Complete mitochondrial genome of *Bactrocera arecae* (Insecta: Tephritidae) by next-generation sequencing and molecular phylogeny of Dacini tribe

Hoi-Sen Yong¹,², Sze-Looi Song¹, Phaik-Eem Lim³, Kok-Gan Chan¹,³, Wan-Loo Chow⁴ & Praphathip Eamsobhana⁵

The whole mitochondrial genome of the pest fruit fly *Bactrocera arecae* was obtained from next-generation sequencing of genomic DNA. It had a total length of 15,900 bp, consisting of 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes and a non-coding region (A+T-rich control region). The control region (952 bp) was flanked by *rrnS* and *trnI* genes. The start codons included 6 ATG, 3 ATT and 1 each of ATA, ATC, GTG and TCG. Eight TAA, two TAG, one incomplete TA and two incomplete T stop codons were represented in the protein-coding genes. The cloverleaf structure for *trnS* lacked the D-loop, and that of *trnN* and *trnF* lacked the TΨC-loop. Molecular phylogeny based on 13 protein-coding genes was concordant with 37 mitochondrial genes, with *B. arecae* having closest genetic affinity to *B. tryoni*. The subgenus *Bactrocera* of Dacini tribe and the Dacinae subfamily (Dacini and Ceratitidini tribes) were monophyletic. The whole mitogenome of *B. arecae* will serve as a useful dataset for studying the genetics, systematics and phylogenetic relationships of the many species of *Bactrocera* genus in particular, and tephritid fruit flies in general.

Some 200 species of tephritid fruit flies in the world are considered pests of economic importance, causing direct losses to a wide variety of fruit, vegetable and flower crops¹. The larvae of about 35% of the species attack soft fruits². Members of the Dacini tribe, particularly the *Bactrocera* genus, are of special economic importance in tropical Asia, Australia and the South Pacific².

The betelnut fruit fly *Bactrocera arecae* (Hardy & Adachi) is a member of the *Bactrocera dorsalis* species complex of the Dacinae subfamily³,⁴. It has a predominantly orange to brown body, with a broad yellow median band on the mesonotum. Its larvae feed in the nuts of the betelnut palm (*Areca catechu*)³. The adult male flies are not attracted to Cue lure or methyl eugenol². This species has a restricted distribution, from southern Thailand through Peninsular Malaysia to Singapore (the type locality)¹,³.

To date, *B. arecae* has not received extensive attention in molecular phylogenetic studies. For example, it was not included in Smith *et al.*’s study on the phylogenetic relationships among 24 *Bactrocera* species based on *rrnL*, *cox2*, *trnK* and *trnD* genes⁴, and Krosh *et al.*’s study of 125 Dacini species based on *rrnL*, *cox1*, *cox2* and “white-eye” genes⁵. More recently, it was among 47 *Bactrocera* species studied...
Results

Mitogenome analysis and features. Next-generation sequencing on NextSeq 500 Dekstop Sequencer generated an approximately 100 giga bases data from B. arecae library. Removal of low quality sequence (<Q20), PhiX reads and sequences shorter than 50 nucleotides resulted in 459 million paired-end reads with 57 billion bases. A total of 2,451,320 sequence reads with a total of 330,821,510 bases were mapped to full mitochondrial genome reference sequences of Bactrocera genus. De novo assembly of these mapped reads resulted in 164 contigs with maximum length of 15,925 bp and N50 of 485. The total GC content was 28.4%, with base composition of 33.8% A, 37.9% T, 17% G, and 11.4% C.

The mitogenome of B. arecae was 15,900 bp long, comprising 37 genes (13 protein-coding genes – PCGs, 2 rRNA genes, and 22 tRNA genes) and a non-coding region (A+T-rich control region) (Table 1, Fig. 1). Spacing sequences ranged from 2 to 55 bp in 15 regions, the largest was between trnQ and trnM genes. Sequences with 25, 33 and 55 bases had clear stem-loop structures (Supplementary Fig. S1). The overlaps in 9 regions ranged from 1 to 8 bp, the largest being between trnW and trnC genes (Table 1). Nine PCGs (nad2, cox1-3, atp6, atp8, nad3, nad6, cob), 14 tRNAs and the control region were located on the major J-strand (Table 1). Fourteen genes (4 PCGs – nad5, nad4, nad4l and nad1; both rRNA genes; and 8 tRNA genes) were located on the minor N-strand. The control region (952 bp) was flanked by rrnS and rrnL genes (Fig. 1). It conformed to the general structure in insects, comprising two poly-T stretches with ≥7 bp (one with 25 bp and the other 7 bp). There were 7 T-stretch with 4 bp, 2 with 5 bp and 1 with 6 bp.

