CONSTRAINING H_a FROM CHANDRA OBSERVATIONS OF Q0957 + 561

G. CHARTAS1, V. GUPTA1, G. GARMIRE1, C. JONES2, E. E. FALCO3, L. I. SHAPIRO2, AND F. TAVECCHIO4

Received 2001 July 13; accepted 2001 September 19

ABSTRACT

We report the detection of the lens cluster of the gravitational lens (GL) system Q0957 + 561 from a deep observation with the Advanced CCD Imaging Spectrometer on board the Chandra X-Ray Observatory. Intracluster X-ray emission is found to be centered 4°3 ± 1’3 east and 3°5 ± 1’2 north of image B, nearer than previous estimates. Its spectrum can be modeled well with a thermal plasma model consistent with the emission’s originating from a cluster at a redshift of 0.36. Our best-fit estimates of the cluster temperature, $T_e = 2.09 ^{+0.81}_{-0.52}$ keV (90% confidence), and of the mass distribution of the cluster are used to derive the convergence parameter κ, the ratio of the cluster surface mass density to the critical density required for lensing. We estimate the convergence parameter at the location of the lensed images A and B to be $\kappa_A = 0.22 ^{+0.07}_{-0.07}$ and $\kappa_B = 0.21 ^{+0.07}_{-0.07}$ respectively (90% confidence levels). The observed cluster center, mass distribution, and convergence parameter κ provide additional constraints to lens models of this system. Our new results break a mass-sheet degeneracy in GL models of this system and provide better constraints of $\sim 29\%$ (90% confidence levels) on the Hubble constant. We also present results from the detection of the most distant X-ray jet ($z = 1.41$) detected to date. The jet extends approximately 8° northeast of image A, and three knots are resolved along the X-ray jet, with flux densities decreasing with distance from the core. The observed radio and optical flux densities of the knots are fitted well with a synchrotron model, and the X-ray emission is modeled well with inverse Compton scattering of cosmic microwave background photons by synchrotron-emitting electrons in the jet.

Subject headings: cosmological parameters — distance scale — galaxies: clusters: individual (Q0957 + 561) — gravitational lensing — X-rays: galaxies

1. INTRODUCTION

In an earlier paper based on deep ROSAT observations, we reported the 3 σ detection of X-rays from the cluster of galaxies in the gravitational lens (GL) system Q0957 + 561 (Chartas et al. 1998). This cluster contributes to the lensing of a distant $z = 1.41$ radio-loud quasar. The lensed quasar appears as two images separated by 6’17 and denoted A (north) and B (south). An accurate determination of the mass distribution of the cluster is essential in reducing the uncertainty of the Hubble constant as derived from the application of Refsdal’s lensing method (Refsdal 1964a, 1964b). Because of the limited spatial and spectral resolution and low signal-to-noise ratio of previous X-ray observations, only weak constraints could be placed on the cluster properties. In particular, we obtained estimates for the convergence parameter κ, the ratio of the projected two-dimensional (2D) surface mass density of the cluster to the critical surface mass density of the lens cluster. We found κ to range between 0.07 and 0.21, assuming that the cluster center was located 24 arcmin away from image B, a separation based on optical observations of the galaxy members of the cluster (Angonin-Willaine, Soucail, & Vanderriest 1994). Other methods for estimating the convergence parameter κ rely on weak lensing of background galaxies (Fischer et al. 1997), measurements of the velocity dispersion of the lens galaxy G1 (Falco et al. 1997; Tonry & Franx 1999; Romanowsky & Kochanek 1999), and measurements of the velocity dispersion of the lens cluster (Garrett, Walsh, & Carswell 1992; Angonin-Willaine et al. 1994). The present constraints on κ are quite poor and have probably underestimated the systematic errors due to the uncertainty of the location of the cluster center and of the mass profile. Barkana et al. (1999) found a strong dependence of κ on the assumed cluster mass profile and on the distance of the cluster center from the lens galaxy.

A measurement of the convergence parameter κ at the location of the lensed images with respect to the cluster center is needed to break the Hubble constant mass-sheet degeneracy (Falco, Gorenstein, & Shapiro 1985). More direct methods of determining the location of the center of mass of the cluster are provided by measurements of the intracluster emission in the X-ray band, the weak lensing method, and optical measurements of the member galaxies. X-ray measurements with ROSAT did not provide any useful constraints on the location of the cluster center. The weak lensing method, which determines the mass distribution of the lens cluster from the gravitational distortion of the images of background galaxies, yields a center of mass of the cluster located $\sim 18°$ east and $13°$ north of G1, with a 1 σ uncertainty of about $15°$. Angonin-Willaine et al. (1994) derived a center for the cluster at 13°7 west, 19°6 south of image B by proportionally weighting galaxies by their R-band luminosity. This method was found to be very sensitive to the number of galaxies included in the calculation. For example, Garrett et al. (1992), using a subset of the galaxies, had found the cluster center at 3°5 west and 1°2 north of G1. Another method for estimating the cluster center is based on the “best-fit” values for the lens models that describe this system. In a recent analysis, Chae (1999) model the cluster contribution by a power-law sphere with an extended core. They found a distance between the cluster center and the G1 galaxy of 9° ± 4°.

