Perioperative outcomes in minimally invasive lumbar spine surgery: A systematic review

Branko Skovrlj, Patrick Belton, Hekmat Zarzour, Sheeraz A Qureshi

AIM: To compare minimally invasive (MIS) and open techniques for MIS lumbar laminectomy, direct lateral and transforaminal lumbar interbody fusion (TLIF) surgeries with respect to length of surgery, estimated blood loss (EBL), neurologic complications, perioperative transfusion, postoperative pain, postoperative narcotic use, and length of stay (LOS).

METHODS: A systematic review of previously published studies accessible through PubMed was performed. Only articles in English journals or published with English language translations were included. Level of evidence of the selected articles was assessed. Statistical data was calculated with analysis of variance with \(P < 0.05 \) considered statistically significant.

RESULTS: A total of 11 pertinent laminectomy studies, 20 direct lateral studies, and 27 TLIF studies were found. For laminectomy, MIS techniques resulted in a significantly longer length of surgery (177.5 min vs 129.0 min, \(P = 0.04 \)), shorter LOS (4.3 d vs 5.3 d, \(P = 0.01 \)) and less perioperative pain (visual analog scale: 16 ± 17 vs 34 ± 31, \(P = 0.04 \)). There is evidence of decreased narcotic use for MIS patients (postoperative intravenous morphine use: 9.3 mg vs 42.8 mg), however this difference is of unknown significance. Direct lateral approaches have insufficient comparative data to establish relative perioperative outcomes. MIS TLIF had superior EBL (352 mL vs 580 mL, \(P < 0.0001 \)) and LOS (7.7 d vs 10.4 d, \(P < 0.0001 \)) and limited data to suggest lower perioperative pain.

CONCLUSION: Based on perioperative outcomes data, MIS approach is superior to open approach for TLIF. For laminectomy, MIS and open approaches can be chosen based on surgeon preference. For lateral approaches, there is insufficient evidence to find non-inferior perioperative outcomes at this time.

Key words: Minimally invasive; Spine surgery; Lumbar

Submitted for publication: February 27, 2015
Peer-review started: February 27, 2015
First decision: April 28, 2015
Revised: July 21, 2015
Accepted: August 4, 2015
Article in press: August 7, 2015
Published online: December 18, 2015
INTRODUCTION

Minimally invasive surgical (MIS) approaches to lumbar spinal surgery have been an area of increasing clinical interest for over 50 years. Percutaneous approaches to lumbar disk herniation began with chemonucleolysis treatment for sciatica by Smith [1] in 1964. In 1997, Smith [2] and Foley et al. [2] introduced the tubular distraction system for a microendoscopic approach to microdiscectomy. This system allowed direct visualization of the surgical field while minimizing dissection and distraction of the paraspinal muscles and thoracolumbar fascia. By reducing the size of the operative field and reducing the number of damaged blood vessels, muscles and fascial structures, blood loss and post-operative pain would be reduced, leading to a shorter hospital stay, faster time to mobilization, and reduced post-operative analgesia needs.

After the development of the microendoscopic microdiscectomy, there were a series of rapid advances, applying the technology to other surgeries. In 1998, McAfee et al. [3] described the direct lateral interbody fusion (DLIF) as an alternative to anterior lumbar interbody fusion (ALIF). Foley et al. [3] described the MIS transforaminal lumbar interbody fusion (TLIF) in 2003, followed by Mummaneni et al. [4] detailing the Mini-Open TLIF. In 2006, Ozgur et al. [5] described the extreme lateral interbody fusion (XLIF) as another minimally invasive alternative to the ALIF. In 2010, a new, purely percutaneous approach for laminotomy and decompression, the Minimally Invasive Lumbar Decompression (mild®), was described by Chopko et al.[7].

The initial hope that MIS approaches to the lumbar spine would lead to long-term reductions in patient-reported pain relative to open approaches has not yet been substantiated. Most studies of long-term results have reported similar outcomes between MIS and traditional open surgeries[8-10]. This leaves short-term measures, specifically perioperative outcomes, as the main possible distinguishing clinical feature between MIS lumbar spinal surgery and open surgical technique. There have not been any systematic reviews specifically focusing on perioperative outcomes across minimally invasive lumbar spinal surgical modalities, nor have there been systematic reviews of either minimally invasive laminectomy or far lateral fusion approaches.

This systematic review examines perioperative outcomes in minimally invasive lumbar spinal surgeries across several surgery types for adult degenerative spine disease: (1) MIS laminectomy vs open laminectomy; (2) MIS TLIF vs open TLIF; and (3) MIS XLIF and DLIF vs ALIF.

MATERIALS AND METHODS

A series of searches using the PubMed-National Library of Medicine/National Institutes of health (www.ncbi.nlm.nih.gov) database were performed. Only articles in English journals or published with English abstracts were included. Level of evidence of the selected articles was assessed. Search keywords included: “minimally invasive”, “spine surgery”, “laminectomy”, “TLIF”, “DLIF”, “XLIF”, and “ALIF”. Abstracts were reviewed for clinical studies that reported perioperative outcomes in relevant surgical intervention categories (Figure 1).

Laminectomy

Studies were only included if they categorically used “laminectomy” for all subjects. Kinoshita et al. [11] performed laminotomies for single level decompression, and sometimes performed laminectomies for multiple level decompression. It can be argued that laminotomy vs laminectomy is a distinction without a difference, but including laminotomies would then bring a number of microdiscectomy techniques into the range of covered studies. As this would introduce significant heterogeneity into the category, only studies describing laminectomy as part of the decompression surgery were included in the laminectomy category.

TLIF

TLIF studies were included regardless of whether bilateral or unilateral instrumentation was used. Only studies with both an open TLIF and an MIS TLIF arm were included. Studies that compared MIS TLIF with posterior lumbar interbody fusion (PLIF) or did not report TLIF and PLIF results separately were excluded.

