ЭФФЕКТИВНОСТЬ СПОСОБОВ ОЧИСТКИ И ДЕЗИНФЕКЦИИ ПРОФИЛАКТОРИЯ ДЛЯ ТЕЛЯТ

Исабекова Салтанат Айтымовна
Кандидат сельскохозяйственных наук
Казахский агротехнический университет имени С. Сейфуллина
г. Нур-Султан, Казахстан
E-mail: s.issabekova@kazatu.kz

Шайкенова Кымбат Хамитовна
Кандидат сельскохозяйственных наук, доцент
Казахский агротехнический университет имени С. Сейфуллина
г. Нур-Султан, Казахстан
E-mail: k.shaikenova@kazatu.kz

Ускенов Рашит Бакытжанович
Кандидат сельскохозяйственных наук, доцент
Казахский агротехнический университет имени С. Сейфуллина
г. Нур-Султан, Казахстан
E-mail: ruskenov@mail.ru

Аннотация
В статье приведены результаты исследований комплексного применения способов очистки и обеззараживания профилактория для телят симментальной породы. Исследования проводились в фермерском хозяйстве Акмолинской области Северного Казахстана, в помещении для телят. Очистка профилактория для телят проводилась тремя способами: механическим, физическим, химическим способом с применением аэрозольного препарата ГАН-10%.

Исследования до очистки и обработки профилактория для телят показали массовый рост бацилл и бактерий – 100%, плесневых грибов – 80%, дрожжей – 20%, актиномицетов – 80%. После проведенной очистки и обработки, количество микроорганизмов при механической обработке микробная обсемененность снизилась на 31,1±3,5%, при физической обработке уже на 56,9±2,8%, при химической на 91,0±0,6%.

Ключевые слова: дезинфекция; телята; микробная обсемененность; микроорганизмы.
Введение

Вырастить здорового теленка — главный приоритет для фермера в интенсивном животноводстве, так как здоровая телка — это будущая корова.

Исследования, проведённые Paige N. (по данным Национальной системой мониторинга здоровья животных (NAHMS) показали, что 5% телят погибает в молочный период, и 2% телят в после молочный период. И всех телят погибших в молочный период 50,9% погибали от истощения после диареи, респираторные заболевания оказались причиной смерти у 28,1% телят, у 23,6% телят были диагностированы такие причины смерти как лихорадка, инфекции пупка, травмы или хромата, а оставшиеся 5,4% телят погибли от проблем с пищеварением и верхних дыхательных путей. После окончания молочного периода большинство телята — 50,4%, погибли от респираторных заболеваний [1].

Обращая внимание на статистику можно сказать очень большое количество телят погибает в раннем возрасте и старше именно от сниженного иммунитета к различным инфекционным заболеваниям [2]. Перед ученым стоит большой вопрос как в современных условиях вырастить здоровую особь не применяя антибиотики или другие синтетические препараты. Достижение этой цели требует организации современного животноводства в которой особе внимание уделено профилактике инфекционных заболеваний, в том числе и контроль микроклимата в животноводческих помещениях для всех половозрастных групп [3]. В этой связи растут требования к качеству дезинфекционных мероприятий, направленных на уничтожения возбудителей инфекций во всех объектах животноводства.

В благополучных хозяйствах по инфекционным заболеваниям дезинфекцию проводят один раз в год перед зимним стойловым периодом. Родильные отделения, телятники, профилактории, откормочные площадки, лечебно-санитарные пункты отделения обеззараживание проводят каждый раз после освобождения.

Эффект обеззараживания помещений возможен при условии, если дезинфекция будет составляющей единого технологического процесса, строго по плану с соблюдением принципа «все пусто – все занято», а также профилактического перерыва не менее 5 дней. Дезинфекция слагается из двух последовательных действий, первое очистка помещения будь то физическая или механическая, второе распыление или нанесение химического дезинфирующего средства [4].

