DUALITY FOR FINITE HOPF ALGEBRAS EXPLAINED
BY CORINGS

S. CAENEPEEL, D. QUINN, AND Ş. RAIANU

ABSTRACT. We give a coring version for the duality theorem for actions
and coactions of a finitely generated projective Hopf algebra. We also
provide a coring analogue for a theorem of H.-J. Schneider, which gen-
eralizes and unifies the duality theorem for finite Hopf algebras and its
refinements.

INTRODUCTION

The Duality Theorem for actions and coactions of a finite Hopf algebra
is the following:

Theorem 0.1. [2, 12] Let \(H \) be a finitely generated projective Hopf algebra
over the commutative ring \(k \), and \(A \) a right \(H \)-comodule algebra. Then

\[
(A\#H^*)\#H \simeq \text{End}_A(H \otimes A).
\]

The following are two refinements of Theorem 0.1:

Theorem 0.2. [11] Let \(H \) be a finitely generated projective Hopf algebra
over the commutative ring \(k \), and \(A \) a right \(H \)-comodule algebra. Then:

i) \(\text{End}_A^H(H \otimes A)\#H \simeq \text{End}_A(H \otimes A) \)

ii) \(\text{End}_A^H(H \otimes A) \simeq A\#H^* \).

It was shown in [5] that both assertions of the previous theorem are par-
ticular cases of the following result, due to H.-J. Schneider:

Theorem 0.3. [8] Let \(H \) be a finitely generated projective Hopf algebra
over the commutative ring \(k \), \(A \) a left \(H \)-module algebra, and \(B = A^H \) the algebra
of invariants. Assume that \(A/B \) is a right \(H^* \)-Hopf Galois extension, and
let \(M \in \mathcal{M}_A^H \). Then \(\text{End}_A(M) \) is a left \(H \)-module algebra via the action
\((h \cdot f)(m) = h(1)f(S(h(2))m) \), and we have the algebra isomorphism

\[
\text{End}_A(M)\#H \simeq \text{End}_B(M),
\]

sending \(f\#h \) to the endomorphism of \(M \) mapping \(m \) to \(f(hm) \).

Date: May 4, 2005.

This paper was written while the first author visited the Mathematics Departments of
Syracuse University and California State University Dominguez Hills. He would like to
thank both departments for their hospitality.
The comultiplication is \(\Delta : \) the right \(A \) algebra via \(\Delta(1) = 1 \cdot 1 \). The big smash product \(\#(H,A) \) via \(\Delta(1) = 1 \cdot 1 \) itself has multiplication defined by \((a \# h^*)(b \# g^*) = ab[0] \# (h^* \leftarrow b[1]) g^* \). The big smash product \(\#(A,H) = Hom_k(H,A) \) has multiplication defined by \((f \cdot g)(h) = f(g(h_{i2}[1])h_{i1})g(h_{i2}[0]) \). If \(H \) is projective finitely generated over \(k \), and \(h_i \) and \(h_i^* \), \(i = 1 \ldots n \), are dual bases, then \(\#(H,A) \simeq \text{A} \# H^* \) as rings, via \(f \mapsto \sum_{i=1}^{\pi \otimes H^*} f(h_i) \otimes h_i^* \). Note that if \(B = A \# H \), then \(A/B \) is a right \(H^* \)-Hopf-Galois extension if and only if the coring \(A \otimes H \) from Example 0.5 is isomorphic to the canonical coring \(A \# B \) via the map sending \(a \otimes b \in A \# B \) to \(ab[0] \otimes b[1] \in A \otimes H \).

Definition 0.4. Let \(A \) be a ring. An \(A \)-bimodule \(C \) is called a coring if there exist \(A \)-bimodule maps \(\Delta : C \rightarrow C \otimes_A C \) and \(\varepsilon : C \rightarrow A \), such that \(\Delta \) is coassociative and \(\varepsilon \) is a counit.

Corings were introduced by Sweedler in [10], and were given a lot of attention lately, after Takeuchi remarked that many examples of (generalized) Hopf modules are in fact just comodules over some corings. For all unexplained facts about corings the reader is referred to [3].

