Evaluation of Agricultural Mechanization Level of Karaman Province

Ender Kaya¹,a,*, Aykut Örs²,b

¹Vocational School of Technical Sciences Karamanoglu Mehmetbey University, 70100 Karaman, Turkey
²Provincial Coordination Unit, Agriculture and Rural Development Institute, 42110 Konya, Turkey
*Corresponding author

ABSTRACT

The main purpose of this study is to determination of agricultural structure and mechanization features of agricultural enterprises in Karaman province. The main material of the study is statistical data of Turkish Statistical Institute (TSI) of 2009 – 2018 years for Karaman province. According to the data of Karaman province in 2009 and 2018, the average tractor power is 34.92 kW and 35.33 kW; the average tractor power per cultivated areas 2.45 kWha⁻¹ and 1.93 kWha⁻¹; the number of tractors per 1,000 ha is 52.27 and 40.76; the cultivated area per tractor is 19.13 ha and 24.54 ha, respectively. The number of equipment per tractor is 10.66 and 9.86, and the number of combine harvester per 1,000 ha is 0.47 and 0.55.

Keywords: Agricultural structure, Combine harvester, Mechanization level, Tractor, Karaman
Introduction

The use of machinery in agriculture increases the effectiveness and economic efficiency of technological applications and improves working conditions (Baran et al., 2014). The machine selection and planning is becoming more and more important because of diversification of the mechanization applications in agricultural enterprises. The profitable production of agricultural enterprises depends on the suitability and economic use of these machines consisting of tractors and agricultural machines. Therefore, the right choice and use of mechanization investments, which have a large share in the production expenses, is an important factor for the enterprises (Işık, 1988).

The development of agriculture is directly related to the use of production technologies in agriculture. Increasing agricultural productivity, income and reducing production costs are possible by increasing the use of new and modern technologies in agriculture. A country’s level of agricultural development is directly related to the use of production technologies used in agriculture. Increasing product yield is possible by increasing producer income, reducing production costs and increasing the use of new and modern technologies in agriculture (Sessiz et al., 2012).

To increase the product yield by the machines used in agriculture, optimization of features like land size, product design, production techniques, capacity of the machines used, power of tractors, tractor-machine compatibility, trained personnel and etc. is required (Yavuzcan et al., 1986).

The level of agricultural mechanization may vary depending on the region’s technical equipment and economic structure. The main power source is the tractor in agricultural production. Therefore, the tractor power per unit area is the most widely used criterion to determine the mechanization level. Careful determination of these criteria will allow the realization of the mechanization level dimension (Sabancı and Akıncı, 1994).

Materials and Method

Material

Karaman province is in the south of the Central Anatolia Region between 37.11 northern latitudes and 33.15 eastern longitudes. Konya is located to the north, Mersin to the south, Ereğli to the east, Silifke to the southeast, and Antalya to the west. It is 1,033 meters above sea level. The overall surface area of the province is 8,869 km². Karaman has 6 districts including the central district. The districts of the Karaman province are Ayancı, Basayayla, Ermenek, Kazımkarabekir and Sarıveliler (Anonymous, 2019a).

The main material of the study is statistical data of Turkish Statistical Institute (TSI) of 2009–2018 years for Karaman province. Dated used in the study are agricultural fields, number of tractors, number of harvesters, number of agricultural machinery and equipment drawn by tractor or animal.

Method

Many criteria are used to determine the level of mechanization of agricultural enterprises. The use of these criteria alone is inadequate in determining the degree of mechanization of enterprises (Kadayıfçilar et al., 1990). The source of power used in Turkey is tractors. The most accurate criterion in determining the mechanization level is the tractor power of kW ha⁻¹. In addition, the other criteria used to determine the level of mechanization are tractor 1,000 ha⁻¹, ha tractor⁻¹, equipment-tractor⁻¹ and the number of combine harvester 1,000 ha⁻¹ (Sabancı and Akıncı, 1994; Işık et al., 2003; Koçak, 2006; Koçtürk and Onurbaş Avcıoğlu, 2007; Altkat and Çelik, 2011; Eryılmaz et al., 2014).

