Muscular Weakness in Individuals with HIV Associated with a Disorganization of the Cortico-Spinal Tract: A Multi-Modal MRI Investigation

Charlotte Bernard¹,²,³, Bixente Dilharreguy¹,², Michèle Allard¹,²,³,⁵, Hélène Amieva⁴, Fabrice Bonnet⁴,⁵, Frédéric Dauchy⁵, Carinne Greib⁵, Patrick Dehail⁵,⁶, Gwénaëlle Catheline¹,²,³* for the ANRS CO3 Aquitaine cohort study group

Abstract

Motor impairment is highly prevalent in HIV-infected patients. Here, we assess associations between peripheral muscular deficits as evaluated by the 5 sit-to-stand test (5STS) and structural integrity of the motor system at a central level. Eighty-six HIV-infected patients receiving combination antiretroviral therapy and with no major cerebral events, underwent an MRI scan and the 5STS. Out of 86 participants, forty presented a score greater than two standard deviations above mean normative scores calculated for the 5STS and were therefore considered as motor-impaired. MRI-structural cerebral parameters were compared to the unimpaired participants. Fractional Anisotropy (FA), Axial Diffusivity (AD) and Radial Diffusivity (RD), reflecting microstructural integrity, were extracted from Diffusion-Tensor MRI. Global and regional cerebral volumes or thicknesses were extracted from 3D-T1 morphological MRI. Whereas the two groups did not differ for any HIV variables, voxel-wise analysis revealed that motor-impaired participants present low FA values in various cortico-motor tracts and low AD in left cortico-spinal tract. However, they did not present reduced volumes or thicknesses of the precentral cortices compared to unimpaired participants. The absence of alterations in cortical regions holding motor-neurons might argue against neurodegenerative process as an explanation of White Matter (WM) disorganization.

Introduction

The use of combination antiretroviral therapy (cART) has drastically improved the prognosis and the quality of life of patients infected with human immunodeficiency virus (HIV). However, neurological impairments and specifically neuromuscular problems remain highly prevalent in this population despite better control of HIV replication. These muscular impairments are also associated with daily activity limitations and participation restrictions [1,2]. The most common motor impairments in AIDS patients are slowed movements, gait abnormality, limb incoordination, hyperreflexia, hypertonia, and muscular weakness [3,4]. Consistent with these observation, we have shown [5] that half of adults with controlled HIV-infection had poor lower limb muscle performance as assessed through 5-Sit-To-Stand test (5STS) [6]. Given that performance on the 5STS test has been related to falls in older adults [7–9], HIV-1 participants infected individuals presenting poor 5STS performance should be considered as being at risk for falls.

Using MRI, several studies have demonstrated that HIV patients present White Matter (WM) alterations [10,11] and psychomotor slowing and postural instability in HIV patients are related to these modifications [12–14]. In addition, finger tapping performance in this population were associated to the microstructural integrity of whole cerebrum white matter [13] as well as to the splenium of the corpus callosum [12], whereas balance scores were related to pontocerebellar tract integrity [14]. Moreover, chronic infection with HIV has been associated with skeletal muscle impairment [15–18], which is related to deterioration of functional ability in activities of daily living [19]. Whereas muscle weakness is well-known in the disease process, its relationship to central motor command integrity has not been investigated to date.

Taking into account these observations, we hypothesize that muscular deficits are selectively associated with central motor bundle integrity in HIV patients. In this investigation, we used Diffusion Tensor Imaging (DTI) to analyze white matter bundle microstructural organization in HIV patients presenting muscular deficits on the 5STS and compared them to unimpaired patients. These measures were evaluated through Fractional Anisotropy (FA), extracted from DTI [20,21]. DTI is based on water motions which are differently constrained according to tissue architecture; in WM water diffusion was preferentially constrained in the...
direction of the bundle. This physical property is measured across FA. The more the bundle is coherent (compact and organized), the higher FA values are [22]. In order to improve pathophysiologic interpretations of the FA results, the source of FA changes and its underlying tissue damage substrates are investigated using recently-described DTI parameters Axial (AD) and Radial Diffusivity (RD). In particular, AD may serve as a surrogate of axon damage whereas RD may serve as a surrogate of myelin pathology [23,24]. In addition, global and regional cortical volumes and thicknesses will be evaluated on classical 3D-T1 to discriminate between central and peripheral effects on motor bundle integrity. All the analyses were performed first on a whole-brain voxel-wise framework and were more extensively explored and confirmed using Regions Of Interest (ROIs) analysis, applied on the cortico-spinal tract and motor cortex.

