Quantum hypercomputation based on the dynamical algebra $\mathfrak{su}(1,1)$

A. Sicard, J. Ospina, M. Vélez
Group of Logic and Computation, EAFIT University, AA. 3030, Medellín, Colombia
E-mail:asicsard@eafit.edu.co, judoan@epm.net.co, mvelez@eafit.edu.co

Abstract. An adaptation of Kieu’s hypercomputational quantum algorithm (KHQA) is presented. The method that was used was to replace the Weyl-Heisenberg algebra by other dynamical algebra of low dimension that admits infinite-dimensional irreducible representations with naturally defined generalized coherent states. We have selected the Lie algebra $\mathfrak{su}(1,1)$, due to that this algebra posses the necessary characteristics for to realize the hypercomputation and also due to that such algebra has been identified as the dynamical algebra associated to many relatively simple quantum systems. In addition to an algebraic adaptation of KHQA over the algebra $\mathfrak{su}(1,1)$, we presented an adaptations of KHQA over some concrete physical referents: the infinite square well, the infinite cylindrical well, the perturbed infinite cylindrical well, the Pöschl-Teller potentials, the Holstein-Primakoff system, and the Laguerre oscillator. We conclude that it is possible to have many physical systems within condensed matter and quantum optics on which it is possible to consider an implementation of KHQA.

PACS numbers: 03.67.Lx

Submitted to: J. Phys. A: Math. Gen.
Quantum hypercomputation based on the dynamical algebra $\mathfrak{su}(1, 1)$

1. Introduction

The hypercomputers compute functions or numbers, or more generally solve problems or carry out tasks, that cannot be computed or solved by a Turing machine (TM) \[1 \, 2\]. Starting from that seems to be the first published model of hypercomputation, which is called the Turing’s oracle machines \[3\]; the formulations of models and algorithms of hypercomputation have applied a wide spectrum of underlying theories \[1 \, 4 \, 5\]. It is precisely due to the existence of Turing’s oracle machines that J. Copeland and D. Proudfoot introduced the term ‘hypercomputation’ by 1999 \[6\] for to replace the wrong expressions such as ‘super-Turing computation’, ‘computing beyond Turing’s limit’, and ‘breaking the Turing barrier’, and similar.

Recently Tien D. Kieu has proposed an quantum algorithm to solve the TM incomputable \‡ problem named Hilbert’s tenth problem, using as physical referent the well known simple harmonic oscillator (SHO), which by effect of the second quantization has as associated dynamical algebra the Weyl-Heisenberg algebra denoted $\mathfrak{g}_{W-H} \[8 \, 9 \, 10 \, 11 \, 12 \, 13\]$. From the algebraic analysis of Kieu’s hypercomputational quantum algorithm (KHQA), we have identified the underlying properties of the \mathfrak{g}_{W-H} algebra which are necessary (but not sufficient) to guaranty KHQA works. Such properties are that the dynamical algebra admits infinite-dimensional irreducible representations with naturally associated coherent states.

The importance of KHQA inside the field of hypercomputation, at the same tenor that the importance of hypercomputation within the domain of computer science, can not be sub-estimated. This algorithm is a plausible candidate for a practical implementation of the hypercomputation, maybe within the scope of the quantum optics. The adaptation of KHQA to a new physical referents different to the harmonic oscillator, opens the possibility of analyze news viable alternatives for its practical implementation more beyond of quantum optics, maybe using quasi-particles of condensed matter systems.

In this work we present an algebraic adaptation of KHQA, it is to say, we present an hypercomputation model à la Kieu, based on the selection of a dynamical algebra which is different to the \mathfrak{g}_{W-H} algebra. We have selected the Lie algebra $\mathfrak{su}(1, 1)$, due to that this algebra posses the necessary characteristics for to realize the hypercomputation and also due to that such algebra has been identified as the dynamical algebra associated to many relatively simple quantum systems.

More in concrete, the $\mathfrak{su}(1, 1)$ algebra posses four kinds of infinite-dimensional unitary irreducible representations (UIR): the positive discrete series, the negative discrete series, the principal series and the complementary series \[14\]. In this work we use only the positive discrete series. From the other side, the $\mathfrak{su}(1, 1)$ algebra admits different kinds of coherent states such as Barut-Girardello, Perelomov, nonlinear, and minimum uncertain \[15 \, 16\]. Beside of all these, the $\mathfrak{su}(1, 1)$ algebra admits different

\‡ We follow to S. B. Cooper y P. Odifreddi and we adopt the terminology Turing’s ‘computable’ at replace of Kleene ‘recursive’ (see footnote 1 in \[7\]).
kinds of realizations. Within the field of quantum optics we have realizations on systems with one, two and four photon modes [15, 16], or with systems such as the density-dependent Holstein-Primakoff [15]. Within the domain of condensed matter, we have realizations on the following quantum potentials: infinite square well, the Pöschl-Teller potentials [17] and Calogero-Sutherland model [16]. Other realizations from the \(\text{su}(1,1) \) algebra arises from the mathematical physics at relation with the recursive properties of the special functions, namely Laguerre oscillators [18 19 20], Legendre and Chebyshev oscillators [19], Meixner Oscillators [14 21], and so on.

The present paper is realized at the following way. In the section 2 we introduce KHQA in such way that the algebraic issues have been empathized and we explicit the hypercomputational characteristics of the \(g_{W-H} \) algebra. In the section 3 based on the analysis of such algebraic characteristics we show the general structure and the mathematical properties of our adaptation of KHQA using the \(\text{su}(1,1) \) algebra. In the section 4 we note that the infinite cylindrical well and a modified cylindrical well also admit a realization of the \(\text{su}(1,1) \) algebra. Moreover, based on the adaptation of KHQA that we have realized using the infinite square well [22 23], we show new adaptations of KHQA for some of the physical referents previously listed. Finally we present some conclusions.

2. Kieu’s hypercomputational quantum algorithm

With base on the SHO and its associated dynamical algebra \(g_{W-H} \), Kieu has proposed an possible algorithm for the solution of the Hilbert’s tenth problem by the use of three strategies: (i) Codification of the instance of the Hilbert’s tenth problem to solve, (ii) The utilization of a non-standard version of quantum computation, and (iii) The establishment of a halting criterion. The strategy (i) has a background the occupation-number operator associated to the \(g_{W-H} \) algebra. The strategy (ii) is based on the adiabatic quantum computation [24 25] applied to unbounded Hamiltonians, it is to say, this strategy constitutes an application of the quantum adiabatic theorem for the case of unbounded operators [26 27]. The adiabatic initialization is obtained with the aid of the coherent states and the ladder operators which are associated to the dynamical algebra \(g_{W-H} \). The strategy (iii) demands a property to the initial state of the adiabatic evolution. Such property is based on the probability distribution associated to the coherent states corresponding to the \(g_{W-H} \) algebra. We now present at detail, every one of the strategies previously enunciated, at such way that the possible algebraic generalizations can arise easily.

2.1. Mathematical background

The mathematical background underlying to KHQA is shown by the equations (1) and corresponds to the mathematical formalism of the SHO within the formulation of the second quantization. At (1a) we introduce the Fock occupation-number states denoted
\(\mathfrak{F}_{\text{SHO}} \), where \(\mathbb{N} = \{0, 1, 2, \ldots \} \) is the set of non-negative integers. At (1a) the annihilation and creation operators \(a \) and \(a^\dagger \) are introduced. The commutation relations between the ladder operators are presented in (1c). At (1b) the spectral equation for the SHO is shown in terms of the Hamiltonian \(H_{\text{SHO}} \) and of the energy levels \(E_n^{\text{SHO}} \). At (1e) the Hamiltonian \(H_{\text{SHO}} \) is given in terms of the ladder operators. At (1f) is presented the definition of the occupation-number operator \(N_{\text{SHO}} \) whose eigenvalues are denoted \(n \) and which will be crucial for that follows. Equation (1g) gives the definition and the explicit form of the coherent states denoted \(|\alpha\rangle^{\text{SHO}} \). Finally (1h) shows the Poisson form of the probability density for the random variable \(n \) corresponding to the coherent states (1g).

\[\begin{align*}
\mathfrak{F}_{\text{SHO}} &= \{ |n\rangle \mid n \in \mathbb{N} \}, \\
a |0\rangle &= 0, \quad a |n\rangle = \sqrt{n} |n-1\rangle, \quad a^\dagger |n\rangle = \sqrt{n+1} |n+1\rangle, \\
[a, a^\dagger] &= \mathbb{I} \quad \text{(1c)} \\
H_{\text{SHO}} |n\rangle &= E_n^{\text{SHO}} |n\rangle, \\
H_{\text{SHO}} &= \hbar \omega_{\text{SHO}} (a^\dagger a + 1/2), \\
N_{\text{SHO}} &= a^\dagger a, \quad N_{\text{SHO}} |n\rangle = n |n\rangle, \\
a |\alpha\rangle^{\text{SHO}} &= \alpha |\alpha\rangle^{\text{SHO}} \\
&= e^{-|\alpha|^2} \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} |n\rangle, \quad \text{where } \alpha \in \mathbb{C}, \\
P_n^{\text{SHO}}(\alpha) &= e^{-|\alpha|^2} \frac{|\alpha|^{2n}}{n!}.
\end{align*} \]

2.2. First strategy: Hilbert’s tenth problem and its codification

A Diophantine equation is an equation of the form
\[D(x_1, \ldots, x_k) = 0, \]
where \(D \) is a polynomial with integer coefficients. By 1990, David Hilbert presented his famous list of 23 problems. From such list we extract the problem number 10. In present terminology, Hilbert’s tenth problem may be paraphrased as:

Given a Diophantine equation with any number of unknowns: To devise a process according to which it can be determined by a finite number of operations whether the equation has non-negative integers solutions.

