Supplementary material

Investigation of converting 1-butene and ethylene into propene via metathesis reaction over W-based catalysts

Guangzheng Zuo, Yuebing Xu, Jiao Zheng, Feng Jiang and Xiaohao Liu*

Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
E-mail address: liuxh@jiangnan.edu.cn (X.H. Liu)
Fig. S1 XRD patterns of (a) various support materials, (b) their 8 wt% corresponding W-containing catalysts, and (c) unsupported WO$_3$ as a reference.
Fig. S2 Raman spectra of (a) various support materials, (b) their corresponding 8 wt% W-containing catalysts, and (c) TiO₂ and 8W/TiO₂.
Fig. S3 XRD patterns of 8W/SBA-15 prepared in different calcination temperatures (400, 550 and 700 °C).

Fig. S4 UV-vis DRS spectra of 8W/SBA-15 prepared in different calcination temperatures (400, 550, and 700 °C).

Fig. S5 Raman spectra of 8W/SBA-15 prepared in different calcination temperatures (400, 550, and 700 °C).
Fig. S6 (A) Nitrogen adsorption-desorption isotherms and (B) corresponding pore size distribution curves of (a) SBA-15, (b) 4W/SBA-15, (c) 8W/SBA-15, (d) 15W/SBA-15, (e) 20W/SBA-15, and (f) 30W/SBA-15 catalysts.
Fig. S7 FT-IR spectra of pyridine adsorbed SBA-15 and W/SBA-15 catalysts with different W loadings.

Fig. S8 UV-vis DRS spectra of fresh W/SBA-15 catalysts with different W loadings and their corresponding spent catalysts.
Fig. S9 H$_2$-TPR profiles of fresh 8W/SBA-15, 15W/SBA-15, and 30W/SBA-15 catalysts.

Fig. S10 XPS spectra of fresh 15W/SBA-15 and H$_2$O-pretreated 15W/SBA-15 catalysts.

Fig. S11 H$_2$-TPR profiles of fresh 15W/SBA-15 and calcined spent H$_2$O-pretreated 15W/SBA-15 catalysts.
Fig. S12 Time-dependence of 1-buene conversion (a), propene selectivity (b), and products distribution (c) obtained over 15W/SBA-15 catalyst with different WHSV at the reaction conditions of 450 °C, 0.1 MPa, 1.5, 1.0, 0.5, and 0.25 g of catalyst weight, and an ethylene/1-butene molar ratio of 2.
Fig. S13 Time-dependence of 1-buene conversion (a), propene selectivity (b), and products distribution (c) obtained over 15W/SBA-15 catalyst with different reaction temperatures at the reaction conditions of 0.1 MPa, 1.0 g of catalyst weight, 0.9 h⁻¹ of WHSV, and an ethylene/1-buene molar ratio of 2.
Scheme S1 Formation pathway of active sites denoted as W-carbene from the terminal W=O (A), and W-OH (B) of isolated tetrahedral W⁵⁺ species.

Scheme S2 Reaction mechanism of the metathesis of 2-butene and ethylene (a), and 2-butene and 1-butene (b) over SBA-15 supported W catalysts.
Table S1 Physicochemical properties of SBA-15 and W/SBA-15 catalysts with different W loadings.

Sample	Surface area (m² g⁻¹)ᵃ	Pore volume (cm³ g⁻¹)ᵇ	Pore size (nm)ᵇ	Surface density (W nm⁻²)	Acidity (μmol g⁻¹)	Brønsted acid	Lewis acid	
SiO₂	287	1.05	13.0	N/A	N/A	N/A	N/A	
8W/SiO₂	247	0.87	11.8	0.91	1.1	7.3	3.6	
SBA-15	719	1.09	6.1	N/A	0.0	12.0	3.6	
8W/SBA-15	551	0.83	5.9	0.41	2.4	12.0	3.6	
γ-Al₂O₃	209	0.42	8.1	N/A	N/A	N/A	N/A	
8W/γ-Al₂O₃	185	0.38	6.3	1.23	0.0	47.1		
TiO₂	13	0.06	18.9	N/A	N/A	N/A	N/A	
8W/TiO₂	8	0.03	17.7	28.3	0.0	1.9		

ᵃ Determined by BET method.
ᵇ Evaluated by the BJH method.
ᶜ Determined by pyridine-IR spectra.

Table S2 Catalytic performance of unsupported WO₃ and 8 wt% W-containing catalysts with different support material.

Catalyst	Conversion (%)ᵃ	Selectivity (%)	Specific activity (mmol C₄⁺ g_{cat}⁻¹ h⁻¹)				
		Propene C₅⁺	trans-2-butene	cis-2-butene	iso-butene		
8W/SiO₂	79.5	47.4	6.0	26.5	20.1	0.1	12.8
8W/γ-Al₂O₃	77.1	13.6	2.3	42.7	31.4	10.5	12.4
8W/TiO₂	62.6	1.5	0.8	56.4	41.1	0.2	10.1
8W/SBA-15	83.3	54.6	3.6	23.8	17.5	0.5	13.4
WO₃	14.5	0.9	1.2	62.9	35.4	0.2	2.3

ᵃ Reaction conditions: T = 450 °C, P = 0.1 MPa, catalyst weight = 0.5 g, WHSV (E+B) = 1.8 h⁻¹, n(E) / n(B) = 2.

Table S3 Catalytic performance of 8W/SBA-15 catalyst prepared at different calcination temperatures.

T (°C)	Conversion (%)ᵃ	Selectivity (%)	Specific activity (mmol C₄⁺ g_{cat}⁻¹ h⁻¹)				
		Propene C₅⁺	trans-2-butene	cis-2-butene	iso-butene		
400	84.1	54.2	4.0	23.3	17.1	1.4	13.5
550	83.3	54.6	3.6	23.8	17.5	0.5	13.4
700	83.1	55.2	4.4	23.3	16.9	0.2	13.4

ᵃ Reaction conditions: T = 450 °C, P = 0.1 MPa, catalyst weight = 0.5 g, WHSV (E+B) = 1.8 h⁻¹, n(E) / n(B) = 2.
Table S4 Catalytic performance of SBA-15, WO$_3$, and W-containing catalysts with different loadings.

Catalyst	Conversion (%)	Selectivity (%)	Specific activity (mmol C$_4$ eq g$_{cat}$$^{-1}$ h$^{-1}$)				
		Propene	C$_5$	trans-2-butene	cis-2-butene	iso-butene	
SBA-15	72.3	2.9	0.3	55.4	40.8	0.6	11.6
4W/SBA-15	78.9	37.4	2.4	34.7	25.3	0.4	12.7
8W/SBA-15	83.3	54.6	3.6	23.8	17.5	0.5	13.4
15W/SBA-15	88.2	68.6	4.5	15.2	11.1	0.5	14.2
20W/SBA-15	86.7	63.7	4.4	18.0	13.2	0.7	13.9
30W/SBA-15	85.9	61.5	4.3	19.5	14.1	0.7	13.8
WO$_3$	14.5	0.9	1.2	62.9	35.4	0.2	2.3

a Reaction conditions: $T = 450$ °C, $P = 0.1$ MPa, catalyst weight = 0.5 g, WHSV (E+B) = 1.8 h$^{-1}$, n (E) / n (B) = 2.