Factors Affecting Conception Rate in AI Bred Cattle under Field Conditions of Maharashtra

Vinod V. Potdar*, Jayant R Khadse, Sachin Joshi, Marimuthu Swaminathan

ABSTRACT

Data on 98336 artificial inseminations (AI) performed during 6 years (January 2010 to November 2015) on 56037 field animals owned by 29097 farmers’ from 44 cattle development centres spread across two districts of Maharashtra state were collected and analyzed. Whole data set was classified according to districts (Beed, Jalgaon), economic status of farmers (APL, BPL), animal breed (HF cross, Indigenous, Jersey cross, Non-descript), parity of animal (heifer, first, second, third, fourth, fifth calvers), animal body condition score (no rib exposed, one rib exposed, two ribs exposed, three ribs exposed), heat stage (early, mid, late), season of AI (rainy-June to September, winter-October to January, summer-February to May), bull breed used for AI (HF, HF crossbreed, Jersey, Jersey crossbreed, Indigenous), AI sequence number (1,2,3) and AI Year (2010 to 2015). Least square analysis was used to compute conception rate. The results revealed overall mean conception rate as 46.2 ± 0.51% and it was significantly (p<0.01) higher in Beed district, Jersey crossbred animals, animals having fourth parity, animals exhibiting one rib exposed, early heat and animals inseminated with Indigenous breed bulls semen, first AI sequence number and during the year 2015 compared with respective groups of parameters under study. However, effect of season of AI and economic condition of farmers did not affect conception rate in animals under field conditions of Maharashtra.

Key words: Artificial insemination, Maharashtra, Economic condition, Conception rate, Cattle, Least square means.

INTRODUCTION

Getting cows pregnant in a timely manner is important in maintaining a profitable dairy business. Artificial insemination (AI) was introduced as an effective breeding program in the beginning of 1960s with the objective of upgrading indigenous local cows. AI program always demands to keep records of non-return rate, conception rate, service per conception and calving rate in order to properly evaluate the reproductive efficiency of cows, skillness of the inseminators, fertility and semen quality of bulls. However, an effective reproductive recording system must provide the cattle owner with the key information required to make reproductive management decision. Conception rate is directly associated with the production attribute and responsible for monitoring life time productivity of the individual animal. Conception is the first pre-requisite of an animal entering into the productive life. Conception rate determines directly to the total profitability of farm enterprises. Thus, to achieve the maximum profitability, it is very important to increase the conception rate up to maximum level. An attempt was made to study the factors affecting conception rate as an indicator of fertility in animals under field conditions of Maharashtra.

MATERIALS AND METHODS

In Maharashtra state, a total of 98336 artificial inseminations performed on 56037 animals during January 2010 to November 2015 maintained by 29097 farmers’ from 44 cattle development centres spread across 2 districts of the Maharashtra state were collected and analyzed. The animals were individually maintained and reared by the farmers. The housing ranged from open to permanent constructed sheds. Animals were stall fed with dry and green fodder along with concentrate. The calls for AIs were received through data logger device on windows based platform and animals were inseminated with frozen semen at doorstep of farmers. Cows not repeated within 60 to 70 days post- insemination were examined for pregnancy confirmation by rectal palpation and conception rate was calculated as per the formula given by Qureshi et al. (2008). The information on factors like districts (Jalgaon and Beed), economic status of farmers (APL, BPL), animal breed (HF cross, Indigenous, Jersey cross, Non-descript), parity of animal (heifer, first, second, third,
Factors Affecting Conception Rate in AI Bred Cattle under Field Conditions of Maharashtra

The results and discussion show that district, parity of animal, artificial insemination sequence number, body condition of animal, heat stage during insemination, and year of AI had significant effect over conception rate (Table 1).

The overall mean conception rate was recorded as 46.2 ± 0.51% which was remarkably higher than that reported in tropical condition animals in Pakistan (Anzar et al., 2003), Malaysia (Nordin et al., 2004), crossbred animals in Maharashtra (Bhagat et al., 2008; Bhagat et al., 2009), Ethiopian cattle (Woldu et al., 2011) and warm weather animals in Wardha district of Maharashtra (Shindey et al., 2014), and lower to that of animals from Bangladesh (Razi et al., 2010) and Maharashtra (Gokhale and Bhagat, 2015).

