NODAL CURVES AND COMPONENTS OF THE HILBERT SCHEME OF CURVES IN \mathbb{P}^r WITH THE EXPECTED NUMBER OF MODULI

E. BALlico

ABSTRACT. We study the existence of components with the expected number of moduli of the Hilbert scheme of integral nodal curves $C \subset \mathbb{P}^r$ with prescribed degree, arithmetic genus and number of singular points.

1. Introduction

For all integers g, r, d set $\rho(g, r, d) := (r + 1)d - rg - r(r + 1)$. We work in the range $\rho(g, r, d) < 0$. Several authors studied the existence of irreducible components of the Hilbert scheme of smooth curves of \mathbb{P}^r with the expected number of moduli (\cite{1, 4, 5, 1, 2, 7, 9, 8, 3, 15}). In the set-up of irreducible components, Γ, of $\text{Hilb}(\mathbb{P}^r)$ with the expected dimension and the expected number of moduli in the range $\rho(g, r, d) \leq 0$ it also says that for a general $C \in \Gamma$ the g, r, d coming from the inclusion $C \subset \mathbb{P}^r$ is an isolated point of the set of all g, r, d's on C (see \cite{9}, Definition 1.1.2); it does not say that C has only finitely many g, r, d's. The result announced in \cite{4}, part 6) at page 338, is stronger for the following reason: it asks about the existence of an irreducible variety $T \subset M_g$ over which the relative $G_{r, d}$ is generically finite, but $T \not\subset V$ for any integral $V \subset M_g$ with $\dim(V) > \dim(T)$ and a general $C \in V$ has a g, r, d. As far as we know no proof of \cite{4}, part 6) at page 338, was published. Our tools give no informations on these two more general (and very interesting) problems.

For any nodal and connected curve $A \subset \mathbb{P}^r$ let N_A denote its normal bundle in \mathbb{P}^r. If $h^1(A, N_A) = 0$, then $\text{Hilb}(\mathbb{P}^r)$ is smooth at A and hence $\text{Hilb}(\mathbb{P}^r)$ has a unique irreducible component, Γ, and $\dim(\Gamma) = h^0(A, N_A) = (r + 1) \cdot \deg(A) - (r - 3)(p_a(A) - 1)$. In this case we say that Γ has the expected dimension. For all integers r, d, g, t such that $0 \leq t \leq g$ let $E(r, d, g, t)$ denote the subset of the Hilbert scheme of \mathbb{P}^r parametrizing integral and non-degenerate curves $C \subset \mathbb{P}^r$ such that $\deg(C) = d, p_a(C) = g$ and C has exactly t ordinary nodes as its only singularities. Set $E'(r, d, g, t) := \{ C \in E(r, d, g, t) : h^1(C, O_C(2)) = 0 \}$. We will always take the reduced structure as the scheme structure for $E(r, d, g, t)$ and its open subset $E'(r, d, g, t)$. Let $\overline{E}(r, d, g, t)$ denote the closure of $E'(r, d, g, t)$ in the Hilbert scheme of \mathbb{P}^r. Let $\overline{M}_g(t)$ denote the set of all integral $Y \in \overline{M}_g$ with exactly t nodes and $\overline{M}_g[t]$ its closure in \overline{M}_g. Notice that $\overline{M}_g(t)$ is integral and $\dim(\overline{M}_g(t)) = 3g - 3 - t$. For instance, $\overline{M}_g(g)$ parametrizes the set of all rational curves with exactly g nodes.

1991 Mathematics Subject Classification. 14H50; 14N05.

Key words and phrases. Hilbert scheme of curves; nodal projective curve; expected number of moduli.

The author was partially supported by MIUR and GNSAGA of INdAM (Italy).
Notice that we always have a morphism \(u_{r,d,g,t} : E(r,d,g,t) \to \overline{M}_g \{ t \} \). Let \(\Gamma \) be any irreducible component of \(E'(r,d,g,t) \). We say that \(\Gamma \) has the expected number of moduli if \(\dim(u_{r,d,g,t}(\Gamma)) = \min\{ 3g - 3 - t, 3g - 3 + \rho(d,g,r) - t \} \).

