Two new α-Methoxy-γ-Pyrone analogs, 2-methoxy-3-methyl-5,6-diethyl-γ-pyrone (2) and 2-methoxy-3,5-dimethyl-6-propyl-γ-pyrone (3), together with 2-methoxy-3,5-dimethyl-6-ethyl-γ-pyrone (1), firstly isolated from natural sources, were obtained from the EtOAc-soluble extract of the mangrove sediment-derived actinomycete strain Streptomyces psammoticus SCSIO NS126, under the optimized fermentation conditions. Their structures were elucidated by detailed spectroscopic analysis and by comparison of their spectroscopic data with those reported in the literature. Those α-methoxy-γ-pyrone compounds were evaluated for their acetylcholinesterase inhibitory activity; however, none of them exhibited obvious activity. Moreover, their biosynthetic relationship with piericidins was also discussed.

Keywords
actinomycete, Streptomyces psammoticus, pyrone, mangrove sediment, bioactivity

Received: June 27th, 2021; Accepted: July 21st, 2021.

Introduction

Mangrove forest, distributed in the transition between land and sea, possesses extensive microbial diversity and has the potential to discover new bioactive natural products, including those with potential medicinal application. A series of natural products with novel structure and significant activity have been reported from the microbial community, isolated from the sediment, leaves, branches, and roots. Several studies have shown the uniqueness of mangrove sediments with respect to their microbial composition. Soil or sediment samples collected in mangrove forests showed a high diversity of associated microbes due to their unique ecosystem.

During the course of our search for novel lead compounds, the mangrove sediment-derived strain Streptomyces psammoticus SCSIO NS126 was revealed with important potential medicinal value in our previous study. Twenty-seven natural piericidins were obtained in this strain with antirenal cell carcinoma activities. In order to further explore the comprehensive secondary metabolites of this strain, careful chemical separation study was taken to obtain the different types of compounds except the piericidins. Herein, we report the isolation and structural elucidation of those compounds.

Results and Discussion

The strain was fermented and then harvested by extraction with EtOAc. The extract was subjected to repeated silica gel column chromatography (CC) followed by semipreparative high-performance liquid chromatography (HPLC). As a result, a α-methoxy-γ-pyrene compound firstly isolated from natural sources, 2-methoxy-3,5-dimethyl-6-ethyl-γ-pyrene (1), and 2

1Shandong Provincial Clinical Medicine Research Center for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
2South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
3Institute of Infection, Immunology and Tumor Microenvironments, Medical College, Wuhan University of Science of Technology, Wuhan, China
4Southern Medical University, Guangzhou, China
5Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China

*These two authors contributed equally to this work.

Corresponding Authors:
Jingxia Huang, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, China.
Email: 13694217880@163.com
Huaming Tao, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China.
Email: taohm@smu.edu.cn
new \(\alpha \)-methoxy-\(\gamma \)-pyrone analogs, 2-methoxy-3-methyl-5,6-diethyl-\(\gamma \)-pyrone (2), and 2-methoxy-3,5-dimethyl-6-propyl-\(\gamma \)-pyrone (3) (Figure 1), were obtained and identified.

Compound 1 was obtained as a pale yellow gum. The molecular formula \(\text{C}_{10} \text{H}_{16} \text{O}_{3} \) was determined by HRESIMS at \(m/z \) 183.1015 [M + H]\(^+\). Compared with the literature NMR data (Table 1),\(^{12} \) this \(\alpha \)-methoxy-\(\gamma \)-pyrone analog (1) was the same as the reported synthetic intermediate, which was further proven by the HMBC correlations of H3 to 7 with C-2, H3 to 9 with C-4/C-6, and H2 to 10 with C-5. Hence, the structure of 1 was determined as shown in Figure 1. It is the first time to obtain the compound from natural sources.

Two \(\alpha \)-methoxy-\(\gamma \)-pyrone analogs, 2 and 3, were also isolated as pale yellow gum, which were determined to have the same molecular of \(\text{C}_{10} \text{H}_{16} \text{O}_{3} \) from the HRESIMS data \([m/z \text{ } 197.1173 \text{ } [M + H]^+] \) for 2 and \([m/z \text{ } 197.1182 \text{ } [M + H]^+] \) for 3. Comprehensive analysis of the NMR data (Table 1) indicated that 2 and 3 possessed the similar structures as 1. The only change of 2 was the replacement of the methyl (9-CH\(_3\)) in 1 by ethyl (9-CH\(_2\), 12-CH\(_3\)), which was corroborated by the HMBC correlation from H3 to 9 to C-4, as well as the \(^1\text{H}-^1\text{H} \) COSY correlations of H2 to 10/H2 to 11/H3 to 12 (Figure 2). For 3, the only difference was the replacement of the ethyl (10-CH\(_2\), 11-CH\(_3\)) in 1 by an \(\alpha \)-propyl (10-CH\(_2\), 11-CH\(_3\), 12-CH\(_3\)) (Table 1), which was confirmed by the HMBC correlation from H2 to 10 to C-12, as well as the \(^1\text{H}-^1\text{H} \) COSY correlations of H2 to 10/H2 to 11/H3 to 12 (Figure 2). Thus, the structures of 2 and 3 were determined as shown in Figure 1.

