RINGEL’S GENERALIZED EARTH-MOON PROBLEM

JEREMY ALEXANDER

1. Introduction

A graph G has surface thickness n (S-thickness n) with respect to the surface S, if G can be decomposed into n and no fewer subgraphs by making n copies of the vertex set of G and then assigning each edge of G to one of the n copies so that n graphs result; each resulting subgraph of G must be S embeddable. The chromatic number of a graph G, denoted $\chi(G)$, is simply the fewest number of colors needed to color the vertex set of G such that no two adjacent vertices receive the same color. Define $\chi_n(S)$ to be the chromatic number of the surface S, that is, the minimum number of colors needed to properly color all S-thickness n graphs. Let $E(S)$ denote the Euler characteristic of the surface S. Let S_k denote the orientable surface of genus k and N_k the nonorientable surface obtained by adding k crosscaps to the sphere; S_0 denotes the two-dimensional sphere. It is known that $E(S_k) = 2 - 2k$ and $E(N_k) = 2 - k$.

In 1959 [1, p.233], Ringel asked: What is the chromatic number of the sphere for graphs of thickness two? The bounds are known to be: $9 \leq \chi_2(S_0) \leq 12$. See [2] for a delightful exposition of the spherical case. In [1], Ringel and Jackson ask: What is $\chi_n(S)$ for any surface S? There [p.241] the following upper bound is given for any surface S, except the sphere:

$$\chi_n(S) \leq \left\lfloor \frac{(1 + 6n + \sqrt{(1 + 6n)^2 - 24nE(S)})}{2} \right\rfloor (1)$$

The main results in this note are three elementary arguments that establish $\chi_n(S)$ for two new surfaces: N_3, also known as Dyck’s surface, and the Moebius band which will be denoted by M. The arguments are based on previous results appearing in [1]. The results are not especially surprising, but they do provide good lower bounds for $\chi_n(N_{2k+1})$ once the value of $\chi_n(S_k)$ is known for $k > 0$; in the case $k = 1$, the exact value of $\chi_n(N_3)$ is obtained.

Date: April 19, 2005.
2. **Main Results**

Lemma 1. \(\left\lfloor \frac{1+6n + \sqrt{(1+6n)^2 - 24nE(N_3)}}{2} \right\rfloor \leq 6n+1 \) for all \(n \geq 2 \).

Proof. Suppose for contradiction that the claim is false. Then since \(E(N_3) = -1 \), there exists an integer \(n \geq 2 \) such that:

\[
\left\lfloor \frac{1+6n + \sqrt{(1+6n)^2 + 24n}}{2} \right\rfloor > 6n + 1 \rightarrow
\]

\[
1 + 6n + \sqrt{(1+6n)^2 + 24n} \geq 12n + 4 \rightarrow
\]

\[
\sqrt{(1+6n)^2 + 24n} \geq 6n + 3 \rightarrow
\]

\[
(1+6n)^2 + 24n \geq (6n+3)^2 \rightarrow
\]

\[1 \geq 9. \] This is an obvious contradiction, hence, the original assumption was false and the lemma is true. \(\Box \)

Theorem 1. \(\chi_n(N_3) = 6n + 1 \) for all \(n \geq 2 \).

Proof. In [1, p.238], it is shown that \(\chi_n(S_1) = 6n + 1 \) for all \(n \geq 2 \). Let \(G \) be any graph embedded on \(S_1 \). Choose any face of \(S_1 \) created by the embedding of \(G \) and add a crosscap, what can be obtained is an embedding of \(G \) on the surface \(N_3 \) since \(N_3 \) is homeomorphic to the surface \(S_1 + \text{crosscap} \) and homeomorphism preserves graph isomorphism as well as graph embedding. Combining this with the previous lemma gives the desired result. \(\Box \)

For a complete classification of surfaces see Conway’s ZIP proof in [3].

Theorem 2. \(\chi_n(M) = 6n \) for all \(n \geq 2 \).

