Rupture of a breast tissue expander due to chest wall exostosis: Case report and literature review

Brent R DeGeorge Jr MD PhD, Alexander F Mericli MD, Kant Y Lin MD

The incidence of device failure or rupture during tissue expansion is rare, and the etiology of device rupture is most commonly idiopathic; however, a multitude of potential etiologies have been reported including direct trauma, device over-expansion beyond manufacturer recommendations, capsular contracture, compressive forces during medical imaging studies, iatrogenic device damage during operative placement of the device or iatrogenic rupture during the process of filling the device. The authors report a case of device failure of the posterior wall of a tissue expander used for routine implant-based breast reconstruction that was attributed to bony exostosis of the anterior chest wall. They explore the relative incidence of bony exostosis-related and all-cause tissue expander rupture in peer-reviewed published literature. The present report illustrates the importance of evaluating the tissue quality of the periprosthetic capsule and pocket following a device failure to ensure that chest wall exostosis, a potential cause of further device failure, is not present.

Key Words: Breast reconstruction; Implant rupture; Tissue expander rupture; Tissue expansion

CASE PRESENTATION

A 22-year-old woman presented to the plastic surgery department for immediate left breast reconstruction after mastectomy for malignant phyllodes tumour. A CPX tissue expander (Mentor, USA) was placed in a total submuscular pocket and expanded to 645 mL over a seven-month period. She did not undergo adjuvant chemotherapy or radiation therapy. Her final expansion volume was permitted to consolidate over six weeks. In the eighth month after placement of the expander, the patient noticed a dramatic decrease in volume (Figure 1). According to the patient, there was no associated trauma or abnormal activity. Physical examination confirmed partial rupture of her tissue expander and she was taken urgently to the operating room for replacement of the ruptured expander with a permanent silicone implant. The posterior wall of the expander was perforated, directly overlying an area of bony exostosis along the anterior surface of the fifth rib (Figure 2). The exostosis was filed to a smooth surface with a surgical rasp and a permanent round Mentor 425 mL silicone implant was placed. The patient recovered uneventfully from her expander-implant exchange. At six months' follow-up, she has no signs of implant rupture or malposition and is pleased with her reconstruction (Figure 3).
TABLE 1
Included studies classified according to level of evidence rating

Level of evidence	Qualifying studies	n (%)
I	High-quality, multicentre or single-centre, randomized controlled trial with adequate power; or systematic review of these studies	3 (4.6)
II	Lesser-quality, randomized controlled trial; prospective cohort or comparative study; or systematic review of these studies	2 (3.1)
III	Retrospective cohort or comparative study; case-control study; systematic review of these studies	6 (9.2)
IV	Case series with pre/post test or only post test	25 (38.5)
V	Expert opinion developed via consensus process; case report or clinical example; or evidence based on physiology, bench research or “first principles”	29 (44.6)

Could not be rated for level of evidence: Animal studies; cadaveric studies; basic science studies; review articles; instructional course lectures; Excluded: 0.0%

LITERATURE REVIEW

A literature review was performed using the PubMed/Medline databases to identify all full-text, English-language studies involving device rupture of tissue expanders for all applications within the past 50 years from November 1, 2014. The following MeSH search terms were used: [“tissue expander” OR “tissue expansion”] AND [“rupture” OR “puncture” OR “failure”]. The search criteria resulted in 113 available articles. The results were narrowed further by including studies performed in humans with 65 articles available after excluding in vitro or animal studies (1-65). Data were then gathered from each article regarding level of evidence, etiologies of tissue expander rupture, location of tissue expansion and rates of overall complications including infection, capsular contracture, exposure or extrusions, device rupture, hematoma or seroma, skin necrosis, device failure not further specified or reconstructive failure not further specified. Details regarding contributing factors or comorbidities identified specifically in the study results or conclusions were also collected.

