Supplement of

Timing of exotic, far-traveled boulder emplacement and paleo-outburst flooding in the central Himalayas

Marius L. Huber et al.

Correspondence to: Marius L. Huber (marius.huber@univ-lorraine.fr)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.
Supplement 1 (S1): Field survey and boulder provenance

S1.1 Overview maps of field sites

Samples on tributary fan, south of Devighat, “Trishuli downstream”
Sampled boulders: NEQ/162 44, …45, …46 and …47
Many boulders spread on a tributary fan at the Trishuli River, south of Devighat

Figure S1.1-1: Google Earth, n. d., [satellite imagery for central Nepal], Retrieved June to November 2017, Google Earth Version 7.3.0
Samples at fill terrace, Betrawati, “Trishuli upstream”
Sampled boulders: NEQ/162 60, …61, …66 and …67.

Figure S1.1-2: Google Earth, n. d., [satellite imagery for central Nepal], Retrieved June to November 2017, Google Earth © 2016 DigitalGlobe
Samples north of Betrawati “Trishuli upstream”
Sampled boulders: NEQ/162 58, and …59.

Figure S1.1-3: Google Earth, n. d., [satellite imagery for central Nepal], Retrieved June to November 2017, Google Earth © 2016 DigitalGlobe
Samples around Balephi, Sunkoshi/ Balephi Khola
Sampled boulders: NEQ/161 01, …02 and …03. And NEQ/162 79, …80 and …98.

Figure S1.1-4: Google Earth, n. d., [satellite imagery for central Nepal], Retrieved January 2020, Google Earth © 2020 CNES/Airbus
S1.2 Sampled boulders in detail

- **NEQ/162 44** ("Trishuli downstream")

Orthogneiss of Higher Himalayan origin.
NEQ/162 45 (‘Trishuli downstream’)

Orthogneiss of Higher Himalayan origin.
• **NEQ/162 46** (“Trishuli downstream”)

Orthogneiss of Higher Himalayan origin.
Phyllitic schist of Lesser Himalayan sequence, most likely Kuncha Formation within Nawakot Complex, Dandagaon Formation could also be possible.
Phyllite of Lesser Himalayan sequence, most likely Kuncha Formation within Nawakot Complex, Dandagaon Formation could also be possible.
NEQ/162 59 ("Trishuli upstream")

Orthogneiss of Higher Himalayan origin.
• **NEQ/162 60** ("Trishuli upstream")

Schist of Lesser Himalayan sequence, most likely Kuncha Formation within Nawakot Complex Dandagaon Formation could also be possible.
• **NEQ/162 61 ("Trishuli upstream")**

Schist of Lesser Himalayan sequence, most likely Kuncha Formation within Nawakot Complex, Dandagaon Formation could also be possible.
Schist of Lesser Himalayan sequence, most likely Kuncha Formation within Nawakot Complex, Dandagaon Formation could also be possible.
Phyllitic schist of Lesser Himalayan sequence, most likely Kuncha Formation within Nawakot Complex, Dandagaon Formation could also be possible. Different fabric than 47, 58, 60, 61 and 66.
Orthogneiss of Higher Himalayan Crystallines (no Lesser Himalayan sequence), with garnets, maybe with leucosomes, migmatitic, too homogenous for a paragneiss.
whitish orthogneiss of undifferentiated Higher Himalayan Crystallines (no lesser Himalayan sequence), no garnet found.
Augengneiss, likely Uleri-gneiss of Lesser Himalayan sequence, outcrops only just below the MCT in the study region, no intrusions mapped or known to the authors which are located south of these areas (Shrestha et al., 1986; Dhital, 2015), with garnets.
Augengneiss, possibly metagranitoide, of Higher Himalayan Crystallines (no Lesser Himalayan sequence)
Augengneiss of Higher Himalayan Crystallines (no Lesser Himalayan sequence), structure quite common in the Higher Himalayan Crystallines.
Augengneiss of Higher Himalayan Crystallines (no Lesser Himalayan sequence), structure quite common in the Higher Himalayan Crystallines.
S1.3 Fill-terraces at Betrawati and further downstream

Figure S1.3-A:
Coordinates of viewpoint:
27.96925, 85.18104
Betrawati fill-terrace at river-cut seen from different angle than Figure 2B.
Deposit has sorting, some grading and clast-supported texture. Surveyed boulder NEQ/162 66 with intermediate diameter of 8.8 m sitting on top. Photo credit K. Cook, GFZ Potsdam - 2017).

