Abstract

Colorectal cancer (CRC) is the second most commonly diagnosed cancer among females and third among males worldwide. It also contributes significantly to cancer-related deaths, despite the continuous progress in diagnostic and therapeutic methods. Biomarkers currently play an important role in the detection and treatment of patients with colorectal cancer. Risk stratification for screening might be augmented by finding new biomarkers which alone or as a complement of existing tests might recognize either the predisposition or early stage of the disease. Biomarkers have also the potential to change diagnostic and treatment algorithms by selecting the proper chemotherapeutic drugs across a broad spectrum of patients. There are attempts to personalise chemotherapy based on presence or absence of specific biomarkers. In this review, we update review published last year and describe our understanding of tumour markers and biomarkers role in CRC screening, diagnosis, treatment and follow-up. Goal of future research is to identify those biomarkers that could allow a non-invasive and cost-effective diagnosis, as well as to recognise the best prognostic panel and define the predictive biomarkers for available treatments.

Key words: Colorectal cancer; Biomarker; Microsatellite instability; KRAS mutation; BRAF mutation; PIK3CA mutation; Chromosome 18q loss of heterozygosity; Anti-epidermal growth factor receptor therapy; Colorectal cancer biomarkers; Carcinoembryonic antigen

© The Author(s) 2016. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: This review summarizes data concerning clinical utility of biomarkers in colorectal cancer patients. Authors focus primarily on currently available diagnostic, prognostic and predictive biomarkers of the disease. Great attention is also paid to the advances achieved in personalized therapy of colorectal cancer.
INTRODUCTION

Worldwide, colorectal cancer (CRC) annually affects more than one million men and women and causes more than half a million deaths\(^1\). In Europe in 2010, CRC was the third most common malignant cancer in both men and women\(^2\). There are 250000 cases of colorectal cancer diagnosed on an annual basis in Europe only. Five-year survival was 54 percent among adult Europeans diagnosed with colorectal cancer between 1995 and 1999\(^3\). More recent available data report that the overall five-year relative survival can achieve 65 percent, but varies depending on stage of cancer disease\(^4\).

The number of biomarkers used for tests continues to grow. The National Institute of Health defines a biomarker as a biological molecule found in blood, other body fluids, or tissues that is a sign of normal or abnormal process, or of a condition or disease\(^5\). A definition of biomarker mostly refers to DNA, RNA, microRNA (miRNA), epigenetic changes or antibodies. A term tumour marker, by some researchers considered as a synonym of biomarker, refers to substances (most typically proteins, glycolipids) representing biological structures, which can be attributed to the development of normal cells or carcinogenesis at different cell development stages e.g., tumour-associated antigens (TAAs) which are the largest group of clinically significant markers. As a result, the concentration of TAAs typically correlates with the number (or mass) of specific neoplastic cells.

In daily clinical practice, in the process of diagnosis and therapy, there are several parameters in use of long-established high sensitivity, specificity and positive predictive value. These parameters have been selected from among tens of molecules produced by cells in long-term laboratory tests, observational studies and clinical trials. The concentrations of tumour markers tested at the diagnostic stage are believed to assist in early cancer diagnosis and to be used in screening tests. Some of them are currently found to be more important during treatment and long-term follow-up. On the other hand, for some types of tumours, markers are also considered important in monitoring the progress of treatment, efficacy of neo-adjuvant therapy, surgery, adjuvant chemotherapy and radiation therapy and follow-up for possible recurrence. Long-term observational studies also point to the fact that, apart from determining antigen concentration, it can be also important to trace its progress and dynamics.

In this review, we have updated a review published in 2014\(^6\). We examine molecular (genetic, epigenetic, protein) biomarkers associated with CRC and discuss their role in cancer screening, early detecting of disease recurrence and as prognostic and predictive factors.

BLOOD AND STOOL MARKERS FOR COLORECTAL CANCER SCREENING AND FOLLOW UP

Blood and stool genetic and epigenetic markers

Several authors have investigated molecular non-invasive screening tests for early detection of CRC. DNA, RNA and other molecules derived by tumour in stool, as well as their concentrations in blood have been studied extensively. Colorectal process of carcinogenesis is characterized by genetic and epigenetic alteration transforming normal cells into cancer cells. Most studies concerning molecular markers in stool have focused on the detection of tumour DNA. These investigations have concentrated on the detection of mutated KRAS, TP53, APC and markers for microsatellite instability (MSI)\(^7\). A faecal DNA test targeted at molecular biomarkers has been commercially available for twelve years, with reported sensitivity for cancer ranging from 25% up to 92% for the latest tests based on BEAMing technology, and 94%-98% specificity\(^8\). Apart from genetic alterations, the DNA promoter hypermethylation silencing the tumour suppressor genes has been widely investigated. Epigenetic changes, depending on the markers or their combinations evaluated, have been detected in CRC patients with 70%-96% sensitivity and 72%-96% specificity\(^9,13,14\). Many combinations of genetic and epigenetic markers have been studied, but until now, the results have not endorsed their use in clinical practice. Using blood instead of stool as a screening material could offer some obvious advantages. Several studies have evaluated potential plasma DNA genetic and epigenetic biomarkers in CRC detection. The overall sensitivity ranges from 30% to 87%, with specificity of up to 96%. The use of RNA biomarkers in stool has not been investigated as extensively as was the case for DNA biomarkers, mainly because stool environment is responsible for mRNA degradation, although improving laboratory retrieval methods seems to solve this problem. Koga et al\(^15\) analysed mRNA expression of MMP7, PTGS2, TP53 and MYBL2 in colonocytes isolated from stool by quantitative real-time RT-PCR, to find out that these markers can identify CRC patients with 58% sensitivity and 88% specificity. Sensitivity was found to depend on tumour size and tumour location, but not cancer stage\(^15\). Most recently, the so called transcriptomic studies have investigated the expression of miRNAs short, non-coding 18-22 nucleotide RNA molecules in
stools of CRC patients. The most extensively studied miR21, miR106a, miR135, miR17-92 were found to be overexpressed in CRC patients compared with healthy individuals[16,17]. As was the case with mRNA markers in stool, many studies have been evaluating miRNA of different tumour genes in whole blood, plasma or circulating tumour cells to identify new CRC screening markers. Most of them investigated mRNA molecules of CK19, CK20, or Carcinoembryonic antigen (CEA). The overall sensitivity of these markers was up to 72%, specifically when combinations of these markers were used[18,19]. The specificity was very high with healthy control samples or much lower when compared to other cancer or inflammatory bowel diseases samples[20]. Recent studies have indicated that circulating miRNAs may be involved in the process of oncogenesis. The use of mRNA as a biomarker is now being evaluated. A large number of miRNA molecules have been assessed, with a focus on mir145, mir143, mir135, mir17-92. More specifically, Huang et al[21] has found that plasma miR29a and miR92a demonstrated a significant diagnostic value for advanced neoplasia with 83% and 84% sensitivity and specificity, respectively, in discriminating CRC patients. These studies need to be validated in randomised trials to define their value in CRC screening.

