Genetic T-type calcium channelopathies

Norbert Weiss , 1 Gerald W Zamponi 2

ABSTRACT

T-type channels are low-voltage-activated calcium channels that contribute to a variety of cellular and physiological functions, including neuronal excitability, hormone and neurotransmitter release as well as developmental aspects. Several human conditions including epilepsy, autism spectrum disorders, schizophrenia, motor neuron disorders and aldosteronism have been traced to variations in genes encoding T-type channels. In this short review, we present the genetics of T-type channels with an emphasis on structure-function relationships and associated channelopathies.

INTRODUCTION

Low-voltage-activated Ca 3 T-type channels are members of the superfamily of voltage-gated calcium channels.1 T-type channels are widely expressed throughout the nervous, the neuroendocrine and the cardiovascular system2 and are also found in several non-excitable tissues such as osteocytes,3 sperm cells4 and immune cells.5 6 The cellular and physiological processes in which T-type channels are implicated depend primarily on the tissue distribution of the channels. For instance, in the central and peripheral nervous systems, T-type channels play an essential role in shaping neuronal excitability,7 8 whereas they contribute to the release of hormones in the neuroendocrine system.9 10

The essential role of T-type channels in human physiology is emphasised by the existence of channelopathies which are disorders that are caused or enhanced by mutations in genes that encode these channels. Most of T-type channelopathies are transmitted by recessive inheritance or appear sporadic. The clinical manifestations of these disorders depend primarily on dysfunctions of the biophysical characteristics and cell surface trafficking of the channels and can lead to either gain-of-function or loss-of-function.

In this review, we present an overview of human T-type channelopathies and their relationship with the diversity, structure and function of T-type channels. This will be followed by the presentation of the various syndromes for which T-type channels have been linked to, with an emphasis on the structure-function-pathogenicity relationship of mutant Ca 3 channels.

DIVERSITY, STRUCTURE AND FUNCTION OF CA 3 CHANNELS

Although T-type currents recorded from various native tissues present a common feature illustrated by a low-threshold of activation around −55 mV, they also exhibit several differences in their electrophysiological and pharmacological properties. This heterogeneity is in part explained by the existence of three T-type channel isoforms, Ca 3.1,12 Ca 3.2,11 and Ca 3.3,14 which in humans are encoded by the genes CACNA1G, CACNA1H and CACNA1I, respectively (figure 1A). This diversity is further enriched by the existence of several channel splice variants. Indeed, alternative splicing of Ca 3.1,15−19 Ca 3.2 20 24 and Ca 3.3 25 26 contributes to increase the functional diversity of T-type channels and may also have important pathophysiological implications.

T-type channels consist on a single Ca 3 pore-forming subunit that contains all the structural determinants of channel gating and ion selectivity and permeability (for review see.25 27 The Ca 3 subunit is a relatively large plasma membrane protein of about 260 kDa organised into four hydrophobic domains (DI to DIV), each of them made of six transmembrane helices (S1 to S6) (figure 1B). The voltage-sensing module of the channel is formed by the positively charged arginine/lysine-rich S4 segments,29 while the ion conductivity and selectivity lie on the re-entrant extracellular linkers connecting S5 and S6 segments of each domain, so-called pore-forming loop (P loop).2 The four transmembrane domains are linked together by several intracellular loops connecting the S6 segment of the upstream domain to the S1 segment of the downstream domain, which in combination with the amino and carboxy termini provide hubs for channel regulation by a variety of signalling molecules and other molecular partners including the G-protein βγ -dimer,29 30 CaMKII,31 32 kelch-like 1,33 calcineurin,34 syntaxin-1A,35 stac3,36 CACHD1,37 38 spectrin α/β and ankyrin B39 as well as several ion channels.40 41 In addition, T-type channels undergo several post-translational modifications such as phosphorylation,42 ubiquitination43 and glycosylation,44–49 which contribute to the expression and activity of the channel.

The contribution of T-type channels in particular cellular processes is partly inherent to their unique electrophysiological properties. Voltage-dependent opening of T-type channels occurs at comparatively negative membrane potentials where calcium influx contributes to the depolarisation of the plasma membrane, therefore increasing the opening probability of voltage-gated sodium channels and the propensity of cells to fire action potentials. This aspect is especially relevant in several central neurons including thalamic and hippocampal cells where T-type channels are particularly abundant in dendrites to enhance subthreshold postsynaptic potentials and facilitate the propagation of the electrical signal to the cell body.50 Another way
by which T-type channels contribute to neuronal excitability is by forming functional complexes with several types of voltage-activated and calcium-activated potassium channels that allow these channels to operate at subthreshold membrane potentials. In addition, their fast recovery from inactivation allows T-type channels to generate calcium spikes on brief periods of hyperpolarisation, which leads to the firing of rebound burst of action potentials that support various forms of neuronal rhythmicity.51–55 Although a significant fraction of T-type channels is inactivated at most resting membrane potentials of nerve cells, a small fraction remains open to support the passive influx of calcium (termed window current due to the ‘window’ created by the overlap between the activation and inactivation curves of the channels). In nerve cells, this window current has been implicated in the generation of low frequency oscillations observed during sleep patterns60 and is likely to play additional functions especially in non-excitatory cells. T-type channels also contribute to several forms of synaptic plasticity.61 Finally, T-type channels are implicated in the low-threshold release of neurotransmitters and hormones, possibly by virtue of their functional coupling with the vesicular release machinery. Genetic knockout in mice also provided insightful information on the physiological importance of T-type channels. For instance, knockout of CaCna1g has highlighted the role of Cav3.1 in the generation of sinoatrial node pacemaker activity and atrioventricular conduction62 and also their implication in the development of trigeminal neuropathic pain63 and peripheral pain,64 as well as endothelial dysfunction associated with ageing.65 Mice lacking CaCna1h display abnormal coronary function,66 decreased susceptibility to cardiac hypertrophy68 and absence seizures,69 decreased peripheral pain signalling66 as well as several neurological symptoms including elevated anxiety and impaired memory.71,72 Mice lacking CaCna1l have provided important information on the implication of Cav3.3 channels in sleep rhythmogenesis.73,74 Finally, several studies from genetic knock out have uncovered a role for T-type channels in the control of myogenic tone.75

Considering that the cellular and physiological functions in which T-type channels are implicated are directly dependent on their electrophysiological properties, it is anticipated that alteration of channel gating caused by mutations will have deleterious consequences. In the next section, we will cover the current state of knowledge of T-type channelopathies and illustrate the links between the structure-function of mutant channels and the pathophysiological features of the associated human syndromes.

