CHARACTERIZING THE LOW-REDSHIFT INTERGALACTIC MEDIUM TOWARD PKS 1302–102

KATHY L. COOKSEY, 1 JASON X. PROCHASKA, 2 HSIAO-WEN CHEN, 3 JOHN S. MULCHAHY, 4 AND BENJAMIN J. WEAVER 5

Received 2007 June 8; accepted 2007 November 26

ABSTRACT

We present a detailed analysis of the intergalactic metal-line absorption systems in the archival HST STIS and FUSE ultraviolet spectra of the low-redshift quasar PKS 1302–102 ($z_{\text{QSO}} = 0.2784$). We supplement the archive data with CLOUDY ionization models and a survey of galaxies in the quasar field. There are 15 strong Lyα absorbers with column densities log $N_{\text{H}} > 14$. Of these, six are associated with at least C iii λ977 absorption [log N(C$^+$) > 13]; this implies a redshift density $dN_{\text{C}}/dz = 36^{+13}_{-12}$ (68% confidence limits) for the five detections with rest equivalent width $W_r > 50$ mÅ. Two systems show O vi $\lambda\lambda$1031, 1037 absorption in addition to C iii [log N(O$^+$) > 14]. One is a partial Lyman limit system (log $N_{\text{H}} = 17$) with associated C iii, O vi, and Si iii λ1206 absorption. There are three tentative O vi systems that do not have C iii detected. For one O vi doublet with both lines detected at 3 σ with $W_r > 50$ mÅ, $dN_{\text{O}}/dz = 7^{+9}_{-5}$. We also search for O vi doublets without Lyα absorption but identify none. From CLOUDY modeling, these metal-line systems have metallicities spanning the range $-4 < [\text{M/H}] < -0.3$. The two O vi systems with associated C iii absorption cannot be single-phase, collisionally ionized media based on the relative abundances of the metals and kinematic arguments. From the galaxy survey, we discover that the absorption systems are in a diverse set of galactic environments. Each metal-line system has at least one galaxy within 500 km s$^{-1}$ and 600 h$^{-1}$ kpc with $L > 0.1L_\odot$.

Subject headings: galaxies: general — intergalactic medium — quasars: absorption lines — quasars: individual (PKS 1302–102) — techniques: spectroscopic

Online material: color figures, machine-readable tables

1. INTRODUCTION

The baryonic content of the universe is well constrained by big bang nucleosynthesis models, the cosmic microwave background, and the high-redshift Lyα forest (e.g., O’Meara et al. 2006; Spergel et al. 2006). However, surveys of the nearby universe reveal a dearth of baryons in stars, galaxies, and clusters (Fukugita & Peebles 2004). Recent cosmological simulations have placed the most likely reservoir of baryons at low redshift in moderately overdense, collisionally ionized gas, called the warm-hot intergalactic medium (WHIM; Davé et al. 2001; Fang & Bryan 2001; Cen et al. 2001). With temperatures in the range 10^5–10^7 K, the most sensitive tracer with current observational facilities is the O vi doublet $\lambda\lambda$1031, 1037, which dominates collisionally ionized gas at $T \approx 3 \times 10^5$ K, as discussed below.

The O vi doublet is a valuable absorption feature observationally because it has a characteristic separation and rest equivalent width (W_r) ratio for unsaturated features (2 : 1 for the $\lambda 1031.93/\lambda 1037.62$ pair). Furthermore, oxygen is the most abundant metal, and the O$^{5+}$ ion is an effective tracer of the low-temperature WHIM (Tripp et al. 2006b). Assuming collisional ionization equilibrium (CIE), other ion species (e.g., O vii, Mg x, Ne viii) have greater abundances in the higher WHIM temperature range, where it is predicted there are more baryons; however, these other ions are extremely difficult to detect at low redshifts. Current X-ray telescopes are not up to the task but for a few systems (Wang et al. 2005; Williams et al. 2006;Nicastro et al. 2005).

Cosmological simulations make four important predictions about the content, temperature, ionization mechanism, and density of the WHIM. The WHIM contains \sim40% of the baryons in the low-redshift universe (Davé et al. 2001; Cen et al. 2001). It has characteristic overdensity $10 \leq \delta \leq 30$ and is shock heated to $T \approx 10^2$–10^4 K as it collapses onto large-scale structure (e.g., filaments; Davé et al. 2001; Fang & Bryan 2001). The WHIM thermally emits soft X-rays; Davé et al. (2001) argue that the WHIM must be in a filamentary structure to agree with the soft X-ray background. Collisional ionization dominates in high-temperature, high-density regions (e.g., WHIM), and photoionization dominates in low-temperature, low-density regions (e.g., local Lyα forest; Fang & Bryan 2001). Cen & Ostriker (2006) and Cen & Fang (2006) include new and improved prescriptions for galactic superwinds and collisional nonequilibrium. Their recent results substantiate previous simulations that argue for a large contribution of WHIM gas to the baryonic census, as well as demonstrate the importance of galactic superwinds in dispersing metals to large distances from the galaxies, with impact parameters $\rho \approx 1$ Mpc.

Several observational papers propose that O vi absorption occurs in a multiphase medium, with hot collisionally ionized components (10^5 K $\leq T \leq 10^7$ K) and warm photoionized components ($T \approx 10^4$ K; e.g., Tripp et al. 2000; Simcoe et al. 2002; Shull et al. 2003; Sembach et al. 2004a; Danforth et al. 2006, hereafter D06). Other papers suggest that the O vi absorbers are in CIE (Richter et al. 2004), not in equilibrium (Tripp & Savage 2000), or photoionized and therefore not part of the WHIM (Prochaska et al. 2004). Richter et al. (2004) argue that broad Lyα features can be used to trace the WHIM if there are no O vi lines, and the simulations of Richter et al. (2006) indeed find broad Lyα features at the redshift of O vi absorption.

Recent observations have argued that O vi absorbers are often correlated with galaxies or galaxy groups (e.g., Richter et al. 2004; Prochaska et al. 2004; Sembach et al. 2004a). Typically, O vi absorbers are identified because Lyα absorbers were first identified...
at the corresponding redshifts. If O vi absorption were truly tracing the WHIM, the hydrogen should be predominantly ionized at $T \approx 10^5$ K and therefore very broad and shallow due to thermal broadening, precluding easy detection (Richter et al. 2004). This may explain the tendency to detect O vi absorbers near galaxies and to model the absorbers as a multiphase medium. For this reason, Tripp et al. (2007) and the current study perform searches for O vi doublets without first detecting Lyα.

Danforth & Shull (2005) and D06 surveyed the Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph (STIS) and Far Ultraviolet Spectroscopic Explorer (FUSE) archives for Lyα, O vi, and C iii λ1907. Of 45 Lyα absorbers with statistics for both metal lines, 12 (27%) have both O vi and C iii absorption, 8 (18%) have O vi without C iii, and 4 (9%) have C iii without O vi. The prevalence of low-ionization absorption Lyα and, often, C iii associated with highly ionized O vi absorption supports a multiphase model of the intergalactic medium (IGM). D06 did not perform a blind search for O vi without Lyα absorbers.

Tripp et al. (2007) searched for H i and O vi absorption in archival STIS spectra of 16 low-redshift quasars. The spectra were supplemented with FUSE data for sight lines with published complete line lists. Tripp et al. (2007) compared and contrasted 14 associated (those within 5000 km s$^{-1}$ of the quasar) and 53 intervening H i and O vi absorption systems. From this survey, almost half of the intervening systems are multiphase absorbers that may host, at least in part, the WHIM, and more than one-third of the systems are cool, single-phase absorbers.

Presented here is a detailed analysis of far-ultraviolet STIS and FUSE spectra of the quasar PKS 1302–102 ($z_{\text{QSO}} = 0.2784 \pm 0.0005$; Corbett et al. 1998). Column densities are measured for H i Lyman systems and metal lines. For systems with at least Lyα and Lyβ, the H i Doppler parameter was measured. The redshift density of Lyα, O vi, and C iii absorbers is determined. A direct comparison with the results of D06 is given. In addition, the UV spectra are complemented by a galaxy survey of the field surrounding PKS 1302–102, made at Las Campanas Observatory. These observations are used to characterize the O vi absorbers and other metal-line systems with respect to galaxies. This is the first in a series of papers on the chemical enrichment of the low-redshift IGM (HST proposal 10679; PI: J. X. Prochaska). The paper is organized as follows: the data and reduction procedures are discussed in § 2, the identification of absorption-line systems in § 3, metal-line systems in § 4, strong Lyα absorbers in § 5, previous analysis in § 6, galaxy survey and results in § 7, and final discussion and conclusions in § 8.

2. DATA AND REDUCTION

2.1. Space Telescope Imaging Spectrograph

PKS 1302–102 was observed for a total of 22 ks by HST STIS in 2001 August (Program 8306; PI: M. Lemoine). The observations are summarized in Table 1. STIS observations were taken with the medium echelle grating E140M that covers 1140 Å $< \lambda < 1730$ Å. The 44 orders were co-added individually before being co-added into a one-dimensional spectrum, which was used for further analysis. There are gaps between the orders for $\lambda < 1600$ Å. STIS E140M has a resolution of $R \approx 45,000$, or FWHM ≈ 7 km s$^{-1}$. More information about STIS can be found in Mobasher (2002).

The data were retrieved from the Multimission Archive at Space Telescope (MAST) and were reduced with CalSTIS version 2.15b with On-the-Fly Reprocessing. The multiple exposures were co-added with the IDL routine COADSTIS from the XIDL library, which is described below. Each order of each exposure was rebinned to the same logarithmic wavelength solution. Regions with bad data quality flags and a small neighboring buffer to the bad regions were excluded in the co-adding of the observations. The STIS Data Handbook defines many data quality flags (Mobasher 2002), and all but three nonzero flags were rejected (16, 32, and 1024). These three accepted flags indicated abnormally high dark rate and mild CCD blemishes.

The spectra were scaled to the spectrum with the highest signal-to-noise ratio (S/N), measured across all orders. The orders were co-added with the XIDL routine X_COMBSPEC, which weights by S/N. To co-add the orders into one spectrum, overlapping regions of the orders were combined by taking the weighted mean of the flux.

2.2. Far Ultraviolet Spectroscopic Explorer

FUSE complements the STIS wavelength range and enables the identification of important absorption lines at lower redshifts. FUSE covers 905 Å $< \lambda < 1190$ Å with $R \approx 20,000$, or FWHM ≈ 15 km s$^{-1}$. In FUSE, Lyβ and O vi absorption can be detected at $z_{\text{abs}} \lesssim 0.15$ and C iii at $z_{\text{abs}} \lesssim 0.22$. For PKS 1302–102, the H i column density is better constrained when Lyα absorption from STIS is supplemented with detections and upper limits of higher order H i Lyman lines from FUSE. The O vi absorption that may trace the WHIM should be more prevalent at lower redshifts, and it is important to search for O vi at $z_{\text{abs}} < 0.15$. C iii absorption is a common metal line from photoionized gas and, typically, indicates a multiphase medium when detected in a system with the highly ionized O vi (Prochaska et al. 2004).

The four gratings of FUSE disperse onto two detectors resulting in eight spectra per exposure. More details about the FUSE instrument and mission can be found in Moos et al. (2000) and Sahnow et al. (2000). All PKS 1302–102 FUSE observations were taken in photon address mode (i.e., time-tag mode) with the low-resolution aperture (LWRS).

PKS 1302–102 was observed for a total of 149 ks with FUSE between 2000 May and 2001 January (Program P108;
PI: K. Sembach). The raw FUSE files, also downloaded from MAST, were completely reduced with a modified CalFUSE8 version 3.0.7 pipeline and co-added with Don Lindler’s IDL tool FUSE_REGISTER.

The two separate observations of PKS 1302–102 were co-added into one set of eight spectra in order to increase S/N. The CalFUSE pipeline has procedures for this purpose. After each exposure has been processed, the intermediate data files (IDFs), which contain all information from the raw photon-event list to the wavelength solution, are combined into one IDF for each channel; in a similar manner, the bad pixel masks (BPMs) are also combined. From these two files, the CalFUSE pipeline extracts the final, calibrated spectra.

