Novel, non-symbiotic isolates of *Neorhizobium* from a dryland agricultural soil

Amalia Soenens 1, Juan Imperial Corresp. 1, 2

1 Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Pozuelo de Alarcón, Madrid, Spain

2 Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Madrid, Spain

Corresponding Author: Juan Imperial
Email address: juan.imperial@upm.es

Semi-selective enrichment, followed by PCR screening, resulted in the successful direct isolation of fast-growing Rhizobia from a dryland agricultural soil. Over 50% of these isolates belong to the genus *Neorhizobium*, as concluded from partial *rpoB* and near-complete 16S rDNA sequence analysis. Further genotypic and genomic analysis of five representative isolates confirmed that they form a coherent group within *Neorhizobium*, closer to *N. galegae* than to the remaining *Neorhizobium* species, but clearly differentiated from the former, and constituting at least one new genomospecies within *Neorhizobium*. All the isolates lacked *nod* and *nif* symbiotic genes but contained a *repABC* replication / maintenance region, characteristic of rhizobial plasmids, within large contigs from their draft genome sequences. These *repABC* sequences were related, but not identical, to *repABC* sequences found in symbiotic plasmids from *N. galegae*, suggesting that the non-symbiotic isolates have the potential to harbor symbiotic plasmids. This is the first report of non-symbiotic members of *Neorhizobium* from soil.
Novel, non-symbiotic isolates of *Neorhizobium* from a dryland agricultural soil

Amalia Soenens¹, Juan Imperial¹,²

¹ Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, 28223 Pozuelo de Alarcón (Madrid), Spain
² Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain

Corresponding Author:
Juan Imperial
CBGP, Campus de Montegancedo de la UPM, Ctra. M-40, km 38, 28223 Pozuelo de Alarcón (Madrid), Spain

Email address: juan.imperial@csic.es
ABSTRACT

Semi-selective enrichment, followed by PCR screening, resulted in the successful direct isolation of fast-growing Rhizobia from a dryland agricultural soil. Over 50% of these isolates belong to the genus Neorhizobium, as concluded from partial rpoB and near-complete 16S rDNA sequence analysis. Further genotypic and genomic analysis of five representative isolates confirmed that they form a coherent group within Neorhizobium, closer to N. galegae than to the remaining Neorhizobium species, but clearly differentiated from the former, and constituting at least one new genomospecies within Neorhizobium. All the isolates lacked nod and nif symbiotic genes but contained a repABC replication / maintenance region, characteristic of rhizobial plasmids, within large contigs from their draft genome sequences. These repABC sequences were related, but not identical, to repABC sequences found in symbiotic plasmids from N. galegae, suggesting that the non-symbiotic isolates have the potential to harbor symbiotic plasmids. This is the first report of non-symbiotic members of Neorhizobium from soil.
INTRODUCTION

A group of α-proteobacteria from the Rhizobiales order, especially within the Rhizobiaceae and Bradyrhizobiaceae families, are collectively known as Rhizobia because they have the ability to establish root-nodule symbioses with legumes. Within these nodules, Rhizobia fix atmospheric nitrogen, and this fixed nitrogen is assimilated by the plant. This makes most legumes uniquely independent from the need of any exogenous nitrogen fertilizer, an important ecological and agricultural trait that is at the basis of any effort aimed at sustainable agriculture.

Since their first isolation from legume root nodules (Beijerinck, 1888), it has been known that Rhizobia are present in the soil, wherefrom they can colonize emerging roots of their legume host. However, they have rarely been isolated directly from the soil, given that the use of trap legume plants provides a facile method for Rhizobia isolation from root nodules. This is very convenient, especially because rhizobial soil populations have been often estimated as ranging between 10^2-10^5 cells per gram of soil, depending on soil type and host plant (Singleton & Tavares, 1986). However, the use of legume trap plants allows a very limited glimpse at rhizobial populations in soil, for two reasons. First, legume-rhizobial symbioses are usually very specific, and a specific legume can only be nodulated by a specific type of Rhizobium, a phenomenon whose molecular bases have been intensively studied in recent years. Second, the genetic determinants for a successful symbiosis with a host legume are but a small fraction of the genetic complement of a Rhizobium. These determinants are often present in plasmids or mobile genomic islands that can be transferred, exchanged or lost (López-Guerrero et al., 2012; Andrews & Andrews, 2017). Therefore, it is possible that, for any given Rhizobium, a large non-symbiotic subpopulation co-exists with the symbiotic subpopulation and represents an ill-studied
reservoir of genetic diversity. That this is indeed the case has been demonstrated in very few
instances. In a pioneering study, Sullivan et al. (2002) were able to show that *Mesorhizobium
loti*, the microsymbiont of *Lotus* spp. harbors its symbiotic determinants within a symbiotic
genetic island integrated in its chromosome, and that this island can excise and be transferred to
other cells. Furthermore, after inoculating a soil with a strain containing a marked symbiotic
island, they were able to recover it in different genomic backgrounds, thus proving that the island
undergoes cell-to-cell transfer in the soil, and that non-symbiotic *M. loti* strains are present in the
soil that can receive the marked symbiotic island and thus acquire the ability to nodulate *Lotus*.

Despite the above, the direct isolation of Rhizobia from soil has received little attention, and
even in those few cases, the interest was placed on symbiotically-competent Rhizobia. For
example, Louvrier et al. (1995), in ground-breaking work, devised a semi-selective culture
medium to enrich *Rhizobium leguminosarum* from soil. They were interested in isolating
symbiotic strains that had not been selected by the plant host, in order to test the hypothesis that
the different plant host species this bacterium colonizes, select specific genotypes among those
present in the soil (Louvrier, Laguerre & Amarger, 1996). Likewise, Tong and Sadowsky
optimized a *Bradyrhizobium japonicum* and *B. elkanii* – enriching medium (1994) that was later
used to isolate symbiotic and non-symbiotic Bradyrhizobia from soil (Pongsilp et al., 2002). In
our lab, we have recently built upon Laguerre and Amarger’s observations by carrying out a
population genomics study of genotype selection by the legume host in the same agricultural soil
in Burgundy (Jorrín & Imperial, 2015). In this study, many non-symbiotic Rhizobia were
isolated (Jorrín, 2016). The above results are in line with the recent identification of non-
symbiotic Rhizobia as abundant components of plant microbiomes (Lundberg et al., 2012;
Shakya et al., 2013; Chaparro, Badri & Vivanco, 2014; Ofek-Lalzar et al., 2014; De Souza et al.,
and the isolation of non-symbiotic Rhizobia from rhizospheric soil (Segovia et al., 1991; Sullivan et al., 1996; Van Insberghe et al., 2015; Jones et al., 2016) and the surface of roots (Sullivan et al., 1996).

