Basic Study

Morin enhances hepatic Nrf2 expression in a liver fibrosis rat model

Liang Sang, Xue-Mei Wang, Dong-Yang Xu, Li-Xuan Sang, Yang Han, Long-Yang Jiang

AIM
To investigate whether morin can reduce hepatic fibrosis by activating the NF-E2-related factor 2 (Nrf2) signaling pathway.

METHODS
Twenty male Sprague-Dawley rats were randomly divided into four groups: control group, morin group, carbon tetrachloride (CCl₄) group, and morin + CCl₄ group. Rats in both the CCl₄ and morin + CCl₄ groups were injected intraperitoneally with CCl₄ at a dose of 2 mL/kg twice a week. Rats in both the morin and morin + CCl₄ groups were treated orally with morin at a dose of 50 mg/kg twice a week. Control rats were treated with vehicle only twice a week. At the end-point of the 8 wk of the experimental period, serum AST, ALT, and ALP were measured, and the liver specimens...
We constructed a liver fibrosis rat model of liver fibrosis are significantly related to oxidative stress in which a large number of free radicals lead to cell metabolic disorders and subsequent destruction of normal liver cells. Although there is currently no effective therapy for curing liver fibrosis, previous studies showed that the pathological changes in liver fibrosis could be reversed.

Oxidative stress is closely related to the occurrence of liver disease. A large number of studies have shown that oxidative stress may promote the activation of hepatic satellate cells (HSCs) and increase collagen production. In the past decade, numerous studies proved that NF-E2-related factor 2 (Nrf2) plays a role as an important transcription factor in normal liver cells, and its activation could increase the expression of the downstream specific genes, such as the quinone oxidoreductase 1 (NQO1), heme oxygenase (HO-1), and glutathione, which play a role against oxidative stress. Studies have shown that Nrf2 activation could resist oxidative stress caused by hepatic ischemia and injury, liver fibrosis, and drug-induced liver damage.

Flavonoids are rich in a variety of fruits, vegetables, and components of herbal-containing dietary agents and play an important role in preventing many kinds of diseases. Morin (3, 5, 7, 2′, 4′-pentahydroxyflavone) is a kind of flavonoid that consists of a yellowish pigment found in onion and apple (Figure 1). It has been shown that morin possesses biological properties, including antioxidant,[22–24] anti-inflammatory,[22] anti-apoptosis,[23,24] and anticancer[19] activities. Morin also protects various human cells, such as myoblasts,[25] hepatocytes,[26] and erythrocytes, against oxidative damages.[27]

Carbon tetrachloride (CCl₄) intraperitoneal injection is a classical method for establishing an animal model of hepatic fibrosis, and the toxicity of CCl₄ leads to liver cell necrosis and mitochondrial damage along with aggravating oxidative stress. In addition, the abundant release of inflammatory and fibrogenic cytokines induced by CCl₄ could further augment the degree of hepatic fibrosis. A previous study demonstrated that morin protected against acute liver damage[29] and ameliorated liver fibrosis[30] induced by CCl₄, where morin inhibited proliferation and induced apoptosis of activated HSCs by suppressing the Wnt/β-catenin and NF-κB signaling pathways. However, there is no molecular evidence of the effects of morin on the Nrf2 signaling pathway. To our knowledge, in vivo investigation of the effect of morin on the Nrf2 signaling pathway and Nrf2 expression in the CCl₄-induced liver fibrosis model has not been reported. The purpose of this study was to investigate whether morin could reduce hepatic fibrosis by inducing the expression of Nrf2 and its downstream antioxidant enzymes using pathology as a gold standard in a rat...
Morin enhances hepatic Nrf2 expression

Figure 1 Chemical structure of morin. (https://pubchem.ncbi.nlm.nih.gov/compound/morin).

model of CCl₄-induced hepatic fibrosis.

MATERIALS AND METHODS

Chemicals and reagents
The chemical agents used in this study included CCl₄ and olive oil (Sinopharm Chemical Reagent Co., Ltd, Shanghai, China) as well as morin (Sigma Chemical Co., St Louis, MO, United States). Serum aspartate transaminase (AST), alanine transaminase (ALT), and alkaline phosphatase (ALP) assay kits were purchased from Nanjing Jiancheng Bioengineering Institute (Nanjing, China). The antibodies against Nrf-2, HO-1, NQO1, collagen I, collagen III, and α-SMA were obtained from Proteintech Group Inc. (Chicago, IL, United States). All other reagents used were in the purest form available commercially.

