NUCLEAR SSR MARKERS FOR Miscanthus, Saccharum, and Related Grasses (Saccharinae, Poaceae)¹

TREVOR R. HODKINSON²,3,5, MARIATERESA DE CESARE²,4, and SUSANNE BARTH⁴

¹School of Natural Sciences, Trinity College, Dublin D2, Ireland; ²Trinity Centre for Biodiversity Research, Trinity College, Dublin D2, Ireland; and ⁴Teagasc Crops Environment and Land Use Programme, Oak Park Research Centre, Carlow, Ireland

• Premise of the study: We developed nuclear simple sequence repeat (SSR) markers for the characterization of the biomass crop Miscanthus, especially M. sacchariflorus, M. sinensis, and M. ×giganteus, and tested for cross-species amplification.

• Methods and Results: Twenty-nine SSR markers (di- and tetranucleotide repeats) were developed from DNA sequences obtained from 192 clones from an enriched genomic library of M. sinensis. All markers were successfully amplified in M. sacchariflorus, M. sinensis, and M. ×giganteus, and 19 amplified across a broad range of Miscanthus species. Polymorphism information content and expected heterozygosity values (19 locus sample) were 0.88 and 0.89, respectively, for M. sinensis, 0.48 and 0.54 for M. sacchariflorus, and were the lowest in M. ×giganteus (0.33, 0.41). Thirteen out of 19 primer pairs showed cross-species amplification in non-Miscanthus sensu stricto taxa.

• Conclusions: The new set of 29 SSR markers will be of high value for characterizing Miscanthus germplasm collections, for prebreeding, and for assessing variation in natural populations.

Key words: cross-species amplification; microsatellites; Miscanthus; Poaceae; Saccharum; SSRs.

Miscanthus Andersson is under development as a biomass crop and has been characterized by a wide range of markers including amplified fragment length polymorphism (AFLP; Hodkinson et al., 2002), restriction fragment length polymorphism (RFLP; Hernández et al., 2001), inter-simple sequence repeat (ISSR) PCR, and DNA sequences of nuclear and chloroplast regions generated using conventional (Hodkinson et al., 2002) and next-generation approaches including RNAseq and genotyping by sequencing (GBS; Ma et al., 2012). Simple sequence repeat (SSR) markers from maize and Brachypodium distachyon (L.) P. Beauv. (Hernández et al., 2001; Zhao et al., 2011) have been successfully applied to Miscanthus, and chloroplast SSRs have been developed by De Cesare et al. (2010).

Some nuclear SSR markers have also been developed, such as those for M. sinensis Andersson, M. floridulus (Labill.) Warb. (Ho et al., 2011), and several other Miscanthus species (Zhou et al., 2011). However, there is a need to develop additional SSR markers for Miscanthus as the total number of available markers is limited. There is also a need to test these markers on a range of species, especially M. sacchariflorus (Maxim.) Hack., M. sinensis, and M. ×giganteus Greffe & Deuter ex Hodk. & Renvoize as these comprise the main species of germplasm collections. SSRs developed from Saccharum officinarum L. expressed sequence tags (ESTs) have been recently used by Kim et al. (2012) to generate genetic maps of M. sacchariflorus and M. sinensis with genome coverage of 72.7% and 84.9%, respectively. The numbers of linkage groups found for the two maps (40 for M. sacchariflorus and 23 for M. sinensis) were higher than the basic chromosome number for Miscanthus (x = 19). Additional markers, such as those generated in this study, will be required to make more saturated maps, especially from noncoding regions that are underrepresented in current maps. Recently, single-nucleotide polymorphism (SNP) markers generated using GBS markers have been used for high-resolution mapping and identified all 19 linkage groups in M. sinensis (Ma et al., 2012).

