An affine Birkhoff–Kellogg-type result in cones with applications to functional differential equations

Alessandro Calamai1 | Gennaro Infante2

1Dipartimento di Ingegneria Civile, Edile e Architettura, Università Politecnica delle Marche, Ancona, Italy
2Dipartimento di Matematica e Informatica, Università della Calabria, Rende, Italy

Correspondence
Gennaro Infante, Dipartimento di Matematica e Informatica, Università della Calabria, 87036 Arcavacata di Rende, Cosenza, Italy.
Email: gennaro.infante@unical.it

Communicated by: J. Banasiak

Funding information
Istituto Nazionale di Alta Matematica "Frascale Severi"

In this short note, we prove, by means of classical fixed point index, an affine version of a Birkhoff–Kellogg-type theorem in cones. We apply our result to discuss the solvability of a class of boundary value problems for functional differential equations subject to functional boundary conditions. We illustrate our theoretical results in an example.

KEYWORDS
Birkhoff–Kellogg-type result, cone, fixed point index, functional boundary condition, retarded functional differential equation

MSC CLASSIFICATION
47H10, 34K10, 34B10, 34B18

1 | INTRODUCTION

The celebrated Birkhoff–Kellogg invariant direction theorem1 is a widely studied and applied tool of nonlinear functional analysis, also in view of its applicability to eigenvalue problems for ODEs and PDEs (see, e.g., the book2 and the recent papers3,4). Among the various extensions of the invariant direction theorem, one of them is set in the framework of cones and is due to Krasnosel’skii and Ladyženskiı.5 Before we state this latter result, let us recall that a cone

$$K$$

of a real Banach space

$$X$$

is a closed set with

$$K + K \subset K,
\lambda K \subset K$$

for all

$$\lambda \geq 0$$

and

$$K \cap (-K) = \{0\}.$$6

The Birkhoff–Kellogg-type theorem of Krasnosel’skii and Ladyženskiı reads as follows.

Theorem 1. Let

$$X, ||||$$

be a real Banach space,

$$U \subset X$$

be an open bounded set with

$$0 \in U,
K \subset X$$

be a cone,

$$T : K \cap \bar{U} \to K$$

be compact and suppose that

$$\inf_{x \in K \cap \partial U} ||Tx|| > 0.$$7

Then there exist

$$\lambda_0 \in (0, +\infty)$$

and

$$x_0 \in K \cap \partial U$$

such that

$$x_0 = \lambda_0 Tx_0.$$8

Here, by means of classical fixed point index, we prove a different version of the Birkhoff–Kellogg result, set within the context of affine cones. Our result is motivated by the study of retarded functional differential equations. In fact, when dealing with the solvability of a boundary value problem with delays and initial data, it is somewhat natural to rewrite it in the form of a perturbed integral equation and to seek the solutions of this equation in an affine cone. In particular,
Calamai and Infante7 proved, by means of fixed point index in an affine cone of continuous functions, the existence of multiple nontrivial solutions of the perturbed Hammerstein integral equations of the type
\[
 u(t) = \psi(t) + \int_{0}^{1} k(t, s)g(s)F(s, u_s)\,ds + \gamma(t)\alpha[u],
\]
where \(\alpha[\cdot]\) is a linear functional in the space \(C[0, 1]\) given by Stieltjes integral, namely,
\[
 \alpha[u] = \int_{0}^{1} u(s)\,dA(s).
\]

Here we discuss the solvability of the perturbed integral equations
\[
 u(t) = \psi(t) + \lambda \left(\int_{0}^{1} k(t, s)g(s)F(s, u_s)\,ds + \gamma(t)B[u] \right),
\]
where \(\lambda\) is a nonnegative parameter and \(B[\cdot]\) is a (not necessarily linear) functional in \(C^r([-r, 1], \mathbb{R})\). The functional \(B[\cdot]\) allows to cover the interesting case of nonlinear and nonlocal boundary conditions (BCs) that can occur in the differential problems; there exists a wide literature on these kinds of BCs; we refer the reader to the reviews8-14 and the manuscripts.15-17 We mention, in particular, the contributions of Mawhin and co-authors in this area of research; see, for example, an earlier study.18 Note that, in the applications, the functional \(B[\cdot]\) can also take into account of the past state of the system.

