Emerging knowledge of the organelle outer membranes – research snapshots and an updated list of the chloroplast outer envelope proteins

Kentaro Inoue *

Department of Plant Sciences, University of California at Davis, Davis, CA, USA

Keywords: Arabidopsis, chloroplast, membrane proteins, mitochondria, outer membrane

Mitochondria and chloroplasts are two distinct organelles essential for plant viability. They evolved from prokaryotic endosymbionts and share a common ancestor with extant Gram-negative bacteria (Gray et al., 1999; Gould et al., 2008). Successful conversion of the free-living prokaryotes to the cytoplasmic organelles via endosymbiosis required conservation and adaptation of the outer membranes to the dramatic change of surroundings. In prokaryotes, the outer membrane serves as a physical barrier that protects cells from the extracellular environment and allows import of necessary nutrients, and also directly participates in interaction with other organisms (Nikaido, 2003). As part of the semi-autonomous organelles, by contrast, the outer membranes of mitochondria and chloroplasts have gained ability to participate in intracellular communication and organelle biogenesis, i.e., import and export of various ions and metabolites, import of nuclear-encoded proteins, various metabolic processes including the biosynthesis of membrane lipids, and division and movement of the organelles that require physical interaction with cytoplasmic components (Breuers et al., 2011; Inoue, 2011; Duncan et al., 2013). Our understanding of the organelle outer membranes have been advanced greatly in the last decade or so, and the last eight years have seen about a three-fold increase in the number of proteins identified or predicted to be in the chloroplast outer envelope of Arabidopsis thaliana (Arabidopsis) [total 117 proteins listed in Table 1; compare 34 proteins in Inoue (2007)]. This Research Topic is intended to provide snapshots of recent research on the organelle outer membranes. It collects seven original research, three review and two method articles, which can be divided into four groups according to the subjects – (1) outer membrane protein targeting, (2) functions, targeting and evolution of protein import components, (3) lipid metabolism, and (4) method development.

1. Protein Targeting to the Organelle Outer Membranes

All proteins identified so far in the organelle outer membranes are encoded in the nucleus (e.g., Table 1), and most of them use internal signals for targeting. This is distinct from the case for most nuclear-encoded proteins found inside the organelles: they are synthesized with N-terminal extensions, which are necessary and sufficient for proper targeting via the general pathway and cleaved upon import in the matrix (mitochondria) or stroma (chloroplasts). Lee et al. (2014) review the current knowledge of pathways and signals needed for targeting of three types of outer membrane proteins – signal-anchored (SA), tail-anchored (TA), and β-barrel proteins. SA and TA proteins are anchored to the membrane via a single transmembrane (TM) α-helix with either N_intermembrane space-C_cytosol (for SA) or N_cytosol-C_intermembrane space (for TA) orientation. β-Barrel proteins are integrated into the membrane via a single transmembrane β-strands, whose formation appears to require evolutionarily conserved machinery in the membrane. Marty et al. (2014) have used a transient expression system with Nicotiana tabacum Bright Yellow-2 suspension cells to identify two types of
TABLE 1 | One hundred and seventeen proteins identified or predicted to be in the outer membrane of the Arabidopsis chloroplast envelope.3

