The surface properties of *Shewanella putrefaciens* 200 and *S. oneidensis* MR-1: the effect of pH and terminal electron acceptors

Yoko Furukawa* and Jason R Dale

Abstract

Background: We investigated the surface characteristics of two strains of *Shewanella sp.*, *S. oneidensis* MR-1 and *S. putrefaciens* 200, that were grown under aerobic conditions as well as under anaerobic conditions with trimethylamine oxide (TMAO) as the electron acceptor. The investigation focused on the experimental determination of electrophoretic mobility (EPM) under a range of pH and ionic strength, as well as by subsequent modeling in which *Shewanella* cells were considered to be soft particles with water- and ion-permeable outermost layers.

Results: The soft layer of *p*200 is significantly more highly charged (i.e., more negative) than that of MR-1. The effect of electron acceptor on the soft particle characteristics of *Shewanella sp.* is complex. The fixed charge density, which is a measure of the deionized and deprotonated functional groups in the soft layer polymers, is slightly greater (i.e., more negative) for aerobically grown *p*200 than for *p*200 grown with TMAO. On the other hand, the fixed charge density of aerobically grown MR1 is slightly less than that of *p*200 grown with TMAO. The effect of pH on the soft particle characteristics is also complex, and does not exhibit a clear pH-dependent trend.

Conclusions: The *Shewanella* surface characteristics were attributed to the nature of the outermost soft layer, the extracellular polymeric substances (EPS) in case of *p*200 and lipopolysaccharides (LPS) in case of MR1 which generally lacks EPS. The growth conditions (i.e., aerobic vs. anaerobic TMAO) have an influence on the soft layer characteristics of *Shewanella sp.* cells. Meanwhile, the clear pH dependency of the mechanical and morphological characteristics of EPS and LPS layers, observed in previous studies through atomic force microscopy, adhesion tests and spectroscopies, cannot be corroborated by the electrohydrodynamics-based soft particle characteristics which does not exhibited a clear pH dependency in this study. While the electrohydrodynamics-based soft-particle model is a useful tool in understanding bacteria’s surface properties, it needs to be supplemented with other characterization methods and models (e.g., chemical and micromechanical) in order to comprehensively address all of the surface-related characteristics important in environmental and other aqueous processes.

Keywords: Ohshima, *Shewanella*, DLVO, Soft particle, Electrophoretic mobility, Colloid, Floc, Flocculation, Aerobic, Anaerobic, TMAO

Background

The surface electrochemical structures of microbial cells in aqueous suspension affect a large variety of environmentally significant interfacial processes, such as biofouling, corrosion, colloid flocculation, and sorption of contaminants. For example, the biofouling of reverse osmosis membrane can be predicted by the surface electrochemical properties of the microbes [1]. The transport behavior of *Escherichia coli* isolates through porous media depends on the bacteria’s surface electrochemical and physical properties [2]. The contaminant sorption on bacteria occurs primarily on the cell walls and extracellular polymeric substances (EPS) whose electrochemical and molecular properties in turn determine the sorption mechanisms and magnitudes [3,4]. In addition, the interaction between microbial cells, EPS and surrounding environment are important in coastal sediment stabilization, nutrient
scavenging, biofilm stabilization due to gene transfer, and carbon cycling [5-14].

Electrokinetic measurements (i.e., electrophoresis) are often used to characterize the surface electrochemical structure of colloidal particles in aqueous suspension. For colloidal particles with impermeable surfaces, such as latex and mineral particles, electrophoretic mobility (EPM) data can readily yield a quantitative description of the surface electrochemical structure using the electric double layer (EDL) model framework [15]. In the EDL model, a negatively (or positively) charged mineral surface is surrounded by a layer of electrostatically attracted cations (or anions) as the counter ions. Further, this inner layer is surrounded by a so-called diffuse layer, which differs from the electrically neutral bulk aqueous solution in that it is locally enriched with cations (or anions) while depleted with anions (or cations) due to the long-range electrostatic interaction with the mineral surface. For rigid particles, careful analyses of EPM data can yield the electrical potential at the surface (or zeta potential at the slip plane as its empirical proxy), as well as the attenuation of the potential within EDL. A quantitative understanding of the surface electrochemical structure allows a quantitative and predictive understanding of flocculation, transport, and sorptive properties of the colloidal particles in aqueous suspension by employing the DLVO theory (Derjaguin and Landau [16], Verwey and Overbeek [17]) [18-20].