Materials and Methods

Study set-up and design

Construction of subject groups was based on large dataset examining HIV infection, the ANRS CO3 Aquitaine cohort. This investigation constitutes an open, prospective cohort of HIV-1 infected patients [25,26]. All adults 18 years or older who are in-or out-patients of participating hospital wards with HIV-1 infection confirmed by Western blot testing and who have provided informed consent were eligible to be enrolled in the cohort. The study was approved by the ethics committee of the local institution (CPP Bordeaux) and written informed consent was obtained for all participants. A standardized questionnaire captures different types of data: epidemiologic information (age, gender, HIV transmission category), clinical events since last medical contact (whether or not HIV-related), laboratory (plasma HIV-RNA, CD4, haemoglobin, hepatitis B and C serological status, metabolic parameters) and therapeutic treatment (cART, prophylaxis treatment, other treatment). All events are coded according to the International Classification of Diseases 10th revision (ICD10).

Between December 2007 and September 2009, a cross-sectional study in 324 HIV-1 infected adults from the Aquitaine Cohort was performed to assess the frequency of poor locomotor performance, including the evaluation of lower limb muscle performance with the 5STS test [6,27,28]. The 5STS allows for the assessment of lower limb muscle performance and is a reliable clinical tool to assess functional mobility and locomotor disability in adults [28,29]. The 5STS test measures the time required to complete five sit-to-stand cycles at accelerated speed, recorded with a digital stopwatch. The participant sat on a standard armchair (height 45 cm) with the back against the chair and arms crossed in front of the chest. After one practice trial, the participant was instructed to rise, fully stand up and sit down again five consecutive times as fast as possible, without using the arms to push up from the chair. Timing began when the subject’s buttocks leave the chair and stopped when the subject was standing up for the 5th time. All subjects were able to perform the test. The test was administered by an experienced physical therapist who systematically used the same verbal procedure. For the 5STS test, poor test performance was defined by a test result of more than 2SD from the expected age-specific mean in the general population [29]. Among the 324 patients included in the locomotor study, 161 patients also had an MRI examination. Participants with dementia, history of opportunistic cerebral infection (i.e. toxoplasmosis), history of harmful alcohol or substance use, or absence of cART, were excluded from the present analysis (n = 46). The MRI data for each of the remaining 114 participants was inspected to discard major acquisition artifacts (n = 23), excessive head motion and technical failure during MRI post-treatment process (n = 12), or cerebral pathologies (n = 7). Using Fazekas scale [29], individuals presenting a high white matter lesion load (grade 2 and 3) were also excluded (n = 5). Finally, 86 participants were included in the present analysis, of which 40 were classified as 5STS-impaired, but none presented clinical signs of myopathy. Among the final participants, most had only small focal lesions (see Figure 1).

MRI Acquisition

Two types of MRI scans were acquired using a 1.5 Tesla Intera system (Philips Medical Systems, Netherlands) equipped with a quadrature head coil: (1) Anatomical high resolution MRI scans of 1×1×1 mm³ using a 3D MPRA GE T1 weighted sequence (TR = 8.5 ms, TE = 5.9 ms, Flip angle = 8°, Matrix size = 256×224, FOV = 256×224 mm² with 170 slices of 1 mm to cover the whole brain); (2) DTI scans using three repetitions of a single shot spin-echo EPI FLAIR DTI sequence (TR = 11258 ms, TE = 94 ms, Flip angle = 90°, Matrix size = 256×128×128, FOV = 224 mm² with 150 slices of 2.5 mm, resulting in an acquisition voxel size of 1.77×1.77×2.5 mm³, b_value = 1000s/mm², six images with b_value = 0, 32 directions).

DTI analysis

Microstructural analysis: Tract Based Spatial Statistics (TBSS). Data processing was performed using FSL 4.1.8 software (FMRIB’s Software Library; www.fmrib.ox.ac.uk/fsl/). The data were first visually checked to ensure quality of acquisition. For each subject, raw DTI images were pre-processed using Eddy Current correction and a brain mask was created using BET (Brain Extraction Tool). FA, AD and RD maps were computed by fitting a tensor model to the raw diffusion data using FDT (FMRIB’s Diffusion Toolbox). TBSS was then used to perform a voxel-wise between-groups analysis of DTI metrics [30]. First, the FMRIB58 template was used as a target for all nonlinear registrations. The aligned FA maps were then averaged to create a mean FA image. Subsequently, classical TBSS processing was used (WM skeleton generation with a threshold FA value of 0.2 and projection of FA values on this skeleton). The same procedure was used to project values of AD and RD on the WM skeleton.

