The Evolution of Radiation Therapy in Metastatic Breast Cancer: From Local Therapy to Systemic Agent

Jessica M. S. Jutzy, Jeffrey M. Lemons, Jason J. Luke, and Steven J. Chmura

1Department of Radiation Oncology, University of Chicago, Chicago, IL, USA
2Department of Medicine, University of Chicago, Chicago, IL, USA

Correspondence should be addressed to Steven J. Chmura; schmura@radonc.uchicago.edu

Received 25 October 2017; Accepted 12 April 2018; Published 16 May 2018

1. Introduction
Radiation therapy is traditionally utilized in stages I–III breast cancer as a local therapy after surgical management to improve disease-free survival and in some cases overall survival. In the metastatic setting, it is used for effective palliation of symptomatic lesions in patients with metastatic breast cancer. With new advances in the field of tumor biology and immunology, the role of radiation in the metastatic setting is evolving to harness its immune-enhancing properties. Through the release of tumor antigens, tumor DNA, and cytokines into the tumor microenvironment, radiation augments the antitumoral immune response to affect both the targeted lesion and distant sites of metastatic disease. The use of immunotherapeutics to promote antitumoral immunity has resulted in improved treatment responses in patients with metastatic disease and the combination of radiation therapy and immunotherapy has become an area of intense investigation. In this article, we will review the emerging role of radiation in the treatment of metastatic disease and discuss the current state of the science and clinical trials investigating the combination of radiation and immunotherapy.
was likely already systemically disseminated at the time of
diagnosis at the primary tumor [5, 6]. With this came a
shift from aggressive surgery to neoadjuvant and adjuvant
systemic therapies, with the goal of targeting disseminated
microscopic disease.

A third hypothesis established by Hellman, the "spectrum
theory," stated that breast cancer more likely existed as a
spectrum of localized and widespread disease [7]. Indeed,
in clinical practice, patients present within a spectrum of
involvement, some with localized primary tumors, and others
with disseminated metastases at time of initial presentation.
Hellman and Weichselbaum later refined this theory with the
description of an intermediate disease state between localized
and widely metastatic cancer [8]. This disease state, known as "oligometastases," was defined as a clinical state of limited
metastases, typically one to five lesions, in a single or limited
number of distant sites.

The concept of oligometastases has resulted in a change
in therapeutic goals for women with metastatic breast cancer
and a limited burden of disease, as these patients may be
able to achieve durable disease control with ablation of their
metastases. In recently published first-line metastatic breast
cancer trials, many patients were found to have fewer than 4
sites of disease and those with fewer metastases had improved
outcomes. Similar findings have also been noted in large
cohort studies of breast cancer patients, in which more than
25% of early-stage breast cancer patients had 1–5 metastases
time of disease progression [9]. These women were noted
to have improved median survival compared to those with
>5 metastases (108 versus 22 months). A meta-analysis of
metastatic breast cancer patients who received anthracycline-
based systemic therapy showed that those with 1–5 metastases
had significantly improved outcomes compared to those with
>5 metastases [10]. These studies demonstrate that a
clinically significant population of oligometastatic breast
cancer patients exists and may achieve long-term disease
control with aggressive treatment of their metastatic disease
and form the rationale for continued clinical investigations
[2].

3. Ablative Treatment
Oligometastatic Breast Cancer

Standard of care for metastatic breast cancer includes sys-
temic therapy in the form of hormonal, biologic, and
cytotoxic agents. Ablative treatment for metastases using
radiation or surgery is typically reserved for palliation of
symptomatic lesions. Even in patients with good performance
status and limited metastatic disease, few achieve complete
durable responses with systemic agents alone. In a
study of over 1,500 women treated with doxorubicin and
alkylating chemotherapy for metastatic breast cancer, only
1.6% achieved complete response and were free of relapse at
15 years [11]. Interestingly, 8 of those patients who achieved
lasting response received metastasis-directed therapy with
radiation, surgery, or chemoembolization, suggesting that
local therapies could improve outcomes in selected patients.

