Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Review

Assessing face masks in the environment by means of the DPSIR framework

Yacob T. Tesfaldet *, Nji T. Ndeh

International Program in Hazardous Substance and Environmental Management, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand

HIGHLIGHTS
- Face masks in the environment are examined using the DPSIR framework.
- The historical background and the driving forces of face masks are reviewed.
- Societal responses to mitigate the environmental impacts are presented.
- Policy indicators are discussed, and further work is outlined.

GRAPHICAL ABSTRACT

ABSTRACT

The use of face masks outside the health care facility dates back a century ago. However, face masks use noticeably soared due to the COVID-19 (Coronavirus disease 2019) pandemic. As a result, an unprecedented influx of discarded face masks is ending up in the environment. This review paper delves into face masks in the environment using the DPSIR (driving forces, pressures, states, impacts, and responses) framework to simplify and communicate the environmental indicators. Firstly, the historical, and briefly the economic trajectory of face masks are discussed. Secondly, the main driving forces of face masks use with an emphasis on public health are explored. Then, the pressures exerted by efforts to fulfill the human needs (driving forces) are investigated. In turn, the state of the environment due to the influx of masks along with the impacts are examined. Furthermore, the upstream, and downstream societal responses to mitigate the environmental damages of the driving forces, pressures, states, and impacts are reviewed. In summary, it has been shown from this review that the COVID-19 pandemic has been causing a surge in face mask usage, which translates to face masks pollution in both terrestrial and aquatic environments. This implies proper usage and disposal of face masks is paramount to the quality of human health and the environment, respectively. Moreover, further research on eco-friendly face masks is indispensable to mitigating the environmental damages occurring due to the mass use of surgical masks worldwide.

Keywords: Face masks, DPSIR framework, COVID-19, Microplastic, Microfiber

Contents
1. Introduction .. 2
2. Historical background .. 2
3. Face masks in the environment: a DPSIR analysis 3
 3.1. Driving forces ... 3
 3.2. Pressures .. 4

* Corresponding author.
E-mail address: jacobins3@gmail.com (Y.T. Tesfaldet).

http://dx.doi.org/10.1016/j.scitotenv.2021.152859
0048-9697/© 2022 Elsevier B.V. All rights reserved.
1. Introduction

As the name implies, single-use face masks are intended to be used once and then disposed of. While polypropylene is the most common material used to make face masks, other alternatives include polystyrene, polycarbonate, polyethylene, or polyester (Chellamani et al., 2013). Surgical face masks are multilayered consisting of an outer, middle, and inner layer (Fig. 1). In addition, the face masks contain either aluminum or plastic nose clips, and two elastic cords. The outer and inner layers are made from non-woven cloth, while the middle layer is made from textile fibers (Adanur and Jayswal, 2020; Chellamani et al., 2013). The inner layer is made of an absorbent material that captures droplets exhaled from the wearer, while the outer layer is hydrophobic in nature (Salvi, 2020). The middle layer which provides the most filtration is made from melt-blown material. The mask filtration efficiency depends on different parameters such as the fiber size, the mode of synthesis, the web structure, and the fiber’s cross-sectional shape (McCarthy, 2011). Additionally, breathing comfort levels are adjusted by lowering the pressure drop, a measure of the resistance to airflow (Arumuru et al., 2021). Thus, single-use face masks are prevalent among health workers and the public due to their high filtration capacity, lightweight, affordability, convenience, breathability, and disposability.

Products fashioned out of polypropylene typically take 20–30 years to be completely degraded. Irrespective of whether the condition of degradation is aerobic or anaerobic, photodegradation and thermo-oxidative degradation remain the traditional route of disintegration for polyethylene (Canopoli et al., 2020). Knicker and Velasco-molina (2021) estimation of the amount of carbon dioxide exclusively produced following biodegradation of single-use polypropylene-based face masks revealed an additional annual contribution of 41 to 68 t year⁻¹ provided 0.1% masks end up in the soil. Furthermore, they pointed out that the mean residence time for these masks in soil ranged from 2 to 3 days and between 7 and 18 years for easily decomposable and non-easily decomposable masks fragments, respectively. It is expected that factoring in other abiotic pressures will accelerate the disintegration process.

The rise of air pollution across developing countries has shot up the production and consumption of face masks among the public. The numbers in face masks usage have further soared due to the COVID-19 (coronavirus disease 2019) pandemic. Hence, this has brought about an unprecedented influx of used COVID-19 masks winding up in the environment (Beckage et al., 2021; Haque et al., 2021; Wang et al., 2020a).

A few review articles on the impacts and mitigations of the COVID-19 related medical wastes in the environment have been written. However, a synthesized understanding of face masks in the environment and the interaction between societal drivers and the environment is still lacking. Therefore, to fill in the gap this paper reviews articles on face masks using an environmental indicator in a structured manner to communicate the complex interaction between different facets of society and the environment. Structured into two parts, this study critically reviews the data for face masks usage and different facets of disposal through the DPSIR (driving forces, pressures, states, impacts, and responses) framework. The first part dwells on the historical development and economic components of the face masks industry, while the second part discusses all the components of the DPSIR framework within the context of a spike in face masks usage, its environmental ramifications, and measures of turning the tides on the adverse implications. In this review, unless specified, the term face masks (single-use face masks or surgical masks) refers to three-layer disposable face mask. Moreover, microplastic refers to plastic particle size <5 mm.

2. Historical background

The idea of nose and mouth covering to stem the spread of disease dates as far back as the early middle ages in Europe (Matuschek et al., 2020). Medical professionals wore beak-like masks stuffed with spices to protect against miasma in their dealings with sufferers of the bubonic plague. Attention to this practice somewhat took a nosedive in the subsequent century with greater emphasis informed by remarkable strides in the understanding of germ theory birthing a resurgence in the 19th century (Strasser and Schlich, 2020). The contributions of Louis Pasteur, the postulation of Joseph Lister on the importance of creating an antiseptic environment in
operating rooms, and Carle Flugge’s experiment demonstrating respiratory droplets contained bacteria paved the way for a new generation of surgeons like Johann Mikulicz and Paul Berger to start wearing face masks in 1897 (Belkin, 1997). The popularity of the mask surged outside the traditional area of use, the surgery room, following the Manchurian plague of 1910–11 and the influenza pandemic of 1918–19 (Brienen et al., 2010; Rogaski, 2021). These two cases somewhat crystallized the idea of the mask as a means of protecting health workers and patients from infectious diseases outside the surgery room into the public psyche. The consensus on the function of the mask encouraged its evolutionary design away from multiple layers of cotton gauze, the first of which was patented in 1919, to disposable paper masks in the 1930s (Hauser, 2020). The 1960s were marked by the growing usage of single-use masks made from synthetic material. By the middle of the subsequent decade, reusable cotton masks had fallen out of favor among health care workers thanks to aggressive marketing and industry-backed studies extolling the superiority of synthetic single-use masks.

