EXISTENCE OF TWO SYMMETRIC SOLUTIONS FOR
NEUMANN PROBLEMS

GHASEM A. AFROUZI, MAHNAZ BAGHERI, AND ARMIN HADJIAN

Received 06 April, 2016

Abstract. In this paper, we investigate the existence of at least two distinct cylindrically symmetric weak solutions for some elliptic problems involving a p-Laplace operator, subject to Neumann boundary conditions in a strip-like domain of the Euclidean space.

2010 Mathematics Subject Classification: 35J35; 35J60

Keywords: p-Laplace operator, variational methods, critical point

1. INTRODUCTION

Let $\Omega \subset \mathbb{R}^m$ be a bounded domain with smooth boundary and $\Omega := \Theta \times \mathbb{R}^n$ be a strip-like domain. Define the space of cylindrically symmetric functions by

$W^{1,p}_c(\Omega) := \{ u \in W^{1,p}(\Omega) : u(x, \cdot) \text{ is radially symmetric for all } x \in \Theta \}$.

In this space, Molica Bisci and Rădulescu in [7, Theorem 2.1] studied the existence of at least three cylindrically symmetric solutions for the following elliptic Neumann problem

\[
\begin{align*}
-\Delta_p u + |u|^{p-2} u &= \lambda \alpha(x, y) f(u) \quad \text{in } \Omega, \\
\frac{\partial u}{\partial v} &= 0, \quad \text{on } \partial \Omega,
\end{align*}
\]

where v denotes the outward unit normal to $\partial \Omega$, $p > m + n$ is a real number, λ is a positive real parameter and $\Delta_p u := \text{div}(\nabla u |^{p-2} \nabla u)$. Moreover, $\alpha \in L^1(\Omega)$ is a non-negative cylindrically symmetric function and $f : \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function.

In this paper, our goal is to obtain the existence of at least two distinct cylindrically symmetric weak solutions for problem (1.1) under suitable conditions on α and f.

We denote by c_p the best embedding constant of $W^{1,p}_c(\Omega)$ into $L^\infty(\Omega)$, i.e.,

\[
c_p := \sup_{u \in W^{1,p}(\Omega)} \frac{\|u\|_{L^\infty(\Omega)}}{\|u\|_{W^{1,p}(\Omega)}},
\]

\[c_2018 \text{ Miskolc University Press}\]
where
\[\|u\|_{L^\infty} := \text{esssup}_{(x,y) \in \Omega} |u(x, y)|; \]
see [4, Theorem 2.2]. Further, let \(\alpha \in L^1(\Omega) \) is a non-negative cylindrically symmetric function such that
\[\alpha_0 := \inf_{(x,y) \in \Omega} \alpha(x,y) > 0, \]
and \(f : \mathbb{R} \to \mathbb{R} \) be a continuous function satisfying the following condition:
\[|f(t)| \leq a_1 + a_2|t|^{s-1}, \quad \forall t \in \mathbb{R}, \]
for some non-negative constants \(a_1, a_2 \) and \(s > p \). We put \(F(\xi) := \int_0^\xi f(t)dt \), for every \(\xi \in \mathbb{R} \). Moreover, we introduce the functional \(I_\lambda : W^{1,p}(\Omega) \to \mathbb{R} \) associated with problem (1.1),
\[I_\lambda(u) := \frac{1}{p} \left(\int_{\Omega} |\nabla u(x,y)|^p dxdy + \int_{\Omega} |u(x,y)|^p dxdy \right) - \lambda \int_{\Omega} \alpha(x,y) F(u(x,y)) dxdy. \]
Fixing the real parameter \(\lambda \), a function \(u \in W^{1,p}(\Omega) \) is said to be a weak solution of (1.1) if for all \(v \in W^{1,p}(\Omega) \),
\[\int_{\Omega} |\nabla u(x,y)|^{p-2} \nabla u(x,y) \cdot \nabla v(x,y) dxdy + \int_{\Omega} |u(x,y)|^{p-2} u(x,y)v(x,y) dxdy = \lambda \int_{\Omega} \alpha(x,y) f(u(x,y))v(x,y) dxdy. \]
Hence, the critical points of \(I_\lambda \) are exactly the weak solutions of problem (1.1).

Definition 1. A Gâteaux differentiable function \(I \) satisfies the Palais-Smale condition (in short (PS)-condition) if any sequence \(\{u_n\} \) such that
(a) \(\{I_\lambda(u_n)\} \) is bounded,
(b) \(\|I'_\lambda(u_n)\|_{X^*} \to 0 \), as \(n \to \infty \),
has a convergent subsequence.

