The Automated Farmlands of Tomorrow: An IoT Integration with Farmlands

Priyanka Singh1, Saurav Dixit2*, Debaroti Sammanit1, and Paritosh Krishnan 3

1Civil Engineering Department, Amity University Uttar Pradesh, Noida, 201313, India
2Associate, Dean Research & Director International Collaboration, K. R. Mangalam University, Gurgaon, 122103, India.
3Mechanical Engineering Department, Amity University Uttar Pradesh, Noida, 201313, India.

*Corresponding author: Saurav.dixit@krmangalam.edu.in; sauravarambol@gmail.com

Abstract. The rapid urbanization and industrialization of the population have resulted in a critical shortage of agricultural land and manpower to meet the growing population's needs. The future of tomorrow requires impetus through concepts such as IoT Automation in farmlands to meet the increased demand for labour and inspection while maintaining economic efficiency without depleting the environment. Monitoring becomes difficult with a reduced manpower base, which may result in crop failures. The purpose of this paper is to propose how IoT, in conjunction with basic service automation, can be used to influence climate control. Thus, a working model is created using sensors that control the humidity and required temperature conditions, thereby maintaining a suitable growth environment while monitoring and analyzing in real time.

Keywords: Automation; Climate control; Humidity; IoT; Temperature; Remote monitoring; wireless data transmission.

1. Introduction

Natural irrigation is now under pressure due to increasing water shortages, primarily due to population increase and climate change. It is therefore imperative to track water sources to optimise the allocation of retained water. Climate change has been shown to have a significant impact on agricultural crop production over the past two decades, especially in the Indian sub-continent. However, the prediction of good harvests before harvesting allows both farmers and government officials to take adequate steps to market and store the crops. Few approaches for predicting and modelling crop yields have been developed but do not consider climate characteristics and are observational [1-3].

Agriculture is known as one of the significant sources of a country's GDP. Many developing and underdeveloped countries are dependent on agriculture to increase their economic wealth. In this modern technological age, technology will play a significant role in the agricultural field. Advanced technology can automate several agricultural phases, including drainage, fertilization, harvesting and...
more. We are using smart sensors to detect water levels to make the cultivation phases smarter, photo sensors to ensure ample sunlight for plant growth, sensors to detect nitrogen content, and warn the farmer to take steps towards proper fertilization [4-5]. Several experiments are being conducted in this area and even more, are now advancing in the laboratories. We analysed the various standard IoT techniques used in the agriculture sector based on hardware and software. We thus extracted the current challenges to make farming much smarter and more efficient.

The Indian economy is solely dependent on agriculture, where the agriculture industry contributes 17% of the total GDP and a source of employment to over 60% of the population [25–31]. Thus, one of the sole motives is the need to meet food demands for the growing population. With the intervention of new technologies like the Internet of Things, smart farms’ tomorrow is more of a reality now. The implementation of new technologies affects a positive yield. Creating IoT advancements can assist with gathering a lot of environmental and harvest presentation information. "IoT includes numerous new clever ideas for utilizing right away, for example, brilliant home, savvy city, shrewd transportation, and keen cultivation." The excellent use of sensors for monitoring. The real-time data analysis helps in predicting growth and crop lifecycle [6-9].

This paper presents a water system observing and controlling the water system framework utilizing IoT. To store data in the cloud server via an application that will send notifications on the farmer's mobile.

2. Literature review

However, in an age of advanced technology and intelligent systems, the Internet of Things is extremely popular. The Internet of Things is a rapidly growing field that has the potential to revolutionize nearly every industry and discipline, including agriculture, health, home robotics, aviation and transportation, defence and military applications, and much more. The Internet of Things (IoT) is the networking of physical machines, cars, homes, and other objects via hardware, applications, sensors, actuators, and network communication [10-11].

