SPECTRAL ISOPERIMETRIC INEQUALITY FOR THE δ'-INTERACTION ON A CONTOUR

VLADIMIR LOTOREICHIK

A contribution to the proceedings of the 3rd workshop
Mathematical Challenges of Zero-Range Physics: rigorous results and open problems

ABSTRACT. We consider the problem of geometric optimization for the lowest eigenvalue of the two-dimensional Schrödinger operator with an attractive δ'-interaction of a fixed strength, the support of which is a C^2-smooth contour. Under the constraint of a fixed length of the contour, we prove that the lowest eigenvalue is maximized by the circle. The proof relies on the min-max principle and the method of parallel coordinates.

1. Introduction

1.1. The state of the art and motivation

The question of optimizing shapes in spectral theory is a rich subject with many applications and deep mathematical insights; see the monographs [H-1, H-2] and the references therein. In this note, we consider the problem of shape optimization for the lowest eigenvalue of the two-dimensional Schrödinger operator with a δ'-interaction supported on a closed contour in \mathbb{R}^2. This problem can be regarded as a counterpart of the analysis performed in [EHL06] for δ-interactions.

In the recent years, the investigation of Schrödinger operators with δ'-interactions supported on hypersurfaces became a topic of permanent interest – see, e.g., [BGLL15, BEL14, BLL13, EJ13, EKh15, EKh18, JL16, MPS16]. The Hamiltonians with δ'-interactions and some of their generalizations appear, for example, in the study of photonic crystals [FK96a, FK96b] and in the analysis of the Dirac operator with scalar shell interactions [HOP18]. The boundary condition corresponding to the δ'-interaction arises in the asymptotic analysis of a class of structured thin Neumann obstacles [DFZ18, H70]. Finally, the same boundary condition pops up in the computational spectral theory; see [Da99] and the references therein.

2010 Mathematics Subject Classification. 35P15 (primary); 58J50, 81Q37 (secondary).

Key words and phrases. Schrödinger operators, δ'-interaction on a contour, lowest eigenvalue, spectral shape optimization, min-max principle, parallel coordinates.
The proofs in [EHL06] and in related optimization problems for singular interactions on hypersurfaces [AMV16, BFK+17, E05, EL17, EL18, L18] rely on the Birman-Schwinger principle, which can also be viewed as a boundary integral reformulation of the spectral problem. In this note, we do not pass to any boundary integral reformulation. Instead, we combine the min-max principle and the method of parallel coordinates on the level of the quadratic form for the Hamiltonian, in the spirit of the recent analysis for the Robin Laplacian [AFK17, FK15, KL, KL18, KL17]. Our main motivation is to show that this approach initially developed for the Robin Laplacian can also be adapted for a much wider class of optimization problems involving surface interactions. The convenience of this alternative method is particularly visible for δ′-interactions, because the operator arising in the corresponding Birman-Schwinger principle (cf. [BLL13, Rem. 3.9]) is more involved than for δ-interactions.

1.2. Schrödinger operator with a δ′-interaction on a contour

In order to define the Hamiltonian, we need to introduce some notation. In what follows we consider a bounded, simply connected, C^2-smooth domain $\Omega_+ \subset \mathbb{R}^2$, whose boundary will be denoted by $\Sigma = \partial \Omega_+$. The complement $\Omega_- := \mathbb{R}^2 \setminus \Omega_+$ of Ω_+ is an unbounded exterior domain with the same boundary Σ. For a function $u \in L^2(\mathbb{R}^2)$ we set $u_\pm := u|_{\Omega_\pm}$. We also introduce the first order L^2-based Sobolev space on $\mathbb{R}^2 \setminus \Sigma$ as follows

$$H^1(\mathbb{R}^2 \setminus \Sigma) := H^1(\Omega_+) \oplus H^1(\Omega_-),$$

where $H^1(\Omega_\pm)$ are the conventional first-order L^2-based Sobolev spaces on Ω_\pm.

Given a real number $\omega > 0$, we consider the spectral problem for the self-adjoint operator $H_{\omega, \Sigma}$ corresponding via the first representation theorem to the closed, densely defined, symmetric, and semi-bounded quadratic form in $L^2(\mathbb{R}^2)$,

$$h_{\omega, \Sigma}[u] = \|\nabla_{\mathbb{R}^2 \setminus \Sigma} u\|_{L^2(\mathbb{R}^2; \mathbb{C}^2)}^2 - \omega \|[u]_{\Sigma}\|_{L^2(\Sigma)}^2, \quad \text{dom } h_{\omega, \Sigma} = H^1(\mathbb{R}^2 \setminus \Sigma),$$

where $\nabla_{\mathbb{R}^2 \setminus \Sigma} u := \nabla u_+ \oplus \nabla u_-$ and $[u]_{\Sigma} := u_+|_{\Sigma} - u_-|_{\Sigma}$ denotes the jump of the trace of u on Σ; cf. [BEL14, Sec. 3.2]. The operator $H_{\omega, \Sigma}$ is usually called the Schrödinger operator with the δ′-interaction of strength ω supported on Σ. It acts as the minus Laplacian on functions satisfying the transmission boundary condition of δ′-type on the interface Σ

