Aspergillus calidoustus sp. nov., Causative Agent of Human Infections Previously Assigned to Aspergillus ustus\V

János Varga,¹,² Jos Houbraken,¹ Henrich A. L. Van Der Lee,³ Paul E. Verweij,³ and Robert A. Samson¹*

CBS Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands¹; Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6701 Szeged, P.O. Box 533, Hungary²; and Department of Medical Microbiology, Radboud University Nijmegen Medical Center, Nijmegen University Center for Infectious Diseases, P.O. Box 9101 6500 HB, Nijmegen, The Netherlands³

Received 20 November 2007/Accepted 7 February 2008

Aspergillus ustus is a relatively rare human pathogen causing invasive infections in immunocompromised hosts. In this study isolates originating from clinical and other sources have been examined using molecular, morphological, and physiological approaches to clarify their species assignment. Phylogenetic analysis of partial β-tubulin, calmodulin, actin, and intergenic transcribed spacer sequences indicated that none of the clinical isolates recognized previously as A. ustus belongs to this species. All but two of these isolates formed a well-defined clade related to A. pseudodeflectus based on sequence analysis of protein-coding regions. Morphological and physiological examination of these isolates indicated that they are able to grow above 37°C, in contrast with A. ustus isolates, and give a positive Ehrlich reaction, in contrast with related species including A. granulosus, A. ustus, and A. pseudodeflectus. These isolates are proposed as a new species, A. calidoustus. Antifungal susceptibility testing showed that this species has decreased susceptibilities to several antifungal drugs. The triazoles are inactive in vitro, including the new azole posaconazole.

