TRANSITIVE 2-REPRESENTATIONS
OF FINITARY 2-CATEGORIES

VOLODYMYR MAZORCHUK AND VANESSA MIEMIETZ

Abstract. In this article, we define and study the class of simple transitive 2-representations of finitary 2-categories. We prove a weak version of the classical Jordan-Hölder Theorem where the weak composition subquotients are given by simple transitive 2-representations. For a large class of finitary 2-categories we prove that simple transitive 2-representations are exhausted by cell 2-representations. Finally, we show that this large class contains finitary quotients of 2-Kac-Moody algebras.

1. Introduction

This article, for the first time, proves a general classification result for an axiomatically defined class of 2-representations of a large class of 2-categories covering most examples studied in the area of categorification.

More specifically, we study finitary 2-categories over an algebraically closed field which include the 2-category of Soergel bimodules associated to a finite Coxeter system (see [BG, So, EW]), an exhaustive family of quotients of 2-Kac-Moody algebras (see [BFK, KL, Ro1, CL, We]), quiver 2-categories constructed in [Xa] and the 2-category of projective functors on the module category of a finite dimensional algebra (see [MM1]). We define a new class of 2-representations for such 2-categories which we call simple transitive 2-representations and which we believe serves as the correct 2-analogue for the class of irreducible representations of an algebra. Our definition of simple transitive 2-representations comes in two layers, the first being a discrete transitive action of the multisemigroup of 1-morphisms (this alone is called transitivity), the second being the absence of categorical ideals in the representation invariant under the 2-action (this is what we refer to as simplicity).

For simple transitive 2-representations we obtain, for arbitrary finitary 2-categories, a weak version of the classical Jordan-Hölder Theorem, see Theorem 18 in which simple transitive 2-representations appear as weak composition subquotients of general finitary 2-representations. It turns out that any finitary 2-representation of a finitary 2-category has a filtration with subquotients being transitive 2-representations. In contrast to classical representation theory, transitive 2-representations do not seem to admit any natural filtration, however, they do have a well-defined simple top which is our weak composition subquotient. A different approach to the Jordan-Hölder theory for 2-Kac-Moody algebras is outlined in [Ro1 Subsection 5.1].

Our main result is Theorem 18 which provides a classification of simple transitive 2-representations for a large class of finitary 2-categories. The latter includes the 2-category of Soergel bimodules in type A, all of the above mentioned finitary quotients of 2-Kac-Moody algebras and the 2-category of projective functors on the
module category of a finite dimensional self-injective algebra. Moreover, it also
includes all variations of the latter 2-category which constitute a list of finitary
2-categories from [MM3] satisfying a 2-analogue of simplicity for a finite dimen-
sional algebra. The classification result states that for this class of 2-categories
simple transitive 2-representations are precisely the cell 2-representations studied
in [MM1, MM2, MM3]. In particular, this implies uniqueness of categorification
of simple integrable modules for finite dimensional simple Lie algebras. The only
comparable statement in the literature, for the 2-categorical analogue of $U(\mathfrak{sl}_2)$ and
for a special class of 2-representations categorifying simple \mathfrak{sl}_2-modules, was proved
in [CR, Proposition 5.26].

The proof can be divided into two major parts. One of these (the proof of Theo-
rem 18) reduces the problem to the case of the 2-category of projective functors on
the module category of a finite dimensional self-injective algebra. The latter case
is treated in Theorem 15 and relies on a detailed study of endomorphism algebras
of certain bimodules and, crucially, on a classical result of Perron and Frobenius on
the structure of real matrices with positive coefficients.

The article is organized as follows. In Section 2 we recall notions developed in
[MM1, MM2, MM3] and state the Perron-Frobenius Theorem. In Section 3 we
introduce transitive and simple transitive 2-representations and gather examples
and preliminary results. Section 4 presents the statement and proof of our weak
Jordan-Hölder Theorem. Section 5 is devoted to the proof of our main result
in the case of the 2-category of projective functors on the module category of a
finite dimensional self-injective algebra. Section 6 establishes the main result in the
general case. Finally, in Section 7 we provide and study examples, including our
family of quotients of 2-Kac-Moody algebras.

Acknowledgment. A substantial part of the paper was written during mutual
visits of the authors to the University of East Anglia respectively Uppsala Uni-
versity, whose hospitality is gratefully acknowledged. Both visits were supported
by EPSRC grant EP/K011782/1. The first author is partially supported by the
Swedish Research Council. The second author is partially supported by EPSRC
grant EP/K011782/1. We thank Anne-Laure Thiel, Qimh Xantcha and Ben Web-
ster for stimulating discussions. We thank the referee for very useful comments and
explanations.

2. Preliminaries

2.1. Notation. Throughout, we let \mathbb{k} denote an algebraically closed field.

A 2-category is a category enriched over the category of small categories. A
2-category \mathcal{C} consists of objects (denoted i, j, k, \ldots), 1-morphisms (denoted
F, G, H, \ldots) and 2-morphisms (denoted $\alpha, \beta, \gamma, \ldots$). For $i \in \mathcal{C}$, the identity 1-
morphism is denoted 1_i and, for a 1-morphism F, the corresponding identity 2-
morphism is denoted id_F. Composition of 1-morphisms is denoted by \circ, hori-
zontal composition of 2-morphisms is denoted by \circ_0 and vertical composition of
2-morphisms is denoted by \circ_1. We let \textbf{Cat} denote the 2-category of small cate-
gegories.
2.2. **Finitary 2-categories.** An additive \(k\)-linear category is called **finitary** if it is idempotent split, has finitely many isomorphism classes of indecomposable objects and finite dimensional \(k\)-vector spaces of morphisms. Denote by \(\mathcal{A}_k\) the 2-category whose objects are finitary additive \(k\)-linear categories, 1-morphisms are additive \(k\)-linear functors and 2-morphisms are natural transformations of functors.

A **finitary** 2-category (over \(k\)) is a 2-category \(\mathcal{C}\) with the following properties:

- it has a finite number of objects;
- for any pair \(i, j\) of objects in \(\mathcal{C}\), the category \(\mathcal{C}(i, j)\) is in \(\mathcal{A}_k\) and horizontal composition is both additive and \(k\)-linear;
- for any \(i \in \mathcal{C}\), the 1-morphism \(\mathbb{1}_i\) is indecomposable.

We refer to [Le, McL] for more general details on abstract 2-categories and to [MM1, MM2, MM3, MM4] for more information on finitary 2-categories.

2.3. **2-representations.** Let \(\mathcal{C}\) be a finitary 2-category. By a **2-representation** of \(\mathcal{C}\) we mean a strict 2-functor from \(\mathcal{C}\) to \(\text{Cat}\). By a **finitary** 2-representation of \(\mathcal{C}\) we mean a strict 2-functor from \(\mathcal{C}\) to \(\mathcal{A}_k\). Our 2-representations are generally denoted by \(M, N, \ldots\) with one exception: for \(i \in \mathcal{C}\) we have the principal 2-representation \(P_i := \mathcal{C}(i, -)\). Finitary 2-representations of \(\mathcal{C}\) form a 2-category, denoted \(\mathcal{C}_{af\text{-mod}}\), whose 1-morphisms are 2-natural transformations and whose 2-morphisms are modifications (see [Le, MM3]).

Two 2-representations \(M\) and \(N\) of \(\mathcal{C}\) are called **equivalent** if there exists a 2-natural transformation \(\Phi : M \to N\) such that \(\Phi_i\) is an equivalence for each \(i\).

Let \(M\) be a 2-representation of \(\mathcal{C}\). Assume that \(M(i)\) is an idempotent split additive category for each \(i \in \mathcal{C}\). For any collection of objects \(X_i \in M(i)\), where \(i \in I\), the additive closure of all objects of the form \(F X_i\), where \(i \in I\) and \(F\) runs through all 1-morphisms of \(\mathcal{C}\) is stable under the action of \(\mathcal{C}\) and hence inherits the structure of a 2-representation by restriction. This 2-representation will be denoted \(G_M(\{X_i : i \in I\})\).

To simplify notation, we will often write \(F X\) for \(M(F) X\) where \(F\) is a 1-morphism.

2.4. **Combinatorics of finitary 2-categories.** Let \(\mathcal{C}\) be a finitary 2-category. Denote by \(\mathcal{S}(\mathcal{C})\) the multiset of isomorphism classes of 1-morphisms in \(\mathcal{C}\), see [MM2 Section 3]. As usual, we define the left preorder \(\geq_L\) on \(\mathcal{S}(\mathcal{C})\) as follows: for two 1-morphisms \(F, G\) we set \(G \geq_L F\) provided that there is a 1-morphism \(H\) such that \(G\) is isomorphic to a direct summand of \(H \circ F\). Equivalence classes for \(\geq_L\) are called **left cells**. Right and two-sided preorders \(\geq_R\) and \(\geq_J\) and respective cells are defined analogously.

2.5. **Weakly fiat and fiat 2-categories.** For a 2-category \(\mathcal{C}\) there are three ways of creating an opposite 2-category.

- We can reverse both 1- and 2-morphisms.
- We can reverse only 1-morphisms.
We can reverse only 2-morphisms.

In the present paper we let \(C^{\text{op}} \) denote the first of the three choices above.

A finitary 2-category \(C \) is called weakly fiat provided that

- there is a weak equivalence \(* : C \to C^{\text{op}}\);

- for any pair \(i, j \in C \) and every 1-morphism \(F \in C(i, j) \) we have 2-morphisms \(\alpha : F \circ F^* \to i \) and \(\beta : i \to F^* \circ F \) such that \(\alpha_F \circ_1 F^*(\beta) = \text{id}_F \) and \(F^*(\alpha) \circ_1 F^* = \text{id}_{F^*} \).

If \(*\) is involutive, then \(C \) is called fiat, see [MM1, MM2].

