Molecular Characterization of Coxsackievirus B5 Isolates from Sewage, Italy 2016–2017

Stefano Fontana1 · Stefano Fiore1 · Gabriele Buttinelli1 · Concetta Amato1 · Licia Veronesi2 · Roberta Zoni2 · Maria Triassi1 · Francesca Pennino3 · Giovanni Maurizio Giammanco4 · Simona De Grazia4 · Antonella Cicala5 · Angelo Siragusa5 · Sabine Gamper6 · Silvia Spertini6 · Paolo Castiglia7 · Andrea Cossu7 · Cinzia Germinario8 · Angela Maria Vittoria Larocca8 · Paola Stefanelli1

Received: 12 April 2019 / Accepted: 19 July 2019 / Published online: 26 July 2019 © The Author(s) 2019

Abstract
Hereby, the partial Viral Protein 1 sequences of Coxsackievirus B5 (CV-B5) from sewage samples, collected in Italy from 2016 to 2017, were compared with those available in GenBank from clinical samples. Phylogenetic analysis highlighted: (I) the predominant circulation of CV-B5 genogroup B in Italy, and (II) the presence of two new sub-genogroups.

Keywords Coxsackievirus · CV-B5 · Sewage · Non-polio enteroviruses · Phylogenetic analysis · Polioviruses

Introduction
Environmental surveillance (ES) provides an early warning system for a possible introduction of poliovirus and, since 1996, is one of the activities of the Italian WHO Collaborative Reference and Research Center for Polio (2015). Meanwhile, ES examines the circulation and the spatio-temporal distribution of non-polio enteroviruses (NPEVs; Pons-Salort et al. 2018). In a recent study, our group analyzed more than 2800 sewage samples collected from 2009 to 2015. More than half of the samples were positive for NPEVs and Coxsackievirus B5 (CV-B5) being the most frequent serotype (Delogu et al. 2018).

Coxsackie B viruses are frequently associated with sporadic cases of neurological diseases, epidemics of meningitis, and chronic diseases such as cardiomyopathy and diabetes (Tracy and Gauntt 2008; Wikswo et al. 2009; Liu et al. 2014; Tao et al. 2014; Ma et al. 2013; Yao et al. 2017).

Henquell et al. (2013) described the genetic diversity of human CV-B5 clinical isolates with two main genogroups, A and B, detected worldwide. Genogroup A is characterized by sequential acquisition of nonsynonymous changes in residues exposed at the virus 5-fold axis; genogroup B is marked by the selection of three changes in the VP1 C-terminus from its first emergence.

The main aim of this study was to type the NPEVs identified from sewage samples collected from 2016 to 2017 in Italy and to compare the partial VP1 target gene of Italian CV-B5 strains in order to determine their sub-grouping.

Materials and Methods
Sewage samples were collected from 17 inlets of wastewater treatment plants (WWTPs) serving the urban areas of Naples, Bolzano, Parma, Sassari, Bari, Palermo, Catania,
Results

Overall, 423 sewage samples were collected, of which 244 were NPEV-positive by the cellular cytopathic effect on the RD cell line.

Half of the NPEV-positive samples (122/244) were selected for viral typing. In particular, for each Italian city participating in the surveillance we selected, in the period (2016–2017), half of their NPEV positive samples. The most frequent genotype was CV-B5 (26.2%, 32/122), followed by Echovirus (E)-6 (22.10%, 27/122), E-11 (12.30%; 15/122), and CV-B3 (11.5%, 14/122). The remaining 34 isolates belonged to 10 different genotypes: E-13 (7.38%), CVB-4 (5.74%), E-25 (4.92%), E-7 (4.10%), E-3 (1.64%), E-30 (0.82%), CVB-2 (0.82%), E-9 (0.82%), E-20 (0.82%), and E-19 (0.82%). One Sabin-like poliovirus type 3 strain was isolated from the WWTPs plant serving the urban area of Parma in October 2017.

