First evidence of Alfvén wave activity in KSTAR plasmas

M J Hole¹, C M Ryu², M H Woo³, J G Bak³, S E Sharapov⁴, M Fitzgerald¹
and the KSTAR Team³

¹ Research School of Physical Sciences and Engineering, Australian National University, Acton 0200, ACT Australia
² POSTECH, Pohang, Korea
³ National Fusion Research Institute, Daejeon, Korea
⁴ EURATOM/CCFE Fusion Assoc., Culham Science Centre, Abingdon, Oxon OX14 3DB, UK

Received 18 June 2012, in final form 30 January 2013
Published 22 February 2013
Online at stacks.iop.org/PPCF/55/045004

Abstract
We report on first evidence of wave activity during neutral beam heating in KSTAR plasmas: 40 kHz magnetic fluctuations with a toroidal mode number of \(n = 1 \). Our analysis suggests this a beta-induced Alfvén eigenmode (BAE) resonant with the \(q = 1 \) surface. A kinetic analysis, when coupled with electron temperature measurements from electron cyclotron emission and ion/electron temperature ratios from crystallography, enables calculation of the frequency evolution, which is in agreement with observations. Complementary detailed magnetohydrodynamic (MHD) modelling of the magnetic configuration and wave modes supports the BAE conclusion, by locating an \(n = 1 \) mode separated from the continuum in the core region. Finally, we have computed the threshold to marginal stability for a range of ion temperature profiles. These suggest the BAE can be driven unstable by energetic ions when the ion temperature radial gradient is sufficiently large. Our findings suggest that mode existence could be used as a form of inference for temperature profile consistency in the radial interval of the mode, thereby extending the tools of MHD spectroscopy.

(Some figures may appear in colour only in the online journal)

1. Introduction

Instabilities such as Alfvén eigenmodes, driven by fast particles, are of programmatic concern as they can expel energetic ions from the plasma, thereby preventing heating by thermalization [1]. In addition, such energetic particles expelled can damage the first wall, and a fusion reactor can only tolerate fast particle losses of a few per cent [2]. Another motivation for the study of Alfvén eigenmodes is their potential use as a diagnostic for the plasma, particularly through the tool of magnetohydrodynamic (MHD) spectroscopy [3].

One such class of fast particle-driven instabilities that can occur at relatively low frequency are beta-induced Alfvén eigenmodes (BAEs). The characteristic experimental features of this instability are magnetic fluctuations at a frequency intermediate between the fishbone and the toroidal Alfvén eigenmode (TAE), with angular frequency \(\omega_{TAE} = v_A/(2qR) \), with \(v_A \) the Alfvén speed, \(q \) the safety factor and \(R \) the major radius [4]. These modes were first identified in DIII-D [5], and have since been discovered in other tokamaks in beam [6], ion cyclotron heated [7] and Ohmically heated discharges in the presence of a magnetic island [8–12]. More advanced kinetic treatments, which include corrections to kinetic theory for diamagnetic and shaping effects, as well as the inclusion of trapped particles have been used to study BAEs in ASDEX [13]. Radial profile information was measured during sawteeth in Tore Supra [14]. Recently, BAEs driven by electron populations have been observed in the tokamak HL-2A [15], and it is possible that energetic electrons are responsible for driving Alfvénic magnetic oscillations in the H-1 heliac [16].

The aim of this paper is to report on first evidence of Alfvénic wave activity during neutral beam heating in KSTAR plasmas. In 2010 and 2011 campaigns KSTAR plasmas included 1.2 MW of neutral beam heating, which provided a source of heating to excite Alfvénic wave activity modes. Data from the 2010 campaign, which was fully analysed during 2011, show 40–60 kHz magnetic fluctuations. We present the first ideal MHD calculation of a core localized
mode with toroidal mode number $n = 1$ for an experimental configuration. The mode is global with very small resonance with continuum modes. Second, this work is the first observation of Alfvénic wave activity in KSTAR. With up to 14 MW of neutral beam heating and 14 MW of RF heating planned, KSTAR plasmas will become a pilot for ITER plasmas, and provide the opportunity to explore the wave–particle–plasma interaction in regimes approaching burning plasmas. Our work builds on preliminary observations of electron fishbones in KSTAR in 2009 [17], and aliasing TAE activity in 2011 [18]. Finally, as a spin-off, we have developed a new form of MHD spectroscopy for consistency of the temperature profile with the observation of wave activity. The rest of the work is as follows: in section 2 we introduce the experiments conducted in KSTAR, and in section 3 present detailed modelling. Section 4 contains concluding remarks and discusses implications for future work.

