Tettigoniidae (Orthoptera) ovipositing in old galls of *Dryocosmus kuriphilus* (Hymenoptera: Cynipidae)

GIULIANO CERASA and BRUNO MASSA

Department of Agriculture and Forest Sciences, University of Palermo, Viale Scienze bd 5A, 90128 Palermo, Italy; e-mails: giulianocerasa@alice.it, bruno.massa@unipa.it

Key words. Hymenoptera, Cynipidae, gall-successor, Orthoptera, Tettigoniidae, bush-crickets, oviposition, biology, Italy

Abstract. This paper presents biological notes on two species of Orthoptera: Tettigoniidae that emerged from old spongy-woody galls of *Dryocosmus kuriphilus* Yasumatsu, 1951 collected in Sicily (Italy) in April 2015: *Leptophyes sicula* Kleukers, Odé et Fontana, 2010 (Phaneropterinae) and *Cyrtaspis scutata* (Charpentier, 1825) (Meconematinae). Between the end of April and the first few days of May a total of 30 neanids emerged from the galls, were reared and their life-cycle recorded. While *L. sicula* laid eggs in groups, *C. scutata* laid single eggs inside the galls; both species in a few years have adapted to exploiting this new shelter for egg laying. No interaction with the gall inducing insect was noted.

INTRODUCTION

Galls are induced by physical-chemical interactions between plants and organisms, such as insects, mites, nematodes, fungi, bacteria and viruses (Sugiura & Yamazaki, 2009). Galls are adaptive in that they provide the inducers with nutritious tissues and sometimes shelter from natural enemies (Price et al., 1987). Gall-inducers are referred to as “ecosystem engineers” because the physical-chemical alterations they induce in plant organs in the form of galls are habitats or resources for other organisms (Sugiura & Yamazaki, 2009). Galls indeed are important resources not only for the gall-inducers, but also for other organisms, generally classified as either: parasitoids, hyperparasitoids, inquilines, cecidophages, predators, successors or symbionts (Sugiura & Yamazaki, 2009).

Galls induced by *Dryocosmus kuriphilus* Yasumatsu, 1951 on *Castanea sativa* Miller, 1768 remain on the plant for months, sometimes years (Torrente-Pérez & Fernández-López, 2015) after the emergence of the gall-inducer, parasitoids and inquilines, and provide other insects with shelter and vital space. Successors are secondary users of galls (Mani, 1964) and include spiders, pseudo-scorpions, millipedes, beetles, ants, etc. (Cussigh, 1992; Sugiura & Yamazaki, 2009), which use the gall as shelter or for laying eggs, among which there are also grasshoppers (Fischer, 1853; Fitsch, 1880; Chopard, 1938; Harz, 1957, 1984; Kleukers et al., 1997; Fontana et al., 2002; Blommers, 2008; Massa et al., 2012). As there are few publications on this sort of association involving grasshoppers this paper presents a description of the life cycles of two species of Orthoptera that were recorded emerging from old galls of *D. kuriphilus*.

MATERIALS AND METHODS

Table 1 lists localities and the dates on which *D. kuriphilus* galls were collected from three sites in Sicily. Only the old spongy-woody galls induced by Cynipidae were collected (Fig. 1E) over a period of two years. Overall, ca. 1000 galls were collected. These galls were kept at room temperature in a laboratory at the University of Palermo and the parasitoids and other insects that emerged were collected. Most of the insects were preserved and mounted, but the Orthoptera were transferred to small plastic containers covered by tulle (Fig. 1A and C). A small plug of wet cotton wool was glued to the inside top of the container to provide the insects with water; water was added when necessary by means of a syringe (Fig. 1B and D). Food provided was young chestnut *Castanea sativa* leaves, leaves of *Sonchus oleraceus* L., lettuce, young leaves of summer squash, apple peelings, and crumbled corn flakes and fish food.

As one of the successor species was thought to be insectivorous it was provided with prey, by placing them inside the containers; prey consisted of larvae and adults of moths, Hymenopteran parasitoids and Cynipidae. Every 4–5 days the containers were cleaned and all remnants of food removed to guarantee hygiene and prevent buildup of mould.

Table 1. List of localities and dates on which the galls of *Dryocosmus kuriphilus* were collected.