From the concluding results obtained by Matiyasevich, Davis, Robinson, and Putnam, we know actually that, at the general case, this problem is algorithmically insolvable or more precisely, it is TM incomputable [28]. Justly, the possible hypercomputability of Kieu’s algorithm is due to the fact that this algorithm solves Hilbert’s tenth problem.
Quantum hypercomputation based on the dynamical algebra $\text{su}(1,1)$

With the mathematical background that was presented at (11), Kieu proposes the codification of the Hilbert’s tenth problem which is presented at the figure 1. Such figure illustrate that a Diophantine equation of the kind (2) is codified on a Hamiltonian denoted H_D which results from the substitution of every unknown in (2) by the occupation-number operator defined in (1f). At such way, the problem to determine if (2) has solutions within the non-negative integers, is equivalent to the problem to determine if the energy associated to the fundamental state denoted $|g\rangle$, of the Hamiltonian H_D is zero.

$$D(x_1, \ldots, x_k) = 0 \xrightarrow{\text{codification}} H_{\text{SHO}}^D = (D(N_{\text{SHO}}^1, \ldots, N_{\text{SHO}}^k))^2$$

Solution in \mathbb{N} if and only if $H_{\text{SHO}}^D |g\rangle = 0$

Figure 1. Kieu’s codification.

2.3. Second strategy: quantum adiabatic computation

Due to the codification showed by the figure 11 is necessary to use a strategy of quantum computation which is different to the standard quantum computation (based on sequences of unitary quantum logic gates that process qubits) [29]. At words of Kieu we present the strategy of quantum computation in the following form [12, p. 7]:

In general, it is much more difficult to construct a specific state for a quantum mechanical system than to control the physical process (that is, to create a corresponding Hamiltonian) to which the system is subject. One systematic method to obtain the ground state of a Hamiltonian is to exploit the quantum adiabatic theorem to reach the desired state through some adiabatic evolution which starts from a readily constructible ground state of some other Hamiltonian. This is the idea of quantum adiabatic computation (QAC) [24] . . .

In QAC, we encode the solution of our problem to the ground state of some specific Hamiltonian. As it is easier to implement controlled dynamical processes than to obtain the ground state, we start the computation with the system prepared in a different but readily obtainable ground state of some other Hamiltonian. This initial Hamiltonian is then slowly extrapolated into the Hamiltonian whose ground state is the desired one. The adiabatic theorem of quantum mechanics (QAT) [26] stipulates that if the extrapolation rate is sufficiently slow compared to some intrinsic scale, the initial state will evolve into the desired ground state with a high probability . . . Measurements then take place finally on the system in order to identify the ground state, from which the solution to our problem emerges . . .

Now, to carry out a QAC for a given Diophantine equation (2), we prepare our
Quantum hypercomputation based on the dynamical algebra $\mathfrak{su}(1,1)$

quantum mechanical system in the readily constructible initial ground state

$$| g_I \rangle_{\text{SHO}} = \bigotimes_{i=1}^{k} | \alpha_i \rangle_{\text{SHO}},$$

(3)

of a universal (that is, independent of the given Diophantine equation) initial Hamiltonian H_I, with some complex numbers α’s,

$$H_{I}^{\text{SHO}} = \sum_{i=1}^{k} (a_i^\dagger - \alpha_i^*)(a_i - \alpha_i).$$

(4)

This is just the Hamiltonian for shifted simple harmonic oscillators whose ground state is the well-known coherent state in quantum optics. We then subject the system to the time-dependent Hamiltonian H_{A}^{SHO}, which linearly extrapolates the initial Hamiltonian H_I to the final Hamiltonian H_D in a time interval T,

$$H_{A}^{\text{SHO}}(t) = \left(1 - \frac{t}{T}\right)H_{I}^{\text{SHO}} + \frac{t}{T}H_{D}^{\text{SHO}}.$$

(5)

2.4. The algorithm

With base on the two mentioned strategies and the strategy that will be presented at the following section, given a Diophantine equation with k unknowns of type (2), Kieu provides the following quantum algorithm to decide whether this equation has any non-negative integer solution or not [10, 12]:

(i) Construct a physical process in which a system initially starts with a direct product of k coherent states

$$| \psi(0) \rangle = | g_I \rangle_{\text{SHO}},$$

and in which the system is subject to a time-dependent Hamiltonian $H_{A}^{\text{SHO}}(t)$ of (5) over the time interval $[0, T]$, for some time T.

(ii) Measure through the time-dependent Schrödinger equation

$$i\partial_t | \psi(t) \rangle = H_{A}^{\text{SHO}}(t) | \psi(t) \rangle, \text{ for } t \in [0, T]$$

the maximum probability to find the system in a particular occupation-number state at the chosen time T,

$$P(T) = \max_{\{\{n\}\}} | \langle \psi(T) | \{n\} \rangle |^2$$

$$= | \langle \psi(T) | \{n\}^0 \rangle |^2,$$

where $| \{n\} \rangle = \bigotimes_{i=1}^{k} | n_i \rangle$, and $| \{n\}^0 \rangle$ is the maximum-probability number state with a particular k-tuple (n_1^0, \ldots, n_k^0).

(iii) If $P(T) \leq 1/2$, increase T and repeat all the steps above.

(iv) If

$$P(T) > 1/2$$

(6)
then \(|\{n\}^0\rangle \) is the ground state of \(H^\text{SHO}_D \) (assuming no degeneracy) and we can terminate the algorithm and deduce a conclusion from the fact that \(H^\text{SHO}_D |\{n\}^0\rangle = 0 \) iff equation (2) has a non-negative integer solution.

2.5. Third strategy: the halting criterion

One of the most common misunderstandings about KHQA is linked with the halting criterion of the algorithm. Some authors claim that the QAT only establishes the existence of a time of execution of the algorithm which is finite but unknown and for then there is not a verifiable halting criterion of the algorithm. From the very early versions of the algorithm, Kieu has been alert of this situation and he has proposed the following halting criterion [12, p. 9-11]:

Nevertheless, it is important to note that QAT is not constructive, as with most theorems involving limiting processes. It only tells us that for “sufficiently large” \(T \) the system is “mostly” in the instantaneous eigenstate. But the theorem tells us nothing quantitatively about the degrees of being “sufficiently large” or “mostly” . . .

In other words, QAT can only guarantee that the ground state is achievable in a finite time interval but cannot specify what that interval should be. That is, it cannot by itself give us any indication when the ground state has been obtained so that the algorithm can then be terminated at that point. For that, we need another criterion . . .

The crucial step of any quantum adiabatic algorithm is the identification of the ground state of the final Hamiltonian, \(H_D \). In our case we do not in advance know in general how long is sufficiently long (the Theorem offers no direct help here); all we can confidently know is that for each Diophantine equation and each set of \(\alpha_i \)'s there is a finite evolution time after which the adiabaticity condition is satisfied. We thus have to find another criterion to identify the ground state.

The identification criterion we have found can be stated as: The ground state of \(H^\text{SHO}_D \) is the Fock state \(|\{n\}^0\rangle \) measuredly obtained with a probability of more than \(1/2 \) after the evolution for some time \(T \) of the initial ground state \(|g_I\rangle^\text{SHO} \) according to the Hamiltonian (5):

\[
|\{n\}^0\rangle \text{ is the ground state of } H^\text{SHO}_D \text{ if } |\langle \psi(T) | \{n\}^0\rangle|^2 > 1/2, \text{ for some } T,
\]

provided the initial ground state \(|g_I\rangle^\text{SHO} \) of \(H^\text{SHO}_I \) does not have any dominant component in the occupation-number eigenstates \(|\{n\}\rangle \) of \(H^\text{SHO}_D \),

\[
|\text{SHO} \langle g_I | \{n\}\rangle|^2 \leq 1/2, \forall \{n\}; \tag{7}
\]

and provided that for \(0 < t < T \),

\[
\langle e(t) | H^\text{SHO}_D - H^\text{SHO}_I | g(t) \rangle \neq 0, \tag{8}
\]

where \(|g(t)\rangle \) and \(|e(t)\rangle \) are, respectively, the instantaneous ground state and the first excited state of \(H^\text{SHO}_A \) at the time \(t \).

\[\S\] The criterion (\S) was added recently by Kieu [12, 30] to correct the finite-dimensional counterexamples pointed out by Smith [31]. On other hand, there was an open problem in relation with infinite-
2.6. Crucial properties of the \mathfrak{g}_{W-H} algebra for KHQA

According to (1), the dynamical algebra associated to the SHO is the Lie algebra denoted \mathfrak{g}_{W-H}, whose generators are the operators a, a^\dagger and 1. The \mathfrak{g}_{W-H} algebra admits a infinite-dimensional UIR which is established by the action of its generators over the space \mathcal{F}^{SHO} and which is given by (1b). From this representation the occupation-number operator N^{SHO} is obtained whose spectrum coincides with the non-negative integers \mathbb{N} as is showed by (1f). This spectrum is precisely the searching space of the solution, associated to every one of the variables of (2) and justifies the strategy of codification which is showed at the figure 1.

