Draft Whole-Genome Sequences of Periodontal Pathobionts *Porphyromonas gingivalis*, *Prevotella intermedia*, and *Tannerella forsythia* Contain Phase-Variable Restriction-Modification Systems

Richard D. Haigh, a Liam A. Crawford, a Joseph D. Ralph, a Joseph J. Wanford, a Sonia R. Vartoukian, b Karolin Hijazi, c William Wade, b Marco R. Oggioni a

Department of Genetics, University of Leicester, Leicester, United Kingdom a; Centre for Immunobiology, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom b; School of Medicine & Dentistry, The University of Aberdeen Dental School and Hospital, Aberdeen, United Kingdom c

ABSTRACT Periodontal disease comprises mild to severe inflammatory host responses to oral bacteria that can cause destruction of the tooth-supporting tissue. We report genome sequences for 18 clinical isolates of *Porphyromonas gingivalis*, *Prevotella intermedia*, and *Tannerella forsythia*, Gram-negative obligate anaerobes that play a role in the periodontal disease process.

Periodontal disease describes a range of mild to severe inflammatory oral bacterial infections that can ultimately cause destruction of the tooth-supporting tissues. Periodontitis affects 10 to 15% of the adult population worldwide (1). The host inflammation seen in periodontitis is provoked by oral bacteria and a number of species, including *Porphyromonas gingivalis*, *Prevotella intermedia*, and *Tannerella forsythia*, have been shown to be disease associated (2); *P. gingivalis*, in particular, is regarded as a keystone pathobiont subverting host defenses (3). Here, we describe the draft whole-genome sequences (WGS) of 18 anaerobic bacterial strains isolated from patients; the strains were selected from the culture collection of author W. Wade, obtained during previous studies. In those studies, subgingival plaque samples were collected from periodontal pockets >8 mm in depth in subjects with advanced periodontitis by means of a curette. Samples were cultured on fastidious anaerobe agar (FAA, Lab M) supplemented with 5% horse blood and incubated anaerobically for up to 7 days. *P. intermedia*, *T. forsythia*, and *P. gingivalis* strains were identified by 16S rRNA analysis. Genomic DNA isolated from all three species (Genomic DNA clean and concentrate kit, Zymo Research) was used to prepare libraries (Nextera DNA library preparation kit) which were analyzed on Illumina MiSeq. Sequence reads were quality controlled using Trimmomatic (4) and WGS assembled using SPAdes v3.6.2 (5). Genome size and assembly quality were assessed using QUAST v4.3 (6) (see Table 1).

Multilocus sequence typing (MLST) of the *P. gingivalis* WGS using pubMLST (pubmlst.org) identified two strains as sequence type 30 (ST30); however, six strains presented with novel STs, and the rest had incomplete MLST profiles (see Table 1). A core genome analysis of the *P. gingivalis* WGS, using the Harvest 1.0 program suite (http://harvest.readthedocs.io) (7), indicated that they all nest within the existing *P. gingivalis* genomes available in NCBI GenBank. WGS of all species were analyzed against the Comprehensive Antibiotic Resistance Database (https://card.mcmaster.ca/analyze).
To identify known and putative antimicrobial resistance genes, two "perfect hits" were obtained, both in *P. intermedia* strain 885, against the *cfxA2* gene; this broad spectrum β-lactamase has been reported in several *Prevotella* spp. (9). Analysis of flanking sequence revealed the presence of a Tn4555-like sequence, from *Bacteroides fragilis*, suggesting horizontal acquisition (10). PHASTER (PHAge Search Tool Enhanced Release) (11) analysis of all WGS found just a single intact bacteriophage (33.8 kbp in length, with a G+C content of 48.78%, and encoding 36 proteins) in *P. gingivalis* WW2952.

Phase-variable type I restriction-modification systems (pv-RMS) were found in all of the *P. intermedia* genomes and in five of the *P. gingivalis* genomes (Table 1); similar pv-RMS were subsequently identified in *P. intermedia* and *P. gingivalis* genomes already in the GenBank database. A pv-RMS system found in *Streptococcus pneumoniae* has recently been shown to facilitate the epigenetic control of genes involved in virulence (12, 13). Structural similarities between the *S. pneumoniae* system and the pv-RMSs identified in *P. intermedia* and *P. gingivalis* raise the possibility that epigenetic regulatory mechanisms may also play a role in periodontal disease.