Over the years, the nature of materials used, and design has evolved in response to infectious disease outbreaks and the rise of air pollution. For example, before the COVID-19 pandemic, the last two decades saw a large-scale surge in mask use in response to the SARS (Severe Acute Respiratory Syndrome) epidemic of 2003 and increasing air pollution problems in parts of Asia (Sim et al., 2014; Zhang and Mu, 2018). However, the numbers in economic terms pale in comparison with respect to market demand for masks since the onset of the current pandemic. Furthermore, growth in consumer awareness on the importance of masks, ease of purchase, and positive marketing campaigns on online platforms account for the meteoric rise in demand. According to certain estimates, the face mask market grew from USD 737 million in 2019 and is expected to hit USD 22,143 million at the close of 2021 (Markets and Markets, 2020). As measures to rein in the infection grows, the same report projects that the global market will experience a sharp decrease to USD 3021 million by 2025.

3. Face masks in the environment: a DPSIR analysis

The DPSIR framework was first developed by European Environment Agency in 1995, aiming to deliver information on environmental indicators to policymakers (European Environment Agency (EEA), 1995). The framework is designed to communicate the causal relationships between society and the environment to raise public awareness for policy measures. According to European Environment Agency (Gabrielsen and Bosch, 2003), the components of the DPSIR framework are defined as: a) driving forces are the societal changes that shape the need, consumption, and consumption pattern, b) pressure is the emissions and resources deployed to satisfy the driving forces, c) state describes the status of the physicochemical and biological process both quantitative and qualitative aspects, d) impact are the changes on the functioning of the ecosystem such as loss of biodiversity, revenue, and well-being, and e) response indicator includes the initiatives by society and governments to prevent, mitigate, and adapt to the state of the environment. The DPSIR framework has been applied to various kinds of environmental problems such as the effect of climate change on biodiversity (Omann et al., 2009), microplastic in the environment (Miranda et al., 2020), and social-ecological systems of coastal environments (Gari et al., 2015). In all studies, the complex interactions between the society, economy, and the environment were communicated via the DPSIR framework, which is vital information for policymakers. Similarly, Tscherning et al. (2012) correctly argues that the DPSIR framework is a practicable tool to support decision making. The DPSIR framework of face masks in the environment is summarized in Fig. 2.

3.1. Driving forces

From inception, face masks were largely reserved for use by health care professionals in surgical wards and those at the forefront of battling transmissible respiratory type diseases. In the years that have since followed, skepticism on its effectiveness in curbing the rate of respiratory infection has been sufficiently squashed. The result of that has been the widespread embrace of single-use masks beyond traditional users to include members of the public. In recent years, the usage of these face masks among the public has been remarkably increased due to air pollution and various types of infectious diseases. While masks wearing does not offer absolute prevention, this nonpharmaceutical measure reduces the risk of exposure to infections and air pollutants (Bai, 2020). As such, it is both useful in everyday disease prevention and it is the first-line measure among others in the event of an outbreak caused by novel pathogens (Sim et al., 2014). A case in point is the current COVID-19 pandemic which has somewhat normalized the global use of face masks outside hospital environments in many

Fig. 2. The DPSIR framework of face masks in the environment.
parts of the world. However, the sight of people wearing face masks in many parts of Asia has always been commonplace; becoming somewhat like an entrenched culture (Joung, 2020). This is owed to past spates of respiratory infections and the problem of fine particulate matter (PM$_{2.5-10}$). Be it the increasing prevalence of air pollution or the response to limit respiratory infection by adopting single-use masks, industrialization, mass transportation, and mass media seem to be the common denominators in enabling these two primary drivers (Li et al., 2016; Tomes, 2010).

3.2. Pressures

The non-woven fabric of surgical masks is usually made from polypropylene which is sourced from petroleum oil. Metals are an equally crucial raw material in the face mask value chain (OECD, 2020). Other less commonly used materials include polystyrene, polycarbonate, polyethylene, and polyester (Table 1). With respect to other types of nonwovens, spunbond nonwoven fabric, especially those made from polypropylene are in high demand in the medical field. Market estimates in 2020 valued it at USD 18.7 billion and it is expected to hit USD 23.8 billion by 2025 (GlobeNewswire, 2020). Data that accounts for how much of the estimated growth is or will be directly linked to single-use face mask production is not readily available. However, it is safe to assume that the global demand for this item has driven the acquisition of related raw materials in its manufacture such as wood for cardboard in packaging. Life cycle assessment estimates of single-use surgical masks indicate that the most severe environmental impact incurred occurs primarily at the raw material procurement stage (Lee et al., 2021). The accompanying waste generated due to the global pandemic mounts additional pressure on routine waste management procedures (Adyel, 2020). This, in turn, increases the incidence of unsuitable waste management strategies such as local burning and landfills. Zooming in further, some estimates indicate that if 1% of face masks were improperly disposed, it will account for about 40 tons of plastics per month in nature (WWF, 2020).

Also, government policies that mandate every citizen to wear face masks when outdoors are playing a key role in mass usage and production of masks. As of the writing of this article, mask-wearing in public is currently mandated in over 170 countries (Masks for All, 2021). This means the amount of medical waste generated globally is unparalleled to anytime in history. The consequence of this is both environmental and health-related if proper care is not taken in the storage, transportation, and handling processes (Sangkhom, 2020). In certain cases, it is inextricably linked to the sheer volume of waste generated, lack of expertise, and the capacity to handle specialized waste, especially in developing countries. For example, incineration will adversely impact air quality while distillation sterilization leaves behind a massive wastewater and waste residue footprint (Michael, 2013; Wang et al., 2020b). The overall environmental impact can be well understood through the life cycle assessment of face masks. As Lee et al. (2021) illustrated, assuming the face mask is used for two days, it can cause up to 0.290 kg CO$_2$-eq climate change impact, and can generate up to 0.002 kg of waste.

3.3. States

The mass use of single-use face masks, lack of awareness, poor waste management system is inducing face mask littering. Littered single-use face masks can end up as litter in street lanes, sewage systems, water channels, and aquatic environments. A typical example is the global face mask littering since the early months of the COVID-19 pandemic. The occurrence and potential disaster to the environment and solid waste management system has been reported by numerous researchers worldwide (Anastopoulos and Paschalidis, 2021; Aragaw, 2020; Benson et al., 2021; De-la-Torre et al., 2021; Fadare and Okoffo, 2020; Kalina et al., 2020; Kassam, 2020; Patricio Silva et al., 2020; Roberts et al., 2020).

