Self-distillation with Batch Knowledge Ensembling
Improves ImageNet Classification

Yixiao Ge, Xiao Zhang, Ching Lam Choi, Ka Chun Cheung, Peipei Zhao,
Feng Zhu, Xiaogang Wang, Rui Zhao, Hongsheng Li

1Multimedia Laboratory, The Chinese University of Hong Kong
2Centre for Perceptual and Interactive Intelligence (CPII)
3NVIDIA 4SenseTime Research 5School of CST, Xidian University
{yxge@link, hsli@ee}.cuhk.edu.hk
Project Page: https://geyixiao.com/projects/bake

Abstract

The recent studies of knowledge distillation [14, 28, 40, 47] have discovered that ensembling the “dark knowledge” from multiple teachers or students contributes to creating better soft targets for training, but at the cost of significantly more computations and/or parameters. In this work, we present BAtch Knowledge Ensembling (BAKE) to produce refined soft targets for anchor images by propagating and ensembling the knowledge of the other samples in the same mini-batch. Specifically, for each sample of interest, the propagation of knowledge is weighted in accordance with the inter-sample affinities, which are estimated on-the-fly with the current network. The propagated knowledge can then be ensembled to form a better soft target for distillation. In this way, our BAKE framework achieves online knowledge ensembling across multiple samples with only a single network. It requires minimal computational and memory overhead compared to existing knowledge ensembling methods. Extensive experiments demonstrate that the lightweight yet effective BAKE consistently boosts the classification performance of various architectures on multiple datasets, e.g., a significant +0.7% gain of Swin-T on ImageNet with only +1.5% computational overhead and zero additional parameters. BAKE does not only improve the vanilla baselines, but also surpasses the single-network state-of-the-arts [6, 52, 53, 56, 58] on all the benchmarks.

1. Introduction

Deep neural networks have achieved impressive success on computer vision tasks, where image classification [17, 38, 45, 51, 57] is considered as one of the most fundamental tasks given the wide range of applications of its learned representations and their transferability to down-stream tasks, e.g., detection [29, 37], segmentation [16, 60], generation [11, 23, 31, 62], retrieval [7–10], etc. There is a tremendous number of methods [1, 3, 14, 50, 55, 56] working on improving the image classification accuracy, especially on the large-scale ImageNet [5] dataset.

Recent studies [1, 3, 55] have shed light on the limitations of supervised learning of image classification. They have observed that the imperfect learning targets resulted from manually annotated ground-truth labels (one-hot class vectors) turn out to be a key factor that hinders the further improvement of classification accuracy. Thanks to the great success of knowledge distillation [21], the soft probability vectors predicted by a teacher network, carrying the learned “dark knowledge”, can serve as informative training supervisions to enhance a student network. The quality of the
teacher’s predictions is found critical to the accuracy of the student network. State-of-the-art methods [14, 28, 40, 41, 47] have found that multiple teachers or students could encode complementary knowledge and their “ensembled” soft targets are more robust learning objectives. Positive as their results are, they depend on extra networks or branches, undoubtedly increasing the computational and memory cost to a noticeable extent.

To produce high-quality soft targets with minimal cost, we introduce a self-distillation method with a novel BAKE Knowledge Ensembling (BAKE) scheme, as illustrated in Figure 1. Rather than ensembling multiple networks or branches to generate the distillation soft targets, our method only adopts a single network. It achieves knowledge ensembling by on-the-fly aggregating the “dark knowledge” from different samples within the same mini-batch, yielding better soft targets.

Specifically, given the samples’ encoded representations and predictions in a mini-batch, we conduct cross-sample knowledge ensembling under the assumption that visually similar samples with close-by representations should encode consistent class-wise predictions. In practice, for each anchor sample, the other samples’ predictions (“dark knowledge”) can be weightedly propagated and ensembled to form a soft target. The knowledge propagation and ensembling are conducted iteratively until convergence, i.e., the soft targets no longer change. In order to perform the proposed batch knowledge ensembling at each training iteration efficiently, we adopt approximate inference to estimate the iterative knowledge ensembling results. After properly ensembling the samples’ knowledge in the batch, we are able to create refined soft targets for each sample to improve the training of image classification.

We demonstrate the effectiveness of our proposed BAKE via a comprehensive set of evaluations with various architectures and datasets. On ImageNet [5] classification, BAKE well boosts the top-1 accuracy of ResNet-50 [17] by significant +1.2% gains (76.8%→78.0%) with a negligible 3.7% computational overhead at training. We also evaluate our BAKE on vision transformers, i.e., Swin Transformer [32], and boost the state-of-the-art performance by up to +0.7% improvements (81.3%→82.0%). The network trained by BAKE shows consistent improvements for transfer learning on downstream tasks, including detection [37] and segmentation [16] on COCO [30]. BAKE also improves the classification robustness on perturbed datasets [12, 19, 20] at test time. Not only improving the accuracy on ImageNet, BAKE also improves the classification accuracies on CIFAR-100 [26], TinyImageNet, CUB-200-2011 [49], MIT67 [35] and Stanford Dogs [24]. BAKE substantially outperforms the single-network state-of-the-arts [6, 52, 53, 56, 58] on all the benchmarks.

The contributions of our method are three-fold. (1) We for the first time introduce to produce ensembled soft targets for self-distillation without using multiple networks or additional network branches. (2) We propose a novel batch knowledge ensembling mechanism to online refine the distillation targets with the cross-sample knowledge, i.e., weightedly aggregating the knowledge from other samples in the same batch. (3) Our method is simple yet consistently effective on improving classification performances of various networks and datasets with minimal computational overhead and zero additional parameters.

