New Glulam-Framed Shear Wall Concept with Enhanced Behaviour Characteristics for Tall Timber Buildings in Seismic Areas.

Tulio Carrero (✉ tecarrero@uc.cl)
Pontificia Universidad Católica de Chile https://orcid.org/0000-0001-8324-0226

Jairo Montaño
Pontificia Universidad Católica de Chile

Luis Perez
Pontificia Universidad Católica de Chile

Ghasan Doudak
University of Ottawa

Hemán Santa María
Pontificia Universidad Católica de Chile

Pablo Guindos
Pontificical Catholic University of Chile

Research Article

Keywords: connections, monotonic test, cyclic test, shear wall, lateral force capacity, stiffness.

Posted Date: January 19th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1259019/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

This investigation covers the lateral performance of a new concept of hybrid timber shear wall, and includes individual connection testing, full-scale shear wall testing and numerical modeling. The main objective of this study is to develop enhanced timber structural solutions that facilitates the design and construction of mid-rise timber buildings in areas with high seismic demand. The new shear wall concept involves structural configurations similar to those found in conventional light-framed timber shear wall, but using glulam members as framing elements, connected to OSB sheathing panels using conventional nails. More specifically, the OSB sheathing is embedded within grooved glulam members in order to enhance the lateral capacity and stiffness of the wall. Connections and full-scale monotonic and cyclic shear wall testing were performed, and the results indicated that it is possible to obtain a high performing timber shear wall with the proposed concept. In particular, the obtained values are promising with strength and stiffness levels that are 3 times that of a conventional CLT shear wall. Furthermore, the proposed prototype comprises 0.89 m3 of wood volume, which represents less than one-fourth of the amount of wood in a CLT shear wall of equivalent lateral capacity. In addition, the ductility obtained for the proposed concept can be classified as high ductility class (HDC) according to the Eurocode 8. It is expected that the ductility may be further improved by limiting potential brittle failure observed in one of the framing members at high displacement levels. Finally, it was found that available modelling tools with hysteretic models, such as the MSTEW, is capable of predicting the lateral strength and stiffness of the proposed concept, since modeling errors below 10% were obtained.

1. Introduction

Considerations for sustainable design in recent years have highlighted the need to involve more wood material in construction. Whether in North America where timber design is well advanced and timber structures represent about 90% of low-rise construction (Hafeez et al., 2018), or in countries like Chile, where only around 21% of the building stock consist of timber as main structural elements (Banco Mundial, 2020), there is significant interest in the design and research communities in how to advance the structural performance of timber assemblies. Recent developments in material and connection manufacturing allowed the construction industry to go beyond light-frame and low-rise structures, especially in an effort to help resist lateral loads, such as wind and earthquake.

The introduction of cross laminated timber (CLT) strongly influenced the increasing effort to target taller buildings using timber, because of its superior strength and stiffness in comparison to conventional light-frame timber systems. Although concrete and steel walls and assemblies can be used as primary lateral force resisting systems in CLT buildings, there has been an important focus on understanding and improving the potential of using CLT as primary lateral force resisting system for mid- and high-rise timber buildings. Some examples of important findings in this field include establishing the behaviour of CLT shear wall, including characteristics such as strength, stiffness, as well as energy dissipation through engagement of the boundary connections such as vertical joints. [Gavric et al., (2013); Casagrande et al., (2016); Estrella et al., (2021a), Estrella et al., (2021b), Estrella et al., (2020), Popovski et al., (2011); Mestar et al., (2020); Mestar et al., (2021); Nolet et al. (2019)]. Capacity-based design methodologies have also been developed to ensure appropriate hierarchy of failure between ductile and less ductile or brittle components [Masroor et al., (2022) and Casagrande et al., (2019)] Although shear walls with solid wood panels are generally suitable for taller buildings (Conolly et al., 2018), the limitation of using them in buildings constructed in countries with high seismicity, like for instance Chile, is the relatively low ductility they provide (Ugalde et al., 2019), as well as the relatively higher cost of the structure.

Light frame wood shear walls have been considered suitable and efficient lateral load resisting systems with great energy dissipative capabilities, especially when wood sheathing panels like OSB or plywood are used together with nails [e.g., Bagheri & Doudak (2020); Bagheri & Doudak (2021)]. The use of gypsum wallboard is also common as a sheathing material, whether structural or simply used as finishing material, however, this type of system is usually accompanied by a reduction in the overall energy dissipation in the system (LaFontaine and Doudak, 2017). The performance of light-frame wood shear walls has been demonstrated in laboratory testing as well as in reconnaissance missions post-earthquake events, and the limited failures and low fatalities were attributed to the light weight and flexibility of the system, as well as redundancies and multiple load paths, resulting in a reduction in the inertia forces [e.g., Dolan and Madsen (1992); Karacabeyli and Ceccotti (1996)]. Despite this performance, the use of such structural systems remains limited to low rise structure due to limitation in capacity and stiffness.

