The Relationship of Megazoobenthos Association with Seagrass Ecosystem Conditions in Ujung Genteng Waters, Sukabumi

Gilang Primanagita Rachman¹, Indah Riyantini¹, Zahidah Hasan¹, and Herman Hamdani¹

¹Faculty of Fisheries and Marine Sciences, Universitas Padjadjaran, Jalan Raya Bandung – Sumedang, KM. 21, Jatinangor 45363, Indonesia.

ABSTRACT

Seagrass beds in Ujung Genteng waters are one of the shallow marine ecosystems that have relatively high biodiversity. Seagrass ecosystem as one of the coastal ecosystems in these waters has a diversity of marine life that is associated with it. The purpose of this study was to establish the association pattern and the correlation of mega zoobenthos to seagrass ecosystem conditions. The method used was a survey method by conducting a survey direct observation of the stations that have been determined. Three seagrass species were identified, namely: Thallasia hemprichii, Cymodocea rotundata and Enhalus acoroides. The highest density of seagrass was found in station 2 with the type of seagrass Thallasia hemprichii as much as 207 ind/m². Fifteen mega zoobenthos species were identified representing 3 phyla. Species Mega zoobenthos which is most commonly found in Ujung Genteng waters is Ophiothrix fragilis, Ophiocoma erinacea, and Diadema setosum. The mega zoobenthos Diversity Index at the observation station is included in

*Corresponding author: Email: gilangprimanagita@gmail.com;
the medium category that is 2.33-2.66 and the evenness index is 0.63-0.84. Correlation of seagrass density with mega zoobenthos obtained by 0.92 shows that there is a very strong relationship between seagrass density with mega zoobenthos. The result shows that there are 4 patterns of close association and 2 patterns of very close association. Ophiocoma erinaceus of the ophiuroidea class has a pattern of very close positive associations with seagrass Cymodoceae rotundata and Dendrodoris sp of the order nudibranchia has a pattern of very close negative associations with seagrass Cymodoceae rotundata.

Keywords: Cymodoceae rotundata; Ophiocoma erinaceus; diversity index; association; correlation.

1. INTRODUCTION

Ujung Genteng is a coastal area, south of West Java, that is included in the administrative area of Sukabumi Regency. The waters of the tile end support the life of marine organisms such as megazoobenthos and seagrass. According to Badan Pengendalian Lingkungan Hidup Daerah Provinsi Jawa Barat [1], there is a seagrass ecosystem in the waters of the tile of the tip which is dominated by Thalassia sp.

Seagrass beds are complex shallow-water ecosystems, having high biological productivity. It is therefore an important marine resource both ecologically and economically [2]. The bioecological functions of seagrass beds include nurseries, spawning areas, foraging areas, and areas to seek protection for various types of marine biota such as fish, crustacea, mollusks, echinoderm, and etc [2]. Waters that have seagrass ecosystems have a higher diversity and abundance of associated organisms when compared to waters where there are no seagrass ecosystems. It is for this reason that seagrass ecosystem management is needed to maintain the productivity of fisheries resources and the preservation of natural resources in coastal areas [3].

Megazoobenthos that is animal organism that is more than 1 cm in size that live on or in the seafloor, including sticking, crawling and melting biota [4]. Megazoobenthos is an organism whose survival depends on seagrass ecosystems. Megazoobenthos which will be examined in this study is divided into three categories such as echinoderms, mollusks, and crustaceans. The high megazoobenthos diversity is influenced by the quality and condition of the seagrass ecosystem itself, meaning that the better the condition and quality of the seagrass ecosystem, the higher the diversity of the megazoobenthos [3]. Considering the important bioecological function and the observation of megazoobenthos organisms in seagrass beds and the study of its existence is still not much, this study still needs to be done.

2. MATERIALS AND METHODS

The study was conducted in May 2019 - June 2019. Data were taken 3 times every 2 weeks during the study. The research location is at Ujung Genteng Beach, Sukabumi. The research method used was a survey method. The sampling used in research by purposive sampling. Sampling and sample observation were carried out at 3 predetermined locations. Station 1 has medium seagrass cover conditions, station 2 has high seagrass cover conditions, and station 3 has very high seagrass cover conditions (Fig. 1).

