Gene × environment interaction in major depressive disorder

Ming-Zhe Zhao, Xu-Sheng Song, Jing-Song Ma

Abstract

Major depressive disorder (MDD) is a multifactorial disorder, where multiple susceptibility genes interact with environmental factors, predisposing individuals to the development of the illness. In this article, we reviewed different gene × environment interaction (G×E) studies shifting from a candidate gene to a genome-wide approach. Among environmental factors, childhood adversities and stressful life events have been suggested to exert crucial impacts on MDD. Importantly, the diathesis-stress conceptualization of G×E has been challenged by the differential susceptibility theory. Finally, we summarized several limitations of G×E studies and suggested how future G×E studies might reveal complex interactions between genes and environments in MDD.

Key Words: Major depressive disorder; Gene × environment interaction; Diathesis-Stress model; Differential susceptibility Theory; Stressful life events; Childhood adversities

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: The effects of environmental factors on the risk of developing major depressive disorder are likely to be moderated by genetic variants which confer a sensitivity to both positive and negative environmental factors.
INTRODUCTION

Major depressive disorder (MDD) is a debilitating illness which severely restricts psychosocial function and diminishes quality of life. MDD is characterized by alterations in mood, interests, pleasure, neurovegetative function and cognition. The average 12-mo prevalence of MDD was estimated to be approximately 6%[1]. Lifetime MDD risk is typically threefold higher than the 12-mo prevalence, meaning MDD is common, with almost one in every six adults experiencing one episode at some point in their lifetime[2]. The World Health Organization ranked MDD as the third cause of burden of disease in 2008 and predicted that, by 2030, MDD will rank first and account for 13% of the total global burden of disease replacing cardiovascular disorders[3].

Although the pathophysiology of MDD is not yet fully understood, the presence of a genetic component to MDD has been established by family, twins, and adoption studies[4]. It has been known for more than a century that MDD shows family aggregation. There is a threefold increased risk of MDD among first-degree relatives, with a heritability risk that is quantified as approximately 35%[5]. Furthermore, genetic overlaps between MDD and other psychiatric disorders have been identified[6, 7].

However, identification of the main genetic effects in MDD so far has not revealed replicated significant findings[8]. One of the potential reasons for this weak genetic effect is the fact that an individual gene is likely to exert only a modest effect and individual genotypic variations may increase the risk of MDD only in the presence of exposure to adverse environmental circumstances, a phenomenon known as "gene×environment interaction (G×E)"[9] (Figure 1). This review will focus on studies that aimed to assess the joint contribution of gene and environment in the development of MDD.

GENETIC VULNERABILITY RISK FACTORS FOR MDD

To date, as a part of a concerted effort to investigate the genetic contribution to MDD, many G×E studies have been based on candidate genes. The serotonin transporter promoter short/Long polymorphism (5-HTTLPR) and a functional single nucleotide polymorphism (SNP) within the FK506 binding protein 5 (FKBP5) gene were two of the most investigated examples of candidate G×E linking environments to MDD. Caspi and colleagues were the first to estimate the moderating effects of 5-HTTLPR on MDD within a G×E framework, showing that individuals with a short allele of 5-HTTLPR were at higher risk of MDD and suicidality as compared with those with homozygous or long alleles[10]. Since then, more than fifty studies have been conducted to replicate this finding, however, not all of them have achieved their aims [11]. G×E has been suggested to predict MDD in individuals exposed to negative environmental factors[12,13]. Similarly, many studies have found that a functional SNP within FKBP5 interacted with environments to predict MDD[14-17].

The 5-HTTLPR or FKBP5 interacting with environments were based on hypothesis-driven studies which aimed to identify not only genetic variants that increased the risk of MDD, but also potential biological and molecular mechanisms underlying this increased risk. It was extensively discussed elsewhere that the hypothesis-driven approach could only discover a fraction of potential existing genetic variants. Genome-wide by environment interaction studies (GWEIS) using a hypothesis-free approach to identify genes associated with MDD are emerging, but enormous datasets with both environments and phenotype data are required. So far, three GWEIS have been performed in this regard. The first was conducted by Dunn and colleagues[18] who used data from the SNP Health Association Resource (SHArE) cohort of the Women's Health Initiative and investigated both genetic main effects and G×E effects in the development of depressive symptoms. The second was a pilot study and conducted in 320 subjects with no interactions reaching genome-wide significance[19]. The third used an omics-based approach to identify genetic variants with G×E effects in GWAS
datasets and found three candidate genes associated with MDD[20].