DLIF/XLIF

Axial lumbar interbody fusion (AxialIF) studies were
not included. Studies with large portions of the study population receiving dual fixation (XLIF plus PLIF) were excluded.

Perioperative outcomes of interest examined in this systematic review include the following: (1) Length of surgery; (2) Estimated blood loss (EBL); (3) Neurologic complications; (4) Perioperative transfusion; (5) Postoperative pain; (6) Postoperative narcotic use; and (7) Length of stay (LOS).

Results were tabulated by intervention, indication for intervention, data by study arm, and relevant qualifications (bias, observer status, etc.) gathered. Multiple reports of the data from the same patient population were disregarded. Data from similar studies was pooled and calculated with analysis of variance (ANOVA). Numerical data that was reported stratified into subgroups other than MIS/non-MIS, were re-pooled and calculated with ANOVA. Numerical data only reported in graph form were incorporated using graphical methods. Durotomy and cerebrospinal fluid leak were included as reportable neurologic complications. Incorporation of isolated additional neurologic complications resulted in some study groups having complication rates above 100%. In order to summarize these studies, the studies were included as these indications were in the minority in each of these studies, the studies were included.

RESULTS

Overall results

No studies found used independent observers for EBL or neurologic complications. At least two studies reported change in hemoglobin, presumably independently measured, but did not separately report patient fluid balance. No studies used defined criteria for or an independent or blinded observer to decide the following study parameters: (1) Hospital discharge eligibility (i.e., LOS); (2) Opiate prescription or availability; and (3) Need for perioperative transfusion.

Laminectomy

Identified pertinent studies are shown in Table 1, including three randomized controlled trials (RCTs) (Cho et al[14], Usman et al[15] and Watanabe et al[16]), one incompletely randomized trial (Mobbs et al[17]), randomized by consecutive, odd/even patient order[18], and one cohort comparison study[19]. In Table 2, results for length of surgery, EBL, rate of neurologic complications, and LOS are shown. Pooling across RCTs/incomplete-RCTs with published standard deviations, length of surgery was significantly longer for MIS surgeries than open surgeries (177.5 min vs 129.0 min, P < 0.004). EBL was non-significantly less in MIS surgeries (115.0 mL vs 102.1 mL, P = 0.580), and LOS was significantly shorter following MIS surgeries than open surgeries (4.3 d vs 5.3 d, P = 0.010). Pooled rates of neurological complications in the two RCTs specifically reporting complications by group showed non-significantly higher rates of complications in open procedures (2.0% MIS vs 4.3% open, P = 0.52).

Three studies specifically examined rates of post-operative pain in these patient groups. Watanabe et al[16] examined the visual analog scale (VAS) score for post-operative wound pain on post-operative day 7 and found a VAS of 16 (± 17) for MIS patients and a VAS of 34 (± 31) for open laminectomies, a statistically significant difference (P = 0.04). Mobbs et al[17] examined post-operative narcotic use during hospital stay and found an intravenous morphine equivalent of 9.3 mg in MIS patients and 42.8 mg in open patients, a difference of unknown statistical significance (P value not stated). Komp et al[20] reported that “no operation-related pain medication was required” in their MIS case series.

No studies reported a need for transfusions following either MIS or open laminectomy.

DLIF/XLIF

No randomized trials using an ALIF control arm were identified in the literature search. One RCT had XLIF as part of the intervention in both the study arm and control arm groups[26]. Two studies mixed traumatic and/or post-infectious patients in the study population; as these indications were in the minority in each of these studies, the studies were included[13,26].

Identified pertinent studies are shown in Table 3, including four cohort control studies and 15 case series. In Table 4, results for length of surgery, EBL, rate of neurologic complications, and LOS are shown. In the authors’ opinion, the current non-randomized data does not justify pooling or a meta-analysis due to heterogeneity and potential bias. Only one study (Huang...
et al.\(^{[30]}\) was a prospectively designed and enrolled study; and, it used an approach (minimal access ALIF) that has not been repeated in any other study.

Within the reported data for MIS anterior fusion approaches, average length of surgery varied from 27 min to 295 min, average EBL from “not measurable” to 572 mL, and neurologic complication rates varied from 0% to 130%.

Two studies reported on perioperative transfusion use in this patient population. Hrabalek et al.\(^{[27]}\) reported a 0% transfusion use in the MIS XLI F and open ALIF cohorts. Rodgers’s 2010 study, focusing on patients 80 years of age and older, reported no use of perioperative transfusion in MIS XLI F patients, but a 70% rate of transfusion in PLIF patients\(^{[13]}\). Regarding non-controlled studies, Rodgers et al.\(^{[31]}\) reported a 0.2% rate of transfusion in XLI F patients, while Berjano et al.\(^{[34]}\) reported a 1% transfusion rate.

Three non-controlled studies reported on peri-operative pain and narcotic use in patients treated with lateral interbody fusion. Ruetten et al.\(^{[30]}\) reported a mean VAS back of 4 (out of 100) and a VAS leg of 14 (out of 100) on post-operative day 1, stating that no post-operative pain medication was required in their 463 patient series. Marchi et al.\(^{[33]}\) reported mean VAS back of 45 and VAS leg of 31 one week following surgery, while Pimenta et al.\(^{[40]}\) reported a combined VAS Back/Leg value of 50 at the same time point.

Virtually all of the data gathered involved application of the XLI F (NuVasive, San Diego, California, United States) system; there is at this point limited data on other systems.