AGI no.\(^b\)	Name	References\(^c\)	Envelope\(^d\)	MitoOM\(^e\)
SOLUTE/ION TRANSPORT				
At1g20816	OEP21-1	(i)(ii)(iii)	YES	
At1g45170	OEP24-1	(i)(ii)(iv)	YES	
At1g78405	OEP21-2	(i)(ii)	YES	
At2g01320	WBC7	(i)(ii)(iii)	YES	
At2g17695	OEP23/DUF1990	(vii)	YES	
At2g28900	OEP16-1	(i)(ii)(iv)	YES	
At2g43950	OEP37	(i)(ii)(iii)(iv)	YES	
At3g51870	PAPST1 homolog	(viii)	YES	
At3g62880	OEP16-4	(i)(ii)		
At4g19860	HXXK2	(i)		
At4g29130	HXXK1	(ii)(iii)(iv)	YES	
PROTEIN IMPORT COMPONENTS AND THEIR HOMOLOGS				
At1g02280	Toc33	(i)(ii)	YES	
At2g16640	Toc132	(i)(ii)(iii)(iv)	YES	
At2g17390	AKR2B	(i)		
At3g16220	Toc120	(i)(ii)	YES	
At3g17970	Toc64-III	(i)(ii)(iii)(iv)	YES	
At3g41410	P39/OEP80tr1	(i)	YES	
At3g46740	Toc75-III	(i)(ii)(iv)(vi)		
At3g48620	P36/OEP80tr2	(i)	YES	
At4g02510	Toc159	(i)(ii)(iv)	YES	
At4g09080	Toc75-IV	(i)(ii)(viii)	YES	
At5g05600	Toc34	(i)(ii)(iv)	YES	
At5g19620	OEP80/Toc75-V	(i)(ii)(iv)	YES	
At5g20300	Toc90	(i)(ii)(iv)	YES	
PROTEIN TURNOVER AND MODIFICATION				
At1g02560	ClpP5 (proteolysis)	(iv)	YES	
At1g07930	E-Tu (protein synthesis)	(iii)	YES	
At1g09340	HIP1.3/Rap38/CSP41B	(iv)	YES	
At1g63900	SP1 (proteolysis)	(vi)	YES	
At2g11810	MGD3	(i)	YES	
At2g38670	PECT1	(i)	YES	
At3g06510	SFR2/GGGT	(ii)(iv)	YES	
At3g25860	P36/OEP80tr2	(i)(ii)(iv)	YES	
CARBOHYDRATE METABOLISM AND REGULATION				
At1g34430	PDC E2	(i)(ii)(iv)	YES	
At1g44170	ALDH3H1	(i)	YES	
At2g34590	PDC E1beta	(i)(ii)(iv)	YES	
At2g47770	TSPO	(i)	YES	
At3g01500	beta CA1	(i)(ii)(iv)	YES	
At3g16950	PDC E3	(i)(ii)(iv)	YES	
At3g25860	PDC E2	(i)(ii)(iv)	YES	
At3g27820	MDAR4	(i)(ii)(iv)(vii)	YES	
At5g17770	CBR	(i)(iii)(iv)	YES	
At5g23190	CYPD68B1	(i)(ii)(iv)(vii)	YES	
At5g25900	KO1/GA3	(i)(ii)(iv)	YES	
LIPID METABOLISM				
At1g77590	LACS9	(i)(ii)(iv)(vi)	YES	
At2g11810	MGD3	(i)	YES	
At2g27490	ATCOAE	(i)(ii)(iv)	YES	
At3g06510	SFR2/GGGT	(i)(ii)(iv)	YES	
At3g06960	TGD4	(i)(ii)(iv)	YES	
FUNCTIONS/LOCATIONS DEFINED IN COMPARTMENTS OTHER THAN THE CHLOROPLAST OUTER ENVELOPE				
At3g63170	FAP1	(i)(ii)(iii)	YES	
At4g00550	DGD2	(i)(ii)(iv)	YES	
At4g15440	HXXK2	(i)(ii)(iv)	YES	
At4g29130	HXXK1	(ii)(iii)(iv)	YES	
INTRACELLULAR COMMUNICATION				
At1g12230	transaldolase	(i)	YES	
At1g13900	PAP2	(i)(ii)	YES	
At2g19860	HXXK2	(i)(ii)(iv)	YES	
At3g46740	pTAC16	(i)(ii)(iv)	YES	
At3g48620	P36/OEP80tr2	(i)(ii)(iv)	YES	
At4g02510	Toc159	(i)(ii)(iv)	YES	
At4g09080	Toc75-IV	(i)(ii)(iv)	YES	
At5g05600	Toc34	(i)(ii)(iv)	YES	
At5g19620	OEP80/Toc75-V	(i)(ii)(iv)	YES	
At5g20300	Toc90	(i)(ii)(iv)	YES	
FUNCTIONS/LOCATIONS DEFINED IN COMPARTMENTS OTHER THAN THE CHLOROPLAST OUTER ENVELOPE				
At1g27390	Tom20-2 (mito)	(i)(ii)(iii)	(ii)(iii)	
At3g01280	VDAC1 (mito)	(i)(ii)(iii)	(ii)(iii)	
At3g12580	Hsp70-4 (cytosol)	(i)(ii)(iii)	(ii)(iii)	
At3g21865	PEX22 (peroxisome)	(i)(ii)(iii)	(ii)(iii)	
At3g46030	histone H2B (nucleus)	(i)(ii)(iii)	(ii)(iii)	
At3g63150	MIO2 (mito)	(i)(ii)(iii)	(ii)(iii)	
At4g14430	enoyl-CoA isomerase	(i)(ii)(iii)	(ii)(iii)	
At4g16440	Complex I subunit	(i)(ii)(iii)	(ii)(iii)	
At4g31780	MGD1 (IEM)	(i)(ii)(iii)	(ii)(iii)	
At4g35000	APX3 (peroxisome)	(i)(ii)(iii)	(ii)(iii)	
At4g38920	vacuolar ATPase sub	(i)(ii)(iii)	(ii)(iii)	
At5g02500	HSC70-1	(i)(ii)(iii)	(ii)(iii)	
At5g06960	Prx B (stroma)	(i)(ii)(iii)	(ii)(iii)	
At5g15090	VDAC3 (mito)	(i)(ii)(iii)	(ii)(iii)	

