Article

Gröbner–Shirshov Bases Theory for Trialgebras

Juwei Huang and Yuqun Chen*

School of Mathematical Sciences, South China Normal University, Guangzhou 510631, China; juwei1985@126.com
* Correspondence: yqchen@scnu.edu.cn

Abstract: We establish a method of Gröbner–Shirshov bases for trialgebras and show that there is a unique reduced Gröbner–Shirshov basis for every ideal of a free trialgebra. As applications, we give a method for the construction of normal forms of elements of an arbitrary trisemigroup, in particular, A.V. Zhuchok's (2019) normal forms of the free commutative trisemigroups are rediscovered and some normal forms of the free abelian trisemigroups are first constructed. Moreover, the Gelfand–Kirillov dimension of finitely generated free commutative trialgebra and free abelian trialgebra are calculated, respectively.

Keywords: Gröbner–Shirshov basis; normal form; Gelfand–Kirillov dimension; trialgebra; trisemigroup

1. Introduction

The notion of a trialgebra (trioid also known as trisemigroup) was introduced by Loday [1] and investigated in many papers (see, for example, [1–5]). There are several motivations for the study of trialgebras. First, trialgebras and trioids are closely related to Leibniz 3-Algebras [6], and Rota–Baxter operators [7]. Secondly, many results obtained for trialgebras can be applied to trioids. In addition, lastly, if the operation ⊥ coincides with ⊣ or ⊢, then we obtain a dialgebra (dimonoid) [8]. If all operations of a trialgebra (trioid) coincide, we obtain an associative algebra (semigroup). Thus, trialgebras are generalizations of dialgebras and associative algebras. The classes of dialgebras and dimonoids were studied by various authors (see, for instance, [9–13]). Loday [1] constructed a free one generator trialgebra and a free trioid of rank 1. A.V. Zhuchok [2,3] constructed the free trioids of an arbitrary rank and the free commutative trioids.

Gröbner or Gröbner–Shirshov bases theory was first introduced by Buchberger [14] for commutative algebras and independently by Shirshov [15] for non-associative algebras [16,17] and Lie algebras [16]. Then, it was developed for various kind of algebras and widely used in different branches of mathematics. Gröbner bases and Gröbner–Shirshov bases theories have become an effective computational tool for solving the following classical problems about: rewriting system; normal form; word problem; growth function; conjugacy problem; embedding theorem; PBW-type theorem; extension, etc. See, for example, the books [18–22] and the survey [23–27].

The key in establishing Gröbner–Shirshov bases theory for certain algebras is to establish the “Composition-Diamond lemma (CD lemma)” for such algebras. The name “CD lemma” combines the Neuman Diamond Lemma [28], the Shirshov Composition Lemma [17], and the Bergman Diamond Lemma [29].

Trialgebras are generalizations of dialgebras and associative algebras, so it is natural to ask what kind of properties of associative algebras and dialgebras remain valid for trialgebras. For instance, CD lemma for dialgebras has been established by Bokut, Chen, and Liu in 2010 [12] and by Zhang and Chen in 2017 [13]. Thus, we shall establish the CD lemma for trialgebras and thus offer a way of constructing normal forms of elements of an arbitrary trisemigroup. Moreover, we prove that every ideal of a free trialgebra has a unique reduced Gröbner–Shirshov basis. The method we used is similar to what was done for dialgebras in [12,13]. However, the extension is not obvious because more operations...
are involved and the difficulty increases. First, we must ensure that a well ordering on monomials is more or less compatible with trialgebraic operations. Second, a trialgebra has one more operation than dialgebra, so difficulty in the proof of some critical lemmas increases naturally. These reasons make us encounter more difficulties in the process of proving CD lemma for the trialgebra case.

The paper is organized as follows: in Section 2, we first recall the linear basis constructed by Loday and Ronco [1] of the free trialgebra. In Section 3, we elaborate the method of Gröbner–Shirshov bases for trialgebras and trisemigroups proving CD lemma for the trialgebra case.

(ii) For all triwords

(i) For every \(x \)

we apply the method of Gröbner–Shirshov bases for certain trialgebras and trisemigroups ordering on the linear basis, there is a unique reduced Gröbner–Shirshov basis for every ideal of free trialgebra. In Section 4, we give a detailed method to construct a set of normal forms and their Gelfand–Kirillov dimensions.

In Section 3, we elaborate the method constructed by Loday and Ronco [1] of the free trialgebra. In Section 4, we give a detailed method to construct a set of normal forms of elements of a free commutative trisemigroup that is constructed by [2]. Moreover, we apply the method of Gröbner–Shirshov bases for certain trialgebras and trisemigroups to obtain normal forms and their Gelfand–Kirillov dimensions.

2. Preliminaries

Throughout the paper, we fix a field \(k \). For a nonempty set \(X \), we denote by \(X^+ \) the free semigroup generated by \(X \), which consists of all associative words on \(X \). Then, we denote by \(X^* = X^+ \cup \{ \varepsilon \} \) the free monoid generated by \(X \), where \(\varepsilon \) is the empty word. For every \(u = x_1x_2...x_n \in X^+ \), where \(x_1,...,x_n \in X \), we define the length \(\ell(u) \) of \(u \) to be \(n \). For convenience, we define \(\ell(\varepsilon) = 0 \).

Definition 1 ([1]). An associative trialgebra (resp. trisemigroup), trialgebra for short, is a \(k \)-module \(T \) (resp. a set \(T \)) equipped with three binary associative operations: \(\bot \) called left, \(\top \) called right, and \(\perp \) called middle, satisfying the following eight identities:

\[
\begin{align*}
(a \bot (b \perp c)) &= a \bot (b \perp c), \\
(a \top b) \perp c &= (a \top b) \perp c, \\
(a \perp b) \bot c &= (a \perp b) \bot c, \\
(a \bot b) \perp c &= (a \bot b) \perp c, \\
(a \top b) \bot c &= (a \top b) \bot c, \\
(a \perp b) \bot c &= (a \perp b) \bot c, \\
(a \bot b) \bot c &= (a \bot b) \bot c.
\end{align*}
\]

(1)

for all \(a, b, c \in T \).

Note that, in [1–3], the authors call trisemigroups trioids, and, in [30], they are called trisemigroups. Here, we follow the terminology of [30].

Definition 2. For an arbitrary set \(X \), the triwords over \(X \) are defined inductively as follows:

(i) For every \(x \in X \), the expression \((x) \) is a triword over \(X \) of length 1;

(ii) For all triwords \((v) \) and \((w) \) of lengths \(n \) and \(m \), respectively, all monomials \(((v) \bot (w))\),

\(((v) \top (w)) \) and \(((v) \perp (w)) \) are triwords over \(X \) of length \(n + m \).

Recall that, for every trialgebra \(T \), for all \(b_1,...,b_m \in T \), every parenthesizing of

\[
(b_1 \top \cdots \top b_{m_1-1}) \bot (b_{m_1} \top \cdots \top b_{m_2-1}) \perp (b_{m_2} \top \cdots \top b_{m_3-1}) \perp \cdots \perp (b_{m_r} \top \cdots \top b_m)
\]

gives the same element in \(T \) [1], and we denote such an element by \([b_1...b_m]_{U}\), where \(U \) is defined to be the set \(\{m_i \mid 1 \leq i \leq r \} \). In particular, assume that \(T \) is the free trialgebra generated by \(X \). Then, the triword (with an arbitrary bracketing way)

\[
(x_{i_1} \bot \cdots \bot x_{i_{m_1}-1}) \bot (x_{i_{m_1}} \bot \cdots \bot x_{i_{m_2}-1}) \perp \cdots \perp (x_{i_{m_r}} \bot \cdots \bot x_{i_{m+1}})
\]
over X can be determined by the sequence $u := x_{i_1} \cdots x_{i_{m+r}}$, and the set of index

$$U := \{ m_i \mid 1 \leq i \leq r \}.$$

Therefore, we call such a triword a normal triword over X and denote it by $[u]_U$, and call $x_{m_1}, x_{m_2}, \ldots, x_{m_r}$ the middle entries of $[u]_U$. In case we would like to emphasize the middle entries, we also denote

$$[u]_{m} := x_{i_1} \cdots x_{i_{m_1-1}}x_{i_{m_1}} \cdots x_{i_{m_2-1}} \cdots x_{i_{m_r}} \cdots x_{i_{m+r}}.$$

We call u the associative word of the triword $[u]_U$. Let $\mathcal{P}(\mathbb{N})$ be the power set of the positive integers \mathbb{N}. We define

$$[X]^+_{\mathcal{P}(\mathbb{N})} := \{ [u]_U \mid u \in X^+, \emptyset \neq U \subseteq \{1, \ldots, \ell(u)\} \}$$

to be the set of all normal triwords on X.

In [1], Loday and Ronco constructed a linear basis for a one-generated free trialgebra, which can be easily generalized for the construction of a linear basis for an arbitrary free trialgebra, see also [3].

Proposition 1 ([1]). The set $[X]^+_{\mathcal{P}(\mathbb{N})}$ of all normal triwords over X forms a linear basis of the free trialgebra generated by X.

For every integer $k \in \mathbb{Z}$ and $\emptyset \neq U \subseteq \mathcal{P}(\mathbb{N})$, we define

$$U + k = \{ m + k \mid m \in U \}$$

and define $[e]_\emptyset = e$. For convenience, when we write a set $U = \{ m_1, m_2, \ldots, m_r \} \in \mathcal{P}(\mathbb{N})$, we always assume $m_1 < m_2 < \ldots < m_r$. Moreover, the cardinality of the set U is denoted by $|U|$, and we simply denote $[u]_{|U|}$ by $[u]_U$.

Let $\text{Tri}(X)$ be the free trialgebra generated by X. Then, by [1], $\text{Tri}(X)$ is the free k-module with a k-basis $[X]^+_{\mathcal{P}(\mathbb{N})}$ and for all $[u]_U, [v]_V \in [X]^+_{\mathcal{P}(\mathbb{N})}$, we have

$$[u]_U \cdot [v]_V = [uv]_{(U) + (V)}; \quad [u]_U \cdot \overline{[v]_V} = [uv]_U; \quad [u]_U \cdot \overline{[v]_V} = [uv]_{U \cup \{(u) + (V)\}}.$$

Moreover, with the above products, $(([X]^+_{\mathcal{P}(\mathbb{N})}, +, \cdot, \overline{\cdot})$ forms the free trisemigroup generated by X [3]. Though $[e]_\emptyset$ is not an element in $[X]^+_{\mathcal{P}(\mathbb{N})}$, we still extend the operations \cdot and $\overline{\cdot}$ involving $[e]_\emptyset$ to make formulas in the sequel simplified. More precisely, we extend them with the following convention:

$$[e]_\emptyset \cdot [u]_U = [u]_U \cdot [e]_\emptyset = [u]_U \overline{[e]_\emptyset} = [e]_\emptyset \overline{[u]_U} = [u]_{U \cup \{\emptyset\}} \quad \text{for every} \quad [u]_U \in [X]^+_{\mathcal{P}(\mathbb{N})}.$$

The following lemma shows that every triword can be written as a leftnormed product of triwords.

