Leakage mitigation in NW FET using negative Schottky junction drain and its process variation analysis

Mohd Rizwan Uddin Shaikh1 · Sajad A. Loan1 · Abdullah G. Alharbi2

Received: 2 August 2021 / Accepted: 7 October 2021 / Published online: 10 November 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
In this work, a Schottky junction on the drain side employing low workfunction (WF) metal is proposed as a method to suppress the OFF-state leakage in nanowire (NW) field-effect transistor (FET). Instead of a highly n+ doped drain, low WF metal with negative electron Schottky barrier height (SBH) as a drain minimizes the lateral band-to-band tunneling (L-BTBT) considerably. L-BTBT is the movement of carriers (holes) from the drain conduction band into the channel valence band during the OFF-state. Impact of varying WF at channel–drain junction on the device characteristics is studied. It is observed that SBH \(\leq 0 \) eV is required to mitigate L-BTBT compared to the conventionally doped and junctionless (JL) NW counterpart. Furthermore, unlike L-BTBT, leakage in NW Schottky drain (SD) comprises of holes tunneling through the SB from the metal drain into the channel and is termed as the lateral SB tunneling (L-SBT). In contrast with JL NW FET, the process variation immunity (varying channel doping, \(N_{Ch} \) and NW diameter, \(d_{NW} \)) and the ON-state current of the proposed device are not compromised at the expense of lower OFF-state L-SBT. Instead, the device is less susceptible to process variations and retains the ON-state performance of the NW MOSFET. For a ± 20% change in \(N_{Ch} \), \(\Delta I_{OFF}/I_{OFF} \) of 7% compared to 97% in NW JL FET is observed.

Keywords Junctionless (JL) · Nanowire (NW) · Schottky barrier height (SBH)

1 Introduction
Till now, low drive current due to band-to-band (BTBT) tunneling mechanism in Tunnel FET has hampered the replacement of MOSFETs in low power circuits [1–3]. Additionally, traps induced non-idealities at source/channel interface and gate/oxide interface further exacerbates the TFET performance [4–6]. Even though multiple TFET architectures in the form of lateral and vertical tunneling device exist, none of them have been promising enough to facilitate future MOSFET replacement [7–14].

In contrast, nanowire (NW) configurations in MOSFET research space are emerging out to be a possible candidate for scaling in the sub-10-nm regime [15–17]. Gate-all-around (GAA) configuration is shown to have a better electrostatic integrity with suppressed short-channel effects (SCEs) in comparison with the planar and FinFET architecture [18–20]. GAA architecture, however, has its own disadvantage of considerable band overlap between the channel valence band (VB) and the drain conduction band (CB) due to the tight gate control. This occurs due to higher electric field at the channel–drain junction in the OFF-state, which in turn facilitates the lateral band-to-band tunneling (L-BTBT) of electrons from the channel VB to the drain CB in case of n-channel NW MOSFETs [15–17].

In addition, at ultra-short gate lengths, recently, it is also observed that the realization of junctions with high doping gradient is a challenging task in NW MOSFETs.
Thus, to overcome this junction constraint problem, junctionless (JL) FET with uniform device layer doping is proposed and fabricated [21]. Typically, to have an efficient gate control facilitating OFF-state volume depletion, source/channel/drain doping in n-NW FETs is of around ~ $1 \times 10^{19} \text{ cm}^{-3}$. Unlike NW MOSFET, the absence of a sharp channel–drain junction in NW JL FET results in lower L-BTBT, however, at the expense of smaller ON-current [15, 16]. Low drive current due to the increased device layer resistance originates from the controlled device layer doping in JL structure. Hence, it is inferred that NW JL FET cannot simultaneously retain the advantage of suppressed L-BTBT in addition to drive current capacity of NW MOSFET [21–24].

