Computational Biology

ragp: Pipeline for mining of plant hydroxyproline-rich glycoproteins with implementation in R

Milan B Dragićević1, Danijela M Paunović1, Milica D Bogdanović1, Sladjana I Todorović1 and Ana D Simonović1

Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”, University of Belgrade, Bul. Despota Stefana 142, 11000 Belgrade, Serbia

1To whom correspondence should be addressed: Tel: +38-164-386-4319; Fax: +381-11-2078-404; e-mail: mdragicevic@ibiss.bg.ac.rs

Received 19 November 2018; Revised 19 June 2019; Editorial Decision 29 August 2019; Accepted 29 August 2019

Abstract

Hydroxyproline-rich glycoproteins (HRGPs) are one of the most complex families of macromolecules found in plants, due to the diversity of glycans decorating the protein backbone, as well as the heterogeneity of the protein backbones. While this diversity is responsible for a wide array of physiological functions associated with HRGPs, it hinders attempts for homology-based identification. Current approaches, based on identifying sequences with characteristic motifs and biased amino acid composition, are limited to prototypical sequences. Ragp is an R package for mining and analysis of HRGPs, with emphasis on arabinogalactan proteins. The ragp filtering pipeline exploits one of the HRGPs key features, the presence of hydroxyprolines which represent glycosylation sites. Main package features include prediction of proline hydroxylation sites, amino acid motif and bias analyses, efficient communication with web servers for prediction of N-terminal signal peptides, glycosylphosphatidylinositol modification sites and disordered regions and the ability to annotate sequences through hmmscan and subsequent GO enrichment, based on predicted Pfam domains. As such, ragp extends R’s rich ecosystem for high-throughput sequence data analyses. The ragp R package is available under the MIT Open Source license and is freely available to download from GitHub at: https://github.com/missuse/ragp.

Key words: arabinogalactan, glycoprotein annotation, HRGP, hydroxyproline-prediction, machine learning

Introduction

Hydroxyproline-rich glycoproteins (HRGPs) comprise a superfamily of diverse plant cell wall O-glycosylated proteins, ubiquitous in the plant kingdom, with a vast array of functions associated (Ellis et al. 2010; Showalter et al. 2010). HRGPs constitute almost 10% of the cell walls dry weight; embedded into cellulose/hemicellulose and pectic polysaccharides networks, they are sometimes referred to as the third network of the plant cell wall (Nguema-Ona et al. 2014). The protein backbones of HRGPs feature different Pro-rich motifs that govern hydroxylation of Pro to hydroxyproline (Hyp, O) as sites of subsequent O-glycosylation (Johnson et al. 2017). Based on the type and degree of glycosylation, HRGPs have been divided into three multigene families: highly glycosylated arabinogalactan proteins (AGPs), moderately glycosylated extensins (EXTs) and non, weakly or highly glycosylated proline rich proteins (PRPs) (Showalter et al. 2010; Hijazi et al. 2014). AGPs are involved in cell proliferation and expansion, reproductive development, embryonic patterning, growth of roots, root hairs and pollen tubes, secondary wall deposition, xylem differentiation, programmed cell death, hormone responses, abscission, abiotic and biotic stress responses as well as
The presence of N-terminal signal peptide (N-sp) is a common feature of HRGPs, since they are synthesized and post-translationally modified in the secretory pathway.

2) The amino acid composition of HRGPs is biased toward disorder-promoting residues, particularly Pro, as well as residues that comprise glycomodules. Thus, classical AGPs that are rich in Pro (P), Ala (A), Ser (S) and Thr (T) can be identified as sequences that have amino acid composition with more than 50% PAST or, for AG peptides, more than 35% PAST (Schultz et al. 2002; Showalter et al. 2010). Likewise, PRPs are characterized by amino acid composition with greater than 45% PVKCYT (Showalter et al. 2010) or PVKY (Johnson et al. 2017), while EXTs bias is defined as >45% PSKY (Johnson et al. 2017).

3) The presence of a GPI anchor signal peptide (GPI-sp), a hydrophobic C-terminal region that signals the addition of GPI, is a feature of many but not all AGPs and AG peptides and some other HRGPs (Ellis et al. 2010; Showalter et al. 2010; Simonović et al. 2016).

4) Motifs useful for mining HRGPs are virtually limited to EXT SO3–5 glycomodules, but some EXT may in addition have Y-based crosslinking motifs (Showalter et al. 2010; Johnson et al. 2017). AG-II glycomodules, being scattered dipeptides, were not often used for sequence mining, but are used by specific approaches (Ma et al. 2017). Finally, several known PRPs have PPVX[KT] and KKPCPP motifs (Showalter et al. 2010).

5) Conserved domains that are exclusively found in HRGPs are not known, except for AG peptide domain (PF06376, formerly DUF1070) that we have recently identified (Simonović et al. 2016). This domain is found at the C-terminus of some AG peptides and most of it represents GPI-sp, which is cleaved during the processing. However, nonexclusive HRGP domains present in chimeric HRGPs, and particularly in chimeric AGPs, such as fasciclin (PF02469), ns-LTP-like (PF00234), plastocyanin-like (PF02298) and several others are useful when performing homology-based HRGP mining.

Current approaches to mining HRGPs are based on some or all of the abovementioned features, and are commonly organized as pipelines for filtering protein sequences. First of such pipelines was BIO OHIO (Showalter et al. 2010), relying on all of the above HRGPs’ features, combined with expression analysis of HRGPs and enzymes involved in their synthesis. Motif and amino acid bias (MAAB) bioinformatics pipeline (Johnson et al. 2017) was recently developed not only for mining, but also for classification of HRGPs into 23 descriptive subclasses. Finally, Ma et al. (2017) proposed a decision-based approach (Python script “Finding-AGP”) dependent on several values derived from the total and partial amino acid composition and protein length, which enabled filtering potential chimeric AGPs with as low as three AG glycomodules. Even though developed for comprehensive search, these pipelines may miss short sequences, which do not exhibit pronounced amino acid bias and that contain few characteristic motifs, such as chimeric AGPs and AG peptides. Domain search can capture chimeric HRGPs only if they contain domains already known to associate with HRGPs, but not novel chimeric combinations. More importantly, none of these pipelines adopts the key HRGPs’ feature—the presence of hydroxylated proline. The protein sequence code for Pro hydroxylation is biased toward disorder-promoting residues, particularly Pro, as well as residues that comprise glycomodules. Thus, classical AGPs that are rich in Pro (P), Ala (A), Ser (S) and Thr (T) can be identified as sequences that have amino acid composition with more than 50% PAST or, for AG peptides, more than 35% PAST (Schultz et al. 2002; Showalter et al. 2010). Likewise, PRPs are characterized by amino acid composition with greater than 45% PVKCYT (Showalter et al. 2010) or PVKY (Johnson et al. 2017), while EXTs bias is defined as >45% PSKY (Johnson et al. 2017).

Current approaches to mining HRGPs are based on some or all of the abovementioned features, and are commonly organized as pipelines for filtering protein sequences. First of such pipelines was BIO OHIO (Showalter et al. 2010), relying on all of the above HRGPs’ features, combined with expression analysis of HRGPs and enzymes involved in their synthesis. Motif and amino acid bias (MAAB) bioinformatics pipeline (Johnson et al. 2017) was recently developed not only for mining, but also for classification of HRGPs into 23 descriptive subclasses. Finally, Ma et al. (2017) proposed a decision-based approach (Python script “Finding-AGP”) dependent on several values derived from the total and partial amino acid composition and protein length, which enabled filtering potential chimeric AGPs with as low as three AG glycomodules. Even though developed for comprehensive search, these pipelines may miss short sequences, which do not exhibit pronounced amino acid bias and that contain few characteristic motifs, such as chimeric AGPs and AG peptides. Domain search can capture chimeric HRGPs only if they contain domains already known to associate with HRGPs, but not novel chimeric combinations. More importantly, none of these pipelines adopts the key HRGPs’ feature—the presence of hydroxylated proline. The protein sequence code for Pro hydroxylation is biased toward disorder-promoting residues, particularly Pro, as well as residues that comprise glycomodules. Thus, classical AGPs that are rich in Pro (P), Ala (A), Ser (S) and Thr (T) can be identified as sequences that have amino acid composition with more than 50% PAST or, for AG peptides, more than 35% PAST (Schultz et al. 2002; Showalter et al. 2010). Likewise, PRPs are characterized by amino acid composition with greater than 45% PVKCYT (Showalter et al. 2010) or PVKY (Johnson et al. 2017), while EXTs bias is defined as >45% PSKY (Johnson et al. 2017).

