A CHARACTERIZATION OF ERDŐS SPACE FACTORS

BY

DAVID S. LIPHAM

Department of Mathematics, Auburn University at Montgomery
Montgomery, AL 36117, USA
e-mail: dlipham@aum.edu, dsl0003@auburn.edu

ABSTRACT

We present a new characterization of Erdős space factors, and show that the Erdős space E is unstable in the class of almost zero-dimensional $F_{\sigma\delta}$-spaces. The latter answers a question by Dijkstra and van Mill.

1. Introduction

All spaces under consideration are non-empty, separable and metrizable.

An element X of a class of topological spaces is called the stable space for that class if for every space Y in the class we have that $X \times Y$ is homeomorphic to X. Examples of stable spaces include the Cantor set 2^ω for the class of zero-dimensional compacta, the irrationals \mathbb{P} for the complete zero-dimensional spaces, and \mathbb{Q}^ω (the countably infinite power of the rationals) for the zero-dimensional $F_{\sigma\delta}$-spaces. The last of these results was proved by van Engelen in the 1980’s [14]. This paper adds to the more recent study of stability in almost zero-dimensional spaces [6, 4, 5].

We say that a subset A of a space X is a C-set in X if A can be written as an intersection of clopen subsets of X. A space X is almost zero-dimensional if every point $x \in X$ has a neighborhood basis consisting of C-sets of X. Almost zero-dimensional spaces of positive dimension include

- Erdős space $E = \{x \in \ell^2 : x_i \in \mathbb{Q} \text{ for each } i < \omega\}$ and
- complete Erdős space $E_c = \{x \in \ell^2 : x_i \in \mathbb{P} \text{ for each } i < \omega\}$,

where ℓ^2 is the Hilbert space of square summable sequences of real numbers [7].

Received November 6, 2020 and in revised form December 11, 2020
Dijkstra, van Mill and Steprāns proved that \mathcal{E}_c is unstable because it is not homeomorphic to its ω-power \mathcal{E}_c^ω [6]. On the other hand, \mathcal{E}_c^ω is stable in the class of complete almost zero-dimensional spaces [4] and is therefore the almost zero-dimensional analogue of \mathbb{P}. In their 2010 paper [5], Dijkstra and van Mill proved $\mathcal{E} \simeq \mathcal{E}_c^\omega$ [5, Corollary 9.4] and asked whether \mathcal{E} is stable in the class of almost zero-dimensional $F_{\sigma\delta}$-spaces.

Question 1 ([5, Question 9.7]): Is every almost zero-dimensional $F_{\sigma\delta}$-space an Erdős space factor?

A space X is called an **Erdős space factor** if $X \times \mathcal{E}$ is homeomorphic to \mathcal{E}; see [5, Theorem 9.2] for a list of equivalent formulations.

In this paper we answer Question 1 in the negative. Our main counterexample is the space

$$\mathcal{X} := \{ x \in \mathcal{E}_c : x_0 \in \mathbb{Q} + \sqrt{2} \text{ or } \|x\| \in \mathbb{Q} \},$$

where $\|x\|$ stands for the ℓ^2-norm of x. We will see that similar examples emerge in complex dynamics. Finally, we will provide an intrinsic characterization of Erdős space factors, along with some applications.

2. Instability of \mathcal{E}

Observe that \mathcal{X} is an F_σ-subset of \mathcal{E}_c, and is therefore an almost zero-dimensional $F_{\sigma\delta}$-space. In order to show that \mathcal{X} is not an Erdős space factor, we will require the following basic fact about the topology of ℓ^2.

Lemma 1: ℓ^2 has a basis of neighborhoods of the form

$$\{ x \in U : \|x\| \leq q \}$$

where U is open in \mathbb{R}^ω and $q \in \mathbb{Q}$.

