Inhibition of β2-Microglobulin/Hemochromatosis Enhances Radiation Sensitivity by Induction of Iron Overload in Prostate Cancer Cells

Sajni Josson1*, Y, Yasuhiro Matsuoka1*, Murali Gururajan1*, Takeo Nomura2, Wen-Chin Huang3, Xiaojian Yang1, Jin-tai Lin1, Roger Bridgman3, Chia-Yi Chu1, Peter A. Johnstone4, Majd Zayzafoon5, Peizhen Hu1, Haiyen Zhau1, Dror Berel6, Andre Rogatko6, Leland W. K. Chung1*

1 Uro-Oncology Research Program, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America, 2 Molecular Urology and Therapeutics, Emory University School of Medicine, Atlanta, Georgia United States of America, 3 Hybridoma Facility, Auburn University, Auburn, Alabama, United States of America, 4 Radiation Oncology, Indiana University School of Medicine, Bloomington, Indiana, United States of America, 5 Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America, 6 Biostatistics and Bioinformatics, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America

Abstract

Background: Bone metastasis is the most lethal form of several cancers. The β2-microglobulin (β2-M)/hemochromatosis (HFE) complex plays an important role in cancer development and bone metastasis. We demonstrated previously that overexpression of β2-M in prostate, breast, lung and renal cancer leads to increased bone metastasis in mouse models. Therefore, we hypothesized that β2-M is a rational target to treat prostate cancer bone metastasis.

Results: In this study, we demonstrate the role of β2-M and its binding partner, HFE, in modulating radiation sensitivity and chemosensitivity of prostate cancer. By genetic deletion of β2-M or HFE or using an anti-β2-M antibody (Ab), we demonstrate that prostate cancer cells are sensitive to radiation in vitro and in vivo. Inhibition of β2-M or HFE sensitized prostate cancer cells to radiation by increasing iron and reactive oxygen species and decreasing DNA repair and stress response proteins. Using xenograft mouse model, we demonstrate that anti-β2-M Ab sensitizes prostate cancer cells to radiation treatment. Additionally, anti-β2-M Ab was able to prevent tumor growth in an immunocompetent spontaneous prostate cancer mouse model. Since bone metastasis is lethal, we used a bone xenograft model to test the ability of anti-β2-M Ab and radiation to block tumor growth in the bone. Combination treatment significantly prevented tumor growth in the bone xenograft model by inhibiting β2-M and inducing iron overload. In addition to radiation sensitive effects, inhibition of β2-M sensitizes prostate cancer cells to chemotherapeutic agents.

Conclusion: Since prostate cancer bone metastatic patients have high β2-M in the tumor tissue and in the secreted form, targeting β2-M with anti-β2-M Ab is a promising therapeutic agent. Additionally, inhibition of β2-M sensitizes cancer cells to clinically used therapies such as radiation by inducing iron overload and decreasing DNA repair enzymes.

Introduction

Prostate cancer bone metastasis is lethal. More than 70% of prostate cancer patients have bone metastasis at autopsy [1]. The median 5 year survival rate is only 31% for metastatic patients. Prostate cancer patients with bone metastasis have been shown to have high expression of β2-Microglobulin (β2-M) in the cancer cells [2]. β2-M is a cell membrane protein which complexes to the MHC class 1 family. β2-M is elevated in several aggressive solid and liquid tumors. It is a pleotropic factor which mediates multiple processes such as cancer development [3], cancer metastasis [4], and osteomimicry [2]. Previous studies demonstrate that targeting β2-M with anti-β2-M antibody (Ab) is a promising therapeutic strategy in prostate, renal and liquid tumors [5–7]. Previous studies demonstrate that β2-M interacts with hemochromatosis protein (HFE), which is a non-classical MHC class 1 member [8]. β2-M/HFE complex interacts with transferrin receptor (TFR1), and lowers the affinity of transferrin binding to TFR1 [9]. Thus, β2-M/HFE prevents excessive iron uptake. Mice lacking β2-M or HFE develop iron overload later in life and iron-related diseases [10,11]. In this study we demonstrate that inhibition of β2-M using an antibody or genetic deletion of β2-M or HFE in cancer cells causes iron overload and sensitizes prostate cancer cells to radiation in vitro and in vivo and chemotherapeutic agents in vitro.

* E-mail: Sajni.Josson@cshs.org (SJ); Leland.Chung@cshs.org (LC)
† These authors contributed equally to this work.
Materials and Methods

Bioethics Statement
All animal experiments were approved by the IACUC of the Emory University and the Cedars-Sinai Medical Center and done in accordance with institutional guidelines.