Current approaches to mining HRGPs are based on some or all of the abovementioned features, and are commonly organized as pipelines for filtering protein sequences. First of such pipelines was BIO OHIO (Showalter et al. 2010), relying on all of the above HRGPs’ features, combined with expression analysis of HRGPs and enzymes involved in their synthesis. Motif and amino acid bias (MAAB) bioinformatics pipeline (Johnson et al. 2017) was recently developed not only for mining, but also for classification of HRGPs into 23 descriptive subclasses. Finally, Ma et al. (2017) proposed a decision-based approach (Python script “Finding-AGP”) dependent on several values derived from the total and partial amino acid composition and protein length, which enabled filtering potential chimeric AGPs with as low as three AG glycomodules. Even though developed for comprehensive search, these pipelines may miss short sequences, which do not exhibit pronounced amino acid bias and that contain few characteristic motifs, such as chimeric AGPs and AG peptides. Domain search can capture chimeric HRGPs only if they contain domains already known to associate with HRGPs, but not novel chimeric combinations. More importantly, none of these pipelines adopts the key HRGPs’ feature—the presence of hydroxylated proline. The protein sequence code for Pro hydroxylation is biased toward disorder-promoting residues, particularly Pro, as well as residues that comprise glycomodules. Thus, classical AGPs that are rich in Pro (P), Ala (A), Ser (S) and Thr (T) can be identified as sequences that have amino acid composition with more than 50% PAST or, for AG peptides, more than 35% PAST (Schultz et al. 2002; Showalter et al. 2010). Likewise, PRPs are characterized by amino acid composition with greater than 45% PVKCYT (Showalter et al. 2010) or PVKY (Johnson et al. 2017), while EXTs bias is defined as >45% PSKY (Johnson et al. 2017).

Current approaches to mining HRGPs are based on some or all of the abovementioned features, and are commonly organized as pipelines for filtering protein sequences. First of such pipelines was BIO OHIO (Showalter et al. 2010), relying on all of the above HRGPs’ features, combined with expression analysis of HRGPs and enzymes involved in their synthesis. Motif and amino acid bias (MAAB) bioinformatics pipeline (Johnson et al. 2017) was recently developed not only for mining, but also for classification of HRGPs into 23 descriptive subclasses. Finally, Ma et al. (2017) proposed a decision-based approach (Python script “Finding-AGP”) dependent on several values derived from the total and partial amino acid composition and protein length, which enabled filtering potential chimeric AGPs with as low as three AG glycomodules. Even though developed for comprehensive search, these pipelines may miss short sequences, which do not exhibit pronounced amino acid bias and that contain few characteristic motifs, such as chimeric AGPs and AG peptides. Domain search can capture chimeric HRGPs only if they contain domains already known to associate with HRGPs, but not novel chimeric combinations. More importantly, none of these pipelines adopts the key HRGPs’ feature—the presence of hydroxylated proline. The protein sequence code for Pro hydroxylation is biased toward disorder-promoting residues, particularly Pro, as well as residues that comprise glycomodules. Thus, classical AGPs that are rich in Pro (P), Ala (A), Ser (S) and Thr (T) can be identified as sequences that have amino acid composition with more than 50% PAST or, for AG peptides, more than 35% PAST (Schultz et al. 2002; Showalter et al. 2010). Likewise, PRPs are characterized by amino acid composition with greater than 45% PVKCYT (Showalter et al. 2010) or PVKY (Johnson et al. 2017), while EXTs bias is defined as >45% PSKY (Johnson et al. 2017).

Current approaches to mining HRGPs are based on some or all of the abovementioned features, and are commonly organized as pipelines for filtering protein sequences. First of such pipelines was BIO OHIO (Showalter et al. 2010), relying on all of the above HRGPs’ features, combined with expression analysis of HRGPs and enzymes involved in their synthesis. Motif and amino acid bias (MAAB) bioinformatics pipeline (Johnson et al. 2017) was recently developed not only for mining, but also for classification of HRGPs into 23 descriptive subclasses. Finally, Ma et al. (2017) proposed a decision-based approach (Python script “Finding-AGP”) dependent on several values derived from the total and partial amino acid composition and protein length, which enabled filtering potential chimeric AGPs with as low as three AG glycomodules. Even though developed for comprehensive search, these pipelines may miss short sequences, which do not exhibit pronounced amino acid bias and that contain few characteristic motifs, such as chimeric AGPs and AG peptides. Domain search can capture chimeric HRGPs only if they contain domains already known to associate with HRGPs, but not novel chimeric combinations. More importantly, none of these pipelines adopts the key HRGPs’ feature—the presence of hydroxylated proline. The protein sequence code for Pro hydroxylation is biased toward disorder-promoting residues, particularly Pro, as well as residues that comprise glycomodules. Thus, classical AGPs that are rich in Pro (P), Ala (A), Ser (S) and Thr (T) can be identified as sequences that have amino acid composition with more than 50% PAST or, for AG peptides, more than 35% PAST (Schultz et al. 2002; Showalter et al. 2010). Likewise, PRPs are characterized by amino acid composition with greater than 45% PVKCYT (Showalter et al. 2010) or PVKY (Johnson et al. 2017), while EXTs bias is defined as >45% PSKY (Johnson et al. 2017).
Hereby, we present a pipeline for mining HRGPs implemented in the R package ragp, which is distinguished from other pipelines described in the literature (Showalter et al. 2010; Johnson et al. 2017; Ma et al. 2017) by the assumption that only particular/specific prolines in a protein can be hydroxylated as a necessary prerequisite for glycosylation. Inference on the positions of these prolines is accomplished by a machine learning (ML) model trained on plant sequences with experimentally determined hydroxyprolines from the UniProtKB/Swiss-Prot data base. The Pro hydroxylation prediction is combined with previously described standard HRGP mining tools, but also with domain annotation with GO enrichment, HRGP classification via MAAB and disordered region prediction. In order to place the mentioned sequence features in a visual context, ragp also provides resources for schematic plotting of protein features. Overall, ragp is a freely available, comprehensive, fast and customizable pipeline for HRGPs filtering, annotation, classification and graphical presentation.

Results

Hydroxyproline prediction model performance

The central element of ragp workflow is the prediction of hydroxyproline positions in plant proteins. In order to train a robust model, four ML algorithms were compared in terms of their prediction performance: k-nearest neighbors (knn), random forest (rf, Breiman 2001), support vector machines (svm) with radial basis function kernel and gradient boosting by xgboost (xgb, Chen and Guestrin 2016). These algorithms were trained on plant-protein sequences with experimentally determined hydroxyprolines, or more specifically a classification task was trained on local 21-mer sequences containing the target prolines/hydroxyprolines. Since the feature set constructed to describe these local 21-mer sequences contained 1294 unique features split across 16 feature groups (Table I), several approaches to feature selection were attempted: filter selection using information gain ratio (IGr, Quinlan 1986), filter selection using minimum redundancy maximum relevance (mRMR) criterion (Peng et al. 2005), as well as wrapper selection via sequential forward search (sfs, Kohavi and John 1997), which operated not on the level of individual features but over the 16 feature sets.