$$\partial_{\nu_+} u_+|_{\Sigma} = -\partial_{\nu_-} u_-|_{\Sigma} = \omega [u]|_{\Sigma},$$

where $\partial_{\nu_+} u_\pm|_{\Sigma}$ denotes the trace onto Σ of the normal derivative of u_\pm with the normal vector ν_\pm at the boundary of Ω_\pm pointing outwards; see Section 2 for more details.
Recall that the essential spectrum of $H_{\omega, \Sigma}$ coincides with the set $[0, \infty)$ and that its negative discrete spectrum is known to be non-empty; see Proposition 2 below. By $\lambda_1^\omega(\Sigma)$ we denote the spectral threshold of $H_{\omega, \Sigma}$, which is an isolated negative eigenvalue.

1.3. The main result

The aim of this note is to demonstrate that $\lambda_1^\omega(\Sigma)$ is maximized by the circle $C \subset \mathbb{R}^2$, among all contours of a fixed length. A precise formulation of this statement is the content of the following theorem.

Theorem 1. For any $\omega > 0$, one has

$$\max_{|\Sigma|=L} \lambda_1^\omega(\Sigma) = \lambda_1^\omega(C),$$

where $C \subset \mathbb{R}^2$ is a circle of a given length $L > 0$ and the maximum is taken over all C^2-contours of length L.

The proof of Theorem 1 relies on the min-max principle and the method of parallel coordinates. The latter method has been proposed in [PW61] by L. E. Payne and H. F. Weinberger in order to obtain inequalities being reverse to the celebrated Faber-Krahn inequality [F23, K24] with some geometrically-induced corrections. Recently it has been observed that this method is very efficient in the proofs of isoperimetric inequalities for the lowest eigenvalue of the Robin Laplacian on bounded [AFK17, FK15] and exterior [KL18, KL17] domains with an ‘attractive’ boundary condition. In the present paper we adapt this approach for the case of a bounded domain and its exterior coupled via the transmission boundary condition (1.2) of δ'-type.

Organisation of the paper

In Section 2 we recall the known spectral properties of $H_{\omega, \Sigma}$ that are needed in this paper. Section 3 is devoted to the spectral analysis of $H_{\omega, C}$ with the interaction supported on a circle C. The method of parallel coordinates is briefly outlined in Section 4. Theorem 1 is proven in Section 5. The paper is concluded by Section 6 containing a discussion of the obtained results and their possible extensions.

2. The spectral problem for the δ'-interaction supported on a closed contour

Recall that we consider a bounded, simply connected, C^2-smooth domain $\Omega_+ \subset \mathbb{R}^2$ with the boundary $\Sigma = \partial \Omega_+$ and with the complement $\Omega_- := \mathbb{R}^2 \setminus \overline{\Omega_+}$.
Recall also that for a function $u \in L^2(\mathbb{R}^2)$, we set $u_{\pm} := u|_{\Omega_{\pm}}$. At the same time, the (attractive) coupling strength ω is a fixed positive number.

We are interested in the spectral properties of the self-adjoint operator $H_{\omega,\Sigma}$ in $L^2(\mathbb{R}^2)$ introduced via the first representation theorem [K, Thm. VI 2.1] as associated with the closed, densely defined, symmetric, and semi-bounded quadratic form $h_{\omega,\Sigma}$ defined in (1.1); see [BEL14, Sec. 3.2] and also [BLL13, Sec. 3.3 and Prop. 3.15].

We would like to warn the reader that in the majority of the papers on δ'-interactions not ω itself, but its inverse $\beta := \omega^{-1}$ is called the strength of the interaction. This tradition goes back to papers on point δ'-interaction on the real line; see [AGHH] and the references therein. Preserving this tradition for δ'-interactions on hypersurfaces can be physically motivated, but leads to a technical mathematical inconvenience, which we would like to avoid.

Let us add a few words about the explicit characterisation of the operator $H_{\omega,\Sigma}$. The domain of $H_{\omega,\Sigma}$ consists of functions $u \in H^1(\mathbb{R}^2 \setminus \Sigma)$, which satisfy $\Delta u_{\pm} \in L^2(\Omega_{\pm})$ in the sense of distributions and the δ'-type boundary condition (1.2) on Σ in the sense of traces. Moreover, for any $u \in \text{dom} H_{\omega,\Sigma}$ we have $H_{\omega,\Sigma} u = (-\Delta u_{\pm}) \oplus (-\Delta u_{\pm})$. The reader may consult [BEL14, Sec. 3.2 and Thm. 3.3], where it is shown that the operator characterised above is indeed the self-adjoint operator representing the quadratic form $h_{\omega,\Sigma}$ in (1.1). It is worth mentioning that C^2-smoothness of Σ is not needed to define the operator $H_{\omega,\Sigma}$, but it is important for the method of parallel coordinates used in the proof of Theorem 1.

