Chemical mutagenesis of a GPCR ligand: Detoxifying “inflamma-attraction” to direct therapeutic stem cell migration

Jean-Pyo Lee*b,1,2, Runquan Zhang*a,1, Maocai Yan*a, Srinivas Duggineni*a, Dustin R. Wakeman*b, Walter L. Niles*b, Yongmei Feng*a, Justin Chenb, Milton H. Hamblinc, Edward B. Han*d, Rodolfo Gonzalez*a, Xiao Fang*a, Yinsong Zhua, Juan Wangg, Yan Xu*, David A. Wengerb, Thomas N. Seyfriedc, Walter L. Nilesa, Ziwei Huanga,h,2,3, and Evan Y. Snyderb,1,2,3

*aCenter for Stem Cells and Regenerative Medicine, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037; bDepartment of Physiology, Tulane University School of Medicine, New Orleans, LA 70112; cDepartment of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112; dDepartment of Neuroscience, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110; eSchool of Life Sciences, Tsinghua University, 100084 Beijing, China; fDepartment of Neurology, Jefferson Medical College, Philadelphia, PA 19107; gBiology Department, Boston College, Chestnut Hill, MA 02467; hDepartment of Medicine, University of California San Diego, La Jolla, CA 92037; iDepartment of Neurology, Harvard Medical School, Boston, MA 02115; and jSanford Consortium for Regenerative Medicine, La Jolla, CA 92037

Contributed by Richard L. Sidman, April 5, 2020 (sent for review July 17, 2019; reviewed by Paul R. Sanberg, John R. Sladek Jr, and Young-sup Yoon)

A transplanted stem cell’s engagement with a pathologic niche is the first step in its restoring homeostasis to that site. Inflammatory chemokines are constitutively produced in such a niche; their binding to receptors on the stem cell helps direct that cell’s “pathotropism.” Neural stem cells (NSCs), which express CXCR4, migrate to sites of CNS injury or degeneration in part because astrocytes and vasculature produce the inflammatory chemokine CXCL12. Binding of CXCL12 to CXCR4 (a G protein-coupled receptor, GPCR) triggers repair processes within the NSC. Although a tool directing NSCs to where needed has long-sought, one would not inject this chemokine in vivo because undesirable inflammation also follows CXCL12–CXCR4 coupling. Alternatively, we chemically “mutated” CXCL12, creating a CXCR4 agonist that contained a strong pure CXCL12–CXCR4 coupling. This synthetic dual-moity CXCR4 agonist not only elicited more extensive and persistent human NSC migration and distribution than did native CXCL12, but induced no host inflammation (or other adverse effects); rather, there was predominantly reparative gene expression. When co-administered with transplanted human induced pluripotent stem cell-derived hNSCs in a mouse model of a prototypical neurodegenerative disease, the agonist enhanced migration, dissemination, and integration of donor-derived cells into the diseased cerebral cortex (including as electrophysiologically-active cortical neurons) where their secreted cross-reactive enzyme mediated a therapeutic impact unachievable by cells alone. Such a “designer” cytokine receptor-agonist peptide illustrates that treatments can be controlled and optimized by exploiting fundamental stem cell properties (e.g., “inflamma-attraction”).

While inflammatory chemokines, constitutively produced by pathologic regions, are pivotal for attracting reparative stem cells, one would certainly not want to further “inflame” a diseased brain by instilling such molecules. Exploiting the fact that receptors for such cytokines (G protein-coupled receptors [GPCRs] possess two “pockets”—one for binding, the other for signaling—we created a synthetic GPCR-agonist that maximizes interaction with the former and narrows that with the latter. Homing is robust with no inflammation. The peptide successfully directed the integration of human induced pluripotent stem cell derivatives (known to have mutated CXCL12–CXCR4) in a model of a prototypical neurodegenerative condition, ameliorating symptomatology.

Author contributions: J.-P.L., R.Z., E.B.H., Y.X., J.A., R.L.S., Z.H., and E.Y.S. designed research; J.-P.L., R.Z., M.Y., S.D., D.R.W., W.L.N., Y.F., J.C., M.H.H., E.B.H., R.G., X.F., Y.Z., Y.X., D.A.W., and T.N.S. performed research; J.-P.L., R.Z., S.D., D.R.W., E.B.H., R.G., Y.X., D.A.W., T.N.S., R.L.S., Z.H., and E.Y.S. contributed new reagents/analytic tools; J.-P.L., R.Z., M.Y., W.L.N., Y.F., J.C., M.H.H., E.B.H., R.G., X.F., Y.Z., Y.X., D.A.W., T.N.S., R.L.S., Z.H., and E.Y.S. analyzed data; and J.-P.L., R.Z., J.A., R.L.S., Z.H., and E.Y.S. wrote the paper.

Competing interest statement: J.R.S. was one of 17 coauthors with R.G. and E.Y.S. on a 2016 research article. He did not collaborate directly with them. This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

1. J.-P.L. and R.Z. contributed equally to this work.
2. To whom correspondence may be addressed. Email: esnyder@kbp.edu, zhuan@health.ucsd.edu, jan@health.ucsd.edu, or richard_sidman@hms.harvard.edu.
3. Z.H. and E.Y.S. contributed equally to this work.

This article contains supporting information online at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1911444117/-/DCSupplemental.
immune responses (22, 23), these receptors and their agonists are components of the regulatory axes for hematopoiesis and organogenesis in other systems (21, 24). Therefore, it is not surprising that binding of CXCL12 to CXCR4 mediates not only an inflammatory response, but also triggers within the NSC a series of intracellular processes associated with migration (as well as proliferation, differentiation, survival, and, during early brain development, proper neuronal lamination) (10).

A tool directing therapeutic NSCs to where they are needed has long been sought in regenerative medicine (11, 12). While it was appealing to contemplate electively directing reparative NSCs to any desired area by emulating this chemotactic property through the targeted injection of exogenous recombinant inflammatory cytokines, it ultimately seemed inadvisable to risk increasing toxicity in brains already characterized by excessive and usually inimical inflammation from neurotraumatic or neurodegenerative processes. However, the notion of engaging the homing function of these NSC-borne receptors without triggering that receptor’s undesirable downstream inflammatory signaling [particularly given that the NSCs themselves can exert a therapeutic antiinflammatory action in the diseased region (1, 2)] seemed a promising heretofore unexplored “workaround.”

There had already been an impetus to examine the structural–function relationships of CXCR4, known to be the entry route into cells for HIV-1, in order to create CXCR4 antagonists that block viral infection (25–30). Antagonists of CXCR4 were also devised to forestall hematopoietic stem cells from homing to the bone marrow, hence prolonging their presence in the peripheral blood (31) to treat blood dyscrasias. An agonist, however, particularly one with discrete and selective actions, had not been contemplated. In other words, if CXCL12 could be stripped of its undesirable actions while preserving its tropic activity, an ideal chemoattractant would be derived.

Based on the concept that CXCR4’s functions are conveyed by two distinct molecular “pockets”—one mediating binding (i.e., allowing a ligand to engage CXCR4) and the other mediating signaling (i.e., enabling a ligand, after binding, to trigger CXCR4-mediated intracellular cascades that promote not only inflammation but also migration) (13–18)—we performed chemical mutagenesis that should optimize binding while narrowing the spectrum of signaling. We created a simplified de novo peptide analog of CXCR4’s globular core structure engages CXCR4 and is mainly responsible for both binding to CXCR4 and triggering its signaling (13–16) (Fig. 1). Studies by many groups, including our own, have suggested that CXCR4 possesses two different “pockets” within its seven-transmembrane helices with which CXCL12 interacts: One mediating binding, the other signaling (13–19, 25–27). In a complimentary manner, two different regions of CXCL12’s N terminus, respectively, engage each CXCR4 pocket independently, first binding and then signaling (19–21, 24–27). Based on this model, we designed (as detailed below and schematized in Fig. 1B) CXCL12 “mimics” that might be solely “promigratory” by inserting CXCR4’s strongest binding motifs but retaining only the most minimal and selective of signaling sequences (Figs. 1B and 2A and B).