TLIF

Identified pertinent studies are shown in Table 5, including 1 RCT (Wang et al.\(^{[42]}\)) and 2 incompletely randomized controlled trials (Shunwu et al.\(^{[44]}\): Randomized by admission date; Wang et al.\(^{[45]}\): randomized by conse-
Table 3 Studies on minimally invasive lateral approaches to the lumbar spine

Ref.	Year	Surgery	Type of study	Population	MIS patients	Open patients
Cohort studies						
Hrabalek et al[27]	2014	XLIF	Retrospective cohort, XLIF vs ALIF	DDD, FBSS, spondylolisthesis	88	120
Smith et al[28]	2012	XLIF	Retrospective cohort, XLIF vs ALIF	DDD, LSS, FBSS, spondylolisthesis, herniation	115	87
Rodgers et al[29]	2010	XLIF	Retrospective cohort, XLIF vs PLIF	> 80 yr, LSS, FBSS spondylolisthesis, scoliosis, fracture	40	20
Huang et al[30]	2010	MIS-ALIF	Prospective cohort, MIS-ALIF vs ALIF	Not defined	10	13

Case series

Ref.	Year	Surgery	Type of study	Population	MIS patients	Open patients
Rodgers et al[31]	2011	XLIF	PCS	LSS, DDD, FBSS, spondylolisthesis, scoliosis	600	-
Ruettten et al[32]	2005	XLIF	RCS	Lumbar disc prolapse	463	-
Lykissas et al[33]	2014	XLIF	RCS	Degenerative spinal conditions	144	-
Grimm et al[34]	2014	XLIF	RCS	DDD, LSS, FBSS, scoliosis, spondylolisthesis, herniation	108	-
Tohmeh et al[35]	2011	XLIF	PCS	LSS, DDD, spondylolisthesis, scoliosis, recurrent herniation, ASD	102	-
Berjano et al[36]	2012	XLIF	RCS	DDD, LSS, spondylolisthesis	97	-
Lee et al[37]	2014	DLIF	RCS	LSS, spondylolisthesis, scoliosis, post-infectious	90	-
Marchi et al[38]	2012	XLIF	PCS	Spondylolisthesis	52	-
Sharma et al[39]	2011	XLIF	RCS	Spondylolisthesis, herniation, scoliosis	43	-
Pimenta et al[40]	2011	XLIF	PCS	DDD	36	-
Ahmadian et al[41]	2013	XLIF	RCS	L4/L5 spondylolisthesis	31	-
Caputo et al[42]	2012	XLIF	PCS	Scoliosis	30	-
Malham et al[43]	2012	XLIF	PCS	DDD, spondylolisthesis, scoliosis	30	-
Pimenta et al[44]	2013	XLIF	RCT	L4/L5 DDD	30	-
Elowitz et al[45]	2011	XLIF	PCS	LSS	25	-
Oliveira et al[46]	2010	XLIF	PCS	Degenerative spinal conditions	21	-

1Author financial conflict, different time period for cohort; 2Minimally invasive flank incision; 3Reported data likely includes data separately reported in Rodgers et al[29]; 4This randomized control trial did not have an open surgery arm. DDD: Degenerative disc disease; FBSS: Failed back surgery syndrome; LSS: Lumbar spinal stenosis; ASD: Adjacent segment disease; MIS: Minimally invasive; RCT: Randomized controlled trial; XLIF: Extreme lateral interbody fusion; ALIF: Axial lumbar interbody fusion; PCS: Prospective cohort study; RCS: Retrospective cohort study; PLIF: Posterior lumbar interbody fusion; DLIF: Direct lateral interbody fusion.

Table 4 Studies comparing perioperative outcomes of minimally invasive lateral vs open anterior approaches to the lumbar spine

Ref.	Length of surgery (min) ± SD	Estimated blood loss (cc) ± SD	Neurologic complications	Length of stay (d) ± SD		
	MIS	Open	MIS	Open		
Cohort studies						
Hrabalek et al[27]	112 ± 31	173 ± 31	90 ± 74	311 ± 370	28%	24%
Smith et al[28]	122	181	1.4 g Hb	2.7 g Hb	3%	6%
Rodgers et al[29]	176 ± 8	202 ± 15	572 ± 93	970 ± 209	-	-

Case series

Ref.	Length of surgery (min) ± SD	Estimated blood loss (cc) ± SD	Neurologic complications	Length of stay (d) ± SD		
	MIS	Open	MIS	Open		
Rodgers et al[30]	-	-	1.38 g Hb	-	1%	-
Ruettten et al[31]	52 ± 19	-	0	-	16%	-
Marchi et al[32]	73 ± 31	< 50	-	-	2%	-
Sharma et al[33]	-	-	-	-	70%	-
Pimenta et al[34]	130	-	-	-	28%	-
Ahmadian et al[35]	-	94	-	-	-	-
Caputo et al[36]	84	70	-	-	20%	-
Malham et al[37]	69 ± 11	< 50	-	-	13%	-
Elowitz et al[38]	-	-	-	-	20%	-
Oliveira et al[39]	86	44	-	-	14%	-

Non-measurable blood loss; 1Anterior thigh numbness in “substantial percentage” of patients which resolved in all patients at 4 wk; 2Anterior thigh numbness for more than 3 wk. Hb: Hemoglobin; SD: Standard deviation; MIS: Minimally invasive.
TABLE 5 Studies on minimally invasive transformaminal lumbar interbody fusion

