Applying Task Scheduling For IOMT-Cloud Business Optimisation Using AI

ADEDOYIN HUSSAIN (✉ hussaindoyin@gmail.com)
Near East University: Yakin Dogu Universitesi https://orcid.org/0000-0001-9068-110X

Fadi Al-Turjman
Near East University: Yakin Dogu Universitesi

Research

Keywords: Cloud, IoMT, Artificial intelligence, Short job first, Round robin, Genetic algorithm, first come first serve

Posted Date: October 6th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-934310/v1

License: © 📧 This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

The IoMT-cloud enables a surplus extent of customers to get disseminated, versatile, and virtualized gear just as programming structure over the Internet. The IoMT-cloud is one of the principal headway used recently, it grants customers to get cloud resources over the internet remotely. Hence, we need to complete a reasonable task scheduling estimation to tolerably and viably meet these requests. The scheduling of task issue is perhaps the most essential issue in the IoMT-cloud since cloud execution depends prevalently upon it. Capable task scheduling administration should meet customer's requirements and improve the resources used to overhaul the introduction of the IoMT-cloud framework. To deal with this issue, in this investigation, we attempt to show the two most notable static and one dynamic task scheduling execution separately, short job first (SJF), first come first serve (FCFS), and round-robin (RR). Likewise, it was advanced using the AI technique known as genetic algorithm (GA). The CloudSim simulation framework is used to measure their impact on total execution time (TET), algorithm complexity, throughput, resource utilization, total waiting time (TWT), availability of assets, total finish time (TFT), cost, and resource utilization. The model proposed is to improve the viability of task scheduling for the IoMT-cloud stage with the best execution rate of 32.47ms. The exploratory results show that GA cuts down the cost of planning and reduces the total time, which is a convincing computation for the IoMT-cloud task scheduling.

1. Introduction

The IoMT-cloud is advanced with the improvement of PC and organization innovation. This is a result of joining circulated innovation, equal processing, and virtual innovation. A suitable scheduling methodology is utilized to assign the subtasks to the hubs of the asset center. The essential guideline of IoMT-cloud is that the framework partitions jobs presented by clients into a few free subtasks. Hence, task scheduling in a cloud environment is one of the critical advances of IoMT-cloud computing, which influences the entire execution of the computing stage. When the preparation of all subtasks is finished, it brings about asset hubs which are given back to clients by the technique [1] [2]. Authors in [3] advance a task scheduling calculation in the cloud for addressing the cloud task scheduling dependent on improved scheduling calculation, which can acquire more modest time and lower cost for finishing the task. An enormous number of studies show that the issue of IoMT-cloud scheduling is identified with NP, which has been concentrated by numerous researchers. While authors in [4] receive the particle swarm optimization (PSO) to consider the nature of administration of clients, which has accomplished great outcomes in the field of planning of assets of cloud task subsequent in completing an enormous number of logical registration. Authors in [5] concoct a genetic simulated annealing calculation for task planning with double fitness, which can successfully adjust the requests of the clients for the properties of assignments and improve the clients’ fulfillment in the distributed computing stage. Authors in [6] utilize the system of addressing the cloud task scheduling by unique self-adjusting subterranean ant colony calculation (ACO), which beats the lack of subterranean insect province calculation in tackling the IoMT-cloud task scheduling. It includes the moderate pace of assembly and is simply trapped in a local optimum. In any case, because of the heterogeneity of the IoMT-cloud stage, any single calculation is anything but difficult to fall into local optimum, untimely and different deformities, and the improvement of the calculation is centered around the idea of the calculation itself, overlooking the job of the development of information during the time spent advancement.

To improve the effectiveness of task scheduling for the IoMT-cloud stage, a task scheduling technique dependent on hereditary calculation is introduced. Task calculation is a sort of clever advancement calculation dependent on
the twofold layer development system of information, which acquires valuable information and data through the advancement space of miniature level and saves it in the development space of large scale level, and uses those information to control the transformative cycle of principle populace space [7]-[11]. The effect and portrayal are outlined in Fig. 1 beneath. The fundamental populace space of the calculation utilizing the essential hereditary calculation, and the conviction space utilizes the hereditary calculation with the non-uniform transformation administrator in every cycle to improve the capacity of the populace. This diminishes the absolute season of the undertaking and diminishes the task scheduling cost, and improves the productivity of assignment planning. It is the principal innovation that utilizes the idea of business execution of software engineering with public clients [12]. IoMT-cloud is another innovation gotten from lattice processing and conveyed figuring and alludes to utilizing registering assets as an administration and gave to recipients on interest through the Internet [13]. It depends on dividing assets between clients using the virtualization procedure. In any case, there are numerous difficulties common in IoMT-cloud computing, High execution can be given by computing, given dispersing remaining burdens across all assets reasonably and successfully to get less holding up time, execution time, most extreme throughput, and abuse of assets viably. Task scheduling and load balance are the greatest that it is viewed as the fundamental factors that control other execution models, for example, accessibility, versatility, and power utilization.

Task scheduling is one of the central issues in IoMT-cloud computing. The significant favorable position of computing is that it advances legitimate usage of assets [14]. Appropriate errand planning may bring about the proficient usage of assets. Each influences the other. Consequently, task scheduling and asset portioning are different sides of a solitary coin. Right now, Internet clients can get to content anyplace and whenever, without expecting to think about the facilitating foundation. IoMT-cloud computing improves the capacities of such framework, which can get to the Internet. Such facilitating foundation comprises of different machines with different abilities that are kept and overseen by the specialist organization. Cloud specialist co-ops procure benefits by offering administrations to cloud assistance clients [15]. The cloud administration end client can lessen or expand the accessible assets, per the requests of the applications. The cloud administration end client can utilize the whole pile of figuring administrations, which goes from equipment to applications. Administrations in IoMT-computing utilize a pay-more only as costs arise premise. The cloud administration client can lease the assets whenever and discharge them with no trouble. This is one of the significant focal points of computing, however, administration clients might be answerable for paying extra expenses for this preferred position. The cloud administration client has the opportunity to utilize any help dependent on application need. The pattern of the IoMT-cloud is portrayed in Fig. 2. Hence, task scheduling and asset allotment are required pieces of IoMT-cloud computing research [16]. The opportunity of administration decisions for clients has prompted issues; that is the following client demand can't be impeccably anticipated. The effectiveness of asset utilizes relies upon the planning and burden adjusting philosophies, as opposed to the irregular allotment of assets. In tackling complex undertaking issues, the utilization of planning calculation is suggested. Such planning calculations influence the assets. IoMT-cloud computing is generally utilized for tackling complex undertakings (client demands).

In this work, the clear contribution is as per the following.

- An efficient review of the writings about task scheduling and enhancement in IoMT-cloud.
- A summation of the design of key factors that are needed in IoMT-cloud task scheduling.
- Sorted the various techniques for task scheduling for IoMT-cloud.
- A depiction and description of the outcome gotten from the experiment.
• A summation of key issues and difficulties in this paper.

The paper is introduced as follows. The introduction of comparable investigations which adds to the idea of the examination and the assessment of the systems and methods utilized are introduced in Sect. 2. While in Sect. 3 depicts the strategy just as the materials utilized in experimenting. In Sect. 4, sets forth the outcome and results gotten from the experiment. At long last, Sect. 5 presents the end and conclusion of the commitments introduced in this paper. Table 1 gives an outline of the abbreviation utilized and its definition.

