Hyperacusis: major research questions

Background

The term “hyperacusis” is used to describe the experience of everyday sounds being perceived as intense and overwhelming. Other terminology that is used in this regard includes “decreased” or “reduced sound tolerance”: An Internet patient forum (www.hyperacusis.net [23]) uses the variant “collapsed sound tolerance.” While there is undoubtedly an emotional and psychological component to hyperacusis [25] (not least since becoming apprehensive about sound exposure is an obvious corollary to perceiving that sound as intense), hyperacusis is a subjective self-reported symptom of some physiological change in the central auditory system such as increased gain [3], such that even when sound is of a moderate intensity it is perceived as loud and intrusive. Hyperacusis is almost exclusively bilateral, and the presentation of unilateral hyperacusis is confined to unilateral triggers such as an acoustic shock [30] or a specific unilateral neural lesion [7].

Epidemiology and natural history

Interest in hyperacusis from both clinicians and researchers is gathering pace, and the numbers of peer-reviewed scientific papers published on the topic of hyperacusis in the past four decades has increased on an annual basis (Fig. 1). Despite this burgeoning attention to symptoms of decreased sound tolerance, fundamental questions remain. The purpose of the present article is to describe and delineate several of these questions, with the aim of supporting research efforts to gather evidence on hyperacusis.

Fig. 1 Papers with hyperacusis as a major topic by year (adapted from [5])
whether they, “ever experience over-sensitivity or distress to particular sounds?” This equates to one child in every typical UK classroom (about 30 children). Risk factors included male gender, higher maternal education level, and readmission to hospital in the first 4 weeks of life.

The situation is much the same regarding the prevalence of hyperacusis in adults, and some basic information about the epidemiology of hyperacusis in adults is not yet available. Paulin and colleagues [34] investigated hyperacusis in a sub-study of the Västerbotten Environmental Health Study in Sweden. Of 8520 adults contacted from the general population, 3406 (40.6%) consented to participation in the study, and it is possible that hyperacusis is over-represented as a result of the low response rate. Of the responders, 9.2% self-identified as having hyperacusis, saying “yes” to: “Do you have a hard time tolerating everyday sounds that you believe most other people can tolerate?”. 1.9% had been diagnosed with sound intolerance by a physician (there was unspecified overlap between the groups). The length of history was not reported.

For some people, hyperacusis is a long-term condition

A question that often arises when counseling a patient with hyperacusis is that of the natural history of the condition. As with epidemiology, basic information is not yet available in this regard, and presently it is not possible to be certain about the future trajectory of a person with hyperacusis. It is evident from patient forums that for some people hyperacusis is a long-term condition, and that for some it is marked by exacerbation and pain as the important characteristics of their experience, suggesting loudness, annoyance, fear, and pain as the important characteristics. While in clinical practice it may not be easy to disambiguate these categories, drawing attention to the experience of sound-evoked pain is of interest. Recent physiology research [15] has identified a population of fibers in the cochlear nerve that appear to be involved in pain perception, perhaps as a warning of cochlear injury. The possibility that these type II unmyelinated fibers are involved in hyperacusis is a potentially important topic for research.

Mechanisms

Although there is a consensus building that hyperacusis is underpinned by an aberrant increase in central auditory gain [4, 29, 44] (whereby “neural activity from more central auditory structures is paradoxically increased at suprathreshold intensities” —4, p1), further and more detailed information is not yet available. In part this is due to the lack of a satisfactory animal model of hyperacusis [12], but it is also the case that several aspects of mechanisms of loudness perception remain obscure [14]. Moreover, the terminology used by the auditory neuroscience community regarding decreased sound tolerance is variable and nonspecific (Table 1).

One potential way forward would be for the auditory neuroscience community to reach a consensus on the terminology and definitions regarding hyperacusis, and then to undertake specific projects detailing how the increased central auditory gain originates, and then persists.
Association with tinnitus

Common mechanisms of hyperacusis and tinnitus have been proposed [23] because they commonly occur together (Table 2).

