Attenuating type 2 diabetes with postpartum interventions following gestational diabetes mellitus

Sudharshani Wasalathanthri

Sudharshani Wasalathanthri, Department of Physiology, Faculty of Medicine, University of Colombo, Colombo 00800, Sri Lanka

Author contributions: Wasalathanthri S solely contributed to this paper.

Conflict-of-interest: None.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Correspondence to: Sudharshani Wasalathanthri, MBBS, PhD, Senior Lecturer, Department of Physiology, Faculty of Medicine, University of Colombo, Kynsey Road, Colombo 00800, Sri Lanka. sudharshaniw@gmail.com

Received: August 28, 2014
Peer-review started: August 28, 2014
First decision: December 17, 2014
Revised: February 4, 2015
Accepted: February 10, 2015
Article in press: February 12, 2015
Published online: May 15, 2015

Abstract

Women with a history of gestational diabetes should be screened during and after the postpartum period because of a high risk for developing type 2 diabetes mellitus. Although differences exist between guidelines practiced throughout various parts of the world, all recommend the use of cutoffs for fasting and/or post-load plasma glucose to diagnose diabetes or prediabetes. The use of these glycemic parameters could be optimized when a trend is observed, rather than considering them as isolated values at various time points. As the presence of insulin resistance and beta-cell dysfunction start before glycemic changes are evident, the estimation of insulin sensitivity and beta-cell function by Homeostatic Model Assessment is suggested for women who have additional risk factors for diabetes, such as obesity. Disease-modifying lifestyle intervention should be the first-line strategy to prevent or delay the onset of diabetes in women with a history of gestational diabetes mellitus. Intensive lifestyle interventions are designed to decrease caloric intake and increase physical activity in order to reduce body weight and fat, which will in turn reduce insulin resistance. This article also reviews unique problems of postpartum women, which should be considered when designing and implementing an intervention. Innovative "out of the box" thinking is appreciated, as continued adherence to a program is a challenge to both the women and the health care personnel who deal with them.

Key words: Gestational diabetes mellitus; Glycemic parameters; Lifestyle intervention; Screening; Type 2 diabetes mellitus

Core tip: This article reviews and highlights important areas concerning diabetic risk during and after the postpartum period in women with gestational diabetes mellitus. Optimizing the use of glycemic parameters and assessing beta-cell function, particularly in high-risk women, will facilitate early recognition of those on the path to pre-diabetes and diabetes. Lifestyle interventions designed to attenuate the progression should be carefully planned, taking into consideration the unique set of problems in these women. "Out of the box" thinking is necessary to design lifestyle intervention protocols that will have high acceptance by these women.

Wasalathanthri S. Attenuating type 2 diabetes with postpartum interventions following gestational diabetes mellitus. World J Diabetes 2015; 6(4): 648-653. Available from: URL: http://www.
DIABETIC RISK FOR WOMEN WITH GESTATIONAL DIABETES MELLITUS

Gestational diabetes mellitus (GDM), which occurs and is diagnosed during pregnancy[1], is a condition that increases the risk of developing type 2 diabetes mellitus (T2DM)[2,3]. In a large meta-analysis of 20 cohort studies in 2009, Bellamy et al[4] showed that women with GDM have a more than seven-fold increased risk of developing T2DM when compared to women with normoglycemic pregnancies. However, the incidence of diabetes in these women varies, with relative risks ranging from 6[5] to 12[6], possibly due to differences in screening and diagnostic criteria, associated risk factors[7], and inclusion of subjects with overt diabetes uncovered by pregnancy[8]. Feig et al[9] further demonstrated an increase in the probability of developing diabetes from 3.7% at 9 mo to 18.9% at 9 years after delivery, suggesting the need for long-term follow-up and monitoring of women with a history of GDM.

The development of peripheral insulin resistance during pregnancy is facilitated by the increased maternal adiposity and release of insulin-desensitizing hormones from the placenta[10]. The secretion of insulin is increased to compensate, and women with a deficit in this secretion can develop GDM. The effects of pregnancy on glucose homeostasis are alleviated following delivery of the offspring and removal of the placenta, such that the glycemic profile should return to normal within 6-12 wk postpartum.

