The remnant of the European rabbit
(*Oryctolagus cuniculus*) IgD gene

Dennis K. Lanning¹ *, Pedro J. Esteves²,³,⁴, Katherine L. Knight¹

¹ Department of Microbiology and Immunology, Center for Translational Research and Education, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, United States of America, ² InBio-Research Network in Biodiversity and Evolutionary Biology, CIBIO, Campus de Vairão, Universidade do Porto, Campus Agrário de Vairão, Vairão, Portugal, ³ Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal, ⁴ CITS - Centro de Investigação em Tecnologias de Saúde, CESPU, Gandra, Portugal

* dlannin@luc.edu

Abstract

Although IgD first appeared, along with IgM, in the cartilaginous fishes and has been retained throughout subsequent vertebrate evolution, it has been lost in a diverse group of vertebrate species. We previously showed that, unlike vertebrates that express IgD, the rabbit lacks an IgD (Cδ) gene within 13.5 kb downstream of the IgM gene. We report here that, by conducting BLAST searches of rabbit Ig heavy chain genomic DNA with known mammalian IgD exons, we identified the remnant of the rabbit Cδ gene approximately 21 kb downstream of the IgM gene. The remnant Cδ locus lacks the δCH1 and hinge exons, but contains truncated δCH2 and δCH3 exons, as well as largely intact, but non-functional, secretory and transmembrane exons. In addition, we report that the Cδ gene probably became non-functional in leporids at least prior to the divergence of rabbits and hares ~12 million years ago.

Introduction

Since its discovery in human serum in 1965 [1, 2], IgD has remained an enigmatic immunoglobulin (Ig) isotype. It first appeared, along with IgM, at the dawn of adaptive immunity in cartilaginous fishes [3] and has been preserved throughout subsequent vertebrate evolution. While its ancient origin and evolutionary persistence suggest an important immunological role, IgD has clearly been lost in a diverse group of vertebrate species. No evidence or remnant of an IgD (Cδ) gene has been found in the Ig heavy chain locus of the chicken [4], duck [5], opossum [6] or rabbit [7, 8]. The guinea pig also lacks a Cδ gene, although one remnant fragment of the δCH2 exon and two remnant fragments of the δCH3 exon were found lying in reverse transcriptional orientation downstream of the IgM (Cμ) gene [9]. Similarly, the Ig heavy chain locus of the African elephant was recently shown to lack a Cδ gene, although a short remnant of the δCH3 exon was identified [10].

Efforts to identify IgD in rabbits began with the discovery that, in addition to humans, IgD is also expressed in mice [11, 12], several nonhuman primates [13] and rats [14],
suggesting that IgD might be widely expressed among mammals. Employing approaches similar to those used to identify IgD on mouse lymphocytes, several investigators found evidence for an IgD-like molecule on rabbit lymphocytes. SDS-PAGE analyses of rabbit lymphocyte lysates precipitated with anti-μ antibody (Ab) to remove IgM, and anti-light chain Ab to detect residual Ig molecules, for example, identified a non-γ, non-α Ig molecule that, like human and mouse IgD, was of comparable molecular weight to IgM and proteolytically labile [15, 16]. Similarly, a residual surface Ig molecule, not detectable with anti-μ, -γ or -α antibodies and therefore thought to be IgD, was observed on rabbit mesenteric lymph node lymphocytes that had been depleted of surface IgM by incubation under capping conditions with anti-μ Ab [17].

Despite these promising early results, conclusive evidence for IgD in rabbit remained elusive. A similar inability to definitively identify IgD in several other vertebrate species, despite the advent of powerful molecular approaches, suggested that IgD might be a recently evolved Ig isotype in primates and rodents. The identification of an IgD homolog in teleosts, however, including channel catfish [18], Atlantic salmon [19] and Atlantic cod [20], demonstrated that, rather than a recent evolutionary innovation, IgD is actually evolutionarily ancient. Indeed, the more recent finding that IgD in the amphibian *Xenopus tropicalis* is orthologous to IgW, an Ig isotype found only in cartilaginous fish and lungfish, established that, like IgM, was present in the earliest jawed vertebrates [3]. A modified view, that IgD, although evolutionarily ancient, has been lost in all mammals except primates and rodents [21, 22], was also subsequently dispelled with the identification and characterization of Cδ genes in the cow, sheep and pig in 2002 [23], and in a variety of additional mammals since [24–28]. It is now known that the Cδ gene is unevenly distributed among mammalian species, present in some and deleted in others, a puzzling situation that challenges efforts to understand its role in adaptive immunity.

In vertebrates that express IgD, the Cδ gene is located immediately downstream of the Cμ gene, with which it is co-transcribed [29]. We previously determined the nucleotide sequence of 13.5 kb of genomic DNA downstream of the rabbit Cμ transmembrane exons and demonstrated that this region contained no evidence of a rabbit Cδ gene [7]. Shortly thereafter, Ros et al. (2004) determined the nucleotide sequence of 4 BAC clones collectively comprising 0.5 Mb of the European rabbit Ig heavy chain locus and similarly found no evidence of a rabbit Cδ gene [8]. Here, we report finding the remnant of the rabbit Cδ gene (the CH2, CH3, secretory and transmembrane remnant exons) ~21 kb downstream of the Cμ transmembrane exons. Additionally, we report that the Cδ gene probably became non-functional in leporids at least prior to the divergence of rabbits and hares ~12 million years ago.

Materials and methods

Identification of rabbit Cδ remnant exons and repetitive DNA elements

Genomic nucleotide sequence >13.5 kb downstream of the Cμ transmembrane exons in the European rabbit Ig heavy chain locus, obtained from BAC clone 27N5 (GenBank accession no. AY386696) reported by Ros et al. (2004) [8], was used in BLAST searches to identify regions homologous to known mammalian IgD exons. Genomic sequences thus identified were confirmed by alignment with known mammalian IgD exons using CLUSTAL W [30] in the BioEdit software [31] and visual inspection. Repetitive DNA elements (processed pseudogenes, LINEs, C repeats, etc.) were identified by BLAST searches and with the Censor software tool provided by the Genetic Information Research Institute [32].
PCR amplification of the remnant δCH2 and δCH3 exons from Iberian hare