2. Literature Review

Numerous specialists have proposed answers to defeat the issue of scheduling and asset designation. This segment gives a concise survey of scheduling planning and asset allotment. Notwithstanding, further enhancements can even now be made. This current strategy gives an expense and time model for distributed computing. Authors in [18] proposed a multi-object approach that utilizes the improved differential advancement calculation. In any case, varieties in the errands are not considered in this methodology. The creators considered the invigorate seasons of the worker in satisfying solicitations. Authors in [19] proposed a heap adjusting and planning calculation that doesn't consider work sizes. This approach doesn't show the legitimate use of assets. Authors in [20] presented the planning of assignments dependent on an excursion lining model. A nonlinear programming model has been shaped to distribute assets to errands. However, authors in [21] proposed the booking of errands while thinking about data transmission as an asset. Creators have outlined the connection between task scheduling and energy protection by asset allotment. Authors in [22] proposed AHP positioning-based undertaking planning. Authors in [23] acquainted moving skyline booking design with plan continuous undertakings. The proposed framework doesn't zero in on prematurely ending the positions and starvation. Thus, authors in [24] proposed planning for equal outstanding burdens. Creators have utilized the FCFS way to deal with request occupations when assets are accessible. Multi measures choices and numerous credits are thought of. Authors in [25] proposed a need-based employment booking calculation for use in distributed computing. Authors in [26] proposed the utilization of meta-heuristic improvement and molecule swarm streamlining to lessen execution costs through planning. In [27] they presented the advanced expense of energy and lining postpone imperatives. However, in [28] they proposed the utilization of altered insect province enhancement in burden adjusting. This framework doesn't think about the accessibility of assets or the heaviness of errands. This technique improves the makespan of a work. Authors in [29] proposed a framework dependent on a multi-standards calculation for planning worker load. Authors in [30] proposed an asset designation issue that means to limit the all-out energy cost of distributed computing frameworks while meeting the predetermined customer level SLAs from a probabilistic perspective [31]-[33]. Thus, in [34] they proposed a framework dependent on the need for performing separable burden booking that utilizes logical progression measures. Here, creators have applied an opposite methodology that applies a punishment if the customer doesn't meet the SLA arrangements. While in [35] they presented a focal burden adjusting the choice model for use in cloud conditions. This model robotizes the booking cycle and lessens the part of human directors. A few creators have executed a heuristic calculation to tackle task planning and asset assignment issue depicted previously. Likewise, in [36] and [37] they centered on planning undertakings while thinking about different imperatives. Nonetheless, this model is insufficient in deciding the abilities of hubs and, setup subtleties, and the total framework has no reinforcement, accordingly bringing about a solitary purpose of disappointment. This cutting edge persuades the creators of this examination to direct extra research on assignment scheduling and asset designation.
Authors in [38] proposed a viable burden adjusting calculation by utilizing hybridization of insect province improvement method, insect settlement min-max procedure, and hereditary calculation. The movement is finished utilizing Ant Colony Optimization (ACO) scheduling calculation. They built up this powerful procedure to limit the expense of relocation of VM and keep up the SLA (Service Level Agreement) which is a QoS factor. This, at last, computes the quantity of cycle of virtual machines from have applications. As GA haphazardly chooses the processors and afterward applies the hereditary calculation, the fittest processors find the opportunity, and the VM which has lower need starves. Authors in [39] thought of the strategy that manages the starvation issue in job adjustment. Through this, the need is allocated to VM to expand the reaction season of the framework and to accomplish better burden adjusting. To conquer this difficulty they utilized hereditary calculation with the logarithmic least square framework method. This technique recognizes the sound chromosome, bunches the assets, applies a competition determination, and creates a new populace. With this, authors in [40] have proposed an Improved GA by utilizing the incomplete populace decrease technique (PPRM). Consequently, it assists with expanding the reaction time which prompts better execution of the framework and looks after consistency. After this cycle, GA is applied to the new populace and finds wellness esteem. Choice, hybrid, and transformation with the flipping of parallel pieces are done. Authors in [41] have reviewed insightful cloud calculations to adjust the heap and proposed AntLion Optimizer (ALO) to give better outcomes in adjusting the heap in the cloud. This gives more significant arrangements. ALO handles huge issue space. GA follows a set of filtration and eliminates less significant arrangements supporting to add new populace got from mutation and crossover.

Authors in [42] have reviewed transformative GA for creating an answer. It is following three main activities. Essential GA having terms called populace, chromosome, quality, and fitness work. By this thought, they accomplished better normal reaction time and increments cloudlets with change encoding. They have considered a need-based introductory assessment. Authors in [43] have proposed a Cloud-based generally Storage and dynamic Multimedia Load Balancing (CSdynMLB) strategy to adjust the heap of a worker group. It assists with lessening overhead, moving time and improves the exhibition. In an interactive media framework, when a customer demands a worker utilizing asset director, extra RAM limit, CPU, and extra room is needed for correspondence between the customer and the grouped worker. They have presented Job Unit Vector (JUV) and Processing Unit Vector (PUV) terms to get fitness work. Authors in [44] have proposed cross breed hereditary calculation and gravitational copying nearby inquiry (GA-GEL) calculation for VM load balance in the cloud. The comparative need is applied to all the solicitations and guarantees better QoS, high interoperability, and versatility. The result appeared with Cloud Analyst reproduction device that varies with a various number of server farms. Authors in [45] have proposed Genetic Ant Colony Algorithm-Virtual Machine Placement (GACA-VMP) way to deal with resolving VMP issues utilizing improved ACA. First, break down the pheromone at whatever point subterranean insect strolls and next assesses pheromone advancement to adjust the VM load. Through this methodology, they have chosen a doable way in two stages. This is acquired to effectively choose the actual worker and builds the presentation [46]-[51]. The correlation of the literature with our model is portrayed in Table 2.

Table 2. Study comparison with other literature.
3. Methodology

The systems method, design, and architecture join the target that it supports thinking which amalgamates the conduct and design. This is a conventional depiction and it depicts the proposed system overall. This section incorporates the direct design and more perspectives on the framework that will work inseparable while using the general framework and it is portrayed in Fig. 3. Besides, it also depicts the planning of the structure which incorporates portions of the system and the improvement of the structure.

3.1 Description of the IoMT-cloud scheduling model

The fundamental highlights of IoMT-cloud are self-overhauled, per-utilization metering and charging, flexibility, and customization. The IoMT-Cloud has various qualities which offer advantages to the end client, idealistic highlights of cloud assets are basic to allow administrations that certainly establish the Cloud display and fulfill assumptions for buyers. The framework plans to improve the exhibition of assignment planning, while at the same time decreasing computational expenses. For these highlights, the executives assume a significant job. The executives of assets are the technique for allocating stockpiling, processing, and organization assets to the client. This is for meeting objective execution of the projects, cloud suppliers, and clients of the cloud. A key target is to anticipate the ideal calculation for approaching information when required. Additionally, we break down the prerequisites and results of using Quality of Service (QoS) with the proposed result. To accomplish this, we play out a methodical examination of static and dynamic planning for the IoMT-cloud climate. At the point when the number of errands to be executed is huge then the booking gets troublesome, accordingly, there is a need for a productive planning calculation. The planning calculation should be adequately competent to deal with the issues identified with the asset allotment like asset dispute, shortage of assets, over-provisioning of assets, and asset fracture.

For the methods of booking IoMT-cloud assets, the cycle of Task Scheduling teaches the scheduler to get errands from the clients and request the cloud information service (CIS) for accessible assets and their properties. The clients demand the assets on interest, and the cloud supplier is responsible for the allotment of expected assets.
to the client to maintain a strategic distance from the infringement of the Service Level Agreement (SLA). Cloud scheduler is capable to plan various virtual machines (VMs) to various undertakings. As per the accessibility of assets and Task Scheduling calculation, the scheduler plans client submitted occupations on different assets according to necessities. The task scheduling framework in the IoMT-cloud is portrayed in Fig. 4. The planned structure is made in three segments, static scheduling, dynamic scheduling, and the use of AI. While in Fig. 5 it shows the primary cycle of scheduling which is in three phases. The static scheduling area will utilize two notable calculations (SJF and FCFS). The dynamic scheduling area will utilize the round-robin (RR) scheduling method. The AI area will utilize a genetic algorithm (GA) and the portrayed result predicts the outcome by distinguishing the one with the best outcome. It analyses them based on different related boundaries and discovers the benefits and negative marks of these calculations. This is zeroing in on the different scheduling algorithms for IoMT-cloud climate.

The static task scheduling section can be subdivided into:

- First come first serve (FCFS).
- Shortest job first (SJF).

The dynamic task scheduling section can be subdivided into:

- Round robin (RR).

AI section is subclassed into:

- Genetic algorithm (GA).

3.2. Static task scheduling

In static scheduling, the task assigned to processors is done before program execution starts. An undertaking is constantly executed on the processor to which it is allocated; that is, static scheduling techniques are nonpreemptive. Considering this objective, static scheduling strategies endeavor to foresee the program execution conduct at the accumulate time, that is, gauge the cycle or undertaking, execution times, and correspondence delays, play out a parceling of smaller errands into coarser-grain measures trying to lessen the correspondence costs and assign cycles to processors. Normally, the objective of static scheduling techniques is to limit the general execution season of a simultaneous program while limiting the correspondence delays. Moreover, static scheduling experiences numerous drawbacks. Static scheduling strategies can be grouped into ideal and problematic. The significant favorable position of static scheduling techniques is that all the overhead of the planning cycle is caused at assemble time, bringing about a more productive execution time environment contrasted with dynamic scheduling strategies. Maybe perhaps the most basic deficiencies of static scheduling are that creating ideal timetables is an NP-complete issue. NP-fulfilment of ideal static scheduling, with or without correspondence cost contemplations, has been demonstrated in the writing. It is simply conceivable to produce ideal arrangements in limited cases for instance when the execution season of the entirety of the undertakings is the equivalent and just two processors are utilized. The utilized static scheduling method is described below.

3.2.1. Application of first come first serve (FCFS) in IoMT-cloud
In this calculation, assignments that showed up first are served first. Occupations on the line are embedded into the tail of the line. In this model, the request for errands in the undertaking list depends on their showing up time at that point doled out to VMs. This is one of the mainstream scheduling calculations and it is more attractive than other scheduling calculations. Individually each cycle is taken from the head part of the line. This calculation is direct and speedy. It relies upon the FIFO rule in planning tasks with less intricacy than other scheduling calculations. It doesn't give any need to errands. To quantify the exhibition accomplished by this strategy, we will test them and afterward estimating their effect on its decency, ET, TWT, and TFT because the errands have high holding up time. Its execution with assets is not burned-through in an ideal way. That implies when we have huge undertakings at the start of the assignments list, all errands should stand by quite a while until the huge assignments are through. The FCFS will have these valuable attributes:

- This sort of calculation doesn't function admirably with delaying delicate traffic as waiting time and deferral are generally on the higher side.
- There is no prioritization at all and this makes each cycle at the end finish before some other cycle is added.
- As setting switches possibly happens when a cycle is ended, in this way no cycle organization is required and there is little planning overhead.