CACNA1H (Cav3.2) CHANNELOPATHIES

Idiopathic generalised epilepsy

It is well established that T-type channels play an essential role in the functioning of the thalamocortical circuitry and underlie spike-and-wave discharges that occur during absence seizures.76–80 This notion is further supported by the observation that thalamic T-type currents are enhanced in several rodent models of absence epilepsy81–83 and genetic overexpression of
Ca.3.1 channels produces pure epilepsy in rodents. Conversely, pharmacological inhibition of T-type currents using pan T-type channel blockers reduces thalamic burst firing and suppresses seizures. In addition, several pan T-type channel blockers are effective in the treatment of absence seizures in humans (for recent review see Ref. 81).

Genetic association studies have identified more than 200 missense variants in the human CACNA1H gene that segregate in patients presenting a range of epilepsy syndromes including childhood absence, juvenile absence, juvenile myoclonic and myoclonic astatic epilepsies as well as febrile seizures and temporal lobe epilepsy that fall under the umbrella term of idiopathic generalised epilepsies (IGE). It is worth noting that most of these variants have been reported in the Exome Aggregation Consortium (ExAC) suggesting that their contribution to human epilepsies may be rather low or might be dependent on additional genetic and/or environmental factors. Electrophysiological analysis of several of these variants (figure 2) using exogenous expression of mutated Ca.3.2 channels in human embryonic kidney cells (HEK293) revealed that these mutations generally produce mild biophysical changes and in some cases do not alter the gating of the channel at all (table 1). This is not completely surprising since the variants examined so far do not concentrate in specific loci that are known to be essential for the gating of the channel, but are rather scattered across the entire channel sequence. However, an interesting study by Zhong and colleagues revealed that some of the mutations in Ca.3.2 may affect alternative splicing of the channel, which in turn may affect the behaviour of native T-type currents.

Among the mutations that do affect channel gating, the alterations observed are in general consistent with a gain-of-function of the channel, although in rare exceptions a loss-of-function was observed. In addition, cell surface expression of the channels may be affected by a subset of mutations within the domain I-II linker region of the channel. Intuitively, gain-of-function mutations would increase the propensity of neurons to fire action potentials. This notion is in part supported by computer simulations predicting that several of these mutations would increase neuronal firing and induce neuronal oscillations at similar frequencies as observed during absence seizures. In addition, cultured hippocampal neurons expressing the gain-of-function C456S mutation indeed showed increased firing. However, studies investigating the influence of Ca.3.2 variants in native conditions are too rare to draw a general conclusion on the impact of CACNA1H variants on neuronal excitability.

Table 1

Gene	Mutation	Disease	Biophysical effect	Settings	Reference
CACNA1G	A570V	IGE	Gain-of-function	HEX293, 2Ca	144
(Ca.3.1)	A961T	CA	Gain-of-function	HEX293, 2Ca	142
	A1089S	IGE	None	HEX293, 2Ca	144
	M1531V	CA	Gain-of-function	HEX293, 2Ca	142
	R1715H	CA	Loss-of-function	HEX293T	138
CACNA1H	F161L	IGE	Gain-of-function	tsA-201, 5Ba	99
(Ca.3.2)	S196L	PA	Gain-of-function	tsA-201, 2Ca	134
	R212C	ASD	Loss-of-function	HEX293T, 2Ca	110
	E282K	IGE	Gain-of-function	tsA-201, 2Ca	99
	C456S	IGE	None	tsA-201, 2Ca	99
	C456S	IGE	Gain-of-function	Hippo, 1,8Ca	105
	A480T	IGE	None	tsA-201, 5Ba	100
	G499S	IGE	None	tsA-201, 5Ca	102
	P618L	IGE	Gain-of-function	tsA-201, 5Ba	100
	P648L	IGE	None	tsA-201, 5Ca	102
	V681L	NMD	Loss-of-function	tsA-201, 5Ba	123
	R744Q	IGE	None	tsA-201, 5Ca	102
	A748V	IGE	None	tsA-201, 5Ca	102
	G755D	IGE	Gain-of-function	tsA-201, 2Ca	100
	P769L	IGE	None	tsA-201, 10Ba	130
	G773D	IGE	None	tsA-201, 5Ca	102
	G784S	IGE	None	tsA-201, 5Ca	102
	R788C	IGE	Gain-of-function	HEX293, 5Ca	101
	V831M	IGE	Gain-of-function	tsA-201, 5Ba	99
	G848S	IGE	Gain-of-function	tsA-201, 5Ca	102
	A876T	IGE	Gain-of-function	tsA-201, 2Ca	95
	R902W	ASD	Loss-of-function	HEX293T, 2Ca	110
	W962C	ASD	Loss-of-function	HEX293T, 2Ca	110
	G963S	IGE	Loss-of-function	tsA-201, 5Ba	95
	A1059S	IGE+CP	Loss-of-function	tsA-201, 2-10Ca	130
	E1170K	IGE	None	tsA-201, 2Ca	95
	D123H	NMD	Loss-of-function	tsA-201, 5Ba	123
	Q1264H	IGE	None	tsA-201, 2Ca	95
	D1463N	IGE	None	tsA-201, 2Ca	99
	M1549V	PA	Gain-of-function	HEX293T, 5Ca	132
	M1549I	PA	Mix effect	tsA-201, 2Ca	134
	T1606M	IGE	Gain-of-function	tsA-201, 2Ca	95
	V1689M	NMD	Loss-of-function	tsA-201, 5Ba	118
	A170ST	IGE+NMD	Loss-of-function	tsA-201, 5Ba	95
	A170ST	IGE+NMD	Loss-of-function	tsA-201, 5Ba	95
	T1733A	IGE	Loss-of-function	HEX293T, 2Ca	110
	R1871Q	ASD	None	HEX293T, 2Ca	110
	A1874V	ASD	ND	HEX293T, 2Ca	110
	R1892H	IGE	Gain-of-function	tsA-201, 2Ca	95
	V1951G	PA	Gain-of-function	tsA-201, 2Ca	134
	R2005C	IGE	Gain-of-function	tsA-201, 2Ca	95
	P2083L	PA	Gain-of-function	tsA-201, 2Ca	134
CACNA1I	T797M	SCZ	None	HEX293, 2Ca	149
(Ca.3.3)	R1346H	SCZ	Loss-of-function	HEX293, 2Ca	149

The biophysical effects produced by each mutation is summarised as None (blue), Gain-of-function (green) and Loss-of-function (red). Recording conditions are also indicated (cell type, nature and concentration of the permeating cation). Green colour: gain-of-function mutation; red colour: loss-of-function mutation; blue colour: no biophysical change. ASD, autism spectrum disorder; CA, cerebellar ataxia; CP, chronic pain; Hippo, hippocampal neuron; IGE, idiopathic generalised epilepsy; NMD, neuromuscular disorder; PA, primary aldosteronism; SCZ, schizophrenia.

