Nucleotide Sequences of Avian Cardiac and Brain SR/ER Ca2+-ATPases and Functional Comparisons with Fast Twitch Ca2+-ATPase

CALCIUM AFFINITIES AND INHIBITOR EFFECTS

(Received for publication, October 29, 1990)

A. Malcolm Campbell†, Paul D. Kessler‡, Yutaka Sagara‖, Giuseppe Inesi‖, and Douglas M. Fambrough†***

From the Departments of Biology and Medicine, The Johns Hopkins University, Baltimore, Maryland 21218 and the Department of Biological Chemistry, University of Maryland School of Medicine, Baltimore, Maryland 21201

Two similar forms of the cardiac/slow Ca2+-ATPase (SERCA2a and SERCA2b), differing in sodium dodecyl sulfate-polyacrylamide gel electrophoresis mobility, are expressed in chicken heart and brain (Kaprielian, Z., Campbell, A. M., and Fambrough, D. M. (1989) Mol. Brain Res. 6, 55-60). In the current study, cDNAs encoding each form were cloned and sequenced. Chicken SERCA2a is 94% identical to its rabbit homologue, while SERCA2b has an extended carboxyl terminus with 38 of 49 amino acids identical to mammalian homologues. SERCA2b mRNA contains the SERCA2a encoding sequence within its 3'-untranslated region. Chicken genomic DNA sequence reveals that the alternate RNA splicing used to produce SERCA2a and SERCA2b subtypes involves a splice site within an exon. Tissue culture cells expressing the avian SERCA2a, SERCA2b, and SERCA1, each targeting to the endoplasmic reticulum, were used to measure Ca2+ affinities and inhibitor effects; no differences among the three pumps were detected.

The concentration of free Ca2+ ions in the cytosol is maintained at about 0.1 μM while the extracellular level is 10,000-fold higher. Cells tightly control their cytosolic calcium levels by extruding Ca2+ across the plasma membrane as well as by sequestering calcium in internal stores (for review see Bronner and Shamo, 1985). These internal stores of Ca2+ are filled and Shamoo, 1985). These internal stores of Ca2+ are filled

Enzymes and Radiosotopes—Restriction enzymes were purchased from Pharmacia LKB Biotechnology Inc., Amersham Corp., and New England Biolabs. Radioisotopes ([α-32P]dATP, [α-32P]dCTP, and deoxyadenosine 5'-[α-thio]triphosphate) were purchased from Du Pont-New England Nuclear.

cDNA Library Construction and Screening—Total RNA was extracted from the heart and brain of one adult chicken in guanidine thiocyanate as described in Taormino and Fambrough (1990). The poly(A) RNA was converted to oligo (dT)-primed double-stranded cDNA, methylated, coupled with EcoRI linkers, ligated into lambdaZAP phage vector and packaged (Stratagene Cloning Systems). (However, based on examination of numerous clones encoding several different proteins, it has become apparent that the cDNA used to make this library had been incompletely methylated. Many clones terminate at internal EcoRI sites and some have unrelated sequences ligated adjacent to the clones of interest.) For screening the libraries, the coding region of rat stomach SERCA2a (Gunteski-Hamblin et al., 1988) was excised with PstI and isolated as described (Davies et al., 1990). The resulting probe was labeled with 3P by the method of Feinberg and Vogelstein (1983). Hybridization of probe to nitrocellulose filter lifts of the plated library was performed overnight in a solution of 120 mM Tris, pH 8, 600 mM NaCl, 4 mM EDTA, and 60% formamide at 68 °C. Forty and 20 positive clones from the heart and brain cDNA libraries, respectively, were rescreened with the same rat probe. Five clones from each library were isolated by an in vitro excision method involving the helper phage R408 (Stratagene Cloning Systems).

cDNA Sequencing and Analysis—All but the 107' 5' most nucleotides (noncoding) of SERCA2a were sequenced on both strands by the dideoxynucleotide termination method (Sanger et al., 1977) with the U. S. Biochemical Corporation Sequenase kit. Some clones were sequenced after subcloning restriction fragments. Synthetic oligonucleotide sequencing primers were made on the 319 DNA Synthesizer (Applied Biosystems) and used to sequence other clones. By the procedure in Sambrook et al. (1989), nested deletions were produced.
with exonuclease III to sequence one clone. The GAP program of GCG (a software package from the University of Wisconsin) was used for computer comparisons of cDNA sequence similarity across species.

