Los niveles séricos de infliximab y adalimumab están asociados con remisión profunda en la enfermedad inflamatoria intestinal

Serum levels of infliximab and adalimumab are associated with deep remission in inflammatory bowel disease

Óscar Pascual-Marmaneu1, María D. Belles-Medall1, Raúl Ferrando-Piqueres1, Pedro Almela-Notari2, María Mendoza-Aguilera1, Tamara Álvarez-Martín1

1Servicio de Farmacia Hospitalaria, Hospital General Universitario de Castellón, Castellón. España. 2Servicio de Aparato Digestivo, Hospital General Universitario de Castellón. Castellón. España.

Cómo citar este trabajo
Pascual-Marmaneu O, Belles-Medall MD, Ferrando-Piqueres R, Almela-Notari P, Mendoza-Aguilera M, Álvarez-Martín T. Los niveles séricos de infliximab y adalimumab están asociados con remisión profunda en la enfermedad inflamatoria intestinal. Farm Hosp. 2021;45(5):225-33.

Resumen

Objetivo: La remisión profunda, definida como remisión clínico-analítica y curación de la mucosa, es el objetivo terapéutico en la enfermedad inflamatoria intestinal. En este estudio se define el punto de corte óptimo de concentración valle de infliximab y adalimumab asociado a remisión profunda en fase de mantenimiento. El objetivo secundario es evaluar las covariables relacionadas con las concentraciones de antifactor de necrosis tumoral y la remisión profunda.

Método: Estudio retrospectivo que incluyó 120 y 122 pacientes diagnosticados de enfermedad inflamatoria intestinal tratados con infliximab y adalimumab. La proteína C reactiva < 5 mg/L y la calprotectina fecal < 100 µg/g se consideró para remisión analítica. En la enfermedad de Crohn, la remisión clínica se definió mediante puntuación Harvey Bradshaw < 5; la curación de la mucosa por puntuación endoscópica simple para enfermedad de Crohn < 3; en colitis ulcerosa, por índice total de Mayo < 3 e índice subendoscópico de Mayo < 2. Se realizó un análisis por curva de eficacia diagnóstica para determinar el cutoff asociado a remisión profunda. Las concentraciones de antifactor de necrosis tumoral se clasificaron en cuartiles. Se utilizó la prueba X2 y Kruskal-Wallis para comparar variables discretas o continuas. Se realizó una regresión multivariante por curva ROC con ajuste por covariables.

PALABRAS CLAVE
Infliximab; Adalimumab; Enfermedad inflamatoria intestinal; Enfermedad de Crohn; Colitis ulcerosa; Monitorización terapéutica farmacocinética; Farmacocinética.

KEYWORDS
Infliximab; Adalimumab; Inflammatory bowel diseases; Crohn disease; Colitis ulcerative; Therapeutic drug monitoring; Pharmacokinetics.

Recibido el 19 de octubre de 2020; aceptado el 17 de mayo de 2021. Early Access date (08/18/2021). DOI: 10.7399/fh.11574
logística multivariante para identificar las características de pacientes y serológicas asociadas a remisión profunda.

Resultados: Las concentraciones de antígeno de necrosis tumoral fueron superiores en remisión profunda en comparación con los que no la alcanzaron en infliximab (4,4, rango intercuartílico: 3,3-6,5 versus 2,3, rango intercuartílico: 1,1-4,2 μg/ml, P < 0,005) y adalimumab (6,3, rango intercuartílico: 2,4-5,5 μg/ml, P < 0,005).

Se identificó un cutoff de 3,1 μg/ml en infliximab (area bajo la curva de eficacia diagnóstica 0,72) y 6,3 μg/ml en adalimumab (area bajo la curva de eficacia diagnóstica 0,75). Los factores asociados a concentraciones más altas de infliximab fueron: elevado índice de masa corporal, ausencia de cirugía previa de enfermedad intestinal, proteína C reactiva < 5 mg/L y calprotectina fecal < 100 μg/g. En adalimumab, concentraciones más altas se relacionaron con coadministración de inmunosupresores, bajo índice de masa corporal, ausencia de cirugía previa, proteína C reactiva < 5 mg/L y calprotectina fecal < 100 μg/g. Se identificó calprotectina fecal < 100 μg/g, proteína C reactiva < 5 mg/L, infliximab > 3 μg/ml y adalimumab ≥ 6,3 μg/ml como factores asociados a remisión profunda.

Conclusiones: Las concentraciones de infliximab y adalimumab, proteína C reactiva < 5 mg/L y calprotectina fecal < 100 μg/g se asocian a remisión profunda. Se identifican concentraciones cutoff de 3,1 y 6,3 μg/ml en infliximab y adalimumab, respectivamente, como predictores de remisión profunda.

Introducción

La enfermedad de Crohn (EC) y la colitis ulcerosa (CU) son dos de los principales tipos de enfermedad intestinal inflamatoria (EII). Aunque aún se desconoce su etiología, los estudios realizados han encontrado altas concentraciones de factor de necrosis tumoral alfa (TNF-α) tanto en pacientes con EC como en aquellos con CU en comparación con el grupo control. De ello se desprende que la terapia con anti-TNF es efectiva a la hora de inducir y mantener la remisión clínica y la curación de la mucosa (CM).

Adalimumab (ADA) e infliximab (IFX) son fármacos anti-TNF de primera línea utilizados en caso de respuesta inadecuada a tratamiento convencional en pacientes con EI, activa de moderada a severa. Aunque en los últimos años se han sumado nuevos fármacos biológicos (ustekinumab, vedolizumab, etc.) o inhibidores de JAK como tofacitinib a las opciones farmacológicas dirigidas al tratamiento de la EI, las líneas disponibles tras el fracaso de los agentes anti-TNF son limitadas.