The commonest start codon was ATG (in 6 PCGs – cox2, atp6, cox3, nad4l, nad4, cob), followed by three for ATT (nad2, nad3, nad6), and one each for ATA (nad1), ATC (nad5), GTG (atp8) and TCG (cox1). Eight PCGs had TAA stop codon, two had TAG while the remaining three genes had incomplete stop codons (TA in cox1; T in nad1 and nad3) (Table 1).

Table 2 summarizes the base composition of the mitochondrial whole genome, protein-coding genes, rRNA genes and control region. All were A+T rich. The A+T content for PCGs ranged from 63.3% (cox1) to 78.8% (nad4l). Eight PCGs (atp8 and all 7 nad) had A+T content of over 70%. The A+T content of the non-coding control region was 86.0%. The GC skewness values for the whole genome, PCGs, rRNA genes and control region were negative (−0.120 to −0.487) indicating bias toward the use of Cs over Gs. Although the AT skewness value was positive (0.080) for the whole genome, it was variable for individual genes.

Of the tRNAs, the cloverleaf structure for trnS1 lacked the D-loop, while trnN and trnF lacked the ΨC-loop (Fig. 2). The number of base pairs in the DHU-stem ranged from 3 to 4 (Fig. 2; Supplementary Table S1). All the ΨC-stems had 5 base pairs except 4 bp in trnC, trnH, trnP and trnS1. The number of bases in the D-loop and ΨC-loop was variable.

Phylogenetic relationships within Dacini tribe. Figure 3 depicts the molecular phylogeny of B. arecae in relation to other taxa of the Dacini tribe of Dacinae subfamily based on 13 PCGs. The phylogram based on 37 mt-genes (13 PCGs, 2 rRNA and 22 tRNA genes) was congruent with that based on 13 PCGs (Supplementary Fig. S2). Most of the nodes were well-supported. The genus Bactrocera was monophyletic. Members of the subgenus Bactrocera formed a distinct clade from the other subgenera (Dacusius, Tetradacus and Zeugodacus), with B. (B.) arecae forming a sister group to B. (B.) tryoni. The subfamily Dacinae was also monophyletic and clearly separated from Tephritinae subfamily. However, based on rrnL and rrnS genes the subfamily Dacinae was not monophyletic as Procecidochares utilis (Tephritinae subfamily) was sister to the Dacini (Fig. 4).

Discussion

Mitochondrial genomes of insects have been very extensively studied8. They have been applied particularly to studies regarding phylogeny and evolution8. To date there are 12 complete mitogenomes of tephritid fruit flies in GenBank – 10 from Bactrocera (Dacinae, Dacini), and 1 each from Ceratitis (Dacinae, Ceratitidini) and Procecidochares (Tephritinae, Cecidocharini).

The mitogenome size of B. arecae (15,900 bp) is smaller than those of B. carambolae (15,915 bp), B. correcta (15,936 bp), B. dorsalis (15,915 bp), B. minax (16,043 bp), B. dorsalis (= papayae) (15,915 bp), B. dorusalis (= philippinensis) (15,915 bp), B. scutellata (15,915 bp), B. tryoni (15,925 bp), C. capitata (15,980 bp) and P. utilis (15,922 bp) but larger than those of B. oleae (15,815 bp) and B. cucurbitae (15,825 bp).