Furthermore, due to environmental processes, littered face masks can be transported to surface water where they could relocate farther into marine environments. Stormwater flooding, rivers, and wind are the main pathways of face masks recovered in marine environments. According to estimation by Prata et al. (2020), worldwide consumption of face masks is 1.29 billion each month since the start of the COVID-19 pandemic. Assuming the loss rate and weight of face masks are 3% and 4 g, respectively, monthly around 17, 000 tons of face masks end up in the marine environment. These data must be interpreted with caution because the estimation does not take account of the packaging, which in some cases individual masks are packaged in plastic bags. Similarly, the estimation does not separate the proportion of people who use reusable face masks. There is a growing body of literature that recognizes the presence of single-use face masks in the marine environment (Akber Abbasi et al., 2020; Akbarizadeh et al., 2021; Bondaroff and Cooke, 2020; Dharmaraj et al., 2021). During the early days of the COVID-19 pandemic, Oceans Asia, the marine pollution advocate organization published a pioneer report about the presence of single-use face masks in the marine environment. The investigation reported that 70 single-use face masks along the remote beaches of Soko Islands, Hong Kong were found in February 2020 (Bondaroff and Cooke, 2020). This finding was pivotal in calling the attention of environmental scientists regarding the fate of discarded single-use face masks. Later on, Akbarizadeh et al. (2021) investigated discarded face masks along the Persian Gulf in a four-day sampling campaign. The research found the highest and lowest face masks count of 574 and 252, respectively. Similarly, De-la-Torre et al. (2021) determined the distribution of discarded face masks along the densely populated beaches of Lima, Peru. The study found around 121 face masks representing 87.7% of all PPE observed in 12 sampling campaigns. The research was significant in incorporating the effect of beach activities on the nature of face masks littering. The research reported that recreational beaches were the most polluted areas than their counterpart fishing and surfing areas. The finding points to the importance of research on beach-based sources of face masks littering, which is lacking from the literature. A summarized table showing the presence of PPE in different environments is presented in Table 2.

Face masks discarded in the environment break down by physical and chemical processes and generate microplastics and microfiber that contaminate both soil and water. There is evidence that face masks produced by electrospinning are potential sources of microplastics, nanoplastics, and microfibers in the environment (Aragaw, 2020; Chen et al., 2021; Fadare and Okoffo, 2020; Ma et al., 2021) (Table 3). Moreover, Saliu et al. (2021) simulated the degradation of face masks in marine environments by exposing single-use face masks to UV light and soaking in artificial seawater. The sample was continuously steered to resemble the natural environment. The demonstration showed that each face mask can generate up to 173,000 fibers a day, which represents 26% of the total mass of the face mask. The research was significant to understanding the potential impacts of discarded face masks on the environment. Once the surgical face mask is disintegrated into microplastics, it has a sorptive potential for contaminants such as metals and DEHP (Di 2-ethyl hexyl phthalate) (Dobaradaran et al., 2018; Takedstan et al., 2021).

In the case of face masks as potential carriers of infectious viruses, studies by Dargahi et al. (2021) found SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus-2) on both sides of single-use face masks collected

Table 1

Chemical composition of face mask.

Parts of face mask	Chemical composition	Weight percentage (wt%)
Outer and inner layera	PP	73.33
Middle layera	PE	13.77
Elastic cordb	Nylon	8.27
Pliable noseclipb	Metals	4.63 (Fe: 4.58, Zn: 0.02, Ti: 0.01, Ca: 0.01, and Mn: 0.01)
Complete surgical maskb	(C: 84.37 \pm 0.22, H: 14.93 \pm 0.04, O: 0.70 \pm 0.09, H/C ratio: 2.12, O/C ratio: 0.01) (mean % ± std.)	

n.d. below detection limit.

a (Jung et al., 2021).

b (Brillard et al., 2021).
from patients with coronavirus admitted at the hospital. The research is crucial to emphasize the possible dangers imposed by improperly disposed face masks. Similarly, Chin et al. (2020) confirmed the presence of SARS-CoV-2 at the inner and outer parts of the face masks. The study further showed that the virus can survive up to seven days and more than seven days in the outer and inner face masks layers, respectively. The finding is pivotal in that it recognizes the dangers posed to the public and specifically to waste handlers. In this regard, the most vulnerable people are street sweepers and garbage collectors. Since the use of PPE by solid waste collectors is not standard across the globe, where in some countries it is hardly used, the occupational risk is inevitable. In addition, once the mask is discarded, it may interact with different components of the ecosystem and can be relocated farther. A critical review done by Tran et al. (2021) indicated that the presence of discarded masks in the environment might contribute to the presence of infectious viruses in water and wastewater. Although the presence and survival of SARS-CoV-2 for days on face masks support the claim, it is imperative for it to be supported by further rigorous research. The survival of SARS-CoV-2 in wastewater depends on many physical and chemical parameters of water. A number of authors have found SARS-CoV-2 in wastewater inflow (Bivins et al., 2020; Giacobbo et al., 2021; Amuah et al., 2022; Westhaus et al., 2021), while SARS-CoV-2 amplification test showed their absence in treated wastewater outflow (Rimoldi et al., 2020).

On the other hand, discarded face masks can act as pollutant carriers. Anastopoulos and Pashalidis (2021) indicated that single-use face masks can act as the transporters of dye chemicals specifically, crystal violet and malachite green in the aquatic environment. The study offers some important insights into the sorption of pollutants in single-use face masks. Since the breakdown of face masks produce microplastic which is small and capable of traveling long distances, they can be an effective carrier of contaminants and pathogens. However, the knowledge about single-use face masks as potential carriers of heavy metals and POPs (Persistent Organic Pollutants) is still lacking in literature and is an important issue for future research.

3.4. Impacts

At present, research and reports regarding the impact of face masks are steadily coming out. The obvious reason could be due to the easing of restrictions imposed during the COVID-19 pandemic; moreover, the impacts are beginning to be more pronounced with the increasing usage of single-use face masks. The physical, physiological, and ecotoxicological damage of discarded masks to domestic and wildlife has been recognized by researchers (Hiemstra et al., 2021; Patricio Silva et al., 2021). For example, the entanglement of two shore crabs (Carcinus maenas) at lake Etang de Berre, France, where one crab was seen perniciously entangled by face masks. In the same vein, the entanglement of the American robin (Turdus migratorius) by face mask is another case in point (Hiemstra et al., 2021). The ingestion of face masks by both animals and humans has also been reported in various parts of the world (BBC, 2020a; Hiemstra et al., 2021; Kaur, 2020; Klein, 2020). According to wildlife bosses, Seagulls struggling over discarded face masks thinking it was food has been a common occurrence at the Weymouth beach, UK (Klein, 2020). Similarly, discarded coronavirus face masks mistakenly eaten for food by domestic pets were also reported by Kaur (2020). In most cases, the ingestion of face masks by animals leads to death or emergency surgery, which signals the severity of discarded face masks (Gallo Neto et al., 2021). Furthermore, BBC (2020a) reported an incident where a six-year-old child ingested a chicken nugget containing a face mask bought from a MacDonald’s branch in Hampshire, UK. Taken together, these studies support the notion that unless robust intervention is put in place, the incidence of animal death and entanglement due to discarded face masks will most likely increase with the current skyrocketing usage of face masks across the globe. Moreover, since face masks contain a plastic layer and fiber, ingestion by animals translates to entry into the food web. For instance, studies conducted by Akbarizadeh et al. (2020) found microplastics in canned fish. Situations like this ultimately leads to the accumulation of microplastics and microfibers in apex
predators such as humans. Table summarizing incidences of interaction between animals and discarded face mask reported worldwide are presented in Table 4.

