Brief Definitive Report

A Role for CD9 Molecules in T Cell Activation

By Xu-Guang Tai,* Yumi Yashiro,* Ryo Abe,† Kazuhito Toyooka,*
Clive R. Wood,§ John Morris,§ Andrew Long,§ Shiro Ono,*
Michiko Kobayashi,§ Toshiyuki Hamaoka,* Steven Neben,§
and Hiromi Fujiwara*

From the *Biomedical Research Center, Osaka University Medical School, Suita, Osaka 565, Japan;
†Naval Medical Research Institute, Bethesda, Maryland 20889-5607; and §Genetics Institute Inc.,
Cambridge, Massachusetts 02140

Summary

Costimulation mediated by the CD28 molecule plays an important role in optimal activation of
T cells. However, CD28-deficient mice can mount effective T cell–dependent immune re-
sponses, suggesting the existence of other costimulatory systems. In a search for other costimu-
latory molecules on T cells, we have developed a monoclonal antibody (mAb) that can costim-
ulate T cells in the absence of antigen-presenting cells (APC). The molecule recognized by this
mAb, 9D3, was found to be expressed on almost all mature T cells and to be a protein of ~24
kD molecular mass. By expression cloning, this molecule was identified as CD9. 9D3 (anti-
CD9) synergized with suboptimal doses of anti-CD3 mAb in inducing proliferation by virgin
T cells. Costimulation was induced by independent ligation of CD3 and CD9, suggesting that
colocalization of these two molecules is not required for T cell activation. The costimulation
by anti-CD9 was as potent as that by anti-CD28. Moreover, anti-CD9 costimulated in a
CD28-independent way because anti-CD9 equally costimulated T cells from the CD28-defi-
cient as well as wild-type mice. Thus, these results indicate that CD9 serves as a molecule on T
cells that can deliver a potent CD28-independent costimulatory signal.

Full activation of the T cell has been shown to require
two independent signals (1). The first signal is provided
by antigen-specific T cell receptor (TCR) interacting with
processed antigen peptides plus major histocompatibil-
ity complex (MHC) molecules on APC. This signal leads to an
effective T cell response only when accompanied by a sec-
ond costimulatory signal(s) presented by the APC. The lack
of costimulation not only prevents activation but also in-
duces tolerance called anergy (1). Identifying molecules ca-
pable of delivering costimulatory signals has been the sub-
ject of a large number of recent investigations (2-5). CD28
expressed on T cells was found to be a receptor for the co-
stimulatory molecules CD80 and CD86 on APC (6). CD28
engagement, by either anti-CD28 mAb or ligands (CD80/
CD86), has been shown to costimulate T cells in the ab-
sence of APC, resulting in T cell activation (7-9). Con-
versely, the blocking of CD28-ligand interactions induced
substantial inhibition of T cell activation (2). These obser-
vations indicated that the CD28-CD80/CD86 interaction
functions as a critical pathway of T cell costimulation.
Nevertheless, recent studies have revealed that CD28-defi-
cient mice can develop normal in vivo immune responses
(10) and that T cells from these mice mount APC-depen-
dent responses for T cell activation in vitro although the
response is reduced compared to T cells from wild-type
mice (10, 11). Thus, these results strongly suggest that there
may exist other molecules capable of providing costimula-
tory activity.

In this report, we have developed a rat IgG mAb (9D3)
by immunization with cells of a murine thymic stromal
dclone (12). This mAb recognized a protein of ~24 kD that
is expressed on immunizing thymic stromal cells as well as
murine T cells. By cDNA expression cloning, the antigen
recognized by 9D3 was identified as CD9. We found that
9D3 (anti-CD9) induces potent costimulation of virgin T
cells in the absence of APC. Anti-CD9 mAb almost equally
costimulated T cells from the CD28-deficient as well as
wild-type mice. Thus, these results indicate that CD9 on
murine T cells delivers a potent costimulatory signal that
functions for T cell activation in a CD28-independent way.

