Limits on R-parity violation from cosmic ray antiprotons

Edward A. Baltz
Department of Physics, University of California,
601 Campbell Hall, Berkeley, CA 94720-3411

Paolo Gondolo
Center for Particle Astrophysics, University of California,
301 Le Conte Hall, Berkeley, CA 94720-7304
and
Max-Planck-Institut für Physik, Werner-Heisenberg-Institut,
Föhringer Ring 6, 80805 München, Germany.

We constrain the hadronic R-parity violating couplings in extensions to the minimal supersymmetric standard model. These interactions violate baryon and lepton number, and allow the lightest superpartner (LSP) to decay into standard model particles. The observed flux of cosmic ray antiprotons places a strong bound on the lifetime of the LSP in models where the lifetime is longer than the age of the universe. We exclude $10^{-18} \lesssim |\lambda''| \lesssim 10^{-15}$ and $2 \times 10^{-18} \lesssim |\lambda'| \lesssim 2 \times 10^{-15}$ except in the case of a top quark, where we can only exclude $4 \times 10^{-19} \lesssim |\lambda'| \lesssim 4 \times 10^{-16}$.

*E-mail address: eabaltz@wharton.berkeley.edu
†E-mail address: gondolo@mppmu.mpg.de
‡Present address.
I. INTRODUCTION

In supersymmetric models, gauge invariance allows interactions that violate lepton- or baryon-number conservation. To avoid them, a discrete symmetry called R-parity is often imposed. The R-parity of a particle is defined as \(R = (-1)^{2S + L + 3B} \), where \(S \) is its spin, and \(L \) and \(B \) are its lepton and baryon numbers. \(R \) is +1 for all standard model particles and −1 for all superparticles. Alternatively, it is an interesting exercise to allow R-parity violating couplings and constrain them by experimental observations or cosmological considerations. With R-parity violation, the lightest superpartner decays into standard model particles. We will assume that the lightest superpartner is the neutralino.

Antiprotons are a rare component of cosmic rays, most probably produced in spallation reactions in the interstellar medium. The measured antiproton flux limits any additional antiproton production in the galaxy. We find a powerful bound on the lifetime of the lightest superpartner from the observed flux of cosmic ray antiprotons. This allows us to bound the R-parity violating interactions that appear in extensions to the minimal supersymmetric standard model.

We find the relic density of the lightest superpartner (LSP) using the standard cosmological model. We then allow these particles to decay via the hadronic R-parity violating operators. We employ simple models for the production rate and the propagation of the antiprotons. We can limit the R-parity-violating couplings with observations of the antiproton spectrum in cosmic rays.

Our results strictly apply when the lifetime of the neutralino is longer than the age of the universe. However, there are other cosmological limits based on nucleosynthesis in the early universe, recent structure formation, interactions in the cosmic microwave background that cover a large fraction of neutralino lifetimes shorter than the age of the universe, and may well completely close the gap between this result and laboratory constraints.

II. SUPERSYMMETRIC MODEL

The supersymmetric model we consider is a minimal extension of the standard model with explicit R-parity breaking, defined by the superpotential

\[
W = -h^i_j E^i_i L_j H_1 - h'^i_j D^i_i Q_j H_1 + h^u_{ij} U^i_i Q_j H_2 - \mu H_1 H_2 + \lambda^{ijk} L_i Q_j D^i_k + \lambda'^{ijk} U^i_i D^i_j D^i_k. \tag{1}
\]

\(i, j, k \) are generation indices; \(L_i \) and \(Q_i \) are the \(SU(2) \)-doublet lepton and quark superfields; \(E^i_i \), \(U^i_i \) and \(D^i_i \) are the singlet superfields; and \(H_1 \) and \(H_2 \) are the doublet Higgs superfields. \(h^i_j \), \(h'^i_j \) and \(h^u_{ij} \) are Yukawa matrices, and \(\mu \) is a free parameter [1].

The last two terms in the superpotential violate lepton- and baryon-number conservation explicitly. For three generations, there are 27 \(\lambda' \) couplings and 9 \(\lambda'' \) couplings, since \(\lambda''^{ijk} \) is antisymmetric under exchange of the last two indices.