POSTPARTUM SCREENING OF PATIENTS WITH A HISTORY OF GDM

Despite the lack of a consensus concerning precise recommendations for postpartum screening of women with a history of GDM[11], the importance of optimal screening is universally accepted. The American Diabetes Association recommends using the oral glucose tolerance test (OGTT) to screen these women for persistent diabetes at 6-12 wk postpartum, and lifelong screening for development of diabetes or pre-diabetes at least every three years[11]. However, the Mexico City Diabetes Study demonstrated that the progression from normoglycemia to diabetes ranges over three years with a probable phase of impaired glucose tolerance[12], which suggests that three years between screens is insufficient for high-risk individuals. In the United Kingdom, the National Institute for Health and Clinical Excellence guidelines recommend glucose estimation prior to discharge, at 6 wk postpartum, and annually thereafter using fasting plasma glucose (FPG)[12]. In 2010, however, Kakad et al[13] used retrospective data of 470 women to show that diabetes was missed in 26% of women when only the FPG was used for screening. Furthermore, unlike OGTT, FPG does not allow for detection of impaired glucose tolerance. Hemoglobin A1c, an additional parameter introduced to the diagnostic criteria of pre-diabetes and diabetes in 2009[14], is also considered unsuitable for use in postpartum women due to its low sensitivity on its own[15] or in combination with FPG[14]. Thus, OGTT with 75 g fasting glucose challenge and two-hour glucose measurements is the preferred screening method for women with previous GDM[17]. The interpretations should be based on diagnostic cutoffs for pre-diabetes and diabetes for non-pregnant adults[1].

Tabák et al[18] used serial measurements of yearly glucose levels over 13 years to evaluate glycemic parameters in normoglycemics and diabetics. They found that during the transformation from normoglycemia to diabetes, FPG and post-load glucose gradually increased, followed by an abrupt increase approximately two years before a diagnosis of DM. This indicates that continual glycemic measurements during screening can be even more informative and predictive, despite being within the normal range. Therefore, it is suggested that rather than looking solely at isolated values at any given time, changes in glycemic measures should be observed.

With the global increase in the prevalence of DM[19], the current recommendations for screening women with GDM for the development of T2DM should be revised. The present guidelines detect problems only when they reach the end point (diabetes), or a landmark very close to the end point (pre-diabetes). Can we use knowledge of the underlying pathophysiology to identify these cases earlier, before they reach the end point? The transition from normoglycemia to diabetes is a continuous process[11,18,20]. Although the glycemic profile assessed by FPG or post-load glucose should return to normal after delivery in a woman with a diagnosis of GDM, these parameters are not indicators of the ongoing pathophysiologic process. An analysis of the British Whitehall II study showed a steep decline in insulin sensitivity, along with a marked increase followed by a steep decrease in insulin secretion, approximately 3-5 years before the onset of diabetes[18]. These parameters can be estimated by the Homeostatic Model Assessment[21]. However, this assessment by itself is inappropriate for evaluation of beta-cell function, and serial measurements are required in order to observe the longitudinal changes in insulin secretion[22]. Repetitive monitoring of insulin sensitivity and secretion may be confined to the initial postpartum years due to increased cost, as Kim et al[23] showed that T2DM appears rapidly within the first five years and plateaus after ten years. Furthermore, these measurements can be limited to women with a higher predictive risk of developing diabetes, such
as those who are overweight\cite{23}, have a higher pre-
pregnancy body mass index\cite{24,25}, were diagnosed with
GDM before the 24th week of gestation\cite{25}, and who
needed insulin for glycemic control during pregnancy\cite{23}.
Finally, the recent call for developing standardized
screening protocols for Indian women with GDM\cite{26} is
worth considering for all Asian women, as they show a
greater risk than Caucasian women\cite{23}.

Nonetheless, the risk of developing T2DM can
persist for more than 25 years in women with a history of
GDM\cite{8,18,27} Therefore, continued life-long follow-up
of these women is justified, particularly with recognition
of the fact that ageing is an independent risk factor
for T2DM. In addition, women who are not diagnosed
with GDM but have mild glucose abnormalities\cite{28} or
a single abnormal value in the OGTT\cite{29} should be
screened because of the increased risk for developing
T2DM. However, as revised recommendations stipulate
that only one abnormal value, not two, is sufficient
to for a diagnosis of GDM\cite{1}, more women may be
recommended for T2DM screening.

