Potential interactions between antineoplastic agents and medicines used to treat Covid-19

Mario Jorge Sobreira da Silva¹, Claudia Garcia Serpa Osorio-de-Castro², Rafael Duarte Paes³, Christopher Lucas Negrete⁴, Elizangela Eugênio⁵, Elaine Lazzaroni Moraes¹ and Annemeri Livinalli⁶

Abstract

Introduction: Cancer patients with Covid-19 are exposed to treatment combinations that can potentially result in interactions that adversely affect patient outcomes. This study aimed to identify potential drug–drug interactions between antineoplastic agents and medicines used to treat Covid-19.

Methods: We conducted a search for potential interactions between 201 antineoplastic agents and 26 medicines used to treat Covid-19 on the Lexicomp® and Micromedex® databases. The following data were extracted: interaction severity (“major” and “contraindicated”) and interaction effects (pharmacokinetic and pharmacodynamic). We also sought to identify the therapeutic indication of the antineoplastic drugs involved in the potential drug–drug interactions.

Results: A total of 388 “major” or “contraindicated” drug–drug interactions were detected. Eight drugs or combinations (baricitinib, lopinavir/ritonavir, atazanavir, darunavir, azithromycin, chloroquine, hydroxychloroquine, and sirolimus) accounted for 91.5% of these interactions. The class of antineoplastic agents with the greatest potential for interaction was tyrosine kinase inhibitors (accounting for 46.4% of all interactions). The findings show that atazanavir, baricitinib, and lopinavir/ritonavir can affect the treatment of all common types of cancer. The most common pharmacokinetic effect of the potential drug–drug interactions was increased plasma concentration of the antineoplastic medicine (39.4%).

Conclusions: Covid-19 is a recent disease and pharmacological interventions are undergoing constant modification. This study identified a considerable number of potential drug–drug interactions. In view of the vulnerability of patients with cancer, it is vital that health professionals carefully assess the risks and benefits of drug combinations.

Keywords
Covid-19, drug–drug interactions, antineoplastic agents

Introduction
According to the World Health Organization’s International Agency for Research on Cancer (IARC), it is estimated that there will be more than 25 million new cases of cancer and 16.5 cancer deaths worldwide by 2040.¹

Cancer patients are frequently older (≥60 years) and tend to have one or more key comorbidities. Moreover, they tend to experience a decline in immune function, making them more susceptible to respiratory diseases such as pneumonia, especially in the case of hematologic malignancies.²–⁵

¹National Cancer Institute of Brazil, Brazil
²Sergio Arouca National School of Public Health, Brazil
³Oncoclinicas of Brazil, Brazil
⁴Sírio-Libanês Hospital, Brazil
⁵AMO Clinic, Brazil
⁶CF Onco, Brazil

Corresponding author:
Mario Jorge Sobreira da Silva, Rua Marquês de Pombal, 125, 3° andar – Centro, Rio de Janeiro, RJ 20230-240, Brazil.
Email: mjsobreira@yahoo.com.br
Cancer patients have been defined as a risk group for severe Covid-19 ever since the start of the coronavirus pandemic in 2020. There are no recommendations for deviations from standard care for patients with cancer, who should be offered adequate treatment, including chemotherapy. However, a recently published systematic review and meta-analysis shows that patients on active chemotherapy may be at a higher risk of death from Covid-19. Cancer patients with Covid-19 are exposed to treatment combinations that can potentially result in loco interactions that adversely affect patient outcomes.

Various types of chemotherapy regimens involving the use of different combinations of injectable and oral drugs cause side effects. The efficacy and safety of currently available treatments for Covid-19 have yet to be fully evaluated. This is particularly due to the evolution of experimental therapies and a growing body of evidence of the multisystemic effects of SARS-CoV-2. A cohort study involving cancer patients with Covid-19 identified 49 different treatment patterns, showing that the most commonly used medicines were hydroxychloroquine, azithromycin, remdesivir, high-dose corticosteroids, and tocilizumab, taken alone and in combination.

The increasing number of new cancer cases, substantial heterogeneity in cancer types, patient vulnerability, a diverse range of chemotherapy protocols, high transmissibility of SARS-CoV-2, and a wide variety of treatments currently adopted around the world are cause for concern.

The aim of this study was to identify potential interactions between antineoplastic agents and medicines used to treat Covid-19 on the Lexicomp® and Micromedex® databases in order to contribute to the therapeutic management of cancer patients on chemotherapy.