Touchdown PCR was used to amplify an 1882 bp genomic region containing the remnant δCH2 and δCH3 exons from Iberian hare (Lepus granatensis) and European rabbit (Oryctolagus cuniculus; as positive control) splenic DNA using the following primers: RbDelta exon 2 f: 5’-cagacttctggccattgca cttctg-3’; RbDelta exon 3 r: 5’- gacccaagcaaacccagtgacaaac-3’; 100 pg of genomic DNA template was amplified, in the presence of 10% DMSO, under the following conditions: 94˚C, 1 min; 59˚C, 1 min; 72˚C, 3 min, with the annealing temperature decreased 1˚C every 2 cycles for 20 cycles, and 15 additional cycles at the final annealing temperature of 49˚C; final extension at 72˚C, 5 min. PCR product of the appropriate size was gel-purified and ligated into the pGEM-T vector (Promega, Madison, WI). The ligation was transformed into DH10B electrocompeent cells, and plasmids containing the cloned PCR product were identified by blue/white screening on ampicillin-LB agar and colony PCR. Positive colonies were inoculated into 10 ml LB broth cultures with 100 μg/ml ampicillin and shaken overnight at 37˚C. Following plasmid isolation, the nucleotide sequences were determined using an automated ABI Prism 310 sequencer with Big Dye-labeled terminators (Perkin-Elmer Applied Biosystems, Foster City, CA). The nucleotide sequence is deposited in GenBank (accession number MF425650).

Strategies to detect mRNA transcripts containing rabbit Cδ exons

RT-PCR using VH1- and Cδ exon-specific primers was used to search for VDJ gene transcripts containing rabbit Cδ2 and Cδ3 exons in rabbit appendix cDNA. The following PCR conditions were used: 94˚C, 1 min; 58–60˚C, 1 min; 72˚C, 3 min; 30 cycles, followed by final extension at 72˚C, 5 min. The following primers were used: RbVDJ-Cmu Nest f2: 5’-cctggttcgctgtgctcaaag-3’; RbDelta CH2 r2: 5’-gccctccccaggacaagtq-3’; RbDelta CH3 r: 5’-ccgctgacctccagcagtttc-3’; a Cμ-specific primer, RbVDJ-Cmu Nest r2, was used as a positive control: 5’-agacgagcgggtacagttg-3’.

3’ RACE using Cδ exon-specific primers was used to search for VDJ gene transcripts containing rabbit δS and δTM1 exons cDNA prepared from rabbit spleen, appendix and bone marrow, as described in [33], using the following primers: RbDelta SecExon 3’RACE f1: 5’-cacacgcgctggaagca-3’; RbDelta SecExon 3’RACE f2: 5’-gagctgcaagcagttgagc-3’; RbDelta TM1 3’RACE f1: 5’-agccccgcagggccaa-3’; RbDelta TM1 3’RACE f2: 5’-gacaacaaagttgacgactacat-3’; and Q1, Q1 and Q2 RACE primers [33]. Cμ-specific primers, C mu f (5’-gtgagcctgtcatctccaa-3’) and Mid mu f (5’-aagccacaccattc tccaagtcca-3’) were used as a positive control.

European rabbit (O. cuniculus) spleen, appendix and bone marrow samples were obtained in compliance with a protocol approved by the Loyola University Medical Center Institutional Animal Care and Use Committee. Euthanasia was performed by pentobarbital overdose (150 mg/kg), i.v. Iberian hare (Lepus granatensis) and American pika (Ochotona princeps) tissue samples were provided by the CIBIO Lagomorpha tissue collection. The Iberian hare was collected in Alcochete, south of Portugal; the identifying number for the spleen sample obtained by the CIBIO Lagomorpha tissue collection was Lgalc5. The American pika was collected in the United States; the identifying number for the spleen sample obtained by the CIBIO Lagomorpha tissue collection was Ocpri1. It was not necessary to obtain approval from an ethics committee for Iberian hare and Ochotona princeps because these samples have been described and used in previous publications [34–37].
Phylogenetic studies

The nucleotide sequences of the rabbit and hare Cδ exon remnants and the Cδ exons of other mammals were aligned using CLUSTAL W [30] as implemented in BioEdit software [31], followed by visual inspection. A Maximum Likelihood approach was used to estimate the phylogenetic relationships between the Cδ exon sequences by using MEGA6 [38] with the following options: bootstrap method (1000 replicates), General Time Reversible as model and pairwise deletion for gaps/missing data treatment.

Results

By conducting BLAST searches with known mammalian IgD exons, we identified the remnant of the rabbit Cδ gene within a 9.5 kb region approximately 21 kb downstream of the second Cμ transmembrane exon (Fig 1). We found no evidence of the δCH1 or hinge exons. The genomic region where they would be expected to be found was instead densely occupied by multiple types of repetitive DNA elements (partially described in [7]). These include portions of high-mobility group 14 (ψHMG 14), arylsulfatase B (ψASB) and endo-alpha-like mannosidase (ψMAN) processed pseudogenes, a truncated Mariner transposon, two truncated Long Interspersed DNA Elements (LINEs), two endogenous retroviruses (ERVs), two solo ERV long terminal repeats (LTRs) and eight C repeats (the most common Short Interspersed DNA element)

Fig 1. The remnant of the rabbit IgD locus. The remnant of the rabbit Cδ gene and the inserted repetitive DNA elements downstream of the Cμ transmembrane exons are depicted. The rabbit Cδ exons are represented by black rectangles. White rectangles adjacent to the δCH2 and δCH3 exons indicate regions of loss of similarity to their homologs in other mammalian species (the non-homologous region of δCH2 overlaps L1MA9 5). Repetitive DNA elements are labeled and designated by colored rectangles. The directionality of C repeats, and direct repeats flanking the 5'-most endogenous retrovirus, are indicated by arrowheads. The putative oδ switch region is indicated by a hatched rectangle. δS, Cδ secretory exon; δTM1, Cδ transmembrane exon 1; δTM2, Cδ transmembrane exon 2; μTM1, Cμ transmembrane exon 1; μTM2, Cμ transmembrane exon 2; ψHMG14, ψASB, ψMAN, high-mobility group 14, arylsulfatase B and endo-alpha-like mannosidase processed pseudogenes, respectively; oδ, putative oδ switch region; nomenclature for C repeats (and the LINE1, L1OcμM) follows that adopted in [7] (C13 was not present in the genomic DNA used in that study); nomenclature of other repetitive DNA elements follows that used by the Genetic Information Research Institute [32].

https://doi.org/10.1371/journal.pone.0182029.g001
(SINE) in the rabbit genome [39]. Four additional C repeats, a truncated LINE and a solo ERV LTR were inserted within the Cδ gene remnant. In addition, while the Cδ secretory and transmembrane exons were largely intact, though apparently non-functional, only the 3’ two-thirds and 5’ one-quarter of the δCH2 and δCH3 exons, respectively, were identifiable. Furthermore, a potential IgD class switch (σδ) region was identified in the Cµ-Cδ intron 2.3 kb downstream of the μTM2 exon and about 660 bp 5’ of the first repetitive DNA element (Fig 1 and S1 Fig). σδ regions, which mediate rare class switching events in which the Cµ gene is deleted and the Cδ gene is directly joined to the rearranged VDJ gene [40–43], are G-rich and contain relatively high numbers of pentameric repeats, particularly TGGGG, TGGGC and TGAGC. Nineteen such pentamers lie within a 1 kb G-rich region of the rabbit Cµ-Cδ intron, suggesting that the intron might once have contained a functional σδ region able to mediate IgD class switching.