We shall prove our results applying the following critical point theorem, which is a more precise version of Ricceri’s variational principle [12, Theorem 2.5]. We point out that Ricceri’s variational principle generalizes the celebrated three critical point theorem of Pucci and Serrin [9, 10] and is an useful result that gives alternatives for the multiplicity of critical points of certain functions depending on a parameter.

Theorem 1 (see [2, Theorem 3.2]). Let \(X \) be a real Banach space and let \(\Phi, \Psi : X \to \mathbb{R} \) be two continuously Gâteaux differentiable functionals such that \(\Phi \) is bounded from below and \(\Phi(0) = \Psi(0) = 0 \). Fix \(r > 0 \) such that \(\sup_{u \in \Phi^{-1}(0, r]} \Psi(u) < +\infty \) and assume that, for each
\[\lambda \in \left[0, \frac{r}{\sup_{u \in \Phi^{-1}(0, r]}} \right], \]
the functional \(I_\lambda := \Phi - \lambda \Psi \) satisfies (PS)-condition and it is unbounded from below. Then, for each \(\lambda \in \left] 0, \sup_{u \in X \setminus \{0\}} \frac{r}{\|u\|_{W^{1,p}} \Psi(u)} \right] \), the functional \(I_\lambda \) admits two distinct critical points.

For completeness, we refer the interested reader to the recent papers [3, 6] where Ricceri’s variational principle has been developed on studying nonlinear Neumann problems. See also [1, 5].

2. MAIN RESULTS

In this section we establish the main abstract result of this paper. We recall that \(c_p \) is the constant of the continuous embedding \(W^{1,p}_c(\Omega) \hookrightarrow L^{\infty}(\Omega) \); see (1.2).

Theorem 2. Let \(f : \mathbb{R} \to \mathbb{R} \) be a continuous function satisfying condition \((f_1)\). Moreover, assume that

\[(f_2)\] there exist two constants \(\eta > p \) and \(L > 0 \) such that

\(0 < \eta F(t) \leq tf(t), \quad |t| \geq L. \)

Then, for each \(\lambda \in [0, \lambda^*[\), problem (1.1) admits at least two distinct cylindrically symmetric weak solutions, where

\[\lambda^* := \frac{s}{(sa_1 c_p \gamma \zeta_{1/p} + a_2 c_p \zeta_{s/p}) \|\alpha\|_{L^1}}. \]

Proof. Our aim is to apply Theorem 1 to problem (1.1) in the case \(r = 1 \) to the Banach space \(X := W^{1,p}_c(\Omega) \) endowed with the norm

\[\|u\|_{W^{1,p}} := \left(\int_\Omega |\nabla u(x, y)|^p dxdy + \int_\Omega |u(x, y)|^p dxdy \right)^{1/p}. \]

For every \(u \in X \) we set

\[\Phi(u) := \frac{\|u\|_{W^{1,p}}^p}{p}, \quad \Psi(u) := \int_\Omega \alpha(x, y) F(u(x, y)) dxdy. \]

Clearly \(\Phi \) and \(\Psi \) are continuously Gâteaux differentiable and

\[\Phi'(u)(v) := \int_\Omega |\nabla u(x, y)|^{p-2} \nabla u(x, y) \cdot \nabla v(x, y) dxdy + \int_\Omega |u(x, y)|^{p-2} u(x, y) v(x, y) dxdy, \]

and

\[\Psi'(u)(v) := \int_\Omega \alpha(x, y) f(u(x, y)) v(x, y) dxdy, \]

for every \(v \in X \). Moreover, \(\Phi' \) admits a continuous inverse on \(X^* \) and \(\Psi' \) is a compact operator.
Now we prove that $I_\lambda := \Phi - \lambda \Psi$ satisfies (PS)-condition for every $\lambda > 0$. Namely, we will prove that any sequence $\{u_n\} \subset X$ satisfying

$$m := \sup_n I_\lambda(u_n) < +\infty, \quad \lim_{n \to +\infty} \|I_\lambda'(u_n)\|_{X^*} = 0,$$

contains a convergent subsequence. From above, we can actually assume that

$$\frac{1}{\eta}(I_\lambda'(u_n), u_n) \leq \|u_n\|_{W^{1,p}}.$$

For n large enough, we have

$$m \geq I_\lambda(u_n) = \frac{1}{p} \left(\int_\Omega |\nabla u_n(x, y)|^p\,dx\,dy + \int_\Omega |u_n(x, y)|^p\,dx\,dy \right)$$

$$-\frac{\lambda}{\eta} \int_\Omega \alpha(x, y) F(u_n(x, y))\,dx\,dy,$$

then

$$I_\lambda(u_n) \geq \frac{1}{p} \left(\int_\Omega |\nabla u_n(x, y)|^p\,dx\,dy + \int_\Omega |u_n(x, y)|^p\,dx\,dy \right)$$

