From Genetic Risk Awareness to Overt Type 1 Diabetes: Parental Stress in a Placebo-Controlled Prevention Trial

Eszter Goldstein, MD1,2, Robert Hermann, MD, PHD1,3, Timo J. Renfors, PHD4,5, Kirsti M. Näntö-Salonen, MD, PHD1, Tapio Korhonen, PHD5, Maarit Kärkkäinen, MHS6,7, Riitta K. Veijola, MD, PHD8, Mikael Knip, MD, PHD9,10, Tuula T. Simell, PHD1, Olli G. Simell, MD, PHD1

1Department of Pediatrics, University of Turku, Turku, Finland
2Department of Psychiatry, Healthcare Center, Pécs, Hungary
3CellScreen Applied Biomedical Research Center, Budapest, Hungary
4Department of Psychology, University of Joensuu, Joensuu, Finland
5North Karelia Center for Public Health, Joensuu, Finland
6Department of Psychology, University of Turku, Turku, Finland
7Stadia Helsinki Polytechnic, Helsinki, Finland
8Department of Pediatrics, University of Oulu, Oulu, Finland
9Hospital for Children and Adolescents and Folkhälsan Research Center, University of Helsinki, Helsinki, Finland
10Department of Pediatrics, Tampere University Hospital, Tampere, Finland

Corresponding author:
Kirsti M. Näntö-Salonen, MD, PHD
Email: kirsti.nanto-salonen@tyks.fi

Clinical Trial Registry No.: NCT00223613; http://www.clinicaltrials.gov

Submitted 4 March 2009 and accepted 4 September 2009.
Objective - To evaluate the psychological burden of parents facing increasing risk of type 1 diabetes in their children.

Research design and methods - In the population-based Type 1 Diabetes Prediction and Prevention study (DIPP), newborn infants with HLA-DQB1-conferred diabetes risk were enrolled in sequential analyses of diabetes-associated autoantibodies. Those persistently positive for at least two autoantibodies were recruited to a randomized double-blinded intervention trial. The experience of stress in parents of 664 children was measured using Parenting Stress Index self-report inventory.

Results – While diagnosis of diabetes increased parental stress, the appearance of autoantibodies or participation in the intervention trial did not. Mothers had higher stress levels than fathers. Single parenthood and chronically ill family members increased parental stress.

Conclusions – Parental stress was not increased by notification of autoantibody positivity or by participation in an intervention trial. Other demanding family conditions contributed to the experience of stress.
Natural history and prevention studies screening genetic risk for type 1 diabetes have raised concerns of the burden of risk awareness in asymptomatic individuals, most of whom will never develop the disease (1,2).

RESEARCH DESIGN AND METHODS

Study subjects. The population-based DIPP study screened neonates for HLA-DQB1-conferred diabetes risk, enrolling children at risk in sequential monitoring for diabetes-associated autoantibodies. Children permanently positive for multiple autoantibodies were invited to a randomized double-blinded prevention trial comparing intranasal insulin with placebo (3). Parents of 1125 participants received a self-administered questionnaire (see below). 1204 questionnaires (59%) were returned by parents of 664 children. 457 children showed genetic predisposition only, while 188 had diabetes-associated autoantibodies and 19 had progressed to diabetes. The time from notification of autoantibody positivity ranged from 0.5 to 6.7 years (mean 2.9 years).

Thirty-five parents had a child diagnosed with diabetes, and 326 a child with diabetes-associated autoantibodies only. 18 parents of a child with diabetes (51.4%) and 84 parents of an autoantibody-positive child (25.8%) had enrolled their child in the prevention trial. 69 parents had a child eligible for the trial but had chosen not to participate, while the children of 173 parents had tested only transiently positive for one autoantibody species. 843 control parents, whose child had not developed autoantibodies, were matched with the parents of children with diabetes (n=197) or autoantibodies (n=646) for parental age, child’s age and study site. Age, employment, marital status, place of living and chronic illness in the family were recorded.

Measurement of parenting stress. Eleven questions focusing on parenting stress were selected from the 34-item Swedish version (4) of the Parenting Stress Index self-report inventory (5), and modified to this scale with a four-factor construction. An index describing “parental stress” was calculated from the mean of the scores. Four additional factors, relationship with spouse, sense of competence of parenthood, social life and privacy, were assessed (scale 1-7 from worst to best).

Statistical analyses. Scores were compared using independent samples’ T-test. The associations between parental stress, time from notification of the autoantibody result and duration of the study were examined using linear regression analysis. Association between group and categorical variables in the epidemiological data were tested with chi-square statistics. The effect of epidemiological variables was analyzed with regression and univariate analysis of variance. The SPSS for Windows release 11.0 software (SPSS, Chicago, IL) was used.

RESULTS

Sociodemographic characteristics. The parent groups were closely similar. Most lived in couples; however, more parents in the autoantibody-positive group than the controls lived alone (7.7% vs. 4.2%, P=0.03). The proportion of chronically ill adults was higher in the autoantibody-positive group than in controls (23.9% vs. 16.5%, P=0.007); also unemployment
rate tended to be higher. Similar trends were seen in the diabetes group.