ENVIRONMENTAL FACTORS IN MDD

Environmental factors are associated with a dramatic increase in the risk of developing MDD. A number of environmental factors contributing to MDD vulnerability have been identified, including lack of nutrients, social disadvantage, childhood adversities, maternal stress, and stressful life events[21-24]. Of these environmental factors, stressful life events and childhood adversities have been shown to exert crucial impacts on MDD[25,26]. Stressful life events are described as circumstances that have negative effects on an individual occurring close to the onset of MDD[27]. Childhood adversities are defined as stressful experiences which occur early in life. It is very important to differentiate distal environmental factors (childhood adversities) and proximal environmental factors (stressful life events) in G×E studies. Distal environmental factors are critical because they can increase the likelihood of the occurrence of proximal environmental factors. Proximal environmental factors are more relevant than distal environmental factors to the G×E effects on MDD.

Environmental influences on MDD also exhibit a cumulative effect[28,29]. The effect of a single environmental factor may be small, cumulative effects of multiple factors may be quite large, which can be described as a dose-response relationship between environments and phenotype[30]. Many powerful effects involved chains of environmental factors rather than a single factor at just one point in time. It was shown that a developmental cascade of negative experiences was a leading cause of MDD in women[31].

THEORETICAL FRAMEWORKS OF GENE×ENVIRONMENT INTERACTION

Traditionally, the Diathesis-Stress model was the leading conceptual framework for G×E studies, because most investigators usually focused on genetic influences moderated by environments[32]. Specifically, the Diathesis-Stress model hypothesizes that individuals with specific biological (e.g., genetic) and/or psychological (temperament) traits are more vulnerable to adverse environmental influences, but that this inherent vulnerability is not sufficient to lead to psychopathology if such adverse environmental influences are absent. Furthermore, individuals who do not succumb to the negative effects of environmental factors, either as the function of not carrying genetic vulnerabilities or due to the presence of other protective factors, are deemed resilient.
However, the Diathesis-Stress model has been challenged by Stress Generation[33] and Differential Susceptibility Theory[34,35]. Stress Generation suggested that the Diathesis-Stress model of MDD was woefully inadequate because the model was unidirectional, with the environment predicting MDD in those with the diathesis. Stress Generation suggested that the reverse was also true: MDD patients caused stressful life events. Stressors might occur in an individual for random reasons, but many stressful life events are not random. It was shown that women with a history of MDD had higher levels of stressful life events compared with women without a history of MDD[36]. Differential Susceptibility Theory suggested that individuals differed in their general susceptibility to both negative and positive environmental influences. Specifically, individuals who were genetically more vulnerable to environmental influences might be more likely to develop MDD in response to stressful life events and childhood adversities. However, these individuals with higher genetic vulnerability might also be likely to benefit from positive and supportive environmental influences. In contrast to the Diathesis-Stress model, Differential Susceptibility Theory was an evolutionary-inspired developmental model taking into account both negative and positive effects on MDD. This evolutionary model may better account for the findings that most of candidate genes in G×E studies were “common” variants. Findings of these common variants indicated that they might have benefits that counteracted the negative influences of heightened vulnerability[37,38]. Hence, these variants might not merely infer negative effects, as proposed by the Diathesis-Stress model, but they also infer positive effects, as suggested by Differential Susceptibility Theory[39].

LIMITATIONS OF CANDIDATE G×E STUDIES

Although candidate G×E studies have made a critical contribution to the field of MDD, several limitations should also be acknowledged. First, a robust biological hypothesis is required to select appropriate candidate genes. Given the fact that knowledge regarding the specific biological mechanisms underlying MDD remain limited, there is a high risk of selecting inappropriate candidate genes and having publication bias[8,40]. Second, a recent discovery in MDD suggested that the genetic architecture of MDD was highly complex and polygenic[41]. In other words, MDD was influenced by many thousands of gene variants with very small effects rather than by several gene variants with large effects[13]. Third, it is difficult to replicate findings from G×E studies, which is a particular concern. Initial studies might use small sample sizes that were unable to provide statistical power required to detect G×E and, consequently, might increase the risk of false positive findings[42,43]. Finally, most G×E studies in MDD were based on the Diathesis-Stress model which ignored the positive effects of environmental influences[39,44]. The notion that selected candidate genes might be associated with heightened sensitivity to both environmental risk and protective factors, might also contribute to heterogeneous findings.

