Low sequence diversity of the prion protein gene (PRNP) in wild deer and goat species from Spain

Citation for published version:
Pitarch, JL, Raksa, HC, Arnal, MC, Revilla, M, Martinez, D, Fernández de Luco, D, Badiola, JJ, Goldmann, W & Acín, C 2018, 'Low sequence diversity of the prion protein gene (PRNP) in wild deer and goat species from Spain' Veterinary Research, vol 49, no. 1, pp. 33. DOI: 10.1186/s13567-018-0528-8

Digital Object Identifier (DOI):
10.1186/s13567-018-0528-8

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Veterinary Research

Publisher Rights Statement:
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Low sequence diversity of the prion protein gene (PRNP) in wild deer and goat species from Spain

José Luis Pitarch¹, Helen Caroline Raksa¹, María Cruz Arnal², Miguel Revilla², David Martínez², Daniel Fernández de Luco², Juan José Badiola¹, Wilfred Goldmann³ and Cristina Acín¹*

Abstract

The first European cases of chronic wasting disease (CWD) in free-ranging reindeer and wild elk were confirmed in Norway in 2016 highlighting the urgent need to understand transmissible spongiform encephalopathies (TSEs) in the context of European deer species and the many individual populations throughout the European continent. The genetics of the prion protein gene (PRNP) are crucial in determining the relative susceptibility to TSEs. To establish PRNP gene sequence diversity for free-ranging ruminants in the Northeast of Spain, the open reading frame was sequenced in over 350 samples from five species: Iberian red deer (Cervus elaphus hispanicus), roe deer (Capreolus capreolus), fallow deer (Dama dama), Iberian wild goat (Capra pyrenaica hispanica) and Pyrenean chamois (Rupicapra p. pyrenaica). Three single nucleotide polymorphisms (SNPs) were found in red deer: a silent mutation at codon 136, and amino acid changes T98A and Q226E. Pyrenean chamois revealed a silent SNP at codon 38 and an allele with a single octapeptide-repeat deletion. No polymorphisms were found in roe deer, fallow deer and Iberian wild goat. This apparently low variability of the PRNP coding region sequences of four major species in Spain resembles previous findings for wild mammals, but implies that larger surveys will be necessary to find novel, low frequency PRNP gene alleles that may be utilized in CWD risk control.

Introduction

Transmissible spongiform encephalopathies (TSEs) are a group of fatal, neurodegenerative disorders characterised by the accumulation in the central nervous system of prion protein PrPSc, an abnormal isof orm of the cellular protein PrPC [1, 2]. TSEs can affect several mammalian species, but show a predominance in ruminants: scrapie in sheep and goats, bovine spongiform encephalopathy (BSE) in bovids and chronic wasting disease (CWD) in cervids.

Scrapie is a widespread disease known for more than 250 years, which is present in almost all regions of the world [3], while BSE reached epidemic proportions in Europe in the 1990s due to the use of animal feedstuffs contaminated with prions [4]. Both TSEs affected livestock and exotic ruminants in zoological collections, but there is no evidence that any wild and free-ranging ruminants suffered natural scrapie or BSE.

In contrast, CWD has affected North American free-ranging mule deer, white tailed deer and wapiti. Originally centred in Colorado, Wyoming and Southwest Canada [5–7], CWD has now spread through many US states, mostly in captive wapiti and deer, including a captive red deer from a herd located in Minnesota [8]. Additionally, chronic wasting disease has been orally transmitted to Shira’s moose [9], red deer [10], reindeer [11] and Reeves’ muntjac deer [12], but only by intracerebral inoculation to fallow deer [13]. Although natural transmission of CWD to humans seems unlikely, several studies recommend establishing preventive measures and further research on the subject [14, 15].

The presence of CWD in Europe was confirmed recently: reindeer (Rangifer tarandus) and European elk (Alces alces) were diagnosed in two separated regions of Norway [16, 17]. There is no evidence for CWD among other European deer populations [18].
Susceptibility to any TSE depends largely on the PrP[^C] sequence, encoded by the host PRNP gene. Several studies of natural and experimental scrapie infection in sheep and goats showed how allelic variations in the PRNP gene modulates disease susceptibility [19, 20], and it is therefore critical to consider the PRNP gene sequence in wild ruminants for the assessment of TSE infection risk.