Figure S1.3-B:
Coordinates of viewpoint:
27.95223, 85.16403
Large boulder (probably >10 m maximum diameter) spotted half-buried in fill-deposit approx. 3 km south of Betrawati terrace and "Trishuli upstream" boulders. Excavation of boulder after deposition by river incision likely (river behind utility pole).

Figure S1.3-C:
Coordinates of viewpoint:
27.94721, 85.16353
Boulder of B seen from other angle (in red circle). Hydropower facility in the foreground.
Supplement 2 (S2): Paleo-hydrologic discharge estimation

Topographic maps used for river channel cross-section extraction

Topo-maps by the Government of Nepal, Survey Department produced in co-operation with the Government of Finland and the Finnish Meteorological Institute.

Following map sheets are covering the study area and were utilised for channel cross-section extraction (including scale and year of publication):
- **2785 01B Nuwakot**, 1 : 25 000, 1996 (20 m contour spacing)
- **2785 01C Devighat**, 1 : 25 000, 1996 (20 m contour spacing)
- **2785 04 Barhabise**, 1 : 50 000, 1996 (40 m contour spacing)
- **2785 08 Dadapakhar**, 1 : 50 000, 1996 (40 m contour spacing)
- **2885 13 Somdan**, 1 : 50 000, 1997 (40 m contour spacing)

Cross-section site selecting was done with guidelines by Costa (1983), p.997.

Profiles were drawn with Matlab-function “manningseq” in supplementary material from Rosenwinkel et al. (2017), by Schwanghart.

Parameters, imported data and results generated with “bouldersforpaleohydrology” code-package (Matlab) accessible via URL https://gitlab.com/mlh300/bouldersforpaleohydrology/

Basic parameters used for code allochthonous_boulders_for_paleohydrology.m

Flood water density: \(\rho_f = 1500 \ \text{kg/m}^3 \)
Gravitational acceleration: \(g = 9.81 \ \text{m/s}^2 \)

Basic parameters used for function manningseq.m

Manning’s roughness coefficient for mountain streams (Chow, 1959): \(n = 0.04 \ \text{s/(m}^{4/3}) \) ("manningseq" in supplementary material from Rosenwinkel et al. (2017), by Schwanghart)
Input data for code allochthonous_boulders_for_paleohydrology.m

Table S2-1: Boulders import table:

sample name	intermediate diameter [m]	density of boulder rock material [kg/m^3]	topoprofiles
NEQ/161 01	8.7	2800	11,12
NEQ/161 02	4.5	2800	11,12
NEQ/161 03	29.9	2800	11,12
NEQ/162 44	9.2	2800	6,7
NEQ/162 45	9.9	2800	6,7
NEQ/162 46	12.5	2800	6,7
NEQ/162 47	18	2700	6,7
NEQ/162 58	13.4	2700	1,2
NEQ/162 59	8.5	2800	1,2
NEQ/162 60	18.6	2700	3,4
NEQ/162 61	14.7	2700	3,4
NEQ/162 66	8.8	2700	3,4
NEQ/162 67	9.9	2700	3,4
NEQ/162 79	9.5	2800	9,10
NEQ/162 80	11.4	2800	9,10
NEQ/162 98	9.4	2800	9,10
Table S2-2.1: Topoprofile import table (1), d and z in meter, S in rad

topo	topo2	topo3	topo4	topo5
28°02′07″N, 85°11′38.72″E	28°00′26.87″N, 85°11′00.67″E	27°59′12.22″N, 85°10′48.65″E	27°58′41.48″N, 85°10′54.34″E	27°58′12.08″N, 85°10′53.10″E
d	0	0	0	0
z	0	0	0	0
d	0	0	0	0
z	0	0	0	0
d	0	0	0	0
z	0	0	0	0