The most basic example of a coring is a coalgebra over a commutative ring \(A \). Another fundamental example is the canonical coring associated to \(H \) from example 0.5 is \(\text{a right Hopf-Galois extension if and only if the coring } A \otimes H \) from example 0.5 is isomorphic to the canonical coring \(A \# B \) via the map sending \(a \otimes b \in A \# B \) to \(ab[0] \otimes b[1] \in A \otimes H \).
1. Duality for corings

In this section we prove a duality theorem for finitely generated projective corings, and show that it extends the duality theorem for finite Hopf algebras.

Let \(C \) be an \(A \)-coring. Then the left dual of \(C \), denoted by \(*C \), is by definition

\[
*C = A \text{Hom}(C, A),
\]

with multiplication given by

\[
(\phi * \psi)(c) = \psi(c_1)\phi(c_2)).
\]

Then \(A \) becomes a subring of \(*C \) via

\[
i : A \longrightarrow *C, \quad i(a)(c) = \varepsilon(c)a.
\]

Similarly, the right dual of \(C \), denoted by \(C^* \), is by definition

\[
C^* = \text{Hom}_A(C, A),
\]

with multiplication given by

\[
(\phi * \psi)(c) = \phi(\psi(c_1)c_2)).
\]

Now \(A \) becomes a subring of \(C^* \) via

\[
j : A \longrightarrow C^*, \quad j(a)(c) = a\varepsilon(c).
\]

Theorem 1.1. Let \(C \) be an \(A \)-coring, and assume that \(C \) is finitely generated projective as a left \(A \)-module. Then the right dual of the canonical coring associated to the ring morphism \(i : A \longrightarrow *C \) is isomorphic to the (opposite) endomorphism ring \(\text{End}(AC)^{op} \).

Proof. We have the isomorphism

\[
\alpha : \text{Hom}_R(*C \otimes_A *C, *C) \xrightarrow{\sim} \text{Hom}_A(*C, *C) : \beta,
\]

defined by \(\alpha(\phi)(c^*) = \phi(c^* \otimes 1) \) and \(\beta(\psi)(c^* \otimes d^*) = \psi(c^*)d^* \). (Note that \(\alpha \) is simply the composition of the hom-tensor adjointness with the equivalence of \(\text{Hom}_R(R, -) \), for \(R = *C \) an associative ring.) Now duality for finitely generated projective modules provides the isomorphism

\[
\gamma : \text{Hom}_A(*C, *C) \xrightarrow{\sim} \text{AHom}(C, C) : \delta,
\]

which is defined as follows: let \(c = \sum_{i=1}^n f_i(c_i) \) be the dual basis formula in \(C \); then \(\gamma(\psi)(c) = \sum_{i=1}^n \psi(f_i)(c)c_i \), and \(\delta(\zeta)(f)(c) = f(\zeta(c)) \). It is easy to check that \(\alpha \) is a ring isomorphism, while \(\delta \) is a ring anti-isomorphism. \(\square \)

Let us show now how the duality theorem for finitely generated projective Hopf algebras can be derived from Theorem 1.1. We first need a description of the smash product as a dual of a coring. Before giving this result, let us remark that a coring interpretation of Theorem 0.2 ii) also realizes the smash product as the endomorphism ring of a coring.
Proposition 1.2. Let H be a finitely generated projective Hopf algebra over the commutative ring k, and A a right H-comodule algebra. Let $A \otimes H$ be the A-coring from example 0.5. There there are ring isomorphisms

$\ast(A \otimes H) \simeq (A \otimes H) \ast \simeq (H, A) \simeq A \# H^\ast$.

Proof. Define

$\gamma : (A \otimes H)^\ast \longrightarrow (H, A) : \delta$

by $\gamma(\phi)(h) = \phi(1 \otimes S^{-1}(h))$, and $\delta(\zeta)(a \otimes h) = \zeta(a_{[1]} S(h))a_{[0]}$. Since it is easy to see that $\gamma(\phi)$ is k-linear and $\delta(\zeta)$ is right A-linear, and that they are inverse one to each other, we check that they are ring isomorphisms:

$$(\gamma(\phi) \cdot \gamma(\psi))(h) = \gamma(\phi)(\gamma(\psi)(h_{(2)})(h_{(1)})) = \gamma(\psi)(1 \otimes S^{-1}(h_{(2)}))\delta(1 \otimes S^{-1}(h_{(1)}))$$

