Plasma membrane receptors play fundamental roles in shaping plant growth and development. A large proportion of these are autophosphorylating Ser/Thr kinases (De Smet et al., 2009). Some function as dual-specificity kinases, autophosphorylating additionally on Tyr residues, one of which is the extensively studied steroid receptor BRASSINOSTEROID-INSENSITIVE1 (BRI1; Oh et al., 2009). Light regulation of plant growth also is mediated by plasma membrane-bound Ser/Thr kinases known as the phototropins (phot; Fankhauser and Christie, 2015). Seed plants contain two phots (phot1 and phot2) that have important roles in regulating leaf positioning and expansion, chloroplast photorelocation movement, stomatal opening, and phototropism, all of which serve to optimize photosynthetic efficiency (Christie et al., 2015). Phot1s are members of the AGCVIII kinase family (Rademacher and Offringa, 2012) but are distinct from transmembrane receptor kinases such as BRI1, as they are hydrophilic and bind to the intracellular side of the plasma membrane (Kong et al., 2013) to initiate signaling (Preuten et al., 2015). Although the ability to associate with the plasma membrane is conserved in algal phots (Sullivan et al., 2016a), the mechanism underlying this attachment is still not known, but it is thought to involve some form of lipid binding/ modification.

Kinase-inactive versions of phot1 and phot2 are non-functional, highlighting the importance of receptor autophosphorylation in phot signaling (Inoue et al., 2008a, 2011). Autophosphorylation occurs predominantly on multiple Ser residues. At least 21 and 29 phosphorylation sites have been identified for Arabidopsis (Arabidopsis thaliana) phot1 and phot2, respectively (Christie et al., 2015). Most of these sites are found in the N terminus of the protein, which contains two light-sensing modules known as LIGHT, OXYGEN, OR VOLTAGE SENSING (LOV) domains known as LOV1 and LOV2 (Christie et al., 2012). Autophosphorylation of Ser-350, Ser-376, and Ser-410 within the LOV-linker region promotes the binding of 14-3-3 regulatory proteins to phot1 (Inoue et al., 2008a; Sullivan et al., 2009). However, the biological significance of this interaction is still not known. The occurrence of some phosphorylation sites also is flux rate dependent (Salomon et al., 2003) and is thought to play a role in receptor desensitization (Christie and Murphy, 2013). By contrast, the autophosphorylation of two conserved Ser residues within the activation loop of the C-terminal kinase domain (Ser-849 and Ser-851 in phot1 and Ser-761 or Ser-763 in phot2) is necessary for receptor signaling (Inoue et al., 2008a, 2011). Mutation of these sites to Ala impairs phot1 function in Arabidopsis, whereas phosphomimetic substitutions to Asp are without effect (Inoue et al., 2008a).

ADVANCES

- Phototropin (phot) blue-light receptors regulate phototropism, chloroplast accumulation movement, leaf positioning and leaf flattening in Arabidopsis through the coordinated action of specific NRL family members.
- NPH3 is essential for establishing lateral auxin gradients underpinning phototropic curvatures and possibly leaf positioning and expansion.
- RPT2 modulates phototropic responsiveness through alterations in the localization and phosphorylation status of NPH3.
- NCH1 and RPT2 function redundantly to mediate chloroplast accumulation movement independently of auxin.
- NPH3 and NCH1 exhibit biochemical features of CRL3 substrate adaptors.
- Functional divergence of phot-NRL signaling has occurred during land plant evolution.
Despite considerable efforts over the last two decades, the signaling events that follow receptor autophosphorylation remain poorly understood for most photomediated responses. Yet, it is becoming increasingly apparent that members of the NPH3/RPT2-Like family (NRL) are required to elicit several phot responses. Moreover, accumulating evidence suggests that these plant-specific proteins act in concert with different AGCVIII kinases to regulate various aspects of auxin transport and signaling. In this review, we summarize our current understanding of the biochemical properties of the NRL family in Arabidopsis and how these proteins function to coordinate different aspects of phot signaling. We also discuss to what extent these signaling processes are conserved in land plants and algae.

STRUCTURE AND FUNCTION OF ARABIDOPSIS NRL PROTEINS

The NRL family is named after its two founding members, NONPHOTOTROPIC HYPOCOTYL3 (NPH3) and ROOT PHOTOTROPISM2 (RPT2; Liscum et al., 2014), which were first identified from genetic screens for Arabidopsis mutants impaired in hypocotyl and root phototropism (Okada and Shimura, 1992; Liscum and Briggs, 1995; Sakai et al., 2000). The primary amino acid structure of NRL proteins can be separated into three main parts based on sequence conservation: a BTB (bric-a-brac, tramtrack, and broad complex) domain at the N terminus, followed by an NPH3 domain and a C-terminal coiled-coil domain (Liscum et al., 2014). In addition to NPH3 and RPT2, Arabidopsis contains another 31 NPH3/RPT2-Like proteins (NRL1–NRL31), all of which are defined by the presence of the NPH3 domain (Pedmale et al., 2010). Ten of these members lack the C-terminal coiled-coil domain, whereas two are devoid of the BTB domain (Pedmale et al., 2010). The reasons for these differences in domain structure are not clear at present, because many of these NRL proteins have yet to be ascribed a biological function.

Functions for 10 out of the 33 Arabidopsis NRL proteins have been identified so far. Phylogenetic analysis has shown that NRL proteins can be classified into seven distinct clades in land plants (Suetsugu et al., 2016). However, in angiosperms such as Arabidopsis, only six of these clades are present (Fig. 1). NRL proteins from three of these clade classifications (Suetsugu et al., 2016) are known to interact with the phots. These include NPH3 (Motchoulski and Liscum, 1999), RPT2 (Inada et al., 2004), NRL PROTEIN FOR CHLOROPLAST MOVEMENT1 (NCH1/NRL31; Suetsugu et al., 2016), and NRL2 (Sullivan et al., 2009). NRL2 was identified as a phot1-interacting protein through yeast-two-hybrid screening (Sullivan et al., 2009). However, its functional role in phot signaling remains undetermined. NPH3 and RPT2 are required for several auxin-mediated growth processes, including phototropism, leaf positioning, and leaf expansion (Christie et al., 2015). A central role for coordinating auxin distribution also has been linked to other members of the NRL family, which function independently from the phots. For instance, DEFECTIVELY ORGANIZED TRIBUTARIES3/NRL23 is associated with vascular development and leaf vein patterning (Petricka et al., 2008), whereas NRL proteins (NRL6, NRL7, NRL20, NRL21, and NRL30) known as NAKED PINS IN YUCCA (NPY; Fig. 1) function redundantly to regulate auxin movements required for organogenesis and root gravitropism in concert with AGCVIII kinases other than the phots (Cheng et al., 2008; Li et al., 2011). NRL8 (otherwise known as SETH6) is involved in pollen tube growth (Lalanne et al., 2004), which also requires AGC kinases activity (Zhang et al., 2008). Consequently, NRL proteins are proposed to function as AGC kinase modules that regulate various aspects of auxin trafficking and signaling. However, as discussed below, new evidence for the function of NRL proteins in phot signaling has begun to break down the paradigm that these proteins are solely mediators of auxin-dependent processes.

