Long-term Outcome of Deep Brain Stimulation in Intralaminar Thalamus for Refractory Tourette Syndrome: A Case Report

Made Agus Mahendra Inggas1, Dewa Ayu Ina Dianata2, Rocksy F. V. Situmeang3, Eka J. Wahjoepramono1, Takanobu Kaido3

1Department of Neurosurgery, Faculty of Medicine, Universitas Pelita Harapan, Tangerang, Indonesia; 2Department of General Medicine, Faculty of Medicine, Brawijaya University, Malang, Indonesia; 3Department of Neurology, Faculty of Medicine, Universitas Pelita Harapan, Tangerang, Indonesia; 4Department of Health and Nutrition, Osaka Shoin Women’s University, Higashiosaka, Japan

Introduction

Tourette syndrome (TS) is a neurobehavioral disease that has onset at an early age around 5–7 years old. This disease affects 0.3–0.8% young age population [1], [2]. With criteria diagnosis at least one vocal and two motor tics beginning before 18 years old. The symptoms of tics remain unusual from a social point of view, thus making it difficult for patients to evolve their professional life and education level. We present a case report of a young male patient with refractory TS with a Yale Global Tic Severity Scale (YGTSS) score of 88 out of 100; he has experienced remarkable improvement after undergoing a deep brain stimulation (DBS) procedure.

CONCLUSION: After performing DBS targeting the bilateral thalamus (central thalamus nucleus), the severity of tic was dramatically reduced. The result is pleasing to the patient as they can resume activity in public and return to college. Case reports regarding the treatment of refractory TS with DBS are still rare in Indonesia. To the best of our knowledge, this is the first such report with long-term follow-up in South East Asia.
include the thalamic nuclei and the globus pallidus segment [16].

The Yale Global Tic Severity Scale (YGTSS) is reliable, valid, and is considered to be the gold standard instrument for tic assessment in patients with TS and other tic-related disorders [17]. Reports of a decrease in the YGTSS score following therapy indicates successful tic control [18]. We report the case of a young male with refractory TS, refractory toward multiple medications, who underwent DBS with successful amelioration of tics. To the best of our knowledge, this is the first of such a report in Indonesia.

Case Report

Characteristics of the patient

A 23-year-old right-handed male presented to the neurosurgery outpatient clinic with a diagnosis of TS 8 years prior. He first experienced involuntary eye-blinking, followed by jerk-like movements of the shoulder, and twitching of the nose and mouth. Symptoms gradually worsened with time before he received clonidine (3 × 150 μg) and haloperidol (3 × 5 mg) at 15 years of age, after which the symptoms were well-controlled for a period of 3 years. At the age of 18 the patient attended university, and complained that the symptoms were no longer responding to those drugs. The symptoms developed into utterances of throat clearing, coughing, sniffing, roaring (animal sounds), and other simple phonic tics (syllables, words, echolalia, palilalia). Motor tics symptoms included facial twitching such as touching the shoulders with the chin or lifting the chin up, throwing the head back as if to get hair out of the eyes; arm and hand movements such as quickly flexing the arms and extending them, nail-biting, poking with fingers and popping knuckles, passing hand through the hair in a combing-like fashion, writing tics, and pulling back on the pencil while writing; and hand and foot movements such as kicking, skipping, and knee bending, flexing and extension of the ankles, shaking, and stomping and tapping the foot. There are also other complex motions such as copying the actions of others (echopraxia). Several drugs were attempted, such as risperidone, alprazolam, amitriptyline, clonazepam, topiramate, and tizanidine, to no significant result. The symptoms, particularly motor tic, worsened. The jumping movements could not be controlled, with increasing frequency and intensity. The maximum tic-free interval was only 30 min. The jump became higher, with the time of attack being unpredictable. It can appear when standing, sitting, or lying down. The presence of stress and depression will exacerbate his complaints. The patient has also received repetitive transcranial magnetic stimulation and behavioral therapies, without improvement. The tics became increasingly apparent and interfered with social activities, necessitating the patient to drop out of college and remain house-bound for over a year. On physical examination, the patient was found to be slightly hypertensive (130–150/80 mmHg) and obese (body mass index 30.3 kg/m²), other vital signs were within normal limits. The general and neurological examination found no abnormalities. On the YGTSS, the patient scored 88 (motor 25, phonic 13, impairment 50) out of 100 (Table 1).

