A new (1+1)-dimensional matrix k-constrained KP hierarchy

O.I. Chvartatskyi1,a) and Yu.M. Sydorenko1,b)

Ivan Franko National University of L’viv

(Dated: 7 February 2014)

We introduce a new generalization of matrix (1+1)-dimensional k-constrained KP hierarchy. The new hierarchy contains matrix generalizations of stationary DS systems, (2+1)-dimensional modified Korteweg-de Vries equation and the Nizhnik equation. A binary Darboux transformation method is proposed for integration of systems from this hierarchy.

PACS numbers: 05.45 Yv, 05.45-a, 02.30 Jr, 02.10 Ud

a)Electronic mail: alex.chvartatskyy@gmail.com
b)Electronic mail: y_sydorenko@franko.lviv.ua
I. INTRODUCTION

Algebraic methods are of great importance in a soliton equations theory (see 1–7). In particular, they make possible to omit analytical difficulties that arise in the investigation of corresponding direct and inverse scattering problems for nonlinear equations. One of the important objects arising from algebraic approach in the soliton theory is scalar and matrix hierarchies for nonlinear integrable systems of Kadomtsev-Petviashvili type (KP hierarchy)8–12.

The KP hierarchy and its generalizations play an important role in mathematical physics. One of such generalizations is the so-called “KP equation with self-consistent sources” (KP-SCS), discovered by Melnikov13–17. In18–22, k-symmetry constraints of the KP hierarchy (k-cKP hierarchy) which have connections with KPSCS were investigated. k-cKP hierarchy contains physically relevant systems like the nonlinear Schrödinger equation, the Yajima-Oikawa system, a generalization of the Boussinesq equation, and the Melnikov system. Multicomponent k-constraints of the KP hierarchy were introduced in23 and investigated in24–29.

The modified k-constrained KP (k-cmKP) hierarchy was proposed in21,30,31. It contains, for example, the vector Chen-Lee-Liu and the modified KdV (mKdV) equation. Multicomponent versions of the Kundu-Eckhaus and Gerdjikov-Ivanov equations were also obtained in20, via gauge transformations of the k-cKP, respectively the k-cmKP hierarchy. Moreover, in22,23, (2+1)-dimensional extensions of the k-cKP hierarchy were introduced and dressing methods via differential transformations were investigated. Some systems of this hierarchy were investigated via binary Darboux transformations in34,35. This hierarchy was also rediscovered recently in36,37.

In this paper our aim was to generalize (1+1)-dimensional matrix k-constrained KP hierarchy to the case of two integro-differential operators. As a result we obtain a new bidirectional (one of the operators in obtained hierarchy depends on two indices k and l) generalization of (1+1)-dimensional matrix k-constrained KP hierarchy that we will call (1+1)-BDk-cKP hierarchy (see formulae (14)).

This work is organized as follows. In Section 2 we present a short survey of results on constraints for KP hierarchies. In Section 3 we introduce a new (1+1)-BDk-cKP hierarchy. Members of the obtained hierarchy are also listed there. (1+1)-BDk-cKP hierarchy contains matrix generalizations of stationary Davey-Stewartson hierarchy, new stationary Yajima-
Oikawa and Melnikov hierarchies. In Section 4 we consider dressing via binary Darboux transformation for the (1+1)-BDk-cKP hierarchy. As an example we consider construction of solutions for the matrix generalization of stationary DS system that was considered in Section 3. In the final section, Conclusions we discuss the obtained results and mention problems for further investigations. We also present an equation obtained from (1+1)-BDk-cKP hierarchy that generalize vector nonlinear Schrödinger system (the Manakov system).

II. \(k \)-CONSTRAINED KP HIERARCHY AND ITS EXTENSIONS

To make this paper self-contained, we briefly introduce the KP hierarchy\(^1\) and its multi-component k-symmetry constraints (k-cKP hierarchy). A Lax representation of the KP hierarchy is given by

\[
L_{tn} = [B_n, L], \quad n \geq 1,
\]

where \(L = D + U_1 D^{-1} + U_2 D^{-2} + \ldots \) is a scalar pseudodifferential operator, \(t_1 := x, D := \frac{\partial}{\partial x} \), and \(B_n := (L^n)_+ := (L^n)_{\geq 0} = D^n + \sum_{i=0}^{n-2} u_i D^i \) is the differential operator part of \(L^n \). The consistency condition (zero-curvature equations), arising from the commutativity of flows (1), is are

\[
B_{n,t_k} - B_{k,t_n} + [B_n, B_k] = 0.
\]

Let \(B^\tau_n \) denote the formal transpose of \(B_n \), i.e. \(B^\tau_n := (-1)^n D^n + \sum_{i=0}^{n-2} (-1)^i D^i u_i^\tau \), where \(^\tau \) denotes the matrix transpose. We will use curly brackets to denote the action of an operator on a function whereas, for example, \(B_n q \) means the composition of the operator \(B_n \) and the operator of multiplication by the function \(q \). The following formula holds for \(B_n q \) and \(B_n \{q\} \): \(B_n \{q\} = B_n q - (B_n q)_{>0} \). In the case \(k = 2, n = 3 \) formula (2) presents a Lax pair for the Kadomtsev-Petviashvili equation\(^3\). Its Lax pair was obtained in\(^3\) (see also\(^2\)).

The multicomponent k-constraints of the KP hierarchy is given by\(^3\)

\[
L_{tn} = [B_n, L],
\]

with the k-symmetry reduction

\[
L_k := L^k = B_k + \sum_{i=1}^{m} \sum_{j=1}^{m} q_{i,j} D^{-1} r_j = B_k + q \mathcal{M}_0 D^{-1} \mathbf{r}^\tau,
\]
where \(q = (q_1, \ldots, q_m) \) and \(r = (r_1, \ldots, r_m) \) are vector functions, \(\mathcal{M}_0 = (m_{ij})_{i,j=1}^m \) is a constant \(m \times m \) matrix. In the scalar case \((m = 1)\) we obtain k-constrained KP hierarchy\(^{18-22}\).

The hierarchy given by (3)-(4) admits the Lax representation (here \(k \in \mathbb{N} \) is fixed):

\[
[L_k, M_n] = 0, \quad L_k = B_k + q \mathcal{M}_0 D^{-1} r^T, \quad M_n = \partial_{t_n} - B_n.
\] (5)

Lax equation (5) is equivalent to the following system:

\[
[L_k, M_n] \geq 0, \quad M_n \{q\} = 0, \quad M_n^\tau \{r\} = 0.
\] (6)

Below we will also use the formal adjoint \(B^*_n := \bar{B}^\tau_n = (-1)^n D^n + \sum_{i=0}^{n-2} (-1)^i D^i u^*_i \) of \(B_n \), where * denotes the Hermitian conjugation (complex conjugation and transpose).

For \(k = 1 \), the hierarchy given by (6) is a multi-component generalization of the AKNS hierarchy. For \(k = 2 \) and \(k = 3 \), one obtains vector generalizations of the Yajima-Oikawa and Melnikov\(^{14,15}\) hierarchies, respectively.

In\(^{21,30,31}\), a k-constrained modified KP (k-cmKP) hierarchy was introduced and investigated. It contains vector generalizations of the Chen-Lee-Liu, the modified multi-component Yajima-Oikawa and Melnikov hierarchies.

An essential extension of the k-cKP hierarchy is its \((2+1)\)-dimensional generalization introduced in\(^{32,33}\) and rediscovered in\(^{36,37}\).