In this work, we set out to directly isolate Rhizobia from a dryland agricultural soil in Southern Spain where no record of legume cultivation is available. A large fraction of those isolates was found to constitute a hitherto unsuspected, non-symbiotic clade within the recently described genus *Neorhizobium* (Mousavi et al., 2014), whose known members were, up to this work, legume symbionts: *N. galegae*, isolated as symbionts of the cold-climate legume *Galega* sp. (Lindström, 1989) as well as of many other legumes; *N. alkalisoli*, from nodules of *Caragana intermedia* in Norther China (Li Lu et al., 2009); and *N. huautlense* from nodules of *Sesbania herbacea* (Wang et al., 1998).

MATERIALS & METHODS

Bacterial strains and growth conditions

Bacterial strains used in this work are listed in Table 1. Rhizobial strains were grown in Yeast Mannitol Broth (YMB; Vincent, 1970) at 28 °C, either in liquid culture or on solid media supplemented with 1.5% agar. For long-term maintenance, strains were grown at 28°C in YMB and preserved in 20% glycerol at -80°C.

Soil

Tomejil soil is a dryland agricultural soil from the Las Torres-Tomejil Experimental Agricultural Station of the Instituto de Investigación y Formación Agraria y Pesquera de Andalucía (IFAPA) in Seville, Spain, where winter wheat is usually grown, cardoon
occasionally, and there is no previous record of legume cultivation. A 10 m x 10 m plot
(37°24’33.10" N, 5°34’51.91" W; 77 m above sea level) was selected and fenced for our
research. For soil collection, portions of soil down to 30-50 cm depth were collected with a
shovel from several points within the plot. Soil samples were maintained at 4 ºC and -20 ºC.
Physicochemical characterization was done externally in Laboratorio de Edafología y Técnicas
Analíticas Instrumentales, EUIT Agrícola. UPM, Madrid. Physicochemical properties of the
soil are described in Table S1.

Direct isolation of Rhizobia from soil

For *Neorhizobium* isolation we have used a modification of the Louvrier et al. protocol (1995)
for enrichment of fast-growing Rhizobia (Jorrín, 2016; Fig. 1), as follows. In an erlenmeyer flask
a 10^-1 soil dilution was made using a salt buffer (0.1 g NaCl, 0.5 g K_2HPO_4, 0.2 g MgSO_4•7
H_2O, pH 6.8). This was shaken overnight at 28 ºC at 200 rpm. Serial dilutions up to 10^-6
depending on the soil, were made in the same salt buffer and 100 µl portions of each dilution
were plated in the semi-selective medium MNBP (per liter: 1 g mannitol, 178.5 mg Na_2PO_4, 100
mg MgSO_4•7 H_2O, 33.25 mg FeCl_3•6 H_2O, 53 mg CaCl_2•2 H_2O, 500 mg NH_4NO_3, 100 mg
ciclohexymide, 25 mg bacitracine, 3 mg penicillin G, 3.5 mg pentachloronitrobenzene, 0.5 mg
biotin, 0.5 mg thiamine, 0.5 mg Ca pantothenate, 5 mg benomyl, pH 6.8; Louvrier, Laguerre &
Amarger, 1995) supplemented with 25 ppm Congo red. Plates were left for four days at 28 ºC.
After the incubation period, white-pink colonies were picked with a sterile toothpick into Yeast
Mannitol Broth (YMB), Luria-broth (LB; Bertani, 1951), and MNBP agar plates and incubated
at 28 ºC for two days. Negative LB colonies were then streaked out a second time into YMB and
LB agar plates. Confirmed negative LB colonies were grown on YMB agar plates until pure
cultures were obtained. Genomic DNA was extracted from pure cultures using the alkaline lysis method (Baele et al., 2000) and tested for fnrN by PCR amplification. Positive fnrN isolates were characterized phylogenetically by PCR amplification and sequencing of the housekeeping genes 16S rDNA and rpoB. Presence of symbiotic genes was determined by amplification and sequencing (if present) of nodC and nifH.

Genotypic characterization

Bacterial DNA previously isolated by alkaline lysis (Baele et al., 2000) was used as substrate for PCR amplifications. Full-length 16S rDNA (Weisburg et al., 1991), partial nodC (Sarita et al., 2005) and partial nifH (Ando et al., 2005) sequences were amplified with primers described in the references. Partial rpoB was amplified with: F_rpoB (5´-GARTTCGACGCCAAGGAYAT-3´) and R_rpoB (5´-GAAGAACAGCGAGTTGAACAT-3´). Amplifications were carried out in 25 µl solution containing DNA (5-10ng), 2.5 µl 10x PCR buffer containing magnesium chloride (Roche Applied Science, Penzberg, Germany), 10 µM of each dNTP, 10 µM of each primer, 1µl DMSO and 1 U of Taq DNA polymerase (Roche Applied Science). Unincorporated primers and dNTPs were removed from PCR products with the NucleoSpin®Extract II Kit (Macherey-Nagel, Düren, Germany) or, when needed, by gel electrophoresis followed by band purification with the same kit. Sanger sequencing was carried out externally (STAB Vida, Lisbon, Portugal).

Genomic characterization

For bacterial genome sequencing of Tomejil isolates: T20_22, T7_12, T25_27, T25_13, T6_25, and type *Neorhizobium* strains not available in public databases, bacteria were grown in
Tryptone Yeast (TY; Beringer, 1974). The bacterial pellet obtained after centrifugation was used to extract total DNA using the CTAB method (Feil, Feil & Copeland, 2012). DNA quantity and quality were assessed by spectrophotometry (Nanodrop, NanoDrop Technologies, Wilmington, DE, USA) and fluorescence (Qubit, Invitrogen by Life Technologies, Singapore), and integrity and purity were checked by electrophoresis in a 0.8% agarose gel. Draft genomic sequences of bacterial strains were obtained externally (MicrobesNG, Birmingham, UK) with Illumina technology (MiSeq v3, PE 2x300 bp), and reads were assembled using SPAdes (Bankevich et al., 2012) and annotated with Prokka (Seemann, 2014).