Table 1: The YGTSS scores of the patient, with corresponding drugs and DBS settings

Date (day/month/year)	Pre-operative	Post-operative
Post-operative months	21 November 18	19 December 18
1	5	2
2	2	2
3	1	0
4	1	0
5	0	0
6	1	0
7	1	0
8	2	0
9	2	0
10	2	0
11	2	0
12	2	0
13	2	0
14	2	0
15	2	0
16	2	0
17	2	0
18	2	0
19	2	0
20	2	0
21	2	0
22	2	0
23	2	0
24	2	0
25	2	0
26	2	0
27	2	0
28	2	0
29	2	0
30	2	0
31	2	0
32	2	0
33	2	0
34	2	0
35	2	0
36	2	0
37	2	0
38	2	0
39	2	0
40	2	0
41	2	0
42	2	0
43	2	0
44	2	0
45	2	0
46	2	0
47	2	0
48	2	0
49	2	0
50	2	0
51	2	0
52	2	0
53	2	0
54	2	0
55	2	0
56	2	0
57	2	0
58	2	0
59	2	0
60	2	0
61	2	0
62	2	0
63	2	0
64	2	0
65	2	0
66	2	0
67	2	0
68	2	0
69	2	0
70	2	0
71	2	0
72	2	0
73	2	0
74	2	0
75	2	0
76	2	0
77	2	0
78	2	0
79	2	0
80	2	0
81	2	0
82	2	0
83	2	0
84	2	0
85	2	0
86	2	0
87	2	0
88	2	0
89	2	0
90	2	0
91	2	0
92	2	0
93	2	0
94	2	0
95	2	0
96	2	0
97	2	0
98	2	0
99	2	0
100	2	0

YGTSS: Yale global tic severity scale; DBS: Deep brain stimulation.
Depression Rating Scale, the patient scored 13 (mild depression). A cognitive evaluation was found to be normal.

DBS

After an extensive discussion regarding the potential benefits of DBS, its risks, and complications, he was scheduled for surgery under general anesthesia. The DBS procedure was carried out in November 2018 with targets on the bilateral intralaminar nuclei of thalamus (centromedian nucleus). The target was defined as 6.5mm lateral to the midline, 4.0mm posterior to the midcommissural point, and 1.5 mm superior to the anterior commissure-posterior commissure plane as projected in Figure 1. We generated this target area in accordance with the procedure performed by Kaido et al. in a previous study [19]. Microstimulation was performed with the patient awake after the electrode was implanted at the target. The patient showed tics improvement without any side effects when the stimulus parameter was 2.5 V of voltage, 130 Hz of frequency, and 90 ms of pulse width with the pulse generators (Kinetra, Medtronic, Minneapolis, MN, USA).

Post-operative outcome

One month post operation, the patient came back to the neurosurgery outpatient clinic. The patient's YGTSS score showed a significant decrease to 23 (motor 10, phonic 3, impairment 10). On the second visit, around 2 months post-operative that the YGTSS score decreased to 19 (motor 9, phonic 0, impairment 10) 2 month and persisted on the third visit. During the 6 months evaluation period after the DBS procedure, no side effect was found in the patient. After the DBS procedure, there was a remarkable improvement in symptom severity and quality of life. Routine evaluations are continuously held to adjust drug dosing and DBS settings, along with nutritional and psychological support. The patient followed a long-term follow-up program that the neurosurgery department and neurology department monitored. After 3 years post-operation, his symptoms are getting better, with YGTSS improving to 14 (motor 4, phonic 0, impairment 10).

Discussion

The diagnosis of TS is made with the presence of at least one vocal and two motor tics with an onset before 18 years of age and duration lasting more than a year, given other possible causes have been excluded. TS may also be accompanied by behavioral disturbances [20]. Tics are sudden, intermittent, involuntary, or semi-voluntary movements (motor tics) or sounds (phonic/vocal tics). The YGTSS is used as an instrument to assess tic severity, in which a score exceeding 35 denote severe symptoms. Medication resistance is determined as the absence of symptomatic improvement after use of three agents, including typical and atypical neuroleptic drugs [21]. The patient demonstrated uncontrollable jumping movements with increasing frequency and intensity, and vocal tics such as yawning and slight coughing. He scored 88 of 100 on the YGTSS. The patient has undergone pharmacological treatment, repetitive transcranial magnetic stimulation, and behavioral therapy, without symptomatic improvement. Based on the severity, the patient has severe refractory TS. Surgical treatment options such as DBS are recommended in patients who are no longer responsive to conventional pharmacological treatments or those who develop disabling refractory symptoms [8].

