Optimal Designs of Two-Phase Case-Control Studies for General Predictor Effects

Jingjing Zou1, 3, Lori B. Daniels2, Karen Messer1, 3, and Daniel Rabinowitz4

1Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego
2Division of Cardiovascular Medicine, Department of Medicine & Division of Epidemiology, Department of Family Medicine and Public Health, University of California, San Diego
3Moores Cancer Center, University of California, San Diego
4Department of Statistics, Columbia University

Abstract

Under two-phase designs, the outcome and several covariates and confounders are measured in the first phase, and a new predictor of interest, which may be costly to collect, can be measured on a subsample in the second phase, without incurring the costs of recruiting subjects. By using the information gathered in the first phase, the second-phase subsample can be selected to enhance the efficiency of testing and estimating the effect of the new predictor on the outcome. Past studies have focused on optimal two-phase sampling schemes for statistical inference on local ($\beta = o(1)$) effects of the predictor of interest. In this study, we propose an extension of the two-phase designs
that employs an optimal sampling scheme for estimating predictor effects with pseudo conditional likelihood estimators in case-control studies. This approach is applicable to both local and non-local effects. We demonstrate the effectiveness of the proposed sampling scheme through simulation studies and analysis of data from 170 patients hospitalized for treatment of COVID-19. The results show a significant improvement in the estimation of the parameter of interest.

Keywords: Case-control study, two-phase design, pseudo conditional likelihood, sampling schemes, missing data

1 Introduction

A well-characterized cohort undergoing longitudinal observation can provide opportunities for cost-efficient ancillary studies. While the cost of collecting a new predictor may be substantial, the new predictor may be compared to previously collected outcomes, adjusting for other previously collected covariates and potential confounders without incurring the costs of recruiting subjects and obtaining the previously collected data. In some such settings, the previously collected outcome may record the occurrence of a low-probability event. When this is the case, it is natural to consider a two-phase case-control study. Information of the outcome, covariates and potential confounders collected in the first phase can be used to select a subsample of subjects from the cases and the controls in the second phase for ascertainment of the new predictor. This design can significantly reduce the cost of collecting the new predictor and increase efficiency in statistical inference. A natural question is: what is the optimal design for selecting case and control subjects in the subsample.

Studies on the design of two-phase studies date back to White (1982), in which a rare
disease and a rare exposure were collected in the first stage and covariates were collected in the second stage based on grouping of the disease and exposure status. Since then, researchers have proposed various sampling schemes for two-phase studies, depending on the type of outcome and research question of interest. Breslow and Chatterjee (1999) examined a sampling scheme stratifying on both the covariates and a discrete outcome. Cao et al. (2021) studied two-phase designs with emphasis on measures of predictive accuracy. Lin et al. (2013); Zhou et al. (2014) proposed sampling schemes for two-phase studies with continuous outcomes. Gravio et al. (2022) examined the design and analysis of two-phase studies with multivariate longitudinal data.

Among the first to examine optimality for statistical inference in two-phase designs, Tao et al. (2020) proposed sampling schemes for semi-parametric efficient testing and estimating of local effects ($\beta = o(1)$) of the predictor of interest on different types of outcome. For local effects, the optimality in design was defined with respect to maximum Fisher information for the regression parameter associated with the new predictor at the null hypothesis, in a regression of the previously collected outcome on the predictor and previously collected covariates and potential confounders. Tao et al. (2021) further studies a two-wave two-phase design for longitudinal outcomes. For studies on two-phase designs for other types of outcomes, see Tao et al. (2020) and the reference therein.

The choice of optimal two-phase design for estimating general effects of predictors on outcomes, including both local and non-local effects, depends on the estimation method used. Therefore, studies focused on estimating model parameters in two-phase designs are relevant. Efficient augmented inverse probability weighting estimators for designs were developed by Robins et al. (1995), but they require strictly positive selection probabilities in the second phase and can be challenging to implement in practice, as solutions to infinite-dimensional
integral equations are involved. Estimators developed for two-phase designs with discrete covariates include Scott and Wild (1991); Scott (1997); Breslow and Holubkov (1997); Lawless et al. (1999); Breslow et al. (2003); Chatterjee et al. (2003); Weaver and Zhou (2005); Dai et al. (2009); Cao et al. (2020). Tao et al. (2017) proposed semiparametric estimators for two-phase studies with either discrete or continuous covariates and outcome. Their method was based on approximating the conditional density functions of predictor given other covariates using B-spline sieves. However, this approach can become challenging to implement and computationally burdensome when dealing with a large number of covariates. Scott and Wild (2011); Che et al. (2021) studied improvement of efficiency of conditional maximum likelihood estimators. For estimation methods concentrating on other aspects of two-phase studies, including measurement errors and multi-category outcomes, see Tao et al. (2021); Lotspeich et al. (2021); Maronge et al. (2021) and the references therein.

Estimation methods for predictors missing at random can also be used in two-phase designs when selection probabilities only depend on the outcome and covariates observed in the first phase. In particular, Wang and Wang (1997) and Wang et al. (2002) extended estimators by Breslow and Cain (1988) to semiparametric estimators in logistic regressions based on pseudo conditional likelihood (PCL). These semiparametric estimators do not assume any model for the selection probabilities or the conditional distribution of the predictor given the outcome and covariates/confounders. With minor modifications, they can handle both continuous and discrete covariates and are straightforward to implement.

In this paper we focus on optimal two-phase case-control designs for estimating the effect of the predictor on the outcome. We propose a novel approach for selecting subjects from the cases and controls that leads to minimal asymptotic errors using the semiparametric PCL estimators in Wang and Wang (1997) and Wang et al. (2002). Our proposed approach
extends current methods, including [Tao et al. (2020)], to general scenarios where the effect of the predictor can be either local or non-local, and the covariates can be discrete or continuous. This is one of the first works on optimal two-phase designs for estimating the effects of predictors, particularly non-local effects. We derive equations for optimal sampling probabilities of subjects given their values of outcome and covariates/confounders collected in the first phase. We further implement an algorithm to estimate the sampling probabilities that achieve asymptotic optimality in the estimation of the predictor effect under any desired sample size constraints.

Additionally, we present both theoretical and empirical comparisons of the optimal sampling schemes proposed in this paper and those in [Tao et al. (2020)]. We closely examine the assumptions required for each approach and reveal an interesting trade-off between model assumptions and statistical efficiency. We show that increased efficiency can be achieved by assuming a small amount of extra knowledge. Specifically, to use our proposed approach for statistical inference on potentially non-local predictor effects, the conditional first and second moments of the predictor given the covariates, rather than just the conditional variance required by [Tao et al. (2020)], must be estimated or known from previous studies. We also investigate the conditions under which the two sampling schemes can be unified with equal optimal selection probabilities.

We assess the effectiveness of our proposed sampling schemes in estimating the parameter of interest and conducting hypothesis testing using various estimation and testing methods. To achieve this, we conduct comprehensive simulation studies using synthetic data and compare our proposed sampling scheme to multiple existing approaches, including the approach proposed in [Tao et al. (2020)]. We further demonstrate the proposed approach using data from 170 patients hospitalized for treatment of coronavirus disease 2019 (COVID-19) at the
University of California San Diego Health. Results from simulations using both synthetic and real data indicate that our proposed approach can lead to substantial improvements in estimating the effect of the predictor and has practical utility in various scenarios.

The paper is structured as follows. In Section 2, we introduce the model and a modified version of the PCL estimators, and derive the optimal sampling schemes. In Section 3, we discuss two existing methods for hypothesis testing of the predictor effect with the subsample selected using our proposed sampling schemes. In Section 4, we conduct comprehensive simulation studies using synthetic data to compare the proposed sampling scheme with other methods when combined with different estimators and testing methods. In Section 5, we demonstrate and evaluate the proposed method with data from patients hospitalized for treatment of COVID-19. Additional results are provided in the Supplementary Material.

