Comparison of seven serum assays on four automatic analysers

Lucia Sacchetti, Dionigio Cerasuolo, Marco Besozzi, Antonio D’Agostino, Carlo Franzini and Francesco Salvatore

Dipartimento di Biochimica e Biotecnologie Mediche, Università di Napoli, Via S. Pansini 5, 80131 Napoli, Italy, and Laboratory di Analisi, Ospedale Filippo del Ponte, Via F. del Ponte 19, 21100 Varese, Italy

Serum enzyme assays used on four different analysers (Hitachi 737, Hitachi 705, Cobas-bio and RA-2X) were compared by determining the activity of seven different enzymes (AST, ALT, LD, ALP, GGT, CK and AMS). Performance checks (quality control procedure) and replications (the study of the total analytic imprecision and of its components) were conducted and the methods were compared by linear regression analysis with statistical inference on the curves following the protocols of the National Committee for Clinical Laboratory Standards (NCCLS: PSEP-2, PSEP-3, PSEP-4). The correlation coefficients between the methods (r = 0.991–0.999), together with the other statistical parameters, indicated that the methods are well correlated on all the instruments. The total imprecision was good for all analytes, except ALT. Among the instruments tested, the RA-2X gave more variable results, although the total imprecision was acceptable.

There was no relevant carry-over effect. The evaluation of performance claims indicated that the expected error did not substantially affect the results at the level of clinical decisions.

Introduction

Enzyme assays are widely used and play an important role in laboratory medicine, hence the need for a detailed analysis of the analytical error and of its various components, also in relation to the various methods and instruments that are commercially available and the need for the commutability of results among various laboratories and often even within the same institution. The most effective method for this type of evaluation remains the analysis of replicates and the comparison between methods [1]. Therefore, we studied the analytical error for seven serum enzymatic activities that are widely used in clinical diagnostics [AST (aspartate aminotransferase), ALT (alanine aminotransferase), LD (lactate dehydrogenase), ALP (alkaline phosphatase), GGT (gamma-glutamyl transferase), CK (creatine kinase) and AMS] (Table 1).

Table 1. Imprecision (carry-over included) for the Hitachi 737 (H1), Hitachi 705 (H2), Cobas-Bio (C) and RA-2X (R) (each enzyme activity was measured at three different levels: low, medium and high).

Analyte	Mean (U/l)	Within-run	Between runs, within-day	Between days	Total															
	H1	H2	C	R																
AST	14	17	16	16	3.8	3.6	4.6	8.8	4.2	2.8	4.1	8.2	4.7	4.5	5.2	9.9	6.1	5.8	6.9	13.3
ALT	9	11	13	8	7.2	6.6	8.5	20.3	6.8	6.8	6.5	10.2	9.6	10.1	9.8	18.4	12.0	12.0	12.9	27.4
LD	172	164	168	84	1.3	1.5	3.1	6.6	1.6	1.1	1.8	5.9	3.1	2.3	2.1	8.4	3.3	2.7	3.7	10.7
ALP	310	298	304	149	1.2	3.9	1.6	1.8	1.2	1.5	1.5	2.3	2.2	2.2	2.0	5.7	2.5	4.6	2.9	5.9
GGT	575	600	592	589	1.5	0.5	1.1	1.4	2.9	2.1	1.1	1.9	5.8	2.9	2.3	3.3	6.0	3.0	2.5	3.6
CK	64	59	58	58	3.5	2.3	4.1	9.2	5.4	1.8	3.3	3.4	6.0	3.5	1.7	3.0	6.9	4.2	4.4	9.7
AMS	72	69	72	39	5.3	2.8	1.6	8.9	3.6	3.2	2.1	4.3	1.7	3.7	2.6	10.1	5.6	4.7	3.0	13.4

* To whom correspondence should be addressed.

0142-0453/89 $3.00 © 1989 Taylor & Francis Ltd.
(amylase) measured with four instruments [Hitachi 737 and Hitachi 705 (Boehringer Biochemia Robin), Cobas-Bio (Roche) and RA-2X (Technicon Instruments)]. These instruments were selected because they are representative of at least three different approaches. Lastly, we also compared the Hitachi 737, which is one of the newest autoanalysers, and its procedures with the other instruments and their respective procedures.

Experimental

Enzymatic assays

All the catalytic activities were assayed at 37°C. All the reagents were from Boehringer, except for those used with the RA-2X, which came from Technicon. The methods employed for AST, ALT, ALP, CK and LD were according to SCE (Scandinavian Committee on Enzymes) recommendations [2,3] on all the instruments, except for the RA-2X where the lactate→pyruvate reaction was used for LD determination [4]. GGT activity was determined according to Szasz and Persijn [5] except on the RA-2X, where SCE recommendations...
were also followed [6]. For the AMS assay, 4-NP-
maltoheptaoside [7] was used as substrate on all instru-
ments except the RA-2X, where maltotetraose was used
[8].

