PROTON-INDUCED FISSION CROSS SECTION CALCULATION WITH THE LANL CODES CEM2K+GEM2 AND LAQGSM+GEM2

Mircea I. Baznat, Konstantin K. Gudima

Institute of Applied Physics, Academy of Science of Moldova, Chisinau, MD-2023, Moldova

Stepan G. Mashnik

Los Alamos National Laboratory, Los Alamos, NM 87545, USA

September 13, 2021

ABSTRACT

The improved Cascade-Exciton Model code CEM2k and the Los Alamos version of the Quark-Gluon String Model code LAQGSM, previously merged with the Generalized Evaporation Model code of Furihata (GEM2) were further modified to provide reliable proton-induced fission cross sections for applications. By adjusting two parameters in GEM2 for each measured reaction, we were able to describe very well with CEM2k+GEM2 and LAQGSM+GEM2 all available experimental fission cross sections induced by protons with energies from 20 MeV to 10 GeV both for subactinide and actinide targets. We also successfully tested our approach on several reactions induced by neutrons, pions, and photons.

Introduction

In recent years, an improved version of the Cascade-Exciton Model (CEM), contained in the code CEM2k [1] and the Los Alamos version of the Quark-Gluon String Model, implemented in the high-energy code LAQGSM [2] have been developed at the Los Alamos National Laboratory for a number of applications. CEM2k is intended to describe nucleon-, pion-, and photon-induced reactions at incident energies up to about 5 GeV, while LAQGSM describes both particle- and nucleus-nucleus reactions at energies up to about 1 TeV/nucleon. Originally, both CEM2k and LAQGSM were not able to describe fission reactions and production of light fragments heavier than 4He, as they had neither a high-energy-fission nor a fragmentation model. Recently, we addressed these problems [3, 4] by further improving our codes and by merging them with the Generalized Evaporation Model code GEM2 developed by Furihata [5].

GEM2 is an extension by Furihata of the Dostrovsky et al. [6] evaporation model as implemented in LAHET [7] to include up to 66 types of particles and fragments that can be evaporated from an excited compound nucleus plus a modification of the version of Atchison’s fission model [8] used in LAHET. It was found [3, 4] that if we were to merge GEM2 with CEM2k or LAQGSM without any modifications, the new code would not describe correctly the fission cross section (and the yields of fission fragments). This is because Atchison fitted the parameters of his fission model when it was coupled with the Bertini Intra-Nuclear Cascade (INC) [9] which differs from our INC. In addition, Atchison did not model preequilibrium emission. Therefore, the distributions of fissioning nuclei in A, Z, and excitation energy E^* simulated by Atchison differ significantly of the distributions we get; as a consequence, all the fission characteristics are also different. Furihata used GEM2 coupled either with the Bertini INC [9] or with the ISABEL [10] INC code, which also differs from our INC, and did not include preequilibrium particle emission. Therefore the real fissioning nuclei simulated by Furihata differ from the ones in our simulations, and the parameters adjusted by Furihata to work the best with her INC will not be the best for us. To get a good description of fission cross sections (and fission-fragment yields) we need to modify at least two parameters in GEM2 (see details in [3, 4]). This problem was solved both for CEM2k+GEM2 and LAQGSM+GEM2 in the present work.

Calculation of σ_f in GEM2

A comprehensive description of GEM2 was published by Furihata [5], some details may be found in our papers [3, 4], therefore we recall here only how fission cross sections are calculated by GEM2, as we need to modify them here. The fission model used in GEM2 is based on Atchison’s model [8], often referred in the literature as the Rutherford Appleton Laboratory (RAL)
model, which is where Atchison developed it. There are two choices of parameters for the fission model: one of them is the original parameter set by Atchison [8] as implemented in LAHET [7], and the other is a parameter set evaluated by Furihata [5], used here as a default of GEM2.

The Atchison fission model is designed to only describe fission of nuclei with \(Z \geq 70 \) (we extended it in our codes down to \(Z \geq 65 \)). It assumes that fission competes only with neutron emission, i.e., from the widths \(\Gamma_n \) of \(n, p, d, t, ^3\text{He}, \) and \(^4\text{He} \), the RAL code calculates the probability of evaporation of any particle. When a charged particle is selected to be evaporated, no fission competition is taken into account. When a neutron is selected to be evaporated, the code does not actually simulate its evaporation, instead it considers that fission may compete, and chooses either fission or evaporation of a neutron according to the fission probability \(P_f \). This quantity is treated by the RAL code differently for the elements above and below \(Z = 89 \).