Studies of CWD in North America have indicated several amino acid substitutions in PrP[^C] that are associated with different susceptibility to disease. In wapiti (or Rocky Mountain elk, Cervus canadensis nelsoni) polymorphism M132L appears to modulate disease [21–24], in mule deer (Odocoileus hemionus) it is polymorphism S225F [25, 26] and in white-tailed deer (Odocoileus virginianus) polymorphisms G96S, Q95H and A116G are modulators [27–29]. Only limited genotype survey data exist for European deer populations. Similarly, a survey between the years 2007 and 2009 of 537 wild red deer from Spain tested negative for the presence of PrP[^Sc] as did all other European surveys conducted in parallel. Since then, no further diagnostic reports have been published for any cervid in Spain.

The area of this study was located at the Northeast of Spain, between the mountain chain of the Pyrenees and the Iberian System, spanning the whole region of Aragon, part of La Rioja and the eastern side of Castilla y Leon. In these locations, there are five major species of wild ruminants: Iberian red deer (Cervus elaphus hispanicus), roe deer (Capreolus capreolus), fallow deer (Dama dama), Iberian wild goat (Capra pyrenaica hispanica) and Pyrenean chamois (Rupicapra p. pyrenaica). All of them were free-ranging animals from different places of northeast of Spain, and were hunted or found dead in game reserves or hunting grounds (Figure 1).

Red deer (n = 209) were grouped into three areas according to their geographical proximity. The west area (WA) combined 70 animals from the hunting grounds of Arancon (n = 13), Renieblas (n = 9) and Ezcaray (n = 48). The east area (EA) combined 128 animals from the hunting grounds of Caspe (n = 50) and Fraga (n = 78). The south area (SA) is represented by 11 animals from the game reserve of Montes Universales; this area was also the origin of the fallow deer samples (n = 15). Roe deer and Pyrenean chamois (n = 44; n = 53) came from the Pyrenean game reserves of Los Valles (n = 2; n = 11), Viñamala (n = 10; n = 9), Los Circos (n = 4; n = 13) and Benasque (n = 15; n = 20); and from several hunting grounds of West Aragon (n = 13). Iberian wild goats came from different hunting grounds located in South-East Aragon (n = 30). Spleen samples from all animals of the study were collected and kept frozen (−20 °C) in order to extract the genomic DNA. Samples of obex, tonsil or ileocecal valve were collected from 68 red deer from the hunting grounds of Caspe (n = 32), Fraga (n = 26) and

Figure 1 Map of the northeast of Spain showing the geographic locations where different samples were obtained. Game reserves: 1, Los Valles; 2, Viñamala; 3, Los Circos; 4, Benasque; 5, Montes Universales. Hunting grounds of Iberian red deer: 1*, Ezcaray; 2*, Renieblas; 3*, Arancon; 4*, Caspe; 5*, Fraga. Reed deer: Arancon (n = 13), Renieblas (n = 9) Ezcaray (n = 48) Caspe (n = 50) Fraga (n = 78) and Montes Universales (n = 11). Fallow deer: Montes Universales (n = 15). Roe deer: Los Valles (n = 2), Viñamala (n = 10), Los Circos (n = 4), Benasque (n = 15) and West Aragon (n = 13). Pyrenean chamois: Los Valles (n = 11), Viñamala (n = 9), Los Circos (n = 13) and Benasque (n = 20).
Renieblas (n = 10), they were preserved in 10% neutral buffered formaldehyde and embedded in paraffin for TSE diagnosis.

Extraction and purification of genomic DNA

Genomic DNA was extracted from 500 mg of spleen using a QIAamp DNA mini kit (QIAGEN®) following the manufacturers protocol. In brief, two digestions of 1 h at 56 °C with proteinase K (20 ng/mL) lysed the cells of the tissue. Then, by using a membrane column, ethanol was added to assist the precipitation of DNA and binding to the membrane. Finally, a series of washes removed debris and then purified genomic DNA was recovered.