Animals and experimental design
This study was performed in accordance with the Guide for Care and Use of Laboratory Animals published by the National Institutes of Health of China (Guide for the Care and Use of Laboratory Animals, 1996) and was approved by the Animal Care and Use Committee of China Medical University. Twenty male Sprague-Dawley rats with an average body weight of 200-220 g (Changsheng Biotechnology Co., Ltd, Liaoning, China) were used in this study. All rats were fed a standard laboratory diet for a week at room temperature (20-22 °C) with a light/dark cycle of 12 h. Then, the rats were randomly divided into four groups of five rats each, i.e., control group, morin group, CCl₄ group, and morin + CCl₄ group. The control rats were treated with vehicle only (olive oil) equivalent to the treatment group. The rats in the morin group were treated with morin at a dose of 50 mg/kg (suspended in water as previously described[30]) by oral administration and 2 mL/kg of olive oil by intraperitoneal injection twice a week. The rats in the CCl₄ group were injected intraperitoneally with CCl₄ at a dose of 2 mL/kg [mixed with olive oil (40%, V/V)] twice a week. The rats in the morin + CCl₄ group were treated with the same doses of morin and CCl₄ via the same routes as the morin group and the CCl₄ group. Body weights of animals were recorded twice per week. After 8 wk of treatment, animals were kept fasting for 24 h. Under 10% chloral hydrate anesthesia, the following procedures were performed, including obtaining blood samples from the heart for biochemical tests and resecting the liver and spleen for histopathological analysis. Liver tissues were weighted and cut in 10 mm × 10 mm × 3 mm pieces. Half of the specimen was fixed in 10% formaldehyde for histopathology and the other half was immediately frozen in -80 °C for PCR and Western blot tests.

Biochemical analysis
The blood samples were centrifuged at 3000 g for 10 min at 20 °C, and the serum was collected from the supernatant. The values of AST, ALT, and ALP were measured using commercial assay kits according to the manufacturer’s protocols.

Histopathological assessment
Specimens of the liver were embedded in paraffin and cut into 5-µm-thick sections after 24 h of fixation. Then, the samples were stained with hematoxylin and eosin (HE). The degree of liver fibrosis was analyzed and determined by an experienced pathologist. The liver fibrosis was categorized into five degrees, i.e., F0 = no fibrosis, F1 = portal fibrosis without septa, F2 = portal fibrosis with rare septa, F3 = numerous septa without cirrhosis, and F4 = cirrhosis according to reference criteria[31].

Quantitative real-time PCR
Total cellular RNA was extracted from tissues using TRIzol (Invitrogen). Reverse transcription of 1 µg of RNA was done using RT regents (TAKARA) following the manufacturer’s instructions. Quantitative real-time PCR was done using SYBR Green PCR master mix (Applied Biosystems) in a total volume of 20 µL on the 7900HT fast Real-time PCR system (Applied Biosystems) using the following cycling parameters: 50 °C for 2 min, 95 °C for 10 min, and 40 cycles of 95 °C for 15 s and 60 °C for 60 s. A dissociation procedure was performed to generate a melting curve for confirmation of amplification specificity. GAPDH was used as the reference gene. The relative levels of gene expression were represented as ΔCt = CtGene - CtReference, and the fold change of gene expression was calculated by the 2-ΔΔCt method. Experiments were repeated in triplicate. The primer sequences are listed in Table 1.

Western blot analysis
Total proteins from tissues were extracted in lysis buffer (Pierce, United States) and quantified using the Bradford method. A total of 40 µg of protein were separated using 10% SDS-PAGE (80 V -120 V) and then electrophoretically transferred to a PVDF membrane.
Table 1 Primer sequences

Name	Primer sequence
Rat Collagen I for	5'-ACTGGTACATCCGCGCAAACCC-3'
Rat Collagen I rev	5'-GGAATCCATCGTGATGCTT-3'
Rat Collagen II for	5'-GAGCTCCTCCCATATGATGCTTGC-3'
Rat Collagen II rev	5'-AGCAAACAGGCCAAGTCTCC-3'
Rat α-SMA for	5'-GCTGTAACCTTGATGCTCAGG-3'
Rat α-SMA rev	5'-CAGCCTCAGAGCTAGTCACGAA-3'
Rat NQO1 for	5'-GCCAGAGAGCAGCATCATT-3'
Rat NQO1 rev	5'-CCACGCAGACATGAGCCGAC-3'
Rat HO-1 for	5'-GCTGTAACCTTGATGCTCAGG-3'
Rat HO-1 rev	5'-CTTCCGAGGAGCATGCAAC-3'
Rat Gapdh for	5'-GCTGTCACCTTGATGCTCAGG-3'
Rat Gapdh rev	5'-GCCAGAGAGCAGCATCATT-3'

Figure 2 Changes in body weight among different groups. Body weight increased observably in the control and morin groups. The CCl group had slow weight growth, but morin treatment was associated with increased body weight.