Replication experiment [9]

Pools of human sera at three levels of concentration (low,
medium and high) for each enzyme were frozen and used
as required. Two analytical runs were performed each
day (morning and afternoon) for 20 days; each run
consisted of 18 replicate samples. This experiment was
performed to obtain an estimate of the imprecision (total
and of some components) of the test method.

Comparison experiment [10]

Fresh sera were obtained from patients (n = 100; 20% at
or below the lowest ‘Medical Decision Concentration,’
but within a range of the lowest claimed measurement;
20% in the upper range of response of the measurement
system claimed by the manufacturer; 20% above the
expected ‘normal’ range at a ‘Medical Decision Concen-
tration;’ 40% in the ‘normal’ range). Twenty-five
samples were analysed twice each day, on all the
instruments, within a maximum of 4 h. This experiment
is the basis for making claims about inaccuracy.

Performance check experiment [11]

Commercial lyophilized control sera PN-U (mid-level
concentration) (lot 746) and PP-U (high-level concentra-
tion) (lot 793) from Boehringer were used 1 h after
reconstitution. Three aliquots of each control serum were
included in each run of the comparison and of the
replication experiments, in random order. The perfor-
ance check is intended to ensure that the instrument
performance is consistent with the expected performance
during collection of the experimental data. If for any run
the mean or range of the three mid- and high-level
observations exceed the control limits (established prior
to the experiment), the experimental data of that run
should be discarded as suspected of not representing
the typical performance of the method.

Statistics

The experimental data were elaborated using the Penta-
lab statistical software package, which is based on the
statistical procedures recommended by NCCLS; it can be
used on IBM personal and IBM compatible computers.

Results

Replication

The results of this experiment are given in table 1. Variance
analysis [9] was used to evaluate the total imprecision,
and also the within-series, between-series, within-day and between-days components. The coeffi-
cients of variation (CV) are acceptable (<10%) for
almost all methods tested on the Hitachi 703, Hitachi 737
and Cobas-Bio instruments; usually the highest CVs
were obtained for low enzyme activity. ALT determination
was affected by a greater variability (always <13%)
because there was a loss of enzyme activity in serum pools
during the experiment (storage: about 30 days at
−20°C). ALT variability was even greater on the RA-2X
(CV 13–27%), on which instrument higher CVs (always
<14%) were also usually obtained for all other methods.

Comparison

The values of the serum enzyme assays obtained with the
Hitachi 737 were plotted against those obtained with the
Hitachi 703, Cobas-Bio and RA-2X instruments, and
were statistically assessed by linear regression analysis
[10]. This statistical approach was used because the
inherent measurement error of method r is compensated
for by the extended range of the data collected (see
Experimental) and can therefore be ignored. The statistical
significance of the regression equations was evaluated by
means of the standard deviation from regression (Sb),
standard error of the slope (So) and of the intercept (Sx)
(data not shown). Lastly, the correlation coefficients, r,
were calculated (r = 0.991–0.999). The results, which are
shown in figure 1, demonstrate that the methods are well
correlated. The significantly different slopes obtained for
LD and AMS on the RA-2X with respect to the other
instruments tested were in agreement with the use on the
RA-2X of different LD and AMS assay methods, each
procedure having its own reference interval. This also
explains the higher slope detected for GGT on the
RA-2X, but in this instance the discrepancies fell within a
range of values well above the upper reference limit and
were therefore irrelevant for clinical purposes. For ALT
and AST the use of the same calculation factor on
Cobas-Bio led to a theoretical slope for ALT and to a
higher slope for AST; why this happened is not clear, but
in another experiment using a factor for AST different to
that used for ALT we obtained results that were very
satisfactory (data not shown).

Performance check

This test, performed prior to and during the comparison
and the replicate experiments, ensures that the tested
methods were in a stable state of operation. Optimum
CVs for both PN-U and for PP-U (normal and patholog-
cal control sera) were obtained on all the instruments
(CV <5%), except for the RA-2X where higher values
were found (e.g., CV = 11.3% for ALT), in agreement
with other reports [12]. The lower variability obtained in
these experiments with respect to the replication experi-
ment (reported in table 1) was obviously due to the
different matrix and storage of the sera employed: in the
first instance (performance check), commercial lyophil-
ized control sera, reconstituted daily and used im-
mediately; and in the second instance (replicate experi-
ments), pooled sera from patients, collected and frozen,
whose aliquots were defrozen and analysed each day. The
numerical data obtained from the experiments described
in this section are not reported for the sake of brevity.

Carry-over

Carry-over was evaluated according to the NCCLS
procedure PSEP-3 [9]. Most of the carry-over values (p)
are <1% (0.3–0.8% on the Hitachi 737; 0.3–0.6% on the
Hitachi 703; 0.4–1.0% on the Cobas-Bio; and 0.6–1.4% on
the RA-2X).

Statement of performance claim

The regression line was also used to calculate and verify
the performance claim for the Hitachi 737 (method plus
Table 2. Performance claims of the Hitachi 737 analyser (y method) versus the Hitachi 705 (H2), the Cobas-Bio (C) and the RA-2X (R) analysers (x methods).

