Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
The COVID-19 pandemic has resulted in higher numbers of intensive care unit (ICU) admissions requiring mechanical ventilation. Research has mostly focused on respiratory, renal, hematomatological, and infectious manifestations of the disease, but authors note there is still limited data regarding nutritional and metabolic status of COVID-19 patients. Of the limited data, some authors report challenges to achieve adequate nutrition with the gastrointestinal tract (GI) limited tolerance of enteral nutrition (EN) while on heavy sedation and neuromuscular blocking drugs. This prospective observational study sought to collect information regarding nutrition and metabolism related variables of patients with COVID-19 and to compare them with non-COVID-19 patients to determine specific problems related to nutrition management, with emphasis on energy balance. Two cohorts of patients on mechanical ventilation and a retrospective analysis were included. A total of 104 patients (52 non-COVID and 52 COVID) were analyzed. Patients with COVID had higher weights, but the overall weight proportion between cohorts was similar. The main mode of sedation was propofol and much higher doses were necessary for COVID patients. EN occurred much more quickly in COVID ICU patients, with a median time-to-feeding being 0.5 days. Thus, the average daily energy balances and mean protein intake in the first 10 days of ventilation were calculated to be greater in COVID patients, given quick EN starts. Weight loss among the two cohorts did not differ. Overall protein delivery over 30 days was lower in COVID patients, likely related to the higher propofol rates and concern for over feeding limiting amount of EN formula provided. Additionally, lipid intake of the first 10 days of ventilation was significantly higher in COVID patients, again resulting from higher propofol rates. The doses of propofol and lipids remained higher for COVID patients over 30 days compared to those without COVID. These results provide insight into EN in ICU patients with COVID, as well as describes potential deficits in energy and protein intake due to higher lipid and propofol delivery, thus taking the place of other necessary nutrients.

DIABETES CARE

Persistence of Risk for Type 2 Diabetes After Gestational Diabetes Mellitus.

Diaz-Santana MV, O’Brien KM, Park YMM, Sandler DP, Weinberg CR. *Diabetes Care.* 2022; https://doi.org/10.2337/dc21-1430.

Gestational diabetes mellitus (GDM) is defined as hyperglycemia in the second or third trimester of pregnancy in women without a previous diagnosis on diabetes. GDM is believed to be a dysfunction of beta-cells in the pancreas, causing insulin resistance. These issues can progress and pose a greater risk for Type 2 diabetes mellitus (T2DM) later in life. This retrospective observational cohort study sought to evaluate how the risk of BMI and the cumulative number of pregnancies affected by GDM, and the investigate the relative risk of T2DM related to age changes over time related to GDM diagnoses. Researchers utilized the Sister Study to gather data regarding GDM diagnoses and T2DM risk. The final sample included 47,471 women. Researchers noted that 1,414 women at baseline reported a diagnosis of GDM. Of these, women reporting GDM were slightly younger and had a higher baseline BMI. Within a 10.2 year follow up, 190 with GDM (13.4%) reported developing T2DM and 428 T2DM. The strength of this association was found to decrease over time, declining about 24% with each passing decade. Researchers noted that the risk of developing T2DM later in life increased steeply with multiple pregnancies with GDM diagnoses. Of note, women with three or greater affected pregnancies were at a seven-fold increased risk of developing T2DM within 6-15 years of their most recent GDM diagnosis. In all instances, cumulative incidence of T2DM was considerably higher among participants with GDM than those without; those with a history of GDM by age 80 years was 67.5% for obese women, 44.3% for overweight women, and 16.1% for women who were normal or underweight. These results suggest that a history of GDM greatly increased a woman’s risk for developing T2DM later in life, thus placing special emphasis on regular, earlier, and adequate screening for T2DM among women with a history of GDM.
students’ confidence in diagnosing malnutrition and including RDN in patient care.

