Crystal structures of the RNA-dependent RNA polymerase genotype 2a of hepatitis C virus (HCV) from two crystal forms have been determined. Similar to the three-dimensional structures of HCV polymerase genotype 1b and other known polymerases, the structures of the HCV polymerase genotype 2a in both crystal forms can be depicted in the classical right-hand arrangement with fingers, palm, and thumb domains. The main structural differences between the molecules in the two crystal forms lie at the interface of the fingers and thumb domains. The relative orientation of the thumb domain with respect to the fingers and palm domains and the β-flap region is altered. Structural analysis reveals that the NS5B polymerase in crystal form I adopts a “closed” conformation that is believed to be the active form, whereas NS5B in crystal form II adopts an “open” conformation and is thus in the inactive form. In addition, we have determined the structures of two NS5B polymerase/non-nucleoside inhibitor complexes. Both inhibitors bind at a common binding site, which is nearly 35 Å away from the polymerase active site and is located in the thumb domain. The binding pocket is predominantly hydrophobic in nature, and the enzyme inhibitor complexes are stabilized by hydrogen bonding and van der Waals interactions. Inhibitors can only be soaked in crystal form I and not in form II; examination of the enzyme-inhibitor complex reveals that the enzyme has undergone a dramatic conformational change from the form I (active) complex to the form II (inactive).

Hepatitis C virus (HCV) is a debilitating human pathogen affecting an estimated 3% of the world’s population (1). The virus establishes chronic infection in the majority of the cases, eventually leading to the development of liver diseases such as cirrhosis and hepatocellular carcinoma in almost 15–20% of those infected. Although a great deal of research has been focused on the development of anti-HCV agents, to date no vaccine is available and there is no effective therapy for all genotypes of HCV. The current therapies (a combination of polyethylene glycol-treated α-interferon and ribavirin) are associated with limited efficacy and severe adverse side effects. Therefore, the development of HCV-specific antiviral agents is needed urgently to alleviate this serious health problem.

HCV is a positive single-stranded-RNA virus and a member of the Flaviviridae family (2). Six major genotypes and 11 subtypes of HCV are known. The viral genome is comprised of a single open reading frame that codes a polypeptide of ~3000 amino acids (1). The polypeptide is subsequently processed into individual components by host and viral-encoded proteases. The polypeptide consists of three structural proteins (C, E1, and E2) and six non-structural proteins (NS2, NS3, NS4A, NS4B, NS5A, and NS5B) (3–5). Among these, NS5B polymerase and the NS3 peptidase-helicase are the key enzymes involved in the genome replication and polypeptide processing of HCV. Therefore, these enzymes are potential drug targets, emphasizing the need for detailed studies of these enzymes in HCV.

NS5B has been characterized as an RNA-dependent RNA polymerase (RdRP) based on in vitro experiments (6, 7). Several crystal structures of NS5B HCV polymerase (HCV-BK, genotype 1b) in several crystalline forms have been determined. The structure resembles a right hand with fingers, palm, and thumb domains (8–10). More importantly, HCV polymerase has a fully encircled active site that is unique compared with other polymerases. The structure of HCV polymerase in complex with ribonucleotides has been analyzed (11). Recently substrate complexes of HCV RNA polymerase (HC-J4), describing nucleotide import and de novo initiation, have revealed that the polymerase does not undergo marked structural changes upon nucleotide binding (12). Structures of the RNA-dependent RNA polymerases from polio, bacteriophage φ6, and rabbit hemorrhagic disease viruses are also known (13–15). Structures of unliganded and ternary complexes of the polymerase from human immunodeficiency virus type 1 reverse transcriptase (HIV1-RT), which is both an RNA- and a DNA-dependent DNA polymerase, have been determined (16, 17). The thumb domain of the HIV1-RT polymerase moves ~20° upon binding the template, primer nucleic acid.

Despite the low sequence homology among polymerases, conserved domain organization persists among RNA-dependent RNA polymerases, DNA-dependent DNA polymerases, DNA-
dependent RNA polymerases, and RNA-dependent DNA polymerases. For a complete understanding of structure-function relationships, it is imperative to have structural knowledge of the HCV polymerases from all of the available genotypes. Here, we report in the first part of the paper the x-ray crystal structures of the HCV polymerase genotype 2a from two different crystal forms.

Both nucleoside and non-nucleoside inhibitors of HCV NS5B polymerase have been discovered recently (18, 19), and we have recently reported on the crystal structures of HCV polymerase genotype 1b/inhibitor complexes (20). As part of ongoing efforts to study protein/inhibitor complexes for the development of antiviral drugs, we have determined the structure of HCV polymerase genotype 2a complexed with two thiophene 2-carboxylic acid non-nucleoside inhibitors (Fig. 1). These inhibitors were synthesized as part of ongoing structure-activity relationship optimization efforts that have been described elsewhere (21–23). The details of the inhibitor binding site, protein-inhibitor interactions, and plausible mechanisms of inhibition will be discussed in the second part of the paper. The HCV polymerase genotype 2a used in the present study contains a N-terminal deletion of 21 amino acid residues (Δ21) and an N-terminal hexahistidine tag.