Method

We conducted a descriptive study with the aim of analyzing potential drug–drug interactions (DDIs) between Covid-19-related treatments (trials or clinical experience) and drugs used to treat cancer.

The medicines used to treat Covid-19 were selected from a list of 34 drugs published by the American Society of Health-System Pharmacists (ASHP) on May 1st 2020. After analyzing the list, it was decided to exclude medicines used for both cancer and Covid-19 (dexamethasone, hydrocortisone, and methylprednisolone), as well as those with no evidence to support use in the treatment of Covid-19 (ibuprofen, HMG-CoA reductase inhibitors, nelfinavir, saquinavir, and tipranavir), resulting in a final sample of 26 medicines (ascorbic acid, albuterol, alteplase, anakinra, atazanavir, azithromycin, baloxavir, baricitinib, chloroquine, colchicine, darunavir, epoprostenol, favipiravir, heparin, hydroxychloroquine, immunoglobulin, indomethacin, ivermectin, lopinavir/ritonavir, nitazoxanide, nitric oxide, oseltamivir, remdesivir, ruxolitinib, sirolimus, and tocilizumab).

The list of drugs used to treat cancer was obtained from the Brazilian Manual of Clinical Oncology. A total of 228 medicines were identified. Medicines administered by topical, inhalation, ocular, and otic routes were excluded, resulting in a final sample of 201 antineoplastic agents. In this regard, antineoplastic agents administered by the topical and ocular (intravitreal) routes show low absorption, while the inhalation and otic routes are not commonly used for the administration of anticancer drugs.

A search for potential interactions between medicines from both groups was conducted using the Lexicomp® and Micromedex® databases. These widely used databases are constantly updated and offer high-performing tools for analyzing anticancer drug interactions.

We used the International Nonproprietary Name (INN) of the selected medicines to detect potential interactions. The following information was extracted from the databases: interaction severity and interaction effects.

With regard to severity, interactions with the following ratings were selected: Lexicomp®—“D. Consider Therapy Modification” or “X. Avoid Combination”; Micromedex®—“Major” or “Contraindicated”. The ratings “D. Consider Therapy Modification” and “major”, and “X. Avoid Combination” and “contraindicated” were considered equivalent for the purposes of this study. When the interaction rating differed between the databases (for example “X” on Lexicomp® and “major” on Micromedex®), we considered the most severe rating. Strength of Recommendation and Strength of evidence were not considered.

The data were collected in June 2020 and compiled using a Microsoft Excel® spreadsheet.

Interaction effects were grouped into pharmacokinetic effects and pharmacodynamic effects. We also sought to identify the therapeutic indications of the antineoplastic agents involved in the potential DDI in order to detect the types of cancer most affected by interaction effects. Cancer types were grouped according to the affected system or organ as follows: hematologic malignancies (lymphoid leukemia, myeloid leukemia, lymphoma, multiple myeloma, and myelodysplastic syndromes) and solid tumors (head and neck, gastrointestinal, genitourinary, gynecologic, breast, melanoma and skin, lung and soft tissue).

The medicines identified as having potential DDIs were categorized based on the WHO’s Anatomical Therapeutic Chemical (ATC) classification system. For presentation purposes, the antineoplastic agents were grouped into therapeutic classes using the third level of the ATC system.

Results

We compiled 5,526 potential combinations between the two drug groups and detected 388 potential DDIs rated as...
The Covid-19 according to the type of malignancy (Table 2). Antineoplastic agents and medicines used to treat Covid-19 was tyrosine kinase inhibitors (TKIs, 46.4%), followed by other antineoplastic agents (13.9%) and plant alkaloids (10.8%) (Table 1).

The class of antineoplastic agents that showed the highest number of interactions with medicines used to treat Covid-19 was tyrosine kinase inhibitors (TKIs, 46.4%), followed by other antineoplastic agents (13.9%) and plant alkaloids (10.8%) (Table 1). Based on the pharmacologic class and chemotherapy regimens, we listed the potential interactions between antineoplastic agents and medicines used to treat Covid-19 according to the type of malignancy (Table 2). The findings show that atazanivir, baricitinib, and lopinavir/ritonavir can affect the treatment of all common types of cancer. The malignancies that showed the highest number of DDIs were: hematologic malignancies—lymphoid leukemia (10.0%) and lymphoma (9.2%); solid tumors—genitourinary (14.5%), lung (13.3%), and breast (12.2%) cancer.

