Asymptotic behavior of solutions toward the constant state to the Cauchy problem for the non-viscous diffusive dispersive conservation law

Natsumi Yoshida

Abstract
In this paper, we investigate the asymptotic behavior of solutions to the Cauchy problem for the scalar non-viscous diffusive dispersive conservation laws where the far field states are prescribed. We proved that the solution of the Cauchy problem tends toward the constant state as time goes to infinity.

Keywords: diffusive dispersive conservation laws, non-viscous diffusive flux, convex flux, asymptotic behavior, constant state
AMS subject classifications: 35K55, 35B40, 35L65

1. Introduction and main theorems

In this paper, we consider the asymptotic behavior of solutions to the Cauchy problem for a one-dimensional scalar diffusive dispersive conservation laws without viscous flux

\[
\begin{aligned}
\partial_t u + \partial_x \left(f(u) + \delta \partial_x^2 u + \nu \partial_x^3 u \right) &= 0 \quad (t > 0, x \in \mathbb{R}), \\
u(0, x) &= u_0(x) \to \bar{u} \quad (x \to \pm \infty),
\end{aligned}
\]

where, \(u = u(t, x) \) is the unknown function of \(t > 0 \) and \(x \in \mathbb{R} \), the so-called conserved quantity, \(\bar{u} \in \mathbb{R} \) is the constant state,

\[
f(u) + \delta \partial_x^2 u + \nu \partial_x^3 u \quad (\delta \in \mathbb{R}, \nu \geq 0)
\]
is the total flux (that is, the functions \(f(u), \delta \partial_x^2 u \) and \(\nu \partial_x^3 u \) stand for the convective flux, dispersive one and diffusive one, respectively), \(u_0 \) is the initial data, and \(u_{\pm} \in \mathbb{R} \) are the prescribed far field states. We suppose that \(f \) is
a smooth function. It is noted that, the equation in the problem (1.1) is the non-viscous case ($\mu = 0$) for the following equation:

$$\partial_t u + \partial_x \left(f(u) - \mu \partial_x u + \delta \partial_x^2 u + \nu \partial_x^3 u \right) = 0,$$

(1.2)

where $\mu \partial_x u$ is viscous/diffusive flux (μ is the so-called viscous coefficient or anti-diffusion coefficient). It should be noted that, in the case $\mu > 0$, $\delta = 0$, $\nu = 0$, (1.2) becomes the viscous conservation law/generalized viscous Burgers equation, in the case $\mu = 0$, $\delta \in \mathbb{R}$, $\nu = 0$, the one does the Korteweg-de Vries equation as one of the dispersive conservation laws, in the case $\mu > 0$, $\delta \in \mathbb{R}$, $\nu > 0$, the one does the generalized Korteweg-de Vries-Burgers equation, in the case $\mu > 0$, $\delta \in \mathbb{R}$, $\nu > 0$, the one does the generalized Korteweg-de Vries-Burgers-Kuramoto equation or the derivative form of the Kuramoto-Sivashinsky equation. We also note that the Korteweg-de Vries equation can be categorized as dispersive conservation laws, and the Korteweg-de Vries-Burgers equation and the Korteweg-de Vries-Burgers-Kuramoto equation or the derivative form of the Kuramoto-Sivashinsky equation the diffusive dispersive conservation laws.

There have been known the various of the stability results concerning with the conservation laws (see [1], [3], [7], [9], [10], [11], [13], [14], [15], [17], [19], [21], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33], [34], [35], [36], [37], [38], [39], [41], [42], and so on, cf. [4], [5], [6], [12], [16], [18], [20], [22], [23], [32], [33]). In particular, for the Cauchy problem of (1.2), Duan-Fan-Kim-Xie [8], Ruan-Gao-Chen [31], showed some stabilities of the rarefaction waves and Yoshida [40] showed the global stabilities of the constant state and the rarefaction wave. However, the any stabilities have not yet been known for more difficult non-viscous case, (1.1).

