Evidence That Intracellular Stages of *Leishmania major* Utilize Amino Sugars as a Major Carbon Source

Thomas Naderer*, Joanne Heng*, Malcolm J. McConville*

The Department of Biochemistry and Molecular Biology, University of Melbourne, Bio21 Institute of Molecular Science and Biotechnology, Parkville, Victoria, Australia

Abstract

Intracellular parasites, such as *Leishmania spp*, must acquire suitable carbon sources from the host cell in order to replicate. Here we present evidence that intracellular amastigote stages of *Leishmania* exploit amino sugars in the phagolysosome of mammalian macrophages as a source of carbon and energy. *L. major* parasites are capable of using N-acetylg glucosamine and glucosamine as primarily carbon sources and contain key enzymes required for conversion of these sugars to fructose-6-phosphate. The last step in this pathway is catalyzed by glucosamine-6-phosphate deaminase (GND), which was targeted to glycosomes via a canonical C-terminal targeting signal when expressed as a GFP fusion protein. Mutant parasites lacking GND were unable to grow in medium containing amino sugars as sole carbohydrate source and rapidly lost viability, concomitant with the hyper-accumulation of hexosamine-phosphates. Expression of native GND, but not a cytosolic form of GND, in *A. gnd* parasites restored hexosamine-dependent growth, indicating that toxicity is due to depletion of glycosomal pools of ATP. Non-lethal increases in hexosamine phosphate levels in both Δgnd and wild type parasites was associated with a defect in promastigote metacyclogenesis, suggesting that hexosamine phosphate levels may influence parasite differentiation. Promastigote and amastigote stages of the *A. gnd* mutant were unable to replicate within macrophages and were either completely cleared or exhibited reduced lesion development in highly susceptible Balb/c mice. Our results suggest that hexosamines are a major class of sugars in the macrophage phagolysosome and that catabolism of scavenged amino sugars is required to sustain essential metabolic pathways and prevent hexosamine toxicity.

Introduction

A number of microbial pathogens selectively target macrophages and other phagocytic compartments during the course of infection of their mammalian hosts [1,2]. These pathogens can reside within a variety of vacuolar and cytoplasmic compartments from which they must scavenge all of their carbon and nitrogen sources, as well as other essential nutrients [3,4,5]. With few exceptions, the biochemical composition of these intracellular niches and the extent to which intracellular pathogens utilize different carbon sources is poorly defined.

Leishmania are sandfly-transmitted protozoan parasites that primarily reside in macrophages throughout infection in their mammalian hosts, causing a spectrum of important diseases in more than 12 million people worldwide [6]. Infection of the mammalian host is initiated by flagellated promastigote stages that develop within the mid- and fore-gut of the sandfly vector. Promastigotes injected into the skin during a sandfly bloodmeal are rapidly phagocytosed by neutrophils and macrophages and delivered to the mature phagolysosome where they differentiate to small, non-motile amastigotes [7]. In animal models, the number of infected macrophages increases rapidly during the early stages of infection, eventually plateauing coincident with the formation of loosely structured granulomatous lesions dominated by infected macrophages [8]. In susceptible animals, lesion development and metastasis of infected macrophages to other tissues can lead to death, while in resistant animals a strong proinflammatory (TH1) response leads to lesion cure without sterile immunity [9].

Recent studies have provided insights into the major carbon sources used by intracellular stages of *Leishmania*. A *L. mexicana* mutant lacking three high affinity hexose transporters is unable to establish an infection in macrophages or susceptible mice [10], suggesting that hexose uptake is essential for intracellular growth. However, levels of hexose in the phagolysosome are likely to be limiting for growth as a *L. major* mutant with a defect in gluconeogenesis is also poorly virulent in macrophages and susceptible mice [11]. These studies suggest that intracellular amastigotes depend on both salvage as well as de novo synthesis of hexoses from the host niche. The phagolysosome of macrophages could potentially contain a range of different sugars as a result of turnover of host glycans, glycoproteins and proteoglycans [12]. We have recently shown that a *L. major* hexosamine auxotroph is capable of inducing normal lesions in susceptible mice [13], suggesting that the macrophage phagolysosomes contain sufficient levels of the amino sugars, glucosamine (GlcN) or N-acetylglucosamine (GlcNAc), to sustain the minimal hexosamine requirements of intracellular amastigotes. The *Leishmania* genomes also contain a number of genes that are predicted to comprise a functional N-acetylglucosamine (NAG) catabolic pathway raising the possibility that hexosamine sugars may be an important carbon source in *in vivo*
Protozoan parasites belonging to the genus Leishmania are transmitted by sandfly vectors and cause a number of important diseases in humans. These parasites proliferate within mature lysosome compartments in macrophages and other phagocytic cells in the mammalian host. How intracellular stages of Leishmania survive within this hydrolytic compartment and the extent to which they utilize different carbon sources is poorly defined. Previous studies have suggested that sugar uptake is important for growth, although the nature of these sugars is unknown. In this study we show that Leishmania express all of the enzymes needed to degrade the amino sugars, glucosamine and N-acetylglucosamine. We show that a key enzyme in this pathway is sequestered within modified peroxisomes, or glycosomes, and that this localization is essential for growth on amino sugars and avoidance of amino sugar toxicity. This pathway is also required for parasite proliferation within cultured macrophages and for normal infection of highly susceptible mice. Mutant parasites are either completely eradicated or induce small lesions in Balb/c mice after an extended lag period. These findings suggest that amino sugars generated by the lysosomal breakdown of host glycoconjugates are an important carbon source for intracellular stages of Leishmania, particularly during the early stages of infection.

