PRESERVING OLD (\([\omega]^{|\aleph_0|}, \supseteq\)) IS PROPER

SAHARON SHELAH

Abstract. We give some sufficient and necessary conditions on a forcing notion \(Q\) for preserving the forcing notion (\([\omega]^{|\aleph_0|}, \supseteq\)) is proper. They cover many reasonable forcing notions.

ANOTATED CONTENT

§0 Introduction

[I.e. Definition 0.1, we define the problem and some variants.]

§1 Properness of \(\mathbb{P}_{\mathcal{A}[V]}\) and CH

[Under CH, if non-meagerness of \((<2)^V\) is preserved then \(\mathbb{P}_{\mathcal{A}_r[V]}\) is proper, (1.1). If \(V\) fail CH, then usually \(\mathbb{P}_{\mathcal{A}_r[V]}\) is not proper after a forcing adding a new real and satisfying a relative of being proper, e.g. satisfies c.c.c. or is any true creature forcing.]

§2 General sufficient conditions

[If \(V\) satisfies CH and \(Q\) is c.c.c. then \(\models Q \Rightarrow \mathbb{P}_{\mathcal{A}[V]}\) is proper", in (2.1). In (2.3) we replace \(\mathcal{A}^V\) by a forcing notion \(\mathbb{Q}\) adding no \(\omega\)-sequence, \(Q\) is c.c.c. even in \(V^\mathbb{Q}\). Instead "\(Q\) satisfies the c.c.c." it suffices to demand \(Q\). Lastly, (2.6) prove some proper forcing does not preserve.]
0. Introduction

Gitman proved that $\text{Pr}_1(Q, P(\omega)|V)$ (see definition below, $\mathbb{P}_{P(\omega)} = \mathbb{P}_{A_1}[V]$ is the forcing notion $\{A \in V : A \subseteq \omega, |A| = \aleph_0, A \subseteq^* B\}$ where of course $A \supseteq^* B$ means $B \subseteq^* A$ when Q is adding Cohen (even 2^{\aleph_0}); but no other examples were known even Sacks forcing. Also for e.g. $V \models \text{"V = L"}$, we did not know a forcing making it not proper.

We investigate the question “$\text{Pr}_1(Q, R)$”, the proper forcing Q preserves that the (old) R is proper for various R's.

We thank Victoria Gitman for asking us the question and Otmar Spinas and Haim Horowitz for some comments.

Let us state the problem and relatives.

Definition 0.1. 1) Let $\text{Pr}_1(Q, P)$ means: Q, P are forcing notions, Q is proper and $\models_Q \text{"P, i.e. } P^V \text{ is a proper forcing"}$.
2) For $A \subseteq P(\omega)$ let $P_A = A \cap [\omega]^\omega \cup \{\omega\}$ ordered by inverse almost inclusion.
3) Let $A_1 = A_1[v] = ([\omega]^{\aleph_0})^V$.

Observation 0.2. A necessary condition for $\text{Pr}_1(Q, P)$ is: Q is proper and

\[(*)_1 \text{ if } \chi \text{ large enough, } N < (H(\chi), \in) \text{ is countable, } Q, P \in n, q_1 \in Q \text{ is } (N, Q) \text{-generic and } r_1 \in N \cap P \text{ then we can find } (q_2, r_2) \text{ such that:} \]

\[\circ (a) \quad q_1 \leq Q q_2 \]
\[(b) \quad r_1 \leq R r_2 \]
\[(c) \quad q_2 \models \text{"} r_2 \text{ is } (N[G_0], P) \text{-generic"}. \]

Definition 0.3. 1) We define $\text{Pr}^-(Q, P) = \text{Pr}_2(Q, P)$ as the necessary condition from [0,2
2) Let $\text{Pr}_3(Q, P)$ mean that Q, P are forcing notions and for some λ and stationary $S \subseteq |\lambda|^{\aleph_0}$ from V we have $\models_Q \text{"P is } S\text{-proper"}$.
3) $\text{Pr}_4(Q, P)$ similarly but $S \subseteq V^{Q^2}$, still $S \subseteq ([\lambda]^{\aleph_0})^V$.
4) $\text{Pr}_5(Q, P)$ is the statement (A) of [0,3,4] below.