Известно, что направленное выращивание ремонтного молодняка не может обойтись без применения дезинфектантов, нам известно большое количество механических, физических и химических способов очистки. В данный момент мы наблюдаем что
появляется очень большое их количество, а в состав химических входят такие вещества как галогены, спирты, перекиси, четвертичные аммониевые соединения, альдегиды, третичные амины, кислоты и многое другое [5,6].

В этой связи в целях нашего исследования входило изучить

Материалы и методы

Объектом исследования явилось помещение для телят симментальской породы в одной из молочно-товарных ферм Астраханского района, Акмолинской области в Северном Казахстане.

При проведении исследования применяли механическую, физическую и химические способы очистки и обеззараживания профилакторий для телят. Очистка объекта в вы проводилась несколькими механическими способами (лопатами, скребками, метлами), а также с помощью гидроочистки.

Механическую очистку проводили с целью создания условий для свободного доступа химических средств к микроорганизмам. Тщательная очистка существенно облегчает последующее применение растворов дезинфицирующих средств, наносимых на объект. Особое внимание уделяется очистке кормушек, поилок, нижних частей стен, участков щелевого пола и навозных каналов. После механической очистки промывались подпольные каналы, помещения просушивались, для чего на 20-30 мин открывали окна и включали вентиляцию с отоплением.

В качестве физических средств, используемых для санации профилактория для телят и окружающей среды, применяли естественные (солнечные лучи) и искусственные источники света - ультрафиолетовые лучи бактерицидных ламп.

Химическое обеззараживание профилактория осуществлялось с помощью применения 1,5-2%-ным раствором кальцинированной соды, побелки стен, потолка негашенной известью гидроокиси кальция с использованием – «пушонка». В качестве аэрозольного препарата использовался препарат ГАН, комплексный препарат, содержащий глутаровый альдегид, глиоксаль, ката ПАВ (септа ПАВ), краситель-индикатор (метиловый оранжевый), воду дистиллированную, а также активатор, добавляемый к препарату во время приготовления рабочего раствора для усиления дезинфицирующего действия. Приготовленный 10% раствор распыляют в помещении (затуманивают), через 40 минут повторяют действие, расход препарата 15 мл на 1 м³.

После каждого вида очистки в одних и тех же местах выставлялись чаши Петри с питательными
средами на 15 мин, для фуанизации микроорганизмов на среды в чашах, оставшихся в животноводческом помещении. Анализ роста микроорганизмов животноводческого помещения, проведен согласно общей методике анализа проб объектов внешней среды. Были определены следующие показатели: общее микробное число, культурально-морфологическая идентификация микрофлоры животноводческого помещения (клетки для телят).

Результаты
Подготовленные питательные среды для выявления загрязнения объектов внешней среды, нумерованные как 1, 2, 3, 4, 5 и контроль были установлены в термостат на 37 ºС, для культивирования и формирования выросших колоний. После формирования колоний была проведена культурально-морфологическая характеристика представителей микрофлоры животноводческих помещений.

На рисунке 1 представлен рост колоний в чашах Петри отобранных проб в животноводческих помещениях до очистки и дезинфекции.

![Рисунок 1](image)

Рисунок 1 – Рост колонии микроорганизмов, отобранных в животноводческом помещении до очистки и дезинфекции

Как видно из рисунка 1, микроорганизмов, из общего числа выявлен массовый рост микроорганизмов количество
бацилл и бактерий было 100%, плесневых грибов – 80%, дрожжей – 20%, актиномицетов – 80%.