Table S2-2.2: Topoprofile import table (2), d and z in meter, S in rad

topo6	topo7	topo8	topo9	topo10
27°51′36.29″N, 85°13′43.84″E	27°51′24.16″N, 85°13′16.79″E	27°51′21.20″N, 85°13′44.40″E	27°44′41.99″N, 85°46′39.96″E	27°44′24.34″N, 85°46′41.10″E
d	0	0	0	0
z	0	0	0	0
d	0	0	0	0
z	0	0	0	0
d	0	0	0	0
z	0	0	0	0
Table S2-2.3: Topoprofile import table (3), d and z in meter, S in rad

topo11	topo12	topo13						
27°43'44.73"N, 85°46'45.76"E	27°43'41.55"N, 85°46'44.38"E	27°43'28.60"N, 85°46'41.86"E						
d_11	z_11	S_11	d_12	z_12	S_12	d_13	z_13	S_13
48.5	960	69.5	960	213.9	960			
90.9	920	128.3	920	534.8	920			
171.1	880	197.9	880	625.7	880			
240.6	840	235.3	840	673.8	840			
294.1	800	320.9	800	850.3	800			
342.2	760	390.4	760	898.4	760			
395.7	720	443.9	720	935.8	720			
449.2	680	511.4	680	1048.1	680			
459.9	671	540.1	670	1069.5	667			
545.5	671	609.6	670	1144.4	667			
550.8	680	625.7	680	1155.1	680			
582.9	720	668.4	720	1326.2	720			
636.4	760	695.2	760	1417.1	760			
684.5	800	741.3	800	1470.6	800			
738	840	780.7	840	1679.1	840			
812.8	880	850.3	880	1802.1	880			
844.9	920	898.4	920	1844.9	920			
903.7	960	984	960	1909.1	960			
973.3	1000	1155.1	1000	1978.6	1000			
Table S2-3: Paleohydrology results from boulders

Sample name	Boulder diameter [m]	Density of boulder rock material [kg/m^3]	Topoprobe sections used for calculation	Flow velocity [m/s]	Flow discharge [m^3/s]	Flow height [m]						
				Coates (1983) Clarke (1996) Alexander & Cooler (2016)	Coates (1983) Clarke (1996) Alexander & Cooler (2016)	Coates (1983) Clarke (1996) Alexander & Cooler (2016)						
NEQ/161 01	8.7	2900	11.12	10.2	9.3	6.0	1.64E+04	1.25E+04	3.39E+03	15.9	13.7	6.4
NEQ/161 02	4.5	2900	11.12	7.8	6.7	4.3	7.26E+03	4.62E+03	1.34E+03	10.0	7.7	3.7
NEQ/161 03	29.9	2900	11.12	16.7	17.3	11.2	8.95E+04	1.03E+05	2.25E+04	40.5	43.6	19.0
NEQ/162 44	9.2	2900	6.7	10.4	9.6	6.2	1.31E+05	1.02E+05	2.13E+04	27.2	24.5	12.6
NEQ/162 45	9.9	2900	6.7	10.7	10.0	6.4	1.44E+05	1.15E+05	2.44E+04	28.3	25.7	13.4
NEQ/162 46	12.5	2900	6.7	11.8	11.2	7.2	1.67E+05	1.66E+05	3.74E+04	32.2	30.2	16.1
NEQ/162 47	18	2700	6.7	13.6	12.9	8.3	3.27E+05	2.14E+05	6.19E+04	40.1	37.1	20.0
NEQ/162 58	13.4	2700	1.2	10.1	10.8	7.2	1.10E+04	8.19E+03	2.59E+03	6.4	5.4	2.8
NEQ/162 59	8.5	2800	1.2	10.1	9.0	6.0	6.74E+03	4.89E+03	1.55E+03	4.9	4.1	2.1
NEQ/162 60	18.6	2700	3.4	15.8	12.9	8.5	3.11E+04	2.47E+04	5.35E+03	16.0	14.3	9.6
NEQ/162 61	14.7	2700	3.4	12.5	11.5	7.5	2.19E+04	1.60E+04	3.63E+03	13.5	11.5	5.4
NEQ/162 66	8.8	2700	3.4	10.2	8.9	5.8	1.04E+04	6.43E+03	1.60E+03	9.3	7.2	3.4
NEQ/162 67	9.9	2700	3.4	10.7	9.4	6.2	1.23E+04	7.89E+03	1.62E+03	10.1	8.1	3.8
NEQ/162 79	9.5	2800	9.10	10.5	9.7	6.3	9.26E+03	6.92E+03	1.80E+03	12.1	10.4	4.8
NEQ/162 80	11.4	2800	9.10	11.3	10.6	6.9	1.19E+04	9.52E+03	2.37E+03	13.9	12.3	5.6
NEQ/162 98	9.4	2800	9.10	10.5	9.6	6.3	9.11E+03	6.86E+03	1.77E+03	12.0	10.3	4.7
Supplement 3 (S3): Boulder exposure ages