Proof. Let $i : \ell^2 \hookrightarrow \mathbb{R}^\omega$ be the identity map. By the Lemma in [12],

$$h(x) = \langle i(x), \|x\| \rangle$$

defines a homeomorphism from ℓ^2 onto the subspace $H = h(\ell^2)$ of $\mathbb{R}^\omega \times [0, \infty)$. Basic neighborhoods of $h(x)$ in H are of the form

$$V = (U \times ([\|x\| - \varepsilon, \|x\| + \varepsilon]) \cap H, \quad U \text{ being open in } \mathbb{R}^\omega.$$

If U is a small enough neighborhood of $i(x)$, then $\|y\| > \|x\| - \varepsilon$ for all $y \in U$. Given such U and $q \in \mathbb{Q} \cap (\|x\|, \|x\| + \varepsilon)$, we get that $(U \times [0, q]) \cap H \subset V$ is a neighborhood of $h(x)$ in H. Since

$$(U \times [0, q]) \cap H = h(\{y \in U : \|y\| \leq q\}),$$

the proof is complete.

We say that a space X is **C-Baire** if no neighborhood in X can be covered by countably many nowhere dense C-sets of X.

Lemma 2: \mathcal{X} is C-Baire.

Proof. Let A be a neighborhood in \mathcal{X}, and let $\{A_n : n < \omega\}$ be any countable C-set covering of A. By Lemma 1 we may assume that $A = \{x \in C : \|x\| \leq q\} \cap \mathcal{X}$ where C is clopen in \mathbb{P}^ω and $q \in \mathbb{Q}$. Then $\{x \in C : \|x\| = q\}$ is complete and non-empty, and its topology as a subspace of \mathcal{X} is the same as the topology it inherits from \mathbb{P}^ω. So by Baire’s theorem [11, Theorem 48.2] there is a clopen set $B \subset C$ and $n < \omega$ such that

$$\emptyset \neq \{x \in B : \|x\| = q\} \subset A_n.$$

Note that $W := \{x \in B : \|x\| < q\} \cap \mathcal{X}$ is a non-empty open subset of \mathcal{X}. We claim that $W \subset A_n$. Aiming at a contradiction, suppose that there exists $y \in W \setminus A_n$. Then since A_n is a C-set in \mathcal{X}, there exists a clopen subset O of \mathcal{X} containing A_n and missing y. Then $W \setminus O$ is a norm-bounded non-empty clopen subset of \mathcal{X}. This is a contradiction because

$$\mathcal{E}' := \{x \in \ell^2 : x_n \in \mathbb{Q} + \sqrt{2} \text{ for all } n < \omega\}$$

is a dense subset of \mathcal{X}, and every non-empty clopen subset of \mathcal{E}' is unbounded in the ℓ^2-norm [7]. Therefore $W \subset A_n$ and A_n has non-empty interior in \mathcal{X}.

Theorem 3: \mathcal{X} is not an Erdő space factor.

Proof. Suppose for a contradiction that \mathcal{X} is a factor of the Erdő space \mathcal{E}. Then \mathcal{X} is homeomorphic to a closed subspace \mathcal{Y} of \mathcal{E}. For every $q \in \mathbb{Q}$ the set $\{x \in \mathcal{E}_c : x_0 = q + \sqrt{2} \text{ or } \|x\| = q\}$ is nowhere dense in \mathcal{X}, so we can write

$$\mathcal{Y} = \bigcup\{Y_n : n < \omega\}$$

where each Y_n is nowhere dense in \mathcal{Y}.

For each \(n < \omega \) and \(q_0, \ldots, q_n \in \mathbb{Q} \) define
\[
F_{q_0, \ldots, q_n} = \{ x \in \ell^2 : x_i = q_i \text{ for all } i \leq n \}.
\]

Note that \(F_{q_0, \ldots, q_n} \cap \mathcal{E} \) is a C-set in \(\mathcal{E} \). We shall inductively choose rationals \(q_0, q_1, \ldots \) and non-empty \(\mathcal{Y} \)-open sets \(W_0 \supset W_1 \supset \cdots \) such that for every \(n < \omega \):
- \(W_n \subset F_{q_0, \ldots, q_n} \),
- \(\text{diam}(W_n) < \frac{1}{n} \), and
- \(\overline{W_n} \cap Y_n = \emptyset \) (the closure being taken in \(\ell^2 \)).