Partial VP1 sequences (nt 2556 to 2874 of CV-B5 strain Faulkner complete genome) from 32 Italian CV-B5 strains, identified in sewage concentrates, were compared with 20 VP1 sequences representative of the 8 CV-B5 sub-genogroups described by Henquell et al. from clinical samples, available in GenBank (https://www.ncbi.nlm.nih.gov/genbank/), from 10 countries over a long time period (1977–2009, Table 1).

Figure 1 shows the genetic relationship among 52 VP1 sequences; moreover, the sequences of CV-B5 Faulkner and CV-B3 reference strains were also included.

Two VP1 Italian CV-B5 sequences, from sewage samples in the urban area of Naples, grouped with VP1 CV-B5 Faulkner reference strain within the genogroup A, being similar to the sub-genogroup A4 (Fig. 1). The remaining 30 Italian VP1 sequences, in the B branch together with VP1 sequences of genogroup B CV-B5 strains by Henquell et al., splitted into two novel sub-groups (B3 and B4). In fact, the genetic distance between the two newly described CV-B5 sub-groups (Italian samples) was estimated at 12.3%; while, B3 and B4 sub-groups differed from the sub-genogroups B described by Henquell et al. (sub-genogroups B0, B1 and B2) for 15.2 to 9.6 and for 15.5 to 9.3%, respectively. As a reference, the distance among sub-genogroups B described by Henquell et al. ranged from 6.9 to 13.1%. No
Table 1 Details of the CV-B5 Viral Protein 1 sequences used in the study

ID	Accession number	Genogroup/ sub-genogroup	Type of sample	Country of origin	City of isolation	Year of isolation	Month of isolation	Number of sampling per months
CF807S	HF948028	A0	Clinical	FRA	Not reported	1977	Not reported	Not applicable
CF595	HF948121	A1	Clinical	FRA	Not reported	1999	Not reported	Not applicable
17036	GU300063	A1	Clinical	NLD	Not reported	1996	Not reported	Not applicable
STU108	HF948077	A1	Clinical	DEU	Not reported	2004	Not reported	Not applicable
P028	GU300060	A2	Clinical	PAK	Not reported	1990	Not reported	Not applicable
CF19051	HF948037	A3	Clinical	FRA	Not reported	2006	Not reported	Not applicable
LIM004	HF948229	A3	Clinical	CYP	Not reported	1996	Not reported	Not applicable
GRE447	HF948173	A3	Clinical	FRA	Not reported	2003	Not reported	Not applicable
CF186106	HF948132	A4	Clinical	FRA	Not reported	2005	Not reported	Not applicable
COPT11098	HF948070	A4	Clinical	DNK	Not reported	2008	Not reported	Not applicable
ZY032	GQ246515	A4	Clinical	CHN	Not reported	2005	Not reported	Not applicable
CF641	HF948115	B0	Clinical	FRA	Not reported	1979	Not reported	Not applicable
614	GU300052	B0	Clinical	FIN	Not reported	1984	Not reported	Not applicable
3939	GU300050	B0	Clinical	USA	Not reported	1982	Not reported	Not applicable
BES1550	HF948149	B1	Clinical	FRA	Not reported	2000	Not reported	Not applicable
119229	FJ868290	B1	Clinical	AUS	Not reported	2004	Not reported	Not applicable
COPT30075	HF948263	B1	Clinical	DNK	Not reported	1993	Not reported	Not applicable
BOL36	HF948086	B2	Clinical	ITA	Not reported	2008	Not reported	Not applicable
NIC001	HF948245	B2	Clinical	CYP	Not reported	2009	Not reported	Not applicable
STU6	HF948275	B2	Clinical	DEU	Not reported	2009	Not reported	Not applicable
BZ-16-32	MK517444	B4	Environmental	ITA	Bolzano	2016	September	2
BZ-16-36	MK517473	B4	Environmental	ITA	Bolzano	2016	November	2
BZ-16-45	MK517445	B3	Environmental	ITA	Bolzano	2016	December	2
BZ-17-02	MK517446	B3	Environmental	ITA	Bolzano	2017	January	2
BZ-17-11	MK517443	B4	Environmental	ITA	Bolzano	2017	March	2
BZ-17-23	MK517447	B4	Environmental	ITA	Bolzano	2017	June	2
1CAI-17-01	MK517470	B3	Environmental	ITA	Catania	2017	June	2
1CAI-17-02	MK517448	B3	Environmental	ITA	Catania	2017	June	2
1CAI-17-03	MK517449	B3	Environmental	ITA	Catania	2017	August	2
1CAI-17-04	MK517450	B3	Environmental	ITA	Catania	2017	July	2
1CAI-17-06	MK517451	B3	Environmental	ITA	Catania	2017	July	2
2CAI-17-25	MK517452	B3	Environmental	ITA	Catania	2017	September	2
2CAI-17-27	MK517453	B4	Environmental	ITA	Catania	2017	October	2
E276	MK517454	B4	Environmental	ITA	Parma	2017	December	2
E277	MK517455	B4	Environmental	ITA	Parma	2017	December	2
E278	MK517457	B4	Environmental	ITA	Parma	2017	January	2
E279	MK517458	B3	Environmental	ITA	Parma	2017	January	2
O277	MK517456	B4	Environmental	ITA	Parma	2017	December	2
O278	MK517464	B4	Environmental	ITA	Parma	2017	January	2
E281	MK517459	B3	Environmental	ITA	Parma	2017	February	2
1NA-16-18	MK517471	B4	Environmental	ITA	Napoli	2016	February	3
2NA-16-21	MK517472	A4	Environmental	ITA	Napoli	2016	February	2
1NA-16-23	MK517460	B4	Environmental	ITA	Napoli	2016	February	3
2NA-16-28	MK517461	A4	Environmental	ITA	Napoli	2016	March	2
1NA-16-29	MK517474	B4	Environmental	ITA	Napoli	2016	March	3
1NA-17-50	MK517462	B3	Environmental	ITA	Napoli	2017	June	3
1NA-17-58	MK517463	B3	Environmental	ITA	Napoli	2017	February	3
2PA-16-79	MK517465	B3	Environmental	ITA	Palermo	2016	December	2
Table 1 (continued)