GERONTOLOGY

Mortality risks of body mass index and energy intake trajectories in institutionalized elderly people: a retrospective cohort study.
Kawakami Y, Hamano J. BMC Geriatrics. 2022; https://doi.org/10.1186/s12877-022-02778-1.
Palliation is considered an important goal for institutionalized older adults, but it is possible that older adults who pass away in such facilities do not receive true palliative care. Family members providing care may not be receptive to the idea their loved one is dying, and physicians may not consider certain disease states to be terminal, leading to a hinderance in palliative care. Thus, it is important to make an accurate assessment of prognosis and death. Nutritional status is associated with mortality and may be used to predict risk of mortality. Many studies have shown that decrease in body weight (BW) and BMI, and unintentional weight loss among older adults increased the risk of death. This single-center, retrospective study sought to understand the relationship between BMI and energy intake (EI) and determine if both could be used to make an accurate mortality prediction and risk assessment for older adults. Baseline data was collected on institutionalized older adults in Japan who died between April 2007 and February 2020. All 218 subjects received the same assistance and care, the same living conditions, and had meals managed and EI calculated by registered dietitians. Subjects were weighed at time of admission and monthly, and average monthly EI was calculated by the dietitian. Subjects were divided in to four groups based on amount of time survived after admission: 6-12 months, 12-36 months, 36-60 months, >60 months. The rate of change for BMI and EI per BW were calculated. BMI continuously decreased for 60 months prior to death but was most significant at 36 months prior to death. At 12 months before death, researchers noted the most significant decrease in rate of change for EI to BW, continuing to worsen until death. Researchers noted that the mean rate of change for EI to BW that exceeded the decrease in BMI was at 4 months prior to death. Researchers additionally noted that those with lower BMIs had a higher mortality risk. The mean BMI at 50 months prior to death was <20.0kg/m² and was <18.5kg/m² 17 months prior to death, showing a worsening trajectory and an irreversible trend among all participants. The present study allowed researchers to determine that rate of change for BMI and EI per BW could be used to determine mortality risk and estimate time to death based on the severity of both rates. This study provides additional data for encouraging true palliative care in institutionalized or home settings for older adults.

NUTRITION SUPPORT

Update on use of enteral and parenteral nutrition in hospitalized patients with a diagnosis of malnutrition in the United States.
Guenter P, Blackmer A, Malone A, et al. Nutr Clin Pract. 2022; https://doi.org/10.1002/ncp.10827.
The American Society of Parenteral and Enteral Nutrition (ASPEN) has been following documented uses of enteral nutrition (EN) and parenteral nutrition (PN) in hospitalized patients for greater than 20 years. ASPEN has published two data briefs, one being the 2010 Healthcare Cost and Utilization Project (HCUP) and the 2020 Value Project. HCUP described documented use of EN and PN showing that only a small percentage of patients had a coded diagnosis of malnutrition (CDM) and/or received EN and/or PN. The Value Project modeled clinical outcome and cost findings related to EN and PN use in selected therapeutic areas. The data presented in this article provide information from both the Value Project and HCUP as an effort to report continually.
ongoing documented use of PN and EN among hospitalized patients with CDM. Both reports note that patients with CDM were older, had longer lengths of stay, incurred higher costs, associated with higher mortality risks, and higher readmission rates. HCUP and the Value Project note approximately 46% patients who received EN and 40% PN were ≥65 years. Pediatric patients accounted for 18.3% EN use and of these, 48% EN pediatric patients were ≤1 year. For PN use, 17% were pediatric patients, and 43% of these were ≤1 year. The reports continue to share information, such as the percentage of adults and children who received EN and/ or PN with CDM, the use of nutrition support (NS) without CDM, the use of EN and PN trending down, patients with CDM but did not receive NS had higher readmission rates, and discusses potential reasoning for not using NS or under coding of malnutrition and nutrition support.

PUBLIC HEALTH

Severity of Anemia During Pregnancy and Adverse Maternal and Fetal Outcomes.
Shi H, Chen L, Wang Y, et al. JAMA Netw Open. 2022; https://doi.org/10.1001/jamanetworkopen.2021.47046.

Anemia is the most widespread nutritional deficiency affecting pregnant females globally. In 2016, an estimated 40.5% of pregnant females had anemia, with the highest prevalence in Southeast Asia (48.15%). The literature has reported adverse maternal and neonatal outcomes related to anemia (e.g., low birth weight, stillbirth, etc.), all differing with severity of anemia. This study aimed to examine the association of adverse outcomes and severity of anemia during pregnancy via retrospective cohort analysis of pregnant women in China. Data was obtained from the Hospital Quality Monitoring System, an ongoing patient-level, national surveillance study in China, and includes more than 600 variables. Data from all tertiary hospitals providing maternal services were used from January 2016 to December 2019. The final cohort included 18,948,443 pregnant females, accounting for one-third of all pregnancies in China during the time span. Anemia was defined as mild, moderate, and severe based on hemoglobin levels and identified using ICD-10 codes. Maternal and fetal outcomes, and complications during pregnancy were also analyzed using ICD-9 and ICD-10 codes. For this sample, females with anemia had a higher proportion of adverse pregnancy related outcomes (e.g., placental abruption, preterm birth, shock, postpartum hemorrhage, etc.). A total of 17.8% of participants were diagnosed with anemia during pregnancy and decreased with age; 20.62% at age 15 to 16.85% at age 28 and then leveling off. Overall, females with anemia had a higher risk of adverse outcomes, and it was noted that severity of anemia increased the risk of adverse maternal and fetal outcomes via an upward curve. This large cohort study revealed the risk of anemia among pregnant females in China and can be used to increase effort to reduce incidence of anemia during pregnancy, as well as implement evidence-based interventions via national policies, strategies, and plans for intervention. The authors note that interventions for moderate to severe anemia in pregnancy should include regular monitoring to avoid potential adverse outcomes.

