Alston, C. L., Howard, C., Oláhová, M., Hardy, S. A., He, L., Murray, P. G., O'Sullivan, S., Doherty, G., Hamilton-Shield, J. P., Hargreaves, I. P., Monavari, A. A., Knerr, I., McCarthy, P. W., Morris, A. A. M., Thorburn, D. R., Prokisch, H., Clayton, P., McFarland, R., Hughes, J., ... Taylor, R. W. (2016). A recurrent mitochondrial p.Trp22Arg NDUFB3 variant causes a distinctive facial appearance, short stature and a mild biochemical and clinical phenotype. Journal of Medical Genetics, 53(9), 634-641. https://doi.org/10.1136/jmedgenet-2015-103576

Publisher's PDF, also known as Version of record
License (if available): CC BY
Link to published version (if available): 10.1136/jmedgenet-2015-103576

Link to publication record on the Bristol Research Portal
PDF-document

This is the final published version of the article (version of record). It first appeared online via BMJ Publishing Group at http://jmg.bmj.com/content/53/9/634. Please refer to any applicable terms of use of the publisher.

University of Bristol – Bristol Research Portal
General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/brp-terms/
SHORT REPORT

A recurrent mitochondrial p.Trp22Arg NDUFB3 variant causes a distinctive facial appearance, short stature and a mild biochemical and clinical phenotype

Charlotte L Alston,1 Caoimhe Howard,2 Monika Oláhová,1 Steven A Hardy,1 Langping He,1 Philip G Murray,3 Siobhan O’Sullivan,4 Gary Doherty,4 Julian P H Shield,5 Iain P Hargreaves,6 Ardeshr A Monavari,2 Ina Kner,2 Peter McCarthy,2 Andrew A M Morris,7 David R Thorburn,8 Holger Prokisch,9 Julian P H Shield,5 Iain P Hargreaves,6 Ardeshr A Monavari,2 Ina Kner,2 Peter McCarthy,2 Andrew A M Morris,7 David R Thorburn,8 Holger Prokisch,9

ABSTRACT

Background Isolated Complex I deficiency is the most common paediatric mitochondrial disease presentation, associated with poor prognosis and high mortality. Complex I comprises 44 structural subunits with at least 10 ancillary proteins; mutations in 29 of these have so far been associated with mitochondrial disease but there are limited genotype-phenotype correlations to guide clinicians to the correct genetic diagnosis.

Methods Patients were analysed by whole-exome sequencing, targeted capture or candidate gene sequencing. Clinical phenotyping of affected individuals was performed.

Results We identified a cohort of 10 patients from 7 families (7 families are of unrelated Irish ancestry) all of whom have short stature (<9th centile) and similar facial features including a prominent forehead, smooth philtrum and deep-set eyes associated with a recurrent homozygous c.64T>C, p.Trp22Arg NDUFB3 variant. Two sibs presented with primary short stature without obvious metabolic dysfunction. Analysis of skeletal muscle from three patients confirmed a defect in Complex I assembly.

Conclusions Our report highlights that the long-term prognosis related to the p.Trp22Arg NDUFB3 mutation can be good, even for some patients presenting in acute metabolic crisis with evidence of an isolated Complex I deficiency in muscle. Recognition of the distinctive facial features—particularly when associated with markers of mitochondrial dysfunction and/or Irish ancestry—should suggest screening for the p.Trp22Arg NDUFB3 mutation to establish a genetic diagnosis, circumventing the requirement of muscle biopsy to direct genetic investigations.

INTRODUCTION

Mitochondrial respiratory chain disease is a significant cause of human disease with a population prevalence of approximately 1 in 5000 in adults and children. Symptoms can manifest in the neonatal period but onset is often later in infancy, early childhood or even delayed to adulthood. Patients may present with disease affecting a single organ or have a multisystemic disorder typical of conditions such as Leigh syndrome. Approximately 70% of paediatric mitochondrial disease cases are caused by nuclear gene variants, while ~30% harbour defects involving mitochondrially encoded (mtDNA) genes.2 3 Conversely, mtDNA mutations more often underlie adult mitochondrial disease presentations.4 Beyond these prevalence statistics, the clinical and genetic heterogeneity results in a complex diagnostic pathway that usually relies on biochemical analysis of a muscle biopsy to direct genetic testing. Sanger sequencing of genes selected and prioritised according to clinical phenotype and biochemical results, as well as tissue biopsies, are being replaced by next-generation sequencing (NGS) strategies including candidate gene panels5 and whole-exome sequencing6 7.