1 Astronomy and Astrophysics Department, Pennsylvania State University, University Park, PA 16802.
2 Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138.
3 Smithsonian Institution, F. L. Whipple Observatory, P.O. Box 97, 670 Mount Hopkins Road, Amado, AZ 85645; falco@cfa.harvard.edu.
4 Osservatorio Astronomico di Brera, via Brera 20, Milan I-20121, Italy.
and a position angle θ (north through east) of $\sim 52^\circ$. In an independent analysis, Barkana et al. (1999) modeled the cluster as a singular isothermal sphere and allowed the center position and velocity dispersion of the cluster to be free parameters. They found a value for the distance of the center position and velocity dispersion of the cluster to be 13.7 km s$^{-1}$. The large systematic differences among independent estimates of the center position of the cluster obtained through modeling imply that the mass distribution of the lens is not accounted for correctly in these models. A recent discovery of the lens cluster, lensed images, and X-ray jet are corresponding to the radio jet from image A. The spectral analysis of the lens cluster, lensed images, and X-ray jet are described in \S 3.1. The Lens Cluster

In Figure 1 we show the $Chandra$ image of the GL system Q0957 + 561. To enhance the presence of soft extended X-ray emission, the image was filtered to include only photons with energies ranging between 0.5 and 3.0 keV. This choice of energy range is supported by the analysis of the extracted spectrum of the cluster (see \S 4.1), which indicates that the cluster spectrum is very soft, with most of the detected counts lying below 3 keV. The image has been binned with a bin size of 0.5 and smoothed with the software tool CSMOOTH developed by Ebeling, White, & Rangarajan (2001) and provided by the CXC. CSMOOTH smooths a 2D image with a circular Gaussian kernel of varying radius. Extended X-ray emission with a radius of $\sim 30''$, encompassing the quasar images, is clearly visible in Figure 1. The extended emission seems to be centered slightly northeast of image B. This is seen if one takes the midpoint of the two outer contour levels of the X-ray emission shown in Figure 1. The midpoint is slightly to the east of image B.

To constrain the morphology of the soft extended emission, we performed a 2D fit to the X-ray data, using the model described below. The spatial model has the following three components: extended cluster emission, unresolved emission from the quasar images, and background emission.

1. To describe the cluster brightness profile, we use a β model,

$$f(r) = A [1 + (r/r_c)^2]^{-3\beta + 1/2},$$

where

$$r(x, y) = [x^2(1 - \epsilon)^2 + y^2]^{1/2}/(1 - \epsilon),$$

$$x' = (x - x_0) \cos(\theta) + (y - y_0) \sin(\theta),$$

$$y' = (y - y_0) \cos(\theta) - (x - x_0) \sin(\theta),$$

ϵ is the ellipticity of the model, defined here as $\epsilon = 1 - q$, q is the axis ratio, and θ is defined as the angle between the major axis and west and is measured west to north, x_0 and y_0 are the positions of the cluster center, and β is the ratio of kinetic energy per unit mass in galaxies to kinetic energy per unit mass in gas.

2. To model the lensed quasar images, we use simulated point-spread functions (PSFs). The centroids of the model PSFs are fixed to the observed image centroids. The relative
normalization of the PSFs is the flux ratio of the lensed images, as determined from annular regions of inner and outer radii of 0.5 and 2', respectively, centered on the images. These annuli were chosen to avoid the slightly piled-up cores of the images. The model PSFs appropriate for this observation were created employing the simulation tool MARX version 3.0 (Wise et al. 2000), with an input spectrum derived from the best-fit Chandra spectrum of the lensed images. Specifically, we used an absorbed power law with a column density of \(N_H = 0.82 \times 10^{20} \text{ cm}^{-2} \) (Dickey & Lockman 1990) and photon indices of \(\Gamma = 2.08 \) and 1.94 for images A and B, respectively (see § 4.2). Hereafter the term best-fit is used to describe a result obtained by fitting a model to our data using an optimization technique to find the local fit-statistic minimum. The Levenberg-Marquardt optimization method is used for the spectral analysis, the Powell method is used for the spatial analysis of the cluster, and the downhill simplex method is used by the fitting tool LYNX (§ 4.2).

3. Finally, in our model we include a uniform background of 0.01 events per pixel, obtained from a background region at the same distance from the aim point as the cluster.