2 Optimal Selection of Subjects

2.1 Model Notation

Let X_i, Y_i, and Z_i denote, respectively, a predictor of interest, a Bernoulli outcome, and a vector of covariates and potential confounders associated with the i^{th} of n subjects in a randomly sampled cohort. Let X, Y, and Z denote a generic triplet, and let f_Z, $f_{X|Z}$, and $f_{Y|X,Z}$ denote, respectively, the marginal density of Z, the conditional density of X given Z, and the conditional probability mass function of Y given X and Z. For simplicity, suppose that $f_{Y|X,Z}$ is defined implicitly by \[
\text{logit}(f_{Y|X,Z}(y|x,z)) = z^T\alpha + x\beta.\] A logistic intercept may be included in the model by augmenting the covariates z with a constant component. Let $\pi(z)$ denote the conditional probability that Y is equal to one given that $Z = z$. Assume that $\pi(z)$ is less than $1/2$ for all z.
The Y_i and Z_i are observed in the whole cohort, but the X_i are observed in only a sub-sample selected by the investigator. Let δ_i denote the indicator that the i^{th} subject is selected for the sub-sample. The investigator has access to the Z_i and Y_i when choosing which subjects to include in the subset, but not the X_i. That is, the δ_i are conditionally independent of the X_i given the Z_i and Y_i.

Define sampling probabilities $\eta_y(z) = P(\delta_i = 1 \mid Y_i = y, Z_i = z)$ for $y = 0, 1$ and $\mu(z) = P(\delta_i = 1 \mid Z_i = z)$. Given the observed covariates $Z_i = z$, $\mu(z)$ gives the sampling probability/weight to include the ith subject in the sub-sample, while $\eta_y(z)$ further specifies the sampling weight to include the ith subject in the sub-sample given the observed Z_i and outcome $Y_i = y$, where y is either 1 or 0. Note that the η_y and μ are assumed the same across subjects; this corresponds to selection strategies equivariant with respect to re-ordering the indices of the subjects.

In what follows, we discuss the optimal sampling schemes and the corresponding optimal sampling probabilities $\mu(Z)$ and $(\eta_1(Z), \eta_0(Z))$. We focus on the scenario in which the researcher is interested in estimating the effect of the unobserved predictor of interest X on the outcome Y. Here we develop the optimal sampling schemes for two pseudo conditional likelihood (PCL) estimators in [Wang and Wang (1997); Wang et al. (2002)], with some modifications to enable their applications to both continuous and discrete covariates and confounders. In addition, we provide a detailed discussion on the difference in optimal sampling probabilities between the proposed method and the method in [Tao et al. (2020)] for testing and estimating local effects, and provide a condition under which the two sampling schemes are unified.
2.2 The Modified PCL Estimators

We provide a brief introduction to the two PCL estimators and explain the modifications we have made to enable their application to a wider range of covariates and confounders beyond those of discrete distributions. The first estimator, which we refer to as the \textit{PCLvalidate} estimator, only uses data of subjects selected in the “validation set”, which contains subjects with both Z and X observed after sampling in the second-phase of study. The coefficients in the logistic regression are estimated by solving the estimating equations

$$n^{-1/2} \sum_{i=1}^{n} \delta_i \mathcal{X}_i \left[Y_i - H \left(\mathcal{X}_i \cdot (\alpha_0, \beta, \alpha_Z)^T + \log \left(\frac{\eta_1(Z_i)}{\eta_0(Z_i)} \right) \right) \right] = 0,$$

where $\mathcal{X}_i = (1, X_i, Z_i^T)$, $H(u) = (1 + \exp(-u))^{-1}$ is the logistic distribution function, $(\alpha_0, \beta, \alpha_Z)$ are the regression coefficients to be estimated associated with the intercept, X and Z, respectively. $\eta_1(Z_i)$ and $\eta_0(Z_i)$ are the sampling probabilities of selecting a subject with $Y_i = 1$ or $Y_i = 0$, respectively, given the value of Z_i.

The second estimator, which we refer to as the \textit{PCLboth} estimator, uses data from both the “validation set” and “non-validation set”, in which the latter is the subset of subjects with X remaining unobserved after the second phase sampling. The coefficients are estimated by solving the estimating equations

$$n^{-1/2} \sum_{i=1}^{n} \delta_i \mathcal{X}_i \left[\delta_i Y_i - \hat{H}_+(\mathcal{X}_i, Z_i) \right] + (1 - \delta_i) \bar{T}_i \left[\delta_i Y_i - \hat{H}_-(Z_i) \right] \right] = 0,$$

where $T_i = (1, R(Z_i), Z_i^T)$ with $R(Z_i) = \log(E[\exp(\beta X_i)|Z_i, Y_i = 0])$. The functions H_+ and H_- are defined by

$$H_+(X_i, Z_i) = H \left(\mathcal{X}_i \cdot (\alpha_0, \beta, \alpha_Z)^T + \log\left(\frac{\eta_1(Z_i)}{\eta_0(Z_i)} \right) \right)$$
and
\[H_-(Z_i) = H(T_i \cdot (\alpha_0, 1, \alpha_Z)^T + \log [(1 - \eta_1(Z_i))/(1 - \eta_0(Z_i))]), \]
respectively.

In solving for the PCL both estimates, \(R(Z_i) \) is unknown and needs to be estimated using data in the validation set. [Wang et al. (2002)] considered the case of discrete \(Z \) and estimated \(R(Z_i) \) based on the empirical conditional distribution of \(X \) given \(Z_i \) and \(Y_i = 0 \). This approach cannot be applied directly to continuous \(Z \). Here we propose a modified version of PCLboth so that the method is applicable to both discrete and continuous \(Z \). In estimating \(R(Z_i) \), instead of integrating over the empirical conditional distribution of \(X \) given \(Z \) and \(Y \) in the validation set as in [Wang et al. (2002)], a parametric linear regression model can be fitted for continuous \(X \) and a logistic regression can be fitted for binary \(X \) on \(Z \) and the indicator function \(I(Y = 0) \). Since the quantity \(R(Z_i) = \log(E[\exp(\beta X_i)|Z_i, Y_i = 0]) \) is the logarithm of the moment generating function of the conditional distribution of \(X \) given \((Z, I(Y = 0))\), assuming a model for \(X \) on \(Z \), we can write \(R(Z_i) \) explicitly with the regression parameters and estimate it using the parameter estimates from the validation set.

For continuous \(X \), \(R(Z_i) \) can be estimated by, for a fixed value of \(\beta \),
\[\hat{R}(Z_i) = \beta((Z_i^T, I(Y_i = 0)) \cdot \hat{\gamma}) + \beta^2 \hat{\sigma}_X^2 / 2, \]
where \(\hat{\gamma} \) and \(\hat{\sigma}_X^2 \) are the estimated regression coefficients and standard error in the linear regression. For binary \(X \), \(R(Z_i) \) can be estimated by
\[\hat{R}(Z_i) = \log (1 - \hat{p}(Z_i) + \hat{p}(Z_i) \cdot \exp(\beta)), \]
where \(\hat{p}(Z_i) \) is the predicted probability of \(X_i = 1 \) given \(Z_i \) and \(Y_i = 0 \) in the logistic regression.

2.3 Optimal Subsample Selection for Estimation of Effect of \(X \)

Both PCLvalidate and PCLboth estimators have been shown to be consistent and follow asymptotic normal distributions (Wang and Wang (1997); Wang et al. (2002)). Optimal sampling schemes are defined as those that result in the smallest asymptotic variances of the estimate \(\hat{\beta} \) of the coefficient associated with \(X \) in the PCL estimators.

