ON SOLUTIONS OF LINEAR EQUATIONS WITH POLYNOMIAL COEFFICIENTS

JANUSZ ADAMUS AND HADI SEYEDINEJAD

Abstract. We show that a linear functional equation with polynomial coefficients need not admit an arc-analytic solution even if it admits a continuous semialgebraic one. We also show that such an equation need not admit a Nash regulous solution even if it admits an arc-analytic one.

1. Introduction

The present note is concerned with existence of solutions to linear equations with polynomial coefficients in various classes of semialgebraic functions in \mathbb{R}^n. Recall that a set X in \mathbb{R}^n is called semialgebraic if it can be written as a finite union of sets of the form $\{x \in \mathbb{R}^n : p(x) = 0, q_1(x) > 0, \ldots, q_r(x) > 0\}$, where $r \in \mathbb{N}$ and p, q_1, \ldots, q_r are polynomial functions. Given $X \subset \mathbb{R}^n$, a semialgebraic function $f : X \to \mathbb{R}$ is one whose graph is a semialgebraic subset of \mathbb{R}^{n+1}.

A continuous function $f : \mathbb{R}^n \to \mathbb{R}$ is said to be regulous if there exist polynomial functions p and q such that the zero locus of q is nowhere dense in \mathbb{R}^n and $f(x) = p(x)/q(x)$ whenever $q(x) \neq 0$. A real analytic semialgebraic function on \mathbb{R}^n is called Nash. A continuous function $f : \mathbb{R}^n \to \mathbb{R}$ is said to be Nash regulous if there exist Nash functions g and h such that the zero locus of h is nowhere dense in \mathbb{R}^n and $f(x) = g(x)/h(x)$ whenever $h(x) \neq 0$. Finally, recall that a function $f : X \to \mathbb{R}$ is called arc-analytic if it is analytic along every arc, that is, $f \circ \gamma$ is analytic for every real analytic $\gamma : (-1, 1) \to X$. We shall denote the regulous, Nash regulous, and arc-analytic semialgebraic functions on \mathbb{R}^n by $\mathcal{R}^0(\mathbb{R}^n)$, $\mathcal{N}^0(\mathbb{R}^n)$ and $\mathcal{A}_a(\mathbb{R}^n)$, respectively. We have

$$\mathcal{R}^0(\mathbb{R}^n) \subset \mathcal{N}^0(\mathbb{R}^n) \subset \mathcal{A}_a(\mathbb{R}^n).$$

The first inclusion is trivial and the second one follows from [1, Prop. 3.1]. Both inclusions are strict.

2010 Mathematics Subject Classification. Primary 14P10, 14P20, 14P99.

Key words and phrases. arc-analytic function, Nash regulous function, semialgebraic geometry.

J. Adamus’s research was partially supported by the Natural Sciences and Engineering Research Council of Canada.
The above classes of semialgebraic functions have been extensively studied recently (see, e.g., [1, 2, 6, 8] and the references therein), in particular, in the context of the following problem of Fefferman and Kollár [5].

Consider a linear equation

\[(1.2) \quad f_1 \varphi_1 + \cdots + f_r \varphi_r = g,\]

where \(g\) and the \(f_j\) are continuous (real-valued) functions on \(\mathbb{R}^n\). Fefferman-Kollár asked whether assuming that \(g\) and the \(f_j\) have some regularity properties, one could find a solution \((\varphi_1, \ldots, \varphi_r)\) to \((1.2)\) with similar regularity properties.

This is a difficult problem, even when the coefficients of \((1.2)\) are polynomial. One line of attack is to instead consider a somewhat easier question:

Problem 1.1. Suppose that \((1.2)\) admits a solution \((\varphi_1, \ldots, \varphi_r)\) within some class of functions. Does there exist then a solution to \((1.2)\) within a strictly smaller class?

In the semialgebraic setting, the most general positive answer to this problem is given by [5, Cor. 29(1)]: If \(f_1, \ldots, f_r\) are polynomial, \(g\) is semialgebraic and \((1.2)\) admits a continuous solution, then it admits a continuous semialgebraic solution. In a similar vein, Kucharz and Kurdyka showed that, in case \(n = 2\), if \(f_1, \ldots, f_r, g\) are regulous then \((1.2)\) admits a continuous solution if and only if it admits a regulous solution (cf. [9, Cor. 1.7]).

