INTRODUCTION

Indonesia is a home to 65 million smokers and one of the countries with the highest number of smokers in the world. A recent study of 2018 Basic Health Research by the Ministry of Health showed that the prevalence of smoking in Indonesia showed no sign of decline despite highly aggressive tobacco control policies in Indonesia. The astronomically high number of smokers in Indonesia calls for a new approach in dealing with the issue.

Smoking has long been associated scientifically with increased morbidity and premature mortality. most of health hazards due to smoking comes from exposure to cigarette smoke (smoke aerosol), formed from the burning process of tobacco in conventional cigarettes. According to World Health Organization (WHO), most of health hazards due to smoking comes from exposure to cigarette smoke (smoke aerosol), formed from the burning process of tobacco in conventional cigarettes. This propels the implementation of the concept of tobacco harm reduction by striving for products for those still craving for tobacco can still consume, but at a lower risk. This study aims to determine the difference in HPHC content between conventional cigarettes and HTP. The research method used was literature review. In the preliminary stage, the researchers carried out a process of screening titles and abstracts from studies and then independently filtered the text papers completely according to the objectives of this study. The review yielded 22 journals meeting with the rules and regulations in this research. The results showed that all 9 HPHCs recommended for reduction (nine TobReg priority constituent) were shown to be 90% lower in HTP compared to conventional cigarettes. The conclusion was that there were differences in the HPHC content between conventional cigarettes and HTP.

Door: http://dx.doi.org/10.22270/jddt.v11i3-5.4830

Keywords: HPHC; HTP; Conventional Cigarettes

HPHC; HTP; Conventional Cigarettes
2. RESEARCH METHOD

The type of data used was secondary data in the form of quantitative data, qualitative data or a combination thereof. Textbooks underling the theory in this study was also used. Study search and selection were performed using Medline, Scopus, PubMed and Database Web of Science, limited to studies conducted until July 2020 with a search period up to September 2020. The search included terms related to HnB in general ('Heat not burn', 'Tobacco Heating System', 'Electronic Nicotine Delivery System', 'Novel Tobacco Product') and brand names ('IQOS', 'Ploom', 'Heets', 'glo', 'PNV'), and were limited to studies published from 2010, thereby excluding obsolete or outdated papers on HnB devices. Prior to further discussion of papers to be used as reference, at the preliminary stage the researchers carried out a process of screening titles and abstracts from the study then independently filtered the papers completely in accordance with the objectives of this study.

The method used for this literature review was tradition review, that is a method of literature review on a topic selected based on the knowledge and experience possessed by the researcher. Systematic Literature Review is a literature review method that is used using predetermined stages. It identified, assessed, and interpreted the whole findings of a study topic, to answer predetermined research questions. The selection of papers was also not carried out subjectively by researchers, but using predetermined protocols and filters.

The use of publications in this study referred to inclusion and exclusion criteria. The inclusion criteria included literatures and publication journals focusing on the discussion of the use of heated tobacco technology and publications that have been peer-reviewed. Textbooks on basic theories of toxicology and disease risk assessment were also utilized. The publications that were directly related to studies on HPHCs in heated tobacco products were limited to those published after 2010. However, publications prior to 2010 were still used for supporting references. The exclusion criteria included publications that have not been peer-reviewed, did not focus on heated tobacco products, were not published in English and could no longer be downloaded or documented. Sources used in this study included publications containing subjects on HPHC emission both in HTPs or conventional cigarettes.

3. RESULTS AND DISCUSSIONS

The process of searching and filtering databases from journals or scientific publications on either heated tobacco products (HTP) or e-cigarettes were performed from July 2020 to September 2020. There were 248 publications from the initial searching which would be then narrowed to 22 scientific publications and become a reference in this study (Figure 1).
3.1. HPHC Content in HTPs

The main driver of the conception of heated tobacco products is the need for an alternative for people who desire nicotine at lower risks. Health risks to smokers are caused more by exposure to HPHCs arising from the combustion process, not due to nicotine exposure. There was not enough evidence showing that nicotine is carcinogenic. Several heated tobacco products, both ready-to-market or just prototypes, can be seen in Table 1.