District significantly (p<0.05) affected the conception rate. Conception rate of Jalgaon district was 45.8 ± 0.46% while that of Beed district was 46.6 ± 0.56%. Management of animals at different agroclimatic condition with different locations have major role in differentiating conception rate (Table 2).

The economic status of farmers’ did not affect significantly (p>0.05) the conception rate. The animals owned by below poverty line (BPL) group of farmers however recorded apparently higher conception rate (46.5 ± 0.49%) compared to above poverty line (APL) category of farmers (46.1 ± 0.49%; Table 3). Bhagat and Gokhale (2016) and Pandey et al. (2016) also noticed higher conception rate in animals owned by BPL category farmers. More caring of animals at BPL families and lesser number of animals may be major factor for higher conception rate. Higher coverage of AI and lower conceptions are negatively correlated (Ricord et al., 2004).

Animal breed significantly (p<0.001) affected conception rate. The conception rate in HF cross and indigenous animals was 44.6 ± 0.56 % and 45.1 ± 0.75 %, respectively. In JYX it was 48.2 ± 0.63 % and in Non-descript cattle 47.01 ± 0.60 % (Table 4). Similar findings of significantly higher conception rate in local animals and Jersey crosses were also reported by Bhagat et al. (2009), Anzar et al. (2003), Razi et al. (2010), Pandey et al. (2016) and Potdar et al. (2016) in field animals.

Animal parity also significantly (p<0.001) affected the conception rate as has been reported by Shindey et al. (2014), Bhagat and Gokhale (2016) and Potdar et al. (2016). The highest conception rate of 47.5 ± 0.61% was observed in animals of 1st parity, while the lowest conception rate was observed in heifers (45.20 ± 0.53%, Table 5). This might be due to greater attention by the farmers towards productive

Table 1: Analysis of variance for conception rate in dairy cattle of Maharashtra

Source of variation	Degree of freedom	Means Square
District	1	4.1963*
Animal Breed	3	12.833***
Parity Number	5	4.2621***
Heat Status	2	15.743***
Bull Breed	4	33.109***
Body Score Condition	3	21.878***
Year of AI	5	9.086***
AI Sequence Number	2	124.494***
Economic Condition of Farmer	1	1.409
AI Season	2	2.082

***p<0.001, **p<0.01 and *p<0.05.

Table 2: District wise conception rate through AI in cattle (Mean ± SE)

District	Confirm Pregnant	Total AI	Conception rate (%)
Beed	20286	40295	46.6 ± 0.56
Jalgaon	29322	58041	45.8 ± 0.46

Table 3: Economic status of farmer vis-a-vis conception rate through AI in cattle (Mean ± SE)

Economic Status of farmers	Confirm Pregnant	Total AI	Conception rate (%)
APL	38333	76208	46.1 ± 0.49
BPL	11275	22128	46.5 ± 0.54

Table 4: Animal Breed wise conception rate through AI in cattle (Mean ± SE)

Breed	Confirm Pregnant	Total AI	Conception rate (%)
HF cross	28449	57628	44.6 ± 0.56
Indigenous cattle	4603	8739	45.1 ± 0.75
Jersey cross	5743	11492	48.2 ± 0.63
Non-descript cattle	10813	20477	47.01 ± 0.60
animals which are in milking. The findings of Gunasekaran et al. (2008), Razi et al. (2010), Bhagat and Gokhale (2016) and Pandey et al. (2016) supported the present investigation as they also noticed lowest conception rate in heifers. Other parity wise detail of conception rate is given in Table 5.

Body condition score of animal shows how it is managed and fed, an important tool to judge condition of animal. All animals under study were divided into 4 subgroups as per appearance of ribs to study its effect on conception rate. Significantly (p<0.001) higher pregnancies (48.6 ± 0.58%) was recorded in animals showing one rib exposed and lowest in no rib exposed (44.8 ± 0.66%, Table 6). The results obtained differed with report of Bhave et al. (2016), who noticed highest conception rate in field buffaloes having three ribs exposed, whereas Bhagat et al. (2009) noticed highest conception rate in field animals having no rib exposed. Potdar et al. (2016) indicated insignificantly highest conception rate in field animals having no rib exposed. Balanced diet feeding, vitamin and minerals can overcome these issues of infertility (Balakrishnan, 2003).