FUTURE DIRECTIONS

Genome-wide association studies have been conducted for decades to investigate genetic main effects and G×E studies should also be shifted from candidate genes to a genome-wide approach. In addition to collecting large samples required for GWEIS, high quality and more objective measures of environments are also important. The experience sampling method (ESM) may provide a novel approach to obtain more accurate self-report data on an individual’s experience of their environments. The ESM has also been used to investigate individual difference in response to both positive and negative environments[45]. Empirical studies indicated that there were substantial aetiological overlaps between MDD and other psychiatric disorders[7]. The Transdiagnostic phenotypes may be more suited as outcomes in G×E studies than categorical and narrowly defined clinical diagnoses for psychiatric disorders[46]. G×E effects may differ across life span, with effects being stronger in early development. Genetically sensitive children who experienced a poor early environment showed increased sensitivity to stressful life events. Applying a developmental perspective may fully understand the role of G×E in the progress of MDD.
CONCLUSION

Despite the importance of candidate gene studies for G×E in MDD, to date, only a few candidate vulnerability genes explain little of the variance. GWEIS are needed for a more complete understanding of G×E in the pathophysiology of MDD.

Among environmental factors, stressful life events and childhood adversities have been recognized to have prominent roles in MDD. Environmental influences on MDD have a cumulative effect, and a dose-response relationship or interaction between stressful life events and childhood adversities may exist in the development of MDD.

Most G×E studies in MDD were guided by the Diathesis-Stress model which did not consider that individuals who were genetically more sensitive to negative environmental factors might also be more sensitive to positive ones as proposed by Differential Susceptibility Theory. The Differential Susceptibility Theory as a solid evolutionary theory may advance knowledge on interactions between genes and environments in the development of MDD.

ACKNOWLEDGEMENTS

We thank Professor Sheng-Ying Qin for helpful comments and we are grateful to all researchers in this area for advancing our understanding of G×E in MDD.

