The Distance to the Hyades Cluster
Based on HST Fine Guidance Sensor Parallaxes

W. F. van Altena, C. -L. Lu1, J. T. Lee, T. M. Girard, X. Guo, C. P. Deliyannis2, I. Platais and V. Kozhurina-Platais

\textit{Yale Astronomy Department, New Haven, CT 065620}

B. McArthur, G. F. Benedict, R. L. Duncombe, P. D. Hemenway3, W. H. Jefferys, J. R. King2,4, E. Nelan4, P. S. Shels, D. Story, and A. Whipple5

\textit{University of Texas at Austin, Austin, TX 78712}

O. G. Franz and L. Wasserman

\textit{Lowell Observatory, Flagstaff, AZ 86001}

L. W. Fredrick

\textit{Astronomy Department, University of Virginia, Charlottesville, VA 22903}

R. B. Hanson, A. R. Klemola and B. F. Jones

\textit{Lick Observatory, Santa Cruz, CA 95064}

R. Méndez

\textit{European Southern Observatory, Karl-Schwarzschild-Straße 2, D-85748, Garching bei München, Germany}

W. -S. Tsay

\textit{Institute of Astronomy, National Central University, Chun-Li, Taiwan 32054, ROC}

and

A. Bradley

\textit{Allied Signal Corporation, P. O. Box 91, Annapolis Jct., MD 20701}

1Current address: Purple Mountain Observatory, Chinese Academy of Sciences, 2 Beijing Xi lu, Nanjing, Jiangsu 210080, PROC
2Hubble Fellow
3Current address: Department of Physics, University of Rhode Island, Providence 02912
4Current address: Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218
5Current address: Allied Signal Corporation, P. O. Box 91, Annapolis Jct., MD 20701
ABSTRACT

Trigonometric parallax observations made with the Hubble Space Telescope’s Fine Guidance Sensor #3 (HST FGS) of seven Hyades Cluster members in six fields of view have been analyzed along with their proper motions to determine the distance to the cluster. Knowledge of the Cluster’s convergent point and mean proper motion are critical to the derivation of the distance to the center of the cluster. Depending on the choice of the proper-motion system, the derived cluster center distance varies by 9%. Adopting a reference distance of 46.1 pc or $m - M = 3.32$, which is derived from the ground-based parallaxes in the General Catalogue of Trigonometric Stellar Parallaxes (1995 edition), the FK5/PPM proper-motion system yields a distance 4% larger, while the Hanson (1975) system yields a distance 2% smaller. The HST FGS parallaxes reported here yield either a 14% or 5% larger distance depending on the choice of the proper-motion system. Orbital parallaxes (Torres et al. 1997a, 1997b, 1997c) yield an average distance 4% larger than the reference distance. The variation in the distance derived from the HST data illustrates the importance of the proper-motion system and the individual proper motions to the derivation of the distance to the Hyades Cluster center, therefore a full utilization of the HST FGS parallaxes awaits the establishment of an accurate and consistent proper-motion system.

Subject headings: astrometry - - - stars: distances, fundamental parameters
1. Introduction

The Hyades Cluster is the nearest rich star cluster to the sun and it provides us with, among other things, a benchmark for the determination of the distances to other star clusters through the technique of main-sequence fitting. While the Pleiades Cluster is sometimes used as a standard for this process due to its more "normal" metallicity, its three times greater distance leads to a more uncertain zero-point in the derived distance scale. Through the determination of the absolute magnitudes of nearby Classical Cepheids in clusters with respect to the Hyades and/or the Pleiades, the Population I extragalactic distance scale is derived.

Through the early 1960's the accepted distance to the Hyades Cluster was determined by deriving the Convergent Point from the cluster members' proper motions as was done, for example by van Bueren (1952). The distance was questioned by Hodge and Wallerstein (1966), who found it to be in conflict with the results derived from a number of secondary distance estimators. Redeterminations of the Convergent Point by Hanson (1975) using absolute proper motions, Gunn et al. (1988) and Griffin et al. (1988) using radial velocities and the proper motions from Hanson (1975), and most recently, Schwan (1991) convergent point solution. Using accurate masses for the double-lined eclipsing binary vB22 and an adopted mass-luminosity relation for field stars, McClure (1982), followed by Peterson and Solensky (1987, 1988) who used the slope of the Hyades mass-luminosity relation, obtained a distance to the cluster center of 47 pc. Torres et al. (1997a, 1997b, 1997c) have derived orbital parallaxes from a combination of radial velocity and astrometric observations which lead to a distance to the cluster center of about 48 pc using the Schwan (1991) convergent point solution. The ground-based trigonometric parallaxes listed in the new edition of the Yale Parallax Catalogue (van Altena et al. 1995), hereafter referred to as the YPC, were recently analyzed by van Altena et al. (1997a) who found a distance of 46 pc. The YPC investigation included 100 stars and used a weighted mean of the parallaxes without use of the proper motions. This result should not be too much in error due to the large number of stars and full spatial coverage of the cluster. A more detailed analysis of the YPC data is in preparation.