Figure 1. Hexosamine metabolism in Leishmania. Exogenous hexosamines (GlcN/GlcNAc) are phosphorylated in the glycosome by a hexose kinase (HK) and either transported to the cytosol for conversion to UDP-GlcNAc or catabolized to Fru6P by the activities of N-acetylglucosamine 6-phosphate deacytlae (NAGD) and glucosamine 6-phosphate deaminase (GND). GND generates fructose-6-phosphate (Fru6P), a key intermediate in carbon metabolism and several pathways of glycoconjugate biosynthesis. The de novo synthesis of GlcNAc6P is catalyzed by the cytoplasmic enzymes, glutamine:Fru6P aminotransferase (GFAT) and glucosamine 6-phosphate acetylase (GNAT).

doi:10.1371/journal.ppat.1001245.g001
Figure 2. GND is required for growth on GlcN or GlcNAc. (A) Wild type (WT), Δgnd and complemented strains (Δgnd + GND, Δgnd + GND_{SKL}) were suspended in CDM with or without Glc, GlcN or GlcNAc (13 mM). The optical density of cultures (OD₆₀₀) at day 4 are shown. (B) <i>L. major</i> wild type, Δgnd, Δgnd + GND and Δgnd + GND_{SKL} promastigotes were lysed and GND activity determined by measuring production of hexose-6-phosphates from GlcN6P. (C,D) Wild type, Δgnd and complemented strains were labeled with ³H-GlcN and incorporation of ³H-label into (C) lipids and (D) the carbohydrate reserve polymer mannogen, assessed by HPTLC and fluorography. Major lipid species comprise PtdEtN, PtdCho, PtdIno, inositolphosphoceramide (IPC), PtdInoP and GPI species (asterix); Mannose (M) and mannogen oligomers (M_n).

doi:10.1371/journal.ppat.1001245.g002
The glycosomal localization of GND is required for efficient function

L. major GND is predicted to contain a canonical C-terminal glycosomal targeting signal comprising the tripeptide, SKL. Glycosomal localization was confirmed by expression of a N-terminal GFP chimera of GND in promastigotes. The GFP:GND fusion protein was restricted to punctate structures throughout the parasite cell body co-localizing exactly with the co-expressed glycosomal marker mCherry::FBP fusion protein (Fig. 3A). Significantly, a GFP-fusion protein containing GND without the C-terminal tripeptide SKL (GND^{ASKL}) exhibited a cytosolic distribution (Fig. 3B) demonstrating that the SKL motif is essential for the glycosomal targeting of GND. To investigate whether glycosomal targeting of GND is required for activity, *Agnd* parasites were transfected with episomes encoding untagged GND^{ASKL}. Complementation with GND^{ASKL} did not restore normal growth on either GlcN or GlcNAc, although after a lag phase of several days some growth was observed (Fig. 2A). Similarly, metabolic conversion of ³H-GlcN into mannogen or lipids was undetectable in the presence of GND^{ASKL} (Fig. 2B, C). The glycosomal localization of GND is therefore required for normal growth on hexosamine sugars.

Growth on hexosamine sugars is cytotoxic for the *L. major* *Agnd* mutant

While wild type promastigotes require an exogenous carbohydrate source for growth, they retain a high level of viability when completely starved of hexoses/hexosamines for 24hr (Fig. 4A,B). The *Agnd* parasites also retain viability when suspended in hexose/hexosamine-free medium, but rapidly lost viability when suspended in medium containing either GlcN or GlcNAc (Fig. 4A,B). Hexosamine toxicity in *Agnd* parasites was associated with the hyper-accumulation of GlcNAc₆P and GlcN₆P (Fig. 5A), most likely reflecting the unregulated phosphorylation of internalized sugars by the glycosomal hexose kinase. Hexosamine toxicity was largely abrogated by addition of alternative carbon sources, such as glucose or glycerol (Fig. 4B), that would allow restoration of ATP levels in the glycosome. To further investigate the consequences of elevated levels of GlcNAc₆P on glycosomal metabolism, wild type and *Agnd* parasites were pretreated with GlcNAc, then metabolically labeled with ¹³C-U-glucose.⁶ The *de novo* synthesis of Glc6P (reflecting glycosomal levels of ATP) was then assessed by measuring the incorporation of ¹³C into sugar phosphates by gas chromatography mass spectrometry. Wild type parasites rapidly phosphorylated exogenous glucose whether or not they had been pre-cultivated in medium containing GlcNAc (Fig. 5B). In contrast, *Agnd* parasites exhibited a marked lag (~30min) in glucose phosphorylation when pre-incubated in GlcNAc-containing medium, but not when preincubated in Glc/GlcNAc-containing medium (Fig. 5B). These results suggest that hexosamine toxicity arises as a result of the largely unregulated uptake and phosphorylation of exogenous hexosamine sugars by glycosomal hexose kinase, with concomitant depletion of glycosomal pools of ATP. This toxicity is abrogated by the addition of alternative carbon sources that allow net ATP production.