Supersymmetry is broken softly by a scalar potential that in general contains many unmeasured parameters. For our purposes, a simple parameterization suffices. We assign a common mass scale \(m_0 \) to the sleptons and squarks at the electroweak scale, we relate the gaugino mass parameters \(M_1, M_2, M_3 \) by means of GUT relations, and we keep the trilinear soft terms \(A_t \) and \(A_b \) only for stop and sbottom. Electroweak symmetry is broken at tree level by assigning vacuum expectation values \(v_1 \) and \(v_2 \) to the neutral scalar components of \(H_1 \) and \(H_2 \). The ratio \(\tan \beta = v_2/v_1 \) and the pseudoscalar Higgs boson mass \(m_A \) remain as free parameters. The total number of parameters is therefore seven. Further details on the class of models we consider are given by Bergström and Gondolo [2].

We use the scans of supersymmetric parameter space in Bergström, Edsjö, and Gondolo [3]. They consist of \(\sim 10^4 \) models that satisfy the experimental constraints reported by the Particle Data Group [4], plus the bounds on the Higgs sector and chargino masses from LEP (we update to LEP2W [5]) and the constraints on the \(b \to s \gamma \) rate from CLEO [6]. The scans span values of \(\mu \) and \(|M_2| \) up to 5 TeV, of \(m_0 \) up to 3 TeV, of \(|A_t| \) and \(|A_b| \) up to \(3m_0 \), of \(m_A \) up to 1 TeV, and of \(\tan \beta \) between 1 and 50. This range extends even beyond the parameter region usually considered as plausible.

III. COMPOSITION OF THE GALACTIC HALO

We do not assume that the dark matter is supersymmetric in nature. Given a supersymmetric model, the relic density of neutralinos is fixed and calculable in the standard cosmological model. We use the relic density computed by Edsjö and Gondolo [7], who include all neutralino self-annihilation diagrams, resonance and threshold effects, and chargino-neutralino coannihilations. In every model that is cosmologically allowed, the lightest neutralino is a cold relic from the Big Bang. Being a cold relic, we expect that it is attracted into the gravitational potentials of galaxies, and is at present a component of the cold dark halo.

We use the simple estimate that the dark matter density of the galactic halo at the position of the solar system is 0.3 GeV cm\(^{-3}\). Neutralinos may make up the entire halo or only some fraction \(f \). This fraction \(f \geq \Omega_A/\Omega_{DM} \), where \(\Omega_A \) is the cosmological density of species \(A \) measured in units of the critical density.

We now need an estimate of \(\Omega_{DM} \). A common prescription [8] is to take \(\Omega_{DM} = \Omega_\chi \) if \(\Omega_\chi h^2 \geq 0.025 \), which is the value indicated by dynamical mass measurements of the amount of dark matter in galactic halos. If \(\Omega_\chi h^2 \leq 0.025 \), this prescription sets \(\Omega_{DM} h^2 = 0.025 \). This procedure is not conservative enough for our purposes because there
may be more than one cold dark matter component in the galactic halo. Therefore, we use the constraint that \(\Omega_{\text{DM}} h^2 < 1 \), based on the age of the universe \([8]\), to give a lower bound on \(f = \Omega_{h^2} \). In this way we obtain a conservative limit on the R-parity violating couplings. This may be overly conservative, and indeed our final results would improve by approximately a factor of five if we used the less conservative fraction.

IV. DECAY RATE

We consider neutralino decay through both the lepton-number violating term \(\lambda' U \) and the baryon-number violating term \(\lambda'' U' D' D' \) in the superpotential. The coupling \(\lambda'_{ijk} \) gives rise to the decays \(\chi \to \nu_i d_j \bar{d}_k \), \(\chi \to e_i u_j \bar{d}_k \) and their charge conjugates. The coupling \(\lambda''_{ijk} \) gives rise to the decays \(\chi \to u_i d_j \bar{d}_k \) \(\chi \to e_i u_j \bar{d}_k \) \(j \neq k \) and their charge conjugates.