The majority of studies (83.1%) identified in the literature review were level IV or V evidence; only three high-quality, multicentre randomized controlled trials or systematic reviews were identified specifically. Studies that could not be rated for level of evidence, including animal studies, cadaveric studies, and review articles or editorials were excluded from further analysis (Table 1). The breast was the most common location for the use of tissue expansion (61.5%), followed by head and neck (9%), non-breast trunk (7%), lower extremity (6%) and burn-related (4%) regions (Table 2). The majority of the studies included in the literature review specifically report on complications related to tissue expansion (92.3%). Of the reported complications, infection was the most common reported complication (40.0%), followed by capsular contracture (18.5%), exposure or extrusion of the device (16.9%), device rupture (15.4%), reconstructive (15.4%) or device failure (10.7%) not otherwise specified, hematoma or seroma (6.2%), and skin necrosis (4.6%) (Table 3). The range of reported device rupture or not otherwise specified device failure varied significantly in the literature with a range of 0.0% to 1.6% (10 studies) and 0.0% to 6.0% (seven studies), respectively (Table 3). The literature was further assessed for contributing or confounding factors associated with an increased incidence of complications following tissue expansion, and history of previous radiation therapy was the most common contributing factor, followed by a history of smoking, previous chemotherapy, elevated body mass index and a history of overexpansion of the tissue expander device. In individual case reports, a myriad of potential causative or associated factors with device failure or rupture were identified, including a history of recent blunt or penetrating trauma, overexpansion of the device beyond manufacturer recommendations, capsular contracture, mammography or imaging studies, and iatrogenic rupture at the time of accessing the fill port. In the 10 studies that specifically report tissue expander device rupture as a complication, the location of tissue expansion was most commonly the breast (40%) followed by the head and neck (30%) and lower extremity (10%). In two of the three head and neck articles (2,3) that reported on device rupture of the tissue expander, the presence of bony exostosis or osteophyte formation was reported and implicated in the malfunction of the device. The present literature review did not identify any instances of rupture of a breast tissue expander related to the formation of bony exostosis or osteophytes.

DISCUSSION

The incidence of device failure or rupture during tissue expansion is rare, and the etiology of device rupture is most commonly idiopathic; however, a multitude of potential etiologies have been reported including direct trauma, device overexpansion beyond manufacturer recommendations, capsular contracture, compressive forces during medical imaging studies, iatrogenic device damage during operative placement of the device or iatrogenic rupture during the process of filling the device. Factors associated with the nature of the use of tissue expansion are a primary determinant of complications during tissue expansion, including location of tissue expansion and a history of medical comorbidities including smoking, chemotherapy, radiation therapy and elevated body mass index. Factors associated with the manufacturing of the device are also important, including the age of the device, surface properties of the device shell, the presence of an integrated versus remote injection port, the size of the injection port zone and the volume of the device.

Mentor and Allergan (USA) tissue expander manufacturer instructions recommend a preliminary device inspection at the time of tissue expander placement with an initial fill and subsequent manual compression to identify any defects or leaks in the device before placement. The manufacturer instructions further advise against filling of the device to volumes greater than the manufacturer recommendation.

The process of tissue expansion can have demonstrable effects on bone (66-68). In the head and neck, tissue expansion has been reported to be associated with the formation of bony exostosis surrounding the periprosthetic capsule with case reports of outer-table calvarial fracture and bony osteophyte formation following tissue expansion for scalp reconstruction. In breast and chest wall reconstruction, the presence of chest wall deformities, costochondral remodelling and rib fracture
have been reported, and are often attributed to hypertrophic inelastic capsule formation, submuscular tissue expander location, osteoporosis and a history of previous radiation therapy. Bony changes associated with tissue expansion are potentially reversible following completion of the expansion process (68).

Literature review for the terms "costal exostosis" or "chest wall exostosis" resulted in 135 publications indexed on Medline with multiple reports of sequelae ranging from incidentally noted idiopathic exostosis, nerve compression and thoracic outlet syndrome to potentially life-threatening complications, including pneumothorax, hemotorax, periordial effusion and diaphragm rupture (69,70). The etiology of chest wall or costal exostosis is often not clear; however, injury to the rib periostium or perichondrium, either traumatic or iatrogenic, has been implicated in the formation of secondary exostosis. Animal studies of tissue expansion in calvarial and long bones have demonstrated bony erosion underlying and bony deposition at the periphery of the tissue expander device. The histopathological correlation of these gross changes includes enhanced osteoclastic bone resorption beneath the tissue expander and a periosteal reaction at the periphery of the device with increased osteoblastic bone deposition. This phenomenon is a form of bony remodelling in response to pressure stimulation, and with removal of the pressure stimulus demonstrable changes in bone remodelling occurs (68).