Bioinformatics

For phylogenetic and sequence analyses, nucleotide sequences obtained from PCR products were corrected and assembled if necessary with SerialCloner2-6 (http://serialbasics.free.fr/Serial_Cloner.html) and 4peaks (http://nucleobytes.com/4peaks/). Sequences were aligned with the ClustalW algorithm (Chenna et al., 2003) in MEGA 6.0 (Tamura et al., 2013). Randomized Axelerated Maximum Likelihood (RAxML) (Stamatakis, 2014) or MEGA 6.0 (Tamura et al., 2013) were used for the construction of phylogenetic trees. Phylogenetic trees were visualized with FigTree v.1.4.3 (http://tree.bio.ed.ac.uk/software/figtree/) and edited with Adobe Illustrator CS5 (Adobe Systems, San José, CA, USA). In order to study genomic identity among strains, Average Nucleotide Identity (either based on MUMmer alignments, ANIm, or based on BLAST alignments, ANIb) was calculated with the JSpeciesWS online server (Richter et al., 2016). A distance dendrogram was generated by hierarchical cluster analysis of 100 - % ANI matrices.
(Chan et al., 2012) with StataSE v.14.0 (StataCorp, College Station, TX, USA) after computation of Euclidean distances with the Average Linked method.

DNA sequences
GenBank accession and Bioproject numbers for sequences and genomes, respectively, obtained in this work are listed in Supplementary Table S2, together with accession numbers for reference sequences used in the analyses.

RESULTS

Direct isolation of *Neorhizobium* sp. from soil
A total of twenty-eight independent isolations were carried out from Tomejil soil (Fig. 1). After four days, pink-white colonies appearing on MNBP plates were chosen as putative fast-growing rhizobia. From those, we chose to discard all that were able to grow on LB agar. In our hands, this includes most *Ensifer* spp. and many non-rhizobial isolates. However, most *Rhizobium* spp. were unable to grow on the 5 g.l⁻¹ NaCl present in LB agar, and thus this step resulted in a further enrichment of *Rhizobium* spp. DNA from three hundred and forty-two of these putative *Rhizobium* spp. was amplified for the *fnrN* gene by PCR. This gene is important for microaerobic metabolism (Gutiérrez et al., 1997) and has been found in all sequenced *Rhizobium* spp. and *Agrobacterium* spp., but not in other Rhizobia. Ninety-nine of the DNAs resulted in good amplification of a single major band. However, two different band sizes were observed. While forty-six strains resulted in amplification of a PCR band of the expected size (279 bp), the remaining fifty-three strains amplified a larger fragment (353 bp, Fig. S1). In order to reduce the
number of isolates for further characterization, a fragment of the \textit{rpoB} gene was amplified and sequenced from all of them. The \textit{rpoB} marker has been shown to be very effective in discriminating phylogenetically close bacteria (Mollet, Drancourt & Raoult, 1997; Khamis et al., 2003; Case et al., 2006), including Rhizobia (Jorrín, 2016). Surprisingly, \textit{rpoB} sequences from the same fifty-three strains clustered with sequences from genus \textit{Neorhizobium} (Fig. 2B). These sequences were compared and classified into groups (twenty in total) if they differed in at least one nucleotide (Fig. S2). In order to facilitate further studies, a representative strain of each these \textit{rpoB} sequence types was chosen. Near complete 16S rDNA sequences were obtained from these representative strains and compared against those in databanks, confirming that they formed a diverse clade that was closely related to known members of the genus \textit{Neorhizobium}, but distant from the \textit{Agrobacterium-Rhizobium} group (Fig. 2A).

Genotypic and genomic characterization of \textit{Neorhizobium} sp. isolates

Since all previously characterized \textit{Neorhizobium} isolates had been obtained from nitrogen-fixing legume root nodules, we tried to amplify \textit{nodC} and \textit{nifH}, markers related to symbiosis and nitrogen fixation, respectively, from our Tomejil isolates. Negative results were obtained in all cases, suggesting that these isolates were non-symbiotic. Since direct tests of symbiotic ability with legume plants were hampered by the fact that the known hosts of \textit{Neorhizobium} spp. (\textit{Galega officinalis} and \textit{G. orientalis}, Mousavi et al., 2014; \textit{Sesbania herbacea}, Wang et al., 1998; \textit{Caragana intermedia}, Li Lu et al., 2009) are very diverse and are not found in the Tomejil area, we reasoned that obtaining and characterizing the genome sequence of some of the Tomejil isolates, even at draft level, would be worthwhile.
We chose five representatives of the most abundant / diverse \textit{rpoB} groups, so as to try to obtain a picture of the genomic diversity within this \textit{Neorhizobium} sp. clade. Genomic DNA was sequenced and assembled to draft level and this assembly was used for subsequent analysis. All five isolates had similar genome size and G+C (%) composition (Table 2).

We first searched for \textit{fnrN} genes. This was important because no \textit{fnrN} gene has been described in \textit{Neorhizobium} spp. isolates, and it was absent from the \textit{Neorhizobium} spp. genomic sequences available in databanks. Using the well-characterized \textit{R. leguminosarum fnrN} gene for BLAST comparisons, we were unable to find any relevant hit against genomic sequences from Tomejil isolates, despite the fact that the isolates were chosen because they showed clear amplification of a single (although of different size, see above) band with \textit{fnrN} primers (Fig. S1A). Amplified PCR bands from some of the isolates were sequenced and compared with databanks. Part of the amplified region showed similarity with genes encoding a poly (3-hydroxybutyrate) depolymerase from Rhizobia, including \textit{Neorhizobium galegae} (but not \textit{N. alkalisoli} or \textit{N. huautlense}). This gene, together with an upstream ORF, was present in genome assemblies of the Tomejil strains and contained sequences partially complementary to those of the \textit{fnrN} primers that may explain the successful amplifications observed (Fig. S1B).

