NON-UNITAL ALGEBRAIC K-THEORY AND ALMOST MATHEMATICS

YUKI KATO

ABSTRACT. The Gersten conjecture is still an open problem of algebraic K-theory for mixed characteristic discrete valuation rings. In this paper, we establish non-unital algebraic K-theory which is modified to become an exact functor from the category of non-unital algebras to the stable ∞-category of spectra. We prove that for any almost unital algebra, the non-unital K-theory homotopically decomposes into the non-unital K-theory the corresponding ideal and the residue algebra, implying the Gersten property of non-unital K-theory of the the corresponding ideal.

1. Introduction

Let V be a Noetherian regular local ring and F denote the fractional field. Then the inclusion $j : V \to F$ induces the pullback

$$j^* : K_n(V) \to K_n(F)$$

of algebraic K-groups for any integer n. Gersten [Ger73] conjectured the induced homomorphism j^* is injective for any integer n. This conjecture is called the Gersten conjecture for algebraic K-theory. In the case of positive characteristic, Panin [Pan03] proved Gersten’s conjecture is true by using Quillen’s result [Qui73] of the case V is essentially smooth over a field and Popescu’s result [Pop86]. In the mixed characteristic case, the Gersten conjecture is still open.

This paper considers the Gersten conjecture for valuation rings V with idempotent maximal ideals and non-unital algebras for non-unital algebraic K-theory K^nu which is modified to become an exact functor from the category of non-unital algebras to the stable ∞-category of spectra. Let m be an idempotent maximal ideal of V and A an almost V-algebra. We assume that m is a flat V-module. We prove that the non-unital K-theory $\text{K}^\text{nu}(A)$ homotopically decompose into the non-unital K-theory of the ideal mA and of the residue algebra A/mA (Theorem 3.4):

$$\text{K}^\text{nu}(A) \cong \text{K}^\text{nu}(mA) \oplus \text{K}^\text{nu}(A/mA),$$

implying that one has a decomposition

$$\text{K}^\text{nu}(A \otimes_V F) \cong \text{K}^\text{nu}(mA) \oplus \text{K}^\text{nu}((A \otimes_V F)/mA),$$

where $\text{K}^\text{nu}((A \otimes_V F)/mA)$ denotes the homotopy cofiber of the map $\text{K}^\text{nu}(mA) \to \text{K}^\text{nu}(A \otimes_V F)$ of spectra. In particular, the induced map $\text{K}^\text{nu}(m) \to \text{K}^\text{nu}(F)$ is homotopically split injective.

Date: February 28, 2023.

Key words and phrases. Algebraic K-theory, non-unital algebra, perfectoid algebra.
2. NON-UNITAL ALGEBRAIC K-THOERY

2.1. A review of non-unital rings. Let A be a commutative ring. Then the category of A-modules is equivalent to the category of $\mathbb{Z} \oplus A$-modules.

Proposition 2.1 ([Qui96]). If A has a multiplicative unit 1_A, then one has a categorical equivalence $\text{Mod}_{\mathbb{Z} \oplus A} \simeq \text{Mod}_\mathbb{Z} \times \text{Mod}_A$ which induces an equivalence $\text{PMod}_{\mathbb{Z} \oplus A} \simeq \text{PMod}_\mathbb{Z} \times \text{PMod}_A$.

proof. The distinguish element $e = (0, 1_A) \in \mathbb{Z} \oplus A$ is clearly a projector. For any $\mathbb{Z} \oplus A$-module M, M decomposes into $M \simeq eM \oplus (1 - e)M$. If M is a projective $\mathbb{Z} \oplus A$-module, eM and $(1 - e)M$ are also projective $\mathbb{Z} \oplus A$-modules. The module eM is killed by \mathbb{Z}, having an A-module structure. Hence eM is also a projective A-module. qed

Definition 2.2. Let A be a commutative ring. The $K(A)$ is defined to be the homotopy fiber of the map $K(\mathbb{Z} \oplus A) \to K(\mathbb{Z})$ induced by the projection.

If A has a multiplicative unit 1_A, then $K(A)$ is an ordinal K-theory. Indeed, the functor $A \otimes_{\mathbb{Z} \oplus A} - : \text{Mod}_{\mathbb{Z} \oplus A} \to \text{Mod}_A$ induces a projector $K(\mathbb{Z} \oplus A) \to K(A)$ of spectra.

