DNA looping in cellular repression of transcription of the galactose operon

Nitai Mandal,¹ Wen Su,² Roberta Haber,¹ Sankar Adhya,¹ and Harrison Echols²

¹Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892 USA; ²Department of Molecular and Cell Biology, University of California, Berkeley, California 94307 USA

Communication between distant DNA sites is a central feature of many DNA transactions. Negative regulation of the galactose (gal) operon of Escherichia coli requires repressor binding to two operator sites located on opposite sides of the promoter. The proposed mechanism for regulation involves binding of the repressor to both operator sites, followed by a protein–protein association that loops the intervening promoter DNA (double occupancy plus association). To assess these requirements in vivo, we have previously converted gal operator sites to lac and shown that both operator sites must be occupied by the homologous repressor protein (Lac or Gal) for negative regulation of the gal operon. We have now addressed more directly the need for protein–protein association by the use of the converted operator sites and a mutant Lac repressor defective in association of the DNA-binding dimers. We have compared the biological and biochemical activity of two Lac repressors: the wild-type (tetramer) I⁺ form, in which the DNA-binding dimer units are tightly associated; and the mutant I⁻⁻ repressor, in which the dimer units do not associate effectively. The I⁺ repressor is an efficient negative regulator of the gal operon in vivo, but the I⁻⁻ mutant is an ineffective repressor. Purified I⁺ repressor efficiently forms DNA loops between operator sites that we have visualized by electron microscopy; the I⁻⁻ repressor fails to form DNA loops, although the protein binds effectively to both operator sites. From the clear correlation between looping in vitro and repression in vivo, we conclude that regulation of the gal operon depends on the association of repressor proteins bound to the two operator sites. Repression is likely to involve a DNA-wound nucleoprotein complex in which RNA polymerase is present but unable to carry out a productive interaction with the promoter sequence.

[Key Words: DNA looping; galactose operon regulation; transcription; Lac repressor]

Received October 6, 1989; revised version accepted January 12, 1990.

Localization and control in many DNA transactions depend on the association of DNA-bound proteins to generate a multiprotein regulatory complex (Echols 1984, 1986; Adhya 1989). Stable, DNA-wound nucleoprotein structures typically control initiation of DNA replication and site-specific recombination (Echols 1984, 1986, 1990; Gellert and Nash 1987; Landy 1989). In the formation of these higher order structures, an essential step is a communication between proteins bound to spatially separated DNA sites. For control of transcription, communication between distant regulatory sites is also thought to involve association between proteins with the consequence of looping the intervening DNA; these interactions may be transient or lead to a more stable complex with other proteins (Irani et al. 1983; Dunn et al. 1984; Majumdar and Adhya 1984; Echols 1986; Ptashne 1986; Schleif 1988; Adhya 1989; Mitchell and Tjian 1989). Electron microscopic evidence has been presented for DNA-looping interactions involving λcl (Griffith et al. 1986), LacI (Krämer et al. 1987), and the repressor for the deo operon (Amouyal et al. 1989). However, there has not been a study indicating the necessity for loop formation, rather than simple occupancy, for regulation of transcription in vivo. In the work reported here, we used the gal operon of Escherichia coli to provide a correlation between repression in a biological system in vivo and capacity for loop formation in vitro.

