On the Synthesis of Sequential Reversible Circuit

Anindita Banerjee1 and Anirban Pathak2

Department of Physics and Material Science and Engineering, JIIT University, A-10, Sector-62, Noida, UP-201307, India.

Abstract

Reversible circuits for SR flip flop, JK flip flop, D flip flop, T flip flop, Master Slave D flip flop and Master Slave JK flip flop have been provided with three different logical approaches. All the circuits have been optimized with the help of existing local optimization algorithms (e.g. template matching, moving rule and deletion rule) and the optimized sequential circuits have been compared with the earlier proposals for the same. It has been shown that the present proposals have lower gate complexities and lower number of garbage bits compared to the earlier proposals. It has also been shown that the advantage in gate count obtained in some of the earlier proposals by introduction of New gates is an artifact and if it is allowed then every circuit block (unless there is a measurement) can be reduced to a single gate. Further, it is shown that a reversible flip flop can be constructed even without a feedback. In this context, some important conceptual issues related to the designing and optimization of sequential reversible circuits have also been addressed.

1 Introduction

Landauer’s principle \cite{1} states that any logically irreversible operation on information, such as the erasure of a bit or the merging of two computation paths, is always associated with an increase of entropy of the non-information bearing degrees of freedom of the information processing apparatus or its environment \cite{2} and consequently each bit of lost information will lead to the release of at least $kT \ln 2$ amount of heat. But it is well known that most of the commonly used classical gates (except NOT and IDENTITY) are irreversible and they erase at least one bit of information in every operation. Thus the irreversible logic gates will always release some heat energy. On the other hand, Moore’s law states that the number of transistors in a chip gets doubled in every 18 months. Therefore, if we continue to design chips with the help of conventional irreversible logic gates then the lower limit of power loss will continue to increase. This led to the idea of reversible computation and reversible logic. Since quantum mechanics is essentially reversible, quantum mechanical processes appeared as good candidate to construct reversible gates and these gates are known as quantum gates. When we glue some of these gates we obtain a quantum circuit. After introduction of the idea of quantum computation it has already been seen that there exist some quantum algorithms \cite{3} which works much faster than their classical counterpart, there exists infinitely secured quantum cryptographic protocol \cite{4,5}; there exists protocol for quantum teleportation \cite{6} and all these processes which establish quantum computing as a superior future technology involves quantum circuits and quantum gates. It has also been seen that it is possible to design classical reversible gates and classical reversible circuits but since they can not handle superposition of states (qubit) they just form special cases of quantum circuit or a subset of the set of the quantum circuits. But from the construction point of view they are easy to build. Keeping this background in mind it is reasonable to state that all novel applications of reversible/quantum computation essentially involve reversible/quantum circuits.

A considerable amount of work has already been done in the field of designing and optimization of reversible combinatorial circuit \cite{7-10}. But the designing aspect of reversible sequential circuit is not yet studied rigorously. This is because of the fact that feedback in a reversible circuit can not be visualized in the usual sense in which feedback is visualized in a conventional irreversible circuit. This issue was first addressed by Toffoli \cite{11}. In \cite{11} he had shown that the reversible sequential circuits can be constructed provided the transition function of the circuit block without the feedback loop is unitary. His ideas on the sequential reversible circuit had further strengthen in his pioneering work on conservative logic \cite{12}. Later on some efforts have been made to construct reversible sequential circuit \cite{13,14} . All these efforts are concentrated on the designing of various flip flops because of the fact that the flip flops are the basic building block of the memory element of a computer and if one wishes to build a reversible classical computer then these designs will play a crucial role. But several conceptual issues related to designing and optimization of sequential circuits are not addressed till now. In the next section we address those conceptual issues related to the feedback and the choice of gate library. In section 3 we have described different architectures for flip flops. In section 4 we have compared the circuit architectures proposed in the present work with the existing circuit architectures for the same. Finally we conclude the work in section 5.