Three articles (2,3,9) identified in our literature search attribute a tissue expander device rupture to a specific etiology, all three of which involve head and neck reconstruction; specifically, scalp tissue expansion. Two of the three attribute the device rupture to exostosis located at the periphery of the tissue expander, and one involved a fracture of the outer table of the calvarium with rupture of the device attributed to a bony fracture fragment. In these three publications, the authors cite three potential contributing factors to the formation of bony osteoyphe formation: the length of time required for head and neck tissue expansion; tractional forces placed on the calvarial periosteum due to large volume tissue expansion; and over-expansion of the tissue expander device beyond the manufacturer's suggested maximal volume. Hallock (71) performed an ex vivo study to define the maximum volume of tissue expander device failure related to over-expansion and identified that over-expansion is, in general, safe without risk of expander device failure at at least 15 times (and up to 157 times) the manufacturer's suggested maximum fill volume. Hallock (30) later established the clinical safety and efficacy of over-expansion of tissue expander devices and noted a significantly decreased risk of complications in over-expanded devices in breast reconstruction, a fact that the author attributed to an inability to achieve over-expansion of the device following a complication. However, these studies do not specifically assess the safety of device overexpansion in the setting of bony exostosis, and one would expect a higher degree of device rupture in the setting of a mechanically strained expander envelope opposed to an irregular bony surface. No instances of device rupture associated with bony exostosis were noted outside of the head and neck and, specifically, no reports of tissue expander rupture attributed to chest wall or osteochondral bone formation were reported in breast reconstruction.

In our case, the location of the chest wall exostosis was identified in the medial-inferior costochondral junction in the region in which the pectoralis muscle insertion was elevated off of the chest wall during initial tissue expander placement. The tissue expander device in our patient was over-expanded by 145 mL; however, it is common in our practice to over-expand devices in the setting of breast reconstruction up to twofold above manufacturer's suggested maximal fill volumes to achieve optimal volumes in patients with narrow base widths without an increase in overall rates. Our patient was young and physically active, and an avid hunter. The patient had been hunting three days before noting deflation of the device, and questioned whether the rifle recoil could have contributed to her device rupture. Fortunately, in this instance, the patient had completed her tissue expansion and we were able to replace her ruptured device with a permanent silicone implant.

In general, the rate of overall device failure and tissue expander device rupture are low in the reported literature, with rates of 0.0% to 6.0% and 0.0% to 1.6%, respectively; however, the present article demonstrates the importance of evaluating the tissue quality of the peri-prosthetic capsule and pocket following a device failure to ensure that chest wall exostosis, a potential cause of further device failure, is not present.

TABLE 2 Location of reported tissue expansion in included studies

Body region	n (%)
Breast	40 (61.5)
Head and neck	8 (12.3)
Non-breast trunk	7 (10.8)
Lower extremity	6 (9.2)
Burn-related	4 (6.2)

TABLE 3 Complications reported tissue expansion in included studies

Complication	n (%)
Studies reporting complications	60 (92.3)
Reported complications	
Infection	26 (40.0)
Capsular contracture	12 (18.5)
Exposure/extrusion	11 (16.9)
Rupture	10 (15.4)
Reconstructive failure not otherwise specified	10 (15.4)
Hematoma/seroma	4 (6.2)
Skin necrosis	3 (4.6)
Comorbidities/contributing factors	
History of radiation therapy	14 (21.5)
Smoking	6 (9.2)
History of chemotherapy	5 (7.7)
Body mass index	3 (4.6)
Overexpansion	2 (3.1)

