Persistence of \textit{Bacillus thuringiensis} subsp. \textit{kurstaki} in Urban Environments following Spraying\textcopyright

Sheila Van Cuyk,* Alina Deshpande, Attelia Hollander, Nathan Duval, Lawrence Ticknor, Julie Layshock, LaVerne Gallegos-Graves, and Kristin M. Omberg
Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545

Received 19 April 2011/Accepted 26 August 2011

\textit{Bacillus thuringiensis} subsp. \textit{kurstaki} is applied extensively in North America to control the gypsy moth, \textit{Lymantria dispar}. Since \textit{B. thuringiensis} subsp. \textit{kurstaki} shares many physical and biological properties with \textit{Bacillus anthracis}, it is a reasonable surrogate for biodefense studies. A key question in biodefense is how long a bioterrorist agent will persist in the environment. There is some information in the literature on the persistence of \textit{Bacillus anthracis} in laboratories and historical testing areas and for \textit{Bacillus thuringiensis} in agricultural settings, but there is no information on the persistence of \textit{Bacillus} spp. in the type of environment that would be encountered in a city or on a military installation. Since it is not feasible to release \textit{B. anthracis} in a developed area, the controlled release of \textit{B. thuringiensis} subsp. \textit{kurstaki} for pest control was used to gain insight into the potential persistence of \textit{Bacillus} spp. in outdoor urban environments. Persistence was evaluated in two locations: Fairfax County, VA, and Seattle, WA. Environmental samples were collected from multiple matrices and evaluated for the presence of viable \textit{B. thuringiensis} subsp. \textit{kurstaki} at times ranging from less than 1 day to 4 years after spraying. Real-time PCR and culture were used for analysis. \textit{B. thuringiensis} subsp. \textit{kurstaki} was found to persist in urban environments for at least 4 years. It was most frequently detected in soils and less frequently detected in wipes, grass, foliage, and water. The collective results indicate that certain species of \textit{Bacillus} may persist for years following their dispersal in urban environments.

\textit{Bacillus thuringiensis} subsp. \textit{kurstaki} is a common organic pesticide used to control defoliating pests including the gypsy moth, \textit{Lymantria dispar}. The gypsy moth is a major forest pest that is especially predominant along the eastern seaboard and in the Midwestern United States. Over the last 20 years, thousands of acres have been treated with \textit{B. thuringiensis} subsp. \textit{kurstaki} to suppress or eradicate gypsy moth populations. The bacterium is applied to foliage as a water-based slurry. \textit{B. thuringiensis} subsp. \textit{kurstaki} is not typically harmful to mammals; but its toxin, when ingested, is lethal to the \textit{Lymantria dispar} caterpillar (19, 22, 28).

In a recent review, Greenberg et al. (7) determined that \textit{B. thuringiensis} provides the best overall fit as a nonpathogenic surrogate for \textit{Bacillus anthracis} for spore fate and transport based on pathogenicity, phylogenetic relationship, morphology, and comparative survivability to biocides. \textit{B. thuringiensis} and \textit{B. anthracis} are both Gram positive and aerobic, and they both form metabolically inactive endospores in response to environmental conditions. \textit{B. anthracis}, the etiological agent of anthrax, is a bacterium of considerable concern in the biodefense community, but it is difficult to study its behavior in the environment, particularly for the wide-area releases often postulated in terrorist scenarios. Outdoor pesticide releases of \textit{B. thuringiensis} subsp. \textit{kurstaki} can therefore provide insight into the environmental fate and transport of \textit{B. anthracis} following a deliberate release.

The literature on the persistence of \textit{Bacillus} spp. in the environment is incomplete and contradictory; however, previous studies have demonstrated that viable \textit{Bacillus} spp. spores may persist and remain dormant in laboratories or rural environments for years to decades. Early research on \textit{B. anthracis} indicated that spores could survive indefinitely in a dry environment, such as in dust, or on laboratory swabs or blood spots on clothing (32). Manchee et al. detected \textit{B. anthracis} in soil where the agent had been dispersed 40 years previously (14). Hendriksen and Hansen found that \textit{B. thuringiensis} subsp. \textit{kurstaki} was persistent in bulk soil in cabbage plots for 7 years (9).

Studies on \textit{Bacillus} spp. survival on leaves contain a wide range of results, with \textit{B. thuringiensis} detected for days to years (6, 8–10, 19–22). In 1998, Smith and Barry recovered \textit{B. thuringiensis} from leaf samples for 12 months and more postapplication in sprayed, previously sprayed, and nonsprayed areas (26).