Heat stage of animal, during which AI is done, is one of the most important factors that contribute to conception rate in dairy animals. It has significant (p<0.001) effect on conception rate. In present study, animals having early heat stage showed the highest conception rate (48.01 ± 0.73%) followed by mid heat (47.7 ± 0.37%) and lowest in late heat stage (43.0 ± 0.88%, Table 7). Gunasekaran et al. (2008), Pandey et al. (2016) and Potdar et al. (2016) noticed higher conceptions in animals exhibiting early heat.

Season of artificial insemination had no significant (p>0.05) effect over conception rate. Yet highest conception was recorded in rainy season (46.6 ± 0.52%) followed by summer season (46.3 ± 0.54%) and lowest in winter season (45.8 ± 0.52%, Table 8). Bhagat and Gokhale (2013, 2016) reported highest conception rate in winter season, while Shindey et al. (2014), Pandey et al. (2016) and Potdar et al. (2016) noticed animals inseminated during summer season had higher conception rate.

Since the present analysis of AI work is for year 2010 to 2015, it showed significant (p<0.001) effect of year over conception rate. The highest conception rate was noted in year 2011 (47.5 ± 0.64%), while the lowest conception rate was observed in year 2010 (43.0 ± 0.90%). Other year wise details of conception rate are given below in Table 9.

Bull breed whose semen is used for AI work had significant (p<0.001) influence on conception rate as has been reported by Bhagat and Gokhale (2016), Pandey et al. (2016) and Potdar et al. (2016). Highest conception rate was observed in sire of Indigenous origin (51.1 ± 0.61%) followed by HF cross (47.1 ± 0.56%), HF pure (46.80 ± 0.55%), Jersey

Table 5: Animal Parity wise conception rate through AI in cattle (Mean ± SE)

Animal Parity***	Confirm Pregnant	Total AI	Conception rate (%)
Heifer	13057	26246	45.20 ± 0.53
1	7271	13963	47.5 ± 0.61
2	8940	17788	45.9 ± 0.58
3	9379	18573	46.5 ± 0.58
4	5835	11540	46.6 ± 0.65
5	5126	10226	45.8 ± 0.66

Table 6: Body Condition score of animal vis-a-vis conception rate through AI in cattle (Mean ± SE)

Body Condition***	Confirm Pregnant	Total AI	Conception rate (%)
No ribs exposed	4591	9349	44.8 ± 0.66
One rib exposed	10356	19499	48.6 ± 0.58
Three ribs exposed	10920	22657	45.01 ± 0.57
Two ribs exposed	23741	46831	46.6 ± 0.50

Table 7: Heat stage of animal vis-a-vis conception rate through AI in cattle (Mean ± SE)

Heat Stage***	Confirm Pregnant	Total AI	Conception rate (%)
Early	3098	6041	48.01 ± 0.73
Mid	44850	88632	47.7 ± 0.37
Late	1660	3663	43.0 ± 0.88

Table 8: Season of insemination vis-a-vis conception rate through AI in cattle (Mean ± SE)

Season	Confirm Pregnant	Total AI	Conception rate (%)
Rainy	16784	33184	46.6 ± 0.52
Summer	16030	31580	46.3 ± 0.54
Winter	16794	33572	45.8 ± 0.52
crossbred (43.5 ± 1.09%) and Jersey pure bulls (42.6 ± 0.67%, Table 10). The results contradicted the findings of Bhagat and Gokhale (2016), Pandey et al. (2016) and Potdar et al. (2016), who noticed highest conception rate in indigenous breeds used for inseminating the field animals. However, Miah et al. (2004) reported that genotype of bulls used for AI did not affect the conception rate.