The gal operon is a valuable experimental system in which to study the interaction of noncontiguous regulatory proteins because negative regulation depends on two operator sites, O₂ and O₃, that are on opposite sides of the promoter (Irani et al. 1983; Majumdar and Adhya 1984; Adhya 1987). The DNA looping model predicts that negative regulation requires interaction of DNA-bound proteins in addition to binding of the repressor to both operator sites (double occupancy plus association). We have so far been unable to detect stable association of purified Gal repressor dimers bound to the operator sites for the normal gal operon (Majumdar et al. 1987). Among several possibilities, the dimer–dimer interaction may occur only in the presence of RNA polymerase, as considered below. To examine whether the gal operon is regulated by double occupancy plus association, we used an experimental system in which the gal operator sites had been converted to lac operators, thus placing the gal operon under regulation by the Lac repressor (Haber and Adhya 1988). In contrast to the Gal repressor, the Lac repressor forms a stable tetramer, con-
Figure 1. The gal operon of *E. coli*. (A) The organization of the operon and its regulation by the positive regulator cAMP receptor protein (CRP) and the negative regulator GalR. The gal operon of *E. coli* has three structural genes, *galE*, *galT*, and *galK*, encoding, respectively, uridine diphosphogalactose-4-epimerase (epimerase), galactose-1-phosphate uridytransferase (transferase), and galactokinase (for review, see Adhya 1987). The operon is subject to both positive and negative regulatory signals that control two promoters, **P**₁ and **P**₂. The **P**₁ promoter is activated by the positive regulator CRP in the presence of cAMP; the **P**₂ promoter is repressed by CRP-cAMP. Both promoters are negatively regulated by the Gal repressor; effective repression by Gal repressor requires two operator sites, **O**ₐ and **O**ᵢ, which are on opposite sides of **P**₁ and **P**₂. Repression is relieved by the addition of D-galactose or its nonmetabolizable analog D-fucose. The structural genes, *galE*, *galT*, and *galK*, are not drawn to scale. The repressor is the product of the unlinked *galR* gene. (B) Schematic scale drawing of the promoter-operator region on the restriction fragment used for analysis of DNA-repressor interactions by electron microscopy. The gal operators, **O**ₐ and **O**ᵢ, have been converted to lac operators **O**ₐ and **O**ᵢ. Consisting of two dimeric DNA-binding units (Kania and Müller-Hill 1977; Barkley and Bourgeois 1978; Whitson and Matthews 1986; Krämer et al. 1987). We compared the biological and biochemical activity of two Lac repressors: the wild-type tetramer (I⁺), and the mutant repressor (Iₐ₋), in which the dimer units do not associate effectively. The I⁺ repressor is an effective regulator of the gal operon, and purified I⁺ repressor forms DNA loops visible in the electron microscope. The Iₐ₋ mutant is an ineffective regulator in vivo, and purified Iₐ₋ repressor fails to form DNA loops, although the protein binds efficiently to both operator sites. These experiments show that negative regulation of the converted gal operon depends on the association of DNA-bound repressor proteins. We therefore believe that repression of the homologous normal gal operon depends on DNA looping as well.

Results

Repressor mutant defective in tetramer formation

In studying the mechanism of Gal repressor action, we previously modified the operator sites to show that occupancy of both operator sites alone is not sufficient for repression (Harber and Adhya 1988). Replacement of either **O**ₐ or **O**ᵢ by a lac operator (OₐOᵢ or OᵢOₐ) results in constitutive expression of the gal operon even in the presence of excess Gal and Lac repressors. However, replacement of both **O**ₐ and **O**ᵢ by lac operator (OₒOₒ) fully restores repression. This converted gal operon is now inducible by isopropyl-β-D-thiogalactoside (IPTG), the inducer of the lac operon. Gal repressor and D-galactose (or D-fucose) do not have any effect on expression of the modified gal operon. A plausible explanation of these results is that repression requires a communication between two operators through interaction of bound proteins. Only like repressors (Gal-Gal or Lac-Lac) can interact, presumably through formation of a tetramer by association of DNA-bound dimers. Such a communication would presumably generate a DNA loop. To provide a biochemical test of the need for double occupancy plus association, we studied the properties of a Lac repressor mutant that is defective in the association of the DNA-binding dimer units into the normal tetramer.

Mutant Lac repressors have been described that are defective in tetramer formation but retain the ability to repress the lac operon (Miller 1978; Lehming et al. 1988). We studied one of these mutations (Iₐ₋; Lehming et al. 1988). By DNA sequence analysis, the lacᵢ₋ gene has a single-base deletion, creating a frameshift mutation in the 330th codon of the 360 in the lacᵢ gene. The resultant mutant repressor [Iᵢ₋] has replaced the 31 carboxyl-terminal amino acids with a 16-amino-acid segment of a different sequence. The wild-type sequence is LAPNTQASPRALADSMQLARQVSRELGQ; the deduced mutant sequence is WRPIRKPLPARWPIH.
Mandal et al.

We purified the I+ and I_{ad} repressors [N. Mandal and S. Adhya, in prep.], the assay used for purification was based on the ability of the repressor to bind ¹⁴C-labeled IPTG [Gilbert and Müller-Hill 1966]. The amino-terminal amino acid sequences of the repressors were confirmed by Edman degradation in an Applied Biosystems model 477A analyzer. The molecular weight of the mutant and wild-type repressor was estimated by gel filtration [Fig. 2]. The I_{ad} repressor eluted as expected for a tetramer (~150 kD). The I_{ad} repressor eluted as expected for a protein of ~65 kD, close to the calculated molecular mass of a dimer (74 kD). A similar molecular mass was estimated from glycerol gradient sedimentation [data not shown]. We conclude that the I_{ad} mutant is proficient in dimer formation but fails to effectively carry out the association of the dimer units into a tetramer. Presumably, the carboxy-terminal amino acids are important for dimer–dimer association [Miller 1978]. The I_{ad} mutant exhibited normal binding to O_S or O_T operator sites, as judged by gel mobility assays [C. Zwieb and S. Adhya, unpubl.] and electron microscopy [see Table 3, below].