To reduce bias during model selection, we used nested cross-validation (CV) where the outer loop was used to estimate model performance and the inner loop was used to tune hyperparameters by model-based optimization (MBO). The performance of the models was scored using mean area under the receiver operating characteristic (ROC) curve (AUC) on the hold out instances of the outer nested CV loop.

The performance of rf and xgb algorithms was competitive and noticeably higher compared to knn and svm (Figure 1) regardless of the feature selection approach used. Svm offered the poorest performance in terms of AUC in all cases, and especially when mRMR filter selection and no feature selection were applied. In case of knn, rf and xgb, the performance improvement when using any type of feature selection was modest compared to fitting the models on all of the 1294 features. For all four algorithms, the peak performance was achieved when sequential forward selection was used, with xgb performing slightly better (mean ± sd: 0.982 ± 0.033 AUC) compared to rf (0.976 ± 0.039 AUC), followed by knn (0.972 ± 0.029) and svm (0.965 ± 0.043 AUC). Therefore, the algorithm used to build the Hyp prediction model incorporated in ragp was xgb along with sequential forward feature selection over 16 feature sets. The feature sets selected by sfs for constructing the model were F1, F3, F4 and F10 (Table I) resulting in 308 unique features on which the model was trained. To further evaluate this model and specifically to tune the decision threshold, an additional nested CV was performed using F1, F3, F4 and F10 feature sets without feature selection. Using this resampling setup, the xgb model obtained a mean AUC score of 0.978 in the outer loop. AUC is a useful metric to evaluate models, especially in the case of imbalanced classification problems since it is independent of the decision threshold. For the model to be used in production, it is paramount to anticipate how the decision threshold affects its performance. For binary scoring classifiers, the decision threshold controls how predicted posterior probabilities are converted into class labels. With an aim to optimize the decision threshold, the relationship between several model evaluation metrics and the threshold value was examined based on the hold out predictions in the mentioned nested CV. The performance measures considered can be defined in terms of components of the confusion matrix: true positives (TP), true negatives (TN), false positives (FP) and false negatives (FN):

- Sensitivity or the true positive rate:

\[TPR = \frac{TP}{TP + FN} \]

- Specificity or the true negative rate:

\[TNR = \frac{TN}{TN + FP} \]

- Accuracy (ACC)

\[ACC = \frac{TP + TN}{TP + TN + FP + FN} \]

- Balanced accuracy (BACC)

\[BACC = \frac{TPR + TNR}{2} \]

- Matthews correlation coefficient (MCC, Matthews 1975):

\[MCC = \frac{TP \times TN - FP \times FN}{\sqrt{(TP + FP) \times (TP + FN) \times (TN + FP) \times (TN + FN)}} \]

- Cohen's kappa (kappa, Cohen 1960):

\[\kappa = \frac{p_0 - p_c}{1 - p_c} \]

where

\[p_0 = \frac{TP + TN}{N} \]

\[p_c = \frac{TP + FP}{N} \times \frac{TP + FN}{N} + \frac{TN + FN}{N} \times \frac{FP + TN}{N} \]

\[N = TP + TN + FP + FN \]
There is no single optimal decision threshold, and different performance measures favor different cutoff values (Figure 2). In terms of ACC, MCC and kappa, the model performs quite stable with a plateau ranging from 0.3 to 0.7 probability cutoff, while BACC is maximized at in the range 0.2–0.4. We chose to pick the default threshold for the model based on BACC and it is set at 0.224 in ragp. Based on the performed nested CV, the mean sensitivity at this threshold for the model based on BACC and it is set at 0.224 in ragp. The proposed hyperparameters: nrounds = 758, min_child_weight = 1.028, max_depth = 15, eta = 0.005, gamma = 0.527, colsample_bylevel = 0.986, were used to create model using the whole train set, which was evaluated using independent data (test-set sequences as described in Data preparation, Supplement 2), which was not used in any way during the model building. Using the default thresholds as set in ragp package (0.224), the model obtained 0.938 sensitivity and 0.971 specificity (with an AUC of 0.986) when applied on the test-set sequences. The limitation of this model is that it is unable to predict hydroxylation for P, which is within 10 N- or C-terminal amino acids since 21-mers were used for feature creation. For the current application, the hydroxylation of N-terminal P is of little interest, since HRGPs contain N-sp usually longer than 10 amino acids. Thus, there are no experimentally verified hydroxyprolines on the N-terminal side of secreted proteins. However, prediction of P hydroxylation on the C-terminal side would be beneficial. In order to accomplish this, we examined the impact of k-mer length on model performance by constructing the same type of feature sets as for 21-mers (F1, F3, F4 and F10) using the appropriate shorter k-mer lengths (Figure 3). Models constructed using k-mer lengths of 19, 17 and 15 amino acids provide similar performance to the model trained on 21-mers, while a notable decline in performance was observed with 13-mers (Figure 3). Therefore, we chose to utilize the model constructed using 15-mers as the supplementary model in ragp package, which is used to predict C-terminal hydroxyprolines. As for the 21-mer trained model, the dependence of several model evaluation metrics and the threshold value was examined based on the hold out predictions in nested CV (Figure 4). Using this type of evaluation, the mean sensitivity at the BACC maximizing decision threshold (0.22) was 0.946 at 0.936 specificity. Another notable threshold is the 0.95 specificity cutoff at 0.33 at which the mean sensitivity was 0.916. It should be mentioned that ragp users are free to change the threshold in order to meet their own stringency criteria.

The final model was tuned using two times repeated 3-fold CV and MBO of hyperparameters for 100 iterations on the whole train set. The proposed hyperparameters: nrounds = 758, min_child_weight = 1.028, max_depth = 15, eta = 0.005, gamma = 0.527, colsample_bylevel = 0.801, subsample = 0.825, alpha = 0.707, lambda = 1.61 and colsample_bytree = 0.986, were used to create model using the whole train set (Supplement 1), which was evaluated using independent data (test-set sequences as described in Data preparation, Supplement 2), which was not used in any way during the model building. Using the default thresholds as set in ragp package (0.224), the model obtained 0.938 sensitivity and 0.971 specificity (with an AUC of 0.986) when applied on the test-set sequences. The limitation of this model is that it is unable to predict hydroxylation for P, which is within 10 N- or C-terminal amino acids since 21-mers were used for feature creation. For the current application, the hydroxylation of N-terminal P is of little interest, since HRGPs contain N-sp usually longer than 10 amino acids. Thus, there are no experimentally verified hydroxyprolines on the N-terminal side of secreted proteins. However, prediction of P hydroxylation on the C-terminal side would be beneficial. In order to accomplish this, we examined the impact of k-mer length on model performance by constructing the same type of feature sets as for 21-mers (F1, F3, F4 and F10) using the appropriate shorter k-mer lengths (Figure 3). Models constructed using k-mer lengths of 19, 17 and 15 amino acids provide similar performance to the model trained on 21-mers, while a notable decline in performance was observed with 13-mers (Figure 3). Therefore, we chose to utilize the model constructed using 15-mers as the supplementary model in ragp package, which is used to predict C-terminal hydroxyprolines. As for the 21-mer trained model, the dependence of several model evaluation metrics and the threshold value was examined based on the hold out predictions in nested CV (Figure 4). Using this type of evaluation, the mean sensitivity at the BACC maximizing decision threshold (0.22) was 0.946 at 0.936 specificity. Another notable threshold is the 0.95 specificity cutoff at 0.33 at which the mean sensitivity was 0.916. It should be mentioned that ragp users are free to change the threshold in order to meet their own stringency criteria.
The performance on the test-set sequences for both 21-mer and 15-mer models was compared to established hydroxyproline prediction servers RF-Hydroxysite (Ismail et al. 2016) PredHydroxy (Shi et al. 2013), iHyd-PseCp (Qiu et al. 2016) and iHyd-PseAAC (Xu et al. 2014) on the corresponding 21-mer and 15-mer test sets (Figure 5 and Table II). When evaluated on the test-set sequences PredHydroxy, iHyd-PseAAC and iHyd-PseCp tend to sacrifice sensitivity (0.4–0.47) for high specificity (0.84–0.99) in prediction. This is likely caused by the under-representation of plant sequences in sets used for the training of the corresponding ML algorithms leading to performance that is mostly driven by proline hydroxylation patterns present in animal-protein sequences, which differ significantly to their plant counterparts. One notable exception is RF-Hydroxysite, which scored an AUC of 0.955 (Table II, Figure 5) on the 21-ker test set obtaining 0.969 sensitivity and 0.828 specificity at the default stringency (0.6) and maximal k-mer window size of 17. Additionally, specificity rose to 0.874 without sacrificing sensitivity when the probability threshold was set to 0.675, which is optimal for the test set used. However, the RF-Hydroxysite web server was not designed for high-throughput analyses, allowing the analyses of one protein sequence at a time. Based on the test-set sequences, the models incorporated in ragp predict_hyp function offer slightly lower sensitivity compared to RF-Hydroxysite web server and much higher specificity at the default stringency, with the benefit of high-throughput analysis.