Table 1: Heated Tobacco Products That Are Ready to Market or Just Prototypes

Heated Tobacco Products (HTP) and Manufacturers	Marketing (Year and Region)	Product Description
IQOS®/THS 2.2 from PMI	2014, Japan, Italy and Switzerland	IQOS® consists of a holder, charger and tobacco plug (HEETS). The tobacco plug (about 320mg) is put into the holder and heated with an electronically-controlled heating knife inserted into the part of the tobacco plug. Operating heating temperature <350 °C. Single use for 6 minutes or up to 14 puffs.
iFuse® from BAT	2015, Romania	iFuse® includes electronic vapor device with a rechargeable Li-ion battery and integrated circuit power controller, on which Cartomizer (Neopod) is installed. This disposable Neopod® consists of an atomizer, liquid tank with 1.15 ml of unflavoured nicotine liquid and chamber containing a 130mg tobacco plug. When the user presses the button, a nicotine-containing vapor is generated, which is then pulled through the tobacco plug to absorb the flavour. Before reaching the tobacco plug, the aerosol reaches an average maximum temperature of <35 °C.
Glo®/THP 1.0 from BAT	2016, Japan	Glo® includes electronic devices with a rechargeable Li-ion battery and heating chamber and tobacco plug. A tobacco plug (about 260mg) is heated in the heating chamber from the periphery. Operating heating temperature <250°C. Reaches operating temperature after 30-40 seconds and a single use lasts 3 minutes.
Ploom Tech®/PNTV from JTI	2016, Japan	PNTV consists of a power supply, cartridges with heating and liquids, and capsules with a mixture of tobacco. Generates nicotine-free vapor by heating an unflavoured liquid; The steam then passes through the tobacco capsules to absorb the taste and nicotine.
Carbon-heated tobacco product (CHTP) from PMI	Not marketed	A specially designed electric lighter induces a carbon heating source which then heats up the tobacco plug.

Source: Simonavicius E. et al., 2018

The studies included in this literature review were reviewed with impartial view toward sources of funding. However, manufacturers who financed and report their own product findings were inherently bound by conflicts of interest. Table 2 is a summary of both independent or sponsor manufacturer studies.

Table 2: Summary of Independent and Sponsor Manufacturer Studies

Researcher, Year of Publication	Type of Research, Country	Study Design	Heated Tobacco Product and Reference Product	Objective
HTP Studies on Mainstream Smoke				
Auer et al., 2017 7	Independent, Switzerland	Comparative laboratory study using a smoking machine	IQOS® and Cigarettes	To compare HPHC levels in IQOS® mainstream aerosol emissions with mainstream smoke.
Farsalinos et al., 2018 8	Independent, Switzerland		IQOS®, Cigarettes, E-Cigarettes: (i) Ciga-like (ii) eGo-style, Second Generation (pen-style tank) (iii) Variable wattage (tank model)	To compare nicotine levels in the emission of IQOS® mainstream aerosol from the regular and menthol tobacco plug with nicotine in various types of e-cigarette aerosols and mainstream cigarette smoke.
Study	Country	Study Design	Type	Objective
-------	---------	--------------	------	-----------
Bekki et al., 2017	Independent, Japan	IQOS® and Cigarettes	To compare nicotine and HPHC levels in the IQOS® emission from a regular and menthol tobacco plug with mainstream cigarette smoke.	
Schaller et al., 2016	PMI, Switzerland	THS 2.2/IQOS® and Cigarettes	To compare HPHC levels in IQOS® (mainstream) emissions with mainstream cigarette smoke.	
Schaller et al., 2016	PMI, Switzerland	THS 2.2/IQOS® and Cigarettes	To compare HPHC levels in IQOS® emission (mainstream) from regular and menthol tobacco plugs (HEETS) with mainstream cigarette smoke.	
HTP Studies on Mainstream Smoke				
Jaccard et al., 2017	PMI, Switzerland	Comparative laboratory study using a smoking machine	THS 2.2/IQOS® and Cigarettes	To compare HPHC levels in IQOS® (mainstream) emissions with mainstream cigarette smoke.
Pratte et al., 2017	PMI, Switzerland		THS 2.2/IQOS® and Cigarettes	To compare the number of solid particles in IQOS® emission (mainstream) with mainstream cigarette smoke.
Eaton et al., 2016	BAT, UK		THP 1.0/Glo® and Cigarettes	To compare HPHC levels of Glo® emission (mainstream) with mainstream cigarette smoke.
Forster et al., 2016	BAT, UK		THP 1.0/Glo® and Cigarettes	To compare HPHC levels of Glo® emission with IQOS emission and cigarette smoke.
Poynton et al., 2017	BAT, UK		iFuse® Pen-style e-cigarette	To compare HPHC levels of iFuse® emission (mainstream) with Vype ePen emission and cigarette smoke.
HTP Studies for clinical trials				
Kamada et al., 2016	Independent, Japan	Case report	IQOS®	To report cases of acute eosinophilic pneumonia after use.
Lopez et al., 2016	Independent, US	Randomised crossover experimental trial	Pax LLTV Cigarette eGo e-cigarette (pen-style tank)	To compare nicotine delivery, airborne CO concentration (expired), and suppression of symptoms due to cessation.
Brossard et al., 2017	PMI, Japan	Randomised crossover experimental trial	THS 2.2/IQOS®, Cigarettes and Nicotine gum	To compare nicotine delivery and effects on urge to smoke.
Haziza et al., 2016	PMI, Japan	RCT	THS 2.2/IQOS® and Cigarettes	To compare HPHC exposure over 5 days of use.
Haziza et al., 2016	PMI, Poland	RCT	THS 2.2/IQOS® and Cigarettes	To compare HPHC exposure over 5 days of use.
Lüdicke et al., 2017	PMI, Poland	RCT	THS 2.1 and Cigarettes	To compare HPHC exposure over 5 days of use.
Lüdicke et al., 2016	PMI, Poland	RCT	CHTP and Cigarettes	To compare HPHC exposure over 5 days of use.
Lüdicke et al., 2018	PMI, Japan	RCT	THS 2.2/IQOS® and Cigarettes	To compare HPHC exposure over 5 days of use in confinement and subsequent 85 days of use in outpatient setting.
Lüdicke et al., 2018	PMI, Japan	RCT	THS 2.2/IQOS® and Cigarettes	To compare the effects of biologically and clinically relevant risk markers over 90 days of use.
Picavet et al., 2016	PMI, UK	Randomised crossover experimental	THS 2.1 and Cigarettes	To compare nicotine delivery and effects on urge to smoke.
CO\(_2\), CO\(_2\), and NO\(_x\) gases are markers of combustion. By eliminating the combustion process, the levels of CO, CO\(_2\), and NO\(_x\) in HTP decreased significantly compared to conventional cigarette smoke\(^{12,13}\).