However, soft particles, i.e., particles with water- and ion-permeable surface layers (i.e., “soft layers”), do not allow such a straightforward interpretation of the electrokinetic data [21,22]. The bulk behavior of suspended soft particles, such as flocculation, cannot always be predicted from the electrokinetic data alone [23]. The EPM of a soft particle depends on the attenuation of electrical potential in the vicinity of the surface, which in turn depends not only on the properties of host aqueous solution but also on the water and ion permeability of the soft layer. Ohshima has developed a model in which experimentally measured EPM can be correlated to key parameters that describe the surface electrochemical structures of soft particles, i.e., Donnan potential, surface potential, fixed charge density and softness parameter (Figure 1) [22,24].

Microbial cells may be considered using the soft particle model. The cell wall of gram-negative bacteria consists of an outer membrane containing lipopolysaccharides (LPS), as well as a gel-like periplasm with a thin peptidoglycan layer. These outer membrane components are permeable to water molecules and ions. In addition, the extracellular polymeric substances (EPS), often produced by microorganisms, are also permeable. Recently, the EPM data of Shewanella sp. and other bacteria have been evaluated using Ohshima’s soft particle model [25-28]. The effect of ionic strength on the soft particle properties of Shewanella sp. has been found to be quantitatively significant in S. putrefaciens CN32, which is surrounded by a thin, charged envelope, while it was found to be less pronounced in S. oneidensis MR-4, which is surrounded by a thick gel-like layer [29].

Shewanella sp. has been extensively studied as a model microorganism due to its ubiquitous presence in a wide range of natural and engineered environments, respiratory versatility and ease of genetic manipulation [30-32]. Its ability to conduct dissimilatory metal reduction has been exploited for potential applications in the bioremediation of metal and organic contaminants [33]. A better understanding of the Shewanella sp. surfaces in terms of their electrochemical structures and consequent flocculation, transport and sorptive properties would enable: (i) a further interpretation of the existing Shewanella sp. knowledge base; and (ii) better guiding of the future designs for bioremediation applications utilizing Shewanella sp. and other similar microorganisms.
Previous studies have found that pH has a quantitatively significant influence on the mechanical and morphological properties of the biopolymers that surround Shewanella sp. cells [34-36]. The cell surface soft particle properties have been found to differ between cells grown with TMAO and with fumarate/nitrate as electron acceptors [26]. The objective of this study is to investigate the effect of pH and electron acceptors (O2 vs. trimethylamine oxide (TMAO)) on the soft particle properties of EPS-poor and EPS-rich gram negative bacteria, Shewanella oneidensis MR-1 and S. putrefaciens 200, respectively.

Experimental and modeling

Shewanella preparation

Shewanella oneidensis MR-1 (ATCC 7005500) (herein referred to as MR1) and Shewanella putrefaciens 200 (ATCC 51753) (herein referred to as p200) stock cultures were maintained in Luria-Bertani medium with 20% glycerol at −80°C and were routinely grown in LB medium at 30°C for 15 h on a rotary shaker (150 r.p.m.). Water for all experiments was supplied from a Millipore (Direct-Q 5) ultrapure water system. EPS was produced in cultures during each titration series due to the NaOH or HCl conductivity (and thus ionic strength) varied slightly during titration. Conductivity was later converted to ionic strength. The ion solution was determined along with the EPM. The EPM of MR-1 and S. putrefaciens MR-1 and S. putrefaciens 200, respectively.

Electrophoretic mobility (EPM)

Laser Doppler velocimetry (LDV) analysis was used to determine the EPM of MR1 grown under either oxygen or TMAO as electron donor and 30 mM trimethylamine oxide (TMAO) was added as electron acceptor in anaerobic cultures. Air or N2 was bubbled through the medium to maintain aerobic or anaerobic growth conditions, respectively. Cultures were inoculated (OD600 = 0.1) and grown to late exponential phase (24 h). Dague and colleagues have shown that the EPM of Shewanella cells does not vary appreciably between cells harvested at different growth periods (midexponential vs. pseudostationary) [25].

