FREE NILPOTENT GROUPS ARE C^*-SUPERRIGID

TRON OMLAND

Abstract. The free nilpotent group $G_{m,n}$ of class m and rank n is the free object on n generators in the category of nilpotent groups of class at most m. We show that $G_{m,n}$ can be recovered from its reduced group C^*-algebra, in the sense that if H is any group such that $C^*_\lambda(H)$ is isomorphic to $C^*_\lambda(G_{m,n})$, then H must be isomorphic to $G_{m,n}$.

Introduction

Group C^*-algebras play an important role in the theory of operator algebras. A natural question to ask, yet not much studied, is to what extent a group can be recovered from its (reduced) group C^*-algebra. The analog problem for group von Neumann algebras has received some attention in the last decades, and a group G is called W^*-superrigid if it can be recovered from its group von Neumann algebra $L(G)$, that is, if H is any group such that $L(H) \cong L(G)$, then $H \cong G$. The group von Neumann algebra of any nontrivial countable amenable group with infinite conjugacy classes is isomorphic to the hyperfinite II$_1$ factor, so in general, much of the structure is lost in the construction. However, some examples of W^*-superrigid groups are known, in particular, some classes of generalized wreath products.

Inspired by this terminology, a group G is said to be C^*-superrigid if $C^*_\lambda(H) \cong C^*_\lambda(G)$ implies that $H \cong G$. It has been known for some time that torsion-free abelian groups are C^*-superrigid, and more recently, it has been shown that certain torsion-free virtually abelian groups \cite{1} and all finitely generated torsion-free 2-step nilpotent groups \cite{2} are C^*-superrigid.

In a somewhat different direction, specific examples of amalgamated free products are proven to be C^*-superrigid \cite{1}. For more background on the topic, see \cite{2} and references therein.

In this short note, we show that also the free nilpotent groups are C^*-superrigid.

1. Preliminaries and various results

Let G be a discrete group. As usual, $C^*(G)$ denotes the full group C^*-algebra of G, and we let $g \mapsto u_g$ be the canonical inclusion of G into $C^*(G)$. The left regular representation λ of G on $l^2(G)$ is given by $\lambda_g(\delta_h) = \delta_{gh}$ for all $g,h \in G$, and the reduced group C^*-algebra $C^*_r(G)$ of G is the C^*-subalgebra of $B(l^2(G))$ generated by the image of λ. It follows that λ induces a homomorphism of $C^*(G)$ onto $C^*_r(G)$, mapping u_g to λ_g for all $g \in G$. Moreover, it is well-known that if $C^*(G) \cong C^*_r(G)$, then λ must be faithful, and in this case, G is called amenable, and we use λ to identify $C^*(G)$ with $C^*_r(G)$.

The subgroup G' of G generated by all the elements $ghg^{-1}h^{-1}$ for $g,h \in G$ is called the commutator subgroup of G. It is normal in G, and the quotient $G_{ab} = G/G'$ is an abelian group, called the abelianization of G. The group G_{ab} is the largest abelian quotient of G, that is, whenever N is normal subgroup of G and G/N is abelian, $G' \subseteq N$.
Let $\tilde{\pi}_{ab} : C^*(G) \to C^*(G_{ab})$ denote the homomorphism induced by the quotient map $\pi_{ab} : G \to G_{ab}$. Finally, we remark that π_{ab} induces a map $C^*_r(G) \to C^*_r(G_{ab}) = C^*(G_{ab})$ only if G^r, or equivalently, G is amenable.