RESEARCH

Evaluation of Adiposity and Cognitive Function in Adults.
Anand SS, Friedrich MG, Lee DS, et al. JAMA Netw Open. 2022; https://doi.org/10.1001/jamanetworkopen.2021.46324.

Generalized adiposity is associated with higher levels of cardiovascular disease (CVD) factors, and total body adiposity is associated with higher circulating markers of inflammation and severe cardiac outcomes. Visceral adipose fat (VAT) reflects adipose tissue in the abdominal cavity and is highly associated with CVD. VAT is also considered to be a source of increased inflammatory proteins, leading to other potentially harmful effects, such as
cognitive decline. The relationship between VAT and cognitive function is uncertain; some studies have shown associations while others have provided inconclusive evidence of such a relationship. This cross-sectional study enrolled adults from two large national surveillance surveys, one in Poland, one in Canada. A total of 9,189 participants were included. Those with diagnosed CVD, stroke history, CAD, heart failure, or other types of heart disease were excluded. All underwent MRI of the brain to measure vascular brain injury (VBI). Cardiovascular risk factors were measured via survey of health and lifestyle questions and physical exam. Cognitive assessment was measured by the Digital Symbol Substitution Test (DSST) and the Montreal Cognitive Assessment (MoCA). Women in the sample had a higher body fat percentage than men, but men had a higher VAT volume. Regarding cognitive tests, higher total body fat percentage was associated with lower DSST scores and MoCA scores when adjusted for sex, education, race, and ethnicity. Higher VAT was associated with lower DSST scores, but not with MoCA scores. Researchers concluded that for this sample, for each one standard-deviation increase in adiposity, there was a 0.8 reduction in DSST score, equivalent to 2.8 years of aging. A similar decrease in DSST score was associated with VAT percentage. Body fat and VAT had no associations to MoCA scores. This study reports excess body adiposity is a risk factor for reduced cognitive function, independent of CVD risk factors, education, and VBI. Thus, this research provides information for developing strategies to prevent or reduce body adiposity to aid in preserving cognitive function among adults.

WEIGHT MANAGEMENT

Effect of Sleep Extension on Objectively Assessed Energy Intake Among Adults with Overweight in Real-life Settings: A Randomized Clinical Trial.

Tasali E, Wroblewski K, Kahn E, et al. JAMA Intern Med. 2022; https://doi.org/10.1001/jamainternmed.2021.8098.

Sleeping less may coincide with the obesity epidemic. One-third of the US population reported not meeting sleep recommendations, and evidence suggests that nightly lack of sleep is a risk factor for obesity. Short term experimental studies report that sleep restriction in healthy persons is associated with an increased energy intake (EI) of 250-350kcal/d, and current literature provides little evidence that sleep intervention intended to increase sleep duration affects EI and body weight. This randomized-controlled trial sought to determine the effects of a sleep-extension intervention on EI and expenditure, and body weight among overweight adults. Participants had an overweight BMI (25.0-29.9kg/m²) and a mean sleep-time of 6.5 hours nightly were enrolled, completed an online survey, and in-person interview. Diagnoses of obstructed sleep apnea, insomnia, or other sleep disorders, and those with night shift or rotating work schedules were excluded. Participants underwent a two-week sleep period at baseline and were then randomized into the two-week sleep intervention group (n=40) or two-week habitual sleep group (control, n=40). Sleep-wake patterns were continuously monitored at home via wrist actigraphy throughout the study. Those in the sleep-intervention group received sleep hygiene counseling and recommendations on extending sleep time while at home for two weeks. Control group members briefly visited the researchers to provide actigraphy data without sleep counseling or recommendations. EI was calculated each two-week period via sum of energy expenditure and change in body stores. Participants in the sleep-extension group had a significantly increased mean-sleep time via actigraphy than controls. EI was
significantly decreased in the sleep-extension group than controls. Researchers reported an increase in EI from baseline among controls (+114.9 kcal/d) and a significant decrease in EI in sleep-extension group (-15.5 kcal/d). Thus, the mean EI was inversely correlated with change in sleep duration. No statistical difference regarding energy expenditure was found. This study provides evidence of beneficial effects of extending sleep, and this can be considered a modest lifestyle change which can be promoted as a viable intervention for reducing the prevalence of overweight and obesity.

Impact of mothers’ distress and emotional eating on calories served to themselves and their young children: an experimental study.
Warnick J, Cardel M, Jones L, Gonzalez-Louis R, Janicke D. Ped Obes. 2022; https://doi.org/10.1111/jipo.12886.

