Analytical Expressions of Time-Domain Responses of Protection Circuits to ISO Reverse Transients in Automotive Applications

Ly-Minh-Duy Le
Faculty of Electrical and Electronics Engineering, Ho Chi Minh City University of Technology and Education, 1 Vo Van Ngan Street, Ho Chi Minh City, Vietnam

Corresponding author: Ly-Minh-Duy Le (e-mail: duylm@hcmute.edu.vn).
This research is supported by Ho Chi Minh City University of Technology and Education (HCMUTE), Vietnam.

ABSTRACT As the use of semiconductors and electronic control units (ECU) in automobiles has increased, electromagnetic susceptibility has become more essential for the reliability of the ECUs. As a result, automotive ECUs are subjected to electromagnetic compatibility tests to control quality. The Test pulses for electromagnetic immunity testing in automotive industry, such as reverse transients 1 and 3a, defined in the International Organization for Standardization (ISO) 7637-2 standard document, are examined. In practice, it is necessary to analytically investigate the performance of the protection circuits against those reverse pulses. In this paper, theoretical expressions of time-domain responses of the capacitor filter to those reverse pulses are derived. Also, the expressions of the avalanche energy as well as the time during avalanche mode are presented. The analytical results, validated by LTspice simulation, show that for the case of pulse 1, the reversal battery-polarity protection device after the filter, i.e., low-voltage power metal-oxide-semiconductor field-effect transistor (MOSFET), is safe despite entering the avalanche breakdown mode. For the case of pulse 3a, the filter can almost completely remove the transient voltage and hence avoid the avalanche effect of the MOSFET. The verified expressions when the suppressed voltage reaches maximum are very helpful for hardware design engineers to quickly determine whether the MOSFET goes into avalanche breakdown.

INDEX TERMS Automotive applications, avalanche breakdown, circuit analysis, electromagnetic interference (EMI), immunity testing, MOSFET, time-domain analysis

I. INTRODUCTION As the use of semiconductors and electronic control units (ECU) in automobiles has increased, electromagnetic susceptibility...
susceptibility has become more essential for the reliability of the ECUs and the safety of automobiles [1]–[2]. In the harsh automotive environment, ECUs are exposed to different electrical and electromagnetic disturbances, which can degrade their performance or even damage the electronic hardware. The origin and electrical characteristics of the electrical transients and their simulated test pulses are presented in the International Organization for Standardization (ISO) 7637 standard document [3]. Low-voltage power metal-oxide-semiconductor field-effect transistors (MOSFETs) have been widely used in the ECUs, such as body control module, power steering, multimedia head unit and window lifter, etc., as they have low on-resistance, which makes them suitable for high current operation with low power loss and high efficiency [4]–[5]. Specifically, they are known to be an effective strategy to protect the ECUs against reverse polarity of the battery for high current applications. Low-voltage power MOSFETs are more likely to enter avalanche breakdown region as compared to high-power MOSFETs if the ISO 7637 reverse voltage pulses are applied into the system because the applied reverse voltage may exceed their limited maximum breakdown voltage. As a result, the passive filter components are commonly employed to suppress the maximum voltage of the ISO reverse pulses in order to avoid the avalanche breakdown or reduce its energy and hence ensure the MOSFET is safe during electromagnetic compatibility (EMC) compliance testing and in vehicle operation.

In [6], the authors examined Spice models including the linear model and the non-linear models provided by the manufacturers of the overvoltage suppression devices against the electrical fast transients (EFT) and electrostatic discharge (ESD). The test pulses 1, 3a, and 3b from ISO 7637-2 standard were compared with the actual transient events and the observed waveforms were explained as a result of contact arcing phenomena in [7]. N. Lambrecht et al. [8] proposed a circuit modeling technique for the ISO 7637-3 capacitive coupling clamp (CCC) test by making use of the transmission line theory and the concept of surface transfer impedance and surface transfer admittance.

In order to improve design efficiency, both free and licensed circuit simulation software programs can be used for simulating an electronic circuit’s behavior such as LTspice by Analog Devices, TINA-TI by Texas Instruments, NgSpice (open source) [9], SiMetrix by SiMetrix Technologies and PSPICE by Cadence, etc. However, the availability of many simulation programs, created by different electronic component manufacturers in the market, may lead to difficulty in their usage if the circuit components are selected from different manufacturers. The reason is that the component manufacturer companies usually allow the usage of their Simulation Program with Integrated Circuit Emphasis (SPICE) models only in their own simulation software program, but restrict them in other software programs. A typical example is that most of the MOSFET SPICE models from Texas Instruments are encrypted and cannot be used in LTspice. Therefore, in some designs with mixed components from different manufacturers, the analytical expressions for the electronic circuit are extremely important tool for the hardware design engineers as these expressions only need the electrical parameters from the datasheets, which are always available to the designers.