The A+T content of the control region in B. arecae (86.0%) is higher than those of B. cucurbitae (82.4%), B. correcta (78.6%), B. minax (77.6%) and B. scutellata (72.6%) but lower than those of B. oleae (86.9%), B. tryoni (87.0%), B. carambolae (87.9%), B. dorsalis (88.1%), B. dorsalis (= papayae) (88.2%), B. dorsalis (= philippinensis) (88.2%) and C. capitata (91.1%).
In *B. arecae* mitogenome, in addition to 8 TAA, 2 TAG, and 3 incomplete (1 TA and 2 T) stop codons are represented in the protein-coding genes (Table 1). This differs from some tephritid mitogenomes which possess additionally truncated TA stop codon (e.g. *B. dorsalis*, *B. oleae*)\(^9,^{10}\) or TAT stop codon (*B. minax*)\(^11\). Among the tephritid fruit flies, over half of the PCGs in *B. dorsalis* have truncated stop codons (3 TA and 4 T)\(^9\). The incomplete T–stop codons can be converted to TAA by post-translational polyadenylation\(^12\). Additionally, the *nad5* gene of *B. arecae* has ATC instead of ATT start codon found in congeners (*B. dorsalis*, *B. minax*, *B. oleae*).

As in other insects, the *B. arecae* mitogenome has three main clusters of characteristic tRNAs (Fig. 1): (1) I-Q-M (isoleucine, glutamate and methionine); (2) W-C-Y (tryptophan, cysteine and tyrosine); and (3) A-R-N-S1-E-F (alanine, arginine, asparagine, serine S1, glutamate and phenylalanine). The atypical cloverleaf structure of *trnS1* is common in all Metazoa\(^13\).

Table 1. Characteristics of the mitochondrial genome of *Bactrocera arecae*.

Gene	Location	Strand	Size (bp)	Intergenic Sequence	Start/stop codon
trnI(gat)	1–66	J	66	−3	
trnQ(ttg)	64–132	N	69	55	
trnM(cat)	188–256	J	69		
nad2	257–1279	J	1023	12	ATT/TAA
trnW(tca)	1292–1360	J	69	−8	
trnG(gca)	1353–1416	N	64	33	
trnY(tga)	1450–1516	N	67	−2	
cox1	1515–3049	J	1535	TCG/TA	
trnL2(taa)	3050–3115	J	66	4	
cox2	3120–3809	J	690	3	ATG/TAA
trnK(ctt)	3813–3882	J	70		
trnD(gcc)	3883–3949	J	67		
atp8	3950–4111	J	162	−7	GTG/TAA
atp6	4105–4782	J	678	−1	ATG/TAA
cox3	4782–5570	J	789	9	ATG/TAA
trnG(tcc)	5580–5644	J	65		
nad3	5645–5996	J	352	ATT/T	
trnA(tgc)	5997–6061	J	65	7	
trnR(tcg)	6069–6132	J	64	25	
trnN(gtt)	6158–6222	J	65		
trnSI(gct)	6223–6290	J	68		
trnE(ttc)	6291–6357	J	67	18	
trnF(gaa)	6376–6440	N	65	5	
nad5	6446–8158	N	1713	15	ATC/TAA
trnH(gtg)	8174–8239	N	66		
nad4	8240–9580	N	1341	−7	ATG/TAG
nad4L	9574–9870	N	297	2	ATG/TAA
trnT(tgt)	9873–9937	J	65		
trnP(tgg)	9938–10003	N	66	2	
nad6	10006–10530	J	525	−1	ATT/TAA
cob	10530–11666	J	1137	−2	ATG/TAG
trnS2(tga)	11665–11731	J	67	15	
nad1	11747–12686	N	940	10	ATA/T
trnL1(tag)	12697–12761	N	65	4	
trnL	12766–14088	N	1323		
trnY(tac)	14089–14160	N	72		
trnS5	14161–14948	N	788		
Control region	14949–15900	J	952		
Figure 1. Complete mitogenome of *Bactrocera arecae* with BRIG visualization showing the protein coding genes, rRNAs, tRNAs and non-coding regions. GC skew (−0.259) is shown on the outer surface of the ring whereas GC content (27.7%) is shown on the inner surface. The AT skew is 0.080.