Despite evident functional effects on Ca.3.2 gating which in general are expected to increase neuronal excitability and to potentially drive seizures, only few of the CACNA1H variants...
Neurogenetics

identified so far segregate with specific epilepsy phenotypes within families. A clear causal mutation linking Ca₃.2 to genetic epilepsies was found in the genetic absence epilepsy rat from Strasburg (GAERS) (figure 2). This mutation segregates with the occurrence of seizures and causes a gain-of-function of Ca₃.2, on the one hand by enhancing the recovery from inactivation of the channel and on the other hand by enhancing expression of Ca₃.2 at the cell surface due to altered association with calnexin. Interestingly, biophysical gain of function effects of this mutation selectively manifested themselves in a Ca₃.2 splice variant that contained exon 25 which is expressed at high levels in thalamic tissue. This may account for the observation that GAERS rats exhibit seizures but do not have other physiological dysfunctions that would be expected from increased T-type channel activity.

Altogether, it remains unclear to which extent CACNA1H variants contribute to human epilepsies. It is likely that these variants only represent a low-risk factor for genetic epilepsies and may only contribute to the disease in combination with other genetic or environmental factors.

Autism spectrum disorder

Autism spectrum disorders (ASD) are neurodevelopmental conditions characterised by impaired social interaction, communication and unusual behaviour. Despite an exceptionally diverse genetic aetiology with hundreds of risk genes identified, a subset of high-risk mutations is recurrently found in about 5% of individuals with ASD. Several missense mutations in CACNA1H were identified in patients with ASD (figure 2) and were functionally characterised using heterologous expression of mutated Ca₃.2 channels. Although all these mutations produced several alterations of the channel gating consistent with a loss-of-channel function (table 1), the severity of these alterations appears to be correlated with the location of the mutations in the channel protein. Indeed, and consistent with the observation that the R212C and R920W mutations are located within the voltage-sensing region of the channel and neutralise an arginine residue, they produced a depolarising shift of the voltage-dependence of activation of the channel, along with a decreased T-type current. In contrast, the W962C mutation located within the pore-forming loop of the channel did not affect the voltage sensitivity but produced a dramatic decrease of the T-type current, which likely resulted from an alteration of the ionic permeability of the channel. Finally, the R1871Q and A1874V mutations are located in the proximal region of the carboxy terminal region of the channel, a region that is not particularly known to contribute to the gating of the channel and produced only a mild decrease of the T-type current.

As for CACNA1H variants associated with epilepsy syndromes, variants associated with ASD do not segregate with the ASD phenotype, but instead may modify the phenotypic expression. In contrast, several rare de novo gain-of-function mutations with high penetrance were recently identified in CACNA1D and are considered high-risk factor for ASD and more generally neurodevelopmental conditions.

Neuromuscular disorder

Neuromuscular disorders encompass a wide range of conditions characterised by progressive muscle degeneration and weakness that primarily or secondary impair skeletal muscles and their innervation. For instance, amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig’s disease, is a neurodegenerative disorder characterised by the progressive loss of cortical, brain stem and spinal motor neurons, eventually leading to muscle weakness and paralysis. ALS is regarded as a complex genetic disorder with a Mendelian pattern of inheritance in approximately 5%–10% of familial cases, but most patients have no discernable family history of the disease which is then referred to being ‘sporadic’ or ‘isolated’ in nature (sALS). However, several genes and loci in apparent sALS cases have been proposed to be associated with an increased risk of the disease or to modify the onset or progression of the disease, which highlights the importance of genetic risk factors.

Recently, whole exome sequence analysis of case-unaffected-parent trios identified two compound heterozygous recessive missense mutations in CACNA1H (figure 2). Functional analysis revealed that these mutations cause a mild alteration of Ca₃.2 activity that is consistent with a loss-of-function of the channel (table 1). In addition, computer simulations suggested decreased neuronal activity of nerve cells expressing the channel variants.

Although recent studies have reported the expression of T-type channels in motor neurons, the functional implication of T-type channels in these neurons has yet to be analysed. Increased neuronal excitability has been reported as a hallmark in ALS, where an increase of the sodium conductance and a decrease of axonal potassium currents is observed. Considerering the role of T-type channels in the control of calcium-activated potassium channels, it is a possibility that decrease of T-type channel activity caused by ALS-associated mutations may contribute to the alteration of potassium currents. In addition, a recent finding demonstrated the role of T-type channels in the maintenance of neuronal progenitor cell viability. This aspect will deserve particular attention, especially in the context on neurodegenerative disorders such as ALS. Additionally, a recent study reported the case of a patient with severe infantile onset amyotrophy carrying two inherited heterozygous CACNA1H mutations. Functional analysis of Cα₃.2 variants were consistent with a loss-of-channel function particularly evidenced by a decreased window current, therefore expending the possible association of CACNA1H with motor neuron diseases.

Chronic pain

It is well established that T-type channels play an essential role in the processing of peripheral nociception and altered expression and altered expression of Ca₃.2 has been documented in several chronic pain conditions. For instance, increased activity of Ca₃.2 channels in primary afferent fibres is observed in diabetic neuropathy, nerve injury, irritable bowel syndrome and peripheral inflammation and is believed to be causally related to the development and maintenance of chronic pain. These gain of function effects in Ca₃.2 calcium channels are not linked to mutations in the channel sequence, but instead mediated by altered post-translational modification by deubiquitination and glycosylation processes. Recently, two heterozygous missense mutations in the CACNA1H gene were identified in a patient presenting with paediatric chronic pain (figure 2). Functional characterisation of these variants using heterologous expression of mutant Ca₃.2 channels provided inconclusive results as to the impact of these mutations on the functioning of the channel, mainly due to the observation that the phenotypic manifestations appeared to be dependent on the experimental conditions.

Primary aldosteronism

Primary aldosteronism (PA) is the most common form of secondary hypertension. T-type calcium channels have been
implicated in the secretion of aldosterone secretion from the adrenal zona glomerulosa and in situ hybridisation studies combined functional and pharmacological analysis have revealed that Ca$_3$1 is the main channel isoform generating the T-type current. Whole exome sequencing of patients with PA has identified several germline mutations in CACNA1H. Despite an incomplete penetrance, these variants often segregate with the disease (figure 2). Heterologous expression of the mutated Ca$_3$2 channels in HEK-293 cells revealed several alterations of the gating of the channel generally consistent with a gain-of-channel function (table 1). In addition, potassium-induced aldosterone secretion is enhanced in several aldosterone-producing adrenocortical cell lines expressing Ca$_3$2 variants. This effect may be attributed to a direct potentiation of aldosterone release and/or to an augmented aldosterone production since an increased expression of genes encoding for enzymes involved in the metabolism of aldosterone was also observed in cells expressing Ca$_3$2 variants. It is important to note that in contrast to CACNA1H mutations that are often associated with severe neurodevelopmental and endocrine disorders, PA-associated CACNA1H mutations are typically not accompanied with other conditions.