We began by choosing a high-affinity binding motif. Recognizing that the strongest “binder” to CXCR4 is actually its antagonist, the viral chemokine vMIP-II that stimulates no signaling activity (28) (Fig. 2B), we substituted vMIP-II’s receptor binding sequence (located at its N terminus) for CXCL12’s corresponding natural binding motif (Fig. 1B). To determine the proper vMIP-II residues, we performed a series of CXCR4 in silico molecular docking studies analyzing the interactions between CXCR4 and different small 21-mer all-D-chirality amino acid peptide derivatives of the N-terminal residue of vMIP-II, creating a family of synthetic ligands (collectively called “DV”), each with a different D-(1–21)-vMIP-II binding moiety (Fig. 2A). The various peptides were modeled contact with the binding and signaling pockets of CXCR4 using computational methods (32–35) to determine which made maximal contact with the former without binding the latter. One DV family member was selected, DV1, based on its energy-favorable initial-stage docking profile. Over a 5 ns molecular dynamics (MD) simulation, backbone atoms of both the ligand and the receptor showed consistently lower RMSD (i.e., small RMS fluctuations) (Fig. 2A, a), denser hydrogen bond formation (Fig. 2A, b and d), and stronger electrostatic and van der Waals interactions at the binding pocket compared to the signaling pocket (Fig. 2A, c). Specifically, at the binding pocket, Leu1 of DV1 formed hydrogen bonds with Tyr256 and Gln288 of CXCR4, Gly2, Ala3, and Ser4 of DV1 formed many hydrogen bonds with Gln288 of CXCR4; Ala3 also formed a hydrogen bond with Gln272. Arg7 of DV1 formed three hydrogen bonds with Ala98 and Thr102 of CXCR4 (Fig. 2A, d, left). There were also many hydrophobic interactions between DV1 and CXCR4; for example, Leu1 of DV1 with Tyr116 and Tyr256 of CXCR4, Ala3 of DV1 with Ser285 of CXCR4, and Trp5 of DV1 with Tyr103, Phe104, Tyr184, Phe189 of CXCR4; Pro8 of DV1 with Cys28 of CXCR4 (Fig. 2A, d, left). These findings indicated a more favorable and selective interaction between DV1 and CXCR4’s
Design of a synthetic purely chemoattractant CXCR4 agonist. (A) Normally, the intact chemokine agonist CXCL12 (also known as SDF1α) binds to its receptor, CXCR4, in two steps to two different pockets, respectively. After initial binding of the proximal N terminus of CXCL12’s globular core structure to the binding pocket in CXCR4’s extracellular transmembrane regions, CXCL12’s distal N terminus reaches CXCR4’s transmembrane signaling pocket and leads to allosteric modulation of CXCR4’s conformation which, in turn, enables canonical receptor functions, including activating multiple downstream G protein-mediated signaling pathways (adapted with permission from ref. 13). (B) Strategy for synthesizing SDV1a, a dual-moiety bifunctional hNSC chemoattractant with maximal binding and negligible inflammatory, yet preserved reparative stem cell-related signaling. The first 21 amino acids (all in a D-chirality) from the N terminal of the CXCR4 antagonist vMIP-II, were inserted in place of CXCL12’s proximal N terminus in order to provide a ligand with the highest possible affinity for the binding pocket (green circle); it promotes no signaling (Fig. 2D). It was called DV1. The distal N-terminal signaling motif of CXCL12, which engages the signaling pocket (red circle), was truncated to the first 8 amino acids (including the first 2 amino acids required for signaling) in order to narrow the spectrum of CXCR4 signaling pocket but narrow the spectrum of CXCR4 signaling. This truncated signaling motif was called S1. Therefore, the designer peptide was designated L-(1-8)-SDFlα-GG-D-(11-21)-vMIP-II, or SDV1a for short.

To ensure an appropriate spatial arrangement of the two linked peptide moieties for optimally performing their respective binding and signaling functions, different spacer sequences were inserted between them, yielding three candidates—designated SDV1a, SDV1b, and SDV1c—which might serve as our new bifunctional agonist (see SI Appendix, Table S1 for sequences). These candidates were synthesized, their purity confirmed with high-performance liquid chromatography, and their molecular weights validated by matrix-assisted laser desorption/ionization–time of flight mass spectrometry (SI Appendix, Fig. S1).

Chemical and Molecular Characterization of the Synthetic CXCR4 Agonists. We next determined the CXCR4-selective binding efficiency of these candidates by comparing their ability to outcompete the binding of a fluorophore-conjugated anti-CXCR4–specific monoclonal antibody (Clone 12G5) to cells that highly express CXCR4 and are the literature’s standard for CXCR4-expressing cells (the Sup-T1 human lymphoma T-cell line) (28). All three peptides exhibited high CXCR4-binding potency in this 12G5-based competitive receptor binding assay (SI Appendix, Fig. S2A) with an IC50 ranging from lower micromolar to submicromolar concentrations (SI Appendix, Fig. S2B), a bit less than the antagonist DV1 alone but greater than the S1 truncated signaling portion alone.

Next, we evaluated the candidates’ relative signaling capacities. As with other GPCRs, binding of an agonist to CXCR4 causes a catalytic exchange of GDP for GTP by dissociation of the G protein’s linked trisubunits; the Gα-subunit regulates cell surface receptor dynamics, while the Gβ- and γ-subunits regulate MAPK signaling via the gating of intracellular calcium (Ca2+2) (7) [which, in turn, controls other intracellular second messengers, e.g., IP3 and cAMP (21)]. We, therefore, measured the dose-dependent Ca2+ efflux kinetics of Sup-T1 cells treated with these synthetic “dual-moiety” CXCR4-binding peptides. Signaling amplitude was probed with a dual-wavelength Ca2+ indicator Fura-2/AM using ratiometric conversions of Ca2+ concentrations inside the cytosolic environment (Fig. 2B and SI Appendix, Fig. S2C). Measurements were made using a fluorescence plate-reader facilitated by an automated liquid handling system. Both SDV1a and SDV1c (but not SDV1b) elevated Ca2+ efflux with increasing concentrations (SI Appendix, Fig. S2 C, ii), implying activation of MAPK signaling which leads to cascade of multiple downstream intracellular events, including but not limited to cell motility (36, 37). The amount of Ca2+ efflux (i.e., signaling), however, was dramatically less than the signaling induced by natural CXCL12, one of our goals (SI Appendix, Fig. S2 C, i). In contrast, SDV1a’s truncated “signaling moiety” (S1) alone required a 100-fold greater concentration than natural CXCL12 and a 10-fold greater concentration than SDV1a to elicit comparable Ca2+ release (SI Appendix, Fig. S2 C, iii). The “binding moiety” alone from antagonist vMIP-II (DV1), as expected, evoked no signaling, even at concentrations as high as 40 μM (SI Appendix, Fig. S2 C, iii).