RNA Blot Analyses—Total RNA was isolated from adult and embryonic heart and brain tissues by the RNAzol B method (Biodesign International, Siler City, NC). The ribonucleic acid (RNA) for each sample was denatured by heating for 5 min at 65°C in 45 μl of 0.3 M sodium hydroxide containing 0.05 M disodium ethylenediaminetetraacetic acid (EDTA). The RNA was then loaded onto a 0.6% agarose gel containing formaldehyde. Probe A in Fig. 3A was derived from the 1.3-kb EcoRI fragment of clone B13 and labeled with 32P. The remaining probes were generated by a PCR (Perkin-Elmer Cetus) procedure with primers which were designed to amplify specific regions of chicken SERCA2. The primers are as follows: probe B, 5’ primer AAGAAAACAAAAGCAT (bases 5442-5460); reaction conditions were 10 mM Tris-Cl, pH 8.3 (at 25°C), 50 mM KCl, 1.5 mM MgCl2, 0.001% gelatin, 2.5 units of Amplitaq DNA polymerase (Perkin Elmer-Cetus), with 0.07 mM non-radioactive deoxynucleotides, and 125 μCi of α-32P-labeled dATP and dCTP. The total reaction volume was 10 μl at temperatures of 95, 50, and 72°C for 1 min each were performed to produce each probe. The reaction products were then passed through two Sephadex G-50 spin columns and 3' primer GAGGAGTTACAACAAATG (reverse complement of bases 5442-5460). Probe C, 5' primer GGTACATTCCTAACAA (4408–4424), 3' primer TACA- TAAGGTGTATAG (reverse complement of bases 4820–4856); and probe D, 5' primer CTGCGCCGTATATGTGAC (bases 5183–5203), 3' primer GAGGAGTTACAACAAATG (reverse complement of bases 5442–5460). Reaction conditions were 10 mM Tris-Cl, pH 8.3 (at 25°C), 50 mM KCl, 1.5 mM MgCl2, 0.001% gelatin, 2.5 units of Amplitaq DNA polymerase (Perkin Elmer-Cetus), with 0.07 mM non-radioactive deoxynucleotides, and 125 μCi of α-32P-labeled dATP and dCTP. The total reaction volume was 10 μl at temperatures of 95, 50, and 72°C for 1 min each were performed to produce each probe. The reaction products were then passed through two Sephadex G-50 spin columns and the purified probes were cloned into the vector pBluescript. Another pair of primers was designed to amplify the intron downstream of the SERCA2b unique sequence: 5' AAGAAACAAAAACCTGCTCACTTCATATCACTAAAGTAG (an EcoRI linker plus bases 2786–2804) and 3' GGAATTCATATCACTAAAGTAG (an EcoRI linker plus bases 2786–2804) for later use.

Gene Structure—The primers used to subclone the chicken genomic DNA that included the alternate splice site were 5' GGAATTCATATCACTAAAGTAG (an EcoRI linker plus bases 2786–2804) and 3' GGAATTCATATCACTAAAGTAG (an EcoRI linker plus bases 2786–2804). The PCR product was digested with EcoRI and cloned into the expression vector pcDL-SRa296 (Takebe et al., 1988). The other PCR primer was based on sequence 1.5 pg of chicken genomic DNA that included the alternate splice site were 5' GGAATTCTCGAGGCTCTCTGA (an EcoRI linker plus bases 3101–3117) and 3' primer GAAACAATCTGA-GCCCTAAAG TAG (an EcoRI linker plus bases 2788–2804) for later use.

