Implementation of OEE in a Paranjape Agro Industry to Improve Productivity

Mayuri Hadki¹, Rutuja Mirjolkar², Shubham Kamble³, Vrushabh Gade⁴
¹, ², ³, ⁴B.E. student Finolex Academy of Management and Technology, Ratnagiri, Maharashtra, India

Abstract: Total Productive Maintenance (TPM) is a method that aims to ease further capital investment by enhancing availability of current equipment. Overall Equipment Effectiveness (OEE) is a tool that is used by manufacturing industries to improve performance in their field. Using OEE metrics, reports and instrument panel, your management side will identify that production are going to satisfy consumer orders.

In order to satisfy consumer demands, efforts can be rapidly focused on fixing problem in any area. OEE will enhance from resources, both people and equipment.

It helps industries to get the most out of their business and helps improve bottom line profitability. OEE gives a steady measurement to support enhancement and cost-effectiveness since it gives a whole picture of the equipment’s health, displays the equipment operations that adds value, gives precise unbiased snapshots which openly shares information and OEE promotes no-blame approach in issues related to handling equipment. OEE displays the definite performance of a tool relative to its performance.

Capabilities of OEE looks at the entire manufacturing environment measuring the equipment availability, the production efficiency while the equipment is available to run product, as well as the efficiency loss that results from scrap, rework and yield losses.

This project reviews OEE of RCN sorting and cutting machine in agro industry. This OEE tool is a route map to improve the effectiveness of manufacturing process and equipment (i.e. loading time, job setting, machining, machine utilization, etc.) Current situation and all time rises question for any company is how to optimize the performance of their existing machines and equipment.

The answer of OEE which extricate all the reason for delay in the job. OEE measures inefficiency and also categorizes those into three factors for better understanding of manufacturing procedure. In this project, we carried out OEE on RCN sorting and cutting machine to identify bottleneck and hidden losses. So, through the case study of implementing OEE in an agro industry (cashew processing industry), the increase on productivity are discusses. On the basis of results database has been prepare which can be further used in any agro industry.

Keywords: Availability, Downtime, OEE, Productivity and TPM.

I. INTRODUCTION

TPM is model that was introduce by Nakajima in 1180s, that offers a measurable method called overall equipment effectiveness(OEE) for determining productivity of specific equipment in factory. Losses of essential features of manufacturing are recognize and measure by OEE.

The goal of TPM (Total Productive Maintenance) is to raise the availability of present equipment. Hence need for additional capital investment is decrease.

The crucial metric of TPM is OEE (Overall Equipment Effectiveness). The definite performance of a tool is monitored by OEE compared to its performance. OEE measures the equipment availability also, the efficiency of production when the equipment is available for production, and efficiency loss that results from scrap, rework and yield losses in whole manufacturing environment.

This paper analyses the OEE of RCN sorting and cutting machine in agro industry. The effectiveness of equipment and manufacturing method is guided by OEE. Current scenario and the problem raised by any industry is how they can improve the performance of their tools and existing machines. For better understanding of manufacturing method the OEE has been categorize into three categories which also measures inefficiency. In this paper, we carried out OEE on RCN sorting and cutting machine to bottleneck and hidden losses.
A. Six big losses

These are categorised as below

Sr. No.	Six big loss category	OEE loss category	Event examples	Comment
1	Breakdowns	Down Time Loss	Tooling Let downs, Accidental Maintenance, Overall Breakdowns, Tool Failure	There is flexibility on where to fix the threshold among a Minor Stop (Speed Loss) and Breakdown (Down Time Loss).
2	Setup and Adjustments	Down Time Loss	Setup/Changeover, Material Scarcity, Operator Absences, Major Modifications, Warm-Up Time	The setup time reduction agenda is often addressed by this loss
3	Small Stops	Speed Loss	Blocked Product Flow, Element Jams, Misdeeds, Sensor Blocked, Delivery Blocked, Cleaning/Examine	This normally consists of stops that are below five minutes and that do not need maintenance staffs.
4	Reduced Speed	Speed Loss	Uneven Running, Below Nameplate Capacity, Below Design Capacity, Tool/Equipment Wear, Worker Inefficiency	Whatever that retains the process from running at its notional determine/maximum speed (a.k.a. Ideal Run Rate or Nameplate Ability).
5	Start-up Rejects	Quality Loss	Scrap, Rework, In Process Destruction, In-Process Termination, Improper Assembly	Discards through warm-up, start up or other initial production. This can be due to incorrect setup, warm-up period, etc.
6	Production Rejects	Quality Loss	Scrap, Rework, In Process Destruction, In-Process Termination, Improper Assembly	Discards for the period of fixed-state production.