Our main theorem is stated as follows.

Theorem 1.1 (Main Theorem). Assume the convective flux $f \in C^2(\mathbb{R})$ satisfy

$$|f''(u)| \leq O(1) \left(1 + |u|^q \right) \quad (0 \leq q \leq 5)$$

(1.3)

and the initial data satisfy $u_0 - \tilde{u} \in L^2$ and $\partial_x u_0 \in H^1$. Then the Cauchy problem (1.1) has a unique global in time solution u satisfying

$$\left\{ \begin{array}{l}
u - \tilde{u} \in C^0([0, \infty); H^2), \\
\partial_x^2 u \in L^2(0, \infty; H^2),
\end{array} \right.$$

and the asymptotic behavior

$$\lim_{t \to \infty} \left(\sup_{x \in \mathbb{R}} |u(t, x) - \tilde{u}| + \sup_{x \in \mathbb{R}} |\partial_x u(t, x)| \right) = 0.$$

The proofs of Theorem 1.1 is given by a technical energy method.

This paper is organized as follows. In Section 2, We reformulate the problem in terms of the deviation from the asymptotic state. In order to show the
asymptotics, we establish the \textit{a priori} estimates by using the technical energy method in Section 3.

Some Notation. We denote by C generic positive constants unless they need to be distinguished. In particular, use $C_{\alpha, \beta, \cdot \cdot \cdot}$ when we emphasize the dependency on $\alpha, \beta, \cdot \cdot \cdot$.

For function spaces, $L^p = L^p(\mathbb{R})$ and $H^k = H^k(\mathbb{R})$ denote the usual Lebesgue space and k-th order Sobolev space on the whole space \mathbb{R} with norms $\| \cdot \|_{L^p}$ and $\| \cdot \|_{H^k}$, respectively.

2. Reformulation of the problem

In this section, we reformulate our problem (1.1) in terms of the deviation from the asymptotic state. Now letting

$$u(t, x) = \tilde{u} + \psi(t, x),$$

we reformulate the problem (1.1) in terms of the deviation ψ from \tilde{u} as

\[
\begin{align*}
\partial_t \psi + \partial_x \left(f(\psi + \tilde{u}) \right) &= -\delta \partial_x^3 \psi - \nu \partial_x^4 \psi \quad (t > 0, x \in \mathbb{R}), \\
\psi(0, x) &= \psi_0(x) := u_0(x) - \tilde{u} \to 0 \quad (x \to \pm \infty).
\end{align*}
\]

Then we look for the unique global in time solution ψ which has the asymptotic behavior

\[
\sup_{x \in \mathbb{R}} |\psi(t, x)| \to 0, \quad \sup_{x \in \mathbb{R}} |\partial_x \psi(t, x)| \to 0 \quad (t \to \infty).
\]

Here we note that $\psi_0 \in H^2$. Then the corresponding theorems for ψ to Theorems 1.1 we should prove is stated as follows.

Theorem 2.1. (Global Existence). Assume the convective flux $f \in C^2(\mathbb{R})$ satisfy (1.3) and the initial data satisfy $\psi_0 \in H^2$. Then the Cauchy problem (2.2) has a unique global in time solution ψ satisfying

\[
\begin{align*}
\psi &\in C^0 \left([0, \infty); H^2 \right), \\
\partial_t^2 \psi &\in L^2(0, \infty; H^2),
\end{align*}
\]

and the asymptotic behavior

\[
\lim_{t \to \infty} \left(\sup_{x \in \mathbb{R}} |\psi(t, x)| + \sup_{x \in \mathbb{R}} |\partial_x \psi(t, x)| \right) = 0.
\]

To accomplish the proofs of Theorem 2.1, we prepare the local existence precisely, we formulate the problem (2.2) at general initial time $\tau \geq 0$:

\[
\begin{align*}
\partial_t \psi + \partial_x \left(f(\psi + \tilde{u}) \right) &= -\delta \partial_x^3 \psi - \nu \partial_x^4 \psi \quad (t > \tau, x \in \mathbb{R}), \\
\psi(\tau, x) &= \psi_\tau(x) := u_\tau(x) - \tilde{u} \to 0 \quad (x \to \pm \infty).
\end{align*}
\]
Then the local existence theorem is stated as follows (since the proof is standard, we state only here (cf. [8], [9], [31], [34]).)