Table 3: Mean Levels ± SD (Standard Deviation) of Combustion Marker Gases in Conventional Cigarettes Compared to HTPs

Marker (per stick)	HTP	Conventional Cigarette
CO, mg	NQ	32
CO\(_2\), mg	2.35	85.1
NO\(_x\), \(\mu\)g	10.1	496
NO\(_x\), \(\mu\)g	12.0	553

Source: Eaton, 2018\(^{12}\)

The data in table 3 shows that in the use of heated tobacco products, no combustion occurs, only heating. It is shown by the low levels of combustion markers namely CO, CO\(_2\), and NO\(_x\) in HTPs. Low exposure to CO was also demonstrated by Caponneto et al. (2018) where the level of CO exhalation—as a biomarker of CO exposure in HTP users—was significantly lower compared to conventional cigarette consumers\(^{25}\).

Mitoya et al. (2016), in their study showed a difference in HPHC levels of office space, residential air exposed to HTPs and conventional cigarettes\(^{26}\). In general, spaces exposed to HTP aerosols showed lower levels of HPHC compared to those exposed to cigarette smoke, except for a few compounds such as nicotine and acetaldehyde, which were similar to conventional cigarettes. In addition, it was shown that H\(_2\)O\(_2\)—one of free radical compounds in the ROS (reactive oxygen species) group—is 5 times lower in HTP aerosols than conventional cigarettes\(^{27}\). These studies corroborated existing studies concluding that the level of chemical compounds of mainstream smoke of conventional cigarettes largely is 90% higher than heated tobacco products\(^{13,5,10,28,29}\).

Table 5 shows a decrease in the concentration of most of HPHCs in HTPs compared to conventional cigarettes\(^{13}\).

Table 4: Content of HPHC Compounds in HTP Aerosols and Conventional Cigarettes and Their Decrease