Region	A%	C%	G%	T%	A + T%	G + C%	AT skew	GC skew
Whole genome	39.0	17.5	10.3	33.2	72.3	27.7	0.080	−0.259
nad2	33.3	19.5	9.1	38.1	71.5	28.5	−0.067	−0.364
cox1	29.9	20.5	16.1	33.4	63.3	36.7	−0.055	−0.120
cox2	33.5	19.4	13.6	33.5	67.0	33.0	0	−0.176
atp8	35.2	20.4	9.2	35.2	70.4	29.6	0	−0.378
atp6	30.5	20.1	11.8	37.6	68.1	31.9	−0.104	−0.259
cox3	29.9	20.6	15.0	34.5	64.4	35.6	−0.071	−0.157
nad3	32.4	19.0	9.7	38.9	71.3	28.7	−0.091	−0.324
nad5	45.3	18.7	9.2	26.8	72.2	27.8	0.257	−0.341
nad4	48.5	16.7	8.5	26.3	74.8	25.2	0.297	−0.325
nad4L	51.2	14.8	6.4	26.2	78.8	21.2	0.299	−0.396
nad6	38.1	17.7	6.1	38.1	76.2	23.8	0	−0.487
cob	31.3	21.3	13.3	34.1	65.4	34.6	−0.043	−0.231
nad1	48.0	18.7	9.8	23.5	71.5	28.5	0.343	−0.312
rrsS	43.1	14.3	6.8	35.8	78.8	21.2	0.093	−0.355
rrlL	40.7	16.8	9.0	33.5	74.2	25.8	0.097	−0.302
Control region	45.6	7.9	6.1	40.4	86.0	14.0	0.060	−0.129

Table 2. Base composition of mitochondrial whole genome, protein-coding genes, rRNA genes and control region.
Our finding of *B. arecae* forming a sister group with *B. tryoni* and *B. minax* with *B. oleae* based on 13 PCGs and 37 mt-genes (Fig. 3, Supplementary Fig. S2) concurred with the phylogeny based on *cox1* sequences\(^6\). However, based on 13 PCGs and 37 mt-genes the sister group of *B. arecae* plus *B. tryoni* was sister to the *B. dorsalis* lineage. *B. correcta* was sister to the *B. dorsalis* lineage based on one study of *cox1* sequences\(^6\). Other studies based of *cox1\(^14\) and multi-gene studies\(^5\) also indicated closer affinity of *B. arecae* and/or *B. tryoni* to the *B. dorsalis* complex than of *B. correcta* to *B. dorsalis*. However, the analysis based on concatenated *cox1* and *rrnL* sequences indicated *B. tryoni* to be closer to *B. dorsalis* complex while *B. arecae* and *B. correcta* belonged to different lineages\(^7\).

The phylogenetic relationships of *B. dorsalis*, *B. dorsalis* (=papayae) and *B. dorsalis* (=philippines) based on different genetic markers were not congruent. Our analysis based on 13 PCGs and 37 mt-genes indicated *B. dorsalis* and *B. dorsalis* (=papayae) as sister taxa (Fig. 3, Supplementary Fig. S2) which agreed with that based on *cox1* and *cox2* sequences\(^15\) as well as *cox1*, *rrnL*, *rnp*, *nad6* and period sequences\(^7\) but differed from that based on *cox1* sequences which indicated *B. dorsalis* and *B. dorsalis* (=philippines) as sister taxa\(^4\), and *B. dorsalis* (=papayae) and *B. dorsalis* (=philippines) as sister taxa based on 37 mitochondrial genes\(^16\) and *rrnL*, *cox1*, *cox2* and “white-eye” genes\(^5\). In an earlier study based on 13 PCGs but included only 7 *Bactrocera* species\(^17\), *B. dorsalis* (=papayae) formed a sister group.
with *B. dorsalis* (=philippinensis) compared to *B. dorsalis*. Our study included *B. arecae*, *B. correcta*, *B. cucurbitae*, and *B. scutellata* as well as *P. utilis* (Tephritinae subfamily). The phylogeny based on *rrnL* and *rrnS* genes in our study also indicated closer affinity of *B. dorsalis* (=papayae) and *B. dorsalis* (=philippinensis) compared to *B. dorsalis* (Fig. 4). It is evident that gene markers form a contributory factor to the discrepancies of these results. The phylogeny based on 17 enzyme loci indicated close genetic affinity (*Nei’s I* = 0.99; *D* = 0.01) between *B. dorsalis* and *B. dorsalis* (=papayae)18. Based on our present analysis of 13 PCGs, the uncorrected genetic ‘p’-distance is 1.06 between *B. dorsalis* and *B. dorsalis* (=papayae) and 1.11 between *B. dorsalis* and *B. dorsalis* (=philippinensis). A recent study based on six loci (*cox1*, *nad4*-3’, *CAD*, *period*, ITS1, ITS2) indicates that *B. dorsalis* s.s., *B. papayae* and *B. philippinensis* are the same biological species 19. Another taxon *B. invadens* has also been synonymized with *B. dorsalis* 20.