Aspergillus ustus is a common filamentous fungus found in food, soil, and indoor air environments worldwide (27). At the same time, this species is considered a relatively rare human pathogen that can cause invasive infection in immunocompromised hosts. To date, only 22 cases of invasive aspergillosis have been reported to be caused by mised hosts. To date, only 22 cases of invasive aspergillosis pathogen that can cause invasive infection in immunocompromised hosts. In this study isolates originating from clinical and other sources have been examined using molecular, morphological, and physiological approaches to clarify their species assignment. Phylogenetic analysis of partial β-tubulin, calmodulin, actin, and intergenic transcribed spacer sequences indicated that none of the clinical isolates recognized previously as A. ustus belongs to this species. All but two of these isolates formed a well-defined clade related to A. pseudodeflectus based on sequence analysis of protein-coding regions. Morphological and physiological examination of these isolates indicated that they are able to grow above 37°C, in contrast with A. ustus isolates, and give a positive Ehrlich reaction, in contrast with related species including A. granulosus, A. ustus, and A. pseudodeflectus. These isolates are proposed as a new species, A. calidoustus. Antifungal susceptibility testing showed that this species has decreased susceptibilities to several antifungal drugs. The triazoles are inactive in vitro, including the new azole posaconazole.
Species	Strain no(s).	Source and/or origin
A. calidoustus	CBS 112452	Indoor air, Germany
A. calidoustus	CBS 113228	ATCC 38849, IBT 13091
A. calidoustus	CBS 114380	Wooden construction material, Finland
A. calidoustus	CBS 121601, 677	Bronchoalveolar lavage fluid, proven invasive aspergillosis; Nijmegen, The Netherlands
A. calidoustus	CBS 121602, 678	Bronchial secretion, proven invasive aspergillosis; Nijmegen, The Netherlands
A. calidoustus	CBS 121589, 682	Autopsy lung tissue sample, proven invasive aspergillosis; Nijmegen, The Netherlands
A. calidoustus	CBS 121603, 741	Patient room, Nijmegen, The Netherlands
A. calidoustus	CBS 121604, 924	Laboratory, Nijmegen, The Netherlands
A. calidoustus	CBS 121605, 943	Sputum, Nijmegen, The Netherlands
A. calidoustus	CBS 121606, 2725	Feces, Nijmegen, The Netherlands
A. calidoustus	CBS 121608, 6989	Bronchoalveolar lavage, Nijmegen, The Netherlands
A. calidoustus	7843	Pasteur Institute, Paris, France
A. calidoustus	8023	Oslo, Norway
A. calidoustus	9331	Mouth wash, Nijmegen, The Netherlands
A. calidoustus	9371	Mouth wash, Nijmegen, The Netherlands
A. calidoustus	9420	Bronchial secretion, Nijmegen, The Netherlands
A. calidoustus	9692	Hospital ward, Nijmegen, The Netherlands
A. calidoustus	V02-46	Tongue swab, Nijmegen, The Netherlands
A. calidoustus	V07-21	Bronchial secretion, Nijmegen, The Netherlands
A. calidoustus	V17-43	Bronchial secretion, Nijmegen, The Netherlands
A. calidoustus	V22-60	Skin biopsy, Nijmegen, The Netherlands
A. calidoustus	CBS 121609, 902	Postcataract surgery endophthalmitis
A. calidoustus	907	Postcataract surgery endophthalmitis
A. calidoustus	908	Postcataract surgery endophthalmitis
A. calidoustus	64	Patient 16
A. calidoustus	67	Patient 17
A. calidoustus	CBS 121610, 91	Postcataract surgery endophthalmitis
A. calidoustus	351	Osteorickets
A. calidoustus	482	Postcataract surgery endophthalmitis
A. calidoustus	CBS 121611, FH 166	Patient 16
A. calidoustus	CBS 121616, FH 168	Environmental
A. calidoustus	FH 165	Patient 5a
A. calidoustus	CBS 121614, FH 98	Patient 5b
A. calidoustus	CBS 121615, FH 97	Patient 6b
A. calidoustus	CBS 121613, FH 94	Patient 2b
A. calidoustus	CBS 121612, FH 90	Patient 1b
A. calidoustus	FH 91	Patient 1b
A. calidoustus	NRRL 26162	Culture contaminant, Peoria, IL
A. calidoustus	NRRL 281	Thom 5634
A. calidoustus	NRRL 277	Thom 5698.754, green rubber
A. granulosus	CBS 588.65T	Soil, Fayetteville, AR
A. granulosus	CBS 119.58	Soil, Texas
A. granulosus	IKT 23478	Unknown
A. pseudodeflectus	CBS 596.55	Sugar, Louisiana
A. pseudodeflectus	CBS 756.74T	Desert soil, Western Desert, Egypt
A. puniceus	CBS 122.33	A. Biochwitz (1933)
A. puniceus	9377	Mouth wash, Nijmegen, The Netherlands
A. puniceus	V41-02	Feces, Nijmegen, The Netherlands
A. puniceus	NRRL 29173	Indoor air, Saskatoon, Canada
A. puniceus	CBS 495.65T	Soil, Zacinto, Costa Rica
A. puniceus	CBS 128.62	Soil, Louisiana
A. ustus	CBS 116057	Antique tapestries, Krakow, Poland
A. ustus	CBS 114901	Carpet, The Netherlands
A. ustus	CBS 261.67T	Culture contaminant, United States
A. ustus	CBS 133.55	Textile buried in soil, The Netherlands
A. ustus	CBS 239.90	Biopsies of brain tumor of 10-year-old male, The Netherlands
A. ustus	CBS 113233	IBT 14495, unknown
A. ustus	CBS 113232	IBT 14392, unknown
A. ustus	CBS 121617, NRRL 285	Soil, Iowa
A. ustus	NRRL 280	Bat dung, Cuba
A. ustus	NRRL 1609	Bat dung, Cuba
A. ustus	NRRL 29172	Indoor air, Edmonton, Canada

a These samples were taken from the same patient (36).
b K. A. Marr.
described previously (11). Sequence analysis was performed using a Big Dye Terminator Cycle Sequencing Ready Reaction Kit for both strands, and the sequences were aligned with MT Navigator software (Applied Biosystems, Foster City, CA). All sequencing reaction products were purified by gel filtration through a Sephadex G-50 column (Amersham Pharmacia Biotech, Piscataway, NJ) equilibrated in double-distilled water and analyzed on an ABI Prism 310 Genetic Analyzer (Applied Biosystems, Foster City, CA).

