Barbosa Martelli, Daniella Reis; Assis Machado, Renato; Oliveira Swerts, Mário Sérgio; Mendes Rodrigues, Laise Angélica; Nascimento de Aquino, Sibele; Martelli Júnior, Hercílio

Fissuras lábio palatinas não sindrômicas: relação entre o sexo e a extensão clínica

Brazilian Journal of Otorhinolaryngology, vol. 78, núm. 5, septiembre-octubre, 2012, pp. 116-120

Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial

São Paulo, Brasil

Disponível em: http://www.redalyc.org/articulo.oa?id=392437924018
Non sindromic cleft lip and palate: relationship between sex and clinical extension

Abstract

Cleft lip and/or palate represent the most common congenital anomaly of the face. **Aim:** To describe the correlation between non-syndromic cleft lip and/or palate and gender, and its severity in the Brazilian population. **Methods:** Cross-sectional study, between 2009 and 2011, in a sample of 366 patients. The data was analyzed with descriptive statistics and multinomial logistic regression with a 95% interval to estimate the likelihood of the types of cleft lip and/or palate affecting the genders. **Results:** Among the 366 cases of non-syndromic cleft lip and/or palate, the more frequent clefts were cleft lip and palate, followed respectively by cleft lip and cleft palate. The cleft palates were more frequent in females, while the cleft lip and palate and cleft lips only predominated in males. The risk of cleft lip in relation the cleft palate was 2.19 times in males when compared to females; while the risk of cleft lip and palate in relation to cleft palate alone was 2.78 times in males compared to females. **Conclusion:** This study showed that there were differences in the distribution of the non-syndromic cleft lip and/or palate between males and females.

Keywords:
cleft lip, cleft palate, female, male.

Palavras-chave:
feminino, fenda labial, fissura palatina, masculino.

Resumo

A fenda labial e/ou palatina representa a anomalia congênita mais comum na face. **Objetivo:** Descrever a correlação existente entre a fenda labial e/ou palatina não sindrômica e gênero e sua gravidade na população brasileira. **Método:** Estudo transversal, conduzido entre 2009 e 2011, em uma amostra de 366 pacientes. Os dados foram analisados com estatística descritiva e regressão logística multinomial com intervalo de 95% para estimar a probabilidade dos tipos de fenda labial e/ou palatina afetar os gêneros. **Resultados:** Entre os 366 casos de fenda labial e/ou palatina não sindrômica, as fendas mais frequentes foram a fenda lábio-palatina, seguida, respectivamente, pela fenda labial e fenda palatina. As fendas palatinas foram mais frequentes entre as mulheres e a fenda lábio-palatina e fenda labial apenas predominaram nos homens. O risco de fenda labial em relação à fenda palatina foi de 2,19 vezes maior em homens quando comparados às mulheres; enquanto o risco de fenda labial e palatina em relação à fenda palatina apenas foi 2,78 vezes em homens, quando comparados às mulheres. **Conclusão:** Este estudo mostrou que há diferenças na distribuição de fendas labiais e/ou palatinas não sindrômicas entre homens e mulheres.
INTRODUÇÃO

A fenda labial e/ou palatina não sindrômica (FL/P NS) (OMIM nº 119530) representa a malformação congênita mais frequentemente encontrada na região da cabeça e pescoço, com uma prevalência de aproximadamente 1:700 nascidos vivos em todo o mundo. Sua prevalência varia de acordo com a etnia (africanos: 0,3:1.000; europeus: 1,3:1.000; asiáticos: 2,1:1.000; índios norte-americanos: 3,6:1.000) e nível socioeconômico. No Brasil, a prevalência de FL/P NS varia entre 0,19 a 1,54:1.000 nascidos vivos. A etiologia da FL/P, que envolve tantos fatores genéticos quanto ambientais, é altamente complexa e sua base molecular permanece largamente desconhecida em sua maior parte.

