Acetabular morphology in slipped capital femoral epiphysis: comparison at treatment onset and skeletal maturity

D. A. Maranho¹,²
A. Davila-Parrilla¹
P. E. Miller¹
Y.-J. Kim¹
E. N. Novais¹
M. B. Millis¹

Abstract

Purpose To investigate changes in acetabular morphology during the follow-up of slipped capital femoral epiphysis (SCFE) and search for factors associated with acetabular dysplasia at skeletal maturity.

Methods We evaluated 108 patients with unilateral SCFE (mean age at slip, 12.3 years ± 1.7) to skeletal maturity, with a minimum follow-up of two years (median 4.5 years; interquartile range 3.2 to 6.2). Acetabular parameters obtained from initial and most recent radiographs included the lateral centre-edge angle (LCEA), Tönnis angle (TA) and acetabular depth-width ratio (ADR). Acetabular dysplasia was considered for LCEA < 20° or TA > 10°. Femoral parameters consisted of the most recent head diameter, neck-shaft angle, neck length, articulotrochanteric distance and alpha angle.

Results At SCFE onset, the affected hip showed a slightly lower LCEA (26.4° ± 6.1° versus 27.3° ± 5.7°; p = 0.01) and ADR (330 ± 30 versus 340 ± 30; p < 0.001) compared with the uninvolved hip. At final follow-up, the affected hip showed lower LCEA (24.5° ± 7.6° versus 28.8° ± 6.6°; p < 0.001) and ADR (330 ± 40 versus 350 ± 40; p < 0.001), and TA was larger (5.5° ± 5.4° versus 2.3° ± 4.2°; p < 0.001) compared with the uninvolved hip. Acetabular dysplasia was observed in 27 (25%) of 108 hips with SCFE. Femoral head overgrowth, age at slip and SCFE severity were independent factors associated with acetabular dysplasia (p < 0.05).

Conclusion Acetabular coverage and depth are not increased in SCFE, and the acetabular coverage tends to decrease up to skeletal maturity. A potential disturbance in the acetabular growth and remodelling exists mainly for young children with severe SCFE, and a potential for acetabular insufficiency may be observed at the diagnosis and follow-up of SCFE.

Level of Evidence Prognostic Level IV

Keywords: slipped capital femoral epiphysis; acetabular dysplasia; femoroacetabular impingement; hip

Introduction

Slipped capital femoral epiphysis (SCFE) is one of the most important disorders affecting the adolescent hip.¹ Several factors have been suggested to play a role in the SCFE aetiology,²⁻¹¹ including variations in acetabular morphology.¹¹⁻¹⁶ Acetabular retroversion,¹¹⁻¹³,¹⁵ increased acetabular coverage of the femoral head¹¹,¹₄⁻¹₆ and deep acetabulum¹⁶ are morphological factors that could potentially contribute to the development of SCFE.¹⁶

These anatomical abnormalities may generate abnormal biomechanical forces.¹⁴⁻¹⁶⁻¹⁸ Coxa profunda with excessive superior acetabular coverage may induce shearing stress across the proximal femur growth plate.¹⁴⁻¹⁷⁻¹⁸ According to the contemporary concepts of femoroacetabular impingement (FAI), abnormal dynamic contact between the femoral head-neck junction and the acetabular rim may also lead to shearing forces, with a peripheral fulcrum.³ The phenomenon may be accentuated by acetabular retroversion, coxa profunda and acetabulum protrusio.³ Although acetabular overcoverage has been associated with SCFE development, a recent advanced imaging study using reformatted CT suggested that the acetabulum in SCFE is not deep. There were no differences in acetabular coverage and depth in comparison with matched-control individuals, however, the acetabulum in SCFE is more retroverted.¹¹
Aside from the potential effect of acetabular morphology in causing SCFE, residual deformities of the femur may potentially alter the residual acetabular growth and remodelling.19-21 Hypothetically, the dynamic conflict of the slip deformities against the acetabular rim may disturb the peripheral acetabular development. Moreover, a potential overgrowth of the femoral head may relatively decrease the acetabular coverage, and induce acetabular remodelling during the late skeletal growth in adolescence.

To our knowledge, no study has yet addressed the possible effects of SCFE-related femoral deformity on the residual acetabular development to skeletal maturity. Based on our clinical observations, a primary21,22 or secondary acetabular dysplasia21,23 may be occasionally found in hips affected by SCFE. The presence of acetabular dysplasia may influence the hip stability following a surgical hip dislocation approach for the treatment of SCFE deformities.21

We therefore sought to investigate whether: (1) the acetabular coverage of the femoral head24,25 and acetabular depth26,27 are increased at the onset of SCFE; (2) the initial pattern of acetabular morphology is preserved following skeletal maturity, searching for the rate of acetabular dysplasia; and (3) residual deformities of the femur,28-30 slip severity31 and age at slip are associated with changes in the acetabular morphology, in patients presenting with unilateral SCFE without contralateral involvement, in order to use the noninvolved hip for comparison.

Patients and methods

This retrospective longitudinal study was approved by the Institutional Review Board at our institution (Boston Children’s Hospital). A total of 649 patients were evaluated at our institution between 2000 and 2014, with the initial diagnosis of SCFE. Patients with bilateral SCFE (n = 61) were excluded. For the 588 patients with unilateral SCFE, 44 underwent prophylactic contralateral epiphysiodesis because of the presence of endocrine or metabolic disorders, Down syndrome or autism. Further, 154 patients were excluded because of unavailable adequate pelvic radiographs32 from the initial presentation, 65 patients who had a subsequent contralateral slip and 217 patients who were not yet skeletally mature (i.e. open triradiate cartilage, open capital femoral or trochanteric growth plate) at the most recent follow-up radiograph (Fig. 1).