Motivational interviewing to reduce anthropometrics among children: A meta-analysis, moderation analysis and Grading Recommendations Assessment, Development, and Evaluation assessment.
Ling J, Wen F, Robbins LB, Pageau L. Ped Obes. 2022; https://doi.org/10.1111/jipo.12896.

Preschool children’s food approach tendencies interact with food parenting practices and maternal emotional eating to predict children’s emotional eating in a cross-sectional analysis.
Stone RA, Haycraft E, Blissett J, Farrow C. J Acad Nutr Diet. 2022; https://doi.org/10.1016/j.jand.2022.02.001.

CLINICAL NUTRITION

Admission serum albumin concentrations and response to nutritional therapy in hospitalised patients at malnutrition risk: Secondary analysis of a randomised clinical trial.
Bretscher C, Beosiger F, Kaegi-Braun N, et al. Lancet. 2022; https://doi.org/10.1016/j.eclinm.2022.101301.

AND/ASPEN and the GLIM Malnutrition Diagnostic Criteria have a High Degree of Criterion Validity and Reliability for the Identification of Malnutrition in a Hospital Setting: A Single-Center Prospective Study.
El Chaar D, Mattar L, El Khoury CF. J Parenter Enteral Nutr. 2022; https://doi.org/10.1002/jpen.2347.

Applying the recommended indicators for the diagnosis of preterm and neonatal malnutrition: Answers to frequently asked questions.
Goldberg DL, Becker PJ. Nutr Clin Pract. 2022; https://doi.org/10.1002/ncp.10814.
Dietary Protein Intake in Relation to the Risk of Osteoporosis in Middle-Aged and Older Individuals: A Cross-Sectional Study.
Zhang YW, Cao MM, Li YJ, et al. J Nutr Health Aging. 2022; https://doi.org/10.1007/s12603-022-1748-1.

Dietary Supplement Use in Middle-Aged and Older Adults.
Tan ECK, Eshetie TC, Gray SL, Marcum ZA. J Nutr Health Aging. 2022; https://doi.org/10.1007/s12603-022-1732-9.

Dose-response relationships between dairy intake and non-communicable diseases: an NHANES based cross-sectional study.
Zgao Y, Ji X, Guo P, et al. Int J Food Sci Nutr. 2022; https://doi.org/10.1080/09637486.2021.2021154.

Evaluation of the Quality of Evidence of the Association of Foods and Nutrients with Cardiovascular Disease and Diabetes: A Systematic Review.
Miller V, Micha R, Choi E, et al. JAMA Netw Open. 2022; https://doi.org/10.1001/jamanetworkopen.2021.46705.

Evidence-Based Tools for Dietary Assessments in Nutrition Epidemiology Studies for Dementia Prevention.
Abbott KA, Posma JM, Garcia-Perez S, et al. J Prev Alzheim. 2022; https://doi.org/10.14283/jpad.2022.6.

A global view of the interplay between non-alcoholic fatty liver disease and diabetes.
Stefan N, Cisus K. Lancet Diabetes Endocrinol. 2022; https://doi.org/10.1016/S2213-8587(22)00003-1.

Key approaches to diagnosing malnutrition in adults.
Malone A, Mogensen KM. Nutr Clin Pract. 2022; https://doi.org/10.1002/ncp.10810.

Nutrient and Fluid Requirements in Post-bariatric Patients Performing Physical Activity: A Systematic Review.
Stocker R, Ceyhan M, Schonenberger KA, Stanga Z, Reber E. Nutrition. 2021; https://doi.org/10.1016/j.nut.2021.111577.

Plant-based diets and incident cardiovascular disease and all-cause mortality in African-Americans: A cohort study.
Weston L, Kim H, Talegawkar KL, Correa A, Reholz CM. PLoS Med. 2022; https://doi.org/10.1371/journal.pmed.1003863.

Rosacea and Diet: What is New in 2021?
Searle T, Ali FR, Carolides S, Al-Naimi F. J Clin Aesthet Dermatol. 2021; 14(12):49-54.

Specific nutrition and metabolic characteristics of critically ill patients with persistent COVID-19.
Viana MV, Pantet O, Charriere M, et al. J Parenter Enteral Nutr. 2022; https://doi.org/10.1002/jpen.2334.

COMMUNITY NUTRITION

Prenatal WIC is Associated with Increased Birthweight of Infants Born in the United States with Immigrant Mothers.
Ettinger de Cuba S, Mbamalu M, Bovell-Ammon A, et al. J Acad Nutr Diet. 2022; https://doi.org/10.1016/j.jand.2022.02.005.

Self-Rated Physical Health Among Working-Aged Adults Along the Rural-Urban Continuum — United States, 2021.
Rhubart DC, Monnat SM. Morbidity and Mortality Weekly Report. 2022. 71(5); 161-166.
CULINARY

Digestive recovery of polyphenols, anti-oxidant activity, and anti-inflammatory activity of selected edible flowers from the family Fabaceae.

