PHANTOM MAPS AND FIBRATIONS

HIROSHI KIHARA

Abstract. Given pointed CW-complexes X and Y, $\text{Ph}(X,Y)$ denotes the set of homotopy classes of phantom maps from X to Y and $\text{SPh}(X,Y)$ denotes the subset of $\text{Ph}(X,Y)$ consisting of homotopy classes of special phantom maps. In a preceding paper, we gave a sufficient condition such that $\text{Ph}(X,Y)$ and $\text{SPh}(X,Y)$ have natural group structures and established a formula for calculating the groups $\text{Ph}(X,Y)$ and $\text{SPh}(X,Y)$ in many cases where the groups $[X,\Omega\tilde{Y}]$ are nontrivial. In this paper, we establish a dual version of the formula, in which the target is the total space of a fibration, to calculate the groups $\text{Ph}(X,Y)$ and $\text{SPh}(X,Y)$ for pairs (X,Y) to which the formula or existing methods do not apply. In particular, we calculate the groups $\text{Ph}(X,Y)$ and $\text{SPh}(X,Y)$ for pairs (X,Y) such that X is the classifying space BG of a compact Lie group G and Y is a highly connected cover Y' of a nilpotent finite complex Y' or the quotient G/H of $G=U,O$ by a compact Lie group H.

1. Introduction

Given two pointed CW-complexes X and Y, a map $f : X \to Y$ is called a phantom map if for any finite complex K and any map $h : K \to X$, the composite fh is null homotopic. The concept of a phantom map, which is one of the most important concepts in homotopy theory, is essential to understanding maps with infinite dimensional sources ([8, 11]).

Let $\text{Ph}(X,Y)$ denote the subset of $[X,Y]$ consisting of homotopy classes of phantom maps, and let $\text{SPh}(X,Y)$ denote the subset of $\text{Ph}(X,Y)$ consisting of homotopy classes of special phantom maps, defined by the exact sequence of pointed sets

$$0 \to \text{SPh}(X,Y) \to \text{Ph}(X,Y) \xrightarrow{e_Y} \text{Ph}(X,\tilde{Y}),$$

where $e_Y : Y \to \tilde{Y} = \prod_p Y_{(p)}$ is a natural map called the local expansion (cf. [11, p. 150]). The target \tilde{Y} is usually assumed to be nilpotent of finite type.

Previous calculations of $\text{Ph}(X,Y)$ had generally assumed that $[X,\Omega\tilde{Y}]$ is trivial, in which case generalizations of Miller’s theorem are directly applicable, and calculations of $\text{SPh}(X,Y)$ had rarely been reported (see [4, Section 1]). In [4], we gave a sufficient condition such that $\text{Ph}(X,Y)$ and $\text{SPh}(X,Y)$ have natural group structures, which is much weaker than the conditions obtained by Meier and McGibbon ([9, 7, Theorem 4]), and established a formula which enables us to calculate not only $\text{Ph}(X,Y)$ but also $\text{SPh}(X,Y)$ in many cases where the groups $[X,\Omega\tilde{Y}]$ are nontrivial (see Section 2.1 for these results, which are recorded as Theorems 2.1 and 2.2).

2010 Mathematics Subject Classification. Primary 55Q05; Secondary 55P60.

Key words and phrases. Phantom maps, Special phantom maps, Group structure, Highly connected cover, Homotopy quotient, Miller’s theorem, Anderson-Hodgkin’s theorem, Atiyah-Segal completion theorem.
In this paper, we establish a dual version of the formula and apply it to calculate the groups $\text{Ph}(X, Y)$ and $\text{SPh}(X, Y)$ for pairs (X, Y) with $[X, \Omega Y'] \neq 0$ to which the formula or existing methods do not apply.

We state the main results of this paper more precisely.