Sin embargo, entre un 10 y un 30% de los pacientes con EI, tratados con agentes anti-TNF no responden a la terapia de inducción (ausencia de respuesta primaria), mientras que el 23-46% de los pacientes en remisión pierden respuesta durante el tratamiento (pérdida de respuesta secundaria). El mecanismo más habitualmente implicado en el desarrollo de la pérdida de respuesta es la formación de anticuerpos contra los agentes anti-TNF, que interfieren con la fijación del TNF, aceleran el aclaramiento de los fármacos y pueden producir la pérdida de respuesta primaria y secundaria. Además, el perfil farmacocinético de los agentes anti-TNF varía enormemente de un paciente a otro en función de múltiples factores como el nivel de albúmina en sangre, el género, el índice de masa corporal (IMC), la presencia de inflamaciones sistémicas y la administración concomitante de agentes inmunosupresores.

Concentraciones plasmáticas elevadas de estos agentes anti-TNF se han correlacionado con mejores resultados clínicos. Dado que el gasto sanitario relacionado con la EI se ha atribuido principalmente a los costes farmacológicos, la monitorización terapéutica de los fármacos administrados podría desempeñar un papel importante a la hora de reducir los costes sanitarios sin menoscabo de la eficacia. La remisión profunda (RP), definida como remisión según biomarcadores, remisión clínica o CM, se ha convertido en una nueva dimensión terapéutica en el contexto de la EI. No obstante, no se ha definido aún un punto de corte óptimo de concentración de IFX y ADA por encima del cual pueda afirmarse que se ha producido una RP.

El objetivo de este estudio fue definir un punto de corte óptimo de concentración valle de IFX y ADA durante la terapia de mantenimiento asociada con RP en pacientes con EII. El objetivo secundario fue evaluar la influencia de variables sociodemográficas, clínicas, farmacológicas y de biomarcador sobre las concentraciones de anti-TNF y sobre la RP.

Métodos

** Diseño del estudio, definiciones y población estudiada**

Se trata de un estudio retrospectivo observacional unicéntrico que incluyó pacientes con EC y CU tratados con IFX o ADA en el Hospital General Universitario de Castellón entre diciembre de 2013 y diciembre de 2020. Todos los pacientes consecutivos incluidos respondieron al tratamiento de inducción con IFX o ADA, siendo tratados mediante esta estrategia de mantenimiento. La dosis de mantenimiento de IFX osciló entre 5 y 10 mg/kg, administrados cada 6 o 8 semanas. La dosis de ADA fue de 40 mg y se administró de forma semanal o quincenal.

La cohorte fue sometida a un examen endoscópico y a monitorización terapéutica farmacocinética. Se realizaron evaluaciones endoscópicas 5 días antes de la medición de las concentraciones valle de IFX y ADA. La evaluación de la actividad clínica de la enfermedad y las determinaciones serológicas se realizaron el día en que se midieron las concentraciones mínimas de IFX y ADA. Se excluyeron aquellos pacientes cuya dosificación no fue estable durante los 3 meses anteriores o los 30 días anteriores a la medición de las concentraciones valle de IFX o ADA, respectivamente. Los datos analíticos y de tratamiento se obtuvieron a partir de las historias clínicas electrónicas de los pacientes hasta marzo de 2021. El estudio recibió la aprobación del Comité de Ética de la Investigación del Departamento.

Definiciones de remisión profunda

Se definió la DP como una remisión tanto analítica como clínica, que asimismo debía estar acompañada de CM. Para la remisión analítica, la PCR debía ser inferior a < 5 mg/L y la proteína C reactiva < 100 μg/ml. En la EC, se consideró que se había alcanzado la remisión clínica si la puntuación en la escala de Harvey-Bradshaw (HBI) era < 3, para la CM, el índice endoscópico simple para EC (SES-CD) debía ser < 3. El estudio diagnóstico en pacientes con patología del ileon se realizó con la ayuda de estudios de enterorresonancia magnética. En CU, se requirió una puntuación total en la escala Mayo < 3 y, para la CM, el índice subendoscópico de Mayo debía ser < 2.

Monitorización terapéutica farmacocinética

Las muestras séricas de IFX y ADA fueron recogidas de forma rutinaria y sistemática por el área de farmacocinética del departamento de farmako...
Los niveles séricos de infliximab y adalimumab están asociados con remisión profunda en la enfermedad inflamatoria intestinal

Variables y serología basales

Se registraron las variables basales como el sexo, la edad en el momento del diagnóstico, el diagnóstico, el grado de estadiificación periódica, la puntuación en la clasificación de Montreal de CU y EC, y la administración o no de tratamiento biológico previo. La duración de la terapia anti-TNF, el tratamiento biológico previo, el tratamiento concomitante con corticoides e inmunomoduladores, la presencia de hábito tabáquico, el peso, el IMC, los valores de PCR, CF, DR, remisión clínica, CM y las variables bioquímicas (hemoglobina, recuento de leucocitos, neutrófilos, plaquetas, albúmina) se determinaron el día de la extracción de muestras para el control terapéutico farmacocinético.

Análisis estadístico

Las características demográficas se representaron con medianas y rangos intercuartílicos (RIC) para las variables continuas y mediante frecuencias y porcentajes para las variables categóricas. En cuanto a las concentraciones plasmáticas de IFX o ADA, se realizó un análisis de las características operativas del receptor (ROC) utilizando la RP como variable de clasificación para calcular la sensibilidad, la especificidad, el valor predictivo positivo, el valor predictivo negativo, la razón de probabilidades y el área bajo de la curva ROC (AUROC) con el valor p asociado. Las concentraciones de ADA e IFX de los grupos se compararon mediante la prueba U de Mann-Whitney según la RP. Los niveles de IFX se relacionaron con los incrementos en las concentraciones de anti-TNF mediante la prueba de chi cuadrado. Las concentraciones de anti-TNF se clasificaron en cuartiles. La prueba de chi cuadrado y la de Kruskal-Wallis se utilizaron para comparar las variables discretas o continuas entre los grupos de cuartiles. La prueba de chisquare y la de Mann-Whitney se utilizaron para realizar una evaluación univariante encaminada a determinar las variables categóricas o cuantitativas asociadas con la RP, respectivamente. Se llevó a cabo una regresión logística binaria multivariante, que incluyó las variables del análisis univariante realizado previamente con un valor de p < 0,1, tras aplicar el método regresivo de Wald para identificar las variables independientes asociadas con la RP. Los resultados se expresaron en términos de ratios de probabilidades, con intervalos de confianza del 95%. El valor de p debía ser < 0,05 para que los resultados fueran considerados estadísticamente significativos. El análisis estadístico se llevó a cabo con el programa informático STATIA (versión 14.0).