REFERENCES

1. Kessler RC, Bromet EJ. The epidemiology of depression across cultures. *Anna Rev Public Health* 2013; 34: 119-138 [PMID: 23514317 DOI: 10.1146/annurev-publhealth-031912-114409]
2. Bromet E, Andrade LH, Hwang I, Sampson NA, Alonso J, de Girolamo G, de Graaf R, Demytenaere K, Hu C, Iwata N, Karam AN, Kaur J, Kostyuchenko S, Lépine JP, Levinson D, Matschinger H, Mora ME, Browne MO, Posada-Villa J, Viana MC, Williams DR, Kessler RC. Cross-national epidemiology of DSM-IV major depressive episode. *BMC Med* 2011; 9: 90 [PMID: 21791035 DOI: 10.1186/1741-7015-9-90]
3. WHO. The global burden of disease: 2004 update. Geneva: World Health Organization 2004
4. Lesch KP. Gene-environment interaction and the genetics of depression. *J Psychiatry Neurosci* 2004; 29: 174-184 [PMID: 15173894]
5. Geschwind DH, Flint J. Genetics and genomics of psychiatric disease. *Science* 2015; 349: 1489-1494 [PMID: 26404826 DOI: 10.1126/science.aaa8954]
6. Cross-Disorder Group of the Psychiatric Genomics Consortium, Lee SH, Ripke S, Neale BM, Faraoe SV, Purcell SM, Perlls RH, Mowry BJ, Thapar A, Goddard ME, Witte JS, Absher D, Agartz I, Akil H, Amin F, Andreasen OA, Anjorin A, Anney R, Anttila V, Arking DE, Asherson P, Azevedo MH, Backlund I, Badner JA, Bailey AJ, Banaschewski T, Barchas JD, Barnes MR, Barrett TB, Bass N, Battaglia A, Bauer M, Bayes M, Bellivier F, Bergen SE, Berrettini W, Betancur C, Bettecken T, Biederman J, Binder EB, Black DW, Blackwood DH, Bloss CS, Boeckhne M, Boomsma DJ, Breen G, Breuer R, Bruggeman R, Cormican P, Buccola NG, Butelera JK, Bunney WE, Bushaun JD, Byerley WF, Byrne EM, Casar S, Cahn W, Cantor RM, Casas M, Chakravarti A, Chambert K, Choudhury K, Cichon S, Cloninger CR, Collier DA, Cook EH, Coon H, Corbman B, Corvin A, Coral BH, Craig DW, Craig IW, Croisie J, Cuccaro ML, Curtis D, Czamara D, Datta S, Dawson G, Day R, De Geus EJ, Degenhardt F, Djurovic S, Donohoe GJ, Doyle AE, Dun J, Dunishajte F, Duketis E, Ebstein RP, Edenberg HJ, Elia J, Ennis S, Etain B, Fanous A, Farmer AE, Ferrer IN, Finkler M, Fonbonne E, Foroud T, Frank J, Franke B, Fraser C, Freund E, Freimer NB, Freitag CM, Fried M, Frisén L, Gallagher L, Gejman PV, Georgieva L, Gershon ES, Geschwind DH, Giegling I, Gill M, Gordon SD, Gordon-Smith K, Green KE, Greenwood TA, Grice DE, Gross M, Grozeva D, Guan W, Gurling H, De Haan L, Haines JL, Hakonarson H, Hallmayer J, Hamilton SP, Hamshere ML, Hansen TF, Hartmann AM, Hautzinger M, Heath AC, Henders AK, Herms S, Hickie IB, Hipolito M, Hoevels S, Holmans PA, Holsoher F, Hoogendijk WJ, Hottenga JJ, Hultman CM, Huv S, Ingason A, Ising M, Jamain S, Jones EG, Jones I, Jones L, Tzeng JY, Kähler AK, Kahn RS, Kandawaumary R, Keller MC, Kennedy JL, Kenny E, Kent L, Kim Y, Kirov GK, Kluck SM, Klei L, Knowles JA, Kohli MA, Koller DL, Konte B, Korszun A, Krabbanden M, Krasicki R, Kuntsi J, Kwan P, Landen M, Längström N, Lathrop M, Lawrence J, Lawson WB, Leboyer M, Ledbetter DH, Lee PH, Lenz T, Lesch KP, Levinson DF, Lewin EM, Li J, Lichtenstein P, Lindblom A, Lin DY, Linsen DH, Liu C, Lohoff FW, Luo SK, Lord C, Lowe JK, Luces S, Machtyre DJ, Madden PA, Maestini E, Magnusson PK, Mahon PB, Maier W, Malhotra AK, Mane SM, Martin CL, Martin NG, Matthesen M, Matthews K, Mattingsdal M, McCarroll SA, McGhee KA, McHugh JJ, McGrath PJ, Mcguinn P, McNisin MG, Mcintosh A, McKinney R, McLean AW, Mcmahon FJ, Mcmahon W, Mequilin A, Medeiros H, Medland SE, Meier S, Melle I, Meng F, Meyer J, Middeldorp CM, Middleton L, Milanova V, Miranda A, Monaco AP, Montgomery GW, Moran JL, Moreno-De-Luca D, Morken G, Morris DW, Morrow EM, Moskvina V, Muglia P, Mühlesen TW, Muir WJ, Müller-Myskob B,
Frodl T. Single-Nucleotide Polymorphism of the FKBP5 Gene and Childhood Maltreatment as Tozzi L

10.3109/09540261.2015.1020052

Asia.

disorder, and the cortisol awakening response: FKBP5 polymorphisms and childhood trauma in South

Binder EB. Cross-cultural gene- environment interactions in depression, post-traumatic stress

2015;

adolescents: FKBP5 genotype--early life adversity interaction effects.

Comasco E

26250598

Clinical and Translational Implications.