By default, the combined IDF has its aperture centroid defined by the first, single-exposure IDF in the list to be combined. In addition, to save space, the combined BPM is only defined for the regions of the two-dimensional spectra used in the final extraction (i.e., aperture and background windows). Each single FUSE exposure of PKS 1302–102 has low S/N and a poorly measured centroid, and CalFUSE was not able to optimally extract the final

8 See ftp://fuse.pha.jhu.edu/fuseftp/calfuse/.

Fig. 1.—Velocity plot for \(z_{\text{abs}} = 0.00438\). Spectra, averaged over 2 pixels (thin black line), are stacked in velocity space with \(v = 0\) km s\(^{-1}\) at \(z_{\text{abs}} = 0.00438\), the optical depth weighted centroid of Ly\(\alpha\) (vertical dashed line). The region used to measure \(W_r\) is highlighted (thick black line). Also indicated is the flux at zero (black dot-dashed line). The \(H\text{I}\) Voigt profiles, based on the COG log \(N_{\text{HI}}\) and \(b\), are superimposed to show the predicted area under the curve (gray dot-dashed line; for the metal lines, this line indicates the flux at unity). The Voigt profile centroid is fixed at the redshift of \(z_{\text{Ly}\alpha} = 0.00439\). Ly\(\alpha\) is detected in the wings of the damped Galactic Ly\(\alpha\) feature, and the lines higher than Ly\(\beta\) are detected in the SIC 2A and 1B channels, which have poor sensitivity. C\(\text{II}\) and C\(\text{IV}\) \(\lambda 1550\) are not detected at 3 \(\sigma\). Ly\(\beta\), Ly\(\delta\), and Ly\(\gamma\) are blended with Galactic C\(\text{III}\) \(\lambda 977\), H\(\text{II}\) \(954.0\) R(4), and H\(\text{II}\) \(941.6\) P(2), respectively. As shown, Galactic C\(\text{III}\) \(\lambda 1036\) is coincident where O\(\text{VI}\) \(\lambda 1031\) would be, and there is an absence of O\(\text{VI}\) \(\lambda 1037\). [See the electronic edition of the Journal for a color version of this figure.]
spectrum of $\bar{\sigma}$.

The spectra were normalized with a parameterized B-spline continuum-fitting program. Once an initial break point was chosen ($\Delta E \approx 6$ Å for STIS and $\Delta E \approx 4.5$ Å for FUSE), the spectrum was iteratively fitted with a B-spline. In each iteration, pixels that lay outside the high/low sigma clips (e.g., 2.5/2) were masked out to prevent absorption features, cosmic rays, or other bad pixels from skewing the fit. This process was repeated until the fit changed less than a set tolerance compared to the previous iteration. The break point space was automatically decreased in regions of great change (e.g., quasar Lyα) and increased in regions of relatively little variation. More specifically, the spacing is made coarser in regions where the binned flux f_i varied by $\leq 10\%$ compared to the error-weighted flux f; the spacing is refined where f_i varied by greater than one standard deviation σ_i of f. The value f_m is the median flux in bins defined by the initial

excluded good data since the centroid used was not measured for the combined IDF.

To properly calculate the centroid for a combined IDF, several subroutines were copied from the CalFUSE program CF_EDIT, which is an IDL GUI used to modify IDFs, into a customized IDL routine that calculates the centroid and modifies the IDF header accordingly. This new centroid was written to the headers of the individual IDFs so that the BPMs generated with the standard CalFUSE pipeline would automatically span the desired regions of the spectra. These BPMs were combined, as mentioned previously, and used with the combined IDFs to extract the calibrated spectra. In this manner, the PKS 1302–102 FUSE spectra were optimally extracted.

The calibrated spectra from each observation were co-added with FUSE_REGISTR. The eight segments were not combined into one spectrum. This allowed for the identification of the same feature in different segments for confidence and avoids the issue that the FUSE channels have slightly different wavelength solutions. Values quoted in this paper primarily come from the detection in the channel with the highest S/N.

According to the FUSE white paper about wavelength calibration, the two main sources of uncertainty in the absolute wavelength solution are the detector distortions and zero-point offsets, which, at worst, cause uncertainties of $\delta \nu \approx 13$ and ≈ 66 km s$^{-1}$, respectively. The STIS wavelength solution is accurate to $\delta \nu \approx 4$ km s$^{-1}$ (Mobasher 2002). The partial Lyman limit system (LLS) at $z_{abs} = 0.09487$ spanned all the FUSE channels, save SiC 1B (see § 4.5), and was used to shift the FUSE spectra onto the STIS wavelength solution. The alignment of the Galactic features is secondary evidence that the shifts are reasonable. For SiC 1B, the Galactic Lyγ emission was used. The spectra were shifted by the following amounts: -56 km s$^{-1}$ (SiC 1B), 35 km s$^{-1}$ (SiC 2A), 9 km s$^{-1}$ (LiF 2B), 21 km s$^{-1}$ (LiF 1A), -22 km s$^{-1}$ (SiC 1A), 18 km s$^{-1}$ (LiF 1B), and 2 km s$^{-1}$ (LiF 2A).

The SiC 2B and LiF 2B segments were not used in the analysis due to their poor sensitivity. The other three SiC channels have poor flux zero points, resulting in negative flux and uncertain W_r; however, line identification was possible. SiC 1A was excluded from analysis because LiF 1A covered the same wavelength range; SiC 1B and 2A were included to cover the lower wavelengths. There are two segments covering most wavelengths: $905 \lesssim \lambda \lesssim 1005$ Å (SiC 2A and 1B), $990 \lesssim \lambda \lesssim 1090$ Å (LiF 1A), and $1088 \lesssim \lambda \lesssim 1188$ Å (LiF 1B and 2A).

2.3. Continuum Fitting

The spectra were normalized with a parameterized B-spline continuum-fitting program. Once an initial break point space was chosen ($\Delta E = 6$ Å for STIS and ≈ 4.5 Å for FUSE), the spectrum was iteratively fitted with a B-spline. In each iteration, pixels that lay outside the high/low sigma clips (e.g., 2.5/2) were masked out to prevent absorption features, cosmic rays, or other bad pixels from skewing the fit. This process was repeated until the fit changed less than a set tolerance compared to the previous iteration. The break point space was automatically decreased in regions of great change (e.g., quasar Lyα emission) and increased in regions of relatively little variation. More specifically, the spacing is made coarser in regions where the binned flux f_i varied by $\leq 10\%$ compared to the error-weighted flux f; the spacing is refined where f_i varied by greater than one standard deviation σ_i of f. The value f_m is the median flux in bins defined by the initial

break point space. The spectrum and its error were divided by the continuum to generate the normalized spectrum used in the analysis.

The program may loosely be considered “automatic”; it will converge on the best fit for the spectrum based on a given set of parameters. However, a fit based on a random set of parameters may not be a good fit to the continuum as judged visually by the authors. To estimate the errors resulting from the subjective nature of continuum fitting, we fitted the spectra “by hand” with the XIDL routine X_CONTINUUM and compared the change in rest equivalent width W_r values. The W_r values measured from the spectra normalized by the automated program are in good agreement with those measured from the spectra normalized by hand. The rms fractional difference is $< 5\%$ for STIS and 12% for FUSE. For column densities, the rms fractional difference is $< 1\%$ for both instruments.

3. ABSORPTION-LINE SYSTEMS

3.1. Identifying Systems

We search for IGM absorption systems (absorption lines physically associated with one another) with allowance for variations in, e.g., ionizing mechanism, density, and temperature. The absorption features detected in the FUSE and STIS spectra were sorted into Galactic lines and intergalactic absorption lines. The latter category was further sorted into their respective systems by comparing their redshifts, line profiles, and rest equivalent width W_r ratios. Lines of the same ionized species from a given absorption system should have the same redshift, similar line profiles, and unsaturated W_r values that scale with oscillator strengths (see Figs. 1 and 2). Ions from the same phase of the IGM tend to have roughly the same redshift and similar profiles. For example, H I and C II of $z_{abs} = 0.04222$ are well aligned in velocity space and have similar asymmetric profiles, whereas O vi is at a different redshift (velocity) and has a dissimilar profile (see Fig. 3); this suggests that the H I and C II absorption arises from one phase of the IGM and O vi from another.

In order to thoroughly identify the absorption features in the spectra of PKS 1302–102, we developed an automated procedure to detect all features in the spectra greater than a minimum

- See http://fuse.pha.jhu.edu/analysis/calfuse_wp1.html.

Fig. 2. H I COG for $z_{abs} = 0.00438$. The best-fit curve of growth (solid line) with 1 σ bounds (dashed lines) is displayed over the measured W_r values included in the fit (black marks with 1 σ error bars). Blended lines are shown as upper limits (crosses and arrows). For description of the upper limits, see Fig. 1. The H I Lyman lines are labeled by letter or wavelength across the top. [See the electronic edition of the Journal for a color version of this figure.]
significance and width. We then interactively identified the features not coincident with Galactic lines.

3.1.1. Automatic Line Detection and Doublet Search

A purely interactive search (as described below) would be biased toward systems with Lyα. O vi ions that are associated with collisionally ionized gas at $T \approx 3 \times 10^3$ K (e.g., the canonical WHIM) are likely to have associated Lyα profiles that are broad and shallow (Richter et al. 2004). The PKS 1302–102 spectra do not have sufficient S/N to reliably detect broad Lyα features. To avoid biasing the search against warm-hot O vi gas, we searched for doublets independently of Lyα.

In order to conduct a blind search for pairs, primarily doublets like O vi, an automated feature-finding program was developed to detect all possible absorption features with a minimum significance σ_{min} and width. The spectrum was first convolved with a Gaussian with FWHM b_{min}. The convolved pixels were grouped into potential features with significance $\sigma_{\text{pix}} \geq \sigma_{\text{min}}$. The program does not attempt to separate blended lines into component features. The final result is a list of central wavelengths, observed equivalent width W_{obs} and error, and wavelength limits (used to measure W_{obs}).

Next, a blind search for doublets (O vi, C iv, N v, and Si iv) was performed. For example, the search assumed that each automatically
detected feature between Galactic and quasar O \(\lambda \) could be O \(\lambda \) 1031 and only identified a possible pair when another feature was at the appropriate wavelength spacing within the bounds of 1031 translated to the appropriate, redshifted wavelength of 1037. This procedure was repeated for the C \(iv \), N \(v \), and Si \(iv \) doublets and for Ly\(\alpha \), Ly\(\beta \) and Ly\(\delta \) C \(iii \) pairs.

The blind doublet search successfully identified Galactic O \(\lambda \) \(\lambda \) 1031 and only identified a possible pair when another feature was at the appropriate wavelength spacing within the bounds of 1031 translated to the appropriate, redshifted wavelength of 1037. This procedure was repeated for the C \(iv \), N \(v \), and Si \(iv \) doublets and for Ly\(\alpha \), Ly\(\beta \) and Ly\(\delta \) C \(iii \) pairs.

In general, the automated feature-finding program indicates features in a spectrum that have a roughly Gaussian profile and a measured significance greater than the minimum required. These features may or may not be absorption lines. There is a balance between automatically detecting weak absorption lines and including spurious features. We calibrated the search parameters to maximize the detection of lines with \(W_r > 50 \) m\(\AA \) while minimizing the inclusion of spurious features (less than 10%).

3.1.2. Interactive Search

The automatic line detection procedure described above generates a list of unidentified features meeting a specified minimum set of requirements. The features may be Galactic, intergalactic, or, in a few cases, spurious. The automated pair searches (e.g., Ly\(\alpha \), Ly\(\beta \) supply a starting point for interactively identifying the features and sorting them into IGM absorption systems. The potential feature list gives the lines that should be identified and is used to determine the completeness of the interactive search. The final, identified absorption lines are listed in Table 2.

Identifying the absorption lines first required disentangling Galactic from intergalactic features. The velocity plots of the Ly\(\alpha \), Ly\(\beta \) pairs from the blind search were examined individually. If these pairs were well aligned in velocity space, with similar line profiles and decreasing \(W_r \), we interactively searched for higher order Lyman lines (e.g., Ly\(\gamma \), Ly\(\delta \)) and/or common metal lines, redshifted by the assumed Ly\(\alpha \) redshift. These lines were grouped as a possible system. The rough priority of metal lines was (a) C \(iii \), O \(\lambda \) \(\lambda \) 1548, 1550; (b) N \(\lambda \) \(\lambda \) 1083, Si \(iii \) \(\lambda \) 1206, C \(ii \) \(\lambda \) 1036 or \(\lambda \) 1334; and (c) N \(\lambda \) 989, Si \(iv \) \(\lambda \) 1393, 1402 (using atomic data listed in Prochaska et al. 2004). In this initial search, no knowledge of the Galactic lines biased the identification of IGM absorption lines.

Second, all features from the automatic search corresponding to likely Galactic lines were recorded as such, regardless (for now) of whether the same features were first identified as IGM lines. The likely Galactic lines included various ionization states of iron, oxygen, nitrogen, sulfur, carbon, silicon, phosphorus, argon, and aluminum. This set of lines was defined in a stacked spectrum of normalized STIS E140M spectra of 15 low-redshift quasars. In the\(\text{FUSE} \) channels with \(\lambda > 1000 \) \(\AA \), molecular hydrogen lines are abundant due to the Lyman and Werner bands. The PKS 1302–102 sight line has moderate to low molecular hydrogen absorption with a line of sight log \(N(H_2) = 16.3 \) (Wakker 2006).

All automatically detected features not already identified as Galactic or associated with an intergalactic system were assumed to be Ly\(\alpha \) if between Galactic Ly\(\alpha \) and Ly\(\alpha \) at the redshift of PKS 1302–102 (i.e., \(1216 \) \(\AA \leq \lambda \leq 1563 \) \(\AA \)). For example, the strong Ly\(\alpha \) absorber at \(z_{\text{abs}} = 0.19243 \) was detected automatically, not paired with Ly\(\beta \), and not corresponding to a Galactic line.