The idea that certain patients with limited metastatic
disease may derive lasting benefit from more aggressive
treatment of their metastatic disease has resulted in multiple
retrospective and single-arm studies evaluating outcomes
with local therapy and/or metastasectomy. Several studies in
various cancer types have shown that standard systemic ther-
apy combined with the elimination of all clinically detected
metastases via surgery or ablative radiotherapy results in
superior disease control than systemic therapy alone [12–
14]. Surgical resection of metastases in breast cancer patients
has shown promising results with regard to progression-free
survival and overall survival [14]. Pockaj et al. demonstrated
favorable median progression-free survival (14–34 months)
and overall survival (24–63 months) after surgical resection
of liver metastases [15].

In metastatic breast cancer patients who are poor surgical
dates due to medical comorbidity or metastases that
are unresectable due to location or invasion, radiotherapy
can be utilized for the treatment of limited metastatic sites.
A study of patients treated with ablative radiation therapy
for limited metastatic disease on two sequential protocols
from University of Rochester demonstrated an 89% local
control of treated metastases, with 4-year actuarial overall
survival of 59% and progression-free survival of 38% in
those with metastatic breast cancer [16]. Multivariate analysis
revealed that patients with primary breast cancer, single bony
metastases, and stable or responsive disease prior to SBRT
had the largest benefit from ablative radiation therapy. How-
ever, due to the lack of published randomized prospective
trials evaluating the aggressive treatment of oligometastatic
disease, it is uncertain whether these reported series pointing
to a long-term survival after local therapeutic interventions
in breast cancer patients with limited metastatic disease are
generalizable. In carefully selected patients, aggressive local
therapy may be beneficial. The mechanism behind this benefit
remains unclear but may result from inhibiting progression
of metastatic disease, preventing additional metastatic seed-
ing, or through an immunostimulatory abscopal effect on
micrometastatic disease.

4. Immuno-oncology and Enhancing
Abscopal and Adscopal Effects

The immune system is a powerful network of cells providing
surveillance to prevent the development and progression
of malignancy. Avoiding immune destruction is critical in
cancer progression and is an important hallmark of cancer
pathogenesis [17]. Enhancing the immune system's ability to
detect and destroy cancer cells and inhibiting immune escape
mechanisms, both key elements of immuno-oncology (IO)
therapy, represents a transformational approach to cancer
care with a potential for long-term antitumor responses.

The effector T cell response to cancer is controlled by
a balance of antigen presentation to the T cell receptor
(TCR) and subsequent costimulatory and coinhibitory sig-
als [18]. Initially, immunotherapies were developed to target
negative regulators of the T cell receptor response, primar-
ily cytotoxic T-lymphocyte associated protein 4 (CTLA-4)
and programmed cell death protein 1 (PD-1). Inhibition of
these negative regulatory receptors, referred to as immune
checkpoint blockade, results in the enhanced activation of T cells and potent antitumor activity.

Early studies in mouse models of metastatic breast cancer, radiotherapy combined with immune-mediated inhibition of CTLA-4 demonstrated a significant survival advantage compared to groups treated with radiotherapy alone [19]. Subsequent human studies with CTLA-4 blockade have demonstrated improved overall survival in patients with metastatic melanoma and studies using anti-PD-1 antibodies such as pembrolizumab, nivolumab, and avelumab have shown disease response in patients with non-small cell lung cancer, melanoma, breast, and renal cell carcinoma [20–23]. The success of these agents has resulted in a multitude of new immunotherapy agents, which are now being investigated in an attempt to harness the natural immune response against malignant cells. In addition to enhancing the T cell response directly, further agents are being developed to target cell populations beyond effector T cells such as natural killer (NK) cells, T regulatory (Treg) cells, tumor-associated macrophages (TAMs), and dendritic cells (DCs).

Several of the key activation steps required for effective systemic immunotherapy are also impacted by radiation [2, 18]. As with any immune reaction, the initial response is triggered via innate immunity identifying the presence of an infection or tumor, leading to antigen capture/processing and presentation to the adaptive immune compartment, classically including T cells. Tumor cell death induced by radiation can result in DC cross-priming and subsequent activation of the stimulator of interferon genes (STING) pathway [1], a major driver of type I interferons [1, 23, 24]. This type I interferon (IFN) release acts as a bridge between innate and adaptive immunity, improving DC activation and recruitment to the tumor as well as inducing type II interferon and leading to cytotoxic T cell (CTL) activation [2, 25, 26]. In mouse models, induction of type I IFN by radiotherapy activates proapoptotic signaling cascades within the tumor cells, while also increasing activation of antigen-presenting cells (APCs) and T cells [27–29]. Additionally, this radiation-induced IFN secretion has been shown to increase the release of chemokines CXCL10 and CXCL16, which enhances cytotoxic and type I helper T cell migration into the tumor and increases cytotoxic and helper T cells’ killing capability via upregulation of Fas/FasL [2, 3, 30].