PRNP gene amplification and sequencing

The open reading frame (ORF) of PRNP gene (771 bp) of all animals except fallow deer was amplified by performing a PCR using the reagents of the commercial kit of QIAGEN® (HotStarTaq® Master Mix Kit) and primers SILV-8 (fwd) (5′-AACCCATAGGCAGCTGGAT-3′) and SILV-778 (rev) (5′-AGAAGATAATGAAACAGGAAACAGGAGGAG-3′) [21] for roe and red deer; and PrP8 (fwd) (5′-CAGGTTAAGATGTTGAAAAGCCACATA-3′) and PrP9 (rev) (5′-GGAATTCTATCATCTATATGAGAGAAAAATGAGG-3′) [32] for Iberian wild goat and Pyrenean chamois. PCR reactions were purified using the vacuum manifold from Millipore®. Bi-directional sequencing was performed using the same PCR primers. Chromatograms were analysed using BioEdit v.4.8.6.

Fallow deer samples were PCR amplified with AmpliTaq Gold360 (Thermo Fisher Scientific) using either primer −143d (ATGGAATGTGAAGAACATTTATGACCTA) or primer −213d (AGGTCAACTTTGTCCTTGGAGGA) in combination with primer +139u (TAAGGCACCAAGTTATTAGCAT) for the TQ allele and genotype frequencies of the amino acid polymorphisms at positions 292 (acc→gcc) and 776 (cag→gag), resulting in amino acid changes in codons 98 and 226. The mutation in codon 98 causes an amino acid substitution of threonine (T) with alanine (A), while in codon 226 the mutation results in an amino acid change from glutamine (Q) to glutamic acid (E). The SNP at nucleotide position 408 is linked to the SNP at position 776, so that all haplotypes were either t408-a776(Q226) or c408-g776(E226); Tables 1 and 2 only show the amino acid changes. A98 was observed 61 times in linkage with Q226, and all AA98 homozygous genotypes were QQ226. Therefore, it is assumed that A98 was also linked with Q226 in the 28 TA98-QE226 heterozygotes so that their genotype can be described as TE/AQ. The three haplotypes described here for Spanish red deer were identical to haplotypes 1, 8 and 10 found in Italy and Scotland [35].

The SNP in codons 136 and 226 appeared in all the three geographic areas, while the polymorphism at codon 98 appeared in deer from EA and WA, but not SA. The allele and genotype frequencies of the amino acid polymorphisms were calculated for the whole population, and separately for the different subpopulations in EA, WA and SA (Tables 1 and 2). Allele frequencies for the TQ and TE alleles were 74.3% in the EA, 83.6% in the WA and 100% in the SA. Correspondingly, frequencies for the AQ allele were 25.7% in the EA, 16.4% in the WA and 0% in the SA. The lack of the AQ allele from the SA population is significant compared with the EA (p = 0.003) and WA (p = 0.045) populations although only 11 animals were collected. When the EA and WA populations are compared for the AQ allele frequencies, the difference of 9.3% was also significant (p = 0.03). However, there was no significant difference between TQ and TE alleles when any

PrPsc immunohistochemical detection and haematoxylin-eosin stain

Sections of 5 µm of formaldehyde-fixed and paraffin-wax-embedded lymphoid tissues and obex were subjected to immunohistochemical diagnosis of CWD using MAb F99/97.6.1, a mouse monoclonal antibody antiPrP [34]. In addition, tissue sections were stained with haematoxylin and eosin (HE), in order to observe possible histopathological lesions.

Results

Deer PRNP

The coding region of the PRNP gene from 209 Iberian red deer samples collected in North-East Spain showed three single-nucleotide polymorphisms (SNPs): a silent SNP at position 408 (codon 136) (gct→gcc), and two polymorphisms at positions 292 (acc→gcc) and 776 (cag→gag), resulting in amino acid changes in codons 98 and 226. The mutation in codon 98 causes an amino acid substitution of threonine (T) with alanine (A), while in codon 226 the mutation results in an amino acid change from glutamine (Q) to glutamic acid (E). The SNP at nucleotide position 408 is linked to the SNP at position 776, so that all haplotypes were either t408-a776(Q226) or c408-g776(E226); Tables 1 and 2 only show the amino acid changes. A98 was observed 61 times in linkage with Q226, and all AA98 homozygous genotypes were QQ226 homozygous. Therefore, it is assumed that A98 was also linked with Q226 in the 28 TA98-QE226 heterozygotes so that their genotype can be described as TE/AQ. The three haplotypes described here for Spanish red deer were identical to haplotypes 1, 8 and 10 found in Italy and Scotland [35].