Location (Province)	GPS coordinates	Date of collection
Camaro (Messina)	38°11’57.41”N, 15°29’40.60”E	21.iv.2015
Favarella (Messina)	38°11’54.51”N, 15°28’22.31”E	21.iv.2015
Musolino (Messina)	38°11’32.50”N, 15°29’4.02”E	21.iv.2015

Final formatted article © Institute of Entomology, Biology Centre, Czech Academy of Sciences, České Budějovice. An Open Access article distributed under the Creative Commons (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Fig. 1. Details of the cages in which the galls of Dryocosmus kuriphilus containing eggs of the successors Leptophyes sicula and Cyrtaspis scutata were kept (A, C). Rearing containers (B, D) showing top cover of container and the plug of cotton wool injected with water using a syringe. (E) Old spongy-woody galls of D. kuriphilus. (F) Eggs of L. sicula laid in crevices in the walls of old galls. (G–H) Eggs of L. sicula laid on the cotton wool attached to the cover of the container. (I) Details of the eggs extracted from the cotton wool. (J–K) Comparison of the eggs of L. sicula laid in the container (J) and those obtained from galls (K). (L) Side of an egg laid inside a gall. (M) Eggs of C. scutata individually laid inside the larval chamber of D. kuriphilus. (N, P) Silken pupal remains indicating an emerging C. scutata. (N, Q) Sections of galls showing the egg of C. scutata. (O) Larval chamber of C. scutata. (R–S) Egg of C. scutata extracted from a gall magnified to show its reticulate surface. (S) Side view of same egg.
Fig. 2. Nymphal instars of Leptophyes sicula. A–B: 10th May 2015 (first-instar nymph); C–D: 6th June 2015; E–G: 20th June 2015 (adult female and details of ovipositor); H–I: 6th June 2015 (adult male and details of cerci).
All the specimens were examined under a Wild-Heerbrugg M8 stereomicroscope. Some specimens (both galls and insects) were photographed using a Canon 7D digital camera provided with a macro lens Canon MP-E 65 mm and photographs were integrated using the freeware CombineZP (Hadley, 2011). In addition, we measured the length and breadth of the ovipositor of Orthoptera that emerged from galls, using specimens preserved in museum collections. Measurements were taken using the soft-
ware Optika Vision Pro. Samples are preserved in the collections of the Department of Agriculture and Forest Sciences, University of Palermo.

RESULTS AND DISCUSSION

The insects that emerged from the galls were mainly Coleoptera Anobiidae of the genus Dryophilus Chevrolet, 1832; in addition, ca. 30 neanids of Orthoptera Ensifera belonging to two species emerged between the 27th April and 2nd May 2015.

One of them was Leptophyes sicala Kleukers, Odé et Fontana, 2010 (Tettigonidae: Phaneropterinae). The adult laid groups of eggs in crevices inside the gall (Fig. 1F). The neanid emerged from an opening in the side of an egg (Fig. 1F). The neanid emerged from an opening in the side of an egg (Fig. 1F). The neanid emerged from an opening in the side of an egg (Fig. 1F). The neanid emerged from an opening in the side of an egg (Fig. 1F).

The other species that emerged from eggs laid inside galls of Dryocosmus kuriphilus was Cyrtaspius scutata (Charpentier, 1825) (Tettigonidae: Mecronematinae). It laid single eggs that occupied the entire empty larval chamber of the Cynipid (Fig. 1Q). The eggs were elliptical, light brown with a very flat (0.2 mm) (Fig. 1I and J), those found inside the galls of Dryocosmus kuriphilus were clearer and not so flat (0.7 mm) (Fig. 1K and L), probably due to the growth of the embryo. Eggs inside galls cannot be seen from outside, so it was necessary to open the galls.

Fig. 2 shows some nymphal instars of this insect, whose diagnostic characteristics are small black spots all over the body; in this instar these spots are few and there are some markings in one or two lines on each tergite (Fig. 2A and B), later the markings are smaller and closer. Males and females of L. sicula reared in the same containers did not eat or attack one another. This is a phytophagous species, endemic to Sicily and discovered only recently (Kleukers et al., 2010), but previously considered as L. punctatissima (Bosc, 1791), a widespread European species associated with broadleaved trees and small bushes. It has a spring-summer phenology (Massa et al., 2012).

ACKNOWLEDGEMENTS

Material was collected during monitoring of the parasitoid Torurus sinensis, released by the Servizio Fitosanitario Regionale in 2013 and 2014 in order to control Dryocosmus kuriphilus (coordinator for the University: Virgilio Capeca). We also thank J.J. Borg for revision of the text.

