Zip and velcro bifurcations in competition models in ecology and economics

Jason A.C. Gallas

Max-Planck-Institut für Physik komplexer Systeme, D-01187 Dresden, Germany
Complexity Sciences Center, 9225 Collins Avenue Suite 1208, Surfside, FL 33154, USA and
Instituto de Altos Estudios, Rua Silvino Lopes 419-2502, 58039-190 João Pessoa, Brazil

(Dated: September 10, 2019)

During the last six years or so, a number of interesting papers discussed systems with line segments of equilibria, planes of equilibria, and with more general equilibrium configurations. This note draws attention to the fact that such equilibria were considered previously by Miklós Farkas (1932-2007), in papers published in 1984-2005. He called zip bifurcations those involving line segments of equilibria, and velcro bifurcations those involving planes of equilibria. We briefly describe prototypical situations involving zip and velcro bifurcations.

I. INTRODUCTION

About ten years ago it was realized that, in addition to the familiar chaotic attractors associated with saddle points, dynamical systems may also contain attractors not connected to such points, the so-called hidden attractors [1, 2]. This startling finding induced considerable interest and a large number of publications concerning the properties of systems displaying no equilibria, chaotic systems with lines of equilibria, as well as systems containing planes and more general surfaces of equilibria.

For instance, by performing a systematic computer search among certain families polynomial dynamical systems, Jafari and Sprott [3] found nine chaotic flows with quadratic nonlinearities which have the unusual feature of displaying a line segment of equilibrium points. Other similar polynomial flows were also investigated [4, 5]. As remarked by these authors, such systems belong to a newly introduced category of chaotic systems with hidden attractors that are important and potentially problematic in real-life applications. Wang and Chen [6] reported on how to construct systems having any number of equilibria. Uyaroğlu and Kocamaz [7] investigated a passive control method. A chaotic flow with a plane of equilibria was investigated by Jafari et al. [8]. Very recently, Wu et al. [9] studied a neural memristor with infinite or without equilibrium, while Pham and coworkers presented a gallery of surfaces of equilibria.

In these equations, x_1, x_2, S denote the population size of the two predator and the prey species, respectively. Clearly, in the absence of predators, the prey follow a standard logistic growth whose increase is controlled by $\gamma > 0$. The carrying capacity of the environment with respect to the prey is $K > 0$. The impact of the predators is assumed to be regulated by the Michaelis-Menten kinetics [15], where $m_i > 0, d_i > 0$, and a_i are, respectively, the maximum birth rate, the death rate and the half saturation constant of the i-th predator.

Now, introduce auxiliary variables

$$\lambda_i = \frac{a_i d_i}{m_i - d_i}, \quad \beta_i = m_i - d_i, \quad b_i = m_i/d_i,$$

and assume that $0 < \lambda = \lambda_1 = \lambda_2 < K$, implying $\beta_i > 0, b_i > 1$. These definitions change Eqs. (1)-(3) into

$$\dot{S} = \gamma S \left(1 - \frac{S}{K}\right) - \frac{m_1 x_1 S}{a_1 + S} - \frac{m_2 x_2 S}{a_2 + S},$$

$$\dot{x}_1 = \frac{m_1 x_1 S}{a_1 + S} - d_1 x_1,$$

$$\dot{x}_2 = \frac{m_2 x_2 S}{a_2 + S} - d_2 x_2.$$

II. ZIP BIFURCATIONS

Farkas introduced the concept of zip bifurcations in 1984 [12, 13]. An extended and detailed presentation is given in his 1994 book *Periodic Motions* [14]. Farkas found zip bifurcations while studying the competition dynamics involving one prey and two predator species:

$$\dot{S} = \gamma S \left(1 - \frac{S}{K}\right) - \frac{m_1 x_1 S}{a_1 + S} - \frac{m_2 x_2 S}{a_2 + S},$$

$$\dot{x}_1 = \frac{m_1 x_1 S}{a_1 + S} - d_1 x_1,$$

$$\dot{x}_2 = \frac{m_2 x_2 S}{a_2 + S} - d_2 x_2.$$

In the remainder of this note, we briefly review these concepts.