The literature on \textit{Bacillus} spp. persistence in water is predominantly focused on \textit{B. anthracis} for biodefense. Although these studies may not be representative of general environmental conditions (33), they indicate that \textit{B. anthracis} can remain viable in chlorinated or pond water for 2 years (3, 12).

It is difficult to use data from the existing literature, which was largely collected in laboratories and undeveloped areas, to assess the implications for an urban area after a biological attack. However, understanding persistence in the urban environment will be critical to formulating effective response, restoration, and recovery plans. To that end, under the auspices of the joint Defense Threat Reduction Agency–Department of
Homeland Security Interagency Biological Restoration Demonstration, soil, surface, water, and vegetation samples were collected from two urban areas (Seattle, WA, and Fairfax County, VA), up to 4 years after spraying, and analyzed for the presence of viable *B. thuringiensis* subsp. *kurstaki*.

Sampling of historic spray areas (1 to 4 years after spraying) occurred in the Seattle, WA, area. However, in 2008 (the year of this experiment), the Washington State Department of Agriculture did not identify a need to spray for gypsy moth. For that reason, Fairfax County, VA, was sampled immediately after spraying and then at intervals for up to 1 year. The results are reported below.

MATERIALS AND METHODS

B. thuringiensis subsp. *kurstaki* application. Fairfax County, VA, delivered one application of a commercial formulation of *B. thuringiensis* subsp. *kurstaki* (Foray 70B; Valent Biosciences, Libertyville, IL) via helicopter at a rate of 470 liters per km². Since the manufacturer optimizes their product for toxin activity and does not measure the *B. thuringiensis* subsp. *kurstaki* concentration in the final formulation, a sample of the spray suspension was obtained from Fairfax County authorities for laboratory analysis. In Seattle, Foray 48B or Foray XG (Valent Biosciences, Libertyville, IL) were applied aerially or by ground as a 2% suspension on at least three successive occasions. According to the records, application rates ranged from 10 to 1,000 liters per km². Since no archived spray material was retained, samples of Foray 48B and Foray XG were obtained from the manufacturer for laboratory analysis.

Sample locations and design. Sample collection occurred in 2008. One spray area in Fairfax County, VA, was sampled immediately before (background) and after *B. thuringiensis* subsp. *kurstaki* spraying and then at 6, 12, 24, and 48 weeks after spraying. Fairfax County’s 2008 spray areas are shown in Fig. 1; the spray area in Fairfax County, VA, was designated block 35. Block 35 covers 0.737 km² and is largely commercial or mixed commercial/residential areas with tree canopy cover <15%. Detailed information on Seattle spray block and *B. thuringiensis* subsp. *kurstaki* application parameters is available from the Washington State Department of Agriculture (http://agt.wa.gov/PlantsInsects/InsectPests/GypsyMoth/ControlEfforts/PastControlEfforts/PastControlEfforts.aspx). A control area that had not been sprayed by the Washington State Department of Agriculture was also sampled to determine the background presence of *B. thuringiensis* subsp. *kurstaki* in the Seattle area (Fig. 2). Tables 1 and 2 show the spray block size and the timeline for sample collection in each location. Between 218 and 240 samples were collected from each spray block, with a total of 242 samples collected from the control block.

Three sampling schemes were used to characterize each spray area: probabilistic, close, and targeted (15, 30). Initial sample numbers were chosen to give 99% confidence that at least 95% of the area was without detectable spores provided all samples were negative. A grid or transect technique was used to define the probabilistic sample locations; a 9.1-by-9.1-m grid was used to define sample locations in relatively homogeneous areas, such as parking lots, while a smaller, 2.7-by-2.7-m grid was used to define sample locations in heterogeneous areas such as residential neighborhoods. Probabilistic sampling implies uniform distribution of the agent interrogated; to test this assumption, a set of “close” (or secondary) samples were collected for a randomly chosen 10% of the probabilistic samples at each site. Close samples were of the same type as their associated

for sample collection in each location. Between 218 and 240 samples were collected from each spray block, with a total of 242 samples collected from the control block.