LIFESTYLE INTERVENTIONS

Lifestyle interventions are the most appropriate initial
approach to mitigate the development of diabetes in
high risk individuals, such as those with a history of
GDM\cite{30} and can reduce the incidence of DM by
at least 50%\cite{27,31}. Such interventions may slow down
or arrest the pathophysiologic processes, such as the
beta-cell exhaustion that occurs in response to chronic
insulin resistance\cite{32,33}.

Lifestyle intervention programs designed for
high-risk individuals generally propose a low-calorie,
low-fat diet with moderate intensity physical activity
(e.g., brisk walking) for 150-180 min per week to
achieve a weight reduction of 5%-7% of the initial
body weight\cite{31,34-36}. The recommended calorie limit
varies between 1000-1200 kcal/d\cite{35} and 1200-1800
kcal/d\cite{34}. Although it is advised that no more than
30% of energy should come from fats\cite{36}, a recent
study found adequate glycemic control with a very
low-carbohydrate, high-fat, non-calorie-restricted
diet\cite{37}. Other simple measures include increasing
the amount of fiber in the diet\cite{36}, decreasing the amount
of energy-dense foods, such as fast foods, increasing
the amount of fruit and vegetable intake\cite{38}, and
controlling portion size\cite{31}. Although it is important
to combine physical activity with dietary support to
enhance the efficacy of an intervention program\cite{39},
results of a small study showed that women perceived
diet as more important for the prevention of T2DM
than physical activity\cite{40}, emphasizing the importance
of effective counseling to reinforce the value of both
aspects for weight reduction and maintenance\cite{35}.

Although almost all published protocols are based
on similar principles of intervention, a thorough in-
vestigation of these illustrates minor but important
differences between them, especially when it comes
to the stage of implementation. To augment dietary
and exercise interventions, Gabbe et al\cite{35} suggested
incorporation of behavioral therapy, which includes
stress management, stimulus control, problem solving,
and goal setting. The Mothers After Gestational Dia-
betes in Australia Diabetes Prevention Program offers
an intervention program handbook, six face-to-face
sessions, and two follow-up telephone calls within the
12-mo follow-up period to ensure that participants
achieve the program goals\cite{36}. Substantial decreases in
glycemic and anthropometric parameters after one year
of intervention\cite{41} is strong evidence for implementation
of an effective lifestyle intervention program by
community health workers\cite{34}. A randomized control
study for high-risk Hispanic women initiated inter-
ventions during late pregnancy, and continued for
12 mo postpartum\cite{38}. Further support for prenatal
implementation was provided by greater weight loss
and improved health behaviors in the postpartum
period in mothers who underwent a low glycemic
index dietary intervention during pregnancy\cite{42}. It is
the responsibility of the researchers and health care
personnel planning the interventions to utilize such
reported evidence when designing implementation
strategies for a particular population.

Although almost all programs aimed at preventing
T2DM promote increased physical activity, healthy
eating, and weight loss, “out of the box” thinking is
necessary in order to increase participant acceptance
of, and thus adherence to, a given intervention. A high
level of acceptance was reported in a novel intervention
in England that used group leisure activities for adults
at risk for DM\cite{43}, though the recruitment procedure
may have contributed to these results. Another
interesting study protocol published in 2013 used
motivational interviews to influence lifestyle changes in
individuals with impaired fasting glucose\cite{44}, a method
based on the transtheoretical model of health behavior
change\cite{45}.

Although pharmacologic interventions are also
beneficial in attenuating the onset of T2DM in women
with a history of GDM\cite{27,46}, a discussion of these is
beyond the scope of this review.

**Barriers to effective screening and lifestyle interventions
and strategies to overcome them**

Despite the importance of clear understandings of
the nature of the disease, the risk for developing DM, and
measures to prevent or delay its onset, the knowledge
itself may not be enough. A recent qualitative study
exploring factors that influence postnatal health
behaviors in women with GDM showed that, although
nearly all participants were aware of the increased risk
for diabetes, this knowledge did not motivate them for
action\cite{47}. However, a low level of awareness remains,
even among college-educated affluent women\cite{48},
which justifies the need for intensive awareness
programs to counsel these women.