III. A NEW BIDIRECTIONAL EXTENSION OF (1+1)-DIMENSIONAL K-CONSTRAINED KP ((1+1)-BDK-CKP) HIERARCHY

In this section we introduce a new generalization of the \((1+1)\)-dimensional k-constrained KP hierarchy given by (5) to the case of two integro-differential operators. One of them (the operator \(L_{k,l} \) \(^{14}\)) generalizes the corresponding operator \(L_k \) \(^{5}\) and depends on two independent indices \(l \) and \(k \). It leads to generalization of \((1+1)\)-dimensional k-cKP hierarchy \(^{5}\) in additional direction \(l \) \((l = 1, 2, \ldots)\). For further purposes we will use the following well-known formulae for integral operator \(h_1 D^{-1} h_2 \) constructed by matrix-valued functions \(h_1 \) and \(h_2 \) and the differential operator \(A \) with matrix-valued coefficients in the algebra of pseudodifferential operators:

\[
Ah_1 D^{-1} h_2 = (Ah_1 D^{-1} h_2)_{\geq 0} + A\{h_1\} D^{-1} h_2,
\] (7)
It is known that the Matrix KP hierarchy can be formulated by a pseudodifferential operator:

$$h_1 D^{-1} h_2 A = (h_1 D^{-1} h_2 A)_{>0} + h_1 D^{-1}[A^r \{h_2^r\}]^T,$$

$$h_1 D^{-1} h_2 h_3 D^{-1} h_4 = h_1 D^{-1}[h_2 h_3]D^{-1} h_4 - h_1 D^{-1} D^{-1}[h_2 h_3]h_4. \tag{9}$$

It is known that the Matrix KP hierarchy can be formulated by a pseudodifferential operator:

$$W = I + w_1 D + w_2 D^2 + \ldots \tag{10}$$

with $N \times N$-matrix-valued coefficients w_i. Consider the differential operators $J_k D^k$ and $\alpha_n \partial_{\alpha_n} - \tilde{J}_n D^n$, $\alpha_n \in \mathbb{C}$, $n, k \in \mathbb{N}$, where J_k and \tilde{J}_n are $N \times N$ commuting matrices (i.e., $[\tilde{J}_n, J_k] = 0$). It is evident that the dressed operators:

$$L_k := W J_k D^k W^{-1} = J_k D^k + u_{k-1} D^{k-1} + \ldots + u_0 + u_1 D^{-1} + \ldots, \tag{11}$$

and

$$M_n := W(\alpha_n \partial_{\alpha_n} - \tilde{J}_n D^n)W^{-1} = \alpha_n \partial_{\alpha_n} - \tilde{J}_n D^n - v_{n-1} D^{n-1} + \ldots + v_0 + v_1 D^{-1} + \ldots, \tag{12}$$

with $N \times N$-matrix coefficients u_i and v_j commute: $[L_k, M_n] = 0$. We shall impose the following reduction on operators L_k and M_n:

$$(L_k)_{<0} := (L_k)_{<0} = c_l \sum_{j=0}^{l} q[j] M_0 D^{-1} r^T [l-j], (M_n)_{<0} = -\gamma q M_0 D^{-1} r^T, \gamma, c_l \in \mathbb{C}, \tag{13}$$

where q and r are $N \times m$ matrix functions; $q[j]$ and $r[j]$ are matrix functions of the following form: $q[j] := (M_n)^j \{q\}, r^T[j] := ((M_n^r)^j \{r\})^T$.

As a result we obtain the following bi-directional k-cKP hierarchy:

$$L_{k,l} = B_k + c_l \sum_{j=0}^{l} q[j] M_0 D^{-1} r^T [l-j], B_k = J_k D^k + \sum_{j=0}^{k-1} u_j D^j, u_j = u_j(x,t_n), l = 0, \ldots, M_n = \alpha_n \partial_{\alpha_n} - A_n - \gamma q M_0 D^{-1} r^T, A_n = \tilde{J}_n D^n + \sum_{i=0}^{n-1} v_i D^i, v_i = v_i(x,t_n), \alpha_n \in \mathbb{C}, \tag{14}$$

where u_j and v_i, are $N \times N$ matrix functions.

The following theorem holds.

Theorem 1. The Lax equation $[L_{k,l}, M_n] = 0$ is equivalent to the system:

$$[L_{k,l}, M_n]_{>0} = 0, \gamma L_{k,l} \{q\} + c_l (M_n)^{l+1} \{q\} = 0, \gamma L_{k,l}^r \{r\} + c_l (M_n^r)^{l+1} \{r\} = 0. \tag{15}$$

Proof. From the equality $[L_{k,l}, M_n] = [L_{k,l}, M_n]_{>0} + [L_{k,l}, M_n]_{<0}$ we obtain that the Lax equation $[L_{k,l}, M_n] = 0$ is equivalent to the following one:

$$[L_{k,l}, M_n]_{>0} = 0, [L_{k,l}, M_n]_{<0} = 0. \tag{16}$$
Thus, it is sufficient to prove that $[L_{k,l}, M_n]_{<0} = 0 \iff \gamma L_{k,l}\{q\} + c_t(M_n)^{l+1}\{q\} = 0$,
$\gamma L_{k,l}\{r\} + c_t(M_n)^{l+1}\{r\} = 0$. Using bi-linearity of the commutator and explicit form (14) of
operators $L_{k,l}$ and M_n we obtain:

$$[L_{k,l}, M_n]_{<0} = +c_t \sum_{j=0}^l [q[j], M_0 D^{-1} r^T[l - j], \alpha_n \partial_{\alpha_n} - A_n]_{<0} -
-c_t \sum_{j=0}^l [q[j], M_0 D^{-1} r^T[l - j], \gamma q, M_0 D^{-1} r^T]_{<0} - [B_k, \gamma q, M_0 D^{-1} r^T]_{<0}. \quad (17)$$

After direct computations of each of the three summands on the right-hand side of formula (17) we obtain:

1. $c_t \sum_{j=0}^l [q[j], M_0 D^{-1} r^T[l - j], \alpha_n \partial_{\alpha_n} - A_n]_{<0} = -c_t \sum_{j=0}^l (\alpha_n q_n[j] - A_n \{q[j]\}) \cdot
\cdot M_0 D^{-1} r^T[l - j] - c_t \sum_{j=0}^l q[j], M_0 D^{-1} (\alpha_n r_n[l - j] + A_n \{r^T[l - j]\}) \cdot \quad (18)$

Equality (18) is a consequence of formulae (7)-(8).

2. $\gamma c_t \sum_{j=0}^l [q, M_0 D^{-1} r^T, q[j], M_0 D^{-1} r^T[l - j]]_{<0} = \gamma c_t \sum_{j=0}^l q, M_0 D^{-1} \{r^T q[j]\} \times
\times M_0 D^{-1} r^T[l - j] - \gamma c_t \sum_{j=0}^l q, M_0 D^{-1} D^{-1} \{r^T q[j]\} \cdot M_0 r^T[l - j] +
- \gamma c_t \sum_{j=0}^l q[j], M_0 D^{-1} \{r^T[l - j] q\} \cdot M_0 D^{-1} r^T +
+ \gamma c_t \sum_{j=0}^l q[j], M_0 D^{-1} D^{-1} \{r^T[l - j] q\} \cdot M_0 r^T. \quad (19)$

Formula (19) follows from (9).

3. $-[B_k, \gamma q, M_0 D^{-1} r^T]_{<0} = -\gamma B_k\{q\}, M_0 D^{-1} r^T + \gamma q, M_0 D^{-1} (B_k^\tau\{r\})^T. \quad (20)$

The latter equality is obtained via (7)-(8).

