Phase-sensitive Landau–Zener–Stückelberg interference in superconducting quantum circuit*

Zhi-Xuan Yang(杨智璇)1,4, Yi-Meng Zhang(张一萌)1,4, Yu-Xuan Zhou(周宇轩)1,4, Li-Bo Zhang(张礼博)1,2,3, Fei Yan(燕飞)1,2,3, Song Liu(刘松)1,2,3, Yuan Xu(徐源)1,2,3, and Jian Li(李剑)1,2,3,‡

1 Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
2 Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
3 Shenzhen Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
4 Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China

(Received 15 October 2020; revised manuscript received 15 December 2020; accepted manuscript online 30 December 2020)

Superconducting circuit quantum electrodynamics (QED) architecture composed of superconducting qubit and resonator is a powerful platform for exploring quantum physics and quantum information processing. By employing techniques developed for superconducting quantum computing, we experimentally investigate phase-sensitive Landau–Zener–Stückelberg (LZS) interference phenomena in a circuit QED. Our experiments cover an extensive range of LZS transition parameters and demonstrate the LZS induced Rabi-like oscillation as well as phase-dependent steady-state population.

Keywords: superconducting qubit, circuit QED, Landau–Zener–Stückelberg interference

PACS: 42.50.Ct, 03.67.Lx, 74.50.+r, 85.25.Cp

DOI: 10.1088/1674-1056/abd753

1. Introduction

Landau–Zener–Stückelberg (LZS) interference is a phenomenon that appears in a two-level quantum system undergoing periodic transitions between energy levels at the antiresonance.[1] Since the pioneering theoretical work by Landau,[2,3] Zener,[4] Stückelberg,[5] and Majorana[6] in 1932, profound explorations on LZS interference and related problems have been carried out both theoretically and experimentally in the past 90 years. In the 21st century, LZS interference and related research have become active again, owing to the enormous progress in experimental technologies for creating and manipulating coherent quantum states in solid-state systems. LZS interference patterns have been observed in the electronic spin of a double quantum dot,[7] charge oscillations of a double quantum dot,[8] electronic spin of nitrogen-vacancy (NV) center in a diamond,[9] and superconducting qubits.[10–13] Recently, a method using light propagating along the curved waveguides to simulate the time domain Landau–Zener transitions and LZS interferences has been proposed,[14] even in a hybrid system formed by a superconducting qubit coupled to an acoustic resonator, LZS interference has been studied.[15]

Unlike in double quantum dots and NV centers, natural microscopic particles such as electrons and atoms being used to perform experiments, superconducting qubits[16,17] consisting of Josephson junctions, inductors, and capacitors are true artificial macroscopic quantum objects. The macroscopic nature of superconducting qubits makes them not only an ideal testbed for quantum physics but also an advanced platform for emerging quantum information processing.[18] In the early stage of LZS interference experiments in superconducting qubits,[10–13] flux qubit,[19] charge qubit,[20] and phase qubit[21] have been used. These qubits have a fairly short coherence time of only a few nanoseconds, which makes observation of LZS dynamics, particularly the global structures,[22] (also called the Rabi-like oscillations,[19,23]), which strongly depends on the initial phase of periodic transitions hardly possibly.

A new type of charge-noise-insensitive superconducting qubit called transmon was invented in 2007.[24] By combining transmon with superconducting coplanar waveguide (CPW) resonator, a superconducting quantum circuit working in microwave regime and equivalent to optical cavity quantum electrodynamics (QED) can be formed, which is known as circuit QED.[25] In a circuit QED, the CPW resonator can protect the qubit from spontaneous decay and provide a high-visibility readout of qubit states. Owing to refinements in circuit design, material platform, and fabrication techniques in the past decade, circuit QED with transmon and its descendant Xmon[26] becomes the mainstream of superconducting quantum information processing.[27] Nowadays, the coher-
ence time of a transmon or Xmon in a circuit QED system can easily be over 10 µs, making it an excellent system for studying LZS dynamics.