Data analysis. Sequences were aligned using CLUSTAL X (34) and improved manually. The neighbor-joining (NJ) and maximum parsimony (MP) methods were used for the phylogenetic analysis. For NJ analysis (25), the data were first

![Image of a phylogenetic tree](image.png)

FIG. 1. One of the MP trees based on the β-tubulin (A) and calmodulin (B) sequence data of the examined isolates. Numbers above branches are bootstrap values. Only values above 70% are indicated.
analyzed using the Tamura-Nei parameter distance calculation model with gamma-distributed substitution rates (32), which were then used to construct the NJ tree with the MEGA program, version 3.1 (15). To determine the support for each clade, a bootstrap analysis was performed with 1,000 replications. For parsimony analysis, PAUP*, version 4.0, was used (31). Alignment gaps were treated as a fifth character state, and all characters were unordered and of equal weight. MP analysis was performed for all data sets using the heuristic search option with 100 random taxon additions and tree bisection and reconstruction as the branch-swapping algorithm. Branches of zero length were collapsed, and all multiple, equally parsimonious trees were saved. The robustness of the trees obtained was evaluated by 1,000 bootstrap replications (9).

A. granulosus isolates were used as outgroups.

Antifungal susceptibility tests. Isolates were revived by subculturing twice on Sabouraud dextrose agar tubes for 5 to 7 days at 35°C. Conidial suspensions were prepared spectrophotometrically and were further diluted in RPMI 1640 medium (with L-glutamine and without bicarbonate) (GIBCO BRL, Life Technologies, Woerden, The Netherlands). Microtiter plates were inoculated to an initial concentration of 1×10^4 to 5×10^4 conidia/ml as recommended by the CLSI for mold testing (18).

The antifungal activities of amphotericin B (Bristol-Meyers-Squibb, Woerden, The Netherlands), fluconazole (or 5-fluorocytosine [5-FC]; Valeant, Zoetermeer, The Netherlands), voriconazole (Pfizer, Capelle aan de IJssel, The Netherlands), posaconazole (Schering-Plough, Maarssen, The Netherlands), terbinafine (Novartis Pharma, Arnhem, The Netherlands), and caspofungin (MSD, Haarlem, The Netherlands) were determined in vitro using a broth-microdilution method according to CLSI guidelines (M-38A) (18). The concentration range for amphotericin B, terbinafine, itraconazole, voriconazole, and posaconazole was 0.016 to 16 mg/liter; a range of 0.062 to 64 mg/liter was used for 5-FC and caspofungin. MICs were determined after 24 and 48 h of incubation. For amphotericin B the MIC was defined as the lowest concentration that showed no visible growth. For the azoles and 5-FC the MIC was defined as the lowest concentration at which 50% growth inhibition was measured compared with that of the control (19). For caspofungin the minimum effective concentration was determined. All suscepti-
Phylogenetic analyses. For the molecular analysis of the isolates, four genomic regions (the ITS region and parts of the actin, calmodulin, and β-tubulin genes) were amplified and sequenced. Phylogenetic analysis of the data was carried out using the NJ technique and parsimony analysis. One of each of the MP trees based on the different data sets is shown in Fig. 1 and 2. During analysis of part of the β-tubulin gene, 448 characters were analyzed, and 85 were found to be phylogenetically informative. The topology of the NJ tree is the same as that of one of the 776 MP trees constructed by the PAUP program (length, 109 steps; consistency index, 0.9314; retention index, 0.9930). The calmodulin data set included 415 characters, with 108 parsimony-informative characters (770 MP trees; tree length, 140; consistency index, 0.9412; retention index, 0.9931). The actin data set included 347 characters, with 102 parsimony-informative characters (610 MP trees; tree length, 115; consistency index, 0.9646; retention index, 0.9929). The ITS data set included 500 characters, 16 of which were parsimony informative (1,050 MP trees; tree length, 25; consistency index, 0.9000; retention index, 0.9916). The topologies of the NJ trees based on ITS, actin, and calmodulin data were the same as those of one of the MP trees for the respective gene (Fig. 1 and 2).