The socio-economic damage of discarded face masks is hardly found in the literature. However, extensive research has shown that marine debris negatively affects the aesthetic of the beaches as well as reduces tourism revenue (Botero et al., 2017; Jang et al., 2014; Krelling et al., 2017; Qiang et al., 2020; Williams et al., 2016). Similarly, the presence of discarded face masks on beaches will apparently affect the aesthetics of the beaches. Hence, the presence of discarded masks at the beaches could also cause panic and discourage tourists (beachgoers) from swimming or engaging in activities at the beach due to the fear of contracting COVID-19. This ultimately affects the revenue that can be collected from coastal tourism.

The physiological and psychological burden associated with protracted mask usage has been reported to decrease work efficiency and the time put into activities while donning masks (Johnson, 2016). The ramifications of this are lower productivity and economic output. Numerous studies have highlighted the downsides of prolonged mask usage on the health of individuals. According to (Rosner, 2020), her respondents of healthcare professionals reported adverse effects such as headaches, acne, skin rash, and impaired cognition. A shortcoming of the research is that it failed to consider the underlying conditions of the respondents. While this might be a ground for skeptics to discount the potential long-term impacts of extended mask use, this could not be further from the truth. A similar study in India with a pool of healthcare workers selected on the basis of being highly active and healthy, showed overlapping adverse effects such as difficulty breathing on exertion and acne on the face (Purushothaman et al., 2021).

Along the same lines, a study by Techasatian et al. (2020) indicated that wearing surgical masks less than 4 h/day has reduced adverse effect on skin than wearing for longer hours. Other reported effects included dry mouth sensation, sore throat, nasal discomfort, and pain behind the earlobe. Furthermore, there is increased danger to disseminate infectious pathogens due to the discomfort that comes from prolonged mask use which encourages frequent touching by the wearer. In the same context, L. Li et al. (2021) investigated the risk of inhaling microplastics by wearing face masks. The study revealed that wearing face masks causes the risk of microplastic inhalation to the wearer, and the risk increases with the increasing frequency of mask-wearing. Likewise, Han and He (2021) observed loosely attached debris that resembles fibers and particles of micron to submicron size in the outer part of new face mask. Together, these studies indicate that wearing face mask poses the risk of inhaling microplastics or microfiber. Furthermore, the current research highlights the need of assessing human exposure to microplastics from face mask by employing the technique of nasal lavage (Torres-Agullo et al., 2021).

3.5. Responses

Due to the growing presence of face masks in the environment, especially the marine environment, the need to reduce the risk associated with poorly disposed of PPE is imperative. As a result, several strategies can be put in place to reduce the environmental and health impact that comes with mass mask generation. Generally, the responses can be categorized into two as upstream and downstream responses.

3.5.1. Upstream responses

Upstream responses include all the preventive actions and recommendations put in place to reduce the influx of face masks into the environment such as waste management, waste utilization, alternative products, and biodegradable face masks.

3.5.1.1. Waste management. Once the face mask serves its purpose it will be regarded as waste. When properly disposed of, the discarded face masks can end up in either incinerators or landfills, while improperly disposed face masks can end up in the environment as litter. Face masks waste has become prevalent during the COVID-19 pandemic. According to (WHO, 2020), healthcare professionals require 89 million single-use face masks for every month of the COVID-19 pandemic. Considering the world population of 7.5 billion, Prata et al. (2020) estimated that the world consumes 129 billion single-use face masks monthly. Assuming the weight of each single-use mask is 4 g, that would be 516,000 tons of waste generated globally for each month. Based on the WHO (2014) waste management guidelines, discarded face masks can be considered as part of healthcare waste (infectious waste) because the waste is suspected to contain pathogens. Therefore, discarded masks require separate collection and disposal systems to prevent further transmissions of pathogens. For example, installing bins designated for face masks in public places and public transportation systems are essential measures to reduce the influx of face masks into the environment (Tesfaldet et al., 2021).

Furthermore, the IoT (Internet of things) based waste collection system proposed by H. Li et al. (2021) can be an efficient alternative. Since the system is accompanied by a sterilization system and provides real-time information to the respective recycling facility, it is an efficient and safe option. Public awareness promoting the use and proper disposal of face masks are also an inevitable part of the waste management arsenal to reduce the environmental and health impact. For instance, promoting good practices of mask handling and usage, disinfecting the mask using alcohol-based sanitizer before disposal, safe disposal methods, and subsidizing environmentally friendly face masks. Within the framework of disposal and handling, the current widespread use of masks means those in the waste management sector not formally trained in handling these materials are at risk as well as the population at large. To reduce potential dangers, the waste management handling chain can be strengthened by evaluating the knowledge, practice, and attitude of waste handlers with respect to medical waste and dispensing the necessary training to fill in the gaps.

3.5.1.2. Waste utilization. Repurposing discarded face masks within the theme of circular economy is also part of the response to bring the solid waste generated back to the economy. For instance, Saberian et al. (2021) demonstrated that shredded face masks can be an addition to recycled concrete aggregate for road base pavements without compromising the quality. The finding is significant in that it provides a way of utilizing discarded face masks. In the same vein, Kilmartin-lynch et al. (2021) suggested that the addition of 0.20% of shredded face masks improves the mechanical properties of concrete. Alternatively, Purnomo et al. (2021) proposed that discarded face masks can be utilized for energy sources using thermochemical conversion. The study further highlighted that incineration, pyrolysis, and gasification are the most feasible waste-to-energy conversion methods for face masks. Moreover, PP-based face masks can be effectively utilized for carbonaceous char using slow pyrolysis (Harusashi et al., 2022). A question worth asking, however, is whether the environmental impacts of these waste-to-energy technologies are practicable and sustainable especially when taking into consideration that this approach does not reduce the overall demand for virgin material and contributes to the release of toxins to the air. Moreover, most of the experiments on the thermal conversion of face masks are done on unused face masks at the laboratory scale, which could translate poorly when it comes to large-scale waste utilization due
to moisture variation (Dong et al., 2016) and a compromise in quality of discarded mask. Therefore, further research is inevitable to determine how to utilize the discarded masks to energy using the existing thermo-chemical conversion techniques. On the other hand, Hu and Lin (2021) investigated the safe and value-added utilization of polypropylene face masks. The study showed that sulfonating discarded polypropylene masks can produce high-performance porous carbon materials. Also, the prepared material results in good capacitance performance of the carbon electrode. To that effect, discarded face masks have been shown to be a valuable source of carbon nanomaterials. The authors of the study were able to obtain a maximum carbon yield of 64.4 g from 100 g of waste masks (Yu et al., 2021).

