Using in vivo electroporation to identify hepatic LDL receptor promoter elements and transcription factors mediating activation of transcription by T₃

Dayami Lopez a,⁎, Patricia A. Brooks b, Lindsey R. Boone b, Gene C. Ness b

a Department of Pharmaceutical Sciences, College of Arts and Sciences, Biomanufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, NC 27707, USA
b Department of Molecular Medicine, College of Medicine, University of South Florida, Tampa, FL 33612, USA

A R T I C L E I N F O

Article history:
Received 30 March 2012
Received in revised form 16 August 2012
Accepted 18 August 2012

Keywords:
LDL receptor
T₃-triiodothyronine
Thyroid response element
in vivo electroporation
Thyroid hormone receptor β1
Retinoic acid X receptor α
Peroxisomal proliferator receptor α
Upstream factor-2

A B S T R A C T

The technique of in vivo electroporation was adapted to investigate the promoter elements and transcription factors mediating the rapid induction of hepatic LDL receptor expression in response to thyroid hormone. Direct comparisons between wild type and mutant promoter constructs were made within the same animal. It was demonstrated that both TREs at bp − 612 and − 156 were required for the T₃-response. ChIP analysis showed that binding of TRβ1 to the − 612 and − 156 TREs was markedly stimulated by T₃ in vivo. Introduction of siRNAs against TRβ1/RXRα with LDL receptor promoter-luciferase construct by in vivo electroporation demonstrated that these transcription factors play the major physiological role in the activation of hepatic LDL receptor transcription. The findings agree with those made by transfecting H4IEE cells in vitro thus validating this technique for in vivo studies of mechanisms of transcriptional regulation. The findings reported herein also indicated, for the first time, that PPARα and USF-2 were required for maximum transcriptional activation of the LDL receptor in response to T₃ treatment.

© 2012 Elsevier B.V. Open access under CC BY-NC-ND license.

1. Introduction

1.1. Thyroid hormone and cholesterol

Thyroid hormone acts rapidly to stimulate transcription of the hepatic low density lipoprotein (LDL) receptor several fold (Ness and Lopez, 1995). This action is critical to the serum cholesterol-lowering effect of this hormone (Ness, 1991). In fact, hypothyroidism has been associated with elevated levels of LDL cholesterol (Illingworth et al., 1981), and treatment with thyroid hormone effectively lowers LDL cholesterol (Aviram et al., 1982). This has led to the development of thyromimetics as possible anti-cholesterol drugs (Underwood et al., 1986; Leeson et al., 1989; Ness et al., 1998; Morkin et al., 2004; Valadares et al., 2009).

1.2. Use of rat hepatoma cells

In a prior investigation, rat hepatoma H4IEE cells in culture were used to identify two thyroid response elements (TREs) in the rat LDL receptor promoter (Lopez et al., 2007). The elements identified were: an upstream TRE at bp − 612 and a two half-site TRE at bp − 156, relative to the transcription start site (Lopez et al., 2007). Binding of thyroid hormone receptor β1 (TRβ1) to both elements was demonstrated with binding to the − 612 element being much stronger than to the − 156 element (Lopez et al., 2007). Mutation of the weaker − 156 element did not significantly affect induction by T₃ (Lopez et al., 2007). However, mutation of both elements was required to completely abrogate T₃ induction of the LDL receptor promoter activity in the H4IEE cells (Lopez et al., 2007).

1.3. In vivo electroporation

The technique of efficiently transfecting rat liver cells in vivo using electroporation, for introduction of plasmid constructs has
been developed and optimized (Heller et al., 1996; Suzuki et al., 1998). In a study using a \(\beta \)-galactosidase construct, it was demonstrated that 30% to 40% of liver cells expressed the \(\beta \)-galactosidase genetic marker (Heller et al., 1996). Thus, we employed this in vivo electroporation technique to study the elements and transcription factors mediating induction of hepatic LDL receptor transcription by T3 in a live animal. Rat LDL receptor luciferase constructs, as well as siRNAs to knockdown specific transcription factors, were directly introduced into livers of live rats by in vivo electroporation.

2. Results

2.1. Localizing in vivo transfected promoter constructs

Using our 5 mm hexagonal array electrode, we introduced rat LDL receptor promoter-luciferase reporter gene constructs and/or siRNAs, in duplicate, into each of three liver lobes in the same animal. This allows for direct comparisons. The area transfected is limited to that inside the hexagonal array. After 24 hours, the transfected areas were removed using a 5 mm cork borer. The precise location of the transfected regions is defined by six light dots due to electrode scarring on the liver surface. Luciferase activity is restricted to the 5 mm circle as demonstrated in Fig. 1.