Let \mathcal{CW} denote the category of pointed connected \mathcal{CW}-complexes and homotopy classes of maps and let \mathcal{N} denote the full subcategory of \mathcal{CW} consisting of nilpotent \mathcal{CW}-complexes of finite type. Let \mathcal{Q} be the full subcategory of $\mathcal{CW}^{\text{op}} \times \mathcal{N}$ consisting of (X, Y) such that for each pair $i, j > 0$, the rational cup product on $H^i(X; \mathbb{Q}) \otimes H^j(X; \mathbb{Q})$ or the rational Whitehead product on $(\pi_{i+1}(Y) \otimes \mathbb{Q}) \otimes (\pi_{j+1}(Y) \otimes \mathbb{Q})$ is trivial. Then, $\text{Ph}(X, Y)$ and $\text{SPh}(X, Y)$ have natural divisible abelian group structure for $(X, Y) \in \mathcal{Q}$ (see Theorem 2.1).

The following is the main theorem of this paper, which is a dual version of Theorem 2.2. Note that $j_X \text{Ph}(X, L)$ and $j_Y \text{SPh}(X, L)$ are subgroups of $\text{Ph}(X, Y)$ and $\text{SPh}(X, L)$ respectively (Theorem 2.1(2)). Let $\hat{\mathbb{Z}}$ denote the product $\prod_p \hat{\mathbb{Z}}_p$ of the p-completions of \mathbb{Z}, in which \mathbb{Z} is diagonally contained. Similarly, let $\hat{\mathbb{Z}}$ denote the product $\prod_p \mathbb{Z}(p)$ of the p-localizations of \mathbb{Z}, in which \mathbb{Z} is diagonally contained.

Theorem 1.1. Let (X, Y) be in \mathcal{Q}. Suppose that there exists a fibration sequence $L \xrightarrow{j} Y \xrightarrow{q} Y'$ with Y' nilpotent of finite type and $[X, \Omega Y'] = 0$. Then there exist natural split exact sequences of abelian groups given by

\[
0 \rightarrow j_X \text{Ph}(X, L) \rightarrow \text{Ph}(X, Y) \rightarrow \prod_{i>0} H^i(X; \pi_{i+1}(Y)/j_X \pi_{i+1}(L) \otimes \hat{\mathbb{Z}}/\mathbb{Z}) \rightarrow 0,
\]

\[
0 \rightarrow j_Y \text{SPh}(X, L) \rightarrow \text{SPh}(X, Y) \rightarrow \prod_{i>0} H^i(X; \pi_{i+1}(Y)/j_Y \pi_{i+1}(L) \otimes \hat{\mathbb{Z}}/\mathbb{Z}) \rightarrow 0.
\]

Let us recall the generalizations of Miller’s theorem [10] and Anderson-Hodgkin’s theorem [2] to obtain many pairs (X, Y') with $[X, \Omega Y'] = 0$. A space whose ith homotopy group is zero for $i \leq n$ and locally finite for $i = n + 1$ is said to be $n\frac{1}{2}$-connected. Define the classes \mathcal{A}, \mathcal{B}, \mathcal{A}' and \mathcal{B}' by

- \mathcal{A} = the class of $\frac{1}{2}$-connected Postnikov spaces, the classifying spaces of compact Lie groups, $\frac{1}{2}$-connected infinite loop spaces and their iterated suspensions.
- \mathcal{B} = the class of nilpotent finite complexes, the classifying spaces of compact Lie groups and their iterated loop spaces.
- \mathcal{A}' = the class of $1\frac{1}{2}$-connected Postnikov spaces of finite type and their iterated suspensions.
- \mathcal{B}' = the class of BU, BO, BSp, BSO, U/Sp, Sp/U, SO/U, U/SO, and their iterated loop spaces.

If (X, Y') is in $\mathcal{A} \times \mathcal{B}$ or $\mathcal{A}' \times \mathcal{B}'$, then $[X, \Omega Y'] = 0$ ([4, Corollary 6.4]).

We have the following corollaries to Theorem 1.1. Let $K(n)$ denote the n-connected cover of K.