Janary G, Ranaweera KKDS, Gunathilake KDPP. J Food Biochem. 2022; https://doi.org/10.1111/jfbc.14052.

Effectiveness of Partially Hydrolyzed Guar Gum in Reducing Constipation in Long Term Care Facility Residents: A Randomized Single-Blinded Placebo-Controlled Trial.

Chan TC, Yu VMW, Luk JK, Chu LW, Tuen JKY, Chan FHW. J Nutr Health Aging. 2022; https://doi.org/10.1007/s12603-022-1747-2.

Jackfruit (Artocarpus heterophyllus Lam.) in health and disease: a critical review.

Gupta A, Marquess AR, Padney AK, Bishayee A. Crit Rev Food Sci Nutr. 2022; 10.1080/10408398.2022.2031094.

Lowering the predicted glycemic index of pasta using dried onions as functional ingredients.

Ombra MN, Nazzaro F, Fratianni F. Int J Food Sci Nutr. 2022; https://doi.org/10.1080/09637486.2021.2025211.

Rice as a vehicle for micronutrient fortification: a systematic review of micronutrient retention, organoleptic properties, and consumer acceptability.

Pyo E, Tsang BL, Parker ME. Nutr Rev. 2022; https://doi.org/10.1093/nutrit/nua107.

Transformations to regenerative food systems-An outline of the FixOurFood project.

Doherty B, Bryant M, Denby K, et al. Nutr Bull. 2022; https://doi.org/10.1111/nbu.12536.

DIABETES CARE

Associations of Daily Step Intensity with Incident Diabetes in a Prospective Cohort Study of Older Women: The OPACH Study.

Garduno AC, LaCroix AZ, LaMonte MJ, et al. Diabetes Care. 2022; https://doi.org/10.2337/dc21-1202.

Low-carbohydrate versus balanced-carbohydrate diets for reducing weight and cardiovascular risk.

Nause CE, Brand A, Schoones A, Nguyen KA, Chapin M, Volmink J. Cochrane Database Syst Rev. 2022; https://doi.org/10.1002/14651858.cd013334.pub2.

Persistence of Risk for Type 2 Diabetes After Gestational Diabetes Mellitus.

Diaz-Santana MV, O’Brien KM, Park YMM, Sandler DP, Weinberg CR. Diabetes Care. 2022; https://doi.org/10.2337/dc21-1430.

Potential Effectiveness of Registered Dietitian Nutritionists in Healthy Behavior Interventions for Managing Type 2 Diabetes in Older Adults: A Systematic Review.

Dobrow L, Estrada I, Burkholder-Cooley N, Miklavcic J. Front Nutr. 2022; https://doi.org/10.3389/fnut.2021.737410.

Prolonged Glycemia Adaptation Following Transition from a Low-To High-Carbohydrate Diet: A Randomized Controlled Feeding Trial.

Jansen LT, Yang N, Wong JMW, et al. Diabetes Care. 2022; https://doi.org/10.2337/dc21-1970.
EDUCATION

Item-Level Analysis of a Newly Developed Interactive Nutrition Specific Physical Exam Competency Tool (INSPECT) Using the Rasch Measurement Model.
Zechariah S, Waller JL, Stalling J, Gess AJ, Lehman L. Healthcare. 2022; https://doi.org/10.3390/healthcare10020259.

Moving Dietetics Forward with Queer Pedagogy: A Post-Structural Qualitative Study Exploring the Education and Training Experiences of Canadian Dietitians and LGBTQ Care.
Joy P, McSweeny-Flaherty JM. J Acad Nutr Diet. 2022; https://doi.org/10.1016/j.jand.2022.02.011.

Piloting a training program in computed tomography (CT) skeletal muscle assessment for Registered Dietitians.
Martin L, Tom M, Basualdo-Hammond C, Baracos V, Gramlich L. J Parenter Enteral Nutr. 2022; https://doi.org/10.1002/jpen.2348.

Teaching the Nutrition Focused Physical Exam (NFPE) to Medical Students Using an Interdisciplinary Approach.
Harris SR, Mordarski B, Wolff J, Croniger CM. Med Sci Educ. 2022; https://doi.org/10.1007/s40670-021-01477-7.

GERONTOLOGY

The Aging Community and Health Research Unit Community Partnership Program (ACHRU-CPP) for older adults with diabetes and multiple chronic conditions: study protocol for a randomized controlled trial.
Ploeg J, Markle-Reid M, Valaitis R, et al. BMC Geriatrics. 2022; https://doi.org/10.1186/s12877-021-02651-7.

Mortality risks of body mass index and energy intake trajectories in institutionalized elderly people: a retrospective cohort study.
Kawakami Y, Hamano J. BMC Geriatrics. 2022; https://doi.org/10.1186/s12877-022-02778-1.