From the literature survey, it appears that no prior research has been done for analytical expression derivation of the suppressed voltage on the protection circuits with respect to the ISO 7637-2 reverse test pulses. Therefore, in this paper, the voltage formulas for the capacitor filter will be derived for the ECUs employing N-channel power MOSFET reverse polarity protection scheme when the reverse transients are applied. These expressions can be a valuable tool for the hardware design engineers to assess the performance of the protection filter and determine whether the MOSFET can sustain the avalanche energy especially in the design cases where the electronic components are chosen from different manufacturers. Additionally, these analytical expressions aim to be used for the purpose of optimization of the capacitor filter by finding the optimum value, where the energy during avalanche breakdown has the largest margin from the energy limit. These expressions will help the hardware engineers to minimize the design effort and increase the chance to pass the immunity testing, and in the end to save the cost and meet the product timeline because it is more effective to consider EMI issues at the design stage [10]. Here, immunity is defined as the ability of the ECUs to function correctly whilst being subjected to all kinds of undesired disturbances [11].

The remainder of the paper is organized as follows. In the next section, the ISO 7637-2 reverse test pulses are described. In Section III, the voltage expressions are derived. Section IV presents simulation circuit in LTspice. Section V provides the numerical results, discussion, as well as the validation of the derived expressions via comparison with the simulation. The conclusion is given in the last section.

II. REVERSE PULSES AND PROTECTION CIRCUIT

Automotive electrical and electronic (EE) architecture is tremendously complex with ECUs, actuators, sensors and wiring harness. In addition, these electronic components, as well as the wiring harness, have been increased continuously in terms of number, complexity, weight, and volume [12]. Consequently, there are many electrical transients caused by inductance, capacitance, resistance and switching processes in the EE system during vehicle operation. The ISO test pulses 1, 2a, 2b, 3a and 3b are defined in ISO 7637-2 standard document. Among them, pulses 1 and 3a are the reverse conducted transients along power supply lines.

Test pulse 1 appears when power supply is disconnected from the inductive loads which are connected in parallel with a device under test (DUT). In such a case, the DUT will be interfered by the test pulse 1, which is presented in Fig. 1 [3].
Protection Circuits to ISO Reverse Transients in Automotive Applications

Ly-Minh Du Le: Analytical Expressions of Time-Domain Responses of

The detailed electrical characteristics of this pulse are provided in Table I for 12 V electrical system. Test pulse 3a, illustrated in Fig. 2, is a simulation of transient caused by the switching process in EE system including fuse blowing or pulling out. This pulse is a burst transient which electrical parameters are given in Table II [3]. It should be noted that transient 3a is applied to the system in form of a burst of multiple pulses, which is separated by t_s.

The main idea is to derive calculation formula of the suppressed voltage for the commonly-used capacitor filter and investigate the avalanche breakdown of the polarity-protection MOSFET. The circuit diagram is presented in Fig. 3 [13, Fig. 1a]. The ECU load can be protected against reverse-polarity connection by inserting a MOSFET in the right direction in the battery line. For high-side reversal battery protection, an N-channel MOSFET has been widely employed as it has the lowest power loss as compared to diode and P-channel MOSFET. Despite this, a charge pump is required to provide a gate voltage greater than the battery voltage to be able to turn the N-channel MOSFET on. This in turn increases the circuit complexity, bill of material cost and electromagnetic interference (EMI) issue [13]. When power of correct polarity is applied, the intrinsic body diode in MOSFET Q_1 conducts and provides power to the charge pump and the rest of the circuit. Within a few milliseconds, the charge pump has produced enough voltage to turn the MOSFET on and then bypass its own diode. During reverse polarity of the battery, the control circuit connects gate to source and the MOSFET will be switched off.