Theorem 2.2 (Local Existence). For any $M > 0$, there exists a positive constant $t_0 = t_0(M)$ not depending on τ such that if $\psi_\tau \in H^2$ and

$$\| \psi_\tau \|_{L^2} + \| \partial_x^2 \psi_\tau \|_{L^2} \leq M,$$

then the Cauchy problem (2.4) has a unique solution ψ on the time interval $[\tau, \tau + t_0(M)]$ satisfying

$$\left\{ \begin{array}{l}
\psi \in C^0([\tau, \tau + t_0]; H^2), \\
\partial_x^2 \psi \in L^2(\tau, \tau + t_0; H^2), \\
\sup_{t \in [\tau, \tau + t_0]} \left(\| \psi(t) \|_{L^2} + \| \partial_x^2 \psi(t) \|_{L^2} \right) \leq 2M.
\end{array} \right.$$

Next, we state the *a priori* estimates as follows.

Theorem 2.3 (*A Priori* Estimates). Under the same assumptions as in Theorem 2.1, for any initial data $\psi_0 \in H^2$, there exists a positive constant C_{ψ_0} such that if the Cauchy problem (2.1) has a solution ϕ on the time interval $[0, T]$ satisfying

$$\left\{ \begin{array}{l}
\phi \in C^0([0, T]; H^2), \\
\partial_x^2 \psi \in L^2(0, T; H^2),
\end{array} \right.$$

for some positive constant T, then it holds that

$$\| \psi(t) \|^2_{H^2} + \int_0^t \| \partial_x^2 \psi(\tau) \|^2_{H^2} \, d\tau + \int_0^t \left(\sup_{x \in \mathbb{R}} |\psi(\tau, x)| \right)^4 \, d\tau$$

$$+ \int_0^t \left(\sup_{x \in \mathbb{R}} |\partial_x \psi(\tau, x)| \right)^{\frac{8}{3}} \, d\tau \leq C_{\psi_0}, \quad (t \in [0, T]).$$

Combining the local existence Theorem 2.2 together with the each *a priori* estimates, Theorem 2.3, we can obtain global existence Theorem 2.1. In fact, we can obtain the unique global in time solutions ψ to (2.2) in Theorem 2.2 satisfying

$$\left\{ \begin{array}{l}
\psi \in C^0([0, \infty); H^2), \\
\partial_x^2 \psi \in L^2(0, \infty; H^2),
\end{array} \right.$$

and

$$\sup_{t \geq 0} \| \psi(t) \|^2_{H^2} + \int_0^\infty \| \partial_x^2 \psi(t) \|^2_{H^2} \, dt < \infty$$ (2.6)
which yields
\[\int_0^\infty \left| \frac{d}{dt} \| \partial_x^2 \psi(t) \|^2_{L^2} \right| dt < \infty. \tag{2.7} \]
We immediately have from (2.6) and (2.7) that
\[\| \partial_x \psi(t) \|_{L^2} \to 0 \quad (t \to \infty). \tag{2.8} \]
Further from (2.8) with \(T \to \infty \) and
\[\sup_{x \in \mathbb{R}} \| \partial_x \psi(t, x) \|_{L^2} \leq \sqrt{2} \| \partial_x^2 \psi(t) \|_{L^2} \quad (t \geq 0), \tag{2.9} \]
we obtain the asymptotic behavior (2.3).
Thus Theorem 2.1 is proved.

3. *A priori estimates*

In this section, under the assumption
\[|f''(u)| \leq O(1) \left(1 + |u|^q \right) \quad (q \geq 0), \tag{3.1} \]
we show the following *a priori* estimate for \(\psi \) in Theorem 2.3. To do that, we prepare the following basic estimate.