From formulae (17)-(20) we have

$$[L_{k,l}, M_n]_{<0} = c_t \left(\sum_{j=0}^l \{q[j], M_0 D^{-1} \{r^T[l - j]\} \} - \sum_{j=0}^l \{q[j], M_0 D^{-1} r^T[l - j]\} -
- \gamma L_{k,l}\{q\}, M_0 D^{-1} r^T + \gamma q M_0 D^{-1} (L_{k,l}^\tau\{r\})^T = c_t \sum_{j=0}^l [q[j], M_0 D^{-1} r^T[l - j + 1] -
- c_t \sum_{j=0}^l q[j + 1], M_0 D^{-1} r^T[l - j] - \gamma L_{k,l}\{q\}, M_0 D^{-1} r^T + \gamma q M_0 D^{-1} L_{k,l}^\tau\{r\}^T =
= -(\gamma L_{k,l} + c_t(M_n)^{l+1})\{q\}, M_0 D^{-1} r^T + q M_0 D^{-1} ((\gamma L_{k,l} + c_t(M_n)^{l+1})\{r\})^T. \quad (21)$$

From the last equality we obtain the equivalence of the equation $[L_{k,l}, M_n] = 0$ and (15).
New hierarchy \([14]\) includes Matrix \(k\)-constrained KP-hierarchy \((\gamma = 0, l = 0)\).

The following corollary immediately follows from Theorem \([1]\)

Corollary 1. The Lax equation \([\tilde{L}_{k,l}, M_n] = 0\), where

\[
\tilde{L}_{k,l} = \gamma L_{k,l} + c_l(M_n)^{l+1}
\]

and the operators \(\tilde{L}_{k,l}\) and \(M_n\) are defined by \([14]\), is equivalent to the system:

\[
[L_{k,l}, M_n]_{\geq 0} = 0, \tilde{L}_{k,l}\{q\} = 0, \tilde{L}_{k,l}\{r\} = 0.
\]

The BD\(k\)-cKP hierarchy \([14]\) admits an essential generalization:

\[
P_{k,s} = B_k + \sum_{l=0}^{k-1} c_l \sum_{j=0}^{l} q[j]M_0D^{-1}r^\top[l-j],
\]

\[
B_k = \mathcal{J}_kD^k + \sum_{j=0}^{k} u_jD^j, u_j = u_j(x, t_n), l = 0, \ldots
\]

\[
M_n = \alpha_n \partial_{t_n} - A_n - \gamma qM_0D^{-1}r^\top, \quad A_n = \tilde{J}_nD^n + \sum_{i=0}^{n-1} v_iD^i, v_i = v_i(x, t_n), \alpha_n \in \mathbb{C},
\]

Corollary 2. Lax equation \([P_{k,s}, M_n] = 0\) is equivalent to the system:

\[
[P_{k,s}, M_n] = 0, \quad (\gamma P_{k,s} + \sum_{l=0}^{s} c_l(M_n)^{l+1})\{q\} = 0, \quad (\gamma P_{k,s} + \sum_{l=0}^{s} c_l(M_n)^{l+1})\{r\} = 0.
\]

We do not tend to consider precisely the case \(\gamma = 0\) in the hierarchy \([14]\) in this paper. Thus, without loss of generality we put \(\gamma = 1\).

For further convenience we will consider the Lax pairs consisting of the operators \(\tilde{L}_{k,l}\) \([22]\) and \(M_n\) \([14]\) (the operator \(\tilde{L}_{k,l}\) is involved in equations for functions \(q\) and \(r\); see formulae \([23]\)). Consider examples of equations given by operators \(\tilde{L}_{k,l}\) \([22]\) and \(M_n\) \([14]\) that can be obtained under certain choice of \((k, n, l)\). For simplicity we will also introduce notations: \(t := t_0, \alpha := \alpha_0\).

1. \(k = 2, l = 1, n = 0\). In this case we obtain the following Lax pair in \([14]\):

\[
\tilde{L}_{2,1} = L_{2,1} + c_1(M_0)^2 = D^2 + v_0 + c_1\alpha^2\partial_t^2 - 2c_1\alpha qM_0D^{-1}\partial_t r^\top, \quad c \in \mathbb{C},
\]

\[
M_0 = \alpha \partial_t - qM_0D^{-1}r^\top.
\]

The commutator equation \([\tilde{L}_{2,1}, M_0] = 0\) is equivalent to the system:

\[
q_{xx} + c_1\alpha^2 q_{tt} + v_0q + c_1qM_0S = 0,
\]

\[
r_{xx} + c_1\alpha^2 r_{tt} + r^\top v_0 + c_1SM_0r^\top = 0,
\]

\[
\alpha v_{tt} = -2(qM_0r^\top)_x, \quad S_x = -2\alpha(r^\top q)_t.
\]

7
Equation (27) and its integro-differential Lax representation in \((2+1)\)-dimensional case was investigated in\(^\text{40}\). Consider additional reductions of pair of the operators \(\tilde{L}_{2,1}\) and \(M_0\) \(^\text{26}\) and system \((27)\). After the reduction \(c_1 \in \mathbb{R}, \alpha \in \mathbb{R}, r^T = q^*, M_0 = M_0^*,\) the operators \(\tilde{L}_{2,1}\) and \(M_0\) are Hermitian and skew-Hermitian respectively, and \((27)\) takes the form

\[
\begin{align*}
q_{xx} + c_1 \alpha^2 q_{tt} + v_0 q + c_1 q M_0 S &= 0, \\
\alpha v_{0t} &= -2(q M_0 q^*)_x, \quad S_x = -2\alpha(q^* q)_t.
\end{align*}
\]

Let us consider \((28)\) in the case where \(\alpha = 1, u := q\) and \(\mu := M_0\) are scalars. Then \((28)\) can be rewritten as

\[
\begin{align*}
u_{xx} + c_1 u_{tt} + v_0 u + \mu c_1 S u &= 0, \quad v_{0t} = -2\mu(|u|^2)_x, \quad S_x = -2(|u|^2)_t,
\end{align*}
\]

As a consequence of \((29)\) we obtain

\[
\begin{align*}
u_{xx} + c_1 u_{tt} + \mu S_1 u &= 0, \quad S_{1,xt} = -2(|u|^2)_{xx} - 2c_1(|u|^2)_{tt},
\end{align*}
\]

where \(S_1 = \mu^{-1}v_0 + c_1 S\). This is the well-known stationary Davey-Stewartson system \((\text{DS-I})\) and \((28)\) is therefore a matrix (noncommutative) generalization. The interest in noncommutative versions of DS systems and some other noncommutative nonlinear equations (in particular, solution generating technique) has also arisen recently in\(^\text{41-44}\).