Three sampling schemes were used to characterize each spray area: probabilistic, close, and targeted (15, 30). Initial sample numbers were chosen to give 99% confidence that at least 95% of the area was without detectable spores provided all samples were negative. A grid or transect technique was used to define the probabilistic sample locations; a 9.1-by-9.1-m grid was used to define sample locations in relatively homogeneous areas, such as parking lots, while a smaller, 2.7-by-2.7-m grid was used to define sample locations in heterogeneous areas such as residential neighborhoods. Probabilistic sampling implies uniform distribution of the agent interrogated; to test this assumption, a set of “close” (or secondary) samples were collected for a randomly chosen 10% of the probabilistic samples at each site. Close samples were of the same type as their associated

Wk sampled	Size (km²)	Estimated amt (g) applied	Estimated amt (g) remaining	Estimated no. of spores remaining
0 (after spraying)	0.737	5,460	5,460	10¹⁴
6		4,000–5,000	3,000–4,000	10¹⁴
12		1,000–2,000	500–1,000	10¹³

* The amount applied assumes 7.4 kg of viable *B. thuringiensis* subsp. *kurstaki* per km², a one-time application. For the amounts remaining, the lower number assumes a 100-day half-life and the higher number assumes a 200-day half-life. The number of spores remaining assumes 10¹³ spores/g.
Table 2. Estimated amounts of B. thuringiensis subsp. kurstaki applied in Seattle spray areas and remaining at the time of sample collection

Yr	Spray area	Size (km²)	Estimated amt (g) applied	Estimated amt (g) remaining	Estimated no. of spores remaining
2007	Kent	0.1	71	6–20	10^{12}–10^{13}
2006	Madison	0.24	10,000	60–800	10^{10}–10^{13}
2006	Rosemont	0.022	16	<1–1	10^{10}–10^{11}
2005	Eastlake	0.049	2,000	1–50	10^{11}–10^{12}
2004	Bellevue	0.044	2,000	<1–20	10^{10}–10^{11}

a The amount applied assumes multiple applications at rates of 740 liters km⁻². For Kent, Madison, and Rosemont, 620 liters km⁻² for Eastlake, and 200 and 250 liters km⁻² for Bellevue. For the amount remaining and the number of spores remaining, the lower number assumes a 100-day half-life and the higher number assumes a 200-day half-life. The number of spores remaining assumes 10¹³ spores/g.
subjected to heat lysis and subjected to *B. thuringiensis* subsp. *kurstaki*-specific real-time PCR using the same two primers used in the molecular screen. The results were reported in the form of Ct values.

**Analysis of spray suspensions of *B. thuringiensis* subsp. *kurstaki* (Foray76B, 48B, and XG) was also conducted by plate culture as described above. An aliquot of the spray suspension was diluted 1,000-fold in phosphate-buffered saline (PBS) and heat treated. Serial dilutions of this preparation (100-µl aliquots) in PBS were plated, and colony counts were obtained after overnight incubation. Triplicate measurements were made, yielding average values.

Quality assurance and control. Quality assurance was implemented for both sample collection and analysis to ensure high confidence in the data.

Sample collection. All samples were collected by personnel wearing clean, disposable nitrile gloves and booties. Gloves were changed after collection of each sample. Each sample was individually bar-coded and chain of custody was maintained and manipulated in closed conical, centrifuge, and microcentrifuge tubes and/or sealed deep well blocks to minimize aerosolization and cross-contamination. A positive control consisting of a soil sample spiked with a known concentration of *B. thuringiensis* subsp. *kurstaki* spores was included in each batch of samples processed to ensure performance of the assays. A total of 10% of all samples were processed as duplicates in the laboratory to assess internal consistency. Approximately 2 kg of *B. thuringiensis* subsp. *kurstaki* applied in each spray block sampled is given in Table 2. Approximately 2 kg of *B. thuringiensis* subsp. *kurstaki* was applied to spray block 35 (Table 1). Table 1 also includes an estimate of the amount of *B. thuringiensis* subsp. *kurstaki* remaining at the time of sampling, based on literature half-life values of 100 and 200 days (19).

Using the results of analysis of *B. thuringiensis* subsp. *kurstaki* spray material representative of the spray formulation the application rate provided by Washington State, the estimated amount of *B. thuringiensis* subsp. *kurstaki* applied in each spray block sampled is given in Table 2. Approximately 2 kg of *B. thuringiensis* subsp. *kurstaki* was applied to Bellevue and Eastlake, approximately 10 kg of *B. thuringiensis* subsp. *kurstaki* was applied to Madison, and less than 100 g was applied to Rosemont and Kent. Table 2 also includes an estimate of the amount of *B. thuringiensis* subsp. *kurstaki* remaining at the time of sampling, based on literature half-life values (19).

Environmental sample analysis. The numbers of sample pools and field blanks analyzed for each spray area are presented in Table 3, with the time elapsed between *B. thuringiensis* subsp. *kurstaki* application and sample collection.