In 1968, van Altena (1973) prepared a list of very probable Hyades Cluster members suitable for parallax determination and distributed it to numerous observatories involved in the determination of trigonometric parallaxes. Those stars were selected to have high-accuracy proper motions indicative of membership in the Hyades, UBV photometry that placed the stars close to the main-sequence or white-dwarf ridge lines in the color-magnitude diagram and selected against double stars, and were in the magnitude range 9 through 14, i.e. accurately observable with the parallax telescopes and detectors then in use. Many of the high-weight parallaxes analyzed in the YPC study were the result of intensive observational efforts on the stars in that list. In addition, they formed the basis of our 1972 Phase B proposal to determine the distance to the Hyades Cluster using what was then called the Large Space Telescope and the 1977 Phase CD proposal for the Hubble Space Telescope. Due to the reallocation of overhead in the observing procedures and ground control experienced by all Guaranteed Time Observers, and especially by those using the Fine Guidance Sensors, the original list of 20 Hyades Cluster members was reduced to 7 main-sequence members in 6 fields, each observed 6 to 7 times (N_{obs} in Table 1) instead of the originally planned 24 times. As a consequence, what was to be a definitive determination of the Hyades Cluster distance is now only a “teaser”. Finally, by the time this paper is in print, we will have the first results from the Hipparcos Astrometric Satellite on their determination of the distance to the Hyades Cluster.

2. Observations and Reductions

The observations of the seven stars in six fields (Table 1) were made over a period of three years from October 1993 through September 1996, each field being observed during one orbit with FGS 3 at times of maximum parallax factor (average absolute value = 0.97). Also listed in Table 1 for each field, is the Name of the Hyades cluster member from van Altena (1966, 1969) that is the principal target (vA627 is in the same field as vA622), additional cross-identifications, the num-

6 Griffin, et al. (1985) list vA627 = J285 as a single-lined spectroscopic binary with a period of 850 days indicating that our screening against binary stars was not entirely successful. That should not be an important factor in this paper, since we are limited here by the lack of a consistent proper-motion system.
number of reference stars used, N_{ref}, and the unit weight error of the parallax and proper-motion solution in x and y corrected for degrees of freedom. The observing procedures and corrections for coordinate drift and Optical Field Angle Distortion (OFAD) were similar to those outlined in Benedict et al. (1994). Coordinate drift in FGS 3 during an orbit can amount to several thousandths of an arcsecond (mas) and for that reason, the target star and at times a second star were observed at the beginning of the orbit, half way through measurement of the six (on average) reference stars and again at the end. Changes in the position of the target star and/or the second star were interpreted as a drift in the coordinate system and interpolated corrections were made to the positions of all measured stars. The drift was modeled as being linear in time, although a quadratic drift yielded similar results. The OFAD for FGS 3 was developed by Jefferys et al. (1992) and the OFAD appropriate to each observation date was computed by McArthur. Local deviations of the actual focal plane from that predicted by the OFAD exist at the mas level, but these introduce noise into the solutions and not systematic errors. A minor systematic deviation of the OFAD from the focal plane was detected in the y-coordinate, but since the observations were made at maximum parallax factor, the y-solutions are used only for the proper-motion determination and not for the parallax. Since the target stars were about four magnitudes brighter than the reference stars we have searched for a possible systematic error as a function of star brightness, the magnitude equation. No magnitude equation has been found in either the OFAD or Long Term Stability tests which both have magnitude ranges similar to the Hyades observations, so we do not believe that a magnitude equation exists in the Hyades data. Since we have on average only six reference stars in each field (N_{ref} in Table 1) and they are all rather faint (14 - 16th mag.), we are unable to conclusively test for the existence of a magnitude equation in the Hyades data.

The solutions for relative parallax and proper motion were made with the Yale parallax program developed by Auer and van Altena (1978) modified for use with HST FGS observations. Parallel solutions were made by McArthur with the completely different University of Texas Gaussfit program by McArthur et al. (1994) and negligible differences in the derived relative parallaxes attributable to weighting and modeling schemes were obtained. The results presented here are from the Yale program.