In determining the cluster properties, we omitted a 10'' radius region centered on the midpoint between the quasar images, to avoid biasing the fit with residuals in modeling the cores of the PSFs. For the annulus from 8'' to 40'' centered on the midpoint of the quasar images, we binned the image in 1'' pixels and smoothed this with a Gaussian (\(\sigma = 3'' \)) before performing the spatial fitting. The fits were performed with the CXC software package SHERPA. To evaluate the sensitivity of the results to the choice of assumptions made for sizes of spatial windows and bin sizes of the data, we performed the spatial analysis over a wide range of input model parameters. Specifically, we binned the X-ray data with bin sizes varying between 1'' and 2''. The annulus region used to model the cluster was varied, with an inner radius ranging between 10'' and 14'' and an outer radius ranging between 30'' and 40''. The errors quoted for the spatial model parameters represent the maximum uncertainties obtained from all spatial fits. Results for our spatial fits are presented in Table 1. We find the center of the mass of the lens cluster to be located at \(\Delta x = 4'3 \pm 1'3 \) east, \(\Delta \delta = 3'5^{+1.7}_{-0.8} \) north of the core of image B. The fits

\[\text{FIG. 1.—Adaptively smoothed X-ray image of the GL system Q0957 + 561. To improve the signal-to-noise ratio of the lens cluster, we selected X-rays with energies ranging between 0.5 and 3 keV. The lens cluster is resolved and seems to be centered slightly northeast of image B. The contour levels are } 0.1, 3.5 \times 10^{-4}, 3.5 \times 10^{-5}, 2.2 \times 10^{-5}, \text{ and } 1.3 \times 10^{-5} \text{ of the peak emission of image A. White circles indicate the optical locations of the galaxies in the cluster at } z = 0.36. \text{ Galaxy positions are taken from Angonin-Willaime et al. (1994). North is up, east is left.} \]
The increase in the radio brightness along the jet may be due to an increase of the magnetic field strength. A similar anticorrelation between radio and X-ray profiles was recently reported in 3C 273 (Sambruna et al. 2001; Marshall et al. 2001). Lens models for Q0957 + 561 predict a small magnification gradient along the jet. We estimate that the magnifications for knots B and C are 1.9 and 1.6, respectively. Therefore, the magnification gradient does not greatly change the X-ray and radio brightness profiles. In § 4.3, we briefly discuss possible mechanisms that may explain the origin of the X-ray jet emission and present the spectral energy distributions for knots B and C.

4. Spectral Analysis

4.1. A Cool Lens Cluster

The spectrum for the cluster of galaxies was extracted from a 40′′ radius circle centered on the X-ray--determined cluster center. Beyond this radius, cluster emission is not detected above the background. Circles of radius 3′′ centered on images A and B were excluded. Emission from the X-ray jet was also excluded by omitting a rectangle 2.5′′ × 7′′. However, even beyond the 3′′ radius, mirror scattering of the bright lensed images produces a significant contamination of the cluster spectrum, particularly at hard energies. We estimate the spectrum of the contamination produced by images A and B in the cluster spectrum, by performing simulations with the ray-trace simulator tool MARX provided by the CXC. We simulate two point sources, centered at the locations of images A and B, with input spectra and normalizations derived from our spectral analysis of these images. We find a total of ~ 200 counts due to quasar emission (~ 0.8% of the total counts from images A and B) within the cluster extraction region. The CCD background and quasar contamination are subtracted from the cluster region, resulting in the spectrum shown in Figure 4. A net total of ~ 600 X-ray events originate from the cluster. The data were fitted with the spectral analysis tool XSPEC (Arnaud 1996). We model the cluster spectrum with a Raymond-Smith thermal plasma modified by absorption due to our Galaxy. The Galactic column density is fixed at the value of $N_H = 8.2 \times 10^{20} \text{ cm}^{-2}$ for all spectral fits performed in our analysis. We assumed a typical value for the metal abundances in clusters of 30% solar (see, e.g., Henriksen 1985; Hughes et al. 1988; and Arnaud et al. 1987). Because of the relatively low signal-to-noise ratio of the cluster spectrum, the metal abundances of the cluster cannot be constrained within useful limits. If we let the abundance be a free parameter, we obtain a best-fit value for the abundance of $A = 0.19^{+0.06}_{-0.06}$ (90% confidence level) and a best-fit temperature of 2.1 keV. We note that the choice of metal abundance (between 0 and 100% solar) has little effect on the temperature determinations. The abundance ratios used in the Raymond-Smith thermal plasma emission model are those of Anders & Grevesse (1989). Our best-fit model is shown in Figure 4. The uncertainty in the calibration of ACIS-S3 below 0.5 keV contributes to the large residuals between 0.4 and 0.5 keV. We find a temperature for the cluster of $T_e = 2.09^{+0.83}_{-0.54}$ keV at the 90% confidence level. The spectral line features between 0.7 and 0.9 keV (observed frame) correspond to a redshifted $z = 0.36$ complex of Fe L lines. Our spectral analysis thus confirms that the extended emission originates from the lens. The relatively low cluster temperature of ~ 2 keV and

Table 1: Results from Spatial Fits to Lens Cluster

Parameter	Value
x_A (arcsec)	4.3 ± 1.3
y_A (arcsec)	3.5 ± 0.6
β	0.47 ± 0.06
r_o (arcsec)	15.4 ± 3.5
e	0.19 ± 0.06

Notes:— The probability distributions for the best-fit model parameters y_A and e derived from our error analysis are not Gaussian, and any value of y_A and e within the quoted errors should be considered to have similar likelihood. The errors quoted for the spatial model parameters represent the maximum range of the parameter values obtained from the suite of spatial fits performed in our sensitivity analysis.

* Separations $\Delta \alpha$ (a positive value indicates east of B) and $\Delta \delta$ (a positive value indicates north of B) of the center of the lens cluster from the core of image B.