As a toy model, we discuss the solvability of the following class of third-order parameter-dependent functional differential equations with functional BCs.
\[
 u'''(t) + \lambda f(t, u_t, u'(t), u(t - r_1), u'(t - r_2)) = 0, \quad t \in [0, 1],
\]
with initial conditions
\[
 u(t) = \psi(t), \quad t \in [-r, 0],
\]
and one of the following BCs
\[
 u(0) = u'(0) = 0, \quad u(1) = \lambda B[u],
\]
\[
 u(0) = u'(0) = 0, \quad u'(1) = \lambda B[u],
\]
\[
 u(0) = u'(0) = 0, \quad u''(1) = \lambda B[u].
\]

Third-order functional differential equations with nonlocal boundary terms have been studied in the past; we mention here, for example, the work of Tsamatos19 and the subsequent papers.20-22

As far as we are aware of, our Birkhoff–Kellogg-type result (Theorem 2 below) is new and complements the interesting topological results in affine cones proved by Djebali and Mebarki.23 On the other hand, we also complement the existence results of Calamai and Infante7; this is illustrated in the case of a delay differential equation (DDE). In fact, here we can deal with equations of the type
\[
 u'''(t) = \lambda f(t, u(t), u'(t), u(t - r_1), u'(t - r_2)) = 0, \quad t \in [0, 1]
\]
in which we allow the dependence also in the derivative of the solution and we consider the presence of possibly different time lags.

\section*{2 | FIXED POINTS ON TRANSLATES OF A CONE}

In the proof of our results, we use the notion of fixed point index for compact maps, for classical references; see, for example, previous studies.6,24,25
Let \((X, \| \cdot \|)\) be a real Banach space and \(K\) be a cone in \(X\). Given a bounded and open (in the relative topology) subset \(\Omega\) of \(K\), we denote by \(\bar{\Omega}\) and \(\partial \Omega\) the closure and the boundary of \(\Omega\) relative to \(K\). For \(y \in X\), the translate of the cone \(K\) is defined as
\[
K_y := y + K = \{ y + x : x \in K \}.
\]
Given an open bounded subset \(D\) of \(X\), we denote \(D_K = D \cap K\), an open subset of \(K\). Given a compact map \(\mathcal{G} : \bar{D}_K \to K\) such that \(x \neq \mathcal{G} x\) for \(x \in \partial D_K\), then the fixed point index \(i_K(\mathcal{G}, D_K)\) is well-defined. The index is an integer number which, roughly speaking, is obtained as an algebraic count of the fixed points of the map \(\mathcal{G}\) in \(D_K\). It is known that the properties of the fixed point index are analogous to those of the Leray–Schauder degree (among the fundamental ones there are Normalization, Additivity, Homotopy Invariance, and Solution properties).

Our Birkhoff–Kellogg-type result is a consequence of the Solution and Homotopy invariance properties of the index. The result reads as follows.

Theorem 2. Let \((X, \| \cdot \|)\) be a real Banach space, \(K \subset X\) be a cone, and \(D \subset X\) be an open bounded set with \(y \in D_K\) and \(\bar{D}_K \neq K\). Assume that \(\mathcal{F} : \bar{D}_K \to K\) is a compact map and consider the operator
\[
\mathcal{F}_{(y, \lambda)} := y + \lambda \mathcal{F},
\]
where \(\lambda \in \mathbb{R}\). Assume that there exists \(\tilde{\lambda} \in (0, +\infty)\) such that \(i_K(\mathcal{F}_{(y, \lambda)}, D_K) = 0\). Then there exist \(x^* \in \partial D_K\) and \(\lambda^* \in (0, \tilde{\lambda})\) such that \(x^* = y + \lambda^* \mathcal{F}(x^*)\).

