The VIKOR Method to Support the Effectiveness of Decisions in Determining Work Incentive Recipients

M Mesran¹, Dodi Siregar², Surya Darma Nasution¹, Syafrida Hafni Sahir³, Tengku Mohd Diarsyah², Ika Agustina⁴, S Supriyanto⁵, W Wardayani⁶, Nelly Astuti Hasibuan¹, Dewi Shinta Wulandari Lubis⁶, Amril Anas⁷, Sunday Ade Sitorus⁸ and Robbi Rahim⁶

¹STMIK Budi Darma, Medan, Indonesia
²Universitas Harapan Medan, Medan, Indonesia
³Universitas Medan Area, Medan, Indonesia
⁴Politeknik Negeri Media Kreatif, Medan, Indonesia
⁵Politeknik LP3I, Medan, Indonesia
⁶Sekolah Tinggi Ilmu Manajemen Sukma, Medan, Indonesia
⁷Sekolah Tinggi Ilmu Ekonomi LMII, Medan, Indonesia
⁸Sekolah Tinggi Ilmu Ekonomi ITMI, Medan, Indonesia

*mesran.skom.mkom@gmail.com

Abstract. Giving Incentives is a way given by the company in increasing the work motivation of its employees. Providing incentives to employees has stages that must be passed by the leadership in producing a better and effective decision. In order for the decisions produced are not objective, the leader needs a process of calculating the performance index of his employees. In this study, the application of VIKOR is needed in managerial decision support systems. It is intended that the decisions produced are no longer of objective value to employees who are given salary incentives.

1. Introduction

Employees are workers owned by a company. Employees also as resources that can advance an organization and provide more benefits to the company where the employee works. As much as any company in an area, it will not be separated from its human resources, namely labor. Although the development of technology today is inseparable from modern production machinery, the company still requires labor (employees). This is in order to achieve an organizational goal set by a company. The achievement of this goal certainly requires more motivation that the company can give to employees, so that employee performance can improve.

There are many ways that the company can improve its employees' performance, including the provision of higher salaries, the provision of allowances, insurance, giving leave in addition to holidays, the closeness of leaders to employees, a comfortable working atmosphere, and the provision of incentives or bonuses for employees. Providing incentives to employees can be the main choice. This is a good choice compared to companies having to raise their salaries, or increase benefits. The provision of incentives can be by choosing employee employees who have good performance, in accordance with
the results of work productivity produced. Providing the right incentives by the company can create a competitive advantage.

In some companies there are several criteria used to determine the incentive for employees, such as productivity, employee attendance, loyalty, work comfort. In providing incentives to employees, can be done in two ways, namely giving materially both, and giving non-material. Non-material provision can be in the form of giving to a work facility, insurance, this can have a positive impact on the achievement of company objectives. Material giving can be like additional salary, incentives, insurance. In order to provide effective incentives to employees, the manager must be truly objective in processing for the determination of employees who will get the incentives.

At this time the use of information systems to help managers grow, including decision support information systems [1], [2]. This system is a system intended for management as decision-makers in a company. In a decision support system, a method of methods is applied that can help in producing a better decision. A variety of multicriteria-based methods can be used in this system, such as using the fuzzy TAHANI, ELECTRE, VIKOR methods [3]–[6]. Simple method methods are also believed to be able to help produce good decisions such as SAW, SMART[7], [8].

In the previous research conducted by Syafrida (2017) concerning the determination of employees who received salary increases, the use of decision support methods was very good in producing more effective decisions[7]. In this study, VIKOR method is used to calculate employee performance index values. It is expected that the VIKOR method can provide more specific results compared to other method methods[6][9].

2. Methodology
One of the developing Multi Criteria Decision Making (MCDM) methods is VIKOR. VIKOR (Vise Kriterijumska Optimizacija I Kompromisno Resenje) was first introduced by Serafim Opricovic in 1998 [10][11]. VIKOR aims to complete decision-making on existing alternatives by ranking and choosing sample sets with conflicting criteria.