Since the parallaxes and proper motions determined with the HST FGS are relative to the means of those quantities for the reference stars, it was necessary to determine the respective corrections to absolute parallax and proper motion. The corrections to absolute parallax were computed from a galactic model used to compute those corrections for the YPC as well as from spectrophotometric parallaxes for the individual reference stars. The spectrophotometric parallaxes used spectra obtained by Deliyannis and King with the WIYN telescope’s MOS/Hydra spectrograph and CCD photometry obtained by I. Platais with the CTIO 0.9-meter telescope. The data were reduced by Lu, Lee and Kozhurina-Platais and are being prepared for publication. The two approaches yielded average corrections to absolute parallax of $+1.3$ to $+1.4$ mas; we have used the individual corrections derived from the spectrophotometric parallaxes. The corrections to absolute proper motion were derived from a new galactic structure and kinematic model developed by Méndez and van Altena (1997) and measurements made for this purpose of the reference stars by Hanson, Klemola and Jones of the Lick Observatory Northern Proper Motion plates. The Lick NPM corrections in mas/yr for the individual reference stars in right ascension and declination were respectively $(+6 \pm 2, -1.2 \pm 2)$, while for 400 faint anonymous stars of the same magnitude range they obtained $(+4.2 \pm 2, -3.0 \pm 2)$. Méndez calculated from his galactic structure and kinematic model $(+3.7 \pm 0.4, -5.6 \pm 0.4)$. We have adopted the Lick NPM corrections for the individual reference stars, although the final results are not significantly changed if we use the Méndez corrections. The error estimates for the Lick NPM proper motions are dominated by the zero-point error of the galaxy proper motions.
3. Distance to the Cluster Center

The convergent point for the cluster was calculated by Schwan (1991) from 145 high-accuracy FK5 and PPM proper motions. Using a subset of 62 stars found to lie within 4 pc of the cluster center, he found a convergent point for the cluster \((\alpha = 97\deg.68 \pm 0\deg.42, \delta = 5\deg.98 \pm 0\deg.18)\), a cluster center \((\alpha = 65\deg.59, \delta = 16\deg.27)\) and a distance of 47.9 pc. Torres et al. (1997c) calculated the mean proper motion at the cluster center from 53 of the 62 stars as \(\mu_c = 113.1 \pm 0.7 \text{ mas/yr}\). Gunn et al. (1988) derived a slightly different convergent point \((\alpha = 98\deg.2 \pm 1\deg., \delta = 6\deg.1 \pm 1\deg.)\) based on the radial velocities determined by Griffin et al. (1988) and the bulk proper motion of the Hyades derived from the absolute proper motions of 59 stars from Hanson (1975). Combined with their cluster center \((\alpha = 66\deg.15, \delta = 16\deg.65)\), they obtained a distance to the cluster center of 45.4 \pm 1.2 pc. We can calculate the distance of the Hyades cluster center, \(D_c\), for each star observed with the HST FGS from:

\[
D_c = \pi^{-1}(\frac{\sin \lambda}{\sin \lambda})(\frac{\mu}{\mu_c}) \tag{1}
\]

where the subscript \(c\) refers to the cluster center, \(\pi\) is the absolute parallax derived here for each star, \(\lambda\) is the angular distance of the star from the convergent point on a great circle and \(\mu\) is the absolute proper motion determined here along that great circle. The errors of the individual estimates of the cluster center distance were derived from a propagation of the errors of the proper motions and parallaxes, as the accidental errors in \(\lambda, \lambda_c\), and \(\mu_c\) do not contribute significantly to the total error. Systematic errors in \(\lambda_c\) and especially in \(\mu_c\) do however have a very important effect.

In Table 2 we list the equatorial coordinates for the equinox 1950 from Hanson (1975) for the first seven stars and from the PPM Catalogue for the remainder. Also given are the magnitudes and colors, absolute parallaxes, proper motions and their standard errors and the derived distance to the cluster center and its standard error. The latter two quantities are listed for both the Schwan (1991) and Gunn (1988) cluster parameters. The first part of the table lists the seven stars measured in the HST FGS parallax program, while the second part lists the stars (vB24, vB57 and vB72) for which orbital parallaxes have been derived by Torres et al. (1997a, 1997b, 1997c), and the third part lists a trigonometric parallax and proper motion derived by Gatewood (1992) for vB24 that was inadvertently omitted from the YPC. The weighted mean distances of the cluster center are listed after each of the first two sections along with their formal errors.