Proof. First of all, note that we have \(i_K(y, D_K) = 1\) by the Solution property of the index. Consider the map \(H : [0, 1] \times \bar{D}_K \to E\) defined by \(H(t, x) = y + t\lambda \mathcal{F}(x)\). Note that \(H\) is a compact map with values in \(K\). If there exist \(t^* \in (0, 1)\) and \(x \in \partial D_K\) such that \(x = y + t^* \lambda \mathcal{F}(x)\), we are done. If it does not happen, the fixed point index is defined for \(y + t^* \lambda \mathcal{F}\) for every \(t \in [0, 1]\), and by the Homotopy invariance property, we obtain
\[
1 = i_K(y, D_K) = i_K(\mathcal{F}_{(y, \lambda)}, D_K) = 0.
\]
and the result follows. \(\square\)

Remark 1. We point out that a sufficient condition yielding that the index is equal to zero, as in the assumption of Theorem 2, is the following:

- Assume that \(\mathcal{G} : \bar{D}_K \to K\) is a compact map such that \(x \neq \mathcal{G} x\) for \(x \in \partial D_K\). If there exists \(e \in K \setminus \{0\}\) such that \(x \neq \mathcal{G} x + \sigma e\) for all \(x \in \partial D_K\) and all \(\sigma > 0\), then \(i_K(\mathcal{G}, D_K) = 0\).

A detailed proof can be found, for example, in Calamai and Infante.\(^7\)

As a Corollary of Theorem 2, we exhibit a norm-type Birkhoff–Kellogg result which can be useful in applications. In order to prove it, we make use of the following proposition.

Proposition 1 (Proposition 2.1 of\(^2\)). Let \((X, \| \cdot \|)\) be a real Banach space, \(K \subset X\) be a cone, and \(D \subset X\) be an open bounded set with \(y \in D_K\) and \(\bar{D}_K \neq K\). Assume that \(\mathcal{F} : \bar{D}_K \to K\) is a compact map and assume that
\[
\begin{align*}
(a) & \quad \inf_{x \in \partial D_K} \| \mathcal{F}(x) \| > 0 \\
(b) & \quad \mathcal{F}(x) \neq \mu(x - y) \text{ for every } x \in \partial D_K \text{ and } \mu \in (0, 1].
\end{align*}
\]
Then, \(i_K(\mathcal{F}, D_K) = 0\).

We can now state our norm-type result, which can be seen as an affine version of Theorem 1.

Corollary 1. Let \((X, \| \cdot \|)\) be a real Banach space, \(K \subset X\) be a cone, and \(D \subset X\) be an open bounded set with \(y \in D_K\) and \(\bar{D}_K \neq K\). Assume that \(\mathcal{F} : \bar{D}_K \to K\) is a compact map and assume that
\[
\inf_{x \in \partial D_K} \| \mathcal{F}(x) \| > 0.
\]
Then there exist \(x^* \in \partial D_K\) and \(\lambda^* \in (0, +\infty)\) such that \(x^* = y + \lambda^* \mathcal{F}(x^*)\).
Proof. We make use of Proposition 1 with the map \(\tilde{\lambda} F \) in place of \(F \).

We proceed by contradiction and assume that there exist \(x_1 \in \partial D_K \) and \(\mu_1 \in (0, 1) \) such that \(\tilde{\lambda} F(x_1) = \mu_1(x_1 - y) \). Take \(R = \sup_{x \in D_K} ||x|| \), then we have

\[
\tilde{\lambda} \cdot \inf_{x \in D_K} ||F(x)|| \leq ||\tilde{\lambda} F(x_1)|| = ||\mu_1(x_1 - y)|| \leq ||x_1 - y|| \leq ||x_1|| + ||y|| \leq R + ||y||,
\]

a contradiction if

\[
\tilde{\lambda} > \frac{R + ||y||}{\inf_{x \in D_K} ||F(x)||}.
\]

Then, the result follows from Theorem 2. \(\square \)

3 | POSITIVE SOLUTIONS FOR A CLASS OF PERTURBED INTEGRAL EQUATIONS

Let \(I \subset \mathbb{R} \) be a compact real interval. By \(C^1(I, \mathbb{R}) \), we denote the Banach space of the continuously differentiable functions defined on \(I \) with the norm

\[
||u||_{I,1} := \max \{ ||u||_{I,\infty}, ||u'||_{I,\infty} \},
\]

where \(||u||_{I,\infty} := \sup_{t \in I} |u(t)| \).

