Rethinking extreme heat in a cool climate: a New Zealand case study

To cite this article: Luke J Harrington 2021 Environ. Res. Lett. 16 034030

View the article online for updates and enhancements.
Rethinking extreme heat in a cool climate: a New Zealand case study

Luke J Harrington

Environmental Change Institute, University of Oxford, South Parks Road, Oxford OX1 3QY, United Kingdom
New Zealand Climate Change Research Institute, Victoria University of Wellington, Wellington 6012, New Zealand
E-mail: luke.harrington@ouce.ox.ac.uk

Keywords: extreme heat, climate change, heatwave, emergence

Abstract
New Zealand is one of many higher latitude countries where extreme heat is perceived to be a less consequential impact of climate change, by virtue of its relatively cool climate. Consequently, metrics to quantify the impact of extreme heat in New Zealand have not kept pace with wider improvements in heatwave definitions. This study evaluates different methods to quantify extreme heat in New Zealand, with a view to improve the knowledge base underpinning future climate change risk assessments. Specifically, this analysis (1) reveals which of New Zealand’s purportedly hottest years in the satellite era are robust to different definitions of extreme heat; (2) introduces a new method of quantifying extreme heat which is applicable across different regions, and serves equally well whether an analysis is contextualised relative to the past (attribution) or for the future (projections); (3) detects previously unidentified heatwaves over recent decades; (4) identifies locally significant increases in extreme heat and the potential lengthening of summer months after only 0.5 °C of global warming; and (5) discusses further research priorities to better understand the impacts of extreme heat in New Zealand over the coming decades.

1. Introduction
The impacts which accompany periods of extreme heat are manifold (Perkins and Alexander 2013), and such extremes will become more frequent, intense and longer lasting as global temperatures increase (Perkins-Kirkpatrick and Gibson 2017). Some of the impacts of extreme heat will only affect those regions where temperatures are already very hot (Dunne et al 2013, Coffel and Horton 2014, Pal and Eltahir 2016, Mora et al 2017). However, many studies also demonstrate that significant health (Robine et al 2008, Christidis et al 2010, Honda et al 2014, Gasparrini et al 2015, 2017, Tobias et al 2017) and economic (Nguyen et al 2011, Mcevoy et al 2012, Zander et al 2015, Zuo et al 2015, Xia et al 2018, Steffen et al 2019) impacts can accompany extreme heatwaves, particularly when ‘extreme’ is defined relative to the climatological characteristics of a specific location (Sillmann et al 2013, Scalley et al 2015, Russo et al 2015, Perkins 2015, Nairn and Fawcett 2015, Vicedo-Cabrera et al 2018) and time of year (Khalaj et al 2010, Perkins and Alexander 2013, Cowan et al 2014, Russo et al 2015, Perkins and Gibson 2015). Of particular note, several case studies have identified excess deaths associated with temperatures which were low in absolute terms, but anomalously hot relative to their typically cool climates: such examples include England and Wales (Christidis et al 2010), the Netherlands (Folkerts et al 2020), southern Finland (Donaldson et al 2003), Stockholm, Sweden (Åström et al 2016) and Toronto, Canada (Gasparrini et al 2015).

These studies collectively suggest that detrimental impacts of more frequently recurring periods of ‘extreme’ heat can be found across many populated regions of the world (Perkins-Kirkpatrick and Gibson 2017), if the metrics chosen to characterise such anomalies are carefully calibrated according to the temperature regimes which communities are historically familiar with (Frame et al 2017), and therefore adapted to (Ballester et al 2011, Nairn and Fawcett 2015, Harrington et al 2017, Hawkins et al 2020). However, the extent to which heatwaves have been identified as problematic in the context of climate change has lagged behind the more immediately apparent risks posed by heavy precipitation and increased flooding.
change varies significantly from country to country. Such differences can be partly attributed to the past experience of a particularly extreme event—like the European heatwave of 2003 (Robine et al. 2008), the 2009 heatwaves in Victoria, Australia (Coates et al. 2014), or the 2010 heatwave in Ahmedabad, India (Azhar et al. 2014)—which can then catalyse the implementation of early warning systems and other policy interventions (Fouillet et al. 2008, Nicholls et al. 2008, Council of Australian Governments et al. 2011, Hess et al. 2018).

New Zealand, meanwhile, is representative of a country where the risks associated with extreme heat have been the subject of much less research. In 2018, the New Zealand Ministry of Health released its first guidance about the potential development of early warning systems related to extreme heat in New Zealand (Ministry of Health 2018). Two conclusions emerged: first, that New Zealand still has no formal definition of a heatwave which is regularly monitored; and second, that an absence of evidence exists to develop triggers for the activation of future heat action plans, like those available in Australia (Nicholls et al. 2008) or the UK (Public Health England 2018). This study intends to fill this evidence gap in three ways:

1. Comparing the relative merits and limitations of different metrics of extreme heat for New Zealand.
2. Developing a new metric to identify impactful periods of extreme heat in New Zealand which could supplement other tools available to decision makers (Ministry of Health 2018), particularly in its use to quantify the exacerbating effects of current climate change with probabilistic event attribution techniques, as well as for projections of the changing severity and frequency of similar events in the future (Harrington and Otto 2018, Otto et al. 2018).
3. Identifying the most severe heat-related events in New Zealand’s recent past, with the view to facilitate future research on the as-yet-unquantified impacts of extreme events in New Zealand, which evidence elsewhere (Robine et al. 2008, Coates et al. 2014, Azhar et al. 2014) suggests can be significantly higher than those linked to mean climate signals (Hales et al. 2000, Mcmichael et al. 2003).