The lowest spectral point of $H_{\omega,\Sigma}$ can be characterised by the min-max principle [RS-IV, Sec. XIII.1] as follows

$$
\lambda_1^\omega(\Sigma) = \inf_{u \in H^1(\mathbb{R}^2 \setminus \Sigma)} \frac{h_{\omega,\Sigma}[u]}{\|u\|^2_{L^2(\mathbb{R}^2)}}.
$$

It is not surprising that the operator $H_{\omega,\Sigma}$ has a non-empty essential spectrum. In fact, one can show that $H_{\omega,\Sigma}$ is a compact perturbation in the sense of resolvent differences of the free Laplacian on \mathbb{R}^2 and thus the essential spectrum coincides with the positive semi-axis. Using the characteristic function of Ω_{\pm} as a test function for (2.1) one gets that the negative discrete spectrum of $H_{\omega,\Sigma}$ is non-empty. More specifically, we have the following statement.

Proposition 2. For all $\omega > 0$, the following hold.

(i) The essential spectrum of $H_{\omega,\Sigma}$ is characterized as follows $\sigma_{\text{ess}}(H_{\omega,\Sigma}) = [0, \infty)$.

(ii) The negative discrete spectrum of $H_{\omega,\Sigma}$ is non-empty.

A proof of (i) in the above proposition can be found in [BEL14, Thm. 4.2 (ii)], see also [BLL13, Thm. 3.14 (i)]. A proof of (ii) is contained in [BEL14, Thm. 4.4].
Some further properties of the discrete spectrum of $H_{\omega, \Sigma}$ are investigated in or follow from [BLL13, EJ13]. Note that by [BLL13, Thm. 3.14(ii)] the negative discrete spectrum of $H_{\omega, \Sigma}$ is finite for C^∞-smooth Σ and it can be shown in a similar way that the discrete spectrum persists to be finite for C^2-smooth Σ.

Taking that the spectral threshold of $H_{\omega, \Sigma}$ is a negative discrete eigenvalue into account, we can slightly modify the characterisation of $\lambda_1^\omega(\Sigma)$ given in (2.1) as follows:

\begin{equation}
\lambda_1^\omega(\Sigma) = \inf_{u \in H^1(\mathbb{R}^2 \setminus \Sigma), \ h_{\omega, \Sigma}[u] < 0} \frac{h_{\omega, \Sigma}[u]}{\|u\|^2_{L^2(\mathbb{R}^2)}}. \tag{2.2}
\end{equation}

3. The spectral problem for the δ'-interaction supported on a circle

In this section we consider the lowest eigenvalue for the operator $H_{\omega, c}$ with the δ'-interaction of strength $\omega > 0$ supported on a circle $C = C_R \subset \mathbb{R}^2$ of radius $R > 0$. Our primary interest concerns the dependence of this eigenvalue on the radius R. For the sake of convenience, we introduce the polar coordinates (r, θ), whose pole coincides with the center of C. Note also that the circle C splits the Euclidean plane \mathbb{R}^2 into the disk $D_+ = \{x \in \mathbb{R}^2: |x| < R\}$ and its exterior $D_- = \{x \in \mathbb{R}^2: |x| > R\}$.

Proposition 3. Let $C = C_R \subset \mathbb{R}^2$ be a circle of radius $R > 0$. Let $\lambda_1^\omega(C_R) = -k^2 < 0$ and $u_1 \in H^1(\mathbb{R}^2 \setminus C)$ be, respectively, the lowest eigenvalue and a corresponding eigenfunction of $H_{\omega, c}$. Then the following hold.

\begin{enumerate}[(i)]
 \item The value $k > 0$ is the unique positive solution of the equation
 \[k^2 RI_1(kR)K_1(kR) = \omega. \]
 \item The function $(0, \infty) \ni R \mapsto \lambda_1^\omega(C_R)$ is continuous, increasing, and
 \[\lim_{R \to 0^+} \lambda_1^\omega(C_R) = -\infty \quad \text{and} \quad \lim_{R \to \infty} \lambda_1^\omega(C_R) = -4\omega^2. \]
 \item The ground-state u_1 is radial and can be expressed in polar coordinates (r, θ) as
 \begin{equation}
 u_1(r, \theta) = \begin{cases}
 K_1(kR)I_0(kr), & r < R, \\
 -I_1(kR)K_0(kr), & r > R.
 \end{cases} \tag{3.1}
 \end{equation}
\end{enumerate}