Surface exposure dating with cosmogenic nuclides developed substantially in the last two decades and has become a powerful tool in analysing landscape evolution in Quaternary Geology and Geomorphology (e.g. Ivy-Ochs and Kober, 2008). Taking into account local cosmogenic nuclide production and topographic shielding, which lowers production, a surface exposure age is calculated from the cosmogenic nuclide concentrations by solving for t in Equation S3-1 below, where nuclide concentration N [atoms g$^{-1}$] is given as a function of time t [a] with production rate P [atoms g$^{-1}$ a$^{-1}$] and decay constant λ [a$^{-1}$]. Equation S3-1 simplifies the evolution of cosmogenic nuclide concentrations by neglecting inheritance and erosion. Following standard chemical separation procedures (details provided below), concentrations of cosmogenic nuclides are measured with accelerated mass spectrometry (AMS). The radionuclide 10Be (16O(n,4p3n)10Be) is used in this study for cosmogenic nuclide dating because the target mineral quartz (SiO$_2$) is abundant in the sampled lithologies. Exposure dating with 10Be is a well-established method, comparably easy to apply and delivers reliable results for the targeted time-frame (Dunai, 2010).

$$N(t) = \frac{P}{\lambda} \times (1 - e^{-\lambda t}) \quad (S3-1)$$

Laboratory work

Sample preparation was performed in the laboratories of the Geological Institute in the Earth Science Department at ETH Zurich. The procedure employed is based on Ivy-Ochs (1996) with modifications from Norton et al. (2008), which itself is adapted after Von Blanckenburg et al. (1996, 2004). Samples were crushed with high-voltage pulse power fragmentation (SELFRAg), sieved to grain sizes between 1000 μm to 250 μm and magnetically separated to remove unwanted magnetic minerals from each sample. Repetitive acid treatment with diluted hydrochloric (HCL), hexafluorosilicic (H$_2$SiF$_6$) and hydrofluoric (HF) acids was used to remove minerals, mainly oxides, carbonates and feldspars from the sample material and isolate quartz (Norton et al. 2008). In order to fully remove meteoric 10Be from the remaining crystals, the grain boundaries of the quartz were leached with HF 3 times so as to dissolve 10% of the quartz mass at each step. Approximately 200 to 250 μg 10Be carrier solution was added to a sample weight of ~50 g to enable appropriate sample size and isotope ratio for a later measurement. Beryllium was then extracted and purified using ion exchange column chromatography. The final steps before measurement, including pressing and loading of the samples into cathodes, were performed at the Ion Beam Laboratory at ETH Zurich, Hönggerberg where the samples were measured at the LIP 0.5 MV compact accelerator mass spectrometry (AMS) facility (Tandy).

Results were normalized to secondary in-house standards S2007N and S2010N with nominal values of 10Be/9Be = 28.1 x 10$^{-12}$ and 10Be/9Be = 3.3 x 10$^{-12}$, respectively. S2007N and S2010N have been calibrated with our new primary standard ICN 01-5-1. ICN 01-5-1 is produced by K. Nishiizumi and has a nominal 10Be/9Be value of 2.709 x 10$^{-11}$ (Nishiizumi et al., 2007, Christl et al., 2013). Blank corrections were performed using an arithmetic mean of 14 10Be blanks with zero outliers measured at the Tandy facility in the period of 4 months before our last measurement was conducted (20 blanks with one outlier in a period of one year before measurement for sample NEQ/162 79). AMS measurements were performed in June and September 2017 (June 2018 for sample NEQ/162 79).

