ON EMERGENT GEOMETRY OF THE GROMOV-WITTEN THEORY OF QUINTIC CALABI-YAU THREEFOLD

JIAN ZHOU

Dedicated to the memory of Professor Boris Dubrovin

Abstract. We carry out the explicit computations that are used to write down the integrable hierarchy associated with the quintic Calabi-Yau threefold. We also do the calculations for the geometric structures emerging in the Gromov-Witten theory of the quintic, such as the Frobenius manifold structure and the special Kähler structure.

1. Introduction

Gromov-Witten theory is the mathematical theory for the physical theory of topological sigma models coupled to two-dimensional topological gravity. The observables in a topological sigma models, called the primary observable, correspond to the cohomological classes of the underlying symplectic manifold, and they form a finite dimensional space called the small phase spaces. The coupling with the two-dimensional topological gravity associates to each primary observable a sequence of observables, called their gravitational descendants, which form an infinite-dimensional space called the big phase space. One assigns a coupling constant to each observable, so one gets infinitely many formal variables as linear coordinates on the big phase space. The goal of the Gromov-Witten theory is to study the partition functions and the free energy of the topological sigma model coupled to the two-dimensional topological gravity as formal power series in the infinitely many coupling constants.

There are two major paradigms in the study of Gromov-Witten theory. The first is the Witten Conjecture/Kontsevich Theorem \[34, 26\] which relates the two-dimensional topological gravity to the KdV hierarchy. Since it involves integrable hierarchy, I will refer to it as the integrable hierarchy paradigm. The second is the mirror symmetry \[2\] which identifies the Gromov-Witten theory of the quintic Calabi-Yau threefold with another more computable theory. I will refer to it as the
mirror symmetry paradigm. For the past thirty years, Gromov-Witten theory has been developed to provide the justifications and generalizations of these discoveries by physicists by mathematically rigorous methods.

More recently, the author has worked on a program to unify these two paradigms. This of course has to go in two directions: (a) Understand integrable hierarchies from the point of view of mirror symmetry; (b) Understand mirror symmetry from the point of view of integrable hierarchy. At first sight, there are some manifest differences between the two paradigms. The integrable hierarchy paradigm predicts that the partition function of the Gromov-Witten invariants of each symplectic manifold is the tau-function of a suitable integrable hierarchy, specified by suitable constraints. It naturally involves infinitely many variables and infinite-dimensional Lie algebras that describes the symmetries of the relevant integrable hierarchy. On the contrary, the hallmark example of the mirror symmetry of the quintic Calabi-Yau three-folds focuses on the computation of the free energy function of the Gromov-Witten invariants restricted to a one-dimensional subspace of the small phase space. But the key feature of mirror symmetry is that it predicts the equivalence with a different theory, called its mirror theory. Furthermore, in the physics literature the differential geometry of moduli spaces play an important role.

Therefore, a first step towards unification consists of three problems: Problem 1. Provide a construction of a mirror theory for each integrable hierarchy; Problem 2. Find the integrable hierarchy associated with the quintic Calabi-Yau threefold. Problem 3. Discover the geometric objects hidden behind the integrable hierarchies.

One of the purpose of this paper is to report our results on Problem 2 and Problem 3. However, our approach used in this work are based on our understandings obtained in our work on Problem 1. We will postpone a detailed review of some progress there in Section 9 here we will just mention that in our earlier work on Problem 1 we have borrowed some ideas from statistical physics and introduced the notion of emergent geometry.

It turns out that the idea of using statistical physics becomes the crucial point of departure for our work on Problem 2 and Problem 3 in this paper. More generally, one can consider the problem of finding the integrable hierarchy associated to the Gromov-Witten theory of any compact symplectic manifold.

Like ordinary mean field theory, the mean field theory of Gromov-Witten theory discovered by Dijkgraaf and Witten [4, 34] reduces a problem with an infinite degree of freedom to a problem with only
finite degree of freedom. More precisely, they introduced finitely many order parameters that encode all the information in genus zero. The dependence of these order parameters on the infinitely many coupling constants can be determined in two different ways. First they are the critical points of a Landau-Ginzburg potential functions. Secondly, they satisfy a sequence of evolution equations in the coupling constants. Furthermore, the integrable hierarchy is expected to be generalized to arbitrary genus.

We reinterpret Dubrovin’s theory of Frobenius manifolds as part of emergent geometry of GW theory. The original goal of this theory is to reconstruct the whole theory from the genus zero part of the theory restricted to the small phase space. We reverse the direction. We start with the GW theory of a symplectic manifold and search for geometric structures that naturally emerge. Frobenius manifold structure is then an unavoidable candidate.

The rest of this paper consist of sections of two different natures. In some sections we review general theory reinterpreted from an emergent point of view, and in some sections we focus on the detailed computations for the quintic. More precisely, in Section 2 we review the mean field theory as developed by Dijkgraaf-Witten [4] and Witten [34]. The results for higher genera will be reviewed in Section 3 where we also present an operator formalism to compute the \(n \)-point functions in arbitrary genera. The corresponding concrete computations for the quintic are presented in Section 4 for genus zero and in Section 5 respectively. As our key results for these two Sections, we write down the Landau-Ginzburg potential function and the integrable hierarchy for the quintic. We briefly review some aspects of the Frobenius manifold theory useful for our purpose in Section 6 then we do the concrete computations for the quintic in Section 7. In Section 8 we discuss the emergent special geometry for the quintic. We make some conclusions and present some speculations for further investigations in the final Section 9.

2. MEAN FIELD THEORY OF GROMOV-WITTEN THEORY

In this Section we summarize the mean field theory for Gromov-Witten theory developed by Dijkgraaf-Witten [4] and Witten [34]. We emphasize that we want to understand their results as examples of emergent phenomena from the point of view of statistical physics. In the beginning we are working on an infinite-dimensional phase space, dealing with a formal power series with infinitely many formal variables.
called the coupling constants. In the end we know that we need to only work with finitely many functions called the order parameters.

The dependence of the order parameters on the coupling constants can be determined in two different ways. First, the order parameters are the critical points of a Landau-Ginzburg potential function. Secondly, the order parameters are governed by a system of infinitely many evolutive equations, one for each coupling constant.

2.1. The Gromov-Witten invariants as correlators. Let M be a compact symplectic manifold of dimension $2m$. For simplicity, we will only consider its Gromov-Witten invariants that involve cohomology classes of even degrees. So the small phase space is

\[H^\text{ev}(M) := \bigoplus_{k=0}^{m} H^{2k}(M). \]

For $\alpha \in H^{2k}(M)$, set $\deg \alpha := k$. Fix a basis $\{ O_j \}_{j=0}^r$ of $H^\text{ev}(M)$ such that $O_0 = 1$.

The big phase space is the space $H^\text{ev}(M)[[z]]$ of formal power series with coefficients in $H^\text{ev}(M)$. For $\omega \in H^\text{ev}(M)$, rewrite ωz^n as $\tau_n(\alpha)$. It is called the n-th gravitational descendant of ω.

For classes $\omega_1, \ldots, \omega_n \in H^\text{ev}(M)$, and integers $a_1, \ldots, a_n \geq 0$, the Gromov-Witten invariants are defined by

\[\langle \tau_{a_1}(\omega_1), \ldots, \tau_{a_n}(\omega_n) \rangle_{g,n;\beta} := \int_{[\overline{M}_{g,n}(M;\beta)]^\text{virt}} \omega_1^{a_1} \cdots \omega_n^{a_n}, \]

where $[\overline{M}_{g,n}(M;\beta)]^\text{virt}$ is the virtual fundamental class of stable maps of genus g with n marked points in the homology class $\beta \in H_2(M;\mathbb{Z})$.

The degree of $[\overline{M}_{g,n}(M;\beta)]^\text{virt}$ is the virtual dimension of $\overline{M}_{g,n}(M;\beta)$, given by the formula:

\[(m - 3)(1 - g) + n + \int_{\beta} c_1(M). \]

So the correlator $\langle \tau_{a_1}(\omega_1), \ldots, \tau_{a_n}(\omega_n) \rangle_{g,n;\beta}$ vanishes unless the following selection rule is satisfied:

\[\sum_{i=1}^{n} (\deg \omega_i + a_i) = (m - 3)(1 - g) + n + \int_{\beta} c_1(M). \]

2.2. The free energy, the partition function, and the n-point correlators. Denote by t_n^a the coupling constant associated with $\tau_n(\mathcal{O}_n)$.

The genus g free energy of the Gromov-Witten theory of M is defined by:

$$F_g = \sum_{n \geq 1} \sum_{\alpha_1, \ldots, \alpha_n = 0}^{r} \sum_{\beta \in H_2(M, \mathbb{Z})} \frac{1}{n!} \prod_{j=1}^{n} t_{\alpha_j}^{a_j} q^{\beta \langle \tau_{\alpha_1}(O_{\alpha_1}) \cdots \tau_{\alpha_n}(O_{\alpha_n}) \rangle_{g,n;\beta}}.$$

For $g = 0$ and $\beta = 0$, the summation starts at $n = 3$. The total free energy is defined by:

$$F := \sum_{g=0}^{\infty} \lambda^{2g-2} F_g.$$

The free energy contains all the information in the theory. From it one can define the n-point correlators in genus g:

$$\langle \langle \tau_{\alpha_1}(O_{\alpha_1}) \cdots \tau_{\alpha_n}(O_{\alpha_n}) \rangle \rangle_{g} := \frac{\partial^n F_g}{\partial t_{\alpha_1}^{a_1} \cdots \partial t_{\alpha_n}^{a_n}}.$$

The partition function of the Gromov-Witten theory is defined by

$$Z = \exp F.$$

The ultimate goal of Gromov-Witten theory is of course to have the ability to compute the free energy or the partition function or the n-point correlators in closed forms. Because they all involve infinitely many formal variables, this does not seem to be possible. As mentioned in the Introduction, Dijkgraaf and Witten [4] observed that one can borrow ideas from mean field theory in statistical physics to make this possible.

2.3. **Universal relations among correlators.** The reason that the approach of Dijkgraaf and Witten works is because of the topological nature of the Gromov-Witten theory, in other words, it is a topologically twisted $N=2$ superconformal field theory coupled with 2d topological gravity. Such a theory is based on the cohomology theory of the Deligne-Mumford moduli spaces $\overline{M}_{g,n}$ of algebraic curves. There are some universal relations among classes on $\overline{M}_{g,n}$ called tautological relations (see e.g. [32] for references, see also [28]). They lead to some universal relations among the correlators in Gromov-Witten theory. The following three equations hold in all genera. The first is the puncture equation:

$$\langle 1 \tau_{\alpha_1}(O_{\alpha_1}) \cdots \tau_{\alpha_n}(O_{\alpha_n}) \rangle_{g,n;\beta} = \sum_{i=1}^{n} \langle \tau_{\alpha_1}(O_{\alpha_1}), \ldots, \tau_{\alpha_{i-1}}(O_{\alpha_{i-1}}), \tau_{\alpha_{i+1}}(O_{\alpha_{i+1}}), \ldots, \tau_{\alpha_n}(O_{\alpha_n}) \rangle_{g,n;\beta},$$
with the exceptional case:

\[\langle 1 \mathcal{O}_{\alpha_1} \mathcal{O}_{\alpha_2} \rangle_{0,2;0} = \langle \mathcal{O}_{\alpha_1} \mathcal{O}_{\alpha_2} \rangle, \]

where the right-hand side is the Poincaré pairing of the two classes \(\mathcal{O}_{\alpha_1} \) with \(\mathcal{O}_{\alpha_2} \). The second is the dilaton equation:

\[
\langle \tau_1(1), \tau_{a_2}(\alpha_1), \ldots, \tau_{a_n}(\alpha_n) \rangle_{g,n;\beta} = (2g - 2 + n) \cdot \langle \tau_1(\alpha_1), \ldots, \tau_{a_i-1}(\alpha_i), \ldots, \tau_{a_n}(\alpha_n) \rangle_{g,n;\beta},
\]

with the exceptional case:

\[\langle \tau_1(1) \rangle_{1,1;0} = \frac{1}{24} \chi(M). \]

In terms of the free energy, these equations can be rewritten as follows:

\[
\frac{\partial F_g}{\partial \tau_0} = \sum_{n=0}^{\infty} \sum_{\alpha=0}^{r} t_{n+1}^\alpha \frac{\partial F_g}{\partial t_n^\alpha} + \delta_{g,0} \frac{1}{2} \eta_{\alpha\beta} t_0^\alpha t_0^\beta,
\]

\[
\frac{\partial F_g}{\partial \tau_1} = \sum_{n=0}^{\infty} \sum_{\alpha=0}^{r} t_n^\alpha \frac{\partial F_g}{\partial t_n^\alpha} + (2g - 2)\langle \mathcal{O} \rangle + \delta_{g,1} \frac{1}{24} \chi(M),
\]

where \(\eta_{\alpha\beta} = \langle \mathcal{O}_{\alpha}, \mathcal{O}_{\beta} \rangle_{0,2;0} \). The third is the divisor equation:

\[
\langle D, \tau_1(\alpha_1), \ldots, \tau_{a_n}(\alpha_n) \rangle_{g,n;\beta} = \langle D, \beta \rangle \cdot \langle \tau_1(\alpha_1), \ldots, \tau_{a_n}(\alpha_n) \rangle_{g,n;\beta} + \sum_{i=1}^{n} \langle \tau_{a_1}(\alpha_1), \ldots, \tau_{a_i-1}(\mathcal{O}, D), \ldots, \tau_{a_n}(\alpha_n) \rangle_{g,n;\beta}.
\]

2.4. Topological recursion relations

The topological recursion relation (TRR) in genus zero is the following equation:

\[
\frac{\partial^3 F_0}{\partial t^\alpha \partial t^\beta \partial t^\gamma} = \frac{\partial^2 F_0}{\partial t^\alpha_{n-1} \partial t^\mu} \eta^{\mu\nu} \frac{\partial^3 F_0}{\partial t^\mu \partial t^\beta \partial t^\gamma}.
\]

Witten has shown that it implies the generalized WDVV equations:

\[
\frac{\partial^3 F_0}{\partial t^a \partial t^b \partial t^c} \eta^{\mu\nu} \frac{\partial^3 F_0}{\partial t^\nu \partial t^c \partial t^d} = \frac{\partial^3 F_0}{\partial t^a \partial t^c \partial t^d} \eta^{\mu\nu} \frac{\partial^3 F_0}{\partial t^\nu \partial t^a \partial t^d}.
\]

When \(a = b = c = d = 0 \), this reduces to the WDVV equations:

\[
\frac{\partial^3 F_0}{\partial t^a \partial t^b \partial t^c} \eta^{\mu\nu} \frac{\partial^3 F_0}{\partial t^\nu \partial t^c \partial t^d} = \frac{\partial^3 F_0}{\partial t^a \partial t^c \partial t^d} \eta^{\mu\nu} \frac{\partial^3 F_0}{\partial t^\nu \partial t^a \partial t^d}.
\]

In genus one, Witten proposed the following TRR [34 (3.48)]:

\[
\frac{\partial F_1}{\partial t^\alpha} = \frac{\partial^2 F_1}{\partial t^\alpha_{n-1} \partial t^\beta} \eta^{\beta\gamma} \frac{\partial F_1}{\partial t^\gamma} + \frac{1}{24} \frac{\partial^3 F_1}{\partial t^\alpha_{n-1} \partial t^\beta \partial t^\gamma}.
\]
For its mathematical proof, see Getzler [20]. See also [21] for Getzler’s TRRs in genus two.

2.5. **Quantum cohomology.** The WDVV equations have the following algebraic interpretation. For \(t \in H^{ev}(M) \), define

\[
\frac{\partial}{\partial t^\alpha} \circ t \frac{\partial}{\partial t^\beta} = c^\gamma_{\alpha\beta}(t) \frac{\partial}{\partial t^\gamma},
\]

where the coefficients \(c^\gamma_{\alpha\beta}(t) \) are defined by:

\[
c^\gamma_{\alpha\beta}(t) := \frac{\partial^3 F_0(t)}{\partial t^\alpha \partial t^\beta \partial t^\delta} \eta^\delta_{\gamma}.
\]

Then \(\circ t \) is a commutative multiplication on \(H^e(M) \). By WDVV equations, it is also associative. Furthermore, because

\[
\frac{\partial^3 F_0(t)}{\partial t^0 \partial t^\alpha \partial t^\beta} = \eta_{\alpha\beta},
\]

\(\frac{\partial}{\partial t^0} \) is a unit for all \(\circ t \), i.e.,

\[
\frac{\partial}{\partial t^0} \circ t \frac{\partial}{\partial t^\alpha} = \frac{\partial}{\partial t^\alpha}.
\]

For simplicity of notations we will often write \(\circ \) for \(\circ t \).

2.6. **Order parameters in GW theory.** Following Dijkgraaf and Witten [4], choose the order parameters in GW theory to be:

\[
u_\alpha := \frac{\partial^2 F_0}{\partial t^1 \partial t^\alpha} = \langle \langle O_0 O_\alpha \rangle \rangle_0.
\]

The genus zero free energy \(F_0 \) consists of two parts: The classical part \(F_{\text{classical}} \) consists of 3-point correlators

\[
F_{\text{classical}} = \sum_{\alpha_1, \alpha_2, \alpha_3 = 0}^r \frac{\tau_{\alpha_1} \tau_{\alpha_2} \tau_{\alpha_3}}{3!} \langle O_{(\alpha_1)}, O_{(\alpha_2)}, O_{(\alpha_3)} \rangle_{0,3,0}
\]

\[(25)\]

and \(F_{\text{quantum}} \) consists of \(n \)-point correlators for \(n > 3 \). And so

\[
u_\alpha = \eta_{\alpha\beta} t^\beta + \cdots,
\]

where \(\cdots \) involves correlators of the form:

\[
\langle 1, O_\alpha, \tau_\alpha(O_{\alpha_1}), \ldots, \tau_{n-2}(O_{\alpha_{n-2}}) \rangle_{0, n; \beta}
\]

for \(n > 3 \). Note by the puncture equation [4],

\[
\langle 1, O_\alpha, O_{\alpha_1}, \ldots, O_{\alpha_{n-2}} \rangle_0
\]
for \(n > 3 \). Therefore, on the small phase space, i.e., after setting \(t_n^\alpha = 0 \) for all \(n > 0 \) and all \(\alpha = 0, \ldots, r \), we have:

\[
(27) \quad u_\alpha = \eta_{\alpha \beta} t^\beta.
\]

Equivalently, on the small phase space, \(t^\beta \) is equal to \(\eta_{\alpha \beta} u_\alpha \).

2.7. **Constitutive relations.** Let us now recall a crucial observation of Dijkgraaf and Witten [4]. On the small phase space \(\partial^2 F_0 \) is a formal power series in \(\{ t^\alpha \}_{\alpha=0}^r \), so one can write:

\[
(28) \quad \frac{\partial^2 F_0}{\partial t^\alpha \partial t_n^\beta} \bigg|_{t^\gamma_n=0, n>0, \gamma=0, \ldots, r} = R_{\alpha, a; \beta, b}(t^0, \ldots, t^r).
\]

Then Dijkgraaf and Witten [4] showed that on the big phase space

\[
(29) \quad \frac{\partial^2 F_0}{\partial t^\alpha \partial t_n^\beta} = R_{\alpha, a; \beta, b}(u^0, \ldots, u^r),
\]

where \(u^\alpha = \eta_{\alpha \beta} u_\beta \). They call these the **constitutive relations**. Their proof is based on the TRR in genus zero [16].

2.8. **Mean field theory of GW theory.** Let us recall how Dijkgraaf and Witten derived the Landau-Ginzburg equations for the order parameters, based on the puncture equation (13) and the constitutive relation (29) derived by TRR in genus zero (16).

Take \(\frac{\partial}{\partial t^\alpha} \) on both sides of (13) to get:

\[
\frac{\partial^2 F_0}{\partial t^0 \partial t^\alpha} = \sum_{n=0}^\infty \sum_{\beta=0}^r t_{n+1}^\beta \frac{\partial^2 F_0}{\partial t^\alpha \partial t^\beta_n} + \eta_{\alpha \beta} t^\beta,
\]

now plug in the constitutive relations (29) to get:

\[
(30) \quad u_\alpha = t_\alpha + \sum_{n=0}^\infty \sum_{\beta=0}^r t_{n+1}^\beta R_{\alpha, 0; \beta, n}(u_0, \ldots, u_r),
\]

for \(\alpha = 0, 1, \ldots, r \). These are the **Landau-Ginzburg equations** for the order parameters \(u_0, \ldots, u_r \). When \(R_{\alpha, 0; \beta, n} \)’s have been computed, one can solve for \(u_\alpha \) as formal power series in \(\{ t_n^\alpha \} \).

2.9. **The Landau-Ginzburg potential.** This line of ideas were further developed in Witten [34]. Recall that on the small phase space we have:

\[
R_{\alpha, 0; \beta, n}(t^0, \ldots, t^r) = \frac{\partial^2 F_0}{\partial t^\alpha \partial t_n^\beta} \bigg|_{t^\gamma_n=0, n>0, \gamma=0, \ldots, r},
\]
Therefore, if we write
\[R_{\beta,n}(t^0, \ldots, t^r) = \frac{\partial F_0}{\partial t^0} \bigg|_{t^\gamma_{n}=0, n>0, \gamma=0, \ldots, r}. \]

Then we have the following relation:
\[R_{\alpha,0;\beta,n}(t^0, \ldots, t^r) = \frac{\partial}{\partial u^\alpha} \left(\frac{\partial F_0}{\partial t^0} \bigg|_{t^\gamma_{n}=0, n>0, \gamma=0, \ldots, r} \right) \]
\[= \frac{\partial}{\partial u^0} R_{\beta,n}(t^0, \ldots, t^r). \]

Therefore,
\[R_{\alpha,0;\beta,n}(u^0, \ldots, u^r) = \frac{\partial}{\partial u^0} R_{\beta,n}(u^0, \ldots, u^r). \]

Plug this into the Landau-Ginzburg equations (30):
\[u^\alpha = t^\alpha + \sum_{n=0}^{\infty} \sum_{\beta=0}^{r} t_{n+1}^\beta \frac{\partial}{\partial u^\alpha} R_{\beta,n}(u^0, \ldots, u^r). \]

Therefore, if one sets (cf. Witten [34] (3.40)):
\[W = -\frac{1}{2} U^\alpha U^\alpha + t^\beta U^\beta + \sum_{n=0}^{\infty} \sum_{\beta=0}^{r} \tilde{t}_{n+1}^\beta R_{\beta,n}(U^0, \ldots, U^r), \]
then the equations for the critical point of \(W \) are exactly the Landau-Ginzburg equations (30).

Remark 2.1. If we set
\[R_{\beta,-1}(U^0, \ldots, U^r) = U^\beta, \]
and make the dilaton shift:
\[\tilde{t}_{n}^\beta = t_{n}^\beta - \delta_{\beta,0}\delta_{n,1}, \]
then the Landau-Ginzburg potential can be written in a more compact form:
\[W = \sum_{n=-1}^{\infty} \sum_{\beta=0}^{r} \tilde{t}_{n+1}^\beta R_{\beta,n}(U^0, \ldots, U^r). \]

Therefore, if one sets
\[R_{\beta}(U; z) := \sum_{n=-1}^{\infty} R_{\beta,n}(U) z^{-n-1} \]
and introduces the source operators:

\[J^\beta(z) := \sum_{n=0}^{\infty} \tilde{t}^\beta_n z^n, \]

then one rewrite (34) as a residue:

\[W(U) = \sum_{\beta=0}^{r} \text{res}_{z=0} (J^\beta(z) R^\beta(U; z) \frac{dz}{z}). \]

2.10. **Integrable hierarchy for genus zero GW invariants.** The next observation in Witten [34] is the emergence of an integrable hierarchy for genus zero GW invariants:

\[\frac{\partial}{\partial t^\alpha} u^\beta = \frac{\partial}{\partial t^\alpha} \left(\frac{\partial^2 F_0}{\partial t^0 \partial t^3} \right) = \frac{\partial}{\partial t^3} \left(\frac{\partial^2 F_0}{\partial t^0 \partial t^3} \right). \]

Therefore, by the constitutive relations (29) he obtained a sequence of equations:

\[\frac{\partial u^\beta_n}{\partial t^\alpha_n} = \frac{\partial}{\partial t^0} R_{\alpha,0;\beta,n}(u^0, \ldots, u^r). \]

Witten [34] gave the following Hamiltonian formulation for this integrable hierarchy. Regard \(u_\alpha \) as functions of \(x = t^0 \), and define the following Poisson bracket on the loop space of the space of order parameters:

\[\{u_\alpha(x), u_\beta(y)\} = \eta_{\alpha\beta} \partial_x \delta(x - y). \]

Then (40) is the system of Hamiltonian of motion

\[\frac{\partial u_\alpha}{\partial t^3_n} = \{u_\alpha, H_{\beta,n}\}, \]

where \(H_{\beta,n} \) is the Hamiltonian functional

\[H_{\beta,n} = \int dx R_{\beta,n}(u^0, \ldots, u^r). \]

3. **Renormalization Theory, New Coordinates on the Big Phase Space and Operator Formalism of Gromov-Witten Theory**

We will present in this Section a method that computes the \(n \)-point correlation functions on the big phase space based on some works of Eguchi and his collaborators. It is a continuation of the development of the mean field theory of GW theory to general \(n \)-point functions in arbitrary genera. We will use an operator formalism that leads to an
interpretation of the partition function as an element in a bosonic Fock space.

3.1. **Mean field theory for higher genera.** Dijkgraaf and Witten computed the genus one free energy of the two-dimensional topological gravity by TRR in genus one. In general, Witten [34] claimed that if one sets

\[M_{\alpha\beta} = \frac{\partial^2 F_0}{\partial t_0 \partial t^\alpha \partial t^\beta} = \frac{\partial}{\partial t_0} R_{\alpha,\beta}(u_0, \ldots, u_r), \]

then

\[F_1 = \frac{1}{24} \log \det(M_{\alpha\beta}) + E(u_0, \ldots, u_r) \]

for some function \(E \) depending only on \(u_\alpha \). See Eguchi-Getzler-Xiong [14] for a proof.

For higher genera, Witten [34] introduced

\[u_{\alpha,n} := \frac{\partial^n}{\partial (t^0)^n} u_\alpha, \]

and set \(\deg u_{\alpha,n} = n \), then he conjectured that there are functions \(R_{\alpha,m;\beta,n}^{(g)} \) of degree \(2g \) in \(\{u_{\alpha,n}\} \) such that

\[\frac{\partial^2 F_g}{\partial t_n^\alpha \partial t_n^\beta} = R_{\alpha,m;\beta,n}^{(g)}(\{u_{\alpha,n}\}). \]

This conjecture implies that one can associate an integrable hierarchy of differential equations associated to every compact symplectic manifold via the GW theory. One simply sets

\[U_\alpha = \sum_{g=0}^{\infty} \lambda^{2g} u_{\alpha}^{(g)}, \]

where \(u_{\alpha}^{(g)} \) is defined by:

\[u_{\alpha}^{(g)} = \frac{\partial^2 F_g}{\partial t^\alpha \partial t^\alpha}, \]

then one gets a system of equations:

\[\frac{\partial U_\alpha}{\partial t_n^\beta} = \partial_{x} R_{\alpha,0;\beta,n} \]

where

\[R_{\alpha,m;\beta,n} = \sum_{g=0}^{\infty} \lambda^{2g} R_{\alpha,m;\beta,n}^{(g)} \]
3.2. Renormalized coupling constants as new coordinate systems on the big phase space. In the case of two-dimensional topological gravity, Itzykson and Zuber \[24\] noted that the following ansatz is compatible with the KdV hierarchy:

\[
F_1 = \frac{1}{24} \log \frac{1}{1 - I_1},
\]

\[
F_g = \sum_{2 \leq k \leq 3g-2} \sum_{(k-1)l_k = 3g-3} \frac{\langle \gamma_{l_2}^{l_3} \cdots \gamma_{3g-2}^{l_{3g-2}} \rangle g}{(1-I_1)^{2(g-1)}} \frac{I_2^{l_3} I_3^{l_4} \cdots I_{3g-2}^{l_{3g-2}}}{l_2! l_3! \cdots l_{3g-2}!},
\]

where \(I_n \) are defined by:

\[
I_k = \sum_{p=0}^{\infty} t_{k+p} \frac{u_0^p}{p!},
\]

and \(u_0 \) is determined by:

\[
u_0 = \sum_{p=0}^{\infty} t_p \frac{u_0^p}{p!}.
\]

Eguchi, Yamada and Yang \[15\] showed that there exist formulas of the form:

\[
F_g = \sum_{\sum_k (k-1)l_k = 3g-3} \frac{a_{l_2 \cdots l_{3g-2}}}{u_1^{2(1-g)+\sum kl_k}} \left(\frac{u_2^{l_3} \cdots u_{3g-2}^{l_{3g-2}}}{u_1^{2(1-g)+\sum kl_k}} \right),
\]

\[
\text{for } g > 1, \text{ where } u_k = \frac{\partial^k u_0}{\partial x^k}.
\]

They also discussed the \(O(N) \) vector model \[30\] and noted results similar to that of Itzykson-Zuber in the case of 2D topological gravity also hold. This was further studied by the author in \[37\]. The new interpretation in that work is that starting with an action:

\[
S = -\frac{1}{2} x^2 + \sum_{n \geq 1} t_{n-1} x^n n!,
\]

one can perform a sequence of renormalizations of the coupling constants to reach in the limit:

\[
S = \sum_{k=0}^{\infty} \frac{(-1)^k}{(k+1)!} (I_k + \delta_{k,1}) I_0^{k+1} - \frac{1}{2} (x - I_0)^2 + \sum_{n=1}^{\infty} I_n (x - I_0)^{n+1} (n+1)!
\]

So the series \(\{I_k\} \) can be interpreted as renormalized coupling constants.
The Landau-Ginzburg equation (55) has been explicitly solved in [37] using Lagrange inversion formula:

\(u_0 = I_0 = \sum_{k=1}^{\infty} \frac{1}{k} \sum_{p_1+\ldots+p_k=k-1} t_{p_1} \ldots t_{p_k} \frac{1}{p_1!} \ldots \frac{1}{p_k!} \) \hspace{1cm} \text{(59)}

Plugging this into (54), one can express each \(I_k \) as a formal power series in \(\{ t_n \}_{n \geq 0} \). Conversely, we also showed in [37] that

\(t_k = \sum_{n=0}^{\infty} \frac{(-1)^n I_n}{n!} I_{n+k} \) \hspace{1cm} \text{(60)}

Therefore, the renormalized coupling constants can be used as new coordinates on the big phase space in this case. It follows that one can express the Virasoro operators in the case of 2D topological gravity in terms of these new coordinates. In a joint work with Qisheng Zhang [33], we have shown that one can use such expressions to prove the Itzykson-Zuber Ansatz and to find effective algorithms to compute \(F_g \) in terms of \(I_k \)’s.

3.3. Jet variables as new coordinate systems on the big phase space. In general, Eguchi and Xiong [16] conjectured that: If one sets

\(u_{\alpha_1 \alpha_2 \ldots \alpha_n} = \frac{\partial^{n+1} F_0}{\partial t^{\alpha_n} \partial t^{\alpha_1} \ldots \partial t^{\alpha_n}} \) \hspace{1cm} \text{(61)}

then for \(g \geq 1 \),

\(F_g = F_g(u_{\alpha}, u_{\alpha_1 \alpha_2}, \ldots, u_{\alpha_1 \alpha_2 \ldots \alpha_{3g-1}}), \quad g \geq 1 \) \hspace{1cm} \text{(62)}

Note by the constitutive relations and the integrable hierarchy [10],

\(u_{\alpha_1 \alpha_2 \ldots \alpha_n} = \frac{\partial}{\partial t^{\alpha_n}} \ldots \frac{\partial}{\partial t^{\alpha_2}} u_{\alpha_1} = \frac{\partial}{\partial t^{\alpha_n}} \ldots \frac{\partial}{\partial t^{\alpha_3}} (R_{\alpha_1,0;\alpha_2,0}(u))' \)

\(u_{\alpha_1 \alpha_2 \ldots \alpha_n} \) can be expressed in terms of \(\{ u_{\alpha,k} \mid \alpha = 0, \ldots, r, k = 0, \ldots, n-1 \} \). So \(F_g \) can be expressed in terms of \(\{ u_{\alpha,k} \mid \alpha = 0, \ldots, r, k = 0, \ldots, 3g-2 \} \). This is called the \((3g-2)\)-conjecture. In Eguchi-Getzler-Xiong [14], it was shown that \(\{ u_{\alpha,k} \mid \alpha = 0, \ldots, r, k \geq 0 \} \) can be used as new coordinates on the big phase space. The \((3g-2)\)-conjecture has been proved in Dubrovin-Zhang [13] under a technical condition. When one compares with the results in the case of two-dimensional topological gravity in [8.2], it is desirable to see whether these jet variables can be interpreted in terms of renormalized coupling constants.
3.4. The loop operators. Introduce the loop operators:

\[D_{\beta,z} := \sum_{n=0}^{\infty} z^{-n-1} \frac{\partial}{\partial t_n^\beta}. \]

Then the system of the hierarchy can be written in the following compact form:

\[D_{\beta,z} u_\alpha = (R_{\alpha,0;\beta}(u_0, \ldots, u_r; z))', \]

where

\[R_{\alpha,0;\beta}(u_0, \ldots, u_r; z) = \eta_{\alpha\beta} + \sum_{n=0}^{\infty} R_{\alpha,0;\beta,n}(u_0, \ldots, u_r) z^{-n-1}. \]

The reason for adding the extra term \(\eta_{\alpha\beta} \) will be clear below.

Now we define the genus zero two-point function by:

\[V_{\alpha,\beta}(z_1, z_2) = \sum_{m,n=0}^{\infty} \frac{\partial^2 F_0}{\partial t_0 \partial t_n^\beta} z_1^{-m-1} z_2^{-n-1} = D_{\alpha,z_1} D_{\beta,z_2} F_0. \]

By the constitutive relations,

\[V_{\alpha,\beta}(z_1, z_2) = \sum_{m,n=0}^{\infty} R_{\alpha,m;\beta,n}(u_0, \ldots, u_r) z_1^{-m-1} z_2^{-n-1}. \]

To compute \(V_{\alpha,\beta}(z_1, z_2) \), one can proceed as follows:

\[
\frac{\partial}{\partial t^0} V_{\alpha,\beta}(z_1, z_2) = \sum_{m,n=0}^{\infty} \frac{\partial^2 F_0}{\partial t_0 \partial t_m^\alpha \partial t_n^\beta} z_1^{-m-1} z_2^{-n-1} = D_{\alpha,z_1} \sum_{n=0}^{\infty} \frac{\partial^2 F_0}{\partial t_0 \partial t_n^\alpha} z_2^{-n-1} = D_{\alpha,z_1} \sum_{n=0}^{\infty} R_{0,0;\beta,n}(u_0, \ldots, u_r) z_2^{-n-1},
\]

where in the last equality we have used the constitutive relation again. Now we can use (64) to get:

\[
\frac{\partial}{\partial t^0} V_{\alpha,\beta}(z_1, z_2) = \sum_{n=0}^{\infty} \frac{\partial R_{0,0;\beta,n}(u_0, \ldots, u_r)}{\partial u_\gamma} z_2^{-n-1} \cdot D_{\alpha,z_1}(u_\gamma) = \sum_{n=0}^{\infty} \frac{\partial R_{0,0;\beta,n}(u_0, \ldots, u_r)}{\partial u_\gamma} z_2^{-n-1} \cdot (R_{0,0;\alpha}(u_0, \ldots, u_r; z_1)').
\]
To understand $\frac{\partial R_{0,0;\alpha,\beta}(u_0,\ldots,u_r)}{\partial u_0}$, we go back to the small space to see that it is equal to

$$\frac{\partial}{\partial t_0} \frac{\partial^3 F_0}{\partial t_0^3 \partial t_0^3} = \eta^\gamma \delta \frac{\partial^3 F_0}{\partial t_0^3 \partial t_0^3 \partial t_0^3} = \eta^\gamma \delta \frac{\partial^2 F_0}{\partial t_0^2 \partial t_0^3 \partial t_0^3}$$

and so by string equation it is equal to $\eta^\gamma \delta \frac{\partial^2 F_0}{\partial t_0^2 \partial t_0^3 \partial t_0^3}$ restricted to the small phase space, so it is equal to $\eta^\gamma \delta \eta_{\delta \beta} R_{0,0;\alpha,\beta}(u; z_1)$, for $n > 0$, and for $n = 0$, $\eta^\gamma \delta \eta_{\delta \beta}$, on the big phase space. (This explains the reason why $\eta_{\alpha \beta}$ appears in (65).) So we get

$$\frac{\partial}{\partial t_0} V_{\alpha,\beta}(z_1, z_2) = \sum_{\gamma, \delta} \eta^\gamma \delta \left(\sum_{n=1}^{\infty} R_{0,0;\alpha,\beta}(u; z_1) z_2^{n-1} \right) \cdot \left(R_{0,0;\alpha}(u; z_1) \right)'$$

In the same fashion we also have:

$$\frac{\partial}{\partial t_0} V_{\alpha,\beta}(z_1, z_2) = z_1^{n-1} \cdot \frac{\partial}{\partial t_0} R_{0,0;\alpha}(u; z_1) \cdot \eta^\gamma \delta \cdot \frac{\partial}{\partial t_0} R_{0,0;\beta}(u; z_2).$$

From the above two relations one easily deduce the following equation:

$$(68) \quad V_{\alpha,\beta}(z_1, z_2) = \frac{1}{z_1 + z_2} \left(R_{0,0;\alpha}(u; z_1) \cdot \eta^\gamma \delta \cdot \frac{\partial}{\partial t_0} R_{0,0;\beta}(u; z_2) - \eta_{\alpha \beta} \right).$$

See Dubrovin [5] for a different derivation.