2. Identifying anomalous hot years in New Zealand using current definitions

While New Zealand has yet to adopt any formal definition of a heatwave (Ministry of Health 2018), there has been ample use of a ‘hot day’ metric within the local research community, including as a proxy for heat-related impacts in climate change risk assessments commissioned by regional decision makers (Ministry for the Environment 2018).

The National Institute of Water and Atmosphere (NIWA) defines a ‘hot day’ in New Zealand as any day when Tx exceeds 25 °C: this definition purportedly stems from the claim that ‘beef and dairy cattle tend to start experiencing heat stress at temperatures above this threshold’ (https://bit.ly/2WkiSx3), rather than bearing any relationship to a broader range of impacts on human health, infrastructure or otherwise. While the notion that daily maximum temperatures exceeding 25 °C can result in the onset of stress in dairy cows is itself questionable (Perez-Mendez et al. 2019), particularly when such a metric does not include humidity considerations (Bryant et al. 2007, Dunn et al. 2014, Polsky and Keyserlingk 2017), I nevertheless focus on this widely adopted approach first.

Figure 1 presents the number of days where Tx exceeds 25 °C, for five selected hot years since 1979 (noting that a year is hereafter considered from July 1 to June 30 to capture the austral summer season, and ‘hot year’ should be interpreted only with respect to the metric in question, rather than annual mean temperatures). 1998/99 corresponded with an extreme La Niña event (Zhu et al. 2014, Cai et al. 2015), which is purported to be linked with anomalous above-average sea level pressure over the New Zealand domain (Tait et al. 2006, NIWA 2018). Meanwhile, the summer of 2012/13 was widely considered to be New Zealand’s worst drought on record (Harrington et al. 2016) - though several of these years were associated with robust drought impacts.
Figure 1. Number of days per year, spanning the period July 1–June 30, when daily maximum temperatures exceeded 25 °C, for five selected hot years in New Zealand. Grey areas indicate no days were observed with temperatures exceeding 25 °C.

When interrogating figure 1 further, we find that some regions of the South Island’s West Coast did not experience any days with Tx above 25 °C. Meanwhile, large parts of the country experienced more than two months above the hot day threshold, including many rural areas where dairy farming is prevalent (Dairy 2018). These results therefore suggest two possible outcomes: (1) if the hot day metric does characterise exposure to heat stress among beef and dairy cattle, then these five extreme years within only two decades must have led to devastating consequences across the relevant industries; or (2) the metric is failing as a proxy for livestock susceptibility to heat-related impacts, possibly because of farm-level adaptation to recurrent experiences. While outside the scope of this analysis, future research is clearly needed to interrogate the sector-specific impacts of these anomalous years, and confirm which of these two hypotheses are actually supported by observations.

3. The value of normalised metrics of extreme heat

Among recent developments within the climate extremes research community, has been the recognition that the most effective heatwave metrics are not those which specify absolute temperature thresholds or an absolute anomaly criteria (Frich et al 2002), but instead those which are normalised with respect to the climatology of a given region (Perkins and Alexander 2013, Nairn and Fawcett 2015, Russo et al 2015, 2016, Perkins 2015, Fischer and Knutti 2015), and for a given time of year (Perkins and Gibson 2015). Among the 27 metrics recommended by the World Meteorological Organisation’s Expert Team on Climate Change Detection Indices (ETCCDI) (Alexander et al 2006, WMO 2009) were frequency-based metrics of extreme heat, where a moving 15-d window was used to calculate the relevant 90th percentile for each calendar day (Perkins and Alexander 2013, Cowan et al 2014): exceedances of this hot day threshold were then counted, with the resultant metric termed Tx90p (Herold et al 2017). This method also qualitatively aligns with other research, which identified exceedances of the 84th percentile of Tx as a proxy for heat-related health impacts (Honda et al 2014, Christidis et al 2019), albeit using different time windows to define their percentile thresholds.

When employing this normalised perspective, the inadequacy of using a singular temperature threshold to characterise all impacts of extreme heat across the widely varying local climates of New Zealand becomes clear. Figure 2 presents the full range of local climates experienced in New Zealand, whereby Tx data is separately aggregated for each grid cell, and across all days within each calendar month for the 30-year period spanning 1981–2010 (this baseline is used hereafter for all percentile-based and normalised temperature analyses). When comparing the 25 °C isotherm against the corresponding 90th percentile threshold, we find that large parts of the north of the country experience temperatures above 25 °C far too often to be characterised as ‘extreme’, while many regions of the South Island could experience very unfamiliar temperatures (Frame et al 2017, Hawkins et al 2020) while still not exceeding 25 °C.