Theorem 2.3 ([Wei89] Theorem 2.1 (Excision for ideals)). Let I be an ideal of a ring A. Then $KH(I) \to KH(A) \to KH(A/I)$ is a fiber sequence. □

In order to use the above property of homotopy invariant K-theory for any exact sequence of non-unital algebra, we adjust the K-theory spectrum as the following: Let Sp denote the stable ∞-category of spectra and $\text{Fun}^{\text{rex}}(\text{CAlg}^{\text{nu}}, \text{Sp})$ the full subcategory of $\text{Fun}(\text{CAlg}^{\text{nu}}, \text{Sp})$ spanned by right exact functors. Then the inclusion $\text{Fun}^{\text{rex}}(\text{CAlg}^{\text{nu}}, \text{Sp}) \to \text{Fun}(\text{CAlg}^{\text{nu}}, \text{Sp})$ admits a left adjoint

$$P_1 : \text{Fun}(\text{CAlg}^{\text{nu}}, \text{Sp}) \to \text{Fun}^{\text{rex}}(\text{CAlg}^{\text{nu}}, \text{Sp})$$

by [Lur17, p.759, Theorem 6.1.1.10].

Lemma 2.4. Let \mathcal{C} be a stable ∞-category. Given two fiber sequences $X \to Y \to Z$ and $X \to Y' \to Z'$ of objects of \mathcal{C} and a homotopically commutative square:

![Diagram]

the square is both homotopy Cartesian and coCartesian, and the following properties are equivalent:

1. The object Y homotopically decomposes into the direct sum of X and Z.
2. The object Y' homotopically decomposes into the direct sum of X and Z'. 2
proof. Note that, in a stable \(\infty \)-category, a homotopy coCartesian product is also a homotopy Cartesian product. By a formal argument, one has \(Z \simeq Y' \amalg_{Y} Z \): Indeed, one has a chain of weak equivalences: \(Y' \amalg_{Y} Z \simeq Y' \amalg_{Y} (Y \amalg_{Y} 0) \simeq Y' \amalg_{Y} 0 \simeq Z' \).

If condition (1) holds, \(Y \) is weakly equivalent to the coproduct of \(X \) and \(Z \). Hence, we have a chain of weak equivalences: \(X \amalg Z' \simeq X \amalg (Z \amalg Y') \simeq (X \amalg Z) \amalg Y' \simeq Y \amalg Y' \simeq Y' \)

Conversely, condition (2) implies \(Y' \simeq X \times Z' \), giving a chain of equivalences: \(Y \simeq Y' \times_{Z'} Z \simeq (X \times Z') \times_{Z'} Z \simeq X \times X \).

By Lemma 2.4, we obtain the following proposition:

Proposition 2.5. Let \(m \subset V \subset F \) be a sequence of commutative rings. For any \(V \)-algebra \(A \), write \(A_{F} = A \otimes_{V} F \). Let \(\mathcal{F} : \text{CAlg}^{nu} \to \text{Sp} \) be a functor. Then the spectrum \(P_{1}(\mathcal{F})(A) \) decomposes into a direct sum of \(P_{1}(\mathcal{F})(mA) \) and \(P_{1}(\mathcal{F})(A/mA) \) if and only if \(P_{1}(\mathcal{F})(A_{F}) \) has also a decomposition into a direct sum of \(P_{1}(\mathcal{F})(mA) \) and \(P_{1}(\mathcal{F})(A_{F}/mA) \), where \(P_{1}(\mathcal{F})(A_{F}/mA) \) denotes the homotopy cofiber of \(P_{1}(\mathcal{F})(mA) \to P_{1}(\mathcal{F})(A_{F}) \).

Corollary 2.6. Let \(m \subset V \subset F \) be a sequence of commutative rings. Assume that \(P_{1}(\mathcal{F})(A) \) decomposes into a direct sum of \(P_{1}(\mathcal{F})(mA) \) and \(P_{1}(\mathcal{F})(A/mA) \). Then the pullback \(j^{*} : P_{1}(\mathcal{F})(A) \to P_{1}(\mathcal{F})(A_{F}) \) induces an injection \(\pi_{n}(P_{1}(\mathcal{F})(A)) \to \pi_{n}(P_{1}(\mathcal{F})(A_{F})) \) for each \(n \geq 0 \) if and only if the induced map \(\pi_{n}(P_{1}(\mathcal{F})(A/mA)) \to \pi_{n}(P_{1}(\mathcal{F})(A_{F}/mA)) \) is injective for each \(n \geq 0 \).