The region of the rabbit Ig heavy chain locus that we analyzed is contained in the overlapping BAC clones 219D23 and 27N5 reported by Ros et al. (2004). The positions of the remnant Cδ exons and neighboring repetitive DNA elements in the nucleotide sequence of BAC clone 27N5 (accession number AY386696) are listed in Table 1.

The rabbit δCH2 and δCH3 exon remnants

Although much of the ancestral Cδ gene is still present, the exons have been mutated and pseudogenized. Comparison of the rabbit δCH2 exon with that of other mammals, for example, revealed that, despite a clear overall similarity, rabbit δCH2 has been disrupted by nucleotide insertions and deletions (Fig 2). Most strikingly, the entire 3’ one-third of the exon is missing. The rabbit δCH3 exon is much more extensively disrupted, with only about the 3’ one-quarter of the exon remaining (Fig 3A). It is not clear how the 3’ and 5’ regions of δCH2 and δCH3, respectively, were lost. The intervening region between them contains a 369 nt truncated LINE (L1MA9 5) that lies 57 nt downstream of the δCH2 remnant and overlaps ~70 nt of the expected 3’ end of a full-length δCH2 exon (Figs 1 and 2). It is not a typical retrotransposon

| Table 1. Nucleotide positions of rabbit remnant Cδ exons and neighboring DNA elements in BAC clone 27N5. |
|---|---|---|
| μTM1 6933–7051 LINE1 | 17280–19713 C7 | 26161–26292 |
| μTM2 7178–7443 C4 | 19714–20100 LTR8F OC | 26311–26356 |
| σδ 9365–10353 LINE1 | 20101–20251 C8 | 26357–26630 |
| L1MA5 11019–11192 C5 | 20252–20516 LTR8F OC | 26631–26649 |
| C1 11193–11546 LINE1 | 20517–20538 C62 | 26984–27162 |
| ψHMG14 11547–11579 HMG14 | 20539–20839 L1MA9 5 | 27223–27592 |
| C13 11580–11965 L1M2 5 | 21039–21493 C63 | 28552–28624 |
| ψHMG14 11966–12213 ERV 2–1 OC-1 | 21494–22133 C9 | 28862–29182 |
| LTR18 OC 12214–12574 ERV 2–1 OC-1 LTR | 22134–22438 C10 | 29183–29495 |
| ψASB 12575–12890 L1M2 5 | 22439–22851 C11 | 29802–30141 |
| ψMAN 12891–13098 C6 | 22852–23190 C12 | 30796–31116 |
| LTR18 OC 13099–13167 L1M2 5 | 23191–23396 δS | 32567–32615 |
| ψHMG14 13168–13479 HSMAR | 23397–23959 LTR32 OC | 33558–33937 |
| LINE1 13480–16572 C7 | 23960–24138 δTM1 | 34210–34335 |
| C2 16573–16940 LTR1D OC | 24139–24363 δTM2 | 34523–34531 |
| LINE1 16941–16969 ERV2-1 OC-1 | 24396–25846 |
| C3 16970–17279 LTR2C OC | 25847–26160 |

Cµ transmembrane exons, Cδ remnant exons and repetitive DNA elements are listed in consecutive order in columns 1, 3 and 5 with their positions in BAC clone 27N5 listed to their right.

https://doi.org/10.1371/journal.pone.0182029.t001
insertion, which would be flanked by short direct repeats and formerly contiguous genomic DNA sequence. LINE insertions, however, are also associated with deletion of target DNA sequence [44–46]. The region between the LINE and the δCH3 remnant contains many duplicated sequences with homology to the LINE, the largest ranging in size from 125–233 nt in length, with far more numerous shorter repeated sequences (S2 Fig). Because LINEs can undergo internal rearrangements during genomic insertion associated with large deletions [44], it is possible that the 3' end of δCH2 and the 5' end of δCH3 were lost during LINE insertion-mediated deletion of target DNA sequence. The loss of functional δCH2 and δCH3 exons would have rendered the entire Cδ gene nonfunctional. Supporting the conclusion that the rabbit δCH2 and δCH3 exons are non-functional remnants, we found no evidence that either are utilized in VDJ gene transcripts by RT-PCR using forward primers in VH1 (the preferentially rearranged rabbit VH gene segment) (Fig 4A).

To determine when, during lagomorph evolution, the Cδ gene became non-functional, we asked whether the δCH2 and δCH3 exons were similarly disrupted in other lagomorphs. The first major divergence during lagomorph evolution was the divergence of the pika (family Ochotonidae) from the lineage that led to the rabbits and hares (family Leporidae) ~35–55 million years ago [47]. The subsequent divergence of rabbits and hares occurred ~12 million years ago [48–50]. We therefore attempted to PCR-amplify the genomic region containing the δCH2 and δCH3 exons, and the intervening region between them, from Iberian hare (Lepus...
We found that δCH2 and δCH3 were also disrupted in L. granatensis genomic DNA (Figs 2 and 3A), but we were unable to PCR-amplify this region from O. princeps genomic DNA. These results strongly suggest that the Cδ gene became non-functional in lagomorphs before the divergence of rabbits and hares ~12 million years ago.

We estimated the extent of genetic divergence between the lagomorph δCH2 remnant and the δCH2 exons of other mammals by calculating the genetic distances between them using the General Time Reversible model. These results are presented diagrammatically as a maximum likelihood phylogenetic tree in Fig 5A. The lagomorph δCH2 remnants were most closely related to the δCH2 exons of human and other primates. The lagomorph and primate cluster was in turn most closely related to the δCH2 exons of the dog (Canis familiaris) and giant panda (Ailuropoda melanoleuca). In these analyses, three matches with uncharacterized mRNA from the Minke whale (Balaenoptera acutorostrata, ssp. scammoni), the northern white-cheeked gibbon (Nomascus leucogenys) and the water buffalo (Bubalus bubalis) likely indicate that these are IgD mRNA from these species. Similar analyses of the leporid δCH3 remnants suggested they are also most closely related to the δCH3 exons of human and other primates.

granatensis) and American pika (Ochotona princeps) genomic DNA. We found that δCH2 and δCH3 were also disrupted in L. granatensis genomic DNA (Figs 2 and 3A), but we were unable to PCR-amplify this region from O. princeps genomic DNA. These results strongly suggest that the Cδ gene became non-functional in lagomorphs before the divergence of rabbits and hares ~12 million years ago.