The final sample included 108 patients who were followed for a minimum of two years (median 4.5 years, interquartile range 3.2 to 6.2), had no contralateral involvement and presented with closed proximal femur growth plate and triradiate cartilage. Mean age at initial diagnosis was 12.3 \(\pm\) 1.7 years, 45% were males (49 boys, 59 girls). The left hip was affected in 55% of cases (59 left, 49 right). The status of the triradiate cartilage at the initial evaluation was wide open in 15 patients (14%), closing in 51 patients (47%) and closed in 49 patients (45%).33 A descriptive

![Fig. 1 Flowchart of the study population (LCEA, lateral centre-edge angle).](image-url)
Table 1. Cohort characteristics (n = 108)

Characteristic	Frequency	%
Age at slip (yrs; mean and sd)	12.3	38.06
Sex (% male)	49	45
Triradiate cartilage at initial present	15	14
Closing	51	47
Closed	42	39
Side (% right)	49	45
Initial symptom duration (acuity)	31	29
Chronic	59	55
Acute on chronic	18	17
Slip stability at initial presentation (% stable)	81	75
Southwick angle (mean and sd)	45.4°	20.37
Displacement* (severity)	Mild	26
Displacement* (severity)	Moderate	54
Displacement* (severity)	Severe	28
Initial treatment	82	76
In situ epiphysiodesis	14	13
Closed or open reduction and percutaneous fixation	7	6
In situ epiphysiodesis and open/arthroscopic neck osteoplasty	5	5
Presence of hip pain at final follow-up	53	49

*displacement was classified according to the initial Southwick angle of the affected hip: mild (less than 30°), moderate (between 30° and 60°) and severe (more than 60°) slips.

analysis of the slip characteristics was performed, including the slip acuity,34,35 stability,36 severity31 and initial treatment (Table 1). There was one case of partial avascular necrosis of the capital epiphysis and one case of chondrolysis. The presence of hip pain on the affected side at the final follow-up was assessed, as well as any specific treatment recommended for hip dysplasia and instability.

One orthopaedic surgeon (D.A.M.) with nine years of practise performed the radiographic measurements. For the affected and non-affected hips, the acetabular morphology was assessed in anteroposterior pelvic radiographies at two time points: initial unilateral SCFE presentation and the most recent radiographic evaluation. The acquisition protocol for anteroposterior radiographs consisted of the supine positioning of the patients, with vertical x-ray just above the pubic symphysis and 120 cm from the film.37 If the initial preoperative radiographs had no adequate pelvic tilt (1 cm to 3 cm distance between symphysis pubic and coccyx, symmetry for obturator foramina),35 the immediate postoperative radiograph was evaluated (17 out of 108 patients; 16%). Acetabular radiographic parameters consisted of the lateral centre-edge angle (LCEA),24 Tönnis angle,25 acetabular depth-width ratio (ADR),26 coxa profunda sign27 and crossover sign28 (Fig. 2). The most lateral sclerotic point of the acetabular source19 was selected as a reference point for measuring LCEA, Tönnis angle and ADR. To assess LCEA in hips with moderate and severe SCFE deformities, the femoral head centre was determined using as a control the best fit circle of the capital epiphysis, under the guidance of the acetabular centre.40 The use of the acetabular centre to assess LCEA has previously been validated in SCFE.14 The acetabulum was classified as profunda if the acetabular fossa was medial to or touching the ilioischial line.27 By the time of the initial presentation the ossification of the anterior or posterior acetabular rim41,42 was not visually complete in 17 skeletally immature patients (17/108; 16%), hindering the evaluation of the crossover sign. For the majority of patients (91/108; 84%), there was sufficient ossification of the anterior and posterior acetabular wall, allowing for the assessment of the crossover sign at the time of SCFE diagnosis. We defined as acetabular dysplasia hips with a LCEA < 20°24 or Tönnis angle > 10°.25

To evaluate femoral morphology, radiographic parameters were obtained from the most recent anteroposterior and lateral radiographic studies. Exception was made for patients who underwent surgical correction of FAI during the follow-up (28 out of 108 patients (26%) underwent femoral osteotomy and/or osteoplasty, 3.4 years sd 2.4 following the initial SCFE treatment) and for whom the femoral measurements were performed before FAI surgery in order to capture the original SCFE deformity. The lateral radiograph was obtained using the Lauenstein frog-leg view (hip is flexed to ~45° and abducted to ~45°, knees flexed to 90° and both feet are placed together)43 or Dunn incidence (flexion ~90°, abduction ~45°).37 Femoral radiographic parameter consisted of the anteroposterior and lateral alpha angle,29 the articulartrotchanteric distance (ATD),30 the neck length,28 the neck-shaft angle and the head diameter ratio (head diameter of the affected/uninvolved hip)44 (Fig. 2).

Statistical analysis

We randomly selected 20 patients (40 hips) to assess the reliability across two independent and blind raters (two paediatric orthopaedic surgeons (A.D.P. and D.A.M.) with two and nine years of practise in hip preservation surgery, respectively), using the kappa (k) statistics45 and intraclass correlation coefficient with a two-way, mixed-effects model,46 along with 95% confidence intervals (CI). Inter- and intra-rater agreement were substantial to excellent for all measurements, except for the alpha angle and crossover signs (moderate to excellent agreement) (Table 2).

