NEW PERSPECTIVE ON GALAXY OUTFLOWS FROM THE FIRST DETECTION OF BOTH INTRINSIC AND TRAVERSE METAL-LINE ABSORPTION

GLENN G. KACPRZAK\textsuperscript{1,6}, CRYSTAL L. MARTIN\textsuperscript{2}, NICOLAS BOUCHÉ\textsuperscript{3,4}, CHRISTOPHER W. CHURCHILL\textsuperscript{5}, JEFF COOKE\textsuperscript{1}, AUDREY LEREU\textsuperscript{3,4}, ILANE SCHROETTER\textsuperscript{3,4}, STEPHANIE H. HO\textsuperscript{2}, AND ELIZABETH KLIMEK\textsuperscript{5}

\textsuperscript{1} Swinburne University of Technology, Victoria 3122, Australia; gkacprzak@astro.swin.edu.au
\textsuperscript{2} Physics Department, University of California, Santa Barbara, CA 93106, USA
\textsuperscript{3} CNRS, Institut de Recherche en Astrophysique et Planétologie [IRAP] de Toulouse, 14 Avenue E. Belin, F-31400 Toulouse, France
\textsuperscript{4} Université Paul Sabatier de Toulouse, UPS-OMP, IRAP, F-31400 Toulouse, France
\textsuperscript{5} New Mexico State University, Las Cruces, NM 88003, USA

Received 2014 February 7; accepted 2014 July 11; published 2014 August 18

ABSTRACT

We present the first observation of a galaxy ($z = 0.2$) that exhibits metal-line absorption back-illuminated by the galaxy (down-the-barrel) and transversely by a background quasar at a projected distance of 58 kpc. Both absorption systems, traced by Mg\textsc{ii}, are blueshifted relative to the galaxy systemic velocity. The quasar sight line, which resides almost directly along the projected minor axis of the galaxy, probes Mg\textsc{i} and Mg\textsc{ii} absorption obtained from the Keck/Low Resolution Imaging Spectrometer as well as Ly\alpha, Si\textsc{ii}, and Si\textsc{iii} absorption obtained from the Hubble Space Telescope/Cosmic Origins Spectrograph. For the first time, we combine two independent models used to quantify the outflow properties for down-the-barrel and traverse absorption. We find that the modeled down-the-barrel deprojected outflow velocities range between $V_{\text{db}} = 45$–255 km s$^{-1}$. The transverse bi-conical outflow model, assuming constant-velocity flows perpendicular to the disk, requires wind velocities $V_{\text{outflow}} = 40$–80 km s$^{-1}$ to reproduce the transverse Mg\textsc{ii} absorption kinematics, which is consistent with the range of $V_{\text{db}}$. The galaxy has a metallicity, derived from H\alpha and N\textsc{ii}, of [O/H] = $-0.21 \pm 0.08$, whereas the transverse absorption has [X/H] = $-1.12 \pm 0.02$. The galaxy star formation rate is constrained between $4.6$–15 $M_\odot$ yr$^{-1}$ while the estimated outflow rate ranges between $1.6$–4.2 $M_\odot$ yr$^{-1}$ and yields a wind loading factor ranging between 0.1–0.9. The galaxy and gas metallicities, the galaxy–quasar sight-line geometry, and the down-the-barrel and traverse modeled outflow velocities collectively suggest that the transverse gas originates from ongoing outflowing material from the galaxy. The $\sim 1$ dex decrease in metallicity from the base of the outflow to the outer halo suggests metal dilution of the gas by the time it reached $58$ kpc.

Key words: galaxies: halos – intergalactic medium – quasars: absorption lines

Online-only material: color figures

1. INTRODUCTION

Galactic-scale outflows appear to be quite common among star-forming galaxies and these outflows are thought to contribute significantly to the metal enrichment of the universe (e.g., Oppenheimer et al. 2010). Cool gas tracers such as the Mg\textsc{ii} $\lambda\lambda 2796, 2803$ doublet are commonly used to trace and measure outflow properties.

