Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Case Report

Difficult tracheal extubation due to endotracheal tube malfunction: A challenge during the COVID-19 pandemic

Olumuyiwa A. Bamgbade, FRCPC a,*, Vivian O. Magboh, MBBS b, Ajibola U. Otegbeye, MBBS c, Mmakgomo B. King, MBBS d, Olusanya J. Oluwole, MBBS e and Bolusefe T. Olatunji, MBBS f

a Department of Anesthesiology, University of British Columbia, Vancouver, Canada
b Department of Anaesthesia, Garki Hospital, Abuja, Nigeria
c Department of Anaesthesia, University College Hospital, Ibadan, Nigeria
d Department of Anaesthesia, Kenyatta National Hospital, University of Nairobi, Nairobi, Kenya
e Department of Public Health Sciences, University of Miami, Miami, FL, USA
f Department of Surgery, National Hospital, Abuja, Nigeria

Received 3 February 2021; revised 1 May 2021; accepted 8 May 2021; Available online 8 June 2021

Abstract

Tracheal extubation is an aerosol-generating medical procedure. Difficult tracheal extubation is a serious complication that increases the risk of respiratory aerosol and pathogen spread, especially during the COVID-19 pandemic. The management of difficult extubation is potentially even more challenging during the pandemic. We report two cases of difficult extubation due to endotracheal tube cuff malfunction during the COVID-19 pandemic. Special airway maneuvers and infection control measures were employed to successfully manage the unexpected dilemma. This case series highlights the risk of COVID-19 virus transmission during difficult extubation. This report describes the preventive and reactive management of difficult extubation.

Keywords: Aerosol-generating medical procedure; COVID-19; Difficult airway; Infection control measures; Tracheal extubation

Introduction

Tracheal extubation is an aerosol-generating medical procedure (AGMP) that has caused more concerns during the coronavirus disease (COVID-19) pandemic. 1,2 Difficult tracheal extubation is defined as failed or incomplete attempts of purposeful removal of a patient’s endotracheal tube (ETT).
It is a rare and risky perioperative or critical care complication. It has increased safety implications during a respiratory pandemic. Difficult extubation may be related to mechanical problems, such as ETT malfunction, transfixation by surgical or pharyngeal device, and complications of head or neck surgery. It may be related to technical issues such as inadequate management of the ETT device, difficult tracheal intubation, inappropriate airway management, patient’s posture, and patient’s comorbidities. Difficult extubation is usually unexpected, multifactorial, and challenging to manage. The management of this delicate AGMP problem has been both more challenging and important. There is no study on difficult tracheal extubation during a respiratory pandemic. This is a case series and review of this rare clinical dilemma during the COVID-19 pandemic.

Case reports

An adult female underwent urgent laparoscopic oophorectomy during the COVID-19 pandemic. The patient had a low risk of COVID-19 infection. The anaesthesiologist and the assistant used personal protective equipment (PPE) comprising goggles, N95 facemask, gloves, and gown. General anaesthesia was induced in a modified rapid sequence fashion using intravenous propofol and rocuronium and was maintained with propofol infusion, rocuronium boluses, and titrated hydromorphone doses. Direct Macintosh laryngoscopy and ETT insertion were uneventful. The patient was intubated using a size-7 Shiley™ tracheal tube with a high-volume, low-pressure, thin-walled, and flexible cuff (Medtronic, Canada). Preoperatively, the patient was in the head-up position for 60 min of uneventful surgery. At anaesthesia emergence and full reversal of neuromuscular blockade, attempted ETT cuff deflation and extubation failed. The ETT cuff pilot tube was damaged. Anaesthesia was deepened using propofol and fentanyl. Intravenous lidocaine 100mg was administered. The anaesthesiologist and the assistant added face shield as PPE. Videolaryngoscopy confirmed that the ETT cuff remained inflated despite deflation attempts. Lidocaine was sprayed on the glottis. The ETT was retracted to the glottis, Magill forceps was used to break and deflate the cuff, and the patient was extubated. Adequate pharyngeal and tracheal suctioning was performed before extubation. Tracheal extubation was performed with simultaneous continuous endotracheal suctioning. The patient’s post-operative course was uneventful and he was then discharged home after 5 h. No complication at 24 h was reported.