While there are several studies detailing hyperacusis in persons with a primary complaint of tinnitus, there is less information about tinnitus in persons with a primary complaint of hyperacusis. Anari and colleagues [3] studied 100 adult patients with a primary complaint of hyperacusis, finding that 86% experienced tinnitus, although the severity and impact of tinnitus were not reported.

What is also missing from the literature is information regarding the severity of hyperacusis in a person with a primary complaint of tinnitus, and vice versa. This would be useful when designing interventions that either have to address both symptoms if severe, or focusing on one or other, with a secondary and less severe symptom not requiring direct intervention.

Tinnitus and hyperacusis can be exacerbated by anxiety and stress

Some aspects of the experiences of people with tinnitus, hyperacusis, or both, are convergent. Both tinnitus and hyperacusis can be exacerbated by anxiety and stress, and in each there is an increased incidence of depression. Treatments for each symptom are emerging that utilize elements of cognitive behavioral therapy (CBT) [8, 26], and these can be combined with sound-based therapy.

There are also several aspects of tinnitus and hyperacusis that are markedly divergent, however. Some of these are illustrated in Table 3. This provides further opportunities for clinical research. The areas of divergence are sufficient for one to consider that hyperacusis and tinnitus are quite distinct phenomena, and while both may involve maladaptive change in the central auditory system, the specific mechanisms and manifestations of these changes may be separate, although they may occur together.

How to measure hyperacusis

Several methods exist that attempt to measure hyperacusis. There are techniques for the determination of the loudest sound an individual can tolerate, or is comfortable with, and these include loudness discomfort levels and loudness scaling techniques [1, 31]. The limitations of such procedures are substantial, however, with marked interobserver and test–retest variability [39]. The use of pure-tone stimuli rather than the environmental sounds involved in the lived experience of a person with hyperacusis also limits how generalizable the measure is to real-world difficulties. Unless performed with great care, exposing an individual to sounds at or close to an intensity that evokes discomfort and pain
Hyperacusis

Somatic modulation is rare. Validation of self-help unknown, maybe very limited. Almost exclusively bilateral.

Format

Percept is vivid and salient.

Table 3

Tinnitus	Hyperacusis
Often unilateral, or highly lateralized	Almost exclusively bilateral
Somatic modulation is common	Somatic modulation is rare
Often intermittent	Rarely intermittent
Percept can be formless or primitive	Percept is vivid and salient
Self-help can be very effective	Impact of self-help unknown, may be very limited

Table 4

Name	Authors (date)	Format	Validation population	Languages available
Geräuschüberempfindlichkeit (GÜF)	Nelting et al. (2002) [32]	27-item self-report	N = 226 with hyperacusis	German, English (Blasing et al., 2010) [6]
Hyperacusis Questionnaire (HQ)	Khalifa et al. (2002) [28]	12-item self-report	N = 201 general adult population	French, English
Multiple Activity Scale for Hyperacusis (MASH)	Dauman and Bous- cau-Faure (2005) [10]	15-item clinician-led questionnaire	N = 249 adults with tinnitus (79% also had hyperacusis)	English

The Multiple-Activity Scale for Hyperacusis (MASH; [10]) was developed to assess in which life situations a person is limited by hyperacusis, how annoyed they are by it, how much speech understanding is affected, and how severe it is at different times. It was validated in a tinnitus population. This modified version is yet to be validated in a new tinnitus participant cohort. The use of sound therapy is widespread, and there are two general approaches, both utilizing wide-band noise. The first is to introduce the sound at a quiet and unchallenging level, and then to gradually increase the intensity over a matter of weeks, with the suggestion that this is similar to a graduated exposure program that might be used for desensitization [25]. Alternatively, one might introduce the sound at a quiet and comfortable level and maintain that intensity, the proposal being that the gain of the auditory system is somehow “recalibrated” by that signal. While there are patient self-help reports indicating that pink noise, for example, may be more beneficial than white noise [24], randomized controlled trials (RCT) of these and other sound-based approaches are not yet available.