Ref.	Year	Surgery	Population	MIS patients	Open patients
Wang et al[54]	2011	TLIF	LSS, herniation, spondylolisthesis	41	38
Shunwu et al[54]	2010	TLIF	Degenerative lumbar disease	32	30
Wang et al[55]	2011	TLIF	Failed discectomy and decompression	25	27
Zhang et al[56]	2013	TLIF	DDD, spondylolisthesis	144	54
Villacienio et al[56]	2010	TLIF	DDD	82	76
Lee et al[54]	2012	TLIF	LSS, DDD ± herniation, spondylolisthesis	76	63
Terman et al[53]	2014	TLIF	DDD, LSS, herniation, spondylolisthesis	72	72
Cheng et al[56]	2013	TLIF	Spondylolisthesis/ listhesis, foraminal stenosis	50	25
Liang et al[57]	2011	TLIF	Degenerative lumbar instability	45	42
Yang et al[58]	2013	TLIF	Lumbar degenerative diseases	43	104
Gu et al[54]	2014	TLIF	Degenerative conditions	43	38
Wang et al[54]	2010	TLIF	Spondylolisthesis	42	43
Zairi et al[54]	2013	Mini open TLIF	DDD, spondylolisthesis	40	60
Seng et al[57]	2013	TLIF	DDD, spondylolisthesis	40	40
Pelton et al[54]	2012	TLIF	DDD, spondylolisthesis	33	33
Singh et al[54]	2014	TLIF	DDD, spondylolisthesis	33	33
Brodano et al[54]	2013	Mini open TLIF	DDD, spondylolisthesis	30	34
Zou et al[54]	2013	TLIF	LSS, spondylolisthesis, herniation	30	30
Peng et al[54]	2009	TLIF	DDD, spondylolisthesis	29	29
Archavlis et al[54]	2013	TLIF	SDS and severe FJO	24	25
Dhall et al[59]	2008	Mini open TLIF	DDD, spondylolisthesis	21	21
Schizas et al[55]	2009	TLIF	DDD, spondylolisthesis	18	18
Adogwa et al[60]	2011	TLIF	Grade 1 spondylolisthesis	15	15
Niesche et al[59]	2014	TLIF	Recurrent lumbar disc herniation	14	19
Lau et al[61]	2011	TLIF	Spondylolisthesis/listhesis/lysis	10	12

*Differences in indications for study and control groups. LSS: Lumbar spinal stenosis; FBSS: Failed back surgery syndrome; DDD: Degenerative disc disease; SDS: Severe degenerative stenosis; FJO: Facet joint arthropathy; MIS: Minimally invasive; TLIF: Transforaminal lumbar interbody fusion; RCT: Randomized controlled trial; IRCT: Incomplete randomized controlled trial.

cutive, odd/even patient order). In Table 6, results for length of surgery, EBL, rate of neurologic complications, and LOS are shown. Pooling across RCTs and incompletely-RCTs with published standard deviations, length of surgery was non-significantly longer for MIS surgeries than open surgeries (150 min vs 143 min, P = 0.09). EBL was significantly less in MIS surgeries (352 mL vs 580.9 mL, P < 0.0001), and LOS was significantly shorter following MIS surgeries than open surgeries (7.7 d vs 10.4 d, P < 0.0001). Pooled rates of neurological complications in the two RCTs specifically reporting complications by group showed non-significantly higher rates of complications in open procedures (4.1% MIS vs 5.3% open, P = 0.697).

Regarding post-operative pain, Wang et al[63] polled patients on post-operative day 2, finding a VAS back of 2.2 ± 0.6 in MIS patients and 4.3 ± 0.5, a statistically significant difference (P < 0.05). Investigating the need for perioperative blood transfusions, Shunwu et al[44] found that 0 of 32 of the MIS patients needed transfusion, while the 30 open patients needed an average of 0.40 units of blood (SD: 0.97), a significant difference (P = 0.017).

DISCUSSION

The current growing trends in the use of MIS approaches in lumbar spine surgery have led to a concerted effort to compare outcomes between MIS and open techniques. Previous studies on long-term outcomes between MIS and open approaches in lumbar spine surgery have not revealed a significant difference between the two approaches[8-10]. This is the first systematic review of perioperative outcomes in lumbar MIS lumbar spine surgery aiming to reveal differences between MIS and open techniques in terms of lengths of surgery, EBL, neurologic complications, perioperative transfusion, postoperative pain, postoperative narcotic use and LOS.

To facilitate the interpretation of the currently existing data, lumbar spine procedures were divided into different types including decompressive laminectomy and interbody fusions. Interbody fusions were further subdivided into TLIF and lateral vs anterior interbody fusions.

In decompressive laminectomy, this study found the muscle-sparing MIS approach to result in significantly longer operative times compared to the open approach (177.5 min vs 129.0 min, P = 0.004). Although decompressive lumbar laminectomy is a relatively straightforward spinal operation, there exists a steep learning curve associated with microscope-assisted tubular spinal surgery[48], which could be an important factor accounting for the differences in operative times between the two techniques. With the growing popularity of minimally invasive approaches and the growing number of younger surgeons performing minimally
invasive approaches, over time, as younger surgeons become more proficient with MIS techniques, operative times will likely decrease and we could see a decrease in the difference in operative times between MIS and open lumbar decompressions.

This study also found that patients undergoing MIS decompression were found to have less postoperative pain, lower perioperative transfusion rates and decreased LOS compared to those who underwent open decompression. These findings are not surprising given that the MIS technique results in significantly smaller surgical incisions, is muscle sparing and bypasses the need for extensive paraspinal and soft tissue stripping.

In terms of perioperative outcomes following lumbar decompressive laminectomy, there is a state of equipoise between MIS and open approaches, with neither technique clearly superior. At this time, individual patient and surgeon preferences are appropriate to guide decision making until further evidence becomes available.

Lumbar interbody fusion has become a popular surgical tool in the treatment of a wide variety of lumbar pathology including degenerative disc disease, recurrent lumbar herniation, spondylolisthesis and complex lumbar stenosis [46]. Currently popular approaches for achieving lumbar interbody fusion include the open anterior (ALIF) and MIS lateral (DLIF and XLIF) retroperitoneal approaches and the open and MIS posterior transfemoral (TLIF) approaches. While each one of these approaches utilizes a different anatomic corridor, they all have a common end goal of achieving interbody fusion. However, approach specific limitations and direct and indirect complications make each one of these approaches unique and worthy of comparison.