We then tried to find \textit{nod} and \textit{nif} genes by running BLAST searches of known \textit{Neorhizobium nod} and \textit{nif} genes against draft genome sequences, with negative results in all cases. Since \textit{nod} and \textit{nif} genes are harbored on large megaplasmids in \textit{N. galegae} (Österman et al., 2014), we searched for similar plasmids in the genomes of Tomejil strains. All five genomes contained a set of \textit{repABC} sequences characteristic of rhizobial plasmids (Cevallos et al., 2008; Pinto et al., 2012),
highly similar (85-86%) to the repABC cluster from the 1.8 Mb megaplasmid from N. galegae
bv. orientalis (Table 3) and that are probably responsible for the replication a large plasmid in
each of these strains. This is supported by the fact that repABC homologues are present in large
contigs (83-523 kb) in the Tomejil strains, despite the draft level quality of their genome
sequences (27-69 contigs, Table 2). Multiple sequence alignment of these repABC sequences
showed that plasmids from the Tomejil strains were highly related, and separated from the
symbiotic plasmids from N. galegae bv. orientalis and N. galegae bv. officinalis (Fig. 3). The
completely sequenced strain N. galegae bv. officinalis HAMBI 1140 harbors an additional
megaplasmid (175 kb) that appeared to be highly unrelated to both N. galegae symbiotic
plasmids and plasmids from Tomejil strains (Table 3, Fig. 3). Finally, it was interesting to note
that, among the Tomejil genomes, only strain T25_13 harbored a complete set of conjugal genes
(tra and trb genes). In the remaining strains, these genes were absent altogether (T6_25, T20_22,
T25_27) or incomplete (T7_12, where sequences similar to just trbG, trbI, and trbL were
present) (Table S3).

In order to ascertain the phylogenetic relationships among the sequenced Tomejil strains, and
between this clade and the type strains of the three Neorhizobium species: N. galegae, N.
alkalisoli, N. huautlense, we pulled out the complete sequences of the genes atpD, glnII, recA,
rpoB and thrC from the genome assemblies. These genes had been used successfully to define
the Neorhizobium genus and its species (Mousavi et al., 2014). Figure 4 shows a maximum-
likelihood phylogenetic tree derived from a multiple alignment of the concatenated genes, rooted
by using the Agrobacterium tumefaciens Ach5 sequences. There was very strong support for two
clades within the Neorhizobium genus; one formed by N. alkalisoli and N. huautlense, and the
other by *N. galegae* and the Tomejil strains. Four of the Tomejil strains (T7_12, T20_22, T25_13, T25_27) formed a well-supported group clearly separated from the fifth strain, T6_25, and all five, in turn, clearly separated from *N. galegae*.

Genome-wide comparisons were carried out by calculating pairwise Average Nucleotide Identities (Richter & Rosselló-Mora, 2009; Richter et al., 2016) with the above genomes. Both ANIm and ANIb scores were calculated, and the ANIb matrix is shown in Table S4. A distance matrix was generated from the ANIb matrix using 100-ANIb (Chan et al., 2012) and Euclidean distances were calculated. These were represented in the dendrogram shown in Fig. 5. The dendrogram faithfully reproduced the topology of the multilocus phylogenetic tree (Fig. 4).

Using a 95% ANI value as a widely accepted delimiter for genomic species (Richter & Rosselló-Mora, 2009), our results are consistent with Tomejil strains representing at least a clearly differentiated genospecies within *Neorhizobium*, and probably two, represented by strains T6_25 on one hand, and T7_12, T20_22, T25_13, and T25_27, on the other.

DISCUSSION

Direct isolation of Rhizobia from soil without resorting to trapping them inside their legume host is complicated by the fact that Rhizobial populations in soil can be small (Singleton & Tavares, 1986) and because of the paucity of selective characters that can be used. This is especially true for non-symbiotic variants lacking any symbiotic marker. As a result, very few studies have aimed at isolating non-symbiotic Rhizobia from soil. Groundbreaking work by Sullivan and Ronson with *Mesorhizobium loti* (Sullivan et al., 1995), did not only reveal the existence of an abundant population of non-symbiotic variants in the soil, but also showed that the genetic
determinants for symbiosis could be readily transferred to these variants within the soil. Some of
these non-symbiotic variants were further characterized and suggested to be representatives of
species hitherto undescribed. Using a semi-selective culture medium, Tong and Sadowsky
(1994) were able to enrich soybean-specific Rhizobia of the species *Bradyrhizobium japonicum*
and *B. elkanii*. Using this medium, the same group later described that about half of the
Bradyrhizobia isolated directly from Thai soils were non-symbiotic, although they did not
categorize them further (Pongsilp et al., 2002). Louvrier et al (1995) were also able to enrich
members of the genus *Rhizobium* using a specific medium. Although they focused on symbiotic
isolates (Louvrier, Laguerre & Amarger, 1996) they also isolated a fraction of non-symbiotic
Rhizobia (Laguerre, pers. comm, 2011).

Our group had previously used the *Rhizobium* semi-selective medium, together with the *fnrN*
gene marker, to isolate Rhizobia from soil (Jorrín 2016) in order to study, at the genomic level,
the legume host selection of specific *R. leguminosarum* genotypes (Jorrín & Imperial, 2015).
This phenomenon had been described by the Amarger-Laguerre (Laguerre et al., 2003) and the
Young (Young & Wexler, 1988) groups. During this study, we were able to isolate a number of
non-symbiotic members of the genus *Rhizobium* (Jorrín, 2016; Jorrín & Imperial). Therefore, it
was surprising that the same enrichment methodology resulted in the isolation of a large (over
50%) proportion of non-symbiotic members of the genus *Neorhizobium* from soil samples from
the IFAPA Tomejil Experimental Station in Carmona (Seville, Spain), first because non-
symbiotic *Neorhizobium* had not been previously isolated, and second because our genetic
screening with *fnrN* should have left them behind (although the different size of the PCR
amplified bands was already an indication that these were atypical members of the genus
Rhizobium at best). The serendipitous reason why these particular *Neorhizobium* were chosen as
putative Rhizobium has been presented above. Clearly, they grow well on MNBP semi-selective medium, with cultural characteristics similar to those of Rhizobium. However, it is possible that, among the two hundred and forty-three colonies that tested negative for fnrN amplification, other Neorhizobium that do not have a high enough conservation of the poly (3-hydroxybutyrate) depolymerase region exist in the Tomejil soil.