Proof. In view of the radial symmetry of the problem, the eigenfunction $u_1 \in L^2(\mathbb{R}^2)$ must necessarily be radially symmetric as well. Therefore, in polar coordinates (r, θ) we have $u_1(r, \theta) = \psi(r)$. Using this simple observation we see
that $\lambda^2(\mathcal{C}) = -k^2 < 0$ if, and only if, the following ordinary differential spectral problem

\[
\begin{align*}
-\rho^{-1}[\rho\psi'(\rho)]' &= -k^2\psi(\rho) \quad \text{for } \rho \in \mathbb{R}_+ \setminus \{R\}, \\
\psi'(R^-) &= \psi'(R^+) = \omega[\psi(R^-) - \psi(R^+)], \\
\lim_{\rho \to \infty} \psi(\rho) &= \psi'(0) = 0,
\end{align*}
\]

possesses a solution (ψ, k) with $\psi \neq 0$, $k > 0$; cf. [AFK17, Sec. 2] and [KL18, Sec. 3]. Observe that the general solution of the differential equation in (3.2) with $k > 0$ is given by

\[
\psi(\rho) = \begin{cases}
A_+ K_0(k\rho) + B_+ I_0(k\rho), & r < R, \\
A_- K_0(k\rho) + B_- I_0(k\rho), & r > R,
\end{cases}
\]

where $A_\pm, B_\pm \in \mathbb{C}$ are some coefficients and $K_0(\cdot), I_0(\cdot)$ are the modified Bessel functions of zero order. Taking into account the boundary conditions at infinity and at the origin from (3.2) and using the behaviour of $K_0(x)$ and $I_0(x)$ and of their derivatives for large [AS64, 9.7.1-4] and small [AS64, 9.6.7-9] values of x we conclude that $A_+ = B_- = 0$. Thus, the expression for ψ simplifies to

\[
\psi(\rho) = \begin{cases}
B_+ I_0(k\rho), & r < R, \\
A_- K_0(k\rho), & r > R,
\end{cases}
\]

where the constants B_+ and A_- must not both be zero to get a non-trivial solution. Differentiating ψ with respect to r, we find

\[
\psi'(\rho) = \begin{cases}
kB_+ I_1(k\rho), & r < R, \\
-kA_- K_1(k\rho), & r > R.
\end{cases}
\]

Thus, the boundary condition in (3.2) at the point $r = R$ yields the requirement

\[
\begin{align*}
B_+ I_1(kR) &= -A_- K_1(kR), \\
\omega(B_+ I_0(kR) - A_- K_0(kR)) &= B_+ k I_1(kR).
\end{align*}
\]

This linear system of equations can be simplified as

\[
\begin{align*}
A_- K_1(kR) + B_+ I_1(kR) &= 0, \\
-A_- \omega K_0(kR) + B_+ (\omega I_0(kR) - k I_1(kR)) &= 0.
\end{align*}
\]

The existence of a non-trivial solution for the system above is equivalent to vanishing of the underlying determinant, which gives us a scalar equation on k

\[
\omega [K_1(kR) I_0(kR) + I_1(kR) K_0(kR)] - k K_1(kR) I_1(kR) = 0.
\]
Provided \(k > 0 \) is a solution of (3.4), the vector \((A_-, B_+)\) is a solution of the system (3.3) and, hence, the expression (3.1) for the ground-state \(u_1 \) immediately follows.

Furthermore, using the identity \(K_1(x)I_0(x) + I_1(x)K_0(x) = x^{-1} \) (see [AS64, 9.6.15]) we simplify (3.4) as

\[
(3.5) \quad k^2RK_1(kR)I_1(kR) = \omega.
\]

Consider now the \(C^\infty \)-smooth function \(F(x) := xK_1(x)I_1(x) \) on \((0, \infty)\) in more detail. The analysis in [HW74, Prop 7.2] implies that \(F'(x) > 0 \) and \(\lim_{x \to 0^+} F(x) = 0, \lim_{x \to \infty} F(x) = \frac{1}{2} \). Hence, the function \(G(k) := kF(kR) \) in the left-hand side of (3.5) is strictly increasing in \(k \) and satisfies \(\lim_{k \to 0^+} G(k) = 0, \lim_{k \to \infty} G(k) = \infty, G(k) < \frac{k}{2} \). Therefore, the equation (3.5) possesses a unique positive solution \(k_* = k_*(R) > 0 \) satisfying the bounds

\[
(3.6) \quad 2\omega < k_*(R) < \frac{\omega}{F(2\omega R)}.
\]

Consequently, we get \(\lim_{R \to \infty} k_*(R) = 2\omega \) and, hence, \(\lim_{R \to \infty} \lambda_1^\omega(C_R) = -4\omega^2 \).

Using the implicit function theorem [KP, Thm. 3.3.1] we find that \((0, \infty) \ni R \mapsto k_*(R) \) is a \(C^\infty \)-smooth function, whose derivative satisfies

\[
k'_*(R)F(k_*(R)R) + (k_*(R) + RK'_*(R))F'(k_*(R)R) = 0.
\]

The above equation yields

\[
k'_*(R) = -\frac{k_*(R)F'(k_*(R)R)}{F(k_*(R)R) + RF'(k_*(R)R)} < 0.
\]

Hence, the function \(R \mapsto \lambda_1^\omega(C_R) = -(k_*(R))^2 \) is increasing.