For the PCLvalidate estimator, the asymptotic covariance matrix of all the regression coefficient estimates, calculated from the estimating equation (1), is (Wang et al. (2002))

\[
\Sigma_{\text{PCLval}} = [E(\delta \mathcal{X} \mathcal{X}^T H_+^{(1)}(X, Z))]^{-1},
\]

where \(H_+^{(1)} = H_+(X, Z)(1 - H_+(X, Z)) \). Given the conditional independence between \(\delta \) and \(X \) given \(Z \), (2) can be further written as the inverse matrix of

\[
E \left(\mu(Z) \begin{bmatrix} \tilde{Z} \tilde{Z}^T E(H_+^{(1)}|Z) & \tilde{Z} E(XH_+^{(1)}|Z) \\ E(XH_+^{(1)}|Z) \tilde{Z}^T & E(X^2 H_+^{(1)}|Z) \end{bmatrix} \right),
\]

where \(\tilde{Z} = (1, Z^T)^T \). For convenience, we re-arrange \(\mathcal{X} = (1, Z^T, X) \) without affecting the result, so that the element associated with the variance of \(\hat{\beta} \) is in the bottom right block of the matrix. Note that \(H_+(X, Z) = H(\mathcal{X}(\alpha_0, \beta, \alpha_Z)^T + \log(r(Z))) = r(Z)/(r(Z) + \exp(\mathcal{X}(\alpha_0, \beta, \alpha_Z)^T)) \) depends on \(X, Z \) and \(r(Z) := \eta_1(Z)/\eta_0(Z) \), which involves the control variables \(\eta_1(Z) \) and \(\eta_0(Z) \) in the optimization. To simplify the optimization, we approximate \(H_+(X, Z) \) with \(H_+ := r(Z)/(r(Z) + (1 - \pi(Z))/\pi(Z)) \), where \(\pi(Z) = P(Y = 1|Z) \), and let
\(H_+^{(1)} = H_+(1 - H_+) \). Then \(H_+^{(1)} \) and \(H_+ \) do not depend on \(X \) and can be taken out from the conditional expectations.

Taking the inverse of the matrix \([3] \), the asymptotic variance of \(\hat{\beta} \) is given by the reciprocal of

\[
\lambda = \frac{\mu(Z)}{\sqrt{\lambda}} \quad \text{if} \quad \frac{\hat{\sigma}_Z^2(Z)\pi(Z)}{\mu(Z)} \leq \hat{\sigma}_Z^2(Z) \leq \frac{\hat{\sigma}_Z^2(Z)}{4}, \quad \text{and}
\]

\[\mu(Z) = \begin{cases}
0 & \text{if } \frac{\hat{\sigma}_Z^2(Z)}{4} < \lambda, \\
\frac{\hat{\sigma}_Z^2(Z)\pi(Z)}{\sqrt{\lambda}} & \text{if } \frac{\hat{\sigma}_Z^2(Z)\pi^2(Z)}{\mu(Z)} \leq \lambda \leq \frac{\hat{\sigma}_Z^2(Z)}{4}, \quad \text{and} \\
1 & \text{if } \lambda \leq \frac{\hat{\sigma}_Z^2(Z)\pi^2(Z)}{\mu(Z)},
\end{cases} \]

Therefore, to minimize the variance of \(\hat{\beta} \), one needs to maximize \([4] \), which is approximately linear with respect to \(\mu(Z) \) and \(H_+^{(1)} \). Since \(\mu(Z) = \eta_1(Z)\pi(Z) + \eta_0(Z)(1 - \pi(Z)) \), and \(H_+ = \frac{\eta_1(Z)\pi(Z)}{\eta_1(Z)\pi(Z) + \eta_0(Z)(1 - \pi(Z))} \), \(\mu(Z)H_+^{(1)} \) is maximized, when fixing \(\mu(Z) \), by

\[
\mu(Z) \left(\frac{1}{4} I(\mu(Z) \in (0, 2\pi(Z)]) + \left(\frac{\pi(Z)}{\mu(Z)} - \frac{\pi^2(Z)}{\mu^2(Z)} \right) I(\mu(Z) \in (2\pi(Z), 1]) \right).
\]
where

\[
\tilde{\sigma}^2(Z) = E(X^2|Z) - 2\tilde{Z}^T E(X|Z) \left[\int \mu(z) H_+^{(1)} \tilde{z} \tilde{z}^T f(z) dz \right]^{-1} \cdot \int \mu(z) H_+^{(1)} \tilde{z} E(X|z)f(z) dz
+ \int \mu(z) H_+^{(1)} \tilde{z} T E(X|z)f(z) dz \cdot \left[\int \mu(z) H_+^{(1)} \tilde{z} \tilde{z}^T f(z) dz \right]^{-1} \tilde{Z} \tilde{Z}^T \left[\int \mu(z) H_+^{(1)} \tilde{z} \tilde{z}^T f(z) dz \right]^{-1}
\cdot \int \mu(z) H_+^{(1)} \tilde{z} E(X|z)f(z) dz.
\] (7)

Note \(\tilde{\sigma}^2(Z)\) depends on the first and second conditional moments of \(X\) given \(Z\), which must be known or estimated in previous studies. The expression of \(\tilde{\sigma}^2(Z)\) also depends on the sampling probabilities \(\mu(Z)\) on all of the support of \(Z\) and thus the optimal \(\mu(Z)\) cannot be written explicitly.

Here we propose an algorithm to find the optimal sampling probabilities. For a fixed value of the penalty parameter \(\lambda\), we update iteratively \(\tilde{\sigma}^2(Z)\) and \(\mu(Z)\) using Algorithm 1 under a maximum number of iterations of \(n_{\text{iter}}\) and a convergence criterion \(\alpha\). The term \(\pi(Z)\) is estimated by fitting a logistic regression of \(Y\) on \(Z\) using the data from the first phase of the study. The integrals in (7) are estimated with their empirical analogues using observations collected in the first phase of the study. The first and second conditional moments of \(X\) given \(Z\) are assumed to be known, at least approximately, from prior studies. Then we use a binary search to find the value of \(\lambda\) such that the constraint \(\int_{\tilde{\sigma}^2(z) \geq 4\lambda} \hat{f}_Z(z)dz \left(1 \wedge \tilde{\sigma}(z) \hat{\pi}(z)/\sqrt{\lambda} \right) = N/n\) is satisfied within a small tolerance margin, where \(\hat{f}_Z(z)\) denotes the empirical density of \(Z\), and solve for the corresponding \(\hat{\mu}(Z)\). Finally, given the estimated optimal \(\hat{\mu}(Z)\), by
optimizing, the corresponding estimates of \((\eta_1(Z), \eta_0(Z))\) satisfy

\[
\hat{\eta}_1(z) := \begin{cases}
\hat{\mu}(z)/(2\hat{\pi}(z)), & \text{if } \hat{\mu}(z) \in (0, 2\hat{\pi}(z)], \\
1, & \text{if } \hat{\mu}(z) \in (2\hat{\pi}(z), 1],
\end{cases}
\]

(8)

\[
\hat{\eta}_0(z) := \begin{cases}
\hat{\mu}(z)/(2(1 - \hat{\pi}(z))), & \text{if } \hat{\mu}(z) \in (0, 2\hat{\pi}(z)], \\
(\hat{\mu}(z) - \hat{\pi}(z))/(1 - \hat{\pi}(z)), & \text{if } \hat{\mu}(z) \in (2\hat{\pi}(z), 1].
\end{cases}
\]

(9)

Algorithm 1 Optimal Sampling probabilities for the PCLvalidate estimator

1: \textbf{procedure} OPTIMALMU\{(\(Z_i : i = 1, \ldots, n\)}, \(\lambda, \alpha, n_{\text{iter}}\)
2: \hspace{1em} Let \(k = 1\) \hspace{1em} \(\triangleright\) Initialization
3: \hspace{1em} Randomly sample initial values for \(\{\hat{\mu}^{(1)}(Z_i)\}\) from Uniform[0,1]
4: \hspace{1em} \textbf{while } \(\Delta \geq \alpha\) and \(k \leq n_{\text{iter}}\) \textbf{do}
5: \hspace{2em} Estimate \(\hat{\sigma}^2(Z_i)\) from (7) with \(\mu(Z_i) = \hat{\mu}^{(k)}(Z_i)\)
6: \hspace{2em} Let
7: \hspace{3em} \(\hat{\mu}^{(k+1)}(Z_i) = 0\) if \(\hat{\sigma}^2(Z_i) < \lambda\),
8: \hspace{3em} \(\hat{\mu}^{(k+1)}(Z_i) = \hat{\sigma}(Z_i)\hat{\pi}(Z_i)/\sqrt{\lambda}\) if \(\hat{\sigma}^2(Z_i) \hat{\pi}^2(Z_i) \leq \lambda \leq \hat{\sigma}^2(Z_i)/4\),
9: \hspace{3em} \(\hat{\mu}^{(k+1)}(Z_i) = 1\) if \(\lambda < \hat{\sigma}^2(Z_i)\hat{\pi}^2(Z_i)\).
10: \hspace{1em} Let \(r(Z_i) = (1 - \hat{\pi}(Z_i))/\hat{\pi}(Z_i)\) whenever \(\hat{\mu}^{(k+1)}(Z_i) \in (0, 2\hat{\pi}(Z_i)]\) and \(r(Z_i) = (1 - \hat{\pi}(Z_i))/\hat{\mu}^{(k+1)}(Z_i) - \hat{\pi}(Z_i)\) whenever \(\hat{\mu}^{(k+1)}(Z_i) \in (2\hat{\pi}(Z_i), 1]\)
11: \hspace{1em} Update \(H^{(1)}_+\) with new value of \(r(Z_i)\)
12: \hspace{1em} Update \(\Delta\) as the difference in \(\int_{\hat{\sigma}^2(z) \geq 4\lambda} \hat{f}(z)dz\) \(\triangleright\) between the current and previous iteration
13: \hspace{1em} Update \(k = k + 1\)
14: \hspace{1em} \textbf{return } \hat{\mu}(Z_i) = \hat{\mu}^{(k)}(Z_i) \hspace{1em} \(\triangleright\) Output \(\{\hat{\mu}(Z_i) : i = 1, \ldots, n\}\)