2. Experiments

In 2010 a set of neutral beam injection (NBI) excitation experiments were conducted in KSTAR in an attempt to generate shear Alfvénic wave activity. Subject to operator controls, the choice of plasma conditions were optimized for this purpose: a relatively low toroidal magnetic field of 1.95 T, and maximum available NBI heating: 1.2 MW of 80 keV NBI. For deuterium plasmas, 80 keV NBI would produce fast D neutrals with speed $v_{\parallel,\text{beam}} = 2.8 \times 10^6$ m s$^{-1}$. With plasma densities of up to 5×10^{19} m$^{-3}$ expected, the minimum Alfvén speed is $v_A = 4.4 \times 10^6$ m s$^{-1}$. While the beam speed is sub-Alfvénic, it is greater than the first sideband resonance at $v_A/3$, and so it is possible that TAEs may be excited, as was found during early operation of MAST [19]. Alfvénic waves have also been observed in JET in reverse shear configurations with $v_{\parallel,\text{beam}}/v_A$ as low as 0.2 [20].

Four NBI heated discharges (4218–4220) were produced, with flat top plasma current I_p in the range 210 < $I_p < 407$ kA, electron cyclotron resonance heating (ECRH) power up to 200 kW, and core-plasma density up to 3×10^{19} m$^{-3}$. There was no discernible impact of ECRH heating on these plasmas. Figure 1 shows the temporal evolution of one such discharge, #4220. For this 4.5 s plasma, 2 s of NBI was applied from 2 s during flat-top operation.

Figure 2 shows magnetic oscillations of discharge #4220. The mode activity correlated with NBI heating, and a study of electron cyclotron emission data reveals that the plasma was sawtoothing throughout the heating phase. A study of signal phase versus geometric angle, computed from a toroidal Mirnov array provides weak evidence that the mode has $n = 1$. Unfortunately, the coils are located flush with the conducting wall, and so the signal-to-noise ratio is large, and there is significant $n = 0$ noise present. Information about the poloidal mode number is not available. Similar oscillations were observed in discharges #4218, #4219 and #4221.

A simple scoping exercise reveals that the mode activity is unlikely to correspond to a TAE. The middle of the TAE gap lies at $\omega_{\text{TAE}} = v_A/(2qR)$. Using $n_i \approx n_e(0)$, taking R as the magnetic axis, and using $q = q_{mn} = (2m + 1)/(2n)$ for $m = 1, 2, 3$ gives 160 kHz, 100 kHz and 70 kHz, respectively. Mode activity with frequency of order 150 kHz and $m = n = 1$ was observed in the 2011 campaign. The observed mode reported here has a frequency of 40 kHz, which would be commensurate with a resonance of $q = 5$. This is the edge q of these elongated plasmas, and so the TAE frequency will be significantly greater than 40 kHz due to the lower edge density. Following Gorelenkov et al [21] we have also computed the thermal ion transit frequency $\omega_{\text{ti}} = \sqrt{2k_B T_i/m_i}/(q R_0)$, which is the upper beta-acoustic Alfvén Eigenmode (BAAE) gap frequency. For KSTAR plasmas, the on-axis frequency ranges from 29 kHz, using the central ion temperature inferred from #4229 down to 17 kHz. These are below the observed wave frequency, at 40–60 kHz.

In contrast, the frequency as well as its time evolution is a closer match to the evolution of the kinetic accumulation frequency $\omega_{\text{KAE}} = 1/R_0 \sqrt{2 q T_i/m_i (1/2 + T_e/T_i)}$, with R_0 the major radius, m_i the ion mass, and T_i and T_e the ion and electron temperatures, respectively [22]. Electron cyclotron emission (ECE) data gives the on-axis value of electron temperature T_e.

Figure 1. Evolution of #4220 showing (a) plasma current I_p, (b) auxiliary heating (P_{NBI} in blue, P_{ECRH} in red) and (c) line-averaged electron density n_e.