2. Related Works

Knowledge distillation. Knowledge distillation [21] aims to transfer the “dark” knowledge learned from a high-capacity teacher network to a student network via soft labels. The soft labels can be the class probabilities [6, 14, 56] or the feature representations [34, 48] output by the teacher, containing more complete structured information than the one-hot ground-truth labels. The distillation process can be formed by a “teacher-student” framework [21, 40], a “peer-teaching” framework [14, 28, 59], or a self-distillation framework [6, 25, 52, 56, 58]. Our BAKE is mostly related to the self-distillation methods, i.e., teaching a single network using its own knowledge. However, most of them [6, 25, 58] only considered the knowledge of individual instances, resulting in sub-optimal learning targets. Recent works introduced to preserve the predictive consistency between intra-image (original v.s. perturbed) [52] or intra-class (images out of the same class) [56] samples. However, they only focused on pairwise images, carrying limited information compared to the ensembled batch knowledge of BAKE. More importantly, they simply defined the positive pairs using constant instance or class IDs, which may incur false supervisions as their visual features might be actually dissimilar, especially after the random crop augmentation [43].

Knowledge ensembling. It is well-known that an ensemble of multiple networks generally yields better predictions than a single network in the ensemble. The ensembling technologies aim to generate robust supervision signals via aggregating models [13, 15, 46] or predictions [14, 27, 28, 40, 41, 47]. Several attempts leveraged the spirit of knowledge ensembling in distillation tasks, dubbed “ensemble distillation” methods. For example, CRD [47] and MEAL [40] proposed to enhance the soft targets by en-

	No extra parameters	Ensembled knowledge
Self-distillation	✓	✗
Ensemble distillation	✗	✓
Label refinery	✗	✓
Our BAKE	✓	✓

Table 1. Key differences between our method and related works.
ensembling the knowledge of multiple pre-trained teacher networks. KDCL [14] introduced to aggregate the information from multiple independent students, which are collaboratively training. The idea of knowledge ensembling can be not only applied in supervised tasks, but also employed in semi-supervised [27,46] and self-supervised [13,15] learning tasks. Note that the way of “knowledge ensembling” is not limited to multi-model ensembling, e.g., in semi/self-supervised learning tasks, [13,15,46] use temporal ensembling with momentum updates to integrate the knowledge of a student model over iterations. Despite a big success, we remark that existing knowledge ensembling techniques all require additional networks or branches, which may be inapplicable in resource-limited environments.

Label refinary for ImageNet classification. ImageNet [5] is a widely-acknowledged dataset in computer vision. Although it could well benchmark the performance of image classification methods, some studies [1,3,39,55] have observed that the manually annotated labels for ImageNet are incomplete. Specifically, ImageNet was annotated under a single-labeling policy, i.e., one label per image, however, there are generally multiple objects in a single image. To overcome the problem, state-of-the-art label refinary methods [1,55] produced multi-labels by an auxiliary annotator. For instance, [1] introduced an iterative training scheme, i.e., the trained network acted as the annotator for the next generation training. [55] relabeled the dataset with a super-strong classifier, which was pre-trained on super-scale datasets. Although they cleaned up the noisy labels to some extent, they heavily depended on the capacity of external networks and required much resources to train a strong annotator, which was inflexible.

The key advantages of our BAKE against existing self-distillation, ensemble distillation and label refinary methods are summarized in Table 1.

3. Method

3.1. Revisit of Knowledge Distillation

Knowledge distillation [21] can be considered as regularizing the training of the student network using soft targets that carry the “dark knowledge” of the teacher network.

The student network generally consists of a backbone encoder \(F \) and a classifier \(C \) to perform classification. For each training sample \(x \), its logit vector is encoded as \(z = C(F(x)) \). The predictive probability vector \(p^\tau \) can be obtained via a softmax function on the logits, i.e., the probability of class \(k \) can be formulated as

\[
p^\tau(k) = \frac{\exp(z_k/\tau)}{\sum_{i=1}^{K} \exp(z_i/\tau)}, \tag{1}
\]

where \(\tau \) is a temperature hyper-parameter, and \(K \) is the number of total classes. Let \(y \in \{1, \ldots, K\} \) denotes the ground truth label and \(q^\tau \) is the soft target produced by the teacher network. The cross-entropy loss and the KL divergence between the predictions and soft targets are minimized jointly to train the student via

\[
\mathcal{L}_x = -\log p(y) + \lambda \cdot \tau^2 \cdot D_{KL}(q^\tau\|p^\tau), \tag{2}
\]

where \(p(y) \) denotes the probability normalized without a temperature, and \(\lambda \) weights the two terms.

Recent works [14,28,40,47] found that ensembling diverse “dark knowledge” from multiple teachers or students can form better soft targets, leading to better final performance (see Figure 2 (a)&(b) for details). However, this strategy would increase much more computational and memory overhead to enable multiple networks or branches training. To tackle the challenge, we introduce batch knowledge ensembling in a single network via self-distillation, as illustrated in Figure 2 (c).

3.2. Batch Knowledge Ensembling

Rather than utilizing multiple pre-trained high-capacity teachers [40,47] or collaboratively training students [14], we propose a novel self-knowledge ensembling solution by exploring how to ensemble knowledge of different samples in the same mini-batch with a single network, i.e., the student network itself. Intuitively, samples with high visual similarities are expected to have more consistent predictions on their predicted class probabilities, regardless of their ground-truth labels. In our solution, similar samples’ knowledge is systematically aggregated and ensembled to provide better soft targets.