II. METHODOLOGY

A. Steps in OEE

1) Availability: It takes into account Down Time Loss, which includes any Events that stop planned production for an appreciable length of time (usually several minutes – long enough to log as a tractable Event).

 Availability is calculated as:
 \[
 \text{AVAILABILITY} = \frac{\text{ACTUAL OPERATING TIME}}{\text{PLANNED OPERATING TIME}} \times 100
 \]

 From Plant Operating Time, we subtract Planned Shut Down, which includes all events that should be excluded from efficiency analysis because there is no intention of running production (e.g. breaks, scheduled maintenance, periods where there is nothing to produce). The remaining time is planned production Time.

2) Performance: It takes into account Speed Loss, which includes any factors that cause the process to operate at less than the maximum possible speed, when running.

 Performance is calculated as:
 \[
 \text{PERFORMANCE} = \frac{\text{QUANTITY MADE}}{\text{THEORETICAL QUANTITY}} \times 100
 \]

 Performance takes into account Speed Loss, which includes all factors that cause your process to operate at less than the maximum possible speed when running. Examples include machine wear, substandard materials, misfeeds, and operator inefficiency. The remaining time is called Net Operating Time. Performance is the ratio of Net Operating Time to Operating Time.
3) **Quality**: It takes into account Quality Loss, which accounts for produced pieces that do not meet quality standards, including pieces that require rework. Quality is calculated as:

\[
\text{QUALITY} = \frac{\text{QUANTITY OF GOOD PRODUCT}}{\text{TOTAL QUANTITY MADE}} \times 100
\]

4) **OEE factors**: It introduces Availability, Performance, and Quality—the metrics that you will use to measure your plant's efficiency and effectiveness. OEE takes into account all three OEE Factors, and is calculated as:

\[
\text{OEE} = \text{AVAILABILITY} \times \text{PERFORMANCE} \times \text{QUALITY}
\]

B. World class OEE

Basically the OEE is given as the ratio of Complete Productive Time to Planned Production Time. Practically Overall Equipment Effectiveness is considered as the product of its three contributing factors:

\[
\text{OEE} = \text{AVAILABILITY} \times \text{PERFORMANCE} \times \text{QUALITY}
\]

OEE becomes a simple test due to this type of calculation. For example, if all three factors of OEE (availability, performance, and quality) are 95.0%, the OEE would be 85.73%. Practically, accepted World Class goals for every factor are somewhat different from each other; it is shown in the table below.

OEE FACTOR	WORLD CLASS
Availability	90.0%
Performance	95.0%
Quality	99.9%
OEE	85.0%

III. CASE STUDY

(Paranjape Agro Products (India) Pvt Ltd)

A. Introduction

Initially M/s. Paranjape Agro Products (India) Private Limited (PAPIPL) was established in 2010 with trading intentions i.e. buying and selling of agro products mainly cashews. M/s. Paranjape Cashew Products (PCP) which is a sister concern and owned by Mrs Samruddhi Paranjape (Chairperson and co-founder of PAPIPL) was in cashew processing from June 2011 with daily processing capacity of 1 Ton. She also received women entrepreneur award for 2013 (Maharashtra & Goa states combined) by Sakal newspaper and MITCON. Due to overwhelming response of customers, it was unanimously decided by management to enter into cashew processing at large scale. So M/s. PAPIPL has set up a cashew processing plant of 10 tons in Ratnagiri.

B. Overview of cashew nut processing

1) **Drying**: In this process the raw cashew nut are sun dried for 24 hours and in monsoon season it is air dried.

2) **Sorting**: This process take place after drying is completed. Here the raw cashew nuts are sorted according grades A, B, C1, C2 and D as per size in descending order. In the RCN sorting machine the feeding of cashew nut in RCN sorting machine is by the hopper the capacity of RCN sorting machine is 600 kg/hr.

3) **Boiling**: After sorting this cashew nuts are boiled for 12 to 14 minutes as per moisture contain according to grades. There are 3 boilers having capacity of 320 kg each.

4) **Drying**: When the cashew nuts are boiled they are air dried for 12 hours.

5) **Shelling**: In shelling process, the nuts are deshelled by cutting m/c or by hand in some cases. There are 10 machines with 2 cutter each and 2 high capacity machines with 8 cutters each. There are customized 2 machines which cuts the cashews of grades A, B and C, D.

6) **Drying**: The kernels are dried in the tray dryer to remove the tanning and moisture content inside the kernel. Drying also help in easy peeling of red/brown skin the kernel should be dried for 8 hours at 65°C.

7) **Moisturising**: In the process of moisturizing, the cashew nuts are kept in moisturizing room for 3-4 hours to maintain moisture.

8) **Peeling**: The process of removing red/brown skin (Testa) present on the kernel by hand or by automatic machine is called peeling.