For spectra of low-redshift quasars, line confusion (e.g., blends) is minimal. However, line coincidences do occur. As an example, consider the Lyman series at \(z_{\text{abs}} = 0.09400 \), which first appeared to be an especially strong H \(i \) absorber. The Ly\(\beta \), Ly\(\gamma \), and Ly\(\delta \) transitions were blended with Galactic lines, and higher order Lyman lines were confused with H\(\alpha \) absorption and with the higher order Lyman lines at \(z_{\text{abs}} = 0.09487 \). Occasional blends also occur between different IGM absorption systems. We disentangle these blends using common line strengths for the various transitions within a blend, allowing for modest variations. For instance, D06 lists a Ly\(\alpha \) absorber at \(z_{\text{abs}} = 0.08655 \), whereas we identify it as Si \(iii \) at \(z_{\text{abs}} = 0.09487 \) because the would-be Ly\(\beta \) at \(z_{\text{abs}} = 0.08655 \) was less than 3 \(\sigma \) significance and the system at \(z_{\text{abs}} = 0.09487 \) is a strong H \(i \) absorber expected to have associated metal-line absorption.

Throughout this paper, only the statistical errors from photon counting are quoted, but the true errors should account for the combined statistical, continuum, and systematic errors. An estimate of the combined error will change the detection limit with respect to the statistical error. In § 2.3 we estimated the rms fractional difference due to continuum fitting to be <5\% for STIS and 12\% for \(\text{FUSE} \). The rest equivalent width is measured with a simple boxcar summation. The wavelength limits of the boxcar

Table 2

Line	\(\lambda_{\text{abs}} \) (\(\AA \))	\(\lambda_0 \) (\(\AA \))	\(z_{\text{abs}} \)	\(W_1 \) (m\(\AA \))	\(\sigma(W_1) \) (m\(\AA \))	\(W_2 \) (m\(\AA \))	\(\sigma(W_2) \) (m\(\AA \))	\(W_f \) (m\(\AA \))	\(\sigma(W_f) \) (m\(\AA \))
FUSE									
H \(i \) \(\lambda \) 930	934.798	930.748	0.00435	168	47	74	37	110	29
H \(i \) \(\lambda \) 937	941.898	937.803	0.00437	293	60	247	40	262	33
H \(i \) \(\lambda \) 949	953.995	949.743	0.00448	418	68	305	38	332	33
H \(i \) \(\lambda \) 972	976.903	972.537	0.00449	367	86	350	44	355	39
C \(iv \) \(\lambda \) 977	977.333	937.803	0.04215	7	7	74	15	44	38
C \(iv \) \(\lambda \) 977	981.309	977.020	0.04349	7	63	156	41	111	35
H \(i \) \(\lambda \) 949	989.770	949.743	0.04214	349	81	584	37	542	34

Notes.—Note that the list is incomplete for wavelengths <1000 \(\AA \) where the data have poor S/N and significant line blending. The fifth and sixth (seventh and eighth) columns refer to the SIC 1B (SIC 2A) channel for 905 \(\AA \leq \lambda \leq 1005 \) \(\AA \), LIF 1A for 990 \(\AA \leq \lambda \leq 1090 \) \(\AA \), LIF 1B (LIF 2A) for 1088 \(\AA \leq \lambda \leq 1188 \) \(\AA \), and STIS E140M for \(\lambda > 1188 \) \(\AA \). Table 2 is published in its entirety in the electronic edition of the \textit{Astrophysical Journal}. A portion is shown here for guidance regarding its form and content.
TABLE 3

IONIC COLUMN DENSITIES

Ion	\(\lambda_{\text{r}} \) (Å)	\(W_r \) (mÅ)	\(\log N_{\text{ADOOM}} \)	\(\log N_{\text{adopt}} \)
\(\text{siv} \)	0.0438	0.0 ± 0.0	1.80 ± 0.0	1.80 ± 0.0
\(\text{C ii} \)	0.0438	0.0 ± 0.0	1.80 ± 0.0	1.80 ± 0.0
\(\text{O i} \)	0.0438	0.0 ± 0.0	1.80 ± 0.0	1.80 ± 0.0
\(\text{O vi} \)	0.0438	0.0 ± 0.0	1.80 ± 0.0	1.80 ± 0.0

...window were defined interactively and are subjective. The rms fractional difference due to changing the window by 15% is 6% for STIS and 13% for FUSE. Column densities were affected by less than 1% by changing the window.

The errors from the continuum fitting and boxcar summation are correlated, but as a first approximation, we add them in quadrature. Ultimately, for a feature to be detected at 3 times the combined error, the feature must be detected at 3 \(\sigma \) for STIS and 3.6 \(\sigma \) for FUSE, where \(\sigma \) is the statistical error only. For example, \(\text{O vi} \) at \(\log N_{\text{adopt}} = 0.0438 \) is a 3.2 \(\sigma \) detection, but folding in the 12% continuum fitting and 13% boxcar summation errors for FUSE, the feature is 2.8 times the combined error. Ly/\(\beta \) at \(\log N_{\text{adopt}} = 0.12565 \) is a similar case in the STIS spectrum. The majority of lines discussed in this paper have significance greater than 3 times the combined error, and we use 3 \(\sigma \), commonly quoted in the literature, as our detection limit knowing that a more rigorous examination of our errors does not affect our results.

There are 28 Ly/\(\alpha \) features detected at \(\geq 3 \sigma \) significance in the spectra of PKS 1302–102. Of these, 15 are strong Ly/\(\alpha \) absorbers with \(\log N_{\text{H}_1} \geq 14 \) (54%) and 8 with at least one metal line (29%). A ninth tentative metal-line system has \(\log N_{\text{H}_1} = 13.1 \). There are five probable O vi systems. Line identification is complete to 90% in the region of STIS where intergalactic Ly/\(\alpha \) could be detected with \(\sigma_{\text{min}} = 4 \sigma \) and \(\beta_{\text{min}} = 20 \text{ km s}^{-1} \), and identification is complete to \(\geq 85\% \) in FUSE Fe 2A, 1B, and 1A for \(\beta_{\text{min}} = 40 \text{ km s}^{-1} \) features. Completeness was measured by correlating the identified lines from the interactive search with the automatically detected features discussed above.

3.2. Column Densities, Doppler Parameters, and Metallicities

For absorption systems exhibiting at least two members of the H i Lyman series, the H i column density \(\log N_{\text{H}_1} \) and Doppler parameter \(b \) were measured with a curve-of-growth (COG) analysis of the \(W_r \) values that minimized \(\chi^2 \). For metal lines, the apparent optical depth method (AODM) was used to measure the column densities (Savage & Sembach 1991).

However, as discussed in Fox et al. (2005), the AODM-measured column densities from low-S/N spectra systematically overestimate the true column densities due to spurious high-AOD (low flux) pixels and the exponential nature of the AODM. From Monte Carlo tests, we measure this to be, at worst, a 0.2 and 0.25 dex effect for unsaturated features in STIS and FUSE, respectively.

To measure metallicities, we used ionization corrections from CIE or photoionization models of the metal-line systems, calculated...
with CLOUDY11 versions 94 and 06.02.09a, respectively, as last described by Ferland et al. (1998). The CIE models are described in Prochaska et al. (2004).

To construct the photoionization models, the medium was assumed to be a plane-parallel slab ionized by a Haardt & Madau (1996; updated in 2005) quasar-only ultraviolet background. The number density of hydrogen \(N_\text{H} \) was assumed to be 0.1 cm\(^{-3}\), although our models are insensitive to this parameter in the optically thin regime. The ionization parameter \(\log U \), metallicity \([M/H]\),12 neutral column density \(\log N_\text{HI} \), and redshift of the UV background were varied to sample the parameter space. The ionization parameter is a dimensionless ratio of the number of hydrogen-ionizing photons to the total number of hydrogen atoms.

Abundance-independent ionic ratios of the same metal \([e.g., N(C^{+})/N(C^{+})]\) and/or abundance-dependent ratios of metals with similar ionization potentials \([e.g., N(C^{+})/N(O^{+})]\) constrained \(\log U \) or \(T \) (see § 4.5). The \(\log U \) or \(T \) limits define the ionization corrections for the measured metallicities \((e.g., [C/H]). Due to the simplifications and assumptions in the CLOUDY models, the model abundances and metallicities are reliable to within a factor of 2.

Modeling of a multiphase medium was generally not considered because the systems presented in this paper simply have too few metal lines. By the same token, multiphase and collisional ionization nonequilibrium scenarios are not ruled out by the observations. In select cases where the kinematics and abundances suggest a multiphase medium, we do use photoionization and CIE models to describe the different components.

4. METAL-LINE SYSTEMS

This section summarizes the nine Ly\(\alpha \) systems with at least one metal line detected. Velocity plots, COG analysis, and CLOUDY models for each system are discussed. Four of the nine systems have C\(\text{\textsc{m}} \) absorption only, one with C\(\text{\textsc{m}} \) and the O\(\text{\textsc{vi}} \) doublet, three with tentative O\(\text{\textsc{vi}} \) detections, and one with C\(\text{\textsc{m}} \), Si\(\text{\textsc{ii}} \), and a broad O\(\text{\textsc{vi}} \) doublet. Because C\(\text{\textsc{m}} \) is the dominant line in photoionized gas, it may be more readily detected in the moderate-S/N PKS 1302–102 spectra. The metal-line systems are summarized in Table 3.

11 See http://www.nublado.org.

12 \([M/H] = \log([N(M)/N(H)])/[M(H)/\odot].\)

All but three of the metal-line systems have \(\log N_\text{HI} \geq 15 \). The two systems with multiple metal lines are likely multiphase based on kinematic arguments \((e.g., velocity offsets, line profiles)\) and the poor fit of single-phase models to the data. More specifically, a single-phase, collisionally ionized absorber does not have significant C\(\text{\textsc{m}} \) and O\(\text{\textsc{vi}} \) absorption without significant C\(\text{\textsc{iv}} \) absorption.

The metallicities quoted are based on ionization corrections from the best \(\log U \) or \(T \) value from the CLOUDY models with \([M/H]\) consistent with the final, derived metallicity. In cases where the \(\log U \) value is not well constrained by the observations, we adopt a central value based on \(\log N_\text{HI} \), as predicted by the empirical/theoretical relation in Prochaska et al. (2004). The nature of the galaxy environment of these systems is discussed in § 7.

4.1. \(z_{\text{abs}} = 0.04383 \): C\(\text{\textsc{m}} \)

This metal-line system was detected at \(v \approx 13000 \text{ km s}^{-1} \), in the wings of the damped Galactic Ly\(\alpha \) profile (see Fig. 1). The PKS 1302–102 sight line also passes through the Virgo Cluster at this redshift (Wakker et al. 2003). Ly\(\alpha \) and C\(\text{\textsc{m}} \) are well aligned in velocity space with similar line profiles, which imply that the two absorbers are kinematically similar. Ly\(\alpha \), Ly\(\beta \), and Ly\(\gamma \) were used to fit the COG: \(\log N_\text{HI} = 15.8_{-0.2}^{+0.4} \) and \(b = 17_{-15}^{+15} \text{ km s}^{-1} \) (see Fig. 2).

The H\(\text{\textsc{i}} \) column density is not well constrained for this system. Ly\(\beta \), which was detected in LiF 1A, has the highest detection significance of the Lyman series. The higher order lines fall in the SiC 2A and 1B channels, which have poor sensitivity. The AODM H\(\text{\textsc{i}} \) column density for the saturated Ly\(\beta \) line sets a lower limit of \(\log N_\text{HI} > 14.9 \). D06 measured \(\log N_\text{HI} = 14.872 \pm 0.286 \) and \(b = 18 \pm 2 \text{ km s}^{-1} \) from a Voigt profile fit to Ly\(\alpha \). We examined the velocity plot with Voigt profile outlines for \(\log N_\text{HI}, b = [15.8, 17.4] \) and \([14.87, 18] \). The D06 values clearly underestimate the Ly\(\beta \) absorption.

The iononic ratios \(N(C^{+})/N(C^{+}) \) and \(N(C^{+})/N(O^{+}) \) constrained the ionization parameter to \(-3.4 \leq \log U \leq -2.1 \) for the CLOUDY models with \(\log N_\text{HI} = 15.75 \). For \(\log U = -2.1, -2 \leq [C/H] \leq -0.9 \). From the kinematics of Ly\(\alpha \) and C\(\text{\textsc{m}} \) and CLOUDY modeling, the \(z_{\text{abs}} = 0.04383 \) system is well described as a photoionized, metal-poor, single-phase medium.

4.2. \(z_{\text{abs}} = 0.04222 \): O\(\text{\textsc{vi}}, \) C\(\text{\textsc{m}} \)

The Ly\(\alpha \) profile shows two strong components. The blueward component aligns well with C\(\text{\textsc{m}} \), and the redward with O\(\text{\textsc{vi}} \) (see Fig. 3). The H\(\text{\textsc{i}} \) COG for this absorber included Ly\(\alpha \), Ly\(\beta \), and Ly\(\gamma \), and the values are well constrained: \(\log N_\text{HI} = 15.07_{-0.07}^{+0.08} \) and \(b = 22_{-1.8}^{+1.9} \text{ km s}^{-1} \) (see Fig. 4). Ly\(\alpha \), O\(\text{\textsc{i}} \) \& Ly\(\beta \), C\(\text{\textsc{m}} \), and C\(\text{\textsc{iv}} \) 1550 were not detected at \(3 \sigma \). Ly\(\delta \) is blended with Galactic N\(\text{\textsc{m}} \), Ly\(\gamma \) with H\(\text{\textsc{ii}} \) 1013.4 R(1), and Ly\(\beta \) with C\(\text{\textsc{m}} \) at \(z_{\text{abs}} = 0.09400 \). O\(\text{\textsc{vi}} \) \& Ly\(\gamma \) is blended with the weak H\(\text{\textsc{ii}} \) \& Ly\(\gamma \) line.

