Multivalent cooperativity induced by self-assembly for f-element separation

Lixi Chen & Shuao Wang

Preorganization is an effective strategy for f-element separation, but the complexity of extractant synthesis hinders large-scale application. Here the authors discuss an alternative strategy induced by in situ self-assembly that borrows principles of multivalent cooperativity from Nature to separate f-elements.

Background
The f-elements (lanthanides and actinides) are essential to modern society and have been widely used in magnets, luminescent materials, catalysis, the nuclear industry, and so on1,2. Nevertheless, the separation of f-elements represents a great challenge due to their chemical similarities3. For example, the lanthanide contraction leads to only a 0.15-Å decrease in ionic radii across the series. Such subtle differences make it a difficult task to separate neighboring lanthanides. Traditional liquid–liquid extraction approaches, which apply small organic extractants to form complexes with target metal ions, usually suffer from low separation efficiency, especially for elements with almost identical chemical and physical properties (e.g., lanthanides and minor actinides)2,4. A strategy termed as "preorganization," where multiple ligating groups are integrated into a relatively rigid platform, can improve separation performance4,5.

Preorganization involves constructing a multidentate ligand that offers multiple donors with proper orientation for coordination4–6. The effect of preorganization resembles the multivalency and cooperativity seen in biological processes. Multivalency refers to interactions formed from several individual noncovalent bonds7,8 and tends to be dramatically stronger than the sum of the corresponding monovalent ones, as usually witnessed in the multi-binding adhesion of viruses to host cells9. Cooperativity describes how the binding of one ligand can influence subsequent binding equilibria in a stepwise binding event7,10. In this case, each module of an entity should be well assembled so as to work in a synergistic manner. A paradigmatic example in biology is the allosteric oxygenation of hemoglobin, which contains four hemes that serve as binding sites for oxygen. The binding of one oxygen can raise the affinity of the others11. Bearing the concept of multivalency and cooperativity in mind, one can rationally design preorganized extractants possessing multiple coordination sites with defined topology that match specific metal ion over undesired ones.

The current preorganization platforms can be roughly classified into two types: those with rigid planar skeletons and those with three-dimensional (3D) scaffold. The best-known example of the former class is the phenanthroline-derived bis-triazine ligand (Fig. 1a), where four N donors are precisely embedded into the rigid skeleton to coordinate Am3+ effectively12,13. In recent years, increasing efforts have been directed toward the design of preorganized ligands based on 3D scaffolds because they can fulfill the 3D coordination preference of f-elements. Tripods, calixarenes, resorcinarenes, and pillararenes are typical 3D scaffolds (Fig. 1b) for f-element separation4,14,15. However, the more the ligating groups are anchored, the more complicated
the ligands are to synthesize. This greatly limits the large-scale production of extractants for industrial application, promoting the search for alternative methods for f-block separation.

Recent advances

Recently, a strategy based on self-assembled systems was proposed for lanthanide or actinide separation. Distinct from the preorganization strategy, where multiple ligating groups are covalently incorporated into a molecular platform, the new strategy involves in situ self-assembly of multiple components during the extraction process, forming a multinuclear complex, in contrast to the mononuclear complex in most traditional systems. The advantage of such self-assembled systems lies in that the tiny differences in single metal–ligand interactions can be amplified by the multivalent cooperativity effect, which is beneficial in the separation of metal ions with similar properties. Our early work has demonstrated the successful separation of many lanthanide pairs through selective crystallization of lanthanide borates. The magnification of the subtle bonding difference during crystallization is believed to be the main driving force for the high selectivity.

Sun and co-workers reported a significant cooperative enhancement of metal ion selectivity on metal–organic cages self-assembled from a tris-tridentate ligand (L^1) with a variety of metal ions (Fig. 2a). A tetrahedral cage in which all metal centers adopt nine-coordinate tricapped trigonal prismatic geometry is formed when reacting one equivalent of ligand with metal salt. This versatile ligand shows high discrimination between metal ions with identical coordination geometries and extremely small differences in ionic radii (Fig. 2b). For example, complete binding tendency toward Eu$^{3+}$ occurs when treating one equivalent of L^1 with La$^{3+}$/Eu$^{3+}$ (1/1, molar ratio), a pair with only 0.1 Å radius difference. In general, a preference for smaller metal ions is found and the selectivity increases with the increase of ionic radii difference. The authors rationalize the results as a result of the supramolecular multivalent cooperativity, the structural stability of the cage, and favorable coordination sites. Referring to the picture in monophase reaction, the theoretical separation factor (SF) of most lanthanide pairs should
reach several hundred in ideal conditions, as probed by nuclear magnetic resonance spectroscopy. However, affected by the poor water stability of the cage, the actual SF values (2.1–87.7, Fig. 2c) in extraction experiments are relatively lower than expected. Although comparable to most traditional solvent extraction systems, the present results imply a big margin for improvement by employing more stable tetrahedral frameworks. Control experiments applying mono- and bis-tridentate analogs were performed to construct similar cages but resulted in poor performance in stability and selectivity, which highlights the significance of the ligand design in such an exquisite self-assembled system. This study shows how to make use of multivalent cooperativity in a self-assembled system for metal ion separation and provides new insights into the design of next-generation extractants for lanthanide separation.