Parameter	Unit	Burnt Cigarette Mean ± SD	HTP Mean ± SD	Decrease (%)
TPM	mg/stick	46.9 ± 2.8	26.1 ± 1.1	44.3
Water	mg/stick	15.1 ± 1.4	12.1 ± 1.1	20.1
NFDPM	mg/stick	29.8 ± 1.4	13.6 ± 1.2	54.4
CO	mg/stick	32.0 ± 1.0	NQ (0.223)	99.8
CO\(_2\)	mg/stick	85.1 ± 4.0	2.05 ± 0.10	97.6
Ammonia	\(\mu\)g/stick	32.5 ± 3.5	4.01 ± 0.99	87.7
Hydrogen cyanide	\(\mu\)g/stick	343 ± 62	BDL (0.525)	99.9
Mercury	ng/stick	4.26 ± 0.50	1.28 ± 0.13	69.8
Cadmium	ng/stick	105.5 ± 5	BDL (0.162)	99.9
Black lead	ng/stick	28.7 ± 0.8	11.6 ± 8.7	59.5
Chromium	ng/stick	NQ (4.51)	4.34 ± 1.14	-22.7
Nickel	ng/stick	NQ (9.49)	NQ (0.878)	NC

Source: Eaton, 2018\(^{12}\)
Substance	Unit	Value	% RSD	% RSD	% Recovery
Arsenic	ng/stick	8.01 ± 0.56	NQ (0.576)	94.6	
Selenium	ng/stick	NQ (2.63)	NQ (0.731)	NC	
Copper	ng/stick	24.8 ± 2.1	NQ (2.19)	91.5	
Cobalt	ng/stick	BDL (0.893)	NQ (0.878)	NC	
Beryllium	ng/stick	BDL (0.936)	NQ (0.024)	NC	
Iron	ng/stick	38.1 ± 10.0	19.3 ± 5.4	49.3	
Zinc	ng/stick	273 ± 17	21.5 ± 15.7	92.1	
Lead	ng/stick	BDL (6.04)	NQ (0.876)	NC	
NO	µg/stick	495 ± 16	9.60 ± 0.79	98.1	
NOx	µg/stick	555 ± 19	12.9 ± 0.8	97.2	
Pyridine	µg/stick	28.6 ± 2.8	2.21 ± 0.29	92.3	
Quinoline	µg/stick	0.389 ± 0.028	NQ (0.011)	98.5	
Styrene	µg/stick	16.1 ± 2.0	NQ (0.039)	99.8	
Nitrobenzene	µg/stick	BDL (0.038)	BDL (0.011)	NC	
Benzo(b)furran	µg/stick	0.627 ± 0.067	NQ (0.016)	98.3	
Hydroquinone	µg/stick	84.2 ± 1.8	0.347 ± 0.035	99.6	
Resorcinol	µg/stick	1.57 ± 0.22	BDL (0.016)	99.5	
Catechol	µg/stick	87.4 ± 3.4	3.11 ± 0.49	96.4	
Phenol	µg/stick	13.5 ± 0.8	0.174 ± 0.022	98.7	
p-Cresol	µg/stick	8.72 ± 0.38	BDL (0.010)	99.9	
m-Cresol	µg/stick	3.48 ± 0.18	NQ (0.019)	99.6	
o-Cresol	µg/stick	3.94 ± 0.16	NQ (0.026)	99.6	
Propylene glycol	mg/stick	0.021 ± 0.005	0.390 ± 0.023	- 1724	
Ethylene glycol	mg/stick	0.035 ± 0.001	0.011 ± 0.00	69.3	
Diethillin glycol	mg/stick	BDL (0.004)	BDL (0.002)	NC	
Glycerol	mg/stick	NQ (0.006)	0.044 ± 0.003	- 883	
Naphthalene	ng/stick	2.35 ± 0.05	3.02 ± 0.26	-28.4	
Pyrene	ng/stick	994 ± 94	2.2 ± 0.42	99.8	
Benzo(a)anthracene	ng/stick	79.4 ± 7.5	8.97 ± 0.82	88.7	
Chrysene	ng/stick	24.2 ± 2.4	1.54 ± 0.11	93.7	
Benzo(a)pyrene	ng/stick	34.7 ± 3.2	2.61 ± 0.27	92.5	
Indeno(1,2,3-cd)pyrene	ng/stick	12.9 ± 1.3	NQ (0.354)	97.7	
Benzo(c)phenanthrene	ng/stick	4.19 ± 0.37	NQ (0.337)	97.2	
Cyclopentane(c,d)pyrene	ng/stick	8.32 ± 0.81	0.874 ± 0.171	89.5	
Benzo(j)fluoranthelin	ng/stick	7.82 ± 1.12	0.515 ± 0.036	93.4	
1,3 Butadiene	µg/stick	108 ± 4	BDL (0.029)	>99.9	
Isoprene	µg/stick	887 ± 49	NQ (0.135)	>99.9	
Acrylonitrile	µg/stick	19.5 ± 1.6	BDL (0.032)	99.9	
Benene	µg/stick	78.6 ± 4.6	NQ (0.056)	>99.9	
Toluene	µg/stick	131 ± 5	NQ (0.204)	99.9	