Calculation of ages

Subsequently cosmogenic exposure ages were computed from the 10Be/9Be ratios including analytical errors measured at the AMS facility. The “Cosmic Ray Exposure program” (CREP) code, which is accessible online via the URL http://crep.crgp.cnrs-nancy.fr (Martin et al., 2017), was used to calculate exposure ages from nuclide concentrations. This web-based computational tool was chosen because it utilizes a robust production rate calibration database set up by the Informal Cosmogenic-nuclide Exposure-age Database (ICE-D) project (http://calibration.ice-d.org). The database is continuously updated and compiles and aligns production rate calibration data published for a variety of locations globally (Martin et al., 2017). Parameters input into CREP include the 10Be concentration in the samples (calculated from the measured ratios) with 1σ-error, sample location coordinates and altitude, topographic shielding, an assumed uniform rock sample density of 2.7 g cm$^{-3}$ and the average sample thickness. We applied the Lifton-Sato-Dunai (LSD) theoretical scaling scheme (Lifton et al., 2014) for our age computation which uses analytical approximations to modelled cosmic ray particle fluxes giving specific atmospheric cross-sections for the 10Be-nuclide and the other particles involved in the corresponding nuclear reactions (Martin et al., 2017). Another input scheme is the ERA-40 atmosphere model (Uppala et al., 2005) based on a 45 year spanning database of atmospheric pressures for any locations on earth. It gives a pressure distribution approximation necessary because atmospheric
pressure has an impact on the local production rate of cosmogenic nuclides. The geomagnetic record Lifton 2016 VDM (Pavón-Carrasco et al., 2014; Laj et al., 2004; Ziegler et al., 2011) was chosen to account for variations in the earth’s magnetic field in the past. We chose a global mean production rate because no production rate calibration data was available for the whole Asian continent (see full list of references on http://crep.crg.cnrs-nancy.fr or Martin et al., 2017). We computed our ages on the 7th of June 2018.
Table S3-1: Boulder exposure ages – results

Sample #	River	Lat [°]	Lon [°]	Alt. [m a.s.l.] (1)	Sample thickness [cm]	Shielding	\(^{10}\)Be/\(^{9}\)Be ratio \([10^{-14}]\)	1σ analytical error of ratio [%]	Sample weight [g]	Amoun of carrier (µg) (2)	\(^{10}\)Be [at/g] (3)	1σ AMS final error [%] (4)	Exposure age ± 1σ [ka BP] (5)
NEQ/161 01	SUNKOSHI	27.729	85.779	674	2.0	0.86	3.70	8.8	21.381	201.6	1.67 x 10^4	13.9	4.98 ± 0.65
NEQ/161 02	SUNKOSHI	27.728	85.779	672	3.0	0.93	1.02	15.3	40.957	256.4	9.18 x 10^4	95.8	maximum 0.49 (5)
NEQ/161 03	SUNKOSHI	27.724	85.778	686	6.5	0.95	14.83	5.1	34.978	201.9	5.28 x 10^4	5.6	13.28 ± 0.96
NEQ/162 44	TRISHULI	27.856	85.070	441	3.0	0.99	2.26	10.5	22.521	256.6	1.10 x 10^4	19.1	3.48 ± 0.67
NEQ/162 45	TRISHULI	27.856	85.069	440	3.0	0.99	6.48	6.6	43.087	201.7	1.69 x 10^4	8.5	5.22 ± 0.46
NEQ/162 46	TRISHULI	27.856	85.069	445	3.0	0.99	4.69	7.8	33.040	202.4	1.49 x 10^4	11.1	4.64 ± 0.54
NEQ/162 47	TRISHULI	27.856	85.068	445	2.5	0.99	4.81	7.5	41.518	257.1	1.64 x 10^4	9.7	5.05 ± 0.49
NEQ/162 58	TRISHULI	28.009	85.184	679	4.5	0.96	6.96	6.8	58.751	197.7	1.32 x 10^4	8.5	3.63 ± 0.35
NEQ/162 59	TRISHULI	28.009	85.184	680	4.0	0.95	2.15	10.8	37.292	200.9	4.03 x 10^4	26.2	1.06 ± 0.29
NEQ/162 60	TRISHULI	27.970	85.183	618	2.0	0.97	8.08	5.5	60.322	202.8	1.57 x 10^4	6.8	4.35 ± 0.37
NEQ/162 61	TRISHULI	27.969	85.182	609	1.5	0.97	4.26	7.1	40.426	254.7	1.44 x 10^4	9.7	4.01 ± 0.43
NEQ/162 66a	TRISHULI	27.970	85.180	630	2.0	0.98	9.52	5.7	61.306	201.7	1.85 x 10^4	6.7	4.82 ± 0.49 (6)
NEQ/162 66b	TRISHULI	27.970	85.180	630	2.0	0.98	4.25	10.6	41.450	304.8	1.74 x 10^4	13.0	
NEQ/162 67	TRISHULI	27.970	85.180	632	2.5	0.98	10.50	5.3	61.830	203.3	2.06 x 10^4	6.1	5.46 ± 0.38
NEQ/162 79	SUNKOSHI, Balephi Khola	27.735	85.780	683	1.5	0.96	6.65	14.3	39.027	251.1	2.46 x 10^4	16.7	6.23 ± 0.92
NEQ/162 80	SUNKOSHI	27.734	85.783	695	1.5	0.95	11.93	5.1	41.942	255.9	4.49 x 10^4	5.6	10.96 ± 0.73
NEQ/162 98	SUNKOSHI, Balephi Khola	27.741	85.777	693	1.5	0.90	5.05	8.3	40.199	256.3	1.79 x 10^4	10.3	4.97 ± 0.51