Resultados

Población del estudio

Se incluyeron 120 y 122 pacientes tratados con IFX y ADA, respectivamente. La mayoría de los pacientes mostraron remisión analítica de conformidad con sus niveles de PCR < 5 mg/l (IFX: n = 95, 79,2%; ADA: n = 80, 65,6%) y CF < 100 μg/ml (IFX: n = 80, 66,7%; ADA: n = 72, 59,0%). La RP se alcanzó en 52 de los 120 (43,3%) pacientes tratados con IFX y en 52 de los 122 (42,6%) tratados con ADA. Las características de la enfermedad y de los pacientes se recogen en la tabla 1.

Concentraciones de anti-TNF y remisión profunda

Las concentraciones medianas (RIC) de anti-TNF fueron significativamente más altas en pacientes en RP que en los que no la alcanzaron, tanto para los pacientes tratados con IFX (4,4; RIC: 3,3-6,5 μg/ml; P < 0,05) como en aquellos tratados con ADA (6,3; RIC: 4,2-8,2 μg/ml; P < 0,05). La RP se alcanzó en 52 de los 120 (43,3%) pacientes tratados con IFX y en 52 de los 122 (42,6%) tratados con ADA. Las características de la enfermedad y de los pacientes se recogen en la tabla 1. Los factores asociados con una mayor

Figura 1. Curva ROC para las concentraciones valle de infliximab y adalimumab en pacientes con enfermedad intestinal inflamatoria (con remisión profunda versus sin remisión profunda).
Tabla 1. Características de los pacientes	Infliximab	Adalimumab
N	120	122
Varones (%)	83 (69,2)	67 (54,9)
Edad al momento del diagnóstico, mediana (RIC) (año)	35 (24-46)	33 (22-48)
Edad al momento de medir el nivel valle de anti-TNF, mediana (RIC) (año)	43 (34-55)	40 (36-52)
Duración del tratamiento anti-TNF MTF, mediana (RIC) (mes)	10,9 (7,1-16,7)	26,3 (11,1-46,7)
Enfermedad de Crohn (%)	89 (74,2)	102 (83,6)
Cirugía previa por EIi, n (%)	37 (30,8)	51 (41,8)
Fistulización perianal EC (%)	36/89 (40,4)	50/102 (49,0)
EC localización†, (%): L1;L2;L3	24/89 (27); 17/89 (19); 48/89 (54)	31/102 (30); 11/102 (11); 60/102 (59)
Comportamiento EC† (%): B1; B2; B3	39/89 (44); 22/89 (25); 28/89 (31)	44/102 (43); 21/102 (21); 37/102 (36)
Extensión de la CU‡ (%): E1; E2; E3	1/31 (3); 16/31 (52); 14/31 (45)	0/20 (0); 12/20 (60); 8/20 (40)
Tratamiento previo con biológicos (%)	44 (36,7)	28 (22,9)
Intensificación de dosis	48 (40,0)	60 (49,2)
Coritzoides concomitantes (%)	18 (15,0)	17 (13,9)
Inmunomoduladores concomitantes (%)	58 (48,3)	55 (45,1)
Tabaquismo (%)	20 (16,7)	30 (24,6)
Peso, mediana (RIC) (kg)	76,2 (66-88,3)	75,1 (64-85,8)
IMC, mediana (RIC) (kg/m²)	23,9 (20-27,8)	23,6 (21-26,2)
PCR < 5 mg/l (%)	95 (79,2)	80 (65,6)
CF < 100 µg/g (%)	80 (66,7)	72 (59,0)
RP	52 (43,3)	52 (42,6)
Remisión clínica	62 (51,7)	55 (45,1)
CM	56 (46,7)	60 (49,2)

Variables bioquímicas

- **Hemoglobina, mediana (RIC) (g/dl) (n ¼ 100)**
 - IFX: 13,8 (11,6-14,7)
 - ADA: 13,1 (11-14-15)
- **Recuento de leucocitos, mediana (RIC) (10⁹/l) (n ¼ 97)**
 - IFX: 8,2 (5,7-10,5)
 - ADA: 8,3 (5,6-10,7)
- **Neutrófilos, mediana (RIC) (10⁹/l) (n ¼ 92)**
 - IFX: 5,2 (3,5-7,4)
 - ADA: 5,6 (3,7-7,5)
- **Plaquetas, mediana (RIC) (10⁹/l) (n ¼ 100)**
 - IFX: 420 (270-401)
 - ADA: 340 (288-430)
- **Álbumina, mediana (RIC) (g/l) (n ¼ 98)**
 - IFX: 4,2 (4,0-4,5)
 - ADA: 4,1 (4,0-4,3)

Anti-TNF: antifactor de necrosis tumoral; **CF**: calprotectina fecal; **CM**: curación de la mucosa; **EC**: enfermedad de Crohn; **EIi**: enfermedad inflamatoria intestinal; **IMC**: índice de masa corporal; **MCF**: monitorización clínica farmacocinética; **PRC**: proteína C reactiva; **RIP**: remisión profunda.

†Clasificación de Montreal de la Enfermedad de Crohn. Localización: L1 íleon terminal, L2 colon, L3 ileocólica y L4 tracto digestivo alto. Comportamiento: B1 no estenosante no fistulizante, B2 estenosante, y B3 fistulizante.