Cell Culture
ARCaPm, ARCaPp [12], C4-2, and C4-2B [13] prostate cancer cells were derived in our laboratory as described previously, and p69 (non-tumorigenic cells), LNCaP, PC-3, DU145, TRAMP C1 and TRAMP C2 prostate cancer cells were purchased from ATCC. Cells were cultured in T-medium (GibcoBRL, Grand Island, NY) supplemented with 5% heat inactivated fetal bovine serum (FBS) (Bio-Whittaker, Walkersville, MD), 50 IU/ml penicillin and 50 μg/ml streptomycin (GibcoBRL) and maintained in 5% CO2 at 37°C. All cells were tested for mycoplasma every six months and were negative (Mycoplasma detection kit, R&D systems).

Cell Viability Assays
Clonogenic assay was performed as previously mentioned [14]. Cell viability was determined with a CellTiter 96 Aqueous One Solution Cell Proliferation Assay (MTS assay) (Promega, Madison, WI).

Radiation Studies
External beam radiation treatment was delivered on a 600 Varian linear accelerator with a 6 MV photon beam for in vitro and in vivo (subcutaneous and intra-tibial) experiments.

Immunoblot Analysis
Western analysis was performed as previously described [2]. The membranes were incubated with mouse monoclonal antibody against β2-M, HFE, HSP27, HSP70 (Santa Cruz Biotechnology), NUDT1 and MPG (a gift from Dr. Yoke Wah Kow), EF-1α (Upstate), and β-actin (Sigma) respectively, at 4°C overnight.

Anti-β2-M Ab Studies
The antibody used in Figures 1, 2 and 5 is from Santa Cruz Biotechnology. Since the antibody solution had 0.005% final concentration of sodium azide and gelatin, we tested if sodium azide or gelatin was toxic to these cells. ARCaPM prostate cancer cells were not affected by high doses (0.1%) of sodium azide or gelatin (Figure S1). The antibody used in Figure 3 and 4 is from mouse ascites produced from BBM.1 hybridoma (ATCC). The IgG antibody was purified using a Melon gel IgG purification Kit (Fisher Scientific) and antibody levels were quantified using nanodrop (Thermo Scientific). Iron staining of cells treated with IgG and anti-β2-M Ab was performed with an iron staining kit (Sigma). LNCaP and C4-2 cancer cells were used to detect DNA repair proteins in response to anti-β2-M Ab. Cells were treated with anti-β2-M Ab (10 μg/ml) for 24 h. Mouse TRAMP (C1 and C2) prostate cancer cells were treated with increasing concentrations of anti-β2-M Ab (0–10 μg/ml) and their cell viability was examined.

In vivo Animal Experiments
Subcutaneous xenograft study. Four-week-old male nude mice (NCRNU, Taconic) were injected with C4-2 prostate cancer cells (1×106 cells) suspended in 10 μl sterile PBS into both tibias (n = 10). One week after injection, anti-β2-M Ab (8 mg/kg) was injected intra-peritonially once every 3 days for the rest of the study. Tumor progression was determined bi-weekly, using prostate specific antigen (PSA) marker detection. Serum PSA was measured by microplate ELISA using an Abbott IMx machine (Abbott Park, IL). Nine weeks after tumor injection, the tibias were irradiated with 4 Gy on three consecutive days, receiving a total of 12 Gy. Anti-β2-M Ab treatment was given prior to the irradiation treatment on all three days. Anti-β2-M Ab treatment was continued every 3 days after the irradiation treatment until week 11. A schematic of the treatment protocol is included in Figure S2. On week 12 the mice were sacrificed and the tibias were sent for pathology. Tibias were harvested and H&E and iron staining (Iron stain kit, Sigma) was performed. Immunohistochemical staining for β2-M (Santa Cruz Biotechnology), p-CREB (Cell Signaling Technology), and p-histone H3 (Millipore) were performed as previously described [2].

Immune cell study: Splenocytes were prepared by crushing spleens. Cells were washed and incubated with specific antibodies as previously described [16]. The antibodies used were PE-Cy5 anti-CD45R/B220, CD3-APC, CD4-PE and CD8-APC obtained from eBiosciences. Analyses were conducted on a dual laser flow cytometer (FACSCalibur) [16].

Reactive Oxygen Species Studies
Mitochondrial superoxide was detected using MitoSOX (Molecular Probes, Eugene, OR). Samples were incubated for a minimum of 40 min at 37°C in the dark on a rotator and fluorescence was measured.