As in most other studies6,7,16–19, *B. carambolae* is closely related but distinct from *B. dorsalis*, *B. dorsalis* (=papayae) and *B. dorsalis* (=philippinensis) (Fig. 3, Supplementary Fig. S2). In the study based on *rrnL*, *cox1*, *cox2* and “white-eye” genes, *B. carambolae* was closer related to *B. invadens*, *B. dorsalis* (=papayae) and *B. dorsalis* (=philippinensis) than *B. carambolae*. Based on 17 enzyme loci, *B. carambolae* has a genetic identity of *I* = 0.92 (genetic distance of 0.08) compared to *B. dorsalis* and *B. dorsalis* (=papayae)18. Our present study based on 13 PCGs indicates a genetic distance ‘p’ = 1.39 between *B. carambolae* and *B. dorsalis*, ‘p’ = 1.21 between *B. carambolae* and *B. dorsalis* (=papayae), and ‘p’ = 1.19 between *B. carambolae* and *B. dorsalis* (=philippinensis).

In the present study, *B. (Zeugodacus) cucurbitae* and *B. (Zeugodacus) scutellata* are related but distinct from the other subgenera (*Bactrocera*, *Daculus* and *Tetradacus*) of *Bactrocera* genus (Fig. 3, Supplementary Fig. S2). It has been proposed, based on *rrnL*, *cox1*, *cox2* and “white-eye” genes, that taxonomic consideration be given to raising *Zeugodacus* to genus level as the ‘Zeugodacus’ clade is the sister group to *Dacus*, not *Bactrocera*. This was supported by the analysis based on *cox1*, *rrnL*, *trnP*, *nad6* and period sequences7. However, in the study based on *rrnL*, *cox1*, *cox2* and “white-eye” genes3, *Anastrepha ludens*
and *Rhagoletis pomonella* (both are members of Trypetinae subfamily) were closer to Dacini (Dacinae subfamily) than to *C. capitata*. In the present study, the Ceratitidini tribe forms the sister group of the Dacini tribe (Fig. 3, Supplementary Fig. S2). The Tephritinae subfamily (represented by *P. utiliss*) is distinct from Dacinae subfamily. This concurs with the finding of monophyly for tephritid subfamilies and tribes (Trypetini, Carpomyini, Tephritinae, and Dacinae) based on *rrnS* tRNAs from Dacinae subfamily. This concurs with the finding of monophyly for tephritid subfamilies and family were included as outgroups.

In contrast, the phylogeny based on *rrnL* and *rrnS* genes indicated closer affinity of *P. utiliss* to Dacini tribe than *C. capitata* (Fig. 4). A broader taxon sampling, particularly mitogenomes of *Dacus* genus (Dacini tribe), Tephritinae and Trypetinae subfamilies, is needed to resolve the higher order phylogeny.

In summary, we have successfully sequenced the whole mitochondrial genome of *B. arecae* by next-generation sequencing. The genome features are similar to other tephritid fruit flies except the ATC start codon for *nad5* gene and the absence of TVC-loop in *rrnN* and *trnF* tRNAs. The phylogenetic tree based on 13 PCGs is concordant with that based on 37 mt-genes. *B. arecae* shows closest genetic affinity to *B. tryoni*.

Methods

Ethics statement. *Bactrocera arecae* is not a protected or endangered species. No permission is needed to collect and study this fruit fly, a pest of *A. catechu*.

Specimen collection. Fallen nuts of *A. catechu* were collected from the University of Malaya campus. They were placed in an aquarium with suitable substrate for the larvae to hatch. Pupae were placed in plastic tubes and emerging adults were collected, preserved in absolute ethanol and stored in deep freezer until use.