Ineffective repression of the gal operon by the LacI_{ad} repressor in vivo

To test the ability of the I_{ad} mutant repressor to repress the gal operon in vivo, several E. coli strains with different alleles of the lacI gene were constructed. A bacterial strain in which the O_T locus [located internal to the galE structural gene] has been converted to a lac operator sequence assumes a Gal⁻ phenotype because the required base pair changes inactivate the epimerase activity [Haber and Adhya 1988]. However, the regulatory capacity of an operon with both operators converted can be studied by following the expression of one of the other two gene products, transferase or galactokinase. Table 1 shows the results of galactokinase assays of strains carrying I⁺, I⁻, or I_{ad} alleles of the lacI gene. Whereas LacI⁺ repressor caused, as expected, full repression (50-fold) of the gal operon [line 2], there was only 2.3-fold repression in the presence of the I_{ad} mutant repressor [line 3]. Addition of IPTG yielded full derepression in both strains. The derepressed levels of galactokinase were identical to those observed in a strain carrying a Tn10 insertion mutation in the lacI gene. The small repression of gal by the I_{ad} mutant presumably occurs because an O_T-bound repressor has some limited capability to repress the system. This is consistent with previous work, which showed that O_FO_F was partially repressed by GalR and O_FO_F was partially repressed by LacI [Haber and Adhya 1988]. From the galactokinase data, we conclude that a Lac repressor dimer is ineffective in repressing the gal operon.

The failure of the I_{ad} repressor to repress efficiently the gal operon might result from ineffective binding to lac operators rather than inability to associate after binding. To examine this point, we studied repression of the lac operon. If the dimer mutant binds effectively to the operator, the mutant repressor is expected to be an effective repressor of the lac operon, which is considered to be controlled at least primarily by a single operator [Reznikoff et al. 1985]. We observed highly efficient repression of the lac operon [Table 1, line 3]. However, the I_{ad} mutant was not totally effective; compared to wild-type repression (~2000-fold), there was ~300-fold repression of β-galactosidase. The small loss of repression is expected from a weak double operator effect in the lac operon because of the existence of two other operator sequences [O₂ and O₃] [Reznikoff et al. 1974; Gilbert et al. 1975; Mousling and Record 1986; Eisman et al. 1987; Flashner and Gralla 1988]; [for review, see Adhya 1989]. This expectation is supported by the previous observation that a mutation in O₂ yields 3% derepression of the lac operon [Eisman et al. 1987]. In more recent work done concurrently with our own, Oehler et al. [1990] have found that the introduction of both O₂⁻ and O₃⁻ mutations into a lac⁺ background gives the same derepression as the lacI_{ad} mutation and that the derepression found with lacI_{ad} is not increased by an additional O₂⁻ mutation.

To be sure that even overproduction of LacI_{ad} would fail to repress the gal operon, we have studied the repression of the gal and lac operons under conditions of overproduction of the repressors from a multicopy plasmid [Table 2]. Under these conditions, there was complete repression of the lac operon; β-galactosidase level allowed by the mutant repressor was the same as that allowed by the wild-type repressor. Similar results for lac repression by the multicopy plasmid have been obtained previously [Lehming et al. 1988]. In the same cells, the mutant repressor brought about only a three-
fold repression of the gal operon; the gal operon repression was similar to that obtained in the presence of mutant repressor made from a single chromosomal gene. These results show clearly that the failure of the I ada repressor to repress the gal operon does not result from inefficient binding to the operators. In Table 2, the repressed level of gal expression by the wild-type tetramer repressor has increased slightly. This small derepression by overproduced Lac repressor is not surprising because DNA looping depends on the associating of a single tetramer with both operators (shown in vitro by Krämer et al. 1987). If a different LacI tetramer occupies each operator most of the time, looping will be reduced.

We have also demonstrated that the I ada mutant provides effective repression of lac but not gal by a sensitive genetic assay for repression. As noted above, an OI sequence at the OI operator changes the galE sequence and results in an inactive epimerase protein. If the enzymes transferase and galactokinase are expressed in the absence of active epimerase, the cells are killed when galactose is present in the growth medium (Nikaido 1961; phosphorylated galactose intermediates cause bacte-rioriysis. Thus, sensitivity to galactose indicates operon expression, and resistance means repression (Haber and Adhya 1988). The results of galactose sensitivity tests in the presence of overproduced Lac repressors are also shown in Table 2. The gal OI+OI strain in the absence of repressor grew normally in 0.3% glycerol media but was highly sensitive to the presence of 0.01% galactose. Wild-type repressor made the strain galactose-resistant, showing repression. However, the survival of the strain in the presence of galactose with mutant repressor was the same as with no repressor (~10⁻⁶; mutation frequency). This result confirms the inability of even a high level of the mutant repressor to bring about normal repression. A similar assay for lac operon expression gave contrasting results. The cells were resistant to phenylgalac-to side in the presence of excess wild-type or mutant repressor. Phenylgalactoside is a substrate of β-galacto-sidase, but not an inducer of the lac operon (Beckwith 1978). If the lac operon is not repressed, phenylgalactoside would be hydrolyzed by β-galactosidase to generate galactose, which would kill the cells with a derepressed galE⁻ operon. A sensitivity to the galactoside would mean simultaneous derepression of both the gal and lac operons, and a resistance would reflect repression of at least one. Because the mutant repressor fails to repress gal, the resistance of the cells carrying the mutant repressor to phenylgalactoside means repression of the lac operon.

