پورتال مختصی مواد مهندسی و فرایندهای ساخت و تولید

www.asremavad.com
https://t.me/asremavad
Dental amalgam: An update

Ramesh Bharti, Kulvinder Kaur Wadhwani, Aseem Prakash Tikku, Anil Chandra

Department of Conservative Dentistry and Endodontics, Faculty of Dental Sciences, CSM Medical University (Erstwhile King George’s Medical College), Lucknow, India

Abstract

Dental amalgam has served as an excellent and versatile restorative material for many years, despite periods of controversy. The authors review its history, summarize the evidence with regard to its performance and offer predictions for the future of this material. The PubMed database was used initially; the reference list for dental amalgam featured 8641 articles and 13 publications dealing with recent advances in dental amalgam. A forward search was undertaken on selected articles and using some author names. For the present, amalgam should remain the material of choice for economic direct restoration of posterior teeth. When esthetic concerns are paramount, tooth-colored materials, placed meticulously, can provide an acceptable alternative. All alternative restorative materials and procedures, however, have certain limitations.

Keywords: Dental amalgam; direct restoration; esthetics and tooth colored material.

Introduction

Dental amalgam is one of the most versatile restorative materials used in dentistry. It constitutes approximately 75% of all restorative materials used by dentists. It has served as a dental restoration for more than 165 years. There is still no adequate economic alternative for dental amalgam. The combination of reliable long-term performance in load bearing situations and low cost is unmatched by other dental restorative material. It has a myriad of uses: rather low technique sensitivity, self-sealing property and its longevity.

Although there is evidence of a decrease in its use in the world, amalgam’s cost, durability and ease of manipulation have persuaded many dentists to continue to use it as their first choice for restoring posterior teeth. However, care must be taken in the diagnosis of the type of restoration to be placed. Where there is so much loss of tooth structure that support of the tooth must be given by the restoration, a gold inlay may be indicated, although there are some instances where even very extensive restorations of amalgam may be the choice. The PubMed database was used initially; the reference list for dental amalgam featured 8641 articles and 13 publications dealing with recent advances in dental amalgam. A forward search was undertaken on selected articles and using some author names.

History

Dental amalgam apparently was first used by the Chinese. Su Kung (659 AD) mentioned the use of a mixture in the Material Medica. In Europe, Johannes stokers, a municipal physician in Ulm, Germany, recommended amalgam as a filling material in 1528. Later, Li Shihchen (1578) chronicled a dental mixture of 100 parts mercury with 45 parts silver and 900 parts tin. The next major historical reference to silver–mercury amalgam was made in France. Traveau described a “silver paste” filling material in 1826. He produced amalgam by mixing the silver coins with mercury. In 1833, the Crawcours brothers introduced to America their “Royal Mineral Succedaneum” which was actually shaved French silver coins and mercury. They filled the tooth cavity by removing the diseased tooth tissue and placing the amalgam on occlusal surface without knowing any relation to dental anatomy. Amalgam’s disrepute initiated by these brothers led to the “Amalgam War” and to the promulgation by the American society of dental surgeons in 1845. The use of amalgam was considered as a malpractice, and an expulsion from the society of those members who would use it was demanded.

In 1877, the first organized movement on behalf of amalgam, the new departure creed and its leader J. Foster Flagg, managed to change this attitude toward dental amalgams. Flagg published the results of his laboratory tests and 5-year clinical observation of new alloys with 60% of silver and 40% of tin as major constituents in 1881 and thus predated by some 15 years the work of G.V. Black.

