Surgical treatment of habitual lateral patellar instability by proximal realignment procedure (Campbell technique)

Chittaranjan Sahu, T Naveen Babu and K Sandeep Reddy

DOI: https://doi.org/10.22271/ortho.2020.v6.i1d.1857

Abstract

Background: Patellar instability may manifest as acute patellar dislocation, recurrent patellar dislocation or subluxation, habitual patellar dislocation or chronic patellar dislocation. Habitual patellar dislocation is a condition where the patella dislocates whenever the knee is flexed and spontaneously relocates with extension of the knee. The purpose of this study is to know the functional and radiological outcome following proximal realignment procedure (Campbell technique) for habitual patellar dislocation.

Methods: The study was conducted from June 2017 to January 2019 with a minimum follow up of 6 months and a maximum follow up of 2 years. Inclusion Criteria: All patients with habitual patellar dislocation, age between 5 to 40 years. Exclusion Criteria: Patient age less than 5 years and aged above > 40 years, past history of knee surgery, acute patellar dislocation and knee effusions. Radiological assessment was done by measuring sulcus angle and congruence angle. Functional outcome was assessed by Kujala score.

Conclusion: Campbell technique (lateral release of tight structures and medial plication of patellar retinaculum) is a safe and effective procedure for treating habitual patellar dislocation. Functional outcome evaluated by Kujala score was good for most of our patient’s. Radiological parameters (sulcus angle and congruence angle) were brought back to normal. There were no significant changes in sulcus angle. Congruence angle was brought back to normal, which was statistically significant (p<0.001).

Keywords: habitual dislocation of patella, campbell technique, congruence angle, Kujala score

Introduction

The incidence of patella dislocation ranges from 6 per 100,000 in the adult population to 43 per 100,000 in the pediatric population. Habitual dislocation of patella is a condition where the patella dislocates whenever the knee is flexed and spontaneously relocates with extension of the knee. The causes of habitual patellar dislocation include contracture and fibrosis of the quadriceps femoris, vastus lateralis, and lateral retinaculum, abnormal iliobibial band attachment, repeated intramuscular injections into the thigh, genu valgum, patella alta due to the abnormal position of an elongated patellar tendon, systemic ligament laxity and dysplastic lateral femoral condyle \(^4\). Campbell developed the Campbell’s technique as a method of proximal realignment for habitual patellar dislocation. We conducted the present study to evaluate the results following Campbell’s technique.

Materials & Methods

This is a prospective study conducted on 15 patients with habitual patellar dislocation, who presented to BIRRD Hospital between June 2017 to January 2019. In all cases patellar dislocation was treated by Campbell’s procedure. Inclusion Criteria: All patients with habitual patellar dislocation, age between 5 to 40 years. Exclusion Criteria: Patient age less than 5 years and aged above > 40 years, past history of knee surgery, acute patellar dislocation and knee effusions. All patients were clinically evaluated for medial joint line tenderness, ROM at knee, Q angle, apprehension test, Positive J sign (lateral Subluxation) and ligamentous laxity. Radiological assessment was done by measuring Sulcus angle, Congruence angle, Insall-Salvati ratio. Following radiographs are taken for all the patients - Knee- antero posterior view with full weight bearing, Knee-lateral view with full weight bearing in 30 degree flexion,
Merchant view (45 degree skyline view), Laurin view (30 degree skyline view). Post-operative radiographic evaluation was done periodically at 6 weeks, 3 months, 6 months and yearly. Functional outcome was assessed by Kujala score.

Sulcus Angle: Sulcus angle defined as the angle formed between lines joining the highest points of the bony medial (B) and lateral condyles (C) and the lowest bony point of the intercondylar sulcus (A). The mean sulcus angle (138° +/- 6°).

Congruence Angle: Identify the highest point of the medial (B) and lateral (C) condyles and the lowest point of the intercondylar sulcus (A). Bisect the sulcus angle (BAC) to establish the zero reference line (AX). Identify the lowest point on the articular ridge of the patella (D) and draw a line from A to D. The angle DAX is the congruence angle. All values medial to the zero reference line AX are designated as negative and those lateral as positive. All values medial to the zero reference line AX are designated as minus and those lateral as plus. Normal angle is defined as < -16 degrees.

