Al$_{13}$@Pt$_{42}$ Core-Shell Cluster for Oxygen Reduction Reaction

B. B. Xiao, Y. F. Zhu, X. Y. Lang, Z. Wen & Q. Jiang

Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China.

To increase Pt utilization for oxygen reduction reaction (ORR) in fuel cells, reducing particle sizes of Pt is a valid way. However, poisoning or surface oxidation limits the smallest size of Pt particles at 2.6 nm with a low utility of 20%. Here, using density functional theory calculations, we develop a core-shell Al$_{13}$@Pt$_{42}$ cluster as a catalyst for ORR. Benefit from alloying with Al in this cluster, the covalent Pt-Al bonding effectively activates the Pt atoms at the edge sites, enabling its high utility up to 70%. Valuably, the adsorption energy of O is located at the optimal range with 0.0–0.4 eV weaker than Pt(111), while OH-poisoning does not observed. Moreover, ORR comes from O$_2$ dissociation mechanism where the rate-limiting step is located at OH formation from O and H with a barrier of 0.59 eV, comparable with 0.50 eV of OH formation on O and H$_2$O on Pt(111).

Proton exchange membrane fuel cells (PEMFCs) are promising candidates for mobile and transport applications due to their high energy density, zero emissions, relatively low operating temperature, and minimal corrosion problems. Pt nanoparticles supported on carbon are commonly used as catalysts of the cathode for the oxygen reduction reaction (ORR). It is observed that the ORR activity highly depends on the size of nanoparticles, where Pt nanoparticles with diameters (D) of 2–5 nm are regarded as the best choice. This is because the percentage of atoms on the active Pt(111) facets over the total number of atoms n, denoting as R$_\text{active}$ reaches the maximum. If the particle takes an (111)-enclosed icosahedral shape as shown in Figure 1, in order to maximize R$_\text{active}$, the corresponding D (D$_\text{opt}$) is 2.6 nm with n = 561, which brings out R$_\text{active}$ = 20%. Further reducing D could increase the surface/volume ratio, and the percentages of edge and vertex sites (R$_\text{edge}$ and R$_\text{vertex}$) on the particle surfaces unfortunately increase where R$_\text{vertex}$ becomes predominant below D$_\text{opt}$. Those Pt atoms at the low-coordinated sites are adverse for ORR due to the strong binding of O-containing intermediates. Thus, activating edge and vertex sites is the main challenge to miniaturize D.

As adsorption energies of all intermediates of ORR are related to the O adsorption energy [E_{ads}(O)] on (111) surfaces of transition metals, the activity is proposed to be a function of E_{ads}(O)2–4. It has demonstrated that E_{ads}(O) of a catalyst with the best activity for ORR should be 0.0–0.4 eV weaker than that of Pt(111)2,5,6. Furthermore, a volcano activity curve based on the adsorption energy of OH [E_{ads}(OH)] is present where E_{ads}(OH) is 0.0–0.2 eV weaker than that of Pt(111), due to the scaling relationship between E_{ads}(O) and E_{ads}(OH)2,5,6. Note that the coordination numbers of the vertex atoms and the edge atoms of nanoparticles differ from that of (111) surface of nine. Thus, the scaling relationship between E_{ads}(O) and E_{ads}(OH) may be changed and E_{ads}(O) and E_{ads}(OH) must be both inquired separately.

On the other hand, numerous experimental and theoretical studies have been carried out to study the kinetics of ORR mechanisms. To our knowledge, there are mainly three mechanisms: O$_2$ dissociation, OOH dissociation and H$_2$O$_2$ dissociation. Qi et al. have demonstrated that in the gas phase, instead of the high barrier (E_a) of OH formation from O and H with a value of 0.91 eV, OH is originated from OOH and H with $E_a = 0.31$ eV15,16. However, this path is absent because H$_2$O$_2$ formation is forbidden in solution7. Recently, a new path is proposed: OH formation in solution comes from O and H$_2$O, and ORR on Pt(111) is essentially carried out by O$_2$ dissociation mechanism, namely O$_2$ dissociation ($E_a = 0.00$ eV), OH formation ($E_a = 0.50$ eV) and H$_2$O formation ($E_a = 0.24$ eV)17. It is doubted that whether ORR mechanism is changed due to the presence of the low-coordinated atoms at nano size. Thus, in order to fully understand the catalysis, the kinetics of ORR mechanisms needs to be further explored.