2.6. 2-ideals. Let \(C \) be a 2-category. A left 2-ideal \(I \) of \(C \) consists of the same objects as \(C \) and for each pair \(i, j \) of objects an ideal \(I(i, j) \) in \(C(i, j) \) such that \(I \) is stable under the left horizontal multiplication with 1- and 2-morphisms in \(C \). Similarly one defines right 2-ideals and two-sided 2-ideals. The latter will simply be called 2-ideals. For example, each principal 2-representation can be interpreted as a left 2-ideal in \(C \).

Let \(C \) be a 2-category and \(M \) be a 2-representation of \(C \). An ideal \(I \) of \(M \) is a collection of ideals \(I(i) \) in \(M(i) \) for each \(i \in C \) stable under the action of \(C \) in the following sense: for any morphism \(\eta \in I \) and any 1-morphism \(F \) the composition \(M(F)(\eta) \) (if it is defined) is in \(I \). For example, left 2-ideals of \(C \) give rise to ideals in principal 2-representations.

2.7. Abelianization. Let \(A \) be a finitary additive \(k \)-linear category. Then the abelianization \(\overline{A} \) of \(A \) is the category whose objects are diagrams \(X \xrightarrow{\eta} Y \) where \(X, Y \in A \) and \(\eta \in A(X, Y) \) and morphisms are equivalence classes of solid commutative diagrams of the form

\[
\begin{array}{ccc}
X & \xrightarrow{\eta} & Y \\
\downarrow{\tau_1} & \nearrow{\tau_2} & \\
X' & \xrightarrow{\eta'} & Y'
\end{array}
\]

modulo the subspace spanned by those diagrams for which there exists \(\tau_3 \) as indicated by the dashed arrow such that \(\eta' \tau_3 = \tau_2 \). The category \(\overline{A} \) is abelian (cf. [ET]) and is equivalent to the category of modules over the finite dimensional \(k \)-algebra

\[
\text{End}_A(P)^{\text{op}} \quad \text{where} \quad P := \bigoplus_{Q \in \text{Ind}(A)/\sim} Q.
\]

Let \(C \) be a 2-category and \(M \) a finitary 2-representation of \(C \). Then the abelianization of \(M \) is the 2-representation \(\overline{M} \) of \(C \) which assigns to each \(i \in C \) the category \(\overline{M}(i) \) with the action of \(C \) defined on diagrams component-wise.

Directly from the definition it follows that the action of each 1-morphism on the abelianization of any finitary 2-representation is right exact.
A finitary 2-representation \mathbf{M} of \mathcal{C} will be called exact provided that $\mathbf{M}(F)$ is exact for any 1-morphism F in \mathcal{C}. For example, any finitary 2-representation of a weakly flat 2-category is exact.

2.8. Perron-Frobenius Theorem. We will use the following classical result due to Perron and Frobenius, see the original papers [Fro1, Fro2, Pe] or the detailed exposition in [Me, Chapter 8].

Theorem 1. Let $A = (a_{ij})$ be a real $n \times n$ matrix with strictly positive coefficients.

(i) A has a positive real eigenvalue, call it r, such that any other (possibly complex) eigenvalue of A has a strictly smaller absolute value.

(ii) The eigenvalue r appears with multiplicity one in the characteristic polynomial of A.

(iii) There exists a real eigenvector, call it \mathbf{v}, for eigenvalue r with strictly positive coefficients, moreover, any real eigenvector of A with strictly positive coefficients is a multiple of \mathbf{v}.

(iv) The eigenvalue r satisfies

$$\min_j \{\sum_i a_{ij}\} \leq r \leq \max_j \{\sum_i a_{ij}\}.$$

Corollary 2. Assume that A is as in Theorem 1 and has rank one. Then, if either inequality in Theorem 1 is an equality, then both inequalities are equalities and all columns of A coincide.

Proof. If A has rank one, then all columns of A are proportional to \mathbf{v} and the trace of A equals r. Assume, for example, that $\min_j \{\sum_i a_{ij}\} = \sum_i a_{i1} = r$. Set $\lambda_1 = 1$ and for $j = 2, 3, \ldots, n$ let λ_j be the positive real number (≥ 1) such that the j-th column equals λ_j times the first column. Then, we have

$$\sum_i a_{i1} = r = \text{trace}(A) = \sum_i a_{ii} = \sum_i \lambda_i a_{i1} \geq \sum_i a_{i1} = r.$$

It follows that $\lambda_j = 1$ for all j. The case where the second inequality is an equality is similar. \square

3. Transitive 2-representations

In this section, \mathcal{C} will be a finitary 2-category.

3.1. **Definition.** Let \mathbf{M} be a finitary 2-representations of \mathcal{C}. We will say that \mathbf{M} is transitive provided that for every \mathbf{i} and for every non-zero object $X \in \mathbf{M}(\mathbf{i})$ we have $G_{\mathbf{M}}(\{X\}) = \mathbf{M}$.

3.2. **Example:** transitive group actions. Let $G = (G, \cdot)$ be a finite group. Consider the finitary 2-category $\mathcal{G} = \mathcal{G}_G$ defined as follows:

- \mathcal{G} has one object \blacklozenge;
• 1-morphisms in \(G \) are \(\bigoplus_{g \in G} F^{\otimes k_g} \) where all \(k_g \geq 0 \);

• composition of 1-morphisms is given by \(F_g \circ F_h = F_{gh} \) and extended by biadditivity;

• non-zero 2-morphisms between indecomposable 1-morphisms are just scalar multiples of the identity, 2-morphisms between decomposable 1-morphisms are matrices of morphisms between the corresponding indecomposable summands;

• vertical composition of 2-morphisms is given by matrix multiplication;

• horizontal composition of 2-morphisms is given by tensor product of matrices.

The 2-category \(G \) is finitary by definition. Moreover, it is even a fiat 2-category (where \(* \) is induced by \(g \mapsto g^{-1} \)).

Let \(H \) be a subgroup of \(G \). Let \(A \) be a small category equivalent to \(k\)-mod. Consider the category

\[G_{H,A} := \bigoplus_{gH \in G/H} A(gH), \]

where \((gH) \) is a formal index. Now define the 2-representation \(M_{H,A} \) of \(G \)

• on the object by \(M_{H,A}(\bullet) = G_{H,A} \);

• on 1-morphisms by \(M_{H,A}(F_g) = (\varphi_{xH,yH})_{xH,yH \in G/H} \) where

\[\varphi_{xH,yH} = \begin{cases} 1d_A, & \text{if } gyH = xH; \\ 0, & \text{otherwise}; \end{cases} \]

• on 2-morphisms \(M_{H,A} \) in the obvious way using scalar multiples of the identity natural transformations.

It follows from the definition that \(M_{H,A} \) is a transitive 2-representation of \(G \). This 2-representation categorifies the classical transitive action of \(G \) on \(G/H \).

Note that in the above construction instead of \(A \) we can take any small finitary additive \(k \)-linear category \(B \) with one isomorphism class of indecomposable objects.

This example generalizes, in the obvious way, to finite semigroups. One major difference is that in the latter case the 2-category obtained will not be fiat but only finitary. Another difference is that while any transitive action of a finite group on a finite set is equivalent to the action on some \(G/H \), transitive actions of semigroups are more complicated, see e.g. [GM, Chapter 10].

3.3. Cell 2-representations. Here we use the approach from [MM2] to construct cell 2-representations for arbitrary finitary 2-categories.

Let \(L \) be a left cell in \(\mathcal{C} \). Then there is \(i = i_L \in \mathcal{C} \) such that every 1-morphism in \(L \) has domain \(i \). Consider the principal 2-representation \(P_i \). For \(j \in \mathcal{C} \) let \(N(j) \)
denote the additive closure in $P_1(j)$ of all 1-morphisms $F \in C(i,j) \cap L$ such that $F \geq L$. Then N is a 2-subrepresentation of P_1.

Lemma 3. There is a unique maximal ideal I in N which does not contain id_F for any $F \in L$.

Proof. Being an ideal of an additive category, I is uniquely determined by its morphisms between indecomposable objects. If $F \in L \cap C(i,j)$, then the algebra of 2-endomorphisms of F is local as F is indecomposable. Therefore the part of $\text{End}_{C(i,j)}(F)$ contained in I belongs to the radical of $\text{End}_{C(i,j)}(F)$. As the sum of two subspaces of the radical is contained in the radical, we conclude that the sum of all left ideals in N which do not contain id_F for any $F \in L$ still has the latter property. The claim follows. □

The quotient 2-functor $C_L := N/I$, where I is given by Lemma 3, is called the (additive) cell 2-representation of C associated to L. From the definitions, it follows directly that C_L is a transitive 2-representation of C.

3.4. A more exotic example. Similarly to Subsection 3.2 one defines a 2-category C with one object, indecomposable 1-morphisms $/BD$ and F, with the multiplication table

\[
\begin{array}{ccc}
/BD & /BD & F \\
/BD & /BD & F \\
F & F & F + F \\
\end{array}
\]

and only scalar multiples of the identity 2-morphisms for indecomposable 1-morphisms. This 2-category C has two left cells (corresponding to the two indecomposable 1-morphisms), so we have the respective cell 2-representations. These are transitive, see Subsection 3.3. Similarly to Subsection 3.2 one can construct a rather different transitive 2-representation on a category $A \oplus A$, where A is as in Subsection 3.2 by mapping the 1-morphism F to the functor

\[
\begin{pmatrix}
\text{Id}_A & \text{Id}_A \\
\text{Id}_A & \text{Id}_A
\end{pmatrix}.
\]

3.5. Simple transitive 2-representations. Let M be a transitive 2-representation of C.

Lemma 4. There is a unique maximal ideal I in M which does not contain any identity morphisms apart from the one for the zero object.

Proof. Mutatis mutandis proof of Lemma 3. □

The main idea of the following definition generalizes [MM2 Subsection 6.5]. A transitive 2-representation M of C is called *simple transitive* provided that its unique maximal ideal given by Lemma 4 is the zero ideal. For a transitive 2-representation M denote by M the quotient of M by the ideal I given by Lemma 4. We will loosely call M the *simple transitive quotient* of M.

