The Origin of Magnetic Fields in Cataclysmic Variables

Gordon Briggs1, Lilia Ferrario1, Christopher Tout2 and Dayal Wickramasinghe1

1Mathematical Sciences Institute, The Australian National University
2Institute of Astronomy, Cambridge University
Motivation

- We have synthesised a population of binaries to investigate the hypothesis that the fields in the magnetic cataclysmic variables (MCVs) originate during the CE phase.

α	Number of PCEBs	PREPs(%)	MCV(%)
0.10	30517472	20.9	61.0
0.15	36099023	18.9	56.4
0.20	38666876	15.3	49.9
0.30	41197674	8.7	45.0
0.40	43654871	5.6	48.0
0.50	46289395	4.5	51.0
0.60	49010809	4.1	52.0
0.70	51888317	3.8	52.4
0.80	54664759	3.3	52.4

- We have used the BSE code (Hurley et al. 2002) to evolve binaries from the ZAMS to the age of the Galactic Disc.

- Field: $B = 10^{13} \frac{\Omega}{\Omega_{cr}}$ G where $\Omega_{cr} = \sqrt{\frac{GM_{WD}}{R_{WD}^3}}$
Mass Distribution

\[\alpha_{CE} = 0.10 \]

\[\alpha_{CE} = 0.20 \]

\[\alpha_{CE} = 0.30 \]

\[\alpha_{CE} = 0.40 \]
Magnetic Field Distribution

\[\alpha_{CE} = 0.10 \]

\[\alpha_{CE} = 0.20 \]
- Theory Total
- C/O WDs
- He WDs
- O/Ne WDs

\[\alpha_{CF} = 0.30 \]

\[\alpha_{CF} = 0.40 \]
Comparison to Observations

- K-S tests applied to field and mass distributions show a better match to the observations at low α.

![Graph showing comparisons between observed and theoretical distributions for $\log_{10}(B/G)$ and M/M_\odot.]