Figure 2. Magnetic spectrogram of #4220 with ω_{CAP} (red) and BAE (black) overlaid (red).
Figure 3. Equilibrium for #4220 at 2 s. (a) shows contours of poloidal flux with the plasma vessel cross section overlaid, and (b) is a major radius profile of poloidal flux ψ. Panels (c)–(f) show q, p, $p' (\psi)$ and I_\parallel as a function of s, the square root of normalized poloidal flux.

$T_e = 1.2$ keV. While not available for discharge #4220, x-ray imaging crystal spectrometer [23] data providing T_e, T_i is available for nearby discharge #4229 with the same level of NBI heating. This pulse also shows evidence of toroidal rotation, with core rotation up to 100 km s$^{-1}$, producing a core Doppler shift of up to 8 kHz. Rotation of either a near stationary core or magnetic island is thus insufficient to describe the observations.

Correcting for the offset in neutral beam heating interval for this discharge, we have computed ω_{CAP} and over plotted the evolution in figure 2. The frequency match is close, as is the slight frequency drop following beam turn-on at 2 s. The drop in frequency occurs due to the initial drop in T_e observed in the core ECE channel. Similar BAE frequency scaling is evident for discharges #4218 and #4219.

3. Detailed modelling

We have undertaken detailed modelling of the plasma at the onset of mode activity at 2 s. By analysing data from a set of 20 ECE chords we have been able to identify the inversion radius and locate the $q = 1$ surface. To correct the $q = 1$ surface of magnetics-only constrained EFIT to match ECE data we have used CHEASE [24] to remap the current profile as $I^*(s) \rightarrow I^*(s) + c I_{\text{core}}(s)$ and pressure profile with $p'(s) \rightarrow \lambda p'(s)$ so as to match the sawtooth inversion radius and EFIT β_p, respectively. Here, s is the square root of normalized poloidal flux, with $s = 0$ the core and $s = 1$ the edge. The core current profile selected is a ramp, $I_{\text{core}}(s) = 1 - s$. Figure 3 shows a cross section of the corrected equilibrium flux surfaces and q profile.

Figure 4 shows the Alfvén and ion sound continuum for $n = 1$, computed using the code CSCAS [25] with adiabatic index $\gamma = 5/3$. In figure 4(a) the toroidicity- and ellipticity-induced gaps can be identified. Using the most recent version of the ideal MHD global stability code MISHKA [26] we have computed TAE gap modes. The TAE gap mode produced by the $q_{\text{inv}} = (2m + 1)/2n = 1.5$ resonance at $s = 0.45$ has a frequency of 120 kHz, well above the measured 40 kHz oscillation. In figure 4(b) we have zoomed into the low-frequency part of the continuum and identified different continuum branches. As shown by Gorelenkov et al [21], the frequency of the ion sound and modified shear Alfvén continuum modes drops to zero at rational surfaces. The accumulation point of the low-frequency gap introduced in the shear-Alfvén continuous spectrum because of finite beta is $\omega_{\alpha_\text{gap}}/\omega_\alpha = (\gamma \beta e)^{0.5}$, with ω_α the Alfvén angular frequency at the magnetic axis. To identify a global mode separated from the MHD continuum, we have selected an s interval of $0 < s < 0.3$, thereby avoiding the resonance with the $m = 3$ ion sound branch. The discrete mode identified in figure 4(b) is separated from the continuum above and below, and so forms a gap mode between singular modes. In the limit that the s interval is expanded to the full domain, the eigenfunction retains its global structure. The mode frequency is $\omega/\omega_\alpha = -0.1371$. A single-channel millimetre-wave interferometer system provides a measurement of the time-resolved line-integrated electron density, n_e [27]. Assuming a parabolic profile for the density for the density provides a measure of on-axis density. If $n_i \approx 0.8n_e$ is also assumed [28], the Alfvén angular frequency can be computed, yielding $\omega / (2\pi) \approx 50$ kHz at 2 s.

We have overplotted the frequency evolution of this estimate in figure 2.

