co)-trPheS_La	pBRR, Ampr, Ptet, trAgGPPS(co)-trPheS_La	This study
pGPPSsmTC/S25	pBBBa2a-trAgGPPS(co)-trPheS_SI	pBRR, Ampr, Ptet, trAgGPPS(co)-trPheS_SI	This study
pGPPSsmTC/S26	pBBBa2a-trAgGPPS(co)-tr(+)JaPinS_Ps	pBRR, Ampr, Ptet, trAgGPPS(co)-tr(+)JaPinS_Ps	This study
pGPPSsmTC/S27	pBBBa2a-trAgGPPS(co)-tr(+)JaPinS_Pt	pBRR, Ampr, Ptet, trAgGPPS(co)-tr(+)JaPinS_Pt	This study
pGPPSsmTC/S28	pBBBa2a-trAgGPPS(co)-tr(+)JaPinS_Pt	pBRR, Ampr, Ptet, trAgGPPS(co)-tr(+)JaPinS_Pt	This study
pGPPSsmTC/S29	pBBBa2a-trAgGPPS(co)-tr(-)JaPinS_Aa	pBRR, Ampr, Ptet, trAgGPPS(co)-tr(-)JaPinS_Aa	This study
pGPPSsmTC/S30	pBBBa2a-trAgGPPS(co)-trSabS_Ps	pBRR, Ampr, Ptet, trAgGPPS(co)-trSabS_Ps	This study
pGPPSsmTC/S31	pBBBa2a-trAgGPPS(co)-trSabS_Sp	pBRR, Ampr, Ptet, trAgGPPS(co)-trSabS_Sp	This study
pGPPSsmTC/S32	pBBBa2a-trAgGPPS(co)-trGerS_CS	pBRR, Ampr, Ptet, trAgGPPS(co)-trGerS_CS	This study
pGPPSsmTC/S33	pBBBa2a-trAgGPPS(co)-trGerS_Ov	pBRR, Ampr, Ptet, trAgGPPS(co)-trGerS_Ov	This study
pGPPSsmTC/S34	pBBBa2a-trAgGPPS(co)-trCamS_Mg	pBRR, Ampr, Ptet, trAgGPPS(co)-trCamS_Mg	This study
pGPPSsmTC/S35	pBBBa2a-trAgGPPS(co)-trCamS_Sa	pBRR, Ampr, Ptet, trAgGPPS(co)-trCamS_Sa	This study
pGPPSsmTC/S36	pBBBa2a-trAgGPPS(co)-trTerS_Ob	pBRR, Ampr, Ptet, trAgGPPS(co)-trTerS_Ob	This study
pGPPSsmTC/S37	pBBBa2a-trAgGPPS(co)-trTerS_Pm	pBRR, Ampr, Ptet, trAgGPPS(co)-trTerS_Pm	This study
Supporting Results

Figure S2: Limonene production titres in different *E. coli* strains. Final titres of limonene produced by *E. coli* strains (Table S1) bearing plasmid pJBEI-6410 after 72 h growth in a bi-phasic culture (concentrations in 20 % organic phase), as calculated from GC analysis. Average titres from triplicate biological repeats; error bars represent standard deviation. Bar colour denotes *E. coli* strain type; K-12 (green), B (orange) or W (blue).
Figure S3: GCMS analysis of authentic monoterpenoid standards.