9) **Grading of Cashew Kernel**: The peeled cashews are graded on the basis of shape, size and colour.
10) **Packaging:** Before packing, the graded kernel should be dried again for 1 hour to remove the little amount of moisture again during peeling, and grading process. The kernel are filled in tin and packed.

C. Calculation of OEE

1) Conventional Method

Table III Formula For Sorting And Cutting Machine
Formulas
Plant operating time = Shift length × No. of shifts
Planned production time = Plant operating time – Machine ideal time – Planned maintenance
Total downtime = Minor stoppages + Unplanned maintenance + setup and change over time

Table IV Worksheet Of Oee For Sorting Machine
Overall Equipment Effectiveness Worksheet
Machine:- RCN Sorting Machine
OEE Data
AVAILABILITY
No. of Shifts
Shift duration
Shift length
Minute per shift breakists
Min each
Minutes
Short breaks
Meal breaks
Machine ideal time
Minor stoppage
Planned maintenance
Unplanned maintenance
Planned production time
Actual operating time
PERFORMANCE
Sample quantity
Sorting time
Actual quantity made
Sorting time
Theoretical quantity made
Sorting time
QUANTITY
For sample of 50 kg of ‘C’ grade
Whole cashew
Pieces
Uncut
Manual rework
Shells
Total quantity made
Good quantity

OEE factors	**Calculations**	**OEE**	**OEE %**
Availability	Actual operating time/Planned operating time	0.9285	92.85%
Performance	Quantity made/Theoretical quantity	0.7150	71.50%
Quality	Quantity of good products/Total quantity made	0.8191	81.91%
Overall OEE	Availability × Performance × Quality	0.5290	52.90%
D. Identification of problem

From above calculation the availability of sorting machine is 93.75%, performance is 71.5% and quality is 81.9% and that of cutting machine is 88%, 60% and 81% respectively. The OEE of cutting machine is 42%, and that of sorting machine is 52%. The sorting is not performed properly as there is no uniform feeding in the hopper and different grade cashew nuts get mixed with each other (C1 and C2 grade and B and C1 grade). Here there are different machines available for shelling of cashew nuts (A, B cutting machine and C, D cutting machine), on A and B cutting machine, cashew grades of only A and B are shelled and on C and D machine, cashew grade of C and D are shelled. If the operator tries to adjust the cutter of the cutting matching than that will take even more time for cutting, there is lot of manual rework due to improper shelling.
E. Bucket elevator

![Inclined bucket elevator](image)

Fig. 1 Inclined bucket elevator

A bucket elevator is a mechanism for carrying flowable bulk material along vertical or inclined path, and for transporting articles between various operations in production flow line. It also maintain the uniform flow rate of the product. They have wide applications in all branches of industry. Simple in design, easy maintenance and high reliability of operation.

F. Specifications Of The Components In Bucket Elevator

Sr. No.	Name of component	Specifications	Quantity	Cost / Unit (Rs.)	Amount (Rs.)
1.	Supports and Angles	Material: - M.S.			1500
2.	Bearing	Type: DGBB Material: - S.S. Diameter: - 40 mm	2	400	800
3.	Shaft	Material: - M.S. Diameter: - 40 mm Length: - 300 mm	2	500	1000
4.	Washers	Material: - M.S Diameter: - 8 mm	160	1	160
5.	Bucket rods	Material: - Iron Diameter: - 8 mm Length: - 250 mm	80	15	1200
6.	Lock nut	Material: - S.S. Diameter: - 8 mm	160	1	160
7.	Rollers	Material: - Nylon, Teflon Diameter: - 8 mm	160	4	640
8.	Bucket	Material: - M.S., S.S., Nylon Size: - 210 mm × 550 mm	80	50	4000
9.	Motor	Phase: - 3 Phase Power: - 1 HP Speed: - 30 – 125 rpm Voltage: - 220	1		10000
					Total 19,460
G. Calculation of OEE after improvement (Revised OEE)

1) OEE For Sorting Machine

TABLE VII	WORKSHEET OF REVISED OEE FOR SORTING MACHINE		
Overall Equipment Effectiveness Worksheet			
Machine:- RCN Sorting Machine	OEE Data		
OEE Data			
No. of Shifts	1		
Shift duration	8 hours shift (8 AM to 4 PM)		
Shift length	480		
Minute per shift			
Short breaks	2	Breaks@ 115 Min each 30 Minutes	
Meal breaks	1	Break@ 330 Min each 30 Minutes	
Machine ideal time	120 Minutes		
Minor stoppage	10 Minutes		
Planned maintenance	20 Minutes		
Unplanned maintenance	10 Minutes		
Planned production time	280 Minutes		
Actual operating time	260 Minutes		