MATERIALS AND METHODS

Purification and Biochemical Studies—For crystallographic studies and measurement of the inhibitory effects of compounds, a soluble C-terminal truncated form of the polymerase 2a enzyme was obtained by the following approach. A full-length synthetic gene was produced initially by a PCR-mediated gene assembly process (see the procedure described by Stemmer et al. (24)). HCV polymerase 2a full-length sequence was identified from the NCBI data bank, and a consensus sequence based on codon usage in bacteria was produced. From this consensus sequence, a series of overlapping oligonucleotides (Invitrogen) spanning the complete gene were synthesized. The gene assembly procedure was performed by fusion PCR in two steps. Briefly, the first step involved the production of four sub-fragments of the gene, each containing overlapping sequences for the second gene assembly step. Each of the four reactions underwent one round of annealing/extension (40 cycles of 94 °C for 20 s, 51 °C for 20 s, and 72 °C for 45 s) using Vent polymerase (New England Biolabs). Following the annealing/extension of the primers, the product was diluted 100-fold, and the outer primers of each fragment were added for a round of amplification (40 cycles of 94 °C for a total of 50 s, 62 °C for 20 s, and 72 °C for 90 s). For the second step, the product of each reaction was then diluted 25-fold and annealed together (40 cycles at 94 °C for 20 s, 62 °C for 20 s, and 72 °C for 45 s). A second round of PCR (40 cycles at 94 °C for 30 s, 62 °C for 30 s, and 72 °C for 120 s) was performed by diluting the annealed fragments 100-fold and using the outer primers to create the complete full-length gene. Then, the final PCR product was cloned and used as a PCR template for the production of the HCV polymerase 2a Δ21 using a 5′-primer containing a His tag and a 3′-primer 63 bases upstream from the stop codon. This PCR product was cloned into a PET-21b vector (Novagen Inc., Madison, WI), and its sequence was confirmed by DNA sequencing and then expressed in Escherichia coli BL21 (DE3). Soluble polymerase was subsequently obtained as described previously (24). Briefly, the polymerase was initially purified using Hi-Trap nickel-nitrilotriacetic affinity chromatography with a 10–500 mM imidazole gradient. The polymerase fractions were pooled, and the imidazole was removed using PD10 desalting columns (Amersham Biosciences). Further purification of the polymerase was performed by passing the nickel-nitrilotriacetic fractions through a Hi-Trap Mono S cation exchange column. Positive fractions were exchanged into a buffer containing 10 mM Tris, pH 7.5, 10% glycerol, 5 mM dithiothreitol, and 600 mM NaCl, and glycerol was added to a final concentration of 40% for storage at −80 °C and for subsequent activity and kinetic assays. Protein for crystal structure studies was concentrated using an Ultra-15 centrifugal filter unit (Millipore) to 10 mg/ml and stored at 4 °C.

In Vitro NS5B Assay—The inhibitory effects of compounds on HCV NS5B genotype 2a polymerization activity were measured by evaluating the amount of radio-labeled UTP incorporated by the enzyme on a homopolymeric RNA template/primer (24, 25). The 50% inhibitory concentration (IC50) of the compounds was determined in a final volume of 50 μl of reaction mixture consisting of 20 mM Tris-HCl, pH 7.5, 5 mM MgCl2, 0.5 mM MnCl2, 1 mM dithiothreitol, 50 mM NaCl, 400 ng of purified NS5B enzyme, 500 ng of poly(rA)-oligo(dT)20, (Invitrogen), 30 μM UTP, and 1.5 μCi of α-32P-labeled UTP (3000 Ci/mmol; Amersham Biosciences). RNA-dependent RNA polymerase reactions were allowed to proceed for 120 min. at 22 °C. The reactions were stopped by the addition of 10 μl of 0.5% EDTA. Thereafter, a volume of 50 μl (25 μg) of salmon sperm DNA (Invitrogen) and 100 μl of a solution of 20% trichloroacetic acid at 4 °C were added to the mixture followed by incubation on ice for 30 min to ensure complete precipitation of nucleic acids. The samples were then transferred onto 96-well MultiScreen filter plates (Millipore). The filter plates were washed with 600 μl of 1% trichloroacetic acid per well and dried for 20 min at 37 °C. 50-μl of liquid scintillation mixture (Wallac Oy, Turku, Finland) was added, and then the filtered radiolabeled mixture was quantified using a liquid scintillation counter (Wallac MicroBeta Trilux; PerkinElmer Life Sciences). The IC50 values were calculated using the computer software GraphPad Prism (version 2.0; GraphPad Software Inc., San Diego, CA).