2. \(k = 2, l = 2, n = 0\)

\[
\begin{align*}
\tilde{L}_{2,2} &= L_{2,2} + c_2(M_0)^3 = c_2 \alpha^3 \partial_x^3 + D^2 + v_0 + 3\alpha^2 c_2 q M_0 D^{-1} r^T_t \\
&+ 3\alpha c_2 q M_0 \partial_t D^{-1} r^T q M_0 D^{-1} r^T - 3\alpha c_2 q M_0 D^{-1} \{r^T q\}_t M_0 D^{-1} r^T \\
&- 3c_2 \alpha^2 \partial_t q M_0 D^{-1} r^T \partial_t,
M_0 &= \alpha \partial_t - q M_0 D^{-1} r^T.
\end{align*}
\]

In the vector case \((m = 1)\) after setting \(\mu := M_0 \in \mathbb{C}, \alpha = 1\) the commutator equation \([\tilde{L}_{2,2}, M_0] = 0\) is equivalent to the system:

\[
\begin{align*}
-q_{xx} - c_2 q_{ttt} - v_0 q + 3c_2 \mu (q S_1)_t - 3c_2 q S_2 &= 0, \\
-r^T_{xx} - c_2 r^T_{ttt} - r^T v_0 + 3c_2 \mu S_1 r^T_t + 3c_2 \mu S_2 r^T &= 0, \quad (32)
\end{align*}
\]

Thus, equation given by commutator \([\tilde{L}_{2,2}, M_0] = 0\) generalizes \((32)\) to the matrix case but we do not present it because of its rather complicated structure.
3. \(k = 3, l = 1, n = 0. \)

In this case the operator \(\tilde{L}_{3,1} \) has the form:
\[
\tilde{L}_{3,1} = L_{3,1} - c_1(M_0)^2 = D^3 + v_1D + v_0 + c_1\alpha^2\partial^2_t - 2c_1\alpha qM_0D^{-1}r^\top_t - 2c_1\alpha qM_0D^{-1}r^\top_t \partial_t,
\]
\[
M_0 = \alpha\partial_t - qM_0D^{-1}r^\top.
\] (33)

In the vector case \((N = 1)\) the equation \([\tilde{L}_{3,1}, M_0] = 0\) is equivalent to the system:
\[
q_{xxx} + c_1\alpha^2q_{tt} + v_1q_x + v_0q + c_1qM_0S_1 = 0,
\]
\[
-r_{xxx} + c_1\alpha^2 r_{tt} - (r^\top v_1)_x + r^\top v_0 + c_1S_1M_0r^\top = 0,
\] (34)
\[
\alpha v_{0,t} = -3(q_xM_0r^\top)_x, \quad \alpha v_{1,t} = -3(qM_0r^\top)_x, \quad S_{1x} = -2\alpha(r^\top q)_t.
\]

4. \(k = 3, l = 2, n = 0. \)

\[
\tilde{L}_{3,2} = D^3 + c_2\alpha^3\partial^3_t - v_1D + v_0 - 3\alpha^2c_2qM_0D^{-1}r^\top_t
\]
\[
+3\alpha c_2qM_0\partial_t D^{-1}r^\top qM_0D^{-1}r^\top - 3\alpha c_2qM_0D^{-1}\{r^\top q\}_tM_0D^{-1}r^\top
\]
\[
-3c_2\alpha^2\partial_t qM_0D^{-1}r^\top \partial_t,
\]
\[
M_0 = \alpha\partial_t - qM_0D^{-1}r^\top.
\] (35)

The Lax equation \([\tilde{L}_{3,2}, M_0] = 0\) results in the \((1+1)\)-dimensional matrix mKdV-type system that has rather complicated form. For this reason we will consider only some special cases of it (matrix generalization of \((2+1)\)-dimensional mKdV system and its Lax representation can be found in\([40]\)):

(a) Consider the scalar case of the pair \((35)\) (i.e., \(N = m = 1\)), setting \(R \ni \mu := M_0, q(x,t) := q(x,t), r(x,t) := r(x,t)\) and \(\alpha = 1.\) Under additional Hermitian conjugation reduction: \(c_2 \in \mathbb{R}, r = \bar{q},\) Lax equation \([\tilde{L}_{3,2}, M_0] = 0\) is equivalent to the equation:
\[
q_{xxx} + c_2q_{ttt} - 3\mu q_x \int |q|^2_x dt - 3c_2\mu q_t \int |q|^2_t dx - 3c_2\mu q \int (\bar{q}q)_x dx - 3\mu q \int (q\bar{q})_x dt = 0.
\] (36)

After setting \(t = x, q = \bar{q}\) and \(c_2 = -2\) \((36)\) takes the form
\[
q_{xxx} - 6\mu q^2q_x = 0,
\] (37)
which is the stationary mKdV equation. The system (36) is its complex spatially
two-dimensional generalization.

(b) Consider the scalar case \((N = 1, m = 1)\) of the Lax pair given by (35) under
additional reduction \(\beta = 1, \mu := \mathcal{M}_0 = 1, r := r = \nu\) with a constant \(\nu \in \mathbb{R}\). In
terms of \(u := \psi \nu\) Lax equation \([\tilde{L}_{3,2}, \mathcal{M}_0] = 0\) is equivalent to the following one:
\[
 u_{xxx} + c_2 u_{ttt} - 3D \left\{ \left(\int u_x dt \right) u \right\} - 3c_2 \partial_t \left\{ u \left(\int u_t dx \right) \right\} = 0, \tag{38}
\]
which is the stationary case of Nizhnik equation\(^{45}\).

IV. DRESSING METHODS FOR THE NEW BIDIRECTIONAL
\((1+1)\)-DIMENSIONAL K-CONSTRAINED KP HIERARCHY

In this section our aim is to consider hierarchy of equations given by the Lax pair (14)
in case \(\gamma = 1\). We suppose that the operators \(L_{k,l}\) and \(M_n\) in (14) satisfy the commutator
equation \([L_{k,l}, M_n] = 0\). At first we recall some results from\(^{46}\). Let \(N \times K\)-matrix functions \(\varphi\) and \(\psi\) be solutions of linear problems:
\[
 M_n \{ \varphi \} = \varphi \Lambda, \ M_n^\tau \{ \psi \} = \psi \tilde{\Lambda}, \ \Lambda, \tilde{\Lambda} \in Mat_{K \times K}(\mathbb{C}). \tag{39}
\]
Introduce binary Darboux transformation (BDT) in the following way:
\[
 W = I - \varphi \left(C + D^{-1} \{ \psi \} \right)^{-1} D^{-1} \psi^\top, \tag{40}
\]
where \(C\) is a \(K \times K\)-constant nondegenerate matrix. The inverse operator \(W^{-1}\) has the
form:
\[
 W^{-1} = I + \varphi D^{-1} \left(C + D^{-1} \{ \psi \} \right)^{-1} \psi^\top. \tag{41}
\]
The following theorem is proven in\(^{46}\).

Theorem 2.\(^{46}\) The operator \(\hat{M}_n := WM_nW^{-1}\) obtained from \(M_n\) in (14) via BDT (40) has
the form
\[
 \hat{M}_n := WM_nW^{-1} = \alpha_n \partial_{\alpha_n} - \tilde{\Lambda}_n - \hat{q} \mathcal{M}_0 D^{-1} \hat{r}^\top + \Phi \mathcal{M}_1 D^{-1} \Psi^\top, \ \hat{\Lambda}_n = \tilde{J}_n D^n + \sum_{j=0}^{n-1} \hat{v}_j D^j, \tag{42}
\]
where
\[
 \mathcal{M}_1 = C \Lambda - \tilde{\Lambda}^\top C, \ \Phi = \varphi \Delta^{-1}, \ \Psi = \psi \Delta^{-1, \top}, \ \Delta = C + D^{-1} \{ \psi \} \varphi, \tag{43}
\]
\(\hat{q} = W \{ q \}, \ \hat{r} = W^{-1, \top} \{ r \}\).
\(\hat{v}_j\) are \(N \times N\)-matrix coefficients depending on functions \(\varphi, \psi\) and \(v_j\).
Exact forms of all coefficients \hat{v}_j are given in46.

