(N-heterocyclic carbene)2-Pd(0) catalyzed silaboration of internal and terminal alkynes: scope and mechanistic studies

Article (Published Version)

Ansell, Melvyn B, Spencer, John and Navarro Fernandez, Oscar (2016) (N-heterocyclic carbene)2-Pd(0) catalyzed silaboration of internal and terminal alkynes: scope and mechanistic studies. ACS Catalysis, 6 (4). pp. 2192-2196. ISSN 2155-5435

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/59765/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.
(N-Heterocyclic Carbene)$_2$-Pd(0)-Catalyzed Silaboration of Internal and Terminal Alkynes: Scope and Mechanistic Studies

Melvyn B. Ansell, John Spencer,* and Oscar Navarro*

Department of Chemistry, University of Sussex, Brighton BN1 9QJ, United Kingdom

Supporting Information

ABSTRACT: Pd(ITMe)$_2$(PhC≡CPh) acts as a highly reactive precatalyst in the silaboration of terminal and internal alkynes to yield a number of known and novel 1-silyl-2-boryl alkenes. Unprecedented mild reaction temperatures for terminal alkynes, short reaction times, and low catalytic loadings are reported. During mechanistic studies, cis-Pd(ITMe)$_2$(SiMe$_3$Ph)(Bpin) was directly synthesized by oxidative addition of PhMe$_2$SiBpin to Pd(ITMe)$_2$(PhC≡CPh). This represents a very rare example of a (silyl)(boryl)palladium complex. A plausible catalyst decomposition route was also examined.

KEYWORDS: N-heterocyclic carbene, silaboration, homogeneous catalysis, alkyne, palladium, synthetic methods

The regio- and stereoselective synthesis of multisubstituted alkenes is a challenging reaction, recurrent in the formation of complex organic structures. In particular, tri- and tetra-substituted alkenes are present in many pharmaceuticals,1 dipeptide mimetics,2 polymers,3 and columnar liquid crystals.4 There are now many reported methods for the synthesis of such alkenes including olefin metathesis5 and carboxyl olefination6 among others. Notably, the transition-metal catalyzed π-insertion of a bond between two elements of the p-block (e.g., Si–Si, Si–Sn, Sn–Sn, B–B, and Si–B) into an alkene has received a significant amount of attention.7 One of the most interesting examples is arguably the 1,2-addition of a silicon–boron bond (silaboration).8 The resulting 1-silyl-2-boryl alkenes have the potential to independently undergo, for example, a cross-coupling reaction at the boryl (Suzuki–Miyaura) fragment9 and a Fleming–Tamao oxidative addition or cross coupling (Hiyama) at the silyl fragment.10,11 Arguably, the most effective alkyne silaboration protocol is the palladium diacetate/isocyanide combination reported by Ito and co-workers (Scheme 1).12,13 The reactions proceed with high stereoselectivity toward the syn-1,2-addition products and in the case of terminal alkynes high regioselectivity, with the boryl fragment attached to the terminal position. Recently, Sugimoto and co-workers reported that the reverse regioselectivity was possible by changing the palladium source and using a sterically encumbered phosphine ligand, albeit using the more reactive (chlorodimethylsilyl)boronic acid pinacol ester.14 "Abnormal" regioselectivity was also reported by Stratakis and co-workers using a supported gold nanoparticle catalyst.15 However, alkyne silaboration protocols have been largely limited to high reaction temperatures, long reaction times, and moderately high catalyst loadings. The most challenging aspect to silaboration chemistry remains the unsymmetrical internal alkynes and the resulting formation of regioisomeric mixtures; there are limited examples that remedy this.16,17

N-Heterocyclic carbenes (NHCs) have replaced phosphines in many catalytic reactions. They are known to exhibit equivalent or better σ-donor character than the most common phosphines, and the resulting (NHC)-M complexes are also often more robust toward decomposition.18 We recently reported the use of NHCs as a set of ligands in the first isolation of a bis(trimethylsilyl)palladium complex, cis-Pd(ITMe)$_2$(SiMe$_3$)$_2$ (ITMe = 1,3,4,5-tetramethylimidazol-2-ylidene) and the first example of a bis(NHC)-palladium alkylene complex, Pd(ITMe)$_2$(PhC≡CPh) (1).19 Both complexes acted as highly active precatalysts for the cis-bis-silylation of...
sterically and electronically demanding internal and terminal alkynes. The high reactivity exhibited by 1 prompted us to investigate its effectiveness at catalyzing the silaboration of alkynes. Herein, we report the use of Pd(ITMe)$_2$(PhC≡CPh) in the silaboration of sterically and electronically demanding terminal and symmetrical internal alkynes. Unprecedented low catalytic loadings, short reaction times, and mild reaction temperatures for terminal alkynes are presented. Initial experimental investigations into the mechanism of the reaction and the isolation of important intermediates are also described.