Ethylbenzene	µg/stick	13.4 ± 0.9	NQ (0.048)	99.8	
Ethylene oxide	µg/stick	19.3 ± 2.0	BDL (0.036)	99.9	
Substance	Unit	Quantity	Detection Limit	Recovery	
----------------------------	------------	---------------	-----------------	----------	
Vinyl chloride	ng/stick	95.6 ± 9.2	BDL (0.657)	99.7	
Propylene oxide	ng/stick	903 ± 308	BDL (15.6)	99.1	
Furan	µg/stick	61.9 ± 3.5	1.16 ± 0.01	98.1	
Vinyl acetate	ng/stick	617 ± 20	BDL (11.0)	99.1	
Nitromethane	ng/stick	690 ± 58	42.4 ± 1.5	93.9	
2-Nitropropane	ng/stick	58.7 ± 6.1	BDL (1.45)	98.8	
5-Methylchrysene	ng/stick	0.744 ± 0.205	BDL (0.028)	98.1	
Benz(b)fluoranthenone	ng/stick	12.3 ± 1.5	0.548 ± 0.091	95.5	
Benz(k) fluoranthene	ng/stick	3.70 ± 0.49	0.225 ± 0.046	93.1	
Dibenz(a,h)anthracene	ng/stick	0.915 ± 0.124	BDL (0.046)	95.8	
Dibenz(a)pyrene	ng/stick	BDL (0.423)	BDL (0.254)	NC	
Dibenz(a,e)pyrene	ng/stick	NQ (0.696)	BDL (0.125)	NC	
Dibenz(a,j)pyrene	ng/stick	1.66 ± 0.41	BDL (0.132)	96.0	
Dibenz(a,h)pyrene	ng/stick	BDL (0.236)	BDL (0.141)	NC	
1-Aminonaphthalene	ng/stick	17.6 ± 0.6	NQ (0.027)	99.8	
2-Aminonaphthalene	ng/stick	13.2 ± 0.8	NQ (0.012)	>99.8	
3-Aminonaphthalene	ng/stick	3.49 ± 0.27	NQ (0.004)	>99.9	
4-Aminobiphenyl	ng/stick	2.29 ± 0.12	NQ (0.005)	99.8	
2,6-Dimethylaniline	ng/stick	6.11 ± 0.65	0.040 ± 0.004	99.4	
Benzidine	ng/stick	BDL (0.010)	BDL (0.003)	NC	
o-Anisidine	ng/stick	4.18 ± 0.23	0.244 ± 0.031	94.2	
o-Toluidine	ng/stick	83.3 ± 2.1	0.371 ± 0.045	99.6	
N-Nitrosornicotine	ng/stick	263 ± 12	24.7 ± 2.5	90.6	
N-Nitrososanatabine	ng/stick	268 ± 20	37.7 ± 3.4	85.9	
N-Nitrososanabasine	ng/stick	24.1 ± 1.1	4.70 ± 0.39	80.4	
4-(m ethynitrosamin o)-1-(3- pyridyl)-1- butanone	ng/stick	281±16	6.61±0.86	97.7	
Acetamide	µg/stick	11.9 ± 1.0	1.34 ± 0.05	88.7	
Acrylamide	µg/stick	3.99 ± 0.39	1.04 ± 0.04	73.9	
Caffeine acid	µg/stick	BDL (1.19)	BDL (0.478)	NC	
Ethyl carbamate	ng/stick	BDL (6.43)	BDL (1.93)	NC	
IQ	ng/stick	7.75 ± 1.07	BDL (0.164)	98.9	
Glu-P-2	ng/stick	BDL (0.301)	BDL (0.120)	NC	
Glu-P-1	ng/stick	BDL (0.239)	BDL (0.095)	NC	
PhIP	ng/stick	BDL (0.365)	BDL (0.1460)	NC	
Trp-P-2	ng/stick	6.46 ± 1.0	BDL (0.113)	99.1	
AaC	ng/stick	176 ± 16	NQ (0.443)	99.9	
Trp-P-1	ng/stick	4.29 ± 0.52	BDL (0.098)	98.9	
MeAaC	ng/stick	15.3 ± 2.1	BDL (0.115)	99.6	
Hydrazine	ng/stick	NQ (12.2)	BDL (2.04)	NC	
NDMA	ng/stick	14.2 ± 1.3	BDL (0.178)	NC	
NEMA	ng/stick	BDL (0.509)	BDL (0.254)	NC	
NDEA	ng/stick	BDL (0.617)	BDL (0.308)	NC	
NDiPA	ng/stick	BDL (0.540)	BDL (0.273)	NC	
As shown in table 4, all parameters in HTP have lower levels than conventional cigarettes, albeit with varying degrees. A small decrease is observed in TPM, water and tar (NFDPM). Meanwhile, other parameters are 70-99% lower for HTP.

