CYLINDRICITY OF COMPLETE EUCLIDEAN SUBMANIFOLDS WITH RELATIVE NULLITY

FELIPPE SOARES GUIMARÃES AND GUILHERME MACHADO DE FREITAS

Abstract. We show that a complete Euclidean submanifold with minimal index of relative nullity \(\nu_0 > 0 \) and Ricci curvature with a certain controlled decay must be a \(\nu_0 \)-cylinder. This is an extension of the classical Hartman cylindricity theorem.

1. Introduction

The simplest examples of isometric immersions \(f : M^n \rightarrow \mathbb{R}^m \) such that the index of relative nullity is positive everywhere are the \(s \)-cylinders. The isometric immersion \(f \) is said to be an \(s \)-cylinder if there exists a Riemannian manifold \(N^{n-s} \) such that \(M^n, \mathbb{R}^m \) and \(f \) have factorizations

\[
M^n = \mathbb{R}^s \times N^{n-s}, \quad \mathbb{R}^m = \mathbb{R}^s \times \mathbb{R}^{m-s} \quad \text{and} \quad f = I \times h,
\]

where \(h : N^{n-s} \rightarrow \mathbb{R}^{m-s} \) is an isometric immersion and \(I : \mathbb{R}^s \rightarrow \mathbb{R}^s \) is the identity map. Clearly, in this case the minimal index of relative nullity \(\nu_0 \) of \(f \) is precisely \(s \), as long as that of \(h \) is zero.

The classical Hartman theorem states that these are the only possible complete examples with nonnegative Ricci curvature.

Theorem 1 (Maltz [1]). Let \(M^n \) be a complete manifold with nonnegative Ricci curvature and let \(f : M^n \rightarrow \mathbb{R}^m \) be an isometric immersion with minimal index of relative nullity \(\nu_0 > 0 \). Then \(f \) is a \(\nu_0 \)-cylinder.

The main purpose of this article is to extend the above result to submanifolds with Ricci curvature having a certain controlled decay.

Theorem 2. Let \(M^n \) be a complete manifold with

\[
\text{Ric} \geq - \left(\text{Hess} \psi + \frac{d\psi \otimes d\psi}{n-1} \right)
\]

for some function \(\psi \) bounded from above on \(M^n \) and let \(f : M^n \rightarrow \mathbb{R}^m \) be an isometric immersion with minimal index of relative nullity \(\nu_0 > 0 \). Then \(f \) is a \(\nu_0 \)-cylinder.

Note that we recover Theorem 1 from the above by simply taking \(\psi \) to be constant.

2010 Mathematics Subject Classification. Primary 53C40, 53C12; Secondary 53A07, 53A05. Key words and phrases. cylinder, relative nullity, Hartman theorem, splitting theorem.

The first author’s research was partially supported by CNPq/Brazil.

The second author’s research was partially supported by CNPq/Brazil.
Remarks 1. (i) In Wylie [2], such a Riemannian manifold satisfying (1.1) was said to be CD(0,1) with respect to the potential function ψ.

(ii) We actually prove a version of Theorem 2 that is more general in two ways. The first is that we can weaken the upper bound on ψ assumption to an integral condition along geodesics, the so-called bounded energy distortion. Secondly the function ψ can be replaced with a vector field X. We delay discussing this result until Section 4.

2. Preliminaries

The main step in the proof of Theorem 2 is Lemma 1 below (see Maltz [1]).

Lemma 1. Suppose $M^n = \mathbb{R} \times N^{n-1}$ is the Riemannian product of \mathbb{R} and a connected Riemannian manifold N^{n-1}, and suppose $f : M^n \to \mathbb{R}^m$ is an isometric immersion mapping a geodesic of the form $\mathbb{R} \times \{q\}$ onto a straight line in \mathbb{R}^m. Then f is a 1-cylinder.

Our result also relies on the fundamental fact that the leaves of the minimum relative nullity distribution of a complete submanifold of \mathbb{R}^m are also complete (cf. Dajczer [3]).

Lemma 2. Let M^n be a complete Riemannian manifold and let $f : M^n \to \mathbb{R}^m$ be an isometric immersion with $\nu > 0$ everywhere. Then, the leaves of the relative nullity distribution are complete on the open subset where $\nu = \nu_0$ is minimal.

Theorem 1 follows easily from Lemmas 1 and 2 above together with the Cheeger-Gromoll splitting theorem. Indeed, under the assumptions of Theorem 1, Lemma 2 yields that M^n contains ν_0 linearly independent lines through each point where the index of relative nullity is minimal. By the splitting theorem of Cheeger-Gromoll, M^n is isometric to a Riemannian product $\mathbb{R}^{\nu_0} \times N^{n-\nu_0}$, and Theorem 1 then follows inductively from Lemma 1.