A relevant pharmacokinetic effect (increased plasma drug concentration) was identified in 264 of the DDIs: 164 DDIs (39.4%) can result in increased plasma concentration of the medicine used to treat Covid-19; and 100 DDIs (24.0%) can result in increased plasma concentration of the antineoplastic agent. With regard to pharmacodynamic effects, increased risk of changes in cardiac parameters was identified in 98 (23.6%) of the potential DDIs (Table 3).

Discussion

Cancer patients and the health professionals who care for them are facing unprecedented challenges in these times of Covid-19, with evidence suggesting that cancer patients are especially vulnerable to the disease.21

The literature highlights the complexity of potential interactions between drugs used to treat Covid-19 and antineoplastic agents.22 Cancer patients are, per se, at increased risk of DDIs.22 Since only a limited number of studies provide robust evidence of the nature of these interactions, taking into account the disease morbidity rate,9 it is important to alert oncology practitioners to the potential risks to patients beyond those posed by the disease.

Our findings show that, when used in different combinations, 201 antineoplastic agents and 26 medicines used to treat Covid-19 resulted in 388 potentially severe (“major” or “contraindicated”) DDIs. This is a considerable number, bearing in mind the relative intensity of treatment for Covid-19 in debilitated patients with impaired body functions, who may require high doses of different drugs, thus increasing the risk of interactions.6,23

Among the investigational drugs used to treat Covid-19, baricitinib showed the greatest potential for interaction with the antineoplastic agents analyzed by this study. Based on the findings of the ACTT-2 study,24 in November 2020, the Food and Drug Administration (FDA) granted authorization for the emergency use of baricitinib in combination with remdesivir to treat Covid-19.23,25,26 Most of the baricitinib interactions involve targeted therapy drugs, especially TKIs used for the treatment of hematologic malignancies (dasatinib, imatinib, idelalisib, and nilotinib). Baricitinib also has major interactions with multikinase inhibitors (pazopanib, sunitinib, and sorafenib) and cyclin-dependent kinase inhibitors (abemaciclib and palbociclib) which are commonly used on malignant solid tumors. These interactions are explained by the fact that TKIs potently inhibit the hepatic uptake transporters OATP1B1 and OATP1B3,27 one of the substrates of baricitinib, leading to decreased renal clearance and an increase in the area under the concentration time curve (AUC).28

The findings of the current study show that lopinavir/ritonavir had the largest number of “contraindicated” interactions. Lopinavir/ritonavir is used to treat the human immunodeficiency virus (HIV) in combination with other antiretroviral drugs. However, there is still no evidence of efficacy of the drug against Covid-19.29 Lopinavir and ritonavir are potent inhibitors of CYP3A4,30,31 which is the most abundant cytochrome P450 isoform in the human body and responsible for the metabolism of many drugs,30 significantly affecting TKIs, particularly those used for the treatment of advanced lung cancer with activating mutations, malign hematologic neoplasms and breast cancer.32

The findings show that atazanivir has one of the highest numbers of “contraindicated” and “major” DDI interactions when used in combination with antineoplastic agents. The drug is a protease inhibitor used in combination with other antiretroviral agents for the treatment of HIV.33 Its indication as an experimental drug for the treatment of Covid-19 appears to be based on data reported by a study showing the potency of binding atazanivir with 2019-nCoV 3C-like protease.34 Atazanivir is a substrate and moderate inhibitor of cytochromes P450, particularly CYP3A4, which is an inhibitor of uridine diphosphate glucuronosyltransferase 1A1 (UGT1A1), potent inhibitor of hepatic uptake transporters OAT and inhibitor of the breast cancer resistance protein (BCRP), which facilitates interactions with various antineoplastic agents, potentially leading to an increased risk of toxicities.35

Daranavir is another antiretroviral protease inhibitor indicated for the treatment of HIV.36 Together with atazanivir, daranavir was developed to combat drug resistance mutations, mainly by increasing the number of polar
interactions with the main atoms in the HIV protease chain. Studies using computational molecular modeling indicate that both darunavir and atazanavir are promising drugs for the treatment of Covid-19, as SARS-COV-2 is also part of the family of RNA viruses. Darunavir is a substrate and strong inhibitor of CYP3A4, inhibitor of CYP2D6, and substrate and inducer of P-glycoprotein (P-gp), which explains its potential to interact with alkylating agents, antimetabolites, taxanes, topoisomerase inhibitors, and various TKIs.
With regard to cancer treatment, the findings show that protease inhibitors such as atazanavir and darunavir are a class of medicines with high risk of interactions with anti-neoplastic agents in both cytotoxic and targeted molecular therapy. Medicines in this class should therefore be indicated with caution for the experimental treatment of Covid-19 in patients with cancer.