In the study, by using TSI data for 2009-2018, tractor power per unit area (kW ha⁻¹), agricultural area per tractor (ha tractor⁻¹), number of tractors per unit agricultural area (tractor 1,000 ha⁻¹), the number of equipment per tractor (equipment - tractor⁻¹) and the number of combine harvesters per unit agricultural area (combine harvester 1,000 ha⁻¹) values were calculated for Karaman province Excel program and evaluated numerically.

Results and Discussion

Tractor is important in terms of increasing utilization of modern agricultural technology, spreading usage in production, providing economy and improving working conditions (Yalçın, 1990).

The number of tractors of Karaman province between 2009 and 2018 in the last decade is given in Table 1 according to power groups. The number of tractors is 12,437 according to 2009 data and 12,176 according to 2018 data. While the number of tractors decreased from 2009 to 2012, it entered an upward trend after 2013. When the range of 1-5 HP in single axle tractors is examined by years, it has continuously increased from 2009 to 2018. Single-axle tractors with more than 5 HP also increased continuously in 2009-2018 and reached 1,116 by 2018. The number of tractors in the 1-10 HP group with double axles is very low. While it was 7 in 2009, it increased to 9 in 2018. When the tractors between 11-24 HP were examined, the number decreased from 1,082 in 2009 to 260 in 2018. The number of tractors in the 25-34 HP range was 1,606 in 2009 and 888 in 2018. The number of tractors in the 35-50 HP range decreased from 3,636 in 2009 to 3,441 in 2018. The tractor group in the range of 51-70 HP, which was 4,322 in 2009, dropped to 3,627 in 2012 and by increasing in the following years it reaches to 4,653 in 2018.

When the number of single axle tractors of Karaman province is compared for 2009 and 2018; 538.71% increase in 1-5 HP group and 227.27% increase in tractors with more than 5 HP is observed. For double axle tractors; 28.57% increase in 1-10 HP group, 7.97% decrease in 11-24 HP group, 44.71% decrease in 25-34 HP group, 5.36% decrease in 35-50 HP group, 7.66% increase in 51-70 HP group and 14.09% increase in the group over 70 HP is observed.

The number of combine harvesters of Karaman province is given in Table 2. When we examine Table 2, it is seen that the number of combine harvester, which was 112 in 2009, increased to 164 in 2018. In combine harvesters; 183.33%, 50.00%, 16.67% increase is observed for 0-5, 6-10, 11-20 age groups respectively and 16.67% decrease for over the age of 21 group.
Machines with an increase in 10-year change are tractor engine power per total agricultural area, agricultural area per tractor, number of tractors per 1,000 ha agricultural area, amount of equipment per tractor (Kadayifcilar et al., 1990; Yavuzcan, 1994). When the Table 6 is examined, the number of tractors per 1,000 hectares area decreased from 52.27 in 2009 to 40.76 in 2018. The unit area processed by a tractor increased from 19.13 ha in 2009 to 24.54 ha in 2018. The power value per unit area decreased from 2.45 kW in 2009 to 1.93 kW in 2018.

Many criteria are used to determine the level of agricultural mechanization. The most commonly used ones are: Tractor engine power per total agricultural area, agricultural area per tractor, number of tractors per 1,000 ha agricultural area, amount of equipment per tractor (Kadayifcilar et al., 1990; Yavuzcan, 1994). When the Table 6 is examined, the number of tractors per 1,000 hectares area decreased from 52.27 in 2009 to 40.76 in 2018. The unit area processed by a tractor increased from 19.13 ha in 2009 to 24.54 ha in 2018. The power value per unit area decreased from 2.45 kW in 2009 to 1.93 kW in 2018. The number of equipment per unit tractor decreased from 10.66 in 2009 to 9.86 in 2018. The number of equipment per unit tractor decreased from 2.45 kW in 2009 to 1.93 kW in 2018. The number of equipment per unit tractor decreased from 10.66 in 2009 to 9.86 in 2018. The number of equipment per unit tractor decreased from 2.45 kW in 2009 to 1.93 kW in 2018.
Table 3. Change in the number of agricultural machinery and equipment of Karaman province for last decade