Another approach used for hyperacusis treatment is CBT. An RCT for CBT in hyperacusis indicated benefit and improvement in measures of sound tolerance [27]. In the case of tinnitus, combining sound-based therapy with elements of CBT has been demonstrated to be beneficial [8], and on the face of it, such combination therapy might also be effective for hyperacusis.

In the case of sound-evoked otalgia, in which pain-sensitive pathways in the cochlear nerve have been implicated, some form of analgesia might be effective. Intratympanic lidocaine has been trialed for tinnitus [9], but the benefits were minimal and the acute side effect of violent vertigo was said to be debilitating. Any effect on hyperacusis, or sound-evoked otalgia, has not been reported.

Outlook

In this paper we have described several areas where important information is lacking regarding hyperacusis (summary in Table 5). Clinicians and researchers are encouraged to collaborate and undertake work in this area, with the aim of increasing knowledge and ultimately improving the care of patients who experience hyperacusis. Such collaborative and sustained effort is proving of benefit in the adjacent field of tinnitus [16, 18–20]. In the case of tinnitus, and more recently mild-to-moderate hearing loss, lis-
The field of hyperacusis is young and evolving. There are still several areas where hyperacusis can have a marked negative impact on quality of life. There are still several areas where important information is lacking regarding hyperacusis. Clinicians and researchers are encouraged to collaborate so as to increase knowledge and ultimately improve the care of patients with hyperacusis. The field of hyperacusis is young and there is a need for capacity building in this challenging yet fascinating area.

Compliance with ethical guidelines

Conflict of interest. D. M. Baguley and D. J. Hoare declare that they have no competing interests.

This article does not contain any studies with human participants or animals performed by any of the authors.

Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Practical conclusion

- Hyperacusis can have a marked negative impact on quality of life.
- There are still several areas where important information is lacking regarding hyperacusis.
- Clinicians and researchers are encouraged to collaborate so as to increase knowledge and ultimately improve the care of patients with hyperacusis.
- The field of hyperacusis is young and there is a need for capacity building in this challenging yet fascinating area.

Table 5 Major research questions in hyperacusis

Question
What is the prevalence of hyperacusis in adults and children?
What are the risk factors associated with hyperacusis?
What is the natural history of hyperacusis?
How is “pain hyperacusis” perceived?
What mechanisms are involved in hyperacusis?
What is the relationship between hyperacusis and tinnitus?
Can a questionnaire be developed that accurately measures the impact of hyperacusis and can be used as a treatment outcome measure?
What treatments, alone or in combination, are effective for hyperacusis?