Extraction of genomic DNA. Genomic DNA was extracted from thorax and legs using G-spin™ Total DNA Extraction Mini Kit (iNtRON Biotechnology, Inc, Korea) following the manufacturer’s instructions with minor modification.

Sample and library preparation. The purified genomic DNA was quantified with Qubit® 2.0 Fluorometer (Life Technologies, USA) and normalized to 2 μg. The normalized genomic DNA was fragmented to an average size of 550 bp using Covaris M220 system (Covaris, Woburn, MA, USA). Library was prepared using TruSeq DNA PCR-Free Sample Preparation Kit (Illumina, USA) following the manufacturer’s protocols. Quantification and size estimation of the library was conducted on a 2100 Bioanalyzer using High Sensitivity DNA Analysis Kit (Agilent Technologies) and quantitative real-time PCR was performed using KAPA Library Quantification Kit for Illumina sequencing platforms (KAPA Biosystems, Boston, MA, USA) on Eco Real-Time PCR System.

Genome sequencing. The library was normalized to 1.5 pM and sequenced using the NextSeq 500 Dekstop Sequencer (2 × 150 bp paired-end reads) (Illumina, USA).

Sequence and genome analysis. Raw sequences were extracted from the Illumina NextSeq 500 system in FASTQ format and the quality of sequences was evaluated using the FastQC software. All the ambiguous nucleotides and reads with an average quality value (lower than Q20) were excluded from further analysis. The trimmed sequences were mapped against three reference mitogenomes, namely, *Bactrocera dorsalis* (NC_008748), *Bactrocera carambolae* (NC_009772) and *Bactrocera dorsalis (=papayae)* (NC_009770) using the CLC Genomic Workbench v.7.0.4 (Qiagen, Germany). The mapped sequences were then subjected to de novo assembly. High coverage contigs (average coverage value more than 500) greater than 15 kbp were subjected to BLAST alignment against the nucleotide database at National Center for Biotechnology Information (NCBI). Contigs with hits to mitochondrial genes or genomes were identified and extracted from CLC Genomic Workbench.

Mitogenome identification and annotation. A contig identified as mitogenome was manually examined for repeats at the beginning and end of the sequence to establish a circular mtDNA. It was then annotated with MITOS followed by manual validation of the coding regions using the NCBI ORF Finder (http://www.ncbi.nlm.nih.gov/orftool/orf.html). The sequin file generated from MITOS was edited and submitted to NCBI according to ORF Finder result (NCBI GenBank accession number KR233259).

Mitogenome visualization. The circular mitogenome of *B. arecae* was visualized with Blast Ring Image Generator (BRIG).

Phylogenetic analysis. Mitogenome sequences (12 taxa) of Tephritidae family that were available in GenBank were used with *B. arecae* to reconstruct phylogenetic trees (Figs 3 and 4; Supplementary Fig. S1). *Drosophila incomperta* NC_025936, *D. melanogaster* NC_024511 and *D. yakuba* NC_001322 of the Drosophilidae family were included as outgroups.

Nucleotide sequences of the 13 protein-coding genes (PCGs) were separately aligned using ClustalX v.1.81 program and subsequently edited and trimmed using BioEdit v.7.0.5.3. The sequences of *rrnL, rrnS, trnF* and 22 mt-tRNA genes were aligned by MAFFT v.7. The best-fit nucleotide substitution models
for maximum likelihood (ML) using the corrected Akaike Information Criterion (AIC) and Bayesian (BI) analyses using the Bayesian Information Criterion (BIC) were determined by Kakusan v.3. Phylogenies of 13 concatenated PCGs, 37 mt-genes and 2 rRNA genes were constructed using TREEFINDER. Bootstrap values (BP) were generated via 1,000 ML bootstrap replicates. Bayesian analyses were conducted using the Markov chain Monte Carlo (MCMC) method via Mr. Bayes v.3.2.6, with two independent runs of 2 × 10⁷ generations with four chains, and with trees sampled every 200th generation. Likelihood values for all post-analysis trees and parameters were evaluated for convergence and burn-in using the “smp” command in MrBayes and the computer program Tracer v.1.5. (http://tree.bio.ed.ac.uk/software/tracer/).