The universal acceptance of amalgam as a restorative
material resulted from investigations of Black in 1895, 1896, 1908. By combining the principles of cavity design, extension of the cavity into “immune” areas and the development of an alloy with the composition of 68.5% silver, 25.5% tin, 5% gold, 1% zinc, Black advanced amalgams into modern times. S.S. White manufactured the first commercial alloy rich in silver, True Dentalloy (1900), in which gold was replaced by copper.\[6,4\]

Recent research shows that amalgam restorations last longer than previously thought. The older generation of low-copper amalgams (before 1963) had a limited life span because they contained the gamma-2 phase that caused progressive weakening of the amalgam through corrosion.\[17\] Several clinical studies have demonstrated that high-copper amalgams can provide satisfactory performance for more than 12 years.\[18-22\] This appears to be true even for large restorations that replace cusps.\[23\] In addition, high-copper amalgams do not appear to require polishing after placement, as was recommended for low-copper amalgams, to increase their longevity.\[24\]

Plasmins et al.\[25\] evaluated the long-term survival of multisurface restorations and found that extensive amalgam restoration had no influence on the survival rate, which is in accordance with the results of a retrospective study by Robins and Summitt, who found 50% survival rate for 11.5 years.\[26\]

The satisfactory functioning of the extensive amalgam restorations over a long period of time results from the prevention of the most important traditional mechanical failure of amalgam restorations. These include marginal fracture, bulk fracture and tooth fracture.\[27,28\] The zinc and copper content of the alloy has been found to have a strong impact on the survival rates of amalgam restorations since it influences the corrosion resistance of the amalgam. High-copper amalgams have higher survival rates than conventional amalgams.\[27\]

Letzel\[27\] investigated survival and modes of failure of amalgam restorations retrospectively. The leading mode of failure was bulk fracture (4.6%), followed by tooth fracture (1.9%) and marginal ridge fracture (1.3%). For other reasons, 0.8% of the restorations failed.

TOXICITY OF DENTAL AMALGAMS

The debate over the safety and efficacy of amalgam has raged since time immemorial. In recent times, it has reached such a feverish pitch that it seems to drown out all sounds of reason. Amalgam has served the dental profession for more than 165 years. Incidents of true allergy to mercury have been rare and attempts to link its usage with diseases like multiple sclerosis and Alzheimer’s disease have not been significantly proven, although there may be some association between amalgam restorations and oral lichenoid lesions.\[29\]

Marshall, in his review on dental amalgam, summed it up appropriately: “if some reported values of Hg release are extrapolated to clinical life times, the entire restoration could lose its Hg in short time. For example, a 500 mg amalgam restoration contains approximately 200–250 mg of Hg, and the entire quantity of Hg would be lost in 10,000 days if the Hg was released at the rate of 25 µg/day. This estimate of release is of the order of magnitude reported in some studies of vapour release”\[30\]
COMPOSITION OF AMALGAM ALLOY

Composition of currently used alloy is silver 40–70%, tin 12–30% and copper 12–24%. It may also include indium 0–4%, palladium 0.5% and zinc up to 1%. Zinc prevents the oxidation of other metals in the alloy during manufacturing process. Zinc also inhibits corrosion. Some researchers believe that if zinc containing amalgam is contaminated with moisture, it causes delayed expansion. Indium containing amalgam exhibited a reduction in creep and increase in strength. Youdelis also found that less mercury is required for mixing amalgam when it contains indium in concentration up to 10%. The reason for lower mercury emission is that amalgam prepared with indium rapidly forms indium oxide and tin oxide films which reduce mercury release. Palladium reduces tarnish and corrosion.

DEVELOPMENTS IN CAVITY DESIGN

Traditionally, Black’s original preparation design called for extravagant extension with the intention of preventing recurrent caries. Overtime, improvements in knowledge have supported the more conservative cavity preparations. Some authors advocate extending the preparations into fissures, whether carious or not. Smaller burs can be used to create preparations that involve the removal of only diseased and weakened enamel and dentin, and with the use of fissure sealants sound tooth can be preserved. A small diameter bur can be used to slightly open the fissures to be sealed to ensure access to sound enamel for etching and flow of a liquid resin to provide seal. Many studies have shown that smaller restorations last long. Osborne and Gale evaluated 196 amalgam restorations 13–14 years after insertion. They found that cavity width was the single most significant factor for clinical survival. The wider restorations showed greater marginal fracture and a higher rate of replacement than narrow restorations. Other benefits associated with the success of smaller preparations include reduced occlusal stress on the margins and preservation of tooth strength. Amalgam bond is based on a dentinal bonding system developed in Japan by Nakabayashi and co-workers. The bond strengths recorded in studies have varied, approximately 12–15 MPa, and seem to be routinely achievable. Using a spherical amalgam in one study of bonded amalgam, Summitt and colleagues reported mean bond strength of 27 MPa. The authors believed that this higher bond strength was achieved because the bonding material was refrigerated until immediately before its use. Bond strengths achieved with admixed alloys tend to be slightly lower than those with spherical alloys. One study compared post-insertion sensitivity of teeth with bonded amalgams to that of teeth with pin-retained amalgams. After 6 months, teeth with bonded amalgams exhibited superior clinical performance and longevity compared with unsealed amalgam restorations over a period of 10 years.