Conjecture 1. Fix an integer \(r \geq 3 \). There is a function \(\Omega_r : \mathbb{N} \to \mathbb{N} \) such that \(\lim_{g \to +\infty} \Omega_r(g)/g = 0 \) and the following property holds: there is an integer \(g_0 \) such that for all integers \(g,t,d \) with \(g \geq g_0, 0 \leq t \leq g, -\rho(g,r,d) + t \leq 2g - \Omega_r(g) \) there is an irreducible component \(\Gamma \) of \(E'(r,d,g,t) \) with the expected dimension and the expected number of moduli.

Conjecture 2. Fix integers \(r \geq 3 \) and \(t \geq 0 \). There is a function \(\Omega_{r,t} : \mathbb{N} \to \mathbb{N} \) such that \(\lim_{g \to +\infty} \Omega_{r,t}(g)/g = 0 \) and the following property holds: there is an integer \(g_0 \geq t \) such that for all integers \(g,x,d \) with \(g \geq g_0, 0 \leq x \leq t, -\rho(g,r,d) + x \leq 3g - \Omega_{r,t}(g) \) there is an irreducible component \(\Gamma \) of \(E'(r,d,g,x) \) with the expected dimension and the expected number of moduli.

The case \(t = 0 \) of Conjecture 2 is the question raised in [8], after the statement of Theorem 1.2. This case was proved for \(r = 3 \) and \(t = 0 \) in [9].

In this paper we prove the following result.

Theorem 1. Fix integers \(r \geq 4 \) and \(t \geq 0 \). There is a function \(\psi_{r,t} : \mathbb{N} \to \mathbb{N} \) such that \(\lim_{g \to +\infty} \psi_{r,t}(g)/g = 0 \) and the following property holds: there is an integer \(g_0 \geq t \) such that for all integers \(g,x,d \) with \(g \geq g_0, 0 \leq x \leq t, -\rho(g,r,d) + x \leq 2g + 3 - \psi_{r,t}(g) \) there is an irreducible component \(\Gamma \) of \(E(r,d,g,x) \) with the expected number of moduli. If \(r \geq 7 \), then \(\Gamma \) is a component of \(E'(r,d,g,x) \).

Our proof of Theorem 1 is just a small modification of the proofs in [8]. We only write the modifications needed to get nodal irreducible curves.

We work over an algebraically closed field \(\mathbb{K} \) such that \(\text{char}(\mathbb{K}) = 0 \).

2. The proof

Lemma 1. Fix a set \(S \subset \mathbb{P}^m, m \geq 2 \), such that \(\overline{\nu}(S) \leq m + 3 \) and \(S \) is in linearly general position. Let \(\Gamma \) be the set of all rational normal curves of \(\mathbb{P}^m \) containing \(S \). Then \(\Gamma \) is a non-empty and irreducible variety of dimension \((m + 3 - \overline{\nu}(S))(m - 1) \).

Proof. If \(\overline{\nu}(S) = m + 3 \), then the result is classical. Now assume \(\overline{\nu}(S) \leq m + 2 \). Fix a general \(A \subset \mathbb{P}^r \) such that \(\overline{\nu}(A) = s + 3 - \overline{\nu}(S) \). Since \(\overline{\nu}(A \cup S) = m + 3 \), we may apply the case just done to the set \(S \cup A \). We get the nonemptiness and the irreducibility of \(\Gamma \) and its dimension, because for a fixed rational normal curve \(D \subset \mathbb{P}^m \) such that \(D \supset S \) the set of all \(A \)'s contained in \(D \) has dimension \(s + 3 - \overline{\nu}(S) \). \(\square \)

Lemma 2. Let \(Y = A \cup B \subset \mathbb{P}^r \) be a nodal curve such that \(h^1(A,\mathcal{O}_A(2)) = 0 \). Set \(S := A \cap B \) and see it as an effective Cartier divisor of \(B \). Assume \(h^1(B,\mathcal{O}_B(2)(-S)) = 0 \). Then \(h^1(Y,\mathcal{O}_Y(2)) = 0 \).