Corollary 1.2. Let (X, Y') be in $\mathcal{A} \times \mathcal{B}$ or $\mathcal{A}' \times \mathcal{B}'$, and let m be a positive integer. Suppose that X is a \mathcal{CW}-complex of finite type and that $(X, Y'(m))$ is in \mathcal{Q}. Then
there exist natural isomorphisms of groups
\[
\text{Ph}(X, Y'; m) \cong \prod_{i > 0} H^i(X; \pi_{i+1}(Y'; m)) \otimes \hat{\mathbb{Z}}/\mathbb{Z}),
\]
\[
\text{SPh}(X, Y'; m) \cong \prod_{i > 0} H^i(X; \pi_{i+1}(Y'; m)) \otimes \hat{\mathbb{Z}}/\mathbb{Z}).
\]

Let \(L \) be a pointed \(CW \)-complex endowed with an action of a compact Lie group \(H \). Defining the homotopy quotient \(L \sslash H \) by \(L \sslash H = EH \times L \), we have the fiber bundle
\[
L \rightarrow L \sslash H \rightarrow BH,
\]
where \(EH \rightarrow BH \) is the universal principal \(H \)-bundle. If an injective homomorphism \(H \rightarrow G \) of topological groups is given, then \(G \sslash H \) is usually denoted by \(G/H \).

The following corollary is derived using a result of Atiyah-Segal [3].

Corollary 1.3. Let \(X \) be the classifying space \(BG \) of a compact Lie group \(G \) or its iterated suspension. Let \(G \) denote the infinite unitary group \(U \) or the infinite orthogonal group \(O \), and let \(H \) be a compact Lie group which is a topological subgroup of \(G \). Then \((X, G/H)\) is in \(Q \) and there exist natural isomorphisms of groups
\[
\text{Ph}(X, G/H) \cong \prod_{i > 0} H^i(X; \pi_{i+1}(G/H)/j\pi_{i+1}(G) \otimes \hat{\mathbb{Z}}/\mathbb{Z}),
\]
\[
\text{SPh}(X, G/H) \cong \prod_{i > 0} H^i(X; \pi_{i+1}(G/H)/j\pi_{i+1}(G) \otimes \hat{\mathbb{Z}}/\mathbb{Z}).
\]

Further applications of Theorem 1.1 are given in Section 2 (see Examples 2.7-2.8 and Remark 2.9).

Remark 1.4. Most calculations of \(\text{Ph}(X, Y) \) have assumed that \(Y \) is a nilpotent finite complex or its iterated loop space ([4, Theorem A and Remark 2.6]). Corollaries 1.2-1.3 and Examples 2.7-2.8 and Remark 2.10 give calculational results for \((X, Y)\) such that \(Y \) is not in \(B \) or \(B' \).

2. Proofs of main results

In this section, we prove Theorem 1.1 and Corollaries 1.2-1.3 and then give further applications of Theorem 1.1.

We begin by recalling the basic results on \(\text{Ph}(X, Y) \) and \(\text{SPh}(X, Y) \).

2.1. Groups of homotopy classes of phantom maps. In this subsection, we make a review of the main results of [4].

Recall the definition of the full subcategory \(Q \) of \(CW^{op} \times N \) from Section 1. A pair \((X, Y)\) is in \(Q \) if \(X \) is a co-\(H_0 \)-space or \(Y \) is an \(H_0 \)-space. \(Q \) contains many other pairs (see [4, Section 4.2]).

The following theorem, which is Theorem 2.3 in [1], is a fundamental result on group structures on \(\text{Ph}(X, Y) \) and \(\text{SPh}(X, Y) \).

Theorem 2.1. Let \((X, Y)\) be an object of \(Q \).

1. \(\text{Ph}(X, Y) \) and \(\text{SPh}(X, Y) \) have natural divisible abelian group structures, for which \(\text{SPh}(X, Y) \) is a subgroup of \(\text{Ph}(X, Y) \).
(2) Let \((f^{op}, g) : (K, L) \longrightarrow (X, Y)\) be a morphism of \(CW^{op} \times N\). Then, the images \(\text{Im Ph}(f, g)\) and \(\text{Im SPh}(f, g)\) are divisible abelian subgroups of \(\text{Ph}(X, Y)\) and \(\text{SPh}(X, Y)\) respectively.

(3) If \(X\) is a co-\(H\)-space or \(Y\) is an \(H\)-space, the group structures on \(\text{Ph}(X, Y)\) and \(\text{SPh}(X, Y)\) are compatible with the multiplicative structure on \([X, Y]\).