In order to meet EMC requirements, two 4.7 µF capacitors (C_1, C_2) are included and placed orthogonally (OP) to avoid thermal incident. R_1, R_2, D_1, D_2, Q_2, and C_3 form a control circuit. This control circuit will short the gate and source of Q_1 in case of reverse battery, and by contrast, it will allow current flow if the battery is installed properly. The resistors R_1 and R_3 are used for limiting the current to the MOSFET Q_1’s gate and to the transistor Q_2’s base, respectively, whereas the resistor R_2 creates a discharge path for the MOSFET Q_1’s gate. The capacitor C_3 is employed to filter high-frequency noise at the base of transistor Q_2. In addition, the diodes D_1 and D_2 are added to prevent reverse current to the microcontroller charge pump pin and reverse-bias of the emitter-base junction of the transistor Q_2 from the battery input voltage, respectively. As mentioned, the transistor Q_2 is used to connect gate to source of the MOSFET in case of reverse battery. The MOSFET Q_2 used here is an Automotive Electronics Council (AEC) Q101 qualified device (BUK7Y7R6-40EX of Nexperia B.V.), which can handle the junction temperature from -55°C to 175°C. This MOSFET has the maximum on-state resistance of 7.6 mΩ and the minimum breakdown voltage of 40 V. The MOSFET with small on-state resistance is chosen so that the power loss is reduced [14]. In addition, all other components used in the circuit are also selected as AEC qualified. KL30 UBAT12V is connected to the battery positive terminal of a 12V vehicle system, whereas UBAT12V_RPP is connected to the ECU circuit. In most applications, MOSFETs are directly driven by a logic circuit or a microcontroller [15].

TABLE I

Parameter	Symbol	Value
Peak amplitude	U_i	-75 V to -150 V
Internal resistance	R_i	10 Ω
Pulse duration	t_d	2 ms
Pulse rise time	t_r	1 µs
Pulse repetition time	t_r	≥ 0.5 s
Time between supply disconnects	t_s	200 ms
Time from supply disconnection to pulse application	t_s	< 100 µs

TABLE II

Parameter	Symbol	Value
Peak amplitude	U_i	-112 V to -220 V
Internal resistance	R_i	50 Ω
Pulse duration	t_d	150 ns ± 45 ns
Pulse rise time	t_r	5 μs ± 1.5 μs
Pulse repetition time	t_r	100 μs
Burst duration	t_b	10 ms
Time between bursts	t_b	90 ms

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
In this circuit, VCP is connected to the microcontroller charge pump pin.

III. ANALYSIS

The double exponential pulse shape of transients 1 and 3a, as shown in Fig. 1 and Fig. 2, can be generated by a transient generator and its voltage function is given by [3]

$$U(t) = \frac{U_0 R_L}{R_i + R_L} e^{\frac{2.3}{t_d}}$$ \hspace{1cm} (1)

where U_0 denotes the open circuit output voltage, R_i and R_L denote the source resistance of the generator and the load resistance of the generator, respectively. t_d is the reverse pulses’ duration, provided in Tables I and II.

In (1), the term $U_0 R_L/(R_i + R_L)$ is the peak amplitude U_i of the reverse pulses, listed in Tables I and II. Therefore, the corresponding voltage function of those pulses in general form can be expressed in terms of Heaviside function and (1) as

$$v(t) = U_i e^{\frac{2.3}{t_d}} u(t - \beta) + \alpha U_{BAT}$$ \hspace{1cm} (2)

Note that

$$\beta = t_0 + i(1 - \alpha)t_1 + (i-1)t_1$$ \hspace{1cm} (3)

where t_0 denotes the moment at which the transient voltage starts falling down from the battery voltage U_{BAT} and i is the pulse cycle order in the transient burst. t_1 and t_3, provided in Tables I and II, are the pulse repetition time and the time from supply disconnection to pulse application, respectively. $u(t - \beta)$ denotes the Heaviside function. Note that in (2) and (3), the term $\alpha = 0$ represents pulse 1, whereas $\alpha = 1$ represents pulse 3a.