The proof of our Theorem 2 uses the same ideas above, taking advantage of a recent warped product version of the splitting theorem by Wylie [2]. According to this latter result, estimate (1.1) is sufficient to split a complete Riemannian manifold M^n that admits a line into a warped product $\mathbb{R} \times \rho N^{n-1}$ over \mathbb{R}. But since this splitting comes from a line of relative nullity, our goal is to show that the warping function ρ must be constant, and thus $\mathbb{R} \times \rho N^{n-1}$ is actually a Riemannian product, so that Lemma 1 can be applied to conclude the proof. To do this we need to collect geometric information on the behavior of a warped product as above along the line \mathbb{R}. For later use, we carry out this study within the broader class of twisted products $M^n = \mathbb{R} \times \rho N^{n-1}$ over \mathbb{R}, where (N, h) is a Riemannian manifold, $\rho : M^n \to \mathbb{R}_+$ the twisting function, and M^n is endowed with the metric $g = dr^2 + \rho^2 h$. If ρ is a function of r only, then we have a warped product over \mathbb{R}. The following lemma describes how vector fields vary along \mathbb{R}.

Lemma 3. Let $M^n = \mathbb{R} \times \rho N^{n-1}$ be a twisted product over \mathbb{R}. Then

\begin{equation}
\nabla_{\partial_r} \partial_r = 0
\end{equation}

and

\begin{equation}
\nabla_{\partial_r} X = \nabla_X \partial_r = \frac{1}{\rho} \frac{\partial \rho}{\partial r} X
\end{equation}

for all $X \in \mathfrak{X}(N)$.

Proof. Let us write \(\rho_r = \rho(r, \cdot) \) and denote by \(N_{\rho_r} \) the Riemannian manifold \(N \) endowed with the conformal metric rescaled by \(\rho_r^2 \). It is straightforward to check that \(\nabla \) given by (2.1), (2.2) and
\[
\nabla_X Y = \nabla_X^{N_{\rho_r}} Y - \langle X, Y \rangle \frac{1}{\rho} \frac{\partial \rho}{\partial r} \frac{\partial}{\partial r}
\]
for all \(X, Y \in \mathfrak{X}(N) \) defines a compatible symmetric connection on \(TM \), hence it coincides with the Levi-Civita connection of \(M^n \).

Next, we use Lemma 3 to compute the sectional curvatures along planes containing \(\partial_r \).

Lemma 4. Let \(M^n = \mathbb{R} \times_\rho N^{n-1} \) be a twisted product over \(\mathbb{R} \). Then
\[
(2.3) \quad K(\partial_r, X) = -\frac{1}{\rho} \frac{\partial^2 \rho}{\partial r^2}
\]
for all unit vector \(X \in T_x N \) and all \(x \in N^{n-1} \).

Proof. Differentiating \(\langle X, X \rangle = \rho^2 \) twice with respect to \(r \) gives
\[
(\nabla_{\partial_r} \nabla_{\partial_r} X, X) + \| \nabla_{\partial_r} X \|^2 = \rho \frac{\partial^2 \rho}{\partial r^2} + \left(\frac{\partial \rho}{\partial r} \right)^2.
\]
Using (2.1) and (2.2), we conclude that
\[
\langle R(\partial_r, X) \partial_r, X \rangle = \rho \frac{\partial^2 \rho}{\partial r^2},
\]
from which the result follows.

We are now in a position to state and prove our main lemma, in which by a line of nullity of a Riemannian manifold \(M^n \) we mean a curve \(\gamma : \mathbb{R} \to M^n \) such that \(\gamma'(t) \in \Gamma(\gamma(t)) \) for all \(t \in \mathbb{R} \), where
\[
\Gamma(x) = \{ X \in T_x M : R(X, Y) = 0 \text{ for all } Y \in T_x M \}
\]
is the nullity subspace at \(x \in M^n \).

Lemma 5. Let \(M^n = \mathbb{R} \times_\rho N^{n-1} \) be a twisted product over \(\mathbb{R} \). If \(\mathbb{R} \times \{ q \} \) is a line of nullity of \(M^n \) for some \(q \in N^{n-1} \), then \(\rho_r = \rho_0 \) does not depend on \(r \), and hence \(M^n \) is actually the Riemannian product \(\mathbb{R} \times N^{n-1}_{\rho_0} \).

Proof. It follows from (2.3) that
\[
\frac{\partial^2 \rho}{\partial r^2} \equiv 0,
\]
but since the twisting function \(\rho \) is positive on the whole real line it must be constant.