2.2. In vivo evaluation of the \(-612\) and \(-156\) TREs

The in vivo contributions of the TREs located at bp \(-612\) and \(-156\), relative to the transcription start site, to T3 stimulation of LDL receptor transcription was evaluated by introducing receptor promoter constructs into rat livers by in vivo electroporation. The rat wild-type (WT), \(-156\) mutant (\(-156Mt\)), \(-612\) mutant (\(-612Mt\)), and double mutant (DbMt) LDL receptor promoter constructs were introduced into separate liver lobes of normal (NR), hypophysectomized (Hx), and T3-treated hypophysectomized (Hx+T3) rats, for direct comparisons within the same animal. As shown in Fig. 2A, the promoter activity of the WT construct was 39% lower in the Hx than in the NR rats. Treating with a single dose of T3 (after electroporation) 16 hours before euthanization caused a significant (\(p<0.01\)) induction (2.4-fold) in LDL receptor promoter activity as compared to the activity observed in the Hx animals (Fig. 2A). These changes in LDL receptor promoter activity directly correlated with changes in free T3 (fT3) (Fig. 2B) and hepatic LDL receptor mRNA levels (Fig. 2C). Fig. 3A illustrates the results for the mutation analysis experiment. For this specific experiment, the Hx rats were treated with two injections of T3, 72 and 24 hours prior to electroporation, as indicated under Materials and methods. As shown, the activity of the WT construct was increased 8.42-fold in response to two doses of T3, when compared to the LDL receptor promoter activity seen in the Hx animals (Fig. 3). Mutating the \(-612\) TRE reduced the T3-dependent stimulation of the LDL receptor promoter about 49% (Fig. 3). Similarly to the results obtained in H4IIE cells (Lopez et al., 2007), mutating the \(-156\) TRE had no significant effect on the T3 dependent activation of the LDL receptor promoter (data not shown). When both TREs were mutated, the stimulation by T3 was reduced by 76% (Fig. 3).

2.3. In vivo analysis of transcription factor binding to the LDL receptor promoter

To investigate the effect of T3 treatment on the binding of different transcription factors to the TREs in vivo, ChIP assays were performed as described under Materials and methods. As shown in Fig. 4, T3

![Fig. 1. In vivo imaging of liver sites where promoter luciferase constructs were introduced into a normal (NR) rat. Imaging was performed 24 hours after in vivo electroporation using a Xenogen in vivo Imager. Luciferase substrate was injected intraperitoneally prior to imaging. The regions of interest (ROI) are circled.](image)
Values were obtained by comparing NR versus Hx and Hx versus Hx+T3, respectively.

The degree of binding enhancement was about 3.65- and 3.0-fold for the −612 and −156 motifs, respectively, similar to the binding enhancement seen with the positive control, RNA Pol II (Fig. 4). Binding of RXRα, by itself, to the −612 and −156 elements, was minimal (data not shown). However, T3 treatment enhanced the binding of TRβ1 together with RXRα to about 2-fold for both TRE sites (Fig. 4). Interestingly, significant binding enhancements were also observed for PPARα and USF-2, two transcriptional factors also known to bind to these promoter elements (Adams et al., 2010; Boone et al., 2009; Jackson-Hayes et al., 2003).

2.4. In vivo siRNA studies

To evaluate the relative involvement of endogenous TRβ1, PPARα, and USF-2 in mediating transcriptional activation of the hepatic LDL receptor gene by T3, siRNAs to knockdown these transcriptional factors were utilized. The siRNAs were introduced by in vivo electroporation together with the WT LDL receptor promoter construct into euthyroid rats. The LDL receptor promoter activity obtained in the presence of the siRNAs was directly compared with the promoter activity seen in the presence of saline. As shown in Fig. 5A, the receptor promoter activity was reduced to about 25% of control in the presence of siRNAs against TRβ1. LDL receptor mRNA levels were reduced to about 35% of control by the same siRNAs (Fig. 5B). Knockdown of PPARα and USF-2 using siRNAs significantly reduced LDL receptor promoter activity to about 35% of control (Fig. 5A), while LDL receptor mRNA levels were reduced to about 50% of control (Fig. 5B).