(80 V 100 min) (Millipore, Bedford, MA, United States). The membrane was blocked with 5% dry milk and incubated overnight at 4 °C with antibodies against HO-1 (1:800; Proteintech), NQO-1 (1:1000; Proteintech), Nrf2 (1:800; Proteintech), collagen I (1:800, Proteintech), collagen III (1:1000, Proteintech), α-SMA (1:1000, Proteintech), and GAPDH (1:4000, Proteintech). After washing, the membrane was incubated with a horseradish peroxidase-conjugated secondary antibody (Santa Cruz Biotechnology) at 37 °C for 2 h. Protein bands were visualized by enhanced chemiluminescence (Pierce) and detected using BioImaging Systems (UVP, Upland, CA, United States). The relative protein levels were calculated based on GAPDH protein as a loading control. Western blot images were measured with ImageJ software, and the relative gray values of protein expression were analyzed semi-quantitatively.

Statistical analysis
The experimental data are expressed as the mean ± SD. Statistical analyses were performed using one-way analysis of variance (ANOVA) between groups, and unpaired comparisons were analyzed using the least significant difference method LSD t-test. A P-value of 0.05 or less was considered statistically significant.

RESULTS

General observation
A total of four rats died before the end-point of the study, including two in the CCl group, one in the morin + CCl group, and one in the morin group. All animals in the control group survived. Normal diet and daily activities were recorded in the control and morin groups, with body weight increasing rapidly. The CCl group presented poor feeding and daily activities with slow weight growth. The morin + CCl group presented milder symptoms compared with the CCl group, with increased body weight, which was, however, lower than that in the control and morin groups (Figure 2).

Histological changes in the liver
The results of HE staining showed that the liver cells appeared with a normal morphology and regular lobular structure in the control and morin groups. The liver tissue of CCl group rats showed inflammatory cell infiltration, with portal and central veins surrounded by fibrous tissue accompanied by fibrous septa. The lobular structure was fuzzy with clearly visible false lobules. In the morin + CCl group, the liver tissue demonstrated less hyperplasia of fiber tissue and minimal inflammatory cells compared to the CCl group (Figure 3A-D).

Liver-spleen ratio and liver weight index
Both the CCl and morin + CCl groups had increased liver-spleen ratio (LSR) and liver weight index (LWI) compared with the control and morin groups (P < 0.05). The LWI between the CCl and morin + CCl groups showed a significant difference (P < 0.05), while no statistically significant difference was found for LSR (P > 0.05) (Table 2).

Biochemical findings
The CCl and morin + CCl groups had increased ALT, AST, and ALP levels compared to the control and morin groups (P < 0.05), and CCl without morin treatment dramatically increased ALT, AST, and ALP values (Table 3).

mRNA expression of α-SMA, collagen I, collagen III, Nrf2, HO-1, and NQO1
Compared with the control and morin groups, significantly higher mRNA expression of α-SMA, collagen I, and collagen III was observed in liver tissues in the CCl and morin + CCl groups (P < 0.05). However, the mRNA expression of these molecules in the morin + CCl group was significantly less than that in the CCl group (P < 0.05) (Figure 4).

In the CCl and morin + CCl groups, mRNA expression...
values of \textit{NQO1}, \textit{HO-1}, and \textit{Nrf2} were significantly higher than those in the control and morin groups ($P < 0.05$), while these mRNA values of the morin + CCl\textsubscript{4} rats were significantly different compared to those of the CCl\textsubscript{4} group ($P < 0.05$) (Figure 5).

\textbf{Protein expression of α-SMA, collagen I, collagen III, Nrf2, HO-1, and NQO1}

Compared with the control and morin groups, high expression of protein of α-SMA, collagen I, and collagen III in liver tissues in the CCl\textsubscript{4} and morin +
CCl4 groups had a statistically significant difference ($P < 0.05$). However, the morin + CCl4 group had less expression of these protein factors compared to the CCl4 group ($P < 0.05$) (Figure 6).

In the CCl4 and morin + CCl4 groups, the protein expression of Nrf2, HO-1, and NQO1 was statistically higher than that in the control and morin groups ($P < 0.05$), while these protein factors of the morin + CCl4 rats had more expression compared to the CCl4 group ($P < 0.05$) (Figure 7).

DISCUSSION

Liver fibrosis is a process of continuous damage to the liver blood vessels and hepatic cells with nodule formation, which may develop into cirrhosis and cancerous lesions. Research of fibrosis at the cellular and molecular levels suggested that the progression of liver injury was closely related to oxidative stress and lipid peroxidation$^{[32,33]}$, leading to cell destruction and inducing hepatic fibrosis. HSCs can be activated by lipid peroxides acting as products of cell damage. After HSC activation, lipid droplets and vitamin A in the cytoplasm could be reduced or exhausted with α-SMA expression, accompanied by liver structural and functional changes resulting from redundant secretion of ECM$^{[34]}$. However, it is possible to reverse liver fibrosis and early cirrhosis with effective interventions. Previous studies have shown that antioxidants have a protective effect by inhibiting the expression of α-SMA in HSC$^{[35]}$, thus, inhibition of oxidative stress in the liver may reduce and even reverse liver fibrosis$^{[36]}$.