DTI indices extraction in white matter ROIs. Since whole brain voxel-based analysis derived from AD maps

Figure 1. T1 scans, FLAIR DTI-b0 scans and FA maps of participants presenting sparse WM hyperintensities. These subjects are classified 1 on Fazekas scale after visual inspection. One individual example of each group was presented. doi:10.1371/journal.pone.0066810.g001
highlighted posterior limb of the internal capsule (PLIC), we performed a ROI analysis on this region of the Cortico-Spinal-Tract (CST) bilaterally. Binary masks of the left and right PLIC based on the JHU ICBM-DTI-81 white matter labels atlas provided in FSL were used to extract axial and radial diffusion indices. Moreover, to test the specificity of the observed effects, we extracted AD and RD in ROIs not implicated in motor control, i.e., the left and right temporal cingulum.

Morphometric analysis
Macrostructural analysis: Voxel-Based Morphometry (VBM). An optimized VBM procedure was used to analyze brain volumes [31,32] using the VBM5 toolbox (C. Gaser; http://dbm.neuro.uni-jena.de/vbm) implemented in the Statistical Parametric Software (SPM5, Wellcome Laboratory of the Department of Cognitive Neurology, London, UK, http://www.fil.ion.ucl.ac.uk/spm/). The resulting maps were then smoothed with an isotropic Gaussian filter of 8-mm Full-Width at Half-Maximum (FWHM).

Finally, the Total Intracranial Volume (TIV) was calculated which corresponds to the sum of whole grey, whole white and whole Cerebro-Spinal Fluid (CSF) volumes.
Cortical thickness and volume of ROI. Cortical thickness and volumes of left and right precentral cortices (cortical regions holding central motoneurons) were obtained for each participant using Freesurfer image analysis suite (version 5.1, http://surfer.nmr.mgh.harvard.edu/); [33,34]. Briefly, the processing includes removal of non-brain tissue [35], transformation to Talairach-like space, and segmentation of gray/white matter tissue [36,37]. The entire cortex of each subject was then visually inspected; no subject was discarded for poor segmentation reason. After creation of the cortical representations, the cerebral cortex was parcellated into anatomical structures [38,39]. The anatomical labels were mapped to all individual brains for the quantification of average cortical thickness and average volume using automated FreeSurfer tools. In particular, cortical thickness was computed by finding the shortest distance between a given point on the estimated pial surface and the gray/white matter boundary and vice versa and averaging these two values [40].

Figure 3. ROI comparisons between 5STS unimpaired (n = 46) and impaired (n = 40) participants. AD and RD of left PLIC (upper raw) and left temporal cingulum (middle raw) and volume and thickness of left precentral region (bottom raw) were compared (ANCOVA with age, sex and laterality as covariables, ** p<0.01). doi:10.1371/journal.pone.0066810.g003

Statistical analyses
Comparisons between impaired and unimpaired groups were conducted for demographic, locomotor and HIV-1 related variables using Student t-tests or Mann-Whitney tests depending on variable type. We then performed a classical voxel-based analysis to compare cerebral structures between 5STS-impaired and 5STS-unimpaired participants. Multiple linear regressions in the general linear model were performed on: (a) the FA, AD and RD maps using FSL, with the number of permutations set at 5000 and resulting statistical maps threshold set at least at p<0.05, with corrections for multiple comparisons by using the threshold-free cluster enhancement (TFCE); (b) the WM maps at a statistical threshold of p<0.05, after corrections for multiple comparisons using false discovery rate (FDR), with an extent threshold of 100 voxels in SPM5. Age, sex, laterality (and TIV when considering volumes) were entered into the models as covariates.
We next conducted statistical analyses on extracted structural parameters of different ROIs using SPSS (16.0.1, SPSS Inc.). ANCOVA was applied with age, sex and laterality as covariates. Pearson correlation analyses were also performed between 5STS score and DTI indices. In these analyses, p-values below than 0.05 were considered as significant.