1aninditabanerjee2000@yahoo.com
2anirban.pathak@jiit.ac.in
2 Conceptual issues related to reversible circuit

To provide a systematic protocol for designing reversible sequential circuit and to compare the proposed circuit architectures with the existing architectures we need to address certain conceptual issues related to reversible circuit designing. To be precise, conceptual issues related to feedback, choices of gate library and approximate optimization (local optimization) techniques will be addressed in the following subsections.

2.1 Feedback in a reversible circuit

It is widely believed that feedback is not allowed in a reversible circuit \[9\]. This is true if we consider feedback in a similar fashion as it is dealt in classical irreversible logic. The objection against feedback is twofold. Firstly, merging of two computational paths is not allowed in a reversible circuit and secondly, time axis goes from left to right in a reversible circuit (as shown in Fig. 1a). Thus if we need to follow the same notion of time axis in a reversible sequential circuit then feedback will essentially mean a journey in negative time axis or existence of time machine. This is against the notion of physical reality. But these strong objections against feedback in reversible circuit can be circumvented by establishing the equivalence between the circuits in Fig. 1a and Fig. 1b.

To be precise, the feedback loop shown in Fig. 1b is only in space not in time. Therefore, the circuit in Fig. 1b is equivalent to a cascaded circuit in time axis (see Fig. 1a). Thus the usual notion of time axis is not valid in reversible sequential circuit (i.e. in a circuit having spatial feedback loop similar to one shown in Fig. 1b). Further, since the circuit in Fig. 1b is equivalent to the cascade shown in Fig 1a, there is no merging of computational paths and consequently there would not be any loss of energy provided U is unitary. This conclusion coincides with the Toffoli’s idea \[11\] of unitary transition function. Now if we follow, this notion of feedback, then to establish the reversibility of the architecture it would be sufficient to establish the unitarity of U. Here we would also like to note that in this restricted notion of spatial feedback we can not allow any arbitrary feedback loop. An allowed loop has to be reducible to structure shown in Fig. 1b.

2.2 How to design the circuit

In the previous subsection we have shown that in order to design a reversible sequential circuit we have to design U (in Fig. 1b) as unitary. Now if we know the truth table of U and wish to decompose U in terms of finite number of logic gates, we can use one of the two existing approaches. In the first approach, one designs reversible gates equivalent to irreversible logic gates. For example, see Fig. 2 in which the classical irreversible gates like NAND, AND, NOR etc are replaced by corresponding reversible gates for reversible circuit, constructed by combination of NOT, CNOT and CCNOT gates. In this approach after designing the equivalent gates one can substitute each irreversible gate of a conventional circuit by corresponding equivalent reversible gates and obtain the required reversible circuit. This straightforward approach is used in earlier works \[13\]-\[19\] but the application of this approach is limited since it requires an existing circuit and it can not go beyond the limits of classical computation. Here we would like to note that all earlier efforts of designing sequential reversible circuits \[13\]-\[15\] were limited to this approach. For example, J. E. Rice \[14\] has substituted NOR gate (present in a conventional irreversible circuit) by CCNOT and has used Fredkin gate to generate fanout from the clock. H. Thapital \[15\] has...
substituted NAND gate by New gate and AND gate by Fredkin gate. In the second approach one starts with a truth table (defining the desired logic) and the gate library and then the corresponding reversible circuits are designed by transforming the inputs into outputs. Unidirectional and bidirectional synthesis algorithms [7] are example of this approach. In principle we have followed this approach, but instead of following an existing synthesis algorithm we have developed the designs by utilizing the logical symmetry of the truth table. For example, a careful look on the truth table of conventional SR flip flop tells us that there is an unstable condition and as \(Q \) is complement of \(\overline{Q} \), so both of them can never take same values. Let us consider two cases: (i) when clock is high, and the last state is in Set condition and (ii) when clock is high and the last state is in Reset condition. Now if we operate the flip flop in Set condition (i.e. \(S = 1 \) and \(R = 0 \)) then the state obtained in the output in both of the above cases will be \(Q^+ = 1 \) and \(\overline{Q}^+ = 0 \). Since we obtain same result for two different cases, it always violates bijectivity. This problem may arise in the circuits designed by the first approach and this fact is reflected in the state table of SR latch reported by Rice [14]. The truth table provided by Rice (see table V in [14]) is not bijective as it gives same output (0100) for two different inputs (0100 and 0101). Further we would like to note that number of feedback loops present in an irreversible sequential circuit can not be reduced, if we adhere to the first approach.