Pathological features of liver fibrosis are reflected by fibrous tissue hyperplasia around the portal area and central vein and forming an interval of destruction of the lobular structure, accompanied by regenerative nodules and even early cirrhosis$^{[37]}$. The pathological findings in this study showed that liver tissue in the CCl4 group had liver cell necrosis, fibrous tissue hyperplasia, interval widening, and pseudolobuli replacing normal lobular architecture. In the morin + CCl4 group, the liver tissue showed minimal cell necrosis with less interstitial collagen fibers and lobular structure damage compared with the CCl4 group. Thus, morin could effectively protect the liver tissue by reducing inflammation and inhibiting collagen deposition and fiber hyperplasia.

There are various enzymes that take part in liver metabolism. The damaged liver cells by pathogenic factors will produce free enzymes that are released into the bloodstream$^{[20]}$. Liver function and status could be assessed by assaying the contents of serum enzymes. Aminotransferases play an important role in
hepatic metabolism. When the liver cells are damaged, the serum ALT and AST levels as well as ALP level will be increased\[38\]. In this study, in the CCl\(_4\)-induced liver fibrosis rat model, the values of serum ALT, AST, and ALP were reduced with morin administration, which implied that morin can reduce liver cell injury and thus prevent liver fibrosis. This also gives support for morin being able to condition the hepatocytes, protect against membrane frailty, and decrease the outflow of enzymes into circulation. These results are in accordance with previous studies that showed the ability of morin to inhibit hepatotoxicity\[39,40\].

The amount of collagen accounts for 5%-10% of the total protein in human liver tissue. If the liver injury leads to fibrosis, the collagen content in the liver protein will be significantly increased up to approximately 50%, becoming an important component of ECM\[41\] and ultimately leading to irreversible cirrhosis changes\[42\]. Liver fibrosis is a common histological change in liver disease, which is mainly manifested by excessive deposition of ECM, such as type I and type III collagen, and the expression of \(\alpha\)-SMA\[43\]. At present, it is believed that the ECM actively participates in the occurrence and development of fibrosis, which has a great influence on HSC activation\[44-46\]. Both in vitro and in vivo experiments found that ECM synthesis was increased when liver tissue was damaged and further caused the activation of HSCs, which was based on the secretion of type I and III collagen\[47-49\], ultimately promoting the occurrence of liver fibrosis. In our study, using both real-time PCR and Western blot methods, it was found that the control and morin groups had only minimal expression of collagen I, collagen III, and \(\alpha\)-SMA, which may represent normal physiological function of the liver, while their expression in the CCl\(_4\) group was significantly increased and had great relevance to the severity of liver fibrosis. With morin intervention reducing the expression of collagen I, collagen III, and \(\alpha\)-SMA, the degree of liver fibrosis was relieved, which was evidenced by liver histopathology and serum measurements. All these results suggested that the anti-fibrotic effect of morin may be related to the down-regulation of the expression of collagen I, collagen III, and \(\alpha\)-SMA.

Nrf2 is a key nuclear transcription factor in the oxidative stress of various cells\[50\]. Under normal circumstances, Nrf2 and Keap1 are in a binding state in the cytoplasm\[51\]; they will appear dissociated when oxidative stress is occurring\[52\] and combine with antioxidant components as dimers, which are...
involved in the synthesis of antioxidase and phase II detoxification enzymes and prevent the occurrence of liver fibrosis by improving the antioxidant capacity of the liver\(^{[53]}\). HO-1 and NQO-1 are well characterized Nrf2-dependent antioxidant defense genes. Studies have suggested that Nrf2 and its downstream antioxidant factors HO-1 and NQO1 may contribute to improvement of liver fibrosis\(^{[54]}\). It has been reported that morin could promote the nuclear translocation of Nrf2 in order to play its biological role and be used as an exogenous agonist of Nrf2\(^{[55]}\). In this study, a CCl\(_4\) induced liver fibrosis model, along with morin as an intervention, was used to observe the expression of Nrf2 and its downstream products NQO1 and HO-1 in different groups. The results showed that the expression of Nrf2, NQO1, and HO-1 was slightly increased in the CCl\(_4\) group compared with the control and morin groups (\(P < 0.05\)), and the expression levels in the morin + CCl\(_4\) group were lower than those in the CCl\(_4\) group (\(P < 0.05\)).

This study has several limitations. First, the sample size was small, which easily led to individual differences and statistical error between the groups. Second, the anti-fibrotic mechanism of morin may be related to activation of the Nrf2 antioxidant pathway and expression of its downstream antioxidases. Further experiments are needed to confirm the specific mechanism of the morin intervention.

In summary, our current study showed that morin could play a protective role by inducing the expression of Nrf2 and its downstream antioxidant factors (HO-1 and NQO1) and reducing the expression of \(\alpha\)-SMA, collagen I, and collagen III in a rat model of CCl\(_4\)-induced hepatic fibrosis. Although further studies are required, our study demonstrated that morin could effectively alleviate chronic liver damage by activation of the Nrf2 pathway.