Alloying is a general technique to improve the ORR activity and stability of catalysts$^{13,14,19–21}$. Present works have been mainly concentrated on Pt-based alloys consisting of Pt and the late TM elements in the 3d series, typically Pt$_3$Fe, Pt$_3$Co and Pt$_3$Ni. The alloys show better catalysis activity than Pt alone22. However, the severe degradation of catalysis and stability of these alloys during the voltage cycling in acids as a consequence of the
continuous dissolution of TM atoms are present. This can be understood by their negligible heat of formation. Following the suggestion of Greeley et al., strong binding between Pt and other alloying elements is needed to improve the stability of any new alloy systems. Since the formation energy of Pt₃Al is much more negative than Pt-based alloys with late TM elements, Pt₃Al should be a good substitute of the above Pt-based alloys. It must be admitted that Pt-based alloys with early TM elements show good activity and stability, such as Pt₃Sc and Pt₃Y. However, these works are still located at the transition metals and the activity enhancement is resulted from the d-d interaction to modify the d band of Pt surface atoms. Thus, from the electronic aspect, the p-d interaction of Al-Pt systems should provide an attempt to look beyond the Pt-TM systems and explore novel catalysts.

Recent DFT calculations show that a core-shell structure plays an important role in increasing the stability of Pt-based nanoalloys, such as Co₁₃@Pt₄₂ and Rh₁₃@Pt₄₂, where Pt shell benefits for the stability of the catalysts under the electrochemical environment. Thus, we here develop a new core-shell Al₁₃@Pt₄₂ cluster as ORR catalyst, whose surface is assembled with the twelve vertex atoms Ptᵥ and the thirty edge atoms Ptₑ. In addition, Al₁₃ cluster with icosahedral symmetry have been shown to exhibit enhanced stability compared with other isomers. What is more, the ligand stabilized Al nanoparticles with the size range of 1.5 and 4 nm have been synthesized. It is noteworthy that although Al@Pt core-shell nanoparticles have not been synthesized to date, Al@Cu and Al@Co ones are fabricated via a displacement reaction. Although these particles had large particle sizes about 5 nm, the utilized experimental technique could also be applied to fabricate Al@Pt core-shell nanostructures as long as the size of Al nanoparticles is small, which has been be synthesized without difficulties. Note that although Al could be easily oxidized it has been easily avoided by an inert atmosphere. At last, it is emphasized that our work offers only a theoretical prediction and we hope this new Al@Pt cluster will be picked up by experimentalists for empirical verification.

In light of our calculation by using Density Functional Theory (DFT), Al@Pt cluster possesses good stability due to the covalent bonding between Al₁₃ core and Pt₄₂ shell. Also, Eₐds(OH) is located at the optimal range while Eₐds(OH) on Ptₑ is 0.30 eV weaker than Pt(111). Furthermore, rate-limiting step (RDS) of the ORR reaction through O₂ dissociation mechanism is located at OH formation from O and H (Eₐ = 0.59 eV). This barrier is comparable with 0.50 eV of Pt(111). Thus, alloying with Al effectively activates Ptₑ atoms and lets the utility of Pt reach 70% (30 edge Ptₑ atoms from the total 42 Pt atoms).

Results

Figure 2(a) shows a core-shell Al₁₃@Pt₄₂ cluster (n = 55) with an icosahedral structure where 13 Al atoms form an icosahedral core and all Pt atoms are located on the shell. All Pt atoms are all low-coordinated, which consist of 6-coordination vertex atoms (Ptᵥ) and 8-coordination edge atoms (Ptₑ). The Al₁₃@Pt₄₂ possesses a high symmetry and stability (the mean binding energy Eₜ is −4.8 eV/atm compared with −4.75 eV/atm of Pt₅₅ according to our calculation). To understand physically the interaction between Al core and Pt shell of Al₁₃@Pt₄₂, partial density of states (PDOS) is shown in Figure 2(b). Compared with Pt₅₅, the d band of Pt₄₂ shell on Al₁₃@Pt₄₂ is moved away from the Fermi energy Eᵢ. That is, the d band center changes from −1.99 of Pt₅₅ to −2.54 eV of Al₁₃@Pt₄₂. Furthermore, the d band of alloy cluster is clearly more discrete. The d band of Pt₄₂ shell is concentrated in between 0 to −6.8 eV. For Al₁₃ core, the p band has the same trend with the d band of Pt₄₂ shell, which denotes the strong orbital hybridization. It is obvious that the d orbitals (at −1.7, −2.6, −3.4, −4.5, −5.5 and −6.3 eV) interact with the p orbitals (at −1.8, 2.6, −3.4, −4.9 and −6.3 eV) and weak p-d hybridization is present at −8.1 eV below Eᵢ. On the other hand, the main of a band is located below −6.8 eV. Compared with p-d hybridization, the s-d interaction is weak, appearing at −5.1, −6.4, −7.4 and −8.1 eV below Eᵢ. Therefore, the enhancement in stability is dominated by hybridization between Pt-5d band and Al-3p band. To confirm this interaction, the electron density difference Δρ calculated is presented in Figure 2(c). Obviously, electrons are accumulated between Pt and Al atoms, which are compatible with the observation of the corresponding PDOS and demonstrates the partial formation of the covalent Pt-Al bonds.