Impact on Cells of Candidate Synthetic CXCR4 Agonists. Finally, we assessed the candidates’ relative capacities to promote cellular migration using a Boyden chamber chemotaxis assay. With a porous (8 μm) membrane separating the upper from the lower chamber, Sup-T1 cells were placed in the former and the candidate peptides (at titrated concentrations) placed in the latter (SI Appendix, Fig. S2D, schematic). (Note: hNSCs replaced Sup-T1 cells in subsequent experiments once a candidate was selected). Dose-dependent cell migration from the upper to the lower chamber was elicited by all three bifunctional peptide candidates (SI Appendix, Fig. S2D) (S1 and DV1, as expected, elicited no chemotaxis). Preincubation of the cells with the CXCR4-specific blocking antibody 12G5 suppressed migration, suggesting that CXCR4 was mediating this response. As an
additional control, in some conditions a test candidate was added to the upper chamber or to both chambers; the greatest migration was observed when the peptide was present only in the lower chamber, suggesting chemotaxis (rather than spontaneous random cell motility) as the predominant mechanism for transmigration of the cells (SI Appendix, Fig. S2 D, Right Inset). Based on efficiency of binding, potency in eliciting cell migration yet modulated degree of MAPK signaling, we chose SDV1a as the bifunctional dual moiety synthetic peptide agonist for use in all subsequent in vitro and in vivo experiments involving hNSCs with an eye toward translational applications.

Impact on hNSCs of the Synthetic CXCR4 Agonist Peptide SDV1a. Although previously documented (8), we reconfirmed abundant expression of CXCR4 on primary fetal brain-derived hNSCs (1–3, 5, 38, 39) (SI Appendix, Fig. S3). We next determined whether SDV1a’s actions on hNSCs were comparable to those of CXCL12 (5). First, we investigated whether SDV1a triggered the same intracellular CXCR4-mediated downstream signaling cascades as CXCL12 (5). Western blot analysis was performed on lysates from hNSCs prestimulated with either SDV1a or CXCL12 to assess changes in the phospho-kinetics of several cardinal proteins downstream of CXCR4 (SI Appendix, Fig. S4). As with CXCL12, we observed rapid (within 2 to 5 min) phosphorylation (at Tyr202 and Tyr204) of the extracellular signal-regulated kinases 1/2 (ERK1/2) by SDV1a, suggesting that, in subsequent experiments, we should expect to see—as we did with CXCL12 (5)—induction of such relevant ERK1/2 downstream activities as cell motility (5, 36, 40) (SI Appendix, Fig. S4 A and B). Also phosphorylated were p38-MAPK (at Thr180/Tyr182) and IκBα (inhibitor of NF-κB) (at Ser32/36) (SI Appendix, Fig. S4 C), as we previously reported for CXCL12’s action on the very same hNSC clones (5). It is telling that these “reparative” cascades within hNSCs could be triggered despite the fact that signaling following SDV1a exposure, as assayed by Ca2+ efflux, was an order-of-magnitude less than following recombinant CXCL12 exposure (Fig. 2B and SI Appendix, Fig. S5). SDV1a’s action (which is dose-dependent) (Fig. 2C) was blocked by pre-treatment of the hNSCs with AMD3100, a small-molecule CXCR4-specific inhibitor (which desensitizes CXCR4 to agonist activation) (31), confirming a CXCR4-specific mechanism of action (Fig. 2D and SI Appendix, Fig. S5).

Fig. 2. Chemical and molecular characteristics of the synthetic CXCR4 agonist peptide SDV1a. (A) MD simulation in silico of interactions between the synthetic binding peptide DV1 and CXCR4. Briefly, a CXCR4 homology model was constructed and docking simulations were performed among 60 potential peptides derived from vMIP-II. The most energy-favorable candidates were chosen, as illustrated here for DV1 (the one ultimately selected). MD simulations (5 ns) of this complex with CXCR4 were then performed. (a) RMSD analysis of backbone atoms of CXCR4 and DV1 showing their fluctuations over time. It is greater at the binding site. (b) Number of hydrogen (H-) bonds formed between DV1 and CXCR4 over time. More are formed at the binding site. (c) Two-dimensional Ligplot results showing that the N-terminal residues of DV1 form more polar interactions with CXCR4 at the binding pocket (Fig. 2A Left) than at the signaling pocket (Right) by the end of the simulation. (d) SDV1a induces modulated signaling. Because activation of Ca2+ efflux is downstream of GPCR activation of Ca2+ channels, Ca2+ mobilization assays can serve as surrogates for signaling. Shown is ratioometric [Ca2+]i release from the literature’s standard CXCR4-expressing cell line, Sup-T1, as measured by Fura-2/AM fluorescence intensity following treatment with: 1) Full-length CXCL12/SDF1a (red circle), 2) SDV1a (green triangle), or 3) the components of SDV1a in isolation, its binding motif (derived from the antagonist vMIP-II [DV1]) (purple square) and its truncated signaling motif (S1) (blue triangle). As expected, the natural agonist CXCL12/SDF1a produced the most intense signaling, while the antagonist produced none. When S1 was combined with DV1, however, to create SDV1a, ideally modulated signaling was obtained (an order-of-magnitude less than CXCL12/SDF1a), yielding an optimal signaling profile. (See SI Appendix, Fig. S2C for an expanded presentation of these data, and SI Appendix, Figs. S4 and S6 for the molecular consequences of this signaling.) These findings, taken together with SDV1a’s also having the strongest affinity for CXCR4 among the candidates (SI Appendix, Fig. S2B), led to SDV1a’s use in all subsequent experiments, particularly those performed in vivo. Shown are the mean values of three technical replicates from one of at least three independent biological replicates. Error bars represent ±SEM. (C) Effect of different SDV1a doses on CXCR4-mediated Ca2+ mobilization (efflux). SDV1a triggered a typical Ca2+ spike in CXCR4-expressing cells in a dose-dependent manner. The EC50 of calcium efflux was between 2 and 5 μM, consistent with its binding IC50 (as per SI Appendix, Fig. S2B). (D) Blocking CXCR4 inhibits activation of Ca2+ signaling by SDV1a. See SI Appendix, Fig. S5 for experimental details and an expanded presentation of these data, including from other control conditions. Briefly, single hNSCs, loaded with Fura-2/AM, were measured for a 340/380 ratio of free [Ca2+]i. Calculated changes in [Ca2+]i were expressed in arbitrary units. A peak was defined as a fluorescence ratio increase at least three times greater than the noise level for the same cell. SDV1a (10 μM) increased [Ca2+]i (Left), whereas AMD3100 (100 μM), a CXCR4-specific blocker, reduced the [Ca2+]i if added just prior to SDV1a exposure (Right), even at SDV1a’s highest dose (as determined in C). Each panel shows the result of a single cell’s transient [Ca2+]i release but represents the results of at least 11 cells per condition.
We next used flow cytometry (FACS) of live hNSCs to monitor the dynamics of CXCR4 cell surface expression (i.e., the kinetics of receptor endocytosis and reappearance) following ligand binding (41), comparing SDV1a with CXCL12. Under both conditions, there was a transient elevation followed by a down-regulation of CXCR4 surface expression; however, the kinetics of this endocytosis/reexpression cycle differed for the two ligands. CXCR4 recycling was slower and surface expression more persistent following SDV1a stimulation (Fig. 3A, Upper) than following CXCL12 induction (Fig. 3A, Lower), suggesting that hNSCs may be posed to experience a more protracted chemotactic “pull” from the synthetic agonist. Furthermore, as endocytosis of GPCRs is required for canonical G protein and β-arrestin–mediated CXCR4 signaling, this finding of longer cell surface expression of CXCR4 and quicker surface reexpression may also contribute to our goal of muting certain undesirable downstream actions of CXCR4 that occur intracellularly (e.g., minimizing GPCR-mediated inflammatory cascades) in favor of reparative ones.