Lemma 1. Let $[u]_U = [u_1 u_2 \cdots u_n]_U \in [X]^+_{\mathcal{P}(\mathbb{N})}$ with $u_1, \ldots, u_n \in X^+$. Then, there exist some operations $\delta_1, \ldots, \delta_{n-1} \in \{ -, +, \cdot, \overline{\cdot} \}$ such that

$$[u]_U = ([u_1]_{\delta_1} [u_2]_{\delta_2} [u_3]_{\delta_3} \cdots [u_n]_{\delta_{n-1}})_{\delta_n} \quad \text{(leftnormed bracketing)}.$$

Proof. We use induction on n to prove the claim. For $n = 1$, there is nothing to prove. Assume $n > 1$ and $U = \{ m_1, \ldots, m_r \}$. There are several subcases to consider:
Case 1. If $\ell(u_1...u_{n-1}) \geq m_r$, then we have \([u]_U = [u_1...u_{n-1}]_U \uparrow [u_n]_1$. By induction hypothesis, we obtain
\[
[u]_U = (((([u_1]_{i_1}\delta_1[u_2]_{i_2})\delta_2[u_3]_{i_3})... \uparrow [u_n]_1.
\]

Case 2. If $\ell(u_1...u_{n-1}) < m_1$, then we have \([u]_U = [u_1...u_{n-1}]_1 \uparrow [u_n]_{-(\ell(u_1...u_{n-1})+U)}$. By induction hypothesis, we obtain
\[
[u]_U = (((([u_1]_{i_1}\delta_1[u_2]_{i_2})\delta_2[u_3]_{i_3})... \uparrow [u_n]_{-(\ell(u_1...u_{n-1})+U)}.
\]

Case 3. If $m_i \leq \ell(u_1...u_{n-1}) < m_i+1$ for some $i \in \{1,...,r-1\}$, then we have
\[
[u]_U = [u_1...u_{n-1}]\{m_1,...,m_i\} \downarrow [u_n]_{-(\ell(u_1...u_{n-1})+(m_i+1,...,m_r))}.
\]

By induction hypothesis, we obtain
\[
[u]_U = (((([u_1]_{i_1}\delta_1[u_2]_{i_2})\delta_2[u_3]_{i_3})... \downarrow [u_n]_{-(\ell(u_1...u_{n-1})+(m_i+1,...,m_r))}.
\]

The proof is completed. \(\square\)

3. Composition-Diamond Lemma for Trialgebras

In this section, we establish a method of Gröbner–Shirshov bases for trialgebras. By Proposition 1, \([X^+]_{\mathcal{P}([\mathbb{N})]}\) forms a linear basis of the free trialgebra \(\text{Tri}(X)\) generated by \(X\).

We first introduce a good ordering on \(X^+\). Let \(X\) be a well-ordered set. We define the deg-lex ordering on \(X^+\) as the following: for \(u = x_{i_1}x_{i_2}...x_{i_m}, v = x_{i_1}x_{i_2}...x_{i_m} \in X^+\), where \(x_{i_1}, x_{i_2} \in X\), we define
\[
u > v \quad \text{if} \quad (\ell(u), x_{i_1}, x_{i_2}, ..., x_{i_m}) > (\ell(v), x_{i_1}, x_{i_2}, ..., x_{i_m}) \text{ lexicographically.}
\]

A well ordering \(>\) on \(X^+\) is called monomial if, for all \(u, v, w \in X^+\), we have
\[
u > v \Rightarrow u\nu > v\nu \text{ and } u > v \Rightarrow u\nu > v\nu.
\]

Clearly, the above deg-lex ordering on \(X^+\) is monomial.

We proceed to define a well ordering on \(\mathcal{P}(\mathbb{N}) \setminus \{\emptyset\}\). For all \(U = \{m_1, ..., m_r\}\) and \(V = \{n_1, ..., n_i\} \subset \mathcal{P}(\mathbb{N}) \setminus \{\emptyset\}\), we define
\[
u > V \quad \text{if} \quad (r, m_1, ..., m_r) > (t, n_1, ..., n_i) \text{ lexicographically.}
\]

Fix a monomial ordering \(>\) on \(X^+\). Then, we define an order on \([X^+]_{\mathcal{P}([\mathbb{N})]}\) as follows.

Definition 3. For all \([u]_U, \ [v]_V \in [X^+]_{\mathcal{P}([\mathbb{N})]}\),
\[
[u]_U > [v]_V \quad \text{if} \quad (u, U) > (v, V) \text{ lexicographically,}
\]
where we compare \(u\) and \(v\) by the fixed ordering on \(X^+\). This order is called the monomial-centers ordering.

Though we use the same notation \(>\) for orderings on \(X^+, \mathcal{P}(\mathbb{N}) \setminus \{\emptyset\}\) and \([X^+]_{\mathcal{P}([\mathbb{N})]}\), no confusion will arise because the monomials under consideration are always clear. It is clear that a monomial-centers ordering is a well ordering on \([X^+]_{\mathcal{P}([\mathbb{N})]}\). Finally, if \(>\) is the deg-lex ordering on \(X^+\), then we call the ordering defined by (2) the deg-lex-centers ordering on \([X^+]_{\mathcal{P}([\mathbb{N})]}\).

For all \([u]_U, [v]_V, \ [u']_U', [v']_V' \in [X^+]_{\mathcal{P}([\mathbb{N})]}\) and \(\delta, \delta' \in \{-, r, \perp\}\), assume \([u]_U \delta[v]_V = [w]_W\) and \([u']_U' \delta'[v']_V' = [w']_W'\). Then, by \([u]_U \delta[v]_V > [u']_U' \delta'[v']_V'\), we mean \([w]_W > [w']_W'\).
From now on, we always assume that $>$ is a monomial-centers ordering $> \text{on } [X^+]_{p(n)}$.

We observe that the monomial-centers ordering $> \text{on } [X^+]_{p(n)}$ is monomial in the following sense:

Lemma 2. Let $[u]_U$, $[v]_V$ and $[w]_W \in [X^+]_{p(n)}$ with $[u]_U > [v]_V$. Then, we have
\[
[w]_W \vdash [u]_U > [w]_W \vdash [v]_V, \quad [u]_U \vdash [w]_W > [v]_V \vdash [w]_W, \quad [u]_U \vdash [w]_W \geq [v]_V + [w]_W, \quad [w]_W \vdash [u]_U \geq [w]_W + [v]_V.
\]

Moreover, if $u > v$, then $[u]_U \vdash [w]_W > [v]_V \vdash [w]_W$ and $[w]_W \vdash [u]_U > [w]_W + [v]_V$.

For every polynomial $f = \sum_{i=1}^n a_i [u]_{i_1} \in \text{Tri}(X)$, where $0 \neq a_i \in k$, $[u]_{i_1} \in [X^+]_{p(n)}$, and $[u_1]_{i_1} \geq [u_2]_{i_2} \geq \ldots \geq [u_n]_{i_n}$, we call $[u_1]_{i_1}$ the leading monomial of f, denoted by \overline{f}, and we denote by \overline{f} the associative word of \overline{f}; finally, a_1 the leading coefficient of \overline{f}, denoted by $\text{lc}(f)$. A polynomial f is called monic if $\text{lc}(f) = 1$, and a nonempty subset S of $\text{Tri}(X)$ is called monic if every element in S is monic. We call a nonzero polynomial $f \in \text{Tri}(X)$ strong if $\overline{f} > \overline{r}$, where $r_j := f - \text{lc}(f)f$.

For convenience, we define $0 \equiv \overline{0} = 0$, $\overline{0} < u$ and $0 < [u]_U$ for any $[u]_U \in [X^+]_{p(n)}$.

From Lemma 2, it follows that

Lemma 3. Let $0 \neq h \in \text{Tri}(X)$ and $[w]_W \in [X^+]_{p(n)}$. Then, we have
\[
\begin{align*}
([w]_W \vdash \overline{h}) &= [w]_W \vdash \overline{h}, & ([h]_W \vdash [w]_W) &= \overline{h} \vdash [w]_W, \\
([w]_W \vdash \overline{h}) &= [w]_W \vdash \overline{h}, & ([h]_W \vdash [w]_W) &= \overline{h} \vdash [w]_W, \\
([w]_W \vdash \overline{h}) &\leq [w]_W \vdash \overline{h}, & ([h]_W \vdash [w]_W) &\leq \overline{h} \vdash [w]_W.
\end{align*}
\]

Moreover, if h is strong, then we obtain $([w]_W \vdash \overline{h}) = [w]_W \vdash \overline{h}$ and $([h]_W \vdash [w]_W) = \overline{h} \vdash [w]_W$.

Now, we begin to study elements of an ideal generated by a subset of $\text{Tri}(X)$. We begin with the following notation: For every $[u]_U = [x_{i_1} ... x_{i_n}]_U \in [X^+]_{p(n)}$ such that x_{i_1}, \ldots, x_{i_n} lie in X, by Lemma 1, we may assume that $[u]_U = ([v]_V, \delta_1 x_{i_1}) \delta_2 [w]_W$. Then, for every polynomial $f \in \text{Tri}(X)$, we define
\[
[u]_U|_{x_{i_1}=f} = ([v]_V, \delta_1 f) \delta_2 [w]_W,
\]
where, by convention, if exactly one of $[u]_U$ and $[v]_V$ is $[e]_\varnothing$, then we define $[u]_U, \delta[v]_V = [wv]_{U \cup V}$, in particular, the formula (3) makes sense. Clearly, the resulting polynomial $([v]_V, \delta_1 f) \delta_2 [w]_W$ is independent of the choice of $[v]_V, [w]_W$ and δ_1, δ_2. For simplicity, we usually denote by $(v|f|w)$ a polynomial of the form (3).

Definition 4. Let S be a monic subset of $\text{Tri}(X)$. Then, for every $[u]_U = [x_{i_1} ... x_{i_n}]_U \in [X^+]_{p(n)}$ such that x_{i_1}, \ldots, x_{i_n} lie in X and for every $s \in S$, $[u]_U|_{x_{i_1}=s}$ is called an s-polynomial or S-polynomial, and it is called normal if either $t \in U$ or s is strong.

Remark 1. By Lemma 1 and Definition 4, it follows that

(i) Every S-polynomial (ab) has an expression:
\[
(ab) = ([a]_A \delta_1 s) \delta_2 [b]_B
\]
for some $\delta_1, \delta_2 \in \{+, -, \perp\}$ and $a, b \in X^*$. In (4), by convention, we always assume $\delta_1 \in \{+, -\}$ (resp. $\delta_2 \in \{+, -\}$) in case $[a]_A = [e]_\varnothing$ (resp. $[b]_B = [e]_\varnothing$). Then, $([a]_A \delta_1 s) \delta_2 [b]_B$ is a normal S-polynomial if and only if one of the following conditions holds:
(a) $\delta_1 \in \{\top, \bot\}$ and $\delta_2 \in \{\top, \bot\}$ hold.
(b) s is strong.

Moreover, if $([a]_A \delta_1 s)\delta_2 [b]_B$ is normal and $([a]_A \delta_1 s)\delta_2 [b]_B = [w]_W$, then we denote $[asb]_W := ([a]_A \delta_1 s)\delta_2 [b]_B$.

(ii) If $(asb) = ([a]_A \delta_1 s)\delta_2 [b]_B$ is a normal S-polynomial, then $([u]_U \delta_1 s)\delta_2 [v]_V$ is still a normal S-polynomial for all $[u]_U, [v]_V \in [X^+]_{p(l)}$.

(iii) Let $([a]_A \delta_1 s)\delta_2 [b]_B$ be a normal S-polynomial and assume that s is not strong. Then, both $([a']_A, \delta_3, ([a]_A \delta_1 s)\delta_2 [b]_B)$ and $([a]_A \delta_1 s)\delta_2 [b]_B, [b']_B$ are normal S-polynomials if and only if $\delta_3 \in \{\top, \bot\}$ and $\delta_4 \in \{\top, \bot\}$.

The following lemma follows from the definition of normal S-polynomials.

Lemma 4. Let $(asb) = ([a]_A \delta_1 s)\delta_2 [b]_B$ be a normal S-polynomial. Assume $\overline{s} = [u]_U$ and $\overline{(asb)} = [w]_W$. Then, we have

$$(\ell(a) + U) \subseteq W \subseteq \{(1, ..., \ell(a), \ell(a\overline{s}) + 1, ..., \ell(a\overline{s}) + \ell(b)) \cup (\ell(a) + U)\},$$

or

$$\emptyset \neq W \subseteq \{1, ..., \ell(a), \ell(a\overline{s}) + 1, ..., \ell(a\overline{s}) + \ell(b)\}.$$

Moreover, if W is a nonempty subset of $\{1, ..., \ell(a), \ell(a\overline{s}) + 1, ..., \ell(a\overline{s}) + \ell(b)\}$, then s is strong. Finally, for every such a set W satisfying the above conditions, there exists a normal S-polynomial (asb) such that $\overline{(asb)} = [w]_W$.