We had previously synthesized Pd(ITMe)$_2$(PhC≡CPh) (1) in what was effectively a three-step process. We have since devised an improved synthesis of 1: Pd(ITMe)(methallyl)Cl was reacted with one equivalent of each of potassium tert-butoxide, isopropanol, and ITMe at room temperature forming Pd(ITMe)$_2$, which was then exposed in situ to a slight excess of diphenylacetylene at room temperature for 18 h in toluene. After workup, 1 was isolated in an 85% yield (Scheme 2).

With large quantities of 1 in hand, we proceeded to investigate its capacity to catalyze the silaboration of alkynes. Diphenylacetylene and (dimethylphenyl)silyl boronic acid pinacol ester (PhMe$_2$SiBpin) were chosen as model substrates for the optimization of the initial reaction parameters. The reaction was carried out in C$_6$D$_6$ in order to monitor its progression. To our delight, (E)-(1,2-diphenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)vinyl)dimethyl(phenyl)silane (2) was obtained in 96% yield (100% stereoselectivity) using 0.5 mol % of 1 at room temperature and in less than 30 min (Scheme 3). A comparable yield was obtained in benzene. The only report for a catalytic synthesis of this compound required 2 mol % of Pd(OAc)$_2$/30 mol % tert-octyl isocyanide at 110 °C over 2 h. To scope the versatility of this protocol, a series of sterically and electronically challenging alkynes were reacted with PhMe$_2$SiBpin. The silaboration of terminal aryl, alkyl, silyl, and even diterminal alkynes proceeded at room temperature using 0.5 mol % of 1 in less than 30 min with 100% regio- and stereoselectivity. As for compound 2, the only previous synthesis of compounds 3–6 required 2 mol % of Pd(OAc)$_2$/30 mol % tert-octyl isocyanide at 110 °C in reaction times varying from 1 to 4 h, whereas compound 7 has not been previously reported, to the best of our knowledge.

There are only a few examples of catalytic silaborations of symmetrical and unsymmetrical internal alkynes in the literature: namely, Ito and co-workers’ silaboration of diphenylacetylene, 1-phenyl-1-propyne and dec-5-yne, Sawamura and co-workers’ organocatalytic silaboration of polar-coordinating internal alkynes, and Sato and co-workers’ ynamide silaboration. Mixtures of regioisomers are usually observed in the silaboration of unsymmetrical internal alkynes. However, to our knowledge, a more thorough investigation into the silaboration of symmetrical alkynes that are electronically challenging has not been reported. Albeit requiring temperatures of 100 °C, the novel compounds 8–11 were all synthesized with 100% cis-stereoselectivity as established by NOESY NMR. Both alkyl–aryl and aryl–aryl internal alkynes bearing functionalities such as carboxylic ester, boronate ester, pyrrole, and ether reacted well under these conditions. Two unsymmetrical alkynes were also subjected to these reaction conditions. The silaboration of 1-phenyl-1-propyne afforded compound 13, isolated as the major regioisomer of a mixture containing 7% of the other regioisomer. This is a similar result.
to that obtained by Ito, albeit in a shorter reaction time and using a lower catalyst loading. On the other hand, the elaboration of unsymmetrical alkyne 1-phenyl-2-trimethylsilylacetylene resulted in the isolation of the novel compound 12 as a major product from an 80:20 mixture of regioisomers.

We then turned our attention to the mechanism of these reactions. The proposed catalytic cycle for “normal” silarboration using Pt group catalysts involves an initial oxidative addition resulting in a cis-(silyl)(boryl)M(II) complex. The alkyne then undergoes migratory insertion into the M-B bond to form the corresponding (silyl)-M(B)-boryl species, followed by a reductive elimination to form the 1-silyl-2-borylalkene. The isolation of the oxidative addition products for Pt group complexes is extremely rare due to their low stability: to our knowledge, the only reported examples to date are a series of (phosphine)-Pt complexes reported by Ozawa and coworkers and one Pd complex reported by Onozawa and Tanaka. We decided to investigate the stoichiometric reaction of 1 in the hope of isolating this important intermediate in the catalytic cycle. On reacting two equivalents of PhMe₂SiBpin with 1 in toluene, cis-Pd(ITMe)₂(SiMe₂Ph)(Bpin) (14) and 2 formed at room temperature in under 30 min. (Scheme 4). Single crystals of 14 were isolated from a double recrystallization in acetonitrile at −30 °C. X-ray analysis indicated a distorted square planar geometry with the NHCs orthogonal to the Si–Pd–B plane (Figure 1). To gain further insights on the reactivity of 14, we carried out its stoichiometric reaction with diphenylacetylene, leading to the quantitative formation of 1 and 2 at room temperature in only 10 min (see Supporting Information). Unfortunately, attempts of isolating the borylvinyl-Pd-silyl intermediate generated after the migratory insertion step were unsuccessful.