We adopt a standard notation, used in retarded functional differential equations (cf. Hale and Verduyn Lunel\(^{26} \)), as follows. Given a positive real number \(r > 0 \), a continuous function \(u : J \to \mathbb{R} \), defined on a real interval \(J \), and given any \(t \in \mathbb{R} \) such that \([t - r, t] \subseteq J \), by \(u_t : [-r, 0] \to \mathbb{R} \), we mean the function defined by \(u_t(\theta) = u(t + \theta) \).

We consider the following integral equation in the space \(C^1([-r, 1], \mathbb{R}) \):

\[
u(t) = \psi(t) + \lambda \int_0^1 k(t, s)g(s)F(s, u_s)ds + \gamma(t)B[u] =: \psi(t) + \lambda F u(t), \quad t \in [-r, 1]
\]

where \(B \) is a suitable (possibly nonlinear) functional in the space \(C^1([-r, 1], \mathbb{R}) \).

We require the following assumptions on \(r \) as well as on the maps \(F, k, \psi, \gamma \), and \(g \) that occur in (1).

(C\(_1\)) The function \(\psi : [-r, 1] \to [0, +\infty) \) is continuously differentiable and such that \(\psi(t) = \psi'(t) = 0 \) for all \(t \in [0, 1] \).

(C\(_2\)) The kernel \(k : [-r, 1] \times [0, 1] \to [0, +\infty) \) is measurable, verifies \(k(t, s) = 0 \) for all \(t \in [-r, 0] \) and almost every (a. e.) \(s \in [0, 1] \), and for every \(\tilde{t} \in [0, 1] \), we have

\[
\lim_{t \to \tilde{t}} |k(t, s) - k(\tilde{t}, s)| = 0 \text{ for a.e. } s \in [0, 1].
\]

(C\(_3\)) For a.e. \(s \), the partial derivative \(\partial_s k(t, s) \) is continuous in \(t \) except at the point \(t = s \) where there can be a jump discontinuity; that is, right and left limits both exist, and there exists \(\Psi \in L^1(0, 1) \) such that \(|\partial_s k(t, s)| \leq \Psi(s) \) for \(t \in [0, 1] \) and a.e. \(s \in [0, 1] \).

(C\(_4\)) The function \(g : [0, 1] \to \mathbb{R} \) is measurable, \(g(t) \geq 0 \) a.e. \(t \in [0, 1] \), and satisfies that \(g\Phi \in L^1[0, 1] \) and \(\int_0^1 g(s)ds > 0 \).

(C\(_5\)) \(F : [0, 1] \times C^1([-r, 0], \mathbb{R}) \to [0, \infty) \) is an operator that satisfies some Carathéodory-type conditions (see also Hale and Verduyn Lunel\(^{26} \)); namely, for each \(\phi, t \mapsto F(t, \phi) \) is measurable and for a.e. \(t, \phi \mapsto F(t, \phi) \) is continuous. Furthermore, for each \(R > 0 \), there exists \(\varphi_R \in L^\infty[0, 1] \) such that

\[
F(t, \phi) \leq \varphi_R(t) \text{ for all } \phi \in C^1([-r, 0], \mathbb{R}) \text{ with } \|\phi\|_{[-r,0],1} \leq R, \text{ and a.e. } t \in [0, 1].
\]

(C\(_6\)) The function \(\gamma : [-r, 1] \to [0, \infty) \) is continuous differentiable and such that \(\gamma(t) = \gamma'(t) = 0 \) for all \(t \in [-r, 0] \).
By \(K_0 \), we denote the following cone of nonnegative functions in the Banach space \(C^1([-r, 1], \mathbb{R}) \):
\[
K_0 = \{ u \in C^1([-r, 1], \mathbb{R}) : u(t) \geq 0 \text{ for every } t \in [-r, 1] \text{ and } u(t) = u'(t) = 0 \text{ for every } t \in [-r, 0] \}.
\]

Observe that the function
\[
w(t) = \begin{cases} 0, & t \in [-r, 0], \\ t^2, & t \in [0, 1], \end{cases}
\]
belongs to \(K_0 \), hence \(K_0 \neq \{0\} \).