Crystallography and Data Collection—Crystals of HCV 2a NS5B were grown by the hanging drop method at room temperature. 3 μl of reservoir solution (15% polyethylene glycol 8000, 0.2 mM ammonium sulfate, 80 μM dithiothreitol, pH 6.0) 7% glycerol, 4% β-mercaptoethanol) were mixed with 1.5 μl of protein solution (10 mg/ml protein concentration in 50 mM citrate buffer, pH 6.0, 5% glycerol, and 5 mM β-mercaptoethanol), and the resultant drops were equilibrated against 1 ml of reservoir solution. Needle-shaped crystals grew to a maximum size (0.04 × 0.04 × 0.5 mm) within 2–4 days. Two crystal forms of the enzyme were observed from different protein preparations. Both crystal forms belong to the space group C2221, but differ markedly in the a-axis unit cell dimension (Table I). Throughout this paper the crystal form with the larger a cell dimension will be referred to as form I, whereas that with the smaller a cell dimension will be referred to as form II. Protein-inhibitor complexes were prepared by soaking experiments. Crystals were soaked in 2 mM inhibitor solution for ~12 h.

Structure Determination and Refinement—Structure solutions of both crystal forms were achieved by molecular replacement with the CNS package (26) using the unliganded 1b genotype polymerase structure (8) (Protein Data Bank code 1CP2) as the search model. The inhibitor complex structures were solved by the difference Fourier method. A difference Fourier map, |Fobs| − |Fcalc| (|Fobs| values of the protein-inhibitor complex and |Fcalc| values from the apoprotein), permitted an initial positioning of the inhibitor molecule into the density difference. Structure refinement was carried out with the CNS package using a maximum likelihood target (28). All of the structures reported here were refined in the same manner. Initially, the structure was refined by treating the whole molecule as a rigid body. Subsequently, the model was subjected to iterations of positional refinement, simulated annealing, torsion angle dynamics, and individual B-factor refinement. Electron density maps (|Fobs| − |Fcalc|) and (|Fobs| − |Fcalc|) were calculated at this stage of refinement, and model building was performed wherever necessary using X-fitView (29). Extensive model building was done in

[Image 80x615 to 284x738]
the thumb domain of the molecule in form II. The refinement was continued using CNS. The R_work and R_free values were monitored closely throughout the refinement. Once the refinement had converged to an R_work value of 0.24, identification of bound water molecules in the model was carried out. This was achieved in several stages based on electron density peaks of at least 3σ. The refinement was carried out. This was achieved in several stages based on electron density maps except for the region Pro149–Gly153. The electron density maps for the form II crystals were very clear for all the residues from Ser1 to Lys548. The electron density map corresponding to a portion of the Δ1 loop, Pro25–Asn35 of the form II crystals is shown in Fig. 2. The stereochemical validity of the structure was examined using PROCHECK (30). In all of the structures >88% of the total number of residues lie in the most allowed regions of the Ramachandran plot. The refinement parameters are given in Table I. The refined atomic coordinates have been deposited in the Protein Data Bank (accession codes 1YUY, 1YV2, 1YVZ, and 1YVX for the form I, form II, and the NS5B–inhibitors A and B complexes, respectively).

TABLE I

Crystal	Form I	Form II	Complex A	Complex B
Space group	C222	C222	C222	C222
a (Å)	64.40	60.76	60.58	61.11
b (Å)	214.42	215.04	214.62	214.82
c (Å)	123.19	124.14	124.04	124.41
Z	8	8	8	8
Unit cell volume (Å³)	1,701,091.2	1,608,262.4	1,612,771.4	1,633,210.9
Solvent content (%)	63.4	61.3	61.4	61.8

Data collection

Parameter	Form I	Form II	Complex A	Complex B
Temperature (K)	100	100	100	100
Detector	ADSC Q210	ADSC Q210	R-AXIS IV	ADSC Q210
Wavelength (Å)	1.100028	1.115870	1.54178	1.100028
Resolution (Å)	40–1.9	40–2.5	40–2.2	40–2.0
Total observations	216176	98070	121520	197022
Unique reflections	65,644 (5,343)	27,506 (2,607)	40,067 (3,702)	55,391 (5,383)
Completeness (%)	97.2 (90.3)	96.9 (97.8)	96.4 (90.3)	99.3 (97.3)
R_Work	26.5/-/35.5	27.8/-/30.2	33.1/29.2/37.4	34.2/25.5/41.1
R_Free	26.5/-/35.5	27.8/-/30.2	33.1/29.2/37.4	34.2/25.5/41.1