Proof. Since \(h^1(B,\mathcal{O}_Y(2)(-S)) = 0 \), we have \(h^1(B,\mathcal{O}_B(2)) = 0 \) and the restriction map \(H^0(B,\mathcal{O}_B(2)) \to H^0(S,\mathcal{O}_S(2)) \) is surjective. Hence the lemma follows from the Mayer-Vietoris exact sequence

\[
0 \to \mathcal{O}_Y(2) \to \mathcal{O}_A(2) \oplus \mathcal{O}_B(2) \to \mathcal{O}_S(2) \to 0
\]

\(\square \)
Proof of Theorem 7. Until the last step we will only get a component of $E(r, d, g, x)$. In the statement of [8], Theorem 1.2, there is a function which goes as $2rg/(r + 3)$ if $r \notin \{4, 6\}$, like $(30/19)g$ if $r = 4$ and like $(3/2)g$ if $r = 6$. For simplicity we used the weaker upper bound $2rg/(r + 3)$ even for $r \in \{4, 6\}$. Fix any integer x such that $0 \leq x \leq t$. By [8], Theorem 1.2, we may assume $x \neq 0$. Fix any pair (u, v) such that the proof of [8], Theorem 1.2, gives the existence of an irreducible component $A_{u, v, r}$ of $\text{Hilb}(\mathbb{P}^r)$ with the expected number of moduli and whose general element Y is a smooth curve of degree u and genus v with $h^1(Y, N_\gamma Y) = 0$. From the range of degrees and genera covered in the proof of [8], Theorem 1.2, it follows that to prove Theorem 1.2 gives that the proof of (ii) an irreducible component B of $\text{Hilb}(\mathbb{P}^r)$ and a maximal subfamily $B_x \subset B$ of integral nodal curves with exactly x nodes and with the following properties:

(i) B has the expected dimension and the expected number of moduli and a general $Y \in B$ is a smooth curve of degree $u + xv$ and genus $v + x(r + 1)$ with $h^1(Y, N_\gamma Y) = 0$;

(ii) $B_x \subset B$ is a maximal subfamily of integral nodal curves with exactly x nodes of B, i.e. $B_x \subset B$ and B_x is an open subset of an irreducible component of $E'(r, u + rx, v + (r + 1)x, x)$;

(iii) B_x has the expected number of moduli, i.e. $u_r, u + rx, v + (r + 1)x, x \in B_x$ is generically finite.