The purpose of this note is to draw attention to the fact that systems with lines and surfaces of equilibria were considered previously by Miklós Farkas (1932-2007), in a series of papers published during the years 1984-2005. Farkas called zip bifurcations those involving line segments of equilibria, and velcro bifurcations those in systems with planes of equilibria. In the remainder of this note, we briefly review these concepts.

Farkas introduced the concept of zip bifurcations in 1984 [12, 13]. An extended and detailed presentation is given in his 1994 book *Periodic Motions* [14]. Farkas found zip bifurcations while studying the competition dynamics involving one prey and two predator species:
and consider the triplet of points

\[P_K = \left(1, 0, 1 - \frac{1}{K} \right), \]
\[M_K = \left(1, 3 - \frac{9}{K}, \frac{8}{K} - 2 \right), \]
\[Q_K = \left(1, 1 - \frac{1}{K}, 0 \right), \]

where \(K \in (3, 4). \) With the choices above, it is not difficult to see that the straight line segment \(L \) connects the points \(P_K \) and \(Q_K, \) and that the point \(M_K \) is contained in the line \(L. \) As discussed in Section 7.4 of Farkas’ book [14], the equilibria on \(L \) located between \(P_K \) and \(M_K, \) and the point \(M_K \) is contained in the line \(L. \) As \(K \) increases from 3 to 4, the point \(M_K \) moves on the line from \(P_K \) to \(Q_K, \) so that all points located on the left of \(M_K, \) become unstable. As \(K \) is varied, the line \(L \) undergoes a parallel displacement which, however, has no effect on the aforementioned scenario. For additional references and examples in more general contexts and the corresponding analysis, see Section 7.4 of Farkas’ book [14].

More recent work by Ferreira and Rao deals with zip-bifurcation in a predator-prey model with diffusion [17], and in systems involving discrete delay [18, 19] and cross-diffusion [20]. Zip bifurcations are also discussed by Escobar-Callejas et al. [21], and by Echeverri et al. [22].

III. VELCRO BIFURCATIONS

Velcro bifurcations were considered in 2003 by Bocsó and Farkas [23], in the context of a political and economic rationality economic problem modelled by a set of four differential equations taking into account information concerning the problem spread among the people who support the political alternatives. In such model, velcro bifurcation occurs for specific parameter combinations destabilizing the equilibrium points when information spreads [23].

The model consists of the following equations:

\[\dot{v} = \gamma v \left(1 - \frac{v}{K} \right) - \sum_{i=1}^{3} m_i \frac{v}{a_i + v} u_i - M \frac{v}{A + v} u_1, \]
\[\dot{u}_1 = m_1 \frac{v}{a_1 + v} u_1 - d_1 u_1, \]
\[\dot{u}_2 = m_2 \frac{v}{a_2 + v} u_1 - d_2 u_2, \]
\[\dot{u}_3 = m_3 \frac{v}{a_3 + v} u_1 - d_3 u_3. \]

The model has similarities with the previous one, control parameters obey similar relations but have rather different meanings [23] which are of no concern for our purpose here.

The last three equations of the model above may be simplified to

\[\dot{u}_i = \beta_i \frac{v - \lambda_i}{v + a_i} u_i, \quad i = 1, 2, 3 \]

where, similarly as before,

\[\beta_i = m_i - d_i, \quad \beta_i = m_i/d_i, \quad \lambda_i = \frac{a_i d_i}{b_1 - 1}. \]

Under specific but realistic relations of the parameters the equilibrium points of the system form a surface [23]

\[S = \left\{ (v, u_1, u_2, u_3) \in \mathbb{R}^4 \mid v = \lambda, u_1, u_2, u_3 > 0 \right\} \]

\[\gamma \left(1 - \frac{v}{K} \right) = \sum_{i=1}^{3} \left(\frac{m_i u_i}{a_i + v} + \frac{M}{A + v} u_1 \right) \]