Results

Forty participants presented low performance at the 5STS (i.e. score greater than 2 standard deviations above the expected age-specific mean in the general population). Mean score at the 5STS for these impaired participants was of 11.7±2.5 sec whereas for unimpaired it was of 8.1±1.5 sec (t(38) = -7.947, p<0.001) (Table 1). Impaired participants were significantly younger than unimpaired participants (46.5±1.17 years versus 50.8±1.6 years, p = 0.033), but they were not different concerning infection duration, CD4 count, viral load or CDC stage at the time of evaluation.

DTI analysis

The voxel-wise analysis performed on FA maps demonstrated that 5STS impaired participants had lower FA values at the level of various tracts and especially at the level of motor tracts, i.e. the cortico-spinal tracts (CST), the middle cerebellar peduncles, the medial lemniscus and the corpus callosum (CC) (all differences p<0.05, TFCE corrected, Figure 2). It is noteworthy, that impaired participants presented a reduced FA all along the CST, in the midbrain, in the internal capsule and also in the proximal part of CST (the corona radiata close to precentral gyr, which underlies the specificity of the observed relationship). When a more stringent threshold (p<0.01, TFCE corrected) was applied, lower FA values persisted in the CST and in the anterior CC (Figure 2). Impaired participants also presented a smaller value of AD at the proximal level of the left CST (p<0.05 TFCE corrected), whereas no difference was observed for RD. Subsequent ROI analyses confirmed that impaired participants presented significant lower AD values at the level of the left posterior limb of the internal capsule (PLIC) (1.36±0.03 ×10^{-3} mm^2/sec) when compared to unimpaired participants (1.39±0.04 ×10^{-3} mm^2/sec, F(4,85) = 0.038, p = 0.006). No difference was observed for RD values at this level between impaired and unimpaired participants (0.58±0.01 ×10^{-3} mm^2/sec versus 0.59±0.02 ×10^{-3} mm^2/sec respectively for, F(4,85) = 0.30, p = 0.539) (Figure 3). The same results were obtained for the right hemisphere (data not shown).

Morphometric analysis

When global grey or white matter volumes were compared between the two groups, no significant difference was observed. Similarly, no regional differences were observed using VBM analysis comparing the 2 groups.

No difference emerged for comparisons between unimpaired and impaired participants regarding volume (6.22±0.84 cm^3 versus 6.30±0.82 cm^3 respectively, F(4,85) = 0.007, p = 0.932) or cortical thicknesses (2.75±0.14 mm versus 2.77±0.16 respectively, F(4,85) = 0.032, p = 0.853) in left precentral regions (Figure 3). In the same way, no difference was observed when right precentral regions were examined (data not shown).

Discussion

The present study shows that HIV-1 participants presenting motor deficits exhibited a selective decrease in the coherence of central motor tracts in the CST, compared to participants without deficits. In contrast, no macrostructural differences were revealed neither in volume nor in thickness of cortical precentral regions (regions holding cellular bodies of motoneurons projecting in CST) between the two groups. Neither age, nor HIV-related clinical variables are related to WM abnormalities. DTI allows examination of WM abnormalities of the motor tracts in these impaired 5STS subjects, in normal appearing WM on conventional MRI. Since no abnormalities in motor grey matter were observed, Wallerian degeneration cannot explain these WM abnormalities.

Voxel-wise analysis, allowing no a priori hypothesis on cerebral regions involved, revealed that participants with impaired motor performance also present low FA values bilaterally all along the CST (from its brainstem to its cranial portions). In animal studies [41–43] as in human studies [44–46], quantitative FA measures are believed to reflect axonal density and/or myelin content. No such difference was observed in non-motor tracts (i.e. temporal cingulum), this finding supports the specificity of the relationship between peripheral motor deficit and central motor bundle damage. Thus, we could posit that HIV-1 participants with motor deficits also present axonal degeneration and/or dysmyelination of the CST. This finding is in accordance with a number of studies demonstrating a correlation between morphological alterations of the CST and motor disturbances. Ischemic stroke occurring at the level of the CST was associated with Wallerian degeneration of this tract, as revealed through FA measure [47–49]. In Multiple Sclerosis (MS), a disease characterized by focal WM inflammatory lesions, FA of the CST was related to pyramidal functional scores.
Methodological considerations

Recently, it has been demonstrated that diffusivity metrics are greatly contaminated by voxels containing CSF due to WM atrophy [75–77]. Our results do not appear to be susceptible to this misinterpretation since locomotor-impaired participants did not present lower WM volumes compared to unimpaired participants. WM hyperintensities have also been shown to impact DTI indices measures [75]. Here again, this interpretation could be discounted since participants included in the study generally presented normal appearing WM.