DNA loop formation by LacI⁺ but not LacI₉⁸ repressor

The critical test of the role of double occupancy plus protein association is direct visualization by electron microscopy of looped DNA between the two operator sites. As shown in Figure 1B, the expected loop length is the 95 bp between the two operator sites. We observed efficient loop formation by the I⁺ repressor but not by the I ada mutant. Figure 3 shows examples of looped DNA structures formed by the I⁺ repressor. Based on the length of the restriction fragment, the looped structures are expected to have a short tail of 130 bp, a long tail of 380 bp, and a loop of 95 bp (Fig. 1B). Quantitative measurements are presented in Figure 4. The measured lengths are very close to those predicted. DNA loop for-

Table 1. Activity of LacI₉⁸ repressor with modified gal operon and normal lac operon

Strain	Lac repressor genotype	Activity of galactokinase	Repression ratio	Activity of β-galactosidase	Repression ratio		
		1	1⁺	1	1⁺	1	1⁺
NM18	lacI :: Tn10	31	29	1.0	8.2	8.2	1.0
NM17	lacI⁺	0.6	32	53	0.004	7.8	1950
NM138	lacI₉⁸	13	30	2.3	0.023	7.4	320

⁻¹ and ⁺¹ represent the absence and presence of IPTG, respectively, in the medium during cell growth. The units of galactokinase are nanomoles of galactose-1-phosphate formed per minute per milliliter of cells of A₆₆₀ = 1.0; the units of β-galactosidase are nanomoles of O-nitrophenyl galactoside hydrolyzed per minute per milliliter of cells of A₆₆₀ = 1.0. The repression ratio is the activity with inducer divided by the activity without inducer.

Table 2. Effect of excess repressor on expression of gal and lac operons

Repressor from plasmid	Enzyme activity	EOP with glycerol plus			
	galactokinase	β-galactosidase	nothing	Gal	β-Gal
None	24.5	3.7	1.0	~10⁻⁶	~10⁻⁶
LacI⁺	2.0	0.012	1.0	1.0	1.0
LacI₉⁸	7.7	0.010	1.0	~10⁻⁶	1.0

Cell growth and enzyme assays were done as described in Materials and methods, except that 50 μg/ml of ampicillin was present in the growth medium. The units of galactokinase and β-galactosidase activity are as defined in Table 1. The host strain carrying the plasmids is the lacI deletion NM79. Galactose sensitivity tests were done as described in Materials and methods. (Gal) D(+) galactose; (β-Gal) phenyl-β-D-galactoside; (EOP) efficiency of colony formation.
Quantitative data on repressor-binding and loop formation are presented in Table 3. DNA molecules were scored for the presence of one bound repressor, two bound repressors, and DNA loops. No loops were found for the Ies repressor, although single and double operator binding was observed. We also observed the expected formation by I+ repressor between two lac operator sites has been demonstrated previously (Krämer et al. 1987).
was calibrated by the length of the free DNA molecule, which
Figure 4. Measurements of looped molecules. The length of

tails. From the data for Figure 4 and Table 3, we

1

electrophoretic patterns for single and double operator

binding by the l 4 mutant in a gel retardation assay (data

not shown). From the data for Figure 4 and Table 3, we

conclude that the P repressor dimer binds to operator

sites but fails to mediate DNA looping by association of

DNA-binding units. In experiment I, LacI ÷ was 0.4 nM and

LacI ÷ was 3.2 nM. Six experiments were done with LacI ÷ over

a fourfold concentration range; the number of loop structures

ranged from 10 to 21%. In four independent LacI ÷ experiments

seen out of 400 examined. Single-binding refers to one bound

repressor on the DNA; tandem-binding refers to two bound re-

pressors.