In view of Lemma 4, for every normal S-polynomial $(asb) = ([a]_A \delta_1 s)\delta_2 [b]_B$ with $\overline{s} = [u]_U$ and $\overline{(asb)} = [w]_W$, we define $P([asb])$ to be the set of all possible W for a normal S-polynomial of the form (asb) as in Lemma 4; in other words, we have

$$P([asb]) = \begin{cases} \{((\ell(a) + U) \cup W, W \mid W \subseteq \{1, ..., \ell(a), \ell(a\overline{s}) + 1, ..., \ell(a\overline{s}) + \ell(b)\}\} \setminus \{\emptyset\}, & \text{if } s \text{ is strong;} \\ \{((\ell(a) + U) \cup W \mid W \subseteq \{1, ..., \ell(a), \ell(a\overline{s}) + 1, ..., \ell(a\overline{s}) + \ell(b)\}\}, & \text{if } s \text{ is not strong.} \end{cases}$$

In particular, we have $P(s) = U$.

By Lemma 2, we immediately obtain the following lemma.

Lemma 5. Let (asb) be a normal s-polynomial and $[u]_U, [v]_V \in [X^+]_{p(l)}$. Then,

$$[u]_U \vdash [asb]_C \vdash [v]_V = [usabve]_{[u]_U + C}, \quad [u]_U \vdash [asb]_C \vdash [v]_V = [usabve]_{[u]_U + C, \vdash (asb) + C, V}.$$

$[u]_U \vdash [asb]_C \vdash [v]_V = [usabve]_{[u]_U + C}, \quad [u]_U \vdash [asb]_C \vdash [v]_C = [usabve]_{[u]_U + C, \vdash (asb) + C, V}.$

The following lemma shows that the set

$\operatorname{Irr}(S) := \{[v]_V \in [X^+]_{p(l)} \mid \forall [v]_V \neq [csd]_L \text{ for any normal S-polynomial } [csd]_L\}$

is a linear generating set of the quotient trialgebra $\operatorname{Tri}(X|S) := \operatorname{Tri}(X)/\operatorname{Id}(S)$, where $\operatorname{Id}(S)$ is the ideal of $\operatorname{Tri}(X)$ generated by S.

Lemma 6. Let S be a monic subset of $\text{Tri}(X)$. Then, for every nonzero polynomial $h \in \text{Tri}(X)$, we have

$$h = \sum a_i [v_i]_{v_j} + \sum \beta_j [asb]_{c_j},$$

for some $[v_i]_{v_j} \in \text{Irr}(S)$, $a_i, \beta_j \in k$, $a_j, b_j \in X^*$, $s_j \in S$, $[v_i]_{v_j} \leq h$ and $[asb]_{c_j} \leq h$.

Proof. Let $h = lc(h)\overline{h} + r_s$. If $\overline{h} \in \text{Irr}(S)$, then we define $h_1 = h - lc(h)\overline{h}$. If $\overline{h} \notin \text{Irr}(S)$, then we obtain $\overline{h} = \frac{1}{[asb]_{c_j}}$ for some normal S-polynomial $[asb]_{c_j}$. In addition, we define $h_1 = h - lc(h)[asb]_{c_j}$. In both cases, we have $h_1 < h$ and the result follows by induction on h.

Now, we shall introduce some conditions such that the set $\text{Irr}(S)$ is a linear basis of a $\text{Tri}(X|S)$. Our first step is to introduce the notation of composition.

Definition 5. Let S be a monic subset of $\text{Tri}(X)$. For all $g, h \in S$, $g \neq h$, we define compositions as follows:

(i) If g is not strong, then, for all $x \in X$ and $[u]_{\ell(u)} \in [X^+]_{\text{P}(k)}$, we call $x \rightarrow g$ a left multiplication composition of g and call $g \nrightarrow [u]_{\ell(u)}$ a right multiplication composition of g;

(ii) Let (chd) be a normal S-polynomial and suppose that $w = \overline{g} = \overline{c \overline{d}}$ for some words $c, d \in X^*$.

(a) If $P(g) \in P([chd])$, then we call

$$(g, h)_{x} = g - [chd]_{P(d)}$$

an inclusion composition of S.

(b) If $P(g) \notin P([chd])$ and both g and h are strong, then, for every $x \in X$, we call

$$(g, h)_{[wx]} = \lfloor xg \rfloor_{\ell(wx)} - \lfloor xchd \rfloor_{\ell(wx)}$$

a left multiplicative inclusion composition of S, and call

$$(g, h)_{[wx]} = \lfloor gx \rfloor_{\ell(wx)} - \lfloor chdx \rfloor_{\ell(wx)}$$

a right multiplicative inclusion composition of S.

(iii) Let (ga) be a normal g-polynomial and let (ch) be a normal h-polynomial. Suppose that there exists a word $w = \overline{g} = \overline{c \overline{d}}$ for some words $a, c \in X^*$ such that $[\overline{g}] + [\overline{h}] > \ell(w)$.

(a) If $P([ga]) \cap P([ch]) \neq \emptyset$, then, for every $W \in P([ga]) \cap P([ch])$, we call

$$(g, h)_{[w]} = [ga]_{w} - [ch]_{w}$$

an intersection composition of S.

(b) If $P([ga]) \cap P([ch]) = \emptyset$ and both g and h are strong, then, for every $x \in X$, we call

$$(g, h)_{[wx]} = \lfloor xga \rfloor_{\ell(wx)} - \lfloor xch \rfloor_{\ell(wx)}$$

a left multiplicative intersection composition of S, and call

$$(g, h)_{[wx]} = \lfloor gax \rfloor_{\ell(wx)} - \lfloor chx \rfloor_{\ell(wx)}$$

a right multiplicative intersection composition of S.

For all $f, f' \in \text{Tri}(X)$, $[w]_{\text{w}} \in [X^+]_{\text{P}(k)}$, we denote by

$$f \equiv f' \mod (S) \ (\text{resp.} \mod (S, [w]_{\text{w}})),$$
if \(f - f' = \sum a_i [a_i S b]_{\ell_c} \), where each \(a_i \in k \), \(s_i \in S \), \(a_i, b_i \in X^* \) and \([a_i S b]_{\ell_c} \leq f - f' \) (resp. \([a_i S b]_{\ell_c} < [w]_w \)). Furthermore, \(f \) is called trivial modulo \(S \) (resp. \(S, [w]_w \)), if
\[
 f \equiv 0 \mod (S) \quad (\text{resp. mod } (S, [w]_w)).
\]

A monic set \(S \) is said to be closed under left (resp. right) multiplication compositions if every left (resp. right) multiplication composition \(x \vdash g \) (resp. \(g \vdash [u]_{\ell(u)} \)) of \(S \) is trivial modulo \(S \). A monic set \(S \) is called a Gröbner–Shirshov basis in \(\text{Tri}(X) \) if \(S \) is closed under left and right multiplication compositions and every composition \((g, h)_{\mid u \mid} \) of \(S \) is trivial modulo \(S \).

We shall prove that, to some extent, the ordering \(< \) is compatible with the normal \(S \)-polynomials and normal trivords.

Lemma 7. Let \(S \) be a monic subset of \(\text{Tri}(X) \) that is closed under left multiplication compositions and assume \(g \in S \). If \(g \) is not strong, then, for every \([v]_{\mid P(v)\mid} \), we have \([v]_{\mid P(v)\mid} \vdash g \equiv 0 \mod (S).

Proof. We shall use induction on \([v]_{\mid P(v)\mid} \) to prove the claim. If \(\ell(v) = 1 \), then it is clear. Assume \(\ell(v) \geq 2 \) and \([v]_{\mid P(v)\mid} = [ux]_{\mid P(v)\mid}, u \in X^+, x \in X \). Then, \([v]_{\mid P(v)\mid} \vdash g = [u]_{\mid P(v)\mid} \vdash (x \vdash g) \) can be written as a linear combination of \(S \)-polynomials of the form \([u]_{\mid P(u)\mid} \vdash [csd]_{\mid L(u)\mid}, \) where \(s \in S \) and \([csd]_{\mid L(u)\mid} \leq (x \vdash g). \) Thus, we obtain
\[
([u]_{\mid P(u)\mid} \vdash [csd]_{\mid L(u)\mid}) \leq ([u]_{\mid P(u)\mid} \vdash [csd]_{\mid L(u)\mid}) \leq ([u]_{\mid P(u)\mid} \vdash (x \vdash g) = ([v]_{\mid P(v)\mid} \vdash g) \) and \(csd \leq x g \).

If \(s \) is strong, then \([u]_{\mid P(u)\mid} \vdash [csd]_{\mid L(u)\mid} \) is already a normal \(S \)-polynomial, and we are done. Now, we assume that \(s \) is not strong. If \(c \) is the empty word, then we have
\[
[u]_{\mid P(u)\mid} \vdash [csd]_{\mid L(u)\mid} = ([u]_{\mid P(u)\mid} \vdash s) \vdash [d]_{\mid L(u)\mid}
\]
and \((u s, \ell(u)) < (v g, \ell(v))\). If \(c \) is not the empty word, then we have \([csd]_{\mid L(u)\mid} = [c]_{\mid P(c)\mid} \delta [s]_{\mid P(c)\mid} \ell(c) + [L]_{\mid P(c)\mid}\), where \(\delta \) lies in \(\{\vdash, \downarrow\} \). Thus, we obtain
\[
[u]_{\mid P(u)\mid} \vdash [csd]_{\mid L(u)\mid} = ([uc] \vdash s) \vdash [d]_{\mid L(u)\mid}
\]
and \(L > \{1\} \). Since \([csd]_{\mid L(u)\mid} \leq [x g]_{\mid P(u)\mid} \), we obtain \(csd \leq x g \) and \((u c s, \ell(u c s)) < (v g, \ell(v))\). By induction, \([u]_{\mid P(u)\mid} \vdash [csd]_{\mid L(u)\mid} \) is a linear combination of \(S \)-polynomials of the form \([asb]_{\mid L'\mid} \vdash [d]_{\mid L'\mid}\), where \(s' \in S \) and \([asb]_{\mid L'\mid} \leq ([uc] \vdash s) \vdash [d]_{\mid L(u)\mid} \). By Lemma 5, \([asb]_{\mid L'\mid} \vdash [d]_{\mid L(u)\mid} \) is a normal \(S \)-polynomial. Thus, we deduce
\[
[asb]_{\mid L'\mid} \vdash [d]_{\mid L(u)\mid} \leq ([uc] \vdash s) \vdash [d]_{\mid L(u)\mid} = ([u]_{\mid P(u)\mid} \vdash [csd]_{\mid L(u)\mid}) \leq ([v]_{\mid P(v)\mid} \vdash g).
\]

The proof is completed. \(\square \)

Let \(g \in S \) be a polynomial that is not strong, and assume that \(g \vdash x \) is trivial modulo \(S \) for every \(x \in X \). Then, the following example shows that \(g \vdash [u]_{\ell(u)} \) may not be trivial modulo \(S \) for some \(u \in X^+ \).