Star-forming galaxies show intrinsic blueshifted, outflowing Mg\textsc{ii} gas with velocities of 100–1000 km s$^{-1}$ (e.g., Tremonti et al. 2007; Weiner et al. 2009; Martin & Bouché 2009; Coil et al. 2011; Martin et al. 2012; Rubin et al. 2014), and occasionally show redshifted, infalling gas with velocities of 50–200 km s$^{-1}$ (e.g., Rubin et al. 2012, 2014; Martin et al. 2012). These studies of systems back-illuminated by the galaxy (down-the-barrel) have shown that outflowing gas velocities weakly correlate with galaxy star formation rates (SFRs) and specific SFRs (Martin 2005; Weiner et al. 2009; Martin et al. 2012; Rubin et al. 2014). The outflow velocities also correlate with galaxy inclination, with higher velocities occurring for face-on galaxies (Kornei et al. 2012; Bordoloi et al. 2013). Although these observations constrain wind velocities and how they relate to their galaxies, they do not constrain their extent or the mass ejection rates.

Background quasars have been used to probe the “transverse” absorption associated with outflows, which is supported by a strong azimuthal dependence of Mg\textsc{ii} absorption around galaxies (Bouché et al. 2012; Kacprzak et al. 2012a; Bordoloi et al. 2014). Bouché et al. (2012) have also shown that transverse absorption detected along the projected minor axes of galaxies is kinematically consistent with simple bi-conical outflows, leading to constraints on mass outflow rates. The azimuthal dependence, together with an inclination dependence in down-the-barrel studies, points toward a picture where outflows are well collimated with half-opening angles of $\sim 45^\circ$ (Bouché et al. 2012; Kacprzak et al. 2012a; Martin et al. 2012; Bordoloi et al. 2013, 2014).

Simulations suggest that the metallicity of transverse absorption can also be used to constrain its origins (e.g., Shen et al. 2012). Low metallicity gas near galaxies has been assumed to be infalling (e.g., Kacprzak et al. 2012b; Bouché et al. 2013), while high metallicity gas near galaxies has also been assumed to be outflowing (Péroux et al. 2011; Stocke et al. 2013).

Despite the detailed and large studies of transverse and down-the-barrel absorption systems, the two have yet to be directly connected. We have begun a Keck–SDSS QSO–galaxy pair survey, expanding on the pioneering work of Barton & Cooke (2009), to study the circumgalactic medium using Mg\textsc{ii} absorption around $z = 0.1$–0.3 galaxies. Here, we present our initial findings of the first observation that directly connects down-the-barrel outflows with the transverse gas observed 58 kpc from a $z = 0.2$ galaxy. In Section 2, we describe the data...
and our analysis. In Section 3, we present kinematic models of the down-the-barrel and transverse absorption profiles and show that they are both consistent with wind models. We use Hubble Space Telescope (HST)/Cosmic Origins Spectrograph (COS) observations to compute the metallicity of the transverse gas. We end with a discussion and concluding remarks in Sections 4 and 5. We adopt a $h = 0.70$, $\Omega_M = 0.3$, and $\Omega_\Lambda = 0.7$ cosmology.

2. DATA AND ANALYSIS

In Figure 1, we show our targeted foreground galaxy ($z = 0.19976$), producing the observed Mg II absorption, and background quasar ($z = 0.77$) J165931+373528 which are separated by 58 kpc projected on the sky. Below, we describe the data acquired for our analysis.

2.1. Galaxy and Quasar Spectroscopy

The galaxy and background quasar spectra were obtained on 2013 April 11 using the Keck Low Resolution Imaging Spectrometer (LRIS; Oke et al. 1995) with the blue 1200 lines mm$^{-1}$ grism blazed at 3400 Å providing wavelength coverage from the atmospheric cut-off to 3890 Å. We further used the red 900 lines mm$^{-1}$ grating with a central wavelength of 7750 Å. We used a 1′′ slit and a spectral binning of 2, providing a dispersion of 0.48 Å pixel$^{-1}$ and $\sim 1.6$ Å resolution ($\sim 145$ km s$^{-1}$) in the blue and a dispersion of 1.06 Å pixel$^{-1}$ and $\sim 3.5$ Å resolution ($\sim 140$ km s$^{-1}$) in the red. The slit was placed such that it spatially covered both the galaxy and the quasar (Figure 1). The total integration time was 2240 s.