A) GCMS traces of authentic monoterpenoid standards. GCMS traces showing the separation of monoterpenoids (1 mg mL\(^{-1}\)) produced in this study on a DB-WAX column. The internal standard used, sec-butylbenzene (0.1%, v/v), has a retention time of 6.10 minutes. Peak 1: \(\alpha\)-pinene (rt: 2.544), 2: camphene (rt: 3.001), 3: \(\beta\)-pinene (rt: 3.525), 4: sabinene (rt: 3.714), 5: 3-carene (rt: 4.141), 6: \(\beta\)-myrcene (rt: 4.395), 7: limonene (rt: 4.996), 8: 1,8-cineole (rt: 5.200), 9: terpinolene (rt: 6.985), 10: linalool (rt: 9.881), 11: fenchol (rt: 10.133), 12: \(\alpha\)-terpineol (rt: 10.788), 13: nerol (rt: 11.208), 14: geraniol (rt: 11.490). Because \(\gamma\)-terpinene (rt: 6.040) (peak 15) and (E)-\(\beta\)-ocimene (rt: 6.226) (peak 17), have similar retention times as sec-butylbenzene (rt: 6.085), limonene (0.1% v/v) was used as internal standard in \(\beta\)-ocimene and \(\gamma\)-terpinene containing samples. The \(\beta\)-ocimene standard contains about 30% (Z)-\(\beta\)-ocimene (rt: 5.815) (peak 16). Method: the injector temperature was set at 240°C with a split ratio of 20:1 (1 µL injection). The carrier gas was helium with a flow rate of 1 mL/min and a pressure of 5.1 psi. The following oven program was used: 50°C (1 min hold), ramp to 68°C at 5°C/min (2 min hold), and ramp to 230°C at 25°C/min (2 min hold). The ion source temperature of the mass spectrometer (MS) was set to 230°C and spectra were recorded from m/z 50 to m/z 250.
B) MS spectra of authentic monoterpenoid standards. Chemical structures are shown as insets.
Figure S4: GCMS analysis monoterpenoid production strains. Representative GCMS traces of \(n \)-nonane overlays obtained from two-phase \(E. \) coli \(\alpha \)-Select cultures containing pmVA and pGPPSmTC/S plasmids are shown. MS spectra of indicated monoterpenoid peaks are shown. Retention times of additional terpenoid peaks are mentioned below. Chemical structures of detected monoterpenoids are shown as insets. Retention times and MS spectra of the detected peaks were compared to retention times and MS spectra of authentic standards wherever possible (See Figure S3). No authentic standards were available for the following monoterpenoids which are produced as by-products: \(\beta \)-phellandrene, 4-carene, \(\delta \)-terpineol, sabinene hydrate, thujene, borneol, Pinan-2-ol, citronellal, neral, geranial, and citronellol. Also no authentic standards were available for the sesquiterpene by-products farnesal, farnesene and (\(E \))-\(\alpha \)-bisabolene. Identification of these compounds was achieved by comparing the obtained MS spectra and fragmentation patterns to the NIST reference library.
Additional terpenoids detected: geranial (rt: 10.955), citronellol (rt: 11.101), nerol (rt: 11.278), geraniol (rt: 11.487), farnesal (rt: 13.225), and farnesol (rt: 13.542). The peak at rt 14.037 is indole.
Additional terpenoids detected: geranial (rt: 10.952), citronellol (rt: 11.101), nerol (rt: 11.278), geraniol (rt: 11.487), farnesal (rt: 13.222), and farnesol (rt: 13.540). The peak at rt 14.034 is indole.
Additional terpenoids detected: geranial (rt: 10.952), citronellol (rt: 11.099), nerol (rt: 11.275), geraniol (rt: 11.484), farnesal (rt: 13.222), and farnesol (rt: 13.540). The peak at rt 14.034 is indole.
Additional terpenoids detected: citronellol (rt: 11.101), nerol (rt: 11.278), geraniol (rt: 11.489), farnesal (rt: 13.222), and farnesol (rt: 13.542). The peak at rt 14.034 is indole.
Additional terpenoids detected: neral (rt: 10.690), geranial (rt: 10.957), citronellol (rt: 11.101), nerol (rt: 11.278), geraniol (rt: 11.490), and farnesol (rt: 13.542). The peak at rt 14.039 is indole.
Additional terpenoids detected: neral (rt: 10.690), geranial (rt: 10.955), citronellol (rt: 11.101), nerol (rt: 11.278), geraniol (rt: 11.487), and farnesol (rt: 13.542). The peak at rt 14.039 is indole.
Additional terpenoids detected: neral (rt: 10.690), geranial (rt: 10.957), citronellol (rt: 11.101), nerol (rt: 11.278), geraniol (rt: 11.487), and farnesol (rt: 13.542). The peak at rt 14.039 is indole.
Additional terpenoids detected: farnesol (rt: 13.542). The peak at rt 14.037 is indole.
Additional terpenoids detected: geranial (rt: 10.955), citronellol (rt: 11.101), nerol (rt: 11.278), geraniol (rt: 11.487), and farnesol (rt: 13.540). The peak at rt 14.037 is indole.
Additional terpenoids detected: citronellal (rt: 9.376), neral (rt: 10.690), geranial (rt: 10.957), citronellol (rt: 11.101), nerol (rt: 11.278), geraniol (rt: 11.487), and farnesol (rt: 13.543). The peak at rt 14.039 is indole.
Additional terpenoids detected: neral (rt: 10.690), geranial (rt: 10.959), citronellol (rt: 11.101), nerol (rt: 11.278), geraniol (rt: 11.489), farnesal (rt: 13.224), and farnesol (rt: 13.543). The peak at rt 14.039 is indole.
Additional terpenoids detected: neral (rt: 10.690), geranial (rt: 10.957), citronellol (rt: 11.101), nerol (rt: 11.278), geraniol (rt: 11.487), and farnesol (rt: 13.542). The peak at rt 14.039 is indole.
Additional terpenoids detected: neral (rt: 10.690), geranial (rt: 10.955), citronellol (rt: 11.101), nerol (rt: 11.278), geraniol (rt: 11.487), and farnesol (rt: 13.542). The peak at rt 14.037 is indole.
Additional terpenoids detected: neral (rt: 10.687), geranial (rt: 10.955), citronellol (rt: 11.098), nerol (rt: 11.275), geraniol (rt: 11.484), and farnesol (rt: 13.540). The peak at rt 14.034 is indole.
Additional terpenoids detected: neral (rt: 10.688), geranial (rt: 10.955), citronellol (rt: 11.101), nerol (rt: 11.278), geraniol (rt: 11.487), and farnesol (rt: 13.540). The peak at rt 14.034 is indole.
Additional terpenoids detected: neral (rt: 10.688), geranial (rt: 10.955), citronellol (rt: 11.101), nerol (rt: 11.278), geraniol (rt: 11.487), and farnesol (rt: 13.540). The peak at rt 14.034 is indole.
Additional terpenoids detected: neral (rt: 10.690), geranial (rt: 10.955), citronellol (rt: 11.101), nerol (rt: 11.278), geraniol (rt: 11.487), and farnesol (rt: 13.542). The peak at rt 14.037 is indole.
Additional terpenoids detected: farnesal (rt: 13.222), and farnesol (rt: 13.543). The peak at rt 14.039 is indole.
Additional terpenoids detected: farnesol (rt: 13.537). The peak at rt 14.032 is indole.
Additional terpenoids detected: neral (rt: 10.687), geranial (rt: 10.952), citronellol (rt: 11.099), nerol (rt: 11.275), geraniol (rt: 11.484), and farnesol (rt: 13.540). The peak at rt 14.034 is indole.
Table S5: Product profiles and monoterpenoid titres of production strains. Product profiles and monoterpenoid titres (mg L_{0.1}⁻¹) are determined from two-phase cultures with an n-nonane overlay for each *E. coli* strain containing the MVA pathway and a distinct monoterpenic synthase. Averages of at least 3 biological replicates per mTC/S and the corresponding standard deviations (in brackets) are shown. Highest values for each compound are highlighted in bold.