REFERENCES

1. Farahani FC, Kaldari S, Becker M, et al. Tissue expansion 1984-1999: A 15-year review. Scand J Plast Reconstr Surg Hand Surg 2006;40:89-92.
2. Paletta CE, Bass J, Shehadi SI. Outer table skull erosion causing rupture of scalp expander. Ann Plast Surg 1989;23:538-42.
3. Wallis KL, Gurusinghe AD, Anwar MU, et al. Osteolytic-induced rupture of a scalp tissue expander. Ann Plast Surg 2011;67:606-7.
4. Acarturk TO, Glaser DP, Newton ED. Reconstruction of difficult wounds with tissue-expanded free flaps. Ann Plast Surg 2004;52:493-9.
5. Antony AK, McCarthy CM, Cordeiro PG, et al. Acellular human dermis implantation in 153 immediate two-stage tissue expander breast reconstructions: determining the incidence and significant predictors of complications. Plast Reconstr Surg 2010;125:1606-14.
6. Antony AK, Mehrara BM, McCarthy CM, et al. Salvage of tissue expander in the setting of mastectomy flap necrosis: A 13-year experience using timed excision with continued expansion. Plast Reconstr Surg 2009;124:356-63.
7. Baschnagel AM, Shah C, Wilkinson JB, et al. Failure rate and cosmesis of immediate tissue expander/implant breast reconstruction after postmastectomy irradiation. Clin Breast Cancer 2012;12:428-32.
8. Bassett GS, Mazur KU, Sloan GM. Soft-tissue expander failure in severe equinovarus foot deformity. J Pediatr Orthoped 1993;13:744-8.
9. Belghith A, Jelbaoui Y, Najh H, et al. [Complications of head and neck skin expansion]. Rev stomatol chir maxillofac 2012;113:411-4.
10. Bozkurt A, Groger A, O'Dey D, et al. Retrospective analysis of tissue expansion in reconstructive burn surgery: Evaluation of complication rates. Burns 2008;34:1113-8.
11. Brooke S, Mesa J, Ulmer M, et al. Complications in tissue expander breast reconstruction: a comparison of Alloderm, DermaMatrix, and FlexHD acellular inferior pole dermal slings. Ann Plast Surg 2012;69:347-9.

12. Camilleri IG, Malata CM, Stavrinos S, et al. A review of 120 Becker permanent tissue expanders in reconstruction of the breast. Br J Plast Surg 1996;49:346-51.

13. Carlson GW, Losken A, Moore B, et al. Results of immediate breast reconstruction after skin-sparing mastectomy. Ann Plast Surg 2001;46:222-8.

14. Carnevale A, Scarinci C, Scalabrin G, et al. Radiation therapy after breast reconstruction: Outcomes, complications, and patient satisfaction. Radiat Med 2013;18:1240-50.

15. Casanova D, Bali D, Bardot J, et al. Tissue expansion of the lower limb: Complications in a cohort of 103 cases. Br J Plast Surg 2001;54:103-6.

16. Choi L, LaQuaglia MP, Cordeiro FG. Prevention of postmastectomy syndrome in children with prophylactic tissue expander insertion. J Pediatr Surg 2012;47:1354-7.

17. Chun JT, Rohrich RJ. Versatility of tissue expansion in head and neck burn reconstruction. Ann Plast Surg 1998;41:11-6.

18. Cowen D, Gross E, Rouanet P, et al. Immediate post-mastectomy breast reconstruction followed by radiotherapy: Risk factors for complications. Breast Cancer Res Treatment 2010;121:627-34.

19. Davila AA, Mioton LM, Chow G, et al. Immediate two-stage tissue expander breast reconstruction compared with one-stage permanent implant breast reconstruction: A multi-institutional comparison of short-term complications. J Plast Surg Hand Surg 2013;47:344-9.

20. Dobremez E, Fuyon M, Vergnes F. Right pulmonary agenesis associated with remaining bronchus stenosis, an equivalent of postmastectomy syndrome. Treatment by insertion of tissue expander in the thoracic cavity. Pediatr Surg Int 2005;21:121-2.

21. Druczer-Zemtsov M, Bargallo-Rocha E, Zamora-Del RR. Radiotherapy and immediate expander/implant breast reconstruction: should reconstruction be delayed? Breast J 2011;17:365-70.

22. Elshahat A. Management of burn deformities using tissue expanders: a retrospective comparative analysis between tissue expansion in limb and non-limb sites. Burns 2011;37:490-4.

23. Fabre G, Ganguff D, Fabie-Boulard A, et al. [Breast reconstruction after prolonged tissue expansion. About 247 cases]. Ann Chir Plast Esthete 2006;51:29-37.

24. Formby P, Flint J, Gordon WT, et al. Use of a continuous external tissue expander in the conversion of a type IIIB fracture to a type IIA fracture. Orthopedics 2013;36:249-251.

25. Gabriel SE, Woods JE, O’Fallon WM, et al. Complications leading to surgery after breast implantation. N Engl J Med 1997;336:677-82.

26. Gilbride J, Ulrich of a permanent tissue expander prior to breast reconstruction. Plast Reconstr Surg 1989;84:607-17.