Those \(\alpha \)-methoxy-\(\gamma \)-pyrones (1-3) were tested for their acetylcholinesterase (AChE) inhibitory activity,\(^{11} \) and tacrine was used as a positive control. However, none of them exhibited obvious AChE inhibitory activity, with the concentration 1 mg/ml.

Because this strain produces a rich variety of natural piericidin compounds,\(^{11} \) the biosynthetic relationship between those \(\alpha \)-methoxy-\(\gamma \)-pyrone analogs and piericidins is now discussed. The formation of the pyridone ring in piericidins is dependent on the amidation and cyclization of the linear \(\beta \)-diketo carboxylic acid, and ATP-dependent amidotransferase PieD plays a key role in introducing the nitrogen into the pyridone ring in piericidin.\(^{14} \) The only difference of pyrone ring formation in the biosynthetic pathway is the absence of amidation.\(^{15} \) Actinopyrones with \(\alpha \)-methoxy-\(\gamma \)-pyrone ring, such as actinopyrones A-D,\(^{16,17} \) M050511, PM050463, PM060054, and PM060431,\(^{18} \) were also discovered from Streptomyces strains. Not only the chemical structural similarity, actinopyrones showed resembling antibiotic/antitumor activities and related biosynthetic pathway with piericidins.\(^{18,19} \) It’s interesting that 3 \(\alpha \)-methoxy-\(\gamma \)-pyrone analogs have been discovered in this piericidins productive strain, without actinopyrones metabolites.

Experimental

General Experimental Procedures

UV spectra were recorded on a Shimadzu UV-2600 PC spectrometer (Shimadzu). IR spectra were measured on an IR Affinity-1spectrometer (Shimadzu). The NMR spectra were obtained on a Bruker Avance spectrometer (Bruker) operating at 700 MHz for \(^1\text{H} \) NMR and 175 MHz for \(^13\text{C} \) NMR, using tetramethylsilane as an internal standard. HRESIMS spectra were collected on a Bruker mix is TOF-QII mass spectrometer (Bruker). Thin layer chromatography (TLC) and CC were performed on plates precoated with silica gel GF254 (10-40 μm) and over silica gel (200-300 mesh) (Qingdao Marine Chemical Factory) and Sephadex LH-20 (Amersham Biosciences), respectively. All solvents employed were of analytical grade (Tianjin Fuyu Chemical and Industry Factory). The semipreparative HPLC was performed on an HPLC (Hitachi-L2130, diode

