L-DUNFORD-PETTIS PROPERTY IN BANACH SPACES

A. RETBI AND B. EL WAHBI

Abstract. In this paper, we introduce and study the concept of L-Dunford-Pettis sets and L-Dunford-Pettis property in Banach spaces. Next, we give a characterization of the L-Dunford-Pettis property with respect to some well-known geometric properties of Banach spaces. Finally, some complementability of operators on Banach spaces with the L-Dunford-Pettis property are also investigated.

1. Introduction and notation

A norm bounded subset \(A \) of a Banach space \(X \) is called Dunford-Pettis (DP for short) if every weakly null sequence \((f_n)\) in \(X' \) converge uniformly to zero on \(A \), that is,
\[
\lim_{n \to \infty} \sup_{x \in A} |f_n(x)| = 0.
\]

An operator \(T \) between two Banach spaces \(X \) and \(Y \) is completely continuous if \(T \) maps weakly null sequences into norm null ones.

Recall from [11], that an operator \(T : X \to Y \) between two Banach spaces is Dunford-Pettis completely continuous (abb. DPcc) if it carries a weakly null sequence, which is a DP set in \(X \) to norm null ones in \(Y \). It is clear that every completely continuous operator is DPcc. Also every weakly compact operator is DPcc (see Corollary 1.1 of [11]).

A Banach space \(X \) has:

- a relatively compact Dunford-Pettis property (DPcP for short) if every Dunford-Pettis set in \(X \) is relatively compact [5]. For example, every Schur spaces have the DPcP.
- a Grothendieck property (or a Banach space \(X \) is a Grothendieck space) if weak and weak convergence of sequences in \(X' \) coincide. For example, each reflexive space is a Grothendieck space.
- a Dunford-Pettis property (DP property for short) if every weakly compact operator \(T \) from \(X \) into another Banach space \(Y \) is completely continuous, equivalently, if every relatively weakly compact subset of \(X \) is DP.
- a reciprocal Dunford-Pettis property (RDP property for short) if every completely continuous operator on \(X \) is weakly compact.

A subspace \(X_1 \) of a Banach space \(X \) is complemented if there exists a projection \(P \) from \(X \) to \(X_1 \) (see page 9 of [2]).

Recall from [11], that a Banach lattice is a Banach space \((E, \| \cdot \|)\) such that \(E \) is a vector lattice and its norm satisfies the following property: for each \(x, y \in E \) such that \(|x| \leq |y| \), we have \(\|x\| \leq \|y\| \).

We denote by \(c_0, \ell^1, \) and \(\ell^\infty \) the Banach spaces of all sequences converging to zero, all absolutely summable sequences, and all bounded sequences, respectively.

Let us recall that a norm bounded subset \(A \) of a Banach space \(X' \) is called L-set if every weakly null sequence \((x_n)\) in \(X \) converge uniformly to zero on \(A \), that is,
\[\lim_{n \to \infty} \sup_{f \in A} |f(x_n)| = 0. \] Note also that a Banach space \(X \) has the RDP property if and only if every \(L \)-set in \(X' \) is relatively weakly compact.

In his paper, G. Emmanuelle in [4] used the concept of \(L \)-set to characterize Banach spaces not containing \(\ell^1 \), and gave several consequences concerning Dunford-Pettis sets. Later, the idea of \(L \)-set is also used to establish a dual characterization of the Dunford-Pettis property [6].

The aim of this paper is to introduce and study the notion of \(L \)-Dunford-Pettis set in a Banach space, which is related to the Dunford-Pettis set (Definition 2.1), and note that every \(L \)-set in a topological dual of a Banach space is \(L \)-Dunford-Pettis set (Proposition 2.3). After that, we introduce the \(L \)-Dunford-Pettis property in Banach space which is shared by those Banach spaces whose \(L \)-Dunford-Pettis subsets of his topological dual are relatively weakly compact (Definition 2.6). Next, we obtain some important consequences. More precisely, a characterizations of \(L \)-Dunford-Pettis property in Banach spaces in terms of DPcc and weakly compact operators (Theorem 2.7), the relation between \(L \)-Dunford-Pettis property with DP and Grothendieck properties (Theorem 2.8), a new characterizations of Banach space with DPrcP (resp, reflexive Banach space) (Theorem 2.13 and Corollary 2.14).