Blood and stool protein markers

Protein markers for screening and early detection of CRC can be divided into tumour TAAs, antibodies against TAAs, and other CRC-relevant proteins. CEA was discovered almost 50 years ago, in 1965, and it still remains the only tumour marker of recognised efficacy in monitoring CRC patients' therapy[22]. CEA was first considered specific for CRC, but elevated CEA levels were later detected in other neoplasms too, e.g. gastric and pancreatic cancers, and in inflammatory conditions. Elevated CEA concentrations are only rarely identified in CRC stage I. Moreover, CEA does not differentiate benign versus malignant polyps. According to The European Group on Tumor Markers, European Society of Medical Oncology and American Society of Clinical Oncology guidelines[23,24], CEA is not recommended for use in screening tests. Recently, some studies have investigated the advantages of mRNA molecules encoding CEA for the detection of CRC, but the results were not superior to those of CEA[19].

In some studies, high CEA concentrations in patients with CRC stage II and III were found to be potentially indicative of more aggressive types of cancer[25,26]. Earlier, the Colorectal Working Group of American Joint Committee on Cancer proposed to include CEA baseline concentration to the traditional TNM classification as the so-called C-stage. C-stage was proposed to be divided into Cx, C0 (CEA < 5 ng/mL) and C1 (CEA > 5 ng/mL) substages[27]. The meaning of CEA as an independent prognostic factor was also confirmed in a recent retrospective analysis of 17910 patients with CRC, with a mean 27-mo follow-up, with longer survival periods for patients with II A C0 and IIIA C0 vs I C1, IIIA C0 vs II A C1, and IIIB C0 vs II B-C C1, respectively[28]. No study, however, has shown that CEA concentration level can be used to select those patients with stage II CRC who would benefit from adjuvant chemotherapy. From a prognostic point of view, it appears reasonable to determine CEA levels before surgery in patients with disseminated CRC. The roles of CEA in determining life expectancy was confirmed in several studies on patients with liver metastases[29,30]. Recent study proved that combined use of CEA and serum amyloid A (SAA) is able to identify patients with favourable and poor prognosis. In addition to tumour baseline parameters, routine analysis of CEA together with SAA provides improved prognosis value on cancer specific survival and disease-free survival in resected rectal cancers[31]. CEA half-life is known to last approximately 7 d. After R0 resection surgery, CEA levels should return to normal within 4 to 6 wk. Sustained elevated CEA levels can be indicative of infiltration or metastases. Slow increase in CEA concentrations after surgery is a typical sign of local recurrence, whereas dynamically increasing levels can be symptomatic of metastases, most probably in the liver[24,32]. Testing CEA levels is considered most cost-effective in detecting post-surgery recurrences[24]. Please note that CEA levels tested every 3 mo for the first 3 years and thereafter every 6 mo for subsequent 2-3 years is a golden follow-up standard after CRC therapy recommended by a number of scientific associations[12,23,33]. It appears particularly important in asymptomatic patients, in whom chemotherapy can be used, with a much longer life expectancy as compared to treatment administered after the onset of symptoms of recurrence. CEA is a marker of choice in monitoring disseminated disease during systemic therapy. Constant increase in CEA levels is typically associated with a progression of the disease, even though radiological tests may prove otherwise[23,24]. However, chemotherapy can also result in temporary increase in CEA concentration, which must be also taken into account. Therefore, it is not recommended to test CEA levels within 2 wk of chemotherapy, whereas in patients on oxaliplatin, tests can be carried out after 4 to 6 wk.

Cancer antigen 19-9 (CA 19-9) is a glycoprotein whose relevance in CRC diagnosis still remains an issue. The majority of researchers arrived at the conclusion that CA 19-9 sensitivity is much inferior to that of CEA, and that elevated CA 19-9 levels is a poor prognostic factor[23,34-36]. Other carbohydrate antigens: CA 195, CA 50 have been also investigated, but with comparatively disappointing results. CA 72-4 is a biomarker with poor sensitivity ranging from 9% to 31% and better specificity ranging from 89% to
95% in patients screened for CRC. The diagnostic information in recurrent CRC provided by CA 72-4 has borderline significance, by far worse than CEA. All authors conclude that CA 72-4 sensitivity is rather low and specificity incomplete in screening and following up in patients with CRC. On the other hand, an algorithm based on combination of CEA, CA 19-9, CA 72-4, CA 242, CYFRA21-1 improves the diagnostic accuracy compared with these biomarkers alone. Among other protein markers examined for screening purposes, two have been extensively investigated: the tumour specific M2 isoform of pyruvate kinase (M2-PK) in stool and tissue inhibitor of matrix metalloproteinase 1 (TIMP1). M2-PK measured in stool showed relatively high sensitivity for CRC up to 91%, and much lower for adenomas. Plasma level of TIMP1 is reported to be elevated in CRC patients and prospective studies have been carried to assess its utility as biomarker. The results of the study included more than 4500 patients screened by endoscopy for CRC demonstrated that TIMP1 is not significantly superior to CEA marker in cancer screening and is not suitable for the detection of premalignant lesions. Tissue polypeptide-specific antigen (TPS) and tissue polypeptide antigen (TPA) which detects the fragments of cytokeratines 8, 18 and 19 due to lack of sensitivity and specificity can not to be recommended in CRC screening. The majority of investigators have found that increased levels of TPA and TPS are observed in metastatic stage of CRC. A further studies has suggested that combination of TPA and CEA rises the sensitivity of these biomarkers in identifying the patients with CRC recurrence. Other biomarkers, such as: thymidine phosphorylase (TP), DNA ploidy were determined to be insignificant in detecting, staging and following-up of patients with CRC.