2.3 Gate library: Which gates should be used for the synthesis of the reversible circuit?

Whichever synthesis algorithm we follow, it is important to define a gate library. The definition of the gate library (i.e. gates which are the member of that library) is not well defined and there does not exist any single convention. The physical complexity of gates may not be same in two different implementation of quantum circuits. For example, it may be easy to build an arbitrary gate ‘A’ in NMR technology but it may not be that easy in superconductivity based technology. A N-qubit quantum gate is represented by \(2^N \times 2^N \) unitary matrix and product of any arbitrary number of unitary matrices is unitary. Consequently, if we put a set of quantum gates in a black box then an unitary matrix will represent the box and one can technically consider it as a New gate. If we allow such construction of new gates then any circuit block (of arbitrary size) can be reduced to a single New gate, provided it does not contain any measurement operation. Thus it is straightforward to observe that the use of New gate to reduce the gate count (as it is done in [15-19]) is an artifact. To be precise, we would like to mention that H. Thapiyal et al [15-18] has introduced New gate, TKS gate and TSG gate to reduce the gate complexity of several circuits. Similarly, H. M. Hasan Babu (see Fig. 7 in [19] has introduced another New gate to reduce the gate count of a full adder circuit. Thus the gate count (gate complexity) reported in these works [15-18] are misleading and consequently we need a logical approach to construct a gate library which in turn will help us to compare more than one circuit designs proposed for the same purpose.

All the 1 qubit gates (set of all phase gates) along with any two qubit gate forms an universal set of quantum gates. Since CNOT is a two qubit gate, which have been experimentally realized by different groups by using different techniques, it seems logical to construct a gate library whose elements are phase gates and CNOT in case of quantum circuit and CNOTs in case of Classical reversible circuits. This is why we have chosen a gate library which contains NOT (N), CNOT (C) and Toffoli (T) as its element. This particular choice of gate library (NCT) is not only logical but also consistent with the existing approaches [7,10]. Since phase gates and CNOT forms a set of universal gate, we can construct Toffoli with phase gates and CNOT and that requires five gates. We have used these facts to compare the gate complexity of our designs of sequential circuits with the existing proposals. The comparison is done with respect to the (NCT) gate library (as shown in Table I) and also with respect to the universal gate library, comprising of phase gates and CNOT (as shown in Table II).

2.4 Why the optimized architectures are different?

Even if we start with the same truth table and same gate library and use the second approach of synthesis then also different logical paths may lead to different circuits. We have followed three different logical paths and have obtained three different architectures for every flip flop. After designing a circuit we need to optimize it but an exact optimization technique’s time complexity (\(\tau \)) is [20]

\[
\tau = \mathcal{O}(2^{2n}n^{lm})
\]

where, \(n \) is the number of qubit line present in the circuit, \(m \) is the total number gate present in the circuit and \(l \leq n \), is the number of qubit associated with the largest gate present in the gate library. Thus in the present case when the gate library is (NCT) then \(l = 3 \) and the time complexity of exact optimization algorithm is

\[
\tau = \mathcal{O}(2^{2n}n^{3m})
\]

This increases exponentially with \(n \) and \(m \). In order to avoid this exponential rise in time, certain approximate optimization (local optimization) algorithms (e.g. bi-directional algorithm, template matching algorithm) have
been designed and in practice we use them. Since the optimization algorithm is an approximate one, it may lead to
different circuit architecture but the order of gate complexities have to be the same. This fact is clearly reflected
in the Table I and Table II given below.