Although radiation has been shown to have immunostimulatory effects, immunosuppressive effects can also be observed with IFN-γ associated recruitment of regulatory T cells (Tregs) and myeloid derived suppressor cells (MDSCs) [2, 18]. The increase in Treg cells in the tumor microenvironment results in increased IL-10 and TGF-beta production that stimulates MDSCs, which results in suppression of T cell activation and the promotion of tumor regrowth. Additionally, TGF-beta has been shown to inhibit T cell activation. Mouse models of breast carcinoma treated with TGF-beta blocking agents show enhanced priming of CD8+ T cells to endogenous tumor antigens released by radiation [31]. Low-dose radiation can also increase recruitment of tumor-promoting M2 type TAMs [32]. Arginase, an enzyme overexpressed in M2 type TAMs, results in depletion of arginine, which impairs expression of the T cell receptor (TCR) zeta chain that is necessary for T cell activation and proliferation [33, 34]. Preclinical studies of inflammatory breast cancer have demonstrated enhancement of angiogenesis, metastasis, and invasiveness due to IL-6 secretion by M2 TAMs, resulting in accelerated tumor growth [35].

By combining immunotherapy agents with radiation, the balance of these immunostimulatory and immunosuppressive effects could be shifted to improve local and possibly distant disease control in oligometastatic patients. Indeed, this effect was shown in mouse models, where concurrent administration of anti-PD-1 and anti-PD-L1 antibodies with fractionated radiotherapy generated CD8+ T cell responses that improved local tumor control [35].

A phenomenon known as the abscopal effect has been described in some patients with metastatic disease who received treatment with radiation therapy to one or more metastatic lesions and had nonirradiated tumors shrinking outside the radiation field. This effect was first described by Mole in the 1950s and is thought to be an immune-mediated tumor response [36]. Abscopal effects in untreated lesions have been demonstrated in mouse tumor models treated with radiation and immunotherapy, with augmented T cell responses in both primary and metastatic lesions [37, 38]. Radiation has been shown to increase PD-L1 expression on tumor cells, resulting in an impaired T cell response. The addition of anti-PD-L1 therapy after radiation in these studies resulted in a synergistic amplification of tumor killing mediated by TNF-alpha signaling, increased CD8+ T cells, and decreased MDSC within tumors [38]. In the clinical setting, metastatic melanoma patients being treated with ipilimumab who received palliative radiation with 28.5 Gy in three fractions had regression of the irradiated lesion as well as other areas of metastatic disease [39]. One patient with metastatic NSCLC treated with ipilimumab and radiation not only showed a dramatic initial response in the treated and untreated sites of disease but also had a durable response with no evidence of disease 1 year later [40]. In addition to effects on distant lesions, local or “abscopal” responses within the irradiated target or an unirradiated portion of the contiguous tumor have been described in patients treated with radiation and PD-1 blockade [41, 42].

Several new immunotherapeutics show promise for combination with radiation due to their parallel effects on immune cell function to amplify these abscopal and abscopal effects. Nivolumab and pembrolizumab are antibodies that target the negative regulatory molecule programmed death-1 receptor (PD-1; CD279). PD-1, a cell surface membrane receptor expressed by activated T and B lymphocytes, functions to downregulate lymphocyte activation upon interaction with its ligands PD-L1 and PD-L2. Inhibition of this interaction promotes antigen-specific T cell responses to both foreign and self-antigens as well as increased IFN-γ associated gene expression. As radiation induces T cell migration into the tumor, the addition of a checkpoint inhibitor may further enhance T cell-mediated killing of the tumor. The phase Ib KEYNOTE-012 pembrolizumab study evaluated 111 heavily pretreated patients with advanced triple negative breast cancer and showed an 18.5% response rate [43] and the results of a single-agent phase II study of
activated T cell migration to the tumor through tumors [47]. Combining these agents with radiation could further improve their effect with 8 Gy × 3 dosing over a single ablative dose of 20 Gy [63]. Evaluation of TGF-beta blockade in concert with radiation in a mouse breast cancer model utilized 6 Gy × 5
and demonstrated enhanced T cell infiltration into radiated tumors [31]. Mouse studies evaluating MDSC and T cell infiltration showed increased T cell infiltration and lower MDSC numbers with a single 30 Gy dose compared to 3 Gy × 10 dosing [64]. Although optimal fractionation has not been determined, the ability of SBRT to target and treat metastatic lesions that are not amenable to surgery in a short time makes it an attractive option for combination with immunotherapy.