In conclusion, our results suggest that motor impaired HIV-1 participants present central motor tract disorganization which could be an adaptation to their peripheral impairment rather than a neurodegenerative process. This maladaptive process could support increased damage in white matter bundles throughout the course of the disease and then exacerbate the initial muscular weakness, increasing the risk of falls and disability in these individuals [78,79]. However, given the recent studies on cerebral plasticity following physical training, muscle training in HIV-1 participants may be able to counteract this maladaptive process and may facilitate rehabilitation.

Acknowledgments

The authors wish to thank Joel Swendsen for the English revision of the manuscript.

Composition of the ANRS CO3 Aquitaine Cohort and the Groupe d’Épidémiologie Clinique du SIDA en Aquitaine (GECSA) – Coordination: F. Dabis1.

Scientific committee: F. Bonnet2, F. Dabis1, M. Dupon3, G. Chêne1, H. Fleury2, D. Lacoste2, D. Malvy2, P. Mercie2, I. Pellegrin3, P. Morlat3, D. Neau4, JL. Pellegrin5, R. Thibaut6, K. Titter7. Epidemiology and Methodology: M. Bruyand3, G. Chêne1, F. Dabis1, S. Lawson-Ayayi3, D. Thibaut1, L. Wintkop2. Infectious Diseases and Internal Medicine: F. Bonnet2, N. Bernard2, L. Caumes3, C. Cazanave2, D. Ceccaldi2, D. Chambron2, I. Chossat3, K. Courtaud2, FA. Dauchy2, S. De Witte1, M. Dupon3, A. Dupont5, P. Duffau5, H. Dutronc2, S. Farbos4, V. Gaboriu5, MC. Gemain4, Y. Gerard2, C. Greib2, M. Hessamfar2, D. Lacoste2, P. Latiste6, S. Lafiare-Castet2, E. Lazarro7, M. Longy-Boursier5, D. Malvy2, JP. Meraux8, P. Mercie2, E. Monhuni3, P. Morlat3, D. Neau4, A. Ochoa2, JL. Pellegrin5, T. Pistone2, JM. Ragnaud2, MC. Receveur2, J. Roger-Schnitzler2, S. Tchamgou2, P. Thibaud2, MA. Vandenhende2, JF. Viallard2. Immunology: JF. Moreau9, I. Pellegrin3, Virology: H. Fleury2, ME. Lafon2, B. Masquelier2, P. Trimoulet2. Pharmacology: D. Brelli2, K. Titter7. Drug monitoring: F. Haramburu2, G. Miremont-Salame2. Data collection and processing: MJ. Blaizeau2, M. Decoin2, J. Delaune1, S. Deveaux2, C. D’Ivernois2, C. Hanapper2, O. Leleux2, B. Uwamaliala-Niyumwe4, X. Sicard2. Computing and Statistical analysis: S. Geoffard1, J. Leray1, G. Palmer1, D. Touchard4.

1. Centre de Recherche INSERM U897, Université de Bordeaux, France
2. CHU Bordeaux, France
3. CHG Arcachon, France
4. CHG Bayonne, France
5. CHGt Laboumure, France
6. CHG Villeneuve sur Lot, France
7. CHG de Mont-de-Marsan, France
8. CHG Pau, France
9. CHG Géneufs, France

* Coordinator of the ANRS CO3 Aquitaine study group : François DABIS, ; francois.dabis@isped.u-bordeaux2.fr

Université de Bordeaux, INSERM U 897, ISPEd
146 Rue Leo Saignat, 33076 Bordeaux cedex, France.
Tel : +33 (0)553731436

Author Contributions

Conceived and designed the experiments: GC CB PD MA BD HA FD CG.

DABIS, ; francois.dabis@isped.u-bordeaux2.fr

University de Bordeaux, INSERM U 897, ISPEd
146 Rue Leo Saignat, 33076 Bordeaux cedex, France.
Tel : +33 (0)553731436

Author Contributions

Conceived and designed the experiments: GC CB PD MA BD HA FD CG

FD GECSA-Cogloc. Performed the experiments: GC CB PD MA BD GECSA-Cogloc Study Group. Analyzed the data: GC CB PD MA BD.

Contributed reagents/materials/analysis tools: GC CB PD MA BD GECSA-Cogloc Study Group. Wrote the paper: GC CB PD MA BD.
References

1. Rusch M, Nixon S, Schilder A, Braisteanu P, Chan K, et al. (2004) Impairments, activity limitations and participation restrictions: prevalence and associations among persons living with HIV/AIDS in British Columbia. Health Qual Life Outcomes 2: 46.