Crianças afetadas com FL/P NS necessitam atenção multidisciplinar desde o nascimento até a idade adulta e possuem maior morbidade e mortalidade durante toda a vida quando comparadas a indivíduos não afetados. A literatura tem demonstrado um aumento na frequência de anormalidades estruturais cerebrais e que muitas crianças e suas famílias são afetadas psicologicamente até certo grau.

FL/P não sindrômica pode ser dividida naquelas que afetam os lábios apenas, tanto lábio quanto palato, ou apenas o palato. Apesar da fenda labial e da fenda lábio-palatina serem tradicionalmente agrupadas para formar um grupo único de fenda labial com ou sem fenda palatina, dados sugerem que essas duas categorias podem ter causas genéticas diversas e devem, sempre que possível, serem analisadas separadamente.

A fenda labial com ou sem fenda palatina é mais frequente entre homens, e a fenda palatina isolada é mais comum entre as mulheres, isso considerando vários grupos étnicos; o coeficiente de gênero varia de acordo com a gravidade da fenda, presença de malformações adicionais, número de irmãos afetados em uma mesma família, origem étnica e possível idade paterna. Em populações caucasianas, o coeficiente de gênero varia de acordo com o tipo e extensão. As fendas mais frequentes foram lábio-palatinas (53,4%), seguidas, respectivamente, da fenda labial (26,2%) e fenda palatina (20,4%).

RESULTADOS

Entre os 366 pacientes tratados entre 2009-2011, 199 (54,5%) foram do sexo masculino e 167 (45,6%) foram mulheres. Do número total de participantes (366), 25 (6,8%) tiveram história positiva de fenda em suas famílias e 341 (93,16%) tiveram história negativa. A Tabela 1 mostra a distribuição de fendas de acordo com seu tipo e extensão. As fendas mais frequentes foram lábio-palatinas (53,4%), seguidas, respectivamente, da fenda labial (26,2%) e fenda palatina (20,4%).

Tipo de fenda	n	(%)
Fenda lábio-palatina	195	53,4
Fenda labial	96	26,2
Fenda palatina	75	20,4
Total	366	100

Tabela 1. Distribuição geral de fenda labial e/ou palatina de acordo com o tipo e extensão.
Na Tabela 2 podemos observar a distribuição da FL/P NS de acordo com o gênero.

Tabela 2. Distribuição de fenda labial e/ou palatina não sindrômica de acordo com sua extensão e gênero.

Gênero	Fenda palatina	Fenda labial	Fenda lábio-palatina
	n (%)	n (%)	n (%)
Masculino	27	13,6	53
	26,6 (%)	26,6 (%)	59,8 (%)
Feminino	48	28,7	43
	25,7 (%)	25,7 (%)	45,5 (%)
Total	75	96	195

$p = 0,001$.

Houve diferenças entre os grupos de fenda no tocante a gênero. Percebeu-se que as fendas palatinas foram mais frequentes em mulheres (28,7% versus 13,6%; 1,77:1), enquanto as fendas lábio-palatinas (59,8% versus 45,5%; 1,56:1) e fendas labiais (25,7% versus 26,6%; 1,23:1) predominaram entre os homens ($p = 0,001$; χ^2).

A Tabela 3 mostra a análise de regressão logística multinomial. Encontramos que o risco de ocorrência de fenda labial em relação à fenda palatina foi 2,19 vezes maior em homens quando comparados às mulheres. Enquanto o risco de fenda lábio-palatina em comparação à palatina apenas foi 2,78 vezes maior em homens quando comparados às mulheres.

Tabela 3. Análise de regressão logística multinomial. Distribuição de fendas lábio-palatina e fenda labial de acordo com o gênero, com relação à fenda palatina.

Gênero	n (%)	β	OR	p
Masculino	53 (26,6)	0,784 (0,316)	2,19 (1,18-4,07)	13
Feminino	43 (25,7)	1	1,00	
Fenda lábio-palatina				
Masculino	119 (59,8)	1,024 (0,282)	2,78 (1,60-4,84)	0,000
Feminino	76 (45,5)	1,00	1,00	
R^2 Nagelkerke: 0,043.				