3. Non-unital \(K \)-theory of almost mathematics

3.1. The almost Gersten property of non-unital \(K \)-theory

Let \(V \) be a commutative unital ring with an idempotent ideal \(m \). A \(V \)-module \(M \) is said to be *almost zero* if \(mM = 0 \). A \(V \)-homomorphism \(f : M \to N \) of \(V \)-modules is called an *almost isomorphism* if both the kernel and the cokernel of \(f \) are almost zero. An *almost \(V \)-module* is an object of the (bi)localization of the category of \(V \)-modules by the Serre subcategory spanned by almost zero modules, and an *almost \(V \)-algebra* is a commutative algebra object of the category of almost \(V \)-modules. Write \(\tilde{m} = m \otimes_{V} m \). In this section, we always assume that \(m \) is a flat \(V \)-module. Then the multiplication \(\tilde{m} \to m \) is an isomorphism.

We define (recall) of the definition of almost \(K \)-theory [Kat22]. Let \(A \) be an almost \(V \)-algebra and \(\text{APerf}(A) \) denote the full subtriangulated category generated by \(\tilde{m} \otimes_{V} A \) of the derived category of \(A \)-modules. Further, let \(\text{Perf}^{+}(A) \) denote the full subtriangulated category generated by \(A \) and \(\tilde{m} \otimes_{V} A \) of the derived category of \(A \)-modules.

Definition 3.1. Let \(A \) be an almost \(V \)-algebra and \(K^{nu}(A)^{al} \) denote the non-unital \(K \)-theory spectrum of the triangulated category of \(\text{APerf}(A) \). We call \(K^{nu}(A)^{al} \) the *non-unital almost \(K \)-theory spectrum* of \(A \). Further, let \(K^{nu}(A)^{+} \) denote the non-unital \(K \)-theory spectrum of the triangulated category \(\text{Perf}^{+}(A) \).
Consider a diagram $B \leftarrow A \rightarrow C$ of non-unital V-algebras. Let K denote the kernel the argumentation $(V \oplus B) \otimes_{V \oplus A} (V \oplus C) \rightarrow V$. Then the unitalization $V \oplus K$ is isomorphic to $(V \oplus B) \otimes_{V \oplus A} (V \oplus A)$ by the equivalence $V \oplus (-)$ from the category of non-unital V-algebras to the category of unital augmented V-algebras. Therefore K represents the colimit of the diagram $B \leftarrow A \rightarrow C$. We write $B \square_A C = K$ for the colimit of $B \leftarrow A \rightarrow C$. By definition of non-unital K-theory, the induced square

$$
\begin{array}{ccc}
K^\text{nu}(A) & \rightarrow & K^\text{nu}(B) \\
\downarrow & & \downarrow \\
K^\text{nu}(C) & \rightarrow & K^\text{nu}(B \square_A C)
\end{array}
$$

is homotopy coCartesian.

Lemma 3.2. Let A be an almost V-algebra and $K^\text{nu}(A/\mathfrak{m}A)$ (resp. $K^\text{nu}(A/\mathfrak{m}A)^+$) denote the homotopy cofiber of $K^\text{nu}(\mathfrak{m}A) \rightarrow K^\text{nu}(A)$ (resp. $K^\text{nu}(\mathfrak{m}A)^+ \rightarrow K^\text{nu}(A)^+$). Then the augmentation $V \otimes_{V \oplus A} (V \oplus A) \rightarrow V$ is an almost isomorphism. Furthermore, the induced map $K^\text{nu}(A/\mathfrak{m}A) \rightarrow K^\text{nu}(A/\mathfrak{m}A)^+$ is a weak equivalence of spectra.

proof. The proof is a formal argument: One has a chain of isomorphisms

$$\tilde{\mathfrak{m}} \otimes_V (V \otimes_{V \oplus A} (V \oplus A) \simeq \tilde{\mathfrak{m}} \otimes_{V \oplus \mathfrak{m}A} (V \oplus A) \oplus (\tilde{\mathfrak{m}} \otimes_{V \oplus \mathfrak{m}A} A)$$

$$\simeq (\tilde{\mathfrak{m}} \otimes_{V \oplus \mathfrak{m}A} V) \oplus (\tilde{\mathfrak{m}} \otimes_{V \oplus \mathfrak{m}A} \mathfrak{m}A) \simeq \tilde{\mathfrak{m}} \otimes_{V \oplus \mathfrak{m}A} (V \oplus \mathfrak{m}A) \simeq \tilde{\mathfrak{m}}.$$