The handling happens by picking the correct request of tasks. The usage of the FCFS strategy is effortlessly made do with the FIFO line. With this plan, the client demand which starts things out to the server farm regulator would just be apportioned with the VM for first execution. The datacentre regulator looks for a virtual machine that is free or over-burden. The assignment of solicitation happens in two different ways. At that point, the main solicitation from the tasks is taken out and is passed to one of the VM through the VM scheduler. Initially, the solicitations can be orchestrated in a way and also by allotting weighty burden-less work and low burden work. The entire instrument of the calculation is portrayed in the underneath Fig. 6. Many functional boundaries can be considered in calculating the complex load weighing variable and current load weighing variable.

3.2.2. Application of shortest job first (SJF) in IoMT-cloud

Need is given to assignments dependent on the length of the task and starts from the least to the most noteworthy need. In this model, errands are arranged dependent on their need. The cycle is then allotted to the processor that has the smallest bust time. The calculation is a pre-emptive that chooses the waiting cycle that has the least execution time. It has an average minimum waiting time among all scheduling calculations. The stand-by time is normally lower than FCFS. It possesses an injustice to certain jobs when jobs are allotted to VM. This is because of the long jobs tending to be left holding up in the assignment list while little jobs are allocated to VM. However, it has a long execution time and TFT. The flowchart of the execution cycle is portrayed in Fig. 7. It will have these worthwhile attributes:

- It diminishes the normal waiting time as it executes little cycles before the execution of enormous ones.
- One of the issues that SJF calculation is that it needs to become more acquainted with the next processor demand.
- When a framework is occupied with such countless more minima cycles, starvation will happen.

3.3. Dynamic task scheduling
This reallocation model is performed by moving assignments from the vigorously stacked processors to the softly stacked processors called load offsetting with the point of improving the presentation of the application. Dynamic scheduling depends on the reallocation of cycles among the processors during execution time. In any case, the choices concerning when and where employees should be moved are made locally by every processor. The booking activities might be concentrated in a solitary processor or conveyed among all the handling components that take an interest in the heap adjusting measure. All things considered, all processors send their heap data to a focal processor and get load data from that processor. Many joined strategies may likewise exist. For instance, the data strategy might be incorporated yet the exchange and position approaches might be conveyed. Dynamic burden adjusting is especially valuable in a framework comprising of an organization of workstations in which the essential execution objective is boosting usage of the handling power as opposed to limiting the execution season of the applications. If a circulated data strategy is utilized, each handling component keeps its nearby picture of the framework load. A common burden adjusting calculation is characterized by three innate strategies which are, data strategy, move strategy, and situation strategy. Every processor passes its present burden data to its neighbors at present time stretches, bringing about the dispersement of burden data among all the handling components in a brief timeframe. This agreeable approach is frequently accomplished by an angle appropriation of burden data among the preparing components. A dispersed data strategy can likewise be noncooperative. Irregular burden adjusting functions admirably when the heaps of the multitude of processors are generally high, that is, the point at which it doesn't have a lot of effects where employment is executed. Arbitrary scheduling is an illustration of noncooperative planning, in which a vigorously stacked processor haphazardly picks another processor to which to move work. The adaptability inalienable in unique load adjusting considers variation to the unanticipated application prerequisites at run-time. The benefit of dynamic burden adjusting over static scheduling is that the framework does need not to know about the run-time conduct of the applications before execution.

3.3.1. Application of round Robin (RR) in IoMT-cloud

In this model new cycle is then added to the back of the prepared rundown and afterward, new cycles are embedded in the tail of the line. On the off chance that the cycle isn't finished before the lapse on processor time, at that point the processor takes the following cycle in the holding upstate in the line. In this kind of calculation, measures are executed at the same time as in FIFO, however, they are confined to processor time known as time-cut. It will have these favorable attributes:

- If we apply a quantum, at that point it will bring about a poor reaction time.
- If we apply a more limited time-cut or quantum, at that point all things considered there will be a lower CPU productivity.
- As holding uptime is high, there will be an extremely uncommon possibility that cut-off times meet.

The proposed scheduling count depends on actualizing the cooperative scheduling estimation. Instead of giving static TET in the CPU booking, our calculation calculates the TET itself. It lessens the WT and TFT profoundly appeared differently about other scheduling. Fundamentally, this is an examination proposal where the RR booking is contrasted and the static task type. By then in the ensuing stage, the calculation calculates the TFT of the significant number of systems. At first, we will keep all the strategies in the subjective solicitation as they show up. In the last stage, the calculation chooses the first methodology from the line and distributes the CPU for
a period interval of the mean TET. In the wake of determining the mean, it will characterize the TFT capably. The flowchart is portrayed in Fig. 8.

The means of the proposed calculation are as follow.

- START.
- Keep the techniques as they turn up in the readied line.
- Calculate the CPU TET of the impressive number of cycles.
- Set the incentive as the TET for each strategy.
- Allocate CPU to the primary cycle sitting tight in the prepared line for the term of TET.
- If the leftover ET of the current system is more conspicuous than the time quantum, oust the current methodology from the coordinated line and put it on the end of the line for additional execution.
- Pick the following strategy which is now holding up in the prepared line and relegate the CPU to it up to the span of the TET and afterward again go to stage 6.
- Process the line until it will be empty.
- Calculate the TWT and TFT of all cycles.
- END.

3.4. Application of AI

Artificial intelligence application in the IoMT-cloud is the converging of the AI abilities of man-made brainpower with cloud-based registering conditions, making natural, associated encounters conceivable. Gigantic strides in AI, alongside a setup cloud environment, are making way for more effectiveness, adaptability, and key understanding than the world has seen so far. Computerized colleague administrations join a consistent progression of man-made consciousness innovation and cloud-based registering assets to empower clients to hinder purchases, to change a smart indoor regulator, or hear the main tune immediately. This will permit frameworks to run routine tasks altogether all alone, giving IT groups more opportunity to zero in on essential capacities, which offer more benefit, add to more readily administration, and lift the main concern. These preferences give scheduling improvement productively. Computer-based intelligence will likewise assume a part in computerizing center cycles. We can produce AI models when a huge arrangement of information is applied to specific calculations, and it gets essential to use the cloud for this. As we give more information to this model, the expectation improves and the precision is improved. The models can gain from the various examples which are gathered from the accessible information. For example, for ML models which distinguish tumors, a large number of radiology reports are utilized to prepare the framework. The information is the necessary info and this comes in various structures crude information, unstructured information, and so on. This example can be utilized by any industry since it tends to be redone dependent on the venture's needs. On account of the high-level calculation strategies which require a mix of CPUs and GPUs, cloud suppliers presently furnish virtual machines with amazingly ground-breaking GPUs. IaaS additionally helps in taking care of prescient examination. A representation of AI in assignment booking is portrayed in Fig. 9. Likewise, AI errands are currently being computerized utilizing administrations that incorporate cluster preparing, serverless processing, and coordination of holders.

3.4.1. Application of Genetic Algorithm (GA) for optimization in IoMT-cloud
In GA, every chromosome speaks to a potential answer for an issue and is made out of a series of qualities. GA depicts a populace enhancement strategy based on respect to a representation of the advancement cycle of nature. The underlying populace is taken arbitrarily to fill in as the beginning stage for the calculation. Based on fitness variables, chromosomes are chosen and mutation and crossover tasks are performed on them for the new populace. A fitness variable is characterized to check the reasonableness of the chromosome for the populace. The fitness variable assesses the nature of every posterity. The genetic algorithm optimization scheduling calculation is depicted in Fig. 10. The cycle is rehashed until adequate posterity is made. The flowchart of GA in the IoMT-cloud is depicted in Fig. 11. The GA calculation for optimization of the scheduling issue in IoMT-cloud is demonstrated as follows:

- Initialization: Generate introductory populace P comprising of chromosomes.
- Fitness: Calculate the fitness estimation of every chromosome utilizing fitness work.
- Selection: Select the chromosomes for creating cutting edge utilizing determination administrator.
- Crossover: Perform the hybrid procedure on the pair of chromosomes got in sync 3.
- Mutation: Perform the transformation procedure on the chromosomes.
- Fitness: Calculate the fitness estimation of these recently produced chromosomes known as offspring.
- Replacement: Update the populace P by supplanting awful arrangements with better chromosomes from offspring.
- Repeat stages 3 to 7 until the halting condition is met. A halting condition might be the most extreme number of cycles or no adjustment in wellness estimation of chromosomes for successive emphases.
- Output the best chromosome as the last arrangement.
- End Procedure.