Batch knowledge propagation and ensembling. We propose to propagate and ensemble knowledge among samples on-the-fly in terms of their feature similarities. Given a mini-batch of \(N \) samples and a network \(C \circ F \) under training, we first estimate the samples’ pairwise similarities by the dot product of their encoded representations with the current network. Such similarities can be stored in an affinity matrix \(A \in \mathbb{R}^{N \times N} \) as

\[
A(i,j) = \sigma(F(x_i))^\top \sigma(F(x_j)), \tag{3}
\]

where \(\sigma(f) = f/\|f\|_2 \) denotes the \(\ell_2 \)-norm and \(i,j \) are the indices of samples in a batch. To avoid the self-knowledge reinforcement, we discard the diagonal entries from \(A \) by \(A = A \odot (1 - I) \), where \(I \) is an identity matrix and \(\odot \) denotes the element-wise multiplication. Subsequently, we normalize each row of the affinity matrix \(A \) so that \(\sum_{j=1}^{N} A(i,j) = 1 \) for all \(i \), while keeping the diagonal all zeros, i.e., \(\hat{A}(i,i) = 0 \). The normalization can be formulated as a softmax function over each row of the matrix \(A \)

\[
\hat{A}(i,j) = \frac{\exp(A(i,j))}{\sum_{j \not= i} \exp(A(i,j))}, \quad \forall i \in \{1, \ldots, N\}. \tag{4}
\]
We denote the predicted probabilities of samples within a batch as $P^r = [p_1^r, \ldots, p_N^r]^T \in \mathbb{R}^{N \times K}$, which satisfy $\sum^K_{k=1} P^r(i, k) = 1, \forall i$. For the i-th sample in the mini-batch, we would like to weightedly propagate and ensemble the other samples’ predictions to create a better soft target for it based on the inter-sample affinities, which can be formulated as
\[
\hat{p}_i^r = \sum_{j \neq i} \hat{A}(i, j)p_j^r = \hat{A}(i)P^r, \tag{5}
\]
where \hat{p}_i^r is the propagated probability vector for the i-th sample and can serve as the refined soft targets. Intuitively, if the i-th sample and the j-th sample are similar with a high affinity $\hat{A}(i, j)$, the prediction p_j^r would have a larger weight to be propagated to \hat{p}_i^r. Propagating the predictions between all the samples in a mini-batch in parallel can be formulated as $\hat{P}^r = \hat{A}P^r$.

To avoid propagating and ensembling noisy predictions too much, we produce the soft learning targets Q^r as a weighted sum of the initial probability matrix P^r and the propagated one $\hat{A}P^r$,
\[
Q^r = \omega \hat{A}P^r + (1 - \omega)P^r, \tag{6}
\]
where $\omega \in [0, 1]$ is the weighting factor and $Q^r = [q_1^r, \ldots, q_N^r]^T \in \mathbb{R}^{N \times K}$. With the above formulations, the knowledge of the samples within the same batch can be propagated to each other and ensembled for one iteration.

Approximate inference. The knowledge propagation and ensembling can be conducted for multiple times until convergence for fully fusing their knowledge
\[
Q^r(t) = \omega \hat{A}Q^r(t-1) + (1 - \omega)P^r
= (\omega \hat{A})^t P^r + (1 - \omega) \sum_{i=0}^{t-1} (\omega \hat{A})^i P^r, \tag{7}
\]
where t denotes the t-th propagation and ensembling iteration. When the number of iterations approaches infinite, we have $\lim_{t \to \infty} (\omega \hat{A})^t = 0$, given that $\omega \in [0, 1]$. Also, since
\[
\lim_{t \to \infty} \sum_{i=0}^{t-1} (\omega \hat{A})^i = (I - \omega \hat{A})^{-1}, \tag{8}
\]
where I is an identity matrix. We can obtain an approximate inference formulation for the knowledge propagation and ensembling as
\[
Q^r(\infty) = (1 - \omega)(I - \omega \hat{A})^{-1}P^r. \tag{9}
\]
Note that $Q^r(\infty)$ naturally satisfies $\sum^K_{k=1} Q^r(\infty)(i, k) = 1$ for all i without requiring extra normalization, which forms valid soft targets for training. The gradient is not back-propagated through the soft targets $Q^r(\infty)$ for stable training.

For each training sample, we estimate its soft targets $q_i^r(\infty) \in Q^r(\infty)$ by ensembling the knowledge from other samples in the same batch with the approximate inference
Datasets. We study the effectiveness of BAKE mainly on ImageNet, yielding a batch size of $\hat{N} = 512$ for training. For example, we use $\hat{N} = 256$ and $M = 1$ for our experiments on ImageNet, yielding a batch size of $N = 512$.

4. Experiments

4.1. Experimental Details

Datasets. We study the effectiveness of BAKE mainly on the large-scale ImageNet-1K [5] (ILSVRC2012), which is considered as one of the most important benchmarks in learning visual representations. We also evaluate BAKE on the other two conventional image classification datasets, CIFAR-100 [26] and TinyImageNet, and three fine-grained image classification datasets, CUB-200-2011 [49], Stanford Dogs [24] and MIT67 [35]. Top-1 and top-5 classification accuracies are calculated for evaluation.

Network architectures. To demonstrate that our BAKE can consistently improve various architectures on multiple datasets, we study the family of ResNets, including ResNet [17], ResNeSt [57] and ResNeXt [51], the lightweight networks, including MobileNet-V2 [38] and EfficientNet-B0 [45], and the vision transformers, including Swin-T/S/B [32], on the ImageNet benchmark. We also evaluate ResNet [17] and DenseNet [22] on the other relatively smaller scale datasets. Note that we use the pre-activation blocks [18] for CIFAR-100 and TinyImageNet datasets following [56].