HRGP sequence mining from 62 Phytozome proteomes

The ragp workflow was performed on 62 plant proteomes obtained from the Phytozome V12 database. The annotation data are available for download at Zenodo (doi: 10.5281/zenodo.2605302, url: https://zenodo.org/record/2605302) under the creative commons attribution 4.0 international license. The first filtering step in the ragp workflow is N-sp prediction using three web servers: SignalP4.1, TargetP1.1 (Emanuelsson et al. 2007) and Phobius (Käll et al. 2007). Based on the predictions, it is apparent that SignalP4.1 is the most conservative algorithm, while TargetP1.1 at the default settings is the most relaxed (Figure 6). Due to the relatively high discrepancy between the predictions of these three algorithms, we used a majority vote to determine if the sequence should pass the N-sp filtering step. Such an approach filtered 266135 out of 2797062 analyzed protein sequences. These potentially secreted protein sequences were subjected to Hyp prediction in the second filtering step using predict_hyp ragp function with the default model thresholds, and 69982 protein sequences.
(26.3% of secreted proteins) had three or more predicted Hyp. MAAB classification using the \textit{maab} function from \texttt{ragp} package was performed on all 266135 potentially secreted proteins and the output was examined in order to check how many hydroxyprolines are present in sequences with MAAB classes (Figure 7). A total of 3075 sequences were classified as MAAB classes 1–23 (prototypical HRGPs). The green alga \textit{Chlamydomonas reinhardtii} had the highest number (136) of these sequences, while the green alga \textit{Ostreococcus lucimarinus} did not contain any sequences classified into MAAB classes 1–23. All MAAB 1–23 classified sequences from 51 organisms contained at least three predicted hydroxyprolines, while in the remaining 10 organisms only a few (22 in total) MAAB classified sequences were not predicted to contain at least three Hyp. It should be noted that no sequences were classified as MAAB classes 13, 14 and 17.

Apart from finding prototypical HRGP sequences by MAAB classification, we also performed a scan for AGP motifs in the 266135 sequences predicted to be secreted using the \texttt{scan_ag} \texttt{ragp} function. Only predicted Hyp positions were considered when searching for AGP motifs. 36732 protein sequences from 62 plant species were found to contain at least one AGP motif span, which was defined by having at least three dipeptides (AO, TO, SO, GO, VO, OA, OT, OS, OG and OV) separated by a maximal of 10 amino acids between any two dipeptides. To identify potential hybrid AGPs, \texttt{hmmer3} software was used with Pfam 32 data base on these protein sequences (Figure 8). The most frequent identified domains in AGP motif containing sequences are the protein kinase (PK) and protein tyrosine kinase (PTK) domains, which are jointly identified and overlapping in the same sequences (Figure 8A), they are followed by leucine rich repeat domains (LRR_8, LRRNT_2 and LRR_4), which are often found with PK/PTK domains in the same sequences. Domains such as plant lipid-transfer proteins (Tryp_alpha_amy and LTP_2), plastocyanin-like (Cu_bind_like) and fasciclin are known to be a part of chimeric AGPs, while others such as X8 and Glycoside hydrolase family 17 (Glyco_hydro_17) have recently been proposed to be affiliated with AGPs based on sequence analyses (Ma \textit{et al.}, 2017). It is noteworthy that the most frequently identified potential chimeric AGP domain—the PK/PTK domain has eluded experimental evidence for linkage with AGPs in the literature. Structure of several of the mentioned PTKs (Figure 9), visualized using the \texttt{ragp} function \texttt{plot_prot}, suggests that the Hyp containing AG motifs are on the extracellular side while the kinase domains are on the intracellular...
they represent only a small portion of all possibilities. Since it is likely many of these features represent no value to the model, and in a best case scenario would just serve to prolong the computation time needed for predictions, several feature selection methods were applied: two filter methods, one using IGr, and the other using mRMR, as well as a wrapper method sfs. For clarity, the difference between these types of feature selection methods will be mentioned. Filter methods operate by assigning an importance value to each feature based on some metric (IGr and mRMR were used here), which is external to the ML algorithm being trained. Based on these values, the features can be ranked and a feature subset of the top ranking features can be selected. Wrapper methods select features based on the ML algorithm performance during resampling, in short by using sfs in the current setup first the performance of the ML algorithm was assessed using individual feature sets and the feature set providing the highest performance was chosen, then the algorithm performance was evaluated using the selected feature set and each of the remaining ones; this proceeded until the performance started to decline with the addition of feature sets. Sfs was performed over feature sets (Table I) and not over individual features for two main reasons: 1. computation cost is greatly reduced when 16 feature sets are used instead of 1294 features; 2. two of the utilized ML algorithms—rf and xgb perform internal feature selection during model fitting, therefore, a fine grained wrapper selection would most likely not benefit these two algorithms.

In order to reduce bias when evaluating model performance special consideration was taken when constructing the resampling procedure:

1. When modeling data derived from biological sequences a usual step is removal of homolog sequences to reduce the overestimation of prediction accuracy in CV. This overestimation is caused by the fact that highly homologous sequences (k-mers in this case) can be found both in the training and the hold out instances during CV. However, removal of homologs inevitably leads to loss of information, especially in the current application since many k-mers from the same protein sequence are highly overlapping. To ameliorate these issues, we used two complementary approaches:

 a. We performed removal of homolog k-mers based on Levenshtein distance in a stepwise manner, so that no two k-mers share more than 90% homology (in the 21-mer set, and slightly less for shorter k-mers). Further homolog removal (<90% homology) greatly reduced the training set and increased class imbalance, so we decided against it.

 b. Protein blocked k-fold CV, where all k-mers from the same protein are either used for model building or hold out predictions during CV was used for tuning and evaluation of model performance. In our opinion, this produces a more unbiased estimation of performance, compared to nonblocked resampling, closely resembling the model use case scenario.

2. In order to obtain truthful performance estimates for a learner, all parts of model building should be included in the resampling (Varma and Simon 2006; Cawley and Talbot 2010). In this study, nested CV was performed to estimate model performance. The inner loop was used to tune the algorithm hyperparameters, while the outer loop was used to estimate the performance. Such an approach could introduce some positive bias in the case of wrapper selection since the outer resampling loop is not used solely for the purpose of estimating performance but is also used to drive the feature selection. In case of wrapper selection, a com-
Fig. 4. The effect of decision threshold on 15-mer model performance in nested CV. The model was trained using F1, F3, F4 and F10 feature sets (Table I) built using 15-mers. The mean, median, 25% and 75% quantiles for each metric are shown. The metrics were calculated based on the hold out predictions in the nested CV outer loop (three times repeated 10-fold CV). The inner loop, which was used for hyperparameter tuning by MBO, consisted of two times repeated 3-fold CV. Horizontal dashed lines correspond to decision thresholds 0.220 which maximizes balanced accuracy and 0.333 which represents the 0.95 specificity cutoff (based on the mean).