Expression in Tissue Culture—Full-length cDNAs of SERCA2a and SERCA2b were constructed by ligating these overlapping fragments into clone B13, B14, and H14. Two 'false-start' ATGs in the 5'-UT region were deleted by a PCR method. The 5'-oligo contained a KpnI site, a translation initiation consensus sequence (Kozak, 1989) and the first nine coding nucleotides (TGTTGTTACCCCGACCATGGGAGAACG). The other PCR primer was based on sequence downstream of the SpeI site at position 463. The PCR conditions were as described above with an extension time of 30 s. The resulting product was digested with SpeI and KpnI and cloned into pBluescript and sequenced. This was then ligated onto the 5'- end of both SERCA2a and SERCA2b. SERCA2b was digested with SpeI and recloned into pBluescript in order to delete the sequence containing the SpeI site and the polyadenylation signal and the poly(A) tail in combination with partial methylation of the cDNA during construction of both libraries (see Materials and Methods).

Functional Comparisons of Avian Ca2+-ATPases

RESULTS

cDNA Sequence and Analysis—A cDNA probe encoding rat SERCA2a was used to screen chicken heart and brain cDNA libraries at high stringency (68°C, 50% formamide). A number of overlapping cDNA clones from each library were excised in vivo (see "Materials and Methods") and sequenced to yield complete nucleotide sequences encoding chicken SERCA2a and SERCA2b. Clone B11 did not contain the complete coding sequence but it was of particular interest since it was the only clone isolated from the brain cDNA library which encoded the SERCA2a carboxyl terminus. No poly(A) tails were found in any of the clones, perhaps due to the absence of an EcoRI site between the polyadenylation signal and the poly(A) tail in combination with partial methylation of the cDNA during construction of both libraries (see Materials and Methods).

The nucleotide and deduced amino acid sequences of chicken SERCA2a are shown in Fig. 1A. The amino acid sequence is 94% identical to mammalian homologues (MacLennan et al., 1985, Lytton and MacLennan, 1988, and Gunterski-Hamblin et al., 1988, Eggermont et al., 1989). Of the variant amino acids, conservative changes account for nearly half of the substitutions.

In addition to the cDNA clones that encode SERCA2a, the avian cDNA homologue of mammalian SERCA2b was also sequenced. The nucleotide and deduced amino acid sequences of SERCA2b are presented in Fig. 1A. The 44 additional carboxy-terminal amino acids account for the difference in apparent molecular mass between SERCA2a and SERCA2b seen by SDS-PAGE (110 kDa). When the carboxy terminus of avian SERCA2b is compared to homologous mammalian sequences, 34 of 49 amino acids are identical with six out of the 11 substitutions being conservative ones. Among

2 The abbreviations used are: PCR, polymerase chain reaction; kb, kilobase; SDS-PAGE, sodium dodecyl sulfate-polyacrylamide gel electrophoresis; MOPS, 4-morpholinepropanesulfonic acid; 3'-UT; and 5'-UT; 3'- and 5'-untranslated; HEPES, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid; 3'- and 5'-untranslated; HEPES, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid; ethylenebis(oxyethylenenitrilo) tetraacetate acid; TG: thapsigargin; CPA, cyclopiazonic acid; ER, endoplasmic reticulum; SR, sarcoplasmic reticulum; Clones beginning with the letter "B" are from the brain cDNA library while those with an "H" are derived from the heart library.
Functional Comparisons of Avian Ca²⁺-ATPases

Fig. 1. Nucleotide and deduced amino acid sequences of chicken SERCA cDNAs. Panel A, nucleotides are numbered on the left and amino acids on the right. Amino acids are identified by single letter abbreviations below their codons, stars denote stop codons, and consensus polyadenylation signals are underlined. The alternate splice site occurs at base 2980. The SERCA2b unique sequence is located between the two (V A) symbols and is absent from SERCA2a mRNA as a result of alternate splicing. The SERCA2a carboxyl terminus is written below its encoding sequence with the first base of the first codon located 5' of the alternate splice site. Panel B, the diagram depicts mRNAs transcribed from SERCA2. The black boxes represent coding sequences of SERCA2 with open boxes indicating the 5' portions. The dashed lines indicate the relationship of the SERCA2b unique sequence to the SERCA2a mRNA.
The primary transcript with exons as changes are from C to A, T to C, and Z to A. The correct relationship between SERCA2a and SERCA2h mRNA. The fact that the 3'UT region of SERCA2b message also contained the sequence which encodes the SERCA2a carboxyl terminus was not realized. But as shown in Fig. 1, A and B, the SERCA2a terminal encoding cDNA is downstream of the SERCA2b cDNA. In order to translate SERCA2a, the primary transcript must be spliced so that all of the SERCA2b unique sequence is excised. By removing the SERCA2b unique sequence, the encoding sequence of the four terminal amino acids of SERCA2a becomes contiguous with the bulk of the coding region, thus allowing SERCA2a translation. Therefore, primary transcripts of the SERCA2 gene contain the encoding sequences for both SERCA2a and SERCA2b. After processing the RNA, the 3'UT region of SERCA2b mRNA still contains the SERCA2a-terminal encoding sequence while SERCA2a mRNA has had its SERCA2b unique portion excised.