3.5. Source operators and closed formula for genus zero free energy. We now recall a result proved in Dubrovin [5, Proposition 3.6]. See also Eguchi-Yamada-Yang [15, Proposition 1]. The free energy at $g = 0$ is given by

$$(69) \quad F_0(t) = \frac{1}{2} \sum_{m,n=0} R_{0,m;\alpha,\beta} \bar{t}_m \bar{t}_n,$$

where $\bar{t}_m = t_m - \delta_{m,1} \delta_{\alpha,0}$. Therefore, if one sets

$$(70) \quad V_{\alpha,\beta}(z_1, z_2) = \sum_{m,n=0} R_{0,m;\alpha,\beta}(U) z_1^{m-1} z_2^{n-1},$$

then

$$(71) \quad F_0 = \frac{1}{2} \sum_{\alpha,\beta=0}^r \text{res}_{z_2=0}(J^\alpha(z_1)J^\beta(z_2) \cdot V_{\alpha,\beta}(u; z_1, z_2) dz_2) dz_1).$$
If we note
\begin{equation}
D_{\alpha, z} J^\beta(w) = \delta_{\alpha \beta} \sum_{n=0}^{\infty} \frac{w^n}{z^{n+1}} = \frac{\delta_{\alpha \beta}}{z - w},
\end{equation}
then the genus zero one-point function is very easy to find:
\begin{equation}
D_{\gamma, z} F_0 = \sum_{\alpha=0}^{r} \text{res}_{z_1=0} \text{res}_{z_2=0} (J^\alpha(z_1) V_{\alpha, \gamma}(u; z_1, z_2) \frac{dz_2}{z - z_2}) dz_1
\end{equation}
\begin{equation}
+ \frac{1}{2} \sum_{\alpha, \beta=0}^{r} \text{res}_{z_1=0} \text{res}_{z_2=0} (J^\alpha(z_1) J^\beta(z_2) D_{\gamma, z} V_{\alpha, \beta}(u; z_1, z_2) dz_2) dz_1.
\end{equation}

3.6. Computation of n-point functions by operator formalism. Now we present an algorithm to compute the n-point correlation functions of GW invariants in genus g when \(2g - 2 + n > 0\). When \(g = 0\), this requires that \(n \geq 3\). We have already seen that the 2-point functions in genus zero can be expressed in terms of the order parameters. So for \(n \geq 3\), one can simply apply the loop operators repeatedly on the two-point functions and apply the constitutive relations (29) and the integrable hierarchy (64):
\begin{equation}
D_{\alpha_1, z_1} \cdots D_{\alpha_n, z_n} F_0 = D_{\alpha_1, z_1} \cdots D_{\alpha_{n-2}, z_{n-2}} V_{\alpha_{n-1}, \alpha_n}(u; z_{n-1}, z_n).
\end{equation}
Similarly, for \(g \geq 1\), suppose that \(F_g\) is expressed in terms of the jet variables \(\{u_{\alpha,n}\}\), then the n-point functions can be obtained by applying the loop operators repeatedly on such expressions with the help of (64).

3.7. Emergent conformal field theory. Inspired by conformal field theory, it is natural to regard the source operators as the generating series of the creation operators, and the loop operators as the generating series of annihilation operators, and combine them into bosonic fields of operators:
\begin{equation}
\varphi_\alpha(z) := \eta_{\alpha \beta} J^\beta(z) + D_{\beta, z} = \eta_{\alpha \beta} \sum_{n=0}^{\infty} f_n^\beta z^n + \sum_{n=0}^{\infty} z^{-n-1} \frac{\partial}{\partial \eta_n^\alpha}.
\end{equation}
It is very easy to see that one has the following operator product expansion:
\begin{equation}
\varphi_\alpha(z) \varphi_\beta(w) = \frac{\eta_{\alpha \beta}}{z - w} + : \varphi_\alpha(z) \varphi_\beta(w) :,
\end{equation}
where \(: \varphi_\alpha(z) \varphi_\beta(w) :\) is the normally ordered product of \(\varphi_\alpha(z)\) and \(\varphi_\beta(w)\). So one can regard the GW theory as associating a vector \(|X\rangle\).
in the bosonic Fock space of the systems of bosonic fields \(\{ \varphi_\alpha \}_{\alpha = 0}^r \), and one can consider the \(n \)-point functions:

\[
(0| \varphi_{\alpha_1}(z_1) \cdots \varphi_{\alpha_n}(z_n)|X).
\]

One can also apply the boson-fermion correspondence to transform \(|X\rangle\) into a vector in \(|X\rangle^F\) in the fermionic Fock space.

This naive construction leads to an interesting point of view, but in order to obtain interesting results, we will need a mysterious Laplace transform suggested by the construction of the Virasoro constraints in GW theory.

4. Mean Field Theory of the Genus Zero Gromov-Witten Invariants of Quintic Calabi-Yau Threefold

In this Section and the next Section we explicitly carry out the computations mentioned in the above two Sections for the quintic CY threefold. We will focus on the genus zero part in this Section and treat the higher genera computation in the next Section.

Our main result in this Section is that we can get explicit formulas for the Landau-Ginzburg potential function and for the genus zero partition functions and the \(n \)-points functions for \(n \geq 1 \) in the case of the quintic. We note that the selection rules for the CY threefolds play a crucial role in this case.

4.1. Selection rules for the GW theory of the quintic. For the quintic Calabi-Yau threefold \(M \subset \mathbb{P}^4 \), \(H^{ev}(M) \) is four dimensional. It is spanned by four primary operators \(P = 1, Q = j^* H, R = \frac{1}{5} j^* H, S = \frac{1}{5} j^* H \), where \(j : M \hookrightarrow \mathbb{P}^4 \) is the inclusion map, and \(H \) is the hyperplane class in \(H^2(\mathbb{P}^4) \).

Because \(\deg_P P = 0, \deg_Q Q = 2, \deg_S R = 4, \deg_S S = 6 \), and the real dimension of \(M \) is 6, and by the selection rules [41], if one assigns

\[
\deg t_n^P = n - 1, \quad \deg t_n^Q = n, \quad \deg t_n^R = n + 1, \quad \deg t_n^S = n + 2,
\]

then \(F_g \) is homogeneous of degree 0:

\[
(79) \quad \mathcal{X} F_g = 0,
\]

where

\[
(80) \quad \mathcal{X} = \sum_{n=0}^{\infty} (n - 1) t_n^P \frac{\partial}{\partial t_n^P} + \sum_{n=0}^{\infty} n t_n^Q \frac{\partial}{\partial t_n^Q} + \sum_{n=0}^{\infty} (n + 1) t_n^R \frac{\partial}{\partial t_n^R} + \sum_{n=0}^{\infty} (n + 2) t_n^S \frac{\partial}{\partial t_n^S}.
\]
4.2. The genus zero free energy on the small phase space. By the selection rules \(\mathcal{I} \), for the quintic,

\[
\langle \mathcal{O}_\alpha \mathcal{O}_\beta \mathcal{O}_\gamma \rangle_{0,d=0} \neq 0
\]

only if \(\deg \mathcal{O}_\alpha + \deg \mathcal{O}_\beta + \deg \mathcal{O}_\gamma = 3 \), so if \(\deg \mathcal{O}_\alpha \leq \deg \mathcal{O}_\beta \leq \deg \mathcal{O}_\gamma \), then there are only three possibilities:

\[
\langle PPS \rangle_{0,0} = 1, \quad \langle PQR \rangle_{0,0} = 1, \quad \langle QQQ \rangle_{0,0} = 5.
\]

So on the small phase space, the classical part of \(F_0^{\text{small}} \) is

\[
F_0^{\text{small, classical}} = \frac{(t^P)^2 t^S}{2} + t^P t^Q t^R + \frac{5}{6}(t^Q)^3.
\]

For the quantum part of \(F_0^{\text{small}} \), we need to consider the intersection numbers on the moduli spaces \(\overline{M}_{0,n}(X;d) \) for \(d > 0 \) or \(d = 0 \) and \(n > 3 \). The moduli spaces have expect dimensions \(n \), and so

\[
\langle P^{m_0} Q^{m_1} R^{m_2} S^{m_3} \rangle_{0,d} \neq 0
\]

only if:

\[
m_1 + 2m_2 + 3m_3 = m_0 + m_1 + m_2 + m_3,
\]

i.e., \(m_0 = m_1 + 2m_2 \). But by the puncture equation, such correlators vanish when \(m_0 > 0 \). So we have only \(\langle Q^{m_1} \rangle_{0,d} \) to consider. By the divisor equation,

\[
\langle Q^{m_1} \rangle_{0,d} = d \cdot \langle Q^{m_1-1} \rangle_{0,d} = d^{m_1} \langle 1 \rangle_{0,d} = d^{m_1} N_{0,d},
\]

where

\[
N_{0,d} := \int_{[\overline{M}_{0,0}(X;d)]^{\text{virt}}} 1.
\]

So the instanton correction to \(F_0^{\text{small}} \) is

\[
F_0^{\text{small, instanton}} = \sum_{d=1}^{\infty} \sum_{m_1=0}^{\infty} \frac{(t^Q)^{m_1}}{m_1!} q^d \langle Q^{m_1} \rangle_{0,d} = \sum_{d=1}^{\infty} \sum_{m_1=0}^{\infty} \frac{(t^Q)^{m_1}}{m_1!} q^d N_{0,d} d^{m_1} = \sum_{d=1}^{\infty} N_{0,d} e^{d t^Q} q^d.
\]

So the genus zero free energy on the small phase in this case is

\[
F_0^{\text{small}} = F_0^{\text{small, classical}} + F_0^{\text{small, instanton}}
\]

\[
= \frac{1}{2}(t^P)^2 t^S + t^P t^Q t^R + \frac{5}{6}(t^Q)^3 + \sum_{m=1}^{\infty} N_{0,m} e^{m t^Q} q^m.
\]
For simplicity of notations, we will set:

\[(87) \quad f_0(x) = \frac{5}{6}x^3 + \sum_{d=1}^{\infty} N_{0,d} e^{dx} q^d.\]

So we have

\[(88) \quad F_0^{\text{small}} = \frac{1}{2} (t^P)^2 t^S + t^P t^Q t^R + f_0(t^Q).\]

The metric matrix in this case:

\[(89) \quad (\eta_{\lambda\mu}) = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}.\]

The gradient of \(F_0^{\text{small}}\) is

\[
\begin{align*}
\frac{\partial F_0^{\text{small}}}{\partial t^P} &= t^P t^S + t^Q t^R, \\
\frac{\partial F_0^{\text{small}}}{\partial t^Q} &= t^P t^R + f'_0(t^Q), \\
\frac{\partial F_0^{\text{small}}}{\partial t^R} &= t^P t^Q, \\
\frac{\partial F_0^{\text{small}}}{\partial t^S} &= \frac{1}{2} (t^P)^2.
\end{align*}
\]

The entropy is given by:

\[(90) \quad G_0 = t^P \frac{\partial F_0^{\text{small}}}{\partial t^P} + t^Q \frac{\partial F_0^{\text{small}}}{\partial t^Q} + t^R \frac{\partial F_0^{\text{small}}}{\partial t^R} + t^S \frac{\partial F_0^{\text{small}}}{\partial t^S} - F_0^{\text{small}}
= (t^P)^2 t^S + t^P t^Q t^R + t^Q f'_0(t^Q) - f_0(t^Q).\]

The Hessian of \(F_0^{\text{small}}\) is:

\[(91) \quad Hess(F_0^{\text{small}}) = \begin{pmatrix} t^S & t^R & t^Q & t^P \\ t^R & f'_0(t^Q) & t^P & 0 \\ t^Q & t^P & 0 & 0 \\ t^P & 0 & 0 & 0 \end{pmatrix}.\]

The Euler vector field is given by:

\[(92) \quad E := t^P \frac{\partial}{\partial t^P} - t^R \frac{\partial}{\partial t^R} - 2t^S \frac{\partial}{\partial t^S}.\]

It is clear that

\[(93) \quad EF_0^{\text{small}} = 0.\]
The explicit formula for $N_{0,d}$ is given by the mirror formula discovered in [2] and proved in [22, 27]:

\begin{equation}
\frac{5}{6} (t^Q)^3 + \sum_{d=1}^{\infty} N_{0,d} e^{\alpha Q} q^d = \frac{5}{2} \left(\frac{\omega_3}{\omega_0} - \frac{f_1}{f_0} \frac{\omega_2}{\omega_0} \right).
\end{equation}

Here $\omega_0, \ldots, \omega_3$ are the four solutions of hypergeometric equation

\begin{equation}
L \omega = 0,
\end{equation}

where L is the differential operator

\begin{equation}
L = \theta^4 - \alpha \prod_{k=1}^{4} (\theta + \frac{k}{5}),
\end{equation}

where $\alpha = 5^5 e^4$ and $\theta = \alpha \frac{\partial}{\partial \alpha}$. The variable t is related to t^Q via the mirror formula:

\begin{equation}
t^Q = \frac{\omega_1}{\omega_0}.
\end{equation}

Furthermore,

\begin{equation}
(\omega_0, \omega_1, \omega_2, \omega_3) = \omega_0 \cdot (1, t^Q, f^0'(t^Q), t^Q f^0_0(t^Q) - 2 f^0_0(t^Q)).
\end{equation}

Even though such structure from special geometry originally appear on only the tiny phase space with parameter t^Q, we will show later that they natural appear in the emergent geometry on the small phase space.

4.3. Quantum cohomology ring and WDVV equation. Recall the quantum multiplication over the small phase space is defined by:

\begin{equation}
\frac{\partial}{\partial t^\alpha} \circ \frac{\partial}{\partial t^\beta} = \frac{\partial^3 F^\text{small}_0}{\partial t^\alpha \partial t^\beta \partial t^\lambda} \eta^{\lambda \mu} \frac{\partial}{\partial t^\mu},
\end{equation}

where $\eta_{\lambda \mu} = \frac{\partial^2 F_0}{\partial t^\alpha \partial t^\beta}$ and $(\eta^{\lambda \mu}) = (\eta_{\lambda \mu})^{-1}$. In our case

\begin{equation}
(\eta^{\lambda \mu}) = (\eta_{\lambda \mu})^{-1} = \begin{pmatrix}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{pmatrix},
\end{equation}
and so we can give the explicit formula for the quantum multiplications:

\[
\frac{\partial}{\partial t^P} \circ \left(\begin{array}{c}
\frac{\partial}{\partial x^r}
\frac{\partial}{\partial y^r}
\frac{\partial}{\partial z^r}
\frac{\partial}{\partial w^r}
\end{array} \right) = \left(\begin{array}{c}
0 & 0 & 0 & 1
0 & 0 & 1 & 0
0 & 1 & 0 & 0
1 & 0 & 0 & 0
\end{array} \right) \cdot \left(\begin{array}{c}
0 & 0 & 0 & 1
0 & 0 & 1 & 0
0 & 1 & 0 & 0
1 & 0 & 0 & 0
\end{array} \right) \cdot \left(\begin{array}{c}
\frac{\partial}{\partial x^r}
\frac{\partial}{\partial y^r}
\frac{\partial}{\partial z^r}
\frac{\partial}{\partial w^r}
\end{array} \right)
\]

\[
= \left(\begin{array}{c}
1 & 0 & 0 & 0
0 & 1 & 0 & 0
0 & 0 & 1 & 0
0 & 0 & 0 & 1
\end{array} \right) \cdot \left(\begin{array}{c}
0 & 0 & 0 & 1
0 & 0 & 1 & 0
0 & 1 & 0 & 0
1 & 0 & 0 & 0
\end{array} \right),
\]

\[
\frac{\partial}{\partial t^Q} \circ \left(\begin{array}{c}
\frac{\partial}{\partial x^r}
\frac{\partial}{\partial y^r}
\frac{\partial}{\partial z^r}
\frac{\partial}{\partial w^r}
\end{array} \right) = \left(\begin{array}{c}
0 & 0 & f''_0(t^Q) & 0
0 & 0 & 0 & 0
1 & 0 & 0 & 0
0 & 0 & 0 & 0
\end{array} \right) \cdot \left(\begin{array}{c}
0 & 0 & 1 & 0
0 & 0 & 0 & 0
1 & 0 & 0 & 0
0 & 0 & 0 & 0
\end{array} \right) \cdot \left(\begin{array}{c}
\frac{\partial}{\partial x^r}
\frac{\partial}{\partial y^r}
\frac{\partial}{\partial z^r}
\frac{\partial}{\partial w^r}
\end{array} \right)
\]

\[
= \left(\begin{array}{c}
0 & 1 & 0 & 0
0 & 0 & f'''_0(t^Q) & 0
0 & 0 & 0 & 1
0 & 0 & 0 & 0
\end{array} \right) \cdot \left(\begin{array}{c}
\frac{\partial}{\partial x^r}
\frac{\partial}{\partial y^r}
\frac{\partial}{\partial z^r}
\frac{\partial}{\partial w^r}
\end{array} \right),
\]

\[
\frac{\partial}{\partial t^R} \circ \left(\begin{array}{c}
\frac{\partial}{\partial x^r}
\frac{\partial}{\partial y^r}
\frac{\partial}{\partial z^r}
\frac{\partial}{\partial w^r}
\end{array} \right) = \left(\begin{array}{c}
0 & 1 & 0 & 0
1 & 0 & 0 & 0
0 & 0 & 0 & 0
0 & 0 & 0 & 0
\end{array} \right) \cdot \left(\begin{array}{c}
0 & 0 & 1 & 0
0 & 0 & 1 & 0
0 & 1 & 0 & 0
1 & 0 & 0 & 0
\end{array} \right) \cdot \left(\begin{array}{c}
\frac{\partial}{\partial x^r}
\frac{\partial}{\partial y^r}
\frac{\partial}{\partial z^r}
\frac{\partial}{\partial w^r}
\end{array} \right)
\]

\[
= \left(\begin{array}{c}
0 & 0 & 1 & 0
0 & 0 & 0 & 1
0 & 0 & 0 & 1
0 & 0 & 0 & 1
\end{array} \right) \cdot \left(\begin{array}{c}
\frac{\partial}{\partial x^r}
\frac{\partial}{\partial y^r}
\frac{\partial}{\partial z^r}
\frac{\partial}{\partial w^r}
\end{array} \right),
\]

\[
\frac{\partial}{\partial t^S} \circ \left(\begin{array}{c}
\frac{\partial}{\partial x^r}
\frac{\partial}{\partial y^r}
\frac{\partial}{\partial z^r}
\frac{\partial}{\partial w^r}
\end{array} \right) = \left(\begin{array}{c}
1 & 0 & 0 & 0
0 & 0 & 0 & 0
0 & 0 & 0 & 0
0 & 0 & 0 & 0
\end{array} \right) \cdot \left(\begin{array}{c}
0 & 0 & 1 & 0
0 & 0 & 1 & 0
0 & 1 & 0 & 0
1 & 0 & 0 & 0
\end{array} \right) \cdot \left(\begin{array}{c}
\frac{\partial}{\partial x^r}
\frac{\partial}{\partial y^r}
\frac{\partial}{\partial z^r}
\frac{\partial}{\partial w^r}
\end{array} \right)
\]

\[
= \left(\begin{array}{c}
0 & 0 & 0 & 1
0 & 0 & 0 & 0
0 & 0 & 0 & 0
0 & 0 & 0 & 0
\end{array} \right) \cdot \left(\begin{array}{c}
\frac{\partial}{\partial x^r}
\frac{\partial}{\partial y^r}
\frac{\partial}{\partial z^r}
\frac{\partial}{\partial w^r}
\end{array} \right),
\]

At a first sight, the effect of quantum multiplication on the cohomology ring seems to be minor: It only modifies the multiplication of \(\frac{\partial}{\partial t^Q}\) with \(\frac{\partial}{\partial t^Q}\). Furthermore, in this case, the original cohomology ring is not
semisimple, after the quantum deformation over the small phase space, it is still not semisimple. So the reconstruction theory of Dubrovin and Zhang [13] based on semisimple Frobenius manifolds cannot be applied here directly.

One can also check that the associativity of the quantum multiplication, i.e., the WDVV equations, does not impose any constraints on the function \(f_0 \).

4.4. The genus zero one-point functions on the small phase space. In this Subsection, we will show how to compute the genus zero one-point correlators of the quintic Calabi-Yau threefold from \(F_0^{\text{small}} \) by the selection rules.

We will use \(\langle\langle \cdot \cdot \cdot \rangle \rangle \) to denote the correlator on the small phase space. For example, \(\langle\langle \tau_n(S) \rangle \rangle_0 \) means \(\frac{\partial F_0}{\partial w} \) restricted to the small phase space.

Proposition 4.1. One can obtain by applications of the selection rules to get the following formulas for quintic CY threefolds from the genus zero free energy on the small phase space:

\[
\begin{align*}
 t^S + \sum_{n \geq 0} \infty z^{-n-1} \langle\langle \tau_n(P) \rangle \rangle_0 &= e^{t^P/z}t^S + \frac{1}{z} e^{t^P/z}tQ + \frac{1}{z^2} e^{t^P/z}(tQ f'_0(tQ) - f_0(tQ)). \\
 (101)
\\
 t^R + \sum_{n=0}^\infty z^{-n-1} \langle\langle \tau_n(Q) \rangle \rangle_0 &= e^{t^P/z}t^R + \frac{e^{t^P/z}}{z} f'_0(tQ). \\
 (102)
\\
 t^Q + \sum_{n \geq 0} \infty z^{-n-1} \langle\langle \tau_n(R) \rangle \rangle_0 &= e^{t^P/z}t^Q. \\
 (103)
\\
 t^P + \sum_{n \geq 0} \infty z^{-n-1} \langle\langle \tau_n(S) \rangle \rangle_0 &= z(e^{t^P/z} - 1). \\
 (104)
\end{align*}
\]

Proof. From the formula (86), we have

\[
\langle\langle \tau_0(P)^{m_0} \cdots \tau_0(S)^{m_3} \rangle \rangle_0 = \begin{cases}
 1, & \text{if } (m_0, \ldots, m_3) = (2, 0, 0, 1), \\
 1, & \text{if } (m_0, \ldots, m_3) = (1, 1, 1, 0), \\
 5\delta_{m_1,3} + \sum_{d=1}^\infty N_d d^{m_1} q^d, & \text{if } (m_0, \ldots, m_3) = (0, m_1, 0, 0), \\
 0, & \text{otherwise}.
\end{cases}
\]

(105)
To compute $\langle \langle \tau_n(P) \rangle \rangle_0$ we need to compute $\langle \tau_n(P) \tau_0(P)^{m_0} \cdots \tau_0(S)^{m_3} \rangle_0$. By the selection rule,

$$n + m_1 + 2m_2 + 3m_3 = 1 + m_0 + m_1 + m_2 + m_3,$$

and so we get:

$$(106) \quad m_0 = n - 1 + m_2 + 2m_3.$$

For $n = 0$, by (105) one easily sees that:

$$\langle \langle \tau_0(P) \rangle \rangle_0 = t^P t^S + t^Q t^R.$$

For $n = 1$, we use dilaton equation to get:

$$\langle \tau_1(P) \tau_0(P)^{m_0} \cdots \tau_0(S)^{m_3} \rangle_0$$

$$= (m_0 + \cdots + m_3 - 2) \cdot \langle \tau_0(P)^{m_0} \cdots \tau_0(S)^{m_3} \rangle_0$$

$$= \begin{cases} 1, & \text{if } (m_0, \ldots, m_3) = (2, 0, 0, 1), \\ 1, & \text{if } (m_0, \ldots, m_3) = (1, 1, 1, 0), \\ (m_1 - 2) \left(5 \delta_{m_1, 3} + \sum_{d=1}^{\infty} N_d d^{m_1} q^d \right), & \text{if } (m_0, \ldots, m_3) = (0, m_1, 0, 0), \\ 0, & \text{otherwise}. \end{cases}$$

For $n \geq 2$,

$$\langle \tau_n(P) \tau_0(P)^{m_0} \cdots \tau_0(S)^{m_3} \rangle_0$$

$$= \langle \tau_n(P) \tau_0(P)^{n-1+m_2+2m_3} \tau_0(Q)^{m_1} \cdots \tau_0(S)^{m_3} \rangle_0$$

$$= \langle \tau_0(P)^{m_2+2m_3} \tau_1(P) \tau_0(Q)^{m_1} \tau_0(R)^{m_2} \tau_0(S)^{m_3} \rangle_0.$$

If $m_2 = m_3 = 0$, then by the dilaton equation one has

$$\langle \tau_1(P) \tau_0(Q)^{m_1} \rangle_0 = (m_1 - 2) \langle \tau_0(Q)^{m_1} \rangle_0 = \delta_{m_1, 3} 5 + (m_1 - 2) \sum_{d \geq 1} N_d d^{m_1} q^d.$$

If $m_2 > 0$ or $m_3 > 0$, then

$$\langle \tau_0(P)^{m_2+2m_3} \tau_1(P) \tau_0(Q)^{m_1} \tau_0(R)^{m_2} \tau_0(S)^{m_3} \rangle_0$$

$$= \langle \tau_0(P)^{m_2+2m_3-1} \tau_0(P) \tau_0(Q)^{m_1} \tau_0(R)^{m_2} \tau_0(S)^{m_3} \rangle_0$$

$$= \langle \tau_0(P)^{m_2+2m_3} \tau_0(Q)^{m_1} \tau_0(R)^{m_2} \tau_0(S)^{m_3} \rangle_0,$$

which is nonvanishing only when $(m_1, m_2, m_3) = (1, 1, 0)$ or $(0, 0, 1)$. Now we can compute the generating series of

$$\langle \langle \tau_n(P) \rangle \rangle_0 = \sum_{m_0, m_1, m_2, m_3 \geq 0} \frac{t_{m_0, P}^{m_0} \cdots t_{0, S}^{m_3}}{m_0! \cdots m_3!} \langle \tau_n(P) \tau_0(P)^{m_0} \cdots \tau_0(S)^{m_3} \rangle_0.$$
as follows:

\[
\begin{align*}
\sum_{n \geq 0} z^{-n-1}\langle \tau_n(P) \rangle_0 &= \frac{1}{z} (tP t^S + tQ t^R) + \frac{1}{z^2} \left(\frac{(tP)^2}{2} t^S + tP tQ t^R \right) \\
&\quad + \sum_{m_1 \geq 0} \frac{(tQ)^{m_1}}{m_1!} (m_1 - 2) \left(5\delta_{m_1,3} + \sum_{d=1}^\infty N_d d^{m_1} q^d \right) \\
&\quad + \sum_{n \geq 2} z^{-n-1} \sum_{m_1 \geq 0} \frac{t^{n-1}}{(n-1)! m_1!} (tQ)^{m_1} \langle \tau_n(P) \rangle_{0} \langle \tau_0(Q)^{m_1} \rangle_0 \\
&\quad + \sum_{n \geq 2} z^{-n-1} \langle \tau_n(P) \rangle_{0} \langle \tau_0(Q)^{m_1} \rangle_0 \langle \tau_0(R) \rangle_0 \frac{t^n_{0,P}}{n! t_{0,Q} t_{0,R}} \\
&\quad + \sum_{n \geq 2} z^{-n-1} \langle \tau_n(P) \rangle_0 \langle \tau_0(Q)^{n+1} \rangle_0 \langle \tau_0(S) \rangle_0 \frac{t^{n+1}_{0,P}}{(n+1)!} t_{0,S} \\
&= \sum_{n \geq 1} z^{-n-1} \sum_{m_1 \geq 0} \frac{(tP)^{n-1}}{(n-1)! m_1!} (tQ)^{m_1} \langle \tau_n(P) \rangle_0 \langle \tau_0(Q)^{m_1} \rangle_0 \\
&\quad + \frac{1}{z} e^{tP/z} tQ t^R + (e^{tP/z} - 1) t^S \\
&= \frac{1}{z^2} \left(\frac{5(tQ)^3}{6} \right) e^{tP/z} + \frac{1}{z} e^{tP/z} \sum_{m_1 \geq 0} \frac{(tQ)^{m_1}}{m_1!} (m_1 - 2) \sum_{d=1}^\infty N_d d^{m_1} q^d \\
&\quad + \frac{1}{z} e^{tP/z} tQ t^R + (e^{tP/z} - 1) t^S \\
&= (e^{tP/z} - 1) t^S + \frac{1}{z} e^{tP/z} tQ t^R + \frac{1}{z^2} e^{tP/z} \left(\frac{5(tQ)^3}{6} \right) \\
&\quad + \sum_{d=1}^\infty N_d (dtQ - 2)e^{dtQ} q^d.
\end{align*}
\]

The other three formulas can be proved in the same way. \[\square\]

Remark 4.2. Here we recover some formulas in Example 5.3 in Dubrovin [5] by selection rules. We do this without solving any differential equations, only using the selection rules.

4.5. **Explicit formulas for Landau-Ginzburg potential and Landau-Ginzburg equations.** By changing \(tP\) to \(u_S\), \(tQ\) to \(u_R\), \(tR\) to \(u_Q\) and
with t^S to u_P in \cite{[10]}-\cite{[104]}, we then get:

\[
\sum_{n=-1}^{\infty} z^{-n-1} R_{P,n}(u_P, u_Q, u_R, u_S)
\]

\[
= e^{u_S/z}u_P + \frac{1}{z} e^{u_S/z}u_Q u_R + \frac{1}{z^2} e^{u_S/z}(u_R f_0'(u_R) - 2f_0(u_R)).
\]

\[
\sum_{n=-1}^{\infty} z^{-n-1} R_{Q,n}(u_P, \ldots, u_S) = e^{u_S/z}u_Q + \frac{e^{u_S/z}}{z} f_0'(u_R).
\]

\[
\sum_{n=-1}^{\infty} z^{-n-1} R_{R,n}(u_P, \ldots, u_S) = e^{u_S/z}u_R.
\]

\[
\sum_{n=-1}^{\infty} z^{-n-1} R_{S,n}(u_0, \ldots, u_S) = z \left(e^{u_S/z} - 1 \right).
\]

With these formulas, we can write down the Landau-Ginzburg equation for the GW theory of quintic CY threefold explicitly as follows:

Proposition 4.3. The mean field theory of the GW theory of quintic CY threefold has the following Landau-Ginzburg potential:

\[
W = - U_P U_S - U_Q U_R \\
+ \sum_{n=0}^{\infty} t_n^P \left(U_P \frac{U^n_S}{n!} + \frac{U_Q U_R U_{n-1}^S}{(n-1)!} \right) \\
+ (U_R f_0'(U_R) - 2f_0(U_R)) \frac{U_{n-2}^S}{(n-2)!} \\
+ \sum_{n=0}^{\infty} t_n^Q \left(U_Q \frac{U^n_S}{n!} + \frac{U_{n-1}^S}{(n-1)!} f_0'(U_R) \right) \\
+ \sum_{n=0}^{\infty} t_n^R U_R \frac{U^n_S}{n!} + \sum_{n=0}^{\infty} t_n^S \frac{U_{n+1}^S}{(n+1)!}.
\]
We also write \(W \) in the following form:

\[
W = U_P \left(-U_S + \sum_{n=0}^{\infty} t^n P \frac{U_S^n}{n!} \right) \\
+ U_Q \left(-U_R + \sum_{n=0}^{\infty} t^n Q \frac{U_S^n}{n!} + U_R \sum_{n=1}^{\infty} t^n S \frac{U_S^{n-1}}{(n-1)!} \right) \\
+ U_R \sum_{n=0}^{\infty} t^n R \frac{U_S^n}{n!} + f'(0(U_R)) \sum_{n=1}^{\infty} t^n Q \frac{U_S^{n-1}}{(n-1)!} \\
+ g_0(U_R) \sum_{n=2}^{\infty} t^n P \frac{U_S^{n-2}}{(n-2)!} + \sum_{n=0}^{\infty} t^n S \frac{U_S^n}{(n+1)!}.
\]

(112)

where \(g_0(U_R) = U_R f'_0(U_R) - 2f_0(U_R) \). By computing the gradient of \(W \), the Landau-Ginzburg equations can be written down explicitly as follows:

\[
u_S = \sum_{n=0}^{\infty} t^n P \frac{u_S^n}{n!},
\]

(113)

\[
u_R = \sum_{n=0}^{\infty} t^n Q \frac{u_S^n}{n!} + u_R \sum_{n=1}^{\infty} t^n P \frac{u_S^{n-1}}{(n-1)!}.
\]

(114)

\[
u_Q = \sum_{n=0}^{\infty} t^n R \frac{u_S^n}{n!} + u_Q \sum_{n=1}^{\infty} t^n S \frac{u_S^{n-1}}{(n-1)!} + f''(0(U_R)) \sum_{n=1}^{\infty} t^n Q \frac{u_S^{n-2}}{(n-2)!} + g'_0(U_R) \sum_{n=2}^{\infty} t^n P \frac{u_S^{n-2}}{(n-2)!}.
\]

(115)

\[
u_P = u_P \sum_{n=1}^{\infty} t^n R \frac{u_S^{n-1}}{(n-1)!} \\
+ u_Q \left(\sum_{n=1}^{\infty} t^n S \frac{u_S^{n-1}}{(n-1)!} + u_R \sum_{n=2}^{\infty} t^n \frac{u_S^{n-2}}{(n-2)!} \right) \\
+ u_R \sum_{n=1}^{\infty} t^n R \frac{u_S^{n-1}}{(n-1)!} + f'(0(U_R)) \sum_{n=2}^{\infty} t^n Q \frac{u_S^{n-2}}{(n-2)!} \\
+ g_0(U_R) \sum_{n=3}^{\infty} t^n P \frac{u_S^{n-3}}{(n-3)!} + \sum_{n=0}^{\infty} t^n S \frac{u_S^n}{n!}.
\]

(116)
4.6. Solutions of the Landau-Ginzburg equations. These equation can be easily solved. As we have mentioned in §3.2 equation (113) has been explicitly solved in \[37\]:

\[
\begin{align*}
\frac{u_S}{p_1 \cdots p_k} &= \sum_{k=1}^{\infty} \frac{1}{k} \sum_{p_1 + \cdots + p_k = k-1}^{\infty} \frac{t_{p_1} \cdots t_{p_k}}{p_1! \cdots p_k!},
\end{align*}
\]

We now give another formula which express it as a summation over partitions of nonnegative integers. A partition of \(N \geq 0\) can be written as \(1^{m_1} \cdots N^{m_N}\), where \(m_1, \ldots, m_N\) are nonnegative integers such that:

\[
\sum_{i=1}^{N} m_i = N.
\]

Then we have

\[
\begin{align*}
u_S &= \sum_{N=0}^{\infty} \sum_{\sum_{i=1}^{N} m_i = N} \frac{N! \left(\frac{t^P}{i!}\right)^{m_i}}{m_1! \cdots m_N! \cdot (N - \sum_{i=1}^{N} m_i + 1)! \prod_{i=1}^{N} \left(\frac{t_{i}^P}{i!}\right)^{m_i}}.
\end{align*}
\]

The following are the first few terms:

\[
\begin{align*}
u_S &= t^P + t^P t_1^P + \left(\frac{(t^P)^2 t_2^P}{2!} + t^P (t_1^P)^2\right) \\
&+ \left(\frac{(t^P)^3 t_3^P}{3!} + 3(t^P)^2 t_2^P t_1^P + t^P (t_1^P)^3\right) \\
&+ \left(\frac{(t^P)^4 t_4^P}{4!} + 4(t^P)^3 t_3^P t_1^P + 2(t^P)^3 (t_2^P)^2 + 6(t^P)^2 t_2^P t_1^P + t^P (t_1^P)^4\right) + \cdots.
\end{align*}
\]

The coefficients \((1), (1, 1), (1, 3, 1), (1, 4, 2, 6, 1)\) are integer sequence A134264 on \[31\].