CACNA1G (Ca$_3$3.1) CHANNELOPATHIES

CACNA1G has been associated with both cerebellar ataxia and epilepsy. Cerebellar ataxias are clinically heterogenous disorders affecting the cerebellum and cerebellar pathways resulting in impaired coordination. While non-genetic ataxias are caused by acquired conditions or sporadic neurodegenerative disorders, several genes have been associated with hereditary cerebellar ataxias where ion channels are largely represented. Among these genes, CACNA1G encoding for the Ca$_3$1 T-type channel has emerged as a potential contributor and whole exome sequencing of the mutant Cav3.1 channel in HEK-293 cells revealed a variety of alterations consistent with a loss-of-gene function. This effect may be attributed to a direct potentiation of aldosterone release and/or to an augmented aldosterone production since an increased expression of genes encoding for enzymes involved in the metabolism of aldosterone was also observed in cells expressing Ca$_3$3.1 variants. It is important to note that in contrast to CACNA1D mutations that are often associated with severe neurodevelopmental and endocrine disorders, 138-141 PA-associated CACNA1D mutations are typically not accompanied with other conditions.

FUNCTIONAL PREDICTION OF Ca$_3$3 MUTATIONS

Although the effect of several Ca$_3$3 mutations on the functioning of the channel has already been characterised, hundreds of additional variants have yet to be analysed. The question then arises as to whether we could predict their functional impact. Therefore, we collected all functional data currently available for Ca$_3$3 in order to attribute a functional score for each mutation. The functional score was established as follows: score 1 for mutations producing less than a 2 mV alteration of the voltage-dependence of activation or inactivation or less than a 20% alteration of the kinetics (activation, inactivation, recovery from inactivation) or current density compared with the wild type channel; score 2 for mutations producing a between 2 mV and 5 mV alteration of the voltage-dependence or a between 20% and 50% alteration of the kinetics or current density; score 3 for mutations producing more than a 5 mV alteration of the voltage-dependence or more than a 50% alteration of the kinetics or current density. Because functional analyses are often performed using different experimental conditions such as the concentration and nature of the permeating cation which directly affect the gating properties of the channel, the functional score attributed for each mutation is based on the relative biophysical effect of the mutation compared with the gating properties of the wild type channel recorded in the same experimental settings. In parallel, each mutation was probed using PolyPhen-2 algorithm that predicts the possible impact of an amino acid substitution on...
the structure and function of a human protein, providing a qualitative score 1 for benign, 2 for possibly damaging and 3 for probably damaging) (figure 5A). Qualitatively, we observed that higher PolyPhen scores tend to associate with higher functional scores, although a small fraction of mutations predicted to be damaging are not associated with functional alteration and vice versa (figure 5B). When plotting the average functional scores against Polyphen predicted scores, we observed a very strong correlation (R=0.9663), suggesting that in average it may be possible to predict to which extent a mutation might alter the functioning of the channel with a relative degree of certainty (figure 5C).

CONCLUSION AND PERSPECTIVES

A number of genetic association studies have identified variations in the genes encoding different T-type channels and associated with several neuronal, neuroendocrine and psychiatric syndromes. However, because of the absence of traditional segregation patterns in families in part due to reduced penetrance in adults with the absence of large multiplex families, de novo mutations and/or variable expressivity, many Mendelian traits are likely overlooked. In addition, functional analysis of Ca3 mutants indicate that these mutations generally produce mild alterations of the channel activity, which may be interpreted as a weak evidence of the implication of the channel in the disease. However, several considerations need to be made.
First, functional studies are largely predominated by the use of heterologous expression systems that may not entirely reflect the extent to which the mutations affect the functioning of the channel. For instance, although the cellular and physiological aspects controlled by T-type channels are largely dependent on their intrinsic gating properties, recent studies have shown that T-type channels are far more complex than anticipated in terms of their regulation and association with other signalling molecules. The impact of the mutations on these aspects is likely to be overlooked in heterologous expression systems. Second, several Ca\(_{3.3}\) splice variants have been documented. Therefore, it is worth considering the possibility that the functional expression of the mutations may vary depending on the channel splice variant in which it is reintroduced. For instance, as noted earlier, this notion is supported by the observation that the biophysical expression of the GAERS mutation depends on the Ca\(_{3.2}\) splice variant used.\(^{23}\) Third, it is currently complicated to fully appreciate the long-term impact of small alterations of the channel gating on neurodevelopmental aspects which may have an important impact on the pathogenesis of the disease. Indeed, in addition to their role in neuronal excitability, T-type channels also contribute to several developmental aspects. Finally, the observation that T-type channel mutations are not confined to a particular structural determinant but are rather scattered across the entire protein highlight the need for additional structure-function relationship studies. It is also important to note that mutations in a given gene and producing virtually identical biophysical alterations can lead to different disorders typically without overlap between the diseases. This is, for instance, the case for CACNA1H mutations where a gain-of-function phenotype leads to FA without conferring other disease risk, while similar gain-of-function mutations are associated with increased risk for IGE without concomitant endocrine disorders. This phenotypic heterogeneity suggests that several additional factors such as modifier genes, environmental aspects, allelic variations or complex genetic and environmental interactions are likely to contribute to penetrance and expressivity of these mutations.\(^{152}\)

In addition to disorders for which T-type channels have already been implicated, it is likely that other disorders could be caused or influenced by mutations or polymorphisms in T-type channel genes. Indeed, besides being expressed in electrically excitable tissues, T-type channels are also present in several non-excitable cells. For instance, Ca\(_{3.1}\) channels are functionally expressed in immune T cells where they shape the immune response.\(^{5,6}\) T-type channels are also expressed in sperm cells where they participate to the fertilisation of the egg.\(^{8}\) Similarly, T-type channels contribute to calcium signalling in osteocytes.\(^{3}\) This suggests that additional human T-type channelopathies might exist. An important step forward in our understanding of T-type channelopathies will be the identification of modifier genes that are likely to play an important role in the phenotypic expressivity of T-type channel variants.

Contributors NW and GWZ analysed the literature and wrote the manuscript.

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests None declared.

Patient consent for publication Not required.

Provenance and peer review Not commissioned; externally peer reviewed.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iDs
Norbert Weiss http://orcid.org/0000-0002-0404-1109
Gerald W Zamponi http://orcid.org/0000-0002-0644-9066

REFERENCES

1. Ertel EA, Campbell KP, Harpold MM, Hofmann F, Mori Y, Perez-Reyes E, Schwartz A, Snutch TP, Tanabe T, Birnbaumer L, Tisien RW, Catterall WA. Nomenclature of voltage-gated calcium channels. *Neuron* 2000;25:533–5.

2. Perez-Reyes E. Molecular physiology of low-voltage-activated T-type channel mutants. *Physiol Rev* 2003;83:1171–46.

3. Brodie GN, Leong PG, Gisler AE. Type-sensitive calcium channels mediate mechanically-induced intracellular calcium oscillations in osteocytes by regulating endoplasmic reticulum calcium dynamics. *Bone* 2016;88:56–63.