Molecular Prognostic and Predictive Biomarkers

With the recent progress in understanding the molecular mechanisms of cancer development, dissemination, resistance to chemotherapy, and radiation therapy, it is now easier to select the most proper strategy for managing CRC. Clinical prospective and retrospective studies open the door for biomarkers use in clinical practice to assist in selecting the best drugs, both standard, such as 5-fluorouracil, oxaliplatin or irinotecan, and new generation targeted drugs: cetuximab, panitumumab, or bevacizumab. Biomarker identification is particularly important for patients with CRC stage II. In this group of patients, the risk of recurrence is only 20 percent. It is also desirable to use adjuvant therapy in this type of patients. There

Table 1 Recommendations for use of tumour markers and biomarkers in colorectal cancer by groups of experts

Biomarker	Applications	ASCO[23,98,99]	ESMO[2,33]	NCCN[100,101]
CEA	Screening	No	None published	None published
	Prognostic factor	Yes	Yes	Yes
	Follow up	Yes	Yes	Yes
CA 19-9	All	No	None published	None published
CA 72-4	All	None published	None published	None published
CA 242	All	None published	None published	None published
CA 195	All	None published	None published	None published
CYFRA21-1	All	None published	None published	None published
MSI	Prognostic factor	No	Yes	Yes
18qLOH	Prognostic factor	Yes	Yes (potentially)	None published
p53 gene	Prognostic factor	No	Yes (potentially)	None published
KRAS	Prognostic factor	None published	Yes (potentially)	None published
Predictive factor	Yes	Yes	Yes	
BRAF	Prognostic factor	None published	Yes (potentially)	None published
PIK3CA	Predictive factor	None published	Yes (potentially)	None published
PTEN	Predictive factor	Yes (potentially)	Yes (potentially)	None published
UGT1A1	Predictive factor	Yes (potentially)	Yes (only in case of severe toxicity of irinotecan)	No
VEGF	All	None published	None published	None published
TPA, TPS	All	None published	None published	None published
Ezrin	All	None published	None published	None published
DNA ploidy	All	No	None published	None published
TS	Prognostic factor	No	Yes (potentially)	None published
Prognostic factor	Yes (potentially)	Yes (potentially)	Yes (potentially)	None published
TP	All	No	None published	None published
DPD	Prognostic factor	No	Yes (only in case of severe toxicity of 5-FU)	None published

CEA: Carcinoembryonic antigen; MSI: Microsatellite instability; 18qLOH: Chromosome 18q loss of heterozygosity; VEGF: Vascular endothelial growth factor; TPS: Tissue polypeptide-specific antigen; TPA: Tissue polypeptide antigen.
are attempts to select this group of patients based on genetic tests, or to personalise chemotherapy based on specific biomarkers. The following markers discovered throughout the recent years continue to be closely examined: MSI, chromosome 18q loss of heterozygosity (18qLOH), p53, KRAS, BRAF, NRAS, PIK3CA mutations, PTEN expression, UGT1A1 gene polymorphism, and ezrin protein (Table 1).

MSI

MSI denotes changes in coding and non-coding sequences of microsatellite chromosomes, i.e. repeated DNA sequences. These sequences are particularly exposed to errors in the mutation repair system that consist in the loss or multiplication of nucleotide sequence repetitions, which results in shortening or extension of microsatellite regions in neoplastic cells. Mutations arising out of these processes are eliminated by mismatch repair genes (MMR) such as MSH2, MSH6, PMS2 and MLH1, which makes some researchers believe that MSI can be caused by mutations in these genes. Microsatellite instability can be classified into microsatellite instability-high (MSI-H), and microsatellite instability-low (MSI-L), depending on the percentage of loci that correlate to MSI characteristics. Tumour cells that lack MSI features are designated as MSS.

In retrospective studies and meta-analyses in patients with CRC stage II and III, MSI-H was shown to be a predictive factor that improved overall survival (OS), irrespective of the progression (stage) of cancer. A lower incidence of lymph node metastases and distant metastases as compared to MSI-L or MSS cancer cells was also observed. MSI status is currently recommended in the WHO classification of mucinous-type CRC - MSI-H indicates good prognosis, MSI-L or MSS - poor outcome. However, MSI should be considered more of a prognostic rather than predictive factor.

This conclusion is based on equivocal results of studies evaluating the efficacy of 5-FU-based chemotherapy in groups of patients with MSI-H and MSI-L or MSS. Ribic et al examined tumour specimens collected from 570 patients with CRC stage II and III and correlated the test results with chemotherapy outcomes in these patients to reveal a tendency for shorter overall survival in patients with MSI-H on adjuvant therapy. Significant improvement was observed in patients with MSS tumours. A recent pooled analysis of randomized clinical studies revealed significant decrease in the overall five-year survival rate for patients with CRC stage II and MSI-H on 5-FU-based chemotherapy. 5-FU-based chemotherapy was found to improve therapeutic outcomes only in patients with CRC stage III and MSI-L or MSS. Some studies indicated potentially negative effects of 5-FU-based chemotherapy in patients with MSI-H. A longer survival rate as compared to patients on 5-FU-based adjuvant chemotherapy was observed in a reference group of patients undergoing surgical treatment. Resistance of MSI-H tumours to 5-FU was also confirmed in in vitro studies. A completely different conclusion can be drawn from earlier studies of Elsaleh et al., which confirmed the efficacy of 5-FU in patients with CRC stage III and MSI-H. Recent study also proved that prognostic value of MMR mutation was similar in the presence or absence of fluorouracil and folinic acid chemotherapy. Beragnoll et al. revealed that a higher rate of overall 5-year progression-free survival was observed in patients with CRC stage III and MSI-H on 5-FU and irinotecan vs 5-FU-based chemotherapy. To recap, the results of MSI studies and clinical experience in patients with CRC stage II indicate that the degree of microsatellite instability may be of significance as a prognostic factor.

Also, adjuvant 5-FU-based chemotherapy was proved to provide no benefits (or potentially cause adverse reactions) in patients with MSI-H. Further research is needed to investigate whether the MSI status can predict benefit (in high-risk patients) from irinotecan-based treatment or oxaliplatinum-based therapy.