4.2. ImageNet Classification

Training details. There are three hyper-parameters required by the training of BAKE. In the loss function Eq. (2), we set the distillation loss weight λ as 1.0 and the temperature τ as 4.0. In the approximate inference function Eq. (9) of knowledge ensembling, we set the ensembling weight ω as 0.5. BAKE is not sensitive to these hyper-parameters, which will be discussed next. M is set to 1 for the per-class data sampling (see Section 3.3). If not specified, all the experiments on CNNs and Transformers are trained on 8 GPUs for 100 and 300 epochs, respectively. More details can be found at Appendix A.1.

Improvements on various architectures. As illustrated in Table 2&3, we verify the effectiveness of BAKE on multiple network architectures. We not only consider the widely-used architectures (e.g., ResNet-50), but also evaluate both the deeper/wider architectures (e.g., ResNet-152, ResNeXt-152) and the lighter architectures (e.g., MobileNet). We also evaluate on the state-of-the-art architecture, namely Swin Transformer [32]. BAKE consistently improves the “vanilla” setting (training with a cross-entropy loss) by significant margins. Most importantly, BAKE boosts the performance with only negligible computational overhead, i.e., for each training iteration of Swin-T, BAKE takes only extra +1.5% more time compared to the plain classification network.

Comparison with label regularization methods. As mentioned by [53], label smoothing regularization is an ad hoc distillation with manually designed soft targets. To indicate that the ensembled soft targets by BAKE are better...
Table 3. BAKE improves vision transformers with various scales in terms of the top-1 accuracy (%) on ImageNet. The time consumption is counted on 8 V100 GPUs.

Architecture	Input Size	Method	Vanilla	Our BAKE	GPU Time
Swin-T	224 × 224		81.3	82.0 (+0.7)	+1.5%
Swin-S	224 × 224		83.0	83.3 (+0.3)	+1.0%
Swin-B	224 × 224		83.5	83.9 (+0.4)	+0.5%
Swin-B	384 × 384		84.5	84.9 (+0.4)	+0.2%

Table 4. Comparison with state-of-the-art label regularization and self-distillation methods, both of which are based on single networks. We report the results of ResNet-50 on the ImageNet. All the methods are reproduced on our implementation with identical training settings as BAKE for fair comparisons and their performances surpass the reported results in their original papers. (*) Note that the original BAN [6] performs model ensembling during inference. However, it is unfair for other compared methods which only use a single model for testing. So we discard the test-time model ensembling here.

Method	ImageNet top-1 acc.	Extra Params
Label smoothing [44]	CVPR’16	77.2
Tf-KD_reg [53]	CVPR’20	77.5
BAN [6] (*)	ICML’18	77.4
CS-KD [56]	CVPR’20	77.0
Tf-KD_self [53]	CVPR’20	77.5
PS-KD [25]	ICCV’21	77.2
Our BAKE		78.0

Table 5. Comparison with state-of-the-art ensemble distillation methods. We report the results of ResNet-50 on the ImageNet. The results of MEAL and KDCL are from the original papers. CRD [47] and DGKD [41] did not report on ResNet-50, thus is not compared here. CRD, DGKD, MEAL and KDCL require extra networks, while BAKE does not.

Comparison with ensemble distillation methods. Our BAKE is designed following the spirit of knowledge ensembling, which aims to refine the soft targets by aggregating diverse and complementary knowledge. State-of-the-art ensemble distillation methods achieved knowledge ensembling by leveraging multiple teachers [40, 47] or multiple students [14], which are illustrated in Figure 2. We argue that our BAKE could not only save the memory and time consumption by enabling knowledge ensembling in a single network, but also generate equally robust soft targets by aggregating knowledge from a set of samples in the same mini-batch. To demonstrate it, we compare state-of-the-art MEAL [40] and KDCL [14] in Table 5. We observe that our BAKE achieves similar results by using a single network for much fewer training epochs. BAKE even beats KDCL with half of the training epochs, where KDCL requires an extra ResNet-18 for ensembling.

Comparison with label refinery methods. Recent studies on improving ImageNet classification found that the single labels are noisy as there might exist multiple objects per image. State-of-the-art ReLabel [55] method introduced to use a super-strong EfficientNet-L2 for re-labelling the ImageNet with multiple labels in the image spatial plane. However, it requires super-scale datasets (∼1K times larger than the original ImageNet dataset) and much more time and memory consumption to pre-train an annotator network first, which is inflexible and even inapplicable if we do not have such resources. Despite that direct comparison with ReLabel is actually unfair due to its much larger training set and much deeper annotator network, we are glad to find that our BAKE can surpass the ReLabel method when training for 100 epochs by using only ImageNet dataset with the ResNet-50 backbone. As the original ReLabel was trained for 300 epochs, we reproduce it with their official code to fairly compare with BAKE for 100 epochs. As shown in Table 6, ReLabel achieves 77.3% top-1 accuracy when trained for 100 epochs, showing much lower performance than our BAKE’s 78.0%. BAKE is also well compatible with external training tricks, e.g., CutMix [54]. BAKE consistently improves the baseline performance by noticeable +1.2% (77.4% → 78.6%) when trained for 100 epochs with Cut-
When trained for longer epochs (i.e., 300 epochs), ReLabel also consistently surpasses “ReLabel + CutMix” pre-trained on super-scale datasets (JFT-300M [42] or Instagram-1B [33]) for re-labelling, while BAKE does not.