Table 3. DNA–protein complexes formed by LacI ÷ and

Lac 4 repressors

Protein	Free DNA	Single binding	Tandem binding	Loop
Lac I ÷	42 31 44 52 14 17 0 0	3 54 29 34 3 1 15 11		

The experiments presented counted 100 molecules for each re-

pressor. The DNA was 0.2 nm. In experiment I, LacI ÷ was 0.8

nm, and Lac I ÷ was 1.6 nm to equalize concentration of dimer

DNA-binding units. In experiment II, LacI ÷ was 0.4 nm and

Lac I ÷ was 3.2 nm. Six experiments were done with LacI ÷ over

a fourfold concentration range; the number of loop structures

ranged from 10 to 21%. In four independent Lac I ÷ experiments

over a similar concentration range, no loop structures were

seen out of 400 examined. Single-binding refers to one bound

repressor on the DNA; tandem-binding refers to two bound re-

pressors.

from distant sites [Brand et al. 1985; Johnson and Hers-

kowitz 1985; Hofmann et al. 1989]. Thus, we believe that

negative regulation by the classical model is likely to be rare.

Previous work has led to the proposal that proteins

bound to noncontiguous regulatory sites may communi-

cate with each other by protein–protein association,

looping out the intervening DNA [Irani et al. 1983;

Dunn et al. 1984; Majumdar and Adhya 1984]. For the

initiation of DNA replication and site-specific recombi-

nation, there is abundant evidence that communication

occurs by the association of DNA-bound proteins in a

nucleoprotein structure in which the DNA is looped or

wound [Echols 1984, 1986, 1990; Gellert and Nash 1987;

Landy 1989]. Direct evidence by electron microscopy

has been presented for interaction of DNA-bound pro-

teins in the case of λ (Griffith et al. 1986), LacI (Krämer

et al. 1987), and deo operon repressors [Amouyal et al.

1989]. However, these demonstrations did not directly

correlate DNA looping with repression in a biological

system.

By the work on the gal operon described here, we have

provided a direct correlation between repression activity

in vivo and association of DNA-bound repressor proteins

in vitro. The l ÷ tetramer repressor is an effective nega-

tive regulator in cells, and purified l ÷ protein forms

DNA loops between the two operator sites. The l ÷

dimer repressor is ineffective in vivo, and purified l ÷

protein fails to form DNA loops. We have concluded

that negative regulation of the modified gal operon re-

quires the association of DNA-bound repressor proteins.

We believe that this conclusion applies to the normal

gal operon as well because the regulatory properties of

the converted operon are identical to those of the normal

gal operon (except for the switch of repressor proteins).

Potential transcriptional control by an organized

nucleoprotein structure

As noted above in the introduction to the gal operon,

regulated expression depends on an array of positive and

negative regulators. The pattern of repression by the

classical model of negative regulation of this operon was

consistent with the proposal that repressors block

productive binding of RNA polymerase at the promoter site

because of steric hindrance; [Reznikoff et al. 1985]. Howev-

er, more complex modes of regulation involving multipar-

tite operators are demanded for the bacterial gal operon,

and for the ara (Dunn et al. 1984) and deo operons [Va-

lentin-Hansen et al. 1986]. As noted above, even the par-

adigm lac operon may use a second operator site for full

repression. Negative regulation in yeast can also occur

Discussion

Transcriptional control by association of DNA-bound

regulatory proteins

The “classical model” for negative regulation of gene ex-

pression presumed that repressors block productive

binding of RNA polymerase at the promoter site because

the two proteins occupy overlapping segments of DNA

(Reznikoff et al. 1985). However, these demonstrations did

not directly correlate DNA looping with repression in a biological

system. By the work on the gal operon described here, we have

provided a direct correlation between repression activity

in vivo and association of DNA-bound repressor proteins

in vitro. The l ÷ tetramer repressor is an effective negative

regulator in cells, and purified l ÷ protein forms DNA loops

between the two operator sites. The l ÷ dimer repressor is

ineffective in vivo, and purified l ÷ protein fails to form DNA

loops. We have concluded that negative regulation of the modified gal operon

requires the association of DNA-bound repressor proteins. We believe that this conclusion applies to the normal gal operon as well because the regulatory properties of the converted operon are identical to those of the normal gal operon (except for the switch of repressor proteins).

Possible transcriptional control by an organized

nucleoprotein structure

As noted above in the introduction to the gal operon, regulated expression depends on an array of positive and
negative interactions involving RNA polymerase, CRP–cAMP, and Gal repressor. We have not been able to demonstrate the DNA-looping interaction with purified Gal repressor protein, which exists in solution as a dimer. One possible explanation is that the DNA loop for Gal repressor normally forms in a multiprotein complex with RNA polymerase and CRP–cAMP [Adhya 1989]. In this model (Fig. 5), all of the proteins involved in regulated transcription are present together on the DNA. Such an organized nucleoprotein structure may be facilitated by the demonstrated ability of both Gal and Lac repressors and CRP–cAMP to induce bending in DNA [Wu and Crothers 1984; Zwieb et al, 1989]. The possibility of the multiprotein complex is supported by data from DNase footprinting, which indicate that repressor, CRP, and RNA polymerase can all be present together on the DNA [Adhya and Majumdar 1987, Kuhnke et al. 1989]. An organized nucleoprotein complex involving RNA polymerase and CRP–cAMP has also been suggested by Buc [Buc 1986]. Evidence has also been presented that Lac repressor and RNA polymerase both occupy the lac promoter–operator region at the same time [Straney and Crothers 1987].

