Molecular Techniques for Blood and Blood Product Screening

Yuan Hu

Introduction

The Food and Drug Administration (FDA) is responsible for ensuring the safety of more than 15 million units of blood and blood components donated each year in the United States. “Blood banking has become a manufacturing industry, an industry that must conform to high standards and quality control requirements comparable to those of pharmaceutical companies or other regulated industries,” said David A. Kessler, M.D., former FDA commissioner [1]. Screening donated blood for infectious diseases that can be transmitted through blood transfusion is a very important step in ensuring safety. The United States has the safest blood supply in the world [1], and the FDA is striving to keep it safe by decreasing the risk of infectious disease transmission. The regulatory agency is continuously updating its requirements and standards for collecting and processing blood. As mentioned earlier, an important step in ensuring safety is the screening of donated blood for infectious diseases [2, 3]. In the United States, tests for infectious diseases are routinely conducted on each unit of donated blood, and these tests are designed to comply with regulatory requirements (Table 1). The field of clinical microbiology and virology is now focusing on molecular technology. Currently, nucleic acid testing techniques have been developed to screen blood and plasma products for evidence of very recent viral infections that could be missed by conventional serologic tests [2]. It is time for all blood safety procedures to include molecular detection techniques [3]. This approach can significantly aid in blood safety to reduce the risk of transmission of serious disease by transfusion. This chapter will review and update the current antigen/antibody-based technology, molecular biological technology, and published regulatory policy data for blood safety.

No official support or endorsement of this article by the Food and Drug Administration is intended or should be inferred.

Y. Hu
U.S. Food and Drug Administration, Jamaica, NY, USA
e-mail: yuan.hu@fda.hhs.gov

© Springer Nature Switzerland AG 2018
Y.-W. Tang, C. W. Stratton (eds.), Advanced Techniques in Diagnostic Microbiology, https://doi.org/10.1007/978-3-319-95111-9_2
Trade name	Infectious agent	Format	Specimen	Use	Manufacturer	Approval date	STN
HBsAg assays (detect hepatitis B surface antigen)							
Abbott PRISM HBsAg; Abbott PRISM HBsAg Confirmatory	HBV	ChLIA	Serum/plasma/cadaveric serum	Donor screening: qualitative detection of HBsAg Confirmatory: to confirm the presence of HBsAg in samples found to be repeatedly reactive by the Abbott PRISM HBsAg assay	Abbott Laboratories Abbott Park, IL US License 0043	7/18/2006	BL103766
Genetic Systems HBsAg EIA 3.0; Genetic Systems HBsAg Confirmatory Assay 3.0	HBV	EIA	Serum/plasma/cadaveric serum	In vitro diagnostic Donor screening: qualitative detection of HBsAg Confirmatory: to confirm the presence of HBsAg in reactive specimens	Bio-Rad Laboratories Redmond, WA US License 1109	1/23/2003	BL103590
Anti-HBc assays (detect antibodies to hepatitis B virus core antigen)							
ORTHO HBc ELISA Test System	HBV	ELISA	Serum/plasma	In vitro diagnostic, Donor screening: qualitative detection of total antibody to hepatitis B core antigen	Ortho-Clinical Diagnostics, Inc Raritan, NJ	4/23/1998	BL103062
Abbott PRISM HBcore	HBV	ChLIA	Serum/plasma	Donor screening, qualitative detection of total antibody to hepatitis B core antigen	Abbott Laboratories Abbott Park, IL US License 0043	10/13/2005	BL103785
HBV nucleic acid assays (detect hepatitis B virus DNA); see also multiplex assays							

UltraQual™ HBV PCR Assay	**HBV**	**PCR**	**Plasma**	Source plasma donor screening: qualitative detection of HBV DNA. For in-house use only at NGI	National Genetics Institute Los Angeles, CA US License 1582	9/1/2011	BL125193
COBAS AmpliScreen HBV Test	**HBV**	**PCR**	**Plasma/cadaveric serum or plasma**	Donor screening: qualitative detection of HBV DNA	Roche Molecular Systems, Inc. Pleasanton, CAUS License 1636	4/21/2005	BL125090
Anti-HCV assays (detect antibodies to hepatitis C virus encoded antigen)							
Abbott PRISM HCV	**HCV**	**ChLIA**	**Serum/plasma/cadaveric serum**	Donor screening: qualitative detection of antibodies to hepatitis C virus	Abbott Laboratories Abbott Park, IL US License 0043	7/11/2007	BL103762
Ortho HCV Version 3.0 ELISA Test System	**HCV**	**EIA**	**Serum/plasma**	Donor screening: qualitative detection of antibodies to hepatitis C virus	Ortho-Clinical Diagnostics, Inc Raritan, NJUS License 1236	4/23/1998/18/2009	BL103065
HCV nucleic acid assays (detect hepatitis C virus RNA); see also multiplex assays							
Hepatitis C Virus RT PCR Assay	**HCV**	**PCR**	**Plasma**	Source plasma donor screening: qualitative detection of HCV RNA. For in-house use only by Baxter Healthcare International	BioLife Plasma Services, L.P Deerfield, ILUS License 1640	2/9/2007	BL125101
UltraQual HCV RT-PCR Assay	**HCV**	**PCR**	**Plasma**	Source plasma donor screening: qualitative detection of HCV RNA. For in-house use only at NGI	National Genetics Institute Los Angeles, CAUS License 1582	9/18/2001	BL103868
Trade name	Infectious agent	Format	Specimen	Use	Manufacturer	Approval date	STN
------------------------------------	------------------	--------	------------------------	--	---	--------------	---------
COBAS AmpliScreen HCV Test, ver 2.0	HCV	PCR	Plasma/cadaveric serum or plasma	Donor screening: qualitative detection of HCV RNA. Donor supplemental: to confirm HCV infection for specimens that are repeatedly reactive on a licensed donor screening test for antibodies to HCV and reactive on the COBAS® AmpliScreen HCV Test, v2.0	Roche Molecular Systems, Inc, Pleasanton, CA, US License 1636	12/3/2002	BL125045

Anti-HIV-1 assays (detect antibodies to human immunodeficiency virus type 1)

Trade name	Infectious agent	Format	Specimen	Use	Manufacturer	Approval date	STN	
Fluorognost HIV-1 IFA	HIV-1	IFA	Serum/plasma/Dried blood spot	Diagnostic and donor supplemental: qualitative detection of antibodies to HIV-1 for use as an additional, more specific test in specimens found to be repeatedly reactive by screening procedures. Donor screening: only in special cases	Sanochemia Pharmazeutika AG, Vienna, Austria US License 1631	2/5/19925/14/1996	BL103288BL103651	
Product Name	Virus Type	Test Type	Specimen Type	Description	License Holder	License Number	Date	BL Number
--------------------------------------	------------	-----------	--------------------------------------	---	-------------------------------------	----------------	------------	------------
Cambridge Biotech HIV-1 Western Blot Kit	HIV-1	WB	Serum/plasma	Diagnostic and donor supplemental: qualitative detection of antibodies to HIV-1 for use as an additional, more specific test in specimens found to be repeatedly reactive by screening procedures	Maxim Biomedical, Inc, Rockville, MD US License 1741	5/28/1998	BL103843	
GS HIV-1 western blot	HIV-1	WB	Serum/plasma/dried blood spot	Diagnostic and donor supplemental: qualitative detection of antibodies to HIV-1 for use as an additional, more specific test in specimens found to be repeatedly reactive by screening procedures	Bio-Rad Laboratories Redmond, WAUS License 1109	11/13/1998	BL103655	
Avioq HIV-1 Microelisa System	HIV-1	EIA	Serum, plasma, dried blood spot, oral fluid	In vitro diagnostic: qualitative detection of antibodies to HIV-1	Avioq Inc., Rockville, MD	9/21/2009	BP090022	
Maxim (Calypc) HIV-1 Urine EIA	HIV-1	EIA	Urine	In vitro diagnostic: qualitative detection of antibodies to HIV-1	Maxim Biomedical, Inc, Rockville, MD US License 1741	1/12/2001	BP000009	
INSTI HIV-1/HIV-2 Antibody Test	HIV-1 and HIV-2	Rapid immunoassay	Plasma/whole blood (venipuncture and finger stick)	In vitro diagnostic: qualitative detection of antibodies to HIV-1	BioLytical Laboratories Inc., British Columbia, Canada	1/28/2015	BP090032/7	
Trade name	Infectious agent	Format	Specimen	Use	Manufacturer	Approval date	STN	
--	------------------	--------------	--------------	--	---	---------------	--------	
Reveal Rapid HIV-1 Antibody Test	HIV-1	Rapid immunoassay	Serum/plasma	In vitro diagnostic: qualitative detection of antibodies to HIV-1; point-of-care test	MedMira Laboratories, Inc. Halifax, Nova Scotia Canada	4/16/2003	BP000023	
OraSure HIV-1 Western Blot Kit	HIV-1	WB	Oral fluid	Diagnostic supplemental: qualitative detection of antibodies to HIV-1 for use as an additional, more specific test in oral fluid specimens found to be repeatedly reactive by the Oral Fluid Vironostika HIV-1 Microelisa System	OraSure Technologies Bethlehem, PA	6/3/1996	BP950004	
Cambridge Biotech HIV-1 Urine Western Blot Kit	HIV-1	WB	Urine	Diagnostic supplemental: qualitative detection of antibodies to HIV-1 for use as an additional, more specific test in urine specimens found to be repeatedly reactive by Maxim HIV-1 Urine EIA	Maxim Biomedical, Inc. Rockville, MDUS License 1741	6/21/2001	BP010009	
Assay Name	Target	Method	Sample Type	Description	Company	License Number	Date	Code
--	--------	-------------------	-----------------------------	---	-------------------------------	----------------	-----------------	-----------------
HIV-1 Qualitative PCR Plasma Source plasma donor screening: qualitative detection of HIV-1 RNA. For in-house use only by Baxter Healthcare International	HIV-1	Qualitative PCR	Plasma	BioLife Plasma Services, L.E.DEerfield, ILUS License 1640		1/31/2007	BL125100	
UltraQual HIV-1 RT-PCR Assay	HIV-1	Qualitative PCR	Plasma	Source plasma donor screening: qualitative detection of HIV-1 RNA. For in-house use only at NGI	National Genetics InstituteLos Angeles, CAUS License 1582	9/18/2001	BL103902	
COBAS AmpliScreen HIV-1 Test, ver 1.5	HIV-1	Qualitative PCR	Plasma/cadaveric serum or plasma	Donor screening: qualitative detection of HIV-1 RNA	Roche Molecular Systems, Inc.Pleasanton, CAUS License 1636	12/20/2002	BL125059	
APTIMA HIV-1 RNA Qualitative Assay	HIV-1	TMA	Plasma/serum	In vitro diagnostic: qualitative detection of HIV-1 RNA	Gen-Probe, Inc.,San Diego, CAUS License 1592	10/4/2006	BL103966	
COBAS HIV-1	HIV-1	Quantitative PCR	Plasma	Patient monitoring: quantitation of HIV-1 RNA in plasma of HIV-1 infected individuals	Roche Molecular Systems, Inc.Pleasanton, CAUS license 1636	12/18/2015	BP150262	
Abbott RealTime HIV-1	HIV-1	Quantitative PCR	Plasma	Patient monitoring: quantitation of HIV-1 RNA in plasma of HIV-1 infected individuals	ABBOTT Molecular, Inc., Des Plaines, IL	5/1/2007	BP060002	

