Abstract

Background: Cystic fibrosis (CF) is a worldwide disease occurring mostly in Caucasians. It is an autosomal recessive disorder that leads to a malfunction of CF transmembrane conductance regulator (CFTR). These mutations cause an ionic disorder on the body fluids and a modification on its consistency. Affects multiple parts of the body and rhinosinusitis is a common manifestation of the upper airway affection.

Material and methods: This retrospective study performed a statistical analysis of the prevalence of chronic rhinosinusitis with polyposis, genotype and mortality in 30 children under 18 years with cystic fibrosis followed in the CF unit of Coimbra University Hospital.

Results: The mean age of this study was 12.9 years. Phenylalanine deletion at position 508 (F508delF508del) was the most prevalent genotype (66.7%). Females patients had an higher prevalence of morbidities, however male patients had an higher mortality rate 20% comparing to 6.7%. Nasal polypsis was present only in the living ones with F508delF508del genotype. ENT (ear, nose and throat) symptoms and an abnormal ENT examination were mostly observed in F508delF508del genotype.

Conclusions: CF is a lifelong disease that requires long-term surveillance and compliance. The involvement of the lower airway is prevalent in young children. The upper airway symptoms becomes more important with disease progression. Nasal polypsis is prevalent on the older ones with F508delF508del genotype. In this kind of patients with persistent symptoms, who have failed medical management, are often considered appropriate candidates for functional endoscopic surgery.

Keywords: chronic rhinosinusitis, cystic fibrosis, nasal polyposis, children

Introduction

Decades ago cystic fibrosis had a high rate of early mortality making it a frightening disease among the medical community. This high rate was related to the pulmonary deterioration characteristic of this pathology and due to opportunistic bacteria. Advances in knowledge of CF physiopathology, improvement in therapeutics and vaccines promoted an increase in patients survival and quality of life which also led to the emergence of new comorbidities. CF is more prevalent in Caucasians and is an autosomal recessive disorder genetically inherited, caused by some particular dysfunction or deficiency of the CF transmembrane conductance regulator. CFTR gene is located on the long arm of chromosome 7 and the commonest mutation is the deletion of phenylalanine at codon 508 (F508delF508del) was the most prevalent genotype (66.7%). Phenylalanine deletion at position 508 (F508delF508del) was the most prevalent genotype (66.7%), while F508del7111GT and F508delc.3321dup were the most prevalent genotypes. Phenylalanine deletion at position 508 (F508delF508del) was the most prevalent genotype (66.7%).

Material and methods

A total of 30 patients and their medical records, followed in CF unit at Coimbra University Hospital, were retrospectively analyzed. It was made an overall characterization of the population, collected genotype, symptoms and treatment. Statistical analysis was performed using IBM SPSS version 25 with statistical significance assumed at p<0.05. Chi-square and Fisher’s Exact tests were used to determine group differences in demographic and clinical variables. Univariate analysis was performed to outline predictive factors for mortality. Experienced otorhinolaryngologists reviewed the data.

Results

Of 30 patients enrolled in this study, 15 patients were male and 15 were female with a mean age of 12.9 years. Phenylalanine deletion at position 508 (F508delF508del) was the most prevalent genotype (66.7%), while F508del7111GT and F508delc.3321dup were the most prevalent genotypes. Phenylalanine deletion at position 508 (F508delF508del) was the most prevalent genotype (66.7%).
Impact of the different mutations in the cystic fibrosis gene in children with chronic rhinosinusitis

At least common (3,3%). Females patients had an higher prevalence of morbidities, such as fatigue (71,4%) and weight loss (57,1%). The mortality rate for male patients was 20% (ages between 15 and 17 years old), comparing to 6,7% in female patients (17 years old). However, no statistically significant differences between genders regarding genotypes, nasal polyposis, morbidities, and mortality were found.

Table 1 compares the study population between genders. Influence of cystic fibrosis genotype on symptoms and physical examination is shown in Table 2. Less frequent genotypes (F508del2184insA, N1303KAS61E, F508delG542x, F508del7111GT, F508delc.3321dup, F508delR334w and F508del3171delC mutations) were grouped for statistical purposes. Considering respiratory symptoms, both groups had high prevalence of sputum and cough. However, ENT (Ear, Nose, and Throat) symptoms, like nasal obstruction and rhinorrhea were only detected in a patient with the F508delF508del genotype (Figure 1). The presence of ENT symptoms did not correlate with an abnormal ENT physical examination. In fact, an abnormal ENT examination was only present in F508delF508del genotypes. Chi-square and Fisher’s Exact tests were used to assess dependence between genotype and symptoms and physical examination, but no statistically significant differences were found.

Table 1 Clinical features of CF patients per gender

Genotype, %	Frequency (n=30)	Gender	p value*
	Male (n=15)	Female (n=15)	
F508del2184insA	6.7%	6.7%	6.7%
N1303KAS61E	6.7%	13.3%	0.0%
F508delG542x	6.7%	6.7%	6.7%
F508del7111GT	3.3%	0.0%	6.7%
F508delF508del	66.7%	60.0%	73.3%
F508delc.3321dup	3.3%	6.7%	0.0%
F508delR334w	6.7%	6.7%	6.7%

Nasal polyposis, %

	Male (n=15)	Female (n=15)	p value*
F508delF508del	6.7%	6.7%	6.7%

Comorbidities, %

	Male (n=15)	Female (n=15)	p value*
F508delF508del	28.6%	71.4%	.390
N1303KAS61E	42.9%	57.1%	1.000
F508delG542x	20.0%	6.7%	.598
F508del7111GT	20.0%	6.7%	.598
F508delc.3321dup	20.0%	6.7%	.598

Table 2 Clinical features of CF patients per genotype

	F508delF508del	Other genotypes*	p value**
Abnormal ENT examination, %	35.0%	0.0%	.064
Nasal polyposis, %	20.0%	0.0%	.272

Respiratory symptoms, %

	F508delF508del	Other genotypes*	p value**
Sputum	73.7%	77.8%	.380
Cough	78.9%	66.7%	.449
Wheeze	5.3%	11.1%	.195

ENT symptoms, %

	F508delF508del	Other genotypes*	p value**
Nasal obstruction	42.1%	0.0%	.735
Rhinorrhea	26.3%	0.0%	1.000
Deceased, %	10.0%	20.0%	.584

*Other genotypes include F508del2184insA, N1303KAS61E, F508delG542x, F508del7111GT, F508delc.3321dup, F508delR334w and F508del3171delC mutations.