Ohshima soft particle model and optimization

Ohshima model

Ohshima has shown that the EPM of soft particles, μ, can be related to four key parameters, Donnan potential, ψ_{DON}, surface potential, ψ_{s}, fixed charge density, ρ_{fix}, and electrophoretic softness, λ, as follows [22]:

$$
\mu = \frac{e_{0}e_{r} \psi_{r} + \psi_{\text{DON}}}{\eta} \left(1 + \frac{1}{\lambda} \right) + \frac{\rho_{\text{fix}}}{\eta \lambda^{2}}
$$

(1)

where fixed charge density, ρ_{fix}, is defined by the number concentration (N) and valence (Z) of the dissociated functional groups in the soft layer as well as the elementary electric charge (e):

$$
\rho_{\text{fix}} = NZe
$$

(2)

e and electrophoretic softness, $1/\lambda$, of the soft layer is defined by the viscosity of the aqueous medium (η) and the soft layer's friction coefficient (ω):

$$
\frac{1}{\lambda} = \sqrt{\frac{\eta}{\omega}}
$$

(3)

In reality, the electrophoretic softness can be considered as the relative measure of the ease of flow penetration into the soft layer [35]. In equation (1), e_{0}, e_{r}, and η are the permittivity of vacuum, relative permittivity, and viscosity of the aqueous medium, respectively. Further, Ohshima has...
shown that the rest of the parameters can be expressed as follows [22]:

\[
\psi_{DON} = \frac{kT}{ze} \ln \left(\frac{\rho \fix}{2ze n\infty} + \sqrt{\left(\frac{\rho \fix}{2ze n\infty} \right)^2 + 1} \right)
\]

(4)

\[
\psi_0 = \psi_{DON} + \frac{kT n\infty}{\rho \fix} \left(1 - \sqrt{\left(\frac{\rho \fix}{2ze n\infty} \right)^2 + 1} \right)
\]

(5)

\[
k_m = k \left(1 + \frac{\rho \fix}{2ze n\infty} \right)^{1/4}
\]

(6)

where \(k \) is the Boltzmann constant, \(T \) is the absolute temperature, \(z \) and \(n\infty \) are the valence and number concentration of the dissolved electrolyte in the bulk aqueous solution, and \(\kappa \) is the reciprocal of the Debye length \(\left(\kappa^{-1} = \sqrt{\frac{\varepsilon_r \varepsilon_0 kT}{2z e n\infty}} \right) \), in monovalent electrolyte solution.

Ohshima’s soft particle model assumes that the soft layer is homogeneous in terms of the permeability and charge distribution. However, soft layers of natural bacteria may be considered as diffuse [29]. Recent studies have shown that a more rigorous treatment of the charge and permeability distributions within the soft layers using a step function or numerical solution can successfully depict the heterogeneity [21,41]. However, Ohshima [41] has shown that the effect of inhomogeneity within soft layer becomes insignificant at moderate to high ionic strength. Recent soft-particle analyses of *Shewanella* sp. show that errors due to the homogeneity assumption are small when \(I \gtrsim 0.02 \) (M) [21]. A similar result was also observed with *Pseudomonas* sp [28]. Consequently, our study utilized EPM data that were obtained at \(0.02 \lesssim I \) (M).

Ohshima’s model also assumes that the particle size is much greater than the Debye length and thus the particle surface is approximated to be planer [24,41]. The Debye length at \(I \gtrsim 0.02 \) (M) is \(\kappa^{-1} \lesssim 2.1 \) (nm).
while a typical size of \(S. \) sp. cells is several hundred nanometers in width and a few thousand nanometers in length (e.g., \[42\]). Consequently, the planer assumption is valid when the EPM data obtained at \(0.02 \lesssim I (\text{M}) \) are considered.