An additional galaxy spectrum was obtained on 2013 August 12 using the Double Imaging Spectrograph (DIS) at the Apache Point Observatory (APO) 3.5 m Telescope. We placed the 1″5 slit along the major axis (Figure 1) to obtain the kinematic velocity zeropoint from the H$\alpha$ emission line. We used the R1200 grating, providing a dispersion of 0.58 Å pixel$^{-1}$ and $\sim 1.3$ Å resolution ($\sim 50$ km s$^{-1}$). The wavelength coverage is 1160 Å and we used a wavelength centroid of 8100 Å. The total integration time was 4400 s.

We supplement our data with an HST/COS quasar spectrum taken with the G160M grating (PI: Nestor, PID: 12593) in order to measure the physical properties of the transverse gas derived from Ly$\alpha$, Si ii, Si iii, Mg ii, and Mg i absorption. The total exposure time is 2100 s and has a wavelength coverage of 1408–1776 Å.

All of the spectra were reduced using standard techniques and were heliocentric- and vacuum-corrected. The spectral analysis was performed using our in-house software. The transverse absorption-line rest-frame equivalent widths are listed in Table 1.

2.2. Galaxy Imaging

In Figure 1, we show a 30″ × 30″ section of a 1981s i-band image obtained using MegaCam that was produced using the MegaPipe pipeline (Gwyn 2012), which has a spatial resolution of 0.186 pixel$^{-1}$. We used our own custom MCMC Bayesian code to determine the galaxy morphological parameters by fitting a Sésic profile convolved with the image point-spread function which produced a Sésic index of $n = 0.91 \pm 0.01$, a disk effective radius of $r_e = 1.54 \pm 0.01$, and an inclination of $i = 52^\circ \pm 5^\circ$. The quasar is nearly aligned with the galaxy projected minor axis with a galaxy position angle of P.A. = $-3.5 \pm 0.3$, which provides ideal geometry to probe galactic winds (Bordoloi et al. 2011; Boucè et al. 2012; Kacprzak et al. 2012a). The galaxy/quasar projected separation is $D = 17.53$ (57.8 kpc).
2.3. Galaxy Star Formation Rate

We estimate lower limits on the unobscured SFR (i.e., not extinction corrected) using both the Hα flux within the LRIS spectroscopic aperture and the flux density measured from a GALEX UV image covering rest-frame wavelengths from 1476 to 2359 Å. The SFR of $4.6 \, M_\odot \, \text{yr}^{-1}$ derived from the GALEX UV continuum measurement following Kennicutt (1998) provides the more accurate lower bound on the SFR because a substantial aperture correction must be applied to obtain the total Hα galaxy flux. Alternatively, fitting the 22 μm flux or the UV-to-17 μm spectral energy distribution with the CIGALE code (Noll et al. 2009), we estimate that the dust-corrected SFR could be as large as $15 \, M_\odot \, \text{yr}^{-1}$ with a stellar mass of log $M_\star$ = 10.6 ± 0.07.

3. RESULTS

In Figure 1, we show the first known case where Mg ii absorption is detected: (1) intrinsic to the galaxy (i.e., down-the-barrel) and (2) along the quasar sight line 58 kpc away (i.e., transverse). The velocity zeropoint is set by the Hα emission line centroid, taken along the major axis with DIS, and was determined to be $z = 0.19976 \pm 0.00003$. This is consistent with the minor axis Hα centroid obtained with LRIS. Note that the down-the-barrel Mg ii absorption is blueshifted relative to the galaxy systemic velocity. The down-the-barrel rest-frame Mg ii equivalent widths are $W_r(2796) = 0.73 \pm 0.31$ Å and $W_r(2803) = 1.47 \pm 0.26$ Å. The observed doublet ratio is less than unity for this likely saturated system, which could be due to optically thin Mg ii emission from gas within or around the galaxy (Martin et al. 2012).