FLUORIDATED AMALGAM

Fluoride, being cariostatic, has been included in amalgam to deal with the problem of recurrent caries associated with amalgam restorations. The problem with this method is that the fluoride is not delivered long enough to provide maximum benefit. Several studies investigated fluoride levels released from amalgam. These studies concluded that a fluoride containing amalgam may release fluoride for several weeks after insertion of the material in mouth. As an increase of up to 10–20-fold in the fluoride content or whole saliva could be measured, the fluoride release from this amalgam seems to be considerable during the first week. An anticariogenic action of fluoride amalgam could be explained by its ability to deposit fluoride in the hard tissues around the fillings and to increase the fluoride content of plaque and saliva, subsequently affecting remineralization. In this way, fluoride from amalgam could have a favorable effect not only on caries around the filling but on any initial enamel demineralization. The fluoride amalgam thus serves as a “slow release device”.

BONDED AMALGAM

Conventional amalgam is an obturating material as it merely fills the space of prepared cavity, and thus, does not restore the fracture resistance of the tooth, which was lost during cavity preparations. In addition, the provision for adequate resistance and retention form for amalgams may require removal of healthy tooth structure. Further, since amalgam does not bond to tooth structure, microleakage immediately after insertion is inevitable. So, to overcome these disadvantages of amalgam, adhesive systems that reliably bond to enamel and dentin have been introduced. Amalgam bond is based on a dentinal bonding system developed in Japan by Nakabayashi and co-workers. The bond strengths recorded in studies have varied, approximately 12–15 MPa, and seem to be routinely achievable. Using a spherical amalgam in one study of bonded amalgam, Summitt and colleagues reported mean bond strength of 27 MPa. The authors believed that this higher bond strength was achieved because the bonding material was refrigerated until immediately before its use. Bond strengths achieved with admixed alloys tend to be slightly lower than those with spherical alloys. One study compared post-insertion sensitivity of teeth with bonded amalgams to that of teeth with pin-retained amalgams. After 6 months, teeth with bonded amalgams...
were less sensitive than teeth with pin-retained amalgams. This difference in sensitivity was not present 1 year after insertion. This is possibly because of corrosion products in nonbonded amalgam restorations filling the interface, and thus, decreasing microleakage and sensitivity.\[57\]

If bonding proves successful over the long term, method of mechanical retention can be eliminated, thus reducing the potential for further damage to tooth structure that occurs with pin placement or use of amalgapins. If mechanical retention is not needed, cavity design can allow more sound tooth structure to be preserved.\[41\]

CONSOLIDATED SILVER ALLOY SYSTEM

One amalgam substitute being tested is a consolidated silver alloy system developed at the National Institute of Standards and Technology.\[58\] It uses a fluoroboric acid solution to keep the surface of the silver alloy particles clean. The alloy, in a spherical form, is condensed into a prepared cavity in a manner similar to that for placing compacted gold. One problem associated with the insertion of this material is that the alloy strain hardens, so it is difficult to compact it adequately to eliminate internal voids and to achieve good adaptation to the cavity without using excessive force.\[41\]

GALLIUM – AN ALTERNATIVE TO AMALGAM

Several times since the introduction of amalgam restorations to the United State in the 19th century, the public has expressed concerns about the use of mercury in dental amalgam. However, an effective alternative to amalgam has not been identified. As early as 1956, Smith and Caul\[9-61\] and Smith and co-workers\[62\] claimed that a gallium based alloy could serve as a possible alternative to dental amalgam. They found that mixing gallium with either nickel or copper and tin produced a pliable mass that could be condensed into a prepared cavity, which, after setting, had physical properties suitable for a restorative material.