In this paper, we adopt a circuit QED system consisting of an Xmon qubit, a transverse (XY) control line, a longitudinal (Z) control line, and a readout resonator to investigate LZS interference phenomena. By combining good coherence of the Xmon qubit and controlling the initial phase of periodic transitions, we demonstrate phase sensitivity of the qubit population in both time evolutions and steady states, and observe the Rabi-like oscillation for the first time in a superconducting quantum circuit. Since in our work the LZS interference does not happen in the Schrödinger picture, one may consider our system as a quantum simulator to mimic LZS physics in a rotating frame.

2. Physical model

The equivalent diagram of the circuit QED system is shown in the dashed box of Fig. 1. The dual-junction Xmon qubit can be excited by a near-resonance microwave driving field sending to the XY control line. The qubit transition frequency can be tuned by magnetic flux threading the loop formed by the two Josephson junctions (the so-called dc SQUID), and the magnetic flux is controlled by sending a current to the Z control line. This tunability of qubit transition frequency gives rise to the periodic transitions required by the LZS process.

For an Xmon qubit, the flux dependent transition frequency is approximately

$$\omega_0(\Phi) \approx \left[\sqrt{8E_C E_I} \cos(\pi \Phi/\Phi_0) \right] / \hbar,$$

(1)

Here Φ is the flux threading Xmon’s dc SQUID loop, $\Phi_0 = h/(2e)$ is the magnetic flux quantum, E_C and E_I represent the single-electron charging energy and the total Josephson energy, respectively. From Eq. (1), one can easily find out that the qubit transition frequency is not linearly dependent on flux. Only when Φ/Φ_0 is far away from $\pi/2$ (here π is an arbitrary integer), ω_0 is near linearly dependent on Φ. If the total flux Φ consists of a dc part and an ac part $\Phi = \Phi_{dc} + \Phi_{ac} \cos(\omega t + \varphi)$, and $(\Phi_{dc} \pm i \Phi_{ac})/\Phi_0$ is far away from $\pi/2$ (we may call the region far away from $\pi \epsilon/2$ the near-linear region), the qubit transition frequency then becomes

$$\omega_0(\Phi) \approx \omega_0 - A \cos(\omega t + \varphi),$$

(2)

with $\omega_0 \approx \omega_0 - E_C / h$ the dc transition frequency, $A \approx (\Phi_{dc} \pm \Phi_{ac}) / (2\Phi_0)$ the transition frequency (Z) modulation amplitude, and ω the modulation frequency. Here $\omega_0 \equiv \sqrt{8E_C E_I} \cos(\pi \Phi_{dc}/\Phi_0) / h$ is called the plasma oscillation frequency. A detailed derivation of Eq. (2) can be found in Appendix A.

The Hamiltonian of an Xmon qubit flux biased in near-linear region, with XY microwave drive, can then be written as

$$\hat{H} = -\frac{\hbar}{2} [\omega_0 - A \cos(\omega t + \varphi)] \hat{\sigma}_z + \Omega \cos(\omega_0 t) \hat{\sigma}_x,$$

(3)

with XY drive frequency ω_0, and Rabi frequency Ω. For XY drive, a fixed phase 0 is assumed, so φ represents both the initial phase of periodic transitions (Z modulation) and the relative phase between Z modulation and XY drive.

Bringing the Hamiltonian Eq. (3) to a rotating frame with frequency ω_0, by considering only near resonance drive, $|\omega_0 - \omega| << \omega_0$, we can make a rotating wave approximation (RWA) to ignore fast rotating terms with $e^{i\omega t}$, and have

$$\hat{H} = -\frac{\hbar}{2} [\epsilon_0 - A \cos(\omega_0 t)] \hat{\sigma}_z + \frac{\hbar}{2} \Omega \hat{\sigma}_x,$$