2.1 Research Procedure

Observation of seagrass samples was carried out by stretching three-line transects in a position perpendicular to the coastline towards the edge ± 50 meters, on each line, three plots were laid. In each observation plot, a 1 x 1 meter squared transect is divided into 25 sections with a size of 20 cm x 20 cm each. The distance between the transect squares ranges from 25 meters or adjusted to the existing seagrass area. Mega zoobenthos observations were carried out together with recording the type and number of seagrass stands. The identification of mega zoobenthos is done by matching the sample of bga zoobenthos to the picture contained in the mega zoobenthos identification book (Marine Biology Book). To support field data, physical parameters are also measured and chemical measurements of physical parameters are temperature, transparency, depth, and current. While the chemical parameters are DO, pH, salinity, and nutrient content in the substrate. Measurement of temperature, DO, pH, and salinity using the potentiometric method, measurement of depth and transparency using visual methods, measurement of current using
secondary data accessed from https://www.ecmwf.int and measurement of nutrients in sediments carried out by taking 250 grams of sediment then brought to the laboratory and measured by the spectrophotometric method.

2.2 Data Analysis

Seagrass biota is analyzed by calculating Species Density (Di), Relative Density (RDi), Species Frequency (Fi), Relative Frequency (RFi), Coverage Species (Ci), Relative Closure (RCi) and Importance Value Index (IVI) [5]. Where as the mega zoobenthos biota was analyzed by calculating the Abundance Index (K), Diversity Index (H'), and the Evenness Index [6]. Mega zoobenthos abundance relationship with seagrass density calculation using the correlation coefficient Pearson (Pearson's Product Moment of Correlation). And the association between species of seagrasses and between species of mega zoobenthos uses the calculation presence-absence or contingency Table and then proceed with the Chi-square test χ^2.

Fig. 1. Research location map
3. RESULTS AND DISCUSSION

3.1 General Condition of Research Location

Treatment station at the study site has different regional characteristics. Station 1 is at the coordinate point 7º21'33''LS - 106º24'10'' East. Station 1 has a seagrass cover condition with sediment texture included in the Sand category with a composition of 92% sand, 3% dust, and 5% clay. Station 2 is at coordinates 7º22'4''LS - 106º24'1'' BT. Station 2 has a very high seagrass cover condition with sedimentary textures including the Sand category with a composition of 90% sand, 4% dust, and 6% clay. Station 3 is at the coordinate point 7º14'20''LS - 106º31'7'' East. Station 3 has a high seagrass cover condition with sediment textures including the Sand category with a composition of 92% sand, 3% dust, and 5% clay.

3.1.1 Physical and chemical parameters of the waters

Based on Table 1 the temperature obtained in Ujung Genteng waters is 28.5-31.6ºC. The temperature needed for seagrass to photosynthesis around 28-35ºC. As for growing, seagrasses require optimal temperatures between 28-30ºC [7].

The results of pH measurements obtained in Ujung Genteng waters range from 6.4 to 7.5. The pH value in the Ujung Genteng waters can still be tolerated for seagrasses and megazoobenthos organisms. According to Kepmen LH No. 51 [7] concerning the quality standard of acidity (pH) in seagrass ecosystems ranges from 7-8.5. Water conditions that are very acidic or very basic will be detrimental to marine organisms.

Seagrass species have different tolerance to salinity. However, in general, the range of salinity that can be tolerated by seagrass is 10-40% and the optimum value is 35% [8]. The tolerable range of mega zoobenthos, on the other hand, is 15-35%. Salinity measurement results obtained in Ujung Genteng waters are 31-33‰. The salinity value is classified as good for growing seagrass species and living species mega zoobenthos.

The results of DO measurements in Ujung Genteng waters range from 6.3-8.8 (mg / L), the condition is quite good for growing seagrass species. According to the Decree of the Kepmen LH No 51 [7] the optimum seagrass species grow in waters with DO values > 5 (mg/L). The dissolved oxygen conditions above can also support the life of mega zoobenthos and other marine organisms. Almost all marine organisms like the condition of dissolved oxygen concentration > 5 mg/L [9].