При окрашивании по методу Грамма было выявлено:
- в пробе №1 актиномицеты Actinomyces spp., бациллы Bacillus subtilis, Bacillus cereus, энтеробактерии, бактерии кишечной палочки Escherichia coli, диплококки, стрептококки, дрожжи, плесневые грибы рода Penicillum spp.
- в пробе №2 – лактобактерии, стафилококк, диплококки, бациллы Bacillus subtilis, редко в поле зрения – единичные клостридии, плесневые грибы рода Aspergillus spp (Aspergillus terreus, Aspergillus niger).
- в пробе №3 – бациллы Bacillus subtilis, энтеробактерии, бактерии кишечной палочки Escherichia coli, диплококки, стрептококки, дрожжи, актиномицеты, плесневые грибы Aspergillus terreus.
- в пробе №4 – клостридии, стрептококки, лактобактерии, дрожжи, актиномицеты, плесневые грибы Aspergillus terreus.
- в пробе №5 – бациллы, кишечная палочка, клостридии, актиномицеты, плесневые грибы Chaetomium globosum.

В таблице 1 представлена динамика снижения колоний микроорганизмов до и после применения нескольких способов обработки профилактория для телят.

Таблица 1 – Количество колоний микроорганизмов до и после применения нескольких способов обработки профилактория для телят.

Номер чашки	1	2	3	4	5	Среднее	
	кол-во (качество колоний)	1997	2105	1799 (крупные слившиеся)	1542 (много крупных слившихся)	1898 (рост сплошной, слившиеся)	1868,2±96,1
	%	100	100	100	100	100	100
	Колонии микроорганизмов после механической очистки						
	кол-во (качество колоний)	1378 (отчетливые)	1684 (отчетливые крупные)	1062 (отчетливые множественные белые)	997 (отчетливые, крупные)	1368 (отчетливые, крупные)	1297,8±123,8
	%	31	20	41	35,3	27,9	31,1±3,5
	Колонии микроорганизмов после физической очистки						
	кол-во (качество колоний)	1056 (отчетливые одиночные)	923 (отчетливые одиночные)	705 (отчетливые одиночные)	563 (мелкие, отчетливые)	821 (отчетливые одиночные)	813,6±85,3
Колонии микроорганизмов после химической очистки

Кол-во (качество колоний)	208 (отчетливые, одиночные)	156 (отчетливые, одиночные)	141 (отчетливые, одиночные белые)	162 (мелкие, отчетливые, одиночные)	169 (отчетливые, одиночные)	167,2±11,2
%	89,6	92,6	92,2	89,5	91,1	91,0±0,6

Количество колоний микроорганизмов до очистки в чашах Петри с 1 по 5 показал отчетливые, крупные сливающиеся колоний микроорганизмов, минимальное их количество было в чаше Петри №4 – 1 542, а максимальное количество в чаше Петри №2 – 2105. Среднее количество микроорганизмов составило 1868,2±96,1. Количество колоний до очистки бралось как 100% колоний которые существовали в помещении для телят в начале опыта.

После применения механического способа обработки микробная обсемененность снижается, но в не высоких значениях. Таким образом чаши Петри, выставленные в тех же точках что и до очистки, показали, что количество бактерий варьировало от 20% до 41%, и уменьшение колоний в среднем составило 31,1±3,5% или 1297,8±123,8 микроба. Качество колоний во всех чашах были крупными, отчетливыми и множественными.

Исследования общего микробного числа и анализа роста колоний до и после физического способа обработки показал, что количество микробной флоры, стало еще меньше, данные на уровне оказались в минимальном количестве составило 47,2%, а в максимальное 63,5%, в среднем 56,9±2,8%, Количество же самих микроорганизмов снизилось более чем на 1000 от первоначального и составило 813,6±85,3. Качество колоний в данном виде обработки стали мелкими и одиночными.

Такие же характеристики колоний были и после химической обработки. Касательно количественного изменения мы наблюдали резкое уменьшение микроорганизмов, так уменьшение в разных чашах Петри были от 89,5 до 92,6%. Таким образом, количество микроорганизмов уменьшилось в более чем в 10 раз, то есть количество микроорганизмов с первоначального 1868,2±96,1 снизилось до 167,2±11,2, в процентном отношении в среднем сокращение числа микроорганизмов наблюдается на 91,0±0,6%, то есть практический все болезнетворные микроорганизмы погибают.

