Correspondence

Is the Immune System Impaired in Patients with Severe Acute Respiratory Syndrome?

Str—Cui et al. [1] recently described pronounced lymphopenia and low counts of CD4+ cells, CD8+ cells, and B cells in patients with severe acute respiratory syndrome (SARS). On the basis of these low cell counts, Cui et al. [1] suggested that SARS coronavirus (SARS-CoV) might damage lymphocytes and concluded that the immune system was impaired during the course of SARS. However, Cui et al. [1] did not provide direct evidence to support their hypothesis.

Low counts of both CD4+ and CD8+ cells in the peripheral circulation do not always indicate that the immune system is impaired: redistribution of lymphocytes among peripheral and secondary lymphoid organs and migration of these cells to inflamed tissues caused by infections may also result in lymphopenia. Postthymus naive T cells do not reside in any single lymphoid organ but, rather, circulate continuously between blood and lymph through a specialized T cell zone in secondary lymphoid tissues, which forms part of the “recirculating lymphocyte pool.”

Neither splenectomy nor ablation of bone marrow by radioactive isotope therapy reduces the number of lymphocytes, and thymectomy in adult mice causes only a very slow decrease in the size of the recirculating lymphocyte pool. These findings suggest that splenic atrophy and pathological changes in lymph nodes observed in patients with SARS [2–4] were not the causes of lymphopenia. Although SARS-CoV RNA was detected in PBMCs obtained from patients with SARS [5], no SARS-CoV was recovered from splenic, lymphatic, and bone marrow specimens obtained from patients with fatal cases [3]. This finding indicated that the pathological presentations in lymphoid organs were unlikely to have been directly caused by the virus.

If SARS-CoV was directly detrimental to lymphocytes, the damage should start at the beginning of infection and continue through the incubation period, resulting in a decreased lymphocyte count after the onset of SARS. However, although most patients had mild to moderate decreased lymphocyte counts during the early phase of illness [6, 7], many patients had normal lymphocyte counts at the onset of symptoms, and some even had increased CD4+ and CD8+ cell counts during the first week of illness [3].

Clinically, there is no evidence that the onset of SARS is associated with impairment of the immune system. SARS is characterized by respiratory symptoms and signs correlated with pulmonary lesions caused by SARS-CoV infection. At the time of writing, no report has shown that the initial manifestation of SARS is caused by immunosuppression (e.g., AIDS), and only a small portion of the patients have had secondary bacterial infections—which were easily treatable—during the late course of illness, despite receipt of corticosteroid treatment [8]. The effectiveness of corticosteroid therapy in stopping the progression of pulmonary lesions in patients with SARS also suggests that SARS is not associated with the impairment of the immune system but is associated with immunopathological damage [9].

Cui et al. [1] also found that 76% of patients with SARS had a low B cell count. However, the immune function of B cells in patients with SARS appeared not to have been impaired, because specific anti-SARS-CoV was detected as early as day 10 after the onset of illness [8], 93%–100% of the patients had seroconversion to anti-SARS-CoV after week 3 [8, 10], and the level of specific IgG remained high for at least 3 months [10].

In conclusion, although lymphopenia does occur in patients with SARS, no evidence supports the position that SARS-CoV damages lymphocytes. Humoral immune response to SARS-CoV is not damaged in patients with SARS. Before in vitro and in vivo cellular immune responses are investigated, it would be cautious to conclude that the immune system is impaired in patients with SARS.

Yi-Hua Zhou and Zhaochun Chen
Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland

References

1. Cui W, Fan Y, Wu W, Zhang F, Wang JY, Ni AP. Expression of lymphocytes and lymphocyte subsets in patients with severe acute respiratory syndrome. Clin Infect Dis 2003;37: 857–9.
2. Ding Y, Wang H, Shen H, et al. The clinical pathology of severe acute respiratory syndrome (SARS): a report from China. J Pathol 2003;200:282–9.
3. Wong RS, Wu A, To KF, et al. Haematological manifestations in patients with severe acute respiratory syndrome: retrospective analysis. BMJ 2003;326:1358–62.
4. Lang Z, Zhang L, Zhang S, et al. Pathological study on severe acute respiratory syndrome. Chin Med J (Engl) 2003;116:976–80.
5. Li L, Wo J, Shao J, et al. SARS-coronavirus replicates in mononuclear cells of peripheral blood (PBMCs) from SARS patients. J Clin Virol 2003;28:239–44.
6. Hsu L, Lee CC, Green JA, et al. Severe acute respiratory syndrome (SARS) in Singapore: clinical features of index patient and initial contacts. Emerg Infect Dis 2003;9:718–20.
7. Booth CM, Matukas LM, Tomlinson GA, et al. Clinical features and short-term outcomes of 144 patients with SARS in the greater Toronto area. JAMA 2003;289:2801–9.
8. Peiris JS, Chu CM, Cheng VC, et al. Clinical progression and viral load in a community outbreak of coronavirus-associated SARS

15 MARCH
pneumonia: a prospective study. Lancet 2003; 361:1767–72.
9. So LK, Lau AC, Yam LY, et al. Development of a standard treatment protocol for severe acute respiratory syndrome. Lancet 2003; 361:1615–7.
10. Li G, Chen X, Xu A. Profile of specific anti-the lung, diffuse alveolar damage with hy-
11. The lungs, immune organs, and systemic
temal disease that injures many organs.
12. They note that “SARS is a sys-
tematic disease that injures many organs.
13. The lungs, immune organs, and systemic
small vessels are the main targets of virus
attack so that extensive consolidation of
the lung, diffuse alveolar damage with hy-
acline membrane formation, respiratory
distress, and decreased immune function
are the main causes of death” [5, p. 282].
14. At the time of writing, there is still no
evidence to support the view of Zhou and
Chen [1] that lymphopenia is due to the
redistribution and migration of lympho-
cytes. With respect to the expression of
lymphocytes and their subsets, Li et al. [6]
arrived at a conclusion identical to the one
we reported [7]. Therefore, we believe that
the hypothesis that SARS-CoV may dam-
age the immune system might be sup-
ported by recently published studies.
15. We believe that Zhou and Chen [1]
need more data to support their conclu-
sion that the immune function of B cells
in our patients appeared not to be im-
paired because specific anti–SARS-CoV
could be detected as early as 10 days after
the onset of illness. Although anti–SARS-
CoV was observed in patients with SARS,
it was not proper to conclude that B cells
in these patients were unimpaired, because
the extent of impairment might be differ-
ent and because the function of B cells
was not limited to the production of an-
tibody. The fact that 76% of our patients
with SARS had low B cell counts could
imply that B cells were damaged by SARS-
CoV, although the damage was not too
severe to affect the production of antibody.
16. There are still too many unanswered
questions about SARS. Although the in-
cidence of SARS has subsided in Beijing,
mor investigations are underway. We wel-
come different opinions and suggestions
as we continue our research.

Wei Cui
Department of Clinical Laboratory,
Peking Union Medical College Hospital,
Beijing, People’s Republic of China

References
1. Zhou Y-H, Chen Z. Is the immune system im-
paired in patients with severe acute respiratory
syndrome [letter]? Clin Infect Dis 2004; 38:
921–2 (in this issue).
2. Li L, Wo J, Shao J, et al. SARS-coronavirus
replicates in mononuclear cells of peripheral
blood (PBMCs) from SARS patients. J Clin Vi-
rol 2003; 28:239–44.