3.5.1.3. Alternative product. Prompting the use of cloth masks is one of the major campaigns directed at reducing the influx of single-use face masks worldwide. Various studies have assessed the efficacy of reusable masks (cloth masks) against respiratory droplets, bacteria, and particles (Ho et al., 2020; Rengasamy et al., 2010; Steinbrook, 2021). Several lines of evidence suggest that cloth masks have similar protection efficiency as single-use face masks. However, the type of material and the number of layers that compose the cloth mask has a great effect on the efficacy of the mask. As a result, the filtration capacity of cloth masks widely varies across studies. For instance, Davies et al. (2013) investigated the efficacy of several homemade cotton masks against bacterial and viral aerosols. The result showed that cloth masks markedly reduced the microorganisms released from the source. However, the same experiment done with single-use face masks showed three times higher efficacy than their counterpart homemade masks. In contrast to earlier findings, Ho et al. (2020) reported that there is no statistically significant difference in efficacy between cloth masks and medical-grade masks in microenvironments with air conditioning. Similarly, Teesing et al. (2020), Aydin et al. (2020), and Konda et al. (2020) argued that cloth masks can be a substitute for single-use face masks. Moreover, the Centers for Disease Control and Preventions, USA recommends the use of cloth masks in public places (NCIRD, 2021). Most of the studies indicated that the filtration capacity of cloth masks ranged from 60% to >95%, which heavily depended on the material used. One interesting finding was that the number of layers markedly improved the filtration capacity of the cloth masks (Clapp et al., 2021; Konda et al., 2020). Clapp et al. (2021) make the very valid point that modifying several aspects of cloth masks yields equal or higher filtration capacity compared to the equivalent medical masks. It is nevertheless necessary to ensure the low pressure drop and thus the good breathability of the mask. The finding is very impressive, and it provides direction for further research. The studies presented thus far provide evidence that cloth masks are the potential environmentally friendly substitute for single-use face masks. Allison et al. (2020), estimated the environmental impact of single-use face masks and cloth masks under different scenarios via life cycle assessment. The study revealed that cloth masks generate 85% less waste and 3.5 times lower impact on climate change than the counterpart single-use face masks. Moreover, cloth masks cost 3.7 times lower than the single-use face masks. Considering all this evidence, it seems that cloth masks are a good substitute for single-use face masks. Further work is indispensable to standardize the material to be used for making cloth masks; moreover, the life span or the duration of wearing of cloth masks need to be properly defined.

3.5.1.4. Biodegradable face masks. The pros to disposable PPE are the reduced risk of contamination spreading and affordability. On the other hand, the downside of it lies in the environmental harm non-recyclable varieties such as single-use face masks pose. Being typically non-biodegradable, they may end up in landfills, incinerators, or as terrestrial or aquatic litter after use. It is, therefore, necessary for more research to be poured into the development of biodegradable materials and bioplastics from renewable resources as an alternative to petroleum-based materials (Fouad and Farag, 2020). A viable biodegradable material equivalent should possess properties of polypropylene such as being lightweight, exhibiting high tensile strength, eco-friendly, and affordable (Selvarajan et al., 2021). To address the environmental implication of non-degradable masks while concurrently maintaining high levels of functionality, Choi et al. (2021) developed a Janus membrane mask filter of polybutylene succinate and chitosan nanowhiskers. Their study revealed that the biodegradable polymer and bio-based material electrospray ensemble presented an impressive particulate matter removal efficiency of up to 98% and biodegraded in four weeks. The feasibility of creating compostable face masks has also been further demonstrated by the use of plant fibers from hemp, coffee, and sugar cane mulch (Ho, 2020; Layt, 2020; Reuters, 2020). While some of these biodegradable mask options show high filtration efficiency, more research ground needs to be covered in order to raise its quality to the standard of medical-grade masks. Furthermore, claims on the extent of the biodegradability of these compostable masks need to be ascertained. Even if current research still falls short in successfully nudging the transition to biodegradable plastics, the environmental burdens linked to suchlike disposable mask production can be alleviated by integrating tools like eco-design (González-García et al., 2016).

3.5.2. Downstream responses

Downstream responses comprise actions and studies that have been going on to remediate the environmental damages posed by discarded face masks such as environmental cleanups and face mask recycling.

3.5.2.1. Environmental cleanup. Environmental cleanup initiatives ranging from street sweeping to beach cleanup are essential measures to tackle the effects of discarded masks on humans and the environment. Face masks littered on the streets can be cleaned up by stepping up the sweeping frequencies. Similarly, the damage to the aquatic environment can be minimized using trash traps along the waterways. Moreover, organizing beach cleanups, and diving for marine debris are some of the activities that can reduce the impacts of discarded face masks, and raise public awareness.

On the question of SARS-Cov-2 in municipal water systems, a study done by Rimoldi et al. (2020) identified the presence of SARS-Cov-2 in raw wastewater collected in the Milano Metropolitan Area. However, the virus was not detected in treated wastewater, suggesting the effectiveness of the existing treatment system. Similarly, Sherchan et al. (2020) identified the presence of SARS-Cov-2 in raw wastewater influents collected in Louisiana, USA. However, the secondary treated and the final effluent did not test positive for the virus. In contrast, Haramoto et al. (2020) detected SARS-Cov-2 in secondary treated water in one out of the five samples tested. Discrepancies in results can be accounted for by sample volume, method of isolation, and differences in the sensitivity of the marker genes (Haramoto et al., 2020; Rimoldi et al., 2020). In the same vein, a review article by Foladori et al. (2020) highlighted that the survival of SARS-Cov-2 decays in wastewater was due to the variability of the physicochemical parameters. Moreover, the virus reaches maximum inactivation when the wastewater is disinfected with free chlorine and UVC (Ultraviolet C). These results reflect those of Greaves et al. (2022) who also found that free chlorine disinfection is a practical way to reduce SARS-Cov-2 levels in deionized water and wastewater. Furthermore, Sunkari et al. (2021) review of wastewater disinfection in the context of developing countries suggested that the integration of ozonation, chlorination, UV irradiation, and particle by Foladori et al. (2020) highlighted that the survival of SARS-Cov-2 in secondary treated water in one out of the five samples tested. Discrepancies in results can be accounted for by sample volume, method of isolation, and differences in the sensitivity of the marker genes. These results reflect those of Greaves et al. (2022) who also found that free chlorine disinfection is a practical way to reduce SARS-Cov-2 levels in deionized water and wastewater. Furthermore, Sunkari et al. (2021) review of wastewater disinfection in the context of developing countries suggested that the integration of ozonation, chlorination, UV irradiation, and sodium hypochlorite is an effective method to remove SARS-Cov-2 in water. However, there is no solid information on the best possible combination of disinfection techniques to reduce or eliminate SARS-Cov-2 in wastewater. Therefore, further research needs to be done on the synergism of disinfection techniques and to establish a standard protocol that benefits developing nations with fragile or nonexistent wastewater treatment infrastructures.