3.6. Examples of simple transitive 2-representations. Lemma 3 implies that each cell 2-representation of \mathcal{C} is simple transitive. Furthermore, transitive 2-representations $M_{H,A}$ of \mathcal{G} constructed in Subsection 3.2 are simple transitive (and these are not equivalent to cell 2-representations in general). In fact, the next proposition shows that these exhaust all simple transitive 2-representations of \mathcal{G}.

Proposition 5. Every simple transitive 2-representations of \mathcal{G} is equivalent to $M_{H,A}$ for some subgroup H of G and a skeletal category A equivalent to k-mod.

Proof. Let M be a simple transitive 2-representation of \mathcal{G}. Invertibility of each F_g implies that F_g sends non-isomorphic objects to non-isomorphic objects, indecomposable objects to indecomposable objects and radical morphisms to radical morphisms. Therefore the ideal I given by Lemma 4 coincides with the radical of $M(\bullet)$. By simple transitivity, we hence obtain that the radical of $M(\bullet)$ is zero and thus $M(\bullet)$ is a semi-simple category.

As each F_g sends indecomposable objects to indecomposable objects, G induces a transitive action on the set of isomorphism classes of indecomposable objects in $M(\bullet)$. Fix an indecomposable object $X \in M(\bullet)$ and set

$$H := \{ h \in G : F_h X \cong X \}.$$

Let A be a skeletal category equivalent to k-mod. Consider the (unique!) functor $\Phi : M(\bullet) \to GH$ which sends an indecomposable object $Y \cong F_g X$ for some $g \in G$ to the unique indecomposable object in $A(gH)$. Then Φ is easily checked to give an equivalence between M and $M_{H,A}$. The claim follows.

Note that Proposition 5 does not extend to all transitive 2-representations in an obvious way. For example, let G be the cyclic group of order two. Then G acts by automorphisms on the finite dimensional k-algebra A given by the quiver

\[
\begin{array}{c}
1 \rightarrow a \\
\downarrow b \\
2
\end{array}
\]

with relations $ab = ba = 0$ (the non-trivial automorphism is given by the automorphism of the quiver which swaps 1 with 2 and a with b). This induces a transitive action of G and hence of the corresponding 2-category \mathcal{G} on any skeletal category equivalent to the category of finite dimensional projective A-modules. We refer to [AM, Section 2] for more details.

3.7. Strongly simple 2-representations are (simple) transitive. In parallel to [MM, Subsection 6.2], we call a finitary 2-representation M of \mathcal{C} strongly simple provided that for any $i, j \in \mathcal{C}$ with $M(i)$ nonzero, any simple object $L \in M(i)$ and any pair P, Q of indecomposable projectives in $M(j)$, there exist indecomposable 1-morphisms F and G such that $FL \cong P$, $GL \cong Q$ and the evaluation map $\text{Hom}_{\mathcal{C}(i,j)}(F, G) \to \text{Hom}_{\mathcal{C}(j)}(FL, GL)$ is surjective.

Proposition 6. Let \mathcal{C} be a finitary 2-category and M a strongly simple finitary 2-representation of \mathcal{C}.

(i) The 2-representation M is transitive.

(ii) If M is exact (in particular, if \mathcal{C} is weakly fiat), then M is simple transitive.
Proof. Let X be a non-zero indecomposable object in some \(M(i) \) and \(L \) be its simple top in \(\overline{M}(i) \). Let Y be a non-zero indecomposable object in some \(M(j) \). By definition of strong simplicity, there is an indecomposable 1-morphism \(F \) such that \(FL \cong Y \). This means that \(Y \) is isomorphic to a direct summand of \(FX \) and hence \(M \) is transitive. This proves claim (i).

Let \(X, Y \in \overline{M}(i) \) be two indecomposable projective objects and \(\eta : X \to Y \) be a non-zero morphism. Denote by \(L \) the simple top of \(X \). Choose two 1-morphisms \(F \) and \(G \) in \(C \) such that \(FL \cong X \) and \(GL \cong Y \). Consider a finite dimensional \(k \)-algebra \(B \) such that \(M(i) \cong B\text{-mod} \). For simplicity, we identify \(M(i) \) and \(B\text{-mod} \).

Let \(e, e' \) be two primitive idempotents of \(B \) such that \(X \cong Be \) and \(Y \cong Be' \). Then, by Lemma 13, the functor \(\overline{M}(F) \) surjects onto the projective functor \(Be \otimes_k eB \otimes_B \). Similarly, the functor \(\overline{M}(G) \) surjects onto the projective functor \(Be' \otimes_k eB \otimes_B \).

Now, for any non-zero map \(\eta' : Be \to Be' \) the induced map
\[
\text{Id}_{Be} \otimes \text{Id}_{eB} \otimes \eta' : Be \otimes_k eB \otimes_B Be \to Be \otimes_k eB \otimes_B Be'
\]
contains, as a direct summand, the identity map on \(Be \). This implies that the ideal \(I \) in \(M \) generated by \(\eta \) contains the identity morphism on \(X \). Therefore \(M \) is simple transitive. \(\square \)

Example 7. The claim of Proposition 6(ii) fails for general finitary 2-representations. Consider the algebra \(D = k[x]/(x^2) \) of dual numbers. Let \(A \) be a small category equivalent to \(D\text{-mod} \) and \(\mathcal{C} \) the finitary category with one object \(\bullet \) which we identify with \(A \), with indecomposable 1-morphisms being endofunctors of \(A \) isomorphic to either the identity functor or tensoring with the \(D\)-\(D \)-bimodule \(D \otimes_k k \), and 2-morphisms being natural transformations of functors. Then the defining 2-representation of \(\mathcal{C} \), i.e. the natural 2-action of \(\mathcal{C} \) on \(A \), is clearly strongly simple. However, as tensoring with \(D \otimes_k k \) annihilates the non-zero nilpotent endomorphism of \(D \), this 2-representation is not simple transitive.

Note also that the example of a transitive 2-representation considered in Subsection 3.4 is, clearly, simple transitive but not strongly simple.

4. Weak Jordan-Hölder theory

In this section, \(\mathcal{C} \) will be a finitary 2-category.

4.1. The action preorder. Let \(M \) be a finitary 2-representation of \(\mathcal{C} \). Consider the (finite) set \(\text{Ind}(M) \) of isomorphism classes of indecomposable objects in all \(M(i) \) where \(i \in \mathcal{C} \). For \(X, Y \in \text{Ind}(M) \) set \(X \geq Y \) provided that there is a 1-morphisms \(F \) in \(\mathcal{C} \) such that \(X \) is isomorphic to a direct summand of \(FY \). Clearly, \(\geq \) is a partial preorder on \(\text{Ind}(M) \) which we will call the action preorder.

Let \(\sim \) be the equivalence relation defined by \(X \sim Y \) if and only if \(X \geq Y \) and \(Y \geq X \). Note that \(M \) is transitive if and only if we have exactly one equivalence class, namely the whole of \(\text{Ind}(M) \). The preorder \(\geq \) induces a genuine partial order on the set \(\text{Ind}(M)/\sim \) which, abusing notation, we will denote by the same symbol.
4.2. 2-subrepresentations and subquotients associated to coideals. Let Q be a coideal in $\text{Ind}(\mathcal{M})/_\sim$. For $i \in \mathcal{C}$ consider the additive closure $M_Q(i)$ in $\mathcal{M}(i)$ of all indecomposable objects $X \in \mathcal{M}(i)$ whose equivalence class belongs to Q. Then M_Q has the natural structure of a 2-representation of \mathcal{C} given by restriction from \mathcal{M}. This is the 2-subrepresentation of \mathcal{M} associated to Q.

Suppose we are given a pair Q, R of coideals in $\text{Ind}(\mathcal{M})/_\sim$ such that $Q \subset R$. For $i \in \mathcal{C}$ let $I(i)$ denote the ideal in $M_R(i)$ generated by the identities on the objects in $M_Q(i)$. Then we can form the quotient category $M_{R/Q}(i) := M_R(i)/I(i)$ and the 2-functor M_R induces the 2-functor $M_{R/Q}$ which sends i to $M_{R/Q}(i)$. This is the 2-subquotient of \mathcal{M} associated to $Q \subset R$. Note that $|R \setminus Q| = 1$ implies that the 2-representation $M_{R/Q}$ is transitive.

For $r \in \text{Ind}(\mathcal{M})/_\sim$ let X_r be the maximal coideal in $\text{Ind}(\mathcal{M})/_\sim$ which does not contain r. Then r becomes the minimum element in $(\text{Ind}(\mathcal{M})/_\sim) \setminus X_r$ with respect to the induced order. Let $Y_r := X_r \cup \{r\}$. Then Y_r is a coideal in $\text{Ind}(\mathcal{M})/_\sim$. Therefore we have the associated quotient M_{Y_r/X_r} and we set $M_r := M_{Y_r/X_r}$.

4.3. Weak Jordan-Hölder series. Consider a filtration $Q : \varnothing = Q_0 \subsetneq Q_1 \subsetneq Q_2 \subsetneq \cdots \subsetneq Q_k = \text{Ind}(\mathcal{M})/_\sim$ of coideals such that $|Q_i \setminus Q_{i-1}| = 1$ for all i. Such a filtration will be called a complete filtration. With such a filtration we associate a filtration of 2-subrepresentations

\[(1) \quad 0 \subset M_{Q_1} \subset M_{Q_2} \subset \cdots \subset M_{Q_k} = \mathcal{M}\]

and the corresponding sequence

\[(2) \quad M_{Q_1}, M_{Q_2/Q_1}, M_{Q_3/Q_2}, \ldots, M_{Q_k/Q_{k-1}}\]

of simple transitive subquotients. The filtration $\mathcal{(1)}$ is called a weak Jordan-Hölder series of \mathcal{M} and the elements in $\mathcal{(2)}$ are also called weak composition subquotients.

4.4. Weak Jordan-Hölder theorem. The main result of this section is the following weak version of the classical Jordan-Hölder theorem.