In the model proposed in Figure 5, there are two general ways in which inhibition of transcription may occur, both involving the capacity of RNA polymerase to execute a productive interaction at the promoter site. In one mechanism, the DNA loop provides a topological constraint on the promoter segment, RNA polymerase cannot proceed from the closed complex to the productive open complex because the requisite DNA unwinding cannot occur. The topological constraint model requires that the interaction sites must be close. Alternatively (or in addition), one or both of the bound repressor molecules may alter the conformation of RNA polymerase by direct contact to impede formation of the open complex, initiation, or promoter clearance. By this mechanism, binding of one repressor to the operator closest to the promoter, O2, may serve to provide a partial repression (e.g., the slight repression found with the I= repressor).

In summary, we conclude that the association of DNA-bound repressor proteins regulates the gal operon, probably in a DNA-wound nucleoprotein complex. The proposed mechanism is likely to be an example of the most general way in which DNA transactions are localized and controlled.

Materials and methods

Strains of E. coli K-12
NM17: F– hsdS20[rG– m<]> ara14 xyl15 mtl1 leu rpsL20 galOl[O<]r
NM18; NM17 lacI:: Tn10, NM138, NM17lacI^rd, NM79, NM17 lacI::SU169proC.

Enzyme assays

Cells were grown at 32°C to mid-log phase in minimal M56 media [Monod et al. 1951], containing 0.3% fructose, 0.1% casamino acids, and 1 μg/ml thiamine. Galactokinase [Adhya and Miller 1979] and β-galactosidase [Miller 1972] assays were performed as described previously. Lac repressor was assayed in 10 mM Tris-HCl (pH 7.4), containing 10 mM magnesium-acetate, 200 mM KCl, 0.1 mM EDTA, and 6 mM 2-mercaptoethanol.

Galactose sensitivity

For galactose sensitivity tests, cells were grown at 32°C in LB medium containing 50 μg/ml of ampicillin to 5 × 10^8 cells/ml and then plated after various dilutions on M56 minimal agar plates, containing 0.3% glycerol, 0.1% casamino acids, 1 μg/ml of thiamine and, when added, 0.01% galactose or phenyl-β-D-galactoside. The plates were incubated for 48 hr and then counted for number of colonies. Efficiency of plating (EOP) represents the ratio of the colony-forming ability of a strain on a given plate to that of a control strain carrying plasmid pBR322 on glycerol plates in the absence of galactose or phenyl-β-D-galactoside. Phenylgalactoside is a substrate of β-galactosidase but not an inducer of the lac operon [Beckwith 1978]; phenylgalactoside is hydrolyzed to generate galactose if the lac operon is expressed constitutively in the cells.

Gel-filtration chromatography

A Superose-12 column (25-ml bed volume) was washed twice with sterile deionized water and then equilibrated with 75 mM potassium phosphate buffer (pH 7.4) containing 5% glucose, 1 mM EDTA, 1 mM DTT, 50 μg/ml of PMSF, and 0.4 M KCl. The equilibration was done by passing two column volumes of the buffer at a flow rate of 0.2 ml/min. The column was then loaded with a mixture of proteins that included the mutant Lac repressor. The elution was performed at a flow rate of 0.4 ml/min. Elution was monitored by following optical absorbency at 280 nm (A280). The mixture of proteins with known molecular weights are described in the legend to Figure 2.
DNA looping in gal operon

Electron microscopy

The DNA fragment [Fig. 1B] was cut from plasmid pHI108, which contains the 646-bp region of gal DNA cloned between the EcoRI and HindIII sites of pBR322. The fragment was isolated from a 1.5% agarose gel. DNA-binding reactions (10 μl) contained 10 mM Tris-HCl (pH 8.0), 10 mM KCl, 10 mM MgAc2, 0.1 mM EDTA, 0.1 mM DTT, 0.2–1.0 mM DNA (purified Oj/Ol fragment), and 0.2–8 nM LacI* or LacIα repressor. The reaction mixtures were incubated for 20 min at room temperature and then put on grids without dilution or fixation. Electron microscopy was carried out by the polylysine technique (Williams 1977). Grains were rotary-shadowed with tungsten.

Acknowledgments

We thank B. Müller-Hill for the gift of plasmid pBW100 harboring the lacIα mutation, Claude Klee for amino acid sequence analysis, Rick Eisner for editorial assistance, and Carol Gross for comments on the manuscript. Work at the University of California at Berkeley was supported by a grant from the National Institutes of Health (GM-17078).