ARTICLE HIGHLIGHTS

Research background

Previous studies have shown that the pathological changes of liver fibrosis, which refer to a series of pathogenic factors and pathological changes in the pathogenesis of a variety of liver diseases, could be reversed. In the past decade, numerous studies demonstrated that NF-E2-related factor 2 (Nrf2) as a transcription factor plays as an important role against oxidative stress in normal liver cells. Morin possesses biological properties, including antioxidant, anti-inflammatory, anti-apoptosis, and anticancer activities. To our knowledge,
Morin enhances hepatic Nrf2 expression

Figure 7 The protein expression of Nrf2, HO-1, and NQO1. (1, 2) control group, (3, 4) morin group, (5, 6) CCl4 group, (7, 8) morin + CCl4 group. *P < 0.05 vs control group; †P < 0.05 vs morin group, ‡P < 0.05 vs CCl4 group. In the CCl4 and morin + CCl4 groups, the protein expression was increased compared to the control and morin groups (P < 0.05); the morin + CCl4 group had a more significant change compared to the CCl4 group (P < 0.05).

Research motivation
Previous studies demonstrated that morin protected acute liver damage and ameliorated liver fibrosis induced by CCl4, and morin inhibited proliferation and induced apoptosis of activated hepatic satellite cells by suppressing the Wnt/β-catenin and the NF-kB signaling pathways. However, there is no molecular evidence about the effects of morin on the Nrf2 signaling pathway.

Research objectives
The purpose of this study was to investigate whether morin can reduce hepatic fibrosis by inducing the expression of Nrf2 and its downstream antioxidant factors (HO-1 and NQO1) in a rat model of CCl4-induced hepatic fibrosis.

Research methods
Twenty male Sprague-Dawley rats were randomly divided into four groups: control group, morin group, carbon tetrachloride (CCl4) group, and morin + CCl4 group. At the end-point of the experimental period, serum AST, ALT, and ALP were measured, and the liver specimens were obtained for pathological assessment.

Research results
Rats in the morin + CCl4 group had less hyperplasia of fiber tissues, minimal inflammatory cells, and less body weight loss with favorable liver enzyme measurements compared to rats treated with CCl4 only. Additionally, morin-treated rats had significantly lower mRNA and protein expression of α-SMA, collagen I, and collagen III, but significantly higher mRNA and protein expression of Nrf2, HO-1, and NQO1 compared to rats treated with CCl4 only (P < 0.05).

Research conclusions
Our study showed that morin could play a protective role by inducing the expression of Nrf2 and its downstream antioxidant factors (HO-1 and NQO1) and reducing the expression of α-SMA, collagen I, and collagen III in a rat model of CCl4-induced hepatic fibrosis.

Research perspectives
Although further studies are required, our study demonstrated that morin could effectively alleviate chronic liver damage by activation of the Nrf2 pathway.

REFERENCES
1. Snyder JC, Zemke AC, Stripp BR. Reparative capacity of airway epithelium impacts deposition and remodeling of extracellular matrix. Am J Respir Cell Mol Biol 2009; 40: 633-642 [PMID:18978301 DOI: 10.1165/rcmb.2008-0334OC]
2. Simula MP, De Re V. Hepatitis C virus-induced oxidative stress and mitochondrial dysfunction: a focus on recent advances in proteomics. Proteomics Clin Appl 2010; 4: 782-793 [PMID: 21137022 DOI: 10.1002/prca.201000049]
3. Clichici S, Catoi C, Mocan T, Filip A, Login C, Nagy A, Daicoviciu D, Decea N, Gherman C, Moldovan R, Muresan A. Non-invasive oxidative stress markers for liver fibrosis development in the evolution of toxic hepatitis. Acta Physiol Hung 2011; 98: 195-204 [PMID: 21616778 DOI: 10.1556/APHysiol.98.2011.2.11]
4. Tipoe GL, Leung TM, Liong EC, Lau TY, Fung ML, Nanji AA. Epigallocatechin-3-gallate (EGCG) reduces liver inflammation, oxidative stress and fibrosis in carbon tetrachloride (CCl4)-induced liver injury in mice. Toxicology 2010; 273: 45-52 [PMID: 20438794 DOI: 10.1016/j.tox.2010.04.014]
5. Lin PY, Chen CH, Wallace CC, Chen KH, Chang CL, Chen HH, Sung PH, Lin KC, Ko SF, Sun CK, Chang HW, Shao PL, Lee MS, Yip HK. Therapeutic effect of rosuvastatin and propylthiouracil on ameliorating high-cholesterol diet-induced fatty liver disease.
Morin enhances hepatic Nrf2 expression

Sang L et al.