Given these differences between the Tx90p and 25 °C-exceedance approach to characterising hot days, it is worth re-examining New Zealand’s five ‘hot’ years (figure 1) from a normalised perspective. Figure 3 reveals clear differences between the 5 years, when considering locally and seasonally specific measures of extreme heat, by looking at the number of days per year where the 90th percentile is locally exceeded. During the extreme La Niña event of 1998/99 (Cai et al 2015), some regions of the central North Island experienced more than 4...
Figure 2. Comparing absolute and relative thresholds for extreme heat. For each land point in New Zealand, daily maximum temperatures for each calendar month were extracted across the period 1981–2010, and then the daily data were ranked from low to high, separately for each individual month. These percentiles of daily maximum temperature data for an individual month are presented along the y-axis, while the x-axis shows all combinations of land-based grid cells and months in New Zealand, also sorted from low to high. The solid black horizontal line shows the 90th percentile of daily maximum temperatures, following the ETCCDI definition of a hot day. The blue lines highlight all ‘land-months’ above the 25 °C isotherm.

months of anomalously high temperatures (figure 3(b)), while the severe 2012/13 drought aligned with between 60 and 90 days of relatively hot temperatures during the year, and consistently across the country.

Interrogating these 5 years under a Tx90p framework also reveals that the frequent exceedances of 25 °C in 1997/98, as seen in figure 1(a), occurred mostly during the hottest months of the summer where such temperatures were common in the respective regions anyway. By contrast, figures 3 (d) and (e) suggest unusual warm spells in 2017/18 and 2018/19 occurred throughout the year, possibly inducing more pronounced heat-related impacts as a consequence (Perkins and Gibson 2015).

3.1. The limitation of fixed thresholds to characterise the future evolution of heat-related impacts

While the Tx90p metric provides useful insights into the properties of recently observed hot years like those in figure 3, there are nevertheless drawbacks to any heat metric which is based on the exceedance of a fixed temperature threshold. First, the binary nature of counting exceedances of a fixed temperature threshold, whether absolute or percentile-based, means that little information can be obtained about the relative severity of different heatwaves. For example, a 10-d heatwave consisting of Tx anomalies exceeding the 90th percentile by 0.1 °C would, under the current framework, be viewed as equivalent to a 10-d period where Tx continuously exceeds the 90th percentile by 10 °C, despite the latter event obviously generating more detrimental impacts.

Second, there are related issues to do with the statistical saturation of Tx90p, and similar ‘frequency-of-exceedance’ metrics under future warming scenarios. As discussed in depth elsewhere (Harrington and Otto 2018), wherever a percentile-based metric of ‘extreme’ is defined according to a historical baseline (1981–2010 is chosen here; the ETCCDI uses 1961–90), there will come a time under future warming scenarios where almost every day in the calendar year will be defined as a ‘hot day’. I refer to this phenomenon as saturation: once all days are characterised as ‘hot’, say after 2 °C of global warming, then the added impacts of a 3 °C or a 4 °C world no longer be detectable using this metric, thereby rendering it uninformative for
decision makers. While this example sounds extreme, such patterns of saturation are already detectable in today’s climate, including when looking at the recurrence frequency of historically ‘hot months’ in low-latitude climates (Harrington et al. 2017, Hawkins et al. 2020), or marine heatwaves (Frölicher et al. 2018).

3.2. The flexibility of a ‘sigma-exceedance’ metric to quantify extreme heat

One solution to the limitations outlined in section 3.1, is to align metrics of extreme heat based on the observed past (percentile-based metrics) with a ‘climate change emergence’ framework, a concept which has recently gained traction within the research community (Hawkins and Sutton 2012, King et al. 2015, Frame et al. 2017, Hawkins et al. 2020). Specifically, percentile thresholds associated with a baseline distribution of daily maximum temperatures at a specific location (and time of year) can be easily translated to anomalies measured in units of standard deviations (σ). Figure 4(a) presents three daily Tx thresholds (hereafter called ‘sigma-exceedance’ thresholds) which are empirically equivalent to the 90th, 95th and 99th percentiles of the 1981–2010 baseline: these are +1.3σ, +1.6σ, and +2.2σ, respectively. While we focus on those thresholds constrained from the real-world Tx distributions over New Zealand (see figure 4 caption for details), it is noted that such thresholds are similar to those found using a perfect Gaussian distribution (figure 4(b)).