Synthase	Geraniol	(E)-β-pinene	myrcene	limonene	γ-terpinene	α-terpineol	β-phellandrene	terpinene	α-phine	β-phine	fenchol	1,8-cineole	sabalene	3-carene	camphene	Other minor	Total product	Geranoids	Camphor	Carvacrol
(-)JaPinS_Pt	11.2	6.6	<1	7.4	517.2	94.3	2.5	2.3	3.8	3.3	642	8.1	2.4	41.9	(22.3)					
SLimS_Ms	7.7	530.6	2.1	5.3	50.3	9.7	0.5	3.3	554	7.7	33.2	11.5								
RLimS_CI	4.3	260.0	<1						265	4.4	17.9	(3.3)								
gTerS_Ov	3.1	197.1	<1	13.3	18.5				232	19.2	42.9	(42.3)								
(+)JaPinS_Pt	3.2		<1	190.6	40.8				197	35.2	40.8	(6.1)								
Cins_Sf	3.2	1.9	11.4	7.1					183	12.3	25.9	(3.2)								
(-)JbPinS_Aa	3.0	2.3	2.1	12.1	118.2				174	48.0	41.1	(7.0)								
GerS_Pc	162.6	17.3	4.4	1.9					163	189.9	30.7	(15.6)								
Cins_At	<1	15.5	4.4	1.9					111	47.4	16.6	(7.4)								
FenS_Lv	2.7	6.1	20.7	1.6					82.1	79.0	17.6	(1.4)								
SabS_Sp	1.3	1.5							76.6	34.5	19.2	(12.0)								
aTerS_Mg	1.9	3.3	3.2	4.9					77.9	28.8	13.2	(7.3)								
OcIs_Am	57.3	37.9	<1	4.9					65.5	28.8	13.2	(7.3)								
CamS_SI	10.3	3.4	18.2	9.9					40.0	28.7	8.1	(6.2)								
CinS_Cu		3.6	18.2	9.9					28.7	24.7	8.6	(6.2)								
(-)JaPinS_Ps	<1	18.8	12.2						19.7	65.9	26.6	(8.6)								
GerS_Ob	14.3	10.8	<1	15.9																
GerS_Ct	14.3	6.5	14.3																	
RLimS_Aa	1.3	2.1	2.1																	