* Ratio of kinetic energy per unit mass in galaxies to kinetic energy per unit mass in the gas. β is determined from the fit to the surface brightness of the lens cluster.

* Core radius of the lens cluster.

* Ellipticity of the cluster, defined as $e = 1 - q$, where q is the axis ratio.

Indicate that the smoothed mass distribution of the cluster is close to spherical, with an ellipticity $e = 0.19^{+0.06}_{-0.08}$. The best-fit values for β and the core radius of the cluster are $\beta = 0.47^{+0.06}_{-0.06}$ and $r_o = 15.4^{+3.5}_{-2.0}$ (62.5 kpc), respectively. Our values for β and r_o, within the uncertainties, fall on the trend line of β versus r_o obtained previously for a suite of galaxy clusters (Jones & Forman 1999).

3.2. The X-ray Jet of Image A

We note a faint feature in the Chandra image extending northeast of image A that is aligned with the radio jet and seems to have a jetlike morphology. The X-ray jet is significant at the 4σ level. At a redshift of 1.41, this is the most distant X-ray jet detected to date. An overlay between this X-ray jet feature and a 3.6 cm radio map of the jet in image A (radio data from Harvanek et al. 1997) is shown in Figure 2. The X-ray and radio jet morphologies seem to be somewhat similar. A comparison between the radio and X-ray jet profiles along the jet ridge line is shown in Figure 3. The X-ray jet extends northeast about 8′′ from the core of image A, with bright knots at 2′′, 3′′, and 6′′ (hereafter also referred to as knots A, B, and C, respectively) from the core. Each of these knots coincides within 0′′.5 with radio knots at similar locations. The intensity of the X-ray knots seems to decay as a function of distance from the core, in contrast to the radio knots, which become brighter at larger distances from the core. One possible interpretation of the former is that the jet flow is decelerating and the brightness change is due to aging of the higher energy electron population of the jet.

Table 1: Results from Spatial Fits to Lens Cluster

Parameter	Value
x_A (arcsec)	4.3 ± 1.3
y_A (arcsec)	3.5 ± 0.6
β	0.47 ± 0.06
r_o (arcsec)	15.4 ± 3.5
e	0.19 ± 0.06

Notes:— The probability distributions for the best-fit model parameters y_A and e derived from our error analysis are not Gaussian, and any value of y_A and e within the quoted errors should be considered to have similar likelihood. The errors quoted for the spatial model parameters represent the maximum range of the parameter values obtained from the suite of spatial fits performed in our sensitivity analysis.

* Separations $\Delta \alpha$ (a positive value indicates east of B) and $\Delta \delta$ (a positive value indicates north of B) of the center of the lens cluster from the core of image B.

* Ratio of kinetic energy per unit mass in galaxies to kinetic energy per unit mass in the gas. β is determined from the fit to the surface brightness of the lens cluster.

* Core radius of the lens cluster.

* Ellipticity of the cluster, defined as $e = 1 - q$, where q is the axis ratio.
Fig. 2.—Overlay of the VLA and Chandra images of Q0957 + 561. Contours represent the radio 3.6 cm VLA image of Q0957 + 561, provided courtesy of Harvanek et al. (1997). X-ray and radio data are binned with a bin size of 0′′.048 on a side. For presentation purposes the X-ray data are smoothed with a circular Gaussian of radius $\sigma = 0′′.25$, resulting in an effective resolution of $\sigma = 0′′.33$. The overlay clearly shows that the shape and angular structure of the X-ray and radio jets are similar. The radio contour levels are $0.11, 3.5 \times 10^{-2}, 1.1 \times 10^{-2},$ and 3.5×10^{-3} of the peak emission of image A. The beam width is $0′′.24 \times 0′′.17$. The X-ray image contains photons with energies ranging between 0.5 and 10 keV. The brightness profiles of the X-ray and radio jets differ significantly, as shown more clearly in Fig. 3. North is up, east is left.

our values of β and the core radius from § 3.1, within their uncertainties, are consistent with the observed correlations between temperature, β, and core radius obtained previously for a large sample of clusters of galaxies (Jones & Forman 1999). We estimate that $\sim 3\%$ of the counts originating from cluster emission are excluded from our extracted spectrum because of the regions used in our analysis. Correcting for this effect, we find a 2–10 keV cluster luminosity of 4.7×10^{42} ergs s$^{-1}$. Our estimated values for L_X and T_e are consistent with the empirical L_X-T_e correlation between cluster luminosity and temperature, $L_{40} = 1.3^{+0.07}_{-0.08} \times T_e^{0.351 \pm 0.068}$, where L_{40} is the measured 0.5–4.5 keV luminosity in units of 10^{40} ergs s$^{-1}$ (Jones & Forman 1999; Markevitch 1998). Specifically, the L_X-T_e correlation yields a value of $T_e \sim 2$ keV for our value of $L_{40} = 2.3 \times 10^{43}$.

4.2. The Spectra of Images A and B

As mentioned in § 2, we expect the spectra of images A and B to be slightly piled up. We used two independent methods to account for pileup.