A number of studies examining 9 TobReg priority constituents in conventional cigarettes and HTP showed that HPHC levels of HTP were largely lower than conventional cigarettes13,30,12. The decreases are shown in table 5.

Table 5: Content of 9 HPHCs Recommended in Mainstream Aerosols per Stick

Parameter	Unit	Cigarette	THP	% reduction
1,3-Butadiene	µg	108	BDL (0.029)	>99.9
Acetaldehyde	µg	2200	111	95.0
Acrolein	µg	157	2.22	98.6
Benzene	µg	78.6	NQ (0.056)	>99.9
Benzo[a]pyrene	Ng	12.9	NQ (0.354)	97.7
CO	Mg	32	NQ (0.233)	99.8
Formaldehyde	µg	54.1	3.29	93.9
NNK	Ng	281	6.61	97.7
NNN	Ng	263	24.7	90.6

Source: Foster et al., 201813
As shown in Table 5, all 9 HPHC compounds recommended for reduction (TobReg priority constituents) were shown to have 90% lower levels in HTP. The study by Poynton et al., 2017 on the 9 HPHC compounds and other toxic compounds also showed similar results, as presented in Table 6.

Table 6: Levels of Several Compounds in HTP Aerosols Compared to Conventional Cigarettes (3R4F)

Toxicant	HTP Mean	HTP Standard deviation	Conventional Cigarettes (3R4F) Mean	Conventional Cigarettes (3R4F) Standard deviation
Carbonyl compounds:				
Formaldehyde, µg	11.5	3.5	94.9	6.2
Acetaldehyde, µg	8.22	1.44	1732	43
Acetone, µg	7.09	2.48	726	16
Acrolein, µg	NQ	NQ	172	3
Methyl-ethyl-ketone, µg	NQ	NQ	202	7
Metal:				
Copper, ng	88.2	33.6	24.7	3.1
Zinc, ng	877	181	257	37
Iron, ng	260	48	34.5	13.9
Semi-volatile:				
Styrene, µg	0.50	0.34	17.4	1.7
PAH:				
Naphthalene, ng	8.54	2.21	1005	125
Chrysene, ng	1.86	0.82	36.8	3.6
TSNA:				
NNN, ng	NQ	NQ	265	22
Gases and volatile:				
CO, mg	4.74	0.00	29.6	1.5
Toluene, µg	NQ	NQ	116	9
Aromatic amine:				
2-amminaphtalene, ng	0.4	0.19	12.5	0.5
3-aminobiphenyl, ng	0.07	0.04	2.91	0.76
4-aminothiophenol	0.06	0.04	2.14	0.50
o-toluidine	1.52	0.80	115	5
Volatile nitrosamine:				
NDMA, ng	15.7	2.7	6.95	1.4
NDEA, ng	13.4	4.6	BDL	BDL
NPYR, ng	15.1	1.3	BDL	BDL
NDELA, ng	7.67	1.82	4.79	3.19
Nicotine and nicotine impurity:				
Nicotine, mg	2.56	1.33	1.84	0.08
Myosmine, ng	5116	948	9809	701
Cotinin, ng	4824	916	50861	1912
β-nicotyrine, ng	926	410	9790	149

Source: Poynton et al., 2017

4. CONCLUSION

The results showed that all 9 HPHCs (nine TobReg priority constituent) were shown to be lower in HTP compared to conventional cigarettes.

ACKNOWLEDGEMENTS

Researchers would like to declare our gratefulness to the KABAR team, all the authors of the article that we cite.