Taking \(\frac{\partial}{\partial t^P}\) on both sides of (113) one can get:

\[
\begin{align*}
u_{S,1} &= \left(1 - \sum_{n=1}^{\infty} t_n^P \frac{u_{S}^{n-1}}{(n-1)!}\right)^{-1}.
\end{align*}
\]

From (114) we get:

\[
\begin{align*}
u_R &= \left(1 - \sum_{n=1}^{\infty} t_n^P \frac{u_{S}^{n-1}}{(n-1)!}\right)^{-1} \cdot \sum_{n=0}^{\infty} t_n^Q \frac{u_{S}^{n}}{n!} = u_{S,1} \sum_{n=0}^{\infty} t_n^Q \frac{u_{S}^{n}}{n!}.
\end{align*}
\]

From this we get:

\[
\begin{align*}
\sum_{n=0}^{\infty} t_n^Q \frac{u_{S}^{n}}{n!} &= \frac{u_R}{u_{S,1}}.
\end{align*}
\]
Proposition 4.4. The following formula for u_R holds:

$$u_R = \sum_{k=1}^{\infty} \sum_{p_1+\cdots+p_k=k-1} \frac{t_{p_1}^P t_{p_2}^P \cdots t_{p_k}^P}{p_1! p_2! \cdots p_k!}.$$ \hfill (123)

Proof. Consider an operator

$$D := \sum_{n=0}^{\infty} t_n^Q \frac{\partial}{\partial t_n^P}. \hfill (124)$$

Claim. The action of this operator on u_S changes it to u_R:

$$Du_S = u_R.$$ \hfill (125)

This can be proved as follows. We will actually use some results from §4.12 below. From

$$D_{P,z}(u_S) = \sum_{n \geq 0} z^{-n-1} \frac{\partial u_P}{\partial t_n^P} = [e^{u_S/z}],$$

we get

$$\frac{\partial u_S}{\partial t_n^P} = \frac{u_n^S}{n!} u_{S,1}. \hfill (126)$$

Therefore, we have

$$Du_S = \sum_{n=0}^{\infty} t_n^Q \frac{\partial u_S}{\partial t_n^P} = u_{S,1} \sum_{n=0}^{\infty} t_n^Q \frac{u_n^S}{n!} = u_R.$$ \hfill (127)

In other words, we have shown that

$$u_R = \sum_{n=0}^{\infty} t_n^Q \frac{\partial u_S}{\partial t_n^P}.$$ \hfill (128)

Now (123) follows from (117). \hfill \Box

From the proof we also get the following formula:

$$u_{S,1} \frac{u_n^S}{n!} = \frac{\partial u_S}{\partial t_n^P} = \frac{1}{n!} \sum_{k=n}^{\infty} \sum_{p_1+\cdots+p_k=k-n} \frac{t_{p_1}^P}{p_1!} \cdots \frac{t_{p_k}^P}{p_k!}. \hfill (128)$$

It can also be written as:

$$\frac{\partial u_S}{\partial t_n^P} = \frac{1}{n!} \sum_{N=n}^{\infty} \sum_{\sum_i m_i = N-n} \frac{N!(t_1^P)^{N-\sum_i m_i}}{m_1! \cdots m_N! \cdot (N-\sum_i m_i)!} \prod_{i=1}^{N} \left(\frac{t_i^P}{i!} \right)^{m_i}.$$
For example,

\[u_{S,1} = \frac{\partial u_S}{\partial t^P} \]

\[= 1 + t^P + \left(2t^P \frac{t^P_2}{2!} + (t^P_1)^2 \right) \]

\[+ \left(3(t^P)^2 \frac{t^P_3}{3!} + 6t^P \frac{t^P_2}{2!} t^P_1 + (t^P_1)^3 \right) \]

\[+ \left(4(t^P)^3 \frac{t^P_4}{4!} + 12(t^P)^2 \frac{t^P_3}{3!} t^P_1 + 6(t^P)^2 \left(\frac{t^P_2}{2!} \right)^2 + 12t^P \frac{t^P_2}{2!} (t^P_1)^2 + (t^P_1)^4 \right) + \cdots, \]

where the coefficients 1, (2, 1), (3, 6, 1), (4, 1, 2, 6, 12, 1), \ldots are the sequence A035206 on [31].

\[\frac{\partial u_S}{\partial t^P_1} = t^P + 2t^P t^P_1 + \left(3(t^P)^2 \frac{t^P_2}{2!} + 3t^P(t^P_1)^2 \right) \]

\[+ \left(4(t^P)^3 \frac{t^P_3}{3!} + 12(t^P)^2 \frac{t^P_2}{2!} t^P_1 + 4t^P(t^P_1)^3 \right) + \cdots. \]

where the coefficients 1, 2, (3, 3), (4, 12, 4), \ldots are not on [31], instead, after rescaling we get 1, 1, (1, 1), (1, 3, 1), \ldots which are the sequence A134264 on [31] again. We also have:

\[\frac{\partial u_S}{\partial t^P_2} = \frac{1}{2!} \left[(t^P)^2 + 3(t^P)^2 t^P_1 + \left(4(t^P)^3 \frac{t^P_3}{2!} + 6(t^P)^2 (t^P_1)^2 \right) + \cdots \right], \]

\[\frac{\partial u_S}{\partial t^P_3} = \frac{1}{3!} \left((t^P)^3 + 4(t^P)^3 t^P_1 + \cdots \right). \]

From these we can write the first few terms of \(u_R \):

\[u_R = t^Q \frac{\partial u_S}{\partial t^P} + t_1^Q \frac{\partial u_S}{\partial t^P_1} + t_2^Q \frac{\partial u_S}{\partial t^P_2} + t_3^Q \frac{\partial u_S}{\partial t^P_3} + \cdots \]

\[= t^Q + (t^Q t^P_1 + t^Q t^P) + \left(t^Q \left(2t^P \frac{t^P_2}{2!} + (t^P_1)^2 \right) + 2t^Q t^P t^P_1 + \frac{t^Q}{2!} (T^P)^2 \right) + \cdots. \]

From (115) and (120) we get:

\[u_Q = u_{S,1} \cdot \left(\sum_{n=0}^{\infty} t^R_n \frac{u_S^n}{n!} + f_0''(u_R) \sum_{n=1}^{\infty} t^Q_n \frac{u_S^{n-1}}{(n-1)!} \right) \]

\[+ g_0'(u_R) \sum_{n=2}^{\infty} t^P_n \frac{u_S^{n-2}}{(n-2)!} \].

(129)
Similarly, from (116) and (120) we get:

\[u_P = u_{S,1} - u_Q \left(\sum_{n=1}^{\infty} t_n^P u_{S,n} (n-1)! + u_R \sum_{n=2}^{\infty} t_n^R u_{S,n-2} (n-2)! \right) \]

(130)

\[+ u_R \sum_{n=1}^{\infty} t_n^R u_{S,n} (n-1)! + f_0'(u_R) \sum_{n=2}^{\infty} t_n^Q u_{S,n-2} (n-2)! \]

\[+ g_0(u_R) \sum_{n=3}^{\infty} t_n^P u_{S,n-3} (n-3)! + \sum_{n=0}^{\infty} t_n^S u_{S,n} \].

So all the order parameters have been determined.

4.7. The jet variables as new coordinates. Note \(u_R \) is linear in \(t_n^Q \)'s, \(u_Q \) is linear in \(t_n^R \)'s, and \(u_P \) is linear in \(t_n^S \)'s. For example,

\[u_R = t^Q \left(1 + t_1^P + (t_1^P t_2^P + (t_1^P)^2) + (3t_2^P t_1^P t_1^P + \frac{1}{2}t_3^P (t_1^P)^2 + (t_1^P)^3) + \cdots \right) \]

\[+ t_1^Q \left(t^P + 2t_1^P t_1^P + 3t_1^P (t_1^P)^2 + \frac{3}{2}(t_1^P)^2 t_2^P + \cdots \right) \]

\[+ \frac{1}{2}t_2^Q \left((t^P)^2 + 3(t^P)^2 t_1^P + \cdots \right) + \frac{1}{6}t_3^Q \left((t^P)^3 + \cdots \right) + \cdots , \]

after repeatedly taking \(\frac{\partial}{\partial t^P} \), we have:

\[u_{R,1} = t^Q \left(t_1^P + (3t_2^P t_1^P + t_3^P t_1^P) + \cdots \right) \]

\[+ t_1^Q \left(1 + 2t_1^P + 3(t_1^P)^2 + 3t_1^P t_2^P + \cdots \right) \]

\[+ t_2^Q \left(t^P + 3t_1^P t_1^P + \cdots \right) + \frac{1}{2}t_3^Q \left((t^P)^2 + \cdots \right) + \cdots , \]

\[u_{R,2} = t^Q \left(t_3^P + \cdots \right) + t_1^Q \left(3t_2^P + \cdots \right) \]

\[+ t_2^Q \left(1 + 3t_1^P + \cdots \right) + t_3^Q \left(t^P + \cdots \right) + \cdots , \]

etc. One can easily see that \(u_{S,n}, u_{R,n}, u_{Q,n} \) and \(u_{P,n} \) are equal to \(t_n^P \), \(t_n^Q \), \(t_n^R \) and \(t_n^S \) respectively when restricted to the small phase space, and so they can be used as new coordinates.
4.8. **Renormalized coupling constants.** Now we generalize an idea in [37]. Write $U_S = \hat{U}_S + u_S$, etc, and plug them into the Landau-Ginzburg potential. Let us focus on the following part of W and treat the rest of W as perturbation:

\[
W = U_P \left(-U_S + \sum_{n=0}^{\infty} t^n_n \frac{U_S^n}{n!} \right)
+ U_Q \left(-U_R + \sum_{n=0}^{\infty} t^n_n \frac{U_S^n}{n!} + U_R \sum_{n=1}^{\infty} t_n^n \frac{U_S^{n-1}}{(n-1)!} \right)
+ U_R \sum_{n=0}^{\infty} t_R^n \frac{U_S^n}{n!} + \sum_{n=0}^{\infty} t^n_n \frac{U_S^{n+1}}{(n+1)!} + \cdots.
\]

Then we get:

\[
W = (\hat{U}_P + u_P) \left(-\hat{U}_S + u_S + \sum_{n=0}^{\infty} t^n_n \frac{(\hat{U}_S + u_S)^n}{n!} \right)
+ (\hat{U}_Q + u_Q) \left(-\hat{U}_R + u_R + \sum_{n=0}^{\infty} t^n_n \frac{(\hat{U}_S + u_S)^n}{n!} \right)
+ (\hat{U}_R + u_R) \sum_{n=1}^{\infty} t^n_n \frac{(\hat{U}_S + u_S)^{n-1}}{(n-1)!} \right)
+ (\hat{U}_R + u_R) \sum_{n=0}^{\infty} t^n_n \frac{(\hat{U}_S + u_S)^n}{n!} + \sum_{n=0}^{\infty} t^n_n \frac{(\hat{U}_S + u_S)^{n+1}}{(n+1)!} + \cdots.
\]

so we get:

\[
W = W_0 + \hat{U}_P \left(-\hat{U}_S + \sum_{n=1}^{\infty} t^n_n \frac{U_S^n}{n!} \right)
+ U_Q \left(-U_R + \sum_{n=0}^{\infty} t^n_n \frac{U_S^n}{n!} + U_R \sum_{n=1}^{\infty} t_n^n \frac{U_S^{n-1}}{(n-1)!} \right)
+ U_R \sum_{n=0}^{\infty} t_R^n \frac{U_S^n}{n!} + \sum_{n=0}^{\infty} t^n_n \frac{U_S^{n+1}}{(n+1)!} + \cdots.
\]
where W_0 is independent of \hat{U}_α, and \hat{t}^α are deformations of t^α_n, for example,

$$\hat{t}_n^P = \sum_{k=0}^{\infty} t_{n+k}^P \frac{u_S^k}{k!},$$

$$\hat{t}_n^Q = \sum_{l=0}^{\infty} (t_{n+l}^Q + u_R t_{n+l+1}^P) \frac{u_S^l}{l!},$$

$$\hat{t}_n^R = \sum_{l=0}^{\infty} (t_{n+l}^R + u_Q t_{n+l+1}^P) \frac{u_S^l}{l!},$$

$$\hat{t}_n^S = \sum_{l=0}^{\infty} (t_{n+l}^S + u_R t_{n+l+1}^R + u_Q (t_{n+l+1}^Q + u_R t_{n+l+2}^P) + u_P t_{n+l+1}^P) \frac{u_S^l}{l!}.$$

We refer to \hat{t}^α_n as the renormalized coupling constants. They can also be used as new coordinate system on the big phase space.

4.9. The constitutive relations for two-point functions in genus zero. I. Taking $\frac{\partial}{\partial t^P}, \ldots, \frac{\partial}{\partial t^S}$ on both sides of (101)-(104), we get:

$$S_{P,P}(z) = e^{t^P/z} \left(\frac{t^S}{z} + \frac{t^Q t^R}{z^2} + \frac{1}{z^3} (t^Q f_0'(t^Q) - 2 f_0(t^Q)) \right),$$

$$S_{Q,P}(z) = \frac{1}{z} e^{t^P/z} t^R + \frac{1}{z^2} e^{t^P/z} (t^Q f_0''(t^Q) - f_0'(t^Q)), $$

$$S_{R,P}(z) = \frac{1}{z} e^{t^P/z} t^Q,$$

$$S_{S,P}(z) = e^{t^P/z}.$$

$$S_{P,Q}(z) = \frac{e^{t^P/z}}{z^2} f_0'(t^Q) + \frac{1}{z} e^{t^P/z} t^R,$$

$$S_{Q,Q}(z) = \frac{e^{t^P/z}}{z} f_0''(t^Q),$$

$$S_{R,Q}(z) = e^{t^P/z},$$

$$S_{S,Q}(z) = 0.$$

$$S_{P,R}(z) = \frac{1}{z} e^{t^P/z} t^Q, \quad S_{Q,R}(z) = e^{t^P/z}, \quad S_{R,R}(z) = 0, \quad S_{S,R}(z) = 0.$$

$$S_{P,S}(z) = e^{t^P/z}, \quad S_{Q,S}(z) = 0, \quad S_{R,S}(z) = 0, \quad S_{S,S}(z) = 0.$$
Here we have used the following notation:

\[
S_{\alpha,\beta} = \eta_{\alpha\beta} + \sum_{n \geq 0} z^{-n-1} \langle \langle \tau_0(\alpha) \tau_n(\beta) \rangle \rangle_0.
\]

The first couple of terms of the expansion of the matrix \((S_{\alpha,\beta})_{\alpha,\beta} = P, Q, R, S\) are

\[
(S_{\alpha\beta}(z)) = \begin{pmatrix}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{pmatrix} + \frac{1}{z} \begin{pmatrix}
t^S & t^R & t^Q & t^P \\
t^R & f''_0(t^Q) & t^Q & t^P \\
t^Q & t^P & t^P & 0 \\
t^P & 0 & 0 & 0
\end{pmatrix}
\]

\[
+ \frac{1}{z^2} \begin{pmatrix}
t^S t^P + t^Q t^R & t^R t^P + t^Q f'_0(t^Q) - 2 f(t^Q) & t^Q t^P & \frac{(t^P)^2}{2!} \\
t^R t^P + f'_0(t^Q) & t^P f''_0(t^Q) & \frac{(t^P)^2}{2!} & 0 \\
t^Q t^P & \frac{(t^P)^2}{2!} & 0 & 0 \\
\frac{(t^P)^2}{2!} & 0 & 0 & 0
\end{pmatrix} + \cdots
\]

The leading term and the subleading term are the metric matrix and the Hessian matrix in §4.2.

Next we will check some other properties of the matrix \((S_{\alpha,\beta})_{\alpha,\beta} = P, Q, R, S\).

4.10. **Quantum differential equations.** It is straightforward to check that the following equations are satisfied by \(S_{\alpha,\beta}\) on the small phase space:

\[
z \frac{\partial}{\partial t^P} \begin{pmatrix} S_{P,\gamma} \\ S_{Q,\gamma} \\ S_{R,\gamma} \\ S_{S,\gamma} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} S_{P,\gamma} \\ S_{Q,\gamma} \\ S_{R,\gamma} \\ S_{S,\gamma} \end{pmatrix},
\]

\[
z \frac{\partial}{\partial t^Q} \begin{pmatrix} S_{P,\gamma} \\ S_{Q,\gamma} \\ S_{R,\gamma} \\ S_{S,\gamma} \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & f''_0(t^Q) & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} S_{P,\gamma} \\ S_{Q,\gamma} \\ S_{R,\gamma} \\ S_{S,\gamma} \end{pmatrix},
\]

\[
z \frac{\partial}{\partial t^R} \begin{pmatrix} S_{P,\gamma} \\ S_{Q,\gamma} \\ S_{R,\gamma} \\ S_{S,\gamma} \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} S_{P,\gamma} \\ S_{Q,\gamma} \\ S_{R,\gamma} \\ S_{S,\gamma} \end{pmatrix},
\]

\[
z \frac{\partial}{\partial t^S} \begin{pmatrix} S_{P,\gamma} \\ S_{Q,\gamma} \\ S_{R,\gamma} \\ S_{S,\gamma} \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} S_{P,\gamma} \\ S_{Q,\gamma} \\ S_{R,\gamma} \\ S_{S,\gamma} \end{pmatrix},
\]
where the matrices on the right-hand sides of these equations are computed in §4.3.

4.11. The genus zero two-point function. One can also check the following orthogonality relations:

\[(138)\quad S_{\delta,\alpha}(z)\eta^{\delta\epsilon}S_{\epsilon,\beta}(-z) = \eta_{\alpha,\beta}.\]

Let

\[(139)\quad V_{\alpha,\beta}(z_1, z_2) = \frac{1}{z_1 + z_2} \left(\sum_{\delta,\epsilon} \eta^{\delta\epsilon} S_{\delta,\alpha}(z_1) S_{\epsilon,\beta}(z_2) - \eta_{\alpha,\beta} \right).\]

It is clear that

\[(140)\quad V_{\alpha,\beta}(z_1, z_2) = V_{\beta,\alpha}(z_2, z_1).\]

One easily get:

\[
V_{P,P}(z_1, z_2) = \frac{e^{t^P/z_1 + t^P/z_2}}{z_1 z_2} \left(t^S + \left(\frac{1}{z_1} + \frac{1}{z_2} \right) t^Q t^R \right) + \left(\frac{1}{z_1} - \frac{1}{z_1 z_2} + \frac{1}{z_2} \right) (t^Q f'(t^Q) - 2 f(t^Q)) + \frac{1}{z_1 z_2} t^Q (t^Q f''(t^Q) - f_0'(t^Q)),
\]

\[
V_{P,Q}(z_1, z_2) = \frac{e^{t^P/z_1 + t^P/z_2}}{z_1 z_2} \left(t^R + \frac{1}{z_1} t^Q f''(t^Q) + \left(\frac{1}{z_2} - \frac{1}{z_1} \right) f_0'(t^Q) \right),
\]

\[
V_{P,R}(z_1, z_2) = \frac{e^{t^P/z_1 + t^P/z_2}}{z_1 z_2} t^Q,
\]

\[
V_{P,S}(z_1, z_2) = \frac{e^{t^P/z_1 + t^P/z_2} - 1}{z_1 + z_2},
\]

\[
V_{Q,Q}(z_1, z_2) = \frac{e^{t^P/z_1 + t^P/z_2}}{z_1 z_2} f''(t^Q),
\]

\[
V_{Q,R}(z_1, z_2) = \frac{e^{t^P/z_1 + t^P/z_2} - 1}{z_1 + z_2}.
\]

See also Dubrovin [5, Example 5.2]. By changing t^P to u_S, t^Q to u_R, t^R to u_Q and t^S to u_P, one then get the following formula for two-point
function of GW invariants of quintic CY threefold in genus zero on the big phase space:

\[V_{P,P}(z_1, z_2) = e^{u_{S/z_1} + u_{S/z_2}} \left(u_P + \left(\frac{1}{z_1} + \frac{1}{z_2} \right) u_Q u_R \right. \]
\[+ \left. \left(\frac{1}{z_1^2} - \frac{1}{z_1 z_2} + \frac{1}{z_2^2} \right) (u_R f'(u_R) - 2f(u_R)) \right) + \frac{1}{z_1 z_2} u_R (u_R f''_0(u_R) - f'_0(u_R)) \), \]

\[V_{P,Q}(z_1, z_2) = e^{u_{S/z_1} + u_{S/z_2}} \left(u_Q + \frac{1}{z_1} u_R f''_0(u_R) + \left(\frac{1}{z_2} - \frac{1}{z_1} \right) f'_0(u_R) \right) \), \]

\[V_{P,R}(z_1, z_2) = e^{u_{S/z_1} + u_{S/z_2}} u_R, \]

\[V_{Q,Q}(z_1, z_2) = e^{u_{S/z_1} + u_{S/z_2}} f''_0(u_R). \]

4.12. The integrable hierarchy in genus zero. Recall the system of the hierarchy in genus zero can be written in the following compact form:

(141) \[D_{\beta,z} u_\alpha = (R_{\alpha,0;\beta}(u_0, \ldots, u_r; \zeta))', \]

where

(142) \[R_{\alpha,0;\beta}(u_0, \ldots, u_r; z) = \eta_{\alpha\beta} + \sum_{n=0}^{\infty} R_{\alpha,0;\beta,n}(u_0, \ldots, u_r) z^{-n-1}. \]

and \(D_{\beta,z} \) is the loop operators:

(143) \[D_{\beta,z} := \sum_{n=0}^{\infty} z^{-n-1} \frac{\partial}{\partial t^n}. \]
Therefore, using the explicit formula is \[\text{4.9}\] we get:

\[R_{P,0}(z) = e^{u_R/z} \left(\frac{u_P}{z} + \frac{u_Q u_R R}{z^2} + \frac{1}{z^3} (u_R f_0'(u_R) - 2 f_0(u_R)) \right),\]

\[R_{Q,0}(z) = \frac{1}{z} e^{u_S/z} u_Q + \frac{1}{z^2} e^{u_S/z} (u_R f_0''(u_R) - f_0'(u_R)),\]

\[R_{R,0}(z) = \frac{1}{z} e^{u_S/z} u_R,\]

\[R_{S,0}(z) = e^{u_S/z}.\]

\[R_{P,0}(z) = \frac{1}{z} e^{u_S/z} u_R,\]

\[R_{Q,0}(z) = e^{u_S/z},\]

\[R_{R,0}(z) = 0,\]

\[R_{S,0}(z) = 0.\]

\[R_{P,0}(z) = \frac{1}{z} e^{u_S/z} u_R,\]

\[R_{Q,0}(z) = e^{u_S/z},\]

\[R_{R,0}(z) = 0,\]

\[R_{S,0}(z) = 0.\]

Therefore, the integrable hierarchy in genus zero can be written down explicitly as operations of the loop operators on the order parameters as follows.

\[D_{P,z}(u_P) = \sum_{n \geq 0} z^{-n-1} \frac{\partial u_S}{\partial t_{n,P}},\]

\[= \left[\frac{e^{u_S/z}}{z} u_P + \frac{e^{u_S/z}}{z^2} u_Q u_R + \frac{e^{u_S/z}}{z^3} (u_R f_0'(u_R) - f_0(u_R)) \right]' .\]

\[D_{P,z}(u_Q) = \sum_{n \geq 0} z^{-n-1} \frac{\partial u_R}{\partial t_{n,P}},\]

\[= \left[\frac{1}{z} e^{u_S/z} u_Q + \frac{1}{z^2} e^{u_S/z} (u_R f_0''(u_R) - f_0'(u_R)) \right]' .\]

\[D_{P,z}(u_R) = \sum_{n \geq 0} z^{-n-1} \frac{\partial u_Q}{\partial t_{n,P}} = \left[\frac{1}{z} e^{u_S/z} u_R \right]' .\]
\[
D_{P,z}(u_S) = \sum_{n \geq 0} z^{-n-1} \frac{\partial u_P}{\partial t_{n,P}} = \left[e^{u_S/z} \right]'.
\]

\[
D_{Q,z}(u_P) = \sum_{n \geq 0} z^{-n-1} \frac{\partial u_S}{\partial t_{n,Q}} = \left[\frac{1}{z} e^{u_S/z} u_Q + \frac{e^{u_S/z}}{z^2} f_0'(u_R) \right]'.
\]

\[
D_{Q,z}(u_Q) = \sum_{n=0}^{\infty} z^{-n-1} \frac{\partial u_R}{\partial t_{n,Q}} = \left[\frac{e^{u_S/z}}{z} f_0''(u_R) \right]'.
\]

\[
D_{Q,z}(u_R) = \sum_{n=0}^{\infty} z^{-n-1} \frac{\partial u_Q}{\partial t_{n,Q}} = (e^{u_S/z})'.
\]

\[
D_{Q,z}(u_S) = \sum_{n=0}^{\infty} z^{-n-1} \frac{\partial u_P}{\partial t_{n,Q}} = 0.
\]

\[
D_{R,z}(u_P) = \sum_{n=0}^{\infty} z^{-n-1} \frac{\partial u_S}{\partial t_{n,R}} = \left[\frac{1}{z} e^{u_S/z} u_R \right]'.
\]

\[
D_{R,z}(u_Q) = \sum_{n=0}^{\infty} z^{-n-1} \frac{\partial u_R}{\partial t_{n,R}} = \left[e^{u_S/z} \right]'.
\]

\[
D_{R,z}(u_R) = \sum_{n=0}^{\infty} z^{-n-1} \frac{\partial u_P}{\partial t_{n,R}} = 0.
\]

\[
D_{R,z}(u_S) = \sum_{n=0}^{\infty} z^{-n-1} \frac{\partial u_Q}{\partial t_{n,R}} = 0.
\]

\[
D_{S,z}(u_P) = \sum_{n=0}^{\infty} z^{-n-1} \frac{\partial u_S}{\partial t_{n,S}} = \left[e^{u_S/z} \right]'.
\]

\[
D_{S,z}(u_Q) = \sum_{n=0}^{\infty} z^{-n-1} \frac{\partial u_R}{\partial t_{n,S}} = 0.
\]

\[
D_{S,z}(u_R) = \sum_{n=0}^{\infty} z^{-n-1} \frac{\partial u_Q}{\partial t_{n,S}} = 0.
\]
4.13. Three-point functions. We now show how to combine the results of the preceding two Subsections to obtain a recursive algorithm to compute \(n \)-point functions of genus zero GW invariants of the quintic defined as follows: For \(n \geq 3 \), define:

\[
V_{\alpha_1, \ldots, \alpha_n}(z_1, \ldots, z_n) := D_{\alpha_1, z_1} \cdots D_{\alpha_n, z_n} F_0
\]

Their computation is based on the following observation. When \(n \geq 3 \), the \(n \)-point functions can be computed by applying the loop operators repeatedly on the two-point functions:

\[
V_{\alpha_1, \ldots, \alpha_n}(z_1, \ldots, z_n) = D_{\alpha_1, z_1} \cdots D_{\alpha_{n-2}, z_{n-2}} V_{\alpha_{n-1}, \alpha_n}(z_{n-1}, z_n).
\]

For example,

\[
V_{P, Q, R}(z_1, z_2, z_3) = D_{P, z_1} \frac{e^{u_S/z_2 + u_S/z_3} - 1}{z_2 + z_3} = \frac{e^{u_S/z_2 + u_S/z_3}}{z_2 + z_3} \cdot \left(\frac{1}{z_2} + \frac{1}{z_3} \right) D_{P, z_1} u_S
\]

After simplification we get:

\[
V_{P, Q, R}(z_1, z_2, z_3) = \frac{e^{u_S/z_1}}{z_1} \cdot \frac{e^{u_S/z_2}}{z_2} \cdot \frac{e^{u_S/z_3}}{z_3} \cdot u'_S.
\]

In this way we get the other nonvanishing three-point functions (up to permutations):

\[
V_{Q, Q, Q} = \frac{e^{u_S/z_1}}{z_1} \cdot \frac{e^{u_S/z_2}}{z_2} \cdot \frac{e^{u_S/z_3}}{z_3} \cdot u''_S f'''_0(u_R).
\]

\[
V_{P, Q, Q}(z_1, z_2, z_3) = \frac{e^{u_S/z_1}}{z_1} \cdot \frac{e^{u_S/z_2}}{z_2} \cdot \frac{e^{u_S/z_3}}{z_3} \cdot \left(u'_R f'''_0(u_R) + \frac{u''_R f'''_0(u_R) u'_S}{z_1} + \frac{f'''_0(u_R) u'_S}{z_2} + \frac{f'''_0(u_R) u'_S}{z_3} \right).
\]

\[
V_{S, P, S}(z_1, z_2, z_3) = V_{R, P, S}(z_1, z_2, z_3) = V_{Q, P, S}(z_1, z_2, z_3) = 0.
\]
\[V_{P,P,S}(z_1, z_2, z_3) = \frac{e^{u_S/z_1}}{z_1} \cdot \frac{e^{u_S/z_2}}{z_2} \cdot \frac{e^{u_S/z_3}}{z_3} \cdot u'_S. \]

\[V_{P,P,R}(z_1, z_2, z_3) = \frac{e^{u_S/z_1}}{z_1} \cdot \frac{e^{u_S/z_2}}{z_2} \cdot \frac{e^{u_S/z_3}}{z_3} \cdot \left[u'_R + \left(\frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} \right) u_R u'_S \right]. \]

\[V_{P,P,Q}(z_1, z_2, z_3) = \frac{e^{u_S/z_1}}{z_1} \cdot \frac{e^{u_S/z_2}}{z_2} \cdot \frac{e^{u_S/z_3}}{z_3} \cdot \left[u'_Q + \left(\frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} \right) u_Q u'_S \right. \]
\[+ \left(\frac{1}{z_1} - \frac{1}{z_2} - \frac{1}{z_3} \right) u'_s f'_0(u_R) \]
\[+ \left(\frac{u'_R}{z_3} + \left(\frac{1}{z_1 z_3} + \frac{1}{z_2 z_3} + \frac{1}{z_1} + \frac{1}{z_2} \right) u'_s u_R \right) f''_0(u_R) \]
\[+ \left(\left(\frac{1}{z_1} + \frac{1}{z_2} \right) u_R u'_R + \frac{u''_R}{z_1 z_2} \right) f'''_0(u_R) \].

We omit a similar formula for \(V_{P,P,P} \).

4.14. A formula for general \(n \)-point functions. By repeatedly applying the loop operators on the nonvanishing three-point functions, one gets \(n \)-point functions. Among them, we are particularly interested in \(n \)-point functions of the form

\[V_{P,...,P,Q,R}(z_1, \ldots, z_n, z_{n+1}, z_{n+2}) = V_{P,...,P,P,S}(z_1, \ldots, z_n, z_{n+1}, z_{n+2}). \]

To see why we expect some nice formulas for them, let us first do the calculations for \(n = 2 \) and \(n = 3 \).
For $n = 2$, we have
\[
V_{P,P,Q,R}(z_1, z_2, z_3, z_4) = D_{P,z_1} \left(\frac{e^{u_S/z_1}}{z_1} \cdot \frac{e^{u_S/z_2}}{z_2} \cdot \frac{e^{u_S/z_3}}{z_3} \cdot u'_S \right)
\]
\[
= \prod_{i=1}^{3} \frac{e^{u_S/z_i}}{z_i} \cdot \left(\sum_{i=1}^{3} \frac{1}{z_i} \cdot D_{P,z_i} u_S \cdot u'_S + (D_{P,z_i} u'_S) \right)
\]
\[
= \prod_{i=1}^{3} \frac{e^{u_S/z_i}}{z_i} \cdot \left(\sum_{i=1}^{3} \frac{1}{z_i} \cdot (e^{u_S/z_1})' + (e^{u_S/z_1})'' \right)
\]
\[
= \prod_{i=1}^{3} \frac{e^{u_S/z_i}}{z_i} \cdot \left(\sum_{i=1}^{3} \frac{1}{z_i} \cdot \frac{e^{u_S/z_1}}{z_1} u'_S + \frac{e^{u_S/z_1}}{z_1} (u'_S)^2 + \frac{e^{u_S/z_1}}{z_1} u''_S \right)
\]
\[
= \prod_{i=1}^{4} \frac{e^{u_S/z_i}}{z_i} \cdot \left(u''_S + \sum_{i=1}^{4} \frac{1}{z_i} (u'_S)^2 \right).
\]

For $n = 3$, one can similarly find that
\[
V_{P,P,P,Q,R}(z_1, \ldots, z_5)
\]
\[
= \prod_{i=1}^{5} \frac{e^{u_S/z_i}}{z_i} \cdot \left(u'''_S + 3 \sum_{i=1}^{5} \frac{1}{z_i} u'_S u''_S + \left(\sum_{i=1}^{5} \frac{1}{z_i} \right)^2 (u'_S)^3 \right).
\]

The situation is similar to Section 7.6 in [37]. One can show that for $n \geq 1$,
\[
V_{P,\ldots,P,Q,R}(z_1, \ldots, z_{n+2}) = V_{P,\ldots,P,P,S}(z_1, \ldots, z_{n+2})
\]
(146)
\[
= \prod_{i=1}^{n+2} \frac{e^{u_S/z_i}}{z_i} \cdot n! \sum_{m_1, \ldots, m_n \geq 0, \sum_{j=1}^{n} m_j = n} \left(\sum_{i=1}^{n+2} \frac{1}{z_i} \right) \prod_{j=1}^{n} \frac{u_{S,j}^{m_j}}{(j!)^{m_j}}.
\]

The coefficients $(1), (1, 1), (1, 3, 1), (1, 4, 3, 6, 1)$ are integer sequence A036040 or A080575 on [31]. They are related to the complete Bell polynomials:

(147)
\[
\exp \sum_{j=1}^{\infty} \frac{x_j t^j}{j!} = \sum_{n=0}^{\infty} t^n \sum_{m_1, \ldots, m_n \geq 0, \sum_{j=1}^{n} m_j = n} \prod_{j=1}^{n} \frac{x_j^{m_j}}{(j!)^{m_j}}.
\]

A more compact formula is as follows:

(148)
\[
V_{P,\ldots,P,Q,R}(z_1, \ldots, z_{n+2}) = V_{P,\ldots,P,P,S}(z_1, \ldots, z_{n+2})
\]
\[
= \left(\sum_{i=1}^{n+2} \frac{1}{z_i} \right)^{-1} \left(\frac{\partial}{\partial u^P_0} \right)^n \left(\prod_{i=1}^{n+2} \frac{e^{u_S/z_i}}{z_i} \right).
\]
In the same fashion we also get:

\[\mathcal{V}_{P,\ldots,P,R}(z_1, \ldots, z_{n+2}) = \prod_{i=1}^{n+2} e^{\frac{u_S}{z_i}} \cdot \frac{n!}{z_i} \sum_{l,m_1,\ldots,m_n \geq 0 \atop l+\sum_{j=1}^{n} m_j=n} \left(\sum_{i=1}^{n+2} \frac{1}{z_i} \right)^{m_1+\cdots+m_n-1} \]

(149)

\[\cdot \frac{u_R}{l!} \prod_{j=1}^{n} \frac{u_{S,j}^{m_j}}{(j!)^{m_j} m_j!} \]

A more compact formula is as follows:

\[\mathcal{V}_{P,\ldots,P,P,R}(z_1, \ldots, z_{n+2}) = \left(\sum_{i=1}^{n+2} \frac{1}{z_i} \right)^{-1} \left(\frac{\partial}{\partial t_0} \right)^n \left(u_R \prod_{i=1}^{n+2} \frac{e^{u_S/z_i}}{z_i} \right). \]

(150)

For example,

\[\mathcal{V}_{P,P,P,R}(z_1, z_2, z_3) = 3 \prod_{i=1}^{3} e^{\frac{u_S}{z_i}} \cdot \left[u_R^2 + \sum_{i=1}^{3} \frac{1}{z_i} u'_S \right]. \]

\[\mathcal{V}_{P,P,P,R}(z_1, z_2, z_3, z_4) = 4 \prod_{i=1}^{4} e^{\frac{u_S}{z_i}} \cdot \left[u_R^2 + \sum_{i=1}^{4} \frac{1}{z_i} (2u_{S,1}u_{R,1} + u_{S,2}u_R) + \left(\sum_{i=1}^{4} \frac{1}{z_i} \right)^2 u_{S,1}^2 u_R \right]. \]

\[\mathcal{V}_{P,\ldots,P,R}(z_1, \ldots, z_5) = 5 \prod_{i=1}^{5} e^{\frac{u_S}{z_i}} \cdot \left[u_R^3 + \sum_{i=1}^{5} \frac{1}{z_i} (3u_{S,1}u_{R,2} + 3u_{S,2}u_{R,1} + u_{S,3}u_R) + \left(\sum_{i=1}^{5} \frac{1}{z_i} \right)^3 u_{S,1}^3 u_R \right]. \]

4.15. **Genus zero free energy of the quintic.** Let us now compute the genus zero partition function of the quintic on the big phase space. Recall the general formula

\[F_0(t) = \frac{1}{2} \sum_{m,n=0} R_{\alpha,m;\beta,n} \tilde{t}_m^\alpha \tilde{t}_n^\beta, \]

where \(\tilde{t}_m = t_m - \delta_{m,1} \delta_{\alpha,0} \), and

\[\mathcal{V}_{\alpha,\beta}(z_1, z_2) = \sum_{m,n=0}^{\infty} R_{\alpha,m;\beta,n}(U) z_1^{-m-1} z_2^{-n-1}. \]

(152)
Since for the quintic $V_{\alpha,\beta}(z_1, z_2)$ is already explicitly known from \[4.11\] so it is possible to explicitly compute F_0 on the big phase space for the quintic. The result is the following:

Theorem 4.5. We have the following formulas for F_0 of the quintic on the big phase space:

\begin{align}
(153) \quad F_0 &= \frac{f_0(u_R)}{u_{S,1}^z} + \sum_{m,n=0}^{\infty} \frac{u_S^{m+n+1}}{m + n + 1} \frac{t_m^P t_n^S}{m! n!} + \sum_{m,n=0}^{\infty} \frac{u_S^{m+n+1}}{m + n + 1} \frac{t_m^Q t_n^R}{m! n!}
\end{align}

\begin{align}
(154) \quad F_0 &= \frac{1}{u_{S,1}^z} \left(f_0(u_R) + \sum_{m,n=0}^{\infty} \frac{t_m^P t_n^S + t_m^Q t_n^R}{m + n + 1} u_S \frac{\partial u_S}{\partial t_m^P} \frac{\partial u_S}{\partial t_n^R} \right).
\end{align}

Proof. From the expansion:

$V_{P,P}(z_1, z_2)$

\[
= \frac{e^{u_S/z_1 + u_S/z_2}}{z_1 z_2} \left(u_P + \frac{1}{z_1} + \frac{1}{z_2} \right) u_Q u_R + \left(\frac{1}{z_1} - \frac{1}{z_2} \right) (u_R f'(u_R) - 2 f(u_R))
\]

\[
+ \frac{1}{z_1 z_2} \left(u_R f''(u_R) - f'(u_R) \right)
\]

\[
= \sum_{m,n=0}^{\infty} \frac{u_m^m u_n^n}{m! n!} z_1^{m-1} z_2^{-n-1} \left(u_P + \frac{1}{z_1} + \frac{1}{z_2} \right) u_Q u_R
\]

\[
+ \left(\frac{1}{z_1} - \frac{1}{z_2} \right) (u_R f'(u_R) - 2 f(u_R))
\]

\[
+ \frac{1}{z_1 z_2} \left(u_R f''(u_R) - f'(u_R) \right)
\]

\[
= \sum_{m,n=0}^{\infty} z_1^{m-1} z_2^{-n-1} \left(u_P \frac{u_m^m u_n^n}{m! n!} + u_Q u_R \frac{u_m^{m-1} u_n^n}{(m-1)! n!} + u_Q u_R \frac{u_m^m u_n^{n-1}}{m! (n-1)!} + (u_R f'(u_R) - 2 f(u_R)) \frac{u_m^{m-2} u_n^n}{(m-2)! n!}
\]

\[
- (u_R f'(u_R) - 2 f(u_R)) \frac{u_m^{m-1} u_n^{n-1}}{(m-1)! (n-1)!} + (u_R f'(u_R) - 2 f(u_R)) \frac{u_m^m u_n^{n-2}}{m! (n-2)!} + (u_R f'(u_R) - 2 f(u_R)) \frac{u_m^{m-1} u_n^{n-1}}{(m-1)! (n-1)!} \right),
\]
we get:

\[
\sum_{m,n=0}^{\infty} R_{P,m,P,n} \overline{t}_m^P \overline{t}_n^P
= u_P \sum_{m=0}^{\infty} \overline{t}_m^P \frac{u_m^n}{m!} \sum_{n=0}^{\infty} \overline{t}_n^P \frac{u_n^n}{n!} + u_Q u_R \sum_{m=1}^{\infty} \overline{t}_m^P \frac{u_{m-1}^n}{(m-1)!} \sum_{n=0}^{\infty} \overline{t}_n^P \frac{u_n^n}{n!} + u_Q u_R \sum_{m=0}^{\infty} \overline{t}_m^P \frac{u_m^n}{m!} \sum_{n=0}^{\infty} \overline{t}_n^P \frac{u_n^{n-1}}{(n-1)!} + (u_R f'(u_R) - 2f(u_R)) \sum_{m=2}^{\infty} \overline{t}_m^P \frac{u_{m-2}^n}{(m-2)!} \sum_{n=0}^{\infty} \overline{t}_n^P \frac{u_n^n}{n!} - (u_R f'(u_R) - 2f(u_R)) \sum_{m=1}^{\infty} \overline{t}_m^P \frac{u_{m-1}^n}{(m-1)!} \sum_{n=1}^{\infty} \overline{t}_n^P \frac{u_n^{n-1}}{(n-1)!} + (u_R f'(u_R) - 2f(u_R)) \sum_{m=0}^{\infty} \overline{t}_m^P \frac{u_m^n}{m!} \sum_{n=2}^{\infty} \overline{t}_n^P \frac{u_n^{n-2}}{(n-2)!} + (u_R^2 f''_0(u_R) - u_R f'_0(u_R)) \sum_{m=1}^{\infty} \overline{t}_m^P \frac{u_{m-1}^n}{(m-1)!} \sum_{n=1}^{\infty} \overline{t}_n^P \frac{u_n^{n-1}}{(n-1)!} \right)
= \frac{1}{u_{S,1}^2} \left(u_R^2 f''_0(u_R) - 2u_R f'_0(u_R) + 2f_0(u_R) \right).
\]