3 Proposed sequential circuits

It is clear from the earlier approaches on reversible circuit designing that there is no unique circuit for a particular
purpose and even if we start with the same gate library different synthesis technique may yield different circuit
architecture. More importantly, if we obtain two different circuit architectures for the same purpose (which satisfies
the same truth table) by using two different synthesis techniques and then apply same approximate circuit opti-
mization algorithms (e.g. template matching algorithm, unidirectional algorithm, bi-directional algorithms etc.) on
them it is not essential that the final circuit will be same. This fact has been reflected in the alternative designs
proposed in the present work. In all the circuit architectures proposed in the present work we have used T for
Toffoli (CCNOT) gate, F for Feynman (CNOT) gate and N for NOT gate. The sum of \(T_i, F_i \) and \(N_i \) gates present
in a circuit gives us the gate count or the gate complexity of the circuit. Here we have used a different approach
and (NCT) gate library to design reversible memory elements/ flip flops. To be precise we have obtained three
circuits for SR flip flop, JK flip flop, D flip flop, T flip flop, Master Slave D flip flop, and Master Slave JK flip flop.
Here \(D_1 \) refers to first feedback based design, \(D_2 \) refers to second feedback based design and \(D_3 \) refers to design
without feedback which, mainly uses refresh mechanism except in T flip flop. We have included all the circuits in
the present work because of the fact that no particular design appeared as better than the other. This fact can
be seen clearly from Table I where we can see that the third design is best to construct T flip flop but the first
design is better as far as construction of SR flip flop is concerned and all three approaches used by us yield better
results compared to earlier works with respect to the most logical gate library (NCT). The resultant reversible flip
flop eliminates the unstable condition found in SR flip flop and also minimizes the number of feedback loops in the
JK flip flop and Master Slave JK flip flop. The logic of each of the circuit designed is discussed in the following
subsections.

3.1 SR Flip Flop

SR flip flop or Set Reset flip flop forms the basic building block of classical flip flops. When clock is high it gives
outputs corresponding to inputs, i.e. if \(R = 1 \), then \(Q = 1 \) and if \(S = 1 \), then \(Q = 1 \). If \(R = S = 0 \) then it holds
the last state and if \(R = S = 1 \) then it is unstable. The reversible SR flip flop designed so far [13][15] have substituted
AND, NAND and NOR gates present in conventional design by their equivalent reversible gate, but we present a
different logic to obtain similar result with no unstable state. Fig. 3 shows our designs of SR flip flop. When clock
is high and either inputs are high then flip flop is Set or Reset but when both inputs are high or low then it retains
its last state also when clock is low then also it retains its last state.

Figure 3: SR flip flop: a) design1 using feedback, b) design2 using feedback, c) design3 using refresh mechanism