The depth of the water ranges from 0-100 cm and the brightness is constant at each observation, which is 100% shows the penetration of sunlight into the bottom of the water.

Current data are taken consist of May 2019 to June 2019. The maximum current speed in May is 0.219 m / s and the minimum current speed is 0.072 m / s. The maximum current speed in June is 0.174 m / s and the lowest current value is 0.07 m / s. The results of the current velocity obtained in Ujung Genteng waters are of moderate current because the average current velocity in the east season is still below 0.5 m/s [10].

Based on Table 2, the highest Nutrient content is at station 2 and the lowest is at station 1. The high nutrient content at station 2 causes this station to have a high seagrass rate. Nutrients are important elements of seagrass growth and metabolism. The nutrient content is used as a benchmark for aquatic fertility because of the more optimal the nutrient content of water the more abundant the growth of seagrass [11].

Table 1. Physicochemical parameters

No	Physicochemical parameters	Research station
1	Temperature (ºC)	I: 28.5-31.6
		II: 28.6-31.2
		III: 28.3-31.4
2	pH	I: 6.8-7.5
		II: 6.4-7.4
		III: 6.8-7.5
3	Salinity (%)	I: 31-33
		II: 31-33
		III: 31-33
4	DO (mg / L)	I: 6.3-7.5
		II: 7-8.8
		III: 6.5-8.2
5	Depth (cm)	I: 0-100
		II: 0-100
		III: 0-100
6	Transparency (%)	I: 100%
		II: 100%
		III: 100%
3.2 Seagrass

3.2.1 Composition of seagrass species

In Ujung Genteng waters, 3 seagrass species were found for all stations. At station 1 found 2 species of seagrasses, *T. hemprichii* and *C. rotundata*. At stations 2 and 3 found 3 species of seagrasses, *T. hemprichii*, *C. rotundata* and *E. acoroides*.

3.2.2 Density of seagrass

In all stations *T. hemprichii* had the highest density value than other types of seagrass this is caused because *T. hemprichii* has a good adaptation to environmental conditions. The highest density of seagrass is at station 2, namely *T. hemprichii* with a density of 207 ind/m2 and the lowest at station 1 is *E. acoroides* with a density of 0 ind/m2 which means that the species is not found in station 1 (Table 4).

3.2.3 Frequency of seagrass

Based Table 4, at station 1 *T. hemprichii* has a frequency value of 0.9 and *C. rotundata* has a frequency value of 0.8 which means that both species have fairly even distribution in the observation area of station 1. Whereas for the *E. acoroides* species the frequency value is 0 this indicates that this species was not found at all at station 1. At stations 2 and 3 *T. hemprichii* and *C. rotundata* have a frequency value of 1 this shows that in the observation plot area these two species are always found and can be said to be spreading seagrass species *T. hemprichii* and *C. rotundata* is evenly distributed at stations 2 and 3. For *E. acoroides* species the frequency values obtained are 0.4 at station 2 and 0.3 at station 3 this shows that the *E. acoroides* species are found at stations 2 and 3 but their distribution is uneven or it could be said in the area of the observation plot that only a few plots of *E. acoroides* were found.

3.2.4 Coverage of seagrass

Based on Table 4, station 1 has a total seagrass cover of 45% which is classified as a low seagrass coverage category, Station 2 has a total seagrass cover of 95% classified as a seagrass coverage category is very dense, while Station 3 has a total seagrass cover of 75% classified as a dense category. Seagrass coverage in the low category has a cover range of 26-50%, dense seagrass coverage has a cover range of 51-75%, and seagrass coverage in the very dense category has a cover range of 76-100% [12].

3.2.5 Important value index

T. hemprichii had the highest importance value index value of the species *C. rotundata* and *E. acoroides* that is equal to 1.8 and belong to the category of being, even though belonging to the category of being a role *T. hemprichii* effect on other seagrass species. This is evidenced by the existence of *T. hemprichii* which is almost found in all stations and has a high seagrass density (Table 4).