The various Hyades cluster distances are summarized in Table 3 along with their respective errors. Internal errors are defined as the formal propagation of the parallax and proper motion errors into the error of the mean, while external errors are based on the dispersion of the individually derived cluster center
distances. As can be seen from a comparison of the

	HST	Orbital	HST	Orbital
Schwan	52.3 ± 1.0	47.6 ± 0.9	52.3 ± 2.7	47.8 ± 1.4
Gunn	48.9 ± 0.9		48.3 ± 2.0	

HST distances based on the Schwan (1991) and Gunn et al. (1988) solutions, the results depend critically on which convergent point solution is adopted with the dominant factor being the proper-motion system and the individual proper motions. According to Eqn. (1), after the well-defined scaling due to differing angular distances from the convergent point, the distance of a star relative to the cluster center is given by the ratio of the star’s proper motion to that of the cluster center. The cluster center distance is then derived from the scaled proper motion distance and the parallax of the star. The HST parallaxes yield a cluster center distance (48.3 ± 2.0 pc; 3.42 ± 0.09 mag) in agreement with the orbital parallaxes and the YPC for the Gunn et al. (1988) solution since the HST proper motions are small relative to the bulk proper motion of the Hyades center as derived by Gunn et al. (1988) from the Hanson (1975) proper motions and the HST parallaxes are small. In contrast, the smaller Schwan (1991) cluster center proper motion places the HST stars closer to the center and therefore the small HST parallaxes move the center farther (52.3 ± 2.7 pc; 3.60 ± 0.11 mag) from the sun. This emphasizes the importance of the proper-motion system in determining the distance to the Hyades cluster center when small data samples are used. The distance derived from the orbital parallaxes is essentially independent of the convergent point solution (1% difference) since for consistency both must use the FK5/PPM proper motions and the cluster center proper motion derived from Schwan (1991) as the three stars were either too bright for accurate measurement in Hanson’s (1975) study, or were outside his field of view.

It would be unwise to advocate any increase in the distance scale based on the HST FGS parallax results, but it should be noted that Feast and Catchpole (1997) recommend an increase of 10% ± 14% based on Hipparcos parallax observations of the Classical Cepheids and Reid (1997) suggests an increase of 5% to 15% based on Hipparcos parallaxes of Subdwarfs. Once the Hipparcos parallaxes of Hyades cluster members are released and carefully analyzed we should have a clearer picture of the state of the distance scale and can then discuss the astronomical consequences of any revision.

4. Acknowledgments

The many authors of this paper would like to acknowledge the assistance of the STScI and GSFC staffs who assisted us in the preparation of numerous versions of the Observing Proposal forms, and provided solutions for obstacles that were encountered during the observations; we would not have been able to complete the observations without their invaluable help. In particular we would like to acknowledge the collaboration of L. Nagel, D. Taylor and P. Stanley. In addition we would like to acknowledge the engineers and scientists at the Hughes Danbury Optical Systems who designed the FGS and supported us in the calibration and observations. In particular we would like to mention L. Abramowicz-Reed, C. Ftaclas and T. Facey. Finally, we would like to thank the referee of this paper, D. Latham, for his many helpful suggestions which significantly improved the manuscript.

This research was supported in part by grants from NASA to the HST GTO Astrometry Science Team. The preparation of the YPC was supported in part by grants from the NSF. Deliyannis and King also acknowledge support by NASA through grant number HF-1042.01-93A and HF-1046.01-93A from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract No. NAS5-26555.

7At the Hipparcos Venice 1997 meeting, Brown, et al. (1997) and Perryman, et al. (1997) reported a distance to the Hyades Cluster center of 46.34 ± 0.27 pc, or m = M = 3.33 ± 0.01 based on 134 stars. The weighted average distance derived from the four Hipparcos stars in common with our seven HST stars is 46.46 ± 2.24 pc, or 3.34 ± 0.10 mag. It appears that there are systematic differences between these HST and the Hipparcos parallaxes and proper motions, and we are continuing to investigate those differences. The Hipparcos distance is in excellent agreement with the YPC ground-based parallaxes reported by van Altena, et al (1997a) and indicates that no change in the distance scale is required.
REFERENCES