At any rate, Neorhizobium appears to be at least as abundant in the particular sampled soil as Rhizobium and, given the high rates of horizontal gene transfer that can take place in soil (Sullivan et al., 2002), they may become relevant in the establishment of symbioses with native legumes after receiving the appropriate symbiotic genes. Acquisition of these genes might be facilitated by the fact that N. galegae has been shown to harbor symbiotic genes on a megaplasmid (Radeva et al., 2001; Österman et al., 2014). In view of their size, nucleotide composition and conservation, it is possible that these plasmids are chromids, as defined by Harrison et al. (2010), although it has yet to be shown that they carry core genes. As shown above, all the sequenced Tomejil strains contain a set of repABC genes characteristic of plasmids from the Rhizobiales (Cevallos et al., 2008; Pinto, Pappas & Winans, 2012) in large contigs, suggesting that these strains also harbor a megaplasmid (or chromid) and are, thus, probably able to receive similar, large plasmids containing symbiotic genes.

A final consideration is whether the existence of populations of non-symbiotic Neorhizobium in soils reflects a normal situation in agricultural soils. This would require a large screening that is beyond the scope of this work. However, our preliminary studies suggest that in at least two other soils from Southern Spain that we have tested, members of Neorhizobium are not present in detectable numbers, and that the predominant isolates resulting from our semi-selective screening are Rhizobium spp. (Soenens & Imperial, in preparation). This would then shift the
question to why the Tomejil soil harbors a *Neorhizobium* population, a question that would require a better understanding of the ecology of this group in soil.

CONCLUSIONS

In conclusion, our work has allowed, for the first time, the isolation and identification of non-symbiotic members of the genus *Neorhizobium* from soil. Genotypic and genomic characterization of these isolates suggests that they are representatives of one, or perhaps two, new genospecies within *Neorhizobium*. It also suggests that soils harbor a large diversity of Rhizobia in the form of non-symbiotic variants that have traditionally escaped characterization and that may play an important role in the biology of these organisms.

ACKNOWLEDGEMENTS

We thank Francisco Temprano, Dulce Rodríguez-Navarro, and Francisco Perea, from IFAPA “Las Torres-Tomejil,” for facilitating our soil sampling in the Tomejil experimental farm.

REFERENCES

Ando S, Goto M, Meunchang S, Thongra-ar P, Fujiwara T, Hayashi H, and Yoneyama T. 2005. Detection of *nifH* sequences in sugarcane (*Saccharum officinarum* L.) and pineapple (*Ananas comosus* [L.] Merr.). *Soil Science & Plant Nutrition* 51:303-308.
Andrews M, and Andrews ME. 2017. Specificity in Legume-Rhizobia symbioses. *International Journal of Molecular Sciences* 18:500.

Baele M, Baele P, Vaneechoutte M, Storms V, Butaye P, Devriese LA, Verschraegen G, Gillis M, and Haesebrouck F. 2000. Application of tRNA intergenic spacer PCR for identification of *Enterococcus* species. *Journal of Clinical Microbiology* 38:4201-4207.

Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, and Pevzner PA. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. *Journal of Computational Biology* 19:455-477.

Beijerinck MW. 1888. Die Bacterien der Papilionaceenknölchen. *Botanische Zeitung* 46:797-804.

Beringer JE. 1974. R factor transfer in *Rhizobium leguminosarum*. *Journal of General Microbiology* 84:188-198.

Bertani G. 1951. Studies on lysogenesis. I. The mode of phage liberation by lysogenic *Escherichia coli*. *Journal of Bacteriology* 62:293-300.

Case RJ, Boucher Y, Dahllöf I, Holmström C, Doolittle WF, and Kjelleberg S. 2006. Use of 16S *rRNA* and *rpoB* genes as molecular markers for microbial ecology studies. *Applied and Environmental Microbiology* 73:278-288.

Cevallos MA, Cervantes-Rivera R, and Gutiérrez-Ríos RM. 2008. The *repABC* plasmid family. *Plasmid* 60:19-37.

Chan JZ, Halachev MR, Loman NJ, Constantinidou C, and Pallen MJ. 2012. Defining bacterial species in the genomic era: insights from the genus *Acinetobacter*. *BMC Microbiology* 12:302.
Chaparro JM, Badri DV, and Vivanco JM. 2014. Rhizosphere microbiome assemblage is affected by plant development. *ISME Journal* 8:790-803.

Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, and Thompson JD. 2003. Multiple sequence alignment with the Clustal series of programs. *Nucleic Acids Research* 31:3497-3500.

De Souza RSC, Okura VK, Armanhi JSL, Jorrín B, Lozano N, da Silva MJ, González-Guerrero M, de Araujo LM, Verza NC, Bagheri HC, Imperial J, and Arruda P. 2016. Unlocking the bacterial and fungal communities assemblages of sugarcane microbiome. *Scientific Reports* 6:28774.

Feil WS, Feil H, and Copeland A. 2012. Bacterial genomic DNA isolation using CTAB. Available at http://1ofdmq2n8tc36m6i46scovo2e-wpengine.netdna-ssl.com/wp-content/uploads/2014/02/JGI-Bacterial-DNA-isolation-CTAB-Protocol-2012.pdf (accessed January 30 2018).

Gutiérrez D, Hernando Y, Palacios JM, Imperial J, and Ruiz-Argüeso T. 1997. FnrN controls symbiotic nitrogen fixation and hydrogenase activities in *Rhizobium leguminosarum* biovar viciae UPM791. *Journal of Bacteriology* 179:5264-5270.

Harrison PW, Lower RP, Kim NK, and Young JP. 2010. Introducing the bacterial 'chromid': not a chromosome, not a plasmid. *Trends in Microbiology* 18:141-148.

