Abstract

Effectively exploring and analyzing large text corpora requires visualizations that provide a high level summary. Past work has relied on faceted browsing of document metadata or on natural language processing of document text. In this paper, we present a new web-based tool that integrates topics learned from an unsupervised topic model in a faceted browsing experience. The user can manage topics, filter documents by topic and summarize views with metadata and topic graphs. We report a user study of the usefulness of topics in our tool.

1 Introduction

When analyzing text corpora, such as newspaper articles, research papers, or historical archives, users need an intuitive way to understand and summarize numerous documents. Exploratory search (Marchionini, 2006) is critical for large corpora that can easily overwhelm users. Corpus visualization tools can provide a high-level view of the data and help direct subsequent exploration. Broadly speaking, such systems can be divided into two groups: those that rely on structured metadata, and those that use information derived from document content.

Metadata Approaches based on metadata include visualizing document metadata alongside a domain ontology (Seeling and Becks, 2003), providing tools to select passages based on annotated words (Correll et al., 2011), and using images and metadata for visualizing related documents (Cataldi et al., 2011).

A natural solution for exploring via metadata is faceted browsing (English et al., 2002; Hearst, 2006; Smith et al., 2006; Yee et al., 2003), a paradigm for filtering commonly used in e-commerce stores. This consists of filtering based on metadata like “brand” or “size”, which helps summarize the content of the current document set (Käki, 2005). Studies have shown improved user experiences by facilitating user interactions through facets (Oren et al., 2006) and faceted browsing has been used for aiding search (Fujimura et al., 2006) and exploration (Collins et al., 2009) of text corpora.

However, facets require existing structured metadata fields, which may be limited or unavailable. An alternative is to use NLP to show document content.

Content Topic modeling (Blei et al., 2003), has become very popular for corpus and document understanding. Recent research has focused on aspects highlighted by the topic model, such as topic distributions across the corpus, topic distributions across documents, related topics and words that make up each topic (Chaney and Blei, 2012; Eisenstein et al., 2012), or document relations through topic compositions (Chuang et al., 2012; Gardner et al., 2010).

Newer work has begun to visualize documents in the context of their topics and their metadata, such as topics incorporated with keywords and events (Cui et al., 2011). Other examples include displaying topic prevalence over time (Liu et al., 2009) or helping users understand how real events shape textual trends (Dou et al., 2011). While interfaces may be customized for specific metadata types, e.g. the topical map of National Institutes of Health funding agencies (Talley et al., 2011), these interfaces do not incorporate arbitrary metadata.
We present MetaToMATo (Metadata and Topic Model Analysis Toolkit), a visualization tool that combines both metadata and topic models in a single faceted browsing paradigm for exploration and analysis of document collections. While previous work has shown the value of metadata facets, we show that topic model output complements metadata. Providing both in a single interface yields a flexible tool.

We illustrate MetaToMATo with an example adapted from our user study. Consider Sarah, a hypothetical intern in the New York Times archive room who is presented with the following task. Your boss explains that although the New York Times metadata fields are fairly comprehensive, sometimes human error leads to oversights or missing entries. Today you’ve been asked to keep an eye out for documents that mention the New York Marathon but do not include descriptors linking them to that event. This is corpus exploration: a user is asked to discover relevant information by exploring the corpus. We illustrate the tool with a walk-through.

Corpus Selection The corpus selection page (tool home page) provides information about all available corpora, and allows for corpora upload and deletion. Sarah selects the New York Times corpus.

Corpus Overview After selecting a corpus, the user sees the corpus overview and configuration page. Across four tabs, the user is presented with more detailed corpus statistics and can customize her visualization experience. The first tab shows general corpus information. The second allows for editing the inferred type (date, quantity, or string) for each metadata attribute to change filtering behavior, hide unhelpful attributes, and choose which attributes to “quick display” in the document collapsed view. On the remaining two tabs, the user can customize date display formats and manage tags.

She selects “Date” and “Byline” for quick display, hides “Series Name”, and formats “Date” to show only the date (no times).

Topics View Each topic is displayed in a box containing its name (initially set to its top 3 words) and a list of the top 10 words. Top words within a topic are words with the highest probability of appearing in the corpus. Each topic word is highlighted to show a normalized probability of that word within the topic. (Figure 1) Clicking a topic box provides more information. Users can rename topics, label unhelpful or low-quality topics as JUNK, or sort them in terms of frequency in the corpus,\(^1\) predicted quality,\(^2\) or junk.

Sarah renames several topics, including the topic “\{running, athletes, race\}” as SPORTS and marks the “\{share, listed, bath\}” topic as JUNK.

Documents View The document view provides a faceted browsing interface of the corpus. (Figure 2) The pane on the right side displays the set of documents returned by the current filters (search). Each document is summarized by the first 100 words and any quick view metadata. Users can expand documents to see all document metadata, a graph of the distribution of the topics in this document, and a graph of topics distinctive to this document compared to corpus-wide averages.\(^3\)

Sarah begins by looking at the types of documents in the corpus, opening and closing a few documents as she scrolls down the page.