Optimization

By substituting Equations (4) – (6) in (1), it is evident that the EPM can be expressed with just two of the key parameters, fixed charge density, \(\rho_{\text{fix}} \), and electrophoretic softness, \(\lambda^{-1} \), under given ionic strength values (which is linearly related to \(n^+ \)).

An optimization scheme (i.e., the \texttt{lsqnonlin} routine on Matlab®) was used with the EPM data obtained at \(0.02 \lesssim I \lesssim 0.15 \text{ (M)} \) and at pH values within discrete ranges in order to determine the best \(\rho_{\text{fix}} \) and \(\lambda^{-1} \) values for each of the four systems at given pH ranges. In order to eliminate false results due to local minima, the optimization routine was run 100 times using different, randomly generated initial guess values for \(\rho_{\text{fix}} \) and \(\lambda^{-1} \).

Results and discussion

LDV results

The experimentally determined EPM values are plotted in Figures 2 and 3 (pH vs. EPM) and Figure 4 (ionic strength vs. EPM). The results indicate that the EPM is greater in magnitude (i.e., more negative) for the EPS-rich \(p200 \) than for EPS-poor MR1 regardless of the electron acceptors. This is in contrast to a previous study in which the cell walls had greater charge density than the EPS \[43\]. However, another study revealed that the difference between the relative charge between EPS and cell walls is species- and strain-dependent \[44\]. Consequently, the results obtained here are specific to \(p200 \) and MR1, and are not applicable in comparing the cell walls and EPS of other microorganisms.

The isoelectric point (iep) for each system was determined to be \(\text{iep}_{MR1O2} = 3.2, \text{iep}_{MR1TMAO} = 3.8, \text{iep}_{p200O2} = 2.8, \) and \(\text{iep}_{p200TMAO} = 2.6. \) These iep estimates assumed that the specific ion adsorption was negligible.
in these systems and thus iep is independent of ionic strength.

A recent study has shown that the MR1 surfaces are associated with a patchy presence of EPS while the p200 surface has a more extensive EPS coverage [26,45]. The dependence of EPM on ionic strength is more pronounced for the EPS-rich p200 than for EPS-poor MR1 at all pH values examined (e.g., Figure 4). This is in contrast to a previous study in which the EPM of gram-positive Bacillus licheniformis S-86 exhibited an increased ionic strength dependency when its EPS was removed [40]. The reason for this contrast is unknown. However, we could speculate that, in the absence of EPS, the LPS layer, which is unique to gram-positive bacteria, has significantly different electrohydrodynamic properties compared to the peptidoglycan, which is the outermost layer of gram-positive bacterial cells.

Fixed charge density and electrophoretic softness

The measured EPM data were fit to Ohshima’s soft particle model (Equation (1)) with λ^{-1} and ρ_{fix} as the parameters to be optimized. The fitting was conducted using the data points from $0.02 \leq I \leq 0.15$ (M) and discrete pH value ranges in conjunction with the *lsqnonlin* routine in Matlab®. It should be noted that each of the triplicate measurements at a given pH and ionic strength was treated as a separate data point for the model fitting. Table 1 reports the optimized λ^{-1} and ρ_{fix} value pairs for each sample series at each discrete pH ranges. Figure 5 illustrates an example of the best-fit EPM function (i.e., calculated curve for Equation (1) with the optimized λ^{-1} and ρ_{fix} values) for each sample series obtained from the pH range of $6 \leq \text{pH} \leq 9$.

The pH values below pH 4 were not considered as the EPM measurements in the vicinity of iep (i.e., pH ≈ 3) were unstable. The pH values above pH 10 were not considered because there was a significant EPM data scatter in that pH region which made the regression optimization unreliable. The scatter may be due to the heterogeneity of the physiological response of *Shewanella* species to increased pH [46].