Figure 3. Glycosomal targeting of GND. (A) *L. major* promastigotes were transfected with plasmid encoding GFP-GND and mCherry-FBP (glycosomal marker) protein and the two proteins localized by fluorescence microscopy and Differential Interference contrast (DIC) microscopy after labeling with Hoechst dye (nuclear and mtDNA). (B) Localization of the GFP-GND fusion protein lacking the canonical C-terminal tripeptide sequence SKL. Scale bar = 10 μm.

doi:10.1371/journal.ppat.1001245.g003
Promastigote differentiation is modulated by hexosamine-phosphate levels

A proportion of L. major promastigotes stages differentiate into a highly infectious metacyclic stage as cultures reach stationary phase growth. Metacyclogenesis can be monitored by measuring the extent to which promastigotes are no longer agglutinated with the peanut agglutinin lectin, reflecting structural changes in the surface lipophosphoglycan [18]. While 9.9 ± 0.9% of wild type promastigotes became PNA-negative in stationary phase, only 1.6 ± 1.1% of Dgnd promastigotes converted to PNA-negative phenotype (Fig. 6A). Metacyclogenesis was largely restored (8 ± 4%) in the Dgnd+GND cell line (Fig. 6A). Inhibition of metacyclogenesis in the Dgnd mutant was associated with a modest increase in intracellular levels of hexosamine-phosphates (5A), presumably reflecting continued de novo synthesis from glucose, combined with reduced catabolism. To further investigate this association, wild type promastigotes were cultivated in medium containing either glucose, GlcN, GlcNAc or no hexoses for 24 hr. Parasite survival was determined by suspending parasites in complete medium containing glucose and measuring OD_{600} at day 2. Survival is expressed relative to wild type parasites grown in glucose-supplemented media from three independent experiments. Error bar = SD. Glycerol is abbreviated as Gro.

doi:10.1371/journal.ppat.1001245.g004

Amino Sugar Catabolism in Leishmania

Figure 4. Exogenous hexosamines become toxic in the absence of GND. (A) Wild type, Δgnd and Δgnd complemented with full length GND or truncated GND (GNDΔSKL) were cultivated in M199 medium containing either Glc, GlcN, GlcNAc or no hexoses. Parasite morphology was monitored by DIC microscopy after 24 hr. (B) Wild type and Δgnd promastigotes were cultivated in M199 medium with or without indicated sugars for 24 hr. Parasite survival was determined by suspending parasites in complete medium containing glucose and measuring OD_{600} at day 2. Survival is expressed relative to wild type parasites grown in glucose-supplemented media from three independent experiments. Error bar = SD. Glycerol is abbreviated as Gro.

doi:10.1371/journal.ppat.1001245.g004

Figure 5. Accumulation of hexosamine phosphates in GlcNAc-fed Δgnd parasites. (A) Concentration of intracellular sugar-phosphates in WT and Δgnd parasites after cultivation (4hr) in the presence of Glc or GlcNAc. (B) L. major wild type and Δgnd promastigotes were suspended in hexose-free CDM supplemented with or without 13 mM GlcNAc. After 4 hr, the medium was supplemented with 13 mM [U-13C]-Glc and parasites harvested at the indicated time points. The rate of synthesis of Glc6P (indicated by percent Glc6P labeled with 13C), an indicator of glycolytic flux, was determined by GC-MS.

doi:10.1371/journal.ppat.1001245.g005

Promastigote differentiation is modulated by hexosamine-phosphate levels

A proportion of L. major promastigotes stages differentiate into a highly infectious metacyclic stage as cultures reach stationary phase growth. Metacyclogenesis can be monitored by measuring the extent to which promastigotes are no longer agglutinated with the peanut agglutinin lectin, reflecting structural changes in the surface lipophosphoglycan [18]. While 9.9 ± 0.9% of wild type promastigotes became PNA-negative in stationary phase, only 1.6 ± 1.1% of Δgnd promastigotes converted to PNA-negative phenotype (Fig. 6A). Metacyclogenesis was largely restored (8 ± 4%) in the Δgnd+GND cell line (Fig. 6A). Inhibition of metacyclogenesis in the Δgnd mutant was associated with a modest increase in intracellular levels of hexosamine-phosphates (5A), presumably reflecting continued de novo synthesis from glucose, combined with reduced catabolism. To further investigate this association, wild type promastigotes were cultivated in medium containing either glucose or GlcNAc as sole carbohydrate. As expected, glucose-fed wild type promastigotes containing normal levels of hexosamine phosphate exhibited a high rate of metacyclogenesis (22 ± 2.8%). In contrast, GlcNAc-fed promastigotes containing elevated levels of hexosamine phosphate (Fig. 5A) displayed a clear defect in metacyclogenesis (3.6 ± 0.6%) (Fig. 6B). Changes in the intracellular levels of hexosamine-phosphates may thus regulate key differentiation processes in these parasites.