Investigation of isolated Complex I deficiency is particularly amenable to an NGS-based strategy given the number of genes implicated in its pathogenesis, with 44 structural subunits and at least 10 ancillary proteins required for enzyme assembly. It is the most common paediatric mitochondrial respiratory chain deficiency and mutations have been described in at least 29 genes to date,8 almost all being associated with a poor clinical course and bleak prognosis.8 Here we report the clinical and molecular genetic investigation of 10 patients from 8 unrelated families who all harbour an identical homozygous c.64T>C, p.Trp22Arg NDUFB3 mutation, affecting a Complex I accessory subunit, previously reported in association with severe neurological presentations.9 10 Most of our patients had considerably milder presentations despite harbouring the same variant. Recognition of mild dysmorphic facial features common to our initial patients prompted screening for the p.Trp22Arg NDUFB3 variant in similar patients, leading to five further genetic diagnoses. This report demonstrates that the c.64T>C, p.Trp22Arg NDUFB3 mutation can be associated with good long-term prognosis and that recognition of a cluster of physical...
characteristics may enable rapid diagnosis of NDUF83-related mitochondrial disease, circumventing invasive procedures or extensive genetic testing.

SUBJECTS AND METHODS
All patient samples were referred to the nationally commissioned ‘Highly Specialised Mitochondrial Diagnostic Laboratory’ in Newcastle upon Tyne for investigation of a putative mitochondrial defect. A clinical summary for each patient is given in table 1; detailed case reports are provided as online supplementary information. Informed parental consent was obtained.

Histochemical and biochemical analyses
Enzymatic activities of individual mitochondrial respiratory chain complexes were determined in patient muscle biopsies as previously described.11

Targeted next-generation sequencing
A custom 84.38 Kb Ampliseq panel was designed using the Ion Amplisseq Designer V.2.2.1 (http://www.amplisseq.com) to target 49 genes implicated in Complex I deficiency (see online supplementary table S1). To generate the barcoded Ampliseq target library using the Ion AmpliSeq Library Kit 2.0 and Ion Xpress Barcode Adapter 1–96 Kit, 40 ng patient DNA was used. Libraries were quantified using an Agilent 2100 Bioanlyser and pooled at 100 pM for emulsion PCR and enrichment using the Ion OneTouch2 and Enrichment system. Sequencing using the Ion PGM 200 Sequencing Kit was performed using 316 chips on an Ion PGM Sequencer, all according to the manufacturer’s protocol. Torrent Suite V.4.2.1 was used to align reads against the human genome (hg19). The Variant Caller plugin was used to identify sequence variants that were annotated using wANNOVAR.12

Whole-exome sequencing
Targeted enrichment and sequencing was performed using 3 μg patient DNA. Enrichment was performed using the Illumina HiSeq Sure Select All Exon v5 Enrichment Kit, and sequencing was performed on an Illumina HiSeq 2500 sequencer, all as directed. Sequence data were mapped with BWA software to the human genome (hg19). Variants were called using GATK V2.4.7 software and annotated using Ensembl V72. Ensembl’s ‘defined consequence hierarchically’ system retained the highest impacting gene variant. Filtering removed variants with ≤5× coverage, a minor allele frequency (MAF)>1%, those predicted to be non-functional, and those reported in dbSNP (unless seen in the Human Gene Mutation Database (HGMD)) or an in-house database (n=647 exomes).

Mutation screening, confirmation and carrier testing
The c.64T>C, p.Trp22Arg NDUF83 sequence variant was screened and confirmed using M13-tagged amplicons and Sanger sequencing with BigDye V3.1 kit (Life Technologies). Capillary electrophoresis was performed using an ABI3130xl. Familial screening for the c.64T>C, p.Trp22Arg NDUF83 sequence variant was undertaken using parental and sibling DNA samples where available and appropriate.

Haplotype analysis
A putative founder effect was investigated by genotyping two proximal (D2S309 and D2S2214) and two distal (D2S116 and D2S2309), short tandem repeat (STR) markers flanking the NDUF83 gene. Corresponding PCR primers are listed on Ensembl. Mapping distance was calculated using MAP-O-MAT.13

Western blotting and blue native polyacrylamide gel electrophoresis
Mitochondrial fractions from control and patient muscle were prepared for western blotting and blue native polyacrylamide gel electrophoresis (BN-PAGE) as described previously.14 Protein concentrations were determined with the Pierce bicinchoninic acid (BCA) Protein Assay Kit. Muscle protein extracts (100 μg) were loaded on Native PAGE 4–16% BisTris gels, electrophoretically separated in the first dimension before proteins were immobilised onto a polyvinylidene fluoride (PVDF) membrane (Immobilon-P Millipore Corporation) and subjected to standard immunoblotting analysis of oxidative phosphorylation (OXPHOS) complexes using primary and horseradish peroxidise conjugated secondary antibodies as described.14 For western blotting, equal amounts of muscle protein (50 μg) were loaded on 12% gels and resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), followed by wet transfer to PVDF membrane and subsequent immunodetection.