Finally, using the characteristic function \(\chi_{D_+} \in H^1(\mathbb{R}^2 \setminus C) \) of the disk \(D_+ \) as a test function we get

\[
\lambda_1^\omega(C_R) \leq \frac{\| \{ \omega, \chi \}_{L^2(\mathbb{R}^2)} \}}{\| \chi_{D_+} \|_{L^2(\mathbb{R}^2)}} = \frac{-2\pi R\omega}{\pi R^2} = -\frac{2\omega}{R} \to -\infty, \quad \text{as} \ R \to 0^+.
\]

4. The method of parallel coordinates

In this section we briefly recall the method of parallel coordinates. We follow the modern presentation in [S01] with an adjustment of notation. Further details and proofs can be found in the classical papers [F41, H64], see also the monograph [Ba80] and the references therein.

First, we introduce the distance-functions on the domains \(\Omega_\pm \) as

\[
\rho_\pm : \Omega_\pm \to \mathbb{R}_+, \quad \rho_\pm(x) := \text{dist}(x, \Sigma).
\]
The functions \(\rho_{\pm} \) are Lipschitz continuous with the Lipschitz constant \(= 1 \)

\[
|\rho_{\pm}(x) - \rho_{\pm}(y)| \leq |x - y|, \quad \forall x, y \in \Omega_{\pm}.
\]

(4.1)

For the convenience of the reader we will show (4.1) for \(\Omega_- \). Without loss of generality we suppose that \(\rho_-(x) \geq \rho_-(y) \). Let \(z \in \Sigma \) be such that \(\rho_-(y) = |y - z| \). Hence, we obtain that \(\rho_-(x) \leq |x - z| \). Thus, we get

\[
|\rho_-(x) - \rho_-(y)| \leq |x - z| - |y - z| \leq |x - y|,
\]

where the last step follows from the triangle inequality in \(\mathbb{R}^2 \).

Furthermore, we introduce the in-radii of \(\Omega_{\pm} \) by

\[
R_{\pm} := \sup_{x \in \Omega_{\pm}} \rho_{\pm}(x).
\]

The in-radius of \(\Omega_+ \) is thus the radius of the largest disk in \(\mathbb{R}^2 \) that can be inscribed into \(\Omega_+ \), and due to the standard well-known isoperimetric inequality

\[
|\Sigma|^2 \geq 4\pi|\Omega_+|
\]

we get

\[
R_+ \leq R, \quad \text{where} \quad R = \frac{L}{2\pi}.
\]

(4.2)

On the other hand, we obviously have \(R_- = \infty \).

Finally, we introduce the following auxiliary functions

\[
L_{\pm}: [0, R_{\pm}] \to \mathbb{R}_+, \quad L_{\pm}(t) := |\{x \in \Omega_{\pm}: \rho_{\pm}(x) = t\}|,
\]

\[
A_{\pm}: [0, R_{\pm}] \to [0, |\Omega_{\pm}|], \quad A_{\pm}(t) := \{|x \in \Omega_{\pm}: \rho_{\pm}(x) < t\}.
\]

(4.3)

Clearly, \(L_{\pm}(0) = L \) and \(A_+(R_+) = |\Omega_+| \). The value \(A_{\pm}(t) \) is simply the area of the sub-domain of \(\Omega_{\pm} \), which consists of the points located at the distance less that \(t \) from its boundary \(\Sigma \). On the other hand, \(L_{\pm}(t) \) is the length of the corresponding level set of the function \(\rho_{\pm} \).

Some analytic properties of the functions in (4.3) are summarized in the following proposition.

Proposition 4. [S01, App. 1, Prop. A.1], [Ba80, Chap. I, Sec. 3.6] Let the functions \(A_{\pm} \) and \(L_{\pm} \) be as in (4.3). Then the following hold.

(i) \(A_{\pm} \) is continuous, locally Lipschitz, and increasing.

(ii) \(A_+(t) = L_+(t) > 0 \) for almost every \(t \in [0, R_+] \).

(iii) \(L_+(t) \leq L - 2\pi t \) and \(L_-(t) \leq L + 2\pi t \).

Further, let \(\psi_+ \in C^\infty([0, R_+]) \) and \(\psi_- \in C^\infty_0([0, \infty)) \) be arbitrary and real-valued. Due to the properties of \(A_{\pm} \) stated in Proposition 4 (i), there exist Lipschitz continuous functions \(\phi_+ : [0, |\Omega_+|] \to \mathbb{R} \) and \(\phi_- : [0, \infty) \to \mathbb{R} \) satisfying

\[
\psi_+|_{[0,R_+]} = \phi_+ \circ A_+ \quad \text{and} \quad \psi_- = \phi_- \circ A_-. \]

(4.4)
Consider now the test function
\[u = (\phi_+ \circ A_+ \circ \rho_+) \oplus (\phi_- \circ A_- \circ \rho_-). \]

Lipschitz continuity of \(\phi_\pm \), Proposition 4 (i) and (4.1) imply that \(u \in H^1(\mathbb{R}^2 \setminus \Sigma) \).