3.3 Mega Zoobenthos

Mega zoobenthos found at the study site contained 15 species of 3 phyla, Echinodermata, mollusca, and arthropoda. There are 6 species of phylum echinodermata, namely *Diadema setosum*, *Tripneustes depressus*, *Tripneustes gratilla*, *Ophiothrix fragilis*, *Ophiocoma erinaceus*, and *Holothuria atra*. There are 3 species of

Table 2. Analysis of nutrient content and substrate type

Station	C-org (%)	N-total (%)	C / N	P$_2$O$_5$ (ppm)	Texture (%)	Type Substrate		
					S	Si	C	
I	0.52	0.07	7	10.42	92	3	5	Sand
II	0.94	0.10	10	9.19	90	4	6	Sand
III	0.81	0.11	7	12.01	91	3	5	Sand

Table 3. Seagrass species in ujung genteng waters

No	Seagrass type	Station
1	*Thalassia hemprichii*	1 │ 2 │ 3
2	*Cymodoceae rotundata*	1 │ 2 │ 3
3	*Enhalus acoroides*	1 │ 2 │ 3

crustacean species, *Squilla mantis*, *Calappa hepatica* and *Scopimera globosa*. There are 6 species of phylum mollusk, namely *Dendrodoris sp*, *Turbo sp*, *Chlamys sp*, *Anadara antiquata*, *Cypraea ventriculus*, and *Cypraea annulus*.

O. erinaceus and *O. fragilis* are the most abundant megazoobenthos found at the research location. As many as 46% of *O. erinaceus* was found at the study site and as many as 20% *O. fragilis* was found at the study site (Fig. 2).

3.3.1 Abundance, diversity, and evenness indeks mega zoobenthos

The Station 2 had the most abundant species at 9 individuals/m². This is because the density of seagrass at station 2 is very high density so that food sources for several types of megazoobenthos are abundant at station 2, megazoobenthos species that have a high number of individuals at station 2 namely from the species *O. fragilis* and *O. erinaceus* (Table 5).

![Fig. 2. Megazoobenthos species in ujung genteng waters](image)

Table 4. Seagrass density, frequency, coverage, and important value index

Station	Seagrass species	Seagrass density (ind/m²)	Seagrass frequency	Seagrass coverage (%)	Important value index
Station I	*Thalassia hemprichii*	43	0.9	30%	1.8
	Cymodoceae rotundata	19	0.8	15%	
	Enhalus acoroides	0	0	0%	
Station II	*Thalassia hemprichii*	207	1	60%	1.1
	Cymodoceae rotundata	81	1	30%	
	Enhalus acoroides	3	0.4	5%	
Station III	*Thalassia hemprichii*	140	1	48%	0.1
	Cymodoceae rotundata	77	1	25%	
	Enhalus acoroides	1	0.3	2%	
Station 1 has a diversity index value of 2.66, Station 2 has a diversity index value of 2.33, and Station 3 has a diversity index value of 2.41. The Diversity index of each station includes the category of moderate diversity, this is according to Odum [6] statement that megazoobenthos has a moderate diversity index of 1 <H<3.00 (Table 4), diversity that is showing the distribution of the number of individuals per moderate species, moderate community stability and moderate productivity. The highest diversity is found in station 1 and the lowest diversity is found in station 2. Even though the number of species of station 2 is greater but the abundance of individuals in each species at station 1 is better than station 2. According to Minarni et al. [13] states that the high and low diversity index values types can be caused by various factors, including the number of types or individuals obtained and the presence of several species found in quantities that are more abundant than other types. According to Odum [6] species diversity is not only synonymous with many types, but the nature of the community is determined by the number of species and the abundance of individuals of each type.