To explore this possibility further, differential gene-expression analysis using gene ontology terms was performed on hNSCs exposed to SDV1a compared to those exposed to CXCL12. As expected, there was some overlap in regulated genes (SI Appendix, Fig. S6A and B). Under both conditions, the most highly ranked genes were those involved in cytoskeleton reorganization, (e.g., regulation of cell cycle, adhesion and proliferation, keratin filament formation, and epithelial-to-mesenchymal transition). But, also telling were differences in the hierarchy of cellular events promoted: Prominent in hNSCs treated with CXCL12 was up-regulation of inflammatory and immune-related processes, such as IFN-α/β signaling, stimulation of arachidonic acid production, and hypoxia-related functions, which were not prominent following treatment with SDV1a (SI Appendix, Fig. S6C). Rather, SDV1a primarily induced genes associated with developmental, homeostatic, and stem cell–related functions (SI Appendix, Fig. S7). (A detailed study of the molecular regulation of the multiple GPCR-mediated downstream pathways implicated is beyond the scope of the present paper.)

We next determined SDV1a’s action on actual hNSC behavior. We had previously reported (8) that exposure of hNSCs to CXCL12 and the consequent induction of CXCR4-mediated signaling triggers a series of intracellular processes associated with fundamental aspects of stem cell proliferation and migration. Would SDV1a do the same?

With regard to proliferation, SDV1a (10 nM), when added for 72 h to hNSCs in a CyQuant proliferation assay, increased total DNA content by 10% compared to untreated controls, similar to the effect of recombinant human CXCL12 protein. In the above-described Boyden chamber assay of chemotaxis (Fig. 3B), the promigratory actions of SDV1a were indistinguishable from those of CXCL12, both evincing a typical bell-shaped dose-dependence, with chemotaxis peaking at 5 nM for SDV1a and at 0.5 nM for CXCL12 (Fig. 3C). Precubination of the hNSCs with the above-mentioned CXCR4-specific blocking antibody 12G5 abrogated the promigratory actions of both ligands (Fig. 3D), suggesting that CXCR4 binding and activation were mediating the chemotraction for both agents. Again, as an additional control, SDV1a was added to the upper chamber (where the hNSCs were seeded) or to both chambers (abrogating a concentration gradient); hNSC migration (upper to lower chamber) was observed only when SDV1a was present in the lower chamber, implicating chemotaxis (rather than solely spontaneous random cell motility) as the likely mechanism for hNSC transmigration in response to SDV1a (Fig. 3E).

Transplanted hNSCs Are Drawn to SDV1a across Large Distances in the Adult Brain. Based on SDV1a’s actions on hNSCs in vitro (compared to those of CXCL12), we expected that, if administered in vivo, SDV1a would attract transplanted hNSCs as efficiently as we reported for naturally expressed CXCL12 (5) but without provoking an inflammatory reaction. [It should be noted that, although SDV1a required a 10-fold higher dose to achieve the same degree of chemotaxis in vitro—consistent with its 10-fold lower signaling based on Ca2+ influx (Figs. 2 B and D and 3C and SI Appendix, Fig. S5)—the logistics of administering what is still a very small volume dose (1 to 2 µL in an adult rodent), given the absence of adverse effects (see below), was deemed trivial and minimally invasive.] To make our observations unambiguous and minimize confounders, we first tested SDV1a under very stringent conditions, in the uninjured, nonpathologic adult mammalian brain, which normally does not support extensive migration of NSCs (6, 8) (Fig. 2). We asked whether SDV1a injected into the adult murine cortex (we treated two separate cortical regions to avoid unwittingly choosing a favorable location) or hippocampus would attract hNSCs transplanted at a distance: For example, into the contralateral hippocampus, a site of adult rodent neurogenesis that might theoretically prompt hNSCs to resist the pull of the peptide. SDV1a did, indeed, attract the hNSCs to all regions where it was injected (Fig. 4, Left, regions i–ii), in contrast to injected PBS (a sham negative control for ruling out the effect of tissue damage from needle insertion alone), which drew no hNSCs (Fig. 4, Right, regions i–ii), and in contrast to recombinant CXCL12, which also, surprisingly, drew no hNSCs (for reasons explained below), yielding a picture identical to Fig. 4, Right, regions i–iii. Other comparisons with CXCL12 were also striking, as described below.

To provide more detail, 2 wk postengraftment transplanted hNSC-derived cells (as detected by human-specific mitochondrial [hMito] immunoreactivity) (1) were abundantly and widely distributed throughout the cortical parenchyma and hippocampal contralateral to their implantation site, congruent with SDV1a’s distribution (detailed below) (Figs. 3D and 4, Left), and persisted throughout the lifetime of the mouse, indicating that the synthetic agonist SDV1a had successfully drawn the hNSCs to the targeted area where it had been administered, overcoming barriers to NSC migration. (The differentiation fate of engrafted hNSCs is more extensively explored below and in Fig. 8 and SI Appendix, Fig. S9.) Near all implanted hNSCs migrated toward the SDV1a injection site in the contralateral hemisphere, with negligible (if any) remaining and integrating at the point of implantation on the side opposite to that of the SDV1a injection (Fig. 5, A and B). Rather, SDV1a required a 10-fold higher dose to achieve the same degree of hNSC migration as detected by human-specific mitochon-
SDV1a compared to recombinant CXCL12 might be attributable to its greater resistance to in vivo enzymatic degradation compared to CXCL12 (18) because of its unnatural amino acid composition; all amino acids in the DV1 binding motif are in a D-chirality. This short half-life for natural endogenous CXCL12 is transiently compensated for in vivo immediately following an injury by its being replenished recurrently by reactive astrocytes and vascular endothelium, as we (previously reported (8)); however, therapeutically, one could not—nor want to—rely on this mechanism for renewal. The pharmacokinetics of SDV1a was consistent with rapid dissemination (by 30 min postinjection) throughout the regions illustrated in Fig. 4, i–iii and 5A with a Cmax of 11.3 ± 1.3 μg/ml of brain tissue.

SDV1a’s persistence may also be ascribed to another striking difference between brains injected with SDV1a compared to those that received CXCL12 (and, indeed, one of our goals): The diminished degree of activated microgliosis engendered by the former compared to the latter. As suggested by SDV1a’s induced gene-expression profile with a much reduced inflammatory signature (SI Appendix, Figs. S6 and S7), SDV1a evoked little, if any, microglial reactivity (Fig. 5 C, Left), hence triggering fewer counteractive host responses to eliminate an “inciter.” Microglia are early sensors of pathology and thus are the principal cellular mediators of inflammation in the brain. Activated resident microglial cells and recruited macrophages from the vascular endothelium generate toxic mediators of inflammation, such as oxygen radicals, nitric oxide, and neurotoxic cytokines (e.g., TNF-α, MIP1α, and IL-1β). Hence, monitoring the appearance of activated microglia is an excellent bellwether of an inflammatory milieu. The brains of mice receiving CXCL12 were characterized by a vast reactive M1 microgliosis ([as determined not only by their immunostaining for CD11b, F4/80, CD68, and Iba1, but also by their activated and amoeboid morphology (42)]) (Fig. 5 C, Right). In stark contrast, there was virtually no microgliosis appreciated following injection of SDV1a despite its extensive contemporaneous chemotactic pull on the hNSCs (Fig. 5 C, Left). As in previous studies (1–5, 43), transplanted NSCs themselves do not provoke an inflammatory reaction, even without immunosuppression, likely because—at the differentiation state at which the cells are implanted—they do not express MHC class II (43). Mice were entirely normal histologically, physiologically, and behaviorally. (Note that, in these experiments in healthy adult mice, the blood–brain barrier was intact; the needle itself was so...
Fig. 4. Transplanted hNSCs are drawn to SDV1a across large distances in the adult mammalian brain. WT intact adult (6- to 8-wk old) C57BL/6J mice were implanted by stereotaxic guidance to the location indicated in the schematics, with hNSCs (2 × 10^5cells/μL dissociated cell suspension) contemporaneously with injections (into the three contralateral regions indicated in the schematics) of either SDV1a (Left) or PBS (sham control) (Right). i = hippocampus; ii and iii = two different regions of cortex. Coronal sections (20 μm) were analyzed immunohistochemically from each region to detect hNSCs that had migrated from the opposite hemisphere, using the well-established hMito (red) (1) at various time intervals posttransplant, ranging from 2 wk (shown here) to 4 mo. See Insets for magnified images hNSC-derived hMito-immunopositive cells (red), demonstrating their unambiguous cytoplasmic appearance in relation to DAPI+ nuclei (blue). With the exception of the rostral migratory stream, the intact adult rodent brain does not usually support long-distance migration of NSCs in the cerebrum. However, as shown, Left, transplanted hNSCs migrated to the multiple contralateral regions injected with SDV1a. No such migration occurred when PBS was injected into regions i to iii; no hNSCs were evident there (Right), an appearance identical, as well, to that following injection of recombinant CXCL12 into those regions (see section of text entitled Transplanted hNSCs Are Drawn to SDV1a across Large Distances in the Adult Brain for explanation). (Scale bars, 25 μm.) (Data from mice who received injections of SDV1a without hNSCs are shown in SI Appendix, Fig. S8.)