METHODS AND RESULTS

DNA samples were either freshly extracted or obtained from the DNA bank at Trinity College, Dublin. Fresh leaves were frozen in liquid nitrogen and ground manually to a fine powder. Total genomic DNA was extracted following a modified cetyltrimethylammonium bromide (CTAB) method (Hodkinson et al., 2007). Total genomic DNA from the M. sinensis clone SW217 was used by ATG Genetics (Vancouver, British Columbia, Canada) to build a nuclear microsatellite-enriched library. After digestion with multiple 4-cutter restriction enzymes, enrichment for SSRs containing fragments was obtained through biotinylated TCn, TGn, and GATAn simple sequence motifs. The selected fragments were cloned into the EcoRI site of the plasmid pUC19 and screened for positive clones using 32P-labeled TCn, CA, and GATA simple sequence motifs. Two 96-well microtiter plates containing single positive bacterial colonies, one selected for the presence of dinucleotide repeats and the second for the presence of tetranucleotide repeats, were produced. The 192 clones were sequenced by AGOWA GmbH (Berlin, Germany), and SSRs were identified in the clones using 'find microsat Win32' (Salamin, unpublished). All 192 clones contained SSRs (96 dinucleotides and 96 tetranucleotides). Eighty primer pairs were designed equally among these sets using Primer3 software (Rozen and Skalický, 2000; http://primer3.sourceforge.net) and tested with PCR. Selection of the final sample of 29 primers was based on clarity of product on an agarose gel. Primer details and GenBank numbers are provided in Table 1.
Table 1. Characteristics of 29 primer pairs developed for microsatellite genotyping.

Locus	Clone, GenBank accession no.	Repeat motif	Fluorescent dye	Forward primer sequence (5′–3′)	Reverse primer sequence (5′–3′)	T_a (°C)	Sequence length (bp)	SSR size (bp)
Mis-1	SSRA1A0, KF130838 (CTCA)$_{20}$	FAM	TAMRA	CATGCTACGCTGCTATGTGTA	AACAGTTCAAAACCTAGTATC	54	202	80
Mis-13	SSRIF10, KF130839 (TAGA)$_{19}$	ROX	VIC	CGCACTACTTGGATAGCTTG	GTGCCCTGAGGGACGTGTA	54	230	76
Mis-14	SSRIJ10, KF130840 (GATA)$_{16}$	FAM	TAMRA	ATGCGTTACAGCTGCTATGTG	ATGCGTTACAGCTGCTATGTG	54	191	60
Mis-15	SSRIJ2, KF130841 (ATCT)$_{16}$	FAM	TAMRA	CTGCTACGCTGCTATGTG	CTGCTACGCTGCTATGTG	54	195	64
Mis-16	SSRIJ5, KF130842 (TATC)$_{15}$	VIC	TAMRA	ATGCTGTTACAGCTGCTATGTG	ATGCTGTTACAGCTGCTATGTG	60	264	52+64*

Note: T_a is annealing temperature.

* Composite SSR separated by a nonpolymorphic region.

Twenty-nine primer sets provided reliable amplification, and 19 of these were selected to have a mixture of di- and tetranucleotide SSRS. A template DNA volume of 1 μL (40 ng μL$^{-1}$) was amplified with an initial denaturation of 5 min at 95°C followed by 35 cycles each with a denaturation of 1 min at 95°C, 1 min at a primer-specific annealing temperature (Table 1), and an extension of 1 min at 72°C, followed by a final extension at 72°C for 10 min. The reaction mixture (final volume) contained 1× reaction buffer containing 2 mM MgSO$_4$, 0.125 μM dNTPs, 0.25 μM of each primer, and 0.5 U of Taq DNA polymerase.