Example 1 ([13] Example 3.12). Let \(X = \{x_1, x_2\}, x_1 > x_2 \). Assume that the characteristic of the underlying field \(k \) is not 2. Let \(S = \{f, g, h\}, \) where \(f = [x_1 x_2]_1 + [x_1 x_2]_2, g = [x_1 x_2]_1 - \frac{1}{2}[x_1 x_2 x_1]_2 - \frac{1}{2}[x_1 x_2 x_1]_1, h = [x_1 x_2 x_2]_3 - \frac{1}{2}[x_1 x_2 x_2]_2 - \frac{1}{2}[x_1 x_2 x_2]_1. \) These three polynomials are not strong. By a direct calculation, we have \(g \vdash x_1 = 0, h \vdash x_1 = 0, i = 1, 2, \) and \(f \vdash x_1 = 2g + f \vdash x_1 \equiv 0 \mod (S), \) \(f \vdash x_2 = 2h + f \vdash x_2 \equiv 0 \mod (S). \) However, \(f \vdash [x_1 x_2 x_1]_2 = 2[x_1 x_2 x_1]_1 \) is not trivial modulo \(S \) because \(f \vdash [x_1 x_2 x_1]_1 \) is not normal, and, for every polynomial \(f' \in \{g, h\}, \) we have \(f' \vdash x_1 = 0. \)
Lemma 8. Let S be a monic subset of $\text{Tri}(X)$ that is closed under left and right multiplication compositions. Then, for all normal S-polynomial $[ab]_c$ and normal triword $[u]_\iota \in [X^+]_{\Pi(S)}$, we have
\[
[u]_\iota \delta [ab]_c \equiv 0 \mod (S) \quad \text{and} \quad [ab]_c \delta [u]_\iota \equiv 0 \mod (S),
\]
where $\delta \in \{-\iota, \top, \bot\}$. Moreover, for every normal triword $[w]_w \in [X^+]_{\Pi(S)}$, if $a\overline{sb} < w$, then we have
\[
[u]_\iota \delta [ab]_c \equiv 0 \mod (S, [u]_\iota \delta [w]_w) \quad \text{and} \quad [ab]_c \delta [u]_\iota \equiv 0 \mod (S, [w]_w \delta [u]_\iota),
\]
where $\delta \in \{-\iota, \top, \bot\}$.

Proof. By Lemma 5, it suffices to show that $[u]_\iota \vdash [ab]_c$ and $[ab]_c \vdash [u]_\iota$ are trivial modulo S, where s is not strong. Thus, we assume that s is not strong.

We first prove that $[u]_\iota \vdash [ab]_c$ is trivial modulo S. By Lemma 1, obviously we have
\[
[u]_\iota \vdash [ab]_c = (([u]_\iota \vdash [a]_A) \vdash [s]_B \vdash [b]_B) = (([u]_\iota \delta_1 [u]_\iota \delta_2 [u]_\iota) \vdash [s]_B \vdash [b]_B),
\]
where $\delta_1 \in \{-\iota, \bot\}$ and $ua = u_1u_2$ with $u_1 \in X^*$ and $u_2 \in X^+$. If $[u]_\iota \iota = [\bot]_{\odot}$, then we have $\delta_1 = \top$ by convention. By Lemmas 7, 5 and 2, the result follows. Moreover, if $a\overline{sb} < w$, then we obtain
\[
\overline{uasb} < uw \quad \text{and} \quad ([u]_\iota \delta [ab]_c) \equiv 0 \mod (S, [u]_\iota \delta [w]_w).
\]

The proof for the case of $[ab]_c \vdash [u]_\iota$ is similar to the above case. More precisely, by Lemma 1, we have
\[
[a]_A \vdash [u]_\iota \vdash [s]_B \vdash [b]_B = ([a]_A \vdash ([u]_\iota \delta [u]_\iota) \delta_2 [u]_\iota),
\]
where $\delta_2 \in \{-\iota, \bot\}$ and $bu = u_1u_2$ with $u_1 \in X^+$ and $u_2 \in X^+$. Since S is closed under right multiplication compositions, the results follow by Lemmas 5 and 2. Moreover, if $a\overline{sb} < w$, then we have
\[
\overline{a\overline{sb}u} < uw \quad \text{and} \quad ([ab]_c \delta [u]_\iota) \equiv 0 \mod (S, [w]_w \delta [u]_\iota),
\]
where $\delta \in \{-\iota, \top, \bot\}$. Therefore, we deduce $[ab]_c \delta [u]_\iota \equiv 0 \mod (S, [w]_w \delta [u]_\iota)$.

The following corollary is useful in the sequel, which shows that, if we replace certain “subtriword” in a triword with a “small” normal S-polynomial, then we shall obtain a linear combination of “small” normal S-polynomials.

Corollary 1. Let S be a monic subset of $\text{Tri}(X)$ that is closed under left and right multiplication compositions. Let $[w]_w$ be a normal triword such that $([a]_A \delta_1 [u]_\iota) \delta_2 [b]_B = [w]_w$, and let f be a normal S-polynomial with $\overline{f} < [u]_\iota$. If $\overline{f} < u$, or if $\delta_1 \in \{-\iota, \bot\}$ and $\delta_2 \in \{-\iota, \bot\}$, then we have
\[
([a]_A \delta_1 f) \delta_2 [b]_B \equiv 0 \mod (S, [w]_w).
\]

Proof. If $\delta_1 \in \{-\iota, \bot\}$ and $\delta_2 \in \{-\iota, \bot\}$, then by Lemmas 5 and 2, $([a]_A \delta_1 f) \delta_2 [b]_B$ is a normal S-polynomial with
\[
([a]_A \delta_1 f) \delta_2 [b]_B \equiv (\delta_1 [u]_\iota) \delta_2 [b]_B = [w]_w,
\]
the result follows.

Now, we assume $\overline{f} < u$. By Lemma 8, $([a]_A \delta_1 f) \delta_2 [b]_B$ can be written as a linear combination of S-polynomials of the form $[cs']_l \delta_2 [b]_B$, where $s' \in S$ and $cs'd < au$. In addition, for every S-polynomial $[cs']_l \delta_2 [b]_B$, by Lemma 8 and by the fact that $cs'db < auw = w$, we have $[cs']_l \delta_2 [b]_B \equiv 0 \mod (S, [w]_w)$.

Now, we show that, if a monic set \(S \) is closed under left and right multiplication compositions, then the elements of the ideal \(\text{Id}(S) \) of \(\text{Tri}(X) \) can be written as linear combinations of normal \(S \)-polynomials.

Corollary 2. Let \(S \) be a monic subset of \(\text{Tri}(X) \) that is closed under left and right multiplication compositions. Then, every \(S \)-polynomial \((asb)\) has an expression of the form:

\[
(asb) = \sum a_i [a_i s_i b_i]_c,
\]

where each \(a_i \in k \), \(s_i \in S \), \(a_i, b_i \in X^* \).

Proof. Let \([u]_s\) be a triword such that \(s < [u]_s \). In addition, assume \((asb) = ([a]_A \delta i s)\delta [b]_b \) and \([w]_w = ([a]_A \delta [u]_u)\delta [2]_b \). Then, by Corollary 1, we obtain

\[
(asb) = ([a]_A \delta i s)\delta [2]_b \equiv 0 \text{ mod } (S, [w]_w).
\]

The proof is completed. \(\square \)

Lemma 9. Let \(S \) be a Gröbner–Shirshov basis in \(\text{Tri}(X) \). Suppose that \([a_1 s_1 b_1]_c, [a_2 s_2 b_2]_c \) are two normal \(S \)-polynomials with \([a_1 s_1 b_1]_c = [a_2 s_2 b_2]_c = [w]_w \). Then, we have

\[
[a_1 s_1 b_1]_c - [a_2 s_2 b_2]_c \equiv 0 \text{ mod } (S, [w]_w).
\]

Proof. Since \([w]_w = [a_1 s_1 b_1]_c = [a_2 s_2 b_2]_c \), we obtain \(w = a_1 s_1 b_1 = a_2 s_2 b_2 \) and \(W = C_1 = C_2 \). We have to consider the following three cases:

Case 1. Without loss of generality, we can assume \(b_1 = a_2 s_2 b_2 \) and \(a_2 = a_1 s_1 a \); here, \(a \) may be the empty word. Assume \(s_1 = s \| \sum b_i \| u_i \| a_i \) and \(s_2 = s \| \sum b_i \| v_i \| v' \). Then, by Lemma 1, we have

\[
[a_1 s_1 b_1]_c - [a_2 s_2 b_2]_c
= [a_1 s_1 a_2 s_2 b_2]_w - [a_1 s_1 a_2 s_2 b_2]_w
= ([([a_1]_A \delta s_1 \delta a_1 [a]_A \delta s_2 \delta [b]_b)]_w - ([([a_1]_A \delta s_1 \delta a_1 [a]_A \delta s_2 \delta [b]_b)]_w
= ([([a_1]_A \delta s_1 \delta a_1 [a]_A \delta s_2 \delta [b]_b)]_w - ([([a_1]_A \delta s_1 \delta a_1 [a]_A \delta s_2 \delta [b]_b)]_w
= - \sum \beta_i ([([a_1]_A \delta s_1 \delta a_1 [a]_A \delta s_2 \delta [b]_b)]_w
+ \sum \beta_i ([([a_1]_A \delta s_1 \delta a_1 [a]_A \delta s_2 \delta [b]_b)]_w
\]

for some \(\delta_1, \delta_2, \delta_3, \delta_4 \in \{-, +, \perp, \} \).

If \(s_1 \) and \(s_2 \) are both strong, then all the resulting polynomials

\[
([([a_1]_A \delta s_1 \delta a_1 [a]_A \delta s_2 \delta [b]_b)]_w \) and \([([a_1]_A \delta s_1 \delta a_1 [a]_A \delta s_2 \delta [b]_b)]_w
\]

are normal \(S \)-polynomials; if neither \(s_1 \) nor \(s_2 \) are strong, then, by Remark 1, we deduce \(\delta_3 = \perp, \delta_1 \in \{+, \} \) and \(\delta_2, \delta_4 \in \{+, \} \), which implies that the above resulting \(S \)-polynomials are normal. If only one of \(s_1 \) and \(s_2 \) is not strong, say, \(s_1 \) is not strong, then, by Remark 1, we deduce \(\delta_1 \in \{+, \} \) and \(\delta_2, \delta_3, \delta_4 \in \{+, \} \). It follows that the resulting \(S \)-polynomials are normal. In all subcases, by Lemmas 2 and 3, the leading monomials of the resulting normal \(S \)-polynomials are less than \([w]_w \).

Case 2. Without loss of generality, we may assume that \(s_1 = a_2 s_2 b_2 \), \(a_2 = a_1 a \) and \(b_2 = b_1 \). If \(P(s_1) \in P([asb]) \), then, since \(S \) is a Gröbner–Shirshov basis, we may assume

\[
s_1 - [asb]_{P(s_1)} = \sum \alpha_i [c_i d_i]_w \]
The proof is completed. □
Theorem 1. (Composition-Diamond lemma for trialgebras) Let $> be a monomial-center ordering on $[X^+]_{p(n)}$, and let S be a monic subset of $\text{Tri}(X)$ and $I(S)$ the ideal of $\text{Tri}(X)$ generated by S. Then, the following statements are equivalent.

(i) S is a Gröbner–Shirshov basis in $\text{Tri}(X)$.

(ii) $0 \neq h \in I(S) \Rightarrow \overline{h} = \frac{[csd]_L}{[csd]_L}$ for some normal S-polynomial $[csd]_L$.

(iii) $\text{Irr}(S) = \{[v]_L \in [X^+]_{p(n)} | [v]_L \neq \frac{[csd]_L}{[csd]_L} \}$ for any normal S-polynomial $[csd]_L$ is a k-basis of the quotient trialgebra $\text{Tri}(X)/I(S)$.

Proof. (i) \Rightarrow (ii) Let $0 \neq h \in I(S)$. Then, by Corollary 2, we may assume $h = \sum_{i=1}^{n} a_i[c_i s_i d_i]_{L_i}$, where each $a_i \in k$, $c_i, d_i \in X^*$, $s_i \in S$. Define $[u]_{L_i} =\frac{[c_i s_i d_i]_L}{[c_i s_i d_i]_L}$, $1 \leq i \leq n$. Then, we may assume without loss of generality that

$$[u_1]_{L_1} = [u_2]_{L_2} = \ldots = [u_t]_{L_t} < [u_{t+1}]_{L_{t+1}} \leq \ldots$$

Now, we use induction on $[u_1]_{L_1}$ to show $\overline{h} = \frac{[csd]_L}{[csd]_L}$ for some normal S-polynomial $[csd]_L$. For $[u_1]_{L_1} = \overline{h}$, there is nothing to prove. For $[u_1]_{L_1} > \overline{h}$, we have $\sum_{i=1}^{t} a_i = 0$ and

$$h = \sum_{i=1}^{t} a_i[c_i s_i d_i]_{L_i} = \sum_{i=1}^{t} a_i[c_i s_i d_i]_{L_i}$$

where each $[a_j s_j' b_j]_{L_j}$ is a normal S-polynomial and $[a_j s_j' b_j]_{L_j} < [u_1]_{L_1}$ by Lemma 9. Thus, the result follows by induction hypothesis.