A completely unbiased evaluation approach would require three nested resampling loops: inner loop for hyperparameter tuning, middle loop for feature selection and outer loop for model evaluation. Due to computation cost, this was not performed in the current study.

All of the feature selection methods compared resulted in a slight accuracy gain when contrasted to models without feature selection for all tested algorithms. The highest performing model based on the resampling performance was constructed using sfs coupled with xgb algorithm (Figure 1). This model was thoroughly evaluated by additional nested CV using previously selected features (Figure 2) and by using a test set (Figure 5), and the results show that it obtains state-of-the-art performance for the task at hand. This is not to say the model cannot be improved by using another algorithm, set of features, set of hyperparameters or by stacking several models. However, in our opinion, the biggest improvement in model generalization would be achieved if more sequences and thus a higher diversity of sequences are used for training. As the pool of plant sequences with experimentally determined Hyp positions increases the model generalization power will as well.

ragp workflow: Hydroxyproline aware HRGP filtering and analysis

The key feature of HRGPs is the presence of hydroxyprolines which represent glycosylation sites (Showalter et al. 2010). While many HRGP sequences can be mined based on biased amino acid composition, or the presence of certain amino acid motifs, there exists an abundance of chimeric proteins comprised from specific domains and HRGP motifs which are much harder to identify based on the mentioned features. This is especially true for AGPs since they do not have well-defined motif contexts—it is not known how many AG glycomodules are required and how far apart in the sequence are they allowed to exist for the motif to be glycosylated. Mining for such sequences would be straightforward if the positions of hydroxyprolines were known in advance, which is unfortunately not possible due to the high disproportion in cost and effort between nucleic acid and protein sequencing. A possible solution is to utilize currently available knowledge to predict hydroxyproline positions in proteins sequences deduced from next generation sequencing experiments. Ragp workflow exploits this idea by incorporating a ML model to infer probable Hyp sites in protein sequences. The ragp workflow exploits this idea by incorporating a ML model to infer probable Hyp sites in protein sequences.
workflow (Figure 10) consists of two layers: the filtering layer in which hydroxyproline containing secreted proteins are filtered and the analysis layer in which the filtered sequences are analyzed for which hydroxyproline containing secreted proteins are filtered and function are predicted. The mentioned ML model is built into the ragp domains, disordered regions and potential GPI attachment sites application is available at: https://ragp.shinyapps.io/Rapp/, which is also on GitHub (github.io/ragp/) with tutorials on HRGP filtering, analysis and prediction. Many HRGPs are secreted proteins, so ragp functions offer several additional benefits for HRGP sequence annotation tasks and can be utilized for protein-function prediction.

It should be noted that we designed ragp prioritizing ease of use: the package functions have a consistent input and accept a range of input objects—from basic R data structures to FASTA files. The default values for additional function arguments were carefully chosen, and in most use cases can be left as is. The function outputs are also basic R data structures: data frames or lists, which can be manipulated by many popular R packages, according to user preference.

The ragp workflow was performed on predicted protein sequences from 62 plant proteomes to gain insights in both the variability of HRGP sequences in the plant kingdom as well as to gain impressions of the workflow itself. The annotation data are available for download at https://zenodo.org/record/2605302. The hydroxyproline aware workflow identifies 99.29% of prototypical HRGP sequences (MAAB classes 1–23) compared to performing MAAB classification without Hyp prediction, capturing all prototypical HRGP sequences in 51 out of the 62 analyzed plant proteomes. On the other hand, a great number of nonprototypical HRGP sequences are implied by the workflow, for instance around 30000 potential chimeric AGPs were found in the 62 analyzed plant proteomes. On the other hand, a great number of nonprototypical HRGP sequences are implied by the workflow, for instance around 30000 potential chimeric AGPs were found in the 62 analyzed plant proteomes. On the other hand, a great number of nonprototypical HRGP sequences are implied by the workflow, for instance around 30000 potential chimeric AGPs were found in the 62 analyzed plant proteomes. On the other hand, a great number of nonprototypical HRGP sequences are implied by the workflow, for instance around 30000 potential chimeric AGPs were found in the 62 analyzed plant proteomes.
Fig. 5. Comparison of several Hyp prediction algorithms with ragp models. ROC curves obtained by predicting proline hydroxylation on the 21-mer and 15-mer test-set sequences using RF hydroxysite, PredHydroxy and ragp models. AUC for each model is indicated in the color legend. This figure is available in black and white in print and in color at Glycobiology online.

Fig. 6. Concordance of N-terminal signal peptide predictions. Euler diagram of N-terminal signal peptide (N-sp) predictions by Phobius (http://phobius.sbc.su.se/), SignalP 4.1 (http://www.cbs.dtu.dk/services/SignalP-4.1/) and TargetP 1.1 (http://www.cbs.dtu.dk/services/TargetP/). A total of 2797062 protein sequences from 62 plant species (Phytozome V12, https://phytozome.jgi.doe.gov/pz/portal.html) was used. 266135 protein sequences were predicted to contain an N-sp by at least two web servers.

Conclusion

ragp represents the first implementation of a HRGP mining workflow in the R statistical language. It implements common strategies for finding and classifying HRGP sequences along with an additional step in which proline hydroxylation is estimated, which leads to increased specificity of the filtered sequences. Since R is one of the leading bioinformatics platforms, the filtered sequences can be further analyzed by many specialized packages using the same environment.

Materials and methods

Predicting proline hydroxylation

Data preparation. With the aim to train a ML algorithm to predict the probability of proline hydroxylation in plant proteins, we initially acquired 40 plant-protein sequences with experimentally determined hydroxyprolines from the manually curated UniProtKB/Swiss-Prot data base (UniProt release 2017_07, www.uniprot.org) (The UniProt Consortium 2017). After removal of nonsequenced regions, the ratio Hyp/Pro in this set was close to two. Since we trust, this ratio does not reflect the true ratio of these amino acids in secreted plant proteins, an additional set of 269 plant sequences from the UniProtKB/Swiss-Prot data base with experimentally determined N-sp and without reported hydroxyprolines was included. This Hyp-negative group included only secreted proteins, in order to train the model on sequences that closely resemble ones on which the model would be used. The literature describing the sequencing for each protein was thoroughly checked and crossreferenced to the UniProtKB/Swiss-Prot annotation and nonsequenced and ambiguous regions (which had discrepancies between different sources) were removed in order to minimize introduction of false labels that could occur if some sequences contained Hyp which escaped detection, or if they alternatively had falsely labeled Hyp. After this local 21-mer sequences, ±10 amino acids around the target Hyp/Pro were extracted and duplicated 21-mers were removed. Redundancy removal (homolog reduction) was performed based on Levenshtein predictor (21-mer AUC, 15-mer AUC)