mRNA Processing—To delineate exact intron/exon boundaries surrounding the chicken alternate splice site within the gene, PCR was employed to amplify a portion of the gene. The deduced gene structure and RNA splicing pattern are shown in Fig. 2. Primers were designed to amplify both the alternate splice site and the intron upstream of the SERCA2a unique sequence. The resulting PCR product was cloned and sequenced. Between nucleotides G and A is a 119-base pair intron which begins with GT and ends in AG. An intron occurs at the homologous position in the human SERCA2 gene (Lytton and MacLennan, 1988). There is no intron at the alternate donor splice site used to generate SERCA2a mRNA.

A series of probes to different regions of the 3'UT regions of SERCA2 were hybridized to RNA blots to determine which of three potential polyadenylation signals are used in mRNA processing. Probe A was the EcoRI fragment depicted in the diagram in Fig. 3. The resulting bands (Fig. 3, blot A) show the relative amounts of heart and brain mRNA loaded in blots A through E. Probe B, which hybridizes to a SERCA2b specific portion of the sequence, does not hybridize to the heart RNA but does detect high levels of SERCA2b mRNA isolated from brain tissue. Embryonic brain also contains mRNAs that include the sequence unique to SERCA2b; only SERCA2a mRNA was detected in embryonic heart (data not shown). The first consensus sequence for polyadenylation occurs at nucleotide 4048, within the 3'UT region unique to SERCA2b. Little if any SERCA2b mRNA uses the consensus sequence at 4048 since the band detected with probe B has an apparent size 1 kb greater than that predicted for messages terminating at 4048. In RNA blots from both heart and brain, bands are evident when probe C was used but not probe D. These data show that for both SERCA2a and SERCA2b mRNAs, the AATATA at 5158 is used as the predominant polyadenylation signal rather than the consensus sequence at position 5473. It is interesting to note that the rarely used polyadenylation signal sequence at 5473 is not present in homologous mammalian cDNAs. Heart transcripts occasionally use the signal sequence at 5473 (or at some position further downstream) since one cardiac cDNA clone (H14) was found to contain the sequence downstream of the predominantly used polyadenylation signal at base 5158. (A faint signal in the heart RNA lane was detected when probe D was used but was too faint to appear in the photograph.) There is no evidence that brain messages ever use the polyadenylation signal at nucleotide 5473. Probe E, an oligonucleotide which spans the alternate splice site and is specific for SERCA2a mature mRNA, hybridizes to RNA of similar size in both brain and heart lanes. This verifies that brain does express SERCA2a but at a much lower level than SERCA2b. The brain SERCA2a mRNA was not detected in panels A or C probably because of the low expression level and smeared signal. In summary, both brain and heart transcribe messages which predominantly use the polyadenylation signal at nucleotide 5158, though heart infrequently uses the polyadenylation signal at nucleotide 5473. SERCA2a mRNA was detectable in both brain and cardiac lanes while SERCA2b message was seen in brain RNA only.