Table 4: Elemental Abundances for Absorber at \(z = 0.04222 \)

Ion	\([X/H]\)	\([X/C^{+}]\)
C\(^{+}\)	< -0.09	< 0.99
C\(^{++}\)	-1.07	0.00
C\(^{+++}\)	-1.09	-0.02
O\(^{0}\)	< 4.33	< 5.40
O\(^{+}\)	0.20	1.28

Note. Assumes a photoionized gas with \(\log U = -1.9 \).
Fig. 5.—Velocity plot for $z_{abs} = 0.06471$ (see Fig. 1 description). Lyα has a distinct asymmetric profile, probably due to unresolved components. The O vi doublet is detected at $z/C_2 = 4.5$. The Wr ratio of O vi $\lambda 1031$ to $\lambda 1037$ is 1.1 ± 0.4. Lyγ, O i, and C iv are not detected at 3 σ. C iii is treated as an upper limit since it is coincident with H2 $\lambda 1040.4$ P(2). The Voigt profile centroid is fixed at $z_{abs} = 0.06472$. [See the electronic edition of the Journal for a color version of this figure.]
The H i Lyman lines and C iii have similar line profiles and appear well aligned in velocity space, while O vi is shifted redward. Since Lyα is saturated and multicomponent, its velocity is not well constrained. Taking Lyγ as the reference line for the stronger H i component, O vi λ1031 has \(\delta v_{abs} = c(z_{abs} - z_\odot)/(1 + z_\odot) = +54 \) km s\(^{-1}\), while C iii is perfectly aligned. The significant velocity offset between the metal-line profiles suggests that the metals reside in different phases of gas, with overlapping Lyα absorption. The O vi absorption appears associated with more tenuous narrow Lyα absorption, and the doublet has a width similar to the redward Lyα component.

The \(W_r \) ratio of O vi λ1031 to λ1037 (1.1 ± 0.14) does not agree with the expected 2 : 1 ratio. The continuum fit around O vi λ1037 is poorly constrained because it is at the edge of LIF 1A and there are two absorption features close to λ1037. This potentially increases \(W_r \), and \(N(O^{+5}) \). O vi λ1037 is also blended with a weak H2 line. This system has the strongest O vi absorption in the PKS 1302−102 sight line, \(N(O^{+5}) = 14.5 \), and strong C iii absorption, \(N(C^{++}) = 13.7 \).

In the CLOUDY models with \(N_{H_1} = 15 \), the ionic ratios \(N(C^{+3})/N(C^{++}) \) and \(N(C^{++})/N(C^{+5}) \) constrain \(U < 3.2 \) km s\(^{-1}\) at \(\delta v_{abs} < 1.9 \). At the central value of \(U < 2.6 \), one would require \([O/C] \approx +3 \) and a supersolar O abundance to explain the column densities of \(C^{+3} \) and \(C^{+5} \). The abundance-dependent ionic ratio \(N(C^{+3})/N(O^{+5}) \) sets \(U > |C/O| = 1.1 \) and requires \([C/O] < -0.5 \) for the oxygen and carbon absorption to be from the same photoionized phase. In this case, \(U = -1.9 \), \([C/H] = -1.1 \), and \([O/H] = \pm 0.2 \) (see Table 4).

Since \([O/H] = +0.2 \) is not likely, we consider a single-phase photoionized model to be ruled out, as supported by the kinematics. However, the oxygen absorption could arise in a photoionized phase with \(U < -1.1 \), assuming \([C/O] = 0 \) and then \([O/H] = -1.2 \).

We have considered collisional ionization models. Under the assumption of CIE, the carbon absorption is constrained to be in a warm phase \(5.3 \times 10^4 \) K \(< T < 9.8 \times 10^4 \) K. Considering the limit set by \(N(C^{+3})/N(O^{+5}) \), the oxygen would be from a warm-hot phase \(T > 2.4 \times 10^5 \) K with low metallicity \([O/H] > -2 \). For this value, we have assumed that the H i column density in the warm-hot phase is the same as measured in the COG analysis for the warm phase.

In summary, we favor a two-phase photoionization model for this system, as strongly supported by the kinematics. The strong, blueward H i component and the narrower, redward Lyα component have strong, well-aligned C iii and O vi absorption, respectively.

4.3. \(z_{abs} = 0.06471 \): O vi

Although a tentative detection, O vi is well aligned with Lyα (see Fig. 5). The \(W_r \) ratio of O vi λ1031 to λ1037 is 1.1 ± 0.4, and \(N(O^{+5}) = 13.8 \) (see Table 3). At the redshift of Lyα, there is no C iii detected. However, there are two features in the vicinity: \(z_{abs} = 0.09487 \) Lyα at \(\delta v_{abs} > 100 \) km s\(^{-1}\) and H2 λ1040.4 P(2) at \(\delta v_{abs} \approx 0 \) km s\(^{-1}\), with respect to the centroid of the unsaturated Lyβ. The H2 P(2) profile may be blended, and we treat the whole feature as an upper limit for C iii at \(z_{abs} = 0.06471 \): \(N(C^{++}) < 13.1 \). O i and C iv λ1550 are not detected at 3 \(\sigma \).

The \(z_{abs} = 0.06471 \) system is one of three tentative metal-line systems with \(N_{H_1} < 15 \). The H i COG includes only Lyα and Lyβ, but the column density is well constrained because Lyβ is unsaturated: \(log N_{H_1} = 14.6 \pm 0.2 \) and \(b = 18 \pm 2 \) km s\(^{-1}\) (see Fig. 6). The upper limit to the equivalent width of Lyγ is consistent within 1 \(\sigma \) of the value predicted by the COG. The H i absorption features are asymmetric and should probably be fitted by a two-component COG, but the total \(N_{H_1} \) value is well constrained by our COG analysis.

Assuming a photoionized gas, the ionic ratio \(N(C^{+3})/N(O^{+5}) \) constrains \(U > |C/O| = 1.5 \) in the CLOUDY models with \(N_{H_1} = 14.75 \). For \(|U| = -1.5 \) and assuming \([C/O] = 0 \), \([O/H] = -0.9 \) and \([C/H] < -1 \) (see Table 5). The \(z_{abs} = 0.06471 \) could be a single-phase photoionized medium.

A single-phase CIE model is not ruled out by the observations. \(N(C^{+3})/N(O^{+5}) \) constrains \(T > 2.2 \times 10^5 \) K, for which \([O/H] = -1.8 \) and \([C/H] = -1.8 \). This system may represent a detection of the WHIM because of its temperature and the nondetection of C iv absorption.

4.4. \(z_{abs} = 0.09400 \): C iii

Lyβ and Lyδ are significantly blended with Galactic Fe ii λ1121 and Galactic O i λ1039, respectively (see Fig. 7). Lyγ is somewhat blended with Galactic Fe ii λ1064. The degree of blending is apparent from the line profiles in Figure 7, as well as a velocity plot of the Galactic lines (not shown). The COG includes only Lyα and the blended Lyγ yields an upper limit: \(log N_{H_1} < 15.06 \) for \(b = 27 \) km s\(^{-1}\) (see Fig. 8).

C iii is blended with Lyβ at \(z_{abs} = 0.04222 \), although the part included in Figure 7 is well aligned. Since C iii is partially blended, there is a lower limit on the column density \(N(C^{++}) > 13.3 \) from the AODM (see Table 3). C iii and the C iv doublet are not detected at 3 \(\sigma \).
In the CLOUDY models with log $N_{\text{HI}} = 15$, the ionic ratios $N(\text{C}/+)/N(\text{C}/++)$ and $N(\text{C}/++)/N(\text{C}/+++)$ constrain the ionization parameter: $-3.6 \leq \log U \leq -1.5$. For $\log U = -1.5$, $-1.3 \leq [\text{C}/\text{H}] \leq +0.3$. This system is well modeled by a single-phase, photoionized medium.

4.5. $z_{\text{abs}} = 0.09487$: Partial Lyman Limit System

This system shows strong H i Lyman absorption from Lyα to H i $\lambda914a$ (see Fig. 9). Lyβ, Lyγ, and Lyδ are blended with Galactic Fe $\text{ii} \lambda1121$, Galactic Fe $\text{ii} \lambda1064$, and Galactic O $\text{i} \lambda1039$, respectively. C iii is blended with Lyβ at $z_{\text{abs}} = 0.04222$. C iii and the C iv doublet are not detected at 3 σ. The region where the O vi doublet would be is shown. The Voigt profile centroid is fixed at $z_c = 0.09397$. [See the electronic edition of the Journal for a color version of this figure.]

In the CLOUDY models with log $N_{\text{HI}} = 15$, the ionic ratios $N(\text{C}/+)/N(\text{C}/++)$ and $N(\text{C}/++)/N(\text{C}/+++)$ constrain the ionization parameter: $-3.6 \leq \log U \leq -1.5$. For $\log U = -1.5$, $-1.3 \leq [\text{C}/\text{H}] \leq +0.3$. This system is well modeled by a single-phase, photoionized medium.

4.5. $z_{\text{abs}} = 0.09487$: Partial Lyman Limit System

This system shows strong H i Lyman absorption from Lyα to H i $\lambda914a$ (see Fig. 9). Lyβ, Lyγ, and Lyδ are blended with Galactic Fe $\text{ii} \lambda1121$, Galactic Fe $\text{ii} \lambda1064$, and Galactic O $\text{i} \lambda1039$, respectively. C iii is blended with Lyβ at $z_{\text{abs}} = 0.04222$. C iii and the C iv doublet are not detected at 3 σ. The region where the O vi doublet would be is shown. The Voigt profile centroid is fixed at $z_c = 0.09397$. [See the electronic edition of the Journal for a color version of this figure.]

The majority of the Lyman series from Lyα to H i $\lambda914a$ were used in the H i COG analysis: log $N_{\text{HI}} = 16.88^{+0.03}_{-0.03}$ and $b = 30.3^{+0.4}_{-0.4}$ km s$^{-1}$ (see Fig. 11). A single-component COG fits the data well, although this system has multiple components, as seen in the Lyα, C iii, Si ii, and Si iii line profiles.

C iii and Si ii are well aligned with Lyα. This system is the strongest C iii absorber in the PKS 1302−102 sight line, log $N(\text{C}/++) > 13.9$. A broad, well-aligned O vi doublet is detected with an W_r ratio of 2.3 ± 0.8 and log $N(\text{O}/+++)$ = 14. Si $\text{ii} \lambda1260$, O i, and the Si iv and C iv doublets are not detected at 3 σ.

The majority of the Lyman series from Lyα to H i $\lambda914a$ were used in the H i COG analysis: log $N_{\text{HI}} = 16.88^{+0.03}_{-0.03}$ and $b = 30.3^{+0.4}_{-0.4}$ km s$^{-1}$ (see Fig. 11). A single-component COG fits the data well, although this system has multiple components, as seen in the Lyα, C iii, Si ii, and Si iii line profiles.

C iii and Si ii are well aligned with Lyα. This system is the strongest C iii absorber in the PKS 1302−102 sight line, log $N(\text{C}/++) > 13.9$. A broad, well-aligned O vi doublet is detected with an W_r ratio of 2.3 ± 0.8 and log $N(\text{O}/+++)$ = 14. Si $\text{ii} \lambda1260$, O i, and the Si iv and C iv doublets are not detected at 3 σ.

The majority of the Lyman series from Lyα to H i $\lambda914a$ were used in the H i COG analysis: log $N_{\text{HI}} = 16.88^{+0.03}_{-0.03}$ and $b = 30.3^{+0.4}_{-0.4}$ km s$^{-1}$ (see Fig. 11). A single-component COG fits the data well, although this system has multiple components, as seen in the Lyα, C iii, Si ii, and Si iii line profiles.