In the first method, we extracted spectra from annuli centered on each image with inner and outer radii of $0′′.5$ and $3′′$, respectively. Pileup is significantly reduced beyond the $0′′.5$ radius, in the wings of the PSFs. One of the drawbacks of the annulus method is that only $\sim 40\%$ of the total quasar counts are considered in the spectral fit, thus leading to larger uncertainties in the values of the estimated parameters. We corrected the ancillary files provided by the CXC to account for the energy dependence of X-ray scattering in the Chandra mirrors within the selected annuli. The energy-dependent correction function was evaluated by performing ray-trace simulations with the software tool MARX. We modeled the spectra with power laws modified by absorption from our Galaxy. The fits are statistically acceptable [$\chi^2(v) = 113(138)$ and $109(105)$ for images A and B, where v is the number of degrees of freedom] with best-fit values for the photon indices of images A and B of $2.06^{+0.04}_{-0.05}$ and 2.06 ± 0.05, respectively (90% confidence errors). The flux ratio of image B to image A is 0.74 ± 0.02, consistent with the observed flux ratio in the radio band of 0.76 ± 0.03 (VLBI $\lambda 13$ cm; Falco, Gorenstein, & Shapiro 1991) and 0.72 ± 0.04 (VLA $\lambda 6$ cm core; Conner, Lehár, & Burke 1992). Previous measurements of the X-ray flux ratios of 0.3 ± 0.1 and 1.5 ± 0.2 made with EINSTEIN and ROSAT, respectively (Chartas et al. 1998), differed signifi-
0.7 and 0.9 keV (observed frame) corresponds to a redshifted z large residuals between 0.4 and 0.5 keV. The uncertainty in the calibration of ACIS-S3 below 0.5 keV contributes to the complex of Fe L lines, confirming the detection of the lens cluster. The plasma temperature of 2.08 ± 0.03 and 1.94 ± 0.03 (90% confidence errors). The σ upper limit on at 5500 Å to be 5.6×10^{-16} ergs s$^{-1}$ cm$^{-2}$. The errors in the estimates of the photon indices in both methods do not include systematic errors due to the uncertainties in the ACIS detector quantum efficiency and energy response. We note that the “annulus” method uses detector response matrices provided by the CXC, whereas LYNX links to a Monte Carlo simulator of ACIS developed by the ACIS instrument team (Townsley et al. 2001). We do not detect any line features in their spectra. Combining the spectra of images A and B, we place a 95% confidence upper limit of ~ 60 eV (observed frame) on the equivalent width of an intrinsically narrow fluorescent Fe Kα line at 6.4 keV (2.66 keV observed frame).

4.3. The Spectral Energy Distribution of the Jet

In Figure 5 we show the spectral energy distributions (SEDs) of the two brightest knots, B and C, of the jet. The radio flux density F_r at 3.6 cm for jet A was based on the value reported by Harvanek et al. (1997). The jet knots have not been detected in the optical band; we therefore placed upper limits on the optical flux density of the knots based on deep Hubble Space Telescope (HST) observations of this field performed by Bernstein et al. (1997). We find the 3 σ upper limit on vF_r at 5500 Å to be 5.6×10^{-16} ergs s$^{-1}$ cm$^{-2}$.

![Figure 3](image3.png)

Fig. 3. Radio (top) and X-ray (bottom) intensity profiles as a function of angular distance from the core of image A along the jet ridge line. The X-ray profile provides counts in 0.288 increments integrated ± 0.48 perpendicular to the jet ridge line, and the radio profile provides the 3.6 cm flux density in 0.096 increments integrated ± 0.48 perpendicular to the jet ridge line. Radio counterparts within 0.5 of the X-ray-bright knots located $4'$ and $6'$ from the core are clearly visible. Whereas the angular structures of the X-ray and radio jets are similar, the intensity distributions along the jet seem to be anticorrelated. In particular, the X-ray brightness decreases along the jet, whereas the radio flux density of the knots increases with distance from the core (see text for interpretation).

![Figure 4](image4.png)

Fig. 4. Top: X-ray spectrum of the lens cluster, along with the best-fit thermal Raymond-Smith model (see Table 2). The model is consistent with a plasma temperature of ~ 2.1 keV. The detected spectral feature between 0.7 and 0.9 keV (observed frame) corresponds to a redshifted $z = 0.36$ complex of Fe L lines, confirming the detection of the lens cluster. The uncertainty in the calibration of ACIS-S3 below 0.5 keV contributes to the large residuals between 0.4 and 0.5 keV. Bottom: Residuals in units of standard deviations with error bars of size 1 σ.