The differential decay rates for these processes are calculated in Ref. \([9]\). Here we quote the decay rate for \(\chi \to u d s \) in the limit where the squarks are heavy and degenerate,

\[
\Gamma(\chi \to u d s) = \frac{3}{32\pi} m_\chi |\lambda'_{112}|^2 g^2 \left(\frac{m_\chi}{m_{\tilde{q}}} \right)^4 \times \left(2 \tan^2 \theta_W |N_{\chi 1}|^2 + \frac{m_{\tilde{q}}^2 |N_{\chi 4}|^2}{2 m_W^2 \sin^2 \beta} + \frac{(m_{\tilde{q}}^2 + m_{\chi}^2) |N_{\chi 4}|^2}{2 m_W^2 \cos^2 \beta} \right),
\]

where \(g \) is the \(SU(2)_L \) coupling constant, \(m_{\tilde{q}} \) is the degenerate squark mass, and \(N_{\chi i} \) is the projection of the lightest neutralino on the interaction eigenstates \(\tilde{b}, \tilde{t}, h_1, \) and \(h_2 \). When the gaugino fraction approaches unity, we see that the decay rate is

\[
\Gamma = \frac{3}{16\pi^3} m_\chi |\lambda'_{112}|^2 g^2 \tan^2 \theta_W \left(\frac{m_\chi}{m_{\tilde{q}}} \right)^4.
\]

When the gaugino fraction approaches zero, there is an additional suppression from the light quark masses,

\[
\Gamma = \frac{3}{128\pi^3} m_\chi |\lambda''_{112}|^2 g^2 \left(\frac{m_\chi}{m_{\tilde{q}}} \right)^4 \times \left[m_{\tilde{q}}^2 \left(\frac{m_{\tilde{q}}^2 + m_{\chi}^2}{m_W^2 \sin^2 \beta} + \frac{m_{\tilde{q}}^2 + m_{\chi}^2}{m_W^2 \cos^2 \beta} \right) \right].
\]

V. ANTIPROTON PRODUCTION

Antiprotons are produced in the jets formed by the final state quarks. We are interested in the energy spectrum of antiprotons \(dN_\bar{p}/dE \) at energies of a few GeV.

It is quite difficult to calculate the spectrum \(dN_\bar{p}/dE \), especially at low antiproton energies. There are basically two theoretical frameworks available: a perturbative QCD approach and the Lund Monte-Carlo. In fig. \([4]\) we compare the theoretical curves with the measured proton spectra per quark jet in \(e^+ e^- \) annihilations at various jet energies \((14.5 \text{ GeV} \ [3], 29 \text{ GeV} \ [1], \text{ and } 45.6 \text{ GeV} \ [2]) \) and also show the theoretical predictions at 1 TeV, one of the highest energies we need.

In the perturbative QCD approach, Dokshitzer et al. \([13]\) provide a formalism for calculating hadron spectra from parton spectra in the modified double-logarithmic approximation (MLLA). The full MLLA formula for inclusive particle production is too difficult to evaluate, and no numerical expression is available. It has been shown that the simpler limiting spectrum reproduces the total charged particle spectrum quite well \([4]\). However, as can be seen in fig. \([4]\) neither the limiting spectrum (long-dashed curves \([13]\)) nor the low energy limit of the full MLLA spectrum (short-dashed curves \([4]\)) fit data for protons in a satisfactory manner. As a theoretical alternative to the MLLA formalism, the Lund Monte Carlo \([15]\) has been used by several authors, most recently by Bottino et al. \([16]\). However, it also does not match the data for protons satisfactorily (histograms in fig. \([4]\)).

Inspecting the experimental data and the results of the Lund Monte Carlo, we observe that the (anti)proton production rate in the high-energy tail of the spectrum increases with jet energy. This is verified in the data for charged particle production in jets and is a generic prediction of the MLLA formalism \([13,14]\).

Based on these arguments, we decide to take the value \(dN_\bar{p}/dE = 0.05 \) antiprotons/jet/GeV at the momentum \(p = 1.573 \text{ GeV} \) in which we want the antiproton spectra (see sect. \([7]\)). This underestimates the production rate of antiprotons, and gives a conservative bound on the R-parity violating couplings.

The number of jets per decay \(N_{\text{jets}} \) is equal to the number of final state quarks, except when there is a top quark. The top decays before it can hadronize. We approximate the process \(t \to W^+ b \) using the fact that the low energy proton spectrum is insensitive to the jet energy. The bottom quark forms a jet. In addition, we take the hadronic branching fraction of the \(W \), \(B(W \to \text{hadrons}) = 0.679 \), as the probability to form two additional jets in the decay \(W^+ \to u d \) and its charge conjugate. The final values for \(N_{\text{jets}} \) are 3 for a \(U^c D^c D^c \) decay without top, 4.358 for a \(U^c D^c D^c \) with top, 2 for an \(LQD^c \) without top and 3.358 for an \(LQ D^c \) with top.