SR flip flop or Set Reset flip flop forms the basic building block of classical flip flops. When clock is high it gives
outputs corresponding to inputs, i.e. if \(R = 1 \), then \(Q = 1 \) and if \(S = 1 \), then \(Q = 1 \). If \(R = S = 0 \) then it holds
the last state and if \(R = S = 1 \) then it is unstable. The reversible SR flip flop designed so far [13][15] have substituted
AND, NAND and NOR gates present in conventional design by their equivalent reversible gate, but we present a
different logic to obtain similar result with no unstable state. Fig. 3 shows our designs of SR flip flop. When clock
is high and either inputs are high then flip flop is Set or Reset but when both inputs are high or low then it retains
its last state also when clock is low then also it retains its last state.
In Fig. 3a, when clock is high, then \(T_1 \) and \(T_2 \) will compare the inputs. This implies that \((C.S) \oplus (C.R) = 1\) only when clock \((C)\) and one of the inputs \((i.e. \text{ either } S \text{ or } R)\) are high. The required outputs \((Q^+ \text{ and } \overline{Q}^+)\) corresponding to this particular situation \((i.e. \text{ when } (C.S) \oplus (C.R) = 1)\) are obtained from target bits of \(T_3 \) and \(T_4 \) respectively. But the situation is different if the result is low (i.e. \((C.S) \oplus C.R) = 0\). This happens in three cases: (i) When clock is low, (ii) when clock is high and both the inputs are low and (iii) when clock is high and both the inputs are high. If we use a conventional SR flip flop circuit made of NAND\-NOR gate then we obtain unstable state in output in case (ii)\-case (iii) above. Here we want to go beyond the domain of classical irreversible circuit and design a reversible SR flip flop circuit free from unstable condition. To do so we have added a NOT gate (on the second qubit line of the output of \(T_4 \)) which yields \((C.S) \oplus (C.R)\). Consequently, the target bits of \(T_5 \) and \(T_6 \) will give the output which will be the last state or the previous state. Here we have described the logical path of the first design \((i.e \text{ D1})\) in detail because this design has less number of gates compared to other two designs \((\text{D2 and D3})\) obtained by us by using other logical paths. In Fig. 3b, \(D2 \) design is shown which first copies the last state of \(Q \) and \(\overline{Q} \) in \(8^{th} \) and \(9^{th} \) qubit lines from \(4^{th} \) and \(6^{th} \) qubit lines and then sets it to zero so that it can store new output values \((Q^+ \text{ and } \overline{Q}^+)\). This implies that whenever we need to compare last values \((Q \text{ and } \overline{Q})\) we can obtain it from \(8^{th} \) and \(9^{th} \) qubit lines. It further follows similar logic as in \(\text{D1} \) but has higher gate count. In Fig. 3c, \(D3 \) design is similar to \(\text{D2} \) but only difference is that it does not uses any feedback, rather it refreshes the last three qubit lines before any operation.

Figure 4: D flip flop: a) design1 using feedback, b) design2 using feedback, c) design3 using refresh mechanism

3.2 D Flip Flop

In conventional irreversible logic, D flip flop is built by using a NOT gate between the two inputs of SR flip flop. Consequently, output \(Q \) follows D when clock is high and it stores the data otherwise. Fig. 4a shows reversible realizations of D flip flop by using similar idea. In Fig. 4b when clock is high, value of \(Q \) is copied in \(5^{th} \) qubit line and thus the next operation (i.e. \(Q \oplus Q \)) reduces the \(3^{rd} \) qubit to zero and after it copies D by using the last Toffoli gate \((T_2)\). But if the clock is low then the \(3^{rd} \) qubit \((Q)\) will retain its last value. In Fig. 4c feedback is avoided, thus there is no need of ancilla bit \((5^{th} \text{ qubit line})\) and the \(4^{th} \) qubit line is refreshed after every operation.

3.3 JK flip flop

Figure 5: JK flip flop: a) design1 using feedback and b) design2 using feedback
Classically JK flip flop is built from SR flip flop. The outputs of SR flip flop and inputs of JK flip flop drives SR block such that when the last state \(\overline{Q} \) and \(J = 1 \) then \(Q^+ = 1 \) and when last state \(Q \) and \(K = 1 \) then \(\overline{Q}^+ = 1 \).

In case of similar inputs, \(J = K = 1 \) output toggles and for \(J = K = 0 \) output holds the last state. Fig. 5 shows JK flip flop built on this logic. In Fig. 5a, \(T_1 \) and \(T_2 \) will give the values of \(J \) and \(K \) only when clock is high. The next step is to obtain the values of \(S \) and \(R \) depending upon values of \(J \) and \(K \) and feedback values of \(\overline{Q} \) and \(Q \). The result is obtained from the target bits of \(T_3 \) and \(T_4 \) respectively. The rest is SR block, its \(T_1 \) and \(T_2 \) is reduced here to CNOT gates (\(F_1 \) and \(F_2 \)). In this design feedback values \(Q \) and \(\overline{Q} \) are compared four times i.e. four gates (\(T_2, T_4, T_7 \) and \(T_8 \)) uses feedback values as controls but external feedback is used twice. In D3 we have removed the copy gates from Fig. 5b and last five bit lines have been refreshed to initially set values.