Demographic, SCFE and radiographic characteristics were summarized for the cohort. Acetabular measurements were compared across SCFE and contralateral sides preoperatively and at most recent follow-up. Femoral measurements were compared, at most-recent follow-up, across acetabular dysplasia outcome. Continuous characteristics were summarized by mean and sd or median and interquartile range (25th to 75th percentile), while categorical characteristics were summarized by frequency and percentage.

In order to evaluate potential differences in acetabular morphology associated with the surgical treatment of FAI in the subgroup of 28 patients, we compared femoral and
acetabular parameters across patients without and with FAI surgery (Table 3). Patients who underwent FAI surgery had greater anteroposterior and lateral alpha angles, but no differences were found in acetabular parameters between groups, suggesting little or no influence of the surgery in the subsequent analysis. Additionally, the identification of the femoral head centre may be difficult in a hip after SCFE. In order to evaluate potential influence of femoral deformities on LCEA measurements, we performed a correlation analysis between LCEA and alpha angle. No significant correlation was found between LCEA and anteroposterior alpha angle (Spearman coefficient = -0.12; p = 0.23) or LCEA and lateral alpha angle (Spearman coefficient = -0.09; p = 0.33), suggesting little or no influence of the proximal femur deformities in LCEA assessment.

Paired t-tests and chi-squared tests were used to compare acetabular measurements between SCFE and contralateral sides and to evaluate change from preoperative to most-recent follow-up. Mean differences along with 95% CI were estimated for change in radiographic measures. Independent t-tests and Fisher’s exact tests were used to compare acetabular and femoral measurements across dysplasia groups. Multivariable logistic regression was used to assess the effects of femoral measurements, SCFE severity (mild, moderate or severe slip) and age at slip on the development of acetabular dysplasia as independent variables, defined by LCEA < 20° or Tönnis angle > 10°. Odds ratios (OR) along with 95% CIs were estimated for significant effects. All tests were two-sided and p-values less than 0.05 were considered significant.

Fig. 2 Description of the acetabular and femoral radiographic parameters. Radiographs of a boy with right slipped capital femoral epiphysis, at two time points, a) to e) from initial presentation at 13 years old; f) to h) from the most recent evaluation, at 15 years old: (a) lateral centre-edge angle: initially, a horizontal line is obtained connecting the femoral head centres and a perpendicular line is drawn through the centre of the femoral head; the angle is measured using the perpendicular line and a line passing through the lateral edge of the acetabular weight-bearing sourcil and the centre of the femoral head; (b) Tönnis angle: with the horizontal reference line connecting the teardrops, the angle is measured using a parallel horizontal line and the line connecting the medial and lateral edges of the acetabular weight-bearing sourcil; (c) acetabular depth-width ratio: corresponds to the ratio between the line connecting the edges of the acetabulum (line AC) and a perpendicular line (B) from the acetabular fossa to the midpoint of the first line. The ratio is (B ÷ AC) × 1000; (d) crossover sign: present when the line of the anterior rim intersects the posterior acetabular rim; (e) coxa profunda sign: present when the acetabular fossa is medial to or touching the ilioischial line; (f) neck length: using the femoral neck anatomical axis (midpoint of the femoral neck basis and centre of the femoral head), the length was the distance between the centre of the femoral head and the anatomical axis of the diaphysis. The neck-shaft angle used the neck and diaphysis anatomical axis; (g) articulotrochanteric distance (ATD): using the femoral diaphysis anatomical axis, ATD was measured as the distance (A) between the level (perpendicular line) of the trochanter (B) and the sourcil (C); (h) alpha angle: angle between the line representing the anatomical axis of the neck (passing through the centre of femoral head), and a line connecting the centre with the asphericity point of the head-neck junction.
Results
At the onset of SCFE, the acetabular coverage of the femoral head and acetabular depth were not increased in the hip affected by SCFE, in comparison with the contralateral uninvolved side. On the contrary, affected hips had lower LCEA (26.4° SD 6.1° versus 27.3° SD 5.7°; p = 0.01) and ADR (330 SD 30 versus 340 SD 30; p < 0.001) at the initial presentation. No differences were detected in Tönnis angle (4.2° SD 3.5° versus 3.8° SD 2.8°; p = 0.17), prevalence of coxa profunda (42% versus 49%; p = 0.34) and crossover signs (71% versus 64%; p = 0.34) (Table 4).

At the final follow-up, we found that hips affected by SCFE ended up with a decrease in acetabular coverage of the femoral head, and shallower acetabulums compared with the uninvolved side (Figs 3 and 4). Compared with the initial presentation, differences increased for LCEA (24.5° SD 7.6° in the affected side versus 28.8° SD 6.6° in the contralateral side; p < 0.001) and ADR (330 SD 40 versus 350 SD 40; p < 0.001), and the Tönnis angle was eventually larger on the affected hip (5.5° SD 5.4° versus 2.3° SD 4.2°; p < 0.001). No differences were detected with respect to the prevalence of coxa profunda (40% in the affected side versus 46% in the contralateral side; p = 0.34) and crossover signs (64% versus 51%; p = 0.08). While the uninvolved acetabulums showed a tendency to maintain the pattern of femoral head coverage, the affected side had a worsening in the femoral head coverage parameters. Changes from the initial presentation to the most recent evaluation were identified on the contralateral uninvolved hip, in which the LCEA (+1.5°; 95% CI 0.5° to 2.5°; p = 0.003) and ADR increased (+10; 95% CI 7 to 18; p < 0.001) and Tönnis angle decreased (-1.5°; 95% CI -2.2° to -0.4°; p < 0.001). However, an inverse growth pattern was observed in the affected hip, with a decrease in LCEA (mean difference = -1.9°; 95% CI -3.1° to -0.7°; p = 0.002) and increase in Tönnis angle (+1.3°; 95% CI 0.4° to 2.2°; p = 0.006). No change was detected in ADR (330 SD 30 versus 330 SD 40; p = 0.41) (Table 4).