Given \(\psi \in C^1([-r, 1], \mathbb{R}) \), let \(K_\psi \) be the following translate of the cone \(K_0 \),
\[
K_\psi = \psi + K_0 = \{ \psi + u : u \in K_0 \}.
\]

Definition 1. Given \(\psi \in C^1([-r, 1], \mathbb{R}) \) and \(\rho > 0 \), we define the following subsets of \(C^1([-r, 1], \mathbb{R}) \):
\[
K_{0, \rho} := \{ u \in K_0 : \| u \|_{[0,1], 1} < \rho \}, \quad K_{\psi, \rho} := \psi + K_{0, \rho}.
\]

The following theorem provides an existence result for Equation (1): Here we obtain a nontrivial solution within the cone \(K_\psi \) with fixed norm and a corresponding positive parameter.

Theorem 3. Let \(\rho \in (0, +\infty) \) and assume the following further conditions hold.

(a) There exist \(\delta_\rho \in C([0, 1], \mathbb{R}_+) \) such that
\[
F(t, \phi) \geq \delta_\rho(t), \text{ for every } (t, \phi) \in [0, 1] \times C^1([-r, 0], \mathbb{R}_+) \text{ with } \| \phi \|_{[-r, 0], 1} \leq \max \{ \rho, \| \psi \|_{[-r, 0], 1} \}.
\]

(b) \(B : K_{\psi, \rho} \to \mathbb{R}_+ \) is continuous and bounded. Let \(\eta \in (0, +\infty) \) be such that
\[
B[u] \geq \eta \rho, \text{ for every } u \in \partial K_{\psi, \rho}.
\]

(c) The inequality
\[
\sup_{t \in [0, 1]} \left\{ \gamma(t) \eta \delta_\rho - \int_0^1 k(t, s)g(s) \delta_\rho(s) ds \right\} > 0
\]
holds.

Then there exist \(\lambda_\rho \) and \(u_\rho \in \partial K_{\psi, \rho} \) such that the integral Equation (1) is satisfied.

Proof. Consider the operator \(F \) defined in (1). Due to the assumptions above, \(F \) maps \(K_{\psi, \rho} \) into \(K_0 \) and is compact. The compactness of the Hammerstein integral operator is a consequence of the regularity assumptions on the terms occurring in it combined with a careful use of the Arzelà-Ascoli theorem (see Webb\(^\text{27}\)), while the perturbation \(\gamma(t)B[\cdot] \) is a finite rank operator.

Take \(u \in \partial K_{\psi, \rho} \). Then we have
\[
\| Fu \|_{[-r, 1], \infty} = \sup_{t \in [0, 1]} \left| \int_0^1 k(t, s)g(s)F(s, u_\rho) ds + \gamma(t)B[u] \right| \geq \sup_{t \in [0, 1]} \left\{ \gamma(t) \eta \delta_\rho - \int_0^1 k(t, s)g(s) \delta_\rho(s) ds \right\}.
\]

Note that the RHS of (3) does not depend on the particular \(u \) chosen. Therefore, we have
\[
\inf_{u \in \partial K_{\psi, \rho}} \| Fu \|_{[-r, 1], 1} \geq \sup_{t \in [0, 1]} \left\{ \gamma(t) \eta \delta_\rho - \int_0^1 k(t, s)g(s) \delta_\rho(s) ds \right\} > 0,
\]
and the result follows by Corollary 1.
We now apply the previous results to the following class of third-order functional differential equations with functional BCs.

\[u'''(t) + \lambda F(t, u_t) = 0, \ t \in [0, 1], \]

with initial conditions

\[u(t) = \psi(t), \ t \in [-r, 0], \]

and one of the following BCs

\[u(0) = u'(0) = 0, \ u(1) = \lambda B[u], \]

\[u(0) = u'(0) = u'(1) = \lambda B[u], \]

\[u(0) = u'(0) = u''(1) = \lambda B[u]. \]

We begin by considering some auxiliary problems.