Figure 4 Experimentally determined EPMs are plotted against ionic strength. Results from four discrete pH ranges are shown in each panel using different colors.
Table 1 Model-determined λ^1 and ρ_{fix} values

pH	λ^1 ($\times 10^{-9}$ m)	ρ_{fix} ($\times 10^5$ C m$^{-2}$)	
MR1O2	6 - 9 (Figure 5)	1.7	-9.3
4 - 5	Not enough data		
5 - 6	Not enough data		
6 - 7	3.0	-4.6	
7 - 8	2.1	-33.1	
8 - 9	2.6	-22.8	
9 - 10	2.2	-26.0	
p200O2	6 - 9 (Figure 5)	2.4	-28.0
4 - 5	3.5	-8.2	
5 - 6	2.1	-33.1	
6 - 7	2.6	-22.8	
7 - 8	2.5	-28.0	
8 - 9	1.8	-26.0	
9 - 10	3.0	-19.9	
p200TMAO	6 - 9 (Figure 5)	2.1	-31.8
4 - 5	2.5	-16.3	
5 - 6	2.3	-22.8	
6 - 7	2.3	-28.0	
7 - 8	2.6	-21.9	
8 - 9	2.2	-30.0	
9 - 10	2.5	-26.2	

Even though both MR1 and p200 exhibit EPM data profiles that are typical of soft particles (e.g., Figures 2, 3, 4), they differ in the magnitudes of soft particle characteristics. In our study, the difference in softness parameter between MR1O2, MR1TMAO, p200O2 and p200TMAO were relatively small for the entire pH range investigated (Figure 6). The softness parameter values fell between 1.4 and 3.5 which indicates the presence of a surface layer with a finite permeability value. For comparison, this range is in line with the softness parameter values calculated in the previous studies of various *Shewanella* sp. cultures (e.g., $\lambda^{-1} = 2 - 3.6$ ($\times 10^{9}$ m) at pH = 7 for *S. oneidensis* MR-4 and CN32 [25,29]; $\lambda^{-1} = 4$ ($\times 10^{9}$ m) at pH = 4 – 10 for *S. putrefaciens* CIP 80.40 [35] and $\lambda^{-1} = 0.4$ – 3 ($\times 10^{-9}$ m) at pH = 5.5 – 5.8 for MR1 and p200 grown with TMAO, fumarate and nitrate [26]).

The effect of pH on *Shewanella* surface electrophoretic properties was found to be very complex (Figure 6). Generally speaking, the effect of pH on the surface surrounded by biopolymers is two-fold: (i) on one hand, a pH increase causes deprotonation of ionizable functional groups in the biopolymers which would result in increased (i.e., more negative) fixed charge density [40,46]; (ii) on the other hand, the increased pH and functional group deprotonation...
Figure 5: Experimentally measured EPMs for $6 \leq \text{pH} \leq 9$ are plotted as a function of ionic strength. In addition, the optimized EPM function (Equation (1) calculated using the optimized λ^{-1} and ρ value pairs) are shown as lines. The optimized λ^{-1} and ρ value pairs used to calculate the best-fit EPM function lines are reported in Table 1.

Figure 6: The softness parameter and fixed charge density values calculated by fitting Ohshima’s soft particle model (Equation (1)) while adjusting the softness parameter and fixed charge density values to achieve the best fit. The model calculation was conducted separately for each of the discrete pH ranges. The actual values are shown in Table 1.
lead to electrostatic repulsion between the negatively-charged ligands as well as polymer segments, and a consequential volume expansion in the biopolymer volume and decreased (less negative) fixed charge density [35,40]. In our study, the fixed charge density does not have a clear dependency on pH. There may be a slight tendency for more permeable soft layer (i.e., high λ^{-1}) at extreme low and high pH values while less permeable soft layer (i.e., low λ^{-1}) at circumneutral pH values. It is likely that the effect of pH on the soft particle properties of MR1 and p200 results from a complex interplay between the above (i) and (ii) as well as the physiological and chemical responses of *Shewanella* cells to different pH values.