Также было отмечено, что при первых двух видах очистки рост плесневых токсиногенных грибов родов Penicillium, Aspergillus, сапрофитного гриба Chaetomium продолжается. В то время как после химической очистки замечен только незначительный рост сапрофитного плесневого гриба Chaetomium.
globosum, а рост токсиногенных грибов отсутствует.

Не секрет, что многие фермерские хозяйства применяют только один из методов либо очистки, либо обеззараживания помещений. Вместе с тем полученные результаты исследований показывают, что именно применение комплексной системы очистки и обеззараживания помещений профилактория имеют наибольший эффект, где сокращение микробной обсемененности после механической обработки составило на 31,1%, при физической обработке на 56,9%, при химической до 91%.

Обсуждение
Наши исследования согласуются с другими авторами. Исследования Иванова Н.П. и др. по применению нового препарата ВА-12, препарат применялся во всех помещениях в животноводстве и показал, что дезинфицирующее средство «БА-12» в концентрациях от 3,0% до 10,0% с нормой расхода 0,5 л / м² и выдержкой 60 минут и более на всех поверхностях животноводческих помещений обладает выраженной бактерицидной активностью - 10,0%, 20,0% - бактерицидной и спороцидной активностью [7].
Лифенцова М.Н., Горпинченко Е.А. при использовании препарата «Роксацан» для дезинфекции, показали, что данный препарат губительно влияет на патогенную микрофлору в животноводческих помещениях [8]. Также результаты получили, Морозов В. Ю. со своей группой исследователей, при разработке режимов технологий аэрозольной дезинфекции объектов препаратом «Роксацан», установили эффективность технологий, на микроорганизмы, которые являются возбудителями заболеваний как в животноводческих помещениях, так и помещениях для птиц [9].
Буреев И.А., Кушнир А.Т., Сливко И.А. в своих исследованиях при использовании аэрозольных химических способов дезинфекции снизили количество заболеваемости телят респираторными инфекциями на 60-70% в течение пяти лет использования [10].

Заключение
При проведении исследования применяли механическую, физическую и химические способы очистки и обеззараживания профилактория для телят. Очистка объекта фермерского хозяйства проводилась несколькими механическими способами (лопатами, скребками, метлами), а также с помощью гидроочистки. В качестве физических средств применяли естественные (солнечные лучи) и искусственные источники света - ультрафиолетовые лучи бактерицидных ламп. Химическое обеззараживание профилактория
осуществлялось с помощью применения 1,5-2%-ным раствором кальцинированной соды. В качестве химического аэрозольного препарата использовался препарат ГАН.

Анализ роста микроорганизмов животноводческого помещения, проведен согласно обще принятой методике анализа проб объектов внешней среды. Исследования до обработки помещения для телят показали массовый рост бацилл и бактерий – 100%, плесневых грибов – 80%, дрожжей – 20%, актиномицетов – 80%. После обработки количество микроорганизмов сократилось при механической обработке микробная обсемененность на 31,1%, при физической обработке на 56,9%, при химической до 91%

В связи с вышеизложенными результатами можно рекомендовать к применению данную методику обеззараживания.

Информация о финансировании

Результаты исследований, приведенные в данной работе, выполнены в рамках программно-целевого финансирования программы Министерства сельского хозяйства Республики Казахстан BR10764965 на тему: «Разработка технологий содержания, кормления, выращивания и воспроизводства в молочном скотоводстве на основе применения адаптированных ресурсо-энергосберегающих и цифровых технологий для различных природно-климатических зон Казахстана», по бюджетной программе: 267 «Повышение доступности знаний и научных исследований», подпрограмма 101 «Программно-целевое финансирование научных исследований и мероприятий» на 2021-2023 годы, по приоритету: «Устойчивое развитие агропромышленного комплекса и безопасность сельскохозяйственной продукции» по под приоритету: «Развитие интенсивного животноводства».