The development here assumed implicitly that the Lagrangian equation has a solution. When the distributions of the covariates and confounders are discrete, however, there may be only a zero crossing rather than a zero of the equation for \(\lambda\). In this case, any allocation of \(\mu(z)\) along the marginal values of \(z\) where \(\hat{\sigma}^2(z)\hat{\pi}^2(z)\) first exceeds the zero crossing point of
\(\lambda \) that also satisfies the constraint on the expected proportion of subjects selected is optimal.

For the PCLboth estimator, the asymptotic covariance matrix of all regression coefficients are given by

\[
\Sigma_{\text{PCLboth}} = \left[E(\delta X^T H_{+}^{(1)}(X, Z) + (1 - \delta) T T^T H_{-}^{(1)}(Z)) \right]^{-1},
\]

where \(T \) and \(H_{-}^{(1)} \) are defined previously. The asymptotic variance of \(\hat{\beta} \) is given by the reciprocal of

\[
\hat{\sigma}^2 = \int \left[[\mu(z) H_{+}^{(1)} E(X^2|z)] f(z) dz + (1 - \mu(z)) H_{-}^{(1)} \hat{R}(z)^2 \right] f(z) dz
\]

\[
- \int \left[[\mu(z) H_{+}^{(1)} \hat{z}^T E(X|z) + (1 - \mu(z)) H_{-}^{(1)} \hat{z}^T \hat{R}(z)] f(z) dz \right]
\]

\[
\cdot \left[\int [\mu(z) H_{+}^{(1)} \hat{z} \hat{z}^T + (1 - \mu(z)) H_{-}^{(1)} \hat{z} \hat{R}(z)] f(z) dz \right]^{-1}
\]

\[
\cdot \int [\mu(z) H_{+}^{(1)} \hat{z} E(X|z) + (1 - \mu(z)) H_{-}^{(1)} \hat{z} \hat{R}(z)] f(z) dz.
\]

Both \(H_{+}^{(1)} \) and \(H_{-}^{(1)} \) involve the sampling probabilities \(\eta_1(Z) \) and \(\eta_0(Z) \) and there is no explicit expression of the optimal \(\mu(Z) \), \(\eta_1(Z) \) and \(\eta_0(Z) \). In addition, (10) includes the term \(\hat{R}(Z) \) which contains the unknown parameter \(\beta \). As a result, it is not feasible to use an algorithm similar to that for the PCLvalidate estimator to estimate the optimal \(\mu(Z) \). Empirical evidence from later sections of the simulation studies demonstrates that the optimal sampling scheme for the PCLvalidate estimator performs well when combined with the PCLboth estimator. Hence, it is recommended to use the same optimal sampling scheme designed for the PCLvalidate estimator when estimating the predictor effect using the PCLboth estimator.

2.4 A Comparison of Optimal Sampling Schemes

When \(E(X|Z) \) can be represented as a linear function of \(Z \), (7) degenerates to the conditional variance \(\sigma^2(Z) = \text{Var}[X|Z] \). To see this, suppose \(E(X|Z) = \tilde{Z} \rho \), where \(\tilde{Z} = (1, Z^T)^T \) and \(\rho \)
is the vector of linear coefficients. Then it can be readily shown that \[\left[\int \mu(z) H^{(1)}_+ \tilde{z} \tilde{z}^T f(z) dz \right]^{-1}. \]
\[\int \mu(z) H^{(1)}_+ \tilde{z} E(X|z) f(z) dz = \rho, \text{ and } \tilde{\sigma}^2(Z) = E(X^2|Z) - [E(X|Z)]^2 = \sigma^2(Z). \]
Intuitively, the quantity \[\left[\int \mu(z) H^{(1)}_+ \tilde{z} \tilde{z}^T f(z) dz \right]^{-1} \int \mu(z) H^{(1)}_+ \tilde{z} E(X|z) f(z) dz \] is the coefficient of regressing \(X \) on \(Z \), re-weighted by the measure \(\mu(z) H^{(1)}_+ f(z) dz \).

If \(E(X|Z) = \tilde{Z} \rho \), the regression coefficients remain unaffected by the change of measure.

To facilitate comparison between the two sampling schemes, we briefly describe the result in Tao et al. (2020) using the same notation as in this paper. By maximizing the expected Fisher information of \(\beta \) at the second phase, as per Robins et al. (1994), subject to the constraint of selecting an expected proportion of subjects, their optimal \(\mu(Z) \) satisfies

\[\mu(z) = 0 \quad \text{if} \quad \sigma^2(z)/4 < \lambda, \]
\[\mu(z) = \sigma(z) \pi(z)/\sqrt{\lambda} \quad \text{if} \quad \sigma^2(z) \pi^2(z) \leq \lambda \leq \sigma^2(z)/4, \text{ and} \]
\[\mu(z) = 1 \quad \text{if} \quad \lambda \leq \sigma^2(z) \pi^2(z), \]
where \(\lambda \) satisfies

\[\int_{\sigma^2(z) \geq 4\lambda} f_Z(z) dz \left(1 \wedge \sigma(z) \pi(z)/\sqrt{\lambda} \right) = N/n. \]

Comparing the expressions (6) and (11), it is easy to see that when \(\tilde{\sigma}^2(Z) = \sigma^2(Z) \), the optimal sampling probabilities \(\mu(Z) \) in our proposed method unify with the optimal \(\mu(Z) \) for efficiency in testing and estimating local effects developed by Tao et al. (2020).

If \(E(X|Z) \) is not linear with respect to \(Z \), however, (7) is generally not the same as the conditional variance of \(X \) given \(Z \), and the proposed optimal sampling probabilities \(\mu(Z) \) are different from those in Tao et al. (2020). Without assuming local effects \(\beta = o(1) \), the proposed approach relies on the extra assumption that both \(E(X|Z) \) and \(E(X^2|Z) \)
are known \textit{a priori}, or at least can be well estimated from previous studies, whereas only $\text{Var}(X | Z)$ needs to be known in Tao et al. (2020).

3 Hypothesis Testing Methods

After selecting the subsample to collect the previously unobserved predictor X, the natural subsequent questions are how to estimate the effect of X on Y and how to test the statistical significance of the effect. In this section, we briefly discuss two methods available for testing the hypothesis $\beta = 0$ given the sampling probabilities $\mu(Z)$ and $(\eta_1(Z), \eta_0(Z))$ of the subsample selection schemes adopted by the researcher.