The health care team has an enormous respon-
sibility to educate these patients about the diabetes risk and the importance of regular screening, to motivate them to adapt to healthy lifestyles, and to support them to adhere to these changes. Although an OGTT is mandatory for women with prior GDM, a population-based cohort study in Canada found that women who chose an obstetrician for follow-up as opposed to a family physician were more likely to undergo a postpartum OGTT, which highlights the importance of educating all levels of health personnel on current recommendations. However, there are conflicting results concerning the efficiency of obstetricians for enforcing postpartum T2DM screening of GDM women. It is the responsibility of the health care personnel to maintain records of these women and routinely remind them, preferably through some form of written information, as postal reminders or laboratory slips greatly increase the screening rates. Text message-reminder systems for screening and internet-based programs for lifestyle intervention are novel approaches worth trying in this era of technological dependence.

Postpartum women are a special group with a unique set of problems. The most common barriers to lifestyle interventions reported by these women were insufficient time, lack of support for child care, and other family commitments. As the amount of available social support is associated with adherence to lifestyle interventions, educational and counseling sessions should be extended to the spouse and the immediate family of these women.

CONCLUSION

This review highlights important aspects concerning the screening of women with GDM, during the prenatal and postpartum periods, and thereafter. Women with GDM are a unique group for whom diabetes prevention strategies can be applied. In addition to being familiar with the general recommendations for screening and managing these patients, health care personnel should be able to appropriately support their patients to ensure greater acceptance of these valuable screening tests and interventional programs. The real challenge is not the planning of a lifestyle intervention, but implementing it effectively within the target population.

ACKNOWLEDGMENTS

The author would like to thank Ms Thamudi Sundaraperuma for the assistance in identifying the relevant literature.