Surgical technique: A midline skin incision was made from the quadriceps tendon to the tibial tubercle. Deep tissue dissection was extended from quadriceps tendon to tibial tubercle. A lateral retinacular release was then performed. The exposure was deepened to the level of the medial capsule and the retinaculum. A proximally based strip of medial capsule, 10 x 2 cm wide, was then developed. This is followed by closure of the medial arthrotomy. The proximally based strip of medial capsule is then passed over the quadriceps tendon at the superior pole of the patella from a medial to lateral direction. The flap then passed medially under the quadriceps tendon and sutured to the fascia in the region of the adductor magnus tendon. The wound was then closed in a routine fashion over hemovac drain. Postoperatively, the knee was immobilized for four weeks in the cast with knee in 30 degree flexion and then rehabilitated.

Intra-operative photographs

- Lateral patellar dislocation on knee flexion
- Midline skin incision
- Release of lateral tight structures
- Medial retinacular flap
Post op protocol: Cast was opened on 12th day and suture removal was done. Cast was reapplied with knee in 30 flexion, with good padding at the pressure points. Patients were asked to review after 1 month when they were evaluated clinically for wound status, range of motion, patellar tracking, deformity correction, ligament laxity and neurological status. Radiological assessment was done by measuring sulcus angle and congruence angle. Subjective evaluation was done by Kujala index scoring.

Radiographs

CASE: 1

Pre-operative radiographs

Post-operative radiographs

CASE: 2

Pre-operative radiographs

Post-operative radiographs
RESULTS
Our study included 15 patients who underwent Campbell technique (lateral release of tight structures and plication of medial retinaculum) for habitual patella dislocation from June 2017 to January 2019. For final end result evaluation, all patients were reviewed and analyzed at the end of 6 months postoperatively. Results include preoperative and postoperative subjective assessment by Kujala scoring scale, clinical findings and radiographic assessment. The results are tabulated below.

CONCLUSION
Our prospective study consisted of 15 cases, (9 male, 6 female). No patient missed the follow up during this study series. The minimum follow up period was 6 months. All cases were treated with Campbell’s technique for habitual dislocation of patella. Of all the 15 knees operated with lateral release and medial plication, 12 knees had significant improvement in functional scores and congruence angle on radiographs. There were no statistically significant changes in sulcus angle as trochleoplasty procedure was not done and there was inadequate study time to notice bony changes in growing patients. In our study preoperative and postoperative range of motion was unchanged. Radiological assessment showed statistically significant changes in congruence angle. No improvement of sulcus angle on X-rays doesn’t always correlate with poor functional outcome. Of three cases that had recurrence, one was revised with modified Galeazzi’s technique [38] and one patient underwent modified Roux Goldthwait procedure [31] and last one was revised with trochleoplasty and modified Roux Goldthwait procedure. Thus we conclude that Campbell procedure is a safe and effective procedure for treating habitual patellar dislocation. Future study to quantify medial laxity (amount of medial soft tissue to be imbricated and/or additional dynamic stabilization procedure) is desirable. Further no single procedure is fully effective in the surgical treatment of all cases of lateral patella dislocation. Long term follow-up is desirable to evaluate distal femur remodeling.