PERFORMANCE

Sample quantity	50 kg	Sorting time	7 minutes
Actual quantity made	429 kg	Sorting time	60 minutes
Theoretical quantity made	600 kg	Sorting time	60 minutes

QUANTITY

For sample of 50 kg of ‘C’ grade

Whole cashew	14.00 kg
Pieces	0.623 kg
Uncut	1.309 kg
Manual rework	0.496 kg
Shells	33.58 kg
Total quantity made	16.42 kg
Good quantity	14.00 kg

OEE calculations

OEE factors	Calculations	OEE	OEE %
Availability	Actual operating time/Planned operating time	0.9285	92.85%
Performance	Quantity made/Theoretical quantity	0.7865	78.65%
Quality	Quantity of good products/Total quantity made	0.8526	85.26%
Overall OEE	Availability × Performance × Quality	0.6099	60.99%
Table VIII Worksheet Of Revised Oee For Cutting Machine

Overall Equipment Effectiveness Worksheet
Machine:- RCN Cutting Machine

OEE Data
No. of Shifts
Shift duration
Shift length
Minute per shift
Short breaks
Breaks @
Min each
Minutes
Meal breaks
Break@
Min each
Minutes
Minor stoppage
Minutes
Set up and changeover time
Minutes
Planned maintenance
Minutes
Unplanned maintenance
Minutes
Planned production time
Minutes
Actual operating time
Minutes
PERFORMANCE

Sample quantity	19 kg
Cutting time	7 minutes
Actual quantity made	85.71 kg
Cutting time	60 minutes
Theoretical quantity made	100 kg
Cutting time	60 minutes

QUANTITY
For sample of 50 kg of ‘C’ grade
Whole cashew
Pieces
Uncut
Manual rework
Shells
Total quantity made
Good quantity

OEE calculations
OEE factors
Availability
Performance
Quality
Overall OEE

IV. CONCLUSIONS

As per the conventional method of sorting of cashews used in Paranjape agro industry gives OEE for sorting machine is 52% and for cutting machine it is 42% which is comparatively less than world class OEE. In this project work this problem is solved using bucket type elevator for feeding the raw cashews in to RCN sorting machine. After implementing Bucket elevator for sorting machine improved OEE are mentioned in table below.

In Paranjape Agro industry after implementing the Bucket elevator the Availability, Performance & Quality of the RCN sorting & cutting machine is improved & hence leading to an increase in productivity.
Table IX Results

OEE Factors	Revised OEE of sorting Machine	Revised OEE of cutting Machine	World Class OEE		
	Conventional method	Using Bucket elevator	Conventional method	Using Bucket elevator	
Availability	92.85%	92.85%	88.88%	89.71%	90%
Performance	71.65%	78.65%	60%	86.00%	95%
Quality	81.81%	85.26%	81.91%	85.26%	99.9%
OEE	52.90%	60.99%	42.12%	65.5%	85%

Graphical representation of Revised OEE and World class OEE

Fig. 2 Graphical representation of revised OEE and world class OEE

V. ACKNOWLEDGMENT

First and foremost, we would like to thank our guide ASSISTANT PROF. MAHADEV NAIK sir for his guidance and support. We feel grateful for the constant support and guidance extended by him, in completing this project report. Through our many discussions, he helped us to form and solidify ideas.

REFERENCES

[1] S. Vijaya Kumar, V.G.S. Mani, N. Devraj. “Production Planning and Process improvement in an Impeller Manufacturing using OEE Techniques.”
[2] Amit kumar Gupta, Dr. R. K. Garg. “OEE Improvement by TPM Implementation.”
[3] Faizan Saleem, Salman Nisar, Muhammad Ali Khan. “OEE of Tyre curing press: A case study”
[4] Vijay Lahri, DR. Pramod Pathak. “Optimization of Overall Equipment Effectiveness in A Manufacturing System”
[5] M. Vivek Prabhu, R. Karthick, Dr. G. Senthil Kumar. “Optimization of Overall Equipment Effectiveness in A Manufacturing System”
[6] Subhankur Dutta, Ajoy Krishna Dutta. “Experimental study of Overall Equipment Effectiveness of various machines and its improvement strategies through TPM implementation”
[7] A. S. Morel, S. K. Ugale & D. B. Unawane “Overall Equipment Effectiveness”
[8] M. Darade, P. Khare and P. Desai “Overall Equipment Effectiveness in Construction Equipments”
[9] V. Palanisamy and Jose Ananth Vino, “Implementing Overall equipment Effectiveness in a Process Industry”
[10] S. R. Vijayakumar, S. Gajendran, “Improvement of OEE in Injection Moulding Process”