The kernel $A \square_{\mathfrak{m}A} 0$ of the augmentation $V \otimes_{V \oplus \mathfrak{m}A} (V \oplus A) \rightarrow V$ represents the homotopy cofiber $K^\text{nu}(A/\mathfrak{m}A)$ (resp. $K^\text{nu}(A/\mathfrak{m}A)^+$). Then the projection $A \square_{\mathfrak{m}A} 0 \rightarrow (A \square_{\mathfrak{m}A} 0) \otimes_V V/\mathfrak{m}$ is an isomorphism. Therefore $K(A \square_{\mathfrak{m}A} 0) \rightarrow K(V/\mathfrak{m}) \otimes_{V \oplus \mathfrak{m}A} (V \oplus A)) \rightarrow K(V/\mathfrak{m})$ is a homotopy fiber sequence. Since the inclusion functors $\text{Perf}((V/\mathfrak{m}) \otimes_{V \oplus \mathfrak{m}A} (V \oplus A)) \rightarrow \text{Perf}^+(V/\mathfrak{m}) \otimes_{V \oplus \mathfrak{m}A} (V \oplus A))$ and $\text{Perf}(V/\mathfrak{m}) \rightarrow \text{Perf}^+(V/\mathfrak{m})$ are categorical equivalence, the induced morphism $K^\text{nu}(A \square_{\mathfrak{m}A} 0) \rightarrow K^\text{nu}(A \square_{\mathfrak{m}A} 0)^+$ is a weak equivalence. \hfill \square

Theorem 3.3 (c.f. [Kat22] Theorem 3.15 and Theorem 3.21). Let A be an almost V-algebra. Then the non-unital K-theory $K^\text{nu}(A)^+$ homotopically decomposes into the product of $K^\text{nu}(A)^\text{al}$ and $K^\text{nu}(A/\mathfrak{m}A)$.

proof. The proof is a similar argument of the proof of [Kat22] Theorem 3.11]. The functor $\tilde{\mathfrak{m}} \otimes_V (-) : \text{Perf}^+(A) \rightarrow \text{Perf}^+(A)$ is categorical idempotent, and the essential image is equivalent to $A\text{Perf}(A)$. Therefore the functor $\tilde{\mathfrak{m}} \otimes_V (-) : \text{Perf}^+(A) \rightarrow \text{Perf}^+(A)$ induces a homotopically splitting $K(\tilde{\mathfrak{m}} \otimes_V (-)) : K^\text{nu}(A)^\text{al} \rightarrow K^\text{nu}(A)^+$ and a decomposition $K^\text{nu}(A)^+ \simeq K^\text{nu}(A)^\text{al} \oplus K^\text{nu}(A)^m$, where $K^\text{nu}(A)^m$ denotes the homotopy fiber of $K^\text{nu}(A)^+ \rightarrow K^\text{nu}(A)^\text{al}$.

Let $K^\text{nu}(A/\mathfrak{m}A)^+$ (resp. $K^\text{nu}(A/\mathfrak{m}A)^\text{al}$) denote the homotopy cofiber of $K^\text{nu}(\mathfrak{m}A)^+ \rightarrow K^\text{nu}(A)^+$ (resp. $K^\text{nu}(\mathfrak{m}A)^\text{al} \rightarrow K^\text{nu}(A)^\text{al}$). By Lemma 3.2, $K^\text{nu}(A/\mathfrak{m}A)^\text{al}$ is contractible, entailing that $K^\text{nu}(\mathfrak{m}A)^\text{al} \rightarrow K^\text{nu}(A)^\text{al}$ is a weak equivalence.
Next, we show that the induced map $K^\nu(mA)^+ \to K^\nu(mA)^{al}$ is a weak equivalence. Consider the unitalization $V \oplus mA$ and the application $\varepsilon : V \oplus mA \to V$. Then $K^\nu(V \oplus mA)^+$ is decomposed into the direct sum $K^\nu(mA)^+ \oplus K^\nu(V)^+$. Note that $E \simeq E \otimes_{V \oplus mA} (V \oplus mA) \simeq (E \otimes_{V \oplus mA} V) \oplus (E \otimes_{V \oplus mA} mA)$ for any $V \oplus mA$-complex E. Therefore those projections $K^\nu(V \oplus mA)^+ \to K^\nu(V)^+$ and $K^\nu(V \oplus mA)^+ \to K^\nu(mA)^+$ is induced by those functors $(-) \otimes_{V \oplus mA} V$ and $(-) \otimes_{V \oplus mA} mA$, respectively. Furthermore, for any $V \oplus mA$-complex E, the canonical morphism $\hat{m} \otimes_{V} E \otimes_{V \oplus mA} mA \to E \otimes_{V \oplus mA} mA$ is already an isomorphism by $\hat{m} \otimes_{V} mA \simeq m^3 A = mA$. Hence, we have a weak equivalence $K^\nu(mA)^+ \simeq K^\nu(mA)^{al}$.