Table 7. Transfer learning performances for object detection and instance segmentation on the COCO dataset [30].

Method	Epochs	Top-1 acc.	Extra Params
Vanilla	100	76.8	None
ReLabel [55]	100	77.3	EffNet-L2
Our BAKE	100	**78.0**	None
Vanilla + CutMix [54]	100	77.4	None
ReLabel [55] + CutMix [54]	100	78.4	EffNet-L2
Our BAKE + CutMix [54]	100	**78.6**	None
ReLabel [55] + CutMix [54]	300	**80.2**	EffNet-L2
Our BAKE + CutMix [54]	300	79.4	None

Table 6. Comparison with state-of-the-art label refinery method on ImageNet. We use ResNet-50 as the backbone. The results of ReLabel for 100 epochs are reproduced with the official code. ReLabel [55] requires a strong annotator network (EfficientNet-L2 [45]) pre-trained on super-scale datasets (JFT-300M [42] or Instagram-1B [33]) for re-labelling, while BAKE does not.

Mix. “BAKE + CutMix” also consistently surpasses “ReLabel + CutMix” by a +0.2% gain for 100 training epochs. When trained for longer epochs (i.e., 300 epochs), ReLabel achieves slightly better performance due to its extra knowledge from super-scale training sets and extra annotator networks. Note that our BAKE can obtain performance gains in a much more efficient and lightweight manner.

Transfer learning. Apart from performing the classification task, the models trained on ImageNet can also be well transferred to the downstream tasks by fine-tuning. To show that the ImageNet pre-trained model by BAKE could achieve better transfer learning results, we evaluate two important downstream tasks on the COCO [30] dataset. As demonstrated in Table 7, we use Faster-RCNN [37] and Mask-RCNN [16] with feature pyramid network [29] as base models for object detection and instance segmentation, respectively. The baseline results are achieved by fine-tuning the model pre-trained with the “vanilla” backbone. We observe that the model pre-trained by BAKE could consistently improve the baseline results by 0.5% ~ 0.8% in terms of mAP.

Robustness testing. Our BAKE does not only improve image classification, but also improves the classification robustness on much harder test sets with either common perturbations or adversarial perturbations. ImageNet-A [20] contains difficult testing images sampled from the failure cases of modern classifiers. ImageNet-C [19] consists of 19 different corruptions and perturbations, e.g., blurring, fogging. AutoAttack [4] ensembles diverse parameter-free attacks. As indicated in Table 9, BAKE successfully improves the robustness of the trained models against various perturbations. FGSM [12] imposes one-step adversarial perturbations on the input image with a weight of ϵ. As shown in Figure 3, at $\epsilon = 16$, BAKE significantly improves ResNet-50’s accuracy from 17.4% to 29.5% though the model is not optimized for adversarial robustness.

Ablation studies on per-class data sampling. As described in Section 3.3, we adopt a per-class data sampling strategy to ensure that the sample affinities are not uniformly low in a mini-batch. We would like to claim that (1) The per-class data sampling strategy is critical to the success of BAKE. BAKE would fail when a conventional random sampling scheme is used. (2) The gains of BAKE derive from the refined soft targets by ensemble knowledge rather than the data sampling strategies.

To demonstrate our first claim, we conduct experiments when removing the proposed per-class sampling strategy. As shown in Table 10, we use “$M = 0$” to indicate the conventional random sampling without per-class selection, and we observe that BAKE hardly improves the baseline performances. When adopting the introduced per-class sampling with $M = 1$ or $M = 3$, BAKE stably boosts the baseline results by up to +1.8% gains. As BAKE achieves similar improvements when $M > 0$, we set M as 1 for brevity.

To further verify the second claim, we evaluate “vanilla” when using different values of M. From Table 10, we observe that the performance of “vanilla” settings would decrease when using $M > 0$, indicating that the per-class sampling would even hurt the model training if not used with BAKE. The reason might be that the per-class data sampling actually decreases the data variations within each batch. As the “vanilla” experiment achieves the optimal performance when $M = 0$, we do not use the per-class sampling for all the “vanilla” experiments throughout the paper.
Table 8. Top-1 error rates (lower is better) on multiple image classification and fine-grained classification tasks. The performances of state-of-the-art single-network methods (i.e., label regularization methods and self-distillation methods) are reported for comparison. All the experiments are run for three times with different random seeds.

Architecture	Method	CIFAR-100 [26]	TinyImageNet	CUB-200-2011 [49]	Stanford Dogs [24]	MIT67 [35]	
ResNet-18	Vanilla	24.71±0.24	43.53±0.19	46.00±1.43	36.29±0.32	44.75±0.80	
	Label smoothing [44]	CVPR’16	22.69±0.28	43.09±0.34	42.99±0.99	35.30±0.66	44.40±0.71
	DDGSD [52]	AAAI’19	23.85±1.57	41.48±0.12	41.17±1.28	31.53±0.54	41.17±2.46
	BYOT [58]	ICCV’19	23.81±0.11	44.02±0.57	40.70±0.39	34.02±0.14	44.88±0.46
	CS-KD [56]	CVPR’20	21.99±0.13	41.62±0.38	33.28±0.99	30.85±0.28	40.45±0.45
	Our BAKE	21.28±0.15	41.71±0.21	29.74±0.70	30.20±0.11	39.95±0.20	
DenseNet-121	Vanilla	22.23±0.04	39.22±0.27	42.30±0.44	33.39±0.17	41.79±0.19	
	Label smoothing [44]	CVPR’16	21.88±0.45	38.75±0.18	40.63±0.24	31.39±0.46	42.24±1.23
	CS-KD [56]	CVPR’20	21.69±0.49	37.96±0.09	30.83±0.39	27.81±0.13	40.02±0.91
	Our BAKE	20.74±0.19	37.07±0.24	28.79±1.30	27.66±0.05	39.15±0.37	

Table 9. Robustness on ImageNet-A [20], ImageNet-C [19] and AutoAttack (Linf-norm, \(\epsilon = 4/255 \)) [4] test sets. Note that mCE is the weighted average of top-1 error rates with different corruptions (lower is better).