‡Clasificación de Montreal de la colitis ulcerosa: E1 proctitis ulcerosa, E2 colitis ulcerosa izquierda y E3 colitis ulcerosa extensa.

Figura 2. Tasas de remisión profunda por incrementos de concentraciones valles de 3 μg/ml in infliximab y adalimumab. (Los valores p indican la comparación entre distintas concentraciones). Prueba de chi cuadrado (asociación lineal por lineal).

- **P < 0,001**
 - IFX: n=43
 - ADA: n=3

- **P < 0,001**
 - IFX: n=15
 - ADA: n=6

- **P < 0,001**
 - IFX: n=10
 - ADA: n=6

- **P < 0,001**
 - IFX: n=30
 - ADA: n=57

- **P < 0,001**
 - IFX: n=23
 - ADA: n=6

ADA: adalimumab, IFX: infliximab.
Los niveles séricos de infliximab y adalimumab están asociados con remisión profunda en la enfermedad inflamatoria intestinal

Tabla 2. Resumen de factores que influyen sobre las concentraciones séricas de infliximab y adalimumab
Concentración de infliximab
Varones (%)
Edad en el momento de MTF, mediana (RIQ) (años)
Duración de IFX, mediana (RIQ) (meses)
Enfermedad de Crohn* (%)
Fistulización perianal EC (%)
Cirugía previa por EII (%)
Concentración de adalimumab
Varones (%)
Edad en el momento de medir nivel valle ADA, mediana (RIQ) (años)
Duración ADA, mediana (RIQ) (meses)
Enfermedad de Crohn* (%)
Fistulización perianal EC (%)
Cirugía previa por EII (%)
Localización EC† (%):
L1
L2
L3
Comportamiento EC† (%):
B1
B2
B3
Extensión de la CU‡ (%):
E1
E2
E3
Extensión de la CU‡ (%):
E1
E2
E3
Intensificación dosis ADA
Inmunomoduladores concomitantes (%)
Corticoides concomitantes (%)
Peso, mediana (RIQ) (kg)
IMC basal, mediana (RIQ), kg/m²
Albúmina, mediana (RIQ), g/l
PCR < 5 mg/l (%)
CF < 100 μg/g

Tabla 2. Resumen de factores que influyen sobre las concentraciones séricas de infliximab y adalimumab.
concentración de IFX fueron un mayor IMC, no haber sido operado previamente por EII, concentraciones de PCR < 5 mg/l y CF < 100 μg/g. En pacientes tratados con ADA, los factores asociados con una mayor concentración del fármaco fueron la administración concomitante de inmunomoduladores, bajo IMC, no haber sido operado previamente por EII, y concentraciones de PCR < 5 mg/l y de CF < 100 μg/g.

Anticuerpos anti-TNF y remisión profunda

De todos los pacientes en tratamiento anti-TNF, sólo 7 (6%) de los que recibieron IFX y 5 (4%) de los que recibieron ADA desarrollaron AAI y AAA, respectivamente. Los niveles de anticuerpo oscilaron entre 16 y 1.440 ng/ml para los AAI y entre 12 y 672 ml para los AAA.

Factores asociados con la remisión profunda

El análisis univariante identificó los niveles de CF < 100 μg/g (p = 0,001) y de PCR < 5 mg/l (p = 0,028) y las concentraciones de IFX ≥ 3,1 μg/ml (P < 0,001) como variables asociadas con RP en pacientes tratados con IFX. En los pacientes tratados con ADA, las variables asociadas con DP según el análisis univariante fueron CF < 100 μg/g (p = 0,039), PCR < 5 mg/l (p = 0,035), y concentraciones de IFX ≥ 3,1 μg/ml (p = 0,008) en pacientes tratados con IFX, y de CF < 100 μg/g (p = 0,030), PCR < 5 mg/l (p < 0,015) y concentraciones de ADA ≥ 6,3 μg/ml (p = 0,010) en pacientes tratados con ADA (Tabla 4).

Discusión

El tratamiento individualizado por objetivos (treat-to-target) se ha definido como nueva estrategia terapéutica encaminada a optimizar los resultados clínicos. El estudio demostró que unas concentraciones más elevadas de IFX y ADA asociadas con una mayor concentración del fármaco fueron un mayor IMC, no haber sido operado previamente por EII, concentraciones de PCR < 5 mg/l y CF < 100 μg/g. En pacientes tratados con ADA, los factores asociados con una mayor concentración del fármaco fueron la administración concomitante de inmunomoduladores, bajo IMC, no haber sido operado previamente por EII, y concentraciones de PCR < 5 mg/l y de CF < 100 μg/g.

Tabla 3. Análisis univariante de las variables basales que influyen sobre la remisión profunda