There are currently no randomized trials comparing ALIF and DLIF/XLIF in the literature. There is a wide variation in the reported outcomes data between MIS and open approaches for ALIF and DLIF/XLIF and this heterogeneity does not allow for meta-analysis of the current literature due to the high risk of potential bias. Furthermore, all of the currently available literature on lateral approaches involves the use of a single commercial system (XLIF, NuVasive, San Diego, California, United States) while there are currently many different commercial systems in use across the country.

There is currently a dearth of high quality literature on MIS alternatives (DLIF, XLIF) to ALIF. Although there appears to be no evidence of inferiority, these approaches should be considered investigational by surgeons and patients until better quality studies justify evidence-based statements of non-inferiority.

There have been several high quality studies in the literature comparing MIS TLIF and open TLIF surgeries. In terms of EBL, LOS, transfusion need and perioperative pain, the current data all favor MIS TLIF. Although EBL differences across randomized studies did not reach clinically meaningful levels of ≥ 750 mL, one of the randomized studies did find a significantly

Table 6 Studies comparing perioperative outcomes of minimally invasive vs open transforaminal lumbar interbody fusion

Ref.	Length of surgery (min) ± SD	Estimated blood loss (cc) ± SD	Neurologic complications	Length of stay (d) ± SD
	MIS	Open	MIS	Open
	± SD	± SD	± SD	± SD
RCTs/IRCTs				
Wang et al [51]	168.7 ± 36.4	145.0 ± 26.8	207.7 ± 57.6	258.9 ± 122.2
Shenuwa et al [51]	159.2 ± 28.7	142.8 ± 22.5	399.8 ± 125.8	517.0 ± 147.8
Wang et al [51]	139.0 ± 27.0	143.0 ± 35.0	291.0 ± 86.0	652.0 ± 150.0
Cohort studies				
Wong et al [51]	173	309	115	485
Zhang et al [51]	120 ± 35	115 ± 28	250 ± 75	650 ± 150
Villavicencio et al [51]	223 ± 68	215 ± 60	163 ± 131	367 ± 298
Lee et al [51]	166 ± 52	182 ± 45	161 ± 51	447 ± 519
Zerhan et al [51]	-	-	100	450
Cheng et al [51]	245 ± 73	279 ± 15	393 ± 284	536 ± 324
Liang et al [51]	127 ± 60	96 ± 46	194 ± 86	357 ± 116
Yang et al [51]	175 ± 30	177 ± 30	362 ± 177	720 ± 171
Gu et al [51]	196 ± 28	187 ± 23	248 ± 94	576 ± 176
Wang et al [51]	145 ± 27	156 ± 32	264 ± 89	673 ± 145
Zairi et al [51]	170	186	148	486
Seng et al [51]	185 ± 9	166 ± 7	127 ± 46	405 ± 80
Pelton et al [51]	112 ± 33	185 ± 34	125 ± 76	275 ± 99
Singh et al [51]	116 ± 28	186 ± 31	124 ± 92	380 ± 191
Brodano et al [51]	144	102	230	620
Zou et al [51]	150 ± 41	175 ± 37	131 ± 74	318 ± 177
Peng et al [51]	216	171	150	681
Archavlis et al [51]	220 ± 48	190 ± 65	185 ± 140	255 ± 468
Dhali et al [51]	199	237	194	505
Schizas et al [51]	-	-	456	961
Adogwa et al [51]	300	210	200	295
Niesche et al [51]	140	130	150	380
Lau et al [51]	390	365	467	566

RCT: Randomized controlled trial; IRCT: Incomplete randomized controlled trial; SD: Standard deviation; MIS: Minimally invasive.
reduced transfusion need between MIS and open TLIF[40].

LOS was found to be significantly reduced in MIS TLIF by almost three days, however all of the studies originated from Chinese hospitals. LOS effect estimates, however, may not be applicable across countries, as different health systems use different discharge qualifications and have appreciably different LOS for similar procedures.

There are no outcome categories reported that identify MIS approaches to be significantly worse. Based on current data for perioperative outcomes, it appears that MIS approaches are superior to open approaches in TLIF.

Currently, there exists a wide variation in reported perioperative outcomes in both open and MIS lumbar spine surgery in the literature. Although multiple different outcomes are being reported there exists a lack of defined criteria for many of the reported outcomes such as hospital LOS, postoperative narcotic utilization and need for perioperative transfusion. Furthermore, none of the currently published literature used independent observers when reporting outcomes such as EBL and neurologic complication, leading to the risk of complication under-reporting due to the self-reporting nature of the outcomes data collection.

The current evidence does not clearly support superior perioperative outcomes for patients receiving minimally invasive spine surgery across all modalities. Based on perioperative outcomes data, we recommend a MIS approach to TLIF surgeries. MIS and open approaches can be chosen based on patient and surgeon preference when performing a laminectomy. Regarding lateral approach surgeries, there is insufficient evidence to find non-inferior perioperative outcomes at this time.

COMMENTS
Background
The advent of the surgical microscope and advances in technology have led to an increase in popularity in minimally invasive spine surgery. While prior studies have compared minimally invasive spine surgery to the traditional open spine surgery in terms of long-term outcomes, no study has compared the two techniques in terms of perioperative outcomes.

Research frontiers
Outcomes research in spine surgery has become a very important and highly prioritized area of research with the primary focus of minimizing cost while maximizing outcome.

Innovations and breakthroughs
This is the first study evaluating perioperative outcomes, comparing minimally invasive approaches and techniques vs open surgery in the treatment of degenerative lumbar spine disease.