Finally, one has weak equivalences: $K^\nu(mA)^+ \simeq K^\nu(mA)^{al} \simeq K^\nu(A)^{al}$ and $K^\nu(A)^+ \simeq K^\nu(A)^{al} \oplus K^\nu(A)^m \simeq K^\nu(mA)^+ \oplus K^\nu(A)^m \simeq K^\nu(mA)^+ \oplus K^\nu(A/mA)^+$, giving us the conclusion by the second part of Lemma 3.2.

\begin{proof}
By the argument of the proof of Theorem 3.3, all of the canonical maps $K^\nu(mA)^{al} \to K^\nu(mA)^+ \to K^\nu(A)^{al}$ are weak equivalences, implying that one has a homotopy Cartesian square

$$
\begin{array}{ccc}
K^\nu(mA) & \longrightarrow & K^\nu(A) \\
\downarrow & & \downarrow \\
K^\nu(A)^{al} & \longrightarrow & K^\nu(A)^+,
\end{array}
$$

where both of the cofibers of horizontal maps are the same $K^\nu(A/mA)$ up to weak equivalence. Since the lower horizontal map is homotopically split, the upper one is also homotopically split by Lemma 2.4.

\end{proof}

\begin{corollary}
Let V be a valuation ring with an idempotent maximal ideal m and F denote the fractional field of V. Assume that m is flat. Let A be an almost V-algebra. Then the canonical morphism $K^\nu(mA) \to K^\nu(A \otimes_{V} F)$ is homotopically split injective. Furthermore, for any F-algebra B, we have an canonical weak equivalence

$$K^\nu(B) \simeq K^\nu(mA) \oplus K^\nu(B/mA),$$

where $K^\nu(B/mA)$ denotes the homotopy cofiber of $K^\nu(mA) \to K^\nu(B)$.

\end{corollary}

\begin{proof}
This corollary is immediately obtained by Theorem 3.4. Since all of those functors $\text{Perf}(B) \to \text{A Perf}(B) \to \text{Perf}^+(B)$ are canonically categorical equivalences by the isomorphism: $m \otimes_{V} B \simeq B$, one has weak equivalences: $K^\nu(B) \simeq K^\nu(B)^{al} \simeq K^\nu(B)^+$. Therefore one has a homotopy coCartesian square

$$
\begin{array}{ccc}
K^\nu(A) & \longrightarrow & K^\nu(A/mA) \\
\downarrow & & \downarrow \\
K^\nu(B) & \longrightarrow & K^\nu(B/mA).
\end{array}
$$

\end{proof}
In particular, one has the following splittings: \(K_{\nu}(V) \simeq K_{\nu}(m) \oplus K_{\nu}(V/m) \) and \(K_{\nu}(F) \simeq K_{\nu}(m) \oplus K_{\nu}(F/m) \).

Corollary 3.6. Let \(V \) be a valuation ring with an idempotent maximal ideal \(m \) and \(F \) denote the fractional field of \(V \). Then the pullback \(K_{\nu}(V) \to K_{\nu}(F) \) induces injections between their all homotopy groups if and only if \(K_{\nu}(V/m) \to K_{\nu}(F/m) \) has the same property. \(\square \)

3.2. A remark on the case an integral perfectoid valuation ring.

We will apply Corollary 3.6 to the case \(V \) a perfectoid valuation ring. Recall the definition of perfectoid algebra:

Definition 3.7. Let \(F \) be a complete non-Archimedean non-discrete valuation field of rank 1, and \(V \) denote the subring of powerbounded elements. We say that \(F \) is a perfectoid field if the Frobenius \(\Phi : V/pV \to V/pV \) is surjective, where \(p \) is the characteristic of the residue field of \(V \).