2. Robinson-Papp J, Simpson DM (2009) Neuromuscular diseases associated with HIV-1 infection. Muscle Nerve 40: 1043–1053.

3. Navia BA, Jordan BD, Price RW (1986) The AIDS dementia complex: I. Clinical features. Ann Neurol 19: 517–524.

4. (1991) Working Group of the American Academy of Neurology AIDS Task Force. Neurology 41: 778–785.

5. Richert I, Dheall P, Mercie P, Dauchy FA, Brundel M, et al. (2011) High frequency of poor locomotor performance in HIV-infected patients. AIDS 25: 797–805.

6. Csuka M, McCarthy DJ (1985) Simple method for measurement of lower extremity muscle strength. Am J Med 78: 77–81.

7. Nevins MC, Commins SR, Kall S, Black D (1989) Risk factors for recurrent nonsyncopal falls. A prospective study. JAMA 261: 2663–2668.

8. Campbell AJ, Borrie MJ, Spears GF (1989) Risk factors for falls in a community-based prospective study of people 70 years and older. J Gerontol 44: M112–M117.

9. Lipitz LA, Jonsson PV, Kelliem MM, Koestner JS (1991) Causes and correlates of recurrent falls in ambulatory frail elderly. J Gerontol 46: M114–122.

10. Stebbings GT, Smith CA, Bartt RE, Kessler HA, Adeyema OM, et al. (2007) HIV-associated alterations in normal asleep-white matter: a voxel-wise diffusion tensor imaging study. J Acquir Immune Defic Syndr 46: 564–573.

11. Chen Y, An H, Zhu H, Stone T, Smith JK, et al. (2009) White matter abnormalities revealed by diffusion tensor imaging in non-demented and demented HIV+ patients. NeuroImage 47: 1154–1162.

12. Piefferbaum A, Rosenblum MJ, Adalsteinsson E, Sullivan EV (2007) Diffusion tensor imaging with quantitative fibre tracking in HIV infection and alcoholism: comparability, semantic white matter damage. Brain 130: 86–94.

13. Tate DF, Coulter J, Paul RH, Coop K, Zhang S, et al. (2010) Quantitative diffusion tensor imaging tractography metrics are associated with cognitive performance among HIV-infected patients. Brain Imaging Behav 4: 68–79.

14. Sullivan EV, Rosenblum MJ, Rohlling T, Kemper CA, Derensinski S, et al. (2002) Pontocerebellar contribution to postural instability and psychomotor slowing in HIV infection without dementia. Brain Imaging Behav 5: 12–24.

15. Authier FJ, Chariot P, Gherardi RK (2005) Skeletal muscle involvement in human immunodeficiency virus (HIV-infected) patients in the era of highly active antiretroviral therapy (HAART). Muscle Nerve 32: 247–260.

16. Dodgeon WD, Phillips KD, Carson JA, Brewer RB, Durstine JL, et al. (2006) Counteracting muscle wasting in HIV-infected individuals. HIV Med 7: 299–310.

17. Scott WB, Oursler KK, Katzel LI, Ryan AS, Russ DW (2007) Central slowing in HIV infection without dementia. Brain Imaging Behav 5: 12–24.

18. Sullivan EV, Rosenblum MJ, Adalsteinsson E, Harris AL, Robinson-Papp J, et al. (2007) Diffusion tensor imaging with quantitative fibre tracking in HIV infection and alcoholism: comparability, semantic white matter damage. Brain Imaging Behav 4: 68–79.

19. Ashburner J, Friston KJ (2000) Voxel-based morphometry – the methods. NeuroImage 14: 101–119.

20. Wiersma UC, Symm MR, Battledt SD, Shorvon SD, Barker GJ, et al. (1999) Detection of motor cortex thinning and corticospinal tract involvement by quantitative diffusion tensor magnetic resonance imaging in Wallerian degeneration in spinocerebellar tract degeneration. J Neurol Neurosurg Psychiatry 69: 269–272.

21. Klein MJ, Matchette MD, Liao HF, Klein RS, Russell JH, et al. (2006) Detecting axon damage in spinal cord from a mouse model of multiple sclerosis. Neurobiol Dis 21: 626–632.