Based on the preliminary findings of in vitro studies demonstrating its immunomodulatory properties, azithromycin is now considered for the clinical management of

Medications used for the treatment of Covid-19

Medications used for the treatment of cancer	Acrlovir	Azelaic acid	Azithromycin	Bexilum	Chlorambucil	Cisplatin	Danazol in combination with	Dapson	Dexamethasone	Epotropyl	Erythropoetin	Eribulin	Erlotinib	Estramustine	Etoposide	Everolimus	Fludarabine	Fluorouracil	Fomustine	Gefitinib	Gemcitabine	Gentuzumab ozogamicin

- No potential interaction found; • "Major" potential interaction; ○ "Contraindicated" potential interaction

Figure 1. Continued.
Covid-19. However, clinical studies show that it cannot be safely concluded that the drug provides benefit to patients. Azithromycin was associated with 23 “major” antineoplastic interactions. Most of these interactions are related to TKIs, especially those used to treat advanced lung cancer with activating mutations (EGFR—afatinib and osimertinib; ALK—crizotinib; KRAS—dabrafenib and vemurafenib), breast cancer (lapatinib and ribociclib), and other types of solid malignant tumors involving multikinase inhibitors (lenvatinib, sorafenib, sunitinib, and...
Figure 1. Continued.

Medications used for the treatment of cancer	Medications used for the treatment of Covid-19
Tamoxifen	
Tazemetostat	
Temozolomide	
Temozolomide	
Thalidomide	
Thalidomide	
Thiotepa	
Topotecan	
Toremifene	
Trabectedin	
Trastuzumab Extansina	
Tretinoin	
Triptorelin	
Tucatinib	
Vandetanib	
Vemurafenib	
Venetoclax	
Vinblastine	
Vincristine	
Vinflunine	
Vicorelline	

- No potential interaction found; ○ “Major” potential interaction; △ “Contraindicated” potential interaction

Figure 2. Number of “contraindicated” and “major” interactions between antineoplastic agents and medicines used to treat Covid-19.
than half of which are related to TKIs. The interaction between azithromycin and antineoplastic agents appears to be related to pharmacodynamic mechanisms, characterized by an increased risk of changes in cardiac parameters.43 Chloroquine and hydroxychloroquine emerged as prominent drugs for the clinical management of Covid-19 at the beginning of the pandemic.44 However, there is currently no clinical evidence corroborating their use.12,45 Despite the relative safety of these drugs in the treatment of autoimmune diseases and malaria, they are associated with severe cardiotoxic effects,46 especially when used in combination with other medicines that increase the possibility of interactions. Their use in combination TKIs results in kinetic effects due to the inhibition of P-gp.47,48 We identified 23 “major” hydroxychloroquine interactions, more than half of which are related to TKIs.

Sirolimus, which has been used to treat Covid-19,49 had 17 interactions (4 “contraindicated” and 13 “major”) with antineoplastic agents. Sirolimus is a substrate of CYP3A4 and P-gp50 with high potential for interaction with TKIs, especially those used for the treatment of advanced lung cancer with activating mutations (crizotinib, lorlatinib, and dabrafenib).51

The only drug investigated by this study to have obtained approval for the treatment of Covid-19 from the FDA,52 European Medicines Agency (EMA),53 and Brazil’s National Health Surveillance Agency (ANVISA)54 is the antiviral agent remdesivir. We did not find any potential interactions between remdesivir and antineoplastic agents on the databases. However, this “lack” of interaction should be treated with caution, as new medicines generally have few studies investigating DDI.

The class of antineoplastic agents that showed the greatest potential for interaction with medicines used to treat Covid-19 was TKIs, with 180 “major” or “contraindicated” interactions. Most of the potential DDI for this group were related to the risk of increased plasma concentration of the TKI, followed by increased heart-related risks, such as QT interval prolongation and increased plasma concentration of the medicine used to treat Covid-19. The use of TKIs with other drugs that reduce absorption or induce metabolism can result in sub-therapeutic levels of the drugs and bring about a decrease in TKI effect.55 In contrast, drugs that inhibit the metabolism of TKIs can cause supra-therapeutic drug levels and toxicity.56

Most of the potential DDI involves possible pharmacokinetic effects, which include both the potential toxicity of antineoplastic agents and drugs used to treat Covid-19 and the potentiation of these effects. It is also important to stress that cancer patients may have serious system impairment, including reduced renal and hepatic function,22 making them more susceptible to pharmacokinetic effects caused by potential DDI.