References

Adhya, S. 1987. The galactose operon. In *Escherichia coli and Salmonella typhimurium* (ed. F.C. Neidhardt), pp. 1503–1512. American Society for Microbiology, Washington, D.C.

— —. 1989. Multipartite genetic control elements: Communication by DNA loop. *Annu. Rev. Genet.* 23:227–250.

Adhya, S. and A. Majumdar. 1987. Negative control of the gal operon. In *RNA polymerase and regulation of transcription* (ed. W.S. Reznikoff, R.R. Burgess, J.E. Dahlberg, C.A. Gross, M.T. Record, and M.P. Wickens), pp. 129–135. Elsevier Science, New York.

Adhya, S. and W. Miller. 1979. Modulation of the two promoters of the galactose operon of *Escherichia coli*. *Nature* 279: 492–494.

Amouyel, M., L. Mortensen, H. Buc, and K. Hammer. 1989. Single and double loop formation when deoR repressor binds to its natural operator sites. *Cell* 58: 545–551.

Barkley, M.D. and S. Bourgeois. 1978. Repressor recognition of operator and effectors. In *The operon* (ed. J.H. Miller, and W.S. Reznikoff), pp. 177–220. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

Beckwith, J.R. 1978. *lac*: The genetic system. In *The operon* (ed. J.H. Miller and W.S. Reznikoff), pp. 11–30. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

Brand, A.H. and J. Breeden, J. Abraham, R. Sternglanz, and K. Nasmyth. 1985. Characterization of a “silencer” in yeast: A DNA sequence with properties opposite to those of a transcriptional enhancer. *Cell* 41: 41–48.

Buc, H. 1986. Mechanism of activation of transcription by the complex formed between cyclic AMP and its receptor in *Escherichia coli*. *Biochem. Soc. Trans.* 14: 196–199.

Dunn, T.M., S. Hahn, S. Ogden, and R.F. Schlesif. 1984. An operator at −280 base pairs that is required for repression of arBAD operon promoter: Addition of DNA helical turns between the operator and promoter cyclically hinders repression. *Proc. Natl. Acad. Sci.* 81: 5017–5020.

Echols, H. 1984. Specialized nucleoprotein structures in high-fidelity DNA transactions. *Bior Essays* 1: 148–152.

— —. 1986. Multiple DNA-protein interactions governing high-precision DNA transactions. *Science* 233: 1050–1056.

— —. 1990. Replication and recombination: Meeting sum-
mmary. In *Molecular mechanisms in DNA replication and recombination* (ed. C. Richardson and R. Lehman), pp. 1–31. Alan R. Liss, New York.

Eisman, E., B. von Wilcken-Bergmann, and B. Müller-Hill. 1987. Specific destruction of the second lac operator decreases repression of the lac operon in *Escherichia coli* fivefold. *J. Mol. Biol.* 195: 949–952.

Flashner, Y. and J.D. Gralla. 1988. Dual mechanism of repression at a distance in the lac operon. *Proc. Natl. Acad. Sci.* 85: 8969–8972.

Gellert, M. and H. Nash. 1987. Communication between segments of DNA during site-specific recombination. *Nature* 328: 401–404.

Gilbert, W. and B. Müller-Hill. 1966. Isolation of the lac repressor. *Proc. Natl. Acad. Sci.* 56: 1891–1898.

Gilbert, W., J. Gralla, J. Majors, and A. Maxam. 1975. The chemical effects of nucleic acid alkylation and their relation to mutagenesis and carcinogenesis. In *Protein ligand interactions* (ed. H. Sund and G. Bauer), pp. 193–210. de Gruyter, Berlin.

Griffith, J., A. Hochschuld, and M. Ptashne. 1986. DNA loops induced by cooperative binding of λ repressor. *Nature* 322: 750–752.

Haber, R. and S. Adhya. 1988. Interaction of spatially separated protein-DNA complexes for control of gene expression: Operator conversion. *Proc. Natl. Acad. Sci.* 85: 9683–9687.

Hofmann, I.F., T. Laroche, A.H. Brand, and S.M. Gasser. 1989. RAP-1 factor is necessary for DNA loop formation in vitro at the silent mating type locus HML. *Cell* 57: 725–737.

Irani, M., L. Orosz, and S. Adhya. 1983. A control element within a structural gene: The gal operon of *Escherichia coli*. *Cell* 32: 783–788.

Johnson, A.D. and I. Herskowitz. 1985. A repressor (MATα2 product) and its operator control expression of a set of cell type specific genes in yeast. *Cell* 42: 237–247.

Kania, J. and B. Müller-Hill. 1977. Construction, isolation and implications of repressor-galactosidase-β-galactosidase hybrid molecules. *Eur. J. Biochem.* 79: 381–386.