RESULTS
Clinical findings
We describe five female and five male paediatric patients, each of whom are of short stature and share characteristic facial features. All weighed less than the 9th centile at birth, 8/10 were below the 2nd centile (80%). Clinical photography illustrates the prominent forehead, poorly defined philtrum and deep-set eyes (figure 1A, B). The majority of patients presented following a life-threatening metabolic crisis early in life followed by a period of sustained improvement. Subsequently, their clinical course has been largely benign but for occasional bouts of lactic acidosis associated with minor illnesses. A previous female sibling to patients 6 and 7 was born at term with growth restriction, became unwell and died on day 2 of life with profound lactic acidosis and multiorgan failure (no DNA was available for analysis). Patients 8 and 9 (siblings) presented to endocrinology for investigation of primary growth failure and were initially suspected to have 3M syndrome. Poor linear growth was seen in all patients, three patients have had growth hormone treatment with variable response.

Histochemical and biochemical analyses of mitochondrial respiratory chain enzymes
Where muscle biopsy had been performed, we identified an isolated Complex I deficiency (table 1). No muscle biopsy was available for patients 8 and 9 as a metabolic condition was not suspected.

Identification of a common underlying genetic defect
All patients in the cohort were found to harbour an identical homozygous c.64T>C, p.Trp22Arg NDUF83 sequence variant (table 1). Each of the three patients analysed by targeted NGS harboured between 54 and 57 genomic variants which were filtered to exclude those with a MAF >1% and variants outside the coding region ±10 bp of the intron/exon boundaries. For cases identified by whole exome sequencing (WES), from the 526 candidate variants compatible with autosomal recessive inheritance only a single, homozygous variant in NDUF83, c.64T>C, p.Trp22Arg remained after filtering. All NGS-based strategies were confirmed by conventional Sanger sequencing. The c.64T>C (chr2(hg38):g.21078946T>C) variant is referenced on dbSNP (rs142609245) and variant frequencies are recorded on ESP6500 (European: 14/8586 alleles (0.16%));
Table 1 Clinical and biochemical findings in the patient cohort

| Patient (sex) | Ancestry | Clinical Presentation | Gestational age and birth weight (centile) | Age at latest review | Height at review (centile) | Lactate | Physical appearance | Residual CI activity* | Identified by |
|---------------|----------|-----------------------|-------------------------------------------|---------------------|--------------------------|---------|---------------------|---------------------|--------------|
| 1 (M)         | English  | RSV+ acute respiratory collapse and hypoglycaemia aged 8 weeks requiring intubation for 8 days. Pulmonary hypertension on echocardiogram. Maximum-recorded lactate 14 mmol/L. Discharged after 18 days. Normal cardiac function and morphology at 13 months. | Term <0.4th | 9.5 years | <0.4th | +++ | + | + | + | 35% | Targeted NGS panel. |
| 2 (F)         | Irish    | IUGR. Acute life-threatening event, age 20 days, required intubation. Hypertrophic cardiomyopathy. | 30 weeks 2nd | 6 years | 2nd | + | + | + | + | 33% | Targeted NGS panel. |
| 3 (F)         | Irish    | IUGR and oligohydramnios, FTT, mild hypertrophic cardiomyopathy. | 34 weeks 2nd–9th | 3.5 years | 0.4th–2nd | ++ | + | + | + | 32% | Targeted NGS panel. |
| 4 (F)         | Irish    | Growth restriction. Ketotic hypoglycaemia following vomiting illness. Short stature prompted endocrinology referral. Growth hormone therapy. MRI: high signal in periventricular white matter and dentate nuclei. | 39 weeks 0.4th–2nd | 8 years | n.d. | ++ | + | + | + | 24% | Mutation screen. |
| 5 (M)         | Irish    | IUGR. Poor feeding. Congenital hypothyroidism (strong paternal family history). Developmental delay, growth failure, FTT, learning difficulties. Endocrinology review for short stature. | 37 weeks 0.4th–2nd | 10 years | 0.4th | + | + | + | + | 35% | Mutation screen. |
| 6 (F)         | Irish    | Oligohydramnios. IUGR. Poor feeding at birth. MRI brain and echocardiogram normal. Age-appropriate skills. Family history of previous neonatal death. | 37 weeks <0.4th | 2.5 years | 2nd–9th | +++ | + | + | + | 35% | Mutation screen. |
| 7 (M)         | Irish    | Sib of P6. IUGR. Normal echocardiogram and cranial ultrasound. Normal development. | 36 weeks 2nd–9th | 10 months | 9th | ++ | + | + | + | n.d. | Mutation screen. |
| 8 (M)         | Irish    | Initial poor feeding. Short stature prompted endocrinology review. Growth hormone therapy. MRI: high signal in globus pallidus. Echo: murmur. ECG: Wolff–Parkinson–White syndrome. | Term 0.4th–2nd | 9.5 years | 2nd | – | + | + | + | n.d. | Whole-exome sequencing; endocrinology. |
| 9 (F)         | Irish    | Sib of P8. IUGR. Growth hormone therapy. Normal MRI brain, echocardiogram and ECG. | Term <0.4th | 8 years | 2nd | – | + | + | + | n.d. | Whole-exome sequencing; endocrinology. |
| 10 (M)        | Irish    | IUGR, chronic lung disease, growth restriction and weight faltering. Dysmorphic with partial agenesis of corpus callosum. Acute collapse with rhinovirus bronchiolitis, severe pulmonary hypertension at 5.5 months. Elevated lactates with intercurrent illnesses. | 31 weeks <0.4th | 11 months | <0.4th | +++ | + | + | + | 36% | Mutation screen. |