We now obtain the volume production rate of antiprotons by multiplying the flat antiproton spectrum by the number density of neutralinos \(\rho_\chi / m_\chi \) and the number of jets per decay \(N_{\text{jets}} \), and dividing by the lifetime \(\tau_\chi = 1/\Gamma \),

\[
\frac{dQ_\bar{p}}{dE} = \frac{dN_\bar{p} \rho_\chi N_{\text{jets}}}{m_\chi \tau_\chi}.
\]
VI. ANTIPROTON PROPAGATION IN THE GALAXY

We use the diffusion model of Webber et al. [17] as implemented by Chardonnet et al. [18] to describe diffusion of antiprotons through the galaxy. The flux of antiprotons at the outer solar system is approximated by multiplying the source spectrum by the antiproton velocity and an appropriate diffusion time. The diffusion constant in the galaxy depends on the rigidity p of the particle and can be approximated by the following expression.

$$K = 6 \times 10^{27} \left(1 + \frac{p}{3Z \text{GeV}} \right)^{0.6} \text{cm}^2 \text{sec}^{-1}. \quad (6)$$

The region of turbulent magnetic fields responsible for diffusion can be approximated as a cylinder about 20kpc in radius and 2kpc high. This gives a diffusion time for antiprotons of

$$t_d = 6 \times 10^{15} \left(1 + \frac{p}{3 \text{GeV}} \right)^{-0.6} \text{sec}. \quad (7)$$

The flux at the outer solar system beyond the influence of the solar wind is now given by

$$\Phi_\overline{p} = \frac{1}{4\pi} \frac{dQ_\overline{p}}{dE} \rho_\overline{p} t_d. \quad (8)$$

This flux is in units of antiprotons s$^{-1}$ cm$^{-2}$ GeV$^{-1}$ sr$^{-1}$. The low energy spectrum is affected by the solar wind. We use a simple model to account for this [19]. The observed antiproton energy E and momentum k are given in terms of the initial energy outside the solar system $E_\overline{p}$.

$$E_\overline{p} = k_e \ln \left(\frac{k + E}{k_e} \right) + E_e + \Delta E, \quad k < k_e, \quad (9)$$

$$E_\overline{p} = E + \Delta E, \quad k \geq k_e.$$

We adopt values of the critical momentum k_c and energy shift ΔE that correspond to the period of minimum activity in the 11 year solar cycle, $k_c = 1.105 \text{ GeV}$ and $\Delta E = 495 \text{ MeV}$. This gives the highest inner solar system flux, thus the conservative bound on the couplings.

The solar modulated flux is now given by

$$\Phi_\overline{p}(E) = \frac{E^2 - m_\overline{p}^2}{E_\overline{p}^2 - m_\overline{p}^2} \Phi_\overline{p}(E_\overline{p}). \quad (10)$$

VII. RESULTS

We proceed as follows. We choose a data point for the \overline{p} flux at the earth [20]. These data have large error bars, but will improve with the next generation of experiments to be done in space [21]. According to the data from BESS, at an energy of 1.4 GeV the antiproton flux at the top of the atmosphere is $6.4 \times 10^{-7} \text{cm}^2 \text{sr} \text{GeV}^{-1}$. We denote this flux as $\Phi_{\text{obs}}(E)$. From the values of the observed energy E and momentum k, we determine the unmodulated \overline{p} energy $E_\overline{p}$. This is the energy at which we evaluate the diffusion time t_d and the velocity v.

We now insist that the flux of antiprotons from neutralino decays be less than the observed flux. Including corrections due to solar modulation, the statement is

$$\frac{\nu_\overline{p} d \rho_\overline{p} N_{\text{jets}} dN_{\overline{p}} E^2 - m_\overline{p}^2}{4\pi m_\chi \tau_\chi dE E_{\overline{p}}^2 - m_{\overline{p}}^2 < \Phi_{\text{obs}}(E). \quad (11)}$$

We choose not to make a correction for the spallation production of antiprotons. The data are consistent with the picture that all cosmic ray antiprotons are made in spallation reactions, but there are a lot of uncertainties. There is no good model for the amount we should subtract, and we have chosen to ignore it. We thus obtain a conservative bound on the couplings.