The transverse Mg ii absorption also exhibits a blueshift relative to the galaxy systemic velocity. The transverse rest-frame Mg ii equivalent widths are $W_r(2796) = 0.88 \pm 0.04$ Å and $W_r(2803) = 0.70 \pm 0.04$ Å. Given the relative blueshifts, we explore whether outflows originating from the galaxy can explain the kinematics of the transverse absorption at 58 kpc.

3.1. Down-the-barrel Absorption Wind Model

The velocity of the Mg ii absorption is notably blueshifted relative to the galaxy systemic velocity. A single Gaussian fit to the data shows that the absorption is blueshifted by $43 \pm 15$ km s$^{-1}$. In order to estimate the bulk velocity of the Mg ii wind component, we applied a two-component absorption model. One component is fixed to galaxy systemic velocity (vertical dotted line) having a fixed velocity width of 200 km s$^{-1}$ (representing the ISM; red dashed line) and another component having a variable velocity width representing the outflowing gas (green dotted line). Below are the fit residuals with 1σ errors. The outflow absorption component centroid is blueshifted by $132 \pm 25$ km s$^{-1}$. For gas launched perpendicular to the disk, this corresponds to a wind velocity of $214 \pm 41$ km s$^{-1}$.

(3.2. Transverse Absorption Wind Model

Here, we explore whether or not the Mg ii absorption detected at 58 kpc is consistent with an outflow model. We adopt a bi-conical outflow (Bouché et al. 2012) since the gas
trajectories will tend to open up from the internal wind pressure into a cone-like shape (Shen et al. 2012). The model has two free parameters, the cone half-opening angle ($\theta_{\text{max}}$) and the cloud velocities, which are radial and assumed to be constant with radius ($V_{\text{outflow}}$). These are the only two free parameters since the relative geometric orientation of the wind with respect to the quasar line of sight is provided by the deep Canada–France–Hawaii Telescope (CFHT) galaxy image. We allow $\theta_{\text{max}}$ to range from 30°–45°, which is consistent with previous observations (Bouché et al. 2012; Kacprzak et al. 2012a). The observed blueshifted H$\alpha$–Mg $\text{II}$ relative velocity offset constrains that the modeled outflow cone is pointing toward the observer.

In Figure 3, we show a 48°inclined cone with $\theta_{\text{max}} = 45^\circ$ in the plane of the sky. We adopt the convention that the x- and y-axes represent the plane of the sky and are aligned along the galaxy minor and major axes, respectively, while the quasar sight line is orthogonal to the sky plane (z-axis). The gray oval represents the inclined disk and the blue circles represent the conical outflow. The quasar location is shown in red. We show the cloud z velocities as a function of position. We also show the line-of-sight velocity distribution of the clouds at the location of the quasar, which closely mimics the shape and width of the transverse Mg $\text{II}$ absorption data. This distribution is convolved with an instrumental resolution of 145 km s$^{-1}$, similar to the LRIS data.

We constrained the model wind velocity by enforcing agreement between the wind model Mg $\text{II}$ absorption profile shape, width, and velocity offset and the observed transverse Mg $\text{II}$ absorption profile (see Figure 3). The range of radial model winds speeds that provides the best $\chi^2$ fit to the data is $V_{\text{outflow}} = 40$–80 km s$^{-1}$.

In order to directly compare the bi-conical wind model radial velocities to the measured line-of-sight down-the-barrel velocities, we must deproject the down-the-barrel velocities by the galaxy inclination, which provides the perpendicular velocity component emanating from the galaxy disk (which is equivalent to the radial velocity of the axis of symmetry of the wind model). The range of deprojected down-the-barrel velocities is $V_{\text{obs}} = 45$–255 km s$^{-1}$, which is consistent with, though possibly faster than, the $V_{\text{outflow}} = 40$–80 km s$^{-1}$ deduced from the bi-conical wind model.