Variables basales	IFX	ADA				
	RP* (N = 52)	No RP (N = 70)				
	Sin RP (N = 68)	P	RP (N = 52)			
	No RP (N = 70)	P				
Varones, (%)	35 (67,3)	48 (70,6)	0,700	30 (57,7)	37 (52,9)	0,596
Edad en el momento de medir nivel valle anti-TNF, mediana (RIQ) (años)	44 (32,56)	42 (30,55)	0,569	40 (32,56)	41 (31,60)	0,580
Duración enfermedad: mediana (RIQ), (años)	7,8 (2,2-12,1)	8,5 (2,8-12,5)	0,721	6,9 (4,8-10,1)	7,2 (4,7-12,2)	0,489
Enfermedad de Crohn (%)a	36 (69,2)	53 (77,9)	0,280	46 (88,5)	56 (80,0)	0,212
Fistulización perianal EC (%)	11/36 (30,6)	25/53 (47,2)	0,117	20/46 (43,5)	30/56 (53,6)	0,310
Cirugía previa por EII (%)	18 (34,6)	19 (27,9)	0,433	20 (38,5)	31 (44,3)	0,519
Localización EC (%):	10/36 (27,8)	14/53 (26,4)	0,537	14/46 (30,4)	17/56 (30,4)	0,310
L1	8/36 (22,2)	9/53 (17,0)	0,433	4/46 (8,7)	7/56 (12,5)	0,519
L2	21/36 (58,3)	27/53 (50,9)	0,537	24/46 (52,2)	36/56 (64,3)	0,519
L3	13/36 (36,1)	15/53 (28,3)	0,537	18/46 (39,1)	19/56 (33,9)	0,519
Comportamiento EC (%):	4/16 (25,0)	13/53 (25,0)	0,537	8/46 (17,4)	13/56 (23,2)	0,519
B1	7/16 (43,8)	4/53 (7,7)	0,537	4/46 (8,7)	7/56 (12,5)	0,519
Extensión CU (%)	1/16 (6,25)	0/15 (0,0)	0,376	0/14 (0,0)	0/15 (0,0)	0,439
Corticoides concomitantes (%)	6/16 (37,5)	8/15 (53,3)	0,376	3/14 (21,4)	5/15 (33,3)	0,439
Intensificación dosis IFX/ADA	0,180	0,018	0,180	0,018	0,180	0,018
Inmunogenicidad (AAI o AAA)	43 (82,7)	46 (88,5)	0,001	40 (76,9)	38 (70,0)	0,001
Concentración de IFX > 3,1 μg/ml	43 (82,7)	46 (88,5)	0,001	40 (76,9)	38 (70,0)	0,001
Concentración de ADA > 6,3 μg/ml	46 (88,5)	43 (82,7)	<0,001	38 (70,0)	38 (70,0)	<0,001

AAAA: anticuerpos frente a adalimumab; ATI: anticuerpos frente a infliximab; CU: colitis ulcerosa; IMC: índice de masa corporal; Inmunomoduladores: tiopurina; MTF: monitorización terapéutica farmacocinética; PCR: proteína C reactiva; FC: calprotectina fecal; RIQ: rango intercuartílico.

aPorcentaje de EC versus CU.

*La remisión profunda se definió como una combinación de remisión clínica, normalización de biomarcadores y remisión endoscópica.
de IFX y ADA durante la terapia de mantenimiento en pacientes con EII se asociaban con mayores tasas de RP.

La monitorización terapéutica de los agentes anti-TNF se ha asociado con normalización de biomarcadores y remisión clínica. En un estudio de 1.487 muestras procedentes de 483 pacientes, una concentración de IFX > 2,9 μg/ml estuvo asociada con un nivel de PCR < 5 mg/l.4 Un metaanálisis13 de 22 estudios demostró que una concentración valle de IFX más elevada se relaciona con remisión clínica y que un punto de corte de concentración de IFX por encima de 2 μg/ml supone una mayor probabilidad de remisión clínica. De igual modo, mayores concentraciones de ADA se han asociado con mejores resultados clínicos. Un metaanálisis14 que incluye siete estudios observacionales, una revisión sistemática, un metanálisis y un análisis post hoc de los resultados de un ensayo clínico sugieren que el rango de concentraciones de ADA varía según cada diana, postulando una concentración de 4,8 μg/ml como punto de corte para la remisión clínica.

Los análisis de regresión logística univariantes y multivariantes realizados en este estudio muestran una fuerte correlación entre las concentraciones de IFX y ADA y la RP. Específicamente, se identificó un punto de corte de concentración valle de 3,1 μg/ml para IFX y de 6,3 μg/ml para ADA. El punto de corte para la RP fue inferior al observado en otros estudios15-16, que proponen una ventana terapéutica de 5-10 μg/ml para IFX y de 8-12 μg/ml para ADA para alcanzar la CM. No obstante, las concentraciones valle medidas en estos estudios no se obtuvieron en estado estacionario, lo que podría explicar que propusieran un rango terapéutico más elevado. En este sentido, los puntos de corte descritos en la bibliografía son muy heterogéneos, llegando algunos estudios a proponer valores de 3,4 μg/ml19 para IFX y de 4,9 μg/ml para ADA.20 Este estudio incluyó un alto porcentaje de pacientes que habían sido sometidos a intervención quirúrgica a causa de EII, sin que se observaran diferencias en materia de RP a pesar de que presentaran menores concentraciones de anti-TNF. Los anti-TNF han demostrado una alta eficacia en la prevención de recidiva endoscópica de EC.21-22 Sorrentino et al.23 sugirieron que, aunque las dosis más bajas de IFX daban lugar a menores concentraciones del fármaco en plasma, también conseguirían mantener la remisión clínica y endoscópica en este tipo de pacientes. Aunque nuestro estudio identificó un punto de corte específico asociado a la RP, el rango de concentraciones asociado con la RP fue bastante amplio, oscilando entre O y 14,4 μg/ml, y entre 2,35 y 15,6 μg/ml para IFX y ADA, respectivamente. De esto se deduce la necesidad de individualizar las concentraciones diana tanto de IFX como de ADA. Un nivel de IFX de hasta 3,1 μg/ml produjo un incremento en la tasa de RP, mientras que concentraciones más altas del fármaco no se asociaron con un incremento mucho mayor de la RP. En el caso de ADA, puesto que niveles altos del fármaco en sangre (>12 μg/ml) consiguen aumentar la RP, es posible que algunos pacientes requieran concentraciones aún más altas para obtener mejores resultados. En este sentido, Plevis et al.24 explican que son necesarias concentraciones más altas de ADA para el cierre de una fistula. Sin embargo, puesto que sólo seis pacientes de este estudio lograron esas concentraciones, no se pudieron extraer conclusiones en este aspecto.