Table 2. Genetic properties of the newly developed markers for three Miscanthus species.*

Locus	A	Size range (bp)	H_a	PIC	A	Size range (bp)	H_a	PIC	A	Size range (bp)	H_a	PIC
M. sacchariflorus (n = 9)												
Mis-1	2	127–161	0.375	0.305	19	125–256	0.904	0.896	3	125–161	0.370	0.340
Mis-14	2	87–119	0.663	0.604	25	87–208	0.928	0.924	2	99–119	0.500	0.375
Mis-15	3	144–148	0.620	0.548	20	144–205	0.862	0.852	2	146–148	0.500	0.375
Mis-20	2	200–234	0.320	0.269	28	197–300	0.907	0.901	2	200–234	0.499	0.375
Mis-23	3	124	0.000	0.000	14	103–174	0.837	0.818	1	124	0.000	0.000
Mis-24	3	191–223	0.625	0.555	27	191–314	0.935	0.923	2	203–223	0.499	0.375
Mis-24	1	331	0.000	0.000	21	283–361	0.905	0.899	1	331	0.000	0.000
Mis-37	5	160–200	0.789	0.756	27	160–222	0.938	0.935	3	160–226	0.531	0.420
Mis-41	2	214–215	0.444	0.346	35	197–512	0.924	0.919	1	214	0.000	0.000
Mis-42	2	206–247	0.560	0.499	21	163–247	0.909	0.903	4	183–236	0.574	0.500
Mis-50	2	207–256	0.408	0.325	25	199–260	0.869	0.859	2	207–256	0.497	0.373
Mis-51	2	136–140	0.463	0.356	24	132–176	0.887	0.879	1	140	0.000	0.000
Mis-52	6	177–207	0.806	0.777	18	170–207	0.863	0.850	3	177–207	0.557	0.457
Mis-54	5	213–236	0.796	0.763	18	207–244	0.860	0.848	4	213–224	0.647	0.586
Mis-59	7	135–155	0.840	0.820	10	123–160	0.792	0.766	4	148–155	0.678	0.618
Mis-64	4	214–258	0.704	0.692	30	194–285	0.923	0.918	2	232–258	0.476	0.363
Mis-69	3	130–143	0.612	0.541	17	105–197	0.861	0.848	2	130–138	0.500	0.375
Mis-70	2	219–237	0.595	0.526	26	211–328	0.903	0.897	2	219–225	0.500	0.375
Mis-79	2	242–266	0.540	0.466	22	235–274	0.904	0.890	4	224–252	0.479	0.427
M. sinensis (n = 73)												
M. x giganteus (n = 15)												

Note: A = number of alleles; H_a = expected heterozygosity; PIC = polymorphism information content.

*Statistically provided for species where sample size (n) was 9 or greater.

http://www.bioone.org/loi/apps
TABLE 3. Cross-amplification of the newly developed microsatellites of Miscanthus.a

Locus	M. sacchariflorus	M. sinensis	M. sinensis subsp. condensatus	M. × giganteus	M. transmorisonensis	M. × ecklonii	M. × giganteus	M. × tenuiflorus	M. × violaceus	M. × nepalensis	M. × nudipes	M. × fuscus	Eulalia gigantea	Navelia panicea	Saccharinae species	Saccharum edule	Saccharum spontaneum	Spodiopogon rhizophorus	Sorghum halepense	Zea mays	Andropogon sp.	Cenchrus sp.
Mis-1	20	125–256	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Mis-14	33	71–208	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Mis-15	21	44–205	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Mis-23	30	136–314	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Mis-24	23	248–361	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Mis-37	33	189–226	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Mis-41	44	131–512	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Mis-42	29	121–247	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Mis-50	30	199–260	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Mis-51	27	132–176	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Mis-52	22	132–207	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Mis-54	20	207–244	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Mis-59	13	123–162	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Mis-64	40	177–286	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Mis-69	24	105–220	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Mis-70	31	211–328	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Mis-79	34	224–276	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Average	275																					

*a Cross-amplification in Miscanthus species, other Saccharinae, other Andropogoneae, and Paniceae (+ = yes; – = no).

*b Miscanthus s.s. (Asian Miscanthus with basic chromosome number of 19).

*c Miscanthus s.l. (GrassBase—The Online World Grass Flora [http://www.kew.org/data/grasses-db.html]).