3.4 T flip flop

![Figure 6: T flip flop: a) design1 using feedback, b) design2 using feedback and c) design3](image)

As the name suggests, this flip flop circuit used to toggle the output when input is high (1) and retains the output when input is low (0), thus it does two operation, it either holds the last state or toggles the output. Essentially, it has a logical symmetry with Controlled NOT kind of operation. In fact, it can be made by joining \(J \) and \(K \) inputs from JK flip flop. In the first design, which appeared as the best approach for designing SR flip flop, we can achieve the goal of designing JK flip flop simply by adding a CNOT gate in JK flip flop (see Fig. 6a). Similar operation can also be achieved by an alternative logical approach (as shown in Fig. 6b) by using CCNOT and CNOT gates. Here a CNOT copies the output and send it to CCNOT, which operates when clock is high (toggles) and when clock is low then it retains the last state. As far as gate count is concerned this second design is much better than the first one. But still it has not been successfully exploited the logical symmetry of the T flip flop with Controlled NOT kind of operation. Now, since a qubit line can always be used to hold the last state, thus we can represent T flip flop by a Toffoli gate (as in Fig. 6c). Therefore, to design a reversible T flip flop neither feedback nor the refreshment mechanism is required. This has a sharp contrast with the classical design of T flip flop.

3.5 Master Slave D flip flop and Master Slave JK flip flop

![Figure 7: MasterSlave D FlipFlop](image)

Master Slave flip flops are formed by joining two similar blocks. The former block is driven by Clock (\(C \)) and later block by inverse of clock (\(\overline{C} \)). Apparently the second block behaves as Slave and follows the Master, i.e the first block. Master Slave D flip flop (Fig. 7) is made by joining two D flip flops where the latter is driven by \(\overline{C} \). Master block will have 10 gates while Slave block will have 9 gates since it does not require \(F_1 \) gate (see Fig. 4a) and there will be a NOT gate to obtain \(\overline{C} \) from \(C \). Thus its gate count in design 1 of Master Slave flip flop will be 20. In design 2 and 3, Master and Slave block will be similar in construction i.e. have equal number of gates and will also have a NOT gate between them. Similarly Master Slave JK flip flop (Fig. 8) is made by adding two JK
blocks and driving the later by \(\overline{C} \). The Master block behaves as JK flip flop of \(D1 \) and has 13 gates, its output are given to Slave block that is similar to that of SR block of \(D1 \) along with two CNOT gates for fan out and in total has 25 gates.

4 Comparison

Since the earlier designs of reversible circuits use different gate libraries. For the purpose of comparison of circuit complexity of our proposals with the existing proposals we have followed the steps given below steps:

1. An equivalent circuit (using NCT gate library) is constructed for each non-NCT gates used by Picton [13], Rice [14] and Thapiyal [15]. This has been done with the help of uni-directional algorithm and bi-directional algorithm. Normally it is found that the bi-directional algorithm provides better result (i.e. lesser gate complexity).

2. The equivalent circuits constructed by the above techniques are then optimized with the help of template matching algorithm, moving rule and deletion rule [7]. For example, the New gate introduced in [19] requires 7 NCT-gates, the New gate introduced in [16] requires 5 NCT-gates and Fredkin gate requires 3 NCT-gates.

3. Once the optimized circuits equivalent to non-NCT gates are obtained, they are replaced in the original circuits of Thapiyal, Rice and Picton. Thus the essential logic remained same.

4. After obtaining the NCT equivalent and logic conserving circuits of earlier proposals, the optimization techniques (i.e. template matching algorithm, moving rule and deletion rule) are applied once again on the whole circuit to obtain optimized, NCT equivalent and logic conserving circuit of the earlier proposals. Number of NCT gates present in these circuits is counted and this count is considered as the complexity of the circuit.

Finally, we have compared the gate complexity of different designs in [14, 15] with the corresponding proposals of the present work (see Table I below) and have found that the present proposals have lower gate complexity as well as the lower number of garbage output compared to the earlier proposals, which satisfies all the requirement of bijectivity.