Here we have used \([113]\) and \([120]\). From the following expansion:

\[
\mathcal{V}_{P,Q}(z_1, z_2) = \frac{e^{u_S/z_1 + u_S/z_2}}{z_1 z_2} \left(u_Q + \frac{1}{z_1} u_R f'_0(u_R) + \left(\frac{1}{z_2} - \frac{1}{z_1} \right) f'(u_R) \right)
= \sum_{m,n=0}^{\infty} \frac{u_m^n u_S^n}{m! n!} z_1^{m-1} z_2^{n-1} \left(u_Q + \frac{1}{z_1} u_R f'_0(u_R) + \left(\frac{1}{z_2} - \frac{1}{z_1} \right) f'(u_R) \right)
= \sum_{m,n=0}^{\infty} \frac{u_m^n u_S^n}{m! n!} z_1^{m-1} z_2^{n-1} \left(u_Q + \frac{u_m^n u_S^n}{m! n!} + \frac{u_{m-1}^n u_S^n}{(m-1)! n!} u_R f'_0(u_R) - f'_0(u_R) \frac{u_{m-1}^n u_S^n}{(m-1)! n!} \right),
\]
we get:
\[
\sum_{m,n=0}^{\infty} R_{P,m;Q,n} i_{m}^{P} t_{n}^{Q} = \sum_{m,n=0}^{\infty} i_{m}^{P} t_{n}^{Q} \left(u_{Q} \frac{u_{S}^{m} u_{S}^{n}}{m! n!} + \frac{u_{S}^{m-1} u_{S}^{n}}{(m-1)! n!} u_{R} f_{0}''(u_{R}) \right) + f_{0}'(u_{R}) \frac{u_{S}^{m-1} u_{S}^{n}}{(m-1)! n!} - f_{0}'(u_{R}) \frac{u_{S}^{m} u_{S}^{n}}{m! (n-1)!} \]
\[
= u_{Q} \sum_{m=0}^{\infty} i_{m}^{m} u_{S}^{m} \frac{u_{S}^{n}}{m!} \cdot \sum_{n=0}^{\infty} t_{n}^{Q} u_{S}^{n} + u_{R} f_{0}''(u_{R}) \sum_{m=1}^{\infty} i_{m}^{m} u_{S}^{m-1} \frac{u_{S}^{n}}{(m-1)!} \cdot \sum_{n=0}^{\infty} t_{n}^{Q} u_{S}^{n} - f_{0}'(u_{R}) \sum_{m=1}^{\infty} i_{m}^{m} u_{S}^{m-1} \frac{u_{S}^{n}}{m!} \cdot \sum_{n=1}^{\infty} t_{n}^{Q} u_{S}^{n} (n-1)! \]
\[
= \frac{1}{u_{s,1}^{2}} \left(-u_{R} f_{0}''(u_{R}) + u_{R} f_{0}'(u_{R}) \right) .
\]

Here we have used (113) and (121). From the following expansion:
\[
\mathcal{V}_{P,R}(z_{1}, z_{2}) = \frac{e^{u_{S}/z_{1} + u_{S}/z_{2}}}{z_{1}^{z_{2}}} u_{R} = u_{R} \sum_{m,n=0}^{\infty} \frac{u_{S}^{m} u_{S}^{n}}{m! n!} z_{1}^{m-1} z_{2}^{n-1},
\]
we get:
\[
\sum_{m,n=0}^{\infty} R_{P,m;R,n} i_{m}^{P} t_{n}^{R} = u_{R} \sum_{m,n=0}^{\infty} \frac{u_{S}^{m} u_{S}^{n}}{m! n!} = u_{R} \sum_{m=0}^{\infty} \frac{u_{S}^{m}}{m!} \cdot \sum_{n=0}^{\infty} t_{n}^{Q} u_{S}^{n} = 0 .
\]

From the following expansion:
\[
\mathcal{V}_{P,S}(z_{1}, z_{2}) = \frac{e^{u_{R}/z_{1} + u_{R}/z_{2}}}{z_{1}^{z_{2}}} - 1 = \frac{1}{z_{1} z_{2}} \sum_{M=1}^{\infty} \left(\frac{1}{z_{1}} + \frac{1}{z_{2}} \right)^{M-1} u_{S}^{M} M!
\]
\[
= \sum_{m,n=0}^{\infty} \frac{u_{S}^{m} u_{S}^{n}}{m+n+1} \frac{u_{S}^{n}}{m! n!} z_{1}^{m-1} z_{2}^{n-1},
\]
we get:
\[
\sum_{m,n=0}^{\infty} R_{P,m;S,n} i_{m}^{P} t_{n}^{S} = \sum_{m,n=0}^{\infty} \frac{u_{S}^{m+n+1}}{m+n+1} i_{m}^{m} t_{n}^{n} .
\]

From the following expansion:
\[
\mathcal{V}_{Q,Q}(z_{1}, z_{2}) = \frac{e^{u_{S}/z_{1} + u_{S}/z_{2}}}{z_{1} z_{2}} f_{0}''(u_{R}) = f_{0}''(u_{R}) \sum_{m,n=0}^{\infty} \frac{u_{S}^{m} u_{S}^{n}}{m! n!} z_{1}^{m-1} z_{2}^{n-1},
\]
we get:
\[
\sum_{m,n=0}^{\infty} R_{Q,m;Q,n} t^{Q}_{m} t^{Q}_{n} = \sum_{m,n=0}^{\infty} \frac{u^{m}_{S} u^{n}_{S}}{m! n!} f''_{0}(u_{R}) t^{Q}_{m} t^{Q}_{n}
\]
\[
= f''_{0}(u_{R}) \left(\sum_{m=0}^{\infty} \frac{t^{Q}_{m}}{m!} \right)^{2} = \frac{1}{u^{2}_{S,1}} u_{R}^{2} f''_{0}(u_{R}).
\]

Here we have used (121). From the following expansion:

\[
V_{Q,R}(z_{1}, z_{2}) = e^{u_{S}/z_{1} + u_{S}/z_{2}} - 1 = \sum_{m,n=0}^{\infty} \frac{u_{S}}{m + n + 1} \frac{u^{m}_{S} u^{n}_{S}}{m! n!},
\]

we get:
\[
\sum_{m,n=0}^{\infty} R_{Q,m;R,n} t^{Q}_{m} t^{R}_{n} = \sum_{m,n=0}^{\infty} \frac{u^{m+n+1}_{S}}{m + n + 1} \frac{t^{Q}_{m} t^{R}_{n}}{m! n!}.
\]

The proof is finished by putting all these together.

\[
F_{0} = \frac{1}{2} \left(u_{R}^{2} f''_{0}(u_{R}) - 2 u_{R} f'_{0}(u_{R}) + 2 f_{0}(u_{R}) \right) + \frac{1}{u^{2}_{S,1}} \left(-u_{R}^{2} f''_{0}(u_{R}) + u_{R} f'_{0}(u_{R}) \right)
\]
\[
+ \frac{1}{2} \left(u_{R}^{2} f''_{0}(u_{R}) - 2 u_{R} f'_{0}(u_{R}) \right) + \frac{1}{u^{2}_{S,1}} \frac{u_{R}^{2} f''_{0}(u_{R})}{u^{2}_{S,1}}
\]
\[
+ \sum_{m,n=0}^{\infty} \frac{u^{m+n+1}_{S} t^{P}_{m} t^{S}_{n}}{m + n + 1} + \sum_{m,n=0}^{\infty} \frac{u^{m+n+1}_{S} t^{Q}_{m} t^{R}_{n}}{m + n + 1}.
\]
\[
= f_{0}(u_{R}) + \sum_{m,n=0}^{\infty} \frac{u^{m+n+1}_{S} t^{P}_{m} t^{S}_{n}}{m + n + 1} + \sum_{m,n=0}^{\infty} \frac{u^{m+n+1}_{S} t^{Q}_{m} t^{R}_{n}}{m + n + 1}.
\]

This proves the first formula. The second formula is proved by applying (128).

\[128\]

4.16. Genus zero one-point functions.

Theorem 4.6. For the quintic the following formulas for the one-point functions in genus zero hold:

\[
D_{P,z} F_{0} = \sum_{m,n=0}^{\infty} \frac{u^{m+n+1}_{S} t^{S}_{m} z^{-n-1}}{m + n + 1} \frac{t^{S}_{n}}{n!}
\]
\[
+ \frac{e^{u_{S}/z}}{z} \left[\frac{u_{Q} u_{R}}{u_{S,1}} - \frac{u_{R} f''_{0}(u_{R}) - f'_{0}(u_{R})}{u^{2}_{S,1}} \right] u_{R,1}
\]
\[
+ \frac{u_{R} f'_{0}(u_{R}) - 2 f_{0}(u_{R})}{u_{S,1}} \left(\frac{u^{2}_{S,2}}{u^{2}_{S,1}} + \frac{1}{z} \right).
\]
\(D_{Q,z} F_0 = \frac{f'_0(u_R)}{u_{S,1}} \cdot \frac{e^{u_S/z}}{z} + \sum_{m,n=0}^{\infty} \frac{u_{S}^{m+n+1} \frac{t_R}{m} z^{-n-1}}{m+n+1 \cdot m! \cdot n!} \).

\(D_{R,z} F_0 = \sum_{m,n=0}^{\infty} \frac{u_{S}^{m+n+1} \frac{t_Q}{m} z^{-n-1}}{m+n+1 \cdot m! \cdot n!} \).

\(D_{S,z} F_0 = \sum_{m,n=0}^{\infty} \frac{u_{S}^{m+n+1} \frac{t_P}{m} z^{-n-1}}{m+n+1 \cdot m! \cdot n!} \).

Proof. Note we have

\(D_{S,z} u_S = D_{S,z} u_R = 0, \)
\(D_{S,z} \tilde{t}_n^P = D_{S,z} t_n^Q = D_{S,z} t_n^R = 0, \quad D_{S,z} t_n^S = z^{-n-1}. \)

So we get:

\[
D_{S,z} F_0 = D_{S,z} \left(\frac{f_0(u_R)}{u_{S,1}^2} + \sum_{m,n=0}^{\infty} \frac{u_{S}^{m+n+1} \frac{t_P}{m} \frac{t_S}{n} + \sum_{m,n=0}^{\infty} \frac{u_{S}^{m+n+1} \frac{t_Q}{m} \frac{t_R}{n}}{m+n+1 \cdot m! \cdot n!} \right)
= \sum_{m,n=0}^{\infty} \frac{u_{S}^{m+n+1} \frac{t_P}{m} \frac{t_S}{n} z^{-n-1}}{m+n+1 \cdot m! \cdot n!}.
\]

Similar, we have

\(D_{R,z} u_S = D_{R,z} u_R = 0, \)
\(D_{R,z} \tilde{t}_n^P = D_{R,z} t_n^Q = D_{R,z} t_n^S = 0, \quad D_{R,z} t_n^R = z^{-n-1}. \)

So we get

\[
D_{R,z} F_0 = D_{R,z} \left(f_0(u_R) \frac{e^{u_S/z}}{u_{S,1}^2} + \sum_{m,n=0}^{\infty} \frac{u_{S}^{m+n+1} \frac{t_P}{m} \frac{t_S}{n} + \sum_{m,n=0}^{\infty} \frac{u_{S}^{m+n+1} \frac{t_Q}{m} \frac{t_R}{n}}{m+n+1 \cdot m! \cdot n!} \right)
= \sum_{m,n=0}^{\infty} \frac{u_{S}^{m+n+1} \frac{t_P}{m} \frac{t_S}{n} z^{-n-1}}{m+n+1 \cdot m! \cdot n!}.
\]

Similar, we have

\(D_{Q,z} u_S = 0, \)
\(D_{Q,z} \tilde{t}_n^P = D_{R,z} t_n^R = D_{R,z} t_n^S = 0, \quad D_{Q,z} t_n^Q = z^{-n-1}. \)
So we get

\[D_{Q,z}F_0 = D_{Q,z} \left(\frac{f_0(u_R)}{u_{S,1}^2} + \sum_{m,n=0}^{\infty} \frac{u_{S}^{m+n+1}}{m+n+1 \cdot m! \cdot n!} \frac{t^P_m t^S_n}{u_{S,1}^2} + \sum_{m,n=0}^{\infty} \frac{u_{S}^{m+n+1}}{m+n+1 \cdot m! \cdot n!} \frac{t^Q_m t^n_R}{u_{S,1}^2} \right) \]

\[= \frac{f'_0(u_R)}{u_{S,1}^2} \cdot \frac{e^{u_{S}/z}}{z} + \sum_{m,n=0}^{\infty} \frac{u_{S}^{m+n+1}}{m+n+1 \cdot m! \cdot n!} \frac{t^S_m z^{-n-1}}{u_{S,1}^2} \cdot \frac{e^{u_{S}/z}}{z}. \]

Finally, we have:

\[D_{P,z}u_S = \frac{e^{u_{S}/z}}{z} \cdot u_{S,1}, \quad D_{P,z}u_R = \frac{e^{u_{S}/z}}{z} \cdot (u_{R,1} + u_{R} \cdot u_{S,1}), \]

\[D_{P,z}t^Q_n = D_{R,z}t^R_n = D_{R,z}t^n_S = 0, \quad D_{P,z} t^P_n = z^{-n-1}. \]

So we get

\[D_{P,z}F_0 = D_{P,z} \left(\frac{f_0(u_R)}{u_{S,1}^2} + \sum_{m,n=0}^{\infty} \frac{u_{S}^{m+n+1}}{m+n+1 \cdot m! \cdot n!} \frac{t^P_m t^S_n}{u_{S,1}^2} + \sum_{m,n=0}^{\infty} \frac{u_{S}^{m+n+1}}{m+n+1 \cdot m! \cdot n!} \frac{t^Q_m t^n_R}{u_{S,1}^2} \right) \]

\[= \frac{f'_0(u_R)}{u_{S,1}^2} \cdot \frac{e^{u_{S}/z}}{z} \cdot \left(u_{R,1} + u_{R} \cdot u_{S,1} - 2 \frac{f_0(u_R)}{u_{S,1}^2} \cdot \left(e^{u_{S}/z} + \frac{e^{u_{S}/z}}{z} \right) \right) + \sum_{m,n=0}^{\infty} \frac{u_{S}^{m+n+1}}{m+n+1 \cdot m! \cdot n!} \frac{t^S_m z^{-n-1}}{u_{S,1}^2} \cdot \frac{e^{u_{S}/z}}{z} \]

\[+ \sum_{m,n=0}^{\infty} \frac{u_{S}^{m+n+1}}{m+n+1 \cdot m! \cdot n!} \frac{t^P_m t^S_n}{u_{S,1}^2} + \sum_{m,n=0}^{\infty} \frac{u_{S}^{m+n+1}}{m+n+1 \cdot m! \cdot n!} \frac{t^Q_m t^n_R}{u_{S,1}^2} \]

\[= \sum_{m,n=0}^{\infty} \frac{u_{S}^{m+n+1}}{m+n+1 \cdot m! \cdot n!} \frac{t^S_m z^{-n-1}}{u_{S,1}^2} \cdot \frac{e^{u_{S}/z}}{z} \]

\[+ \frac{e^{u_{S}/z}}{z} \cdot \left(\frac{f'_0(u_R)}{u_{S,1}^2} \cdot u_{R,1} - 2 \frac{f_0(u_R)}{u_{S,1}^2} \cdot \left(u_{R} - 2 \frac{f_0(u_R)}{u_{S,1}^2} \right) \right) + \sum_{m=0}^{\infty} \frac{t^Q_m}{m!} u_{S}^m \sum_{n=0}^{\infty} \frac{t^n_R}{n!} u_{S}^n. \]

The summations on the third line of the right-hand side of the last equality can be performed as follows. By \([121]\) we have

\[\sum_{n=0}^{\infty} \frac{t^Q_n}{n!} u_{S}^n = \frac{u_R}{u_{S,1}}. \]

(159)
The summations on the third line of the right-hand side of the last equality can be performed as follows. By (129) we have

$$\sum_{n=0}^{\infty} \frac{t_n^Q u_n^S}{n!} = \frac{u_Q}{u_{S,1}} - f''_0(u_R) \sum_{n=1}^{\infty} \frac{t_n^Q u_{S-1}^n}{(n-1)!} - g'_0(u_R) \sum_{n=2}^{\infty} \frac{t_n^P u_{S-2}^n}{(n-2)!}. \tag{129}$$

Take $\frac{\partial}{\partial t}$ on both sides of eqrefeqn:Sum-t-Qn, we get:

$$\sum_{n=1}^{\infty} \frac{t_n^Q}{(n-1)!} u_{S-1}^n \cdot u_{S,1} = \frac{u_{R,1}}{u_{S,1}} - \frac{u_{R}}{u_{S,1}^2} \cdot u_{S,2}, \tag{160}$$

and so

$$\sum_{n=1}^{\infty} \frac{t_n^Q}{(n-1)!} u_{S-1}^n = \frac{u_{R,1}}{u_{S,1}^2} - \frac{u_{R}}{u_{S,1}^3} \cdot u_{S,2}. \tag{160}$$

From (120) we get:

$$\sum_{n=1}^{\infty} \frac{t_n^P}{(n-1)!} u_{S-1}^n = 1 - \frac{1}{u_{S,1}}. \tag{161}$$

After taking $\frac{\partial}{\partial t}$ and dividing by $u_{S,1}$ on both sides we get:

$$\sum_{n=2}^{\infty} \frac{t_n^P}{(n-2)!} u_{S-2}^n = \frac{u_{S,2}}{u_{S,1}^3}. \tag{162}$$

Also note:

$$g'_0(u_R) = u_R f''_0(u_R) - f'_0(u_R),$$

therefore,

$$\sum_{n=0}^{\infty} \frac{t_n^Q u_n^S}{n!} = \frac{u_Q}{u_{S,1}} - f''_0(u_R) \cdot \left(\frac{u_{R,1}}{u_{S,1}^2} - \frac{u_R}{u_{S,1}^3} \cdot u_{S,2} \right) - (u_R f''_0(u_R) - f'_0(u_R)) \frac{u_{S,2}}{u_{S,1}^3} \cdot u_{S,1} \frac{u_{S,2}}{u_{S,1}^3} - f'_0(u_R) \frac{u_{S,2}}{u_{S,1}^3} \cdot u_{S,1} \frac{u_{S,2}}{u_{S,1}^3}.$$
Now we can resume the computation of $D_{P,z}F_0$:

\[
D_{P,z}F_0 = \sum_{m,n=0}^{\infty} \frac{u_S^{m+n+1}}{m+n+1} \frac{t_m^S z^{-n-1}}{n!} + \sum_{m,n=0}^{\infty} \frac{u_S^{m+n+1}}{m+n+1} \frac{t_m^S z^{-n-1}}{n!} \frac{u_R f_0'(u_R)}{u_{S,1}} + \sum_{m,n=0}^{\infty} \frac{u_S^{m+n+1}}{m+n+1} \frac{t_m^S z^{-n-1}}{n!} \frac{u_R f_0'(u_R)}{u_{S,1}} \frac{f_0''(u_R)}{u_{S,1}} u_{S,2} + \sum_{m,n=0}^{\infty} \frac{u_S^{m+n+1}}{m+n+1} \frac{t_m^S z^{-n-1}}{n!} \frac{u_R f_0'(u_R)}{u_{S,1}} \frac{f_0'(u_R)}{u_{S,1}} \frac{u_{S,2}}{u_{S,1}^2} + \sum_{m,n=0}^{\infty} \frac{u_S^{m+n+1}}{m+n+1} \frac{t_m^S z^{-n-1}}{n!} \frac{u_R f_0'(u_R)}{u_{S,1}} \frac{f_0'(u_R)}{u_{S,1}} \frac{u_{S,2}}{u_{S,1}^2} + \sum_{m,n=0}^{\infty} \frac{u_S^{m+n+1}}{m+n+1} \frac{t_m^S z^{-n-1}}{n!} \frac{u_R f_0'(u_R)}{u_{S,1}} \frac{f_0'(u_R)}{u_{S,1}} \frac{u_{S,2}}{u_{S,1}^2} \frac{1}{z}.
\]

Note for $m \geq 0$,

\[
\sum_{n=0}^{\infty} \frac{u_S^{n+1}}{m+n+1} \frac{z^{-n-1}}{n!} = e^{u_S/z} \sum_{j=0}^{m} (-1)^j \frac{m!}{(m-j)!} \left(\frac{z}{u_s} \right)^j - (-1)^m \frac{z^m}{u_S^m},
\]

so we get:

\[
D_{S,z}F_0 = \sum_{m=0}^{\infty} \frac{\tilde{t}_P u_m^S}{m!} \left(e^{u_S/z} \sum_{j=0}^{m} (-1)^j \frac{m!}{(m-j)!} \left(\frac{z}{u_s} \right)^j - (-1)^m \frac{z^m}{u_S^m} \right)
\]

\[
= e^{u_S/z} \sum_{m=0}^{\infty} \frac{\tilde{t}_P u_m^S}{m!} \left(\sum_{j=0}^{m} (-1)^j \frac{u_S^{m-j}}{(m-j)!} \frac{z^j}{u_{S,1}^j} \right) - \sum_{m=0}^{\infty} (-1)^m \frac{\tilde{t}_P u_m^S}{m!} z^m
\]

\[
= e^{u_S/z} \sum_{j=0}^{\infty} (-z)^j \sum_{k=0}^{\infty} \frac{\tilde{t}_P u_k^S}{k!} \frac{z^k}{u_S} - \sum_{m=0}^{\infty} (-1)^m \frac{\tilde{t}_P u_m^S}{m!} z^m.
\]

We can also rewrite other $\frac{\partial}{\partial v_0}$ in the same fashion.

5. **Mean Field Theory Computations for GW Theory of the Quintic in Genus $g \geq 1$**

In this Section we extend the discussions to higher genera. Again we will see that the selection rules play a crucial role.
We will also write down the integrable hierarchy associated with the GW theory of the quintic in all genera.

5.1. Degree zero part of the free energy vs. the instanton part of the free energy. We will split the free energy in genus \(g \geq 0 \) into two parts:

\[
F_h = F_{g,0} + F_{g,\text{inst}},
\]

where \(F_{g,0} \) is the total contributions of the GW invariants of degree zero (called the degree zero part of the free energy), and \(F_{g,\text{inst}} \) is the total contributions of the GW invariants of positive degrees (called the instanton part of the free energy).

The degree 0 gravitational descendent invariants of \(X \) are the integrals:

\[
\langle \tau_{k_1}(\mathcal{O}_{\alpha_1}) \cdots \tau_{k_n}(\mathcal{O}_{\alpha_n}) \rangle^X_{g,n;0} = \int_{X \times \overline{\mathcal{M}}_{g,n}} \mathcal{O}_{\alpha_1} \cdots \mathcal{O}_{\alpha_n} \psi_1^{k_1} \cdots \psi_n^{k_n} \cup e(TX \boxtimes \mathcal{E}^\vee),
\]

where \(\mathcal{E} \to \overline{\mathcal{M}}_{g,n} \) is the Hodge bundle. When \(g = 0 \), \(\mathcal{E} \) is trivial, and the only degree zero contributions are given by:

\[
\langle \tau_{k_1}(\mathcal{O}_{\alpha_1}) \cdots \tau_{k_n}(\mathcal{O}_{\alpha_n}) \rangle^X_{0,n;0} = \int_X \mathcal{O}_{\alpha_1} \cdots \mathcal{O}_{\alpha_n} \cdot \int_{\overline{\mathcal{M}}_{0,n}} \psi_1^{k_1} \cdots \psi_n^{k_n}.
\]

By Theorem 4.3 we have seen that:

\[
F_{0,0} = \frac{1}{u_{S,1}^2} \cdot \frac{5}{6} u_R^3 + \sum_{m,n=0}^{\infty} \frac{u_S^{m+n+1}}{(m+n+1)m!n!} (\tilde{t}_m^R t_n^S + t_m^Q t_n^R)
\]

\[
= \frac{1}{u_{S,1}^2} \left(\frac{5}{6} u_R^3 + \sum_{m,n=0}^{\infty} \frac{\tilde{t}_m^R t_n^S + t_m^Q t_n^R}{m+n+1} u_S \frac{\partial u_S}{\partial t_m^P} \frac{\partial u_S}{\partial t_n^P} \right),
\]

and

\[
F_{0,\text{inst}} = \frac{1}{u_{S,1}^2} \left(f_0(u_R) - \frac{5}{6} u_R^3 \right).
\]

5.2. Degree zero contribution to genus one free energy. The \(g = 1 \) case is also exceptional:

\[
e(TX \boxtimes \mathcal{E}^\vee) = c_3(X) - c_2(X) \lambda_1,
\]

and for \(g > 1 \),

\[
e(TX \boxtimes \mathcal{E}^\vee) = \frac{(-1)^g}{2} (c_3(X) - c_2(X) c_1(X)) \lambda_{g-1}^3.
\]
For the quintic, the total Chern class is given by:
\[
c(X) = (1 + H)^5(1 + 5H)^{-1}|_X = (1 + 10H^2 - 40H^3)|_X.
\]
and so
\[
c_1(X) = 0, \quad c_2(X) = 10H^2|_X, \quad c_3(X) = -40H^3|_X.
\]
So in genus one we have
\[
\langle \tau_{k_1}(\mathcal{O}_{\alpha_1}) \cdots \tau_{k_n}(\mathcal{O}_{\alpha_n}) \rangle^X_{1,n;0} = \int_{X \times M_{1,n}} \mathcal{O}_{\alpha_1} \cdots \mathcal{O}_{\alpha_n} \psi_1^{k_1} \cdots \psi_n^{k_n} \cup (-40H^3 + 10H^2\lambda_1)
\]
\[
= - \int_X \mathcal{O}_{\alpha_1} \cdots \mathcal{O}_{\alpha_n} \cup 40H^3 \cdot \int_{M_{1,n}} \psi_1^{k_1} \cdots \psi_n^{k_n}
\]
\[
+ \int_X \mathcal{O}_{\alpha_1} \cdots \mathcal{O}_{\alpha_n} \cup 10H^2 \cdot \int_{M_{1,n}} \psi_1^{k_1} \cdots \psi_n^{k_n} \lambda_1.
\]
So either
\[
\deg \mathcal{O}_{\alpha_1} + \cdots + \deg \mathcal{O}_{\alpha_n} = 0,
\]
\[
k_1 + \cdots + k_n = n,
\]
or
\[
\deg \mathcal{O}_{\alpha_1} + \cdots + \deg \mathcal{O}_{\alpha_n} = 1,
\]
\[
k_1 + \cdots + k_n = n - 1,
\]
Restricted to the small phase space, i.e., when \(k_1 = \cdots = k_n = 0\), we must have \(n = 1\) and \(\deg \mathcal{O}_{\alpha_1} = 1\), this gives us
\[
\langle Q \rangle^X_{1,1;0} = \int_X Q \cup 10H^2 \cdot \int_{M_{1,1}} \lambda_1 = 50 \cdot \frac{1}{24} = \frac{25}{12},
\]
and so there is a contribution of \(\frac{25}{12} t Q\) to \(F_{1}^{small}\).

On the big phase space we have
\[
\langle \tau_{k_1}(Q) \tau_{k_2}(P) \cdots \tau_{k_n}(P) \rangle^X_{1,0} = \int_X H \cup 10H^2 \cdot \int_{M_{1,n}} \psi_1^{k_1} \cdots \psi_n^{k_n} \lambda_1
\]
\[
= \frac{50}{24} \binom{n - 1}{k_1, \ldots, k_n}.
\]
Their total contributions to $F_{1,0}$ is:

$$\sum_{n=1}^{\infty} \sum_{k_1+\cdots+k_n=n-1} \frac{50}{24} \left(\frac{n-1}{k_1, \ldots, k_n}\right) t^Q_{k_1} \frac{1}{(n-1)!} t^P_{k_2} \cdots t^P_{k_n}$$

$$= \frac{50}{24} \sum_{n=1}^{\infty} \sum_{k_1+\cdots+k_n=n-1} \frac{t^Q_{k_1}}{k_1!} \frac{t^P_{k_2}}{k_2!} \cdots \frac{t^P_{k_n}}{k_n!} = \frac{25}{12} u_R.$$

For the other case,

\[
\langle \tau_{k_1}(P) \cdots \tau_{k_n}(P) \rangle^X_{1,0} = -\int_X 40 H^3 \cdot \int_{\mathcal{M}_{1,n}} \psi_1^{k_1} \cdots \psi_n^{k_n}
\]

\[
= -200 \int_{\mathcal{M}_{1,n}} \psi_1^{k_1} \cdots \psi_n^{k_n}.
\]

It vanishes unless

\[(171) \quad k_1 + \cdots + k_n = n.\]

Their total contributions to $F_{1,0}$ is:

\[
\sum_{n=1}^{\infty} \frac{t^P_{k_1} \cdots t^P_{k_n}}{n!} \langle \tau_{k_1}(P) \cdots \tau_{k_n}(P) \rangle^X_{1,0}
\]

\[
= -200 \sum_{n=1}^{\infty} \frac{t^P_{k_1} \cdots t^P_{k_n}}{n!} \int_{\mathcal{M}_{1,n}} \psi_1^{k_1} \cdots \psi_n^{k_n}
\]

\[
= -200 \cdot \frac{1}{24} \log u_{S,1}.
\]

So we get for the quintic the following formula for the degree zero part $F_{1,0}$ of the free energy in genus one:

\[(172) \quad F_{1,0} = -\frac{25}{3} \log u_{S,1} + \frac{25}{12} u_R.\]

5.3. Degree zero contribution to free energy in genus $g > 1$.

Now by (169), when $g > 1$,

\[
\langle \tau_{k_1}(O_{\alpha_1}) \cdots \tau_{k_n}(O_{\alpha_n}) \rangle^X_{g,0}
\]

\[
= \int_{X \times \mathcal{M}_{g,n}} O_{\alpha_1} \cdots O_{\alpha_n} \psi_1^{k_1} \cdots \psi_n^{k_n} \cup \left(-\frac{1}{2}\right)^g (-40 H^3)^3 \lambda_{g-1}^3
\]

\[
= -\int_X O_{\alpha_1} \cdots O_{\alpha_n} \cup 40 H^3 \cdot \int_{\mathcal{M}_{g,n}} \psi_1^{k_1} \cdots \psi_n^{k_n} \lambda_{g-1}^3.
\]
Therefore, we can only have $O_{\alpha_1} = \cdots = O_{\alpha_n} = P$, and

$$\langle \tau_{k_1}(P) \cdots \tau_{k_n}(P) \rangle^X_{g,0} = - \int_X 40 H^3 \cdot \int_{X_{1,n}} \psi_1^{k_1} \cdots \psi_n^{k_n} \lambda_{g-1}^3,$$

$$= -200 \int_{X_{1,n}} \psi_1^{k_1} \cdots \psi_n^{k_n} \lambda_{g-1}^3.$$

Therefore, for $g \geq 2$,

$$F_{g,0} = \sum_{n=1}^{\infty} \frac{t_{k_1}^P \cdots t_{k_n}^P}{n!} \langle \tau_{k_1}(P) \cdots \tau_{k_n}(P) \rangle^X_{g,0}$$

$$= -200 \sum_{n=1}^{\infty} \frac{t_{k_1}^P \cdots t_{k_n}^P}{n!} \int_{X_{1,n}} \psi_1^{k_1} \cdots \psi_n^{k_n} \lambda_{g-1}^3$$

$$= -200 \cdot \frac{1}{2(2g-2)!} \left| B_{2g-2} \right| \left| B_{2g-2} \right| \psi_{g,1}^{2g-2}.$$

Here in the second equality we have used a result in Dubrovin-Liu-Yang-Zhang [12, Cor. 3.10].

5.4. **Instanton part of the free energy in genus $g \geq 1$**. We will first consider $F_{g,\text{instanton}}$ restricted to the small phase space for $g \geq 1$. Then we need to consider the correlators

$$(173) \quad \langle P^{m_0}Q^{m_1}R^{m_2}S^{m_3} \rangle_{g,m_0+\cdots+m_3:d}$$

By the selection rules (4), we have

$$(174) \quad m_0 = m_2 + 2m_3.$$

By the string equation we must have $m_0 = m_2 = m_3 = 0$ to get a nonzero correlator

$$(175) \quad \langle Q^{m_1} \rangle_{g,m_1:d} = d^{m_1} \langle 1 \rangle_{g,0:d} = d^{m_1} N_{g,d},$$

where

$$(176) \quad N_{g,d} := \int_{[M_{g,0}(X,d)]_{\text{virt}}} 1.$$

So the instanton part of the free energy in genus $g \geq 1$ restricted to the small phase space is given by

$$(177) \quad \sum_{d=1}^{\infty} q^d \sum_{m_1=0}^{\infty} \frac{(tQ)^{m_1}}{m_1!} \langle Q^{m_1} \rangle_{g,m_1:d} = \sum_{d=1}^{\infty} q^d N_{g,d} e^{dtQ}.$$

Next we will show that the selection rules (78) and (79) implies the following:
Proposition 5.1. For \(g \geq 1 \),

\[
F_{g,\text{instanton}} = u_{S,1}^{2g-2} \sum_{d=1}^{\infty} q^d N_{g,d} e^{du_R}.
\]

Proof. First recall \(F_{g,\text{instanton}} \) as a formal power series in \(\{t^n_\alpha\} \) is homogeneous of degree 0, where the degree of \(t^n_\alpha \) is given by (178). By changing to the jet variables \(\{u_{\alpha,n}\} \), it is also homogeneous of degree zero, where

\[
\text{deg } u_{S,n} = n - 1, \quad \text{deg } u_{R,n} = n,
\]

\[
\text{deg } u_{Q,n} = n + 1, \quad \text{deg } u_{P,n} = n + 2.
\]

In Eguchi-Getzler-Xiong [14] it has been shown that one can rewrite the puncture operator as

\[
L_{-1} = -\frac{\partial}{\partial u_S}.
\]

So we know that \(F_g \) does not depend on \(u_S \) when \(g \geq 1 \), and it depends only on the two degree zero jet variables \(u_{S,1} \) and \(u_R \). To find the explicit expression, let us first consider the correlators of the form:

\[
\langle P^{m_0} \tau_1(P)^n Q^{m_1} R^{m_2} S^{m_3}\rangle_{g,n+m_0+\cdots+m_3;d}.
\]

By the selection rules [4],

\[
m_0 = m_2 + 2m_3.
\]

By the string equation we must have \(m_0 = m_2 = m_3 = 0 \) to get a nonzero correlator of the form:

\[
\langle \tau_1(P)^n Q^{m_1}\rangle_{g,m_1;d} = (2g - 2 + m_1 + n - 1) \langle \tau_1(P)^{n-1} Q^{m_1}\rangle_{g,m_1;d}
\]

\[
= \cdots = (2g - 2 + m_1 + n - 1) \cdots (2g - 2 + m_1) \langle Q^{m_1}\rangle_{g,m_1;d}
\]

\[
= (2g - 2 + m_1 + n - 1) \cdots (2g - 2 + m_1) \cdot d^{m_1} N_{g,d}.
\]
Their contribution to the free energy is

\[
\sum_{d=1}^{\infty} q^d \sum_{n,m_1 \geq 0} \frac{(tP)^n}{n!} \frac{(tQ)^{m_1}}{m_1!} \prod_{j=0}^{n-1} (2g - 2 + m_1 + j) \cdot d^{m_1} N_{g,d}
\]

\[
= \sum_{d=1}^{\infty} q^d N_{g,d} \sum_{m_1 \geq 0} \frac{(tQ)^{m_1}}{m_1!} \sum_{n \geq 0} \frac{(tP)^n}{n!} \prod_{j=0}^{n-1} (2g - 2 + m_1 + j)
\]

\[
= \sum_{d=1}^{\infty} q^d N_{g,d} \sum_{m_1 \geq 0} \frac{(tQ)^{m_1}}{m_1!} \cdot \frac{1}{d^{m_1}} \cdot \sum_{n \geq 0} \frac{(tP)^n}{n!} \prod_{j=0}^{n-1} (2g - 2 + m_1 + j)
\]

\[
= \frac{1}{(1 - t_1^P)^{2g-2}} \cdot \sum_{d=1}^{\infty} q^d N_{g,d} e^{tQ/(1-t_1^P)}.
\]

By (120) we have Recall that

\[
u_{S,1} = \left(1 - \sum_{n=1}^{\infty} \frac{t^P}{n!} \frac{u_{S,1}^{n-1}}{(n-1)!}\right)^{-1} = \frac{1}{1 - t_1^P},
\]

and by (121),

\[
u_R = \left(1 - \sum_{n=1}^{\infty} \frac{t^P}{n!} \frac{u_{S,1}^{n-1}}{(n-1)!}\right)^{-1} \cdot \sum_{n=0}^{\infty} \frac{t^Q u_{S,1}^n}{n!} = \frac{t^Q}{1 - t_1^P}.
\]

Remark 5.2. One can use the same method to treat the degree zero part of \(F_g\). A similar argument yields:

\[
F_{g,0} = -200 u_{S,1}^{2g-2} \int_{\mathcal{M}_g} \lambda^{3}_{g-1} = -200 u_{S,1}^{2g-2} \cdot \frac{1}{2(2g-2)!} \cdot \frac{|B_{2g-2}|}{2g} \cdot \frac{|B_{2g}|}{2g}.
\]

Here in the second equality we have used the results predicted by Mariño and Moore [29] and Gopakumar and Vafa [23] and proved by Faber and Pandharipande [18].