The calculation comprises three fundamental activities: introductory populace, mutation, and finally crossover. These tasks are clarified beneath:

- Initial populace age: GA deals with fixed piece string portrayal of individual arrangement. Thus, all the potential arrangements in the arrangement space are encoded into paired strings. From this, an underlying populace of ten chromosomes is chosen haphazardly.
- Crossover: The goal of this progression is to choose the majority of the occasions the best-fitted pair of people for crossover. This pool of chromosomes goes through an arbitrary single-point crossover, were relying on the crossover point, the bit lying on one side of the crossover site is traded with the opposite side. The fitness estimation of every individual chromosome is determined utilizing the fitness value. Subsequently, it creates another pair of people.
- Mutation: Depending upon the transformation esteem, the pieces of the chromosomes are flipped from 1 to 0 or 0 to 1. Presently a little worth (0.05) is gotten as mutation likelihood. The yield of this is another mating pool prepared for crossover.

The GA adjusts the heap in the IoMT-cloud by allocating errands to the virtual machines. It consistently appoints undertakings to a portion of the VMs. In any case, it isn’t successful in asset use which implies it neglects to use all the accessible virtual machines. Because of which a few machines stay inert while a few machines are over-burden. The proposed model monitors all the free virtual machines. The assets are not appropriately used. So this issue is handled by enhancement with the hereditary calculation. At the point when another errand shows up, first,
it is watched that if a free machine is accessible and on the off chance that a machine is accessible, at that point task is allotted to that specific machine. In this manner, all the VMs are appropriately used and no VM stays inactive and no VM is overused. On the off chance that no free virtual machine is accessible, at that point, the undertaking is doled out to that machine whose current assignment will be finished in lesser time when contrasted with different machines. The proposed GA will give better yield as far as energy productivity, cost, total finish time (TFT), total waiting time (TWT), and all the VMs are distributed jobs.

3.5. Experimental process

The task scheduling framework in IoMT-cloud will go through three levels which are depicted beneath and the cycle of the hereditary calculation is portrayed in Fig. 12.

- The first level (Task): is a bunch of jobs that are sent by cloud clients, which are needed for execution.
- Second-level (scheduling): is answerable for planning jobs to appropriate assets to get the most elevated asset usage with the least makespan. The makespan is the general fulfillment time for all errands from the earliest starting point as far as possible.
- The third level (VMs): is a bunch of virtual machines which are utilized to execute the undertakings.

A portion of the contemplations when scheduling jobs to VMs in the IoMT-cloud are.

- The number of jobs should be more than the quantity of VMs, which implies that each VM should execute more than one assignment.
- Each task is allocated to just a single VM asset.
- Lengths of undertakings fluctuating from little, medium, and enormous.
- Jobs are not interfered with once their executions start.
- VMs are autonomous regarding assets and control.
- The accessible VMs are of restrictive use and can't be divided between various assignments. It implies that the VMs can't consider different errands until the fruition of the current undertakings is in advancement.

In GA, the populace statement is thoroughly examined to be the pre-processing, subsequently, its thickness isn't considered for the survey. For the improvement utilizing GA in the wake of playing out the essential activity that implies when fitness computation, crossover activity, selection, and mutation activity are finished then the execution will end and the outcomes found. While programming into a paired string a period thickness of at most n1, for assessment of cost work 3 with maximum (c × k) for cost testing c of k quantity of chromosomes. The three activity of GA is incessant iteratively till the ending standards are met so the all-out time complexity is given by Eq. 1. The election cycle has a period multifaceted nature of at generally m, for single-point hybrid, the time intricacy is all things considered m, where m is chromosome length and for change, at any spot, it is again m. For better execution, the condition can be more successful for this situation.

\[
G = O(n1 + (c \times k) + (n2 + 1)(m + m + m)) \quad (1)
\]

3.6. Visualization

This is with the imaginative mind that the outcome is an outline that contains the assistance of using visual instruments, so the test results are depicted ordinarily. The significant inspiration driving portrayal is depicting the
data and graphically conversing with it. The yield will be envisioned and discussed in the result portion. The example of data insight is depicted as stacking data into the application, data portrayal, and structure affirmation, showing the result, an example of portrayal is refined, at last examining the data.

3.7. Computational environment

The examinations done in this paper were executed using the eclipse IDE, which is an open-source condition that drives the utilization of SL strategies. Eclipse is a no-pay and a standard programming condition that includes a solid set-up of instruments for information appraisal and genuine methodologies. Java is perhaps the most notable programming apparatus, and it offers various libraries that can manage data science endeavors, for instance, import datasets, data examination, data pre-taking care of, and specifically, working of models. Cloud is a bundle that sets forth various comprehensive limits concerning IoMT-cloud endeavors. It puts forth an attempt on different stages like Windows, macOS, or Linux, and with this current highlights can be joined. It is similarly the most characteristic and experienced language and it was used in this assessment. The experiment was surveyed on a pc with, intel focus i7 Processors: 2.3Ghz, GPU: EFORCE, RAM: 12GB, Disk: 1TB.

4. Results

To evaluate the feasibility of our method, we tried the planning cycle on different task scheduling algorithm models. Each model and highlight expect a fundamental capacity to get the higher evaluation model. We have done a lot of various examinations with the most reassuring game plan of the scheduling calculations. The models have been attempted with different settings to achieve the most essential TWT, TET, TFT, accessibility, and calculation multifaceted nature. Also, numerous VMs were utilized and multiple tasks are utilized in this assessment. We have utilized three scheduling models FCFS, SJF, and RR to beat the expressed planning issue in IoMT-Cloud and subsequently enhancing it with an AI method known as GA. Each scheduling model demonstrates its proficiency while scheduling. At that point contrast the best-recognized scheduling model and appraisal metric communicated with other planning models. At the point when the best planning model is recognized, we see its productivity with the previously mentioned characteristics to best foresee these results. Each model utilized a comparative territory of instructive assortments. Eclipse and cloud sim was utilized which involves various libraries for this assignment. As follows the aftereffect of the models is explained in this part. In Table 3 we portray a section of what the task length resembles.

Table 3. Depiction of the task length.
Task	Length (ms)
T1 | 70000
T2 | 100000
T3 | 5000
T4 | 10000
T5 | 90000
T6 | 15000
T7 | 25000
T8 | 200000
T9 | 150000
T10 | 60000

4.1. Performance parameters and metrics

While contrasting the performance of the used task scheduling algorithms, these performance metrics below were utilized. Whereas, table 4 shows the tuning parameters used.

Table 4. Simulation parameter.

Parameter	Value
Machine	0-14
Task	10-40
Algorithm	4
Data center	0-3

TWT (Total waiting time): The total waiting time is the absolute time spent by the process or job in the prepared state waiting to be executed. It is the time a task waits for execution when a few positions are contending in the scheduling system.

TET (Total execution time): The total execution time alludes to the time between the moment of submission of a job/process and the time of its culmination. Total execution time is the aggregate sum of time spent by the cycle from coming in the prepared state unexpectedly to its finishing. In this manner what amount of time it requires to execute a cycle is likewise a significant factor.

TFT (Total finish time): The total time at which a job or a process finishes its execution. It is the distance in time that lapses from the beginning of a job till it finishes.

Throughput: Throughput is the measure of work finished in a unit of time. The scheduling algorithm should hope to expand the number of tasks handled per time unit. Thus, throughput is the cycles executed to several tasks
finished in a unit of time. It very well may be characterized as the number of cycles executed by the CPU in a given measure of time. Throughput is an approach to discover the proficiency of a CPU.

Status/Availability: This is a significant factor in concluding how to disperse and dispense the correct resources for a given VM. Knowing which assets are accessible at a given time. Asset accessibility assumes a principal part in the scheduling of tasks. The availability status is a success when the correct asset is being relegated to the VM.

Resource utilization: Resource utilization is another parameter that shows the maximization of the utilization of resources. This parameter is one of the main significance in task scheduling. Resources will be kept as busy. Whereas, service providers want to attain maxima gains by rendering a limited amount of resources. What is the amount of resources in the system that is busy, this helps in tracking the utilization of the system. Additionally, throughput and response time are significant, but another parameter for performance metrics for the system is the consumption of resources. Utilization of resources should be maximum in the scheduling system. The formula below shows how it is calculated, where n is the number of resources and i completions time for each resource.

$$\text{Average resource utilization} = \frac{\text{Time is taken by resource } i \text{ to finish all the task}}{\text{Makespan}} \times n$$

Cost: This shows the economic cost which depicts the total amount that needs to be paid by the user to the service provider for the resource being utilized. This economic cost will be based on the quantity of time spent by the user on a particular resource. Table 5 below depicts the price factor in the unit. The formula below shows how it is calculated where T connotes the time the resource is being utilized and C connotes the economic cost of the resource per unit time.

$$Cost = \sum_{i \in \text{resources}} \{C \times T\}$$

Table 5. Unit price per resource.