Fix $x(r + 2)$ general points of Y and divide them into x subsets A_1, \ldots, A_x with $\sharp(A_i) = r + 2$ for all i. Let $D_i \subset \mathbb{P}^r$ be a general rational normal curve containing A_i. For general A_1, \ldots, A_x and general D_1, \ldots, D_x we get $D_i \cap D_j = \emptyset$ for all $i \neq j$, $D_i \cap Y = A_i$ for all i and that the curve $W := Y \cup D_1 \cup \cdots \cup D_x$ is nodal. Notice that W is connected, $\deg(W) = u + rx$ and $p_a(W) = v + (r + 1)x$. By [11], Lemma 2.3 (which uses [13] and [6], Theorem 4.1 and Remark 4.1.1), the curve W is smoothable and $h^1(W, N_\gamma W) = 0$. To prove Theorem 1.2 we may also restrict the previous proof to pairs (u, v) with the additional condition $\rho(v, r, u) \leq 0$. In this range the proof of [8], Theorem 1.2, gives $h^0(Y, T_{\mathbb{P}^r}|Y) = (r + 1)^2 - 1$. As in [13] (use of the multiplication map $\mu_0(D)$) or [8], property (γ) at page 3489, to get that the unique irreducible component Γ of $\text{Hilb}(\mathbb{P}^r)$ containing $Y \cup D_1$ has the right number of moduli and that $h^0(X, T_{\mathbb{P}^r}|X) = (r + 1)^2 - 1$ for a general element X of it, it is sufficient to prove $h^0(D_1, (T_{\mathbb{P}^r}|D_1)(-A_1)) = 0$. This vanishing is true, because the vector bundle $T_{\mathbb{P}^r}|D_1$ is a direct sum of r line bundles of degree $r + 1$ ([16], [10], [11]). Iterating $x - 1$ times the proof we get that the irreducible component of $\text{Hilb}(\mathbb{P}^r)$ containing W has the right number of moduli. Varying the curve Y in B, the sets A_i and the rational normal curves D_i we get an irreducible family W of nodal curves of degree $u + rx$, arithmetic genus $v + x(r + 1)$, $x + 1$ irreducible components and with exactly $x(r + 2)$ nodes. Since $\dim(B) = (r + 1)u - (r - 3)(v - 1)$, we have $\dim(W) = (r + 1)u - (r - 3)(v - 1) + x(r + 2) + x(r - 1)$ (use the case $m = r$ of Lemma 1). Since $\dim(\Gamma) = (r + 1)(u + rx) - (r - 3)(v + (r + 1)x) = (r + 1)u - (r - 3)(v - 1) + (3r + 3)x$, W has codimension $x(r + 2)$ in Γ. Fix any integer y such that $0 \leq y \leq x(r + 2)$ and $S \subseteq A_1 \cup \cdots \cup A_x$ such that $\sharp(S) = y$. By [14], Theorem 6.3, there is a neighborhood U of W in $\text{Hilb}(\mathbb{P}^r)$ and a non-empty locally closed subset U_S of U consisting of curves with exactly y nodes, each of them being a deformation of a different point of S, and $\dim(U_S) = \dim(U) - y$. Taking $y = x$ and $\sharp(S \cap A_i) = 1$ for all i we get that any $E \in U_S$ is irreducible. To prove that U_S has the expected number of moduli, it is sufficient to prove that $u_{g, r, d}|U_S$ is
generically finite. Since $W \in \overline{U_S}$, it is sufficient to prove that $\mathcal{O}_W(1)$ is an isolated $g_{\deg(W)}$ on W. Take a general $g_{\deg(W)}^r \cdot L$, of an irreducible component Λ of the set of all $g_{\deg(W)}^r$'s on W such that $\mathcal{O}_W(1) \in \Lambda$. Since $\mathcal{O}_W(1)$ is very ample and $h^0(W, \mathcal{O}_W(1)) = r + 1$, L is very ample and $h^0(W, L) = r + 1$. Call $h_L : W \to \mathbb{P}^r$ the embedding induced by the complete linear system $[L]$. Since B has the expected number of moduli, Y is general in B and $\rho(v, r, u) \leq 0$, $\mathcal{O}_Y(1)$ is an isolated g_m^r on Y. Since $L|Y$ is near to $\mathcal{O}_Y(1)$, we have $L|Y \cong \mathcal{O}_Y(1)$. Since we may assume that $A_1 \cup \cdots \cup A_x$ is not sent into itself by a non-trivial automorphism of Y, we also see that $h_L(W)$ is the union of Y and x rational normal curves C_1, \ldots, C_x with $C_i \cap Y = A_i$ for all i and $C_i \cap C_j = \emptyset$ for all $i \neq j$. Since $\tau(A_i) \geq 4$, only finitely many automorphisms of D_i send A_i into itself. Hence we only have finitely many possible curves C_i, $i = 1, \ldots, x$. Hence $L = \mathcal{O}_W(1)$.

