Non reduced plane curve singularities with $b_1(F) = 0$ and Bobadilla’s question

DIRK SIERSMA

Institute of Mathematics, Utrecht University, PO Box 80010, 3508 TA Utrecht The Netherlands.

Abstract

If the first Betti number of the Milnor fibre of a plane curve singularity is zero, then the defining function is equivalent to x^r.

Keywords: Milnor fibre, equisingular, 1-dimensional critical locus, Bobadilla’s conjecture.

2010 MSC: 14H20, 32S05, 32S15

1. Introduction

Let $f : \mathbb{C}^n \rightarrow \mathbb{C}$ be a holomorphic function germ. What can be said about functions whose Milnor fibre F has the property $b_i(F) = 0$ for all $i \geq 1$? If F is connected then f is non-singular and equivalent to a linear function by A’Campo’s trace formula. The remaining question: What happens if F is non-connected? is only relevant for non-reduced plane curve singularities.

This question is related to a recent paper [HM]. That paper contains a statement about the so-called Bobadilla conjectures [Bo] in case of plane curves. The invariant $\beta = 0$, used by Massey [Ma] should imply that the singular set of f is a smooth line.

In this note we give a short topological proof of a stronger statement.

Proposition 1.1. If the first Betti number of the Milnor fibre of a plane curve singularity is zero, then the defining function is equivalent to x^r.

Corollary 1.2. In the above case the singular set is a smooth line and the system of transversal singularities is trivial.

2. Non-reduced plane curves

Non-isolated plane curve singularities have been thoroughly studied by Rob Schrauwen in his dissertation [Sch1]. Main parts of it are published as [Sch2] and [Sch3]. The above Proposition 1.1 is an easy consequence of his work.

Email address: D.Siersma@uu.nl

Preprint submitted to Elsevier

November 27, 2017
We can assume that \(f = f_1^{m_1} \cdots f_r^{m_r} \) (partition in powers of reduced irreducible components).

Lemma 2.1. Let \(d = \gcd(m_1, \ldots, m_r) \)

(a.) \(F \) has \(d \) components, each diffeomorphic to the Milnor fibre \(G \) of \(g = g_1^{m_1} \cdots g_r^{m_r} \). The Milnor monodromy of \(f \) permutes these components.

(b.) if \(d = 1 \) then \(F \) is connected.

Proof. (a.) Since \(f = g^d \) the fibre \(F \) consists of \(d \) copies of \(G \).

(b.) We recall here the reasoning from [Sch1]. Deform the reduced factors \(f_i \) into \(\hat{f}_i \) such that the product \(\hat{f}_1 \cdots \hat{f}_r = 0 \) contains the maximal number of double points (cf. Figure 1). This is called a network deformation by Schrauwen. The corresponding deformation \(\hat{f} \) of \(f \) near such a point has local equation are of the form \(x^p y^d = 0 \) (point of type \(D[p, q] \)).

![Figure 1: Deformation to maximal number of double points.](image)

Near every branch \(\hat{f}_i = 0 \) the Milnor fibre is a \(m_i \)-sheeted covering of the zero-locus, except in the \(D[p, q] \)-points. We construct the Milnor fibre \(F \) of \(f \) starting with \(S = \sum m_i \) copies of the affine line \(\mathbb{A} \). Cover the \(i \)th branch with \(m_i \) copies of \(\mathbb{A} \) and delete \((p + q) \) small discs around the \(D[p, q] \)-points. Glue in the holes \(\gcd(p, q) \) small annuli (the Milnor fibres of \(D[p, q] \)). The resulting space is the Milnor fibre \(F \) of \(f \).

A hyperplane section of a generic at a generic point of \(\hat{f}_i = 0 \) defines a transversal Milnor fibre \(F_1^{\text{th}} \). Start now the construction of \(F \) from \(F_1^{\text{th}} \), which consists of \(m_1 \) cyclic ordered points. As soon as \(f_1 = 0 \) intersects \(f_k = 0 \) it connects the sheets of \(f_1 = 0 \) modulo \(m_k \). Since \(\gcd(m_1, \ldots, m_r) = 1 \) we connect all sheets.

Proof of Proposition 1.1 If \(b_1(F) = 0 \), then also \(b_1(G) = 0 \). The Milnor monodromy has trace \((T_g) = 1 \). According to A’Campo’s observation [AC] \(g \) is regular: \(g = x \). It follows that \(f = x^r \).

3. Relation to Bobadilla’s question

We consider first in any dimension \(f : \mathbb{C}^{n+1} \to \mathbb{C} \) with a 1-dimensional singular set, see especially the 1991-paper [Si] for definitions, notations and statements.