Accession number(s). These whole-genome shotgun sequences have been deposited in GenBank and the versions described in this paper are the first versions (see Table 1 for full details).

ACKNOWLEDGMENTS

The periodontal strains used were collected during previous studies performed at the University of Cardiff (strains WW414, WW855, and WW2096), University of Bristol (WW2834, WW2842, WW2866, WW2881, WW2885, WW2903, WW2952, WW3039, WW3040, and WW3102), King’s College London (WW5019, WW5127, and WW10960), and Queen Mary University of London (WW11663).

Illumina sequencing was performed by the NUCLEUS Genomics Core Facility and data analysis used the Spectre2 and Alice2 High Performance Computing Facility at the University of Leicester.

This work was in part funded by a grant from the BBSRC (BB/N002903/1) to M.R.O.

REFERENCES

1. Petersen PE, Ogawa H. 2012. The global burden of periodontal disease: towards integration with chronic disease prevention and control. Periodontol 60:15–39. https://doi.org/10.1111/j.1600-0757.2011.00425.x.

2. Socransky SS, Haffajee AD, Cugini MA, Smith C, Kent RL, Jr. 1998. Microbial complexes in subgingival plaque. J Clin Periodontol 25: 134–144. https://doi.org/10.1111/j.1600-051X.1998.tb02419.x.
3. Darveau RP, Hajishengallis G, Curtis MA. 2012. Porphyromonas gingivalis as a potential community activist for disease. J Dent Res 91:816–820. https://doi.org/10.1177/0022034512453589.

4. Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170.

5. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. https://doi.org/10.1089/cmb.2012.0021.

6. Gurevich A, Saveliev V, Vyahhi N, Tesler G. 2013. QUAST: quality assessment tool for genome assemblies. Bioinformatics 29:1072–1075. https://doi.org/10.1093/bioinformatics/btt086.

7. Treangen TJ, Ondov BD, Koren S, Phillippy AM. 2014. The Harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes. Genome Biol 15:524. https://doi.org/10.1186/PREACCEPT-2573980311437212.

8. Jia B, Raphenya AR, Alcock B, Waglechner N, Guo P, Tsang KK, Lago BA, Dave BM, Pereira S, Sharma AN, Doshi S, Courtot M, Lo R, Williams LE, Frye JG, Elsayegh T, Sardar D, Westman EL, Pawlowski AC, Johnson TA, Brinkman FS, Wright GD, McArthur AG. 2017. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res 45:D566–D573. https://doi.org/10.1093/nar/gkw1004.

9. Giraud-Morin C, Madinier I, Fosse T. 2003. Sequence analysis of cfxA2-like β-lactamases in Prevotella species. J Antimicrob Chemother 51:1293–1296. https://doi.org/10.1093/jac/dkg221.

10. Iwahara K, Kuriyama T, Shimura S, Williams DW, Yanagisawa M, Nakagawa K, Karasawa T. 2006. Detection of cfxA and cfxA2, the β-lactamase genes of Prevotella spp., in clinical samples from dentoalveolar infection by real-time PCR. J Clin Microbiol 44:172–176. https://doi.org/10.1128/JCM.44.1.172-176.2006.

11. Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang Y, Wishart DS. 2016. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res 44:W16–W21. https://doi.org/10.1093/nar/gkw387.

12. Manso AS, Chai MH, Atack JM, Furi L, De Ste Croix M, Haigh R, Trappetti C, Ogunniiyi AD, Shewell LK, Boitano M, Clark TA, Korlach J, Blades M, Mirkes E, Gorbman AN, Paton JC, Jennings MP, Oggoni MR. 2014. A random six-phase switch regulates pneumococcal virulence via global epigenetic changes. Nat Commun 5:5055. https://doi.org/10.1038/ncomms6055.

13. Croucher NJ, Coupland PG, Stevenson AE, Callendrello A, Bentley SD, Hanage WP. 2014. Diversification of bacterial genome content through distinct mechanisms over different timescales. Nat Commun 5:5471. https://doi.org/10.1038/ncomms6471.