In order to further confirm the stability of Al₁₃@Pt₄₂, we consider the stability of Fe₁₃@Pt₄₂, Co₁₃@Pt₄₂ and Ni₁₃@Pt₄₂ for a compar-
Figure 2 | (a) The structure of icosahedral Al$_{13}$@Pt$_{42}$ cluster. Atoms in yellow denotes vertex Pt$_{v}$, edge Pt$_{e}$ atoms are in blue. Purple shows Al atoms. (b) The adsorption sites of high-symmetry on a triangular face. T1 and T2 top sites are located atop of Pt$_{v}$ and Pt$_{e}$, respectively; H1 and H2 show hcp and fcc hollow sites respectively. The former is surrounded by Pt$_{v}$ and Pt$_{e}$ while the latter is surrounded by only Pt$_{e}$. (c) The partial density of states (PDOS). Top left is PDOS of Al$_{13}$@Pt$_{42}$. For clarity, the intensity of d-electrons is reduced to the one tenth. Top right is d-electron PDOS of Pt$_{42}$ shell on Pt$_{55}$ and Al$_{13}$@Pt$_{42}$. Bottom left and right are s- and p-electron PDOS of Al$_{13}$ core in Al$_{55}$ and Al$_{13}$@Pt$_{42}$. (d) The plot of electron density difference $\Delta \rho$. The loss and enrichment of electrons are indicated in blue and red. Here, Al$_{55}$ denotes 55-atomic Al cluster with icosahedral shape.
pared with Pt(111). However, as OH on T2 site, center and weaker adsorption ability 43. For Al13@Pt42, the effective alloying 44. We carried out a simple linear regression analysis to correlate adsorption on T1 site, That is, the stronger Ecs makes the higher dissolution resistance, which is similar to the relationship between the alloy formation energy and the ORR stability of the Pt3M bulk13,26,39. The corresponding order is Al13@Pt42 > Fe13@Pt42 > Co13@Pt42 > Ni13@Pt42 > Pt55. Thus, we expect that the stability of Al13@Pt42 acted as ORR catalysts is well.

E_{ads}(O) and E_{ads}(OH) on Al13@Pt42 are firstly examined. For comparison purpose, these values on Pt55 and Pt(111) are also calculated. According to previous studies, we focused on the adsorption of O on hollow sites and OH on atop sites as the adsorption sites shown in Figure 2(b)13,26,45. The corresponding E_{ads}(O) and E_{ads}(OH) values are listed in Table 2. The most favored E_{ads}(O) and E_{ads}(OH) values on Pt(111) are −4.51 eV on fcc site and −2.45 eV on atop site [the reported results are E_{ads}(O) = −4.21 eV and E_{ads}(OH) = −2.31 eV, respectively, being in accord with our data13,26]. For O adsorption on Pt55, E_{ads}(O) are −4.56 and −4.71 eV on H1 and H2 sites, respectively, which are stronger than that of Pt(111). Similarly, compared with Pt(111), OH adsorption are stronger with E_{ads}(OH) of −3.13 eV on T1 site and −2.91 eV on T2 site. Therefore, Pt55 are both O and OH poisoned due to the enhanced adsorption ability of the low-coordinated Pt atoms45. On the other hand, for Al13@Pt42, E_{ads}(O) are −4.15 and −4.25 eV on H1 and H2 sites, respectively, which are 0.36 and 0.26 eV weaker than that of Pt(111). Therein, the E_{ads}(O) values are located at the optimal range for ORR2,13,26,39. For OH adsorption on T1 site, E_{ads}(OH) is −2.81 eV and is 0.36 eV stronger compared with Pt(111). However, as OH on T2 site, E_{ads}(OH) is 0.30 eV weaker than that of Pt(111) with a value of −2.15 eV. The scaling relationship between O and OH is broken on Al13@Pt4213,26,39. Although there is serious OH-poisoning at T1 site, OH-poisoning at T2 site is absent. Thus, OH adsorption on T2 site can easily be removed, and the recovery of T2 site for the next ORR cycle could take place. In light of viewpoint of OH-poisoning, it is likely that the only edge atoms (Pt_e) of Al13@Pt42 are effective for ORR.