(ii) \Rightarrow (iii) Assume that $g = \sum_{i=1}^{t} a_i[v_i]_{V_i} = 0$ in $\text{Tri}(X)/S$, where $a_i \in k$, $[v_i]_{V_i} \in \text{Irr}(S)$ for every i and $[v_1]_{V_1} > [v_2]_{V_2} > \ldots$. This implies that $g \in I(S)$. Then, $a_i = 0$ for every i. Otherwise, $\overline{g} = \frac{[v_j]_{V_j}}{[v_j]_{V_j}}$ for some j, which is a contradiction.

(iii) \Rightarrow (i) Assume that g is a composition of elements of S. We have $g \in I(S)$. By Lemma 6, $g = \sum_{i=1}^{t} a_i[v_i]_{V_i} + \sum_{j=1}^{s} b_j[c_j s_j d_j]_{L_j}$, where each $a_i, b_j \in k$, $c_j, d_j \in X^*$, $[v_i]_{V_i} \in \text{Irr}(S)$, $s_j \in S$, and $[v_i]_{V_i} \leq \overline{g}$, $[c_j s_j d_j]_{L_j} \leq \overline{g}$. Clearly, $\sum_{i=1}^{t} a_i[v_i]_{V_i} \in I(S)$. By (iii), we obtain $a_i = 0$ for every i, and thus we have $g \equiv 0 \mod (S)$. \qed

Shirshov algorithm If a monic subset $S \subseteq \text{Tri}(X)$ is not a Gröbner–Shirshov basis, then one can add to S all nontrivial compositions. Continuing this process repeatedly, we finally obtain a Gröbner–Shirshov basis S^comp that contains S and generates the same ideal, that is, $I(S^\text{comp}) = I(S)$. Similarly, we may introduce the Gröbner–Shirshov bases for trirings, which may be useful when one would like to construct an R-basis for some trismegroup-trirings over an associative and commutative ring R with a unit.

Definition 6. A triring is a quinary $(E, +, -\parallel, \perp)$ such that all of $(E, +, \perp)$, $(E, +, -\parallel)$ and $(E, +, \perp)$ are associative rings such that the identities in (1) hold in E.

Let $(E, -\parallel, \perp)$ be a trisemigroup, and T the free left R-module with R-basis E. Then, $(T, +, -\parallel, \perp)$ is a triring equipped with the following operations:

$$g + h := \sum_{i,j} r_{ij} f(u_i + v_j), \quad g -\parallel h := \sum_{i,j} r_{ij} f(u_i -\parallel v_j), \quad g \perp h := \sum_{i,j} r_{ij} f(u_i \perp v_j),$$
for all \(g = \sum r_i u_i, h = \sum r'_j v_j \in T, r_i, r'_j \in R, u_i, v_j \in E \). Such a triring, denoted by \(\text{Tri}_R(E) \), is called a trisemigroup-triring of \(E \) over \(R \).

Let \(\text{Tri}_g(X) \) be the free trisemigroup generated by \(X \); then, we obtain a trisemigroup-triring of \(\text{Tri}_g(X) \) over \(R \), denoted by \(\text{Tri}_R(X) \), which is also called the free triring over \(R \) generated by \(X \). In particular, \(\text{Tri}_k(X) = \text{Tri}(X) \) is the free trialgebra generated by \(X \) when \(k \) is a field.

An ideal \(I \) of \(\text{Tri}_g(X) \) is an \(R \)-submodule of \(\text{Tri}_g(X) \) such that \(g \vdash h, h \vdash g, g \vdash h, h \vdash g \) for every \(g \in \text{Tri}_g(X) \) and \(h \in I \).

The proof of the following Theorem 2 is similar to Theorem 1.

Theorem 2. (Composition-Diamond lemma for trirings) Let \(R \) be an associative and commutative ring with a unit. Let \(\succ \) be a monomial-centers ordering on \([X^+]_{p(R)} \), and let \(S \) be a monic subset of \(\text{Tri}_g(X) \) and \(\text{Id}(S) \) the ideal of \(\text{Tri}_g(X) \) generated by \(S \). Then, the following statements are equivalent.

(i) \(S \) is a Gröbner–Shirshov basis in \(\text{Tri}_g(X) \).

(ii) \(0 \neq f \in \text{Id}(S) \Rightarrow f = [\text{csd}]_L \) for some normal \(S \)-polynomial \([\text{csd}]_L\).

(iii) \(\text{Irr}(S) = \{ [v]_v \in [X^+]_{p(R)} \mid [v]_v \neq \text{csd} \} \) for any normal \(S \)-polynomial \([\text{csd}]_L\) is an \(R \)-basis of the quotient triring \(\text{Tri}_g(X)/\text{Id}(S) \), i.e., \(\text{Tri}_g(X)/\text{Id}(S) \) is a free \(R \)-module with \(R \)-basis \(\text{Irr}(S) \).

Remark 2. The Shirshov algorithm does not work generally in \(\text{Tri}_g(X) \).

We now turn to the question on how to recognize whether two ideals of \(\text{Tri}(X) \) are the same or not. We begin with the notion of a minimal (resp. reduced) Gröbner–Shirshov basis.

Definition 7. A Gröbner–Shirshov basis \(S \) in \(\text{Tri}(X) \) is minimal (resp. reduced) if, for every \(s \in S, \) we have \(\bar{s} \in \text{Irr}(S \setminus \{ s \}) \) (resp. \(\text{supp}(s) \subseteq \text{Irr}(S \setminus \{ s \}) \)), where

\[
\text{supp}(s) := \{ [u_1]_{u_1}, \ldots, [u_n]_{u_n} \}
\]

for \(s = a_1 [u_1]_{u_1} + \cdots + a_n [u_n]_{u_n}, \) \(0 \neq a_j \in k, \) \([u_i]_{u_i} \in [X^+]_{p(R)} \).

Suppose that \(I \) is an ideal of \(\text{Tri}(X) \) and \(I = \text{Id}(S) \). If \(S \) is a reduced (resp. minimal) Gröbner–Shirshov basis in \(\text{Tri}(X) \), then we call \(S \) a reduced (resp. minimal) Gröbner–Shirshov basis for the ideal \(I \) or for the quotient dialgebra \(\text{Tri}(X)/I \).

It is known that every ideal of associative algebras (dialgebras) has a unique reduced Gröbner–Shirshov basis. Now, we show that an analogous result holds for trialgebras.

Lemma 10. Let \(I \) be an ideal of \(\text{Tri}(X) \) and \(S \) a Gröbner–Shirshov basis for \(I \). For every \(E \subseteq S, \) if \(\text{Irr}(E) = \text{Irr}(S), \) then \(E \) is also a Gröbner–Shirshov basis for \(I \).

Proof. For every \(g \in I, \) since \(\text{Irr}(E) = \text{Irr}(S) \) and \(S \) a Gröbner–Shirshov basis for \(I, \) by Theorem 1, we obtain \(\bar{g} = [\text{csd}]_L = [ab]_L \) for some \(s \in S, f \in E, a, b, c, d \in X^* \). Thus, we obtain \(g_1 = g - lc(g)[ab]_L \in I \) and \(\bar{g} \vdash \bar{g}_1 \). By induction on \(\bar{g} \), we deduce that \(g \) is a linear combination of normal \(E \)-polynomials, i.e., \(g \in \text{Id}(E) \). This shows that \(I = \text{Id}(E) \). Now, the result follows from Theorem 1. \(\square \)

Let \(S \) be a subset of \(\text{Tri}(X) \) and \([u]_{u} \in [X^+]_{p(R)} \). We set

\[
\bar{S} := \{ \bar{s} \in [X^+]_{p(R)} \mid s \in S \}, \quad S^{[u]} := \{ s \in S \mid \bar{s} = [u]_u \}, \quad S^{[u]} := \{ s \in S \mid \bar{s} < [u]_u \}.
\]

Theorem 3. There is a unique reduced Gröbner–Shirshov basis for every ideal of the free trialgebra \(\text{Tri}(X) \).
Proof. Let \(I \) be a ideal of \(\text{Tri}(X) \). We first prove the existence. It is clear that \(S = \{ ic(g)^{-1} g \mid 0 \neq g \in I \} \) is a Gröbner–Shirshov basis for \(I \). For each \([u]_I \in S\), we fix a polynomial \(g \) in \(S \) such that \(g \equiv \) \([u]_I \). Define

\[
S_0 = \{ g \equiv \) \([u]_I \in S \mid [u]_I \in S\}.
\]

Then, the leading monomials of elements in \(S_0 \) are pairwise different. Since \(I \supseteq S \supseteq S_0 \) and \(T = S = S_0 \), we have \(\text{Irr}(S_0) = \text{Irr}(S) = [X^+]_{\text{p(N)}} \setminus S \). By Lemma 10, \(S_0 \) is a Gröbner–Shirshov basis for \(I \).

Moreover, we may assume that, for every \(s \in S_0 \), we have

\[
\text{supp}(s - \bar{s}) \subseteq \text{Irr}(S_0),
\]

i.e., \(\text{supp}(s - \bar{s}) \subseteq [X^+]_{\text{p(N)}} \setminus S_0 \). If \(\text{supp}(s - \bar{s}) \cap S_0 = \emptyset \) for some \(s \in S_0 \), then set \(\bar{w} = \max(\text{supp}(s - \bar{s}) \setminus S_0) \). Then, there exists an element \(g \in S_0 \) such that \(g = \) \(\bar{w} \). Note that \(\bar{s} > \bar{w} \) and \(\bar{s} - \bar{w} = \bar{s} \), where \(\bar{a} \) is the coefficient of \(\bar{w} \) in \(s \). Replace \(s \) by \(\bar{s} - \bar{w} \) in \(S_0 \). Then, \(\text{supp}(s - \bar{s} - \bar{w}) \cap S_0 = \emptyset \) or \(\max(\text{supp}(s - \bar{s} - \bar{w}) \cap S_0) < [u]_I \).

Since \(s > \bar{s} \) is a well ordering on \([X^+]_{\text{p(N)}} \), this process will terminate.

Noting that, for every \([u]_I \in S_0 \), there exists a unique \(g \in S_0 \) such that \([u]_I = \) \(g \). Set \(\text{min}(S_0) = \) \(\bar{s} \) with \(s_0 \in S_0 \). Define \(S_{s_0} := \{ s_0 \} \). Suppose that \(g \in S_0, \) \(\bar{s} < \bar{g} \) and \(S_{s_0} \) has been defined for every \(h \in S_0 \) with \(\bar{h} < \bar{g} \). Define

\[
S_{s_0} := \bigcup_{g \in S_0} S_{s_g}.
\]

Then, for every \(g \in S_0 \), we have \(g \in S_{1} \iff \bar{g} \in \text{Irr}(S_{s_0}) \iff g \in S_{s_0} \).

We first claim that \(\text{Irr}(S_{1}) = \text{Irr}(S_0) \). Since \(S_1 \subseteq S_0 \), it suffices to show \(\text{Irr}(S_{1}) \subseteq \text{Irr}(S_0) \). Assume that there exists a normal trivoid \([u]_I \in [X^+]_{\text{p(N)}} \) such that \([u]_I \in \text{Irr}(S_{1}) \) and \([u]_I \notin \text{Irr}(S_0) \). Since \(S_0 = T \), it follows that \([u]_I = \) \(\bar{g} \) for some \(g \in S_0 \setminus S_1 \). If \(\bar{g} \notin \text{Irr}(S_{s_0}) \) and \(g \notin S_1 \), a contradiction. Thus, \(S_1 \) is a minimal Gröbner–Shirshov basis for \(I \).