The following theorem, which is Theorem 2.7 in [4], presents a powerful method for calculating the groups \(\text{Ph}(X, Y)\) and \(\text{SPh}(X, Y)\) for \((X, Y) \in Q\) with \([X, \Omega \hat{Y}] \neq 0\).

Note that in the theorem, \(p^\# \text{Ph}(K, Y)\) and \(p^\# \text{SPh}(K, Y)\) are the subgroups of \(\text{Ph}(X, Y)\) and \(\text{SPh}(X, Y)\) (see Theorem 2.1(2)).

Theorem 2.2. Let \((X, Y)\) be in \(Q\). Let \(X' \xrightarrow{i} X \xrightarrow{p} K\) be a cofibration sequence with \([X', \Omega \hat{Y}] = 0\), or a fibration sequence with weakly contractible maps \((X', \Omega \hat{Y})\). Then there exist natural split exact sequences of abelian groups given by

\[
0 \longrightarrow p^\# \text{Ph}(K, Y) \longrightarrow \text{Ph}(X, Y) \longrightarrow \prod_{i > 0} H^i(X; \pi_{i+1}(Y) \otimes \hat{Z}/\mathbb{Z}) / p^\# H^i(K; \pi_{i+1}(Y) \otimes \hat{Z}/\mathbb{Z}) \longrightarrow 0,
\]

\[
0 \longrightarrow p^\# \text{SPh}(K, Y) \longrightarrow \text{SPh}(X, Y) \longrightarrow \prod_{i > 0} H^i(X; \pi_{i+1}(Y) \otimes \hat{Z}/\mathbb{Z}) / p^\# H^i(K; \pi_{i+1}(Y) \otimes \hat{Z}/\mathbb{Z}) \longrightarrow 0.
\]

See [4, Corollaries 2.8-2.10 and Example 6.6] for the applications.

2.2. Proofs of Theorem 1.1 and Corollary 1.2. For a nilpotent space \(Y\) of finite type, the profinite completion \(\hat{Y}\) and the local expansion \(\hat{Y}\) are defined by \(\hat{Y} = \prod_p \hat{Y}_p\) and \(\hat{Y} = \prod_p Y(p)\), respectively, where \(\hat{Y}_p\) and \(Y(p)\) are the \(p\)-profinite completion and the \(p\)-localization of \(Y\) respectively ([12]). Thus, we can establish a commutative diagram of natural transformations

\[
\begin{array}{ccc}
Y & \xrightarrow{e_Y} & \hat{Y} \\
\downarrow & \downarrow & \downarrow \\
\hat{Y} & \xrightarrow{c_Y} & \hat{Y}.
\end{array}
\]

Let \(F_Y\) denote the homotopy fiber of \(c_Y\).

Proof of Theorem 1.1. Since the proof of Theorem 1.1 is similar to that of Theorem 2.2, our proof is sketchy; the details are found in the proof of [4, Theorem 2.7]. By replacing \(Y\) and \(Y'\) with their universal covers, we may assume that \(L\) is in \(N\) (see [4, Remark 5.6] and [6, Proposition 4.4.1]).

The case of \(\text{Ph}(X, Y)\). By [4, Corollary 5.3] and the comment before [4, Lemma 3.5], we have the morphism of exact sequences of pointed sets

\[
\begin{array}{ccc}
[X, \Omega \hat{L}] & \longrightarrow & [X, F_L] \longrightarrow \text{Ph}(X, L) \longrightarrow 0 \\
\downarrow & \downarrow & \downarrow \\
[X, \Omega \hat{Y}] & \longrightarrow & [X, F_Y] \longrightarrow \text{Ph}(X, Y) \longrightarrow 0.
\end{array}
\]

Note that since \([X, \Omega \hat{Y}] = 0\), the left vertical arrow is surjective. Next, consider the induced morphism of exact sequences of pointed sets.
where \([X, \Omega Y]\) denotes the image of \([X, \Omega \hat{Y}]\) and \(\alpha\) denotes the map induced by the natural quotient map \([X, F_L] \to \text{Ph}(X, L)\). Note that this is a morphism of exact sequences of abelian groups (see [4, Theorem 2.3 and its proof]) and that since \(\Omega \hat{j}_\sharp : [X, \Omega L] \to [X, \Omega Y]\) is surjective, \(\beta\) is also surjective. Then, we have
\[
\text{Ph}(X, Y)/j_\sharp \text{Ph}(X, L) \cong [X, F_Y]/F_j[X, F_L],
\]
from which we obtain the desired sequence (see [4, Proposition 5.10 and the proof of Theorem 2.3(2)]).