The above results are supported by the relationship between electronic structures and atomic ones of Al13@Pt42. It is known that surface atoms with larger coordination number have a lower d band center and weaker adsorption ability45. For Al13@Pt42, the effective coordination number (N_eff) is proposed to show the effect of the Al alloying45. We carried out a simple linear regression analysis to correlate E_{ads}(O) and E_{ads}(OH) adsorbed on T1 and T2 sites with N_eff of Pt atom, N_eff = N_{pt} + XN_{Al}, where subscripts show the corresponding elements, X is the effect coefficient of one Al atom corresponding one Pt atom for N_eff, which is obtained by fitting technique. By using this technique, X = 2.5 is obtained. That is, N_eff values of Pt_e and Pt_v on Al13@Pt42 are 7.5 and 11. The average N_eff value of Pt42 shell consisting of Pt and Pt_e is 10, being larger than 7.4 of Pt55 and 9 of Pt(111). The above atomic structural analysis corresponds to the fact that the d band center moves towards the lower-energy range from −1.99 eV of Pt55 to −2.54 eV of Al13@Pt42, which effectively illustrates that the presence of Al reduces the adsorption ability of the low-coordinated Pt atoms, as shown in Figure 2(c). On the other hand, the Mulliken charge analysis displayed in Figure 3(a) show that the electrons are transferred from the Al13 core to Pt42 shell, leading to the formation of negatively charged shell. Therein, the Q(Pt_v) and Q(Pt_e) are −0.185 and −0.380e, respectively (Q defines as the number of the transferred electrons). After O adsorption on H2 site, Q(O) and Q(Pt) are −0.585 and −0.181e, respectively, which means the presence of electrostatic repulsion. However, a completely different situation is found on Pt(111). In Figure 3(b), Pt(111) is nearly electrically neutral with Q(Pt) = −0.006e. After O adsorption on fcc site, Q(O) and Q(Pt) are −0.548 and 0.149e, respectively. That is, the electrostatic attraction appears for O adsorption on Pt(111). It is plausible that the weaker E_{ads}(O) of Al13@Pt42 is just due to this electrostatic repulsion between the electronegative O adatom and the Pt atoms45,46. In order to demonstrate the effect of the negative charges on E_{ads}(O), we artificially add electrons Q_{add} on Pt(111) and then calculate the corresponding E_{ads}(O)0.26. In Figure 3(c), for O adsorption on Pt(111), the Q(Pt) sign is changed from positive to negative and Q(O) is more negative when Q_{add} is increased. Namely, the interaction between O and Pt(111) is changed from electrostatic attraction to electrostatic repulsion. As shown in Figure 3(d), E_{ads}(O) is weakened as Q_{add} is increased. Furthermore, from the d-PDOS of the Pt(111) with different Q_{add} values shown in Figure 3(e), there is little change of the d band. Thus, the electrostatic repulsion indeed reduces the E_{ads}(O). Since OH adsorption has a similar case of O adsorption, we do not show the corresponding results here. In summary, both electronic and atomic structures of Al13@Pt42 support its high poisoning resistance for ORR.

In order to characterize ORR catalyzed on the Al13@Pt42, the distinct reaction paths are considered to determine transition states and activation energies or energy barrier (E_a) using nudged elastic band theory (NEB) for all elemental reaction steps involved in ORR in Figure S1 and the corresponding data are listed in Table 3. Firstly, the O2 dissociation mechanism, including O2 dissociation, OH formation, and H2O formation, is considered. The results are shown in Figure 4 and Table 3. For O2 dissociation, the E_a = 0.13 eV. Figure S2 illustrates the spin-polarized partial density of states (PDOS)