FUTURE OF DENTAL AMALGAM

The prediction that amalgam would not last until the end of the 20th century was wrong. Its unaesthetic appearance, its inability to bond tooth, concerns about the mercury and versatility of other materials have not not led to the elimination of this inexpensive and durable material. As other materials and techniques improve, the use of amalgam will likely continue to diminish, and it will eventually disappear from the scene.

Yet, amalgam continues to be the best bargain in the restorative armamentarium because of its durability and technique insensitivity. Amalgam will probably disappear eventually, but its disappearance will be brought about by a better and more esthetic material, rather than by concerns over health hazards. When it does disappear, it will have served dentistry and patients well for more than 200 years.

CONCLUSIONS

Amalgam restorations have served the profession well and will continue to do so in the years to come. In terms of longevity, they are probably superior to composite resins, especially when used for large restorations and cusp capping. The new high copper single composition alloys offer superior properties but may not offer as good seal as older amalgams. The use of amalgam can be continued as a material of choice if esthetics is not a concern. Prepare a tooth as conservative as possible, making access large enough only for removal of carious dentin and using resin sealants for noncarious fissures.

REFERENCES

1. Ring ME. Dentistry. An illustrated history. New York: Harry N Abrams, Inc.; 1986.
2. Hoffmann-Axthelm W. History of dentistry. In: Koehler HM, translator. Chicago: Quintessence; 1981. p. 43, 156.
3. Campbell JM. Dentistry then and now. Glasgow: Bell and Bain; 1981. p. 265-6.
4. Amos Westcott. Metallic pastes for filling teeth. Am J Dent Sc 1844;4:211.
5. Evans TW. Messrs. Experimenting with cadmium in the tin mixture: Preserve the color better and absorbed the mercury. Vol. 3. Paris: White and Co., Dent Newsletter; 1849. p. 9.
6. Black GV. An investigation of the physical characters of the human teeth in relation to their disease, and to practical dental operations, together with physical characters of filling materials. The Dental Cosmos 1895;37:553-637-61.
7. Black GV. The physical properties of the silver-tin amalgams. Dental Cosmos 1896;38:965-92.
8. Black GV. Operative Dentistry, 1st ed., Vol. 2. Chicago: Medico-Dental Publishing Company; 1908.
9. Gayler ML. Dental amalgams. J Inst Metals 1937:60:407-19.
10. Greener EH. Amalgam-yesterday, today and tomorrow. Oper Dent 1979:4:24-35.
11. Eames WB. Preparation and condensation of amalgam with low mercury alloy ratio. J Am Dent Assoc 1959:58:78-83.
12. Demaree NC, Taylor DF. Properties of dental amalgam from spherical alloy particles. J Dent Res 1962:41:890-906.
13. Innes DB, Youdelis WV. Dispersion strengthened amalgam. J Can Dent Assoc 1963:29:987-93.
14. Asgar K. Behavior of copper dispersion alloy (abstract 15). J Dent Res 1971:50:56.
15. Mahler DB. Micro-probe analysis of a dispersion amalgam (abstract 14). J Dent Res 1971:50:56.
16. Probst RL, Karp PI, Sayre CH, Beebe AR Jr. Atomizing nozzle and pouring cap assembly for the manufacture of metal powders. U.S. Patent No. 2, 968,062 granted January 17, 1961.
17. Guthrom CE, Johnson LD, Lawless KR. Corrosion of dental amalgam and its phases. J Dent Res 1983:62:1372-81.
18. Osborne JW, Norman RD, Gale EN. A 14-year clinical assessment of 12 amalgam alloys. Quintessence Int 1991:22:857-64.
19. Osborne JW, Norman RD. 13-year clinical assessment of 10 amalgam alloys. Dent Mater 1990:6:189-94.
20. Mjörl A, Jokstad A, Qvist V. Longevity of posterior restorations. Int Dent J 1990;40:11-7.
21. Letzel H, van’t Hof MA, Marshall GW, Marshall SJ. The influence of the amalgam alloy on the survival of amalgam restorations: A secondary analysis of multiple controlled clinical trials. J Dent Res 1997:76:1787-98.
22. Mahler DB. The high-copper dental amalgam alloys. J Dent Res
Bharti, et al.: Dental amalgam: An update