From the other side, the adiabatic initialization for KHQA which is represented by (3) and (4) comes from the \mathfrak{g}_{W-H} algebra. The initial state $|g_I\rangle^{\text{SHO}}$ is the direct product of k coherent states of the form (1g), and the initial Hamiltonian denoted H_I^{SHO} is constructed starting from the ladder operators a^\dagger and a of the \mathfrak{g}_{W-H} algebra. Besides of this, the identification of the ground state of H_D^{SHO} that assumes the role of halting criterion for the algorithm according to (6) is supported on the condition (7) which is satisfied by the probability density P_n^{SHO} of (1h). In concrete, the chosen of the coherent state with the form (3) as the initial ground state entails the condition (7), since for any $\alpha \neq 0$, and $\forall n > 0$

$$|\langle \alpha | n \rangle|^2 = P_n^{\text{SHO}}(\alpha) < 1/2.$$

3. Hypercomputational quantum algorithm based on the algebra $\mathfrak{su}(1, 1)$

From the algebraic point of view, the peculiarities of the algebra \mathfrak{g}_{W-H} which are required by KHQA, start from the fact that this algebra admits a infinite-dimensional UIR that operates over the Fock space and its corresponding coherent states. With base on such infinite-dimensional UIR is possible to establish the needed ladder operators that let the construction of a number operator and the associated coherent states, being all that the basic algebraic ingredients of KHQA.

Due to the fact that the \mathfrak{g}_{W-H} algebra is not the only dynamical algebra that satisfies the needed algebraic conditions, arises then the problem of the adaptation of KHQA to other dynamical algebras and for then to other physical systems.

We present in this section the adaptation of KHQA to the case of the $\mathfrak{su}(1, 1)$ algebra. Such algebra is chosen due to the fact that this algebra is the dynamical algebra associated with many well known physical systems.

The algebra $\mathfrak{su}(1, 1)$ is defined by the commutation relations

$$[K_0, K_1] = iK_2, \quad [K_0, K_2] = -K_1, \quad [K_1, K_2] = -iK_0, \quad (9)$$

or by the commutation relations

$$[K_0, K_\pm] = \pm K_\pm, \quad [K_+, K_-] = -2K_0, \text{ where } K_\pm \equiv (K_1 \pm iK_2). \quad (10)$$

dimensional case. In personal communication, Kieu told us have found a mathematical proof that halting criterion (6) is a good identification for the ground state in this case.
Quantum hypercomputation based on the dynamical algebra $\mathfrak{su}(1,1)$

In contrast with the $\mathfrak{g}_{\text{W-H}}$ algebra, the algebra $\mathfrak{su}(1,1)$ admits different kinds of coherent states besides of various kinds of representations. Here we use the named positive discrete representation, which is defined as \[K_- | k, n \rangle = \sqrt{n(2k+n-1)} | k, n-1 \rangle, \]
\[K_+ | k, n \rangle = \sqrt{(n+1)(2k+n)} | k, n+1 \rangle, \]
\[K_3 | k, n \rangle = (n+k) | k, n \rangle, \]
where $| k, n \rangle \ (n \in \mathbb{N})$ is the normalized basis and $k \in \{ \frac{1}{2}, 1, \frac{3}{2}, 2, \ldots \}$ is the Bargmann index labeling the UIR $\|$. We introduce the number operator $N^{\mathfrak{su}(1,1)}$ by
\[N^{\mathfrak{su}(1,1)} = K_0 - k, \quad N^{\mathfrak{su}(1,1)} | k, n \rangle = n | k, n \rangle, \] (11)
and a well known coherent states of $\mathfrak{su}(1,1)$, are the denominated Barut-Girardello coherent states (BGCS). The BGCS are defined as the eigenstates of the lowering operator K_-
\[K_- | k, \alpha \rangle_{\text{BG}} = \alpha | k, \alpha \rangle_{\text{BG}}, \] (12)
and these can be expressed as \[| k, \alpha \rangle_{\text{BG}} = \sqrt{\frac{| \alpha |^{2k-1}}{I_{2k-1}(2| \alpha |)}} \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!} \Gamma(n+2k)} | k, n \rangle, \] (13)
where $I_\nu(x)$ is the first kind modified Bessel function.

All these is well known. Now, we introduce a generalization of equations (12) to (13) which we will use for that follow. Assuming the existence of a quantum system S, whose dynamical algebra is $\mathfrak{su}(1,1)$, the Eqs. (14) gives the adaptation of the equations (11) for the case of $\mathfrak{su}(1,1)$. Equation (14a) defines the Fock space of quantum states which is denoted \mathcal{F}^S corresponding to a quantum system denoted S. Equation (14b) presents the commutation relations that defines the $\mathfrak{su}(1,1)$ algebra, where the generators K_+^S and K_3^S correspond respectively to the creation and destruction operators of $\mathfrak{su}(1,1)$. Equation (14c) shows the action of the infinite-dimensional UIR of $\mathfrak{su}(1,1)$ over the space \mathcal{F}^S, with characteristic function f^S which is assumed as quadratic function of n. The expression (14d) shows the equation of the energy spectrum for the quantum system and (14e) gives the factorized form of the Hamiltonian H^S in terms of the ladder operators. Equation (14f) defines the number operator associated to the system S and its corresponding action over the space \mathcal{F}^S. The equation (14g) is a definition of a non-linear coherent state denoted $| z \rangle$ which is a generalization of the more standard linear coherent states of the Barut-Girardello and Klauder-Perelomov \[15,32\] kinds; and (14h) presents the form of such non-linear coherent states (see Appendix A). Equation (14i) following to Antoine et al. we recall that $k \in \{ \frac{1}{2}, 1, \frac{3}{2}, 2, \ldots \}$ for the discrete series stricto senso UIRs of $\mathfrak{su}(1,1)$, and $k \in [1/2, +\infty)$ for the extension to the universal covering of the group $SU(1,1)$ \[17\]. Whatever this the fact, we will speak about discrete series UIRs for both cases.
Quantum hypercomputation based on the dynamical algebra $\mathbf{su}(1,1)$ shows the probability density for the random variable n, which is associated to the generalized coherent states (14h).

\[
\mathcal{S}^S = \{ |n\rangle \mid n \in \mathbb{N} \},
\]

(14a)

\[
[K^S_-, K^S_+] = K^S_3, \quad [K^S_-, K^S_3] = 2K^S_-, \quad [K^S_3, K^S_+] = -2K^S_+,
\]

(14b)

\[
K^S_- |0\rangle = 0,
\]

(14c)

\[
\begin{align*}
K^S_- |n\rangle &= \sqrt{f^S(n)} \mid n - 1\rangle, \\
K^S_+ |n\rangle &= \sqrt{f^S(n + 1)} \mid n + 1\rangle, \\
K^S_3 |n\rangle &= (f^S(n + 1) - f^S(n)) \mid n\rangle = g^S(n) \mid n\rangle,
\end{align*}
\]

(14d)

\[
H^S |n\rangle = E^S_n |n\rangle,
\]

(14e)

\[
H^S = \hbar \omega (K^S_+ K^S_-), \text{ with } K^S_+ K^S_- |n\rangle = f^S(n) \mid n\rangle,
\]

(14f)

\[
N^S = (f^S (H^S))^{-1} = (g^S (K^S_3))^{-1},
\]

(14g)

\[
N^S |n\rangle = n \mid n\rangle,
\]

\[
h^S(N^S) K^S_- |z\rangle^S = z | z\rangle^S, z \in \mathbb{C},
\]

(14h)

\[
| z\rangle^S = \left(\sum_{m=0}^{\infty} \frac{|z|^{2m}}{\left(\prod_{j=0}^{m-1} h^S(j) \right)^2 (f^S(m)\!)} \right)^{-1/2} \sum_{n=0}^{\infty} \frac{z^n}{\left(\prod_{j=0}^{n-1} h^S(j) \right) \sqrt{f^S(n)!}},
\]

(14i)

\[
P^S_n(z) = \left(\sum_{m=0}^{\infty} \frac{|z|^{2m}}{\left(\prod_{j=0}^{m-1} h^S(j) \right)^2 (f^S(m)\!)} \right)^{-1} \frac{|z|^{2n}}{\left(\prod_{j=0}^{n-1} h^S(j) \right)^2 (f^S(n)\!)}.
\]

Starting from the Eqs. (14), the announced adaptation of KHQA for the case of the $\mathbf{su}(1,1)$ algebra is completely direct. In the strategy of codification which was represented by the figure it is necessary to replace the Hamiltonian H^D_{SHO} by a new Hamiltonian denoted H^S_D which is constructed with the number operators defined at (14f), by means of

\[
H^S_D = (D (N^S_1, \ldots, N^S_k))^2.
\]

(15)

The adiabatic initialization is obtained from the coherent states (14h) and from (14g) and it is given by

\[
| g\rangle^S = \bigotimes_{i=1}^{k} | z_i\rangle^S,
\]

(16)

\[
H^S_I = \sum_{i=1}^{k} (K^S_{+,i} h^S(N^S) - z^*_i) (h^S(N^S) K^S_{-,i} - z_i).
\]

(17)
From all this, we obtain the Hamiltonian denoted \(H^S_A \) which is the generator of the adiabatic evolution and which is of the form

\[
H^S_A(t) = \left(1 - \frac{t}{T}\right) H^S_I + \frac{t}{T} H^S_D.
\]

Finally, to satisfy the halting criterion (6), we chose a value for the parameter \(z \in \mathbb{C} \) which according to (14) satisfies the condition in (7), it is to say we chose a value of \(z \) such that

\[P^S_n(z) < 1/2. \]

All that is the abstract generalization or extension of the original hypercomputational quantum algorithm of Kieu. In the following section we will present some concrete physical referents on which to realize the implementation of the abstract algorithm previously presented.