Zannas AS

contributing to the development of depression.

analysis finds no evidence of a strong interaction between stress and 5-HTTLPR genotype

Penninx BWJH, Ritchie K, Sarchiapone M, Scheid JM, Serretti A, Smit JH, Stefanis NC, Smit JH, Oldehinkel AJ, Olsson CA, Ormel J, Otte C, Patton GC, Fergusson DM, Goate AM, Gonda X, Grabe HJ, Holzman C, Johnson EO, Kennedy M, Laucht M, Bellivier F, Boomsma DI, Courtet P, Dannlowski U, de Geus EJC, Deakin JFW, Easteal S, Eley T, Wainwright N, Wang JC, Willemsen G, Anderson IM, Arolt V, Åslund C, Bagdy G, Baune BT, E, Petschner P, Peyrot WJ, Schwahn C, Sinnamon G, Stacey D, Tian Y, Toben C, Van der Auwera S, Jennen-Steinmetz C, Kramer JR, Lajnef M, Little K, Zu Schwabedissen HM, Nauck M, Nederhof M, Mandelli L, Middeldorp CM, Olié E, Villafuerte S, Air TM, Araya R, Bowes L, Burns R, Byrne EM, Cohen-Woods S, Etain B, Fisher HL, Goldman N, Guillaume S, Horwood J, Juhasz G, Lester KJ, Quiroga JA, Rasmussen HB, Raychaudhuri S, Rehnström K, Reif A, Ribasíus M, Rice JP, Rietzschel M, Roeder K, Roeyers H, Rossin L, Rothenberger A, Rouleau G, Safi EA, Schachar R, Schalling M, Schatzberg AF, Scheftner WA, Schellenberg GD, Scherer SW, Schork NJ, Schulze TG, Schumacher J, Schwarz M, Seckin E, Scott LJ, Shi J, Shillling PD, Shyn SI, Silverman JM, Slager SL, Smalley SL, Smit JH, Smith EN, Sonuga-Barke EJ, St Clair D, State M, Steffens M, Steinhausen HC, Strauss JS, Strohmaier J, Stroup TS, Sutcliffe JS, Szatmari P, Selinger S, Thirumalai S, Thompson RC, Todorov AA, Tozzi F, Treatlein J, Uhr M, van den Oord EJ, Van Grootheest G, Van Os J, Vicente AM, Vieland VJ, Vincent JB, Visseren PM, Walsh CA, Wassink TH, Watson SJ, Weissman MM, Werge T, Wienker TF, Wijman E, Willemsen G, Williams N, Willsey AJ, Witt SH, Xu W, Young AH, Yu TW, Zammit S, Zandi PP, Zhang P, Zitlan FG, Zöllner S, Devlin B, Kelsoe JR, Sklar P, Daly MJ, O’Donovan MC, Craddock N, Sullivan PF, Smoller JW, Kendler KS, Wray NR; International Inflammatory Bowel Disease Genetics Consortium (IIBDGC). Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nat Genet 2013; 45: 984-994 [PMID: 2393382] DOI: 10.1038/ng.2711

7 Cross-Disorder Group of the Psychiatric Genomics Consortium. Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet 2013; 381: 1371-1379 [PMID: 23453885 DOI: 10.1016/S0140-6736(12)62129-1]

8 Bosker FJ, Hartman CA, Nolte IM, Prins BP, Terpstra P, Posthuma D, van Veen T, Willemsen G, DeRijk RH, de Geus EJ, Hoogendijk WJ, Sullivan PF, Penninx BW, Boomsma DI, Snieder H, Nolen WA. Poor replication of candidate genes for major depressive disorder using genome-wide association data. Mol Psychiatry 2011; 16: 516-532 [PMID: 20351714 DOI: 10.1038/mp.2010.38]

9 Heim C, Binder EB. Current research trends in early life stress and depression: review of human studies on sensitive periods, gene-environment interactions, and epigenetics. Exp Neurol 2012; 233: 102-111 [PMID: 22101006 DOI: 10.1016/j.expneurol.2011.10.032]

10 Casey A, Sugden K, Moffitt TE, Taylor A, Craig IW, Harrington H, McClay J, Mill J, Martin J, Braithwaite A, Poulton R. Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Biol Psychiatry 2003; 53: 386-389 [PMID: 12869766 DOI: 10.1016/s0006-3223(03)00072-1]