Proposition 3.1. For \(q \geq 0 \), it follows that
\[\| \psi(t) \|_{L^2}^2 + 2 \nu \int_0^t \| \partial_x^2 \psi(\tau) \|_{L^2}^2 d\tau = \| \psi_0 \|_{L^2}^2 \quad (t \in [0, T]). \]

Proof of Proposition 3.1. Multiplying the equation in (2.2) by \(\phi \) and integrating it with respect to \(x \), we have, after integration by parts,
\[\frac{1}{2} \frac{d}{dt} \| \psi(t) \|_{L^2}^2 + \nu \| \partial_x^2 \psi(t) \|_{L^2}^2 = 0. \tag{3.2} \]
Next, integrating (3.2) with respect to \(t \), we immediately get the desired estimate.
Thus, we complete the proof of Proposition 3.1.

From Proposition 3.1, we have the next lemma.

Lemma 3.2. There exists a positive constant \(C_{\psi_0} \) such that
\[\int_0^t \left(\sup_{x \in \mathbb{R}} |\psi(\tau, x)| \right)^8 d\tau + \int_0^t \left(\sup_{x \in \mathbb{R}} |\partial_x \psi(\tau, x)| \right)^{\frac{8}{3}} d\tau \leq C_{\psi_0} \quad (t \in [0, T]). \]
Proof of Lemma 3.2. By using the Sobolev inequality and the integration by parts, we get

\[
\sup_{x \in \mathbb{R}} |\psi(t, x)| \leq \sqrt{2} \|\psi(t)\|_{L^2}^{\frac{3}{4}} \|\partial_x \psi(t)\|_{L^2}^{\frac{3}{4}} \quad (t \in [0, T]),
\]

(3.3)

\[
\sup_{x \in \mathbb{R}} |\psi(t, x)| \leq \sqrt{2} \|\partial_x \psi(t)\|_{L^2}^{\frac{3}{2}} \|\partial_x^2 \psi(t)\|_{L^2}^{\frac{3}{2}} \quad (t \in [0, T]).
\]

(3.4)

From (3.3) and (3.4), noting Proposition 3.1, we immediately have the desired estimate.

Thus, the proof is complete.

Next, we state the a priori estimate for \(\partial_x^2 \psi\) as follows.

Proposition 3.3. For \(0 \leq q \leq 5\), there exists a positive constant \(C_{\psi_0}\) such that

\[
\|\partial_x^2 \psi(t)\|_{L^2}^2 + \int_0^t \|\partial_x^4 \psi(\tau)\|_{L^2}^2 \, d\tau \leq C_{\psi_0} \quad (t \in [0, T]).
\]

Once Proposition 3.3 holds true, by using Proposition 3.1, we can estimate as follows.

\[
\|\partial_x \psi\|_{L^2}^2 \leq \|\psi\|_{L^2} \|\partial_x^2 \psi\|_{L^2} \leq C_{\phi_0},
\]

(3.5)

\[
\int_0^t \|\partial_x^3 \psi\|_{L^2}^2 \, d\tau \leq \left(\int_0^t \|\partial_x^3 \psi\|_{L^2}^2 \, d\tau \right)^{\frac{3}{2}} \left(\int_0^t \|\partial_x^4 \psi\|_{L^2}^2 \, d\tau \right)^{\frac{1}{2}} \leq C_{\phi_0},
\]

(3.6)

for \(t \in [0, T]\). From the uniform estimates (3.5) and (3.6), we immediately get the a priori estimate for \(\partial_x \psi\) as follows.