4. Adaptation of KHQA over some concrete physical referents

In this section some concrete quantum systems are presented as possible physical referents on which to try to implement the adaptation of KHQA with the \(\text{su}(1, 1) \) algebra, which was presented at the past section. The mathematical adaptation expressed by the Eqs. (14) depends on the particular forms of the characteristic functions \(f^S \) and \(h^S \) associated with the physical system \(S \). Then for every one of the considered physical systems, we establish that the corresponding dynamical algebra is precisely \(\text{su}(1, 1) \) and we determine the particular forms of \(f^S \) y \(h^S \). The physical systems that are considered here are: the infinite square well, the Pöschl-Teller potentials, the infinite cylindrical well, a perturbed cylindrical well, the density-dependent Holstein-Primakoff system of quantum optics and the Laguerre oscillator. Other systems of quantum optics such as: two-mode realization, amplitude-squared realization, four-mode system; admit also infinite-dimensional representations but such representations are reducible and with such kind of representations is more difficult to adapt KHQA.

4.1. The infinite square well

The adaptation of the KHQA for the case of the infinite square well (ISW) was realized by the present authors within a previous work [22, 23]. At the present work we again establish that the ISW satisfy the mathematical structure given by (14), for a particular forms of \(f^{\text{ISW}} \) y \(h^{\text{ISW}} \) from which it is possible to construct the constitutive elements of the basic algebraic anatomy of the KHQA.

For a particle with mass \(m \) which is trapped inside the infinite square well \(0 \leq x \leq \pi l \), the Fock space associated \(\mathfrak{F}^{\text{ISW}} \), the Hamiltonian operator \(H^{\text{ISW}} \), the eigenvalue equation and the boundary conditions are

\[
\mathfrak{F}^{\text{ISW}} = \{ |n\rangle \mid n \in \mathbb{N} \},
\]

\[
H^{\text{ISW}} = i^2 \frac{\hbar^2}{2m} \frac{d^2}{dx^2} - \frac{\hbar^2}{2ml^2},
\]

(19)
Quantum hypercomputation based on the dynamical algebra $\mathfrak{su}(1, 1)$

\[H_{\text{ISW}} \psi_{\text{ISW}} = E_{\text{ISW}} \psi_{\text{ISW}}, \]
\[\psi(x) = 0, \quad x \geq \pi l \text{ and } x \leq 0. \]

Replacing (19) on (20) together with the boundary conditions (21), we obtain

\[\psi_{\text{ISW}}^n(x) = \sqrt{\frac{2}{\pi l}} \sin(x + 1) \frac{x}{l} \equiv \langle x | n \rangle, \]
\[E_{\text{ISW}}^n = \hbar \omega_{\text{ISW}} e_{\text{ISW}}^n, \quad \text{where} \quad \omega_{\text{ISW}} = \frac{\hbar^2}{2ml^2} \text{ and } e_{\text{ISW}}^n = n(n + 2), \quad n \in \mathbb{N}, \]

and where the action of H_{ISW} over the space \mathcal{F}_{ISW} is given

\[H_{\text{ISW}} | n \rangle = E_{\text{ISW}}^n | n \rangle. \]

Due to the spectral structure of the ISW, the dynamical algebra associated with it, is the Lie algebra $\mathfrak{su}(1, 1)$ \(^{[17]}\) whose generators denoted $K_+^{\text{ISW}}, K_-^{\text{ISW}}$ and K_3^{ISW} satisfy the commutation relations of (14b). With base on (22), the algebra $\mathfrak{su}(1, 1)$ admits an infinite-dimensional UIR over the space \mathcal{F}_{ISW}, which is given by

\[K_-^{\text{ISW}} | 0 \rangle = 0, \]
\[K_-^{\text{ISW}} | n \rangle = \sqrt{e_{n+1}^{\text{ISW}}/e_n^{\text{ISW}}} | n \rangle = \sqrt{n(n + 2)} | n - 1 \rangle, \]
\[K_+^{\text{ISW}} | n \rangle = \sqrt{e_{n+1}^{\text{ISW}}/e_n^{\text{ISW}}} | n \rangle = \sqrt{(n + 1)(n + 3)} | n + 1 \rangle, \]
\[K_3^{\text{ISW}} | n \rangle = (e_{n+1}^{\text{ISW}} - e_n^{\text{ISW}}) | n \rangle = (2n + 3) | n \rangle. \]

With basis on this representation of the algebra $\mathfrak{su}(1, 1)$, the Hamiltonian (19) is rewritten as

\[H_{\text{ISW}} = \hbar \omega (K_+^{\text{ISW}} K_-^{\text{ISW}}), \quad H_{\text{ISW}} | n \rangle = E_{\text{ISW}}^n | n \rangle, \]

and a new number operator N_{ISW} is given by

\[N_{\text{ISW}} = (1/2) (K_3^{\text{ISW}} - 3), \quad N_{\text{ISW}} | n \rangle = n | n \rangle. \]

Due to the associated dynamical algebra, the BGCS $| z \rangle_{\text{ISW}}, z \in \mathbb{C},$ for the ISW are given by \(^{[33]}\)

\[K_-^{\text{ISW}} | z \rangle_{\text{ISW}} = z | z \rangle_{\text{ISW}}, \quad \text{where} \quad | z \rangle_{\text{ISW}} = \frac{|z|}{I_v(2|z|)} \sum_{n=0}^{\infty} \frac{z^n}{\sqrt{n!(n + 2)!}} | n \rangle, \]

where $I_v(x)$ is the modified Bessel function of the first kind. The corresponding probability density for the random variable n that results from (23) is

\[P_n^{\text{ISW}}(z) = \frac{|z|^2}{I_v(2|z|)} \frac{|z|^{2n}}{n!(2 + n)!}. \]

We have established then that the ISW satisfy the algebraic structure of (14) where the characteristic functions are of the forms

\[f^{\text{ISW}}(n) = e_n^{\text{ISW}} = n(n + 2), \]
\[h^{\text{ISW}}(N^{\text{ISW}}) = 1, \]
Quantum hypercomputation based on the dynamical algebra $\mathfrak{su}(1,1)$

and we can on consequence to rewrite in terms of the ISW, all the elements of the KHQA, which are given by the Eqs. (15) to (18); and to obtain at such way, an adaptation of the KHQA for the ISW, on where the halting criterion (6) is satisfied according to the condition (7) with every one value of $z \in \mathbb{Z}$ that verifies that

$$P_{0}^{\text{ISW}}(z) = \frac{|z|^2}{2I_2(2|z|)} < 1/2,$$

given that $P_{n}^{\text{ISW}}(z) \leq P_{0}^{\text{ISW}}(z), \forall n$.

4.2. The infinite cylindrical well and the perturbed cylindrical well

With the aim to adapt the KHQA over the infinite cylindrical well (ICW) or over a perturbed cylindrical well (PCW), initially we establish that these physical referents have as dynamical algebra justly the $\mathfrak{su}(1,1)$ algebra. We follow the work that was realized by Antoine et al. [17], at such way that we obtain the particular forms of the functions $f^{\text{ICW}/\text{PCW}}$ and $h^{\text{ICW}/\text{PCW}}$ that are required.