Molecular data revealed that none of the clinical isolates belongs to A. ustus. All except two clinical isolates form a well-defined clade closely related to A. pseudodeflectus on all trees (Fig. 1 and 2). Based on the concordance of the gene genealogies of the protein-coding loci (33), these isolates represent a new species. Two other clinical isolates were found to belong to A. puniceus based on all sequence data (Fig. 1 and 2). Interestingly, some isolates associated with endophthalmitis following cataract surgery formed a subclade based on ITS sequences corresponding to a single conversion of T to C at

FIG. 2. One of the MP trees based on actin (A) and ITS (B) sequence data of the examined isolates. Numbers above branches are bootstrap values. Only values above 70% are indicated.
position 431 in ITS2 and also two consecutive substitutions (CT to TC) in positions 11 and 12 in their calmodulin genes. Although some of these isolates also produce more curved Hülle cells than observed in other isolates, these features were treated as insufficient to assign them to separate species since their other characteristics were identical to those of the other clinical isolates.

Phenotypic analyses. All clinical isolates were able to grow at temperatures above 37°C, in contrast with *A. ustus* isolates, which could not grow at this temperature (Table 2). Similarly, *A. granulosus* and *A. pseudodeflectus* isolates were also able to grow at 37°C, but *A. puniceus* isolates could not. Regarding Ehrlich reactions, only those isolates that were found to form a distinct clade based on phylogenetic analysis of sequence data gave violet reactions (Table 2).

The clinical isolates grew well on CYA, producing grayish yellow to grayish brown colonies with yellowish brown exudates. Microscopically, their conidial heads were loosely co-
luminal, their conidia were coarsely roughened to echinulate, and they produced irregularly elongated Hu¨lle cells sparsely in scattered groups (Fig. 3). They were phylogenetically related to A. pseudodeflectus, which is also able to grow at 37°C but does not produce Hu¨lle cells but does produce curved brown conidiophores not seen in the clinical isolates (26). It also differs from the clinical isolates in its conidial ornamentation and negative Ehrlich reaction (Table 2).

Antifungal susceptibility tests. The examined isolates were found to have decreased susceptibilities to 5-FC and azoles including itraconazole, voriconazole, and posaconazole. The activity of caspofungin was variable, with some isolates showing low MICs and others showing MICs of 4 mg/liter or greater. Terbinafine appeared to be the most active antifungal agent. No differences were detected among the susceptibilities of isolates from patients or clinical or indoor environments (Table 3).

Based on molecular, morphological, and physiological data, we propose that these (mostly) clinical isolates represent a distinct species in Aspergillus section Usti, A. calidoustus sp. nov. (Fig. 3).

Aspergillus calidoustus Varga, Houbraken, and Samson, sp. nov. MB 504846. Holotype of A. calidoustus, here designated CBS 121601 T (677) (dried culture) isolated from bronchoalveolar lavage fluid, proven invasive aspergillosis, Nijmegen, The Netherlands.