Another major problem with the JL architecture is the increased threshold (V_{th}) variability due to the high channel doping. A lot of fabricated and simulated results have validated this effect which needs immediate rectification [25–28]. To resolve the aforementioned issues, NW JL accumulation mode FET (NW JAM FET) is also proposed, wherein source/drain (S/D) is additionally ion-implanted while channel doping is more controlled compared to the JL architecture [15, 16]. This allows for higher channel mobility with reduced S/D resistance. However, the advantage is not without a trade-off. It is observed that L-BTBT is more in NW JAM FET compared to the JL counterpart. Another reason to control L-BTBT at the channel–drain junction is the formation of bipolar junction transistor (BJT), in the OFF-state, as explained in detail in [15, 16, 24]. The holes are accumulated in the channel region due to L-BTBT which makes the channel p-type. Following this, source, channel, drain regions start to act as emitter, base, and collector of a virtual BJT. This, in turn, significantly increases the OFF-state leakage in NW MOSFETs.

To overcome the L-BTBT problem and simultaneously retain the advantage of higher ON-state current of NW MOSFET with better process variation immunity, the present work proposes a NW FET architecture employing a low workfunction metal drain. It is observed that the possibility of tuning Schottky barrier height (SBH) at the channel–drain junction [29–32] facilitates the suppression of L-BTBT. Furthermore, unlike NW JL FET, ON-state current is not compromised for SBH $\leq 0 \text{ eV}$ and is at par with the NW MOSFET.

Section 2 presents the 3D device schematic, cross-sectional view of various NW configurations, alongside the device parameters and simulation approach to capture the L-BTBT. Section 3 discusses the proposed device process immunity pertaining to d_{NW} scaling and N_{ch} doping and spacer permittivity variation. Impact of the variation in drain WF is also analyzed. Finally, the paper is concluded in Sect. 4.

2 Device structure and simulation approach

Figure 1a–c shows a 3D view alongside cross-sectional schematic of the NW MOSFET, NW JL FET and the proposed NW SD FET. Also, 2D cross-sectional view represents the doping used in the thin Si NW for various devices. Except for the NW JL FET, the other two structures have an abrupt S/D junction, considered for the worst case scenario of L-BTBT. This is confirmed with the lesser L-BTBT in JL architecture wherein it is observed that the absence of sharp doping gradient at channel–drain junction increases the tunnel barrier width. No gate drain overlap/underlap and air ($\varepsilon = 1$) as the default spacer is assumed for all three NW configurations. A suitable gate workfunction of 4.5 eV is used for both the NW MOSFET and the NW SD FET, since they fall into the category of inversion-mode (IM) devices. However, for NW JL FET, higher gate workfunction of 4.73 eV is chosen to deplete the channel in the OFF-state. This facilitates proper transistor action keeping the gate overdrive fairly same in all three devices. All other relevant parameters are shown in Table 1.

All 3-D simulations were run on the Synopsys Sentaurus simulation tool release J-2014.09 [33]. Philips and Lombardi model to consider doping, concentration and field-dependent
mobility degradation is activated. Alongside band gap narrowing model for high source/drain doping is also invoked. Shockley–Read–Hall and Auger recombination model in conjunction with drift diffusion physics is also accounted for. To account for the L-BTBT current in NW MOSFET and NW JL FET, calibrated parameters from [22] are activated, as shown in Fig. 2. The calibrated tunneling masses of non-local tunneling model provided in [15, 16] are obtained via reproducing the results fabricated in [17], to minimize the discrepancy between the simulated and the experimental results. Furthermore, unlike L-BTBT, leakage in NW SD FET comprises of holes tunneling through the SB from the metal drain into the channel and termed as the lateral SB tunneling (L-SBT). The OFF-state L-SBT tunneling in NW SD FET is taken into account via the same non-local tunneling model. In addition, the calibrated tunneling masses (m_e and m_h) are kept the same to model the leakage current fairly in all three devices. High-κ/metal gate stack is assumed, and thus, the direct gate tunneling leakage is not considered. Furthermore, quantum induced bandgap widening for $d_{NW} \leq 7$ nm is significant and is taken into consideration. For $d_{NW} = 5, 7$ nm, increase in effective bandgap is accounted for by changing the default E_g of the material [15, 16]. Although the tunneling masses are expected to increase at smaller d_{NW}, the incompatible numerical solvers limit the possibility to implement in commercial simulators. And thus, the calibrated tunneling mass is used in all the simulations.