The mode, which is resonant with the core of the plasma, has similar global mode structure to modes computed in DIII-D by Turnbull et al [29]. In contrast, the BAE modelled by Huysmans et al [30] is in the region of greater shear, and possesses more poloidal harmonics. Figure 5 shows the V_I eigenvector, which is the ρ component of the contravariant fluid displacement velocity, for (a) a discrete mode, and (b) a nearby continuum mode. A continuum mode is one that is localized to a resonant surface with poloidal flux ψ, and a solution of the shear Alfvén dispersion relation $\omega(\psi) = k_\parallel (\psi) V_{\text{UA}}(\psi)$, with $k_\parallel = k \cdot B / B$ [25]. The BAE in figure 5(a) has a global mode structure with negligible resonant coupling with continuum modes, whereas the continuum mode in figure 5(b) has resonances at crossings of the continuum at $s = 0.57$, $s = 0.66$ for $m = 2$ and $s = 0.77$, $s = 0.84$ for $m = 3$. In contrast to earlier work [29, 30], the global mode of figure 5(a) has significantly reduced coupling to resonances with the continuum, and therefore will exhibit weaker continuum damping.

Ideal MHD codes such as MISHKA solve for the wave structure in full toroidal geometry, but provide no information about mode drive. The particle–wave resonance condition [31] is

$$\omega = 0,$$

where l is a Fourier mode number in poloidal angle θ of the particle magnetic drift velocity. The mode peaks at $s = 0.16$, for which $q = 0.89$. At this radial location the $l = 0$ resonance condition requires the unphysical condition $V_{\parallel}/V_{\parallel,\text{beam}} = 1.3$, while for $|l| \geq 1$ the resonance condition can be satisfied for
finite thermal ion temperature gradient [22]. In the limit of vanishing continuum damping, an estimate of the threshold to marginal stability can be made using the kinetic treatment of Zonca et al [22], which studied the drive due to thermal ion temperature radial gradients, and studied the relationship between kinetic ballooning modes (KBMs) and BAEs. In that treatment it was shown the stability conclusions were a function of the frequency range of \(\omega_{\text{CAP}} \) relative to the core-plasma ion diamagnetic frequency \(\omega_{\text{pi}} = (k_B T_i/e B)(k \times b) \cdot \nabla \ln P_i \). Here, \(k_B \) is Boltzmann’s constant, \(k = m/e B/R \) the wave vector, \(b = B/|B| \), and \(P_i \) the thermal ion pressure. If \(\omega_{\text{pi}}^2 \ll \omega_{\text{CAP}}^2 \), the BKM accumulation point was always stable, and the BAE may become unstable for values of \(\eta_i = (\partial \ln T_i/\partial \ln n_i) \) greater than a critical value \(\eta_{ic} \), given by

\[
\eta_{ic} \approx \frac{2}{\sqrt{7 + 4\pi}} \frac{\omega_{\text{pi}}}{\omega_{\text{cap}}},
\]

with \(\omega_{\text{cap}} = (k_B T_i/e B)(k \times b) \cdot \nabla n_i/n_i \) the ion diamagnetic drift frequency. If \(\omega_{\text{cap}} \) is increased further, the unstable BAE accumulation point is expected to smoothly connect to an unstable KBM accumulation point with exponentially small growth rate when \(\omega_{\text{cap}}^2 \gg \omega_{\text{CAP}}^2 \). The most unstable BAE/KBM accumulation point occurs when \(\omega_{\text{pi}}^2 \approx \omega_{\text{CAP}}^2 \), when the BAE and KBM are strongly coupled. For the plasma conditions of KSTAR, we compute \(\omega_{\text{CAP}}/(2\pi) \approx 4 \text{ kHz} \), and so \(\omega_{\text{pi}}^2 \ll \omega_{\text{CAP}}^2 \), and thus plasmas with \(\eta_i > \eta_{ic} \) given by equation (2) are unstable. In this frequency regime \(\delta E_{\|} \approx 0 \), consistent with ideal MHD. Indeed, we compute \(\omega_{\text{CAP}}/(2\pi) \approx 60 \text{ kHz} \) at the minimum of the \(m = 1 \) continuum at \(s = 0.24 \). This frequency, and the computed BAE gap mode frequency of 50 kHz at 2 s, is close to the kinetic accumulation frequency \(\omega_{\text{CAP}} \).