Stable Knockdown of β2-M and HFE in ARCaPM Cells
Control and β2-M siRNA were retrovirally transfected into ARCaPM cells. B2-M knockdown cells are indicated as KDI and KDII. Lentiviral transduction was performed to inhibit HFE, as per instructions (Sigma, St. Louis, MO). Cells were selected using puromycin (4 μg/ml) as previously reported [4]. Negative control cells which did not receive the viral particles died in 3–5 days. HFE siRNA transduced cells were characterized for HFE levels 7–10 days after transduction. C4-2B (Neo) control and C4-2B β2-M knockdown cells (KD_β2-M) were generated previously [2].
Inhibition of β2-M Increases Iron Overload, Reactive Oxygen Species and Decreases DNA Repair Enzymes and Stress Response Proteins

Transgenic mice lacking β2-M or HFE have increased iron overload [11]. β2-M/HFE form a complex and interact with transferrin receptor (TFRC1) [8,9]. The β2-M/HFE complex inhibits the formation of transferrin-TFRC1 complexes. Thus, iron which is bound to transferrin is prevented from entering the cell and therefore mice lacking β2-M of HFE have increased iron overload. We tested if anti-β2-M Ab could induce iron overload and reactive oxygen species (ROS) in prostate cancer cells. ARCaPM cells were treated with anti-β2-M Ab (5 μg/ml for 24 h) and iron content was determined using Prussian blue iron staining. Increased dark blue-black staining of iron was observed in anti-β2-M Ab treated cells compared to isotype control treated ARCaPM prostate cancer cells (Figure 2A). To determine if anti-β2-M Ab induced increased reactive oxygen species (ROS) as a result of increase in iron overload, we tested for levels of mitochondrial superoxide using MitoSOX. Two prostate cancer cells (ARCaPM and ARCaPE) and p69 immortalized normal prostate epithelial cells were used to test this hypothesis. An increase in mitochondrial superoxide, a reactive oxygen species, was observed in the prostate cancer cells and not in the normal cells in a dose and time dependent manner in response to the anti-β2-M Ab (Figure 2B).

Previous studies demonstrate that HFE knockdown cells have increased basal iron [4]. We tested if inhibition of HFE in prostate cancer cells would alter mitochondrial superoxide levels. The basal level of mitochondrial superoxide was measured using MitoSOX and we found that the basal levels were increased in HFE knockdown clones (KD_HFE1 and KD_HFE3) compared to the control (Figure 2C). Radiation resistance is increased by elevated DNA repair enzymes and stress response proteins. Next, we sought to determine changes in stress response proteins in β2-M knockdown prostate cancer cells. Using C4-2B control and β2-M knockdown prostate cancer cells (KD_B2-M) we tested the levels of stress response proteins such as heat shock protein 27 (HSP27) [17] and heat shock protein 70 (HSP70) [18] and DNA repair enzymes such as N-methylpurine-DNA glycosylase (MPG) [19] and nucix (nucleoside diphosphate linked moiety X-type motif 1 (NUDT1)) [20]. Interestingly, the stress response and heat shock proteins were downregulated in β2-M knockdown clones KD_B2-M (Figure 2D). Additionally, prostate cancer cells were treated with anti-β2-M Ab (10 μg/ml) for 24 h and the protein levels of DNA repair enzymes MPG and NUDT1 were examined. Anti-β2-M Ab moderately decreased the levels of MPG and NUDT1 proteins. These studies demonstrate that anti-β2-M Ab induces several cytotoxic effects such as iron overload, increased free radical levels, decreased DNA repair enzymes and stress response proteins in prostate cancer cells and thereby sensitize prostate cancer cells to radiation.

Anti-β2-M Ab Prevents Tumor Growth in a Spontaneous Immuno-competent Transgenic Adenocarcinoma of Mouse Prostate (TRAMP) Mice Model

TRAMP C1 and TRAMP C2 prostate cancer cells [21] are cell lines derived from spontaneous mouse model of adenocarcinoma. We performed in vitro studies to test the effect of anti-β2-M Ab in the TRAMP cell lines. Both TRAMP C1 and TRAMP C2 murine prostate cancer cells undergo cell death with increasing concentrations of anti-β2-M Ab (Figure 3A). Next, we tested the effects of the antibody in vivo. TRAMP mice (age 21 to 26 weeks) were paired and treated either with a control IgG or anti-β2-M Ab group (n = 4). Parental mice (C57BL/6 mice) were maintained