References

1. Al-Salim SC, Kopun JG, Neely ST, Jesteadt W, Stiegemann B, Gorga MP (2010) Reliability of categorical loudness scaling and its relation to threshold. Ear Hear 31(4):567–578
2. Alkharabsheh A, Xiong F, Xiong B, Manohar S, Chen G, Salvi R, Sun W (2017) Early age noise exposure increases loudness perception – a novel animal model of hyperacusis. Hear Res 347:11–17
3. Anari M, Axelsson A, Ellasson A, Magnusson L (1999) Hypersensitivity to sound–questionnaire data, audiometry and classification. Scand Audiol 28(4):219–230
4. Auerbach BD, Rodrigues PV, Salvi RJ (2014) Central gain control in tinnitus and hyperacusis. Front Neurol 24(5):206
5. Baguley DM (2017) Hyperacusis and misophonia. In: Baguley DM, Wray N (eds) British tinnitus association, Sheffield, pp 50–55
6. Blasing L, Goebl G, Flötzinger U, Berthold A, Körner-Herwig B (2010) Hypersensitivity to sound in tinnitus patients: an analysis of a cross-section based on questionnaire and audiological data. Int J Audiol 49(7):518–526
7. Boucher O, Turgeon C, Champoux S, Ménard L, Rouleau J, Lassonde M, Leopre F, Nguyen DK (2015) Hyperacusis following unilateral damage to the insular cortex: a three-case report. Brain Res 1606:102–112
8. Cima RF, Maes IH, Joore MA, Scheyen DJ, El-Refaie A, Baguley DM, Anteunis LJ, van Breukelen GJ, Vlaeyen JW (2012) Specialised treatment based on cognitive behavioural therapy versus usual care for tinnitus: a randomised controlled trial. Lancet 379(9830):1951–1959
9. Coles RR, Thompson AC, O’Donoghue GM (1992) Intra-tympanic injections in the treatment of tinnitus. Clin Otolaryngol Allied Sci 17(3):240–242
10. Dauman R, Bouscau-Faure F (2005) Assessment and amelioration of hyperacusis in tinnitus patients. Acta Otolaryngol 125(5):503–509
11. Degeest S, Cortals P, Dhoooge I, Keppler H (2016) The impact of tinnitus characteristics and associated variables on tinnitus-related handicap. J Laryngol Otol 130(1):25–31
12. Eggemont JJ (2018) Animal models of hyperacusis. In: Fagelson MF, Baguley DM (eds) Hyperacusis: clinical and research perspectives. Plural, San Diego (in press)
13. Fackrell K, Fearnsley C, Hoare DJ, Sereda M (2015) Hyperacusis questionnaire as a tool for measuring hypersensitivity to sound in a tinnitus research population. Biomed Res Int. https://doi.org/10.1155/2015/290425
14. Florentine M (2011) Loudness. In: Florentine M, Popper AN, Fay RR (eds) Loudness. Springer, New York, pp 1–16
15. Flores EN, Duggan A, Madathany T, Hogan AK, Márquez FG, Kumar G, Seal RP, Edwards RH, Liberman MC, García-Añoveros J (2015) A non-canonical pathway from cochlea to brain signals tissue-damage and noise. Curr Biol 25(5):606–612
16. Fuller TE, Haider HF, Kikidis D, Lapira A, Mazurek B, Norena A, Brueggenmann PG et al (2017) Different teams, same conclusions? A systematic review of existing clinical guidelines for the assessment and treatment of tinnitus in adults. Front Psychol 8:206. https://doi.org/10.3389/fpsyg.2017.00206
17. Hall AJ, Humphriss R, Baguley DM, Parker M, Steer CD (2016) Prevalence and risk factors for reduced sound tolerance (hyperacusis) in children. Int J Audiol 55(3):135–141
18. Hall D, Mohamad N, Fakrins L, Fenton M, Stockdale D (2013) Identifying and prioritizing unmet research questions for people with tinnitus: the James Lind Alliance Tinnitus Priority Setting Partnership. Clin Investig (Lond) 3(1):21–28
19. Hall DA, Haider H, Szczepak AJ, Lau P, Rabau S, Jones-Diette J, Londero A, Edvalk NK, Cederroth CR, Mielczarek M, Fuller T, Batuecas-Caletario A, Brueggenmann P, Thompson DM, Norena A, Cima RF, Mehta RL, Mazurek B (2016) Systematic review of outcome domains and instruments used in clinical trials of tinnitus treatments in adults. Trials 17(1):270
20. Henshaw H, Sharkey L, Crowe D, Ferguson M (2015) Research priorities for mild-to-moderate hearing loss in adults. Lancet 386(10009):2140–2141