![Figure 5](image5.png)

Fig. 5. Spectral energy distributions (SEDs) of jet knots B (open circles) and C (filled circles). The radio flux densities were extracted from the radio 3.6 cm VLA data, kindly provided by Michael Harvanek of Apache Point Observatory. The optical upper limit (cross) is based on published results from a deep HST observation of the field (Bernstein et al. 1997). The vF_r-values of the jet knots in the X-ray band are at least an order of magnitude above an extrapolation of the radio and optical data points, suggesting that the emission in the radio, optical, and X-ray bands is not consistent with a single synchrotron model with a single power-law distribution. The solid and dashed lines represent fits of the CMB model (see text) to the spectra of knots B and C, respectively. The CMB model, in which cosmic microwave photons are inverse Compton scattered by synchrotron-emitting electrons in the jet, has the following parameters. Knot B: The emission region is assumed to be spherical, with a radius of $R = 1 \times 10^{23}$ cm, a magnetic field intensity of $B = 6 \times 10^{-5}$ G, and a Doppler factor of $\delta = 1.4$. The electron distribution is assumed to be a power law, with extremes of $\gamma_{\min} = 10$ and $\gamma_{\max} = 3 \times 10^5$, a slope of $n = 2.6$, and a normalization of $K = 6.4 \times 10^{-3}$ cm$^{-3}$. Knot C: Same as knot B, except $K = 4 \times 10^{-4}$ cm$^{-3}$ and $\delta = 1.05$.

For our second approach, we used the forward-fitting tool LYNX developed at PSU (Chartas et al. 2000). Spectra were extracted from circles centered on each image with radii of $3"$. We found the photon indices for A and B to be 2.08 ± 0.03 and 1.94 ± 0.03 (90% confidence errors). The 0.5–10 keV X-ray fluxes of images A and B, corrected for pileup, are $(11.6 \pm 0.9) \times 10^{-13}$ and $(8.8 \pm 0.7) \times 10^{-13}$ ergs s$^{-1}$ cm$^{-2}$.

The radio flux density F_r at 3.6 cm for jet A was based on the value reported by Harvanek et al. (1997). The jet knots have not been detected in the optical band; we therefore placed upper limits on the optical flux density of the knots based on deep Hubble Space Telescope (HST) observations of this field performed by Bernstein et al. (1997). We find the 3 σ upper limit on vF_r at 5500 Å to be 5.6×10^{-16} ergs s$^{-1}$ cm$^{-2}$.

For our second approach, we used the forward-fitting tool LYNX developed at PSU (Chartas et al. 2000). Spectra were extracted from circles centered on each image with radii of $3"$. We found the photon indices for A and B to be 2.08 ± 0.03 and 1.94 ± 0.03 (90% confidence errors). The 0.5–10 keV X-ray fluxes of images A and B, corrected for pileup, are $(11.6 \pm 0.9) \times 10^{-13}$ and $(8.8 \pm 0.7) \times 10^{-13}$ ergs s$^{-1}$ cm$^{-2}$.

The errors in the estimates of the photon indices in both methods do not include systematic errors due to the uncertainties in the ACIS detector quantum efficiency and energy response. We note that the “annulus” method uses detector response matrices provided by the CXC, whereas LYNX links to a Monte Carlo simulator of ACIS developed by the ACIS instrument team (Townsley et al. 2001). We do not detect any line features in their spectra. Combining the spectra of images A and B, we place a 95% confidence upper limit of ~ 60 eV (observed frame) on the equivalent width of an intrinsically narrow fluorescent Fe Kα line at 6.4 keV (2.66 keV observed frame).
cm$^{-2}$. The X-ray spectrum was extracted from a 2.5" \times 7"
rectangle. The background was extracted from several similar
rectangles located at the same distance from image A but at different
azimuths. A net total of 50 \pm 8 X-ray events were ascribed to the jet. We modeled the spectrum with a power law modified by absorption due to our Galaxy. We find a best-fit value for the photon index Γ of 1.87 \pm 0.6 (90% confidence errors), including systematic errors estimated from using different background regions.

We find nF_γ at 1 keV for knots B and C of $(8.9 \pm 2.8) \times 10^{-16}$ and $(2.7 \pm 0.9) \times 10^{-16}$ ergs s$^{-1}$ cm$^{-2}$, respectively (90% confidence errors). A simple synchrotron model with a single power-law distribution is not consistent with the SED of the jet in Q0957 + 561A. Given the high redshift of the jet, the energy density of the cosmic microwave background (CMB) is enhanced by a factor of $(1 + z)^3 = 33.7$ over the local value. We therefore modeled the spectra of knots B and C with a CMB model, in which cosmic microwave photons are inverse Compton scattered by synchrotron-emitting electrons in the jet. The solid and dashed lines in Figure 5 are the fits of the CMB model to the SEDs of knots B and C, respectively. We are able to fit both knots well with very moderate Doppler beaming (see Fig. 5). We conclude that a plausible mechanism to explain the X-ray emission is inverse Compton scattering of CMB photons. Such a mechanism was shown to be consistent with the peculiar SED of the jet in PKS 0637 − 752 (Tavecchio et al. 2000).