Results

Anti-β2-M Ab Sensitizes Prostate Cancer Cells to Radiation in vivo

Previous studies demonstrate that β2-M and HFE play an important role in cancer progression [1]. Inhibition of β2-M, using anti-β2-M Ab has been shown to induce cell death in several cancers including prostate cancer. More than 50% of cancer patients invariably undergo radiation therapy during the course of disease progression. However, radiation treatment has adverse effects. Targeted therapies including therapeutic antibodies could potentially act as radiosensitizing agents. To test the hypothesis that treatment with anti-β2-M Ab will sensitize prostate cancer cells to radiation, we used the well characterized ARCaP prostate cancer cell model which metastasizes to the bone in mouse xenograft models. ARCaPM cell line is epithelial-like and has low propensity for metastasis and also expresses low levels of β2-M and the ARCaPM cell line, is mesenchymal-like and by contrast, is highly metastatic to bone and expresses high levels of β2-M [4]. The radiation sensitivity was determined using clonogenic assay. We demonstrate that ARCaPM cells are more resistant to radiation compared to ARCaPM cells (Figure 1A). To determine if β2-M is involved in radiation resistance, we generated β2-M knockdown stable ARCaPM prostate cancer cells (clones KDII and KDIII). We performed a clonogenic assay to determine their radiation sensitivity. Both KDII and KDIII were more sensitive to radiation treatment compared to ARCaPM control cells (Figure S3A). In addition to the genetic approach, we used anti-β2-M Ab to inhibit β2-M prior to radiation therapy. The combination treatment of anti-β2-M Ab (5 μg/ml) and radiation had a synergistic effect on prostate cancer cell death in vitro (Figure 1B). Synergism was analyzed by ANOVA, and anti-β2-M Ab and radiation had a synergistic effect at 4 Gy and 6 Gy doses of radiation. Since β2-M interacts with HFE to mediate its cellular processes [4], we knocked down HFE in ARCaPM prostate cancer cells using lentiviral shRNA particles. HFE expression was decreased in HFE knockdown cells (clones KD_HFE1 and KD_HFE3) compared to control ARCaPM cells (Figure S3B). Inhibition of HFE also decreased β2-M expression, and thus β2-M/HFE complexes. The radiation response of KD_HFE1 and KD_HFE3 cells was determined using a clonogenic assay. KD_HFE1 and KD_HFE3 cells were more sensitive to radiation compared to control ARCaPM prostate cancer cells.

To determine if anti-β2-M Ab and irradiation synergize in vivo, we injected ARCaPM cells sub-cutaneously into the flanks of nude mice. Once tumors reached a size of 4 mm³ the xenografts were surgically implanted with anti-β2-M Ab IgG (0.8 mg/kg) in gelfoam [6]. Twenty-four hours later tumors were irradiated with 15 Gy. Each group had five tumors and the tumor volume was measured weekly. Anti-β2-M Ab and radiation alone partially decreased tumor growth. However, in the combination treatment group, none of the tumors grew in the mice (Figure 1C). These results demonstrate that anti-β2-M Ab is an effective agent for prostate cancer treatment, and combination treatment with anti-β2-M Ab and radiation is significantly more effective than antibody only or radiation only treatment.

Statistical Analysis

All experiments were performed in triplicate at least two independent times. Values were expressed as means ± standard deviation. Statistical analysis was performed using Student’s t-test or ANOVA. Values of p<0.05 were considered to be statistically significant.
until the end of the experiment. Starting at 21/26 weeks, mice were given 8 mg/kg of IgG Ab or anti-
\(\alpha-2-M \) Ab every three days until the mice reached 32/37 weeks and were sacrificed a week later. Body weights of mice were determined weekly. Tumor development was monitored using near infrared dye (IR-783) biweekly. Imaging was performed using infra-red imaging and X-ray imaging with a Kodak imaging machine. After the mice were euthanized the prostates were dissected and stained using H&E. We found that three out of four mice in the control IgG group developed tumors and one had hyperplasia, as confirmed by H&E and infrared imaging (Figure 3B, 3C). Interestingly, three out of four mice had no tumor and one mice developed hyperplasia in the anti-
\(\alpha-2-M \) Ab treated group, as confirmed by H&E and infra-red imaging (Figure 3B, 3C). Thus the tumorigenecity of the control group was 100% and of the anti-
\(\alpha-2-M \) Ab was 25%. Since \(\alpha-2-M \) is expressed by cells of the immune system, we measured the possible immunotoxicity of continuous treatment with anti-
\(\alpha-2-M \) Ab. We demonstrate that treatment with anti-
\(\alpha-2-M \) Ab did not affect immune cell numbers (CD8+ and CD4+ T cells and B cells) and body weight of mice. T and B cell numbers were not affected by anti-
\(\alpha-2-M \) Ab treatment compared to IgG or parental mice (Figure 3D). The body weights were also not affected when anti-
\(\alpha-2-M \) Ab was given continuously every three days for 11 weeks (Figure 3E). These studies demonstrate that anti-
\(\alpha-2-M \) Ab treatment does not compromise the immune system and the body weight of the mice and that it prevents tumor development in spontaneous prostate mouse models of prostate cancer.