Furthermore, to have a fair comparison between the I_D–V_G characteristics in all three devices, same gate workfunction is chosen for both the IM devices, i.e., NW MOSFET and NW SD FET. However, NW JL FET, not being the inversion mode (IM) device, OFF-state current (at $V_{GS} = 0$ V) and sub-threshold slope (SS) for greater part of the curve are matched to the NW SD FET by tuning the gate workfunction. The change in OFF-state and ambipolar characteristics for the same gate overdrive can then be appreciated for all three devices. It is noteworthy to mention that for the same gate overdrive, the degradation in the ON-state current is a trade-off for the suppressed OFF-state leakage in NW JL FET.

Table 1 Device simulation parameters and their values

Parameters	NW MOSFET	NW JL FET	NW SD FET
Gate length (L_g)	20 nm	20 nm	20 nm
EOT	1 nm	1 nm	1 nm
NW diameter (d_{NW})	5–10 nm	5–10 nm	5–10 nm
N_{Sext} doping (N_{D})	1×10^{20}	1.5×10^{19}	1×10^{20}
N_{Dext} doping (N_{A})	1×10^{20}	1×10^{19}	1×10^{17}
N_{Ch} doping (N_{D})	1×10^{17}	1.5×10^{19}	1×10^{17}
Gate workfunction	4.5 eV	4.73 eV	4.5 eV
Channel–drain SBH	–	–	0–0.6 eV
S/D extension, (L_{ext})	50 nm	50 nm	50 nm
Supply voltage (V_{DD})	1 V	1 V	1 V

![Fig. 2 Calibration of model parameters from transfer characteristic of [22]. Additionally, non-local tunneling parameters ($m_e = 0.4m_0$, $m_h = 0.65m_0$) along with the density of states ($g_e = 2.1$, $g_h = 0.66$) parameters are taken from [15, 16] to correctly account for the lateral tunneling in all three devices.](image-url)

3 Results and discussion

Figure 3a compares the I_D–V_G characteristics of the three NW configuration. For the same $d_{NW} = 5$ nm and $V_{GS} \leq 0$ V, it can be observed that the NW MOSFET and NW SD FET have higher rate of change of L-BTBT with negative gate bias compared to the JL device, owing to sharp channel–drain junction. Higher electric field at the channel–drain is intrinsic to metallurgical junctions in NW MOSFET and NW SD FET. This results in lower tunneling barrier width and thus higher the rate of lateral tunneling of carriers.
during the OFF-state. However, NW SD FET offers the possibility of tuning the drain workfunction to suppress the lateral tunneling. At drain WF of 4.0 eV, more than an order of magnitude reduction in the lateral tunneling leakage is observed for the NW SD FET compared to the other two devices at \(V_{GS} = -0.2 \text{ V} \). As can be observed, \(I_D-V_G \) variation in NW JL FET is less susceptible to negative gate bias. This is largely due to the absence of sharp metallurgical junction which results in larger tunnel barrier width and thus minimizes the L-BTBT leakage in NW JL FET, previously reported in [15, 16]. However, the ON-state current (\(I_{DS} @ V_{GS} = 1 \text{ V} \)) in such scenario is significantly compromised compared to NW SD FET, which is not the case with the NW SD FET. Figure 3b shows the band diagram of the NW SD FET for negative gate bias of \(-0.2 \text{ V}\). This is the required condition to suppress the lateral OFF-state tunneling of carriers at the channel–drain interface. The corresponding hole tunneling rate in all three device structures at \(V_{DS} = 1 \text{ V} \) and \(V_{GS} = -0.2 \text{ V} \) is shown in Fig. 3c. The higher tunneling rate in case of the NW MOSFET and NW JL FET is clearly evident, which further results in the increased leakage compared to the NW SD FET. The reason for the same has already been explained in the previous paragraph and verified here. Figure 4 further compares
inversion-mode devices with metallic junctions have comparatively smaller impact of d_{NW} variation.