Now, we prove the uniqueness. Suppose that \(T \) is an arbitrary reduced Gröbner–Shirshov basis for \(I \). Let \(\bar{s_0} = \min \bar{s_1} \) and \(t_0 = \min T \), where \(s_0 \in S_1, t_0 \in T \). By Theorem 1, we have \(\bar{s_0} = [a' b']_{t_0} \geq \bar{t} \geq t_0 \) for some \(t' \in T, a', b' \in X^* \). Similarly, \(t_0 \geq \bar{s_0} \). Thus, we deduce \(t_0 = \bar{s_0} \). We claim that \(t_0 = s_0 \). Otherwise, we have \(0 \neq t_0 - s_0 \in I \). By the above argument again, we obtain that \(t_0 > t_0 - s_0 \geq \bar{t} \geq t_0 \) for some \(t'' \in T \), a contradiction. Thus, we have

\[
S_{s_1} = \{ s_1 \} = \{ t_0 \} = T_{s_0}.
\]

For every \([u]_I \in S_1 \cup T \) with \([u]_I \geq t_0 \), assume that \(S_{s_1} \equiv [u]_I = T_{s_1} \). To prove \(T = S_1 \), it suffices to show that \(S_{s_1} \equiv [u]_I \subseteq T_{s_1} \). For every \(s \in S_{s_1} \), we have \(s = \) \(c d \) \(t_0 \) \(c' \). Now, we claim that \([u]_I = \bar{s} = \) \(\bar{t} \). Otherwise, we have \([u]_I = \bar{s} > \) \(\bar{t} \). Then, \(t \in T_{s_1} \equiv S_{s_1} \equiv [u]_I \) and \(s \in S_1 \setminus \{ s \} \). However, \(s = \) \(c d \) \(t_0 \) \(c' \), which contradicts with the fact that \(S_1 \) is a reduced Gröbner–Shirshov basis. Now, we show
s = t ∈ T^{[w]}_I. If s ≠ t, then 0 ≠ s − t ∈ I. By Theorem 1, \(s−t = [at_1b]_{t_1} = [csd]_{t_1} \)
for some \(t_1 \in T, s_1 \in S, a, b, c, d \in X^+ \) with \(\tau_I, \tau_T < s−t < s \). Thus, we deduce \(s_1 \in S \setminus \{s\} \) and \(t_1 \in T \setminus \{t\} \). Noting that \(s−t \in supp(s) \cup supp(t) \), we may assume that \(s−t \in supp(s) \). As \(S \) is a reduced Gröbner–Shirshov basis, we have \(s−t \in Irr(S \setminus \{s\}) \), which contradicts with the fact that \(s−t = [csd]_{t_1} \), where \(s_1 \in S \setminus \{s\} \). Thus, \(s = t \).

Therefore, we obtain \(S_1^{[w]} \subseteq T^{[w]}_I \). It follows that we have \(S \subseteq T \). Similarly, we have \(T \subseteq S \), which proves the uniqueness. □

Remark 3. It is known that every Gröbner–Shirshov basis for an ideal of associative (polynomial) algebras can be reduced to a reduced Gröbner–Shirshov basis. However, this is neither the case for dialgebras ([13] Example 3.24), nor the case for trialgebras. It suffices to consider the trialgebra defined by the same generators and relations as those in ([13] Example 3.24) because the relations form a Gröbner–Shirshov basis for the considered trialgebra.

By using Theorem 3, we have the following theorem.

Theorem 4. Let \(I_1, I_2 \) be two ideals of \(Tri(X) \). Then, \(I_1 = I_2 \) if and only if \(I_1 \) and \(I_2 \) have the same reduced Gröbner–Shirshov basis.

4. Applications

In this section, we apply Theorem 1 to give a method to find normal forms of elements of an arbitrary trisemigroup. As applications, we reconstruct normal forms of elements of a free abelian trisemigroup which is obtained in [2] and construct normal forms of elements of a free commutative trisemigroup. We also give some characterizations of the Gelfand–Kirillov dimensions of some trialgebras.

Denote by

\[
Tri gp(X) := ([X^+]_{P(I)}, \langle, \rangle, \perp)
\]

the free trisemigroup generated by \(X \) [1,3]. Clearly, every trisemigroup \(T \) is a quotient of some free trisemigroup, say

\[
T = Tri gp(X|S) := ([X^+]_{P(I)}/ρ(S)
\]

for some set \(X \) and \(S \subseteq [X^+]_{P(I)} \times [X^+]_{P(I)} \), where \(ρ(S) \) is the congruence on \(([X^+]_{P(I)}, \langle, \rangle, \perp) \) generated by \(S \). Thus, it is natural to ask the question: how can normal forms of elements of an arbitrary quotient trisemigroup of the form \(Tri gp(X|S) \) be found?

Let \(> \) be a monomial-centers ordering on \([X^+]_{P(I)}\) and

\[
S = \{([v]_V, [w]_W) \mid [v]_V > [w]_W, i \in I\}.
\]

Consider the trialgebra \(Tri(X|S) \), where we identify the set \(S \) with the set \(\{[v]_V − [w]_W \mid i \in I\} \). By the Shirshov algorithm, we have a Gröbner–Shirshov basis \(S^{comp} \) in \(Tri(X) \) and \(Id(S^{comp}) = Id(S) \). It is clear that each element in \(S^{comp} \) is of the form \([u]_U, [v]_V, [u]_{U'}, [v]_W \in [X^+]_{P(I)} \). Let

\[
σ : Tri(X|S) → Tri gp([X^+]_{P(I)}/ρ(S)),
\]

\[
\sum a_i [u]_U + Id(S) → \sum a_i [u]_U ρ(S), \quad a_i \in k, [u]_U ∈ [X^+]_{P(I)}.
\]

Then, \(σ \) is obviously a trialgebra isomorphism. Noting that, by Theorem 1, \(Irr(S^{comp}) \)

is a linear basis of \(Tri(X|S) \), we have that \(σ(Irr(S^{comp})) \) is a linear basis of \(Tri gp([X^+]_{P(I)}/ρ(S)) \).

It follows that \(Irr(S^{comp}) \) is exactly a set of normal forms of elements of the trisemigroup \(Tri gp(X|S) \).

Therefore, we obtain the following theorem.
Theorem 5. Let $>$ be a monomial-centers ordering on $[X^+]_{P(I)}$ and $T = \text{Trigsp}(X|S)$, where $S = \{(\{v\}_V, \{w\}_W) \mid \langle v \rangle_V > \langle w \rangle_W; i \in I\}$ is a subset of $[X^+]_{P(I)} \times [X^+]_{P(I)}$. Then, $\text{Irr}(S^\text{comp})$ is a set of normal forms of elements of the trisemigroup $\text{Trigsp}(X|S)$.

If we can construct a set of normal forms of certain trialgebra, then we can know how fast the trialgebra grows by the tool of Gelfand–Kirillov dimension. The Gelfand–Kirillov dimension measures the asymptotic growth rate of algebras. Since it provides important structural information, this invariant has become one of the important tools in the study of algebras. In this section, we shall calculate some interesting examples and show how we can apply Gröbner–Shirshov bases in the calculation of Gelfand–Kirillov dimensions of certain trialgebras.

Let T be a trialgebra, and let W, W_1 and W_2 be vector subspaces of T. We first define $W_1 \uplus W_2 = \text{Span}_k\{a + b \mid a \in W_1, b \in W_2\}$, $W_1 \uplus W_2 = \text{Span}_k\{a - b \mid a \in W_1, b \in W_2\}$, and $W_1 \perp W_2 = \text{Span}_k\{a \perp b \mid a \in W_1, b \in W_2\}.$

Then, we define $W^1 = W$ and $W^n = \sum_{1 \leq i \leq n-1} (W^i \uplus W^{n-i} + W^i \perp W^{n-i} + W^i \perp W^{n-i})$ for every integer number $n \geq 2$. Finally, we define $W^{\leq n} := W^1 + W^2 + ... + W^n$.

Obviously, we have $W^n = \text{Span}_k\{[a_1...a_n]_U \mid \emptyset \neq U \subseteq \{1, ..., n\}, a_1, ..., a_n \in W\}$ and $W^{\leq n} = \text{Span}_k\{[a_1...a_m]_U \mid \emptyset \neq U \subseteq \{1, ..., m\}, m \in N, m \leq n, a_1, ..., a_m \in W\}$.

Now, we are ready to introduce the Gelfand–Kirillov dimension of a trialgebra.

Definition 8. Let T be a trialgebra over k. Then, the Gelfand–Kirillov dimension of a trialgebra T is defined to be $GKdim(T) = \sup \lim_{n \to \infty} \log_d(\dim(W^{\leq n}))$, where the supremum is taken over all finite dimensional subspaces W of T.

We have the following obvious observation, which is well-known in the context [31], for example.

Lemma 11. Let T be a trialgebra generated by a finite set X and kX the subspace of T spanned by X. Then, we have $GKdim(T) = \lim_{n \to \infty} \log_d(\dim((kX)^{\leq n}))$.

Let $X = \{x\}$. It is well known that $GKdim(k\langle X \rangle) = 1$ and $GKdim(Di(X)) = 2$, where $k\langle X \rangle$ (resp. $Di(X)$) is the free associative algebra (resp. dialgebra) generated by X. Note that a normal triword of length n in $\text{Tri}(X)$ is of the form $[x...x]_U$, where U is a nonempty subset of $\{1, ..., n\}$. Thus, by a direct calculation, we have $GKdim(\text{Tri}(X)) = +\infty$.

We shall show in Sections 4.1 and 4.2 that the Gelfand–Kirillov dimensions of finitely generated free commutative trialgebras and those of finitely generated free abelian trialgebras are positive integers.

From now on, let X be a well-ordered set and $>$ the deg-lex-centers ordering on $[X^+]_{P(I)}$.
4.1. Normal Forms of Free Commutative Trisemigroups

The commutative trisemigroups are introduced and the free commutative trisemigroup generated by a set is constructed by [2]. In this subsection, we give another approach to normal forms of elements of a free commutative trisemigroup.

Definition 9 ([2]). A trisemigroup (trialgebra) \((T, \cdot, \top, \bot)\) is commutative if \(\cdot, \top, \bot\) are commutative.

Let \(T_c\) be the subset of \(Tri(X)\) consisting of the following polynomials:

\[
[u]_\ell - [v]_\ell \notin [u]_\ell, \quad [u]_\ell - [v]_\ell ≠ [u]_\ell, \quad [u]_\ell - [v]_\ell ⊢ [u]_\ell, \quad [u]_\ell - [v]_\ell ⊢ [u]_\ell,
\]

where \([u]_\ell, [v]_\ell \in [X^+]_{\ell(N)}\). Then,

\[
Tri[X] := Tri(X|T_c)
\]

is clearly the free commutative trialgebra generated by \(X\). In particular, a linear basis of \(Tri[X]\) consisting of normal triwords over \(X\) is exactly a set of normal forms of elements of the free commutative trisemigroup generated by \(X\).

Let \(X = \{x_i \mid i \in I\}\) be a well-ordered set. For every \(u = x_{i_1}x_{i_2}...x_{i_n} \in X^+, x_{i_k} \in X\), we define

\[
[u] := [x_{i_1}x_{i_2}...x_{i_n}] := x_{i_1}x_{i_2}...x_{i_n},
\]

where \(x_{i_1}x_{i_2}...x_{i_n}\) is a reordering of \(x_{i_1}x_{i_2}...x_{i_n}\) satisfying \(x_{i_1} ≤ x_{i_2} ≤ ... ≤ x_{i_n}\).

We define

\[
[X^+ := \{[u] \mid u \in X^+\}; \quad [u]_\ell := [[u]]_\ell, \quad \ell(U) \notin \{1, ..., \ell(u)\};
\]

\[
[X^+]_{\ell(N)} := \{[u]_\ell \mid u \in X^+, \ell(U) \notin \{1, ..., \ell(u)\}\}.
\]

For \(u \in X^+, [u]_\ell\) is a normal triword, while \([u]_\ell\) is called a commutative normal triword.

For instance, assume \(u = x_1x_2x_3x_1x_2x_1 \in X^+\) and assume \(x_1 < x_2\), where \(x_1, x_2 \in X\). Then, we have \([u] = [x_1x_1x_2x_3x_1x_2] = [x_1x_1x_2x_3x_1x_2]\).

