Nanostructures based on carbon and silicon dioxide to improve the properties of building and structural materials

V V Kondrat’ev, M V Konstantinova, R V Kononenko and A D Kolosov

Irkutsk National Research Technical University, Lermontov Street, 83, Irkutsk, 664074, Russia

E-mail: kvv@istu.edu

Abstract. The article presents hardware and technological solutions for obtaining a product containing silicon dioxide from nanodispersed dust of gas cleaning of silicon production, intended to improve the properties of building and structural materials. To obtain nanostructures of carbon and silicon dioxide of the required quality, allowing to improve the properties of building and structural materials, a complex resource-saving technology of their high-tech production was developed. The necessary characteristics of nanodispersed modifying additives have been determined. A technological scheme has been developed; technological operations of thermal vortex enrichment are described. The material balance of thermal vortex enrichment is given.

1. Introduction
Development of technologies at present are energy and resource conservation [1-3], green technologies [4]. Development of technologies allowing to improve the quality of associated mineral raw materials without prejudice to the main technological process of silicon production [5-8] makes it possible to obtain nanodispersed dust (ND) containing carbon in the form of carbon nanotubes (CNTs), fullerene and silicon dioxide. The modifying effect of CNTs [9-10] and silicon dioxide [11-14] is becoming increasingly popular in various industries, including construction. One of the promising directions for the development of the use of these nanoparticles is road construction.

2. Developed product
This product was developed as part of a project to create a high-tech production of nanostructures based on carbon and silicon dioxide.

2.1. Characteristic of output product
The output product described in this article is a powdery concentrate of nanostructures containing silicon dioxide.
Table 1. Characteristics of the output product containing silicon dioxide.

Indicator name	Indicator values	Method of measurement
Mass fraction, %:		
SiO$_2$	not less than 98	EN 196-2
CaO	no more than 0.3	EN 451-1
SO$_3$	-	EN 196-2
K$_2$O	no more than 0.3	EN 196-2
Na$_2$O	no more than 0.1	EN 196-2
Fe$_2$O$_3$	no more than 0.1	GOST 2642.5-97
Al$_2$O$_3$	no more than 0.3	GOST 2642.4-86
MgO	no more than 0.2	GOST 2642.8-97
P$_2$O$_5$	-	GOST 2642.10-86
Cl	-	EN 196-2
H$_2$O	no more than 0.3	GOST 2642.1-86
SiC	-	GOST 26564.1-85
С-free	-	GOST 2642.15-97
pH	7.5±0.5	GOST 2642
Mass fraction of losses on ignition at 950 °C, %	no more than 0.8	EN 196-2
Specific surface (according to BET), m2/g	not less than 16	ISO 9277
Bulk density, kg/m3	to 360	GOST R 54246-2010
Granulometric composition of the packaged product (after long-term storage and self-coagulation processes), %	not less than 63.5	GOST R 8.755-2011

Individual nanoparticles: GOST R 8.755-2011

Agglomerates:
- small, more than 1 micron; no more than 30.0
- medium, more than 10 microns; no more than 5.0
- large, more than 45 microns; no more than 1.5

2.2. Technological scheme of thermal vortex enrichment
The general process flow diagram is shown in Figure 1.

![Figure 1. Technological scheme of thermal vortex enrichment.](image-url)
2.3. Characteristic of raw materials
Nanodispersed dust for performing thermal vortex enrichment is a product of collection in the gas cleaning system of silicon production.

Parameter	Content, %
Dust chemical composition	
- SiO$_2$, not less than	84.3
- Fe$_2$O$_3$, no more than	1.0
- Al$_2$O$_3$, no more than	2.1
- CaO, no more than	11.5
- C, no more than	

To perform thermal vortex enrichment, materials with the characteristics presented in Table 3 are used.

No P/p.	Name of raw materials, materials, intermediate products	GOST, OST, STP, TU, regulations or methods for the preparation of raw materials
1	Natural gas	GOST 5542-2014

2.4. Description of the thermal vortex enrichment
The process is a thermal vortex enrichment of nanodispersed dust. The dust is fed tangentially to the bottom of the furnace. Burning gas is also tangentially fed through the second inlet pipe. Due to tangential input and natural convection, an upward vortex with a temperature of 700-850 °C is formed in the working chamber of the furnace. At a given temperature, the carbon contained in the initial nanodispersed dust is oxidized to carbon dioxide. Decarbonized nanodispersed dust together with carbon dioxide is taken from the upper part of the furnace. Decarburized nanodispersed dust is a product of MD 1. A description of the implementation of thermal vortex enrichment is given in Table 4.