Claim 0.4. 1) $\text{Pr}^-(Q, P)$ means that for λ large enough, letting $S = ([\lambda]^{\aleph_0})^V$, we have $\models_Q \text{"P is } S\text{-proper"}$.
2) $\text{Pr}_1(Q_1, P) \Rightarrow \text{Pr}_2(Q, P) \Rightarrow \text{Pr}_3(Q, P)$.
3) Also $\text{Pr}_3(Q, P) \Rightarrow \text{Pr}_4(Q, P) \Rightarrow \text{Pr}_5(Q, P)$.
4) If Q, P are forcing notions, χ large enough, then $(A) \iff (B)$ where

\[(A) \text{ for some countable } N \prec (H(\chi), \in) \text{ and for some } q \in Q, p \in P \text{ we have} \]
\[(a) \quad q \text{ is } (N, Q) \text{-generic} \]
\[(b) \quad q \models \text{"} p \text{ is } (N[G_0], P) \text{-generic"} \]
\[(B) \text{ for some } q_* \in Q, p_* \in P \text{ we have } \text{Pr}(Q_{\geq q_*}, P_{\geq p_*}). \]

Proof. Easy.
1. Properness of $\mathbb{P}_{A,\{V\}}$ and CH

Claim 1.1. 1) Assume $V_0 \models \text{CH}$, $V_1 \supseteq V_0$, e.g. $V_1 = V_0^Q$ and let $A = A_+\{V_0\}$. Then $V_1 \models \text{"P}_A$ is proper", i.e. $\text{Pr}_1(Q,\mathbb{P}_A)$ when $V_1 \models \text{"if } \omega_1^V \text{ is not collapsed then } \langle \omega \rangle_V^0 \text{ is non-meagre".}$

Proof. If $V_1 \models \langle \omega \rangle_V^0 \text{ is countable" then recalling } V_0 \models \text{CH clearly } V_1 \models \langle A \rangle$ is countable" so we know \mathbb{P}_A is proper in V_1. So from now on we assume ω_1^V is not collapsed.

Secondly in V_0, there is a dense $A \subseteq A$ downward dense in it, which under \subseteq^+ is downward a tree isomorphic to $T = \omega_1^{\omega_1}$ (the tree of length ω_1). In V_0 there is a sequence $\check{T} = \langle T_\alpha : \alpha < \omega_1 \rangle$ which is \subseteq^+-increasing continuous with union T and each T_α countable. Also there is $\bar{C} = \{ C_\delta : \delta < \omega_1 \text{ limit} \} \in V_0$ such that $C_\delta \subseteq \delta = \text{sup}(C_\delta)$, $\text{otp}(C_\delta) = \omega$. Let $T_\delta' = T_\delta \restriction \{ \eta \in T_\delta : \ell g(\eta) \in C_\delta \} \in V_0$.

In V_1 let $N = (\mathcal{H}(\chi),\in)$ be countable such that $\check{T} \in N$ and let $\omega = \omega_1 \cap N$ clearly $\check{T} \cap N = T_\delta$. We have to prove the statements

\[(*)_0 \text{ "for every } p \in P_A \cap N \text{ there is } q \in P_A \text{ above } p \text{ which is } (N,\mathbb{P}_A)-\text{generic".}\]

As $V_0 \models \text{CH}$ and the density of T this is equivalent to

\[(*)_1 \text{ for every } \nu \in T \cap N = T_\delta \text{ there is } \eta \in \check{T} \text{ which is } (N,T)-\text{generic and } \nu \leq_T \eta.\]

In V_0 we let $\check{S} = (S_\delta : \delta < \omega_1 \text{ a limit ordinal})$ where $S_\delta = \{ \check{\nu} : \check{\nu} = \langle \nu_n : n < \omega \rangle \} \subseteq \check{T}$ is \subseteq^+-increasing continuous, moreover $\ell g(\nu) = \text{the } n\text{-th member of } C_\delta$. As $\langle \forall \nu \in T_\delta \exists \rho \in T_\delta' \rangle \models \langle \forall \nu < \check{T} \rho \in T_\delta' \rangle$, clearly $(*)_1$ is equivalent to

\[(*)_2 \text{ for every } \nu \in T_\delta' \text{ there is } \check{\nu} \in S_\delta \text{ such that } \nu \in \text{Rang}(\check{\nu}) \text{ and } \check{\nu} \text{ induce a subset of } T_\delta \text{ generic over } N \text{ (i.e. } \langle \forall A | A \in N \rangle \models (N,\mathbb{P}_A)\text{-generic over } N \text{.)} \]