The SNP in codons 136 and 226 appeared in all the three geographic areas, while the polymorphism at codon 98 appeared in deer from EA and WA, but not SA. The allele and genotype frequencies of the amino acid polymorphisms were calculated for the whole population, and separately for the different subpopulations in EA, WA and SA (Tables 1 and 2). Allele frequencies for the TQ and TE alleles were 74.3% in the EA, 83.6% in the WA and 100% in the SA. Correspondingly, frequencies for the AQ allele were 25.7% in the EA, 16.4% in the WA and 0% in the SA. The lack of the AQ allele from the SA population is significant compared with the EA (p = 0.003) and WA (p = 0.045) populations although only 11 animals were collected. When the EA and WA populations are compared for the AQ allele frequencies, the difference of 9.3% was also significant (p = 0.03). However, there was no significant difference between TQ and TE alleles when any
of the three populations were compared; on average both alleles appear balanced at 53.2% and 46.8%, respectively. Both subpopulations EA and WA are in HWE for the three SNPs. When the allele frequencies of the Alpine red deer *Cervus elaphus elaphus* (AQ:TQ:TE = 10%:62%:28%) [35] was compared to the Spanish red deer *Cervus elaphus hispanicus* (21.3%:42.8%:35.9%) the differences were significant (\(p = 0.03\)), with an increased frequency of the AQ allele.

The 15 fallow deer *PRNP* coding region sequences (codon 23-256) showed no SNP at all, matching the red deer haplotype t408-a292(T98)-g776(E226), but with the previously described codon 138 sequence aat (N138) deposited in Genbank (accession no. AY286007). Similarly, all 44 roe deer *PRNP* coding region sequences were identical to each other and to the published sequence of roe deer (Accession No. AY639096). The roe deer allele is identical to the red deer TQ allele.

Iberian wild goat and chamois *PRNP*

The *PRNP* allele deduced from 30 Iberian wild goat sequences was identical to the Alpine ibex (*Capra ibex ibex*, accession no. EF139174) and Nubian ibex (*Capra ibex nubiana*, AF117319). It showed no polymorphisms. Finally, the *PRNP* coding region sequences of 53 Pyrenean chamois revealed the presence of a silent mutation at position 114 (gga→ggc, codon 38) and a 24 bp deletion, but was otherwise identical to Alpine chamois (Accession No. AY735496.1). The g114 haplotype was found at a frequency of 13.2%. The 24 bp deletion (tcagc-cctgtgaggtggctgggg) causes the loss of one octapeptide (PHGGGWGQ) of the standard five repeats in the N-terminal region of the wild type PrP protein, it was observed in eight heterozygous animals (allele frequency 0.9%).

Table 1 Genotypic frequencies (%) of *PRNP* polymorphisms in Iberian red deer from the North-East of Spain

Codon 98	Codon 226	Genotypes	Number	Frequencies (%)
Thr(T)	Ala(A)			
TT	QQ	TQ/TQ	44	21.05
TT	QE	TQ/TE	56	26.8
TT	EE	TE/TE	33	15.8
TA	QQ	TQ/AQ	35	16.75
TA	QE	TE/AQ	13	6.2
–	–	TOTAL	209	100

Table 1: The genotypic frequencies (%) of *PRNP* polymorphisms in Iberian red deer from the North-East of Spain.

Table 2 Allelic frequencies (%) of *PRNP* polymorphisms in EA and WA subpopulations of Iberian red deer

Alleles	Codons 98-226	Haplotype in Peletto et al. [34]	Number	Allele Frequencies (%)
TQ	1	179	42.8	
TE	10	150	35.9	
AQ	8	89	21.3	
Total	418	418	100	

Table 2: The allelic frequencies (%) of *PRNP* polymorphisms in EA and WA subpopulations of Iberian red deer.

Histological analysis for PrPSc deposition in red deer

PrPSc immunoreactivity was assayed in obex and lymphoid tissue (tonsil and/or ileocecal valve) in 54 animals and in lymphoid tissue only in an additional 14 animals. Animals of all genotypes were selected: TE/AQ (14), AQ/TQ (18), TE/TE (8), TQ/TQ (12) and TE/TQ (16). None of these 68 animals showed any PrPSc in any of the tissues (Figure 2). Other, non-TSE histological observations included CNS injuries that may be associated with the time of death of the animal, such as perivascular haemorrhages, observed in 35% of the animals. Furthermore, the presence of mild lymphoplasmacytic perivascular cuffing and gliosis foci was detected in 15%, not associated to any particular cause such as unspecific inflammation. Anyway, no microscopic lesion that could correspond to those characteristics of TSE was observed in the brain of the animals.
Discussion

The analysis of 700 PRNP gene coding regions from three cervine and two wild caprine species revealed only three amino acid polymorphisms in PrP\(^C\), and an additional two synonymous SNPs. Whilst the cervine polymorphisms have been described before, the two polymorphisms in the chamois were new.