(4)

where $\epsilon_0 = \omega_0 - \omega_1$ is the detuning between qubit transition and XY drive. This rotating-frame Hamiltonian is very similar to LZS models being studied in literatures such as Refs. [1,22]. Taking relaxation and dephasing into account, time evolution of this system can be calculated by solving the Markov master equation [28]

$$\dot{\rho} = -i \hbar [\hat{H}, \hat{\rho}] + \Gamma_{1z} \left[2 \hat{\sigma}_- \hat{\rho} \sigma_+ - \sigma_+ \sigma_- \hat{\rho} - \hat{\rho} \sigma_+ \sigma_- \right] + \frac{\Gamma_p}{2} (\hat{\sigma}_z \hat{\rho} \sigma_z - \hat{\rho}),$$

(5)

where $\hat{\rho}$ is qubit density operator, σ_\pm is qubit raising (lowering) operator, Γ_{1z} is energy relaxation rate, and Γ_p is pure dephasing rate.

3. Experimental setup

In previous experiments like Refs. [23,29,30], continuous microwaves were used for Z modulation and XY drive (if needed). By using continuous microwaves, only the steady-state properties of the systems can be studied. Since the relative phase φ is not locked during continuous-wave measurements, the steady states are averaged over φ; therefore, any phase-sensitive phenomenon is washed away by this phase averaging.

In order to obtain phase-sensitive evolutions, we need to control the relative phase φ precisely. In our experiments, we use pulsed Z modulation and standard IQ mixing technique for XY drive pulses to achieve phase control. As shown in Fig. 1, the qubit XY drive is formed by mixing a continuous local oscillator (LO) microwave field (XY_{LO}), with two pulsed quadratures (I and Q) generated by two channels of an arbitrary waveform generator (AWG), $\omega_0 = \omega_0L + \omega_0Q$. The pulsed Z modulation signal is directly generated by another channel of the AWG. Since all channels of the AWG are synchronized, control φ is controlling the relative phase between signals from different channels. The Z modulation signal and a dc current for dc flux bias are combined by a bias-tee and sent to the Z control line of the Xmon.
The qubit dispersive readout[31] pulses are generated in the same way as for \textit{XY} drive pulses. The readout (\textit{R}) pulses through the readout resonator, are amplified at both low temperature and room temperature, then are down-mixed (a reverse process of \textit{IQ} mixing) and digitized by a data acquisition (DAQ) card. An illustration of pulse sequences is shown in Fig. 2. One should note that, due to different cable lengths, as well as different components on cables, even though pulses are generated by the AWG at the same time, there are constant delays between \textit{Z}, \textit{XY}, and \textit{R} pulses when they reach the circuit QED sample at mixing chamber of the dilution refrigerator. To compensate for these delays, we let the \textit{Z} modulation pulse a few tens of nanoseconds longer than the \textit{XY IQ} pulses.

It is worth to point out that, in literatures like Ref. [1], slightly different definitions of parameter regimes are used. The slow-passage limit and fast-passage limit are defined as \(\delta = \Omega^2/(4\epsilon) \gg 1 \) and \(\delta \ll 1 \), respectively, where \(\epsilon = A\omega/\sqrt{1 - (\epsilon_0/A)^2} \). For on-resonance \textit{XY} drive \((\epsilon_0 = 0) \), the slow-passage limit becomes \(\Omega^2/(4A\omega) \gg 1 \), which is equivalent to the adiabatic limit. We choose to use adiabatic and non-adiabatic limits. By numerical simulations, we find that in the non-adiabatic limit, the qubit population evolution is only weakly dependent on \(\phi \); therefore, we restrict our experiments in the adiabatic limit as well as on the border of the two limits \(\Omega^2 \approx A\omega \). Readers who are interested in LZS interference experiments in the non-adiabatic limit in a transmon-type superconducting qubit can check Refs. [29,30].