**Parenting stress.** Stress indexes were similar in parents of antibody-positive children and control parents. Fathers experienced less stress than mothers (Table 1), considered parenthood easier (P=0.008) and had more time for private life than mothers (P<0.0001; data not shown). Control parents showed similar gender difference. Transient autoantibody positivity or the presence of multiple permanent autoantibodies in the child did not alter parental stress level. Of note, parental stress was similar whether or not the child participated in the prevention trial. There was no difference between parents of trial participants and parents who chose not to enroll an eligible child (Table 1).

Parents whose child had developed diabetes showed higher stress than controls (Table 1). They also considered child care and parenthood more difficult (P=0.032; data not shown) and regarded parents’ responsibilities more demanding and social relations more difficult. They had more marital problems and more distant relation with their spouse than the controls (P=0.013). The answers of the mothers and fathers were similar.

Parental stress decreased with duration of the follow-up (r=0.142, P=0.01). Single parents had higher stress than couples. Urban environment, unemployment and chronic illness in the family were associated with higher stress. Parental stress increased with maternal age (r= -0.115, P=0.039) but not with paternal age.

**CONCLUSIONS**

Parental stress was not increased when the family learned that their child had progressed to autoantibody positivity, or during the prevention trial. At enrolment, the implication was that although the 2-8% genetic risk was greater than the 0.7% in the background population, the odds were still strongly against a particular child to develop diabetes. Multiple autoantibodies increased the risk to more than 50%. The prevention trial presented a choice of taking an action with potentially beneficial consequences, or leaving the child without this option. The urge to do something to prevent diabetes is strong (6), and parents may see an intervention trial either as an opportunity to actively interfere in the course of events, or a daily reminder of the risk.

Parental anxiety is not significantly elevated in screening programs for type 1 diabetes risk and further dissipates over time (7,8,9,10). We did not observe the temporary increase in anxiety after notification of positive autoantibody results reported in some other studies (11). In agreement with the experiences in the DPT-1 study (11,12), even the long-term randomized prevention trial did not increase parental stress. In the ethnically homogeneous and well-educated Finnish population, the problems involved are probably smaller than in many other countries.

Mothers had higher stress than fathers, regarded parenthood as more demanding and needed more social support. This may reflect traditional parental roles or a differential effect of risk awareness. Unrelated life experiences like single parenthood and chronic illness in the family increased the stress, and may call for special attention.

Stress and early negative life events may associate with increased risk of chronic diseases, including type 1 diabetes (13,14,15). The association
between the development of autoimmunity and potentially stressful life circumstances (Table 1) supports this theory.

In conclusion, in a large population-based cohort of children at increased genetic risk for type 1 diabetes, parental stress was not increased by notification of autoantibody positivity or participation in the double-blinded prevention trial. The burden of risk awareness can be minimized by proper study setup.

ACKNOWLEDGEMENTS

We thank Lauri Sillanmäki, Stud. Soc. Sci., University of Turku, Turku, Finland, for his help in planning the statistical analyses of the data. This work was supported by grants from the Juvenile Diabetes Research Foundation International (4-1998-274, 4-1999-731, 4-2001-435), European Union (grant BMH4-CT98-3314); Novo Nordisk Foundation; Academy of Finland (grant 68292); Special Research Funds for University Hospitals in Finland; Finnish Office for Health Technology Assessment, Finland; Diabetes Research Foundation, Finland; Foundation for Pediatric Research, Finland; and Emil Aaltonen Foundation, Jalmari and Rauha Ahokas Foundation, Signe and Ane Gyllenberg Foundation, Yrjö Jahnsson Foundation, Sigrid Juselius Foundation, Päiviikki and Sakari Sohlberg Foundation and the Research foundation of Orion corporation, Finland. We thank the dedicated personnel of the DIPP study in Turku, Oulu and Tampere. The essential contribution of the study children and their families is cordially acknowledged.