REFERENCES

1. WHO, “Who Study Group on Tobacco Product Regulation,” 2019.
2. Rodgman A., and Perfetti T. A., The Chemical Components of Tobacco and Tobacco Smoke, 2nd ed. Boca Raton, USA: CRC Press, 2013.
3. IARC, "IARC Monograph on the Evaluation of Carcinogenic Risk to Human,” 2004.
4. Thorne D., Breheny D., Proctor C., and Gaca M., "Assessment of novel tobacco heating product THP1.0. Part 7: Comparative in vitro toxicological evaluation,” Regul. Toxicol Pharmacol., 2018; 93: 71-83. https://doi.org/10.1016/j.yrtph.2018.07.017
5. Schaller J.-P., Pijnenburg J. P. M., Ajithkumar A., and Tricker A. R., “Evaluation of the Tobacco Heating System 2.2: Part 3: Influence of the tobacco blend on the formation of harmful and potentially harmful constituent of the Tobacco Heating System 2.2 aerosol,” Regul. Toxicol. Pharmacol., 2016; 81(Supplement 2): S48-S58. https://doi.org/10.1016/j.yrtph.2016.10.016
6. Simonavicius E., McNeill A., Shahab L., and Brose L. S., “Heat-Not-Burn Tobacco Products: a Systematic Literature Review,” Tob. Control, 2018; 28(5): 582-594. https://doi.org/10.1136/tobaccocontrol-2018-054419
7. Auer R., Concha-Lozano N., Jacot-Sadowski L., Cornuz J., and Berthet A., "Heat-Not-Burn Tobacco Cigarettes: Smoke by Any Other Name," JAMA Intern. Med., 2017; 177(7): 1050-1052. https://doi.org/10.1001/jamainternmed.2017.1419

8. Farsalinos K. E., Yannovits N., Sarri T., Voudris V., and Poulos K., "Nicotine Delivery to the Aerosol of a Heat-Not-Burn Tobacco Product: Comparison with a Tobacco Cigarette and E-Cigarettes," Nicotine Tob. Res., 2018; 20(8): 1004-1009. https://doi.org/10.1093/ntr/nxt138

9. Bekki K., Inaba Y., Uchiyama S., and Kunugita N., "Comparison of Chemicals in Mainstream Smoke in Heat-Not-Burn Tobacco and Combustion Cigarettes," J. UOEH, 2017; 39(3): 201-207. https://doi.org/10.7888/jueoh.39.201

10. Jaccard J., "Investigation of Solid Particles in the Mainstream Aerosol of the Tobacco Heating System 2.2 and Mainstream Smoke of a 3RF Reference Cigarette," Hum. Exp. Toxicol., 2017; 36(11): 1115-1120. https://doi.org/10.1177/0960327116681653

11. Pratte P., Cosandy S., and Goujon Hidayat, "Comparison of Chemicals in Mainstream Smoke in Heat-Not-Burn Tobacco and Combustion Cigarettes," J. UOEH, 2017; 39(3): 201-207. https://doi.org/10.7888/jueoh.39.201

12. Eaton D., et al., "Assessment of Novel Tobacco Heating Products THP1.0 Part 2: Product Design, Operation and Thermostermal Characterization," Regul. Toxicol. Pharmacol., 2018; 93: 4-13. https://doi.org/10.1016/j.yrtph.2017.09.009

13. Foster M., et al., "Assessment of Novel Tobacco Heating Products THP1.0 Part 3: Comprehensive Chemical Characterisation of Harmful and Potentially Harmful Aerosol Emission, Regulatory Toxicology and Pharmacology," Regul. Toxicol. Pharmacol., 2018; 93: 14-33. https://doi.org/10.1016/j.yrtph.2017.10.006

14. Poynton S., et al., "A Novel Hybrid Tobacco Product that Deliver a Tobacco Flavor Note with Vapour Aerosol (Part 1): Product Operation and Preliminary Aerosol Chemistry Assessment," Food Chem. Toxicol., 2017; 106: 522-532. https://doi.org/10.1016/j(ftc.2017.05.022

15. Kamada T., Yamashita Y., and Tomioka H., "Acute Eosinophilic Pneumonia Following Heat-Not-Burn Cigarette Smoking," Respirol Case Rep., 2016; 4(6): 1-3. https://doi.org/10.1002/rcr.2190

16. Lopez A.A., Eissenberg T., Jaafar M., and Affifi R., "Now is the Time to Advocate for Interventions Designed Specifically to Prevent and Control Waterpipe Tobacco Smoking," Addict. Behav., 2017; 66: 41-47. https://doi.org/10.1016/j.addbeh.2016.11.008

17. Brossard P., et al., "Nicotine Pharmacokinetic Profiles of the Tobacco Heating System 2.2, Cigarettes and Nicotine Gum in Japanese Smokers," Regul. Toxicol. Pharmacol., 2017; 89: 193-199. https://doi.org/10.1016/j.yrtph.2017.07.032