In addition to uncertainty of fractionation, there is also concern regarding the safety of combining immunotherapeutics with radiation. Multiple phase I and II studies are ongoing to investigate the safety of this approach, primarily with the use of single-fraction or hypofractionated radiation in conjunction with checkpoint inhibitors [2, 41, 64–66]. The University of Chicago recently published the results of a phase I trial of 73 participants combining multisite SBRT as per BR-001 followed by anti-PD-1 therapy and thus far has not observed any synergistic toxicity relative to either approach alone [41]. Objective overall response rate was 13.2% for all patients. Memorial Sloan Kettering and Cedars Sinai have completed a phase II trial investigating palliative radiation and pembrolizumab in metastatic triple negative breast cancer. Patients were treated with 30 Gy delivered in five fractions with pembrolizumab administered within three days of the first radiation treatment. Of 17 patients enrolled in the study, 3 had durable partial responses both in field and out of field, with 60%, 54%, and 34% decrease in tumor burden by RECIST, with no significant toxicities observed [65]. For patients with brain metastases, both stereotactic radiosurgery (SRS) and whole-brain radiotherapy with conventional fractionation which were investigated with tremelimumab were well tolerated, and 2 of 6 women with Her2+ disease had durable responses [66]. Two phase I studies at Weill Cornell Medical College are investigating anti-TGF-beta therapeutics in combination with radiation to induce abscopal responses. The first utilized an anti-TGF-beta antibody, fresolimumab, at two doses and radiation of 22.5 Gy in 3 fractions [67]. The higher fresolimumab dose was associated with high median overall survival compared to the low-dose arm, and seven grade 3 or 4 adverse events were noted out of 23 patients in the study. The second trial, which is currently enrolling, evaluates a small molecule inhibitor of TGF-beta, galunisertib, in combination with radiation (NCT02538471).

As the number of clinical trials investigating immunotherapy and radiation rapidly increases, several questions for optimal trial design are still unanswered. Radiation dosing and fractionation are widely varied between ongoing studies, although most are using hypofractionated or single-fraction regimens. Additionally, the ideal treatment field size is unknown. The out-of-field abscopal effects seen in partially irradiated tumors in the study by University of Chicago bring up the possibility that, for large tumors, coverage of the entire lesion may not be required [41]. While the ongoing trials will provide useful information regarding the safety of combining radiation and immunotherapy, additional trials to evaluate optimal sequencing, radiation dosing, and field size are needed to further advance this combination therapy.

6. Conclusions

Currently, there is evidence that radiation can alter the immune profile of the tumor microenvironment by increasing tumor-antigen presentation, altering cytokine and chemokine release, and recruiting T cells to the tumor, with both antitumor and protumor effects. The promising results in initial immunotherapy trials in metastatic breast cancer and animal data showing enhanced tumor killing and abscopal and adscopal effects when immunotherapeutics are combined with radiation provide an interesting hypothesis that enhancing the immune response could improve patient outcomes and overall survival. However, the science behind radioimmunotherapy is based primarily on data from animal models and has not been fully evaluated in patients. Further study of both the safety and effectiveness is needed before this combined modality therapy is widely implemented.

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

[1] L. Deng, H. Liang, M. Xu et al., "STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors," *Immunity*, vol. 41, no. 5, pp. 543–552, 2014.

[2] R. R. Weichselbaum, H. Liang, L. Deng, and Y.-X. Fu, "Radiotherapy and immunotherapy: A beneficial liaison?" *Nature Reviews Clinical Oncology*, vol. 14, no. 6, pp. 365–379, 2017.

[3] S. Matsumura, B. Wang, N. Kawashima et al., "Radiation-induced CXCL16 release by breast cancer cells attracts effector T cells," *The Journal of Immunology*, vol. 181, no. 5, pp. 3099–3107, 2008.