ID	Accession number	Genogroup/sub-genogroup	Type of sample	Country of origin	City of isolation	Year of isolation	Month of isolation	Number of sampling per months
1PA-17-06	MK517466	B3	Environmental	ITA	Palermo	2017	January	2
2PA-17-10	MK517467	B4	Environmental	ITA	Palermo	2017	February	2
3PA-17-20	MK517468	B3	Environmental	ITA	Palermo	2017	March	1
SS-17-06	MK517469	B4	Environmental	ITA	Sassari	2017	March	2

In italics the data published by Henquell et al. (2013)

Fig. 1 Phylogenetic tree based on the partial VP1 (nt 2556 to 2874 of CV-B5 strain Faulkner complete genome) nucleotide sequences. Trees were built using the maximum likelihood method (Kimura 2-parameter), and bootstrapped with 100 repetitions. Filled circles Italian sewages samples, open triangles genogroup B clinical samples described by Henquell et al. (2013), open squares genogroup A clinical samples described by Henquell et al. (2013)
relationships were found between the novel B sub-groups and geographic location of the sewage samples.

Discussion

ES, which is critical to support the global polio eradication endgame, permit to provide early detection of human enteric pathogens excreted with stools during an infection. Several studies reported a clear correlation between the isolation of enteroviruses in sewage, the isolation in humans, and clinical cases identified in the community (Nelson et al. 1967; Manor et al. 1999; Bisseux et al. 2018). All the NPEVs, here described, belonged to the species B, in agreement with what already found in sewage samples collected in Europe (Majumdar et al. 2018). Of note, it is the routine use of RD cell lines that follow the WHO protocol (2015), which favor for the isolation mainly of the EV species B (Majumdar et al. 2018).