Fig. 2. Effects of T3 on the expression of the LDL receptor gene in rat livers. A. In vivo reporter gene studies using electroporation. For this experiment, 40 μg of the WT LDL receptor (LDLR) promoter construct were injected at different sites into the livers of NR and hypophysectomized (Hx) rats. Some of the Hx rats received 1 dose of T3 16 hours before euthanization (Hx+T3). Preparation of liver lysates and measurement of luciferase activity were carried out as described under Materials and methods. The data are presented as mean LDLR promoter activity±SEM for six electroporation sites per each treatment condition. p Values were obtained by comparing the Hx and Hx+T3 conditions. B. Levels of fT3 in serum samples obtained from the same animals used in (A.) were determined using ELISA. The data are presented in term of pg/ml. p Values were obtained by comparing NR versus Hx and Hx versus Hx+T3, respectively. C. Effect of T3 on hepatic LDLR mRNA levels. Total RNA samples prepared from the same rats employed in (A.) were analyzed by real-time RT-PCR using LDLR specific primers. The data are represented as mean relative LDLR mRNA levels ± SEM where the value of receptor mRNA for the normal sample was set to 1.0. The p value was obtained by comparing the Hx and Hx+T3 conditions.

Fig. 3. In vivo contributions of the −612 and −156 TREs to the T3-dependent activation of the LDLR promoter. For this experiment, 10 μg of the WT, −612Mt, and DbMt LDLR promoter constructs were electroporated into the livers of Hx and Hx+T3 rats. Two doses of T3 were given 72 and 24 hours before electroporation as described under Materials and methods. Lysate preparation and luciferase assays were carried out. The data are presented as mean LDLR promoter activity±SEM for at least four electroporation sites per each treatment condition. p Values were obtained by comparing the WT construct.

Fig. 4. In vivo binding of transcriptional factors to the LDL receptor promoter. ChIP assay followed by real-time PCR analysis were performed on liver samples obtained from Hx and Hx+T3 rats. Negative (IgG) and positive (RNA Pol II) control antibodies were used. PCR data were normalized to input DNA and presented as mean binding enhancement by T3±SEM, where the binding to chromatin from livers of Hx+T3 rats was expressed relative to the binding to chromatin from livers of Hx rats. All the differences shown were found to be statistically significant (p<0.05), relative to the total input DNA. Samples from at least four animals were considered for each treatment condition.
3. Discussion

3.1. Direct activation

The present study demonstrated that T₃ activates transcription of the hepatic LDL receptor in vivo through TREs located at −612 and −156, with the −612 element being the major element. These results are in agreement with previous in vitro findings made using rat liver hepatoma cells (Lopez et al., 2007). T₃ activation of LDL receptor transcription through these sites via the TRα1, the major thyroid hormone receptor in liver (Angelin and Rudling, 2010), explains the rapid (within 1 hour) activation of receptor transcription previously reported (Ness and Lopez, 1995; Ness and Zhao, 1994). T₃ acts directly rather than via the sterol response element binding protein (SREBP) pathway to activate hepatic LDL receptor transcription (Lopez et al., 2007; Costet, 2010), since it was demonstrated that T₃ failed to restore SREBP-2 levels fully activated (Lopez et al., 2007).

3.2. Requirement for both TREs

Previously, binding of TRα1 to the −612 and −156 sites of LDL receptor promoter was demonstrated in vitro using electrophoretic mobility shift assays (EMSA) (Lopez et al., 2007). In vitro, the binding of TRα1 to the −612 site was found to be stronger than the binding to −156 (Lopez et al., 2007). Herein, ChIP assays demonstrated that...
in vivo, T₃ treatment enhanced TRβ₁ binding to both TRE elements to a similar extent. Interestingly, the binding of TRβ₁ by itself to the LDL receptor TREs was shown to be 1.83-fold higher than the binding of TRβ₁/RXRα heterodimers.

TRβ₁ is a type II nuclear receptor, which in the absence of T₃, usually binds to TREs in the promoter of target genes as homo- or heterodimers with RXRα (Harvey and Williams, 2002; Yen, 2001). Under these conditions, the TRβ₁/RXRα complex interacts with corepressor proteins (i.e., NcoR2, TRAC-1, or SMRTe), which assist in repressing transcription of a target gene (Harvey and Williams, 2002; Yen, 2001). When T₃ is present, the corepressor is released as a result of a conformational change in TRβ₁ (Harvey and Williams, 2002; Yen, 2001). This leads to recruitment of coactivator proteins, such as TRAP (Harvey and Williams, 2002; Yen, 2001). The complex formed between the TRE motif, TRβ₁/RXRα, and the coactivator, recruits RNA polymerase resulting in an increase in transcription of the target gene (Harvey and Williams, 2002; Yen, 2001). Thus, our finding that, in the case of the LDL receptor, T₃ enhances the binding of TRβ₁, possibly in the form of homodimers, and to a lesser extent, of TRβ₁/RXRα heterodimers, to the receptor promoter, represents a novel in vivo regulatory mechanism of transcriptional regulation by thyroid hormone. In fact, the binding of TRβ₁ receptors in the form of monomers and/or homodimers has been reported only in in vitro assays (Miyamoto et al., 1993). Additional studies are required to identify corepressor and/or coactivator proteins associated with the transcriptional regulation of the LDL receptor gene in the absence and presence of T₃, respectively.