Table 1	The calculated core-shell interaction energies E_{cs} and the Pt_{42} shell dissolution potentials U_{diss}(M_{13}@Pt_{42}). The units are eV/atom and V, respectively				
	Pt_{55}	Al_{13}@Pt_{42}	Fe_{13}@Pt_{42}	Co_{13}@Pt_{42}	Ni_{13}@Pt_{42}
E_{cs}	−0.52	−0.84	−0.75	−0.62	−0.53
U_{diss}(M_{13}@Pt_{42})	0.816	1.101	1.087	0.995	0.933

Table 2	The calculated adsorption energy values of E_{ads}(O) and E_{ads}(OH) on Pt_{55}, Al_{13}@Pt_{42}, and Pt(111) (The adsorption sites are described in caption of Figure 2b). The values in parentheses show differences between E_{ads}(O) and E_{ads}(OH) values on Al_{13}@Pt_{42} and that on Pt(111)			
	H1	H2	T1	T2
E_{ads}(O)	−4.51 (−0.05)	−4.71 (−0.20)	−3.13 (−0.68)	−2.91 (−0.46)
E_{ads}(OH)	−4.15 (0.36)	−4.25 (0.26)	−2.81 (−0.36)	−2.15 (0.30)
Pt_{55}	−4.51	−4.51	−4.51	−4.51
Al_{13}@Pt_{42}	−4.51	−4.51	−4.51	−4.51
Pt(111)	−4.51	−4.51	−4.51	−4.51
projected onto the O-O bond where big change in PDOS is present. There is no spin polarization of the adsorbed O$_2$ orbitals, and the 5s, 1p and 2p* orbitals of O$_2$ are broadened, which dominate the adsorption of O$_2$. It is clear that the partial antibonding orbital 2p* of adsorbed O$_2$ are filled compared with that in the gas phase. It is well known that partial population of the antibonding 2p* orbital of O$_2$ is responsible for the catalytic activation of the adsorbed O$_2$ and stretching of the O-O bond48. When O$_2$ is adsorbed on Al$_{13}@$Pt$_{42}$ with $E_{ads}(O_2)=52$ 0.33 eV, the corresponding O-O bond is 1.398 Å (the O-O bond of the gas state is 1.225 Å), due to this charge transfer to the 2p* orbital of O$_2$ (0.306 e). As results, the O$_2$ on Al$_{13}@$Pt$_{42}$ is activated and then dissociated with such a small E_a value.

In light of Table 3, $E_a=0.59$ eV for OH formation from O and H, which is forbidden on Pt(111) because of the high E_a of 0.97 eV18. It has been demonstrated that the large component of this E_a comes from O diffusion from hollow site to a bridge site, which is consistent with our results15. On Al$_{13}@$Pt$_{42}$, O is easier to diffuse with 0.44 eV diffusion barrier due to the lower $E_{ads}(O_2)$ value compared with that of 0.62 or 0.66 eV on Pt(111)15,16. That is the reason why E_a value of Al$_{13}@$Pt$_{42}$ is smaller than that of Pt(111) for OH formation from O and H. Thus, the path for OH formation becomes feasible on Fe. For H$_2$O formation, $E_a=0.31$ eV, which is comparable with Pt(111)19. Similar with Pt(111), the disappearance of the OH diffusion makes E_a for H$_2$O formation lower than that for OH formation10. The last step is removal of the adsorbed H$_2$O and recovery the surface active site. Once H$_2$O is formed, it needs to overcome 0.41 eV for desorption.

Table 3 | The preferred activation energies (E_a) and reaction energies (E_r) for elemental steps in ORR. All results are in unit of eV

Reaction steps	Al$_{13}@$Pt$_{42}$	Pt(111)
O$_2$ + H$_2$O	-0.13	-0.06
O + H $		
ightarrow$ OH	0.12	0.01
OH + H $		
ightarrow$ H$_2$O	0.11	0.36
H$_2$O + H$_2$O(gas)	0.25	0.36
O$_2$ + H $		
ightarrow$ OOH	0.21	0.10
OOH + O + OH	0.28	0.22
O + H$_2$O + 2OH	0.57	0.30
O(H1) + OH(H2)	0.44	0.42

*The O diffusion energy barrier on Pt(111) are from references [15,16], the H$_2$O desorption barrier is from reference [50] while other data on Pt(111) come from reference [18]
Discussion