Chromosome 18q loss of heterozygosity

A number of studies were dedicated to another prognostic factor in patients with CRC stage II and III - chromosome 18q loss of heterozygosity in the coding place of, inter alia, SMAD 4 proteins specific to CRC. In these studies, the overall 5-year survival was poorer for patients with CRC stage III and 18qLOH as compared to non-18qLOH patients. A meta-analysis of data from 27 studies and 2189 patients by Popat et al. confirmed that poorer survival was correlated with 18q chromosome deletion. Two years later, the same research team questioned these findings after re-examining the same data. Likewise, no correlation was identified between the presence of 18qLOH and 5-year survival in patients with non-MSI-H phenotype. The role of 18qLOH in predicting response to standard chemotherapy has not been yet fully confirmed. Watanabe et al. demonstrated better response to 5-FU-based chemotherapy in patients with CRC stage III and MSS and with the absence of 18q chromosome deletion vs. patients in whom 18q chromosome deletion was present. The recently published results of the same research team can be a proof that in patients with CRC stage II and III and MSS (> 33%), the level of LOH of four chromosomes, including 18, is correlated with significantly poorer survival rate as compared to patients with MSS and LOH-L or MSI-H phenotype.

Based on the available data, 18q chromosome deletion cannot be the sole basis for any therapeutic decisions, however, it is being more closely examined under ECOG 5202 study, featuring molecular markers identified so far in selecting the most proper adjuvant post-surgery treatment, by prospectively analysing the role of MSI and 18qLOH in prognosis and therapeutic
decisions in patients with CRC stage II. Patients with good prognosis (with MSI-H and w/o 18qLOH) were followed-up, and patients with poor prognosis (with MSI-L or MSS and 18qLOH) were randomized to one of two groups on chemotherapy (FOLFOX alone or FOLFIRI and bevacizumab). The results of E5202 are expected in the next few years. No conclusion can be drawn from this study about the possible inefficacy of chemotherapy in patients with MSI-H, however, the study will include a multifactor analysis of biomarkers that can assist in taking therapeutic decisions in other groups of patients.

P53 mutation
Mutation in the tumour suppressor gene p53 (chromosome region 17p13) occur in 50%-70% of all CRC and is associated with worse outcomes, including disease free survival and overall survival. Results obtained from a study that included more than 3500 CRC patients confirm the prognostic value of p53 mutation, which seems to be determined by the primary tumour site. Patients with p53 mutation and tumour of proximal colon had better OS when treated with adjuvant chemotherapy compared to those treated by surgery alone.

Biomarkers suitable in anti-epidermal growth factor receptor therapy
A number of currently tested markers have been discovered in the course of studies on epidermal growth factor receptor (EGFR) signalling pathways. KRAS gene mutation on short arm of chromosome 12 at codon 12 (80% of patients) or, to a lesser extent, codon 13 is believed to be of use as a biomarker in patients on cetuximab or panitumumab. These mutations are one of the most common in proliferative diseases (37% and 13%, respectively), and their significance in CRC carcinogenesis has been examined in much detail. As these mutations are present in EGFR signalling pathway, they can be a predictive factor for therapy with anti-EGFR antibodies. In studies performed so far, KRAS mutation was found to be correlated with non-responsiveness to cetuximab and panitumumab. CRYSTAL and OPUS data indicate that the effectiveness of FOLFOX or FOLFIRI alone is no inferior to that of cetuximab in patients with KRAS in combination with chemotherapy according to FOLFIRI and FOLFOX regimen, respectively. However, in non-KRAS patients, cetuximab improves the therapeutic outcome. The same conclusions can be drawn from the results of larger clinical studies: COIN, NORDIC VII or PRIME.

Yet, the effects of KRAS mutation at codon 12 or 13 on tumour biology were found to differ. In two studies, the survival rate was higher in patients with an uncommon G13D mutation at codon 13 on cetuximab vs patients with other mutations, and similar to patients with no KRAS mutations identified. It is presently believed that anti-EGFR antigens should not be used in patients with tumours indicative of G12V mutation of KRAS at codon 12. For bevacizumab, KRAS mutation was found to be of no use as a predictive factor.

The same applies to BRAF mutations found in 8%-13% of patients with CRC, which are mutually exclusive with KRAS mutations. The most frequently observed BRAF mutation is V600E mutation. BRAF mutations make the tumour to a large extent resistant to anti-EGFR monoclonal antibodies, and significantly worsen prognosis, especially in patients with MSI-L and MSS. Based on the available data, National Comprehensive Cancer Network (NCCN) suggests considering BRAF mutation testing when KRAS is mutation negative. Interestingly, good prognosis was reported even in those MSI-H CRC patients who had coincident BRAF mutations. In one of studies, the OS period was shown to be slightly longer in patients on cetuximab even if the BRAF mutation was present. Very limited response to vemurafenib, recently approved for metastatic melanoma patients harboring BRAF (V600E) mutation, was demonstrated in CRC patients. Researchers reported that by adding cetuximab strongly synergistic reaction with BRAF inhibitors was observed. NRAS is another member of RAS proto-oncogenes which was found to be rarely mutated, while BRAF is mutually exclusive with KRAS mutations. Since NRAS mutation can predict resistance to EGFR therapy, NCCN suggests considering NRAS mutation testing when KRAS is mutation negative. To date, NRAS mutation does not appear to be associated with the prognosis.

Phosphatidylinositide-3-kinases (PI3K) are kinases that promote cellular proliferation. Mutations in PIK3CA gene encoding p110α catalytic subunit of PI3K have been identified in different human solid tumours, including CRC. PIK3CA gene is mutated in 10%-20% of CRC tumours. PIK3CA gene encodes the kinase that regulates, alongside with KRAS, downstream signalling pathways of EGFR. Moreover, PI3K-initiated signalling is inhibited by phosphatase and tensin homologue deleted on chromosome 10 (PTEN). Recent studies have revealed an increase in colon cancer-specific mortality in patients with PIK3CA-mutated tumours, as compared with patients with PIK3CA wild-type tumours. However only the coexistence of PIK3CA exon 9 and 20 mutations but not PIK3CA mutation in either exon 9 or 20 alone has been reported to be associated with the worse prognosis.