The two amino acid substitutions T98A and Q226E detected in Iberian red deer have both previously been described in an Italian red deer PRNP gene survey, in the same allele combination of AQ, TQ and TE. There is a significant difference in the allele frequencies between the Italian, British and Spanish populations but its relevance for CWD remains to be investigated [35]. The PRNP polymorphism M132L described in the related North American wapiti (Rocky mountain elk) has not been found yet in any European red deer [21, 24].

Threonine in codon 98 appears to be the most commonly found amino acid in this position, including human PrP\(^C\). While a serine substitution in codon 98 is found in sheep, goats and muntjac deer amongst many others, the replacement with alanine is much rarer, seen only in red deer, camel, two monkey species and armadillo. Although the T-S-A substitutions have to be regarded as conservative, they may still have a role in the conversion of PrP\(^C\) into the pathogenic form PrP\(^Sc\) that is found in CWD and all other prion diseases. This codon position is not only very close to the protease K cleavage site of the partially resistant PrP\(^Sc\) protein fragment, it is also near codons 95 and 96, which are associated with susceptibility to CWD of white-tailed and mule deer [27–29].

Codon 226 is located in the third \(\alpha\)-helix of PrP\(^C\) and remains part of the protease K resistant fragment of PrP\(^Sc\). It may therefore play a role in the stability and conversion of PrP\(^C\). Indeed, many amino acid substitutions in helix 3, particularly in human PrP\(^C\), have been shown to change the propensity for prion disease development. On the other side, substitutions in codon 222 in caprine PrP or the equivalent position 219 in human PrP are associated with strong disease resistance. Equally, polymorphism S225F seems to play a role in CWD resistance in mule deer [25]. In white-tailed deer another codon 226 polymorphism, Q226K, was found at low frequency [29].

Recent experimental CWD challenge studies in red deer have been performed which coincidentally used animals with all three codon 226 genotypes (QQ\(_{226}\), QE\(_{226}\), EE\(_{226}\)). There were no significant differences in PrP\(^Sc\) western blot profiles or in the incubation times associated with those genotypes, but the number of animals in the study was far too small to come to a significant conclusion regarding genetic association [10]. Another experiment showed that European red deer with QQ\(_{226}\) genotype were susceptible to intracerebral challenge with BSE brain homogenate [36]. A similar study using BSE by oral route led to disease in a QQ\(_{226}\) deer, while the other genotypes (EE\(_{226}\), QE\(_{226}\)) remained healthy [37]. Then again, the number of animals with particular genotypes was too small to establish genetic association with susceptibility or pathogenesis.

The analysis for disease-associated deposition of PrP\(^Sc\) by immunocytochemistry in cervine tissues from 68 animals has given a negative result, which at least indicates that CWD is not hiding as non-clinical disease epidemic
in Spanish red deer. Of course many more samples need to be studied to allow for a definite assessment regarding the absence of CWD from these and neighbouring populations.

No PRNP sequence variation was found in approx. 120 chromosomes analysed for Iberian roe and fallow deer, which is not dissimilar to the Italian and Swedish studies, which revealed one synonymous polymorphism in approx. 420 chromosomes between them [35, 38]. Only further extensive genotyping of these species will prove whether they have indeed a particularly low PRNP coding region variability.

Animals from the subfamily Caprinae, like Pyrenean chamois and Iberian wild goat, are thought to be susceptible to scrapie because of the close resemblance of their PRNP sequence with domestic goat PRNP [39]. The deletion in the octapeptide region observed in one Pyrenean chamois is a novel polymorphism for this species, but octapeptide repeat deletions in PrP C have been found regularly in several species. Approximately 10% of PrP C from over 140 species have shown deletions of one, two or even three octapeptides, whilst the opposite, a single octapeptide insertion has been found in 15% of PrP alleles. Whether an association exists between octapeptide number variation and TSE in ruminants remains unresolved.