5. MASS DISTRIBUTION AND CONVERGENCE OF THE LENS CLUSTER

For isothermal and spherical clusters of galaxies, the equation for hydrostatic equilibrium can be solved for the virial mass $M_{\text{grav}}(<r)$ within a radius r,

$$M_{\text{grav}}(<r) = -\frac{k T r}{\mu m_p G} \ln \rho,$$

where k is Boltzmann's constant, μm_p is the mean molecular weight of the cluster gas, and $\rho(r)$ is the cluster gas density at r. Assuming a β model for the density profile of the hot gas (see, e.g., Jones & Forman 1984), we obtain the equation for the total mass of the lens within a radius r,

$$M_{\text{grav}}(<r) = \frac{3\beta k T}{\mu m_p G} \frac{r}{[1 + (r/c)^2]}.$$

By incorporating the best-fit spatial and spectral parameters from our present analysis (see Tables 1 and 2), we find the total cluster mass within a radius of 1 h_{75}^{-1} Mpc to be $M_{\text{grav}} = (9.9^{+1.8}_{-3.0}) \times 10^{13} M_\odot$. In Figure 6 we show the total cluster mass within a radius r as a function of radius. The shaded region indicates the allowed values for the cluster mass, including the uncertainties obtained from the spatial and spectral fits to the lens cluster (see Tables 1 and 2).

These mass estimates were used to evaluate the convergence parameter $\kappa(x)$,

$$\kappa(x) = \Sigma(x)/\Sigma_{cr},$$

where $\Sigma(x)$ is the surface mass density of the lens cluster as a function of the cylindrical radius x (Chartas et al. 1998) and Σ_{cr} is the critical surface mass density (see, e.g., Schneider, Ehlers, & Falco 1992). In Figure 7 we plot the convergence parameter $\kappa(x)$ as a function of distance from the cluster center. The thick solid line corresponds to the best-fit spatial and spectral parameters. The largest contributor to the uncertainty in our estimate of $\kappa(x)$ is a weak constraint on the temperature of the cluster. To illustrate this we have plotted the uncertainty in $\kappa(x)$, assuming 68% (dotted lines) and 90% (dashed lines) confidence intervals for the temperature. We also chose cluster limits ranging between 0.7T_{500} and 1.4T_{500}, where T_{500} is the radius in which the mean overdensity is 500 and $T_{500} = 1.58(T_e/10$ keV)$^{1/2} h_{75}^{-1}$ Mpc $\sim 0.71 h_{75}^{-1}$ Mpc (Mohr, Mathiessen, & Evrard 1999). The uncertainty in κ introduced by assuming the cluster limit to range between 0.7T_{500} and 1.4T_{500} is only $\sim 2\%$. Our assumption of spherical symmetry of the mass distribution has little effect on the estimate of the convergence parameter. Calculations of the mass distribution of the nonspherical cluster of galaxies A2256 (axis ratio ~ 1.6) by Fabricant, Rybicki, & Gorenstein (1984) showed that radially integrated mass estimates were negligibly affected by including an oblate or prolate cluster geometry. At the best-fit location of images A and B with respect to the cluster center, we estimate the convergences, assuming the 90%
Fig. 7.—Convergence parameter κ of the lens cluster as a function of distance from the cluster center. The thick solid line corresponds to the best-fit spatial and spectral parameters. The largest contributor to the uncertainty in the present measurement of $k(\lambda)$ is the weak constraint on the temperature of the cluster. To illustrate this weakness we have plotted the uncertainty in $k(\lambda)$ assuming 68% (dotted lines) and 90% (dashed lines) confidence intervals for the temperature. We also chose cluster limits ranging from $0.7r_{200}$ to $1.5r_{200}$, where r_{200} is the radius in which the mean overdensity is 500, and $r_{500} = 1.58 r_{200}$ Mpc (Fischer et al. 1997). Vertical lines indicate the distances of images A and B from the cluster center.

The Chandra observation of the cluster resolves this apparent discrepancy. We find the distance between the center of mass of the cluster and the center of the lens galaxy G1 to be $d_c = 4.8$, considerably smaller than suggested by previous estimates. The best-fit position angle (north through east) and core radius of the cluster are 59° and $15\arcsec \pm 3\arcsec$, respectively. The Chandra observations of Q0957+561 therefore indicate that the cluster center is located within a core radius of the lens galaxy G1. Using the values for r_c, d_c, and κ provided by our analysis of the Chandra observation of Q0957+561, we find that the cluster shear amplitude γ is 0.01 ± 0.009 (90% confidence level), consistent with the recent model results of Keeton et al. (2000). The Chandra observation of Q0957+561 has eliminated several uncertainties introduced in our previous analysis of the ROSAT HRI data for this system. Specifically, the temperature, core radius, and cluster shape are now determined more reliably. Previous estimates of κ are unreliable because of the large distances between the center of the cluster and the galaxy G1 assumed in these analyses.

To evaluate the implication of our estimate of κ on the Hubble constant, we write $H_0 = H_0(1-\kappa) = 100 h \, \text{km} \, \text{s}^{-1} \, \text{Mpc}^{-1}$, where we define the average convergence parameter of the cluster at the image locations as $\bar{c} = (\kappa_A + \kappa_B)/2$. Because of the mass-sheet degeneracy problem, lens models provide only the model-dependent value $h/(1-\bar{c})$. Our present observation of the lens cluster results in an uncertainty of about 14% in the quantity $(1-\bar{c})$. The resulting uncertainty in H_0 is about 29%, where we have assumed an uncertainty of about 25% in H_0 based on the analysis of Keeton et al. (2000). We anticipate that the next generation of lens models for Q0957+561 may provide tighter constraints on H_0, when the constraints on the location, ellipticity, and convergence of the cluster based on the Chandra observations are incorporated.