Materials and Methods

Mice. C57BL/6 and BALB/c mice were purchased from Shi-
zuoka Animal Laboratories (Hamamatsu, Japan). CD28-deficient
mice were originally generated as described (10), and a colony of
the CD28-deficient (CD28−/−) mice and wild-type (CD28+/+)
control mice (13) were maintained in an animal facility at the Na-
val Medical Research Institute.
Antibodies. A 9D3 hybridoma was generated by immunizing rats with cells of a thymic stromal clone, MRL104.8a (12). 9D3 mAb, anti-CD3 mAb (145-2C11) (14) and anti-CD28 mAb (PV-1) (15) were purified from ascitic fluids of hybridomas producing each mAb. Control rat IgG was purchased from Biomeda (Foster City, CA).

Cell Surface Biotinylation and Immunoprecipitation. Cell surface biotinylation and immunoprecipitation were carried out as described (16). Briefly, cells (5 x 10^7/ml) were suspended in saline containing 100 mM Hepes (pH 8.0). Sulfoximinomibiothion (Pierce Chemical Co., Rockford, IL) was added to cell suspension at a concentration of 0.5 mg/ml. After a 40-min incubation, cells were washed and lysed in buffer containing 50 mM Tris/HCl (pH 7.5), 150 mM NaCl, 1% Triton X-100, 50 mM iodoacetamide, 1 mM phenylmethylsulfonyl fluoride, 10 mg/ml soybean trypsin inhibitor, 2 mM MgCl2, 2 mM CaCl2, and 0.1% sodium azide. After a 30-min incubation, the cell lysates were recovered with antibody-coupled Sepharose 4B for 1 h at 4°C. After washing with lysis buffer, bound proteins were subjected to SDS-PAGE, blotted onto a nitrocellulose membrane, and visualized with avidin-peroxidase (Bio-Rad Laboratories, Richmond, CA) followed by an appropriate substrate.

Preparation of a Purified T Cell Population. Lymph node cells were depleted of B cells by immunomagnetic negative selection as described (17). Briefly, lymph node cells were incubated with Advanced Magnetic Particles bound to goat anti-mouse Ig (Advanced Magnetic, Cambridge, MA). Surface Ig-negative cells were obtained by removing cell-bound magnetic particles with a rare earth magnet (Advanced Magnetic). This was followed by complement-mediated cytotoxic treatment with anti-Ia mAb (34-5-3S). Purity of the resulting population was checked by flow microfluorometry (FMF) with anti-CD3. Purified T cells were consistently >98% CD3-positive.

Expression Cloning of 9D3 Antigen. A cDNA expression library from FDCP-1 cells (a myeloid cell line) was electroporated into Escherichia coli DH10B and plasmid DNA was prepared from pools of transformants (average insert size ~2 kb) using Wizard Maxiprep resin (Promega, Madison, WI). DNA was transfected into COS-1 cells (clone M6) by lipofectAMINE (GIBCO BRL, Gaithersburg, MD) or DEAE-dextran with chloroquine treatment as described (18). Cells in 100-mm plates were screened by in situ staining 4 h after transfection. Monolayers were washed twice in binding buffer (PBS, 1% [wt/vol] bovine serum albumin, 0.1% [wt/vol] sodium azide), and then covered in 3 ml binding buffer at 4°C. Primary monoclonal antibody was added at a final concentration of 2 lgg/ml for 1 h. Monolayers were washed three times with PBS, and then fixed with methanol for 10 min. After washing again in binding buffer, cells were stained with rabbit F(ab')2 anti-rat IgG conjugated to alkaline phosphatase (Southern Biotechnology Associates, Birmingham, AL) for 1 h at 4°C, then washed three times in binding buffer. Alkaline phosphatase activity was visualized with nitro blue tetrazolium and 5-bromo-4-chloro-3-indolyl phosphate (Promega, Madison, WI). Positive cells were scored by light microscopy.