NUTRITION SUPPORT

Enteral and Parenteral Energy Intake and Neurodevelopment in Preterm Infants: A Systematic Review.
De Nardo MC, Di Mario C, Laccetta G, Boscarino G, Terrin G. Nutrition. 2022; https://www.sciencedirect.com/science/article/abs/pii/S0899900721004342;~text=https://doi.org/10.1016/j.nut.2021.111572.

Update on use of enteral and parenteral nutrition in hospitalized patients with a diagnosis of malnutrition in the United States.
Guenter P, Blackmer A, Malone A, et al. Nutr Clin Pract. 2022; https://doi.org/10.1002/ncp.10827.

ONCOLOGY

Dietary and physical activity changes and adherence to WCRF/AICR cancer prevention recommendations following a remotely delivered weight loss intervention for female breast cancer survivors: The Living Well after Breast Cancer randomized controlled trial.
Terranova CO, Winkler EAH, Healy GN, Denmakr-Wahnefried W, Eakin EG, Reeves
Feasibility of an Adapted Community-Based Lifestyle Intervention to Prevent Cancer in the Rural South: Healthy Living Partnerships to Prevent Cancer (HELP PC).
Thomas SW, Young CB, Zoellner J, Brock DJP, Vitolins M. J Cancer Educ. 2022; https://doi.org/10.1007/s13187-022-02137-z.

PEDIATRIC

Body fat differences among US youth aged 8-19 by race and Hispanic origin, 2011-2018.
Martin CB, Stierman B, Yanovski JA, Hales CM, Sarafrazi N, Ogden CL. Ped Obes. 2022; https://doi.org/10.1111/ijpo.12898.

Estimated reductions in added sugar intake among US children and youth in response to sugar reduction targets.
Vercammen K, Dowling EA, Sharkey AL, et al. J Acad Nutr Diet. 2022; https://doi.org/10.1016/j.jand.2022.02.008.

Impact of mothers’ distress and emotional eating on calories served to themselves and their young children: an experimental study.
Warnick J, Cardel M, Jones L, Gonzalez-Louis R, Janicke D. Ped Obes. 2022; https://doi.org/10.1111/ijpo.12886.

Motivational interviewing to reduce anthropometrics among children: A meta-analysis, moderation analysis and Grading Recommendations Assessment, Development, and Evaluation assessment.
Ling J, Wen F, Robbins LB, Pageau L. Ped Obes. 2022; https://doi.org/10.1111/ijpo.12896.

PUBLIC HEALTH

The Aging Community and Health Research Unit Community Partnership Program (ACHRU-CPP) for older adults with diabetes and multiple chronic conditions: study protocol for a randomized controlled trial.
Ploeg J, Markle-Reid M, Valaitis R, et al. BMC Geriatrics. 2022; https://doi.org/10.1186/s12877-021-02651-7.

Assessing the readiness of small cities in Ghana to tackle overweight and obesity.
Aberman NL, Nisbett N, Amoafo A, Areetey R. Food Secur. 2022; https://doi.org/10.1007/s12571-021-01234-z.

Associations of Daily Step Intensity with Incident Diabetes in a Prospective Cohort Study of Older Women: The OPACH Study.
Garduno AC, LaCroix AZ, LaMonte MJ, et al. Diabetes Care. 2022; https://doi.org/10.2337/dc21-1202.

Connecting the food and agriculture sector to nutrition interventions for improved health outcomes.
Duncan E, Ashton L, Abdulai AR, et al. Food Secur. 2022; https://doi.org/10.1007/s12571-022-01262-3.

COVID-19 pandemic and food poverty conversations: Social network analysis of Twitter data.
Eskandari F, Lake AA, Butler M. Nurt Bull. 2022; https://doi.org/10.1111/nbu.12547.
Diet quality of frequent fast-food consumers on non-fast food intake daily is similar to a day with fast food. What We Eat IN America, NHANES 2013-2016. Hoy MK, Murayi T, Moshfegh AJ. J Acad Nutr Diet. https://doi.org/10.1016/j.jand.2022.02.007.

Experiences Engaging Family Members in Maternal, Child, and Adolescent Nutrition: A Survey of Global Health Professionals. Lowery CM, Craig HC, Litvin K, et al. Curr Dev Nutr. 2022; https://doi.org/10.1093/cdn/nzac003.

Opportunities to address the failure of online food retailers to ensure access to required food labelling information in the USA. Pomeranz JL, Cash SB, Springer M, Del Giudice IM, Mozaffarian D. Public Health Nutr. 2022; https://doi.org/10.1016/S1368980021004638.