En línea con la evidencia disponible, se identificaron niveles de PCR < 5 mg/l y de CF < 100 μg/g como predictores independientes de RP. Además, un alto IMC, la ausencia de cirugías previas por EII, y unas concentraciones de PCR < 5 mg/l y de CF < 100 μg/g en pacientes tratados con IFX, así como la coadministración de inmunomoduladores, un bajo IMC, la ausencia de cirugías previas por EII, y unas concentraciones de PCR < 5 mg/l y de CF < 100 μg/g en pacientes tratados con ADA, tienen una influencia positiva en la consecución de concentraciones valle más altas. La influencia del IMC estuvo en consonancia con la descrita en un estudio farmacocinético25 de 24 pacientes tratados con IFX. En dicho estudio, un IMC elevado se correlacionó con concentraciones postinfusión más altas. Sin embargo, dichas concentraciones no se correlacionaron con una mayor tasa de respuesta, lo que sugiere que las concentraciones del fármaco en sangre no se correlacionaron con las concentraciones observadas en los tejidos. En el caso de ADA, Sánchez et al. demostraron en un estudio farmacocinético prospectivo que el IMC desempeñaba un papel en el aparente aclaramiento de ADA y era una variable significativa en la farmacocinética del fármaco.26 A diferencia de lo descrito en otros estudios27, la administración de inmunomoduladores en estos pacientes no demostró estar correlacionada con las concentraciones de IFX. No obstante, en un estudio retrospectivo multicéntrico28, la retirada del tratamiento con inmunomoduladores tras al menos 6 meses de administración de IFX no produjo una reducción de las concentraciones valle de IFX en pacientes con EC. En ese sentido, la duración mediana del tratamiento con IFX de los pacientes incluidos en este estudio, que fue de 10,9 meses, podría haber influido en la ausencia de impacto de la coadministración de inmunomoduladores en las concentraciones de IFX. Por contra, la coadministración de inmunomoduladores se asoció con concentraciones más altas de ADA, en consonancia con lo descrito por Matsumoto et al.29 que, tras evaluar la eficacia del tratamiento con ADA y sin azatioprina en pacientes con EC determinaron, aunque con diferencias significativas (p = 0,084), que la coadministración de inmunomoduladores aumentaba las concentraciones mínimas de ADA.

La inmunogenicidad fue cuantitativamente más elevada en pacientes tratados con IFX que en aquellos que recibieron ADA. De hecho, sólo 7 (6%) pacientes tratados con IFX y 5 (4%) tratados con ADA desarrollaron anticuerpos frente al fármaco. No obstante, el porcentaje de inmunogenidad observado en la bibliografía varía, según un análisis reciente, en función del método de inmunoensayo utilizado, entre un 0% y un 79% en
pacientes tratados con IFX y entre el 0% y el 87% en aquellos tratados con ADA. La presencia de anticuerpos AAy y AAA se ha asociado a una pérdida de respuesta clínica. En este estudio, los AAA se relacionaron negativamente con la RP en el análisis univariante, pero no en el multivariante. Además, sólo 1 de los 7 pacientes con EII con AAA y ninguno con AAA estaban en RP.

El uso de un ensayo farmacosensible que sólo detecta concentraciones de inhibidores TNF-α libres y anticuerpos antifármaco libres y es incapaz de medir anticuerpos antifármaco en presencia de inhibidores TNF-α, podría hacer influir en la baja prevalencia de pacientes con inmunogenicidad positiva. Algunos ensayos de tolerancia utilizan un tampón ácido que disocia los inmunocomplejos entre los anticuerpos antifármaco y ADA, permitiendo la determinación de los anticuerpos antifármaco que forman parte de estos inmunocomplejos. La monitorización terapéutica mediante estos kits podría mejorar la detección de la sensibilidad e inmunogenicidad, posibilitando un análisis más riguroso de la influencia de los anticuerpos antifármaco en la RP. Sin embargo, un análisis post floc del ensayo TAXITM, en el que se evaluó la relevancia clínica de los AAA utilizando un ensayo de tolerancia farmacocinética, determinó que sólo las altas concentraciones de AAA, que normalmente también pueden detectarse en un ensayo de sensibilidad farmacocinética, persisten en el tiempo, son clínicamente relevantes y permiten un cambio de tratamiento más eficiente desde el punto de vista del coste.

El principal punto fuerte de este estudio es la evaluación sistémica de la RP, considerada como una nueva dimana terapéutica, a través de biomarcadores y escalas endoscópicas. Esto lo diferencia de otros estudios que evalúan el impacto de la monitorización farmacocinética de IFX o ADA utilizando exclusivamente biomarcadores o evaluaciones clínicas o endoscópicas sin normalizar. Además, este estudio ha identificado un punto de corte óptimo de concentración valle de IFX y de ADA.

Este estudio presenta algunas limitaciones que deben ser mencionadas. Al tratarse de un estudio retrospectivo unconfirmado con datos del mundo real es imposible excluir completamente la presencia de factores de confusión. No se realizó una recogida centralizada de los datos de las endoscopias, por lo que la variabilidad interobservador puede haber influido en los resultados. La toma de muestras se realizó en distintos momentos durante el transcurso de la enfermedad, incluyéndose un alto porcentaje de pacientes con pautas intensificadas. Esto pudo haber derivado en una infraestimación del porcentaje de pacientes con mala respuesta que requieren una intensificación del tratamiento, no fueron evaluadas. Además, criterios de evaluación clínicos como la hospitalización o la colectomía no fueron objeto de análisis. El nivel medio de albúmina en sangre, biomarcador clásico del aclaramiento de anti-TNF y de enteropatía, se mantuvo en rangos normales (4 g/l) y no demostró estar relacionado con las concentraciones plasmáticas de los fármacos ni con la RP.

En suma, nuestros hallazgos ponen de manifiesto la importancia de la participación del farmacéutico hospitalario en la monitorización de los antifactores de necrosis tumoral y de enteropatía, así como el papel relevante y permiten un cambio de tratamiento más eficiente desde el punto de vista del coste.

Financiación

Sin financiación.

Agradecimientos

Nuestros agradecimientos al Servicio de Aparato Digestivo del Hospital General Universitario de Castellón por la colaboración en el diseño del estudio.