Now a sufficient condition for $(*)_2$ is

\[(*)_3 \text{ as a set of } \omega \text{-branches of the tree } T_\delta', \text{ is non-meagre.}\]

But in V_0, T_δ and ω^ω are isomorphic and S_δ is the set of all ω-branches of T_δ', so by an assumption $(*)_3$ holds so we are done. \[1.1.\]

Discussion 1.2. However, there can be $A \subseteq \mathcal{P}(\omega)$ such that (A, \subseteq^*) is a variation of Souslin tree.

Claim 1.3. 1) We have $\text{Pr}_1(Q,\mathbb{P}_{A,\{V\}})$ when:

(a) $\aleph_1^{\mathbb{P}_A} = \aleph_1$
(b) $\models Q | \lambda = \aleph_1$ where $\lambda = (2^{\aleph_0})^V$
(c) moreover in V^Q letting $\langle u_i : i < \aleph_1 \rangle$ be a \subseteq^+-increasing continuous sequence of countable subsets of λ with union λ, the set $\{ i : u_i \in V \}$ contains a club of ω_1
(d) forcing with Q preserves $\langle \omega \rangle_V^0 \text{ is non-meagre".}$

\[1\]this is trivial as $V_0 \models \text{CH}$, always there is a dense tree with $\check{\eta}$ levels by the celebrated theorem of Balcar-Pelant-Simon.
2) Assume the forcing notion Q satisfies (a) + (d), $Pr(A, \mathbb{V})$ as witnessed by S and Q is proper.

Then the forcing notion $Q \ast \text{Levy}(\mathbb{V})$ preserves \mathbb{V} is proper when: if Q forces (c) hold.

Proof. Like Theorem 1.4.

\begin{theorem}
We have \mathbb{V} is not proper when:

(a) $\mathbb{V} \models 2\aleph_0 \geq \aleph_2$

(b) $\lambda = \aleph_2$ or just λ is regular, $\aleph_2 \leq \lambda \leq 2^{\aleph_0}$ and $\alpha < \lambda \Rightarrow \text{cf}(\alpha, \subseteq) < \lambda$

(c) $\text{h} < \lambda$

(d) the forcing notion Q adds at least one real and is λ-newly proper, see Definition 1.5 below.
\end{theorem}

Before proving 1.4

Definition 1.5. For $\ell \in \{1, 2\}$ and $\lambda > \kappa$ we say that a forcing notion Q is (λ, κ)-newly proper (omitting κ_ℓ means $\kappa = \aleph_0$ and we define newly $(\lambda, < \chi)$-proper similarly) when: if $N = \langle (N, \nu) : \nu \in \omega \rangle$ satisfies \Diamond below and $Q \in N_{\infty}$, $p \in Q \cap N_{\infty}$ then we can find q, η such that \exists_ℓ below holds where:

\begin{itemize}
 \item[\Diamond] for some cardinal $\chi > \lambda$
 \begin{itemize}
 \item[(a)] $N_\eta \prec \langle \mathcal{H}(\chi), \in, <_\chi \rangle$ is countable
 \item[(b)] if $\nu \prec \eta$ then $N_\nu \prec N_\eta$
 \item[(c)] $N_\eta \cap N_{\infty} = N_\eta \cap N_{\infty}$ if $\kappa = \aleph_0$ and $N_\eta \cap N_{\infty} = N_\eta \cap N_{\infty}$ generally where $N_\eta \cap N_{\infty} = \{ \nu \in N_\eta : |\nu| \leq \kappa \}$
 \item[(d)] $\nu_\eta \in N_\eta \cap \{ \nu_\eta : m < \ell g(\eta) \}$ hence $\nu_\eta \not\in \cup(N_\nu : \neg(\nu \subseteq \eta) \land \nu \in \omega \rangle \lambda$\}
 \item[(e)] $\nu_\eta \in \ell g(\eta)$ and $\ell < \ell g(\eta) \Rightarrow \nu_\eta \subseteq \nu_\eta$
 \end{itemize}
\end{itemize}

For a proper forcing notion adding a new real it is quite easy to be \aleph_1-newly proper; e.g.