4. Arnoult C, Cardullo RA, Lemos JR, Flormann HM. Activation of mouse sperm T-type Ca\(_{2+}\) channels by adhesion to the egg zona pellucida. *Proc Natl Acad Sci U S A* 1996;93:13004–9.

5. Wang H, Zhang X, Xue L, Xing J, Jouvin M-H, Putney JW, Anderson MP, Trebak M, Kinet J-P. Low-voltage-activated Ca\(_{3.1}\) calcium channels target T helper cell cytokine profiles. *Immunity* 2014;46:782–94.

6. Lacinova I, Weiss N. It takes two T to shape immunity: emerging role for T-type calcium channels in immune cells. *Gen Physiol Biophys* 2016;35:393–5.

7. Huguenard JR, Prince DA. A novel T-type current underlies prolonged Ca\(_{2+}\)-dependent burst firing in GABAergic neurons of rat thalamic reticular nucleus. *J Neurosci* 1992;12:3806–17.

8. Molinuevo ML, McRory JE, McKay BE, Hamid J, Mehaffy WH, Rehak R, Snutch TP, Zamponi GW, Turner RW. Specific T-type calcium channel isoforms are associated with distinct burst phenotypes in deep cerebellar neurons. *Proc Natl Acad Sci U S A* 2006;103:5555–60.

9. Cain SM, Snutch TP. Contributions of T-type calcium channel isoforms to neuronal firing. *Channels* 2010;4:475–82.

10. Weiss N, Zamponi GW. Control of low-threshold exotaxis by T-type calcium channels. *Biochim Biophys Acta* 1828;2013:1579–86.

11. Carbone E, Calorio C, Vandal DHF. T-type channel-mediated neurotransmitter release. *Pfügers Arch - Eur J Physiol* 2014;466:677–87.

12. Perez-Reyes E, Cribs LL, Daud A, Lacerda AE, Barclay J, Williamson MP, Fox M, Rees M, Lee J-H. Molecular characterization of a neuronal low-voltage-activated T-type calcium channel. *Nature* 1998;391:596–900.

13. Cribs LL, Lee JH, Yang J, Satin J, Zhang Y, Daud A, Barclay J, Williamson MP, Fox M, Rees M, Perez-Reyes E. Cloning and characterization of alpha1H from human heart, a member of the T-type Ca\(_{2+}\) channel gene family. *Curr Res* 1998;83:1039–9.

14. Lee JH, Daud AN, Cribs LL, Lacerda AE, Perezveze A, Klickner U, Schneider T, Perez-Reyes E. Cloning and expression of a novel member of the low voltage-activated T-type calcium channel family. *J Neurosci* 1999;19:1912–21.

15. Shcheglovitov AV, Vitko I, Bidaud J, Baumgart JP, Navarro-Gonzalez MF, Grayson TH, Lory P, Hill CE, Perez-Reyes E. Alternative splicing within the I-I loop controls surface expression of T-type Ca\(_{3.1}\) calcium channels. *FEBS Lett* 2008;582:3765–70.

16. Nie L, Zhu J, Gratton MA, Liao A, Mu KJ, Nunner W, Richardson GP, Yamash EN. Molecular identity and functional properties of a novel T-type Ca\(_{2+}\)-channel cloned from the sensory epithilia of the mouse inner ear. *J Neurophysiol* 2008;100:2287–99.

17. Chemin J, Monteil A, Bourinet E, Nargeot J, Lory P, alpha Apicalised. Alternatively spliced alpha1G(Ca\(_{v3.1}\)) intracellular loops promote specific T-type Ca\(_{2+}\)-channel gating properties. *Biophys J* 2001;80:1238–50.

18. Latour I, Louw DF, Beedle AM, Hamid J, Sutherland GR, Zamponi GW. Expression of T-type calcium channel splice variants in human glioma. *Glia* 2004;48:112–9.

19. BertoliS G, Walia Da Silva R, Jollimore CAB, Shi C, Barnes S, Kelly ME, CA KME. CaV3.1 splice variant expression during neuronal differentiation of Y-79 retinoblastoma cells. *Neuroscience* 2006;141:259–68.

20. Ohkubo T, Inoue Y, Kawanabayashi T, Kitamura K, Identification and Electrophysiological Characteristics of Isoforms of T-type Calcium Channel Ca\(_{3.1}\)-expressed in the sensory epithelia of the mouse inner ear. *J Neurophysiol* 2005;94:245–54.

21. Zhong X, Liu JR, Kyle JW, Hanck DA, Agnew WS. A profile of alternative RNA splicing and transcript variation of CACNA1H, a human T-channel gene candidate for idiopathic generalized epilepsies. *Hum Mol Genet* 2006;15:1497–512.

22. Swayne LA, Bourinet E. Voltage-gated calcium channels in chronic pain: emerging role of alternative splicing. *Pfügers Arch - Eur J Physiol* 2008;456:459–66.

23. Powell KL, Cain SM, Ng C, Sirdesai S, David LS, Kyi M, Garcia E, Tyson JR, Reid RA, Brown MJ, Toole ST, Jin CH, TP, Brien TJ. A Ca\(_{3.2}\) T-type channel point mutation has splice-variant-specific effects on function and segregates with seizure expression in a polygenic rat model of absence epilepsy. *J Neurosci* 2009;29:371–80.

Weiss N, Zamponi GW. J Med Genet 2020;57:1–10. doi:10.1136/jmedgenet-2019-106163 7 Neurogenetics
24 David LS, Garcia E, Cain SM, Thau T, Tyson JR, Shyu TP. Splice-variation changes of the Ca_{3.2} T-type calcium channel mediate voltage-dependent facilitation and associate with cardiac hypertrophy and development. *Channels* 2010;4:375–89.

25 Murbanić J, Anis JM, Lee J-H, Gorona JC, Perez-Reyes E. Alternative splicing of the rat Ca_{3.3} T-type calcium channel gene produces variants with distinct functional properties. *FEBS Lett* 2002;528:273–8.

26 Murbanić J, Anis JM, Perez-Reyes E. Functional impact of alternative splicing of human T-type Ca_{3.3} calcium channels. *J Neurophysiol* 2004;92:3399–407.

27 Zamponi GW, Stiessing J, Koschak A, Dolph TC. The physiology, pathology, and pharmacology of voltage-gated calcium channels and their future therapeutic potential. *Pharmacol Rev* 2015;67:821–70.

28 Jurkovicova-Tarabova B, Mackova K, Moravcikova L, Karmazinova M, Lacinova L. Role of individual 54 segments in regulation of Ca_{3.1} T-type calcium channel by voltage. *Channels* 2018;12:378–87.