We estimated the extent of genetic divergence between the lagomorph δCH2 remnant and the δCH2 exons of other mammals by calculating the genetic distances between them using the General Time Reversible model. These results are presented diagrammatically as a maximum likelihood phylogenetic tree in Fig 5A. The lagomorph δCH2 remnants were most closely related to the δCH2 exons of human and other primates. The lagomorph and primate cluster was in turn most closely related to the δCH2 exons of the dog (Canis familiaris) and giant panda (Ailuropoda melanoleuca). In these analyses, three matches with uncharacterized mRNA from the Minke whale (Balaenoptera acutorostrata, ssp. scammoni), the northern white-cheeked gibbon (Nomascus leucogenys) and the water buffalo (Bubalus bubalis) likely indicate that these are IgD mRNA from these species. Similar analyses of the leporid δCH3 remnants suggested they are also most closely related to the δCH3 exons of human and other primates.

https://doi.org/10.1371/journal.pone.0182029.g003
primates, and much more distantly related to those of mouse and rat (rodents were not included in the $\delta CH2$ analyses because they lack $\delta CH2$) (Fig 5B).

The rabbit Cδ secretory (δS) exon

The rabbit δS remnant was identified in a BLAST search as a 73 nt region with 72% identity to the horse (*Equus caballus*) δS (Fig 3B). The rabbit δS remnant was located 3934 nt downstream of the 3' end of the $\delta CH3$ exon remnant, comparable to the location of the δS exon in the Cδ loci of other vertebrates (Fig 1). Phylogenetically, the rabbit δS remnant clusters tightly with the δS of horse, pig, human and panda (Fig 5C). These in turn are less closely related to the mouse δS and far more distantly related to that of the rat.

Despite the short genetic distances between horse, pig, human and panda δS at the nucleotide level, they encode considerably different amino acid sequences due to the use of different splice sites and reading frames, as well as nucleotide insertions and deletions (Fig 3B and 3C). Alignment of the rabbit δS nucleotide sequence with the δS of these mammals, as well as mouse and rat, revealed that the splice site utilized by horse and panda δS is present in the rabbit sequence (Fig 3B, boxed). While the first and third reading frames potentially utilizing this splice site encode extremely long amino acid sequences (79 and 67 amino acids in length,
respectively), the second encodes a 15 amino acid sequence, comparable in length to those of other mammals (Fig 3C). We therefore considered the possibility that the rabbit δS might encode a functional secretory terminus, possibly capable of alternative splicing onto Cμ transcripts. We tested this possibility by 3’RACE, using primers within the rabbit δS nucleotide sequence and cDNA prepared from rabbit bone marrow, spleen and appendix, and found no evidence of transcripts utilizing the rabbit δS (Fig 4B). These results strongly suggest that δS is a non-functional remnant exon.

The rabbit Cδ transmembrane (δTM1 and δTM2) exons

The first rabbit Cδ transmembrane exon (δTM1) lies 1580 nt downstream of the Cδ secretory exon remnant (Fig 1). It was identified in a BLAST search as a 139 nt region with 68% identity to the horse δTM1 (Fig 6A). As shown in the phylogenetic tree in Fig 5D, it clusters most closely with the δTM1 of horse and human, and somewhat less closely with the δTM1 of pig, dog, cow and sheep. Among the mammals examined, the rabbit δTM1 is least closely related to those of mouse and rat.

Alignment of the rabbit δTM1 nucleotide sequence with those of other mammals showed that the rabbit sequence contains nucleotide gaps probably resulting from genetic decay, rather than codon insertions or deletions as seen in other mammals (Fig 6A). Although potential 5’
and 3' splice sites are present in rabbit δTM1 (Fig 6A, boxed), the presumed reading frame (RF1) contains a frameshift resulting in a premature stop codon (Fig 6B). Although reading frame 2 (RF2) yielded an amino acid sequence broadly similar to δTM1 of other mammals (Fig 6B), rabbit δTM1 appears nonetheless unlikely to encode part of a functional transmembrane terminus because the second transmembrane exon (δTM2) is clearly non-functional.

The δTM2 of all mammals examined encodes only two amino acids, valine (V) and lysine (K). In sheep, cattle and platypus, valine and lysine codons occur at the end of δTM1 and are followed by a stop codon (Fig 6A), suggesting that these species might encode the entire Cδ transmembrane terminus with δTM1. The rabbit δTM1 locus appears, as in most mammals, to have encoded the two terminal amino acids of the transmembrane region on a second δTM exon. The rabbit δTM2 exon lies 187 nt downstream of δTM1 (Fig 1). Although it contains a potential 5' splice site (Fig 6C, boxed), the δTM1 exon encodes leucine (CTG) and arginine (AGG) residues, rather than valine (GTG) and lysine (AAG or AAA) residues as observed in all other mammals and the two codons are not followed by a stop codon as seen in all other mammals (Fig 6C). The rabbit δTM1 and δTM2 exons therefore appear to be non-functional.
Consistent with this conclusion, we found no evidence of their use in mRNA transcripts by 3'RACE in rabbit bone marrow, spleen or appendix cDNA (Fig 4).

Discussion

The absence of a rabbit IgD gene immediately downstream of the IgM gene has previously been reported [7, 8]. Here, we demonstrated that much of the rabbit IgD gene is still present in the Ig heavy chain locus as a pseudogenized remnant located ~21 kb downstream of the IgM gene. The remnant locus has lost the δCH1 and hinge exons, but the secretory and transmembrane exons, as well as portions of the δCH2 and δCH3 exons, have been retained. We found no evidence, by RT-PCR and 5' and 3' RACE, that any of the remnant exons are transcribed, and we therefore conclude that the rabbit Cδ locus is completely non-functional.