Список литературы

1 Gott, N.P. Can feed additives play a role in addressing calf health and performance challenges? / N. P. Gott // J. Progressive Dairy. -2020. –(https://www.progressivedairy.com/topics/calves-heifers/can-feed-additives-play-a-role-in-addressing-calf-health-and-performance-challenges)

2 Спинул, А. И. Физиологические аспекты профилактики и метафилактики нарушений обмена веществ и снижения резистентности организма телят в молочный период выращивания [Текст] / А. И. Спинул // - М.; ВИЖ им. академика Л. К. Эрнста», -2018.-163 с.

3 Herbut, E. Modern animal production and animal welfare [Text] / E.Herbut // J. Agricultural Engineering. -2018. -Vol. 22. -№ 3. -Р.5-10. DOI:10.1515/agriceng-2018-0021

4 Плешакова, В.И. Ермакова, Т.В., Егорова, А.С. Микробиоценоз верхних дыхательных путей у телят с клиническими признаками
бронхопневмонии и микрофлора воздуха животноводческих помещений / В.И. Плешакова, Т.В. Ермакова, А.С. Егорова // Ученые записки КГАВМ им. Н.Э. Баумана. -2012. -№2. -(https://cyberleninka.ru/article/n/mikrobiotsenoz-verhnih-dyhatelnyh-putej-u-telyat-s-klinicheskimi-priznakami-bronhopnevmonii-i-mikroflora-vozduha-zhitvotnovodcheskih).

5 Limarenkov, N.V., Krasnova, E.V., Pudeyan, L.A., Baryshnikova, O.E. Prospects of Using of Chemicals in Environmentally safe Disinfection of Liquid Waste from Livestock Enterprises / N.V. Limarenkov, E.V. Krasnova, L.A. Pudeyan, O.E. Baryshnikova // IOP Conference Series Materials Science and Engineering. -2019. -С. 12-15. DOI: 10.1088/1757-899X/582/1/012015

6 Серикбаев, Р.Е., Ермакова, Т.В., Зуев, А.В. Средства, методы, техника для дезинфекции животноводческих объектов Омской области [Текст] / Р.Е. Серикбаев, Ермакова Т.В., А.В. Зуев // Вестник ОмГАУ. -2018. -№4. -С.32-34.

7 Иванов, Н.П., Сущих, В.Ю., Канатов, Б., Нурлан, К., Турагамбеков, А.А. Испытание нового дезинфицирующего средства "БА-12" на объектах животноводческого комплекса «БАЙСЕРКЕ-АГРО» для дезинфекции помещений [Текст] / Н.П. Иванов, В.Ю. Сущих, Б. Канатов, К. Нурлан, А.А. Турагамбеков // РОССИЙСКИЙ ЖУРНАЛ ПРОБЛЕМЫ ВЕТЕРИНАРНОЙ САНИТАРИИ, ГИГИЕНЫ И ЭКОЛОГИИ. -2020. -№4(36). –С.462-467. DOI: 10.36871/vet.san.hyg.ecol.202004009

8 Лифенцова, М.Н., Горпинченко, Е.А. Эффективность препарата роксацин при аэрозольной дезинфекции животноводческих помещений [Текст] / М.Н. Лифенцова, Е.А. Горпинченко // Научный журнал КубГАУ. -2016. -№1. –С.21.

9 Морозов, В.Ю., Прокопенко, А.А., Черников, А.Н., Колесников, Р.О. Разработка режимов и технологии аэрозольной дезинфекции объектов ветеринарно-санитарного надзора препаратом "Роксацин" [Текст] / В.Ю. Морозов, А.А. Прокопенко, А.Н. Черников, Р.О. Колесников // Вестник Курганской ГСХА. -2017. -№2. -С.22.

10 Буреев, И.А., Кушнир, А.Т., Сливко, И.А., Селянинов, Ю.О. Эффективность универсального генератора САГ-2М при аэрозольной профилактике инфекционных болезней животных [Текст] / И.А. Буреев, А.Т. Кушнир, И.А. Сливко, Ю.О. Селянинов // Вестник АГАУ. -2014. -№4. -С.114.