The facets pane on the left side of the page displays the available facets given the current filters. Topics in a drop-down menu can be used to filter given a threshold.

Sarah selects the value “New York City” for the Location attribute and a threshold of 5% for the SPORTS topic, filtering on both facets.

Values next to each metadata facet show the number of documents in the current view with those attribute values, which helps tell the user what to ex-

1Frequency is computed using topic assignments from a Gibbs sampler (Griffiths and Steyvers, 2004).

2Topic quality is given by the entropy of its word distribution. Other options include Mimno and Blei (2011).

3The difference of the probability of a topic in the current document and the topic overall, divided by value overall.
pect if she refines her query.

Sarah notices that the News Desk value of “Sports” matches a large number of documents in the current view. She adds this filter to the current facet query, updating the document view.

At the top of the document pane are the current view’s “Aggregate Statistics”, which shows how many documents match the current query. An expandable box shows graphs for the current documents topic distribution and distinctive topics.4

Looking at the topic graph for the current query, Sarah sees that another topic with sports related words appears with high probability. She adds it to the search and updates the document view.

Any document can be tagged with user-created tags. Tags and their associated documents are displayed in the corpus overview on the configuration page. If a user finds a search query of interest, she can save and name the search to return to it later.

Sarah sees many documents relevant to the New York City Marathon. She tags documents of interest and saves the query for later reference.

2.1 Implementation Details

Our web based tool makes it easy for users to share results, maintain the system, and make the tool widely available. The application is built with a JSP front-end, a Java back-end, and a MongoDB database for storing the corpus and associated data. To ensure a fast UI, filters use an in-memory metadata and topic index. Searches are cached so incremental search queries are very fast. The UI uses Ajax and JQuery UI for dynamic loading and interactive elements. We easily hosted more than a dozen corpora on a single installation.

3 Evaluation

Our primary goal was to investigate whether incorporating topic model output along with document metadata into a faceted browser provided an effective mechanism for filtering documents. Participants were presented with four tasks consisting of a question to answer using the tool and a paragraph providing context. The first three tasks tested exploration (find documents) while the last tested analysis (learn about article authors). At the end of each task, the users were directed to a survey on the tool’s usefulness. We also logged user actions to further evaluate how they used the tool.

3.1 Participants and Experimental Setup

Twelve participants (3 female, 9 male) volunteered after receiving an email from a local mailing list. They received no compensation for their participation and they were able to complete the experiment in their preferred environment at a convenient time by accessing the tool online. They were provided with a tool guide and were encouraged to familiarize themselves with the tool before beginning the tasks; logs suggest 8 of 12 did exploration before starting.

The study required participants to find information from a selection of 10,000 documents from the New York Times Annotated Corpus (Sandhaus, 2008), which contains a range of metadata.5 All

4Computed as above but with more topics displayed.

5The full list of metadata fields that we allowed users to ac-
documents in the corpus were published in January of 1995 and we made no effort at deduplication. Topics were generated using the Latent Dirichlet Allocation (LDA) (Blei et al., 2003) implementation in MALLET (McCallum, 2002). We used 100 topics trained with 1500 Gibbs iterations and hyper-parameter optimization.

3.2 Quantitative Results

The length of time required to complete individual tasks ranged from 1 minute and 3 seconds to 24 minutes and 54 seconds (average 9 minutes.)

Within the scope of each task, each user initiated on average 5.75 searches. The time between searches was on average 1 minute and 53 seconds. Of all the searches, 21.4% were new searches and 78.6% built on previous searches when users chose to expand or narrow the scope of the search. When users initiated new search queries, they began with queries on topics 59.3% of the time, with queries on metadata 37.3% of the time, and queries that used both topics and metadata 3.4% of the time. This lends credence to the claim that the ability to access both metadata and topics is crucial.

We asked users to rate features in terms of their usefulness on a Likert scale from 1 (not helpful at all) to 5 (extremely helpful). The most preferred features were filtering on topics (mean 4.217, median 5) and compacted documents (mean 3.848, median 5). The least preferred were document graphs of topic usage (mean 1.848, median 1) and aggregate statistics (mean 1.891, median 1). The fact that filtering on topics was the most preferred feature validates our approach of including topics as a facet. Additionally, topic names were critical to this success.

3.3 Surveys

Users provided qualitative feedback by describing their approaches to the task, and offering suggestions in the study was: online section, organization, news desk, date, locations, series name, byline (author), people, title, feature page, and descriptors.

6These times do not include the 3 instances in which a user felt unable to complete a task. Also omitted are 11 tasks (from 4 users) for which log files could not provide accurate times.

7Ratings are likely influenced by the specific nature of the sample user tasks. In tasks that required seeking out metadata, expanded document views rated higher than their average.

8The survey results presented here consist of one survey per participant per task, with two exceptions where two participants each failed to record one of their four surveys.