Colonies on MEA 35 to 48 mm, on CYA 27 to 32 mm, on YES 36 to 41 mm, on CREA 14 to 22 mm in diameter after 7 days at 25°C and 20 to 35 mm on CYA after 7 days at 37°C. Moderate to good sporulation on CYA at 25°C, colony color blond/grayish yellow, brownish gray or grayish brown, hyphae

| TABLE 2. Morphological characteristics of species of Aspergillus section Usti |
|---------------------------------|-----------------|-----------------|-----------------|------------------|
| Species | Growth at 37°C | Characterization of Hu¨lle cells | Ehrlich reaction | Mycelium color on CYA |
| A. ustus | – | Scattered | Negative | Creme to light yellow |
| A. granulosus | + | Aggregated to colorless clusters | Negative | Inconspicuous |
| A. puniceus | – | Aggregated to yellowish masses | Negative | Bright yellow |
| A. pseudodeflectus | ++ | Absent | Negative | White; poor sporulation |
| A. calidoustus | ++ | Scattered | | Violet |

TABLE 3. Antifungal susceptibilities of A. calidoustus isolates from different sources

Antifungal agent	MIC (mg/liter [range]) for isolates from*		
	Patients (n = 20)	Clinical environment (n = 4)	Indoor environment (n = 3)
Amphotericin B	1–2	1 (0.5–4)	1 (1–2)
5-FC	>8–64 (2–>64)	2–16	2–32
Itraconazole	>16 (≥16)	>16 (≥16)	>16
Voriconazole	8–16	16 (8–16)	8 (8–16)
Posaconazole	>16	>16	>16
Terbinafine	0.031–0.125	0.016–0.25	0.031–0.0125
Caspofungin	0.25–4 (0.125–4)	2–4 (0.125–8)	0.25–2

* MICs are defined as follows: for amphotericin B, the lowest concentration that showed no visible growth; for the azoles and 5-FC, the lowest concentration at which 50% growth inhibition was measured compared with that of the control; for caspofungin, the minimum effective concentration. n, number of isolates examined.
inconspicuous. Exudate present as small yellow brown dropplets; reverse light or olive brown, occasionally with (light) yellow edges; yellow (brown) soluble pigments diffusing into the agar. Conidial heads loosely columnar; stipes short 150 to 300 μm (minimum, 130 μm) by 4 to 7 μm, walls thick, smooth, brown; vesicles 9 to 15 μm (range, 7 to 20 μm) wide, pyriform to broadly spathulate, biseriate; metulae covering the upper half to three-fourths of the vesicle, measuring 4.8 to 5.8 μm (range, 3.9 to 6.2 μm) by 2.5 to 4.5 μm; phialides 6.0 to 6.7 μm (range, 5.6 to 7.5 μm) by 2.0 to 3.0 μm; conidia globose 2.7 to 3.5 μm, very rough ornamentation (0.5 to 0.8 μm high), inner and outer wall visible. Hüolle cells sparsely produced, irregularly elongated, in scattered groups.

Etymological and distinguishing features. In Latin “calidus” means warm and is used here to refer to the resemblance to *A. ustus* and the ability of the isolates to grow at 37°C. Colonies are characterized by good growth at 37°C, a violet Ehrlich reaction, and coarsely roughened to echinulate conidia.

DISCUSSION

In this study, we examined the phylogenetic placement of 34 *A. ustus* clinical isolates together with environmental isolates and strains from culture collections. Phylogenetic analysis of protein-coding regions of the clinical isolates previously assigned to the *A. ustus* species based on morphological examinations revealed that these isolates represent a new species, *A. calidoustus*. Although the ITS sequences of the clinical isolates were identical to those of *A. pseudodefectus*, they formed a separate well-defined clade based on β-tubulin, calmodulin, and actin sequence data (Fig. 1 and 2). Previously, the ITS regions have also been found to be of limited value for species delimitation in *Aspergillus* sections *Clavati* (35) and *Nigri* (28). The genetic variability among these isolates was extremely low.

Isolates of *A. calidoustus* can easily be distinguished from *A. ustus* or *A. granulosus* by their ability to grow at or above 37°C and from *A. pseudodefectus* by using the Ehrlich test, which is used in *Penicillium* systematics for the detection of cyclopiazonic acid and other indole metabolites (3). Based on this reaction, *A. calidoustus* isolates produce such metabolites, while other members of *Aspergillus* section *Usti* do not (12).