*d Sorghum is classified in Sorghinae (Andropogoneae), Zea in Tripsacinae (Andropogoneae), Cymbopogon in Andropogoninae (Andropogoneae), and Pennisetum in Cenchrinae (Paniceae).

*e Total allele number and size range in base pairs (bp) for 19 nuclear SSR markers across all samples.

*f Spodiopogon rhizophorus and S. sibiricus.
Applications in Plant Sciences 2013 1 (11): 1300042
doi:10.3732/apps.1300042

M. lutarioriparius

Both studies from Zhao et al. (2011) on transferability from have been developed (Hung et al., 2009; Ho et al., 2011; Zhou et al., 2011). Brachypodium distachyon

of licate loci in their ability to detect variation. Thirteen out of 19 primer pairs

M. sinensis

polyA treatment at 65°C to cross-amplify not only within species but also

closely related genera were also included. All markers revealed considerable length polymorphism, with the number of alleles ranging from 13 to 44 per locus, with an average of 27.5 (Table 3). The loci amplified included a tetranucleotide repeat in nine cases and a dinucleotide repetition in the remaining 10. No major difference was observed between di- and tetranucleotide microsatellite loci in their ability to detect variation. Thirteen out of 19 primer pairs showed cross-amplification in non-Miscanthus species (Table 3). Average allele number was higher than the value of 12 found by Hernández et al. (2001) in a previous study using SSRs from maize. The higher number of clones used in our study (166 against 16 clones) and the introduction of species other than M. sinensis, M. sacchariflorus, and M. xiganteus could account for the difference in allele number.

PIC and H_e values varied considerably among species (Table 2) and were the highest (0.88 and 0.89, respectively) for M. sinensis, 0.48 and 0.54 for M. sacchariflorus, and the lowest (0.33 and 0.41) in M. xiganteus. The PCR value of M. sinensis (0.88) was consistent with the value of 0.83 in Hernández et al. (2001), both are higher than the average PIC value recently found by Zhao et al. (2011) in a study examining transferability of 49 microsatellite markers from Brachypodium distachyon to M. sinensis.

In the past few years, the first nuclear microsatellite markers for Miscanthus have been developed (Hung et al., 2009; Ho et al., 2011; Zhou et al., 2011). Both studies from Zhao et al. (2011) on transferability from Brachypodium P. Beauv. and from Hung et al. (2009) on nine new microsatellite loci specific for Miscanthus, were limited to M. sinensis, thus explaining the low level of polymorphism found compared to the markers in this study. Zhou et al. (2011) extended the test for their 14 newly developed markers to M. floridulus, M. lutarioriparius, M. lutaria riparius L. Liu ex S. L. Chen & Renvoize, and M. sacchariflorus, increasing the average number of alleles found to 16.1 and the PIC value to 0.76. A different approach was used by Ho et al. (2011) to develop 12 new SSR primer pairs for Miscanthus. They designed primers based on genic microsatellite loci (EST-SSRs) obtained through transcriptome sequencing and detected an average of 7.9 alleles per locus when tested on M. floridulus and M. sinensis.

CONCLUSIONS

The newly developed primers presented here were found to cross-amplify not only within Miscanthus species but also in other members of the Saccharinae, Andropogoneae, and Paniceae. They amplified DNA in Zea L. (Tripsacinae), Sorghum Moench (Sorghghinae), Cymbopogon Spreng. (Andropogoninae), and Pennisetum Rich. (Paniceae). The primers are of high value for characterization of Miscanthus species and can be applied to other closely related genera including Saccharum L.

LITERATURE CITED

De Cesare, M., T. R. Hodkinson, and S. Barth. 2010. Chloroplast DNA markers (cpSSRs, SNPs) for Miscanthus, Saccharum and related grasses (Panicoideae, Poaceae). Molecular Breeding 26: 539–544.

Hernández, P., G. Dorado, D. A. Laurie, A. Martín, and J. W. Snape. 2001. Microsatellites and RFLP probes from maize are efficient sources of molecular markers for the biomass energy crop Miscanthus. Theoretical and Applied Genetics 102: 616–622.