For a C^*-algebra A, the commutator ideal J of A is the ideal generated by all elements $xy - yx$ for $x, y \in A$. Let $\phi : A \to A/J$ denote the quotient map. The Gelfand spectrum Γ_A of a C^*-algebra A is given by

$$
\Gamma_A = \left\{ \text{nonzero algebra homomorphisms } \gamma : A \to \mathbb{C} \right\}.
$$

If $\rho \in \Gamma_{A/J}$, then $\rho \circ \phi$ belongs to Γ_A, and every $\gamma \in \Gamma_A$ defines an element $\rho \in \Gamma_{A/J}$ given by $\rho(x + J) = \gamma(x)$. Together, this gives that $\Gamma_{A/J} = \Gamma_A$. Moreover, if $x \notin J$, then $0 \neq \phi(x) \in A/J$, which is commutative, so there exists $\rho \in \Gamma_{A/J}$ such that $\rho(\phi(x)) \neq 0$. We conclude that

$$
J = \bigcap_{\gamma \in \Gamma_A} \ker \gamma.
$$

Lemma 1.1. The commutator ideal J of $C^*(G)$ coincides with the kernel of $\tilde{\pi}_{ab}$.

Proof. First, since $C^*(G_{ab})$ is commutative, $\ker \tilde{\pi}_{ab}$ must contain all commutators in $C^*(G)$, and thus $J \subseteq \ker \tilde{\pi}_{ab}$. Next, we note that

$$
\Gamma_{C^*(G_{ab})} = \text{Hom}(G_{ab}, \mathbb{T}) = \text{Hom}(G, \mathbb{T}) = \Gamma_{C^*(G)}.
$$

The second identification is given by $\chi' \mapsto \chi' \circ \pi_{ab}$, for $\chi' \in \text{Hom}(G_{ab}, \mathbb{T})$, and the inverse by $\chi \mapsto \chi'$ for $\chi \in \text{Hom}(G, \mathbb{T})$, where $\chi'(g + G') = \chi(g)$. The last identification is the usual integrated form, with inverse $\gamma \mapsto \chi$ for $\gamma \in \Gamma_{C^*(G)}$, where $\chi(g) = \gamma(g) - \gamma(1)$; and the first equality is similar. Combined, the first and last space is identified via $\gamma' \mapsto \gamma' \circ \pi_{ab}$ for $\gamma' \in \Gamma_{C^*(G_{ab})}$.

Thus, if $x \notin J$, then by (1) there is $\gamma \in \Gamma_{C^*(G)}$ such that $\gamma(x) \neq 0$. Since $\gamma = \gamma' \circ \tilde{\pi}_{ab}$ for some $\gamma' \in \Gamma_{C^*(G_{ab})}$, we have $\gamma'(\tilde{\pi}_{ab})(x) \neq 0$, and hence $x \notin \ker \tilde{\pi}_{ab}$. □

The following result is proven in [3] Theorem 8.58.

Proposition 1.2. Suppose that G is torsion-free and abelian and let H be any group such that $C^*(H) \cong C^*(G)$. Then $H \cong G$.

Corollary 1.3. If H is any group such that $C^*(H) \cong C^*(G)$, then $C^*(H_{ab}) \cong C^*(G_{ab})$. In particular, if G_{ab} is torsion-free, then $H_{ab} \cong G_{ab}$.

Proof. Any isomorphism $C^*(H) \cong C^*(G)$ takes the commutator ideal of $C^*(H)$ to the commutator ideal of $C^*(G)$, and thus, the quotients $C^*(H_{ab})$ and $C^*(G_{ab})$ must be isomorphic. □

The upper central sequence of G, denoted $Z_0 \subset Z_1 \subset Z_2 \subset \cdots$, is defined by $Z_0 = \{e\}$, $Z_1 = Z(G)$, and for all $i \geq 0$,

$$
Z_{i+1} = \{ g \in G : [g, h] \in Z_i \text{ for all } h \in G \}.
$$

In particular, we remark that Z_i is a normal subgroup of Z_{i+1} and $Z_{i+1}/Z_i = Z(G/Z_i)$ for all $i \geq 0$. If there exists an m such that $G = Z_m$, then G is called a nilpotent group, and the smallest such m is said to be the class of G.

Lemma 1.4. Suppose that G is a nilpotent group and let $S \subseteq G$ be a set such that $\pi_{ab}(S)$ generates G_{ab}. Then S generates G.

