Fibroblast Growth Factor 23 as a Therapeutic Target

Fan Li, MD, MS; Zhousheng Xiao, MD, PhD*

Division of Nephrology, Department of Medicine, the University of Tennessee Health Science Center, Memphis, TN, USA

*Corresponding author
Zhousheng Xiao, MD, PhD
Division of Nephrology, Department of Medicine, the University of Tennessee Health Science Center, Memphis, TN, USA; Tel.(901)-448-1489; E-mail: szxao2@uthsc.edu

ABSTRACT

This fibroblast growth factor-23 (FGF-23) has been found as a circulating hormone and pathogenic factor in many disease conditions. This review focuses on recent advances in FGF-23 as a therapeutic target, including fibroblast growth factor receptors (FGFR) tyrosine kinase inhibitor, FGF-23 antibody, FGF-23 C-terminal peptide, CYP24A1 inhibitor, and FGF-23 antagonist. We also update the advantages and disadvantages of targeting upstream and downstream molecules in FGF-23 signaling pathways.

INTRODUCTION

Fibroblast growth factor-23 (FGF-23) is a bone-derived hormone that inhibits phosphate reabsorption and 1,25-dihydroxyvitamin D3 (1,25(OH)2D) production by the kidney1,2 (Figure 1). Physiologically, FGF-23 regulates systemic phosphate homeostasis and vitamin D metabolism through a bone-kidney axis.3–5 However, excess FGF-23 in genetic disorders leads to hypophosphatemic rickets as well as may play a pathogenic role in adverse outcomes in chronic kidney disease.6,7 Primary increases in FGF-23 have been reported in rare hereditary hypophosphatemic disorders in humans and their mouse homologues,8–15 including X-linked hypophosphatemic rickets (XLH)/Hyp mice, caused by inactivating mutations of Phex14,15,20 autosomal recessive hypophosphatemic rickets 1 (ARHR1), caused by inactivating mutations of Dmp1,15,20 ARHR2, caused by inactivating mutations in Enpp1,10,15,20 and Raine Syndrome (RNS), caused by inactivation mutations in Fam20c21,22 as well as tumor-induced osteomalacia (TIO).23–25 Secondary elevations of FGF-23 occurs in chronic kidney disease (CKD).1,26 Elevated FGF-23 is initially an adaptive response to altered mineral metabolism in chronic kidney disease (CKD)27, but chronic elevations of FGF-23 are maladaptive and linked to increased morbidity and mortality,6,28–31 and inflammation32,33 in CKD. Therefore, control of FGF-23 levels as well as its upstream and downstream signaling pathways could serve as a potential target to improve outcomes in many disease conditions. Currently, fibroblast growth factor receptors (FGFR) tyrosine kinase inhibitor (NVP-BGJ398),34,35 CYP24A1 inhibitor,36 FGF-23 antibody (KRN23),37,38 FGF-23C-terminal peptide,39,40 and FGF-23 antagonist41 are being developed to treat disorders of excess FGF-23. This review will summarize recent advances in these areas.

Copyright 2018 by Xiao Z. This is an open-access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which allows to copy, redistribute, remix, transform, and reproduce in any medium or format, even commercially, provided the original work is properly cited.
predominant expression in kidney (Figure 1).42 Second, hereditary hypophosphatemic disorders such as XLH/Hyp and ARHR1 involve activation of FGF-23 signaling and FGF-23 expression in osteocytes43 and osteocyte-specific deletion of Fgfr1 in Hyp mice markedly suppresses FGF-23 production.44 Third, a gain-of-function mutation in Fgfr1 causes osteophytopathic dysplasia (ODG), which is also associated with hypophosphatemia and elevated FGF-23 levels.45 Theoretically, it is useful to develop FGF inhibitors that control FGF-23 signaling and production in disorders of excess FGF-23. In this regard, FGF tyrosine kinase inhibitor (NVP-BGJ398) has been developed to treat FGF-23-mediated hypophosphatemic diseases and has been shown to block both the production and end-organ effects of FGF-23.34,35 However, NVP-BGJ398 is a small molecule with potent inhibitory activity of FGFRs 1, 3, and 4 and lacks selectivity for FGF-23/FGFR/α-KL signaling, and their generalized ability to inhibit FGFs in multiple tissues would have undesirable effects.34,35 In addition, a small molecule, SSR128129E (SSR), which binds to the extracellular part of FGF-23, was reported to act as a FGF receptor (FGFR) antagonist.46,47 So far, SSR128129E are being developed as anti-tumor drugs since these compounds have limitations, including specificity and potential toxicities. At present, there are no small molecules that specifically modulate FGF-23 activation of FGFR/α-KL complexes. The discovery of such molecules would not only provide research tools to elucidate FGF-23 biological actions, but would also advance the discovery of new treatments based on this novel bone/kidney endocrine network.