3.1 The Score Test

Based on the efficient score of the model (Robins et al. 1994), a score test with statistic

$$ \hat{S}_{\text{eff}} / (\hat{I}_{\beta, \beta} - \hat{I}_{\beta, \alpha} \hat{I}_{\alpha, \alpha}^{-1} \hat{I}_{\beta, \alpha})^{1/2} $$

(12)

can be adopted to test the hypothesis $\beta = 0$. Let $p_1(z) = P(Y = 1 | Z = z, \delta = 1)$, then the efficient score in (12) can be estimated by

$$ \hat{S}_{\text{eff}} = \sum_{i=1}^{n} (Y_i - \hat{\pi}_\alpha(Z_i)) \hat{E}^{X|Z} \{X_i | Z_i\} $$

$$ + \sum_{i=1}^{n} \delta_i (Y_i - \hat{p}_1(Z_i))(X_i - \hat{E}^{X|Z} \{X | Z_i\}) - \hat{I}_{\beta, \alpha} \hat{I}_{\alpha, \alpha}^{-1} \sum_{i=1}^{n} (Y_i - \hat{\pi}_\alpha(Z_i)) Z_i. $$

(13)

Furthermore, estimate the information components with $\hat{I}_{\beta, \beta} = \sum_i \hat{\pi}(Z_i)(1 - \hat{\pi}(Z_i))(\hat{E}^{X|Z} \{X_i | Z_i\})^2 + \hat{\mu}(Z_i) \hat{p}_1(Z_i)(1 - \hat{p}_1(Z_i)) \hat{\sigma}^2(Z_i)$, $\hat{I}_{\beta, \alpha} = \sum_i \hat{\pi}(Z_i)(1 - \hat{\pi}(Z_i)) \hat{E}^{X|Z} \{X_i | Z_i\} Z_i^T$ and $\hat{I}_{\alpha, \alpha}^{-1} = \sum_i \hat{\pi}(Z_i)(1 - \hat{\pi}(Z_i))(Z_i Z_i^T)$, with $\hat{\pi}_\alpha(Z_i)$, $\hat{p}_1(Z_i)$, and $\hat{E}^{X|Z} \{X_i | Z_i\}$ estimated from the
sample. Under the null hypothesis of $\beta = 0$, the test statistic (12) follows asymptotically a standard normal distribution.

3.2 Wald t-Tests Derived From the PCL estimators

Alternatively, Wald-type t statistics derived from the two PCL estimators and their asymptotic covariance matrices (Wang and Wang (1997); Wang et al. (2002)) can be used to test the null hypothesis. Specifically, with the estimated sampling probabilities $\{\hat{\mu}(Z_i)\}$ used in collecting the new predictor, the Wald t-statistics associated with both estimators can be written as $\hat{\beta}/se(\hat{\beta})$, where $se(\hat{\beta})$ is the estimate of the reciprocal of (4) for the PCLvalidate estimate of β, or of the reciprocal of (10) for the PCLboth estimate of β.

4 Simulation Studies

4.1 Simulation Settings

In this section we conduct a comprehensive simulation study to examine the proposed sampling scheme, and to compare it with existing methods, including the optimal subsample selection for testing local alternatives in Tao et al. (2020), a purely random selection and a case-control sampling scheme. With each sampling scheme, we estimate the logistic regression coefficients using four estimators: the naive complete data estimator, the inverse probability weighting (IPW) estimator, and the two pseudo conditional likelihood PCLboth and PCLvalidate estimators described in Section 2.2. In addition, we test the null hypothesis $\beta = 0$ using the Wald t-tests associated with each of the four estimators as well as the score test introduced in Section 3.

We investigate multiple simulation settings to examine the performance of difference
sampling schemes and estimators under a variety of scenarios. In each setting, we also examine the results when varying the number of subjects selected in the second phase subsample, as well as the event rate $P(Y_i = 1)$ by changing the intercept value in the generative model for the outcome Y.

A total of 50 independent simulation runs are conducted for each combination of parameters and simulation setting. Each simulation run generates a sample of $n = 400$ subjects from a logistic model. The binary outcome is determined by the predictor of interest X and other covariates Z including the intercept. The specific parameter values used to generate X, Z, and Y in each simulation are provided in the respective subsections of the results.

In each simulation run, we conduct the following two-phase sampling procedure. In the first-phase sample, X is assumed not observable in any subject. In the second phase, a sub-sample with expected size N is to be selected to further collect values of X. Assuming the conditional first and second moments of X given Z can be estimated in a pilot study, one can calculate the sampling probabilities $\mu(Z_i)$ and $(\eta_1(Z_i), \eta_0(Z_i))$ for each subject i given the observed $\{Z_i\}$ and outcomes $\{Y_i\}$ using the proposed approach described in Section 2.3. Then the sampling indicators $\{\delta_i\}$ of whether X_i should be collected are generated from independent Bernoulli distributions with probabilities $\eta_1(Z_i)$ or $\eta_0(Z_i)$, depending on whether the observed outcome Y_i equals 1 or 0. We also calculate the optimal sampling probabilities given in the method of Tao et al. (2020) and generate the corresponding sampling indicators, assuming the conditional variance of X given Z can be estimated. In addition, a purely random selection and a case-control sampling are conducted, with the same expected sample size as in the proposed sampling scheme, to collect values of X. In the purely random selection, subjects are selected with equal probabilities regardless of the values of the outcome and covariates. In the case-control selection scheme, an equal number
of subjects are randomly selected from the subgroups of subjects with $Y = 1$ and $Y = 0$.

We compare the performance of all four sampling schemes in the estimation and hypothesis testing of the effect of X on Y. To evaluate the estimation performance, we compare the mean squared errors (MSE) of the estimates using four estimators: the naive complete data estimator, the inverse probability weighting (IPW) estimator (calculated with R package “survey”), and the two pseudo conditional likelihood estimators PCLboth and PCLvalidate described in Section 3. When using the PCLvalidate estimator, if $\eta_0(Z_i)$ or $\eta_1(Z_i)$ equals zero, a small positive value (0.01) is substituted for the zero to prevent infinite values in $\log(\eta_1(Z_i)/\eta_0(Z_i))$ in the estimating equations.

The PCLboth estimator uses data from both the validation set where the X is observed and the non-validation set of subjects without values of X. All other estimators only use the data from the validation set. Applying the PCLboth estimator requires estimating $R(Z_i)$, for which we fit a linear or logistic regression of X on Z, depending on whether X is continuous or dichotomous, with data in the validation set. The fitted models are correctly specified for the generative model of X given Z in the simulation settings. In practice, however, the linear and logistic regression models may be mis-specified, and extra bias can be induced in estimating $R(Z_i)$. We will further evaluate the influence of potential mis-specification of the conditional distribution of X given Z in the analysis of real data in Section 5. To test the null hypothesis of zero effect of X on Y while adjusting for covariates Z, we apply the score test and Wald tests described in Section 3 to the second-phase data of subjects selected with each of the four sampling schemes, and compare the rates of rejecting the null hypothesis with each approach.

The supplementary material contains additional simulation studies that compare the performance of the sampling schemes in estimating the predictor’s effect using the SMLE
method based on B-splines as described in (Tao et al. (2017)). It is observed that implementing this method can be computationally challenging especially with a large number of covariates and/or potential correlations among them. For example, one simulation run with the SMLE method typically takes ten times longer than running a simulation without it. Thus, for demonstrative purposes, we simplified the simulation setting to include only two covariates and evaluated the SMLE method’s performance against other estimating approaches discussed earlier. The results demonstrate that the SMLE method led to larger errors than the other methods and, as a result, is not included in the simulation studies presented in the main paper.

4.2 Simulation Results

4.2.1 Simulation Setting 1

In the first simulation setting, there are six covariates: $Z_1 \sim \text{Bernoulli}(p = 0.3), Z_2 \sim \text{Uniform}(0, 1), Z_3 \sim \text{Bernoulli}(p = 0.7), Z_4 \sim N(0, 1), Z_5 \sim \exp(1), Z_6 \sim \Gamma(0.5, 1)$. The predictor of interest X is generated from a Bernoulli distribution with $P(X = 1) = \frac{\exp(-1 + Z\beta_Z)}{1 + \exp(-1 + Z\beta_Z)}$, where $\beta_Z = (0.5, 0.5, 1, 2, -3, -2)$. The outcome Y is generated with a logistic model with regression coefficients $\beta = (\beta_0, 0.5, 0.5, 0, 0, 0, 0.5, \beta_X)$, in which β_0 is the intercept for controlling the event rate $P(Y = 1)$, $\beta_X = 2$ is the coefficient for the predictor of interest X, and the rest of the values are regression coefficients for Z_1 to Z_6.