33
Table S6: Overview of all linear monoterpenoids produced. Highest titres observed and the mTC/S responsible are shown. Averages of at least 3 biological replicates and the corresponding standard deviations are shown.

Linear monoterpenoids	Structure	Titre (mg L\textsubscript{org}^{-1})	Strain + mTC/S
geraniol	![Structure](geraniol.png)	162.6 ± 98.2	GerS_Pc
(E)-β-ocimene	![Structure](ocimene.png)	57.3 ± 56.9	OciS_Am
β-myrcene	![Structure](myrcene.png)	17.3 ± 15.5	CinS_At
linalool	![Structure](linalool.png)	0.8 ± 1.4	CarS_Pa
nerol	![Structure](nerol.png)	73.2 ± 61.8	GerS_Pc
geranial	![Structure](geranial.png)	56.1 ± 35.0	GerS_Pc
citronellol	![Structure](citronellol.png)	35.1 ± 19.7	GerS_Pc
neral	![Structure](neral.png)	16.8 ± 7.2	GerS_Pc
citronellal	![Structure](citronellal.png)	10.7 ± 2.0	GerS_Pc
iso-geraniol	![Structure](iso-geraniol.png)	1.2 ± 1.4	GerS_Pc
(Z)-β-ocimene	![Structure](z-ocimene.png)	0.8 ± 1.7	OciS_Am
Table S7: Overview of all monocyclic monoterpenoids produced. Highest titres observed and the mTC/S responsible are shown. Averages of at least 3 biological replicates and the corresponding standard deviations are shown.

Target monocyclic compounds	Structure	Titre (mg L_{org}⁻¹)	Strain + mTC/S
(-)-{(4S)}-limonene*		530.6 ± 102.3	SLimS_Ms
(+)-{(4R)}-limonene*		260.6 ± 122.2	RLimS_CI
γ-terpinene		197.1 ± 119.7	gTerS_Ov
α-terpineol		37.9 ± 36.3	aTerS_Mg
β-phellandrene		7.4 ± 3.5	(-)aPinS_PT
terpinolene		3.4 ± 0.5	CamS_SL
Additional monocyclic compounds			
δ-terpineol		0.7 ± 1.3	CinS_At

* Stereoisomers identified based on published product profiles
Table S8: Overview of all bicyclic monoterpenoids produced. Highest titres observed and the mTC/S responsible are shown. Averages of at least 3 biological replicates and the corresponding standard deviations are shown.

Bicyclic monoterpenoids
Target bicyclic compounds
(-)-α-pinene*
(+)-α-pinene*
(-)-β-pinene*
1,8-cineole
sabinene
fenchol
3-carene
camphene
Additional bicyclic compounds
4-carene
sabinene hydrate
thujene
borneol
pinan-2-ol

* Stereoisomers identified based on published product profiles
Table S9: Overview of all additional terpenoids produced. Highest titres observed and the mTC/S responsible are shown. Averages of at least 3 biological replicates and the corresponding standard deviations are shown.