A. calidoustus seems to be a relatively widespread species. Apart from the clinical isolates, several collection strains held in the CBS or NRRL collections have also been found to belong to this species (Table 1). In addition, preliminary data indicate that this species is also prevalent in indoor environments (J. Varga and R. A. Samson, unpublished data).

Antifungal susceptibility tests of *A. calidoustus* isolates show that most antifungal drugs have limited or no activity, which is in accordance with previous studies where “*A. ustus*” (4) isolates were found to be resistant to amphotericin B, echinocandins, and azole derivatives (5, 6, 21, 36). The class of the triazoles has a prominent role in the management of patients with invasive aspergillosis, and breakthrough infections caused by “*A. ustus*” have been reported in patients treated with voriconazole and itraconazole (21). We found that even the most recently registered compound, posaconazole, which is commonly the drug with the greatest intrinsic activity against *Aspergillus* species, showed no in vitro activity. Posaconazole was recently shown to be very effective in preventing invasive fungal infection and invasive aspergillosis in high-risk patients with acute myeloid leukemia, myelodysplastic syndrome, or graft-versus-host disease (2). However, it is important to realize that *A. calidoustus* might cause breakthrough infection in patients on posaconazole prophylaxis due to the lack of activity of the drug. In another study, terbinafine and theazole derivative UR-9825 were found to be the most active against “*A. ustus*” isolates among the seven antifungal drugs tested (6); however, these drugs are either experimental (UR-9825) or not used for the treatment of invasive aspergillosis due to the lack of clinical evidence of efficacy. Later studies clarified that this isolate belongs to the *A. insuustus* species (12). Further work is in progress to define the diversity and clinical significance of *A. calidoustus* isolates.