It enables the collection and exchange of data between these objects; the Internet of Things (abbreviated IoT) is a systematic networking mechanism. The Internet of Things can be used to make objects or products smarter by sensing and controlling them automatically. The Internet of Things is referred to by a variety of names and is closely related to the Internet [12-13]. The Internet of Things (IoT) is a term that refers to a device that consists of multiple physical objects and sensors that are connected to or hooked up to the Internet via wireless or wired Internet access. The Internet of Things (IoT) is critical in a variety of industries, including agriculture, aviation, tourism, and health care. Our research developed and refined the IoT-based framework for agriculture and smart agriculture.

According to the plant nutrition handbook, a plant requires 17 essential nutrients, including carbon, hydrogen, and oxygen. Several accessories are obtained through air and water, while others are obtained through dirt and supplement arrangements. Each plant grows optimally under a variety of supplement conditions, which are converted to a fluid solution for transportation convenience. Different plants have multiple seasons, distinct sexes, and levels of profundity. The current framework is designed with a General Jamming Gripper that enables a mass of granular material encased in a flexible layer to wrap a material that enables the system to grasp and deliver a wide variety of objects. A comparative instrument exists that makes use of all family unit materials available on a Do-It-Yourself website [14-19].
3. Proposed Architecture

With the in-depth study of making various models, the work is based on the area of focus of low economy and more viable accessibility. proposed methodology encourages clients to improve the quality and proportion of their ranch yield by distinguishing incorporating temperature, and persistence needs to be concerned with their soil sponginess worth and water level of the tank from the field with no human intervening. The proposed system overviews contain the pictorial representation of remote sensor units denoted as node1 and node2 as demonstrated in fig.1 put in the farmland to get the continuous updates. Admission community highlight gets and sends captured and analyzed data to the control locale and a control piece that controls the streams for the watering subsystem. The water framework structure is devised to give water frame appropriateness, which will allow saving water and improve the yield quality. A wise water structure system can revive crop quality and yield to perceive limits like soil sogginess, air temperature, lightness, and water level of the tank. It uses up of the water model with its proficiency in computing the control variables and asks the not available sensor in the local area directly, whether at the start or terminating the watering process. The structure screens the tank’s water level using a water level sensor so that if the water level is underneath the base, then the water framework will not be started.

3.1. Mobile System

When transferred to the mobile system for easy tracking and staying updated at the minimum, attention gives way to the cloud infrastructure. The android portable application is utilized to provide clients a literary and graphical portrayal of the data obtained by the remote sensor organization, which is put away in the cloud stage.

3.2. Additional data requirements

a. Data about plants - The observing framework gives the most recent data about the plant, where this data will be a spot to add client knowledge about the plant, unique bean stew plants.
b. Table of information examination - This element is the client can get the information from each sensor in detail. The data is spoken to as a table, which contains the sensor's estimations and furnished with the sensor information recovery time so ranchers can handle the entire information sensors. This table structure is a delegate for ranchers to see whether the plants are in acceptable condition.

c. Graphs of investigator information - The framework will screen explicitly; we configuration checking framework in investigator information graph. This framework will give data as information sensors are spoken to in graphical structure. It plans to give itemized data on their stew plants, where clients can see individually finished data, for example, pH, EC (Electrical Conductivity), Soil Dampness, Temperature, and Humidity. With this component, ranchers will get a diagram of data on their stew plants; an outline is a piece of important information.

d. Smart Sprinklers - The excellent state of a nursery can make the plants green and thrive with the short water supply and right supplements obtained from the dirt ripeness with the self-ruling nursery arrangement guide; some have electronic clocks. The brilliant sprinkler can be related to substantial usefulness, such as a coordinated sprinkler framework that makes some planned memories for sprinkling water on the plants that can be distantly controlled on your gadget in your non-appearance. The sprinkler regulator can hold 8000 gallons of water over the year. The implicit advantage is the wise sprinkler regulator's interoperability with different frameworks. For example, smoke cautions and cameras that use climate forecasts and nursery-determined data create no pretty much water needed by the plant at any second.