Number of nodes	1	2	3	4	5	6	7	8
Price unit for each operation	0.2	0.8	0.9	0.7	0.2	0.4	0.6	0.4

4.2. The performance of the scheduling models

A large number of Virtual Machines runs inside a server farm to use the assets in the most ideal way. Cloud providers have an enormous number of servers and other processing foundations. The scheduling will never really use the assets by dispensing explicit assignments to explicit assets. These scheduling calculations find the task with rent execution time and afterward appoint the asset to that task which creates the least execution time. It consequently improves the nature of administration and execution. If different assets give a similar measure of execution time, at that point asset is chosen on an irregular premise. The calculations work such that assignments are planned as they are shown up in the framework. The used scheduling models are FCFS, SJF, RR, and improvement utilizing the GA Algorithm. The execution of different scheduling calculations was done by utilizing clouds. To ensure model consistency, all models executed in this endeavor used a similar measure of
assignment with different lengths. The results of the scheduling models will be found in the figures and tables underneath. The table contains the yield of the models on different test qualities has portrayed in the past sections. Moreover, as a result of the differentiation in the pre-handling process, the results were beneficial for each model. Also when we played out the models with default limits we similarly refined the GA with RR outperforms another model with regards to the QoS. Most of our displays with precision were applied with default limits from the beginning.

Table 6. Depiction of the FCFS scheduling algorithm results in seconds (s).
Cloudlet ID	Status	Data center ID	VM ID	Execution Time	Start Time	Finish Time	Waiting Time
0	SUCCESS	2	0	1	0.1	1.1	
1	SUCCESS	2	1	1.11	0.1	1.21	
2	SUCCESS	2	2	1.11	0.1	1.21	
3	SUCCESS	2	3	1.11	0.1	1.21	
4	SUCCESS	2	4	1.11	0.1	1.21	
5	SUCCESS	2	5	1.11	0.1	1.21	
6	SUCCESS	2	6	1.11	0.1	1.21	
7	SUCCESS	2	7	1.11	0.1	1.21	
8	SUCCESS	2	8	1.11	0.1	1.21	
9	SUCCESS	2	9	1.11	0.1	1.21	
10	SUCCESS	2	10	1.11	0.1	1.21	
11	SUCCESS	2	11	1.11	0.1	1.21	
12	SUCCESS	2	12	1.11	0.1	1.21	
13	SUCCESS	2	13	1.22	0.1	1.32	
14	SUCCESS	2	14	1.22	0.1	1.32	
15	SUCCESS	2	0	1.3	1.1	2.4	1
16	SUCCESS	2	1	1.31	1.21	2.51	1.11
17	SUCCESS	2	2	1.42	1.21	2.62	1.11
18	SUCCESS	2	3	1.42	1.21	2.62	1.11
19	SUCCESS	2	4	1.42	1.21	2.62	1.11
20	SUCCESS	2	5	1.42	1.21	2.62	1.11
21	SUCCESS	2	6	1.42	1.21	2.62	1.11
22	SUCCESS	2	7	1.42	1.21	2.62	1.11
23	SUCCESS	2	8	1.42	1.21	2.62	1.11
24	SUCCESS	2	9	1.42	1.21	2.62	1.11
25	SUCCESS	2	10	1.42	1.21	2.62	1.11
26	SUCCESS	2	11	1.42	1.21	2.62	1.11
27	SUCCESS	2	12	1.42	1.21	2.62	1.11
28	SUCCESS	2	13	1.42	1.32	2.73	1.22
29	SUCCESS	2	14	1.42	1.32	2.73	1.22
	SUCCESS	2	0	1.6	2.4	4	2.3
---	---------	---	---	-----	-----	---	-----
31	SUCCESS	2	1	1.6	2.51	4.12	2.42
32	SUCCESS	2	2	1.61	2.62	4.23	2.53
33	SUCCESS	2	3	1.72	2.62	4.34	2.53
34	SUCCESS	2	4	1.72	2.62	4.34	2.53
35	SUCCESS	2	5	1.72	2.62	4.34	2.53
36	SUCCESS	2	6	1.72	2.62	4.34	2.53
37	SUCCESS	2	7	1.72	2.62	4.34	2.53
38	SUCCESS	2	8	1.72	2.62	4.34	2.53
39	SUCCESS	2	9	1.72	2.62	4.34	2.53

Table 7. Depiction of the FCFS expected results traits in seconds (s).

Traits	Throughput	Total Execution Time	Total Finish Time	Total waiting Time	Availability
Total	0.73	54.68	100.18	41.72	Success/40

Utilizing the FCFS, a task that showed up first is served first. Tasks on the line are embedded into the tail of the line. Table 6 shows the aftereffects of the scheduling model per 40 assignments. Individually each cycle is taken from the head of the line. Though Table 7 shows the total aftereffects of the booking model against our characteristics (TWT, TFT, TET). It shows it has little execution time, little completion time, and small waiting time. There is no prioritization at all and this makes each cycle to in the end finish before some other cycle is added. This calculation is clear and snappy. This shows the perception of the TWT, TFT, and TET of the tested FCFS. As setting switches possibly happens when a cycle is ended, hence no cycle line association is required and there is almost no booking overhead. This kind of calculation doesn't function admirably with deferring touchy traffic as waiting time and postponement are generally on the higher side.

Table 8. Depiction of the SJF scheduling algorithm results in seconds (s).
Cloudlet ID	Status	Data center ID	VM ID	Execution Time	Start Time	Finish Time	Waiting Time
39	SUCCESS	2	0	1.02	0.1	1.12	
38	SUCCESS	2	1	1.12	0.1	1.23	
37	SUCCESS	2	2	1.12	0.1	1.23	
35	SUCCESS	2	4	1.12	0.1	1.23	
33	SUCCESS	2	6	1.12	0.1	1.23	
31	SUCCESS	2	8	1.12	0.1	1.23	
29	SUCCESS	2	10	1.12	0.1	1.23	
27	SUCCESS	2	12	1.12	0.1	1.23	
36	SUCCESS	2	3	1.12	0.1	1.23	
34	SUCCESS	2	5	1.12	0.1	1.23	
32	SUCCESS	2	7	1.12	0.1	1.23	
30	SUCCESS	2	9	1.12	0.1	1.23	
28	SUCCESS	2	11	1.12	0.1	1.23	
25	SUCCESS	2	14	1.24	0.1	1.34	
26	SUCCESS	2	13	1.24	0.1	1.34	
24	SUCCESS	2	0	1.32	1.12	2.44	1.02
23	SUCCESS	2	1	1.33	1.23	2.55	1.12
22	SUCCESS	2	2	1.44	1.23	2.66	1.12
20	SUCCESS	2	4	1.44	1.23	2.66	1.12
18	SUCCESS	2	6	1.44	1.23	2.66	1.12
16	SUCCESS	2	8	1.44	1.23	2.66	1.12
14	SUCCESS	2	10	1.44	1.23	2.66	1.12
12	SUCCESS	2	12	1.44	1.23	2.66	1.12
21	SUCCESS	2	3	1.44	1.23	2.66	1.12
19	SUCCESS	2	5	1.44	1.23	2.66	1.12
17	SUCCESS	2	7	1.44	1.23	2.66	1.12
15	SUCCESS	2	9	1.44	1.23	2.66	1.12
13	SUCCESS	2	11	1.44	1.23	2.66	1.12
10	SUCCESS	2	14	1.44	1.34	2.77	1.24
11	SUCCESS	2	13	1.44	1.34	2.77	1.24
Table 9. Depiction of the SJF expected results traits in seconds (s).

Traits	Throughput	Total Execution Time	Total Finish Time	Total waiting Time	Availability
Total	0.72	55.36	101.67	42.21	Success/40

The SJF is pre-emptive in which it chooses the waiting cycle that has the least execution time. Table 8 shows the aftereffects of the planned errand per 40 assignments. While Table 9 shows the total aftereffects of the scheduling model against our attributes (TWT, TFT, TET). It shows it has the most noteworthy execution time with a medium holding up time. One of the issues that SJF calculation is that it needs to become more acquainted with the following processor demand. The cycle is then apportioned to the processor that has the least blasted time. This shows the representation of the TWT, TFT, and TET of the tested SJF. It decreases the normal holding up time as it executes little cycles before the execution of huge ones. At the point when a framework is occupied with such countless more modest cycles, starvation will happen.