Table 2 compares the corresponding ON-OFF ratio between the three structures for $d_{NW} = 5, 7, 10$ nm. Two observations can be made from the above results. One is the improved current ratio as the d_{NW} is scaled, and the other is the better process variation immunity to d_{NW} in NW SD FET. For $d_{NW} = 5$ nm, a 2.5x and 1.2x improved ON–OFF ratio is observed in NW SD FET compared to the NW MOSFET and NW JL FET device, respectively. I_{ON}/I_{OFF} sensitivity is evaluated by defining the parameter $\Delta(I_{ON}/I_{OFF})$ defined as:

$$\Delta(I_{ON}/I_{OFF}) = \frac{I_{ON}/I_{OFF} |_{d_{ NW}=5 \text{nm}}}{I_{ON}/I_{OFF} |_{d_{ NW}=10 \text{nm}}} \quad (1)$$

We observe from Table 2 that it is maximum for the JL device in comparison with the other two, also illustrated by the red shaded area in Fig. 5. The observation made here is synonymous with the results demonstrated in [25–27], both experimentally and via simulations. It is thus inferred that the process variation immunity is less for the JL device. However, the SD structure shows better immunity to d_{NW} variation similar to that of the NW MOSFET and simultaneously provides drain WF engineering as a method to lower the L-BTBT.

3.2 Impact of channel doping

Figure 6a–c compares the I_D-V_G characteristics of three NW configurations for a ±20% change in the channel doping from the standard value, listed in Table 1. Figure 6d shows the standard value of the channel doping along with the

and quantifies the drain current values in all three NWs for fixed $V_{DS} = 1$ V and different V_{GS} of 1 V, −0.2 V and −1 V.

3.1 Impact of d_{NW} scaling

Figure 5a–c compares the I_D-V_G characteristics of three NW configuration as a function of NW diameter, d_{NW}. As shown, more than 3 orders of magnitude change in the I_D-V_G characteristics for negative gate bias is observed for $d_{NW} = 5$ nm and 7 nm (difference shown via the shaded red portion) in case of NW JL FET. For NW MOSFET and NW SD FET, the variation in I_D-V_G characteristics for negative gate bias is less compared to the NW JL FET. This is because JL architecture is highly dependent on the doping of the channel as well as the thickness of the device layer. The highly doped channel region needs to be depleted in the OFF-state, and for that a suitable gate WF is required. However, if there is a variation in the doping or the channel thickness, the same gate WF may not be able to switch OFF the device properly. This is the reason that for $d_{NW} = 7$ nm, the NW JL FET has a poor I_{ON}/I_{OFF} ratio. The other two structures being the
corresponding ± 20% deviation in those values for all three devices. The curves (red and green) indicate that there is not much variation in NW MOSFET and NW SD FET characteristics unlike NW JL FET, represented by the blue curve. Two parameters defined to measure the impact of change in N_{Ch} are $\Delta I_{OFF}/I_{OFF}$ and $\Delta I_{ON}/I_{ON}$. Here, ΔI_{ON} (ΔI_{OFF}) is the difference between the I_{ON} (I_{OFF}) observed at +20% and −20% change from the standard value. For the case of NW MOSFET and NW SD FET, change in I_{ON} is negligible, whereas a slight deviation of 5% and 7.8%, respectively, is seen for the I_{OFF} current. However, for NW JL FET, a whopping deviation of 97% is observed in I_{OFF}, whereas the change in I_{ON} is around 8.4%. This simply highlights the disadvantage of JL architecture when it comes to process variation and is on par with the NW MOSFET architecture.

3.3 Impact of air and SiO$_2$ spacers

Figure 7a shows schematically the cross-sectional view of NW SD FET with two different spacers, i.e., air ($\kappa = 1$) and SiO$_2$ ($\kappa = 3.9$) simulated in this section. The corresponding transfer characteristics for all three NWs with two different spacers are shown in Fig. 7b–d.