11 Munafò MR, Durrant C, Lewis G, Flint J. Gene X environment interactions at the serotonin transporter locus. Biol Psychiatry 2009; 65: 211-219 [PMID: 18691701 DOI: 10.1016/j.biopsych.2008.06.009]

12 Russotti J, Warmingham JM, Duprey EB, Handley ED, Manly JT, Rogosch FA, Cicchetti D. Child maltreatment and the development of psychopathology: The role of developmental timing and chronicity. Child Abuse Negl 2021; 120: 105215 [PMID: 34734379 DOI: 10.1016/j.chiabu.2021.105215]

13 Culverhouse RC, Sacco RL, Horton AC, Ma Y, Anstey KJ, Banaschewski T, Burmeister M, Cohen-woods S, Etain B, Fisher HL, Goldman N, Guillame S, Horwood J, Juhasz G, Lester KJ, Mandelli L, Middeldorp CM, Olie E, Villafuerte S, Air TM, Araya R, Bowes L, Burns R, Byrne EM, Coffey C, Conventry WL, Gawronski KB, Glei D, Hatzimanolis A, Hottenga JJ, Jaussent I, Jawahar C, Jennen-steinmetz C, Kramer RJ, Lajnef M, Little K, Luwawsbiedissen HM, Nauck M, Nederhof EM, Petschner P, Peyrot WJ, Schwanh C, Sinnamon G, Stacey D, Tian Y, Toben C, Van der Auwera S, Wainwright N, Wang JC, Willemsen G, Anderson IM, Arolt V, Aslund C, Bagdy G, Baune BT, Belliver F, Boomsma DI, Courtel P, Dannolowski U, de Geus E, Deakin JF, Easteal S, Eley T, Fergusson DM, Goate AM, Gonda X, Grabe HJ, Holzman C, Johnson EO, Kennedy M, Laucht M, Martin NG, Munafò MR, Nilsson KW, Oldhinkel AJ, Olsson CA, Ormel J, O’Toole C, Patton GC, Penninx BWJH, Ritchie K, Scharianapone M, Scheid JM, Serretti A, Smit JH, Stefanis NC, Surtees PG, Völkel H, Weinstein M, Whooley M, Nurnberger Jr, Breslan N, Bierut LJ, Collaborative meta-analysis finds no evidence of a strong interaction between stress and 5-HTT-LPR genotype contributing to the development of depression. Mol Psychiatry 2018; 23: 133-142 [PMID: 28373689 DOI: 10.1038/mp.2017.44]

14 Zannas AS, Wiechmann T, Gassen NC, Binder EB. Gene- Stress-Epigenetic Regulation of FKBP5: Clinical and Translational Implications. Neuropsychopharmacology 2016; 41: 261-274 [PMID: 26250598 DOI: 10.1038/npp.2015.235]

15 Comasco E, Gustafsson PA, Sydöjö G, Agnaftor S, Aho N, Svedin CG. Psychiatric symptoms in adolescents: FKBP5 genotype–early life adversity interaction effects. Eur Child Adolesc Psychiatry 2015; 24: 1473-1483 [PMID: 26424511 DOI: 10.1007/s00787-015-0768-3]

16 Kohrt BA, Worthman CM, Ressler KJ, Mercer KB, Upadhyai N, Koirala S, Nepal MK, Sharma VD, Zhao MZ et al. Gene, environment and major depressive disorder. Neuropsychopharmacology 2016; 41: 261-274 [PMID: 26250598 DOI: 10.1038/npp.2015.235]

17 Tozzi F, Carballedo A, Wetterling F, McCarthy H, O’Keane V, Gill M, Morris D, Fahey C, Meaney J, Frodl T. Single-Nucleotide Polymorphism of the FKBP5 Gene and Childhood Maltreatment as Predictors of Structural Changes in Brain Areas Involved in Emotional Processing in Depression.
Zhao MZ et al. Gene, environment and major depressive disorder

Neuropsychopharmacology 2016; 41: 487-497 [PMID: 26076833 DOI: 10.1038/npp.2015.170]