Employing the parallel coordinates together with the co-area formula (see [S01, Eq. 30] for more details) and applying further (4.2), (4.4) we get
\[
\|\nabla_{\mathbb{R}^2 \setminus \Sigma} u\|_{L^2(\mathbb{R}^2 \setminus \Sigma)}^2 = \|\nabla u_+\|_{L^2(\Omega_+ \cap C^2)}^2 + \|\nabla u_-\|_{L^2(\Omega_- \cap C^2)}^2
\]
\[
= \int_0^{R_+} |\phi'_+ (A_+ (t))|^2 (A'_+ (t))^3 dt + \int_0^{\infty} |\phi'_- (A_- (t))|^2 (A'_- (t))^3 dt
\]
\[
(4.5)
\]
\[
= \int_0^{R_+} |\psi'_+ (t)|^2 (A'_+ (t)) \text{dt} + \int_0^{\infty} |\psi'_- (t)|^2 (A'_- (t)) \text{dt}
\]
\[
\leq \int_0^{R} |\psi'_+ (t)|^2 (L - 2\pi t) \text{dt} + \int_0^{\infty} |\psi'_- (t)|^2 (L + 2\pi t) \text{dt},
\]
where Proposition 4 (ii), (iii) was used in the last step. Following the same steps (cf. [S01, App. 1]) we also get
\[
\|u\|_{L^2(\mathbb{R}^2)}^2 = \int_0^{R_+} |\phi'_+ (A_+ (t))|^2 (A'_+ (t)) \text{dt} + \int_0^{\infty} |\phi'_- (A_- (t))|^2 (A'_- (t)) \text{dt}
\]
\[
(4.6)
\]
\[
\leq \int_0^{R} |\psi'_+ (t)|^2 (L - 2\pi t) \text{dt} + \int_0^{\infty} |\psi'_- (t)|^2 (L + 2\pi t) \text{dt}.
\]

Let us focus on the jump of the trace of \(u \) onto \(\Sigma \). It is easy to see that for any \(x \in \Sigma \) we have \([u]_\Sigma (x) = \psi_+ (0) - \psi_- (0)\). Hence, we obtain
\[
(4.7) \quad \|\|[u]_\Sigma\|_{L^2(\Sigma)}^2 = L |\psi_+ (0) - \psi_- (0)|^2.
\]

5. **Proof of Theorem 1**

We are now able to conclude the proof of Theorem 1. The argument will be split into two steps.

Step 1. On this step, we make several preliminary constructions. First, we define the sub-space of \(H^1(\mathbb{R}^2 \setminus \mathcal{C}) \) as
\[
\mathcal{L} := \{ w = w_+ \oplus w_- \in C^\infty (\overline{D_+}) \oplus C_0^\infty (\overline{D_-}) : \partial_\theta w = 0 \}.
\]
Notice that for any \(w \in \mathcal{L} \) there exist functions \(\psi_+ \in C^\infty ([0, R]) \) and \(\psi_- \in C_0^\infty ([0, \infty)) \) satisfying \(w_+ (r, \theta) = \psi_+ (R - r) \) and \(w_- (r, \theta) = \psi_- (r - R) \). Next, we point out that the ground-state \(u_1 \in H^1(\mathbb{R}^2 \setminus \mathcal{C}) \) of \(H_{\omega, \epsilon} \) given in (3.1) belongs to the closure of \(\mathcal{L} \) in the norm of \(H^1(\mathbb{R}^2 \setminus \mathcal{C}) \); i.e. there exists a sequence \((w_n)_n \in \mathcal{L} \) such that
\[
(5.1) \quad \|w_n - u_1\|_{H^1(\mathbb{R}^2 \setminus \mathcal{C})} \to 0, \quad n \to \infty.
\]
Finally, we define the linear mapping $V: \mathcal{L} \to H^1(\mathbb{R}^2 \setminus \Sigma)$ by

$$(Vw)(x) := \begin{cases} \psi_+(\rho_+(x)), & x \in \Omega_+, \\ \psi_-(\rho_-(x)), & x \in \Omega_- \end{cases}$$

Step 2. Using the inequalities (4.5), (4.6) and the identity (4.7), we obtain from the min-max principle (2.2) that

$$\lambda_1^\omega(\Sigma) \leq \inf_{w \in \mathcal{L} : \mathcal{h}_\omega, \Sigma[w] < 0} \frac{\mathcal{h}_\omega, \Sigma[Vw]}{\|Vw\|_{L^2(\mathbb{R}^2)}^2} \leq \inf_{w \in \mathcal{L} : \mathcal{h}_\omega, \Sigma[w] < 0} \frac{\mathcal{h}_\omega, \Sigma[u_1]}{\|u_1\|_{L^2(\mathbb{R}^2)}^2} = \lambda_1^\omega(\mathcal{E}),$$

where the property (5.1) was used in the last but one step.