At concrete, for a particle with mass m which is trapped inside the infinite cylindrical well of radius R, the Fock space associated denoted $\mathfrak{F}^{\text{ICW}}$ and the corresponding Hamiltonian operator H^{ICW} are given by:

$$\mathfrak{F}^{\text{ICW}} = \{ |n\rangle | n \in \mathbb{N} \},$$

$$H^{\text{ICW}} = -\frac{\hbar^2}{2m}\nabla^2 + U^{\text{ICW}},$$

where U^{ICW} is a constant which will be obtained posteriorly and the bi-dimensional Laplacian operator is written on cylindrical coordinates. The spectral equation for Hamiltonian H^{ICW} is

$$H^{\text{ICW}}\Psi^{\text{ICW}} = E^{\text{ICW}}\Psi^{\text{ICW}}.\quad (26)$$

Now the substitution of (25) on (26) gives the following partial differential equation whose solution determines the spectrum of H^{ICW}

$$-\frac{\hbar^2}{2m}\nabla^2\Psi^{\text{ICW}} + U^{\text{ICW}}\Psi^{\text{ICW}} = E^{\text{ICW}}\Psi^{\text{ICW}}.\quad (27)$$

Using cylindrical coordinates and axial symmetry is reduced to

$$\frac{\partial^2}{\partial r}\Psi^{\text{ICW}}(r) + \frac{1}{r}\frac{\partial}{\partial r}\Psi^{\text{ICW}}(r) + \frac{2m}{\hbar^2}(E^{\text{ICW}} - U^{\text{ICW}})\Psi^{\text{ICW}}(r) = 0.\quad (28)$$

The condition of trapping for the particle within the interior of the ICW, is introduced using the boundary condition

$$\Psi^{\text{ICW}}(R) = 0.\quad (29)$$

The solution of (28) with the condition of wave function finite at $r = 0$ is given by

$$\Psi^{\text{ICW}}(r) = C J_0 \left(\sqrt{\frac{2m(E^{\text{ICW}} - U^{\text{ICW}})}{\hbar^2}} r \right),\quad (30)$$
Quantum hypercomputation based on the dynamical algebra $\mathfrak{su}(1, 1)$

where C is a constant. Now using (30) and the boundary condition (29), the energy spectrum is obtained as

$$E_n^{\text{ICW}} = U_n^{\text{ICW}} + \frac{\hbar^2}{2mR^2} \alpha_n^2,$$

where $n \in \mathbb{N}$ and the α_n’s are the zeros of the Bessel function $J_0(x)$. Using the empirical formula of interpolation for α_n

$$\alpha_n = 3.115 n + 2.405,$$

the substitution of (32) on (31) gives

$$E_n^{\text{ICW}} = U_n^{\text{ICW}} + \frac{2.89 \hbar^2}{mR^2} + \frac{4.85 \hbar^2}{mR^2} n(n + 1.54) = \hbar \omega_n^{\text{ICW}} e_n^{\text{ICW}},$$

where $U_n^{\text{ICW}} = -2.89 \hbar^2 / mR^2$, $\omega_n^{\text{ICW}} = 4.85 \hbar / mR^2$, and $e_n^{\text{ICW}} = n(n + 1.54)$, $n \in \mathbb{N}$.

The normalized wave function is given by

$$\Psi_n^{\text{ICW}}(r) = \frac{1}{R \sqrt{\pi}} \frac{J_0(\frac{\alpha_n}{R} r)}{J_1(\alpha_n)} \equiv \langle r | n \rangle,$$

and the action of H_n^{ICW} over the space \mathcal{F}_ISW being

$$H_n^{\text{ICW}} | n \rangle = \hbar \omega_n^{\text{ICW}} e_n^{\text{ICW}} | n \rangle.$$

From the other side, for the case of the PCW, we consider a quantum particle that it is confined to the interior of a infinite long cylinder of finite radius R but now the interior of the cylinder has a potential of the form

$$V_n^{\text{PCW}}(r) = W_n^{\text{PCW}} + \frac{U_n^{\text{PCW}} r^2}{r^2},$$

where U_n^{PCW} and W_n^{PCW} are constants that we can to determine ulteriorly and we assume that both the wall of cylinder and the axis of the cylinder always obstruct that the particle resides on them, because both the wall and the axis are maintained to infinite potential.

For a particle with mass m trapped inside the PCW of radius R, the Fock space associated denoted \mathcal{F}_PCW, the Hamiltonian operator H_n^{PCW}, and the spectral equation are given by

$$\mathcal{F}_\text{PCW} = \{| n \rangle | n \in \mathbb{N} \},$$

$$H_n^{\text{PCW}} = -\frac{\hbar^2}{2m} \nabla^2 + V_n^{\text{PCW}},$$

$$H_n^{\text{PCW}} \Psi_n^{\text{PCW}} = E_n^{\text{PCW}} \Psi_n^{\text{PCW}},$$

where again the bi-dimensional Laplacian operator is written on cylindrical coordinates. The substitution of (36) with (34) on (37) gives the following partial differential equation whose solution determines the spectrum of H_n^{PCW}

$$-\frac{\hbar^2}{2m} \nabla^2 \Psi_n^{\text{PCW}} + V_n^{\text{PCW}} \Psi_n^{\text{PCW}} = E_n^{\text{PCW}} \Psi_n^{\text{PCW}}.$$
Quantum hypercomputation based on the dynamical algebra \textbf{su}(1, 1)

Using again cylindrical coordinates and axial symmetry \cite{38} is reduced to
\[
\frac{\partial^2}{\partial r^2} \psi_{\text{PCW}}(r) + \frac{1}{r} \frac{\partial}{\partial r} \psi_{\text{PCW}}(r) + \frac{2m}{\hbar^2} \left(E_{\text{PCW}} - W_{\text{PCW}} - \frac{U_{\text{PCW}}}{r^2} \right) \psi_{\text{PCW}}(r) = 0. \tag{39}
\]

The condition of trapping for the particle to the interior of the PCW but with an infinite potential at \(r = 0 \), is
\[
\psi_{\text{PCW}}(R) = 0, \quad \psi_{\text{PCW}}(0) = 0,
\]
then the solution of (39) with the condition of wave function finite at \(r = 0 \) is given by
\[
\psi_{\text{PCW}}(r) = C J \left(\sqrt{\frac{2mU_{\text{PCW}}}{\hbar^2}} \right) \sqrt{\frac{2m(E_{\text{PCW}} - W_{\text{PCW}})}{\hbar^2}} r, \tag{40}
\]
where again \(C \) is a constant. Now to obtain in (40) the condition \(\psi_{\text{PCW}}(0) = 0 \), is necessary that
\[
\sqrt{\frac{2mU_{\text{PCW}}}{\hbar^2}} \geq 1, \text{ where we have chosen that } \sqrt{\frac{2mU_{\text{PCW}}}{\hbar^2}} = 1. \tag{41}
\]

With (41), then (40) changes to
\[
\psi_{\text{PCW}}(r) = C J_1 \left(\sqrt{\frac{2m(E_{\text{PCW}} - W_{\text{PCW}})}{\hbar^2}} r \right). \tag{42}
\]

Using (42) and the boundary condition \(\psi_{\text{PCW}}(R) = 0 \), the energy spectrum is obtained as
\[
E_n^{\text{PCW}} = W_{\text{PCW}} + \frac{\hbar^2}{2mR^2} \alpha_n^2, \tag{43}
\]
where \(n \in \mathbb{N} \) and the \(\alpha_n \)'s are the zeros of the Bessel function \(J_1(x) \). Using the empirical formula of interpolation for \(\alpha_n \)
\[
\alpha_n = 3.14n + 3.83, \tag{44}
\]
the substitution of (44) on (43) gives
\[
E_n^{\text{PCW}} = W_{\text{PCW}} + \frac{7.34\hbar^2}{mR^2} + \frac{4.93\hbar^2}{mR^2} n(n + 2.43) = \hbar \omega_{\text{PCW}} \epsilon_n^{\text{PCW}}, \tag{45}
\]
where \(W_{\text{PCW}} = -7.34\hbar^2/mR^2, \omega_{\text{PCW}} = 4.93\hbar/mR^2 \), and \(\epsilon_n^{\text{PCW}} = n(n + 2.43), \quad n \in \mathbb{N} \).

Finally the normalized wave function is
\[
\psi_n^{\text{PCW}}(r) = \frac{1}{R\sqrt{\pi}} J_1(\frac{\alpha_n}{R}) \equiv \langle r \mid n \rangle,
\]
and the action of \(H_{\text{PCW}} \) over the space \(\mathcal{F}_{\text{PCW}} \) is given by
\[
H_{\text{PCW}} \mid n \rangle = \hbar \omega_{\text{PCW}} \epsilon_n^{\text{ICW}} \mid n \rangle.
\]

With the purpose of to avoid a very heavy notation, we define by the rest of this subsection a new variable denoted \(i \) that can to take the values ICW and PCW, it is to say
\[
i \in \{ \text{ICW, PCW} \}.
\]
Quantum hypercomputation based on the dynamical algebra $\mathfrak{su}(1, 1)$

With the aim to establish that the $\mathfrak{su}(1, 1)$ algebra is the dynamical algebra associated both to the ICW as to the PCW, we follow the procedure that was presented in [17] for the case of ISW, we introduce both a creation operator denoted K^i_+ as a destruction operator denoted K^i_-, at such way that we can to rewrite the Hamiltonian H^i as

$$H^i = \hbar \omega^i (K^i_+ K^i_-).$$

Besides of this, we introduce the operator

$$K_3^i = [K^i_-, K^i_+],$$

in such form that the operators K^i_+, K^i_- and K_3^i satisfy the commutation relations (14b).