Well, by Lemma 2 there exists \(q_0 \in \mathbb{Q} \) such that \(F_{q_0} \cap \mathcal{Y} \) has non-empty interior in \(\mathcal{Y} \). So there is a non-empty \(\mathcal{Y} \)-open set \(W_0 \subset F_{q_0} \) such that
\[
\text{diam}(W_0) < \infty \quad \text{and} \quad \overline{W_0} \cap Y_0 = \emptyset.
\]

Now suppose that \(q_0, \ldots, q_n \) and \(W_n \) have already been defined. Let \(A \subset W_n \) be a C-set neighborhood in \(\mathcal{Y} \), and observe that
\[
\{ F_{q_0, \ldots, q_n, q} \cap A : q \in \mathbb{Q} \}
\]
is a countable covering of \(A \) by C-sets of \(\mathcal{Y} \). By Lemma 2 there exists \(q_{n+1} \in \mathbb{Q} \) such that \(F_{q_0, \ldots, q_n, q_{n+1}} \cap A \) has non-empty interior in \(\mathcal{Y} \). So there is a non-empty \(\mathcal{Y} \)-open set \(W_{n+1} \subset F_{q_0, \ldots, q_n, q_{n+1}} \cap A \) with
\[
\text{diam}(W_{n+1}) < \frac{1}{n+1} \quad \text{and} \quad \overline{W_{n+1}} \cap Y_{n+1} = \emptyset.
\]

By completeness of \(\ell^2 \) there exists
\[
y \in \bigcap_{n < \omega} \overline{W_n}.
\]

Then \(y \in F_{q_0, \ldots, q_n} \) for every \(n < \omega \) and thus \(y \in \mathcal{E} \). Since \(\mathcal{Y} \) is closed in \(\mathcal{E} \), we get \(y \in \mathcal{Y} \). This is impossible because \(y \notin \bigcup \{ Y_n : n < \omega \} \).

Remark 1: van Mill [15] proved that \(\mathbb{Q} \times \mathbb{P} \) is the unique zero-dimensional space which is strongly \(\sigma \)-complete, nowhere \(\sigma \)-compact, and nowhere complete. There is no such classification of almost zero-dimensional spaces, as \(\mathcal{X} \) is strongly \(\sigma \)-complete, nowhere \(\sigma \)-compact, nowhere complete, and is not homeomorphic to any \(\mathbb{Q} \)-product (by Lemma 2).
Remark 2: An example similar to X is generated by the complex exponential $f(z) = \exp(z) - 1$. Indeed, the Julia set $J(f)$ is a Cantor bouquet of rays in the complex plane [1], and has a natural endpoint set $E(f)$ which is homeomorphic to \mathcal{E}_c [8]. For each $n \in \mathbb{N}$ let

$$f^n = f \circ f \circ \cdots \circ f$$

n times
denote the n-fold composition of f, and consider the set

$$\hat{E}(f) := \{z \in E(f) : \overline{\{f^n(z) : n \in \mathbb{N}\}} \neq J(f)\}$$

consisting of all endpoints whose forward orbits are not dense in the Julia set. By [2, Lemma 1], $\hat{E}(f)$ is a first category F_σ-subset of $E(f)$. Apparently,

$$\hat{E}(f) := \{z \in E(f) : |f^n(z)| \to \infty\} \subset \hat{E}(f),$$

and $\hat{E}(f)$ is dense in $E(f)$ by Montel’s theorem. In [9] we proved that $\hat{E}(f)$ is C-Baire (see [9, Remark 6.2]). It follows that $\hat{E}(f)$ is C-Baire. The proof of Theorem 3 shows that a first category C-Baire space cannot be an Erdős space factor. Therefore $\hat{E}(f)$ is not an Erdős space factor.

The escaping endpoint set $\hat{E}(f)$ is another almost zero-dimensional $F_{\sigma\delta}$-space which is not a factor of \mathcal{E}. The space $\hat{E}(f)$ differs from the previous examples because it is not σ-complete [10].

3. Characterizing \mathcal{E}-factors

A tree T over a set A is a subset of $A^{<\omega}$ that is closed under initial segments, i.e., if $\beta \in T$ and $\alpha \prec \beta$ then $\alpha \in T$. An element $\lambda \in A^{\omega}$ is an infinite branch of T provided $\lambda \upharpoonright n \in T$ for every $n < \omega$. We let $[T]$ denote the set of all infinite branches of T. If $\alpha, \beta \in T$ are such that $\alpha \prec \beta$ and $\dom(\beta) = \dom(\alpha) + 1$, then we say that β is an immediate successor of α and $\text{succ}(\alpha)$ denotes the set of immediate successors of α in T.