VIKOR is used as one of the multi-criteria decision making methods based on the best solution obtained from the closest ideal solution. Then the stages of ranking are by comparing the distance to the ideal solution. The VIKOR method applies linear normalization which aims to get the best solution.

Steps for calculating the VIKOR method[6], as follows:

a. Normalize the decision matrix, using equation 1.

\[r_{ij} = \frac{x_{ij}^+ - x_{ij}}{x_{j}^+ - x_{j}^-} \]

Where \(r_{ij} \) and \(x_{ij} \) (i = 1, 2, 3, ..., m and j = 1, 2, 3, ..., n) are elements of the decision-making matrix (alternative i to criteria j) and \(x_{j}^+ \) is the best element of criterion j, \(x_{j}^- \) is the worst element of criterion j.

b. Calculating the Utility Measure (S_i) values and Regret Measure (R_i) using equations 2 and 3. In obtaining the values of S_i and R_i, we need criteria weighting values. The criteria weight (w_j) aims to represent relative importance.

\[S_i = \sum_{j=1}^{n} W_j \left(\frac{x_{ij}^+ - x_{ij}}{x_{j}^+ - x_{j}^-} \right) \]

and

\[R_i = \max_j \left[w_j \left(\frac{x_{ij}^+ - x_{ij}}{x_{j}^+ - x_{j}^-} \right) \right] \]

Where is the weight of each criterion j.

c. Determine the VIKOR index value using equation 4.

\[Q_i = \left[\frac{S_i - S^+}{S^- - S^+} \right] V + \left[\frac{R_i - R^+}{R^- - R^+} \right] (1-V) \]
Where $S_- = \max S$, $S_+ = \min S$ and $R_- = \max R$, $R_+ = \min R$ and $v = 0.5$.

d. Ranking of Utility Measure (S_i), Regret Measure (R_i) and VIKOR index (Q_i) values.

The ranking of the three values, S_i, R_i, and Q_i is based on the largest value to the smallest value (ascending order), with the smallest value being the best candidate. So that there will be three lists/ranking versions.

Condition C1: "Acceptance of Profits"
The conditions for fulfilling C1 conditions or profit acceptance are by comparing the difference in the alternative value of the second rank with the alternative in the first rank against the DQ value. Equations (5) and (6) explain how mathematically C1 conditions are met.

$$Q(a'') - Q(a') \geq DQ \quad (5)$$

$$DQ = \frac{1}{m-1} \quad (6)$$

Condition C2: "Acceptance of Stability in Decision Support"
To fulfill C2 conditions, alternatives must also be ranked first in ranking S_i and/or R_i values. If C2 conditions are met, then the stability of the compromise solution is accepted in the decision making process.

The type of stability achieved is in the form of:

- a. Selected by the "majority rule", when $v > 0.5$
- b. Chosen by "consensus", when $v \approx 0.5$
- c. Vetoed, when $v < 0.5$

If one condition is not met, some compromise solutions will be submitted. A compromise solution can consist of:

- Alternatives, if a'' and a' only if C2 conditions are not met.
- Alternatives, a', a'', ..., a^m, if C1 conditions are not met

$$Q(a^m) - Q(a') < DQ \quad (7)$$

3. Result and Discussion
The provision of incentives for employees is done by calculating the performance index of the specified criteria. From each criterion, the weights are determined according to the interests of the existing criteria. In this study, the performance index is calculated with twenty (20) employees in the company. Incentives will be given to 13 employees who have the best performance index values, in this case, have a lower VIKOR Index value ($Q_i < 0.5$).

Table 1 is specified criteria and weight table, while employee data is found in table 2, which is a list of alternatives with values of each criterion.