Combination Treatment with Anti-\(\alpha-2-M \) Ab and Irradiation Reduces Prostate Cancer Growth in the Bone Microenvironment

The second most prevalent site for prostate cancer bone metastasis is the bone. Currently there are no good treatments for prostate cancer growth in the bone. Therefore, we tested the efficacy of anti-\(\alpha-2-M \) Ab and irradiation on prostate cancer growth in the bone. To test this, we injected androgen independent C4-2 prostate cancer cells intra-tibially into nude mice. One week after tumor inoculation in the bone, mice were administered anti-\(\alpha-2-M \) Ab (8 mg/kg) (n = 9 mice) intra-peritoneally every three days for 11 weeks or phosphate buffered saline (n = 9 mice). Prostate specific antigen (PSA) levels in the serum of mice and the body weight of the mice were measured biweekly. At 9 weeks, the anti-\(\alpha-2-M \) Ab treatment group was given 4 Gy irradiation for three consecutive days (12 Gy in total) (Figure S2). Prior to radiation, mice were given a dose of anti-\(\alpha-2-M \) Ab (8 mg/kg). The mice were maintained until 12 weeks after tumor injection and sacrificed. The presence of tumor cells was determined by H&E staining. Anti-\(\alpha-2-M \) Ab prevented tumor formation in 33% of the tibias inoculated with the tumor cells. The control mice had 94% tumor incidence and the anti-\(\alpha-2-M \) Ab plus
irradiation treated group had 67% tumor incidence. Treatment with the anti-β2-M Ab also delayed tumor development, which was evident by a decrease in PSA levels in these mice. The majority (7/9) of the control mice had detectable PSA at 3 weeks after intra-tibial injection, whereas the anti-β2-M Ab treated group had delayed tumor formation and less detectable PSA levels (3/9 at 3 weeks after tumor injection). At 9 weeks after radiation, there was a significant decrease in the PSA level of antibody treated mice compared to the control mice (p<0.006) (Figure 4A). Using immunohistochemistry we demonstrate decreased β2-M staining in the anti-β2-M Ab+irradiation treated group compared to the control group (Figure 4B). Moreover, the anti-β2-M Ab and irradiation treated group had significantly increased iron staining in the bone (42%) compared to control mice (6%) (Figure 4B), suggesting iron overload in antibody treated group. We also looked at the downstream pathways targeted by the anti-β2-M Ab and found that there is a decrease in the levels of these targets (p-CREB) in the tibia of the antibody and radiation treated mice compared to the control [2]. Additionally, anti-β2-M Ab and radiation treated group had decreased mitosis, indicated by the mitotic marker, p-histone H3 (Figure 4B). Prolonged treatment with anti-β2-M Ab was not toxic to the mice as the body weight of the mice was stable (Figure S4). Taken together, these studies demonstrate that an anti-β2-M Ab and irradiation combination treatment can reduce tumorigenicity and significantly delay and/or inhibit growth of prostate cancer cells in the bone.

Inhibition of β2-M Sensitizes Prostate Cancer Cells to Chemotherapeutic Agents

Since inhibition of β2-M results in iron overload, increase in reactive oxygen species and decreases in stress response proteins in vitro, we tested if treatment with anti-β2-M Ab could sensitize prostate cancer cells to clinically used chemotherapeutic agents.
Using C4-2B and C4-2B β2-M knockdown prostate cancer cells (KD β2-M) [2], we tested if the β2-M knockdown cells were more sensitive to taxotere, cisplatin and PS341. β2-M expression was low in KD β2-M cells compared to Neo (control) cells (Figure 2D). Inhibition of β2-M significantly sensitized prostate cancer cells to taxotere (0.3 μM), cisplatin (10 μM) and PS341 (1 μM) (Figure 5A). Anti-β2-M Ab sensitized DU145 cells to cisplatin and doxorubicin (Figure 5B and PC-3 cells to cisplatin (Figure 5C). Using bliss independence analysis a synergistic interaction was observed in DU145 cells treated with anti-β2-M Ab and doxorubicin and in PC-3 cells treated with anti-β2-M Ab and cisplatin.

These studies demonstrate that anti-β2-M Ab is a promising agent for combination therapy with commonly used treatments in cancer such as radiation and chemotherapy. Since prostate cancer bone metastasis is difficult to treat, combination treatments with anti-β2-M Ab maybe more effective in reducing tumor burden.