It is important for a hardware design engineer to know the peak suppressed voltage in order to determine if the MOSFET Q_1 goes into avalanche breakdown mode. To do so, we can disconnect the MOSFET Q_1 and the control circuit ($R_1, R_2, R_3, D_1, D_2, Q_2,$ and C_3) from the reverse voltage source and its capacitor filter. Then we analyze and determine the peak suppressed voltage on the capacitor filter. The ISO pulse, as shown in Fig. 3, has the internal source resistance. Therefore, it can be separated into the pulse voltage source and its internal resistance. These two circuit elements together with the two orthogonal capacitors C_1 and C_2 form a voltage divider network, which can be converted into frequency domain, as depicted in Fig. 4. The Laplace transform of the voltage across the capacitors can be expressed as

$$V_c(s) = \frac{V_s(s)}{R C (s + \frac{1}{R C}) + \frac{1}{R C}},$$

where $V_s(s)$ is the Laplace transform of $v(t)$ and C is the effective capacitance of C_1 and C_2. By applying t-transition rule [16], the Laplace transform of (2) can be obtained as

$$V_s(t) = U_s e^{-\beta t} + \frac{\alpha U_{BAT}}{s}$$

Following that, by substituting (5) into (4) and after some mathematical manipulations, the Laplace transform of the voltage across the capacitors can be derived as
The corresponding expression of the suppressed voltage in time domain can be obtained by performing the inverse Laplace transform:

\[v_c(t) = \mathcal{L}^{-1}v_c(s) = \frac{U_i t_d}{t_d - 2.3RC} u(t - \beta) \left(e^{\frac{2(1-\beta)}{t_d}} - e^{\frac{1-\beta}{RC}} \right) + \alpha U_{BAT} \left(1 - e^{\frac{1-\beta}{RC}} \right) + V_c(\beta^+) e^{\frac{1-\beta}{RC}}. \]

(7)

The peak suppressed voltage can be calculated by substituting the time to reach the peak voltage \(t_{peak} \) into (7). The time \(t_{peak} \) can be obtained by taking derivatives of the double exponential curve of the suppressed voltage. For a 12V vehicle system, considering less than 100 uF value of \(C_1 \) and \(C_2 \), in (7), the fourth and fifth terms are very small as compared to the first term. As a result, in order to simplify the algebraic manipulations, these terms and the third term (the derivative of a constant is zero) can be ignored when taking the derivatives of (7). The simplified form of (7) can be expressed as

\[v_{cde}(t) = \frac{U_i t_d}{t_d - 2.3RC} u(t - \beta) \left(e^{\frac{2(1-\beta)}{t_d}} - e^{\frac{1-\beta}{RC}} \right). \]

(8)

After some algebraic manipulations of differential equation \(\frac{dv_{cde}(t)}{dt} = 0 \), the peak time can be achieved as

\[t_{peak} = \beta + \frac{t_d RC}{t_d - 2.3RC} \ln \left(\frac{t_d}{2.3RC} \right). \]

(9)

The detailed derivation of (9) is provided in the Appendix.

In case that the MOSFET goes to avalanche mode, we need to investigate whether it can withstand this avalanche condition. To do so, the avalanche energy of the MOSFET needs to be evaluated. On the basis of the suppressed voltage expression derived in (7), the MOSFET’s time in avalanche can be obtained as

\[t_{ava} = \beta + \frac{t_d}{2.3} \ln \left(\frac{V_{ava}(t_d - 2.3RC)}{U_i t_d} \right). \]

(10)

The derivation of (10) is introduced in the Appendix. Note that \(V_{ava} \) is the MOSFET’s avalanche breakdown voltage. As the current during avalanche follows the shape of the reverse voltage pulse applied [3], it can be expressed as

\[i_{ava}(t) = I_{ava, peak} e^{-\frac{2t}{t_{ava}}}. \]

(11)

where \(I_{ava, peak} \) represents the peak avalanche current. Owning the fact that the ECU load’s capacitance is large and the MOSFET’s time in avalanche is short, the voltage on the ECU load is assumed to be almost unchanged during the avalanche. Hence, the avalanche current, which depends on the potential difference between the ECU load voltage UBAT12V_RPP, the avalanche breakdown voltage \(V_{ava} \), and the reverse pulse voltage, reaches its maximum when the reverse pulse voltage is equal to the peak amplitude \(U_i \). As a result, the peak avalanche current can be expressed as

\[I_{ava, peak} = \frac{U_i - V_{ava}}{R_i}. \]

(12)

Since the avalanche breakdown is constant, the corresponding avalanche energy can be obtained by integrating (11) and is evaluated as

\[E_{ava} = V_{ava} \int_0^{t_{ava}} I_{ava, peak} e^{-\frac{2t}{t_{ava}}} dt. \]

(13)

After some simplifications, the avalanche energy can be obtained as

\[E_{ava} = \frac{1 - e^{-2.3}}{2.3} V_{ava} I_{ava, peak} t_{ava}. \]

(14)

IV. SIMULATION

In Fig. 5, a complete circuit with test pulse 1 is built in LTspice software to validate the theoretical expressions derived in Section III. For the reverse test pulse 3a, the Spice model of \(U_1 \) in Fig. 5 will be replaced with Pulse3a_12V. The total capacitance after the input reverse polarity protection is assumed to be 270 µF. In LTspice, by default, \(t_0 \) is defined as 1ms for both test pulses, whereas \(t_3 \) is set to be 50 µs for pulse 1 [17].