Proof. \(M \) is homeomorphic to \(N_1 \) minus an open disk, to see this look at the figure below; a square minus the region \(X \) (an open disk) with opposite ends identified. Notice that coupled ends have opposite orientation and so a half-twist is needed to join each pair correctly. When opposite ends are joined a Moebius band results. Now, fill in the two missing regions denoted by \(X \). If sides of the resulting square receive the same identifications induced by the labeling of the figure below, \(N_1 \), the projective plane, is obtained. Now, given any graph \(G \) embedded on \(N_1 \), select any face induced by the embedding and delete it, what results is an embedding of \(G \) on a Moebius band. Inductively it follows that \(\chi_n(M) \geq 6n \) for all \(n \geq 2 \) since in [1, p.240] it is proven that \(\chi_n(N_1) = 6n \) for all \(n \geq 2 \). Now, inequality (1) gives an upper bound of \(\chi_n(M) \leq 6n + 1 \) for all \(n \geq 2 \) since \(E(M) = 0 \). To show that this upper bound cannot be obtained, the case \(\chi_2(M) \) is shown, from which the general result easily follows. Suppose for contradiction that \(\chi_2(M) = 13 \). Then there exists a graph \(G \) of \(M \)-thickness two such that \(\chi(G) = 13 \). Since the square minus an open disk appearing in the picture below is homeomorphic to \(M \), \(G \) biembeds on this version of a Moebius band. Now fill in the deleted disk labeled \(X \) in the figure below to obtain a biembedding of the graph \(G \) on \(N_1 \). This implies that \(\chi_2(N_1) = 13 \) which is a contradiction since \(\chi_2(N_1) = 12 \). \(\Box \)
Hence, Ringel’s generalized earth-moon problem has been solved for two new surfaces M and N_3, also known as the Moebius band and Dyck’s surface, respectively. The following list summarizes known results for Ringel’s generalized earth-moon problem:

For all $n \geq 2$,
- $\chi_n(S_2) = 6n + 2$ (see [5])
- $\chi_n(S_1) = 6n + 1$ (see [1], [5])
- $\chi_n(N_1) = 6n$ (see [1], [5])
- $\chi_n(M) = 6n$
- $\chi_n(N_3) = 6n + 1$.

Until very recently the N_2-thickness of K_{13} was not known, however, it appears that Thom Sulanke has determined it is three using an exhaustive computer search [4]. The N_2-thickness of K_{13} has been a long standing obstruction to extending Beineke’s results appearing in [5] for the Klein Bottle thickness of K_n. A similar obstruction for determining the S_3-thickness of K_n is the S_3-thickness of K_{16} [5, p.996]; Sulanke has determined that $\chi_2(S_3) = 16$, although this result has not been published. Through personal communication Thom has also told me that he has been able to determine $\chi_n(N_4)$ and $\chi_n(N_5)$. He also pointed out to me that Lemma 1, appearing here, generalizes for all integers $n > 0$ and $E(S) < 0$. Using the exact same arguments given in the proof of Lemma 1, one can show that the left side of inequality (1) is $\leq 6n - E(S)$ for $n > 0$ and $E(S) < 0$. Naturally, the next two surfaces to consider are S_3 and N_2. This motivates the following problem:

Problem 1. Determine $\chi_n(S_3)$ and $\chi_n(N_2)$.

Acknowledgement 1. I would like to thank Yo'av Rieck and Chaim Goodman-Strauss for constructive criticism.
3. References

[1] B. Jackson, G. Ringel, Variations on Ringel’s earth-moon problem, *Discrete Mathematics* 211 (2000), 233 - 242.

[2] J. P. Hutchinson, Coloring ordinary maps, maps of empires, and maps of the moon, *Math. Magazine* (4) 66 (1993), 211 - 226.

[3] G. Francis, J. Weeks, Conway’s ZIP proof, *Amer. Math. Monthly* 106 (1999), 393-399.

[4] T. Sulanke, Biembeddings of K_{13}, http://needmore.physics.indiana.edu/~tsulanke/graphs/biembed/biembed.pdf

[5] L. W. Beineke, Minimal decompositions of complete graphs into subgraphs with embeddability properties, *Canad. J. Math* 21 (1969), 992-1000.

Mathematics Department SCEN 301, University of Arkansas, Fayetteville, AR 72701

E-mail address: jralexa@uark.edu

URL: comp.uark.edu/~jralexa