Our findings show that 71.4% of the potential DDI are related to the combined use of medicines used to treat Covid-19 and antineoplastic agents used for solid tumors, especially genitourinary, lung and breast cancer. This may be related to the large number of TKIs indicated for malignant diseases,57 given that this class of medicines has greater potential for interactions. Grivas et al.58 pointed to an association between recent cytotoxic chemotherapy and higher Covid-19 severity and disease mortality.

One of the limitations of the current study is that it was not possible to detect all potential DDIs. In this regard, 5,138 of the combinations between antineoplastic agents and medicines used to treat Covid-19 compiled by this study did not result in potential DDIs. Thereof two possible reasons for this: the combination does not have an interaction; or the interaction had not been included on the databases by the time the data was collected.

Table 1. Severity of potential interactions between antineoplastic agents and medicines used to treat Covid-19 according to the third level of the Anatomical Therapeutic Chemical (ATC) classification system.

Pharmacological group (ATC code)	Severity of potential drug–drug interactions	Contraindicated	Major	Total	%
Tyrosine kinase inhibitors (L01E)		33	147	180	46.4
Other antineoplastic agents (L01X)		6	48	54	13.9
Plant alkaloids and other natural products (L01C)		15	27	42	10.8
Antimetabolites (L01B)		5	16	21	5.4
Hormone antagonists and related agents (L02B)		3	15	18	4.6
Alkylating agents (L01A)		0	16	16	4.1
Hormones and related agents (L02A)		0	15	15	3.9
Cytotoxic antibiotics and related substances (L01D)		3	11	14	3.6
Immunostimulants (L03A)		8	3	11	2.8
Immunosuppressants (L04A)		3	4	7	1.8
Hypothalamic Hormones (H01C)		0	4	4	1.0
Unclassified agents*		2	1	3	0.8
Antiandrogens		0	2	2	0.5
Other therapeutic radiopharmaceuticals (V10X)		0	1	1	0.3

ATC, Anatomical Therapeutic Chemical.
*AUnclassified agents: Sacituzumab govitecan, Selpercatinib, and Tazemetostat.
Table 2. Potential interactions between antineoplastic agents and medicines used to treat Covid-19 according to type of malignancy.

Medicines used to treat Covid-19	Hematologic malignancies	Solid tumors	Melanoma and skin cancer	Soft tissue									
	Lymphoid leukemia	Myeloid leukemia	Lymphoma	Multiple myeloma	Myelodysplastic syndromes	Head and neck	Gastrointestinal	Genitourinary	Gynecologic	Breast	Lung cancer	Lung tissue	
Ascorbic acid	−	−	1	−	−	−	−	−	−	−	−	−	
Anakinra	1	2	1	1	1	1	1	1	1	1	1	1	
Azithromycin	5	2	3	2	1	3	6	8	5	5	3	9	
Baricitinib	17	11	24	8	4	8	17	19	13	16	9	16	
Chioroquine	3	1	−	−	−	−	3	4	1	4	1	4	
Colchicine	2	−	−	−	−	−	−	−	−	−	−	−	
Darunavir	5	3	4	1	−	2	9	13	3	11	4	11	
Epoprostenol	1	−	−	−	−	−	−	−	−	−	−	−	
Heparin	1	−	1	−	−	−	−	−	−	−	−	−	
Hydroxychioroquine	3	1	−	−	−	−	3	4	1	4	1	3	
Immunoglobulin	−	−	−	−	−	−	−	−	−	−	−	−	
Indomethacin	1	1	−	−	−	−	−	−	−	−	−	−	
Ivermectin	−	−	−	−	−	−	−	−	−	−	−	−	
Lopinavir/ritonavir	9	10	11	3	1	3	11	16	8	16	6	17	
Nitric oxide	1	−	−	−	−	−	−	−	−	−	−	−	
Ruxolitinib	2	−	1	−	−	1	1	1	1	1	1	1	
Sirolimus	2	1	2	−	−	1	2	6	2	2	4	−	
Tocilizumab	1	−	−	−	−	−	2	−	−	−	−	−	
Total	62	34	57	16	9	23	62	90	38	76	33	83	39
Another aspect is the ‘novelty’ of possible interactions between drugs used to treat Covid-19 and antineoplastic agents. Covid-19 is a recent disease and pharmacological interventions are undergoing constant modification as new evidence arises from research and direct data from medication use.