In the following LZS interference experiments, we dc flux bias the qubit to frequency \(\omega_0/2\pi = 4.365 \text{ GHz} \), which is in the near-linear region, as indicated by the yellow arrow in Fig. B1 of Appendix B. The measured energy relaxation time at this bias point is \(T_1 = 1/\Gamma_1 = 26.4 \mu s \), and the measured Ramsey dephasing time is \(T_2 = 625 \text{ ns} \), which is short due to biasing far away from the optimal point \((\Phi/\Phi_0 = 0) \). However, one should note that since there is an \textit{XY} drive, the relevant pure dephasing rate should be the driven one, \(\Gamma_\phi \), which can be extracted from fitting the decay (with a rate approximately \(\frac{3}{4}\Gamma_1 + \frac{1}{4}\Gamma_\phi \)) of Rabi oscillations. The driven pure dephasing rate varies slightly with Rabi frequency, thus \(\Gamma_\phi \approx 0.18 \text{ MHz} \) will be taken for later numerical calculations. This driven dephasing rate is small enough to allow coherent interference to exist in a long sequence of LZS process, and large enough to make sure that a reasonable length (40 \(\mu s \)) Rabi pulse can drive the qubit to a steady state.

4. Results

As pointed out by Garraway and Vitanov[22] that in the small coupling regime \(\Omega \ll \omega, \phi \) does not affect qubit population evolution substantially, thus in the following studies, we focus on the strong coupling regime \(\Omega \gtrsim \omega \). However, the small coupling regime is useful for estimating the \textit{Z} modulation amplitude \(A \), which can not be directly measured, since the qubit excited state population follows the \textit{Bessel} function of the first kind \(J_0(A/\omega) \). Figure B2(b) in Appendix B shows a mapping from \textit{Z} pulse peak-to-peak voltage to \(A \) estimated in the small coupling regime.

Depending on how large \(A \) is, the adiabatic limit \(\Omega^2 \gg A\omega \) and non-adiabatic limit \(\Omega^2 \ll A\omega \) can be reached.
Fig. 3 of Ref. [22]. The relative phase ϕ is swept from 85° to 175°, and the measured results are shown in Fig. 3(a). Numerical results by solving the master equation Eq. (5) are shown in Fig. 3(b). One may find that ϕ in numerical simulation is from 0.2π to 0.7π. This is due to the delay between Z and XY pulses, as discussed in Section 3. To avoid confusing the experimental and numerical values of ϕ, we use numerical ϕ (in π) for the following discussions.

4.2. The boundary between adiabatic and non-adiabatic limits

We then study the phase-dependent time evolution of $P_{1\downarrow}$ at the boundary between adiabatic and non-adiabatic limits, $\Omega^2 \approx \hbar \omega$. $\Omega^2/2\pi = 12$ MHz, $\omega/2\pi = 2.4$ MHz, $A/2\pi = 63.75$ MHz, and $\hbar\omega = 0$ are taken. The measured results and the corresponding numerical calculation results are shown in Figs. 4(a) and 4(b), respectively. Similar to the adiabatic limit, one can also find that the population evolution around $\phi = 0.5\pi$ differs from other ϕ values drastically. A longer trace of $P_{1\downarrow}$ evolution at $\phi = 0.5\pi$ is recorded, as indicated by the black solid curve in Fig. 4(c). In this longer evolution trace, a Rabi-like oscillation is observed, with an oscillation frequency Ω_0 much lower than any of Ω, A, and ω. The numerical results for $\phi = 0.5\pi$ trace are shown in Fig. 4(d) as the red solid curve.

In Ref. [23], a formula for Rabi-like oscillation frequency

$$\Omega_0 = 2\omega \sqrt{P_{LZ}/\pi},$$

was derived, where $P_{LZ} = \exp(-2\pi\delta)$ is the Landau–Zener probability, and $\delta = \Delta^2/(4A\omega)$ as mentioned before. By putting the experimental values of Ω, A, and ω into this formula, we get $\Omega_0 \approx 2\pi \times 730$ kHz, which differs from the fitting (the green dashed curves in Fig. 4) value $\Omega_0 = 2\pi \times 390$ kHz by roughly a factor of 2. Another formula

$$\Omega_0 = \frac{\omega\beta}{\pi}$$

(7)