By expanding \(\eta_i = (\partial \ln T_i/\partial \ln n_i) = (\partial \ln T_i/\partial \ln n_i) + \frac{\partial \ln n_i}{\partial \ln n_i} \), as well as \((k \times b) \cdot \nabla n_i/n_i = (k \times b) \cdot \frac{\partial \ln n_i}{\partial \ln n_i} \), the ratio \(\eta_i/\eta_{ic} \) expands as

\[
\eta_i/\eta_{ic} \approx \frac{\partial \ln T_i}{\partial r} \frac{k_B T_i/e B}(k \times B)_r \frac{1}{\sqrt{|k|^2 + 4\pi}} \frac{1}{\omega_{\text{cap}}/q}.
\]

Equation (3) is independent of the ion density profile, and so can be computed for different radial temperature profiles.

X-ray crystallography of nearby discharge #4229 measures \(T_i(0)/T_i(s) = 0.75 \) during NBI heating, and we have used this value for #4222. Together with ECE \(T_e \) data for #4220, this fixes \(T_i \) on-axis. To account for the unknown core localization of the ion temperature profile, we have expressed the temperature profile as the sum of profiles \(T_i(s) \) and \(T_i(s) \),

\[
\frac{\omega_{\text{pi}}}{\omega_{\text{CAP}}} < \frac{\omega_{\text{cap}}}{\omega_{\text{CAP}}}.
\]

Thus, the mode can be driven by the fundamental resonance at \(|l| = 1 \) [22], as well as by sidebands, \(|l| > 1 \). The mode resonance is broad due to the finite radial region of varying \(q \) covered by the mode width.

Meanwhile, the mode excitation threshold by energetic ions is reduced by inverse ion Landau damping connected with finite thermal ion temperature gradient [22]. In the limit of vanishing continuum damping, an estimate of the threshold to marginal stability can be made using the kinetic treatment of Zonca et al [22], which studied the drive due to thermal ion temperature radial gradients, and studied the relationship between kinetic ballooning modes (KBMs) and BAEs. In that treatment it was shown the stability conclusions were a function of the frequency range of \(\omega_{\text{CAP}} \) relative to the core-plasma ion diamagnetic frequency \(\omega_{\text{pi}} = (k_B T_i/e B)(k \times b) \cdot \nabla \ln P_i \). Here, \(k_B \) is Boltzmann’s constant, \(k = m/e B/R \) the wave vector, \(b = B/|B| \), and \(P_i \) the thermal ion pressure. If \(\omega_{\text{pi}}^2 \ll \omega_{\text{CAP}}^2 \), the BKM accumulation point was always stable, and the BAE may become unstable for values of \(\eta_i = (\partial \ln T_i/\partial \ln n_i) \) greater than a critical value \(\eta_{ic} \), given by

\[
\eta_{ic} \approx \frac{2}{\sqrt{7 + 4\pi}} \frac{\omega_{\text{pi}}}{\omega_{\text{cap}}},
\]

with \(\omega_{\text{cap}} = (k_B T_i/e B)(k \times b) \cdot \nabla n_i/n_i \) the ion diamagnetic drift frequency. If \(\omega_{\text{cap}} \) is increased further, the unstable BAE accumulation point is expected to smoothly connect to an unstable KBM accumulation point with exponentially small growth rate when \(\omega_{\text{cap}}^2 \gg \omega_{\text{CAP}}^2 \). The most unstable BAE/KBM accumulation point occurs when \(\omega_{\text{pi}}^2 \approx \omega_{\text{CAP}}^2 \), when the BAE and KBM are strongly coupled. For the plasma conditions of KSTAR, we compute \(\omega_{\text{CAP}}/(2\pi) \approx 4 \text{ kHz} \), and so \(\omega_{\text{pi}}^2 \ll \omega_{\text{CAP}}^2 \), and thus plasmas with \(\eta_i > \eta_{ic} \) given by equation (2) are unstable. In this frequency regime \(\delta E_{\|} \approx 0 \), consistent with ideal MHD. Indeed, we compute \(\omega_{\text{CAP}}/(2\pi) \approx 60 \text{ kHz} \) at the minimum of the \(m = 1 \) continuum at \(s = 0.24 \). This frequency, and the computed BAE gap mode frequency of 50 kHz at 2 s, is close to the kinetic accumulation frequency \(\omega_{\text{CAP}} \).