3.3. Possible role of PPARα and USF-2

In vivo and in vitro knockdown studies using siRNAs against PPARα and USF-2 confirmed that these two transcription factors are required for maximum T₃-dependent activation of the LDL receptor promoter. PPARα is a nuclear receptor that like the T3 receptor, it has the ability to form heterodimers with RXRα, bind to the half-site AGGTCA, and activate transcription in response to its ligand (fatty acids) (Forman et al., 1997; Stael et al., 1998). It is possible that in the case of the LDL receptor, PPARα competes with TRβ₁/RXRα for the same binding sites, and since T₃ can enhance fatty acid synthesis in the liver (Blenenmann et al., 1992), the excess of fatty acids could promote PPARα binding to the LDL receptor gene. In fact, activation of PPARα has been reported to induce the expression of the hepatic LDL receptor both in vitro and in vivo. (Huang et al., 2008). Furthermore, fibrates such as fenofibrate, which are synthetic ligands for PPARα, activate LDL receptor transcription (Huang et al., 2008). It will be interesting to investigate in future studies whether PPARα/TRβ₁/RXRα could form trimers on the LDL receptor TREs.

USF-2, on the other side, binds to E-box motifs (Corre and Calgibert, 2005), and in agreement with this, several E-boxes have been identified around the LDL receptor TREs, especially the −156 motif (Lopez and Ness, 2006). Interestingly, USF-2 has been implicated in the T₃-dependent regulation of genes such as HMG-CoA reductase and carnitine palmitoyltransferase-I (CPT-I). In the case of the CPT-I gene, USF-2 is able to directly interact with TR to regulate transcription. Thus, it could be possible that USF-2, PPARα, and TRβ₁/RXRα are able to cooperate in vivo to control the transcription of the LDL receptor. There are no previous reports linking USF-2 to the transcriptional activation of the LDL receptor gene.

4. Conclusion

The findings reported herein extend the previous observations made in rat hepatoma cells to the whole animal. They indicated that both the −156 and −156 TREs are required for in vivo activation of hepatic LDL receptor transcription by thyroid hormone. These studies also confirmed that TRβ₁/RXRα are the primary transcription factors involved in this process, but showed, for the first time, that PPARα and USF-2 are required for maximum activation of the LDL receptor promoter in the presence of T₃.

5. Materials and methods

5.1. Experimental animals

NR and Hx male Sprague–Dawley rats, weighing 125 to 150 g, were purchased from Harlan (Indianapolis, IN). NR rats received Tekland rat Chow and water ad libitum. Hx rats received Tekland Iodo-Deficient Chow and water ad libitum. Both sets of rats were housed in a reverse-cycle light-controlled room with a 12-hour light/dark period. In some experiments, Hx rats used in electroporation received a single injection of 0.1 mg/kg T₃ 16 hours prior to euthanization. In other experiments, Hx rats received an injection of 1.0 mg/kg T₃ 72 hours prior to electroporation and an additional injection of 0.25 mg/kg T₃ 24 hours prior to electroporation. These rats were euthanized 24 hours following electroporation, at the mid-dark period (Boone et al., 2009). The animals were cared for according to the NIH guidelines set forth in the “Guide for the Care and Use of Laboratory Animals”. All procedures were conducted according to protocol 3571 approved by the University of South Florida Institutional Animal Care and Use Committee.

5.2. Plasmid construction

The rat WT, −156Mt, −612Mt, and DbMt LDL promoter-luciferase reporter gene constructs were prepared as previously described (Lopez et al., 2007; Lopez and Ness, 2006). All clones were confirmed by restriction analysis followed by DNA sequencing at Genewiz, Inc. (South Plainfield, NJ).

5.3. In vivo electroporation

Ten to forty μg of the indicated LDL receptor promoter constructs were directly introduced into the livers of rats by electroporation as recently described (Lagar et al., 2007). pHRL-CMV Renilla vector (Promega, Madison, WI) was co-electroporated at a 1:2000 dilution to control for electroporation efficiency. The total volume of injected DNA was 50 μL as previously described (Boone et al., 2009). Two 5 mm electroporation sites in each of three liver lobes per rat were used. The area transected is restricted to that inside the 5 mm circle as evidenced by imaging of live rats (Fig. 1).