Claim 1.6. Assuming $2^{\aleph_0} \geq \lambda = \text{cf}(\lambda) > \aleph_1$, sufficient conditions for \mathbb{V} is λ-newly proper are:

\begin{itemize}
 \item[(a)] Q is c.c.c. and add a new real
 \item[(b)] Q is Sacks forcing
 \item[(c)] Q is a tree-like creature forcing in the sense of Roslanowski-Shelah RoSh:470.
\end{itemize}

Proof. Easy; for clause (a) we use $q = p$; in \mathbb{V} in the definition. For clauses (b),(c) we use fusion but in the next step use members of $N_\eta \cap Q$ for $\nu \in \aleph_0$ we get as many distinct η’s as we can.
Proof. Proof of [1.3] Let χ be large enough and for transparency, $x \in H(\chi)$.

By Rubin-Shelah [RuSh:117] in V there are sequences $\langle N_\eta : \eta \in \omega^\omega \rangle; \langle \nu_\eta : \eta \in \omega^\omega \rangle$ such that:

- \Box_1 (a) $N_\eta \prec (H(\chi), \in)$
- (b) $\forall \cdot x \in N_\eta$
- (c) N_η is countable
- (d) $N_{\eta_1} \cap N_{\eta_2} = N_{\eta_1 \cap \eta_2}$
- (e) $\nu_\eta \in \ell_g(n)(\omega^\omega)$
- (f) $\nu_\eta \in N_\eta$
- (g) if $\eta_1 \in \omega^\omega(\lambda)$ and $\neg(\eta \leq \eta_1)$ then $\nu_\eta \notin N_{\eta_1}$
- (h) $\nu_\eta(\ell_1) = \nu_{\eta_2}(\ell_2) \Rightarrow \ell_1 = \ell_2 \land \eta_1(\ell_1 + 1) = \eta_2(\ell_2 + 1)$

Now for each $\eta \in \omega^\omega$ let $N_\eta = \cup\{N_\eta \cap k : k < \omega\}$; we can add:

- (i) $\ell_g(\eta) = n + 1$ then $\nu_\eta(n) > \sup(N_{\eta_1 \cap \lambda})$ and even $\nu_\eta(n) > \sup\{N_\rho \cap \lambda : \rho \in \omega^\omega(\eta_1(n))\}$
- (j) if $\eta \in \omega^\omega$ is increasing, then $\sup(N_\eta \cap \lambda) = \sup(\text{Rang}(\eta))$.

Why is this sufficient? By Balcar-Pelant-Simon [BPS80] there is $T \subseteq [\omega]^{\aleph_0}$ such that

- \Box_2 (a) $(T, * \supseteq)$ is a tree with h levels (h is a cardinal invariant, a regular cardinal $\in [\aleph_1, 2^{\aleph_0}]$, with a root and each node has 2^{\aleph_0} many immediate successors, i.e. T has splitting to 2^{\aleph_0})
- (b) T is dense in $([\omega]^{\aleph_0}, * \supseteq)$, i.e. $\text{P}_{P(\omega)}V = \text{P}_{\text{A}^0_1(V)}$
- recalling [1.12].

Choose \tilde{h} such that

- $\Box_3 \tilde{h} = \langle h_p : p \in T \rangle$ satisfies h_p is one to one from $\text{succ}_T(p)$ onto $2^{\aleph_0} \setminus \{h_{p_1}(p_2) : p_1 <_T p_2 \leq_T p \land p_2 \in \text{succ}_T(p_1)\}$.

So without loss of generality

- $\Box_4 T \in N_{\omega^\omega}$ and $\tilde{h} \in N_{\omega^\omega}$.