*Residual Complex I activities, normalised to the activity of the matrix marker enzyme citrate synthase, are expressed as a percentage of mean control values.

FTT, failure to thrive; IUGR, intrauterine growth restriction; N.D., not determined; NGS, next-generation sequencing; RSV, respiratory syncytial virus.
African-American: 2/4404 alleles (0.05%) and ExAC (Non-Finnish Europeans: 69/66 604 alleles (0.1%); African: 2/10 390 alleles (0.02%); Latino: 1/11 568 alleles (0.01%); South Asian: 9/16 484 alleles (0.05%). There are no homozygous cases recorded on either ESP650015 or ExAC16 databases.

Although the highest prevalence is recorded in European populations, the presence of the c.64T>C, p.Trp22Arg NDUFB3 variant in non-European populations suggests other independent occurrences of this pathogenic mutation.

**Carrier testing**

With the exception of patients 4 and 5, where familial samples were unavailable, parental carrier testing confirmed recessive inheritance. Analysis of samples from the unaffected twin of

---

**Figure 1** Clinical presentation associated with homozygous NDUFB3 variant

(A) Clinical photographs of eight patients harbouring a homozygous pathogenic c.64T>C, p.Trp22Arg NDUFB3 variant. Patient 1 is of English descent, whereas the remaining cases are all of Irish heritage. Patients 6/7 and 8/9 are clinically affected sibling pairs. All have characteristic physical features including a prominent forehead, smooth philtrum, deep-set eyes and low-set ears. (B) Clinical photographs of patient 10, the youngest case within our cohort, illustrating the characteristic physical features associated with the p.Trp22Arg NDUFB3 variant.

---

Alston CL, et al. J Med Genet 2016;53:634–641. doi:10.1136/jmedgenet-2015-103576
components.17
brane arm, of which NDUFB3 and NDUFB8 are both integral
other defects involving subcomplex I
β
NDUFB8 appeared to show partially assembled Complex I
the markers most proximal to the
T rp22Arg variant (see online supplementary
support multiple, independent occurrences of the c.64T>C, p.
were all normal (figure 2C). Immunoblotting with
levels were typically normal, although transient acidic events
levels were typically normal, although transient acidic events
patient 1 and the three unaffected siblings of patients 8 and 9
confirmed the homozygous genotype segregates with a clinically
affected status.
Haplotype analysis
Analysis of the NDUFB3-flanking STR markers across 0.5cM
support multiple, independent occurrences of the c.64T>C, p.
Trp22Arg variant (see online supplementary figure). Analysis of
the markers most proximal to the NDUFB3 gene (D2S309 and
D2S2309), those most likely to be in linkage disequilibrium,
shows three discrete haplotypes (1-1, 2-1 and 1-2). When
including the distal STR markers in the analysis, this increases
to seven haplotypes (a’, b’, plus #). There is one particularly
prevalent haplotype (‘a’) in the patient cohort that is present in
the heterozygous state in 8/10 cases and homozygous for 1/10
cases, supporting a founder allele. Additionally, the ‘b’ and ‘c’
haplotypes are present in two unrelated families. Haplotype
analysis of the two previously reported cases shows the variants
are also on the background of either the ‘a’ or ‘b’ haplotypes,
suggesting a shared founder. We infer that the ‘#’ haplotype
corresponds to the allele harbouring the truncating NDUFB3
mutation reported by Haack et al, as patient RC1 harboured a
p.Trp22Arg variant in compound heterozygosity with p.Gly70*.

Steady-state levels of respiratory chain components and
complexes
The p.Trp22Arg variant affects an evolutionary conserved
amino acid residue (figure 2A). We investigated the steady-state
protein levels of OXPHOS subunits in muscle available from
three patients harbouring a homozygous p.Trp22Arg NDUFB3
variant by SDS-PAGE and immunoblotting. The steady-state
levels of Complex I subunit proteins NDUFB8 and NDUFA9
were decreased in all three patients while levels of protein com-
ponents of Complexes II, III, IV and V were normal (figure 2B).
Analysis of the assembly of OXPHOS complex subunits into
mitochondrial respiratory chain complexes was undertaken by
BN-PAGE, showing a decrease of fully assembled Complex I in
P6, P2 and P3 muscle—correlating with the recorded biochemical
defect—while the assembly profile of Complexes II, III, IV
and V were all normal (figure 2C). Immunoblotting with
NDUFB8 appeared to show partially assembled Complex I
intermediates of ~650 kDa in patient muscle, consistent with
other defects involving subcomplex Iβ of the hydrophobic mem-
brane arm, of which NDUFB3 and NDUFB8 are both integral
components.17–19