The notations and terminologies are standard. We use the symbols \(X, Y \) for arbitrary Banach spaces. We denoted the closed unit ball of \(X \) by \(B_X \), the topological dual of \(X \) by \(X' \) and \(T' : Y' \to X' \) refers to the adjoint of a bounded linear operator \(T : X \to Y \).

2. Main results

Definition 2.1. Let \(X \) be a Banach space. A norm bounded subset \(A \) of the dual space \(X' \) is called an \(L \)-Dunford-Pettis set, if every weakly null sequence \((x_n) \), which is a DP set in \(X \) converges uniformly to zero on \(A \), that is, \(\lim_{n \to \infty} \sup_{f \in A} |f(x_n)| = 0 \).

For a proof of the next Proposition, we need the following Lemma which is just Lemma 1.3 of [11].

Lemma 2.2. A sequence \((x_n) \) in \(X \) is DP if and only if \(f_n(x_n) \to 0 \) as \(n \to \infty \) for every weakly null sequence \((f_n) \) in \(X' \).

The following Proposition gives some additional properties of \(L \)-Dunford-Pettis sets in a topological dual Banach space.

Proposition 2.3. Let \(X \) be a Banach space. Then

1. every subset of an \(L \)-Dunford-Pettis set in \(X' \) is \(L \)-Dunford-Pettis,
2. every \(L \)-set in \(X' \) is \(L \)-Dunford-Pettis,
3. relatively weakly compact subset of \(X' \) is \(L \)-Dunford-Pettis,
4. absolutely closed convex hull of an \(L \)-Dunford-Pettis set in \(X' \) is \(L \)-Dunford-Pettis.

Proof. (1) and (2) are obvious.

(3) Suppose \(A \subset X' \) is relatively weakly compact but it is not an \(L \)-Dunford-Pettis set. Then, there exists a weakly null sequence \((x_n) \), which is a DP set in \(X \), a sequence \((f_n) \) in \(A \) and an \(\epsilon > 0 \) such that \(|f_n(x_n)| > \epsilon \) for all integer \(n \). As \(A \) is relatively weakly compact, there exists a subsequence \((g_n) \) of \((f_n) \) that converges weakly to an element \(g \) in \(X' \). But from

\[|g_n(x_n)| \leq |(g_n - g)(x_n)| + |g(x_n)| \]

\[\Rightarrow |g_n(x_n)| \to 0 \] as \(n \to \infty \), contradicting the definition of an \(L \)-Dunford-Pettis set.
and Lemma 2.3 we obtain that $|g_n(x_n)| \to 0$ as $n \to \infty$. This is a contradiction.

(4) Let A be a L-Dunford-Pettis set in X', and (x_n) be a weakly null sequence, which is a DP set in X. Since

$$\sup_{f \in \alpha(A)} |f(x_n)| = \sup_{f \in A} |f(x_n)|$$

for each n, where $\alpha(A) = \{\sum_{i=1}^{\infty} \lambda_i x_i : x_i \in A, \forall i, \sum_{i=1}^{\infty} |\lambda_i| \leq 1\}$ is the absolutely closed convex hull of A (see [1, pp. 148, 151]), then it is clear that $\alpha(A)$ is L-Dunford-Pettis set in X'.

We need the following Lemma which is just Lemma 1.2 of [11].

Lemma 2.4. A Banach space X has the DPrcP if and only if any weakly null sequence, which is a DP set in X is norm null.

From Lemma 2.4, we obtain the following characterization of DPrcP in a Banach space in terms of an L-Dunford-Pettis set of his topological dual.

Theorem 2.5. A Banach space X has the DPrcP if and only if every bounded subset of X' is an L-Dunford-Pettis set.

Proof. (\Leftarrow) Let (x_n) be a weakly null sequence, which is a DP set in X. As

$$\|x_n\| = \sup_{f \in B_{X'}} |f(x_n)|$$

for each n, and by our hypothesis, we see that $\|x_n\| \to 0$ as $n \to \infty$. By Lemma 2.3 we deduce that X has the DPrcP.

(\Rightarrow) Assume by way of contradiction that there exist a bounded subset A, which is not an L-Dunford-Pettis set of X'. Then, there exists a weakly null sequence (x_n), which is a Dunford-Pettis set of X such that $\sup_{f \in A} |f(x_n)| > \epsilon > 0$ for some $\epsilon > 0$ and each n. Hence, for every n there exists some f_n in A such that $|f_n(x_n)| > \epsilon$.