Figure 3. Anti-β2-M Ab prevents tumor formation in spontaneous prostate cancer TRAMP mouse model. A. Cell viability of TRAMP C1 and TRAMP C2 prostate cancer cells in response to anti-β2-M Ab. (**p<0.001, Student’s t test). B. Merged infra-red and X-ray image of abdomen of TRAMP mice treated with control IgG and anti-β2-M Ab (n=4). Representative parental mice used as additional control (C57BL/6 mice). The tumorigenicity of control IgG antibody group was 100% (n=4) and the tumorigenicity of anti-β2-M Ab treated group was 25% (n=4). C. H&E images of prostates of control IgG mice and anti-β2-M Ab treated mice (10X). D. Immune cell (T and B cells) numbers of wild type mice, control IgG mice and anti-β2-M Ab treated mice measured by flow cytometry. E. Body weights of TRAMP mice treated with IgG or anti-β2-M Ab.

doi:10.1371/journal.pone.0068366.g003

Discussion

Prostate cancer is the second leading cause of death among men in North America. Elevated β2-M expression is associated with the progression of human prostate cancer [22], breast cancer [23], renal cancer [24], lung cancer [25], colon cancer [26] and a number of liquid tumors such as multiple myeloma, lymphoma and leukemia [3]. β2-M mediates epithelial to mesenchymal transition, and cancer metastasis to bone and other soft tissues [4]. Therefore elevated β2-M tissue levels indicates poor prognosis. Thus, it is important to target β2-M in prostate cancer patients to prevent metastasis. Previously, we and others demonstrated that treatment with anti-β2-M Ab induced cancer cell death in both solid and liquid tumors [3,6,27]. Since inhibition of β2-M leads to decreased stress response, we hypothesized that a combination treatment of anti-β2-M Ab with radiation or chemotherapy can enhance the cancer cell kill (radiosensitization and chemosensitization). Inhibition of either β2-M or HFE in prostate cancer cells leads to their radiosensitization (Figure 1B, Figure S3A, S3B).
Using spontaneous prostate cancer TRAMP tumor model, we also demonstrate that anti-β2-M Ab alone, prevents or delays tumor growth with no toxic side effects (Figure 3). Using a subcutaneous xenograft mouse model and an intra-tibial bone mouse model we demonstrate that the combination treatment of anti-β2-M Ab and radiation is more effective for treating tumor compared to antibody or radiation only treatment approach (Figure 1C, Figure 4). Thus, we demonstrate that anti-β2-M Ab in combination with irradiation significantly inhibits tumor growth in vitro and in vivo and in immune-deficient and in immune-competent mice. Current treatments do not specifically target the cancer cells in the bone microenvironment. Therefore, we propose that anti-β2-M Ab is a promising agent in aggressive prostate cancer bone metastatic patients and therefore combination treatment with the antibody and radiation will reduce tumor burden in such patients.

β2-M has been previously shown to activate several pathways in cancer cells such as protein kinase A [28], vascular endothelial growth factor [29], androgen receptor [7], fatty acid synthase [7] and lipid raft signaling pathways [3]. In this study we demonstrate that β2-M regulates the cellular balance of iron and reactive oxygen species (Figure 2, 4B). Additionally, β2-M also regulates the expression of stress response proteins such as HSP27 and HSP70 and DNA repair enzymes NUDT1 and MPG (Figure 2). Thus, decreased stress response proteins make the cancer cells susceptible to cellular damage. Additionally in the absence of β2-M resulted in the absence of several DNA repair enzymes, possibly resulting in increased DNA damage. Thus, β2-M inhibited cells are very sensitive to treatments such as radiation and chemotherapy, since they lack the ability to respond to cellular damage.

Several patients suffer from hemochromatosis, due to mutations in iron homeostasis pathways. Most hemochromatosis patients have a mutation in HFE at C282Y, which is a binding site between HFE and β2-M. In these patients β2-M/HFE complexes are not formed, and this leads to multi-organ iron overload diseases. Consistent with our findings, hemochromatosis (HH) patients are sensitive to radiation [30]. Previous studies demonstrate that 1:8 Caucasians have HFE heterozygous mutations. However, heterozygous β2-M knockout mice do not produce iron overload conditions like homozygous β2-M knockout mice [10]. Iron overload caused cancer (hepatocellular) in some organs and regression in some, such as the prostate [10]. HH patients who have iron overload have also been shown to develop hypogonadism [10]. These observations suggest that iron overload results in regression of the prostate gland [10]. Additionally, prostate cancer...
Conclusions

β2-M is highly expressed in tissues of prostate cancer bone metastasis patients. Overexpression of β2-M and has been shown to induce bone metastasis in prostate, breast, renal and lung cancer. In this study we target β2-M using anti-β2-M Ab and in combination with radiation or chemotherapy using bone xenograft mouse models. A combination of anti-β2-M Ab sensitizes prostate cancer cells to radiation and chemotherapy. Anti-β2-M Ab induces increased iron and reactive oxygen species and decreases stress response proteins and DNA repair enzymes in prostate cancer cells. Thus, anti-β2-M Ab can sensitize cancer cells to radiation. Therefore, anti-β2-M Ab is a promising agent which can be used with radiation or chemotherapy for patients suffering from prostate cancer bone metastasis.