Therein, as shown in Figure 4, the rate-limiting step (RDS) of O$_2$ dissociation mechanism is located at OH formation from O and H with $E_a = 0.59$ eV. On the other hand, for OOH associative mechanism, RDS is located at OOOH formation with $E_a = 0.81$ eV and $E_r = -0.37$ eV. Since E_a value of RDS of O$_2$ dissociation mechanism is lower than that of OOOH associative mechanism, the former is more effective. In addition, we have excluded the two-electron reduction to H$_2$O$_2$ since H$_2$O$_2$ spontaneous dissociates into OH on Al$_{13}$@Pt$_{42}$, which is consistent with experimental results on Pt and other Pt alloys49. When we observe the corresponding data of Pt(111) in Table 3, RDS is located at OH formation from O and H$_2$O with $E_a = 0.50$ eV18,50. E_a value for OH formation on Al$_{13}$@Pt$_{42}$ is comparable with that on Pt(111). It is well known that when $E_a < 0.75$ eV, there is room temperature activity51. As results, Al$_{13}$@Pt$_{42}$ can effectively catalyze ORR at room temperature.

In summary, the core-shell Al$_{13}$@Pt$_{42}$ cluster is a good ORR candidate for the fuel cell application and possesses at least four superiors listed below: (1) Excellent cluster stability due to the formation of the Al-Pt covalent bonds; (2) A better activity than Pt(111) due to the optimal O adsorption energy; (3) The maximal Pt atomic utilization of 70% due to the utility of the anti-poisoning edge Pt atoms with consideration of OH adsorption; (4) OH formation with $E_a = 0.59$ eV (being comparable with Pt(111) of 0.50 eV) as the RDS with O$_2$ dissociation mechanism.

Methods

Most calculations are performed within the DFT framework as implemented in DMol3 code52,53. The generalized gradient approximation (GGA) with the Perdew–Burke–Ernzerhof (PBE) functional is employed to describe exchange and correlation effects54. The All Electron Relativistic (AER) core treat method is implemented for relativistic effects, which explicitly includes all electrons and introduces some relativistic effects into the core55. In this work, the double numerical atomic orbital augmented by a polarization p-function (DNP) is chosen as the basis set52. The orbital cutoff values are 4.5 Å and 4.8 Å for Pt$_{42}$/Pt(111) and Al$_{13}$@Pt$_{42}$, respectively, which lead to the difference of the atomic energies is within 0.1 eV atom$^{-1}$, compared with the cutoff value of 6.5 Å. Thus, the value satisfies the accuracy required. A smearing of 0.005 Ha (1 Ha = 27.21 eV) to the orbital occupation is applied to achieve accurate

Figure 4 | Optimized overall reaction path of O$_2$ dissociation mechanism. (a) The structures of initial, transition and final states, respectively. (b) Schematic energy profile.
electronic convergence. The spin-unrestricted method is used for all calculations. The convergence tolerance of energy is 1.0×10^{-6} eV/atom, maximum force is 0.005 Å in CASTEP. The 0.2 eV smearing is adopted in Dmol3. Note that the DNP basis set is the most accurate to describe the solvation 50. To confirm this consideration, the adsorption energies of O$_2$, O, H$_2$O and OH in gas and solvent environments are calculated and shown in Table S3. As shown in the table, there are evident differences in the both cases.

For O$_2$, O and H$_2$O adsorption under solvent environment, E_{ads} is stronger while $E_{ads}(OH)$ is weaker, compared with gas environment.

It is well known that there is the convergence failure of magnetic systems in Dmol3 code. To compare the stability among the different M$_{13}$@Pt$_{42}$ clusters, the core-shell interaction energy $E_{interaction}$ and the dissolution potentials of Pt$_{42}$ shell $U_{diss}(M_{13}@Pt_{42})$ are calculated in CASTEP code with ultrafast pseudopotentials 49. The PBE is employed to describe exchange and correlation effects 49. The use of a plane-wave kinetic energy cutoff of 400 eV is shown to give excellent convergence of total energies. The convergence tolerance of energy is 1.0×10^{-6} eV/atom, maximum force is 0.005 eV/Å, and maximum displacement is 0.005 Å in CASTEP. The 0.2 eV smearing is adopted for calculations.

To analyze the structural stability of alloy clusters with different numbers of Al atoms, the average binding energy of the cluster E_{bind} is adopted,

$$E_{bind} = (E_{cluster} - N_{Pt}E_{Pt} - N_{Al}E_{Al})/N$$

where $E_{cluster}$, E_{Pt} and E_{Al} are the total energies of Pt$_{55}$ or Al$_{13}@Pt_{42}$ clusters, Pt atom, and Al atom respectively. N_{Pt} and N_{Al} denote the numbers of Pt and Al atoms.