Theorem 8. Let \mathcal{C} be a finitary 2-category and \mathcal{M} a finitary 2-representation of \mathcal{C}. Let further Q and R be two complete filtrations of $\text{Ind}(\mathcal{M})/_\sim$. Let L_1, L_2, \ldots, L_k be the sequence of simple transitive subquotients associated to Q and L'_1, L'_2, \ldots, L'_l be the sequence of simple transitive subquotients associated to R. Then $k = l$ and there is a bijection $\sigma : \{1, 2, \ldots, k\} \to \{1, 2, \ldots, l\}$ such that L_i and $L'_{\sigma(i)}$ are equivalent for all $i \in \{1, 2, \ldots, k\}$.

Proof. Note first that we have $k = l = |\text{Ind}(\mathcal{M})/_\sim|$ by definition. Let $r \in \text{Ind}(\mathcal{M})/_\sim$. Then there are unique $i, j \in \{1, 2, \ldots, k\}$ such that $r = Q_i \setminus Q_{i-1}$ and $r = R_j \setminus R_{j-1}$. To prove the assertion it is enough to show that the 2-representations M_{L_i}, L_i and L'_j are equivalent. By symmetry, it is enough to show that M_{L_i} and L_i are equivalent.

Let I be the ideal in M_{Y_r} used to define M_{Y_r/X_r}. Similarly, let J be the ideal in M_{Q_i} used to define $M_{Q_i/Q_{i-1}}$. By construction of X_r, we have $Q_{i-1} \subset X_r$ and hence also $Q_i \subset Y_r$. The inclusion $Q_i \subset Y_r$ induces a faithful 2-natural transformation from M_{Q_i} to M_{Y_r}, which gives, by taking the quotient, a strong transformation from M_{Q_i} to M_{Y_r}.
to $M_{Y/X}$. Since $Q_{i-1} \subset X_r$ for any indecomposable objects M and N whose \sim-classes belong to r, we have $\mathsf{J}(M, N) \subset \mathsf{I}(M, N)$. Therefore the strong transformation from M_{Q_i} to $M_{Y/X}$ factors through $M_{Q_i/Q_{i-1}}$. This gives a 2-natural transformation from $M_{Q_i/Q_{i-1}}$ to $M_{Y/X}$, which is surjective on morphisms. Note that both 2-representations $M_{Q_i/Q_{i-1}}$ and $M_{Y/X}$ are transitive. Taking now the quotient by the unique maximal ideal given by Lemma 5 induces an equivalence between the corresponding simple transitive quotients, that is between L_i and M_i. The claim follows. □

4.5. Example: weak composition subquotients for principal 2-representations. Consider the principal 2-representation \mathbb{P}_i for $i \in \mathscr{C}$. The action preorder \geq for \mathbb{P}_i coincides with the restriction to \mathbb{P}_i of the preorder \geq_L. Therefore $\operatorname{Ind}(\mathbb{P}_i)$ coincides with the set of isomorphism classes of 1-morphisms in \mathscr{C} with domain i. The set $\operatorname{Ind}(\mathbb{P}_1)/_{\sim}$ thus becomes the set of all left cells with domain 1. Comparing Subsection 5.3 with Subsection 4.3, we see that weak composition subquotients of \mathbb{P}_1 are exactly the cell 2-representations for left cells with domain 1.

5. Classification of transitive 2-representations for \mathscr{C}_A

5.1. The 2-category \mathscr{C}_A. Let A be a basic self-injective connected k-algebra of finite dimension m. Fix a small category \mathcal{A} equivalent to A-mod. We assume that \mathcal{A} is not semi-simple. Define the 2-category \mathscr{C}_A as follows (cf. [MM1 Subsection 7.3]):

- \mathscr{C}_A has one object \bullet (which we identify with \mathcal{A});
- 1-morphisms in \mathscr{C}_A are direct sums of functors with summands isomorphic to the identity functor or to tensoring with projective A-A-bimodules;
- 2-morphisms in \mathscr{C}_A are natural transformations of functors.

Functors isomorphic to tensoring with projective A-A-bimodules will be called projective functors.

Fix some decomposition $1 = e_1 + e_2 + \cdots + e_n$ of the identity in A into a sum of primitive orthogonal idempotents. The 2-category \mathscr{C}_A has a unique minimal two-sided cell consisting of the isomorphism class of the identity morphism. It has one other two-sided cell \mathscr{J} consisting of the isomorphism classes of functors F_{ij} given by tensoring with the indecomposable bimodules $Ae_i \otimes e_j A$, where $i, j \in \{1, 2, \ldots, n\}$. Left and right cells in \mathscr{J} are

$$\mathcal{L}_j := \{F_{ij} : i \in \{1, 2, \ldots, n\}\} \quad \text{and} \quad \mathcal{R}_i := \{F_{ij} : j \in \{1, 2, \ldots, n\}\},$$

where $i, j \in \{1, 2, \ldots, n\}$. We have

$$F_{ij} \circ F_{kl} \cong F_{ij}^{\dim(e_j A e_i)}.$$

Let $\sigma : \{1, 2, \ldots, n\} \rightarrow \{1, 2, \ldots, n\}$ be the Nakayama bijection given by requiring $\operatorname{soc} A e_i \cong \top A e_{\sigma(i)}$ which is equivalent to $A e_i \cong \operatorname{Hom}_k(e_{\sigma(i)} A, k)$. Since $\operatorname{Hom}_A(A e_i \otimes_k e_{\sigma(i)} A, -) \cong \operatorname{Hom}_k(e_j A, k) \otimes_k e_i A \otimes_A -$, see e.g. [MM1 Subsection 7.3], we have that $(F_{ij}, F_{\sigma^{-1}(ij)})$ is an adjoint pair of functors. This implies that \mathscr{C}_A is weakly fiat with $*$ defined on 1-morphisms by $F_{ij}^* = F_{\sigma^{-1}(ij)}$.

\textbf{TRANSITIVE 2-REPRESENTATIONS} 11
We set $F := \bigoplus_{i,j=1}^{n} F_{ij}$. Since A is basic and

$$A \otimes_{k} A \otimes_{k} A \cong A \otimes_{k} A^{\oplus \ell},$$

we have

(3) $F \circ F \cong F^{\oplus \ell}.$

Note that $F^{\ast} \cong F$.

The 2-category \mathcal{C}_A is \mathcal{J}-simple in the sense that any nonzero two-sided 2-ideal in \mathcal{C}_A contains the identity 2-morphisms on all indecomposable non-identity 1-morphisms, see [MM2, Subsection 6.2].

Denote by P the full subcategory of A consisting of projective objects. Then the defining action of \mathcal{C}_A on A restricts to P. We will denote the latter defining additive 2-representation of \mathcal{C}_A by D.

Proposition 9. For any $j = 1, \ldots, n$ the 2-representations D and C_{L_j} are equivalent.

Proof. It is easy to check that mapping the generator $P_{1\bullet}$ of $P\bullet$ to the simple object in A corresponding to j induces an equivalence from C_{L_j} to D. \qed

5.2. Matrices in the Grothendieck group

Let M be a finitary 2-representation of \mathcal{C}_A. For a 1-morphism G denote by $[G]$ the square matrix with non-negative integer coefficients whose rows and columns are indexed by isomorphism classes of indecomposable objects in $M(\bullet)$ and the intersection of the row indexed by Y and the column indexed by X contains the multiplicity of Y as a direct summand of $G X$.

Consider the abelianization \overline{M} of M. Then the isomorphism classes of simple objects in $\overline{M}(\bullet)$ are in bijection with isomorphism classes of indecomposable objects in $M(\bullet)$. For a 1-morphism G denote by $[\overline{G}]$ the square matrix with non-negative integer coefficients whose rows and columns are indexed by isomorphism classes of simple objects in $\overline{M}(\bullet)$ and the intersection of the row indexed by Y and the column indexed by X contains the composition multiplicity of Y in $G X$. The following generalizes [AM, Lemma 8].

Lemma 10. We have $[G^*] = [G]^t$, where t denotes the transpose of a matrix.

Proof. For a projective P and a simple L in $\overline{M}(\bullet)$ we have

$$\text{Hom}_{\overline{M}(\bullet)}(G, P, L) \cong \text{Hom}_{\overline{M}(\bullet)}(P, G^*, L).$$

The inclusion of $M(\bullet)$ to $\overline{M}(\bullet)$ given by $X \mapsto (0 \rightarrow X)$ is an equivalence between $M(\bullet)$ and the category of projective objects in $\overline{M}(\bullet)$. This implies the claim. \qed

Lemma 11. Consider the functor F from Subsection 5.1.

(i) The matrix $[F]$ satisfies $[F]^2 = m[F]$.

(ii) If M is transitive, then all entries in $[F]$ are positive.

(iii) If M is transitive, then the rank of $[F]$ equals one.
Proof. Claim (i) follows from (3). Claim (ii) is immediate from the definition of transitivity.

Claim (i) implies that $[F]$ is diagonalizable with eigenvalues 0 and m. By Theorem 5(ii), the eigenvalue m has multiplicity one. Claim (iii) follows. □

5.3. Auxiliary lemmata.

Lemma 12. Let M be a simple transitive 2-representation of \mathcal{C}_A. Then for any $X \in M(\bullet)$ the object FX is projective in $M(\bullet)$.

Proof. Applying F to a minimal projective presentation $P_1 \xrightarrow{\alpha} P_0$ of FX we get a projective presentation $FP_1 \xrightarrow{F(\alpha)} FP_0$ of $F^2X \cong (FX)^\oplus m$.

Consider the split Grothendieck group of the category W of projective objects in $M(\bullet)$. For $i = 0, 1$ let v_i be the vector recording the multiplicities of indecomposable projective objects in FP_i. Then, by minimality of the presentation $P_1 \xrightarrow{\alpha} P_0$, we have

\[(4) [F] \cdot v_i = mv_i + w_i \]

for some non-negative vectors w_i. Note that $mv_i + w_i$ is a nonzero vector and belongs to the image of $[F]$. Therefore, by Lemma 11(iii), $mv_i + w_i$ is an eigenvector for $[F]$ with eigenvalue m. Hence $[F](mv_i + w_i) = m(mv_i + w_i)$. On the other hand,

$[F](mv_i + w_i) = m[F]v_i + [F]w_i \equiv m(mv_i + w_i) + [F]w_i$.