NRL-DEPENDENT AND -INDEPENDENT PHOT RESPONSES

Phots regulate a range of physiological responses in Arabidopsis. These are listed in Table I and can be separated into two categories depending on the involvement of NRL proteins (NRL dependent and NRL independent). Phototropism (Motchoulski and Liscum, 1999; Sakai et al., 2000), petiole positioning and leaf expansion (Inoue et al., 2008b), and chloroplast accumulation (Suetsugu et al., 2016) are examples of NRL-dependent responses, whereas chloroplast-avoidance movement (Kong and Wada, 2014) and stomatal opening (Inoue and Kinoshiba, 2017) are NRL independent. While several of these responses can be described as NRL independent, it is worth remembering that functions for 23 members of the NRL family are still lacking. Whether these processes are truly devoid of NRL involvement awaits further genetic characterization of these remaining family members. In the following sections, we summarize progress made to date in uncovering the role of NRL proteins in phot signaling.

NPH3 AND ITS ROLE IN PHOTOTROPISM

A central role for NPH3 in phototropism has been firmly established for some time now. Arabidopsis mutants lacking NPH3 fail to exhibit phototropism under a variety of different light conditions (Liscum et al., 2014; Fankhauser and Christie, 2015). A detailed discussion of phototropism is beyond the scope of this review, and readers are directed to other articles that provide a comprehensive overview of the different types of photophysiological responses involved (Sakai and Haga, 2012; Christie and Murphy, 2013). While the
biochemical function of NPH3 remains poorly understood, it appears to be instrumental for establishing lateral auxin gradients required for this differential growth response (Haga et al., 2015). NPH3 is localized to the plasma membrane and has been shown to interact directly with phot1 via its C-terminal region (Motchoulski and Liscum, 1999). Like the photos, NPH3 contains no obvious transmembrane-spanning domain, so how it associates with the plasma membrane is still not known. However, truncation and transient expression analysis of NPH3-GFP in stomatal guard cells of Vicia faba suggests that the C terminus, including the coiled-coil domain, is important for localization to the plasma membrane (Inoue et al., 2008b).

A recent in vivo coimmunoprecipitation analysis indicates that phot1-NPH3 interactions at the plasma membrane are transiently disrupted upon irradiation (Haga et al., 2015). Light not only impacts the ability of NPH3 to interact with phot1 but also leads to dynamic changes in its subcellular localization. The expression of YFP-NPH3 under the control of the constitutive cauliflower mosaic virus 35S promoter restores hypocotyl phototropism in the nph3 mutant (Haga et al., 2015). YFP-NPH3 is localized to the plasma membrane in darkness but is rapidly (within minutes) internalized into microdomain aggregates upon phot1 activation by blue light (Haga et al., 2015). The appearance of these microdomains is diminished in periods of prolonged irradiation or when seedlings are returned to darkness, suggesting that their formation is reversible (Haga et al., 2015). The biological significance and the role of these microdomains in phot signaling are currently unknown. However, biochemical fractionation experiments indicate that these NPH3 aggregates accumulate in the cytosol (Haga et al., 2015). These findings agree with observations that cytoskeleton inhibitors or inhibitors of vesicle trafficking fail to affect NPH3 microdomain formation (Haga et al., 2015).

The above phot1-driven changes in NPH3 localization correlate well with alterations in NPH3 phosphorylation status. NPH3 is phosphorylated in darkness and becomes rapidly (within minutes) dephosphorylated following phot1 activation (Pedmale and Liscum, 2007). This dephosphorylation process is tissue, and most likely cell, autonomous (Sullivan et al., 2016b) and does not appear to be initiated by phot2 (Inada et al., 2004; Pedmale and Liscum, 2007; Tsuchida-Mayama et al., 2008; Haga et al., 2015). As found for YFP-NPH3 microdomain formation, NPH3 dephosphorylation is recoverable either in darkness (Pedmale and Liscum, 2007) or over periods of prolonged irradiation (Haga et al., 2015). The kinetics for NPH3 dephosphorylation and rephosphorylation correlate closely with the time scale described for the changes in YFP-NPH3 localization (Haga et al., 2015). This has led to the proposal that the phosphorylation of NPH3 is necessary for it to form an active signaling complex with phot1 at the plasma membrane (Fig. 2). Phot1-NPH3 interactions are disrupted following NPH3 dephosphorylation and its release from the plasma membrane (Haga et al., 2015), leading to a cessation of receptor signaling. Thus, reassembly of this complex would be necessary to reestablish and sustain phototropic signaling, especially under continuous irradiation (Fig. 2).
The identity of the kinase(s) responsible for phosphorylating NPH3 is still not known. Moreover, studies have yet to examine whether NPH3 is a substrate for phot1 kinase activity. However, pharmacological studies have implicated a role for a type 1 protein phosphatase in dephosphorylating NPH3 (Fedmale and Liscum, 2007). To date, 18 phosphorylation sites have been identified within NPH3 through global phosphoproteomic approaches (Heazlewood et al., 2008). The contribution of some of these sites to phototropic signaling has been investigated through structure-function analysis. Ser-212, Ser-222, and Ser-236 downstream of the BTB domain are phosphorylated in darkness and become dephosphorylated following phot1 activation (Tsuchida-Mayama et al., 2008). Collective mutation of these sites to Ala or deletion of this region (A212–238) does not adversely affect the ability of NPH3 to mediate hypocotyl phototropism in Arabidopsis (Tsuchida-Mayama et al., 2008). Therefore, phosphorylation sites other than Ser-212, Ser-222, and Ser-236 are clearly important (Haga et al., 2015). Identifying these sites and dissecting how changes in their phosphorylation status impact NPH3 function present a formidable challenge for future research. However, recent work has now demonstrated that the second founding member of the NRL family, RPT2, has a role in modulating the phosphorylation status and localization dynamics of NPH3 in Arabidopsis.