According to the multivariable analysis, we found that femoral head overgrowth, the severity of slip and the age at disease onset were each independent factors associated with the occurrence of acetabular dysplasia in SCFE. A total of 27 out of 108 affected hips (25%) exhibited acetabular dysplasia (i.e. LCEA < 20° or Tönnis angle > 10°) at most-recent follow-up, while 15 affected hips (14%) were considered dysplastic at initial presentation (p = 0.01). There were no differences detected across dysplastic versus non-dysplastic subgroups with respect to proportion of hip pain, alpha angle, ADR, neck-shaft angle or neck length (p > 0.05, Table 5). It was found,

Table 2 Reliability analysis for the measured parameters of the hip in patients with unilateral slipped capital femoral epiphysis patients at skeletal maturity. Kappa analysis and intraclass correlation with a two-way mixed-effects model for consistency of agreement was applied to quantify inter- and intraobserver reliability, between two observers

Variables	Interobserver agreement (95% CI)	Intraclass agreement (95% CI)
Lateral centre-edge angle	0.93 (0.87 to 0.96)	0.93 (0.86 to 0.96)
Tönnis angle	0.81 (0.64 to 0.90)	0.87 (0.76 to 0.93)
Acetabular depth-width ratio	0.89 (0.79 to 0.94)	0.95 (0.91 to 0.97)
Alpha angle	0.74 (0.52 to 0.87)	0.73 (0.48 to 0.86)
Anteroposterior	0.93 (0.85 to 0.98)	0.98 (0.95 to 0.99)
Neck-shaft angle	0.87 (0.76 to 0.93)	0.93 (0.87 to 0.96)
Neck length	0.93 (0.78 to 0.98)	0.91 (0.71 to 0.97)
Head diameter	0.93 (0.79 to 0.98)	0.94 (0.82 to 0.98)
Coxa profunda sign	0.83 (0.64 to 1.00)	0.99 (1.00 to 1.00)
Crossover sign	0.75 (0.53 to 0.98)	0.93 (0.78 to 1.00)

CI, confidence interval

Table 3 Acetabular and femoral measurements of the affected hip in patients with or without femoroacetabular impingement surgery performed during the follow-up, and patients with or without hip pain at final follow-up. Values are described as mean and SD for continuous variables, or frequency and percentage for binary variables

Treatment of femoroacetabular impingement syndrome during follow-up	Hip pain							
p-value	Asymptomatic hips (n = 55)	Hips with pain (n = 55)	p-value					
LCEA (°) SD (°)	24.4°	24.8°	6.3°	25.8°	6.4°	23.1°	6.2°	0.07
Tönnis angle (°)	5.2°	5.9°	5.7°	4.9°	5.1°	4.1°	5.0°	0.27
ADR (°) SD (°)	322°	323°	30°	30.9°	31.4°	31.4°	40.9°	0.49
Coxa Profunda (% positive)	32%	40%	11%	10%	33%	21%	8%	0.01
Crossover (% positive)	55%	69%	13%	18%	67%	28%	58%	0.24
Alpha angle (°)	60.0°	70.3°	19.2°	70.3°	19.2°	70.3°	19.2°	0.02
Anteroposterior angle (°)	55.4°	69.1°	14.2°	< 0.001	65.3°	11.4°	64.8°	< 0.001
Lateral (°)	1.7°	1.5°	0.6°	2.6°	1.7°	1.0°	1.6°	0.63
Neck-shaft angle (°)	129.7°	129.0°	9.7°	129.0°	9.7°	129.0°	9.7°	0.70
Neck length (cm)	5.1°	4.8°	0.7°	0.10	5.1°	0.8°	5.0°	0.33
Head diameter ratio	1.02	0.04	0.03	0.61	1.02	0.3	1.04	0.007

*p-value for continuous variables, or frequency and percentage for binary variables

*The last radiograph before the femoral surgery was used to measure femoral parameters in the osteotomy / osteoplasty subgroup

SCFE, slipped capital femoral epiphysis; LCEA, lateral centre-edge angle; ADR, acetabular depth-width ratio; ATD, articulotrochanteric distance
however, that dysplastic hips exhibited a larger femoral head diameter ratio (p < 0.001). Multivariable analysis determined that the head-diameter ratio was the only femoral measurement associated with acetabular dysplasia. For each 1% increase in the diameter ratio, the odds of dysplasia increased by 30% (OR = 1.3; 95% CI 1.1 to 1.6; p = 0.002). The severity of slip was found to be an independent factor associated with the development of acetabular dysplasia in SCFE. Hips with a severe slip had six-times increased odds compared with mild slips (OR = 6.1; 95% CI 1.1 to 35.1; p = 0.04). The age at slip was also an independent factor for the development of acetabular dysplasia in SCFE. For each year of increase in age at slip diagnosis, the odds decrease by 30% (OR = 0.7; 95% CI 0.5 to 1.0; p = 0.03) (Table 5).

Table 4. Acetabular measurements for affected and contralateral sides (n = 108). Values are described as mean and sd for continuous variables, or frequency and percentage for binary variables

Initial presentation	Affected side	Contralateral side	p-value
LCEA	26.4 ± 6.10	27.3 ± 5.71	0.01
Tönnis angle	4.2 ± 3.49	3.8 ± 2.79	0.17
ADR	330 ± 30	340 ± 30	< 0.001
Coxa Profunda	45 ± 42	53 ± 49	0.34
Crossover (n = 91)*	65 ± 71	58 ± 64	0.34

*the number in parentheses represents the number of hips with available data for the given characteristic.