Ho, C.-W., T.-H. Wu, T.-W. Hsu, J.-C. Huang, C.-C. Huang, and T.-Y. Chiang. 2011. Development of 12 genic microsatellite loci for a biofuel grass, Miscanthus sinensis (Poaceae). American Journal of Botany 98: e201–e203.

Hodkinson, T. R., M. W. Chase, C. Takahashi, I. J. Leitch, M. D. Bennett, and S. A. Renoveize. 2002. The use of DNA sequencing (ITS and trnL-F), AFLP, and fluorescent in situ hybridization to study allopolyploid Miscanthus (Poaceae). American Journal of Botany 89: 279–286.

Hodkinson, T. R., S. Waldren, J. A. N. Parnell, C. T. Kelleher, K. Salamin, and N. Salamin. 2007. DNA banking for plant breeding, biotechnology and biodiversity evaluation. Journal of Plant Research 120: 17–29.

Hung, K.-H., T.-Y. Chang, C.-T. Chiu, T.-W. Hsu, and C.-W. Ho. 2009. Isolation and characterization of microsatellite loci from a potential biofuel plant Miscanthus sinensis (Poaceae). Conservation Genetics 10: 1377–1380.

Kim, C., D. Zhang, S. A. Aukland, L. K. Rainville, K. Jakob, B. Kronmiller, E. J. Sacks, et al. 2012. SSR-based genetic maps of Miscanthus sinensis and M. sacchariflorus, and their comparison to sorghum. Theoretical and Applied Genetics 124: 1325–1338.

Ma, X., E. Jensen, N. Alexandrov, and M. Troukhan. 2012. High resolution genetic mapping by genome sequencing reveals genome duplication and tetraploid genetic structure of the diploid Miscanthus sinensis. PLoS ONE 7: e33821. http://dx.plos.org/10.1371/journal.pone.0033821.

Rozen, S., and H. Skaletsky. 2000. Primer3 on the WWW for general users and for biologist programmers. In S. Misener and S. A. Krawetz [eds.], Methods in molecular biology, vol. 132: Bioinformatics methods and protocols, 365–386. Humana Press, Totowa, New Jersey, USA.

Zhou, H. F., S. S. Li, and S. Ge. 2011. Development of microsatellite markers for Miscanthus sinensis (Poaceae) and cross-amplification in other related species. American Journal of Botany 98: e195–e197.

http://www.bioone.org/loi/apps 4 of 7
APPENDIX 1. List of all accessions used in the study, source, and herbarium voucher number. All taxa are Andropogoneae subtribe Saccharinae unless indicated otherwise.