- predict_hyp (0.986, 0.986)
- PredHydroxy (0.827, 0.818)
- RF Hydroxysite (0.955, 0.953)

kmer
- 15
- 21
Fig. 7. MAAB classified HRGP sequence content in 62 Phytozome proteomes. Number of sequences classified as prototypical HRGPs by MAAB classification (MAAB classes 1–23) in the 62 analyzed plant proteomes (O. lucimarinus did not contain any sequences classified into MAAB classes 1–23). Sequences were grouped (fill legend) based on the number of predicted hydroxyprolines.
Fig. 8. Domain and hydroxyproline distribution in AG motif containing sequences. (A) Top 20 domains by occurrence identified in sequences with AGP motifs. Domain identification was performed using hmmer3 software and Pfam 32 database. Domains with independent E-value < 0.01 were considered and each domain was counted once per sequence. (B) Box plots of the number of predicted hydroxyprolines in AG motifs in sequences containing at least one of the top 20 domains by occurrence.
Fig. 9. Schematic structure of several Arabidopsis PTK detected to contain AG motifs. Protein structure was visualized using the ragp function `plot_prot`. The diagram contains the following elements: TM regions are shown in yellow, extra-cellular regions are indicated by the dashed line above the sequences, while intracellular regions are indicated by the dashed line below the sequence (as predicted by Phobius—`get_phobius` ragp function). Signal peptides (as predicted by SignalP—`get_signalp` ragp function) are indicated by the thick red line on the N-terminal side. Hydroxyprolines (as predicted by `predict_hyp` ragp function) are indicated by vertical dark gray lines. AG glycomodule spans (as predicted by `scan_ag` ragp function) are indicated by the light gray background. Domains (as predicted by hmmscan—`get_hmm` ragp function) are indicated by rectangles with an appropriate fill as indicated in the legend. This figure is available in black and white in print and in color at Glycobiology online.
distance (count of the minimal number of amino acid substitutions, insertions or deletions required to turn one k-mer sequence to another) calculated using the R package stringdist (van der Loo 2014). Redundancy removal was performed separately for the Hyp positive and Hyp negative group of 21-mers, and proceeded in a stepwise manner by eliminating sequences that differed from others in exactly one position based on Levenshtein distance. Elimination was performed one 21-mer sequence at a time by removing the sequence which had the maximum number of homologs and re-evaluation after each 21-mer sequence was removed similarly as in Schwartz et al. (2009). This resulted in a set of 225 protein sequences with 1093 21-mers, which shared at most 90% sequence identity around the target Hyp/Pro. These 225 protein sequences were then split at random to 80% train set (181 unique protein sequences with 150 hydroxylated sites and 737 nonhydroxylated sites) and 20% test set (44 unique protein sequences not present in the train set with 32 hydroxylated sites and 174 nonhydroxylated sites). The 21-mer train and test sets are provided as Supplements 1 and 2. In order to evaluate the impact of k-mer length on model performance, the 21-mer sequences were reduced to 19, 17, 15 and 13-mers centered on the target Hyp/Pro and for each group homolog reduction was performed as described above for the 21-mer set. The 15-mer and test sets which were used to create and evaluate the supplementary model in ragp package are provided as Supplements 3 and 4.

Feature engineering. A huge number of various numerical representations can be used to encode protein sequences yielding a very high-dimensional modeling task. For the current task, 16 feature sets were investigated. The first feature set (F1) was constructed by one-to-one mapping of six common uncorrelated amino acid physicochemical properties (Normalized Average Hydrophobicity—CIDH920105, Average Flexibility Indices—BHR880101, Free Energy of Solution in Water [kcal/mole]—CHAMS820102, Residue Volume—BIGC670101, Steric Parameter—CHAMS10101 and Relative Mutability—DAYM780201) to amino acids surrounding the target Hyp/Pro resulting in a feature set of 120 dimensions (6 properties • 20 amino acids, 10 on each proline side in 21-mers). The second feature set (F2) was constructed by one to one mapping of five multidimensional patterns obtained by multiple dimension scaling of amino acid physicochemical attributes (Atchley et al. 2005) to amino acids in 21-mers resulting in a feature set of 100 dimensions (5 properties • 20 amino acids). Features F3—F8 represent autocorrelation descriptors: normalized Moreau-Broto autocorrelation descriptors calculated from the physicochemical properties used for F1 (F3) and from the multidimensional patterns used for F2 (F4); Moran autocorrelation descriptors (F5 calculated from attributes used for F1 and F6 calculated from attributes used for F2) and Geary autocorrelation descriptors (F7 calculated from attributes used for F1 and F8 calculated from attributes used for F2). The dimensions of these feature sets are equal to no. attributes • lag. Features F9—F10 represent sequence-order descriptors calculated based on two physicochemical distance matrices: Schneider-Wrede (Schneider and Wrede 1994) and Grantham physicochemical distance matrix (Grantham 1974): sequence-order-coupling number (Chou 2000) (F9) and Quasisequence-order descriptors (Chou 2000) (F10) with weighting factor set to 0.1. The remaining feature sets consisted of: Conjoint Triad Descriptor (F11) (Shen et al. 2007), Pseudo-Amino Acid Composition (Chou 2005) with lambda 20 (F12), Amphiphilic Pseudo-Amino Acid Composition (Chou 2005) with lambda 20 (F13), Composition (F14), Transition (F15) and Distribution (F16) descriptors (Dubchak et al. 1995). The feature sets are summarized in Table I. Features F3–16 were constructed utilizing the R package protr (Xiao et al. 2015), while F1 and F2 were constructed using code developed for ragp package.

Model training. The performance of several ML algorithms to accurately predict Pro hydroxylation was evaluated: rf (Breiman 2001) as implemented in the R package ranger (Wright et al. 2017), gradient boosted trees as implemented in the R package xgb (Chen et al. 2016), svm with radial basis function kernel as implemented in the R package e1071 (Meyer et al. 2018), knn as implemented in the R package kknn (Schliep and Hechenbichler 2016). The training of these algorithms was performed using the mlr package (Bischl et al. 2016) framework. To explore the hyperparameter space of the mentioned algorithms, MBO, also known as Bayesian optimization,
was performed utilizing the R package mlrMBO (Bischl et al. 2017). For rf, three hyperparameters were optimized: number of trees grown in the range 50–2000; step-size shrinkage (eta) 0.005–0.2; maximum tree depth (max_depth) 3–15; subsample ratio of columns when constructing each tree (colsample_bytree) 0.3–1, subsample ratio of columns for each split (colsample_bylevel) 0.3–1; subsample ratio of the training instance (subsample) 0.3–1; regularization parameters lambda, alpha and gamma 0–3; minimum sum of instance weight (hessian) needed in a child (min_child_weight) 1–10. For kkn, two hyperparameters were optimized: Number of neighbors considered (k) 1–50; and the parameter defining the Minkowski distance 0.5–8; additionally, the data were scaled to zero mean and unit variance in each training instance of the knn model evaluation. For every algorithm except kkn which does not support class weights, the balance of positive and negative class weights was set to the ratio of negative to positive cases in the train set—73/7150 for 21-mers. To obtain solidly performing hyperparameter combinations MBO was performed for 100 iterations, using mean AUC of the hold out folds in CV as selection metric. Kriging was utilized as secondary learner used to propose new hyperparameter combinations during MBO (default in mlrMBO package).

Model evaluation and feature selection. In order to optimize the algorithm performance using a highly dimensional feature space (1294 unique features for 21-mer sequences), we compared three types of feature selection; two filter selection approaches based on IGr (Quinlan 1986) and mRMR (Peng et al. 2005), as well as wrapper selection using sfs, which operated on the 16 described feature sets (F1—F16) and not on individual features. In order to select the optimal number of the top ranking features for the filter feature selection methods, the absolute number of features selected was tuned jointly with other algorithm hyperparameters in the range 20–700. Model evaluation was performed using nested CV. The inner CV loop which consisted of two times repeated 3-fold CV was used for hyperparameter tuning, while the outer CV loop used for evaluation of performance consisted of 10-fold CV. In all cases, protein blocked CV was used, where all k-mers from the same protein are either used for model building or hold out predictions during CV. Model performance was scored using the AUC metric. Following nested CV, the highest performing modeling pipeline was additionally evaluated using nested CV with three times repeated 10-fold CV outer loop and two times repeated 3-fold CV inner loop for hyperparameter tuning via MBO and the predictions on the hold out instances were used to evaluate the impact of decision threshold on several performance metrics: sensitivity, specificity, accuracy, balanced accuracy, Cohen’s kappa (Cohen 1960) and MCC (Matthews 1975). Finally, the chosen algorithm was trained on the whole train set using hyperparameters obtained by MBO for 100 iterations using two times repeated 3-fold CV, and this model was evaluated on the test-set sequences using the prechosen decision threshold.

