Effect of *Boschniakia rossica* on expression of GST-P, p53 and p21\(^{ras}\) proteins in early stage of chemical hepatocarcinogenesis and its anti-inflammatory activities in rats

Zong Zhu Yin, Hai Ling Jin, Xue Zhe Yin, Tian Zhu Li, Ji Shu Quan and Zeng Nan Jin

Subject headings *Boschniakia rossica*; liver neoplasms/chemically induced; glutathione transferases; protein p53; immunohistochemistry; anti-inflammatory agents; rats

Yin ZZ, Jin HL, Yin XZ, Li TZ, Quan JS, Jin ZN. Effect of *Boschniakia rossica* on expression of GST-P, p53 and p21\(^{ras}\) proteins in early stage of chemical hepatocarcinogenesis in rats and its anti-inflammatory activities. *World J Gastroenterol*. 2000;6(6):812-818

Abstract

AIM To investigate the effect of *Boschniakia rossica* (BR) extract on expression of GST-P, p53 and p21\(^{ras}\) proteins in early stage of chemical hepatocarcinogenesis in rats and its anti-inflammatory activities.

METHODS The expression of tumor marker-placental form glutathione S-transferase (GST-P), p53 and p21\(^{ras}\) proteins were investigated by immunohistochemical techniques and ABC method. Anti-inflammatory activities of BR were studied by xylene and croton oil-induced mouse ear edema, carrageenin, histamine and hot scald-induced rat paw edema, adjuvant-induced rat arthritis and cotton pellet-induced granuloma formation methods.

RESULTS The 500mg/kg of BR-H\(_2\)O extract fractionated from BR-Methanol extract had inhibitory effect on the formation of DEN-induced GST-P-positive foci in rat liver (GST-P staining was 78% positive in DEN+AAF group vs 20% positive in DEN+AAF+BR group, \(P<0.05\)) and the expression of mutant p53 and p21\(^{ras}\) protein was lower than that of hepatic preneoplastic lesions (33% and 22% positive respectively in DEN+AAF group vs negative in DEN+AAF+BR group). Both CH\(_2\)Cl\(_2\) and H\(_2\)O extracts from BR had anti-inflammatory effect in xylene and croton oil-induced mouse ear edema (inhibitory rates were 26%-29% and 35%-59%, respectively).

CONCLUSION BR extract exhibited inhibitory effect on formation of preneoplastic hepatic foci in early stage of rat chemical hepatocarcinogenesis. Both CH\(_2\)Cl\(_2\) and H\(_2\)O extracts from BR exerted anti-inflammatory effect in rats and mice.

INTRODUCTION

Boschnikia rossica (BR) Fedtsch. et Flerov is a parasitic plant growing on the root Alnus plants (Betulaceae)\(^{[1]}\). It is one of the valuable medicinal plants growing mostly on the Changbai Mountain at 1450-1800 meters above sea level, Jilin, China. It is also distributed in the Democratic People’s Republic of Korea (DPRK), Japan and Russia. *Boschniakia rossica* is named “Bu Lao Cao” (antisenile plant), because it has effects of tonifying the Kidney and strengthening Yang, and has been used as a tonic or invigorating medicine in China. Yin ZZ et al isolated four iridoid compounds from Boschniakia rosseca of the Changbai Mountain by chromatographic techniques. Their structure was determined by means of the spectra of nuclear magnetic resonance (NMR) and mass spectra\(^{[2]}\). We discovered that Methanol extract of *Boschniakia rossica* exerted inhibitory effect on the formation of diethylnitrosamine (DEN)-induced GST-P-positive foci in the liver of F344 rats\(^{[3,4]}\) and BR also has antioxidative activities\(^{[5,6]}\). In the present study, we report the inhibitory effect of BR-water extract fractioned from BR-Methanol extract on the expression of GST-P, p53 and p21\(^{ras}\) proteins in early stage of rat chemical hepatocarcinogenesis and its anti-inflammatory activities in rats and mice.