Refinement

Parameter	Form I	Form II	Complex A	Complex B
R_work	21.4/23.8	20.1/25.2	21.5/23.4	20.8/24.4
R_free	21.4/23.8	20.1/25.2	21.5/23.4	20.8/24.4
Number of residues	1–563	1–548	1–548	1–548
Number of water molecules	434	339	348	471
Mean B-factor (Å²)	26.5/35.5	27.8/30.2	33.1/29.2/37.4	34.2/25.5/41.1

Bond lengths (Å)

- 0.005
- 0.006
- 0.006
- 0.005

Bond angle (°)

- 1.2
- 1.3
- 1.3
- 1.3

Dihedral angles (°)

- 21.7
- 21.7
- 21.6
- 21.4

Improper angles (°)

- 0.80
- 0.83
- 0.83
- 0.84

In most favored regions (%)

- 91.0
- 88.8
- 89.7
- 90.3

In additional allowed regions (%)

- 8.6
- 10.6
- 9.9
- 9.7
RESULTS AND DISCUSSION

Overall Features of NS5B Polymerase in Form I and Form II—The three-dimensional structures of the NS5B HCV polymerase genotype 2a in both crystal forms have the same right-hand disposition of fingers, palm, and thumb domains (Fig. 3) as seen in HCV polymerase genotype 1b and also in other polymerases. However, the detailed structure of the polymerase in form I is substantially different from that in form II. The loop (Δ1) protruding from the fingers domain and comprising residues Ile11–Ser46 (Fig. 4) exhibits significant structural variability in both forms. The root mean square deviation of a part (Lys20–Thr40) of this loop between the two molecules is 1.82 Å (16 Ca atoms) as compared with the overall root mean square deviation of 1.08 Å (531 Ca atoms). The region Asn24–Leu31 is a helix in form I, whereas in form II it is part of a small β-hairpin (Fig. 4). The average B-factor of the protein atoms of NS5B molecule in form II is 27.8 Å², whereas the average B-factor of the atoms of the Lys20–Thr40 residues is 47.7 Å², indicating a high degree of flexibility in this region. The molecule in form I is relatively rigid, as is evident from its relatively low B-factors. The average B-factors are 26.5 and 30.0 Å² for protein atoms of the entire molecule and atoms in the region Lys20–Thr40, respectively. Extensive interactions between the extension (Δ1 loop) from the fingers domain and the thumb domain of the molecule in form I maintain the polymerase in a more rigid arrangement. The number of van der Waals contacts (distance cut-off 4 Å) between the residues are given in parentheses.

TABLE II

Form I	Form II
Glu16–Trp39 (4)	Glu37–Trp39 (3)
Glu16–Arg40 (8)	Glu37–Arg40 (11)
Lys30–Trp37 (4)	Leu31–Trp37 (10)
Leu31–Trp37 (6)	Leu31–Arg40 (1)
Pro25–Val400 (1)	Pro25–Arg40 (1)
Pro25–Arg40 (1)	Ile23–Val390 (1)
Asn32–Val390 (3)	Asn32–Ala396 (3)
Leu36–Thr399 (1)	Pro32–Thr399 (1)
Leu37–His328 (1)	Pro32–His328 (1)
Ser32–Val390 (2)	Leu36–Ala394 (4)
Ser32–Pro390 (2)	Leu36–Ile392 (1)
Ser32–Arg390 (3)	Leu36–Ala396 (3)
Ser32–Trp390 (2)	Leu36–Val394 (2)
Ser32–Ile392 (1)	Leu36–Pro395 (1)
Leu36–Thr399 (1)	Leu36–Trp390 (2)
Leu36–Ala396 (1)	Leu36–Trp390 (2)
Leu36–Pro401 (4)	Leu36–Ile392 (1)
Leu36–Ala394 (1)	Leu36–Val394 (2)
Leu36–Pro401 (4)	Leu36–Ala394 (1)
Leu36–Pro401 (4)	Arg32–Leu392 (1)
Leu36–Ala394 (1)	Arg32–Gly393 (7)
Leu36–Ala394 (1)	Tyr32–Arg400 (1)
Leu36–Ala394 (1)	Tyr32–Lys391 (2)
Leu36–Ala394 (1)	Tyr32–Leu392 (8)
Leu36–Ala394 (1)	Tyr32–Gly393 (7)
Leu36–Lys393 (4)	Lys36–Lys393 (4)
Cys39–Trp397 (3)	Cys39–Trp397 (3)