18. Haziza C., et al., "Assessment of the Reduction in Levels of Exposure to Harmful and Potentially Harmful Constituents in Japanese Subject using a Novel Tobacco Heating System Compared with Conventional Cigarettes and Smoking Abstinence: a Randomized Controlled Study in Conf," Regul. Toxicol. Pharmacol., 2016; 81: 489-499. https://doi.org/10.1016/j.yrtph.2016.09.014

19. Lüdicke F., Baker G., Magnette J., Picavet P., and Weitkunat R., "Reduced Exposure to Harmful and Potentially Harmful Smoke Constituents With the Tobacco Heating System 2.1," Nicotine Tob. Res., 2017; 19(2): 168-175. https://doi.org/10.1093/ntr/ntw164

20. Lüdicke F., Haziza C., Weitkunat R., and Magnette J., "Evaluation of Biomarkers of Exposure in Smokers Switching to a Carbon-Heated Tobacco Product: A Controlled, Randomized, Open-Label 5-Day Exposure Study," Nicotine Tob. Res., 2016; 18(7): 1606-1613. https://doi.org/10.1093/ntr/ntw022

21. Lüdicke F., et al., "Effects of Switching to the Tobacco Heating System 2.2 Menthol, Smoking Abstinence, or Continued Cigarette Smoking on Biomarkers of Exposure: A Randomized, Controlled, Open-Label Multicenter Study in Sequential Confinement and Ambulatory Settings (Part 1)," Nicotine Tob. Res., 2018; 20(2): 161-172. https://doi.org/10.1093/ntr/nhx287

22. Picavet P., Haziza C., Lama N., and Weitkunat R., "Comparison of the Pharmacokinetics of Nicotine Following Single and Ad Libitum Use of a Tobacco Heating System or Combustible Cigarettes," Nicotine Tob. Res., 2015; 18(5): 1-25. https://doi.org/10.1093/ntr/nrt220

23. Gee J., et al., "Assessment of Tobacco Heating Product THP1.0. Part 18: Study to Determine Puffing Topography, Mouth Level Exposure and Consumption among Japanese Users," Regul. Toxicol. Pharmacol., 2018; 93: 84-91. https://doi.org/10.1016/j.yrtph.2017.08.005

24. Yuki D., Sakaguchi C., Kikuchi A., and Fatamura Y., "Pharmacokinetics of Nicotine Following the Controlled Use of a Prototype Novel Tobacco Vapor Product," Regul. Toxicol. Pharmacol., 2017; 87: 30-35. https://doi.org/10.1016/j.yrtph.2017.05.005

25. Caponetto P., Maglia M., Prosperini G., Busa B., and Polosa R., "Carbon Monoxide Levels after Inhalation from New Generation Heated Tobacco Products," Respir. Res., 2018; 19(164): 1-4. https://doi.org/10.1186/s12931-018-0867-2

26. Mitova M. I., et al., "Comparison of the Impact of the Tobacco Heating System 2.2 and a Cigarette on Indoor Air Quality," Regul. Toxicol. Pharmacol., 2016; 80: 91-101. https://doi.org/10.1016/j.yrtph.2016.06.005

27. Salman R., et al., "Free-Base and Total Nicotine, Reactive Oxygen Species, and Carbonyl Emissions From IQOS, a Heated Tobacco Product," Nicotine Tob. Res., 2019; 21(9): 1285-1288. https://doi.org/10.1093/ntr/nty235

28. Zenze V., Diekmann J., Gerstingberg B., Weber S., Wiltke S., and Schorp M. K., "Reduced Exposure Evaluation of an Electrically Heated Cigarettes. Part 2: Smoke Chemistry and in Vitro Toxicological Evaluation using Smoking Regimens Reflecting Human Puffing Behavior," Regul. Toxicol. Pharmacol., 2012; 64(2): S1-534. https://doi.org/10.1016/j.yrtph.2012.08.004

29. Haziza C., et al., "Reduction in Exposure to Selected Harmful and Potentially Harmful Constituents Approaching those Observed Upon Smoking Abstinence in Smokers Switching to the Menthol Tobacco Heating System 2.2 for 3 Months (Part 1)," Nicotine Tob. Res., 2020; 17(22): 539-548. https://doi.org/10.1093/ntr/ntz013

30. Burns D.M., et al., "Mandated Lowering of Toxicants in Cigarette Smoke: A Description of the World Health Organization TobReg Proposal," Tob. Control, 2008; 17: 132-141. https://doi.org/10.1136/tc.2007.024158