REFERENCES

1. American Diabetes Association. Standards of medical care in diabetes—2013. Diabetes Care 2013; 36 Suppl 1: S11-S66. [PMID: 23264422 DOI: 10.2337/dc13-S011]
2. Bian X, Gao P, Xiong X, Xu H, Qian M, Liu S. Risk factors for development of diabetes mellitus in women with a history of gestational diabetes mellitus. Chin Med J (Engl) 2000; 113: 759-762
3. Kim C, Newton KM, Knopp RH. Gestational diabetes and the incidence of type 2 diabetes: a systematic review. Diabetes Care 2002; 25: 1862-1868. [PMID: 12351492 DOI: 10.2337/ diacare.25.10.1862]
4. Bellamy L, Casas JP, Hingorani AD, Williams D. Type 2 diabetes mellitus after gestational diabetes: a systematic review and meta-analysis. Lancet 2009; 373: 1773-1779. [PMID: 19465232 DOI: 10.1016/S0140-6736(09)60731-5]
5. Cheung NW, Byth K. Population health significance of gestational diabetes. Diabetes Care 2003; 26: 2005-2009. [PMID: 12832303]
6. Feig DS, Zinman B, Wang X, Hux JE. Risk of development of diabetes mellitus after diagnosis of gestational diabetes. CMAJ 2003; 169: 229-234. [PMID: 12863520 DOI: 10.1503/cmaj.080012]
7. Ben-Haroush A, Yogev Y, Hod M. Epidemiology of gestational diabetes mellitus and its association with Type 2 diabetes. Diabet Med 2004; 21: 103-113. [PMID: 14984444 DOI: 10.1046/j.1464-5491.2003.00983.x]
8. O’Sullivan JB. Diabetes mellitus after GDM. Diabetes 1991; 40 Suppl 2: 131-135. [PMID: 1748242 DOI: 10.2337/diab.40.2.S13]
9. Cianni G, Miccoli R, Volpe L, Lencioni C, Del Prato S. Intermediate metabolism in normal pregnancy and in gestational diabetes. Diabetes Metab Res Rev 2003; 19: 259-270. [PMID: 12879403 DOI: 10.1002/dmr.390]
10. Simmonds D, McEllduff P, McIntyre HD, Elrishi M. Gestational diabetes mellitus: NICE for the UK? A comparison of the American Diabetes Association and the American College of Obstetricians and Gynecologists guidelines with the U.K. National Institute for Health and Clinical Excellence guidelines. Diabetes Care 2010; 33: 34-37. [PMID: 19837790 DOI: 10.2373/dcd9-1376]
11. Ferrannini E, Mannipieri M, Williams K, Gonzales C, Haffner SM, Stern MP. Mode of onset of type 2 diabetes from normal or impaired glucose tolerance. Diabetes 2004; 53: 160-165. [PMID: 1493710]
12. Guideline Development Group. Management of diabetes from preconception to the postnatal period: summary of NICE guidance. BMJ 2008; 336: 714-717. [PMID: 18369227 DOI: 10.1136/bmj.39505.641273.AD]
13. Kakad R, Anwar A, Dyer P, Webber J, Dale J. Fasting plasma glucose is not sufficient to detect ongoing glucose intolerance after pregnancy complicated by gestational diabetes. Exp Clin Endocrinol Diabetes 2010; 118: 234-236. [PMID: 20162508 DOI: 10.1055/s-0029-1241876]
14. American Diabetes Association. Standards of medical care in diabetes—2010. Diabetes Care 2010; 33 Suppl 1: S11-S61. [PMID: 20042772 DOI: 10.2337/dc10-S011]
15. Su X, Zhang Z, Qu X, Tian Y, Zhang G. Hemoglobin A1c for diagnosis of postpartum abnormal glucose tolerance among women with gestational diabetes mellitus: diagnostic meta-analysis. PLoS One 2014; 9: e102144. [PMID: 25014072 DOI: 10.1371/journal. pone.0102144]
16. Picón MJ, Murri M, Muñoz A, Fernández-Garcia JC, Gomez-Huegal R, Tintahones FJ, Hemoglobin A1c versus oral glucose tolerance test in postpartum diabetes screening. Diabetes Care 2012; 35: 1648-1653. [PMID: 22688550 DOI: 10.2337/dc11-2111]
17. Kitzmiller JL, Dang-Kilduff L, Taslimi MM. Gestational diabetes mellitus after delivery. Short-term management and long-term risks. Diabetes Care 2007; 30 Suppl 2: S225-S235. [PMID: 17596477 DOI: 10.2337/dc07-0221]
18. Tabák AG, Jokela M, Akbaraly TN, Brunner EJ, Kivimäki M, Witte DR. Trajectories of glycemia, insulin sensitivity, and insulin secretion before diagnosis of type 2 diabetes: an analysis from the Whitehall II study. Lancet 2009; 373: 2215-2221. [PMID: 19515410 DOI: 10.1016/S0140-6736(09)6019-X]
19. King H, Aubert RE, Herman WH. Global burden of diabetes, 1995-2025: prevalence, numerical estimates, and projections. Diabetes Care 1998; 21: 1414-1431. [PMID: 9727886 DOI: 10.2337/diacare.21.9.1414]
20. Mason CC, Hanson RL, Knowler WC. Progression to type 2 diabetes mellitus in women with a history of gestational diabetes mellitus. Chin Med J (Engl) 2000; 113: 759-762
diabetes characterized by moderate then rapid glucose increases. Diabetes 2007; 56: 2054-2061 [PMID: 17473220 DOI: 10.2337/ db07-0053]

Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985; 28: 412-419 [PMID: 3899825 DOI: 10.1007/BF00280883]

Wallace TM, Levy JC, Matthews DR. Use and abuse of HOMA modeling. Diabetes Care 2004; 27: 1487-1495 [PMID: 15161807 DOI: 10.2337/diacare.27.6.1487]

Lee AJ, Hiscock RJ, Wein P, Walker SP, Permezel M. Gestational diabetes mellitus: clinical predictors and long-term risk of developing type 2 diabetes: a retrospective cohort study using survival analysis. Diabetes Care 2007; 30: 878-883 [PMID: 17392549 DOI: 10.2337/ dc06-1816]