We note that we are unable to reproduce the reddest Mg $\text{II}$ component (also seen in silicon), which could be due to stochastic effects from the number of clouds intercepted along the line of sight or to limitations of our constant wind velocity, geometrically symmetric model, and/or the absorption may arise from other sources within the galaxy halo. Our model is not the only possible explanation for the absorption, and without a more complex model it is difficult to conclude the origins of the reddest component; however, our simple model does successfully reproduce the majority of the Mg $\text{II}$ and all of the Mg $\text{I}$ absorption.

3.3. Galaxy and Halo Gas Metallicities

We compute the galaxy metallicity using the indicator $N_{2} = \log f([\text{N}\text{II}]\lambda 6583)/f(\text{H}\alpha)$, which is equivalent to the ratio of equivalent widths since both H$\alpha$ and [N II] are only 20.66 Å apart (at rest wavelengths) and the continuum flux levels are approximately equal. The rest-frame equivalent widths, measured from APO/DIS, of H$\alpha = 58 \pm 2$ Å and [N II] $\lambda 6583 = 13 \pm 1$ Å (shown in Figure 1) yield $N_{2} = -0.65 \pm 0.04$. We apply the $N_{2}$ metallicity relation $12 + \log [\text{O}/\text{H}] = 8.90 + 0.57 \times N_{2}$ (Pettini & Pagel 2004), assuming a solar oxygen abundance of $12 + \log [\text{O}/\text{H}]_{\odot} = 8.736 \pm 0.078$ (Holweger 2001), and compute a galaxy metallicity of $[\text{O}/\text{H}] = -0.21 \pm 0.08$.

To determine the transverse absorbing-gas properties we Voigt profile fit the HST/COS spectrum of Si II, Si III, Si IV, and Ly$\alpha$ using our software MINFIT (Churchill & Vogt 2001; Churchill et al. 2001), which incorporates the appropriate COS ISF. In Figure 4, we show the Si II, Si III, and Ly$\alpha$ (Si IV is not shown since it is an upper limit) along with the Voigt profile fits. The total column densities are shown in Table 1. The velocity structure of Ly$\alpha$ was established from silicon assuming thermal broadening. We find a log$N$(H I) = 18.89 ± 0.15.

The Mg $\text{II}$ column density was determined by fitting Gaussians to the Mg $\text{II}$ profiles using the velocity structure of the Si II lines from their Voigt profile fits. We applied the curve of growth to each Mg $\text{II}$ Gaussian component using the equivalent widths from the Gaussians and the Si II Doppler $b$ parameters. For the Mg I, only a single Gaussian fit was statistically required. Given small $W_{r}$(Mg I), placing it on the linear part of the curve of growth, the column density is independent of $b$. The total column densities are presented in Table 1.

We use version 08.00 of Cloudy (Ferland et al. 2013) and a solar abundance pattern to model the metallicity and ionization conditions of the gas. We apply the standard assumption that the

Figure 3. Left: kinematic conical wind model viewed on the sky plane where the x-axis corresponds to the minor axis and the y-axis to the major axis. The gray oval represents an inclined galaxy and the circles (blue) represent the conical outflow. The red point represents the background quasar. Middle (left): kinematic model shown along the quasar sight line (z-axis) indicated by the solid red line. Middle (right): average cloud relative density map with the red point indicating the quasar location (green). The shape, width, and velocity offsets of the synthetic Mg II absorption constrain the model to have cloud outflow velocities of $V_{\text{outflow}} = 40$–80 km s$^{-1}$.

(A color version of this figure is available in the online journal.)
gas is represented by a photoionized uniform slab in ionization equilibrium illuminated with a Haardt & Madau (2012) ionizing spectrum. The ionization parameters, \( U \), and the metallicity of the gas are varied to match the observations of \( N(X) \) shown in Table 1. In Figure 4, we show the Cloudy models as a function of ionization parameter and metallicity.