MATERIALS AND METHODS

Chemicals

Diethylnitrosamine (DEN), 2-Acetylaminofluorene (AAF), determination kit for GGT and histamine...
were purchased from Sigma Chemical Co.(USA). Vectastain ABC kit (pk 4001) was obtained from Vector Laboratories Inc. (USA); anti-GST-P antibody was kindly supplied by Professor Shigeki Tsuchida, Second Department of Biochemistry, Hirosaki University School of Medicine, Japan. p53 (DO-1) and pan ras (F-132) monoclonal antibody were purchased from Santa Cruz Biotechnology.

Preparation of the extract of **Boschniakia rossica

Boschniakia rossica harvested from the Changbai Mountain area was used and the plants were identified by the authors. They were dried, cut, made into powder and extracted for overnight with Methanol five times. The Methanol extract was vacuum-concentrated. The extract was dried by speed vaccum.

Animals and treatment

Male Wistar rats, aged 6 weeks and weighing 160g-180g were used in the experiments of hepatocarcinogenesis. The male Wistar rats (180g-200g) and Kunming strain mice (20g-22g) were used in the anti-inflammatory experiment. Animals were housed in groups of 5 animals in plastic cages with stainless-steel grid tops at room temperature for a 12h light/dark cycle.

Induction of preneoplastic hepatic foci

Enzyme-altered hepatic foci and hyperplastic nodules were induced by the modified protocol of Solt and Farber. The animals were divided into 3 groups. The rats in groups B and C were given a single i. p. injection of DEN (200mg/kg body weight) dissolved in saline to initiate hepatocarcinogenesis. After 2 weeks on basal diet, the rats received 0.004% 2-AAF in the diet for the following 6 weeks. Group C, after 2 weeks of injection of DEN, was given the diet containing 0.004% 2-AAF+500mg/kg BR for the following 6 weeks as a BR treatment group. Group A, as a control group, was intraperitoneally injected with the saline instead of DEN and then maintained on basal diet for 8 weeks. All rats of experimental and control groups were subjected to two-thirds partial hepatectomy (PH) at the 3rd week. Rats in each group were killed for examination at the 8th week.

Immunohistochemical staining for GST-P, p53 and p21ras

Rat liver slices were fixed with ice-cold aceton and embedded in paraffin. Immunohistochemical staining for GST-P was performed by ABC method using anti-GST-P antibody; immunohistochemical staining for p53 and p21ras proteins was performed using p53 (DO-1) and pan ras (F-132) monoclonal antibody, respectively.

Quantitative analysis

The number and the area of GST-P-positive hepatic foci larger than 0.1mm in diameter were analyzed using the microscopic quantitative analyzer (OC.M 19m/m Square 10/10×10, Tokyo,Japan).

Investigation of anti-inflammatory activities of BR extract

Xylen or croton oil-induced mouse ear edema

An edema was induced on the right ear by topical application of xylen in mice 30 minutes after oral administration of 500mg/kg-1000mg/kg BR-H2O extract or BR-CH2Cl2 extract. The left ear was controled. Ear edema was measured by comparing the difference in weight (mg) between the same size of left and right ears 30 minutes after xylen-induction and 4h after croton oil-induction of inflammation and swelling degree and inhibition rate were calculated.

Carrageenin-induced rat paw edema

An edema was induced on the rat right hind paw by aponeurosis injection of 0.15mL of 1% carrageen in 0.9% saline. Test drug (500mg/kg-1000mg/kg of BR-H2O extract) was given orally 30 minutes before the injection of carrageenin. The volume of the right paw was measured before injection and at 1, 2, 3, 4, 6 and 24h after induction of inflammation. The edema was expressed as an increase in paw volume due to carrageenin injection. The results were obtained by measuring the volume difference before and after injection of the right paw. The swelling degree of paw and inhibition rate of edema were calculated.

Histamine-induced rat paw edema

An edema was induced on the right hind paw of rat by subplantar injection of 200µg/0.1mL of histamine. Test drug (500mg/kg of BR-H2O extract) was given 30 minutes before the injection of histamine. The volume of the right paw was measured before injection and 0.5, 1, 2, 3 and 4h after induction of inflammation. The swelling degree of paw and inhibition rate of edema were calculated.