On the other hand, the above is known to fail for \(n \geq 3\). Namely, by [7, Ex.6], there exist \(f_1, f_2, g \in \mathbb{R}[x, y, z]\) such that \(f_1 \varphi_1 + f_2 \varphi_2 = g\) admits a continuous solution, but no regulous one. Nonetheless, the solution from [7, Ex.6] is Nash regulous, and in [8] Kucharz conjectured that existence of a continuous solution to \((1.2)\) should imply the existence of a Nash regulous one, for any \(n \geq 1\), provided \(f_1, \ldots, f_r, g\) are polynomial.

The main goal of this note is to show that the latter is not the case. In Example 3.1 we show that there exists a linear equation with polynomial coefficients which admits a continuous solution, but no arc-analytic one. By \((1.1)\), it follows that there is no Nash regulous solution either. Perhaps even more interestingly, in Example 3.2 we show a linear equation with polynomial coefficients that does admit an arc-analytic solution and has no Nash regulous solution nonetheless. Both our examples are modifications of [7, Ex.6].

2. Toolbox

The following facts will be needed in Examples 3.1 and 3.2.
Proposition 2.1. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a semialgebraic function. Then, f is arc-analytic if and only if there exists a mapping $\pi : \tilde{R} \to \mathbb{R}^n$ which is a finite sequence of blowings-up with smooth algebraic centers, such that the composite $f \circ \pi$ is a Nash function.

Proof. This is a special case of [3, Thm. 1.4].

Functions satisfying the conclusion of Proposition 2.1 are called blow-Nash.

Remark 2.2. A function $f : \mathbb{R} \to \mathbb{R}$ is arc-analytic if and only if it is real analytic. This follows directly from the definition of arc-analytic functions.

Recall that a Nash set (i.e., the zero set of a Nash function) in \mathbb{R}^n is said to be Nash irreducible if it cannot be realized as a union of two proper Nash subsets. A set is called Nash constructible if it belongs to the Boolean algebra generated by the Nash subsets in \mathbb{R}^n.

Remark 2.3 (cf. [10, Ex. 2.3]). The graph Γ_f of $f(x, y) = \sqrt{x^4 + y^4}$ is not Nash constructible in \mathbb{R}^3.

Indeed, let $X := \{(x, y, z) \in \mathbb{R}^3 : z^2 = x^4 + y^4\}$. We claim that X is Nash irreducible. First, note that $z^2 - x^4 - y^4$ is an irreducible element in the ring of convergent power series over \mathbb{C}. This implies that the set $\{z^2 - x^4 - y^4 = 0\} \subset \mathbb{C}^3$ has an irreducible (complex analytic) germ at the origin, of (complex) dimension 2. On the other hand, the (real analytic) germ of X at the origin is of (real) dimension 2. Hence, its complexification has to be given by precisely $\{z^2 - x^4 - y^4 = 0\}$. It follows that the germ X_0 is irreducible, and there is thus no way to decompose X into proper analytic subsets. (See [4] for details on real analytic germs and their complexifications.)

The irreducibility of X implies that X is the smallest Nash set in \mathbb{R}^3 containing Γ_f. Therefore, by [8, Prop. 2.1], if Γ_f were Nash constructible then it would need to contain the smooth locus of X. This is not the case, however, because X contains also the graph of $g(x, y) = -\sqrt{x^4 + y^4}$.

The following result is new, though it follows easily from [8].

Lemma 2.4. Let $n \geq 1$ and let $f, g \in \mathcal{A}_a(\mathbb{R}^n)$. If the zero locus of g is nowhere-dense in \mathbb{R}^n and the function f/g extends continuously to \mathbb{R}^n, then this extension is in $\mathcal{A}_a(\mathbb{R}^n)$.