Two observations can be made here. First, the use of high-κ effectively increases the channel length by depleting the channel of carriers through the fringing gate field. This is observed more in NW JL FET in comparison with the NW MOSFET, because of the higher standard channel doping (1×10^{17}cm$^{-3}$ for NW MOSFET and 1.5×10^{15}cm$^{-3}$ for NW SD FET) more of which is explained in detail in [23]. Second, there is an effective increase in the channel length both in the NW MOSFET and the NW SD FET due to gate fringing field depleting some portion of drain region which is highly doped semiconductor. However, this is small for NW MOSFET, due to higher drain doping compared to the NW JL FET. This, in turn, minimizes the leakage. However, NW JL FET is more susceptible, as depicted by the shaded curve green area and also reported in Table 3. This is because of the higher channel doping and relatively small drain doping in case of the NW JL FET compared to the NW MOSFET. The fringing gate field has more impact on the NW JL architecture compared to the NW MOSFET.

Despite the leakage variation in NW MOSFET and NW JL FET, the best immunity is shown by the NW SD FET. This is because of the presence of silicides on the drain side. The fringing gate field cannot deplete any portion of the drain region. The absence of n-doped drain and the presence of n-silicides help in keeping the channel–drain nature impact unlike the other two structures. Thus, we do

Table 3 Sensitivity to process variation in different NW configurations

Parameters changed	Parameters evaluated	NW MOSFET	NW JL FET	NW SD FET
N_{Ch} (± 20%)	$\Delta I_{ON}/I_{ON}$	0%	8.4%	0%
	$\Delta I_{OFF}/I_{OFF}$	5%	97%	7%
d_{NW} (0.5×) (−0.3×)	$\Delta I_{ON}/I_{ON}$	0.95×	1.63×	1.06×
	$\Delta I_{OFF}/I_{OFF}$	4×	117×	12.4×
Spacer: $\kappa = 1$	$\Delta I_{ON}/I_{ON}$	1.2%	1.6%	0%
$\kappa = 3.9$	$\Delta I_{OFF}/I_{OFF}$	49%	78%	6.5%
not see much variation in the OFF-state characteristics. So, we deduce that NW SD FET has better immunity to spacer variation in comparison with another two NWs.

3.4 Impact of drain WF variation

Figure 8a shows the I_D-V_G characteristics of the NW SD FET for different values of drain metal WF. Starting with 3.8 eV, WF is varied up to 4.3 eV. We observe that as we move toward the lower WF, the SBH at the channel–drain junction becomes negative and suppresses the lateral tunneling of holes from the drain metal into the channel region, as shown by the band diagrams in Fig. 8b. For higher WF above 4.0 eV, channel–drain SBH becomes positive and relatively large OFF-state leakage is observed. In all cases, the ON-state characteristics are minimally impacted. The advantage of the NW SD FET is that we can tune in the drain metal WF (or SBH) to obtain the desired ON-OFF ratio.

Finally, we have added a tabulated data that quantifies the ON-state, OFF-state and ambipolar-state (I_{AMB}) drain current of all the three nanowire FETs for better understanding and clarity, as depicted in Table 4.

4 Conclusion

In this work, a drain-engineered NW FET with low work-function drain metal is proposed and compared with the existing NW MOSFET and NW JL FET structure for better leakage suppression. The proposed device has Schottky junction at channel–drain interface unlike the chemically doped junction in NW MOSFET and no-junction in NW JL FET. NW SD FET demands negative Schottky barrier height (SBH) at channel–drain junction for effective suppression of lateral holes tunneling from the drain into the channel region during OFF-state. NW SD FET offers better leakage suppression without compromising the ON-state performance as in the case of NW JL FET. Additionally, the detailed process variation analysis pertaining to parameters, NW diameter d_{NW}, channel doping N_{Ch} and spacer have shown better robustness and immunity in NW SD FET unlike the other two NW configurations.
channel-drain interface in the OFF-state metal workfunction (WF), corresponding band diagrams close to $V_{GS} = 1.0V$ and $V_{GS} = 0.0V$.