The evenness index (E) (Table 5) ranges from 0-1. According to Odum [6] if the value is close to 0, it means that the uniformity is low because there is a type that dominates, and if it is close to 1, a high evenness indicates that no species dominates. At station 1 it has an evenness index of 0.84, station 2 has an evenness index of 0.63, and station 3 has an evenness index of 0.70. In Ujung Genteng waters have a high population evenness because of the value of E>0.6. A high evenness index indicates that there is a stable community. This is due to the distribution of individual megazoobenthos which are still the same between stations. The highest evenness index was found at station 1 because this was not as much at the station 1 species found in other stations other than that the number of individuals found was not much different from other individuals. The lowest evenness index is found at station 2, it is caused at station 2 which species are found more and the number of individuals found between species is uneven. One of the species with the highest number of individuals found at station 2 is O. erinaceus. The high number of O. erinaceus individuals causes the uniformity index at Station 2 to be the lowest among other stations.

3.4 Relationship of Seagrass Vegetation with Mega Zoobenthos

Correlation test results obtained a correlation value of 0.92. The correlation value includes the category of very strong relationship, according to Zaid [14], correlation with the value of 0.00 - 0.199 including a very low relationship, 0.20 - 0.399 including a low relationship, 0.40 - 0.599 including a moderate relationship, 0.60 - 0.799 including a strong relationship, and 0.80 - 1.00, including a very strong relationship. The relationship between the density of seagrass vegetation and the abundance of mega zoobenthos obtained shows a directly proportional relationship. The higher the density of seagrass, the higher the abundance of living mega zoobenthos, this occurs because the density of seagrass vegetation affects the increased production of litter and available nutrients. Seagrass also has many bioecological functions that are very important as a spawning area and care for various types of marine organisms such as mega zoobenthos [3].

3.5 Associations of Mega Zoobenthos with Seagrass

The association pattern of megazoobenthos species with seagrass species was found as many as 38 pairs of species with positive associations and 7 pairs of negative associations (Table 6).

Megazoobenthos in the phylum Echinoderms occurs positive associations between the species of megazoobenthos with seagrass species. Species of the Echinoderms that are positively associated with seagrasses are sea urchins (Diadema setosum, Tripneustes depressus, Tripneustes gratilla). This confirms the idea suggested by Azrab [15], that sea urchins are one of the organisms known to be active in eating seagrasses, both those observed in nature and research conducted in the laboratory. However, there is one species of sea urchins that are negatively associate with seagrasses, namely Diadema setosum species with species E. acoroides. This condition is caused by E. acoroides having low density and also an uneven distribution of E. acoroides can only be found at station 2 and station 3 which causes the association of Diadema setosum to E. acoroides is negative. In addition, other species that positively associate with the Echinoderms phylum are the snaking star species (Ophiothrix fragilis and Ophiocoma erinaceus) as well as the
sea cucumber species (*Holothuria atra*). This is in accordance with the statement of Dissanayake & Stefansson [16], that active sea cucumbers live in seagrass ecosystems, sea cucumbers are deposit-eating organisms and will gather in seagrass that have high densities. This has been proven to be found in sea cucumbers only at station 2 and station 3 with high seagrass density.

The positive association of crustacean classes to seagrasses occurs in the species *Squilla mantis, Calappa hepatica* and *Scopimera globosa*. Aswandy [17] states, some active crustaceans live in seagrass ecosystems such as crustaceans, crustaceans, which prey on other small animals that live attached (epizoan) to leaves or other parts of seagrass.

Megazoobenthos in mollusk phylum occurs positive and negative associations with seagrass species, megazoobenthos type of mollusk phyla that are actively associated with seagrass species, namely from the gastropod and Bivalvia classes. Gastropods that are actively associated with seagrass species are *Dendrodiris sp*, *Turbo sp*, *Cypraea ventriculus*, and *Cypraea anullus*. This is proven by Azkab statement [14], that a food chain event occurred between a gastropod and a seagrass, seagrass litter was used as a food source. Bivalves that are actively associated with seagrass species are *Chlamys sp*, and *Anadara antiquate*. Seagrasses and bivalves are related, one of which has the same substrate type characteristics that serve as habitat. In addition, the association between seagrass and bivalves has a strong connection in the food cycle. Evidenced by the statement of Allifah & Rosmawati [18] litter on seagrass will settle to the bottom of the waters which are then broken down by microorganisms that become bivalve food.