Hot scald-induced rat paw edema

Edema was induced on the right hind paw of rat by hot scald. The right hind paw of rat soaked in thermostat water bath main tained at 53°C±0.5°C and cut-off time was 14 sec and test drug (500mg/kg of BR-H2O extract) was given 30 minutes before the hot scald test. The volume of the right paw was measured before test and 1, 2, 3, 4, 5, 6 and 24 h after induction of inflammation. The swelling degree of paw and inhibition rate of edema were calculated.

Adjuvant-induced arthritis in rats

The Arthritis was induced by injection of 0.1mL complete Freud’s adjuvant into the subplantar region of the right hind paw of rats. Five hundred mg/kg of BR-H2O
extract was orally administrated 30 minutes before the injection of adjuvant and the BR extract was given daily for 3 days after induction of inflammation. From the 8th day the BR extract was given daily for 7 days more. The volume of the right paw was measured before injection and at 18h, and on day 3, 6, 9, 12, 15, 18, 21 and 24 after induction of inflammation. The swelling degree of paw and inhibition rate of edema were calculated.

Cotton pellet-induced granuloma formation Pellets of surgical aseptic cotton weighing 15mg were implanted in both scapular regions in mice. The test drug (250mg/kg-500mg/kg) was administered daily for 7 days, and on the 8th day, the granulomatous tissues were removed. The pellets were dried overnight at 60°C and weighed. The dry weight was considered the weight of the granuloma. The results of this subacute inflammation were compared with the control group.

Statistical analysis Statistical analysis was made using the χ² test and the Student's t test. Values of P<0.05 were considered statistically significant.

Results Effect of Boschniakia rossica extract on expression of GST-P, p53 and p21 protein in early stages of rat chemical hepatocarcinogenesis Immunohistochemical investigation of expression of GST-P, p53 and p21 protein in DEN-induced preneoplastic hepatic foci (group B), in administration of BR extract in the Solt-Farber protocol of rats (group C) and control (group A) are summarized in Table 1. GST-P staining was 78% positive in group B and 20% positive in group C, while in group A it was negative (B vs C, P<0.05). Expression of oncogene products p53 and p21 protein in group B was 33% and 22% positive, while in groups A and C it was negative. The number (no/cm²) and area (mm²/cm²) of GST-P-positive hepatic foci in group C given DEN-AAF+BR was significantly decreased as compared with the values of group B given DEN-AAF (B vs C, P<0.001 and P<0.05) and these quantitative values are shown in Table 1 and Figure 1.

Effect of extract from BR on the anti-inflammatory activities in rats and mice
Both CH₂Cl₂ and water extract from BR have inhibitory effect in the xylene and croton oil-induced mouse ear edema, its inhibitory rate was 26%-29% and 35%-59% respectively (Tables 2 and 3) and exert inhibitory effect in the cotton pellet-induced granuloma formation in mice (Tables 8 and 9). BR-H₂O extract fractionated from BR-Methanol extract exhibited inhibitory effect in carrageenin, hot scald and histamine-induced rats hind paw edema (Tables 4, 6 and 7) and adjuvant-induced arthritis in rats(Table 5).
Table 4: Inhibitory effect of BR-H2O extract on carrageenin-induced paw edema in rats (x±s)

Groups	Dose (mg/kg)	(n)	Rats	1h	2h	3h	4h	6h	24h
NS	9			39.5±16.4	57.1±19.3	63.6±26.1	67.9±22.6	67.5±19.5	28.2±13.0
Ind	20	9		25.9±13.8	30.6±19.2	32.6±18.6	38.6±22.1	42.2±34.6	16.9±12.3
BR	500	9		30.6±13.8	28.7±8.3	39.4±12.2	40.1±14.2	39.5±20.0	9.6±8.9
BR	1000	9		31.8±15.7	26.3±18.9	36.5±19.9	37.0±288	23.5±16.4	6.8±10.4

*P<0.05; *P<0.01; *P<0.001, vs NS (t test)