$$-\frac{\lambda}{\eta} \int_\Omega \alpha(x, y) f(u_n(x, y))u_n(x, y)\,dx\,dy$$

$$= \left(\frac{1}{p} - \frac{1}{\eta} \right) \left(\int_\Omega |\nabla u_n(x, y)|^p\,dx\,dy + \int_\Omega |u_n(x, y)|^p\,dx\,dy \right)$$

$$\geq \frac{1}{p} \int_\Omega |\nabla u_n(x, y)|^p\,dx\,dy + \int_\Omega |u_n(x, y)|^p\,dx\,dy$$

$$-\frac{\lambda}{\eta} \int_\Omega \alpha(x, y) f(u_n(x, y))u_n(x, y)\,dx\,dy$$

$$= \left(\frac{1}{p} - \frac{1}{\eta} \right) \|u_n\|_{W^{1,p}}^p + \frac{1}{\eta} (I_\lambda'(u_n), u_n).$$

Thus,

$$m + \|u_n\|_{W^{1,p}} \geq I_\lambda(u_n) - \frac{1}{\eta} (I_\lambda'(u_n), u_n) \geq \left(\frac{1}{p} - \frac{1}{\eta} \right) \|u_n\|_{W^{1,p}}^p.$$

Consequently, $\{\|u_n\|\}$ is bounded. By the Eberlian-Smulyan theorem, without loss of generality, we assume that $u_n \rightharpoonup u$. Then $\Psi'(u_n) \to \Psi'(u)$ because of compactness. Since $I_\lambda'(u_n) = \Phi'(u_n) - \lambda \Psi'(u_n) \to 0$, then $\Phi'(u_n) \to \lambda \Psi'(u)$. Since Φ' has a continuous inverse, then $u_n \to u$ and so I_λ satisfies (PS)-condition.

From (f_2), there is a positive constant C such that

$$F(t) \geq C |t|^\eta$$

for all $|t| > L$. In fact, setting $b := \min_{|\xi| = L} F(\xi)$ and

$$\varphi_t(\beta) := F(\beta t), \quad \forall \beta > 0,$$

(2.1) holds. \end{proof}
EXISTENCE OF TWO SYMMETRIC SOLUTIONS

by \((f_2)\), for every \(|t| > L\) one has

\[
0 < \eta \varphi_t(\beta) = \eta F(\beta t) \leq \beta t \cdot f(\beta t) = \beta \varphi_t'(\beta), \quad \forall \beta > \frac{L}{|t|}.
\]

Therefore,

\[
\int_{L/|t|}^{1} \frac{\varphi_t'(\beta)}{\varphi_t(\beta)} d\beta \geq \int_{L/|t|}^{1} \frac{\eta}{\beta} d\beta.
\]

Then

\[
\varphi_t(1) \geq \varphi_t\left(\frac{L}{|t|} \right) \frac{|t|^\eta}{L^\eta}.
\]

Taking into account of \((2.2)\), we obtain

\[
F(t) \geq F\left(\frac{L}{|t|} \right) \frac{|t|^\eta}{L^\eta} \geq C |t|^\eta,
\]

where \(C > 0\) is a constant. Thus, \((2.1)\) is proved.

Fixed \(u_0 \in X \setminus \{0\}\), for each \(t > 1\) one has

\[
I_\lambda(tu_0) \leq \frac{1}{p} t^p \|u_0\|_{W^{1,p}}^p - \lambda\alpha_0 C t^\eta \int_{\Omega} |u_0(x, y)|^\eta dxdy.
\]

Since \(\eta > p\), this condition guarantees that \(I_\lambda\) is unbounded from below. Fixed \(\lambda \in]0, \lambda^*[\), from definition of \(\Phi\) it follows that

\[
\|u\|_{W^{1,p}} < p^{1/p}, \tag{2.3}
\]

for each \(u \in X\) such that \(u \in \Phi^{-1}([-\infty, 1])\). Moreover, \((f_1)\), the compact embedding \(X \hookrightarrow L^\infty(\Omega)\) and \((2.3)\) imply that, for each \(u \in \Phi^{-1}([-\infty, 1])\), we have

\[
\Psi(u) \leq \int_{\Omega} \alpha(x, y)(a_1 |u(x, y)| + \frac{a_2}{s} |u(x, y)|^s) dxdy
\]

\[
\leq (a_1 \|u\|_{L^\infty} + \frac{a_2}{s} \|u\|_{L^\infty}^s)\|\alpha\|_{L^1}
\]

\[
\leq (a_1 c_p \|u\|_{W^{1,p}} + \frac{a_2 c_p^s}{s} \|u\|_{W^{1,p}}^s)\|\alpha\|_{L^1}
\]

\[
< (a_1 c_p p^{1/p} + \frac{a_2 c_p^s p^s/p}{s})\|\alpha\|_{L^1},
\]

and so,

\[
\sup_{u \in \Phi^{-1}([0, 1])} \Psi(u) \leq (a_1 c_p p^{1/p} + \frac{a_2 c_p^s p^s/p}{s})\|\alpha\|_{L^1} = \frac{1}{\lambda^*} < \frac{1}{\lambda} \tag{2.4}
\]