Agricultural Machinery And Equipment	2009	2018	Decade Change* (%)
Primitive plow	1,685	1,181	-29.91
Animal plow	1,179	389	-67.01
Reversible plow	10,902	9,686	-11.15
Furrow opener plough	1,971	1,706	-13.44
Tractor plow with disc	874	901	3.09
Plow for stubble with disc (oneway)	2,093	1,781	-14.91
Reversible plow for stubble	2,042	1,277	-37.46
Rotary cultivator	2,395	2,209	-7.77
Cultivator	7,515	8,406	11.86
Roller	1,446	1,771	22.48
Disc harrow	1,280	1,699	32.73
Toothed harrow	679	778	14.58
Combinicure (Mixed harrow)	105	189	80.00
Weed harrow	229	345	50.66
Animal drawn seed drill	90	-	-100.00
Tractor drawn seed drill	4,495	4,145	-7.79
Combined seed drill	5,667	5,636	-0.55
Farm manure spreading machine	2	41	1,950.00
Chemical fertilizer spreading machine	8,396	7,663	-8.73
Mowing machine	3,039	1,288	-57.62
Binder	9	37	311.11
Baling machine	46	149	223.91
Haymaker	48	62	29.17
Flail	200	117	-41.50
Potato lifter	6	6	500.00
Sugar beet lifter	1,128	1,042	-7.62
Combined sugar beet harvester	213	355	66.67
Tractor drawn mower	224	310	38.39
Weed silage machine	59	182	208.47
Corn silage machine	151	341	125.83
Corn harvesting machine	20	23	15.00
Selector (fixed or portable)	27	23	14.81
Feed grinder	115	245	113.04
Mulcher	11	60	445.45
Pulverizer carried on shoulder	5,347	4,876	-8.81
Self-propelled engine pulverizers with stretcher and duster	210	199	-5.24
Tail shaft movable pulverizer	6,900	6,616	-4.12
Engine pulverizer	774	813	5.04
Pollinator	14	21	50.00
Atomizer	118	187	58.47
Centrifugal pump	1,972	1,930	-2.13
Electrical pump	1,339	1,707	27.48
Motor-pump (Thermal)	2,541	1,654	-34.91
Deep-well pump	1,923	3,453	79.56
Sprinkler system	11,589	4,772	-58.82
Cream separator	5,814	1,143	-80.34
Milking plant	965	2271	135.34
Milking machine (portable)	965	2271	135.34
Trailer (agricultural truck)	13,435	13,988	4.12
Water tanker (used in agriculture)	1,254	1,469	17.15
Subsoiler	99	197	98.99
Rotary tiller	2,239	2,268	1.30
Stone picker	5	20	300.00
Grader	579	467	-19.34
Ditching machine	6	20	233.33
Earth auger	95	167	75.79
Animal or tractor drawn hoeing machine	3,251	3,710	14.12
Pneumatic seeder	186	1,109	496.24
Universal drill (mechanical) (including beet seeder)	82	140	70.73
Stubble drill	2	19	850.00
Straw threshing machine (thrasher)	7,432	2,114	-71.56
Straw baler and hay making Machine	254	325	27.95
Straw conveyor and unloader	45	361	702.22
Motor scythe	145	811	459.31
Product dryer	2	2	-
Fruit harvesting machines	-	7	-
Product classification machine (except selector)	8	10	25.00
Feed spreading trailer	8	107	1,237.50
Drip irrigation system	3,952	7,270	83.96
Churn	1,568	1,389	-11.42
Bucket (used in agriculture)	105	308	193.33

Source: Anonymous (2019b), *Calculated values
Table 4. Tractor power groups and average tractor power of Karaman province

Years	Ermenek	Ayrancı Center				
2009	31 341 7 1,082 1,606 3,636 4,322 1,412	2011	29 437 9 950 1,430 3,278 4,345 1,448			
2010	33 381 7 993 1,468 3,341 4,333 1,427	2012	43 645 10 325 1,032 3,245 3,627 593			
2011	168 1,005 10 310 927 3,370 3,824 755	2013	184 1,094 10 282 889 3,320 4,242 1,355			
2014	192 1,091 11 283 891 3,358 4,364 1,410	2015	192 1,112 11 274 892 3,376 4,469 1,450			
2016	196 1,119 10 268 891 3,413 4,629 1,570	2017	198 1,116 9 260 888 3,441 4,653 1,611			
2018	163	150	145	142	135	125