Although it is not possible to determine how the rabbit Cδ locus became non-functional, the remnant locus suggests three potential explanations: the loss of the δCH1 and hinge exons, disruption of the δCH2 and δCH3 exons and displacement of the locus from proximity to the Cμ locus by the insertion of multiple repetitive DNA elements. There is evidence from other species that the Cδ locus can survive the loss of δCH1. Indeed, the Cδ locus of teleost fish does not contain a δCH1 exon and the μCH1 exon is instead utilized in Cδ transcripts [18]. The δCH1 sequence in Cδ cDNA from the pig is identical to μCH1, suggesting that the pig might use a similar strategy to produce IgD [23, 51]. While the Cδ domains of cattle and sheep IgD are nearly identical to their respective μCH1 domains, the δCH1 domain is encoded by a δCH1 exon in cattle and probably also in sheep [23]. In both species, the δCH1 exon and its 5'-flanking sequence appear to have been duplicated from a region of the IgH locus spanning the intrinsic enhancer and the μCH1 exon. Zhao et al. (2002) reported evidence that this duplication event occurred in the common ancestor of cattle and sheep, either replacing an existing δCH1 exon or restoring a δCH1 exon that had been deleted or damaged [23]. Their results further suggested that a gene conversion event probably occurred between the μCH1 and δCH1 exons in both cattle and sheep following speciation. Taken together, these results demonstrate that the Cδ locus can compensate for the loss of δCH1. Nonetheless, the manner in which rabbit δCH1 was lost, possibly with the Cδ hinge exons, might have precluded alternative splicing of the remaining Cδ locus to μCH1. In the absence of a fortuitous duplication event that could restore δCH1, as appears to have occurred in cattle and sheep, the Cδ locus would have become non-functional.

The disruption of the δCH2 and δCH3 exons could also have disabled the rabbit Cδ locus. Although mice and rats produce functional IgD despite lacking a δCH2 exon [52, 53], the loss of 30% of the 3' end of δCH2 and 74% of the 5' end of δCH3, possibly through LINE insertion-mediated deletion, would preclude the generation of a functional Cδ transcript. Another possibility is that multiple repetitive DNA element insertions displaced the Cδ locus far enough downstream of the Cμ locus to prevent its co-transcription, causing it to fall into disuse and decay. At least 19 DNA element insertions, collectively comprising about 16 kb of DNA, occurred in the region between μTM2 and the δCH2 remnant. Consequently, this region is twice as large (21 kb) as the corresponding region of the human heavy chain locus. In addition to disrupting genetic loci through insertion, retrotransposons can delete host DNA sequences, either during integration or by providing regions of sequence homology, after integrating, that promote intra- and inter-chromosomal recombination events [44, 46, 54]. Given the high density of repetitive elements between μTM2 and the δCH2 remnant, δCH1 and the hinge exons might have been lost through such a mechanism.

Lagomorph evolution is marked by two major divergences, that of the pika lineage from the rabbit/hare lineage ~35–40 mya [47], and the divergence of rabbits and hares ~12 mya.
We found that $\delta CH2$ and $\delta CH3$ are disrupted in the Iberian hare nearly identically to $\delta CH2$ and $\delta CH3$ of the European rabbit. This result strongly suggests that the lagomorph $C\delta$ locus became non-functional prior to the divergence of rabbits and hares. We cannot rule out the possibility that hares possess functional δS and/or δTM exons that are alternatively spliced into $C\mu$ transcripts or utilized in unusual IgD transcripts comprised solely of a $\delta CH1$ domain, but the likelihood of these scenarios is remote. We were not able to determine whether $\delta CH2$ and $\delta CH3$ are similarly disrupted in the pika, despite using a sensitive touch-down PCR approach. Our results therefore suggest that the loss of lagomorph IgD occurred sometime prior to the divergence of rabbits and hares ~ 12 mya.

The loss of IgD, however, occurred in lagomorphs after their divergence from rodents, because both the mouse and rat possess functional $C\delta$ loci [52, 53]. Lagomorpha and Rodentia form the monophyletic group Glires, and are estimated to have diverged between 61.5 and 100.5 mya [55, 56]. Glires is a sister group of Euarchonta (tree shrews, colugos and primates), with which it comprises the superorder Euarchontoglires [57–59]. Following their divergence from lagomorphs, rodents underwent an extraordinary adaptive radiation, accompanied by accelerated evolutionary rates, such that they currently represent nearly half of all mammalian species.

Consistent with the rapid evolutionary divergence of rodents within the Euarchontoglires, the rabbit remnant $C\delta$ exons are most closely related to the corresponding $C\delta$ exons of primates, and most evolutionarily distant from those of the mouse and rat. Similarly, several additional immunologic genes have been reported to exhibit closer evolutionary relatedness between human and rabbit than between either and mouse [60, 61]. Indeed, the evolutionary distance of the rabbit remnant $C\delta$ exons from mouse and rat $C\delta$ exons consistently exceeded that from species such as the horse, dog, sheep and pig, which belong to the superorder Laurasiatheria, a sister group to Euarchontoglires.

It is not clear why previous studies found evidence suggesting that IgD is expressed by rabbit B cells. These studies relied on the removal of IgM, either through immunoprecipitation of cell lysates or capping of B cells with anti-IgM Abs, and subsequent identification of residual immunoglobulin molecules that did not react with anti-IgM, -IgG or -IgA Abs [15–17]. Because it is now clear that the residual immunoglobulin molecule identified in these studies was not IgD, one or more of the isotype-specific Abs used in these studies apparently did not detect all the molecules within its isotype specificity. Further studies would be necessary to determine the reason for this.