This completes the proof for the middle isomorphism. Now define

$\gamma' : (A \otimes H)^\ast \longrightarrow (H, A) : \delta'$

by $\gamma'(\phi)(h) = \phi(1 \otimes h)$, and $\delta'(\zeta)(a \otimes h) = a \zeta(h)$. It is clear that $\gamma'(\phi)$ is k-linear and $\delta'(\zeta)$ is left A-linear, and that they are inverse one to each other, so we check that they are ring isomorphisms. A short computation shows that γ' establishes a ring isomorphism $\ast(A \otimes H) \simeq (H^\ast, A^\ast)^\ast \simeq (A^\ast H^\ast)^\ast$. Finally,

$A \# H^\ast \simeq (A^\ast H^\ast)^\ast$, $a \# h^\ast \mapsto h_{[1]}(S^{-1}(a_{[1]}))a_{[0]} \# h_{[2]}S^{-1}$

as rings, and the proof is complete.

Corollary 1.3. Let H be a finitely generated projective Hopf algebra over k, and A a right H-comodule algebra. Then $(A \# H^\ast) \# H \simeq \text{End}(A \# H^\ast_A)$ as rings.

Proof. We have the following diagram of isomorphisms:

\[
\begin{array}{ccc}
\Hom_{-C}(\ast C \otimes A \ast C, \ast C) & \longrightarrow & \Hom_{A}(\ast C, \ast C) \\
\downarrow & & \\
\Hom_{-C}(\ast C \otimes H^\ast, \ast C) & \longrightarrow & \Hom_{k}(H^\ast, \ast C)
\end{array}
\]

where C is the A-coring $A \otimes H$ from Example 0.5 and the diagonal map is the composition of the two vertical maps and the horizontal one. By Proposition 1.2, the lower corner of the diagram is just $(A \# H^\ast) \# H$. Also
by Proposition 1.2, $\ast C$ is a right H^*-comodule algebra. Let us denote this structure by $c^* \mapsto c^*_0 \otimes c^*_1$. The horizontal isomorphism is the one from the first part of the proof of Theorem 1.1, the lower vertical one assigns to $f \in \text{Hom}_k(H^*, \ast C)$ the map sending $c^* \otimes h^*$ to $f(c^*_1 h^* S) c^*_0$ (like ζ from Proposition 1.2). The upper vertical isomorphism is induced by the map

$$\text{can} : \ast C \otimes_A \ast C \longrightarrow \ast C \otimes H^*, \ c^* \otimes d^* \mapsto c^* d^*_0 \otimes d^*_1.$$

Thus the diagonal map in the above diagram provides the isomorphism in the statement. In order to make sure that this is exactly the isomorphism from the duality theorem for finite Hopf algebras, we only need to show that it assigns to f the map sending c^* to $f(c^*_1) c^*_0$, which checks immediately. □

In view of the preceding Corollary, we get yet another possible point of view that trivializes the duality theorem for finite Hopf algebras: behind it we find just duality for finitely generated projective modules.

We also have an explanation for getting the bigger endomorphism ring of A, rather than A itself after taking the dual for the second time. Once we take the dual of a coring, we get a ring, so to get another coring that will enable us to take the second dual we need another construction, namely passing to the canonical coring.

2. A coring version of Schneider’s isomorphism

Recall that if (\mathcal{C}, x) is an A-coring with fixed grouplike element x, and $B = A^{\text{coc}} = \{ a \in A \mid \Delta(a) = a \otimes x \}$, then (\mathcal{C}, x) is a Galois coring if the canonical coring morphism $\text{can} : A \otimes_B A \longrightarrow \mathcal{C}$, $\text{can}(a \otimes b) = axb$ is an isomorphism. We have the following coring version of Theorem 0.3:

Theorem 2.1. Let (\mathcal{C}, x) be a Galois coring, $M \in \mathcal{M}_{\mathcal{C}}$, and $N \in \mathcal{M}_{A}$. Then

$$\text{Hom}_A(M \otimes_A \mathcal{C}, N) \simeq \text{Hom}_B(M, N).$$

Proof.