December 21, 2017 | Volume 23 | Issue 47

WJG | www.wjgnet.com

fibrosis and inflammation in rabbit. Am J Transl Res 2017; 9: 3827-3841 [PMID: 28861173]

Kisseleva T, Cong M, Paik Y, Scholten D, Jiang C, Benner C, Iwasako K, Moore-Morris T, Scott B, Tsukamoto H, Evans SM, Dillmann W, Glass CK, Brenner DA. Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis. Proc Natl Acad Sci USA 2012; 109: 9448-9453 [PMID: 22566629 DOI: 10.1073/pnas.1201840109]

Li C, Liao JZ, Li PY. Traditional Chinese herbal extracts inducing autophagy as a novel approach in therapy of nonalcoholic fatty liver disease. World J Gastroenterol 2017; 23: 1964-1973 [PMID: 28337562 DOI: 10.3745/wjg.v23.i11.1964]

Cederbaum AI, Lu Y, Wu D. Role of oxidative stress in alcohol-induced liver injury. Arch Toxicol 2009; 83: 519-548 [PMID: 19448996 DOI: 10.1007/s00204-009-0432-0]

Ghatak S, Biswas A, Dahiya GK, Chowdhury A, Boyer JL, Santra A. Oxidative stress and hepatic stellate cell activation are key events in arsenic induced liver fibrosis in mice. Toxicol Appl Pharmacol 2011; 251: 59-69 [PMID: 21133490 DOI: 10.1016/j.taap.2010.11.016]

Ma JQ, Ding J, Zhang L, Liu CM. Protective effects of ursolic acid in an experimental model of liver fibrosis through Nrf2/ARE pathway. Clin Res Hepatol Gastroenterol 2015; 39: 188-197 [PMID: 25459994 DOI: 10.1016/j.clinre.2014.09.007]

Cao M, Wang H, Guo L, Yang S, Liu C, Khor TO, Yu S, Kong AN. Dibenzoylmethane Protects Against CCl4-Induced Acute Liver Injury by Activating Nrf2 via JNK, AMPK, and Calcium Signaling. AAPS J 2017; 19: 1703-1714 [PMID: 28828752 DOI: 10.1021/acs.aaps.7b00331]

Lee MH, Han MH, Lee DS, Park C, Hong SH, Kim Gy, Hong SH, Song KS, Choi IW, Cha HJ, Choi YH. Morin exerts cytoprotective effects against oxidative stress in C2C12 myoblasts via the upregulation of Nrf2-dependent HO-1 expression and the activation of the ERK pathway. Int J Mol Med 2017; 39: 399-406 [PMID: 28035409 DOI: 10.3892/ijmm.2016.2837]

Hsiang CY, Wu SL, Ho TY. Morin inhibits 12-O-tetradecanoylphorbol-13-acetate-induced hepatochromatid cell transformation via activator protein 1 signaling pathway and cell cycle progression. Biochem Pharmacol 2005; 69: 1603-1611 [PMID: 15896340 DOI: 10.1016/j.bcp.2005.03.008]

Kitagawa S, Sakamoto H, Tano H. Inhibitory effects of flavonoids on free radical-induced hemolysis and their oxidative effects on hemoglobin. Chem Pharm Bull (Tokyo) 2004; 52: 999-1001 [PMID: 15305001]

Williams AT, Burk RF. Carbon tetrachloride hepatotoxicity: an example of free radical-mediated injury. Semin Liver Dis 1990; 10: 279-284 [PMID: 2281335 DOI: 10.1002/1521-3640(199008)10:3<279::AID-SLMD2>3.0.CO;2-8]

Lee HS, Jung KH, Hong SW, Park IS, Lee C, Han HK, Lee DH, Hong SS. Morin protects acute liver damage by carbon tetrachloride (CCl4) in rats. Arch Pharm Res 2008; 31: 1160-1165 [PMID: 18006959 DOI: 10.1007/s12207-001-1283-3]

MadanKumar P, NaveenKumar P, Manikandan S, Devaraj H, NiranjalDevairaj S. Morin ameliorates chemically induced liver fibrosis in vivo and inhibits stellate cell proliferation in vitro by suppressing Wnt/β-catenin signaling. Toxicol Appl Pharmacol 2014; 277: 210-220 [PMID: 24657339 DOI: 10.1016/j.taap.2014.03.008]

Brenner DA. Molecular pathogenesis of liver fibrosis. Trans Am Clin Climatol Assoc 2009; 120: 361-368 [PMID: 19768189]

Bedossa P, Puyard T. An algorithm for the grading of activity in chronic hepatitis C. The METAVIR Cooperative Study Group. Hepatology 1996; 24: 289-293 [PMID: 8690394 DOI: 10.1002/hep.1840240201]

Aggarwal BB, Shishodia S. Molecular targets of dietary agents for prevention and therapy of cancer. Biochem Pharmacol 2006; 71: 1397-1421 [PMID: 16563357 DOI: 10.1016/j.bph.2006.02.009]

Sivaramakrishnan V, Shilpa PN, Praveen Kumar VR, Niranjal Devairaj S. Antenuation of N-nitrosodiethylamine-induced hepatocellular carcinogenesis by a novel flavonol-Morin. Chem Biol Interact 2008; 171: 79-88 [PMID: 17950263 DOI: 10.1016/j.cbi.2007.09.003]