Criteria	Description	Weight
C_1	Achievement	40%
C_2	Discipline	25%
C_3	Attitude	25%
C_4	Work Period	10%
Table 2. Employee List (Alternatives)

Employee	C1	C2	C3	C4
M. Yusuf (A1)	Good	Very Good	Very Good	10 year
Susi Santi (A2)	Good	Good	Very Good	15 year
Jhoni (A3)	Good	Good	Good	14 year
Erwinsyah (A4)	Good	Good	Very Good	15 year
I Made (A5)	Very Good	Very Good	Good	12 year
Joko W (A6)	Very Good	Very Good	Enough	11 year
I Saputra (A7)	Enough	Good	Good	9 year
Ryan Andika (A8)	Very Good	Very Good	Good	15 year
Soebondo (A9)	Good	Enough	Very Good	15 year
Hendri K (A10)	Good	Kurang	Very Good	14 year
FirmanSyah (A11)	Enough	Very Good	Good	15 year
Andy Syahputra (A12)	Enough	Good	Good	13 year
T. Zeuba (A14)	Very Good	Very Good	Very Good	9 year
Hariyanto (A15)	Very Good	Very Good	Very Good	10 year
Tiara M (A16)	Enough	Very Good	Good	12 year
Fatolosa (A17)	Very Good	Enough	Very Good	15 year
Akhyar (A18)	Enough	Good	Good	10 year
Susi Fitria (A19)	Good	Very Good	Very Good	8 year
Yenti M (A20)	Very Good	Good	Very Good	13 year

In table 2 we can see linguistic values, in the form of very good, good, enough or not good. This information will be weighted so that it can get a value that can be calculated as shown in table 3.

Table 3. Weighting alternative values

Description	Weight
Very Good	4
Good	3
Enough	2
Not Good	1

The results of the weighting in table 3 of table 2 obtained the matching rating data for each employee which can be seen in table 4.

Table 4. List of Alternatives

Alternatives	C1	C2	C3	C4
M. Yusuf (A1)	3	4	4	10
Susi Santi (A2)	3	3	4	15
Jhoni (A3)	3	3	3	14
Erwinsyah (A4)	3	3	4	15
I Made (A5)	4	4	3	12
Joko W (A6)	4	4	2	11
I Saputra (A7)	2	3	3	9
Ryan Andika (A8)	4	3	3	15
Soebondo (A9)	3	2	4	15
Hendri K (A10)	3	1	4	14
FirmanSyah (A11)	2	4	3	15
Andy Syahputra (A12)	2	3	3	13
Ebenezer (A13)	2	3	2	10
Alternatives C1 C2 C3 C4
T. Zebua (A14) 4 4 4 9
Hariyanto (A15) 4 4 4 10
Tiara M (A16) 2 4 3 12
Fatolosa (A17) 4 2 4 15
Akhyar (A18) 2 3 3 10
Susi Fitria (A19) 3 4 4 8
Yenti M (A20) 4 3 4 13

After the suitability rating (table 4) is obtained, the completion of VIKOR in the first step is to calculate the normalized matrix. To calculate the normalized matrix using equation (1), here is the matrix resulting from normalization.

Alternatives	C1	C2	C3	C4
A1	0,50	0,00	0,00	0,71
A2	0,50	0,33	0,00	0,00
A3	0,50	0,33	0,50	0,14
A4	0,50	0,33	0,00	0,00
A5	0,00	0,00	0,50	0,43
A6	0,00	0,00	1,00	0,57
A7	1,00	0,33	0,50	0,86
A8	0,00	0,33	0,50	0,00
A9	0,50	0,67	0,00	0,00
A10	0,50	1,00	0,00	0,14
A11	1,00	0,00	0,50	0,00
A12	1,00	0,33	0,50	0,29
A13	1,00	0,33	1,00	0,71
A14	0,00	0,00	0,00	0,86
A15	0,00	0,00	0,00	0,71
A16	1,00	0,00	0,50	0,43
A17	0,00	0,67	0,00	0,00
A18	1,00	0,33	0,50	0,71
A19	0,50	0,00	0,00	1,00
A20	0,00	0,33	0,00	0,29

The solution then uses equation 2 and equation 3 to find the Utility Measure (S_i) and Regret Measure (R_i) values.