[4] W. S. Halsted, "I. The results of radical operations for the cure of carcinoma of the breast," *Annals of Surgery*, vol. 46, no. 1, 1907.

[5] G. Keynes, "Carcinoma of the breast, the unorthodox view," in *Proceedings of the Cardiff Medical Society*, vol. 40, 1954.

[6] B. Fisher, "Laboratory and clinical research in breast cancer—a personal adventure: the David A. Karnofsky Memorial Lecture," *Cancer Research*, vol. 40, no. 11, pp. 3863–3874, 1980.

[7] S. Hellman, "Karnofsky Memorial Lecture. Natural history of small breast cancers," *Journal of clinical oncology : official journal of the American Society of Clinical Oncology*, vol. 12, no. 10, pp. 2229–2324, 1994.

[8] S. Hellman and R. R. J. Weichselbaum, "Oligometastases," *Journal of Clinical Oncology*, vol. 13, no. 1, pp. 8–10, 1995.

[9] P. L. Dorn, A. Meriwether, M. LeVieux, R. Weichselbaum, S. Chmura, and Y. Hasan, "Patterns of Distant Failure and Progression in Breast Cancer: Implications for the Treatment of Oligometastatic Disease," *International Journal of Radiation Oncology Biology and Physics*, vol. 81, no. 2, p. 5643, 2011.

[10] G. N. Hortobagyi, T. L. Smith, S. S. Legha et al., "Multivariate analysis of prognostic factors in metastatic breast cancer," *Journal of Clinical Oncology*, vol. 1, no. 12, pp. 776–786, 1983.

[11] P. A. Greenberg, G. N. Hortobagyi, T. L. Smith, L. D. Ziegler, D. K. Frye, and A. U. Buzdar, "Long-term follow-up of patients with complete remission following combination chemotherapy..."
for metastatic breast cancer,” *Journal of Clinical Oncology*, vol. 14, no. 8, pp. 2197–2205, 1996.

[12] Y. Fong, A. M. Cohen, J. G. Fortner et al., “Liver resection for colorectal metastases,” *Journal of Clinical Oncology*, vol. 15, no. 3, pp. 938–946, 1997.

[13] K. E. Rusthoven, B. D. Kavanagh, and S. H. Burri, “Multi-institutional phase I/II trial of stereotactic body radiation therapy for lung metastases,” *Journal of Clinical Oncology*, vol. 27, no. 10, pp. 1579–1584, 2009.

[14] M. T. Milano, A. W. Katz, H. Zhang, and P. Okunieff, “Oligometastases treated with stereotactic body radiotherapy: long-term follow-up of prospective study,” *International Journal of Radiation Oncology • Biology • Physics*, vol. 83, no. 3, pp. 878–886, 2012.

[15] B. A. Pockaj, N. Wasif, A. C. Duerck et al., “Metastasectomy and Surgical Resection of the Primary Tumor in Patients With Stage IV Breast Cancer,” *Annals of Surgical Oncology*, vol. 17, no. 9, pp. 2419–2426, 2010.

[16] M. T. Milano, H. Zhang, S. K. Metcalfe, A. G. Muhs, and P. Okunieff, “Oligometastatic breast cancer treated with curative-intent stereotactic body radiation therapy,” *Breast Cancer Research and Treatment*, vol. 115, no. 3, pp. 601–608, 2009.

[17] D. Hanahan and R. A. Weinberg, “Hallmarks of cancer: the next generation,” *Cell*, vol. 144, no. 5, pp. 646–674, 2011.

[18] O. Balogun and S. C. Formenti, “Combining radiotherapy and immunotherapy,” *Cancer Treatment and Research*, no. 9783319532332, pp. 1–20, 2017.

[19] S. Demaria, N. Kawashima, A. M. Yang et al., “Immune-mediated inhibition of metastases after treatment with local radiation and CTLA-4 blockade in a mouse model of breast cancer,” *Clinical Cancer Research*, vol. 11, no. 2, part 1, pp. 728–734, 2005.

[20] C. Robert, L. Thomas, I. Bondarenko et al., “Iplimumab plus dacarbazine for previously untreated metastatic melanoma,” *New England Journal of Medicine*, vol. 364, no. 26, 2011.