With the aim to satisfy the requirements, with base on (33) and (45) we establish a representation of the $\mathfrak{su}(1, 1)$ algebra which is given by

$$K^-_i |0\rangle = 0,$$

$$K^-_i |n\rangle = \sqrt{e^i_n} |n - 1\rangle,$$

$$K^+_i |n\rangle = \sqrt{e^i_{n+1}} |n + 1\rangle,$$

$$K_3^i |n\rangle = (e^i_{n+1} - e^i_n) |n\rangle.$$

From (33) and (45) we define

$$b^{\text{ICW}} = 1.54 \text{ and } b^{\text{PCW}} = 2.43,$$

and with base on the representation that was introduced we get a number operator of the form

$$N^i = (1/2) (K_3^i - (b^i + 1)), \quad N^i |n\rangle = n |n\rangle.$$

The BGCS for the ICW and for the PCW are the states denoted $|z^i\rangle$ that satisfy the equation $K_3^i |z^i\rangle = z |z^i\rangle$ and which have the form

$$|z^i\rangle = \frac{|z|^{b^i/2}}{\sqrt{I_{b^i}(2|z|)}} \sum_{n=0}^{\infty} \frac{z^n}{\sqrt{n!(b^i + n)!}} |n\rangle,$$

being the associated probability density denoted $P^i_n(z)$

$$P^i_n(z) = \frac{|z|^{b^i}}{I_{b^i}(2|z|)} \frac{|z|^{2n}}{n!(b^i + n)!}.$$

Then, for the systems ISW/PCW, we have established that they satisfy the algebraic structure of (14) with

$$f^i(n) = e^i_n,$$

$$h^i(N^i) = \mathbb{I},$$

and by the use of a procedure which is similar to the realized for the ISW, we obtain an adaptation of the KHQA over the systems ICW/PCW where the halting criterion (13) is satisfied for the values of $z \in \mathbb{C}$ such that

$$P^i_0 = \frac{|z|^{b^i}}{(b^i)!I_{b^i}(2|z|)} < 1/2.$$
4.3. The Pöschl-Teller potentials

In this subsection is showed that the Pöschl-Teller Potentials (PTP) also satisfies the algebraic structure given (14) and for then it is possible to adapt the KHQA for the case of the PTP. The problem to find both the energy spectrum as the wave functions for a particle of mass \(m \) which is confined within a ISW, is generalized to the case when the particle is trapped by a potential of the Pöschl-Teller kind \[17\]

\[
V_{PTP}^{\lambda,\kappa}(x) = \frac{1}{2} V_0^{PTP} \left(\frac{\lambda(\lambda - 1)}{\cos^2 x/2l} + \frac{\kappa(\kappa - 1)}{\sin^2 x/2l} \right),
\]

where the parameters \(\lambda, \kappa > 1 \), the coupling constant is \(V_0 > 0 \) and the PTP is defined inside the domain \(0 \leq x \leq \pi l \). The corresponding Hamiltonian is given by

\[
H^{PTP} = \frac{i}{\hbar} \frac{\hbar^2}{2m} \frac{d^2}{dx^2} + \frac{\hbar^2}{8ml^2} \left(\frac{\lambda(\lambda - 1)}{\cos^2 x/2} + \frac{\kappa(\kappa - 1)}{\sin^2 x/2} \right) - \frac{\hbar^2}{8ml^2}(\lambda + \kappa)^2, \tag{46}
\]

where we chose by convenience \(V_0 = \hbar^2/4ml^2 \) \[17\]. The energy spectrum and the corresponding eigenstates comes from the solutions of the spectral equation

\[
H^{PTP} \psi^{PTP}(x) = E^{PTP} \psi^{PTP}(x), \tag{47}
\]

with the boundary conditions

\[
\psi^{PTP}(0) = \psi^{PTP}(\pi l) = 0. \tag{48}
\]

Replacing (46) on (47) together with the boundary conditions (48), we obtain the normalized wave functions and their corresponding eigenvalues \[17\]

\[
\Psi^{PTP}_n(x) = [c_n(\lambda, \kappa)]^{-1/2} \left(\frac{\cos x}{2l} \right)^\lambda \left(\frac{\sin x}{2l} \right)^\kappa _2 F_1 \left(-n, n + \lambda + \kappa; \frac{1}{2}; \sin^2 \frac{x}{2a} \right) \equiv \langle x | \eta, n \rangle,
\]

\[
E^{PTP}_n = \hbar \omega^{PTP} e^{PTP}_n(\lambda, \kappa),
\]

where \([c_n(\lambda, \kappa)]^{-1/2}\) is normalization factor which is given analytically when \(\lambda \) and \(\kappa \) are positive integers, the function \(_2F_1\) is a particular case of the generalized hypergeometric function, and

\[
\omega^{PTP} = \frac{\hbar}{2ml^2}, \quad e^{PTP}_n(\lambda, \kappa) = n(n + 2\eta - 1), \quad \eta = \frac{\lambda + \kappa + 1}{2}. \tag{49}
\]

The action of the Hamiltonian \(H^{PTP} \) over the Fock space defined as

\[
\mathcal{F}^{PTP} = \{ | \eta, n \rangle | n \in \mathbb{N} \},
\]

is given by

\[
H^{PTP} | \eta, n \rangle = E^{PTP}_n | \eta, n \rangle.
\]

Due to the spectral structure of the PTP, its dynamical algebra is again \(su(1, 1) \) \[17\], whose generators denoted now, \(K_+^{PTP}, K_-^{PTP} \) and \(K_3^{PTP} \) satisfy the commutation relations
Quantum hypercomputation based on the dynamical algebra $\mathfrak{su}(1,1)$

With base on (49), the $\mathfrak{su}(1,1)$ algebra admits an infinite-dimensional UIR over the space \mathcal{F}^{PTP} which is given by

$$K_{-}^{\text{PTP}} |\eta,0\rangle = 0,$$

$$K_{-}^{\text{PTP}} |\eta,n\rangle = \sqrt{e_{n}^{\text{PTP}}} |\eta,n-1\rangle = \sqrt{n(n+2\eta-1)} |\eta,n-1\rangle,$$

$$K_{+}^{\text{PTP}} |\eta,n\rangle = \sqrt{e_{n+1}^{\text{PTP}}} |\eta,n+1\rangle = \sqrt{(2\eta+n)(n+1)} |\eta,n+1\rangle,$$

$$K_{3}^{\text{PTP}} |\eta,n\rangle = (e_{n+1}^{\text{PTP}} - e_{n}^{\text{PTP}}) |\eta,n\rangle = (\eta+n) |\eta,n\rangle.$$

(50)

With basis on the representation of the $\mathfrak{su}(1,1)$ algebra, the Hamiltonian H^{PTP} is rewritten as

$$H^{\text{PTP}} = \hbar \omega^{\text{PTP}} (K_{+}^{\text{PTP}} K_{-}^{\text{PTP}}),$$

and we can to construct a new number operator of the form

$$N^{\text{PTP}} = (1/2) (K_{3}^{\text{PTP}} - \eta), \quad N^{\text{PTP}} |\eta,n\rangle = n |\eta,n\rangle.$$

The existence of the dynamical algebra permits the construction of generalized coherent states to $\mathfrak{su}(1,1)$. The state $|z\rangle, z \in \mathbb{C}$, is chosen again as of the Barut-Girardello type; and again is defined as $K_{-}^{\text{PTP}} |\eta,z\rangle = z |\eta,z\rangle$. As is well know this is a natural generalization of the coherent state associated to the harmonic oscillator. The explicit form is

$$|\eta,z\rangle = \left(\Gamma(\eta) |z|^{-1} I_{\eta-1}(2|z|) \right)^{-1/2} \sum_{n=0}^{\infty} \frac{z^{n}}{\sqrt{n!} (\eta)_{n}} |\eta/2,n\rangle,$$

where $(\eta)_{n}$ is the Pochammer’s symbol, defined as $(\eta)_{n} = \eta(\eta+1) \cdots (\eta+n-1)$; and $I_{\eta-1}$ is again the modified Bessel function of the first class. Similarly to the previous systems, we have a probability density associated to the coherent state which is immediately extracted from the explicit form of the coherent state.

We have established then, that the PTP also satisfy the algebraic structure given by (14) with characteristic functions of the form

$$f^{\text{PTP}}(n) = e_{n}^{\text{PTP}}(\lambda,\kappa),$$

$$h^{\text{PTP}}(N^{\text{PTP}}) = \mathbb{I},$$

and by a procedure which is similar to the realized for the cases of ISW, ICW and PCW, we obtain an adaptation of the KHQA for the case of the PTP where it is possible to chose the values of the parameters in such way that halting criterion (6) is satisfied.

4.4. The density-dependent Holstein-Primakoff system

In this subsection is showed that the density-dependent Holstein-Primakoff (HP) system of quantum optics also satisfies the algebraic structure of (14). The HP realization of the Lie algebra $\mathfrak{su}(1,1)$ is constructed from the generators denoted now, $K_{+}^{\text{HP}}, K_{-}^{\text{HP}}$ and
K^HP_3; that satisfy the commutation relations (14b) (15). The HP realization explicitly reads

\begin{align*}
K^\text{HP}_+ &= a^+ \sqrt{N^{\text{SHO}} + 2\eta}, \\
K^\text{HP}_- &= \sqrt{N^{\text{SHO}} + 2\eta}a, \\
K^\text{HP}_3 &= N^{\text{SHO}} + \eta.
\end{align*}

where a^+, a and N^{SHO} are respectively the creation, annihilation, and number operator of a single-mode electromagnetic field and which are given by (1b) and (1f). The parameter denoted η is the label of this representation.

The action of the generators over the Fock space is of the form

\begin{align*}
K^\text{HP}_- |0\rangle &= 0, \\
K^\text{HP}_- |n\rangle &= \sqrt{n(n + 2\eta - 1)} |n - 1\rangle, \\
K^\text{HP}_+ |n\rangle &= \sqrt{(2\eta + n)(n + 1)} |n + 1\rangle, \\
K^\text{HP}_3 |n\rangle &= (\eta + n) |n\rangle.
\end{align*}

which is very similar to the representation (50).