1) \(70 \leq Z_f \leq 88 \). For fissioning nuclei with \(70 \leq Z_f \leq 88 \), GEM2 uses the original Atchison calculation of the neutron emission width \(\Gamma_n \) and fission width \(\Gamma_f \) to estimate the fission probability as

\[
P_f = \frac{\Gamma_f}{\Gamma_f + \Gamma_n} = \frac{1}{1 + \frac{\Gamma_n}{\Gamma_f}}.
\]

Atchison uses [8] the Weisskopf and Ewing statistical model [11] with an energy-independent pre-exponential factor for the level density and Dostrovsky’s [6] inverse cross section for neutrons and estimates the neutron width \(\Gamma_n \) as

\[
\Gamma_n = 0.352\left[1.68J_0 + 1.93A_i^{1/3}J_1\right] + A_i^{2/3}(0.76J_1 - 0.05J_0),
\]

where \(J_0 \) and \(J_1 \) are functions of the level density parameter \(a_n \) and \(\nu_n = 2\sqrt{a_n(E - Q_n - \delta)} \) as

\[
J_0 = \frac{(s_n - 1)e^{\nu_n} + 1}{2a_n},
\]

\[
J_1 = \frac{(2s_n^2 - 6s_n + 6)e^{\nu_n} + s_n^2 - 6}{8a_n^2}.
\]

The RAL model uses a fixed value for the level density parameter \(a_n \), namely

\[
a_n = (A_i - 1)/8.
\]

The fission width for nuclei with \(70 \leq Z_f \leq 88 \) is calculated in the RAL model and in GEM2 as

\[
\Gamma_f = \frac{(s_f - 1)e^{\nu_f} + 1}{a_f},
\]

where \(s_f = 2\sqrt{a_f(E - B_f - \delta)} \) and the level density parameter in the fission mode \(a_f \) is fitted by Atchison to describe the measured \(\Gamma_f/\Gamma_n \) as

\[
a_f = a_n\left(1.08926 + 0.01098(\chi - 31.08551)^2\right),
\]

and \(\chi = Z^2/A \).

2) \(Z_f \geq 89 \). For heavy fissioning nuclei with \(Z_f \geq 89 \), GEM2 follows the RAL model and does not calculate at all the fission width \(\Gamma_f \) and does not use Eq. (1) to estimate the fission probability \(P_f \). Instead, the following semi-empirical expression obtained by Atchison by approximating the experimental values of \(\Gamma_n/\Gamma_f \) published by Vandenbosch and Huizenga [12] is used to calculate the fission probability:

\[
\log(\Gamma_n/\Gamma_f) = C(Z_f)(A_i - A_0(Z_f)),
\]

where \(C(Z) \) and \(A_0(Z) \) are constants dependent on the nuclear charge \(Z \) only. The values of these constants are those used in the current version of LAHET [7] and are tabulated in Table 1 (note that some adjustments of these values have been done since Atchison’s papers [8] were published).

\(Z \)	\(C(Z) \)	\(A_0(Z) \)
89	0.23000	219.40
90	0.23300	226.90
91	0.12225	229.75
92	0.14727	234.04
93	0.13559	238.88
94	0.15735	241.34
95	0.16597	243.04
96	0.17589	245.52
97	0.18018	246.84
98	0.19568	250.18
99	0.16313	254.00
100	0.17123	257.80
101	0.17123	261.30
102	0.17123	264.80
103	0.17123	268.30
104	0.17123	271.80
105	0.17123	275.30
106	0.17123	278.80

Prokofiev’s Approximation of \(\sigma_f \)