No. of Gates	Rice	Thapiyal	D1	D2	D3
SR F/F	9	18	9	15	13
D F/F	-	23	10	4	3
JK F/F	-	26	13	19	17
TF F/F	-	26	14	2	1
MS D F/F	17	-	20	9	7
MSJK F/F	-	54	23	37	33

No. of Garbage outputs	Rice	Thapiyal	D1	D2	D3
	7	8	6	6	6
	-	8	6	3	3
	-	12	10	10	10
	-	12	10	2	2
	12	-	11	5	5
	-	21	15	18	18

Table I: A comparison table of gate complexity and garbage outputs reported in [14,15] with the present proposals. The comparison is done with respect to NCT gate library.

It is well known that the set of any two qubit gate and all possible one qubit gate forms a set of universal gate. The library used till now is not universal and it may be tempting to see what happens if one uses such a gate library. Since the two choice of two qubit gate is not unique so we can have many such universal set, but following the earlier logic we can conclude that the set of CNOT and all one qubit operations (or CNOT and a Phase gate
in general forms the best choice for the alternative gate library. In such case gate complexity of a Toffoli gate become 5 and if we consider this fact while circuit complexities of the circuits designed so far then Table I reduces to Table II below.

No. of Gates	Rice	Thapial	D1	D2	D3
SR F/F	29	32	33	39	37
D F/F	-	55	34	12	11
JK F/F	-	58	45	51	49
T F/F	-	58	46	6	5
MS D F/F	53	-	68	19	17
MSJK F/F	-	126	79	93	89

Table II: A comparison table of gate complexity reported in [14,15] with the present proposals. The comparison is done with respect to an universal gate library which contains all one qubit gates (all phase gates) and CNOT as its element. Here we count complexity of CCNOT gate as 5.

It is interesting to note that the advantages of our design over the earlier proposals and all other conclusions remained same. This approach of counting circuit complexity by considering complexity of Toffoli as 5 is consistent with the earlier works [7].

5 Conclusions

In section 2 of the present work, we have addressed the conceptual issues related to the designing and optimization of reversible circuits in general with a special attention towards the issues related to the designing of reversible sequential circuits. In this section we have shown that it is required to define an acceptable gate library and a good choice for that can be NCT gate library. Further, it has been shown that the advantage in gate count obtained in some of the earlier proposals by introduction of New gates or unconventional gates (such as TSG and TKS gates) is an artifact and if it is allowed then every circuit block (unless there is a measurement) can be reduced to a single gate. The important conclusions of section 2 have been used in the next section to design locally optimized reversible circuits for SR flip flop, JK flip flop, D flip flop, T flip flop, Master Slave D flip flop and Master Slave JK flip flop. In section 4 we have seen that our designs not only overcome the unstable condition i.e. it always holds the last state when inputs are similar but also uses lesser number feedback loops (i.e. only 2 feedback loops against 4 in conventional JK flip flop). In the third design feedback loops are replaced by application of refresh mechanism on some qubit lines which can also be reduced (in SR flip flop it can be minimized to 1 refresh operation on qubit line) but it leads to increase of gate count and consequently it has been avoided in the present work. From the comparison tables (Table I and Table II), it is clear that the none of the earlier proposals have lesser gate complexity and lesser number of garbage bits compared to the present proposals.

The sequential circuits described here uses only NCT gates and there exist several proposals for realization of CNOT and CCNOT gates using CMOS based technology [9,10]. Thus it is technically possible to construct the proposed reversible sequential circuits with the help of conventional CMOS based technology. Consequently, we can easily build classical reversible memory element. But the implementation of the present work is not limited to classical domain, this is because of the fact that we can also implement the proposed circuits in quantum domain with the help of NMR or quantum dot or optical implementation [6]. If one aims to provide optimized reversible circuits for all the useful component of a classical computer and then this work along with the proposal of [10] will help him to provide a complete architecture for a classical reversible computer. Since it will be free from the problem of decoherence and scalability it seems more practical and easy to built than a real scalable quantum computer.