Among patients with KRAS wild-type tumours, the presence of PIK3CA mutation correlated with a significant increase in CRC specific mortality. In contrast, PIK3CA mutation did not significantly affect mortality among patients with KRAS-mutated tumours. Thus, the effect of PIK3CA mutation may be potentially limited to patients with KRAS wild-type tumours. Following
the fact that only patients with KRAS-wild type CRC may respond to anti-EGFR antibodies, several studies have investigated the role of PIK3CA mutations on CRC cells response to cetuximab or panitumumab. The data collected so far indicate that CRC with PIK3CA mutations are significantly resistant to anti-EGFR antibodies. When only KRAS wild-type tumours are analyzed, the correlation is even stronger. Changes in PIK3 signalling and loss of PTEN expression have been generally linked with the lack of response to EGFR-targeted therapy. Recent studies have found that inhibition of cyclooxygenase-2 by regular use of aspirin after CRC diagnosis was associated with longer cancer specific survival time among patients with mutated as opposed to wild-type PIK3CA. The authors conclude that PIK3CA mutations may serve as a predictive biomarker for adjuvant aspirin therapy. Further studies involving KRAS mutated CRC patients are necessary to establish the role of aspirin in PI3K pathway.

Biomarker of the potential toxicity of irinotecan

Irinotecan is a chemotherapeutic agent that inhibits topoisomerase I, thereby inhibiting replication and stimulating cell apoptosis. Advanced neutropenia and intensive diarrhoea caused by damaged intestinal epithelium are the most common adverse effects of irinotecan, which significantly limit its use. UGT1A1 gene polymorphism is a very useful biomarker of the potential toxicity of irinotecan. It appears that the use of genetic tests is reasonable before treatment initiation with irinotecan to avoid severe adverse effects - mainly neutropenia in women. Genotyping for UGT1A1 can be carried out to select a group of sensitive patients with UGT1A1*28 allele, of whom lower initial doses would be recommended. Hopefully, it will also allow to administer a higher accumulated dose of the drug, divided into smaller portions, to limit its toxicity. However, according to a recent meta-analysis, genotyping for UGT1A1 has no predictive value in terms of responsiveness to various doses of irinotecan among patients with CRC. On the other is recommended by ESMO for patients with several toxicity reaction in whom irinotecan in high doses should be used. Furthermore, homozygosity for the UGT1A1*28 has been linked with improved efficacy of FOLFIRI.

Potential biomarkers of vascular endothelial growth factor - targeted therapy

Since the vascular endothelial growth factor (VEGF) - targeted therapy has been integrated into CRC treatment protocols, some anti-angiogenic drugs have been introduced (bevacizumab, regorafenib, aflibercept). However, a patient selection strategy to identify those patients who benefit most from this therapy has yet to be developed. To date, a predictive biomarker for bevacizumab - the most commonly administered anti-angiogenic drug in CRC therapy - has not yet been identified. Several studies on the identification of predictive biomarkers of bevacizumab have been performed. Jürgensmeier et al. evaluated retrospectively, using samples from randomised trial HORIZON III, the prognostic/predictive value of VEGF and soluble VEGF receptor-2. High baseline values of VEGF were associated with worse progression free survival (PFS) and overall survival. These data have revealed that baseline VEGF levels were not predictive of PFS or OS outcome in bevacizumab-treated patients. Other studies have demonstrated that plasma VEGF-A may serve as a prognostic marker, but is unable to predict response to VEGF-targeted therapy in advanced CRC. At the same time, KRAS mutation was found to be of no use as a predictive factor for bevacizumab.

Ezrin

Ezrin protein, a part of ezrin/radixin/moesin family may play an important role in tumour invasion process. Recent studies has found that overexpression of ezrin protein correlates with CRC aggressiveness, its metastatic potential and worse prognosis. High ezrin expression was also identified as marker of early local recurrence of rectal cancer. Although further investigation is needed, ezrin may represent a relevant biomarker and target for personalized anti-metastatic therapies.

CONCLUSION

The recent studies result in a better understanding of colorectal cancer and assist in the development of new treatment regimens, especially in advanced CRC stages. The new predictive factors, molecular imaging, or even commercial genome tests increasingly facilitate tumour genome testing and assist in selecting targeted therapies. Adjuvant targeted therapy with anti-EGFR antibodies is required in advanced CRC patients and absence of KRAS, BRAF, NRRAS and PIK3CA genes mutation. Tests for MSI or MSS tumour phenotype and the presence or absence of 18q chromosome deletion is very much desirable in standard therapy based on 5-FU. Genotyping of UGT1A1 alleles is reasonable before treatment initiation with irinotecan to avoid severe adverse effects. Further studies are necessary to identify predictive biomarker of bevacizumab. Targeted therapy against membrane receptors appears to be the future of CRC therapy. Some promising studies are now carried out in this area, dedicated to, inter alia, other EGFR ligands, insulin-like growth factor receptor 1, platelet-derived growth factor receptors and c-MET inhibitors. The aim of future research is to identify those biomarkers that can provide a non-invasive and cost-effective diagnosis, as well as to recognise the best prognostic panel of biomarkers and define the predictive biomarkers for available treatments.
REFERENCES

1. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin 2013; 63: 11-30 [PMID: 23335087 DOI: 10.3322/ cac.2013.0] 2. Labianca R, Nordlinger B, Beretta GD, Brouquet A, Cervantes A. Primary colon cancer: ESMO Clinical Practice Guidelines for diagnosis, adjutant treatment and follow-up. Ann Oncol 2010; 21 Suppl 5: v70-v77 [PMID: 20555107 DOI: 10.1093/annonc/mdq168] 3. Berrino F, De Angelis R, Sant M, Rosso S, Bielska-Lasota M, Coebergh JW, Santacquanli M. Survival for eight major cancers and all cancers combined for European adults diagnosed in 1995-99: results of the EUROCARE-4 study. Lancet Oncol 2007; 8: 773-783 [PMID: 17714991 DOI: 10.1016/S1470-2045(07)70245-0] 4. National Cancer Institute SEER Stat Fact Sheets: Colon and rectum. 2011. Available from: URL: http://seer.cancer.gov/statfacts/html/ colorect.html