Expression and Analysis of cDNA Clones in Tissue Culture—In order to examine functional differences among Ca2+-pumps, cDNAs encoding each SERCA2 subtype as well as a chicken SERCA1 were expressed in tissue culture (see "Material and Methods"). Full-length constructs encoding either SERCA2a, SERCA2b, or SERCA1 were transiently expressed in COS-1 cells. The transfected cells were fixed, permeabilized, and labeled with a chicken specific anti-SERCA2 or anti-SERCA1 monoclonal antibody and rhodamine-conjugated secondary antibody. High levels of expression were
obtained for all three avian Ca2+-ATPases. An immunofluorescent staining pattern indicative of the endoplasmic reticulum was observed. This is best seen at the thin edges of cells as shown in Fig. 4. A-C. These results show that SERCA1 and the SERCA2 subtypes are capable of targeting to the appropriate organelle when transfected into non-muscle tissue cultured cells. Microsomes made from similarly transfected cells were analyzed by SDS-PAGE and immunoblots. Using protein blots from 6% polyacrylamide gel electrophoresis and probing with avian-specific monoclonal antibodies, it was possible to demonstrate clearly the expressed avian Ca2+-ATPases (Fig. 4D).

To ensure that the ER localization was not merely due to accumulation of misfolded protein, microsomes of cells transfected with SERCA1, SERCA2a, or SERCA2b were assayed for their ability to sequester 45Ca2+. Fig. 5 shows that all three pumps are functional. The apparent lower activity of SERCA2a is due to lower yields of SERCA2a protein/milligram of total microsomal protein (see Fig. 4D). Equal amounts of total microsomal protein were analyzed by immunoblots to quantify relative amounts of SERCA2a and SERCA2b. There is 1.7-fold less SERCA2a than SERCA2b in the respective microsomes (data not shown). Therefore, with a factor of 1.7 to correct for the lower expression of SERCA2a, all three pumps sequester about 1100 nmol of Ca2+/mg protein/h. This is an order of magnitude greater than the rate of Ca2+ sequestration by microsomes from nontransfected COS-1 cells or cells transfected with the SERCA2a cDNA cloned into the expression vector in the reverse orientation.

There are two toxins reported to be SR/ER Ca2+ pump inhibitors. Both thapsigargin (TG, Thastrup et al., 1990) and cyclopiazonic acid (CPA, Seidler et al., 1989) are believed to act upon SERCA-type ATPases but not the plasma membrane calcium pumps. When calcium uptake was measured for SERCA2a, SERCA2b, and SERCA1 over a range of inhibitor concentrations, no significant differences were detected in the sensitivity of the three isoforms to the inhibitors (Fig. 6).

Finally, the apparent Ca2+ affinity for each isoform was determined. Equal amounts of microsomes were incubated with varying free Ca2+ concentrations. There was no appreciable difference in the Ca2+ activation patterns of the Ca2+-ATPases as shown in Fig. 7.

DISCUSSION

Previous work has shown that two subtypes of SERCA2 with different M, are expressed in the chicken (Kaprielian et al., 1989). This paper demonstrates that the difference is due to alternate splicing at an intraexonic donor site in the primary transcript. SERCA2a can only be expressed when a splice site donor, which occurs within the exon coding for the carboxyl terminus of SERCA2b, is used for RNA processing. Only SERCA2a was detected in heart, while both forms of SERCA2 were expressed in brain with SERCA2b being the...
similar effects of TG and CPA suggest that neither inhibitor
predominant form. This means that the internal RNA splice
site donor is used much less often in brain and that the
carboxyl-terminal coding sequence of SERCA2a usually appears
within the 3'-UT region of SERCA2b mRNA. A similar, though more complex, splicing pattern of RNA has recently been reported for mammals (Plessers et al., 1991). Unlike mammalian SERCA2 mRNA expression, there are only two forms of avian SERCA2 mRNA. The only detected SERCA2b mRNA always contained within its 3'-UT region the SERCA2a terminal encoding nucleotides. Therefore, alternate splicing via an internal donor site appears to be the mechanism to produce alternate carboxyl termini in avian as well as mammalian SERCA2.