[21] J. L. Gulley, D. Spigel, K. Kelly et al., “Avelumab (MSB0010718C, an anti-PD-L1 antibody, in advanced NSCLC patients: A phase ib, open-label expansion trial in patients progressing after platinum-based chemotherapy,” *Journal of Clinical Oncology*, vol. 33, no. 15, 2015.

[22] K. Kelly, J. R. Infante, M. H. Taylor et al., “Safety profile of avelumab in patients with advanced solid tumors: A pooled analysis of data from the phase 1 JAVELIN solid tumor and phase 2 JAVELIN Merkel 200 clinical trials,” *Cancer*, vol. 124, no. 9, pp. 2010–2017, 2018.

[23] S. L. Topalian, F. S. Hodi, and J. R. Brahmer, “Safety, activity, and immune correlates of anti-PD-1 antibody in cancer,” *The New England Journal of Medicine*, vol. 366, no. 26, pp. 2443–2454, 2012.

[24] S.-R. Woo, M. B. Fuertes, L. Corrales et al., “STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors,” *Immunity*, vol. 41, no. 5, pp. 830–842, 2014.

[25] L. Corrales, L. H. Glickman, S. M. McWhirter et al., “Direct Activation of STING in the Tumor Microenvironment Leads to Potent and Systemic Tumor Regression and Immunity,” *Cell Reports*, vol. 11, no. 7, pp. 1018–1030, 2015.

[26] M. B. Fuertes, A. K. Kacha, J. Kline et al., “Host type I IFN signals are required for antitumor CD8+ T cell responses through CD8α+ dendritic cells,” *The Journal of Experimental Medicine*, vol. 208, no. 10, pp. 2005–2016, 2011.

[27] B. C. Burnette, H. Liang, Y. Lee et al., “The efficacy of radiotherapy relies upon induction of type I interferon-dependent innate and adaptive immunity,” *Cancer Research*, vol. 71, no. 7, pp. 2488–2496, 2011.

[28] A. Gupta, A. Sharma, L. von Boehmer, L. Surace, A. Knuth, and M. van den Broek, “Radiotherapy supports protective tumor-specific immunity,” *OncoImmunology*, vol. 1, no. 9, pp. 1610-1611, 2012.

[29] J. Y. H. Lim, S. A. Gerber, S. P. Murphy, and E. M. Lord, “Type I interferons induced by radiation therapy mediate recruitment and effector function of CD8+ T cells,” *Cancer Immunology, Immunotherapy*, vol. 63, no. 3, pp. 259–271, 2014.

[30] M. Chakraborty, S. I. Abrams, K. Camphausen et al., “Irradiation of tumor cells up-regulates Fas and enhances CTL lytic activity and CTL adoptive immunotherapy,” *The Journal of Immunology*, vol. 170, no. 12, pp. 6338–6347, 2003.

[31] C. Vanpouille-Box, J. M. Diamond, K. A. Pilones et al., “TGFβ is a master regulator of radiation therapy-induced anti-tumor immunity,” *Cancer Research*, vol. 75, no. 11, 2015.

[32] C. D. Mills, “M1 and M2 macrophages: oracles of health and disease,” *Critical Reviews in Immunology*, vol. 32, no. 6, pp. 463–488, 2012.

[33] C.-S. Tsai, F.-H. Chen, C.-C. Wang et al., “Macrophages From Irradiated Tumors Express Higher Levels of iNOS, Arginase-1 and COX-2, and Promote Tumor Growth,” *International Journal of Radiation Oncology • Biology • Physics*, vol. 68, no. 2, pp. 499–507, 2007.

[34] C.-I. Chang, J. C. Liao, and L. Kuo, “Macrophage arginase promotes tumor cell growth and suppresses nitric oxide-mediated tumor cytotoxicity,” *Cancer Research*, vol. 61, no. 3, pp. 1100–1106, 2001.

[35] A. R. Wolfe, N. J. Trenton, B. G. Deeb et al., “Mesenchymal stem cells and macrophages interact through IL-6 to promote inflammatory breast cancer in pre-clinical models,” *Oncotarget*, vol. 7, no. 50, pp. 82482–82492, 2016.

[36] U. S. Gaipil, G. Multhoff, H. Scheithauer et al., “Kill and spread the word: stimulation of antitumor immune responses in the context of radiotherapy,” *Immunotherapy*, vol. 6, no. 5, pp. 597–610, 2014.