By expanding \(\eta_i = (\partial \ln T_i/\partial \ln n_i) = (\partial \ln T_i/\partial \ln n_i) + \frac{\partial \ln n_i}{\partial \ln n_i} \), as well as \((k \times b) \cdot \nabla n_i/n_i = (k \times b) \cdot \frac{\partial \ln n_i}{\partial \ln n_i} \), the ratio \(\eta_i/\eta_{ic} \) expands as

\[
\eta_i/\eta_{ic} \approx \frac{\partial \ln T_i}{\partial r} \frac{k_B T_i/e B}(k \times B)_r \frac{1}{\sqrt{|k|^2 + 4\pi}} \frac{1}{\omega_{\text{cap}}/q}.
\]
Figure 6. Variation of η_i/η_c threshold with different ion temperature profiles. (a) shows possible ion temperature profiles (solid) with core temperature matching crystallography data from discharge #4229, and (b) shows the corresponding profile of η_i/η_c. In both panels the dashed line corresponds to a possible Ohmic ion temperature profile, with τ taken from discharge #4229 prior to NBI heating. In (b) the light line is $|V_i|$ of the BAE in figure 5(a).

with $T_i(s) = T_e(s) + T_b(s)$, and $r \approx a$, with a the minor radius. The profile $T_a(s)$ is an approximation to the Ohmic temperature profile. A constraint for $T_a(0)$ is provided by crystallography during the pre-NBI heating phase of #4229: that is $T_a(0) = 0.25T_e(0)$. As a plausible estimate for the Ohmic ion temperature profile we have assumed $n(s) \propto T_a(s)$, and inferred $T_a(s)$ from the equilibrium pressure profile. Finally, we have modelled the core temperature profile as $T_b(s) = (T_i(0) - T_a(0))(1 - \tanh(\alpha s)) \tanh(10(1 - s))$, (4) with α varied to control the core radial localization of $T_b(s)$, and term $\tanh(10(1 - s))$ included to force $T_b(s)$ to zero at $s = 1$.

Figure 6(a) shows a plot of different candidate modelled ion temperature profiles on the outboard radial chord, and figure 6(b) shows the corresponding η_i/η_c values. The candidate BAE in figure 5(a), whose $m = 1$ Fourier magnitude is also shown in figure 6(b), has a peak at radial position $r \approx 0.08$ m with a radial width of $0.2a = 0.1$ m. For this mode, $\eta_i/\eta_c < 1$ for a broad, Ohmic-like ion temperature profile. For sufficiently high radial temperature gradient and/or sufficiently high ion temperature, the Alfvenic ion temperature gradient driven mode [22] instability threshold will be approached, or possibly even exceeded, in the region where the mode amplitude is large, and so the mode can become unstable, due to a combination of energetic and thermal ion kinetic effects [32].

4. Conclusions

We have provided first evidence of beta-induced Alfven eigenmode activity in neutral beam heated KSTAR plasmas. The 40 kHz, $n = 1$ observed mode matches the frequency of the accumulation point of the Alfven continuum. Using the radial localization of sawtooth inversion radius, we have been able to identify the radial position of the $q = 1$ surface, and using this, constrain the equilibrium. A detailed mode analysis reveals the presence of a core localized beta-induced Alfven eigenmode. Finally, a kinetic treatment of the mode marginal stability threshold shows a range of plausible ion temperature profiles for which the mode excitation threshold is reduced, and the mode can be driven by energetic ions. This suggests that mode existence could be used as a form of inference for temperature profile consistency in the radial interval of the mode, once beam drive and relevant damping contributions have been computed, thereby extending the tools of MHD spectroscopy. Our suggestion is complementary to recent work by Bertram et al [33], who suggested mode frequency could be used to infer the temperature at the resonant surface of a BAE in the H-1 heliac.

Improvements in diagnosis and reliability of KSTAR plasmas will enable further exploration of new physics, in steady-state plasma environments of up to 14 MW of NBI heating. A priority is the introduction of kinetic and motional Stark effect constraints to EFIT, which will remove uncertainties in detailed modelling. In future work we hope to consolidate mode frequency variation with pressure and magnetic field strength. Judicious phasing of NBI during current ramp-up and ramp-down, together with new electron cyclotron current drive systems also offers the opportunity to influence the magnetic field configuration through co- and counter-injection. A wider sample set of modes, together with concurrent crystallography data, would enable a more thorough investigation of marginal stability thresholds and a quantitative study of mode drive and damping. Finally, as the position of the resonances are determined by the q profile and the density profile, similarity experiments with different edge q profiles and density profiles would illuminate the level of continuum damping. For instance, as the q profile flattens different m continuum mode branches are removed, and continuum damping is reduced. Alternately, as the density profile in the edge drops the location of the continuum resonance moves inwards. In this case the radial separation between the resonances and gap mode decreases, the coupling of the eigenfunction to the continuum becomes stronger, and hence the continuum damping is increased [34, 35].