CONTRIBUTION OF RPT2 TO PHOT SIGNALING

RPT2 was identified originally from a genetic screen for Arabidopsis mutants impaired in root phototropism (Okada and Shimura, 1992; Sakai et al., 2000) and has been shown to interact directly with both NPH3 (Inada et al., 2004) and phot1 (Inada et al., 2004; Sullivan et al., 2009). The transposon insertion mutant rpt2-2 lacks the RPT2 protein (Inada et al., 2004) and is impaired in hypocotyl phototropism at blue light intensities of 0.17 μmol m⁻² s⁻¹ or greater (Haga et al., 2015). By contrast, the phototropic response of rpt2-2 mutants is indistinguishable from that of wild-type seedlings at blue light intensities of 0.017 μmol m⁻² s⁻¹ or less (Haga et al., 2015). A requirement for RPT2 in regulating phototropism to higher light correlates well with its expression profile. The expression of RPT2 is barely detectable in etiolated seedlings but increases in response to red and blue light (Inada et al., 2004; Tsuchida-Mayama et al., 2008; Haga et al., 2015) in a fluence rate-dependent manner (Sakai et al., 2000). As indicated above, reconstitution of a phot1-NPH3 complex is considered necessary to sustain effective phototropic signaling under continuous irradiation (Fig. 2). The presence of RPT2 is necessary to facilitate this process at high light intensities (Haga et al., 2015). Based on these findings, RPT2 is proposed to contribute to photosensory adaptation and promote efficient phototropism under brighter light conditions (Fig. 2).

Mutants deficient in either NPH3 or RPT2 exhibit leaf positioning and leaf expansion phenotypes that resemble those of the phot1 phot2 double mutant (Inoue et al., 2008b; Harada et al., 2013). These findings demonstrate that NPH3 and RPT2 have roles in phot signaling besides phototropism. Leaf positioning and leaf expansion both require differential growth and most likely arise from alterations in auxin distribution. The severity of the phot2 phenotype for these responses (Harada et al., 2013) is reduced dramatically under moderate light conditions when crossed with the phot1 single mutant. This phenotype of the phot1 phot2 double mutant has uncovered a level of complexity regarding the contribution of RPT2 to phot signaling. RPT2 acts positively in conjunction with phot1 to mediate leaf positioning and leaf expansion. In contrast, RPT2 is not required for phot2 signaling. Instead, RPT2 appears to have some role in suppressing the ability of phot1 to

Table 1. NRL-dependent and -independent phot-mediated responses in Arabidopsis

Phot Response	NRL Dependent	NRL Independent	References
Phototropism	Requires NPH3 and RPT2	Does not require NPH3, RPT2, or NCH1 (NRL31)	Motchoulski and Liscum (1999); Sakai et al. (2000)
Petiole positioning	Requires NPH3 and RPT2	Does not require NPH3	Inoue et al. (2008); Harada et al. (2013)
Leaf expansion	Requires NPH3 and RPT2	Does not require NPH3, RPT2, or NCH1 (NRL31)	Inoue et al. (2008); Harada et al. (2013)
Chloroplast accumulation	Requires RPT2 and NCH1 (NRL31)	Does not require NPH3	Suetsugu et al. (2016)
Chloroplast avoidance	Does not require NPH3, RPT2, or NCH1 (NRL31)	Does not require NPH3	Suetsugu et al. (2016)
Nuclear avoidance	Does not require NPH3	Does not require NPH3	Higa et al. (2014)
Stomatal opening	Does not require NPH3	Does not require NPH3, RPT2, or NCH1 (NRL31)	Suetsugu et al. (2016)
Destabilization of Lhcb mRNA	Requires NPH3	Does not require NPH3	Folta and Kaufman (2003)
Inhibition of hypocotyl elongation	Does not require NPH3	Does not require NPH3	Folta and Spalding (2001)
Circadian control of PSI photosynthetic efficiency	Does not require NPH3	Does not require NPH3	Litthauer et al. (2015)
inhibit phot2 signaling for these responses. In this model (Fig. 3), both phot1 and phot2 signaling pathways would be impaired in the *rpt2* mutant. The phot1 pathway would be inactive, since its signaling is dependent on *RPT2*, whereas phot2 signaling is impaired, owing to the suppressive action of phot1. Likewise, both phot1 and phot2 signaling pathways would be inactive in a *phot2 rpt2* double mutant. However, phot2 signaling for leaf positioning and leaf expansion still would be viable in this model for the *phot1 rpt2* double mutant consistent with the phenotype observed, since the inhibitory action of phot1 is removed (Fig. 3).

Additional evidence suggests that this complex interplay between phot1 and phot2 signaling may occur for other phot responses. The *rpt2* mutant shows impaired hypocotyl phototropism under low and high fluence rates of unilateral blue light (Inada et al., 2004). Phototropic responsiveness was restored at higher fluence rates in the *phot1-101 rpt2-1* double mutant, indicative of functional phot2 signaling. Similarities can be drawn between these results and those observed for the leaf positioning and leaf expansion phenotypes of the *phot1 rpt2* mutant (Harada et al., 2013). However, some caution should be exercised when comparing these findings, given the difference in ecotypes used as well as the apparent leakiness of the *rpt2-1* mutant (Haga et al., 2015).