Using the data we have chosen, we obtain a model independent bound on the lifetime of a hadronically decaying relic with mass $m_\chi \gtrsim 10 \text{ GeV}$

$$\tau_\chi \gtrsim \tau_\overline{p} = 7.9 \times 10^{28} \frac{N_{\text{jets}} f_\chi}{m_\chi / \text{GeV}}, \quad (12)$$

where we choose the mass fraction of neutralinos in the galactic dark halo as $f_\chi = \Omega_\chi h^2$. Since we assume that the neutralino is in the galactic halo at present, this bound applies for lifetimes longer than the age of the Universe t_0. In other words, we can exclude lifetimes in the range $t_0 \leq \tau_\chi \leq \tau_\chi^{\overline{p}}$ provided $t_0 \leq \tau_\chi^{\overline{p}}$.

For these long lifetimes, our bounds are in general better than those from diffuse photons [22], \(\tau_\chi \gtrsim 7 \times 10^{25} s N_{\text{jets}} \chi_\overline{p} h^2 \), and diffuse neutrinos [23], \(\tau_\chi \gtrsim 10^{28} s (m_\chi / \text{GeV})^{1/2} f_\chi \), except for some supersymmetric models with neutralino masses in the TeV range.

We can limit each element of the two coupling matrices λ' and λ'' separately, by choosing the coupling such that all of the measured \overline{p} flux comes from the neutralino decay via a single channel. Our excluded range of lifetimes then translates into the following excluded range of λ

$$\lambda_\overline{p} \leq |\lambda| \leq \lambda_0, \quad (13)$$

where

$$\lambda_\overline{p} \approx 3.48 \times 10^{-15} \sqrt{\frac{m_\chi \tau_\chi}{N_{\text{jets}} f_\chi}} \quad (14)$$

is the upper limit on λ coming from the antiproton flux and

$$\lambda_0 \approx 1.8 \times 10^{-9} \sqrt{\tau_\chi} \quad (15)$$

is the value of λ for which the neutralino lifetime equals the age of the universe, which sets the validity of our analysis. In the previous formulas, m_χ is in GeV, $\tau_\chi = \tau_\chi^{\overline{p}}$.
$|\lambda|^2 \tau_\chi$ is in seconds, and the age of the universe is taken to be 10^{10} yr.

For virtually all models we find that λ_0 is smaller than λ_0 by at least three orders of magnitude. Conservatively taking $N_{\text{jets}} = 2$ we find for the excluded range that

$$\frac{\lambda_0}{\lambda_\bar{p}} = 7.3 \times 10^5 \sqrt{\frac{\Omega h^2}{m_\chi/\text{GeV}}} \gtrsim 600. \quad (16)$$

If we would further demand that the neutralino be cosmologically interesting, namely $\Omega h^2 > 0.025$, we would expand the excluded range to $\lambda_0/\lambda_\bar{p} \gtrsim 4000$.

We have plotted the upper bound on λ''_{ijk} as a function of the neutralino mass for 10^4 supersymmetric models in figure 2. The results are similar for all generations in the R-parity violating couplings, except for λ''_{ijk} which shows the top quark threshold (see figure 3). When the neutralino is lighter than the top quark, there is no bound on λ''_{ijk} at tree level. A bound can however be found at the one loop level $[24]$.

In our sample of supersymmetric models, we find the absolute upper limits

$$|\lambda''_{ijk}|_\bar{p} \lesssim 2 \times 10^{-18} \quad (i, j, k \neq 3) \quad (17)$$

$$|\lambda''_{ijk}|_\bar{p} \lesssim 1 \times 10^{-18} \quad (j, k \neq 3) \quad (18)$$

$$|\lambda''_{3ik}|_\bar{p} \lesssim 4 \times 10^{-19} \quad (k \neq 3) \quad (19)$$

$$|\lambda''_{ij3}|_\bar{p} \lesssim 3 \times 10^{-19} \quad (20)$$

$$|\lambda''_{ij3}|_\bar{p} \lesssim 1 \times 10^{-19} \quad (i, k \neq 3) \quad (21)$$

$$|\lambda''_{ij3}|_\bar{p} \lesssim 1 \times 10^{-19} \quad (i \neq 3). \quad (22)$$