LCEA, lateral centre-edge angle; ADR, acetabular depth-width ratio

Fig. 3 Anteroposterior radiographs of a girl with left slipped capital femoral epiphysis (SCFE): (a) normal acetabular coverage at the SCFE onset (nine years old). The lateral centre-edge angle (LCEA) was 27° and Tönnis angle was 8°. The contralateral hip was normal; (b) acetabular dysplasia was found at age 16 years (LCEA of 13°, Tönnis angle was 13°). The contralateral hip was normal.

Fig. 4 Anteroposterior radiographs of a boy with left slipped capital femoral epiphysis (SCFE) immediately after in situ epiphysiodesis: (a) decreased acetabular coverage was evident at the SCFE onset (11 years old). The lateral centre-edge angle (LCEA) was 17° and Tönnis angle was 9° in the affected hip. The contralateral hip had a slight decrease lateral centre-edge angle (19°); (b) acetabular dysplasia was found at age 14 years (LCEA of -2°, Tönnis angle was 25°). The contralateral hip had also a decrease in LCEA (15°); (c) anteroposterior and (d) lateral radiographs at age 17 years: the patient evolved to complex symptomatic instability with positive anterior apprehension test and femoroacetabular impingement on the left hip, and underwent periacetabular osteotomy to treat hip dysplasia associated with flexion derotational intertrochanteric femoral osteotomy and extensive neck osteoplasty.
In all, 55 (51%) of 108 patients had no hip symptoms. The remaining 53 patients (49%) had hip pain at final follow-up. No differences were observed in acetabular parameters between symptomatic and asymptomatic hips. Only the alpha angle (anteroposterior and lateral) and femoral head overgrowth were associated with hip pain (Table 3). Three patients developed hip pain associated with clinical instability (positive apprehension test) and acetabular dysplasia. The periacetabular osteotomy was performed in two of these three patients (followed by clinical improvement), and recommended but not yet performed for the third patient.

Discussion

Recently, the historical concept that SCFE is associated with increased acetabular coverage or depth has been brought into question by CT findings suggesting that the acetabulum is not deep and there is no acetabular overcoverage of the femoral head in SCFE. Notably, there is little attention given to the prevalence of acetabular dysplasia as an associated comorbidity in SCFE; and considering the critical concern of an initial SCFE event, the acetabulum may not be promptly recognized. Additionally, there is a question as to whether a secondary acetabular remodelling may develop following an early SCFE presentation with residual femoral deformities, in a mechanism similar to Legg-Calvé-Perthes disease. To our knowledge, no prior study has specifically addressed the effect of SCFE on the acetabular growth up to the skeletal maturity. In this study, we longitudinally evaluated patients with unilateral SCFE that did not experience a contralateral slip, with a minimum of two years. Our results suggested that the acetabular coverage and depth are not increased in hips initially affected by SCFE. Further, we found that SCFE may alter the remaining acetabular growth or may induce a post-SCFE acetabular remodelling, leading to decreased acetabular coverage of the femoral head. Independent factors associated with the presence of acetabular dysplasia at skeletal maturity in SCFE were the age at slip, the severity of SCFE and the femoral head overgrowth.

At the initial SCFE presentation, we did not observe increased acetabular coverage and depth in the affected hip compared with the contralateral unaffected side. In contrast, some previous evidence suggested that the acetabular coverage is increased in SCFE. Kitadai et al and Monazzam et al did not find differences between the affected and uninvolved hips in unilateral SCFE, and both hips presented with increased LCEA angle compared with control individuals. In patients with unilateral SCFE, Sankar et al suggested that the uninvolved side had increased acetabular coverage, assessed by LCEA and Tönnis angle, compared with control patients. A deep acetabulum was found in 52% of hips with SCFE and it may potentially influence the slip stability. Conversely, Hesper et al suggested that a hip with SCFE has a similar LCEA and ADR compared with normal hips of matched-control individuals. Acetabular retroversion has been commonly observed in SCFE. Similarly, we identified a high proportion of crossoversign in the hip with SCFE and also in the uninvolved hip.

At skeletal maturity, we observed that the noninvolved acetabulum continued to grow and to increase the femoral head coverage, while in hips with SCFE, the superior acetabular coverage worsened during the follow-up. Some factors involving the relationship between the femur and the acetabulum could be hypothetically associated with the acetabular remodelling and decrease the acetabular coverage in SCFE. The process of bone healing can stimulate the femoral capital overgrowth. Indeed, we found that the femoral head diameter increased 6% compared

Table 5 Morphologic characteristics and age at slip according to the subgroups with or without acetabular dysplasia of the affected hip at the final follow-up. Values are described as mean and sd for continuous variables, or frequency and percentage for binary variables.