IgD is one of the evolutionarily oldest IgH isotypes, first appearing (as its ortholog, IgW), along with IgM, in the cartilaginous fishes [3]. It has persisted throughout subsequent vertebrate evolution and is present in all fish, amphibians, non-avian reptiles, and most mammals, examined. Although birds were thought to lack IgD due to its absence in chickens and ducks [4, 5], Han et al. (2016) recently identified a functional IgD gene in ostriches and, by surveying bird genomes, found $C\delta$ genes in 18 bird species from 12 orders [28]. While its early evolutionary origin and sustained presence in all orders of jawed vertebrates suggest that IgD serves an important immunologic role, its absence in some mammalian and bird species appears inconsistent with this view. Perhaps, as suggested by Ohta and Flajnik (2006) [3], IgD has been retained during vertebrate evolution as a versatile complementary isotype to IgM, serving varying functions in different vertebrate taxa. These authors note that, unlike IgM, IgD exhibits considerable variability, both in structure and expression, among vertebrates. The number of IgD constant domains, for example, ranges from 2 in mice to 19 in the Siberian sturgeon [52, 62] and IgD is differentially expressed as a primarily secretory or transmembrane molecule, or in multiple alternatively spliced forms, among vertebrates. In the African coelacanth, which lacks an IgM-encoding gene, IgD (IgW) gene might have provided redundancy against the loss of IgM, which is critical for early B cell development and forms the primary antibody
repertoire [63]. Although the role of IgD in B cell function remains unclear, some unique roles have recently been described in mice and humans. In mice, for example, IgD minimizes tolerance-induced holes in the pre-immune Ab repertoire by attenuating anergic B cell responses to self-antigen [64]. Further, due to inherent structural differences between the IgM and IgD hinge regions, the two isotypes differ in their ability to activate B cells [66]. While IgM B cell receptors are responsive to both mono- and polyvalent antigens, IgD B cell receptors respond only to polyvalent antigens [65]. Thus, the relative expression levels of IgD and IgM skew B cell responses to polyvalent antigens, such as immune complexes, or monovalent antigens. In humans, circulating IgD interacts with basophils through a calcium-fluxing receptor that induces antimicrobial, opsonizing, inflammatory and B cell-stimulatory factors [66]. Whether IgD plays similar, or additional, roles in other species remains to be determined. It is nevertheless clear that some vertebrate species can tolerate the loss of IgD. Our findings demonstrate that the rabbit IgD locus is pseudogenized and non-functional, and that lagomorphs probably lost the ability to express IgD at some point prior to the divergence of rabbits and hares ~ 12 mya.

Supporting information

S1 Fig. **Putative δδ switch region in the rabbit Cμ-Cδ intron.** TGGGG, TGGGC and TGAGC pentameric repeats are capitalized. The nucleotide composition of the region is A: 177, C: 277, G: 357, T: 178. The region’s location in the Cμ-Cδ intron is indicated in Fig 1. (TIF)

S2 Fig. **Harr plot of intervening genomic sequence between δCH2 and δCH3 remnant exons.** Distances, in nucleotides, are indicated on the x and y axes. The positions of δCH2, δCH3 and L1MA9_5 are indicated below the plot. (TIF)

Author Contributions

Conceptualization: Dennis K. Lanning, Pedro J. Esteves, Katherine L. Knight.

Data curation: Dennis K. Lanning.

Formal analysis: Dennis K. Lanning, Pedro J. Esteves, Katherine L. Knight.

Funding acquisition: Katherine L. Knight.

Investigation: Dennis K. Lanning, Katherine L. Knight.

Methodology: Dennis K. Lanning, Pedro J. Esteves, Katherine L. Knight.

Project administration: Dennis K. Lanning, Katherine L. Knight.

Resources: Katherine L. Knight.

Software: Pedro J. Esteves.

Supervision: Katherine L. Knight.

Validation: Dennis K. Lanning, Katherine L. Knight.

Visualization: Dennis K. Lanning, Katherine L. Knight.

Writing – original draft: Dennis K. Lanning, Pedro J. Esteves.

Writing – review & editing: Dennis K. Lanning.
References

1. Rowe DS, Fahey JL. A New Class of Human Immunoglobulins. II. Normal Serum IgD. J Exp Med. 1965; 121:185–99. PMID: 14253483
2. Rowe DS, Fahey JL. A New Class of Human Immunoglobulins. I. A Unique Myeloma Protein. J Exp Med. 1965; 121:171–84. PMID: 14253482
3. Ohta Y, Flajnik M. IgD, like IgM, is a primordial immunoglobulin class perpetuated in most jawed vertebrates. Proc Natl Acad Sci U S A. 2006; 103(28):10723–8. https://doi.org/10.1073/pnas.0601407103 PMID: 1681885
4. Zhao Y, Rabbani H, Shimizu A, Hammarstrom L. Mapping of the chicken immunoglobulin heavy-chain constant region gene locus reveals an inverted alpha gene upstream of a condensed epsilon gene. Immunology. 2000; 101(3):348–53. https://doi.org/10.1046/j.1365-2567.2000.00106.x PMID: 11106936
5. Lundqvist ML, Middleton DL, Hazard S, Warr GW. The immunoglobulin heavy chain locus of the duck. J Biol Chem. 2001; 276:46729–36. https://doi.org/10.1074/jbc.M106221200 PMID: 11592961
6. Wang X, Olp JJ, Miller RD. On the genomics of immunoglobulins in the gray, short-tailed opossum Monodelphis domestica. Immunogenetics. 2009; 61(8):581–96. https://doi.org/10.1007/s00251-009-0385-8 PMID: 19609515
7. Lanning DK, Zhai SK, Knight KL. Analysis of the 3' Cmu region of the rabbit Ig heavy chain locus. Gene. 2003; 309(2):135–44. PMID: 12758129
8. Ros F, Puels J, Reichenberger N, van Schooten W, Buelow R, Platzter J. Sequence analysis of 0.5 Mb of the rabbit germline immunoglobulin heavy chain locus. Gene. 2004; 330:49–59. https://doi.org/10.1016/j.gene.2003.12.037 PMID: 15087123
9. Guo Y, Bao Y, Meng Q, Hu X, Meng Q, Ren L, et al. Immunoglobulin genomics in the guinea pig (Cavia porcellus). PloS one. 2012; 7(6):e39298. https://doi.org/10.1371/journal.pone.0039298 PMID: 22761756
10. Abney ER, Parkhouse RM. Candidate for immunoglobulin D present on murine B lymphocytes. Nature. 1974; 252(5484):600–2. PMID: 4215039
11. Melcher U, Vitetta ES, McWilliams M, Lamm ME, Phillips-Quagliata JM, Uhr JW. Cell surface immunoglobulin. X. Identification of an IgD-like molecule on the surface of murine splenocytes. J Exp Med. 1974; 140(5):1427–31. PMID: 4417345
12. Martin LN, Leslie GA, Hindes R. Lymphocyte surface IgD and IgM in non-human primates. Int Arch Allergy Appl Immunol. 1976; 51(3):320–9. PMID: 819380
13. Sire J, Colle A, Bourgeois A. Identification of an IgD-like surface immunoglobulin in rabbit lymphocytes. Eur J Immunol. 1979; 9(1):13–6. https://doi.org/10.1002/eji.1830090104 PMID: 436925
14. Wilder RL, Yuen CC, Coyle SA, Mage RG. Demonstration of a rabbit cell surface Ig that bears light chain and VH, but lacks \(\mu\), \(\alpha\), and \(\gamma\)-allotypes-rabbit IgD? J Immunology. 1979; 122(2):464–8.
15. Eskinazi DP, Bessinger BA, McNicholas JM, Leary AL, Knight KL. Expression of an unidentified immunoglobulin isotype on rabbit Ig-bearing lymphocytes. J Immunology. 1979; 122:469–74.
16. Wilson M, Bengten E, Miller NW, Clem LW, DuPasquier L, Warr GW. A novel chimeric Ig heavy chain from a teleost fish shares similarities to IgD. Proc Natl Acad Sci USA. 1997; 94:4593–7. PMID: 9114035
17. Hordvik I, Thevarajan J, Smaal I, Bastani N, Krossoy B. Molecular and phylogenetic analysis of the Atlantic salmon immunoglobulin gene. Scand J Immunol. 1999; 50:202–10. PMID: 10447926
18. Stenvik J, Jorgensen TO. Immunoglobulin D (IgD) of Atlantic cod has a unique structure. Immunogenetics. 2000; 51(6):452–61. PMID: 10866112
19. Butler JE, Sun J, Navarro P. The swine Ig heavy chain locus has a single JH and no identifiable IgD. Int Immunol. 1996; 8(12):1897–904. PMID: 8982774
20. Butler JE. Immunoglobulin gene organization and the mechanism of repertoire development. Scand J Immunol. 1997; 45(5):455–62. PMID: 9160087
21. Zhao Y, Kacskovics I, Pan Q, Librelles DA, Gei J, Davis SK, et al. Artiodactyl IgD: the missing link. J Immunol. 2002; 169(8):4406–16. PMID: 12370374
24. Rogers KA, Richardson JP, Scinicariello F, Attanasio R. Molecular characterization of immunoglobulin D in mammals: immunoglobulin heavy constant delta genes in dogs, chimpanzees and four old world monkey species. Immunology. 2006; 118(1):88–100. https://doi.org/10.1111/j.1365-2567.2006.02345.x PMID: 16630026