5. Langan RC, Mullinax JE, Raiji MT, Uppham T, Summers T, Stojadinovic A, Avital I. Colorectal cancer biomarkers and the potential role of cancer stem cells. J Cancer 2013; 4: 241-250 [PMID: 23459666 DOI: 10.7150/jca.5832] 6. Lech G, Słomiński R, Kromanowski J. The role of tumor markers and biomarkers in colorectal cancer. Neoplasia 2014; 16: 1-8 [PMID: 24195503 DOI: 10.4149/neop_2014_003] 7. Osborn NK, Alqihust DA. Stool screening for colorectal cancer: molecular approaches. Gastroenterology 2005; 128: 192-206 [PMID: 15633136 DOI: 10.1053/j.gastro.2004.10.041] 8. Traverso G, Shaper A, Levin B, Johnson C, Olsson L, Schoetz DJ, Hamilton SR, Allison JE, Lawson MJ, Devens ME, Harrington JJ, Hillman SL. Stool DNA and occult blood testing for screen detection of colorectal neoplasia. Ann Intern Med 2008; 149: 441-50, W81 [PMID: 18838724] 9. Calistri D, Rengucci C, Molinari C, Ricci E, Cavargeni E, Scarp M, Milandri GL, Fabbri C, Ravaioli A, Russo A, Amadori D, Silvestrini R. Quantitative fluorescence determination of long-fragment DNA in stool as a marker for the early detection of colorectal cancer. J Clin Oncol 2006; 24: 311-320 [PMID: 11821507 DOI: 10.1065/njm0102294] 10. Bosch LJ, Carvalho B, Fijneman RJ, Jimenez CR, Pinedo HM, Bøhler G, Mathisen Ø, Bergan A, Søreide O. Hepatic resection for colorectal metastases: can preoperative scoring predict the potential role of cancer stem cells. J Cancer 2013; 4: 241-250 [PMID: 23459666 DOI: 10.7150/jca.5832]
February 7, 2016 | Volume 22 | Issue 5

Lech G et al. Microsatellite instability and colorectal cancer prognosis. J Clin Oncol 2005; 23: 609-618 [PMID: 15659508 DOI: 10.1200/JCO.2005.01.086]

Samowitz WS, Leskinen K, Ma KN, Schafer D, Coleman LW, Leppert M, Slaterly ML. Microsatellite instability in sporadic colorectal cancer is associated with an improved prognosis at the population level. Cancer Epidemiol Biomarkers Prev 2010; 19: 917-923 [PMID: 21153541]

Ribble CM, Sargent DJ, Moore MJ, Thibodeau SN, French AJ, Goldberg RM, Hamilton SR, Laurent-Puig P, Gryfe R, Shepherd LE, Tu D, Redston M, Gallinger S. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N Engl J Med 2003; 349: 247-257 [PMID: 12867608 DOI: 10.1056/NEJMoa022289]

Kim GP, Colangelo LH, Wiens HD, Paik S, Kirsch IR, Wolmark N, Allegra CJ. Prognostic and predictive roles of high-degree microsatellite instability in colon cancer: a National Cancer Institute-National Surgical Adjuvant Breast and Bowl Project Collaborative Study. J Clin Oncol 2007; 25: 767-772 [PMID: 17228023 DOI: 10.1200/JCO.2006.05.8172]

Siminico FA, Sargent DJ. Clinical implications of microsatellite instability in sporadic colon cancers. Curr Opin Oncol 2009; 21: 369-373 [PMID: 19444104 DOI: 10.1097/COP.0b013e32832a4d6d]

Meyers M, Wagner MW, Hwang HS, Kinsella TJ, Boothman DA. Role of the hMLH1 DNA mismatch repair protein in fluoropyrimidine-mediated cell death and cell cycle responses. Cancer Res 2001; 61: 5193-5201 [PMID: 11431539]

Elsaleh J, Iacopetta B. Microsatellite instability is a predictive marker for survival benefit from adjuvant chemotherapy in a population-based series of stage III colorectal cancer. Clin Colorectal Cancer 2001; 1: 104-109 [PMID: 12445368 DOI: 10.3816/CCC.2001.n.010]

Elsaleh J, Joseph D, Greiu F, Zeps N, Spry N, Iacopetta B. Association of tumour site and sex with survival benefit from adjuvant chemotherapy in colorectal cancer. Lancet 2000; 355: 1745-1750 [PMID: 10833284 DOI: 10.1016/S0140-6736(00)02261-3]

Hughins G, Southward K, Handley K, Magill L, Beaumont C, Stahlhmidt J, Richman S, Chambers P, Seymour M, Kerr D, Gray R, Quirke P. Value of mismatch repair, KRAS, and BRAF mutations in predicting recurrence and benefits from chemotherapy in colorectal cancer. J Clin Oncol 2011; 29: 1261-1270 [PMID: 21383284 DOI: 10.1200/JCO.2010.30.1366]

Bertagnolli MM, Niedzwiecki D, Compton CC, Hahn HP, Hall M, Danas B, Jewell SD, Mayer RJ, Goldberg RM, Saltz LB, Warren RS, Redston M. Microsatellite instability and response to adjuvant therapy with irinotecan, fluorouracil, and leucovorin in stage III colon cancer: Cancer and Leukemia Group B Protocol 89803. J Clin Oncol 2009; 27: 1814-1821 [PMID: 19273709 DOI: 10.1200/JCO.2008.18.2071]

Sarli L, Bottarelle L, Bader G, Iusco D, Pizzi S, Costi R, D’Adda T, Bertolani M, Roncoroni L, Bordi C. Association between recurrence of sporadic colorectal cancer, high level of microsatellite instability, and loss of heterozygosity at chromosome 18q. Dis Colon Rectum 2004; 47: 1467-1482 [PMID: 15486743 DOI: 10.1007/s10350-004-0626-9]

Popat S, Houlston RS. A systematic review and meta-analysis of the relationship between chromosome 18q genotype, DCC status and colorectal cancer prognosis. Eur J Cancer 2005; 41: 2060-2070 [PMID: 16125380 DOI: 10.1016/j.ejca.2005.04.039]

Popat S, Zhao D, Chen Z, Pan H, Shao Y, Chandler I, Houlston RS. Relationship between chromosome 18q status and colorectal cancer prognosis: a prospective, blinded analysis of 290 patients. Anticancer Res 2007; 27: 627-633 [PMID: 17348452]

Ogino S, Nosho K, Irahara N, Shima K, Baba Y, Kirchner GJ, Meyerhardt JA, Fuchs CS. Prognostic significance and molecular associations of 18q loss of heterozygosity: a cohort study of microsatellite stable colorectal cancers. J Clin Oncol 2009; 27: 4591-4598 [PMID: 19704056 DOI: 10.1200/jco.2009.22.8858]

Watanabe T, Wu TT, Catalano PJ, Ueki T, Satriano R, Hailer
Lech G et al. Colorectal cancer biomarkers