While this change in terminology sounds trivial, three benefits emerge. First, one can now easily characterise the relative intensity of different observed heatwaves: by presenting the average σ anomalies across the duration of the heatwave, these events can be interpreted in a statistical context more widely understood in the scientific community (relative to more complex metrics like HWMI\(d\) (Russo et al. 2015)). Second, this revision ensures that future heatwaves, which might be orders of magnitude more severe than historical experiences (Power and Delage 2019), can still be quantified in a manner comparable to heatwaves from both the past and present day (Otto et al. 2018). Third, this adjustment presents future opportunities to align the language used to describe the intensity of specific extreme events—like the ‘angry’ Australian summer of 2013 (Lewis and Karoly 2013)—with the terms ‘unusual’ (>1σ), ‘unfamiliar’ (>2σ), ‘unknown’ (>3σ) and ‘inconceivable’ (>5σ), which were recently developed to categorise the emergence of changes in mean climate signals (Frame et al. 2017, Hawkins et al. 2020).

4. Identifying candidates for New Zealand’s worst heatwaves

Now the strengths and weaknesses of different metrics to quantify extreme heat have been explored, the ‘sigma-exceedance’ framework is used next to quantify New Zealand’s worst multi-day heatwaves since 1979. Specifically, I quantified the most severe N-day heatwaves which were widespread throughout the country; N was considered from 3 to 14 d and the severity was measured according to the areal median and 90th percentile of Tx anomalies (in units of σ), based on all land grid cells across the country.

Through this process, two key events continued to emerge as particularly significant: one event, spanning November 2nd-5th 2019, which dominated the statistics for events with N < 7 d; and one event, spanning January 20th–31st 2018 which was linked to the top-ranked events over timescales of 8–14 d. The 2019 event was particularly severe, with more than half of the country—including most major cities—spending the entire 5-d period with Tx anomalies exceeding +2.2σ (which is equivalent to exceeding the local 99th percentile) for that time of year.

It is also worth noting that both heatwaves occurred during the hottest months of the year, such...
Figure 4. Converting percentile anomalies to units of standard deviations for daily maximum temperatures. Panel (a) presents empirical estimates of how each standard deviation anomaly corresponds to an exceedance of a local 90th, 95th or 99th percentile in daily maximum temperatures. The thick coloured line shows this estimate for the median land grid cell, for each day in the calendar year (x-axis), while the thin lines show the 5%–95% uncertainty range. The black horizontal lines in panel (a) have been hereafter selected as fixed daily standard deviation thresholds (+1.3σ, +1.6σ and +2.2σ) which correspond to the three percentile-based exceedance thresholds (90th, 95th and 99th, respectively). Panel (b) shows how these varying definitions of ‘extreme’ compare for an idealised Gaussian distribution—strong similarities are found with those real-world thresholds shown in panel (a).

that temperatures above 25 °C were found in many regions for the duration of the events (figure S1 which is available online at stacks.iop.org/ERL/16/034030/mmedia). Both events therefore satisfy the multiple criteria to characterise extreme heat discussed throughout sections 2 and 3. Hence, if decision makers were interested in understanding the impacts associated with extreme heat in New Zealand—particularly those linked to excess morbidity and mortality in vulnerable populations, temperature-related productivity losses, or infrastructure impacts (Steffen et al 2019)—then these two heatwaves represent promising candidates for analysis.

5. Recent changes in the observed frequency of extreme heat

The final stage of this analysis involves a preliminary assessment of how the frequency of heat extremes has changed over New Zealand in recent decades. To do this, the number of days with Tx exceeding +1.3σ (or the 90th percentile) are counted in each calendar month, for the decade spanning 1980–1989. This is then compared with the corresponding number of hot days witnessed in the decade spanning 2010–2019 (again, separately for each month), and the fractional increase in the likelihood of witnessing a hot day in the 2010s relative to the 1980s (called a ‘risk ratio’, following NAS (2016)) is then calculated for each grid cell.

Because research elsewhere suggests anthropogenic increases in global temperatures approximate 0.5 °C between the 1980s and the 2010s (Leach et al 2018, Haustein et al 2019)—albeit with uncertainty—we consider such a comparison to be useful in contextualising the scale of impacts possible with another half degree of warming in the future, as has been done elsewhere (Schleussner et al 2017). However, it is emphasised that any conclusions presented in figure 5 should be treated only as preliminary and requiring further analysis, since the results compare 10-year periods only, and local extremes can be influenced by modes of internal climate variability unrelated to anthropogenic drivers (Rogelj et al 2017, Pfleiderer et al 2018). In addition, only risk ratios above 1.4 are shown in figure 5, following a sensitivity test whereby two identical distributions—each of equal size to the monthly distributions compared in figure 6—were resampled 10 000 times, and a value of 1.4 represented the upper range (95th percentile) of risk ratios found by chance alone.

Figure 6 presents the risk ratios of local hot day frequency for each of the 5 months centred on the main austral summer period (December–February). While robust changes are found for the months of December and January, February shows a particularly pronounced increase in the frequency of hot days, with some regions showing more than a five-fold rise in the number of hot days in the most recent decade, relative to the 1980s.
Figure 5. Local Tx anomalies for the top two heatwaves experienced in New Zealand since 1979. Daily Tx data are averaged over (a) the 4-d period from November 02-05 2019, and (b) the 12-d period from January 20–31 2018. The colour scales also align with corresponding percentile thresholds: the yellow colours denote exceedances of the 90th percentile, the orange colours denote exceedance of the 95th percentile, and darker red colours denote exceedances of the local 99th percentiles for the entirety of the N-day heatwave period.