We choose not to use in the present work experimental fission cross sections directly as they are published in the literature. Fig. 1 (kindly provided by Dr. Prokofiev) explains well the reason: The point is that for intermediate- and high-energy reactions, where our codes are supposed to be used, the experimental data
on proton-induced fission cross sections are sparse and not as precise as for low-energy reactions measured for reactor applications. Intermediate- and high-energy experimental fission cross sections induced by neutrons, pions, and other projectiles are even more sparse than the ones measured with protons. As one can see from Fig. 1, fission cross sections measured at such energies in different experiments differ so significantly from each other that it is difficult to use such data in development and validation of models and codes, without a special analysis of all details of every measurement. Fortunately, this has been done by Prokofiev [13] so we use here his results. Prokofiev spent many years on compiling proton-induced measured fission cross sections and on analyzing the details of each experiment. As a result, he divided all measurements into three categories: 1) the highest, where obtained data are very reliable and can be used without any mistrust; 2) high-quality data, reliable, but requiring some normalization; 3) data of low reliability, that would be better not used. Then, using only measurements from the first group and data from the second group after a corresponding re-normalization, Prokofiev developed systematics for proton-induced fission cross sections for all preactinide and actinide nuclei for which he was able to find enough data [13, 14]. At our energies, we consider Prokofiev’s systematics as the most reliable “experimental” fission cross sections and prefer to use them to develop and test our codes instead of using experimental values published in original publications by different authors.

For subactinide nuclei from 165Ho to 209Bi and incident proton energies above 70 MeV, Prokofiev proposed [13] the following universal parameterization for the proton-induced fission cross section, $\sigma_f(E_p)$ [mb]:

$$\sigma_f(E_p) = P_1 \left(1 - \exp[-P_3(E_p - P_2)]\right) \times (1 - P_4 \ln E_p),$$

(4)

where E_p is the incident proton energy [MeV] and P_1, P_2, P_3, and P_4 are fitting parameters. P_3 was fitted as

$$P_4(Z^2/A) = \begin{cases} 0 & \text{if } Z^2/A \leq 32.32, \\ Q_{4,1} + Q_{4,2}Z^2/A & \text{if } Z^2/A > 32.32, \end{cases}$$

(5)

where fitting parameters Q_{ij} are given in Table 2. Parameters P_1, P_2, and P_3 were fitted as

$$P_i(Z^2/A) = \exp[Q_{i,1} + Q_{i,2}(Z^2/A) + Q_{i,3}(Z^2/A)^2].$$

(6)

Table 2. Parameters Q_{ij} in the $P_i(Z^2/A)$ systematics for target nuclei from Ho to Bi [13]

i	$j = 1$	$j = 2$	$j = 3$
1	119.0	-7.852	0.1332
2	9.976	-0.1847	0
3	-27.40	0.6792	0
4	-1.140	0.0352	0

For actinide nuclides from 232Th to 239Pu and incident proton energies above 20 MeV, Prokofiev found [13] $P_2 = 12.1$, $P_3 = 0.111$, $P_4 = 0.067$, and

$$P_1(Z^2/A) = R_{11}\{1 - \exp[-R_{13}(Z^2/A - R_{12})]\},$$

(7)

where $R_{11} = 2572$, $R_{12} = 34.99$, and $R_{13} = 2.069$. Numerical values of all P_i parameters of the nuclear targets fitted by Prokofiev together with the energy interval of fitting are published in Tab. 4 of Ref. [13].

In Ref. [14], Prokofiev extended his systematics to describe fission cross sections of preactinide nuclei from 197Au to 209Bi in the energy region from 35 to 70 MeV and to predict fission cross sections for nuclei between 209Bi and 232Th, where not a single data point is available at present. It was found [14] that one can approximate fission cross sections of preactinides between Au and Bi at proton energies between 35 and 70 MeV with the formula

$$\sigma(E_p) = \sigma_0 \exp\left[-\frac{(E_p - E_0)^2}{2 w^2}\right],$$

(8)

where $E_0 = 76.3$ MeV. Parameters w and σ_0 depend on the fissioning system and characterize, respectively, the steepness and the absolute scale of the fission excitation functions and are approximated as following:

$$w(A, Z) = a + b(2Z^2/A) + c \delta W_{gs}(A, Z),$$

(9)

where δW_{gs} is the shell correction to the ground-state mass of the fissioning nucleus calculated using the systematics of Myers and Swiatecki [15], and $a = -33.667$, $b = 1.5699$, and $c = 0.30069$. Parameter σ_0 was fitted as

$$\sigma_0 = \sigma_b \exp\left[\frac{(E_b - E_0)^2}{2w^2}\right],$$

(10)

where $E_b = 70$ MeV and $\sigma_b = \sigma(E_b)$ is calculated according to the high-energy systematics given by Eq. (4).