(continued)
Trade name	Infectious agent	Format	Specimen	Use	Manufacturer/Notes
Amplicor HIV-1 Monitor Test	HIV-1	Quantitative PCR	Plasma	Patient monitoring: quantitation of HIV-1 RNA in plasma of HIV-1 infected individuals.	Roche Molecular Systems, Inc., Pleasanton, CA, US License 1636
COBAS Ampliprep/COBAS TaqMan HIV-1 Test	HIV-1	Quantitative PCR	Plasma	Patient monitoring: quantitation of HIV-1 RNA in plasma of HIV-1 infected individuals.	Roche Molecular Systems, Inc., Pleasanton, CA, US License 1636
Versant HIV-1 RNA 3.0 (bDNA)	HIV-1	Quantitative PCR	Plasma	Patient monitoring: quantification of HIV-1 RNA in plasma of HIV-1 infected individuals.	Siemens Healthcare Diagnostics, Inc.
ViroSeq HIV-1 Genotyping System	HIV-1	Genotyping	Plasma	Patient monitoring: for detecting HIV genomic mutations (in the protease and part of the reverse transcriptase regions of HIV) that confer resistance to specific types of antiretroviral drugs, as an aid in monitoring and treating HIV infection.	Celera Diagnostics/Alameda, CA

Table 1 (continued)
Anti-HIV specimen collection devices, testing services, and home test kits
Trugene HIV-1 Genotyping Kit and Open Gene DNA Sequencing System
HIV-1
Anti-HIV specimen collection devices, testing services, and home test kits
Home Access HIV-1 Test System
HIV-1
OraSure HIV-1 Oral Specimen Collection Device
HIV-1
OraQuick In-Home HIV Test
HIV-1, HIV-2

(continued)
Trade name	Infectious agent	Format	Specimen	Use	Manufacturer	Approval date	STN
Anti-HIV-2 assays (detect antibodies to human immunodeficiency virus type 2)							
Genetic Systems HIV-2 EIA	HIV-2	EIA	Serum/plasma	In vitro diagnostic, Donor screening: qualitative detection of antibodies to HIV-2	Bio-Rad Laboratories Redmond, WAUS License 1109	4/25/1990	BL103227
Anti-HIV-1/2 assays (detect antibodies to human immunodeficiency virus types 1 and 2)							
Abbott PRISM HIV O Plus assay	HIV-1, HIV-2	ChLIA	Plasma/serum/cadaveric serum	In vitro diagnostic Donor screening: qualitative detection of antibodies to HIV-1 groups M and O and/or antibodies to HIV-2	Abbott Laboratories, Abbott Park, IL US License 0043	9/18/2009	BL125318
Geenius HIV 1/2 Supplemental Assay	HIV-1, HIV-2	HIV detection test	Blood	Used as specific test to confirm the presence of antibodies of HIV-1 and HIV-2 for the detection of specimens to be repeatedly reactive by screening procedures	Bio-Rad Laboratories, Inc Redmond, WAUS License 1109	10/24/2014	BP140120
Genetic Systems HIV-1/HIV-2 Plus O EIA	HIV-1, HIV-2	EIA	Serum/plasma/cadaveric serum	In vitro diagnostic Donor screening: qualitative detection of antibodies to HIV-1 (groups M and O) and/or HIV-2	Bio-Rad Laboratories, Redmond, WAUS License 1109	8/5/2003	BL125030
Product Name	Subtype(s)	Type of Test	Specimen(s)	Test Description	Manufacturer	Approval Date	License/Ident.
--	------------	--------------	-------------	---	-----------------------------------	----------------	---------------
ADVIA Centaur HIV 1/O/2 Rapid Test	HIV-1, HIV-2	Microparticle chemiluminometric immunoassay	Plasma/serum	In vitro diagnostic: qualitative determination of antibodies to HIV-1, including group O, and/or HIV-2	Siemens Healthcare Diagnostics, Inc.	5/18/2006	BP050030
VITROS HIV-1/ HIV-2 Reagent Pack and Calibrator	HIV-1, HIV-2	Immunometric	Plasma/serum	In vitro diagnostic: qualitative detection of antibodies to HIV-1 and/or HIV-2	Ortho-Clinical Diagnostics, Inc, Raritan, NJUS License 1236	3/27/2008	BP050051
Multispot HIV-1/ HIV-2 Rapid Test	HIV-1, HIV-2	Rapid immunoassay	Plasma/serum	In vitro diagnostic: qualitative detection of antibodies to HIV-1 and/or HIV-2	Bio-Rad Laboratories Redmond, WAUS License 1109	11/12/2004	BP040046
SURE CHECK HIV 1/2 ASSAY	HIV-1, HIV-2	Rapid immunoassay	Finger stick and venous whole blood, serum, plasma	In vitro diagnostic: qualitative detection of antibodies to HIV-1 and/or HIV-2; point-of-care test	Chembio Diagnostic Systems, Inc, Medford, NY	5/25/2006	BP050009
HIV 1/2 STAT-PAK ASSAY	HIV-1, HIV-2	Rapid immunoassay	Finger stick and venous whole blood, serum, plasma	In vitro diagnostic: qualitative detection of antibodies to HIV-1 and/or HIV-2; point-of-care test	Chembio Diagnostic Systems, Inc, Medford, NY	5/25/2006	BP050010
OraQuick ADVANCE Rapid HIV-1/2 Antibody Test	HIV-1, HIV-2	Rapid immunoassay	Oral fluid, plasma, whole blood (venipuncture and finger stick)	In vitro diagnostic: qualitative detection of antibodies to HIV-1 and/or HIV-2; point-of-care test	OraSure Technologies Bethlehem, PA	11/7/2002/22/2004	BP010047

(continued)
Trade name	Infectious agent	Format	Specimen	Use	Manufacturer	Approval date	STN
Chembio DPP® HIV 1/2 Assay	HIV-1, HIV-2	Rapid immuno-chromatographic assay	Oral fluid, serum, plasma, Whole blood (venipuncture, finger stick)	In vitro diagnostic: qualitative detection of antibodies to HIV-1 and/or HIV-2; point-of-care test	Chembio Diagnostic Systems, Inc.Medford, NY	12/19/2012	BP120032
Uni-Gold™ Recombigen® HIV-1/2	HIV-1, HIV-2	Rapid EIA	Serum, plasma, Whole blood (venipuncture, finger stick)	In vitro diagnostic: qualitative detection of antibodies to HIV-1 and/or HIV-2; point-of-care test	Trinity Biotech Jamestown, NY	12/23/200302/04/2013	BP030025