An analysis of the crystal packing interactions indicates that the neighboring molecules in the crystal lattice have very little effect on the conformation of the region Lys20–Thr40 in both crystal forms. Recent studies on HCV polymerase genotype 1b involving the mutation of Leu30 to polar serine or arginine amino acids resulted in a non-functional polymerase, presumably due to a local perturbation in the Δ1 loop (32). Our studies therefore provide structural evidence that the Δ1 loop is, to a major extent, responsible for determining the active state of HCV polymerase genotype 2a and, by analogy, for other RNA polymerases including the polymerase of HCV genotype 1b.
Between the form I and form II, the fingers domain also undergoes noticeable structural changes as each Cα atom in the region Ala80–Lys120 moves by >1 Å. Superimpositions were done using the program Align (33). The palm domain (residues Gly188–Asp225 and Thr287–Val370), which includes catalytic residues (Asp220 and Asp318), maintains the same geometry in both molecules. The root mean square deviation of the palm domain (residues Ser29 N Arg32 O Gly493 O Lys36 NZ Lys491 O) between these two molecules is 0.26 Å. Superimpositions were done using the program Align (33). The palm domain (residues Ser29 N Arg32 O Gly493 O Lys36 NZ Lys491 O) between these two molecules.

The largest structural changes that are observed are in the thumb domain, the interface between the fingers and thumb domains, and the changes in the overall three-dimensional structure of the enzyme and the architecture of its active site. Unlike other polymerase structures, described later, resemble the conformation of the polymerase, although the conformational variability in the thumb domain, the interface between the fingers and thumb domains, and the changes in the β-flap region, we provide structural evidence of the existence of closed and open conformations of the NS5B HCV polymerase genotype 2a. The molecule in crystal form I is in the closed (active) conformation, and that in crystal form II is in the open (inactive) conformation. This is the first structural evidence of the existence of an open conformation of NS5B HCV polymerase genotype 2a. More importantly, the conformational changes of the NS5B-inhibitor-bound structures, described later, resemble the conformation of the molecule in crystal form II. Hence, this finding would indicate that the molecule in crystal form II likely resembles the inactive conformation of the polymerase, although the conformation of catalytic aspartic residues in both forms remains the same.

Comparison of HCV NS5B Polymerases of Genotypes 2a and 1b—To date, crystal structure studies of HCV polymerase genotype 1b have revealed the molecular structure in several crystal forms (8–10). The structure determination of the HCV polymerase of genotype 1b led to the understanding of the overall three-dimensional structure of the enzyme and the architecture of its active site. Unlike other polymerase structures...
determined by x-ray diffraction methods, the active site of HCV NS5B polymerase genotype 1b is completely encircled (8). Although the overall structure of the HCV polymerase genotype 2a from both crystal forms is similar to the structure of HCV polymerase genotype 1b, consistent with the high amino acids sequence identity of 75% (Fig. 5) over the entire polypeptide
chain, there are marked structural differences between the structures of the polymerases from these two genotypes. To understand the three-dimensional structure of HCV polymerase and its variability among different genotypes or in the same genotype in a different crystal environment, we have analyzed the available structures as listed in Table IV.

To elucidate the structural differences, the Co atoms of pairs of molecules were superimposed. The resulting root mean square deviations are listed in Table V. From these results, it is apparent that, the structure of polymerase of genotype 2a in form I crystal is similar to the HCV polymerase genotype 1b structures. However, the molecule in crystal form II shows greater variation from other 1b polymerase structures and also from the molecule in crystal form I. Among the three domains, the thumb domain exhibits the greatest variation. The fingers domain, however, agrees much better. The palm domain preserves a relatively rigid structure across all of the molecules.

Effect of Non-nucleoside Inhibitors on NS5B Activity—Both thiophene 2-carboxylic acid inhibitors, namely compounds A and B (Fig. 1), were tested for anti-HCV polymerase genotype 2a activity using the C-terminal truncated form (Δ21) of the enzyme. Both compound A and B were found to be active against polymerase 2a in a dose-dependent manner with IC_{50} values of 4.4 and 8.0 μM, respectively (Fig. 6).