References

1. Ionescu, A.M., Riel, H.: Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479(7373), 329–337 (2011)
2. Lu, H., Seabaugh, A.: Tunnel field-effect transistors: state-of-the-art. IEEE J. Electron Devices Soc. 2(4), 44–49 (2014)
3. Haris, M., Loan, S.A.: Si/Ge hetero junction tunnel fet: design and investigation. J. Nanoelectron. Optoelectron. 14(10), 1434–1444 (2019)
4. Sajjad, R.N., Chern, W., Hoyt, J.L., Antoniadis, D.A.: Trap assisted tunneling and its effect on subthreshold swing of tunnel FETs. IEEE Trans. Electron Devices 63(11), 4380–4387 (2016)
5. Ehteshamuddin, M., Alharbi, A.G., Loan, S.A.: Impact of interface traps on the BTBT-current in tunnel field effect transistors. In: 2018 5th International Conference on Electrical and Electronic Engineering (ICEEE), pp. 224–227 (2018)
6. Asra, R., Murali, K.V., Rao, V.R.: A binary tunnel field effect transistor with a steep sub-threshold swing and increased ON-current. Jpn. J. Appl. Phys. 49(12R), 120203 (2010)
7. Ehteshamuddin, M., Loan, S.A., Rafat, M.: A vertical-Gaussian doped SOI-TFET with enhanced DC and analog/RF performance. Semicond. Sci. Technol. 33(7), 075016 (2018)
8. Loan, S.A., Rafat, M.: A high-performance inverted-c tunnel junction FET with source-channel overlap pockets. IEEE Trans. Electron Devices 65(2), 763–768 (2018)
9. Uddin Shaikh, M.R., Loan, S.A.: Drain-engineered TFET with fully suppressed ambipolarity for high-frequency application. IEEE Trans. Electron Devices 66(4), 1628–1634 (2019)
10. Haris, M., Loan, S.A., Moinuddin, Alamoud, A.M.: Laterally asymmetric channel-based tunnel field effect transistors: design and investigation. Int. J. Electron. 108, 1–21 (2020)
11. Loan, S.A., Rafat, M.: Insights into the impact of pocket and source elevation in vertical gate elevated source tunnel FET structures. IEEE Trans. Electron Devices 66(1), 752–758 (2019)
12. Ehteshamuddin, M., Loan, S.A., Alharbi, A.G., Alamoud, A.M., Rafat, M.: Investigating a dual MOSCAP variant of line-TFET with improved vertical tunneling incorporating FIQC effect. IEEE Trans. Electron Devices 66(11), 4638–4645 (2019). https://doi.org/10.1109/TED.2019.2942423
13. Glass, S., Kato, K., Kibkalo, L., Hartmann, J., Takagi, S., Buca, D., Mantl, S., Qing-Tai, Z.: A novel gate-normal tunneling field-effect transistor with dual-metal gate. IEEE J. Electron Devices Soc. 6, 1070–1076 (2018)
14. Shaikh, M.R.U., Loan, S.A., Alshahrani, A.: Electrostatically doped drain engineered DG-TFET: proposal and analysis. Int. J. Numer. Model. Electron. Netw. Devices Fields 33(6), e2769 (2020)
15. Sahay, S., Kumar, M.J.: Physical insights into the nature of gate-induced drain leakage in ultrashort channel nanowire FETs. IEEE Trans. Electron Devices 64(6), 2604–2610 (2017)
16. Sahay, S.: Design and analysis of emerging nanoscale junctionless fets from gate-induced drain leakage perspective. Ph.D. dissertation, Elect. Eng., Indian Institute of Technology, Delhi, India (2017)
17. Fan, J., Li, M., Xu, X., Yang, Y., Xuan, H., Huang, R.: Insight into gate-induced drain leakage in silicon nanowire transistors. IEEE Trans. Electron Devices 62(1), 213–219 (2014)