(Continued)

(Continued)
targeting signals for mitochondria TA proteins. They have then performed database search, increasing the number of mitochondria TA proteins from 20 to 54. Interestingly, 16 of the mitochondria outer membrane proteins identified by the previous work (Duncan et al., 2013) and Marty et al. (2014) are also found in the chloroplast outer envelope membrane (Table 1). This may suggest the presence of targeting mechanisms and functions shared between the outer membranes of the two organelles.

2. Functions, Targeting and Evolution of Protein Import Components

The most-studied chloroplast outer membrane proteins are subunits of the TOC (translocon at the outer-envelope-membrane of chloroplasts) machinery, which catalyzes the general pathway to import nuclear-encoded precursor proteins from the cytosol. Among the TOC components are homologous GTPases Toc159 and Toc34, which recognize the precursors and regulate their import, and Toc75, which forms a protein conducting channel. In Arabidopsis, there are four Toc159 isoforms which show substrate selectivity, two catalytically redundant Toc34 isoforms, and one functional Toc75 encoded on chromosome III (Table 1). Demarsy et al. (2014) review the current knowledge about how these subunits function and regulate protein import. Richardson et al. (2014) summarize available results and discuss functions, targeting and assembly of TOC subunits. Importantly, both review articles recognize outstanding questions about the TOC components, including the mechanisms of precursor recognition and their insertion into the membrane. By biochemical assays using chloroplasts isolated from pea seedlings, radiolabeled precursor proteins and recombinant proteins, Chang et al. (2014) demonstrate interaction of Toc159 isoforms called Toc132/Toc120 with a chloroplast superoxide dismutase (FSD1) that was predicted to comprise an exceptionally short import signal but has been shown otherwise, and also map the interaction domains beyond the N-terminus. The interaction of FSD1 with Toc132, but not with Toc159, was also demonstrated by a split-ubiquitin yeast two-hybrid assay (Dutta et al., 2014). Grimmer et al. (2014) have used an in vivo approach, transiently producing GFP-tagged proteins in protoplasts of various Arabidopsis mutants and determining their N-terminal sequences by mass spectrometry analyses, and demonstrate that a plastid RNA binding protein is a substrate of Toc159. The Arabidopsis protoplast transient expression assay has also been used to define sequences required for targeting and membrane integration of a Toc159 ortholog (Lung et al., 2014). A previous genetic screening had demonstrated that Toc132 and Toc75 enhance root gravitropism signal transduction (Stanga et al., 2009). Strohm et al. (2014) now provide evidence supporting the involvement of plastids, instead of direct participation of TOC subunits, in the gravitropism signal transduction. Finally, Day et al. (2014) report phylogenetic relationships and in vitro targeting of the Toc75 homologs including the truncated forms of OEP80/Toc75-V, which are also known as P39 (Hsueh et al., 2014) and P36 (Nicolaïsen et al., 2015) (Table 1).