Research investigating how light-frame wood shear walls systems may be scaled to provide efficient solutions for taller buildings has been very scarce. Some examples of such attempt include the introduction of the mid-ply shear wall (Ranger L., and Dagenais C., 2021) and a new hybrid shear wall solutions using Frame Panel Shear Walls (FPSW) (Carrero et al., 2021), involving different materials such as steel and CLT. Other attempts in developing hybrid platform-frame shear walls have demonstrated excellent lateral performance while maintaining simplicity and predictability of the structural behavior [e.g., Quintana et al., (2021); Kho et al. (2018); Iqbal et al. (2015); Priestley et al. (1999)].

The review of the available literature highlights the needs for innovation beyond traditional shear wall systems such as CLT and LFTW while using the simple and workable concepts found in these systems. The current research study aims at investigating a new timber hybrid shear wall concept that would provide a cost-competitive alternative that is capable of being easily industrialized (Guindos et al. 2019). The hypothesis underpinning this research was that embedding OSB sheathing in grooved glulam framing would increase the contact between
framing and sheathing and thus enhance capacity and stiffness. In addition, because the new concept is built upon the light-frame structural principle, it was assumed that the energy dissipation would primarily be provided by the connections (panel-to-framing nails). The development of the proposed concept is presented in the paper and compared to other timber systems, which allows for analyzing the relative performance of the obtained results. Finally, the work also covers modelling, which includes the hysteretic parameters optimization that allow for further refinement of the proposed concept.

2. Proposed Wood Panel Shear Wall (Wpsw)

The proposed shear wall concept comprises a glulam framing, connected with four OSB sheathing panels. The standard proposed wall measures 2255 mm in length and 2680 mm in height. Sheathing consists of 18 mm OSB boards with dimensions of 890x2400 mm (LP Building Products, 2019). The wood species used for manufacturing both the sheathing and the framing was radiata pine, and it had moisture content equal to 12%, classified according to NCh819 (Instituto Nacional de Normalización, 2012b). The glue used for manufacturing the glulam complies with AS / NZS 4364 (2010) standard and DIN1052 (2008) for the glue lines and BS 1204 (1993) for the finger-joints. Fig. 1 presents a graphical illustration of the proposed shear wall.

The framing consisted of two horizontal beam elements with cross-sectional dimensions of 230 mm x 250 mm and a length of 2255 mm, and three vertical frame elements (posts). The end posts have cross-sectional dimensions of 230 mm x 250 mm and length of 2180 mm, and the interior post has a cross-sectional dimension of 230 mm x 500 mm and a length of 2180 mm, see Fig. 1. The panel-to-framing connections consisted of two rows of 3 mm diameter and 70 mm long nails spaced at 50 mm along the perimeter of the OSB panels, as shown in Fig. 1, resulting in 1200 nails per wall. The OSB panels are embedded in, and nailed to, the glulam frames as shown in Fig. 2.

At the framing-to-framing connections, fifteen TX 30-160mm long [Rothoblaas SRL] screws were used as perpendicular-to-the-grain reinforcement for the framing beams. Furthermore, three additional 340 mm long TX 30 screws were used to join the framing elements at the post-to-beam connections, see Fig. 3 and Fig. 4.

The fabrication process, including the embedment of the OSB boards within the framing using a sling is shown in Fig. 4 and Fig. 5. Also presented is one of the reinforcement and beam-to-post connection, see Fig. 4a. Finally, the wall assembly is shown in Fig. 5.

3. Test Program

The main objective of the experimental testing was to investigate and characterize the seismic response of the proposed WPSW Wall. The methodology followed in the experimental program involved first establishing the behavior of the panel-to-framing connection, due to the critical role the connections play in the overall seismic response of the shear wall. Four glulam-frame connections were tested, one under monotonic load and three under cyclic loads. The main goal of this part of the testing program was to ensure the feasibility of using the glulam and OSB materials with the proposed nail joint to construct the WPSW wall system. The joint connection specimens consisted of a 200mm x 200mm x 600mm glulam frame and four OSB panels with dimensions 400mm x 250mm x 18mm. The connection between the panels and the frame consisted of 3 mm diameter and 70mm-long nails. Fig. 6 shows the joint configuration.

The connection test set-up is shown in Fig. 7. A hydraulic actuator, connected to the glulam element through two bolted steel plates, was used to apply the load on the connections between the OSB panel and the glulam framing. The OSB panels were supported against the strong floor. Four Linear Variable Displacement Transducers (LVDT) were placed around the connection to measure the slip between the OSB panels and the glulam framing element. The use of four LVDTs allowed averaging the displacements as well as revealing any potential overturning effects during testing.

One full-scale WPSW shear wall was tested under cyclic lateral load in order to establish the feasibility of the proposed system. The testing protocol followed the EN12512 procedure according to the European Committee for Standardization (2013), using a displacement-controlled regime, as shown in Fig. 8. The monotonic procedure applied a constant displacement at the specimen top of 0.2mm/s. The hydraulic actuator used had a capacity of 500 kN and a travel range of ± 200 mm. The test set-up is shown in Fig. 9 and 10.

The instrumentation of the test specimen included displacement transducers to capture the global displacements of the wall, deformation in the diagonal direction of the panels, and key relative displacements to allow for the characterization of the wall behavior. The locations of the relevant instruments used are shown in Fig. 11.