The partial sequencing of VP1 was used to determine the serotype and to genetically analyze CV-B5 Italian strains detected in sewages versus CV-B5 strains from clinical samples (Henquell et al. 2013).

The phylogenetic analysis of a 319 nucleotides fragment of VP1 revealed a predominant circulation of genogroup B CV-B5 strains in Italy. This genogroup showed a low rate of evolution in the antigenic determinants over the last 50 years (Henquell et al. 2013).

However, phylogenetic analysis segregated the genogroup B Italian sequences into two relatively distant subgroups. The marked genetic divergence between the two Italian sequence-clusters and each of the three previously described sub-genogroups, suggests us to consider them as two novel CV-B5 sub-genogroups, namely B3 and B4. Due to the short sampling time period and high genetic conservation of VP1 region, the Italian CV-B5 sequences within sub-genogroups B3 and B4 resulted very similar with a low genetic distance (from 0.00 to 4.00%). In some cases (e.g., IDs E276, E277, E278) the VP1 sequences of the samples collected at the same site and at a short distance of time in the sampling were identical.

Hereby, the main findings are in agreement with what already described in Italy (Delogu et al.) in a more comprehensive sample size collected from 2009 to 2015. Moreover, the predominant circulation of CV-B5 of genogroup B was characterized by the presence of new subgroups evolving or being recently introduced in Italy.

As in many other European countries, also in Italy the real burden of EV disease can’t be affordably calculated due to many factors including viral diagnosis not always available for central nervous system diseases, pericarditis or cardiomyopathy, and for many other diseases like hand-foot-and-mouth disease or herpangina. Our results emphasize the need for improving national EV surveillance including genetic characterization of the virus isolated in Italy.

Acknowledgements The authors thank the Italian Ministry of Health and the Regional Reference Labs in Italy for the collaboration to the Environmental Surveillance System. The authors are also grateful to Laura Pellegrinelli and Sandro Binda (Department of Biomedical Sciences for Health, University of Milan, Italy) for their Environmental Surveillance support.

Funding This work was partially supported by Grant from WHO “Full providing of laboratory support for surveillance of polioviruses in Acute Flaccid Paralysis Cases and in the Environment from specified European Countries”. Environmental sampling in Catania, Messina, Trapani, and Syracuse was partly supported by the Italian Ministry of Health through the Grants: “Linea progettuale n°18.6 dei Progetti Obiettivo di Piano Sanitario Nazionale – anno 2013” and “Linea progettuale n°4.9.3 dei Progetti Obiettivo di Piano Sanitario Nazionale – anno 2016 - Monitoraggio ambientale della circolazione di virus patogeni a trasmissione fecale-orale come indicatore dello stato di salute della popolazione e come strumento per la programmazione e la valutazione di efficacia degli interventi di sanità pubblica.”

Compliance with Ethical Standards

Conflicts of interest The authors declare that there are no conflicts of interest.

Ethical Approval and Informed Consent Not applicable.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

Bisseux, M., Colombet, J., Mirand, A., Roque-Afonso, A. M., Abravanel, F., Izopet, J., et al. (2018). Monitoring human enteric viruses in wastewater and relevance to infections encountered in the clinical setting: A one-year experiment in central France, 2014 to 2015. Eurosurveillance. https://doi.org/10.2807/1560-7917.es.2018.23.7.17-00237.

CDC–WHO. (2015). Enterovirus surveillance guidelines. Guidelines for enterovirus surveillance in support of the Polio Eradication Initiative.

Delogu, R., Battistone, A., Buttinelli, G., Fiore, S., Fontana, S., Amato, C., et al. (2018). Poliovirus and other enteroviruses from environmental surveillance in Italy, 2009–2015. Food and Environmental Virology, 10(4), 333–342. https://doi.org/10.1007/s12560-018-9350-8. Epub 2018 June 12.