To predict fission cross sections for nuclei between 209Bi and 232Th at proton energies above 70 MeV were there no data, it was suggested [14] that parameters P_1 of Eq. (4) can be found by interpolation of the systematics [13] predictions. The logarithmic interpolation scheme was chosen [14]:

$$\ln P_i = C_{i1} + C_{i2} x,$$

(11)

where the constants C_{ij} ($i = 1 \ldots 4, j = 1, 2$) are calculated as following:

$$C_{i1} = \frac{x_{Th} \ln P_i(x_{Bi}) - x_{Bi} \ln P_i(x_{Th})}{x_{Th} - x_{Bi}},$$

(12)
Figure 1: Experimental proton-induced fission cross sections of 238U and $^{\text{nat}}$U nuclei compiled by Prokofiev (symbols) compared with results of his sytematics [13] for these cross sections (line). We thank Dr. Prokofiev for sending us this figure.

$$C_{i2} = \frac{\ln P_i(x_{\text{Th}}) - \ln P_i(x_{\text{Bi}})}{x_{\text{Th}} - x_{\text{Bi}}}, \quad (13)$$

where $P_i(x)$ are predictions of the systematics [13] described by Eqs. (5-7), and indexes “Bi” and “Th” denote the 209Bi+p and 232Th+p fissioning systems, correspondingly. The resulting C_{ij} values are: $C_{11} = -27.74$, $C_{12} = 0.9906$, $C_{21} = 25.83$, $C_{22} = -0.6567$, $C_{31} = -45.80$, $C_{32} = 1.227$, $C_{41} = -10.95$, and $C_{42} = 0.2320$. Bellow, we use values provided by Eqs. (4-13) to adjust the calculation of fission cross sections in our CEM2k+GEM2 and LAQGSM+GEM2 codes.

Results

The main parameters that determine the fission cross sections calculated by GEM2 are the level density parameter in the fission channel, a_f (or more exactly, the ratio a_f/a_n as calculated by Eq. (2)) for preactinides, and parameter $C(Z)$ in Eq. (3) for actinides. The sensi-
tivity of results to these parameters is much higher than to fission barriers used in calculation or other parameters of the model. Therefore we choose to adjust only these two parameters in our merged CEM2k+GEM2 and LAQGSM+GEM2 codes. We do not change the form of systematics (2) and (3) derived by Atchison. We only introduce here additional coefficients both to a_f and $C(Z)$, replacing $a_f \rightarrow C_a \times a_f$ in Eq. (2) and $C(Z) \rightarrow C_c \times C(Z)$ in Eq. (3) and fit C_a and C_c both for CEM2k+GEM2 and LAQGSM+GEM2 codes for all nuclei and incident proton energies where Prokofiev’s systematics apply. No other parameters in GEM2 or our CEM2k and LAQGSM were changed. For actinides, we had to fit only C_a. The values of C_a found by fitting our results to Prokofiev’s predictions are close to one and change smoothly with changing the proton energy and the charge or mass number of the target. Such finding gives us confidence in our procedure, and allows us to interpolate or extrapolate the values of C_a for nuclei and incident proton energies not covered by Prokofiev’s systematics. For actinides, as described in [3, 4], we have to fit both C_a and C_c. The values of C_a we find are also very close to one, while the values of C_c are more varied, but both of them change smoothly with the proton energy and Z or A of the target, that again allows us to interpolate and extrapolate them for nuclei and energies outside Prokofiev’s systematics.

We fixed the fitted values of C_a and C_c in data blocks in our codes and complemented them with routines for their interpolation/extrapolation outside the region covered by Prokofiev’s systematics. We believe that such a procedure provides quite a reliable fission cross section calculation by our codes, at least for proton energies and target-nuclei not too far from the ones covered by Prokofiev’s systematics. Our results by CEM2k+GEM2 for actinides are shown in Fig. 2, and for actinides, in Fig. 3. Results by LAQGSM+GEM2 are very similar, almost coinciding in Fig. 2, and for actinides, in Fig. 3. Results by CEM2k+GEM2 for preactinides are shown for proton energies and target-nuclei not too far from the ones covered by Prokofiev’s systematics. Our results by CEM2k+GEM2 reproduce very well all the experimental data and approximated proton-induced fission cross sections induced by neutrons, pions, and photons, without any more changes or fitting. Fig. 4 shows several examples of such results. We see that our codes describe them from quite well to very well, although experimental data on pion-induced fission cross sections are not so rich and precise, and it is difficult to draw conclusions from a comparison to this data. The fact that we give such fits to fission induced by other probes gives us confidence in the value of the fitting procedure we performed in our CEM2k+GEM2 and LAQGSM+GEM2 codes.