Racial/ethnic differences in maternal feeding practices and beliefs at 6 months postpartum. Von Ash T, Alikhani A, Lebron C, Risica PM. Public Health Nutr. 2022; https://doi.org/10.1017/S1368980021005073.

Severity of Anemia During Pregnancy and Adverse Maternal and Fetal Outcomes. Shi H, Chen L, Wang Y, et al. JAMA Netw Open. 2022; https://doi.org/10.1001/jamanetworkopen.2021.47046.

Using crowdsourced medicine to manage uncertainty on Reddit: The case of COVID-19 long-haulers. Thompson CM, Rhidenour KB, Blackburn KG, Barrett AK, Babu S. Patient Educ Couns. 2022; https://doi.org/10.1016/j.pec.2021.07.011.

RENA L NUTRITION

Benchmarking Diet Quality to Assess Nutritional Risk in Hemodialysis Patients: Applying Adequacy and Moderation Metrics of the Hemodialysis-Healthy Eating Index. Sualeheen A, Khor BH, Balasubramaniam GV, et al. J Renal Nutr. 2022; https://doi.org/10.1053/j.jrn.2022.02.002.

Daily walking dose and health-related quality of life in patients with chronic kidney disease. Xiong J, Peng H, Yu Z, et al. J Renal Nutr. 2022; https://doi.org/10.1053/j.jrn.2022.01.015.

Taking the Kale out of Hyperkalemia: Plant Foods and Serum Potassium in Patients with Kidney Disease. Babich JS, Kalantar-Zadeh K, Joshi S. J Renal Nutr. 2022; https://doi.org/10.1053/j.jrn.2022.01.013.

RESEARCH

A communications inequalities approach to disparities in fruit and vegetable consumption: Findings from a national survey with US adults. Lee CJ, Pena-y-Lillo M. Patient Educ Couns. 2022; https://doi.org/10.1016/j.pec.2021.06.005.

A Japanese Box Lunch Bento Comprising Functional Foods Reduce Oxidative Stress in Men: A Pilot Study. Ide H, Tsukada S, Asakura H, et al. Am J Mens Health. 2022; https://doi.org/10.1177/15579883221075498.

Association between vegetarian and vegan diets and depression: A systematic review. Jain R, Larsuphrom P, Degremont A, Latunde-Dada GO, Philippou E. Nutr Bull. 2022; https://doi.org/10.1111/nbu.12540.

Associations between a protective lifestyle behaviour score and biomarkers of chronic low-grade inflammation: a cross-sectional analysis in middle-to-older aged adults. Millar SR, Harrington JM, Perry LJ, Phillips CM. Int J Obes. 2022; https://doi.org/10.1038/s41366-021-01012-z.

Can Social Media Profiles Be a Reliable Source of Information on Nutrition and Dietetics? Kabata P, Winniczuk-Kabata D, Kabata PM, Jaskiewicz J, Polom K. Healthcare. 2022; https://doi.org/10.3390/healthcare10020397.

Conceptualising professionalism in dietetics: an Australasian qualitative study. Dart J, McCall L, Ash S, Rees C. J Acad Nutr Diet. 2022; https://doi.org/10.1016/j.jand.2022.02.010.
The correlation between food insecurity and infant mortality in North Carolina.
Cassy-Vu L, Way V, Spangler J. Public Health Nutr. 2022; https://doi.org/10.1017/S136898002200026X.

Data-driven subgroups of type 2 diabetes, metabolic response, and renal risk profile after bariatric surgery: A retrospective cohort study.
Raverdy V, Cohen RV, Ciaiazzo R, et al. Lancet Diabetes Endocrinol. 2022; https://doi.org/10.1016/S2213-8587(22)00005-5.

Diet and food type affect urinary pesticide residue excretion profiles in healthy individuals: results of a randomized controlled dietary intervention trial.
Rempelos L, Wang J, Baranski M, et al. Am J Clin Nutr. 2022; https://doi.org/10.1093/ajcn/nqab308.

Evaluation of Adiposity and Cognitive Function in Adults.
Anand SS, Friedrich MG, Lee DS, et al. JAMA Netw Open. 2022; https://doi.org/10.1001/jamanetworkopen.2021.46324.

Impact of environmental pollution on the obesogenic environment.
Martinez-Esquivel A, Trujillo-Silva DJ, Cilia-Martinez-Esquivel A, et al. JAMA. 2022; https://doi.org/10.1001/jama.2021.6962.

The impact of pictorial health warnings on purchases of sugary drinks for children: A randomized controlled trial.
Hall MG, Grummon AH, Higgins ICA, et al. PLoS Med. 2022; https://doi.org/10.1371/journal.pmed.1003885.

Inter-Rater and Intra-Rater Reliability of the INSPECT (Interactive Nutrition Specific Physical Exam Competency Tool) Measured in Multi-Site Acute Care Settings.
Zechariah S, Waller JL, Stallings J, Gess AJ, Lehman L. Healthcare. 2022; https://doi.org/10.3390/healthcare10020212.