CWD, the most important TSE affecting cervids, has been confined to North America for years, but finally it has reached the European continent. Its great capacity for dissemination means that, eventually it could reach other regions from Europe, including the Iberian Peninsula. Besides, a real contact with the causal agent of scrapie occurs constantly because of the extensive grazing areas shared by the population of wild ruminant, especially red deer, and sheep and goats flocks. In addition, the great capacity of prion to jump between species [40] poses a risk to these deer [41, 42].

This survey has shown that the PRNP gene is highly conserved in four important species of wild ruminants in the northeast of Spain and supports the current assumption that there is no hidden TSE epidemic in red deer.

Acknowledgements
Authors thank to the hunters and guardians of the hunting grounds of Aragon for their collaboration in sampling, and Yolanda Gracia, Sonia Gómez, Silvia Ruiz, Nuria Segovia and Helen Williamson for their technical assistance.

Availability of data and materials
The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Ethics approval and consent to participate
Not applicable.

Funding
Funding for this project was provided by the Department of Agriculture, Livestock and Environment of the Aragón Government and the Ministry of Agriculture and Fisheries, Food and Environment of Spain.

Author details
1 Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain. 2 Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain. 3 The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 18 December 2017 Accepted: 12 March 2018
Published online: 10 April 2018

References
1. Prusiner SB (1982) Novel proteinaceous infectious particles cause scrapie. Science 216:136–144
2. Kong Q, Bessen RA (2008) Prion Diseases. In: Gendelman HE, Ikezu T (eds) Neuroimmune Pharmacology. Springer, Boston
3. Detwiler LA, Baylis M (2003) The epidemiology of scrapie. Rev Sci Tech 22:121–143
4. Wilesmith JW, Ryan JB, Hueston WD, Hoinville LJ (1992) Bovine spongiform encephalopathy: epidemiological features 1985 to 1990. Vet Rec 130:90–94
5. Williams ES, Young S (1992) Spongiform encephalopathies in Cervidae. Rev Sci Tech 11:551–567
6. Spraker TR, Miller MW, Williams ES, Getzky DM, Adrian WJ, Schoonveld GG, Spowart RA, O’Rourke KL, Miller JM, Merz PA (1997) Spongiform encephalopathy in free-ranging mule deer (Odocoileus hemionus), white-tailed deer (Odocoileus virginianus) and Rocky Mountain elk (Cervus elaphus nelsoni) in northcentral Colorado. J Wildl Dis 33:1–6
7. Williams ES, Miller MW (2002) Chronic wasting disease in deer and elk in North America. Rev Sci Tech 21:305–316
8. Schwabenlander MD, Culhane MR, Hall SM, Goyal SM, Anderson PL, Cartensen M, Wells SJ, Slade WB, Armién AG (2013) A case of chronic wasting disease in a captive red deer (Cervus elaphus). J Vet Diagn Invest 25:573–576
9. Keefer TJ, Montgomery DL, Jewell JE, Schulz W, Williams ES (2006) Oral transmission of chronic wasting disease in captive Shiras’s moose. J Wildl Dis 42:640–645
10. Balachandran A, Harrington NP, Algire J, Soutyrine A, Spraker TR, Jeffrey M, Gonzalez L, O’Rourke KI (2010) Experimental oral transmission of chronic wasting disease to red deer (Cervus elaphus elaphus): early detection and late stage distribution of protease-resistant prion protein. Can Vet J 51:169–178
11. Mitchell GB, Sigurdson CJ, O’Rourke KL, Algire J, Harrington NP, Walther I, Spraker TR, Balachandran A (2012) Experimental oral transmission of chronic wasting disease to reindeer (Rangifer tarandus tarandus). PLoS One 7:e39055

Abbreviations
CWD: chronic wasting disease; TSE: transmissible spongiform encephalopathy; PRNP: prion protein gene; SNP: single nucleotide polymorphism; BSE: bovine spongiform encephalopathy; WA: west area; EA: east area; SA: south area.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
CA designed the study. JLP, MCA, MR, DM, DFL and CA collected the samples. JLP and HCR performed the DNA extraction, PCRs, immunohistochemistry, and HE. JLP, HCR and CA analysed the data. JLP and CA wrote the manuscript with contributions and editing from HCR, MCA, MR, DM, DFL, JJB and WG. All authors read and approved the final manuscript.
12. Nalls AV, McNulty E, Powers J, Seelig DM, Hoover C, Haley NJ, Hayes-Klug J, Anderson K, Stewart P, Goldmann W, Hoover EA, Mathiason CK (2013) Mother to offspring transmission of chronic wasting disease in Reeves' muntjac deer. PLoS One 8:e71844