Acknowledgment

We thank Dr. Prokofiev for useful discussions, collaboration, and for sending us his figures with experimental and approximated proton-induced fission cross sections and Drs. Sierk and Prael for numerous discussions and help. We are grateful to Prof. Peterson for sending us his compilation of experimental pion-induced fission cross sections. The work has been supported by the U.S. Department of Energy and by the Moldovan-U. S. Bilateral Grants Program, CRDF Project MP2-3025. S.G.M. acknowledges partial support from a NASA Astrophysics Theory Program grant.

REFERENCES

[1] S. G. Mashnik and A. J. Sierk, “CEM2k – Recent Developments in CEM,” Proc. AccApp00 (Washington DC, USA), pp. 328–341, La Grange Park, IL, USA, 2001; Eprint: nucl-th/0011064; see also S. G. Mashnik and A. J. Sierk, “Recent Developments of the Cascade-Exciton Model of Nuclear Reactions,” Proc. ND2001 (Tsukuba, Japan), J. Nucl. Sci. Techn., Supplement 2, 720–725 (2002); Eprint: nucl-th/0208074.

[2] K. K. Gudima, S. G. Mashnik, and A. J. Sierk, “User Manual for the Code LAQGSM,” LANL Report LA-UR-01-6804, Los Alamos, 2001.

[3] S. G. Mashnik, K. K. Gudima, and A. J. Sierk, “Merging the CEM2k and LAQGSM Codes with GEM2 to Describe Fission and Light-Fragment Production,” Proc. SATIF-6, SLAC, Menlo Park, CA, April 10-12, 2002; LANL Report LA-UR-03-2261, Los Alamos, 2003; Eprint: nucl-th/0304012.

[4] S. G. Mashnik, A. J. Sierk, and K. K. Gudima, “Complex-Particle and Light-Fragment Emission in the Cascade-Exciton Model of Nuclear Reactions,” Proc. RPSD 2002, Santa Fe, NM, April 14-17, 2002; LANL Report LA-UR-02-5185, Los Alamos, 2002; Eprint: nucl-th/0208048.

[5] S. Furihata, “Statistical Analysis of Light Fragment Production from Medium Energy Proton-Induced Reactions,” Nucl. Instr. Meth. B171 (2000) 252–258; Eprint: nucl-th/0003036; “The GEM Code — The Generalized Evaporation Model and the Fission Model,” Proc. of the Monte Carlo 2000 Conference, Lisbon, Portugal, 23-26
V. F. Weisskopf and D. H. Ewing, “On the Yield Nu-

Robert Vandenbosch and John R. Huizenga, A. V. Prokofiev, “Compilation and Systematics of

Y. Yariv and Z. Frankel, “Intranuclear Cascade Particles,“ NIM

F. Atchison, “Spallation and Fission in Heavy

I. Dostrovsky, Z. Frankel, and G. Friedlander, “Monte Carlo Calculations of Nuclear Evaporation Processes. III. Application to Low-Energy Reactions,” Phys. Rev. 116, 683–702 (1959).

R. E. Prael and H. Lichtenstein, “User Guide to LCS: The LAHET Code System,” LANL Report No. LA-UR-89-3014, Los Alamos, 1989; http://www-xdiv.lanl.gov/XTM/lcs/lahet-doc.html.

H. W. Bertini, “Low-Energy Intranuclear Cascade Calculation,” Phys. Rev. 131, 1801–1871 (1963); “Intranuclear Cascade Calculation of the Secondary Nucleon Spectra from Nucleon-Nucleus Interactions in the Energy Range 340 to 2900 MeV and Comparison with Experiment,” Phys. Rev. 188, 1711–1730 (1969).

Y. Yariv and Z. Frankel, “Intranuclear Cascade Calculation of High-Energy Ion Interactions,” Phys. Rev. C20, 2227–2243 (1979); “Inclusive Inclusive Cascade Calculation of High Energy Heavy Ion Collisions: Effect of Interactions between Cascade Particles,” Phys. Rev. C24, 488–494 (1981).

V. F. Weisskopf and D. H. Ewing, “On the Yield of Nuclear Reactions with Heavy Elements,” Phys. Rev. 57, 472–485 (1940).

Robert Vandenbosch and John R. Huizenga, Nuclear Fission, Academic Press, New York (1973).