Complex 14 seems indefinitely stable to decomposition as a solid under inert conditions. It however rapidly decomposes in solution in nonpolar aromatic solvents such as toluene and benzene and at a slower rate in acetonitrile. By monitoring the solution decreases.

Figure 1. Molecular structure of 14 with thermal ellipsoids at the 50% probability level. Hydrogen atoms are omitted for clarity. Selected bond lengths [Å] and angles [°]: Pd1–C₈: 2.091(3), Pd1–C₉: 2.120(3), Pd1–B₁: 2.038(4), Pd1–Si₂: 2.3352(9), C₈–Pd1–C₉: 103.26(12), C₉Pd1–Si₂: 94.71(9), B₁–Pd1–Si₂: 81.49(11), C₈–Pd1–B₁: 80.89(13).

Scheme 4. Synthesis of Compounds 14 and 2

Scheme 5. Decomposition of 14 in Solution
other challenging bond activations are currently ongoing in our laboratories.

ASSOCIATED CONTENT

1 Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acscatal.6b00127.

- X-ray data (CIF)
- X-ray data (CIF)
- X-ray data (CIF)

Experimental procedures, characterization data for all compounds, and NMR spectra (PDF)

AUTHOR INFORMATION

Corresponding Authors

*E-mail: j.spencer@sussex.ac.uk.

*E-mail: o.navarro@sussex.ac.uk.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We wish to thank Dr. Iain Day, Dr. Alaa Abdul-Sada, and Dr. George Kostakis (University of Sussex) for helpful discussions. M.B.A. is funded as an EPSRC Standard Research Student (DTG) under grant no. EP/L505109/1.

REFERENCES

1. Tetra-substituted alkenes in pharmaceuticals: (a) Tamoxifen: Molecular Basis of Use in Cancer Treatment and Prevention, 1st ed.; Wiseman, H., Ed.; Wiley: Chichester, 1994. (b) Reiser, O. Angew. Chem. 2006, 118, 2904–2906. (c) Prasit, P.; Wang, Z.; Brideau, C.; Chang, C. C.; Charlson, S.; Cromlish, W.; Ethier, D.; Evans, J. F.; Ford-Hutchinson, A. W.; Gauthier, J. Y.; Gordon, R.; Guay, J.; Gresser, M.; Kargman, S.; Kennedy, B.; Leblanc, Y.; Leger, S.; Mancini, J.; O’Neill, G. P.; Ouellet, M.; Percival, M. D.; Perroer, H.; Rieendeau, D.; Rodger, I.; Tagari, P.; Therien, M.; Vickers, P.; Wong, E.; Xu, L.; J.; Young, R. N.; Zamboni, R. Bioorg. Med. Chem. Lett. 1999, 9, 1773–1778. (d) Williams, D. R.; Ille, D. C.; Pummer, S. V. Org. Lett. 2001, 3, 1383–1386. (e) Takahashi, A.; Kinjo, Y.; Sodeoka, M.; Sasai, H.; Shibasaki, M. J. Am. Chem. Soc. 1989, 111, 643–647.

2. (a) Oishi, S.; Miyamoto, K.; Niida, A.; Yamamoto, M.; Ajito, K.; Tamamura, H.; Otaka, A.; Kuroda, Y.; Asai, A.; Fujii, N. Tetrahedron 2006, 62, 1416–1424.

3. (a) Hall, H. K., Jr Angew. Chem., Int. Ed. Engl. 1983, 22, 440–455. (b) Schultz, A.; Diele, S.; Laschat, S.; Nimtz, M. Adv. Funct. Mater. 2001, 11, 441–446.

4. (a) Olavin metathesis: (1) Grubbs, R. H. Tetrahedron 2004, 60, 7117–7140. (b) Schrock, R. R. Acc. Chem. Res. 1990, 23, 158–165. (c) Meek, S. J.; O’Brien, B.; Alvera, J.; Schrock, R. R.; Hoveyda, A. H. Nature 2011, 471, 461–466.

5. (a) Wittig, G.; Geissler, G. Justus Liebigs Ann. Chem. 1953, 580, 44–57.

6. (a) Lesieur, M.; Bidal, Y. D.; Lazreg, F.; Nahra, F.; Cazin, C. S. J. ChemCatChem 2015, 7, 2108–2112. (b) Jiao, J.; Hyodo, K.; Hu, H.; Nakajima, K.; Nishihara, Y. J. Org. Chem. 2014, 79, 285–295.