DG, ABN, Hamilton SR. Molecular predictors of survival after adjuvant chemotherapy for colon cancer. *N Engl J Med* 2001; 344: 1196-1206 [PMID: 11309634 DOI: 10.1056/NEJM200101193440305]

61 Watanabe T, Kobunai T, Yamamoto Y, Matsuda K, Ishihara S, Nozawa K, Yamada H, Hayama T, Inoue E, Tamura J, Inimuma H, Akiyoshi T, Muto T. Chromosomal instability (CIN) phenotype, CIN high or CIN low, predicts survival for colorectal cancer. *J Clin Oncol* 2012; 30: 2256-2264 [PMID: 22547595 DOI: 10.1200/jco.2011.38.6490]

62 Oxaliplatin, Leucovorin Calcium, and Fluorouracil With or Without Bevacizumab in Treating Patients Who Have Undergone Surgery for Stage II Colon Cancer. Available from: URL: http://clinicaltrials.gov/ct2/show/study/NCT00217737?term=ecog 5202&rank=1

63 Tejpar S, Bertagnolli M, Bosman F, Lenz HJ, Garroway A, Waldman JS, Siena S, Cassidy J, Tabernero J, Burkes R, Barugel R, D'Arpa M, Kindblom LG, Hofsli E, Birkemeyer E, Johnsson A, Starkhammar H, Yilmaz MK, Kelsen D, Erdal AB, Dajani O, Dahl O, Christoffersen T. Phase III trial of cetuximab with continuous or intermittent fluorouracil, leucovorin, and oxaliplatin (NORDICO FLEX) versus FLEX alone in first-line treatment of metastatic colorectal cancer: results of the randomised phase 3 MIRC COIN trial. *Lancet* 2011; 377: 2103-2114 [PMID: 21641636 DOI: 10.1016/ S1470-2045(11)70110-5]

64 Markowitz SD, Hofsli E, Birkemeyer E, Johnsson A, Starkhammar H, Yilmaz MK, Kelsen D, Erdal AB, Dajani O, Dahl O, Christoffersen T. Phase II trial of cetuximab with continuous or intermittent fluorouracil, leucovorin, and oxaliplatin (NORDICO FLEX) versus FLEX alone in first-line treatment of metastatic colorectal cancer: the NORDICO-VII study. *J Clin Oncol* 2012; 30: 1755-1762 [PMID: 22473155 DOI: 10.1200/JCO.2011.38.0915]

65 Di Nicolantonio F, Martini M, Molinari F, Sartore-Bianchi A, Arena S, Saletti P, De Dosso S, Mazucchelli L, Frattini M, Siena S, Bardelli A. Wild-type BRAF is required for response to panitumumab and cetuximab to BRAF(V600E) inhibition through feedback regulation of KRAS. *Nature* 2012; 483: 469-476 [PMID: 22821684 DOI: 10.1038/nature10868]

66 Irahara N, Baba Y, Nosho K, Shimsa Y, Yan L, Diaz-Santagata D, Iafrate AJ, Fuchs CS, Haigis KM, Ogino S. NRAS mutations are rare in colorectal cancer: updated analysis of overall survival according to tumor KRAS and BRAF mutation status. *J Clin Oncol* 2011; 29: 2101-2109 [PMID: 21502544 DOI: 10.1200/JCO.2010.33.5091]

67 Bokemeyer C, Van Cutsem E, Rougier P, Ciardiello F, Heeger S, Schlichting M, Celik I, Rougier P, Ciardiello F. Cetuximab plus irinotecan, fluorouracil, and leucovorin as first-line treatment for metastatic colorectal cancer: updated analysis of overall survival according to tumor KRAS and BRAF mutation status. *J Clin Oncol* 2011; 29: 2101-2109 [PMID: 21502544 DOI: 10.1200/JCO.2010.33.5091]

68 Douillard JY, Siena S, Cassidy J, Tabernero J, Burke R, Barugel R, Humblet Y, Bodoky G, Cunningham D, Jasson J, Rivera F, Kocákova I, Ruff P, Blasińska-Morawiec M, Smakal M, Can DWA, Rother M, Oliger KS, Wolf M, Gansert J. Randomized, phase III trial of panitumumab with infusional fluorouracil, leucovorin, and oxaliplatin (FOLFOX4) versus FOLFOX4 alone as first-line treatment in patients with previously untreated metastatic colorectal cancer: the PRIME study. *J Clin Oncol* 2010; 28: 4697-4705 [PMID: 20921465 DOI: 10.1200/JCO.2009.27.4860]

69 Maughan TS, Adams RA, Smith CG, Meade AM, Seymour MT, Wilson RH, Idziaszek S, Harris R, Fisher D, Kenny SL, Kay E, Mitchell JK, Madi A, Jasani B, James MD, Bridgewater J, Kennedy MJ, Claes B, Lambrechts D, Kaplan R, Cheadle JP, MRC COIN Trial Investigators. Addition of cetuximab to oxaliplatin-based first-line combination chemotherapy for treatment of advanced colorectal cancer: results of the randomised phase 3 MIRC COIN trial. *Lancet* 2011; 377: 2103-2114 [PMID: 21641636 DOI: 10.1016/ S1470-2045(11)70110-5]

70 Price TJ, Hardingham JE, Lee CK, Weickhardt A, Towseend AR, Wrin JW, Chua A, Shivashami A, Cummins MM, Murone C, Tebbutt NC. Impact of KRAS and BRAF Gene Mutation Status on Outcomes From the Phase III AGITG MAX Trial of Cetuximab Alone or in Combination With Bevacizumab and Mitomycin in Advanced Colorectal Cancer. *J Clin Oncol* 2011; 29: 2675-2682 [PMID: 21646616 DOI: 10.1200/JCO.2010.34.5520]

71 Di Nicolantonio F, Martini M, Molinari F, Sartore-Bianchi A, Arena S, Saletti P, De Dosso S, Mazucchelli L, Frattini M, Siena S, Bardelli A. Wild-type BRAF is required for response to panitumumab and cetuximab in metastatic colorectal cancer. *J Clin Oncol* 2008; 26: 5705-5712 [PMID: 19001320 DOI: 10.1200/JCO.2008.18.0786]