can be found in Eq. (28) of Ref. [22], with

$$\beta = \arccos(1 - 2P),$$

$$P = \sin^2(\chi) \sin^2(\phi_{LZ} + \phi_{ad}),$$

$$\chi = \arccos\left[\exp(-\pi\alpha^2/2)\right],$$

$$\phi_{LZ} = \arg\Gamma(1 - i\alpha^2/2) + \frac{\pi}{4} + \frac{\alpha^2}{2} \left[\ln\left(\frac{\alpha^2}{2}\right) - 1\right],$$

$$\alpha = \frac{\Omega}{\sqrt{2A\omega}},$$

$$\phi_{ad} = \sqrt{\Omega^2 + A^2 E(\cos\Theta)/2\omega},$$

$$\Theta = \arctan(\Omega/A),$$

where Γ is the gamma function, and E is the complete elliptic integral of the second kind. Using this formula, we get $\Omega_0 \approx 2\pi \times 296$ kHz, which also differs from the fitting value by about 100 kHz. We are not clear where these differences come from.
4.3. Phase-sensitive steady states

To study the phase-dependent steady-state population (LZS spectra), we take $\Omega/2\pi = 12$ MHz, $\omega/2\pi = 6$ MHz, and sweep the Z pulse voltage from 3 mV$_{pp}$ to 36 mV$_{pp}$ which covers the adiabatic limit and the crossover to non-adiabatic limit. 40 μs long Rabi pulses are applied to ensure that the qubit is driven to a steady state, and the detuning $\varepsilon_0/2\pi$ is swept from -40 MHz to 40 MHz. Figures 5(a) and 5(c) show the experimental data and the numerical calculation results for $\phi = 0.4\pi$, respectively. A weak asymmetry can be observed in LZS spectra. By increasing ϕ to 0.9π, the asymmetry becomes more visible, as indicated by Figs. 5(b) and 5(d).

5. Conclusion

We have experimentally and numerically explored the phase-sensitive LZS phenomena using a superconducting Xmon qubit. By choosing such a dc flux bias point, to let the qubit transition frequency near-linearly respond to ac flux modulation, and to let the qubit have a proper dephasing time, we have not only studied the time evolution of the qubit population, but also for the first time observed phase dependence
in steady-state population. A LZS induced Rabi-like oscillation is observed at the boundary between adiabatic and nonadiabatic limits. Though in this work, not much attention has been paid to the LZS process in the non-adiabatic limit, superconducting Xmon qubit and IQ mixing technique indeed provide a powerful platform for investigating LZS problems in all parameter regimes.

Appendix A: Flux modulation of an Xmon qubit

For simplicity, we suppose the two Josephson junctions of the Xmon are identical and limit the flux $-0.5 < \Phi / \Phi_0 < 0.5$. The Hamiltonian of the Xmon reads

$$\hat{H} = -E_1 \cos(\pi \Phi / \Phi_0) \cos \hat{\gamma} + 4E_C \hat{n}^2,$$ \hspace{1cm} (A1)

where $\hat{\gamma}$ and \hat{n} are (dimensionless) phase operator and charge operator, respectively. Defining $\varphi = \pi \Phi / \Phi_0$, this Hamiltonian can be written as

$$\hat{H} = 4E_C \hat{n}^2 + \frac{E_1}{2} \cos(\varphi) \hat{\gamma}^2 - E_1 \cos(\varphi) \left\{ \sum_{m=1}^{\infty} \frac{(-)^m}{(2m)!} \hat{n}^{2m} \right\}. \hspace{1cm} (A2)$$

The first two terms on the right-hand side of Eq. (A2) form a simple harmonic oscillator (SHO). Then expressed in terms of SHO creation and annihilation operators, this Hamiltonian is approximately

$$\hat{H} \approx \sqrt{8E_CE_1 \cos(\varphi)} \hat{a}^\dagger \hat{a} - \frac{E_C}{12} (\hat{a}^4 + \hat{a}^\dagger)^4. \hspace{1cm} (A3)$$