NS: normal saline; Ind: indomethacin; BR: Boschniakia rossica

Table 5: Effect of BR-H2O extract on adjuvant arthitis in rats

Groups	Dose (mg/kg)	Rats (n)	18h	3d	6d	9d	12d	15d	18d	21d	24d
NS	6	108.2±43.8	74.7	66.9	58.0	77.8	77.1	99.6	78.6	71.5	
BR	500	79.1±22.3 (26.9)	33.9	51.8	52.6	67.5	75.7	61.7	53.4	46.5	

*P<0.05; *P<0.01, vs NS (t test)

NS: normal saline; Ind: indomethacin; BR: Boschniakia rossica

Table 6: Effect of BR-H2O extract on hot scald-induced paw edema in rats

Groups	Dose (mg/kg)	Rats (n) 1h	2h	3h	4h	5h	6h	24h
NS	8	67.2±4.7 (39.9)	59.5±3.9	74.2±6.5	81.5±23.7	77.7±17.1	69.8±19.1	63.7±14.5
BR	500	40.4±11.9 (60.8)	23.3±10.1 (68.6)	18.4±7.5 (51.3)	9.0±6.5 (61.7)	9.6±6.7 (53.4)	23.5±16.4 (74.2)	23.4±7.0 (63.3)

*P<0.05; *P<0.01, vs NS (t test)

Table 7: Effect of BR-H2O extract on histamine-induced rat hind paw edema

Groups	Dose (mg/kg)	Rats (n) 30min	1h	2h	3h	4h
NS	9	48.0±11.1 (36.2)	34.8±12.6 (31.1)	22.9±8.1 (31.7)	18.3±3.8 (36.8)	12.7±5.9 (71.3)
BR	500	28.5±7.5 (28.6)	18.4±7.5 (31.1)	9.0±6.5 (31.7)	9.6±6.7 (36.8)	2.3±3.9 (71.3)

*P<0.05; *P<0.01, vs NS (t test)

Table 8: Effect of BR-HO extract on proliferation of granuloma caused by cotton pellet in mice

Groups	Mouse (mg/kg)	(n)	Weight of granuloma	Inhibitory rate (%)
NS	250	10	615.2±119.1 (507.0±41.1)	463.5±49.6 (101.0±15.1)
BR	500	10	507.0±41.1 (101.0±15.1)	463.5±49.6 (101.0±15.1)

*P<0.05; *P<0.01, vs NS (t test)

Table 9: Effect of BR-CH2Cl2 extract on proliferation of granuloma caused by cotton pellet in mice

Groups	Mouse (mg/kg)	(n)	Weight of granuloma	Inhibitory rate (%)
NS	250	10	613.4±160.4 (445.8±37.0)	422.8±33.2 (84.8±7.8)
BR	500	10	507.0±41.1 (101.0±15.1)	463.5±49.6 (101.0±15.1)

*P<0.05; *P<0.01, vs NS (t test)
DISCUSSION

Changes in GST-P, p53 and p21^{ras} proteins during chemical hepatocarcinogenesis in rats

Placental form of glutathione S-transferase (GST-P) was first isolated from rat placenta as a sensitive marker enzyme in chemical hepatocarcinogenesis of rat by Sato et al in 1984^[20-24]. GST-P is considered to be an accurate marker for very early “initiated cells”^[21,24]. GST-π, purified from human term placenta, is related to rat GST-P in many properties and is grouped into the class Pi. It is of important clinical value. GST-π is also a useful human tumor marker for hepatoma, esophageal, gastric and colonic carcinomas and its preneoplastic lesions^[12-15,25-32]. Thereafter, using DEN as a initiator and AAF as a promoter, modified system based on Solt-Farber method was designed to screen the medium-term bioassay of chemical-induced carcinogenesis by Ito et al^[33]. This screening system was used in this study and successfully induced the preneoplastic GST-P-positive hepatic foci and nodules. Recently Tsuda H et al developed a trial for an initiation bioassay system. Initiation potential was assayed on the basis of significant increase in values of preneoplastic GST-P positive foci. This protocol may be useful for detection of the initiation potential of carcinogens irrespective of their mutagenicity^[34].