Proof. Let m be the nilpotency class of G, and let $\{e\} = Z_0 \subset Z_1 \subset \cdots \subset Z_{m-1} \subset Z_m = G$ be the upper central series of G. Denote by H the subgroup of G generated by S. For $0 \leq i \leq m$, set $H_i = HZ_i$. Then H_i is a subgroup of G and a normal subgroup of H_{i+1} for all i. Indeed, for $h, h' \in H_i$, $z_i, z'_i \in Z_i$, $$(h'z_i)(h'z'_i) = h'hz_i[z_i^{-1}, h^{-1}]z'_i \in HZ_iZ_{i-1}Z_i = HZ_i = H_i.$$
since \([z_i^{-1}, h^{-1}] \in Z_{i-1}\). Moreover, for \(h, h' \in H\), \(z_i, z_i' \in Z_i\),
\[(hz_i+1)(h'z_i)(hz_i+1)^{-1} = h[z_i+1, h']h'z_i+1z_i^{-1}z_i[z_i^{-1}, z_i+1]h^{-1} \in HZ,HZ,Z_{i-1}H = H_i.\]
If \(H \neq G\), there would exist some \(0 \leq k < m\) such that \(H_k \neq G\) and \(H_{k+1} = G\). Then
\[G/H_k = H_{k+1}/H_k = HZ_{k+1}/HZ_k \cong Z_{k+1}/Z_k,\]
where the last identification is the second isomorphism theorem, and the last quotient is abelian. Thus, \(H_k\) contains the commutator subgroup \(G'\), and therefore also \(HG'\). Since \(\pi_{ab}(H) = G_{ab}\), then \(HG' \cong G\).

Hence, we conclude that \(H = G\).

2. \(C^+\)-superrigidity of free nilpotent groups

The free nilpotent group \(G_{m,n}\) of class \(m\) and rank \(n\) is the free object on \(n\) generators in the category of nilpotent groups of class at most \(m\). It is defined by a set of generators \(\{g_i\}_{i=1}^n\) subject to the relations that all commutators of length \(m+1\) involving the generators are trivial, i.e., \([\cdots[g_i, g_{i_2}, g_{i_3}, \cdots, g_{i_m}], g_{i_{m+1}}]\) is trivial for any choice of sequence of generators.

For all \(m \geq 1\), we have \(G_{m,1} \cong Z\), while \(G_{m,n}\) is an \(m\)-step nilpotent group for every \(n \geq 2\). See [5] and [6] for more about free nilpotent groups.

The group \(G_{m,n}\) satisfies the following universal property: If \(H\) is any nilpotent group of class at most \(m\) and \(h_1, \ldots, h_n\) are elements in \(H\), there exists a unique homomorphism \(G_{m,n} \to H\) mapping \(g_i\) to \(h_i\) for all \(i\).

The abelianization of \(G_{m,n}\) is isomorphic to \(\mathbb{Z}^n\) and \(\pi_{ab}\) maps \(g_i\) to the generator \(e_i\) of the \(i\)th summand of \(\mathbb{Z}^n\).

The center \(Z(G_{m,n})\) of \(G_{m,n}\) is a free abelian group (its rank can be computed, but it is not relevant here), and for \(m, n \geq 2\) we have
\[(2)\quad G_{m,n}/Z(G_{m,n}) \cong G_{m-1,n},\]
as seen by mapping generators to generators.

Lemma 2.1. Let \(m, n \geq 2\), and let \(H\) be a nilpotent group of class at most \(m\) that can be generated by \(n\) elements. Suppose that \(H/Z(H) \cong G_{m-1,n}\). Then \(H \cong G_{m,n}\).