T Cell Cultures for Proliferation. mAbs were immobilized to wells of 96-well flat-bottomed microculture plates (Corning 25860, Corning Glass Works, Corning, NY) in a final volume of 0.1 ml. Purified T cells were cultured in RPMI1640 medium supplemented with 10% fetal bovine serum and 2-mercaptoethanol at 1.5 or 2.0 x 10^5 cells/well at 5% CO2 at 37°C. The cultures were harvested after an 8-h pulse with 20 kBq/well of [3H]Tdr. Results were calculated from uptake of [3H]Tdr and expressed as the mean cpm ± SE of triplicate cultures.

Results

Characterization of the Antigen Recognized by a Newly Established mAb, 9D3. Wistar rats were immunized with cells of the MRL104.8a thymic stromal clone (12). A number of hybridomas were generated by fusing splenic B cells from the MRL104.8a-immunized rats with SP2 cells. One of mAbs designated 9D3 (IgG2b) was found to react with thymocytes and peripheral (spleen and lymph node) T cells as well as MRL104.8a stromal cells (Fig. 1A) and myeloid progenitor cell lines such as FDCP-1 (data not shown).

We determined the sizes of the 9D3 target molecule by immunoprecipitation experiments (Fig. 1B). MRL104.8a cells, B6 thymocytes and B6 splenic T cells were surface-biotinylated and lysed in detergent-containing lysis buffer. The cell lysates were precipitated with 9D3-bound beads, and bound proteins were subjected to SDS-PAGE. A monomeric protein with almost the same size was immunoprecipitated in three cell lysates and the size was ~24 kD, although it was slightly decreased at a reduced condition. Thus, the results of Fig. 1 show that 9D3 recognizes a protein of ~24 kD molecular mass which is expressed on almost all T cells as well as cells of a thymic stromal cell clone.

Isolation of 9D3 cDNA Clone. An FDCP-1 cDNA expression library was screened in transiently transfected COS-1 cells using in situ staining with the 9D3 mAb. Cells transfected with one pool of ~11,000 clones and stained with 9D3 mAb showed several hundred positive cells. No signal was found with the same cells stained with a rat isotype control. The positive pool was subdivided into pools

[Figure 1. 9D3 recognizes ~24 kD molecules expressed on MRL104.8a thymic stromal cells, thymocytes and mature T cells from C57BL/6 mice. (A) MRL104.8a cells, C57BL/6 thymocytes and purified peripheral (spleen and lymph node) T cells were stained with biotinylated 9D3 followed by PE-conjugated streptavidin. Dashed line was the staining with PE-conjugated streptavidin. (B) three types of cells were surface-biotinylated, detergent-extracted and precipitated with 9D3-bound beads. Bound proteins were subjected to SDS-PAGE under non-reduced (NR) or reduced (R) conditions.]

754 Role for CD9 in T Cell Activation
Anti-CD9 mAb costimulates proliferation of virgin T cells stimulated with suboptimal doses of anti-CD3 mAb. Purified C57BL/6 lymph node T cells (2 × 10^5/well) were cultured for 2 d in 96-well flat-bottomed microplates which had been coated with various doses of anti-CD3 mAb plus 10 μg/ml anti-CD9 mAb (A) or with various doses of anti-CD9 mAb plus 1 μg/ml anti-CD3 mAb (B).

![Graph A](image1)

![Graph B](image2)

Figure 2. Anti-CD9 mAb costimulates proliferation of virgin T cells stimulated with suboptimal doses of anti-CD3 mAb. Purified C57BL/6 lymph node T cells (2 × 10^5/well) were cultured for 2 d in 96-well flat-bottomed microplates which had been coated with various doses of anti-CD3 mAb plus 10 μg/ml anti-CD9 mAb (A) or with various doses of anti-CD9 mAb plus 1 μg/ml anti-CD3 mAb (B).