First of all, note that the solution of the ODE \(-u''' = y\) under the BCs

\[u(0) = u'(0) = u(1) = 0, \]

\[u(0) = u'(0) = u'(1) = 0, \]

\[u(0) = u'(0) = u''(1) = 0, \]

in the interval \([0, 1]\) is given by

\[u(t) = \int_{0}^{1} \hat{k}_i(t, s)y(s)ds, \]

where Green’s function is

\[\hat{k}_1(t, s) = \begin{cases}
\frac{1}{2} \left(s(1 - t)(2t - ts - s), & s \leq t, \\
(1 - s)^2t^2, & s \geq t,
\end{cases} \]

in the case of the BCs (6),

\[\hat{k}_2(t, s) = \begin{cases}
\frac{1}{2} \left((2t - t^2 - s)s, & s \leq t, \\
(1 - s)t^2, & s \geq t,
\end{cases} \]

for the BCs (7), and

\[\hat{k}_3(t, s) = \begin{cases}
\frac{1}{2} \left(s(2t - s), & s \leq t, \\
t^2, & s \geq t,
\end{cases} \]

for the BCs (8). Furthermore, note that the function

\[\check{\gamma}_1(t) := t^2 \]

is the unique solution of the boundary value problem (BVP)

\[\check{\gamma}'''(t) = 0, \ \check{\gamma}(0) = \check{\gamma}'(0) = 0, \ \check{\gamma}(1) = 1, \]

while the functions

\[\check{\gamma}_2(t) \equiv \check{\gamma}_3(t) := \frac{1}{2}t^2 \]

solve the BVPs

\[\check{\gamma}'''(t) = 0, \ \check{\gamma}(0) = \check{\gamma}'(0) = 0, \ \check{\gamma}'(1) = 1. \]

\[\check{\gamma}'''(t) = 0, \ \check{\gamma}(0) = \check{\gamma}'(0) = 0, \ \check{\gamma}''(1) = 1. \]

By routine calculations (see also earlier studies\(^{28,29}\)), one obtains the following proposition.
Proposition 2. For every i = 1, 2, 3, we have the following:

1. \(\dot{k}_i \) is continuous and nonnegative in \([0, 1] \times [0, 1]\) and the partial derivative \(\partial_s k(t, s) \) is continuous in \(t \in [0, 1] \) for every \(s \in [0, 1] \).
2. \(\gamma_i \) is nonnegative and continuously differentiable in \([0, 1]\).

Due to the above setting, the functional boundary value problem (FBVP) (4)–(6) can be rewritten in the form (1), where \(\gamma(t) := H(t)\gamma_1(t) \) and \(k(t, s) := H(t)\dot{k}_1(t, s) \) with

\[
H(r) = \begin{cases}
1, & r \geq 0, \\
0, & r < 0,
\end{cases}
\]

and provided that \(\psi, F, B \) possess a suitable behavior, Theorem 3 can be applied directly; this fact holds also in the case of the FBVPs (4), (5), and (7) and (4), (5), and (8).

Let us now show briefly how our theory can be applied to DDEs. Namely, let \(f : [0, 1] \times \mathbb{R}_+ \times \mathbb{R} \times \mathbb{R}_+ \times \mathbb{R} \to [0, \infty) \) be a given Carathéodory map. Consider the third-order DDE with two time lags

\[
\dddot{u}(t) = \lambda f(t, u(t), u'(t), u(t - r_1), u'(t - r_2)) = 0, \quad t \in [0, 1],
\]

(12)

where \(r_1 \) and \(r_2 \) are positive and fixed (possibly different). We can apply the techniques developed in this paper to Equation (12) with initial condition (5) along with one of the BCs (6)–(8). To see this, observe that (12) is a special case of the functional Equation (4), in which taking \(r := \max\{r_1, r_2\} \), the operator \(F : [0, 1] \times C([-r, 0], \mathbb{R}) \to [0, \infty) \) is defined by

\[
F(t, \phi) = f(t, \phi(0), \phi'(0), \phi(-r_1), \phi'(-r_2)).
\]