5.4. Luciferase assays

The livers of electroporated animals were harvested 24 hours following electroporation. Once removed, the electroporated regions of the liver were excised using a 5 mm cork-borer. A circle of six small dots defined the transfection sites. Approximately 100 mg of liver was placed in 2 mL of 1 × Passive Lysis Buffer (Promega Corp., Madison, WI) and homogenized using a Polytron tissue disruptor. The lysate was centrifuged at 16,000 × g for 5 minutes and the supernatant assayed for luciferase activity using the Dual Luciferase Assay Kit from Promega. Luciferase activity was calculated as the average ratio of firefly (reporter) to renilla luciferase (Boone et al., 2009).

5.5. Thyroid hormone assay

Blood was collected from animals at time of euthanasia and centrifuged at 16,000 × g for 5 min. Supernatant was collected and used for determination of T₃ levels using the fT₃ ELISA from Calbiotech (Spring Valley, CA) (Lopez et al., 2007; Boone et al., 2009).
5.6. Real-time PCR

Total RNA was isolated using TRI Reagent (Molecular Research Center, Cincinnati, OH) either from liver samples distant from electroporated sites (to determine basal mRNA levels) or from adjacent sites electroporated with siRNAs (to measure the effects of those siRNAs on endogenous LDL receptor mRNA levels). The RNA samples were DNase treated using the TURBO DNA-Free Kit (Ambion, Austin, TX) and converted to cDNA using the Reverse Transcription System (Promega) as previously described (Lopez et al., 2007). Primer sequences for the rat LDL receptor and the 18s rRNA have been previously listed (Lopez et al., 2007). The parameters for the PCR reactions were denaturation at 95 °C for 5 minutes, followed by 40 cycles of 95 °C for 15 seconds and annealing and extension at 61 °C for 1 minute. The melt curve started at 55 °C and increased by 0.5 °C each 10 seconds until it reached 95°. All samples were run in duplicate on a Bio-Rad Chromo4 DNA Engine thermal cycler using SYBR green chemistry (Lagor et al., 2007). The data were analyzed by the Comparative CT method as previously described (Lagor et al., 2007).

5.7. Chromatin immunoprecipitation (ChIP) assay

Chromatin was prepared and immunoprecipitated using the Pierce Agarose ChIP Kit (Pierce Corp, Rockford, IL). All named buffers were included in the kit. Liver samples, 100 mg each, were taken from NR, Hx, and Hx+T3. The tissue was minced and fixed in 10 mL of 1% formaldehyde Fixation Solution for 10 minutes at room temperature. One mL of Glycine Solution was added to each tube. After rotating for 5 minutes, the tubes were centrifuged for 5 minutes at 720 × g. The pellets were resuspended in 1 mL of MNase Digestion Buffer Working Solution for 5 min. The supernatant was aspirated and Wash 1 was repeated. The cell pellets were re-suspended in 1 mL 1× PBS (wash 1) and centrifuged at 3000 × g for 5 min. The supernatant was aspirated and Wash 1 was repeated. The cell pellets were re-suspended in 1 mL ice-cold 1× PBS supplemented with 10 μL Halt Cocktail (containing protease inhibitors) and incubated on ice for 30 minutes. The cells were homogenized in a Dounce homogenizer using 10 strokes on ice to release the nuclei, transferred to a 1.5 mL tube and centrifuged at 3000 × g for 5 minutes at 4 °C. The nuclei were re-suspended in 1 mL of Lysis Buffer 1, vortexed for 15 seconds, and incubated on ice for 10 minutes. The tubes were centrifuged at 9000 × g for 3 minutes and the supernatant was discarded. The nuclei were re-suspended in 1 mL of MNase Digestion Buffer Working Solution and 2.5 μL Micrococcal Nuclease (based on optimization results), vortexed and incubated in a 37 °C water bath for 15 minutes (mixed by inversion every 5 minutes). Ten microliters of MNase Stop Solution was added to each tube, vortexed, and incubated on ice for 5 minutes. Each tube was centrifuged for 5 minutes to recover nuclei and the supernatant was discarded. The nuclei were re-suspended in 50 μL of Lysis Buffer 2 and incubated on ice for 15 minutes, vortexing for 15 seconds every 5 minutes. Each tube was centrifuged at 9000 × g for 5 minutes and the supernatant (containing digested chromatin) was transferred to a new 1.5 mL tube. Chromatin size was checked by agarose electrophoresis to ensure an average size between 200 and 500 bp. Forty-five microliters of chromatin, 5 μg of antibody, and 20 μL of Agarose resin were used per each immunoprecipitation (IP) reaction. The antibodies used for the IP reactions were: USF-2 (SCBT, sc-861x), RXRα (SCBT, sc-553x), TRβ1 (SCBT, sc-33312x), and PPARα (SCBT, sc-9000x), all from Santa Cruz Bio-technology (Santa Cruz, CA). The negative (IgG) and positive (RNA Pol II) control antibodies were provided part of the Pierce Agarose ChIP Kit. The reactions containing antibodies were rotated at 4 °C for at least 15 hours. Final DNA samples were analyzed in triplicates by real-time PCR as described under real-time PCR method above with the omission of a melt curve. The primers used to the PCR reactions were: 5′-ACTCTGAGTCATATTATTTGT3′ and 5′-GGAGGCTCCTTACTGTTG3′ for −612 and 5′-AACCTGCTCCTAGGGCTGA3′ and 5′-ACAGGATCAGGGTCCTCACG-3′ for −156. The relative level of transcription factor binding was quantified by correcting for the amount of input DNA and negative control antibody DNA (background). Relative induction of binding was calculated as the ratio of relative binding of the factor in the Hx+T3 chromatin preparation to the relative binding of the factor in the Hx chromatin preparation.