C iii and Si ii are well aligned with Lyα. This system is the strongest C iii absorber in the PKS 1302−102 sight line, log $N(\text{C}/++) > 13.9$. A broad, well-aligned O vi doublet is detected with an W_r ratio of 2.3 ± 0.8 and log $N(\text{O}/+++)$ = 14. Si $\text{ii} \lambda1260$, O i, and the Si iv and C iv doublets are not detected at 3 σ.
For the CLOUDY models with log \(N_{\text{Hi}} = 17 \), the ionic ratios \(N(\text{C}^+) / N(\text{C}^{++}) \) and \(N(\text{Si}^{++}) / N(\text{Si}^{+}) \) set \(-3.3 \leq \log U \leq -2.6\) (see Fig. 12). For \(\log U = -2.9 \), we derive \(-2 < [\text{C}/\text{H}] < -1.6\) and \([\text{Si}/\text{H}] < -1.7\) (see Table 6). \(\text{O} \text{vi} \) is very broad, and this indicates at least a kinematically different phase from the \(\text{C} \text{iii} \) and \(\text{Si} \text{iii} \) absorption. Likely, \(\text{O} \text{vi} \) is thermally broadened, and we should consider the CLOUDY CIE models. The system could not be reasonably described by a single-phase CIE model since there would not be significant absorption of \(\text{C} \text{iv} \) and \(\text{O} \text{vi} \) at one temperature without significant \(\text{C} \text{iv} \) absorption (see Fig. 13). For CIE, the temperature limit \(T > 2.2 \times 10^5 \text{ K} \), set by \(N(\text{C}^{+3}) / N(\text{O}^{+5}) \), yields [\(\text{O}/\text{H} \)] \(> -3.8 \) assuming the total \(N_{\text{HI}} \) value of this absorber, which is most likely dominated by the photoionized phase.

The \(z_{\text{abs}} = 0.09487 \) partial LLS is a metal-poor \(-3.8 \leq [\text{M}/\text{H}] \leq -1.6\) and two-phased medium. \(\text{C} \text{iii} \) and \(\text{Si} \text{iii} \) are from one phase; they are narrow, multicomponent features from a photoionized medium. The broad \(\text{O} \text{vi} \) indicates another phase that is likely collisionally ionized but is also reasonably described by a photoionization model.

4.6. \(z_{\text{abs}} = 0.14533 \): \(\text{C} \text{iii} \)

Although \(\text{Ly} \alpha \) is as broad as that of the partial LLS discussed previously, the system at \(z_{\text{abs}} = 0.14533 \) has a significantly lower \(N_{\text{HI}} \) value (see Fig. 14). \(\text{Ly} \alpha, \text{Ly} \beta, \text{and Ly} \gamma \) were used to fit the \(\text{H} \text{i} \) COG: \(\log N_{\text{HI}} = 15.39 \pm 0.06 \) and \(b = 54^{+13}_{-10} \text{ km s}^{-1} \) (see Fig. 15). \(\text{Ly} \delta \) was excluded because it lies near the edge of LiF 2A; it deviates from the value predicted by the COG by \(>3 \sigma \). This discrepancy may also indicate that the system is multicomponent and poorly modeled by a single-component COG.

\(\text{C} \text{iii} \) is well aligned with the broad \(\text{Ly} \alpha \), and \(\log N(\text{C}^{++}) = 13.2 \) (see Table 3). A detection of the \(\text{O} \text{vi} \) doublet is not confirmed because \(\text{O} \text{vi} \lambda 1037 \) is at the edge of LiF 1B and in the low-sensitivity region of STIS. The equivalent width of \(\text{O} \text{vi} \lambda 1037 \) is greater than that of \(\lambda 1031 \) because \(\lambda 1037 \) is coincident with \(\text{Ly} \beta \) at \(z_{\text{abs}} = 0.15835 \). An upper limit is given by \(\text{O} \text{vi} \lambda 1031: \log N(\text{O}^{+5}) < 14.2\). \(\text{O} \text{i} \) and \(\text{C} \text{ii} \) are not detected at \(3 \sigma \) significance.
Fig. 10.—Lyman limit at $z_{\text{abs}} = 0.09487$. We show our fits and conservative error estimates (solid and dashed lines, respectively) for the quasar continuum redward of the $\lambda 912$ break and the flux blueward. From the flux decrement, we measure the optical depth at the limit and the $\text{H} \, \text{I}$ column density. The gray line is the error array of the spectrum. This portion of the spectrum is at the blue edge of LiF 1A, where the sensitivity decreases. [See the electronic edition of the Journal for a color version of this figure.]

Fig. 11.—$\text{H} \, \text{I}$ COG for $z_{\text{abs}} = 0.09487$ (see Fig. 2 description). This system is fitted well by a single-component COG model despite Lyα having a multi-component line profile (see Fig. 9). [See the electronic edition of the Journal for a color version of this figure.]

Table 6

Ion	[X/H]	[X/C++]
C$^+$	<-1.60	<0.41
C$^{++}$	>2.02	0.00
C$^{+++}$	<-1.12	<0.90
O0	<0.95	<2.96
O$^{+5}$	1.72	3.74
S$^{+}$	<-1.41	<0.61
S$^{++}$	-1.72	0.29
S$^{+++}$	<-1.51	<0.51

Note.—Assumes a photoionized gas with log $U = -2.9$.

Fig. 12.—Column densities from CLOUDY photoionization model for $z_{\text{abs}} = 0.09487$. The model is parameterized by log $N_{\text{HI}} = 16.75$ and metallicity scaled to 1/10 solar abundance [M/H] = -1. The ionic ratios of the detected metal lines for $z_{\text{abs}} = 0.09487$ constrain log U: $N(C^+)/N(C^{++})$ and $N(C^{++})/N(C^{+++})$ (black dashed lines, left and right, respectively), $N(Si^{+})/N(Si^{++})$ and $N(Si^{++})/N(Si^{+++})$ (black dot-dashed lines, left and right, respectively), and $N(O^{+5})/N(C^{++})$ and $N(C^{+++})/N(O^{+5})$ (triple-dot–dashed lines, left and right, respectively). [See the electronic edition of the Journal for a color version of this figure.]
In the CLOUDY model with log \(N_{\text{H}_1} = 15.5 \), the ionic ratios \(N(C^{+})/N(C^{++}) \) and \(N(C^{++})/N(O^{+}) \) set \(-3.7 < \log U < 1.\) Assuming \(U = -1.9, \) the value predicted by Prochaska et al. (2004), \([C/H] = -1.9 \) and \([O/H] < -0.4 \) for \([C/O] = 0.\) In the CLOUDY CIE model, the same ratios set \(4.1 \times 10^6 < T < 1.9 \times 10^5 \) K. Assuming that the width of H i is due purely to thermal broadening, then \(T = b^2 m/(2k) = 1.8 \times 10^5 \) K, where \(m \) is the mass of hydrogen and \(k \) is the Boltzmann constant. For the latter \(T \) bound, \([C/H] = -1.8 \) and \([O/H] < -0.8. \) This system can be modeled by a single-phase photoionization or collisionally ionized medium.

4.7. \(z_{\text{abs}} = 0.19161: \) C III

This system is another strong Lyman absorber with C III well aligned with Ly\(\alpha \) (see Fig. 16). The H i COG is consistent from Ly\(\alpha \) to H i \(\lambda 1917: \log N_{\text{H}_1} = 15.29^{+0.03}_{-0.07} \) and \(b = 22.4^{+0.7}_{-0.7} \) km s\(^{-1}. \) H i \(\lambda 917, \) O vi \(\lambda 1037, \) O I, both C III lines, and Si \(\alpha \) are not detected at \(3 \sigma. \) H i \(\lambda 918 \) is blended with H\(_2 \) \(\lambda 1094.0 \) P(1) (see Fig. 17).

This system does not have strong C III absorption: \(\log N(C^{++}) = 13.1 \) (see Table 3). In the CLOUDY models for \(N_{\text{H}_1} = 15.25, \) the ionic ratios \(N(C^{+})/N(C^{++}) \) and \(N(C^{++})/N(O^{+}) \) constrain \(3.7 > \) \(\log U > [C/O] < 1.4. \) For \(\log U = -1.7, [C/H] = -1.9, [Si/H] < -1.5, \) and \([O/H] < -1.1. \) This system can be described as a single-phase photoionized medium.

4.8. \(z_{\text{abs}} = 0.22555: \) O vi

This system has the second lowest \(N_{\text{H}_1} \) of the potential metal-line systems: \(N_{\text{H}_1} = 14^{+0.08}_{-0.08} \) and \(b = 44^{+25}_{-25} \) km s\(^{-1}. \) The COG analysis is based on Ly\(\alpha \) and Ly\(\beta, \) \(\log N(O^{+}) = 13.9. \) The equivalent width of O vi \(\lambda 1037 \) is greater than that of \(\lambda 1031; \) O vi \(\lambda 1037 \) is partially blended with Ly\(\alpha \) at \(z_{\text{abs}} = 0.04658, \) and the continuum fit is poor. C III is not detected, and \(\log N(C^{++}) < 13. \) The velocity plot and the COG are presented in Figures 18 and 19, respectively.

The ionic ratio \(N(C^{++})/N(O^{+}) \) constrains \(U > [C/O] < 1.4 \) or \(T > 1.9 \times 10^5 \) K. For these lower bounds and assuming \([C/O] = 0, [O/H] = -0.3 \) and \([C/H] < -0.3. \) The ionization parameter predicted from Prochaska et al. (2004) is \(U = -0.8, \) for which the oxygen abundance would be unreasonably small. Tentatively, we consider this system to be collisionally ionized.

Observations that covered the C iv doublet would better constrain the ionization mechanism.

4.9. \(z_{\text{abs}} = 0.22752: \) O vi

The weak Ly\(\alpha \) absorber at \(z_{\text{abs}} = 0.22752 \) may potentially have O vi absorption associated with it. Ly\(\alpha \) and O vi \(\lambda 1031 \) are detected at \(>3 \sigma. \) From the AODM, \(\log N_{\text{H}_1} = 13.1 \pm 0.1 \) and \(\log N(O^{+}) = 13.56 \pm 0.09. \) O vi \(\lambda 1031 \) is likely blended with Ly\(\alpha \) at \(z_{\text{abs}} = 0.04222. \) No other common absorption line is evident or observable: C ii \(\lambda 1036 \) is coincident with O vi at \(z_{\text{abs}} = 0.22555 \) and Ly\(\alpha \) at \(z_{\text{abs}} = 0.04658, \) C iii is coincident with Galactic N i, and C iv is shifted out of the STIS wavelength coverage. No CLOUDY models were examined for this system.

5. STRONG Ly\(\alpha \) ABSORBERS WITHOUT METALS

In addition to the nine metal-line systems described above, we identified 15 Ly\(\alpha \) features detected at \(>3 \sigma \) significance. From Table 7. There are seven Ly\(\alpha \) lines with log \(N_{\text{H}_1} \geq 14 \) that we identify as strong. Given the absence of metal-line absorption, the identification of these lines as Ly\(\alpha \) should be considered less secure. However, all of the strong Ly\(\alpha \) lines show corresponding Ly\(\beta \) absorption at \(>3 \sigma \) significance, which lends credence to our identification. In Table 7 we quote either the AODM column density or log \(N_{\text{H}_1} \) and \(b \) from the COG analysis when there is at least one other Lyman line detected. The log \(N_{\text{H}_1} \) values from the AODM are lower limits when Ly\(\alpha \) is saturated.

The Ly\(\alpha \) absorbers at \(z_{\text{abs}} = 0.19243 \) and 0.19296 are within \(\delta z_{\text{abs}} < 350 \) km s\(^{-1}. \) of the metal-line system at \(z_{\text{abs}} = 0.19161. \) Ly\(\alpha \) at \(z_{\text{abs}} = 0.22457 \) is within \(\delta z_{\text{abs}} < 500 \) km s\(^{-1}. \) of the tentative O vi absorbers at \(z_{\text{abs}} = 0.22555 \) and 0.22752. The implications of these close systems are discussed in the following section.

The Ly\(\alpha \) absorber at \(z_{\text{abs}} = 0.25219 \) has larger log \(N_{\text{H}_1} \) than the tentative O vi systems at \(z_{\text{abs}} = 0.06471, 0.22555, \) and 0.22752. As mentioned previously, metal-line absorption roughly scales with log \(N_{\text{H}_1}; \) the \(z_{\text{abs}} = 0.25219 \) system should show some metal-line absorption since the other three systems do. These systems appear to be at the edge of our ability to detect metal-line absorbers.

6. COMPARISONS WITH PREVIOUS ANALYSES

The STIS data set (PI: M. Lemoine) was acquired to measure an intergalactic D/H value from the \(z = 0.095 \) partial LLS. Unexpected line blending has apparently precluded such an analysis (M. Lemoine 2005, private communication), and the data were not studied for this purpose. PKS 1302–102 was included, however, in the compilation of D06, who studied Ly\(\alpha, \) Ly\(\beta, \) O vi, and C iii lines along 31 active galactic nucleus sight lines at \(z < 0.3. \) We have compared our results against D06 to search for systematic effects related to different procedures of data reduction and analysis. In particular, we have derived equivalent widths differently than D06; our analysis adopts values from a simple boxcar summation, whereas D06 implemented line profile fits using the VPFIT software package.