A. V. Prokofiev, “Compilation and Systematics of

A. V. Prokofiev, S. G. Mashnik, and W. B. Wilson, “Systematics of Proton-Induced Fission Cross Sections for Intermediate Energy Applications,” LANL Report LA-UR-02-5837, Los Alamos, 2002; E-print: nucl-th/0210071; submitted to Nucl. Sci. Eng.

W. D. Myers and W. J. Swiatecki, “Anomalies in Nuclear Masses,” Ark. Fysik 36, 343–352 (1967).

Parrish Staples and Kevin Morley, “Neutron-Induced Fission Cross-Section Rations for 239Pu, 240Pu, 242Pu, and 244Pu Relative to 235U from 0.5 to 400 MeV,” Nucl. Sci. Eng. 129, 149–163 (1998), and private communication from P. Staples to T-2, LANL, 1996.

A. V. Prokofiev, P.-U. Renberg, and N. Olson, “Measurement of Neutron-Induced Fission Cross Sections for natPb, 208Pb, 197Au, natW, and 181Ta in the Intermediate Energy Region,” Uppsala University Physics Reports UU-NF 01/#6 (March 2001).

O. A. Shcherbakov, A. B. Laptev, and A. S. Vorobyev, “Nuclear Physics Investigations at the Time-Of-Flight Spectrometer GNEIS with Spallation Neutron Source,” in Proc. Workshop on Astrophysics, Symmetries, and Applied Physics at Spallation Neutron Source (ASAP 2002), Oak Ridge, TN, March 2002 pp. 123–130, edited by P.E. Koehler, C.R. Gould, R.C. Haight, and T.E. Valentine, World Scientific Publ. Co. Pte. Ltd., Singapore (2002), and private communication from O.A.Sh. to LANL, 2001.

V. P. Eismont, A. V. Prokofiev, A. N. Smirnov, K. Elmgren, J. Blomgren, H. Condé, J. Nilsson, N. Olsson, T. Rönnqvist, and E. Tranéus, “Relative and Absolute Neutron-Induced Fission Cross Sections of 208Pb, 208Bi, and 238U in the Intermediate Energy Region,” Phys. Rev. C53, 2911–2918 (1996).

R. J. Peterson, S. de Barros, I. O. De Souza, M. B. Gaspar, H. A. Khan, and Shahid Manzoor, “Mass and Energy Dependence of Pion-Induced Fission,” Z. Phys. A352, 181–189 (1995); H. A. Khan, I. E. Qureshi, M. I. Shahzad, S. Manzoor, S. de Barros, and R. J. Peterson, “Pion-induced Fission in Tin and Bismuth Observed with Makrofold Detectors,” Radiation Measurements 28, 287–290 (1997) and references therein; R. J. Peterson, private communication to S.G.M. (2001).

J. B. Martins, E. L. Moreira, O. A. P. Tavares, J. L. Vieira, L. Casano, A. D’Angelo, C. Schaerf,
M. L. Terranova, D. Babusci, and B. Girolami, “Absolute Photofission Cross Section of 197Au, natPb, 209Bi, 232Th, 238U, and 235U Nuclei by 69-MeV Monochromatic and Polarized Photons”, *Phys. Rev.* **C44**, 354–364 (1991).

[22] J. B. Martins, E. L. Moreira, O. A. P. Tavares, J. L. Vieira, J. D. Pinheiro Filho, R. Bernabei, S. D’Angelo, M. P. de Pascale, C. Schaefer, and B. Girolami, “Nuclear Fission of 197Au, natPb, and 209Bi Induced by Polarized and Monochromatic Photons of 60 and 64 MeV,” *Nuovo Cimento* **A101**, 789–794 (1989).

[23] M. L. Terranova, O. A. O. Tavares, G. Ya. Kezerashvili, V. A. Kiselev, A. M. Milov, N. Yu. Muchnoi, A. I. Naumenkov, V. V. Petrov, I. Ya. Protopopov, E. A. Simonov, E. De Paiva, and E. L. Moreira, “Fissility of Bi, Pb, Au, Pt, W, Ta, V and Ti Nuclei Measured with 100 MeV Compton Backscattered Photons”, *J. Phys. G: Nucl. Part. Phys.*, **22**, 511-522 (1996).