Discussion

Difficult tracheal extubation may be caused by mechanical or technical issues such as ETT malfunction, adhesion to tracheal mucosa, entanglement with a nasogastric tube, or transfixation by surgical material. Difficult tracheal extubation in the two cases in this report was due to ETT cuff malfunction; however, this is an unusual incident especially if the ETT is properly checked before tracheal intubation. Difficult extubation may result from difficult endotracheal intubation and occasionally complicates forceful or difficult intubation because of oversized or defective ETTs. Problematic extubation may be due to the patient’s pathophysiology, posture, surgery, airway anomaly, secretions, adhesions, laryngospasm, coughing, biting, or agitation.

The risk of difficult or failed extubation may be minimized by adequate perioperative management of the ETT and appropriate intraoperative management of the patient’s airway. Before intubation, it is important to properly check the ETT for defects and test the ETT cuff pressure using a manometer. Preoperative assessment of the patient’s airway must be comprehensive, and this should guide the approach to endotracheal intubation. The process of endotracheal intubation should be smooth and atraumatic to avoid damage to the ETT and patient’s airway. Inadvertent damage to the ETT cuff is a known cause of difficult extubation and in this case series the cause of the problem in both patients. It is important to check and optimize the ETT cuff pressure using a manometer after intubation, during airway or respiratory events, at certain intervals during a prolonged surgery, and after changing the patient’s posture.

Difficult extubation is usually unexpected and some inexperienced anaesthesiologists may be surprised by this rare event, especially if the initial tracheal intubation was easy. Unexpected difficult extubation may be more dangerous because it occurs when danger awareness is reduced, attention decreases, or the airway cart is further away. Management necessitates increasing the depth of anaesthesia or sedation to abolish laryngospasm and enable essential airway examination via laryngoscopy or laryngo-bronchoscopy. Laryngospasm and coughing should be minimized by intravenous magnesium and/or lidocaine. Topical lidocaine is also beneficial. Tracheal
extubation must be performed under visualisation and may require manipulation of the ETT or cuff deflation using a blunt device such as Magills forceps. Difficult extubation may be complicated by cough, hoarseness, sore throat, airway oedema, or mild respiratory distress.

Tracheal extubation can produce detectable aerosol at 15-fold higher spread than intubation, especially during coughs. Despite high air exchange rates, extubation may potentially spread COVID-19 or other respiratory viruses in the operating and critical care units. This risk of AGMP viral spread must be minimized, especially during difficult extubation. Operating and critical care unit staff must wear full PPE, including face shields. For COVID-19 patients, the recommendation for anaesthesia care includes modified rapid sequence induction and tracheal intubation with the aid of videolaryngoscope. Videolaryngoscopy is preferred to direct laryngoscopy to reduce the anaesthesiologist’s proximity to the patient’s airway and aerosol source. Coughing or airway complications should be minimized by timely adequate airway suctioning, good anaesthesia or sedation emergence technique, intravenous magnesium, and intravenous lidocaine. The practice of tracheal extubation with simultaneous continuous endotracheal suctioning may reduce post-extubation airway secretions, coughing, aerosol generation, and viral spread. This practice may be potentially important during respiratory pandemics or other respiratory infections. As the COVID-19 pandemic is very concerning, there must be concerted efforts to minimize the risk of difficult extubation in the operating and critical care units to potentially reduce AGMP viral spread and protect hospital staff and patients.