Table 1 compares the estimation errors with each combination of the four sampling schemes and four estimators. The averaged square roots of the MSE are examined under different scenarios of sample size $N = 60, 120$ and 200, and event rate in the outcome $P(Y = 1) = 10\%$ and 15%. When the sample size is as small as $N = 60$, the proposed sampling
scheme leads to the best estimation performance with any choice of estimator. PCLboth estimator has the smallest MSE, and the PCvalidation and the naive complete data estimator come next. It is worth noting, however, that the naive estimator often leads to large bias in the estimation of other coefficients including the intercept. The sampling scheme in Tao et al. (2020) and case-control sampling lead to larger errors than the proposed approach, and the purely random sampling method is infeasible with very large errors regardless of the choice of estimator adopted. As the second-phase sample size N increases, the MSE decreases with all methods, and the gap in performance among the sampling approaches shrinks. The proposed method remains the best approach overall, leading to smallest errors with most of the estimators. One exception is when applying the sampling method in Tao et al. (2020) and the PCLboth estimator, which sometimes leads to small MSE as well.

	P($Y=1$)=10%	P($Y=1$)=15%						
	Proposed	TestLocal	Random	Case-Control	Proposed	TestLocal	Random	Case-Control
	Naive	IPW	PCLboth	PCLval	Naive	IPW	PCLboth	PCLval
N=60	0.891	1.061	0.715	0.911	0.821	0.964	0.541	0.84
	0.999	1.227	3.234	1.042	0.912	1.02	>10	0.937
	>10	>10	>10	>10	>10	>10	>10	>10
N=120	1.837	2.226	4.48	1.995	1.764	2.021	5.407	2.011
	0.552	0.605	0.541	0.556	0.465	0.52	0.443	0.491
	0.625	0.738	0.498	0.669	0.476	0.549	0.404	0.508
	1.406	1.406	>10	1.444	0.913	0.913	1.426	0.913
	0.766	0.866	0.726	0.766	0.672	0.71	0.624	0.672
N=200	0.435	0.417	0.406	0.413	0.394	0.446	0.439	0.439
	0.482	0.524	0.398	0.521	0.436	0.473	0.419	0.455
	0.7	0.7	0.576	0.7	0.681	0.681	0.57	0.681
	0.526	0.547	0.515	0.526	0.553	0.571	0.536	0.553

Table 1: Simulation setting 1: comparison of averaged square roots of mean squared errors (MSE) using different sampling schemes (rows: proposed sampling scheme, method in Tao et al. (2020) (TestLocal), purely random, case-control) and estimation methods (columns: naive complete data estimator, inverse probability weighting (IPW), PCLboth, PCLvalidate).
Table 2 compares the results of testing the null hypothesis $\beta_X = 0$ on data sampled with each of the four sampling schemes, and with different hypothesis testing methods: the Wald tests associated with each of the four estimators, and the score test. When $N = 60$, the proposed sampling and the method in Tao et al. (2020) both lead to high rates (around 90%) of rejecting the null hypothesis, and the score test performs better than the Wald tests. The case-control sampling performs worse, with about 70% rates of rejecting the null using the Wald tests, and around 90% rejection rate using the score test. The purely random sampling has the worse performance with much lower rate of rejecting the null. As sample size increases, the overall rates of rejecting the null increases with all sampling and testing methods, but the same ordering of performance persists.

	$P(Y=1)=10\%$		$P(Y=1)=15\%$							
	Naive	IPW	PCLboth	PCLval	Score	Naive	IPW	PCLboth	PCLval	Score
N=60										
Proposed	0.81	0.81	0.87	0.84	0.91	0.89	0.89	0.91	0.94	0.91
TestLocal	0.83	0.78	0.87	0.83	0.91	0.86	0.83	0.95	0.86	0.96
Random	0.2	0.43	0.4	0.16	0.62	0.34	0.43	0.57	0.33	0.77
Case-Control	0.71	0.71	0.71	0.71	0.84	0.67	0.67	0.67	0.67	0.91
N=120										
Proposed	0.9	0.92	0.94	0.94	0.94	0.97	0.98	0.99	0.99	1
TestLocal	0.92	0.89	0.94	0.9	0.95	0.98	0.97	0.99	0.98	1
Random	0.56	0.55	0.76	0.53	0.76	0.72	0.71	0.83	0.73	0.89
Case-Control	0.87	0.87	0.87	0.87	0.89	0.91	0.91	0.91	0.91	0.96
N=200										
Proposed	0.98	0.98	0.98	0.98	0.98	1	1	1	1	1
TestLocal	0.98	0.95	0.98	0.95	0.98	1	1	1	1	1
Random	0.8	0.8	0.87	0.79	0.88	0.94	0.94	0.97	0.94	0.96
Case-Control	0.94	0.94	0.94	0.94	0.96	1	1	1	1	1

Table 2: Simulation setting 1: comparison of rates of rejecting the null hypothesis using different sampling schemes (rows: proposed sampling scheme, method in Tao et al. (2020) (TestLocal), purely random, case-control) and testing methods (columns: Wald tests associated with the naive complete data estimator, inverse probability weighting (IPW), PCLboth, PCLvalidate, and the score test).

4.2.2 Simulation Setting 2

In this simulation setting, we fix $P(Y = 1) = 15\%$ and vary the effect size $\beta_X = 0.5$ and 1 for the predictor of interest on the outcome. The other model parameters remain the same as in simulation setting 1 in the previous section. Results of the estimation and hypothesis testing
using different sampling schemes under different sample size requirements ($N = 80, 120, 200$) are shown in Tables 3 and 4. In this setting, the smallest sample size is increased from 60 to 80 to accommodate for the smaller effect size for approaches to be feasible. To demonstrate the difference in sampling probabilities, as an example, the estimated optimal $\mu(Z_i)$ in the $\beta_X = 0.5$ scenario using the proposed method and the method described in Tao et al. (2020) are displayed in additional figures in the Supplementary Material.

With a moderate effect size $\beta_X = 1$, at the largest sample size $N = 200$, all four sampling schemes lead to meaningful results, except for the purely random sample combined with the PCLboth estimator, in which some simulation runs have very large MSE. The proposed sampling approach generally performs the best, with small MSE when using all four estimators. The sampling scheme proposed in Tao et al. (2020) leads to similar performance when using the PCLboth estimator. The case-control sampling scheme performs worse than the proposed scheme and the method in Tao et al. (2020), but is overall better than the purely random sampling. Again we observe the choice of sampling scheme plays a more important role than the choice of estimator. As sample size decreases, the purely random sampling scheme becomes less reliable, leading to larger MSE with all four estimators. The MSEs of the case-control sampling also increase considerably. Both the proposed sampling and the method in Tao et al. (2020) are able to hold up. Overall the proposed approach outperforms other sampling methods when using all estimators. When using the PCLboth estimator, the sampling method in Tao et al. (2020) also demonstrates comparable and sometimes even smaller MSE, indicating the robustness of the PCLboth estimator.

With a smaller effect size $\beta_X = 0.5$, the MSE is generally larger than those in the $\beta_X = 1$ scenario. The proposed sampling scheme out-performs other methods, with the smallest MSE using the PCLboth estimator when sample size is small ($N = 80$). The
sampling method in [Tao et al. (2020)] lead to larger MSE than the proposed method, with very large errors in some simulation runs when using the PCLboth estimator. The case-control sampling scheme performs worse than the previous two approaches, and the purely random sampling becomes highly unreliable with very large errors in small-sample scenario.

N=80	Naive	IPW	PCLboth	PCLval	Naive	IPW	PCLboth	PCLval
Proposed	0.464	0.526	0.442	0.477	0.578	0.64	0.527	0.614
TestLocal	0.531	0.609	0.386	0.565	0.749	0.822	>10	0.776
Random	4.22	4.22	>10	4.42	>10	>10	>10	>10
Case-Control	0.874	0.988	0.689	0.906	0.82	0.933	0.726	0.82

N=120	Naive	IPW	PCLboth	PCLval	Naive	IPW	PCLboth	PCLval
Proposed	0.493	0.513	0.465	0.489	0.621	0.61	0.579	0.607
TestLocal	0.521	0.591	0.434	0.569	0.612	0.654	0.559	0.654
Random	1.846	1.846	3.361	2.006	3.626	3.626	19.507	4.135
Case-Control	0.644	0.689	0.625	0.644	0.755	0.797	0.736	0.755

N=200	Naive	IPW	PCLboth	PCLval	Naive	IPW	PCLboth	PCLval
Proposed	0.448	0.451	0.428	0.452	0.454	0.442	0.428	0.435
TestLocal	0.49	0.519	0.416	0.509	0.505	0.54	0.427	0.519
Random	0.646	0.646	>10	0.646	1.042	1.042	>10	1.104
Case-Control	0.53	0.554	0.519	0.53	0.568	0.589	0.561	0.568

Table 3: Simulation setting 2: comparison of averaged square roots of mean squared errors (MSE) using different sampling schemes (rows: proposed sampling scheme, sampling method in [Tao et al. (2020)] (TestLocal), purely random, case-control) and estimation methods (columns: naive complete data estimator, inverse probability weighting (IPW), PCLboth, PCLvalidate).