The upper range of Mg\textsc{i} and lower range of Si\textsc{ii} enforce \( \log U > -3.60 \). The steep dependence of Si\textsc{iii} for which the Voigt profile fit is very robust further constrains \( \log U < -3.50 \). Thus, the allowed range of ionization parameter is \( -3.60 \leq \log U \leq -3.50 \). The range of hydrogen density is \( n_{\text{H}} \leq n_{\text{H}} \leq -2.06 \), the metallicity\(^7\) is \( -1.14 \leq [X/H] \leq -1.10 \), the hydrogen ionization fraction is \( -0.77 \leq f(H) \leq -0.69 \), and the total hydrogen column density is \( 19.57 \leq \log \left[N(H)\right] \leq 19.68 \).

4. DISCUSSION

The kinematic models of both the down-the-barrel and transverse absorption produce consistent predictions for the outflow velocities that overlap in the range of 45–80 km s\(^{-1}\). These results are highly suggestive that the transverse absorption in the quasar spectrum is physically related to down-the-barrel absorption via an outflow.

We have computed the galaxy metallicity to be near solar while the transverse absorption at 58 kpc is one-tenth solar. The metallicity of the transverse component is consistent with the 0.1–1 \( Z_{\odot} \) metallicity systems around \( \sim 0.1 \, L_{\odot} \) galaxies that have velocities consistent with being bound, galactic fountain clouds (Stocke et al. 2013). The absorption-line metallicity is also consistent with the higher metallicity outflowing gas from the bi-modal distribution of Lyman-limit system metallicities from Lehner et al. (2013).

To determine the gas outflow rate, we apply Equation (4) of Bouché et al. (2012), derived for a single outflow cone, using our derived model outflow rates and derived \( N(\text{H}) \). We estimate the total outflow rate from a bi-conical flow to be roughly 1.6–4.2 \( M_{\odot} \, \text{yr}^{-1} \) assuming outflow velocities of 40–80 km s\(^{-1}\).

With the galaxy having an SFR between 4.6 and 15 \( M_{\odot} \, \text{yr}^{-1} \), we conclude that the wind mass-loading factor likely lies in the range of \( \eta \sim 0.1–0.9 \), which is consistent with loading factors derived for star-forming galaxies at low redshift (Martin 1999; Rupke et al. 2005; Bouché et al. 2012) but slightly lower than recent estimates from scattered Mg\textsc{ii} emission at intermediate redshifts (Martin et al. 2013).

5. CONCLUSIONS

We have shown the first example of a galaxy that exhibits absorption observed down-the-barrel and transversely at a projected distance of 58 kpc. Both the Mg\textsc{ii} observed down-the-barrel and transverse observations are blueshifted with respect to the galaxy systemic velocity. We also detect Ly\(\alpha\), Si\textsc{ii}, Si\textsc{iii}, and Mg\textsc{i} absorption at the transverse location. The quasar sight line resides within 3\( \pm \)5 of the projected galaxy minor axis where studies suggest that the absorption should be produced by winds.

1. We find that the down-the-barrel deprojected outflow velocities, i.e., perpendicular to the galaxy disk, are in the range

\(^7\) Additional errors from model-dependant assumptions could range between 0.1–0.4 dex (Werk et al. 2014).
If we assume a conical outflow model (Bouché et al. 2012), then the constant wind velocities required to reproduce the transverse Mg ii absorption kinematics are \( V_{\text{outflow}} = 40-80 \text{ km s}^{-1} \), which is consistent with the deprojected down-the-barrel outflow velocities. Although this is a simplistic wind model, our analysis suggests that the absorption is kinematically coupled.

3. We compute the galaxy metallicity to be \([\text{O}/\text{H}] = -0.21 \pm 0.08\), whereas the transverse absorption at 58 kpc has \([\text{X}/\text{H}] = -1.12 \pm 0.02\).