There are also several regions, particularly over the central North Island (Waikato), which show more than double the number of hot days in the most recent decade for both November and March (figure S2). Supplementary analysis (figure S3) suggests that the 90th and 99th percentile thresholds of Tx have risen faster than mean temperatures in Waikato, suggesting feedback mechanisms may be playing a role in exacerbating heat extremes over these regions (Wartenburger et al 2017, Lorenz et al 2019). Changes of this nature are more commonly associated with moisture-limited regions like the Mediterranean (Seneviratne...
et al 2016, Vogel et al 2017) and have not been identified before in New Zealand; future research is therefore needed to disentangle the physical drivers of this change.

While acknowledging the caveats surrounding the risk ratios of figure 5, these results show that New Zealand may be witnessing an effective lengthening of summertime conditions over the last several decades. Such results are supported by separate research showing an attributable increase in the likelihood of North Island droughts over the twentieth century (Harrington et al 2016). While further analysis under a formal statistical framework (Stone et al 2019) is needed to verify these results, decision makers and stakeholders should nevertheless prepare for similar trends to accompany future increases in global temperatures.

6. Summary and outlook

The direct impacts of rising temperatures under climate change will present a challenge to all countries, including those who exhibit cool, temperate climates in the present day (Gasparrini et al 2015). While New Zealand is no exception to this fact, the importance of such changes in extreme heat has been understudied to date, leading to ambiguity in what planning responses might be appropriate for decision makers (Ministry of Health 2018).

While placing a particular focus on New Zealand, this study presents a systematic analysis of the wider literature on metrics to characterise the impacts of extreme heat in all cool climates. By contextualising the severity of recent-observed hot years, we examine the merits and drawbacks of currently used hot day definitions in New Zealand, before introducing a new metric which is (1) normalised relative to local experiences, (2) capable of disaggregating the relative severity of different heatwaves, and (3) can assess future heatwaves which are poorly captured by metrics based on historical statistics. This new metric adds particular value when identifying recent periods of extreme heat and seamlessly analysing the evolution of changes in extreme heat, both past and future, with continuing climate change. However, it is stressed that the most effective assessment of future heat-related impacts in New Zealand will only be achieved through developing multiple metrics, each tailored to sector-specific impacts driven by extreme temperatures. Such efforts should be a priority for future research.

Finally, the results presented in this study point to several specific priorities for future research. These include: (1) a retrospective analysis of the heat stress actually experienced by livestock for the five hot years presented in figures 1 and 2; (2) examining the real-world impacts associated with the two heatwaves identified in figure 6, as well as quantifying the attributable increase in the likelihood of witnessing such events due to climate change; and (3) systematically modelling the possible extension of summertime temperature extremes identified in figure 5, including how these changes might evolve under scenarios of warming over the next several decades.

Acknowledgments

The author thanks the European Centre for Medium-Range Weather Forecasts for the provision of ERA5 data, which can be freely accessed via the Copernicus Climate Change Service Climate Data Store (https://cds.climate.copernicus.eu/cdsapp#!/home). LJH was supported by the New Zealand MBIE Endeavour Fund Whakahura programme, and the FORMAS project 2018-02800, entitled ‘Global Attribution Models, Mediation and Mobilisation (GAMES)’.

Data availability statement

The data that support the findings of this study are openly available at the following URL/DOI: https://cds.climate.copernicus.eu/cdsapp#!/home.

ORCID iD

Luke J Harrington © https://orcid.org/0000-0002-1699-6119

References

Alexander L V et al 2006 Global observed changes in daily climate extremes of temperature and precipitation J. Geophys. Res.: Atmos. 111 D05109
Aaström D O, Andreas T, Joacim L E K R and Bertil F 2016 Evolution of minimum mortality temperature in Stockholm, Sweden, 1901–2009 Environ. Health Perspect. 124 740–4
Avila F B, Dong S, Menang K P, Rajczak J, Renom M, Donat M G and Alexander L V 2015 Systematic investigation of gridding-related scaling effects on annual statistics of daily temperature and precipitation maxima: A case study for south-east Australia Weather Clim. Extremes 9 6–16
Azhar G S, Mavalankar D, Nori-Sarma A, Rajiva A, Dutta P, Jaiswal A, Sheffield P, Knowlton K and Hess J 2014 Heat-related mortality in India: excess all-cause mortality associated with the 2010 Ahmedabad heat wave PLoS One 9 e91831
Ballester J, Robine J-M, Herrmann F R and Rodó X 2011 Long-term projections and acclimatization scenarios of temperature-related mortality in Europe Nat. Commun. 2 1–8
Black M T et al 2016 The weather@home regional climate modelling project for Australia and New Zealand Geosci. Model Dev. 9 3161–76
Bryant J R, López-Villalobos N, Pryce J E, Holmes C W and Johnson D L 2007 Quantifying the effect of thermal environment on production traits in three breeds of dairy cattle in New Zealand N. Z. J. Agric. Res. 50 327–38