Figure 20 presents a comparison of the rest equivalent width \((W_r) \) measurements of D06 against our values for Ly\(\alpha \) and metal-line transitions. We find that the two sets of measurements are in good agreement for \(W_r \) values of metal-line transitions. Similarly, there is relatively good agreement between the two studies for Ly\(\alpha \) lines at low rest equivalent widths \((W_r < 300 \) mÅ). The only notable difference is that the D06 rest equivalent width errors \(\sigma(W_r) \) for the Ly\(\alpha \) lines are systematically lower than our values; D06 report \(\sigma(W_r) \leq 5 \) mÅ for the majority of their lines. While line profile fitting techniques can recover more precise measurements...
Fig. 14.—Velocity plot for $z_{abs} = 0.14533$ (see Fig. 1 description). Lyδ is near the edge of the LiF 2A spectrum. Cα is a $>6 \sigma$ detection (see Table 3). Both Cα lines and Oα are not detected at $>3 \sigma$. The Oν doublet is not a confirmed detection; Oν at $z_{abs} = 0.15835$ and is at the edge of LiF 1B and in a noisy region of STIS. The Voigt profile centroid is fixed at $z_{J} = 0.14534$. (Note: the horizontal limits are from -200 to $+200$ km s$^{-1}$.) [See the electronic edition of the Journal for a color version of this figure.]
of the equivalent width than a boxcar summation, we contend that a 5 mA error cannot be achieved from this data set (S/N ≈ 3–6 pixel⁻¹). Even for strong lines where one might be justified in assuming that the core has zero flux with zero uncertainty, the wings of the line profile have equivalent width errors of greater than 10 mA. We can only speculate on the implications of adopting very small errors on \(W_r \) for Ly\(\alpha \) transitions. D06 performed concordance COG analysis of \(N_\text{HI} \), and \(b \) values in a similar manner as the analysis presented here. Because the Ly\(\alpha \) line has the largest \(W_r \) value in the Lyman series, adopting a very small uncertainty will drive the COG analysis to best model the Ly\(\alpha \) transition. In particular, this will imply \(b_{\text{COG}} = b_{\text{Ly} \alpha} \), which D06 emphasize generally overestimates the true Doppler parameter of the “cloud” dominating the optical depth. We return to this point below.

There are more serious discrepancies between our results and D06 for stronger Ly\(\alpha \) lines (\(W_r > 300 \) mA). First, we identify five Ly\(\alpha \) lines with \(\log N_\text{HI} > 13.8 \) that D06 have not, at \(z_{\text{abs}} = 0.16935, 0.19243, 0.19296, 0.25286, \) and 0.25412. The \(z_{\text{abs}} = 0.16935 \) Ly\(\alpha \) is a multicomponent system with Ly\(\beta \) lost in Galactic \(N_\text{i} \), and \(z_{\text{abs}} = 0.19243 \) Ly\(\alpha \) has a similar problem. The \(z_{\text{abs}} = 0.19296 \) and 0.25286 Ly\(\alpha \) have Ly\(\beta \) detected at \(\geq 3 \sigma \). These features are not Galactic lines nor misidentified metal lines from other intervening systems. Although D06 detect other strong Ly\(\alpha \) lines without Ly\(\beta \) absorption, these lines were not reported in their survey. Second, we have derived systematically larger \(W_r \) values for strong Ly\(\alpha \) lines. Most notable are the five Ly\(\alpha \) lines in Figure 20 that deviate by more than 3 \(\sigma \) from the \(W_r \) values reported by D06. The majority of the discrepancy is probably due to these features being multicomponent; we quote the total \(W_r \) of the feature, whereas D06 generally only report the strongest single component. We find similar differences when comparing the D06 results for PKS 0405−123 against the results reported in Prochaska et al. (2004).

We also compare the column densities and Doppler parameter values for absorption lines analyzed by D06 (see Fig. 21). The metal-line column densities are considered first. In contrast to the equivalent width measurements for these transitions, we find that our values are systematically larger than those reported by D06. Most worrisome is that we report several lower limits to the column density of \(C \) in because the line is clearly saturated in the

FUSE observations, whereas D06 report not a single lower limit. For example, we report \(\log N(C^{+}+) > 13.9 \) for the \(C \) transition in the \(z = 0.09487 \) absorber, whereas D06 report \(\log N(C^{+}+) = 13.73 \pm 0.05 \). The differences in \(O \) column densities are \(< 0.3 \) dex and probably due to continuum placement. The broad, shallow \(O \) detection at \(z_{\text{abs}} = 0.09487 \) differs by 0.3 dex, whereas the stronger \(z_{\text{abs}} = 0.04222 \) feature differs only by 0.1 dex.

Regarding the \(H \) column densities, we note trends similar to those for the \(W_r \) values: at low column densities there is good agreement between the two analyses, but at larger \(N_\text{HI} \), our values are systematically larger. The difference is most acute for the two systems at \(\log N_\text{HI} > 15.5: z_{\text{abs}} = 0.00438 \) and 0.09487. As mentioned in § 4.1, D06 use a profile fit to \(z_{\text{abs}} = 0.00438 \) Ly\(\alpha \), which falls in the Galactic damped Ly\(\alpha \) profile, to determine \(N_\text{HI} \). Our COG analysis includes Ly\(\beta \), which is the only feature of the system in a good region of the spectra. The difference for \(z_{\text{abs}} = 0.09487 \) is due to D06 only including Ly\(\alpha \) through \(H \) in 2926 in their concordance COG analysis. For this system, the higher order \(H \) Ly\(\alpha \) lines are most important for measuring the \(N_\text{HI} \) value.

Finally, we have compared the Doppler parameter values from the two analyses (Fig. 21, bottom panel). At low \(b \) values, we find reasonable agreement, but at moderate values our results are systematically lower than the values reported by D06. We suspect that the discrepancy is related to the very small errors adopted for their Ly\(\alpha \) equivalent widths (Fig. 20). In this case, a COG analysis will yield a Doppler parameter that better describes Ly\(\alpha \) and, as D06 emphasize, \(b_{\text{Ly} \alpha} \) is systematically larger than \(b_{\text{COG}} \). Because D06 generally adopt equivalent values from the literature (e.g., Penton et al. 2004), it is possible that this systematic effect is only present in the few sight lines analyzed by D06 (e.g., PKS 1302−102, PKS 0405−123). We also note that the larger \(b \) values likely lead to a systematic underestimate of \(N_\text{HI} \), which explains at least part of the offset of their values from our results for \(\log N_\text{HI} > 14 \).

Tripp et al. (2007) searched for \(H \) and \(O \) \(vi \) absorption in archival STIS spectra of 16 low-redshift quasars. They fitted Voigt profiles and applied the AODM to measure equivalent widths and column densities of absorption lines, including individual components. For PKS 1302−102, they report three \(O \) \(vi \) systems at \(z_{\text{abs}, \text{T07}} = 0.19159, 0.22563, \) and 0.22744 that correspond to the systems at \(z_{\text{abs}} = 0.19161, 0.22555, \) and 0.22752, respectively, from § 4. We briefly summarize the Tripp et al. (2007) results for the PKS 1302−102 sight line. The \(H \) system at \(z_{\text{abs}, \text{T07}} = 0.19159 \) has a strong, narrow component coincident with a tentative weak, shallow component. \(C \) \(iii \), \(S \) \(ii \), and only \(O \) \(vi \) \(\lambda 1031 \) are detected at \(\geq 3 \sigma \) and well aligned with the \(H \) lines. The \(z_{\text{abs}, \text{T07}} = 0.22563 \) \(H \) absorption is single component but is offset (\(\delta v_{\text{abs}} = -18 \) km s⁻¹) from the \(O \) \(vi \) doublet, which is detected at \(\geq 3 \sigma \) in both lines. Weak Ly\(\alpha \) (\(\log N_\text{i} = 13 \)) and the \(O \) \(vi \) doublet, also detected at \(\geq 3 \sigma \) in both lines, are well aligned at \(z_{\text{abs}, \text{T07}} = 0.22744 \).

We differ from Tripp et al. (2007) most with respect to the measured integrated equivalent widths. The discrepancy is strongest for the \(O \) \(vi \) doublet measurements, but the differences are typically less than 2 \(\sigma \). The quoted Doppler parameters (for \(H \)) and column densities (\(H \), \(O \) \(vi \) doublet) are in excellent agreement.

In conclusion, we qualitatively agree with one main result of the D06 and Tripp et al. (2007) surveys: typically \(O \) \(vi \) absorption is found in multiphase systems. Except for one line, we do not disagree with the identification of lines from the two surveys. The exception is for a line at \(v_{\text{obs}} \approx 1321 \AA \) that D06 identify as Ly\(\alpha \) at \(z_{\text{abs}} = 0.0865 \) and we list as \(S \) \(iii \) \(\lambda 1206 \) at \(z_{\text{abs}} = 0.09487 \). Discrepancies in measured quantities are due to differences in reduction (e.g., spectra extraction, continuum fitting) and analysis (e.g.,
Fig. 16.—Velocity plot for $z_{\text{abs}} = 0.19161$ (see Fig. 1 description). H\textsc{i} λ917, both C \textsc{ii} lines, O \textsc{i}, Si \textsc{iii}, and O \textsc{vi} λ1037 are not detected at 3 σ. H\textsc{i} λ918 is blended with H$_2$ λ1094.0 $P(1)$. The Voigt profile centroid is fixed at $z_0 = 0.19158$. [See the electronic edition of the Journal for a color version of this figure.]
measuring W_r, accommodating blending), which greatly affect error estimates.

7. GALAXY SURVEY

A number of studies have examined the relationship between galaxies and absorption-line systems at $z \lesssim 0.1$. Regarding metal-line systems, the majority of recent analyses can be characterized as a detailed study of a single or few absorbers (e.g., Stocke et al. 2004; Jenkins et al. 2005; Tripp et al. 2006a), an analysis of a complete sight line and its surrounding galaxies (Sembach et al. 2004b; Prochaska et al. 2006), or a survey comprising multiple fields and absorbers (Stocke et al. 2006). These studies have examined metal-line systems associated with a diverse set of ions (Si$^+$, C$^+$, O0, O15), metallicities, and HI column densities. Furthermore, the galaxy surveys have a wide range of magnitude limits and field-of-view areas. Not surprisingly, a range of conclusions have been drawn regarding the association of galaxies and absorbers, including (1) a physical association of the gas with individual galactic halos (Chen & Prochaska 2000), (2) outflows from dwarf galaxies (Stocke et al. 2004), and (3) large-scale (e.g., filamentary) structures (Stocke et al. 2006; Tripp et al. 2006a). Indeed, all of these may contribute to metal-line systems, presumably with a dependence on the metallicity, ionization state, and column density of the gas. Other analyses begin with a well-defined galaxy survey and search for absorption associated with galaxies at small impact parameters to the sight line (Lanzetta et al. 1995; Chen et al. 2001a, 2001b). These authors conclude that the presence of a galaxy within $/C25$ of a quasar sight line results in a high probability of showing coincident Lyα and C\textsc{iv} absorption.

Our analysis of PKS 1302–102 has identified nine metal-line systems showing a diverse set of characteristics; therefore, we might expect them to arise in a range of galactic environments. We have obtained spectra of objects in the field surrounding PKS 1302–102 using the WFCCD camera on the 10000 du Pont telescope at Las Campanas Observatory during UT 2001 April 16–20 (see Table 8). We refer the reader to Prochaska et al. (2006) for details of the imaging and spectral data reduction and analysis procedures. The survey of the PKS 1302–102 field is 95% complete within $/C25$ and 70% within $/C10$ to the limiting magnitude $/C25$.

We have redshift information for 82 galaxies in the PKS 1302–102 field, 64 of which are at $/C25$ $/Cz_{\text{QSO}}$. At the highest redshifts $/C25$, the survey covers a physical radius of $/C3$ Mpc but not to faint intrinsic magnitudes ($/C3$ $/C21$). For the lowest redshift absorbers ($/C0.02$), we do not have the coverage to comment on large-scale structures ($/C25$ $/C175$ Mpc) as in, e.g., Penton et al. (2002) and Prochaska et al. (2006). For example, the field of view covers only $/C25$ kpc around the C\textsc{iii} system $/C25$ $/C0.04222$ on the red side. Lyα, C\textsc{iii}, and O\textsc{i} are not detected at $/C3$. The Voigt profile centroid is fixed at $/C25$. [See the electronic edition of the Journal for a color version of this figure.]

In this paper we assume a Hubble constant $/C75$ km s$^{-1}$ Mpc$^{-1}$ and the absolute magnitude for $/C3$ is $/C21$ (Blanton et al. 2003). This value is 1 mag fainter than the value used in Prochaska et al. (2006).
for tend to underestimate assuming a single component. From log Voigt profile fits, and/or the AODM to measure log angles are for metal lines (i.e., C/C6 analysis.