V. NUMERICAL RESULTS AND DISCUSSIONS

In this section, both analytical and simulated results of the suppressed voltage at the capacitor filter are presented. For a fair comparison, \(t_0 \), used in calculation formulas (2) – (9), is assumed to be the same with the one in LTspice ISO pulse models, i.e., \(t_0 = 1 \) ms for both transients. In addition, the avalanche breakdown of the MOSFET is also investigated. The values of parameters \(U_i, t_d, t_1, t_3 \) and \(R_i \) of the reverse test transients 1 and 3a can be found in Tables I and II, respectively. Note that \(t_3 \) does not exist for pulse 3a. In this study, the pulse amplitudes \(U_i \) are selected as -150 V and -220 V, respectively, which are the highest severity levels according to Table A.1 of [3].
Fig. 6 shows the test pulse 1 voltage, both theoretical and simulated results of the voltage suppressed by the two orthogonally placed capacitors C_1 and C_2 against the reverse pulse 1. Note that these results were obtained when separating the circuits as mentioned in Section III. The effective capacitance C is calculated as $C = C_1C_2/(C_1 + C_2) = 2.35 \mu F$. The battery voltage U_{BAT} is 13.5 V for a 12 V automotive system. The close match in both results validates the theoretical expressions (2) – (9) derived in Section III. Moreover, the peak voltage at the capacitors can be quickly obtained by substituting the peak time t_{peak}, calculated from (9), into (7). It can be observed that the capacitor filter can reduce the pulse voltage to -135.69 V at $t_{peak} = 1.137$ ms.

In this case, the MOSFET goes to avalanche mode as the breakdown voltage of the MOSFET is significantly exceeded (as a rule of thumb: avalanche occurs at 1.3 times [18] the rated breakdown voltage of a low voltage MOSFET (52 V for Q_1)). This may lead to a high electric field applied between source and drain, and the fast increased avalanche current in an exponential way may in turn damage the component [19], because the reverse current flow through the device causes high power dissipation, associated temperature rise, and potential device destruction [18]. In Fig. 7, the simulated MOSFET’s Source-Drain voltage and current waveforms are provided to verify the theoretical expressions (10) – (12) derived in Section III. It can be observed that the MOSFET’s Source-Drain voltage is clamped to its avalanche voltage $V_{ava} = -44$ V and the peak avalanche current is $I_{ava,peak} = 11.43$ A. From this figure, the time in avalanche t_{ava} is measured to be 1.006 ms. By using formulas (10) and (12), the calculated results of t_{ava} and $I_{ava,peak}$ are 0.994 ms and 11.9 A, respectively. Thus, the close match in the simulated and theoretical results validates the derived expression (10) – (12).
Numerical result of the avalanche energy can be obtained by using the analytical expression (14). By substituting the calculated values of t_{ava} and $I_{ava,peak}$ into this equation, it can be found that $E_{ava} = 195.2 \text{ mJ}$, which approximately agrees with the simulated result shown in Fig. 8. In order to determine the limit of avalanche energy that the device can sustain $E_{ava,limit}$, we need to convert the power in double exponential shape, illustrated in Fig. 8, to a square pulse. This can be achieved by equating their energies, as depicted in Fig. 9.

With the help of (16), for the case of power waveform in the avalanche mode, as shown in Fig. 8, it can be found that $t_{d,sq} = 0.389 \text{ ms}$. From Fig. 10, it can be found that the transient thermal impedance $Z_{th(j-mb)} = 0.318 \text{ K/W}$. According to [21] – [23], the transient thermal impedance is calculated as

$$Z_{th(j-mb)} = \frac{T_{j} - T_{mb}}{P}$$

(17)

where T_{j} and T_{mb} represent the MOSFET’s junction temperature and the operating temperature, respectively. P is the dissipated power on the MOSFET. As a result, the avalanche energy limit can be derived as

$$E_{ava,limit} = \frac{T_{j,max} - T_{mb,max}}{Z_{th(j-mb)}} I_{ava} = 280.9 \text{ mJ}.$$

(18)

Note that $T_{j,max} = 175^\circ\text{C}$ denotes the maximum junction that the MOSFET can withstand and $T_{mb,max} = 85^\circ\text{C}$ is the maximum operating temperature, which is commonly defined in automotive applications. It can be concluded that the MOSFET is safe since $E_{ava} < E_{ava,limit}$ with a good margin.