Inhibitor Binding Site and NS5B-Inhibitor Interaction—Thiophene-2-carboxylic acids A and B, found previously to be inhibitors of HCV polymerase genotype 1b, were also found to inhibit polymerase genotype 2a (Δ21 C-terminal truncated). Our observations from soaking experiments suggest that both inhibitors can only bind to crystal form I, because they cannot be soaked into the enzyme that crystallizes in form II. Unexpectedly, our analysis of the inhibitor/polymerase complex reveals that the enzyme has now adopted the form II conformation, which is not possible with the polymerase from form I. The simulated annealing omit electron density maps clearly revealed the orientation and conformation of all substituents of both inhibitors (Fig. 8, a and b). The NS5B-inhibitor interactions are very similar in both complex structures. The inhibitor binding site is primarily hydrophobic in nature. Amino acid residues Ile^{419}, Arg^{422}, Met^{423}, Leu^{474}, His^{475}, Thr^{476}, Tyr^{477}, Leu^{482}, Leu^{497}, Arg^{498}, Lys^{501}, and Trp^{528} form the binding pocket of the inhibitor. The 2,4-dichlorobenzoyl group of inhibitor A and the 4-methylbenzoyl group of inhibitor B are involved in extensive van der Waals interactions with residues Arg^{422}, Met^{423}, Leu^{474}, His^{475}, Tyr^{477}, Lys^{501}, and Trp^{528}. The isopropyl amino groups of both inhibitors do not interact with NS5B molecule, whereas the phenylthiophene moiety of both inhibitors is involved in van der Waals interactions with residues Ile^{419}, Leu^{482}, Leu^{497}, and Arg^{498}. The carboxyl oxygen atoms of the inhibitors are hydrogen-bonded to the main chain amide nitrogen atoms of residues Thr^{476} and Tyr^{477}. NS5B-inhibitor interactions are depicted in Fig. 9, a and b.

In an attempt to provide a rationale as to why the NS5B molecule in form II does not allow inhibitor complex formation, the inhibitors were docked to the form II molecular structures, and we observed that the generated NS5B-inhibitor interactions were virtually identical to the one obtained experimentally with form I NS5B. The only visible difference was the length of the hydrogen-bonding distance between the two carboxylate oxygen atoms of the inhibitor and the backbone amide nitrogens of the residues Thr^{476} and Tyr^{477}. The hydrogen bonding distance between the inhibitor’s carboxylate O22 atom and the main chain amide nitrogen atom of residue Thr^{476} is 2.7 Å in the inhibitor bound structure, whereas in the inhibitor-docked structure the corresponding distance is 2.2 Å. A similar situation was observed for the other hydrogen bond between the inhibitor’s carboxylate O21 atom and Tyr^{477}. It is therefore possible that the increased steric hindrance precludes inhibitors from binding. The other possibility could be that as the thumb domain of the molecule in form II moves by 7.5° with respect to the thumb domain of the molecule in form I, the conformation of the former may not be conducive for the inhibitors to be bound.

Conformational Changes upon Inhibitor Binding and Plausible Mechanisms of Inhibition—As mentioned earlier, only the NS5B polymerase in the closed conformation (form I), which is similar to that of the polymerase of genotype 1b conformation, binds the inhibitor. Upon inhibitor binding, NS5B undergoes major conformational changes as shown in Fig. 10. Three regions of the molecule undergo major structural changes. The
thumb domain moves ~7.5° relative to the fingers and palm domains, the fingers-thumb domains interface, and the β-flap region. The nature of the conformational changes resulting upon inhibitor binding is similar for both inhibitors (Fig. 10). The inhibitor-bound structures of NS5B are very similar to the unbound structure of NS5B molecule in form II. As presented in Table III, the average B-factors of the protein atoms of the inhibitor-bound structures are larger than those of the native structures, indicating that, the former structures are relatively flexible.

On the basis of the major conformational changes in the NS5B molecule observed upon inhibitor binding, we propose the following mechanisms of inhibition. Upon inhibitor binding, the Δ1 loop, an extension from the fingers domain, moves away from the thumb domain to reduce the inter-fingers-thumb domain interactions, thereby resulting in a perturbation of the integrity of the structure. Part of the Δ1 loop (residues Asn24-Leu31), which adopts a helical conformation in the native structure (form I), changes to a small β-hairpin-like structure in the inhibitor-bound structures. It is therefore possible that inhibitor binding triggers the unwinding of this helix, thus inducing the 7.5° shift in the thumb domain relative to the fingers and palm domains. In the presence of an inhibitor, the polymerase is “locked” into form II and is incapable of polymerization or reverting back to the active form I. Recent studies on HCV polymerase genotype 1b have provided some insight into the importance of the Δ1 loop in coordinating the motion between the thumb and finger domains, hence giving rise to the “closed” or “open” conformation. Labonté et al. have shown by analytical ultracentrifugation experiments that substitution of Leu30 by polar serine or arginine results in a non-functional polymerase due to a local perturbation in the Δ1 loop that impairs the ability of the thumb domain to assume the closed conformation (32). Furthermore, this displacement of the Δ1 loop may also impair its ability to bind the allosteric modulator rGTP at the outer thumb region. The ability of the polymerase to oligomerize to the functional enzyme may also be prevented, as one of the key amino acids involved in that process (Glu18) forms part of the Δ1 loop. Our studies therefore provide, in addition to the mode of action of the thiophene-2-carboxylic acid inhibitors, structural evidence that the Δ1 loop is indeed responsible for determining the active state of HCV polymerase genotype 2a and, by analogy, of other RNA-depend-
ent RNA polymerases, including the polymerase of HCV genotype 1b. Although these experiments have provided structural evidence on the mechanism of action of the thiophen-2-carboxylic acid inhibitors, further investigations are needed to assess the influence of RNA templates, substrate nucleotides, and the allosteric rGTP on the inhibition mechanism.