On the other hand, since $(f_n) \subset A$, there exist some $M > 0$ such that $\|f_n\|_{X'} \leq M$ for all n. Thus,

$$|f_n(x_n)| \leq M \|x_n\|$$

for each n, then by our hypothesis and Lemma 2.4, we have $|f_n(x_n)| \to 0$ as $n \to \infty$, which is impossible. This completes the proof.

Remark 1. Note by Proposition 2.3 assertion (3) that every relatively weakly compact subset of a topological dual Banach space is L-Dunford-Pettis. The converse is not true in general. In fact, the closed unit ball B_{ℓ_∞} of ℓ_∞ is L-Dunford-Pettis set (see Theorem 2.5), but it is not relatively weakly compact.

We make the following definition.

Definition 2.6. A Banach space X has the L-Dunford-Pettis property, if every L-Dunford-Pettis set in X' is relatively weakly compact.

As is known a DPcc operator is not weakly compact in general. For example, the identity operator $Id_{\ell^1} : \ell^1 \to \ell^1$ is DPcc, but it is not weakly compact.

In the following Theorem, we give a characterizations of L-Dunford-Pettis property of Banach space in terms of DPcc and weakly compact operators.

Theorem 2.7. Let X be a Banach space, then the following assertions are equivalent:

1. X has the L-Dunford-Pettis property,
2. for each Banach space Y, every DPcc operator from X into Y is weakly compact,
3. every DPcc operator from X into ℓ_∞ is weakly compact.
Proof. (1) ⇒ (2) Suppose that X has the L-Dunford-Pettis property and $T : X \to Y$ is DPcc operator. Thus $T'(B_Y')$ is an L-Dunford-Pettis set in X'. So by hypothesis, it is relatively weakly compact and T is a weakly compact operator.

(2) ⇒ (3) Obvious.

(3) ⇒ (1) If X does not have the L-Dunford-Pettis property, there exists an L-Dunford-Pettis subset A of X' that is not relatively weakly compact. So there is a sequence $(f_n) \subseteq A$ with no weakly convergent subsequence. Now, we show that the operator $T : X \to \ell^\infty$ defined by $T(x) = (f_n(x))$ for all $x \in X$ is DPcc but it is not weakly compact. As $(f_n) \subseteq A$ is L-Dunford-Pettis set, for every weakly null sequence (x_m), which is a DP set in X we have

$$\|T(x_m)\| = \sup_n |f_n(x_m)| \to 0, \text{ as } m \to \infty,$$

so T is a Dunford-Pettis completely continuous operator. We have $T'(\{\lambda_n\}_{n=1}^\infty) = \sum_{n=1}^\infty \lambda_n f_n$ for every $(\lambda_n)_{n=1}^\infty \in \ell^1 \subset (\ell^\infty)'$. If e'_n is the usual basis element in ℓ^1, then $T'(e'_n) = f_n$, for all $n \in N$. Thus, T' is not a weakly compact operator and neither is T. This finishes the proof.

Theorem 2.8. Let E be a Banach lattice.
If E has both properties of DP and Grothendieck, then it has the L-Dunford-Pettis property.

Proof. Suppose that $T : E \to Y$ is DPcc operator. As E has the DP property, it follows from Theorem 1.5 [11] that T is completely continuous.

On the other hand, ℓ^1 is not a Grothendieck space and Grothendieck property is carried by complemented subspaces. Hence the Grothendieck space E does not have any complemented copy of ℓ^1. By [10], E has the RDP property and so the completely continuous operator T is weakly compact. From Theorem 2.7 we deduce that E has the L-Dunford-Pettis property.

Remark 2. Since ℓ^∞ has the Grothendieck and DP properties, it has the L-Dunford-Pettis property.

Let us recall that K is an infinite compact Hausdorff space if it is a compact Hausdorff space, which contains infinitely many points.

For an infinite compact Hausdorff space K, we have the following result for the Banach space $C(K)$ of all continuous functions on K with supremum norm.

Corollary 2.9. If $C(K)$ contains no complemented copy of c_0, then it has L-Dunford-Pettis property.