Table 5. Tractor and combine harvester numbers of Karaman province

Districts	Tractor	Combine harvester	
Center	9,920 937 2 9	2009	8,980 75 109
Ayrancı	691 402 0 2	2018	164
Başıaya	270 1,004 0 0		
Ermene	653 686 35 44		
Kazımkarabekir	713 167 0 0		
Sarıveliler	190 167 0 0		
Total	12,437 12,176 112 164		

Table 6. Calculated agricultural mechanization level indicators of Karaman province

Years	NT	NCH	AA	ATP	T	H	K	E	CH
2009	12,437 112	237,957 52,27 19,13 2,45 10,66 0,47							
2010	11,926 116	234,752 51,31 19,49 2,43 11,26 0,48							
2011	9,520 125	281,307 33,84 29,55 1,56 14,25 0,44							
2012	10,369 135	305,185 33,98 29,43 1,53 13,34 0,44							
2013	11,376 142	309,247 36,79 27,18 1,71 10,72 0,46							
2014	11,600 145	306,412 37,86 26,41 1,77 10,28 0,47							
2015	11,776 150	301,749 39,03 25,62 1,83 10,18 0,50							
2016	12,096 163	298,500 40,52 24,68 1,92 9,89 0,55							
2017	12,176 164	298,756 40,76 24,54 1,93 9,86 0,55							
2018	12,437 112	237,957 46,87 52,27 19,13 2,45 10,66 0,47							

NT: Number of Tractors, NCH: Number of Combine Harvester, AA: Agricultural Area (ha), ATP: Average Tractor Power (kW), T: Tractor / 1,000 ha, H: ha/Tractor, K: kW/ha, E: Equipment / Tractor, CH: Combine Harvester / 1,000 ha, Source: Anonymous (2019b), * Calculated values
Conclusions

Almost all of the 12,176 tractors in Karaman province consist of two axle tractors. Tractors with 26-50 kW and over 50 kW power are preferred for tractor power size. In the distribution of tractors by district, it was observed that the most tractors were located in Center and Ermenek districts.

In a survey conducted in Karaman province, tractor engine power was 54.90 kW, power per unit area was 3.39 kWha⁻¹ and the number of tractors per 1,000 hectares was found to be 61.75 (Yıldız et al., 2007).

When 2018 data in Table 6 and the results of the study of Yıldız et al. (2007) compared, it is seen that 13.62% decrease in tractor power by 47.42 kW in 2018; 43.07% decrease in power per unit area by 1.93 kWha⁻¹ in 2018; 33.99% decrease in the number of tractors per 1,000 hectares by 40.76% in 2018.

When the number of machinery and equipment in Karaman province was examined, it was concluded that the tillage machines and equipment were widely used.

When the data of 2018 drill machines are examined, an increase of 496.24% is observed in pneumatic drills, 70.73% in universal drills (mechanical) and 850.00% in stubble drills. The reason why stubble drill has increased by 850.00% is that the Ministry of Agriculture and Forestry has supports as a grant to increase the use of stubble drill. Its use is expected to increase further in the coming years.

In particular, tail shaft movable pulverizers are used in Karaman province. The numbers are 6,616. There was also an increase of 4.12% in engine pulverizers. Pulverizers carried on shoulder can be used both in vineyards and gardens easily. These pulverizers are 4,876 in number.

74.58% of the sugar beet harvest in the province is made with sugar beet lifter. The remaining 25.42% is harvested with combined beet harvester. When the 2018 data is considered, it is seen that the combined beet harvester has increased by 66.67%.

When the number of machinery and equipment for animal husbandry mechanization in 2018 is analyzed; there is an increase in farm manure spreading machine 1,950.00%, binder 311.11%, baling machine 223.91%, weed silage machine 208.47%, corn silage machine 125.83% and feed grinder 113.04%. The reason for the increase of these numbers is; as the feed is among the most important expense items in animal husbandry, it is due to the willingness of the producers to produce their own feeds and the purchase of these machines through governmental supported grants.

Agricultural mechanization is expensive and long-term investments for enterprises. Especially for subsistence family enterprises, the use of agricultural mechanization is low. For this purpose, agricultural mechanization usage levels of both enterprises and regional areas should be determined (Oğuz et al., 2017). The average age of the agricultural machinery park should be studied and their economic life should be questioned (Keleş and Hacseferoğulları, 2016).