Table 7
LYα Absorbers Summary

λabs (Å)	zabs	Wγ (mÅ)	log NHI a	b (km s⁻¹)
≥ 14.0				
1272.299	0.04658	228 ± 12	14.00 ± 0.12	23 ± 1.5
1335.915	0.09891	362 ± 7	14.22 ± 0.04e	35 ± 3.0
1421.538	0.16935	212 ± 13	14.04 ± 0.26	20 ± 2.0
1449.602	0.19243	222 ± 8	14.02 ± 0.18	21 ± 2.2
1488.674	0.22457	298 ± 13	13.95 ± 0.09	42 ± 3.0
1518.071	0.24875	263 ± 14	14.10 ± 0.16	25 ± 3.3
1522.500	0.25219	447 ± 12	14.74 ± 0.06	32 ± 3.5
< 14.0				
1269.721	0.04446	149 ± 9	13.56 ± 0.03	...
1287.019	0.05869	86 ± 9	13.35 ± 0.05	...
1288.219	0.05968	71 ± 7	13.21 ± 0.06	...
1365.581	0.12332	135 ± 13	13.51 ± 0.04	...
1368.425	0.12565	66 ± 10	13.17 ± 0.07	...
1408.170	0.15835	71 ± 11	13.18 ± 0.07	...
1450.246	0.19296	220 ± 8	13.82 ± 0.12	31 ± 4.1
1503.392	0.23668	59 ± 11	13.15 ± 0.09	...
1507.475	0.24004	81 ± 9	13.28 ± 0.06	...
1520.922	0.25110	201 ± 16	13.67 ± 0.04	...
1523.069	0.25286	280 ± 11	13.92 ± 0.12	45 ± 12.4
1524.594	0.25412	227 ± 16	13.84 ± 0.03	...

a Where b is not given, log NHI from the AODM is listed and is typically a lower limit. Otherwise, log NHI and b are calculated from COG analysis where at least one other Lyman line is also detected.

b Strong Lyα features have log NHI ≥ 4.0 from either the AODM or the COG analysis.

c COG analysis notes: for zabs = 0.09891 Lyα blended with G C v'1335; for zabs = 0.16935 Lyα blended with G N i1199; for zabs = 0.19243 Lyα < 3 σ, Lyα, Lyγ COG.

Fig. 20.—Comparison of rest equivalent widths from our analysis with D06. The D06 values are plotted over the values measured in the current paper, and the one-to-one relation is shown (solid line). The circles are for Lyα Wγ, and the triangles are for metal lines (i.e., C i and O vi). D06 use COG concordance plots, Voigt profile fits, and/or the AODM to measure log NHI and b06, typically assuming a single component. From log NHI and b06, they measure Wγ, b06. They tend to underestimate Wγ, b06 compared to our values, which are a simple sum of the absorbed flux and include unresolved components. [See the electronic edition of the Journal for a color version of this figure.]

Fig. 21.—Comparison of column densities and Doppler parameters reported by D06 against those from our analysis. The categories denoted by symbol refer to the current work. The H i COG analysis log N and b are circles; the AODM log N are triangles for metal lines (i.e., C i and O vi) and squares for Lyα. We generally agree with log NHI because the sum of potential components does not greatly affect the total column density (top). On the other hand, unresolved components tend to increase b06 compared to our values, as discussed in D06 (bottom). [See the electronic edition of the Journal for a color version of this figure.]

Table 9 lists the galaxies that are associated with the IGM systems by βv = (zabs − zgal)/(1 + zabs) ≤ 1000 km s⁻¹. The velocity constraint comfortably covers the peculiar velocities expected for large-scale structures. In Figure 22 we show a histogram of the galaxy redshifts for the field surrounding PKS 1302−102, and in Figure 23, the impact distribution of galaxies with |βv| < 1000 km s⁻¹ from a metal-line system. Although an exact comparison of galaxy-absorber correlations cannot be performed between systems because the survey varies in field of view and depth with redshift, it is evident that the metal-line systems arise in a diverse set of galactic environments. For example, the partial LLS at z = 0.0949 is associated with a group of galaxies and quite likely is found within the halo of an L ~ 0.2L* galaxy at ρ ~ 65 h⁻¹ kpc. In contrast, the O vi absorber at z = 0.0646 is at least 300 h⁻¹ kpc away from any galaxy with L > 0.1L*, and one identifies no obvious large-scale structure at this redshift. Let us now turn to discuss a few of these absorbers in greater detail.

There are three groups of metal-line absorbers with |βv| < 500 km s⁻¹ at zabs ≈ 0.094, 0.192, and 0.225. These groups may represent filamentary structures where the H i and metal-line absorption arises in the gas between the galaxies populating this large-scale structure (Bowen et al. 2002). The zabs ~ 0.094 group has 10 detected galaxies with 65 h⁻¹ kpc < ρ < 800 h⁻¹ kpc and 0.1 < L/L* < 6. The brightest galaxy is at βv = −259 km s⁻¹ from the partial LLS zabs ~ 0.09487, with ρ > 331 h⁻¹ kpc. Both absorption systems near zabs ~ 0.094 have C iii absorption, and the partial LLS has Si iii and a broad O vi doublet. Chen et al.

14 See also http://www.ucolick.org/~xavier/WFCCDOVI/.
(2001a) have found that C IV absorption is strongly correlated with galaxies at \(\delta v_{\text{gal}} < 250 \) km s\(^{-1}\) and \(\rho < 100 \) h\(^{-1}\) kpc. We have searched for such absorption associated with the galaxy at \(z = 0.09358 \) with \(\rho = 65 \) h\(^{-1}\) kpc, but unfortunately this places the doublet in the high-wavelength, low-sensitivity end of the STIS E140M spectrum. We can place an upper limit on the absorption: \(\log N(\text{C}^+)^{-1} < 13.5 \). Given the small impact parameter of this galaxy to the PKS 1302–102 sight line, we tentatively associate this galaxy with the partial LLS at \(z = 0.09487 \). This association is challenged by the observed velocity offset \(\delta v_{\text{gal}} = -354 \) km s\(^{-1}\); an association would require the gas to have a large inflow/outflow.

The group at \(z_{\text{abs}} = 0.192 \) has a strong H I Lyman with C III, O VI at \(\lambda 1031 \), and marginal Si iii absorption and two Ly\(\alpha \) systems with \(\log N(\text{H})_1 > 13.8 \). There are four detected galaxies in this group, with 200 h\(^{-1}\) kpc \(\rho < 520 \) h\(^{-1}\) kpc and 0.4 < \(L/L_s < 2.5 \). In the \(z_{\text{abs}} \approx 0.225 \) group, there are five bright (\(L > 0.7L_s \)) galaxies detected in the field with all but one at \(1 \) h\(^{-1}\) Mpc. The 0.7L\(_s\) galaxy in this group is \(\rho = 416 \) h\(^{-1}\) kpc from the tentative O VI systems at \(z_{\text{abs}} = 0.25555 \) (\(\delta v_{\text{gal}} = 4 \) km s\(^{-1}\)) and 0.22752 (\(\delta v_{\text{gal}} = -477 \) km s\(^{-1}\)).

There are very few galaxies in the survey around the remaining metal-line systems at \(z_{\text{abs}} = 0.04222, 0.06471, \) and 0.14533 even though we probe similar impact parameters as the group at \(z = 0.2 \). The O VI systems at \(z_{\text{abs}} = 0.04222 \) and 0.06471 each have two galaxies with \(\delta v_{\text{gal}} < 160 \) km s\(^{-1}\) and 200 h\(^{-1}\) kpc \(\rho < 500 \) h\(^{-1}\) kpc. At these redshifts, the survey is 100% within 75 kpc. At these redshifts, the survey is 100% within 75 kpc. At these redshifts, the survey is 100% within 75 kpc.

There are four galaxies surrounding the \(z_{\text{abs}} = 0.14533 \) absorber with \(\delta v_{\text{gal}} < 500 \) km s\(^{-1}\) and 0.4 < \(L/L_s < 2.5 \), suggesting that the gas arises in an intragroup medium (Mulchaey et al. 1996). However, one of these galaxies has a very small velocity offset and impact parameter (\(\delta v_{\text{gal}} = -7 \) km s\(^{-1}\) and \(\rho = 82 \) h\(^{-1}\) kpc) and may host the broad H I and C III absorption. As for the other strong Ly\(\alpha \) absorbers, there are surrounding galaxies at \(\delta v_{\text{gal}} < 1000 \) km s\(^{-1}\), except for \(z_{\text{abs}} = 0.16935 \) and 0.22457. However, no one bright and close galaxy appears as the source of the gas. The \(z_{\text{abs}} = 0.16935 \) Ly\(\alpha \) absorber is obviously multicomponent with no galaxies at \(\delta v_{\text{gal}} < 1000 \) km s\(^{-1}\) and brighter than \(R = 19.5 \) mag. The \(z_{\text{abs}} = 0.22457 \) Ly\(\alpha \) absorber is \(\delta v_{\text{gal}} < 250 \) km s\(^{-1}\) from the metal-line systems at \(z_{\text{abs}} \approx 0.225 \) and is probably associated.

It is illustrative to compare the galaxy-absorber connection by examining the properties of the “nearest” galaxy to each absorber and a characteristic of the large-scale structure. Before proceeding, however, we wish to caution that the nearest galaxy in this context corresponds to the galaxy with smallest impact parameter that (1) \(|\delta v_{\text{gal}}| < 1000 \) km s\(^{-1}\) and (2) is brighter than the magnitude limit. In many cases, there may be no direct physical association between the galaxy and the absorber. Figure 24 presents the impact parameter \(\rho_{\text{min}} \), luminosity \(L_{\text{min}} \), and spectral coefficient \(E_C \) of the galaxy at closest impact parameter to all of the absorbers with \(N(\text{H})_1 > 10^{14} \) cm\(^{-2}\) along the sight lines to PKS 0405–123 (Prochaska et al. 2004) and PKS 1302–102 (this paper). In addition, the bottom right panel shows the number of galaxies with \(L > 0.1L_s, \rho < 5 \) Mpc, and \(|\delta v_{\text{gal}}| < 1000 \) km s\(^{-1}\) with respect to the absorber. In terms of the impact parameter, one notes a qualitative trend of decreasing \(\rho_{\text{min}} \) with increasing \(N(\text{H})_1 \) that suggests a physical association between individual galaxies and absorbers for \(N(\text{H})_1 \gtrsim 10^{14.5} \) cm\(^{-2}\) (see also Chen et al. 2005). At lower column densities (\(N(\text{H})_1 \leq 10^{14} \) cm\(^{-2}\)), there is no discernible trend (for Ly\(\alpha \)-only or metal-line systems) that suggests that these absorbers are predominantly associated with large-scale structures (e.g., intragroup material, filamentary structures).

If this qualitative picture is correct, one may comment on the luminosities of the galaxies hosting absorbers. Based on the systems with \(\rho_{\text{min}} < 100 \) h\(^{-1}\) kpc, all of the galaxies are sub-\(L_s \), although we note that the partial LLS at \(z = 0.16 \) toward PKS 0405–123 also shows an approximately \(2L_s \) galaxy at \(\rho < 100 \) h\(^{-1}\) kpc (Spinrad et al. 1993). Of particular interest to examining the enrichment history of the IGM is to study the luminosity function of galaxies dominating such absorbers. We will address these issues in greater depth in a future paper summarizing our full set of galaxy surveys. Lastly, we comment that the average

Table 8: Object Summary

ID	R.A.	Decl.	\(R \) (mag)	S/G	Area (arcsec)	flg	z
4	13 04 56.0	-10 29 18	18.11 ± 0.02	0.09	6.8	7	0.27252
5	13 04 54.6	-10 39 58	17.89 ± 0.01	0.13	4.6	7	0.04576
107	13 06 21.4	-10 30 37	17.29 ± 0.01	0.25	7.3	7	0.10819
152	13 06 20.7	-10 27 53	17.98 ± 0.01	0.18	4.3	7	0.11608
171	13 06 19.5	-10 34 42	17.34 ± 0.01	0.22	4.2	7	0.13839
179	13 06 20.0	-10 26 11	17.96 ± 0.02	0.01	6.1	7	0.24866
234	13 06 17.0	-10 37 51	18.94 ± 0.03	0.89	4.7	7	0.35805
306	13 06 15.4	-10 44 51	18.57 ± 0.02	0.98	4.5	7	0.00000
329	13 06 15.4	-10 27 22	18.70 ± 0.02	0.13	4.9	7	0.36501
768	13 06 03.8	-10 27 12	17.58 ± 0.01	0.12	6.0	7	0.14202

Notes.—Units of right ascension are hours, minutes, and seconds, and units of declination are degrees, arcminutes, and arcseconds.

* Star/galaxy classifier calculated by SExtractor. Values near unity indicate a stellar-like point-spread function.

* This binary flag has the following code: 1 = photometry; 2 = spectrum taken; 4 = redshift determined.
TABLE 9

ID	\(z_{ ext{gal}}\)	\(L_*(L)\)	\(\delta V\)	\(\rho\)	\(E_C\)	\(L_C\)
1798	0.125012	19.0	1.0	400	1710	0.72
2573	0.250121	19.0	1.0	-495	2162	0.99
3134	0.249421	17.8	3.9	-663	2213	0.68
2510	0.248521	18.0	3.2	-880	2250	1.00
2726	0.248731	18.3	2.3	-828	2442	0.99
2832	0.248921	18.1	2.9	-783	2518	0.98
2973	0.248821	19.1	1.1	-806	2595	0.98
179	0.248661	18.0	3.3	-384	2997	0.94

TABLE 9—Continued

ID	\(z_{ ext{gal}}\)	\(L_*(L)\)	\(\delta V\)	\(\rho\)	\(E_C\)	\(L_C\)
1413	0.253981	19.0	1.3	430	1710	0.72
2573	0.250121	19.0	1.0	-495	2162	0.99
3134	0.249421	17.8	3.9	-663	2213	0.68
2510	0.248521	18.0	3.2	-880	2250	1.00
2726	0.248731	18.3	2.3	-828	2442	0.99
2832	0.248921	18.1	2.9	-783	2518	0.98
2973	0.248821	19.1	1.1	-806	2595	0.98
179	0.248661	18.0	3.3	-384	2997	0.94

Notes.—The galaxy summary is restricted to those galaxies within 1000 km s\(^{-1}\) of the absorption system. The impact parameter refers to physical separation, not comoving. Galaxy redshifts were determined from fitting the four SDSS star and galaxy eigenvectors to the spectra (see Prochaska et al. 2006). The coefficient of the first eigenvector \(E_C\) and a composite of the last three eigenvectors \(L_C\) are used to define galaxy type. Early-type galaxies have \(E_C > 0.8\) and \(L_C < 0.4\), while late-type galaxies have \(E_C < 0.8\) and \(L_C > 0.4\).