When SERCA2a and SERCA2b were expressed in COS-1 cells, the Ca2+-ATPases were targeted to the endoplasmic reticulum as evident by the immunofluorescent staining pattern (Fig. 4, A-C). This localization is not due to accumulation of misfolded protein since similarly transfected cells synthesized functional enzymes. In the photomicrographs, there is some punctate staining in addition to the reticular network. This could be due to incomplete fixation and vesiculization of the ER and/or capping of the Ca2+-ATPases within the ER. The antibody's epitope is glutaraldehyde and methanol

predominant form. This means that the internal RNA splice
site donor is used much less often in brain and that the
carboxyl-terminal coding sequence of SERCA2a usually appears
within the 3'-UT region of SERCA2b mRNA. A similar, though more complex, splicing pattern of RNA has recently been reported for mammals (Plessers et al., 1991). Unlike mammalian SERCA2 mRNA expression, there are only two forms of avian SERCA2 mRNA. The only detected SERCA2b mRNA always contained within its 3'-UT region the SERCA2a terminal encoding nucleotides. Therefore, alternate splicing via an internal donor site appears to be the mechanism to produce alternate carboxyl termini in avian as well as mammalian SERCA2.

When SERCA2a and SERCA2b were expressed in COS-1 cells, the Ca2+-ATPases were targeted to the endoplasmic reticulum as evident by the immunofluorescent staining pattern (Fig. 4, A-C). This localization is not due to accumulation of misfolded protein since similarly transfected cells synthesized functional enzymes. In the photomicrographs, there is some punctate staining in addition to the reticular network. This could be due to incomplete fixation and vesiculization of the ER and/or capping of the Ca2+-ATPases within the ER. The antibody's epitope is glutaraldehyde and methanol sensitive so other fixation protocols were unsuccessful. The possibility of lateral mobility within the ER of SERCA2 proteins is under investigation.

We have compared the expression and activities of the three chicken isoforms in a number of ways. When analyzed by immunoblots (Fig. 4D), the bands in the SERCA2 lanes appear as broad bands. These data, in addition to some preliminary data, suggest that the calcium pump might be a glycoprotein. Functionally, the three Ca2+-ATPases are very similar in their sensitivity to Ca2+ as an activator and to CPA as inhibitors. Since SERCA2a and SERCA2b differ only at their carboxyl termini, it is not surprising that the ATPases are indistinguishable in their apparent Ca2+ affinities and inhibitor sensitivities. Although there is a 15% amino acid sequence difference between SERCA1 and SERCA2, the similar effects of TG and CPA suggest that neither inhibitor

interacts with isoform-specific residues. By comparing primary sequences and pharmacological sensitivities of SERCA-type pumps from a variety of species, it may be possible to predict which regions interact with TG and CPA.

In order to understand Ca2+-ATPases more fully, it is helpful to compare primary sequences across a wide range of species. Chicken SERCA2a is 94% identical to its mammalian homologue while the carboxyl terminus of SERCA2b is also highly conserved. A series of mutagenesis studies has furthered our understanding of the structure/function relationship (e.g. Clarke et al., 1989a, 1989b; Maruyama et al., 1989; Vilsen et al., 1989, Andersen et al., 1989, Clarke, et al., 1990).

Of the residues shown by other laboratories to be required for the function of the Ca2+-ATPase, all are completely conserved in chicken SERCA2. There is no evidence which shows that the carboxyl terminus of a calcium pump is vital for function and yet diverse species have conserved, through millions of years, alternate SERCA2a and SERCA2b termini. It remains to be determined why there is a selective advantage for birds and mammals to retain multiple isoforms of the Ca2+-ATPase.

Acknowledgments—We would like to thank Dr. Gary Shull for the rat cDNA SERCA2 probe, Merianne Dieckmann (Stanford University) and Atsushi Miyajima (DNAx, Palo Alto) for kindly supplying COS-1 cells and the pcDL-Sr296 expression vector, Delores Somerville, Drs. Joseph Taormino and Anita Zot for advice and suggestions throughout this work, and Dr. Jonathan Lytton for critical and helpful discussion.

