HIV proviral DNA integration can drive T cell growth ex vivo

John K. Yoon, Joseph R. Holloway, Daria W. Wells, Machika Kaku, David Jetton, Rebecca Brown, and John M. Coffin

*Program in Immunology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111; †Program in Pharmacology and Experimental Therapeutics, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111; ‡Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick, MD 21704; §Program in Genetics, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111; and ‡Department of Molecular Biology and Microbiology, Tufts University, Boston, MA 02111

Edited by Stephen P. Goff, Columbia University Medical Center, New York, NY, and approved October 3, 2020 (received for review July 2, 2020)

In vivo clonal expansion of HIV-infected T cells is an important mechanism of viral persistence. In some cases, clonal expansion is driven by HIV proviral DNA integrated into one of a handful of genes. To investigate this phenomenon in vitro, we infected primary CD4+ T cells with an HIV construct expressing GFP and, after nearly 2 mo of culture and multiple rounds of activation, analyzed the resulting integration site distribution. In each of three replicates from each of two donors, we detected large clusters of integration sites with multiple breakpoints, implying clonal selection. These clusters all mapped to a narrow region within the STAT3 gene. The presence of hybrid transcripts splicing HIV to STAT3 sequences supports a model of LTR-driven STAT3 overexpression as a driver of preferential growth. Thus, HIV integration patterns linked to selective T cell outgrowth can be reproduced in cell culture. The single report of an HIV provirus in a case of AIDS-associated B-cell lymphoma with an HIV provirus in the same part of STAT3 also has implications for HIV-induced malignancy.

Results

We infected CD3/CD28-activated human primary naïve CD4+ T cells (Fig. 1A) from two donors in triplicate with a VSV-G pseudotyped HIV-1 vector, with GFP in place of env; at ca. 1 infectious unit per cell. Cultures were grown for ∼2 mo in the presence of IL-2 with periodic CD3/CD28 reactivation, while monitoring for activation markers (Fig. 1B) and frequency of infection (Fig. 1C). The frequency and distribution of proviral DNA integration into genomic DNA was assessed by the linker-mediated PCR integration site assay (Fig. 1D), incorporating a shearing step (2, 4) to assess the relative frequency of descendants of single infected cells. In all, 202,179 and 524,691 total integration sites were mapped from donors 1 and 2, respectively (Fig. 2A), out of which 165,190 and 464,487 represented unique events (Dataset S1). HIV proviral integration was found in 10,079 and 11,993 genes for donors 1 and 2, reflecting robust coverage across the genome.

As expected (5), genes were preferred for integration, and there was modest clonal expansion (more than two breakpoints per site) during the course of the experiment, with little indication of HIV-influenced expansion (Fig. 2A). At day 57, most integration sites were present in fewer than 10 breakpoints per site and were evenly distributed along all chromosomes (Fig. 2B, Middle).

Most notably, however, dense clusters of integration sites were observed in cultures from both donors and all replicates on day 57 after the third reactivation (Fig. 2B, Middle). These clusters mapped to a small region of the STAT3 gene (Fig. 2C), with high levels of clonal expansion of cells containing proviruses within the first three introns in both donor sets (Fig. 2C and Dataset S2). As has been described previously for selected integrations (2), the highly expanded integration sites in STAT3 were (with one exception) in the same transcriptional orientation as the gene, with all but two of them in a 10-kb region, mostly in intron 3. There was also a large expanded clone with a provirus upstream of the first coding exon in donor 2. The probability of these events occurring randomly is extremely low ($P = 3.5 \times 10^{-10}$).

In the extensively studied cases of oncogenic gene modification by oncogenic retroviruses (6), proviral insertion enhances overall transcription levels and can alter the structure of the protein product. In the present study, we detected long terminal repeat (LTR) STAT3 spliced fusion transcripts in donors 1 and 2, in the day 57 samples (Fig. 2C). Most of the chimeric transcripts detected were predicted to result in proteins containing either a partial or complete deletion of the N-terminal domain (NTD) of STAT3 (Fig. 2C). It is likely that enhanced expression of proteins encoding either full-length or partially truncated STAT3 protein imparted a selective advantage to cells.

We estimate that cells with proviruses in the selected region of STAT3 increased about 100-fold in relative frequency over the course of the study, to about 0.3% of the population at day 57. From the relative breakpoint counts in the selected region of STAT3 at day 57, as compared to day 42, and assuming a doubling time of about 1 d, this increase corresponds to an average growth advantage of about 18% per day (Dataset S2).

Discussion

The STAT3 protein has a role in the expression of a variety of genes in response to cell stimuli, including in cell division (7). As such, constitutive expression and phosphorylation of STAT3 can play a role in deregulated growth and oncogenesis (7). Our

Author contributions: J.K.Y. and J.M.C. designed research; J.K.Y., J.R.H., M.K., D.J., and J.M.C. analyzed data; and J.K.Y., D.W.W., M.K., D.J., and J.M.C. wrote the paper.

Competing interest statement: J.K.Y. is an employee of Avrobio, Inc. J.M.C. is a member of the Scientific Advisory Board of ROME Therapeutics, Inc.

This open access article is distributed under Creative Commons Attribution License 4.0 (CC BY).

Present Address: Department of Preclinical Research and Development, AVROBIO, Inc., Cambridge, MA 02139.