In Fig. 11 (a), the reverse test pulse 3a waveform is presented with the highest severity level for 12V system, i.e., $U_s = -220 \text{ V}$. In order to emphasize the accuracy of the
general-form theoretical equations derived in Section III, both analytical and simulated results of the suppressed voltage by the capacitor filter against test transient 3a are illustrated in Fig. 11 (b). Note that these results were obtained when disconnecting the MOSFET and its control circuit as mentioned in Section III. Again, it can be observed that the close match in both results validates the derived expressions. It should be noted that the close match occurs for all the pulses in the transient burst, which consolidates the generality of the obtained equations for the whole burst for both reverse test pulses. As it can be seen from this figure, the capacitor filter can almost completely remove the applied pulses, which helps to prevent the MOSFET Q_1 from entering avalanche mode. This is because the effective capacitance is large enough to mitigate the transients with short duration like pulse 3a. In addition, the peak time and the peak voltage across the capacitors, as shown in Fig. 11 (b), are also quickly calculated with help of derived expressions (7) and (9).

The expressions derived in Sections III and V can be used to optimize the passive capacitor filter. Based on these expressions, the time to reach the peak voltage t_{peak}, the peak suppressed voltage $V_{c, peak}$, the MOSFET’s time in avalanche t_{ava}, the avalanche energy E_{ava}, the avalanche energy limit $E_{ava, lim}$ and the margin of avalanche energy are calculated for the ISO reverse pulses and are then summarized in Table III. Note that in case the MOSFET enters avalanche breakdown, the margin of avalanche energy can be determined by the calculated avalanche energy and the avalanche energy limit. As an example of optimization of the suppression filter, the values of the capacitors C_1 and C_2 are selected from 1 uF to 10 uF. From Table III, it can be found that the value of 3.3 uF is the optimum value as the margin of the avalanche energy from its limit is the largest (30.58%). The more the margin is, the less the MOSFET is derated.

VI. CONCLUSION

In this paper, the analysis of protection performance of the capacitor filter from the reverse EMC immunity test transients along power supply lines has been presented. The paper briefly describes the electrical characteristics of those automotive test pulses, and introduces the circuit design, as well as the LTspice circuit simulation in detail. Based on the forward and inverse Laplace transforms, including the t-transition rule, as well as by using the Heaviside function, analytical expressions for the suppressed voltage and its peak value of the employed filter, as well as the MOSFET’s avalanche energy have been derived. All theoretical derived expressions have been validated by simulation results. Furthermore, the strength of those theoretical expressions is the accuracy for all the pulses of the testing burst. In addition, these derived expressions are quite helpful in the design cases where the electronic components are selected from different manufacturers.

Reverse Pulse 1	Reverse Pulse 3a						
C_1, C_2 (uF)	$V_{c, peak}$ (V)	t_{peak} (ms)	E_{ava} (mJ)	$E_{ava, lim}$ (mJ)	Margin of E_{ava} (%)	$V_{c, peak}$ (V)	t_{peak} (ms)
1	0.975	203.4	280.2	27.41	1.04039	12.84	
2.2	0.981	199.6	281.6	30.58	1.40044	13.14	
3.3	0.994	195.2	280.9	30.51	1.40047	13.23	
4.7	1.048	195.6	280.2	30.19	1.40049	13.28	
6.8	1.021	196.9	278.6	29.33	1.40051	13.32	
10	1.022	196.1	278.6	29.33	1.40054	13.34	

TABLE III

COMPARISON BETWEEN DIFFERENT TYPICAL VALUES OF THE CAPACITOR FILTER

APPENDIX

A. DERIVATION OF THE TIME TO REACH THE PEAK VOLTAGE t_{peak}

The differential equation of the simplified form of the suppressed voltage $\frac{dV_{c, peak}(t)}{dt} = 0$ can be obtained as

$$
\frac{2.3(t_{peak} - 6)}{t_d - 2.3RC} e^{\frac{2.3(t_{peak} - 6)}{t_d}} + \frac{U_{t_d}}{R_C(t_d - 2.3RC)} e^{\frac{t_{peak} - 6}{R_C}} = 0.
$$