Table 1 | Continued

AGI no.	Name References	Envelope	MitoOM
At5g25740	EM2473/MIRO1 (mito)	(iv) (vi)	(vii)
At5g35360	CAC2/BC (IEM)	(v)	YES
At1g98920		(xx)(xi)	
At1g16000	OEP6	(iii)	
At1g27300		(iv)(v)	
At1g64850	YES	(iv)	
At1g68860		(iv)	
At1g70480	DUF220	(v) (vi)(vii)	
At1g08990	OEP9.2	(iv)	
At2g06010		(xv)	
At2g34410		(xv)	
At2g32240	DUF869	(v) (vi)	
At2g32650	PTAC18 like	(v)	
At2g44640		(iv)	
At3g26740	CCL	(iv)	
At3g49350		(iv)	
At3g52230	OMP24 homolog	(v)	
At3g52420	OEP7	(iv)	
At3g53560	TPR protein	(iv)	
At3g63160	OMP24 homolog (v)	(iv)	
At4g02482	putative GTPase	(v)	
At4g15810	NTPase	(iv)	
At4g17170	RAB2	(iv)	
At4g27680	NTPase	(iv)	
At4g27990	YGCT-B protein	(iv)	
At5g11560		(iv)	
At5g06250	WAV2	(iv)	
At5g21920	YGCT-A	(iv)	
At5g21990	OEP61-TPR	(iv)	
At5g27330		(iv)	
At5g42070		(iv)	
At5g43070	WPP1	(iv)	
At5g51020	CRL	(vii)	
At5g59840	RAB8A-like	(iv)	
At5g64816		(iv)	

Names and functional categories are based on literatures cited in this work and databases. See Supplementary Material Table 51 for the extended name (if any), the location curated by various databases, and other predicted properties based on the primary sequence for each protein.

Arabidopsis gene identifier (AGI) number, which represents the systematic designation given to each locus, gene, and its corresponding protein product by The Arabidopsis Information Resource (TAIR: https://www.arabidopsis.org/).

This list includes in total 117 proteins from two earlier review articles [32 from (i) Inoue (2007) and 44 from (ii) Breuer et al. (2011)], two recent chloroplast outer envelope proteomics studies [50 from (iii) Simm et al. (2018) and 58 from (iv) Guenimi-Carbone et al. (2019) and five reports on individual outer envelope proteins (v) PAP2 by Sun et al. (2012), (vi) SP1 by Ling et al. (2012), (vii) OEP23 by Goetz et al. (2015), (viii) PAPST1 by Xu et al. (2013), and (ix) pBP by Lagrange et al. (2003). Not. Note that Gigolashvili et al. (2012) predicts inner-envelope localization of PAPST1, and that the AGI number for pBP was updated from At4g06655.

Yes indicates that the given protein was found in the chloroplast envelope proteomic studies (Ferro et al., 2003, 2010; Föpplhich et al., 2003), which are listed in The Plant Proteome Database (PPDB: http://ppdb.tc.cornell.edu/) (Sun et al., 2009).
3. Lipid Metabolism

Under phosphate starvation, phospholipids in the cell membranes, mainly those in extraplastidic compartments, are used as the source of free phosphates and substituted by galactolipids made in the chloroplast outer envelope. Murakawa et al. (2014) have used Arabidopsis mutants and feeding assays to show that the outer-envelope-dependent galactolipid synthesis is stimulated by sucrose supplementation and this stimulation in turn enhances utilization of the added sucrose for plant growth. This work nicely illustrates the physiological significance of the metabolic activity localized in the chloroplast outer envelope for plant growth and development.

4. Method Development

Hardre et al. (2014) report an attempt to apply biotin tagging and proteolysis to examine topology and membrane association of proteins in the spinach chloroplast. Although the work requires further refinement to achieve the desired specificity, the idea behind this approach is quite interesting. The toc159-null mutant is seedling-lethal thus has been examined as progenies of heterozygous parents. Tada et al. (2014) have established a method using Ziploc® container to grow the homozygous toc159 mutants on the sucrose-supplemented media to the point that viable seeds can be obtained. This cost-effective method should be useful to study not only the toc159-null plant but also other recessive lethal mutants of photosynthesis.

In summary, the collection highlights various questions about the organelle outer membranes and interdisciplinary approaches employed to address them. The future research should use these and other strategies to answer questions about the proteins of known functions, in particular those involved in protein homeostasis, as well as those of unknown functions (Table 1). The editor greatly acknowledges the excellent contributions of all the authors and constructive comments by expert reviewers to each of the articles.