The principal difference between HP and the others systems(ISW, ICW, PCW and PTP) is that for the PTP is more natural the Perelomov coherent states that the BGCS. Here we consider the Perelomov coherent state as a case of nonlinear coherent states. Then, the equation that defines the nonlinear coherent state that naturally arises for the HP system is (15)

\begin{equation}
\frac{1}{N + 2k} K^\text{HP}_- |z\rangle = z |z\rangle,
\end{equation}

where the explicit solution of (51) is

\begin{equation}
|z\rangle = (1 - |z|^2)^{M/2} \sum_{n=0}^{\infty} \binom{M + n - 1}{n} z^n |n\rangle
\end{equation}

Then, we have established that the HP also satisfy the algebraic structure (14) with characteristic functions of the form $f^\text{HP}(n) = n(2k + n - 1)$ and $h^\text{HP}(N^{\text{HP}}) = 1/(N + 2k)$ where $N^{\text{HP}} = N^{\text{SHO}}$. It is possible then, to adapt the KHQA for the case of the HP with a clearly established halting criterion.

4.5. Laguerre oscillator

Finally in this subsection we show that the named Laguerre oscillator also satisfy the algebraic structure which is given by (14) and for then it is possible with such system to adapt the KHQA. The relevant formalism is the following.

We consider a Hilbert space whose elements are generalized Laguerre functions. By constructing raising and lowering operators acting on these states one can obtain an explicit realization of the Hamiltonian which is defined to be diagonal in this Hilbert space. The obtained system such as is defined by the Hamiltonian is called Laguerre oscillator.
Quantum hypercomputation based on the dynamical algebra $\mathfrak{su}(1, 1)$

Now, as is well known, the Laguerre polynomials are defined as

$$L_n^\alpha(x) = \frac{1}{n!} e^x x^{-\alpha} \frac{d^n}{dx^n} (e^{-x} x^{\alpha+n}),$$

and the generalized Laguerre functions are of the form

$$\psi_n^\alpha(x) = \sqrt{\frac{n! x^{\alpha+1} e^{-x}}{(n+\alpha)!}} L_n^\alpha(x).$$

Now, we can define the raising operator denoted simply K_+ and the lowering operator K_- for the generalized Laguerre functions:

$$K_+ \psi_n^\alpha(x) = \left[-x \frac{d}{dx} - \frac{2n + \alpha + 1 - x}{2}\right] \psi_n^\alpha(x)$$

$$= -\sqrt{(n+1)(n+\alpha+1)} \psi_{n+1}^\alpha(x),$$

$$K_- \psi_n^\alpha(x) = \left[x \frac{d}{dx} - \frac{2n + \alpha + 1 - x}{2}\right] \psi_n^\alpha(x)$$

$$= -\sqrt{n(n+\alpha)} \psi_{n-1}^\alpha(x).$$

The generalized Laguerre functions are the base of a Hilbert space that has the structure of Fock space and at consequence

$$\psi_n^\alpha(x) = \frac{1}{\sqrt{n!(\alpha+1)_n}} (K_+)^n \psi_0^\alpha(x).$$

The commutator between the ladder operators of the Laguerre oscillator is given by

$$[K_-, K_+] \psi_n^\alpha(x) = (2n + \alpha + 1) \psi_n^\alpha(x),$$

and then, we can define the operator denoted simply K_3, as

$$K_3 \psi_n^\alpha(x) = \frac{1}{2} (2n + \alpha + 1) \psi_n^\alpha(x).$$

The commutation relations for the three operators of the Laguerre oscillator are

$$[K_-, K_+] = 2K_3, [K_3, K_+] = K_+, [K_3, K_-] = -K_-, \tag{58}$$

and we conclude that the Laguerre oscillator realizes a infinite-dimensional UIR of $\mathfrak{su}(1, 1)$.

The Hamiltonian for the Laguerre oscillator is

$$H \psi_n^\alpha(x) = K_+ K_- \psi_n^\alpha(x) = e_n \psi_n^\alpha(x) = n(n+\alpha) \psi_n^\alpha(x),$$

and the BGCS are defined as is usual, it is to say

$$K_- |z\rangle = z |z\rangle, \tag{60}$$

where the solution of (60) is again the well know form

$$|z\rangle = \frac{|z|^{\alpha/2}}{\sqrt{I_\alpha(2|z|)}} \sum_{n=0}^{\infty} \frac{z^n}{\sqrt{n!(n+\alpha)!}} |n\rangle,$$
Quantum hypercomputation based on the dynamical algebra $\mathfrak{su}(1,1)$

where

$$\left| n \right> = \psi^n_\alpha(x). \quad (62)$$

Then, we have proved that the Laguerre oscillator also satisfy the algebraic structure of (14) with characteristic functions of the form $f(n) = n(n + \alpha)$ and $g(n) = 1$. All this indicates that it is possible to adapt the KHQA to case of the Laguerre oscillator.

We can observe that the Laguerre oscillator contains as particular cases the systems ISW, ICW, PCW and PTP for different values of the parameter α. From the other side, it is maybe possible to have a realization of the Laguerre oscillator and its customs within the field of quantum optics.

5. Conclusions

- We have identified from an algebraic point of view the conditions to make adaptations of KHQA: a non-compact Lie algebra of low dimension that admits infinite-dimensional irreducible representations with naturally defined ladder operators and generalized coherent states. With base in this result, we made an adaptation of KHQA over the algebra $\mathfrak{su}(1,1)$ due to this algebra satisfies these conditions and due to this algebra is the dynamical algebra associated to many quantum systems.

- Hilbert’s tenth problem is a semi-computable problem by a TM in the sense that if the Diophantine equation (2) has solution, an exhaustive search on k-tuplas of non-negative integers would find it, but if (2) does not have solution this search would not finish. In this sense, it is possible to be interpreted ingenuously that KHQA and our adaptation over the algebra $\mathfrak{su}(1,1)$ carry out an infinite search (in a finite time) on every k-tuplas of non-negative integers. However, KHQA and our adaptation do not make an infinite search, due to although Hilbert’s tenth problem is TM incomputable, this is a finitely refutable problem [34]. That is to say, it is only necessary to make the search on a finite set of non-negative integers, to determine if (2) has a solution or not, although of course, this finite set is TM incomputable.

- A very common misunderstanding in technical literature is not to make distinction between the terms ‘quantum computation’ and ‘standard quantum computation’ (e.g. [35, 36]). Due to this misunderstanding and due to equivalence in computability terms, between the standard quantum computation and TM computability established by David Deutsch [37], the hypercomputation possibility based on quantum computation is rejected. Nevertheless this situation is erroneous as it demonstrates by the theoretical existence of KHQA and our adaptation over the algebra $\mathfrak{su}(1,1)$.

In strict sense there is a type of weak hypercomputation in standard quantum computation: the generation of truly random numbers [37]. Nevertheless, is not clear how using this property to solve to a TM incomputable problem [38].
Quantum hypercomputation based on the dynamical algebra $\mathfrak{su}(1,1)$

- Other common misunderstanding is not to make distinction between quantum adiabatic computation on finite and infinite-dimensional Hilbert spaces. For example, there is a recent proof that quantum adiabatic computation is equivalent to standard quantum computation [39], however this proof generates no contradiction with KHQA or with our adaptation over the algebra $\mathfrak{su}(1,1)$, due to such a proof of equivalence is only valid for quantum adiabatic computation on finite-dimensional Hilbert spaces.

- With base on our adaptation of KHQA over the algebra $\mathfrak{su}(1,1)$, we had presented a plausible realizations within the field of condensed matter physics and quantum optics. Although Kieu has refuted successful some critics of his algorithm (see section: Notes addes of [12]), there is an important observation with respect to its possible implementation that has not been solved yet, in Kieu’s words: “…there have been some concerns (this pointed has been raised on separate occasions by Martin Davis (2003), Stephen van Enk (2004) and Andrew Hodges (2004)) that infinite precision is still required in physically setting up the various integers parameters in the time-dependent quantum Hamiltonians. While the issue deserves further investigations as surely any systematic errors in the Hamiltonians would be fatal, we are not convinced that such integer parameters cannot be satisfactorily set up. In particular, we would like to understand the effects of statistical (as opposed to systematic) errors on the statistical behaviour of the spectrum of our adiabatic Hamiltonians” [13, p. 180]. This observation is valid for our plausible realizations too, however we agree it is necessary further investigations to establish if it is possible or not to implement KHQA or our adaptation over the algebra $\mathfrak{su}(1,1)$.

Acknowledgments

We thank to Professor J. P. Antoine for help us with some definitions. We thank to Professor Tien D. Kieu for helpful discussions and feedback. One of us (A. S.) would likes to acknowledge the kind hospitality during his visit to Prof. Kieu at the CAOUS at Swinburne University of Technology. We are also thankful to some anonymous referees for their accurate observations and suggestions to preliminary versions of this article. This research was supported by COLCIENCIAS-EAFIT (grant # 1216-05-13576).