Structure-based mutations of residue Leu30 to either serine or arginine reduces the activity of the polymerase (32). Hence, the Δ1 loop and thumb domain interface is critical for the polymerase activity. Perturbation of this region would ultimately affect the activity. Second, the substantial movement of the thumb domain (7.5°) relative to the fingers and palm domains upon inhibitor binding may inhibit the function of polymerase, as it is known that the thumb domain moves by a similar magnitude between the proposed active and inactive forms of the thumb domain (7.5°) relative to the fingers and palm domains upon inhibitor binding may inhibit the function of polymerase, as it is known that the thumb domain moves by a similar magnitude between the proposed active and inactive structures of the RNA-dependent RNA polymerase of rabbit hemorrhagic virus (15).

In summary, the structures of two crystal forms of HCV polymerase genotype 2a have been determined. These two forms correspond to a closed and an open conformation of the NS5B polymerase. Structure analysis has provided insights into our understanding of the structural variability among different genotypes and different crystal environments of the same genotype. Enzyme-inhibitor complexes could only be generated with the crystal form I, which is the closed form and is believed to be the active entity. The presence of the inhibitor was found to induce conformational changes that result in the open or inactive form.

Acknowledgment—We thank the Alberta Synchrotron Institute for data collection on beamline S8.3 at the Advanced Light Source, Berkeley, CA.

REFERENCES

1. Rice, C. M. (1996) in Fields Virology (Fields, B. N., Knipe, D. M., Howley, P. M., Chanock, R. M., Melnick, J. L., Monath, T. P., and Roizman, B., eds) Vol. 1, 3rd Ed., pp 831–959, Lippincott-Raven Press, Philadelphia.

2. Bartenschlager, R. (1997) Intervirology 40, 378–393.

3. Kato, N., Hijikata, M., Oostuyzen, Y., Nakagawa, M., Ohkoshi, S., Sugimura, T., and Shimotohno, K. (1999) Proc. Natl. Acad. Sci. U. S. A. 97, 9524–9528.

4. Takamizawa, A., Mori, C., Fuke, I., Manabe, S., Murakami, S., Fujita, J., Onishi, E., Andoh, T., Yoshih, I., and Okayama, H. (1999) J. Virol. 65, 1105–1113.

5. Grakoui, A., Wychowski, C., Lin, C., Feinestone, S. M., and Rice, C. M. (1993) J. Virol. 67, 1385–1395.

6. Hagedorn, C. H., Van Boers, E. H., and De Staelecke, C. (2000) Curr. Top. Microbiol. Immunol. 242, 225–260.

7. Lohmann, V., Korner, F., Herian, U., and Bartenschlager, R. (1997) J. Virol. 71, 8416–8428.

8. Lesburg, C. A., Cable, M. B., Ferrari, E., Hong, Z., Mannarino, A. F., and Weber, P. C. (1999) Nat. Struct. Biol. 6, 937–943.

9. Bressanelli, S., Tomei, L., Roussell, A., Incitti, I., Vitale, R. L., Mathieu, M., De Francesco, R., and Rey, F. A. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 13034–13039.

10. Ago, H., Adachi, T., Yoshida, A., Yamamoto, M., Habuka, N., Yatsunami, K., and Miyano, M. (1999) Structure Fold. Des. 7, 1417–1426.

11. Bressanelli, S., Tomei, L., Rey, F. A., and De Francesco, R. (2002) J. Virol. 76, 3492–3499.

12. O’Farrell, D., Trowbridge, R., Rowlands, D., and Jager, J. (2003) J. Mol. Biol. 326, 1025–1035.

13. Kondo, J. L., Lang, A. M., and Schultz, S. C. (1997) Structure 5, 1109–1122.

14. Butcher, S. J., Grimes, J. M., Makeyev, E. V., Bamford, D. H., and Stuart, D. I. (2001) Nature 410, 235–240.

15. Ng, K. K., Cherney, M. M., Vazquez, A. L., Machin, V. A., Alonso, J. M., Parra, P., and James, M. N. (2000) J. Biol. Chem. 277, 1381–1387.

16. Rodgers, D. W., Gamblin, S. J., Harris, B. A., Ray, S., Culp, J. S., Hellmig, B., Wollof, D. J., Dehouck, C., and Harrison, S. C. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 1222–1226.