Taxon	Source	Voucher
M. sacchariflorus 1	TCD Bot. Gardens	TCD P15
M. sinensis 'Zebrinus' 2	TCD Bot. Gardens	TCD P20
M. sinensis 'Zebrinus' 3	TCD Bot. Gardens	TCD P31
M. × giganteus 4	TCD Bot. Gardens	TCD P34
M. × giganteus 5	TCD Bot. Gardens	TCD P36
Miscanthus sp. 6	TCD Bot. Gardens	Tea-6
M. sinensis 7	TCD Bot. Gardens	TCD P48
Miscanthus sp. 8	TCD Bot. Gardens	TCD P50
M. sinensis 9	TCD Bot. Gardens	TCD P51
M. sacchariflorus 10	TCD Bot. Gardens	TCD P58
Miscanthus sp. 11	TCD Bot. Gardens	Tea-11
M. sinensis 13	TCD Bot. Gardens	TCD P73
M. sinensis 14	TCD Bot. Gardens	TCD P75
Miscanthus sp. 15	TCD Bot. Gardens	TCD P104
M. transmorrisonensis 16	TCD Bot. Gardens	TCD P105
M. × giganteus 17	TCD Bot. Gardens	TCD P108
Miscanthus sp. 18	TCD Bot. Gardens	Tea-18
M. sinensis 'Goliath' 19	TCD Bot. Gardens	TCD P110, SIN-H6
M. × giganteus 20	TCD Bot. Gardens	Tea-21
Miscanthus sp. 21	TCD Bot. Gardens	Tea-22
Miscanthus sp. 22	TCD Bot. Gardens	Tea-23
Miscanthus sp. 23	TCD Bot. Gardens	Tea-29
M. sinensis 24	TCD Bot. Gardens	Tea-30
M. sinensis 25	TCD Bot. Gardens	Tea-31
M. sinensis 26	TCD Bot. Gardens	Tea-32
Miscanthus sp. 27	TCD Bot. Gardens	Tea-27
Miscanthus sp. 28	TCD Bot. Gardens	Tea-28
Miscanthus sp. 29	TCD Bot. Gardens	Tea-29
M. sinensis 30	TCD Bot. Gardens	Tea-30
M. × giganteus 31	TCD Bot. Gardens	Tea-31
M. × giganteus 32	TCD Bot. Gardens	Tea-32
M. sinensis 'Zebrinus' 33	TCD Bot. Gardens	TCD P20
Miscanthus sp. 34	TCD Bot. Gardens	Tea-34
M. sinensis 'Gross Fontane' 35	TCD Bot. Gardens	TCD P30
M. sinensis 'Gross Fontane' 36	TCD Bot. Gardens	Tea-36
Miscanthus sp. 37	TCD Bot. Gardens	Tea-37
Miscanthus sp. 38	TCD Bot. Gardens	Tea-38
Miscanthus sp. 39	TCD Bot. Gardens	Tea-39
M. sinensis 40	TCD Bot. Gardens	TCD P62
Miscanthus sp. 42	TCD Bot. Gardens	Tea-42
Miscanthus sp. 43	TCD Bot. Gardens	Tea-43
M. sinensis subsp. condensatus 44	TCD Bot. Gardens	TCD P94
Miscanthus sp. 45	TCD Bot. Gardens	Tea-45
Miscanthus sp. 46	TCD Bot. Gardens	Tea-46
Miscanthus sp. 47	TCD Bot. Gardens	Tea-47
Miscanthus sp. 48	TCD Bot. Gardens	Tea-48
Miscanthus sp. 49	TCD Bot. Gardens	Tea-49
Miscanthus sp. 50	TCD Bot. Gardens	Tea-50
Miscanthus sp. 51	TCD Bot. Gardens	Tea-51
Miscanthus sp. 52	TCD Bot. Gardens	Tea-52
Miscanthus sp. 53	TCD Bot. Gardens	Tea-53
Miscanthus sp. 54	TCD Bot. Gardens	Tea-54
Miscanthus sp. 55	TCD Bot. Gardens	Tea-55
M. sinensis 'Goliath' 56	TCD Bot. Gardens	Tea-56
M. sinensis 'Goliath' 57	TCD Bot. Gardens	Tea-57
M. sinensis 'Sirene' 58	Teagasc Oak Park	Tea-58
M. sinensis 'Strictus' 59	TRH garden	Tea-59
M. sinensis 'Strictus' 60	TRH Garden	Tea-59
M. sinensis 'Malapartus' 61	TRH Garden	Tea-60
M. sinensis 62	TRH Garden	Tea-61
M. sinensis 'Sirene' 63	TCD Bot. Gardens	Tea-62
M. × giganteus 64	TCD Bot. Gardens	Tea-63
M. × giganteus 65	TCD Bot. Gardens	Tea-64
M. × giganteus 66	TRH Garden	Tea-65
Miscanthus sp. 68	TCD Bot. Gardens	Tea-66
Miscanthus sp. 69	TCD Bot. Gardens	Tea-68
Miscanthus sp. 70	TCD Bot. Gardens	Tea-69
Miscanthus sp. 71	TCD Bot. Gardens	Tea-70