As Q is newly λ-newly proper there are η, η as in \Box_1 of Definition [1.3]. Let $G \subseteq Q$ be generic over V such that $q \in G$, let $\eta = \eta[G]$ and $M_2 := N_{\eta[G]} := \cup\{N_\eta[n][G] : n < \omega\}$, so $M \prec (H(\chi))^V[G], H(\chi)^V, e)$ is countable, pedantically $\langle |M|, H(\chi)^V \cap |M|, e \rangle$ is countable, and $M \prec \langle H(\chi)^V[G], H(\chi)^V, e \rangle$; is proper, hence some $p_\ast \in \text{P}_{\text{A}^0_1(V)}$ is $(M_2, \text{P}_{\text{A}^0_1(V)})$-generic. But T is dense in $\text{P}_{\text{A}^0_1(V)}$ so without loss of generality $p_\ast \in T$ and p_\ast is (M_2, \tilde{T})-generic.

Clearly $h \in N_{\omega^\omega}$ or we may demand this, so without loss of generality $\eta \in \omega^\omega \lambda \Rightarrow N_\eta \cap h = N_{\omega^\omega} \cap h$. For any $\alpha < \lambda$ let

$$I_\alpha = \{p \in T : \text{ for some } p_0 \in T \text{ we have } p \in \text{succ}(p_0) \text{ and } h_{p_0}(p) = \alpha\}$$

and letting T_α be the α-th level of T.
\[\mathcal{I}_\alpha^+ = \{ p \in \mathbb{P}_{\mathcal{A}_\alpha[V]} : p \text{ is above some member of } \mathcal{T}_\alpha \}. \]

Now clearly (in \(V \) and in \(V[G] \)):

1. \(\mathcal{I}_\alpha \) is a pre-dense subset of \(\mathcal{T} \) (and of \(\mathbb{P}_{\mathcal{A}_\alpha[V]} \))
2. \(\mathcal{I}_\alpha^+ \) is dense open decreasing with \(\alpha \)
3. if \(p \in \mathbb{P}_{\mathcal{A}_\alpha[V]} \) then for every large enough \(\alpha < \lambda, p \notin \mathcal{I}_\alpha^+ \).

Also if \(\alpha \in \lambda \cap N_\eta[G] \) then \(\mathcal{I}_\alpha \in N_\eta[G] \) and the set \(\{ p \in \mathcal{T} \cap N_\eta[G] : p \leq_T p_\alpha \} \) is not empty, let \(p_\alpha^* \) be in it and let its level in \(\mathcal{T} \) be \(\gamma_\alpha^* \).

Also by the choice of \(\bar{h} \) (and genericity) clearly

4. \(\text{Rang}(h_\alpha) \) is equal to \(u := (2^{\aleph_0}) \cap N_\eta[G] \).

Lastly,

5. \(h_\alpha \in V \).

[Why? As its domain, \(N_{<\alpha} \cap h \) belongs to \(V \) and \(h_\alpha(\gamma) \) is defined from \((\mathcal{T}, \gamma, p_\alpha) \in V \) and \(\mathcal{T} \) is a tree.]

\[\text{Claim 1.7. We have } \neg \text{Pr}_1(Q, \mathbb{P}_{\mathcal{A}_\alpha[V]}) \text{ when } \]

- \(2^{\aleph_0} \geq \lambda \) if \(\text{cf}(\lambda) > \kappa = h \)
- \(\alpha < \lambda \Rightarrow \text{cf}([\alpha]^{\kappa \cup} \subseteq \kappa) \leq \lambda \)
- \(Q \) is \((\lambda, \kappa) \)-newly proper.

\[\text{Proof. Similar to 1.4.} \]

\[\text{Conclusion 1.8. If } h < 2^{\aleph_0} \text{ and } Q \text{ is a } (h^+, h)\text{-newly proper then } \neg \text{Pr}_1(Q, \mathbb{P}_{\mathcal{A}_\alpha[V]}). \]
2. General sufficient conditions

Claim 2.1. Assume CH, i.e. \(V \models CH \).

If \(Q \) is c.c.c. then \(\text{Pr}_2(Q, P_{A,V}) \).

Remark 2.2. 1) This works replacing \(P_{A,V} \) by any \(\aleph_1 \)-complete \(P \) and strengthening the conclusions to \(\text{Pr}_1 \), see 2.3.

2) See Definition 0.3(1).