e. Climate Stations - The climate stations, in some cases called sensors, give more knowledge into the nursery. The accommodating input is inferred by checking examination; for example, temperature, water, and wind guarantee that the plants fill through the greenhouse.

f. Smart Soil Sensors - Water is key to any plant's appropriate development as the correct soil is fundamental. To learn the right level for both the dampness and manure, it is past the simple visual perception that will require sensitive sensors to investigate information across the measurements that identify when plants need watering and confirm whether the temperature causes hindered advancement.

g. Mechanical Lawn Mowers - In our nursery, exercises that can be time-devouring require energy and can be generally monotonous; adding a mechanical touch to the lawnmowers can be a gigantic forward leap the hands-off experience as an automated vacuum.

4. Conclusion

The central idea of fusing independent mechanical technology into farming is decreasing dependence on difficult work while expanding effectiveness, item yield, and quality. The improvement has killed the significant work factor, making the clients/ranchers invest more energy at work, investigating robot coding, breaking down information, and fixing apparatus. The difficulties presented by the conventional technique are the absence of oversight, exercise in futility, supporting as per the arrangement of water and legitimate the executives because of the dull day by day timetables of clients/ranchers which hampers the fast development of plants which bugs and weeds might take over. This investigation uncovers the different Smart Garden
mechanization with an administration framework that can be actualized and effectively joined with ease. The Smart Farm has a firm spine of sensors and IoT, which depends on the capacity to speak with one another and with the client/rancher as it works self-governing. The Smart Garden computerization framework brings the client closer to their ideal plants. It brings recommendations and improvement with techniques being executed and guidelines are given to the computerization machine distantly or modified per task.

5. Acknowledgement

The authors would like to acknowledge the support and facility provided by the K. R. Mangalam University Gurgaon and Amity University Noida for casting the samples and proving the testing equipment’s.