We investigated the effect of *Boschniakia rossica* on formation of GST-P positive preneoplastic hepatic foci during chemical hepatocarcinogenesis. The results demonstrated that BR-H₂O extract fractionated from BR-Methanol extract with CH₂Cl₂ and H₂O has inhibitory effect on DEN-induced GST-P positive preneoplastic hepatic foci in early stage of rat chemical hepatocarcinogenesis. We consider that it is related to its antioxidative action of *Boschniakia rossica*^[4]. Recently there are reports that GST-P is as a sensitive marker for preneoplastic hepatic foci during chemical hepatocarcinogenesis in rats^[35-40]. It indicated that GST-P and GST-π are very sensitive tumor markers for basic research, prevention and cure of cancer.

Rat chemical hepatocarcinogenesis can be
divided into several steps: initiation, promotion, and progression stages. During the initiation stage, alterations of specific genes and in particular the activation of cellular proto-oncogenes occurs. During the promotion stage, groups of preneoplastic cells have been observed in many organs prior to appearance of malignant cancers, and in rat chemical hepatocarcinogenesis enzyme-altered foci and hyperplastic nodules have been excited\(^{[21]}\).

Recently many scientists reported expression of ras, jun oncogene\(^{[42,47-49]}\), p53 tumor suppressor gene\(^{[41,43,45,52-54]}\), and nm23 tumor metastasis suppressor gene\(^{[44,46,50,51]}\) in hepatocellular carcinoma, esophageal, gastric, and colonic carcinomas. Smith \textit{et al}\(^{[41]}\) reported a p53 gene mutation occurring in foci of enzyme-altered hepatocytes induced by diethylnitrosamine in F 344 rats. We observed the relation to the expression of GST-P, ras gene product p21\(^{ras}\) protein and suppressor gene product p53 protein in preneoplastic hepatic foci of rat liver. The results suggest that one-third of GST-P positive foci were positive for p53 protein and approximately one-fourth of GST-P positive foci were also positive for p21\(^{ras}\) protein in group B, while in rat liver of group C treated with DEN and AAF plus BR for 6 weeks p53 protein and p21\(^{ras}\) were not immunohistochemically detectable. Our result is similar to the report by Smith \textit{et al}, and also is similar to that of GST-P appearing at an early stage of chemical hepatocarcinogenesis, when oncogene product c-jun was not immunohistochemically detectable, reported by Suzuki \textit{et al}\(^{[42]}\). These results indicate that BR-H\(_2\)O extract fractionated from BR-Methanol extract exerted an inhibitory effect on DEN-induced preneoplastic hepatic foci in rats administered with BR for 6 weeks during chemical hepatocarcinogenesis.

Anti-inflammatory activities of Boschniakia rossica

Results of the present study demonstrated that BR-extract exerted significant anti-inflammatory activities. An inhibitory effect of H\(_2\)O extract and CH\(_2\)Cl\(_2\) extract from BR was observed in the acute inflammatory process, such as xylene and croton oil-induced mouse ear edema, carrageein induced rat hind paw edema and inflammatory factors such as histamine and hot scald-induced rat hind paw edema. Anti-inflammatory activity of BR was also observed in the chronic inflammation process, such as cotton pellet-induced granuloma formation in mice and immune inflammation process, such as adjuvant-induced arthritis in rats. The experimental model of inflammation induced by carrageein is highly sensitive to non-steroidal anti-inflammatory drugs, and it has long been accepted as a useful phlogistic tool for investigating new anti-inflammatory drugs. The oral administration of the BR-H\(_2\)O extract (500mg/kg) inhibited the edema formation by 49.8% and 65.8% in 2 and 24 hours, respectively, after the administration of carrageein in rats. Indomethacin, the standard anti-inflammatory drug used in this experiment, inhibited the edema by 46.5% and 40% in 2 and 24 hours. The anti-inflammatory effect of extract from BR was also observed in the cotton pellet-induced granuloma format ion in mice. The daily oral administration of 250mg/kg and 500mg/kg of BR-CH\(_2\)Cl\(_2\) extract, using this model, showed on the eighth day an inhibitory effect of 25% and 35%, and 250mg/kg and 500mg/kg of BR-H\(_2\)O extract 35% and 34%, respectively. The mechanism of anti-inflammatory action of Boschniakia rossica can be related to the chemical structure of BR. Recio \textit{et al}\(^{[55]}\) reported that Iridoids is an anti-inflammation agent. The results obtained in present study suggest that CH\(_2\)Cl\(_2\) extract and H\(_2\)O extract from BR have anti-inflammatory effects. We isolated four iridoid compounds, a group of cyclopentano|c|pyran monoterpenoids, from Boschniakia rossica, and among them 8-epi-deoxyxylonic acid was shown to exhibit a strong anti-inflammatory activity. Based on the results obtained in this study, we conclude that extract from BR exerted an anti-inflammatory effect.