Variables	Acetabular dysplasia (n = 27)	Non-dysplastic acetabulums (n = 81)	p*	p adj	Odds ratio	95% confidence interval		
Age at slip (yrs)	11.6 ± 1.7	12.6 ± 1.7	0.006	0.03	0.7	0.5 to 1.0		
Severity of slip								
Mild (%)	2	7	24	30				
Moderate (%)	15	56	39	48	0.05	0.14	3.5	0.6 to 19.1
Severe (%)	10	37	18	22	0.02	0.04	6.1	1.1 to 35.1
Hip pain (positive)	16	59	37	46	0.27			
Lateral centre-edge angle	11.1° ± 0.9°	11.2° ± 0.9°	0.34	0.55				
Tönnis angle	65° ± 12.5°	67° ± 12.5°	0.14	0.24				
Anteroposterior	1.6 ± 1.1	1.7 ± 1.1						
Lateral	1.6 ± 1.1	1.7 ± 1.1						
Neck-shaft angle	128.4° ± 8.4°	129.7° ± 8.4°	0.63	0.28				
Necklength (cm)	4.8 ± 0.99	5.1 ± 0.99						
Head diameterratio	1.06 ± 0.05	1.02 ± 0.05	0.001	< 0.001	1.3	1.1 to 1.6		

*p-values represent univariate comparisons

p-values adjusted using multivariable logistic regression
with the contralateral noninvolved side, while a normal range of capital asymmetry within 2% to 3% has been reported.49,50 Femoral head overgrowth itself may reflect in lateralization of the femoral head centre and lower LCEA. Long-term studies will be worthwhile to determine if the relative decrease in femoral head coverage associated with capital overgrowth is associated with clinical instability or late dysplastic degeneration. Additionally, the combination of epiphysial displacement in SCFE, with the resultant epiphysiodysis may result in a short femoral neck, a relatively high greater trochanter and loss of concavity at the femoral head-neck junction, each or in combination may lead to FAI mechanical conflicts.48 These conflicts may potentially disturb the secondary ossification of the acetabular rim and terminal growth of the acetabulum.13

In order to identify which factors were associated with the decrease in acetabular coverage in skeletally mature patients with SCFE, we conducted a multivariate analysis including demographic, acetabular, femoral and SCFE characteristics. Although our results did not confirm the hypothesis that FAI deformities alter the residual acetabular growth, we must interpret this with caution, since some patients underwent FAI treatment during the follow-up. We identified that the age at slip, severity of SCFE and the capital overgrowth are independent factors associated with the development of acetabular dysplasia in SCFE. Hip pain was not statistically associated with radiographic acetabular dysplasia in the present cohort. However, three symptomatic patients presented with clinical evidence of acetabular dysplasia and hip instability at final follow-up, and two of them underwent periacetabular osteotomy.

This study has limitations. First, the retrospective design allowed for methodological bias such as suboptimal pelvic radiographic positioning and a selection bias due to a considerable decrease in the number of initial patients. We rejected initial radiographs with poor positioning to minimize improper measurements. Furthermore, the decrease in the initial number of patients was necessary to assure follow-up to skeletal maturity, allowing evaluation of the uninvolved contralateral hip in an intra-individual pairwise comparison. The majority of the 217 patients who had not reached skeletal maturity were lost to follow-up. This decrease in the number of patients is expected for reference hospitals, which receive patients from other centres. However, some patients with persistent pain are more likely to keep following up to older ages. Even after these exclusions, a considerable number of patients were analyzed with a median follow-up of 4.5 years. Second, the SCFE onset usually occurs at an age in which the acetabulum is not completely ossified. The acetabular rim was not identifiable in a few patients, which were not included in the pairwise comparison of the crossover sign using the contralateral hip at the same study period, and the same hip for follow-up analysis. Third, all measurements were performed by the same orthopaedic surgeon, however, we identified substantial to excellent intra- and interobserver agreement, except for the alpha angle and crossover sign. We believe that our reliability is in line with the literature.13,29,44,51-53 Fourth, we acknowledge that differences that we found in LCEA may not be clinically significant for many cases; however, initially equivocal acetabular coverage may be negatively influenced by an insufficient residual acetabular growth or remodelling following SCFE. Fifth, all measurements were performed using conventional radiographs, which are not ideal to depict the 3D complex anatomy of the acetabulum. Sixth, a subset of patients underwent surgical treatment of FAI deformity. Although the surgery would have the potential to change the natural evolution, we observed no differences in acetabular parameters between patients who underwent FAI surgery and those who did not. We believe that the original SCFE deformity could have influenced the acetabular development despite subsequent FAI treatment. Finally, the morphology of the contralateral uninvolved side in unilateral SCFE may resemble a slip-like deformity,54 and we do not have a matched-control group of healthy individuals to compare the acetabular morphology across time.

In conclusion, our results suggest that the acetabular coverage of the femoral head and the acetabular depth are not increased in SCFE. Even more importantly, we found that hips with SCFE tend to develop decreased acetabular coverage at skeletal maturity, and approximately 25% of patients met the criteria for the definition of hip dysplasia. Age at initial slip, severity of slip and femoral capital overgrowth are factors associated with the development of acetabular dysplasia in SCFE. The presence of acetabular insufficiency in association with SCFE has previously been under-reported, and its recognition may be important. Although we cannot yet comment on the effect of this phenomenon on treatment decision-making, continuing studies with large numbers and advanced imaging will be important to understand a clinical significance of the acetabular morphology in SCFE.

Received 11 April 2018; accepted after revision 18 June 2018.

COMPLIANCE WITH ETHICAL STANDARDS

FUNDING STATEMENT

No benefits in any form have been received or will be received from a commercial party related directly or indirectly to the subject of this article.

OA LICENCE TEXT

This article is distributed under the terms of the Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0) licence (https://creativecommons.
ACETABULAR MORPHOLOGY IN SCFE AFTER SKELETAL MATURITY

org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed.

ETHICAL STATEMENT

Ethical approval: This study was performed at Boston Children’s Hospital and was approved by our ethics and institutional review board committee.

Informed Consent: Informed consent was not obtained from the patients included in this study.

ICMJE CONFLICT OF INTEREST STATEMENT

DAM has received a post-doctorate scholarship (Grant 2016/04376–3) from São Paulo Research Foundation (FAPESP). YJK received honoraria from Orthopédiatrics. All other authors have no conflict of interest and nothing to disclose.