Proposition 2. Let \(X = \{x_i \mid i \in I\}\) be a well-ordered set. Then, we have the following:

(i) \(Tri[X] = Tri(X|S_c)\), where \(S_c\) consists of the following polynomials:

\[
[u]_\ell - [u]_\ell \in [X^+]_{\ell(N)}, \quad \ell(u) = 2 or |U| = \ell(u) ≥ 3;
\]

\[
[v]_\ell - [v]_1 \in [X^+]_{\ell(N)}, \quad \ell(v) ≥ 3 and |V| < \ell(v).
\]

(ii) \(S_c\) is a Gröbner–Shirshov basis in \(Tri(X)\).

(iii) The set

\[
[X^+]_c := \{[v]_1 \mid \ell(V) \in [X^+]\} \cup \{[u]_2 \mid [u] \in [X^+], \ell(u) = 2\}
\]

\[
\cup \{[u]_c \mid \{1, ..., \ell(u)\} \mid [u] \in [X^+]\}.
\]

forms a \(k\)-basis of the free commutative trialgebra \(Tri[X]\).

Proof. (i) It suffices to show \(S_c \subseteq Id(T_c)\) and \(T_c \subseteq Id(S_c)\), where \(T_c\) consists of the elements described in (6). We first show \(S_c \subseteq Id(T_c)\). Since \(\cdot, \top, \bot\) are commutative, we have

\[
x_{i_1}x_{i_2} - x_{i_1}x_{i_2} \in Id(T_c), \quad [u]_{\{1,...,\ell(u)\}} - [u]_{\{1,...,\ell(u)\}} \in Id(T_c)\]

and \([v]_1 - [v]_1 \in Id(T_c)\),
where \(x_i, x_j \in X\), \(u, v \in X^+\), \(|u|, |v| \geq 2\). It remains to prove that
\[
[v]_V - [v]_1 \in Id(T_c), \quad \text{where} \quad [v]_V \in [X^+]_{p(n)}, \quad \ell(V) \geq 3, \quad |V| < \ell(v) \quad \text{and} \quad V \neq \{1\}.
\]

There are two cases to consider:

Case 1. If \(1 \notin V\), we assume \([v]_V = [v_0]_{\ell(v)} \vdash [v_1]_V\) for some \(v_0, v_1 \in X^+\). Then, in \(Tri(X|T_c)\), we have
\[
[v]_V - [v]_{\ell(v)} = [v_1]_V - [v_0]_{\ell(v)} - [v]_{\ell(v)} = [v_1 v_0]_{\ell(v)} - [v]_{\ell(v)} = 0.
\]

Case 2. If \(1 \in V\), then, by Lemma 1, we may assume \([v]_V = ([v']_V \perp [za]_1) \delta [v']_{v'_1}\) with \(z \in X\), \(a \in X^+\), \(v'_0, v'_1 \in X^\ast\) and \(\delta \in \{+, \perp\}\). Then, in \(Tri(X|T_c)\), we have
\[
[v]_V - [v]_1 = [v_0]_{v'_0} \perp ([za]_1 \delta [v']_{v'_1}) - [v]_1 = [v_0]_{v'_0} \perp [v'_1]_V \delta [za]_1 - [v]_1 = ([v'_0]_{v'_0} \perp [v'_1]_{v'_1}) \delta [za]_1 - [v]_1 = ([v'_0]_{v'_0} \perp [v'_1]_{v'_1}) \delta [za]_1 - [v]_1 = [v_0]_{v'_0} [v'_1 z]_1 - [v]_1 = 0.
\]

It follows that \([v]_V - [v]_1 \in Id(T_c)\).

Case 2. If \(1 \notin V\), then, by Lemma 1, we may assume \([v]_V = ([v']_V \perp [za]_1) \delta [v']_{v'_1}\) with \(z \in X\), \(a \in X^+\), \(v'_0, v'_1 \in X^\ast\) and \(\delta \in \{+, \perp\}\). Then, in \(Tri(X|T_c)\), we have
\[
[u]_{\ell(u)} \vdash [v]_V - [v]_{\ell(v)} = [uv]_{\ell(u)+v} - [uv]_{\ell(u)+u} = [uv]_1 - [uv]_1 = 0,
\]
and \([u]_{\ell(u)} \perp [v]_V - [v]_1 \vdash [uv]_{\ell(u)+v} - [uv]_{\ell(u) \perp [uv]_1} = 0\), if \(|U| = \ell(u)\) and \(|V| = \ell(v)\).

This shows that \(Id(T_c) = Id(S_c)\) and (i) holds.

(ii) It is easy to check that all possible left (right) multiplication compositions in \(S_c\) are equal to zero. For an arbitrary composition \((f, g)_{[w]}\) in \(S_c\), we have \(-r, -s \in [X^+]_{p(n)},\)
\(\ell(w) \geq 3, [w]_w = [afb]_w = [cgd]_w \) and \([w] = [afb]_w = [cgd]_w \), where \(f = f + r, g = g + r, \) \(a, b, c, d \in X' \). Assume that \([afb]_w = [cgd]_w \) and \([afb]_w = [cgd]_w \)\(- [cfd]_w \).

Then, we have

\[
\begin{align*}
\text{(iii) The claim follows immediately from Theorem 1.} & \quad \square \end{align*}
\]

From Theorem 1, Lemma 10 and Proposition 2, it follows that

Corollary 3. Let \(X = \{ x_i \mid i \in I \} \) be a well-ordered set and \(S'_c \subset Tri(X) \) be a set consisting of the following polynomials:

\[
\begin{align*}
\{ x_j x_k \}_{2,2} - [x_j x_k]_{1,2} - [x_j x_k]_{1,1}, & \quad \{ j, k \in I, j > k \}; \\
\{ x_j x_k \}_{1,1} - [x_j x_k]_{1,2} - [x_j x_k]_{1,1} - [x_j x_k]_{1,1}, & \quad \{ j, k \in I, j > k \}.
\end{align*}
\]

Then, \(S'_c \) is the reduced Gröbner–Shirshov basis for the free commutative trialgebra \(Tri(X) \).

Corollary 4. [2] Let \(\text{Trisgp}[X] := ([X^+]_c, \sqcup, \sqcap, \sqcap) \), where \([X^+]_c \) is defined as in Proposition 2. Then, \(\text{Trisgp}[X] \) is the free commutative trisemigroup generated by \(X \), where the operations \(\sqcup, \sqcap \) and \(\sqcap \) are as follows: for any \(x, x' \in X \), \([u]_{u} \cap [v]_{v} = [u]_{u} \cap [v]_{v} = [u]_{u} \cap [v]_{v} = [uv]_{v} \); \([v]_{v} \sqcup [u]_{u} = [u]_{u} \sqcup [v]_{v} = [uv]_{1,2,\ldots,\ell(w)} \) if \([u] = \ell(u) \) and \([v] = \ell(v) \); \(x \sqcup x' = x' \sqcup x = \{ xx' \}_{1,2} \), \(\sqcup x' = x' \sqcup x = \{ xx' \}_{1,2} \), \(x \sqcup x' = x \sqcup x' = x' \sqcup x = \{ xx' \}_{1,2} \).

By Lemma 11 and Proposition 2, we can easily obtain the Gelfand–Kirillov dimension of \(Tri(X) \) for every finite set \(X \).

Corollary 5. Let \(X = \{ x_1, \ldots, x_r \} \) and \(Tri[X] \) be the free commutative trialgebra generated by \(X \). Then, we have \(\text{GKdim}(Tri[X]) = r \).

4.2. Normal Forms of Free Abelian Trisemigroups

In this subsection, we first introduce a notion of abelian trisemigroups which is an analogy of abelian disemigroups introduced in [11]. Then, we construct a set of normal forms of elements of the free abelian trisemigroups.

Definition 10. A trisemigroup (trialgebra) \((T, \sqcup, \sqcap, \sqcap) \) is abelian if \(c \sqcup d = d \sqcup c \) and \(c \sqcap d = d \sqcap c \) for all \(c, d \in T \).

Let \(X \) be an arbitrary set and \(T_{ab}^r \) the subset of \([X^+]_{P(N)} \times [X^+]_{P(N)} \) consisting of the following:

\[
\begin{align*}
([v]_{v} \sqcup [w]_w, [v]_{v} \sqcup [w]_w), & \quad ([v]_{v} \sqcup [w]_w, [w]_w \sqcap [v]_{v}),
\end{align*}
\]
where \([v]_V, [w]_W \in [X^+]_{P(N)}\). Let \(T_{ab}\) be the set consisting of elements of the form

\[
[v]_V \upharpoonright [w]_W - [w]_W \upharpoonright [v]_V, \quad [v]_V \perp [w]_W - [w]_W \perp [v]_V,
\]

where \([v]_V, [w]_W \in [X^+]_{P(N)}\). Then, \(\text{Trigsp}(X|T_{ab}')\) is clearly the free abelian trisemigroup generated by \(X\), and \(\text{Tri}(X|T_{ab})\) is the free abelian trignalgebra generated by \(X\). By Theorem 5, a linear basis of \(\text{Tri}(X|T_{ab})\) consisting of normal triwords is a set of normal forms of elements of \(\text{Trigsp}(X|T_{ab})\).

Now, we shall try to construct a linear basis of \(\text{Tri}(X|T_{ab})\) by the method of Gröbner–Shirshov bases. We introduce a method of writing down a new normal trwoord from a given one. Let \(X = \{x_i | i \in I\}\) be a well-ordered set, and let \(\hat{X} = \{\hat{x} \in X\}\) be a copy of \(X\), where by \(\hat{x}\) we mean a new symbol. We extend the ordering on \(X\) to a well-ordering on \(X \cup \hat{X}\) in the following way: (i) \(x_i < x_j\), (ii) \(x_i < x_j\) implies \(\hat{x}_i < \hat{x}_j, x_i < x_j\).

We note that \([X^+]_{P(N)}\) has a one-to-one correspondence with \((X \cup \hat{X})^+\), and we denote this correspondence by \(\varphi\). More precisely, \(\varphi\) maps an arbitrary normal trisemigroup \([x_i, ..., x_m]_u\) to a word in \(y_1 ... y_m\) in \((X \cup \hat{X})^+\), such that, if \(y_i \in U\), then \(y_i = \hat{x}_i\), and if \(y_i \notin U\), then \(y_i = x_i\) for every \(t \leq m\). For instance, \(\varphi([x_1 x_2 x_3 x_1 | 2, 4]) = x_1 x_2 x_1 x_3\). Thus, we can identity elements in \([X^+]_{P(N)}\) with those in \((X \cup \hat{X})^+\).

Recall that, for every \(y_1 y_2 ... y_i \in (X \cup \hat{X})^+\), where each \(y_i\) lies in \(X \cup \hat{X}\), we have

\[
[y_1 y_2 ... y_i] = y_{i_1} y_{i_2} ... y_{i_l},
\]

where \(y_{i_1}, y_{i_2}, ..., y_{i_l}\) is a reordering of \(y_1, y_2, ..., y_i\) satisfying \(y_{i_1} \leq y_{i_2} \leq ... \leq y_{i_l}\). Define

\[
\tau : (X \cup \hat{X})^+ \rightarrow (X \cup \hat{X})^+, \quad y_{i_1} y_{i_2} ... y_{i_l} \mapsto [y_{i_1} y_{i_2} ... y_{i_l}].
\]

Finally, define

\[
\tau := \varphi^{-1} \pi \varphi : [X^+]_{P(N)} \rightarrow [X^+]_{P(N)}.
\]

For instance,

\[
\tau([x_1 x_2 x_3 x_1 | 2, 4]) = \varphi^{-1} \pi \varphi([x_1 x_2 x_3 x_1 | 2, 4]) = \varphi^{-1}(x_1 x_2 x_1 x_3) = x_1 x_3 x_2 x_3.
\]

Roughly speaking, \(\tau\) reorders the letters in \([u]_I\) such that the middle entries are preserved. Therefore, we immediately deduce that such a map \(\tau\) satisfies some useful properties, the proof of which is quite easy and thus is omitted.