3.5.2.2. Face masks recycling. According to a 2015 estimate, only 20% of the global plastic was recycled while 25 and 50% were incinerated and discarded, respectively (Ritchie, 2018). A closer look at the recycling numbers with respect to the various types of plastics shows a disparity in recyclability. For example, in the US, only 3% of polypropylene gets recycled yearly compared to about 29% of polyethylene terephthalate (Chasan,
way forward, the authors of the study recommend improving the perfor-
ing the ear loop, while the second approach differed primarily by the inclu-
2019). Some of the challenges faced in the recycling of polypropylene in-
considering the comparative quality, and other additives. Such a recommendation is useful especially when
pressure on the mass production of face masks and resource exploitation.
In particular, the COVID-19 pandemic has caused a substantial increase in
single-use face masks production and usage worldwide. The favorability of
single-use face masks over cloth masks is owed to positive media cam-
paigns, ease of purchase, affordability, and comfort. This creates enormous pressure on the mass production of face masks and resource exploitation.
Consequently, the state of the environment is dramatically changing with
the influx of discarded face masks in both terrestrial and marine ecosys-
tems. The impact of discarded masks on the environment is widespread. En-
tanglement of terrestrial and aquatic animals, ingestion of face masks, and the potential buildup of degraded mask plastics in the food chain are some of the reported incidences and wider implications. As a response, different strategies have been proposed to alleviate the associated environmental damage. The responses include waste management and utilization, diversification in the materials used for face masks with a bias towards eco-
friendly type options, and environmental cleanups. The current knowledge on the efficacy of face masks needs to be further researched to include the quality of the materials to be used while striking the balance with function-
ality. In this light, more potential stakeholders like small and medium-sized firms can be brought on board by engaging intermediary entities that facilitate these kinds of investments in them by large funding bodies. Moreover, studies on the impact of discarded face masks on aquatic flora and fauna

CRediT authorship contribution statement

Yacob T. Tesfaldet: Conceptualization, Writing - Original Draft, Writing - Review & Editing, Visualization. Nji T. Ndeh: Writing - Original Draft, Writing - Review & Editing, Visualization.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

Adanur, S., Jayswal, A., 2020. Filteration mechanisms and manufacturing of face masks: an overview. J. Ind. Text. https://doi.org/10.1126/science.abd9925-80.
Adyl, T.M., 2020. Accumulation of plastic waste during COVID-19. Science 369, 1314–1315. https://doi.org/10.1126/science.abc936.
Akarsu, C., Madenli, Ö., Deveci, E.U., 2021. Characterization of littered face masks in the southeastern part of Turkey. Environ. Sci. Pollut. Res. 28, 47517–47527. https://doi.
Akbirizadeh, R., Dobazaradan, S., Nabipour, I., Tajbakhsh, S., Darabi, A.H., Spit, J., 2020. Abundance, composition, and potential impact of microplastics in canned fish. Mar. Pollut. Bull. 160, 111633. https://doi.org/10.1016/j.marpolbul.2020.111633.
Akber Abbasi, S., Khalil, A.B., Arslan, M., 2020. Extensive use of face masks during COVID-19 pandemic: (micro-)plastic pollution and potential health concerns in the arabian penin-
sula. Saudi J. Biol. Sci. 27, 3181–3186. https://doi.org/10.1016/j.sjbs.2020.05.
Akberizadeh, R., Dobazaradan, S., Nabipour, I., Tangestani, M., Abedi, D., Javanfekr, F., Jeddi, F., Zendehboudi, A., 2020. Abandoned Covid-19 personal protective equipment along the Bushehr shores, the Persian Gulf: an emerging source of secondary microplastics in coastal marine. Mar. Pollut. Bull. 168, 112386. https://doi.org/10.1016/j.
Allison, A.L., Ambrose-Dempster, E., Aparsi, T.D., Bawn, M., Arredondo, M.C., Chau, C., Chandler, K., Dobrkovic, D., Hulie, H., Lettieri, P., Liu, C., Medda, F., Michie, S., Miodownik, M., Purkiss, D., Ward, J., 2020. The environmental dangers of employing single-use face masks as part of a COVID-19 exit strategy. UCL Open Environ. Prepr. https://doi.org/10.13424/11.444.900021.e1.
Ammendola, J., Saturno, J., Brooks, A.L., Jacobs, S., Jambeck, J.R., 2021. An emerging source of plastic pollution: environmental presence of plastic personal protective equipment (PPE) debris related to COVID-19 in a metropolitan city. Environ. Pollut. 269, 116160. https://doi.org/10.1016/j.envpol.2020.116160.
Amuah, E.Y., Ayegam, E.P., Dankwa, F., Pei-Baffe, B., Kazapoe, R.W., Douti, N.B., 2022. Are used face masks handled as infectious waste? Novel pollution driven by the COVID-19 pandemic. Ressour. Conserv. Recycl. Adv. 13, 200062. https://doi.org/10.1016/j.
Anastopoulos, I., Pathalidis, I., 2021. Single-use surgical face masks, as a potential source of microplastics: Do they act as pollutant carriers? J. Mol. Liq. J. 326.
Aragaw, T.A., 2020. Surgical face masks as a potential for microplastic pollution in the COVID-19 scenario. Mar. Pollut. Bull. 159, 111517. https://doi.org/10.1016/j.
marpolbul.2020.111517.
Arumuru, S., Samantaray, S.S., Pas, J., 2021. Double masking protection vs. comfort—a quantitative assessment. Phys. Fluids 33, 077120. https://doi.org/10.1063/5.005857.
Aydin, O., Emre, B., Cheng, S., Hong, L., Chamarro, L.P., 2020. Performance of fabrics for home-made masks against the spread of COVID-19 through droplets : a quantitative mechanistic study. Extrem. Mech. Lett. 40, 100924. https://doi.org/10.1016/j.tar.2020.100924.
Bai, N., 2020. Still confused about masks? Here’s the science behind how face masks prevent coronavirus [WWW Document]. UC San Fr. (accessed 6.6.21) https://www.ucsf.edu/ news/2020/06/417906/still-confused-about-masks-heres-science-behind-how-face-
masks-prevent.
Battagazzore, D., Cravero, F., Frache, A., 2020. Is it possible to mechanically recycle the materi-
als of the disposable filtering masks? Polymers (Basel). 12, 2726. https://doi.org/10.3390/polym12112726.
BBC, 2020a. McDonald’s “Face mask” found inside Aldershot store’s chicken nugget -. BBC News [WWW Document]. BBC, (accessed 5.3.21) https://www.bbc.com/news/uk-
england-hampshire-53617762.
BBC, 2020b. Coronavirus: Gull caught in PPE face mask in Chelsmford -. BBC News [WWW Document]. BBC, (accessed 10.17.21) https://www.bbc.com/news/uk-england-essex-
53474772.
Bondaroff, T.P., Cooke, S., 2020. Masks on the beach: the impact of COVID-19 on marine plastic pollution. Ocean. & Asia.