To summarize, we have

Theorem 5.3. For the quintic, the free energy in genus \(g \geq 1\) on the big phase space has the following form:

\[
(184) \quad F_1 = -200 \cdot \frac{1}{24} \log u_{S,1} + \frac{25}{12} u_R + \sum_{d=1}^{\infty} N_{1,d} e^{du_R} q^d
\]

and for \(g \geq 2\),

\[
(185) \quad F_g = -200 \cdot \frac{1}{2(2g-2)!} \frac{|B_{2g-2}|}{2g-2} u_{S,1}^{2g-2} + u_{S,1}^{2g-2} \sum_{d=1}^{\infty} q^d N_{g,d} e^{du_R}.
\]
As in the genus zero case, one can apply the loop operators repeatedly to get the \(n \)-point functions in genus \(g \).

5.5. **Deformation of the order parameter.** Define

\[
U_P = \sum_{g=0}^{\infty} \lambda^{2g} \frac{\partial^2 F_g}{\partial t^P \partial t^P},
\]

and similarly define \(U_Q, U_R \) and \(U_S \).

Write

\[
F_g = -\frac{25}{3} \delta_{g,1} \log u_{S,1}^2 + u_{S,1}^{2g-2} f_g(u_R).
\]

Their first derivatives are:

\[
\frac{\partial F_g}{\partial t^P} = -\frac{25}{3} u_{S,1} \delta_{g,1} + (2g-2) u_{S,1}^{2g-3} u_{S,2} f_g(u_R) + u_{S,1}^{2g-2} f'_g(u_R) u_{R,1}.
\]

\[
\frac{\partial F_g}{\partial t^Q} = u_{S,1}^{2g-2} f'_g(u_R) \frac{\partial u_R}{\partial t^Q} = u_{S,1}^{2g-1} f'_g(u_R),
\]

\[
\frac{\partial F_g}{\partial t^R} = \frac{\partial F_g}{\partial t^S} = 0.
\]

Taking \(\frac{\partial}{\partial t^P} \) we get:

\[
\frac{\partial^2 F_g}{\partial t^P \partial t^P} = -\frac{25}{3} u_{S,1}^{2g-3} u_{S,1} \delta_{g,1} + \frac{25}{3} u_{S,1}^{2g-4} u_{S,2} f_g(u_R)
\]
\[
+ (2g-2)(2g-3) u_{S,1}^{2g-4} u_{S,2} f'_g(u_R) u_{R,1}
\]
\[
+ 2(2g-2) u_{S,1}^{2g-3} u_{S,2} f'_g(u_R) u_{R,2}
\]
\[
+ u_{S,1}^{2g-2} f'_g(u_R) u_{R,3} + u_{S,1}^{2g-2} f''_g(u_R) u_{R,1} + u_{S,1}^{2g-2} f''_g(u_R) u_{R,2}.
\]

Taking \(\frac{\partial}{\partial t^Q} \) we get:

\[
\frac{\partial^2 F_g}{\partial t^P \partial t^Q} = \frac{\partial}{\partial t^P} \left(u_{S,1}^{2g-2} f'_g(u_R) \frac{\partial u_R}{\partial t^Q} \right) = \frac{\partial}{\partial t^P} \left(u_{S,1}^{2g-1} f'_g(u_R) \right)
\]
\[
= (2g-1) u_{S,1}^{2g-2} u_{S,2} f'_g(u_R) + u_{S,1}^{2g-1} u_{R,1} f''_g(u_R).
\]

\[
\frac{\partial F_g}{\partial t^P \partial t^R} = \frac{\partial^2 F_g}{\partial t^P \partial t^S} = 0.
\]
So we get:

\[U_P = u_P - \frac{25\lambda^2}{3} \left(\frac{u_{S,3}}{u_{S,1}} - \frac{u_{S,2}^2}{u_{S,1}^2} \right) \]

\[+ \sum_{g=1}^{\infty} \lambda^{2g} \left(u_{S,1}^{g-2} f_g''(u_R) u_{R,1}^2 + u_{S,1}^{g-2} f'_g(u_R) u_{R,2} \right. \]

\[+ (4g - 4) u_{S,1}^{g-3} u_{S,2} u_{R,1} f'_g(u_R) + (2g - 2) u_{S,1}^{g-3} u_{S,3} f_g(u_R) \]

\[+ (2g - 2)(2g - 3) u_{S,1}^{g-4} u_{S,2}^2 f_g(u_R) \bigg). \]

(192) \[U_Q = u_Q + \sum_{g=1}^{\infty} \lambda^{2g} \left((2g - 1) u_{S,1}^{g-2} u_{S,2} f'_g(u_R) + u_{S,1}^{g-1} u_{R,1} f''_g(u_R) \right). \]

(193) \[U_R = u_R, \quad U_S = u_S. \]

5.6. Deformation of the flow equations. The flow equations for \(u_S \) in genus zero are:

\[\frac{\partial u_S}{\partial t^P_n} = \left(\frac{u_{S}^{n+1}}{(n+1)!} \right)' \quad \frac{\partial u_S}{\partial t^Q_n} = 0 \quad \frac{\partial u_S}{\partial t^R_n} = 0 \quad \frac{\partial u_S}{\partial t^S_n} = 0, \]

they simply become

\[\frac{\partial U_S}{\partial t^P_n} = \left(\frac{U_{S}^{n+1}}{(n+1)!} \right)' \quad \frac{\partial U_S}{\partial t^Q_n} = 0 \quad \frac{\partial U_S}{\partial t^R_n} = 0 \quad \frac{\partial U_S}{\partial t^S_n} = 0, \]

The flow equations for \(u_R \) in genus zero are:

\[\frac{\partial u_R}{\partial t^P_n} = \left(\frac{u_R u_{S}^{n}}{(n)!} \right)' \quad \frac{\partial u_R}{\partial t^Q_n} = \left(\frac{u_{S}^{n+1}}{(n+1)!} \right)' \quad \frac{\partial u_R}{\partial t^R_n} = 0 \quad \frac{\partial u_R}{\partial t^S_n} = 0, \]

they simply become

\[\frac{\partial U_R}{\partial t^P_n} = \left(\frac{U_R U_{S}^{n}}{n!} \right)' \quad \frac{\partial U_R}{\partial t^Q_n} = \left(\frac{U_{S}^{n+1}}{(n+1)!} \right)' \quad \frac{\partial U_R}{\partial t^R_n} = 0 \quad \frac{\partial U_R}{\partial t^S_n} = 0, \]

So we will focus on the flow equations of \(U_P \) and \(U_Q \). Since they involve only \(u_S \) and \(u_R \), we have

\[\frac{\partial U_Q}{\partial t^S_n} = \frac{\partial u_Q}{\partial t^S_n} = 0, \]

\[\frac{\partial U_Q}{\partial t^R_n} = \frac{\partial u_Q}{\partial t^R_n} = \left(\frac{u_{S}^{n+1}}{(n+1)!} \right)' = \left(\frac{U_{S}^{n+1}}{(n+1)!} \right)', \]

\[\frac{\partial U_P}{\partial t^S_n} = \frac{\partial u_P}{\partial t^S_n} \left(\frac{u_{S}^{n+1}}{(n+1)!} \right)' = \left(\frac{U_{S}^{n+1}}{(n+1)!} \right)', \]
\[
\frac{\partial U_P}{\partial t^n_P} = \frac{\partial u_P}{\partial t^n_P} = \left(u_R \frac{u^n_S}{n!} \right)' = \left(\frac{U_R u^n_S}{n!} \right)'.
\]

So we will focus on the equations for \(\frac{\partial u_P}{\partial t^n_P}, \frac{\partial u_P}{\partial t^n_Q}, \frac{\partial u_Q}{\partial t^n_P} \) and \(\frac{\partial u_Q}{\partial t^n_Q} \). For \(n = 0 \), we need to consider the deformations of

\[
\frac{\partial u_P}{\partial t^0_P} = u'_P, \quad \frac{\partial u_P}{\partial t^0_Q} = u'_Q,
\]

and

\[
\frac{\partial u_Q}{\partial t^0_P} = u'_Q, \quad \frac{\partial u_Q}{\partial t^0_Q} = (f''_0(u_R))'.
\]

The first three equations are linear, it is clear that they get deformed to:

\[
\frac{\partial U_P}{\partial t^0_P} = U'_P, \quad \frac{\partial U_P}{\partial t^0_Q} = U'_Q, \quad \frac{\partial U_Q}{\partial t^0_P} = U'_Q,
\]

respectively. Now let us examine the deformation of the second equation in (196). By (189) we get:

\[
\frac{\partial^2 F_0}{\partial t^0_Q \partial t^0_Q} = \frac{\partial}{\partial t^0_Q} \left(u^{2g-1}_S f_g'(u_R) \right) = u^{2g}_S f_g''(u_R) = U^{2g}_S f_g''(U_R).
\]

It follows that

\[
\frac{\partial U_Q}{\partial t^0_Q} = \frac{\partial}{\partial t^0_Q} \left(\frac{\partial^2 F_0}{\partial t^0_Q \partial t^0_Q} + \lambda^2 \frac{\partial^2 F_1}{\partial t^0_Q \partial t^0_Q} + \cdots \right)
= (f''_0(U_R) + \lambda^2 U^{2g}_S f_g''(U_R) + \cdots)',
\]

and so we get:

\[
\frac{\partial U_Q}{\partial t^0_Q} = \left(\sum_{g=0}^\infty U^{2g}_S f_g''(U_R) \right)'.
\]

For \(n = 1 \) we need to consider the deformation of the following equations:

\[
\frac{\partial u_P}{\partial t^1_P} = (u_P u_S + u_Q u_R)', \quad \frac{\partial u_P}{\partial t^1_Q} = (u_S u_Q + f'_0(u_R))',
\]

\[
\frac{\partial u_Q}{\partial t^1_P} = (u_S u_Q + u_R f''_0(u_R) - f'_0(u_R))', \quad \frac{\partial u_Q}{\partial t^1_Q} = (u_S f''_0(u_R))'.
\]
Let us begin with the second equation in (199). Its treatment is similar to the case of $\frac{\partial u_R}{\partial t_1^Q}$. First note:

$$\frac{\partial^2 F_g}{\partial t^Q \partial t_1^Q} = \frac{\partial}{\partial t_1^Q} (u_{S,1}^{2g-1} f'_g(u_R)) = u_{S,1}^{2g-1} f''_g(u_R) \cdot \frac{\partial u_R}{\partial t_1^Q} = u_{S,1}^{2g-1} f''_g(u_R) \cdot u_{S,1} = U_S u_{S,1}^{2g} f''_g(U_R).$$

Then from

$$\frac{\partial U_Q}{\partial t_1^Q} = \frac{\partial}{\partial t^P} \left(\sum_{g=0}^{\infty} \lambda^{2g} \frac{\partial^2 F_g}{\partial t^Q \partial t_1^Q} \right),$$

we get

$$(200) \quad \frac{\partial U_Q}{\partial t_1^Q} = \left(U_S \sum_{g=0}^{\infty} \lambda^{2g} u_{S,1}^{2g} f''_g(u_R) \right)'.$$

In the same fashion we see that for general n,

$$(201) \quad \frac{\partial U_Q}{\partial t_n^Q} = \left(\frac{U_S}{n!} \sum_{g=0}^{\infty} \lambda^{2g} u_{S,1}^{2g} f''_g(u_R) \right)'.$$

Let us now examine the deformation of the second equation in (198).

$$\frac{\partial^2 F_g}{\partial t^P \partial t_1^Q} = \frac{\partial}{\partial t^P} \left(u_{S,1}^{2g-2} f'_g(u_R) \frac{\partial u_R}{\partial t_1^Q} \right) = \frac{\partial}{\partial t^P} \left(u_S u_{S,1}^{2g-1} f'_g(u_R) \right) = u_{S,1}^{2g} f'_g(u_R) + (2g - 1) u_S u_{S,1}^{2g-2} u_{S,2} f'_g(u_R) + u_S u_{S,1}^{2g-1} u_{R,1} f'_g(u_R).$$

So we have

$$\frac{\partial U_P}{\partial t_1^Q} = \lambda^2 \frac{\partial}{\partial t^P} \left(\frac{\partial^2 F}{\partial t^Q \partial t_1^Q} \right)$$

$$= \left[u_S u_Q + f'_0(u_R) + \sum_{g=1}^{\infty} \lambda^{2g} \left(u_{S,1}^{2g} f'_g(u_R) \right) + (2g - 1) u_S u_{S,1}^{2g-2} u_{S,2} f'_g(u_R) + u_S u_{S,1}^{2g-1} u_{R,1} f'_g(u_R) \right]'.$$

$$= \left[u_S \left(u_Q + \sum_{g=1}^{\infty} \lambda^{2g} \left((2g - 1) u_{S,1}^{2g-2} u_{S,2} f'_g(u_R) + u_{S,1}^{2g-1} u_{R,1} f'_g(u_R) \right) \right) \right]$$

$$+ f'_0(u_R) + \sum_{g=1}^{\infty} \lambda^{2g} u_{S,1}^{2g} f'_g(u_R)' \right)'.$$
Therefore, by (193) and (194) we get:

$$\frac{\partial U_P}{\partial t_P^Q} = \left(U_SU_Q + \sum_{g=0}^{\infty} \lambda^{2g} U_{S,1}^{2g} f'_g(U_R) \right).$$

For general n,

$$\frac{\partial U_P}{\partial t_P^n} = \left(\frac{U_S^n}{n!} U_Q + \frac{U_{S}^{n-1}}{(n-1)!} \sum_{g=0}^{\infty} \lambda^{2g} U_{S,1}^{2g} f'_g(U_R) \right).$$

Now we consider the deformation of the first equation in (199). We differentiate (189) to get:

$$\frac{\partial^2 F_g}{\partial P \partial Q} = \partial^2 \left(\frac{u_{S,1}^{2g-2} f'_g(u_R) \partial u_R}{\partial Q} \right) = \partial^2 \left(\frac{u_{S,1}^{2g-1} f'_g(u_R)}{\partial P} \right)$$

$$= (2g-1)u_{S,1}^{2g-2} \partial u_{S,1} \frac{f'_g(u_R)}{\partial P} + u_{S,1}^{2g-1} f''_g(u_R) \partial u_R$$

$$= (2g-1)u_{S,1}^{2g-2}(u_S u_{S,2} + u_{S,1}^2) f'_g(u_R)$$

$$+ u_{S,1}^{2g-1}(u_S u_{R,1} + u_{R} u_{S,1}) f''_g(u_R).$$

From this we get:

$$\frac{\partial U_Q}{\partial t_P^1} = \lambda^2 \frac{\partial}{\partial Q} \left(\frac{\partial^2 F_g}{\partial P \partial t_P^Q} \right)$$

$$= \left[u_S u_Q + u_{R} f''_0(u_R) - f'_0(u_R)\right.$$

$$+ \sum_{g=1}^{\infty} \lambda^{2g} \left((2g-1)u_{S,1}^{2g-2}(u_S u_{S,2} + u_{S,1}^2) f'_g(u_R)$$

$$+ u_{S,1}^{2g-1}(u_S u_{R,1} + u_{R} u_{S,1}) f''_g(u_R)\right)\left.\right]\prime$$

$$= \left[u_S \left(u_Q + \sum_{g=1}^{\infty} \lambda^{2g} \left((2g-1)u_{S,1}^{2g-2} u_{S,2} f'_g(u_R) + u_{S,1}^{2g-1} u_{R,1} f''_g(u_R)\right)\right)\right.$$

$$+ u_{R} \left(f''_R(u_R) + \sum_{g=1}^{\infty} \lambda^{2g} u_{S,1}^{2g} f''_g(u_R)\right)$$

$$- f'_R(u_R) + \sum_{g=1}^{\infty} (2g-1) \lambda^{2g} u_{S,1}^{2g} f'_g(u_R)\right]\prime,$$
so using (193) and (194) we get:

\[
\frac{\partial U_Q}{\partial t_1^P} = \left[U_Q U_S + U_R \sum_{g=0}^{\infty} \lambda^{2g} U_{S,1} J_g''(U_R) + \sum_{g=0}^{\infty} (2g - 1) \lambda^{2g} U_{S,1} J_g'(U_R) \right].
\]

In general we have:

\[
\frac{\partial U_Q}{\partial t_1^P} = \left[U_Q U_S \frac{U^n}{n!} + U_S^{n-1} \frac{U^n}{(n-1)!} U_R \sum_{g=0}^{\infty} \lambda^{2g} U_{S,1} J_g''(U_R) + \sum_{g=0}^{n-1} (2g - 1) \lambda^{2g} U_{S,1} J_g'(U_R) \right].
\]

Now we consider the deformation of the first equation in (199). We begin with:

\[
\frac{\partial U_P}{\partial t_1^P} = \frac{\partial}{\partial t^F} \frac{\partial}{\partial t_1^P} \frac{\partial F}{\partial t^P}.
\]
Then we take $\frac{\partial}{\partial t}$ on both sides of (188) to get:

$$
\frac{\partial}{\partial t} \frac{\partial F}{\partial t} = u_P u_S + u_Q u_R - \frac{25\lambda^2}{3} \frac{\partial}{\partial t} \frac{u_{S,2}}{u_{S,1}}
$$

$$
+ \sum_{g=1}^{\infty} \lambda^g \frac{\partial}{\partial t} \left(u_{S,1}^{2g-2} f'_g(u_R) u_{R,1} + (2g - 2) u_{S,1}^{2g-3} u_{S,2} f_g(u_R) \right)
$$

$$
= u_P u_S + u_Q u_R - \frac{25\lambda^2}{3} \left(\frac{\partial u_{S,2}}{\partial t} - \frac{u_{S,2}}{u_{S,1}} \frac{\partial u_{S,1}}{\partial t} \right)
$$

$$
+ \sum_{g=1}^{\infty} \lambda^g \left(u_{S,1}^{2g-2} f''_g(u_R) \frac{\partial u_R}{\partial t} u_{R,1} + u_{S,1}^{2g-2} f'_g(u_R) \frac{\partial u_{R,1}}{\partial t} \right)
$$

$$
+ (2g - 2) u_{S,1}^{2g-3} \frac{\partial u_{S,2}}{\partial t} f'_g(u_R) u_{R,1} + (2g - 2) u_{S,1}^{2g-3} u_{S,2} f''_g(u_R) \frac{\partial u_R}{\partial t}
$$

$$
+ (2g - 2) u_{S,1}^{2g-3} \frac{\partial u_{S,2}}{\partial t} f'_g(u_R) + (2g - 2)(2g - 3) u_{S,1}^{2g-4} \frac{\partial u_{S,1}}{\partial t} u_{S,2} f_g(u_R)
$$

$$
= u_P u_S + u_Q u_R - \frac{25\lambda^2}{3} \left(\frac{(u_S^2/2)!''}{u_{S,1}} - \frac{u_{S,2}}{u_{S,1}} \left(\frac{u_S^2}{2} \right)!'' \right)
$$

$$
+ \sum_{g=1}^{\infty} \lambda^g \left(u_{S,1}^{2g-2} f''_g(u_R) (u_{S,1} u_{S,1} f'_g(u_R)) u_{R,1} + u_{S,1}^{2g-2} f'_g(u_R) (u_{S,1} u_{S,1} f'_g(u_R))' \right)
$$

$$
+ (2g - 2) u_{S,1}^{2g-3} \left(\frac{u_S^2}{2} \right)!'' f'_g(u_R) u_{R,1} + (2g - 2) u_{S,1}^{2g-3} u_{S,2} f'_g(u_R) (u_{S,1} u_{S,1} f'_g(u_R))'
$$

$$
+ (2g - 2) u_{S,1}^{2g-3} \left(\frac{u_S^2}{2} \right)!'' f'_g(u_R) + (2g - 2)(2g - 3) u_{S,1}^{2g-4} \left(\frac{u_S^2}{2} \right)!'' u_{S,2} f_g(u_R) \right)
$$

$$
= u_P u_S + u_Q u_R - \frac{25\lambda^2}{3} \left(u_{S,1} \frac{u_{S,3}}{u_{S,1}} - \frac{u_{S,2}}{u_{S,1}} \right) + 2u_{S,2}
$$

$$
+ \sum_{g=1}^{\infty} \lambda^g \left(u_{S,1}^{2g-3} f''_g(u_R) (u_{S,1} u_{S,1} + u_{S,2} u_{R,1}) u_{R,1}
$$

$$
+ u_{S,1}^{2g-2} f'_g(u_R) (u_{S,2} u_{R,2} + 2u_{S,1} u_{R,1} + u_{S,2} u_{R,2})
$$

$$
+ (2g - 2) u_{S,1}^{2g-3} \left(u_{S,1} u_{S,2} + 2u_{S,1} \right) f'_g(u_R) u_{R,1} \right)
$$

$$
+ (2g - 2) u_{S,1}^{2g-3} \left(u_{S,1} u_{S,2} u_{R,1} + u_{S,1} u_{S,2} \right) \left(\frac{u_{S,1}}{u_{S,2}} \right) f'_g(u_R)
$$

$$
+ (2g - 2)(2g - 3) u_{S,1}^{2g-4} \left(u_{S,1} + u_{S,2} \right) u_{S,2} f_g(u_R) \right).$$
We rewrite the right-hand side of the last equality as follows:

\[
\frac{\partial}{\partial t_1^P} \frac{\partial F'}{\partial t_1^P} = u_s \left(u_p - \frac{25\lambda^2}{3} \left(\frac{u_{S,3}}{u_{S,1}} - \frac{u_{S,2}^2}{u_{S,1}^2} \right) \right)
\]

\[+ \sum_{g=1}^{\infty} \lambda^{2g} \left(u_{S,1}^{2g-2} f''_g(u_R) u_{R,1}^2 + u_{S,1}^{2g-2} f'_g(u_R) u_{R,2}^2 \right) \]

\[+ (4g - 4) u_{S,1}^{2g-3} u_{S,2} f'_g(u_R) u_{R,1}^2 + (2g - 2) u_{S,1}^{2g-3} u_{S,3} f_g(u_R) \]

\[+ (2g - 2)(2g - 3) u_{S,1}^{2g-4} u_{S,2}^{2g} f_g(u_R) \]

\[+ u_R \left(u_Q + \sum_{g=1}^{\infty} \lambda^{2g} \left(u_{S,1}^{2g-1} f''_g(u_R) u_{R,1}^2 + (2g - 1) u_{S,1}^{2g-2} f'_g(u_R) u_{S,2}^2 \right) \right) \]

\[- \frac{50\lambda^2}{3} u_{S,2} + \sum_{g=1}^{\infty} \lambda^{2g} \left(2g u_{S,1}^{2g-1} f'_g(u_R) u_{R,1}^2 + 2g(2g - 2) u_{S,1}^{2g-2} u_{S,2} f_g(u_R) \right).\]

Now we use (192)-(194) to get

\[
\frac{\partial U_P}{\partial t_1^P} = U_P U_S + U_Q U_R - \frac{50\lambda^2}{3} U_{S,2}
\]

\[+ \sum_{g=1}^{\infty} \lambda^{2g} \left(2g U_{S,1}^{2g-1} f'_g(U_R) U_{R,1}^2 + 2g(2g - 2) U_{S,1}^{2g-2} U_{S,2} f_g(U_R) \right).\]
In general, we have:

\[
\frac{\partial}{\partial t^n} \frac{\partial F}{\partial t^P} = u_P \frac{u^n}{n!} + u_Q u_R \frac{u^{n-1}}{(n-1)!} + \frac{u^{n-2}}{(n-2)!} \left(u_R f'_Q(u_R) - 2 f_0(u_R) \right) - \frac{25 \lambda^2}{3} \frac{\partial}{\partial t^n} \left(u_{S,2} \right)
\]

\[
+ \sum_{g=1}^{\infty} \lambda^{2g} \frac{\partial}{\partial t^n} \left(\frac{u^n}{n!} \right) \left(u_{S,1} f_g(u_R) \right) + \left(2g - 2 \right) u_{S,1} f_g(u_R) \frac{\partial u_{S,1}}{\partial t^n} \left(u_{S,1} \right)
\]

\[
+ \left(2g - 2 \right) u_{S,1} f_g(u_R) \left(2g - 2 \right) \frac{\partial u_{S,1}}{\partial t^n} \left(u_{S,2} f_g(u_R) \right)
\]

\[
= u_P \frac{u^n}{n!} + u_Q u_R \frac{u^{n-1}}{(n-1)!} + \frac{u^{n-2}}{(n-2)!} \left(u_R f'_Q(u_R) - 2 f_0(u_R) \right) - \frac{25 \lambda^2}{3} \frac{\partial}{\partial t^n} \left(u_{S,2} \right)
\]

\[
+ \sum_{g=1}^{\infty} \lambda^{2g} \left(\frac{\partial u_{S,1}}{\partial t^n} \right) \left(u_{S,1} f_g(u_R) \right) + \left(2g - 2 \right) u_{S,1} f_g(u_R) \frac{\partial u_{S,1}}{\partial t^n} \left(u_{S,1} \right)
\]

\[
+ \left(2g - 2 \right) u_{S,1} f_g(u_R) \left(2g - 2 \right) \frac{\partial u_{S,1}}{\partial t^n} \left(u_{S,2} f_g(u_R) \right)
\]
\begin{align*}
\frac{\partial}{\partial t_n} & \frac{\partial F}{\partial t^P} \\
& = \frac{u_p}{n!} u_n^S + u_Q u_R \left(\frac{u_n^{n-1}}{(n-1)!} + \frac{u_n^{n-2}}{(n-2)!} (u^R f'_0(u^Q) - 2f_0(u_R)) \right) \\
& - \frac{25\lambda^2}{3} \left(\frac{u_{S,3} u_S^n}{n!} + 3 u_{S,2} u_{S,1} u_n^{n-1} / (n-1)! + u_{S,1}^3 u_n^{n-2} / (n-2)! \right) \\
& - \frac{u_{S,1}}{u_{S,2}^2} (u_{S,2}^n n! + u_{S,1}^2 (n-1)!) \\
& + \sum_{g=1}^\infty \lambda^{2g} \left(\frac{u_{S,1}^{2g-2} f''_g(u_R)}{u_{S,1}^n} u_{R,1} + \frac{u_{S,1}^{n-1}}{(n-1)!} u_{S,1} u_R \right) u_{R,1} \\
& + u_{S,1}^{2g-2} f'_g(u_R) \left(\frac{u_{S,1}^n}{n!} u_{R,1} + 2 \frac{u_{S,1}^{n-1}}{(n-1)!} u_{S,1} u_{R,1} + \frac{u_{S,1}^{n-1}}{(n-1)!} u_{S,2} u_R + \frac{u_{S,1}^{n-2}}{(n-2)!} u_{S,1}^2 u_R \right) \\
& + (2g - 2) u_{S,1}^{2g-3} \left(u_{S,2}^n n! + u_{S,1}^2 (n-1)! \right) f'_g(u_R) u_{R,1} \\
& + (2g - 2) u_{S,1}^{2g-3} u_{S,2} f'_g(u_R) \left(\frac{u_{S,1}^n}{n!} u_{R,1} + \frac{u_{S,1}^{n-1}}{(n-1)!} u_{S,1} u_R \right) \\
& + (2g - 2) u_{S,1}^{2g-3} u_{S,3} \frac{u_{S,1}^n}{n!} + 3 u_{S,2} u_{S,1} \frac{u_{S,1}^{n-1}}{(n-1)!} + u_{S,1}^3 \frac{u_{S,1}^{n-2}}{(n-2)!}) f_g(u_R) \\
& + (2g - 2) (2g - 3) u_{S,1}^{2g-4} \left(u_{S,2}^n n! + u_{S,1}^2 (n-1)! \right) u_{S,2} f_g(u_R) \right)
\end{align*}
Theorem 5.4. For the quintic, the deformed order parameters satisfy the following system of integrable hierarchy:

\[
\frac{\partial}{\partial t_n^P} \left(\frac{\partial F}{\partial t_n^P} \right) = \frac{w_n}{n!} \left[u_R - \frac{25}{3} \lambda^2 \left(\frac{u_{S,3}}{u_{S,1}} - \frac{u_{S,2}^2}{u_{S,1}^2} \right) \right] \\
+ \sum_{g=1}^{\infty} \lambda^{2g} \left(u_{S,1}^{2g-2} f''_g(u_R) u_{R,1}^2 + u_{S,1}^{2g-2} f'_g(u_R) u_{R,1} + 2(2g - 2) u_{S,1}^{2g-3} u_{S,2} f'_g(u_R) u_{R,1} \right) \\
+ (2g - 2) u_{S,1}^{2g-3} u_{S,3} f_g(u_R) + (2g - 2)(2g - 3) u_{S,1}^{2g-4} u_{S,2}^2 f''_g(u_R) \right] \\
+ \frac{u_{S}^{n-1}}{(n-1)!} u_R \left[u_Q + \sum_{g=1}^{\infty} \lambda^{2g} \left(u_{S,1}^{2g-2} f'_g(u_R) u_{S,1} u_R + (2g - 1) u_{S,1}^{2g-2} f''_g(u_R) u_{S,2} \right) \right] \\
+ \frac{u_{S}^{n-2}}{(n-2)!} \left[(u_R f'_0(u_R) - 2 f_0(u_R)) + \sum_{g=1}^{\infty} \lambda^{2g} \left(u_{S,1}^{2g-1} u_{S,2} f'_g(u_R) + (2g - 2) f'_g(u_R) \right) \right] \\
- \frac{25 \lambda^2}{3} \left(\frac{2 u_{S,2}^{n-1}}{(n-1)!} + \frac{u_{S,1}^{n-2}}{(n-2)!} \right) \\
+ \frac{u_{S}^{n-1}}{(n-1)!} \sum_{g=1}^{\infty} \lambda^{2g} \left(2 g u_{S,1}^{2g-1} f'_g(u_R) u_{R,1} + 2 g(2g - 2) u_{S,1}^{2g-2} u_{S,2} f'_g(u_R) \right).
\]

To summarize, we have proved the following:

Theorem 5.4. For the quintic, the deformed order parameters satisfy the following system of integrable hierarchy:

\[
\frac{\partial U_S}{\partial t_n^P} = \left(\frac{U_{S}^{n+1}}{(n+1)!} \right), \quad \frac{\partial U_S}{\partial t_n^Q} = 0, \quad \frac{\partial U_S}{\partial t_n^R} = 0, \quad \frac{\partial U_S}{\partial t_n^S} = 0,
\]

\[
\frac{\partial U_R}{\partial t_n^P} = \left(\frac{U_{R} U_{S}^{n}}{n!} \right), \quad \frac{\partial U_R}{\partial t_n^Q} = \left(\frac{U_{S}^{n+1}}{(n+1)!} \right), \quad \frac{\partial U_R}{\partial t_n^R} = 0, \quad \frac{\partial U_R}{\partial t_n^S} = 0,
\]

\[
\frac{\partial U_Q}{\partial t_n^S} = 0, \quad \frac{\partial U_Q}{\partial t_n^R} = \left(\frac{U_{S}^{n+1}}{(n+1)!} \right),
\]

\[
(207) \quad \frac{\partial U_Q}{\partial t_n^Q} = \left(\frac{U_{S}^{n}}{n!} \sum_{g=0}^{\infty} \lambda^{2g} U_{S,1}^{2g} f''_g(u_R) \right).
\]
\[\frac{\partial U_Q}{\partial P} = \left[U_Q \frac{U^n_S}{n!} + \frac{U^{n-1}_S}{(n-1)!} U_R \sum_{g=0}^{\infty} \lambda^{2g U^{g}_{S,1}} f''(U_R) \right]' + \frac{U^{n-1}_S}{(n-1)!} \sum_{g=0}^{\infty} (2g-1) \lambda^{2g U^{g}_{S,1}} f'_g(U_R) \]

(208)

\[\frac{\partial U_P}{\partial t^n_S} = \left(\frac{U^{n+1}_S}{(n+1)!} \right)' , \quad \frac{\partial U_P}{\partial t^n_R} = \left(\frac{U_R U^n_S}{n!} \right)' . \]

(209)

\[\frac{\partial U_P}{\partial t^n_Q} = \left(\frac{U^n_S}{n!} U_Q + \frac{U^n_S}{(n-1)!} \sum_{g=0}^{\infty} \lambda^{2g U^{g}_{S,1}} f'_g(u_R) \right)' . \]

(210)

6. Emergent Geometry of Gromov-Witten Theory

In this Section we return to the general discussions for GW theory of all symplectic manifolds or Gromov-Witten type theories. As pointed out by Dubrovin [5], two types of integrable systems are hidden in such theories. The first one is the system of WDVV equations (18), and the second one is the integrable hierarchy (40) and its deformation by higher genus contributions. We will recall the geometric structures behind such integrable systems. We will again take an emergent point of view, i.e., we will try to understand how geometric structures emerge in the GW-type theories.

6.1. WDVV equations, Frobenius manifolds and Higgs systems. Dubrovin [5] introduced the notion of a Frobenius manifold to give a geometric reformulation of the system of WDVV equations [18]. Let us recall how it naturally emerge in the setting of GW theory. Let \(\mathcal{M} \) denote the small phase space with linear coordinates \(\{ t^a \} \), with \(t^0 \)}
corresponding to $\mathcal{O}_0 = 1 \in H^0(M)$. The Poincaré paring gives \mathcal{M} a flat metric
\begin{equation}
\eta_{\alpha\beta} = \eta \left(\frac{\partial}{\partial t^\alpha}, \frac{\partial}{\partial t^\beta} \right) = \int_M \mathcal{O}_\alpha \cup \mathcal{O}_\beta,
\end{equation}

Since this metric is given by a constant matrix, it is flat. In particular, its Levi-Civita connection is given by:
\begin{equation}
\nabla_{s^\beta} \left(s^\beta \frac{\partial}{\partial t^\beta} \right) = \frac{\partial s^\beta}{\partial t^\alpha} \frac{\partial}{\partial t^\beta}.
\end{equation}
The quantum multiplications defined in §2.5 define a Higgs field $A \in \Omega^1(M, \text{End}(TM))$:
\begin{equation}
A(\frac{\partial}{\partial t^\alpha}) : TM \to TM, \quad A(\frac{\partial}{\partial t^\alpha}) \frac{\partial}{\partial t^\beta} := \frac{\partial}{\partial t^\alpha} \circ t \frac{\partial}{\partial t^\beta}.
\end{equation}

Dubrovin [5] showed that the system of the WDVV equations is equivalent to the flatness of the new connection
\begin{equation}
\tilde{\nabla}_X Y = \nabla_X Y + z \cdot X \circ Y.
\end{equation}
Furthermore,
\begin{equation}
ed := \frac{\partial}{\partial t^0}
\end{equation}
is a flat section with respect to ∇. Such structures make \mathcal{M} a Frobenius manifold. This gives a geometric reformulation of some of the results in §2.4 and §2.5.

6.2. The deformed flat coordinates. Let
\begin{equation}
x^\alpha = x^\alpha(t, z) = t^\alpha + \sum_{n=1}^{\infty} z^n v^\alpha_n(t)
\end{equation}
be flat coordinates for the Dubrovin connection $\tilde{\nabla}$. They are specified by the condition of vanishing of the covariant hessian
\begin{equation}
\tilde{\nabla}_{\frac{\partial}{\partial t^\alpha}} \tilde{\nabla}_{\frac{\partial}{\partial t^\beta}} (x^\gamma \frac{\partial}{\partial t^\gamma}) = 0,
\end{equation}
or, equivalently, by the system
\begin{equation}
\frac{\partial}{\partial t^\alpha} \frac{\partial}{\partial t^\beta} x^\gamma = z c^\gamma_{\alpha\beta} \frac{\partial}{\partial t^\lambda} x^\gamma.
\end{equation}

After plugging in (216), we get the following sequences of equations:
\begin{align*}
\frac{\partial^2 v^\gamma_1}{\partial t^\alpha \partial t^\beta} &= \frac{\partial^3 F_0}{\partial t^\alpha \partial t^\beta \partial t^\mu} \eta^\mu, \\
\frac{\partial^2 v^\gamma_n}{\partial t^\alpha \partial t^\beta} &= \frac{\partial^3 F_0}{\partial t^\alpha \partial t^\beta \partial t^\mu} \eta^\mu \frac{\partial v^\gamma_{n-1}}{\partial t^\lambda}, \quad n \geq 2.
\end{align*}
One can check that by the TRR in genus zero
\[v_1^\gamma = \frac{\partial F_0}{\partial t_{n-1}^\mu} \eta^{\gamma \mu}. \]

See Givental [22]. We recall that the WDVV equations can be derived from the TRR in genus zero. So we have seen that both the WDVV equations and their solutions are consequences of the TRR in genus zero.

6.3. The geometric structure behind the integrable hierarchy [40]. As pointed out by Witten [34, §3d], the system of equations (40) is a system of Hamiltonian equations with the following Poisson bracket:
\[\{ u_\alpha(x), u_\beta(y) \} = \eta_{\alpha \beta} \delta'(x - y), \]
with the Hamiltonians the genus zero one-point functions which just appear in last subsection:
\[H_{n, \alpha} = \int dx R_{\alpha, n}(u^0, \ldots, u^r). \]

As remarked by Witten [34], the KdV hierarchy is bi-Hamiltonian, i.e., the KdV flows are Hamiltonian with respect to two Poisson structures. The second Poisson structure is related to the Virasoro algebra, the recursion for the Hamiltonians of the KdV hierarchy can be constructed using this bi-Hamiltonian structure. He remarked that: "We do not know of any evidence for a second symplectic structure playing a role for general M.”