Sesquiterpenoids	Structure	Titre (mg L$_{org}$⁻¹)	Strain + mTC/S
farnesol	![farnesol](image)	46.6 ± 38.9	PheS_Sl
farnesal	![farnesal](image)	3.7 ± 2.1	SLimS_Ms
(E)-α-bisabolene	![bisabolene](image)	1.4 ± 2.4	CinS_At
farnesene	![farnesene](image)	0.5 ± 0.9	CinS_At
Figure S5: Titres produced in the platform vs. previously published titres. Monoterpenoid titres produced using our platform are shown in coloured bars, previously published titres are in grey bars. Published values: geraniol: 182.5 mg L\(^{-1}\) \[^{[29]}\]; \(\beta\)-myrcene: 58.2 mg L\(^{-1}\) \[^{[40]}\]; linalool: 0.1 mg L\(^{-1}\) \[^{[41]}\]; limonene: 435 mg L\(^{-1}\) \[^{[1]}\]; pinene: 32 mg L\(^{-1}\) \[^{[42]}\]; 1,8-cineole: 21 mg L\(^{-1}\) \[^{[43]}\]. Error bars represent the standard deviation of at least 3 biological replicates.
Figure S6: Monoterpenoid, geranoid and farnesol titres detected for each strain. Monoterpenoid titres produced using our platform are shown in blue bars, geraniol and derivatives in red bars, and farnesol and derivatives in green bars. Error bars represent the standard deviation of at least 3 biological replicates.
References

[1] J. Alonso-Gutierrez, R. Chan, T. S. Batth, P. D. Adams, J. D. Keasling, C. J. Petzold, T. S. Lee, *Metab Eng* 2013, 19, 33-41.

[2] T. S. Lee, R. A. Krupa, F. Zhang, M. Hajimorad, W. J. Holtz, N. Prasad, S. K. Lee, J. D. Keasling, *Journal of Biological Engineering* 2011, 5, 1-14.

[3] S. de Kok, et al., *ACS Synth Biol* 2014, 3, 97-106.

[4] D. C. Hyatt, B. Youn, Y. Zhao, B. Santhamanna, R. M. Coates, R. B. Croteau, C. Kang, *Proc Natl Acad Sci U S A* 2007, 104, 5360-5365.

[5] a) A. Espah Borujeni, A. S. Channarasappa, H. M. Salis, *Nucleic Acids Res* 2014, 42, 2646-2659; b) H. M. Salis, E. A. Mirsky, C. A. Voigt, *Nat Biotechnol* 2009, 27, 946-950.

[6] F. R. Blattner, et al., *Science* 1997, 277, 1453-1462.

[7] K. Hayashi, et al., *Molecular Systems Biology* 2006, 2.

[8] M. Meselson, R. Yuan, *Nature* 1968, 217, 1110-1114.

[9] J. Bohlmann, M. Phillips, V. Ramachandiran, S. Katoh, R. Croteau, *Arch Biochem Biophys* 1999, 368, 232-243.

[10] V. Falara, et al., *Plant Cell* 2011, 157, 770-789.

[11] J. Fäldt, D. Martin, B. Miller, S. Rawat, J. Bohlmann, *Plant Mol Biol* 2003, 51, 119-133.

[12] D. E. Hall, et al., *Plant J* 2011, 65, 936-948.

[13] S. C. Kampranis, et al., *Plant Cell* 2007, 19, 1994-2005.

[14] T. Shimada, T. Endo, H. Fujii, M. Hara, M. Omura, *Plant Science* 2005, 168, 987-995.

[15] F. Chen, D. K. Ro, J. Petri, J. Gershenzon, J. Bohlmann, E. Pichersky, D. Tholl, *Plant Physiol* 2004, 135, 1956-1966.

[16] Y. Iijima, R. Davidovich-Rikanati, E. Fridman, D. R. Gang, E. Bar, E. Lewinsohn, E. Pichersky, *Plant Physiol* 2004, 136, 3724-3736.

[17] M. Ito, G. Honda, *Phytochemistry* 2007, 68, 446-453.

[18] Y. Iijima, D. R. Gang, E. Fridman, E. Lewinsohn, E. Pichersky, *Plant Physiol* 2004, 134, 370-379.

[19] T. Yang, J. Li, H. X. Wang, Y. Zeng, *Phytochemistry* 2005, 66, 285-293.

[20] J. Lücker, M. K. El Tamer, W. Schwab, F. W. Verstappen, L. H. van der Plas, H. J. Bouwmeester, H. A. Verhoeven, *Eur J Biochem* 2002, 269, 3160-3171.

[21] C. Landmann, B. Fink, M. Festner, M. Dregus, K.-H. Engel, W. Schwab, *Archives of Biochemistry and Biophysics* 2007, 465, 417-429.