The calculation result χ^2 shows (Table 7) that there are 4 patterns of close association and 2 patterns of association are very tight consisting of 1 pattern of associations between species is strongly negative and 3 patterns of association of species are closely positive, 1 pattern of association is very close negative and 1 pattern of association is very close positive. The pattern of negative inter-species associations is very close, that is, the species of the nudibranchia *Dendrodoris sp* against seagrass species *C. rotundata* It is suspected that *Dendrodoris sp* does not like the presence of seagrass species *C. rotundata* as evidenced by the presence of this species only at station 1 which has a cover medium seagrass and species density is *C. rotundata* not so abundant. The pattern of positive inter-species associations that are very close to *Ophiocoma erinacea* against seagrass species is *C. rotundata* evidenced by the presence of *Ophiocoma erinacea* and *C. rotundata* which are quite high and are found in all stations. *Ophiocoma erinacea* is a class of snaking stars that is negative phototaxis, *Ophiocoma erinacea* takes shelter in the species of seagrass *C. rotundata* which has a high density to avoid direct sunlight. In addition, *Ophiocoma erinacea* utilizes litter from the leaves of seagrass *C. rotundata* as a food source.

Table 5. Abundance, diversity, and evenness indeks mega zoobenthos

Station	Abundance (K)	Diversity (H')	Evenness (E)
I	4 ind/m²	2.66	0.84
II	9 ind/m²	2.33	0.63
III	7 ind/m²	2.41	0.70

Table 6. Patterns of association mega zoobenthos species with seagrass species

Patterns of associations megazoobenthos with seagrass
Species Seagrass

Th
Cr
Ea

* = close associations ** = very close associations; Seagrass : Th : Thallasia hemprichii, Cr : Cymodoceae rotundata, Ea : Enhalus acoroides; Megazoobenthos : Ds : Diadema setosum, Td : Tripneustes depressus, Tg : Tripneustes gratilla, Of : Ophiithrix fragilis, Oe : Ophiocoma erinacea, Ha : Holothuria atra, Sm : Squilla mantis, Ch : Calappa hepatica, Sg : Scopimera globosa, De : Dendrodiris sp, Tu : Turbo sp, Ch : Chlamys sp, Aa : Anadara antiquate, Cv : Cypraea ventriculus, dan Ca : Cypraea anullus
Table 7. Patterns of association mega zoobenthos species with seagrass species

No	Species Mega zoobenthos	Species Lamun Thalassia hemprichii	Species Lamun Cymodoceae rotundata	Species Lamun Enhals acoroides						
		a	E (a)	χ² count	a	E (a)	χ² count	a	E (a)	χ² count
1	Diadema setosum	27	26.0	1.56	26	25.6	0.16	6	8.00	1.07
2	Tripneustes depressus	12	11.6	0.54	11	11.0	0.02	4	3.56	2.80
3	Tripneustes gratilla	11	10.6	0.49	11	10.0	1.02	4	3.26	0.28
4	Ophiothrix fragilis	58	57.8	0.09	57	55.6	1.96	18	17.8	0.02
5	Ophiocoma erinaceus	64	63.6	0.45	65	61.1	18.04**	23	19.56	4.66*
6	Holothuria atra	18	17.3	0.89	18	16.7	1.85	7	5.33	0.95
7	Squilla mantis	7	7.6	0.29	7	6.5	0.61	1	2.07	0.87s
8	Calappa hepatica	14	13.5	0.89	14	13.0	0.52	8	4.15	6.14*
9	Scopipera globosa	4	4.8	3.97*	5	4.6	0.43	0	0.00	0.00
10	Dendrodiris sp	16	15.4	0.77	10	14.9	28.22**	0	0.00	0.00
11	Turbo sp	18	17.3	0.89	18	16.7	1.85	2	5.33	3.81
12	Chlamys sp	9	8.7	0.39	9	8.3	0.81	4	2.67	1.07
13	Anadara antiquate	10	9.6	0.44	10	9.3	0.91	3	2.96	0.00
14	Cypraea ventriculus	16	15.4	0.77	16.0	14.8	1.60	7	4.74	1.91
15	Cypraea annulus	11	5.8	0.25	6	5.6	0.52	4	1.78	4.26*