The results (a representative of five experiments) show that the 9D3 mAb increased the proliferative response of purified C57BL/6 T cells when coimmobilized with suboptogenic doses of anti-CD3 mAb: the 9D3 mAb immobilized at a given concentration (10 μg/ml) activated T cells that were stimulated with suboptimal doses of anti-CD3 (Fig. 2 A), and anti-CD3 immobilized at a suboptogenic dose (1 μg/ml) induced 9D3 dose-dependent T cell proliferation (Fig. 2 B). Anti-CD9 costimulation was also observed using BALB/c purified T cells (data not shown). Neither immobilized 9D3 alone (Fig. 2) nor soluble 9D3 together with immobilized anti-CD3 (data not shown) induced proliferation. Thus, 9D3 cross-linking can provide a costimulatory signal necessary to induce T cell proliferation in response to suboptimal anti-CD3 stimulation.

Comparison of T Cell Costimulation Provided by Anti-CD28 and Anti-CD9 mAbs. We compared the costimulatory activity between anti-CD28 and anti-CD9 (9D3) mAbs. Purified C57BL/6 T cells were cultured for 1–3 d in wells coimmobilized with anti-CD28 or anti-CD9 (9D3) plus a suboptimal dose of anti-CD3 mAb. Optimal concentrations of anti-CD28 for costimulation were predetermined as 5–10 μg/ml. The results of Fig. 3 (a representative of three performed) show that the 9D3 mAb increased the proliferative response of purified C57BL/6 T cells when coimmobilized with suboptogenic doses of anti-CD3 mAb: the 9D3 mAb immobilized at a given concentration (10 μg/ml) activated T cells that were stimulated with suboptimal doses of anti-CD3 (Fig. 2 A), and anti-CD3 immobilized at a suboptogenic dose (1 μg/ml) induced 9D3 dose-dependent T cell proliferation (Fig. 2 B). Anti-CD9 costimulation was also observed using BALB/c purified T cells (data not shown). Neither immobilized 9D3 alone (Fig. 2) nor soluble 9D3 together with immobilized anti-CD3 (data not shown) induced proliferation. Thus, 9D3 cross-linking can provide a costimulatory signal necessary to induce T cell proliferation in response to suboptimal anti-CD3 stimulation.
CD28+/+ or CD28−/− mice were stimulated with immobilized anti-CD3 mAb. A representative of three experiments performed is shown in Fig. 4. Anti-CD9 cross-linking enhanced the proliferation of the CD28−/− T cells equivalently to wild-type T cells. Thus, anti-CD9-mediated costimulatory signals do not require the involvement of CD28 molecules and can function independently of CD28 and induced almost equally in T cells from wild-type and CD28−/− mice.

CD9 is a member of the recently discovered transmembrane four superfamily (TM4SF) (reviewed in reference 20). The TM4SF comprises a group of cell surface proteins such as CD81 (21–23), CD82 (22, 24), and CD53 (25), which are characterized by the presence of four hydrophobic domains. The precise biochemical function of the TM4SF is unknown, although recent studies largely suggest a role for this superfamily in the regulation of cell development (26, 27), proliferation/activation (26), adhesion (28) and motility (29). Our present results show that CD9, generally as a member of the TM4SF, joins a growing list of molecules responsible for cell activation and specifically in the T cell, delivers a costimulatory signal essential for cell activation (vide infra).

Regarding the detection of the CD9 expression using anti-human (20) or anti-murine CD9 mAb (KMC8) (29), earlier studies have shown that CD9 is not expressed by mature human B and T cells (20, 26) or slightly expressed by only subpopulations of mature murine B and T cells (29). In contrast, anti-CD9 mAb (9D3) established here strongly reacted with all mature murine T cells (Fig. 1) and mature murine B cells (our unpublished results). Thus, our anti-CD9 mAb permitted us to investigate the functional role for the CD9 molecule expressed on mature T cells.