The DBS procedure targets structures associated with the striatum-pallido-thalamocortical network [13], [14], [15]. In this patient, the target is located in the bilateral thalamus (centromedian nucleus). Recent studies focusing on the thalamus as a DBS target have highlighted the thalamus as a strategic location of motor function in the cerebral cortex and motor-related subcortical structures, particularly the basal ganglia and cerebellum. A retrospective study that used YGTSS scoring as an evaluation instrument in TS patients demonstrated that DBS in centromedian-parafascicular (CM-Pf) complex provides 46% improvement in motor tics and 52% improvement in phonic tics [22], [23]. After DBS, the patient showed substantial improvement, down to a score of 19 on the YGTSS, on the third post-procedure evaluation, corresponding to a 78% decrease in severity. This improvement is supported by a study that showed an average of 50% improvement in overall tic severity (total YGTSS score) after DBS in the medial thalamus, and...
this improvement can be achieved in a 6-month post-procedure [24]. The latest evaluation on this patient is 3 years after surgery. His symptoms are getting better, with a YGTSS score of 14.

Different studies have revealed varying side effects of DBS on the thalami. There have been reports of transient blurring of vision, dysarthria, recurrent tension headache, and a single seizure-like episode occurring after DBS in the CM-pf region [23], [25]. In contrast, other studies have not revealed any side effects following the procedure [21]. Data from the DBS Registry and Database from the TAA have suggested that many regions can be targets of DBS [26]. As of the present, there are yet any guidelines elucidating which target is the most effective, hence further studies are needed to determine the best DBS target in providing maximal symptom relief and minimal adverse effects in cases of TS.

Conclusion

After performing DBS targeting the bilateral thalamus (central thalamus nucleus), the severity of TIC was reduced. The result is pleasing to the patient as they can resume activity in public and return to college. Case reports regarding the treatment of refractory TS with DBS are still rare in Indonesia. To the best of our knowledge, this is the first such report with long-term follow-up in South East Asia. Many studies have been done in effort to determine appropriate targets for DBS. This case report can support the evidence that bilateral thalamic DBS is a promising target based on its safety and effectiveness in the treatment of TS.

Authors’ Contributions

All authors participated in the process of the manuscript’s writing and approved the final version.

Acknowledgments

The abstract was presented at The 23rd Annual Scientific Meeting of Indonesian Society of Neurological Surgeon in conjunction with The WFNS Educational Course. 2019. Yogyakarta, Indonesia.

Ethics statement

The patients/participants provided their written informed consent to participate in this study. Written informed consent was obtained from the individual for the publication of any potentially identifiable images or data included in this article.

References

1. Scharf JM, Miller LL, Mathews CA, Ben-Shlomo Y. Prevalence of Tourette syndrome and chronic tics in the population-based Avon longitudinal study of parents and children cohort. J Am Acad Child Adolesc Psychiatry. 2012;51(2):192-201. https://doi.org/10.1016/j.jaac.2011.11.004 PMid:22265365
2. Porta M, Servello D, Sevello D, Sassi M, Brambilla A, Defendi S, et al. Issues related to deep brain stimulation for treatment-refractory Tourette’s syndrome. Eur Neurol. 2009;62:264-73.
3. Jankovic J. Tourette’s syndrome. N Engl J Med. 2001;345(16):1184-92. https://doi.org/10.1056/NEJMra010032 PMid:11642235
4. Eapen V, Cavanna AE, Robertson MM. Comorbidities, social impact, and quality of life in Tourette syndrome. Front Psychiatry. 2016;7:97. https://doi.org/10.3389/fpsyt.2016.00097 PMid:27375503
5. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders: DSM-5. 5th ed. Washington, DC: American Psychiatric Association; 2013.
6. Leckman JF. Tourette’s syndrome. Lancet. 2002;360(9345):1577-86. https://doi.org/10.1016/S0140-6736(02)11526-1
7. Eddy CM, Rickards HE, Cavanna AE. Treatment strategies for tics in Tourette syndrome. Ther Adv Neurol Disord. 2011;4(1):25-45. https://doi.org/10.1177/17562856103902618 PMid:21339906
8. Cavanna AE, Eddy CM, Mitchell, R, Pall, H, Mitchell, I, Zrinzo, L, et al. An approach to deep brain stimulation for severe treatment-refractory Tourette syndrome: The UK perspective. Br J Neurosurg. 2011;25(1):38-44. https://doi.org/10.3109/02688697.2010.534200 PMid:21158507
9. Herrington TM, Cheng JJ, Eskandar EN. Mechanisms of deep brain stimulation. J Neurophysiol. 2016;115(1):19-38. https://doi.org/10.1152/jn.00281.2015 PMid:26510756
10. Deng ZD, Li DY, Zhang CC, Pan YX, Zhang J, Jin H, et al. Long-term follow-up of bilateral subthalamic deep brain stimulation for refractory tardive dystonia. Parkinsonism Relat Disord. 2017;41:58-65. https://doi.org/10.1016/j.parkreldis.2017.05.010 PMid:28552340
11. Gonzalez V, Cif L, Biolsi B, Garcia-Ptacek S, Seychelles A, Sanrey E, et al. Deep brain stimulation for Huntington’s disease: Long-term results of a prospective open-label study. J Neurosurg. 2014;121(1):114-22. https://doi.org/10.1016/j.jns.2014.2.084 PMid:24702329
12. Barbey A, Bloch J, Vingerhoets FJ. DBS in dystonia and other hyperkinetic movement disorders. Curr Treat Options Neurol.
13. Worbe Y, Marrakchi-Kacem L, Lecomte S, Valabregue R, Poupon F, Guevara P, et al. Altered structural connectivity of cortico-striato-pallido-thalamic networks in Gilles de la Tourette syndrome. Brain. 2015;138(Pt 2):472-82. PMid:26827109