Proof. Since $C(K)$ contains no complemented copy of c_0, it is a Grothendieck space [3]. On the other hand, $C(K)$ be a Banach lattice with the DP property, and by Theorem 2.8 we deduce that $C(K)$ has L-Dunford-Pettis property.

Corollary 2.10. A DPrc space has the L-Dunford-Pettis property if and only if it is reflexive.

Proof. (\Rightarrow) If a Banach space X has the DPrcP, then by Theorem 1.3 of [11], the identity operator $1d_X$ on X is DPcc. As X has the L-Dunford-Pettis property, it follows from Theorem 2.7 that $1d_X$ is weakly compact, and hence X is reflexive.

(\Leftarrow) Obvious.

Remark 3. Note that the Banach space ℓ^1 is not reflexive and has the DPrcP, then from Corollary 2.10 we conclude that ℓ^1 does not have the L-Dunford-Pettis property.

Theorem 2.11. If a Banach space X has the L-Dunford-Pettis property, then every complemented subspace of X has the L-Dunford-Pettis property.
Proof. Consider a complemented subspace X_1 of X and a projection map $P : X \to X_1$. Suppose $T : X_1 \to \ell^\infty$ is DPcc operator, then $TP : X \to \ell^\infty$ is also DPcc. Since X has L-Dunford-Pettis, by Theorem 2.7, TP is weakly compact. Hence T is weakly compact, also from Theorem 2.7 we conclude that X_1 has L-Dunford-Pettis, and this completes the proof.

Let X be a Banach space. We denote by $L(X, \ell^\infty)$ the class of all bounded linear operators from X into ℓ^∞, by $W(X, \ell^\infty)$ the class of all weakly compact operators from X into ℓ^∞, and by $DPcc(X, \ell^\infty)$ the class of all Dunford-Pettis completely continuous operators from X into ℓ^∞.

Recall that Bahreini in [2] investigated the complementability of $W(X, \ell^\infty)$ in $L(X, \ell^\infty)$, and she proved that if X is not a reflexive Banach space, then $W(X, \ell^\infty)$ is not complemented in $L(X, \ell^\infty)$. In the next theorem, we establish the complementability of $W(X, \ell^\infty)$ in $DPcc(X, \ell^\infty)$.

We need the following lemma of [7].

Lemma 2.12. Let X be a separable Banach space, and $\phi : \ell^\infty \to L(X, \ell^\infty)$ is a bounded linear operator with $\phi(e_n) = 0$ for all n, where e_n is the usual basis element in c_0. Then there is an infinite subset M of N such that for each $\alpha \in \ell^\infty(M)$, $\phi(\alpha) = 0$, where $\ell^\infty(M)$ is the set of all $\alpha = (\alpha_n) \in \ell^\infty$ with $\alpha_n = 0$ for each $n \notin M$.

Theorem 2.13. If X does not have the L-Dunford-Pettis property, then $W(X, \ell^\infty)$ is not complemented in $DPcc(X, \ell^\infty)$.

Proof. Consider a subset A of X' that is L-Dunford-Pettis but it is not relatively weakly compact. So there is a sequence (f_n) in A such that has no weakly convergent subsequence. Hence $S : X \to \ell^\infty$ defined by $S(x) = (f_n(x))$ is an DPcc operator but it is not weakly compact. Choose a bounded sequence (x_n) in B_X such that $(S(x_n))$ has no weakly convergent subsequence. Let $X_1 = \langle x_n \rangle$, the closed linear span of the sequence (x_n) in X. It follows that X_1 is a separable subspace of X such that S/X_1 is not a weakly compact operator. If $g_n = f_n/X_1$, we have $(g_n) \subseteq X_1'$ is bounded and has no weakly convergent subsequence.

Now define the operator $T : \ell^\infty \to DPcc(X, \ell^\infty)$ by $T(\alpha)(x) = (\alpha_n f_n(x))$, where $x \in X$ and $\alpha = (\alpha_n) \in \ell^\infty$. Then

\[||T(\alpha)(x)|| = \sup_n |\alpha_n f_n(x)| \leq ||\alpha|| \cdot ||f_n|| \cdot ||x|| < \infty. \]

We claim that $T(\alpha) \in DPcc(X, \ell^\infty)$ for each $\alpha = (\alpha_n) \in \ell^\infty$.