Acknowledgement: A. P. thanks, Department of Science and Technology, India, for the partial financial support provided through the project no. SR/FTP/PS-13/2004.

3 Remember that now the number of element in the set is infinite and consequently it is impossible to design a polynomial time algorithm which can deterministically optimize a quantum circuit. What ever be our choice of gate library, unless the choice of gate is restricted to a subset of the universal set we can not circumvent the problem associated. In that sense finite libraries like (NCT) or (NCT and Hadamard) are good choices.
References

[1] Irreversibility and heat generation in the computing process, R. Landauer, IBM, J. Res. Develop., 5 (1961) 183.

[2] Notes on landauer’s principle, reversible computation and maxwell’s demon, C. H. Bennet, Studies in History and Philosophy of Modern Physics, 34 (2003) 501.

[3] Quantum computation and quantum information, M. Nielsen and I. Chuang, Cambridge University Press, New Delhi (2002).

[4] Optimal eavesdropping in quantum cryptography. II. A quantum circuit, R. B. Griffiths and C. S. Niu, Phys. Rev. A, 56 (1997) 1173.

[5] Quantum cryptography, N. Gisin et al, Rev. Mod. Phys., 74 (2002) 145.

[6] Optical simulation of quantum logic, N. J. Cerf, C. Adami and P. G. Kwiat, Phys. Rev. A, 57 (1998) R1477.

[7] A Transformation based algorithm for reversible logic synthesis, D. M. Miller, D. Maskov, G. W. Duek, Proceedings of 40th Design Automation conference (DAC’03), Anaheim, California (2003) 318.

[8] Synthesis of reversible logic, A. Agarwal and N. K. Jha, Proceedings of IEEE, Design, Automation and Test in Europe Conference and Exhibition, 2 (2004) 1384.

[9] Reversible-logic design with online testability, D. P. Vasudevan et al, IEEE Trans. Instru. and Meas., 55 (2006) 406.

[10] Design of reversible logic circuits by means of control gates, A. D. Vos et al., PATMOS 2000: LNCS, 1918 (2000), Springer-Verlag Berlin, D. Soudris, P. Pirsch, and E. Barke (Eds.) 255.

[11] Reversible computing, T. Toffoli, Tech memo MIT/LCS/TM-151, MIT Lab for Computer Science (1980).

[12] Conservative logic, E. Fredkin and T. Toffoli, Int. J. Theo. Phys., 21 (1982) 219.

[13] Multi-valued sequential logic design using fredkin gates, P. Picton, MVL Journal, 1 (1996) 241.

[14] A new look at reversible memory element, J. E. Rice, Proceedings of the International Symposium on Circuits and Systems (ISCAS), 2006.

[15] A beginning in the reversible logic synthesis of sequential circuits, H. Thapiyal and M. B. Shrinivas, Proceedings of MAPLD, 2005.

[16] Reversible logic to cryptraphic hardware: A New Paradigm, H. Thapiyal, Proceedings of the 49th IEEE International Midwest Symposium on Circuits and Systems (MWSCAS 2006) Puerto Rico (2006).

[17] Novel design and reversible logic synthesis of multiplexer based full adder and multiplier, H. M. Thapiyal and M. B. Srinivas, 48th IEEE International Midwest Symposium on Circuits and Systems, 2 (2005) 1593.

[18] A New reversible TSG gate and its applications for designing efficient adder circuit, H. M. Thapiyal and M. B. Srinivas, 7th International Symposium on Representations and Methodologies of Future Computing Technologies (RM2005), Tokyo, Japan (2005).

[19] Design of a compact reversible binary coded decimal adder circuit, H. H. Babu and A. R. Chowdhury, Journal of Systems Architecture, 52 (2006) 272.

[20] On the complexity issues related to reversible circuit design and simplification, A. Banerjee and A. Pathak (communicated).