REFERENCES

1. Balaje, S. A., J. Houbraken, P. E. Verweij, S. B. Hong, T. Yaguchi, J. Varga, and R. A. Samson. 2007. *Aspergillus* species identification in the clinical setting. Stud. Mycol. 59:39–46.
2. Cornely, O. A., J. Maertens, D. J. Winston, J. Perfect, A. J. Ullmann, T. J. Walsh, Y. D. Goh, M. Petrinin, C. M. Hardalou, R. Suresh, and D. Angulo-Gonzalez. 2007. Posaconazole vs. itraconazole or itraconazole prophylaxis in patients with neutropenia. N. Engl. J. Med. 356:348–359.
3. Frisvad, J. C., and R. A. Samson. 2004. Polyphasic taxonomy of *Penicillium* subgenus *Penicillium*. A guide to identification of food and air-borne terverticillia penicilli and their mycotoxins. Stud. Mycol. 49:1–174.
4. Gams, W., M. Christensen, A. H. S. Onions, J. J. Pitt, and R. A. Samson. 1985. Infrageneric taxa of *Aspergillus*, p. 55–62. In R. A. Samson, and J. J. Pitt (ed.), Advances in *Aspergillus* and *Penicillium* systematics. Plenum Press, New York, NY.
5. Garcia-Martos, P., L. Garcia-Aguado, J. Gutierrez-Calzada, J. Ruiz-Aragon, A. Saldarreaga, and P. Marin. 2005. In vitro activity of amphotericin B, itraconazole and voriconazole against 20 species of *Aspergillus* using the Sensititre microdilution method. Enferm. Infec. Microbiol. Clin. 23:15–18. (In Spanish.)
6. Gene, J., A. Azon-Massoller, J. Guzaro, G. De Felver, A. Martinez, C. Grau, M. Ortoneda, and F. Ballestre. 2001. Cutaneous infection caused by *Aspergil- lus ustus*, an emerging opportunistic fungus in immunosuppressed patients. J. Clin. Microbiol. 39:1134–1136.
7. Glass, N. L., and G. C. Donaldson. 1995. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl. Environ. Microbiol. 61:1323–1330.
8. Henry, T., P. C. Iwen, and S. H. Hinrichs. 2000. Identification of *Aspergillus* species using internal transcribed spacer regions 1 and 2. J. Clin. Microbiol. 38:1510–1515.
9. Hillis, D. M., and J. J. Bull. 1993. An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst. Biol. 42:182–192.
10. Hiiinraskon, H. P., S. F. Hurst, T. J. Lott, D. W. Warmcock, and C. J. Morrison. 2005. Assessment of ribosomal large-subunit D1–D2, internal transcribed spacer 2 regions as targets for molecular identification of medically important *Aspergillus* species. J. Clin. Microbiol. 43:2092–2103.
11. Hong, S. R., S. J. Ho, H. D. Shin, J. C. Frisvad, and R. A. Samson. 2005. Polyphasic taxation of *Aspergillus fumigatus* and related species. Mycologia 97:1316–1329.
12. Houbraken, J., M. Due, J. Varga, M. Meijer, J. C. Frisvad, and R. A. Samson. 2007. Polyphasic taxonomy of *Aspergillus* section *Usti*. Stud. Mycol. 59:107–128.
13. Iwen, P. C., M. E. Rupp, M. R. Bishop, M. G. Rinaldi, D. A. Sutton, S. Tarantolo, and S. H. Hinrichs. 1998. Disseminated aspergillosis caused by *Aspergillus ustus* in a patient following allogeneic peripheral stem cell transplantation. J. Clin. Microbiol. 36:3713–3717.
14. Kozakiewicz, Z. 1989. *Aspergillus* species on stored products. Mycologia 81:192–198.
15. Kumar, S., K. Tamura, and M. Nei. 2004. MEGA3: Integrated software for molecular evolutionary genetic analysis and sequence alignment. Brief. Bioinform. 5:160–163.
16. Lask, F. 1995. Differentiating *Penicillium* species by detection of indole metabolites using a filter paper method. Lett. Appl. Microbiol. 20:226–231.
17. Nakai, K., Y. Kanda, S. Mineishi, A. Horii, A. Chizuka, H. Niya, T. Tanimoto, M. Ohnishi, M. Kami, A. Makimoto, R. Tanosaki, Y. Matsuno, N. Yamazaki, K. Tobinai, and Y. Yatake. 2002. Primary cutaneous aspergillosis caused by *Aspergillus ustus* following reduced-intensity stem cell transplantation. Ann. Hematol. 81:593–596.
18. National Committee for Clinical Laboratory Standards. 2002. Reference
method for broth dilution antifungal susceptibility testing of filamentous fungi. Approved standard M38-A. National Committee for Clinical Laboratory Standards, Wayne, PA.