From \((2.4)\) one has

\[
\lambda \in]0, \lambda^*[\leq \frac{1}{\sup_{u \in \Phi^{-1}([-\infty, 1])} \Psi(u)\lambda^*}.\]
Hence, Theorem 1.2 assures the existence of at least two distinct critical points for problem (1.1). Also, it is proved in [7, proof of Theorem 2.1] that I_λ is an invariant functional with respect to the action of the compact group of linear isometries of \mathbb{R}^n. Thus, we can apply the principle of symmetric criticality (see [8]) to the smooth and isometric invariant functional I_λ and deduce that problem (1.1) admits at least two distinct cylindrically symmetric weak solutions. The proof is complete. □

Remark 1. We observe that, if f is non-negative and $f(0) \neq 0$, then Theorem 2 ensures the existence of two positive cylindrically symmetric weak solutions for problem (1.1) (see, e.g., [11, Theorem 11.1]).

REFERENCES

[1] L. Barbu and C. Enache, “Maximum principles, Liouville-type theorems and symmetry results for a general class of quasilinear anisotropic equations.” Adv. Nonlinear Anal., vol. 5, no. 4, pp. 395–405, 2016, doi: 10.1515/anona-2015-0127.
[2] G. Bonanno, “Relations between the mountain pass theorem and local minima.” Adv. Nonlinear Anal., vol. 1, no. 3, pp. 205–220, 2012, doi: 10.1515/anona-2012-0003.
[3] G. Bonanno, G. Molica-Bisci, and V. Rădulescu, “Weak solutions and energy estimates for a class of nonlinear elliptic Neumann problems.” Adv. Nonlinear Stud., vol. 13, no. 2, pp. 373–389, 2013, doi: 10.1515/ans-2013-0207.
[4] F. Faraci, A. Iannizzotto, and A. Kristály, “Low-dimensional compact embeddings of symmetric Sobolev spaces with applications.” Proc. Roy. Soc. Edinburgh Sect. A, vol. 141, no. 2, pp. 383–395, 2011, doi: 10.1017/S0308210510000168.
[5] N. Labropoulos and V. Rădulescu, “On the best constants in Sobolev inequalities on the solid torus in the limit case $p = 1$.” Adv. Nonlinear Anal., vol. 5, no. 3, pp. 261–291, 2016, doi: 10.1515/anona-2015-0125.
[6] G. Molica-Bisci and D. Repovš, “Nonlinear Neumann problems driven by a nonhomogeneous differential operator.” Bull. Math. Soc. Sci. Math. Roumanie (N.S.), vol. 57(105), no. 1, pp. 13–25, 2014.
[7] G. Molica-Bisci and V. Rădulescu, “Multiple symmetric solutions for a Neumann problem with lack of compactness.” C. R. Math. Acad. Sci. Paris, vol. 351, no. 1–2, pp. 37–42, 2013, doi: 10.1016/j.crma.2012.12.001.
[8] R. Palais, “The principle of symmetric criticality.” Comm. Math. Phys., vol. 69, no. 1, pp. 19–30, 1979, doi: 10.1007/BF01941322.
[9] P. Pucci and J. Serrin, “Extensions of the mountain pass theorem.” J. Funct. Anal., vol. 59, no. 2, pp. 185–210, 1984, doi: 10.1016/0022-1236(84)90072-7.
[10] P. Pucci and J. Serrin, “A mountain pass theorem.” J. Differential Equations, vol. 60, no. 1, pp. 142–149, 1985, doi: 10.1016/0022-0396(85)90125-1.
[11] P. Pucci and J. Serrin, “The strong maximum principle revisited.” J. Differential Equations, vol. 196, no. 1, pp. 1–66, 2004, doi: 10.1016/j.jde.2003.05.001.
[12] B. Ricceri, “A general variational principle and some of its applications.” J. Comput. Appl. Math., vol. 113, no. 1–2, pp. 401–410, 2000, doi: 10.1016/S0377-0427(99)00269-1.
Authors’ addresses

Ghasem A. Afrouzi
Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran
E-mail address: afrouzi@umz.ac.ir

Mahnaz Bagheri
Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran
E-mail address: m.bagheri@yahoo.com

Armin Hadjian
Department of Mathematics, Faculty of Basic Sciences, University of Bojnord, P.O. Box 1339, Bojnord 94531, Iran
E-mail address: hadjian83@gmail.com, a.hadjian@ub.ac.ir