The boundary conditions in the experimental testing of the wall are shown in Fig. 12, including the wall’s attachment to the foundation beam the loading beam, which prevented in-plane rotation and out-of-plane displacement.
The ductility (D) of the wall was calculated as the ratio of the ultimate and yield displacements (Δu/Δy), as provided in EN12512. Failure displacement (Δu) was calculated as the displacement reached when load-carrying capacity decreased to 80% of the maximum value. The calculation of ductility was also undertaken using the ASTM E2126 standard (ASTM International 2019) to facilitate the comparison between test results. Other important parameters obtained from testing include strength and stiffness reduction for each set of three cycles, and equivalent viscous damping ratio at each tested ductility level.

4. Test Results

4.1. Connections and wall test results

Table 1 summarizes the main test results of the connections measured in the monotonic and cyclic tests, including initial secant stiffness (K), yield load (Fy) and yield displacement (Δy), maximum measured load (Fmax) and ultimate measured displacement (Δu). Fig. 13a shows the force-displacement response of the monotonic test, as well as the envelopes of the corresponding responses obtained from the cyclic tests. The envelope curves shown in Fig. 13a were obtained as the average of the absolute values of the load and the displacement of the corresponding positive and negative envelope points for each cycle (ASTM International, 2019). From Table 1 and Fig. 13a, it can be observed that the joint tests subjected to cyclic protocol experienced more degradation of the strength and stiffness compared to the case of monotonic test, which can be attributed to the premature fatigue failure associated to the nail joint when subjected to cyclic loading. In addition, Table 1 contains three types of cyclic test using results from Carrero et al., (2020). It can be seen that all connections exhibited high ductility under the reverse cyclic loading, which was also consistent with the monotonic response. As shown in Table 1 and Fig. 13b, the WPSC connections provide greater strength and inelastic deformation capacity than other hybrid connections previously tested (Carrero et al., 2020). The final failure behavior of a connection after cyclical testing is shown in Fig. 14.

Specimen	Summary of test results of connection specimens					
Specimen	K (kN/mm)	Fy (kN)	Δy (mm)	Fmax (kN)	Δu (mm)	D (unitless)
CYC-Test-01-Joint	4.39	2.50	2.00	2.51	12.50	6.25
CYC-Test-02-Joint	5.49	2.58	2.50	3.02	14.83	5.93
CYC-Test-03-Joint	6.65	2.50	2.50	2.84	15.34	6.14
MON-Test-04-Joint	6.80	3.00	1.07	3.05	15.52	14.50
CLT-Steel envelope (*)	2.31	5.30	2.98	6.7	16.10	8.89
CLT-RCwo envelope (*)	5.30	7.10	3.30	7.27	17.00	5.15
CLT-LSLn envelope (*)	0.86	3.00	3.48	6.22	30.00	8.62

Note (*): hysteresis test results from Carrero et al., (2020) on hybrid connections.

In the case of the shear wall test, it was anticipated that the tightly spaced nailing along with engaging the nails in double shear would result in a wall with very high rigidity. Table 2 summarizes the main test results from the cyclic, including maximum measured lateral load (Fmax), lateral displacement at maximum load (Δmax), and ultimate displacement (Δu). Table 2 also shows parameters calculated from the test results according to both the EN12512 (European Committee for Standardization, 2013) and ASTM E2126 (ASTM International, 2019), such as yield strength (Fy) and displacement (Δy), secant initial stiffness (Ksec) and ductility. The equivalent damping was calculated using Eq. (1).

\[
\varepsilon_{eq} = \frac{E_h}{2 \times n \times K_{sec} \times \Delta_{max}^2}
\]

Eq. (1)

Where:

- \(\varepsilon_{eq}\): Equivalent viscous damping.
- \(E_h\): Hysteretic energy associated with the considered cycle. It corresponds to the area enclosed by cycle.
- \(K_{sec}\): Secant initial stiffness.
- \(\Delta_{max}\): Maximum displacement.

The cyclic response of the wall is presented in Fig. 15. The measured response indicates that the WPSW load-displacement curve exhibited a very high capacity under reverse cyclic loading. This is consistent with the behaviour exhibited by the connections (see Table 2) except that the
deformation capacity was smaller. This could, in part, be attributed to the brittle failure of the top framing beam. It was also observed that the stiffness degradation increased for load cycles up to 4, see Fig. 18, whereas the viscous damping increased from cycle 8.

The full-scale wall test result was compared to published data obtained from the literature, as shown in Fig. 15. These include a strong hybrid hollow steel framing and CLT sheathing shear wall, FPSW (Carrero et al., 2021), a common CLT wall (Popovski et al., 2011), and a strong light-frame timber wall, LFTW wall (Guíñez et al., 2019). It can be noted that the curve representing the WPSW from the current study has higher lateral force capacity than all other shear walls in this comparison. It can also be noted that the lateral load capacity and stiffness of the proposed concept are significantly higher (about three times) than those obtained from conventional CLT shear walls of similar lengths (see Fig. 15). Furthermore, the proposed wall concept uses only 0.89 m3 of wood, which is about one-fourth of the wood used in a CLT shear wall with equivalent capacity. Fig. 16 shows that the cumulative energy dissipation from WPSW cyclical behavior is higher than CLT and LFTW walls, even though the wall had an abrupt and brittle failure shown in Fig. 15. It can also be observed in Fig. 17 that the deformation in the wall mainly occurred in fastener slip at the top beam.