7. Beletskaya, I.; Moberg, C. Chem. Rev. 1999, 99, 3453–3462.

8. (a) Importance of Si-B alkyne π-insertion: (a) Barbeyron, R.; Benedetti, E.; Cossy, J.; Vasseur, J. – J; Arseniyadis, S.; Smietana, M. Tetrahedron 2014, 70, 8431–8452. (b) Ohmura, T.; Suginome, M. Bull. Chem. Soc. Jpn. 2009, 82, 29–49. (c) Oestreich, M.; Hartmann, E.; Mewald, M. Chem. Rev. 2013, 113, 402–411.

9. (a) Fleming–Tamao oxidation examples: (a) Shimada, T.; Mukaide, K.; Shinohara, A.; Han, J. W.; Hayashi, T. J. Am. Chem. Soc. 2002, 124, 1584–1585. (b) Schmidt, A. W.; Olpp, T.; Baum, E.; Stiefel, T.; Knolker, H. J. Org. Biomol. Chem. 2010, 8, 4562–4568.

10. Morrill, C.; Mani, N. S. Org. Lett. 2007, 9, 1505–1508.

11. (a) Self-condensation of alkenes using Pd(OAc)2/isocyandate: (a) Suginome, M.; Nakamura, H.; Ito, Y. Chem. Commun. 1996, 2777–2778. (b) Suginome, M.; Tatsuda, T.; Nakamura, H.; Ito, Y. Tetrahedron 1999, 55, 8787–8800.

12. (a) Suginome and co-workers later reported on a more active catalytic system for the self-condensation of alkenes (PPh3/CpPd(η3-C5H3)): room temperature) as an intermediate step in the synthesis of 2,4-disubstituted siloles: Ohmura, T.; Masuda, K.; Suginome, M. J. Am. Chem. Soc. 2008, 130, 1526–1527.

13. (a) Abnormal self-condensation regioselectivity: (a) Ohmura, T.; Oshima, K.; Taniguchi, H.; Suginome, M. J. Am. Chem. Soc. 2010, 132, 12194–12196. (b) Ohmura, T.; Oshima, K.; Suginome, M. Organometallics 2013, 32, 2870–2873. (c) Ohmura, T.; Oshima, K.; Suginome, M. Chem. Commun. 2008, 1416–1418.

14. (a) Gyeparis, C.; Stratakis, M. Org. Lett. 2014, 16, 1430–1433. (b) Nagao, K.; Omiya, H.; Sawamura, M. Org. Lett. 2015, 17, 1304–1307.

15. (a) Saito, N.; Saito, K.; Sato, H.; Sato, Y. Adv. Synth. Catal. 2013, 355, 853–856. (b) Saito, N.; Saito, K.; Sato, H.; Sato, Y. Adv. Synth. Catal. 2013, 355, 853–856. (c) Recent reference books on NHCs: (a) N-Heterocyclic Carbenes: Effective Tools for Organometallic Synthesis; Nolan, S. P., Ed.; Wiley-VCH: Weinheim, 2014. (b) N-Heterocyclic Carbenes in Transition Metal Catalysis and Organocatalysis, 1st Ed.; Cazin, C. S. J. Ed.; Springer: Heidelberg. 2011. (c) N-Heterocyclic Carbenes in Transition Metal Catalysis, 1st ed.; Glorius, F., Ed.; Springer: Heidelberg, 2006.

16. (a) Ansell, M. B.; Roberts, D. E.; Cloke, F. G. N.; Navarro, O.; Spencer, J. Angew. Chem., Int. Ed. 2015, 54, 5578–5582.
(21) (a) Sagawa, T.; Asano, Y.; Ozawa, F. Organometallics 2002, 21, 5879–5886. (b) Cui, Q.; Musaev, D. G.; Morokuma, K. Organometallics 1997, 16, 1355–1364. (c) Suginome, M.; Matsuda, T.; Ito, Y. Organometallics 1998, 17, 5233–5235.
(22) Onozawa, S.; Tanaka, M. Yuki Gosei Kagaku Kyokaishi 2002, 60, 826–836.
(23) Pan, Y.; Mague, J. T.; Fink, M. J. Organometallics 1992, 11, 3495–3497.
(24) (a) Sakaki, S.; Kai, S.; Sugimoto, M. Organometallics 1999, 18, 4825–4837. (b) Sakaki, S.; Biswas, B.; Musashi, Y.; Sugimoto, M. J. Organomet. Chem. 2000, 611, 288–298.
(25) Bottoni, A.; Higueruelo, A. P.; Miscione, G. P. J. Am. Chem. Soc. 2002, 124, 5506–5513.