13. Hamir AN, Greenlee JJ, Nicholson EM, Kunkle RA, Richt JA, Miller JM, Hall M (2011) Experimental transmission of chronic wasting disease (CWD) from elk and white-tailed deer to fallow deer by intracerebral route: final report. Can J Vet Res 75:152–156

14. Belay ED, Maddox RA, Williams ES, Miller MW, Gambetti P, Schonberger LB (2004) Chronic wasting disease and potential transmission to humans. Emerg Infect Dis 10:977–984

15. Kong Q, Huang S, Zou W, Vanegas D, Wang M, Wu D, Yuan J, Zheng M, Bai H, Deng H, Chen K, Jenny AL, O’Rourke K, Belay ED, Schonberger LB, Petersen RB, Sy MS, Chen SG, Gambetti P (2005) Chronic wasting disease of elk: transmissibility to humans examined by transgenic mouse models. J Neurosci 25:7944–7949

16. DEFRA (2018) Cervid spongiform encephalopathy in Norway. https://www.gov.uk/government/collections/animal-diseases-international-monitoring. Accessed 27 Mar 2018

17. Benestad SL, Mitchell G, Simmons M, Ytrehus B, Vikoren T (2016) First case of chronic wasting disease in Europe in a Norwegian free-ranging reindeer. Vet Res 47:88

18. EFSA (2010) Scientific opinion on the results of the EU survey for chronic wasting disease (CWD) in cervids. EFSA J 8:1861

19. Goldmann W (2008) PrP genetics in ruminant transmissible spongiform encephalopathies. Vet Res 39:19

20. Vaccari G, Panagiotidis CH, Acin C, Peletto S, Barillet F, Acutis P, Bossers A, Langeveld J, van Keulen L, Sklaviadis T, Badiola JJ, Andreeoletti O, Groschup MH, Agrimi U, Foster J, Goldmann W (2009) State-of-the-art review of goat TSE in the European Union, with special emphasis on PRNP genetics and epidemiology. Vet Res 40:48

21. O’Rourke KI, Besser TE, Miller MW, Cline TF, Spraker TR, Jenny AL, Wild MA, Zebrahl GW, Williams ES (1999) PrP genotypes of captive and free-ranging Rocky Mountain elk (Cervus elaphus nelsoni) with chronic wasting disease. J Gen Virol 80:2765–2769

22. Hamir AN, Cicledevity, T, Spraker TR, Miller JM, Creekmore L, Crocheck M, Cline T, O’Rourke KI (2006) Preliminary observations of genetic susceptibility of elk (Cervus elaphus nelsoni) to chronic wasting disease by experimental oral inoculation. J Vet Diagn Invest 18:110–114

23. Green KM, Browning SR, Seward TS, Jewell JE, Ross DL, Greenlee JJ, Hoovers ES, Hoover EA, Telling GC (2008) The elk (Cervus canadensis) and pathogenic distribution of peripheral PrPSc. PLoS One 3:20036

24. Perucchini M, Griffin K, Miller MW, Goldmann W (2008) PrP genotypes of free-ranging wapiti (Cervus elaphus nelsoni) with chronic wasting disease. J Gen Virol 89:1324–1328

25. Jewell JE, Conner MM, Wolfe LL, Miller MW, Williams ES (2005) Low frequency of PrP genotype 225SF among free-ranging mule deer (Odocoileus hemionus) with chronic wasting disease. J Gen Virol 86:2127–2134

26. Fox KA, Jewell JE, Williams ES, Miller MW (2006) Patterns of PrPSc accumulation during the course of chronic wasting disease infection in orally inoculated mule deer (Odocoileus hemionus). J Gen Virol 87:3451–3461

27. Johnson C, Johnson J, Clayton M, McKenzie D, Aiken J (2003) Prion protein gene heterogeneity in free-ranging white-tailed deer within the chronic wasting disease affected region of Wisconsin. J Wildl Dis 39:576–581

28. O’Rourke KI, Spraker TR, Hamburg LK, Besser TE, Brayton KA, Knowles DP (2004) Polymorphisms in the prion precursor functional gene but not the pseudogene are associated with susceptibility to chronic wasting disease in white-tailed deer. J Gen Virol 85:1339–1346