Urban soils were found to be the most reliable reservoir for viable *B. thuringiensis* subsp. *kurstaki*. Soil results from Fairfax County are presented graphically in Fig. 3; soil results from Seattle, WA, are presented in Fig. 4. The largest percentages of soil samples containing detectable DNA and viable cultures were obtained immediately after spraying in Fairfax County (t = 0 in Fig. 3). Viable *B. thuringiensis* subsp. *kurstaki* was

TABLE 3. Time elapsed between *B. thuringiensis* subsp. *kurstaki* application and sample collection, number of sample pools for all matrices, pooled field blanks, and pooled lab duplicates analyzed for each area

Sampling location	Time elapsed	Total sample pools (n)	Field blank pools (n)
Fairfax County, VA, block 35			
Background	NA*, prespray	137	6
	1 day	140	6
	6 wk	138	6
	12 wk	147	7
	24 wk	146	7
	48 wk	128	6
Seattle, WA			
Seattle, control	NA (not sprayed)	89	8
Kent, 2007		90	6
Madison, 2006		94	8
Rosemont, 2006		89	8
Eastlake, 2005		128	7
Bellevue, 2004		111	6

* NA, not applicable.
detected in Fairfax County soils throughout the 48-week duration of that experiment. In Seattle, WA, the largest percentages of samples containing detectable DNA and viable cultures were obtained in the most recently sprayed block (Kent 2007, sampled 1 year after spraying), and the smallest percentage of samples with detectable *B. thuringiensis* subsp. *kurstaki* was obtained from soils collected 4 years after spraying (Bellevue 2004 data, Fig. 4). A downward trend in the percentage of samples containing detectable DNA and viable cultures was observed with increasing time after spraying; however, viable *B. thuringiensis* subsp. *kurstaki* was still detected 4 years after spraying. A total of two background soil samples (6.7%) collected in Fairfax County, VA, were positive by PCR; however, both were determined to be negative by culture. A total of three soil samples (8.1%) collected from the control area in Seattle, WA, were positive by PCR; however, all were determined to be negative by culture.

Other sample types were less reliable reservoirs of *B. thuringiensis* subsp. *kurstaki* compared to soil and exhibited more variability. Table 4 presents wipe, water, grass, and leaf results. Wipes were collected from all locations and from a number of urban surfaces, including, but not limited to, concrete, asphalt, and metal (e.g., manhole covers). No wipe, water, grass, or leaf samples collected in the Fairfax County background samples or the Seattle control area were found to be positive by PCR or culture.

Viable *B. thuringiensis* subsp. *kurstaki* was obtained from wipe samples in Fairfax County at all time points except at *t* = 0. The highest percentage of culturable wipes was collected at in Fairfax County at *t* = 48 weeks, although no wipes from that sample set passed the PCR screen. Similar variability was observed for the Seattle wipes. PCR-positive samples were only observed from the Madison 2006 and Kent 2007 spray blocks; wipes from Eastlake 2005 and Kent 2007 contained viable *B. thuringiensis* subsp. *kurstaki*, but the wipes from Madison 2006 did not.

Water samples were collected from all locations except Madison 2006, Rosemont 2006, and Bellevue 2004. No water pools from Fairfax County passed the PCR screens; however, some pools collected from Fairfax County (at *t* = 0, *t* = 6, and *t* = 48 weeks) contained viable *B. thuringiensis* subsp. *kurstaki*. At *t* = 48 weeks, 50% of the water pools from Fairfax County were culturable. Seattle water samples contained no detectable *B. thuringiensis* subsp. *kurstaki* by PCR or culture.

Grass and leaf samples were only collected in Fairfax County, and the results were similarly inconsistent. Few grass and leaf samples from Fairfax County obtained after *t* = 0 passed the PCR screen. However, viable *B. thuringiensis* subsp. *kurstaki* was detected in grass and leaves at *t* = 0, 6, and 12 weeks (Table 4).

Laboratory duplicate sample analysis showed ca. 90% agree-

Table 4. Percentage of pooled samples passing the *B. thuringiensis* subsp. *kurstaki* PCR screen and *B. thuringiensis* subsp. *kurstaki* culture for wipe, water, grass, and leaves for each location