A comparison between the hysteresis envelopes, equivalent viscous damping (EVD), energy dissipation (ED), stiffness degradation and strength degradation from conventional LFTW wall (Guíñez et al., 2019), CLT Wall (Popovski et al., 2011), FPSW (Carrero et al., 2021) and the proposed WPSW concept is presented in Fig. 18. As shown in Fig. 18, WPSW exhibits an excellent lateral force capacity, stiffness, energy dissipation, and equivalent viscous damping relative to the other walls. The envelope curve of WPSW clearly shows the superior capacity and stiffness of the proposed system.

4.2. Crack pattern detection using Digital Image Correlation (DIC)

A digital image correlation (DIC) technique was used to evaluate the deformation of the wall, as presented in Fig. 19. DIC is an optical technique based on the measurement of displacements in two and three dimensions (2D-DIC and 3D-DIC). It is suitable to compare the deformation state of material when subjected to given stresses compared to their original unloaded condition (Sutton et al., 2009). On the backside of the wall, a layer of white background paint was used, on which a mottled pattern (black dots) was applied over the region of interest using black spray paint. Two lamps were placed at 2050 mm away from the wall surface and a spacing of 5000 mm was provided between the lamps. A 24.2 Megapixel camera (Canon DSLR) was used to capture the images.

At the time of failure, the additional slip of the top beam was clearly identified, as shown in Fig. 20. In this case the failure mode was evident, however this technique makes it possible to see deformations not visible to the human eye.

5. Failure Modes

As expected, the failure modes of the connection specimens comprised ductile hinges at the nail joints, followed by nail withdrawal as shown in Fig. 21. This is considered to be a reliable failure mode, because the fastener maintain the connection between the OSB board and glulam frames. It can be noted that the minimum required wood thickness for ductile failure in conventional timber connections was sufficient to ensure ductile failure in this connection. At the full-scale shear wall test, however, there was a brittle failure at the top beam, which was attributed to closely-spaced nails (50 mm) and the lack of sufficient endge distance in the beam member, see Fig. 22. This type of failure mode has also been observed in previous studies with closely spaced nail patterns (Bagheri & Doudak 2020). It is recommended that future designs consider and prevent this type of failure mode.

6. Model Validation

In order to model such connection test behavior, a non-linear model was carried out in the MCASHEW software (Pang et al. 2013) to predict the experimental results, which allowed for an evaluation of the observed response with numerical modeling.

The hysteretic behavior of each joint test and shear wall was modeled using the Modified-Stewart (MSTEW) model proposed by Folz & Filiatrault (2001), which is able to capture phenomena associated with large damaged states, such as stiffness degradation, force degradation, and pinching. The MSTEW model system consists of 10 modeling parameters that capture the crushing of the wood (framing and sheathing) and yielding the nails (Pang et al., 2007).
The cyclic connection tests were used to calibrate the MSTEW hysteretic model (Pang et al., 2007). Table 3 presents the corresponding MSTEW modeling parameters for each of the tested joint specimens. The hysteresis modeling parameters are scaled in Table 3 to represent the properties of a single nail. The comparison between the cyclical test results and the parameters obtained from MSTEWFIT (Pang et al., 2013) seem to match reasonably well, as shown in Fig. 23.

Parameter	CYC-Test-01-Joint	CYC-Test-02-Joint	CYC-Test-03-Joint
K_0 (kN/mm)	4.39	5.49	6.65
r_1 (unitsless)	0.032	0.026	0.017
r_2 (unitsless)	-0.015	-0.013	-0.011
r_3 (unitsless)	2.226	3.669	7.399
r_4 (unitsless)	3.26E-03	4.95E-04	3.08E-04
F_0 (kN)	2.135	2.203	2.220
F_1 (kN)	0.85	0.58	0.57
d_u (mm)	4.20	4.47	4.32
a (unitsless)	0.85	0.95	0.95
b (unitsless)	1.25	1.15	1.15
CEE (error fit, %)	14.10	16.75	14.10

Subsequently, the MCASHEW software (Pang et al., 2013) was used to model the entire shear wall. MCASHEW was originally developed for modelling light-frame wood shear walls consisting of framing members (interior and end studs and top-bottom plates), framing-to-framing connectors, sheathing panels, sheathing-to-framing connectors, anchorage devices, and shear bolts. An Euler-Bernoulli approach is used for modelling the framing members. The model utilizes a corotational formulation and three degrees of freedom per node.

