Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
region and so allows the helicase and polymerase to bind and begin unwinding and replication, respectively. After travelling all around the plasmid probably as a single protein-anthody complex, the protein then reach the newly synthesised origin of replication, which provides the signal for termination. RepD then do a series of strand exchanges to close the two plasmid circles.

We are using a combination of measurements with whole plasmids and oligonucleotides to elucidate the series of events at each stage of the replication. In particular, by following individual processes in real time, we are able to describe the order of biochemical steps that enable this process to occur.

363-Pos Board B143 Cooperative Activity of SARS Coronavirus Nsp13 Helicase Characterized by Single Molecule FRET

Hyeyeon Im, Sangmi Lee, Gwangroog Lee.
Life Science, Gwangju Institute of Science and Technology, Gwangju, Korea, Republic of.

SARS was epidemic in 2003 worldwide. SARS-CoV helicase plays critical roles in viral replication, and has been proposed to be a potential candidate for anti-SARS therapy. We use single molecule fluorescence resonance energy transfer to examine the unwinding and re-winding mechanism of nsp13 helicase on partial DNA duplexes as a function of protein, ATP concentration, and tail length. Our results reveal that the tail length of the substrates determines the total amount of DNA unwound by increasing the number of proteins loaded. In contrast, unwinding rate and step size increase as a function of the protein and ATP concentration for the partial duplex with a long tail (45nt long), but independent of protein concentration for the short tail (30nt long). We also observed a repetitive unwinding displaying multiple rounds of re-unwinding in the re-winding events where re-unwinding becomes favorable at higher protein concentration. We also found that the relative extent of constitutive unwinding and repetitive fluctuation is defined by the modality of DNA-Protein complex in the presence or absence of ATP concentration. The ratio between them determines the processivity of the cooperative helicases in tandem. In general, our results identify the important cellular parameters, governing the cooperative unwinding and repetitive re-winding behavior of helicase. This is a new attempt to understand the complicated behavior of unwinding motor cohorts at the single molecule resolution.

364-Pos Board B144 Measuring the Kinetics of Restriction Endonucleases with Single Molecule Resolution

Allen C. Price1, Stefano Gambino2, Brian Mousely1, Lindsay Catheart1, Janelle Winship2, Maximilian Benz2.
1Chemistry and Physics, Emmanuel College, Boston, MA, USA, 2Emmanuel College, Boston, MA, USA.

We have developed a simple assay for observing the cleavage of DNAs with single molecule sensitivity. DNAs are attached to a surface at one end using a digoxigenin-antibody link and to a magnetic micro bead at the other end via a biotin-streptavidin link. The DNAs are stretched by applying fluid drag and are coated with video microscopy by observing the time of disappearance of each bead. We are using our technique to measure the kinetics of two type II restriction endonucleases, EcoRI and NdeI. With our kinetic data, we hope to elucidate the target site search mechanisms of these enzymes.

365-Pos Board B145 Dynamic Control of Processivity during DNA Degradation by a Ring-Shaped Nuclease

Suyeon Park, Jungmin Yoo, Gwangroog Lee.
School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea, Republic of.

DNA exonucleases catalyze numerous essential biological processes such as DNA replication, recombination, and repair. \(\lambda \) exo-nuclease (\(\lambda \) exo) is composed of three active sites and forms a ring structure for processive degradation. The detail molecular basis governing the allostery of trimers has not been well understood yet. Here we used single molecule fluorescence resonance energy transfer (FRET) to examine how the three enzymatic sites of \(\lambda \) exo are coordinated. We find that only one of three active sites is utilized and the ring of \(\lambda \) exo is rotated along DNA helix during degradation. We further examine how the previous motion of \(\lambda \) exo-nuclease influences on the following enzymatic activity, and found that the continuous cleavage activity guides the enzyme to competently position, making it tilted around 45° to the DNA duplex axis. This coordinated comprehensive motion is required for efficient and processive degradation, suggesting a hierarchy nature for processivity. We also find that the tendency of backtracking on ssDNA increases when the degradation rate slows down.