The case of \(S\text{Ph}(X, Y)\). As mentioned in the introduction of Section 6.1 of [4], \(\text{Ph}(X, Y)\) and \(\text{Ph}(X, \hat{Y})\) generate analogous results. Thus, there exists a morphism of exact sequences of abelian groups
\[
0 \longrightarrow j_\sharp \text{Ph}(X, L) \longrightarrow \text{Ph}(X, L) \longrightarrow \prod_{i>0} H^i(X; \pi_{i+1}(Y)/j_\sharp \pi_{i+1}(L) \otimes \hat{Z}/\hat{Z}) \longrightarrow 0
\]
and if \(Y\) is nilpotent of finite type, then there also exists a natural isomorphism
\[
S\text{Ph}(K \wedge X, Y) \cong S\text{Ph}(X, \text{map}_*(K, Y))
\]

Proof of Corollary 1.2. We have the fibration sequence
\[
\Omega Y'(m) \longrightarrow Y'(m) \longrightarrow Y',
\]
where \(Y'(m)\) is the Postnikov \(m\)-stage of \(Y'\). Since \(X\) is a \(CW\)-complex with finite skeleta, \(\text{Ph}(X, \Omega Y'(m))\), and hence \(S\text{Ph}(X, \Omega Y'(m))\) vanishes. Thus, the result follows from Theorem [14].

2.3. Proof of Corollary 1.3 and further applications. For the proof of Corollary [13] we prove the following two lemmas, which are interesting in their own right.

Lemma 2.3. **Let** \(X\) **and** \(Y\) **be connected** \(CW\)-**complexes and** \(K\) **be a finite complex. Then there exists a natural isomorphism**
\[
\text{Ph}(K \wedge X, Y) \cong \text{Ph}(X, \text{map}_*(K, Y))
\]
and if \(Y\) **is nilpotent of finite type, then there also exists a natural isomorphism**
\[
S\text{Ph}(K \wedge X, Y) \cong S\text{Ph}(X, \text{map}_*(K, Y)).
\]
Proof. Note that \(f : K \wedge X \to Y \) is phantom if and only if \(f \mid_{K \wedge X_\alpha} \) is null homotopic for any finite subcomplex \(X_\alpha \) of \(X \). Then the natural isomorphism \([K \wedge X, Y] = [X, map_*(K, Y)]\) is clearly restricted to the first natural isomorphism. If \(Y \) is nilpotent of finite type, we obtain the isomorphism
\[
\text{Ph}(K \wedge X, \tilde{Y}) \cong \text{Ph}(X, map_*(K, \tilde{Y}))
\]
(see the introduction of Section 6.1 of [4]), which also implies the second isomorphism by [3, Theorem 6.3.2] and the definition of \(\text{SPh}(X, Y) \).
\[\square\]

Lemma 2.4. Let \(G \) be a compact Lie group and \(X \) a finite \(G \)-CW-complex. Then,
\[
\text{Ph}(X/\!/G, \Omega^lU) = 0 \quad \text{and} \quad \text{Ph}(X/\!/G, \Omega^lO) = 0
\]
hold for \(l \geq 0 \).

Proof. First, we show the first vanishing result. Since \(\Omega^lU \) is an \(H \)-space, we have only to consider the homotopy classes of maps from \(X/\!/G \) to the identity component of \(\Omega^lU \) in unbased context ([6, Proposition 1.4.3]). Note that \(K^*_G(X) \) is finite over \(R(G) \). Then, the result follows from the proof of [3, Proposition 4.2].

The second vanishing result can be similarly proved using the \(KO \)-versions of the results of [3], which are established in [1] (see the comment after Theorem 1.1 in [1] and Remark 2.5(2)).
\[\square\]

Remark 2.5. (1) See [1, Remark 5.1] for other \(G \)-spaces for which the vanishing results in Lemma 2.4 hold.
(2) The article [3] deals with not \(KO \) but \(KR \) as the real case.