DISCUSSÃO

Um trabalho recente sugeriu que tem havido uma grande subestimativa das consequências de se nascer com fenda labial e/ou palatina. Os sujeitos que nascem com fendas labial e/ou palatina vivem menos, com maior risco de todas as principais causas de morte, quando comparados aos indivíduos nascidos sem fendas. Contribuindo para essas altas taxas de mortalidade há provavelmente distúrbios psiquiátricos e câncer. Fendas labiais e/ou palatinas aumentam o risco de hospitalização por doenças psiquiátricas em adultos. Além disso, há um aumento na ocorrência de cânceres de mama e cerebrais entre as mulheres adultas nascidas com fendas labiais e/ou palatinas e um aumento na ocorrência de câncer pulmonar primário entre homens adultos nascidos com fendas labiais e/ou palatinas.

A fenda labial e/ou se fenda palatina está listada como característica de mais de 200 síndromes genéticas específicas, e a fenda palatina isolada é registrada como componente de mais de 400 de tais distúrbios. A proporção de fendas orofaciais associadas a síndromes específicas está entre 5% e 7%. Apesar da presença de componente genético na fenda labial e/ou palatina, sindrômica ou não, já ter sido claramente demonstrada, somente uma porção limitada de casos de genes envolvidos foram identificados até agora e, em muitos casos, há somente dados preliminares disponíveis sobre os mecanismos que causam defeitos craniofaciais na presença de uma alteração gênica específica. Nesse estudo, avaliamos somente os pacientes com FL/P NS. Todos os casos associados a síndromes foram excluídos.

Diferentes estudos foram conduzidos de forma global para avaliar a distribuição de FL/P NS, frequentemente resultando em diferentes taxas de prevalência. Em um estudo populacional brasileiro, demonstramos prevalência de fenda labial (52,6%), seguido por fenda lábio-palatin (33,12%) e palatina (14,28%). Na maioria dos estudos publicados, a porcentagem de indivíduos com fenda lábio-palatina tem sido mais alta quando comparada à fenda labial ou palatina apenas, incluindo os estudos brasileiros. Os achados do presente estudo revelaram que entre os 366 pacientes com FL/P NS, a prevalência de fenda lábio-palatina (53,4%) foi significativamente maior do que fenda labial (26,2%) e fenda palatina (20,49%) apenas. Dados epidemiológicos de diferentes populações têm demonstrado que a prevalência de fenda palatina é geralmente menor do que aquela da fenda lábio-palatina e fenda palatina apenas, e famílias sob risco de desenvolver um tipo de fenda não têm risco maior de desenvolver o outro tipo, refletindo as diferentes origens de cada tipo de fenda. Entretanto, ocasionalmente tanto a fenda lábio-palatina quanto a labial ou a palatina apenas podem ocorrer dentro do mesmo fenótipo, sugerindo pelo menos alguma sobreposição na etiologia dessas duas categorias mais amplas de fendas.
prevalência de fenda labial entre homens com ou sem fenda palatina se torna aparente com o aumento da gravidade da fenda, e menos aparente quando mais de um dos irmãos é afetado na família11,32. Contrastando a isso, a predominância masculina no tocante à fenda labial com ou sem fenda palatina é menor quando o lactente possui malformações em outros sistemas10, e os achados de um grande estudo sugerem predominância em mulheres quando o pai tem 40 anos de idade ou mais33. Aqui, demonstramos que a fenda palatina foi mais frequente em mulheres (28,7% versus 13,6%; 1,77:1), enquanto a fenda lábio-palatina (59,8% versus 45,5%; 1,56:1) e fenda labial (25,7% versus 26,6%; 1,23:1) predominaram em indivíduos do sexo masculino (p = 0,001). Por meio da análise de regressão logística multinomial, percebemos que o risco de ocorrência de fenda labial em relação à fenda palatina foi 2,19 vezes maior em homens, quando comparados às mulheres. Enquanto o risco de fenda lábio-palatina em relação à fenda palatina foi 2,78 vezes maior em homens. Esses resultados corroboraram publicações sobre populações de outros países presentes na literatura15,30.