Studies have shown that the morphological and mechanical properties of the outermost soft layers of bacteria cells, including *Shewanella* sp., change in response to pH changes [36]. An ATR-FTIR spectroscopy study revealed that EPS-poor *S. CN32* (may be analogous to MR1 in our study) changes the chemical properties of its LPS functional groups with pH driven by protonation and deprotonation [34]. The LPS and EPS layers of *S. putrefaciens* CIP 80.40 (may be analogous to p200 in our study) increase their volume and permeability with increasing pH, as investigated by atomic force microscopy and microbial adhesion tests [35]. However, these linear or semi-linear correlation between pH and morphological/mechanical/chemical properties in EPS and LPS layers are not reflected in the soft particle parameters derived from Ohshima’s electrohydrodynamic soft particle theory [24] for our study. The pH dependency observed in our study is, for the most part, variable and nonlinear. This suggests that, while the electrohydrodynamics-based soft-particle model is a useful tool in investigating bacteria’s aqueous aggregation behavior and other behaviors controlled by the surface processes, it may be inadequate in comprehensively addressing the surface characteristics including the chemical and micromechanical characteristics. The comprehensive characterization of the bacterial cell surfaces would require the employment of multiple analytical techniques, including electrohydrodynamic, micromechanical, and chemical techniques.

Conclusions

The *Shewanella* surface characteristics were attributed to the nature of the outermost soft layer, the extracellular polymeric substances (EPS) in case of the EPS-rich p200 and the cell wall lipopolysaccharides (LPS) in case of the EPS-poor MR1. The growth conditions (i.e., aerobic vs. anaerobic TMAO) have an influence on the soft layer characteristics of *Shewanella* sp. cells. Meanwhile, the clear pH dependency of the mechanical and morphological characteristics of EPS and LPS layers, observed in previous studies through atomic force microscopy, adhesion tests and spectroscopies, cannot be corroborated by the electrohydrodynamics-based soft particle characteristics which do not exhibited a clear pH dependency in this.
study. While the electrohydrodynamics-based soft-particle model is a useful tool in understanding bacteria's surface properties, it needs to be supplemented with other characterization methods and models (e.g., chemical and micromechanical) in order to comprehensively address all of the surface-related characteristics important in environmental and other aqueous processes.

Competing interests
The authors declare that they have no competing interests.

Authors' contributions
JRD prepared Shewanella cells, carried out EPM experiments and helped to draft the manuscript. YF carried out soft particle modeling and model optimization, interpreted the results and drafted the manuscript. All authors read and approved the final manuscript.

Acknowledgments
This study was funded by the Office of Naval Research through base funding of the Naval Research Laboratory. NRL Contribution Number JA-7430-12-13. This study was also supported by the Office of Naval Research Grant N00014-07-1-0758 to O.N. and by a grant from the Office of Naval Research through the URI Center for Energetics and Environmental Sustainability.

References
1. Furukawa Y, Dale CJ. Engineering soft-particle models for microorganisms. Ann Rev Fluid Mech 2008, 40:255–281.
2. Kenward PA, Fowle DA, Yee N. Micromechanical characterization of bacterial cell material. Colloids Surf A-Physicochem and Eng Aspects 2006, 236(1–3):13–20.
3. Decho AW. Extracellular polymeric substances (EPS) – Part II: mechanical and biological aspects. Limnol Oceanogr 2008, 53(6):1635–1644.
4. Omoike A, Chorover J. Spectroscopic study of extracellular polymeric substances from Bacillus subtilis: aqueous chemistry and adsorption effects. Biocatal and Agric Biotechnol 2014, 1:5–11.
5. Zachara JM, Mays DR, Decho AW. Microbial flocculation of natural organic matter. Environ Sci Technol 1999, 33(10):2052–2060.
44. Tsuneda S, et al: Influence of extracellular polymers on electrokinetic properties of heterotrophic bacterial cells examined by soft particle electrophoresis theory. *Colloids Surf B Biointerfaces* 2003, 29(2–3):181–188.

45. Korenevsky AA, et al: Characterization of the lipopolysaccharides and capsules of *Shewanella* spp. *Appl Environ Microbiol* 2002, 68(8):4653–4657.

46. Claessens J, Behrends T, Van Cappellen P: What do acid–base titrations of live bacteria tell us? A preliminary assessment. *Aquat Sci* 2004, 66(1):19–26.

doi:10.1186/1467-4866-14-3

Cite this article as: Furukawa and Dale: The surface properties of *Shewanella putrefaciens* 200 and *S. oneidensis* MR-1: the effect of pH and terminal electron acceptors. *Geochemical Transactions* 2013 14:3.