Beauty production with ALICE at the LHC

Tuesday, 11 June 2019 15:20 (20 minutes)

In hadronic collisions, beauty quarks are produced in hard scattering processes with large momentum transfer. Their production provides a very important test of perturbative QCD calculations in pp collisions. In heavy-ion collisions, the measurement of beauty-hadron production is a unique tool to investigate the properties of the Quark-Gluon Plasma. In particular, beauty quarks, being four times heavier than charm quarks, can be utilized to study the in-medium mass dependent energy loss. In addition, measurements in p-Pb collisions are crucial to investigate the effects of cold nuclear matter on their production.

With the ALICE detector, beauty quarks are studied by measuring electrons and non-prompt D mesons coming from beauty hadron decays at mid-rapidity. Finally, a more direct access to the initial parton kinematics is obtained by measuring beauty-tagged jets. They can provide further constraints for energy loss models adding information on how the radiated energy is dissipated.

In this contribution, the latest measurements of beauty production using beauty-decay electrons, non-prompt D mesons and beauty-tagged jets in pp collisions at $\sqrt{s} = 5.02$ TeV, and their comparison to pQCD calculations will be presented. New measurements of beauty-tagged jet production down to low p_T in p-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV will be discussed. The latest results on R_{AA} of beauty-decay electrons in central and semi-central Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV compared to different theoretical models will be presented. In addition, the status of the measurement of v_2 of beauty-decay electrons in semi-central Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV will also be discussed.

Collaboration name

ALICE

Track

Heavy Flavour

Primary author: GAUGER, Erin Frances (University of Texas at Austin (US))

Presenter: GAUGER, Erin Frances (University of Texas at Austin (US))

Session Classification: Heavy Flavour