Acknowledgments

This work was partly funded by the Australian Government through Australian Research Council grants FT0991899, DP1093797, as well as National Research Foundation of Korea grants NRF-2008-0062-209 and NRF-2011-0026107 and the RCUK Energy Programme under grant EP/ISO1045 and the European Communities under the contract of Association between EURATOM and CCFE. The views and opinions expressed herein do not necessarily reflect those of the European Commission. The authors gratefully acknowledge the support of J Kim from NFR in assisting with access to KSTAR data, and the support of G A Huysmans from CEA Cadarache in the provision of CSCAS, HELENA and MISHKA codes.

Euratom © 2013.
References

[1] Breizman B N and Sharapov S E 2011 Major minority: energetic particles in fusion plasmas Plasma Phys. Control. Fusion 53 054001

[2] Pinches S D et al and the JET-IAEA Contributors 2004 The role of energetic particles in fusion plasmas Plasma Phys. Control. Fusion 46 B187–200

[3] Holties H A, Fasoli A, Goedbloed J P, Huysmans G T A and Kerner W 1997 Determination of local tokamak parameters by magneto-hydrodynamic spectroscopy Phys. Plasmas 4 709–19

[4] Heidbrink W W, Ruskov E, Carolipio E M, Fang J and van Zeeland M A 1999 What is the beta-induced Alfvén eigenmode? Phys. Plasmas 6 1147–61

[5] Heidbrink W W, Strait E J, Chu M S and Turnbull A D 1993 Observation of beta-induced Alfvén eigenmodes in the DIII-D tokamak Phys. Rev. Lett. 71 855–8

[6] Nazikian R et al 1996 High-frequency core localized modes in neutral beam heated plasmas on TFTR Phys. Plasmas 3 593

[7] Nguyen C et al 2009 Excitation of beta Alfvén eigenmodes in Tore Supra Plasma Phys. Control. Fusion 51 095002

[8] Smeulders P, Buratti P, De Benedetti M, Monari G and the FTU-Team 2002 Fast mhd analysis on ftu Proc. 29th EPS Conf. on Plasma Physics and Controlled Fusion (Montreux, Switzerland, 2002) vol 26B

[9] Buratti P, Smeulders P, Zonca F, Annibaldi S V, De Benedetti M, Kroegler H, Regnoli G, Tudisco O and the FTU-Team 2005 Nucl. Fusion 45 1446–50

[10] Buratti P, Zimmermann O, De Benedetti M, Liang Y, Koslowski H R, Regnoli G, Smeulders O and Zonca F 2005 Inter-machine scaling of Alfvén-like modes excited by magnetic islands in FTU and TEXTOR Proc. 32nd EPS Conf. on Plasma Physics (Tarragona, Spain, 2005) vol 29C

[11] Zimmermann O, Koslowski H R, Kramer-Flecken A, Liang Y, Wolf R and the TEC-Team 2005 Coupling of Alfvén-like modes and large 2/1 tearing modes at TEXTOR Proc. 32nd EPS Conf. on Plasma Physics (Tarragona, Spain, 2005) vol 29C

[12] Annibaldi S V, Zonca F and Buratti P 2007 Excitation of beta-induced Alfvén eigenmodes in the presence of a magnetic island Plasma Phys. Control. Fusion 49 475–83

[13] Lauber Ph, Brügdam M, Curran D, Igochine V, Sassenberg K, Günter S, Maraschek M, García-Munoz M, Hicks N and the ASDEX Upgrade Team 2009 Kinetic Alfvén eigenmodes at ASDEX Upgrade Plasma Phys. Control. Fusion 51 124009

[14] Guimarães-Filho Z O et al 2011 Energetic particle driven magnetohydrodynamic instabilities during relaxation cycles in Tore Supra Plasma Phys. Control. Fusion 53 074012

[15] Chen W et al and the HL-2A Team 2010 Beta induced Alfvén eigenmodes destabilized by energetic electrons in a tokamak plasma Phys. Rev. Lett. 105 185004