22. Boy C, Zhang J, Dike S, Shah S, Jones M, et al. (2007) High resolution diffusion tensor imaging of axonal damage in focal inflammatory and demyelinating lesions in rat spinal cord. Brain 130: 2199–2210.

23. Zhang J, Jones M, DeBoy CA, Reich DS, Farrell JA, et al. (2009) Diffusion tensor magnetic resonance imaging of Wallerian degeneration in rat spinal cord after dorsal root axotomy. J Neurosci 29: 3160–3171.

24. Muller D, Drabyza SB, Kolin SH, Whittall RP, Macksay AL (2008) Is diffusion anisotropy an accurate monitor of myelination? Correlation of multicompartment T2 relaxation and diffusion tensor anisotropy in human brain. Magn Reson Imaging 26: 674–688.

25. Concha L, Livo DJ, Beaulieu C, Wheatley BM, Gross DW (2010) In vivo diffusion tensor imaging and histopathology of the limb-bone-fornix in temporal lobe epilepsy. J Neurosci 30: 996–1002.

26. Klunder EC, Schmidt RH, Trinkaus K, Liao HF, Bulide MD, et al. (2011) Radial diffusivity predicts demyelination in ex vivo multiple sclerosis spinal cords. NeuroImage 55: 1454–1460.

27. Wiersma UC, Symm MR, Battledt SD, Shorvon SD, Barker GJ, et al. (1999) Diffusion weighted MRI detects abnormal pyramidal tract in hemiparesis. J Neurol Neurosurg Psychiatry 66: 797–798.

28. Wierenga DJ, Toossy AT, Clark CA, Parker GJ, Barker GJ, et al. (2000) Diffusion tensor imaging can detect and quantify corticospinal tract degeneration after stroke. J Neurol Neurosurg Psychiatry 69: 269–272.

29. Kunitama A, Aoki S, Masutani Y, Abe O, Hayashi N, et al. (2004) The optimal trackability threshold of fractional anisotropy for diffusion tensor tractography of the corticospinal tract. Mag Reson Med Sci 3: 11–17.

30. Wilson M, Thron CR, Morgan PS, Blomhardt LD (2003) Pyramidal tract mapping by diffusion tensor magnetic resonance imaging in multiple sclerosis: improving correlations with disability. J Neurol Neurosurg Psychiatry 74: 203–207.

31. Reich DS, Zachowski KM, Gordon-Lipkin EM, Smith PA, Chodkowski BA, et al. (2004) Corticospinal tract abnormalities are associated with weakness in multiple sclerosis. AJNR Am J Neuroradiol 25: 333–339.

32. Roccafatà I, Bolzani L, Mancardi G, Caproni C, Caponnetto C (2009) Detection of motor cortex thinning and corticospinal tract degeneration by quantitative MRI in amyotrophic lateral sclerosis. Amyotroph Lateral Scler 10: 47–52.

33. Verstraete E, Veldink JH, Mandl RC, van den Berg LH, van den Heuvel MP (2006) Motor network degeneration in amyotrophic lateral sclerosis: a structural and functional connectivity study. PLoS One 1: e13664.

34. Verstraete E, Veldink JH, Mandl RC, van den Berg LH, van den Heuvel MP (2006) Motor network degeneration in amyotrophic lateral sclerosis: a structural and functional connectivity study. PLoS One 1: e13664.

35. Rose S, Pannick B, Bell C, Baumann F, Hutchinson N, et al. (2012) Direct evidence of intra- and interhemispheric corticospinal network degeneration in amyotrophic lateral sclerosis: An automated MRI structural connectivity analysis. NeuroImage 54: 2222–2234.

36. Turner NR, Hammers A, Allopp J, Al-Chalabi A, Shaw CE, et al. (2007) Volumetric cortical loss in sporadic and familial amyotrophic lateral sclerosis. Amyotroph Lateral Scler 8: 341–347.
57. Turner MR, Kierman MC, Leigh PN, Talbot K (2009) Biomarkers in amyotrophic lateral sclerosis. Lancet Neurol 8: 94–109.

58. Sage CA, Peeters RR, Gorner A, Robberecht W, Sunaert S (2007) Quantitative diffusion tensor imaging in amyotrophic lateral sclerosis. Neuroimage 34: 496–499.

59. Ellis CM, Simmons A, Jones DK, Bland J, Dawson JM, et al. (1999) Diffusion tensor MRI assesses corticospinal tract damage in ALS. Neurology 53: 1051–1058.

