Guest Editorial: Machine Learning in Power Systems

Introduction
Recent years have seen great advances in sensor technologies and their implementation in power systems, and have produced a considerable number of useful data sets in this time. These datasets offer new opportunities to leverage machine learning to reveal unknown power system characteristics and improve the situational awareness and the operability of power grids. Although machine learning has been widely used in image processing, voice recognition and autonomous driving, its application to power systems is still at an initial stage. Machine learning has been used to solve problems such as state estimation, contingency screening, demand control, economic dispatch, and cybersecurity. But there are many outstanding challenges, such as obtaining big datasets for learning, certifying learning performance, and convincing power engineers to use learning-based decisions.

This Special Issue covers interdisciplinary research for novel machine learning algorithms and their applications to power system analysis, operation and control. It includes nine papers on various topics that have both research and engineering values, such as fault analysis, cybersecurity, system stability, forecasting, and microgrids. These papers have provided machine learning-based solutions to power system problems and benchmarked the performance with classical techniques.

Papers in this Special Issue
Ananthan and Santos present a novel application technique for implementing a model-based approach efficiently to estimate the fault location and fault resistance using an artificial neural network-based approach. A key highlight of the proposed approach is the ability to identify the location of a fault present on neighbouring lines using the measured through-fault current. The study also presents representative scenarios to demonstrate the capability and potential of the proposed approach.

Hao gives a comprehensive review of arcing-HIF detection in distribution network-based AI. First, characteristics and models of arcing-HIF are analysed; the arcing-HIF database construction method is also explained. Next, arcing-HIF detection methods based on AI are summarised in detail, including data acquisition, feature extraction and classifier selection. Then, a set of criteria are proposed to evaluate the reliability of the arcing-HIF detection algorithm. Finally, the future trends and challenges to arcing-HIF detection are also fully accounted for. This review is a valuable guide for researchers who are interested in arcing-HIF detection-based AI.

Ruben et al. present a hybrid data-driven physics model-based framework for real-time monitoring in smart grids. In order to enhance the robustness of false data injection detection, this study presents a framework that explores the use of data-driven anomaly detection methods in conjunction with physics model-based bad data detection via data fusion. Multiple anomaly detection methods working at both the system level and distributed local detection level are fused. The fusion takes into consideration the confidence of the various anomaly detection methods to provide the best overall detection results.

Darbandi et al. propose a real-time stability condition predictor based on a feedforward neural network. The conjugate gradient backpropagation algorithm and Fletcher–Reeves updates are used for training, and the Kohonen learning algorithm is utilised to improve the learning process. By real-time assessment of the network features based on the minimum redundancy maximum relevancy algorithm, the proposed method can successfully predict transient stability and out of step conditions for the network and generators, respectively.

Zhang et al. propose a deep recurrent neural network (DRNN) method to forecast day-ahead electricity prices in a deregulated electricity market to explore the complex dependence structure of the multivariate electricity price forecasting model. The proposed method can learn the indirect relationship between electricity price and external factors through its efficient, diverse function and multi-layer structure.

Hagmar et al. develop a machine learning-based method for a fast estimation of the dynamic voltage security margin (DVSM). The DVSM can incorporate the dynamic system response following a disturbance and it generally provides a better measure of security than the more commonly used static voltage security margin (VSM). To overcome the computational difficulties in estimating the DVSM, this study proposes a method based on training two separate neural networks on a dataset composed of combinations of different operating conditions and contingency scenarios generated using time-domain simulations. The trained neural networks are used to improve the search algorithm and significantly increase the computational efficiency in estimating the DVSM. The machine learning-based approach is thus applied to support the estimation of the DVSM, while the actual margin is validated using time-domain simulations.

Liu et al. propose a hierarchical control optimisation learning method with consideration of the multi-agent game. Firstly, the multi-energy microgrid is taken as the research object, the microgrid system architecture was analysed, and the multi-agent partition in the system is pursued based on different economic interests. Secondly, for the technical aspects involved in the integrated energy regulation and management, the management layers of the multi-energy microgrid are divided, and the functions of different management layers are analysed. Based on this, the regulation functions are realised by considering the Nash Q-learning and the artificial intelligence method of Petri-net. Finally, the learning and decision-making ability of the method through practical cases are analysed.

Blakely and Reno focus on applying machine learning to the phase identification task, using a co-association matrix-based, ensemble spectral clustering approach. The proposed method leverages voltage time series from smart meters and does not require existing or accurate phase labels. This work demonstrates the success of the proposed method on both synthetic and real data, surpassing the accuracy of other phase identification research.

Radhakrishnan et al. improve the primary frequency response in networked microgrid operations. They investigate the use of a reinforcement-learning-based controller trained over several switching transient scenarios to modify generator controls during large frequency deviations. Compared to previously used proportional–integral controllers, the proposed controller can improve the primary frequency response while adapting to changes in system topologies and events.

Acknowledgment
The authors thank all researchers that have submitted their work to this Special Issue, and the reviewers, for their dedication and hard work. They hope this Special Issue will stimulate an interest in this...
area and the authors aim to undertake further research in this field. They also like to thank the IET Editorial Office for their help and support that made this Special Issue possible.