The results of hypothesis testing are provided in Table 4. Due to the small effect size associated with the predictor of interest, the rates of rejecting the null hypothesis are generally smaller comparing to the previous simulation setting. The proposed method and the sampling scheme in [Tao et al. (2020)] yield similar performance and have the highest rates of rejection using the score test and the Wald test associated with the PCLboth estimator. Case-control sampling comes next, and the purely random sampling again leads to the worst performance.
Table 4: Simulation setting 2: comparison of rates of rejecting the null hypothesis using different sampling schemes (rows: proposed sampling scheme, sampling method in Tao et al. (2020) (TestLocal), purely random, case-control) and testing methods (columns: Wald tests associated with the naive complete data estimator, inverse probability weighting (IPW), PCLboth, PCLvalidate, and the score test).

5 Demonstration with Analysis of Covid-19 Data

5.1 Data

We demonstrate the proposed method with data from all 170 patients hospitalized for treatment of coronavirus disease 2019 (COVID-19) at University of California San Diego Health between February 10, 2020 and June 17, 2020. For details of the data and a comprehensive analysis of severe vs. mild disease and of recovery of COVID-19, see Daniels et al. (2020).

For illustrative purposes, here we focus on the binary outcome of whether a patient ever entered the severe disease status, defined as either admission to the ICU or death. We define the outcome $Y = 0$ if a patient ever had severe status, and $Y = 1$ if the disease was always mild. Out of the 170 patients, 90 ever entered severe status while 80 only had mild symptoms. The primary exposure of interest is the use of statins within the 30 days prior to admission (yes or no). Other potentially important covariates included are
use of angiotensin-converting enzyme (ACE) inhibitors and angiotensin II receptor blockers (ARBs). Comorbid conditions including obesity, hypertension, CVD (defined as history of coronary artery disease, stroke and/or transient ischemic attack, peripheral arterial disease, or heart failure), diabetes mellitus, and chronic kidney disease (CKD) are also adjusted for in the analysis.

We examine the effectiveness of the proposed sampling scheme for estimating the effect of use of statins on severe vs. mild COVID-19 diseases. Suppose the predictor of interest, use of statins, was not included in the original data and is unobserved for all of the $n = 170$ subjects. We simulate the scenario in which the use of statins later becomes of interest and the researcher would like to collect this variable from N of the 170 existing patients in the second-phase of the study.

To determine which patients are to be selected for gathering information on statins use, the proposed sampling scheme for the PCLvalidate estimator as well as the sampling scheme in Tao et al. (2020), the purely random selection and the case-control sampling schemes are applied to the data. The conditional first and second moments of the predictor given the other covariates as well as the conditional variance are estimated with logistic regressions using the full data so that the optimal sampling probabilities in the proposed approach and in Tao et al. (2020) can be calculated. To test the null hypothesis $\beta_{\text{statins}} = 0$, we apply both the score test (12) and Wald t-tests described in Section 3 to datasets selected using each of the sampling schemes. To estimate the regression coefficients, we apply four approaches including the naive complete data estimator, the IPW estimator, and the two PCL estimators, and compare the averaged mean squared errors (MSE) to evaluate the influence of sampling schemes on the estimation accuracy. Applying the PCLboth estimator requires estimating $R(Z_i)$, which is achieved by fitting a logistic regression of X on the
covariates Z. Unlike in the simulation studies, the generative model of X is unknown, and this logistic regression model may be mis-specified. Therefore, analyzing the real data provides an opportunity to assess different sampling schemes when using the PCLboth estimator under potential model mis-specification.

We conduct 50 independent runs of random selections with each of the four schemes. In comparing the estimation results, logistic regression coefficients estimated using the full data with use of statins observed in all 170 patients are taken as the ground truth. In the full data, the use of statins is significantly associated with mild vs. severe COVID-19 disease, with estimated $\beta = 1.34$ (odds ratio 3.8) and p-value 0.009.

5.2 Results

We compare the estimation results of the effect of statins use with all combinations of sampling schemes and estimators in two settings of $N = 40$ and $N = 60$. The first setting represents a scenario of parsimonious sample size, in which less than 25% of the first-phase sample can be selected in the second phase to collect the new predictor of interest. The second is a modest sample size setting with about 35% of subjects selected in the second stage.

Figure 1 displays the boxplots of the square roots of MSE in estimating the effect of statins on mild vs. severe diseases in the settings $N = 40$ and $N = 60$, respectively. Table 5 lists the averaged square roots of MSE over all simulation runs for each combination of sampling schemes and estimators. In both settings, the proposed sampling scheme leads to an overall better performance with smaller estimation errors with all estimators except for with the PCLboth estimator when $N = 60$. It is also observed that within each sampling scheme, different estimators yield similar estimation results for the effect of the
predictor of interest. The sampling method in Tao et al. (2020) yields estimation errors about 1.5 times of those using the proposed sampling scheme when $N = 40$, and about 1.3 times when $N = 60$. As the sample size allowance increases, the gap between the two methods decreases. Both case-control and purely random sampling schemes have much worse performance and larger variability of results. In particular, using the PCLboth estimator can lead to very large errors in some simulation runs, making the method highly unreliable.

Another interesting observation is that when sample size increases, the average errors using the proposed sampling scheme also slightly increase, though still smaller than those of other methods, indicating potential heterogeneity in the effect of the predictor in the cohort of subjects. On the other hand, the boxplots demonstrate that the variance of the estimation error generally decreases with increased sample size, as expected.

Figure 1: Comparison of estimation results: $N = 40$ and $N = 60$
We also conduct hypothesis tests to assess the effect of statin use on the outcome using Wald t-tests associated with the estimators and the score test. Table 5 displays the rates of rejecting H_0 with all combinations of sampling and testing methods. In the $N = 40$ setting, the small sample size results in most of the Wald tests having a lower rate of rejecting the null across all sampling schemes. However, even in this setting, the Wald t-tests associated with the PCLboth estimator still perform well with rejection rates above 0.95 when using the proposed sampling scheme and the optimal sampling scheme for testing local alternatives (Tao et al. (2020)). The score test also yields similar performance when paired with the proposed sampling scheme. The purely random and case-control sampling methods largely fail in testing the null hypothesis, indicating they are under-powered when the sample size in the second phase of the study is small.

In the $N = 60$ setting, due to the increased sample size in the second phase of the study, both the proposed sampling method and the method in (Tao et al. (2020)) result in almost 100% rejection rates of the null hypothesis across all testing methods. However, the purely random and case-control sampling schemes continue to under-perform with maximal rejection rates of around 0.4 in all testing methods. For both the random and case-control sampling schemes, the score test yields higher rates of rejecting the null compared to other

N=40	Naive	IPW	PCLboth	PCLval
Proposed	0.139	0.154	0.23	0.157
TestLocal	0.347	0.346	0.55	0.38
Random	10.755	10.755	170.38	10.755
Case-Control	10.181	10.194	25.981	10.18

N=60	Naive	IPW	PCLboth	PCLval
Proposed	0.193	0.205	0.444	0.214
TestLocal	0.239	0.271	0.36	0.261
Random	1.26	1.26	0.658	1.28
Case-Control	2.14	2.138	129.028	2.14

Table 5: Comparison of averaged square roots of MSE using each of the sampling schemes and estimators
methods.