Proof. Let \(P = P_{A,V} \). The point is

\[(\ast) \text{ if } r \in P \text{ and } \models Q \text{ "} \mathcal{I} \text{ is a dense open subset of } P \text{" then there is } r' \text{ such that}

\[(a) \ r \leq_P r'
\]

\[(b) \ |_Q \text{ "} r' \in \mathcal{I} \subseteq P \text{".}
\]

Why (\ast) holds? We try (all in \(V \)) to choose \((r_\alpha, q_\alpha)\) by induction on \(\alpha < \omega_1 \) such that

\[(\Diamond) \ (a) \ r_0 = r
\]

\[(b) \ r_\alpha \in R \text{ is } \leq_P \text{-increasing}
\]

\[(c) \ q_\alpha \in Q
\]

\[(d) \ q_\alpha, q_\beta \text{ are incompatible in } Q \text{ for } \beta < \alpha
\]

\[(e) \ q_\alpha \models Q \text{ "} r_\alpha+1 \in \mathcal{I} \text{".}
\]

We cannot succeed because \(Q \models \text{ c.c.c.} \).

For \(\alpha = 0 \) no problem as only clause (a) is relevant.

For \(\alpha \) limit - easy as \(P \) is \(\aleph_1 \)-complete (and the only relevant clause is (b)).

For \(\alpha = \beta + 1 \), we first ask:

Question: Is \(\langle q_\gamma : \gamma < \beta \rangle \) a maximal antichain of \(Q \)?

If yes, then \(r_\beta \) is as required: if \(G_Q \subseteq Q \) is generic over \(V \) then for some \(\gamma < \beta \), \(q_\gamma \in G_Q \) hence \(r_\gamma+1 \in \mathcal{I}[G_Q] \) but \(\mathcal{I}[G_Q] \) is a dense subset of \(P \) and is open and \(r_\gamma+1 \leq_P r_\beta \) so \(r_\beta \in I[G_Q] \).

If no, let \(q_\beta \in Q \) be incompatible with \(q_\gamma \) for every \(\gamma < \beta \). Recalling \(|_Q \text{ "} \mathcal{I} \text{ is dense and open} \text{"} \) the set \(X_\beta = \{ r \in P : \text{ for some } q, q_\beta \leq Q q \text{ and } q \models \text{ "} r \in \mathcal{I} \text{"} \} \) is a dense subset of \(P \) hence there is a member of \(X_\beta \) above \(r_\beta \), let \(r_\alpha \) be such member. By \(r_\alpha \in X_\beta \), there is \(q, q_\beta \leq q \) such that \(q \models r_\alpha \in \mathcal{I} \). But we could have chosen \(q_\beta \) as such \(q \), contradiction, hence (\ast) indeed holds and this is clearly enough. \(\square \)

We can weaken the demand on the second forcing (here \(P_{A,V} \)) and strengthen the conclusion to \(\text{Pr}(Q, P_{A,V}) \).

Claim 2.3. If (A) then (B) where:

\[(A) \ (a) \ P, Q \text{ are forcing notions}
\]

\[(b) \ Q \text{ is c.c.c. moreover } \models R \text{ "} Q \text{ is c.c.c.} \text{"}
\]

\[(c) \ \text{forcing with } P \text{ and no new } \omega \text{-sequences from } \lambda
\]

\[(d) \ Q \text{ has cardinality } \leq \lambda
\]

\[(B) \ (a) \text{ if } P \text{ is proper in } V \text{ then } \text{Pr}_2(Q, P)
\]

\(2\) if you assume \(Q, R \) are proper, \(\lambda = \aleph_0 \) the proof may be easier to read.
(b) for every Q-name \mathcal{I} of a dense open subset of \mathbb{R}, the set
$\mathcal{J} = \{ r \in \mathbb{P} : \models_{Q} "r \in \mathcal{I}" \}$ is dense and open.

Proof. Let $\langle q_\varepsilon : \varepsilon < \kappa := |Q| \rangle$ list Q.
For every $r \in \mathbb{P}$ we define a sequence η_r of ordinals $< \kappa$ as follows:

$\odot_1 \eta_r(\alpha)$ is the minimal ordinal $\varepsilon < \kappa$ such that
(a) $q_\varepsilon \models "r \in \mathcal{I}"$
(b) if $\beta < \alpha$ then $q_\varepsilon, q_{\eta_r(\beta)}$ are incompatible in Q.

Now

$\odot_2 (a) \ \eta_r$ is well defined
(b) $\ell g(\eta_r) < \omega_1$.