		Tea-71
Taxon	Source	Voucher
---------------------------	------------------------	---------------
Miscanthus sp. 72	TCD Bot. Gardens	Tea-72
Miscanthus sp. 73	TCD Bot. Gardens	Tea-73
M. × giganteus 74	Germany	Tea-M1 Lasei 1
M. sacchariflorus × M. sinensis 75	Germany	Tea-M81 RH 81
M. sinensis 76	Germany—from Denmark	Tea-88-110
M. sinensis 77	Germany—from Japan	Tea-88-111
M. sinensis 78	Germany—from Japan	Tea-90-5
M. sinensis 79	Germany—from Japan	Tea-90-6
M. sinensis 80	Germany—from Denmark	Tea-SW 217
M. × giganteus 81	Germany	Tea-M53 IPL 53
M. × giganteus 82	Germany	Tea-M56 HAGA 56
M. × giganteus 83	Germany	Tea-M63 GREIF 63
M. sacchariflorus 84	Germany—from Japan	Tea-M11 MATEREC 11
M. sinensis ‘Goliath’ 85	Germany	Tea-M7 GOFAL 7
M. sinensis hybrid 86	Germany	Tea-M42 BERBO 42
M. sacchariflorus × M. sinensis 87	Germany	Tea-M43RH43
Miscanthus sp. 89	Oak Park	Tea-89
Miscanthus sp. 90	Oak Park	Tea-90
Miscanthus sp. 91	Oak Park	Tea-91
Miscanthus sp. 92	Oak Park	Tea-92
M. × giganteus 93	IGER/TinPlant/Oak Park	Tea-93
M. × giganteus 94	Old Trial Teagasc Oak Park	Tea-94
M. sinensis 95	Sweden	Tea-95
M. sinensis 96	Sweden	Tea-96
M. sinensis 97	Sweden	Tea-97
M. sinensis 98	Sweden	Tea-98
M. sinensis 99	Sweden	Tea-99
M. sinensis 100	Sweden	Tea-100
M. sinensis 101	Sweden	Tea-101
M. sinensis 102	Sweden	Tea-102
M. sinensis 103	Sweden	Tea-103
M. sinensis 104	Sweden	Tea-104
M. sinensis 105	Sweden	Tea-105
M. sinensis 106	Sweden	Tea-106
M. sinensis 107	Sweden	Tea-107
M. sinensis 108	Sweden	Tea-108
M. sinensis 109	Sweden	Tea-109
M. sinensis 110	Sweden	Tea-110
M. sinensis 111	Sweden	Tea-111
M. sinensis 112	Sweden	Tea-112
M. sinensis 113	Sweden	Tea-113
M. sinensis 114	Sweden	Tea-114
M. sinensis 115	Sweden	Tea-115
M. sacchariflorus × M. sinensis 116	Sweden	Tea-116
M. sacchariflorus × M. sinensis 117	Sweden	Tea-117
M. sacchariflorus × M. sinensis 118	Sweden	Tea-118
M. sacchariflorus × M. sinensis 119	Sweden	Tea-119
M. sacchariflorus × M. sinensis 120	Sweden	Tea-120
M. sacchariflorus × M. sinensis 121	Sweden	Tea-121
M. sacchariflorus × M. sinensis 122	Sweden	Tea-122
M. sacchariflorus × M. sinensis 123	Sweden	Tea-123
M. sacchariflorus × M. sinensis 124	Sweden	Tea-124
M. sacchariflorus × M. sinensis 125	Sweden	Tea-125
M. sacchariflorus × M. sinensis 126	Sweden	Tea-126
M. sacchariflorus × M. sinensis 127	Sweden	Tea-127
M. sacchariflorus 128	TCD Bot. Gardens	Tea-128
M. sacchariflorus 129	TCD Bot. Gardens	Tea-129
Miscanthus sp. 130	TCD Bot. Gardens	Tea-130
Miscanthus sp. 131	TCD Bot. Gardens	Tea-131
Saccharum officinarum	TCD Bot. Gardens	TCD TRH s.n.
Cymbopogon citratusa	TCD Bot. Gardens	TCD TRH s.n.
Zea diploperennis	TCD Bot. Gardens	TCD TRH s.n.
Sorghum halepense b	RBG Kew 151 01	Kew 1966-54209
Pennisetum sp. c	RBG Kew 154 04	Kew 1969-19093
M. sinensis var. variegatus 1	RBG Kew 151	Kew 1969-19091
M. sinensis subsp. condensatus 7	RBG Kew 151 (pot)	Kew 1995-1864
M. oligostachyus 16	RBG Kew TH 4	Kew 1985-8388
M. nepalensis 25		
APPENDIX 1. Continued.