Conflictos de intereses

Sin conflictos de intereses.

Aportación a la literatura científica

La remisión profunda, definida como remisión clínica y cicatrización de la mucosa digestiva, ha surgido como nuevo objetivo terapéutico en la enfermedad inflamatoria intestinal. En este sentido, diversos estudios evalúan el impacto de la monitorización farmacocinética de infliximab y adalimumab en el abordaje de la enfermedad inflamatoria intestinal. Sin embargo, la mayoría mide la respuesta a estos antifactores de necrosis tumoral utilizando variables intermedias como biomarcadores analíticos, criterio facultativo no estandarizado o escalas de remisión clínica. En este sentido, en este trabajo se evalúa la asociación de las concentraciones séricas de infliximab y adalimumab durante la terapia de mantenimiento mediante el uso de la remisión profunda como objetivo clínico en la enfermedad inflamatoria intestinal.

Este estudio aporta mayor evidencia respecto a la importancia clínica que implican las concentraciones séricas de estos antifactores de necrosis tumoral en la remisión profunda. Se demuestra el valor añadido que supone la monitorización de los antifactores de necrosis tumoral en los servicios de farmacia hospitalaria. Asimismo, avala la importancia de la participación del farmacéutico hospitalario en la toma de decisiones sobre estos fármacos en el manejo de la enfermedad inflamatoria intestinal.

Bibliografía

1. Noguchi M, Hiwatashi N, Liu Z, Toyota T. Secretion imbalance between tumour necrosis factor alpha and its inhibitor in inflammatory bowel disease. Gut. 1998;43(2):203-9. DOI: 10.1136/gut.43.2.203

2. Wiesahl R, El Juuki K, Zetter N, Ruben DF. Emerging Therapies for Inflammatory Bowel Disease. Adv Ther. 2018;35(11):1746-62. DOI: 10.1007/s12325-018-0795-9

3. Roda G, Jharap B, Neeraj N, Colombel JF. Loss of Response to Anti-TNFs: Definition, Epidemiology, and Management. Clin Transl Gastroenterol. 2016;7:e135. DOI: 10.1368/ctg.2015.63

4. Ben-Horin S, Chowers Y. Review article: loss of response to anti-TNF treatments in inflammatory bowel disease. Alim Pharmacol Ther. 2011;33(9):98-795. DOI: 10.1111/j.1365-2033.2011.04612.x

5. Rutgers E, Sandborn WJ, Feggan BG, Reinisch W, Olson A, Johanns J, et al. Infliximab for induction and maintenance therapy for ulcerative colitis. N Engl J Med. 2005;353(23):2462-76. DOI: 10.1056/NEJMoa050516

6. Nguyen DI, Flores S, Sasa K, Bechthol ML, Nguyen ET, Parekh NK. Optimizing the use of anti-tumor necrosis factor in the management of patients with Crohn’s disease. Ther Adv Chronic Dis. 2015;6(3):147-54. DOI: 10.1177/2040622315579621

7. Arias MT, Vande Castelee N, Vermeere S, de Buck van Overstraeten A, Billet T, Baert F, et al. A protocol to predict longterm outcome of infliximab therapy for patients with ulcerative colitis. Clin Gastroenterol Hepatol. 2015;13(10):S31-8. DOI: 10.1016/j.cgh.2014.07.055

8. Van der Valk ME, Menguy M, Leenders M, Dijkstra G, van Bodegraven AA, Vadder H, et al. Healthcare costs of inflammatory bowel disease have shifted from hospitalisation and surgery towards anti-TNFa therapy: results from the COIN study. Gut. 2014;63(11):729-9. DOI: 10.1136/gutjnl-2012-303376

9. Guidi L, Pagliese D, Panici Tonucci T, Berino A, Tolusso B, Basile M, et al. Therapeutic drug monitoring is more cost-effective than a clinically-based approach in the management of loss of response to infliximab in inflammatory bowel disease: an observational multi-centre study. J Crohns Colitis. 2018;12(9):1079-88. DOI: 10.1093/echojcc/jyv075

10. Zalik C, Peyrin-Biroulet L. Deep remission in inflammatory bowel disease: looking beyond symptoms. Curr Gastroenterol Rep. 2013;15(3):315. DOI: 10.1007/s11894-013-0315-7

11. Freeman K, Connock M, Auguste P, Taylor-Phillips S, Matty H, Shyagdan D, et al. Clinical effectiveness and cost-effectiveness of use of therapeutic monitoring of tumour necrosis factor alpha [TNF-α] inhibitors [LISA-TRACKER® enzyme-linked immunoabsorbent assay (ELISA) kits, TNF-α Blocker ELISA kits and Promonitor® ELISA kits] versus standard care in patients with Crohn’s disease: systematic reviews and economic evaluations. Health Technol Assess. 2016;20(83):1-288. DOI: 10.3310/hta20830

12. Vande Castelee N, Khanna R, Levasque BG, Stitt L, Zou GY, Singh S, et al. The relationship between infliximab concentrations, antibodies to infliximab and disease activity in Crohn’s disease. Gut. 2015;64(10):1539-45. DOI: 10.1136/gutjnl-2014-307883
Los niveles séricos de infliximab y adalimumab están asociados con remisión profunda en la enfermedad inflamatoria intestinal