DISCUSSION
Mitochondrial disease presentations are frequently heteroge-
neous, with a paucity of genotype-phenotype correlations to
direct molecular genetic testing even with a known biochemical
diagnosis. We present a cohort of 10 patients from 8 non-
consanguineous families who harbour a homozygous c.64T>C,
p.Trp22Arg NDUFB3 variant; together these patients represent
a distinct clinical presentation. The majority of patients pre-
sented with intrauterine growth restriction (IUGR) and share
characteristic facial features including a prominent forehead,
smooth philtrum, deep-set eyes and low-set ears. All patients are
short (height <9th centile) and while short stature is not
uncommon in mitochondrial disorders, dysmorphic features are
rare with the exception of PUS120 and FBXL421 mutations.
NDUFB3 encodes a structural Complex I subunit, and contrary
to reported Complex I-deficient cases there were surprisingly
few persistent features of mitochondrial disease; blood lactate
levels were typically normal, although transient acidic events
were reported following illness leading, in some cases, to hos-
pital admission before recovery. There were no seizures, ataxia
or other neurological deficit noted; patients 2 and 3 had hyper-
trophic cardiomyopathy on echocardiography, but this resolved
with time. All patients are reported to be well, with good levels
of energy, attaining developmental milestones and making good
progress at school (where appropriate). Patient 10 (<1 year of
age) is much younger than the rest of our patient cohort, but is
making excellent developmental progress (see online supple-
mentary case reports).

With the exception of one patient (patient 1), all are reported
to be of Irish ancestry. Interestingly, analysis of the
NDUFB3-flanking STR markers supports multiple, independent
occurrences of the c.64T>C, p.Trp22Arg variant, despite its
prevalence in the Irish population. Across the 0.5cM region ana-
ysed, there are six different p.Trp22Arg alleles; given that this
region is not a recognised recombination hot spot, it is likely
that the mutation has arisen independently and recurrently
although our data suggest a common founder for some cases
and cannot fully exclude recombination as a contributory factor.
The c.64T>C, p.Trp22Arg NDUFB3 variant is represented on
the ExAC server (0/81/121214 (homozygous/heterozygous/
alleles); MAF=6.6×10−6) and has been reported in the litera-
ture twice previously, once in compound with a nonsense muta-
tion and once as a homozygote; functional complementation
experiments confirmed NDUFB3 as the causative gene defect in
both cases.9 10 The homozygous case reported by Calvo et al9
had IUGR (weight <3rd centile) and presented with hypotonia

Figure 1 Continued
and lactic acidosis, required ventilation and died at 4 months of age. The other reported case was born at 35 weeks gestation with low birth weight (3rd centile), with severe lactic acidosis and ketosis developing by day 2. Despite an initially severe presentation, her symptoms ameliorated and she is reported to remain of short stature but suffers illness-induced bouts of lactic acidosis. An older sibling of patients 6 and 7 in our series died on day 2 of life with profound lactic acidosis and multiorgan failure. No underlying cause was identified but a metabolic disorder was suspected, prompting early metabolic investigation of subsequent siblings.

Functional investigation of available patient muscle biopsy revealed a marked decrease in steady state levels of Complex I structural subunits, and although BN-PAGE analysis showed a marked decrease in Complex I subunits (NDUF8 and NDUF9) in patient samples compared with controls. (C) One-dimensional blue native polyacrylamide gel electrophoresis (PAGE) (4–16% gradient) analysis showing a defect in the assembly of Complex I in patients with the homozygous NDUF83 variant. Individual OXPHOS complexes were detected by immunoblotting using subunit-specific antibodies (Complex I (NDUF88), Complex II (SDHA), Complex III (UQCRCC2), Complex IV (COX1) and Complex V (ATPSA)). The assembly of Complexes II–V was normal in all three patient samples when compared with age-matched controls. The lower panel suggests a presence of ~650 kDa β subcomplex of the hydrophobic membrane arm while the lower band (indicated by °°) is likely to represent the ~650 kDa β subcomplex of the hydrophobic membrane arm and light chain/intermediates which are only visible in patient samples. These were detected by probing with an antibody raised against NDUF8 and in agreement with published studies. In (B) and (C), SDHA (Complex II) was used as loading control.