REFERENCES

1. Xiao PG, Kim JG, eds. Traditional drugs of the East color edition. Seoul Young Lim Sa, 1995:322
2. Yin ZZ, Kim HS, Kim YH, Lee JJ. Iridoid compounds from Boschniakia rossica. Arch Pharm Res, 1999;22:78-80
3. Yin ZZ, Jin HL, Li TZ, Lee JJ, Kim YH, Lee CH, Lee KH, Hyun BH. Inhibitory effect of methanol extract of Boschniakia rossica Fedtsch.et Flerov on rat hepatic preneoplastic lesions induced by diethylnitrosamine. Zhongguo Zhongyao Zazhi, 1998;23:424-426
4. Yin ZZ, Jin HL, Li TZ, Qu XB. Inhibitory effect of Boschniakia rossica on DEN-induced preneoplastic hepatic foci and its antioxidative activities in rats. Chin J Cancer Res, 1999; 11:169-173
5. Yin ZZ, Jin HL, Shen MH, Li TZ, Lee JJ, Lee CH, Hyun BH. Effect of Boschniakia rossica extract on formation of preneoplastic hepatic foci and serum antioxidative activities in the early stage of rat chemical chemical hepatocarcinogenesis. Shijie Chuantong Yingxue Zazhi, 1999;2:91-93
6. Shen MH, Yin ZZ. Effect of Boschniakia rossica extract on antioxidative activities in rat hepatic preneoplasia induced by diethylnitrosamine. Zhongguo Zhongyao Zazhi, 1999;24:746-748
7. Solt D, Farber E. New principle for the analysis of chemical carcinogenesis. Nature, 1976;263:701-703
8. Yin ZZ, Sato K, Tsuda H, Ito N. Changes in activities of Ur dine diphos- phate-glucuronyl transferases and UDP-glucuronyltransferase during chemical hepatocarcinogenesis. Gann (Jpn, J Cancer Res), 1982;73:239-248
9. Yin ZZ. Purification and characterization of UDP-glucuronyltransf erases induced in rat chemical hepatocarcinogenesis. Hiroaki Med J, 1982;34:677-701
10. Sato K, Kitahara A, Yin ZZ, Arabagi F, Nishimura K, Hayatai M, Ebina T, Yamazaki T, Tsuda H, Ito N. Induction by butylated hydroxyanisole of specific molecular forms of glutathione S-transferase and UDP-glucuronyltransferase and inhibition of de- velopment of γ-glutamyl transpeptidase-positive foci in rat liver. Carcinogenesis, 1984;5:473-477
11. Sato K, Kitahara A, Yin ZZ, Ebina T, Sato K, Tsuda H, Ito N, Dempo K. Molecular forms of glutathione S-transferase and UDP- glucuronyltransferase as hepatic preneoplastic marker enzymes. Ann N Y Acad Sci, 1983;417:213-223
12. Yin ZZ, Cui CL, Zhang LH, Lin JW, Nan TY, Jin YX, Pu ZT, Pei FY, Jin CZ, Hatayama I, Tsuchida S, Sato K. Value of immunohistochemical investigation of anti-GST-T antibody in the early diagnosis of gastric carcinoma and precancerous lesion. Zhonghua Zhongliu Zazhi, 1989;11:114-116
13. Yin ZZ, Cui CL, Jin HS, Zhang LH, Nan TY, Pu ZT, Ma X, Sato...
K. Hatayama I, Tsuchida S. Oncetal expression of GST-π as a new tumor marker in human gastric, colonic and rectal carcinomas. *Yanbian Yuexue Xuebao*, 1990;13:157-160