Such an operator satisfies the above condition \((C_3)\) provided that the following assumption on the map \(f \) is verified: \([\text{(}C_3^r)\text{]}\) For each \(R > 0 \), there exists \(\varphi^*_R \in L^\infty([0, 1]) \) such that

\[
f(t, u, v, p, q) \leq \varphi^*_R(t) \text{ for all } (u, v, p, q) \in \mathbb{R}_+ \times \mathbb{R} \times \mathbb{R}_+ \times \mathbb{R}
\]

with \(0 \leq u, p \leq R, |v| \leq R, |q| \leq R, \) and a.e. \(t \in [0, 1] \).

To better illustrate the growth conditions, we now provide a specific example.

Example 4. We adapt the nonlinearities studied in Example 2.6 of Infante\(^4\) to the context of delay equations by consider the family of FBVPs

\[
\dddot{u}(t) + \lambda t e^{u(t)} \left(u(t) \right)^2 \left(1 + \left(u(t) \right)^2 + u \left(t - \frac{1}{3} \right) \right)^2, \quad t \in (0, 1),
\]

(13)

with the initial condition

\[
u(t) = \psi(t), \quad t \in \left[-\frac{1}{2}, 0 \right],
\]

(14)

with \(\psi(t) = H(-t)t^2 \) and one of the three BCs (9)–(11), where we fix

\[
B[u] = \frac{1}{1 + \left(u \left(\frac{1}{2} \right) \right)^2} + \int_{-\frac{1}{2}}^{1} t^2(u'(t))^2 dt.
\]

Now choose \(\rho \in (0, +\infty) \). Thus, we may take

\[
\eta(t) = \frac{1}{1 + \rho^2}, \quad \delta(t) = t.
\]
Therefore, for every \(i = 1, 2, 3 \), we have

\[
\sup_{\tau \in [0, 1]} \left\{ \gamma(t) \frac{1}{1 + \rho^2} + \int_{0}^{1} k_i(t, s)s \, ds \right\} \geq \frac{1}{2(1 + \rho^2)} > 0,
\]

which implies that (2) is satisfied for every \(\rho \in (0, +\infty) \).

Thus, we can apply Theorem 3, obtaining uncountably many pairs of solutions and parameters \((u_\rho, \lambda_\rho)\) for the FBVPs (13), (14), and (9); (13), (14), and (10); and (13), (14), and (11).

ACKNOWLEDGEMENTS

The authors would like to thank the Referee for the careful reading of the manuscript and for the constructive comments. The authors were partially supported by the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM). G. Infante is a member of the UMI Group TAA “Approximation Theory and Applications.” Open Access Funding provided by Università della Calabria within the CRUI-CARE Agreement.

CONFLICT OF INTEREST

The authors declare no potential conflict of interests.

AUTHOR CONTRIBUTIONS

All the authors contributed equally and significantly in writing this article. All the authors read and approved the final manuscript.

FINANCIAL DISCLOSURE

None reported.