In the current study, the shear modulus, G, used for OSB panels was 1960 MPa (Segura, 2017), and the mean value of modulus of elasticity for the wood framing was set as $E = 8500$ MPa according to the Chilean standard (Instituto Nacional de Normalización, 2014). Framing to framing (screw) and panel to framing (nail) connectors were modeled as pin-ended connections using two-node 3 degrees of freedom link elements with rigid springs for translation and zero stiffness for rotation. OSB panels were modeled using rectangular shear panel elements with 5 degrees of freedom (two rigid body translations, one rigid body rotation and two in-plane shear angles). It was assumed that the bottom beam-to-foundation connection was very large, linear and elastic using a 3-DOF link element. The pantograph was used to restrict rotation in the experiment and thus a high compression stiffness was implemented in the model to simulate the contact between the bottom plate and the foundation.

A comparison between the load-displacement behavior obtained from the test results and those predicted numerically by the MCASHEW model is shown in Fig. 24. The resulting stiffness was very similar between the tested and modeled wall with an error of only 2%. Similarly, the maximum capacity was obtained with an error of only 9%. This indicates that the MCASHEW model, which was created for modelling light-frame timber structures is also able to predict the behavior of the proposed concept.

Once it is established that the behavior of the WPSW can be predicted with the MSTEW hysteretic model and MCASHEW software, the next step was setting up a simplified 1-DOF model of the entire wall using the hysteresis’ parameter calibration of the MSTEWFIT tool (Pang et al., 2007). The result of the calibration is presented in Table 4 and Fig. 25. As can be noted from the figure, MSTEW can accurately mimic the test results, properly capturing the nonlinear behavior of the specimen in terms of lateral force capacity, stiffness, strength, and deformation capacity.

Parameter	Wall Test
K_0 (kN/mm)	37.374
r_1 (unitsless)	0.059
r_2 (unitsless)	-0.088
r_3 (unitsless)	1.01
r_4 (unitsless)	0.008
F_0 (kN)	191.353
F_1 (kN)	31.623
d_u (mm)	36.692
a (unitsless)	1
b (unitsless)	1.131
CEE (error fit, %)	14.79
Table 5 presents the comparison between the experimental and numerical values of both the detailed MSTEW model based on the connection results and the simplified (one-DOF) MSTEW model. As it can be observed, the models tend to overestimate the force, displacement, and drift values. The experimental test has a lateral load capacity of 266.46 kN and a maximum displacement in the LVDT (top beam) of 64 mm, while the numerical model yielded a lateral load capacity of 271.39 kN and a maximum displacement of 66 mm. The error observed in the drift and displacement values is around 3.14% for both numerical cases relative to the experimental results.

Force (kN)	Error (%)	
Numerical (MCASHEW model)	Experimental	
271.39	266.46	8.65

Displacement (mm)	Error (%)			
Numerical Simplified 1-DOF Model (1)	Numerical based on connection results (2)	Experimental		
62	66	64	3.14	3.13

Drift (%)	Error (%)			
Numerical Simplified 1-DOF Model (1)	Numerical based on connection results (2)	Experimental		
2.75	2.93	2.84	3.14	3.13

7. Conclusions

A new shear wall concept has been introduced to optimize the walls’ strength and stiffness while maintaining high levels of ductility. The proposed system builds on the simplicity and established performance of light-frame timber shear walls while using larger glulam members as framing elements to introduce more panel-to-framing nail joints. Testing and numerical modeling at the joint and full-scale wall levels have been undertaken. The main conclusions that can be drawn from the current study are as follows:

- The study has demonstrated the feasibility of introducing more shear planes in the shear wall system, and hence significantly enhancing the strength and stiffness of the wall, while maintaining reasonably high ductility ratio to utilize the shear wall in regions with high seismic demands.

- The stiffness and strength values obtained from the proposed shear wall concept are significantly higher (about three times) than those obtained from conventional CLT shear walls of similar lengths.

- The proposed shear wall prototype contains only 0.89 m³ of wood, and it compares to or exceeds the performance of a CLT shear wall containing approximately 4 times more wood. This is anticipated to lead to a solution that does not only provide adequate structural performance but also be cost-competitive in comparison to current timber lateral systems.

- Maintaining high ductility class (HDC) was an essential and desired requirement in the proposed shear wall. This means that it could be used in regions with high seismic demand. The ultimate failure mode observed in the top beam, consisting of splitting, could be improved in future designs simply by increasing the nail spacing or the edge distance in the beam.

- Modelling tools with hysteretic behaviour, such as the MSTEW, was found to be capable of predicting the lateral strength and stiffness of the proposed concept, with reasonable discrepancy.

Declarations

The authors declared that there is no conflict of interest.

Acknowledgments

The authors would like to recognize the financial support provided by CORFO Proyecto Capital Semilla 14ENI2-26862. Also, glad to CONICYT (Doctorado Nacional 2017-21170375), VRI-UC, and Center of Innovation of Wood (CIM-UC) and the support of ANID BASAL FB210015 (CENAMAD). The authors would like to thank the Pontificia Universidad Católica de Chile Laboratory of Structural Engineering staff. The authors also thank Luis Gonzalez for his valuable support.

References

1. Alinoori, F., Moshtiri, F., Sharafi, P., & Samali, B. (2020). Reinforcement methods for compression perpendicular to grain in top/bottom plates of light timber frames. Construction and Building Materials, 231, 116377. https://doi.org/10.1016/j.conbuildmat.2019.07.103
2. ASTM International (2019). ASTM E2126-19: Standard test methods for cyclic (reversed) load test for shear resistance of vertical elements of the lateral force resisting systems for buildings. West Conshohocken, PA, USA.