As described in § 5, the largest contributor to the present uncertainty in κ obtained by the X-ray method is the temperature of the intracluster gas. Given that the cluster is located near the quasar images, we may optimize a future observation of Q0957+561 by moving the telescope aim point closer to the cluster center to improve the spatial resolution and reduce the contamination of the cluster by the bright images. This change will reduce the uncertainty of the estimates of the spectral and spatial parameter values for the cluster.

We would like to thank Daniel Harris and William Forman for helpful discussions. We acknowledge financial support by NASA grant NAS 8-38252 and support from the Smithsonian Institution.
REFERENCES

Anders, E., & Grevesse, N. 1989, Geochem. Cosmochim. Acta, 53, 197
Angonin-Willaime, M.-C., Soucail, G., & Vanderriest, C. 1994, A&A, 291, 411
Arnaud, K. A. 1996, in ASP Conf. Ser. 101, Astronomical Data Analysis Software and Systems V, ed. G. Jacoby & J. Barnes (San Francisco: ASP), 17
Arnaud, K. A., Johnstone, R. M., Fabian, A. C., Crawford, C. S., Nulsen, P. E. J., Shafer, R. A., & Mushotzky, R. F. 1987, MNRAS, 227, 241
Arnaud, M., Neumann, D. M., Aghanim, N., Gastaud, R., Majerowicz, S., & Hughes, J. P., 2001, A&A, 365, L80
Barkana, R., Lehár, J., Falco, E. E., Grogin, N. A., Keeton, C. R., & Shapiro, I. I. 1999, ApJ, 520, 479
Bernstein, G., & Fischer, P. 1999, AJ, 118, 14
Bernstein, G., Fischer, P., Tyson, J. A., & Rhee, G. 1997, ApJ, 483, L79
Chae, K.-H. 1999, ApJ, 524, 582
Chartas, G., Chuss, D., Forman, W., Jones, C., & Shapiro, I. 1998, ApJ, 504, 661
Chartas, G., et al. 2000, ApJ, 542, 655
Conner, S. R., Lehár, J., & Burke, B. F. 1992, ApJ, 387, L61
Dickey, J. M., & Lockman, F. J. 1990, ARA&A, 28, 215
Ebeling, H., White, D. A., & Rangarajan, F. V. N. 2001, MNRAS, submitted
Evrard, A. E., Metzler, C. A., & Navarro, J. F. 1996, ApJ, 469, 494
Fabricant, D., Rybicki, G., & Gorenstein, P. 1984, ApJ, 286, 186
Falco, E. E., Gorenstein, M. V., & Shapiro, I. I. 1985, ApJ, 289, L1
———. 1991, ApJ, 372, 364
Falco, E. E., Shapiro, I. I., Moustakas, L. A., & Davis, M. 1997, ApJ, 484, 70
Fischer, P., Bernstein, G., Rhee, G., & Tyson, J. A. 1999, ApJ, 113, 521
Garrett, M. A., Walsh, D., & Carswell, R. F. 1992, MNRAS, 254, 27P
Harvanek, M., Stocke, J. T., Morse, J. A., & Rhee, G. 1997, AJ, 114, 2240
Henriksen, M. 1985, Ph.D. thesis, Univ. Maryland
Hughes, J. P., Yamashita, K., Okumura, Y., Tsunemi, H., & Matsuoka, M. 1988, ApJ, 327, 615
Jones, C., & Forman, W. 1984, ApJ, 276, 38
———. 1999, ApJ, 511, 65
Keeton, C. R., et al. 2000, ApJ, 542, 74
Kochanek, C. S. 1991, ApJ, 382, 58
Markevitch, M. 1998, ApJ, 504, 27
Marshall, H. L., et al. 2001, ApJ, 549, L167
Mohr, J. J., Mathiesen, B., & Evrard, A. E. 1999, ApJ, 517, 627
Navarro, J. F., Frenk, C. S., & White, S. D. M. 1996, ApJ, 462, 563
Refsdal, S. 1964a, MNRAS, 128, 295
———. 1964b, MNRAS, 128, 307
Romanowsky, A. J., & Kochanek, C. S. 1999, ApJ, 516, 18
Sambruna, R. M., Urry, C. M., Tavecchio, F., Maraschi, L., Scarpa, R., Chartas, G., & Muxlow, T. 2001, ApJ, 549, L161
Schneider, P., Ehlers, J., & Falco, E. E. 1992, Gravitational Lenses (New York: Springer)
Tavecchio, F., Maraschi, L., Sambruna, R. M., & Urry, C. M. 2000, ApJ, 544, L23
Tonry, J. L., & Franx, M. 1999, ApJ, 515, 512
Townsley, L. K., Broos, P. S., Chartas, G., Moskalenko, E., Nousek, J. A., & Pavlov, G. G. 2001, Nucl. Fisnrum. Methods Phys. Res., in press
Wise, M. W., Davis, J. E., Huernemoerder, D. P., Houck, J. C., Dewey, D. 2000, MARX 3.0 Technical Manual (Cambridge: CXC)