72 Roth AD, Tejpar S, Delorenzi M, Yan P, Fiocca R, Klingbiel D, Dietrich D, Biesmans B, Bodoky G, Barone C, Aranda E, Nordlinger B, Cisar L, Labianca R, Cunningham D, Van Cutsem E, Bosman FT. Prognostic significance of p53 mutation: influence of tumor site, type of treatment and future perspectives for integrating genomics into biomarker discovery. *Oncologist* 2010; 15: 390-404 [PMID: 20350999 DOI: 10.1634/theoncologist.2009-0233]

73 Di Nicolantonio F, Martini M, Molinari F, Sartore-Bianchi A, Arena S, Saletti P, De Dosso S, Mazucchelli L, Frattini M, Siena S, Bardelli A. Wild-type BRAF is required for response to panitumumab and cetuximab to BRAF(V600E) inhibition through feedback regulation of KRAS. *Nature* 2012; 483: 469-476 [PMID: 22821684 DOI: 10.1038/nature10868]

74 Majoor M, van Haandel AM, de Vries CE, de Vries LA, Weeman LV, van der Zee JG, van der Valk J, van den Burg PJ, van Engeland M, van der Flier SC. Wild-type BRAF is required for response to panitumumab and cetuximab to BRAF(V600E) inhibition through feedback regulation of KRAS. *Nature* 2012; 483: 469-476 [PMID: 22821684 DOI: 10.1038/nature10868]

75 Ogiino S, Nosho K, Kirkner GJ, Shima K, Irahara N, Kure S, Chan AT, Engelman JA, Kraft P, Cantley LC, Giovannielli EL, Fuchs CS. PIK3CA mutation is associated with poor prognosis among patients with colorectal cancer. *J Natl Cancer Inst* 2009; 101: 1308-1324 [PMID: 19738166 DOI: 10.1093/jnci/djn060]

76 Prahalad A, Sun C, Huang S, Di Nicolantonio F, Salazar R, Zecchin D, Beijersbergen RL, Bardelli A, Bernards R. Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. *Nature* 2012; 483: 100-103 [PMID: 22281684 DOI: 10.1038/nature10868]

77 Prat J, Hirsch P, Rodel C, Tabernero J, Escudier B, Brahimi M, Stadler WM, del Campo V, Novara G, Oliva V, Tourné A, Gervais R, Fizazi K, de Bono JS, Goldstein D, Harari PM, Soria JC, Haanen JB, Ludwig T, Ferrer L, Tourné A, L mercier M, Schöffski P, Therasse P, van der Eerden B, Mihai M, Zuffardi O, Verweij J, Grothey A, Grothey A. Combined analysis of patients treated with bevacizumab, cetuximab, or oxaliplatin-based chemotherapy (CT) with or without bevacizumab (BV): a pooled analysis of four head-to-head trials. *Clin Cancer Res* 2014; 20: 8717-8727 [PMID: 25312172 DOI: 10.1158/1078-0432.CCR-14-1203]
The activity and toxicity of irinotecan in metastatic colorectal cancer patients. Br J Cancer 2008; 99: 1239-1245 [PMID: 18797458 DOI: 10.1038/sj.bjc.6604673]

Dias MM, McKimmon RA, Sorich MJ. Impact of the UGT1A1*28 allele on response to irinotecan: a systematic review and meta-analysis. Pharmacogenomics 2012; 13: 889-899 [PMID: 22676194 DOI: 10.2217/pgs.12.68]

Cecchin E, Innocenti F, D’Andrea M, Corona G, De Mattia E, Biasun P, Buonadonna A, Tofoli G. Predictive role of the UGT1A1, UGT1A7, and UGT1A9 genetic variants and their haplotypes on the outcome of metastatic colorectal cancer patients treated with fluorouracil, leucovorin, and irinotecan. J Clin Oncol 2009; 27: 2457-2465 [PMID: 19364970 DOI: 10.1200/JCO.2008.19.0314]

Jürgensmeier JM, Schnoll HJ, Robertson JD, Brooks L, Taboada M, Morgan SR, Wilson D, Hoff PM. Prognostic and predictive value of VEGF, sVEGF-R2 and CEA in mCRC studies comparing cediranib, bevacizumab and chemotherapy. Br J Cancer 2013; 108: 1316-1323 [PMID: 23449351 DOI: 10.1038/bjc.2013.79]

Jubb AM, Harris AL. Biomarkers to predict the clinical efficacy of bevacizumab in cancer. Lancet Oncol 2010; 11: 1172-1183 [PMID: 21126687 DOI: 10.1016/S1470-2045(10)70232-1]

Luo HY, Xu RH. Predictive and prognostic biomarkers with therapeutic targets in advanced colorectal cancer. World J Gastroenterol 2014; 20: 3858-3874 [PMID: 24744578 DOI: 10.3748/wjg.v20.i4.3858]

Patare M, Santos EM, Coudry Rde A, Soares FA, Ferreira FO, Rossi BM. Ezrin expression as a prognostic marker in colorectal adenocarcinoma. Pathol Oncol Res 2011; 17: 827-833 [PMID: 21465252 DOI: 10.1007/s12253-011-9389-4]

Jörgen F, Nilbert M, Rambech E, Bendahl PO, Lindmark G. Ezrin expression in rectal cancer predicts time to development of local recurrence. Int J Colorectal Dis 2012; 27: 893-899 [PMID: 22234584 DOI: 10.1007/s00384-011-1397-z]

Lenz HJ. Established biomarkers for colon cancer. In: American Society of Clinical Oncology 2009 Educational Book. USA: ASCO, 2009: 215-219

Engstrom PF, Arnoletti JP, Benson AB, Chen YJ, Choti MA, Cooper HS, Covey A, Dilawari RA, Early DS, Enzinger PC, Fakhri MG, Fleshman J, Fuchs C, Ganem L, Geisinger KR, Ghajar H, Goedecke M, Grady WM, Hacker NF, Harrop J, Jass J, Kemeny N, Kim YH, Klimstra DS, Langer T, Leidersink GJ, Loberg RD, Loprinzi CL, Meropol NJ, Minafee M, Mon® E, Mulshine JL, Mukherjee N, Neoptolemos JP, O’Connell MJ, O’Malley AJ, Panacek EA, Pisters PW, Quante M, Ramanujam N, Remzi FH, Rockey DC, Stroneg WM, Talbot C, Thompson GB, Trock BJ, Watkins H. Treatment of metastatic colorectal cancer. J Clin Oncol 2010; 28: 1987-1987 [PMID: 20457668 DOI: 10.3748/wjg.v20.i8.1887]