Botten, M., Aftando, G., Málens, C., Cabrera, A., Casas, G., Frenzii, E., Williams, A.T., 2017. Litter assessment on 99 cuban beaches: a baseline to identify sources of pollution and impacts for tourism and recreation. Mar. Pollut. Bull. 118, 437–441. https://doi.org/10.1016/j.marpolbul.2017.02.061.

Brennen, N.C.J., Timen, A., Wallington, J., Van Steenbergen, J.E., Teunis, P.F.M., 2010. The effect of mask use on the spread of influenza during a pandemic. Risk Anal. 30, 1210–1218. https://doi.org/10.1111/j.1539-6924.2010.01428.x.

Brillard, A., Kohli, D., Dose, J., Gauthier, K., Zhao, M., Yoo, M., Bueno, A.M., Brillat, J.F., 2021. Pyrolysis and combustion of community mask scraps: thermogravimetric analyses, characterizations, gaseous emissions, and kinetic modeling. Fuel 306, 121644. https://doi.org/10.1016/j.fuel.2021.121644.

Cascoppel, L., Coughlin, S.T., 2020. Degradation of excrusted polyethylene and polypropylene waste from landfill. Sci. Total Environ. 698, 134125. https://doi.org/10.1016/j.scitotenv.2019.134125.

Chasan, E., 2019. Polypropylene plastic can finally be recycled - bloomberg [WWW Document]. https://www.bloomberg.com/news/articles/2019-09-25/polypropylene-plastic-can-finally-be-recycled.

Chellamani, K.P., Veerasubramanian, D., Vignesh Balaji, R.S., 2013. Surgical face masks: manufacturing methods and classification. J. Acad. Ind. Res. 2, 320.

Chen, Xianchuan, Chen, Xiaofei, Liu, Q., Zhao, Q., Xiong, W., Wu, C., 2016. Used disposable face masks are significant sources of microplastics to environment. Environ. Pollut. 214, 11741–11748. https://doi.org/10.1016/j.envpol.2016.05.050.

Chin, A.W.H., Chu, J.T.S., Perera, M.R.A., Hui, K.P.Y., Yen, H.-L., Chan, M.C.W., Peiris, M.Y.T., Tesfaldet, N.T., Ndeh Science of the Total Environment 814 (2022) 152859.

Clapp, P.W., Sickbert-Bennett, E.E., Samet, J.M., Berntsen, J., Zeman, K.L., Anderson, D.J., Belkin, N.L., 1997. The evolution of the surgical mask: a case study of personal protective equipment protection and management in Africa. J. Env. Chem. Eng. 9, 105522. https://doi.org/10.1016/j.jece.2021.105522.

Dharmaraj, S., Ashokkumar, V., Hariharan, S., Manibharathi, A., Show, P.L., Chong, C.T., Benson, N.U., Fred-Ahmadu, O.H., Bassey, D.E., Atayero, A.A., 2021. COVID-19 pandemic and plastic-made personal protective equipment (PPE) debris in river outlets into Jakarta and its impact on the Magellanic penguin (Spheniscus magellanicus, Spheniscidae) associated with the ingestion of a PPF-2 protective mask during the Covid-19 pandemic. Mar. Pollut. Bull. 166, 112232. https://doi.org/10.1016/j.marpolbul.2021.112232.

Dong, J., Chi, Y., Tang, Y., Ni, M., Nzihou, A., Weiss-Hortala, E., Huang, Q., 2016. Effect of mask use on the spread of influenza during a pandemic. Sci. Total Environ. 577, 940–942. https://doi.org/10.1016/j.scitotenv.2016.11.022.

Dong, J., Chi, Y., Tang, Y., Ni, M., Nzihou, A., Weiss-Hortala, E., Huang, Q., 2016. Effect of mask use on the spread of influenza during a pandemic. Sci. Total Environ. 577, 937–942. https://doi.org/10.1016/j.scitotenv.2016.05.070.

Dong, J., Chi, Y., Tang, Y., Ni, M., Nzihou, A., Weiss-Hortala, E., Huang, Q., 2016. Effect of mask use on the spread of influenza during a pandemic. Sci. Total Environ. 577, 937–942. https://doi.org/10.1016/j.scitotenv.2016.05.070.

Dong, J., Chi, Y., Tang, Y., Ni, M., Nzihou, A., Weiss-Hortala, E., Huang, Q., 2016. Effect of mask use on the spread of influenza during a pandemic. Sci. Total Environ. 577, 937–942. https://doi.org/10.1016/j.scitotenv.2016.05.070.
Kassim, A., 2020. “More masks than jellyfish”: coronavirus waste ends up in ocean | Plastics | The Guardian [WWW Document]. The Guardian (accessed 2.12.21) https://www.theguardian.com/environment/2020/jun/08/more-masks-than-jellyfish-coronavirus-waste-ends-up-in-ocean.

Kaur, J., 2020. COVID-19: Discarded face masks posing deadly risk to dogs and other animals. WWF Australia [WWW Document]. https://www.wwf.org.au/au/wildlife/animals/COVID-19-discarded-face-masks-posing-deadly-risk-to-dogs-and-other-animals-12140467. (Accessed 3 May 2021).

Kilmartin-Lynch, S., Saberian, M., Li, J., Kilmartin-lynch, S., Boroujeni, M., 2021. Repurposing of COVID-19 single-use face masks as a source of nanoplastics and microplastics in the environment: quantification, characterization, and potential for bioaccumulation. Environ. Pollut. 288, 117748. https://doi.org/10.1016/j.envpol.2021.117748.

Kaur, J., 2020. COVID-19: Discarded face masks posing deadly risk to dogs and other animals. Sci. Total Environ. 792, 148505.https://doi.org/10.1016/j.scitotenv.2021.148505.

Qiang, M., Shen, M., Xie, H., 2020. Loss of tourism revenue induced by coastal environmental pollution: a length-of-stay perspective. J. sustain. Tour. 28, 550-567. https://doi.org/10.1080/09699543.2019.1684911.

Kimbrough, A., de la Torre, G.E., Pizzorno, C., Weese, D., Pichel Jr., J.S.C., 2021. Life cycle assessment of single-use surgical and embedded filter layer (EFL) reusable face masks. Resour. Conserv. Recycl. 170, 105580. https://doi.org/10.1016/j.resconrec.2020.105580.

López, M.I., Meneses-Rodríguez, J.M., 2021. The recycling of surgical face masks as smart recycling machine to collect the wasted non-woven fabric face mask. IEEE. 11052022, 1-5. https://doi.org/10.1109/CSW.2022.9733222.