In the above context, the dynamics of the velcro bifurcations is defined as a sort of generalized zip bifurcations, as spelled out in Theorem 2 of Bocsó and Farkas [23]:

The surface \(S \) is divided into two parts by a curve \(g; \) the equilibria on the upper part of \(S \) are still stable, and this part is an attractor of the system (in the sense described in [14]); the equilibria on the lower parts are already unstable. The curve \(g \) moves upwards as \(K \) is increased leaving behind the destabilized equilibria.

Velcro bifurcations were also reported in 2005 by Farkas, Sáez, and Szántó in competition models with generalized Holling functional response [24, 25]. Specifically, their basic model is given by the equations:

\[\dot{S} = r S \left(1 - \frac{S}{K} \right) - \sum_{i=1}^{3} \frac{m_i x_i}{a_i + S} - \frac{S^n}{a_i + S^n}, \]
\[\dot{x}_i = m_i x_i \frac{S^n}{a_i + S^n} - d_i x_i, \quad i = 1, 2, 3 \]

where \(n > 2 \) is an integer. For a detailed analysis and several figures of the equilibrium surfaces, consult the original article [24, 25].

IV. CONCLUSIONS AND OUTLOOK

The purpose of this note is to bring the works of Farkas and co-workers to the attention of researchers working in the interesting field of systems with line and surfaces of equilibria. As remarked in 1996 by Freedman [26], “For those who don’t know, zip bifurcations were first discovered by Professor Farkas, describing how a singular curve unfolds into periodic solutions when a parameter changes, just like a zipper opening up.”

It is interesting to note that while most of the recent systems found to contain lines and surfaces of equilibria deal with interesting but abstract polynomial systems, arising from exhaustive computer searches, that are not yet associated with any applications. In contrast, Farkas and co-workers found zip and velcro bifurcations in standard systems that contain typical nonlinearities of the sort encountered in popular models used in biology and economy. A publication list containing 76 works of Farkas is given in Ref. [16], while a list with
78 works, signed by “students and colleagues”, is given in Ref. [27]. A special issue of the journal Differential Equations and Dynamics Systems was dedicated to Farkas [28].

As it is clear from the literature, there is presently great interest in investigating changes in the topology of attractors not restricted to small neighborhoods of points. The works of Farkas still contain a plethora of theorems and unexplored materials that deserve attention, and that will certainly contribute to the understanding of the rich dynamics of systems with equilibria defined by extended mathematical structures.

The author is indebted to J.D. Ferreira, S. Jafari, and V.T. Pham for their interest, and the first one for pointing out Ref. [20] to him. Work done in the framework of an Advanced Study Group on Forecasting with Lyapunov vectors, at the Max-Planck Institute for the Physics of Complex Systems, Dresden. The author was supported by CNPq, Brazil.