Figure 6. Attenuated virulence of Δgnd parasites in susceptible mice and macrophages

To investigate whether hexosamine metabolism is required for Leishmania infectivity, BALB/c mice were infected subcutaneously with wild type and Δgnd stationary phase promastigotes. Wild type parasites produced large lesions by eight weeks post infection (Fig. 7A,B). In contrast, 50% of the mice infected with Δgnd promastigotes failed to develop any lesions (Fig. 7A,B) and viable parasites could not be recovered from the initial inoculation sites or lymph nodes of these mice (Fig. 7C). The rest of the mice developed small lesions over a significantly longer time period (~8–12 weeks) than wild type parasites (Fig. 7A,B). The parasite burden in the draining lymph nodes of these mice was 4-fold less than in mice infected with wild type parasites (Fig. 7C). To determine whether reduced infectivity was due to selective loss of virulence in the promastigote stage, naïve mice were infected with lesion-derived wild type and Δgnd amastigotes. As with promastigote infections, Δgnd amastigote infections progressed more slowly than wild type amastigote infections (Fig. 7D). The infectivity of Δgnd was largely restored by ectopic expression of GND (Fig. 6A,B). Unexpectedly, the infectivity of the mutant was also partially restored by ectopic expression of truncated GNDΔSKL (Fig. 7A,B). While expression of this construct did not...
Amino Sugar Catabolism in *Leishmania*

Our study has provided the first detailed analysis of hexosamine catabolism in *Leishmania*. These parasites lack identifiable homologues of other eukaryotic hexosamine sugar transporters or kinases suggesting that GlcN and GlcNAc are internalized by the previously characterized hexose transporters and phosphorylated by glycosomal hexose/glucose kinases [13]. Glycosomal pools of GlcNAc6P are subsequently catabolized by the combined action of a putative NAGD and the GND characterized in this study (Fig. 1). *Leishmania* lacking GND were unable to grow in medium containing hexosamines as the sole source of sugar or to catabolize exogenous [3H]-glucosamine, indicating that GND encodes the only GlcN6P deaminase activity in these parasites. Interestingly, much higher concentrations of GlcN than GlcNAc are required to sustain maximal growth rates, despite the fact that both sugars are internalized at similar rates [13]. It is possible that GlcNAc is more efficiently phosphorylated by hexose kinase than GlcN [13], or that GlcNAc and GlcN differentially regulate the activity of GND [21,22], resulting in different rates of utilization.

Leishmania GND was localized to the peroxisome-like glycosomes that contain all of the enzymes involved in the upper part of glycolysis and the final steps in gluconeogenesis [11,23,24,25]. The glycosomal localization of GND was critical for parasite growth on GlcN/GlcNAc and for preventing hexosamine toxicity. Hexosamine toxicity was associated with the hyper-accumulation of hexosamine-phosphates, cell swelling and eventual lysis. The accumulation of hexosamine phosphates reflects the absence of normal allosteric feedback mechanisms in the glycosomal localized hexose kinases [23,24,25] and likely leads to the depletion of glycosomal ATP levels and/or osmotic disruption of this organelle. In support of this notion, hexosamine toxicity was prevented by addition of alternative carbon sources, such as glucose and glycerol that are catabolized in the glycosome with net production of ATP. Direct evidence that hexosamine-phosphate accumulation resulted in selective depletion of glycosomal ATP levels was provided by the finding that phosphorylation of [13C]-glucose in *Agnld*, but not wild type parasites, was delayed following growth in hexosamance-containing medium. Significantly, expression of a cytosolic form of GND in the *Agnld* mutant did not prevent hexosamine toxicity. While our previous studies suggest that hexosamine-phosphates can equilibrate across the glycosome membrane [13], this flux appears to be insufficient to prevent the build-up of hexosamine sugars in glycosomes. In addition to preventing hexosamine toxicity, the glycosomal localization of GND may also be required to avoid the futile cycling of hexosamine and hexose-phosphates in the cytosol. Specifically, *Leishmania* express a cytosolically located glutamine: fructose-6-phosphate amidotransferase that is required for the *de novo* synthesis of GlnN6P from Fru6P (Fig. 1). Fru6P cycling of the *de novo* synthesized GlnN6P to Fru6P by cytosolic GND could lead to the depletion of cellular pools of the sugar nucleotide UDP-GlcNAc and reduced synthesis of essential glycoconjugates [13].