Bheeb GH, Mahmoud ME. Therapeutic potential of morin against liver fibrosis in rats: Modulation of oxidative stress, cytokine production, and nuclear factor kappa B. Environ Toxicol Pharmacol 2014; 37: 662-671 [PMID: 24583409 DOI: 10.1016/j.etap.2014.01.026]

Merwidi-Lad A, Trocha M, Chlebda-Sieragowska E, Sozański T, Szandzik M, Magdalan J, Ksiądzyna D, Pieniewska M, Ferencie-Gołębiańska L, Kwiatkowska J, Szelag A. The impact of morin, a natural flavonoid, on cyclophosphamide-induced changes in the oxidative stress parameters in rat livers. Adv Clin Exp Med 2014; 23: 505-509 [PMID: 25166433]

Wang X, Zhang DM, Gu TT, Ding XQ, Fan CY, Zhu Q, Shi YW, Hong Y, Kong LD. Morin reduces hepatic inflammation-associated lipid accumulation in high fructose-fed rats via inhibiting sphingosine kinase 1/sphingosine 1-phosphate signaling pathway. Biochem Pharmacol 2013; 86: 1791-1804 [PMID: 24134913 DOI: 10.1016/j.bcp.2013.10.005]

MadanKumar P, NaveenKumar P, Devaraj H, NiranjalDevairaj S. Morin, a dietary flavonoid, exhibits anti-fibrotic effect and induces apoptosis of activated hepatic stellate cells by suppressing canonical NF-κB signaling. Biochimie 2011; 103: 107-118 [PMID: 21557997 DOI: 10.1016/j.biochi.2015.01.002]

Sivaramakrishnan V, Devaraj SN. Morin fosters apoptosis in experimental hepatocellular carcinogenesis model. Chem Biol Interact 2010; 183: 284-292 [PMID: 19931519 DOI: 10.1016/j.chembi.2009.11.011]

Lee MH, Han MH, Lee DS, Park C, Hong SH, Kim Gy, Hong SH, Song KS, Choi IW, Cha HJ, Choi YH. Morin exerts cytoprotective effects against oxidative stress in C2C12 myoblasts via the upregulation of Nrf2-dependent HO-1 expression and the activation of the ERK pathway. Int J Mol Med 2017; 39: 399-406 [PMID: 28035409 DOI: 10.3892/ijmm.2016.2837]

Hsiang CY, Wu SL, Ho TY. Morin inhibits 12-O-tetradecanoylphorbol-13-acetate-induced hepatochromatid cell transformation via activator protein 1 signaling pathway and cell cycle progression. Biochem Pharmacol 2005; 69: 1603-1611 [PMID: 15896340 DOI: 10.1016/j.bcp.2005.03.008]

Kitagawa S, Sakamoto H, Tano H. Inhibitory effects of flavonoids on free radical-induced hemolysis and their oxidative effects on hemoglobin. Chem Pharm Bull (Tokyo) 2004; 52: 999-1001 [PMID: 15305001]

Williams AT, Burk RF. Carbon tetrachloride hepatotoxicity: an example of free radical-mediated injury. Semin Liver Dis 1990; 10: 279-284 [PMID: 2281335 DOI: 10.1002/1521-3640(199008)10:3<279::AID-SLMD2>3.0.CO;2-8]
Sang Let al. Morin enhances hepatic Nrf2 expression

DOI: 10.1016/S2221-1691(12)60073-2

Shankari SG, Karthikesan K, Jalaludeen AM, Ashokkumar N. Hepatoprotective effect of morin on ethanol-induced hepatotoxicity in rats. *J Basic Clin Physiol Pharmacol* 2010; 21: 277-294 [PMID: 21305846 DOI: 10.1515/JBCPP.2010.21.4.277]

Milani S, Herbst H, Schuppan D, Surrenti C, Riecken EO, Stein H. Cellular localization of type I III and IV procollagen gene transcripts in normal and fibrotic human liver. *Am J Pathol* 1990; 137: 59-70 [PMID: 2372043]

Friedman SL. Liver fibrosis -- from bench to bedside. *J Hepatol* 2003; 38 Suppl 1: S38-S53 [PMID: 12591185 DOI: 10.1016/S0168-8278(02)00429-4]

Nieto N, Friedman SL, Cederbaum AI. Stimulation and proliferation of primary rat hepatic stellate cells by cytochrome P450 2E1-derived reactive oxygen species. *Hepatology* 2002; 35: 62-73 [PMID: 11786960 DOI: 10.1053/jhep.2002.30362]

Shi MN, Zheng WD, Zhang LJ, Chen ZX, Wang XZ. Effect of IL-10 on the expression of HSC growth factors in hepatic fibrosis rat. *World J Gastroenterol* 2005; 11: 4788-4793 [PMID: 16097045 DOI: 10.3748/wjg.v11.i31.4788]