Guest Editor Biographies

Zhaoyu Wang is the Harpole-Pentair Assistant Professor at Iowa State University. He received the B.S. and M.S. degrees in electrical engineering from Shanghai Jiaotong University in 2009 and 2012, respectively, and the M.S. and Ph.D. degrees in electrical and computer engineering from Georgia Institute of Technology in 2012 and 2015, respectively. His research interests include power distribution systems and microgrids, particularly on their data analytics and optimisation. He is the Principal Investigator for a multitude of projects focused on these topics and funded by the National Science Foundation, the Department of Energy, National Laboratories, PSERC, and Iowa Energy Center. Dr. Wang is the Secretary of the IEEE Power and Energy Society (PES) Award Subcommittee, Co-Vice Chair of PES Distribution System Operation and Planning Subcommittee, and Vice-Chair of PES Task Force on Advances in Natural Disaster Mitigation Methods. He is an editor of IEEE Transactions on Power Systems, IEEE Transactions on Smart Grid, IEEE PES Letters and IEEE Open Access Journal of Power and Energy, and an associate editor of IET Smart Grid.

Dr. Chenghong Gu is currently a Lecturer with the Department of Electronic and Electrical Engineering, University of Bath. Previously, he was an EPSRC Research Fellow with the University of Bath. He received a Master’s degree from the Shanghai Jiao Tong University, Shanghai, China, in 2007 and a PhD degree from the University of Bath, U.K, in 2010, both in electrical engineering. His major research interest is in the multi-vector energy system, smart grid planning and operation, power economics and markets. Dr. Gu’s research has been supported by the UK funding agency (EPSRC), the industry (NPG, NGC and WPD), and the UK government (DECC). He now is the Subject Editor IET Smart Grid.

Mohammad Shahidehpour received an Honorary Doctorate in electrical engineering from the Polytechnic University of Bucharest, Bucharest, Romania. He is the Bodine Chair Professor and Director of the Robert W. Galvin Center for Electricity Innovation, Illinois Institute of Technology, Chicago, IL, USA. He is a Fellow of IEEE, Fellow of the American Association for the Advancement of Science (AAAS), and Fellow of the National Academy of Inventors (NAI). Dr. Shahidehpour is a member of the US National Academy of Engineering.

Qiuhua Huang is currently a senior power system research engineer in the Electricity Security Group, Pacific Northwest National Laboratory (PNNL). Before joining PNNL, he received his Ph.D. degree in electrical engineering from Arizona State University, Tempe, AZ, USA, in 2016. He received his B.Eng. and M.Eng. degrees in electrical engineering from South China University of Technology, Guangzhou, China, in 2009 and 2012, respectively. His research interests include power transmission and distribution systems modelling, simulation and control and application of machine learning and advanced computing technologies in power and energy systems.

He is the recipient of the 2019 IEEE PES Prize Paper Award and the 2018 R&D 100 Award. He serves as an Associate Editor of CSEE Journal of Power and Energy Systems, and IEEE ACCESS, Guest Editor of IET Generation, Transmission and Distribution, and IET Smart Grid.

Dr. Tao Hong is an Associate Professor and Research Director of Systems Engineering and Engineering Management Department, Director of BigDEAL (Big Data Energy Analytics Laboratory), NCEMC Faculty Fellow of Energy Analytics, and associate of Energy Production and Infrastructure Center at the University of North Carolina at Charlotte. He is the Founding Chair of IEEE Working Group on Energy Forecasting, Director at Large of International Institute of Forecasters, General Chair of Global Energy Forecasting Competition, and author of the blog Energy Forecasting. Dr. Hong received his B.Eng. in Automation from Tsinghua University in Beijing and his Ph.D. with co-majors in Operations Research and Electrical Engineering from North Carolina State University.

Anurag K. Srivastava is an Associate Professor of electric power engineering at Washington State University and the Director of the Smart Grid Demonstration and Research Investigation Lab (SGDRIL) within the Energy Systems Innovation Center (ESIC). He received his Ph.D. degree in electrical engineering from the Illinois Institute of Technology in 2005. His research interest includes data-driven algorithms for power system operation and control, including resiliency analysis. Dr. Srivastava high impact research projects resulted in tools installed at the utility control center supported for more than $50M by the US Department of Energy, National Science Foundation, Siemens Corporate Research, Electric Power Research Institute, Schweitzer Engineering Lab, Power System Engineering Research Center, Office of Naval Research and several National Labs. Dr. Srivastava is an editor of the IEEE Transactions on Smart Grid, IEEE Transactions on Power Systems, IEEE Transactions on Industry Applications, IEEE Transactions on Industrial Informatics, IET Generation, Transmission and Distribution, Journal of Modern Power Systems and Clean Energy and Elsevier Sustainable Computing. He is an IEEE distinguished lecturer and has delivered 30+ keynotes/tutorials in more than 15 countries. He is an author of more than 300 technical publications, including a book on power system security and 3 patents.