REFERENCES

1. Lehmann CL, Arons RR, Loder RT, Vitale MG. The epidemiology of slipped capital femoral epiphysis: an update. J Pediatr Orthop 2006;26:286-290.
2. Barrios C, Blasco MA, Blasco MC, Gascó J. Posterior sloping angle of the capital femoral physis: a predictor of bilaterality in slipped capital femoral epiphysis. J Pediatr Orthop 2005;25:445-449.
3. Boyle MJ, Lirola JF, Hogue GD, et al. The alpha angle as a predictor of contralateral slipped capital femoral epiphysis. J Child Orthop 2016;10:201-207.
4. Gelberman RH, Cohen MS, Shaw BA, et al. The association of femoral retroversion with slipped capital femoral epiphysis. J Bone Joint Surg (Am) 1986;68-A:1000-1007.
5. Loder RT, Hensinger RN. Slipped capital femoral epiphysis associated with renal failure osteodystrophy. J Pediatr Orthop 1997;17:205-211.
6. Loder RT, Wittenberg B, DeSilva G. Slipped capital femoral epiphysis associated with endocrine disorders. J Pediatr Orthop 1995;15:349-356.
7. Mirkopoulos N, Weiner DS, Askew M. The evolving slope of the proximal femoral growth plate relationship to slipped capital femoral epiphysis. J Pediatr Orthop 1988;8:268-273.
8. Morris WZ, Napora JK, Conry KT, Liu RW. Capital femoral epiphysial extension may confer physeal stability in slipped capital femoral epiphysis. J Pediatr Orthop 2016;1.
9. Nasreddine AY, Heyworth BE, Zurakowski D, Kocher MA. A reduction in body mass index lowers risk for bilateral slipped capital femoral epiphysis. Clin Orthol Relat Res 2013;471:2137-2144.
10. Phillips PM, Phadnis J, Willoughby R, Hunt L. Posterior sloping angle as a predictor of contralateral slip in slipped capital femoral epiphysis. J Bone Joint Surg (Am) 2013;95-A:146-150.
11. Sankar WN, Brighton BK, Kim YJ, Millis MB. Acetabular morphology in slipped capital femoral epiphysis. J Pediatr Orthop 2011;31:254-258.
12. Bauer JP, Roy DR, Thomas SS. Acetabular retroversion in post slipped capital femoral epiphysis deformity. J Child Orthop 2013;7:91-94.
13. Hesper T, Bixby SD, Kim Y-J, et al. Acetabular retroversion, but not increased acetabular depth or coverage, in slipped capital femoral epiphysis: a matched-cohort study. J Bone Joint Surg (Am) 2017;99-A:1022-1029.
14. Kitadai HK, Milani C, Nery CA, Filho JL. Wiberg's center-edge angle in patients with slipped capital femoral epiphysis. J Pediatr Orthop 1999;19:97-105.
15. Monazzam S, Krishnamoorthy V, Bittersohl B, Bomar JD, Hosalkar HS. Is the acetabulum retroverted in slipped capital femoral epiphysis? Clin Orthop Relat Res 2013;471:2145-2150.
16. Podeszwa DA, Gurd D, Riccio A, De La Rocha A, Sucato DJ. Increased acetabular depth may influence physeal stability in slipped capital femoral epiphysis. Clin Orthop Relat Res 2013;471:2151-2155.
17. Bombelli R. Classification and pathogenesis. The role of osteotomy as a consequent therapy. 3rd ed. Berlin, Heidelberg: Springer-Verlag, 1983.
18. Pauwels F. Biomechanical principles of varus/valgus intertrochanteric osteotomy (Pauwels I and II) in the treatment of osteoarthritis of the hip. In: Schatzker J, ed. The intertrochanteric osteotomy. New York: Springer-Verlag, 1984:3-3.
19. Joseph B. Morphological changes in the acetabulum in Perthes’ disease. J Bone Joint Surg (Br) 1989;71-B:756-763.
20. Huhnstock S, Svenningsen S, Pripp AH, Terjesen T, Wiig O. The acetabulum in Perthes’ disease: a prospective study of 123 children. J Child Orthop 2014;8:457-465.
21. Leunig M, Manner HM, Turchetto L, Ganz R. Femoral and acetabular re-alignment in slipped capital femoral epiphysis. J Child Orthop 2017;11:131-137.
22. Aprato A, Leunig M, Massé A, Slongo T, Ganz R. Instability of the hip after anatomical re-alignment in patients with a slipped capital femoral epiphysis. Bone Joint J 2017;99-B:16-21.
23. Trumble SJ, Mayo KA, Mast JW. The periacetabular osteotomy. Minimum 2 year followup in more than 100 hips. Clin Orthol Relat Res 1999;363:54-63.
24. Wiberg G. Studies on dysplastic acetabula and congenital subluxation of the hip joint. With special reference to the complication of osteoarthritis. Acta Chir Scand 1939;83:28-38.
25. Tönns D. General radiography of the hip joint. In: Tönns D, ed. Congenital Dysplasia, Dislocation of the Hip. New York: Springer, 1987:100-142.
26. Cooperman DR, Wallenstein R, Stubberg SD. Acetabular dysplasia in the adult. Clin Orthol Relat Res 1983;175:79-85.
27. Beck M, Kalhor M, Leunig M, Ganz R. Hip morphology influences the pattern of damage to the acetabular cartilage: femoracetabular impingement as a cause of early osteoarthritis of the hip. J Bone Joint Surg (Br) 2005;87-B:1012-1018.
28. Kuo FC, Kuo SJ, Ko JY. Overgrowth of the femoral neck after hip fractures in children. J Orthop Surg Res 2016;11:50.