* \(z_{\text{abs}} = 0.09400\), log \(N_{\text{H}} = 15.1\), log \(N(O^{+5}) < 13.8\).
* \(z_{\text{abs}} = 0.19243\), log \(N_{\text{H}} = 14.0\).
* \(z_{\text{abs}} = 0.22752\), log \(N_{\text{H}} = 13.1\), log \(N(O^{+5}) = 13.6\).

gal\(_{\text{gal}}\) value may rise with \(N_{\text{H}}\), but that there is apparently significant scatter in this crude measure of galactic environment.

8. DISCUSSION

We have presented the reduction and analysis of archival HST STIS and FUSE UV spectra of the low-redshift quasar PKS 1302−102 (\(z_{\text{QSO}} = 0.2784\)). We have identified 90% of the potential Ly\(\alpha\) features in STIS and ~85% of the features in FUSE with >4 \(\sigma\) significance and FWHM = 20 and 40 km s\(^{-1}\), respectively. We also performed a blind search for doublets without Ly\(\alpha\) absorption; there were no such systems in the PKS 1302−102 spectra. There are 28 Ly\(\alpha\) systems; 15 are strong absorbers with log \(N_{\text{H}} > 14\). Of those strong systems, eight are metal-line systems: four with C \(v\) in only, two with C \(v\) and O \(v\) absorption, and two tentative O \(v\)−only systems (see Table 10). There is also a tentative O \(v\)−absorber with log \(N_{\text{H}} = 13.1\) at \(z_{\text{abs}} = 0.22752\).

![Histogram of galaxies with \(z_{\text{gal}} < 0.3\) in PKS 1302−102 field, binned to 1000 km s\(^{-1}\) (open histogram). The filled histogram is galaxies within 5', 95% complete to \(z \approx 19.5\). The arrows indicate the redshifts of the nine metal-line systems (lower) and the seven strong Ly\(\alpha\) absorbers (upper; see Table 7). There are groups of absorbers with \(|\delta V| < 500\) km s\(^{-1}\) and with nearby galaxies that may be large-scale filaments at \(z_{\text{abs}} \approx 0.094, 0.192, \) and 0.225.](Image)
 Fig. 23.—Galaxies with $|\delta_{\text{gal}}| \leq 1000$ km s$^{-1}$ from metal-line systems and strong Lyα absorbers. The former have capital letters indicating the system they neighbor, while the latter have lowercase letters. The systems at $z_{\text{abs}} = 0.09400$ and 0.09487 have most all neighboring galaxies in common; they are not labeled twice. Similarly for the systems at $z_{\text{abs}} = 0.22555$ and 0.22752. The O vi systems are at $z_{\text{abs}} = 0.04222, 0.06471, 0.09487,$ and 0.22555 (B, C, D, and H, respectively). Aside from $z_{\text{abs}} = 0.14533$ (F), the metal-line systems are more likely probing the intragroup medium. (North is up, and east is left. PKS 1302–102 is indicated by a capital Q. There are about a dozen galaxies in the southeast corner that are either at higher redshift than PKS 1302–102 or not within 1000 km s$^{-1}$ of an intervening system.) The image is about 20° on a side. [See the electronic edition of the Journal for a color version of this figure.]

The unblocked redshift path length Δz for detecting Lyα, C m, or the O vi doublet was measured for regions where the $W_r \geq 50$ mA absorption line(s) could be detected to > 3 σ significance, excluding regions blocked by Galactic or IGM lines and within 1500 km s$^{-1}$ of PKS 1302–102 ($z_{\text{QSO}} = 0.2784$). We quote the 68% confidence limits assuming Poisson statistics. With 28 Lyα absorbers and $\Delta z = 0.236$, $dN_{\text{Ly} \alpha}/dz = 118^{+14}_{-12}$, which is consistent with other comparable published values, $dN_{\text{Ly} \alpha}/dz \gtrsim 100$ for $W_r \geq 50$ mA (e.g., Tripp et al. 1998; Penton et al. 2000). Similar to other published values (e.g., Richter et al. 2004; Prochaska et al. 2004; Danforth & Shull 2005), we derive $dN_{\text{O} \text{vi}}/dz = 7^{+9}_{-4}$ for the one doublet with both lines detected at 3 σ and with $W_r > 50$ mA for $\Delta z = 0.152$. On the other hand, we measure $dN_{\text{C} \text{m}}/dz = 36^{+5}_{-3}$ from the five detections with $W_r > 50$ mA over $\Delta z = 0.138$. For their entire sample, D06 measure $dN_{\text{C} \text{m}}/dz = 12^{+3}_{-2}$. We agree with D06 on the number of O vi and C m absorbers in the PKS 1302–102 sight line; the difference in redshift density for these species is likely due to fluctuations between sight lines.

The four systems with only one metal line are modeled well by a single-phase absorber with $[M/H] \approx -1$, the currently favored value for $N_{\text{H} \text{I}} > 10^{14}$ cm$^{-2}$ absorbers in the low-z IGM (Prochaska et al. 2004; D06). The $z_{\text{abs}} = 0.00438, 0.09400$, and 0.19161 systems are likely photoionized media. The $z_{\text{abs}} = 0.14533$ system may also be photoionized or collisionally ionized, assuming that the Lyα width is due to all thermal broadening.

With only an upper limit on C m absorption, the $z_{\text{abs}} = 0.06471$ O vi system could be reasonably modeled by either a photoionized or collisionally ionized medium. If the latter, the temperature is constrained to be $T > 2.2 \times 10^5$ K, which could be a probe of the WHIM. The $z_{\text{abs}} = 0.22555$ O vi system might be a single-phase, collisionally ionized absorber. No other metal lines were

Fig. 24.—Impact parameter (ρ_{min}), luminosity (L_{min}), and spectral coefficient (E_C) of the closest galaxy with $L > 0.1L_\odot$, $\rho < 5$ Mpc, and $|\delta_{\text{gal}}| < 1000$ km s$^{-1}$ for the absorbers with $N_{\text{H} \text{I}} > 10^{14}$ cm$^{-2}$ at $z_{\text{abs}} < 0.2$ along the sight lines to PKS 0405–123 (lighter) and PKS 1302–102 (darker). The point types distinguish between metal-line systems (plus signs) and absorbers that only show Lyα absorption (crosses). There appears to be a trend toward lower ρ_{min} values for higher $N_{\text{H} \text{I}}$ value of the absorbers. (Note: in the current work, the absolute magnitude for L_* at $z = 0$ is 1 mag fainter than that used in Prochaska et al. 2006.) [See the electronic edition of the Journal for a color version of this figure.]
detected with the tentative O\textsc{vi} absorber at $z_{\text{abs}} = 0.22752$, and no CLOUDY models were evaluated.

For the remaining two multiple metal-line systems, based primarily on kinematic arguments, they are better modeled by a multiphase medium. In the case of the $z_{\text{abs}} = 0.04222$ system, both C\textsc{iii} and O\textsc{vi} are narrow but offset by 50 km s$^{-1}$; this system could be a two-phase photoionized medium with $[M/H] \approx -2$ to -1. On the other hand, O\textsc{vi} in the $z_{\text{abs}} = 0.09487$ system is broad, implying a high temperature, while C\textsc{iii} and Si\textsc{ii} are narrow. Likely, the broad feature is due to a collisionally ionized phase, and the narrow features are from a photoionized phase. The system has a relatively low metallicity, $[M/H] \approx -2$, for the photoionized gas.

The PKS 1302–102 sight line has a galaxy survey complement. The survey gives compelling evidence that the metal-line absorption occurs in a diverse set of galactic environments. This includes a likely association with individual galactic halos ($z_{\text{abs}} = 0.09487\), 0.14253\), galaxy groups ($z_{\text{abs}} = 0.094\), 0.192\, 0.225\), and relatively poor environments ($z_{\text{abs}} = 0.06471\). The survey does not cover significant area at $z_{\text{abs}} = 0.00438\$, the ninth metal-line system, but the sight line is known to pass through the Virgo Cluster at this redshift.

None of the four O\textsc{vi} absorbers detected in the PKS 1302–102 spectra definitively trace the WHIM, which is defined to be collisionally ionized gas at $T \approx 10^{4}$–10^{7} K. The systems at $z_{\text{abs}} = 0.06471$ and 0.22555 may, although a firm conclusion is difficult to draw. In agreement with previous analysis (Prochaska et al. 2004; Richter et al. 2004), we find O\textsc{vi} absorption in a multiphase medium. The two systems with at least O\textsc{vi} and C\textsc{iii} must be multiphase since C\textsc{iv} is not detected and the line profiles show different kinematic structure. However, these systems do not necessarily probe the WHIM, as seen in hydrodynamic simulations.

From 28 intergalactic absorption systems in one sight line, simple CLOUDY models, and a modest galaxy survey, we looked for qualitative relationships between the various systems and between the systems’ environments. Roughly one-third of Lyα absorbers also have metal-line absorption. Two of five O\textsc{vi} absorbers are clearly in multiphase media. However, only one of the four has strong evidence for being collisionally ionized and a potential WHIM candidate. The strong log $N_{\text{H}} > 14$ systems tend to be near galaxies ($v_{\text{gal}} < 1000$ km s$^{-1}$ and $\rho < 500 h_{75}^{-2}$ kpc). The nearest galaxy distance tends to be correlated with H\textsc{i} absorption.

Based on observations made with the NASA-CNES-CSA Far Ultraviolet Spectroscopic Explorer. FUSE is operated for NASA by the Johns Hopkins University under NASA contract NASS-32985.

Based on observations made with the NASA/ESA Hubble Space Telescope Space Telescope Imaging Spectrograph, obtained from the data archive at the Space Telescope Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

The current study was funded by FUSE grant NAG5-12496.

Facilities: FUSE, HST (STIS), Du Pont

TABLE 10

z_{abs}	log N_{Hii}	b_{H}	log N(C$^{+3}$)	log N(O$^{+5}$)	Ionization	log U	$[M/H]_{\text{phot}}$	log T_{coll}	$[M/H]_{\text{coll}}$
0.00438	15.8	17	>13.5	<14.0	Photo	-2.1	$[-2.0, -0.9]$
0.04222	15.07	22	13.7	14.5	Multi	-1.9, -1.1	≈ -1	>5.4	-2
0.06471	14.6	18	<13.1	13.8	??	$>[C/O] - 1.5$	≈ -1	>5.3	-1.8
0.09400	15.06	27	>13.3	<14.0	Photo	1.5	$[-1.3, +0.3]$
0.09487	16.88	30	>13.9	14.0	Multi	-2.9	$[-2.9, -1.6]$	>5.3	-3.8
0.14533	15.39	54	13.2	<14.2	Singl	-1.9	$[-1.9, -0.4]$	<5.3	$[-1.8, -0.8]$
0.19161	15.29	22	13.1	13.9	Photo	-1.7	$[-1.9, -1.1]$
0.22555	14.00	44	<13.0	13.9	Coll?	$>[C/O] - 1.4$	≤ -0.3	>5.3	≤ -0.3
0.22752	13.1	13.6	

Notes.—Ionization mechanism from relative abundances of measured species. In several cases, the mechanism is multiphase or ambiguous. The bracketed values indicate the range of acceptable values.
Tripp, T. M., Aracil, B., Bowen, D. V., & Jenkins, E. B. 2006a, ApJ, 643, L77
Tripp, T. M., Bowen, D. V., Sembach, K. R., Jenkins, E. B., Savage, B. D., & Richter, P. 2006b, in ASP Conf. Ser. 348, Astrophysics in the Far Ultraviolet: Five Years of Discovery with FUSE, ed. G. Sonneborn, H. W. Moos, & B.-G. Andersson (San Francisco: ASP), 341
Tripp, T. M., Lu, L., & Savage, B. D. 1998, ApJ, 508, 200
Tripp, T. M., & Savage, B. D. 2000, ApJ, 542, 42
Tripp, T. M., Savage, B. D., & Jenkins, E. B. 2000, ApJ, 534, L1
Tripp, T. M., Sembach, K. R., Bowen, D. V., Savage, B. D., Jenkins, E. B., Lehner, N., & Richter, P. 2007, preprint (arXiv:0706.1214)
Wakker, B. P. 2006, ApJS, 163, 282
Wakker, B. P., et al. 2003, ApJS, 146, 1
Wang, Q. D., et al. 2005, ApJ, 635, 386
Williams, R. J., Mathur, S., & Nicastro, F. 2006, ApJ, 645, 179