However, both positive and negative results provide information for oncologists, who are ultimately responsible for therapeutic decision-making. It is worth highlighting that many medicines have lost credibility during the fight against Covid-19 and evidence of the absence of drug benefits is gaining currency in clinical practice. In cases of unclear or absent benefits, the risk outweighs the benefits, meaning that the possibility of interaction should be subject to scrutiny and caution.

Availability of data and materials
Detailed information were inserted in the article on how the data can be obtained.

Authors’ Contributions
All authors made a substantial contribution to the concept or design of the work; participated of acquisition, analysis, or interpretation of data; drafted the article or revised it critically for important intellectual content; and approved the version to be published.

Declaration of Conflicting Interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the Brazilian National Council for Scientific and Technological Development [grant number 305508/2020-2].

Table 3. Effects of the potential interactions between antineoplastic agents and medicines used to treat Covid-19.

Effects of the potential drug–drug interactions	Number	%
Increased plasma concentration of the antineoplastic agent	164	39.4
Increased plasma concentration of the medicine used to treat Covid-19	100	24.0
Increased risk of changes in cardiac parameters	98	23.6
Others	27	6.5
Reduced plasma concentration of the antineoplastic agent	17	4.1
Reduced plasma concentration of the medication used to treat Covid-19	10	2.4

References

1. Ferlay J, Laversanne M, Ervik M, et al. Global cancer observatory: cancer tomorrow. International Agency for Research on Cancer, https://gco.iarc.fr/tomorrow (2020, accessed 05 February 2021).
2. Freitas R, Oliveira LAF, Rosa KSC, et al. Cuidados paliativos em pacientes com câncer avançado e Covid-19. Rev Bras Cancerol 2020; 66: e-1077.
3. Kuderer NM, Choueiri TK, Shah DP, et al. Clinical impact of COVID-19 on patients with cancer (CCC19): a cohort study. Lancet 2020; 395: 1907–1918.
4. Lee LYW, Cazier JB, Angelis V, et al. COVID-19 mortality in patients with cancer on chemotherapy or other anticancer treatments: a prospective cohort study. Lancet 2020; 395: 1919–1926.
5. Thuler LCS and Melo AC. Sars-CoV-2/Covid-19 em pacientes com câncer. Rev Bras Cancerol 2020; 66: e-00970.
6. Rivera DR, Peters S, Panagiotou OA, et al. Utilization of COVID-19 treatments and clinical outcomes among patients with cancer: a COVID-19 and cancer consortium (CCC19) cohort study. Cancer Discov 2020; 10: 1514–1527.
7. Zaniboni A, Ghidini M, Grossi F, et al. A review of clinical practice guidelines and treatment recommendations for cancer care in the COVID-19 pandemic. Cancers (Basel) 2020; 12: 2452.
8. Lee J, Foote MB, Lumish M, et al. Chemotherapy and COVID-19 outcomes in patients with cancer. J Clin Oncol 2020; 38: 3538–3546.
9. Park R, Lee SA, Kim SY, et al. Association of active oncologic treatment and risk of death in cancer patients with COVID-19: a systematic review and meta-analysis of patient data. Acta Oncol 2021; 60: 13–19.
10. Wadman M, Couzin-Frankel J, Kaiser J, et al. How does coronavirus kill? Clinicians trace a ferocious rampage through the body, from brain to toes. Science 2020. DOI:10.1126/science.abc3208 (accessed 05 February 2021).
11. Tang D, Comish P and Kang R. The hallmarks of COVID-19 disease. PLoS Pathog 2020; 16: e1008536.
12. Siemieniuk RAC, Bartoszko JJ, Ge L, et al. Drug treatments for Covid-19: living systematic review and network meta-analysis. Br Med J 2020; 370: m2980.
13. American Society of Health-System Pharmacists. Assessment of evidence for COVID-19-related treatments, https://www.ashp.org/-/media/assets/pharmacy-practice/resource-centers/Coronavirus/docs/ASHP-COVID-19-Evidence-Table.ashx (2020, accessed 31 May 2020).
14. Gato MIR. MOC Drogas - Manual de oncologia clínica do Brasil: agentes oncológicos. 9th ed. São Paulo: Dendrix Edição e Design Ltda, 2020, p. 336.
15. McEvoy GK and American Society of Health-System Pharmacists. AHFS Drug information 2008. 1st ed. Bethesda: American Society of Health-System Pharmacists, 2008, p. 3824.
16. Law JC, Recchia FM, Morrison DG, et al. Intravitreal bevacizumab as adjunctive treatment for retinopathy of prematurity. *J Aapos* 2010; 14: 6–10.