14. Baldermann JC, Schuller T, Huys D, Becker I, Timmermann L, Jessen F, et al. Deep brain stimulation for Tourette syndrome: A systematic review and meta-analysis. Brain Stimul. 2016;9(2):296-304. https://doi.org/10.1016/j.brs.2015.11.005 PMid:25081018

15. Alam M, Schwabe K, Lüttens G, Capelle HH, Manu M, von Wrangel C, et al. Comparative characterization of single cell activity in the globus pallidus internus of patients with dystonia or Tourette syndrome. J Neural Transm. 2015;122(5):687-99. https://doi.org/10.1007/s00702-014-1277-0 PMid:25081018

16. Albin RL. Tourette syndrome: A disorder of the social decision-making network. Brain. 2018;141(2):332-47. https://doi.org/10.1093/brain/awx204 PMid:29053770

17. Haas M, Jakubovski E, Fremer C, Dietrich A, Hoekstra PJ, Jäger B, et al. Yale global tic severity scale (YGTSS): Psychometric quality of the gold standard for tic assessment based on the large-scale EMTICS study. Front Psychiatry. 2021;12:626459. https://doi.org/10.3389/fpsyt.2021.626459 PMid:33716826

18. Akbarian-Tefaghi L, Zrinzo L, Foltynie T. The use of deep brain stimulation in Tourette syndrome. Brain Sci. 2016;6(3):35. https://doi.org/10.3390/brainsci6030035

19. Kaido T, Otsuki T, Kaneko Y, Takahashi A, Omori M, Okamoto T. Deep brain stimulation for Tourette syndrome: A prospective pilot study in Japan. Neuromodulation. 2011;14(2):123-8; discussion 129. https://doi.org/10.1111/j.1525-1403.2010.00324.x PMid:21992198

20. Riederer F, Stamenkovic M, Schindler SD, Kasper S. Das tourette-syndrom eine übersicht [Tourette’s syndrome—a review]. Nervenarzt. 2002;73(9):805-19. https://doi.org/10.1007/s00115-002-1270-y PMid:12215871

21. Colquhoun M, Stern J, Collicott N, Williams D, Grabek K, Simmons H, Robertson MR. Severe refractory Tourette syndrome. J Neurol Neurosurg Psychiatry. 2014;85(s3). https://doi.org/10.1136/jnnp-2014-308883.35

22. Cury RG, Lopez WO, Dos Santos Ghilardi MG, Barbosa DC, Barbosa ER, Teixeira MJ, et al. Parallel improvement in anxiety and tics after DBS for medically intractable Tourette syndrome: A long-term follow-up. Clin Neurol Neurosurg. 2016;144:33-5. https://doi.org/10.1016/j.clineuro.2016.02.030 PMid:26963088

23. Testini P, Zhao CZ, Stead M, Duffy PS, Klassen BT, Lee KH. Centromedian Parafascicular complex deep brain stimulation for Tourette syndrome: A retrospective study. Mayo Clin Proc. 2016;91(2):218-25. https://doi.org/10.1016/j.mayocp.2015.11.016 PMid:26848003

24. Dowd RS, Pourfar M, Mogilner AY. Deep brain stimulation for Tourette syndrome: A single-center series. J Neurosurg. 2018;128(2):596-604. https://doi.org/10.3171/2016.10.JNS161573 PMid:28387621

25. Marano M, Migliore S, Squitieri F, Insola A, Scarnati E, Mazzone P. CM-Pf deep brain stimulation and the long term management of motor and psychiatric symptoms in a case of Tourette syndrome. J Clin Neurosci. 2019;62:269-72. https://doi.org/10.1016/j.jocn.2018.12.029 PMid:30612913

26. Akbarian-Tefaghi L, Akram H, Johansson J, Zrinzo L, Kefalopoulou Z, Limousin P, et al. Refining the deep brain stimulation target within the limbic globus pallidus internus for Tourette syndrome. Stereotact Funct Neurosurg. 2017;95(4):251-8. https://doi.org/10.1159/000478273 PMid:28777721