29. Johnson C, Johnson J, Vanderloop JP, Keane D, Aiken JM, McKenzie D (2006) Prion protein polymorphisms in white-tailed deer influence susceptibility to chronic wasting disease. J Gen Virol 87:2109–2114

30. Marco J, Herrero J, Escudero MA, Fernández-Arberas O, Fenero J, García-Serrano A, Giménez-Araya A, Labarta JL (2011) Veinte años de seguimiento poblacional de ungulados silvestres de Aragón. Primorres. Revista de Ecología de Montaña 166:135–153 (in Spanish)

31. Herrero J, Escudero E, Fernández de Lucco D, García-González R (2011) El sarrio pirenaico: Rupicapra p. pyrenaica: Biología, patología y gestión. Publicaciones del Consejo de Protección de la Naturaleza de Aragón. ISBN: 84-89862-47-8 (in Spanish)

32. Bossers A, Schreuder BE, Muellemann BH, Belt PB, Smits MA (1996) PrP genotype contributes to determining survival times of sheep with natural scrapie. J Gen Virol 77:2669–2673

33. Goldmann W, Ryan K, Stewart P, Parnham D, Xicohtencatl R, Fernandez N, Saunders G, Windl O, González L, Bossers A, Foster J (2011) Caprine prion gene polymorphisms are associated with decreased incidence of classical scrapie in goat herds in the United Kingdom. Vet Res 42:110

34. Spraker TR, O’Rourke KI, Balchandran A, Zink RK, Cummings BA, Miller MW, Powers BE (2002) Validation of monoclonal antibody F99/97.61 for immunohistochemical staining of brain and tonsil in mule deer (Odocoileus hemionus) with chronic wasting disease. J Vet Diagn Invest 14:3–7

35. Peletto S, Perucchini M, Acin C, Dalgleish MP, Reid HW, Rasero R, Sacchi P, Stewart P, Caramelli M, Ferroglio E, Bozzetta E, Meloni D, Orsa R, Roberto S, Gennero S, Goldmann W, Acutis PL (2009) Genetic variability of the prion protein gene (PRNP) in wild ruminants from Italy and Scotland. J Vet Sci 10:115–120

36. Dalgleish MP, Martin S, Steele P, Finlayson J, Siso S, Hamilton S, Chianini F, Reid HW, Gonzalez L, Jeffrey M (2008) Experimental transmission of bovine spongiform encephalopathy to European red deer (Cervus elaphus elaphus). BMC Vet Res 4:17

37. Dalgleish MP, Martin S, Steele P, Finlayson J, Eaton SL, Siso S, Stewart P, Fernández-Borges N, Hamilton S, Pang Y, Chianini F, Reid HW, Goldmann W, Gonzalez L, Castilla J, Jeffrey M (2015) Susceptibility of European red deer (Cervus elaphus elaphus) to classical scrapie strains. BMC Vet Res 11:58

38. Wik L, Mikko S, Klingeboon M, Steen M, Simonsson M, Linne T (2012) Polymorphisms and variants in the prion protein sequence of European moose (Alces alces), reindeer (Rangifer tarandus), roe deer (Capreolus capreolus) and fallow deer (Dama dama) in Scandinavia. Prion 6:256–260

39. Acín C, Martin-Burniel I, Monleón E, Lyahyai J, Pitarch JL, Serrano C, Monzon M, Zaragoza P, Badiola JJ (2013) Prion protein gene variability in Spanish goats. Inference through susceptibility to classical scrapie strains and pathogenic distribution of peripheral PrPSc. PLoS One 8:e61118

40. Moore RA, Vorberg I, Prolla SA (2005) Species barriers in prion diseases—brief review. Arch Virol Suppl 19:187–202

41. Hamir AN, Miller JM, Cutlip RC, Kunkle RA, Jenny AL, Stack MJ, Chaplin MJ, Richt JA (2004) Transmission of scrapie to elk (Cervus elaphus nelsoni) by intracerebral inoculation: final outcome of the experiment. J Vet Diagn Invest 16:316–321

42. Greenlee JJ, Smith JD, Kunkle RA (2011) White-tailed deer are susceptible to the agent of sheep scrapie by intracerebral inoculation. Vet Res 42:107