REFERENCES

BLOMMERS L.H.M. 2008: Pemphredon austriaca (Hymenoptera: Crabronidae) and various other insect species as inhabitants of desert galls. — Entomol. Ber. 68: 170–174.

CERASA G. 2015: Cynipidae, Curculionoidea e Cecidomyiidae galligeni in Sicilia: Stato delle conoscenze e nuovi dati. PhD Thesis, University of Palermo, 118 pp.
CHOPARD L. 1938: _La biologie des Orthoptères_. Lechevallier, Paris, 541 pp.

CUSSIGH F. 1992: Osservazioni su _Curculio vicetinus_ Cussigh, un inquilino delle galle fogliari di _Pediaspis aceris_ Gmelin modificate da _Dichatomus acerinus_ Förster (Coleoptera: Curculionidae). — _Mem. Soc. Entomol. Ital._ 70: 181–206.

EPPO 2011: First report of _Dryocosmus kuriphilus_ in Sicily (IT). — _EPPO Report. Serv._ 2: 11.

FISCHER L.H. 1853: _Orthoptera Europaea_. G. Engelmann, Lipsiae, 454 pp.

FITCH E.A. 1880: Insects bred from _Cynips kollari_ galls. — _Entomologist_ 18: 252–263.

FONTANA P., BUZZETTI F.M., CODO A. & ODÉ B. 2002: _Guida al riconoscimento e allo studio di cavallette, grilli, mantidi e insetti affini del Veneto_. Guide Natura/1. Museo Naturalistico Archeologico, Vicenza, 592 pp.

HADLEY A. 2011: _Combine ZP_. URL: http://hadleyweb.pwp.blueyonder.co.uk (last accessed 12 Sep. 2014).

HARZ K. 1957: _Die Geradflügler Mitteleuropas_. G. Fischer, Jena, 494 pp.

HARZ K. 1984: Eiblage von Laubheuschrecken (Ensifera) in Gallen. — _Articulata_ 2(4): 91.

KLEUKERS R.M.J.C., VAN NIEUKERKEN E.J., ODÉ B., WILLEMSE L. & VAN WINGERDEN W. 1997: _De sprinkhanen en krekels van Nederland (Orthoptera). Nederlandse Fauna I_. Nationaal Natuurhistorisch Museum, KNNV Uitgeverij en EIS Nederland, Leiden, 415 pp.

KLEUKERS R.M.J.C., ODÉ B. & FONTANA P. 2010: Two new cryptic _Leptophyes_ species from southern Italy (Orthoptera: Tettigoniidae). — _Zootaxa_ 2506: 26–42.

LONGO S. & SIDITI A. 2011: Spreading in Sicily of the chestnut gall wasp and its indigenous parasitoids. In: _Atti XXIII Congr. Naz. Ital. Entomol._, 13–16 June 2011, Genova, Italy. p. 132. [in Italian].

MANI M.S. 1964: _Ecology of Plant Galls_. W. Junk, The Hague, 434 pp.

MASSA B. & RIZZO M.C. 1998: Osservazioni sull’ovideposizione di _Phaneroptera nana_ Fieber 1853 (Orthoptera: Tettigoniidae). — _Phytophaga_ 8: 49–56.

MASSA B., FONTANA P., BUZZETTI F.M., KLEUKERS R.M.J.C. & ODÉ B. 2012: _Fauna d’Italia_. 48. Calderini, Milano, 563 + ccxiv + cd rom.

PRICE P.W., FERNANDES G.W. & WARING G.L. 1987: Adaptive nature of insect galls. — _Environ. Entomol._ 16: 15–24.

SUGIURA S. & YAMAZAKI K. 2009: Gall-attacking behavior in phytophagous insects, with emphasis on Coleoptera and Lepidoptera. — _Terr. Arthropod. Rev._ 2: 41–61.

TORRENTE-PÉREZ R. & FERNÁNDEZ-LÓPEZ J. 2015: _Medidas contra a avespa chinesa do castiñeiro_ (_Dryocosmus kuriphilus_). Xunta de Galicia, Consellería do Medio Rural o do Mar, Santiago de Compostela, 23 pp.

Received March 9, 2016; revised and accepted April 4, 2016
Published online May @, 2016