Auer, L. H., and van Altena, W. F. 1978, AJ, 83, 531

Benedict, G. F., McArthur, B., Nelan, E., Story, D., Whipple, A. L., Wang, Q., Jefferys, W. H., Duncombe, R., Hemenway, P. D., Shelus, P. J., Franz, O. G., Fredrick, L. W., and van Altena, Wm. F. 1994, PASP, 106, 327

Brown, A. G. A., Perryman, M. A. C., Kovalevsky, J., Robichon, N., Turon, C., Mermilliod, J. C. 1997, in “Presentation of the Hipparcos & Tycho Catalogues”, ESA SP-402

Feast, M. W., and Catchpole, R. M. 1997, MNRAS, 286, L1

Gatewood, G. D. 1992, ApJ, 392, 710

Giclas, H. L., Burnham, R., Jr., and Thomas, N. G. 1962, Lowell Obs. Bull. 5, 257

Griffin, R. F., Gunn, J. E., Zimmerman, B. A., and Griffin, R. E. M. 1985, AJ, 90, 609

Griffin, R. F., Gunn, J. E., Zimmerman, B. A., and Griffin, R. E. M. 1988, AJ, 96, 172

Gunn, J. E., Griffin, R. F., Griffin, R. E. M., and Zimmerman, B. A. 1988, AJ, 96, 198

Hanson, R. B. 1975, AJ, 80, 379

Hodge, P. W., and Wallerstein, G. 1966, PASP, 78, 411

Jefferys, W. H., Wang, Q., Whipple, A. L., Benedict, G. F., MacArthur, B., Nelan, E., and Story, D. 1992, BAAS, 25, 831

McArthur, B., Jefferys, W., and McCartney, J. 1994, BAAS, 184, 28.04

McClure, R. D. 1982, ApJ, 254, 606

Méndez, R., and van Altena, W. F. 1997, A&A, in press

Osvalds, V. V. 1954, Astron. Nach. 281, 193

Perryman M. A. C., et al. 1997, A&A, in press

Peterson, D., and Solensky, R., 1987, ApJ, 315, 286

Peterson, D., and Solensky, R., 1988, ApJ, 333, 256

Reid, I. N. 1997, (preprint)

Schwan, H. 1990, A&A, 228, 69

Schwan, H. 1991, A&A, 243, 386

Torres, G., Stefaniak, R. P., and Latham, D. W. 1997a, ApJ, 474, 256

Torres, G., Stefaniak, R. P., and Latham, D. W. 1997b, ApJ, 479, 268

Torres, G., Stefaniak, R. P., and Latham, D. W. 1997c, (preprint)

Turner, D. G., Garrison, R. F., and Morris, S. C. 1994, JRASC, 88, 303

van Altena, W. F. 1966, AJ, 72, 482

van Altena, W. F. 1969, AJ, 74, 2

van Altena, W. F. 1973, in Problems of Calibration of Absolute Magnitudes and Temperature of Stars, IAU Symp. 54, edited by B. Hauck and B E. Westerlund, D. Reidel, Dordrecht, p. 73

van Altena, W. F. 1974, AJ, 79, 826

van Altena, W. F., Lee, J. T., and Hoffleit, E. D. 1995, The General Catalogue of Trigonometric Stellar Parallaxes, Fourth Edition, Vol. I & II, (Yale University Observatory, New Haven)

van Altena, W. F., Lee, J. T., and Hoffleit, E. D. 1997a, in Upgren Symposium - 30 years of Astronomy at the Van Vleck Observatory, April 19 - 20, 1996, Van Vleck Observatory, Wesleyan University, Middletown, Connecticut, p 27

van Altena, W. F., Lu, C. -L., Lee, J. T., Girard, T., Guo, X., Tsay, W. -S., McArthur, B., Nelan, E., Benedict, G. F., Duncombe, R. L., Jefferys, W. H., Shelus, P. J., Story, D., Whipple, A., Hemenway, P. D., Franz, O. G., Wasserman, L., Fredrick, L., Hanson, R. B., and Klemola, A. R. 1997b, BAAS, abstract in 28th Meeting of the Divison on Dynamical Astronomy of the American Astronomical Society, April 14 - 16, 1997

van Bueren, H. G. 1952, BAN 11, 385

Whipple, A. L., McArthur, B., Wang, Q., Jefferys, W. H., Benedict, G. F., Lalich, A. M., Shelus, P. J., Nelan, E., Hemenway, P. D., Story, D. 1995, in “Post-servicing Mission Calibration Workshop”, STScI May 15-17, 1995, p 119

This 2-column preprint was prepared with the AAS LaFTeX