The following corollary follows from Theorem 2:

Corollary 3. The functions $\Phi = \varphi \Delta^{-1} = W\{\varphi\} C^{-1}$ and $\Psi = \psi \Delta^{-1,\tau} = W^{-1,\tau}\{\psi\} C^{\tau,-1}$ satisfy the equations

\[
\hat{M}_n\{\Phi\} = \Phi C \Lambda C^{-1}, \quad \hat{M}_n^\tau\{\Psi\} = \Psi C^\top \tilde{\Lambda} C^{\tau,-1}.
\]

(44)

For further purposes we will need the following lemmas.

Lemma 1. Let \mathcal{M}_{l+1} be a matrix of the form

\[
\mathcal{M}_{l+1} = C \Lambda^{l+1} - (\tilde{\Lambda}^\top)^{l+1} C, \quad l \in \mathbb{N}.
\]

(45)

The following formula holds:

\[
\mathcal{M}_{l+1} = \sum_{s=0}^{l} C \Lambda^s C^{-1} \mathcal{M}_1 C^{-1} (\tilde{\Lambda}^\top)^{l-s} C.
\]

(46)

Proof. The following recurrent formulae that can easily be checked by direct calculation:

\[
\mathcal{M}_2 = C \Lambda C^{-1} \mathcal{M}_1 + \mathcal{M}_1 \tilde{\Lambda} C C^{-1},
\]

(47)

\[
\mathcal{M}_{l+1} = C \Lambda C^{-1} \mathcal{M}_l + \mathcal{M}_l C C^{-1} \tilde{\Lambda}^\top C - C \Lambda C^{-1} \mathcal{M}_{l-1} C C^{-1} \tilde{\Lambda}^\top C.
\]

(48)

Using formulae (47)-(48) and induction by k we can prove that the following formula holds:

\[
\mathcal{M}_{l+1} = \sum_{s=0}^{k} C \Lambda^s C^{-1} \mathcal{M}_{l-k+1} C C^{-1} (\tilde{\Lambda}^\top)^{k-s} C - \sum_{s=1}^{k} C \Lambda^s C^{-1} \mathcal{M}_{l-k} C C^{-1} (\tilde{\Lambda}^\top)^{k-s+1} C, \quad k \leq l-2,
\]

(49)

for some $k \leq l-2$. After the substitution of $k = l-2$ in (49) and using (47) we can obtain formula (46). This finishes the proof of formula (46) and Lemma 1.

\[\square\]

Lemma 2. The following formula

\[
\Phi \mathcal{M}_{l+1} D^{-1} \Psi^\top = \sum_{s=0}^{l} \Phi[s] \mathcal{M}_1 D^{-1} \Psi^\top[l-s],
\]

(50)

holds, where

\[
\Phi[j] := (\hat{M}_n)^j\{\Phi\}, \quad \Psi[j] := (\hat{M}_n^\tau)^j\{\Psi\}.
\]

(51)
Proof. Lemma 2 is a consequence of Corollary 1 and formula (16) of Lemma 1. Namely, the following relations hold:

\[\Phi \mathcal{M}_{l+1} D^{-1} \Psi^\top = \sum_{s=0}^{l} \Phi C \Lambda^s C^{-1} \mathcal{M}_1 C^{-1} D^{-1} (\tilde{\Lambda})^l s C \Psi^\top = \sum_{s=0}^{l} \Phi[s] \mathcal{M}_1 D^{-1} \Psi^\top[l - s]. \]

Now we assume that the functions \(\varphi \) and \(\psi \) in addition to equations (39) satisfy the equations:

\[L_{k,l} \{ \varphi \} = -c_l \varphi \Lambda^{l+1} = -c_l M^{l+1}_n \{ \varphi \}, \quad L^\tau_{k,l} \{ \psi \} = -c_l \psi \tilde{\Lambda}^{l+1} = -c_l (M^\tau_n)^{-1} \{ \psi \}. \quad (52) \]

Problems (52) can be rewritten via the operator \(\tilde{L}_{k,l} \) (22) as:

\[\tilde{L}_{k,l} \{ \varphi \} = 0, \quad \tilde{L}^\tau_{k,l} \{ \psi \} = 0. \quad (53) \]

The following theorem for the operators \(L_{k,l} \) (14) and \(\tilde{L}_{k,l} \) (22) holds:

Theorem 3. Let \(N \times K \)-matrix functions \(\varphi, \psi \) be solutions of problems (39) and (52). The transformed operator \(\hat{L}_{k,l} := WL_{k,l} W^{-1} \) obtained via BDT \(W \) (40) has the form:

\[\hat{L}_{k,l} := WL_{k,l} W^{-1} = \hat{B}_k + c_l \sum_{i=0}^{k-1} \hat{q}[i] \mathcal{M}_0 D^{-1} \hat{r}^\top[l - j] + c_l \sum_{s=0}^{l} \Phi[s] \mathcal{M}_1 D^{-1} \Psi^\top[l - s], \quad \hat{B}_k = \mathcal{J}_k D^k + \sum_{i=0}^{k-1} \hat{v}_i D^i, \quad (54) \]

where the matrix \(\mathcal{M}_n \) and the functions \(\hat{q}, \hat{r}, \Phi[s], \Psi[l - s] \) are defined by formulae (43), (51) and \(\hat{q}[j], \hat{r}[j] \) have the form

\[\hat{q}[j] = (\hat{M}^i_n)\{ \hat{q} \}, \quad \hat{r}[j] = (\hat{M}^i_n)^\tau \{ \hat{r} \}, \quad (55) \]

\(\hat{v}_i \) are \(N \times N \)-matrix coefficients that depend on the functions \(\varphi, \psi \) and \(v_i \). The transformed operator \(\hat{L}_{k,l} = W\tilde{L}_{k,l} W^{-1} \) has the form:

\[\hat{L}_{k,l} = W\tilde{L}_{k,l} W^{-1} = \hat{L}_{k,l} + c_l (\hat{M}_n)^{l+1}, \quad (56) \]

where \(\hat{M}_n \) is given by (42).

Proof. We shall rewrite the operator \(L_{k,l} \) (14) in the form

\[L_{k,l} = \mathcal{J}_k D^k + \sum_{i=0}^{k-1} u_i D^i + c_l \hat{q} \hat{M}_0 D^{-1} \hat{r}^\top, \quad (57) \]
where $\tilde{\mathcal{M}}_0$ is an $m(l+1) \times m(l+1)$-block-diagonal matrix with entries of \mathcal{M}_0 at the diagonal; $\hat{q} := (q[0], q[1], \ldots, q[l]), \hat{r} := (r[l], r[l-1], \ldots, r[0])$. Using Theorem 2 we obtain that

$$\hat{L}_{k,l} = J_k D^k + \sum_{i=0}^{k-1} \hat{u}_i D^i + c_l \hat{q} \tilde{\mathcal{M}}_0 D^{-1} \hat{r}^\top + \Phi \mathcal{M}_{l+1} D^{-1} \Psi^\top, \quad (58)$$

where $\hat{q} = W\{q\}, \hat{q} = W^{-1,\tau}\{\hat{r}\}$. Using the exact form of \hat{q} and \hat{r} we have

$$\hat{q} = W\{q\} = (W\{q[0]\}, \ldots, W\{q[l]\}), \hat{r} = W^{-1,\tau}\{\hat{r}\} = (W^{-1,\tau}\{r[l]\}, \ldots, W^{-1,\tau}\{r[0]\}). \quad (59)$$