1997;76:537-41.

23. Smales RJ. Longevity of cusps-covered amalgams: Survivals after 15 years. Oper Dent 1991;16:17-20.

24. Mayhew RB, Schmeltzer LD, Pierson WP. Effect of polishing on the marginal integrity of high-copper amalgams. Oper Dent 1986;11:8-13.

25. Plasmin PJ, Creugers NH, Mulder J. Long term survival of extensive amalgam restorations. J Dent Res 1990;79:453-60.

26. Robins JW, Summitt JB. Longevity of complex amalgam restorations. Oper Dent 1988;13:54-7.

27. Letzel H, van’t Hof MA, Vrijhoef MM, Marshall GW Jr, Marshall SJ. A controlled clinical study of amalgam restorations: Survival, failures and causes of failure. Dent Mater 1989;5:115-21.

28. Major IA. Amalgam and composite resin: Longevity and reason for replacement. In: Anusavice KJ, editor. Quality evaluations of dental restorations. Criteria for placement and replacement. Chicago: Quintessence Publishing Co Inc.; 1989. p. 61-8.

29. Shenoy A. Is it the end of the road for dental amalgam? A critical review. J Conserv Dent 2008;11:99-107.

30. Marshall SJ, Marshall GW Jr. Dental amalgam: The materials. Adv Dent Res 1992;6:94-9.

31. Berry TG, Osborne JW. Effect of zinc in two non-gamma-2 amalgam systems. Dent Mater 1985;1:98-100.

32. Osborne JW, Berry TG. Zinc-containing high-copper amalgams: A 3-year clinical evaluation. Am J Dent 1992;5:43-5.

33. Sarkar NK, Park JR. Mechanism of improved resistance of zinc-containing dental amalgams. J Dent Res 1988;67:1312-5.

34. Yamada T, Fusayama T. Effect of moisture contamination on high copper amalgam. J Dent Res 1981;60:716-23.

35. Osborne JW, Howell ML. Effects of water contamination on certain properties of high copper amalgams. Am J Dent 1994;7:337-41.

36. El-Mowafy OM. Fracture strength and fracture patterns of maxillary premolars with approximal slot cavities. Oper Dent 1993;18:160-6.

37. Schwartz RS, Summitt JB, Robbins JW. Fundamentals of operative dentistry: A contemporary approach. Chicago: Quintessence Publishing; 1996. p. 252.

38. Caron GA, Murchison DF, Broom JC, Cohen RB. Resistance to fracture of teeth with various preparations for amalgam (abstract 208). J Dent Res 1994;73:127.

39. Summitt JB, Osborne JW. Initial preparations for amalgam restorations: Extending the longevity of the tooth-restoration unit. J Am Dent Assoc 1992;123:67-73.

40. Osborne JW, Summitt JB. Extension for prevention: Is it relevant today? Am J Dent 1998;11:189-96.

41. Berry TG, Summitt JB, Chung AK, Osborne JW. Amalgam at the new millennium. J Am Dent Assoc 1998;129:1547-56.

42. Berry TG, Laswell HR, Osborne JW, Gale EN. Width of isthmus and marginal failure of restorations of amalgam. Oper Dent 1981;65:55-8.

43. Blaser PK, Lund MR, Cochran MA, Potter RH. Effect of designs of Class 2 preparations on resistance of teeth to fracture. Oper Dent 1983;8:6-10.