PHYTOCHROME KINASE SUBSTRATE PROTEINS

NPH3 and *RPT2* are not the only mediators of phototropism, leaf positioning, and leaf expansion in Arabidopsis. PHYTOCHROME KINASE SUBSTRATE proteins (PKS1–PKS4) also play a role in establishing these processes. PKS1 was identified originally as a kinase substrate for phytochrome A (phyA; Fankhauser et al., 1999). Whether phyA is bona fide protein kinase is still debated, although recent work has offered renewed support for its role as a protein kinase in regulating photomorphogenesis (Shin et al., 2016). While PKS proteins are required for phytochrome signaling (Lariguet et al., 2003; Schepens et al., 2008), some of the phenotypes associated with *pks* mutants resemble those of *nph3*, *rpt2*, and phot-deficient mutants. For instance, the *pks1 pks2 pks4* triple mutant exhibits reduced phototropic curvature (Lariguet et al., 2006; Kami et al., 2014). PKS1 and PKS2 also act in concert with *NPH3* to establish leaf positioning and leaf expansion (de Carbonnel et al., 2010). Their role in phot signaling appears to be restricted to these processes, since *pks* mutants are not impaired in blue light-induced stomatal opening and chloroplast photorelocation movement (de Carbonnel et al., 2010). Consistent with their involvement in phot signaling, PKS proteins are known to localize to the plasma membrane, where they are known to associate with phot1, phot2, and *NPH3* (Lariguet et al., 2006; de Carbonnel et al., 2010; Demarsy et al., 2012). Furthermore, studies have shown that PKS4 is a substrate target for phot1 kinase activity (Demarsy et al., 2012). Together, these data clearly demonstrate that PKS proteins are integral components of the phot signaling pathways associated with *NPH3* and *RPT2*. Resolving the biochemical functions of these proteins and how they integrate with *NPH3* and *RPT2* will be important to fully understand how photos initiate signaling from the plasma membrane. Like *NPH3*, PKS proteins are suggested to modulate auxin transport or signaling (de Carbonnel et al., 2010; Kami et al., 2014). Yet, their mechanism of action in this regard remains to be elucidated.

NCH1 AND RPT2 ARE MEDIATORS OF CHLOROPLAST ACCUMULATION MOVEMENT

Phot-induced chloroplast accumulation movement was shown recently to involve the coaction of two NRL proteins. At low blue light intensities, phot1 and phot2 overlap in function to direct chloroplast relocation to the upper and lower cell surfaces to maximize light capture for photosynthesis (Sakai et al., 2001). Chloroplast-avoidance movement is mediated solely by phot2 (Kagawa et al., 2001) and serves to prevent...
photodamage of the photosynthetic apparatus in excess light (Kasahara et al., 2002). Chloroplast movement is achieved by the formation of chloroplast actin (cp-actin) filaments that polymerize on the leading edge of the chloroplast (Kadota et al., 2009). Polymerization of cp-actin requires the action of CHLOROPLAST UNUSUAL POSITIONING1 (CHUP1; Oikawa et al., 2003) and KINESIN-LIKE PROTEIN FOR ACTIN-BASED CHLOROPLAST MOVEMENT (KAC) proteins (Suetsugu et al., 2010). PLASTID MOVEMENT IMPAIRED1 (PMI1) also is required to stabilize cp-actin filaments (Suetsugu et al., 2015). Consequently, cp-actin formation, and thus chloroplast accumulation and avoidance movement, are impaired in chup1, pmi1, and kac1 kac2 mutants.

How light perception by photos is coupled to the activity of CHUP1, PMI1, and KAC proteins is not known. At least for chloroplast accumulation movement, the NRL proteins NCH1 (NRL31) and RPT2 have been shown to function as key mediators of this response (Suetsugu et al., 2016). NCH1 and RPT2 reside within the same clade of the NRL family tree in land plants (Fig. 1). Both nch1 and rpt2 mutants exhibit a weaker chloroplast accumulation response compared with wild-type plants (Suetsugu et al., 2016). However, this process is abolished completely in the rpt2 nch1 double mutant, indicating that NCH1 functions redundantly with RPT2 to mediate chloroplast accumulation movement (Suetsugu et al., 2016). Moreover, chloroplast-avoidance movement is unaltered in the rpt2 nch1 double mutant, demonstrating that NCH1 and RPT2 are only necessary for the accumulation response. While these findings have uncovered a new function for NCH1 and its role in chloroplast accumulation movement has now changed our view of how different NRL proteins contribute to phot and AGCVIII kinase signaling. Chloroplast photorelocation movement is cell autonomous and occurs independently of gene expression (Kong and Wada, 2016; Wada, 2016). Thus, auxin trafficking and auxin-mediated transcription are not required for this processes, in contrast to multicellular responses like phototropism, leaf positioning, and leaf expansion. To our knowledge, these findings are the first to demonstrate that NRL proteins can function with AGCVIII kinases to elicit responses independently of auxin.

Figure 3. Functional complexity for RPT2 in controlling phot-mediated leaf positioning in Arabidopsis. The model was adapted from Harada et al. (2013). Solid black lines/arrows illustrate the signaling pathways operational in wild-type (WT) plants and mutant backgrounds. Nonoperational pathways in each of the genotypes are grayed out for clarity.

The discovery of NCH1 and its role in chloroplast accumulation movement has now changed our view of how different NRL proteins contribute to phot and AGCVIII kinase signaling. Chloroplast photorelocation movement is cell autonomous and occurs independently of gene expression (Kong and Wada, 2016; Wada, 2016). Thus, auxin trafficking and auxin-mediated transcription are not required for this processes, in contrast to multicellular responses like phototropism, leaf positioning, and leaf expansion. To our knowledge, these findings are the first to demonstrate that NRL proteins can function with AGCVIII kinases to elicit responses independently of auxin.

BIOCHEMICAL FUNCTION OF NRL PROTEINS

Molecular genetic analysis in Arabidopsis has been successful in identifying physiological functions for almost one-third of the NRL family. Nevertheless, it is still not clear how these proteins operate at the biochemical level. The majority of NRL proteins contain a BTB domain that can function as a substrate adaptor to recruit specific proteins for ubiquitination and degradation (Hua and Vierstra, 2011). Indeed, NPH3 has been reported to interact with CULLIN3a (CUL3a) when coexpressed in insect cells and may form part of the CUL3 RING E3 UBIQUITIN LIGASE (CRL3) complex that directs the ubiquitination of signaling targets (Roberts et al., 2011). Biochemical and mass spectrometry analyses have shown that phot1 becomes ubiquitinated by a CRL3NPH3 complex following blue light activation (Deng et al., 2014). CRL3NPH3-mediated polyubiquitination of phot1 is associated with its degradation in response to prolonged irradiation, whereas monoubiquitination is proposed to stimulate the rapid trafficking of phot1 from the plasma membrane in response to low light intensities (Roberts et al., 2011). Whether this
light-activated change in subcellular localization plays a role in phot1 signaling is still open to question (Liscum, 2016). Recent approaches aimed at tethering phot1 to the plasma membrane by myristoylation or farnesylation suggest this not to be the case, as incorporation of these modifications severely diminishes the light-induced internalization of phot1 without impacting its functionality in Arabidopsis (Preuten et al., 2015). So far, no other targets besides phot1 have been identified for the CRL3NPH3 complex. Yet, it is worth noting that phot1-driven changes in subcellular trafficking of the auxin efflux carrier PIN2 are dependent on NPH3 (Wan et al., 2012). Since dynamic adjustments in PIN2 distribution and turnover have been linked to the ubiquitination of Lys-63 (Leitner et al., 2012), it is tempting to speculate that auxin transporters could be CRL3NPH3 targets. That said, there is currently no published evidence indicating that NPH3 can interact physically with auxin transport proteins.