Applications
While minimally invasive spine surgery has shown to have similar long-term outcomes to open spine surgery, it is important to evaluate perioperative outcomes of minimally invasive techniques to the standard open surgery in order to fully determine the advantages or disadvantages of the new technology compared to the gold standard.

Peer-review
The authors present us a comprehensive systematic review regarding short term outcomes following minimally invasive lumbar spine surgery. This topic is of interest and of novelty.

REFERENCES
1 Smith L. Enzyme dissolution of the nucleus pulposus in humans. JAMA 1964; 187: 137-140 [PMID: 14066733]
2 Foley KT, Smith MM. Microendoscopic discectomy. Tech Neurosurg 1997; 3: 301-307
3 McAfee PC, Regan JJ, Geis WP, Felder ID. Minimally invasive anterior retroperitoneal approach to the lumbar spine. Emphasis on the lateral BAK. Spine (Phila Pa 1976) 1998; 23: 1476-1484 [PMID: 9670400]
4 Foley KT, Holly LT, Schwender JD. Minimally invasive lumbar fusion. Spine (Phila Pa 1976) 2003; 28: S26-S35 [PMID: 12897471]
5 Mummenei PV, Rodts GE. The mini-open transforaminal lumbar interbody fusion. Neurosurgery 2005; 57: 256-261; discussion 256-261 [PMID: 16234672]
6 Ozgur BM, Aryan HE, Pimenta I, Taylor WR. Extreme Lateral Interbody Fusion (XLIF): a novel surgical technique for anterior lumbar interbody fusion. Spine J 2006; 6: 435-443 [PMID: 16825052]
7 Chopko B, Caraway DL. MiDAS I (mild Decompression Alternative to Open Surgery): a preliminary report of a prospective, multi-center clinical study. Pain Physician 2010; 13: 369-378 [PMID: 20648206]
8 Nellensteijn J, Ostelo R, Bartels R, Peul W, van Royen B, van Tulder M. Transforaminal endoscopic surgery for symptomatic lumbar disc herniations: a systematic review of the literature. Eur Spine J 2010; 19: 181-204 [PMID: 19756781 DOI: 10.1007/s00586-009-1155-x]
9 Goldstein CL, Macwan K, Sundararajan K, Rampersaud YR. Comparative outcomes of minimally invasive surgery for posterior lumbar fusion: a systematic review. Clin Orthop Relat Res 2014; 472: 1727-1737 [PMID: 24464507 DOI: 10.1007/s11999-014-3465-5]
10 Jacobs WC, Arts MP, van Tulder MW, Rubinstein SM, van Middelkoop M, Ostelo RW, Verhagen AP, Koos BW, Peul WC. Surgical techniques for sciatica due to herniated disc, a systematic review. Eur Spine J 2012; 21: 2232-2251 [PMID: 22814567 DOI: 10.1007/s00586-012-2422-9]
11 Kinoshita T, Ohki I, Roth KR, Amano K, Moriya H. Results of degenerative spondylolisthesis treated with posterior decompression alone via a new surgical approach. J Neurosurg 2001; 95: 11-16 [PMID: 11453409]
12 Rodgers WB, Gerber EJ, Rodgers JA. Lumbar fusion in octogenarians: the promise of minimally invasive surgery. Spine (Phila Pa 1976) 2010; 35: S355-S360 [PMID: 21160400 DOI: 10.1097/BRS.0b013e318203796]
13 Rodgers WB, Gerber EJ, Patterson J. Intraoperative and early postoperative complications in extreme lateral interbody fusion: an analysis of 600 cases. Spine (Phila Pa 1976) 2011; 36: 26-32 [PMID: 21192221 DOI: 10.1097/BRS.0b013e3181e1040a]
14 Cho DY, Lin HL, Lee WY, Lee HC. Split-supraspinous process laminotomy and discectomy for degenerative lumbar spinal stenosis: a preliminary report. J Neurosurg Spine 2007; 6: 229-239 [PMID: 17355022]
15 Usman M, Ali M, Khanzada K, Ishaq M, Naeem-ul-Haq R, Ali M. Unilateral approach for bilateral decompression of lumbar spinal stenosis: a minimal invasive surgery. J Coll Physicians Surg Pak 2013; 23: 852-856 [PMID: 23404087]
16 Watanabe K, Matsumoto M, Ikegami T, Nishiwaki Y, Tsujii T, Ishii K, Ogawa Y, Takashi H, Nakamura M, Toyama Y, Chiba K. Reduced postoperative wound pain after lumbar spinal processes-splitting laminectomy for lumbar canal stenosis: a randomized controlled study. J Neurosurg Spine 2011; 14: 51-58 [PMID: 21142464 DOI: 10.3171/2010.9.SPINE09933]
17 Mobbs RJ, Li J, Sivabalan P, Raley D, Rao PJ. Outcomes
after decompressive lumbar laminectomy for lumbar spinal stenosis: comparison between minimally invasive unilateral laminectomy for bilateral decompression and open laminectomy: clinical article. J Neurosurg Spine 2014; 21: 179-186 [PMID: 24878273 DOI: 10.1093/jneurspine/jsp1130]

18 Rahman M, Summers LE, Richter B, Minmran RI, Jacob RP. Comparison of techniques for decompressive lumbar laminectomy: the minimally invasive versus the “classic” open approach. Minim Invasive Neurosurgery 2008; 51: 100-105 [PMID: 18401823 DOI: 10.1055/s-0027-1022542]

19 Nomura H, Yanagisawa Y, Arima J, Oga M. Clinical outcome of microscopic lumbar spinal processes-splitting laminectomy: clinical article. J Neurosurg Spine 2014; 21: 187-194 [PMID: 24878270 DOI: 10.1017/191651373]