REFERENCES
1. Vavken P, Wimmer MD, Camathias C, Quidde J. Treating patella instability in skeletally immature patients. Arthroscopy. 2013; 29(8):1410-1422
2. Nietosvaara Y, Paukku R, Palmu S, Donell ST. Acute patellar dislocation in children and adolescents. Surgical technique. J Bone Jt Surg, 2009; 91:139-145.
3. Bettuzzi C, Lampasi M, Magnani M, Donzelli O. Surgical treatment of patellar dislocation in children with Down syndrome: a 3 to 11-year follow-up study. Knee Surgery, Sports Traumatology, Arthroscopy. 2008; 17(4):334-340.
4. Kwak J, Sim J, Kim N, Lee B. Surgical Treatment of Habitual Patella Dislocation with Genu Valgum. Knee Surgery & Related Research. 2011; 23(3):177-179.
5. Wada A, Fuji T, Takamura K, Yanagida H, Surijamorn P. Congenital dislocation of the patella. Journal of Children's Orthopaedics. 2008; 2(2):119-123
6. Arendt E, Fithian D, Cohen E. Current concepts of lateral patella dislocation. Clinics in Sports Medicine. 2002; 21(3):499-519.
7. Mikashima Y, Kimura M, Kobayashi Y, Asagumo H, Tomatsu T. Medial patellofemoral ligament reconstruction for recurrent patellar instability. Acta Orthop Belg. 2004; 70:545-550.
8. Deie M, Ochi M, Yasumoto M et al. Reconstruction of the medial patellofemoral ligament for the treatment of habitual or recurrent dislocation of the patella in children. J Bone Joint Surg. 2003; 85-B:887-890.
9. Hall JE, Micheli LJ, McManama GB. Semitendinosus tenodesis for recurrent subluxation or dislocation of the patella. Clin Orthop. 1979; 144:31-35.
10. Inoue M, Shino K, Maeda A et al. Computed tomographic evaluation of realignment surgery for patellar subluxation. Seikaisaigaigeka (in Japanese). 1994; 37:43-47.
11. Madigan R, Wissinger HA, Donaldson WF. Preliminary experience with a method of quadricepsplasty in recurrent subluxation of the patella. J Bone Joint Surg. 1975; 57-A:600.
12. Roux C. The Classic: Recurrent Dislocation of the Patella: Operative Treatment*. Clinical Orthopaedics and Related Research. 1888; 452:17-20.
13. Walmsley R. The development of the patella. Amer. J Anat. 1940; 71(5):360-368.
14. Macnab I. Recurrent dislocation of the patella. J Bone Joint Surg [Am] 1 952; 34-A:957-67.
15. Heywood AWB. Recurrent dislocation of the patellar: a study of its pathology and treatment in 106 knees. J Bone Joint Surg [Br]. 1961; 43-B:508-17.
16. Hnevovsky O. Progressive Fibrosis of the Vastus Intermedius Muscle in Children. Journal of Bone and Joint Surgery. 1961; 43-B:318.
17. Jeffreys T. Recurrent dislocation of the patella due to abnormal attachment of the iliobibial tract. The Journal of Bone and Joint Surgery. British. 1963; 45-B(4):740-743.
18. Gunn DR. Contracture of the quadriceps muscle: a discussion on the etiology and relationship to recurrent dislocation of the patella. JBJS [Br]. 1964; 46-B:492-7.
19. Insall J, Salvati E. Patella Position in the Normal knee Joint Radiology. 1971; 101(1):101-104.
20. Harris NH. Acetabular growth potential in congenital dislocation of the hip and some factors upon which it may depend. Clin Orthop. 1976; 119:99-106.
21. Lindstrom JR, Ponseti IV, Wenger DR. Acetabular development after reduction in congenital dislocation of the hip. J Bone Joint Surg [Am]. 1979; 61-A:112-18.
22. Alvarez EV, Munters M, Lavine LS, Manes H, Waxman J. Quadriceps myofibrosis. A complication of intramuscular injections. J Bone Joint Surg Am. 1980; 62:586-60.
23. Bergman N, Williams P. Habitual dislocation of the patella in flexion. The Journal of Bone and Joint Surgery. British. 1988; 70-B(3):415-419.
24. Dandy D, Griffiths D. Lateral release for recurrent dislocation of the patella. The Journal of Bone and Joint Surgery British. 1989; 71-B(1):121-125.
25. Gao GX, Lee EH, Bose K. Surgical management of congenital and habitual dislocation of the patellar. J Pediatr Orthop. 1990; 10:255e260.
26. Albuquerque R, Pacheco A, Hernandez A, Amatuzzi M, Pêcora J, Kokron A. Appraisal of surgical treatment of 47 cases of patellofemoral instability. Revista do Hospital das Clínicas. 2002; 57(3):103-107.