No P/p.	Action	Result
---------	--	
1	Check the serviceability of the equipment, the integrity of the connections and branch pipes	Thermal vortex enrichment equipment is ready for operation
2	Switch on the supply of burning gas to the working chamber of the furnace	The supply of burning gas to the working chamber of the furnace is switched on
3	Wait until the working chamber warms up to operating temperature, determined with a thermometer	Working chamber is ready for thermal enrichment of nanodispersed dust
4	Switch on the supply of nanodispersed dust to the working chamber of the furnace	The supply of nanodispersed dust to the working chamber of the furnace will turn on
5	Wait until the end of thermal enrichment of the required amount of nanodispersed dust, determined visually by the amount of the output product	The process of thermal enrichment of nanodispersed dust is completed
6	Turn off the gas supply	Thermal vortex enrichment completed
2.5. Standardized technological parameters
Standardized technological parameters of thermal vortex enrichment are shown in Table 5. Control of parameters is carried out using the measuring equipment of the experimental stand. The layout of the technological equipment is shown in Figure 2.

Table 5. Parameters of the thermal vortex enrichment process.

No	Parameter	Working value	Limit values
1	Temperature, °C	700 – 850	650 – 900

![Diagram of technological equipment]

Figure 2. Layout of technological equipment.

2.6. Material balance
The material balance of thermal vortex enrichment is shown in Table 6.

Table 6. Material balance of thermal vortex enrichment.

Parish	Consumption
Nanodispersed dust, kg	1
Natural gas, kg	1
Concentrate MD1, kg	0.85
Carbon dioxide*, kg	1.15

* Carbon dioxide consumption is based on pure carbon.

The technological process, which is the implementation of thermal vortex enrichment, does not produce waste that requires neutralization.

3. Conclusion
The developed technology of thermal vortex enrichment of dust from gas cleaning of silicon production allows not only to improve the ecological situation, to increase the profitability of the main production, but also to obtain innovative nanostructures for modifying road materials, concrete and asphalt concrete. The requirements for the quality of the produced modifying nanoparticles and the
quality of the feedstock and materials used for their production from the waste gases of an ore-thermal furnace for silicon production have been established.

References

[1] Bulatov Y, Kryukov A, Suslov K, Shamarova N 2019 Ensuring postemergency modes stability in power supply systems equipped with distributed generation plants *Proceedings of the 10th International Scientific Symposium on Electrical Power Engineering, ELEKTROENERGETIKA* 2019 p 38-42

[2] Lombardi P, Arendarski B, Suslov K, Shamarova N, Sokolnikova P, Pantaleo A M, Komarnicki P 2018 A Net-Zero Energy System Solution for Russian Rural Communities *EES Web of Conferences* 69 01013

[3] Lobanov D A, Sheshukov O Y, Egiazaryan D K, Nekrasov I V, Ovchinnikova L A 2020 EAF and LF slag co-processing: Study for wasteless utilization *AIP Conference Proceedings* 2313 050019

[4] Gladkih A M, V Yu Konyuhov, Galyautdinov I I and Shchadova E I 2019 Green building as a tool of energy saving *IOP Conference Series: Earth and Environmental Science* 350 012032

[5] Sivtsov A V, Yolkin K S, Kashlev I M and Karlina A I 2020 Processes in the Charge and Hearth Zones of Furnace Working Spaces and Problems in Controlling the Batch Dosing Mode during the Smelting of Industrial Silicon and High-Silicon Ferroalloys *Metallurgist* 64(5-6) 396-403

[6] Sivtsov A V, Elkin K S, Pankov V A and Karlina A I 2021 Specific Features of the Electric Mode of the Technological Process of Smelting of Commercial Silicon *Metallurgist* 64 923-930

[7] Yolkin K S, Yolkin D K, Nemarov A A, Sysoev I A and Karlina A I 2018 Conduct of reduction smelting of metallic silicon: Theory and practice *IOP Conference Series: Materials Science and Engineering* 411 012029

[8] Yolkin K S, Yolkin D K, Kolosov A D, Ivanov N A, Shtayger M G 2018 Technologies, which allow to reduce an impact of metal silicon production on the environment *IOP Conference Series: Materials Science and Engineering* 411(1) 012028

[9] Petrushenko I K 2018 DFT Calculations of Hydrogen Adsorption inside Single-Walled Carbon Nanotubes *Advances in Materials Science and Engineering* 2018 9876015

[10] Petrushenko I K and Petrushenko K B 2019 Physical adsorption of hydrogen molecules on single-walled carbon nanotubes and carbon-boron-nitrogen heteronanotubes: A comparative DFT study *Vacuum* 167 280-286

[11] Ponomarev A, Steshenko D and Rassokhin A 2018 Development of technology for production of fire-resistant nanocomposite constructional rebar and structural elements based on it *MATEC Web of Conferences* 245 04001

[12] Sviintsov A P, Galishnikova V V and Stashevskaia N A 2020 Dataset on the effect of nano-modified additives of concrete mixes technological properties for winter concreting *Data in Brief* 31 105756

[13] Kondratiev V V, Karlina A I, Guseva E A, Konstantinova M V, Gorovoy V O 2018 Structure of Enriched Ultradisperse Wastes of Silicon Production and Concretes Modified by them *IOP Conference Series: Materials Science and Engineering* 463(4) 042064

[14] Kondratiev V V, Karlina A I, Guseva E A, Konstantinova M V, Kleshnin A A 2018 Processing and Application of Ultra disperse Wastes of Silicon Production in Construction *IOP Conference Series: Materials Science and Engineering* 463(3) 032068