Proposition 3.4. For \(0 \leq q \leq 5\), there exists a positive constant \(C_{\psi_0}\) such that

\[
\|\partial_x \psi(t)\|_{L^2}^2 + \int_0^t \|\partial_x^3 \psi(\tau)\|_{L^2}^2 \, d\tau \, dx \, d\tau \leq C_{\psi_0} \quad (t \in [0, T]).
\]

From Propositions 3.1, 3.3-3.4, by using the Sobolev inequality, we have the following uniform boundedness of \(\psi\) and \(\partial_x \psi\) as follows.

Lemma 3.5. There exists a positive constant \(C_{\psi_0}\) such that

\[
\sup_{x \in \mathbb{R}} |\psi(t, x)| \leq C_{\psi_0}, \quad \sup_{x \in \mathbb{R}} |\partial_x \psi(t, x)| \leq C_{\psi_0} \quad (t \in [0, T]).
\]

By combining Propositions 3.1, 3.3-3.4 and Lemma 3.2, we can obtain Theorem 2.3. Therefore, in order to complete the proof of Theorem 2.3, we finally prove Proposition 3.3.
Proof of Proposition 3.3. Multiplying the equation in (2.2) by \(\partial_x^4 \psi \), and integrating the resultant formula with respect to \(x \), we have

\[
\frac{1}{2} \frac{d}{dt} \| \partial_x \psi(t) \|_{L^2}^2 + \nu \| \partial_x^3 \psi(t) \|_{L^2}^2 = - \int_{-\infty}^{\infty} \partial_x^4 \psi \partial_x \left(f(\psi + \bar{u}) \right) dx. \tag{3.7}
\]

The right-hand side of (3.7) becomes

\[
- \int_{-\infty}^{\infty} \partial_x^4 \psi \partial_x \left(f(\psi + \bar{u}) \right) dx
= \int_{-\infty}^{\infty} \partial_x^4 \psi | \partial_x \psi |^2 \partial_x^2 \psi dx + \int_{-\infty}^{\infty} f'(\psi + \bar{u}) \partial_x^2 \psi \partial_x^3 \psi dx \tag{3.8}
= \int_{-\infty}^{\infty} \partial_x^4 \psi | \partial_x \psi |^2 \partial_x^2 \psi dx - \frac{1}{2} \int_{-\infty}^{\infty} \partial_x^4 \psi \partial_x^2 \psi | \partial_x^2 \psi |^2 dx.
\]

From (3.1), by making use of the Cauchy-Schwarz, Sobolev and Young inequalities, and integration by parts, we can estimate the first term on the right-hand side of (3.8) as follows.

\[
\left| \int_{-\infty}^{\infty} \partial_x^4 \psi | \partial_x \psi |^2 \partial_x^2 \psi dx \right| \leq C_q \int_{-\infty}^{\infty} | \partial_x \psi |^2 | \partial_x^2 \psi | dx + C_q \int_{-\infty}^{\infty} | \psi |^q | \partial_x \psi |^2 | \partial_x^2 \psi | dx, \tag{3.9}
\]

\[
C_q \int_{-\infty}^{\infty} | \partial_x \psi |^2 | \partial_x^2 \psi | dx
\leq C_q \| \partial_x \psi \|_{L^2}^2 \| \partial_x^2 \psi \|_{L^2}^2 \| \partial_x^4 \psi \|_{L^2}^{\frac{1}{2}} \tag{3.10}
\]

\[
\leq C_q \| \psi \|_{L^q} \| \partial_x^2 \psi \|_{L^\frac{4}{3}} \| \partial_x \psi \|_{L^{\frac{8}{3}}} \| \partial_x^3 \psi \|_{L^2}^{\frac{1}{2}}
\]

\[
\leq C_q \| \psi \|_{L^q} || \partial_x^2 \psi ||_{L^{\frac{4}{3}}} \| \partial_x \psi \|_{L^{\frac{8}{3}}} \| \partial_x^3 \psi \|_{L^2}^{\frac{1}{2}}.
\]

\[
C_q \int_{-\infty}^{\infty} | \psi |^q | \partial_x \psi |^2 | \partial_x^2 \psi | dx
\leq C_q \| \psi \|_{L^q} \| \partial_x \psi \|_{L^2}^2 \| \partial_x^2 \psi \|_{L^\infty} \| \partial_x^4 \psi \|_{L^\infty}^{\frac{1}{2}}
\]