Proof. By Proposition 2.1 above, there is a finite sequence $\pi : \tilde{R} \to \mathbb{R}^n$ of blowings-up with smooth algebraic centers such that $f \circ \pi$ and $g \circ \pi$ are Nash functions on the Nash manifold \tilde{R}. Continuity of f/g implies that
(f \circ \pi)/(g \circ \pi) : \tilde{R} \to \mathbb{R} is a Nash regulous function. By [8, Prop. 3.1], Nash regulous functions are arc-analytic, and hence there is a finite sequence \(\sigma : \tilde{R} \to \tilde{R} \) of blowings-up with smooth algebraic centers such that \((f/g) \circ \pi \circ \sigma = f \circ \pi = g \circ \pi \circ \sigma : \tilde{R} \to \mathbb{R} is Nash, by Proposition 2.1 again. Therefore, \(f/g \) is arc-analytic. \(\square\)

3. Examples

Example 3.1. Consider the equation

\[
(3.1) \quad x^3 y \varphi_1 + (x^3 - y^3 z) \varphi_2 = x^4.
\]

We claim that

\[
\varphi_1(x, y, z) = z^{1/3}, \quad \varphi_2(x, y, z) = \frac{x^3}{x^2 + xyz^{1/3} + y^2 z^{2/3}}
\]

is a continuous solution to (3.1), but no semialgebraic arc-analytic solution exists. The function \(\varphi_1 \) is clearly continuous. To see that \(\varphi_2 \) is continuous, first note that the set

\[
\{(x, y, z) \in \mathbb{R}^3 : x^2 + xyz^{1/3} + y^2 z^{2/3} = 0\}
\]

is the union of the \(y \)-axis and the \(z \)-axis. Therefore, \(x \to 0 \) whenever \((x, y, z) \) approaches the locus of indeterminacy of \(\varphi_2 \). On the other hand, we have

\[
x^2 + xyz^{1/3} + y^2 z^{2/3} \geq \frac{1}{2} (x^2 + y^2 z^{2/3}),
\]

which shows that \(\frac{x^2}{x^2 + xyz^{1/3} + y^2 z^{2/3}} \) is bounded. Hence, \(\varphi_2 \) can be continuously extended by zero to \(\mathbb{R}^3 \).

Suppose now that (3.1) has an arc-analytic solution \((\psi_1, \psi_2) \). Set

\[
S := \{(x, y, z) \in \mathbb{R}^3 : x^3 = y^3 z\},
\]

and note that \(y \) vanishes on \(S \) only when \(x \) does so. Therefore, \(x/y \) is a well defined function on \(S \setminus \{x = 0\} \), and thus, by (3.1), we obtain that

\[
\psi_1|_{S \setminus \{x = 0\}} = \frac{x}{y}|_{S \setminus \{x = 0\}}.
\]

Note that every point \((0, 0, c)\) of the \(z \)-axis can be approached within \(S \setminus \{x = 0\} \), even by an analytic arc. Indeed, for instance, by the arc \((\sqrt[3]{c}t, t, c)\) for \(c \neq 0 \) and the arc \((t^2, t, t^3)\) for \(c = 0 \). This allows us to write

\[
\lim_{(x,y,z) \to (0,0,c)} \psi_1(x, y, z) = \lim_{(x,y,z) \to (0,0,c)} \frac{x}{y}|_{S \setminus \{x = 0\}} = c^{1/3}.
\]

Therefore, \(\psi_1|_{z-axis} = z^{1/3} \), by continuity. This contradicts the arc-analyticity of \(\psi_1 \), by Remark 2.2. \(\square\)
Example 3.2. Consider now the equation

\[(3.2) \quad x^4y^2 \varphi_1 + (x^4 - y^4(z^4 + w^4)) \varphi_2 = x^6. \]

We claim that

\[\varphi_1 = \sqrt{z^4 + w^4}, \quad \varphi_2 = \frac{x^4}{x^2 + y^2 \sqrt{z^4 + w^4}} \]

is an arc-analytic solution to (3.2), but no Nash regulous solution exists. It is easy to see that the function \(\sqrt{z^4 + w^4}\) is blow-Nash, and hence arc-analytic, by Proposition 2.1. Thus, by Lemma 2.4, to see that \(\varphi_2\) is arc-analytic, it suffices to show that it extends continuously to \(\mathbb{R}^4\). First, note that the set

\[\{ (x, y, z, w) \in \mathbb{R}^4 : x^2 + y^2 \sqrt{z^4 + w^4} = 0 \} \]

is the union of the \(y\)-axis and the \((z, w)\)-plane. Therefore, \(x \to 0\) whenever \((x, y, z, w)\) approaches the locus of indeterminacy of \(\varphi_2\). On the other hand, the function \(\frac{x^2}{x^2 + y^2 \sqrt{z^4 + w^4}}\) is clearly bounded. Hence, \(\varphi_2\) can be continuously extended by zero to \(\mathbb{R}^4\).