The utility of airway management isolation boxes has been trialled during the COVID-19 pandemic to reduce aerosol spread during tracheal intubation or extubation. However, there is no evidence for the effectiveness of these aerosol boxes or barrier enclosures during the airway management of COVID-19 patients. These barrier systems are associated with complications such as interference with controlled air circulation, compromise of PPE integrity, false sense of security, aerosol accumulation, and secondary aerosolization upon barrier removal. Further research is required regarding the efficacy of these barrier systems.

Conclusion

Difficult tracheal extubation potentially increases the spread of COVID-19 or other respiratory viruses in the clinical setting. This interesting case series highlights the risk of transmission of the COVID-19 virus during difficult tracheal extubation and shows that anaesthesiologists should take precautions to avoid the risk of difficult tracheal extubation. Multi-faceted approaches must be used to minimize the risk of difficult extubation and AGMP viral spread in all clinical settings, especially during a respiratory pandemic to protect the medical staff and patients.

Source of funding

The research did not receive any specific grant from funding agencies in public, commercial, or not-for-profit sectors.

Conflict of interest

The authors have no conflict of interest to declare.

Ethical approval

The authors confirm that this study had been prepared in accordance with COPE roles and regulations. Given the nature of the study, the IRB review was not required.

Authors’ contributions

OAB, VOM, AUO, MBK, OJO, and BTO were involved in the conception and design of the study, data collection, data analysis and interpretation, writing of initial and final drafts, proofreading, and critical review and approval of the final article draft. All authors reviewed and approved the final manuscript. Authors are responsible for the content and similarity index of the manuscript.

References

1. Brown J, Gregson FKA, Shrimpton A, Cook TM, Bzdek BR, Reid JP, et al. A quantitative evaluation of aerosol generation during tracheal intubation and extubation. Anaesthesia 2021; 76: 174–181.
2. Jackson T, Deibert D, Wyatt G, Durand-Moreau Q, Adisesh A, Khunti K, et al. Classification of aerosol-generating procedures: a rapid systematic review. BMJ Open Respir Res 2020 Oct; 7(1): e000730. https://doi.org/10.1136/bmjresp-2020-000730. PMID: 33040021.
3. Sorbello M, Frova G. When the end is really the end? The extubation in the difficult airway patient. Minerva Anestesiol 2013 Feb; 79(2): 194–199.
4. Sheta SA, Abdelhalim AA, Nada E. Evaluation of "no touch" extubation technique on airway-related complications during emergence from general anesthesia. Saudi J Anaesth 2011; 5: 125–131.
5. Bamgbade OA. Intraoperative magnesium supplementation improves gynecology major surgery perioperative outcome. J Clin Anesth 2018; 44: 21.
6. Khan MF, Saleem U. Intravenous lidocaine and postextubation laryngospasm. Saudi J Anaesth 2018; 12: 1–2.
7. Saadah RA, Alfaqih MA, Beni Yonis OA, Okour AM, Obeidat KA. The psychosocial and clinical concerns of physicians treating patients with COVID-19. J Taibah Univ Med Sci 2020; 15: 544–549.
8. Qasem Surrati AM, Asad Mansuri FM, Ayadh Alhibabi AA. Psychological impact of the COVID-19 pandemic on health care workers. J Taibah Univ Med Sci 2020; 15: 536–543.
9. Bamgbade OA, Onaolapo MH, Zuokumor PA. Nasotracheal intubation with the McGrath videolaryngoscope in patients with difficult airway. Eur J Anaesthesiol 2011; 28: 673–674.
10. Sorbello M, Rosenblatt W, Hofmeyr R, Greif R, Urdaneta F. Aerosol boxes and barrier enclosures for airway management in COVID-19 patients: a scoping review and narrative synthesis. Br J Anaesth 2020; 125: 880–894.

How to cite this article: Bamgbade OA, Magboh VO, Otegbeye AU, King MB, Oluwole OJ, Olatunji BT. Difficult tracheal extubation due to endotracheal tube malfunction: A challenge during the COVID-19 pandemic. J Taibah Univ Med Sci 2021;16(6):935–937.