Location and time period	Wipe	Water	Grass	Leaves								
	% Samples											
	n	PCR	Culture									
Fairfax County, VA												
Background	51	0	0	0	0	0	21	0	0	23	0	0
0 wks	42	7	0	7	0	14	15	80	7	21	48	10
6 wks	40	10	20	6	0	17	14	0	7	16	0	6
12 wks	40	0	13	3	0	0	17	0	0	20	0	5
24 wks	41	2	5	5	0	0	15	0	0	18	6	0
48 wks	39	0	26	6	0	50	13	0	0	19	0	0
Seattle, WA												
Seattle, control	39	0	0	3	0	0	0	NA	NA	0	NA	NA
Kent, 2007	40	23	3	1	0	0	0	NA	NA	0	NA	NA
Madison, 2006	40	5	0	0	NA	NA	0	NA	NA	0	NA	NA
Rosemont, 2006	39	0	0	0	NA	NA	0	NA	NA	0	NA	NA
Eastlake, 2005	43	0	16	1	0	0	0	NA	NA	0	NA	NA
Bellevue, 2004	44	0	0	0	NA	NA	0	NA	NA	0	NA	NA

*a The percentages of total pooled samples (n), samples passing the *B. thuringiensis* subsp. *kurstaki* PCR screen (PCR), and *B. thuringiensis* subsp. *kurstaki* culture samples (Culture) for wipe, water, grass, and leaves were determined for each location. NA, not applicable for samples not collected.
ment in duplicate samples, irrespective of the location or sample type. The Seattle, WA, samples had 92.4% agreement laboratory duplicates, with 7.6% of duplicates not in agreement. The Fairfax County, VA, samples had 86.8% agreement, with 13.2% of duplicates not in agreement.

DISCUSSION

The purpose of this study was to determine how long *B. thuringiensis* subsp. *kurstaki* persists in urban environments at detectable levels. *B. thuringiensis* subsp. *kurstaki* was found to persist for at least 4 years; data for the past 4 years were not collected. Sampling of historic spray areas (1 to 4 years after spraying) occurred in relatively small, well-separated locations in the Seattle, WA, area. The year sampling occurred in Seattle, the Washington State Department of Agriculture did not perform any new *B. thuringiensis* subsp. *kurstaki* spraying. For this reason, Fairfax County, VA, was sampled immediately after spraying and then at various intervals for up to 48 weeks.

Using the reported half-life of *B. thuringiensis* subsp. *kurstaki* in cabbage patches (100 to 200 days) (19), estimates of the amount of *B. thuringiensis* subsp. *kurstaki* remaining in the spray areas at the time of sample collection were made (Tables 1 and 2). There are many assumptions in these estimates, the most implausible of which is that all *B. thuringiensis* subsp. *kurstaki* was applied to and remained inside the spray area boundary (1, 28). However, the estimates likely give a conservative upper bound of the amount of *B. thuringiensis* subsp. *kurstaki* remaining at the time of sampling. The results of this experiment are consistent with the overall trend indicated in Tables 1 and 2: positive samples were collected in decreasing numbers as the time after spraying increased, but positives were still observed 4 years after spraying.

The major difference between the estimates in Tables 1 and 2 and the results lies in the different trends observed in Fairfax County and Seattle. Fairfax County shows a more marked and less regular decline in the percentage of samples containing viable material over 1 year. Seattle shows a steadier but less regular decline in the percentage of samples containing viable material out of the sampled area. Second, it may be due to climatic or environmental differences between the urban areas. Manchee et al. found that 13% of soil samples collected 40 years after release at a largely rural biological warfare testing plot contained viable *B. anthracis* (14). In our study, 15% of soil samples collected at an urban, highly trafficked Seattle location contained viable *B. thuringiensis* subsp. *kurstaki* after 4 years (Fig. 4). Several other studies have detected *Bacillus* spp. in soil following its deliberate application (12–14, 23); the results indicate persistence up to 6 months in a Russian field (13) and up to 7 years in a cabbage plot in Denmark (26).

Differences among these results may be explained by more or less favorable climatic and environmental conditions (5); however, the data in aggregate clearly indicate that soil is an available reservoir for viable spores, whether the soil is in a rural or urban environment.

Other sample matrices were less reliable reservoirs of viable *B. thuringiensis* subsp. *kurstaki*. Wipes produced more consistent results than water and vegetation, but no more than 26% of wipes in Fairfax County and 16% in Seattle were viable at any time point (Table 4). Although literature on the persistence of *Bacillus* on surfaces and in water is sparse, it does indicate a strong dependence upon surface type and climatic and environmental conditions (e.g., sunlight and moisture) (10, 16). *B. thuringiensis* has been found to persist on vegetation for days in direct sunlight (10) to a year on spruce needles (22). One lab study recovered viable *B. anthracis* from canavas after 41 years (25), and another evaluated persistence on wood, laminate, aluminum, polyvinyl chloride, and other surfaces, and recovered viable *B. anthracis* for up to 987 days (4). Comparisons of these data to laboratory studies are not wholly appropriate since the transient nature of water and vegetation likely contributed to the inability to recover viable *B. thuringiensis* subsp. *kurstaki* from these matrices over longer periods of time. However, the results of the present study are consistent with literature reports from other experiments (10, 22).