References

1 Gott, N.P. Can feed additives play a role in addressing calf health and performance challenges? / N. P. Gott // J. Progressive Dairy. - 2020. –(https://www.progressivedairy.com/topics/calves-heifers/can-feed-additives-play-a-role-in-addressing-calf-health-and-performance-challenges)

2 Spinul, A. I. Fiziologicheskie aspekty profilaktiki i metafilaktiki narushenij obmena veshchestv i snizheniya rezistentnosti organizma telyat v
molochnyj period vyrashchivaniya [Tekst] / A. I. Spinul // -M.; VIZH im. akademika L. K. Ernsta», -2018. -163 s.

3 Herbut, E. Modern animal production and animal welfare [Text] / E.Herbut // J. Agricultural Engineering. -2018. -Vol.22. -№ 3. -P.5-10. DOI:10.1515/agriceng-2018-0021

4 Pleshakova, V.I. Ermakova, T.V., Egorova, A.S. Mikrobiocenoz verhnikh dyhatel'ných putej u telyat s klinicheskimi priznakami bronhopneumonii i mikroflora vozduha zhivotnovodcheskih pomeshchenij / V.I. Pleshakova, T.V. Ermakova, A.S. Egorova // Uchenye zapiski KGAVM im. N.E. Bauman. -2012. -№2. -https://cyberleninka.ru/article/n/mikrobiotsenoz-verhnikh-dyhatelnych-putej-u-telyat-s-klinicheskimi-priznakami-bronhopneumonii-i-mikroflora-vozduha-zhivotnovodcheskih).

5 Limarenkova, N.V., Krasnova, E.V., Pudeyan, L.A., Baryshnikova, O.E. Prospects of Using of Chemicals in Environmentally safe Disinfection of Liquid Waste from Livestock Enterprises / N.V. Limarenkova, E.V. Krasnova, L.A. Pudeyan, O.E. Baryshnikova // IOP Conference Series Materials Science and Engineering. -2019. -S. 12-15. DOI: 10.1088/1757-899X/582/1/012015

6 Serikbaev, R.E., Ermakova, T.V., Zuev, A.V. Sredstva, metody, tekhnika dlya dezinfekcii zhivotnovodcheskih ob"ekтов Omskoj oblasti [Tekst] / R.E. Serikbaev, Ermakova T.V., A.V. Zuev // Vestnik OmGAU. -2018. -№4. -S.32-34.

7 Ivanov, N.P., Sushchih, V.YU., Kanatov, B., Nurlan, K., Turgambekov, A.A. Ispytanie novogo dezinficiruyushchego sredstva "BA-12" na ob"ektah zhivotnovodcheskogo kompleksa «BAJSERKE-AGRO» dlya dezinfekcii pomeshchenij [Tekst] / N.P. Ivanov, V.YU. Sushchih, B. Kanatov, K. Nurlan, A.A. Turgambekov // ROSSIJSKIJ ZHURNAL PROBLEMY VETERINARNOJ SANITARIJ, GIGIENI I EKOLOGIJ. -2020. -№4(36). –S.462-467. DOI: 10.36871/vet.san.hyg.ecol.202004009

8 Lifencova, M.N., Gorpinchenko, E.A. Effektivnost' preparata roksacin pri aerozol'noy dezinfekcii zhivotnovodcheskih pomeshchenij [Tekst] / M.N. Lifencova, E.A. Gorpinchenko // Nauchnyj zhurnal KubGAU. -2016. -№1. –S.21.

9 Morozov, V.YU., Prokopenko, A.A., CHernikov, A.N., Kolesnikov, R.O. Razrabotka rezhimov i tekhnologii aerozol'noj dezinfekcii ob"ektov veterinarno-sanitarnogo nadzora preparatom "Roksacin" [Tekst] / V.YU. Morozov, A.A. Prokopenko, A.N. CHernikov, R.O. Kolesnikov // Vestnik Kurganskoj GSKHA. -2017. -№2. -S.22.