Method	\(M \)	\(N \)	# Batch	ImageNet top-1 acc.
ResNet-50	0	256	256	76.8
+ Our BAKE	0	256	256	76.8 (±0.0)
ResNet-50	1	256	512	76.3
+ Our BAKE	1	256	512	78.0 (±1.7)
ResNet-50	3	256	1024	76.1
+ Our BAKE	3	256	1024	77.9 (±1.8)

Table 10. Ablation studies on the value of \(M \) in the per-class data sampling scheme, where batch_size = \(N \times (M + 1) \).

Table 11. Ablation studies on the value of the ensembling weight \(\omega \) in Eq. (9). We report the results of ResNet-50 on the ImageNet.

Ablation studies on the ensembling weight \(\omega \). The ensembling weight \(\omega \in [0, 1] \) is adopted to weigh the original knowledge of the anchor sample and the propagated knowledge of other samples within the same batch, as formulated in Eq. (9). The refined soft targets \(Q_\omega^T \) ensemble more knowledge from the other samples as \(\omega \) gets larger. As shown in Table 11, when \(\omega \) approaches 0, the soft targets is equal to the vanilla predictions of the anchor sample, \(i.e., Q_\omega^T = P^* \), the distillation loss then becomes useless. When \(\omega \) approaches 1, the soft targets are totally produced with propagated knowledge from the other samples in the same mini-batch. To avoid the soft targets becoming all zeros after propagating infinite iterations, we adopt only one iteration for \(\omega = 1 \). The performance of BAKE is robust when changing the value of \(\omega \) within a large interval of \([0.1, 1.0]\).

4.3. Small-scale Dataset Classification

Training details. We adopt almost the same settings as those used for training the ImageNet. We use \(\lambda = 1.0 \) and \(\tau = 4.0 \) for Eq. (2). The ensembling weight \(\omega \) (Eq. (9)) is chosen from \([0.5, 0.9]\), according to the results in Table 11. \(M \) is chosen from \([1, 3]\), according to the results in Table 10. All the experiments are trained with only 1 GPU. More details can be found at Appendix A.1.

Improvements on various architectures and datasets. As shown in Table 8, we study the effectiveness of BAKE with a lightweight ResNet-18 and a deep DenseNet-121 on multiple classification datasets. BAKE consistently improves the baseline results ("vanilla") by significant margins, \(e.g., \) on the fine-grained dataset CUB-200-2011, BAKE boosts the baseline by 16.26% with ResNet-18. Also, on the widely-used CIFAR-100 dataset, the performance of ResNet-18 is improved by 3.43% by BAKE.

Comparison with self-distillation methods. Following the benchmark used by [56], we compare with state-of-the-art self-distillation methods, DDGSD [52], BYOT [58] and CS-KD [56]. BAKE stably surpasses all the methods except for the experiments of ResNet-18 on TinyImageNet, which shows a slight drop from DDGSD [52]. The positive results of BAKE are enough to demonstrate its effectiveness and superiority over existing self-distillation methods.

5. Limitations and Conclusions

In this work, we introduce a novel batch knowledge ensembling method, dubbed BAKE, to produce refined soft targets for self-distillation. BAKE improves the image classification performance with minimal computational and...
BAKE does not work if the samples in a mini-batch are totally dissimilar to each other, so we introduce a per-class data sampler to solve this problem. However, the data sampler would increase the CPU time when the training dataset is large-scale since it needs to reorganize the data loader before each epoch.

A. Appendix

A.1. Implementation Details

Dataset statistic. We evaluate our BAKE on six datasets, as demonstrated in Table 12. The large-scale ImageNet [5], CIFAR-100 [26] and TinyImageNet are for conventional image classification, while CUB-200-2011 [49], Stanford Dogs [24] and MIT67 [35] focus on fine-grained image classification tasks.

Dataset	# classes	# train images	# val images
ImageNet [5]	1,000	1,281,167	50,000
CIFAR-100 [26]	100	50,000	10,000
TinyImageNet	200	100,000	10,000
CUB-200-2011 [49]	200	5,994	5,794
Stanford Dogs [24]	120	12,000	8,580
MIT67 [35]	67	5,360	1,340

Table 12. Statistics of the datasets used for training and evaluation.

Training details on ImageNet. We implement our BAKE on top of the open-source codebase§ for CNN architectures, and follow most of the training settings of [36]. Specifically, we use SGD as our optimizer with a momentum of 0.9. We use standard augmentation techniques including random cropping, flipping, and lighting noise. All the images are resized to 224×224 for training and 256×256 for validation. The batch size is set to 512, i.e., $N = 256$ for the initial random sampling and $M = 1$ for the per-class data sampling. The base learning rate is set as 0.05 for MobileNet, 0.2 for the family of ResNets and 0.4 for EfficientNet. The initial learning rate is calculated via $\text{lr} = \text{base lr} \times \text{batch size} / 256$. We use cosine schedule with 5-epoch warm-up as the learning rate policy. All the experiments on CNNs are trained for 100 epochs on 8 GPUs if not specified. When integrating BAKE into Swin Transformer [32], we follow their original training protocols but use our proposed batch formulation, i.e., all the models are trained for 300 epochs with a batch size of 1024 ($N = 512$, $M = 1$) on 8 GPUs.