Proof of Corollary 1.3. By the assumption, \(X = \Sigma^lBG \) for \(l \geq 0 \). To prove that \((X, G/H)\) is in \(Q \), we have only to show that \((BG, G/H)\) is in \(Q \), which is easily seen from [4, Example 4.6(2)]. Consider the fibration sequence
\[
G \xrightarrow{j} G/H \to BH
\]
and note that \((X, BH)\) is in \(A \times B \). Since the identities
\[
\text{Ph}(X, G) = \text{Ph}(BG, \Omega^lG) = 0
\]
hold (Lemmas 2.3 and 2.4), we obtain the result by Theorem 1.1.
\[\square\]

We give further applications of Theorem 1.1. For this, we show the following lemma, which is useful to find many pairs \((X, L)\) with \(\text{Ph}(X, L) = 0 \).

A space whose \(i \)-th \(k \)-invariant vanishes for all but finite \(i \) is called a generalized Postnikov space.

Lemma 2.6. (1) If \(\{i > 0 \mid H^i(A; \mathbb{Q}) \neq 0\} \cap \{j > 0 \mid \pi_{j+1}(B) \otimes \mathbb{Q} \neq 0\} = \emptyset, \) then \(\text{Ph}(A, B) = 0 \).
(2) If \(A \) is a CW-complex of finite type and \(B \) is a generalized Postnikov space, then \(\text{Ph}(A, B) = 0 \).

Proof. (1) The result follows from [4, Propositions 5.7 and 4.1].
(2) By the finite type assumption on \(A \), all elements of \(\text{Ph}(A, B) \) are skeletally phantom and \(B \) is homotopy equivalent to the product of the Postnikov \(n \)-stage \(B^{(n)} \) and \(\prod_{i > n} K(\pi_i(B), i) \), for sufficiently large \(n \) (see [4, Remark 3.3]). Therefore, \(\text{Ph}(A, B) = \text{Ph}(A, B^{(n)}) \times \prod_{i > n} \text{Ph}(A, K(\pi_i(B), i)) \) vanishes.
\[\square\]
For a connected CW-complex K, $Q(K)$ denotes the infinite loop space defined by $Q(K) = \varinjlim_n \Omega^n \Sigma^n K$.

Example 2.7. Let G and H be as in Corollary 1.3. Noticing that $Q(S^{2n+1})$ is rationally equivalent to S^{2n+1}, we calculate the groups $\text{Ph}(Q(S^{2n+1}), G/H)$ and $\text{SPh}(Q(S^{2n+1}), G/H)$ for $n \geq 1$.

Consider the fibration sequence

$$G \xrightarrow{j} G/H \rightarrow BH.$$

Since $(Q(S^{2n+1}), BH)$ is in $A \times B$ and $\text{Ph}(Q(S^{2n+1}), G) = 0$ (Lemma 2.6(1)), we have the isomorphisms of abelian groups

$$\text{Ph}(Q(S^{2n+1}), G/H) \cong \pi_{2n+2}(G/H)/j_1\pi_{2n+2}(G) \otimes \hat{Z}/\mathbb{Z},$$

$$\text{SPh}(Q(S^{2n+1}), G/H) \cong \pi_{2n+2}(G/H)/j_1\pi_{2n+2}(G) \otimes \hat{Z}/\mathbb{Z}$$

by Theorem 1.1.

Recall that for a CW-complex L with an H-action, we have the fiber bundle

$$L \xrightarrow{j} L/H \rightarrow BH$$

(see Section 1).

Example 2.8. Let X be a CW-complex of finite type which is in A and let L be a generalized Postnikov space with an action of a compact Lie group H. Suppose that $(X, L/H)$ is in Q. Then there exist natural isomorphisms of groups

$$\text{Ph}(X, L/H) \cong \prod_{i>0} H^i(X; \pi_{i+1}(L/H)/j_2\pi_{i+1}(L) \otimes \hat{Z}/\mathbb{Z}),$$

$$\text{SPh}(X, L/H) \cong \prod_{i>0} H^i(X; \pi_{i+1}(L/H)/j_2\pi_{i+1}(L) \otimes \hat{Z}/\mathbb{Z}).$$

(Theorem 1.1 and Lemma 2.6(2).)