27. Goodwin SJ, McCarthy CM, Pusic AL, et al. Complications in smokers after postmastectomy tissue expander/implant breast reconstruction. Ann Plast Surg 2005;55:15-9.

28. Goyal A, Masters CA, Ramanathan B. Haemorrhoma as a late complication after breast reconstruction with implant. Br J Plast Surg 2003;56:189-91.

29. Gross E, Hannoun-Levi JM, Rouanet P, et al. [Evaluation of immediate breast reconstruction and radiotherapy; factors associated with complications]. Cancer Radiother 2010;14:704-10.

30. Hallock GG. Safety of clinical overinflation of tissue expanders. Plast Reconstr Surg 1995;96:153-7.

31. Handel N, Jensen JA, Black Q, et al. The fate of breast implants: A critical analysis of complications and outcomes. Plast Reconstr Surg 1995;96:1521-33.

32. Hanschel J, Schulze S, Derprich RA, et al. Tissue expanders for soft tissue reconstruction in the head and neck area – requirements and limitations. Clin Oral Invest 2013;17:573-8.

33. Hanwright PJ, Davila AA, Mioton LM, et al. A predictive model of risk and outcomes in tissue expander reconstruction: A multivariate analysis of 9786 patients. J Plast Surg Hand Surg 2013;47:513-8.

34. Heyer K, Buck DW II, Kato C, et al. Reversed acellular dermis: failure of graft incorporation in primary tissue expander breast reconstruction resulting in recurrent breast cellulitis. Plast Reconstr Surg 2010;125:66-68.

35. Ho A, Cordova G, Ossa J, et al. Long-term outcomes in breast cancer patients undergoing immediate 2-stage expander/implant reconstruction and postmastectomy radiation. Cancer 2012;118:2552-9.

36. Howard-McNatt M, Forshberg C, Levine EA, et al. Breast cancer reconstruction in the elderly. Am Surg 2011;77:1640-3.

37. Jinguang Z, Leren H,Hongxing Z. Prevention and treatment of rupture and infection in expanded flaps during auricular reconstruction. J Craniofac Surg 2010;21:1622-5.

38. Kato H, Nakagami I, Iwahira Y, et al. Risk factors and risk scoring tool for infection during tissue expansion in tissue expander and implant breast reconstruction. Breast J 2013;19:618-26.

39. Khouri RK, Eisenmann-Klein M, Cardoso E, et al. Brava and autologous fat transfer is a safe and effective breast augmentation alternative: results of a 6-year, 81-patient, prospective multicenter study. Plast Reconstr Surg 2012;129:1173-87.

40. Kim JY, Davila AA, Persing S, et al. A meta-analysis of human acellular dermis and submuscular tissue expander breast reconstruction. Plast Reconstr Surg 2012;129:28-41.

41. Kim SW, Kim YH, Kim JT. Successful treatment of large forehead defect after the failure of tissue expansion: Changing plan and strategy. J Craniofac Surg 2011;22:1293-1.

42. Kroll SS, Baldwin B. A comparison of outcomes using three different methods of breast reconstruction. Plast Reconstr Surg 1992;90:455-62.

43. Kneeger EA, Wilkins EG, Strawderman M, et al. Complications and patient satisfaction following expander/implant breast reconstruction with and without radiotherapy. Int J Radiat Oncol Biol Phys 2001;49:713-21.

44. Lam TC, Hsieh F, Boyages J. The effects of postmastectomy adjuvant radiotherapy on immediate two-stage prosthetic breast reconstruction: A systematic review. Plast Reconstr Surg 2013;132:511-8.

45. Lentz R, Ng R, Higgins SA, et al. Radiation therapy and expander-implant breast reconstruction: an analysis of timing and comparison of complications. Ann Plast Surg 2013;71:269-73.

46. Mathes SJ, Steinwall PM, Foster RD, et al. Complex abdominal wall reconstruction: A comparison of flap and muscle closure. Ann Surg 2000;232:586-96.

47. McAdory RS, Cobb WS, Carbonell AM. Progressive preoperative pneumoperitoneum for hernias with loss of domain. Am Surg 2009;75:504-8; discussion 508-9.

48. Mimoun M, Chaoa NT, Lalanne B, et al. Latissimus dorsi muscle flap and tissue expansion for breast reconstruction. Ann Plast Surg 2006;57:597-601.