As pointed out by [5], the system of equations (40) is a system of Hamiltonian equations of hydrodynamic type studied in Dubrovin-Novikov [6], hydrodynamic type. Let \mathcal{M} be any manifold and u^0, \ldots, u^r any local coordinates on \mathcal{M}. Recall that
\[\{ u^a(x), u^b(y) \} = g^{ab}(u(x)) \delta'(x - y) + b^{ab}_{\ c}(u(x)) \frac{\partial u^c}{\partial x} \delta(x - y) \]
determines a Poisson bracket on the loop space $L\mathcal{M}$ consisting of smooth functions $u^a : S^1 \to \mathbb{C}$ (Poisson brackets of hydrodynamic type) iff the tensor field $g_{ab} du^a du^B$ is a flat metric on \mathcal{M}, where $(g_{ab}) = (g^{ab})^{-1}$, and the coefficients $b^{ab}_{\ c}(u)$ can be determined from g_{ab} as follows:
\[b^{ab}_{\ c}(u) = -g^{ad}(u) \Gamma^b_{\ dc}(u), \]
where $\Gamma^b_{\ dc}$ are the Christoffel symbols of the Levi-Civita connection for the metric η. Such a Poisson structure is called a Poisson structure
of the hydrodynamic type. A hamiltonian of hydrodynamic type is a functional of the form:

\[(224)\]

\[H = \int h(u(x))dx,\]

where the density \(h = h(u)\) does not depend on derivatives. Any such function \(h(u)\) on \(\mathcal{M}\) determines a hamiltonian system on \(\mathcal{L}\mathcal{M}\) of the following form:

\[(225)\]

\[\partial_t u^a(x) = \{u^a(x), \int h(u(y))dy\} = w^a_b(u)\partial_x u^b,\]

where \(w^a_b(u) = \nabla^a\nabla_b h(u)\). This is called a hamiltonian system of hydrodynamic type.

6.4. Conformal Frobenius manifolds and the second Poisson structures. By the selection rules \((78)\) and \((79)\), the Frobenius manifolds associated with the GW theory of Calabi-Yau threefolds are conformal invariant Frobenius manifold. They correspond to solutions of the WDVV equations self-similar with respect to some scaling transformations:

\[
t^\alpha \mapsto c^{1-q_\alpha} t^\alpha, \alpha = 0, 1, \ldots, r, \\
\eta = \eta_{\alpha\beta} dt^\alpha dt^\beta \mapsto c^{2-d} \eta, \\
c_{\alpha\beta\gamma} \mapsto c^{q_\alpha + q_\beta + q_\gamma - d} c_{\alpha\beta\gamma}, \\
F_0(\{t^\alpha\}) \mapsto c^{3-d} F_0(\{t^\alpha\}),
\]

for some \(q_0 = 0, q_2, \ldots, q_r, d\). A pair \((\alpha, n)\) is resonant if

\[(226)\]

\[\frac{d + 1}{2} = q_\alpha - n.\]

If all pairs are nonresonant, then the Frobenius manifold is said to be nonresonant.

For a Calabi-Yau threefold \(M\), fix a basis \(\{\mathcal{O}_\alpha\}_{\alpha=0,\ldots,r}\) of \(H^{\alpha\alpha}(M)\),

\[(227)\]

\[q_\alpha = 1 - \deg \mathcal{O}_\alpha,\]

then \(d = 3\). It is easy to see that Calabi-Yau threefolds give rise to resonant conformal invariant Frobenius manifolds.

As shown in Dubrovin \([7\text{ Theorem 3.2}]\), for a conformal invariant Frobenius manifold, the formula

\[(228)\]

\[\{t^\alpha(x), t^\beta(y)\}_1 = [(\frac{d + 1}{2} - q_\alpha) F^{\alpha\beta}(t(x)) + (\frac{d + 1}{2} - q_\beta) F^{\alpha\beta}(t(y))]\delta'(x - y)\]
determines a Poisson bracket compatible with the Poisson bracket, where
\[F^{\alpha\beta}(t) = \eta^{\alpha\alpha'} \eta^{\beta\beta'} \partial_{\alpha'} \partial_{\beta'} F(t) \]
I.e., any linear combination of them again is a Poisson bracket.

6.5. Compatible Poisson structures and pencils of flat metrics.
By the theory of Dubrovin-Novikov on Poisson brackets of hydrodynamic type, the pencil of Poisson structures \(\{, \lambda \} \) corresponds to a pencil of flat metrics:
\[g^{\alpha\beta} - \lambda \eta^{\alpha\beta}, \]
where
\[g^{\alpha\beta} = i_E(dt^\alpha \circ dt^\beta), \]
where \(E \) is Euler vector field:
\[E = \sum (1 - q_\alpha) t_\alpha \frac{\partial}{\partial t_\alpha}. \]
Given \(\lambda \), the subset of \(\mathcal{M} \) where \(g^{\alpha\beta} - \lambda \eta^{\alpha\beta} \) is degenerate is denoted by \(\Sigma_\lambda \), it is called the discriminant locus.

Recall that two metrics \(g_1 \) and \(g_2 \) form a flat pencil if:
1) The linear combination \(g_1 - \lambda g_2 \) is a flat metric for any \(\lambda \).
2) The Levi-Civita connection of this linear combination has the form
\[\Gamma^i_k = \Gamma^i_{1k} - \lambda \Gamma^i_{2k}. \]
The flat pencil of metrics is quasihomogeneous of the degree \(d \) if there exists a function \(\tau \) such that the vector fields
\[E := g_1^{is} \frac{\partial \tau}{\partial t^s} \frac{\partial}{\partial t^i}, \]
\[e := g_2^{is} \frac{\partial \tau}{\partial t^s} \frac{\partial}{\partial t^i} \]
satisfy the following properties
\[[e, E] = e, \]
\[L_E g_1 = (d - 1) g_1, \]
\[L_e g_1 = g_2, \]
\[L_e g_2 = 0. \]
If the flat pencil comes from a Frobenius manifold, then the function \(\tau \) can be taken to be
\[\tau = \eta_0 \alpha t^\alpha. \]
A quasihomogeneous flat pencil is said to be regular if the \((1,1)\)-tensor
\[
R^i_j = \frac{d - 1}{2}\delta^i_j + \nabla_2 E^j_i
\]
does not degenerate. We have seen that from a Frobenius manifold one can associate a flat pencil of metrics. Conversely, given a regular quasihomogeneous flat pencil one can reconstruct a Frobenius manifold (cf. e.g. [9, Theorem 2.1]).

6.6. The \(\lambda\)-periods and the dual flat coordinates. A function \(p = p(t; \lambda)\) is called \(\lambda\)-period of the Frobenius manifold if it satisfies
\[
(\nabla_1 - \lambda \nabla)dp = 0.
\]
If one chooses the flat coordinates \(p^0(t), \ldots, p^r(t)\) of the intersection form, then
\[
(dp^a, dp^b) = G^{ab}
\]
are constants. Furthermore, we obtain a reduction of the Poisson pencil to the canonical form
\[
\{p^i, p^j\}_\lambda = G^{ij}\delta'(x - y).
\]
If \(p^i(t)\) are chosen such that
\[
L_E p^i = \frac{1 - d}{2} p^i,
\]
then
\[
\tau = \eta_{ab} t^a = \frac{1 - d}{4} G_{ab} p^a p^b,
\]
where \((G_{ab}) = (G^{ab})^{-1}\). See [10, Lemma 2.6].

6.7. The dual multiplications. The metric \((,)\) and \(<,>\) are related by multiplication by Euler vector field:
\[
(E \circ u, v) = <u, v>
\]
See [8, Exercise 3.3]. It follows that:
\[
(E \circ u \circ v, w) = <u \circ v, w>.
\]
It turns out that \(E\) is an invertible element in the quantum cohomology ring.
\[
(u \circ v, w) = <E^{-1} \circ u \circ v, w>.
\]
Dubrovin [10] defined a new multiplication \(u \ast v\) by
\[
u \ast v := E^{-1} \circ u \circ v.
\]
Then one has:
\[
(u \circ v, w) = \langle u \ast v, w \rangle.
\]

6.8. The dual potential function. As proved in Dubrovin [10], the multiplication (243) together with the intersection form (,), the unity = the Euler vector field = E satisfies all the axioms of Frobenius manifold except for the unity is not parallel. Furthermore, let \(p_1(t), \ldots, p^n(t) \) be a system of local flat coordinates of the intersection form. Then there exists a function \(F_*(p) \) such that

\[
\frac{\partial^3 F_*(p)}{\partial p^i \partial p^j \partial p^k} = G_{ia} G_{jb} \frac{\partial p^a}{\partial t^\alpha} \frac{\partial p^b}{\partial t^\beta} \epsilon_{\gamma} (t).
\]

This can be rewritten in the following way

\[
d \left(\frac{\partial^2 F_*}{\partial p^a \partial p^b} \right) = dp^a \circ dp^b.
\]

The function \(F_*(p) \) satisfies the following associativity equations

\[
\frac{\partial^3 F_*(p)}{\partial p^i \partial p^j \partial p^k} G^{ab} \frac{\partial^3 F_*(p)}{\partial p^l \partial p^m \partial p^n} = \frac{\partial^3 F_*(p)}{\partial p^l \partial p^m \partial p^n} G^{ab} \frac{\partial^3 F_*(p)}{\partial p^i \partial p^j \partial p^k},
\]

\(i, j, k, l = 1, \ldots, n \). For \(d \neq 1 \), \(F_*(p) \) satisfies the homogeneity condition

\[
\sum_a p^a \frac{\partial F_*}{\partial p^a} = 2F_* + \frac{1}{1-d} \sum G_{ab} p^a p^b.
\]

6.9. The deformed dual flat coordinates. Let

\[
p^\alpha = p^\alpha(t, z) = p^\alpha + \sum_{n=1}^{\infty} z^n v_n^\alpha(t)
\]

be dual flat coordinates for the Dubrovin connection \(\tilde{\nabla} \). They are specified by the condition of vanishing of the covariant hessian

\[
\tilde{\nabla}_{\alpha \beta} \tilde{\nabla}_{\beta \gamma} (x^\gamma \frac{\partial}{\partial t^\alpha}) = 0,
\]

or, equivalently, by the system

\[
\frac{\partial}{\partial t^\alpha} \frac{\partial}{\partial t^\beta} x^\gamma = z \epsilon_{\alpha \beta} \frac{\partial}{\partial t^\alpha} x^\gamma.
\]

After plugging in (216), we get the following sequences of equations:

\[
\frac{\partial^2 v_1^\gamma}{\partial t^\alpha \partial t^\beta} = \frac{\partial^3 F_0}{\partial t^\alpha \partial t^\beta \partial t^\mu} \eta^\mu_{\gamma},
\]

\[
\frac{\partial^2 v_n^\gamma}{\partial t^\alpha \partial t^\beta} = \frac{\partial^3 F_n}{\partial t^\alpha \partial t^\beta \partial t^\mu} \eta^\mu \frac{\partial v_{n-1}^\gamma}{\partial t^\lambda}, \quad n \geq 2.
\]
One can check that by the TRR in genus zero
\begin{equation}
\gamma^1 = \frac{\partial F_0}{\partial t_{n-1}^\mu} \eta^\mu.
\end{equation}

See Givental [22]. We recall that the WDVV equations can be derived from the TRR in genus zero. So we have seen that both the WDVV equations and their solutions are consequences of the TRR in genus zero.

In the case of semisimple Frobenius manifolds, Dubrovin and Zhang [13] showed that the deformed flat coordinates and the deformed dual flat coordinates are related by Laplace transform. We will verify that this also holds for the quintic in §[7.9].

6.10. **The reconstruction program.** In [7] Dubrovin launched a program to reconstruct a complete GW-type theory from a Frobenius manifold. He focused on the case of semisimple Frobenius manifolds. This program was developed by Dubrovin and Zhang [13] and many of their subsequent works, based on the bihamiltonian systems. For a survey of the current status of this program, see Dubrovin [11].

7. Frobenius Manifold Associated with the Quintic

In this Section we carry out the explicit computations in the theory of Frobenius manifolds associated with the quintic. We will rewrite the genus zero free energy on the small phase space in terms of the dual flat coordinates. This will reveal some similarity to the formulas in mirror symmetry computations in [2].

7.1. **Induced multiplications on the cotangent bundle and the intersection form.** Using the quantum multiplications computed in §[4.3] we get the following induced multiplications on the cotangent bundle of the small phase space:

\[
\begin{array}{c}
dt^P \circ \begin{pmatrix} dt^P \\ dt^Q \\ dt^R \\ dt^S \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} dt^P \\ dt^Q \\ dt^R \\ dt^S \end{pmatrix}, \\
dt^Q \circ \begin{pmatrix} dt^P \\ dt^Q \\ dt^R \\ dt^S \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} dt^P \\ dt^Q \\ dt^R \\ dt^S \end{pmatrix},
\end{array}
\]
Therefore, after taking inner product with the Euler vector field
\[E = t^P \frac{\partial}{\partial t^P} - t^R \frac{\partial}{\partial t^R} - 2t^S \frac{\partial}{\partial t^S}, \]
we get the intersection form:
\[(dt^\alpha, dt^\beta) = \begin{pmatrix} 0 & 0 & 0 & t^P \\ 0 & 0 & t^P & 0 \\ 0 & t^P & 0 & -t^R \\ t^P & 0 & -t^R & -2t^S \end{pmatrix} \cdot \begin{pmatrix} dt^P \\ dt^Q \\ dt^R \\ dt^S \end{pmatrix}, \]

One can check that
\[(dt^\alpha, dt^\beta) = R \cdot (F^{\alpha\beta}) + (F^{\alpha\beta}) \cdot R, \]
where the matrix \(R \) is
\[R = \frac{d - 1}{2} + \text{diag}(d_\alpha) = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \]

where \(d = \dim X = 3, \)
\[d_p = 1, \quad d_Q = 0, \quad d_R = -1, \quad d_S = -2, \]
i.e., \(d_\alpha = 1 - \deg \alpha. \) A related matrix is
\[\mathcal{V} = R - \frac{1}{2} I = \begin{pmatrix} \frac{3}{2} & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & 0 \\ 0 & 0 & -\frac{1}{2} & 0 \\ 0 & 0 & 0 & -\frac{3}{2} \end{pmatrix} \]

Note
\[\mathcal{V} \cdot (\eta_{\alpha\beta}) = - (\eta_{\alpha\beta}) \cdot \mathcal{V}, \]
it defines a symplectic structure on the small phase space.
Recall that

\[F^{\alpha \beta} = \eta^{\alpha \alpha'} \eta^{\beta \beta'} \frac{\partial^2 F_0}{\partial t^{\alpha'} \partial t^{\beta'}} \]

Because we have

\[<dt^\alpha, dt^\beta> = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \]

and

\[(F_{\alpha \beta}) = \begin{pmatrix} t^S & t^R & t^Q & t^P \\ t^R & f'_0(t^Q) & t^P & 0 \\ t^Q & t^P & 0 & 0 \\ t^P & 0 & 0 & 0 \end{pmatrix}, \]

so explicitly we have:

\[(F^{\alpha \beta}) = \begin{pmatrix} 0 & 0 & 0 & t^P \\ 0 & 0 & t^P & t^Q \\ 0 & t^P & f'_0(t^Q) & t^R \\ t^P & t^Q & t^R & t^S \end{pmatrix}. \]

7.2. Flat pencil of metrics. Now we have:

\[(dt^\alpha, dt^\beta) - \lambda <dt^\alpha, dt^\beta> = \begin{pmatrix} 0 & 0 & 0 & t^P - \lambda \\ 0 & 0 & t^P - \lambda & 0 \\ 0 & t^P - \lambda & 0 & -t^R \\ t^P - \lambda & 0 & -t^R & -2t^S \end{pmatrix} \]

So the discriminant locus is given by:

\[\Sigma_{\lambda} = \{ t^P = \lambda \}. \]

The inverse matrix

\[g_{\alpha \beta}(\lambda) = \frac{1}{(t^P - \lambda)^2} \begin{pmatrix} 2t^S & t^R & 0 & t^P - \lambda \\ t^R & 0 & t^P - \lambda & 0 \\ 0 & t^P - \lambda & 0 & 0 \\ t^P - \lambda & 0 & 0 & 0 \end{pmatrix} \]

defines a flat metric on \(M \setminus \Sigma_{\lambda} \). Using the formula for Christoffel symbols:

\[\Gamma^\alpha_{\beta \gamma}(\lambda) = \frac{1}{2} g^{\alpha \rho}(\lambda)(\partial_\beta g_{\gamma \rho}(\lambda) + \partial_\gamma g_{\beta \rho}(\lambda) - \partial_\rho g_{\beta \gamma}(\lambda)), \]

\[\Gamma^\alpha_{\beta \gamma}(\lambda) = \frac{1}{2} g^{\alpha \rho}(\lambda)(\partial_\beta g_{\gamma \rho}(\lambda) + \partial_\gamma g_{\beta \rho}(\lambda) - \partial_\rho g_{\beta \gamma}(\lambda)). \]
one can find the nonzero components of the Christoffel symbols of $g(\lambda)$ are:

$$
\begin{align*}
\Gamma^P_{PP}(\lambda) &= -\frac{2}{t^P - \lambda}, & \Gamma^Q_{PQ}(\lambda) &= \Gamma^Q_{QP}(\lambda) = -\frac{1}{t^P - \lambda}, \\
\Gamma^S_{PP}(\lambda) &= \frac{2t^S}{(t^P - \lambda)^2}, & \Gamma^S_{PQ}(\lambda) &= \Gamma^S_{QP}(\lambda) = \frac{t^R}{(t^P - \lambda)^2}, \\
\Gamma^S_{PS}(\lambda) &= \Gamma^S_{SP}(\lambda) = \frac{1}{t^P - \lambda}, & \Gamma^S_{QR}(\lambda) &= \Gamma^S_{RQ}(\lambda) = \frac{1}{t^P - \lambda}.
\end{align*}
$$

One can verify that

$$
(264) \quad \Gamma^\alpha_{\beta\gamma}(\lambda) = -g_{\beta\rho}(\lambda) \cdot \Gamma^\rho_{\gamma},
$$

where

$$
(\Gamma^\alpha_{\beta}) = \begin{pmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 2 & 0 & 0 & 0 \end{pmatrix}, \quad (\Gamma^\alpha_{\beta}) = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix},
$$

$$
(\Gamma^\alpha_{\beta}) = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \quad (\Gamma^\alpha_{\beta}) = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.
$$

One can also check that:

$$
(265) \quad \Gamma^\alpha_{\beta} = e^\alpha_{\gamma} R^\beta_{\gamma}\,.\,
$$

7.3. The periods. We now solve the system of equations:

$$
(266) \quad \partial_\alpha \partial_\beta x - \Gamma^\gamma_{\alpha\beta}(\lambda) \partial_\gamma x = 0.
$$

They are explicitly given by:

$$
\partial_P \begin{pmatrix} \partial_P x \\ \partial_Q x \\ \partial_R x \\ \partial_S x \end{pmatrix} = \begin{pmatrix} -\frac{2}{t^P - \lambda} & 0 & 0 & 0 \\ 0 & -\frac{1}{t^P - \lambda} & \frac{2t^S}{(t^P - \lambda)^2} & 0 \\ 0 & 0 & 0 & \frac{t^R}{(t^P - \lambda)^2} \\ 0 & 0 & 0 & \frac{1}{t^P - \lambda} \end{pmatrix} \cdot \begin{pmatrix} \partial_P x \\ \partial_Q x \\ \partial_R x \\ \partial_S x \end{pmatrix}
$$

$$
\partial_Q \begin{pmatrix} \partial_P x \\ \partial_Q x \\ \partial_R x \\ \partial_S x \end{pmatrix} = \begin{pmatrix} 0 & -\frac{1}{t^P - \lambda} & 0 & 0 \\ 0 & 0 & 0 & \frac{t^R}{(t^P - \lambda)^2} \\ 0 & 0 & 0 & \frac{1}{t^P - \lambda} \\ 0 & 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} \partial_P x \\ \partial_Q x \\ \partial_R x \\ \partial_S x \end{pmatrix}
$$
\[
\frac{\partial}{\partial R} \left(\begin{array}{c}
\frac{\partial P}{\partial x} \\
\frac{\partial Q}{\partial x} \\
\frac{\partial R}{\partial x} \\
\frac{\partial S}{\partial x}
\end{array} \right) = \left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{t^P - \lambda} & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array} \right) \cdot \left(\begin{array}{c}
\frac{\partial P}{\partial x} \\
\frac{\partial Q}{\partial x} \\
\frac{\partial R}{\partial x} \\
\frac{\partial S}{\partial x}
\end{array} \right)
\]

\[
\frac{\partial}{\partial S} \left(\begin{array}{c}
\frac{\partial P}{\partial x} \\
\frac{\partial Q}{\partial x} \\
\frac{\partial R}{\partial x} \\
\frac{\partial S}{\partial x}
\end{array} \right) = \left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{t^P - \lambda} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array} \right) \cdot \left(\begin{array}{c}
\frac{\partial P}{\partial x} \\
\frac{\partial Q}{\partial x} \\
\frac{\partial R}{\partial x} \\
\frac{\partial S}{\partial x}
\end{array} \right)
\]

The equations for \(\frac{\partial}{\partial S} \) are

\[\frac{\partial P}{\partial (\partial S)} = \frac{1}{t^P - \lambda} \partial S, \quad \frac{\partial Q}{\partial (\partial S)} = \partial_R (\partial S) = \partial_S (\partial S) = 0,\]

so we get:

\[\partial S = C_1 \cdot (t^P - \lambda).\]

The equations for \(\frac{\partial}{\partial R} \) are

\[\frac{\partial Q}{\partial (\partial R)} = \frac{1}{t^P - \lambda} \partial S = C_1, \quad \frac{\partial P}{\partial (\partial R)} = \partial_R (\partial R) = \partial_S (\partial R) = 0,\]

so we get:

\[(267) \quad \partial R = C_1 \cdot t^Q + C_2.\]

The equations for \(\frac{\partial}{\partial Q} \) are

\[\frac{\partial P}{\partial (\partial Q)} = -\frac{1}{t^P - \lambda} \partial Q + \frac{t^R}{(t^P - \lambda)^2} \partial S = -\frac{1}{t^P - \lambda} \partial Q + C_1 \frac{t^R}{t^P - \lambda}, \quad \frac{\partial Q}{\partial (\partial Q)} = 0, \quad \frac{\partial R}{\partial (\partial Q)} = \frac{1}{t^P - \lambda} \partial S = C_1, \quad \frac{\partial S}{\partial (\partial Q)} = 0,\]

so we get:

\[(268) \quad \partial Q = C_1 t^R + \frac{C_3}{t^P - \lambda}.\]
The equations for \(\partial_P x \) are
\[
\partial_P (\partial_P x) = -\frac{2}{t^P - \lambda} \partial_P x + \frac{2t^S}{(t^P - \lambda)^2} \partial_S x = -\frac{2}{t^P - \lambda} \partial_P x + C_1 \frac{2t^S}{t^P - \lambda},
\]
\[
\partial_Q (\partial_P x) = -\frac{1}{t^P - \lambda} \partial_Q x + \frac{t^R}{(t^P - \lambda)^2} \partial_S x = -\frac{C_3}{(t^P - \lambda)^2},
\]
\[
\partial_R (\partial_P x) = 0,
\]
\[
\partial_S (\partial_P x) = \frac{1}{t^P - \lambda} \partial_S x = C_1,
\]
so we get:
\[
\partial_P x = C_1 t^S - C_3 \frac{t^Q}{(t^P - \lambda)^2} - C_4 \frac{1}{(t^P - \lambda)^2}.
\]
Therefore,
\[
x = C_0 + C_1 ((t^P - \lambda) t^S + t^Q t^R) + C_2 t^R + C_3 \frac{t^Q}{t^P - \lambda} + C_4 \frac{1}{t^P - \lambda}.
\]
From this we get the following

Proposition 7.1. For the quintic we can take the following system of dual flat coordinates for the flat pencil:

\[
p^4 = (t^P - \lambda) t^S + t^Q t^R, p^3 = t^R, p^2 = \frac{t^Q}{t^P - \lambda}, p^1 = \frac{1}{t^P - \lambda},
\]

Note
\[
\text{deg } p^i(\lambda) = -1
\]
if we set
\[
\text{deg } t^P = \text{deg } \lambda = 1, \text{deg } t^Q = 0, \text{deg } t^R = -1, \text{deg } t^S = -2.
\]

7.4. The free energy in the dual flat coordinates. From (271) we get:

\[
t^P - \lambda = \frac{1}{p^1}, t^Q = \frac{p^2}{p_1}, t^R = p^3, t^S = p^1 p^4 - p^2 p^3.
\]

Recall that for the quintic the free energy in genus zero has the following form:
\[
F_0 = \frac{1}{2} (t^P)^2 t^S + t^P t^Q t^R + \frac{5}{6} (t^Q)^3 + \sum_{m=1}^{\infty} N_m e^{m t^Q} q^m
\]
\[
= \frac{1}{2} (t^P)^2 t^S + t^P t^Q t^R + \frac{5}{2} \left(\frac{\omega_1 \omega_2}{\omega_0^2} - \frac{\omega_3}{\omega_0} \right).
\]
Therefore, taking $\lambda = 0$ we have:

$$F_0 = \frac{1}{2} \frac{p^1 p^4 - p^2 p^3}{(p^1)^2} + \frac{p^2 p^3}{(p^1)^2} + \frac{5}{2} \left(\frac{\omega_1 \omega_2}{\omega_0^2} - \frac{\omega_3}{\omega_0} \right)$$

$$= \frac{1}{2} \frac{1}{(p^1 \omega_0)^2} ((p^1 \omega_0)(p^4 \omega_0 - 5p^1 \omega_3) + \frac{1}{2}(p^2 \omega_0)(p^3 \omega_0 + 5p^1 \omega_2)),$$

where in the second equality we have used the equality

(276) \[p^1 \omega_1 = p^2 \omega_0 \]

derived from

(277) \[t^Q = \frac{p^2}{p^1} = \frac{\omega_1(t)}{\omega_0(t)}. \]

Therefore, if we set

- $\dot{p}^1 = p^1 \omega_0$,
- $\dot{p}^2 = p^2 \omega_0 = p^1 \omega_1$,
- $\dot{p}^3 = p^3 \omega_0 + 5p^1 \omega_2$,
- $\dot{p}^4 = p^4 \omega_0 - 5p^1 \omega_3$,

then

(278) \[F_0 = \frac{1}{2} \frac{\dot{p}^1 \dot{p}^4 + \dot{p}^2 \dot{p}^3}{(\dot{p}^1)^2}. \]

7.5. The metric G^{ij}. A constant symmetric nondegenerate matrix (G_{ij}) is defined by

(279) \[G_{ij} = \frac{\partial p^i}{\partial t^\alpha} g_{\alpha \beta} \frac{\partial p^j}{\partial t^\beta}. \]

From

$$\begin{pmatrix} 0 & 0 & 0 & t^P \\ 0 & t^P & 0 & 0 \\ 0 & 0 & -t^R & -t^S \\ t^P & 0 & -t^R & -2t^S \end{pmatrix}$$

a computation gives us:

(280) \[(dp^i, dp^j) = \begin{pmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix}. \]
7.6. The almost dual quantum multiplication. The quantum multiplication by the Euler vector field is given by:

\[
E \circ \begin{pmatrix}
\frac{\partial}{\partial t^P} \\
\frac{\partial}{\partial t^Q} \\
\frac{\partial}{\partial t^R} \\
\frac{\partial}{\partial t^S}
\end{pmatrix} = \begin{pmatrix}
t^P & 0 & -t^R & -2t^S \\
0 & t^P & 0 & -t^R \\
0 & 0 & t^P & 0 \\
0 & 0 & 0 & t^P
\end{pmatrix} \cdot \begin{pmatrix}
\frac{\partial}{\partial t^P} \\
\frac{\partial}{\partial t^Q} \\
\frac{\partial}{\partial t^R} \\
\frac{\partial}{\partial t^S}
\end{pmatrix}
\]

\[
(281)
\]

\[
U = \begin{pmatrix}
t^P & 0 & -t^R & -2t^S \\
0 & t^P & 0 & -t^R \\
0 & 0 & t^P & 0 \\
0 & 0 & 0 & t^P
\end{pmatrix}
\]

\[
(282)
\]

The inverse of \(E \) can be found in the following fashion: Let \(E^{-1} = A \frac{\partial}{\partial t^P} + B \frac{\partial}{\partial t^Q} + C \frac{\partial}{\partial t^R} + D \frac{\partial}{\partial t^S} \). Recall that \(E = t^P \frac{\partial}{\partial t^P} - t^R \frac{\partial}{\partial t^R} - 2t^S \frac{\partial}{\partial t^S} \).

\[
\begin{align*}
&\left(t^P \frac{\partial}{\partial t^P} - t^R \frac{\partial}{\partial t^R} - 2t^S \frac{\partial}{\partial t^S}\right) \cdot \left(A \frac{\partial}{\partial t^P} + B \frac{\partial}{\partial t^Q} + C \frac{\partial}{\partial t^R} + D \frac{\partial}{\partial t^S}\right) \\
&= At^P \frac{\partial}{\partial t^P} + Bt^P \frac{\partial}{\partial t^Q} + Ct^P \frac{\partial}{\partial t^R} + Dt^P \frac{\partial}{\partial t^S} - At^R \frac{\partial}{\partial t^R} - Bt^R \frac{\partial}{\partial t^S} - 2At^S \frac{\partial}{\partial t^S},
\end{align*}
\]

and so \(A = \frac{1}{t^P} \), \(B = 0 \), \(C = \frac{t^R}{(t^P)^2} \), \(D = \frac{2t^S}{(t^P)^2} \), i.e.,

\[
(283) \quad E^{-1} = \frac{1}{t^P} \frac{\partial}{\partial t^P} + \frac{t^R}{(t^P)^2} \frac{\partial}{\partial t^R} + \frac{2t^S}{(t^P)^2} \frac{\partial}{\partial t^S}.
\]

So we get the following explicit formula for dual multiplications:

\[
\frac{\partial}{\partial t^P} \star \begin{pmatrix}
\frac{\partial}{\partial t^P} \\
\frac{\partial}{\partial t^Q} \\
\frac{\partial}{\partial t^R} \\
\frac{\partial}{\partial t^S}
\end{pmatrix} = E^{-1} \circ \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix} \cdot \begin{pmatrix}
\frac{\partial}{\partial t^P} \\
\frac{\partial}{\partial t^Q} \\
\frac{\partial}{\partial t^R} \\
\frac{\partial}{\partial t^S}
\end{pmatrix}
\]

\[
= \begin{pmatrix}
1 & 0 & 1 & 2 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix} \cdot \begin{pmatrix}
\frac{\partial}{\partial t^P} \\
\frac{\partial}{\partial t^Q} \\
\frac{\partial}{\partial t^R} \\
\frac{\partial}{\partial t^S}
\end{pmatrix},
\]
\[
\frac{\partial}{\partial t^Q} \left(\frac{\partial^2 F_*}{\partial p^a \partial p^b} \right) = d (\partial p^a \circ \partial p^b) = \left(\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{array} \right) \cdot \left(\begin{array}{c} \frac{\partial}{\partial t^P} \\ \frac{\partial}{\partial t^Q} \\ \frac{\partial}{\partial t^R} \\ \frac{\partial}{\partial t^S} \end{array} \right)
\]

7.7. The almost dual potential function. We use
\[(284) \quad d (\partial^2 F_* / \partial p^a \partial p^b) = dp_a \circ dp_b\]
to compute F_*. First note:
\[
\begin{align*}
dp^1 &= -\frac{dt^P}{(t^P)^2}, & dp^2 &= -\frac{t^Q dt^P}{(t^P)^2} + \frac{dt^Q}{t^P}, \\
dp^3 &= dt^R, & dp^4 &= t^S dt^P + t^R dt^Q + t^Q dt^R + t^P dt^S. \\
dt^P &= -\frac{dp^1}{(p^1)^2}, & dt^Q &= -\frac{p^2 dp^1}{(p^1)^2} + \frac{dp^2}{p^1}, \\
dt^R &= dp^3, & dt^S &= p^3 dp^1 - p^3 dp^2 - p^2 dp^3 + p^1 dp^4.
\end{align*}
\]
So we get:

\[
\begin{pmatrix}
dp^1 \\
dp^2 \\
dp^3 \\
dp^4
\end{pmatrix}
\circ
\begin{pmatrix}
dp^1 \\
dp^2 \\
dp^3 \\
dp^4
\end{pmatrix}
=
\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\frac{-1}{p^2} & 0 & 0 & 0
\end{pmatrix}

\cdot
\begin{pmatrix}
dt^P \\
dt^Q \\
dt^R \\
dt^S
\end{pmatrix}
\]

\[
=
\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\frac{1}{p^2} & 0 & 0 & 0
\end{pmatrix}

\cdot
\begin{pmatrix}
dp^1 \\
dp^2 \\
dp^3 \\
dp^4
\end{pmatrix}
,\]

therefore,

\[
\frac{\partial^2 F_\ast}{\partial p^4 \partial p^4} = \frac{\partial^2 F_\ast}{\partial p^4 \partial p^3} = \frac{\partial^2 F_\ast}{\partial p^4 \partial p^2} = 0, \quad \frac{\partial^2 F_\ast}{\partial p^4 \partial p^1} = \log(p^1).
\]

Similarly,

\[
\begin{pmatrix}
dp^1 \\
dp^2 \\
dp^3 \\
dp^4
\end{pmatrix}
\circ
\begin{pmatrix}
dp^1 \\
dp^2 \\
dp^3 \\
dp^4
\end{pmatrix}
=
\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\frac{1}{p^2} & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{pmatrix}

\cdot
\begin{pmatrix}
dt^P \\
dt^Q \\
dt^R \\
dt^S
\end{pmatrix}
\]

\[
=
\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\frac{-1}{p^2} & 0 & 0 & 0 \\
\frac{-1}{p^2} & \frac{1}{p^2} & 0 & 0
\end{pmatrix}

\cdot
\begin{pmatrix}
dp^1 \\
dp^2 \\
dp^3 \\
dp^4
\end{pmatrix}
,\]

so we get:

\[
\frac{\partial^2 F_\ast}{\partial p^4 \partial p^4} = \frac{\partial^2 F_\ast}{\partial p^4 \partial p^3} = 0, \quad \frac{\partial^2 F_\ast}{\partial p^4 \partial p^2} = -\log(p^1), \quad \frac{\partial^2 F_\ast}{\partial p^4 \partial p^1} = -\frac{p^2}{p^1}.
\]

From

\[
\begin{pmatrix}
dp^1 \\
dp^2 \\
dp^3 \\
dp^4
\end{pmatrix}
\circ
\begin{pmatrix}
dp^1 \\
dp^2 \\
dp^3 \\
dp^4
\end{pmatrix}
=
\begin{pmatrix}
0 & 0 & 0 & 0 \\
\frac{1}{p^2} & 0 & 0 & 0 \\
0 & f''(t^Q) & 0 & 0 \\
t^R & t^Qf''(t^Q) & t^P & 0
\end{pmatrix}

\cdot
\begin{pmatrix}
dt^P \\
dt^Q \\
dt^R \\
dt^S
\end{pmatrix}
,\]
we know that
\[dp_2 \cdot dp_4 = 0, \]
\[dp_2 \cdot dp_3 = \frac{dt}{t^P} = d \log t^P = -d \log p^1, \]
\[dp_2 \cdot dp_2 = f''_0(t^Q) dt^Q = df''(t^Q) = df''_0\left(\frac{p^2}{p^1} \right), \]
\[dp_2 \cdot dp_1 = t^R dt^P + t^Q f''_0(t^Q) dt^Q + t^P dt^R = d(t^P t^R + t^Q f''_0(t^Q) - f'_0(t^Q)) \]
\[= d\left(\frac{p^3}{p^1} + \frac{p^2}{p^1} f''_0\left(\frac{p^2}{p^1} \right) - f'_0\left(\frac{p^2}{p^1} \right) \right). \]
so we get:
\[
\begin{align*}
\frac{\partial^2 F_*}{\partial p^2 \partial p^4} &= 0, \\
\frac{\partial^2 F_*}{\partial p^2 \partial p^3} &= -\log p^1, \\
\frac{\partial^2 F_*}{\partial p^2 \partial p^2} &= f''(\frac{p^2}{p^1}), \\
\frac{\partial^2 F_*}{\partial p^2 \partial p^1} &= -\left(\frac{p^3}{p^1} + \frac{p^2}{p^1} f''_0\left(\frac{p^2}{p^1} \right) - f'_0\left(\frac{p^2}{p^1} \right) \right).
\end{align*}
\]
\[
\begin{pmatrix}
(dp_1^1) \\
(dp_2^2) \\
(dp_3^3) \\
(dp_4^4)
\end{pmatrix} =
\begin{pmatrix}
-\frac{1}{t^P} & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
2t^P t^S + 2t^Q t^R & t^Q f''_0(t^Q) & t^P & 0 \\
\end{pmatrix}
\begin{pmatrix}
dt^P \\
dt^Q \\
dt^R \\
dt^S
\end{pmatrix}.
\]
From this we know that
\[dp_1 \cdot dp_4 = -\frac{dt}{t^P} = -d \log t^P = d \log p^1, \]
\[dp_1 \cdot dp_3 = -dt^Q = -d\frac{p^2}{p^1}, \]
\[dp_1 \cdot dp_2 = -(t^R dt^P + t^Q f''_0(t^Q) dt^Q + t^P dt^R) \]
\[= -d(t^P t^R + t^Q f''_0(t^Q) - f'_0(t^Q)) \]
\[= -d\left(\frac{p^3}{p^1} + \frac{p^2}{p^1} f''_0\left(\frac{p^2}{p^1} \right) - f'_0\left(\frac{p^2}{p^1} \right) \right), \]
\[dp_1 \cdot dp_1 = (2t^P t^S + 2t^Q t^R) dt^P + (2t^P t^R + (t^Q)^2 f''_0(t^Q)) dt^Q \\
+ 2t^P t^Q dt^R + (t^P)^2 dt^S \]
\[= d\left((t^P)^2 t^S + 2t^P t^Q t^R + 2f_0(t^Q) - 2t^Q f'_0(t^Q) + (t^Q)^2 f''_0(t^Q) \right). \]
Note $2F_0$ appears on the right-hand side of the last equality. So we have:

\[
\frac{\partial^2 F_*}{\partial p^1 \partial p^4} = \log p^1, \\
\frac{\partial^2 F_*}{\partial p^1 \partial p^3} = \frac{p^2}{p^1}, \\
\frac{\partial^2 F_*}{\partial p^1 \partial p^2} = \frac{p^3}{p^1} + \frac{p^2}{p^1} f''_0(\frac{p^2}{p^1}) - f'_0(\frac{p^2}{p^1}), \\
\frac{\partial^2 F_*}{\partial p^1 \partial p^3} = (t^Q)^2 t^Q + 2t^P t^Q t^R + 2f_0(t^Q) - 2t^Q f'_0(t^Q) + (t^Q)^2 f''_0(t^Q) \\
\quad\quad\quad= \frac{p^1 p^4 + p^2 p^3}{(p^1)^2} + 2f(\frac{p^2}{p^1}) - 2\frac{p^2}{p^1} f'_0(\frac{p^2}{p^1}) + (\frac{p^2}{p^1})^2 f''_0(\frac{p^2}{p^1}).
\]