\[
\leq C_q \| \psi \|_{L^q} \| \partial_x \psi \|_{L^2} \| \partial_x^2 \psi \|_{L^{\frac{8}{3}}} \| \partial_x^3 \psi \|_{L^2}^{\frac{1}{2}} \tag{3.11}
\]

\[
\leq \frac{\nu}{8} || \partial_x^2 \psi ||_{L^2}^2 + C_{q,\nu} \| \psi \|_{L^\infty} \| \psi \|_{L^{\frac{8}{3}}} \| \partial_x^2 \psi \|_{L^2}^2
\]

\[
\leq \frac{\nu}{8} || \partial_x \psi ||_{L^2}^2 + C_{q,\nu} \left(1 + \| \psi \|_{L^\infty}^{\frac{8}{3}} \right) \| \psi \|_{L^2}^2 \| \partial_x^2 \psi \|_{L^2}^2 \quad (0 \leq q \leq 5).
\]

Similarly, the second term on the right-hand side of (3.8) can be estimated as
follows.

\[
\left| \frac{1}{2} \int_{-\infty}^{\infty} f''(\psi + \tilde{u}) \partial_x \psi \left| \partial_x^2 \psi \right|^2 \, dx \right| \\
\leq C_q \int_{-\infty}^{\infty} |\partial_x \psi| \left| \partial_x^2 \psi \right|^2 \, dx + C_q \int_{-\infty}^{\infty} |\psi|^q |\partial_x \psi| \left| \partial_x^2 \psi \right|^2 \, dx,
\]

\[
C_q \int_{-\infty}^{\infty} |\partial_x \psi| \left| \partial_x^2 \psi \right|^2 \, dx \leq C_q \left\| \partial_x \psi \right\|_{L^2}^{\frac{q}{2}} \left\| \partial_x^2 \psi \right\|_{L^2}^{\frac{q}{2}}
\]

\[
\leq C_q \left(\left\| \psi \right\|_{L^\infty}^{\frac{q}{2}} + \left\| \partial_x \psi \right\|_{L^\infty}^{\frac{q}{2}} \right) \left\| \partial_x^2 \psi \right\|_{L^2}^2
\]

\[
\leq C_q \left(1 + \left\| \psi \right\|_{L^\infty}^{\frac{q}{2}} + \left\| \partial_x \psi \right\|_{L^\infty}^{\frac{q}{2}} \right) \left\| \partial_x^2 \psi \right\|_{L^2}^2 \quad (0 \leq q \leq 5).
\]

Noting Lemma 3.2, substituting (3.8)-(3.14) into (3.7), integrating the resultant formula with respect to \(t \) and further using the Gronwall inequality, we obtain the desired formula, Proposition 3.3.

Thus, we complete the proof of Theorem 2.3 from Propositions 3.1, 3.3-3.4.

References

[1] K. Andreiev, I. Egorova, T.L. Lange and G. Teschl, Rarefaction waves of the Korteweg-de Vries equation via nonlinear steepest decent, J. Differential Equations 10 (2016), pp. 5371-5410.

[2] J.L. Bona and M.E. Schonbek, Travelling-wave solutions to the Korteweg-deVries-Burgers equation, Proc. Roy. Soc. Edinburgh 101A (1985), pp. 207-226.

[3] J.L. Bona, S.V. Rajopadhye and M.E. Schonbek, Models for the propagation of bores I. Two dimensional theory, Differential Integral Equations 7 (1994), pp. 699-734.

[4] R.P. Chhabra, Bubbles, drops and particles in non-Newtonian Fluids, CRC, Boca Raton, FL (2006).