5.8. siRNA knockdown study

Ten μg each of USF-2 siRNA (SABiosciences cat# SIR449799ABCD; Valencia, CA), PPARα siRNA (Dharmacon cat# LQ-0800000-01-0010; Lafayette, CO), and TRβ1 siRNA (Dharmacon cat# LQ-097456-01-0010) were co-electroporated with 10 μg of WT LDL receptor promoter construct in a final volume of 50 μL using 6 sites per animal. Saline was used as the negative control for the siRNA samples. The electroporated sites were removed 24 hours later using a 5 mm cork-borer. Lysates were prepared from electroporated sites. Luciferase assays were performed as described above. Liver samples adjacent to the electroporation sites were used in the preparation of RNA samples that were analyzed using real-time PCR to measure knockdown of endogenous LDL receptor mRNA (Boone et al., 2009).

5.9. In vitro studies

For the promoter analysis experiments, cells were plated in 12-well plates at the density of 1 × 105 cells per well and incubated for 24 hours at 37 °C, 5% CO2 in low glucose-DMEM medium supplemented with 5% (v/v) thyroid hormone depleted serum (THDS) and antibiotics. The THDS was prepared using Dowex resin as previously described (Samuels et al., 1979). Cells were co-electroporated with the WT LDL receptor promoter construct and the TRβ1-pCMV5A and RXRα-pCRSV expression plasmids, 1 μg of each recombinant vector per well, using FuGene 6 transfection reagent, as previously described (Lopez et al., 2007; Lopez and Ness, 2006). Wells receiving siRNAs for either PPARα or USF-2 were also co-transfected with 1 μg per well of the indicated siRNAs (0.25 μg each of the four siRNAs provided for each transcriptional factor). Control wells were co-transfected with 1 μg per well of the universal negative control (non-targeting) siRNAs provided by Integrated DNA Technologies (Coralville, IA). It has been shown in pilot studies that this negative control does not affect the expression of the LDL receptor gene (data not shown). Co-transfection of a Renilla plasmid (0.5 μg per well) under the control of the simian virus 40 early enhancer/promoter region was used to correct for differences in transfection efficiencies. After transfection, the cells were allowed to incubate for 48 hours at 37 °C, 5% CO2. Sixteen hours prior to the end of the incubation period, some wells were treated with T3 (1 μM) and 9-cis retinoic acid (RA; 1 μM). Lysate preparation was carried out as previously described [promoter and T3 paper]. Firefly and Renilla luciferase activities were measured using the Dual-Glo Luciferase Assay Kit from Promega and a SpectraMax M5 microplate reader (Molecular Devices, LLC; Sunnyvale, CA). Luciferase activity was calculated as the average ratio of firefly to renilla luciferase as described above (Boone et al., 2009).