To check that the component we got is a component of $E'(r, d, g, x)$ we need to check that at each step here and in [8] we may apply Lemma 2. For the curves D_i, it is easy. In [8], page 3490, the author quoted [7], Sublemma 3.5; here B is a smooth rational curve, $\deg(B) = r - 1$ and $\tau(S) = r + 2$. In [8], Claim (3.4) at page 3490, twice it is quoted [7], Claim 3.7; here B is a smooth elliptic curve, $\deg(B) = r + 1$. In [7], Proposition 2.1, we have as B a smooth curve of degree $d \geq p_a(B) + r$ with $\tau(S) = r + 4$; here $\deg(\mathcal{O}_B(2)(-S)) \geq 2 \cdot p_a(B) + 2r - r - 4 > 2 \cdot p_a(B)$. In [8] the reader will often meet as B a canonically embedded curve (hence B has genus $r + 1$ and $\mathcal{O}_B(1) \cong \omega_B$) with $\tau(S) = r + 6 + \epsilon$ with $\epsilon = 0$ if $r \notin \{4, 6\}$, $\epsilon = 2$ if $r = 4$ and $\epsilon = 1$ if $r = 6$; here we need $r \geq 7$ to use Lemma 2.

Remark 1. Fix $r \in \{3, 4, 6\}$. Using the cases $r \in \{4, 6\}$ of [8], Theorem 1.2, or [9] (case $r = 3$) we may take $3g$ (case $r = 3$) or $(30/19)g$ (case $r = 4$) and $(3/2)g$ (case $r = 6$) instead of $2rg/(r + 3)$ in the statement of Theorem 1.

References

[1] E. Ballico and Ph. Ellia: On the existence of curves with maximal rank in \mathbb{P}^n. J. Reine Angew. Math. 397, 1–22 (1989).

[2] E. Ballico and Ph. Ellia: Bonnes petites composantes des schémas de Hilbert de courbes lisses de \mathbb{P}^n. C. R. Acad. Sci. Paris 306, 187–190 (1988).

[3] D. Edidin: Brill-Noether theory in codimension two. J. Algebraic Geom. 2 (1), 25–67 (1993).

[4] D. Eisenbud and J. Harris: Limit linear series: basic theory. Invent. math. 85 (2), 337–371 (1986).

[5] D. Eisenbud and J. Harris: Irreducibility of some families of linear series with Brill-Noether number -1. Ann. Sci. Éc. Norm. Sup., 4e série, 22 (1), 33–53 (1989).

[6] R. Hartshorne and A. Hirschowitz: Smoothing algebraic space curves. Algebraic Geometry, Sitges 1983, 98–131, Lecture Notes in Math. 1124, Springer, Berlin, 1985.

[7] A. F. Lopez: On the existence of components of the Hilbert scheme with the expected number of moduli. Math. Ann. 289, 517–528 (1991).

[8] A. F. Lopez: On the existence of components of the Hilbert scheme with the expected number of moduli. II. Comm. Algebra 27 (7), 3485–3493 (1999).

[9] G. Pareschi: Components of the Hilbert scheme of smooth space curves with the expected number of moduli. Manuscripta math. 63 (1), 1–16 (1989).

[10] L. Ramella: La stratification du schéma de Hilbert des courbes rationnelles de \mathbb{P}^n par le fibré tangent restreint. C. R. Acad. Sci. Paris Sr. I Math. 311 (3), 181–184 (1990).

[11] Z. Ran: The degree of the divisor of jumping rational curves. Q. J. Math. 52 (3), 367–383 (2001).

[12] G. Sacchiero: Normal bundles of rational curves in projective space, Ann. Univ. Ferrara Sez. VII (N. S.) 26, 33–40 (1980).

[13] E. Sernesi: On the existence of certain families of curves. Invent. math. 75 (1), 25–57 (1984).
[14] E. Sernesi: A smoothing criterion for families of curves. Preprint February 2009; available on his web-pages.

[15] F. Steffen: A generalized principal ideal theorem with an application to Brill-Noether theory. Invent. math. 132 (1), 73–89 (1998).

[16] J.-L. Verdier: Applications harmoniques de S^2 dans S^4. II. Harmonic mappings, twistors, and $σ$-models (Luminy, 1986), 124–147, Adv. Ser. Math. Phys., 4, World Sci. Publishing, Singapore, 1988.

DEPT. OF MATHEMATICS, UNIVERSITY OF TRENTO, 38123 Povo (TN), ITALY

E-mail address: ballico@science.unitn.it