[37] M. Z. Dewan, A. E. Galloway, N. Kawashima et al., “Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody,” *Clinical Cancer Research*, vol. 15, no. 17, pp. 5379–5388, 2009.

[38] L. Deng, H. Liang, B. Burnette et al., “Irradiation and anti–PD-L1 treatment synergistically promote antitumor immunity in mice,” *The Journal of Clinical Investigation*, vol. 124, no. 2, pp. 687–695, 2014.

[39] M. A. Postow, M. K. Callahan, C. A. Barker et al., “Immunologic correlates of the abscopal effect in a patient with melanoma,” *The New England Journal of Medicine*, vol. 366, no. 10, pp. 925–931, 2012.

[40] E. B. Golden, S. Demaria, P. B. Schiff, A. Chachoua, and S. C. Formenti, “An abscopal response to radiation and iplimumab in a patient with metastatic non-small cell lung cancer,” *Cancer Immunology Research*, vol. 1, no. 6, pp. 365–372, 2013.

[41] J. M. Lemons, J. J. Luke, T. G. Karrison et al., “Safety and clinical activity of pembrolizumab and multisite stereotactic body radiotherapy in patients with advanced solid tumors,” *Journal of Clinical Oncology*, 2018.

[42] K. Reynders, T. Illidge, S. Siva, J. Y. Chang, and D. De Ryuyscher, “The abscopal effect of local radiotherapy: Using
immunotherapy to make a rare event clinically relevant," *Cancer Treatment Reviews*, vol. 41, no. 6, pp. 503–510, 2015.

[43] R. Nanda, L. Q. M. Chow, E. C. Dees et al., "Pembrolizumab in patients with advanced triple-negative breast cancer: Phase Ib keynote-012 study," *Journal of Clinical Oncology*, vol. 34, no. 21, pp. 2460–2467, 2016.

[44] S. Adams, P. Schmid, H. S. Rugo et al., "Phase 2 study of pembrolizumab (pembro) monotherapy for previously treated metastatic triple-negative breast cancer (mTNBC): KEYNOTE-086 cohort A," *Journal of Clinical Oncology*, vol. 35, 2017.

[45] P. Schmid, C. Cruz, F. S. Braiteh et al., "Atezolizumab in metastatic TNBC (mTNBC): Long-term clinical outcomes and biomarker analysis, (abstract)," in *Proceedings of the American Association for Cancer Research, 108th Annual Meeting*, 2017.

[46] L. A. Emens, F. S. Braiteh, P. Cassier et al., "Abstract 2859: Inhibition of PD-L1 by MPDL3280A leads to clinical activity in patients with metastatic triple-negative breast cancer (TNBC)," *Cancer Research*, vol. 75, no. 15 Supplement, pp. 2859–2859, 2015.

[47] L. Y. Dirix, I. Takacs, G. Jerusalem et al., "Avelumab, an anti-PD-L1 antibody, in patients with locally advanced or metastatic breast cancer: a phase Ib JAVELIN Solid Tumor study," *Breast Cancer Research and Treatment*, vol. 167, no. 3, 2018.

[48] V. C. Twyman-Saint, A. J. Rech, A. Maity et al., "Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer," *Nature*, vol. 520, no. 7547, pp. 373–377, 2015.

[49] F. S. Hodi, S. J. O’Day, and D. F. McDermott, "Improved survival with ipilimumab in patients with metastatic melanoma," *The New England Journal of Medicine*, vol. 363, no. 13, pp. 711–723, 2010.

[50] H. L. McArthur, A. Diab, D. B. Page et al., "A pilot study of preoperative single-dose ipilimumab and/or cryoablation in women with early-stage breast cancer with comprehensive immune profiling," *Clinical Cancer Research*, vol. 22, no. 23, pp. 5729–5737, 2016.

[51] O. Martinet, C. M. Divino, Y. Zang et al., "T cell activation with systemic agonistic antibody versus local 4-1BB ligand gene delivery combined with interleukin-12 eradicative liver metastases of breast cancer," *Gene Therapy*, vol. 9, no. 12, pp. 786–792, 2002.

[52] W. Shi and D. W. Siemann, "Augmented antitumor effects of radiation therapy by 4-1BB antibody (BMS-469492) treatment," *Anticancer Research*, vol. 26, no. 5 A, pp. 3445–3453, 2006.