fine and applied so noninvasively that not even local trauma was induced by the injection. Therefore, infiltration of inflammatory cells from the peripheral circulation, such as lymphocytes and macrophages, would not be expected.)

Despite its wide distribution and long-term stability in recipient brains, SDV1a did not disrupt the blood–brain barrier; cause host cell death, abnormal host cell proliferation, distortion of host cytoarchitecture, or tumor formation; draw cells into the brain that do not belong there (including peripheral blood macrophages); or traffic to other organs, such as kidney, liver, lung, or spleen. Mice showed no evidence of systemic CNS toxicity or altered behavior. As explained in greater detail below (and in Fig. S8 and SI Appendix, Fig. S9) the differentiation fate of hNSCs was unaltered, including, where appropriate, into electrophysiologically active neurons. Importantly, as noted above on a cellular level for hNSCs (SI Appendix, Figs. S6 and S7), SDV1a did not induce a proinflammatory gene-expression profile within the adult mouse brain as a whole, in contrast to injected recombinant CXCL12, which did promote such a profile. In other words, injection of SDV1a, whether in conjunction with hNSC transplantation or alone, produced no inflammation. Interestingly, in the uninjured adult murine brain, SDV1a alone did not appear to draw endogenous host murine CXCR4-expressing cells to its location (the number of such cells in the SDV1a-injected cortex or hippocampus did not differ from that in the corresponding uninjected contralateral structure of the same mice or in homotopic regions of age-matched uninjected mice). The explanation for an absence of any redistribution of endogenous neural cells seemed simply to be that, in the intact adult mouse brain parenchyma, the cells expressing CXCR4 are not migratory NSCs, but rather well-integrated mature neural cells (SI Appendix, Fig. S8); in fact, the endogenous Nestin+ NSCs in the adult brain parenchyma did not express CXCR4 (SI Appendix, Fig. S8). A rigorous study of this phenomenon of differential CXCR4 expression by cells of different phenotypes and different developmental ages in different brain regions under different conditions is beyond the scope of this paper; suffice it to say, this relatively selective effect of SDV1a in hNSC transplantation paradigms may further support its safety profile. In the disease model we describe below (Figs. 6-8 and SI Appendix, Fig. S9), SDV1a’s use (including any changes on endogenous cells below our level of detection) enhanced—and in no way hindered—the efficacy of a cell-based therapy.

Persistence of SDV1a in the CNS parenchyma, taken together with slow hNSC CXCR4 receptor turnover, strong affinity for the CXCR4 binding pocket, and a benign noninflammatory surrounding milieu, likely accounted for the stable presence of donor hNSCs in response to SDV1a, even in a typically nonneurogenic, nonmigration-supporting region. The instability of recombinant CXCL12 in a physiological environment (8, 41, 42), either because of its enzymatic degradation or the toxic inflammation it engenders, likely explains why it did not promote similar long-distance donor hNSC migration and integration within the host cortex.

Coadministration of SDV1a with hiPSC-Derived hNSCs Renders Them More Therapeutic. We next determined whether such properties would enable SDV1a to circumvent a therapeutic obstacle. A long-standing challenge to regenerative medicine has been enhancing and directing the migration of therapeutic cells to regions in need (11, 12). (This obstacle has recently become particularly salient with the recognition that, for unknown reasons, hiPSC derivatives, although gaining in popularity for therapeutic transplants, migrate poorly compared to their primary or human embryonic stem cell [hESC] counterparts.) To assess whether a “chemo-mimetic” strategy could address this challenge, we elected to approach a disease model in which unambiguous measures of therapeutic success: 1) Pivot on adequate migration of hNSCs from their site of implantation to distant regions mediating key functions (e.g., the cortex); 2) demand wide-spread dissemination and integration of donor cells in those regions to affect improvement, and where the degree of benefit correlates with the extent of migration and integration of donor cells; 3) require that inflammation not be exacerbated, given that a prominent inflammatory signature
CXCR7 inhibitor had nevertheless migrated entirely to the contralateral side (hippocampus in this case), as indicated by the presence of hMito+ cells (red) for 24 to 72 h postgrafting in vivo via an osmotic pump implanted at the site of transplantation. As early as 3 d posttransplant, hNSCs treated with the CXCR4 blocker as compared to only 1.1 ± 2.8 per 0.4 mm² CD11b+ cells were present following an injection of native CXCL12 (Left), indicating that CXCR4 inhibition blocked the migration of engrafted hNSCs toward the SDV1a sites in mouse brain. As expected, no hNSCs were seen when PBS was injected instead of SDV1a as a sham control. All cells in the field are visualized by a DAPI nuclear stain. (Scale bars, 10 μm.) These data suggested that SDV1a was acting highly specifically through CXCR4 directly on the hNSCs and not through other chemokine receptors or through intermediaries (e.g., receptors on macroglia, microglia, extracellular matrix, vascular endothelia, and so forth). (C) Brains treated with CXCL12/SDV1a (Right) but not those treated with SDV1a (Left) engendered widespread abundant activated microglia. Activated M1 microglia are shown here as immunopositive for CD11b (red), but were similarly detected by antibodies to F4/80, CD68, and Iba1. Such microgliosis persisted as long as 2 wk postinjection. The demonstration of a lack of activated microgliosis in response to SDV1a. (Inset) shows a high-power view from the field (white arrow) of a typical activated M1 microglial cell. The region shown (i in the schematics) in both conditions is representative of all areas exposed to SDV1a vs. CXCL12. An average of 11.7 ± 2.8 per 0.4 mm² CD11b+ cells were present following an injection of native CXCL12 compared to only 1.1 ± 1.0 CD11b+ cells per 0.4 mm² following an injection of SDV1a (a number comparable to the healthy adult murine brain). All cells in the field are visible by the DAPI (blue) nuclear stain. (Scale bars, 10 μm; 5 μm in the Inset). (n = 3 mice in each condition) (See also Fig. 7B for a similar demonstration of a lack of activated microgliosis in response to SDV1a.)