IOP Publishing Environ. Res. Lett. 16 (2021) 034030 L J Harrington
Cai W et al 2015 Increased frequency of extreme La Niña events under greenhouse warming Nat. Clim. Change 5 132–7
Christidis N, Donaldson G C and Stott P A 2010 Causes for the recent changes in cold- and heat-related mortality in England and Wales Clim. Change 102 539–53
Christidis N, Mitchell D and Stott P A 2019 Anthropogenic climate change and heat effects on health Int. J. Climatol. 39 6751–68
Coates L, Haynes K, O’Brien J, Maceney J and de Oliveira F D 2014 Exploring 167 years of vulnerability: an examination of extreme heat events in Australia 1844–2010 Environ. Sci. Policy 42 33–44
Coffé E and Horton R 2014 Climate change and the impact of extreme temperatures on aviation Weather Clim. Soc. 7 94–102
Cornes R C and Jones P D 2013 How well does the ERA-Interim reanalysis replicate trends in extremes of surface temperature across Europe? J. Geophys. Res.: Atmos. 118 10,262–10,276
Council of Australian Governments, Tasmania, Australia, Attorney-General’s Department, Tasmania and State Emergency Service 2011 National Strategy for Disaster Resilience: Building the Resilience of Our Nation to Disasters (Barton, A.C.T: Council of Australian Governments)
Cowen T, Purich A, Perkins S, Pezza A, Boschat G and Sadelker K 2014 More frequent, longer, and hotter heat waves for Australia in the twenty-first century J. Clim. 27 5851–71
Dairy N Z 2018. New Zealand Dairy Statistics 2017–18 (www.dairyynz.co.nz/media/5790451/nz-dairy-statistics-2017-18.pdf)
Donaldson G C, Keatinge W R and Náyhá S 2003 Changes in summer temperature and heat-related mortality since 1971 in North Carolina, South Finland, and Southeast England Environ. Res. 91 1–7
Dunn R J H, Mead N E, Willett K M and Parker D E 2014 Analysis of heat stress in UK dairy cattle and impact on milk yields Environ. Res. Lett. 9 044006
Dunne J P, Stouffer R J and John G J 2013 Reductions in labour capacity from heat stress under climate warming Nat. Clim. Change 3 563–6
Fischer E M and Knutti R 2015 Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes Nat. Clim. Change 5 560–4
Folker M A, Brüde P, Botzen W J F, Martinus M L, Gerrett N, Harnsen C N and Daanen H A M 2020 Long term adaptation to heat stress: shifts in the minimum mortality temperature in the Netherlands Frontiers Physiol. 11 225
Fouilliet A et al 2008 Has the magnitude of heat waves on mortality changed in France since the European heat wave of summer 2003? A study of the 2006 heat wave Int. J. Epidemiol. 37 309–17
Frame D, Joshi M, Hawkins E, Harrington L J and Roiste M D 2017 Population-based emergence of unfamiliar climates Nat. Clim. Change 7 407–11
Frich P, Alexander L, Della-Marta P, Gleeson B, Haylock M, Klein Tank A and Peterson T 2002 Observed coherent changes in climatic extremes during the second half of the twentieth century Clim. Res. 19 193–212
Fröhlicher T L, Fischer E M and Gruber N 2018 Marine heatwaves under global warming Nature 560 360–4
Gasparini A et al 2015 Mortality risk attributable to high and low ambient temperature: a multicountry observational study Lancet 386 369–75
Gasparini A et al 2017 Projections of temperature-related excess mortality under climate change scenarios Lancet Planet. Health 1 e69–71
Hales S, Salmond C, Town G L, Kjellstrom T and Woodward A 2000 Daily mortality in relation to weather and air pollution in Christchurch, New Zealand Aust. N.Z. J. Public Health 24 89–91
Harrington L J, Frame D J, Hawkins E and Joshi M 2017 Seasonal cycles enhance disparities between low- and high-income countries in exposure to monthly temperature emergence with future warming Environ. Res. Lett. 12 114039
Harrington L J, Gibson P B, Dean S M, Mitchell D, Rosier S M and Frame D J 2016 Investigating event-specific drought attribution using self-organizing maps J. Geophys. Res.: Atmos. 121 7766–12,780
Harrington L J and Otto F E L 2018 Adapting attribution science to the climate extremes of tomorrow Environ. Res. Lett. 13 123006
Hausstein K, Otto F E L, Venema V, Jacobs P, Cowtan K, Hausfather Z, Way R G, White B, Subramanian A and Schurer P A 2019 A limited role for forced internal variability in twentieth-century warming J. Clim. 32 4893–917
Hawkins E, Frame D, Harrington L, Joshi M, King A, Rojas M and Sutton R 2020 Observed emergence of the climate change signal: from the familiar to the unknown Geophys. Res. Lett. 47 e2019GL086259
Hawkins E and Sutton R 2012 Time of emergence of climate signals Geophys. Res. Lett. 39 L01702
Herold N, Alexander L, Green D and Donat M 2017 Greater increases in temperature extremes in low versus high income countries Environ. Res. Lett. 12 034007
Hersbach H et al 2020 The ERA5 global reanalysis Q. J. Meteorol. Soc. 146 1999–2049
Hersbach H and Dee D 2016 ERA5 reanalysis is in production ECMWF Newslett. 147 7–8 (https://www.ecmwf.int/node/16299)
Hess J et al 2018 Building resilience to climate change: pilot evaluation of the impact of India’s first heat action plan on all-cause mortality J. Environ. Public Health 2018 e797519
Honda Y et al 2014 Heat-related mortality risk model for climate change impact projection Environ. Health Prev. Med. 19 56–63
Khalaj B, Lloyd G, Shepperd V and Dear K 2010 The health impacts of heat waves in five regions of New South Wales, Australia: a case-only analysis Int. Arch. Occup. Environ. Health 83 833–42
King A D, Donat M G, Fischer E M, Hawkins E, Alexander L V, Karoly D J, Dittus A J, Lewis S C and Perkins S E 2015 The timing of anthropogenic emergence in simulated climate extremes Environ. Res. Lett. 10 094015
Leach N J, Millar R J, Hausstein K, Jenkins S, Graham E and Allen M R 2018 Current level and rate of warming determine emissions budgets under ambitious mitigation Nat. Geosci. 11 574–9
Lewis S C and Karoly D J 2013 Anthropogenic contributions to Australia’s record summer temperatures of 2013 Geophys. Res. Lett. 40 3709–9
Lorenz R, Stallingskje Z and Fischer E M 2019 Detection of a climate change signal in extreme heat, heat stress, and cold in europe from observations Geophys. Res. Lett. 46 8363–74
Martens B, Schumacher D L, Wouters H, Muñoz-Sabater J, Verhoeest N E C and Miralles D G 2020 Evaluating the surface energy partitioning in ERA5 Geosci. Model Dev. Discuss. 13 4139–81
Mcconnaught A, Trnka M and Trnka M 2012 The impact of the 2009 heat wave on Melbourne’s critical infrastructure Local Environ. 17 783–96
McMichael A, Woodruff R, Whetten P, Hennessy K, Nicholls N, Hales S, Woodward A and Kjellstrom T 2003. Human Health and Climate Change in Oceania: A Risk Assessment
Ministry for the Environment 2018 Climate Change Projections for New Zealand: Atmospheric Projections Based on Simulations from the IPCC Fifth Assessment Report (Wellington: Ministry for the Environment) (www.mfe.govt.nz/sites/default/files/media/Climate%20Change/climate-change-projections-2nd-edition-final.pdf)
Ministry of Health 2018 Heat Health Plans: Guidelines (Wellington: Ministry of Health)
Mooney P A, Mulligan F J and Fealy R 2011 Comparison of ERA-40, ERA-Interim and NCEP/NCAR reanalysis data...
with observed surface air temperatures over Ireland Int. J. Climatol., 31 545–57