By moving the first term of (19) to the right side and then taking the natural logarithm of both sides of (19), we obtain

$$
\ln\left(\frac{U_{t_d}}{R_C(t_d - 2.3RC)}\right) - \frac{t_{peak} - 6}{R_C} = \ln\left(\frac{2.3U_c}{t_d - 2.3RC}\right)
$$

Following that, the expression of the peak time t_{peak} is derived, as given in (9).

B. DERIVATION OF THE MOSFET’S TIME IN AVALANCHE t_{ava}
When the MOSFET goes into avalanche breakdown mode, the suppressed voltage on the capacitor filter is equal to the MOSFET’s avalanche breakdown voltage

\[
\frac{U_{s}t_{d}}{t_{d} - 2.3RC} \left(e^{-\frac{2.3(t_{ava} - \beta)}{t_{s}}} - e^{-\frac{t_{ava} - \beta}{RC}} \right) = V_{ava}.
\] (21)

Following that, (21) can be rewritten as

\[
- e^{-\frac{2.3(t_{ava} - \beta)}{t_{s}}} - e^{-\frac{t_{ava} - \beta}{RC}} = \frac{V_{ava}(t_{d} - 2.3RC)}{U_{s}t_{d}}. \tag{22}
\]

As the second term at the left side of (22) is very small as compared to the first term, (22) can be simplified to

\[
e^{-\frac{2.3(t_{ava} - \beta)}{t_{s}}} = \frac{V_{ava}(t_{d} - 2.3RC)}{U_{s}t_{d}}. \tag{23}
\]

By taking the natural logarithm of both sides of (23) and after some mathematic manipulations, the expression of MOSFET’s time in avalanche \(t_{ava} \) is derived, as given in (10).

REFERENCES

[1] A. Zeichner and S. Frei, "Immunity of automotive power line communication systems," IEEE Trans. Electromagn. Compat., vol. 58, no. 4, pp. 1289-1296, Aug. 2016.

[2] Y. Kondo, M. Izumichi and O. Wada, "Simulation of bulk current injection test for automotive components using electromagnetic analysis," IEEE Trans. Electromagn. Compat., vol. 60, no. 4, pp. 866-874, Aug. 2018.

[3] Road Vehicles - Electrical disturbances from conduction and coupling - Part 3: Electrical transient conduction along supply lines only, ISO 7637-2, 3rd ed., 2011.

[4] C. Buttay, T. B. Salah, D. Bergogne, B. Allard, H. Morel and J. -P. Chante, "Avalanche behavior of low-voltage power MOSFETs," IEEE Power Electronics Lett., vol. 2, no. 3, pp. 104-107, Sept. 2004.

[5] K. Miyagi, H. Takaya, H. Saito and K. Hamada, "Floating island and thick bottom oxide trench gate MOSFET (FITMOS) ultra-low on-resistance power MOSFET for automotive applications," in Proc. 2007 IEEE Power Convers. Conf., Nagoya, Japan, Apr. 2007, pp. 1011-1016.

[6] S. Bauer, W. Renhart, O. Biró, C. Türk, C. Maier, G. Winkler and B. Deutschmann, "Investigation of SPICE models for overvoltage protection devices with respect to fast transients," IEEE Lett. Electromagn. Compat. Pract. Appl., vol. 1, no. 1, pp. 20-25, Mar. 2019.

[7] R. K. Frazier and S. Alles, "Comparison of ISO 7637 transient waveforms to real world automotive transient phenomena," in Proc. 2005 IEEE Int. Symp. Electromagn. Compat., EMC 2005, Chicago, IL, USA, Aug. 2005, pp. 949-954.

[8] N. Lambrecht, H. Pues, D. D. Zutter and D. V. Ginste, "A circuit modeling technique for the ISO 7637-3 capacitive coupling clamp test," IEEE Trans. Electromagn. Compat., vol. 60, no. 4, pp. 858-865, Aug. 2018.

[9] "List of free electronics circuit simulators." en.wikipedia.org. [Online]. Available: https://en.wikipedia.org/wiki/List_of_free_electronics_circuit_simulators

[10] F. A. Kharaa, A. Emadi and B. Bilgin, "Modeling of conducted emissions for EMI analysis of power converters: State-of-the-art review," IEEE Access, vol. 8, pp. 189313-189325, Oct. 2020.