13. Moore C, Carbett G, Mass AC. Systematic Review and Meta-Analysis: Serum Infliximab Levels During Maintenance Therapy and Outcomes in Inflammatory Bowel Disease. J Crohns Colitis. 2016;10(5):619-25. DOI: 10.1093/jcjc/jjw007
14. Hinojosa J, Muñoz F, Martínez-Romero GJ. Relationship between Serum Adalimumab Concentrations and Clinical Outcome in the Treatment of Inflammatory Bowel Disease. Dig Dis. 2019;37(6):444-50. DOI: 10.1159/000499870
15. Juncadella A, Papamichael K, Vaugn BP, Cheifetz AS. Maintenance Adalimumab Concentrations Are Associated With Biochemical, Endoscopic, and Histologic Remission in Inflammatory Bowel Disease. Dig Dis. 2018;63(11):3067-73. DOI: 10.1007/s11602-018-5202
16. Ungar B, Levy I, Yavni Y, Yavzozi M, Picard O, Fudim E, et al. Optimizing Anti-TNF-a Therapy: Serum Levels of Infliximab and Adalimumab Are Associated With Mucosal Healing in Patients With Inflammatory Bowel Disease. Clin Gastroenterol Hepatol. 2016;14(4):550-7.e2. DOI: 10.1016/j.cgh.2015.10.025
17. Ritter E, Hinrich A, Isakov NF, Ron Y, Cohen NA, Mahazak N. Higher Maintenance Adalimumab Trough Levels are Associated With Achievement of Advanced Remission Targets in Patients With Inflammatory Bowel Disease. J Clin Gastroenterol. 2020. DOI: 10.1097/MCG.0000000000001435
18. Kang B, Cho SY, Cho YC, Lee SY, Baek SY, Sohn I, et al. Infliximab Trough Levels Are Associated With Mucosal Healing During Maintenance Treatment With Infliximab in Paediatric Crohn’s Disease. J Crohns Colitis. 2019;13(2):189-97. DOI: 10.1093/ecco-jcc/jjw007
19. Chaparro M, Barreiro-de Acosta M, Echarri A, Almendros R, Barrio J, Lleo J, et al. Correlation Between Anti-TNF Serum Levels and Endoscopic Inflammation in Inflammatory Bowel Disease Patients. Dig Dis Sci. 2019;64(3):846-54. DOI: 10.1007/s10620-018-5362-3
20. Roblin X, Marotte H, Rinaudo M, Del Tedesco E, Moreau A, Phelip JM, et al. Serum infliximab concentration is associated with the clinical outcome of a randomized trial in pediatric Crohn’s disease. Gut. 2014;63(8):1122-6. DOI: 10.1136/gut.2013.301070
21. Cañete F, Molina M, Casanova MJ, González-Suárez RC, Barrio J, Bermejo F, et al. Adalimumab or Infliximab for the Prevention of Early Postoperative Recurrence of Crohn’s Disease: Results From the EN-EIDA Registry. Inflamm Bowel Dis. 2019;25(11):1862-70. DOI: 10.1093/ibd/izz084
22. Somerino D, Marino M, Dassopoulou T, Zafiri D, Del Bianco T. Low Dose Infliximab for Prevention of Postoperative Recurrence of Crohn’s Disease. Long Term Follow-Up and Impact of Infliximab Trough Levels and Antibodies to Infliximab. PLoS One. 2015;10(12):e0144900. DOI: 10.1371/journal.pone.0144900
23. Pliev N, Jerkman PW, Armit ID, Jones CR, Lees CW. Higher anti-tumor necrosis factor alpha levels are associated with perianal fistula healing and fistula closure in Crohn’s disease. Eur J Gastroenterol Hepatol. 2020;32(1):32-7. DOI: 10.1097/MEG.0000000000001561
24. Chang S, Malter I, Hudesman D. Disease monitoring in inflammatory bowel disease. World J Gastroenterol. 2015;21(40):11246-59. DOI: 10.3748/wjg.v21.i40.11246
25. Schoepfer AM, Beglinger C, Staumann A, Tummler M, Vavricka SR, Bruegger LE, et al. Fecal calprotectin correlates more closely with the Simple Endoscopic Score for Crohn’s disease (SES-CD) than CRP, blood leukocytes, and the CDAI. Am J Gastroenterol. 2010;105(1):162-9. DOI: 10.1038/ajg.2009.545
26. Scaldati F, D’Ambrosio D, Hölzer G, Pasca A, Petri V, Iapetus L, et al. Body mass index influences infliximab post-infusion levels and correlates with prospective loss of response to the drug in a cohort of inflammatory bowel disease patients under maintenance therapy with Infliximab. PLoS One. 2017;12(10):e0186575. DOI: 10.1371/journal.pone.0186575
27. Sánchez-Hernández JG, Pérez-Blanco JS, Rebullol N, Muñoz F, Prieto V, Calvo MV. Biomarkers of disease activity and other factors as predictors of adalimumab pharmacokinetics in inflammatory bowel disease. Eur J Pharm Sci. 2020;150:105369. DOI: 10.1016/j.ejps.2020.105369
28. Barkh M, Durica D, Milcakova K, Machkova N, Buzakova E, Hlidkova L, et al. Infliximab trough levels may predict sustained response to infliximab in patients with Crohn’s disease. J Crohns Colitis. 2013;7(9):736-43. DOI: 10.1016/j.crohns.2012.10.019
29. Drabne D, Bossuyt P, Breynaert C, Cattaert T, Vande Casteele N, Compernolle G, et al. Withdrawal of immunomodulators after co-treatment does not reduce trough level of infliximab in patients with Crohn’s disease. Clin Gastroenterol Hepatol. 2015;13(3):514-21.e4. DOI: 10.1016/j.cgh.2014.07.027
30. Matsumoto T, Matoya S, Watanabe K, Hisamatsu T, Nakase H, Yoshimura N, et al. Adalimumab Monotherapy and a Combination with Azathioprine for Crohn’s Disease: A Prospective, Randomized Trial. J Crohns Colitis. 2016;10(11):1259-66. DOI: 10.1093/ecco-jcc/jjw007
31. Gorovits B, Baltrukonis DJ, Bhattacharya I, Birchler MA, Finco D, Sikkema D, et al. Clinical relevance of detecting anti-infliximab antibodies with a drug-tolerant assay: post hoc analysis of the TAXIT trial. Gut. 2018;67(5):818-26. DOI: 10.1136/gutjnl-2017-313071