Mora C et al 2017 Global risk of deadly heat Nat. Clim. Change 7 501–6

Nairn J R and Fawcett R J B 2015 The excess heat factor: a metric for heatwave intensity and its use in classifying heatwave severity Int. J. Environ. Res. Public Health 12 227–53

National Academies of Sciences, Engineering, and Medicine, Committee on Extreme Weather Events and Climate Change Attribution, Board on Atmospheric Sciences and Climate and Division on Earth and Life Studies 2016 Attribution of Extreme Weather Events in the Context of Climate Change (Washington, D.C.: National Academies Press) (www.nap.edu/catalog/21852)

Nguyen M, Wang X and Chen D 2011 An Investigation of Extreme Heatwave Events and Their Effects on Building and Infrastructure (Sydney: CSIRO) pp 122

Nicholls N, Skinner C, Loughnan M and Tapper N 2008 A simple heat alert system for Melbourne, Australia Int. J. Biometeorol. 52 375–84

NIWA 2018 New Zealand Climate Summary: Summer 2017–18

Otto F E L, Philip S, Kew S, Li S, King A and Cullen H 2018 Attributing high-impact extreme events across timescales—a case study of four different types of events Clim. Change 149 1–14

Pal J S and Eltahir E A B 2016 Future temperature in southwest Asia projected to exceed a threshold for human adaptability Nat. Clim. Change 6 197–200

Perez-Mendez J A, Roibas D and Wall A 2019 The influence of weather conditions on dairy production Agric. Econ. 50 165–73

Perkins S E 2015 A review on the scientific understanding of heatwaves—Their measurement, driving mechanisms, and changes at the global scale Atmos. Res. 164–165 242–67

Perkins S E and Alexander L V 2013 On the measurement of heat waves J. Clim. 26 4500–17