[22] S. M. Colby, W. R. Alonso, E. J. Katahira, D. J. McGeary, R. Croteau, *J Biol Chem* 1993, 268, 23016-23024.

[23] J. W. Jia, J. Crock, S. Lu, R. Croteau, X. Y. Chen, *Arch Biochem Biophys* 1999, 372, 143-149.

[24] F. Chen, D. Tholl, J. C. D’Auria, A. Farooq, E. Pichersky, J. Gershenzon, *Plant Cell* 2003, 15, 481-494.

[25] J. Bohlmann, C. L. Steele, R. Croteau, *J Biol Chem* 1997, 272, 21784-21792.

[26] L. Del Tost, V. Lonzarich, E. Asquini, L. Navarini, G. Graziosi, F. Sugi Liverani, A. Pallavicini, *Phytochemistry* 2013, 89, 6-14.

[27] J. Bohlmann, D. Martin, N. J. Oldham, J. Gershenzon, *Arch Biochem Biophys* 2000, 375, 261-269.

[28] N. Dudareva, D. Martin, C. M. Kish, N. Kolosova, N. Gorenstein, J. Fäldt, B. Miller, J. Bohlmann, *Plant Cell* 2003, 15, 1227-1241.

[29] Z. A. Demissie, L. S. Sarker, S. S. Mahmoud, *Planta* 2011, 233, 685-696.

[30] A. L. Schlimiller, I. Schauvinhold, M. Larson, R. Xu, A. L. Charbonneau, A. Schmidt, C. Wilkerson, R. L. Last, E. Pichersky, *Proc Natl Acad Sci U S A* 2009, 106, 10865-10870.

[31] S. A. McKay, W. L. Hunter, K. A. Godard, S. X. Wang, D. M. Martin, J. Bohlmann, A. L. Plant, *Plant Physiol* 2003, 133, 368-378.

[32] M. A. Phillips, M. R. Wildung, D. C. Williams, D. C. Hyatt, R. Croteau, *Arch Biochem Biophys* 2003, 411, 267-276.

[33] S. Lu, R. Xu, J. W. Jia, J. Pang, S. P. Matsuda, X. Y. Chen, *Plant Physiol* 2002, 130, 477-486.

[34] M. Galata, L. S. Sarker, S. S. Mahmoud, *Phytochemistry* 2014, 102, 64-73.

[35] C. Crocoll, J. Asbach, J. Novak, J. Gershenzon, J. Degenhardt, *Plant Mol Biol* 2010, 73, 587-603.

[36] S. Lee, J. Chappell, *Plant Physiol* 2008, 147, 1017-1033.

[37] C. G. Jones, C. I. Keeling, E. L. Ghisalberti, E. L. Barbour, J. A. Plummer, J. Bohlmann, *Arch Biochem Biophys* 2008, 477, 121-130.

[38] D. P. Huber, R. N. Philippe, K. A. Godard, R. N. Sturrock, J. Bohlmann, *Phytochemistry* 2005, 66, 1427-1439.

[39] J. Zhou, C. Wang, S.-H. Yoon, H.-J. Jang, E.-S. Choi, S.-W. Kim, *Journal of Agricultural and Food Chemistry* 2014, 62, 46-50.

[40] E. M. Kim, J. H. Eom, Y. Um, Y. Kim, H. M. Woo, *J Agric Food Chem* 2015, 63, 4606-4612.

[41] a) P. Amiri, A. Shahpiri, M. A. Asadollahi, F. Momenteik, S. Partow, *Biotechnol Lett* 2015, 38, 503-508; b) Y. Deng, M. Sun, S. Xu, J. Zhou, *J Appl Microbiol* 2016, Accepted Article, doi: 10.1111/jam.13105; c) J. Rico, E. Pardo, M. Orejas, *Appl Environ Microbiol* 2010, 76, 6449-6454.

[42] S. Sarria, B. Wong, H. Garcia Martin, J. D. Keasling, P. Peralta-Yahya, *ACS Synth Biol* 2014, 3, 466-475.

[43] J. J. Shaw, T. Berbasova, T. Sasaki, K. Jefferson-George, D. J. Spakowicz, B. F. Duncan, C. E. Portero, A. Narvaez-Trujillo, S. A. Strobol, *J Biol Chem* 2015, 290, 8511-8526.