10 Bureev, I.A., Kushnir, A.T., Slivko, I.A., Selyaninov, YU.O. Effektivnost' universal'nogo generatora SAG-2M pri aerozol'noj profilaktike infekcionnyh boleznej zhivotnyh [Tekst] / I.A. Bureev, A.T. Kushnir, I.A. Slivko, YU.O. Selyaninov // Vestnik AGAU. -2014. -№4. -S.114.

EFFICIENCY OF CLEANING AND DISINFECTION METHODS PREVENTION FOR CALFS

Issabekova Saltanat
Abstract

The article presents the results of studies on the use of mechanical, physical and chemical methods of cleaning and disinfection of a dispensary for calves. The studies were carried out on a farm in the Akmola region of Northern Kazakhstan, in a calf barn. Cleaning of the dispensary for calves was carried out in three ways: mechanical method - cleaning with shovels, scrapers, brooms, as well as with the help of hydro-cleaning; physical method - natural (sun rays) and artificial light sources - ultraviolet rays of germicidal lamps; chemical method - whitewashing surfaces and spraying the aerosol preparation GAN-10%. An analysis of the growth of microorganisms in the livestock premises was carried out according to the zoohygienic method for analyzing samples of environmental objects. Studies before treatment of the calf quarters showed a massive growth of bacilli and bacteria - 100%, molds - 80%, yeasts - 20%, actinomycetes - 80%. After treatment, the number of microorganisms during mechanical treatment, microbial contamination decreased by only 31.1 ± 3.5%, with physical treatment already by 56.9 ± 2.8%, with chemical treatment by 91.0 ± 0.6%.

Key words: disinfection; calves; microbial contamination; microorganisms.
Шайкенова Кымбат Хамитовна
Ауылшаруашылығы ғылымдарының кандидаты, доцент
C. Сейфуллин атындағы Қазақ агротехникалық университеті
Нұр-Сүлтан қ., Қазақстан
E-mail: k.shaikenova@kazatu.kz

Ускенов Рашит Бакытжанович
Ауылшаруашылығы ғылымдарының кандидаты, доцент
C. Сейфуллин атындағы Қазақ агротехникалық университеті
Нұр-Сүлтан қ., Қазақстан
E-mail: ruskenov@mail.ru

Түйін
Макалада бұзауларға арналған диспансерді тазалау және дезинфекциялаудың механикалық, физикалық және химиялық әдістерін қолдану бойынша зерттеулердің нәтижелері берілген. Зерттеулер Солтүстік Қазақстандың Ақмола облысындағы шаруа қожалығында бұзау корасында жұрғізілді. Бұзаулар диспансерін тазалау үш әдіспен жүргізілді: механикалық әдіс – күрекпен, қырғышпен, сыпырғышпен, сонымен қатар гидротазалаудың комегімен тазалау; физикалық әдіс – табиғи (күн сәулелері) және жасанды жарық – микробтарды жоюға арналған шамдардың ультракүлігін сәуелері; химиялық әдіс –әктеу және ГАН-10% аэрозольді препаратының шашу. Қоршаған орта объектілерінің сынамаларын талдаудың зоогигиеналық әдісі бойынша мал кораларында микроорганизмдердің өсінен талдау жұрғізілді. Бұзауларды өңдеуге дейінгі зерттеулерде таяқшалар мен бактериялардың – 100%, зердер – 80%, ашытқылар – 20%, актиномицеттер – 80% жағдай орналасқан қорсетті. Өңдеуден кейін механикалық өңдеу қезінде микроорганизмдер саны, микробтық ластану тек 31,1 ± 3,5%, физикалық өңдеу қезінде 56,9 ± 2,8%, химиялық өңдеу қезінде 91,0 ± 0,6% төмендеді.

Кілт сөздер: дезинфекция; бұзаулар; микробтық ластану; микроорганизмдер.