Therefore $[F]w_i = 0$ and since w_i has only non-negative entries and all entries of $[F]$ are positive, we obtain $w_i = 0$.

It follows that $FP_1 \xrightarrow{F(\alpha)} FP_0$ is a minimal projective presentation of F^2X, in particular, the morphism $F(\alpha)$ is contained in the radical of $M(\bullet)$.

The category W carries the structure of a 2-representation of \mathcal{C}_A by restriction. This 2-representation is equivalent to M (the natural inclusion of $M(\bullet)$ into W is the desired equivalence). In particular, the 2-representation of \mathcal{C}_A on W is simple transitive. Let I be the ideal of W generated by $F(\alpha)$. This is contained in the radical of W by the above and is F-stable by (3). Hence I is \mathcal{C}_A-stable as it is stable under all indecomposable non-identity 1-morphisms. By simple transitivity, we thus get $I = 0$, that is $\alpha = 0$. The claim follows. □

Lemma 13. Let B be a finite dimensional k-algebra and G an exact endofunctor of B-mod. Assume that G sends each simple object of B-mod to a projective object. Then G is a projective functor.

Proof. Consider a short exact sequence of functors $K \hookrightarrow H \twoheadrightarrow G$ where H is a projective functor. This exists because any right exact functor is equivalent to tensoring with some bimodule and is hence a quotient of a projective functor. We assume that H is chosen minimally, that is such that the tops of H and G (viewed as bimodules) agree.

Applying $K \hookrightarrow H \twoheadrightarrow G$ to a short exact sequence $X \hookrightarrow Y \twoheadrightarrow Z$ in B-mod we observe that $HX \twoheadrightarrow GX$ and hence the Snake Lemma yields the exact sequence $KX \hookrightarrow KY \twoheadrightarrow KZ$. This implies that K is exact.
Applying $K \hookrightarrow H \twoheadrightarrow G$ to a simple object $L \in \mathcal{B}$-mod we obtain an exact sequence $K L \hookrightarrow H L \twoheadrightarrow G L$. By our choice of H, we have $H L = 0$ if and only if $G L = 0$. Furthermore, by assumptions on G we have $H L \cong G L$ whenever $G L \neq 0$. This implies $H L \cong G L$ for all L and hence $K L = 0$. By exactness of K we thus deduce $K = 0$ and hence $H \cong G$.

Lemma 14. Let A, \mathcal{C}_A and F be as given in Subsection 5.1. Let further M be a 2-representation of \mathcal{C}_A and $N \in \mathcal{M}(\otimes)$ such that $FN \neq 0$. Then there is an algebra monomorphism from A to $\text{End}_{\mathcal{M}(\otimes)}(FN)$.

Proof. From the definitions we know that the 2-endomorphism algebra of F is isomorphic to $A \otimes_k A^{op}$. We have a natural algebra monomorphism from A to $A \otimes_k A^{op}$ given by $a \mapsto a \otimes 1$. Consider the evaluation homomorphism $\text{Ev}_N : \text{End}_{\mathcal{C}_A}(\otimes)(F) \to \text{End}_{\mathcal{M}(\otimes)}(FN)$.

For a fixed left cell \mathcal{L} consider the corresponding cell 2-representation $\mathcal{C}_\mathcal{L}$ of \mathcal{C}_A. By [MM2, Proposition 21], there is a unique maximal left ideal in \mathcal{C}_A which does not contain any identity 2-morphisms for 1-morphisms in \mathcal{L}. Now, by [MM2, Subsection 6.5], this left ideal is the annihilator of the sum of all simple objects in $\mathcal{C}_\mathcal{L}$.

From Proposition 9 we know that $\mathcal{C}_\mathcal{L}$ is equivalent to the defining representation which implies that this maximal left ideal is, in fact, $A \otimes \text{rad} A^{op}$. Therefore the kernel of Ev_N, which is a left ideal, must belong to $A \otimes \text{rad} A^{op}$. This implies that the kernel of Ev_N does not intersect the space $A \otimes 1$ and hence the induced composition $A \to \text{End}_{\mathcal{C}_A}(\otimes)(F) \to \text{End}_{\mathcal{M}(\otimes)}(FN)$ is injective.

5.4. Main result.

Theorem 15. Let A be as given in Subsection 5.1. Then any simple transitive 2-representation of \mathcal{C}_A is equivalent to some cell 2-representation.

Proof. Consider a simple transitive 2-representation \mathcal{M} of \mathcal{C}_A and its abelianization $\bar{\mathcal{M}}$. Let X_1, X_2, \ldots, X_k be a complete and irredundant list of representatives of isomorphism classes of indecomposable objects in $\mathcal{M}(\otimes)$. Denote by B the endomorphism algebra of $\bigoplus_{i=1}^k X_i$. Note that $\mathcal{M}(\otimes)$ is equivalent to B^{op}-mod. For $i = 1, 2, \ldots, k$ we let L_i denote the simple quotient in $\mathcal{M}(\otimes)$ of the indecomposable projective object $0 \to X_i$.

Recall the 1-morphism F defined in Subsection 5.1 and the corresponding matrix $[F]$ describing the action of F on the Grothendieck group of $\mathcal{M}(\otimes)$ in the basis of simple modules. By Theorem 14, there is a column,

$$
\begin{pmatrix}
v_1 \\
v_2 \\
\vdots \\
v_k
\end{pmatrix}
$$

in $[F]$, say with index j, such that $v_1 + v_2 + \cdots + v_k \leq m$. By Lemma 12 we have $FL_j \cong \bigoplus_{i=1}^k X_i^{\oplus l_i}$
for some non-negative integers \(l_1, l_2, \ldots, l_k\). Transitivity of \(M\) and \(B\) imply that all \(l_1, l_2, \ldots, l_k\) are, in fact, positive integers. Denote by \(B'\) the endomorphism algebra of \(FL_j\) which is Morita equivalent to \(B\) by the previous sentence. The vector \((l_1, l_2, \ldots, l_k)\) is, by \(B\), an eigenvector of \([F]\). Moreover, by Lemma \([13]\) we have \([F] = [F'] = [F'']\) where the latter equality follows from self-adjointness of \(F\).

Lemma \([14]\) provides an algebra embedding of \(A\) into \(B'\) and hence an embedding \(A_A \hookrightarrow B'_A\) of \(A\)-modules. Since the algebra \(A\) (and hence also \(A^{op}\)) is self-injective, each indecomposable summand of \(A_A\) has simple socle. Therefore the embedding \(A_A \hookrightarrow B'_A\) induces an embedding (of right \(A\)-modules) from \(A_A\) into

\[
\bigoplus_{j=1}^{k} \Hom_{\mathcal{M}(\mathfrak{A})}(X_i, FL_j).
\]

The dimension of the latter equals \(v_1 + v_2 + \cdots + v_k \leq m\), while \(\dim_k A = m\), therefore \(v_1 + v_2 + \cdots + v_k = m\) and by Corollary \([2]\) all columns of \([F]\) are equal. In particular, it follows that \(l_1 = l_2 = \cdots = l_k = l\) for some \(l \in \mathbb{N}\) and thus \(B'\) is isomorphic to the algebra of \(l \times l\) matrices with coefficients in \(B\).

The algebra of \(B'\)-endomorphisms of \((5)\) is isomorphic to \(B\) and embeds into the algebra of \(A\)-endomorphisms of \((5)\) (the latter embedding is due to the fact that \(A\) is a subalgebra of \(B'\)) which is equal to \(A\) by comparing dimensions. Therefore we have

\[
B \hookrightarrow A \hookrightarrow B'.
\]

Next we argue that \(FL_s = (X_1 \oplus X_2 \oplus \cdots \oplus X_k)^{\oplus l}\) for any \(s\). The arguments above imply that \(FL_s = (X_1 \oplus X_2 \oplus \cdots \oplus X_k)^{\oplus l_s}\) for some positive integer \(l_s\). Now \(l = l_s\) since all columns of \([F]\) are equal.

As \(FL_j = (X_1 \oplus X_2 \oplus \cdots \oplus X_k)^{\oplus l}\), it follows that \(\dim_k B' = lm\) and therefore \(\dim_k B = \frac{m^2}{l}\). Set \(\Theta := \mathcal{M}(F)\). Lemma \([13]\) implies that \(\Theta\) is a projective functor which sends each simple to \((X_1 \oplus X_2 \oplus \cdots \oplus X_k)^{\oplus l}\). The dimension of the endomorphism algebra of \(\Theta\) thus equals \(l \cdot \frac{m^2}{l} = m^2\). Note that \(\mathcal{J}\)-simplicity of \(E_A\) gives us a natural inclusion of the algebra \(\End_{\mathcal{M}(\mathfrak{A})}(\Theta) \cong A \otimes A^{op}\) of 2-endomorphisms of \(F\) into the endomorphism algebra of \(\Theta\) in the category of right exact endofunctors of \(\mathcal{M}(\mathfrak{A})\). As both these algebras have dimension \(m^2\), this natural inclusion is, in fact, an isomorphism.

Therefore \(B \cong A \cong B'\) and thus \(\mathcal{M}\) is equivalent to the defining 2-representation of \(E_A\). Now the proof is completed by applying Proposition \([9]\).

5.5. **Generalizations.**

Remark 16. Theorem \([15]\) generalizes verbatim and with the same proof to the case where \(A\) is a basic self-injective finite dimensional \(k\)-algebra (not necessarily connected). The technical difficulty in this case is that, in order to be consistent with the requirement for \(\mathfrak{A}\) to be indecomposable, one has to consider a 2-category with several objects indexed by connected components of \(A\).