A system $(X_\alpha)_{\alpha \in T}$ is a Sierpiński stratification of a space X if:

1. T is a non-empty tree over a countable set,
2. each X_α is a closed subset of X,
3. $X_\varnothing = X$ and $X_\alpha = \bigcup\{X_\beta : \beta \in \text{succ}(\alpha)\}$ for each $\alpha \in T$, and
4. if $\lambda \in [T]$ then the sequence $X_{\lambda|0}, X_{\lambda|1}, \ldots$ converges to a point in X.

Sierpiński proved that a space X is absolutely $F_{\sigma\delta}$ if and only if X has a Sierpiński stratification [13, Théorème]. In zero-dimensional spaces closed sets are the same as C-sets, so the stability of \mathbb{Q}^ω amongst zero-dimensional $F_{\sigma\delta}$-spaces can be stated:

A zero-dimensional space X is a factor of \mathbb{Q}^ω if and only if X has a Sierpiński stratification of C-sets.

Factors of \mathcal{E} have a similar description.

Theorem 4: An almost zero-dimensional space X is an Erdős space factor if and only if X has a Sierpiński stratification of C-sets.

Proof. Suppose that X is an Erdős space factor. Since $\mathcal{E} \simeq \mathbb{Q}^\omega \times \mathcal{E}_c$ [5, Proposition 9.1], we may assume that X is a closed subset of $\mathbb{Q}^\omega \times \mathcal{E}_c$. Let $(A_\alpha)_{\alpha \in \mathbb{Q}^\omega}$ be the obvious Sierpiński stratification of \mathbb{Q}^ω. Let d be a complete metric for \mathcal{E}_c. For each non-empty $\beta \in \omega^{<\omega}$ define $B_\beta = \bigcap\{B_\beta(n) : n < \text{dom}(\beta)\}$. Then by completeness of (\mathcal{E}_c, d) we have that $(B_\beta)_{\beta \in \omega^{<\omega}}$ is a Sierpiński stratification of \mathcal{E}_c. If $\alpha \in \mathbb{Q}^{<\omega}$, $\beta \in \omega^{<\omega}$, and $n = \text{dom}(\alpha) = \text{dom}(\beta)$, then let $\alpha * \beta = \langle \langle \alpha(0), \beta(0) \rangle, \ldots, \langle \alpha(n - 1), \beta(n - 1) \rangle \rangle$.

Note that $T := \{\alpha * \beta : \alpha \in \mathbb{Q}^{<\omega}, \beta \in \omega^{<\omega}, \text{ and } \text{dom}(\alpha) = \text{dom}(\beta)\}$ is a tree over $\mathbb{Q} \times \omega$, $(A_\alpha \times B_\beta)_{\alpha, \beta \in T}$ is a Sierpiński stratification of $\mathbb{Q}^\omega \times \mathcal{E}_c$, and each $A_\alpha \times B_\beta$ is a C-set in $\mathbb{Q}^\omega \times \mathcal{E}_c$. Then $((A_\alpha \times B_\beta) \cap X)_{\alpha, \beta \in T}$ is a Sierpiński stratification of X consisting of C-sets in X.

Conversely, suppose that $(A_\alpha)_{\alpha \in T}$ is a Sierpiński stratification of X where every A_α is a C-set in X. For each $\alpha \in T$ write $A_\alpha = \bigcap\{C_\alpha^n : n < \omega\}$ where each C_α^n is clopen in X. Let $\{B_i : i < \omega\}$ be a neighborhood basis of C-sets for X, and for each $i < \omega$ write $B_i = \bigcap\{D_{ij} : j < \omega\}$ where each D_{ij} is clopen in X. The topology \mathcal{T} that is generated by the sub-basis

$$\{C_\alpha^n \setminus X, C_\alpha^n : \alpha \in T, n < \omega\} \cup \{D_{ij} \setminus X : i,j < \omega\}$$

is easily seen to be a second countable, regular, zero-dimensional topology on X. Clearly each A_α is \mathcal{T}-closed, and moreover $(A_\alpha)_{\alpha \in T}$ is a Sierpiński stratification of (X, \mathcal{T}). By Sierpiński’s theorem (X, \mathcal{T}) is an $F_{\sigma\delta}$-space. In addition, \mathcal{T} is coarser than the original topology of X and every B_i is \mathcal{T}-closed. By condition (7) in [5, Theorem 9.2], X is an Erdős space factor. \qed
We end with a few applications of Theorem 4.