[53] A. P. Benaduce, R. Brenneman, B. Schrand, A. Pollack, E. Gilboa, and A. Ishkanian, "4-1BB Aptamer-Based Immunomodulation Enhances the Therapeutic Index of Radiation Therapy in Murine Tumor Models," *International Journal of Radiation Oncology • Biology • Physics*, vol. 96, no. 2, pp. 458–461, 2016.

[54] C. J. Workman and D. A. A. Vignali, "Negative regulation of T cell homeostasis by lymphocyte activation gene-3 (CD223)," *The Journal of Immunology*, vol. 174, no. 2, pp. 688–695, 2005.

[55] F. Triebel, S. Jitsuakawa, E. Baixeras et al., "LAG-3, a novel lymphocyte activation gene closely related to CD4," *The Journal of Experimental Medicine*, vol. 171, no. 5, pp. 1393–1405, 1990.

[56] J. F. Grosso, C. C. Kelleher, T. J. Harris et al., "LAG-3 regulates CD8 T cell accumulation and effector function in murine self- and tumor-tolerance systems," *The Journal of Clinical Investigation*, vol. 117, no. 11, pp. 3383–3392, 2007.

[57] C. Brignone, M. Gutierrez, F. Mefli et al., "First-line chemioimmunotherapy in metastatic breast carcinoma: Combination of paclitaxel and IMP321 (LAG-3Ig) enhances immune responses and antitumor activity," *Journal of Translational Medicine*, vol. 8, article no. 71, 2010.

[58] C. H. Ries, M. A. Cannarile, S. Hoves et al., "Targeting tumor-associated macrophages with anti-CSF-IR antibody reveals a strategy for cancer therapy," *Cancer Cell*, vol. 25, no. 6, pp. 846–859, 2014.

[59] J. A. Hamilton and A. Achuthan, "Colony stimulating factors and myeloid cell biology in health and disease," *Trends in Immunology*, vol. 34, no. 2, pp. 81–89, 2013.

[60] D. G. DeNardo, D. J. Brennan, E. Rexhepai et al., "Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy," *Cancer Discovery*, vol. 1, no. 1, pp. 54–67, 2011.

[61] J. Xu, J. Escamilla, S. Mok et al., "CSFIR signaling blockade stanches tumor-infiltrating myeloid cells and improves the efficacy of radiotherapy in prostate cancer," *Cancer Research*, vol. 73, no. 9, pp. 2782–2794, 2013.

[62] E. F. Stamell, J. D. Wolchok, S. Gnjatic, N. Y. Lee, and I. Brownell, "The abscopal effect associated with a systemic anti-melanoma immune response," *International Journal of Radiation Oncology • Biology • Physics*, vol. 85, no. 2, pp. 293–295, 2013.

[63] M. Z. Dewan, C. Vanpoulle-Box, N. Kawashima et al., "Synergy of topical toll-like receptor 7 agonist with radiation and low-dose cyclophosphamide in a mouse model of cutaneous breast cancer," *Clinical Cancer Research*, vol. 18, no. 24, pp. 6668–6678, 2012.

[64] A. Filatenkov, I. Baker, A. M. S. Mueller et al., "Ablative tumor radiation can change the tumor immune cell microenvironment to induce durable complete remissions," *Cancer Research*, vol. 21, no. 16, pp. 3727–3739, 2015.

[65] H. L. McArthur, C. A. Barker, A. Guclap et al., "A single-arm, phase II study assessing the efficacy of pembrolizumab (pembro) plus radiotherapy (RT) in metastatic triple-negative breast cancer (mTNBC)," (abstract), *Journal of Clinical Oncology*, vol. 36, 2018.

[66] H. McArthur, K. Beal, D. Halpenny et al., "Abstract 4705: CTLA4 blockade with HER2-directed therapy (H) yields clinical benefit in women undergoing radiation therapy (RT) for HER2-positive (HER2+) breast cancer brain metastases (BCBM)," in *Proceedings of the American Association for Cancer Research, 108th Annual Meeting*, vol. 77, pp. 4705–4705, 2018.

[67] S. C. Formenti, P. Lee, S. Adams et al., "Focal irradiation and systemic transforming growth factor beta blockade in metastatic breast cancer," *Clinical Cancer Research*, 2018.