29. Nötzli HP, Wyss TF, Stoecklin CH, et al. The contour of the femoral head-neck junction as a predictor for the risk of anterior impingement. J Bone Joint Surg (Br) 2002;84-B:556-560.
30. Ordeberg G, Hägglund G, Hansson L, Sandström S. Articulotrochanteric distance in slipped capital femoral epiphysis. Arch Orthop Trauma Surg 1990;109:91-93.
31. Southwick WO. Osteotomy through the lesser trochanter for slipped capital femoral epiphysis. J Bone Joint Surg (Am) 1967;49-A:807-835.
32. Siebenrock KA, Kalbermatten DF, Ganz R. Effect of pelvic tilt on acetabular retroversion: a study of pelves from cadavers. Clin Orthol Relat Res 2003;410:241-248.
33. Popejoy D, Emara K, Birch J. Prediction of contralateral slipped capital femoral epiphysis using the modified Oxford bone age score. J Pediatr Orthop 2012;32:290-294.
34. Fahey JJ, O’Brien ET. Acute slipped capital femoral epiphysis: review of the literature and report of ten cases. J Bone Joint Surg [Am] 1965;47-A:105-112.
35. Morrissy R. Slipped capital femoral epiphysis. In: Morrissy R, Winter R, eds. Lovell and Winters Pediatric’s Orthopaedics. 3rd ed. Philadelphia: JB Lippincott, 1990:891.
36. Loder RT, Richards BS, Shapiro PS, Reznick LR, Aronson DD. Acute slipped capital femoral epiphysis: the importance of physeal stability. J Bone Joint Surg [Am] 1993;75-A:1134-1140.
37. Clohisy JC, Carlisle JC, Beaulé PE, et al. A systematic approach to the plain radiographic evaluation of the young adult hip. J Bone Joint Surg [Am] 2008;90-A:47-66.
38. Reynolds D, Lucas J, Klaue K. Retroversion of the acetabulum. A cause of hip pain. J Bone Joint Surg [Br] 1999;81-B:281-288.
39. Ogata S, Moriya H, Tsuchiya K, et al. Acetabular cover in congenital dislocation of the hip. J Bone Joint Surg [Br] 1990;72-B:190-196.
40. Visser JD. Functional treatment of congenital dislocation of the hip. Acta Orthop Scand Suppl 1984;206:1-109.
41. Fabricant PD, Hirsch BP, Holmes I, et al. A radiographic study of the ossification of the posterior wall of the acetabulum: implications for the diagnosis of pediatric and adolescent hip disorders. J Bone Joint Surg [Am] 2013;95:230-236.
42. Morris WZ, Chen JY, Cooperman DR, Liu RW. Characterization of ossification of the posterior rim of acetabulum in the developing hip and its impact on the assessment of femoroacetabular impingement. J Bone Joint Surg [Am] 2015;97:811-1-6.
43. Santili C, de Assis MC, Kusabara FI, et al. Southwick’s head-shaft angles: normal standards and abnormal values observed in obesity and in patients with epiphysiodesis. J PediatrOrthop B 2004;13:244-247.
44. Maranho DA, Nogueira-Barbosa MH, Zamarioli A, Volpon JB. MRI abnormalities of the acetabular labrum and articular cartilage are common in healed Legg-Calvé-Perthes disease with residual deformities of the hip. J Bone Joint Surg [Am] 2013;95:256-265.
45. Cohen J. A coefficient of agreement for nominal scales. Educ Psychol Meas 1960;20:37-46.
46. Shrout PE, Fleiss JL. Intraclass correlations: uses in assessing rater reliability. Psychol Bull 1979;86:420-428.
47. Upasani VV, Birke O, Klingele KE, Millis MB. Iatrogenic hip instability is a devastating complication after the modified Dunn procedure for severe slipped capital femoral epiphysis. Clin Orthop Relat Res 2017;475:1229-1235.
48. Siebenrock KA, Anwander H, Zurmühle CA, et al. Head reduction osteotomy with additional containment surgery improves sphericality and containment and reduces pain in Legg-Calvé-Perthes disease. Clin Orthop Relat Res 2015;473:1274-1283.
49. Young EY, Gebhart JJ, Bajwa N, Cooperman DR, Ahn NU. Femoral head asymmetry and coxa magna: anatomic study. J Pediatr Orthop 2014;34:415-420.
50. Young EY, Gebhart J, Cooperman D, Ahn NU. Are the left and right proximal femurs symmetric? Clin Orthop Relat Res 2013;471:1593-1601.
51. Jamali AA, Mladenov K, Meyer DC, et al. Anteroposterior pelvic radiographs to assess acetabular retroversion: high validity of the ‘cross-over-sign’. J Orthop Res 2007;25:758-765.
52. Carlisle JC, Zebala LP, Shia DS, et al. Reliability of various observers in determining common radiographic parameters of adult hip structural anatomy. Iowa Orthop J 2011;31:52-58.
53. Fujii M, Nakamura T, Hara T, Nakashima Y, Iwamoto Y. Does radiographic coxa profunda indicate increased acetabular coverage or depth in hip dysplasia? Clin Orthop Relat Res 2015;473:2056-2066.
54. Hesper T, Bixby SD, Maranho DA, et al. Morphologic features of the contralateral femur in patients with unilateral slipped capital femoral epiphysis resembles mild slip deformity: a matched cohort study. Clin Orthop Relat Res 2018;476:890-899.