44. Osborne JW, Gale EN. Relationship of restoration width, tooth position, and alloy to fracture of the margins of 13- to 14-year old amalgams. J Am Dent Assoc 1990;120:1599-601.

45. Mertz-Fairhurst EJ, Curtis JW Jr, Ergle JW, Rueggeberg RA, Adair SM. Ultraconservative and cariostatic sealed restorations: Results at year 10. J Am Dent Assoc 1998;129:95-66.

46. Forsten L. Short- and long-term fluoride release from glass ionomers and other fluoride containing filling materials In vitro. Scand J Dent Res 1990;98:179-85.

47. Skaerstvedt L, Tveit AB, Ekstrand J. Fluoride release from a fluoride-containing amalgam in vivo. Scand J Dent Res 1985;93:448-52.

48. Tveit AB, Gjerdet NR. Fluoride release from a fluoride-containing amalgam, a glass ionomer cement and a silicate cement in artificial saliva. J Oral Rehabil 1981;8:237-41.

49. Garcia-Godoy F, Chan DC. Long-term fluoride release from glass ionomer-lined amalgam restorations. Am J Dent 1991;4:223-5.

50. Garcia-Godoy F, Olsen BT, Marshall TD, Barnwell GM. Fluoride release from amalgam restorations lined with a silver-reinforced glass ionomer. Am J Dent 1990;3:94-6.

51. Nakabayashi N, Watanabe A, Gendusa NJ. Dentin adhesion of modified 4-META/MMA-TBB RESIN: Function of HEMA. J Dent Mater 1992;77:259-64.

52. Ratnanathin K, Denehy GE, Vargas MA. Effect of condensation techniques on amalgam bond strengths to dentin. Oper Dent 1996;21:191-5.

53. Imbery TA, Hilton TJ, Reegan SE. Retention of complex amalgam restorations using self-threading pins, amalgapins, and amalgambond. Am J Dent 1995;8:117-21.

54. Ramos JC, Perdigao J. Bond strengths and SEM morphology of dentin-amalgam adhesives. Am J Dent 1997;10:152-8.

55. Summitt JB, Miller B, Buikema D, Chan DN. Shear bond strength of amalgambond plus cold and at room temperature (abstract 1345). J Dent Res 1998;77:274.

56. Diefenderfer KE, Reinhardt JW. Shear bond strengths of 10 adhesive resin/amalgam combinations. Oper Dent 1997;22:50-6.

57. Summitt JB, Burgess JO, Osborne JW, Berry TG, Robbins JW. Two year evaluation of amalgambond plus and pin-retained amalgam restorations (abstract 1529). J Dent Res 1998;77:297.

58. Eichmiller FC, Giuseppe AA, Hoffman KM. Acid activation of silver powder for cold-welding (abstract 110). J Dent Res 1998;77:119.

59. Hickel R, Dasch W, Janda R, Tyas M, Anusavice K. New direct restorative materials. FDI Commission Project. Int Dent J 1998:48:3-16.

60. McComb D. Gallium restorative materials. J Can Dent Assoc 1998;64:645-7.

61. Smith DL, Cau HJ. Alloys of gallium with powdered metals as possible replacement for dental amalgam. J Am Dent Assoc 1996;53:315-24.

62. Smith DL, Cau HJ, Sweeney WT. Some physical properties of gallium-copper-tin alloys. J Am Dent Assoc 1956;53:677-85.

Source of Support: Nil. Conflict of Interest: None declared.
اگر تمایل دارید هر روز محتوای جذاب متنی، ویدئویی و اینفوگرافیک از موضوعات متنوع مواد مهندسی و فرآیندهای ساخت و تولید را مشاهده و دانلود کنید و از اخبار، رویدادها و تحلیل‌های صنعتی مطلع باشید، بازدید از عصر مواد و شبکه‌های اجتماعی آن را در برنامه وب‌گردی‌های روزانه خود قرار دهید.

www.asremavad.com