3. Proof

As previously discussed, Lemma 1 is at the core of the proof of Theorem 2 whereas Lemma 5 is the principle behind its use.
Proof. We can assume that $\nu_0 = 1$, since the general case follows easily by induction on ν_0. Take a point $p \in M^n$ where $\nu = 1$. It follows from Lemma 2 that M^n contains a line l through p. By the warped product version of the splitting theorem of Cheeger-Gromoll due to Wylie [2], the Riemannian manifold M^n is isometric to a warped product $\mathbb{R} \times \rho N^{n-1}$ over \mathbb{R}, the line l corresponding to $\mathbb{R} \times \{q\}$ for some $q \in N^{n-1}$. Since l is a leaf of the relative nullity foliation, we have in particular that $\mathbb{R} \times \{q\}$ is a line of nullity of $\mathbb{R} \times \rho N^{n-1}$, and thus, by Lemma 5, $\rho_r = \rho_0$ does not depend on r and $\mathbb{R} \times \rho N^{n-1}$ is actually the Riemannian product $\mathbb{R} \times N^{n-1}$. Hence, we may consider $f: \mathbb{R} \times N^{n-1} \rho_0 \to \mathbb{R}^m$, and as f maps $\mathbb{R} \times \{q\}$ onto a straight line in \mathbb{R}^m, the result then follows from Lemma 1. □

4. Generalization

In this section we explain how the result above also has a version for non-gradient potential fields. Curvature inequality (1.1) has a natural extension to vector fields X and can be regarded as the special case where $X = \nabla \psi$. Our result in the gradient case assumes boundness of the potential function ψ. While there is no potential function for a non-gradient field, we can still make sense of bounds by integrating X along geodesics. Let X be a vector field on a Riemannian manifold M^n. Let $\gamma: (a, b) \to M^n$ be a geodesic that is parametrized by arc-length. Define

$$\psi_\gamma(t) = \int_a^t \langle \gamma'(s), X(\gamma(s)) \rangle \, ds,$$

which is a real valued function on the interval (a, b) with the property that $\psi'_\gamma(t) = \langle \gamma'(t), X(\gamma(t)) \rangle$. When $X = \nabla \psi$ is a gradient field then $\psi_\gamma(t) = \psi(\gamma(t)) - \psi(\gamma(a))$, in the non-gradient case we think of ψ_γ as being the anti-derivative of X along the geodesic γ. We now recall the notion of ‘bounded energy distortion’, introduced by Wylie [2].

Definition 1. Let M^n be a non-compact complete Riemannian manifold and $X \in \mathfrak{X}(M)$ a vector field. Then we say X has bounded energy distortion if, for every point $x \in M^n$,

$$\limsup_{r \to \infty} \inf_{l(\gamma) = r} \left\{ \int_0^r e^{-\frac{2\psi_\gamma(\gamma(s))}{n-1}} \, ds \right\} = \infty,$$

where the infimum is taken over all minimizing unit speed geodesics γ with $\gamma(0) = x$.

In general, ψ_γ depends on the parametrization of γ only up to an additive constant, so the notion of bounded energy distortion does not depend on the parametrization of the geodesic. Also note that if a vector field X has the property that ψ_γ is bounded for all unit speed minimizing geodesics then it has bounded energy distortion. However, even in the gradient case, bounded energy distortion is a weaker condition than ψ bounded above.

Our most general cylindricity theorem is the following.

Theorem 3. Let (M^n, g) be a complete manifold with

$$\text{Ric} \geq -\left(\frac{1}{2} L_X g + \frac{X^2 \otimes X^2}{n-1} \right)$$

(4.1)
for some vector field X with bounded energy distortion and let $f : M^n \to \mathbb{R}^m$ be an isometric immersion with minimal index of relative nullity $\nu_0 > 0$. Then f is a ν_0-cylinder.

In particular, when $X = \nabla \psi$, we conclude that Theorem 2 still holds under the weaker condition that ψ has bounded energy distortion rather than being bounded from above.

By Wylie [2], inequality (4.1) allows to split M^n as a twisted product $\mathbb{R} \times_{\rho} N^{n-1}$ over \mathbb{R}, provided there is a line. But since Lemma 5 actually holds for twisted products, the proof of Theorem 3 then follows by the same arguments as in Section 3.

References

[1] R. Maltz, “Cylindricity of isometric immersions into Euclidean space,” Proc. Amer. Math. Soc. 53 no. 2, (1975) 428–432.

[2] W. Wylie, “A warped product version of the Cheeger-Gromoll splitting theorem,” arXiv:1506.03800 [math.DG].

[3] M. Dajczer, Submanifolds and isometric immersions, vol. 13 of Mathematics Lecture Series. Publish or Perish, Inc., Houston, TX, 1990. Based on the notes prepared by Mauricio Antonucci, Gilvan Oliveira, Paulo Lima-Filho and Rui Tojeiro.

Felippe Soares Guimarães – Instituto Nacional de Matemática Pura e Aplicada (IMPA)
Estrada Dona Castorina 110, Rio de Janeiro / Brazil 22640-320
E-mail address: felippe.guima@gmail.com

Guilherme Machado de Freitas – Politecnico di Torino
Corso Duca degli Abruzzi, 24, 10129 Turin, Italy
E-mail address: guimdf1987@icloud.com