Anti-HIV-1/2 and HIV-1 antigen combo assays (detect HIV-1 antigen and antibodies to HIV types 1 and 2)

| BioPlex 2200 HIV Ag-Ab Assay | HIV-1 and HIV-2 | Multiplex flow immunoassay | Serum, plasma | In vitro diagnostic: simultaneous qualitative detection and differentiation of HIV p24 antigen and antibodies to HIV-1 (group M and group O) and/or HIV-2 | Bio-Rad Laboratories Redmond, WAUS License 1109 | 7/23/2015 | BP140111 |
| ADVIA Centaur HIV Ag/Ab Combo (CHIV) Assay | HIV-1, HIV-2 | Microparticle chemiluminometric immunoassay | Serum | In vitro diagnostic: simultaneous qualitative detection and differentiation of HIV p24 antigen and antibodies to HIV-1 (group M and group O) and/or HIV-2 | Siemens Healthcare Diagnostics, Inc. | 6/8/2015 | BP140103 |
ARCHITECT HIV Ag/Ab Combo	GS HIV Ag/Ab Combo EIA	Alere Determine HIV-1/2 Ag/Ab Combo	Anti-HTLV-I/II Assays (detect antibodies to Human T-Lymphotropic Virus types I and II)				
Abbott Laboratories, IL	Bio-Rad Laboratories, CA	Alere Scarborough, ME	Avioq, Inc. Research Triangle Park, NC				
6/18/2010	7/22/2011	8/8/2013	03/26/2012				
Plasma/serum	Plasma/serum	Immunoassay	In vitro diagnostic, qualitative detection of antibodies to HTLV-I and HTLV-II				
HIV-1, HIV-2	HIV-1, HIV-2	Serum, plasma, whole blood (venipuncture, finger stick)	point-of-care test				
CMLIA	EIA		Abbott Laboratories, IL				
HIV-1, HIV-2	HIV-1, HIV-2		US License 0043				
Plasm/serum	Serum/plasma		1/16/2008				
Trade name	Infectious agent	Format	Specimen	Use	Manufacturer	Approval date	STN
------------	------------------	-------------------	----------------	--	--	----------------	--------
MP Diagnostic HTLV Blot 2.4	HTLV-I, HTLV-II	WB	Serum/plasma	Donor supplemental: qualitative detection and differentiation of antibodies to HTLV-I and HTLV-II for use as an additional, more specific test in specimens found to be repeatedly reactive by screening procedures	MP Biomedicals Asia Pacific PTE. LTD	12/11/2014	BL125475
Anti-*T. pallidum* assays (detect antibodies to *Treponema pallidum*) and other serological tests for syphilis							
CAPTIATM Syphilis (*T. Pallidum*)-G	*T. Pallidum*	EIA	Serum, plasma	Donor screening: qualitative detection of IgG antibodies to *Treponema pallidum*	Trinity Biotech Jamestown, NY	01/24/2002	K014233
ASITPHA Test	*T. Pallidum*	Micro-hemagglutination	Serum	Donor screening: qualitative detection of IgG and IgM antibodies to *Treponema pallidum*	Arlington Scientific, Inc Springville, UT	1/30/2003	BK020031
Olympus PK TP System	*T. Pallidum*	Micro-hemagglutination	Serum, plasma	Donor screening: qualitative detection of IgG and IgM antibodies to *Treponema pallidum*	Fujirebio Diagnostics Inc. Malvern, PA	2/21/2003	BK030007
TPHA Screen	*T. Pallidum*	Hemagglutination	Serum, plasma	Donor screening: qualitative detection of IgG and IgM antibodies to *Treponema pallidum*	Immucor, Inc Norcross, GA	10/24/2012	BK120021
Test Name	Target Organism	Method	Specimen Type	Description	Manufacturer	Date	License No.
---	-----------------	--	-----------------------------	--	---	-----------	-------------
ASiManager-AT™	T. Pallidum	Rapid plasma reagin (RPR) test	Serum, plasma	Donor screening: qualitative detection of reagin antibodies	Arlington Scientific, Inc. Springville, UT	2/24/2014	BK 130001
Anti-T. cruzi assays (detect antibodies to Trypanosoma cruzi)							
Abbott ESA Chagas	T. Cruzi	Multistep enzyme strip immunoassay	Serum, plasma	An additional, more specific test on human serum or plasma specimens found to be repeatedly reactive using a licensed screening test for antibodies to T. cruzi	Abbott Laboratories Abbott Park, IL US License 0043	11/18/2011	125,361/23
Abbott PRISM Chagas	T. Cruzi	EIA	Serum/plasma	Donor screening: qualitative detection of antibodies to T. cruzi	Abbott Laboratories Abbott Park, IL US License 0043	4/30/2010	BL125361
ORTHO T. cruzi ELISA Test System	T. Cruzi	EIA	Serum/plasma/cadaveric	Donor screening: qualitative detection of antibodies to T. cruzi	Ortho-Clinical Diagnostics, Inc Raritan, NJ US License 1236	12/13/2006	BL125161
WNV nucleic acid assays (detect West Nile virus RNA)							
Procleix West Nile Virus (WNV) Assay	WNV	Nucleic acid test (TMA)	Plasma/cadaveric plasma or serum	Donor screening: qualitative detection of West Nile virus (WNV) RNA.	Gen-Probe, Inc., San Diego, CA US License 1592	12/1/2005	BL125121
COBAS TaqScreen West Nile Virus Test	WNV	PCR	Plasma/cadaveric plasma or serum	Donor screening: qualitative detection of West Nile virus (WNV) RNA	Roche Molecular Systems, Inc, Pleasanton, CA US License 1636	8/28/2007	BL125245

(continued)
Trade name	Infectious agent	Format	Specimen	Use	Manufacturer	Approval date	STN
Capture-CMV	CMV	Solid-phase red cell adherence	Serum, plasma	Donor screening: qualitative detection of IgG and IgM antibodies to CMV	Immucor, Inc., Norcross, GA	12/22/1995	BK950029
Olympus PK CMV-PA System	CMV	Passive particle agglutination	Serum, plasma	Donor screening: qualitative detection of IgG and IgM antibodies to CMV	Fujirebio Diagnostics, Inc., Malvern, PA	9/20/2007	BK070030
COBAS TaqScreen MPX Test	HBV, HCV, HIV-1, HIV-2	PCR	Plasma/cadaveric plasma or serum	Donor screening: simultaneous qualitative detection of HBV DNA, HIV-1 group M and group O RNA, HIV-2 RNA, and HCV RNA	Roche Molecular Systems, Inc., Pleasanton, CAUS License 1636	12/30/2008	BL125255
COBAS TaqScreen MPX Test version 2.0	HBV, HCV, HIV-1, HIV-2	PCR	Plasma	Donor screening: simultaneous qualitative detection of HBV DNA, HIV-1 group M and group O RNA, HIV-2 RNA, and HCV RNA	Roche Molecular Systems, Inc., Pleasanton, CAUS License 1636	12/19/2014	BL 125459
Assay Type	Target Diseases	Test Type	Sample Type	Test Description	Manufacturer	Approval Date	BL Number
----------------------------	-----------------	----------------------------	---------------------------------	--	---	---------------	------------
Procleix Ultrio Assay	HBV, HCV, HIV-1	Nucleic acid test (TMA)	Plasma/serum/cadaveric plasma or serum	Donor screening: simultaneous qualitative detection of HBV DNA, HCV RNA, and HIV-1 RNA	Gen-Probe, Inc., San Diego, CA, USA License 1592	10/3/2006	BL125113
Procleix Ultrio Plus Assay	HBV, HCV, HIV-1	Nucleic acid test (TMA)	Plasma/serum/cadaveric plasma or serum	Donor screening: simultaneous qualitative detection of HBV DNA, HCV RNA, and HIV-1 RNA	Gen-Probe, Inc., San Diego, CA, USA License 1592	5/25/2012	BL125113

Source: Center for Biologics Evaluation and Research, US Food and Drug Administration
Limitations for Current Technologies Used in Blood Safety

Direct detection of viral antigens and virus-specific antibodies has been a common tool for the diagnosis of virus infections in the past 40 years. There are some limitations. For direct detection of virus antigens, shortly after virus infection, only a few viruses release antigens in amounts sufficiently detectable in the body by an antibody-mediated assay. For indirect virus detection by virus-specific antibodies [e.g., an immunofluorescence assay or enzyme immunoassay (EIA), etc.], there is a problem in that shortly after infection by a pathogenic virus, and there is a window period in which antibody generation is insufficient for detection [4]. To reduce this window period of low detection, direct nucleic acid tests are needed.

Application of Advanced Molecular Techniques in Blood Safety Applications

Through the application of molecular biology, biological and biochemical analyses have been revolutionized, and nucleic acid, gene-based techniques have been developed to screen blood and plasma donations for evidence of very recent and earlier viral infections that might otherwise be missed by conventional serologic testing. The nucleic acid tests can also provide evidence for genetic variation in viruses. Molecular methods include the use of nucleic acid probes as well as amplification-based and DNA sequence-based techniques. An increasing number of molecular diagnostic methods are now available commercially [2]. In comparison to classical methods, molecular biological methods are superior in terms of rapidness, specificity, and sensitivity. The current nucleic acid detection methods in the field may be grouped into two major classes: amplifying techniques such as PCR and non-amplifying techniques such as Southern blot hybridization. Amplifying techniques are more sensitive than non-amplifying techniques. There are two different types of amplifying methods [5], target amplification methods and signal amplification methods. Target amplifying techniques include PCR, nucleic acid sequence-based amplification (NASBA) [6, 7], self-sustaining sequence amplification (3SR), transcription-based amplification (TAS), transcription-mediated amplification (TMA), strand displacement amplification (SDA), and ligase chain reaction (LCR). Signal amplification methods include branched DNA signal amplification (bDNA) [8], cleavage-based signal amplification (cycling probe technologies and invader assay), Qβ replicase, hybrid capture, cycling probe technologies (CPT), and rolling-circle amplification (RCA) [9]. To further insure the safety of blood products, it is of importance to further improve these and other types of nucleic acid testing [2–5].
Major Different Generations of Nucleic Acid Detection Techniques

Southern Blot Hybridization (1970s)

Southern blotting [10] was named after Edward M. Southern who developed this procedure at Edinburgh University in the 1970s. This technique is used to detect specific sequences within mixtures of DNA, which is size fractionated by gel electrophoresis and then transferred by capillary action to a suitable membrane. After blocking of non-specific binding sites, the nitrocellulose replica of the original gel electrophoresis experiment is then allowed to hybridize with an oligonucleotide probe representing the specific DNA sequence of interest. Should specific DNA be present on the blot, it will combine with the labeled probe and be detectable. By coelectrophoresing DNA fragments of known molecular weight, the size(s) of the hybridizing band(s) can then be determined. Southern blotting hybridization technology is one of the major tools that have already helped clinical staffs worldwide interpret genomic information. Other competing methodologies include in situ hybridization and solution hybridization. Important clinical examples of the use of this technology are DNA fingerprinting and the ability to detect DNA gene rearrangements.