Acknowledgments

This work was supported by the Division of Molecular and Cellular Biosciences at the US National Science Foundation (Grant No. 1050602).

Supplementary Material

The Supplementary Material for this article can be found online at: http://journal.frontiersin.org/article/10.3389/fpls.2015.00278/full

Table S1 | Extended names, curated locations and some other information of 117 proteins listed in Table 1.

References

Breuers, F. K., Brautigam, A., and Weber, A. P. (2011). The plastid outer envelope – a highly dynamic interface between plastid and cytoplasm. Front. Plant Sci. 2:97. doi: 10.3389/fpls.2011.00097

Chang, W., Soll, J., and Bolter, B. (2014). A new member of the psToc159 family contributes to distinct protein targeting pathways in pea chloroplasts. Front. Plant Sci. 5:239. doi: 10.3389/fpls.2014.00239

Day, P. M., Potter, D., and Inoue, K. (2014). Evolution and targeting of Omp85 homologs in the chloroplast outer envelope membrane. Front. Plant Sci. 5:535. doi: 10.3389/fpls.2014.00535

Demarsy, E., Lakshmanan, A. M., and Kessler, F. (2014). Border control: selectivity of chloroplast protein import and regulation at the TOC-complex. Front. Plant Sci. 5:483. doi: 10.3389/fpls.2014.00483

Duncan, O., van der Meerw, M. J., Daley, D. O., and Whelan, J. (2013). The outer mitochondrial membrane in higher plants. Trends Plant Sci. 18, 207–217. doi: 10.1016/j.tplants.2012.12.004

Dutta, S., Teresiński, H. J., and Smith, M. D. (2014). A split-ubiquitin yeast two-hybrid screen to examine the substrate specificity of atToc159 and atToc132, two Arabidopsis chloroplast presequence import receptors. PLoS ONE 9:e95026. doi: 10.1371/journal.pone.0095026

Ferro, M., Brugiere, S., Salvi, D., Seigneurin-Berny, D., Court, M., Moyet, L., et al. (2010). Ath_CLHORO, a comprehensive chloroplast proteome database with subplastidial localization and curated information on envelope proteins. Mol. Cell. Proteomics 9, 1063–1084. doi: 10.1074/mcp.M900325-MCP200

Ferro, M., Salvi, D., Brugiere, S., Miras, S., Kowalski, S., Louwagne, M., et al. (2003). Proteomics of the chloroplast envelope membranes from Arabidopsis thaliana. Mol. Cell. Proteomics 2, 325–345. doi: 10.1074/mcp.M300030-MCP200

Froehlich, J. E., Willkerson, C. G., Ray, W. K., McAndrew, R. S., Osteryoung, K. W., Gage, D. A., et al. (2003). Proteomic study of the Arabidopsis thaliana chloroplast envelope membrane utilizing alternatives to traditional two-dimensional electrophoresis. J. Proteome Res. 2, 413–425. doi: 10.1021/pr030425j

Gigolashvili, T., Geier, M., Ashykhmina, N., Freirigmann, H., Wulfert, S., Krueger, S., et al. (2012). The Arabidopsis thylakoid ADP/ATP carrier TAAC has an additional role in supplying plastidic phosphoherosedine 3′-phosphosulfate to the cytosol. Plant Cell 24, 4187–4204. doi: 10.1105/tpc.112.101964

Gotze, T. A., Patil, M., Josenh, L., Bolter, B., Grahk, S., and Soll, J. (2015). Oep23 forms an ion channel in the chloroplast outer envelope. BMC Plant Biol. 15:47. doi: 10.1186/s12870-015-0445-1

Gould, S. B., Waller, R. F., and McFadden, G. I. (2008). Plastid evolution. Annu. Rev. Plant Biol. 59, 491–517. doi: 10.1146/annurev.arplant.59.032607.092915

Gray, M. W., Burger, G., and Lang, B. F. (1999). Mitochondrial evolution. Science 283, 1476–1481. doi: 10.1126/science.283.5407.1476

Grimmer, J., Rodiger, A., Hoehnwerter, W., Helm, S., and Baginsky, S. (2014). The RNA-binding protein RNP29 is an unusual Toc159 transport substrate. Front. Plant Sci. 5:258. doi: 10.3389/fpls.2014.00258