Proof. The universal property of \(G_{m,n}\) means that there exists a surjective map \(\varphi : G_{m,n} \to H\). Clearly, \(\varphi(Z(G_{m,n})) \subseteq Z(H)\), and we set \(K = \varphi^{-1}(Z(H))\). Consider the maps
\[G_{m,n}/Z(G_{m,n}) \to G_{m,n}/K \to H/Z(H),\]
given by \(aZ(G_{m,n}) \mapsto aK\) and \(aK \mapsto \varphi(a)Z(H)\). The composition map \(\psi\) is surjective since \(\varphi\) is surjective. Since finitely generated nilpotent groups are Hopfian, \(G_{m-1,n} \cong G_{m,n}/Z(G_{m,n})\) does not have any proper quotient isomorphic to itself. Hence, the composition map \(\psi\) must be an isomorphism, and \(K = Z(G_{m,n})\). We get the following commutative diagram
\[
\begin{array}{ccc}
1 & \longrightarrow & Z(G_{m,n}) & \overset{1}{\longrightarrow} & G_{m,n} & \overset{q}{\longrightarrow} & G_{m,n}/Z(G_{m,n}) & \longrightarrow & 1 \\
\phi & \cong & \varphi & \quad \quad & \psi & \cong & \psi & \quad \quad & \psi \\
1 & \longrightarrow & Z(H) & \overset{1}{\longrightarrow} & H & \overset{q}{\longrightarrow} & H/Z(H) & \longrightarrow & 1
\end{array}
\]
By the five lemma, \(\varphi\) is an isomorphism. \(\square\)

Theorem 2.2. For all natural numbers \(m\) and \(n\), the free nilpotent group \(G_{m,n}\) of class \(m\) and rank \(n\) is \(C^+\)-superrigid.
Proof. The case $n = 1$ is obvious, so let $n \geq 2$. We do this by induction on m. Note first that $G_{1,n} \cong \mathbb{Z}^n$, which is C^*-superrigid (see Proposition 1.2). Let $m \geq 2$, and suppose that $G_{m-1,n}$ is C^*-superrigid. Let H be any group and assume that $C^*(H) \cong C^*(G_{m,n})$. It follows from [2, Theorem B] that H is a torsion-free nilpotent group of class m.

Moreover, $C^*(H/Z(H)) \cong C^*(G_{m,n}/Z(G_{m,n}))$ by [2, Proof of Lemma 4.3], and [2] implies that the latter is isomorphic to $C^*(G_{m-1,n})$. By the induction hypothesis, $G_{m-1,n}$ is C^*-superrigid, so $H/Z(H) \cong G_{m-1,n}$.

The abelianization of $G_{m,n}$ is isomorphic to \mathbb{Z}^n and thus $H_{ab} \cong \mathbb{Z}^n$ by Corollary 1.3. For each $1 \leq i \leq n$, choose an element s_i of H that is mapped to the generator e_i of $\mathbb{Z}^n \cong H_{ab}$. If $S = \{s_i : 1 \leq i \leq n\}$, then $\pi_{ab}(S)$ generates H_{ab}, so S generates H by Lemma 1.4, i.e., H can be generated by n elements.

Therefore, we may apply Lemma 2.1 to conclude that $H \cong G_{m,n}$. \qed

References

[1] Ionut Chifan and Adrian Ioana. Amalgamated Free Product Rigidity for Group von Neumann Algebras. Preprint, 2017, available at arXiv:1705.07350.

[2] Caleb Eckhardt and Sven Raum. C^*-superrigidity of 2-step nilpotent groups. Preprint, 2017, available at arXiv:1801.06974.

[3] Karl H. Hofmann and Sydney A. Morris. The structure of compact groups. Vol. 25 of De Gruyter Stud. Math. Walter de Gruyter & Co., Berlin, 1998.

[4] Søren Knudby, Sven Raum, Hannes Thiel, and Stuart White On C^*-superrigidity of virtually abelian groups. In preparation.

[5] Tron Omland. C^*-algebras generated by projective representations of free nilpotent groups. J. Operator Theory, 73(1):3–25, 2015.

[6] Terence Tao. The free nilpotent group. Lecture notes, available at http://terrytao.wordpress.com/2009/12/21/the-free-nilpotent-group/

Department of Mathematics, University of Oslo, P.O.Box 1053 Blindern, NO-0316 Oslo, Norway

E-mail address: trono@math.uio.no