Polymerase Chain Reaction (1980s)

In 1983, Dr. Kary Mullis at Cetus Corporation conceived of polymerase chain reaction [11]. There is not a single technique that has had a greater impact on the practice of molecular biology than PCR. With this technique, we can detect infectious disease agents at an extremely low level. It is based on the ability of sense and antisense DNA primers to hybridize to a DNA of interest. Following extension from the primers on the DNA template by DNA polymerase, the reaction is heat denatured and allowed to anneal with the primers once again. Another round of extension leads to a multiplicative increase in DNA products. Therefore, a minute amount of DNA can be efficiently amplified in an exponential fashion to result in larger amounts of DNA that are more easily manipulated. By including critical controls, the technique can be made quantitative. The current level of the sensitivity and detection limit is as low as 10–50 copies per ml blood in HIV testing [1, 12, 13]. Important clinical examples of the use of PCR are detection of HIV and HCV [14–16]. PCR techniques have evolved into different branches. Some of them are now widely in use for virus detection in clinical diagnostics. These are real-time PCR by TaqMan (Roche), LightCycler (Roche), Smartcycler (Cepheid), in situ PCR, nested PCR, nested real-time PCR [17], broad-range PCR, multiplex PCR, RT-PCR, arbitrarily primer PCR, long PCR, and quantitative PCR. Real-time sequence technology will be coming soon for more detailed detection. In the past, identification of
Viral serotypes was restricted to investigative methods using antibody detection and restriction fragment length polymorphism (RFLP). With real-time sequence technology, we will be able to detect a virus early as well as to obtain the viral sequence.

Microarrays (1990s)

Microarrays were developed at Stanford University by Schena and co-workers in the early 1990s [18]. For medical applications, a microarray analysis offers a very accurate screening technology. It allows hundreds or thousands of nucleic acid hybridization reaction to be performed on a solid substrate. It promises to be a fast and accurate diagnostic tool in the field of clinical microbiology and virology. Applied to infection safety for blood and blood products, it will be able to screen for the presence of viral pathogens by matching genetic sequences. Compared with existing technologies, it allows for a wider variety of specific tests to be carried out simultaneously to determine the quality of the blood and will provide consumers with extra safety. With the use of molecular biology protocols, the microarray will permit the detection of lower concentrations of microorganisms in the blood and the accurate identification of many types of pathogenic contaminants. In the near future, progress can be expected in the application of microarray technology for screening of donated blood for infectious agents. It can provide vast information about the identity of blood-borne pathogens as well as their gene expression profiles [19].

Screening of Donor Blood for Infectious Agents

To ensure a safe blood supply for those who may need a transfusion, an important step in ensuring safety is the screening of donated blood for infectious agents [20]. After donation, each unit of donated blood undergoes a series of tests for blood-borne agents such as human immunodeficiency virus (HIV)-1, HIV-2, hepatitis B virus (HBV), hepatitis C virus (HCV), human T-cell lymphotropic virus (HTLV)-1 and HTLV-II, West Nile virus (WNV), *Treponema pallidum* (syphilis), *Trypanosoma cruzi* (*T. cruzi*), and cytomegalovirus.

Confirmatory Testing of Donor Blood for Infectious Agents

All of the above tests are referred to as screening tests and are designed to detect as many infectious agents as possible. Because these tests are so sensitive, some donors may have a false-positive result, even when the donor has never been exposed to the particular infection. In order to sort out true infections from such false-positive test results, screening tests that are reactive may be followed up with more specific tests.
called confirmatory tests. Thus, confirmatory tests help determine whether a donor is truly infected. If any one of these tests fails, affected blood products are considered unsuitable for transfusion [20].

Application of Nucleic Acid Testing for Infectious Agents

Nucleic acid testing (NAT) employs testing technology that directly detects the genomes of viruses. Because NAT detects a virus’s genetic material instead of waiting for the body’s response, the formation of antibodies, as with many current tests, it offers the opportunity to reduce the window period during which an infecting agent is undetectable by traditional tests [21], thus further improving blood safety. Nucleic acid testing is becoming the gold standard because of greater sensitivity compared to antibody tests [2].

Since 1999, NAT has been approved by the FDA and used to detect HIV-1 and HCV; this technology currently is under investigation for detecting other infectious disease agents. We know that for many viral infections, viral RNA appears very early in the infection, in 1 to 2 weeks, but the antibody doesn’t appear until 10–12 weeks, e.g., HIV and HCV [21]. In order to virtually prevent infection by all the transfusion-associated viruses, we need to detect the viruses in their window period, and a NAT or gene-based testing method is needed. NAT also provides an opportunity for the viral, e.g., HIV or HCV, infected donor to seek early treatment. On the other hand, NAT is not only a sensitive method but also a rapid method, which is suitable for a blood bank laboratory because the turnaround time for maintaining blood donations is extremely critical.

Hepatitis B Virus

The hepatitis B virus (HBV) is a highly infectious and often non-symptomatic virus that is transmitted primarily through blood and blood-derived fluids and is a leading cause of liver infection worldwide [22]. The World Health Organization (WHO) estimates that 2 billion people worldwide have been infected with HBV and 350,000,000 people are chronically infected. Chronic infection results in a high risk for liver cancer and cirrhosis of the liver, which cause about 1000,000 deaths each year. Each year up to 200,000 people become newly infected in the United States alone. Since screening for HBV began in 1969, the rate of infection through blood transfusions has greatly decreased. However, as of 2000, HBV is still transmitted through blood transfusions in 1 out of 137,000 units of blood. One reason for this is that currently available blood screening technologies detect core antibodies or surface antigens, which appear up to 8 weeks after infection. Serologic tests for hepatitis B virus include hepatitis B surface antigen (HBsAg) and hepatitis B core antibody (HBcAb).
Hepatitis B Surface Antigen

HBV, which mainly infects the liver, has an inner core and an outer envelope (the surface). The HBsAg test detects the outer envelope, identifying an individual infected with the hepatitis B virus. This virus can cause inflammation of the liver, and in the earliest stage of the disease, infected people may feel ill or even have yellow discoloration of the skin or eyes, a condition known as jaundice. Fortunately, most patients recover completely and test negative for HBsAg within a few months after the illness. A small percentage of people become chronic carriers of the virus, and in these cases, the test may remain positive for years. Chronically infected people can develop severe liver disease as time passes and need to be followed carefully by an experienced physician. To reduce the occurrence of posttransfusion hepatitis, it is essential to screen all blood donations for hepatitis B surface antigen by the most sensitive and specific assays. Blood donations that are found to be reactive in the HBsAg test are automatically confirmed by the HBsAg confirmatory assay. If the specimen is neutralizable in the confirmatory test, the specimen is considered positive for HBsAg. Hepatitis B surface antigen testing of donated blood has begun in 1975 (Table 1).

Currently, all blood donors are screened for HBsAg, but occasional transmission of HBV still occurs due to the inclusion of window period donations (i.e., blood from recently infected donors who are antibody negative but still viremic). Detection of early HBV infection of blood donors is still a major problem of blood transfusion. The current third-generation licensed HBsAg tests (mostly radioimmunoassay and enzyme immunoassays) cannot detect HBV in the window period for HBV infection. This is a strong motivation for introducing molecular detection techniques to the field [23]. There are some commercially available test methods for detecting HBV DNA in the market now, such as Chiron’s Quantiplex HBV DNA [24], Digene’s Hybrid Capture, Abbott’s HBV DNA assay, and Roche’s Amplicor HBV Monitor. Using these commercial hybridization or PCR-based assays, HBV DNA can be detected 1–3 weeks before the appearance of HBsAg [25]. Some chronically infected patients who have lost their HBsAg remain HBV DNA positive but are disqualified as potential blood donors. Molecular detection of HBV DNA is more sensitive than current methods employed for HBsAg screening [22–25].

Antibodies to the Hepatitis B Core Antigen (Anti-HBc)

Determination of anti-HBc (total) is also used to monitor the progress of the hepatitis B viral infection. Determination of anti-HBc (IgM) is employed to distinguish an acute hepatitis B infection from a chronic infection. The anti-HBc test developed in 1987 detects an antibody to the hepatitis B virus that is produced during and after infection. If an individual has a positive anti-HBc test, but the HBsAg test is negative, it may mean that the person once had hepatitis B but has recovered from the
infection. Of the individuals with a positive test for anti-HBc, many have not been exposed to the hepatitis B virus; thus, there is a frequent problem of false positives. Although the individual may be permanently deferred from donating blood, it is unlikely that the person’s health will be negatively affected. (Note: This antibody is not produced following vaccination against hepatitis B [26].