Actinide separation is crucial for recovery and recycling of key radionuclides in the used nuclear fuel. Shi, Mei, and co-workers proposed a nanoextraction strategy for efficient separation of actinides by multivalent assembly of well-defined metal–organic nanoclusters. The macrocyclic ligand pyrogallol[4]arene (PgCn) can chelate with uranyl ions to afford a hexameric coordination cage [{\([\text{UO}_2\text{O}_2(\text{H}_2\text{O})_{24}\text{PgC}_n\text{]}_6\)] ({\([\text{U}_{24}\text{PgC}_n\text{]}_6\], Fig. 3a}) both in solution and the solid state. Generally, the exquisite multinuclear assembly imposes strict requirements on both the molecular geometries of the ligands and their coordination preference for the targeted metal ions and thus biases the desired metal ions and excludes the undesired ones. Along this path, comprehensive biphasic extraction studies were carried out. Notably, the PgC9 shows two orders of magnitude higher distribution coefficient toward uranyl than most of the trivalent lanthanides (Fig. 3b) under optimized conditions, and the extracted species are characterized to be identical to the hexameric cage [{\([\text{U}_{24}\text{PgC}_n\text{]}_6\)] in situ assembly of multi-components to precise uranyl-polyphe nolic clusters, and efficient separation is achieved without the necessity for preassembly of the clusters. It is worth mentioning that such a giant entity is fabricated simply by mixing the uranyl salt with pre-designed PgC9 under solvothermal condition. As a comparison, traditional organic synthesis would demand much more efforts to reach this level of complexity. A representative case comes from Rebek’s highly preorganized ligand that challenges researchers by its overcomplicated stereochemistry architecture but, in effect, contains only six valid binding sites. This work offers excellent paradigm for how to construct complex frameworks by small units in a self-assembled way.

Outlook

The assembly of elaborate nano-systems with a precision analogous to Nature examples has long been a topic for extensive investigation. In comparison to the bio-assemblies, the self-assembly-induced multivalent cooperativity shown here are still in the infancy stage. Nevertheless, the above cases guide the way on how to build the complex from the simple and lever the big by the small. Moreover, this idea might also be applicable to separate other metal ions or chemical feedstocks. Future efforts are expected in optimizing the ligand design for improved efficiency and creating architectures of even greater complexity.

Received: 4 March 2021; Accepted: 26 March 2021; Published online: 28 May 2021

References

1. Rinehart, J. D. & Long, J. R. Exploiting single-ion anisotropy in the design of f-element single-molecule magnets. Chem. Sci. 2, 2078–2085 (2011).
2. Leoncini, A., Huskens, J. & Verboom, W. Ligands for f-element extraction used in the nuclear fuel cycle. Chem. Soc. Rev. 46, 7229–7273 (2017).
3. Sholl, D. S. & Lively, R. P. Seven chemical separations to change the world. *Nature* **532**, 435–437 (2016).
4. Dam, H. H., Reinhoudt, D. N. & Verboom, W. Multicoordinate ligands for actinide/lanthanide separations. *Chem. Soc. Rev.* **36**, 367–377 (2007).
5. Werner, E. J. & Biros, S. M. Supramolecular ligands for the extraction of lanthanide and actinide ions. *Supramol. Chem.* **20**, 479–486 (2008).
6. Raddi, J. D., Nelson, A., Cantrill, S. J., Turnbull, W. B. & Stoddart, J. F. Multivalency and cooperativity in supramolecular chemistry. *Acc. Chem. Res.* **38**, 723–732 (2005).
7. Fastig, C. et al. Multivalency as a chemical organization and action principle. *Angew. Chem. Int. Ed.* **51**, 10472–10498 (2012).
8. Hoffmann, M. et al. SARS-CoV-2 Cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. *Cell* **181**, 271–280 (2020).
9. Ercolani, G. Assessment of cooperativity in self-assembly. *J. Am. Chem. Soc.* **125**, 16097–16103 (2003).
10. Eaton, W. A., Henry, E. R., Hofrichter, J. & Mozzarelli, A. Is cooperative oxygen binding by hemoglobin really understood? *Nat. Struct. Biol.* **6**, 351–358 (1999).
11. Lewis, F. W. et al. Highly efficient separation of actinides from lanthanides by a phenanthroline-derived bis-triazine ligand. *J. Am. Chem. Soc.* **133**, 13093–13102 (2011).
12. Xiao, C.-L. et al. Excellent selectivity for actinides with a tetradentate 2,9-diamide-1,10-phenanthroline ligand in highly acidic solution: a hard-soft donor combined strategy. *Inorg. Chem.* **53**, 1712–1720 (2014).
13. Chen, L. X., Cai, Y. M., Feng, W. & Yuan, L. H. Pillararenes as macrocyclic hosts: a rising star in metal ion separation. *Chem. Commun.* **55**, 7883–7898 (2019).
14. Atanassova, M. & Kurteva, V. Synergism as a phenomenon in solvent extraction of 4f-elements with calixarenes. *RSC Adv.* **6**, 11303–11324 (2016).
15. Yin, X. et al. Rare earth separations by selective borate crystallization. *Nat. Commun.* **8**, 14438 (2017).
16. Li, X. & Z. et al. A supramolecular lanthanide separation approach based on multivalent cooperative enhancement of metal ion selectivity. *Nat. Commun.* **9**, 547 (2018).
17. Xie, F., Zhang, T. A., Dreisinger, D. & Doyle, F. A critical review on solvent extraction of rare earths from aqueous solutions. *Miner. Eng.* **56**, 10–28 (2014).

Acknowledgements

We thank National Natural Science Foundation of China (21825601, 21790374) for financial support.

Author contributions

L.C. and S.W. both contributed to the writing and preparation of this manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Correspondence and requests for materials should be addressed to S.W.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s) 2021