Gutierrez-Carbonell, E., Takahashi, D., Lattanzio, G., Rodriguez-Celma, I., Kehr, J., Soll, J., et al. (2014). The distinct functional roles of the inner and outer chloroplast envelope of Pea (Pisum sativum) as revealed by proteomic approaches. J. Proteome Res. 13, 2941–2953. doi: 10.1021/pr500106s

Hardre, H., Kuhn, L., Albriexs, C., Jouhet, J., Michaud, M., Seigneurin-Berny, D., et al. (2014). The selective biotin tagging and thermolysin proteolysis of chloroplast outer envelope proteins reveals information on protein topology and association into complexes. Front. Plant Sci. 5:203. doi: 10.3389/fpls.2014.00203

Hsueh, Y. C., Flinner, N., Gross, L. E., Haarmann, R., Mirus, O., Sommer, M. S., et al. (2003). Transcription factor IIB (TFIIB)-related protein (pBrp), a plant homolog of TFIIB, forms an ion channel in the chloroplast outer envelope. Plant Cell Physiol. 44, 9072.2007.00543.x

Inoue, K. (2007). The chloroplast outer envelope membrane: The edge of light and excitement. J. Integ. Plant Biol. 49, 1100–1111. doi: 10.1111/j.1672-9072.2007.00543.x

Inoue, K. (2011). Emerging roles of the chloroplast outer envelope membrane. Trends Plant Sci. 16, 550–557. doi: 10.1016/j.tplants.2011.06.005

Lagrange, T., Hakimi, M. A., Pontier, D., Courtois, F., Alcaraz, J. P., Grunwald, D., et al. (2003). Transcription factor IIB (TFIIB)-related protein (pBrp), a

Frontiers in Plant Science | www.frontiersin.org
April 2015 | Volume 6 | Article 278
Inoue
Organelle outer membranes
4
Inoue Organelle outer membranes

plant-specific member of the TFIIIB-related protein family. Mol. Cell. Biol. 23, 3274–3286. doi: 10.1128/MCB.23.9.3274-3286.2003

Lee, J., Kim, D. H., and Hwang, I. (2014). Specific targeting of proteins to outer envelope membranes of endosymbiotic organelles, chloroplasts, and mitochondria. Front. Plant Sci. 5:173. doi: 10.3389/fpls.2014.00173

Ling, Q., Huang, W., Baldwin, A., and Jarvis, P. (2012). Chloroplast biogenesis is regulated by direct action of the ubiquitin-proteasome system. Science 338, 655–659. doi: 10.1126/science.1225053

Lung, S. C., Smith, M. D., Weston, J. K., Gwynne, W., Secord, N., and Chuong, S. D. (2014). The C-terminus of Bienertia sinuspersici Toc159 contains essential elements for its targeting and anchorage to the chloroplast outer membrane. Front. Plant Sci. 5:722. doi: 10.3389/fpls.2014.00722

Marty, N. J., Teresinski, H. J., Hwang, Y. T., Clendening, E. A., Gidda, S. K., Sliwinska, E., et al. (2014). New insights into the targeting of a subset of tail-anchored proteins to the outer mitochondrial membrane. Front. Plant Sci. 5, 426. doi: 10.3389/fpls.2014.00426

Nicolaisen, K., Missbach, S., Hsueh, Y. C., Ertel, F., Fulgosi, H., Sommer, M. S., et al. (2015). The Omp85-type outer membrane protein p36 of Arabidopsis thaliana evolved by recent gene duplication. J. Plant Res. 128, 317–325. doi: 10.1007/s10265-014-0693-4

Stanga, J. P., Boonsirichai, K., Sedbrook, J. C., Otegui, M. S., and Masson, P. H. (2009). A role for the TOC complex in Arabidopsis root gravitropism. Plant Physiol. 149, 1896–1905. doi: 10.1104/pp.109.135301

Strohm, A. K., Barrett-Wilt, G. A., and Masson, P. H. (2014). A functional TOC complex contributes to gravity signal transduction in Arabidopsis. Front. Plant Sci. 5:148. doi: 10.3389/fpls.2014.00148

Conflict of Interest Statement: The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2015 Inoue. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.