The first 200 trees from each run were discarded as burn-in (where the likelihood values were stabilized prior to the burn-in), and the remaining trees were used for the construction of a 50% majority-rule consensus tree. Phylogenetic trees were viewed and edited by FigTree v.1.4.5.

References
1. Carroll, L. E. et al. Pest fruit flies of the world. Version: 8th December 2006. Available: http://delta tink.com. Accessed 2015 Mar 15.
2. White, I. M. & Elson-Harris, M. M. Fruit flies of economic significance: their identification and bionomics (CAB International, Wallingford, 1992).
3. Hardy, D. E. The fruits flies (Tephritidae – Diptera) of Thailand and bordering countries. Pacif. Insects Monogr. 31, 1–353 (1973).
4. Smith, P. T., Kambhampati, S. & Armstrong, K. A. Phylogenetic relationships among Bactrocera species (Diptera: Tephritidae) inferred from mitochondrial DNA sequences. Mol. Phyloget. Evol. 26, 8–17 (2003).
5. Krosch, M. N. et al. A molecular phylogeny for the Tribe Dacini (Diptera: Tephritidae): Systematic and biogeographic implications. Mol. Phylogen. Evol. 64, 513–523 (2012).
6. Liu, S.-X., Zhang, G.-F. & Wan, F.-H. DNA barcoding and phylogenetic analysis of common species of the genus Bactrocera (Diptera: Tephritidae) based on mtDNA COI gene sequences. Acta Entomol. Sinica 57(3), 343–355 (2014).
7. Virgilio, M., Jordaens, K., Verwimp, C., White, I. M. & De Meyer, M. Higher phylogeny of frugivorous flies (Diptera, Tephritidae, Dacini): Localised partition conflicts and a novel generic classification. Mol. Phylogen. Evol. 85, 171–179 (2015).
8. Cameron, S. L. Insect mitochondrial genomics: implications for evolution and phylogeny. Annu. Rev. Entomol. 59, 95–117 (2013).
9. Zhang, B., Nardi, F., Hull-Sanders, H., Wan, X. & Liu, Y. The complete nucleotide sequence of the mitochondrial genome of the olive fruit fly, Bactrocera dorsalis (Diptera: Tephritidae). Gene 396, 66–74 (2007).
10. Nardi, F., Carapelli, A., Dallai, R. & Frati, F. The mitochondrial genome of the olive fly Bactrocera oleae: two haplotypes from distant geographical locations. Ins. Mol. Biol. 12(6), 605–611 (2003).
11. Nardi, F., Dallai, R. & Frati, F. The complete nucleotide sequence of the mitochondrial genome of Bactrocera minax (Diptera: Tephritidae). PLOS ONE 9(6), e100558 (2014).
12. Qua, D., Montoya, J. & Attardi, G. tRNA punctuation model of RNA processing in human mitochondria. Nature 290, 470–474 (1981).
13. Juhl, F. et al. Improved systematic tRNA gene annotation allows new insights into the evolution of mitochondrial tRNA structures and into the mechanisms of mitochondrial genome rearrangements. Nuc. Acids Res. 40(7), 2833–2845 (2012).
14. Asokan, R. et al. Molecular Identification and Phylogeny of Bactrocera Species (Diptera: Tephritidae). Folia. Entomol. 94(4), 1026–1035 (2011).
15. Nakahara, S. & Murai, M. Phylogenetic analyses of Bactrocera fruit flies (Diptera: Tephritidae) based on nucleotide sequences of the mitochondrial COI and COII genes. Res. Bull. Pl. Prot. Japan 44, 12–18 (2008).
16. Nardi, F. et al. Domestication of olive fly through a multi-regional host shift to cultivated olives: Comparative dating using complete mitochondrial genomes. Mol. Phylogen. Evol. 57, 678–686 (2010).
17. Le, Q.-Q. et al. Phylogenetic analysis within Tephritidae of Diptera based on the concatenated 13 mitochondrial protein coding genes of mt genomes. Asian J. Anim. Vet. Adv. 8(3), 542–547 (2013).
18. Yong, H. S. Genetic differentiation and relationships in five taxa of the Bactrocera dorsalis complex (Insecta: Diptera: Tephritidae). Bull. Ent. Res. 85, 431–435 (1995).
19. Boykin, L. M. et al. Multi-gene phylogenetic analysis of south-east Asian pest members of the Bactrocera dorsalis species complex (Diptera: Tephritidae) does not support current taxonomy. J. Appl. Entomol. 138, 235–253 (2014).