Jones FP, Clark IM, King R, Shaw LJ, Woodward MJ, and Hirsch PR. 2016. Novel European free-living, non-diazotrophic *Bradyrhizobium* isolates from contrasting soils that lack nodulation and nitrogen fixation genes - a genome comparison. *Scientific Reports* 6:25858.
Jorrín B. 2016. Genomics of specificity in the symbiotic interaction between *Rhizobium leguminosarum* and legumes. Ph. D. Thesis. Technical University of Madrid.

Jorrín B, and Imperial J. 2015. Population genomics analysis of legume host preference for specific Rhizobial genotypes in the *Rhizobium leguminosarum* bv. viciae symbioses. *Molecular Plant Microbe Interactions* 28:310-318.

Khamis A, Colson P, Raoult D, and Scola BL. 2003. Usefulness of *rpoB* gene sequencing for identification of *Afipia* and *Bosea* species, including a strategy for choosing discriminative partial sequences. *Applied and Environmental Microbiology* 69:6740-6749.

Laguerre G, Louvrier P, Allard MR, and Amarger N. 2003. Compatibility of rhizobial genotypes within natural populations of *Rhizobium leguminosarum* biovar viciae for nodulation of host legumes. *Applied and Environmental Microbiology* 69:2276-2283.

Li Lu Y, Chen WF, Li Han L, Wang ET, and Chen WX. 2009. *Rhizobium alkalisoli* sp. nov., isolated from *Caragana intermedia* growing in saline-alkaline soils in the north of China. *International Journal of Systematic and Evolutionary Microbiology* 59:3006-3011.

Lindström K. 1989. *Rhizobium galegae*, a new species of legume root nodule bacteria. *International Journal of Systematic Bacteriology* 39:365-367.

López-Guerrero MG, Ormeño-Orrillo E, Acosta JL, Mendoza-Vargas A, Rogel MA, Ramírez MA, Rosenblueth M, Martínez-Romero J, and Martínez-Romero E. 2012. Rhizobial extrachromosomal replicon variability, stability and expression in natural niches. *Plasmid* 68:149-158.

Louvrier P, Laguerre G, and Amarger N. 1995. Semiselective medium for isolation of *Rhizobium leguminosarum* from soils. *Soil Biology and Biochemistry* 27:919-924.
Louvrier P, Laguerre G, and Amarger N. 1996. Distribution of symbiotic genotypes in *Rhizobium leguminosarum* biovar viciae populations isolated directly from soils. *Applied and Environmental Microbiology* 62:4202-4205.

Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, Tremblay J, Engelbrektson A, Kunin V, Rio TGd, Edgar RC, Eickhorst T, Ley RE, Hugenholtz P, Tringe SG, and Dangl JL. 2012. Defining the core *Arabidopsis thaliana* root microbiome. *Nature* 488:86-90.

Mollet C, Drancourt M, and Raoult D. 1997. *rpoB* sequence analysis as a novel basis for bacterial identification. *Molecular Microbiology* 26:1005-1011.

Mousavi SA, Österman J, Wahlberg N, Nesme X, Lavire C, Vial L, Paulin L, de Lajudie P, and Lindström K. 2014. Phylogeny of the *Rhizobium–Allorhizobium–Agrobacterium* clade supports the delineation of *Neorhizobium* gen. nov. *Systematic and Applied Microbiology* 37:208-215.

Ofek-Lalzar M, Sela N, Goldman-Voronov M, Green SJ, Hadar Y, and Minz D. 2014. Niche and host-associated functional signatures of the root surface microbiome. *Nature Communications* 5:4950.

Österman J, Marsh J, Laine PK, Zeng Z, Alatalo E, Sullivan JT, Young JPW, Thomas-Oates J, Paulin L, and Lindström K. 2014. Genome sequencing of two *Neorhizobium galegae* strains reveals a *noeT* gene responsible for the unusual acetylation of the nodulation factors. *BMC Genomics* 15:500.

Pinto UM, Pappas KM, and Winans SC. 2012. The ABCs of plasmid replication and segregation. *Nature Reviews Microbiology* 10:755-765.
Pongsilp N, Teaumroong N, Nuntagij A, Boonkerd N, and Sadowsky MJ. 2002. Genetic structure of indigenous non-nodulating and nodulating populations of *Bradyrhizobium* in soils from Thailand. *Symbiosis* 33:39-58.

Radeva G, Jurgens G, Niemi M, Nick G, Suominen L, and Lindström K. 2001. Description of two biovars in the *Rhizobium galegae* species: biovar orientalis and biovar officinalis. *Systematic and Applied Microbiology* 24:192-205.

Richter M, and Rosselló-Mora R. 2009. Shifting the genomic gold standard for the prokaryotic species definition. *Proceedings of the National Academy of Sciences of the USA* 106:19126-19131.

Richter M, Rosselló-Mora R, Oliver Glockner F, and Peplies J. 2016. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. *Bioinformatics* 32:929-931.

Sarita S, Sharma PK, Priefer UB, and Prell J. 2005. Direct amplification of rhizobial *nodC* sequences from soil total DNA and comparison to *nodC* diversity of root nodule isolates. *FEMS Microbiology Ecology* 54:1-11.

Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. *Bioinformatics* 30:2068-2069.

Segovia L, Pinero D, Palacios R, and Martinez-Romero E. 1991. Genetic structure of a soil population of nonsymbiotic *Rhizobium leguminosarum*. *Applied Environmental Microbiology* 57:426-433.

Shakya M, Gottel N, Castro H, Yang ZK, Gunter L, Labbé J, Muchero W, Bonito G, Vilgalys R, Tuskan G, Podar M, and Schadt CW. 2013. A multifactor analysis of fungal and bacterial community structure in the root microbiome of mature *Populus deltoides* trees. *PLOS ONE* 8:e76382.
Singleton PW, and Tavares JW. 1986. Inoculation response of legumes in relation to the number
and effectiveness of indigenous Rhizobium populations. *Applied and Environmental
Microbiology* 51:1013-1018.

Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of
large phylogenies. *Bioinformatics* 30:1312-1313.

Sullivan JT, Eardly BD, van Berkum P, and Ronson CW. 1996. Four unnamed species of
nonsymbiotic rhizobia isolated from the rhizosphere of *Lotus corniculatus*. *Applied and
Environmental Microbiology* 62:2818-2825.