We observe that

$$W\{q[i]\} = W L^i\{q\} = W L^i W^{-1}\{W\{q\}\} = \hat{L}^i\{\hat{q}\} =: \hat{q}[i]. \quad (60)$$

It can be shown analogously that $W^{-1,\tau}\{r[i]\} = \hat{L}^{\tau,i}\{W^{-1,\tau}\{r\}\} = \hat{L}^{\tau,i}\{\hat{r}\} =: \hat{r}[i]$. Thus we have:

$$\hat{q} \tilde{\mathcal{M}}_0 D^{-1} \hat{r}^\top = \sum_{j=0}^{l} \hat{q}[j] \mathcal{M}_0 D^{-1} \hat{r}^\top[l-j]. \quad (61)$$

For the last item in (58) from Lemma 2 we have:

$$\Phi \mathcal{M}_{l+1} D^{-1} \Psi^\top = \sum_{s=0}^{l} \Phi[s] \mathcal{M}_1 D^{-1} \Psi^\top[l-s]. \quad (62)$$

Using formulae (58), (61), (62) we obtain that the operator $\hat{M}_{n,l}$ has form (54). The exact form of the operator $\hat{M}_{n,l}$ follows from formula (54) and Theorem 2.

From Theorem 3 we obtain the following corollary.

Corollary 4. Assume that functions φ and ψ satisfy problems (32) and (52). Then the functions $\Phi = W\{\varphi\}C^{-1}$ and $\Psi = W^{-1,\tau}\{\psi\}C^{\tau, -1}$ (see formulae (43)) satisfy the equations:

$$\hat{L}_{k,l}\{\Phi\} = \hat{L}_{k,l}\{\Phi\} + c_l (\hat{M}_n)^{l+1}\{\Phi\} = 0, \quad \hat{L}^{\tau,i}_{k,l}\{\Psi\} = \hat{L}^{\tau,i}_{k,l}\{\Psi\} + c_l (\hat{M}_n)^{l+1}\{\Psi\} = 0, \quad (63)$$

where the operators $\hat{L}_{k,l}, \hat{L}^{\tau,i}_{k,l}$ and \hat{M}_n are defined by (42), (54) and (50).

As an example we will consider dressing methods for equations connected with the operators $\hat{L}_{2,1}, \hat{M}_0$. Assume that φ and ψ are $N \times K$-matrix functions that satisfy the equations

$$M_0\{\varphi\} = \varphi \Lambda, \quad M_0^\tau\{\psi\} = \psi \tilde{\Lambda}, \quad M_0 := \alpha \partial_t. \quad (64)$$
By Theorem 2 we obtain that the dressed operator \(\hat{M}_0 \) via BDT \(W \) \((40)\) has the form

\[
\hat{M}_0 = WM_0W^{-1} = \alpha \partial_t + \Phi \mathcal{M}_1D^{-1}\Psi^T. \tag{65}
\]

Assume that \(N \times K \)-matrix functions \(\varphi \) and \(\psi \) in addition to equations \((64)\) also satisfy the equations

\[
L_{2,1}\{\varphi\} = -c_1\varphi\Lambda^2 = -c_1(M_0)^2\{\varphi\}, \quad L_{2,1}\{\psi\} = -c_1\psi\bar{\Lambda}^2 = -c_1(M_0^*)^2\{\psi\}, \quad L_{2,1} := D^2. \tag{66}
\]

By Theorem 3 we obtain that the transformed operator \(\hat{L}_{2,1} \) has the form

\[
\hat{L}_{2,1} = WL_{2,1}W^{-1} = D^2 + \hat{v}_0 + \hat{M}_0\{\Phi\}\mathcal{M}_1D^{-1}\Psi^T + \Phi \mathcal{M}_1D^{-1}(\{\hat{M}_0\}\{\Psi\})^T. \tag{67}
\]

By direct calculations it can be obtained that \(\hat{v}_0 = 2(\varphi\Delta^{-1}\psi^T)_t, \Delta = C + D^{-1}\{\psi^T\varphi\} \). It can be easily checked that

\[
\alpha(\varphi\Delta^{-1}\psi^T)_t = \alpha\varphi\Delta^{-1}\psi^T - \alpha\varphi\Delta^{-1}D^{-1}\{\psi^T\varphi\}_t\Delta^{-1}\psi^T + \alpha\varphi\Delta^{-1}\psi^T =
\]

\[
\varphi\Delta^{-1}(CA + \alpha D^{-1}\{\psi^T\varphi\})\Delta^{-1}\psi^T - \alpha\varphi\Delta^{-1}D^{-1}\{\psi^T\varphi\}_t\Delta^{-1}\psi^T +
\]

\[
+ \varphi\Delta^{-1}(-\bar{\Lambda}^TC + \alpha D^{-1}\{\psi^T\varphi\})\Delta^{-1}\psi^T = \Phi \mathcal{M}_1\Psi^T. \tag{68}
\]

From the latter formula we obtain that

\[
\alpha\hat{v}_0 = 2\alpha(\varphi\Delta^{-1}\psi^T)_t = 2(\Phi \mathcal{M}_1\Psi^T)_t. \tag{69}
\]

From Corollary 4 we see that the functions \(\Phi = \varphi\Delta^{-1} \) and \(\Psi = \psi\Delta^T\Delta^{-1} \) where \(\Delta = C + D^{-1}\{\psi^T\varphi\} \) (see formulae \((63)\)) satisfy equations \((63)\). After the change \(q := \Phi, r := \Psi, M_0 := -\mathcal{M}_1, v_0 := \hat{v}_0 \) from formulae \((63)\) and \((69)\) we obtain that \(N \times K \)-matrix functions \(q, r \), an \(N \times N \)-matrix function \(v_0 \), a \(K \times K \)-matrix function \(S = 2\alpha(\Delta^{-1})_t \) and a \(K \times K \)-matrix \(M_0 \) satisfy equations \((27)\). It can be checked that in the case of additional reductions in formulae \((64)-(66)\): \(\alpha \in \mathbb{R}, c_1 \in \mathbb{R}, \bar{\Lambda} = -\bar{\Lambda}, \psi = \bar{\varphi} \) and \(C = C^* \) in gauge transformation operator \(W \) \((40)\) it can be checked by direct calculations that the functions \(q := \Phi, S_1 = 2\alpha(\Delta^{-1})_t \) and \(v_0 = \hat{v}_0 = 2(\varphi\Delta^{-1}\varphi^*)_t \) satisfy matrix DS system \((27)\) with \(M_0 = -\mathcal{M}_1 \).

From the previous considerations we obtain that in the scalar case \((N = 1, m = 1)\), \(\mu := M_0 = -\mathcal{M}_1 = -C(\Lambda + \bar{\Lambda}) \) under condition \(\alpha = 1 \) functions

\[
u = q = \frac{\exp(\theta)}{\Delta}, \quad S = -2\frac{\text{Re}(\Lambda)\exp(2\text{Re}(\theta))}{\text{Re}(1/\sqrt{c_1}\Lambda)\Delta^2}, \quad v_0 = -2\mu\frac{\text{Re}(1/\sqrt{c_1}\Lambda)\exp(2\text{Re}(\theta))}{\text{Re}(\Lambda)\Delta^2}, \tag{70}
\]
where $\Delta = -\frac{\mu}{2\text{Re}(\Lambda)} + \frac{1}{2\text{Re}(i\sqrt{c_1\Lambda})} \exp(2\text{Re}(\theta))$ and $\theta = i\sqrt{c_1\Lambda} x + \Lambda t$, satisfy the scalar DS system (29) (see also (30)):

$$
\begin{align*}
 u_{xx} + c_1 u_{tt} + v_0 u + \mu c_1 Su &= 0, \\
 v_{0t} &= -2\mu |u|^2_x, \quad S_x = -2|u|^2_t.
\end{align*}
$$

(71)

Functions u and $S_1 = \mu^{-1} v_0 + c_1 S$ are therefore solutions of differential consequence (71):

$$
\begin{align*}
 u_{xx} + c_1 u_{tt} + \mu S_1 u &= 0, \\
 S_{1,xt} &= -2(|u|^2)_{xx} - 2c_1(|u|^2)_{tt},
\end{align*}
$$

(72)

Consider special cases of (72) and its solutions:

1. $c_1 = 1$.