Hepatitis C Virus

The hepatitis C virus (HCV) is a member of the *Flaviviridae* family of viruses, which are associated with both human and animal diseases [27]. Hepatitis caused by HCV is the most common chronic blood-borne infection in the United States. Over 4 million Americans are believed to be infected. HCV can also be transmitted through blood transfusion. HCV causes inflammation of the liver, and up to 80% of those exposed to the virus develop a chronic infection, which can lead to liver inflammation, cirrhosis, cancer, and death. Eventually, up to 20% of people with HCV may develop cirrhosis of the liver or other severe liver diseases. As in other forms of hepatitis, individuals may be infected with the virus, but may not realize they are carriers since they do not have any symptoms. Because of the risk of serious illness, people with HCV need to be followed closely by a physician with experience evaluating this infection. Since the full-length HCV cDNA was first cloned in 1989, significant progress has been made in characterizing its molecular biology [13]. But, the natural history of HCV infection is still evolving, and current treatment options for patients are either limited or expensive [27]. There is no vaccine for HCV, and the current treatment includes a combination of alpha interferon and ribavirin as well as the combination of the nucleotide polymerase inhibitor sofosbuvir and the NS5A inhibitor velpatasvir [28]. Although the former is efficacious in only a minority of patients [29], the latter has been shown to be effective in a broad range of patients [28]. The life cycle of the HCV continues to be poorly understood due to the lack of an efficient cell culture system [30]. There is an urgent need to develop a highly sensitive detection method for studying possible extrahepatic sites for the replication of hepatitis C virus. We recently established a cell culture system for the replication of HCV by using human T and B leukemia cell lines [31]. This model should represent a valuable tool for the detailed study of the initial steps of the HCV replication cycle and for the evaluation of evolving antiviral molecules. Currently, appropriate vaccine strategies for HCV have not been developed. Early detection and prevention of HCV infection are most important for blood safety. It is a formidable task to design primers and probes for sensitive nucleic acid level diagnostic assays throughout the open reading frame of the HCV genome because of a high mutation rate in this genomic region. However, the untranslated region of about 341 nucleotides contains highly conserved domains which allows for stable primer design for qualitative and quantitative diagnostic tests which have equivalent sensitivity against the known six various genotypes of HCV.
Antibodies to the Hepatitis C Virus (Anti-HCV)

In 1990, the first specific test for hepatitis C virus, the major cause of “non-A, non-B” hepatitis, was introduced. Now, a third-generation ELISA kit is available to detect antibodies to HCV, and screening blood for HCV antibodies is recommended. These assays are based on detection of serum antibody to various HCV antigens because these antibodies are nearly universally present in patients who are chronically infected with HCV [32]. The HCV screening tests are known to have significant limitations, and positive samples should be further tested by HCV confirmatory tests.

HCV Confirmatory Tests

Guidelines provided by the CDC recommend that HCV antibody screening test-positive samples should be confirmed with serologic or nucleic acid supplemental testing. HCV confirmatory tests include the recombinant immunoblot assay in which several recombinant peptide antigens are applied on a strip that is then probed with the patient’s serum. In this way, the response to individual antigens can be recognized, and some false-positive ELISA results can be eliminated (e.g., RIBA, Chiron HCV 3.0, and PCR assay) (e.g., Roche COBAS Amplicor HCV test, version 2.0). Laboratories can choose to perform this testing on all positive specimens or based on screening test-positive (signal to cutoff) ratios. The positive predictive values (s/co) can vary depending on the prevalence of infection in the population being screened.

HCV antibodies are not generally detectable for at least 6 weeks and may not appear for several months. Acute HCV infections are relatively rare among blood donors, but the antibody tests often fail to detect these patients in the window period between the time of infection and the time of appearance of antibody detectable by the above assays. High-sensitivity detection of HCV during the window period is a long-term technical challenge in the field. Tests for HCV RNA genome detection based on the PCR or other highly sensitive RNA detection systems have been used for the diagnosis of acute hepatitis [26]. Sensitive detection of HCV RNA based on RT-PCR or other nucleic acid amplification techniques can be readily accomplished with kits that are now available commercially. For example, in 1999 the FDA-approved Roche’s Amplicor HIV-1 Monitor ultrasensitive quantitative assay. It can measure HIV levels at as few as 50 copies/ml, and another commercial kit, the LCx HIV RNA quantitative assay from Abbott Laboratories, also has a detection limit at 50 copies/ml. Some studies even showed a sensitivity limit at one copy [33]. In fact, a qualitative assay should be much more sensitive than a quantitative assay for HIV/HCV screening. A sensitive qualitative HCV molecular detection assay will possibly interdict and virtually prevent all transfusion-associated HIV/HCV. The current sensitivity standard for clinical diagnostics is 100 copies per ml, but since there has been an improvement in technology, this would be the time to change sensitivity standard to 50 copies per ml.
Human Retroviruses

Antibodies to Human Immunodeficiency Virus: Types 1 and 2 (Anti-HIV-1, -2)

HIV-1 and/or HIV-2 virus cause acquired immunodeficiency syndrome or AIDS. The test is designed to detect antibodies directed against antigens of the HIV-1 or HIV-2 viruses. HIV-1 is much more common in the United States, whereas HIV-2 is prevalent in Western Africa. Donors are tested for both viruses because both are transmitted by infected blood, and a few cases of HIV-2 have been identified in US residents. In 1985, the first blood screening EIA test to detect HIV was licensed and quickly implemented by blood banks to protect the blood supply. In 1992, testing of donor blood for both HIV-1 and HIV-2 antibodies (anti-HIV-1 and anti-HIV-2) was implemented. In 1996, HIV p24 antigen testing of donated blood was mandated. Now, the p24 antigen testing is going to be compared with a PCR-based test for their ability to detect HIV in the window period.

Antibodies to Human T-Lymphotropic Virus: Types I and II (Anti-HTLV-I, Anti-HTLV-I-II)

HTLV retroviruses are endemic in Japan and the Caribbean but relatively uncommon in the United States [34]. They cause adult T-cell leukemia/lymphoma and a neurological disorder similar to multiple sclerosis. The infection can persist for a lifetime but rarely causes major illnesses in most people who are infected. In rare instances, the virus may, after many years of infection, cause nervous system disease or an unusual type of leukemia. HTLV-II infections are usually associated with intravenous drug usage, especially among people who share needles or syringes. Disease associations with HTLV-II have been hard to confirm, but the virus may cause subtle abnormalities of immunity that lead to frequent infections or rare cases of neurological disease.

In 1989, human T-lymphotropic virus antibody testing of donated blood was begun. Blood is now routinely screened for antibodies to HTLV-I/II. These test screens for antibodies directed against epitopes of the HTLV-I and HTLV-II viruses. Several commercial assays based on the enzyme-linked immunosorbent assay (ELISA) or particle agglutination formats are used for screening of HTLV antibodies, followed by confirmatory assays using Western blotting. In some infected individuals, the serologic response to HTLV infection is very low. These problems have been solved by the application of PCR amplification of specific sequences in the virus genome. PCR can be used to detect HTLV-I/II proviruses and is now the method of choice for detection of HTLV DNA directly from blood and many other tissues. Commercial PCR kits for HTLV are available [34].
West Nile Virus

The West Nile virus (WNV) is a single-stranded RNA virus of the *Flaviviridae* family and is one of the most recent emerging infectious disease threats to public health and, potentially, to the safety of our blood supply [35–37]. In 2002, WNV was identified as transfusion transmissible. It is transmitted by mosquitoes to birds and other animals through a mosquito bite. The virus can infect people, horses, many types of birds, and some other animals. WNV was shown in 2002 to be transmissible by blood [35], with an estimated mean risk of 2/10,000–5/10,000 in outbreak regions in the United States. The most common symptoms of transfusion-transmitted cases of WNV were fever and headache. Detection of WNV includes either a measurement of WNV antibodies or of WNV nucleic acid (detecting genetic material from the virus itself). There are two types of WNV antibody testing: IgM and IgG. In most individuals, IgM antibodies will be present within 8 days after the initial exposure to WNV, followed by IgG production several weeks later. But, the antibodies tested to detect WNV are not expedient for donor blood screening. Nucleic acid testing involves amplifying and measuring the West Nile virus’s genetic material to detect the presence of the virus in the blood or tissue. WNV NAT will be negative in the blood once clinical illness has occurred. In this situation, both NAT and IgM antibody testing may be needed. Nucleic acid tests to screen blood for WNV are commercially available and in current use. But, the viral yield for WNV infection is much lower than other viruses. Consequently, a more sensitive WNV NAT system for donor blood screening will be required, which could further reduce the risks of transfusion-transmitted WNV.