3. AS / NZS 4364 (2010). Timber - Bond performance of structural adhesives

4. Bagheri, M., Doudak, G. (2020). Structural characteristics of light-frame wood shear walls with various construction detailing. Engineering Structures, 205, 110093 - 110093.

5. Bagheri, M., Doudak G. (2021). Experimental and numerical study on the deflection of multi-storey light-frame timber shear walls. Engineering Structures, 233, 111951 - 111951.

6. Banco Mundial, (2020). La construcción de viviendas en madera en chile un pilar para el desarrollo sostenible y la agenda de reactivación.

7. Branco, J. M., Matos, F. T., & Lourenço, P. B (2017). Experimental In-Plane Evaluation of Light Timber Walls Panels. Buildings, 7, 63. https://doi.org/10.3390/buildings7030063.

8. BS 1204 (1993). Specification for type MR phenolic and aminoplastic synthetic resin adhesives for wood.

9. Buchanan, A, et al. (2011) Performance of houses during the Christchurch earthquake of 22 February 2011. Bulletin of the New Zealand Society for Earthquake Engineering 44.4: 342-357.

10. Canadian Standard Association. CSA. (2016). CSA-O86 Engineering Design in Wood. Mississauga, Canada. https://cwc.ca/how-to-build-with-wood/codes-standards/csa-o86-engineering-design-in-wood/

11. Carrero, T., Ureta-Céspedes, F., Cabrera, T., Cárcamo, S., Santa María, H., & Guindos, P. (2018). Global Analysis of Light-Framed Timber Construction Detailing and its Performance During Major Contemporary Earthquakes. *World Conference Timber Engineering*.

12. Carrero, T., Montaño, J., Berwart, S., Santa-Maria, H., & Guindos, P (2021). Seismic behavior of innovative hybrid CLT-steel shear wall for mid-rise buildings. *Bulletin Earthquake Engineering*. https://doi.org/10.1007/s10518-021-01204-y

13. Casagrande, D., Rossi, S., Sartori, T., & Tomasi, R (2016). Proposal of an analytical procedure and a simplified numerical model for elastic response of single-storey timber shear-walls. Construction and Building Materials; 102, 1101-1112. https://doi.org/10.1016/j.conbuildmat.2014.12.114

14. Casagrande, D., Doudak, G. & Polastri, A (2019). A proposal for the capacity-design at wall- and building-level in light-frame and cross-laminated timber buildings. *Bull Earthquake Eng* 17, 3139–3167. https://doi.org/10.1007/s10518-019-00578-4

15. Connolly, T., Loss, C., Iqbal, A., & Tannert, T (2018). Feasibility Study of Mass-Timber Cores for the UBC Tall Wood Building. Buildings;8;8, 98. https://doi.org/10.3390/buildings8080098.

16. Deutsches Institut fur Normung E.V. (2008). DIN 1052. Design of timber structures - General rules and rules for buildings.

17. Dolan J.D., and Madsen B., (1992) Monotonic and cyclic tests of timber shear walls. Canadian Journal of Civil Engineering. 19(3), 415-422.

18. Dolan J.D., and Salenikovich A., (2003) The racking performance of shear walls with various aspect ratios. Part 1. Monotonic tests of fully anchored walls. Forest Products Journal 53(10).

19. Dong, W., Wu Z., Zhou X., Wang N., and Kastiukas G., (2017). "An experimental study on crack propagation at rock-concrete interface using digital image correlation technique," Engineering Fracture Mechanics, vol. 171, pp. 50–63.

20. Estrella, X., Guindos, P., Almazán, J. L., & Malek, S. (2020). Efficient nonlinear modeling of strong wood frame shear walls for mid-rise buildings. Engineering Structures, 215, 110670.

21. https://doi.org/10.1016/j.engstruct.2020.110670.

22. Estrella, X., Guindos, P., Almazán, J. L., Malek, S., Santa María, H., Montaño, J., & Berwart, S. (2021a). Seismic performance factors for timber buildings with woodframe shear walls. Engineering Structures, 248, 113185. https://doi.org/10.1016/j.engstruct.2021.113185.

23. Estrella, X., Malek, S., Almazán, J. L., Guindos, P., & Santa María, H. (2021b). Experimental study of the effects of continuous rod hold-down anchorages on the cyclic response of wood frame shear walls. Engineering Structures, 230, 111641. https://doi.org/10.1016/j.engstruct.2020.111641.

24. European Committee for Standardization (2013). (CEN) EN 12512:2001/A1:2005. Timber structures - Test Methods – Cyclic testing of joints made with mechanical fasteners. European Committee for Standardization CEN; 2013. 123 p.

25. Folz, B. & Filiatrault, A. (2001). Cyclic analysis of wood shear walls. Journal of Structural Engineering, vol. 127, no. 4, pp. 433–41

26. Folz, B. & Filiatrault, A. (2004). Seismic Analysis of Woodframe Structures. I: Model Formulation. Journal of Structural Engineering, 130(9), 1353–1360. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:9(1353).