The apparent absence of an absolute upper bound on λ''_{ij3} is due to our neglect of one-loop diagrams. These upper limits depend on the neutralino mass, and improve considerably with higher masses. We find the following power law fits

$$|\lambda''_{ijk}|_\bar{p} \lesssim 6 \times 10^{-22} (m_\chi/\text{TeV})^{-3.1} \quad (i, j, k \neq 3) \quad (23)$$

$$|\lambda''_{ijk}|_\bar{p} \lesssim 3 \times 10^{-22} (m_\chi/\text{TeV})^{-3.1} \quad (j, k \neq 3) \quad (24)$$

$$|\lambda''_{3ik}|_\bar{p} \lesssim 8 \times 10^{-23} (m_\chi/\text{TeV})^{-3.2} \quad (k \neq 3) \quad (25)$$

$$|\lambda''_{ij3}|_\bar{p} \lesssim 1 \times 10^{-22} (m_\chi/\text{TeV})^{-3.0} \quad (26)$$

$$|\lambda''_{ij3}|_\bar{p} \lesssim 3 \times 10^{-22} (m_\chi/\text{TeV})^{-2.7} \quad (i, k \neq 3) \quad (27)$$

$$|\lambda''_{ij3}|_\bar{p} \lesssim 3 \times 10^{-23} (m_\chi/\text{TeV})^{-2.7} \quad (i \neq 3). \quad (28)$$

We finally comment on the dependence of our bounds on model parameters. In figure 1 we plot the dependence on the squark mass scale m_0. As expected, the bound is better for lighter squarks. Regarding the dependence on neutralino composition, in general the bounds are better in the gaugino region. In the higgsino region, the bounds improve with heavier generations as the Yukawa couplings become larger. The dependence on other model parameters is negligible in comparison.

VIII. CONCLUSIONS

From observations of cosmic ray antiprotons we obtain strong constraints on each of the hadronic R-parity violating couplings $|\lambda'|$ and $|\lambda''|$ that appear in extensions of the minimal supersymmetric model. Our analysis applies strictly in cases where the neutralino lifetime is longer than the age of the universe, and enables us to exclude a range $\lambda_\bar{p} \leq |\lambda| \leq \lambda_0$, where $\lambda_\bar{p}$ is the upper limit from the antiproton flux and λ_0 is the validity boundary coming from the age of the universe. Using a large selection of model parameters, we find absolute upper limits $|\lambda''_{ijk}|_\bar{p} \lesssim 2 \times 10^{-18}$ and $|\lambda''_{ijk}|_\bar{p} \lesssim 10^{-18}$ when there is no top quark in the final state, and $|\lambda''_{3ik}|_\bar{p} \lesssim 2 \times 10^{-19}$ when there is. In virtually all models, we find that $\lambda_0 \gtrsim 10^3 \lambda_\bar{p}$. Our bounds lie many orders of magnitude below the laboratory constraints coming from proton decay, and apply to each R-parity violating coupling separately.