18 Dunn EC, Wiste A, Radmanesh F, Almli LM, Gogarten SM, Sofer T, Faul JD, Kardia SL, Smith JA, Weir DR, Zhao W, Soare TW, Mirza SS, Hek K, Tiemeier H, Goveas JS, Sarto GÈ, Snively BM, Cornelis M, Koenen KC, Kraft P, Purcell S, Ressler KJ, Rosand J, Wasserveth-Smoller S, Smoller JW. Genome-Wide Association Study (Gwas) and Genome-Wide by Environment Interaction Study (Gweis) of Depressive Symptoms in African American and Hispanic/Latina Women. Depress Anxiety 2016; 33: 265-280 [PMID: 27038408 DOI: 10.1002/da.22466]

19 Otowa T, Kawamura Y, Tsutsuimi A, Kawakami N, Kan C, Shimada T, Umezake T, Kasai K, Tokunaga K, Sasaki T. The First Pilot Genome-Wide Gene-Environment Study of Depression in the Japanese Population. PLoS One 2016; 11: e0160823 [PMID: 27529621 DOI: 10.1371/journal.pone.0160823]

20 Cattaneo A, Cattane N, Malpighi C, Czamaara D, Suarez A, Mariani N, Kajantie E, Luoni A, Eriksson JG, Lahti J, Mondelli V, Dazzan P, Räikkönen K, Binder EB, Riva MA, Pariente CM. FoxO1, A2M, and TGF-β1: three novel genes predicting depression in gene X environment interactions are identified using cross-species and cross-tissues transcriptomic and miRNome analyses. Mol Psychiatry 2018; 23: 2192-2208 [PMID: 29302075 DOI: 10.1038/s41380-017-0002-4]

21 Lin YL, Wang S. Prenatal lipopolysaccharide exposure increases depression-like behaviors and reduces hippocampal neurogenesis in adult rats. Behav Brain Res 2014; 259: 24-34 [PMID: 24177209 DOI: 10.1016/j.bbr.2013.10.034]

22 Gámez-Guadix M, Orue I, Smith PK, Calvete E. Longitudinal and reciprocal relations of cyberbullying with depression, substance use, and problematic internet use among adolescents. J Adolesc Health 2013; 53: 446-452 [PMID: 23721758 DOI: 10.1016/j.jadohealth.2013.03.030]

23 Gullander M, Hogh A, Hansen AM, Persson R, Ruggles R, Kolstad HA, Thomsen JF, Willett MV, Grynderup M, Moro O, Bonde JP. Exposure to workplace bullying and risk of depression. J Occup Environ Med 2014; 56: 1258-1265 [PMID: 25479295 DOI: 10.1097/JOM.0000000000000393]

24 Cummings CM, Caporino NE, Kendall PC. Comorbidity of anxiety and depression in children and adolescents: 20 years after. Psychol Bull 2014; 140: 816-845 [PMID: 24219155 DOI: 10.1037/a0034733]

25 Ho TC. Stress and Neurodevelopment in Adolescent Depression. Biol Psychiatry 2019; 86: e33-e35 [PMID: 31648684 DOI: 10.1016/j.biopsych.2019.09.012]

26 Harmer B, Lee S, Duong TVH, Saadabadi A. 2021 Aug 6. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021 Jan–

27 Ezquiaga E, Ayuso Gutierrez JL, García López A. Psychosocial factors and episode number in depression. J Affect Disord 1987; 12: 135-138 [PMID: 2955004 DOI: 10.1016/0165-0327(87)90005-x]

28 Edwards VJ, Holden GW, Felitti VJ, Anda RF. Relationship between multiple forms of childhood maltreatment and adult mental health in community respondents: results from the adverse childhood experiences study. J Am Psychiatry 2003; 160: 1453-1460 [PMID: 12900308 DOI: 10.1176/appi.ajp.160.8.1453]

29 Felitti VJ, Anda RF, Nordenberg D, Williamson DF, Spitz AM, Edwards V, Koss MP, Marks JS. Relationship of childhood abuse and household dysfunction to many of the leading causes of death in adults. The Adverse Childhood Experiences (ACE) Study. Am J Prev Med 1998; 14: 245-258 [PMID: 9635069 DOI: 10.1016/s0749-3797(98)00017-8]

30 Evans GW. The environment of childhood poverty. Am Psychol 2004; 59: 77-92 [PMID: 14992634 DOI: 10.1037/0003-066X.59.2.77]