4. The galaxy SFR ranges from 4.6 to 15 \( M_{\odot} \text{ yr}^{-1} \), while the estimated outflow rate is roughly 1.6–4.2 \( M_{\odot} \text{ yr}^{-1} \) and yields a wind loading factor of \( \eta = 0.1-0.9 \).

For the first time, we have successfully combined independent models and analysis techniques of down-the-barrel and transverse absorption systems to show that the intrinsic galaxy outflows sufficient to reproduce the observed kinematics of the transverse absorption 58 kpc away. If the metallicity at the base of the outflow equals that of the galaxy ISM and the wind is continuous, then the observed \( \sim 1 \) dex decrease in metallicity at 58 kpc suggests that the gas was diluted/mixed with lower metallicity gas. Finding additional systems like this one will aid in our understanding of how outflows transport and redistribute gas within their halos.

We would like to thank the referee for his/her thorough read of the manuscript. We thank Sowgat Mazuhid for providing the \( \text{HST}/\text{COS} \) spectrum. This work was partly supported by a Marie Curie International Outgoing Fellowship (PIOF-GA-2009-236012), by a Marie Curie International Career Integration grant (PCIG11-GA-2012-321702), and by NSF grant AST-1109288. Data were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. Additional observations were obtained with the APO 3.5 m Telescope, which is owned and operated by the Astrophysical Research Consortium. Observations were also made with the NASA/ESA \( \text{HST} \) or obtained from the data archive at the Space Telescope Institute. This research used the facilities of the Canadian Astronomy Data Centre operated by the National Research Council of Canada with the support of the Canadian Space Agency.

Facilities: Keck:I (LRIS), Sloan (SDSS), \( \text{HST} \) (COS)

REFERENCES
Barton, E. J., & Cooke, J. 2009, \textit{AJ}, 138, 1817
Bordoloi, R., Lilly, S. J., Hardmeier, E., et al. 2013, \textit{ApJ}, submitted (arXiv:1307.6553)
Bordoloi, R., Lilly, S. J., Kacprzak, G. G., & Churchill, C. W. 2014, \textit{ApJ}, 784, 108
Bordoloi, R., Lilly, S. J., Knobel, C., et al. 2011, \textit{ApJ}, 743, 10
Bouché, N., Hohensee, W., Vargas, R., Kacprzak, G. G., et al. 2012, \textit{MNRAS}, 426, 801
Bouché, N., Murphy, M. T., Kacprzak, G. G., et al. 2013, \textit{Sci}, 341, 50
Churchill, C. W., & Vogt, S. S. 2001, \textit{AJ}, 122, 679
Churchill, C. W., Vogt, S. S., & Charlton, J. C. 2003, \textit{AJ}, 125, 98
Coil, A. L., Weiner, B. J., Holz, D. E., et al. 2011, \textit{ApJ}, 743, 46
Ferland, G. J., Porter, R. L., van Hoof, P. A. M., et al. 2013, \textit{RMxAA}, 49, 137
Gwyn, S. D. J. 2012, \textit{AJ}, 143, 38
Haardt, F., & Madau, P. 2001, \textit{ApJ}, 746, 125
Holweger, H. 2001, in \textit{AIP} Conf. Proc. 598, Solar and Galactic Composition: A Joint SOHO/ACE Workshop, ed. R. F. Wimmer-Schweingruber (Melville, NY: AIP), 23
Kacprzak, G. G., Churchill, C. W., & Nielsen, N. M. 2012a, \textit{ApJL}, 760, L7
Kacprzak, G. G., Churchill, C. W., Steidel, C. C., Spitler, L. R., & Holtzman, J. A. 2012b, \textit{MNRAS}, 427, 3029
Kennicutt, R. C., Jr. 1998, \textit{ARA&A}, 36, 189
Kornei, K. A., Shapley, A. E., Martin, C. L., et al. 2012, \textit{ApJ}, 758, 135
Lehner, N., Howk, J. C., Tripp, T. M., et al. 2013, \textit{ApJ}, 770, 138
Martin, C. L. 1999, \textit{ApJ}, 513, 156
Martin, C. L. 2005, \textit{ApJ}, 621, 227
Martin, C. L., & Bouché, N. 2009, \textit{ApJ}, 703, 1394
Martin, C. L., Shapley, A. E., Coil, A. L., et al. 2012, \textit{ApJ}, 760, 127
Martin, C. L., Shapley, A. E., Coil, A. L., et al. 2013, \textit{ApJL}, 770, 41
Noll, S., Burgarella, D., Giovannoli, E., et al. 2009, \textit{A&A}, 507, 1793
Oke, J. B., Cohen, J. G., Carr, M., et al. 1995, \textit{PASP}, 107, 375
Oppenheimer, B. D., Davé, R., Kereš, D., et al. 2010, \textit{MNRAS}, 406, 2325
Péroux, C., Bouché, N., Kulkarni, V. P., York, D. G., & Vladilo, G. 2011, \textit{MNRAS}, 410, 2237
Pettini, M., & Pagel, B. E. J. 2004, \textit{MNRAS}, 348, L59
Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. 1992, \textit{Numerical Recipes} (New York: Press Syndicate of the Cambridge Univ.)
Rubin, K. H. R., Prochaska, J. X., Koo, D. C., & Phillips, A. C. 2012, \textit{ApJL}, 747, L26
Rubin, K. H. R., Prochaska, J. X., Koo, D. C., et al. 2014, \textit{ApJ}, in press (arXiv:1307.1476)
Rupke, D. S., Veilleux, S., & Sanders, D. B. 2005, \textit{ApJS}, 160, 115
Shen, S., Madau, P., Aguirre, A., et al. 2012, \textit{ApJL}, 760, 50
Stocke, J. T., Keeney, B. A., Danforth, C. W., et al. 2013, \textit{ApJ}, 763, 148
Tremonti, C. A., Moustakas, J., &Diamond-Stanic, A. M. 2007, \textit{ApJL}, 663, L77
Weiner, B. J., Coil, A. L., Prochaska, J. X., et al. 2009, \textit{ApJ}, 692, 187
Werk, J. K., Prochaska, J. X., Tumlinson, J., et al. 2014, \textit{ApJ}, 792, 8