ACKNOWLEDGMENTS

We thank J. Silk for useful discussions and comments on the manuscript. P.G. thanks him also for the friendly hospitality and encouraging support at the Center for Particle Astrophysics. P.G. thanks S. Lupia for useful discussions and programs on the theoretical proton spectra. This research was supported in part by NASA grant 1-443839-23254-2 and DOE grant FG03-84ER40161.
[1] For a review see H. E. Haber and G. L. Kane, Phys. Rep. 117, 75 (1985).
[2] L. Bergström and P. Gondolo, Astropart. Phys. 5, 263 (1996).
[3] L. Bergström, J. Edsjo, and P. Gondolo, Phys. Rev. D 55 1765 (1997).
[4] Particle Data Group, R. M. Barnett et al., Phys. Rev. D 54, 1 (1996).
[5] G. Cowan (ALEPH Collaboration), talk presented at the special CERN particle physics seminar on physics results from the LEP run at 172 GeV, 25 February, 1997, http://alephwww.cern.ch/ALPUB/seminar/Cowan-172-jam/cowan.html.
[6] CLEO Coll., M. S. Alam et al., Phys. Rev. Lett. 71, 674 (1993); 74, 2885 (1995).
[7] J. Edsjo and P. Gondolo, Phys. Rev. D 56, 1879 (1997).
[8] G. Jungman, M. Kamionkowski, and K. Griest, Phys. Rep. 267, 195 (1996) and references therein.
[9] E. A. Baltz and P. Gondolo, Phys. Rev. D (to be published), preprint hep-ph/9709445.
[10] TPC Coll., H. Aihara et al., Phys. Rev. Lett. 61 1263 (1988).
[11] TOPAZ Coll., R. Itoh et al., Phys. Lett. B 345, 335 (1995).
[12] ALEPH Coll., D. Buskulic et al., Z. Phys. C 55, 209 (1992); OPAL Coll., R. Akers et al., ibid. 63, 181 (1994); DELPHI Coll., P. Abreu et al., Nucl. Phys. B 444, 3 (1995).
[13] Yu. L. Dokshitzer, V. A. Khoze, and S. I. Troyan, Int. J. Mod. Phys. A 7, 1875 (1996); Yu. L. Dokshitzer, V. A. Khoze, A. H. Mueller, and S. I. Troyan, Basics of Perturbative QCD (Editions Frontières, 1991).
[14] S. Lupia and W. Ochs, Phys. Lett. B 365, 339 (1996); V. A. Khoze, S. Lupia, and W. Ochs, ibid. 394 179 (1997); W. Ochs, in ICHEP 96: Proceedings, July 1996, Warsaw, Poland, edited by Z. Ajduk and A. K. Wroblewski (World Scientific, 1997), p. 25-31; S. Lupia, to appear in Proceedings of the 33rd Eliostraon Workshop “Universality features in multihadron production and the leading effect”, October 1996, Erice, Italy, preprint hep-ph/9702215 (1997).
[15] T. Sjöstrand, Computer Physics Commun. 82, 74 (1994).
[16] A. Bottino, C. Favero, N. Fornengo, and G. Mignola, Astropart. Phys. 3, 77 (1995); G. Mignola, preprint astro-ph/9611138 (1996).
[17] W. R. Webber, M. A. Lee, and M. Gupta, Astrophys. J. 390, 96 (1992).
[18] P. Chardonnet, G. Mignola, P. Salati, and R. Taillet, Phys. Lett. B 384, 161 (1996).
[19] J. S. Perko, Astron. Astrophys. 184, 119 (1987).
[20] BESS Coll., A. Moiseev et al., Astrophys. J. 474, 479 (1997); IMAX Coll., J. W. Mitchell et al., Phys. Rev. Lett. 76, 3057 (1996).
[21] AMS Coll., S. Ahlen et al., Nucl. Instrum. Methods A 350, 351 (1994); PAMELA Coll., O. Adriani et al., in XXIV International Cosmic Ray Conference, (Roma, 1995), p.591.
[22] G. D. Kribs and I. Z. Rothstein, Phys. Rev. D 55, 4435 (1997).
[23] P. Gondolo, Phys. Lett. B 295, 104 (1992).
[24] E. A. Baltz, P. Gondolo, and M. Perelstein (work in progress).
[25] I. Hinchliffe and T. Kaeding, Phys. Rev. D 47, 279 (1993).
FIG. 1. Antiproton spectra in quark jets from theoretical predictions and e^+e^- annihilation data. Short- and long-dashed curves are the low-energy and the limiting MLLA spectra, histograms are obtained with the Lund Monte-Carlo. Data points are from TPC (14.5 GeV), TOPAZ (29 GeV), ALEPH (41.6 GeV, full squares), DELPHI (41.6 GeV, diamonds) and OPAL (41.6 GeV, open squares). The cross indicates our choice of dN_p/dE at $p = 1.573$ GeV.

FIG. 2. Bounds on λ''_{112} from cosmic ray antiprotons as a function of neutralino mass for 10^4 SUSY models. The scatter plots for λ''_{ijk} are similar when $i \neq 3$. The scatter plots for λ'_{ijk} are also similar.

FIG. 3. Bounds on λ''_{312} from cosmic ray antiprotons as a function of the neutralino mass for 10^4 SUSY models. The threshold effect is clearly seen.

FIG. 4. Bounds on λ''_{112} from cosmic ray antiprotons as a function of the squark mass scale for 10^4 SUSY models.
Fig. 2 E. A. Baltz and P. Gondolo, Phys. Rev. D
Fig. E. A. Baltz and P. Gondolo, Phys. Rev. D
Fig. 4. A. Baltz and P. Gondolo, Phys. Rev. D