Table 10. Depiction of the RR scheduling algorithm results in seconds (s).
Cloudlet ID	Status	Data center ID	VM ID	Execution Time	Start Time	Finish Time	Waiting Time
0	SUCCESS	2	0	1	0.1	1.1	
1	SUCCESS	2	2	1	0.1	1.1	
2	SUCCESS	2	4	1	0.1	1.1	
4	SUCCESS	2	8	1	0.1	1.1	
6	SUCCESS	2	12	1	0.1	1.1	
3	SUCCESS	2	6	1	0.1	1.1	
5	SUCCESS	2	10	1	0.1	1.1	
7	SUCCESS	2	14	1	0.1	1.1	
14	SUCCESS	3	13	1.13	0.1	1.23	
8	SUCCESS	3	1	1.24	0.1	1.34	
9	SUCCESS	3	3	1.24	0.1	1.34	
10	SUCCESS	3	5	1.24	0.1	1.34	
12	SUCCESS	3	9	1.24	0.1	1.34	
11	SUCCESS	3	7	1.24	0.1	1.34	
13	SUCCESS	3	11	1.24	0.1	1.34	
22	SUCCESS	2	14	1.26	1.1	2.36	1
15	SUCCESS	2	0	1.37	1.1	2.47	1
16	SUCCESS	2	2	1.37	1.1	2.47	1
17	SUCCESS	2	4	1.37	1.1	2.47	1
19	SUCCESS	2	8	1.37	1.1	2.47	1
21	SUCCESS	2	12	1.37	1.1	2.47	1
18	SUCCESS	2	6	1.37	1.1	2.47	1
20	SUCCESS	3	10	1.37	1.1	2.47	1
29	SUCCESS	3	13	1.4	1.23	2.63	1.13
28	SUCCESS	3	11	1.4	1.34	2.75	1.24
23	SUCCESS	3	1	1.51	1.34	2.86	1.24
24	SUCCESS	3	3	1.51	1.34	2.86	1.24
25	SUCCESS	3	5	1.51	1.34	2.86	1.24
27	SUCCESS	3	9	1.51	1.34	2.86	1.24
26	SUCCESS	3	7	1.51	1.34	2.86	1.24
Table 11. Depiction of the RR expected results traits in seconds (s).

Traits	Throughput	Total Execution Time	Total Finish Time	Total waiting Time	Availability
Total	0.74	54.31	99.31	40.92	Success/40

In the RR, measures are executed much the same as in FIFO, yet they are confined to processor time known as time-cut. Table 10 and Table 11 shows the consequences of the scheduled task with per 40 undertaking. If the cycle isn't finished before the termination on processor time, at that point the processor takes the following cycle in the holding upstate in the line. This shows the aggregate aftereffects of the planning model against our attributes (TWT, TFT, TET). It shows it has little execution time, the littlest completion time, and the least waiting time. The acquired or new cycle is then added to the back of the prepared rundown and afterward, new cycles are embedded in the tail of the line. If we apply quantum, at that point it will bring about helpless reaction time. If we apply a more limited quantum, at that point all things considered there will be lower CPU proficiency. As waiting time is high, there will be an extremely uncommon possibility that cutoff time will be met.

Table 12: Depiction of the optimized GA (hybrid) scheduling algorithm results in (ms).
Cloudlet ID	Status (success)	Data center	VM ID	Time of Execution	Start Time	Finish Time	Waiting Time
1	✓	2	11	0.75	0.1	0.85	
0	✓	2	4	0.75	0.1	0.85	
2	✓	2	7	0.75	0.1	0.85	
5	✓	2	9	0.75	0.1	0.85	
3	✓	2	1	0.75	0.1	0.85	
6	✓	2	2	0.76	0.1	0.86	
8	✓	2	6	0.76	0.1	0.86	
11	✓	2	8	0.76	0.1	0.86	
10	✓	2	10	0.76	0.1	0.86	
4	✓	2	3	0.77	0.1	0.87	
12	✓	2	13	0.77	0.1	0.87	
16	✓	2	12	0.77	0.1	0.87	
28	✓	2	5	0.77	0.1	0.87	
39	✓	2	0	0.78	0.1	0.88	
13	✓	2	11	0.81	0.85	1.66	0.75
7	✓	2	4	0.81	0.85	1.66	0.75
9	✓	2	3	0.81	0.87	1.68	0.77
17	✓	2	10	0.82	0.86	1.68	0.76
15	✓	2	2	0.82	0.86	1.68	0.76
24	✓	2	9	0.82	0.85	1.67	0.75
19	✓	2	1	0.83	0.85	1.68	0.75
27	✓	2	6	0.83	0.86	1.69	0.76
29	✓	2	8	0.83	0.86	1.69	0.76
36	✓	2	7	0.83	0.85	1.65	0.75
33	✓	2	12	0.83	0.87	1.70	0.77
38	✓	2	5	0.84	0.87	1.71	0.77
14	✓	2	11	0.81	1.66	2.47	1.56
22	✓	2	4	0.81	1.66	2.47	1.56
18	✓	2	10	0.81	1.68	2.49	1.58
26	✓	2	3	0.81	1.68	2.49	1.58
In this GA, need is allocated to each cycle, and cycles are executed based on need. Cycles with higher needs bring about the least waiting time and lesser deferral. If there is countless equivalent need, at that point it brings about enormous waiting time. Low organized cycles can see starvation. Table 12 shows the aftereffects of the planned errand per 40 tasks. It was productive with 143 counts and an efficient makespan. At the point when another task shows up, first, it is watched that if a free machine is accessible and on the off chance that a machine is accessible, at that point the task is doled out to that specific machine. The Genetic Algorithm monitored all the free virtual machines. While Table 13 shows the total consequences of the scheduling model against our attributes (TWT, TFT, TET). On the off chance that no free virtual machine is accessible, at that point the task is allotted to that machine whose current assignment will be finished in lesser time when contrasted with different machines. Fitness assesses the nature of every posterity. In this manner, all the VMs are appropriately used and no VM stays inert and no VM is overused. The cycle is rehashed until adequate posterity is made. Three administrators to accomplish this are the crossover, selection, and mutation. The productivity of the GA relies on an appropriate blend of exploitation and investigation.

4.3. Experimental result discussion and comparison

Table 14 shows the correlation between all the models against the endorsed traits. Throughput with the proposed model is optimum. RR and GA Scheduling gives time-sharing capacities. FCFS includes little execution time, little completion time, and small waiting time as short cycles wait for more extended spans. SJF is reasonable for practically all kinds of situations. With medium waiting time, for smaller processes, it isn't suggested where delicate traffic is included. These results validate our approach towards getting an efficient model. Here we compare and contrast the result against our baseline. The used parameters are one of the best in justifying how the models will be performed. As in the research, literature areas show that FCSF is one of the fastest when it comes to execution, but this criterion rejects the waiting time, with this it can leads to terminations of tasks due to

Traits	Throughput	Total Execution Time	Total Finish Time	Total waiting Time	Availability
Total	1.23	32.47	76.6	40.16	Success/40

Table 13. Depiction of the optimized GA (hybrid) expected results traits in seconds (s).
the period the users have to wait. Concerning the key principal component analysis. The calculation for all tasks is plausible for low-intricacy scheduling. The scheduling is executed so that it stops after a schedule is accomplished. The data requested from all tasks are used to calculate the path. While the job prepared to run at its next booked time will diminish the time complexity of each schedule. The $O(n^2m)$ is the computational complexity, m is the number of edges, and where n alludes to the quantity of node, as it contains just two-dimension given its matrix. While $O(m)$ will be for just one dimension. Thus, our models address this problem by providing the least waiting time and execution time. As well as in the figures below we justify our model and discuss it further. Thus, we can conclude our best model being the hybrid with an efficient QoS. In the coming paragraph, we will discuss the results further.

Figure 13 shows the correlation between each scheduling model against the TWT, TET, and the TFT, these are our used parameters to justify how efficient our model is. The results prove that we can attain maximum use of resources. The timing parameters are highly considered when scheduling to attain a higher QoS. The result was analyzed using the same data to compare the performance of the algorithm. In RR, each work gets an equivalent measure of time, yet there are a few situations where normal waiting time can be an issue as shown in the results. After repeating the same test, our proposed hybrid model outperforms other models which are our baseline. The model has the least waiting time after optimization. This waiting time prevents users from waiting that long which avoids terminations. Moreover, the model produces the least execution time which makes the execution of tasks faster compared to other models. The finish time of our model outperforms other models, in contrast with the fact that other models have a higher finishing time. With this, we can determine the fairness within the task and which model to use in the time for scheduling. While Fig. 14 shows the correlation against the throughput has we can see the best model with the best throughput is the hybrid model. The throughput is one of the best justifying parameters to show the performance of a process per unit time. After series of 40 task efforts were made to maximize the throughput. This is the highest number of tasks that can be completed per unit time, it outperforms another model. This result depicts how efficient our model is. Each task was split in their 10th so show the performance. During this course, we can see our model outperforms another model even during the split.

Figure 15 shows the correlation of resource utilization for the scheduling model. So, the idle waiting time is decreased in the proposed hybrid algorithm concerning other models. Furthermore, the proposed hybrid utilizes the resources that are free during the run time by choosing a new task. The resource utilized is compared under various cumulative counts of the makespan. Also, the resource utilization is enhanced respectively. However, when various other resources can be utilized then it becomes optimum. As the size of the resource, or the amount of task increase, there is a normal rise in the average waiting time. The hybrid and RR have an increase in the resource utilized and then stay in a steady state. From the figure, we can also deduce the efficiency of other models in contrast to our model, the average resource utilized by other models remains almost similar, which means it is affected by the number of available resources. Therefore, we can conclude that the hybrid is the most efficient in contrast to the other sampled baseline models.