| Table 1. \(^1\text{H} \) (700 MHz) and \(^13\text{C} \) NMR (175 MHz) NMR Data of 1 to 3 in CD\(_3\)OD (δ in ppm). |
|---|---|---|---|---|
| Pos. | \(\delta_\text{C} \), type | \(\delta_\text{H} \) (in Hz) | \(\delta_\text{C} \), type | \(\delta_\text{H} \) (in Hz) | \(\delta_\text{C} \), type | \(\delta_\text{H} \) (in Hz) |
| 1 | | | | | | |
| 2 | 164.6, C | 4.04 (s) | 164.6, C | 4.04 (s) | 164.7, C | 4.03 (s) |
| 3 | 100.0, C | 7.0, CH\(_3\) | 2.12 (t, 7.6) | 12.1, CH\(_3\) | 1.29 (t, 7.6) | 21.5, CH\(_2\) | 1.74 (sextet, 7.5) |
| 4 | 183.2, C | 1.81 (s) | 18.7, CH\(_2\) | 2.44 (q, 7.5) | 10.1, CH\(_3\) | 1.93 (s) |
| 5 | 118.4, C | 1.93 (s) | 24.7, CH\(_2\) | 2.71 (q, 7.6) | 33.3, CH\(_2\) | 2.68 (t, 7.5) |
| 6 | 162.1, C | 2.71 (q, 7.6) | 24.7, CH\(_2\) | 2.71 (q, 7.6) | 33.3, CH\(_2\) | 2.68 (t, 7.5) |
| 7 | 56.3, CH\(_3\) | 4.04 (s) | 56.3, CH\(_3\) | 4.04 (s) | 56.3, CH\(_3\) | 4.03 (s) |
| 8 | 7.0, CH\(_3\) | 1.81 (s) | 7.0, CH\(_3\) | 1.81 (s) | 7.0, CH\(_3\) | 1.81 (s) |
| 9 | 11.5, CH\(_3\) | 1.93 (s) | 18.7, CH\(_2\) | 2.44 (q, 7.5) | 10.1, CH\(_3\) | 1.93 (s) |
| 10 | 25.0, CH\(_2\) | 2.71 (q, 7.6) | 24.7, CH\(_2\) | 2.71 (q, 7.6) | 33.3, CH\(_2\) | 2.68 (t, 7.5) |
| 11 | 9.8, CH\(_3\) | 1.29 (t, 7.6) | 12.1, CH\(_3\) | 1.29 (t, 7.6) | 21.5, CH\(_2\) | 1.74 (sextet, 7.5) |
| 12 | 14.0, CH\(_3\) | 1.05 (t, 7.5) | 13.8, CH\(_3\) | 1.01 (t, 7.5) | | |
array detector, Hitachi L-2455, Tokyo, Japan) using a Phenomenex Octadeckylsil (ODS) column (250 mm × 10.0 mm i.d., 5 μm; Phenomenex). The artificial sea salt was a commercial product (Guangzhou Haili Aquarium Technology Company).

Bacteria Material

The strain information and the fermentation have been reported in literature.11

Extraction and Isolation

The culture broth of this strain was extracted with an equal volume of EtOAc 3 times. The organic extract was then concentrated under vacuum to afford the EtOAc extract (38.2 g). The extract was subjected to silica gel vacuum liquid chromatography using step gradient elution of petroleum ether (PE)–CH2Cl2 (1:0, 2:1, 0:1), CH2Cl2–MeOH (200:1, 100:1, 50:1, 30:1, 0:1) to yield 8 fractions according to TLC profiles (Frs.B1–B8). Frs.B4 (205 mg) was separated into 4 subfractions (Frs.B4–1–B4–4) by ODS silica gel chromatography eluting with MeCN/H2O (5%-100%). Frs.B4 to 3 (20 mg) was directly separated by semipreparative HPLC (30% MeCN/H2O, 2 ml/min, 280 nm) to provide 1 (2.78 mg, tR = 14 min), 2 (2.16 mg, tR = 16 min), and 3 (2.10 mg, tR = 18 min).

2-Methoxy-3,5-dimethyl-6-propyl-pyrole (1): pale yellow gum; IR (film) \(\nu_{\text{max}} \) 1666, 1581, 1464, 1416, 1379, 1338, 1311, 1172 cm\(^{-1}\); UV (MeOH) \(\lambda_{\text{max}} \) (log ε) 203 (3.84), 253 (3.42) nm; \(^1\)H and \(^{13}\)C NMR see Table 1; (+)-HR-ESIMS \(m/z \) 183.1015 [M + H]\(^+\) (calcd for C10H15O3 183.1021).

2-Methoxy-3,5-dimethyl-6-ethyl-pyrole (2): pale yellow gum; IR (film) \(\nu_{\text{max}} \) 1662, 1321, 1142, 1257, 1203, 1172, 1134, 1032, 800 cm\(^{-1}\); UV (MeOH) \(\lambda_{\text{max}} \) (log ε) 205 (3.88), 254 (3.68) nm; \(^1\)H and \(^{13}\)C NMR see Table 1; (+)-HR-ESIMS \(m/z \) 197.1173 [M + H]\(^+\) (calcd for C11H17O3 197.1178).

AChE Inhibitory Bioassay

AChE inhibitory bioassay was assayed using Ellman method and the enzyme was from *Saccharomyces cerevisiae*, Sigma Aldrich by a spectrophotometric method. Tacrine was used as a positive control.13

Declaration of Conflicting Interests

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The authors disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the Special Funds for Promoting Economic Development (Marine Economic Development) of Guangdong Province (GDOE[2019]A28, GDNRC2021052), Natural Science Foundation of Guangdong Province (2021A1515011711), Key-Area Research and Development Program of Guangdong Province (2020B111030005), National Natural Science Foundation of China (U20A20101, 2021A001, 21900286, 81973235).