29 Wolfe JT, Wang H, Howard J, Garrison JC, Barrett PQ. T-type calcium channel regulation by specific G-protein β-subunits. *Nature* 2003;424:209–13.

30 DePuy SD, Yao H, Jiu C, McIntyre W, Budai I, Lory P, Rastinejad F, Gonzalez C, Garrison JC, Barrett PQ. The molecular basis for T-type Ca_{2+} channel inhibition by G protein beta2gamma2 subunits. *Proc Natl Acad Sci USA* 2006;103:14950–5.

31 Welsby PJ, Wang H, Wolfe JT, Colban RJ, Johnson ML, Barrett PQ. A Mechanism for the Direct Regulation of T-Type Calcium Channels by Ca_{2+} /Calmodulin-Dependent Kinase II. *J Neurosci* 2003;23:10116–21.

32 Asmara H, Micu I, Rizwan AP, Sah B, Simms BA, Zhang F-X, Engbers JDT, Stys PK, Zamponi GW, Turner RW. A T-type calcium-channel complex triggers exocytosis. *Mol Biol Cell* 2017;31:4354–66.

33 Aramolana KA, Benzak KA, Cribs LL, Koo BD, Piedras-Renteria ES. T-type current modulation by the actin-binding protein Kelch-like 1. *Am J Physiol Cell Physiol* 2010;298:C1353–C1362.

34 Huang C-H, Chen Y-C, Chen C-C. Physical interaction between calmodulin and Cav3.2 T-type Ca_{2+} channel modulates their functions. *FEBS Lett* 2013;587:1723–30.

35 Weiss N, Hamed M, Fernandez-Fernandez JM, Fabbet K, Karmazinova M, Poillot C, Prof J, Chen L, Budai I, Montell A, Huc-Brandt S, Lacinova L, Lory P, Zamponi GW, De Waard M, Ma C, Aa DWM, Aa C_{3.2}/taxin-1A signaling complex controls T-type channel activity and low-threshold excitation. *J Biol Chem* 2012;287:2810–8.

36 Rzheptsyky I, Lazniwska J, Prof J, Campiglio M, Flucher BE, Weiss N, Aa C_{3.2}/taxin-1A molecular complex controls T-type channel expression at the plasma membrane. *Channels* 2016;10:346–54.

37 Cottrell GS, Soubrane CH, Housla JA, Lin H, Oenwen V, Rigby M, Cox PJ, Barker BS, Ottolini I, Ince S, Bauer CC, Perez-Reyes E, Patel MK, Stevens EB, Stephens GJ. CACHD1 is an ex6z-like Protein That Modulates Ca_{3.3} Voltage-Gated Calcium Channel Activity. *J Neurosci* 2018;38:19861–201.

38 Stephens GJ, Cottrell GS, CACHD1: a new activity-modifying protein for voltage-gated calcium channels. *Channels* 2019;13:120–3.

39 Garcia-Caballero A, Gadotti VM, Stransky O, Weiss N, Souza IA, Kass J, Alles S, Snitch TP, Zamponi GW. T-type calcium channels functionally interact with spectrin (αβ) and ankyrin B. *Mol Brain* 2011;8:1.

40 Turner RW, Zamponi GW. T-type channels buddy up. *Pflugers Arch - Eur J Physiol* 2014;466:661–75.

41 Garcia-Caballero A, Gadotti VM, Marchesci P, Weiss N, Souza IA, Hugolinian V, Bladen C, Chen L, Hamid J, Pizzoccaro A, Deage M, François A, Bourinet E, Zamponi GW. The deubiquitinating enzyme USP5 modulates neuropathic and inflammatory pain by enhancing Cav2.2 channel activity. *Neuron* 2014;83:1154–64.

42 Weiss N, Black SG, Bladen C, Chen L, Zamponi GW. Surface expression and function of T-type calcium channels are controlled by asparagine-linked glycosylation. *Pflugers Arch - Eur J Physiol* 2013;465:1159–70.

43 Orestes P, Orsu HF, McIntyre WE, Jusczak MO, Salajegheh R, Jagodic MM, Choe W, Lee J, Lee S-S, Rose KE, Poir D, DiGuglielmo MR, Krishnan K, Covey DF, Lee J-H, Barrett PQ, Jevtovic-Savicki T, Todorovic-Vuckovic V. Reversal of neuropathic pain in diabetes by targeting glycosylation of Cav3.2 T-type calcium channels. *Diabetes* 2013;62:3282–38.

44 Lazniwska J, Weiss N. The “sweet” side of ion channels. *Rev Physiol Biochem Pharmacol* 2014;167:67–114.

45 Lazniwska J, Rzheptsyky I, Zhang F-X, Zamponi GW, Weiss N. Cooperative roles of glucose and asparagine-linked glycosylation in T-type calcium channel expression. *Pflugers Arch - Eur J Physiol* 2016;468:1837–51.

46 Gouda M, Karmazinova M, Lazniwska J, Weiss N, Lacinova L. Modulation of Ca_{3.2} T-type calcium channel permeability by asparagine-linked glycosylation. *Channels* 2016;10:175–84.

47 Lazniwska J, Weiss N. Glycosylation of voltage-gated calcium channels in health and disease. *Biochim Biophys Acta Biomembr* 2017;1859:682–9.
Cav3.2 channel mutations linked to idiopathic generalized epilepsy. J Med Genet 2020;57:1–10. doi:10.1136/jmedgenet-2019-106163

77 Huguenard JR. Low-threshold calcium currents in central nervous system neurons. Annu Rev Physiol 1996;58:329–48.

78 Huguenard JR, McCormick DA. Simulation of the currents involved in rhythmic oscillations in thalamic relay neurons. J Neurophysiol 1992;68:1373–83.

79 Huguenard JR. Block of T-Type Ca2+(+) Channels Is an Important Action of Sustinemide Antiepileptic Drugs. Epilepsy Curr 2002;2:49–52.

80 Khosravani H, Zamponi GW. Voltage-gated calcium channels and idiopathic generalized epilepsies. Physiol Rev 2006;86:941–66.

81 Zamponi GW. Targeting voltage-gated calcium channels in neurological and psychiatric diseases. Nat Rev Drug Discov 2016;15:19–34.

82 Cain SM, Tyson JR, Choi H-B, Ko R, Lin PIC, LeDue JM, Powell KL, Bernier L-P, Rungta RL, Yang Y, Cullis PR, O’Brien TJ, MacIver CA, Snutch TP. Ca2+ 2-drivers sustained burst-firing, which is critical for absence seizure propagation in rat thalamic relay neurons. Epilepsia 2018;59:778–91.

83 Tskaridou E, Bertolì D, Curis M, Avanzini G, Pape HC. Selective increase in T-type calcium conductance of retinal thalamic neurons in a rat model of absence epilepsy. J Neurosci 1995;15:3110–7.