Syphilis

Serum samples from all blood units should be subjected to either the VDRL (venereal disease research laboratory) test or a treponemal test, such as the *Treponema pallidum* hemagglutination (TPHA) test before transfusion. Any unit found positive should be discarded as per standard safety procedures. This test is done to detect evidence of infection with the spirochete that causes syphilis. Blood centers began testing for this shortly after World War II, when syphilis rates in the general population were much higher. The risk of transmitting syphilis through a blood transfusion is exceedingly small (no cases have been recognized in this country for many years) because the infection is very rare in blood donors and because the spirochete is fragile and unlikely to survive blood storage conditions. Sensitivity and specificity of serologic tests vary depending on the type of test performed and the stage of the disease. If the donor has spirochetemia, their serologic tests are usually negative, and if the donors are antibody positive, their blood is not infectious. Syphilis serological tests for donors have less clinical
significance. A nucleic acid test for accurately detecting syphilis is needed. It can be used to determine whether a blood donor is currently or has recently been infected with the spirochete.

Other Concerns

Hepatitis Viruses

In recent years, numerous infectious agents found worldwide have been identified as potential threats to the blood supply, and among these are several newly discovered hepatitis viruses that present unique challenges in assessing possible risks. Even if the hepatitis virus test is negative for all known A-E hepatitis agents, there are some unidentified hepatitis viruses, called non-A-E hepatitis viruses that can still be transmitted by blood transfusion. In the future, advances in NAT may allow rapid discovery of the unknown hepatitis viruses.

Hepatitis Delta Virus

Hepatitis delta virus (HDV) is a small RNA virus that can infect only individuals who have HBV; worldwide more than 15 million people are coinfect ed [38]. HDV is clinically important because it generally makes HBV infections more damaging to the liver. Increased understanding of the molecular virology of HDV will identify novel therapeutic targets for this most severe form of chronic viral hepatitis. PCR and real-time PCR methods are available for HDV RNA detection [39].

TT Virus

TT virus (TTV) [40], named for the patient from whom it was first isolated with non-A-E and G posttransfusion hepatitis in Japan in 1997, is a newly discovered transfusion-transmitted, single-stranded and circular DNA virus [41]. TTV is non-enveloped, and its entire sequence of ~3.9 kb has been determined. It is also often interpreted as a transfusion-transmitted virus [42]. At least 16 genotypes have been identified, and TTV is now found all over the world. TTV infection was sought by detection of TTV DNA in serum by polymerase chain reaction using primers generated from a conserved region of the TTV genome, e.g., the UTR region [42]. Donor blood and blood product can be screened for TTV DNA by using PCR or real-time PCR. The significance of positive findings is still unclear, because high-level TTV carriers in healthy populations are currently found [42–44]. Whether TTV actually causes hepatitis remains to be determined.
Cytomegalovirus

Cytomegalovirus (CMV) is a virus belonging to the herpes group that is rarely transmitted by blood transfusion. Donor blood is not routinely tested for CMV, and the prevalence of CMV antibody ranges from 50 to 80% of the population. But, blood contaminated with CMV can cause problems in neonates or immunocompromised patients. It also remains a major pathogen for solid-organ transplant recipients causing febrile syndromes, hepatitis, pneumonitis, retinitis, and colitis. Potential problems in selected patient populations can be prevented by transfusing CMV negative blood or frozen, deglycerolized red blood cells. Serologic tests for antibody to CMV are useful for determining whether a patient had CMV infection in the past, a determination of great clinical importance for organ and blood donors and in the pretransplant evaluation of prospective transplant recipients [45]. Commercial NAT kits are available for CMV [5], and these include the Amplicor PCR CMV Monitor Test and Hybrid Capture system CMV DNA test.

Trypanosoma Cruzi

Chagas disease is caused by the blood-borne parasite, *Trypanosoma cruzi*, which is transmitted to humans through insects. In the United States, Chagas disease is considered one of the neglected parasitic infections, a group of five parasitic diseases that have been targeted by CDC for public health action [46]. Commercial anti-*T. cruzi* assay kits are available for the qualitative detection of antibodies, *Trypanosoma cruzi* (*T. cruzi*), the causative agent of Chagas disease in human serum and plasma specimens by Abbott diagnostics [47].

Malaria

Sensitive screening tests for malaria are neither commercially available nor officially approved yet. The most effective way of screening donors is to take a proper history of malaria or of fever that could be due to malaria [48]. Donor selection criteria should be designed to exclude potentially infectious individuals from donating red blood cells for transfusion. Because there are no practical laboratory tests available to test donor blood, donors traveling to high-risk malaria areas are excluded from donating blood for 6 months. However, there is a need to develop suitable screening tests, especially for use in an endemic area. A number of clinical research approaches have been developed for the extraction, amplification, and detection of malaria parasite DNA from blood products [49].
Variant Creutzfeldt-Jakob Disease

Variant Creutzfeldt-Jakob disease [50] (vCJD, a rare but fatal brain infection) was first described in 1996 in the United Kingdom. vCJD is strongly linked with exposure to the bovine spongiform encephalopathy (BSE) agent. BSE is a transmissible spongiform encephalopathy (TSE) affecting cattle and was first reported in the United Kingdom in 1986. It has different clinical and pathologic characteristics from classic CJD. Each disease also has a particular genetic profile of the prion protein gene [51]. In recent years, questions have been raised concerning the potential risk of variant Creutzfeldt-Jakob disease for recipients of plasma-derived clotting factors, including the United States licensed factor VIII (pdFVIII), factor IX (pdFIX), and other plasma-derived products such as immune globulins and albumin. In the past 10 years, there have been some reported cases of probable variant Creutzfeldt-Jakob disease (vCJD) transmission by red blood cell transfusions in the United Kingdom [52]. Prion infections are associated with long and clinically silent incubations [50, 51]. The number of asymptomatic individuals with vCJD prion infection is unknown, posing risk to others through blood transfusion, blood products, organ or tissue grafts, and contaminated medical instruments. In order to decrease the risk, there is a need to establish a blood-based molecular assay for detection of vCJD prion infection [52]. Recently research papers have shown that sensitivity detection methods are available for vCJD prion [53–55]. However, commercial detection kits are not yet available.

Dengue Viruses

The dengue virus (DENV) is a member of the virus family Flaviviridae and is transmitted to people through the bite of an infected mosquito [56]. The dengue virus has been shown to have four subtypes. These subtypes are different strains of dengue virus that have 60–80% homology between each other. Dengue has emerged as a worldwide problem only since the 1950s. With more than one-third of the world’s population living in areas at risk for transmission, dengue infection is a leading cause of illness and death in the tropics and subtropics. According to CDC, as many as 100 million people are infected yearly [57]. Dengue is caused by any one of the four related viruses transmitted by mosquitoes. There are not yet any vaccines to prevent DENV infection, and the most effective protective measure is to avoid mosquito bites. There have been healthcare-related transmissions, including transmission by blood products [58]. Dengue infection has a viremic phase that lasts 4–8 days, and blood collected during this phase may be infective when transfused into susceptible hosts [58]. There are currently no tests for direct detection of dengue virus, but there are, however, commercial ELISA tests to detect antibodies of the dengue virus in blood samples from patients [59]. Recently, research papers have shown that PCR detection methods are available for any dengue virus strain [57, 60].
Babesia Species

Babesia is a protozoan parasite of the blood that causes a hemolytic disease known as babesiosis [61]. Babesiosis is a malaria-like parasitic disease [62], and there are over 100 species of *Babesia* identified [63]. In the United States, *Babesia microti* is the agent most commonly reported to cause human infection. Clinical confusion between human babesiosis and malaria is often reported in literature [62]. *Babesia* infection can also be acquired by blood transfusion [64, 65]. In fact, there have been many cases of transfusion-induced babesiosis documented [64, 65]. Risk of developing this clinical infection is increased for elderly, asplenic, or immunosuppressed patients. Current standards issued by the American Association of Blood Banks (AABB) require the indefinite deferral of a blood donor with a history of babesiosis [65]. There is a need to develop methods for identification *Babesia microti* in order to reduce the risk of transmission of babesiosis by transfusion. Diagnosis depends upon finding parasites on blood film examination which can be detected 2–4 weeks after a tick bite. Hamster inoculation and serology have also been used for diagnosis. The indirect fluorescent antibody test (IFAT) is available for *B. microti* and is the most useful serological test for early diagnosis [66]. Also, the PCR screen tests for babesiosis are technically available in the field [67].

Chagas’ Disease

Chagas disease is named after the Brazilian physician Carlos Chagas, who discovered the disease in 1909 [68]. Chagas disease is spread mainly by blood-sucking insects infected with *Trypanosoma cruzi*. Chagas disease can also be spread through blood transfusion, organ transplants, and from a mother to an unborn child. National screening of the blood supply [69] was instituted in early 2007 by FDA, and more than 1000 donors with *T. cruzi* infection have been identified within the past 3 years of testing. “Screening for *T. cruzi* is an important safety measure to help protect our blood supply and to help prevent the spread of Chagas disease,” says Karen Midthun, M.D., acting director of the FDA’s Center for Biologics Evaluation and Research. Currently, serological ELISA tests are available to diagnose chronic Chagas disease [70]. PCR test is not a tool for diagnosis of chronic Chagas disease in clinical practice yet, although some research results have showed that PCR is a very sensitive parasitological test for Chagas disease in active transmission regions [71]. More studies are needed for the development of this molecular method.
Severe Acute Respiratory Syndrome

Coronavirus is an RNA virus known to be associated with respiratory disease. Severe acute respiratory syndrome (SARS) is a newly recognized coronavirus whose genome sequence does not belong to any of the known coronavirus groups and which quickly spread all over the world from Asia in 2003. There has been no evidence that this infection is transmitted from blood donors to transfusion recipients, but the virus associated with SARS is present in the blood of people who are sick, and it is possible that the virus could be present in the blood immediately before a person gets sick, so that an individual with infection but no symptoms possibly could transmit SARS through a blood donation. To help determine whether or not an individual might be infected with SARS, a blood collection facility will ask a potential donor orally or in writing about any travel to a SARS-affected country or a history of SARS or possible exposure to SARS. Enzyme-linked immunoassays for detection of specific IgG and IgM antibodies and RT-PCR for detection of SARS coronavirus-specific RNA in the SARS patients have been developed. Rapid, sensitive, and specific identification of SARS and other novel coronaviruses by molecular methods will be very important in the future.