Kwak SH, Choi SH, Jung HS, Cho YM, Lim S, Cho NH, Kim SY, Park KS, Jang HC. Clinical and genetic risk factors for type 2 diabetes at early or late postpartum after gestational diabetes mellitus. J Clin Endocrinol Metab 2013; 98: E744-E752 [PMID: 23479108 DOI: 10.1210/jc.2012-2334]

Capula C, Chieffari E, Vero A, Foti DP, Brunetti A, Vero R. Prevalence and predictors of postpartum glucose intolerance in Italian women with gestational diabetes mellitus. Diabetes Res Clin Pract 2014; 105: 223-230 [PMID: 24931701 DOI: 10.1016/j.diabres.2014.05.008]

Mahalakshmi MM, Bhavatharini B, Kumar M, Anjana RM, Shah SS, Bridgette A, Choudhury M, Henderson M, Desborough RM, Viswanathan M, Ranjani H. Clinical profile, outcomes, and progression to type 2 diabetes among Indian women with gestational diabetes mellitus seen at a diabetes center in south India. Indian J Endocrinol Metab 2014; 18: 400-406 [PMID: 24944938 DOI: 10.4103/2230-8210.131205]

Ratner RE, Christophi CA, Metzger BE, Debelea D, Bennett PH, Pi-Sunyer X, Fowler S, Kahn SE. Prevention of diabetes in women with a history of gestational diabetes: effects of metformin and lifestyle interventions. J Clin Endocrinol Metab 2008; 93: 4774-4779 [PMID: 18826999 DOI: 10.1210/jc.2008-0772]

Retnakaran R, Hanley AJ, Sermer M, Zinman B. The impact of insulin resistance on proinsulin secretion in pregnancy: hyperproinsulinemia is not a feature of gestational diabetes. Diabetes Care 2005; 28: 2710-2715 [PMID: 16249544 DOI: 10.2337/ diacare.28.11.2710]

Corrado F, D’Anna R, Cannata ML, Cannizzaro D, Caputo F, Raffone E, Di Benedetto A. Positive association between a single abnormal glucose tolerance test value in pregnancy and subsequent abnormal glucose tolerance. Am J Obstet Gynecol 2007; 196: 339.e1-339.e5 [PMID: 17403413]

Buchanan TA. (How) can we prevent type 2 diabetes? Diabetes 2007; 56: 1502-1507 [PMID: 17389328 DOI: 10.2337/db07-0140]

Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, Nathan DM. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 2002; 346: 860-868 [PMID: 11832527 DOI: 10.1056/NEJMoa012512]

Mendelson M, Michalett A, Monneret G, Perrin C, Estève F, Lombard PR, Faure P, Lévy P, Favre-Juvin A, Pépin JL, Wuyam TM, Lawlor MS, Goff DC. One-year results of a community-based protocol-based lifestyle program to prevent type 2 diabetes in adults at high risk: mixed methods pilot study. BMC Public Health 2013; 3: e100355 [PMID: 24227871 DOI: 10.1186/1471-2393-13-3055]

Buchanan TA, Page KA. Approach to the patient with gestational diabetes after delivery. J Clin Endocrinol Metab 2011; 96: 1502-1507 [PMID: 21738932 DOI: 10.2337/db07-0140]

Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, Nathan DM. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 2002; 346: 860-868 [PMID: 11832527 DOI: 10.1056/NEJMoa012512]

Mendelson M, Michalett A, Monneret G, Perrin C, Estève F, Lombard PR, Faure P, Lévy P, Favre-Juvin A, Pépin JL, Wuyam TM, Lawlor MS, Goff DC. One-year results of a community-based protocol-based lifestyle program to prevent type 2 diabetes in adults at high risk: mixed methods pilot study. BMC Public Health 2013; 3: e100355 [PMID: 24227871 DOI: 10.1186/1471-2393-13-3055]

Hesslein AE, Bilo HJ, Jonkers K, Martens M, de Weerd I, Rutten GE. A cluster-randomized controlled trial to study the effectiveness of a protocol-based lifestyle program to prevent type 2 diabetes in people with impaired fasting glucose. BMC Fam Pract 2013; 14: 184 [PMID: 24295379 DOI: 10.1186/1471-2296-14-184]