17. Huang, H., Chepura, R., Verdin, G. L., and Harrison, S. C. (1998) Science 282, 1669–1675.

18. Lesburg, C. A., Radfar, R., and Weber, P. C. (2000) Curr. Opin. Investig. Drugs 1, 289–296.

19. Love, R. A., Parge, H. E., Yu, X., Hickey, M. J., Diehl, W., Gao, J., Wriggers, H., Elker, A., Wang, L., Thomson, J. A., Dragovich, P. S., and Fuhrman, S. A. (2003) J. Virol. 77, 7575–7581.

20. Wang, M., Ng, K. K., Cherney, M. M., Chan, L., Yannopoulos, C. G., Bedard, J., Morin, N., Nguyen-Bea, N., Alauoi-Ismaili, M. H., Bethell, R. C., and James, M. N. (2003) J. Biol. Chem. 278, 9489–9495.

21. Chan, L., Reddy, T. J., Preux, M., Das, S. K., Pereira, O., Wang, W., Siddiqui, A., Yannopoulos, C. G., Poisson, C., Turcotte, N., Droux, A., Alauoi-Ismaili, M. H., Bethell, R., Hamel, M., L’Heureux, L., Bilimoria, D., and Nguyen-Bea, N. (2003) J. Med. Chem. 46, 1283–1285.

22. Chan, L., Das, S. K., Reddy, T. J., Poisson, C., Prout, M., Pereira, O., Courchesne, M., Roy, C., Wang, W., Siddiqui, A., Yannopoulos, C. G., Nguyen-Bea, N., Labreque, D., Bethell, R., Hamel, M., Courtemanche-Asselin, P., L’Heureux, L., David, M., Nicolas, O., Brunette, S., Bilimoria, D., and Bedard, J. (2004) Bioorg. Med. Chem. Lett. 14, 793–796.

23. Chan, L., Pereira, O., Reddy, T. J., Das, S. K., Poisson, C., Courchesne, M., Prout, M., Siddiqui, A., Yannopoulos, C. G., Nguyen-Bea, N., Roy, C., Nasturcia, D., Miotet, C., Bethell, R., Hamel, M., L’Heureux, L., David, M., Nicolas, O., Courtemanche-Asselin, P., Brunette, S., Bilimoria, D., and Bedard, J. (2004) Bioorg. Med. Chem. Lett. 14, 797–800.

24. Stemmer, W. P., Cramer, A., Ha, K. D., Brennan, T. M., and Hayneker, H. L. (1995) Gene 164, 49–53.

25. Alauoi-Ismaili, M. H., Hamel, M., L’Heureux, L., Bilimoria, D., Labonte, P., Mourir, S., and Rando, R. F. (2000) J. Hum. Virol. 3, 306–316.

26. Matthews, B. W. (1965) J. Mol. Biol. 9, 491–497.

27. Otwinowski, Z., and Minor, W. (1997) Methods Enzymol. 276, 307–326.

28. Brunger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gross, P., Grosse-Kunstleve, R. W., Jiang, J. S., Kuszewski, J., Nilges, M., Pannu, N. S., Read, R. J., Rice, L. M., Simonson, T., and Warren, G. L. (1998) Acta Crystallogr. Sect. D. Crystalllogr. 54, 905–921.

29. McRee, D. E. (1999) J. Struct. Biol. 125, 156–165.

30. Lanskowski, R. A., MacArthur, M. W., Moss, D. S., and Thornton, J. M. (1993) J. Appl. Crystallogr. 26, 283–291.

31. Kraulis, P. J. (1991) J. Appl. Crystallogr. 24, 946–950.

32. Labonte, P., Axelrod, V., Agarwal, A., Aulaubaugh, A., Amin, A., and Mak, P. (2003) J. Biol. Chem. 278, 38385–38386.

33. Cohen, G. H. (1997) J. Appl. Crystallogr. 30, 1160–1161.

34. Gouet, P., Courcelle, E., Stuart, D. I., and Metz, F. (1999) Bioinformatics 15, 395–396.

35. DeLano, W. L. (2002) The PyMOL User’s Manual, DeLano Scientific, San Carlos, CA.
Crystal Structures of the RNA-dependent RNA Polymerase Genotype 2a of Hepatitis C Virus Reveal Two Conformations and Suggest Mechanisms of Inhibition by Non-nucleoside Inhibitors

Bichitra K. Biswal, Maia M. Cherney, Meitian Wang, Laval Chan, Constantin G. Yannopoulos, Darius Bilimoria, Olivier Nicolas, Jean Bedard and Michael N. G. James

J. Biol. Chem. 2005, 280:18202-18210.
doi: 10.1074/jbc.M413410200 originally published online March 2, 2005

Access the most updated version of this article at doi: 10.1074/jbc.M413410200

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 33 references, 12 of which can be accessed free at http://www.jbc.org/content/280/18/18202.full.html#ref-list-1