Metabolic Risk Factors in Young Men with Healthy Body Fat but Different Level of Physical Activity.
Keska A, Tkaczuk J, Malarz M, et al. Am J Mens Health. 2022; https://doi.org/10.1177/15579883211070384.

My Healthy Brain: Rationale and Case Report of a Virtual Group Lifestyle Program Targeting Modifiable Risk Factors for Dementia.
Mace RA, Hopkins SW, Reynolds GO, Vranceanu AM. J Clin Psychol Med Settings. 2022; https://doi.org/10.1007/s10880-022-09843-2.

Possible role of type 1 and type 2 taste receptors on obesity-induced inflammation.
Koh GY, Rowling MJ, Pritchard SK. Nurt Rev. 2022; https://doi.org/10.1093/nutrit/nuac007.

Psychometric Testing of a Food Timing Questionnaire and Food Timing Screener.
Chakradeo P, Rasmussen HE, Swanson GR, et al. Curr Dev Nutr. 2021; https://doi.org/10.1093/cdn/nzab148.

Use of Facebook, Instagram, and Twitter for recruiting healthy participants in nutrition-, physical activity-, or obesity related studies: a systematic review.
Ellington M, Connelly J, Clayton P, et al. Am J Clin Nutr. 2021; https://doi.org/10.1093/ajcn/nqab352.

SPORTS NUTRITION

Exploring the minimum ergogenic dose of a caffeine on resistance exercise performance: a meta-analytical approach.
Grgic J. Nutrison. 2022; https://www.sciencedirect.com/science/article/abs/pii/S089990072200017X, https://doi.org/10.1016/j.nut.2022.111604.

WEIGHT MANAGEMENT

The counterbalancing effects of energy expenditure on body weight regulation: Orexigenic versus energy-consuming mechanisms.
Piaggi P, Basolo A, Martin CK, Redman LM, Votruba SB, Krakoff J. Obesity. 2022; https://doi.org/10.1002/oby.23332.

Dietary and physical activity changes and adherence to WCRF/AICR cancer prevention recommendations following a remotely delivered weight loss intervention for female breast cancer survivors: The Living Well after Breast Cancer randomized controlled trial.
Terrarova CO, Winkler EAH, Healy GN, Denmark-Wahnefried W, Eakin EG, Reeves MM. J Acad Nutr Diet. 2022; https://doi.org/10.1016/j.jand.2022.02.009.

Effect of Sleep Extension on Objectively Assessed Energy Intake Among Adults with Overweight in Real-life Settings: A Randomized Clinical Trial.
Tasli E, Wróblewski K, Kahn E, et al. JAMA Intern Med. 2022; https://doi.org/10.1001/jamainternmed.2021.8098.

Hypnosis reduces food impulsivity in patients with obesity and high levels of disinhibition: HYPNODIET randomized controlled clinical trial.
Delestre F, Lehericey G, Estellat C, et al. Am J Clin Nutr. 2022; https://doi.org/10.1093/ajcn/nqac046.

Impact of Transition from Face-To-Face to Telehealth on Behavioral Obesity Treatment During the COVID-19 Pandemic.
Ross KM, Carpenter CA, Arroyo KM, et al. Obesity. 2022; https://doi.org/10.1002/oby.23383.

In their own words: Topic analysis of the motivations and strategies of over 6,000 long-term weight-loss maintainers.
Phelan S, Roake J, Alarcon N, et al. Obesity. 2022; https://doi.org/10.1002/oby.23372.

Low-carbohydrate versus balanced-carbohydrate diets for reducing weight and cardiovascular risk.
Nause CE, Brand A, Schoones A, Nguyen KA, Chapin M, Volmink J. Cochrane Database Syst Rev. 2022; https://doi.org/10.1002/14651858.cd013334.pub2.

Outcomes of bariatric surgery in elderly patients: a registry-based cohort with 3-year follow-up.
Iranmanesh P, Boudreau V, Ramji K, Barlow K, Lovrics O, Anvari M. Int J Obes. 2022; https://doi.org/10.1038/s41366-021-01031-w.

Spillover Effects of a Family-Based Childhood Weight-Management Intervention on Parental Nutrient Biomarkers and Cardiometabolic Risk Factors.
Matthan NR, Barger K, Wylie-Rosett J, et al. Curr Dev Nutr. 2022; https://doi.org/10.1093/cdn/nzab152.

WOMEN’S HEALTH

Metabolic health, menopause, and physical activity—a 4-year-follow-up study.
Hyvärinen M, Juppi HK, Taskinen S, et al. Int J Obes. 2022; https://doi.org/10.1038/s41366-021-01022-x.