CONCLUSÃO

Esse estudo encontrou uma predominância de fenda lábio-palatina (53,4%), seguida, respectivamente, de fenda labial (26,2%) e fenda palatina (20,4%). Houve também diferenças entre os grupos de fendas no tocante ao gênero. Percebemos que a fenda palatina isolada foi mais comum em mulheres, enquanto as fendas lábio-palatina e labial apenas foram mais frequentes entre indivíduos do sexo masculino. O risco de fenda labial em relação à palatina foi 2,19 vezes maior em homens, quando comparados às mulheres. Enquanto o risco de fenda lábio-palatina em relação à palatina apenas foi 2,78 vezes maior em homens, quando comparados às mulheres. Estudos moleculares e genéticos são necessários para melhor compreendermos as diferenças entre os tipos de fendas orais e o gênero.

AGRADECIMENTOS

Esse trabalho recebeu o apoio de verba da Fundação de Pesquisa do estado de Minas Gerais - FapeMAX e do Conselho Nacional para o Desenvolvimento Científico e Tecnológico - CNPq, Brasil (HMJ e MSOS).

REFERÊNCIAS

1. Carinci F, Scapoli L, Palmieri A, Zollino I, Pezzetti F. Human genetic factors in non syndromic cleft lip and palate: an update. Int J Pediatr Otorhinolaryngol. 2007;71(10):1509-19.
2. Jugessur A, Shi M, Gjessing HK, Lie RT, Wilcox AJ, Weinberg CR, et al. Genetic determinants of facial clefting: analysis of 357 candidate genes using two national cleft studies from Scandinavia. PLoS ONE. 2009;4(4):e5385.
3. de Castro Monteiro Loffreda L, Freitas JA, Grigolli AA. Prevalence of oral clefts from 1975 to 1994, Brazil. Rev Saúde Pública. 2001;35(6):571-5.
4. Martelli-Junior H, Porto LV, Martelli DR, Bonan PR, Freitas AB, Della Coletta R. Prevalence of nonsyndromic oral clefts in a reference hospital in the state of Minas Gerais, Brazil, between 2000-2005. Braz Oral Res. 2007;21(4):314-7.
5. Nunes LMN, Quezulz DP, Pereira AC. Prevalência de fissuras labio-palatinas no município de Campos dos Goytacazes-RJ, 1999-2004. Rev Bras Epidemiol. 2007;10(1):109-16.
6. Rodrigues K, Sena MF, Roncalli AG, Ferreira MA. Prevalence of oro-facial clefts and social factors in Brazil. Braz Oral Res. 2009;23(1):38-42.
7. Mossey PA, Little J, Munger RG, Dixon MJ, Shaw WC. Cleft lip and palate. Lancet. 2009;374(9703):1775-85.
8. Dixon MJ, Marazita ML, Beaty HT, Murray JC. Cleft lip and palate: understanding genetic and environmental influences. Nat Rev Genet. 2011;12(5):167-78.
9. Ngai CW, Martin WL, Tonks A, Wylkes MP, Kilby MD. Are isolated facial cleft lip and palate associated with increased perinatal mortality? A cohort study from the West Midlands Region, 1995-1997. J Matern Fetal Neonatal Med. 2005;17(3):203-6.
10. Christensen K, Juel K, Hershkind AM, Murray JC. Long term follow up study of survival associated with cleft lip and palate at birth. BMJ. 2004;328(7455):1405.
11. Nopoulos P, Langhein DR, Canady J, Magnotta V, Richman L. Abnormal brain structure in children with isolated clefts of the lip or palate. Arch Pediatr Adolesc Med. 2007;161(8):753-58.
12. Berk NW, Marazita ML. The costs of cleft lip and palate: personal and societal implications. In: Wysynszki DF, ed. Cleft lip and palate: from origin to treatment. New York: Oxford University Press; 2002. p.458-67.