[5] R.P. Chhabra, Non-Newtonian Fluids: An Introduction, URL http://www.physics.iitm.ac.in/~compflu/Lect-notes/chhabra.pdf.
[6] R.P. Chhabra and J.F. Richardson, *Non-Newtonian flow and applied rheology*, 2nd edn. Butterworth-Heinemann, Oxford (2008).

[7] Q. Du and M.D. Gunzburger, *Analysis of a Ladyzhenskaya model for incompressible viscous flow*, J. Math. Anal. Appl. **155** (1991), pp. 21-45.

[8] R. Duan, L.-L. Fan, J.-S. Kim and L.-Q. Xie, *Nonlinear stability of strong rarefaction waves for the generalized KdV-Burgers-Kuramoto equation with large initial perturbation*, Nonlinear Anal. TMA **73** (2010), pp. 3254-3267.

[9] R. Duan and H.-J. Zhao, *Global stability of strong rarefaction waves for the generalized KdV-Burgers equation*, Nonlinear Anal. TMA **66** (2007), pp. 1100-1117.

[10] I. Egorova, K. Grunert and G. Teschl, *On the Cauchy problem for the Korteweg-de Vries equation with steplike finite-gap initial data I. Schwartz-type perturbations*, Nonlinearity **22** (2009), pp. 1431-1457.

[11] I. Egorova and G. Teschl, *On the Cauchy problem for the Korteweg-de Vries equation with steplike finite-gap initial data II. Perturbations with finite moments*, J. Anal. Math. **115** (2011), pp. 71-101.

[12] M.E. Gurtin and R.C. MacCamy, *On the diffusion of biological populations*, Math. Biosci. **33** (1979), pp. 35-49.

[13] E. Harabetian, *Rarefaction and large time behavior for parabolic equations and monotone schemes*, Comm. Math. Phys. **114** (1988), pp. 527-536.

[14] I. Hashimoto and A. Matsumura, *Large time behavior of solutions to an initial boundary value problem on the half space for scalar viscous conservation law*, Methods Appl. Anal. **14** (2007), pp. 45-59.

[15] Y. Hattori and K. Nishihara, *A note on the stability of rarefaction wave of the Burgers equation*, Japan J. Indust. Appl. Math. **8** (1991), pp. 85-96.

[16] A.M. Il’in, A.S. Kalashnikov and O.A. Olefnik, *Second-order linear equations of parabolic type*, Uspekhi Math. Nauk SSSR **17** (1962), pp. 3-146 (in Russian); English translation in Russian Math. Surveys **17** (1962), pp. 1-143.

[17] A.M. Il’in and O.A. Olefnik, *Asymptotic behavior of the solutions of the Cauchy problem for some quasi-linear equations for large values of the time*, Mat. Sb. **51** (1960), pp. 191-216 (in Russian).

[18] P. Jahangiri, R. Streblow and D. Müller, *Simulation of Non-Newtonian Fluids using Modelica*, Proceedings of the 9th International Modelica Conference September 3-5, Munich, Germany, (2012), pp. 57-62.

[19] P.D. Lax, *Hyperbolic systems of conservation laws II*, Comm. Pure Appl. Math. **10** (1957), pp. 537-566.
[20] H.W. Liepmann and A. Roshko, *Elements of Gas Dynamics*, John Wiley & Sons, Inc., New York, 1957.

[21] T.-P. Liu, A. Matsumura and K. Nishihara, *Behaviors of solutions for the Burgers equation with boundary corresponding to rarefaction waves*, SIAM J. Math. Anal. 29 (1998), pp. 293-308.

[22] J. Málek, *Some frequently used models for non-Newtonian fluids*, URL http://www.karlin.mff.cuni.cz/~malek/new/images/Lecture4.pdf.

[23] J. Málek, D. Pražák and M. Steinhauer, *On the existence and regularity of solutions for degenerate power-law fluids*, Differential Integral Equations 19 (2006), pp. 449-462.

[24] A. Matsumura and K. Nishihara, *Asymptotic toward the rarefaction wave of solutions of a one-dimensional model system for compressible viscous gas*, Japan J. Appl. Math. 3 (1986), pp. 1-13.