(1) elevation of sampling point
(2) 6.616 x 10^19 atoms \(^{10}\)Be per gram carrier
(3) after blank correction: 1.36 x 10^3 ± 2.44 x 10^4 \(^{10}\)Be atoms n = 14 blank measurements over 4 months in same laboratory (except for NEQ/162 79 that was corrected for a blank contribution of 1.43 x 10^3 ± 2.77 x 10^4 \(^{10}\)Be atoms, n = 20 blank measurements over 1 year in same laboratory)
(4) calculated with online version of CREp (Martin et al.2017) on 7.6.2018, see text for set parameters and production rate.
(5) not statistically different from blank, yields only a maximum concentration
(6) age was calculated using the mean \(^{10}\)Be concentrations from duplicate measurements NEQ/162 66A and NEQ/162 66B
Figure S3-1: Top: Sample numbers are added without “NEQ/162...”. Exposure ages are in ka BP. Zoom-out on tributary fan. Red line shows location of topo-profile (bottom). Bottom: boulder intermediate diameters in meters. Bing Maps. (n.d.). [Satellite Imagery for central Nepal]. Retrieved June to November 2017, from https://www.bing.com/maps, © Microsoft. Topographic profile drawn from topographic maps (see S2).
Boulders south of Devighat, Trishuli valley

Figure S3-2: Top: Sample numbers are added without “NEQ/162…”. Exposure ages are in ka BP. Middle: Zoom-out on tributary fan. Red line shows location of topo-profile (bottom). Bottom: boulder intermediate diameters in meters. Bing Maps. (n.d.). [Satellite Imagery for central Nepal], Retrieved June to November 2017, from https://www.bing.com/maps, © Microsoft. Topographic profile drawn from topographic maps (see S2).
Table S3-2: Exposure-dated moraine deposits in the central Himalayan study region – recalculated for comparison with boulder exposure ages in this study (these ages are plotted in Figure 6)

Slope	Sample	Lat (deg)	Lon (deg)	Alt (m)	Conc	Mean	Std	Depth [cm]	Thickness [cm]	Landform allocation	Exposure age [ka]

Note: These ages are assumed for all samples, samples were calculated with world time (UTC), moraine ages (mean weighted ages) **N.B. W.I.M. = 25 + 10 years** for all samples with CRAG and weighted calculations (see Martin et al. 2017 for details) on 1 May 2018.
References

Abramowski, U., 2004. The use of 10Be surface exposure dating of erratic boulders in the reconstruction of the late Pleistocene glaciation history of mountainous regions, with examples from Nepal and Central Asia.

Christl, M., Vockenhuber, C., Kubik, P., Wacker, L., Lachner, J., Alfmov, V. and Synal, H.-A., 2013. The ETH Zurich AMS facilities: Performance parameters and reference materials. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 294: 29-38.

Dhital, M.R., 2015. Geology of the Nepal Himalaya: regional perspective of the classic collided orogen. Springer.

Dunai, T.J., 2010. Cosmogenic Nuclides: Principles, concepts and applications in the Earth surface sciences. Cambridge University Press.