Sullivan JT, Patrick HN, Lowther WL, Scott DB, and Ronson CW. 1995. Nodulating strains of
Rhizobium loti arise through chromosomal symbiotic gene transfer in the environment.
Proceedings of the National Academy of Sciences of the USA 92:8985-8989.

Sullivan JT, Trzebiatowski JR, Cruickshank RW, Gouzy J, Brown SD, Elliot RM, Fleetwood DJ,
McCallum NG, Rossbach U, Stuart GS, Weaver JE, Webby RJ, De Bruijn FJ, and
Ronson CW. 2002. Comparative sequence analysis of the symbiosis island of
Mesorhizobium loti strain R7A. *Journal of Bacteriology* 184:3086-3095.

Tamura K, Stecher G, Peterson D, Filipski A, and Kumar S. 2013. MEGA6: Molecular
Evolutionary Genetics Analysis version 6.0. *Molecular Biology and Evolution* 30:2725-
2729.

Tong Z, and Sadowsky MJ. 1994. A selective medium for the isolation and quantification of
Bradyrhizobium japonicum and *Bradyrhizobium elkanii* strains from soils and inoculants.
Applied and Environmental Microbiology 60:581-586.
Van Insberghe D, Maas KR, Cardenas E, Strachan CR, Hallam SJ, and Mohn WW. 2015. Non-symbiotic *Bradyrhizobium* ecotypes dominate North American forest soils. *ISME Journal* 9:2435-2441.

Vincent JM. 1970. *A manual for the practical study of root-nodule bacteria*. Oxford: Blackwell Scientific Press.

Wang ET, van Berkum P, Beyene D, Sui XH, Dorado O, Chen WX, and Martínez-Romero E. 1998. *Rhizobium huautlense* sp. nov., a symbiont of *Sesbania herbacea* that has a close phylogenetic relationship with *Rhizobium galegae*. *International Journal of Systematic Bacteriology* 48:687-699.

Weisburg WG, Barns SM, Pelletier DA, and Lane DJ. 1991. 16S ribosomal DNA amplification for phylogenetic study. *Journal of Bacteriology* 173:697-703.

Young JPW, and Wexler M. 1988. Sym plasmid and chromosomal genotypes are correlated in field populations of *Rhizobium leguminosarum*. *Journal of General Microbiology* 134:2731-2739.
Table 1 (on next page)

Bacterial strains used in this study.
1 Bacterial strains used in this study.

Strain	Relevant characteristics	Reference or Source
N. alkalisoli	Type strain, Nod⁺ Fix⁺, LB⁻	(Mousavi et al. 2014)
DSM 21826ᵀ		
N. galegae	Type strain, Nod⁺ Fix⁺, LB⁻	(Mousavi et al. 2014)
HAMBI 540ᵀ		
N. huautlense	Type strain, Nod⁺ Fix⁺, LB⁻	(Mousavi et al. 2014)
DSM 21817ᵀ		
Neorhizobium sp.		
T4_1	Soil isolate, Tomejil, Nod⁻ Fix⁻, LB⁻	This study
T4_8	Soil isolate, Tomejil, Nod⁻ Fix⁻, LB⁻	This study
T5_2	Soil isolate, Tomejil, Nod⁻ Fix⁻, LB⁻	This study
T5_26	Soil isolate, Tomejil, Nod⁻ Fix⁻, LB⁻	This study
T5_27	Soil isolate, Tomejil, Nod⁻ Fix⁻, LB⁻	This study
T6_1	Soil isolate, Tomejil, Nod⁻ Fix⁻, LB⁻	This study
T6_21	Soil isolate, Tomejil, Nod⁻ Fix⁻, LB⁻	This study
T6_23	Soil isolate, Tomejil, Nod⁻ Fix⁻, LB⁻	This study
T6_25	Soil isolate, Tomejil, Nod⁻ Fix⁻, LB⁻	This study
T7_1	Soil isolate, Tomejil, Nod⁻ Fix⁻, LB⁻	This study
T7_7	Soil isolate, Tomejil, Nod⁻ Fix⁻, LB⁻	This study
T7_8	Soil isolate, Tomejil, Nod⁻ Fix⁻, LB⁻	This study
T7_9	Soil isolate, Tomejil, Nod⁻ Fix⁻, LB⁻	This study
T7_11	Soil isolate, Tomejil, Nod⁻ Fix⁻, LB⁻	This study
Soil isolate, Tomejil, Nod' Fix', LB'	This study	
--------------------------------------	-----------	
T7_12		
T17_20		
T8_5		
T9_24		
T11_12		
T13_2		
T16_1		
T16_2		
T16_4		
T16_9		
T16_12		
T17_4		
T17_6		
T17_14		
T17_15		
T17_26		
T18_15		
T20_10		
T20_15		
T20_22		
T20_25		
T21_1		
T21_15		
Soil isolate, Tomejil, Nod	Fix, LB	This study
---------------------------	----------	------------
T21_19		
T22_7		
T22_11		
T22_47		
T23_12		
T23_26		
T24_19		
T24_25		
T25_4		
T25_5		
T25_7		
T25_13		
T25_19		
T25_20		
T25_27		
T25_28		
T25_30		
T28_6		

1Nod: nodulation phenotype; Fix: nitrogen fixation phenotype; LB: growth on LB medium.
Table 2 (on next page)

Genomic features of *Neorhizobium* genomes sequenced in this work.
Genomic features of *Neorhizobium* genomes sequenced in this work.

Strain	Number of contigs	Largest contig (bp)	Total genome length (bp)	G+C (%)	N50
T20_22	37	1,052,711	6,608,977	61.47	508,270
T7_12	52	1,197,185	6,627,103	61.44	347,929
T25_27	27	1,446,028	6,462,352	61.49	734,252
T25_13	42	721,675	6,322,993	61.56	419,328
T6_25	69	488,027	6,750,064	61.35	186,129
Table 3 (on next page)

Presence of repABC regions in the genomes of Tomejil strains.

DNA regions similar to the 3,628 bp region containing repABC genes from the symbiotic megaplasmid from *N. galegae* bv. orientalis HAMBI 540 were located in genome sequences by BLAST, extracted and compared by multiple alignment (ClustalW).
Presence of *repABC* regions in the genomes of Tomejil strains.