[16] Blackwell B D et al 2009 Configurational effectcosn Alfvénic modes and confinement in the H-1NF Heliac (arXiv:0902.4728v1)

[17] Ryu C M, Woo M H, Hole M J, Bak J K and the NFR operation Team 2010 Observation and analysis of a high frequency MHD activity during sawteeth in KSTAR tokamak 23rd IAEA Fusion Energy Conf. (Daejeon, Korea, October 2010)

[18] Hole M J, Ryu C M, Woo M H, Toi K, Kim J and Bak J G 2012 Analysis of Alfvén wave activity in KSTAR plasmas 24th IAEA Fusion Energy Conf. (San Diego, CA, October 2012)

[19] Appel L C, Hole M J, Akers R J, Pinches S D and the MAST team 2002 Modelling of Alfvénic activity in the MAST tokamak Proc. Joint Varenna–Lausanne Int. Workshop on the Theory of Fusion plasmas (Varenna, Italy, August 2002)

[20] Sharapov S E et al and the JET-IAEA Contributors 2006 Alfvén cascades in JET discharges with NBI-heating Nucl. Fusion 46 S868–79

[21] Gorelenkov N N, Van Zeeland M A, Berk H L, Crocker N A, Darrow D, Fredrickson E, Fu G-Y, Heidbrink W W, Menard J and Nazikian R 2009 Beta-induced Alfvén-acoustic eigenmodes in National Spherical Torus Experiment and DIII-D driven by beam ions Phys. Plasmas 16 056107

[22] Zonca F, Chen L and Santoro R A 1996 Kinetic theory of low-frequency Alfvén modes in tokamaks Plasma Phys. Control. Fusion 38 2011–28

[23] Lee S G, Bak J G, Nam U W, Moon M K, Shi Y, Bitter M and Hill K 2010 The first experimental results from x-ray imaging crystal spectrometer for KSTAR Rev. Sci. Instrum. 81 10E506

[24] Lutjens H, Bondeson A and Sauter O 1996 The CHEASE code for toroidal MHD equilibria Comput. Phys. Commun. 97 219–60

[25] Poedts S and Schwartz E 1993 Computation of the ideal-MHD continuous spectrum in axisymmetric plasmas J. Comput. Phys. 105 165–8

[26] Chapman J T, Sharapov S E, Huysmans G T A and Mikhailovskii A B 2006 Modeling the effect of toroidal plasma rotation on drift-magnetohydrodynamic modes in tokamaks Phys. Plasmas 13 062151

[27] Nam Y U and Lee K D 2008 A 280 GHz single-channel millimeter-wave interferometer system for KSTAR Rev. Sci. Instrum. 79 10E705

[28] Hole M J et al and the MAST Team 2005 Ideal MHD stability of the Mega-Ampere Spherical Tokamak Plasma Phys. Control. Fusion 47 581–613

[29] Turnbull A D, Strait E J, Heidbrink W W, Chu M S, Duong H H, Greene J M, Lao L L, Taylor T S and Thompson S J 1993 Global Alfvén modes: theory and experiment Phys. Fluids B 5 2456–553

[30] Huysmans G T A, Kerner W, Borba D, Holties H A and Goedbloed J P 1995 Modeling the excitation of global Alfvén modes by an external antenna in the Joint European Torus (JET) Phys. Plasmas 2 1605–13

[31] Heidbrink W W 1982 Basic physics of Alfvén instabilities driven by energetic particles in toroidally confined plasmas Phys. Plasmas 15 055501

[32] Zonca F, Chen L, Dong J Q and Santoro R A 1999 Existence of ion temperature gradient driven shear Alfvén instabilities in tokamaks Phys. Plasmas 6 1917–24

[33] Bertram J, Blackwell B D and Hole M J 2012 Ideal-magnetohydrodynamic theory of low-frequency Alfvén waves in the H-1 Heliac Plasma Phys. Control. Fusion 54 055009

[34] Berk H L, Van Dam J W, Guo Z and Lindberg D M 1992 Continuum damping of low-\eta toroidicity induced shear Alfvén eigenmodes Phys. Fluids B 4 1806

[35] Zonca F and Chen L 1992 Resonant damping of toroidicity-induced shear-Alfvén eigenmodes in tokamaks Phys. Rev. Lett. 68 592–5