[Why? As $Q \models$ c.c.c.]

Note

\odot_3 if $r_1 \leq_p r_2$ then either $\eta_{r_1} \leq \eta_{r_2}$ or for some $\alpha < \ell g(\eta_{r_1})$ we have

$\eta_{r_1} |\alpha = \eta_{r_2} |\alpha$

$\eta_{r_1}(\alpha) > \eta_{r_2}(\alpha)$.

[Why? Think about the definition.]
For $s \in \mathbb{P}$ let $\eta_s^* be \cap \{ \eta_{s_1} : s \leq_p s_1 \}$, i.e. the longest common initial segment of
$\{ \eta_{s_1} : s \leq_p s_1 \}$. Clearly $s_1 \leq_R s_2 \Rightarrow \eta_{s_1}^* \leq \eta_{s_2}^*$. So

$\odot_4 \ \eta^* = \cup \{ \eta_s^* : s \in G_P \}$ is an \mathbb{P}-name of a sequence of pairwise incompatible
members of Q

but forcing with \mathbb{P} preserve "$Q \models$ c.c.c." so $\ell g(\eta^*)$ is countable in $V[G_P]$. But
forcing by \mathbb{P} adds no new ω-sequences to $\kappa = |Q|$ (and Q is infinite) and $V[G_R]$ has
the same \aleph_1 as V and

$\odot_5 \ \eta^*$ is a sequence of countable length of ordinals $< \kappa$ so is old, hence

\odot_6 the following set is dense open in \mathbb{P}

$\mathcal{J} = \{ r \in \mathbb{P} : r$ forces $(\models_{P}) that $\eta^*_r = \eta_r^* \text{ for some } \eta_r^* \in V \}$

\odot_7 if $r \in \mathcal{J}$ then $\langle q_{\eta_r^*(\varepsilon)} : \varepsilon < \ell g(\eta^*_r) \rangle$ is a maximal antichain of Q.

[Why? As in the proof of 2.1]
Fix $r_*, \in \mathcal{J} \subseteq \mathbb{P}$ and $\alpha < \ell g(\eta_{r_*})$ let

$(*)_1 \ \mathcal{J}_{r_*, \alpha} = \{ r \in \mathbb{R} : r_* \leq_p r$ and $q_{\eta_{r_*}(\alpha)} \text{ forces (for } \models_Q \text{) that } r \in \mathcal{I} \}$.

[Why? Assume $\mathbb{P} \models "r_* \leq_r 1"$ so $r_1 \models_P "\eta^*(\alpha) = \eta^*_{r_*}(\alpha)"$ hence for some r_2 we have $\mathbb{P} \models "r_1 \leq_r r_2"$ and $\eta^*(\alpha + 1) \leq \eta^*_{r_2}$, so by clause (a) of \odot_1 we have $q_{\eta^*_{r_2}(\varepsilon)} \models Q "r_2 \in \mathcal{I}"$ hence $r_2 \in \mathcal{J}_{r_*, \alpha}$ as required.]

So
In \(\alpha \) 2, \(J_{r_\ast, \alpha} \) is a dense open subset of \(P_{\geq r_\ast} \) (i.e. above \(r_\ast \)).

As forcing with \(P \) add no new \(\omega \)-sequence
\[
(\ast)_3 J_{r_\ast}^+ := \cap \{ J_{r_\ast, \alpha} : \alpha < \ell g(\eta^*_r) \} \text{ is dense open in } R \text{ above } r_\ast.
\]

Remark 2.4. Should be similar.

Claim 2.4. In 2.1, 2.3 we can replace “c.c.c.” by strongly proper.

Proof. We use the proof of \([Sh:f, Ch.17, Sec.2]\) and references. We repeat in short.

Proof. 5) Even (A) of 0.4(3) fail, i.e.
\[
\neg \Pr_5(Q, P_{\mathcal{A}[\mathcal{V}]})
\]

We use a finite iteration so let \(P_0 \) be the trivial forcing notion, \(P_{k+1} = P_k \ast Q_k \) for \(k \leq 3 \) and the \(P_k \)-name \(Q_k \) is defined below.

Step A: \(Q_0 = \text{Levy}(\aleph_1, 2^{\aleph_0}) \) so \(\vdash_{Q_0} \text{“CH”} \).