Analyte	Instrument	X_c value* (U/l)	Lower (U/l)	Upper (U/l)	Total error (U/l)
AST	H2	60	48	60	12
	C	60	43	71	17
	R	60	49	73	13
ALT	H2	60	52	60	8
	C	60	41	67	19
	R	60	54	68	8
LD	H2	300	282	348	48
	C	300	272	342	42
	R†	130	242	330	180
ALP	H2	350	294	406	56
	C	350	311	401	51
	R	350	278	406	64
GGT	H2	50	43	55	7
	C	50	38	58	12
	R†	50	27	69	23
CK	H2	100	85	117	17
	C	100	82	119	19
	R	100	81	119	19
AMS	H2	240	211	275	35
	C	240	208	276	36
	R†	130	152	216	86

* X_c = Medical Decision Concentration closest to the mean of the data used for method comparison.
† Assayed with methods different from those used on the other instruments.

Discussion and conclusions

The random error evaluated by means of the imprecision study was similar to those already reported for the individual instruments for the same analytes [12, 14–16]. The imprecision increased at the lower activity levels for all the enzymes, as already reported by Schwartz et al. [12] for the RA-1000. The Hitachi 737, Hitachi 705 and Cobas-Bio showed a similar imprecision; a higher imprecision level was obtained for the RA-2X, but the value was comparable to data reported [12] for the same type of instrument. The low CVs (<5%) revealed by the performance check (replicate determinations of control sera) confirm the reliability of these instruments for the assay of the enzymatic activities tested. This finding is particularly interesting for the last generation instrument, the Hitachi 737, which even with random access and a greater throughput, produces results that are as precise as those obtained on the earlier instruments. The low carry-over values obtained in this study indicate that the instruments tested are suitable for use in clinical enzymology. There is a good correlation between the methods as shown by r values very close to unity. The comparison method also gave satisfactory results; in almost all instances the slopes were very near unity (except, as mentioned above, for LD, AMS and GGT on the RA-2X, where different procedures were employed), thus excluding the existence of a relevant bias. Also, the study of the systematic error at the clinical decision levels (performance claim) yielded satisfactory results for the Hitachi 737 compared with the other instruments.

Acknowledgements

This study was supported in part by grants from the Italian National Research Council (CNR) and the Ministry of Public Education (MPI), Rome, Italy.

References

1. Weissbrodt, I. M., in Statistics for the Clinical Laboratory (Philadelphia, 1985), p. 129.
2. Committee on Enzymes, Scandinavian Society for Clinical Chemistry and Clinical Physiology, Scandinavian Journal of Clinical and Laboratory Investigation, 35 (1974), 291.
3. Committee on Enzymes, Scandinavian Society for Clinical Chemistry and Clinical Physiology, Scandinavian Journal of Clinical and Laboratory Investigation, 36 (1976), 711; 39 (1976), 1.
4. Richards, A. H., Lubinski, R. M. and Vanderlinde, R. E., Clinical Chemistry, 21 (1975), 1018.
5. Szasz, G. and Persijn, J. P., Journal of Clinical Chemistry and Clinical Biochemistry, 12, (1974), 228.
6. Committee on Enzymes, Scandinavian Society for Clinical Chemistry and Clinical Physiology, Scandinavian Journal of Clinical and Laboratory Investigation, 36 (1976), 119.
7. Hohenwallner, W., Hagele, E. O., Scholer, A. and Staber, G., Berichte der Österreichischen Gesellschaft für Klinische Chemie, 6 (1969), 101.
8. Pierre, K. J., Tung, K. K. and Nadji, H., Clinical Chemistry, 22 (1976), 1219.
9. Proposed Standard PSEP-3, Protocol for Establishing Performance Claims for Clinical Chemical Methods. Replication Experiment (National Committee for Clinical Laboratory Standards, Villanova, PA, 1979).
10. Proposed Standard PSEPS-4, Protocol for Establishing Performance Claims for Clinical Chemical Methods. Comparison of Method Experiment (National Committee for Clinical Laboratory Standards, Villanova, PA, 1979).
11. Proposed Standard PSEP-2, Protocol for Establishing Performance Claims for Clinical Chemical Methods. Introduction and Performance-Check Experiment (National Committee for Clinical Laboratory Standards, Villanova, PA, 1979).
12. Schwartz, M. K., Statland, B. E. and Coughlin, J., Clinical Chemistry, 30 (1984), 364.
13. Statland, B. E., Clinical Decision Levels for Lab Tests (Medical Economics Books, Oradel, NJ, 1983), p. 57.
14. Ferré, C., Castineiras, M. J., Alsina, M. J., Galimany, R. and Riera, J., Journal of Automatic Chemistry, 6 (1984), 39.
15. Knebel, M., Haecckel, R. and Seidel, D., Journal of Clinical Chemistry and Clinical Biochemistry, 24 (1986), 409.
16. Bais, R., White, R. G., Elston, D. and Geary, T. D., Journal of Automatic Chemistry, 4 (1982), 21.