20. Schutze, M. K. et al. Synonymization of key pest species within the Bactrocera dorsalis species complex (Diptera: Tephritidae): taxonomic changes based on a review of 20 years of integrative morphological, molecular, cytogenetic, behavioural and experimental data. Syst. Entomol. 40, 456–471 (2014).
21. Han, H.-Y. & Ro, K.-E. Molecular phylogeny of the family Tephritidae (Insecta: Diptera): New insight from combined analysis of the mitochondrial 12S, 16S, and COII genes. Mol. Cells 27, 55–66 (2009).
22. Andrews, S. FastQC: a quality control tool for high throughput sequence data. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc
23. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215(3), 403–410 (1990).
24. Bernt, M. et al. MITOS: improved de novo metazoan mitochondrial genome annotation. Mol. Phylogen. Evol. 69, 313–319 (2012).
25. Alkhan, N. F., Petty, N. K., Ben Zakour, N. L. & Beaton, S. A. BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics 12, 402 (2011).
26. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nuc. Acids Res. 24, 4876–4882 (1997).
27. Hall, T. A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nuc. Acids Symp. Ser. 41, 95–98 (1999).
28. Katoh, K. & Standley, D. M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in performance and usability. Mol. Biol. Evol. 30(4), 772–780 (2013).
29. Akaike, H. Information Theory and an Extension of the Maximum Likelihood Principle. Proceedings of the 2nd International Symposium on Information Theory. Petrov, B. N. & Csaki, F. (eds.) 267–281 (Akademia Kiado, Budapest, 1973).
30. Schwarz, G. Estimating the dimension of a model. Ann. Stat. 6, 461–464 (1978).
31. Tanabe, A. S. Kakusan: a computer program to automate the selection of a nucleotide substitution model and the configuration of a mixed model on multilocus data. Mol. Ecol. Notes 7, 962–964 (2007).
32. Jobb, G., von Haeseler, A. & Strimmer, K. Treefinder: a powerful graphical analysis environment for molecular phylogenetics. BMC Evol. Biol. 4, 18 (2004).
33. Hueslenbeck, J. P. & Ronquist, F. MrBayes: Bayesian Inference of phylogenetic trees. Bioinformatics 17, 754–755 (2001).
34. Rambaut, A. FigTree (version 1.4.0). Available at http://tree.bio.ed.ac.uk/software/figtree/ (2012).
35. Wu, P. F. et al. The complete mitochondrial genome of the melon fly Bactrocera cucurbitae (Diptera: Tephritidae). *Mitochondrial DNA* 24(1), 6–7 (2013).
36. Spanos, L., Koutroumbas, G., Kotsyfakis, M. & Louis, C. The mitochondrial genome of the Mediterranean fruit fly, Ceratitis capitata. *Ins. Mol. Biol.* 9(2), 139–144 (2000).

Acknowledgements

We thank our institutions for providing infrastructure and other supports. This study received financial support (H-50001-00-A000025 and H-5620009) from the Ministry of Education Malaysia and University of Malaya. We thank the reviewers for their constructive suggestions to improve the manuscript.

Author Contributions

H.-S.Y. conceived and designed the experiments in consultation with other authors. S.-L.S., W.-L.C. and H.-S.Y. performed the experiments. S.-L.S., H.-S.Y. and P.-E.L. analyzed the data. H.-S.Y., P.-E.L., K.-G.C. and P.E. contributed reagents/materials/analysis tools. H.-S.Y., S.-L.S., P.-E.L. and P.E. wrote the paper with other authors.

Additional Information

Accession Code: Bactrocera arecae mitogenome sequences are available in NCBI GenBank database (accession number: KR233259).

Supplementary information accompanies this paper at http://www.nature.com/srep

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Yong, H.-S. et al. Complete mitochondrial genome of Bactrocera arecae (Insecta: Tephritidae) by next-generation sequencing and molecular phylogeny of Dacini tribe. *Sci. Rep.* 5, 15155; doi: 10.1038/srep15155 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/