[25] A. Matsumura and K. Nishihara, *Asymptotics toward the rarefaction wave of the solutions of Burgers’ equation with nonlinear degenerate viscosity*, Nonlinear Anal. TMA 23 (1994), pp. 605-614.

[26] A. Matsumura and K. Nishihara, *Asymptotic stability of traveling waves for scalar viscous conservation laws with non-convex nonlinearity*, Comm. Math. Phys. 165 (1994), pp. 83-96.

[27] A. Matsumura and N. Yoshida, *Asymptotic behavior of solutions to the Cauchy problem for the scalar viscous conservation law with partially linearly degenerate flux*, SIAM J. Math. Anal. 44 (2012), pp. 2526-2544.

[28] A. Matsumura and N. Yoshida, *Global asymptotics toward the rarefaction waves for solutions to the Cauchy problem of the scalar conservation law with nonlinear viscosity*, Osaka J. Math. 57 (2020), pp. 187-205.

[29] K. Nishihara and S.V. Rajopadhye, *Asymptotic behavior of solutions to the Korteweg-deVries-Burgers equation*, Differential Integral Equations 11 (1998), pp. 85-93.

[30] S.V. Rajopadhye, *Decay rates for the solutions of model equations for bore propagation*, Proc. Roy. Soc. Edinburgh 125A (1995), pp. 371-398.

[31] L.-Z. Ruan, W.-L. Gao and J. Chen, *Asymptotic stability of the rarefaction wave for the generalized KdV-Burgers-Kuramoto equation*, Nonlinear Anal. TMA 68 (2008), pp. 402-411.

[32] J. Smoller, *Shock Waves and Reaction-diffusion Equations*, Springer-Verlag, New York-Berlin, 1983.

[33] T. Sochi, *Pore-Scale Modeling of Non-Newtonian Flow in Porous Media*, PhD thesis, Imperial College London, 2007.
[34] Z.-A. Wang and C.-J. Zhu, Stability of the rarefaction wave for the generalized KdV-Burgers equation, Acta Math. Sci. 22B(3) (2002), pp. 319-328.

[35] N. Yoshida, Decay properties of solutions toward a multiwave pattern for the scalar viscous conservation law with partially linearly degenerate flux, Nonlinear Anal. TMA 96 (2014), pp. 189-210.

[36] N. Yoshida, Decay properties of solutions to the Cauchy problem for the scalar conservation law with nonlinearly degenerate viscosity, Nonlinear Anal. TMA 128 (2015), pp. 48-76.

[37] N. Yoshida, Asymptotic behavior of solutions toward a multiwave pattern for the scalar conservation law with the Ostwald-de Waele-type viscosity, SIAM J. Math. Anal. 49 (2017), pp. 2009-2036.

[38] N. Yoshida, Decay properties of solutions toward a multiwave pattern to the Cauchy problem for the scalar conservation law with degenerate flux and viscosity, J. Differential Equations 263 (2017), pp. 7513-7558.

[39] N. Yoshida, Asymptotic behavior of solutions toward the viscous shock waves to the Cauchy problem for the scalar conservation law with nonlinear flux and viscosity, SIAM J. Math. Anal. 50 (2018), pp. 891-932.

[40] N. Yoshida, Asymptotic behavior of solutions toward the rarefaction waves to the Cauchy problem for the scalar diffusive dispersive conservation laws, Nonlinear Anal. 189 (2019), pp. 1-19.

[41] N. Yoshida, Global structure of solutions toward the rarefaction waves for the Cauchy problem of the scalar conservation law with nonlinear viscosity, J. Differential Equations 269 (2020), pp. 10350-10394.

[42] N. Yoshida, Asymptotic behavior of solutions toward a multiwave pattern to the Cauchy problem for the dissipative wave equation with partially linearly degenerate flux, Funkcialaj Ekvacioj 64 (2021), pp. 49-73.