Proposition 7.2. For the quintic we have

\[
F_* = (p^1 p^4 - p^2 p^3) \log p^1 - p^1 p^4 + (p^1)^2 f_0(\frac{p^2}{p^1}).
\]

Note we can verify that

\[
\sum_a p^a \frac{\partial F_*}{\partial p^a} = 2F_* + \frac{1}{1 - d} \sum_{a,b} G_{ab} p^a p^b.
\]

Also note:

\[
E = \frac{\partial}{\partial t^P} - \frac{\partial}{\partial t^R} - 2 \frac{\partial}{\partial t^S} = -p^1 \frac{\partial}{\partial p^1} - p^2 \frac{\partial}{\partial p^2} - p^3 \frac{\partial}{\partial p^3} - p^4 \frac{\partial}{\partial p^4},
\]

\[
e = - (p^1)^2 \frac{\partial}{\partial p^1} - p^1 p^2 \frac{\partial}{\partial p^2}.
\]

7.8. The almost dual flat coordinates. The equations for the almost dual flat coordinates (also called the twisted periods) are:

\[
\partial_a \xi \cdot \mathcal{U} = \xi \cdot (\mathcal{V} + \nu - \frac{1}{2}) C_a.
\]
Explicitly we get:

\[
\partial_P(\partial_P x, \partial_Q x, \partial_R x, \partial_S x)
\]

\[
= (\partial_P x, \partial_Q x, \partial_R x, \partial_S x) \cdot \begin{pmatrix}
-2 + \nu & 0 & 0 & 0 \\
0 & -1 + \nu & 0 & 0 \\
0 & 0 & 0 + \nu & 0 \\
0 & 0 & 0 & 1 + \nu
\end{pmatrix}
\]

\[
\cdot \begin{pmatrix}
t^P & 0 & 0 & 0 \\
0 & t^P & 0 & 0 \\
t^R & 0 & t^P & 0 \\
2t^R & t^R & 0 & t^P
\end{pmatrix}
\]

\[
= (\partial_P x, \partial_Q x, \partial_R x, \partial_S x)
\]

\[
\cdot \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
f_0''(t^Q) & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{pmatrix}
\cdot \begin{pmatrix}
t^P & 0 & 0 & 0 \\
0 & t^P & 0 & 0 \\
t^R & 0 & t^P & 0 \\
2t^R & t^R & 0 & t^P
\end{pmatrix}
\]

\[
= (\partial_P x, \partial_Q x, \partial_R x, \partial_S x)
\]

\[
\cdot \begin{pmatrix}
(-2 + \nu)t^P & 0 & 0 & 0 \\
0 & (-1 + \nu)t^P & 0 & 0 \\
\nu t^R & 0 & \nu t^P & 0 \\
2(1 + \nu)t^R & (1 + \nu)t^R & 0 & (1 + \nu)t^P
\end{pmatrix}
\]
\[\partial_R(\partial_P x, \partial_Q x, \partial_R x, \partial_S x) \]
\[= (\partial_P x, \partial_Q x, \partial_R x, \partial_S x) \cdot \begin{pmatrix} -2 + \nu & 0 & 0 & 0 \\ 0 & -1 + \nu & 0 & 0 \\ 0 & 0 & 0 + \nu & 0 \\ 0 & 0 & 0 & 1 + \nu \end{pmatrix} \]
\[\cdot \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \cdot \frac{1}{(t^P)^2} \begin{pmatrix} t^P & 0 & 0 & 0 \\ 0 & t^P & 0 & 0 \\ t^R & 0 & t^P & 0 \\ 2t^S & t^R & 0 & t^P \end{pmatrix} \]
\[= (\partial_P x, \partial_Q x, \partial_R x, \partial_S x) \cdot \frac{1}{(t^P)^2} \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & (1 + \nu)t^P & 0 & 0 \end{pmatrix} \]

\[\partial_S(\partial_P x, \partial_Q x, \partial_R x, \partial_S x) \]
\[= (\partial_P x, \partial_Q x, \partial_R x, \partial_S x) \cdot \begin{pmatrix} -2 + \nu & 0 & 0 & 0 \\ 0 & -1 + \nu & 0 & 0 \\ 0 & 0 & 0 + \nu & 0 \\ 0 & 0 & 0 & 1 + \nu \end{pmatrix} \]
\[\cdot \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \cdot \frac{1}{(t^P)^2} \begin{pmatrix} t^P & 0 & 0 & 0 \\ 0 & t^P & 0 & 0 \\ t^R & 0 & t^P & 0 \\ 2t^S & t^R & 0 & t^P \end{pmatrix} \]
\[= (\partial_P x, \partial_Q x, \partial_R x, \partial_S x) \cdot \frac{1}{(t^P)^2} \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ (1 + \nu)t^P & 0 & 0 & 0 \end{pmatrix} \]

The equations for \(\partial_S x \) are
\[
\partial_P(\partial_S x) = \frac{1 + \nu}{t^P - \lambda} \partial_S x, \quad \partial_Q(\partial_S x) = \partial_R(\partial_S x) = \partial_S(\partial_S x) = 0,
\]
so we get:
\[\partial_S x = C_1 \cdot (t^P - \lambda)^{1+\nu}. \]

The equations for \(\partial_R x \) are
\[
\partial_P(\partial_R x) = \frac{\nu}{t^P - \lambda} \partial_R x, \\
\partial_Q(\partial_R x) = \frac{1 + \nu}{t^P - \lambda} \partial_S x = C_1 \cdot (1 + \nu)(t^P - \lambda)^{\nu}, \\
\partial_R(\partial_R x) = \partial_S(\partial_R x) = 0,
\]
so we get:

\[
\partial_R x = C_1 \cdot t^Q \cdot (1 + \nu)(t^P - \lambda)^\nu + C_2(t^P - \lambda)^\nu.
\]

The equations for \(\partial_Q x\) are

\[
\begin{align*}
\partial_P(\partial_Q x) &= \frac{(-1 + \nu)}{t^P - \lambda} \partial_Q x + \frac{(1 + \nu)t^R}{(t^P - \lambda)^2} \partial_S x \\
&= \frac{(-1 + \nu)}{t^P - \lambda} \partial_Q x + C_1(1 + \nu)t^R(t^P - \lambda)^{\nu - 1}, \\
\partial_Q(\partial_Q x) &= \frac{\nu}{t^P - \lambda} f_0''(t^Q) \partial_R x \\
&= \frac{\nu}{t^P - \lambda} f_0''(t^Q) \cdot (C_1 \cdot t^Q \cdot (1 + \nu)(t^P - \lambda)^\nu + C_2(t^P - \lambda)^\nu), \\
\partial_R(\partial_Q x) &= \frac{1 + \nu}{t^P - \lambda} \partial_S x = C_1 \cdot (1 + \nu)(t^P - \lambda)^\nu, \\
\partial_S(\partial_Q x) &= 0,
\end{align*}
\]

so we get:

\[
\partial_Q x = C_1 \cdot (1 + \nu) \left(t^R(t^P - \lambda)^\nu + \nu(t^P - \lambda)^{\nu - 1}(t^Q f_0''(t^Q) - f_0'(t^Q)) \right) \\
+ C_2\nu(t^P - \lambda)^{\nu - 1} f_0''(t^Q) + C_3(t^P - \lambda)^{\nu - 1}.
\]
The equations for $\partial_p x$ are

$$\partial_p(\partial_p x) = \frac{-2 + \nu}{t^p - \lambda} \partial_p x + \frac{2(1 + \nu)t^s}{(t^p - \lambda)^2} \partial_s x$$

$$= \frac{(-2 + \nu)}{t^p - \lambda} \partial_p x + C_1 \cdot 2(1 + \nu) t^s (t^p - \lambda)^{\nu - 1},$$

$$\partial_Q(\partial_p x) = \frac{-1 + \nu}{t^p - \lambda} \partial_Q x + \frac{(1 + \nu) t^R}{(t^p - \lambda)^2} \partial_s x$$

$$= \frac{\nu - 1}{t^p - \lambda} \left(C_1 \cdot (1 + \nu) \left(t^R (t^p - \lambda)^{\nu - 1} + \nu (t^p - \lambda)^{\nu - 1} \right) \right)$$

$$+ C_2 \cdot \nu (t^p - \lambda)^{\nu - 1} f''_1(t^Q) + C_3 \cdot (t^p - \lambda)^{\nu - 1} \right) + C_1 \cdot (\nu + 1) t^R (t^p - \lambda)^{\nu - 1}$$

$$= C_1 \left((\nu + 1) \nu t^R (t^p - \lambda)^{\nu - 1} + (\nu + 1) \nu (\nu - 1) (t^p - \lambda)^{\nu - 2} (t^Q f''_1(t^Q) - f'_1(t^Q)) \right)$$

$$+ C_2 \cdot \nu (\nu - 1) (t^p - \lambda)^{\nu - 2} f''_0(t^Q) + C_3 \cdot (\nu - 1) (t^p - \lambda)^{\nu - 2},$$

$$\partial_R(\partial_p x) = \frac{\nu}{t^p - \lambda} \partial_R x$$

$$= C_1 \cdot t^Q \cdot (1 + \nu) \nu (t^p - \lambda)^{\nu - 1} + C_2 \cdot \nu (t^p - \lambda)^{\nu - 1},$$

$$\partial_S(\partial_p x) = \frac{1 + \nu}{t^p - \lambda} \partial_S x = C_1 \cdot (\nu + 1) (t^p - \lambda)^{\nu},$$

so we get:

$$\partial_p x = C_1 \cdot \left(t^S \cdot (\nu + 1) (t^p - \lambda)^{\nu} + (\nu + 1) \nu (t^p - \lambda)^{\nu - 1} t^Q t^R \right.$$

$$\left. + (\nu + 1) \nu (\nu - 1) (t^p - \lambda)^{\nu - 2} (t^Q f''_1(t^Q) - f'_1(t^Q)) \right)$$

$$+ C_2 \cdot \nu (\nu - 1) (t^p - \lambda)^{\nu - 2} f''_0(t^Q)$$

$$+ C_3 \cdot (\nu - 1) (t^p - \lambda)^{\nu - 2} t^Q + C_4 \cdot (\nu - 1) (t^p - \lambda)^{\nu - 2}.$$
Proposition 7.3. For the quintic one can take the following deformed dual flat coordinates:

\[
p^4(\nu) = (t^P - \lambda)^{\nu+1} t^S + (\nu + 1)(t^P - \lambda)^{\nu} t^Q + t^R
\]

\[
+ (\nu + 1)\nu (t^P - \lambda)^{\nu-1} (t^Q f'_0(t^Q) - f_0(t^Q)),
\]

(297)

\[
p^3(\nu) = t^R (t^P - \lambda)^{\nu} + \nu(t^P - \lambda)^{\nu-1} f'_0(t^Q),
\]

\[
p^2(\nu) = (t^P - \lambda)^{\nu} t^Q
\]

\[
p^1(\nu) = (t^P - \lambda)^{\nu-1}.
\]

Note the following property of the deformed dual flat coordinates:

\[
\frac{\partial p^1(\nu)}{\partial t^P} = (\nu - 1) \cdot p^1(\nu - 1),
\]

\[
\frac{\partial p^2(\nu)}{\partial t^P} = (\nu - 1) \cdot p^2(\nu - 1),
\]

(298)

\[
\frac{\partial p^3(\nu)}{\partial t^P} = \nu \cdot p^3(\nu - 1),
\]

\[
\frac{\partial p^4(\nu)}{\partial t^P} = (\nu + 1) \cdot p^1(\nu - 1).
\]

The inverse map of (297) is given by:

\[
t^P - \lambda = (p^1(\nu))^{1/(\nu-1)},
\]

\[
t^Q = \frac{p^2(\nu)}{p^1(\nu)},
\]

(299)

\[
t^R = \frac{p^3(\nu) - \nu p^1(\nu) f'_0(p^2(\nu)/p^1(\nu))}{(p^1(\nu))^{\nu/(\nu-1)}},
\]

\[
t^S = (p^1)^{-(\nu+1)/(\nu-1)} \left(p^4 - (\nu + 1)(p^1)^{\nu/(\nu-1)} \cdot \frac{p^2}{p^1} \cdot \frac{p^3 - \nu p^1 f'(p^2/p^1)}{(p^1)^{\nu/(\nu-1)}} + (\nu + 1)\nu p^1 \left(\frac{p^2}{p^1} f'_0(p^2/p^1) - f_0(p^2/p^1) \right) \right)
\]

\[
= (p^1)^{-(\nu+1)/(\nu-1)} \left(p^4 - (\nu + 1) \cdot \frac{p^2}{p^1} \cdot \frac{p^3}{p^1} - (\nu + 1)\nu p^1 f_0(p^2/p^1) \right).
\]

According to Dubrovin [10, Proposition 5.11], if one set \(f = (-1 - \nu) t^S \). Then the intersection form is given by the Hessian of \(f \):

\[
(300) \quad \left(\frac{\partial}{\partial p^i} , \frac{\partial}{\partial p^j} \right) = \frac{\partial^2 f}{\partial p^i \partial p^j}.
\]
7.9. Deformed dual flat coordinates as Laplace transform of the deformed flat coordinates. As observed by Givental [22], the deformed flat coordinates are given by the genus zero one-point functions on the small phase space. For the quintic, such functions have been computed in §4.4 and have been verify to satisfy the quantum differential equations in §4.10.

Using notations of §6.2, we can rewrite the results in §4.4 as follows:

\[x^P(z) = t^P + \sum_{n \geq 0} z^{n+1} \langle \tau_n(S) \rangle_0 = e^{t^Pz} - \frac{1}{z}, \]
\[x^Q(z) = t^Q + \sum_{n \geq 0} z^{n+1} \langle \tau_n(R) \rangle_0 = e^{t^Pz}t^Q, \]
\[x^R(z) = t^R + \sum_{n=0}^{\infty} z^{n+1} \langle \tau_n(Q) \rangle_0 = e^{t^Pz}t^R + ze^{t^Pz}f'_0(t^Q), \]
\[x^S(z) = t^S + \sum_{n \geq 0} z^{n+1} \langle \tau_n(P) \rangle_0 = e^{t^Pz}t^S + ze^{t^Pz}t^Q + z^2 e^{t^Pz}(t^Qf'_0(t^Q) - f_0(t^Q)). \]

Proposition 7.4. For the quintic, the deformed dual flat coordinates are given by the Laplace transform of the deformed flat coordinates. More precisely,

\begin{align*}
(301) \quad p^1(\nu) &= \frac{(-1)^{1-\nu}}{\Gamma(1-\nu)} \int_0^\infty e^{-\lambda z} \cdot z^{1-\nu} (x^P(z) + \frac{1}{z}) \, dz, \\
(302) \quad p^2(\nu) &= \frac{(-1)^{1-\nu}}{\Gamma(1-\nu)} \int_0^\infty e^{-\lambda z} \cdot z^{0-\nu} x^Q(z) \, dz, \\
(303) \quad p^3(\nu) &= \frac{(-1)^{-\nu}}{\Gamma(-\nu)} \int_0^\infty e^{-\lambda z} \cdot z^{-1-\nu} x^R(z) \, dz, \\
(304) \quad p^4(\nu) &= \frac{(-1)^{-1-\nu}}{\Gamma(-1-\nu)} \int_0^\infty e^{-\lambda z} \cdot z^{-2-\nu} x^S(z) \, dz.
\end{align*}
Proof. By the definition of the Gamma-function we have:

\[\int_0^\infty e^{-\lambda z} \cdot z^{1-\nu} (x^P(z) + \frac{1}{z}) dz = \int_0^\infty e^{-\lambda z} \cdot z^{1-\nu} e^{t^P z} \frac{dz}{z} = (\lambda - t^P)^{\mu-1} \int_0^\infty e^{-z} \cdot z^{(1-\nu)-1} dz = \Gamma(1-\nu) \cdot (\lambda - t^P)^{\nu-1}.\]

This proves (301). The other three identities are proved in the same fashion. □

8. Emergent Kähler Geometry on the Small Phase Space of the Quintic

We now present the special geometry on the small phase space of the quintic.

8.1. The flat sections for the Dubrovin connection. By the results in §4.9 and §4.10, we know that the following are flat sections for the Dubrovin connection:

\[s_S = e^{-t^P} \frac{\partial}{\partial t^S},\]

\[s_R = e^{-t^P} \left(\frac{\partial}{\partial t^R} - t^Q \frac{\partial}{\partial t^S} \right),\]

\[s_Q = e^{-t^P} \left[\frac{\partial}{\partial t^Q} - \frac{\partial^2 f_0(t^Q)}{\partial (t^Q)^2} \frac{\partial}{\partial t^R} + \left(\frac{\partial f_0(t^Q)}{\partial t^Q} - t^R \right) \frac{\partial}{\partial t^S} \right],\]

\[s_P = e^{-t^P} \left[\frac{\partial}{\partial t^P} - t^Q \frac{\partial}{\partial t^Q} + \left(t^Q \frac{\partial^2 f_0(t^Q)}{\partial (t^Q)^2} - \frac{\partial f_0(t^Q)}{\partial t^Q} - t^R \right) \frac{\partial}{\partial t^R} - \left(t^Q \frac{\partial f_0(t^Q)}{\partial t^Q} - 2f_0(t^Q) + t^S - t^Q t^R \right) \frac{\partial}{\partial t^S} \right].\]

They are given by the formulas for \(S_{\alpha,\beta}(z)\). For example,

\[s_P = S_{S,P}(-1) \frac{\partial}{\partial t^P} + S_{R,P}(-1) \frac{\partial}{\partial t^Q} + S_{Q,P}(-1) \frac{\partial}{\partial t^R} + S_{P,P}(-1) \frac{\partial}{\partial t^S}.\]

8.2. The complex symplectic structure. We introduce a complex symplectic structure such that:

\[\Omega(s_P, s_S) = -\Omega(s_S, s_P) = -\Omega(s_Q, s_P) = \Omega(s_R, s_Q) = 1,\]
and all other \(\omega(s_\alpha, s_\beta) = 0 \). Because we have:

\[
\begin{align*}
\frac{\partial}{\partial t^S} &= e^{t^P} s_S, \\
\frac{\partial}{\partial t^R} &= e^{t^P} \left[s_R + t^Q s_S \right], \\
\frac{\partial}{\partial t^Q} &= e^{t^P} \left[s_Q + \frac{\partial^2 f_0(t^Q)}{\partial (t^Q)^2} s_R + \left(t^Q \frac{\partial^2 f_0(t^Q)}{\partial t^Q \partial t^R} - \frac{\partial f_0(t^Q)}{\partial t^Q} + t^R \right) s_S \right], \\
\frac{\partial}{\partial t^P} &= e^{t^P} \left[s_P + t^Q s_Q + \left(\frac{\partial f_0(t^Q)}{\partial t^Q} + t^R \right) s_R \\
&\quad + \left(t^Q \frac{\partial f_0(t^Q)}{\partial t^Q} - 2 f_0(t^Q) + t^S + t^Q t^R \right) s_S \right],
\end{align*}
\]

we get:

\[
\begin{align*}
\Omega(\frac{\partial}{\partial t^P}, \frac{\partial}{\partial t^Q}) &= 2e^{2t^P} t^R, \\
\Omega(\frac{\partial}{\partial t^P}, \frac{\partial}{\partial t^R}) &= 0, \\
\Omega(\frac{\partial}{\partial t^P}, \frac{\partial}{\partial t^S}) &= e^{2t^P}, \\
\Omega(\frac{\partial}{\partial t^Q}, \frac{\partial}{\partial t^R}) &= -e^{2t^P}, \\
\Omega(\frac{\partial}{\partial t^Q}, \frac{\partial}{\partial t^S}) &= 0, \\
\Omega(\frac{\partial}{\partial t^R}, \frac{\partial}{\partial t^S}) &= 0.
\end{align*}
\]

Therefore, in the flat coordinates \(t^P, t^Q, t^R, t^S \) on the small phase space of the quintic, we have:

\[
\begin{align*}
(306) \quad \Omega &= 2e^{2t^P} t^R dt^P \wedge dt^Q + e^{2t^P} dt^P \wedge dt^S - e^{2t^P} dt^Q \wedge dt^R.
\end{align*}
\]

It is clear that

\[
(307) \quad d\Omega = 0.
\]

I.e., \(\Omega \) is a holomorphic symplectic structure on the small phase space. Note we can find Darboux coordinates for this symplectic structure:

\[
(308) \quad \Omega = d(e^{t^P} t^R) \wedge d(e^{t^P} t^Q) + d(e^{t^P}) \wedge d(e^{t^P} t^S).
\]

Remark 8.1. When \(t^P = t^R = t^S = 0 \), we have

\[
(309) \quad \frac{\partial}{\partial t^P} = s_P + t^Q s_Q + \frac{\partial f_0(t^Q)}{\partial t^Q} s_R + \left(t^Q \frac{\partial f_0(t^Q)}{\partial t^Q} - 2 f_0(t^Q) \right) s_S.
\]
The coefficients on the right-hand side are

\[(1, t^Q, f'_0(t^Q), t^Q f'_0(t^Q) - 2f_0(t^Q)).\]

These also appear in (98) which describe the special geometry of the four periods of the Picard-Fuchs equation of the quintic.

8.3. **The real structure.** We define a real structure \(\tau\) on the small phase of the quintic by requiring:

\[(310) \quad \tau(s_\alpha) = s_\alpha, \quad \alpha = P, Q, R, S.\]
The action of τ on the basis $\frac{\partial}{\partial \alpha}$ is computed as follows:

\[
\begin{align*}
\frac{\partial}{\partial t^S} & \mapsto s_S = \frac{\partial}{\partial t^S}, \\
\frac{\partial}{\partial t^R} & \mapsto s_Q + iQ s_S = \frac{\partial}{\partial t^R} + \left(\frac{\partial^2 f_0(t^Q)}{\partial (t^Q)^2} - \frac{\partial f_0(t^Q)}{\partial t^Q} \right) \frac{\partial}{\partial t^S}, \\
\frac{\partial}{\partial t^Q} & \mapsto s_Q + \frac{\partial^2 f_0(t^Q)}{\partial (t^Q)^2} s_Q + \left(iQ \frac{\partial^2 f_0(t^Q)}{\partial (t^Q)^2} - \frac{\partial f_0(t^Q)}{\partial t^Q} \right) s_S \\
& = \frac{\partial}{\partial t^Q} + \left(\frac{\partial^2 f_0(t^Q)}{\partial (t^Q)^2} - \frac{\partial f_0(t^Q)}{\partial t^Q} \right) \frac{\partial}{\partial t^S}, \\
\frac{\partial}{\partial t^P} & \mapsto s_P + iQ s_Q + \frac{\partial f_0(t^Q)}{\partial t^Q} s_R + \left(iQ \frac{\partial f_0(t^Q)}{\partial t^Q} - 2f_0(t^Q) \right) s_S \\
& = \frac{\partial}{\partial t^P} - t^Q \frac{\partial}{\partial t^Q} + \left(t^Q \frac{\partial^2 f_0(t^Q)}{\partial (t^Q)^2} - \frac{\partial f_0(t^Q)}{\partial t^Q} \right) \frac{\partial}{\partial t^R} \\
& - \left(t^Q \frac{\partial f_0(t^Q)}{\partial t^Q} - 2f_0(t^Q) \right) \frac{\partial}{\partial t^S}, \\
& + t^Q \left(\frac{\partial}{\partial t^Q} - \frac{\partial^2 f_0(t^Q)}{\partial (t^Q)^2} \frac{\partial}{\partial t^R} + \frac{\partial f_0(t^Q)}{\partial t^Q} \frac{\partial}{\partial t^S} \right) \\
& + \frac{\partial f_0(t^Q)}{\partial t^Q} \left(\frac{\partial}{\partial t^R} - t^Q \frac{\partial}{\partial t^S} \right) + \left(t^Q \frac{\partial f_0(t^Q)}{\partial t^Q} - 2f_0(t^Q) \right) \frac{\partial}{\partial t^S} \\
& = \frac{\partial}{\partial t^P} - (t^Q - iQ) \frac{\partial}{\partial t^Q} \\
& + \left[(t^Q - iQ) \frac{\partial^2 f_0(t^Q)}{\partial (t^Q)^2} - \frac{\partial f_0(t^Q)}{\partial t^Q} + \frac{\partial f_0(t^Q)}{\partial t^Q} \right] \frac{\partial}{\partial t^R} \\
& - \left[(t^Q - iQ) \left(\frac{\partial f_0(t^Q)}{\partial t^Q} + \frac{\partial f_0(t^Q)}{\partial t^Q} \right) - 2(f_0(t^Q) - f(t^Q)) \right] \frac{\partial}{\partial t^S}.
\end{align*}
\]

8.4. The pseudo-Hermitian metric. Using the holomorphic symplectic form and the real structure defined the preceding two Subsections we now define:

\[
(311) \quad h(\frac{\partial}{\partial t^\alpha}, \frac{\partial}{\partial t^\beta}) = i\Omega(\frac{\partial}{\partial t^\alpha}, \tau(\frac{\partial}{\partial t^\beta})).
\]
Explicitly, we have:

\[h\left(\frac{\partial}{\partial t^P}, \frac{\partial}{\partial t^P}\right) = i\Omega\left(\frac{\partial}{\partial t^P}, \tau\left(\frac{\partial}{\partial t^P}\right) \right) \]

\[= ie^{\tau + \bar{\tau}} \left[-\left(t^Q \frac{\partial f_0(t^Q)}{\partial t^Q} - 2f_0(t^Q) + t^S + t^Q t^R \right) + \left(\frac{t^Q \partial f_0(t^Q)}{\partial t^Q} - 2f_0(t^Q) + \bar{t}^S + t^Q \bar{t}^R \right) \right. \]

\[+ \left(\frac{t^Q \partial f_0(t^Q)}{\partial t^Q} + t^R \right) - t^Q \left(\frac{\partial f_0(t^Q)}{\partial t^Q} + \bar{t}^R \right) \]

\[= ie^{\tau + \bar{\tau}} \left[-\left(t^Q - \bar{t}^Q \right) \left(\frac{\partial f_0(t^Q)}{\partial t^Q} \right)^2 + \left(\frac{\partial f_0(t^Q)}{\partial t^Q} - \frac{\partial f_0(t^Q)}{\partial t^Q} \right) \right. \]

\[+ 2 \left(f_0(t^Q) - f_0(t^Q) \right) - (t^S - \bar{t}^S) - (t^Q - \bar{t}^Q)(t^R + \bar{t}^R) \]

\[h\left(\frac{\partial}{\partial t^P}, \frac{\partial}{\partial t^Q}\right) = i\Omega\left(\frac{\partial}{\partial t^P}, \tau\left(\frac{\partial}{\partial t^Q}\right) \right) \]

\[= ie^{\tau + \bar{\tau}} \left[\left(\frac{t^Q \partial^2 f_0(t^Q)}{\partial (t^Q)^2} - \frac{\partial f_0(t^Q)}{\partial t^Q} \right) - \left(t^Q \frac{\partial^2 f_0(t^Q)}{\partial (t^Q)^2} + \frac{\partial f_0(t^Q)}{\partial t^Q} + t^R \right) \right. \]

\[\left. - \left(t^Q - \bar{t}^Q \right) \frac{\partial^2 f_0(t^Q)}{\partial (t^Q)^2} + \left(\frac{\partial f_0(t^Q)}{\partial t^Q} - \frac{\partial f_0(t^Q)}{\partial t^Q} \right) \right] \]

\[= ie^{\tau + \bar{\tau}} \left[-\left(t^Q - \bar{t}^Q \right) \frac{\partial^2 f_0(t^Q)}{\partial (t^Q)^2} + \left(\frac{\partial f_0(t^Q)}{\partial t^Q} - \frac{\partial f_0(t^Q)}{\partial t^Q} \right) \right. \]

\[+ \left(t^R + \bar{t}^R \right) \]

\[h\left(\frac{\partial}{\partial t^P}, \frac{\partial}{\partial t^R}\right) = i\Omega\left(\frac{\partial}{\partial t^P}, \tau\left(\frac{\partial}{\partial t^R}\right) \right) \]

\[= ie^{\tau + \bar{\tau}} \left[-\left(t^Q - \bar{t}^Q \right) \frac{\partial^2 f_0(t^Q)}{\partial (t^Q)^2} + \left(\frac{\partial f_0(t^Q)}{\partial t^Q} - \frac{\partial f_0(t^Q)}{\partial t^Q} \right) \right. \]

\[+ \left(t^R + \bar{t}^R \right) \]

\[h\left(\frac{\partial}{\partial t^Q}, \frac{\partial}{\partial t^S}\right) = i\Omega\left(\frac{\partial}{\partial t^Q}, \tau\left(\frac{\partial}{\partial t^S}\right) \right) = 0. \]

\[h\left(\frac{\partial}{\partial t^Q}, \frac{\partial}{\partial t^R}\right) = i\Omega\left(\frac{\partial}{\partial t^Q}, \tau\left(\frac{\partial}{\partial t^R}\right) \right) = 0. \]
EMERGENT GEOMETRY OF THE QUINTIC 97

\[h\left(\frac{\partial}{\partial t^R}, \frac{\partial}{\partial t^S}\right) = i\Omega\left(\frac{\partial}{\partial t^R}, \tau\left(\frac{\partial}{\partial t^S}\right)\right) = 0. \]

\[h\left(\frac{\partial}{\partial t^S}, \frac{\partial}{\partial t^S}\right) = i\Omega\left(\frac{\partial}{\partial t^S}, \tau\left(\frac{\partial}{\partial t^S}\right)\right) = 0. \]

With these explicit expressions, we can directly check the following:

Proposition 8.2. The Kähler potential \(K \) for \(h \) can be taken to be:

\[h\left(\frac{\partial}{\partial t^P}, \frac{\partial}{\partial t^P}\right) = i e^{t^P + \overline{t^P}} \left[-(t^Q - \overline{t^Q}) \left(\frac{\partial f_0(t^Q)}{\partial t^Q} + \frac{\partial f_0(t^Q)}{\partial t^Q} \right) \right. \]

\[+ 2 \left(f_0(t^Q) - f_0(t^Q) \right) - (t^S - \overline{t^S}) - (t^Q - \overline{t^Q})(t^R + \overline{t^R}) \]

\[\left. = i \left[e^{t^P} \cdot e^{t^P} \left(t^Q \frac{\partial f_0(t^Q)}{\partial t^Q} - 2f_0(t^Q) + t^S + t^Q t^R \right) \right. \right. \]

\[- e^{t^P} \left(t^Q \frac{\partial f_0(t^Q)}{\partial t^Q} - 2f_0(t^Q) + t^S + t^Q t^R \right) \cdot e^{t^P} \]

\[- \left(e^{t^P} t^Q \cdot e^{t^P} \left(\frac{\partial f_0(t^Q)}{\partial t^Q} + t^R \right) \right. \]

\[\left. - \overline{e^{t^P}} t^Q \cdot e^{t^P} \left(\frac{\partial f_0(t^Q)}{\partial t^Q} + t^R \right) \right]. \]

8.5. Hyperkähler potential. From the explicit formula for the Kähler potential \(K \), we introduce:

\[u = e^{t^P}, \quad v = e^{t^P} t^Q, \quad w = e^{t^P} t^R, \quad x = e^{t^P} (t^S + t^Q t^R). \]

We also introduce

\[(312) \quad \mathcal{F} = -u^2 f_0\left(\frac{v}{u}\right) + ux - vw. \]

Note we have

\[\frac{\partial \mathcal{F}}{\partial u} = e^{t^P} t^Q \frac{\partial f_0(t^Q)}{\partial t^Q} - 2e^{t^P} f_0(t^Q) + e^{t^P} (t^S + t^Q t^R) \]

\[= v f'_0\left(\frac{v}{u}\right) - 2u f_0\left(\frac{v}{u}\right) + x, \]

\[\frac{\partial \mathcal{F}}{\partial v} = -e^{t^P} \frac{\partial f_0(t^Q)}{\partial t^Q} + e^{t^P} t^R = -u f'_0\left(\frac{v}{u}\right) - w, \]
and so

\[
d\frac{\partial F}{\partial u} = \left(-\frac{v^2}{u^2} f''_0\left(\frac{v}{u}\right) + \frac{2v}{u} f'_0\left(\frac{v}{u}\right) - 2f\left(\frac{v}{u}\right) \right) du \\
+ \left(\frac{v}{u} f''_0\left(\frac{v}{u}\right) - f'_0\left(\frac{v}{u}\right) \right) dv + dx,
\]

\[
d\frac{\partial F}{\partial v} = \left(\frac{v}{u} f''_0\left(\frac{v}{u}\right) - f'_0\left(\frac{v}{u}\right) \right) du - f''_0\left(\frac{v}{u}\right) dv - dw.
\]

Now we easily check the following:

Proposition 8.3. In the new coordinates \(u, v, w, x\), the holomorphic symplectic form and the Kähler potential can be written as:

\[
(314) \quad \Omega = du \wedge d\frac{\partial F}{\partial u} + dv \wedge d\frac{\partial F}{\partial v} = du \wedge dx - dv \wedge dw.
\]

\[
(315) \quad K = i \left[\bar{u} \frac{\partial F}{\partial u} + v \frac{\partial F}{\partial v} - \bar{u} \frac{\partial^2 F}{\partial u \partial v} - \bar{v} \frac{\partial^2 F}{\partial v^2} \right]
\]

Proposition 8.4. The holomorphic symplectic form \(\Omega\) is parallel with respect to the Levi-Civita connection of \(h\).