ORCID

Alessandro Calamai https://orcid.org/0000-0001-9320-2426

Gennaro Infante https://orcid.org/0000-0003-1270-6177

REFERENCES

1. Birkhoff GD, Kellogg OD. Invariant points in function space. *Bull Am Math Soc*. 1922;28:236.
2. Appell J, De Pascale E, Vignoli A. *Nonlinear spectral theory*, Vol. 10. Berlin: de Gruyter; 2004. De Gruyter Ser. Nonlinear Anal. Appl.
3. Infante G. Eigenvalues of elliptic functional differential systems via a Birkhoff–Kellogg type theorem. *Mathematics*. 2020;9(1):4. doi:10.3390/math9010004
4. Infante G. On the solvability of a parameter-dependent cantilever-type BVP. *Appl Math Lett*. 2022;132:108090.
5. Krasnosel’skii MA, Ladyženskiı LA. The structure of the spectrum of positive nonhomogeneous operators. *Tr Mosk Mat O-va*. 1954;3:321-346.
6. Guo D, Lakshmikantham V. *Nonlinear Problems in Abstract Cones*. Boston, MA: Academic Press, Inc.; 1988.
7. Calamai A, Infante G. Nontrivial solutions of boundary value problems for second-order functional differential equations. *Ann Mat Pura Appl. (4)*. 2016;195(3):741-756.
8. Cabada A. An overview of the lower and upper solutions method with nonlinear boundary value conditions. *Bound Value Probl.* 2011;2011:18. Id/No 893753.
9. Conti R. Recent trends in the theory of boundary value problems for ordinary differential equations. *Boll Unione Mat Ital III Ser*. 1967;22:135-178.
10. Ma R. A survey on nonlocal boundary value problems. *Appl Math E-Notes*. 2007;7:257-279.
11. Picone M. Su un problema al contorno nelle equazioni differenziali lineari ordinarie del secondo ordine. *Pisa Ann*. 1908;10(4):95 s.
12. Ntouyas SK. Nonlocal initial and boundary value problems a survey. *Handbook of differential equations: Ordinary differential equations. Vol. ii*. Amsterdam: Elsevier/North Holland; 2005:461-557.
13. Štikonas A. A survey on stationary problems, Green's functions and spectrum of Sturm-Liouville problem with nonlocal boundary conditions. Nonlinear Anal Model Control. 2014;19(3):301-334.
14. Whyburn WM. Differential equations with general boundary conditions. Bull Am Math Soc. 1942;48:692-704.
15. Goodrich CS. Pointwise conditions for perturbed Hammerstein integral equations with monotone nonlinear, nonlocal elements. Banach J Math Anal. 2020;14(1):290-312.
16. Karakostas GL, Tsamatos PC. Existence of multiple positive solutions for a nonlocal boundary value problem. Topol Methods Nonlinear Anal. 2002;19(1):109-121.
17. Webb JRL, Infante G. Positive solutions of nonlocal boundary value problems: a unified approach. J Lond Math Soc II Ser. 2006;74(3):673-693.
18. Mawhin J, Przeradzki B, Szymanska-Debowska K. Second order systems with nonlinear nonlocal boundary conditions. Electron J Qual Theory Differ Equ. 2018;2018:11. Id/No 56.
19. Tsamatos PC. Third order boundary value problems for differential equations with deviating arguments. Boundary value problems for functional differential equations. Singapore: World Scientific; 1995:277-287.
20. Du Z. Solvability of functional differential equations with multi-point boundary value problems at resonance. Comput Math Appl. 2008;55(11):2653-2661.
21. Yang P, Du Z, Ge W. Solvability of boundary value problem at resonance for third-order functional differential equations. Proc Indian Acad Sci Math Sci. 2008;118(2):307-318.
22. Liu B, Yu JS. Note on third-order boundary value problem for differential equations with deviating arguments. Appl Math Lett. 2002;15(3):371-379.
23. Djebali S, Mebarki K. Fixed point index on translates of cones and applications. Nonlinear Stud. 2014;21(4):579-589.
24. Amann H. On the number of solutions of nonlinear equations in ordered Banach spaces. J Funct Anal. 1972;11:346-384.
25. Amann H. Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces. SIAM Rev. 1976;18:620-709.
26. Hale JK, Verduyn Lunel SM. Introduction to Functional Differential Equations, Vol. 99. New York, NY: Springer-Verlag; 1993. Appl. Math. Sci.
27. Webb JRL. Compactness of nonlinear integral operators with discontinuous and with singular kernels. J Math Anal Appl. 2022;509(2):17. Id/No 126000.
28. Guendouz C, Haddouchi F, Benaicha S. Existence of positive solutions for a nonlinear third-order integral boundary value problem. Ann Acad Rom Sci Math Appl. 2018;10(2):314-328.
29. Sun J-P, Li H-B. Monotone positive solution of nonlinear third-order BVP with integral boundary conditions. Bound Value Probl. 2010;2010:11. Id/No 874959.

How to cite this article: Calamai A, Infante G. An affine Birkhoff–Kellogg-type result in cones with applications to functional differential equations. Math Meth Appl Sci. 2023;46(11):11897-11905. doi:10.1002/mma.8665