Figure 2 Analysis of OXPHOS complex assembly and protein expression levels (A) Clustal Omega sequence alignment shows the evolutionary conservation of the p.Trp22 residue (marked with asterisk), based on the human sequence (amino acids 1–43). (B) Immunoblot analysis of steady state levels of OXPHOS subunits in mitochondrial lysates isolated from control (C1, C2) and patient skeletal muscle samples (P6, P3, P2). OXPHOS subunit-specific antibodies against the indicated proteins showed a marked decrease in Complex I subunits (NDUF88 and NDUF9) in patient samples compared with controls. (C) One-dimensional blue native polyacrylamide gel electrophoresis (PAGE) (4–16% gradient) analysis showing a defect in the assembly of Complex I in patients with the homozygous NDUF83 variant. Individual OXPHOS complexes were detected by immunoblotting using subunit-specific antibodies (Complex I (NDUF88), Complex II (SDHA), Complex III (UQCRCC2), Complex IV (COX1) and Complex V (ATPSA)). The assembly of Complexes II–V was normal in all three patient samples when compared with age-matched controls. The lower panel suggests a presence of ~650 kDa β subcomplex of the hydrophobic membrane arm while the lower band (indicated by °°) is likely to represent the ~650 kDa β subcomplex of the hydrophobic membrane arm and light chain/intermediates which are only visible in patient samples. These were detected by probing with an antibody raised against NDUF8 and in agreement with published studies. In (B) and (C), SDHA (Complex II) was used as loading control. 

Life support measures are most likely to contribute to the survival rate in our patients who presented in acute metabolic crisis. Evidence of mitochondrial proliferation was present in available muscle biopsy samples with elevated citrate synthase activity and ragged-red fibres indicating a cellular response to metabolic dysfunction. Our cohort and previously reported cases demonstrate this is a successful strategy for some but not all. Typically, paediatric mitochondrial disease patients progressively decline, with the exception of some patients with TRMU mutations or the m.14674T>C/G mt-tRNAGlu variants. We show that the p.Trp22Arg NDUF83 mutation can also be associated with good long-term survival, even when some patients present in acute metabolic crisis with an isolated Complex I deficiency in muscle.

Another unique aspect of this case series involves patients 8 and 9; all other cases were referred by metabolic paediatricians but these children were diagnosed by paediatric endocrinologists investigating primary short stature. Blood lactates were normal for both children but patient 9 presented with Kussmaul-type respiration aged 2 years, which could be consistent with lactic acidosis. In light of the reported c.64T>C, p.Trp22Arg NDUF83 cases, cardiac
screening was performed, revealing Wolff–Parkinson–White (WPW) syndrome in patient 8, a rare cardiac conduction defect which is over-represented in patients with mitochondrial disease.23

The initial manifestation of WPW syndrome can be sudden death and the diagnosis might facilitate interventions including non-invasive risk stratification and/or therapeutic ablation.24

Many cases of isolated Complex I deficiency associated with nuclear gene mutations are discrete entities and no common variant accounts for more than a few apparently unrelated cases.25 We present 10 patients from 8 families who harbour the same homozygous NDUFB3 variant and share a plethora of unifying physical features, an unprecedented finding in association with isolated Complex I deficiency. Recognition of the distinctive facial features in combination with short stature should suggest screening for the c.647>C, p.Trp22Arg NDUFB3 mutation, even in the absence of ‘classic’ metabolic symptoms, and particularly when Irish ancestry is involved.

Author affiliations
1Wellcome Trust Centre for Mitochondrial Research, Institute of Neurosciences, Newcastle University, Newcastle upon Tyne, UK
2National Centre for Inherited Metabolic Disorders, Temple Street Children’s University Hospital, Dublin, Ireland
3Centre for Paediatrics and Child Health, Institute of Human Development, Faculty of Medical & Health Sciences, University of Manchester, & Manchester Academic Health Science Centre, Manchester, UK
4Department of Metabolic Paediatrics, Royal Hospital for Sick Children, Belfast, UK
5University of Bristol and Bristol Royal Hospital for Children, Bristol, UK
6Neurometabolic Unit, National Hospital for Neurology and Neurosurgery, London, UK
7Manchester Centre for Genomic Medicine, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
8Department of Paediatrics, The Royal Children’s Hospital, Murdoch Children’s Research Institute, University of Melbourne, Parkville, Australia
9Institute of Human Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany

Acknowledgements
The authors thank James O’Sullivan, Beverly Anderson and Simon Williams from the Manchester Centre for Genomic Medicine for their support.

Contributors
CLA, RM, MO and RWT contributed to the project design, analysis of the data and/or the drafting of the manuscript. CH, PGM, SO’S, GD, IJHS, AAM, IK, PM, AAMM, DRT, HP, PEC, JH and EC recruited patients and family members and phenotypically characterised the families. CLA, MO, SAH, LH and IPH performed the biochemical and molecular genetic studies. All authors critically revised the manuscript text. RWT supervised the study.