27. Franke, S., Franke, B., & Harte, A. M. (2015). Failure modes and reinforcement techniques for timber beams-State of the art. Construction and Building Materials, 97, 2–13. https://doi.org/10.1016/j.conbuildmat.2015.06.021

28. Guindos P, Carrero T, Montaño J, Santa María H (2019). PCT/CL2019/050111. Hybrid shear wall system for construction of massive timber buildings in seismic zones. "Patent Published".

29. https://patentscope.wipo.int/search/es/detail.jsf?docid=WO2021087630&_cid=P22-KQ1ED5-90288-1.
30. Guíñez, F., Santa María, H., & Almazán, J. L. (2019). Monotonic and cyclic behaviour of wood frame shear walls for mid-height timber buildings. Engineering Structures, 189, 100-110. https://doi.org/10.1016/j.engstruct.2019.03.043

31. Hafeez G., Doudak G., McClure G. (2018). Establishing the fundamental period of light-frame wood buildings on the basis of ambient vibration tests. Canadian Journal of Civil Engineering, 45, 752 - 765.

32. Hilam (2015). ARAUCO Folleto Tecnico, Productos Hilam Estándar Tablas de Cálculo. https://www.arauco.cl/chile/marcas/hilam/hilam-especial/

33. Iqbal, A., Pampanin, S., Palermo, A., & Buchanen, A. H. (2015). Performance And Design Of LVL Walls Coupled With UFP Dissipaters. Journal of Earthquake Engineering; 19,3, 383-409. https://doi.org/10.1080/13632469.2014.987406.

34. Instituto Nacional de Normalización (2012a). NCh 433. Of 1996 modificada 2012: Diseño sísmico de edificios. Norma Chilena Oficial.

35. Instituto Nacional de Normalización (2012b). NCh 819. Madera preservada - Pino radiata - Clasificación según riesgo de deterioro en servicio y muestreo (Visualización gratuita disponible en www.minvu.cl)

36. Instituto Nacional de Normalización (2013). NCh 2148. Madera laminada encolada estructural - Requisitos, métodos de muestreo e inspección.

37. Instituto Nacional de Normalización (2014). NCh 1198. Madera – Construcciones en Madera- Cálculo.

38. Karacabeyli, E., Ceccotti, A., (1996). Seismic design considerations on Wood frame structures. 8th Canadian Conference on Earthquake Engineering. https://www.caee.ca/8CCEEpdf/19%20-Seismic%20Design%20Considerations%20On%20Wood%20Frame%20Structures...

39. Kho D., Dong W., Li M., & Lee C (2018). Cyclic behaviour of timber-steel hybrid shear walls. 2018 NZSEE Conference.

40. Kuo T., and Wang W., (2019). "Determination of elastic properties of latewood and earlywood by digital image analysis technique", Wood Science and Technology, vol. 53, pp. 559-577.

41. Lafontaine A., Doudak G. (2017). Stiffness model for gypsum wallboard-to-wood joints. Canadian Journal of Civil Engineering, 44, 338 - 347.

42. LP Building Products, (2019). APA Rated Sheathing & Structural 1 Sheathing. The Engineering Wood Association: Louisiana-Pacific Corporation, July 21. Retrieved from https://lpcorp.com/resources/product-literture/specifications/lp-osb-sheathing-specifications

43. Mestar M., Doudak G., Caola M., Casagrande D. (2020). Equivalent-frame model for elastic behaviour of cross-laminated timber walls with openings. Proceedings of the Institution of Civil Engineers-Structures and Buildings, 173, 363 - 378.

44. Mestar M., Doudak G., Polastri A., Casagrande D. (2021). investigating the kinematic modes of CLT shear-walls with openings. Engineering Structures, 228, 111475 - 111475.

45. Mohammad Masroor, Ghasan Doudak, Daniele Casagrande (2022) Design of Multipanel CLT Shear Walls with Bidirectional Mechanical Anchors Following Capacity-Based Design Principle , Special Collection on Advances in Performance Assessment and Design of Timber and Hybrid Buildings Volume 36, Issue 1.

46. Montaño, J., Maury, R., Almazán, J. L., Estrella, X., & Guindos, P. (2020). Development of an Amplified Added Stiffening and Damping system for wood frame shear walls. Latin American Journal of Solids and Structures.

47. National Design Specification for Wood Construction. (2015). American Wood Council. https://www.awc.org/pdf/codes-standards/publications/nds/AWC-NDS2015-ViewOnly-1603.pdf.

48. Nolet, V., Casagrande, D., and Doudak, G. (2019). Multipanel CLT shearwalls: an analytical methodology to predict the elastic-plastic behaviour. Journal of Engineering Structures, 179, 640-654.

49. Pang, W., Rosowsky, D.; Pei, S.; & Van De Lindt, J. W., (2007). Evolutionary Parameter Hysteretic Model for Wood Shear Walls. Journal Structural Engineering, Vol. 133(8), pp. 1118-1129. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:8(1118).