Friedman SL. Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. *J Biol Chem* 2000; 275: 2247-2250 [PMID: 10644609]

Eng FJ, Friedman SL. Fibrogenesis I. New insights into hepatic stellate cell activation: the simple becomes complex. *Physical Gastrointest Liver Physiol* 2000; 279: G7-G11 [PMID: 10898741 DOI: 10.1074/jbc.275.4.2247]

Dedhar S. Cell-substrate interactions and signaling through ILK. *Curr Opin Cell Biol* 2000; 12: 250-256 [PMID: 10712922 DOI: 10.1016/S0955-0674(99)00083-6]

Zhang Y, Ikegami T, Honda A, Miyazaki T, Bouscarel B, Rojkind M, Hyodo I, Matsuzaki Y. Involvement of integrin-linked kinase in carbon tetrachloride-induced hepatic fibrosis in rats. *Hepatology* 2006; 44: 612-622 [PMID: 16941698 DOI: 10.1002/hep.21315]

Feng DY, Zheng H, Tan Y, Cheng RX. Effect of phosphorylation of MAPK and Stat3 and expression of c-fos and c-jun proteins on hepatocarcinogenesis and their clinical significance. *World J Gastroenterol* 2001; 7: 33-36 [PMID: 11819729 DOI: 10.3748/wjg.v7.i1.33]

Yan FJ, Chen YS, Azat R, Zheng XD. Mulberry Anthocyanin Extract Ameliorates Oxidative Damage in HepG2 Cells and Prolongs the Lifespan of Caenorhabditis elegans through MAPK and Nrf2 Pathways. *Oxid Med Cell Longev* 2017

Wortham M, He L, G Yam M, Copple BL, Wan YJ. The transition from fatty liver to NASH associates with SAMe depletion in db/db mice fed a methionine choline-deficient diet. *Dig Dis Sci* 2008; 53: 2761-2774 [PMID: 18299981 DOI: 10.1007/s10620-007-0193-7]

Kaspar JW, Niture SK, Jaiswal AK. Nrf2:Inhibitor signaling in oxidative stress. *Free Radic Biol Med* 2009; 47: 1304-1309 [PMID: 19666107 DOI: 10.1016/j.freeradbiomed.2009.07.035]

Zhang Y, Ikegami T, Honda A, Miyazaki T, Bouscarel B, Rojkind M, Hyodo I, Matsuzaki Y. Involvement of integrin-linked kinase in carbon tetrachloride-induced hepatic fibrosis in rats. *Hepatology* 2006; 44: 612-622 [PMID: 16941698 DOI: 10.1002/hep.21315]

Feng DY, Zheng H, Tan Y, Cheng RX. Effect of phosphorylation of MAPK and Stat3 and expression of c-fos and c-jun proteins on hepatocarcinogenesis and their clinical significance. *World J Gastroenterol* 2001; 7: 33-36 [PMID: 11819729 DOI: 10.3748/wjg.v7.i1.33]

Yan FJ, Chen YS, Azat R, Zheng XD. Mulberry Anthocyanin Extract Ameliorates Oxidative Damage in HepG2 Cells and Prolongs the Lifespan of Caenorhabditis elegans through MAPK and Nrf2 Pathways. *Oxid Med Cell Longev* 2017

Wortham M, He L, G Yam M, Copple BL, Wan YJ. The transition from fatty liver to NASH associates with SAMe depletion in db/db mice fed a methionine choline-deficient diet. *Dig Dis Sci* 2008; 53: 2761-2774 [PMID: 18299981 DOI: 10.1007/s10620-007-0193-7]

Kaspar JW, Niture SK, Jaiswal AK. Nrf2:Inhibitor signaling in oxidative stress. *Free Radic Biol Med* 2009; 47: 1304-1309 [PMID: 19666107 DOI: 10.1016/j.freeradbiomed.2009.07.035]

Jin F, Wan C, Li W, Yao L, Zhao H, Zou Y, Peng D, Huang W. Formononetin protects against acetaminophen-induced hepatotoxicity through enhanced NRF2 activity. *PloS One* 2017; 12: e0170900 [PMID: 28234915 DOI: 10.1371/journal.pone.0170900]

Chen Q, Zhang H, Cao Y, Li Y, Sun S, Zhang J, Zhang G. Schisandrin B attenuates CCl4-induced liver fibrosis in rats by regulation of Nrf2-ARE and TGF-β/Smad signaling pathways. *Drug Des Devel Ther* 2017; 11: 2179-2191 [PMID: 28794616 DOI: 10.2147/DDDT.S137507]

Tang W, Jiang YF, Ponussamy M, Diallo M. Role of Nrf2 in chronic liver disease. *World J Gastroenterol* 2014; 20: 13079-13087 [PMID: 25278702 DOI: 10.3748/wjg.v20.i36.13079]