Funding
This work was supported by grants (to RWT and RM) from The Wellcome Trust Centre for Mitochondrial Research (096919/11Z), the Medical Research Council (UK) Centre for Translational Muscle Disease Research (G0601943), The Lily Foundation and the UK NHS Highly Specialised Commissioners which funds the “Rare Mitochondrial Disorders of Adults and Children” Diagnostic Service in Newcastle upon Tyne (http://www.newcastle-mitochondria.com). HP was supported by the German Bundesministerium für Bildung und Forschung (BMBF) through the German Network for mitochondrial disorders (mitoNET, 01GM1113C) and the E-Rare project GENOMIT (01GM1207). This work was supported by an Early Career Grant from the Society for Endocrinology to PGM. CLA is the recipient of a National Institute for Health Research (NIHR) doctoral fellowship (NIHRHCS-D12-03-04).

Disclaimer
The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health.

Competing interests
None declared.

Patient consent
Obtained.

Ethics approval
NRES Committee North East – Newcastle and North Tyne

Provenance and peer review
Not commissioned; externally peer reviewed.

Open Access
This is an Open Access article distributed in accordance with the terms of the Creative Commons Attribution (CC BY 4.0) license, which permits others to distribute, remix, adapt and build upon this work, for commercial use, provided the original work is properly cited. See: http://creativecommons.org/licenses/by/4.0/

REFERENCES
1. Składal D, Halliday J, Thorburn DR. Minimum birth prevalence of mitochondrial respiratory chain disorders in children. Brain 2003;126(Pt 8):1905–12.
2. Swallowel H, Kirby DM, Blakely EL, Mitchell A, Saleni R, Sugiana C, Compton AG, Tucker EJ, Ke BX, Lamont PJ, Turnbull DM, McFarland R, Taylor RW, Thorburn DR. Respiratory chain deficiency I caused by mitochondrial DNA mutations. Eur J Hum Genet 2011;19:769–75.
3. Scaglia F, Tzofin A, Grafein W, Belmont JW, Smith ED, Neish SR, Ware SM, Hunter IV, Fernbach SD, Vladutiu GD, Wong LJ, Vogel H. Clinical spectrum, morbidity, and mortality in 113 pediatric patients with mitochondrial disease. Pediatrics 2004;114:925–31.
4. Gorman GS, Schaefer AM, Ng Y, Gomez N, Blakely EL, Alston CL, Feeney C, Horvath R, Yu-Wai-Man P, Chinney PF, Taylor RW, Turnbull DM, McFarland R. Prevalence of nuclear and mitochondrial DNA mutations related to adult forms of mitochondrial disease. Ann Neurol 2015;77:753–9.
5. Nishio SY, Hayashi Y, Watanabe M, Usami S. Clinical application of a custom AmpliSeq library and ion torrent PGM sequencing to comprehensive mutation screening for deafness genes. Genet Test Mol Biomarkers 2015;19:209–17.
6. Yang Y, Muzny DM, Xia F, Niu Z, Person R, Ding Y, Ward P, Braxton A, Wang M, Buhray C, Veeraraghavan N, Hayes A, Chiang T, Leduc M, Beuten J, Zhang J, He W, Scull J, Willis A, Landstrom M, Graefen W, Bjerkheim MR, Stoy-Pedersen A, Liu P, Wen S, Alcaraz W, Cui H, Walkiewicz M, Red J, Bainbridge M, Patel A, Boerwinkle E, Beaudet AL, Lupski JR, Plon SE, Gibbs RA, Eng CM. Molecular findings among patients referred for whole-exome sequencing. JAMA 2014;312:1870–9.
7. Taylor RW, Pyle A, Griffin H, Blakely E, Duff J, He L, Smetsenko T, Alston CL, Neve VC, Best A, Yuhrham JW, Kiechter J, Schara U, Talim B, Topaloglu H, Baic L, Holinski-Feder E, Abicht A, Czemins B, Kleinsie S, Morris AA, Vassallo G, Gorman GS, Ramesh V, Turnbull DM, Santibanez-Koref M, McFarland R, Horvath R, Chinney PF. Use of whole-exome sequencing to determine the genetic basis of multiple mitochondrial respiratory chain complex deficiencies. JAMA 2014;312:68–77.
8. Fassone E, Rahman S, Complex I deficiency: clinical features, biochemistry and molecular genetics. J Med Genet 2012;49:578–90.
9. Calvo SE, Compton AG, Hershman SG, Lim SC, Lieber DS, Tucker EJ, Laskowski A, Garone C, Liu S, Jaffe DB, Christodoulou J, Fletcher JM, Bruno DJ, Goldblatt I, Dimaura S, Thorburn DR, Mootha VK. Molecular diagnosis of infantile mitochondrial disease with targeted next-generation sequencing. Sci Transl Med 2012;4:138ra10.
10. Haack TB, Haberberger B, Frisch EM, Wieland T, Iuso A, Gorza M, Sterrer V, Graefen W, Ehr MA, Heyberg U, Hermann JB, Klopstock T, Kuhn KA, Ahting U, Spel W, Wilichowsky H, Hoffmann GF, Tzivoni P, Proksch M. Molecular diagnosis of infantile mitochrondrial disease in complex I deficiency using exome sequencing. J Med Genet 2012;49:277–83.
11. Kirby DM, Thorburn DR, Turnbull DM, Taylor RW. Biochemical assays of respiratory chain complex activity. Methods Cell Biol 2007;80:93–119.
12. Yang H, Wang K. Genetic variant annotation and prioritization with ANNOVAR and wANNOVAR. Nat Protoc 2015;10:1556–66.
13. Kong X, Matise TC. MAP-O-MAT: internet-based linkage mapping. Bioinformatics 2005;21:557–9.
14. Oláhová M, Hardy SA, Hall J, Yuhrham JW, Haack TB, Wilson WC, Alston CL, He L, Amauryan E, Brown RM, Brown GK, Morris AA, Mundy H, Broafeld M, Barbosa IA, Simpson MA, Deshpande C, Moeslinger D, Koch J, Stettner GM, Bonnen PE, Proksch M, Lightowlers RN, McFarland R, Chrzanowska-Lightowlers ZM, Taylor RW. LRPPRC mutations cause early-onset multisystem mitochondrial disease outside of the French-Canadian population. Brain 2015;138( Pt 12):3533–9.
15. Exome Variant Server, NHLBI GO Exome Sequencing Project (ESP), Seattle, WA. http://evs.gs.washington.edu/EVS/ (accessed 23 Feb 2016).
16. Exome Aggregation Consortium (ExAC), Cambridge, MA. http://exac.broadinstitute.org (accessed 23 Feb 2016).
17. Antonicka H, Ogilvie I, Taivassalo T, Anitori RP, Haller RG, Vissing J, Kennaway NG, Shoubridge EA. Identiﬁcation and/or therapeutic ablation.24