Finkel, R.C., Owen, L.A., Barnard, P.L. and Caffee, M.W., 2003. Beryllium-10 dating of Mount Everest moraines indicates a strong monsoon influence and glacial synchronity throughout the Himalaya. Geology, 31(6): 561-564.

Gayer, E., Lavé, J., Pik, R. and France-Lanord, C., 2006. Monsoonal forcing of Holocene glacier fluctuations in Ganesh Himal (Central Nepal) constrained by cosmogenic 3He exposure ages of garnets. Earth and Planetary Science Letters, 252(3-4): 275-288.

Ivy-Ochs, S.D., 1996. The Dating of Rock Surfaces Using in Situ Produced 10 Be, 26 Al and 36 Cl: With Examples from Antarctica and the Swiss Alps. Diss. Naturwiss., Doctoral Thesis Thesis, ETH Zurich.

Ivy-Ochs, S. and Kober, F., 2008. Surface exposure dating with cosmogenic nuclides. Quaternary Science Journal, 57(1-2): 179-209.

Laj, C., Kissel, C. and Beer, J., 2004. High Resolution Global Paleointensity Stack Since 75 kyr (GLOPIS-75) Calibrated to Absolute Values. Timescales of the Paleomagnetic Field: 255-265.

Martin, L., Blard, P.-H., Balco, G., Lavé, J., Delunel, R., Lifton, N. and Laurent, V., 2017. The CREp program and the ICE-D production rate calibration database: A fully parameterizable and updated online tool to compute cosmic-ray exposure ages. Quaternary geochronology, 38: 25-49.

Nishizumi, K., Imamura, M., Caffee, M.W., Southon, J.R., Finkel, R.C. and McAninch, J., 2007. Absolute calibration of 10 Be AMS standards. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 258(2): 403-413.

Norton, K.P., von Blanckenburg, F., Schlunegger, F., Schwab, M. and Kubik, P.W., 2008. Cosmogenic nuclide-based investigation of spatial erosion and hillslope channel coupling in the transient foreland of the Swiss Alps. Geomorphology, 95(3): 474-486.

Pavón-Carrasco, F.J., Osete, M.L., Torta, J.M. and De Santis, A., 2014. A geomagnetic field model for the Holocene based on archaeomagnetic and lava flow data. Earth and Planetary Science Letters, 388: 98-109.

Pratt-Sitaula, B., Burbank, D.W., Heimsath, A. and Ojha, T., 2004. Landscape disequilibrium on 1000–10,000 year scales Marsyandi River, Nepal, central Himalaya. Geomorphology, 58(1): 223-241.

Schafer, J.M., Oberholzer, P., Zhao, Z., Ivy-Ochs, S., Wieler, R., Baur, H., Kubik, P.W. and Schlüchter, C., 2008. Cosmogenic beryllium-10 and neon-21 dating of late Pleistocene glaciations in Nyalam, monsoonal Himalayas. Quaternary Science Reviews, 27(3): 295-311.

Shrestha, S.B., Shrestha, J.N., Sharma, S.R., 1986. Geological map of central Nepal.

Uppala, S.M., Källberg, P., Simmons, A., Andrae, U., Bechtold, V.d., Fiorino, M., Gibson, J., Haseler, J., Hernandez, A. and Kelly, G., 2005. The ERA-40 re-analysis. Quarterly Journal of the royal meteorological society, 131(612): 2961-3012.

Von Blanckenburg, F., Belshaw, N. and O’Nions, R., 1996. Separation of 9Be and cosmogenic 10Be from environmental materials and SIMS isotope dilution analysis. Chemical Geology, 129(1-2): 93-99.

Von Blanckenburg, F., Hewawasam, T. and Kubik, P.W., 2004. Cosmogenic nuclide evidence for low weathering and denudation in the wet, tropical highlands of Sri Lanka. Journal of Geophysical Research: Earth Surface, 109(F3).

Ziegler, A.D., Wasson, R.J., Bhardwaj, A., Sundriyal, Y., Satl, S., Juyal, N., Nautiyal, V., Srivastava, P., Gillen, J. and Saklani, U., 2014. Pilgrims, progress, and the political economy of disaster preparedness-the example of the 2013 Uttarakhand flood and Kedarnath disaster. Hydrological Processes, 28(24): 5985-5990.