NPH3 is not the only NRL protein to exhibit features of a CRL3 substrate adaptor. NCH1 (NRL31) was identified previously as AtSR1 INTERACTING PROTEIN1 (SR1IP1; Zhang et al., 2014). SR1IP1 and CUL3a interact when transiently coexpressed in Nicotiana benthamiana. SR1IP1 is responsible for ubiquitination and subsequent degradation of the Arabidopsis Ca$^{2+}$/calmodulin-binding transcription factor SIGNAL RESPONSIVE1 (AtSR1), which functions to suppress plant defense responses to bacterial pathogens. Consequently, sr1ip1 mutants are more susceptible to Pseudomonas syringae infection, indicating that SR1IP1 serves as a positive regulator of plant immunity (Zhang et al., 2014). By contrast, virus-induced gene silencing of SR1IP1 orthologs in N. benthamiana reduces susceptibility to Phytophthora infestans infection, suggesting that SR1IP1 also can act as a negative regulator of plant defense (Yang et al., 2016). Clearly, more work is needed to elucidate the role of SR1IP1 (NCH1) in plant immunity and how this function integrates with its role in regulating chloroplast accumulation movement (Suetsugu et al., 2016). Chloroplasts can aid the transport of pro-defense signals to the nucleus via highly dynamic connections known as stromules (Caplan et al., 2015). Therefore, it will be of interest to examine whether NRL proteins such as NCH1 are involved, especially since light is known to impact stromule formation (Gray et al., 2012; Brunkard et al., 2015).

![Figure 4. Schematic representation depicting the evolution of phot signaling components in the green plant lineage. The topology of the lineages is derived from Bowman et al. (2007). Arrows indicate the lineages in which orthologs of PHOT, NRL, and PKS proteins were identified from genomic and/or transcriptomic data. Stomata evolved after hornwort diversification.](image)
OUTSTANDING QUESTIONS

- How do NPH3 and RPT2 coordinate auxin fluxes for phototropism?
- How do the dynamic changes in NPH3 localization and phosphorylation contribute to its action?
- Do NRL proteins besides NPH3 and NCH1 exhibit E3 ubiquitin ligase activity and what are their substrates?
- How do PKS proteins integrate with NPH3 and RPT2 to mediate phot signaling?
- How do NCH1 and RPT2 drive cp-actin polymerization required for chloroplast accumulation movement?
- What is the function of the phot1-interacting protein NRL2?

EVOLUTIONARY CONSERVATION OF PHOT SIGNALING

Photos are restricted to the green plant lineage from photosynthetic algae to flowering plants (Fig. 3), but they are absent from red algae (Li et al., 2015). In contrast to land plants, green algae typically contain one phot (Huang et al., 2002; Prochnik et al., 2010; Sullivan et al., 2016), although two phots have been identified in Zygmenates including Mougeotia scalaris, both of which might function to mediate chloroplast photorelocation movement in this alga (Suetsugu et al., 2005; Li et al., 2015). Several functions have been ascribed to phot from Chlamydomonas reinhardtii. These include the light regulation of various aspects of the sexual life cycle (Huang et al., 2002; Huang and Beck, 2003; Ermitlova et al., 2004), the control of eyespot development and phototactic behavior (Trippens et al., 2012), and the transcriptional regulation of enzymes involved in chlorophyll and carotenoid biosynthesis (Im et al., 2006). More recently, C. reinhardtii phot was shown to be pivotal for modulating the abundance of key molecular effectors required for photoprotection of the photosynthetic machinery. As a result, the phot-deficient mutants of C. reinhardtii displays reduced fitness under excessive light conditions (Petroutsos et al., 2016).

Despite its divergent functions, C. reinhardtii phot can successfully restore phototropism, chloroplast photorelocation movement, and stomatal opening when expressed in the phot1 phot2 double mutant of Arabidopsis (Onodera et al., 2005). These findings suggest that the mode of action between plant and algal phots is highly conserved. However, recent studies centered on phot from the marine picoalga Ostreococcus tauri are not consistent with this conclusion. While O. tauri phot is capable of mediating chloroplast accumulation movement, stomatal opening, as well as leaf positioning and leaf expansion when expressed in the phot1 phot2 double mutant of Arabidopsis, it fails to restore phototropism and chloroplast-avoidance movement (Sullivan et al., 2016a). At least for phototropism, this lack of functionality correlates with the inability of O. tauri phot to complex with NPH3. These findings fall more in line with what is known regarding the evolutionary conservation of NPH3 and other NRL proteins involved in phot signaling. NPH3, RPT2, and NCH1 are prevalent in land plants, including liverworts and mosses (Suetsugu et al., 2016), but they have not been identified in green algae (Fig. 4). The presence of these NRLs in land plants would coincide with their cooption to modulate multicellular (e.g. phototropism) as well as cell-autonomous (e.g. chloroplast movement and stomatal opening) responses.

