3D Facial Matching by Spiral Convolutional Metric Learning and a Biometric Fusion-Net of Demographic Properties

Soha Sadat Mahdi*, Nele Nauwelaers*, Philip Joris, Giorgos Bouritsas, Shunwang Gong, Sergiy Bokhnyak, Susan Walsh, Mark D. Shriver, Michael Bronstein, Peter Claes
Problem Statement
Problem Statement
Problem Statement
Problem Statement

SEX
AGE
BMI
GB
Problem Statement: Step 1

Geometric Metric Learner (GML)
Problem Statement: Step 1

Geometric Metric Learner (GML)
Problem Statement: Step 2
Data
2,145 individuals

SEX
68% female, 32% male

AGE
[5 - 80]
$\bar{x} = 27, \bar{\bar{x}} = 21$

BMI
[11.87 - 62.11]
$\bar{x} = 25.03, \bar{\bar{x}} = 23.74$

First SUGIBS axes

[1] J. Li et al. - Robust genome-wide ancestry inference for heterogeneous datasets: illustrated using the 1,000 genome project with 3D facial images
Step 1: Metric Learning – Triplet loss

$$\text{TripletLoss} = \max(\|f(A) - f(P)\|_2^2 - \|f(A) - f(N)\|_2^2 + \alpha, 0)$$
Step 1: Metric Learning – Triplet loss

\[\text{TripletLoss} = \max\left(\|f(A) - f(P)\|_2^2 - \|f(A) - f(N)\|_2^2 + \alpha, 0\right) \]
Step 1: Spiral convolutions

[2] Vincent Dumoulin, Francesco Visin - A guide to convolution arithmetic for deep learning
Step 1: Mesh sampling
Step 1: Geometric Metric Learner
Step 1: Geometric Metric Learner
Step 2: Fusion-Net
Step 2: Fusion-Net
Step 2: Fusion-Net

- SEX
- AGE
- BMI
- GB

Diagram showing layers FC1, FC2, FC3 with dimensions 48x1, 12x1, 7x1, followed by 2x1 output layers.
Step 2: Fusion-Net

The diagram shows a neural network with layers labeled FC1, FC2, and FC3. Inputs include SEX, AGE, BMI, and GB. The network processes these inputs and outputs a decision, indicated by the checkmark and cross symbols on the right.
Results

---: Principal component analysis + support vector machines + Naïve Bayes score fuser
—: Geometric Metric Learner + Fusion-Net
sohasadat.mahdi@kuleuven.be
nele.nauwelaers@kuleuven.be