Let $\alpha = (\alpha_n) \in \ell^\infty$ and let (x_m) be a weakly null sequence, which is a DP set in X. As (f_n) is L-Dunford-Pettis set $\sup_n |f_n(x_m)| \to 0$ as $m \to \infty$. So we have

\[||T(\alpha)(x_m)|| = \sup_n |\alpha_n f_n(x_m)| \leq ||\alpha|| \cdot \sup_n |f_n(x_m)| \to 0, \]

as $m \to \infty$. Then this finishes the proof that T is a well-defined operator from ℓ^∞ into $DPcc(X, \ell^\infty)$.

Let $R : DPcc(X, \ell^\infty) \to DPcc(X_1, \ell^\infty)$ be the restriction map and define

\[\phi : \ell^\infty \to DPcc(X_1, \ell^\infty) \quad \text{by} \quad \phi = RT. \]

Now suppose that $W(X, \ell^\infty)$ is complemented in $DPcc(X, \ell^\infty)$ and $P : DPcc(X, \ell^\infty) \to W(X, \ell^\infty)$ is a projection. Define $\psi : \ell^\infty \to W(X_1, \ell^\infty)$ by $\psi = RPT$. Note that as $T(e_n)$ is a one rank operator, we have $T(e_n) \in W(X, \ell^\infty)$. Hence

\[\psi(e_n) = RPT(e_n) = RT(e_n) = \phi(e_n) \]
for all $n \in N$. From Lemma 2.12, there is an infinite set $M \subseteq N$ such that $\psi(\alpha) = \phi(\alpha)$ for all $\alpha \in \ell^\infty(M)$. Thus $\phi(\chi_M)$ is a weakly compact operator. On the other hand, if e'_n is the usual basis element of ℓ^1, for each $x \in X_1$ and each $n \in M$, we have

$$(\phi(\chi_M))'(e'_n)(x) = f_n(x).$$

Therefore $(\phi(\chi_M))'(e'_n) = f_n/X_1 = g_n$ for all $n \in M$. Thus $(\phi(\chi_M))'$ is not a weakly compact operator and neither is $\phi(\chi_M)$. This contradiction ends the proof.

As a consequence of Theorem 2.7 and Theorem 2.13, we obtain the following result.

Corollary 2.14. Let X be a Banach space. Then the following assertions are equivalent:

1. X has the L-Dunford-Pettis property,
2. $W(X, \ell^\infty) = DPcc(X, \ell^\infty)$,
3. $W(X, \ell^\infty)$ is complemented in $DPcc(X, \ell^\infty)$.

References

1. C. D. Aliprantis and O. Burkinshaw, *Positive operators*, Springer, Dordrecht, 2006.
2. M. Bahreini Esfahani, *Complemented subspaces of bounded linear operators*, Ph.D. thesis, University of North Texas, 2003.
3. P. Cembranos, $C(K, E)$ contains a complemented copy of c_0, Proc. Amer. Math. Soc. 91 (1984), no. 4, 556–558.
4. G. Emmanuele, A dual characterization of Banach spaces not containing l^1, Bull. Polish Acad. Sci. Math. 34 (1986), no. 3-4, 155–160.
5. G. Emmanuele, Banach spaces in which Dunford-Pettis sets are relatively compact, Arch. Math. 58 (1992), no. 5, 477–485.
6. I. Ghenciu and P. Lewis, The Dunford-Pettis property, the Gelfand-Phillips property, and L-sets, Colloq. Math. 106 (2006), no. 2, 311–324.
7. N. J. Kalton, Spaces of compact operators, Math. Ann. 208 (1974), 267–278.
8. R. E. Megginson, *An introduction to Banach space theory*, Graduate Texts in Mathematics, vol. 183, Springer-Verlag, New York, 1998.
9. P. Meyer-Nieberg, *Banach lattices*, Universitext, Springer-Verlag, Berlin, 1991.
10. C. P. Niculescu, Weak compactness in Banach lattices, J. Operator Theory 6 (1981), no. 2, 217–231.
11. Y. Wen and J. Chen, Characterizations of Banach spaces with relatively compact Dunford–Pettis sets, Adv. in Math. (China) 45 (2016), no. 1, 122–132.

Université Ibn Tofail, Faculté des Sciences, Département de Mathématiques, B.P. 133, Kénitra, Morocco

E-mail address: abderrahmanretnbi@hotmail.com

Received 01/03/2016; Revised 15/04/2016