The core-shell interaction energy $E_{interaction}$ is calculated as following,

$$E_{interaction} = E[(M_{13}@Pt_{42}) - E(Pt_{42}) - E(M_{13})]/2$$

where $E(Pt_{42})$, $E(M_{13})$, $E(M_{13}@Pt_{42})$ are the total energies of $M_{13}@Pt_{42}$ clusters, Pt$_{42}$ shell and M_{13} core, respectively.

Following the idea of Noh et al. 26, we define the dissolution potential of M$_{13}@Pt_{42}$ cluster as the lowest potential at which the Pt shell layer dissolves into acidic solution. Specifically, we considered the electrochemical reaction of M$_{13}@Pt_{42}$ cluster of eq. (3),

$$M_{13}@Pt_{42} \rightarrow M_{13} + 2n_{shell}Pt^{2+} + 2n_{shell}e^{-}$$

where n_{shell} is the number of Pt atoms in the M$_{13}@Pt_{42}$ cluster ($n_{shell} = 42$). The dissolution potential of the Pt$_{42}$ shell is calculated by,

$$U_{diss}(M_{13}@Pt_{42}) = U_{diss}(Pt_{42}) + [E(M_{13}) + 2n_{shell}E(Pt^{2+}) - E(M_{13}@Pt_{42})]/2n_{shell}e$$

where $U_{diss}(M_{13}@Pt_{42})$ and $U_{diss}(Pt_{42})$ are the dissolution potentials of the3 outmost shell of M$_{13}@Pt_{42}$ clusters and that of a bulk Pt, respectively. $E(Pt^{2+})$ denotes the total energy of bulk Pt. Here, $U_{diss}(Pt_{42}) = 1.188$ V.

The adsorption energies (E_{ads}) of adsorbates on these clusters are calculated through,

$$E_{ads} = E_{ads}^{\text{cluster}} - E_{ads}^{\text{catalyst}} - E_{ads}^{\text{substrate}}$$

where E_{ads}^{cluster}, $E_{ads}^{\text{catalyst}}$ and $E_{ads}^{\text{substrate}}$ are the total energy of an isolated adsorbate species, the catalyst [Pt(111)], Pt$_{42}$ and Al$_{13}@Pt_{42}$ and the adsorption system, respectively. E_{ads} should not be zero to represent an exothermic adsorption process.

1. Vinayak, B. P., Nagar, R., Rajalakshmhi, N. & Ramaprabhu, S. Novel platinum–cobalt alloy nanoparticles dispersed on nitrogen-doped graphene as a cathode electrocatalyst for PEMFC applications. Adv. Funct. Mater. 22, 3519–3526 (2012).

2. Nerskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

3. Tritaris, G., Greeley, J., Rossmeisl, J. & Norskov, J. Atomic-scale modeling of particle size effects for the oxygen reduction reaction on Pt. Catal. Lett. 141, 909–913 (2011).