$$\text{Hom}_A(M \otimes_A \mathcal{C}, N) \simeq \text{Hom}_A(M \otimes_A A \otimes_B A, N)$$

$$\simeq \text{Hom}_A(M \otimes_B A, N)$$

$$\simeq \text{Hom}_B(M, \text{Hom}_A(A, N))$$

(by the adjunction property of the tensor product)

$$\simeq \text{Hom}_B(M, N).$$

□

Theorem 0.3 follows now immediately from Theorem 2.1 under the hypotheses of Theorem 0.3 (with H replaced by H^*), take $\mathcal{C} = A \otimes H$ as
in Example 0.5, \(x = 1 \otimes 1 \), and \(M = N \in \mathcal{M}^C \). Then we have that \(H \otimes M \simeq M \otimes H \) as right \(A \)-modules, and therefore:

\[
\begin{align*}
\text{End}_B(M) & \simeq \text{Hom}_A(M \otimes_A (A \otimes H), M) \\
& \simeq \text{Hom}_A(M \otimes H, M) \\
& \simeq \text{Hom}_A(H \otimes M, M) \\
& \simeq \text{Hom}_k(H, \text{Hom}_A(M, M)) \\
& \simeq \text{End}_A(M) \otimes H^*.
\end{align*}
\]

We leave it to the reader to check that the isomorphism is the one from Theorem 0.3 (just note that the last isomorphism from above sends \(g \) to \(\sum_{i=1}^n g(h_i) \# h_i^* S^{-1} \)).

In view of the above, we also obtain the surprising fact that what is behind the duality theorem for finite Hopf algebra and its refinements is just the hom-tensor adjunction property.

References

[1] E. Abe, *Hopf Algebras*, Cambridge Univ. Press, 1977.
[2] R.J. Blattner, S. Montgomery, A duality theorem for Hopf module algebras. J. Algebra 95 (1985), no. 1, 153-172.
[3] T. Brzeziński and R. Wisbauer, *Corings and comodules*, London Math. Soc. Lect. Note Ser. 309, Cambridge University Press, Cambridge, 2003. entwining structures, J. Algebra 276 (2004), 210–235.
[4] S. Dăscălescu, C. Năstăsescu, Ş. Raianu, *Hopf Algebras: an Introduction*, Monographs and Textbooks in Pure and Applied Mathematics 235, Marcel Dekker, Inc., New York, 2001.
[5] S. Dăscălescu, Ş. Raianu, F. Van Oystaeyen, Some Remarks on a Theorem of H.-J. Schneider, Comm. Algebra 24(14), (1996), 4477–4493.
[6] C. Menini, Ş. Raianu, Morphisms of relative Hopf modules, smash products and duality, J. Algebra 219 (1999), 547–570.
[7] S. Montgomery, *Hopf algebras and their actions on rings*, CBMS Regional Conference Series in Mathematics 82, Amer. Math. Soc., Providence, RI, 1993.
[8] H.-J. Schneider, *Hopf Galois extensions, crossed products and Clifford Theory*, in *Advances in Hopf Algebras*, edited by J. Bergen and S. Montgomery, Marcel Dekker Lecture Notes in Pure and Appl. Math., 158 (1994), 267–298.
[9] M.E. Sweedler, *Hopf Algebras*, Benjamin, New York, 1969.
[10] M.E. Sweedler, The predual theorem to the Jacobson-Bourbaki theorem, Trans. Amer. Math. Soc. 213 (1975), 391–406.
[11] K.-H. Ulbrich, Smash products and comodules of linear maps, Tsukuba J. Math., 14 (1990), 371–378.
[12] M. Van den Bergh, A duality theorem for Hopf algebras, in Methods in ring theory (Antwerp, 1983), 517–522, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 129, Reidel, Dordrecht, 1984.

Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050, Brussel, Belgium
E-mail address: scaenepe@vub.ac.be

Department of Mathematics, Syracuse University, Syracuse, NY 13244, USA
E-mail address: dpquinn@syr.edu

Mathematics Department, California State University, Dominguez Hills, 1000 E Victoria St, Carson CA 90747, USA
E-mail address: sraianu@csudh.edu