Now we consider that the flux consists of dc and ac parts, $\varphi = \varphi_d + \varphi_{ac}(t)$, and expand $\cos(\varphi)$ to the leading order of $\varphi_{ac}(t)$,

$$\cos(\varphi) \approx \cos(\varphi_d) - \varphi_{ac}(t) \sin(\varphi_d). \hspace{1cm} (A4)$$

Therefore the Hamiltonian Eq. (A3) can be written as

$$\hat{H} \approx \hbar \omega_d \sqrt{1 - \varphi_{ac}(t) \tan(\varphi_d)} \hat{a}^\dagger \hat{a} - \frac{E_C}{12} (\hat{a}^4 + \hat{a}^\dagger)^4, \hspace{1cm} (A5)$$

where $\omega_d = \sqrt{8E_CE_1 \cos(\varphi_d)} / \hbar$. By making the approximation

$$\sqrt{1 - \varphi_{ac}(t) \tan(\varphi_d)} \approx 1 - \frac{\tan(\varphi_d)}{\varphi_d} \varphi_{ac}(t), \hspace{1cm} (A6)$$

we can rewrite the Hamiltonian as

$$\hat{H} \approx \hbar \omega_d \hat{a}^\dagger \hat{a} - \frac{E_C}{12} (\hat{a}^4 + \hat{a}^\dagger)^4 - \frac{\hbar \omega_d}{2} \tan(\varphi_d) \varphi_{ac}(t) \hat{a}^\dagger \hat{a}. \hspace{1cm} (A7)$$

Assuming the ac flux has the form $\varphi_{ac}(t) = \varphi_{ac} \cos(\omega t + \phi)$, and truncating the Hamiltonian Eq. (A7) to its lowest two energy levels, we get

$$\hat{H} = -\frac{\hbar}{2} [\omega_0 - A \cos(\omega t + \phi)] \hat{a}^\dagger \hat{a},$$

with $\omega_0 = \omega_d - E_C / \hbar$, and $A = \omega_d \varphi_{ac} \tan(\varphi_d) / 2$. \hspace{1cm} (A8)

Appendix B: Calibrations of parameters

Figure B1 shows the Xmon spectra with only dc flux bias. Due to the relatively strong XY drive amplitude used in spectroscopy, the two-photon transition process coupling Xmon’s ground state $|0\rangle$ and second excited state $|2\rangle$ is observed (the less visible parallel curve under the main spectra curve). The frequency difference (132 MHz for this sample) between this two-photon transition and the single-photon $|0\rangle$ to $|1\rangle$ (Xmon’s first excited state) transition is approximately $E_C / (2\hbar)$ [24]. By fitting the $|0\rangle$ to $|1\rangle$ transition (qubit) frequencies with Eq. (1), as shown by the white dashed curve in Fig. B1, we obtain the Josephson energy of this Xmon $E_3 = \hbar \times 13.822$ GHz.

Figure B2(a) shows the calibration of Rabi frequency Ω for different XY IQ pulses peak-to-peak voltages at qubit frequency 4.365 GHz. The Z modulation frequency ω is precisely known in experiments, but the modulation amplitude A of qubit transition frequency can not be directly measured. In the small coupling regime $\Omega \ll \omega$, the qubit $|1\rangle$ state population is approximately zero if the n-th Bessel function of the first kind $J_n(A / \omega)$ equals zero. Therefore the modulation amplitude A for different Z pulse peak-to-peak voltage can be calibrated using, e.g., the first zero of $J_0(A / \omega)$, at which

024212-6
A ≈ 2.4ω. To do this calibration, we set detuning ε0 = 0 and Rabi frequency Ω/2π = 2.5 MHz, then find Z pulse peak-to-peak voltages corresponding to zero population for various modulation frequencies ω/2π = 10, 15, 20, 25, 30 MHz. The calibration result is shown in Fig. B2(b).

Acknowledgment

Enlightening and fruitful discussions with Professor Barry Garraway at the University of Sussex is gratefully acknowledged.