Deletion of *gnd* resulted in an unusual attenuated virulence phenotype in the BALB/c model. In approximately half the infections, mutant parasites were completely cleared, while in the remaining infections, small lesions were induced after a delay of several weeks. This phenotype was reproducible, regardless of whether mutant promastigote or lesion-derived amastigotes were used, indicating that the delayed lesion phenotype was not due to the loss of stage-specific factors or to the evolution of suppressor strains. The poor growth of *Agnld* parasites in *ex vivo* infected macrophages and attenuated virulence in the BALB/c animal strongly suggests that intracellular amastigotes are dependent on the uptake and catabolism of hexosamine sugars for normal growth in the glycososome compartment. While previous studies have suggested that both promastigote and amastigote...
stages need to take up exogenous sugars for normal growth in vitro and in vivo [26], the nature of these sugars has been poorly defined. The uptake and catabolism of amino and neutral sugars is likely to be required to sustain fluxes through essential pathways such as N-glycosylation [13], the pentose phosphate pathway [27], inositol synthesis [28], and catabolism of the major carbohydrate reserve material, mannogen [29,30]. Interestingly, amastigotes also need to synthesize sugar de novo via the gluconeogenic pathway [11]. The fact that gluconeogenesis is required for both the establishment of infection and induction of lesions suggests that sugar levels in the phagolysosome are generally low at all stages of infection. In the light of these observations it is curious that surviving Dgnd parasites are able to eventually produce small lesions. It is possible that hexosamine sugars constitute the major sugar type in neutrophils and non-activated macrophages encountered during the early stages of infection, while other sugars may become more abundant in macrophages at later stages of infection, providing a more permissive nutrient environment for Dgnd parasites. Alternatively, amastigote requirements for hexose/hexosamine may be higher during early stages of infection, but decrease at later stages, reflecting differences in growth rate [8]. The latter possibility was supported by the finding that complementation of the Dgnd mutant with the cytosolic GND_{GSKL} construct led to a significant restoration of virulence in BALB/c mice. While expression of this construct in Dgnd promastigote stages was unable to restore normal growth on amino sugars in vitro, a low rate of growth was observed that may be sufficient to sustain the energy needs of lesion amastigotes. Similarly, we have shown that L. major amastigote GlcN auxotrophs need significantly less amino sugars for viability than promastigotes [13]. While hexosamine/hexose starvation is likely to be a major contributor to the Dgnd loss of virulence phenotype, other factors could contribute to reduced parasite viability in vivo. For example, hexosamine toxicity arising from the hyper-accumulation of GlcN(Ac)6P could occur if the phagolysosomes of infected host cells lacked other carbon sources needed to restore the glycosome energy balance. Even modest increases in the intracellular levels of GlcN6P and GlcNAc6P could alter the physiological state of parasites and virulence in vivo. Intriguingly, sub-lethal increases in hexosamine-phosphates in both Dgnd and wild type parasites inhibited the differentiation of PNA-positive promastigotes to PNA-negative metacyclic promastigotes in stationary phase.

Figure 7. Attenuated virulence of Dgnd in mice and macrophages. (A) Wild type, Dgnd and complemented Dgnd promastigotes were used to infect BALB/c mice intradermally and lesion formation was scored over time (error bar = SEM, n = 5). * p<0.01 (Student t-test). (B) Lesion scores in mice infected with wild type, Dgnd, and complemented Dgnd promastigotes 20 weeks post-infection. The line represents the average of three independent experiments of 15 mice in total. (C) Lesion burden was determined by the limiting dilution assay from draining lymph nodes (parasite numbers are based on 1 million lymph cells). (D) Lesion-derived amastigotes were used to re-infect naïve BALB/c mice and lesions were scored as in (A). RAW 264.7 macrophages were infected with promastigotes of L. major wild type, Dgnd, Dgnd +GND and Dgnd +GND_{GSKL} and (E) percent infected macrophages and (F) intracellular parasite numbers were determined by microscopy at day 1, 4 and 6 p.i. Error bars represent SED from three independent experiments. * p<0.05 (Student t-test). doi:10.1371/journal.ppat.1001245.g007
cultures. Metacyclic promastigotes are preadapted for life in the mammalian host and defects in metacyclogenesis could contribute to loss of virulence of Agnd promastigote stages. However, lesion-derived Agnd amastigotes exhibited a similar attenuated virulence phenotype in BALB/c mice, suggesting that other factors are equally or more important. It remains unclear how changes in intracellular pools of hexosamine phosphates could impact on parasite differentiation. Alterations in the cellular levels of hexosamine-phosphates and UDP-GlcNAc have been shown to regulate mammalian growth and differentiation, either by altering the extent to which many cytosolic and nuclear proteins are modified with O-GlcNAc, or by altering the repertoire of surface expressed N-glycans [31,32]. In the pathogenic fungi, Candida albicans, defects in GlcNAc uptake or catabolism also impact on differentiation (hyphae formation) and virulence [16,17]. However, neither Candida albicans or Leishmania modify cytosolic proteins with O-GlcNAc or synthesize complex N-glycans [13,33]. It is possible that the intracellular levels of these metabolites are directly sensed by signaling pathways involved in regulating parasite growth and differentiation. In this respect, it is notable that elevated levels of tetrahydrobiopterin also inhibit metacyclogenesis in L. major [34].

These and previous findings [13] support the conclusion that hexosamines are amongst the most abundant sugars in the Leishmania occupied phagolysosome. Hexosamines are major components in a number of host glycoconjugates that are continuously delivered to macrophage lysosomes. For example, macrophages constitutively internalize a range of extracellular proteoglycans and glycoaminoglycans that are rich in GlcN(Ac) [12,35]. Other GlcN(Ac)-containing host molecules could be delivered to the parasite vacuole via autophagy or glycan turnover pathways [12,36]. These glycoconjugates are sequentially degraded by a range of host lysosomal endo and exoglycosidases [35]. Leishmania spp also secrete a chitinase that could be involved in facilitating the degradation of GlcN/GlcNAc-containing glycoconjugates delivered to amastigote-occupied lysosomes [37]. Such as function is supported by the previously unexplained finding that overexpression of the L. mexicana chitinase enhances lesion development in mice [37,38].