Ebola Virus

Ebola virus disease (EVD) is a rare and deadly disease caused by infection with one of the *Ebolavirus* species [72]. The recent outbreak in 2014–2015 is the largest Ebola outbreak since the Ebola virus was first discovered in 1976, first in Yambuku, Democratic Republic of Congo, and then in Nzara, South Sudan. The virus family *Filoviridae* includes three genera: *Cuevavirus*, *Marburgvirus*, and *Ebolavirus*. There are five species that have been identified: *Zaire*, *Bundibugyo*, *Sudan*, *Reston*, and *Taï Forest*. The first three, *Bundibugyo ebolavirus*, *Zaire ebolavirus*, and *Sudan ebolavirus*, have been associated with large outbreaks in Africa. The virus responsible for causing the 2014 West African outbreak belongs to the *Zaire* species (WHO) [72].

Samples from patients are an extreme biohazard risk. Currently, a number of approaches have been developed and are available for diagnoses of Ebola virus disease: (1) antibody-capture enzyme-linked immunosorbent assay (ELISA), (2) antigen-capture detection tests, (3) serum neutralization test, (4) reverse transcriptase polymerase chain reaction (RT-PCR) assay, (5) electron microscopy, and (6) virus isolation by cell culture tests.

The WHO and FDA are working to help expedite the development and availability of medical products – such as treatments, vaccines, diagnostic tests, and personal protective equipment – with the potential to help bring the Ebola epidemic in West Africa under control as quickly as possible (FDA) [73].
Discovery of Unrecognized and Uncharacterized Viral Agents

Based on past history, it is not just a hypothetical risk that many people have been infected with unrecognized viruses, for example, many patients with symptoms of non-A-E, G, and TTV posttransfusion hepatitis. It is still possible that unexplained cases of posttransfusion hepatitis may be caused by a new, undiscovered pathogen. In recent years, numerous new infectious agents found worldwide have been identified through time-consuming procedures. By the time a new virus, such as HCV, HIV, and SARS, is found, many people are infected, and there could be a large number of fatalities. There is an urgent need to develop methods for rapid identification and characterization of previously unknown pathogenic viruses. The most recent technologies for detecting and identifying previously unrecognized pathogens are expression library screening, representational difference analysis (RDA), and broad-range polymerase chain reaction (BR-PCR). But they are all time-consuming approaches. The new unrecognized and uncharacterized viral agents can be rapidly identified by some of the new molecular approaches, e.g., subtraction hybridization [74] and DNA microarray.

Conclusion

Ensuring the safety and efficacy of blood and blood products is a critical regulatory challenge. The high safety level of the blood supply is the result of continued improvements in blood donor screening and testing. It will be achieved by introducing more updated nucleic acid tests to the field of blood safety [2, 3]. Nucleic acid testing is a method of testing blood that is more sensitive and specific than conventional tests that require the presence of antibodies to trigger a positive test result. Also, NAT works by detecting the low levels of viral genetic material present when an infection occurs but before the body develops an immune response to a virus. This improved sensitivity should enable us to significantly decrease the infection window period, allowing for earlier detection of the infection and diminishing the chances for transmission of the agent via transfusion. We are not only to protect the blood supply from known pathogens but also the emergence of new and unrecognized and uncharacterized infectious agents [4, 36, 37, 75]. The NAT methods are more sensitive and specific compared with non-NAT. In the future, NAT technology, such as PCR, may allow routine screening of donors for all the known and unknown pathogens of concern to blood safety.
References