Secondary to demonstrating persistence in urban environments, the present study illustrates the differences between PCR screening and culture for environmental sample analysis. In some cases, culture analysis was more sensitive than the PCR screen, as demonstrated in samples from Fairfax County at *t* = 12 and *t* = 48 weeks (Fig. 3) and in Seattle from Eastlake 2005 and Bellevue 2004 (Fig. 4). In all cases, these samples contained small amounts of material (<1,000 genome copies by PCR), and the corresponding culture results were likely due to significant differences in the processing of samples for culture versus PCR: (i) larger aliquots of sample were used for culture than for PCR; (ii) DNA extraction efficiency for PCR is not 100%; and (iii) residual PCR inhibitors can affect the quantity of genome copies estimated.

In this experiment, both assays provided independent information on the presence of *B. thuringiensis* subsp. *kurstaki*, although viable cultures were also confirmed by PCR. While knowledge of viable agent by laboratory culture is important because *B. thuringiensis* subsp. *kurstaki* was predominantly present in soils, compared to other matrices, because *B. thuringiensis* subsp. *kurstaki* was most efficiently collected in soils (e.g., soil volumes sampled were higher than wipe volumes), or because *B. thuringiensis* subsp. *kurstaki* was most efficiently extracted from soil samples or whether this was a combination of multiple factors. The results, however, are not inconsistent with previous studies on the persistence of *Bacillus* spp. in rural soils. Manchee et al. found that 13% of soil samples collected 40 years after release at a largely rural biological warfare testing plot contained viable *B. anthracis* (14). In our study, 15% of soil samples collected at an urban, highly trafficked Seattle location contained viable *B. thuringiensis* subsp. *kurstaki* after 4 years (Fig. 4). Several other studies have detected *Bacillus* spp. in soil following its deliberate application (12–14, 23); the results indicate persistence up to 6 months in a Russian field (13) and up to 7 years in a cabbage plot in Denmark (26).

Differences among these results may be explained by more or less favorable climatic and environmental conditions (5); however, the data in aggregate clearly indicate that soil is a viable reservoir for viable spores, whether the soil is in a rural or urban environment.

Other sample matrices were less reliable reservoirs of viable *B. thuringiensis* subsp. *kurstaki*. Wipes produced more consistent results than water and vegetation, but no more than 26% of wipes in Fairfax County and 16% in Seattle were viable at any time point (Table 4). Although literature on the persistence of *Bacillus* on surfaces and in water is sparse, it does indicate a strong dependence upon surface type and climatic and environmental conditions (e.g., sunlight and moisture) (10, 16). *B. thuringiensis* has been found to persist on vegetation for days in direct sunlight (10) to a year on spruce needles (22). One lab study recovered viable *B. anthracis* from canavas after 41 years (25), and another evaluated persistence on wood, laminate, aluminum, polyvinyl chloride, and other surfaces, and recovered viable *B. anthracis* for up to 987 days (4). Comparisons of these data to laboratory studies are not wholly appropriate since the transient nature of water and vegetation likely contributed to the inability to recover viable *B. thuringiensis* subsp. *kurstaki* from these matrices over longer periods of time. However, the results of the present study are consistent with literature reports from other experiments (10, 22).

Secondary to demonstrating persistence in urban environments, the present study illustrates the differences between PCR screening and culture for environmental sample analysis. In some cases, culture analysis was more sensitive than the PCR screen, as demonstrated in samples from Fairfax County at *t* = 12 and *t* = 48 weeks (Fig. 3) and in Seattle from Eastlake 2005 and Bellevue 2004 (Fig. 4). In all cases, these samples contained small amounts of material (<1,000 genome copies by PCR), and the corresponding culture results were likely due to significant differences in the processing of samples for culture versus PCR: (i) larger aliquots of sample were used for culture than for PCR; (ii) DNA extraction efficiency for PCR is not 100%; and (iii) residual PCR inhibitors can affect the quantity of genome copies estimated.

In this experiment, both assays provided independent information on the presence of *B. thuringiensis* subsp. *kurstaki*, although viable cultures were also confirmed by PCR. While knowledge of viable agent by laboratory culture is important
for assessing public health impacts in biological restoration efforts, it may not always be the best indication of presence of an agent in the environment. Bacillus spp. may be sensitive to sample collection methods, specific media, and laboratory conditions, all of which can render it viable but nonculturable in a laboratory setting (2, 17). PCR allows rapid detection with specificity and sensitivity (18).