Alternatives	Utility Measure (S_i)	Regret Measure (R_i)
A1	0,271	0,200
A2	0,283	0,200
A3	0,423	0,200
A4	0,283	0,200
A5	0,168	0,125
A6	0,307	0,250
A7	0,694	0,400
A8	0,208	0,125
A9	0,367	0,200
From the value of Utility Measure (S_i) and Regret Measure (R_i), the values of S^+ and S^- are determined, the values of R^+ and R^- are as follows:

$$ S^+ : 0.071 $$
$$ S^- : 0.805 $$
$$ R^+ : 0.071 $$
$$ R^- : 0.400 $$

Then the VIKOR (Q_i) index value is calculated using equation (4). From the above determination, it is obtained the calculation results of the VIKOR index of each employee along with the incentive status.

Alternatives	Q_i	Rank	Status
A15	0	1	Get incentives
A14	0.031	2	Get incentives
A20	0.046	3	Get incentives
A5	0.147	4	Get incentives
A8	0.175	5	Get incentives
A17	0.21	6	Get incentives
A1	0.332	7	Get incentives
A2	0.34	8	Get incentives
A4	0.34	9	Get incentives
A19	0.351	10	Get incentives
A9	0.397	11	Get incentives
A6	0.432	12	Get incentives
A3	0.435	13	Get incentives
A10	0.54	14	Not given
A11	0.809	15	Not given
A16	0.838	16	Not given
A12	0.886	17	Not given
A18	0.915	18	Not given
A7	0.925	19	Not given
A13	1	20	Not given

Based on the VIKOR index value, it can be determined that alternatives that get incentives are ranked 1 to 13, while from 14 to 20 do not get incentives. From table 6 the VIKOR index graph is created so that the distribution of each value is clearly seen in each employee.
In Figure 1 evenly distributed VIKOR index value, employees who get incentives are those that have a VIKOR index value below 0.5.

4. Conclusion
Based on research conducted using the VIKOR method, for criteria with linguistic values (achievement, discipline, attitude) must first be weighted. The results given by VIKOR are very different when compared to other methods, in VIKOR the smaller the index value (Qi), the alternative becomes the best. This can help decision-makers to provide more effective results.

References
[1] Tzeng G-H and Huang J-J, 2011 Multiple Attribute Decision Making Method And Applications CRC Press.
[2] Ginting G Fadlina Mesran Siahaan A P U and Rahim R, 2017 Technical Approach of TOPSIS in Decision Making Int. J. Recent Trends Eng. Res. 3, 8 p. 58–64.
[3] Sahir S H Rosmawati R and Rahim R, 2018 Fuzzy model tahani as a decision support system for selection computer tablet Int. J. Eng. Technol. 7, 2.9 p. 61–65.
[4] Mesran M Ginting G Suginam S and Rahim R, 2017 Implementation of Elimination and Choice Expressing Reality (ELECTRE) Method in Selecting the Best Lecturer (Case Study STMIK BUDI DARMA) Int. J. Eng. Res. Technol. 6, 02, February-2017 p. 141–144.
[5] Yanie A et al., 2018 Web Based Application for Decision Support System with ELECTRE Method J. Phys. Conf. Ser. 1028, 1.
[6] Siregar D et al., Jun. 2018 Multi-Attribute Decision Making with VIKOR Method for Any Purpose Decision J. Phys. Conf. Ser. 1019 p. 012034.
[7] Sahir S H Rosmawati R and Minan K, 2017 Simple Additive Weighting Method to Determining Employee Salary Increase Rate Int. J. Sci. Res. Sci. Technol. 3, 8 p. 42–48.
[8] Risawandi R and Rahim R, 2016 Study of the Simple Multi-Attribute Rating Technique For Decision Support Int. J. Sci. Res. Sci. Technol. 2, 6 p. 491–494.
[9] Mardani A Zavadskas E Govindan K Amat Senin A and Jusoh A, Jan. 2016 VIKOR Technique: A Systematic Review of the State of the Art Literature on Methodologies and Applications Sustainability 8, 1 p. 37.
[10] El-santawy M F, 2012 A VIKOR Method for Solving Personnel Training Int. J. Comput. Sci. 1, 2 p. 9–12.
[11] Huang J-J Tzeng G-H and Liu H-H, 2009, A Revised VIKOR Model for Multiple Criteria Decision Making - The Perspective of Regret Theory, in Communications in Computer and Information Science, 35, p. 761–768.