Disclosure. None of the authors have any conflicts of interest.
REFERENCES

1. Ross LF: Minimizing risks: The ethics of predictive diabetes mellitus screening research in newborns. Arch Pediatr Adolesc Med. 157:89-95, 2003
2. Roth R: Psychological and ethical aspects of prevention trials. J Pediatr Endocrinol Metab. 14 Suppl 1:669-674, 2001
3. Nanto-Salonen K, Kupila A, Simell S, Siljander H, Salonsaari T, Hekkala A, Korhonen S, Erkkola R, Sipila JI, Haavisto L, Siltala M, Tuominen J, Hakalax J, Hyoty H, Ilonen J, Veijola R, Simell T, Kip M, Simell O: Nasal insulin to prevent type 1 diabetes in children with HLA genotypes and autoantibodies conferring increased risk of disease: A double-blind, randomised controlled trial. Lancet. 372:1746-1755, 2008
4. Ostberg M: Parental stress, psychosocial problems and responsiveness in help-seeking parents with small (2-45 months old) children. Acta Paediatr. 87:69-76, 1998
5. Abidin RR: Parenting stress index: Professional manual. Odessa, FL, Psychological Assessment Resources, 1995
6. Baughcum AE, Johnson SB, Carmichael SK, Lewin AB, She JX, Schatz DA: Maternal efforts to prevent type 1 diabetes in at-risk children. Diabetes Care. 28:916-921, 2005
7. Bennett Johnson S, Baughcum AE, Carmichael SK, She JX, Schatz DA: Maternal anxiety associated with newborn genetic screening for type 1 diabetes. Diabetes Care. 27:392-397, 2004
8. Simonen P, Korhonen T, Simell T, Keskinen P, Karkkainen M, Knip M, Ilonen J, Simell O: Parental reactions to information about increased genetic risk of type 1 diabetes mellitus in infants. Arch Pediatr Adolesc Med. 160:1131-1136, 2006
9. Bennett Johnson S, Tercyak KP, Jr: Psychological impact of islet cell antibody screening for IDDM on children, adults, and their family members. Diabetes Care. 18:1370-1372, 1995
10. Hummel M, Ziegler AG, Roth R: Psychological impact of childhood islet autoantibody testing in families participating in the BABYDIAB study. Diabet Med. 21:324-328, 2004
11. Johnson SB, Baughcum AE, Hood K, Rafkin-Mervis LE, Schatz DA, DPT-1 Study Group: Participant and parent experiences in the parenteral insulin arm of the diabetes prevention trial for type 1 diabetes. Diabetes Care. 30:2193-2198, 2007
12. Johnson SB, Baughcum AE, Rafkin-Mervis LE, Schatz DA, DPT-1 Study Group: Participant and parent experiences in the oral insulin study of the diabetes prevention trial for type 1 diabetes. Pediatr Diabetes, 2008 Sep 24 e-pub ahead of print.
13. Russek LG, Schwartz GE, Bell IR, Baldwin CM: Positive perceptions of parental caring are associated with reduced psychiatric and somatic symptoms. Psychosom Med. 60:654-657, 1998
14. Karavanaki K, Tsoka E, Liacopoulou M, Karayianni C, Petrou V, Pippidou E, Brisimitzi M, Mavrikiou M, Kakleas K, Dacou-Voutetakis C: Psychological stress as a factor potentially contributing to the pathogenesis of type 1 diabetes mellitus. J Endocrinol Invest. 31:406-415, 2008
15. Sepa A, Frodi A, Ludvigsson J: Could parenting stress and lack of support/confidence function as mediating mechanisms between certain environmental factors and the development of autoimmunity in children?: A study within ABIS. Ann N Y Acad Sci. 958:431-435, 2002
### Table 1. Parental stress expressed as parental stress index, lower scores indicating higher stress level. P values are given for statistically significant differences.

| Parental stress index | Parents of an autoantibody-positive child | Parents of a child with diabetes |
|-----------------------|--------------------------------------------|----------------------------------|
|                       | mean  | SE   | P     | mean  | SE   | P     |
| Autoantibody-positive child | 4.50  | 0.05 |       | Child with diabetes | 4.18  | 0.12  | 0.005 |
| Control               | 4.52  | 0.03 |       | Control          | 4.56  | 0.05 |       |
| Mothers               | 4.64  | 0.07 | 0.005 | Mothers          | 4.09  | 0.07 |       |
| Fathers               | 4.38  | 0.06 |       | Fathers          | 4.29  | 0.06 |       |
| Transient autoantibodies | 4.50  | 0.06 |       |                  |       |       |       |
| Multiple permanent    | 4.49  | 0.07 |       |                  |       |       |       |
| Participated in intervention | 4.48  | 0.10 |       | Participated in intervention | 4.16 |       |       |
| Eligible, did not participate | 4.51  | 0.11 |       | Eligible, did not participate | 4.21 |       |       |
| Living alone          | 3.95  | 0.18 | 0.001 | Living alone    | 3.25  | 0.43  | 0.012 |
| Living as couples     | 4.55  | 0.05 |       | Living as couples |       |       |       |
| Chronic illness in family | 4.26  | 0.11 | 0.001 | Chronic illness in family | 3.73  | 0.29  | 0.03 |
| No chronic illness    | 4.58  | 0.05 |       | No chronic illness | 4.32  | 0.11 |       |
| Unemployment          | 4.45  | 0.13 |       | Unemployment     | 3.97  | 0.37 |       |
| No unemployment       | 4.61  | 0.06 |       | No unemployment  | 4.68  | 0.10 |       |
| Urban environment     | 4.42  | 0.06 | 0.027 | Urban environment | 4.09  | 0.15 |       |
| Rural environment     | 4.64  | 0.05 |       | Rural environment | 4.34  | 0.21 |       |