References

[1] Shevchenko S N, Ashhab S and Nori F 2010 Phys. Rep. 492 1
[2] Landau L D 1932 Phys. Z. Sowjet. 1 88
[3] Landau L D 1932 Phys. Z. Sowjet. 2 46
[4] Zener C 1932 Proc. R. Soc. Lond. A 137 696
[5] Stuckelberg E C G 1932 Helv. Phys. Acta 5 369
[6] Majorana E 1932 Nuovo Cimento 9 43
[7] Petta J R, Lu H and Gossard A C 2010 Science 327 669
[8] Ota T, Hitachi K and Muraki K 2018 Sci. Rep. 8 16531
[9] Zhou J, Huang P, Zhang Q, Wang Z, Tan T, Xu X, Shi F, Rong X, Ashhab S and Du J 2014 Phys. Rev. Lett. 112 010503
[10] Wallraff A, Schuster D I, Blais A, Frunzio L, Majer J, Devoret M H, Girvin S M and Schoelkopf R J 2005 Phys. Rev. Lett. 95 163201
[11] Sillanpää M, Lehtinen T, Paila A, Makhlin Y and Hakonen P 2006 Phys. Rev. Lett. 96 187002
[12] Wilson C M, Duty T, Persson F, Sandberg M, Johansson G and Delsing P 2007 Phys. Rev. Lett. 98 257003
[13] Sun G, Wen X, Mao B, Yu Y, Chen J, Xu W, Kang L, Wu P and Han S 2011 Phys. Rev. B 83 180507(R)
[14] Liu H, Dai M and Wei L F 2019 Phys. Rev. A 99 013820
[15] Kervinen M, Ramirez-Munoz J E, Valimaa A and Sillanpää M A 2019 Phys. Rev. Lett. 123 240401
[16] Devoret M H and Martinis J M 2004 Quant. Inf. Process. 3 163
[17] Krantz P, Kjaergaard M, Yan F, Orlando T P, Gustavsson S and Oliver W D 2019 Appl. Phys. Rev. 6 021318
[18] Wendin G 2017 Rep. Prog. Phys. 80 106001
[19] Chiorescu I, Nakamura Y, Harmans C J P M and Mooij J E 2003 Science 299 1869
[20] Nakamura Y, Pashkin Y A and Tsai J S 1999 Nature 398 786
[21] McDermott R, Simmons R W, Steffen M, Cooper K B, Ciack K, Osborn K D, Oh S, Pappas D P and Martinis J M 2005 Science 307 1299
[22] Garraway B M and Vitanov N V 1997 Phys. Rev. A 55 4418
[23] Neiling P, Shevchenko S N, Bogár J, Rehák M, Olsner G, Karpov D S, Hübner U, Astafiev O, Grajcar M and Il'ichev E 2016 Phys. Rev. B 94 094519
[24] Koch J, Yu T M, Gambetta J, Houck A A, Schuster D I, Majer J, Blais A, Devoret M H, Girvin S M and Schoelkopf R J 2007 Phys. Rev. A 76 042319
[25] Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M and Schoelkopf R J 2004 Nature 431 162
[26] Barends R, Kelly J, Megrant A, Sank D, Jeffrey E, Chen Y, Yin Y, Chiaro B, Mutus J, Neill C, O'Malley P, Roushan P, Wenner J, White T C, Cleland A N and Martinis J M 2013 Phys. Rev. Lett. 111 080502
[27] Arute F, Arya K and Martinis J M 2019 Nature 574 505
[28] Carmichael H 1991 An Open Systems Approach to Quantum Optics, (Springer Berlin Heidelberg) pp. 22–32
[29] Li J, Silveri M P, Kumar K S, Pirkkalainen J M, Vepsäläinen A, Chien W C, Tuorila J, Sillanpää M A, Hakonen P J, Thuneberg E V and Paraoanu G S 2013 Nat. Commun. 4 1420
[30] Wu T, Zhou Y, Xu Y, Liu S and Li J 2019 Chin. Phys. Lett. 36 124204
[31] Wallraff A, Schuster D I, Blais A, Frunzio L, Majer J, Devoret M H, Girvin S M and Schoelkopf R J 2005 Phys. Rev. Lett. 95 060501