Figure 16 shows the economic cost factor. The result gotten shows the hybrid model per each task as a lesser cost factor. Cost is to notice the impact of the charged value rate over the used approach of data delivery. This impeding advantage makes it more interesting for users without the fear of being overcharged. It is an evaluating factor for every hub in the IoT cloud pack. This was set as a level rate for every number of assets, where setting it to a moderately high worth would lessen the odds of the asset being chosen for a task. The baseline model
shows a promising advantage where the percentage rate was on a similar value per task. Nevertheless, this won't suit the user's criteria as the utilization in the medical field will warrant a great amount of utilization time and this will increase the cost respectively. The result shows how to solve this problem with the proposed hybrid model to minimize the cost tremendously. We can conclude by stating the hybrid model surpasses expectations and as a minimum economical cost contrast to other baseline models.

Though in Table 15 we portray the pros, cons, and the QoS of each model. Furthermore, how the experimented model will play a pivotal role in the medical field where resources are requested by the second. This shows that task scheduling is needed to attain maxima revenue when considering QoS and requests from the users. In this table, we can see our proposed hybrid outperformed other models with a substantial QoS. With this, medical data can be collected, analysis and monitoring. The Healthcare system can be digitalized to attain efficient connection of healthcare resources and services. Cloud users can answer incoming requests without the fear of a task being terminated or such. Thus, the trials show the hybrid beats other models and can be an efficient mode of scheduling for IoT-cloud in the medical field.

Table 14. Depiction of all the scheduling models against the traits in (ms).

Traits	FCFS	SJF	RR	GA
Throughput	0.73	0.72	0.74	1.23
Total Execution Time	54.68	55.36	54.31	32.47
Total Finish Time	100.18	101.67	99.31	76.6
Total waiting Time	41.72	42.21	40.92	40.16
Availability	Success/40	Success/40	Success/40	Success/40
Algorithm complexity	✓	✓	✓	✓

Table 15. Results pros, cons and QoS of the scheduling models.

Scheduling model	Pros	Cons	QoS
FCFS	Implementation is straight forward.	No more scheduling criteria.	Little execution time, little finish time and little waiting time.
SJF	Scheduling was done to the task with minimum execution time.	Complexity in comprehending.	Highest execution time with medium waiting time.
RR	Complexity is less, with efficient balanced tasks.	It requires pre-emption.	Small execution time, smallest finish time and least waiting time.
GA	It is on the basis of several decision criteria, mutation, crossover and fitness function.	Complexity in coding and understanding.	Smallest execution time with the best throughput.

5. Conclusion
As we probably are aware, the IoMT-cloud is maybe unquestionably the most stimulating topic for scientists, public zone, and industry. This work presents the importance of the task scheduling calculations and kinds of static and dynamic task scheduling calculations in IoMT-cloud climate. The improvement of distant correspondence and allocation of IoMT-cloud progressions grant issues that are being spouted by clients to be tackled remotely. The objective of the task scheduling test is to style a model that can close successful burdens while simultaneously sharing resources to get an efficient QoS. This assessment set forward depends on using present-day movements to improve practices on IoMT-cloud. This hypothesis targets building up a dynamic, sharp, and distinct framework for task scheduling in IoMT-cloud. We re-sanction the proposed estimation with different task scheduling models to show the adequacy of the proposed one after enhancement. This work likewise presents a relative report between the static and dynamic scheduling calculations in IoMT-cloud-like the FCFS, SJF, RR, and advancement utilizing GA as far as TWT, TFT, TFT, and decency among tasks. This work will offer a possible manual for customers and specialists during IoMT-cloud execution. We have thought about the aftereffect of the relative multitude of models and showed the outcomes. Experimentation was executed on CloudSim, which is utilized for displaying the various task scheduling calculations. From the charts and computations, it was demonstrated that the hybrid outshined other models with regards to execution time, cost resource utilization, and throughput calculation. It had a throughput of 1.23 and an execution rate of 32.47. GA with RR planning can be utilized in IoMT-cloud as the errand at the most punctual reaction time gets diminished viably. The diagrams and outcomes depict that the projected calculation is far superior to the next customary model when diverged from the instances of TWT, TET, and TFT. Subject to the measures while setting up this examination, future investigation is to be viewed like actualizing the calculation for other advancement factors like lateness and stream time. Actualizing Hybrid streamlining calculation to get more improved outcomes. In future work, we can diminish the throughput time and Cost with the calculations to get more streamlined outcomes. Executing more AI strategies like PSO and Ant calculations. At long last, we will upgrade the work utilizing this characteristic as well and will bring the results as they will show up. It is accepted that this undertaking will help experts at whatever point considered. This is proposed to improve the adequacy of task scheduling for the IoMT-cloud stage.

Abbreviations

Table 1. List of abbreviations.
Terms	Meaning
ICT	Information and Communication Technologies
SJF	Shortest Job First
SaaS	Software as a Service
FCFS	First Come First Serve
IaaS	Infrastructure as a Service
RR	Round Robin
ML	Machine Learning
AI	Artificial Intelligence
GA	Genetic Algorithm
NP	Nondeterministic Polynomial
IoMT	Internet of Medical Things
ACO	Ant Colony Optimisation
TWT	Total Waiting Time
TFT	Total Finish Time
PSO	Particle Swarm Optimization
TET	Total Execution Time
QoS	Quality of Service
PaaS	Platform as a Service
PC	Personal Computer

Declarations

Funding

The authors declare no funding.

Conflicts of Interest

The authors declare no conflict of interest.

Data Availability

The authors declare no data availability.

Supplementary Materials

The authors declare no supplementary material.
References

1. M. Armbrust, A. Fox, R. Griffith, A view of cloud computing. Commun. ACM 53(4), 50–58 (2010)
2. R.N. Calheiros, R. Ranjan, A. Beloglazov, CloudSim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Software: Practice and Experience 41(1), 23–50 (2011)
3. Zhu, Zongbin, Du Zhongjun, Improved GA-based task scheduling algorithm in cloud computing. Computer Engineering and Applications 49(5), 77–80 (2013)
4. Zhou, Lijuan, W. Chunying, Cloud Computing Resource Scheduling in Mobile Internet Based on Particle Swarm Optimization Algorithm. Computer Science 42(6), 279–292 (2015)
5. Z. Xu Jie Jian-chen, and Lu, Ke, Task Scheduling Algorithm Based on Dual Fitness Genetic Annealing Algorithm in Cloud Computing Environment. Journal of University of Electronic Science and Technology of China 42(6), 900–904 (2013)
6. F. Wang, Li Mei’an, and Daun Weijun. (2013). Cloud computing task scheduling based on dynamically adaptive ant colony algorithm, Journal of Computer Applications,33(11) : 3160–3162,3196
7. F. Al-Turjman, D. Deebak, Privacy-Aware Energy-Efficient Framework using Internet of Medical Things for COVID-19. IEEE Internet of Things Magazine (2020). DOI. 10.1109/IOTM.0001.2000123
8. S. Prabu, et. al., “Improving Medical Communication Process Using Recurrent Networks And Wearable Antenna S-11 Variation With Harmonic Suppressions”. Personal and Ubiquitous Computing Journal (2021). DOI. 10.1007/s00779-021-01526-3
9. B. Rajalingam, et. al., "Intelligent Multimodal Medical Image Fusion with Deep Guided Filtering Multimedia Systems". Multimedia Syst. (2020). DOI. 10.1007/s00530-020-00706-0
10. R.G. Reynolds, Z. Michalewicz, M. Cavaretta (1995). Using cultural algorithms for constraint handling in GENOCOP. In Proceeding of the 4th Annual Conference on Evolutionary Programming, Cambrige: MIT Press, pp: 298–305
11. A.A. Hussain, O. Bouachir, F. Al-Turjman, M. Aloqaily, AI Techniques for COVID-19. In IEEE Access 8, 128776–128795 (2020). doi:10.1109/ACCESS.2020.3007939
12. A.A. Hussain, F. Al-Turjman (2020). Resource Allocation in Volunteered Cloud Computing and Battling COVID-19. 10.1201/9781003098881-2
13. A. Al-maamari, F. Omara, Task scheduling using PSO algorithm in cloud computing environments. International Journal of Grid Distribution Computing 8(5), 245–256 (2015)
14. M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, A view of cloud computing. Commun ACM 53(4), 50–58 (2010)
15. M. Mezmaz, N. Melab, Y. Kessaci, Y.C. Lee, E.-G. Talbi, A.Y. Zomaya, D. Tuyttens, A parallel bi-objective hybrid meta heuristic for energy-aware scheduling for cloud computing systems. J Parallel Distributed Computing 71(11), 1497–1508 (2011)
16. J. Gubbi, R. Buyya, S. Marusic, and Palaniswami M, Internet of things (iot): a vision, architectural elements, and future directions. Futur Gener Comput Syst 29(7), 1645–1660 (2013)
17. Scarlett Rose. (2019). The IoT Trends that no one has spoken about-Read This Now. [Online] Available: https://towardsdatascience.com/top-14-iot-trends-to-expect-in-2020-fa81a56e8653
18. J.-T. Tsai, J.-C. Fang, J.-H. Chou, Optimized task scheduling and resource allocation on cloud computing environment using improved differential evolution algorithm. Comput Oper Res 40(12), 3045–3055 (2013)

