Extracorporeal membrane oxygenation in non-intubated immunocompromised patients

Stahl, Klaus; Schenk, Heiko; Kühn, Christian; Wiesner, Olaf; Hoeper, Marius M; David, Sascha

DOI: https://doi.org/10.1186/s13054-021-03584-8

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-203059
Journal Article
Published Version

The following work is licensed under a Creative Commons: Attribution 4.0 International (CC BY 4.0) License.

Originally published at:
Stahl, Klaus; Schenk, Heiko; Kühn, Christian; Wiesner, Olaf; Hoeper, Marius M; David, Sascha (2021). Extracorporeal membrane oxygenation in non-intubated immunocompromised patients. Critical Care, 25:164.
DOI: https://doi.org/10.1186/s13054-021-03584-8
Extracorporeal membrane oxygenation in non-intubated immunocompromised patients

Klaus Stahl1,*, Heiko Schenk2†, Christian Kühn3, Olaf Wiesner4, Marius M. Hoeper4 and Sascha David2,5

Veno-venous (VV) extracorporeal membrane oxygenation (ECMO) has become an integral part in the rescue therapy of severe acute respiratory distress syndrome (ARDS) and may be lifesaving in patients with refractory hypoxemia [1]. Ventilator-induced lung injury, ventilator-acquired pneumonia and ventilator-induced diaphragm dysfunction are severe side effects of invasive ventilation and may contribute to the complex pathophysiology of multi-organ failure and death in ARDS [2]. The use of ECMO in patients who are awake and spontaneously breathing (termed awake ECMO) might avoid side effects and complications associated with sedation, intubation and invasive mechanical ventilation [3]. Our group reported the first successful use of awake ECMO in six ARDS patients several years ago [4]. We then concluded that the concept of an awake ECMO strategy as a potential alternative to intubation deserves further evaluation especially in patients with higher mortality following traditional invasive ventilation and ECMO support.

In immunocompromised patients with ARDS who require ECMO support, the 6-month mortality exceeds 70% with a reported in-hospital mortality of 81% in patients following hematopoietic stem cell transplantation (HSCT) [5]. In immunocompromised patients with Pneumocystis jirovecii-associated pneumonia and severe ARDS we demonstrated earlier that a primarily awake ECMO strategy seems to be a promising strategy [6].

We therefore hypothesized that awake ECMO support to avoid invasive ventilation in selected immunocompromised patients might yield improved outcomes. Here, we present a comprehensive summary of 18 immunocompromised patients who received awake ECMO support for management of ARDS at our institution between 09/2012 and 09/2020.

The patient characteristics are shown in Table 1. At inclusion, the majority of patients had isolated lung failure indicated by rather low rates of low-dose vasopressor support (28%) and renal replacement therapy (6%) as well as physiological serum lactate concentrations. Median (Interquartile Range (IQR)) oxygenation indices at ECMO initiation were 72 (65–82) mmHg with normal values for pH and pCO2 despite maximal respiratory support by noninvasive ventilation (NIV). ECMO was initiated after a median of 1 (1–3) days following initial ICU admission and was carried out for 11 (9–18) days.

Eleven patients (61%) required secondary intubation after a median of 4 (2–6) days. The most common cause for secondary intubation was agitation (6/11, 55%) stressing the critical role for delirium preventive strategies in these patients. The majority (4/6) of patients with agitation as primary cause for failing awake ECMO support developed agitation without any prior respiratory or circulatory deterioration. The choice of anxiolytic medication showed a trend toward a more frequent use of benzodiazepines in patients with agitation compared to all other patients (6/6 vs. 4/12), while low-dose morphine was used less frequently (2/6 vs. 7/12).
28-day-, in hospital- and 6-month mortality rates were 44% (8/18), 50% (9/18) and 50%, respectively. In-hospital mortality was 29% (2/7) in solid organ transplantation patients and 50% (3/6) in hemopoietic stem cell transplantation patients. In-hospital mortality was 73% in patients who required secondary intubation and 14% in patients who did not require intubation while on ECMO support (p = 0.023, Hazard Ratio: 0.133 (0.058–0.789)).
An exploratory analysis suggested several factors associated with later failure of an awake ECMO concept (Table 2).