31 Kendler KS, Gardner CO, Prescott CA. Toward a comprehensive developmental model for major depression in men. Am J Psychiatry 2006; 163: 115-124 [PMID: 16390898 DOI: 10.1176/appi.ajp.163.1.115]

32 Monroe SM, Simons AD. Diathesis-stress theories in the context of life stress research: implications for the depressive disorders. Psychol Bull 1991; 110: 406-425 [PMID: 1758917 DOI: 10.1037/0033-2909.110.3.406]

33 Hammen C. Risk Factors for Depression: An Autobiographical Review. Ann Rev Clin Psychol 2018; 14: 1-28 [PMID: 29320780 DOI: 10.1146/annurev-clinpsych-050117-084811]

34 Belsky J, Pasco Fearon RM, Bell B. Parenting, attention and externalizing problems: testing mediation longitudinally, repeatedly and reciprocally. J Child Psychol Psychiatry 2007; 48: 1233-1242 [PMID: 16909309 DOI: 10.1111/j.1469-7610.2007.01807.x]

35 Ellis BJ, Boyce WT, Belsky J, Bakermans-Kranenburg MJ, van IJzendoorn MH. Differential susceptibility to the environment: an evolutionary-neurodevelopmental theory. Dev Psychopathol 2011; 23: 7-28 [PMID: 21262036 DOI: 10.1017/S0954579410000611]

36 Hammen C. Generation of stress in the course of unipolar depression. J Abnorm Psychol 1991; 100: 555-561 [PMID: 1757669 DOI: 10.1037/0021-843X.100.4.555]

37 Pluess M, Belsky J. Vantage sensitivity: individual differences in response to positive experiences. Psychol Bull 2013; 139: 901-916 [PMID: 23025924 DOI: 10.1037/a0030196]

38 Pluess M. Vantage Sensitivity: Environmental Sensitivity to Positive Experiences as a Function of Genetic Differences. J Pers 2017; 85: 38-50 [PMID: 26271007 DOI: 10.1111/jopy.22128]

39 Belsky J, Pluess M. Beyond diathesis stress: differential susceptibility to environmental influences. Psychol Bull 2009; 135: 885-908 [PMID: 19983141 DOI: 10.1037/a0017376]

40 Collins AL, Kim Y, Sklar P. International Schizophrenia Consortium, O'Donovan MC, Sullivan PF. Hypothesis-driven candidate genes for schizophrenia compared to genome-wide association results.
Zhao MZ et al. Gene, environment and major depressive disorder

Psychol Med 2012; 42: 607-616 [PMID: 21854684 DOI: 10.1017/S0033291711001607]

Donnelly P. Progress and challenges in genome-wide association studies in humans. Nature 2008; 456: 728-731 [PMID: 19079049 DOI: 10.1038/nature07631]

Duncan LE, Keller MC. A critical review of the first 10 years of candidate gene-by-environment interaction research in psychiatry. Am J Psychiatry 2011; 168: 1041-1049 [PMID: 21890791 DOI: 10.1176/appi.ajp.2011.11020191]

Munafo MR, Flint J. Replication and heterogeneity in gene x environment interaction studies. Int J Neuropsychopharmacol 2009; 12: 727-729 [PMID: 19476681 DOI: 10.1017/S1461145709000479]

Belsky J, Jonassaint C, Pluess M, Stanton M, Brummett B, Williams R. Vulnerability genes or plasticity genes? Mol Psychiatry 2009; 14: 746-754 [PMID: 19455150 DOI: 10.1038/mp.2009.44]

Menne-Lothmann C, Jacobs N, Derom C, Thiery E, van Os J, Wichers M. Genetic and environmental causes of individual differences in daily life positive affect and reward experience and its overlap with stress-sensitivity. Behav Genet 2012; 42: 778-786 [PMID: 22976548 DOI: 10.1007/s10519-012-9553-y]

Ofrat S, Krueger RF. How research on the meta-structure of psychopathology aids in understanding biological correlates of mood and anxiety disorders. Biol Mood Anxiety Disord 2012; 2: 13 [PMID: 22898106 DOI: 10.1186/2045-5380-2-13]