17. Marcath LA, Xi J, Hoylman EK, et al. Comparison of nine tools for screening drug-drug interactions of oral oncolytics. *J Oncol Pract* 2018; 14: e368–e374.

18. Lexicomp I. *Lexi-drugs online*. Hudson: Lexicomp Inc, 2021.

19. Health IW. *IBM Micromedex® drug interaction checking* (electronic Organization). Colorado: IBM Watson Health, 2021.

20. World Health Organization. Guidelines for ATC classification and DDD assignment. ATC/DDD Index, https://www.whocc.no/atc_ddd_index/ (2021, accessed 05 February 2021).

21. Kutikov A, Weinberg DS, Edelman MJ, et al. A war on two fronts: cancer care in the time of COVID-19. *Ann Intern Med* 2020; 172: 756–758.

22. Jafari A, Dadkhahfar S and Perseh S. Considerations for interactions of drugs used to treat Covid-19 with anti-cancer treatments. *Crit Rev Oncol Hematol* 2020; 151: 102982.

23. Di Lorenzo G, Di Trolio R, Kozlakidis Z, et al. COVID-19 therapies and anti-cancer drugs: a systematic review of recent literature. *Crit Rev Oncol Hematol* 2020; 152: 102991.

24. Kalil AC, Patterson TF, Mehta AK, et al. Baricitinib plus remdesivir for hospitalized adults with Covid-19. *N Engl J Med* 2021; 384: 795–807.

25. U.S. Food & Drug Administration. Coronavirus (COVID-19) update: FDA authorizes drug combination for treatment of COVID-19. *FDA News Release*, https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-drug-combination-treatment-covid-19 (2020, accessed 05 February 2021).

26. Sanders JM, Monogue ML, Jodlowski TZ, et al. Pharmacologic treatments for coronavirus disease 2019 (COVID-19): a review. *JAMA* 2020; 323: 1824–1836.

27. Garrison DA, Talebi Z, Eisenmann ED, et al. Role of OATP1B1 and OATP1B3 in drug-drug interactions mediated by tyrosine kinase inhibitors. *Pharmaceutics* 2020; 12: 856.

28. Vering JN, Talebi Z, Eisenmann ED, et al. Drug-drug interactions mediated by OATP1B1 and OATP1B3 in patients with chronic myeloid leukemia. *Br Med J* 2020; 370: m3379.

29. Sevrioukova IF and Poulos TL. Structure and mechanism of the complex between cytochrome P4503A4 and ritonavir. *Proc Natl Acad Sci USA* 2010; 107: 18422–18427.

30. Wishart DS, Feunang YD, Guo AC, et al. Drugbank 5.0: a major update to the DrugBank database for 2018. *Nucleic Acids Res* 2018; 46: D1074–D1082.

31. Roche PB, Burton B, Sheer KM, et al. Oral oncolytic and antiretroviral therapy administration: dose adjustments, drug interactions, and other considerations for clinical use. *Drugs Context* 2019; 8: 212550.

32. Raja A, Lebbos J and Kirkpatrick P. Atazanavir sulphate. *Nat Rev Drug Discov* 2003; 2: 857–858.

33. Beck BR, Shin B, Choi Y, et al. Predicting commercially available antiviral drugs that may act on the novel coronavirus (SARS-CoV-2) through a drug-target interaction deep learning model. *Comput Struct Biotechnol J* 2020; 18: 784–790.

34. Beck BR, Shin B, Choi Y, et al. Predicting commercially available antiviral drugs that may act on the novel coronavirus (SARS-CoV-2) through a drug-target interaction deep learning model. *Comput Struct Biotechnol J* 2020; 18: 784–790.

35. Olin JL, Klibanov O, Chan A, et al. Managing pharmacotherapy in people living with HIV and concomitant malignancy. *Ann Pharmacother* 2019; 53: 812–832.

36. Phung BC and Yeni P. Darunavir: an effective protease inhibitor for HIV-infected patients. *Expert Rev Anti Infect Ther* 2011; 9: 631–643.

37. Silva J, Leite S, Silva M, et al. In silico evaluation of the inhibitory effect of antiretrovirals atazanavir and darunavir on the main protease of SARS-CoV-2: docking studies and molecular dynamics. *Res Soc Dev* 2020; 9: e82698562.