84 Zhang Y, Mori MA, Burgess DL, Noebels JL. Mutations in high-voltage-activated calcium channels stimulate low-voltage-activated currents in mouse thalamic relay neurons. J Neurosci 2002;22:8362–71.

85 Zhang Y, Vlachyopoulou AP, Yoshir D, Noebels JL. Elevated thalamic low-voltage-activated currents precede the onset of absence epilepsy in the SNAP25-deficient mouse mutant cobaloma. J Neurosci 2004;24:5329–48.

86 Ernst WL, Zhang Y, Yoo JW, Ernst SJ, Noebels JL. Genetic enhancement of thalamocortical network activity by elevating alpha-thalamic T-type voltage-gated calcium current purifies absence epilepsy. J Neurosci 2009;29:1615–25.

87 Tringham E, Powell KL, Cain SM, Klapst K, Mezevody J, Weerapura M, Eduljee C, Jiang X, Smith P, Morrison JL, Jones NC, Braine E, Rind G, Fee-Maki M, Parker D, Pajouhesh H, Parmar M, O’Brien TJ, Snutch TP. T-type calcium channel blockers that attenuate thalamic burst firing and suppress absence seizures. Science Translational Medicine 2012;4.

88 Powell KL, Cain SM, Snutch TP, O’Brien TJ. Low threshold T-type calcium channels as targets for novel epilepsy treatments. Br J Clin Pharmacol 2014;77:279–32.

89 Castillas-Espinosa PM, Hicks A, Jeffrey A, Snutch TP, O’Brien TJ, Powell KL, ZH44, a novel selective T-type calcium channel antagonist delays the progression of seizures in the amygdala kindling model. PLoS One 2015;10:e0130012.

90 Capovilla G, Beccaria E, Vezzotti P, Rubboli G, Melleti S, Tassinari CA. Eosinomimetic is effective in the treatment of epileptic negative myoclonus in childhood partial epilepsy. J Child Neurol 1999;14:399–405.

91 Mattsson RH, Cramer JA, Williamson PD, Novelly RA. Valproic acid in epilepsy: clinical and pharmacological effects. Ann Neurol 1978;3:25–5.

92 Kisvan SC, Chuang Y-C, Huang C-W, Chen TF, Jou SB, Dash A. Zonisamide: review of recent clinical evidence for treatment of epilepsy. CNS Neurosci Ther 2015;21:683–91.

93 Chen Y, Lu J, Pan H, Zhang Y, Wu H, Xu X, Liu X, Jiang Y, Bao X, Yao Z, Ding K, Lo WHY, Qiang B, Chan P, Shen Y, Wu X. Association between genetic variation of CACNA1H and childhood absence epilepsy. Ann Neurol 2003;54:239–43.

94 Heron SE, Phillips HA, Mullen JC, Maceachin A, Neufeld MY, Geschwind DH. Genetics of autism disease mechanisms through genetics. Nat Rev Drug Discov 2016;594:5839–49.

95 Pajouhesh H, Negro G, Tuluc P, Brown MJ, Lieb A, Streissguth J. Gating defects of disease-causing new mutations in Ca1.3 T-type Ca(2+) channel proteins. Channels 2018;12:388–402.

96 Hardiman O, Al-Chalabi A, Chio A, Corr EM, Logroscino G, Robberecht W, Shaw PJ. Simmons D, van den Berg LH. Amyotrophic lateral sclerosis. Nat Rev Dis Primers 2017;3.

97 Gibson SB, Downie JM, Tsetssou S, Feurer J, Figueroa KP, Bromberg MB, Jorde LB, Pult SM. The evolving genetic risk for sporadic ALS. Neurology 2017;89:226–33.

98 Steinberg KM, YU, Koboldt DC, Mardis ER, Pamphlett R. Exome sequencing of case-unaffected parents trio reveals recessive and de novo genetic variants in sporadic ALS. Sci Rep 2015;5:1.

99 Rzhetsky S, Lazniewski J, Blencowe I, Pamphlett R, Weiss N. CACNA1H missense mutations associated with amyotrophic lateral sclerosis alter Cav3.2 T-type calcium channel activity and reticular thalamic neuron firing. Channels 2016;10:466–77.

100 Canto-Bustos M, Loeeza-Álcor E, González-Ramírez R, Gandini MA, Delgado-Lezama R, Felix R. Functional expression of T-type Ca2+ channels in spinal motor neurons of the adult turtle. PLoS One 2016;11:e015818.

101 Zhang Z, David G. Stimulation-induced Ca2+ influx at nodes of Ranvier in mouse peripheral motor axons. J Neurophysiol 2016;99:39–57.

102 Park SB, Kiernan MC, Vucic S. Axonal excitability in Amyotrophic Lateral Sclerosis: Axonal Excitability in ALS. Neurotherapeutics 2017;14:78–90.

103 Kim J-W, Oh HA, Lee SH, Kim KC, Eun PH, Ko MJ, Gonzalez EL, Seung H, Kim S, Bahn GH, Shin CY. Type calcium channels are required to maintain viability of neuronal progenitor cells. Biomol Ther 2018;26:439–45.

104 Carter MT, McMillan HI, Tomlin A, Weiss N. Compound heterozygous CACNA1H mutations associated with severe congenital amyotrophy. Channels 2019;13:153–61.

105 Duthie DE, Vlachenko-Kapinosky VY, Khomula E, Voitenko VN, Belan P. Upregulation of T-type Ca2+ channels in long-term diabetes determines increased excitability of a specific type of capsaicin-in sensitive DRG neurons. Mol Pain 2015;11.

106 Jagodic MM, Pathiratnha S, Jokovic PM, Lee W, Nelson MT, Naik AK, Su P, Jevtic-Todorovic V, Todorovic M. Upregulation of the T-type Ca(2+) current in small rat sensory neurons after chronic constrictive injury of the sciatic nerve. J Neurophysiol 2009;101:1878–91.

107 Marage E, Golea A, Allouie A, Matronic J, Ferrer JFS, Barrière C, Pizzocaro A, Muller E, Nargeot J, Snutch TP, Eschalier A, Bourinet E, Ardiz D. T-type calcium channels contribute to colonic hypersensitivity in a rat model of irritable bowel syndrome. Proc Natl Acad Sci U S A 2011;108:11268–73.

108 Gadotti VM, Caballero AG, Berger ND, Gladding CM, Chen L, Pfeifer TA, Zamponi GW. Small organic molecular disruptors of Cav3-2 USPs interactions reverse inflammatory and neuropathic pain. Mol Pain 2015;11.

109 Garcia-Caballero A, Gadotti VM, Chen L, Zamponi GW. A cell-permeant peptide corresponding to the clpB domain of USPs reverses inflammatory and neuropathic pain. Mol Pain 2016;12:doi:10.1186/s12984-016-0444-4.