Step B: \(Q_1 \) is Cohen forcing.

Step C: In \(V^{P_1}, Q_2 \) in the Levy collapse \(2^{\aleph_0} \) to \(\aleph_1 \), i.e. \(Q_1 = \text{Levy}(\aleph_1, \aleph_2)^{V[Q_0]} \).

Step D: Let \(T = (\omega_1, \omega_1)^{V[P_1]} \) a tree, so \(\lim_{\omega_1}(T)^{V[P_1]} = \lim_{\omega_1}(T)^{V[P_2]} = \lim_{\omega_1}(T)^{V[P_3]} \)

\[
(\ast)_1 \text{ in } V^{P_1}, T \text{ is isomorphic to a dense subset of } P_{\mathcal{A}[P_1]}.\]

So in \(V^{P_3} \) there is a list \(\langle \eta^*_\varepsilon : \varepsilon < \omega_1 \rangle \) of \(\lim_{\omega_1}(T)^{V[P_1]} \). Let \(\langle \eta^*_\varepsilon \rangle_{\varepsilon < \omega_2} \) be pairwise disjoint end segments.

Step E: In \(V^{P_3} \) there is \(Q_3 \), a c.c.c. forcing notion specializing \(T \) in the sense of \([Sh:74]\), i.e. \(h_s : T \rightarrow \omega, h \) is increasing in \(T \) except on the end segment \(\eta^*_\varepsilon | [\gamma_\varepsilon, \omega_1) \), i.e. \(\rho < \tau \land h_s(\rho) = h(\tau) \Rightarrow (\exists \varepsilon)[\rho, \rho \in \{ \eta^*_\varepsilon | [\gamma_\varepsilon, \omega_1) \}]

\]

\(\therefore \) after forcing with \(P_4 = Q_0 \ast Q_1 \ast Q_2 \ast Q_3 \), i.e. in \(V^{P_4} \) the forcing notion \(P_{\mathcal{A}[V]} \) is not proper, in fact it collapses \(\aleph_1 \).

Why? Recall \((\ast)_1 \) and note
\[
(\ast)_2 \mathcal{I}_n := \{ \rho \in T : (\forall \nu)(\rho \leq \tau \land h_s(\nu) \neq n) \} \text{ is dense open in } T \text{ (in } V^{\aleph_0 \ast Q_1})\]
and trivially
\(\bigcap_n I_n = \emptyset \); in fact if \(G \subseteq T \) is generic, then

(A) \(G \) is a branch of \(T \) of order type \(\omega_1 \) let its name be \((\rho_\gamma : \gamma < \omega_1) \)

(B) letting \(\gamma_n = \text{Min}\{\gamma < \omega_2 : \rho_\gamma \in I_n\} \) we have \(\models T \langle \{\gamma_n : n < \omega\} \) is unbounded in \(\omega_1 \rangle \).

\[\square \]

2.6 References

[BPS80] Bohuslav Balcar, Jan Pelant, and Petr Simon, *The space of ultrafilters on \(\mathbb{N}\) covered by nowhere dense sets*, Fundamenta Mathematicae CX (1980), 11–24.

[Sh:f] Saharon Shelah, *Proper and improper forcing*, Perspectives in Mathematical Logic, Springer, 1998.

[Sh:74] Saharon Shelah, *Appendix to: “Models with second-order properties. II. Trees with no undefined branches” (Annals of Mathematical Logic 14(1978), no. 1, 73–87)*, Annals of Mathematical Logic 14 (1978), 223–226.

[RuSh:117] Matatyahu Rubin and Saharon Shelah, *Combinatorial problems on trees: partitions, \(\Delta\)-systems and large free subtrees*, Annals of Pure and Applied Logic 33 (1987), 43–81.

[Sh:420] Saharon Shelah, *Advances in Cardinal Arithmetic*, Finite and Infinite Combinatorics in Sets and Logic, Kluwer Academic Publishers, 1993, N.W. Sauer et al (eds.). 0708.1979, pp. 355–383.

[RoSh:470] Andrzej Roslanowski and Saharon Shelah, *Norms on possibilities I: forcing with trees and creatures*, Memoirs of the American Mathematical Society 141 (1999), no. 671, xii + 167, math.LO/9807172.