We focus on the group \(H_n(F, F^{\text{th}}) \) which occurs in two exact sequences on p. 468 of [Si]:

\[
0 \to H_{n-1}^i(F) \to H_{n-1}(F^{\text{th}}) \to H_n(F) \oplus H_{n-1}^i(F) \to 0
\]
Here F^h is the disjoint union of the transversal Milnor fibres F_i^h, one for each irreducible branch of the 1-dimensional singular set. Note that $H_n(F), H_n(F, F^h)$ and $H_{n-1}(F^h)$ are free groups. $H_{n-1}(F)$ can have torsion, we denote its free part by $H_{n-1}(F)'$ and its torsion part by $H_{n-1}(F)^t$. All homologies here are taken over \mathbb{Z}, but also other coefficients are allowed.

From both sequences it follows that the β-invariant, introduced in [Ma] has a 25 years history, since is nothing else than:

$$\dim H_n(F, F^h) = b_n - b_{n-1} + \sum \mu_i^h := \beta$$

From this definition is immediately clear that $\beta \geq 0$ and that β is topological. The topological definition has as direct consequence:

Proposition 3.1. Let $f : \mathbb{C}^{n+1} \rightarrow \mathbb{C}$ with a 1-dimensional singular set, then:

$$\beta = 0 \iff \chi(F) = 1 + (-1)^n \sum \mu_i^h \iff H_n(F, \mathbb{Z}) = 0 \text{ and } H_{n-1}(F, \mathbb{Z}) = \mathbb{Z}^{\sum \mu_i}$$

The original Bobadilla conjecture C [Bo] was in [Ma] generalized to the reducible case as follows: Does $\beta = 0$ imply that the singular set is smooth? As consequence of our main Proposition 1.1 we have:

Corollary 3.2. In the curve case $\beta = 0$ implies that the singular set is smooth; and that the function is equivalent to x^r.

Remark 3.3. In [HM] the first part of this corollary was obtained with the help of Lé numbers.

Remark 3.4. From the definition $\beta = H_n(F, F^h)$ follow direct and short proofs of several statements from [Ma].

An other consequence from [Si] is the composition of surjections:

$$H_{n-1}(F^h) = \bigoplus \mathbb{Z}^{\mu_i} \twoheadrightarrow H_{n-1}(\partial_2 F) = \bigoplus \frac{\mathbb{Z}^{\mu_i}}{A_i - I} \twoheadrightarrow H_{n-1}(F)$$

From this follows:

Proposition 3.5. If $\dim H_{n-1}(F) = \sum \mu_i$ (upper bound) then

1 F^h was originally denoted by F'. In the second sequence a misprint n in the third term has been changed to $n-1$.
a. $H_{n-1}(\partial_2 F)$ and $H_{n-1}(F)$ are free and isomorphic to $\mathbb{Z}^{\sum \mu_i}$.

b. All transversal monodromies A_i are the identity.

The second part of [Ma] contains an elegant statement about $\beta = 1$ via the A’Campo trace formula. Also the reduction of the generalized Bobadilla conjecture to the (irreducible) Bobadilla conjecture. As final remark: The great work (the irreducible case) has still has to be done! Together with the Lê-conjecture this seems to be an important question in the theory of hypersurfaces 1-dimensional singular sets.

References

[AC] N. A’Campo Le nombre de Lefschetz d’une monodromie. Indag. Math. 35 (1973), 113118

[Bo] J. Fernandez de Bobadilla, Topological equisingularity of hypersurfaces with 1-dimensional critical set, Advances in math, 248, (2013) 1199-1253.

[HM] B. Hepler, D. Massey: Some special cases of Bobadilla’s conjecture, Topology and its Applications 217 (2017) 59-69.

[Ma] D.B. Massey, A new conjecture, a new invariant, and a new non-splitting result, In: Singularities in Geometry, Topology, Foliations and Dynamics: A Celebration of the 60th Birthday of José Seade, Merida, Mexico, December 2014, J. L. Cisneros-Molina, etc (editors), Springer International Publishing (2017) 171-181.

[Sch1] R. Schrauwen, Series of Singularities and Their Topology, Dissertation, Universiteit Utrecht, 1991.

[Sch2] R. Schrauwen, Deformations and the Milnor number of nonisolated plane curve singularities, Singularity theory and its applications, Part I (Coventry, 1988/1989), 276291, Lecture Notes in Math., 1462, Springer, Berlin, 1991.

[Sch3] R. Schrauwen, Topological series of isolated plane curve singularities, Enseign. Math. (2) 36 (1990), no. 1-2, 115141.

[Si] D. Siersma, Variation mappings on singularities with a 1-dimensional critical locus. Topology 30 (1991), no. 3, 445–469.