"Intestinimonas gabonensis" sp. nov., a new bacterium detected from a Gabonese stool specimen.

G. Mourembou, A. Ndjoyi-Mbiguino, J. Rathored, J. B. Lekana-Douki, Pierre-Edouard Fournier, Didier Raoult, J. C. Lagier

To cite this version:

G. Mourembou, A. Ndjoyi-Mbiguino, J. Rathored, J. B. Lekana-Douki, Pierre-Edouard Fournier, et al.. "Intestinimonas gabonensis" sp. nov., a new bacterium detected from a Gabonese stool specimen. New Microbes and New Infections, Wiley Online Library 2017, 15, pp.24–26. 10.1016/j.nmni.2016.10.005. hal-01795919

HAL Id: hal-01795919
https://hal-amu.archives-ouvertes.fr/hal-01795919
Submitted on 1 Jun 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
NEW SPECIES

"Intestinimonas gabonensis" sp. nov., a new bacterium detected from a Gabonese stool specimen

G. Mourembou1,2, A. Ndjoyi-Mbiguino3, J. Rathored1, J. B. Lekana-Douki1,2, P.-E. Fournier1, D. Raoult1 and J. C. Lagier1

1) Aix-Marseille Université, URMITE, UM63, CNRS 7278, IRD 1095, Marseille, France, 2) École Doctorale Régionale d’Afrique Centrale, 3) Unité de Parasitologie Médicale (UPARAM) CIRMF, Franceville, 4) Département de Microbiologie, Laboratoire national de référence IST/SIDA, Faculté de Médecine and 5) Département de Parasitologie Mycologie et de Médecine Tropicale, Université des Sciences de la Santé, Libreville, Gabon

Abstract

Detection of new bacteria becomes a major part of culturomics studies coupled with taxonogenomics. Using these strategies, we report here the main characteristics of a new species, "Intestinimonas gabonensis" strain GM5. It is a bacterium isolated from a stool specimen from a 27-year-old man from Gabon.

© 2016 The Authors. Published by Elsevier Ltd on behalf of European Society of Clinical Microbiology and Infectious Diseases.

Keywords: Culturomics, genome, human gut microbiota, "Intestinimonas gabonensis" sp. nov., taxonogenomics

Original Submission: 29 August 2016; **Revised Submission:** 29 September 2016; **Accepted:** 14 October 2016

Article published online: 20 October 2016

Corresponding author: J.C. Lagier, Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, Marseille, France
E-mail: jclagier@yahoo.fr

The recently developed strategy of bacterial culture called culturomics provides new information on the repertoire of bacteria found in the human gut flora [1,2]. The application of culturomics coupled with taxonogenomics on a stool specimen from a Gabonese healthy 27-year-old man (body mass index 21.97 kg/m²) permitted the isolation of a new bacterial species, strain GM5. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis using a Microflex spectrometer (Bruker Daltonics, Bremen, Germany) failed to identify this species because of the absence of its spectrum in the current database (http://www.mediterranee-infection.com/article.php?laref=256&titre=urms-database). After receipt of approval of the National Ethics Committee of Gabon (no. 0023/2013/SG/CNE) and IFR48 of Marseille (no. 09-022) in France, the stool sample was collected under sterile condition in Lébamba, Gabon, in January 2015 and sent to Unité des Maladies Infectieuses et Tropicales Emergentes, Marseille, France, for microbiologic culture.

Strain GM5 was isolated after the stools were cultured in a blood culture bottle (bioMérieux, Marcy l’Étoile, France), followed by a subculture in 5% sheep’s blood–enriched Columbia agar (bioMérieux) under anaerobic conditions at 37°C [3–5]. A fusiform Gram-negative bacterium, strain GM5 is nonmotile without oxidase and catalase activities. Its individual cell has a length of 1.5 μm and a diameter of 0.5 μm. Colonies of strain GM5 are translucent and 1 mm in diameter. This bacterium, which is strictly anaerobic and endospore forming, grows in 48 hours under temperatures ranging between 28 and 37°C, with optimal growth at 37°C. Strain GM5 supports a salinity of approximately 0 (range, 0–5%) and pH ranging from 6 and 8.5.