Evaluation of k-mer length. To investigate the impact of reducing the size of k-mers on model performance, we truncated the 21-mer sequences to 19 (9 on each target P side), 17, 15 and 13 amino acids. After obtaining training sets for each k-mer size, stepwise homolog removal was performed as described above for the 21-mer data set. The features and ML algorithm which produced the highest performing model when trained on 21-mers were used to create models based on the mentioned k-mer sizes. These models were evaluated using protein blocked nested CV as described previously. The shortest well performing k-mer size was chosen to train a supplementary model for prediction of C-terminal hydroxyprolines. Threshold tuning, final model training and evaluation on the test-set sequences were performed as for the 21-mer model.

Communication with external prediction web servers
N-terminal signal peptide and GPI lipid anchoring prediction. N-asp prediction in ragp is achieved by efficient communication with TargetP, SignalP (Emanuelsson et al. 2007) and Phobius (Käll et al. 2007) web servers using the functions get_targetp, get_signalp and get_phobius. Phobius is also used to predict locations of transmembrane (TM) regions. Prediction of GPI lipid anchoring positions (omega sites) is achieved by querying big Pi plant predictor (Eisenhaber et al. 2003) and PredGPI (Pierleoni et al. 2008) web servers thorough the functions get_big_pi and get_pred_gpi. These functions utilize the R package htt (Wickham 2018) to send data to the corresponding servers via the POST method, and the R package xml2 (Wickham et al. 2018) to parse the server response into R data structures.

Domain and disorder prediction. Domain annotation in ragp is achieved via functions get_hmm which queries hmmscan web server (Finn et al. 2011) and pfam2go which maps PFAM annotations to GO terms (using http://geneontology.org/external2go/pfam2go mapping). To identify potential disordered regions in proteins ragp contains get_espritz function which queries ESpritz (Walsh et al. 2012) web server. These functions also utilize htt and xml2 R packages.

HRGP classification and regex-based filtering
Classification of prototypical HRGPs in ragp is achieved using the MAAB classification scheme (Johnson et al. 2017) through the function maab. The MAAB classification relies on knowledge if the protein is bound to the membrane by a GPI anchor. The maab function offers the ability to internally query Big Pi Plant Predictor or PredGPI in order to remove ambiguities in classes. For non-prototypical AGPs, filtering in ragp is based on finding localized clusters of AG glycomodules using regular expressions, which can incorporate knowledge on hydroxyproline positions in sequences. This is achieved using the function scan_ag, which constructs regular expressions based on user input and allows for customization of the type and number of AG glycomodules, the number of amino acids between AG glycomodules, as well as masking of EXT motifs.

Protein feature visualization
Visualization of protein features acquired via ragp can be achieved using the function plot_prot. This function takes as input protein sequences and outputs a protein structure diagram. Domains, N-terminal signal peptides, TM regions, extracellular and intracellular protein regions, GPI attachment sites, AG glycomodule spans, hydroxyproline positions and disordered regions can be shown. The output is a ggplot2 (Wickham 2016) object, which can be further manipulated to customize the theme, colors and plot annotations.
The source code for all ragp functions is available at https://github.com/missuse/ragp/tree/master/R

Annotation of 62 plant proteomes
ragp workflow was performed on 62 plant proteomes obtained from Phytozome V12 database (https://phytozome.jgi.doe.gov/pz/portal.html—PhytozomeV12_unrestricted). The filtering and analysis part of the workflow were performed as described in the discussion section. Briefly, sequences predicted to contain an N-sp by a majority vote between Phobius, SignalP 4.1 and TargetP 1.1 servers were filtered. To obtain N-sp predictions from these servers, ragp functions get_phobius, get_signalp and get_targetp with default settings were used. Hyp positions in these sequences were predicted using predict_hyp ragp function. MAAB classification was performed (using maab ragp function) on all N-sp containing sequences and the number of predicted Hyp per sequence was augmented to this classification, so that comparison between MAAB classification with and without Hyp prediction can be performed. AG motifs were identified using scan_ag ragp function. Criteria for a motif was the presence of at least three dipeptides AO, SO, TO, GO, VO, OA, OS, OT, OG and OV, which are no more than 10 amino acids apart, where O are the predicted Hyp in the sequences. For the motif count, EXT motifs (spans of at least three P or O) were masked. Domains present in AGP motif containing sequences were detected using hmmer3 3.1b2 (http://hmmer.org/download.html) using Pfam 32 hidden Markov model database (ftp://ftp.ebi.ac.uk/pub/databases/Pfam/releases/Pfam32.0/). Annotations are available at Zenodo platform for research sharing (doi: 10.5281/zenodo.2605302, url: https://zenodo.org/record/2605302).

Supplementary data
Supplementary data for this article is available online at http://glycob.oxfordjournals.org/.

Funding
This work was supported by Ministry of Education, Science and Technological Development of the Republic of Serbia [Project numbers TR31019, OI173024].

Acknowledgements
The authors would like to thank Bob Rudis (Rapid7, Boston, MA, USA), Aleksandar Radasavljević (Endava, Belgrade, Serbia) and Thomas Shafee (La Trobe University, Melbourne, Australia) for helpful suggestions during ragp development.

Conflict of interest statement
None declared.

Abbreviations
AGP, arabinogalactan protein
AUC, area under the receiver operating characteristic curve
EXT, extensine
F1—F16, Feature sets used for model training (details in Table 1)
GPI, Glycosylphosphatidylinositol
GPI-sp, glycosylphosphatidylinositol anchor signal peptide
HRGP, Hydroxyproline-rich glycoprotein
IGr, information gain ratio criterion for feature selection (Quinlan 1986)
Knn, k-nearest neighbors machine learning algorithm
MAAB, motif and amino acid bias (an approach to HRGP classification (Johnson et al. 2017))
mRMB, minimum redundancy maximum relevance criterion for feature selection (Peng et al. 2005)
N-sp, N terminal secretory signal sequence
PRP, proline rich protein
rf, random forest machine learning algorithm (Breiman 2001)
ROC, receiver operating characteristic curve
sfs, sequential forward selection approach to feature selection
svm, support vector machine machine learning algorithm
xgb, xgboost gradient boosting machine learning algorithm (Chen and Guestrin 2016)