50. Pang, W., & Hassanzadeh Shirazi, S. M. (2013). Corotational Model for Cyclic Analysis of Light-Frame Wood Shear Walls and Diaphragms. Journal of Structural Engineering, 139(8), 1303–1317. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000595

51. Popovski, M.m Karacabeyli, E., Ceccotti, A (2011). CLT Handbook - Cross laminated timber. Chapter: Seismic performance of cross-laminated timber buildings. FPInnovations.

52. Popovski, M., & Gavric, I. (2016). Performance of a 2-Story CLT House Subjected to Laterally Loads. Journal of Structural Engineering. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001315

53. Priestley, M. J. N., Sritharan, S. (Sri), Conley, J. R., & Stefano Pampanin, S. (1999). Preliminary Results and Conclusions From the PRESSS Five-Story Precast Concrete Test Building. PCI Journal, 44(6), 42–67. https://doi.org/10.15554/pcij.11011999.42.67

54. Quintana Gallo, P., Carradine, D. M., & Bazaer, R. (2021). State of the art and practice of seismic-resistant hybrid timber structures. European Journal of Wood and Wood Products, 79(1), 5–28. https://doi.org/10.1007/s00107-020-01556-3

55. Ranger L., and Dagenais C., (2021). Advancing knowledge of Mid-ply shear walls, mid-ply shear wall fire resistance testing. FPInnovations report, Canada.
56. Rui L., Zappa E., and Collina A., (2020). "Vision-based measurement of crack generation and evolution during static testing of concrete sleepers", Engineering Fracture Mechanics, vol. 224, Article ID 106715.

57. Schierle G. (2001). W-04: Proyecto Woodframe: Case Studies. https://www.curee.org/publications/woodframe_project.html

58. SDPWS. (2015). Special Design Provisions for Wind and Seismic standard with Commentary. Washington, DC. https://doi.org/ISBN 0-9786245-9-9

59. Segura, G. (2017). Determinación del módulo de corte de tableros de fibra orientada a través de ensayo de análisis modal. http://repobib.ubiobio.cl/jspui/bitstream/123456789/2327/1/Segura_Gatica_Gabriel_Eduardo.pdf

60. Sutton M., Orteu J., and Schreier H., (2009). "Digital image correlation", In Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications, 1st ed., Springer US: New York, New York, United States, pp. 81-116.

61. Ugalde, D., Almazán, J. L., Santa María, H., & Guindos, P. (2019). Seismic protection technologies for timber structures: a review. European journal of wood and wood products, 77(2), 173-194.

62. Zhong H., and Zhang M., (2020). "Experimental study on engineering properties of concrete reinforced with hybrid recycled tyre steel and polypropylene fibres", Journal of Cleaner Production, vol. 259, Article ID 120914.

Figures

Figure 1
Mounting scheme of the glulam-OSB wall (WPSW): (a) components (b) dimensions.

Figure 2
Plan view WPSW wall posts: (a) mid-section post (b) end post
Figure 3

Framing to framing connections: (a) reinforcement implemented (b) compression reinforcement with blue square (c) post-beam connections in the red square.

Figure 4

Shear wall assembly procedure (a) screw placement (b) OSB panel installation (c) use of sling to assemble panels
Figure 5

Photograph of shear wall assembly.

Figure 6

Connection specimen configuration.

Figure 7

Full detail of the assembly of the glulam-OSB connections.

Figure 8

Experimental protocol according to EN 12512 (a) cyclic protocol; (b) determination of strength degradation between the first and third repetition
Figure 9
Wall test set-up.

Figure 10
Photograph of the anchoring and Instrumented wall test set-up of the WPSW.

Figure 11
Elevation front view of the WPSW wall with measuring sensors.

Figure 12
Shear wall corners anchoring: (a) Top beam (b) Bottom beam.

Figure 13
Monotonic and cyclic envelopes: (a) responses of the tested connections (b) comparison of envelope tested curves to others type of connections by Carrero et al., (2020).

Figure 14
Panel-to-framing failure of WPSW connection (CYC-Test-01-Joint).

Figure 15
Comparison of cyclic test curves from different wall tests.

Figure 16
Comparison of the cyclic performance for shear walls cumulative energy dissipation including WPSW from our investigation.

Figure 17
Photography of WPSW shear wall post-test.

Figure 18
Comparison of the cyclic performance for existing shear walls compared to WPSW shearwall. (a) hysteresis envelopes; (b) energy dissipation (ED) per cycle; (c) equivalent viscous damping (EVD) per cycle; (d) stiffness degradation (%) per cycle; (e) strength degradation per cycle.

Figure 19
Configuration of WPSW shearwall for Digital Image Correlation (DIC).

Figure 20
(a) Actual failure from the test (b) Digital Image Correlation results from WPSW shearwall in deformation.

Figure 21
Failure modes WPSC connections.

Figure 22
Failure mode of top beam from sheathing to framing connection at WPSW wall test.

Figure 23
Test connection data and model MSTEW (WPSC).

Figure 24
Comparison between WPSW test result and MCASHEW hysteresis load-displacement model.

Figure 25
Test wall data and model (WPSW)