6. Discussion

The same technique can be used to reprove the optimization result in [EHL06] on δ-interactions without making use of the Birman-Schwinger principle. In fact, the method seems to be applicable for a larger sub-class of general four-parametric boundary conditions, considered in [ER16]. One has only to ensure that the lowest spectral point is indeed a negative eigenvalue and that the corresponding ground-state is real-valued and radially symmetric for the case of the interaction supported on a circle.

For the moment, it is unclear how to prove a counterpart of Theorem 1 and whether it is true or not under the constraint of a fixed area. In contrast to the case of the Robin Laplacian on an exterior domain [KL18, KL17], this result does not follow from the corresponding inequality under the constraint of a fixed perimeter, because the lowest eigenvalue for the δ'-interaction supported on a circle is not a decreasing, but an increasing function of its radius; see Proposition 3. The same problem arises for the Robin Laplacian on a bounded domain with a negative boundary parameter [AFK17, FK15].

Acknowledgement

The author is indebted to Pavel Exner, Michal Jex, David Krejčiřík, and Magda Khalile for fruitful discussions and gratefully acknowledges the support by the grant No. 17-01706S of the Czech Science Foundation (GAČR).

The author also thanks Alessandro Michelangeli for the invitation to participate in and give a mini-course at the 3^{rd} workshop: *Mathematical Challenges of Zero-Range Physics: rigorous results and open problems* and Istituto Nazionale di Alta Matematica “Francesco Severi” for the financial support of the travel.
References

[AS64] M. S. Abramowitz and I. A. Stegun, eds., Handbook of mathematical functions, Dover, New York, 1964.

[AGHH] S. Albeverio, F. Gesztesy, R. Hoegh-Krohn, and H. Holden, Solvable models in quantum mechanics. With an appendix by Pavel Exner. 2nd revised ed. Providence, AMS Chelsea Publishing, 2005.

[AFK17] P. R. S. Antunes, P. Freitas, and D. Krejčířík, Bounds and extremal domains for Robin eigenvalues with negative boundary parameter, Adv. Calc. Var. 10 (2017), 357–380.

[AMV16] N. Arrizabalaga, A. Mas, and L. Vega, An isoperimetric-type inequality for electrostatic shell interactions for Dirac operators, Commun. Math. Phys. 344 (2016), 483–505.

[Ba80] C. Bandle, Isoperimetric inequalities and applications, Monographs and Studies in Mathematics, Pitman, 1980.

[BEL14] J. Behrndt, P. Exner, and V. Lotoreichik, Schrödinger operators with δ and δ′-interactions on Lipschitz surfaces and chromatic numbers of associated partitions, Rev. Math. Phys. 26 (2014), 1450015.

[BFK+17] J. Behrndt, R. L. Frank, C. Kühn, V. Lotoreichik, and J. Rohleder, Spectral theory for Schrödinger operators with δ-interactions supported on curves in \mathbb{R}^3, Ann. Henri Poincaré, 18 (2017), 1305–1347.

[BGLL15] J. Behrndt, G. Grubb, M. Langer, and V. Lotoreichik, Spectral asymptotics for resolvent differences of elliptic operators with δ and δ′-interactions on hypersurfaces, J. Spectr. Theory. 5 (2015), 697–729.

[BLL13] J. Behrndt, M. Langer, and V. Lotoreichik, Schrödinger operators with δ and δ′-potentials supported on hypersurfaces, Ann. Henri Poincaré 14 (2013), 385–423.

[DFZ18] G. Dal Maso, G. Franzina, and D. Zucco, Transmission conditions obtained by homogenisation, to appear in Nonlinear Anal., arXiv:1805.01736.

[Da99] E. B. Davies, ICMS lecture notes on computational spectral theory, in: Spectral theory and geometry. Proceedings of the ICMS instructional conference, Edinburgh, UK, 1998. Cambridge University Press, Lond. Math. Soc. Lect. Note Ser. 273 (1999), 76–94.

[E05] P. Exner, An isoperimetric problem for leaky loops and related mean-chord inequalities, J. Math. Phys. 46 (2005), 062105.

[EHL06] P. Exner, E. M. Harrell, and M. Loss, Inequalities for means of chords, with application to isoperimetric problems, Lett. Math. Phys. 75 (2006), 225–233.

[EJ13] P. Exner and M. Jex, Spectral asymptotics of a strong δ′-interaction on a planar loop, J. Phys. A: Math. Theor. 46 (2013), 345201.

[EKh15] P. Exner and A. Khrabustovskyi, On the spectrum of narrow Neumann waveguide with periodically distributed traps, J. Phys. A: Math. Theor. 48 (2015), 315301.

[EKh18] P. Exner and A. Khrabustovskyi, Gap control by singular Schrödinger operators in a periodically structured metamaterial, to appear in Zh. Mat. Fiz. Anal. Geom., arXiv:1802.07522.