Chloroplast photorelocation movement is prevalent in both land plants and green algae. The liverwort Marchantia polymorpha contains seven NRL proteins, one protein for each of the seven NRL clades (Suetsugu et al., 2016). The ortholog of NCH1 is essential for chloroplast accumulation movement in M. polymorpha but not for the avoidance response, indicating that the signaling events underlying chloroplast photorelocation movements are conserved in land plants (Suetsugu et al., 2016). In contrast to Arabidopsis, M. polymorpha contains one representative ortholog for the NPH3 clade and one for the NCH1/RPT2 clade, suggesting that the divergence of these NRL proteins occurred early in land plant evolution (Suetsugu et al., 2016). PKS proteins, by comparison, appear to have evolved later than NPH3 and NCH1/RPT2 in the land plant lineage (Fig. 4). CHUP1, KAC, PMI1, and NRL proteins are present in Streptophytes (including land plants and charophytes) and are essential factors for driving chloroplast photorelocation movement (Suetsugu and Wada, 2016). However, no orthologs of these genes have been found in chlorophytes (including C. reinhardtii and O. tauri). Thus, NRL-mediated chloroplast movement may have been acquired during evolution of the streptophyte lineage. Yet, the charophyte alga Klebsormidiun flaccidum (charophyte) does contain two NRL-like proteins (Suetsugu et al., 2016). It is possible that these proteins mediate chloroplast photorelocation in this organism. Clearly, more work is needed to determine how light-induced chloroplast movement is achieved in photosynthetic algae.

CONCLUSION AND FUTURE PERSPECTIVES

Molecular genetic analysis in Arabidopsis has been instrumental in shedding light on the biological functions of NRL family members. Work so far has coordinated their mode of action with AGCVIII kinases and auxin signaling. Studies have now shown that NRL proteins can mediate signaling independently of auxin, at least in the case of chloroplast accumulation movement. A major challenge for future research will be to elucidate how NRL proteins function at the biochemical
level and how changes in their localization and phosphorylation status can impact their activity. At least 24 out of the 33 NRL members are known to be phosphorylated (Heazlewood et al., 2008). Unlike NPH3 and NCH1, RPT2 does not exhibit E3 ubiquitin ligase activity in vitro (Roberts et al., 2011). Nor does its plasma membrane localization change in response to blue light treatment (Haga et al., 2015). Hence, the biochemical and localization properties for specific NRL family members are clearly different. Resolving the biochemical functions of NPH3 and RPT2 and their role in phot signaling will be essential if we are to understand how auxin gradients are established to promote responses such as phototropism, leaf positioning, and leaf expansion. NRL2 is known to interact with phot1 (Sullivan et al., 2009), but its biological role in phot signaling awaits additional molecular and genetic characterization. Further functional dissection of the Arabidopsis NRL family will be a demanding task, given the large size of this protein family and the redundancy between members. The reduced size and complexity of the NRL family in M. polymorpha now provides a tractable alternative to assigning functions to each of seven NRL clade classifications found in land plants.

Received June 19, 2017; accepted July 12, 2017; published July 18, 2017.

LITERATURE CITED

Bowman JL, Floyd SK, Sakakibara K (2007) Green genes: comparative genomics of the green branch of life. Cell 129: 229–234

Brunnard JO, Runkel AM, Zambrayski PC (2015) Chloroplasts extend stromules independently and in response to internal redox signals. Proc Natl Acad Sci USA 112: 10044–10049

Caplan JL, Kumar AS, Park E, Padmanabhan MS, Hoban K, Modla S, Czymmek K, Dinesh-Kumar SP (2015) Chloroplast stromules function during innate immunity. Dev Cell 34: 45–57

Cheng Y, Qin G, Dai X, Zhao Y (2008) NPY genes and AGC kinases define two key steps in auxin-mediated organogenesis in Arabidopsis. Proc Natl Acad Sci USA 105: 20177–20182

Christie JM, Blackwood L, Petersen J, Sullivan S (2015) Plant flavoprotein photoreceptors. Plant Cell Physiol 56: 401–413

Christie JM, Gawthorne J, Young G, Fraser NJ, Roe AJ (2012) LOV to BLUF: flavoprotein contributions to the optogenetic toolkit. Mol Plant 5: 533–544

Christie JM, Murphy AS (2013) Shoot phototropism in higher plants: new light through old concepts. Am J Bot 100: 35–46

de Carbonnel M, Davis P, Roelfsema MR, Inoue S, Schepens I, Lariguet P, Geisler M, Shimazaki K, Nakano A, Wada M (2002) Phototropin is the blue-light receptor that confers blue-light-induced phototropism on Arabidopsis. Proc Natl Acad Sci USA 99: 15920–15925

Demansy E, Schepens I, Okajima K, Hersch M, Bergmann S, Christie J, Shimazaki K, Tokutomi S, Fankhauser C (2012) Phototropin Kinase Substrate 4 is phosphorylated by the phototropin 1 photoreceptor. EMBO J 31: 3457–3467

Deng Z, Oses-Prieto JA, Kutscher A, Tseng TS, Hao L, Burlingame AL, Wang ZY, Briggs WR (2014) Blue light-induced proteome changes in etiolated Arabidopsis seedlings. J Proteome Res 13: 2524–2533

De Smei I, Voss U, Jürgens G, Beeckman T (2009) Receptor-like kinases shape the plant. Nat Cell Biol 11: 1166–1173

Ermilova EV, Zoulikova YM, Huang K, Beck CF (2004) Phototropin plays a crucial role in controlling changes in chloromotaxis during the initial phase of the sexual life cycle in Chlamydomonas. Planta 219: 420–427

Fankhauser C, Christie JM (2015) Plant phototropic growth. Curr Biol 25: R384–R389

Fankhauser C, Yeh KC, Lagarias JC, Zhang H, Elich TD, Chory J (1999) PKSI, a substrate phosphorylated by phototropin that modulates light signaling in Arabidopsis. Science 284: 1539–1541

Folta KM, Kaufman LS (2003) Phototropin 1 is required for high-fluence blue-light-mediated mRNA destabilization. Plant Mol Biol 51: 609–618

Folta KM, Spalding EP (2001) Unexpected roles for cryptochrome 2 and phototropin revealed by high-resolution analysis of blue-light-mediated hypocotyl growth inhibition. Plant Cell 13: 471–478

Gray JC, Hansen MR, Shaw DJ, Graham K, Dale R, Smallman P, Natesan SK, Newell CA (2012) Plastid stromules are induced by stress treatments acting through abscisic acid. Plant J 69: 387–398

Haga K, Tsuchida-Mayama T, Yamada M, Sakai T (2015) Arabidopsis ROOT PHOTOTROPISM2 contributes to the adaptation to high-intensity light in phototropic responses. Plant Cell 27: 1098–1112

Harada A, Takamiya A, Inoue S, Sakai T, Shimazaki K (2013) Role of RPT2 in leaf positioning and functioning and a possible inhibition of phot2 signaling by phot1. Plant Cell Physiol 54: 36–47