Corollary 5: If X is an almost zero-dimensional space which is the union of countably many C-set Erdős space factors, then X is an Erdős space factor.

Proof. Suppose that X is almost zero-dimensional and $X = \bigcup\{A_n : n < \omega\}$ where each A_n is both an Erdős space factor and a C-set in X. By Theorem 4, for each $n < \omega$ there is a Sierpiński stratification $(B^n_\alpha)_{\alpha \in T_n}$ of A_n such that each B^n_α is a C-set in A_n. Define a tree

$$T = \bigcup_{n<\omega} \{\langle n \rangle \dashv \alpha : \alpha \in T_n\}.$$

Put $X_\emptyset = X$ and $X_{\langle n \rangle \dashv \alpha} = B^n_\alpha$ for each $n < \omega$ and $\alpha \in T_n$. By [5, Corollary 4.20] each B^n_α is a C-set in X. Thus $(X_\alpha)_{\alpha \in T}$ is a Sierpiński stratification of X consisting of C-sets in X. By Theorem 4, X is an Erdős space factor.

Remark 3: Combining Corollary 5 with [16, Proposition 2.2 & Corollary 5.2] will show that if X is an Erdős space factor then so is the Vietoris hyperspace $\mathcal{F}(X)$ consisting of all non-empty finite subsets of X.

By Corollary 5 and [5, Corollary 9.3] we get:

Corollary 6: If X is almost zero-dimensional space that is a countable union of complete C-sets, then X is an Erdős space factor.

Remark 4: Corollary 6 applies to Dijkstra’s main example $T(\tilde{E}, E')$ in [3].

Acknowledgement. The author thanks the anonymous referee for simplifying the proof of Theorem 3.

References

[1] J. M. Aarts and L. G. Oversteegen, The geometry of Julia sets, Transactions of the American Mathematical Society 338 (1993), 897–918.

[2] I. N. Baker and P. Domínguez, Residual Julia Sets, Journal of Analysis 8 (2000), 121–137.

[3] J. J. Dijkstra, A homogeneous space that is one-dimensional but not cohesive, Houston Journal of Mathematics 32 (2006), 1093–1099.

[4] J. J. Dijkstra, Characterizing stable complete Erdős space, Israel Journal of Mathematics 186 (2011), 477–507.

[5] J. J. Dijkstra and J. van Mill, Erdős space and homeomorphism groups of manifolds, Memoirs of the American Mathematical Society 208 (2010).
[6] J. J. Dijkstra, J. van Mill and J. Steprāns, Complete Erdős space is unstable, Mathematical Proceedings of the Cambridge Philosophical Society 137 (2004), 465–473.
[7] P. Erdős, The dimension of the rational points in Hilbert space, Annals of Mathematics 41 (1940), 734–736.
[8] K. Kawamura, L. G. Oversteegen and E. D. Tymchatyn, On homogeneous totally disconnected 1-dimensional spaces, Fundamenta Mathematicae 150 (1996), 97–112.
[9] D. S. Lipham, Distinguishing endpoint sets from Erdős space, https://arxiv.org/abs/2006.04783.
[10] D. S. Lipham, Another almost zero-dimensional space of exact multiplicative class 3, https://arxiv.org/abs/2010.13876.
[11] J. R. Munkres, Topology, Prentice Hall, Upper Saddle River, NJ, 2000.
[12] J. H. Roberts, The rational points in Hilbert space, Duke Mathematical Journal 23 (1956), 488–491.
[13] W. Sierpiński, Sur une définition topologique des ensembles $F_{\sigma\delta}$, Fundamenta Mathematicae 6 (1924), 24–29.
[14] F. van Engelen, Countable products of zero-dimensional absolute $F_{\sigma\delta}$ spaces, Indagationes Mathematicae 87 (1984), 391–399.
[15] J. van Mill, Characterization of some zero-dimensional separable metric spaces, Transactions of the American Mathematical Society 264 (1981), 205–215.
[16] A. Zaragoza, Symmetric products of Erdős space and complete Erdős space, Topology and its Applications 284 (2020), 1–10.