13. Harville EW, Wilcox AJ, Lie RT, Vindenes H, Abyholm F. Cleft lip and palate versus cleft lip only: are they distinct defects? Am J Epidemiol. 2005;162(5):448-53.
14. Rahimov F, Marazita ML, Visel A, Cooper ME, Hitchler MJ, Rubini M, et al. Disruption of an AP-2alpha binding site in an IRF6 enhancer is associated with cleft lip. Nat Genet. 2008;40(11):1541-7.
15. Mossey PA, Little J. Epidemiology of oral clefts: an international perspective. In: Wysynszki DF, ed. Cleft lip and palate: from origins to treatment. New York: Oxford University Press; 2002. p.127-58.
16. Mossey P, Castilla E. Global registry and database on craniofacial anomalies. Geneva: World Health Organization; 2003.
17. Martelli DRB, Cruz KM, Barros LM, Silveira MF, Swerts MSO, Martelli Júnior H. Maternal and paternal age, birth order and interpregnancy interval evaluation for cleft lippalate. Braz J Otorhinolaryngol. 2010;76(3):107-12.
18. Spina V, Psllakis JM, Lapa FS, Ferreira MC. Classificação das fissuras lábio-palatinas. Rev Hosp Clin Fac Med S Paulo. 1972;27(2):5-6.
19. Vieira AR. Unraveling human cleft lip and palate research. J Dent Res. 2006;87(2):119-25.
20. Bille C, Windher JF, Bautz A, Murray JC, Olsen J, Christensen K. Cancer risk in persons with oral cleft – a population-based study of 8,093 cases. Am J Epidemiol. 2005;161(11):1047-55.
21. Yildirim M, Seymour F, Deeley K, Cooper ME, Vieira AR. Defining predictors of cleft lip and palate risk. Cleft Palate Craniofac J. 2012;59(1):556-61.
22. Wong FK, Hagg U. An update on the aetiology of orofacial clefts. Hong Kong Med J. 2004;10(5):331-6.
23. Tolarová MM, Cervenka J. Classification and birth prevalence of orofacial clefts. Am J Med Genet. 1998;75(2):126-37.
24. Stuppia L, Capogreco M, Marzo G, La Rovère D, Antonucci I, Gatta V, et al. Genetics of syndromic and nonsyndromic cleft lip and palate. J Craniofac Surg. 2011;22(5):1722-6.
25. Derijcke A, Eerens A, Carels C. The incidence of oral clefts: a review. Br J Oral Maxillofac Surg. 1996;34(6):488-94.
26. Martelli-Júnior H, Bonan PR, Santos RC, Barbosa DR, Swerts MS, Coletta RD. An epidemiologic study of lip and palate clefts from a Brazilian reference hospital. Quintessence Int. 2008;39(9):749-52.
27. Freitas JA, Dalben Gda S, Santamaria M Jr, Freitas PZ. Current data on the characterization of oral clefts in Brazil. Braz Oral Res. 2004;18(2):128-33.
28. Martelli DR, Bonan PR, Soares MC, Paranaiba LR, Martelli-Júnior H. Analysis of familial incidence of non-syndromic cleft lip and palate in a Brazilian population. Med Oral Patol Oral Cir Bucal. 2010;15(6):e898-901.
29. Jugessur A, Farlie PG, Kilpatrick N. The genetics of isolated orofacial clefts: from genotypes to subphenotypes. Oral Dis. 2009;15(7):437-53.
30. Fujino H, Tanaka K, Sanui Y. Genetic study of cleft lips and cleft-palates based upon 2,828 Japanese cases. Kyushu J Med Sci. 1993;14:317-31.
31. Fogh-Andersen P. Inheritance of harelip and cleft palate. Copenhagen: Munksgaard; 1942.
32. Niswander JD, MacLean CJ, Chung CS, Dronamraju K. Sex ratio and cleft lip with or without cleft palate. Lancet. 1972;2(7782):858-60.
33. Rittler M, López-Camelo J, Castilla EE. Sex ratio and associated risk factors for 50 congenital anomaly types: clues for causal heterogeneity. Birth Defects Res A Clin Mol Teratol. 2004;70(1):13-9.