Although this study, to the best of our knowledge, represents the largest experience with awake ECMO in ARDS patients, conclusions are still limited by its small sample size and the uncontrolled nature. Despite these limitations, our findings support the notion that an awake ECMO strategy might be a viable treatment option for immunocompromised patients with severe ARDS, especially in those patients without overt multi-organ failure. Further studies are required to determine the possible role of the awake ECMO concept in patients with ARDS.

Acknowledgements
Not applicable.

Authors’ contributions
KS and HS obtained clinical data. KS, HS, CK, OW, MMH and SD analyzed and discussed the data and generated figures and tables. SD, MMH, HS and KS wrote the manuscript; all authors proof-read the manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL. SD is supported by the German Research Foundation (DA 1209/4-3) and by the German Lung Centre (DZL). CK and MMH were supported by the German Research Foundation (DFG), Clinical Trials Research Group (KFO 311) “(Pre)terminal heart and lung failure: Unloading and repair”.

Availability of data and materials
The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate
Ethical approval was waived due to the retrospective nature of this study. The study was performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

References
1. Combes A, Peek GJ, Hajage D, Hardy P, Abrams D, Schmidt M, et al. ECMO for severe ARDS: systematic review and individual patient data meta-analysis. Intensive Care Med. 2020;46(11):2048–57.
2. Chiu LC, Lin SW, Chuang LP, Li HH, Liu PH, Tsai FC, et al. Mechanical power during extracorporeal membrane oxygenation and hospital mortality in patients with acute respiratory distress syndrome. Crit Care. 2021;25(1):13.
3. Langer T, Santini A, Bottino N, Crotti S, Batchinsky AL, Pesenti A, et al. “Awake” extracorporeal membrane oxygenation (ECMO): pathophysiology, technical considerations, and clinical pioneering. Crit Care. 2016;20(1):150.
4. Hoeper MM, Wiesner O, Hadem J, Wahl O, Suhling H, Duesberg C, et al. Extracorporeal membrane oxygenation instead of invasive mechanical ventilation in patients with acute respiratory distress syndrome. Intensive Care Med. 2013;39(11):2056–7.
5. Schmidt M, Schellongowski P, Patroniti N, Taccone FS, Reis Miranda D, Reuter J, et al. Six-month outcome of immunocompromised severe ARDS patients rescued by ECMO: An international multicenter retrospective study. Am J Respir Crit Care Med. 2018.
6. Stahl K, Seelig B, Hoeper MM, David S. “Better be awake”-a role for awake extracorporeal membrane oxygenation in acute respiratory distress syndrome due to Pneumocystis pneumonia. Crit Care. 2019;23(1):418.

Tables

Characteristic	Secondary intubation	Logistic regression			
	No (n)	Yes (n)	p	OR (95%-CI)	p
Benzodiazepine use during ECMO support—no (%)	2/7 (28.6)	8/11 (72.7)	0.066	6.7 (0.8–55)	0.078
Ppeak (NIV) before ECMO initiation—cmH2O	15 (11–16)	19 (17–22)	0.014	1.6 (1–2.6)	0.05
pCO2 before ECMO initiation—mmHg	37 (35–43)	50 (34–76)	0.06	1.1 (1–1.2)	0.163
ECMO support duration—days	9 (8–11)	12 (10–28)	0.049	1.2 (0.9–1.5)	0.173

Description of parameters that were associated with the necessity of later secondary intubation. Factors associated with later failure of an awake ECMO concept were more prominent use of benzodiazepines during awake ECMO support, higher peak pressures applied in noninvasive ventilation and hypercapnia directly before ECMO insertion as well as longer ECMO support. Values are presented as median (25–75% interquartile range) or if categorical as numbers and percentage.

CI, Confidence Interval; NIV, Noninvasive Ventilation; Ppeak, Peak Pressure