[1] G.A. Leonov, N.N. Kuznetsov, and V.I. Vagaitsev, Localization of hidden Chua’s attractors, Phys. Lett. A 375, 2230-2233 (2011).
[2] D. Dudowski, S. Jafari, T. Kapitaniak, N.V. Kuznetsov, G.A. Leonov, and A. Prasad, Hidden attractors in dynamical system, Phys. Rep. 637, 1-50 (2016).
[3] S. Jafari and J.C. Sprott, Simple chaotic flows with a line of equilibrium, Chaos, Solitons & Fractals 57, 79-84 (2013).
[4] C. Li and J.C. Sprott, Chaotic flows with a single nonquadratic term, Phys. Lett. A 378, 178-183 (2014).
[5] C. Li, J.C. Sprott, and W. Thio, Bistability in a hyperbolic system with a line equilibrium, J. Experim. Theor. Phys. 118, 494-500 (2014).
[6] X. Wang and G. Chen, Constructing a chaotic system with any number of equilibria, Nonlin. Dyn. 71, 429-436 (2013).
[7] Y. Uyaroglu and U.E. Kocamaz, Control of a simple chaotic flow having a line equilibrium by means of a single passive controller, Chaotic Modeling and Simulation 4, 277-288 (2015).
[8] S. Jafari, J.C. Sprott, and M. Molaie, A simple chaotic flow with a plane of equilibria, Int. J. Bif. Chaos 26, 1650098 (2016).
[9] F. Wu, G. Zhang, and J. Ma, A neural memristor system with infinite or without equilibrium, Eur. Phys. J. Special Topics 228, 1527-1534 (2019).
[10] V.T. Pham, S. Jafari, C. Vołos, and T. Kapitaniak, A gallery of chaotic systems with an infinite number of equilibrium points, Chaos, Soliton & Fractals 93, 58-63 (2016).
[11] V.T. Pham, S. Jafari, C. Vołos, and L. Fortuna, Simulation and experimental implementation of a line-equilibrium system without linear term, Chaos, Soliton & Fractals 120, 213-221 (2019).
[12] M. Farkas, Zip bifurcations in a competition model, Nonlin. Analysis TMA 8, 1295-1309 (1984).
[13] M. Farkas, Competitive exclusion by zip bifurcations, in Lecture Notes on Economics and Mathematical Systems, vol. 287, Edited by A.B. Kurzhanski and K. Sigmund, pp. 165-178 (Springer, Berlin, 1987).
[14] M. Farkas, Periodic Motions (Springer, New York, 1994).
[15] K.A. Johnson and R.S. Goody, The original Michaelis constant: Translation of the 1913 Michaelis-Menten paper, Biochemistry 50, 8264-8269 (2011).
[16] Anonymous, Miklós Farkas obituary, Periodica Math. Hungarica 56, 1-9 (2008).
[17] J.D. Ferreira and L.A.F. de Oliveira, Zip bifurcations in a competitive system with diffusion, Diff. Equations Dyn. Sys 17, 37-53 (2009).
[18] M. Farkas, J.D. Ferreira, and P.C.C. Tabares, Degenerate center in a predator-prey system with memory, Ann. Univ. Budapest, Sect. Comp. 25, 53-65 (2005).
[19] J.D. Ferreira and V.S.H. Rao, Unsustainable zip-bifurcation in a predator-prey model involving discrete delay, Proc. Royal Soc. Edinburgh 143A, 1209-1236 (2013).
[20] J.D. Ferreira, S.H. da Silva, and V.S.H. Rao, Stability analysis of predator-prey models involving cross-diffusion, Phys. D 400, 132141 (2019).
[21] C.M. Escobar-Callejas, J.R. González-Granada, and A.E. Posso-Agudelo, Ingenieria y Ciencia 6, 11-41 (2010) (in Spanish).
[22] L.F. Echeverri, O.I. Giraldo, and E. Zarrazola, A model of competing species that exhibits zip bifurcations, Revista Integración Univ. Industrial de Santander 35, 127-141 (2017).
[23] A. Bocsó and M. Farkas, Political and economic rationality leads to velcro bifurcation, Appl. Math. Computation 140, 381-389 (2003).
[24] M. Farkas, E. Sáez, and I. Szántó, Velcro bifurcation in competition models with generalized Holling functional response, Miskolc Mat. Notes 6, 185-195 (2005).
[25] E. Sáez, E. Stange, and I. Szántó, Simultaneous zip bifurcation and limit cycles in three dimensional competition models, SIAM J. Appl. Dyn. Sys. 5, 1-11 (2006).
[26] H.I. Freeman, Bull. Am. Math. Soc. 33, 119 (1996).
[27] Anonymous, Alkalmazott Matematikai Lapok 25, 155-161 (2008) (in Hungarian).
[28] J.D. Ferreira and G. Stépán, Miklos Farkas (1932-2007), Diff. Eqs. Dyn. Sys. 17, 1-2 (2009).