Remark 17. Theorem \([17]\) generalizes verbatim to 2-subcategories of \(E_A\) described in \([MM3\] Subsection 4.5]. These 2-subcategories exhaust all “simple” 2-categories of certain type, see \([MM3\] Theorem 13] and Subsection \([16] below for details. The only difference between those 2-subcategories and \(E_A\) is that the former may contain fewer 2-endomorphisms of the identity 1-morphisms. We did not use 2-endomorphisms of identity 1-morphisms in the above proof.
6. Transitive 2-representations for some general fiat 2-categories

6.1. Strong regularity and a numerical condition. Let \(\mathcal{C}\) be a fiat 2-category and \(\mathcal{J}\) a two-sided cell in \(\mathcal{C}\). We say that \(\mathcal{J}\) is strongly regular, see [MM1 Subsection 4.8], provided that

- different right (left) cells in \(\mathcal{J}\) are not comparable with respect to the right (left) preorder;
- the intersection of a left and a right cell in \(\mathcal{J}\) consists of exactly one isomorphism class of indecomposable 1-morphisms.

For example, the 2-category \(\mathcal{C}_A\) from Subsection 5.1 is strongly regular.

If \(\mathcal{J}\) is strongly regular, we have a well-defined function sending \(F \in \mathcal{J}\) to the number of indecomposable summands in \(F^* \circ F\) which belong to \(\mathcal{J}\). We will say that \(\mathcal{J}\) satisfies the numerical condition provided that this function is constant on right cells. Again, it is easy to check that the 2-category \(\mathcal{C}_A\) from Subsection 5.1 satisfies the numerical condition, see [MM1 Subsection 7.3].

Another example of a 2-category in which each two-sided cell is strongly regular and satisfies the numerical condition is the 2-category \(\mathcal{S}_n\) of Soergel bimodules for the symmetric group \(S_n\), see [MM1 Subsection 7.1] and [MM2 Example 3] for details.

6.2. Another generalization of the main result.

Theorem 18. Let \(\mathcal{C}\) be a fiat 2-category such that all two-sided cells in \(\mathcal{C}\) are strongly regular and satisfy the numerical condition. Then any simple transitive 2-representation of \(\mathcal{C}\) is equivalent to a cell 2-representation.

Proof. Let \(M\) be a simple transitive 2-representation of \(\mathcal{C}\). First of all, we claim that there is a unique maximal two-sided cell \(\mathcal{J}\) which does not annihilate \(M\). Indeed, assume that we have two maximal two-sided cells \(\mathcal{J}_i\) for \(i = 1, 2\) with this property. Then for any \(F_i \in \mathcal{J}_i\), \(i = 1, 2\), we have \(M(F_1) \circ M(F_2) = 0\) and \(M(F_2) \circ M(F_1) = 0\) whenever the expression makes sense. Therefore the additive closure of objects in all \(M(\mathfrak{a})\) which may be obtained by applying 1-morphisms from \(\mathcal{J}_i\) is, on the one hand, a 2-subrepresentation of \(M\) (by maximality of \(\mathcal{J}_i\)) and, on the other hand, annihilated by all 1-morphisms from \(\mathcal{J}_2\). Due to transitivity of \(M\), we obtain that \(\mathcal{J}_2\) annihilates \(M\), a contradiction.

Now denote by \(\mathcal{J}\) the maximal two-sided cell of \(\mathcal{C}\) which does not annihilate \(M\). Without loss of generality we may assume that \(\mathcal{J}\) is the unique maximal two-sided cell in \(\mathcal{C}\) and that \(M\) is 2-faithful in the sense that it does not annihilate any 2-morphisms. Indeed, we may replace \(\mathcal{C}\) by its quotient modulo the kernel of \(M\) which does not change the structure of the surviving cells.

Denote by \(\mathcal{C}_\mathcal{J}\) the 2-full 2-subcategory of \(\mathcal{C}\) formed by all 1-morphisms in \(\mathcal{J}\) together with their respective identity 1-morphisms. By restriction, \(M\) becomes a 2-representation \(M_\mathcal{J}\) of \(\mathcal{C}_\mathcal{J}\). As the additive closure of 1-morphisms in \(\mathcal{J}\) is stable with respect to left multiplication by 1-morphisms in \(\mathcal{C}\), it follows that \(M\) is a transitive 2-representation of \(\mathcal{C}_\mathcal{J}\).
We claim that M_J is simple transitive. Indeed, assume that J is an ideal of M stable with respect to the action of C. Assume that it is nonzero and take any nonzero morphism α in it. As M is a simple transitive 2-representation of C, there exists a 1-morphism G in C such that $G(\alpha)$ has an invertible nonzero direct summand. Applying 1-morphisms from C_J we, on the one hand, will map such an invertible direct summand to another invertible morphism (and since M is transitive there is a 1-morphism F in C_J which does not annihilate this invertible direct summand). On the other hand, $F \circ G$ is in J and hence application of it to α cannot produce any invertible direct summands, a contradiction. Therefore J is zero.

By Theorem 15, Remark 17 and [MM3, Theorem 13], M_J is equivalent to a cell 2-representation C_J of C_J where L is a left cell in J. By [MM1, Theorem 43] any choice of L yields an equivalent 2-representation. Set $i = i_L$ and let L be a simple object in $C_J(i)$ which is not annihilated by 1-morphisms in L. Then we can consider L as an object in $M(i)$.

By Theorem 15, Remark 17 and [MM3, Theorem 13], M_J is equivalent to a cell 2-representation C_J of C_J where L is a left cell in J. By [MM1, Theorem 43] any choice of L yields an equivalent 2-representation. Set $i = i_L$ and let L be a simple object in $C_J(i)$ which is not annihilated by 1-morphisms in L. Then we can consider L as an object in $M(i)$.

Sending P_i to L gives a 2-natural transformation Φ from the 2-representation P_i of C to M. In the notation of Subsection 3.3, the image of $N(j)$ for $j \in C$ under Φ is inside the category of projective objects in $M(j)$ and contains at least one representative in each isomorphism class of indecomposable objects, see [MM1, Subsection 4.5]. We also have that I (see Subsection 3.3) annihilates L by construction. It follows that the 2-representation K of C on projective objects in the categories $M(j)$ (for $j \in C$) is equivalent to the cell 2-representation C_L of C.

As K is equivalent to M by [MM2, Theorem 11], we deduce that M is equivalent to C_L. This completes the proof.

7. Examples

7.1. A non weakly fiat 2-category \mathcal{C}_A. In this subsection we give an example of a non weakly fiat 2-category \mathcal{C}_A for which Theorem 15 generalizes to the class of exact simple transitive 2-representations. Taking into account the example considered in Subsection 3.4, the present example is somewhat surprising.

For $A = \mathbb{k}[x,y]/(x^2, y^2, xy)$ consider the 2-category \mathcal{C}_A as defined in Subsection 3.1. Note that A is local but not self-injective which implies that \mathcal{C}_A is not weakly fiat. Let F be an indecomposable 1-morphism in \mathcal{C}_A which is not isomorphic to the identity 1-morphism. The defining 2-representation of \mathcal{C}_A is easily seen to be equivalent to the cell 2-representation C_L for $L = \{F\}$.

Proposition 19. For $A = \mathbb{k}[x,y]/(x^2, y^2, xy)$, any exact simple transitive 2-representation of \mathcal{C}_A is equivalent to a cell 2-representation.

Proof. Let M be an exact simple transitive 2-representation of \mathcal{C}_A. Without loss of generality we may assume $M(F) \neq 0$. Then $F \circ F \cong F^{S3}$ and hence $[F]^2 = 3[F]$ by exactness of $M(F)$. Using Theorem 11 it is easy to check that $[F]$ is equal to one of the following matrices:

$$M_1 := \begin{pmatrix} 3 \end{pmatrix}, \quad M_2 := \begin{pmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}, \quad M_3 := \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}, \quad M_4 := \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}.$$
Let B and B' be as in the proof of Theorem 15. Note that both Lemma [12] and Lemma [13] are still applicable in our situation. Despite the fact that \mathcal{C}_A is not weakly flat, it is still J-simple, where $J = \{F\}$.

If $[F] = M_4$, then $B \cong k^{\oplus 3}$ and $M(F)$ is the direct sum of nine copies of the identity functors (between the three different copies of k-mod). The endomorphism algebra of $M(F)$ has thus dimension nine and is clearly not isomorphic to $A \otimes_k A^{op}$. Hence this case is not possible.

If $[F] = M_3$, then $B = B' \cong k^{\oplus 2}$ and the algebra A does not inject into B'. This contradicts Lemma [14] and hence this case is not possible either.

If $[F] = M_2$, then either $B = B'$ is a 3-dimensional algebra which is not local or $B \cong k^{\oplus 2}$ and $B' \cong k \oplus \text{Mat}_{2 \times 2}(k)$. In the first case we again get a contradiction to Lemma [14]. In the second case the endomorphism algebra of $M(F)$ has dimension ten and two direct summands isomorphic to k, say this endomorphism algebra is $Q \oplus k \oplus k$. If the local algebra $A \otimes_k A^{op}$ were to inject into the endomorphism algebra of $M(F)$, the algebra $A \otimes_k A^{op}$ would also inject into Q which has strictly smaller dimension, a contradiction. Hence this case is not possible.

If $[F] = M_1$, then either $B \cong k$ and $B' = \text{Mat}_{3 \times 3}(k)$ or $B = B'$ has dimension 3. In the former case the endomorphism algebra of $M(F)$ has dimension nine and is not local, implying a contradiction similarly to the case $[F] = M_4$. In the latter case we again use Lemma [14] to get $B = B' \cong A$ and then we readily deduce that M is equivalent to the cell 2-representation. \qed

7.2. Categorification of finite dimensional 2-Lie algebras. Let \mathfrak{g} denote a simple finite dimensional complex Lie algebra. We fix a triangular decomposition $\mathfrak{n}_- \oplus \mathfrak{h} \oplus \mathfrak{n}_+$ of \mathfrak{g}. For any \mathfrak{h}-weight λ denote by $L(\lambda)$ the corresponding simple highest weight module with highest weight λ. Let \leq denote the natural partial order on \mathfrak{h}-weights.