 (a) $\mu = 1$. In this case functions u and $S_1 = \mu^{-1} v_0 + c_1 S$, where v_0 and S_1 are defined by (70) represent regular solutions of (72) in case $(\text{Re}(\Lambda))(\text{Im}(\Lambda)) > 0$ (in case $(\text{Re}(\Lambda))(\text{Im}(\Lambda)) < 0$ u and S_1 are singular)

 (b) $\mu = -1$. In this case functions u and $S_1 = \mu^{-1} v_0 + c_1 S$, where v_0 and S_1 are defined by (70) represent regular solutions of (72) in case $(\text{Re}(\Lambda))(\text{Im}(\Lambda)) < 0$ (in case $(\text{Re}(\Lambda))(\text{Im}(\Lambda)) > 0$ u and S_1 are singular)

2. $c_1 = -1$.

 (a) $\mu = 1$. In this case functions u and $S_1 = \mu^{-1} v_0 + c_1 S$, where v_0 and S_1 are given by (70) represent regular solutions of (72).

 (b) $\mu = -1$. In this case functions u and $S_1 = \mu^{-1} v_0 + c_1 S$, where v_0 and S_1 are defined by (70) represent singular solutions of (72).

The construction of wider classes of solutions (e.g., soliton solutions) for vector and matrix nonlinear systems from (1+1)-BDk-cKP hierarchy will take too much space in this paper. Corresponding ideas can be found in34,35,47.

V. CONCLUSIONS

In this paper we introduced a new (1+1)-BDk-cKP hierarchy (14) that generalizes matrix k-constrained KP hierarchy given by (3) and (4) that was investigated in18,22. We shall point
that an important case of hierarchy (14) \((\gamma = 0)\) is not precisely investigated in this paper. In particular, dressing methods for this case still have to be elaborated. As an example let us consider the case \(\gamma = 0, k = 1, s = 1, n = 2\) of hierarchy (14). Then operators \(P_{k,s}\) and \(M_n\) (24) take the form:

\[
P_{1,1} = D + c_1 \left(\alpha_2 q_{t_2} \mathcal{M}_0 D^{-1} r_1^\top - \alpha_2 q \mathcal{M}_0 D^{-1} r_{t_2}^\top - q_{x_2} \mathcal{M}_0 D^{-1} r_1^\top - \mathcal{M}_0 D^{-1} r_{x_2}^\top - \mathcal{M}_0 D^{-1} r_x^\top - \mathcal{M}_0 D^{-1} r_{x}^\top u \right) + c_0 q \mathcal{M}_0 D^{-1} r_1^\top,
\]

\[
M_2 = \alpha_2 \partial_{t_2} - D^2 - u.
\]

According to Corollary 2 operator equation \([P_{1,1}, M_2] = 0\) is equivalent to the system:

\[
[P_{1,1}, M_2]_{\geq 0} = 0, \quad c_1 M_2^2 \{q\} + c_0 M_2 \{q\} = 0, \quad c_1 (M_2^\top)^2 \{r\} + c_0 M_2^\top \{r\} = 0. \tag{73}
\]

System (73) in the vector case \((N = 1)\) the can be rewritten in the following form:

\[
c_1 (\alpha_2^2 q_{t_2} - 2 \alpha_2 q_{x x t_2} + q_{x x x x} - \alpha_2 (u q)_{t_2} + (u q)_{x x} - \alpha_2 u q_{t_2} + u q_{x x} + u_2 q) + c_0 (\alpha_2 q_{t_2} - q_{x x} - u q) = 0,
\]

\[
c_1 (\alpha_2^2 r_{t_2} + 2 \alpha_2 r_{x x t_2} + r_{x x x x} + \alpha_2 (u r)_{t_2} + (u r)_{x x} + \alpha_2 u r_{t_2} + u r_{x x} + u_2 r) + c_0 (-\alpha_2 r_{t_2} - r_{x x} - u r) = 0, \tag{74}
\]

\[
u = 2 \left(\frac{c_1 (\alpha_2 q_{t_2} \mathcal{M}_0 r_1^\top - \alpha_2 q \mathcal{M}_0 r_{t_2}^\top - q_{x x} \mathcal{M}_0 r_1^\top - \mathcal{M}_0 r_{x x}^\top + 4 c_1 q \mathcal{M}_0 r_1^\top)}{1 + 4 c_1 q \mathcal{M}_0 r_1^\top} \right). \tag{75}
\]

This system is a generalization of the vector nonlinear Schrödinger system (NLS) in \(l\)-direction \((l = 1)\). NLS can be obtained from the latter system in particular case \((c_1 = 0)\) after additional Hermitian conjugation reduction \(q = \bar{r}, \alpha_2 \in i \mathbb{R}\). Analogous generalizations in \(l\)-direction can be made for Yajima-Oikawa hierarchy \((k = 2, s = 0, \gamma = 0)\) in the hierarchy (24) and Melnikov hierarchy \((k = 3, s = 0, \gamma = 0)\) in the hierarchy (24). Investigations in this direction will be made in another paper.