Henquell, C., Mirand, A., Richter, J., Schuffenecker, I., Böttiger, B., Diedrich, S., et al. (2013). Phylogenetic patterns of human Coxsackievirus B5 arise from population dynamics between two genogroups and reveal evolutionary factors of molecular adaptation and transmission. Journal of Virology, 87(22), 12249–12259. https://doi.org/10.1128/jvi.02075-13. Epub 2013 Sep 4.
Liu, N., Jia, L., Yin, J., Wu, Z., Wang, Z., Li, P., et al. (2014). An outbreak of aseptic meningitis caused by a distinct lineage of Coxsackievirus B5 in China. *International Journal of Infectious Diseases, 23*, 101–104. Erratum in: *International Journal of Infectious Diseases*, 33, 227. https://doi.org/10.1016/j.ijid.2014.02.005 (Epub 2014 April 16).

Ma, H., Huang, X., Kang, K., Li, X., Tang, X., Ren, Y., et al. (2013). Recombination in human Coxsackievirus B5 strains that caused an outbreak of viral encephalitis. *Archives of Virology, 158*(10), 2169–2173. https://doi.org/10.1007/s00705-013-1709-4. Epub 2013 April 28.

Majumdar, M., Sharif, S., Klapsa, D., Wilton, T., Alam, M. M., Fernandez-Garcia, M. D., et al. (2018). Environmental surveillance reveals complex enterovirus circulation patterns in human populations. *Open Forum Infectious Diseases*, 5(10), ofy250. https://doi.org/10.1093/ofid/ofy250. eCollection 2018 Oct.

Manor, Y., Handsher, R., Halmut, T., Neuman, M., Bobrov, A., Rudich, H., et al. (1999). Detection of poliovirus circulation by environmental surveillance in the absence of clinical cases in Israel and the Palestinian authority. *Journal of Clinical Microbiology, 37*(6), 1670–1675.

Nelson, D. B., Circo, R., & Evans, A. S. (1967). Strategic viral surveillance of sewage during and following an oral poliovirus vaccine campaign. *American Journal of Epidemiology, 86*(3), 641–652.

Nix, W. A., Oberste, M. S., & Pallansch, M. A. (2006). Sensitive, semi-nested. PCR amplification of VP1 sequences for direct identification of all enterovirus serotypes from original clinical specimens. *Journal of Clinical Microbiology, 44*(8), 2698–2704.

Pons-Salort, M., Oberste, M. S., Pallansch, M. A., Abedi, G. R., Takahashi, S., Grenfell, B. T., et al. (2018). The seasonality of non-polio enteroviruses in the United States: Patterns and drivers. *Proceedings of National Academy of Sciences of USA, 115*(12), 3078–3083. https://doi.org/10.1073/pnas.1721159115. Epub 2018 March 5.

Tao, Z., Wang, H., Liu, Y., Li, Y., Jiang, P., Liu, G., et al. (2014). Non-polio enteroviruses from acute flaccid paralysis surveillance in Shandong Province, China, 1988–2013. *Scientific Reports, 4*, 6167. https://doi.org/10.1038/srep06167.

Tracy, S., & Gauntt, C. (2008). Group B Coxsackievirus virulence. *Current Topics in Microbiology and Immunology, 323*, 49–63. Review.

WHO. (2015). *Global Polio Eradication Initiative—Guidelines on environmental surveillance for detection of polioviruses*, March 2015.

Wikswo, M. E., Khetsuriani, N., Fowlkes, A. L., Zheng, X., Peñaranda, S., Verma, N., et al. (2009). Increased activity of coxsackievirus B1 strains associated with severe disease among young infants in the United States, 2007–2008. *Clinical Infectious Diseases, 49*, e44–e51.

Yao, X., Bian, L. L., Lu, W. W., Li, J. X., Mao, Q. Y., Wang, Y. P., et al. (2017). Epidemiological and etiological characteristics of herpangina and hand foot mouth diseases in Jiangsu, China, 2013–2014. *Human Vaccines and Immunotherapeutics, 13*(4), 823–830. https://doi.org/10.1080/21645515.2016.1236879. Epub 2016 Oct 21.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.