Liu, M., Wang, Y., Yuan, Y., Shi, J., Kong, Y., Wang, Z., Wang, F., 2020. Antibacterial and antiviral properties of N95 and FFP2 face masks against SARS-CoV-2. Environ. Sci. Technol. 54, 11459. https://doi.org/10.1021/acs.est.6b02562.

Liu, H., Shi, X., Xue, Q., Wang, J., Wang, L., Shen, H., Yang, Y., Hou, Y., Lin, Y., 2020. Repurposing of waste masks and common fabric materials against 20-1000 nm size nanoparticles. Acta. Occup. Hyg. 54, 789–798. https://doi.org/10.1080/19498450200093032.

Li, G., Wang, X., Li, Z., Song, R., 2021. Face mask material global forecast to 2025 [WWW Document]. Mark. Mark https://www.marketsandmarkets.com/Market-Reports/face-mask-market-244623608.html#utm_source=PRNewswire&utm_medium=Referal&utm_campaign=PaidPR (accessed 6.6.21).

Li, Y., Zhao, X., Shi, J., Hou, Y., Liu, M., Wang, J., 2020. The feasibility of using polypropylene fibres from COVID-19 single-use face masks to improve the mechanical properties of concrete. J. Clean. Prod. 296, 126460. https://doi.org/10.1016/j.jclepro.2021.126460.

Klein, J., 2020. Seagulls fight over face mask on Weymouth beach [WWW Document]. Document. https://www.dorsetecho.co.uk/news/18634193.seagulls-face-mask-veymouth-beach. (Accessed 9 June 2021).

Lee, A.W.L., Neo, E.K.R., Kho, Z.Y., Yeo, Z., Tan, Y.S., Cheng, X., Yang, W., Lok, B.K., Low, J.J., 2020. A single-use surgical and embedded filtration layer (EFL) reusable face mask. Resour. Conserv. Recycl. 170, 105580. https://doi.org/10.1016/j.resconrec.2020.105580.

Lee, A.W.L., Neo, E.K.R., Kho, Z.Y., Yeo, Z., Tan, Y.S., Cheng, X., Yang, W., Lok, B.K., Low, J.J., 2020. A single-use surgical and embedded filtration layer (EFL) reusable face mask. Resour. Conserv. Recycl. 170, 105580. https://doi.org/10.1016/j.resconrec.2020.105580.
plant. J. Environ. Manag. 280, 111851. https://doi.org/10.1016/j.jenvman.2020.111851.

Techasatian, L., Lebsing, S., Uppala, R., Thaowandee, W., Chaiyarit, J., Supakunpinyo, C., Panombualert, S., Mairiang, D., Saengnipanthkul, S., Wichajarn, K., Kiatchoosakun, P., Kosalaraksa, P., 2020. The effects of the face mask on the skin underneath: a prospective survey during the COVID-19 pandemic. J. Prim. Care Community Health 11. https://doi.org/10.1177/2150132720966167

Teesing, G.R., Straten, B.Van, Man, P.De, Horeman-franse, T., 2020. Is there an adequate alternative to commercially manufactured face masks? A comparison of various materials and forms. J. Hosp. Infect. 106, 246–253. https://doi.org/10.1016/j.jhin.2020.07.024.

Tesfaldet, Y.T., Ndeh, N.T., Budnard, J., Treseson, P., 2021. Assessing face mask littering in urban environments and policy implications: the case of Bangkok. Sci. Total Environ. 150952. https://doi.org/10.1016/j.scitotenv.2021.150952.

Tomes, N., 2010. “Destroyer and Teacher”: managing the masses during the 1918–1919 influenza pandemic. Public Health Rep. 125, 48–62. https://doi.org/10.1177/00333549101250S308.

Torres-Agullo, A., Karanasiou, A., Moreno, T., Lacorte, S., 2021. Overview on the occurrence of microplastics in air and implications from the use of face masks during the COVID-19 pandemic. Sci. Total Environ. 806, 150955. https://doi.org/10.1016/j.scitotenv.2021.150955.

Tran, H.N., Le, G.T., Nguyen, D.T., Jiang, R.S., Rinklebe, J., Bhatnagar, A., Lima, E.C., Iqbal, H.M.N., Sarmah, A.K., Chao, H.P., 2021. SARS-CoV-2 coronavirus in water and wastewater: a critical review about presence and concern. Environ. Res. 193. https://doi.org/10.1016/j.envres.2020.110265.

Tscherning, K., Helming, K., Krippner, B., Sieber, S., Paloma, S.G., y., 2012. Does research applying the DPSIR framework support decision making? Land Use Policy 29, 102–110. https://doi.org/10.1016/j.landusepol.2011.05.009.

Wang, J., Pan, L., Tang, S., Ji, J.S., Shi, X., 2020a. Mask use during COVID-19: a risk adjusted strategy *. Environ. Pollut. 266, 115099. https://doi.org/10.1016/j.envpol.2020.115099.

Wang, Jiao, Shen, J., Ye, D., Yan, X., Zhang, Y., Wang, L., Li, X., Wang, Junqi, Zhang, L., Pan, L., 2020b. Disinfection technology of hospital wastes and wastewater: suggestions for disinfection strategy during coronavirus disease 2019 (COVID-19) pandemic in China. Environ. Pollut. 262, 114665. https://doi.org/10.1016/j.envpol.2020.114665.

WHO, 2014. Safe management of wastes from health-care activities. 2nd ed. World Health Organization.

WHO, 2020. Shortage of personal protective equipment endangering health workers worldwide [WWW Document]. World Heal. Organ.. https://www.who.int/news/item/03-03-2020-shortage-of-personal-protective-equipment-endangering-health-workers-worldwide. (Accessed 6 June 2021)

Williams, A.T., Rangel-Buitrago, N.G., Anfuso, G., Cervantes, O., Botero, C.M., 2016. Litter impacts on scenery and tourism on the colombian North Caribbean coast. Tour. Manag. 55, 209–224. https://doi.org/10.1016/j.tourman.2016.02.008.

WWF, 2020. Nello smaltimento di mascherine e guanti serve responsabilità | WWF Italy [WWW Document]. Not. PUBBLICATE SU. .https://www.wwf.it/scuole/?53500%2FNello-smaltimento-di-mascherine-e-guanti-serve-responsabilita. (Accessed 9 June 2021)

Yu, R., Wen, X., Liu, J., Wang, Y., Chen, X., Wenelska, E., Tang, T., 2021. A green and high-yield route to recycle waste masks into CNTs/Ni hybrids via catalytic carbonization and their application for superior microwave absorption. Appl. Catal. B Environ. 298, 120544. https://doi.org/10.1016/j.apcatb.2021.120544.

Zhang, J., Mu, Q., 2018. Air pollution and defensive expenditures: evidence from particulate-filtering facemasks. J. Environ. Econ. Manage. 92, 517–536. https://doi.org/10.1016/j.jeem.2017.07.006.