*χ² table with a standard error of 5% = 3.84

4. CONCLUSION

The relationship of seagrass density with mega zoobenthos is directly proportional, which means the density of seagrass has an impact on the abundance of mega zoobenthos in Ujung Genteng waters. The pattern of association between mega zoobenthos and seagrass species is positive and negative. Ophiocoma erinaceus of the ophiuroida class has a pattern of very close positive associations with seagrass Cymodoceae rotundata and Dendrodiris sp of the order nudibranchia has a pattern of very close negative associations with seagrass Cymodoceae rotundata.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Badan Pengendalian Lingkungan Hidup Daerah Provinsi Jawa Barat. Laut Dan Pesisir. Status Lingkungan Hidup. Bandung; 2008.
2. Arifin, Jamaluddin J. Study of Condition and potential of the seagrass ecosystem as a marine Biota Care Area. Indonesian Journal of Aquatic Sciences and Fisheries. 2005;12(2):73-79.
3. Riniatsih I, Munasik. The Diversity of Megabentos Associating in the Padang Seagrass Ecosystem Walili Waters, Maumere Sikka District, East Nusa Tenggara. Tropical Marine Journal. 2017; 20(2):55–59.
4. Meyer KS, Bergmann M, Soltwedel T. Interannual variation in the epibenthic megafauna at the shallowest station of the HAUSGARTEN observatory (790N, 60E). Germany; 2013.
5. Brower JE, Zar JH. Field and Laboratory Methods for General Ecology. WM Brown Company Publ. Dubuque Lowa; 1989.
6. Odum PE. Fundamentals of Ecology. Yogjakarta; Gajah Mada University Press; 1993.
7. Keputusan Menteri Lingkungan Hidup No: 51 Tahun Tentang Baku Mutu Air Laut. Menteri Negara Lingkungan Hidup; 2004.
8. Yusuf M, Konioy Y, Panigoro C. Seagrass diversity in waters Around Dudepo Island, Anggrek District, North Gorontalo Regency. Scientific Journal of Fisheries and Maritime Affairs. 2013;1(1):18-25.
9. Effendi H. Water Quality Study for Water Resources and management Environmental. Kanisius. Yogjakarta; 2003.
10. Setyawan WB, Aditya P. Comparison of Ocean and South Coastal Oceanographic Characteristics of Java Island: Tides, Currents, and Waves. Proceedings of the III National Ocean and Fisheries Seminar. Trunojoyo University Madura; 2017.
11. Nabilla S, Hartati R, Nuraini RAT. Nutrient Relationship to Sediment and Seagrass Closure in Jepara Waters. Tropical Marine Journal. 2019;22(1):42-48.
12. Hutomo M, Nonjti A. Padang Seagrass Monitoring Guide. COREMAP LIPI: Jakarta; 2014.
13. Minarni Jahidin, Darlian L. Abundance of Gastropods in Seagrass Habitat in the Waters of Tongali Village, Siompu District. Ampihi Journal. 2016;1(2):17-21.
14. Zaid MA. Correlation And Regression Analysis. Seisric. Turkey; 2015.
15. Azkab MH. The Role of Seagrass for Animal Associations. Oceana Journal. 2014;39(2):49-54.
16. Dissanayake DCT, Stefansson G. Habitat preferences of sea cucumbers: Holothuria atra and Holothuria edulis in the coastal waters of Sri Lanka. Journal of the Marine Biological Association of the United Kingdom. 2012;92(3):581-590.
17. Aswandy I. Crustaceans as Consumers in Seagrasses. Oceana Journal. 2008;33(1):1-9.
18. Allifah AN, Rosmawati T. Relationship between Seagrass Density and Bivalvia Density on the Coast of Ori Coast, District of Haruku Island. Journal of Biology Science & Education. 2018;70(1):81-96.

© 2019 Rachman et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
http://www.sdiarticle4.com/review-history/54119