Prochaska JO, Velicer WF. The transtheoretical model of health behavior change. Am J Health Promot 1997; 12: 38-48 [PMID: 10170434]

Buchanan TA, Page KA. Approach to the patient with gestational diabetes after delivery. J Clin Endocrinol Metab 2011; 96: 1502-1507 [PMID: 21738932 DOI: 10.2337/db07-0140]

Lie ML, Hayes L, Lewis-Barned NJ, May C, White M, Bell R. Preventing type 2 diabetes after gestational diabetes: women’s experiences and implications for diabetes prevention interventions. Diabet Med 2013; 30: 986-993 [PMID: 23534548 DOI: 10.1111/dme.12206]

Kim C, McEwen LN, Kerr EA, Piete JD, Chames MC, Ferrara A, Herman WH. Preventive counseling among women with histories of gestational diabetes mellitus. Diabetes Care 2007; 30: 2489-2495 [PMID: 17623826]

Shah BR, Lipscombe LL, Feig DS, Lowe JM. Missed opportunities for type 2 diabetes testing following gestational diabetes: a population-based cohort study. BJOG 2011; 118: 1484-1490 [PMID: 21410003]
21864326 DOI: 10.1111/j.1471-0528.2011.03083.x

50 Gabbe SG, Gregory RP, Power ML, Williams SB, Schulkin J. Management of diabetes mellitus by obstetrician-gynecologists. Obstet Gynecol 2004; 103: 1229-1234 [PMID: 15172857]

51 Almarico CV, Ecker T, Moroz LA, Bucovetsky L, Berghella V, Baxter JK. Obstetricians seldom provide postpartum diabetes screening for women with gestational diabetes. Am J Obstet Gynecol 2008; 198: 528.e1-528.e5 [PMID: 18191799 DOI: 10.1016/j.ajog.2007.11.001]

52 Paez KA, Eggleston EM, Griffey SJ, Farrar B, Smith J, Thompson J, Gillman MW. Understanding why some women with a history of gestational diabetes do not get tested for diabetes. Womens Health Issues 2014; 24: e373-e379 [PMID: 24981396 DOI: 10.1016/j.whi.2014.04.008]

53 Morrison MK, Collins CE, Lowe JM. Postnatal testing for diabetes in Australian women following gestational diabetes mellitus. Aust NZ J Obstet Gynaecol 2009; 49: 494-498 [PMID: 19780732 DOI: 10.1111/j.1479-828X.2009.01056.x]

54 Clark HD, Graham ID, Karovitch A, Keely EJ. Do postal reminders increase postpartum screening of diabetes mellitus in women with gestational diabetes mellitus? A randomized controlled trial. Am J Obstet Gynecol 2009; 200: 634.e1-634.e7 [PMID: 19268878 DOI: 10.1016/j.ajog.2009.01.003]

55 Heatley E, Middleton P, Hague W, Crowther C. The DIAMIND study: postpartum SMS reminders to women who have had gestational diabetes mellitus to test for type 2 diabetes: a randomised controlled trial - study protocol. BMC Pregnancy Childbirth 2013; 13: 92 [PMID: 23587690 DOI: 10.1186/1471-2393-13-92]

56 Nicklas JM, Zera CA, Seely EW, Abdul-Rahim ZS, Rudloff ND, Levkoff SE. Identifying postpartum intervention approaches to prevent type 2 diabetes in women with a history of gestational diabetes. BMC Pregnancy Childbirth 2011; 11: 23 [PMID: 21435246 DOI: 10.1186/1471-2393-11-23]

57 Smith BJ, Cheung NW, Bauman AE, Zehle K, McLean M. Postpartum physical activity and related psychosocial factors among women with recent gestational diabetes mellitus. Diabetes Care 2005; 28: 2650-2654 [PMID: 16249534 DOI: 10.2337/diacare.28.11.2650]

58 Symons Downs D, Ulbrecht JS. Understanding exercise beliefs and behaviors in women with gestational diabetes mellitus. Diabetes Care 2006; 29: 236-240 [PMID: 16443866 DOI: 10.2337/diacare.29.02.06.dc05-1262]

P- Reviewer: Tskitishvili E S- Editor: Gong XM L- Editor: A E- Editor: Wu HL