Suppose now that (3.2) has a Nash regulous solution \((\psi_1, \psi_2)\). Set

\[S := \{ (x, y, z, w) \in \mathbb{R}^4 : x^4 = y^4(z^4 + w^4) \}, \]

and note that \(y\) vanishes on \(S\) only when \(x\) does so. Therefore, \((x/y)^2\) is a well defined function on \(S \setminus \{ x = 0 \}\), and thus, by (3.2), we obtain that

\[\psi_1|_{S \setminus \{ x = 0 \}} = \frac{x^2}{y^2}|_{S \setminus \{ x = 0 \}}. \]

Note that the \((z, w)\)-plane is contained in \(S\), and every point \((0, 0, c, d)\) of the \((z, w)\)-plane can be approached within \(S \setminus \{ x = 0 \}\), even by an analytic arc. Indeed, for instance, by the arc \((\sqrt{c^4 + d^4}t, t, c, d)\) for \(c^4 + d^4 \neq 0\) and the arc \((\sqrt{2t^2}, t, t, t)\) for \(c^4 + d^4 = 0\). This allows us to write

\[\lim_{(x, \ldots, w) \to (0, 0, c, d)} \psi_1(x, y, z, w) = \lim_{(x, \ldots, w) \to (0, 0, c, d)} \frac{x^2}{y^2}|_{S \setminus \{ x = 0 \}} = \sqrt{c^4 + d^4}. \]

Therefore, \(\psi_1|_{(z, w)\text{-plane}} = \sqrt{z^4 + w^4}\), by continuity. This is impossible for a Nash regulous function though, because by [8, Cor. 3.2] the graph of a Nash regulous function (and hence its intersection with any coordinate plane) is a closed Nash constructible set. However, the graph of \(f(z, w) = \sqrt{z^4 + w^4}\) is not Nash constructible, by Remark 2.3.

References

[1] J. Adamus and H. Seyedinejad, A proof of Kurdyka’s conjecture on arc-analytic functions, Math. Ann. 369 (2017), 387–395.
[2] J. Adamus and H. Seyedinejad, *Extensions of arc-analytic functions*, Math. Ann. (online, 2018); DOI: 10.1007/s00208-017-1639-7.

[3] E. Bierstone and P. D. Milman, *Arc-analytic functions*, Invent. Math. **101** (1990), 411–424.

[4] H. Cartan, *Variétés analytiques réelles et variétés analytiques complexes*, Bull. Soc. Math. France **85** (1957), 77–99.

[5] C. Fefferman and J. Kollár, *Continuous solutions of linear equations*, in “From Fourier analysis and number theory to Radon transforms and geometry”, 233–282, Dev. Math. **28**, Springer, New York, 2013.

[6] G. Fichou, J. Huisman, F. Mangolte, and J.-P. Monnier, *Fonctions régulues*, J. Reine Angew. Math. **718** (2016), 103–151.

[7] J. Kollár and K. Nowak, *Continuous rational functions on real and p-adic varieties*, Math. Z. **279** (2015), 85–97.

[8] W. Kucharz, *Nash regulous functions*, Ann. Polon. Math. **119** (2017), 275–289.

[9] W. Kucharz and K. Kurdyka, *Linear equations on real algebraic surfaces*, Manuscripta Math. **154** (2017), 285–296.

[10] H. Seyedinejad, *Decomposition of sets in real algebraic geometry*, electronic preprint, [arXiv:1704.08965v1](https://arxiv.org/abs/1704.08965) (2017).

Department of Mathematics, The University of Western Ontario, London, Ontario, Canada N6A 5B7

E-mail address: jadamus@uwo.ca

Department of Mathematics, The University of Western Ontario, London, Ontario, Canada N6A 5B7

E-mail address: sseyedin@uwo.ca