ORCID iD

Huaming Tao https://orcid.org/0000-0002-4799-1345

Xuefeng Zhou https://orcid.org/0000-0001-9601-4869

References

1. Barbier EB, Koch EW, Silliman BR, et al. Coastal ecosystem-based management with nonlinear ecological functions and values. *Science*. 2008;319(5861):321–323. doi:10.1126/science.1150349

2. Wu J, Xiao Q, Xu J, Li MY, Pan JY, Yang MH. Natural products from true mangrove flora: source, chemistry and bioactivities. *Nat Prod Rep*. 2008;25(5):955–981. doi:10.1039/b807365a

3. Li MY, Xiao Q, Pan JY, Wu J. Natural products from semi-mangrove flora: source, chemistry and bioactivities. *Nat Prod Rep*. 2009;26(2):281–298. doi:10.1039/b816245j

4. Xu J. Bioactive natural products derived from mangrove-associated microbes. *Rsc Adv*. 2015;5(2):841–892. doi:10.1039/c4ra11756e

5. Ancheeva E, Daletos G, Proksch P. Lead compounds from mangrove-associated microorganisms. *Mar Drugs*. 2018;16(9):319–339. doi:10.3390/md16090319

6. Xu DB, Ye WW, Han Y, Deng ZX, Hong K. Natural products from mangrove actinomycetes. *Mar Drugs*. 2014;12(5):2590–2613. doi:10.3390/md12052590

7. Gray JP, Herwig RP. Phylogenetic analysis of the bacterial communities in marine sediments. *Appl Environ Microb*. 1996;62(11):4049–4059. doi:10.1128/aem.62.11

8. Urakawa H, Kita-Tsukamoto K, Ohwada K. Microbial diversity in marine sediments from sagami Bay and Tokyo Bay, Japan, as determined by 16S rRNA gene analysis. *Microbiology-UK*. 1999;145(11):3305–3315. doi:10.1099/00221287-145-11-3305

9. Loganathachetti DS, Poosakkannu A, Muthuraman S. Fungal community assemblage of different soil compartments in mangrove ecosystem. *Sci Rep*. 2017; 7:8560–8568. doi:10.1038/s41598-017-09281-3
10. Mendes L, Tsai S. Variations of bacterial community structure and composition in mangrove sediment at different depths in southeastern Brazil. *Diversity (Basel)*. 2014;6(4):827–843. doi:10.3390/d6040827

11. Zhou XF, Liang Z, Li KL, et al. Exploring the natural piericidins as anti-renal cell carcinoma agents targeting peroxiredoxin 1. *J Med Chem*. 2019;62(15):7058–7069. doi:10.1021/acs.jmedchem.9b00598

12. Hatakeyama S, Ochi N, Takano S. Enantioselective synthesis of the alpha-pyrone subunit of verrucosidin. *Chem Pharm Bull*. 1993;41(8):1358–1361. doi:10.1248/cpb.41.1358

13. Ellman GL, Courtney KD, Andres V, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. *Biochem Pharmacol*. 1961;7(2):88–95. doi:10.1016/0006-2952(61)90145-9

14. Liu Q, Yao F, Chooi YH, et al. Elucidation of piericidin A1 biosynthetic locus revealed a thioesterase-dependent mechanism of α-pyridone ring formation. *Chem Biol*. 2012;19(2):243–253. doi:10.1016/j.chembiol.2011.12.018

15. Busch B, Hertweck C. Evolution of metabolic diversity in polyketide-derived pyrones: using the non-colinear aureothin assembly line as a model system. *Phytochemistry*. 2009;70(15–16):1833–1840. doi:10.1016/j.phytochem.2009.05.022

16. Yano K, Yokoi K, Sato J, et al. Actinopyrone A, actinopyrone B and actinopyrone C, new physiologically properties and chemical structures. *J Antibiot*. 1986;39(1):38–43. doi:10.7164/antibiotics.39.38

17. Hayakawa Y, Saito J, Izawa M, Shin-ya K. Actinopyrone D, a new-downregulator of the molecular chaperone GRP78 from *Streptomyces* sp.. *J Antibiot*. 2014;67(12):831–834. doi:10.1038/ja.2014.76.

18. Schleissner C, Perez M, Losada A, et al. Antitumor actinopyrones produced by *Streptomyces albus* POR-04-15-053 isolated from a marine sediment. *J Nat Prod*. 2011;74(7):1590–1596. doi:10.1021/np200196j

19. Engl T, Kroiss J, Kai M, Nechitaylo TY, Svatos A, Kaltenpoth M. Evolutionary stability of antibiotic protection in a defensive symbiosis. *P Natl Acad Sci USA*. 2018;115(9):E2020–E2029. doi:10.1073/pnas.1719797115