Supporting Information

Figure S1 Cell survival of ARCaPM cells in response to gelatin and sodium azide using MTS assay.

(TIF)

Figure S2 In vivo experiment timeline. Mice were injected with C4-2 prostate cancer cells intra-tibially. One week later mice were given anti-β2-M Ab (8 mg/kg) intra-peritonially every third day for 11 weeks. At ninth week mice were given a dose of anti-β2-M Ab (8 mg/kg) and then irradiated with 4 Gy on three consecutive days. Mice were sacrificed at week 12.

(TIF)

Figure S3 A. Radiation sensitivity in β2-M knockdown cells (KDI and KDII) compared to controls using clongenic assay. β2-M expression levels in these cell lines. B. Clongenic survival of ARCAPM, HFE knockdown prostate cancer cells (KDHFE1 and KDHFE3). Western analysis of HFE and β2-M in HFE knockdown prostate cancer cells (KDHFE1 and KDHFE3)

(TIF)

Figure S4 Body weights in grams during the course of the in vivo intra-tibial experiment.

(TIF)

Acknowledgments

We would like to thank Mr. Gary Mawyer for editorial assistance. We would like to thank Wei-Ping for helping with the mice experiments and Gregory H. Corn for performing the radiation procedures. We would like to thank Dr. Yoke Wah Kow for sharing the DNA repair antibodies.
Author Contributions

Conceived and designed the experiments: SJ LWC. Performed the experiments: SJ YM MG DB AR LWC. Analyzed the data: SJ YM MG DB AR LWC. Contributed reagents/materials/analysis tools: RB PAJ. Wrote the paper: SJ MG LWC.