20 Parikh K, Tomasono A, Knoopjan M. Operative results and learning curve: microscope-assisted tubular microsurgery for 1- and 2-level disectomies and laminectomies. Neurosurgery Focus 2008; 25: E14 [DOI: 10.3171/FOC/2008/25/E14]

21 Komp M, Hahn P, Merk H, Godolias G, Rutten S. Bilateral operation of lumbar degenerative central spinal stenosis in full-endoscopic interlaminar technique with unilateral approach: prospective 2-year results of 74 patients. J Spinal Discord Tech 2011; 24: 281-287 [PMID: 20975592 DOI: 10.1097/BSD.0b013e31819f55f6]

22 Nomura K, Yoshida M. Microendoscopic Decompression Surgery for Lumbar Spinal Canal Stenosis via the Paramedian Approach: Preliminary Results. Global Spine J 2012; 2: 87-94 [PMID: 24353592 DOI: 10.1055/s-0032-1339774]

23 Tomasono A, Parikh K, Steinberger J, Knoopjan M, Boockvar J, Härtl R. Tubular microsurgery for disectomies and laminectomies in obese patients: operative results and outcome. Spine (Phila Pa 1976) 2009; 34: E664-E672 [PMID: 19680093 DOI: 10.1097/BRS.0b013e3181b668c]

24 Wada K, Sairyo K, Sakai T, Yasui N. Minimally invasive endoscopic bilateral decompression with a unilateral approach (endo-BIDUA) for elderly patients with lumbar spinal canal stenosis. Minim Invasive Neurosurgery 2010; 53: 65-68 [PMID: 20533136 DOI: 10.1007/3100-1247559]

25 Pimenta L, Oliveira L, Schaffa T, Coutinho E, Marchi L. Lumbar total disc replacement from an extreme lateral approach: clinical experience with a minimum of 2 years’ follow-up. J Neurosurgery Spine 2011; 14: 38-45 [PMID: 21166491 DOI: 10.1093/jneuros/2013.9.SPI NE09865]

26 Lee YS, Park SW, Kim YB. Direct lateral lumbar interbody fusion: clinical and radiological outcomes. J Korean Neurosurg Soc 2014; 55: 248-254 [PMID: 25132925 DOI: 10.3449/jkns.2014.55.5.248]

27 Hrabalek L, Adamus M, Gryga A, Wanek T, Tucek P. A comparison of compaction rate between anterior and lateral approaches to the lumbar spine. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2014; 158: 127-132 [PMID: 23073535 DOI: 10.5507/bp.2012.079]

28 Smith WD, Christian G, Serrano S, Malone KT. A comparison of perioperative charges and outcome between open and mini-open approaches for anterior lumbar discectomy and fusion. J Clin Neurosci 2012; 19: 673-680 [PMID: 22236486 DOI: 10.1016/j.jocn.2011.09.010]

29 Huang TJ, Weng YJ, Li Y, Cheng CC, Hsu RW. Actin-free Gc-globulin after minimal access and conventional anterior lumbar surgery. J Surg Res 2010; 164: 105-109 [PMID: 19540525 DOI: 10.1016/j.sjsr.2009.01.018]

30 Rutten S, Komp M, Godolias G. An extreme lateral access for the surgery of lumbar disc herniations inside the spinal canal using the full-endoscopic unipolar transforaminal approach-technique and prospective results of 463 patients. Spine (Phila Pa 1976) 2005; 30: 2570-2578 [PMID: 16284597]

31 Lykissas MG, Aischmair A, Sama AA, Hughes AP, Lebl DR, Camnisa FP, Girardi FP. Nerve injury and recovery after lateral lumbar interbody fusion with and without bone morphogenetic protein-2: an augmentation study. Spine J 2014; 14: 217-224 [PMID: 24269858 DOI: 10.1016/j.spinee.2013.06.109]

32 Grimm BD, Leas DP, Poletti SC, Johnson DR 2nd. Postoperative Complications Within the First Year After Extreme Lateral Interbody Fusion: Experience of the First 108 Patients. J Spinal Discord Tech 2014; Epub ahead of print [PMID: 25099976]
Minimally invasive versus open transforaminal lumbar interbody fusion. *Surg Neurol Int* 2010; 1: 12 [PMID: 20657693 DOI: 10.4103/2122-7806.36905]

Lee KH, Yue WM, Yeo W, Soeharno H, Tan SB. Clinical and radiological outcomes of open versus minimally invasive transforaminal lumbar interbody fusion. *Eur Spine J* 2013; 22: 2265-2270 [PMID: 22453894 DOI: 10.1007/s00586-012-2281-4]

Terman SW, Yee TJ, Lau D, Khan AA, LaMarca F, Park P. Minimally invasive versus open transforaminal lumbar interbody fusion: comparison of clinical outcomes among obese patients. *J Neurosurg Spine* 2014; 20: 644-652 [PMID: 24745355 DOI: 10.3171/2014.2.SPINEL13794]

Cheng JS, Park P, Le H, Reisner L, Chou D, Mummaneni PV. Short-term and long-term outcomes of minimally invasive and open transforaminal lumbar interbody fusions: is there a difference? *Neurosurg Focus* 2013; 35: E6 [PMID: 23905957 DOI: 10.3171/2013.5.FOCUS13777]

Liang B, Yin G, Zhao J, Li N, Hu Z. [Surgical treatment of degenerative lumbar instability by minimally invasive transforaminal lumbar interbody fusion]. *Zhongguo Xiu Fu Chong Jian Wai Ke Zhai* 2011; 25: 1449-1454 [PMID: 22242343]

Yang J, Kong Q, Song Y, Liu H, Zeng J. [Comparison of short-term effectiveness between minimally invasive surgery- and open-transforaminal lumbar interbody fusion for single-level lumbar degenerative disease]. *Zhongguo Xiu Fu Chong Jian Wai Ke Zhai* 2013; 27: 262-267 [PMID: 23672121]