38. Zimmermann P, Ziesenitz VC, Curtis N, et al. The immunomodulatory effects of macrolides—a systematic review of the underlying mechanisms. *Front Immunol* 2018; 9: 302.

39. Wu R, Wang L, Kuo H-CD, et al. An update on current therapeutic drugs treating COVID-19. *Curr Pharmaco Rep* 2020; 6: 56–70.

40. Oldenburg CE and Doan T. Azithromycin for severe COVID-19. *Lancet* 2020; 396: 936–937.

41. Zhuang X, Zhao C, Li J, et al. Clinical features and therapeutic options in non-small cell lung cancer patients with concomitant mutations of EGFR, ALK, ROS1, KRAS or BRAF. *Cancer Med* 2019; 8: 2858–2866.

42. Gay C, Toulet D and Le Corre P. Pharmacokinetic drug-drug interactions of tyrosine kinase inhibitors: a focus on cytochrome P450, transporters, and acid suppression therapy. *Hematol Oncol* 2017; 35: 259–280.

43. Akbulut M and Urun Y. Onco-cardiology: drug-drug interactions of antineoplastic and cardiovascular drugs. *Crit Rev Oncol Hematol* 2020; 145: 102822.

44. Colson P, Rolain JM, Lagier JC, et al. Chloroquine and hydroxychloroquine as available weapons to fight COVID-19. *Int J Antimicrob Agents* 2020; 55: 105932.

45. Lewis K, Chaudhuri D, Alshamsi F, et al. The efficacy and safety of hydroxychloroquine for COVID-19 prophylaxis: a systematic review and meta-analysis of randomized trials. *PLoS ONE* 2021; 16: e0244778.

46. Gevers S, Kwa MSG, Wijnans E, et al. Safety considerations for chloroquine and hydroxychloroquine in the treatment of COVID-19. *Clin Microbiol Infect* 2020; 26: 1276–1277.

47. Quintás-Cardama A, Han X, Kantarjian H, et al. Tyrosine kinase inhibitor-induced platelet dysfunction in patients with chronic myeloid leukemia. *Blood* 2009; 114: 261–263.

48. Velasco-González V, Fernández-Araque A, Sainz-Gil M, et al. Hydroxychloroquine and potential drug interactions in older adults. *Arch Bronconeumol* 2020; 56: 679–681.

49. Zhou Y, Hou Y, Shen J, et al. Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. *Cell Discov* 2020; 6.

50. Zimmerman JJ. Exposure-response relationships and drug interactions of sirolimus. *AAPS J* 2004; 6: 1–12.

51. Yoda S, Dagogo-Jack I and Hata AN. Targeting oncogenic drivers in lung cancer: recent progress, current challenges and future opportunities. *Pharmacol Ther* 2019; 193: 20–30.

52. National Institutes of Health. Coronavirus disease 2019 (COVID-19) treatment guidelines, https://www.covid19treatmentguidelines.nih.gov/whats-new/ (2021, accessed 02 May 2021).

53. European Medicines Agency. COVID-19 treatments: authorised, https://www.ema.europa.eu/en/human-regulatory/overview/public-health-threats/coronavirus-disease-covid-19/
treatments-vaccines/treatments-covid-19/covid-19-treatments-authorised (2021, accessed 02 May 2021).
54. Agência Nacional de Vigilância Sanitária. Anvisa aprova registro da vacina da Fiocruz/AstraZeneca e de medicamento contra o coronavírus, https://www.gov.br/anvisa/pt-br/assuntos/noticias-anvisa/2021/anvisa-aprova-registro-da-vacina-da-fiocruz-astrazeneca-e-de-medicamento-contra-o-coronavirus (2021, accessed 02 May 2021).
55. Keller KL, Franquiz MJ, Duffy AP, et al. Drug-drug interactions in patients receiving tyrosine kinase inhibitors. J Oncol Pharm Pract 2018; 24: 110–115.

56. Porta-Sánchez A, Gilbert C, Spears D, et al. Incidence, diagnosis, and management of QT prolongation induced by cancer therapies: a systematic review. J Am Heart Assoc 2017; 6: e007724.
57. Pottier C, Fresnais M, Gilon M, et al. Tyrosine kinase inhibitors in cancer: breakthrough and challenges of targeted therapy. Cancers (Basel) 2020; 12: 731.
58. Grivas P, Khaki AR, Wise-Draper TM, et al. Association of clinical factors and recent anticancer therapy with COVID-19 severity among patients with cancer: a report from the COVID-19 and cancer consortium. Ann Oncol 2021; 32:787–800.