19. Odds, F. C., F. Van Gerven, A. Espinel-Ingroff, M. S. Bartlett, M. A. Ghannoun, M. V. Lancaster, M. A. Pfaller, J. H. Rex, M. G. Rinaldi, and T. J. Walsh. 1998. Evaluation of possible correlations between antifungal susceptibilities of filamentous fungi in vitro and antifungal treatment outcomes in animal infection models. Antimicrob. Agents Chemother. 42:282–288.
20. Panackal, A. A., A. Imhof, E. W. Hanley, and K. A. Marr. 2006. Aspergillus ustus infections among transplant recipients. Emerg. Infect. Dis. 12:403–408.
21. Pavie, J., C. Lacroix, D. G. Hermoso, M. Robin, C. Ferry, A. Bergeron, M. Feuilhade, F. Dromer, E. Gluckman, J. M. Molina, and P. Ribaud. 2005. Breakthrough disseminated Aspergillus ustus infection in allogeneic hematopoietic stem cell transplant recipients receiving voriconazole or caspofungin prophylaxis. J. Clin. Microbiol. 43:4902–4904.
22. Peterson, S. W. 2000. Phylogenetic relationships in Aspergillus based on rDNA sequence analysis, p. 323–356. In R. A. Samson and J. I. Pitt (ed.), Integration of modern taxonomic methods for Penicillium and Aspergillus classification. Harwood Academic Publishers, Amsterdam, The Netherlands.
23. Raper, K. B., and D. I. Fennell. 1965. The genus Aspergillus. Williams and Wilkins, Baltimore, MD.
24. Rath, P. M., K. Petermeier, P. E. Verweij, and R. Ansorg. 2002. Differentiation of Aspergillus ustus strains by random amplification of polymorphic DNA. J. Clin. Microbiol. 40:2231–2233.
25. Saitou, N., and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406–425.
26. Samson, R. A., and J. Mouchacca. 1975. Additional notes on species of Aspergillus, Eurotium and Emericella from Egyptian desert soil. Antonie van Leeuwenhoek 41:343–351.
27. Samson, R. A., E. S. Hoekstra, and J. C. Frisvad. 2004. Introduction to food and airborne fungi, 7th ed. Centraalbureau voor Schimmelcultures, Utrecht, The Netherlands.
28. Samson, R. A., P. Noonim, M. Meijer, J. Houbraken, J. C. Frisvad, and J. Varga. 2007. Diagnostic tools to identify black aspergilli. Stud. Mycol. 59:129–146.
29. Saracli, M. A., F. M. Mutlu, S. T. Yildiran, A. E. Kurecki, A. Gönül, Y. Uysal, U. Erdem, A. C. Basustaoglu, and D. A. Sutton. 2007. Clustering of invasive Aspergillus ustus eye infections in a tertiary care hospital: a molecular epidemiologic study of an uncommon species. Med. Mycol. 45:377–384.
30. Stiller, M. J., L. Teperman, S. A. Rosenthal, A. Riordan, J. Potter, J. L. Shupack, and M. A. Gordon. 1994. Primary cutaneous infection by Aspergillus ustus in a 62-year-old liver transplant recipient. J. Am. Acad. Dermatol. 31:544–547.
31: Schwab, D. L. 2000. PAUP* 4.0: phylogenetic analysis using parsimony. Sinauer Associates, Sunderland, MA.
32. Tamura, K., and M. Nei. 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10:512–526.
33. Taylor, J. W., D. J. Jacobson, S. Kusaka, T. Kasuga, D. M. Geiser, D. S. Hibbett, and M. C. Fischer. 2000. Phylogenetic species recognition and species concepts in fungi. Fungal Genet. Biol. 31:21–32.
34. Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins. 1997. The CLUSTAL X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25:4876–4882.
35. Varga, J., M. Dus, J. C. Frisvad, and R. A. Samson. 2007. Taxonomic revision of Aspergillus section Clavati based on molecular, morphological and physiological data. Stud. Mycol. 59:89–106.
36. Verweij, P. E., P. M. van den Bergh, P. M. Rath, B. E. de Paauw, A. Voss, and J. F. Meis. 1999. Invasive aspergillosis caused by Aspergillus ustus: case report and review. J. Clin. Microbiol. 37:1606–1609.
37. Weiss, L. M., and W. A. Thiemke. 1983. Disseminated Aspergillus ustus infection following cardiac surgery. Am. J. Clin. Pathol. 80:408–411.
38. White, T. J., T. Bruns, S. Lee, and J. W. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, p. 315–322. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, and T. J. White (ed.), Protocols: a guide to methods and applications. Academic Press, San Diego, CA.
39. Yildiran, S. T., F. M. Mutlu, M. A. Saracli, Y. Uysal, A. Gönül, G. Sobaci, and D. A. Sutton. 2006. Fungal endophthalmitis caused by Aspergillus ustus in a patient following cataract surgery. Med. Mycol. 44:665–669.