The important finding of this study is that a member of the TM4SF, CD9, functions as a molecule that can deliver a costimulatory signal. Four of the TM4SF members have been suggested to couple to signal transduction pathways. These include platelet activation/aggregation and pre-B cell adhesion of CD9 (28), fresh T cell mitogenic effects of CD53 (25), and anti-proliferative effects of CD81 (21). However, there has been no report which shows the role of CD9 in T cell activation or proliferation, probably due to the lack of an appropriate anti-CD9 mAb. This study demonstrated that anti-CD9 costimulation induced potent proliferation by freshly isolated T cells when combined with suboptimal doses of anti-CD3 stimulation, providing the first evidence for the role of CD9 in T cell activation.

The mechanisms by which the TM4SF molecules including CD9 transduce a signal are not known. In this regard, the observations showing molecular interactions between TM4SF and immunoglobulin superfamily members may be worthwhile. For example, CD81 and CD82 have been shown to associate with the immunoglobulin superfamily molecules CD19 and CD21 (23) and CD4/CD8 molecules (22) on B or T cells. The B cell complex of CD81, CD19 and CD21 is considered to play an important costimulatory role in B cell activation (23). Similarly, the association of CD81 and CD82 with CD4 or CD8 has been observed in T cells (22) although the functional significance of these interactions is unknown. In contrast to CD81 and CD82, CD9 is likely to be associated with the integrin family members such as β1 in pre-B cells (30) and β3 integrin in platelets (31). An interesting speculation may be raised that the TM4SF plays a role in anchoring signal transduction complexes. However, it remains to be eluci-

Discussion

In the present study, we have developed a mAb capable of costimulating fresh T cells for potent proliferation. By expression cloning, the molecule recognized by this mAb (termed 9D3) was identified as CD9. Our results obtained using the 9D3 mAb demonstrated that CD9 is expressed on most mature T cells and thymocytes at high and weak levels, respectively, in addition to the MRL104.8a thymic stromal cells used as immunizing cells for preparation of mAbs. Anti-CD9 costimulation induced T cell proliferation in response to suboptimal anti-CD3 stimulation. The costimulation by anti-CD9 was as potent as that by anti-

Figure 4. Anti-CD9 can costimulate proliferation of T cells from CD28-deficient mice. Purified lymph node T cells (1.5 × 10⁵/well) from CD28+/+ or CD28−/− mice were stimulated with immobilized anti-CD3 (0.5 μg/ml) alone or together with 5 μg/ml anti-CD9 (coimmobilized) or 2 μg/ml anti-CD28 (in a soluble form) mAb.
ated whether CD9 on T cells is associated with some members of the immunoglobulin superfamily and/or integrin family and such an association is required for the manifestation of signal transduction.

Our present results illustrate the expression of CD9 molecules on mature T cells as well as its role for T cell activation. Further studies will be required to investigate the extracellular events leading to CD9 stimulation including the determination of the CD9-associated molecules and to elucidate CD9-mediated signal transduction. Such studies could contribute to a better understanding of differential roles of CD28 vs CD9 molecules in T cell costimulation as well as the biological significance of CD9 molecules in T cell activation.

The authors are grateful to Miss Yumi Yano and Miss Chieko Arakawa for secretarial assistance.

This work was supported by Grant-in-Aids for Scientific Research from the Ministry of Education, Science and Culture, Japan and Naval Medical Research and Development Command, Work Unit No. 0095-003-1412. The opinions and assertions contained herein are the private ones of the writers and are not to be construed as official at large.

Address correspondence to Hiromi Fujiwara, Biomedical Research Center, Osaka University Medical School, 2-2 Yamada-oka Suita, Osaka 565, Japan.

Received for publication 24 April 1996 and in revised form 24 May 1996.