REFERENCES

1. L.A. Dickey, *Soliton Equations and Hamiltonian Systems*, Advanced Series in Mathematical Physics, 2nd ed. World Scientific, River Edge, NJ, 2003, Vol. 26
2. V.E. Zakharov and A.B. Shabat, *Integration of nonlinear equations of mathematical physics by the method of inverse scattering*, Funct. Anal. Appl. 8 (3) (1974), 226–235
3S.P. Novikov, S.V. Manakov, L.P. Pitaevskij and V.E. Zakharov, *Theory of solitons. The inverse scattering methods*, Transl. from the Russian, Contemporary Soviet Mathematics. New York - London: Plenum Publishing Corporation. Consultants Bureau, 1984
4R.K. Bullough and P.J. Caudrey (eds.), *Solitons*, Springer-Verlag, Berlin, 1980
5V.A. Marchenko, *Nonlinear equations and operator algebras*, Dordrecht, Boston, Lancaster, Tokyo, Reidel, 1988
6V.B. Matveev, *Darboux transformation and explicit solutions of the Kadomtsev-Petviashvily equation, depending on functional parameters*, Lett. in Math. Phys. 3 (1979), 213-216
7V.B. Matveev and M.A. Salle, *Darboux transformations and solitons*, Berlin Heidelberg, Springer-Verlag, 1991
8E. Date, M. Jimbo, M. Kashiwara, and T. Miwa, *Operator approach to the Kadomtsev-Petviashvili equation. Transformation groups for soliton equations. III*, J. Phys. Soc. Jpn. 50 (1981), 3806-3812
9E. Date, M. Jimbo, M. Kashiwara, and T. Miwa, *Transformation Groups for Soliton Equations - Euclidean Lie Algebras and Reduction of the KP Hierarchy*, Publ. Res. Inst. Math. Sci. 18 (1982), 1077-1110
10M. Sato and Y. Sato, *Soliton equations as dynamical systems on infinite-dimensional Grassmann manifold*, North-Holland Math. Stud. 81 (1983), 259-271
11M. Jimbo and T. Miwa, *Solitons and Infinite Dimensional Lie Algebras*, Publ. Res. Inst. Math. Sci. 19 (1983), 943-1002
12Y. Ohta, J. Satsuma, D. Takahashi and T. Tokihiro, *An Elementary Introduction to Sato Theory*, Prog. Theor. Phys. Suppl. 94 (1988), 210-250
13V.K. Melnikov, *On equations for wave interactions*, Lett. Math. Phys. 7 (2) (1983), 129-138
14V.K. Melnikov, Preprint JINR P2-85-958, Dubna (1985) (in Russian)
15V.K. Melnikov, Preprint JINR P2-87-136, Dubna (1987) (in Russian)
16V.K. Melnikov, *A direct method for deriving a multi-soliton solution for the problem of interaction of waves on the x,y plane*, Commun. Math. Phys. 112 (1987), 639-652
17V.K. Melnikov, *Integration method of the Korteweg-de Vries equation with a self-consistent with a self-consistent source*, Phys. Lett. A 128 (1988), 493-496
18J. Sidorenko and W. Strampp, *Symmetry constraints of the KP hierarchy*, Inverse Problems 7 (1991), L37-L43
19. B.G. Konopelchenko, J. Sidorenko and W. Strampp, \((1+1)\)-dimensional integrable systems as symmetry constraints of \((2+1)\)-dimensional systems, Phys. Lett. A \textbf{157} (1991), 17-21

20. Y. Cheng and Y.S. Li, The constraint of the Kadomtsev-Petviashvili equation and its special solutions, Phys. Lett. A \textbf{157} (1991), 22-26

21. Y. Cheng, Constraints of the Kadomtsev\&Petviashvili hierarchy, J. Math. Phys. \textbf{33} (1992), 3774-3782

22. Y. Cheng and Y.S. Li, Constraints of the \(2+1\) dimensional integrable soliton systems, J. Phys. A. \textbf{25}, (1992), 419-431

23. J. Sidorenko and W. Strampp, Multicomponent integrable reductions in Kadomtsev-Petviashvilli hierarchy, J. Math. Phys. \textbf{34} (4) (1993), 1429-1446.

24. W. Oevel, Darboux Theorems and Wronskian Formulas for Integrable Systems I: Constrained KP Flows, Physica A \textbf{195} (1993), 533-576

25. Y.-J. Zhang and Y. Cheng, Solutions for the vector \(k\)-constrained KP hierarchy, J.Math.Phys. \textbf{35} (1994), 5869-5884.

26. W. Oevel and W. Strampp, Wronskian solutions of the constrained KP hierarchy, J. Math. Phys. \textbf{37} (1996), 6213-6219

27. H. Aratyn, E. Nissimov and S. Pacheva, Constrained KP hierarchies: additional symmetries, Darboux-Backlund solutions and relations to multi-matrix models, Int. J. Mod. Phys. A \textbf{12} (1997) 1265-1340

28. L.-L. Chau, J.-C. Shaw and M.-H. Tu, Solving the Constrained KP Hierarchy by Gauge Transformations, J. Math. Phys. \textbf{38} (8) (1997), 4128-4137

29. R. Willox, I. Loris, and C. R. Gilson, Binary Darboux transformations for constrained KP hierarchies, Inverse Problems, \textbf{13} (1997), 849-865

30. A. Kundu, W. Strampp, and W. Oevel, Gauge Transformations of Constrained KP Flows: New Integrable Hierarchies, J. Math. Phys., \textbf{36} (1995), 2972-2984

31. W. Oevel and S. Carillo, Squared Eigenfunction Symmetries for Soliton Equations, J. Math. Anal. Appl. \textbf{217} (1998), 161-199

32. Yu.O. Mytropolsky, V.H. Samoilenko and Yu.M. Sidorenko, Spatially two-dimensional generalization of Kadomtsev\&Petviashvili hierarchy with nonlocal constraints, Proceedings of NSA of Ukraine, \textbf{8} (1999), 19-23

33. A.M. Samoilenko, V.G. Samoilenko and Yu.M. Sidorenko, Hierarchy of the Kadomtsev\&Petviashvili equations under nonlocal constraints: Many-dimensional generalizations and exact solutions of reduced systems, Ukr. Math. Journ. \textbf{51} (1) (1999), 86-106
34 Yu. Yu. Berkela "Integration of nonlinear evolution systems with nonlocal constraints," Ph.D. thesis, Ivan Franko National University of Lviv (in Ukrainian), 2005
35 Yu. Yu. Berkela, Yu. M Sidorenko, The exact solutions of some multicomponent integrable models, Mat. Studii, 17 (2002), 47-58
36 X.J. Liu, Y.B. Zeng and R. Lin, A new extended KP hierarchy, Phys. Lett. A 372 (2008), 3819-3823
37 X.J. Liu, R. Lin, B. Jin and Y.B. Zeng, A generalized dressing approach for solving the extended KP and the extended mKP hierarchy, J. Math. Phys. 50 (2009) 053506-1 – 053506-14
38 B.B. Kadomtsev and V.I. Petviashvili, On the stability of solitary waves in weakly dispersive media, Sov. Phys. Dokl. 15 (1970), 539-541
39 V.S. Dryuma. On the analytic solution of the two-dimensional Korteweg-de Vries equation, JETP Lett. 19 (12) (1974), 753-755.
40 Yu.M. Sydorenko and O.I. Chvartatskyi, Matrix generalizations of integrable systems with Lax integro-differential representations, submitted to J. Phys.: Conf. Ser. (2012), http://arxiv.org/abs/1212.3444
41 A. Dimakis and F. Müller-Hoissen, Multicomponent Burgers and KP hierarchies, and solutions from a matrix linear system, Symmetry, Integrability and Geometry: Methods and Applications 5 (2009), 002-1 – 002-18
42 C.R. Gilson and S.R. Macfarlane, Dromion solutions of noncommutative Davey-Stewartson equations, J. Phys. A: Math. Theor, 42 (23) (2009), 235202-01 – 235202-20
43 C.R. Gilson, J.J.C. Nimmo and C.M. Sooman, Matrix Solutions of a Noncommutative KP Equation and a Noncommutative mKP Equation, Theor. Math. Phys. 159 (3) (2009) 796-805
44 C.R. Gilson, M. Hamanaka and J.J.C. Nimmo, Bäcklund Transformations for Noncommutative Anti-Self-Dual Yang-Mills Equations, Glasgow Mathematical Journal, 51A (2009), 89-93
45 L.P. Nizhnik, Integration of multidimensional nonlinear equations by the inverse problem method, Dokl. Akad. Nauk SSSR 254 (1980), 332-335
46 Yu. Sydorenko and O. Chvartatskyi, Binary transformations for spatially two-dimensional operators and Lax equations, Visn. Kyiv Univ.: Mechanics and Mathematics 22 (2009), 32-35 (in Ukranian)
Yu. Sydorenko and O. Chvartatskyi, *Integration of scalar Kadomtsev-Petviashvili hierarchy by the method of integral Darboux-like transformations*, Visn. Lviv Univ. Ser: mech.-mat. 75 (2011), 181-225 (in Ukrainian)