DNA regions similar to the 3,628 bp region containing *repABC* genes from the symbiotic megaplasmid from *N. galegae* bv. orientalis HAMBI 540 were located in genome sequences by BLAST, extracted and compared by multiple alignment (ClustalW).

Genome	Number of *repABC* regions	(% of identity) to HAMBI 540	size of contig (bp)
N. galegae bv. orientalis HAMBI 540	1	100	1,807,065
N. galegae bv. officinalis HAMBI 1141	2	95	1,638,739
T20_22	1	85	376,046
T7_12	1	85	523,062
T25_27	1	85	263,545
T25_13	1	86	721,675
T6_25	1	85	82,656
Figure 1 (on next page)

Schematic representation of the semi-selective enrichment procedure to isolate fast-growing Rhizobia from Tomejil soil and summary of results obtained.
1. Incubation of Rhizobia source in a salt buffer
 (28 independent isolations).

2. Pre-selection of Rhizobia in MNBP semi-selective media

3. Selection of white/pink colonies from initial MNBP media and second selection of LB-Rhizobia
 (342 putative Rhizobium).

4. DNA extraction of putative strains and PCR screening with fnrN
 (99 fnrN positive strains).

5. fnrN positive isolates: PCR amplification and sequencing of housekeeping and symbiotic genes
 (46 Rhizobium and 53 Neorhizobium).
Figure 2 (on next page)

Phylogenetic tree of representative Tomejil soil isolates based on PCR amplified, near-complete 16S rDNA (1,234 bp, panel A) and partial rpoB (356 bp, panel B) sequences.

Maximum likelihood trees (RAxML) were derived from ClustalW alignments. T: Tomejil soil isolates representative of the different rpoB genotypes, as follows: T4_1 (with T18_15); T4_8 (with T16_4); T5_2; T25_27 (with T5_2, T5_26, T22_7); T6_1 (with T17_6); T6_21 (with T17_15, T22_11); T6_25 (with T8_5, T6_23, T25_30); T7_12 (with T20_25, T21_1, T21_19, T23_26, T25_20); T7_7; T7_11; T9_24 (with T20_10); T20_22 (with T5_27, T11_12, T16_2, T16_12, T17_4, T17_14, T17_20, T17_26, T24_25, T25_19, T28_6); T13_2 (with T7_1, T7_9); T16_9; T21_15; T22_47; T23_12; T24_19; T25_7 (with T16_1); T25_13 (with T25_4; T25_5). The number of strains within each genotype group is indicated within parentheses. Trees include sequences from type strains of Neorhizobium species, as the closest taxonomic relatives, and of A. tumefaciens, as outgroup. Bootstrap support (1,000 replications) for the different nodes is indicated. Bars represent the number of substitutions per base. Genbank accession numbers are listed on Supplemental Table S2.
A

- T6_21 (3)
- T16_9 (1)
- T22_47 (1)
- T5_2 (1)
- T13_2 (3)
- T6_25 (4)
- T9_24 (2)
- T25_13 (3)
 - T7_7 (1)
 - T7_11 (1)
 - T24_19 (1)
 - T7_12 (6)
 - T25_27 (4)
 - T21_15 (1)
 - T25_7 (2)
 - T6_1 (2)
 - T4_8 (2)
 - T4_1 (2)
 - T20_22 (12)
 - T21_7 (2)
 - T25_13 (3)
 - T7_7 (1)
 - T25_27 (4)

B

- T16_9 (1)
- T13_2 (3)
- T25_27 (4)
- T6_1 (2)
- T25_13 (3)
 - T25_7 (2)
 - T23_12 (1)
 - T6_25 (4)
 - T4_1 (2)
 - T4_8 (2)
 - T9_24 (2)
 - T24_19 (1)
 - T21_15 (1)
 - T20_22 (12)
 - T7_11 (1)
 - T5_2 (1)
 - T7_7 (1)
 - T22_47 (1)
 - T7_12 (6)
 - T6_21 (3)

- Neorhizobium galegae HAMBI 540T
- Neorhizobium alkalisoli CCBAU 01393T
- Neorhizobium huautlense LMG 18254T
- Agrobacterium tumefaciens NCPPB 2437T
Figure 3 (on next page)

Phylogenetic tree based on repABC sequences from Tomejil genome sequences and from *Neorhizobium* megaplasmids.

Sequences similar to the *N. galegae* bv. *orientalis* HAMBI 540 1.8 Mb megaplasmid repABC region (3,628 bp) were extracted from Tomejil draft genomes sequences and from the *N. galegae* bv. *officinalis* HAMBI 1141 genome sequence, aligned with ClustalW, and a Neighbor-Joining consensus tree derived. Bootstrap support (1,000 replications) for the different nodes is indicated. Bar represents the number of substitutions per base.
N. galegae bv. officinalis HAMBI 1141 symbiotic plasmid

N. galegae bv. orientalis HAMBI 540 symbiotic plasmid

N. galegae bv. officinalis HAMBI 1141 175 kb plasmid
Phylogenetic tree of sequenced Tomejil strains and of Neorhizobium type strains based on a concatenation of complete atpD, glnII, recA, rpoB, and thrC genes (8,949 bp).

Maximum likelihood trees (RAxML) were derived from ClustalW alignments. The tree includes the A. tumefaciens type strain as outgroup. Bootstrap support (1,000 replications) for the different nodes is indicated. Bar represents the number of substitutions per base.
Neorhizobium galegae HAMBI 540\(^T\)

Neorhizobium huautebense DSM 21817\(^T\)

Neorhizobium alkalisoli DSM 21826\(^T\)

Agrobacterium tumefaciens Ach5
Figure 5 (on next page)

Dendrogram representation of a Euclidean distance matrix derived from pairwise ANIb distances among Tomejil and *Neorhizobium* type strain genomes.

The vertical red line indicates the 95% ANI threshold.
Euclidean distance

N. huautlense DSM 21817T

N. alkalisoli DSM 21826T

T6_25
T25_13
T20_22
T25_27
T7_12

N. galegae HAMBI 540T

Euclidean distance