References

1. Schwartz, R.H. 1990. A cell culture model for T lymphocyte clonal anergy. Science (Wash. DC). 48:1349-1356.
2. Liu, Y., and P.S., Linsley. 1992. Costimulation of T cell growth. Curr. Opin. Immunol. 4:265-270.
3. Sperling, A.I., J.M. Green, R.L. Mosley, P.L. Smith, R.J. Dipaolo, J.R. Klein, J.A. Bluestone, and C.B. Thompson. 1995. CD43 is a murine T cell costimulatory receptor that functions independently of CD28. J. Exp. Med. 176:139-146.
4. Huet, S., H. Groux, B. Caillou, H. Valentin, A.M. Prieur, and A. Bernard. 1989. CD44 contributes to T cell activation. J. Immunol. 143:798-801.
5. Stein, P.H., and A. Singer. 1992. Similar co-stimulation requirements of CD4+ and CD8+ primary T helper cells: role of IL-1 and IL-6 in inducing IL-2 secretion and subsequent proliferation. Int. Immunol. 4:327-335.
6. June, C.H., J.A. Bluestone, L.M. Nadler, and C.B. Thompson. 1994. The B7 and CD28 receptor families. Immunol. Today. 15:321-331.
7. Jenkins, M.X., P.S. Taylor, S.D. Norton, and K.B. Urdahl. 1991. CD28 delivers a costimulatory signal involved in antigen-specific IL-2 production by human T cells. J. Immunol. 147:2461-2466.
8. Koulouva, L., E.A. Clark, G. Shu, and B. Dupont. 1991. The CD28 ligand B7/BB1 provides costimulatory signal for allo-activation of CD4+ T cells. J. Exp. Med. 173:759-762.
9. Azuma, M., M. Cayabyab, D. Buck, J.H. Phillips, and L.L. Lanier. 1992. CD28 interaction with B7 costimulates primary allogeneic proliferative responses and cytokotaxis mediated by small, resting T lymphocytes. J. Exp. Med. 175:353-360.
10. Shahnian, A., K. Pfeffer, K.P. Lee, T.M. Kundig, K. Kishihara, A. Wakeham, K. Kawai, P.S. Ohashi, C.B. Thompson, and T.W. Mak. 1993. Differential T cell costimulatory requirements in CD28-deficient mice. Science (Wash. DC). 261:609-612.
11. Green, J.M., P.J. Noel, A.I. Sperling, T.L. Walunas, G.S. Gray, J.A. Bluestone, and C.B. Thompson. 1994. Absence of B7 dependent responses in CD28-deficient mice. Immunity. 1:501-508.
12. Ogata, M., H. Matsubara, Y. Takai, H. Kosaka, T. Katagiri, H. Sano, K. Ishimura, H. Fujita, T. Hamaoka, and H. Fujiwara. 1989. Capacities of a newly established thymic stromal cell clone to express Ig antigens and to produce Interleukin-6, colony-stimulating factor and thymic stromal-derived T-cell growth factor. J. Leukocyte Biol. 45:69-78.
13. Palmer, L.D., B. Saha, R.J. Hodes, and R. Abe. 1996. The role of CD28 costimulation in immune-mediated response against mouse mammary tumor virus. J. Immunol. 156:2112-2118.
14. Leo, O., M. Foo, D.H. Sachs, L.E. Samelson, and J.A. Bluestone. 1987. Identification of a monoclonal antibody specific for a murine T3 polypeptide. Proc. Natl. Acad. Sci. USA. 84:1374-1378.
15. Abe, R., P. Vandenberge, N. Craighead, D.S. Smoot, K.P. Lee, and C.H. June. 1995. Distinct signal transduction in mouse CD4+ and CD8+ splenic T cells after CD28 receptor ligation. J. Immunol. 154:985-997.
16. Miyake, K., Y. Hasunuma, H. Yagita, and M. Kimoto. 1992. Requirement for VLA-4 and VLA-5 integrins in lymphoma cells binding to and migration beneath stromal cells in culture. J. Cell Biol. 119:653-662.
17. Funderud, S., K. Nustad, T. Lea, F. Vartdal, G. Guadernack, P. Stensted, and J. Ugelstad. 1987. Fractionation of lymphocytes by immunomagnetic beads. In Lymphocytes: A Practical Approach. G.G.B. Klaus, editor. Oxford University Press, New York. 55 pp.
18. Kaufman, R.J. 1990. Vectors used for expression in mammalian cells. Methods. Enzymol. 185:487-511.
19. Rubinstein, E., M., Billard, S. Plaisance, M. Prenant, and C. Boucheix. 1993. Molecular cloning of the mouse equivalent of CD9 antigen. Thromb. Res. 71:377-383.
20. Wright, M.D., and M.G. Tomlinson. 1994. The ins and outs of the transmembrane 4 superfamily. ImmunoL Today 15:588-594.
21. Oren, R., S. Takahashi, C. Dos, R. Levy, and S. Levy. 1990. TAPA-1, the target of an antiproliferative antibody,
defines a new family of transmembrane proteins. *Mol. Cell Biol.* 10:4007-4015.