The sequencing the 16S rRNA gene using a 3130-XL sequencer (Applied Biosciences, Saint Aubin, France) and a set of primer rp2-fD1 enabled identification [3–5]. Sequences were corrected and assembled using ChromasPro 1.34 (Technelysium, Tewantin, Australia). Additionally, a BLASTn was performed using the online GenBank database (inist.fr/Blast.cgi). The 16S rRNA gene sequence of strain GM5 exhibited 95.3% sequence identity with the closest species, Intestinimonas massiliensis strain GD2, CSUR P1930T (LN866996) (Fig. 1). Because this value was lower than the threshold recommended to delineate a new species [6], the strain GM5 was putatively classified as a new species called **Intestinimonas gabonensis** sp. nov.
Intestinimonas gabonensis sp. nov. within the genus Intestimonas created in 2013 [7]. The neighbouring species of “I. gabonensis” stain GM5 (I. massiliensis [8], I. butyriciproducens [7], Flavonifractor plautii [7], Clostridium orbiscindens [9]) are anaerobic and endospore forming. Except for C. orbiscindens, which is motile, all these species are nonmotile. Gram staining is variable for Flavonifractor plautii [7] and Clostridium orbiscindens [9] and positive for I. butyriciproducens [7].

Because the 16S identity percentage was lower than 98.7% compared to the closest species with a validly published name with standing in nomenclature [6], we propose the creation of the new species “Intestimonas gabonensis” sp. nov., with the species designation named after Gabon, the African country where the stool specimen was collected. GM5 is the type strain of the new species “Intestimonas gabonensis” sp. nov.

Nucleotide sequence accession number

The 16S rRNA gene sequence was deposited in GenBank under accession number LN876649.

Deposit in a culture collection

Strain GM5T was deposited in the Collection de Souches de l’Unité des Rickettsies (CSUR) under number P2072.

Acknowledgements

This study was funded by the Fondation Méditerranée Infection. We thank K. Griffiths for English-language editing.

Conflict of interest

None declared.

References

[1] Lagier JC, Armougom F, Million M, Hugon P, Pagnier I, Robert C, et al. Microbial culturomics: paradigm shift in the human gut microbiome study. Clin Microbiol Infect 2012; 18:1185–93.
[2] Lagier JC, Hugon P, Khelaifi S, Fournier PE, La Scola B, Raoult D. The rebirth of culture in microbiology through the example of culturoomics to study human gut microbiota. Clin Microbiol Rev 2015;28:237–64.

[3] Mourembou G, Yasir M, Azhar EI, Lagier JC, Bibi F, Jiman-Fatani AA, et al. Rise of microbial culturomics: non-contiguous finished genome sequence and description of Beduini massiliensis gen. nov., sp. nov. OMICS 2015;19:766–76.

[4] Mourembou G, Rathored J, Ndjoyi-Mbiguino A, Lekana-Douki JB, Fenollar F, Robert C, et al. Non-contiguous finished genome sequence and description of Gabonia massiliensis gen. nov., sp. nov. New Microbes New Infect 2015;9:35–44.

[5] Mourembou G, Rathored J, Lekana-Douki JB, Ndjoyi-Mbiguino A, Fenollar F, Robert C, et al. Non-contiguous finished genome sequence and description of Kalipgya gabonensis sp. nov. New Microbes New Infect 2015;9:15–23.

[6] Stackebrandt E, Ebers J. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 2006;33:152–5.

[7] Kläring K, Hanske L, Bui N, Charrier C, Blaut M, Haller D, et al. Intestinimonas butyriciproducens gen. nov., sp. nov., a butyrate-producing bacterium from the mouse intestine. Int J Syst Evol Microbiol 2013;63(Pt 12):4606–12.

[8] Durand G, Afouda P, Raoult D, Dubour G. Intestinimonas massiliensis sp. nov, a new bacterium isolated from the human gut. New Microbes New Infect 2017;15:1–2.

[9] Winter J, Popoff MR, Grimont P, Bokkenheuser VD. Clostridium orbiscindens sp. nov., a human intestinal bacterium capable of cleaving the flavonoid C-ring. Int J Syst Bacteriol 1991;41:355–7.