Present Address: Department of Biological & Chemical Sciences, New York Institute of Technology, Old Westbury, NY 11568.

To whom correspondence may be addressed. Email: john.coffin@tufts.edu.

This article contains supporting information online at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2013194117/-/DCSupplemental.

First published December 14, 2020.
results show that modification of STAT3 expression by HIV-1 proviral integration can promote cell overgrowth ex vivo, and suggest that the STAT3 NTD is not crucial for its proliferative promoting functions, in line with a previous result (8). The NTD is part of the dimerization surface in STAT3 and is important for efficient nuclear accumulation, DNA binding, and regulation of gene expression (8), including the regulation of proapoptotic gene expression in cancer cells (9). Additional studies looking into the impact of overexpressing NTD truncated STAT3 proteins and their effect on T cell growth and response to cytokine stimulation will help clarify the role of the STAT3 NTD.

HIV integration into STAT3 has previously been linked, in a case report, to the formation of B cell lymphoma (10), in which a defective provirus integrated upstream of the first STAT3 coding exon (Fig. 2 C, Top, green triangle). Although this is a single case, these data suggest that up-regulation of a protooncogene by HIV-1 insertional mutagenesis may have resulted in the development of a lymphoma, likely involving a mechanism similar to what we report here. Although HIV primarily infects CD4+ T cells, low-level infection of other cell types, including B cells, has been reported (11). Unlike CD4+ T cells, such cells, if transformed by proviral integration, would not be good targets for HIV superinfection and killing, allowing even rare infected cells to grow into a tumor. Further investigation of the implied direct role for HIV integration in AIDS lymphomas and other malignancies is obviously warranted.

While sporadic amplification of cells with integration sites in other genes was present (Dataset S2), likely reflecting a second provirus in some cells, there was no evidence of expansion linked to BACH2, MKL2, STAT5B, or any other gene, perhaps because selection for integration in these genes reflects a specific in vivo effect, such as suppression of cell death, rather than promotion of growth. Although insertional mutagenesis leading to cellular outgrowth, in the form of cancer, is well documented for other

Fig. 1. Experimental approach. (A) Timeline of CD4+ T cell culture, activation, infection, and DNA extraction for ISA. (B) Activation of T cells as measured by CD25/CD69 expression over the course of the experiment. (C) GFP expression during the study. (D) Overview of the ISA.

Fig. 2. Clonal expansion of cells with proviruses in STAT3. (A) Time course of integration site distribution. (B) Day 3 (Top) and day 57 (Middle) integration site distribution and breakpoint totals across the entire genome and chromosome 17 (Bottom). Locations are percent of the total genome. Chromosome numbers are above each plot. (C) Day 57 integration site totals in STAT3. Top shows the entire gene; Middle and Bottom show successive amplification of the integration cluster. Lines represent intron boundaries: blue dotted lines, splice donor; red solid lines, acceptor. Transcriptional orientation is depicted left-to-right. Translation start site is indicated by the black arrows. The position of an HIV-1 provirus identified in a B cell lymphoma (10) is shown by the green arrow. (D) Structures of HIV–STAT3 transcripts detected using RT-PCR (nested primer sets shown as black arrows). Start sites in the linear STAT protein structure 3 (reprinted from ref. 8, which is licensed under CC BY 4.0) at the bottom show truncations predicted from integration in introns 2 or 3 and 4.
Materials and Methods

Naive CD4+ T cells from two normal donors were obtained from Stemcell Technologies and infected with NL4-3 ΔEnv EGFP a VSV-G pseudotyped HIV-1 vector, with GFP in place of env. Cultures were maintained in triplicate in IL-2–containing medium, splitting as necessary (Fig. 1 A–C), and reactivated with CD3/CD28 stimulating beads at weeks 2 and 6. Longitudinal samples were harvested for ISA (Fig. 1D).

DNA was sheared by sonication, and subjected to linker-mediated PCR and paired-end sequencing using an Illumina HiSeq platform. Results were analyzed according to established ISA workflows (2, 4). Total RNA was extracted, DNase treated, and reverse-transcribed into complementary DNA. Amplification of chimeric HIV–STAT3 transcripts was obtained by two sequential nested PCR reactions using primer sets complementary to the HIV LTR and STAT3 exon 6S. Amplified bands were cloned and Sanger sequenced. Sequences of the products obtained are shown schematically in Fig. 2D and have been deposited in GenBank under accession numbers MW323052–MW323066.

Data Availability. Study data are included in the article and SI Appendix. All integration site data can be found in the Retrovirus Integration Database (https://rid.ncifcrf.gov) and accessed using the PubMed ID of this paper. Sequences of the chimeric RNAs shown in Fig. 2C have been deposited in GenBank under accession numbers MW323052–MW323066.

ACKNOWLEDGMENTS. We thank Albert Tsai and the Tufts Genomics core facility for their DNA sequencing support and consultation, as well as Megan Montesion, Zachary Williams, Farrah Roy, Neeru Bhardiwaj, and Michael Freeman for helpful discussions and support. Members of the National Cancer Institute (NCI) HIV Dynamics and Replication Program provided valuable feedback. J.M.C. was a Research Professor of the American Cancer Society. This work was supported by NCI Grant R35 CA 200421.