**p value was calculated using Chi-square and Fisher’s Exact Tests.

Citation: Ferreira MDS, Moura JE, Amorim AM, et al. Impact of the different mutations in the cystic fibrosis gene in children with chronic rhinosinusitis. J Otolaryngol ENT Res. 2019;11(5):211–214. DOI: 10.15406/joentr.2019.11.00437
Impact of the different mutations in the cystic fibrosis gene in children with chronic rhinosinusitis

This study reports on the impact of different mutations in the cystic fibrosis gene (CFTR) in children with chronic rhinosinusitis (CRS). The authors analyzed the genotype distribution and its association with ENT symptoms and nasal polyposis.

Findings:
- The most common mutation was F508del, accounting for about 70% of cases.
- Other mutations such as G551D and S549N were also found.
- Nasal polyposis was present only in currently living patients and was more frequent in older children.
- The prevalence of previous fatigue in CF patients was also studied, and was found to be higher in deceased patients compared to the living ones.

Discussion:
- CF is caused by a malfunction of CFTR, with the F508del mutation being the most common.
- Increased mucus viscosity and obstruction of sinus ostia lead to hypoxic conditions.
- Chronic inflammatory state promotes bacterial overgrowth in CF patients.
- Nasal polyposis is associated with higher mortality rates.

Conclusions:
- CF continues to be a life-threatening disease.
- Chronic rhinosinusitis with nasal polyposis is more frequent in older ages.
- Early detection and treatment are crucial for improving outcomes.

Acknowledgments:
None.

Conflict of interests:
The authors declare there is no conflict of interest.

Funding details:
None.

Citation:
Ferreira MDS, Moura J, Amorim AM, et al. Impact of the different mutations in the cystic fibrosis gene in children with chronic rhinosinusitis. J Otolaryngol ENT Res. 2019;11(5):211–214. DOI: 10.15406/joentr.2019.11.00437
References

1. Massie J, Robinson PJ, Cooper PJ. The story of cystic fibrosis 1965–2015. J Paediatr Child Health. 2016;52(11):991–994.

2. Kocha C, Høibyb N. Diagnosis and Treatment of Cystic Fibrosis. Respiration. 2000;67(3):239–247.

3. Haaban M, Kejner A, Rowe S, et al. Cystic Fibrosis Chronic Rhinosinusitis: A Comprehensive Review. Am J Rhinol Allergy. 2013;27(5):387–395.

4. Farrell P, White T, Ren CL, et al. Diagnosis of Cystic Fibrosis: Consensus Guidelines from the Cystic Fibrosis Foundation. J Pediatr. 2017;181:S4–S15.

5. Cutting G. Cystic fibrosis genetics: from molecular understanding to clinical application. Nat Rev Genet. 2014;16(1):45–56.

6. Karen ZV, Clement LR. Diagnosis of Cystic Fibrosis. Clinic Rev Allerg Immunol. 2008;35:100–106.

7. Khatami GR, Mir-Nasseri MM, Seyghali F, et al. Characteristics of Patients with Cystic Fibrosis: Experience in a Large Referral Children’s Hospital in Tehran, Iran. Middle East J Dig Dis. 2010;2(1):20–23.

8. Davies JC, Alton EFW, Bush A. Cystic fibrosis. The BMJ. 2007;335(7632):1255–1259.

9. Vankeerberghen A, Cuppens H, Cassiman J. The cystic fibrosis transmembrane conductance regulator: an intriguing protein with pleiotropic functions. J Cyst Fibros. 2002;1(1):13–29.

10. Cunha A, Amarim A, Augusto S, et al. Fibrose quística em adultos – Experiência do Serviço de Otorrinolaringologia do Centro Hospitalar e Universitário de Coimbra. Acta Otorrinolaringológica Gallega. 2016;9(1):79–88.

11. Le C, McCravy HC, Chang E. Cystic Fibrosis Sinusitis. Adv Otorhinolaryngol. 2016;79:29–37.

12. Zielenski J. Genotype and Phenotype in Cystic Fibrosis. Respiration. 2000;67(2):117–133.

13. Proesmans M. Best practices in the treatment of early cystic fibrosis lung disease. Ther Adv Respir Dis. 2017;11(2):97–104.

14. Karanth T, Karanth V, Ward B, et al. Medical interventions for chronic rhinosinusitis in cystic fibrosis. Cochrane Database of Systematic Reviews. 2018.

15. Hamilos DL. Chronic Rhinosinusitis in Patients with Cystic Fibrosis. J Allergy Clin Immunol Pract. 2016;4(4):605–612.

16. Mainz JG, Koitschev A. Pathogenesis and Management of Nasal Polyposis in Cystic Fibrosis. Curr Allergy Asthma Rep. 2012;12(123):163–174.

17. Kang SH, Dalcin PTR, Pilcher OB, et al. Chronic rhinosinusitis and nasal polyps in cystic fibrosis: update on diagnosis and treatment. J Bras Pneumol. 2015;41(1):65–76.