Perkins S E and Gibson P B 2015 Increased risk of the 2014 Australian may heatwave due to anthropogenic activity Bull. Amer. Meteor. Soc. 96 S154–7

Perkins-Kirkpatrick S E and Gibson P B 2017 Changes in regional heatwave characteristics as a function of increasing global temperature Sci. Rep. 7 12256

Pfeiferer P, Schleussner C-F, Mengel M and Rogelj J 2018 Global mean temperature indicators linked to warming levels avoiding climate risks Environ. Res. Lett. 13 064015

Pölsky I. and Keyserlingk M A G V 2017 Invited review: effects of heat stress on dairy cattle welfare J. Dairy Sci. 100 8645–57

Power S B and Delage F P D 2019 Setting and smashing extreme temperature records over the coming century Nat. Clim. Change 9 329–34

Public Health England 2018 Heatwave plan for England 2018 (https://bit.ly/2MOTSGL)

Robine J-M, Cheung S L K, Le Roy S, Van Oyen H, Griffiths C, Michel J-P and Herrmann F R 2008 Death toll exceeded 70,000 in Europe during the summer of 2003 C. R. Biol. 331 171–8

Rogelj J, Schleussner C-F and Hare W 2017 Getting it right matters: temperature goal interpretations in geoscience research Geophys. Res. Lett. 44 10662–10665

Russo S, Marchese A F, Sillmann J and Immié G 2016 When will unusual heat waves become normal in a warming Africa? Environ. Res. Lett. 11 054016

Russo S, Sillmann J and Fischer E M 2015 Top ten European heatwaves since 1950 and their occurrence in the coming decades Environ. Res. Lett. 10 124003

Scalley B D, Spicer T, Jian L, Xiao J, Nairn J, Robertson A and Weeramanthri T 2015 Responding to heatwave intensity: excess Heat Factor is a superior predictor of health service utilisation and a trigger for heatwave plans Aust. N.Z. J. Public Health 39 382–7

Schleussner C-F, Pfeiferer P and Fischer E M 2017 In the observational record half a degree mattersNat. Clim. Change 7 460–2

Seneviratne S I, Donat M G, Pitman A J, Knutti R and Wilby R L 2016 Allowable CO2 emissions based on regional and impact-related climate targets Nature 529 477–83

Sillmann J, Kharin V V, Zhang X, Zwiers F W and Bronaugh D 2013 Climate extremes indices in the CMIP5 multimodel ensemble: part I. Model evaluation in the present climate J. Geophys. Res. Atmos. 118 1716–33

Steffen W, Mallon K, Kompas T, Dean A and Rice M R 2019 Compound Costs: How Climate Change Is Damaging Australia’s Economy (Sydney: Climate Council of Australia) (www.climatecouncil.org.au/wp-content/uploads/2019/05/Costs-of-climate-change-report.pdf)

Stone D A et al 2019 Experiment design of the international CLIVAR 2C0C+ detection and attribution project Weather Clim. Extremes 24 100296

Tait A, Henderson R, Turner R and Zheng X 2006 Thin plate smoothing spline interpolation of daily rainfall for New Zealand using a climatological rainfall surface Int. J. Climatol. 26 2097–115

Tobias A, Armstrong B and Gasparra A 2017 Brief report: investigating uncertainty in the minimum mortality temperature: methods and application to 52 spanish cities Epidemiology 28 72–76

Vicedo-Cabrera A M et al 2018 Temperature-related mortality impacts under and beyond Paris Agreement climate change scenarios Clim. Change 150 391–402

Vogel M M, Orth R, Cheruy F, Hagemann S, Lorenz R, Hurk B J V D M and Seneviratne S I 2017 Regional amplification of projected changes in extreme temperatures strongly controlled by soil moisture-temperature feedbacks Geophys. Res. Lett. 44 1511–9

Wartenburger R, Hirschi M, Donat M G, Greve P, Pitman A J and Seneviratne S I 2017 Changes in regional climate extremes as a function of global mean temperature: an interactive plotting framework Geosci. Model Dev. 10 3609–34

WMQ 2009 WCDMP, 72. Guidelines on Analysis of extremes in a changing climate in support of informed decisions for adaptation (Geneva: WMO)

Xia Y, Li Y, Guan D, Tinoco D M, Xia J, Yan Z, Yang J, Liu Q and Hoo H 2018 Assessment of the economic impacts of heat waves: A case study of Nanjing, China J. Clean. Prod. 171 811–9

Zander K K, Botzen W J V, Oppermann E, Kjellstrom T and Garnett S T 2015 Heat stress causes substantial labour productivity loss in Australia Nat. Clim. Change 5 647–51

Zhu J, Huang B, Zhang R-H, Hu -Z-Z, Kumar A, Balmaseda M A, Marx I. and H u- Gerber IJ L 2014 Salinity anomalously as a trigger for ENSO events Sci. Rep. 4 1–5

Zuo J, Pullen S, Palmer J, Bennett H, Chileshe N and Ma T 2015 Impacts of heat waves and corresponding measures: a review J. Clean. Prod. 92 1–12