	N=40	Wald:Naive	Wald:IPW	Wald:PCLboth	Wald:PCLval	Score Test
Proposed	0.7	0.5	0.98	0.84	0.98	
TestLocal	0.1	0.2	0.98	0.36	0.16	
Random	0.08	0.36	0.08	0.04	0.24	
Case-Control	0.04	0.38	0.12	0.12	0.26	

	N=60	Wald:Naive	Wald:IPW	Wald:PCLboth	Wald:PCLval	Score Test
Proposed	0.98	0.92	1	1	1	
TestLocal	1	0.96	1	0.98	1	
Random	0.3	0.26	0.4	0.24	0.46	
Case-Control	0.12	0.16	0.16	0.1	0.2	

Table 6: Rate of rejecting H_0 with each sampling scheme when using the Wald t-tests and the score test

6 Discussion

We have developed here a new approach to optimal selection of subjects for the ascertainment of a new predictor of interest in two-phase designs. The proposed approach aims to select second-phase sample of subjects for estimation of the predictor’s effect on the outcome, either local or non-local, using pseudo conditional likelihood estimators. We derive optimal sampling probabilities for selecting subjects in the second-phase subsample, and compare the results with existing methods including [Tao et al. (2020)].

The development here is based on a linear logistic regression model for the effect of the predictor of interest and the covariates and potential confounders on a dichotomous outcome. Central to the optimal sampling probabilities of subjects is the quantity $\hat{\sigma}^2(Z)$. Estimating $\hat{\sigma}^2(Z)$ requires prior knowledge, or at least reasonable estimations of, the quantities $E(X|Z)$ and $E(X^2|Z)$ from previous studies. Comparing to the method in [Tao et al. (2020)] for local effects $\beta = o(1)$ that requires only prior knowledge on $\text{Var}[X|Z]$, our proposed approach for estimating general effects requires a small amount of extra knowledge of both the first and second conditional moments of X given Z, reflecting the trade-off between the applicability...
of the approach and assumptions needed to support the applications. In practice, however, the difficulty of estimating the conditional variance is similar to that in estimating the two first conditional moments, making our proposed approach attractive from a practical point of view given its capacity of dealing with non-local predictor effects.

We assess the effectiveness of our proposed method by conducting simulations and real data analysis, and compare it to existing sampling schemes. Our findings demonstrate that the proposed approach outperforms current methods, particularly when there are stringent sample size requirements for the second-phase subsample and when the model includes a large number of relevant covariates. Moreover, the data analysis also highlights the performance of various methods under potential model misspecification and complex correlation structures among the covariates and confounders. Results from both the simulations and data analysis reveal the practicality and usefulness of our proposed approach.

If several new predictor variables are to be ascertained, each with a different generalized conditional variance $\tilde{\sigma}^2$, a sampling strategy that minimizes asymptotic variance for one may make for less accurate estimation when examining the effects of the others. Likewise, if transformations of the predictor of interest are perhaps to be chosen as indicated by the data, then which generalized conditional variance to use in computing sampling probabilities is indeterminate. These questions will be addressed in future research.

References

Breslow, N., McNeney, B., and Wellner, J. A. (2003). Large sample theory for semiparametric regression models with two-phase, outcome dependent sampling. *The Annals of Statistics*, 31.
Breslow, N. E. and Cain, K. C. (1988). Logistic regression for two-stage case-control data. *Biometrika*, 75:11–20.

Breslow, N. E. and Chatterjee, N. (1999). Design and analysis of two-phase studies with binary outcome applied to wilms tumour prognosis. *Journal of the Royal Statistical Society: Series C (Applied Statistics)*, 48:457–468.

Breslow, N. E. and Holubkov, R. (1997). Maximum likelihood estimation of logistic regression parameters under two-phase, outcome-dependent sampling. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 59:447–461.

Cao, Y., Chen, L., Yang, Y., and Chen, J. (2020). Semiparametric maximum likelihood estimation with two-phase stratified case-control sampling. *Statistica Sinica*.

Cao, Y., Haneuse, S., Zheng, Y., and Chen, J. (2021). Two-phase stratified sampling and analysis for predicting binary outcomes. *Biostatistics*.

Chatterjee, N., Chen, Y.-H., and Breslow, N. E. (2003). A pseudoscore estimator for regression problems with two-phase sampling. *Journal of the American Statistical Association*, 98:158–168.

Che, M., Lawless, J. F., and Han, P. (2021). Empirical and conditional likelihoods for two-phase studies. *Canadian Journal of Statistics*, 49:344–361.

Dai, J. Y., LeBlanc, M., and Kooperberg, C. (2009). Semiparametric estimation exploiting covariate independence in two-phase randomized trials. *Biometrics*, 65:178–187.

Daniels, L. B., Sitapati, A. M., Zhang, J., Zou, J., Bui, Q. M., Ren, J., Longhurst, C. A., Criqui, M. H., and Messer, K. (2020). Relation of statin use prior to admission to severity and recovery among covid-19 inpatients. *American Journal of Cardiology*, 136:149–155.
Gravio, C. D., Tao, R., and Schildcrout, J. S. (2022). Design and analysis of two-phase studies with multivariate longitudinal data. *Biometrics*.

Lawless, J. F., Kalbfleisch, J. D., and Wild, C. J. (1999). Semiparametric methods for response-selective and missing data problems in regression. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 61:413–438.

Lin, D.-Y., Zeng, D., and Tang, Z.-Z. (2013). Quantitative trait analysis in sequencing studies under trait-dependent sampling. *Proceedings of the National Academy of Sciences*, 110:12247–12252.

Lotspeich, S. C., Shepherd, B. E., Amorim, G. G. C., Shaw, P. A., and Tao, R. (2021). Efficient odds ratio estimation under two-phase sampling using error-prone data from a multi-national hiv research cohort. *Biometrics*.

Maronge, J. M., Tao, R., Schildcrout, J. S., and Rathouz, P. J. (2021). Generalized case-control sampling under generalized linear models. *Biometrics*.

Robins, J. M., Hsieh, F., and Newey, W. (1995). Semiparametric efficient estimation of a conditional density with missing or mismeasured covariates. *Journal of the Royal Statistical Society: Series B (Methodological)*, 57:409–424.

Robins, J. M., Rotnitzky, A., and Zhao, L. P. (1994). Estimation of regression coefficients when some regressors are not always observed. *Journal of the American Statistical Association*, 89:846.

Scott, A. (1997). Fitting regression models to case-control data by maximum likelihood. *Biometrika*, 84:57–71.
Scott, A. and Wild, C. (1991). Fitting logistic regression models in case-control studies with complex sampling. *Analysis of Survey Data*, pages 109–121.

Scott, A. J. and Wild, C. J. (2011). Fitting regression models with response-biased samples. *Canadian Journal of Statistics*, pages n/a–n/a.

Tao, R., Mercaldo, N. D., Haneuse, S., Maronge, J. M., Rathouz, P. J., Heagerty, P. J., and Schildcrout, J. S. (2021). Two-wave two-phase outcome-dependent sampling designs, with applications to longitudinal binary data. *Statistics in Medicine*, 40:1863–1876.

Tao, R., Zeng, D., and Lin, D.-Y. (2017). Efficient semiparametric inference under two-phase sampling, with applications to genetic association studies. *Journal of the American Statistical Association*, 112:1468–1476.

Tao, R., Zeng, D., and Lin, D. Y. (2020). Optimal designs of two-phase studies. *Journal of the American Statistical Association*, 115:1946–1959.

Wang, C. Y., Chen, J. C., Lee, S. M., and Ou, S. T. (2002). Joint conditional likelihood estimator in logistic regression with missing covariate data. *Statistica Sinica*, 12:555–574.

Wang, C. Y. and Wang, S. (1997). Semiparametric methods in logistic regression with measurement error.

Weaver, M. A. and Zhou, H. (2005). An estimated likelihood method for continuous outcome regression models with outcome-dependent sampling. *Journal of the American Statistical Association*, 100:459–469.

White, J. E. (1982). A two stage design for the study of the relationship between a rare exposure and a rare disease. *American Journal of Epidemiology*, 115:119–128.
Zhou, H., Xu, W., Zeng, D., and Cai, J. (2014). Semiparametric inference for data with a continuous outcome from a two-phase probability-dependent sampling scheme. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 76:197–215.

Data availability statement

The COVID-19 patients data are confidential and are not available to the public. The simulation data and code that support the findings of this study will be made available in the supplementary material of this article.