REFERENCES

Andersen, J. P., Vilsen, B., Leberer, E. and MacLennan, D. H. (1989) J. Biol. Chem. 264, 21018-21023
Brandl, C. J., Green, N. M., Korczak, B., and MacLennan, D. H. (1986) Cell 44, 597-607
Bromer, F. and Shamu, A. E. Editors. (1986) Curr. Top. Membr. Trans. 25, 1-776
Burk, S. E., Lytton, J., MacLennan, D. H., and Shull, G. E. (1989) J. Biol. Chem. 264, 15661-15668
Clarke, D. M., Loo, T. W., Inesi, G., and MacLennan, D. H. (1989a) Nature 339, 476-478
Clarke, D. M., Maruyama, K., Loo, T. W., Leberer, E., Inesi, G., and MacLennan, D. H. (1989b) J. Biol. Chem. 264, 14088-14092
Davies, L. G., Dinh, D. M., and Battey, J. F. (1986) Basic Methods in Molecular Biology, pp. 123-125, Elsevier Science Publishing Company, New York
Egermont, J. A., Wuytrack, F., De Jaegere, S., Nefes, L., and Casteels, R. (1989) Biochem. J. 260, 767-773
Feinberg, A. P., and Vogelstein, B. (1983) Anal. Biochem. 132, 6:13
Fernandez-Balbi, F., Kurzmark, M., and Inesi, G. (1984) J. Biol. Chem. 259, 9687-9698
Guntés-Hamblin, A. M., Greeth, J., and Shull, G. E. (1986) J. Biol. Chem. 261, 15032-15040
Kaprielian, Z., and Fambourg, D. M. (1987) Dev. Biol. 124, 490-503
Kaprielian, Z., Campbell, A. M., and Fambourg, D. M. (1988) Mol. Brain Res. 124, 362-365
Karin, N. J., Kaprielian, Z., and Fambourg, D. M. (1988) Mol. Cell. Biol. 8, 1978-1986
Kozak, M. (1989) J. Cell Biol. 108, 229-241
Lytton, J., and MacLennan, D. H. (1988) J. Biol. Chem. 263, 1524-1530
Lytton, J., Zarain-Herzberg, A., Periasamy, M., and MacLennan, D. H. (1988) J. Biol. Chem. 263, 7059-7060
MacLennan, D. H., Brandl, C. J., Korczak, B., and Green, N. M. (1985) Nature 316, 697-700
Maruyama, K., Clarke, D. M., Fuji, J., Inesi, G., Loo, T. W., and MacLennan, D. H. (1989) J. Biol. Chem. 264, 13038-13042
Plessers, E., Egermont, J. A., Wuytrack, F., and Casteels, R. (1991) J. Neurosci. 11, 650-656
Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: a Laboratory Manual, pp. 5.84-5.85, Cold Spring Harbor Laboratory Press Cold Spring Harbor, NY
Sanger, F., Nicklen, S., and Coulson, A. R. (1977) Proc. Natl. Acad. Sci. U. S. A. 74, 5463-5467
Sawler, N. W., Jona, I., Vegg, M., and Martonosi, A. (1989) J. Biol. Chem. 264, 17816-17823
Takabe, Y., Seiki, M., Fujisawa, J.-I., H. Y., Yokota, K., Arai, K.-I., Yoshiba, M., and Arai, N. (1989) Mol. Cell. Biol. 9, 466-472
Taormino, J. P., and Fambourg, D. M. (1990) J. Biol. Chem. 265, 4116-4123
Thastrup, O., Cullen, P. J., Ordbæk, B. K., Hanley, M. R., and Dawson, A. P. (1990) Proc. Natl. Acad. Sci. U. S. A. 87, 2486-2490
Vilsen, B., Andersen, J. P., Clarke, D. M., and MacLennan, D. H. (1989) J. Biol. Chem. 264, 21024-21030

Fig. 7. Calcium concentration dependence of initial rates of calcium uptake. Reaction conditions are the same as used in Fig. 6 except the concentration of free calcium was varied as described under “Materials and Methods.” The results are standardized as fraction of maximal rate and plotted against free calcium concentration. The curves are labeled as follows: Δ, SERCA2a; O, SERCA2b; □, SERCA1. Experimental points were fitted with the Hill equation, assuming 4.17 × 10−7 M for the Ca2+ concentration yielding half-maximal activation.