The hNSCs were preincubated ex vivo with either the CXCR4 inhibitor AMD3100 (Left) or the CXCR7 inhibitor CCX771 (Right), exposure to which continued for 24 to 72 h postgrafting in vivo via an osmotic pump implanted at the site of transplantation. As early as 3 d posttransplant, hNSCs treated with the CXCR7 inhibitor had nevertheless migrated entirely to the contralateral side (hippocampus in this case), as indicated by the presence of hMito+ cells (red) (Right) (similar to Fig. 4, Left); arrow indicates one such cell. In contrast, no hNSCs treated with the CXCR4 blocker were detectable there (Left), indicating that CXCR4 inhibition blocked the migration of engrafted hNSCs toward the SDV1a sites in mouse brain. As expected, no hNSCs were seen when PBS was injected instead of SDV1a as a sham control. All cells in the field are visualized by a DAPI (blue) nuclear stain. (Scale bars, 10 μm.) These data suggested that SDV1a was acting highly specifically through CXCR4 directly on the hNSCs and not through other chemokine receptors or through intermediaries (e.g., receptors on macroglia, microglia, extracellular matrix, vascular endothelia, and so forth). (C) Brains treated with CXCL12/SDV1a (Right) but not those treated with SDV1a (Left) engendered widespread abundant activated microglia. Activated M1 microglia are shown here as immunopositive for CD11b (red), but were similarly detected by antibodies to F4/80, CD68, and Iba1. Such microgliosis persisted as long as 2 wk postinjection. The demonstration of a lack of activated microgliosis in response to SDV1a. (Inset) shows a high-power view from the field (white arrow) of a typical activated M1 microglial cell. The region shown (i in the schematics) in both conditions is representative of all areas exposed to SDV1a vs. CXCL12. An average of 11.7 ± 2.8 per 0.4 mm² CD11b+ cells were present following an injection of native CXCL12 compared to only 1.1 ± 1.0 CD11b+ cells per 0.4 mm² following an injection of SDV1a (a number comparable to the healthy adult murine brain). All cells in the field are visible by the DAPI (blue) nuclear stain. (Scale bars, 10 μm; 5 μm in the Inset). (n = 3 mice in each condition) (See also Fig. 7B for a similar demonstration of a lack of activated microgliosis in response to SDV1a.)

already contributes to the pathophysiology; and 4) constitutive, spontaneous migration of grafted cells is limited. LSD mouse models nicely fit these criteria (1, 38). Indeed, lack of efficacy in some stem cell-based clinical trials for neuropathic LSDs have been attributed, in part, to inadequate coverage of diseased terrain by transplanted corrective cells (32). Furthermore, given the recently reported toxicity of viral vectors, such as AAV9, at high doses required for widespread CNS gene replacement (33), cell-based gene therapy will likely play an even more prominent role in these conditions.

Of the neuropathic LSDs, we elected to approach Sandhoff disease (1) not only because this lethal neurodegenerative disorder provides a stringent, rapid, and unambiguous test for a tool to enhance stem cell migration and chimera, but also because we have a rich database on this model, having studied it extensively (1). In addition, the largely invariant natural history of patients with this condition (for which the mouse model is excellently representative) is well-established. Sandhoff disease is a rapidly progressive lethal neurodegenerative condition characterized by a deletion mutation of the gene encoding the β-chain of the secreted diffusible lysosomal enzyme β-hexosaminidase (Hex), leading to absence of both its dimeric isofoms, Hex A and Hex B. This complete absence of Hex results in intraneuronal ganglioside storage and inflammation, leading to inexorable neuronal death and neurological demise.

We previously reported (1) that exogenous normal hNSCs—whether derived from hESCs or isolated directly from the CNS—when transplanted into the cerebral ventricles of newborn Sandhoff disease (Hexβ−/−) mice, integrated into the subventricular zone and, from there, migrated extensively throughout the brain, forestalling disease onset, preserving function, and substantially extending life. We profiled the multiple mechanisms by which hNSCs imparted this benefit (4): 1) They constitutively produced Hex A and B, which was endocytosed by mutant cells via their mannose-6-phosphate (M6P) receptor, restoring normal metabolism; 2) they reduced ganglioside storage within host neurons by virtue of this cross-correction; 3) they replaced a small number of degenerating neurons as well as glia; and 4) they diminished inflammation. The success of these actions was dependent on widespread dissemination and integration of the exogenous NSCs, particularly in the cortex where a threshold density of donor-to-host cells was required: A 1:10 ratio conferred whole-brain Hex activity that was >3 to 5% of WT, a threshold level sufficient to restore normal metabolism (1), even achieving levels as high as 28% of WT Hex activity in areas of densest hNSC chimerism (4). hNSCs derived from hiPSCs (44) have not yet been tested in this model, although our expectations were modest given the growing concern regarding iPSC migration. Normally, for a monogenic disease, one would not want to use autologous cells for a cell-based treatment given that those cells also bear the enzyme deficiency. However, the potential appeal of patient-specific hiPSCs in this situation, particularly in view of the latter-day ease of correcting monogenic defects by either genome editing or virus-mediated transgene...
transfer, was that immunocompatible hiPSCs could be reinjected periodically throughout a patient’s life as the brain grows or donor-derived cells die without the risk of immunorejection. A first transplant, even with allogeneic NSCs (as we reported in newborns and adults) does not require immunosuppression (1, 3, 43); however, subsequent reimplantation of the same NSCs does run the risk of rejection based on prior sensitization. Hence determining the efficacy and safety of hiPSCs for this condition seemed justified.

The consensus view is that, when using NSCs to address a neuropathic LSD (such as Hexε/ε− mice) prolonged life, delayed onset of symptoms, and preserved motor function most significantly when grafting was accompanied by coadministration of SV1a to insure distribution of Hex-producing cells throughout the mutant cortex. (A) Motor function deteriorated (as measured by rotarod) in 3-mo-old untreated Sandhoff disease mice (green squares, n = 14). While the intraventricular transplantation (Tx) of hiPSC-hNSC transplanted symptomatic collapse by ∼2 wk (black circles, n = 22; P < 0.001 by t test compared to untreated Sandhoff disease mice), this period was significantly less than the 4-mo symptom-free period we previously reported using primary CNS- and hESC-derived hNSCs (1). (Data represent mean ± SEM). hiPSC-derived hNSCs are known to have more limited migratory ability. However, coadministration of the hiPSC-hNSCs and the SV1a peptide (B) forestalled loss of motor function until at least 4 mo with no significant decline until 18 wk in transplanted Sandhoff disease mice (blue circles, n = 14) (P < 0.001, t test compared to hiPSC-hNSC Tx Hexε/ε− mice without SV1a) (black circles) and compared to control untreated Hexε/ε− mice (green squares); mean ± SEM). Performance of WT mice is shown as pink triangles (n = 12). (C) Survival (shown as Kaplan–Meier curves) of hiPSC-hNSC-transplanted Sandhoff disease mice without (black triangles, n = 22) and with (purple squares, n = 14) coadministration of SV1a compared with untreated Hexε/ε− mice (orange circles, n = 14). While hiPSC-hNSC transplanted Sandhoff disease mice were alive when all untreated Sandhoff disease mice had already died (131 d). Fibroblast transplantation yields survival and function curves indistinguishable from untreated Sandhoff disease mice, as we previously reported (1).

hNSCs did not migrate to the cortex from their implantation site in the ventricles, severely limiting their efficacy for Sandhoff disease. In other words, although engrafted Hex-expressing hiPSC-derived hNSCs did increase life span and improve motor function of the Sandhoff disease mice somewhat (Fig. 6), their impact was inferior to that from primary CNS- and hESC-derived hNSCs (4) due to their limited migration from periventricular regions to the cortex. This limitation was replicated using different hiPSC lines from different suppliers neutralized using different accepted protocols (SI Appendix, Detailed Experimental Procedures). We viewed it as beyond the scope of this work to determine the reason for this more limited migration. It may represent a component of residual epigenetic memory or the consequences of the genetic manipulation inherent in reprogramming; suffice it to say that, in using accepted and oft-used published generation and differentiation protocols, we eliminated “technique” as a confounder. Rather, we accepted this consistent observation by us and others (46, 47) of restricted migration as a potential limitation to hiPSC-based therapies for these types of neural transplantation challenges, and rather viewed this obstacle as an opportunity to demonstrate that a synthetic chemokine agonist could effectively optimize the impact of cell-based therapies by enhancing migration (a demanding proof-of-concept).