[11] N. Lambrecht, "Modeling of complex EMC test setups for the assessment of the transient behavior of automotive integrated circuits," Ph.D. dissertation, Dept. Inf. Technol., Ghent Univ., Belgium, 2018.

[12] A. Zeichner and S. Frei, "Immunity of automotive power line communication systems," IEEE Trans. Electromagn. Compat., vol. 58, no. 4, pp. 1289-1296, Aug. 2016.

[13] S. Uppuluri, “Protecting vehicle electronics from reverse-battery connection,” Diodes Inc., May 2012. [Online]. Available: https://www.diodes.com/design/support/technical-articles/protecting-vehicle-electronics-from-reverse-battery-connection/

[14] I. A. Aden, H. Kahveci, and M. E. Sahin, "Design and implementation of single-input multiple-output DC-DC buck converter for electric vehicles," J. Circuits, Syst., Comput., vol. 30, no. 13, pp. 2150228-1–2150228-19, 2021.

[15] M. E. Sahin, and F. Blaabjerg, "An overview on MOSFET drivers and converter applications," Electric Power Compon. Syst., vol. 49, no. 8, pp. 828–847, 2021.

[16] H. Miller and J. Orloff. (2017), “Laplace transform: t-translation rule,” MIT, [PDF slides]. Available: https://math.mit.edu/~stoops/18.031/laplace-t-shift.pdf

[17] D. Eddelmann, “LTspice: Models of ISO 7637-2 & ISO 16750-2 transients,” Analog Devices Inc., [Online]. Available: https://www.analog.com/en/technical-articles/ltspice-models-of-iso-7637-2-iso-16750-2-transients.html

[18] “Power mosfet avalanche design guidelines,” Vishay Intertechnology Inc., Dec 2011. [Online]. Available: https://www.vishay.com/docs/00160/an1005.pdf

[19] T. Azoui, P. Tousni, G. Pasquet, J. Reynès, E. Pomès and J. Dorkel, "Temperature sensing for power MOSFETs in short-duration avalanche mode," IEEE Trans. Device Mater. Rel., vol. 14, no. 1, pp. 441-445, Mar. 2014.

[20] Nexperia B.V., “N-channel 40 V, 7.6 mΩ standard level MOSFET in LFPAK56”, BUK7Y7R6-40EX datasheet, May 2013.

[21] Y. C. Gerstenmaier and G. Wachutka, "Calculation of the temperature development in electronic systems by convolution integrals," in Proc. 16th Annu. IEEE Semicond. Thermal Meas. and Manage. Symp. (Cat. No.00CH37068), San Jose, CA, USA, Mar. 2000, pp. 50-59.

[22] D. P. U. Tran, S. Lefebvre and Y. Avenas, "Discrete power semiconductor losses versus junction temperature estimation based on thermal impedance curves," IEEE Trans. Compon. Packag. Manuf. Technol., vol. 10, no. 1, pp. 79-87, Jan. 2020.

[23] J. Lim, J. Jeon, J. Seong, J. Cho, S. M. Cho, K. S. Kim and S. W. Yoon, "Iterative electrical–thermal coupled simulation method of automotive power module used in electric power steering system," IEEE Access, vol. 9, pp. 164712-164719, Dec. 2021.

Ly-Minh-Duy Le received the M. Eng. degree in aerospace engineering from Saint-Petersburg State University of Aerospace Instrumentation (SUAI), Russia, in 2009 and the Ph. D. degree in electrical and electronic engineering from Nanyang Technological University (NTU), Singapore, in 2014. He was an R&D electronics engineer with Verik Systems, Robert Bosch GmbH, and Vinfast LLC automotive electronics R&D centers from 2014-2016, 2016-2020, and 2020-2021, respectively. After seven years of work experience in industry, in 2021, he joined the Faculty of Electrical and Electronics Engineering, Ho Chi Minh City University of Technology and Education, Vietnam. He is currently a lecturer and researcher with the Department of Computer and Communications Engineering. His research interests include automotive electronics, DC-DC power converters, circuit design, EMI, and frequency-hopping communication systems. Dr. Le is a reviewer for the IEEE Transactions on Vehicular Technology and the IET Science, Measurement & Technology.