In this case, it is known that the maximal ideal \(m \) of \(V \) is flat and idempotent (See [Bha17, Example 4.1.3].) For any \(V \)-algebra \(A \), let \(A^\flat \) denote the tilting algebra \(\varprojlim_{n \to x \flat} A/pA \) of \(A \). The tilting ideal \(m^\flat \subset V^\flat \) is a flat \(V^\flat \)-module as \(m \) is. Note that \(A^\flat/m^\flat A^\flat \to A/mA \) is an isomorphism of commutative unital rings of positive characteristic.

Under the assumption that we are given an weak equivalence: \(K_{\nu}(F^\flat/V^\flat) \simeq K_{\nu}(F/V) \), which is weaker than \(K_{\nu}(F/V) \simeq K_{\nu}(k)[1] \simeq K_{\nu}(F^\flat/V^\flat) \), one has the following:

Proposition 3.8. Let \(V \) be a mixed characteristic integral perfectoid valuation ring with an idempotent maximal ideal \(m \) and \(F \) denote the fractional field of \(V \). Assume that the non-unital \(K \)-theories \(K_{\nu}(V) \) and \(K_{\nu}(V^\flat) \) hold the condition: We are given weak equivalences \(K_{\nu}(F^\flat/V^\flat) \simeq K_{\nu}(F/V) \). Then the pullback \(K_{\nu}(V) \to K_{\nu}(F) \) induces injections \(K_{n}(V) \to K_{n}(F) \) for any integers \(n \), where we write \(K_{n}(V) = \pi_{n}(K_{\nu}(V)) \) if and only if \(K_{\nu}(V^\flat) \to K_{\nu}(F^\flat) \) has the same property, where \((\cdot)^\flat \) denote the tilting functor of perfectoid algebras.

proof. By the assumption \(K_{\nu}(F/V) \simeq K_{\nu}(F^\flat/V^\flat) \) and the isomorphism \(V^\flat/m^\flat \simeq V/m \), one has a weak equivalence \(K_{\nu}(F^\flat/m^\flat) \simeq K_{\nu}(F/m) \). The result follows from corollary 3.6. \(\square \)

Remark 3.9. By the result [KM21, Theorem 3.1], in the case the (ordinal) \(K \)-theories, the induced map \(K_{n}(V^\flat) \to K_{n}(F^\flat) \) is injective for any integer \(n \).

References

[Ba10] **Barwick**, Clark: On left and right model categories and left and right Bousfield localizations. In: *Homology Homotopy Appl.* 12 (2010), Nr. 2, S. 245–320. – ISSN 1532–0073

[Bha17] **Bhatt**, Bhargav: Lecture notes for a class on perfectoid spaces. Available at: http://www-personal.umich.edu/~bhattb/teaching/mat679w17/lectures.pdf 2017
[CMM21] Clausen, Dustin ; Mathew, Akhil ; Morrow, Matthew: K-theory and topological cyclic homology of Henselian pairs. In: *J. Am. Math. Soc.* 34 (2021), Nr. 2, S. 411–473. [http://dx.doi.org/10.1090/jams/961] – DOI 10.1090/jams/961. – ISSN 0894–0347

[DS75] Dennis, R. K. ; Stein, Michael R.: K_2 of discrete valuation rings. In: *Advances in Math.* 18 (1975), Nr. 2, S. 182–238. – ISSN 0001–8708

[Fal88] Faltings, Gerd: p-adic Hodge theory. In: *J. Amer. Math. Soc.* 1 (1988), Nr. 1, S. 255–299. – ISSN 0894–0347

[Ger73] Gersten, S. M.: *Some exact sequences in the higher K-theory of rings*. Algebr. K-Theory I, Proc. Conf. Battelle Inst. 1972, Lect. Notes Math. 341, 211–243 (1973). [link.springer.com/chapter/10.1007/BFb0067059] Version: 1973