These are not the final page numbers, please use the provided BibTeX citation.
S, Wilichowski E, Wolf NI, Wortmann SB, Taylor RW, Mayr JA, Bonnen PE, Sperl W, Prokisch H, McFarland R. Clinical, morphological, biochemical, imaging and outcome parameters in 21 individuals with mitochondrial maintenance defect related to FBXL4 mutations. J Inherit Metab Dis 2015;38:905–14.

Lazarou M, McKenzie M, Ohtake A, Thorburn DR, Ryan MT. Analysis of the assembly profiles for mitochondrial- and nuclear-DNA-encoded subunits into complex I. Mol Cell Biol 2007;27:4228–37.

Bates MG, Bourke JP, Giordano C, d’Amati G, Turnbull DM, Taylor RW. Cardiac involvement in mitochondrial DNA disease: clinical spectrum, diagnosis, and management. Eur Heart J 2012;33:3023–33.

Cain N, Irving C, Webber S, Beerman L, Atora G. Natural history of Wolff-Parkinson-White syndrome diagnosed in childhood. Am J Cardiol 2013;112:961–5.

Pagniez-Mammeri H, Loublier S, Legrand A, Benit P, Rustin P, Slama A. Mitochondrial complex I deficiency of nuclear origin I. Structural genes. Mol Genet Metab 2012;105:163–72.
A recurrent mitochondrial p.Trp22Arg NDUFB3 variant causes a distinctive facial appearance, short stature and a mild biochemical and clinical phenotype

Charlotte L Alston, Caoimhe Howard, Monika Oláhová, Steven A Hardy, Langping He, Philip G Murray, Siobhan O'Sullivan, Gary Doherty, Julian P H Shield, Iain P Hargreaves, Ardeshrir A Monavari, Ina Knerr, Peter McCarthy, Andrew A M Morris, David R Thorburn, Holger Prokisch, Peter E Clayton, Robert McFarland, Joanne Hughes, Ellen Crushell and Robert W Taylor

J Med Genet 2016 53: 634-641 originally published online April 18, 2016 doi: 10.1136/jmedgenet-2015-103576

Updated information and services can be found at:
http://jmg.bmj.com/content/53/9/634

These include:

References
This article cites 23 articles, 12 of which you can access for free at:
http://jmg.bmj.com/content/53/9/634#BIBL

Open Access
This is an Open Access article distributed in accordance with the terms of the Creative Commons Attribution (CC BY 4.0) license, which permits others to distribute, remix, adapt and build upon this work, for commercial use, provided the original work is properly cited. See:
http://creativecommons.org/licenses/by/4.0/

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

- Open access (174)
- Epidemiology (626)
- Clinical diagnostic tests (355)
- Genetic screening / counselling (882)
- Metabolic disorders (325)
- Muscle disease (146)
- Neuromuscular disease (257)
- Surgery (105)
- Surgical diagnostic tests (105)

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/