Heazlewood JL, Durék P, Hummel J, Selbig J, Weckwerth W, Wollthar D, Schulze WX (2008) PhosPhAt: a database of phosphorylation sites in Arabidopsis thaliana and a plant-specific phosphorylation site predictor. Nucleic Acids Res 36: D1015–D1021

Higa T, Suesnugu N, Wada M (2014) Plant nuclear photorelocation movement. J Exp Bot 65: 2873–2881

Hua Z, Vierstra RD (2011) The culin-RING ubiquitin-protein ligases. Annu Rev Plant Biol 62: 299–334

Huang K, Beck CF (2003) Phototropin is the blue-light receptor that controls multiple steps in the sexual life cycle of the green alga Chlamydomonas reinhardtii. Plant Cell Physiol 106: 429–437

Huang K, Merkle T, Beck CF (2002) Isolation and characterization of a Chlamydomonas gene that encodes a putative blue-light photoreceptor of the phototropin family. Physiol Plant 115: 613–622

Im CS, Eberhard S, Huang K, Beck CF, Grossman AR (2006) Phototropin involvement in the expression of genes encoding chlorophyll and carotenoid biosynthesis enzymes and LHC approteins in Chlamydomonas reinhardtii. Plant J 48: 1–16

Inada S, Ohgishi M, Mayama T, Okada K, Sakai T (2004) RPT2 is a signal transducer involved in phototropic response and stomatal opening by association with phototropin 1 in Arabidopsis thaliana. Plant Cell 16: 887–896

Inoue S, Kinoshita T, Matsumoto M, Nakayama KI, Doi M, Shimazaki K (2008a) Blue light-induced autophosphorylation of phototropin is a primary step for signaling. Proc Natl Acad Sci USA 105: 5626–5631

Inoue S, Kinoshita T, Takamiya A, Doi M, Shimazaki K (2008b) Leaf positioning of Arabidopsis in response to blue light. Mol Plant 1: 15–26

Inoue S, Matsushita T, Tomokiy Y, Matsumoto M, Nakayama KI, Kinoshita T, Shimazaki K (2011) Functional analyses of the activation loop of phototropin2 in Arabidopsis. Plant Physiol 156: 117–129

Inoue S, Kinoshita T, Shimazaki K (2015) Blue-light-regulated stomatal opening and the plasma membrane H+–ATPase. Plant Physiol 174: 531–538

Kadota A, Yamada N, Suesnugu N, Hirose M, Saito C, Shoda K, Ichikawa S, Kagawa T, Nakano A, Wada M (2009) Short actin-based mechanism for light-directed chloroplast movement in Arabidopsis. Proc Natl Acad Sci USA 106: 13106–13111

Kagawa T, Sakai T, Suesnugu N, Oikawa K, Ishiguro S, Kato T, Tabata S, Okada K, Wada M (2001) Arabidopsis NPL1: a phototropin homolog controlling the chloroplast high-light avoidance response. Science 291: 2138–2141

Kami C, Allenbach L, Zoreielidou M, Ljung K, Schütz F, Isono E, Watahiki MK, Yamamoto KT, Schwelheimer C, Fankhauser C (2014) Reduced phototropism in pks mutants may be due to altered auxin-regulated gene expression or reduced lateral auxin transport. Plant J 77: 393–403

Kasahara M, Kagawa T, Oikawa K, Suesnugu N, Miyao M, Wada M (2002) Chloroplast avoidance movement reduces photodamage in plants. Nature 420: 829–832

Kong SG, Suesnugu N, Kikuchi S, Nakai M, Nagatani A, Wada M (2013) Both phototropin 1 and 2 localize on the chloroplast outer membrane with distinct localization activity. Plant Cell Physiol 54: 80–92

Kong SG, Wada M (2014) Recent advances in understanding the molecular mechanism of chloroplast photorelocation movement. Biochim Biophys Acta 1837: 522–530

Kong SG, Wada M (2016) Molecular basis of chloroplast photorelocation movement. J Plant Res 129: 159–166
Li FW, Rothfels CJ, Melkonian M, Villarreal JC, Stevenson DW, Graham Oh MH, Wang X, Kota U, Goshe MB, Clouse SD, Huber SC (2015) Lipid adaptation of Arabidopsis root growth. Proc Natl Acad Sci USA 109: 8322–8327

Li FW, Rothfels CJ, Melkonian M, Villarreal JC, Stevenson DW, Graham Oh MH, Wang X, Kota U, Goshe MB, Clouse SD, Huber SC (2015) Lipid adaptation of Arabidopsis root growth. Proc Natl Acad Sci USA 109: 8322–8327

Li Y, Dai X, Cheng Y, Zhao Y (2011) NPY genes play an essential role in root gravitropic responses in Arabidopsis. Mol Plant 4: 171–179

Liscum E (2016) Blue light-induced intracellular movement of phototropins: functional relevance or red herring? Front Plant Sci 7: 827

Liscum E, Askinosie SK, Leuchtman DL, Morrow J, Willenburg KT, Coats DR (2014) Phototropism: growing towards an understanding of plant movement. Plant Cell 26: 38–55

Liscum E, Briggs WR (1995) Mutations in the NPH1 locus of Arabidopsis disrupt the perception of phototropic stimuli. Plant Cell 7: 473–485

Littauer S, Battle MW, Lawson T, Jones MA (2015) Phototropins maintain robust circadian oscillation of PSIII operating efficiency under blue light. Plant J 83: 1034–1045

Mothhoulski A, Liscum E (1999) Arabidopsis NPH1, a photoreceptor-interacting protein essential for phototropism. Science 286: 961–964

Oh MH, Wang X, Kota U, Goshe MB, Clouse SD, Huber SC (2009) Tyrosine phosphorylation of the BR1 receptor kinase emerges as a component of brassinosteroid signaling in Arabidopsis. Proc Natl Acad Sci USA 106: 658–663

Oikawa K, Kasahara M, Kiyosue T, Kagawa T, Suetsugu N, Takahashi F, Ren Y, Mano M, Li X, Wang X, Liu W, Trotter DS, Mroz AJ, Huber SC (2010) Arabidopsis 14-3-3 proteins with phototropin receptor kinases. J Biol Chem 285: 19992–20001

Petricka JJ, Clark NK, Nelson TM (2008) Vein patterning screens and the developmentally organized tributaries mutants in Arabidopsis thaliana. Plant J 56: 254–261