Table 13. Ablation studies on the value of the temperature τ and the value of the weighting factor λ in Eq. (2). We report the results of ResNet-50 on the ImageNet.

Training details on small-scale datasets. The experiments are implemented on top of the open-source code§. Specifically, we use SGD as our optimizer with a momentum of 0.9. The batch size is set to 128 for CIFAR-100 and TinyImageNet, and set to 32 for the fine-grained classification datasets. The initial learning rate is set to 0.1 and is decreased to 1/10 of its previous value at the 100-th and 150-th epoch in the overall 200 training epochs.

A.2. Additional Ablation Studies

Ablation studies on the temperature τ. The temperature τ is adopted to scale the predicted logits and the soft targets in the distillation loss (Eq. (2)). A higher value of τ leads to a smoother probability distribution over classes. As illustrated in Table 13, we study the effects of the temperature value on BAKE by changing τ from 1.0 to 8.0. We observe that BAKE is not sensitive to the temperature and achieves robust results.

Ablation studies on the weighting factor λ. λ is adopted to balance the cross-entropy loss and the knowledge distillation term in Eq. (2), which is normally set to 1.0 for brevity. We are interested in how much it affects the final performance. As demonstrated in Table 13, the performance is consistent when changing λ from 1.0 to 3.0, and is robust in the interval of [0.5, 4.0].

Ablation studies on the ensembled “knowledge”. To properly model the knowledge carried by the samples, we use their predictions P^T (as shown in Eq. (9)) output by the current network. To verify that the predictions are more informative than the manually annotated ground-truth labels Y, we conduct an experiment by replacing the soft P^T with one-hot Y in Eq. (9). As demonstrated in Table 14, we observe -0.4% inferior to the original version of BAKE in terms of top-1 accuracy, showing the superiority of knowledge carried by the model predictions.

Ablation studies on the batch knowledge ensembling iterations. We adopt approximate inference to estimate the
Table 14. Ablation studies on the ensembled knowledge. We report the results of ResNet-50 on the ImageNet.

Sample Knowledge	ImageNet top-1 acc.
Model Predictions P^r	78.0
Ground-truth Labels Y	77.6

Figure 4. Our BAKE achieves more robust results when ensembling batch knowledge for infinite iterations. The results are reported based on ResNet-50.

soft targets for infinite ensembling iterations. To indicate that infinite iterations achieve better learning targets than a single iteration, we conduct experiments as shown in Figure 4. Specifically, “BAKE with $Q^r(\infty)$” produces soft targets via approximate inference for infinite iterations (Eq. (9)) and “BAKE with Q^r” adopts only one iteration for ensembling (Eq. (6)). We can observe that “BAKE with $Q^r(\infty)$” achieves more robust results than “BAKE with Q^r” when changing the ensembling weight ω from 0.1 to 0.9.

Ablation studies on BN for distributed training. We adopt the per-class data sampler when training BAKE, as introduced in Section 3.3. We find that the usage of BN is critical to final performance when employing distributed training, since the per-class data sampler decreases the data variations within each mini-batch on a single GPU. As demonstrated in Table 15, sync BN and shuffling BN [15] both work for the per-class data sampler, while using normal BN achieves even worse performance than the baseline result (76.8%). We choose sync BN in our paper due to its more efficiency. Using normal BN or sync BN achieves similar performance ($\pm 0.1\%$) when training the baseline without per-class data sampling, indicating that the gains of BAKE comes from the knowledge ensembling rather than the sync/shuffling BN. Note that experiments using the per-class data sampling throughout the paper adopt sync BN during training.

A.3. Additional Discussions

Compare with random walk. [2, 61] propose to use random walk to aggregate predictions, where the technique is similar to our batch knowledge ensembling. However, they use the original hard labels for supervision, still facing the problem of some incorrect one-hot labels. In contrast, BAKE aggregates predictions to create soft targets for better distillation. We tested the random walk method on CIFAR-100, CUB-200-2011, as shown in Table 16, showing much worse performance than BAKE.

Table 15. Ablation studies on the usage of BN when employing distributed training. We report the results of ResNet-50 on the ImageNet.

Method	Type of BN	ImageNet top-1 acc.
Vanilla	Normal BN	76.8
Sync BN		76.7
Our BAKE	Sync BN	74.7
	Shuffling BN [15]	78.0
		78.1

Table 16. Comparison with random walk. The results of ResNet-18 are reported in terms of top-1 error rates (lower is better).

Method	CIFAR-100	CUB-200-2011
Vanilla	24.71	46.00
Random Walk	24.25	42.51
Our BAKE	21.28	29.74

A.4. Visualization

Examples of soft targets. We illustrate the examples of soft targets produced by BAKE in Figure 6. We sample the images from three different batches, where the cross-sample knowledge propagation and ensembling are performed in each mini-batch. There are 512 images included in each batch, and we randomly select four of them for illustration. We present their ground-truth labels as well as the soft labels generated by BAKE. The soft label is a 1000-dim probability vector (1000 classes for ImageNet), and we only show the probabilities of top-3 classes for brevity. It can be observed that the soft targets produced by BAKE provide more informative and complete training supervisions than the manual annotations.