Other trypanosomatid parasites, including the important human pathogen T. cruzi, are predicted to express a NAG catabolic pathway. Mammalian-infective stages of T. cruzi reside within the lysosome and cytoplasm of macrophages and other host cells [39] and may scavenge non-phosphorylated and/or phosphorylated amino sugars in these niches. In contrast, T. brucei contains a putative GND but lacks a putative GlcN6P de-N-acetylase. The absence of a full NAG catabolic pathway in this parasite correlates with a limited capacity to internalize amino sugars [40]. Only GlcN is taken up to any extent and with very low affinity (Kₘ ≈ 14 mM) [41]. The acquisition of a full NAG catabolic pathway in Leishmania and T. cruzi may thus have preceded a relaxation in the substrate specificity of their hexasaccharides transporters, allowing these parasites to colonize new niches within their respective insect and mammalian hosts.

Materials and Methods

Ethics statement

Use of mice was approved by the Institutional Animal Care and Use Committee of the University of Melbourne (ethics number 0811011.1). All animal experiments were performed in accordance with the Australian National Health Medical Research council (Australian code of practice for the care and use of animals for scientific purposes, 7th Edition, 2004, ISBN: 1864962650).

Parasite strains and cell culture

Promastigotes of L. major (MHOM/SU/73/5ASKH) were cultured at 27°C in semi-defined medium-79 (SDM) supplemented with 10% FCS (Gibco, Invitrogen) and/or nourseothricin (70 μg/ml; Werner Inc.) and colonies isolated from SDM-agar (1% Noble Agar, Nunc) plates.

Generation of untagged and GFP-tagged GND and mCherry-tagged FBP

The L. major GND gene was amplified from L. major wild type genomic DNA with the primers gndF (GCCGCCGGGATGCGG

Figure 8. Survival and growth of Agnd amastigotes in ex vivo macrophages. BALB/c mouse peritoneal macrophages were infected with lesion-derived amastigotes of L. major wild type, Agnd, complemented Agnd (10:1 ratio parasites/macrophage). Infected macrophages and intracellular parasite growth (as percentage of number of parasites/100 macrophages compared to day 1) were determined by microscopy at day 4 p.i. (Error bars: SEM, n = 3).

doi:10.1371/journal.ppat.1001245.g008
Analysis of glycolipids and mannogen

Mid log phase promastigotes were washed once in PBS and resuspended in glucose-free RPMI medium (2×10^6 cell/ml). D-[6-3H]-Glc (50 μCi/ml; Perkin Elmer) was added and cells incubated for 30 min at 27°C. Parasites were harvested by centrifugation and glycolipids extracted in chloroform:methanol:water (1:2:0.5 v/v) [42]. Labeled glycolipids were analysed by high-performance thin-layer chromatography (HPTLC) using Silica Gel 60 aluminium-backed HPTLC sheets (Merck) developed in chloroform:methanol:13 M ammonium:1 M acetic acid:water (180:140:9.23 v/v) and detected with autoradiography after coating with EnHance spray (New England Nuclear) [43]. Mannogen oligomers were extracted and detected by high-pH anion exchange chromatography as previously described [29].

In vitro activity of GND

L. major wild type, Δgnd, Δgnd +GND and Δgnd +GNDΔ5′K astonishingly promastigotes were suspended in hypotonic buffer (1 mM NaHEPES, pH 7.4, 2 mM EGTA, 2 mM DTT, 40 μl/mil PIC) and chilled on ice for 10 min before being lysed by sonication (2×4 sec). Following lysis, samples were centrifuged (25,000 rpm, 0°C, 10 min) to separate organellar and cytosolic fractions. Pellet fractions (3×10^6 cell equivalents) were suspended in 90 μl assay buffer (50 mM NaHEPES pH 7.4, 2 mM EGTA, 5 mM MgCl₂, 0.1 % Triton-X 100, 1 mM DTT, 40 μl/mil PIC), containing 1 mM GlcN6P and incubated at 27°C for 1, 10, 30 or 60 min. The reaction was stopped by addition of chloroform:methanol (1:2 v/v) and extracts dried under nitrogen before phase partitioning in 1-butanol:water (2:1 v/v). Polar metabolites in the lower aqueous phase were analysed by liquid chromatography-mass spectrometry using an Agilent QTOF instrument.

Measurement of glycosomal hexose phosphorylation

L. major wild type and Δgnd promastigotes were suspended in CDM with or without 13 mM GlcNAc as sole carbohydrate source and cultivated for 4 hr at 27°C. The medium was supplemented with 13 mM [U-13C]-Glc and parasites harvested at indicated time points. Parasite metabolism was quenched at each time point by immersing the culture flask (one per time point) in an ethanol-dry ice bath resulting in rapid chilling of the culture suspension to 0°C (~10 sec) without freezing. Aliquots of the chilled parasite suspension (4×10^6 promastigotes) were removed and centrifuged in a microfuge (12,000 g, 20 sec, 0°C) and the cell pellet washed three times with phosphate buffered saline (0°C) prior to extraction in chloroform:methanol:water (1:3:1 v/v) [42]. Water was added to the extract to give a ratio of chloroform:methanol:water (1:3:2 v/v), and polar metabolites in the upper aqueous phase derivitized by methoximation and trimethylsilylation [42]. Levels of 13C/12C- Glc6P at each time point were determined by gas chromatography-mass spectrometry as previously described [42].