Proof. Let us first compute the pseudo-Hermitian metric in the new coordinates \(u, v, w, x\):

\[
\frac{\partial K}{\partial u} = i \left[\bar{u} \frac{\partial F}{\partial u} - \bar{u} \frac{\partial^2 F}{\partial u^2} - \bar{v} \frac{\partial^2 F}{\partial u \partial v} \right],
\]

\[
\frac{\partial K}{\partial v} = i \left[\bar{v} \frac{\partial F}{\partial v} - \bar{u} \frac{\partial^2 F}{\partial u \partial v} - \bar{v} \frac{\partial^2 F}{\partial v^2} \right],
\]

\[
\frac{\partial K}{\partial w} = i \bar{v},
\]

\[
\frac{\partial K}{\partial x} = -i \bar{u},
\]
\[
\frac{\partial^2 K}{\partial u \partial \bar{u}} = i \left[\frac{\partial^2 F}{\partial u^2} - \frac{\partial^2 F}{\partial u^2} \right], \quad \frac{\partial^2 K}{\partial u \partial \bar{v}} = i \left[\frac{\partial^2 F}{\partial u^2} - \frac{\partial^2 F}{\partial u^2} \right],
\]
\[
\frac{\partial^2 K}{\partial v \partial \bar{u}} = i \left[\frac{\partial^2 F}{\partial v^2} - \frac{\partial^2 F}{\partial v^2} \right], \quad \frac{\partial^2 K}{\partial v \partial \bar{v}} = -i,
\]
\[
\frac{\partial^2 K}{\partial v \partial \bar{w}} = 0, \quad \frac{\partial^2 K}{\partial v \partial \bar{x}} = 0.
\]

So we get the matrix for the metric:
\[
h = \begin{pmatrix}
 \frac{i}{\partial^2 F/\partial u^2} - \frac{i}{\partial^2 F/\partial u^2} & \frac{i}{\partial^2 F/\partial u \partial v} - \frac{i}{\partial^2 F/\partial u \partial v} & 0 & i \\
 \frac{i}{\partial^2 F/\partial u \partial w} - \frac{i}{\partial^2 F/\partial u \partial w} & \frac{i}{\partial^2 F/\partial u \partial \bar{v}} - i & 0 & 0 \\
 0 & 0 & i & 0 \\
 -i & 0 & 0 & 0
\end{pmatrix}
\]

and its inverse matrix:
\[
h^{-1} = \begin{pmatrix}
 0 & 0 & 0 & i \\
 0 & i & -i & 0 \\
 -i & 0 & i \left[\frac{\partial^2 F}{\partial u \partial v} - \frac{\partial^2 F}{\partial u \partial v} \right] & -i \left[\frac{\partial^2 F}{\partial u \partial w} - \frac{\partial^2 F}{\partial u \partial w} \right] \\
 0 & i \left[\frac{\partial^2 F}{\partial u \partial v} - \frac{\partial^2 F}{\partial u \partial v} \right] & -i \left[\frac{\partial^2 F}{\partial u \partial w} - \frac{\partial^2 F}{\partial u \partial w} \right] & 0
\end{pmatrix}
\]

Next we compute the Levi-Civita connection. First we have
\[
\partial_u h = \begin{pmatrix}
 -i \frac{\partial^2 F}{\partial u \partial v} - i \frac{\partial^2 F}{\partial u \partial v} & 0 & 0 \\
 0 & 0 & 0 \\
 0 & 0 & 0
\end{pmatrix},
\]
then we get:
\[
(316) \quad \partial_u h \cdot h^{-1} = \begin{pmatrix}
 0 & 0 & \frac{\partial^1 F}{\partial u^2} & \frac{\partial^1 F}{\partial u \partial w} \\
 0 & 0 & \frac{\partial^1 F}{\partial u \partial v} & \frac{\partial^1 F}{\partial u \partial \bar{v}} \\
 0 & 0 & \frac{\partial^1 F}{\partial u \partial v} & \frac{\partial^1 F}{\partial u \partial \bar{v}} \\
 0 & 0 & 0 & 0
\end{pmatrix}.
\]
This implies

\[
\nabla \frac{\partial^3 F}{\partial u \partial v \partial w} = \begin{pmatrix}
\frac{\partial^3 F}{\partial u^2 \partial v} & \frac{\partial^3 F}{\partial u \partial v^2} & \frac{\partial^3 F}{\partial u^3} \\
\frac{\partial^3 F}{\partial u^2 \partial w} & \frac{\partial^3 F}{\partial u \partial w^2} & \frac{\partial^3 F}{\partial u^3} \\
\frac{\partial^3 F}{\partial u \partial v \partial w} & \frac{\partial^3 F}{\partial u^2 \partial v} & \frac{\partial^3 F}{\partial u^3}
\end{pmatrix}
\cdot
\begin{pmatrix}
\frac{\partial}{\partial u} \\
\frac{\partial}{\partial v} \\
\frac{\partial}{\partial w} \\
\frac{\partial}{\partial x}
\end{pmatrix},
\]

and

\[
\nabla \frac{\partial^3 F}{\partial v \partial u \partial w} = \begin{pmatrix}
\frac{\partial^3 F}{\partial u^2 \partial v} & \frac{\partial^3 F}{\partial u \partial v^2} & \frac{\partial^3 F}{\partial u^3} \\
\frac{\partial^3 F}{\partial u^2 \partial w} & \frac{\partial^3 F}{\partial u \partial w^2} & \frac{\partial^3 F}{\partial u^3} \\
\frac{\partial^3 F}{\partial u \partial v \partial w} & \frac{\partial^3 F}{\partial u^2 \partial v} & \frac{\partial^3 F}{\partial u^3}
\end{pmatrix}
\cdot
\begin{pmatrix}
\frac{\partial}{\partial u} \\
\frac{\partial}{\partial v} \\
\frac{\partial}{\partial w} \\
\frac{\partial}{\partial x}
\end{pmatrix}.
\]

Therefore,

\[
\nabla \frac{\partial^3 F}{\partial u \partial v \partial w} \cdot \frac{\partial^3 F}{\partial v \partial u \partial w} = \begin{pmatrix}
\frac{\partial^3 F}{\partial u^2 \partial v} & \frac{\partial^3 F}{\partial u \partial v^2} & \frac{\partial^3 F}{\partial u^3} \\
\frac{\partial^3 F}{\partial u^2 \partial w} & \frac{\partial^3 F}{\partial u \partial w^2} & \frac{\partial^3 F}{\partial u^3} \\
\frac{\partial^3 F}{\partial u \partial v \partial w} & \frac{\partial^3 F}{\partial u^2 \partial v} & \frac{\partial^3 F}{\partial u^3}
\end{pmatrix}
\cdot
\begin{pmatrix}
\frac{\partial}{\partial u} \\
\frac{\partial}{\partial v} \\
\frac{\partial}{\partial w} \\
\frac{\partial}{\partial x}
\end{pmatrix}.
\]

The covariant derivative in \(\frac{\partial}{\partial v} \) can be computed similarly:

\[
\begin{align*}
\nabla \frac{\partial^3 F}{\partial v \partial u \partial w} \cdot \frac{\partial^3 F}{\partial u \partial v \partial w} & = \begin{pmatrix}
\frac{\partial^3 F}{\partial u^2 \partial v} & \frac{\partial^3 F}{\partial u \partial v^2} & \frac{\partial^3 F}{\partial u^3} \\
\frac{\partial^3 F}{\partial u^2 \partial w} & \frac{\partial^3 F}{\partial u \partial w^2} & \frac{\partial^3 F}{\partial u^3} \\
\frac{\partial^3 F}{\partial u \partial v \partial w} & \frac{\partial^3 F}{\partial u^2 \partial v} & \frac{\partial^3 F}{\partial u^3}
\end{pmatrix}
\cdot
\begin{pmatrix}
\frac{\partial}{\partial u} \\
\frac{\partial}{\partial v} \\
\frac{\partial}{\partial w} \\
\frac{\partial}{\partial x}
\end{pmatrix}.
\end{align*}
\]
\[\nabla \frac{\partial}{\partial v} \left(\begin{array}{c} du \\ dv \\ dw \\ dx \end{array} \right) = \left(\begin{array}{cccc} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \frac{\partial^3 F}{\partial u^2 \partial v} & \frac{\partial^3 F}{\partial u \partial v^2} & 0 & 0 \\ -\frac{\partial^3 F}{\partial u \partial v^2} & \frac{\partial^3 F}{\partial u v^2} & 0 & 0 \end{array} \right) . \]

\[\nabla \frac{\partial}{\partial v} \Omega = \nabla \frac{\partial}{\partial v} (du \wedge dx - dv \wedge dw) \]
\[= \nabla \frac{\partial}{\partial v} du \wedge dx + du \wedge \nabla \frac{\partial}{\partial v} dx - \nabla \frac{\partial}{\partial v} dv \wedge dw - dv \wedge \nabla \frac{\partial}{\partial v} dw \]
\[= 0 \wedge dx + du \wedge \left(-\frac{\partial^3 F}{\partial u^2 \partial v} du - \frac{\partial^3 F}{\partial u \partial v^2} dv \right) \]
\[- 0 \wedge dw - dv \wedge \left(\frac{\partial^3 F}{\partial u \partial v^2} du + \frac{\partial^3 F}{\partial v^3} dv \right) \]
\[= 0. \]

Finally, from
\[\partial_w h = \partial_x h = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \]
we can compute the covariant derivatives in \(w \) and \(x \). \qed

The above two Propositions imply that there is a structure of pseudo-hyperkähler manifold on the small phase space of the quintic. (We call \(F \) in the hyperkähler potential of this structure.) This gives us the emergent special Kähler structure on the small phase space of the quintic. For mathematical reference on special Kähler geometry, see Freed [19].

8.6. Compatibility with the Frobenius manifold structure. Since we have computed the covariant derivative in the coordinates \(u, v, w, x \), we will also compute the quantum multiplications in these coordinates. Note
\[t^p = \log u, \quad t^q = \frac{v}{u}, \quad t^r = \frac{w}{u}, \quad t^s = \frac{x}{u} - \frac{vw}{u^2}. \]
So we have
\[\frac{\partial}{\partial t} P = u \frac{\partial}{\partial u} + v \frac{\partial}{\partial v} + w \frac{\partial}{\partial w} + x \frac{\partial}{\partial x}, \]
\[\frac{\partial}{\partial t} Q = u \frac{\partial}{\partial v} + w \frac{\partial}{\partial x}, \]
\[\frac{\partial}{\partial t} R = u \frac{\partial}{\partial w} + v \frac{\partial}{\partial x}, \]
\[\frac{\partial}{\partial t} S = u \frac{\partial}{\partial x}. \]

We get
\[\eta = \begin{pmatrix} \frac{-2x}{u^3} + \frac{6vw}{u^4} & \frac{-2w}{u^3} & \frac{-2v}{u^3} & \frac{1}{u^3} \\ \frac{-2v}{u^3} & 0 & \frac{1}{u^2} & 0 \\ \frac{-2w}{u^3} & \frac{1}{u^2} & 0 & 0 \\ \frac{1}{u^2} & 0 & 0 & 0 \end{pmatrix} \]

and
\[\eta^{-1} = \begin{pmatrix} 0 & 0 & 0 & u^2 \\ 0 & 0 & u^2 & 2vw \\ 0 & u^2 & 0 & 2uw \\ u^2 & 2uv & 2uw & 2(uv - vw) \end{pmatrix} \]

Using the formulas for quantum multiplications in §4.3, we get:
\[\frac{\partial}{\partial u} \circ \begin{pmatrix} \frac{\partial}{\partial u} \\ \frac{\partial}{\partial v} \\ \frac{\partial}{\partial w} \\ \frac{\partial}{\partial x} \end{pmatrix} = \begin{pmatrix} \frac{1}{u} & -\frac{v}{u^2} & \frac{v^2}{u^3} f''(\frac{v}{u}) & \frac{v^3}{u^4} f'''(\frac{v}{u}) \\ 0 & \frac{1}{u} & -\frac{v}{u^2} f'(\frac{v}{u}) & -\frac{v}{u^2} f''(\frac{v}{u}) \\ 0 & 0 & \frac{1}{u} & -\frac{v}{u^2} f'(\frac{v}{u}) \\ 0 & 0 & 0 & \frac{1}{u} \end{pmatrix} \cdot \begin{pmatrix} \frac{\partial}{\partial u} \\ \frac{\partial}{\partial v} \\ \frac{\partial}{\partial w} \\ \frac{\partial}{\partial x} \end{pmatrix}. \]
\[\frac{\partial}{\partial v} \circ \begin{pmatrix} \frac{\partial}{\partial u} & \frac{\partial}{\partial v} & \frac{\partial}{\partial w} & \frac{\partial}{\partial x} \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & -\frac{v}{u^2} f'''(\frac{v}{u}) & -\frac{u}{u^2} - \frac{v^2}{u^2} f'''(\frac{v}{u}) \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} \frac{\partial}{\partial w} \\ \frac{\partial}{\partial v} \\ \frac{\partial}{\partial w} \\ \frac{\partial}{\partial x} \end{pmatrix}.\]

\[\frac{\partial}{\partial w} \circ \begin{pmatrix} \frac{\partial}{\partial u} & \frac{\partial}{\partial v} & \frac{\partial}{\partial w} & \frac{\partial}{\partial x} \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & \frac{1}{u} \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} \frac{\partial}{\partial w} \\ \frac{\partial}{\partial v} \\ \frac{\partial}{\partial w} \\ \frac{\partial}{\partial x} \end{pmatrix}.\]

\[\frac{\partial}{\partial x} \circ \begin{pmatrix} \frac{\partial}{\partial u} & \frac{\partial}{\partial v} & \frac{\partial}{\partial w} & \frac{\partial}{\partial x} \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & \frac{1}{u} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} \frac{\partial}{\partial w} \\ \frac{\partial}{\partial v} \\ \frac{\partial}{\partial w} \\ \frac{\partial}{\partial x} \end{pmatrix}.\]

Denote by \(C_u, C_v, C_w\) and \(C_x\) the 4 \(\times\) 4-matrices on the right-hand sides of these equalities respectively.

Theorem 8.5. For the quintic we have

\[[\nabla \frac{\partial}{\partial \alpha}, C_\beta] = [\nabla \frac{\partial}{\partial \beta}, C_\alpha]\]

for \(\alpha, \beta = u, v, w, x\).

Proof. These can be verified by explicit computations below:

\[[\nabla \frac{\partial}{\partial u}, C_x] = \frac{\partial}{\partial w} \begin{pmatrix} 0 & 0 & 0 & \frac{1}{u} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix},\]

\[[\nabla \frac{\partial}{\partial v}, C_w] = \frac{\partial}{\partial x} \begin{pmatrix} 0 & 0 & 0 & \frac{1}{u} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix},\]

\[[\nabla \frac{\partial}{\partial w}, C_x] = \frac{\partial}{\partial v} \begin{pmatrix} 0 & 0 & 0 & \frac{1}{u} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix},\]
\[
\begin{align*}
\left[\nabla \frac{\partial}{\partial x}, C_v \right] &= \frac{\partial}{\partial x} \begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix} \\
&= \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix} \\
\left[\nabla \frac{\partial}{\partial u}, C_x \right] &= \frac{\partial}{\partial u} \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix} = \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix},
\end{align*}
\]

\[
\begin{align*}
\left[\nabla \frac{\partial}{\partial x}, C_u \right] &= \frac{\partial}{\partial x} \begin{pmatrix}
\frac{1}{u} & 0 & 0 & 0 \\
-\frac{v}{u} & 0 & 0 & 0 \\
-\frac{w}{u^2} & -\frac{v^2}{u^2} & 0 & 0 \\
-\frac{w}{u} & -\frac{v^2}{u^2} & 0 & 0
\end{pmatrix} \\
&= \begin{pmatrix}
0 & 0 & -\frac{1}{u^2} & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix} \\
\left[\nabla \frac{\partial}{\partial v}, C_w \right] &= \frac{\partial}{\partial v} \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & -\frac{1}{u} & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix} = \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix},
\end{align*}
\]

\[
\begin{align*}
\left[\nabla \frac{\partial}{\partial x}, C_v \right] &= \frac{\partial}{\partial v} \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix} = \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix},
\end{align*}
\]

\[
\begin{align*}
\left[\nabla \frac{\partial}{\partial w}, C_v \right] &= \frac{\partial}{\partial w} \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix} = \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}.
\end{align*}
\]
To understand the emergent tt^*-geometry, let us first compute the action of the real structure on the basis $\frac{\partial}{\partial w}$, $\frac{\partial}{\partial v}$, $\frac{\partial}{\partial u}$ and $\frac{\partial}{\partial x}$. Note

$$\frac{\partial}{\partial x} = \frac{1}{u} \frac{\partial}{\partial t^S} = \frac{1}{u} s_S,$$
and so
\[s_S = u \frac{\partial}{\partial x}. \]

Now we get:
\[\tau \left(\frac{\partial}{\partial x} \right) = \frac{1}{u} s_S = \frac{u}{u} \frac{\partial}{\partial x}. \]

Similarly,
\[\frac{\partial}{\partial w} = 1 + \frac{\partial}{\partial t} - \frac{w}{u^2} \frac{\partial}{\partial t} s_S = \frac{1}{u} \left(s_R + \frac{v}{u} s_S \right) - \frac{v}{u^2} s_S = \frac{1}{u} s_R, \]
so we get
\[s_R = u \frac{\partial}{\partial w} \]
and
\[\tau \left(\frac{\partial}{\partial w} \right) = \frac{1}{u} s_R = \frac{u}{u} \frac{\partial}{\partial w}. \]

The formula \(\frac{\partial}{\partial v} \) involves more terms:
\[
\frac{\partial}{\partial v} = 1 + \frac{\partial}{\partial t} + \frac{w}{u^2} \frac{\partial}{\partial t} s_S
= \frac{1}{u} \left(s_Q + \frac{\partial^2 f_0(tQ)}{\partial t} s_R + \left(\frac{v}{u^2} f_0(tQ) - \frac{w}{u^2} f_0(tQ) - \frac{w}{u^2} \right) s_S \right) - \frac{w}{u} s_S
= \frac{1}{u} s_Q + \frac{1}{u} f''_0 \left(\frac{v}{u} \right) s_R + \left(\frac{v}{u^2} f_0 \left(\frac{v}{u} \right) - \frac{1}{u} f'_0 \left(\frac{v}{u} \right) - \frac{w}{u^2} \right) s_S,
\]
and so
\[
s_Q = u \frac{\partial}{\partial v} f''_0 \left(\frac{v}{u} \right) s_R - \left(\frac{v}{u} f''_0 \left(\frac{v}{u} \right) - \frac{u}{u} f'_0 \left(\frac{v}{u} \right) - \frac{w}{u^2} \right) s_S
= u \frac{\partial}{\partial v} - uf''_0 \left(\frac{v}{u} \right) \frac{\partial}{\partial w} - \left(uf''_0 \left(\frac{v}{u} \right) - uf'_0 \left(\frac{v}{u} \right) - w \right) \frac{\partial}{\partial x}.
\]
Finally,

$$\frac{\partial}{\partial u} = \frac{1}{u} \frac{\partial}{\partial t^P} - \frac{v}{u^2} \frac{\partial}{\partial t^Q} - \frac{w}{u^2} \frac{\partial}{\partial t^R} - \left(\frac{x}{u^2} - \frac{2vw}{u^3} \right) \frac{\partial}{\partial t^S}$$

$$= \frac{1}{u} \left[s_P + t^Q s_Q + \frac{\partial f_0(t^Q)}{\partial t^Q} s_R + \left(t^Q \frac{\partial f_0(t^Q)}{\partial t^Q} - 2f_0(t^Q) \right) s_S \right]$$

$$- \frac{v}{u^2} \left(s_Q + \frac{\partial^2 f_0(t^Q)}{\partial (t^Q)^2} s_R + \left(t^Q \frac{\partial^2 f_0(t^Q)}{\partial (t^Q)^2} - \frac{\partial f_0(t^Q)}{\partial t^Q} \right) s_S \right)$$

$$- \frac{w}{u^2} \left(s_R + t^Q s_S \right) - \left(\frac{x}{u^2} - \frac{2vw}{u^3} \right) \frac{\partial}{\partial t^S}$$

$$= \frac{1}{u} \left[s_P - \left(\frac{v}{u^2} f''_0 \left(\frac{v}{u} \right) - \frac{1}{u} f'_0 \left(\frac{v}{u} \right) + \frac{w}{u^2} \right) s_R \right]$$

$$- \left(\frac{v^2}{u^3} f''_0 \left(\frac{v}{u} \right) - \frac{2v}{u^2} f'_0 \left(\frac{v}{u} \right) + \frac{2}{u} f_0 \left(\frac{v}{u} \right) + \frac{x}{u^2} - \frac{vw}{u^3} \right) s_S \right]$$

$$s_P = u \left[\frac{\partial}{\partial u} + \left(\frac{v}{u^2} f''_0 \left(\frac{v}{u} \right) - \frac{1}{u} f'_0 \left(\frac{v}{u} \right) + \frac{w}{u^2} \right) s_R \right]$$

$$+ \left(\frac{v^2}{u^3} f''_0 \left(\frac{v}{u} \right) - \frac{2v}{u^2} f'_0 \left(\frac{v}{u} \right) + \frac{2}{u} f_0 \left(\frac{v}{u} \right) + \frac{x}{u^2} - \frac{vw}{u^3} \right) s_S \right]$$

$$= u \left[\frac{\partial}{\partial u} + \left(\frac{v}{u^2} f''_0 \left(\frac{v}{u} \right) - \frac{1}{u} f'_0 \left(\frac{v}{u} \right) + \frac{w}{u^2} \right) u \frac{\partial}{\partial w} \right]$$

$$+ \left(\frac{v^2}{u^3} f''_0 \left(\frac{v}{u} \right) - \frac{2v}{u^2} f'_0 \left(\frac{v}{u} \right) + \frac{2}{u} f_0 \left(\frac{v}{u} \right) + \frac{x}{u^2} - \frac{vw}{u^3} \right) u \frac{\partial}{\partial x} \right].$$
\[\tau \left(\frac{\partial}{\partial u} \right) = \frac{1}{w} s_p - \left(\frac{v}{u^2} f''_0 \left(\frac{v}{u} \right) - \frac{1}{u} f'_0 \left(\frac{v}{u} \right) + \frac{w}{u^2} \right) s_R \]

\[- \left(\frac{v}{u^3} f''_0 \left(\frac{v}{u} \right) \right) - \left(\frac{2v}{u} f'_0 \left(\frac{v}{u} \right) + \frac{2}{u} f_0 \left(\frac{v}{u} \right) + \frac{x}{u^2} - \frac{vw}{u^3} \right) s_s \]

\[= \frac{u}{\bar{u}} \left[\frac{\partial}{\partial u} \left(\frac{v}{u^2} f''_0 \left(\frac{v}{u} \right) - \frac{1}{u} f'_0 \left(\frac{v}{u} \right) + \frac{w}{u^2} \right) \right] u \frac{\partial}{\partial w} \]

\[+ \left(\frac{v}{u^3} f''_0 \left(\frac{v}{u} \right) - \frac{2v}{u^2} f'_0 \left(\frac{v}{u} \right) + \frac{2}{u^2} f_0 \left(\frac{v}{u} \right) + \frac{x}{u^2} - \frac{vw}{u^3} \right) u \frac{\partial}{\partial x} \]

\[- \left(\frac{v}{u^2} f''_0 \left(\frac{v}{u} \right) - \frac{1}{u} f'_0 \left(\frac{v}{u} \right) + \frac{w}{u^2} \right) u \frac{\partial}{\partial w} \]

\[- \left(\frac{v}{u^3} f''_0 \left(\frac{v}{u} \right) - \frac{2v}{u^2} f'_0 \left(\frac{v}{u} \right) + \frac{2}{u^2} f_0 \left(\frac{v}{u} \right) + \frac{x}{u^2} - \frac{vw}{u^3} \right) u \frac{\partial}{\partial x}. \]

To summarize, we get:

\[
\tau \begin{pmatrix} \frac{\partial}{\partial u} \\ \frac{\partial}{\partial v} \\ \frac{\partial}{\partial w} \\ \frac{\partial}{\partial x} \end{pmatrix} = M \begin{pmatrix} \frac{\partial}{\partial u} \\ \frac{\partial}{\partial v} \\ \frac{\partial}{\partial w} \\ \frac{\partial}{\partial x} \end{pmatrix} = \frac{u}{\bar{u}} \begin{pmatrix} 1 & 0 & a - \bar{a} & b - \bar{b} \\ 0 & 1 & c - \bar{c} & d - \bar{d} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{\partial}{\partial u} \\ \frac{\partial}{\partial v} \\ \frac{\partial}{\partial w} \\ \frac{\partial}{\partial x} \end{pmatrix},
\]

where

\[a = \frac{v}{u} f''_0 \left(\frac{v}{u} \right) - f'_0 \left(\frac{v}{u} \right) + \frac{w}{u}, \]

\[b = \frac{v^2}{u^2} f''_0 \left(\frac{v}{u} \right) - \frac{2v}{u} f'_0 \left(\frac{v}{u} \right) + 2 f_0 \left(\frac{v}{u} \right) + \frac{x}{u} - \frac{vw}{u^2}, \]

\[c = - f''_0 \left(\frac{v}{u} \right), \]

\[d = - \left(\frac{v}{u} f''_0 \left(\frac{v}{u} \right) - f'_0 \left(\frac{v}{u} \right) - \frac{w}{u} \right). \]

It is easy to check that:

\[(329) \quad \bar{M} M = I. \]
\[
\tau C_{xT} \left(\frac{\partial}{\partial u} \frac{\partial}{\partial x} \right) = M C_x \cdot M \left(\frac{\partial}{\partial u} \frac{\partial}{\partial x} \right) = \tau \begin{pmatrix} \frac{1}{u} \frac{\partial}{\partial x} \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{u} \\ 0 \\ 0 \end{pmatrix}
\]

\[
= \begin{pmatrix} 0 \\ 0 \\ 0 \\ \frac{1}{u} \frac{\partial}{\partial x} \end{pmatrix} \cdot \begin{pmatrix} \frac{\partial}{\partial u} \\ \frac{\partial}{\partial v} \\ \frac{\partial}{\partial w} \\ \frac{\partial}{\partial x} \end{pmatrix},
\]

(330) \hspace{1cm} C_x = \begin{pmatrix} 0 \\ 0 \\ 0 \\ \frac{1}{u} \frac{\partial}{\partial x} \end{pmatrix}

(331) \hspace{1cm} \bar{C}_w = \begin{pmatrix} 0 \\ 0 \\ 0 \\ \frac{1}{u} \frac{\partial}{\partial x} \end{pmatrix}

(332) \hspace{1cm} \bar{C}_v = \begin{pmatrix} 0 \\ 0 \\ 0 \\ \frac{1}{u} \frac{\partial}{\partial x} \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \\ 0 \\ \frac{1}{u} \frac{\partial}{\partial x} \end{pmatrix} \begin{pmatrix} \frac{1}{u} f'''_0 (\frac{v}{u}) - \frac{v}{u} f'''_0 (\frac{v}{u}) \\ \frac{1}{u} f'''_0 (\frac{v}{u}) - \frac{v}{u} f'''_0 (\frac{v}{u}) \end{pmatrix}

(333) \hspace{1cm} \bar{C}_u = \begin{pmatrix} 0 \\ 0 \\ 0 \\ \frac{1}{u} \frac{\partial}{\partial x} \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \\ 0 \\ \frac{1}{u} \frac{\partial}{\partial x} \end{pmatrix} \begin{pmatrix} \frac{1}{u} f'''_0 (\frac{v}{u}) - \frac{v}{u} f'''_0 (\frac{v}{u}) \\ \frac{1}{u} f'''_0 (\frac{v}{u}) - \frac{v}{u} f'''_0 (\frac{v}{u}) \end{pmatrix}

where \(A = a - \bar{a} \), etc. One can check that

(334) \hspace{1cm} [C_{x}, \bar{C}_{x}] = 0

except for

\[
[C_{v}, \bar{C}_{v}] = \frac{1}{|u|^2} \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} \bar{f}'''_0 (\frac{v}{u}) - f'''_0 (\frac{v}{u}) \\ \frac{1}{u} f'''_0 (\frac{v}{u}) - \frac{v}{u} f'''_0 (\frac{v}{u}) \\ f'''_0 (\frac{v}{u}) - \frac{1}{u} f'''_0 (\frac{v}{u}) \\ \frac{v}{u} f'''_0 (\frac{v}{u}) - \frac{1}{u} f'''_0 (\frac{v}{u}) \end{pmatrix}
\]

and three other cases: \([C_{v}, \bar{C}_{u}], [C_{u}, \bar{C}_{v}]\) and \([C_{u}, \bar{C}_{u}]\).
8.8. **The change of coordinate on the complexified Kähler moduli space.** The variable t^Q is understood as the coordinate on the complexified Kähler moduli space. Introduce a new coordinate

\[(335) \quad x = \exp(2\pi it^Q).\]

Then we have

\[(336) \quad \frac{\partial}{\partial t^Q} = x \frac{\partial}{\partial x}.\]

When one circles around $x = 0$ in the x-plane, t^Q is changed to $t^Q + 1$. The flat sections undergo the following changes:

\[
\begin{align*}
\tilde{s}_S &= \frac{\partial}{\partial t^S} = s_S, \\
\tilde{s}_R &= \frac{\partial}{\partial t^R} - (t^Q + 1) \frac{\partial}{\partial t^S} = s_R - s_S, \\
\tilde{s}_Q &= \frac{\partial}{\partial t^Q} - \frac{\partial^2 f_0(t^Q) + 1}{\partial (t^Q)^2} \frac{\partial}{\partial t^R} + \frac{\partial f_0(t^Q) + 1}{\partial t^Q} \frac{\partial}{\partial t^S} \\
&= s_Q - 5 \frac{\partial}{\partial t^R} + \frac{5}{2} (2t^Q + 1) \frac{\partial}{\partial t^S} \\
&= s_Q - 5s_R + \frac{5}{2}s_S, \\
\tilde{s}_P &= \frac{\partial}{\partial t^P} - (t^Q + 1) \frac{\partial}{\partial t^Q} + \left((t^Q + 1) \left(\frac{\partial^2 f_0(t^Q + 1)}{\partial (t^Q)^2} - \frac{\partial f_0(t^Q + 1)}{\partial t^Q} \right) \frac{\partial}{\partial t^R} - (t^Q + 1) \frac{\partial f_0(t^Q + 1)}{\partial t^Q} \right) \frac{\partial}{\partial t^S} \\
&= s_P - \frac{\partial}{\partial t^Q} + \left(\frac{5}{2} t^Q + \frac{5}{2} \right) \frac{\partial}{\partial t^R} - \left(\frac{5}{2} (t^Q)^2 + \frac{5}{2} t^Q + \frac{5}{6} \right) \frac{\partial}{\partial t^S} \\
&= s_P - s_Q + \frac{5}{2}s_R - \frac{5}{6}s_S.
\end{align*}
\]

Written in matrix form:

\[(337) \quad \begin{pmatrix} \tilde{s}_S \\ \tilde{s}_R \\ \tilde{s}_Q \\ \tilde{s}_P \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 5 & -5 & 1 & 0 \\ -\frac{5}{6} & \frac{5}{2} & -1 & 1 \end{pmatrix} \begin{pmatrix} s_S \\ s_R \\ s_Q \\ s_P \end{pmatrix}.\]
The monodromy matrix is the exponential of the following nilpotent matrix:

\[
\begin{pmatrix}
0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & -5 & 0 & 0 \\
0 & 0 & -1 & 0
\end{pmatrix}
\]

This matrix is the matrix of the cup product with \(-Q\):

\[
Q \cdot \begin{pmatrix}
S \\
R \\
Q \\
P
\end{pmatrix} = \begin{pmatrix}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 5 & 0 \\
0 & 0 & 1
\end{pmatrix} \cdot \begin{pmatrix}
S \\
R \\
Q \\
P
\end{pmatrix}.
\]

9. Conclusions and Speculations

In our attempt to unify Witten Conjecture/Kontsevich Theorem with mirror symmetry of the quintic, we have found that methods of statistical physics to be very useful. By the mean field theory developed by Dijkgraaf, Eguchi and his collaborators, we have written down the integrable hierarchy associated with the GW theory of the quintic. This leads to the structure of Frobenius manifold developed by Dubrovin and his collaborators on the small phase space of the quintic. We also present the special Kähler geometry on the small phase. In carrying out the explicit computations, we have reduced to the computations of the free energy on the small phase space. Note we are working on the \(A\)-side side, but many geometric structures originally discovered on the \(B\)-theory side naturally emerge. So we feel it is natural to refer to them as emergent geometry.

Such results reveal the similarities and differences between the GW theory of a point and the GW theory of the quintic. And the similarities and differences suggest some directions for future investigations which we now present some speculations. In both cases we obtain integrable hierarchies. In case of a point the integrable hierarchy is the KdV hierarchy, which is a reduction of the KP hierarchy. This suggests that the integrable hierarchy for the quintic might be a reduction of the 4-component KP hierarchy. It will be interesting to check whether this is the case, because in case of a point one can identify the partition function as an element in the fermionic Fock space via the boson-fermion correspondence via the Kac-Schwarz operator \cite{25}. An explicit formula for the affine coordinates of the corresponding element in the Sato Grassmannian has been obtained by the author \cite{36} using
the Virasoro constraints. An alternative derivation using the KP hierarchy was later given by Balogh-Yang [1]. A formula for the n-point function in all genera based on the affine coordinates of an element in the Sato Grassmannian has been derived by the author [39]. In particular it can be applied to the Witten-Kontsevich tau-function. In a work in progress we will generalize this formula to n-component KP hierarchy.

Another direction of search for unification is the Eynard-Orantin topological recursions [17]. In [35] the author proved that the GW theory of a point satisfies the EO topological recursion, and in this case the recursion is equivalent to the DVV Virasoro constraints. Furthermore, the spectral curve in this case lies in a family of curves obtained by computing the genus zero one-point function together with a Laplace transform. The starting point of most of the computations in this paper is the genus zero one-point function and in the end we also take a Laplace transform to get the deformed dual flat coordinates. We speculate that this is not just a coincidence, it means that the EO topological recursion should also hold for the quintic.

Acknowledgements. The author is partly supported by NSFC grants 11661131005 and 11890662.

References

[1] F. Balogh, D. Yang, Geometric interpretation of Zhou’s explicit formula for the Witten-Kontsevich tau function, arXiv:1412.4419.
[2] P. Candelas, X. C. de la Ossa, P.S. Green, L. Parkes, A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory. Nuclear Phys. B 359 (1991), no. 1, 21-74.
[3] R. Dijkgraaf, H. Verlinde, and E. Verlinde, Topological strings in $d < 1$, Nuclear Phys. B 352 (1991), 59-86.
[4] R. Dijkgraaf, E. Witten, Mean field theory, topological field theory, and multi-matrix models, Nuclear Phys. B 342 (1990), no. 3, 486-522.
[5] B. Dubrovin, Integrable systems in topological field theory, Nuclear Phys. B 379 (1992), no. 3, 627-689.
[6] B. Dubrovin, S. P. Novikov, Hydrodynamics of weakly deformed soliton lattices. Differential geometry and Hamiltonian theory, Russian Math. Surveys 44 (1989), no. 6, 35-124.
[7] B. Dubrovin, Integrable systems and classification of 2-dimensional topological field theories. Integrable systems (Luminy, 1991), 313-359, Progr. Math., 115, Birkhäuser Boston, Boston, MA, 1993.
[8] B. Dubrovin, Geometry of 2 D topological field theories. Integrable systems and quantum groups (Montecatini Terme, 1993), 120-348, Lecture Notes in Math., 1620, Fond. CIME/CIME Found. Subser., Springer, Berlin, 1996.
[9] B. Dubrovin, *Flat pencils of metrics and Frobenius manifolds*, Integrable systems and algebraic geometry (Kobe/Kyoto, 1997), 47-72, World Sci. Publ., River Edge, NJ, 1998.

[10] B. Dubrovin, *On almost duality for Frobenius manifolds*. Geometry, topology, and mathematical physics, 75-132, Amer. Math. Soc. Transl. Ser. 2, 212, Adv. Math. Sci., 55, Amer. Math. Soc., Providence, RI, 2004.

[11] B. Dubrovin, *Gromov-Witten invariants and integrable hierarchies of topological type*. Topology, geometry, integrable systems, and mathematical physics, 141-171, Amer. Math. Soc. Transl. Ser. 2, 234, Adv. Math. Sci., 67, Amer. Math. Soc., Providence, RI, 2014.

[12] B. Dubrovin, S.-Q. Liu, D. Yang, Y. Zhang, *Hodge integrals and tau-symmetric integrable hierarchies of Hamiltonian evolutionary PDEs*, Adv. Math. 293 (2016), 382-435.

[13] B. Dubrovin, Y. Zhang, *Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov-Witten invariants*, arXiv:math.DG/0108160.

[14] T. Eguchi, E. Getzler, C.-S. Xiong, *Topological gravity in genus 2 with two primary fields*, Adv. Theor. Math. Phys. 4 (2000), no. 4, 981-1000.

[15] T. Eguchi, Y. Yamada, S.-K. Yang, *On the genus expansion in the topological string theory*, Rev. Math. Phys. 7 (1995), no. 3, 279-309.

[16] T. Eguchi, C.-S. Xiong, *Quantum cohomology at higher genus: topological recursion relations and Virasoro conditions*, Adv. Theor. Math. Phys. 2 (1998), no. 1, 219-229.

[17] B. Eynard, N. Orantin, *Invariants of algebraic curves and topological expansion*, Commun. Number Theory Phys. 1 (2007), no. 2, 347-452, arXiv:math-ph/0702045.

[18] C. Faber, R. Pandharipande, *Hodge integrals and Gromov-Witten theory*, Invent. Math. 139 (2000), no. 1, 173-199.

[19] D.S. Freed, *Special Kähler manifolds*, Comm. Math. Phys. 203 (1999), no. 1, 31-52.

[20] E. Getzler, *Intersection theory on $\overline{M}_{1,4}$ and elliptic Gromov-Witten invariants*, J. Amer. Math. Soc., 10 (1997) (4), 973-998 (1997).

[21] E. Getzler, *Topological recursion relations in genus 2*. In: Integrable Systems and Algebraic Geometry, World Sci. Publishing, River Edge, NJ, 1998, 73-106.

[22] A.B. Givental, *Equivariant Gromov-Witten invariants*, Internat. Math. Res. Notices 1996, no. 13, 613-663.

[23] R. Gopakumar, C. Vafa, *On the gauge theory/geometry correspondence*, Adv. Theor. Math. Phys. 3 (1999), no. 5, 1415-1443.

[24] C. Itzykson, J B. Zuber, *Combinatorics of the modular group II the Kontsevich integrals*, International Journal of Modern Physics A, (1992) 7(23): 5661-5705.

[25] V. Kac, A. Schwarz, *Geometric interpretation of the partition function of 2D gravity*, Phys. Lett. B 257 (1991), no. 3-4, 329-334.

[26] M. Kontsevich, *Intersection theory on the moduli space of curves and the matrix Airy function*, Comm. Math. Phys. 147 (1992), no. 1, 1-23.

[27] B.H. Lian, K. Liu, S.-T. Yau, *Mirror principle. I*. Asian J. Math. 1 (1997), no. 4, 729-763.
[28] Y.-J. Lin, J. Zhou, *Topological recursion relations from Pixton relations*, Acta Math. Sin. 33 (2017), no. 4, 470-494.

[29] M. Mariño, G. Moore, *Counting higher genus curves in a Calabi-Yau manifold*, Nuclear Phys. B 543 (1999), no. 3, 592-614.

[30] S. Nishigaki, T. Yoneya, *A nonperturbative theory of randomly branching chains*, Nuclear Physics B, 348 (1991) (3): 787-807.

[31] N. J. A. Sloane, *The On-Line Encyclopedia of Integer Sequences*, http://oeis.org 2013.

[32] R. Pandharipande, A. Pixton, D. Zvonkine, *Relations on $\overline{M}_{g,n}$ via 3-spin structures*, J. Amer. Math. Soc. 28 (2015), no. 1, 279-309.

[33] Q. Zhang, J. Zhou, *On Itzykson-Zuber ansatz*, J. High Energy Phys. 2019, no. 9, 075, 49 pp.

[34] E. Witten, *Two-dimensional gravity and intersection theory on moduli spaces*, Surveys in Differential Geometry, vol.1 (1991), 243-269.

[35] J. Zhou, *Topological recursions of Eynard-Orantin type for intersection numbers on moduli spaces of curves*, Lett. Math. Phys. 103 (2013), no. 11, 1191-1206.

[36] J. Zhou, *Explicit formula for Witten-Kontsevich tau-function*, [arXiv:1306.5429](http://arxiv.org/abs/1306.5429).

[37] J. Zhou *On topological 1D gravity. I*, arXiv preprint [arXiv:1412.1604](http://arxiv.org/abs/1412.1604) 2014.

[38] J. Zhou, *Quantum deformation theory of the Airy curve and mirror symmetry of a point*, [arXiv:1405.5296](http://arxiv.org/abs/1405.5296).

[39] J. Zhou, *Emergent geometry and mirror symmetry of a point*, [arXiv:1507.01679](http://arxiv.org/abs/1507.01679).

Department of Mathematical Sciences, Tsinghua University, Beijing, 100084, China

E-mail address: jianzhou@mail.tsinghua.edu.cn