References

[1] T. Qiu, J. Liu, W. Si, M. Han, H. Ning and M. Atiquzzaman, “A Data-Driven Robustness Algorithm for the Internet of Things in Smart Cities,” in IEEE Communications Magazine, vol:55, no:12, p. 18-23, DECEMBER 2017.
[2] A. Bahga and V. Madisetti, Internet of Things: A hands on approach, Universities Press, First edition, ISBN: 97888173719547.
[3] Y. Erlich, “A vision for ubiquitous sequencing,” Genome Research, ISSN 1088-9051, 2015, p. 1411–1416.
[4] L. Dan, C. Xin, H. Chongwei and J. Liangliang, “Intelligent Agriculture Greenhouse Environment Monitoring System Based on IOT Technology,” International Conference on Intelligent Transportation, Big Data and Smart City, Halong Bay, 2015.
[5] “Zigbee,” Digi, Available at: https://www.digi.com/resources/standards-and-technologies/rfmodems/zigbee-wireless-standard. [Accessed 2017 March 20].
[6] V. V. h. Ram, H. Vishal, S. Dhanalakshmi and P. M. Vidya, “Regulation of water in agriculture field using Internet of Things,” IEEE Technological Innovation in ICT for Agriculture and Rural Development (TIAR), Chennai, 2015.
[7] J. Shenoy and Y. Pingle, “IOT in agriculture,” 3rd International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, 2016.
[8] “Polyhouse farming advantages and benefits”, Available at: http://www.agrifarming.in/polyhouse-farming-profits/. [Accessed 2017 March 3].
[9] “Soil pH,” Wikipedia, Available at: https://en.wikipedia.org/wiki/Soil_pH.
[10] A. Abdullah, S. A. Enazi and I. Damaj, “AgriSys: A smart and ubiquitous controlled-environment agriculture system,” 3rd MEC International Conference on Big Data and Smart City (ICBDSC), Muscat, 2016.
[11] “Multiple Input Multiple Output (MIMO),” Radio Electronics.com, [Online]. Available: http://www.radioelectronics.com/info/antennas/mimo/multiple-input-multiple-output-technology-tutorial.php. [Accessed 26 March 2017].
[12] N. Gondchawar and R. S. Kawitkar, “Smart Agriculture Using IoT and WSN based Modern technologies,” International Journal of Innovative Research in Computer and Communication Engineering, vol:4, no:6, 2016.
[13] “Raspberry PI”, Available at: https://www.raspberrypi.org/.
[14] S. K. Nagothu, “Weather based smart watering system using soil sensor and GSM,” 2016 World Conference on Futuristic Trends in Research and Innovation for Social Welfare (Startup Conclave), Coimbatore, 2016.
[15] N. Agrawal and S. Singhal, “Smart drip irrigation system using raspberry pi and arduino,” International Conference on Computing, Communication & Automation, Noida, 2015.
[16] “Arduino,” Arduino, Available at: https://www.arduino.cc/. [Accessed 24 March 2017].
[17] N. Putjaika, S. Phusae, A. Chen-Jim, P. Phunchongharn and K. Akkarajitsakul, “A control system in an intelligent farming by using arduino technology,” Fifth ICT International Student Project Conference (ICT-ISPC), Nakhon Pathom, 2016.
[18] S. Khashirunnisa, B. K. Chand and B. L. Kumari, “Performance analysis of Kalman filter, fuzzy Kalman filter and wind driven optimized Kalman filter for tracking applications,” 2nd International Conference on Communication Control and Intelligent Systems, Mathura India, 2016 .
[19] A. Kapoor, S. I. Bhat, S. Shidnal and A. Mehra, “Implementation of IoT (Internet of Things) and Image processing in smart agriculture,” International Conference on Computation System and Information Technology for Sustainable Solutions (CSITSS), Bangalore, 2016.
[20] C. A. et al, “Wireless sensing and control for precision Green house management,” Sixth International Conference on Sensing Technology (ICST), Kolkata, 2012.
[21] P. M. Jacob, Muhammed Ilyas H. J. Jose and J. Jose, “An Analytical approach on DFD to UML model transformation techniques,” 2016 International Conference on Information Science (ICIS), Kochi, 2016, pp. 12-17.
[22] Mary Shaw, David Garlan, ‘Software Architecture: Perspectives on an Emerging Discipline’, Prentice Hall, 1996.
[23] Y. Ducq and D. Chen, ‘How to measure interoperability: Concept and approach,’ 2008 IEEE International Technology Management Conference (ICE), Lisbon, 2008, pp. 1-8.

[24] P. M. Jacob and M. Prasanna, “A Comparative analysis on Black box testing strategies,” 2016 International Conference on Information Science (ICIS), Kochi, 2016, pp. 1-6.

[25] Dixit S, Sharma K and Singh S 2020 Identifying and Analysing Key Factors Associated with Risks in Construction Projects Emerging Trends in Civil Engineering, https://doi.org/10.1007/978-981-15-1404-3_3 vol 61 (Springer, Singapore) pp 25–32

[26] Dixit S, Stefańska A and Musiuk A 2021 Architectural form finding in arboreal supporting structure optimisation Ain Shams Eng. J. 12 2321–9

[27] Shah M N, Dixit S, Kumar R, Jain R and Anand K 2021 Causes of delays in slum reconstruction projects in India Int. J. Constr. Manag. 21 452–67

[28] Dixit S, Stefańska A, Musiuk A and Singh P 2021 Study of enabling factors affecting the adoption of ICT in the Indian built environment sector Ain Shams Eng. J. 12 2313–9

[29] Dixit S 2021 Impact of management practices on construction productivity in Indian building construction projects: an empirical study Organ. Technol. Manag. Constr. 13 2383–90

[30] Dixit S 2020 Study of factors affecting the performance of construction projects in AEC industry Organ. Technol. Manag. Constr. an Int. J. 12 2275–82

[31] Dixit S and Saurabh K 2019 Impact of Construction Productivity Attributes Over Construction Project Performance in Indian Construction Projects Period. Polytech. Archit. 50 89–96