4 Conclusion

A user evaluation of MetaToMATo, our toolkit for visualizing text corpora that incorporates both topic models and metadata, confirms the validity of our approach to use topic models and metadata in a single faceted browser. Users searched with topics a majority of the time, but also made use of metadata. This clearly demonstrates a reliance on both, suggesting that users went back and forth as needed. Additionally, while metadata is traditionally used for facets, users ranked filtering by topic more highly than metadata. This suggests a new direction in which advances in topic models can be used to aid corpus exploration.
References

David M. Blei, Andrew Y. Ng, and Michael I. Jordan. 2003. Latent dirichlet allocation. J. Mach. Learn. Res., 3:993–1022, March.

M. Cataldi, L. Di Caro, and C. Schifanella. 2011. Immex: Immersive text documents exploration system. In Content-Based Multimedia Indexing (CBMI), 2011 9th International Workshop on, pages 1–6. IEEE.

A.J.B. Chaney and D.M. Blei. 2012. Visualizing topic models. In AAAI.

J. Chuang, C.D. Manning, and J. Heer. 2012. Termite: visualization techniques for assessing textual topic models. In Proceedings of the International Working Conference on Advanced Visual Interfaces, pages 74–77. ACM.

Christopher Collins, Fernanda B. Viégas, and Martin Wattenberg. 2009. Parallel tag clouds to explore and analyze faceted text corpora. In Proc. of the IEEE Symp. on Visual Analytics Science and Technology (VAST).

M. Correll, M. Witmore, and M. Gleicher. 2011. Exploring collections of tagged text for literary scholarship. Computer Graphics Forum, 30(3):731–740.

W. Cui, S. Liu, L. Tan, C. Shi, Y. Song, Z. Gao, H. Qu, and X. Tong. 2011. Textflow: Towards better understanding of evolving topics in text. Visualization and Computer Graphics, IEEE Transactions on, 17(12):2412–2421.

W. Dou, X. Wang, R. Chang, and W. Ribarsky. 2011. Paralleltopics: A probabilistic approach to exploring document collections. In Visual Analytics Science and Technology (VAST), 2011 IEEE Conference on, pages 231–240. IEEE.

Jacob Eisenstein, Duen Horng "Polo" Chau, Aniket Kitur, and Eric P. Xing. 2012. Topicviz: Interactive topic exploration in document collections. In CHI.

Jennifer English, Marti Hearst, Rashmi Sinha, Kirsten Swearingen, and Ka-Ping Yee. 2002. Flexible search and navigation using faceted metadata. In ACM SIGIR Conference on Information Retrieval (SIGIR).

Ko Fujimura, Hiroyuki Toda, Takaumi Inoue, Nobuaki Hiroshima, Ryoji Kataoka, and Masayuki Sugizaki. 2006. Blogranger - a multi-faceted blog search engine. In World Wide Web (WWW).

Matthew J. Gardner, Joshua Lutes, Jeff Lund, Josh Hansen, Dan Walker, Eric Ringger, and Kevin Seppi. 2010. The topic browser: An interactive tool for browsing topic models. In NIPS Workshop on Challenges of Data Visualization.

T.L. Griffiths and M. Steyvers. 2004. Finding scientific topics. Proceedings of the National Academy of Sciences of the United States of America, 101(Suppl 1):5228–5235.

Marti Hearst. 2006. Clustering versus faceted categories for information exploration. Communications of the ACM, 49(4).

Mika Käki. 2005. Findex: search result categories help users when document ranking fails. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI '05, pages 131–140, New York, NY, USA. ACM.

S. Liu, M.X. Zhou, S. Pan, W. Qian, W. Cai, and X. Lian. 2009. Interactive, topic-based visual text summarization and analysis. In Proceedings of the 18th ACM conference on Information and knowledge management, pages 543–552. ACM.

G. Marchionini. 2006. Exploratory search: from finding to understanding. Communications of the ACM, 49(4):41–46.

Andrew Kachites McCallum. 2002. Mallet: A machine learning for language toolkit. http://mallet.cs.umass.edu.

D. Mimno and D. Blei. 2011. Bayesian checking for topic models. In Proceedings of the Conference on Empirical Methods in Natural Language Processing, pages 227–237. Association for Computational Linguistics.

Eyal Oren, Renaud Delbru, and Stefan Decker. 2006. Extending faceted navigation for rdf data. In International Semantic Web Conference (ISWC).

Evan Sandhaus. 2008. The new york times annotated corpus.

Christian Seeling and Andreas Becks. 2003. Exploiting metadata for ontology-based visual exploration of weakly structured text documents. In Proceedings of the 7th International Conference on Information Visualisation (IV03), pages 0–7695. IEEE Press, ISBN.

Greg Smith, Mary Czerwinski, Brian Meyers, Daniel Robbins, George Robertson, and Desney S. Tan. 2006. FacetMap: A Scalable Search and Browse Visualization. IEEE Transactions on Visualization and Computer Graphics, 12(5):797–804.

E.M. Talley, D. Newman, D. Mimno, B.W. Herr II, H.M. Wallach, G.A.P.C. Burns, A.G.M. Leenders, and A. McCallum. 2011. Database of nih grants using machine-learned categories and graphical clustering. Nature Methods, 8(6):443–444.

Ping Yee, Kirsten Swearingen, Kevin Li, and Marti Hearst. 2003. Faceted metadata for image search and browsing. In Computer-Human Interaction (CHI).