Indeed, when hiPSC-derived hNSCs were implanted into the cerebral ventricles of neonatal Hexε−/ε− mouse brains contemporaneously with the minimally invasive administration of 1 μL of 3.2 μM SV1a into each hemisphere’s superficial dorsal cortex via a finely drawn glass micropipette (by barely puncturing the meninges, as we had done with normal adult mice in Fig. 4), we now observed wide dissemination of corrective donor-derived neural cells (which constitutively expressed fully assembled and active Hex A and B) throughout the diseased brain (1) (Fig. 7; and as per Fig. 4) with a significant therapeutic impact, now comparable to what we previously reported for other sources of hNSCs (1). This impact included delayed disease onset, preserved motor-function [as assessed by rotarod (1, 2)], prolonged symptom-free survival, and extended lifespan (Fig. 6). Hex activity was now measurable throughout the cortex (Fig. 7, histograms) with the donor-to-host cell ratio cited above, as we previously reported (4); host intraneuronal glycosphingolipid (GSL) monosialoganglioside (GM2) storage was reduced at 2-mo of age (as measured using the standard biochemical reaction, immunohistochemistry, and HP- TLC) compared to untransplanted age-matched Hexε−/ε− littermates, as well as Hexε−/ε− littermates transplanted without coadministration of SV1a (Fig. 7). No GM2 was detected in normal mouse brains (Fig. 7 C and D). In addition, inflammation within the Hexε−/ε− cortex was actually diminished [attributable to the previously documented (1, 2, 38) and now well-accepted immunomodulatory actions of hNSCs (5)] with no additional inflammation or microgliosis having been induced by the SV1a (Fig. 7 A and B). Furthermore, SV1a did not antagonize the antiinflammatory actions of the hNSCs (1). Although such neurons were not central to the therapeutic impact of the hiPSC-hNSCs in this disease model, their presence reaffirmed that SV1a did not alter the differentiation profile of hNSCs, or the ability of their derivatives to integrate into host cytoarchitecture in a functionally and cell-type-appropriate manner, or their mechanisms-of-therapeutic-action in the Sandhoff disease mouse model. All SV1a appeared to change was the distribution of the implanted hiPSC-derived hNSCs, allowing them to cover, and hence rescue, a broader critical terrain of mutant brain, thus enhancing the hiPSC-derived hNSC’s therapeutic impact on this disease.
For completeness, we found that the remainder of the hiPSC-hNSC differentiation pattern in the engrafted SDV1a exposed brains (n = 35) was also similar to what we previously reported for primary CNS- and hESC-derived hNSCs (4) (39% expressing astroglial markers, 2% oligodendroglial markers, 54% markers of undifferentiated neural progenitors) (SI Appendix, Fig. S9). No other cell types (including nonneural lineages) were represented. All cells expressed Hex. No tumors, cell overgrowth, distortion of host cytoarchitecture, or hemorrhages were observed. (Although beyond the scope of this study, an effective long-term cell-based treatment of this condition may entail periodic readministration of hiPSC-derived neural cells at cardinal time points throughout a patient’s life when Hex levels dip below a certain threshold or symptoms recur as the brain grows and WT cells senesce and die.)

Discussion
In summary, we have explored a strategy for directing the migration of transplanted stem cells, particularly hiPSC-derived hNSCs, by harnessing one of stem cell biology’s fundamental actions, pathotropism, as mediated by inflammatory chemokine–receptor interaction. As proof-of-concept that one can develop a bifunctional ligand that diverts inflammatory signaling from migratory signaling as well as from binding, we developed, through chemical mutagenesis of the prototypical cytokine CXCL12, a “dual-moietiy” prototypic synthetic CXCR4 agonist peptide that contains a maximal selective receptor binding motif linked to a modified and shortened CXCR4-activating motif of higher signaling specificity. We documented significant advantages of the synthetic agonist over recombinant versions of the natural CXCR4 agonist CXCL12 in the mouse brain in terms of distribution, stability, inflammogenesis, duration of chemoattraction and, most importantly, extent and success of migratory guidance of engrafted CXCR4-expressing stem cells, such as hNSCs. As evidence of its translational value, we used the peptide to guide engrafted hiPSC-derived hNSCs, whose own migratory repertoire appears limited, toward sites of CNS pathology, alleviating symptoms, preserving function, and prolonging life in a mouse model of a prototypical neurodegenerative disorder. Importantly, microgliosis and inflammation were actually suppressed, not provoked; that is, the antiinflammatory action of the hNSCs was not contravened by the CXCL12-mimetic as might have been feared. (In many neurodegenerative diseases there is strong evidence for an inflammatory response initiated by microglial activation leading to neuronal apoptosis.) To our knowledge, this synthetic chemokine agonist agonist is characterized, and validated in a translationally relevant system is unique. [Of note, one would actually not want to test this phenomenon in an acute focal traumatic injury model because, as we’ve previously shown (2–5, 48), migratory signals in A from the same representative 4-mo-old untransplanted Sandhoff disease mouse. (D) In contrast, little GM2 accumulation occurred in the same region of an age-matched Sandhoff disease mouse transplanted (Tx) with hiPSC-hNSCs coadministered with SDV1a (same mouse and region as in B). DAPI nuclear stain (blue) marked all cells shown. (Scale bar, 20 μm.) The images in A–D are orthogonal projections composed of 9 to 16 optical z-planes of thickness 0.5 to 1 μm. n = 6 animals per experiment group. (E) To provide a mechanistic basis for the observations in A–D, we demonstrated that Hex enzyme levels in the CNS parenchyma of Sandhoff disease mice were raised beyond the critical 3 to 5% therapeutic threshold in regions where donor cells were attracted by SDV1a to integrate as opposed to regions where they were not (i.e., transplanted but without SDV1a coadministration). The Hex levels in the hiPSC-hNSC+SDV1a Sandhoff disease mice were significantly higher than those in SD mice transplanted but without SDV1a or in untransplanted Sandhoff disease mice (P < 0.05, **P < 0.01 by two-tailed t test). The donor-to-host cell ratio in engrafted regions was 1:10, as previously reported (1).
from a reservoir of concentrated inflammatory cues, as in the epicenter of a circumscribed lesion, already abets likely adequate migration, although one could certainly optimize it with this peptide. One wants to test proof-of-concept in a dramatically deficient model, as we’ve done here.

Since CXCR4 is present on most stem cells in most organs, SDV1a could be useful outside the nervous system as well for directing stem cells from a range of derivations for many pathological conditions (5–12, 49–54). Furthermore, because signaling between CXCL12 and CXCR4 is an off-explored axis, having been implicated in a number of degenerative CNS diseases and other disorders (5–12, 49–54), the agonist may be useful as a molecular probe for further understanding ligand-GPCR signaling in studying pathogenic mechanisms (21). Additionally, this approach of subjecting inflammatory chemokines to chemical mutagenesis to maximize desirable properties (e.g., homing) and minimize undesirable characteristics (e.g., inimical inflammatory reactions) could be applicable to other chemokines. Other chemokine receptors are thought to have a two-site interaction with their ligand similar to that we exploited for CXCR4 (18–20). Moreover, many of these sites are druggable.