Fluorescence microscopy

Live L. major promastigotes expressing GFP:GND chimeras and mCherry::FBP were harvested by centrifugation (800 × g for 10 min at 25°C), resuspended in PBS containing 8 μg/ml Hoechst (Molecular Probes) for 5 min and overlaid onto poly-L-lysine-coated coverslips. Images were acquired by using a Zeiss Axioplan2 imaging microscope, equipped with Axicam MRm camera and the AXIOVISION 4.3 software (Zeiss) and the montage generated in Photoshop Elements v6 (Adobe).

Macrophage and mouse infections

Infection of RAW 264.7 macrophages with stationary phase, non-opsonized promastigotes (ratio of 10 parasites/macrophage) or lesion-derived amastigotes (ratio one parasite/macrophage) were performed as described recently [13]. Female BALB/c mice (6–8 weeks old) derived from a pathogen-free facility (Bio21 Institute, University of Melbourne). Intradermal injections and isolation of parasites were performed as described else where [13]. Lesions were analyzed and scored as previously described [44] and the parasite burden was determined from total lymph node using the limiting dilution assay [13]. The draining lymph node was harvested and lymph cells were liberated through a mesh sieve. 1×10^3 cells from each cell suspension were suspended in SDM-79 medium containing 10% FCS and titrated in a 96-well plate, using threefold dilutions. After 7 days in culture at 27°C, the highest dilution containing parasites was determined and the parasite burden per 10^6 lymph cells was calculated.

Supporting Information

Figure S1 Sequence alignment of GND. GND protein sequences of L. major (UniProt: Q144A6), T. cruzi (Q190F2), T. brucei (D0AAS0), E. coli (97LT5), T. pestis (A4TYNO), H. sapiens (P46926) and C. albicans (Q48002) were aligned with ClustalW and edited with Boxshade, whereby identical or similar residues are boxed in black or grey, respectively. The arrow marks the residue His143 in E. coli, involved in catalysis. Residues marked with * are part of the allosteric site of GND as determined by studies performed in E. coli [45].

Found at: doi:10.1371/journal.ppat.1001245.s001 (1.80 MB TIF)

Figure S2 Gene deletion of GND in L. major promastigotes. (A) Strategy for targeted gene replacement via homologous recombination. The knock out cassette for targeted gene deletion of the L. major GND was generated by PCR amplifying the 5′UTR of GND using the primers gnd5′F (GGGAGATTTCAGCCGTATGCCTCGGAC) and gnd5′R (GGCGATATTCGGGCGGTTAGAAGTATGTTGAA) and by amplification of the 3′ untranslated region (3′UTR) of GND using the primers gnd3′F (GGGATTTTAGGGCTGATTAGA) and gnd3′R (GGGAAGCTAGTCCGCTTTGCGTGAACGCA) and gnd3′R (GGGAGATTTCAGCCGTATGCCTCGGAC) and gnd3′R (GGGAAGCTAGTCCGCTTTGCGTGAACGCA) and gnd3′R (GGGAAGCTAGTCCGCTTTGCGTGAACGCA) and gnd3′R (GGGAAGCTAGTCCGCTTTGCGTGAACGCA). The HindIII/EcoRI digested 5′UTR was cloned into the HindIII and EcoRI sites of pBluescript II SK (Stratagene), before cloning the 3′UTR into the BamHI and XhoI sites. The bleomycin and nourseothricin resistant cotract were isolated from pXG-BLEO and pXG-SAT, respectively, by digesting with XhoI, followed by blunt-end treatment using Klenow polymerase (New England BioLabs), heat inactivation and digestion with BamHI. The resistant cotracks were isolated by gel purification and cloned between the 5′ and 3′UTR using the Smal and BamHI sites of the pBluescript vector. The complete knockout constructs were verified by diagnostic

Amino Sugar Catabolism in Leishmania
digests and DNA sequencing. The BLE- and SAT-containing GND gene replacement cassettes were excised from the plasmid by HindIII/ XbaI digestion, gel-purified and 5 μg transfected into L. major promastigotes as described previously [13]. (B) PCR strategy to determine correct integration of knockout constructs. I-VIII denotes primers designed either outside the cloning region or specific for the resistance cassettes. (C) PCR analysis of L. major wild type and Agnl null mutant genomic DNA to check for integration of resistance cassettes and loss of GND gene. Primers used are as follows: lane 1: I, VII; lane 2: I, VIII; lane 3: V, VI; lane 4: IV, V; lane 5: II, III.

Found at: doi:10.1371/journal.ppat.1001245.s002 (1.09 MB TIF)

Acknowledgments

We thank Paul O’Donnell and Dr. Thushita Rupasinghe (Metabolomics Australia, Bio21 Institute) for expert assistance with mass spectrometry analyses, Prof Steve Beverley (Washington University, St. Louis) for generously providing the pXG-based vectors and Prof Roger Tsien (University of California, La Jolla) for the mCherry plasmid.

Author Contributions

Conceived and designed the experiments: TN JH MJM. Performed the experiments: TN JH. Analyzed the data: TN JH MJM. Contributed reagents/materials/analysis tools: TN JH MJM. Wrote the paper: TN JH MJM.