19. S.T. Maguluri, R. Srikant, Scheduling jobs with unknown duration in clouds. IEEE/ACM Trans Netw (TON) 22(6), 1938–1951 (2014)

20. C. Cheng, J. Li, Y. Wang, An energy-saving task scheduling strategy based on vacation queuing theory in cloud computing. Tsinghua Sci Technol 20(1), 28–39 (2015)

21. W. Lin, C. Liang, J.Z. Wang, R. Buyya, Bandwidth-aware divisible task scheduling for cloud computing. Software: Practice and Experience 44(2), 163–174 (2014)

22. D. Ergu, G. Kou, Y. Peng, Y. Shi, Y. Shi, The analytic hierarchy process: task scheduling and resource allocation in cloud computing environment. The Journal of Supercomputing. 64(3), 835–848 (2013)

23. X. Zhu, L.T. Yang, H. Chen, J. Wang, S. Yin, X. Liu, Real-time tasks oriented energy-aware scheduling in virtualized clouds. IEEE Transactions on Cloud Computing 2(2), 168–180 (2014)

24. X. Liu, Y. Zha, Q. Yin, Y. Peng, L. Qin, Scheduling parallel jobs with tentative runs and consolidation in the cloud. J. Syst. Softw. 104, 141–151 (2015)

25. G. Shamsollahi, M. Othman, Priority based job scheduling algorithm in cloud computing. Procedia Eng. 50, 778–785 (2012)

26. M.A. Rodriguez, R. Buyya, Deadline based resource provisioning and scheduling algorithm for scientific workflows on clouds. IEEE Transactions on Cloud Computing 2(2), 222–235 (2014)

27. M. Polverini, A. Cianfrani, S. Ren, A.V. Vasilakos, Thermal aware scheduling of batch jobs in geographically distributed data centers. IEEE Transactions on Cloud Computing 2(1), 71–84 (2014)

28. A.E. Keshk, A.B. El-Sisi, M.A. Tawfeek, Cloud task scheduling for load balancing based on intelligent strategy. Int J Intell Syst Appl 6(5), 25 (2014)

29. S. Ghanbari, M. Othman, W.J. Leong, M.R.A. Bakar (2014). Multi-criteria based algorithm for scheduling divisible load. In: Proceedings of the first international conference on advanced data and information engineering (DaEng-2013), pp 547–554

30. H. Goudarzi, M. Ghasemazar, M. Pedram (2012). Sla-based optimization of power and migration cost in cloud computing. In Proceedings of the 2012 12th IEEE/ ACM International Symposium on Cluster, Cloud and Grid Computing (ccgrid 2012) (pp. 172–179). IEEE Computer Society

31. F. Al-Turjman, S. Alturjman, 5G/IoT-enabled UAVs for multimedia delivery in industry-oriented applications. Multimed Tools Appl 79, 8627–8648 (2020). https://doi.org/10.1007/s11042-018-6288-7

32. S.A. Alabady, F. Al-Turjman, S.A. Din, Novel Security Model for Cooperative Virtual Networks in the IoT Era. Int J Parallel Prog 48, 280–295 (2020). https://doi.org/10.1007/s10766-018-0580-z

33. Fadi Al-Turjma. Intelligence and security in big 5G-oriented IoNT: An overview, Future Generation Computer Systems, Volume 102, 2020, Pages 357–368, ISSN 0167-739X, https://doi.org/10.1016/j.future.2019.08.009

34. S. Ghanbari, M. Othman, M.R.A. Bakar, W.J. Leong, Priority-based divisible load scheduling using analytical hierarchy process. Appl Math Inf Sci 9(5), 25–41 (2015)

35. B. Radojevic, M. Zagar (2011). Analysis of issues with load balancing algorithms in hosted (cloud) environments. In: MIPRO, 2011 proceedings of the 34th international convention, pp 416–420

36. S. Ghanbari, M. Othman, M.R.A. Bakar, W.J. Leong, Multi-objective method for divisible load scheduling in multi-level tree network. Futur Gener Comput Syst 54, 132–143 (2016)
37. S. Goswami, A. Das (2017). Optimization of workload scheduling in computational grid. In: Proceedings of the 5th international conference on Frontiers in intelligent computing: theory and applications, pp 417–424

38. Kaur and Kaur. (2016). A hybrid approach of load balancing through VMs using ACO, MinMax and genetic algorithm. 2016 2nd International Conference on Next Generation Computing Technologies (NGCT), Dehradun, (pp. 615–620)

39. M.S. Pilavare, A. Desai (2015). A novel approach towards improving performance of load balancing using Genetic Algorithm in cloud computing," 2015 International Conference on Innovations in Information, Embedded and C. Systems (ICIIECS), Coimbatore, (pp. 1–4)

40. P. Patel, Patel and Desai. (2016). Improved GA using population reduction for load balancing in cloud computing. 2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Jaipur, (pp. 2372–2374)

41. A.A.S. Farrag, S.A. Mahmoud, E.S.M. El-Horbaty (2015). Intelligent cloud algorithms for load balancing problems: A survey," 2015 IEEE Seventh International Conference on Intelligent Computing and I. Systems (ICICIS), Cairo, (pp. 210–216)

42. H.A. Makasarwala, P. Hazari (2016). Using genetic algorithm for load balancing in cloud computing," 2016 8th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), Ploiesti, (pp. 1–6)

43. K.V. Kavitha, V.V. Suthan (2016). Dynamic load balancing in cloud based multimedia system with genetic algorithm," 2016 International Conference on Inventive Computation Technologies (ICICT), Coimbatore, (pp. 1–4)

44. M. Dam, Dasgupta and Dutta. (2015). Genetic algorithm and gravitational emulation based hybrid load balancing strategy in cloud computing," Proceedings of the 2015 Third International Conference on Computer, Communication, Control and Information Technology (C3IT), Hooghly, (pp. 1–7)

45. L. Hong, G. Yufei (2015). GACA-VMP: Virtual Machine Placement Scheduling in Cloud Computing Based on Genetic Ant Colony Algorithm Approach," 2015 IEEE 12th Intl Conf on Ubiquitous Intelligence and Computing and 2015 IEEE 12th Intl Conf on Autonomic and Trusted Computing and 2015 IEEE 15th Intl Conf on Scalable Computing and Communications and Its Associated Workshops (UIC-ATC-ScalCom), Beijing, (pp. 1008–1015)

46. A.A. Hussain, F. Al-Turjman, Artificial intelligence and blockchain: A review. Transactions on Emerging Telecommunications Technologies (2021). 10.1002/ett.4268

47. A.A. Hussain, B. Dawood, F. Al-Turjman (2021). Application of AI Techniques for COVID-19 in IoT and Big Data Era: A Survey. 10.1007/978-3-030-60188-1_9

48. A.A. Hussain, F. Al-Turjman, M. Sah (2021). Semantic Web and Business Intelligence in Big-Data and Cloud Computing Era. 10.1007/978-3-030-66840-2_107

49. A.A. Hussain, F. Al-Turjman, E.Gemikonakli, Kirsal, Ever, Yoney. (2021). Design of a Navigation System for the Blind/Visually Impaired. 10.1007/978-3-030-69431-9_3

50. A.A. Hussain, K. Dimililer (2021). Student Grade Prediction Using Machine Learning in Iot Era. 10.1007/978-3-030-69431-9_6

51. A.A. Hussain, B. Dawood, F. Al-Turjman (2021). IoT and AI for COVID-19 in Scalable Smart Cities. 10.1007/978-3-030-76063-2_1
Figure 1

Illustration of the IoMT-cloud platform.
How Companies Around the World Are Using Artificial Intelligence?

- Detecting and deterring security intrusions: 44%
- Resolving users’ technology problems: 41%
- Reducing production management work by automating: 34%
- Gauging internal compliance in using approved technology vendors: 34%
- Using runbook automation: 16%
- Anticipating future customer purchases and presenting offers accordingly: 19%
- Improving media buying: 16%
- Monitoring social media comments to determine overall brand affinity and issues: 16%
- Tailoring promotions (online or offline): 15%
- Financial trading (e.g., high-frequency trading enabled by AI): 17%
- Automating call distribution: 15%

Figure 2

Illustration of the IoMT-cloud Trends [17].
Figure 3

The proposed system architecture.
Figure 4

The task scheduling architecture.
Figure 5

Task scheduling system phase.

Figure 5

Task scheduling system phase.
Figure 6
First come first serve scheduling algorithm.

Figure 7
Shortest job first scheduling algorithm.
Figure 8

Round robin scheduling algorithm.

Figure 9

AI application in IoMT-cloud optimization scheduling System.
Figure 10

Genetic algorithm optimization scheduling algorithm flow chart.
Figure 11

IoMT-cloud model of Genetic algorithm scheduling model.

Figure 12
Genetic algorithm experimental process.

Figure 13

Depicting the TET, TFT, and TWT of all the scheduling models.
Figure 14

Depicting the throughput of all the scheduling models.
Figure 15

Depicting the resource utilization vs the scheduling models.

Figure 16

Depicting the economic cost vs the scheduling models.