21. Hickox AE, Liberman MC (2014) Is noise-induced cochlear neuropathy key to the generation of hyperacusis or tinnitus? J Neurophysiol 111(5):552–564
22. Hiller W, Goebl G (2006) Factors influencing tinnitus loudness and annoyance. Arch Otolaryngol Head Neck Surg 132(12):1323–1330
23. http://hyperacusisresearch.org. Accessed 30 May 2017
24. http://www.hyperacusis.net. Accessed 30 May 2017
25. Jastreboff PJ, Hazell JWP (2004) Tinnitus retraining therapy. Cambridge University Press, Cambridge
26. Juris L, Andersson G, Larsen HC, Ekselius L (2014) Cognitive behaviour therapy for hyperacusis: a randomized controlled trial. Behav Res Ther 54:30–37
27. Juris L, Andersson G, Larsen HC, Ekselius L (2013) Psychiatric comorbidity and personality
traits in patients with hyperacusis. Int J Audiol 52(4):230–235
28. Krolla S, Dubal S, Veulliet E, Perez-Diaz F, Jouvent R, Collet L (2002) Psychometric normalization of a hyperacusis questionnaire. ORL J Otorhinolaryngol Relat Spec 64:436–442
29. Knipper M, Van Dijk P, Nunes I, Rüttinger L, Zimmermann U (2013) Advances in the neurobiology of hearing disorders: recent developments regarding the basis of tinnitus and hyperacusis. Prog Neurobiol 111:17–33
30. McFerran DJ, Baguley DM (2007) Acoustic shock. J Laryngol Otol 121(4):301–305
31. Morgan DE, Wilson RH, Dirks DD (1974) Loudness discomfort level: selected methods and stimuli. J Acoust Soc Am 56:577–581
32. Netting M, Rienhoff NK, Hesse G, Lamparter U (2002) The assessment of subjective distress related to hyperacusis with a self-rating questionnaire on hypersensitivity to sound. Laryngorhinootologie 81(5):327–334
33. Nemholt Rosing S, Hvass Schmidt J, Wedderkopp N, Baguley DM (2016) Prevalence of tinnitus and hyperacusis in children and adolescents: a systematic review. BMJ Open 6:1–20
34. Paulin J, Andersson L, Nordin S (2016) Characteristics of hyperacusis in the general population. Noise Health 18(137):178–184
35. Phillips J, McFerran D, Hall D, Hoare DJ (2017) The natural history of tinnitus: a systematic review and meta-analysis of controlled trials. Laryngoscope. https://doi.org/10.1002/lary.26607
36. Salloum RH, Yurosky C, Santiago L, Sandridge SA, Kaltenbach JA (2014) Induction of enhanced acoustic startle response by noise exposure: dependence on exposure conditions and testing parameters and possible relevance to hyperacusis. PLoS ONE 9(10):e111747
37. Scheckleman M, Landgrebe M, Langguth B, TRI Database Study Group (2015) Phenotypic characteristics of hyperacusis in the general population. Noise Health 18(105):1–6
38. Song JJ, De Ridder D, Weisz N, Schlee W, Van de Heyning Vanneste PS (2014) Hyperacusis-associated pathological resting-state brain oscillations in the tinnitus brain: a hyperresonance network with paradoxically inactive auditory cortex. Brain Struct Funct 219(3):1113–1128
39. Stephens JD, Bleagard B, Knogh HJ (1977) The value of some suprathreshold auditory measures. Scand Audiol 6(4):213–221
40. Suhnan AP, Finch PM, Drummond PD (2017) Hyperacusis in chronic pain: neural interactions between the auditory and nociceptive systems. Int J Audiol 56(7):801–809
41. Tyler RS, Pienkowski M, Roncancio ER, Jun HJ, Brozski T, Dauman N, Dauman J, Andersson G, Keiner AJ, Cacace AT, Martin N, Moore BC (2014) A review of hyperacusis and future directions: part I. Definitions and manifestations. Am J Audiol 23(4):402–419
42. Vielsmeier V, Kreuzer PM, Haubner F, Steffens T, Semmler PR, Kleinjung T, Schlee W, Langguth B, Schecklmann M (2016) Speech comprehension difficulties in chronic tinnitus and its relation to hyperacusis. Front Aging Neurosci 8:293
43. Yang C, Jung I, Kim SH, Byun JY, Park MS, Yeo SG (2015) Comparison of clinical characteristics in patients with bilateral and unilateral tinnitus. Acta Oto Laryngol 135(11):1128–1131
44. Zeng FG (2013) An active loudness model suggesting tinnitus as increased central noise and hyperacusis as increased nonlinear gain. Hear Res 295:172–179