Artificial insemination sequence number had significant (p<0.001) effect over conception rate, the highest conception rate was observed with first AI (49.7 ± 0.45%) followed by second AI (47.8 ± 0.56%) and lowest in third AI sequence number (41.2 ± 0.67%, Table 11). Potdar et al. (2016) and Bhagat and Gokhale (2016) also reported the same results.

ACKNOWLEDGEMENT

The authors are thankful to BAIF management team including President, Vice President, Programme Director and all stakeholders who were actively involved in the study area and those who participated and cooperated during this study.

REFERENCES

Anzar, M., Farooq, U., Mirza, M. A., Shahab, M. and Ahmad, N. (2003). Factors affecting the efficiency of artificial insemination in cattle and buffalo in Punjab Pakistan. Pakistan Vet. J., 23(3): 106-113.

Balakrishnan, V. (2003). Role of nutrition in reproduction. National Seminar on Strategies for Genetic and Reproductive Improvement in Bovine. Madras Veterinary College, 13-14 Nov., pp 144-146.

Bhagat, R.L. and Gokhale, S.B. (2013). Factors affecting conception rate in crossbred cattle under field conditions. Intl. J. Trop. Agric., 21(3-4): 249-252.

Bhagat, R.L. and Gokhale, S.B. (2016). Studies on factors influencing conception rate in rural cattle. Indian J. Anim. Sci., 86(5): 550-552.

Bhagat, R.L., Gokhale, S.B., Gokhale, R.B., Pande, A.B. and Karbade, V.G. (2009). Reproduction attributes affecting conception rate in crossbred cattle. Intl. J. Trop. Agric., 27(1-2): 169-172.

Bhagat, R.L., Gokhale, S.B., Pande, A.B. and Phadke, N.L. (2008). Socio-economic factors influencing conception rate in cattle under field conditions. Indian Vet. J., 85: 416-418.

Bhave, K.G., Khadse, J.R., Gaundare, Y.S. and Mangurkar, B.R. (2016). Factor affecting conception rate in AI bred buffaloes in field conditions. Indian J. Anim. Sci., 86(12): 1401-1004.

Bhagat, R.L. and Gokhale, S.B. (2016). Response of rural cattle to artificial insemination in Jharkhand. Indian Vet. J., 69(5): 600-604.

Nordin, Y., Zaini, N. and Wan Zahari, W.M. (2004). Factors affecting conception rate of local and crossbred cows in Bangladesh. Intl. J. Agric. & Biol., 6(5): 797–801.

Potdar, V.V., Bhave, K., Gaundare, Y., Awasthi, H.R. and Khadse, J.R. (2016). Factors influencing conception rate of local and crossbred cows. IOSR J. Agric. & Vet. Sci., 9(10): 51-54.
Factors Affecting Conception Rate in AI Bred Cattle under Field Conditions of Maharashtra

Qureshi, A.M., Kahlid, J., Jarral, Z.A. and Khan, S.A. (2008). Environmental factors affecting performance traits of crossbred and local dairy cows at Mirpur Azad Jammu and Kashmir. *Pakistan J. Agric. Sci.*, 45(2): 362-371.

Razi, K.M.A., Asgar, M.A., Kabir, M.H., Bag, M.A.S. and Parvez, M.M. (2010). A study on estimation of conception rate and services per conception in cattle after artificial insemination. *Intl. J. Biol. Res.*, 2(7): 25-29.

Ricord, C., Chebel, Jose, E.F. Santos, James P. Reynolds, Ronaldo, L.A. Cerri, Serqio, O. Juchem and Michael Overton (2004). Factors affecting conception rate after artificial insemination and pregnancy loss in lactating dairy cows. *Anim. Reprod. Sci.*, 84(3-4): 239-255.

Shindey, D.N., Dhanvijay, R.W., Bhagat, R.L. and Gokhale, S.B. (2014). A note on conception rate in animals of Wardha district in Vidharbha region of Maharashtra State. *Intl. J. Trop. Agric.*, 32(3-4): 595-599.

Woldu, T., Giorgis, Y.T. and Haile, A. (2011). Factors affecting conception rate in artificially inseminated cattle under farmers’ condition in Ethiopia. *J. Cell & Anim. Biol.*, 5(16): 334-338.