On the other hand, poor extraction efficiency and the presence of inhibitors (e.g., humic matter) can reduce PCR's effectiveness (27, 31). In this experiment, sample aliquots for viability testing were plated along with the sample matrix, allowing higher sensitivity of the viability assay in some cases; the results of soil samples from t = 12 weeks at Fairfax County are an example (Fig. 3). This outcome was especially pronounced when PCR concentrations were near the predetermined cutoff threshold of 1,000 genome copies. It should also be noted that PCR detects free DNA and nonviable agent. When time and cost are not a constraint, ideally, both techniques should be used for analysis of environmental samples.

The goal of the present study was to provide information on the persistence of a near neighbor of B. anthracis to inform efforts to determine how to restore an urban environment following a biological attack. Analysis of B. thuringiensis subsp. kurstaki persistence from two urban areas, one on the east coast and one on the west, demonstrated B. thuringiensis subsp. kurstaki can be expected to persist in urban environments for prolonged periods of time. At 48 weeks after B. thuringiensis subsp. kurstaki was applied, 85% of soils, 26% of wipe samples, and 50% of water samples contained viable B. thuringiensis subsp. kurstaki in Fairfax County, VA. In Seattle, WA, 77, 53, 25, 23, and 15% of soil samples contained viable agent at 1, 2, 3, and 4 years, respectively, after the B. thuringiensis subsp. kurstaki spray events. Consistent with the literature, soil was a reliable reservoir for Bacillus spp. at both locations. The results obtained from other environmental matrices (surface wipes, water, and vegetation) were less easily interpreted, but viable samples at various time points provided additional evidence of persistence in these different matrices in urban areas. Since B. thuringiensis subsp. kurstaki is a reasonable surrogate for fate and transport studies (7), it can be inferred that B. anthracis may persist for several years if released in an urban environment.

ACKNOWLEDGMENTS

Los Alamos National Laboratory (LANL) acknowledges the Defense Threat Reduction Agency's Chemical and Biological Defense Applied Technologies Division, which supported this study under the Interagency Biological Restoration Demonstration (IBRD), LANL is grateful for the support and peer review provided by members of the IBRD team. Lisa Hendricks and Laura Castro (LANL) assisted in environmental sample analysis, and Scott White (LANL) provided additional support. Jason Gans (LANL) designed the B. thuringiensis subsp. kurstaki assays. The Washington State and Virginia Departments of Agriculture and the Fairfax County Department of Public Works and Environmental Services were essential to the success of this study. Brad White of the Washington State Department of Agriculture and his staff were essential to understanding B. thuringiensis subsp. kurstaki application in the Seattle area. Troy Shaw and Frank Finch in Fairfax County and Larry Nichols at the State of Virginia Department of Agriculture and Consumer Services provided critical information and coordination on spraying in Fairfax County.

This document has been authored by employees of the Los Alamos National Security, LLC (LANS), operator of the Los Alamos National Laboratory under contract DE-AC52-06NA25396 to the U.S. Department of Energy. Neither the U.S. Government nor LANL makes any warranty, express or implied, or assumes any liability or responsibility for the use of this information. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the Los Alamos National Security, LLC, the U.S. Government, or any agency thereof.