Let \mathcal{W} be the 2-category categorifying the idempotent version \hat{U} of the universal enveloping algebra of \mathfrak{g} as defined in [We] Definition 2.4 (the origins of this 2-category are in [CL], see also [KL] [Ro1] for other variations). The categorification statement is justified by [We] Theorem B.2. For each dominant integral \mathfrak{h}-weight λ there is a 2-representation of \mathcal{W} given by a functorial action on the direct sum (over n) of categories of projective modules over the cyclotomic quiver Hecke algebras (KLR algebras) R_n^λ associated with \mathfrak{g} (see [We] Theorem 3.17) for \mathcal{W} and also [KK] [Ka] for a similar statement related to Rouquier’s 2-Kac-Moody algebras). This 2-representation categorifies $L(\lambda)$. We note the following properties of this 2-representation:

- As $L(\lambda)$ is finite dimensional, only finitely many of the algebras R_n^λ are non-zero.
- As $L(\lambda)$ is finite dimensional, sufficiently high powers of the generators annihilate our 2-representation. Hence, the commutation relations in \mathfrak{g} imply that only finitely many indecomposable 1-morphisms from \mathcal{W} act as non-zero functors in this 2-representation.
- Each R_n^λ is finite dimensional and all involved functors are exact.
• Each 1-morphism in \(\mathcal{U} \) acts as an exact functor and hence can be realized as tensoring with a finite-dimensional bimodule. This implies that the spaces of two morphisms in this 2-representation are finite dimensional.

• Each 1-morphism in \(\mathcal{U} \) has a biadjoint which is again a functor representing the action of some 1-morphism in \(\mathcal{U} \).

• The endomorphism algebra of each identity 1-morphism in \(\mathcal{U} \) is positively graded by the non-degeneracy part of [We, Theorem B.2] and isomorphic to a polynomial ring ([We, Proposition 3.31]). In particular, each finite dimensional graded quotient of this algebra is local.

Let \(I_\lambda \) be the kernel of this 2-representation and set \(\mathcal{U}_\lambda := \mathcal{U} / I_\lambda \). Then the above implies that \(\mathcal{U}_\lambda \) is a flat 2-category. Note that \(I_\lambda \) is, in general, not generated by 2-morphisms of the form \(\text{id}_F \), where \(F \) is some 1-morphism, but it additionally contains some of the 2-morphisms between 1-morphisms which are not in \(I_\lambda \), see [MM2, Remark 31].

Consider a finite set \(\lambda := \{ \lambda_1, \lambda_2, \ldots, \lambda_k \} \) of dominant integral h-weights such that \(\lambda_i \not\leq \lambda_j \) for all \(i \neq j \) and denote by \(\mathcal{X} \) the set of all dominant integral weights \(\mu \) such that \(\mu \leq \lambda_i \) for some \(i \). Note that \(\mathcal{X} \) is a finite set. Define

\[
\mathcal{U}_\lambda := \mathcal{U} / (I_{\lambda_1} \cap I_{\lambda_2} \cap \cdots \cap I_{\lambda_k}),
\]

which is again a flat 2-category.

Remark 20. Let \(L \) be the left cell in \(\mathcal{U}_\lambda \) containing the indecomposable 1-morphism \(\mathbb{1}_\lambda \) for \(l \in \{1, 2, \ldots, k\} \). As \(\mathbb{1}_\lambda \) is a genuine idempotent and is, obviously, the unique element in the intersection of its left and right cells, the radical of its endomorphism ring is contained in the ideal \(I \) from Subsection 3.3 used to define the corresponding cell 2-representation \(\mathcal{C}_L \). Consequently, the image of \(\mathbb{1}_\lambda \) in the abelianized cell 2-representation is both simple and projective (this corresponds to a projective module over \(R^0_\lambda \cong \mathbb{C} \)). Moreover, the functor \(\mathcal{C}_L(\mathbb{1}_\lambda) \) is just the identity functor on the category of complex vector spaces, in particular, its endomorphism ring consists only of scalars. Note that our construction of \(\mathcal{C}_L \) differs, in particular, from the construction of the universal categorification of \(L(\lambda) \) in [Ro1, Subsection 5.1.2]. In the latter case the endomorphism of \(\mathbb{1}_\lambda \) is much bigger in general.

Theorem 21. For any \(\lambda \) as above every two-sided cell in the 2-category \(\mathcal{U}_\lambda \) is strongly regular and satisfies the numerical condition.

Proof. For \(l \in \{1, 2, \ldots, k\} \) consider the two-sided cell \(\mathcal{J} \) of \(\mathcal{U}_\lambda \) containing \(\mathbb{1}_\lambda \). Then, factoring out the maximal 2-ideal containing \(\mathbb{1}_\lambda \) which contains \(\text{id}_F \), and does not contain the identity 2-morphism for any 1-morphism outside \(\mathcal{J} \) (note that such an ideal does not have to be generated by 2-morphisms of the form \(\text{id}_F \), where \(F \) is some 1-morphism), we obtain the 2-category \(\mathcal{U}_\mu \) where \(\mu \) is uniquely defined via \(\mu := \mathcal{X} \setminus \{\lambda_l\} \), cf. [DG] Section 9]. Therefore it is enough to prove that \(\mathcal{J} \) is strongly regular and satisfies the numerical condition.

Let \(L \) denote the left cell of \(\mathbb{1}_\lambda \). Let further \(L \) be an indecomposable object in \(R^0_\lambda \)-proj. Note that \(R^0_\lambda \cong \mathbb{C} \). As \(L \) corresponds to the highest weight vector in \(L(\lambda) \), all 1-morphisms which do not annihilate \(L \) must correspond to the \(U(\mathfrak{n}) \) part of \(\mathfrak{g} \). This means that \(L \) consists of direct summands of powers of the negative generators of \(\mathcal{U} \). Then, from [We, Theorem 3.17] in combination with [Ro1, Theorem 5.7]
and [VV] Theorem 4.4], it follows that mapping an indecomposable 1-morphism \(F \in \mathcal{L} \) to \(F L \) induces a bijection between \(\mathcal{L} \) and the set of isomorphism classes of indecomposable objects in \(\bigoplus_{n \geq 0} R_n^\lambda \)-\text{proj}.

Set
\[
A := \bigoplus_{n \geq 0} R_n^\lambda \quad \text{and} \quad B := \bigoplus_{n \geq 1} R_n^\lambda.
\]

For any \(M \in B\)-\text{proj} we have \(\mathbb{1}_\lambda, M = 0 \) and therefore \(F M = 0 \) for any \(F \in \mathcal{L} \). Consider the abelian 2-representation \(\mathbb{C}_\lambda \).

Since \(\mathcal{K}_\lambda \) is flat, Lemma [13] implies that \(\mathbb{C}_\lambda(F) \) is an indecomposable projective functor from \(\mathcal{C}\text{-mod} \) to \(\mathcal{A}\text{-mod} \). Consequently, for any \(G \in \mathcal{L} \) the functor \(\mathbb{C}_\lambda(F \circ G^*) \) is indecomposable. We claim that this implies that \(F \circ G^* \) is indecomposable. Indeed, if \(F \circ G^* \cong X \circ Y \), then without loss of generality we may assume \(\mathbb{C}_\lambda(Y) = 0 \). Since \(\mathcal{J} \) is a maximal two-sided cell, we have \(Y \in \mathcal{J} \) and hence \(\mathbb{C}_\lambda(Y) \neq 0 \), a contradiction.

The previous paragraph shows that the set \(\{F \circ G^*\} \), where \(F, G \in \mathcal{L} \), consists of indecomposable 1-morphisms and hence coincides with \(\mathcal{J} \). In particular \(|\mathcal{J}| = \mathcal{L}^2 \).

It is now obvious that the left cells in \(\mathcal{J} \) are obtained fixing \(G \) and the right cells in \(\mathcal{J} \) are obtained fixing \(F \). Therefore \(\mathcal{J} \) is strongly regular. To check the numerical condition we note that \(\mathbb{C}_\lambda \) realizes elements of \(\mathcal{J} \) as tensoring with indecomposable projective \(\mathcal{A}\text{-}\mathcal{A} \)-bimodules, so the numerical condition follows from [MM1, Subsection 7.3]. \(\square \)

7.3. Soergel bimodules in type \(B_2 \). Consider the 2-category \(\mathcal{S} \) of Soergel bimodules for a Lie algebra of type \(B_2 \), see [MM1 Section 7.1] and [MM2 Example 20]. We denote by \(\mathbf{a} \) the (unique) object in \(\mathcal{S} \). The Weyl group in this case is given by

\[
W = \{e, s, t, st, ts, sts, tst, stst = tstst\},
\]

where \(s^2 = t^2 = e \), and is isomorphic to the dihedral group \(D_4 \). The group \(D_4 \) has five simple modules over \(\mathbb{C} \): the one-dimensional simple modules \(V_{\varepsilon, \delta} \), for \(\varepsilon, \delta \in \{\pm 1\} \), where \(s \) acts via \(\varepsilon \) and \(t \) acts via \(\delta \); and the 2-dimensional simple module \(V_2 \) (the defining geometric representation). For an additive category \(\mathcal{A} \) we denote by \(K_0(\mathcal{A}) \) the split Grothendieck group of \(\mathcal{A} \). Our aim in this section is to apply previous results in order to prove the following statement which describes simple \(W \)-modules admitting a finitary categorification.

Proposition 22. Let \(\mathbb{M} \) be a finitary 2-representation of \(\mathcal{S} \). Assume that the induced action of the algebra \(\mathbb{C} \otimes_{\mathbb{Z}} K_0(\mathcal{S}(\mathbf{a}, \mathbf{a})) \) on the vector space \(\mathbb{C} \otimes_{\mathbb{Z}} K_0(\mathbb{M}(\mathbf{a})) \) gives a simple \(W \)-module \(V \). Then \(V \cong V_{1,1} \) or \(V \cong V_{-1,-1} \).

Proof. We have three two-sided cells
\[
\mathcal{J}_1 = \mathcal{L}_1 = \{e\}, \quad \mathcal{J}_2 = \{s, t, st, ts, sts, tst\}, \quad \mathcal{J}_3 = \mathcal{L}_3 = \{sts\}
\]

and \(\mathcal{J}_2 \) splits into two left cells
\[
\mathcal{L}^{(1)}_2 = \{s, st, sts\} \quad \text{and} \quad \mathcal{L}^{(2)}_2 = \{t, ts, tst\}.
\]

Right cells are obtained using the map \(w \mapsto w^{-1} \).