[GL87] Gillet, Henri ; Levine, Marc: The relative form of Gersten’s conjecture over a discrete valuation ring: The smooth case. In: *J. Pure Appl. Algebra* 46 (1987), S. 59–71. [http://dx.doi.org/10.1016/0022-4049(87)90043-0] – DOI 10.1016/0022–4049(87)90043–0. – ISSN 0022–4049

[GR03] Gabber, Ofer ; Ramero, Lorenzo: Lecture Notes in Mathematics. Bd. 1800: *Almost ring theory*. Springer-Verlag, Berlin, 2003. – vi+307 S. – ISBN 3–540–40594–1

[Hovey14] Hovey, Mark: *Smith ideals of structured ring spectra*. Available at https://arxiv.org/abs/1401.2856 2014

[Kal76] Kalassen, Wilberd van d.: The K_2’s of a 2-dimensional regular local ring and its quotient field. In: *Comm. Algebra* 4 (1976), Nr. 7, S. 677–679. – ISSN 0092–7872

[Kat22] Kato, Yuki: *Algebraic K-theory and algebraic cobordism of almost mathematics*. Available at https://arxiv.org/abs/2203.08081

[KM21] Kelly, Shane ; Morrow, Matthew: K-theory of valuation rings. In: *Compos. Math.* 157 (2021), Nr. 6, S. 1121–1142. [http://dx.doi.org/10.1112/S0010437X21007119] – DOI 10.1112/S0010437X21007119. – ISSN 0010–437X

[Lur09] Lurie, Jacob: *Annals of Mathematics Studies*. Bd. 170: *Higher topos theory*. Princeton, NJ : Princeton University Press, 2009. – xviii+925 S. – ISBN 978–0–691–14049–0; 0–691–14049–9

[Lur17] Lurie, Jacob: *Higher Algebra*. available at https://www.math.ias.edu/~lurie/papers/HA.pdf 2017

[Pan03] Panin, I. A.: The equicharacteristic case of the Gersten conjecture. In: *Tr. Mat. Inst. Steklova* 241 (2003), Nr. Teor. Chisel, Algebra i Algebr. Geom., S. 169–178. – ISSN 0371–9685

[Pop86] Popescu, Dorin: General Néron desingularization and approximation. In: *Nagoya Math. J.* 104 (1986), S. 85–115. – ISSN 0027–7630

[Qui73] Quillen, Daniel: *Higher algebraic K-theory. I*. Algebr. K-Theory I, Proc. Conf. Battelle Inst. 1972, Lect. Notes Math. 341, 85–147 (1973).

[Qui96] Quillen, Daniel: *Module theory over nonunital rings*. available at https://ncatlab.org/nlab/files/QuillenModulesOverRngs.pdf 1996

[Sch12] Scholze, Peter: Perfectoid spaces. In: *Publ. Math. Inst. Hautes Études Sci.* 116 (2012), S. 245–313. – ISSN 0073–8301
THOMASON, R. W.; TROROUGH, Thomas: Higher algebraic K-theory of schemes and of derived categories. Appendix A: Exact categories and the Gabriel-Quillen embedding. Appendix B: Modules versus quasi-coherent modules. Appendix C: Absolute noetherian approximation. Appendix D: Hypercohomology with supports. Appendix E: The Nisnevich topology. Appendix F: Invariance under change of universe. The Grothendieck Festschrift, Collect. Artic. in Honor of the 60th Birthday of A. Grothendieck. Vol. III, Prog. Math. 88, 247-435. Appendix A: 398-408; appendix B: 409-417; appendix C: 418-423; appendix D: 424-426; appendix E: 427-430; appendix F: p. 431 (1990).

WALDHUSEN, Friedhelm: Algebraic K-theory of spaces, localization, and the chromatic filtration of stable homotopy. Algebraic topology, Proc. Conf., Aarhus 1982, Lect. Notes Math. 1051, 173-195 (1984).

WALDHUSEN, Friedhelm: Algebraic K-theory of spaces. In: Algebraic and geometric topology (New Brunswick, N.J., 1983) Bd. 1126. Berlin : Springer, 1985, S. 318–419

WEIBEL, Charles A.: Homotopy algebraic K-theory. Algebraic K-theory and algebraic number theory, Proc. Semin., Honolulu/Hawaii 1987, Contemp. Math. 83, 461-488 (1989).

Email address: ykato@ube-k.ac.jp