REFERENCES
1. Albright, K. J., B. H. Thistle, M. E. Teske, and J. Anhold. 2002. The agricultural dispersal-valley Radar high-frequency modeling system compared with pesticide drift data. Environ. Toxicol. Chem. 21:1085–1090.
2. Amann, R. I., W. Ludwig, and K. H. Schleifer. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59:143–169.
3. Burrows, W. D., and S. E. Renner. 1999. Biological warfare agents as threats to potable water. Environ. Health Perspect. 107:975–984.
4. Dietz, P., R. Bohn, and D. Strauch. 1980. Survival of anthrax spores on surfaces. Zentbl. Bakteriol. Mikrobiol. Hyg. B 171:455–458.
5. Dragon, D. C., and R. P. Rennie. 1995. The ecology of anthrax spores: tough but not invincible. Can. Vet. J. 36:295–301.
6. Ghassemi, M., P. Painter, M. Powers, N. B. Akesson, and M. Dellarcio. 1982. Estimating drift and exposure due to aerial application of insecticides in forests. Environ. Sci. Technol. 16:510–514.
7. Greenberg, D. L., J. D. Busch, P. Keim, and D. M. Wagner. 2010. Identifying experimental surrogates for Bacillus anthracis spores: a review. Invest. Genet. 1:4.
8. Haddad, M. A., R. A. Polanczyk, S. B. Alves, and M. D. O. Garcia. 2005. Field persistence of Bacillus thuringiensis on maize leaves (Zea mays L.). Braz. J. Microbiol. 36:309–314.
9. Hendriksen, N. B., and M. B. Hansen. 2002. Long-term survival and germination of Bacillus thuringiensis var. kurstaki in a field trial. Can. J. Microbiol. 48:256–261.
10. Ignoffo, C. M. 1992. Environmental factors affecting the persistence of entomopathogens. Florida Entomol. 75:516–525.
11. Kane, S. R., et al. 2009. Culture-based PCR methods to analyze samples for viable spores of Bacillus anthracis and its surrogates. J. Microbiol. Methods 76:278–284.
12. Khan, A., D. L. Sverdlov, and D. J. Durrance. 2001. Precautions against biological and chemical terrorism directed at food and water supplies. Public Health Reports 116:13–4.
13. Kiselev, E. V. 1974. Survival of bacterial entomopathogens in tree crowns and in the soil around the trunk. Vestn. Shelkhoz Nauki (Moscow) 868–71.
14. Maasche, R. J., M. G. Broster, J. Mellin, R. M. Henstridge, and A. J. Stagg. 1981. Bacillus anthracis on Grünland Island. Nature 294:254–255.
15. Mandigers, P. J. J., T. S. G. A. M. van den Ingh, P. Bode, P. E. Teske, and J. Rothuizen. 2004. Association between liver copper concentration and subclinical hepatitis in Doberman Pinschers. J. Vet. Intern. Med. 18:647–650.
16. Nysted, F. F. R., and J. E. Fuxa. 1994. Persistence of natural and genetically engineered insecticides based on Bacillus thuringiensis. J. Entomol. Sci. 29:347–356.
17. Pace, N. R. 1997. A molecular view of microbial diversity and the biosphere. Science 276:734–740.
18. Pecchia, J., and M. Hernandez. 2006. Incorporating polymerase chain reaction-based identification, population characterization, and quantification of microorganisms into aerosol science: a review. Atmos. Environ. 40:3941–3961.
19. Pedersen, J. C., P. H. Dampgaard, J. Ellenberg, and B. M. Hansen. 1995. Dispersal of Bacillus thuringiensis var. kurstaki in an experimental cabbage field. Can. J. Microbiol. 41:118–125.
20. Pinnock, D. E., R. J. Brand, K. L. Jackson, and J. E. Milstead. 1974. Field persistence of Bacillus anthracis spores on Cercis occidentalis leaves. J. Invertebr. Pathol. 23:341–346.
21. Pinnock, D. E., R. J. Brand, and J. E. Milstead. 1971. Field persistence of Bacillus thuringiensis spores. J. Invertebr. Pathol. 18:405–406.
22. Saile, E., and T. M. Koehler. 2006. Incorporating Bacillus thuringiensis multipication, persistence, and genetic exchange in the rhizosphere of grass plants. Appl. Environ. Microb. 72:3168–3171.
23. Simoncelli, R. S., A. Boone, D. Greenberg, P. Keim, and C. P. Gerba. 2008. Persistence of category A select agents in the environment. Appl. Environ. Microb. 74:555–563.
24. Sinclair, R. S., and B. McFadden. 2008. Bacillus thuringiensis spores following aerial application. J. Invertebr. Pathol. 17:265–267.
25. Tebbe, C. C., and W. Vahjen. 1993. Interference of humic acids and DNA
extracted directly from soil in detection and transformation of recombinant DNA from bacteria and a yeast. Appl. Environ. Microb. 59:2657–2665.

28. Teschke, K., Y. Chow, K. Bartlett, A. Ross, and C. van Netten. 2001. Spatial and temporal distribution of airborne Bacillus thuringiensis var. kurstaki during an aerial spray program for gypsy moth eradication. Environ. Health Perspect. 109:47–54.

29. Teske, E. 2004. An elliptic curve trapdoor system (extended abstract). Fields Inst. Commun. 41:341–352.

30. Teske, M. E., and H. W. Thistle. 2004. Aerial application model extension into the far field. Biosystems Eng. 89:29–36.

31. Tsai, Y. L., and B. H. Olson. 1992. Detection of low numbers of bacterial cells in soils and sediments by polymerase chain reaction. Appl. Environ. Microb. 58:754–757.

32. Van Ness, G. B. 1971. Ecology of anthrax. Science 172:1303–1305.

33. Whitney, E. A. S., et al. 2003. Inactivation of Bacillus anthracis spores. Emerg. Infect. Dis. 9:623–627.