4. Shao, M., Peles, A. & Shoemaker, K. Electrocatalysis on platinum nanoparticles: particle size effect on oxygen reduction reaction activity. Nano Lett. 11, 3714–3719 (2011).
35. Cheng, Z., Li, F., Yang, Y., Wang, W. & Chen, W. A facile and novel synthetic route to core–shell Al/Co nanocomposites. Mater. Lett. 62, 2003–2005 (2008).
36. Chen, Y., Yang, F., Dai, Y., Wang, W. & Chen, S. Ni@Pt core–shell nanoparticles: synthesis, structural and electrochemical properties. J. Phys. Chem. C 112, 1645–1649 (2008).
37. Kristian, N., Yu, Y., Lee, J. M., Liu, X. & Wang, X. Synthesis and characterization of CoCu–Pt@Al2O3 electrocatalyst prepared by spontaneous replacement reaction for oxygen reduction reaction. Electrochem. Acta 56, 1000–1007 (2010).
38. Jang, J. H. et al. Rational synthesis of core-shell FeSx/Pt nanoparticles for the study of electrocatalytic oxygen reduction reaction. Sci. Rep. 3, 2872 (2013).
39. Greeley, J. & Nørskov, J. K. Electrochemical dissolution of surface alloys in acids: thermodynamic trends from first-principles calculations. Electrochem. Acta 52, 5829–5836 (2007).
40. Kattel, S., Duan, Z. & Wang, G. Density functional theory study of an oxygen reduction reaction on a Pt3Ti alloy electrocatalyst. J. Phys. Chem. C 117, 7107–7113 (2013).
41. Lin, X. et al. Effect of particle size on the adsorption of O and S atoms on Pt: A density-functional theory study. J. Phys. Chem. B 105, 7739–7747 (2001).
42. Koper, M. T. M., Shubina, T. E. & van Santen, R. A. Periodic density functional study of CO and OH adsorption on Pt–Ru alloy surfaces: implications for CO tolerant fuel cell catalysts. J. Phys. Chem. B 106, 686–692 (2001).
43. Hammer, B. & Nørskov, J. K. Theoretical surface science and catalysis-calculations and concepts. Adv. Catal. 45, 71–129 (2000).
44. FriebeI, D. et al. Balance of nanostructure and bimetallic interactions in Pt model fuel cell catalysts: in situ XAS and DFT study. J. Am. Chem. Soc. 134, 9664–9671 (2012).
45. Koper, M. T. M. & van Santen, R. A. Interaction of H, O and OH with metal surfaces. J. Electroanal. Chem. 472, 126–136 (1996).
46. Feibelman, P. J. d-electron frustration and the large fcc versus hcp binding preference in O adsorption on Pt(111). Phys. Rev. B 56, 10532–10537 (1997).
47. Zhang, P., Zheng, W. T. & Jiang, Q. Behaviors of monomer H2O on the Cu(111) surface under surface charges. J. Phys. Chem. C 114, 19331–19337 (2010).
48. Coquet, R., Howard, K. L. & Willock, D. J. Theory and simulation in heterogeneous gold catalysis. Chem. Soc. Rev. 37, 2046–2076 (2008).
49. Stamenkovic, V. R. et al. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315, 495–497 (2007).
50. Sha, Y., Yu, T. H., Liu, Y., Merinov, B. V. & Goddard, W. A. Theoretical study of solvent effects on the platinum-catalyzed oxygen reduction reaction. J. Phys. Chem. Lett 1, 856–861 (2010).
51. Shang, C. & Liu, Z. P. Origin and activity of gold nanoparticles as aerobic oxidation catalysts in aqueous solution. J. Am. Chem. Soc. 133, 9938–9947 (2011).
52. Delley, B. An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 92, 508–517 (1990).
53. Delley, B. From molecules to solids with the DMol3 approach. J. Chem. Phys. 113, 7756–7764 (2000).
54. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
55. Koelling, D. D. & Harmon, B. N. A technique for relativistic spin-polarised calculations. J. Phys. C: SolidStatePhys. 10, 3107–3114 (1977).
56. Liu, P. & Rodriguez, J. A. Catalysis for hydrogen evolution from the [NiFe] hydrogenase to the Ni2P(001) surface: the importance of ensemble effect. J. Am. Chem. Soc. 127, 14871–14878 (2005).
57. Rodriguez, J. A. et al. Activity of CeO2 and TiO2 nanoparticles grown on Au(111) in the water-gas shift reaction. Science 318, 1757–1760 (2007).
58. Lin, R. J., Chen, H. L., Ju, S. P., Li, F. Y. & Chen, H. T. Quantum-chemical calculations on the mechanism of the water–gas shift reaction on nanosized gold cluster. J. Phys. Chem. C 116, 336–342 (2011).
59. Todorova, T. & Delley, B. Wetting of paracetamol surfaces studied by DMol3-COSMO calculations. Mol. Simul. 34, 1013–1017 (2008).
60. Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892–7895 (1990).

Acknowledgments
This work was supported by the National Key Basic Research Development Program (No. 2010CB631001), the National Natural Science Foundation of China (No. 51201069), the Key Grant Project of Chinese Ministry of Education (No. 313026), the Program for New Century Excellent Talents in University (No. NCET-10-0437), and the Research Fund for the Doctoral Program of Higher Education of China (No. 2012061120042).

Author contributions
Y.F.Z. and Q.I. conceived and designed the material. B.B.X. carried out the simulation. B.B.X., Y.F.Z. and Q.I. wrote the paper. X.Y.L. and Z.W. entered the discussion. All authors commented on the manuscript.

Additional information
Supplementary information accompanies this paper at http://www.nature.com/scientificreports
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Xiao, B.B., Zhu, Y.F., Lang, X.Y., Wen, Z. & Jiang, Q. Al13@Pt42 Core-Shell Cluster for Oxygen Reduction Reaction. Sci. Rep. 4, 5205; DOI:10.1038/srep05205 (2014).