49. Mitchell J, Herrmann D, Mangenthaler JA, et al. Impact of neoadjuvant chemotherapy on rate of tissue expander/implant loss and progression to successful breast reconstruction following mastectomy. Am J Surg 2008;196:519-22.

50. Mohammed A, Rahamatalia A, Wynne-Jones CH. Tissue expansion in late repair of tendo Achillis rupture. J Bone Joint Surg Br 1995;77:64-6.

51. Moller M, Karlsson J, Lind K, et al. Tissue expansion for repair of severely complicated Achilles tendon ruptures. Knee Surg Sports Traumatol Arthrosoc 2001;9:228-32.

52. Peled AW, Foster RD, Eserman LJ, et al. Increasing the time to expander-implant exchange after postmastectomy radiation therapy reduces expander-implant failure. Plast Reconstr Surg 2012;130:503-9.

53. Perceci I, Bucky LP. Successful prosthetic breast reconstruction after radiation therapy. Ann Plast Surg 2008;60:527-31.

54. Reish RG, Damjanovic B, Austen WG Jr, et al. Infection following implant-based reconstruction in 1952 consecutive breast reconstructions: Salvage rates and predictors of success. Plast Reconstr Surg 2013;131:1223-30.

55. Roposch A, Steinwender G, Linhart WE. Implantation of a soft-tissue expander before operation for club foot in children. J Bone Joint Surg Br 2000;82:879-84.

56. Scuderi N, Alfano AA, Moutardier V, et al. Radiotherapy and immediate two-stage breast reconstruction: Salvage rates and predictors of success. Plast Reconstr Surg 2011;128:2153-60.

57. Se DT, Abdulhafez M, Orozco MA, et al. Evaluation of an impact of postmastectomy radiation therapy on immediate two-stage breast reconstruction: A comparison of flap and mesh closure. Ann Surg 2012;3:232:586-96.

58. Smith JS, Steinwall PM, Foster RD, et al. Complex abdominal wall reconstruction: A comparison of flap and muscle closure. Ann Surg 2000;232:586-96.

59. Strock LL. Techniques of tissue expansion for use in breast reconstruction. Plast Reconstr Surg Case Studies Vol 1 No 3 Winter 201560

60. Plast Surg Case Studies Vol 1 No 3 Winter 2015
Chest wall exostosis and expander rupture

61. Tsui B, Ziolekowski NI, Thoma A, et al. Safety of tissue expander/implant versus autologous abdominal tissue breast reconstruction in postmastectomy breast cancer patients: A systematic review and meta-analysis. Plast Reconstr Surg 2014;133:234-49.

62. Vistnes MD, Maxwell GP. A method for detection of a punctured saline tissue expander. Ann Plast Surg 1993;31:564-5.

63. Wang CC, Concejero AM, Yong CC, et al. Improving hepatic and portal venous flows using tissue expander and Foley catheter in liver transplantation. Clin Transplant 2006;20:81-4.

64. Woerdeman LA, van Schijndel AW, Hage JJ, et al. Verifying surgical results and risk factors of the lateral thoracodorsal flap. Plast Reconstr Surg 2004;113:196-203; discussion 204-5.

65. Yeong EK, Chen KW, Chan ZH. Risk factors of tissue-expansion failure in burn-scar reconstruction. J Plast Reconstr Aesthet Surg 2011;64:1635-40.

66. El-Saadi MM, Nasr MA. The effect of tissue expansion on skull bones in the paediatric age group from 2 to 7 years. J Plast Reconstr Aesthet Surg 2009;61:413-8.

67. Herring SW, Ochareon P. Bone – special problems of the craniofacial region. Orthod Craniofac Res 2005;8:174-82.

68. Moelleken BR, Mathes SJ, Cann CE, et al. Long-term effects of tissue expansion on cranial and skeletal bone development in neonatal miniature swine: Clinical findings and histomorphometric correlates. Plast Reconstr Surg 1990;86:825-34.

69. Assefa D, Murphy RC, Bergman K, et al. Three faces of costal exostoses: Case series and review of literature. Pediatr Emerg Care 2011;27:1188-91.

70. Teitelbaum SL. Tumors of the chest wall. Surg Gynecol Obstet 1969;129:1059-73.

71. Hallock GG. Maximum overinflation of tissue expanders. Plast Reconstr Surg 1987;80:567-9.