25. Butler JE, Wertz N, Zhao Y, Zhang S, Bao Y, Bratsch S, et al. The two suborders of chiroptera have the canonical heavy-chain immunoglobulin (Ig) gene repertoire of eutherian mammals. Dev Comp Immunol. 2011; 35(3):273–84. https://doi.org/10.1016/j.dci.2010.08.011 PMID: 20816694

26. Zhao Y, Cui H, Whittington CM, Wei Z, Zhang X, Zhang Z, et al. Ornithorhynchus anatinus (platypus) links the evolution of immunoglobulin genes in eutherian mammals and nonmammalian tetrapods. J Immunol. 2009; 183(5):925–33. https://doi.org/10.4049/jimmunol.0900469 PMID: 19675164

27. Wagner B, Miller DC, Lear TL, Antczak DF. The complete map of the Ig heavy chain constant gene region reveals evidence for seven IgG isotypes and for IgD in the horse. J Immunol. 2004; 173(5):3230–42. PMID: 15322185

28. Han B, Yuan H, Wang T, Li B, Ma L, Yu S, et al. Multiple IgH Isotypes Including IgD, Subclasses of IgM, and IgY Are Expressed in the Common Ancestors of Modern Birds. J Immunol. 2016; 196(12):5138–47. https://doi.org/10.4049/jimmunol.1600469 PMID: 27189425

29. Blattner FR, Tucker PW. The molecular biology of immunoglobulin D. Nature. 1984; 307(5950):417–22.

30. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994; 22(22):4673–80. PMID: 7984417

31. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser. 1999; 41:95–8.

32. Kohany O, GD, Hankus L, Jurka J. Annotation, submission and screening of repetitive elements in Repbase: RepbaseSubmitter and Censor. BMC bioinformatics. 2006; 7:474. https://doi.org/10.1186/1471-2105-7-474 PMID: 17064419

33. Frohman MA. Rapid amplification of complementary DNA ends for generation of full-length complementary DNAs: thermal RACE. Methods Enzymol. 1993; 218:340–56. PMID: 7685466

34. Neves F, Abrantes J, Esteves PJ. Evolution of CCL11: genetic characterization in lagomorphs and evidence of positive and purifying selection in mammals. Innate Immun. 2016; 22(5):336–43. https://doi.org/10.1177/1753425916647471

35. de Sousa-Pereira P, Abrantes J, Baldauf HM, Keppler OT, Esteves PJ. Evolutionary study of leporid CD4 reveals a hotspot of genetic variability within the D2 domain. Immunogenetics. 2016; 68(6–7):477–82. https://doi.org/10.1007/s00251-016-0909-y PMID: 26979977

36. Pinheiro A, Woof JM, Almeida T, Abrantes J, Alves PC, Gortazar C, et al. Leporid immunoglobulin G shows evidence of strong selective pressure on the hinge and CH3 domains. Open Biol. 2014; 4(9):140088. https://doi.org/10.1098/rsob.140088 PMID: 25185680

37. Lemos de Matos A, McFadden G, Esteves PJ. Evolution of viral sensing RIG-I-like receptor genes in Leporidae genera Oryctolaugus, Sylvilagus, and Lepus. Immunogenetics. 2014; 66(1):43–52. https://doi.org/10.1007/s00251-013-0740-7 PMID: 24220721

38. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol. 2013; 30(12):2725–9. https://doi.org/10.1093/molbev/mst197 PMID: 24132122

39. Krane DE, Clark AG, Cheng J-F, Hardison RC. Subfamily relationships and clustering of rabbit C repeats. Mol Biol Evol. 1991; 8:1–30. PMID: 2002760

40. Milstein CP, Deversen EV, Rabbitts TH. The sequence of the human immunoglobulin mu-delta intron reveals possible vestigial switch segments. Nucleic Acids Res. 1984; 12(16):6523–35. PMID: 6089118

41. Kluin PM, Kayano H, Zani VJ, Kluin-Nelemans HC, Tucker PW, Sattenwhite E, et al. IgD class switching: identification of a novel recombination site in neoplastic and normal B cells. Eur J Immunol. 1995; 25(12):3504–8. https://doi.org/10.1002/eji.1830251244 PMID: 8566044

42. Arpin C, de Bouteiller O, Razanajona D, Fugier-Vivier I, Briere F, Banchereau J, et al. The normal counterpart of IgD myeloma cells in germinal center displays extensively mutated IgVH gene, Cmu-Cdelta switch, and lambda light chain expression. J Exp Med. 1998; 187(8):1169–78. PMID: 9547329

43. Rouaud P, Saintamand A, Saad F, Carron C, Lecardeur S, Cogne M, et al. Elucidation of the enigmatic IgD class-switch recombination via germine deletion of the IgH 3' regulatory region. J Exp Med. 2014; 211(5):975–85. https://doi.org/10.1084/jem.20131385 PMID: 24752300