Krämer, H., M. Niemöller, M. Amouyel, B. Revet, B.V. Wilcken-Bergmann, and B. Müller-Hill. 1987. lac repressors forms loops with linear DNA carrying two suitably spaced lac operators. *EMBO J.* 6: 1481–1491.

Kuhnke, G., C. Theres, H. Fritz, and R. Ehring. 1989. RNA polymerase and gal repressor bind simultaneously and with DNA bending to the control region of the *Escherichia coli* galactose operon. *EMBO J.* 8: 1247–1255.

Landy, A. 1989. Dynamic, structural and regulatory aspects of α site-specific recombination. *Annu. Rev. Biochem.* 58: 913–950.

Lehming, N., J. Sartorius, S. Oehler, B. von Bilcken-Bergmann, and B. Müller-Hill. 1988. Recognition helices of lac and λ repressor are oriented in opposite directions and recognize similar DNA sequences. *Proc. Natl. Acad. Sci.* 85: 7947–7951.

Majumdar, A. and S. Adhya. 1984. Demonstration of two operator elements in gal: In vitro repressor binding studies. *Proc. Natl. Acad. Sci.* 81: 6100–6104.

Majumdar, A., S. Rudikoff, and S. Adhya. 1987. Purification and properties of gal repressor: pl-galR fusion in pKC31 plasmid vector. *J. Biol. Chem.* 262: 2326–2331.

Miller, J.H. 1972. *Experiments in molecular genetics*. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

— —. 1978. The lacI gene. In *The operon* (ed. J.H. Miller and W.S. Reznikoff), pp. 31–88. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

GENES & DEVELOPMENT 417
Mandal et al.

Mitchell, P.J. and R. Tjian. 1989. Transcriptional regulation in mammalian cells by sequence-specific DNA-binding proteins. *Science* 245: 371–378.

Monod, J., G. Cohen-Bazire, and M. Cohn. 1951. Sur la biosynthèse de la β-galactosidase (lactase) chez *E. coli*. La spécificité de l’induction. *Biochim. Biophys. Acta*. 7: 585–599.

Mossing, M.C. and M.T. Record. 1986. Upstream operators enhance repression of the lac promoter. *Science* 233: 889–892.

Nikaido, H. 1961. Galactose sensitive mutants of Salmonella. II. Bacteriolysis induced by galactose. *Biochim. Biophys. Acta*. 48: 460–469.

Oehler, S., E.R. Eismann, H. Krämer, and B. Müller-Hill. 1990. The three operators of the lac operon cooperate in repression. *EMBO J.* (in press).

Ptashne, M. 1986. Gene regulation by proteins acting nearby and at a distance. *Nature* 322: 697–701.

Reznikoff, W.S., R.B. Winter, and C.K. Hurley. 1974. The location of the repressor binding sites in the lac operon. *Proc. Natl. Acad. Sci.* 71: 2314–2318.

Reznikoff, W.S., D.A. Siegele, D.W. Cowing, and C.A. Gross. 1985. The regulation of transcription initiation in bacteria. *Annu. Rev. Genet.* 19: 335–3897.

Schlief, R. 1988. DNA looping. *Science* 240: 127–128.

Straney, S.B. and D.M. Crothers. 1987. Lac repressor is a transient gene-activating protein. *Cell* 51: 699–707.

Valentin-Hansen, P., B. Albrechtsen, and J.E. Löwe Larsen. 1986. DNA-protein recognition: Demonstration of three genetically separated operator elements that are required for repression of the *Escherichia coli deoCABD* promoters by the DeoR repressor. *EMBO J.* 5: 2015–2021.

Whitson, P.A. and K.S. Matthews. 1986. Dissociation of the lactose repressor-operator DNA complex: Effects of size and sequence context of operator-containing DNA. *Biochemistry* 25: 3845–3852.

Williams, R. 1977. Use of polylysine for adsorption of nucleic acids and enzymes to electron microscope specimen films. *Proc. Natl. Acad. Sci.* 74: 2311–2315.

Wu, J., and D.M. Crothers. 1984. The locus of sequence-directed and protein-induced DNA bending. *Nature* 308: 509–513.

Zwieb, C., J. Kim, and S. Adhya. 1989. DNA bending by negative regulatory proteins: Gal and Lac repressors. *Genes Dev.* 3: 606–611.
DNA looping in cellular repression of transcription of the galactose operon.

N Mandal, W Su, R Haber, et al.

Genes Dev. 1990, 4:
Access the most recent version at doi:10.1101/gad.4.3.410

References
This article cites 38 articles, 14 of which can be accessed free at:
http://genesdev.cshlp.org/content/4/3/410.full.html#ref-list-1

License

Email Alerting Service
Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or [click here.](#)