\[ V_{\text{dth}} = 45-255 \text{ km s}^{-1} \], which is typical of star-forming galaxies (e.g., Martin et al. 2012; Rubin et al. 2014).

\( \text{O}/\text{H} = -0.21 \pm 0.08 \), whereas the transverse absorption at 58 kpc has \( \text{X}/\text{H} = -1.12 \pm 0.02 \).

If we assume a conical outflow model (Bouché et al. 2012), then the constant wind velocities required to reproduce the transverse Mg ii absorption kinematics are \( V_{\text{outflow}} = 40-80 \text{ km s}^{-1} \), which is consistent with the deprojected down-the-barrel outflow velocities. Although this is a simplistic wind model, our analysis suggests that the absorption is kinematically coupled.

We compute the galaxy metallicity to be \([\text{O}/\text{H}] = -0.21 \pm 0.08\), whereas the transverse absorption at 58 kpc has \([\text{X}/\text{H}] = -1.12 \pm 0.02\).

The galaxy SFR ranges from 4.6 to 15 \( M_{\odot} \text{ yr}^{-1} \), while the estimated outflow rate is roughly 1.6–4.2 \( M_{\odot} \text{ yr}^{-1} \) and yields a wind loading factor of \( \eta = 0.1-0.9 \).

For the first time, we have successfully combined independent models and analysis techniques of down-the-barrel and transverse absorption systems to show that the intrinsic galaxy outflows sufficient to reproduce the observed kinematics of the transverse absorption 58 kpc away. If the metallicity at the base of the outflow equals that of the galaxy ISM and the wind is continuous, then the observed \( \sim 1 \) dex decrease in metallicity at 58 kpc suggests that the gas was diluted/mixed with lower metallicity gas. Finding additional systems like this one will aid in our understanding of how outflows transport and redistribute gas within their halos.