44. Han K, Sen SK, Wang J, Callinan PA, Lee J, Cordaux R, et al. Genomic rearrangements by LINE-1 insertion-mediated deletion in the human and chimpanzee lineages. Nucleic Acids Res. 2005; 33(13):4040–52. https://doi.org/10.1093/nar/gki718 PMID: 16034026
45. Symer DE, Connelly C, Szak ST, Caputo EM, Cost GJ, Parmigiani G, et al. Human l1 retrotransposition is associated with genetic instability in vivo. Cell. 2002; 110(3):327–38. PMID: 12176320

46. Gilbert N, Lutz-Prigge S, Moran JV. Genomic deletions created upon LINE-1 retrotransposition. Cell. 2002; 110(3):315–25. PMID: 12176319

47. Springer MS, Murphy WJ, Eizirik E, O’Brien SJ. Placental mammal diversification and the Cretaceous-Tertiary boundary. Proc Natl Acad Sci U S A. 2003; 100(3):1056–61. https://doi.org/10.1073/pnas.0334222100 PMID: 12552136

48. Matthee CA, van Vuuren BJ, Bell D, Robinson TJ. A molecular supermatrix of the rabbits and hares (Leporidae) allows for the identification of five intercontinental exchanges during the Miocene. Syst Biol. 2004; 53(3):433–47. PMID: 15503672

49. van der Loo W, Abrantes J, Esteves PJ. Sharing of endogenous lentiviral gene fragments among leporid lineages separated for more than 12 million years. J Virol. 2009; 83(5):2386–8. https://doi.org/10.1128/JVI.01116-08 PMID: 19109386

50. Pinheiro A, de Mera IG, Alves PC, Gortazar C, de la Fuente J, Esteves PJ. Sequencing of modern Lepus VDJ genes shows that the usage of VhN genes has been retained in both Oryctolagus and Lepus that diverged 12 million years ago. Immunogenetics. 2013; 65(11):777–84. https://doi.org/10.1007/s00228-013-0728-3 PMID: 23974323

51. Sun J, Butler JE. Sequence analysis of pig switch mu, C mu, and C mu m. Immunogenetics. 1997; 46(6):452–60. PMID: 9321424

52. Tucker PW, Liu CP, Mushinsky JF, Blattner FR. Mouse immunoglobulin D: Messenger RNA and genomic DNA sequences. Science. 1980; 209:1353–60. PMID: 6968091

53. Sire J, Auffray C, Jordan BR. Rat immunoglobulin delta heavy chain gene: nucleotide sequence derived from cloned cDNA. Gene. 1982; 20(3):377–86. PMID: 6819978

54. Burwinkel B, Kilimann MW. Unequal homologous recombination between LINE-1 elements as a mutational mechanism in human genetic disease. J Mol Biol. 1998; 277(3):513–7. https://doi.org/10.1006/jmbi.1998.1641 PMID: 9533876

55. Kriegs JO, Churakov G, Jurka J, Brosius J, Schmitz J. Evolutionary history of 7SL RNA-derived SINEs in Supraprimates. Trends in genetics: TIG. 2007; 23(4):158–61. https://doi.org/10.1016/j.tig.2007.02.002 PMID: 17307271

56. Benton MJ, Donoghue PC. Paleontological evidence to date the tree of life. Mol Biol Evol. 2007; 24(1):26–53. https://doi.org/10.1093/molbev/msl150 PMID: 17047029

57. Murphy WJ, Eizirik E, Johnson WE, Zhang YP, Ryder OA, O’Brien SJ. Molecular phylogenetics and the origins of placental mammals. Nature. 2001; 409(6820):614–8. https://doi.org/10.1038/35054550 PMID: 11214319

58. Madsen O, Scally M, Douaudy CJ, Kao DJ, DeBry RW, Adkins R, et al. Parallel adaptive radiations in two major clades of placental mammals. Nature, 2001; 409(6820):614–10. https://doi.org/10.1038/35054544 PMID: 11214318

59. Huchon D, Madsen O, Sibbald MJ, Ament K, Stanhope MJ, Catzeflis F, et al. Rodent phylogeny and a timescale for the evolution of Glires: evidence from an extensive taxon sampling using three nuclear genes. Mol Biol Evol. 2002; 19(7):1053–65. PMID: 12082125

60. Neves F, Abrantes J, Almeida T, de Matos AL, Costa PP, Esteves PJ. Genetic characterization of interleukins (IL-1alpha, IL-1beta, IL-2, IL-4, IL-8, IL-10, IL-12A, IL-12B, IL-15 and IL-18) with relevant biological roles in lagomorphs. Innate Immun. 2015; 21(8):787–801. https://doi.org/10.1177/1753425915606209 PMID: 26395994

61. Pinheiro A, Neves F, Lemos de Matos A, Abrantes J, van der Loo W, Mage R, et al. An overview of the lagomorph immune system and its genetic diversity. Immunogenetics. 2016; 68(2):83–107. https://doi.org/10.1007/s00251-015-0868-8 PMID: 26399242

62. Zhu L, Yan Z, Feng M, Peng D, Guo Y, Hu X, et al. Identification of sturgeon IgD bridges the evolutionary gap between elasmobranchs and teleosts. Dev Comp Immunol. 2014; 42(2):138–47. https://doi.org/10.1016/j.dci.2013.08.020 PMID: 24001581

63. Amemiya CT, Alfoldi J, Lee AP, Fan S, Philippe H, Maccallum I, et al. The African coelacanth genome provides insights into tetrapod evolution. Nature. 2013; 496(7445):311–6. https://doi.org/10.1038/nature12027 PMID: 23598338

64. Sabouri Z, Perotti S, Sperierings E, Humburg P, Yabas M, Bergmann H, et al. IgD attenuates the IgM-induced anergy response in transitional and mature B cells. Nat Commun. 2016; 7:13381. https://doi.org/10.1038/ncomms13381 PMID: 27830696
65. Ubelhart R, Hug E, Bach MP, Wossning T, Duhren-von Minden M, Horn AH, et al. Responsiveness of B cells is regulated by the hinge region of IgD. Nat Immunol. 2015; 16(5):534–43. https://doi.org/10.1038/ni.3141 PMID: 25848665

66. Chen K, Xu W, Wilson M, He B, Miller NW, Bengten E, et al. Immunoglobulin D enhances immune surveillance by activating antimicrobial, proinflammatory and B cell-stimulating programs in basophils. Nat Immunol. 2009; 10(8):889–98. https://doi.org/10.1038/ni.1748 PMID: 19561614