[EL17] P. Exner and V. Lotoreichik, A spectral isoperimetric inequality for cones, Lett. Math. Phys. 107 (2017), 717–732.

[EL18] P. Exner and V. Lotoreichik, Optimization of the lowest eigenvalue for leaky star graphs, in the proceedings of the conference Mathematical Results in Quantum Physics (QMath13), arXiv:1701.06840.
[ER16] P. Exner and J. Rohleder, Generalized interactions supported on hypersurfaces, *J. Math. Phys.* 57 (2016), 041507, 23 p.

[F23] G. Faber, Beweis dass unter allen homogenen Membranen von gleicher Fläche und gleicher Spannung die kreisförmige den tiefsten Grundton gibt, *Sitz. bayer. Akad. Wiss.* (1923), 169–172.

[F41] F. Fiala, Les problèmes des isopérimètres sur les surfaces ouvertes à courbure positive, *Comm. Math. Helv.* 13 (1941), 293–346.

[FK96a] A. Figotin and P. Kuchment, Band-gap structure of spectra of periodic dielectric and acoustic media. I. Scalar model, *SIAM J. Appl. Math.*, 56 (1996), 68–88.

[FK96b] A. Figotin and P. Kuchment, Band-gap structure of spectra of periodic dielectric and acoustic media. II. Two-dimensional photonic crystals, *SIAM J. Appl. Math.* 56 (1996), 1561–1620.

[FK15] P. Freitas and D. Krejčířík, The first Robin eigenvalue with negative boundary parameter, *Adv. Math.* 280 (2015), 322–339.

[H64] P. Hartman, Geodesic parallel coordinates in the large, *Amer. J. Math.* 86 (1964), 705–727.

[HW74] P. Hartman and G. Watson, ‘Normal’ distribution functions on spheres and the modified Bessel functions, *Ann. Probab.* 2 (1974), 593–607.

[H-1] A. Henrot, *Extremum problems for eigenvalues of elliptic operators*, Birkhäuser, Basel, 2006.

[H-2] A. Henrot, *Shape optimization and spectral theory*, De Gruyter, Warsaw, 2017.

[HOP18] M. Holzmann, T. Ourmieres-Bonafos, and K. Pankrashkin, Dirac operators with Lorentz scalar shell interactions, *Rev. Math. Phys.* 30 (2018), 1850013, 46 pp.

[H70] E. Hruslov, On the Neumann boundary value problem in a domain with complicated boundary, *Mat. Sb.* 12 (1970), 553–571.

[JL16] M. Jex and V. Lotoreichik, On absence of bound states for weakly attractive δ'-interactions supported on non-closed curves in \mathbb{R}^2, *J. Math. Phys.* 57 (2016), 022101.

[K] T. Kato, *Perturbation theory for linear operators*, Reprint of the 1980 edition, Classics in Mathematics, Springer-Verlag, Berlin, 1995.

[KP] S. Krantz and H. Parks, *The implicit function theorem. History, theory, and applications*, Birkhäuser/Springer, New York, 2013.

[KL18] D. Krejčířík and V. Lotoreichik, Optimisation of the lowest Robin eigenvalue in the exterior of a compact set, *J. Convex Anal.* 25 (2018), 319–337.

[KL17] D. Krejčířík and V. Lotoreichik, Optimisation of the lowest Robin eigenvalue in the exterior of a compact set, II: non-convex domains and higher dimensions, *submitted*, arXiv:1707.02269.

[K24] E. Krahn, Über eine von Rayleigh formulierte Minimaleigenschaft des Kreises, *Math. Ann.* 94 (1924), 97–100.

[KL] M. Khalile and V. Lotoreichik, *in preparation*.

[L18] V. Lotoreichik Spectral isoperimetric inequalities for singular interactions on open arcs, to appear in *Appl. Anal.*, arXiv:1609.07598.

[MPS16] A. Mantile, A. Posilicano, and M. Sini, Self-adjoint elliptic operators with boundary conditions on not closed hypersurfaces, *J. Differ. Equations* 261 (2016), 1–55.
[PW61] L. E. Payne and H. F. Weinberger, Some isoperimetric inequalities for membrane frequencies and torsional rigidity, J. Math. Anal. Appl. 2 (1961), 210–216.

[RS-IV] M. Reed and B. Simon, Methods of modern mathematical physics, IV. Analysis of operators, Academic Press, New York, 1978.

[S01] A. Savo, Lower bounds for the nodal length of eigenfunctions of the Laplacian, Ann. Glob. Anal. Geom. 16 (2001), 133–151.

DEPARTMENT OF THEORETICAL PHYSICS, NUCLEAR PHYSICS INSTITUTE, CZECH ACADEMY OF SCIENCES, 25068 ŘEŽ, CZECH REPUBLIC

E-mail address: lotoreichik@ujf.cas.cz