In Karaman province, common machinery usage systems should be established for agricultural machinery.

For joint machinery use, neighbor assistance should be used from models in developed countries such as contracting, machine associations, cooperatives, companies, producer associations, and state-owned joint use. Establishing machinery parks support in the IPARD program which is given by the Agriculture and Rural Development Support Institution within this scope should be focused on.

References

Anonymous. 2019a. http://www.karaman.gov.tr/ilin-cografii-bilgileri, [Date of access:05.07.2019]
Anonymous2019b. https://birnai.uik.gov.tr/bitkiselapp/tarimalet.zul, [Date of access:01.07.2019]
Altıkat S, Çelik A. 2011. Işgır İlinin Tarımsal Mekanizasyonu (Özellikleri). Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 1(4): 99-106, Iğdır.
Baran MF, Gökoğlan O, Durgut MR. 2014. Bati Marmara Bölgesi’nde'nin Tarımsal Mekanizasyonu. Türk Tarım ve Doğa Bilimleri Dergisi, 1(4): 561-567.
Eryılmaz T, Gökoğlan O, Yeşilyurt MK. 2014. Yozgat İlının Tarımsal Mekanizasyonu Durumunun İncelenmesi, Türk Tarım ve Doğa Bilimleri Dergisi, 1(2): 262-268.
Işık A. 1988. Sulu Tarımda Kullanılan Mekanizasyon Araçlarının Optimum Makinaya ve Güççeşimi Yönelik İşteği Değerlerinin Belirlenmesi ve Uygun Şekil Modellerinin Oluşturlması Üzerinde Bir Araştırma. Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi, Adana.
Işık E, Güler T, Ayhan A. 2003. Bursa İlinde Ikilli Mekanizasyon Düzeyinin Belirlenmesinde Yönelik Bir Çalışma. Uludağ Üniversitesi Ziraat Fakültesi Dergisi,17 (2): 125-136.
Kadıyırfılar Ç, Özüür R, Acar Al. 1990. Tarımsal Mekanizasyon Derecesinin Değerlendirilmesi. Tarım Makineleri ve Bilimleri Dergisi, Cilt 2, No:1, 1-4.
Keleş İ, Hacseferoğulları H. 2016. Konya İli Çumra İlçesi Tarım İşletmelerinin Tarımsal Yapı ve Mekanizasyon Özelliklerinin Belirlenmesi, Selçuk Tarım Bilimleri Dergisi, 3(1): 48-58.
Koçak M. 2006. Bitlis İlinin Tarımsal Mekanizasyon Durumunun, Sorunlarını ve Çözüm Önerilerini. Ankara Üniversitesi. Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi. Ankara.
Koçtürk D, Onurbaş Aviculoğlu A. 2007. Türkiye’de İllere ve Bölgelere Göre Tarımsal Mekanizasyon Düzeyinin Belirlenmesi. Tarım Makineleri Bilimi Dergisi, 31 (1): 63-72.
Sabancı A, Akinci İ. 1994. Dünyada ve Türkiye’de Tarımsal Mekanizasyon Düzeyi ve Önlemler. Tarımsal Mekanizasyon 15. Ulusal Kongresi, 20-22 Eylül, Antalya.
Sessiz A, Eliçin AK, Esgici R, Tantekin F. 2012. Tarım Makineleri Hibe Programının Diyabarın İlmin Mekanizasyon Gelişimiine Katkı. 27. Tarımsal Mekanizasyon Ulusal Kongresi, 5-7 Eylül, Samsun.
Yağcı ÖF. 1990. Ankara İlinde Traktör Mülkiyeti ve Rasyonel Kullanımı, Selçuk Tarım ve Doğa Bilimleri Dergisi, 1(4): 99-106.
Yavuzcan G, Keskin R, Ayik M, Acar Al, Çelik A, Vatançay M. 1986. Tarımsal mekanizasyon sorunları ve çözümler. GAP Tarımsal Kalkınma Sempozyumu Bildirisi Kitabı, Ankara Üniversitesi Basımevi, 453-467.
Yıldız MU, Dilay Y, Özkam A. 2007. Karaman İlinin Tarımsal Mekanizasyon Seviyesinin Belirlenmesi, Tarım Makineleri ve Bilimi ve Dergisi, 3 (4): 211-215.