It is easy to check that the cell 2-representations \(\mathbb{C}_{\mathcal{L}_1} \) and \(\mathbb{C}_{\mathcal{L}_3} \) categorify \(V_{1,1} \) and \(V_{-1,-1} \), respectively.
We identify indecomposable Soergel bimodules \(\theta_w \) for \(w \in W \) with the corresponding elements
\[
\begin{align*}
\theta_c &= e, & \theta_s &= e + s, & \theta_t &= e + t, & \theta_{st} &= e + t + s + st, & \theta_{ts} &= e + t + s + ts, \\
\theta_{sts} &= e + t + s + ts + st + st + s, & \theta_{tst} &= e + t + s + ts + st + t, & \theta_{stst} &= e + t + s + ts + st + st + st + st + st
\end{align*}
\]
in the Kazhdan-Lusztig basis for \(Z[W] \).

Note that the element \(\theta_s \) annihilates \(V_{-1,1} \) while \(\theta_t \) does not annihilate \(V_{-1,1} \). If we had a 2-representation \(M \) decategorifying to \(V_{-1,1} \), then \(M(\theta_s) = 0 \) while \(M(\theta_t) \neq 0 \) which is impossible as \(\theta_s \) and \(\theta_t \) belong to the same two-sided cell. Therefore \(V \not\cong V_{-1,1} \) and, by symmetry, \(V \not\cong V_{1,-1} \). (This argument came up in discussion with Catharina Stroppel.)

It is left to show that \(V \not\cong V_2 \). Note that \(\theta_{stst} \) annihilates \(V_2 \). Assume that \(M \) is a 2-representation of \(\mathcal{I} \) decategorifying to \(V_2 \) and consider \(\overline{M} \). Set \(\Theta := \sum_{w \in J_2} \theta_w \).

Direct computation shows that
\[
(\theta_{st} + \theta_{ts})^2 = 2\Theta \mod J_3, \quad \Theta^2 = 10\Theta + 4(\theta_{st} + \theta_{ts}) \mod J_3.
\]
This implies that the matrix \(X := [\theta_{st} + \theta_{ts}] \) satisfies the polynomial equation \(X^4 - 20X^2 - 16X = 0 \). Consequently, \(X \) is diagonalizable with eigenvalues in \(\{0, -4, 2(1 \pm \sqrt{2})\} \). Clearly, \(X \) is not the zero matrix. As all entries of \(X \) are non-negative, the trace of \(X \) is non-negative which implies that the eigenvalues of \(X \) are \(2(1 \pm \sqrt{2}) \), each with multiplicity one. Thus the trace of \(X \) is 4 and the determinant is \(-4\), leaving
\[
\begin{align*}
\begin{pmatrix} 4 & 4 \\ 1 & 0 \end{pmatrix}, & \begin{pmatrix} 4 & 2 \\ 2 & 0 \end{pmatrix}, & \begin{pmatrix} 4 & 1 \\ 4 & 0 \end{pmatrix}, & \begin{pmatrix} 3 & 7 \\ 1 & 1 \end{pmatrix}, & \begin{pmatrix} 3 & 1 \\ 7 & 1 \end{pmatrix}, \\
\begin{pmatrix} 2 & 8 \\ 1 & 2 \end{pmatrix}, & \begin{pmatrix} 2 & 4 \\ 2 & 2 \end{pmatrix}, & \begin{pmatrix} 2 & 2 \\ 4 & 2 \end{pmatrix}, & \begin{pmatrix} 2 & 1 \\ 8 & 2 \end{pmatrix}
\end{align*}
\]
as possibilities (up to reordering of the basis).

We have \(\theta_s^2 \cong 2\theta_s \) and \(\theta_t^2 \cong 2\theta_t \), which implies that both \([\theta_s] \) and \([\theta_t] \) satisfy the polynomial equation \(x^2 - 2x = 0 \). Similarly to the above, this leads to the list of candidates for \([\theta_s] \) and \([\theta_t] \) being given by
\[
\begin{align*}
\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, & \begin{pmatrix} 2 & a \\ 0 & 0 \end{pmatrix}, & \begin{pmatrix} 2 & 0 \\ a & 0 \end{pmatrix}, & \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}
\end{align*}
\]
where \(a \in \{0, 1, 2, \ldots \} \). Note that \(\theta_{st} = \theta_s\theta_t \) and \(\theta_{ts} = \theta_t\theta_s \). Hence, the equation
\[
[\theta_{st} + \theta_{ts}] = [\theta_s][\theta_t] + [\theta_t][\theta_s]
\]
reduces the choice to
\[
(6) \quad [\theta_s] = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \quad [\theta_t] = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}
\]
or vice versa.

Now we may restrict \(M \) to the 2-subcategory \(\mathcal{I} \) of \(\mathcal{I} \) generated by \(\theta_t \) and \(\theta_s \) and adjunction morphisms between them. This 2-category clearly satisfies all hypotheses of Theorem 18. Note that \(\theta_s \) is self-adjoint, hence Lemma 18 implies that this restricted 2-representation is transitive. Let \(N \) be its simple transitive quotient. Then \(N \) gives rise to a simple transitive 2-representation of \(\mathcal{I} \) in which \(\theta_s \) has the matrix described by (6). This, however, contradicts Theorem 18. The obtained contradiction completes the proof. \(\Box \)
References

[AM] T. Agerholm, V. Mazorchuk. On selfadjoint functors satisfying polynomial relations. J. Algebra. 330 (2011), 448–467.

[BFK] J. Bernstein, I. Frenkel, M. Khovanov. A categorification of the Temperley-Lieb algebra and Schur quotients of $U(\mathfrak{sl}_2)$ via projective and Zuckerman functors. Selecta Math. (N.S.) 5 (1999), no. 2, 199–241.

[BG] J. Bernstein, S. Gelfand. Tensor products of finite- and infinite-dimensional representations of semisimple Lie algebras. Compositio Math. 41 (1980), no. 2, 245–285.

[CL] S. Cautis, A. Lauda. Implicit structure in 2-representations of quantum groups. Preprint arXiv:1111.1331.

[CR] J. Chuang, R. Rouquier. Derived equivalences for symmetric groups and \mathfrak{sl}_2-categorification. Ann. of Math. (2) 167 (2008), no. 1, 245–298.

[DG] S. Doty, A. Giaquinto. Cellular bases of generalized q-Schur algebras. Preprint arXiv:1012.5983v3.

[EW] B. Elias, G. Williamson. The Hodge theory of Soergel bimodules. Preprint arXiv:1212.0791. To appear in Ann. of Math.

[Fx] P. Freyd. Representations in abelian categories. Proc. Conf. Categorical Algebra (1966), 95–120.

[Fro1] G. Frobenius. Über Matrizen aus positiven Elementen. 1. Sitzungsber. Königl. Preuss. Akad. Wiss. (1908), 471–476.

[Fro2] G. Frobenius. Über Matrizen aus positiven Elementen. 2. Sitzungsber. Königl. Preuss. Akad. Wiss. (1909), 514–518.

[GM] O. Ganyushkin, V. Mazorchuk. Classical finite transformation semigroups. An introduction. Algebra and Applications. 9. Springer-Verlag London, Ltd., London, 2009.

[KK] S.-J. Kang, M. Kashiwara. Categorification of highest weight modules via Khovanov-Lauda-Rouquier algebras. Invent. Math. 190 (2012), no. 3, 699–742.

[Ka] M. Kashiwara. Biadjointness in cyclotomic Khovanov-Lauda-Rouquier algebras. Publ. Res. Inst. Math. Sci. 48 (2012), no. 3, 501–524.

[KL] M. Khovanov, A. Lauda. A categorification of a quantum \mathfrak{sl}_n. Quantum Topol. 1 (2010), 1–92.

[Le] T. Leinster. Basic bicategories. Preprint arXiv:math/9810017.

[McL] S. Mac Lane. Categories for the working mathematician. Second edition. Graduate Texts in Mathematics, 5. Springer-Verlag, New York, 1998.

[MM1] V. Mazorchuk, V. Miemietz. Cell 2-representations of finitary 2-categories; Compositio Math. 147 (2011), 1519–1545.

[MM2] V. Mazorchuk, V. Miemietz. Additive versus abelian 2-representations of fiat 2-categories. Moscow Math. J. 14 (2014), no. 3, 595–615.

[MM3] V. Mazorchuk, V. Miemietz. Endomorphisms of cell 2-representations. Preprint arXiv:1207.6236.

[MM4] V. Mazorchuk, V. Miemietz. Morita theory for finitary 2-categories. Preprint arXiv:1304.4298. To appear in Quantum Topol.

[Me] C. Meyer. Matrix analysis and applied linear algebra. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000.

[Pe] O. Perron. Zur Theorie der Matrices. Mathematische Annalen 64 (2) (1907), 248–263.

[Ro1] R. Rouquier. 2-Kac-Moody algebras. Preprint arXiv:0812.5023.

[Ro2] R. Rouquier. Quiver Hecke algebras and 2-Lie algebras. Algebra Colloq. 19 (2012), no. 2, 359–410.

[So] W. Soergel. The combinatorics of Harish-Chandra bimodules. J. Reine Angew. Math. 429 (1992), 49–74.

[VV] M. Varagnolo, E. Vasserot. Canonical bases and KLR-algebras. J. Reine Angew. Math. 659 (2011), 67–100.

[We] B. Webster. Knot invariants and higher representation theory. Preprint arXiv:1309.3796.

[Xa] Q. Xantcha. Gabriel 2-Quivers for Finitary 2-Categories. Preprint arXiv:1310.1586.

Volodymyr Mazorchuk, Department of Mathematics, Uppsala University, Box 480, 751 06, Uppsala, SWEDEN, mazor@math.uu.se; http://www.math.uu.se/~mazor/.
Vanessa Miemietz, School of Mathematics, University of East Anglia, Norwich NR4 7TJ, UK, v.miemietz@uea.ac.uk; http://www.uea.ac.uk/~byr09xgu