Lemma 12. For all \([u]_I, [v]_V \in [X^+]_{P(N)}\), we have \(\tau([uv]_{I \cup \ell(I) + I}) = \tau([uv]_{V \cup \ell(I) + I})\), \(\tau([uv]_{I \cup \ell(I) + V}) = \tau([uv]_{I \cup V})\) and \(\tau(\tau([u]_I)) = \tau([u]_I)\).

Proposition 3. Let \(X = \{x_i | i \in I\}\) be a well-ordered set, \(T_{ab}\) the subset of \(\text{Tri}(X)\) consisting of the elements described in (7). Then, we have

(i) \(\text{Tri}(X|T_{ab}) = \text{Tri}(X|S_{ab})\), where \(S_{ab} = \{[u]_I - \tau([u]_I) | [u]_I \in [X^+]_{P(N)}, \ell(u) \geq 2\}\);

(ii) \(S_{ab}\) is a Gröbner–Shirshov basis in \(\text{Tri}(X)\);

(iii) The set \(\{\tau([u]_I) | [u]_I \in [X^+]_{P(N)}\}\) is a \(k\)-basis of the free abelian trignalgebra \(\text{Tri}(X|T_{ab})\).

Proof. (i) It suffices to show \(T_{ab} \subseteq \text{Id}(S_{ab})\) and \(S_{ab} \subseteq \text{Id}(T_{ab})\). We first show \(T_{ab} \subseteq \text{Id}(S_{ab})\). In \(\text{Tri}(X|S_{ab})\), for all \([u]_I, [v]_V \in [X^+]_{P(N)}\), clearly we have
\[[u]_U \vdash [v]_V - [v]_V \vdash [u]_U = [uv]_{\ell(\omega)+V} - [vu]_V = \tau([uv]_{\ell(\omega)+V}) - \tau([vu]_V), = 0, \]

\[[u]_U \perp [v]_V - [v]_V \perp [u]_U = [uv]_{\ell([u]+V)} - [vu]_{V,\ell([v]+U)} = \tau([uv]_{\ell([u]+V)}) - \tau([vu]_{V,\ell([v]+U)}) = 0. \]

Now, we show \(S_{ab} \subseteq Id(T_{ab}) \). Note that, for an arbitrary normal tritriword, say \([u]_U = [x_i]_{i \leq n} \) for some letters \(x_{i_0}, \ldots, x_{i_n} \in X \) such that \(n \geq 2 \), the normal tritriword \(\tau([u]_U) \) contains the same letters (with repetitions) as those of \([u]_U \); moreover, the middle entries are preserved. Thus, it suffices to show that we can reorder \(x_{i_0} \) and \(x_{i_1} \) with middle entries preserved. By Lemma 1, we may assume

\[[u]_U = ([v]_V \delta_1(x_{i_0} x_{i_1})) \delta_3[w]_V, \]

where, if \([v]_V = [e]_{\emptyset} \), then \(\delta_1 \in \{ \top, \perp \} \), and, if \([w]_V = [e]_{\emptyset} \), then \(\delta_3 \in \{ \bot, \perp \} \). Then, by the relations in \(T_{ab} \), we clearly can reorder \(x_{i_0} \) and \(x_{i_1} \) with middle entries preserved. It follows that \(S_{ab} \subseteq Id(T_{ab}) \).

(ii) Clearly all possible left and right multiplication compositions in \(S_{ab} \) are equal to zero. Assume for every composition \((f, g)_{[w]}_V \) in \(S_{ab} \), where \(f = [u]_U - \tau([u]_U) \) and \(g = [v]_V \tau([v]_V) \). We may assume \([ab]_W = ([a]_A \delta_1 f) \delta_2 [b]_B, [cgd]_W = ([c]_C \delta_3 [g]_D) \delta_4 [d]_D \). Then, we have

\[[ab]_W = [cgd]_W = ([a]_A \delta_1 [u]_U) \delta_2 [b]_B = ([c]_C \delta_3 [v]_V) \delta_4 [d]_D. \]

It follows that

\[\tau(([a]_A \delta_1 \tau([u]_U)) \delta_2 [b]_B) = \tau(([c]_C \delta_3 \tau([v]_V)) \delta_4 [d]_D). \]

Thus, we obtain

\[(f, g)_{[w]}_V = [ab]_W - [cgd]_W = ([a]_A \delta_1 \tau([u]_U)) \delta_2 [b]_B - ([c]_C \delta_3 \tau([v]_V)) \delta_4 [d]_D = \tau(([a]_A \delta_1 \tau([u]_U)) \delta_2 [b]_B) - \tau(([c]_C \delta_3 \tau([v]_V)) \delta_4 [d]_D) \equiv 0 \mod(S_{ab}). \]

Thus, all the compositions in \(S_{ab} \) are trivial, and thus \(S_{ab} \) is a Gröbner–Shirshov basis in \(Tri(X) \).

(iii) By Theorem 1, we get the result. \(\square \)

From Theorem 1, Lemma 10, and Proposition 3, it follows that

Corollary 6. Let \(X = \{ x_i \mid i \in I \} \) be a well-ordered set and \(W_{ab} \subseteq Tri(X) \) be a set consisting of the following polynomials:

\[[x_i x_j]_2 - [x_j x_i]_1, \ [x_i x_j]_1 - [x_j x_i]_2, \ [x_i x_j]_2 - [x_i x_j]_1, \ [x_i x_j]_{\{1,2\}} - [x_i x_j]_{\{1,2\}}, \ (i, j \in I, i > j). \]

Then, \(W_{ab} \) is the reduced Gröbner–Shirshov basis for the free abelian trialgebra \(Tri(X)T_{ab} \).

From Lemma 11 and Proposition 3, it follows that
Corollary 7. Let \(X = \{x_1, \ldots, x_r\} \) and let \(\text{Tri}(X|T_{ab}) \) be the free abelian trialgebra generated by \(X \). Then, we have
\[
\text{GKdim}(\text{Tri}(X|T_{ab})) = 2r.
\]

Proof. Let \(\tilde{X} = \{x \mid x \in X\} \) be a copy of \(X \), and let \(k[\tilde{X} \cup \tilde{X}] \) be the commutative polynomial algebra generated by \(\tilde{X} \cup \tilde{X} \). It is obvious that \(k[\tilde{X} \cup \tilde{X}] \) is isomorphism to \(\text{Tri}(X|T_{ab}) \) as a vector space. Thus, we obtain
\[
\text{GKdim}(\text{Tri}(X|T_{ab})) = \text{GKdim}(k[\tilde{X} \cup \tilde{X}]) = 2r.
\]

The proof is completed. \(\square \)

Author Contributions: Supervision, Y.C.; writing—original draft preparation, J.H.; writing—review and editing, J.H. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Natural Science Foundation of China grant number 12071156.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Acknowledgments: The authors are grateful to Yuxiu Bai for useful discussions and comments.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Loday, J.-L.; Ronco, M.O. Trialgebras and families of polytopes. Contemp. Math. 2004, 346, 369–398.
2. Zhuchok, A.V. Free commutative trioids. Semigroup Forum. 2019, 98, 355–368. [CrossRef]
3. Zhuchok, A.V. Trioids. Asian Eur. J. Math. 2015, 8, 1550089-1–1550089-23. [CrossRef]
4. Zhuchok, Y.V. Free n-nilpotent trioids. Mat. Stud. 2015, 43, 3–11. [CrossRef]
5. Zhuchok, Y.V. Free retangular tribands. Bul. Acad. Stiinte Repub. Mold. Mat. 2015, 78, 61–73.
6. Casas, J.M. Trialgebras and Leibniz 3-algebras. Bol. Soc. Mat. Mex. 2006, 12, 165–178.
7. Ebrahimi-Fard, K.J. Loday-type algebras and the Rota–Baxter relation. Lett. Math. Phys. 2002, 61, 139–147. [CrossRef]
8. Loday, J.-L.; Frabetti, A.; Chapoton, F.; Goichot, F. Dialgebras and Related Operads, Lecture Notes in Math; Springer: Berlin, Germany, 2001; Volume 1763.
9. Kolesnikov, P.S. Varieties of dialgebras and conformal algebras. Sib. Mat. Zhurnal 2008, 49, 322–339. [CrossRef]
10. Zhuchok, A.V. Structure of relatively free dimonoids. Comm. Algebra 2017, 45, 1639–1656. [CrossRef]
11. Zhuchok, Y.V. Free abelian dimonoids. Algebra Discrete Math. 2015, 20, 330–342.
12. Bokut, L.A.; Chen, Y.; Liu, C. Gröbner-Shirshov bases for dialgebras. Int. J. Algebra Comput. 2010, 20, 391–415. [CrossRef]
13. Chen, Y.; Zhang, G. A new Composition-Diamond lemma for dialgebras. Algebra Colloq. 2017, 24, 323–350.
14. Buchberger, B. An algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal, Translated from the 1965 German original by Michael P. Abramson. J. Symbolic Comput. 2006, 41, 475–511. [CrossRef]
15. Shirshov, A.I. Some algorithmic problems for Lie algebras. Sib. Mat. Zhurnal 1962, 3, 292–296.
16. Shirshov, A.I. Selected Works of A. I. Shirshov; Bokut, L.A., Latyshev, V., Sheshukov, I., Zelmanov, E., Eds.; Birkhäuser Verlag: Basel, Switzerland, 2009.
17. Shirshov, A.I. Some algorithmic problems for e-algebras. Sib. Mat. Zhurnal 1962, 3, 132–137.
18. Bokut, L.A.; Kukin, G.P. Algorithmic and Combinatorial Algebra; Mathematics and its Applications; Kluwer Academic Publishers Group: Dordrecht, The Netherlands, 1994; Volume 255.
19. Buchberger, B.; Collins, G; Loos, R.; Albrecht, R. Computer Algebra, Symbolic and Algebraic Computation; Computing Supplementum; Springer: New York, NY, USA, 1982; Volume 4.
20. Buchberger, B.; Winkler, F. Grobner Bases and Applications; London Mathematical Society Lecture Note Series; Cambridge University Press: Cambridge, UK, 1998; Volume 251.
21. Cox, D.A; Little, J.; O’Shea, D. Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, 4th ed.; Undergraduate Texts in Mathematics; Springer: Cham, Switzerland, 2015.
22. Eisenbud, D. Commutative Algebra: With a View toward Algebraic Geometry; Graduate Texts in Mathematics; Springer: New York, NY, USA, 1995; Volume 150.
23. Bokut, L.A.; Chen, Y. Gröbner-Shirshov bases: Some new results. In Advance in Algebra and Combinatorics; Shum, K.P., Zelmanov, E., Zhang, J., Li, S., Eds.; World Scientific: Singapore, 2008; pp. 35–56.
24. Bokut, L.A.; Chen, Y. Gröbner–Shirshov bases and their calculation. Bull. Math. Sci. 2014, 4, 325–395. [CrossRef]
25. Bokut, L.A.; Fong, Y.; Ke, V.F.; Kolesnikov, P.S. Gröbner and Gröbner-Shirshov bases in algebra, and conformal algebras. Fundam. Prikl. Mat. 2000, 6, 669–706.
26. Bokut, L.A.; Kolesnikov, P.S. Gröbner–Shirshov bases: from inception to the present time, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 272(Vopr. Teor. Predst. Algebr i Grupp. 7) 2000, 345, 26–67.
27. Bokut, L.A.; Kolesnikov, P.S. Gröbner-Shirshov bases, conformal algebras and pseudo-algebras. J. Math. Sci. 2005, 131, 5962-6003. [CrossRef]
28. Newman, M.H.A. On theories with a combinatorial definition of “equivalence”. Ann. Math. 1942, 43, 223–243. [CrossRef]
29. Bergman, G.M. The diamond lemma for ring theory. Adv. Math. 1978, 29, 178–218. [CrossRef]
30. Biyogmam, G.R.; Tcheka, C. From Trigroups to Leibniz 3-algebras. arXiv 2019, arXiv: 1904.12030v1.
31. Krause, G.; Lenagan, T. Growth of Algebras and Gelfand–Kirillov Dimension; Graduate Studies in Mathematics; AMS: Providence, RI, USA, 2000; Volume 22.