Taxon	Source	Voucher
M. sinensis ‘Goliath’ 27	ADAS Steinmann nurseries	Kew MB93/02
M. sinensis ‘Gracillimus’ 28	ADAS Piccoplant, Germany	Kew MB94/05
M. sinensis ‘Roland’ 29	ADAS Piccoplant, Germany	Kew MB94/06
M. sinensis Anderss. 30	ADAS Wye College	Kew MB94/07
M. sinensis ‘Gross Fontane’ 31	ADAS Genft Dgels, Germany	Kew PN95/01
M. sacchariflorus 61	RBG Kew	Kew 1987-2727
M. sinensis ‘Yakushimanum’ 63	RBG Kew	Kew 1987-1148
M. transmorrisonensis 65	RBG Kew	Kew 1990-2748
M. fuscus 82	RBG Kew	Kew 590
M. violaceus 84	RBG Kew	Kew 7437
M. ecklonii 86	RBG Kew	Kew 2347
M. junceus 88	RBG Kew	Kew 1060
M. ecklonii 105	RBG Kew	Kew 2309
M. ecklonii 106	RBG Kew	Kew 2929
M. yunnanensis 107	RBG Kew	Kew 30689
M. nudipes 109	RBG Kew	Kew 2007
M. tinctorius 112	RBG Kew	Kew 1466
Saccharum spontaneum 117	RBG Kew	Kew Butt, 1977
Narenga porphyrocoma 120	RBG Kew	Kew 2092
Saccharum contortum 121	RBG Kew	Kew 3797
Spodiopogon rhizophorus 125	RBG Kew	Kew 283
Spodiopogon sibiricus 128	RBG Kew	Kew 210
Eulalia quadrinervis 134	RBG Kew	Kew 3294
M. sinensis ‘Morning Light’ 155	RBG Kew	Kew 1996 821
M. sacchariflorus 159	RBG Kew	Kew 3598 1935
M. sacchariflorus 160	RBG Kew	Kew 1984
M. tinctorius ‘Nana Variegata’ 161	RBG Kew	Kew 1996 1065
M. sinensis ‘Goliath’ 194	ADAS	Kew PN96/30

* Numbers accompanying species names represent the DNA extraction identifier for this study.

^a Source abbreviations: ADAS = Agricultural Development Advisory Service (now Agriculture and Environmental Consultancy); IGER = Institute of Grassland and Environmental Research (now Institute of Biological, Environmental and Rural Sciences [IBERS]); RBG Kew = Royal Botanic Gardens, Kew, Richmond, Surrey, United Kingdom; TCD Bot. Gardens = Trinity College Dublin Botanical Garden, Dublin, Ireland; Teagasc Oak Park = Teagasc Oak Park Research Centre, Carlow, Ireland; TRH Garden = personal garden of first author.

^b Voucher abbreviations: Kew = Herbarium of the Royal Botanic Gardens, Kew, Richmond, Surrey, United Kingdom; Tea = Teagasc Oak Park Research Centre, Carlow, Ireland.

^c Andropogoninae, Andropogoneae (subtribe/tribe).

^d Tripsacinae, Andropogoneae.

^e Cenchrinae, Paniceae.