References

1. Zhou HE, Li CL, Chung LW (2000) Establishment of human prostate carcinoma skeletal metastasis model. Cancer 88: 2995–3001.
2. Huang WC, Wu D, Xie Z, Zhou HE, Nomura T, et al. (2006) beta2-microglobulin is a signaling and growth-promoting factor for human prostate cancer bone metastasis. Cancer Res 66: 9104–9116.
3. Yang J, Qian J, Wezemann M, Wang S, Lin P, et al. (2006) Targeting beta2-microglobulin for induction of tumor apoptosis in human hematological malignancies. Cancer Lett 10: 295–307.
4. Josson S, Nomura T, Lin JT, Huang WC, Wu D, et al. (2011) beta2-microglobulin induces epithelial to mesenchymal transition and confers cancer cell lethality and bone metastasis in human cancer cells. Cancer Res 71: 2600–2610.
5. Yang J, Zhang X, Wang J, Qian J, Zhang L, et al. (2007) Anti beta2-microglobulin monoclonal antibodies induce apoptosis in myeloma cells by recruiting MHC class I to and excluding growth and survival cytokine receptors from lipid rafts. Blood 110: 3028–3035.
6. Nomura T, Huang WC, Seo S, Zhou HE, Minata H, et al. (2007) Targeting beta2-microglobulin mediated signaling as a novel therapeutic approach for human renal cell carcinoma. J Urol 178: 292–300.
7. Huang WC, Zhou HE, Chung LW (2010) Androgen receptor survival signaling is blocked by anti/beta2-microglobulin monoclonal antibody via a MAPK/ERK lipogenic pathway in human prostate cancer cells. J Biol Chem 285: 7947–7956.
8. Feder JN, Tsuchihashi Z, Irrinki A, Lee VK, Mapa FA, et al. (1997) The hemochromatosis founder mutation in HLA-H disrupts beta2-microglobulin interaction and cell surface expression. J Biol Chem 272: 14025–14030.
9. Josson S, Penny DM, Irrinki A, Lee VK, Lebron JA, et al. (1998) The hemochromatosis gene product complexes with the transferrin receptor and lowers its affinity for ligand binding. Proc Natl Acad Sci U S A 95: 1472–1477.
10. Rothenberg BE, Volund JR (1996) beta2 knockout mice develop parenchymal manganese superoxide dismutase gene and resistance to ionizing radiation of mice. Blood Cells Mol Dis 33: 125–131.
11. Muckenthaler MU, Rodrigues P, Macelzo MG, Minana B, Bremkan K, et al. (2004) Molecular analysis of iron overload in beta2-microglobulin-deficient mice. Blood Cells Mol Dis 33: 125–131.
12. Josson S, Xia Y, Fang F, Dhar SK, St Clair DK, et al. (2006) ReBi regulates manganese superoxide dismutase gene and resistance to ironizing radiation of prostate cancer cells. Oncogene 25: 1534–1559.
13. Thalmann GN, Anezinis PE, Chang SM, Zhou HE, Kim EE, et al. (1994) Androgen-independent cancer progression and bone metastasis in the LNCaP model of human prostate cancer. Cancer Res 54: 2377–2381.
14. Josson S, Song SY, Lao K, Chung LW, Johnstone PA (2008) Radiation modulation of microRNA in prostate cancer cell lines. Prostate 68: 1599–1606.
15. Yang X, Shi C, Tong R, Qian W, Zhou HE, et al. (2010) Near IR heptamethine cyanine dye-mediated cancer imaging. Clin Cancer Res 16: 2833–2844.
16. Gururajan M, Simmons A, Dasu T, Spear BT, Caiholt C, et al. (2008) Early growth response genes regulate B cell development, proliferation, and immune response. J Immunol 181: 4590–4602.
17. Shiota M, Bishop JL, Nip K, Zardan A, Takrushi A, et al. (2013) Hsp27 regulates epithelial mesenchymal transition, metastasis and circulating tumor cells in prostate cancer. Cancer Res.
18. Teng Y, Ngoka L, Mei Y, Lesson L, Cowell JK (2012) HSP90 and HSP70 proteins are essential for stabilization and activation of WASF3 metastasis-promoting protein. J Biol Chem 287: 10051–10059.
19. Adhikari S, Choudhury S, Mitra PS, Dubash JJ, Sajaniaka SP, et al. (2008) Targeting base excision repair for chemosensitization. Anticancer Agents Med Chem 8: 351–357.
20. Garre P, Briceno V, Xicola RM, Doyle BJ, de la Hoya M, et al. (2011) Analysis of the oxidative damage repair genes NUDT1, OGG1, and MUTYH in patients with mismatch repair proficient HNPCC families (MSS-HNPCC). Clin Cancer Res 17: 1701–1712.
21. Foster BA, Gingrich JR, Kwon ED, Madrias C, Greenberg NM (1997) Characterization of prostatic epithelial cell lines derived from transgenic adenocarcinoma of the mouse prostate (TRAMP) model. Cancer Res 57: 3323–3330.
22. Gross M, Top I, Laux I, Katz J, Curran J, et al. (2007) Beta-2-microglobulin is an androgen-regulated secreted protein elevated in serum of patients with advanced prostate cancer. Clin Cancer Res 13: 1979–1986.
23. Teasdale C, Mander AM, Fiedler R, Keyser JW, Newcombe RG, et al. (1977) Serum beta2-microglobulin in controls and cancer patients. Clin Chim Acta 73: 135–143.
24. Hemmingsen L, Skaarup P (1977) Urinary excretion of ten plasma proteins in patients with renal carcinoma. Scand J Urol Nephrol 11: 41–46.
25. Shuster J, Gold P, Poulik MD (1976) beta 2-microglobulin levels in cancerous and other disease states. Clin Chim Acta 67: 307–313.
26. Ward DG, Nyangoma S, Joy H, Hamilton E, Wei W, et al. (2008) Proteomic profiling of urine for the detection of colon cancer. Proteome Sci 6: 19.
27. Huang WC, Havel JJ, Zhou HE, Qian WP, Lue HW, et al. (2008) Beta2-microglobulin signaling blockade inhibited androgen receptor axis and caused apoptosis in human prostate cancer cells. Clin Cancer Res 14: 5341–5347.
28. Huang WC, Xia Z, Konaka H, Sodek J, Zhou HE, et al. (2005) Human osteocalcin and bone sialoprotein mediating osteomimicry of prostate cancer cells: role of cAMP-dependent protein kinase A signaling pathway. Cancer Res 65: 2303–2313.
29. Wu D, Zhou HE, Huang WC, Iqbal S, Habib FK, et al. (2007) cAMP-responsive element-binding protein regulates vascular endothelial growth factor expression: implication in human prostate cancer bone metastasis. Oncogene 26: 5070–5077.
30. Stevens RG (2000) Hemochromatosis heterozygotes may constitute a radiation-sensitive subpopulation. Radiat Res 154: 725–726;discussion 726–727.
31. Kurohida S, Gauthier T, Warrier RP, Rayford W (2004) Increased levels of serum transferrin receptor and serum transferrin receptor/log ferritin ratios in men with prostate cancer and the implications for body-iron stores. J Lab Clin Med 144: 176–182.