27. Hui JHP, Torode IP. Changing glenoid version after open reduction of shoulders in children with obstetric brachial plexus palsy. J Pediatr Orthop. 2003; 23:109-13.
28. Mikashima Y, Kimura M, Kobayashi Y, Asagumo H, Tomatsu T. Medial patellofemoral ligament reconstruction for recurrent patellar instability. Acta Orthop Belg. 2004; 70(6):545-50.
29. Waters PM, Smith RGR, Jaramillo D. Glenohumeral deformity secondary to brachial plexus birth palsy. J Bone Joint Surg [Am]. 1998; 80-A:668-77.
30. Mikashima Y, Kimura M, Kobayashi Y, Miyawaki M, Tomatsu T. Clinical results of isolated reconstruction of the medial patellofemoral ligament for recurrent dislocation and subluxation of the patella. Acta Orthop Belg. 2006; 72(1):65-71.
31. Marsh J, Daigneault J, Sethi P, Polzhofer G. Treatment of Recurrent Patellar Instability with a Modification of the Roux-Goldthwait Technique. Journal of Pediatric Orthopaedics. 2006; 26(4):461-465.
32. Shen HC, Chao KH, Huang GS, Pan RY, Lee CH. Combined Proximal and Distal Realignment Procedures to Treat the Habitual Dislocation of the Patella in Adults. The American Journal of Sports Medicine, 2007.
33. Benoit B, Laflamme GY, Laflamme GH, Rouleau D, Delisle J, Morin B. Long-term outcome of surgically-treated habitual patellar dislocation in children with coexistent patella alta. The Journal of Bone and Joint Surgery British, 2007; 89-B.
34. Wada A, Fujii T, Takamura K, Yanagida H, Suri jamorn P. Congenital dislocation of the patella. Journal of Children's Orthopaedics, 2008; 2(2):119-123.
35. Panagopoulos A, Van Niekerk L, Triantafilopoulos I. MPFL Reconstruction for Recurrent Patella Dislocation: A New Surgical Technique and Review of the Literature. International Journal of Sports Medicine. 2008; 29(5):359-365.
36. Pal A, Baksi D, Baksi D. Electromyographic investigation of unstable patella before and after its realignment operation. Indian Journal of Orthopaedics. 2011; 45(1):69.
37. Lin CW, Wang CJ. Surgical treatment of recurrent habitual patellar dislocation associated with severe trochlear hypoplasia and generalized ligament laxity. Formosan Journal of Musculoskeletal Disorders, 2011.
38. Aulisa A, Falciglia F, Giordano M, Savignoni P, Guzzanti V. Galeazzis modified technique for recurrent patella dislocation in skeletally immature patients. Journal of Orthopaedic Science. 2012; 17(2):148-155.
39. Coojans K, Dujardin J, Vandenneucker H. A surgical algorithm for the treatment of recurrent patellar dislocation. Results at 5 year follow-up. Acta Orthop Belg, 2013.
40. Camathias C, Rutz E, Götze M, Brunner R, Vavken P, Gaston MS. Poor outcome at 7.5 years after Stanisavljevic quadriceps transposition for patellofemoral instability. Archives of Orthopaedic and Trauma Surgery, 2014.
41. Mackay N, Smith N, Parsons N, Spalding T, Thompson P, Sprowson A. Medial Patellofemoral Ligament Reconstruction for Patellar Dislocation. Orthopaedic Journal of Sports Medicine. 2014; 2(8):232596711454402.
42. Balcarek P, Oberthür S, Frosch S, Schlütrumpf J, Stürmer K. Vastus Medialis Oblonus Muscle Morphology in Primary and Recurrent Lateral Patellar Instability. Bio Med Research International, 2014.
43. Batra S, Arora S. Habitual dislocation of patella: A review. Journal of Clinical Orthopaedics and Trauma. 2014; 5(4):245-251.
44. Mittal R, Balawat A, Manhas V, Roy A, Singh N. Habitual patellar dislocation in children: Results of surgical treatment by modified four in one technique. Journal of Clinical Orthopaedics and Trauma, [online]. 2017; 8:S82-S86.
45. Miguel Sá P, Raposo F, Santos Carvalho M, Alegrete N, Coutinho J, Costa G. Congenital dislocation of the patella — clinical case. Revista Brasileira de Ortopedia (English Edition). 2016; 51(1):109-112.
46. Claes S, Vereecke E, Maes M, Victor J, Verdonk P, Bellemans J. Anatomy of the anterolateral ligament of the knee. Journal of Anatomy. 2013; 223(4):321-328.
47. LaPrade R. The Anatomy of the Medial Part of the Knee. The Journal of Bone and Joint Surgery (American). 2007; 89(9):2000.
48. Moorman C, LaPrade R. Anatomy and Biomechanics of the Posterolateral Corner of the Knee. Journal of Knee Surgery. 2005; 18(02):137-145.