[24] M. L. Terranova, G. Ya. Kezerashvili, A. M. Milov, S. I. Mishnev, N. Yu. Muchnoi, A. I. Naumenkov, I. Ya. Protopopov, E. A. Simonov, D. N. Shatilov, O. A. P. Tavares, E. De Paiva, and E. L. Moreira, “Photofission Cross Section and Fissility of Pre-Actinides and Intermediate-Mass Nuclei by 120 and 145 MeV Compton Backscattered Photons,” *J. Phys. G: Nucl. Part. Phys.*, **24**, 205–216 (1998).

[25] M. L. Terranova, A. D’Angelo, J.D. Pinheiro, E. S. De Alme, E. Z. Bilbao, and J. B. Martins, “Fission Yields of 209Bi and natPb Nuclei Induced by Photon Beams of 226 MeV Maximum Energy from Compton Backscattered Laser Light,” *Nuovo Cimento* **A105**, 197–202 (1992).

[26] C. Cetina, P. Heimberg, B. L. Berman, W. J. Briscoe, G. Feldman, L. Y. Murthy, Hall Crannell, A. Longhi, D. I. Sober, J. C. Sanabria, and G. Ya. Kezerashvili, “Photofission of Heavy Nuclei from 0.2 to 3.8 GeV,” *Phys. Rev.* **C65**, 044622 (2002).

[27] J. T. Caldwell, E. J. Dowdy, B. L. Berman, R. A. Alvarez, and P. Meyer, “Giant Resonance for the Actinide Nuclei: Photoneutron and Photofission Cross Sections for 235U, 236U, 238U, and 232Th,” *Phys. Rev.* **C21**, 1215–1231 (1980).

[28] A. Lepretre, R. Bergère, P. Bourgeois, P. Calos, J. Fagot, J. L. Fallou, P. Garganne, A. Veyssiére, H. Ries, R. Göbel, U. Kneissl, G. Mank, H. Ströher, W. Wilke, D. Ryckbosch, and J. Jury, “Absolute Photofission Cross Sections for 232Th and $^{235, 238}$U Measured with Monochromatic Tagged Photons (20 MeV < E_{γ} < 110 MeV),” *Nucl. Phys.* **A472**, 533–557 (1987).

[29] S. P. Kapitsa, N. S. Rabotnov, G. N. Smirenkin, A. S. Soldatov, L. N. Usachev, and Yu. M. Tsipenyuk, “Photofission of Even-Even Nuclei and Structure of Fission Barrier,” *Pisma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki* **9**, 128–132 (1969) [in Russian].

[30] A. Veyssiére, H. Beil, R. Bergère, P. Carlos, A. Lepretre, “A Study of the Photofission and Photoneutron Processes in the Giant Dipole Resonance of 232Th, 238U and 237Np,” *Nucl. Phys.* **A199**, 45–64 (1973).

[31] H. X. Zhang, T. R. Yeh, and H. Lancman, “Photofission Cross Section of 232Th,” *Phys. Rev.* **C34**, 1397–1405 (1986).
Figure 2: Comparison of Prokofiev’s [13, 14] systematics of experimental (p,f) cross sections of 165Ho, 173Yb, 181Ta, 183W, 186Re, 195Pt, 197Au, 202Hg, 205Tl, 204Pb, 206Pb, 207Pb, 208Pb, and 209Bi nuclei (lines) with our present CEM2k+GEM2 calculations (circles).
Figure 3: Comparison of Prokofiev’s [13] systematics of experimental (p,f) cross sections of ^{232}Th, ^{233}U, ^{235}U, ^{238}U, ^{237}Np, and ^{239}Np nuclei and of predicted [14] (p,f) cross sections for ^{210}Po, ^{211}At, and ^{227}Ac targets (lines) with our present CEM2k+GEM2 calculations (circles).
Figure 4: Comparison of calculated by the modified here CEM2k+GEM2 code fission cross sections induced by neutrons on 197Au and 238U, π^- on 209Bi and 238U, and γ on 208Pb and 232Th with experimental data and results by previous versions of CEM (see details and references in [1]), as indicated. Experimental data are from: 1) n: Staples [16], Prokofiev [17]; Shcherbakov [18], Eismont [19]; 2) π^-: [20]; 3) γ: MAR91 [21], MAR89 [22], TER92 [25], TER96 [23], TER98 [24], CET02 [26], CAL80 [27], KAP69 [29], LEP87 [28], VEY73 [30], ZHA86 [31].