References
Achley WR, Zhao J, Fernandes AD, Drüke T. 2005. Solving the protein sequence metric problem. Proc Natl Acad Sci USA. 102:6395–6400.
Battaglia M, Solorzano RM, Hernandez M, Cuellar-Ortiz S, Garcia-Gomez B, Marquez J, Covarrubias AA. 2007. Proline-rich cell wall proteins accumulate in growing regions and phloem tissue in response to water deficit in common bean seedlings. Planta. 225:1121–1133.
Bischi B, Lang M, Kotthoff L, Schiffer J, Richter J, Studerus E, Casalicchio G, Jones ZM. 2016. mfr: Machine learning in R. J Mach Learn Res. 17:1–5.
Bischi B, Richter J, Bossek J, Horn D, Thomas J, Lang M. 2017. mfrMBO: A Modular Framework for Model-Based Optimization of Expensive Black-Box Functions. http://arxiv.org/abs/170303373.
Breiman L. 2001. Random forests. Mach Learn. 45:5–32.
Cawley GC, Talbot NLC. 2010. On over-fitting in model selection and subsequent selection bias in performance evaluation. J Mach Learn Res. 11:2079–2107.
Chen T, Guestrin C. 2016. XGBoost: A scalable tree boosting system. CoRR abs/1603.02754:02754.
Chen T, He T, Benesty M, Khotilovich V, Tang Y, Cho H, Chen K, Mitchell R, Cano I, Zhou T, et al. 2018. xgboost: Extreme Gradient Boosting. R Package Version 0.71.2. https://CRAN.R-project.org/package=xgb
Chou KC. 2000. Prediction of protein subcellular locations by incorporating quasi-sequence-order effect. Biochem Biophys Res Commun. 278:477–483.
Chou KC. 2001. Prediction of protein cellular attributes using pseudo-amino acid composition. Proteins, 43:246–255.
Chou KC. 2005. Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes. Bioinformatics, 21:10–19.
Cohen J. 1960. A coefficient of agreement for nominal scales. Educ Psychol Mes. 20:37–46.
Duhchak I, Muchnik I, Holbrook SR, Kim SH. 1995. Prediction of protein folding class using global description of amino acid sequence. Proc Natl Acad Sci USA. 92:8700–8704.
Eisenhaber B, Wildpaner M, Schultz CJ, Borner GHH, Dupree P, Eisenhaber F. 2003. Glycosylphosphatidylinositol lipid anchoring of plant proteins. Sensitive prediction from sequence- and genome-wide studies for Arabidopsis and Rice. Plant Physiol. 133:1691–1701.
Ellis M, Egelund J, Schultz CJ, Bacic A. 2010. Arabinogalactan-proteins: Key regulators at the cell surface. Plant Physiol. 153:403–419.
Emanuelsson O, Brunak S, von Heijne G, Nielsen H. 2007. Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc. 2:953.
Finn RD, Clements J, Eddy SR. 2011. HMMER web server: Interactive sequence similarity searching. Nucleic Acids Res. 39 Web Server issue. doi: 10.1093/nar/gkr1367.
Grantham R. 1974. Amino acid difference formula to help explain protein evolution. Science. 185:862–864.

Hijazi M, Velasquez SM, Jamet E, Estevez JM, Albennie C. 2014. An update on post-translational modifications of hydroxyproline-rich glycoproteins: Toward a model highlighting their contribution to plant cell wall architecture. Front Plant Sci. 5:395.

Ismail HD, Newman RH, Kc DB. 2016. RF-Hydroxysite: A random forest based predictor for hydrolization sites. Mol BioSyst. 12:2427–2435.

Johnson KL, Cassin AM, Lonsdale A, Bacic A, Doblin MS, Schultz CJ. 2017. A motif and amino acid bias bioinformatics pipeline to identify hydroxyproline-rich glycoproteins. Plant Physiol. 174:886–903.

Käll L, Krogh A, Sonnhammer ELL. 2007. Advantages of combined transmembrane topology and signal peptide prediction—The Phobius web server. Nucleic Acids Res. 35:W429–W432.

Kawashima S, Kanchisa M. 2000. AIndex: Amino acid index database.

Kohavi R, John GH. 1997. Wrappers for feature subset selection. Artif Intell. 97:273–324.

Ma Y, Yan C, Li H, Wu W, Liu Y, Wang Y, Chen Q, Ma H. 2017. Bioinformatics prediction and evolution analysis of arabinogalactan proteins in the plant kingdom. Front Plant Sci. 8:66.

Matthews BW. 1975. Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim Biophys Acta, Protein Struct. 405:442–451.

Meyer D, Dimitriadou R, Hornik K, Weingessel A, Leisch F. 2018. e1071: Misc functions of the department of statistics, probability theory group (formerly: E1071), TU Wien. R Package Version 1.7-0. https://CRAN.R-project.org/package=e1071

Nguema-Ona E, Vicré-Gibouin M, Gotté M, Plancot B, Lerouge P, Bardor M, Meyer D, Dimitriadou R, Hornik K, Weingessel A, Leisch F. 2018. e1071: Misc functions of the department of statistics, probability theory group (formerly: E1071), TU Wien. R Package Version 1.7-0. https://CRAN.R-project.org/package=e1071

Nucleic Acids Res. 35:W429–W432.

Peng H, Long F, Ding C. 2005. Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell. 27:1226–1238.

Pierleoni A, Martelli PL, Casadio R. 2008. PredGPI: A GPI-anchor predictor. BMC Bioinf. 9:392.

Qiu WR, Sun BQ, Xiao X, Xu ZC, Chou KC. 2016. iHyd-PseCp: Identify hydroxyproline and hydroxylysine in proteins by incorporating sequence-dependent propensity into pseudo amino acid composition. Int J Mol Sci. 15:7594–7610.

Schwartz D, Chou MF, Church GM. 2009. Predicting protein post-translational modifications using meta-analysis of proteome scale data sets. Mol Cell Proteomics. 8:365–379.

Seifert GJ, Roberts K. 2007. The biology of arabinogalactan proteins. Annu Rev Plant Biol. 58:137–161.

Shen J, Zhang J, Luo X, Zhu W, Yu K, Chen K, Li Y, Jiang H. 2007. Predicting protein-protein interactions based only on sequences information. Proc Natl Acad Sci USA. 104:4337–4341.

Shi SP, Chen X, Xu HD, Qiu JD. 2015. PredHydroxy: Computational prediction of protein hydroxylation site locations based on the primary structure. Mol BioSyst. 11:819–825.

Showalter AM, Basu D. 2016. Extensis and arabinogalactan-protein biosynthesis: Glycosyltransferases, research challenges, and biosensors. Front Plant Sci. 7:814–814.

Showalter AM, Keppler B, Lichtenberg J, Gu D, Welch LR. 2010. A bioinformatics approach to the identification, classification, and analysis of hydroxyproline-rich glycoproteins. Plant Physiol. 153:485–513.

Simonović A, Dragišević M, Bogdanovic M, Trifunović-Momčilov M, Subotić A, Todorović S. 2016. DUF1070 as a signature domain of a subclass of arabinogalactan peptides. Arch Biochem Biophys. 68:737–746.

Simonović A, Filipović B, Trifunović M, Malkov S, Milinković V, Jevremović S, Subotić A. 2015. Plant regeneration in leaf culture of Centaurea erythraea Rafn. Part 2: The role of arabinogalactan proteins. Plant Cell Tiss Org Cult. 121:721–739.

Tan L, Showalter AM, Egeland J, Hernandez-Sanchez A, Doblin MS, Bacic A. 2012. Arabinogalactan-proteins and the research challenges for these enigmatic plant cell surface proteoglycans. Front Plant Sci. 3:140.

The UniProt Consortium. 2017. UniProt: The universal protein knowledgebase. Nucleic Acids Res. 45:D158–D169.

van der Loo MPJ. 2014. The stringdist package for approximate string matching. The R J. 6:111–122.

Varma S, Simon R. 2006. Bias in error estimation when using cross-validation for model selection. BMC Bioinf. 7:91–91.

Walsh I, Martin AJM, Di Domenico T, Tosatto SCE. 2012. ESpritz: Accurate and fast prediction of protein disorder. Bioinformatics. 28:503–509.

Wickham H. 2016. ggplot2: Elegant Graphics for Data Analysis. New York: Springer-Verlag.

Wickham H. 2018. http: Tools for Working with URLs and HTTP. R Package Version 1.4.0. https://CRAN.R-project.org/package=httr

Wickham H, Hester J, Ooms J. 2018. xml2: Parse XML. R Package Version 1.2.0. https://CRAN.R-project.org/package=xml2

Wright MN, Ziegler A. 2017. Ranger: A fast implementation of random forests for high dimensional data in C++ and R. J Stat Softw. 77:1–17.

Xiao N, Cao DS, Zhu MF, Xu QS. 2015. Protto/ProttoWeb: R package and web server for generating various numerical representation schemes of protein sequences. Bioinformatics. 31:1857–1859.

Xu Y, Wei X, Shao XJ, Deng NY, Chou KC. 2014. iHyd-PseAAC: Predicting hydroxyproline and hydroxylysine in proteins by incorporating dipeptide position-specific propensity into pseudo amino acid composition. Int J Mol Sci. 15:7594–7610.