Yin ZZ, Jin HL, Jin GS, Ma X, Sun DC. Increased placental form glutathione S-transferase activity in tissue and serum of human hepatocarcinoma. *Gan Seam*, 1993;2:31-33

Cui CL, Yin ZZ, Zhang LH. Distribution and Phenotype of GST-P in gastric carcinoma and its precancerous lesions. *Yanbian Yuexue Xuebao*, 1988;11:225-228

Sun CL, Jin HL, Yin ZZ, Shen ZJ. Expression and subcellular localization of p53 protein in carcinoma and precancerous lesions of stomach. *Yanbian Yuexue Xuebao*, 1994;17:157-162

Panthong A, Kanjanapothi D, Thituponpun Y, Taeotetuki T, Arbai D. Anti-inflammatory activity of the Alkaloids Bukittingie from Sapium baccate. *Planta Medica*, 1996;64:530-535

Just MJ, Recio MC, Giner RM, Cuellar MJ, Manez S, Bilia AR, Rios JL. Anti-inflammatory activity of Unusal Lupane saponins from *Croton cajucara*. Part 1. *Planta Medica*, 1996;62:402-404

Sato K, Kitahara A, Sato K, Ishikawa T, Tatematsu M, Ito N. Expression of glutathione S-transferases and hepatocarcinogenesis. *Gann Jpn Cancer Res*, 1984;75:199-202

Sato K. Glutathione S-transferases and hepatocarcinogenesis. *Jpn Cancer Res Jpn Cancer Clin Jpn Cancer Ther*, 1988;79:556-572

Sato K. Glutathione transferases as markers of neoplasia and neoplasia. *Advances Cancer Res*, 1989;52:205-255

Tsushima S, Sato K. Glutathione transferases and cancer. *Crit Rev Biochem Mol Biol*, 1992;27:337-384

Sato K, Hatayama I, Tateoka N, Takai K, Shimizu T, Tatematsu M, Ito N, Sato K. Transient induction of single GST-P positive hepatocytes by DEN. *Carcinogenesis*, 1989;10:2107-2111

Nitsu Y, Takahashi Y, Sato T, Hirata Y, Arisato N, Maruyama H, Kohgo Y, Listowsky I. Serum glutathione-S-transferase-π as a tumor marker for gastrointestinal malignancies. *Cancer*, 1989;63:317-323

Kodate C, Fukushi A, Narita T, Kudo H, Soma Y, Sato K. Human placental form of glutathione S-transferase (GST-P) as a new immunohistochemical marker for human colorectal carcinoma. *Jpn J Cancer Res*, 1986;77:226-229

Moorthen M, Cairns J, Forrester LM, Hayes JD, Hall A, Cattan AR, Wolf CR, Harris AL. Enhanced expression of glutathione S-transferase placental form and the oncogene products c-jun and c-fos in rat tissues and neoplastic lesions during hepatocarcinogenesis in rats. *World J Gastroenterol*, 1994;6:79-83

Lin YG, Chen ZL, Lu CM, Li Y, Bing XJ, Huang R. Immunohistochemical study on p53, H ras21, c-erbB-2 protein and PCNA expression in HCC tissues of Han and minority ethnic patients. *World J Gastroenterol*, 2000;6:234-238

Wang YK, Ji XL, Ma NX. nm23 expression in gastric carcinoma and its relationship with lymphoproliferation. *World J Gastroenterol*, 1999;5:87-89

Wang D, Shi JQ. Overexpression and mutations of tumor suppressor gene p53 in hepato-cellular carcinoma. *China J Natl New Gastroenterol*, 1996;2:161-164

Huabingxue Zazhi Xin Xiaohuabingxue Zazhi, 1993;2:31-33

Edited by Ma JY