Soft targets with varying ω. As illustrated in Figure 5, labels become smoother with a larger value of ω.

Figure 5. The illustration of soft targets with varying ω. The images are sampled from ImageNet [5]. “GT” denotes the manually annotated ground-truth labels.
Figure 6. We sample three tuples of images (four images in each tuple) from three batches to show the soft targets produced by BAKE. The images are sampled from ImageNet [5]. “GT” denotes the manually annotated ground-truth labels. The knowledge of samples from the same batch is propagated and ensembled to form a better soft learning target for each sample in the batch. Note that only the top-3 classes of soft targets with the highest probabilities are illustrated for brevity.

References

[1] Hessam Bagherinezhad, Maxwell Horton, Mohammad Rastegari, and Ali Farhadi. Label refinery: Improving imagenet classification through label progression. arXiv preprint arXiv:1805.02641, 2018. 1, 2, 3
[2] Gedas Bertasius, Lorenzo Torresani, Stella X Yu, and Jianbo Shi. Convolutional random walk networks for semantic image segmentation. In CVPR, pages 858–866, 2017. 10
[3] Lucas Beyer, Olivier J Hénaff, Alexander Kolesnikov, Xiaohua Zhai, and Airon van den Oord. Are we done with imagenet? arXiv preprint arXiv:2006.07159, 2020. 1, 2, 3
[4] Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks. pages 2206–2216. PMLR, 2020. 7, 8
[5] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image database. In CVPR, pages 248–255. Ieee, 2009. 1, 2, 3, 5, 9, 10, 11
[6] Tommaso Furlanello, Zachary Lipton, Michael Tschantzen, Laurent Itti, and Anima Anandkumar. Born again neural networks. pages 1607–1616. 2018. 1, 2, 6
[7] Yixiao Ge, Dapeng Chen, and Hongsheng Li. Mutual mean-teaching: Pseudo label refinery for unsupervised domain adaptation on person re-identification. In ICLR. 2020. 1
[8] Yixiao Ge, Zhuowen Li, Haiyu Zhao, Guojun Yin, Shuai Yi, Xiaogang Wang, and Hongsheng Li. Fd-gan: Pose-guided feature distilling gan for robust person re-identification. In NeurIPS, pages 1229–1240, 2018. 1
[9] Yixiao Ge, Haibo Wang, Feng Zhu, Rui Zhao, and Hongsheng Li. Self-supervising fine-grained region similarities for large-scale image localization. In ECCV, 2020. 1
[10] Yixiao Ge, Feng Zhu, Dapeng Chen, Rui Zhao, and Hongsheng Li. Self-paced contrastive learning with hybrid memory for domain adaptive object re-id. In NeurIPS, 2020. 1
[11] Yixiao Ge, Feng Zhu, Rui Zhao, and Hongsheng Li. Structured domain adaptation with online relation regularization for unsupervised person re-id, 2020. 1
[12] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572, 2014. 2, 7
[13] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Ghaslaghi Azar, Bilal Piot, koray kavukcuoglu, Remi Munos, and Michal Valko. Bootstrap your own latent - a new approach to self-supervised learning. In NeurIPS, volume 33, pages 21271–21284, 2020. 2, 3
[14] Qiushan Guo, Xinjiang Wang, Yichao Wu, Zhipeng Yu, Ding Liang, Xiaolin Hu, and Ping Luo. Online knowledge distillation via collaborative learning. In CVPR, pages 11020–11029, 2020. 1, 2, 3, 4, 5, 6
[15] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for unsupervised visual representation learning. In CVPR, pages 9729–9738, 2020. 2, 3, 10
[16] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In ICCV, pages 2961–2969, 2017. 1, 2, 7
[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In CVPR, pages 770–778, 2016. 1, 2, 5
[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual networks. In ECCV, pages 630–645. Springer, 2016. 5
[19] Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common corruptions and perturbations. ICLR, 2019. 2, 7, 8
[20] Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. Natural adversarial examples. 2021. 2, 7, 8
genet: from single to multi-labels, from global to localized labels. In CVPR, 2021. 1, 2, 3, 6, 7

[56] Sukmin Yun, Jongjin Park, Kimin Lee, and Jinwoo Shin. Regularizing class-wise predictions via self-knowledge distillation. In CVPR, pages 13876–13885, 2020. 1, 2, 5, 6, 8

[57] Hang Zhang, Chongruo Wu, Zhongyue Zhang, Yi Zhu, Zhi Zhang, Haibin Lin, Yue Sun, Tong He, Jonas Muller, R. Manmatha, Mu Li, and Alexander Smola. Resnest: Split-attention networks. arXiv preprint arXiv:2004.08955, 2020. 1, 5

[58] Linfeng Zhang, Jiebo Song, Anni Gao, Jingwei Chen, Chenglong Bao, and Kaisheng Ma. Be your own teacher: Improve the performance of convolutional neural networks via self distillation. In ICCV, pages 3713–3722, 2019. 1, 2, 8

[59] Ying Zhang, Tao Xiang, Timothy M Hospedales, and Huchuan Lu. Deep mutual learning. In CVPR, pages 4320–4328, 2018. 2

[60] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia. Pyramid scene parsing network. In CVPR, pages 2881–2890, 2017. 1

[61] Dengyong Zhou, Olivier Bousquet, Thomas Lal, Jason Weston, and Bernhard Schölkopf. Learning with local and global consistency. NeurIPS, 16, 2003. 10

[62] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation using cycle-consistent adversarial networkss. In ICCV, 2017. 1