References

1. Isberg RR, O’Connor TJ, Heidtman M (2009) The Legionella pneumophila replication vacuole: making a cozy niche inside host cells. Nat Rev Microbiol 7: 13–24.
2. Scasnovi MS, Fernandez-Moreira E (2002) A microbial strategy to multiply in macrophages: the pregnant pause. Traffic 3: 170–177.
3. Schaible UE, Kaufmann SH (2003) A nutritious view on the host-pathogen interplay. Trends Microbiol 13: 373–380.
4. Appleberg R (2006) Macrophage nutritive antinocibacterial mechanisms. J Leukoc Biol 79: 1117–1218.
5. Naderer T, McConville MJ (2008) The Leishmania-macrophage interaction: a metabolic perspective. Cell Microbiol 10: 301–308.
6. Davies CR, Kaya M, Croot SL, Sandor S (2003) Leishmaniasis: new approaches to disease control. BMJ 326: 377–382.
7. Peters NG, Egen JG, Secundino N, Debrabant A, Kambilin N, et al. (2008) In vivo imaging reveals an essential role for neutrophils in leishmaniasis transmitted by sand flies. Science 321: 970–974.
8. Belkadi Y, Mendez S, Lira R, Kadambi N, Milton G, et al. (2000) A natural model of Leishmania major infection reveals a prolonged “silent” phase of parasite amplification in the skin before the onset of lesion formation and immunity. J Immunol 165: 969–977.
9. Peters N, Sacks D (2006) Immune privilege in sites of chronic infection: Leishmania and regulatory T cells. Immunol Rev 213: 159–179.
10. Burchmore RJ, Rodríguez-Condeiras D, McBride K, Merpel P, Barrett MP, et al. (2003) Genetic characterization of glucose transporter function in Leishmania mexicana. Proc Natl Acad Sci U S A 100: 3901–3906.
11. Naderer T, Ellis MA, Sernee MF, De Souza DP, Curini J, et al. (2006) Virulence of Leishmania major in macrophages and mice requires the glucconeogenic enzyme fructose-1,6-bisphosphatase. Proc Natl Acad Sci U S A 103: 5502–5507.
12. Winchester B (2005) Lysosomal metabolism of glycoproteins. Glycobiology 15: 147–153.
13. Naderer T, Wee E, McConville MJ (2008) Role of hexosamine biosynthesis in Leishmania growth and virulence. Mol Microbiol 69: 838–869.
14. Kumar MJ, Jamaluddin MS, Natarajan K, Kaur D, Datta A (2000) The inducible N-acetylglucosamine catabolic pathway gene cluster in Candida albicans directs N-acetylglucosamine-inducible factors at the promoter of NAG1. Proc Natl Acad Sci U S A 97: 14121–14123.
15. Meibom KL, Li XB, Nielsen AT, Wu CY, Roseman S, et al. (2004) The Fh10 chitin chain utilization program. Proc Natl Acad Sci U S A 101: 2524–2529.
16. Alvarez J, Kosonjka JB (2007) Identification of an N-acetylglucosamine transporter that mediates hyphal induction in Trypanosoma brucei. Mol Biol Cell 18: 2645–2654.
17. Singh P, Ghosh S, Datta A (2001) Attenuation of virulence and changes in morphology in Candida albicans by disruption of the N-acetylglucosamine catabolic pathway. Infect Immun 69: 7986–7993.
18. da Silva R, Sacks DL (1997) Metacyclogenesis is a major determinant of Leishmania promastigote virulence and attenuation. Infect Immunit 55: 2002–2006.
19. Lorenz MC, Fink GR (2002) Life and death in a macrophage: role of the glycolate cycle in virulence. Eukaryot Cell 1: 657–662.
20. Burchmore RJ, Rodríguez-Condeiras D, McBride K, Merpel P, Barrett MP, et al. (2003) Genetic characterization of glucose transporter function in Leishmania mexicana. Proc Natl Acad Sci USA 100: 3901–3906.
21. Alvarez-Anoree LI, Calcagno ML, Plumbidge J (2005) Why does Escherichia coli grow more slowly on glucosamine than N-acetylglucosamine? Effects of enzyme levels and allosteric activation of GlcN6P deaminase (NagB) on growth rates. J Bacteriol 187: 2974–2982.
22. Natarajan K, Datta A (1995) Molecular cloning and analysis of the NAG1 cDNA coding for glucosamine-6-phosphate deaminase from Candida albicans. J Biol Chem 270: 9206–9211.
23. Haanstra JR, van Tuijl A, Kessler P, Reijnards W, Michels PA, et al. (2008) Compartmentation prevents a lethal turbo-explosion of glycolysis in trypanosomes. Proc Natl Acad Sci U S A 105: 17118–17223.
24. Fauray T, Kessler P, Jarzim A, Schnafer A, Cruller C, et al. (2002) Glucose is toxic to glycosamine-deficient trypanosomes. Proc Natl Acad Sci U S A 99: 14117–14122.
Author/s:
Naderer, T; Heng, J; McConville, MJ

Title:
Evidence That Intracellular Stages of Leishmania major Utilize Amino Sugars as a Major Carbon Source

Date:
2010-12-01

Citation:
Naderer, T., Heng, J. & McConville, M. J. (2010). Evidence That Intracellular Stages of Leishmania major Utilize Amino Sugars as a Major Carbon Source. PLOS PATHOGENS, 6 (12), https://doi.org/10.1371/journal.ppat.1001245.

Persistent Link:
http://hdl.handle.net/11343/264558

File Description:
Published version

License:
CC BY