Gu G, Zhang H, Fan G, He S, Cai X, Shen X, Guan X, Zhou X. Comparison of minimally invasive versus open transforaminal lumbar interbody fusion in two-level degenerative lumbar disease. *Int Orthop* 2014; 38: 817-824 [PMID: 24240484 DOI: 10.1007/s00264-013-1269-x]

Wang J, Zhou Y, Zhang ZF, Li CQ, Zheng WJ, Liu J. Comparison of one-level minimally invasive and open transforaminal lumbar interbody fusion in degenerative and ischimic spondylolisthesis grades 1 and 2. *Eur Spine J* 2010; 19: 1780-1784 [PMID: 20411281 DOI: 10.1007/s00586-010-1404-z]

Zaii F, Arikat A, Alloua M, Assaker R. Transforaminal lumbar interbody fusion: comparison between open and mini-open approaches with two years follow-up. *J Neurosurg A Cent Eur Neurosurg* 2013; 74: 131-135 [PMID: 23307308 DOI: 10.1055- s-0032-1300596]

Seng C, Siddiqui MA, Wong KP, Zhang K, Yeo W, Tan SB, Yue WM. Five-year outcomes of minimally invasive versus open transforaminal lumbar interbody fusion: a matched-pair comparison study. *Spine* (Phila Pa 1976) 2013; 38: 2049-2055 [PMID: 23963015 DOI: 10.1097/BRs.0b013e3182a8212d]

Pelton MA, Phillips FM, Singh K. A comparison of perioperative costs and outcomes in patients with and without workers’ compensation claims treated with minimally invasive or open transforaminal lumbar interbody fusion. *Spine* (Phila Pa 1976) 2012; 37: 1914-1919 [PMID: 22487713 DOI: 10.1097/BRs.0b013e318257d490]

Singh K, Nandyala SV, Marquez-Lara A, Fineberg SJ, Oglesby M, Pelton MA, Anderson GB, Isayeva D, Jegier BJ, Phillips FM. A perioperative cost analysis comparing single-level minimally invasive and open transforaminal lumbar interbody fusion. *Spine J* 2014; 14: 1694-1701 [PMID: 24252237 DOI: 10.1016/j.spinee.2013.10.053]

Brodano GB, Martikos K, Lolli F, Gasbarrini A, Cioni A, Bandiera S, Di Silvestre M, Boriani S, Greggi T. Transforaminal Lumbar Interbody Fusion in Degenerative Disc Disease and Spondyloolisthesis Grade I: Minimally Invasive Versus Open Surgery. *J Spinal Disord Tech* 2013; 6: Epub ahead of print [PMID: 24136060]

Zou S, Wang J, Pan W, Zheng Y, Huang B. [Comparison of traumatic related index in serum between minimally invasive and open transforaminal lumbar interbody fusion for tissue injury]. *Zhongguo Xiu Fu Chong Jian Wai Ke Zhai* 2013; 27: 960-964 [PMID: 24171351]

Peng CW, Yue WM, Poh SY, Yeo W, Tan SB. Clinical and radiological outcomes of minimally invasive versus open transforaminal lumbar interbody fusion. *Spine* (Phila Pa 1976) 2009; 34: 1385-1389 [PMID: 19478658 DOI: 10.1097/BRs.0b013e3181a4e3be3]

Archakis E, Carvi y Nieves M. Comparison of minimally invasive fusion and instrumentation versus open surgery for severe stenotic spondyloolisthesis with high-grade facet joint osteoarthrosis. *Eur Spine J* 2013; 22: 1731-1740 [PMID: 23479028 DOI: 10.1007/s00586-013-2732-6]

Dhall SS, Wang MY, Mummaneni PV. Clinical and radiographic comparison of mini-open transforaminal lumbar interbody fusion with open transforaminal lumbar interbody fusion in 42 patients with long-term follow-up. *J Neurosurg Spine* 2008; 9: 560-565 [PMID: 19035748 DOI: 10.3171/SPI.2008.9.08142]

Schizas C, Tziriniess N, Tisridis E, Kosmopoulos V. Minimally invasive versus open transforaminal lumbar interbody fusion evaluation: initial experience. *Int Orthop* 2009; 33: 1683-1688 [PMID: 19023571 DOI: 10.1007/s00264-008-0687-x]

Adogwa O, Parker SL, Bydon A, Cheng J, McGirt MJ. Comparative effectiveness of minimally invasive versus open transforaminal lumbar interbody fusion: 2-year assessment of narcotic use, return to work, disability, and quality of life. *J Spinal Disord Tech* 2011; 24: 479-484 [PMID: 21336176 DOI: 10.1097/BSD.0b013e3182055cac]

Niesche M, Jurati TA, Sitoci KH, Neidel J, Daubner D, Schackert G, Leimert M. Percutaneous pedicle screw and rod fixation with TLIF in a series of 14 patients with recurrent lumbar disc herniation. *Clin Neurol Neurosurg* 2014; 124: 25-31 [PMID: 24999541]

Lau D, Lee JG, Han SJ. Complications and perioperative factors associated with learning the technique of minimally invasive transforaminal lumbar interbody fusion (TLIF). *J Clin Neurosci* 2011; 18: 624-627 [DOI: 10.1016/j.jocn.2010.09.004]

Gologorsky Y, Skovrlj B, Steinberger J, Moore M, Arginteanu M, Moore F, Steinberger A. Increased incidence of pseudarthrosis after unilateral instrumented transforaminal lumbar interbody fusion in patients with lumbar spondylosis: Clinical article. *J Neurosurg Spine* 2014; 21: 601-607 [PMID: 25084031]