For the mRNA analysis experiments, cells were plated in 6-well plates at the density of 8 × 104 cells per well and incubated for 24 hours at 37 °C, 5% CO2, in low glucose-DMEM medium supplemented with 5% (v/v) THDS and antibiotics. Cells receiving siRNAs for either PPARα or USF-2 were transfected with 3 μg total per well of the indicated siRNAs (0.75 μg each of the four siRNAs provided for each transcriptional factor). Control wells were co-transfected with 1 μg per well of the universal negative control (non-targeting) siRNAs provided by Integrated DNA Technologies (Coralville, IA). It has been shown in pilot studies that this negative control does not affect the expression of the LDL receptor gene (data not shown). Co-transfection of a Renilla plasmid (0.5 μg per well) under the control of the simian virus 40 early enhancer/promoter region was used to correct for differences in transfection efficiencies. After transfection, the cells were allowed to incubate for 48 hours at 37 °C, 5% CO2. Sixteen hours prior to the end of the incubation period, some wells were treated with T3 (1 μM) and 9-cis retinoic acid (RA; 1 μM). Lysate preparation was carried out as previously described [promoter and T3 paper]. Firefly and Renilla luciferase activities were measured using the Dual-Glo Luciferase Assay Kit from Promega and a SpectraMax M5 microplate reader (Molecular Devices, LLC; Sunnyvale, CA). Luciferase activity was calculated as the average ratio of firefly to renilla luciferase as described above (Boone et al., 2009).
of ssDNA were completed as previously described (Lopez et al., 2007). Real-time PCR reactions were performed using 100 ng of ssDNA, the LDL receptor and 18s RNA specific primers described above, the Applied Biosystems SYBR green PCR Master Mix, and the AB real-time PCR system. The parameters for the PCRs were: denaturation at 95 °C for 10 minutes, followed by 45 cycles of denaturation at 95 °C for 30 seconds, annealing at 60 °C for 15 seconds, and extension at 72 °C for 30 seconds. Once again, quantitation of the results was performed using the Comparative CT method.

5.10. Statistical analysis

For the in vivo studies, significant differences were determined using Excel’s t-test: Two-Sample Assuming Unequal Variances and confirmed using the nonparametric Wilcoxon matched-pairs signed rank test. For the in vitro studies, all the experiments were performed in triplicates. Data from the individual parameters were compared by analysis of variance (ANOVA) followed by Student Newman–Keuls multiple comparison test when applicable. A p<0.05 was considered significant for all tests.

Acknowledgements

This work was supported by research grant R01 DK 075414 from the National Institutes of Health. DL was supported in part by funds from BRIT/NCIU. The authors thank Jeffrey Edelman and Angela Dinas for their assistance with animal surgery, ChIP assays, and the National Institutes of Health. DL was supported in part by funds for their assistance with animal surgery, ChIP assays, and the National Institutes of Health.

References

Adams, A.C., Astapova, L., Fisher, F.M., Badman, M.K., Kurgansky, K.E., Flier, J.S., Hollenberg, A.N., Maratos-Flier, E., 2010. Thyroid hormone regulates hepatic expression of fibroblast growth factor 21 in a PPARG-alpha-dependent manner. The Journal of Biological Chemistry 285, 14078–14082.

Angelin, B., Rudling, M., 2010. Lipid lowering with thyroid hormone and thyromimet. Current Opinion in Lipidology 21, 499–506.

Aviram, M., Luboshitzky, R., Brook, J.G., 1982. Lipid and lipoprotein patterns in thyroid dysfunction and the effect of therapy. Clinical Biochemistry 15, 62–66.

Blennemann, B., Moon, Y.K., Freake, H.C., 1992. Tissue-specific regulation of fatty acid synthesis by thyroid hormone. Endocrinology 130, 637–643.

Boone, L.R., Nielsen, M.I., Jaroszeski, M., Ness, G.C., 2009. In Vivo identification of promoter elements and transcription factors mediating activation of hepatic HMG-CoA reductase by T3. Biochemical and Biophysical Research Communications 385, 466–471.

Corre, S., Galibert, M.D., 2005. Upstream stimulating factors: highly versatile stress-responsive transcription. Pigment Cell Research 18, 337–348.

Costet, P., 2010. Molecular pathways and agents for lowering LDL-cholesterol in addition to statins. Pharmacology and Therapeutics 126, 263–278.

Forman, B.M., Chen, J., Evans, R.M., 1997. Hypolipidemic drugs, polysaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors α and β. Proceedings of the National Academy of Sciences of the United States of America 94, 4312–4317.

Harvey, C.B., Williams, G.R., 2002. Mechanism of thyroid hormone action. Thyroid 12, 441–446.

Heller, R., Jaroszieski, M., Atkin, A., Moradpour, D., Gilbert, R., Wands, J., Nicolaus, C., 1996. In vivo gene electroejjection and expression in rat liver. FEBS Letters 389, 225–228.

Huang, Z., Zhou, X., Nicholson, A.C., Gotto Jr., A.M., Hajjar, D.P., Han, J., 2008. Activation of peroxisome proliferator-activated receptor-α in mice induces expression of the hepatic low-density lipoprotein receptor. British Journal of Pharmacology 155, 596–605.

Illingworth, D., McClung, M.R., Conner, W.E., Alapuv, P., 1981. Familial hypercholesterolaemia and primary hypothyroidism: coexistence of both disorders in a young woman with severe hypercholesterolaemia. Clinical Endocrinology 14, 145–152.