1. Revelle M. Progress in blood supply safety. FDA Consumer Magazine. 1995;29:21–4.
2. Stramer SL, Dodd RY, Chiu CY. Advances in testing technology to ensure transfusion safety – NAT and beyond. ISBT Sci Se. 2015;10(Suppl. 1):55–64.
3. Snyder EL, Stramer SL, Benjamin RJ. The safety of the blood supply – time to raise the bar. N Engl J Med. 2015;372:1882–5.
4. Chamberland ME. Emerging infectious disease issues in blood safety. Emerg Infect Dis. 2001;7:552–3.
5. Hayden, RT. In vitro nucleic acid amplification techniques. In: Persing DH, Tenover FC, Hayden RT, Ieven G, Miller MB, Nolte FS, editors. Molecular microbiology: diagnostic principles and practice. 3rd ed. Washington, DC: ASM press; 2016. p. XX–XX.
6. Guichon A, Chiparelli H, Martinez A, Rodriguez C, Trento A, Russi JC, Carballal G. Evaluation of a new NASBA assay for the qualitative detection of hepatitis C virus based on the NucliSens basic kit reagents. J Clin Virol. 2004;29:84–91.
7. Starkey WG, Millar RM, Jenkins ME, Ireland JH, Muir KE, Richards RH. Detection of piscine nodaviruses by real-time nucleic acid sequence based amplification (NASBA). Dis Aquat Org. 2004;5:93–100.
8. Peter JB, Sevall JS. Molecular-based methods for quantifying HIV viral load. AIDS Patient Care STDs. 2004;18:75–9.
9. Tang YW, Procop GW, Persing DH. Molecular diagnostics of infectious diseases. Clin Chem. 1997;1997(43):2021–38.
10. Mornet E. DNA, 50 years of the double helix: from the concept of molecular hybridization to microarrays. Gynecol Obstet Fertil. 2004;3:895–9.
11. Hersing, DH. (1993) In vitro nucleic acid amplification techniques. Diagnostic molecular microbiology principles and applications. Mayo Foundation, Rochester, MN, ASM Press, p. 51–87.
12. Ginocchio CC, Kemper M, Stellrecht KA, Witt DJ. Multicenter evaluation of the performance characteristics of the nucliSens HIV-1 QT assay used for quantitation of human immunodeficiency virus type 1 RNA. J Clin Microbiol. 2003;41:164–73.
13. Lamballerie XD. Serological and molecular biology screening techniques for HCV infection. Nephrol Dial Transplant. 1996;4:9–11.
14. Katsoulidou AS, Moschidis ZM, Gialeraki RE, Paraskevis DN, Syposa VA, Lazanas MC, Tassopoulos NC, Psychogiou MA, Boletis JN, Karafoloulis AD, Hatzakis AE. Clinical evaluation of an HIV-1 and HCV assay and demonstration of significant reduction of the HCV detection window before seroconversion. Transfusion. 2004;44:59–66.
15. Roche Amplicor HIV-1 Monitor UltraSensitive quantitative assay. Nutley, New Jersey; 1999.
16. LCx HIV RNA Quantitative assay from Abbott Laboratories. Abbott Park, Illinois; 2007.
17. Hu Y, Arsov I. Nested real-time PCR for hepatitis a detection. Lett Appl Microbiol. 2009;49:615–9.
18. Schena M. Introduction to microarray analysis. Microarray analysis. Hoboken: John Wiley & Sons, Inc.; 2002. p. 1–26.
19. Yu X, Susa M, Knabbe C, Schmid RD, Bachmann TT. Development and validation of a diagnostic DNA microarray to detect quinolone-resistant Escherichia coli among clinical isolates. J Clin Microbiol. 2004;42:4083–91.
20. U.S. Food & Drug Administration. Testing requirements for communicable disease agents. Federal Register, (21CFR 610:40); 2004. p. 75–80.
21. Stramer SL, Glynn SA, Kleinman SH, Strong DM, Sally C, Wright DJ, Dodd RY, Busch MP. Detection of HIV-1 and HCV infections among antibody-negative blood donors by nucleic acid-amplification testing. N Engl J Med. 2004;19:819–22.
22. You RC, Lee SW, Jang JW, Yoon SK. Update on hepatitis B virus infection. World J Gastroenterol. 2014;20:13293–305.
23. Allain JP, Cox L. Challenges in hepatitis B detection among blood donors. Curr Opin Hematol. 2011;18:461–6.
24. Krajden M, Comanor L, Rifkin O, Grigoriev A, Minor JM, Kapke GF. Assessment of hepatitis B virus DNA stability in serum by the Chiron quantiplex branched-DNA assay. J Clin Microbiol. 1998;36:382–6.
25. Hollinger FB, Jake T. Chapter 87: Hepatitis B Virus. Section two: Specific virus families. In: Fields Virology. 4th ed. Philadelphia: Lippincott Williams and Wilkins; 2001. p. 2971–3036.
26. CDC. Immunization of health-care workers: recommendations of the advisory committee on immunization practices (ACIP) and the hospital infection control practices advisory committee (HICPAC). MMWR Recomm Rep. 1997;46:1–42.
27. Li H-C, Lo S-Y. Hepatitis C virus: virology, diagnosis and treatment. World J Hepatol. 2015;7:1377–89.
28. Feld JJ, Jacobson IM, Hezode C, et al. Sofosbuvir and velpatasvir for HCB genotype 1, 2, 4, 5, and 6 infection. N Engl J Med. 2015;373:2599–607.
29. Wang QM, Heinz BA. Recent advances in prevention and treatment of hepatitis C virus infections. Progress in Drug Research, Spec. 2001:79–110.
30. Cohen J. The scientific challenge of hepatitis C. Science. 1999;285:26–30.
31. Hu Y, Shahidi A, Park S, Guilfoyle D, Hirshfield I. Detection of extrahepatic HCV replication by a novel highly sensitive single tube nested-PCR. Am J Clin Pathol. 2003;119:95–100.
32. Major ME, Reherrman B, Feinstone SM. Chapter 34: Hepatitis C viruses. Section two: Specific virus families. In: Fields Virology. 4th ed. Philadelphia, PA: Lippincott Williams and Wilkins; 2001. p. 1127–61.
33. Palmer S, Wiegand AP, Maldarelli F, Bazmi H, Mican JM, Polis M, Dewar RL, Planta A, Liu S, Metzalf JA, Mellors JW, Coffin JM. New real-time reverse transcriptase-initiated PCR assay with single-copy sensitivity for human immunodeficiency virus type 1 RNA in plasma. J Clin Microbiol. 2003;41:4531–6.
34. Green PL, Chen ISY. Chapter 58: Human T-cell leukemia virus types 1 and 2. Section two: Specific virus families. In: Fields Virology. 4th ed. Philadelphia, PA: Lippincott Williams and Wilkins; 2001. p. 1941–69.
35. Biggerstaff BJ, Peterson LR. Estimated risk of transmission of the West Nile virus through blood transfusion in the US, 2002. Transfusion. 2003;43:1007–17.
36. Stramer SL, Dodd RY. Transfusion-transmitted emerging infectious diseases: 30 years of challenges and progress. Transfusion. 2013;53:2375–83.
37. Stramer SL. The potential treat to blood transfusion safety of emerging infectious disease agents. Clin Adv Hematol Oncol. 2015;13:1–3.
38. Hughes, SA, Wedemeyer, H, Harrison, PM. Hepatitis delta virus. The Lancet, Early Online Publication; 2011.
39. Gal FL, Gordin E, Affolabi D, Hanslik T, Allou C, Deny P, Gault E. Quantification of Hepatitis delta virus RNA in serum by consensus real-time PCR indicates different patterns of Virological response to interferon therapy in chronically infected patients. J Clin Microbiol. 2005;43(5):2363–9.
40. Cossart Y. TTV-a virus searching for a disease. J Clin Virol. 2000;17:1–3.
41. O'kamoto H, Nishizawa T, Ukit M. A novel unenveloped DNA virus (TT virus) associated with acute and chronic non-A to G hepatitis. Intervirology. 1999;42:192–204.
42. Das K, Kar P, Gupta R, Das B. Role of transfusion-transmitted virus in acute viral hepatitis and fulminant hepatic failure of unknown etiology. J Gastroenterol Hepatol. 2004;19:406–12.
43. Nishizawa T, Okamoto H, Konishi K, Yoshizawa H, Miyakawa Y, Mayumi M. A novel DNA virus (TTV) associated with elevated transaminase levels in posttransfusion hepatitis of unknown etiology. Biochem Biophys Res Commun. 1997;241:92–7.
44. Blut A. TT virus. Infusion Therapy Transfusion Medicine. 2000;27:114–6.
45. Pass RF. Chapter 77: Cytomegalovirus. Section two: Specific virus families. In: Fields Virology. 4th ed. Philadelphia, PA: Lippincott Williams and Wilkins; 2001. p. 2676–705.
46. CDC. Parasites – American Trypanosomiasis (also known as Chagas Disease). 2017. https://www.cdc.gov/parasites/chagas/index.html
47. Chang CD, Ky C, Lx J, et al. Evaluation of a prototype Trypanosoma cruzi antibody assay with recombinant antigens on a fully automated chemiluminescence analyzer for blood donor screening. Transfusion. 2006;46:1737–44.
48. Owusu-Ofori AK, Parry C, Bates I. Transfusion-transmitted malaria in countries where malaria is endemic: a review of the literature from sub-Saharan Africa. Clin Infect Dis. 2010;51:1192–8.
49. Li Y, Kumar N, Gopalakrishnan A. Detection and species identification of malaria parasites by isothermal tHDA amplification directly from human blood without sample preparation. J Mol Diagn. 2013;15:634–41.
50. Diack AB, Head MW, McCutcheon S, Variant CJD. 18 years of research and surveillance. Prion. 2014;8:286–95.
51. Das AS, Zou W-Q. Prions: beyond a single protein. Clin Microbiol Rev. 2016;29:633–58.
52. Urwin PJ, Mackenzie JM, Llewelyn CA. Creutzfeldt-Jakob disease and blood transfusion: updated results of the UK transfusion medicine epidemiology review study. Vox Sang. 2016;110:310–6.
53. Julie Ann Edgeworth JA, Farmer M, Sicilia A, Tavares P, Beck J, Campbell T, Lowe J, Mead S, Rudge P, Collinge J, Jackson GS. Detection of prion infection in variant Creutzfeldt-Jakob disease: a blood-based assay. Lancet. 2011;377(9764):487–93.
54. Lacroux C, Comoy E, Moudjou M. Preclinical detection of variant CJD and BSE prions in blood. PLoS Pathog. 2014;10:e1004202.
55. Henderson DM, Davenport KA, Haley NJ. Quantitative assessment of prion infectivity in tissues and body fluids by real-time quaking-induced conversion. J Virol. 2015;96:210–9.
56. Guzman MG, Harris E. Dengue Lancet. 2015;385:453–65.
57. Santiago GA, Vergne E, Quiles Y. Analytical and clinical performance of the CDC real time RT-PCR assay for detection and typing of dengue virus. PLoS Negl Trop Dis. 2013;7:e2311.
58. Wilder-Smith A, Chen LH, Massad E, Wilson ME. Threat of dengue to blood safety in dengue-endemic countries. Emerg Infect Dis. 2009;15(1):8–11.
59. Welch RJ, Chang GJ, Litwin CM. Comparison of a commercial IgM capture ELISA with dengue antigen focus reduction microneutralization test and the centers for disease control dengue IgM capture-ELISA. J Virol Methods. 2014;195:247–9.
60. Gijavanekar C, Añez-Lingerfelt M, Feng C, Putonti C, Fox GE, Sabo A, Fofanov Y, Willson RC. PCR detection of nearly any dengue virus strain using a highly sensitive primer cocktail. FEBS J. 2011;278:1676–87.
61. Vannier EG, Diuk-Wasser MA, Ben Mamoun C. Babesiosis. Infect Dis Clin N Am. 2015;29:357–70.
62. Clark IA, Jacobson LS. Do babesiosis and malaria share a common disease process? Ann Trop Med Parasitol. 1998;92(4):483–8.
63. Schnittert L, Rodriguea AE, Florin-Christensen M. Babesia: a world emerging. Infect Genet Evol. 2012;12:788–809.
64. Gubernot DM, Lucey CT, Lee KC, et al. Babesia infection through blood transfusions: reports received by the US Food and Drug Administration, 1997–2007. Clin Infect Dis. 2009;48:25–30.
65. Leiby DA. Transfusion-transmitted Babesia spp.: bull’s-eye on Babesia microti. Clin Microbiol Rev. 2011;24:14–28.
66. Saito-Ito A, Kawai A, Ohmont S, Nagano-Fujii M. Continuous in vivo culture and indirect fluorescent antibody test for zoonotic protozoa of Babesia microti. Parasitol Int. 2016;65:526–31.
67. Ano H, Makimura S, Harasawa R. Detection of babesia species from infected dog blood by polymerase chain reaction. J Vet Med Sci. 2001;63(1):111–3.
68. Bern C. Chagas’ Disease. N Engl J Med. 2015;373:456–66.
69. Center for Biologics Evaluation and Research, U.S. Food & Drug Administration. Silver Spring, M.D. 20993. Complete List of Donor Screening Assays for Infectious Agents and HIV Diagnostic Assays; 2010.
70. Brasil PE, De Castro L, Hasslocher-Moreno AM, et al. ELISA versus PCR for diagnosis of chronic Chagas disease: systematic review and meta-analysis. BMC Infect Dis. 2010;10:337.
71. Wincker P, Telleria J, Bosseno MF, Cardoso MA, Marques P, Yaksic N, Aznar C, Liegeard P, Hontebeyrie M, Noireau F, Morel CM, Breniere SF. PCR-based diagnosis for Chagas’ disease in Bolivian children living in an active transmission area: comparison with conventional serological and parasitological diagnosis. Parasitology. 1997;114:367–73.

72. WHO, Ebola Virus Disease Updated, May 2017. http://www.who.int/mediacentre/factsheets/fs103/en

73. Ebola Response Updates from FDA, July 2017 https://www.fda.gov/emergencypreparedness/counterterrorism/medicalcountermeasures/ucm410308.htm

74. Hu Y, Hirshfield I. Rapid approach to identify an unrecognized viral agent. J Virol Methods. 2005;127:80–6.

75. Stramer SL, Hollinger FB, Katz LM, Kleinman S, Metzel PS, Gregory KR, Dodd RY. Emerging infectious disease agents and their potential threat to transfusion safety. Transfusion. 2009;49:IS–29S.