60. Toosy AT, Werring DJ, Orrell RW, Howard RS, King MD, et al. (2003) Diffusion tensor imaging detects corticospinal tract involvement at multiple levels in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 74: 1250–1257.

61. Unrath A, Muller HP, Riecker A, Ludolph AC, Sperfeld AD, et al. (2010) Whole brain-based analysis of regional white matter tract alterations in rare motor neuron diseases by diffusion tensor imaging. Hum Brain Mapp 31: 1727–1740.

62. Iwata NK, Aoki S, Okabe S, Arai N, Terao Y, et al. (2008) Evaluation of corticospinal tracts in ALS with diffusion tensor MRI and brainstem stimulation. Neurology 53: 1051–1058.

63. Blain CR, Williams VC, Johnston C, Stanton BR, Ganesalingam J, et al. (2007) A longitudinal study of diffusion tensor MRI in ALS. Amyotroph Lateral Scler 8: 348–353.

64. Ciccarelli O, Behrens TE, Johansen-Berg H, Talbot K, Orrell RW, et al. (2009) Investigation of white matter pathology in ALS and PLS using tract-based spatial statistics. Hum Brain Mapp 39: 1051–1062.

65. Adkins DL, Boychuk J, Renauld MS, Klein JA (2006) Motor training induces experience-specific patterns of plasticity across motor cortex and spinal cord. J Appl Physiol 101: 1776–1782.

66. Minnerop M, Weber B, Schoone-Bake JC, Roeske S, Mirbach S, et al. (2011) The brain in myotonic dystrophy 1 and 2: evidence for a predominant white matter disease. Brain 134: 3330–3346.

67. Song SK, Sun SW, Ramsbottom MJ, Chang C, Russell J, et al. (2002) Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. Neuroimage 17: 1429–1436.

68. Budde MD, Xie M, Cross AH, Song SK (2009) Axial diffusivity is the primary correlate of axonal injury in the experimental autoimmune encephalomyelitis spinal cord: a quantitative pixelwise analysis. J Neurosci 29: 2803–2813.

69. HarSan LA, Poulet P, Guignard B, Steibel J, Parizel N, et al. (2006) Brain dysmyelination and recovery assessment by noninvasive in vivo diffusion tensor magnetic resonance imaging. J Neurosci Res 83: 392–402.

70. HarSan LA, Poulet P, Guignard B, Parizel N, Skofp RP, et al. (2007) Astrocytic hypertrophy in dysmyelination influences the diffusion anisotropy of white matter. J Neurosci Res 85: 935–944.

71. Tyszka JM, Readhead C, Bearer EL, Pautler RG, Jacobs RF (2006) Statistical diffusion tensor histology reveals regional dysmyelination effects in the shiverer mouse mutant. Neuroimage 29: 1036–1063.

72. Budde MD, Frank JA (2012) Examining brain microstructure using structure tensor analysis of histological sections. Neuroimage 63: 1–10.

73. Wheeler-Kingshott CA, Cercignani M (2009) About “axial” and “radial” diffusivities. Magn Reson Med 61: 1253–1260.

74. Vemmosi MW, de Groot M, van der Lugt A, Ibraim MA, Krestin GP, et al. (2008) White matter atrophy and lesion formation explain the loss of structural integrity of white matter in aging. Neuroimage 43: 470–477.

75. Hugenschmidt CE, Peiffer AM, Krafft RA, Casanova R, Dehmer AR, et al. (2008) Relating imaging indices of white matter integrity and volume in healthy older adults. Cereb Cortex 18: 433–442.

76. Veronese MW, de Groot M, van der Lugt A, Ibraim MA, Krestin GP, et al. (2008) White matter atrophy and lesion formation explain the loss of structural integrity of white matter in aging. Neuroimage 43: 470–477.

77. Bosch B, Arenaza-Urquijo EM, Rami L, Sala-Llonch R, Junque C, et al. (2012) Multiple DTI index analysis in normal aging, amnestic MCI and AD. Relationship with neuropsychological performance. Neurobiol Aging 33: 61–74.

78. Guralnik JM, Ferrucci L, Simonsick EM, Salive ME, Wallace RB (1995) Lower-extremity function in persons over the age of 70 years as a predictor of subsequent disability. N Engl J Med 332: 556–561.

79. Buotou S, Millikovic D, Manchoudia P, Garqens R, Miget P, et al. (2008) Five times sit to stand test is a predictor of recurrent falls in healthy community-living subjects aged 65 and older. J Am Geriatr Soc 56: 1575–1577.