Petrousis D, Dokutsu R, Maruyama S, Flori S, Greiner A, Magneschi L, Cusani L, Potte T, Mittag M, Hegemann P, et al (2014) A blue-light photoreceptor mediates the feedback regulation of photosynthesis. Nature 507: 563–567

Prentout T, Blackwood L, Christie JM, Fankhauser C (2015) Lipid anchoring of Arabidopsis phototropin 1 to assess the functional significance of receptor internalization: should I stay or should I go? New Phytol 206: 1038–1050

Prorok CH, Umen J, Nedeau AM, Hallmann A, Miller SM, Nishii I, Ferris P, Kuo A, Mitros T, Fritz-Laylin LK, et al (2010) Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri. Science 329: 2229–2233

Rademacher EH, Offringa R (2012) Evolutionary adaptations of plant AGC kinases: from light signaling to cell polarity regulation. Front Plant Sci 3: 250

Roberts D, Pedmale UV, Morrow J, Sachdev S, Lechner E, Tang X, Zheng N, Hannink M, Geschick P, Liscum E (2011) Modulation of phototropic responsiveness in Arabidopsis through ubiquitination of phototropin 1 by the CUL3-Ring E3 ubiquitin ligase CRL3(NPH3). Plant Cell 23: 3627–3640

Sakai T, Haga K (2012) Molecular genetic analysis of phototropism in Arabidopsis. Plant Cell Physiol 53: 1517–1534

Sakai T, Kagawa T, Kasahara M, Swartz TE, Christie JM, Briggs WR, Wada M, Okada K (2001) Arabidopsis nph1 and npl1: blue light receptors that mediate both phototropism and chloroplast relocation. Proc Natl Acad Sci USA 98: 6969–6974

Sakai T, Wada T, Ishiguro S, Okada K (2000) RPT2: a signal transducer of the phototropic response in Arabidopsis. Plant Cell 12: 225–236

Salomon M, Knieb E, von Zeppelin T, Rüdiger W (2003) Mapping of low- and high-fluence autophosphorylation sites in phototropin 1. Biochemistry 42: 4217–4225

Scheppens J, Boccalandro HE, Kami C, Casal JJ, Fankhauser C (2008) PHYTOCHROME KINASE SUBSTRATE4 modulates photochrome-mediated control of hypocotyl growth orientation. Plant Physiol 147: 661–671

Shin AY, Han YJ, Baek A, Ahn T, Kim SY, Nguyen TS, Son M, Lee KW, Shen Y, Song PS, et al (2016) Evidence that photochrome functions as a protein kinase in plant light signalling. Nat Commun 7: 11545

Suetsugu N, Hiiga T, Kong SG, Wada M (2015) PLASTID MOVEMENT IMPLAII1 and PLASTID MOVEMENT IMPLAII1-RELATED1 mediate photo relocation movements of both chloroplasts and nuclei. Plant Physiol 169: 1155–1167

Suetsugu N, Mittmann F, Wagner G, Hughes J, Wada M (2007) A chromatic photoreceptor gene, NEOCHROME, has arisen twice during plant evolution. Proc Natl Acad Sci USA 102: 13705–13709

Suetsugu N, Takamiya A, Kong SG, Higa T, Komatsu A, Shimazaki K, Kohchi T, Wada M (2016) RPT2/NCH1 subfamily of NPH3-like proteins is essential for the chloroplast accumulation response in land plants. Proc Natl Acad Sci USA 113: 10424–10429

Suetsugu N, Wada M (2016) Evolution of the CP-actin-based motility system of chloroplasts in green plants. Front Plant Sci 7: 561

Suetsugu N, Yamada N, Kagawa T, Yonekura H, Uyeda TQ, Kadota A, Wada M (2010) Two kinesin-like proteins mediate actin-based chloroplast movement in Arabidopsis italiana. Proc Natl Acad Sci USA 107: 8860–8865

Sullivan S, Petersen J, Blackwood L, Papanatsiou M, Christie JM (2016a) Functional characterization of Ostreococcus tauri phototropin. New Phytol 209: 612–623

Sullivan S, Takamiya A, Kharsihing E, Cloix C, Shimazaki KL, Christie JM (2016b) Functional characterization of Arabidopsis phototropin 1 in the hypocotyl apex. Plant J 88: 907–920

Sullivan S, Thomson CE, Kaiserli E, Christie JM (2009) Interaction specificity of Arabidopsis 14-3-3 proteins with phototropin receptor kinases. FEBS Lett 583: 2187–2193

Trippens J, Greiner A, Schellwajt J, Neukam M, Rottmann T, Lu Y, Kateriya S, Hegemann P, Kreimer G (2012) Phototropin influence on eyespot development and regulation of phototactic behavior in Chlamydomonas reinhardtii. Plant Cell 24: 4687–4702

Tsuchida-Mayama T, Nakano M, Uehara Y, Sano M, Fujisawa N, Okada K, Sakai T (2008) Mapping of the phototropin signal transducer, NPH3. Plant Sci 174: 626–633

Wada M (2016) Chloroplast and nuclear photorelocation movements. Jpn Jpn Acad Ser B Phys Biol Sci 92: 387–411

Wan Y, Jasiak J, Wang L, Hao H, Volkmann D, Menzel D, Mancuso S, Baluska F, Lin J (2012) The signal transducer NPH3 integrates the phototropin1 photosensor with PIN2-based polar auxin transport in Arabidopsis root phototropism. Plant Cell 24: 551–565

Yang L, McElhan N, Naqui S, He Q, Boevink PC, Armstrong M, Giuliani LM, Zhang W, Tian Z, Zhan J, et al (2016) Potato NPH3/RPT2-like protein StNRL1, targeted by a Phytophthora infestans RXLR effector, is a susceptibility factor. Plant Physiol 171: 645–657

Zhang D, Wengier D, Shuai B, Gui CP, Muschietti J, McCormick S, Tang WH (2008) The pollen receptor kinase LePRK2 mediates growth-promoting signals and positively regulates pollen germination and tube growth. Plant Physiol 148: 1368–1379

Zhang L, Du L, Shen C, Yang Y, Poovalai BW (2014) Regulation of plant immunity through ubiquitin-mediated modulation of Ca2+-calmodulin–A851/AMTA3 signaling. Plant J 78: 269–281