18. Rios, R., Cappellani, A., Armstrong, M., Budrevich, A., Gomez, H., Pai, R., Rahhal-Orabi, N., Kuhn, K.: Comparison of junctionless and conventional trigate transistors with L_{g} down to 26 nm. IEEE Electron Device Lett. 32(9), 1170–1172 (2011)
19. Lee, C.-W., Ferain, I., Afzalian, A., Yan, R., Akhavan, N.D., Razavi, P., Colinge, J.-P.: Performance estimation of junctionless multigate transistors. Solid-State Electron. 54(2), 97–103 (2010)
20. Thirunavukkarasu, V., Jhan, Y.-R., Liu, Y.-B., Wu, Y.-C.: Performance of inversion, accumulation, and junctionless mode n-type and p-type bulk silicon FinFETs with 3-nm gate length. IEEE Electron Device Lett. 36(7), 645–647 (2015)
21. Colinge, J.-P., Lee, C.-W., Afzalian, A., Akhavan, N.D., Yan, R., Ferain, I., Razavi, P., O'Neill, B., Blake, A., White, M., et al.: Nanowire transistors without junctions. Nat. Nanotechnol. 5(3), 225–229 (2010)
22. Gundapaneni, S., Ganguly, S., Kottantharayil, A.: Bulk planar junctionless transistor (BPILT): an attractive device alternative for scaling. IEEE Electron Device Lett. 32(3), 261–263 (2011). https://doi.org/10.1109/LED.2010.2099204
23. Ehteshamuddin, M., Loan, S.A., Rafat, M.: Planar junctionless silicon-on-insulator transistor with buried metal layer. IEEE Electron Device Lett. 39(6), 799–802 (2018)
24. Gundapaneni, S., Bajaj, M., Pandey, R.K., Murali, K.V.R.M., Ganguly, S., Kottantharayil, A.: Effect of band-to-band tunneling
on junctionless transistors. IEEE Trans. Electron Devices 59(4), 1023–1029 (2012). https://doi.org/10.1109/TED.2012.2185800
25. Choi, S.-J., Moon, D.-I., Kim, S., Duarte, J.P., Choi, Y.-K.: Sensitivity of threshold voltage to nanowire width variation in junctionless transistors. IEEE Electron Device Lett. 32(2), 125–127 (2010)
26. Leung, G., Chui, C.O.: Variability impact of random dopant fluctuation on nanoscale junctionless FinFETs. IEEE Electron Device Lett. 33(6), 767–769 (2012)
27. Gnudi, A., Reggiani, S., Gnani, E., Baccarani, G.: Analysis of threshold voltage variability due to random dopant fluctuations in junctionless FETs. IEEE Electron Device Lett. 33(3), 336–338 (2012)
28. Yoon, J.-S., Rim, T., Kim, J., Kim, K., Baek, C.-K., Jeong, Y.-H.: Statistical variability study of random dopant fluctuation on gate-all-around inversion-mode silicon nanowire field-effect transistors. Appl. Phys. Lett. 106(10), 103507 (2015)
29. Patil, G.C., Qureshi, S.: Engineering spacers in dopant-segregated Schottky barrier SOI MOSFET for nanoscale CMOS logic circuits. Semicond. Sci. Technol. 27(4), 045004 (2012)
30. Patil, G., Qureshi, S.: Asymmetric drain underlap dopant-segregated Schottky barrier ultrathin-body SOI MOSFET for low-power mixed-signal circuits. Semicond. Sci. Technol. 28(4), 045002 (2013)
31. Bashir, F., Alharbi, A.G., Loan, S.A.: Electrostatically doped DSL Schottky barrier MOSFET on SOI for low power applications. IEEE J. Electron Devices Soc. 6, 19–25 (2018)
32. Hafiz, S.A., Ehteshamuddin, M., Loan, S.A.: Dielectrically modulated source-engineered charge-plasma-based Schottky-FET as a label-free biosensor. IEEE Trans. Electron Devices 66(4), 1905–1910 (2019)
33. TCAD Sentaurus Device Version J-2014.09. http://www.synopsys.com

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.