Let L be the infinite symmetric product $SP(M)$ of a CW-complex M endowed with an action of a compact Lie group H. Since L is weak equivalent to the product of Eilenberg-MacLane complexes, this result is applicable to $L = SP(M)$.

This result is also applicable to the case where L is an Eilenberg-MacLane H-space ([5, p. 21]).

Remark 2.9. Under the assumptions of Theorem 1.1 there exist (noncanonical) isomorphisms of abelian groups

$$\text{Ph}(X, Y) \cong j_2\text{Ph}(X, L) \oplus \prod_{i>0} H^i(X; \pi_{i+1}(Y)/j_2\pi_{i+1}(L) \otimes \hat{Z}/\mathbb{Z}),$$

$$\text{SPh}(X, Y) \cong j_2\text{SPh}(X, L) \oplus \prod_{i>0} H^i(X; \pi_{i+1}(Y)/j_2\pi_{i+1}(L) \otimes \hat{Z}/\mathbb{Z}).$$

Thus, we can obtain nontriviality results of $\text{Ph}(X, Y)$ and $\text{SPh}(X, Y)$ via rational homotopical computations, even if we do not know whether $j_2\text{Ph}(X, L)$ is nontrivial.

Remark 2.10. In this remark, we consider situations similar to those described in Corollary 1.3 and Example 2.8 in which the groups $\text{Ph}(X, Y)$ and $\text{SPh}(X, Y)$ are calculated using not Theorem 1.1 but [4] Proposition 6.1.

1. Let X be a space in A' and let G and H be as in Corollary 1.3. Suppose that $(X, G/H)$ is in Q. Then, we can calculate the groups $\text{Ph}(X, G/H)$ and $\text{SPh}(X, G/H)$ by [4] Proposition 6.1.
Let X be a space in \mathcal{A} and L be a nilpotent finite complex endowed with an action of a compact Lie group H. Suppose that $(X, L \sslash H)$ is in Q. Then, we can calculate the groups $\text{Ph}(X, L \sslash H)$ and $\text{SPh}(X, L \sslash H)$ by [4, Proposition 6.1].

References

[1] J. F. Adams, J. P. Haeberly, S. Jackowski and J. P. May, A generalization of the Atiyah-Segal completion theorem, Topology 27.1 (1988), 1-6.

[2] D. W. Anderson and L. Hodgkin, The K-theory of Eilenberg-MacLane complexes, Topology 7 (1968), 317-329.

[3] M. F. Atiyah and G. B. Segal, Equivariant K-theory and completion, J. Differential Geometry 3.1-18 (1969), 9.

[4] H. Kihara, Groups of homotopy classes of phantom maps, Algebraic & Geometric Topology 18-1 (2018), 583–612.

[5] J. P. May, J. P. Robert and M. Cole, Equivariant homotopy and cohomology theory: Dedicated to the memory of Robert J. Piacenza. No. 91, American Mathematical Soc., (1996).

[6] J. P. May and K. Ponto, More Concise Algebraic Topology: localization, completion, and model categories, University of Chicago Press (2012).

[7] C. A. McGibbon, Clones of spaces and maps in homotopy theory, Comment. Math. Helv., 68 (1993), 263-277.

[8] C. A. McGibbon, Phantom maps, in : Handbook of Algebraic Topology, North-Holland, Amsterdam (1995), 1209-1257.

[9] W. Meier, Localisation, completion, et application fantomes, C.R. Acad. Sci Paris 281 (1975) 787-789

[10] H. Miller, The Sullivan conjecture on maps from classifying spaces, Ann. Math. 120 (1984), 39–87.

[11] J. Roitberg, Computing homotopy classes of phantom maps, CRM Proceedings and Lecture Notes, 6(1994), pp. 141-168

[12] D. Sullivan, Genetics of homotopy theory and the Adams conjecture, Ann. of Math. 100 (1974), 1-79.

Center for Mathematical Sciences, University of Aizu, Tsuruga, Ikki-machi, Aizuwakamatsu City, Fukushima, 965-8580, Japan

E-mail address: (kihara@u-aizu.ac.jp)