Jackson-Hayes, L., Song, S., Lavrentyev, E.N., Jansen, M.S., Hillgartner, F.B., Tian, L., Wood, P.A., Cook, G.A., Park, E.A., 2003. A thyroid hormone response unit formed between the promoter and first intron of the carnitine palmitoyltransferase-I gene mediates the liver-specific induction by thyroid hormone. The Journal of Biological Chemistry 278, 7964–7972.

Lager, W.K., Heller, R., de Groh, E.D., Ness, G.C., 2007. Functional analysis of the hepatic HMG-CoA reductase promoter by in vivo electroporation. Experimental Biology and Medicine 232, 353–361.

Leeson, P.D., Emmett, J.C., Shah, V.P., Showell, G.A., Novelli, R., Prain, H.D., Benson, M.G., Ellis, D., Pearce, N.J., Underwood, A.H., 1989. Selective thyromimetics. Cardiac-sparing thyroid hormone analogues containing 3′-arylmethyl substituents. Journal of Medicinal Chemistry 32, 320–336.

Lopez, D., Ness, G.C., 2006. Characterization of the rat LDL receptor 5′-flanking region. Biochimica et Biophysica Acta 1761, 492–500.

Lopez, D., Absombra, J.F., Bedi, M., Ness, G.C., 2007. Activation of the hepatic LDL receptor promoter by thyroid hormone. Biochimica et Biophysica Acta 1771, 1216–1225.

Miyamoto, T., Suzuki, S., DeGroot, L.J., 1993. High affinity and specificity of dimeric binding of thyroid hormone receptors to DNA and their ligand-dependent dissociation. Molecular Endocrinology 7, 224–231.

Morkin, E., Ladenson, P., Goldman, S., Adamson, C., 2004. Thyroid hormone analogs for treatment of hypercholesterolaemia and heart failure: past, present and future prospects. Journal of Molecular and Cellular Cardiology 37, 1137–1146.

Ness, G.C., 1991. Thyroid hormone: basis for its hypcholesterolemic effect. The Journal of the Florida Medical Association 78, 383–385.

Ness, G.C., Lopez, D., 1995. Transcriptional regulation of rat hepatic low-density lipoprotein receptor and cholesterol 7α-hydroxylase by thyroid hormone. Archives of Biochemistry and Biophysics 323, 404–408.

Ness, G.C., Zhao, Z., 1994. Thyroid hormone rapidly induces hepatic LDL receptor mRNA levels in hypophysectomized rats. Archives of Biochemistry and Biophysics 315, 199–202.

Pearce, N.J., Shaw, V.P., 1986. A thyromimetic that decreases plasma cholesterol and triacylglycerol in hypercholesterolemic rats. Archives of Biochemistry and Biophysics 242, 348–356.

Stael, B., Dallongeville, J., Auwerx, J., Schoonjans, K., Leitersdorf, E., Fruchart, J.C., 1998. The mechanism of action of 3′,5′-triiodothyronine and the thyromimetic T3-9401 on serum lipoprotein levels and hepatic low-density lipoprotein receptor, 3-hydroxy-3-methylglutaryl coenzyme A reductase and apo A-I gene expression. Biochemical Pharmacology 56, 121–129.

Samuels, H.H., Stanley, F., Casanova, J., 1979. Depletion of 3′,5′,3′-triiodothyronine and 3′,5′,3′′-triiodothyronine in euthyroid calf serum for use in cell culture studies of the action of thyroid hormone. Endocrinology 105, 80–85.

Stael, B., Dallongeville, J., Ausbers, J., Schoonjans, K., Leitersdorf, E., Fruchart, J.C., 1998. Mechanism of action of fibrates on lipid and lipoprotein metabolism. Circulation 98, 2088–2093.

Suzuki, T., Shin, B.-C., Fujikura, K., Matsuzaki, T., Takaka, K., 1998. Direct gene transfer into rat liver cells by in vivo electroporation. FEBS Letters 425, 430–440.

Underwood, A.H., Emmett, J.C., Ellis, D., Flynn, S., Leeson, B., Benson, G.M., Novelli, R., Pearce, N.J., Shaw, V.P., 1986. A thyromimetic that decreases plasma cholesterol levels without increasing cardiac activity. Nature 324, 425–429.

Valadares, N.F., Salum, L.B., Polikarpov, I., Andricopulo, A.D., Garratt, R.C., 2009. Role of halogen bonds in thyroid hormone receptor selectivity: pharmacophore-based 3D-QSAR studies. Journal of Chemical Information and Modeling 49, 2606–2616.

Yen, P.M., 2001. Physiological and molecular basis of thyroid hormone action. Physiological Reviews 81, 1097–1142.