110 Stekowskii P, Garcia-Caballero A, Gadotti VDM, MDahoma S, Huang S, Black SAG, Chen L, Souza IA, Zhang Z, Zamponi GW. TRPV1 nociceptor activity initiates USPs-1 type calcium channel-mediated hyperexcitability. Cell Rep 2016;17:2901–12.

111 Souza IA, Gandini MA, Wan MM, Zamponi GW. Two heterozygous Cav3.2 channel mutations in a pediatric chronic pain patient: recording condition-dependent biophysical effects. Pfugers Arch 2016;468:635–42.
131 Schrier AD, Wang H, Talley EM, Perez-Reyes E, Barrett PO, Alpha1H T-type Ca2+ channel is the predominant subtype expressed in bovine and rat zona glomerulosa. *Am J Physiol Cell Physiol* 2001;280:C265–C272.

132 Scholl UI, Stöfling G, Nelson-Williams C, Vichot AA, Choi M, Loring E, Prasad ML, Goh G, Carlng T, Juhlın CC, Quack I, Rump LC, Thiel A, Lande M, Frazier BG, Rasoulpour M, Bowlin DL, Sethna CB, Trachtman H, Fahlke C, Lifton RP. Recurrent gain of function mutation in calcium channel CACNA1H causes early-onset hypertension with primary aldosteronism. *Elife* 2015;4:e06315.

133 Reimer EN, Walenda G, Seidel E, Scholl UI. CACNA1H(M1549V) Mutant Calcium Channel Causes Autonomous Aldosterone Production in HAC15 Cells and Is Inhibited by Mibeferadil. *Endocrinology* 2016;157:3016–22.

134 Danill G, Fernandes-Rosa Fl, Chemin J, Blesneac I, Belbrand J, Polak M, Jeunemaitre X, Boukloun S, Amar L, Strom TM, Lory P, Zennaro M, Reimer EN, Mancuso M, Nordgaard J, Jansson LB. Genetics of schizophrenia: overview of methods. *Front Hum Neurosci* 2013;7:7.20.1–7.20.41.

135 Scholl UI, Goh G, Stöfling G, de Oliveira RC, Choi M, Overton JD, Forseca AL, Korah H, Rump LC, Lifton RP, Nordgaard J, Jansson LB. Genetics of schizophrenia: overview of methods. *Nat Genet* 2013;45:1050–4.

136 Flanagan SE, Vairo F, Johnson MB, Caswell R, Laver TW, Lango Allen H, Hussain K, Ellard S. A Cacna1d mutation in a patient with persistent hyperinsulinaemic hypoglycaemia, heart defects, and severe hypotonia. *Pediatr Diabetes* 2017;18:320–3.

137 Mancuso M, Orsucci D, Siciliano G, Bonuccelli U. The genetics of ataxia: through the labyrinth of the Minotaur, looking for Ariadne’s thread. *Curr Protoc Hum Genet* 2018;4:e06315.

138 Coutelier M, Blesneac I, Morino H, Matsuda Y, Muguruma K, Miyamoto R, Ohsawa R, Ohtake T, Otobe R, Blesneac I, Beltrand J, Polak M, Jeunemaitre X, Blesneac I, Aker M, Petty LE, Chen J, Cavalcanti F, Nelson AB, Coppola G, Below J, Jeffe FG. Expanding the global prevalence of spinocerebellar ataxia type 2. *Neuro Genet* 2018;4:e232.

139 Chemin J, Siquier-Pernet K, Nicouleau M, Garcia B, Ahmad A, Medina-Cano D, Hanein S, Altin N, Hubert L, Bole-Feyot C, Foursac C, Nitschke P, Theronn J, Rio M, Blanc P, Vidal C, Bahi-Buisson N, Desguerre I, Munnich A, Lyonnet S, Boddart N, Fiasse I, Shimawi M, Zimmerman H, Amiel J, Faivre L, Colleaux L, Lory P, Cantagrel V. Of novo mutation screening in childhood-onset cerebellar atrophy identifies gain-of-function mutations in the CACNA1G calcium channel gene. *Brain* 2013;141:1998–2013.

140 Li X, Zhou C, Liu S, Zhu L, Du H, Liu J, Wang C, Fang S. A case of a novel CACNA1G mutation from a Chinese family with SCA42: a case report and literature review. *Medicine* 2018;97:e12148.

141 Singh B, Monteil A, Bidaud J, Sugimoto Y, Suzuki T, Hamano S-i,chiyo, Oguni H, Osawa M, Alonso ME, Delgado-Escueta AV, Inoue Y, Yasui-Furukori N, Kaneko S, Lory P, Yamakawa K. Mutational analysis of CACNA1G in idiopathic generalized epilepsy. Mutation in brief #962. Online. *Hum Mutat* 2007;28:524–5.

142 Calhoun JD, Hawkins NA, Zachwieja NJ, Kearney JA. Cacna1g is a genetic modifier of epilepsy caused by mutation of voltage-gated sodium channel SCN2A. *Epilepsia* 2016;57:e103–7.

143 Calhoun JD, Hawkins NA, Zachwieja NJ, Kearney JA. Cacna1g is a genetic modifier of epilepsy in a mouse model of Dravet syndrome. *Epilepsia* 2017;58:e111–5.

144 Gulsuner S, Walsh T, Watts AC, Lee MK, Thornton AW, Casadei S, Rippey C, Shahin H, Nimipankar VL, Go RC, Savage RM, Sverdlov NR, Gur RE, Braid DL, King M-C, McClellan JM, Consortium on the Genetics of Schizophrenia (COGS), PAARTNERS Study Group. Spatial and temporal mapping of de novo mutations in schizophrenia to a fetal prefrontal cortical network. *Cell* 2013;154:518–29.

145 Henriksson MG, Nordgaard J, Jansson LB. Genetics of schizophrenia: overview of methods, findings and limitations. *Front Hum Neurosci* 2017;11:.

146 Andrade A, Hope J, Allen A, Yorgan V, Lipscombe D, Pan JD. A rare schizophrenia risk variant of CACNA1A disrupts Ca3.3 channel activity. *Sci Rep* 2016;6.

147 Wang J, Zhang Y, Liang J, Pan H, Wu H, Xu K, Liu X, Jiang Y, Shen Y, Wu X. CACNA1A is not associated with childhood absence epilepsy in the Chinese Han population. *Pediatr Neurosci* 2006;35:187–90.

148 Adzhubei I, Jordan DM, Sunyaev SR. Predicting functional effect of human missense mutations using PolyPhen-2. *Curr Protoc Hum Genet* 2013;Chapter 7:7.20.1–7.20.41.

149 Kammenga JE. The background puzzle: how identical mutations in the same gene lead to different disease symptoms. *F e b s J (2 0 1 7 ; 2 8 4 : 3 6 2 – 7 3)

150 Weiss N, Zamponi GW. *J Med Genet* 2020;57:1–10. doi:10.1136/jmedgenet-2019-106163