In short, off-the-shelf, reasonably priced, broadly applicable chemokine analogs and chemokine–receptor agonists with in vivo stability, potent chemotraction without inflammogenesis or adverse off-target actions, and with established efficacy, efficiency, tolerability, and safety in pathologic conditions requiring a specific distribution and location of therapeutic cells should provide regenerative medicine with another tool. In the CNS, one might envision using such a novel GPCR-targeted medication when reparative stem cells (producing therapeutic molecules, scavenging or neutralizing toxins, enhancing remodeling, providing therapeutic structures like myelin, or replacing cells) must: 1) Be directed to needed regions (e.g., the cortex in dementing disorder); 2) be more widely distributed to broaden their chimerism (e.g., throughout the spinal cord in neuromuscular diseases, such as amyotrophic lateral sclerosis); 3) be more homogeneously distributed within a given organ to avoid overly concentrated niduses of cells (e.g., dopamine-expressing cells in the striatum of Parkinsonian patients); 4) have a permissive milieu created for them within chronically injured microenvironments where reparative cues have abated. In addition, blunting undesirable signaling as we did here may be useful in other systems: For example, chemokine receptor T-cell antineoplastic immunotherapy in order to minimize the adverse effects of cytokine (“storm”) release syndrome (55, 56).

Methods

To synthesize SDV1a, the first 21 amino acids (all in a D-chirality) from the N-terminal of the CXCR4 antagonist vMIP-II were inserted in place of CXCL12’s proximal N terminus to provide a ligand with the highest affinity for the binding pocket. The distal N-terminal signaling motif of CXCL12, which engages the signaling pocket, was truncated to the first 8 amino acids, narrowing the spectrum of G protein-mediated pathways activated. After affixing SDV1a’s specificity and efficacy in CXCR4 competition assays, it was injected into regions of normal adult mouse brain and of the brains of Sandhoff disease mice into which we cotransplanted hNSCs to home and engraft.

Data Availability. All study data are included in the article and supporting information. All materials and protocols are available from E.Y.S., Z.H., or J.-P.L.

ACKNOWLEDGMENTS. This work was supported by grants from the National Institutes of Health (R01-GM057761), the California Institute for Regenerative Medicine (RS1-00225-1), the Department of Defense (WB1XWH-16-1-0007-02), the National Tay-Sachs & Allied Disease Foundation, the Children’s Neurobiological Solutions Foundation, the National Tay-Sachs & Allied Disease Foundation, the Children’s Neurobiological Solutions Foundation, the National Tay-Sachs & Allied Disease Foundation, the Children’s Neurobiological Solutions Foundation, the National Tay-Sachs & Allied Disease Foundation, the Children’s Neurobiological Solutions Foundation, the National Tay-Sachs & Allied Disease Foundation, the Children’s Neurobiological Solutions Foundation, the National Tay-Sachs & Allied Disease Foundation, the Children’s Neurobiological Solutions Foundation.
14. N. Heveker
15. C. Z. Dong
16. P. Palladino
17. B. Wu
18. N. Zhou, Z. Luo, J. Luo, J. W. Hall, Z. Huang, A novel peptide antagonist of CXCR4.
19. B. Wu
20. N. Zhou, Z. Luo, J. Luo, J. W. Hall, Z. Huang, A novel peptide antagonist of CXCR4.
21. J. I. Imotila et al., Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway. Proc. Natl. Acad. Sci. U.S.A. 101, 18117–18122 (2004).
22. M. Li et al., SJ. Hale, N. J. Rich, R. M. Ransohoff, J. D. Latha, Chemokine CXCL12 in neurodegenerative diseases: An SOS signal for stem cell-based repair. Trends Neurosci. 35, 27–28 (2012).
23. K. S. Carbalaj, C. Schaubrem, R. Strittert, J. K. E. Lane, Migration of engrafted neural stem cells is mediated by CXCL12 signaling through CXCR4 in a viral model of multiple sclerosis. Proc. Natl. Acad. Sci. U.S.A. 107, 11068–11073 (2010).
24. B. P. Tran, D. Ren, T. J. Veldhouse, R. J. Miller, Chemokine receptors are expressed widely by embryonic and adult neural progenitor cells. J. Neurosci. Res. 76, 20–34 (2004).
25. Q. Ma et al., Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice. Proc. Natl. Acad. Sci. U.S.A. 95, 9448–9453 (1998).
26. J. M. Karp, G. S. Leng Teo, Mesenchymal stem cell homing: The devil is in the details. Cell Stem Cell 4, 206–216 (2009).
27. K. Kudlajayani, Directing stem cell homing. Cell Stem Cell 2, 198–200 (2008).
28. M. P. Crump et al., Solution structure and basis for functional activity of stromal cell-derived factor-1; dissociation of CXCR4 activation from binding and inhibition of HIV-1. EMBO J. 16, 6966–7007 (1997).
29. N. Heveker et al., Dissociation of the signaling and apoptotic properties of SDF-1/D1 receptor interaction. J. Biol. Chem. 271, 369–376 (1996).
30. C. Z. Dong et al., Different stereochemical requirements for CXCR4 binding and signaling functions as revealed by an anti-HIV, D-amino acid-containing SMM-CXCR4 chimera. J. Med. Chem. 48, 7923–7924 (2005).
31. P. Palladino et al., Structural determinants of unexpected agonist activity in a retropeptide analogue of the SDF-1alpha N-terminus. FEBS Lett. 579, 5293–5298 (2005).
32. W. T. Choi et al., Unique ligand binding sites on CXCR4 probed by a chemical biology approach: Implications for the design of selective human immunodeficiency virus type 1 inhibitors. J. Biol. Chem. 274, 15398–15404 (2005).
33. S. Tan et al., M. S. Aboody, K. I. Park, K. S. Ho, A. Blaser, W. K. J. Hsiao, M. K. Tsapogas, Neural progenitors to sites of neuroinflammation. J. Neurosci. 25, 216–224 (2005).
34. S. Tanabe et al., Functional expression of the CXCR4 chemokine receptor-4fusin on mouse microglial cells and astrocytes. J. Immunol. 159, 905–911 (1997).
35. J. Imitola et al., Neural stem/progenitor cells express cyclomulatory molecules that are differentially regulated by inflammatory and apoptotic stimuli. Am. J. Pathol. 161, 1615–1625 (2004).
36. B. T. D. Tobe et al., Probing the lithium-response pathway in hiPSCs implicates the phosphoregulatory set-point for a cytoskeletal modulator in bipolar pathogenesis. Proc. Natl. Acad. Sci. U.S.A. 114, E4462–E4471 (2017).
37. I. Singec et al., Quantitative analysis of human pluripotency and neural specification by in-depth (phospho)proteomic profiling. Stem Cell Reports 7, 527–542 (2016).
38. J. M. Larcos, F. Koehl, C. B. Osterling, C. Brustle, A. Fisch, A. Vincent, N. E. Blachère, A. Bar-Or, Neuroinflammation: Pathways in which the immune system affects the brain. Neurotherapeutics 12, 896–909 (2015).
39. S. S. Neelapu et al., Chimeric antigen receptor T-cell therapy — assessment and management of toxicities. Nat. Rev. Clin. Oncol. 15, 47–62 (2018).
40. R. Channappanavar, S. Perlmutter, Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol. 39, 529–539 (2017).