Appendix

In this appendix we present the procedure to obtain the explicit form of the coherent states denoted $|z)^S$, which is given by (14h) and which was used to obtain the explicit forms for the all particular coherent states, both of the Barut-Girardello as the Perelomov type, that were used in this work. Since that the coherent state $|z)^S$ belongs to the Fock space \tilde{S}^S (14a), we can to write the coherent state as an linear
Quantum hypercomputation based on the dynamical algebra $\mathfrak{su}(1,1)$

combination

$$|z\rangle^S = \sum_{n=0}^{\infty} C_n(z) |n\rangle.$$ \hspace{1cm} (A.1)

The substitution of (A.1) on (14g) and using (14c) and (14f) generates the following recurrence equation for the coefficients $C_n(z)$

$$C_{n+1}(z)h^S(n)\sqrt{f^S(n+1)} = zC_n(z).$$ \hspace{1cm} (A.2)

The solution of (A.2) is

$$C_n(z) = C_0(z) \frac{z^n}{\left(\prod_{j=0}^{n-1} h^S(j) \right) \left(\sqrt{f^S(n)!} \right)}.$$ \hspace{1cm} (A.3)

To obtain the coefficient $C_0(z)$ we apply the condition of normalization of the coherent state

$$S\langle z | z \rangle^S = 1 = \sum_{n=0}^{\infty} C_0(z)^2 \frac{|z|^{2n}}{\left(\prod_{j=0}^{n-1} h^S(j) \right)^2 \left(f^S(n)! \right)}.$$ \hspace{1cm} (A.4)

From (A.4) we obtain that

$$C_0(z) = \left(\sum_{m=0}^{\infty} \frac{|z|^{2m}}{\left(\prod_{j=0}^{m-1} h^S(j) \right)^2 \left(f^S(m)! \right)} \right)^{-1/2}.$$ \hspace{1cm} (A.5)

Finally the substitution of (A.5) on (A.3) and then on (A.1), gives the following explicit form for the $\mathfrak{su}(1,1)$ non-linear coherent states which is given by (14h).

References

[1] B. Jack Copeland. Hypercomputation. Minds and Machines, 12:461–502, 2002.
[2] Andrés Sicard and Mario Vélez. Hipercomputación: la próxima generación de la computación teórica (Hypercomputation: the next generation of theoretical computation) (Spanish). Revista Universidad EAFIT, 123:47–51, 2001. Eprint: sigma.eafit.edu.co:90/~asicard/archivos/hipercomputacion.pdf.gz.
[3] Alan M. Turing. Systems of logic based on ordinals. Proc. London Math. Soc., 45(2239):161–228, 1939.
[4] Mike Stannett. Hypercomputation models. In Christof Teuscher, editor, Alan Turing: life and legacy of a great thinker, pages 135–157. Berlin: Springer, 2003.
[5] Mark Burgin and Allen Klinger. Three aspects of super-recursive algorithms and hypercomputation or finding black swans. Theoretical Computer Science, 317(1–3):1–11, 2004.
[6] B. Jack Copeland and Diane Proudfoot. Alan Turing’s forgotten ideas in computer science. Scientific American, 280(4):76–81, 1999.
[7] S. Barry Cooper and Piergiorgio Odifreddi. Incomputability in nature. In S. B. Cooper and S. S. Goncharov, editors, Computability and Models: Perspectives East and West, pages 137–160. London: Kluwer Academic/Plenum Publishers, 2003.
[8] Tien D. Kieu. Computing the non-computable. Contemporary Physics, 44(1):51–71, 2003.
[9] Tien D. Kieu. Quantum algorithm for the Hilbert’s tenth problem. Int. J. Theor. Phys., 42(7):1461–1478, 2003.
Quantum hypercomputation based on the dynamical algebra $\text{su}(1,1)$

[10] Tien D. Kieu. Quantum adiabatic algorithm for Hilbert’s tenth problem: I. The algorithm. Eprint: arXiv.org/abs/quant-ph/0310052 2003.

[11] Tien D. Kieu. Hypercomputation with quantum adiabatic processes. Theoretical Computer Science, 317(1–3):93–104, 2004.

[12] Tien D. Kieu. Hypercomputability of quantum adiabatic processes: Fact versus prejudices. Invited paper for a special issue of the Journal of Applied Mathematics and Computation on Hypercomputation. José F. Costa and Francisco A. Dória (eds.). Preprint: arXiv.org/abs/quant-ph/0504101 2005.

[13] Tien D. Kieu. An anatomy of a quantum adiabatic algorithm that transcends the Turing computability. International Journal of Quantum Computation, 3(1):177–182, 2005.

[14] Wolter Groenevelt and Erik Koelink. Meixner functions and polynomials related to Lie algebra representations. J. Phys. A: Math. Gen., 35(1):65–85, 2002.

[15] Xiao-Guang Wang. Coherent states, displaced number states and Laguerre polynomial states for $\text{su}(1,1)$ Lie algebra. Int. J. Mod. Phys. B, 14(10):1093–1104, 2000.

[16] Hong-Shen Fu and Ryu Sasaki. Exponential and Laguerre squeezed states for $\text{su}(1, 1)$ algebra and the Calogero-Sutherland model. Phys. Rev. A, 53(6):3836–3844, 1996.

[17] J. P. Antoine et al. Temporally stable coherent states for infinite well and Pöschl-Teller potentials. J. Math. Phys., 42(6):2349–2387, 2001.

[18] V. V. Borzov. Orthogonal polynomials and generalized oscillator algebras. Preprint: arXiv.org/abs/quant-ph/math.CA/0002226 2000.

[19] V. V. Borzov and E. V. Damaskinsky. Generalized coherent states for classical orthogonal polynomials. In V. S. Buldyrev et al., editors, Proceedings of the International Seminar “Day on Diffraction’02”, pages 47–53. IEEE Computer Society Press, 2002.

[20] Ahmed Jellal. Coherent states for generalized Laguerre functions. Mod. Phys. Lett. A, 17(11):671–682, 2002.

[21] Natig M. Atakishiyev et al. Meixner oscillators. Revista Mexicana de Física, 44(3):235–244, 1998.

[22] Andrés Sicard, Mario Vélez, and Juan Ospina. A possible hypercomputational quantum algorithm. In E. J. Donkor, A. R. Pirich, and H. E. Brandt, editors, Quantum Information and Computation III, volume 5815 of Proc. of SPIE, pages 219–226. SPIE, Bellingham, WA, 2005.

[23] André Sicard, Juan Ospina, and Mario Vélez. Numerical simulations of a possible hypercomputational quantum algorithm. In Bernardete Ribeiro et al., editors, Adaptive and Natural Computing Algorithms. Proc. of the International Conference in Coimbra, Portugal, pages 272–275. SpringerWienNewYork, 21st - 23rd March 2005.

[24] Edward Farhi et al. Quantum computation by adiabatic evolution. Eprint: arXiv.org/abs/quant-ph/0001106 2000.

[25] Edward Farhi et al. A quantum adiabatic evolution algorithm applied to random instances of NP-complete problem. Science, 292:472–476, 2001.

[26] Albert Messiah. Quantum Mechanics, volume I. New York: John Wiley & Sons, 1990.

[27] J. E. Avron and A. Elgart. Adiabatic theorem without a gap condition. Commun. Math. Phys., 203(2):444–463, 1999.

[28] Yuri V. Matiyasevich. Hilbert’s tenth problem. Cambridge, Massachusetts: The MIT Press, 1993.

[29] Isaac L. Chuang and Michael A. Nielsen. Quantum Computation and Quantum Information. Cambridge: Cambridge University Press, 2000.

[30] Tien D. Kieu. On the identification of the ground state based on occupation probabilities: An investigation of Smith’s apparent counterexample. Submitted to the Journal of Applied Mathematics and Computation, 2005.

[31] Warren D. Smith. Three counterexamples refuting Kieu’s plan for “quantum hypercomputation"; and some uncomputable quantum mechanical tasks. Preprint: www.math.temple.edu/~wds/homepage/works.html 2005.

[32] Xiao-Guang Wang. Two-mode nonlinear coherent states. Opt. Commun., 178(4–6):365–369, 2000.

[33] Xiaoguang Wang, Barry C. Sanders, and Shao-hua Pan. Entangled coherent states for systems
Quantum hypercomputation based on the dynamical algebra $\mathfrak{su}(1,1)$

with $SU(2)$ and $SU(1,1)$ symmetries. *J. Phys. A: Math. Gen.*, 33(41):7451–7467, 2000.

[34] Cristian S. Calude. *Information and Randomness: An Algorithmic Perspective*. Springer, 2nd edition, 2002.

[35] S. Barry Cooper. *Computability theory*. London: Chapman & Hall, 2003.

[36] Mark Braverman and Stephen Cook. Computing over the reals: Foundations for scientific computing. Preprint arxiv.org/abs/cs.CC/0509042, 2005.

[37] David Deutsch. Quantum theory, the Church-Turing principle and the universal quantum computer. *Proc. R. Soc. Lond. A*, 400:97–117, 1985.

[38] Toby Ord and Tien D. Kieu. Using biased coins as oracles. Preprint arxiv.org/abs/cs.OH/0401019, 2004.

[39] Dorit Aharonov et al. Adiabatic quantum computation is equivalent to standard quantum computation. Eprint: arXiv.org/abs/quant-ph/0405098, 2004.