22. Imai, T., and O. Yoshie. 1993. C33 antigen and M38 antigen recognized by monoclonal antibodies inhibitory to syncytium formation by human T cell leukemia virus type 1 are both members of the transmembrane 4 superfamily and associate with each other and with CD4 or CD8 in T cells. *J. Immunol.* 151:6470-6481.

23. Tedder, T. F., L.-J. Zhou, and P. Engel. 1994. The CD19/CD21 signal transduction complex of B lymphocytes. *Immunol. Today.* 15:437-442.

24. Nojima, Y., T. Hirose, K. Tachibana, T. Tanaka, L. Shi, J. Doshen, G.J. Freeman, S.F. Schlossman, and C. Morimoto. 1993. The 4F9 antigen is a member of the tetraspan transmembrane protein family and functions as an accessory molecule in T cell activation and adhesion. *Cell. Immunol.* 152:249-260.

25. Bell, G.M., W.E. Seaman, E.C. Niemi, and J.B. Imboden. 1992. The OX-44 molecule couples to signaling pathways and is associated with CD2 on rat T lymphocytes and a natural killer cell line. *J. Exp. Med.* 175:527-536.

26. Boucheix, C., P. Benoit, P. Frachet, M. Billard, R.E. Worthington, J. Gagnon, and G. Uzan. 1991. Molecular cloning of the CD9 antigen. A new family of cell surface proteins. *J. Biol. Chem.* 266:117-122.

27. Boismenu, R., M. Rhein, W.H. Fischer, and W.L. Havran. 1996. A role for CD81 in early T cell development. *Science (Wash. DC).* 271:198-200.

28. Masellis-Smith, A., and A.R. Shaw. 1994. CD9-regulated adhesion. Anti-CD9 monoclonal antibody induce pre-B cell adhesion to bone marrow fibroblasts through denovo recognition of fibronectin. *J. Immunol.* 152:2768-2777.

29. Oritani, K., X. Wu, K. Medina, J. Hudson, K. Miyake, J.M. Gimble, S.A. Burstein, and P.W. Kincade. Antibody ligation of CD9 modifies production of myeloid cells in long term cultures. *Blood.* In press.

30. Rubinstein, E., F. Le-Naour, M. Billard, M. Prenant, and C. Boucheix. 1994. CD9 antigen is an accessory subunit of the VLA integrin complexes. *Eur. J. Immunol.* 24:3005-3013.

31. Slupsky, J.R., J.G. Sechafer, S.C. Tang, A. Masellis-Smith, and A.R. Shaw. 1989. Evidence that monoclonal antibodies against CD9 antigen induce specific association between CD9 and the platelet glycoprotein IIb-IIIa complex. *J. Biol. Chem.* 264:12289-12293.