FGF-23 Antibody

A FGF-23 specific antibody [Burosumab, KRN23, Ultragenix (USA) and Kirin (Japan)] has been developed as a therapy for XLH.37,38,46 KRN23 binds to and inhibits the biological activity of FGF-23. However, loss of FGF-23 function can have serious side effects, including hyperphosphatemia and soft-tissue calcifications. Indeed, preclinical studies in CKD models show that inhibiting FGF-23 with a high affinity blocking antibody increased mortality, leading to no current plans to test KRN23 in CKD. Lowering FGF-23 in CKD is controversial, since use of calcimimetics to suppress PTH leads to modest reductions in FGF-23 and improved survival in patients with end-stage renal disease (ESRD).38 Since 30 million people or 15% of USA adults are estimated to have CKD and elevated FGF-23,48 identifying a drug to dose-dependently and reversibly reduce FGF-23 may improve CKD outcomes. To avoid toxicity, a low affinity FGF-23 blocking antibody (KRN23) was selected for clinical development. Clinical trials with KRN23 show efficacy to raise serum phosphate and improve rickets in XLH.37,38 Although hyperphosphatemia occurred in 6% of the KRN23 treated XLH patients, biologics such as KRN23 are plagued by high cost, the need for parenteral delivery, long half-life, and difficulty with dose titration. From the business perspective, there is an opportunity to develop a small, orally bioavailable small molecule to inhibit FGF-23.

FGF-23 C-Terminal Peptides

Full-length FGF-23 is a 32-kDa protein that can be cleaved at 176RXXR179 site by a cellular endoprotease fur in, leading to the 22-kDa N-terminal and 16-kDa C-terminal fragments.49 Recent studies have shown that the C-terminal tail of FGF-23 (FGF-23C) can compete with length ligand for binding to the FGF/α-KL complex, and hence can antagonize the phosphaturic activity of FGF-23 in vivo, both in healthy rats and in a mouse model of phosphate wasting disorders.50,51 In order to increase the half-life of the FGF-23C peptide, the investigators generated a FGF-23 C-terminally modified fusion molecule and demonstrated that repeated injection of this molecule (twice a week, 10 mg/kg)selectively modulates the phosphate pathway via regulation of NPT2A expression in vivo by competitive antagonism of FGF-23 binding to the FGF/α-KL co-receptor in Hymice, a preclinical model of XLH. The unique ability of FGF-23 C-terminally modified fusion molecule to preferentially modulate the FGF/α-KL phosphate pathway but not FGFR3&4/α-KL in the control of 1,25(OH)2D levels in kidneys makes this molecule ideal for use as a new the rapeutic in the treatment of XLH, with the potential to significantly improve bone formation in XLH patients with limited safety concerns.50,51

CYP24A1 Inhibitor

FGF-23 impairs the production of renal 1,25(OH)2D through either inhibiting the expression of CYP27B1, the enzyme that converts 25-(OH)D to its active metabolite, or upregulating the expression of vitamin D 24-hydroxylase (CYP24A1), a mitochondrial enzyme responsible for inactivating vitamin D metabolites through the C-24 oxidation pathway.52 In the overexpressing mutant FGF23R176Q and Hyp mouse models, hypophosphatemic rickets with high levels of FGF-23 are also associated with increased renal CYP24A1 expression, suggesting that elevated CYP24A1 activity is pivotal to the pathophysiology of these disorders.50,51 Knockout of CYP24A1 in the Hyp and FGF23R176Q-transgenic mice in near-complete recovery of rachitic bony abnormalities, but serum levels of phosphorus and 1,25(OH)2D did not improve in these murine models of human disease.53 Interestingly, treatment of Hyp and FGF23R176Q-transgenic mice with the CYP24A1 inhibitor CTA102 also ameliorated their rachitic bones.53 Whether pharmacologic inhibition of CYP24A1 activity goes solo as a therapeutic target remains to be further investigated.

FGF-23 Antagonist

In addition to FGF-23 specific antibody and FGF-23 C peptide, a computationally identified FGF-23 antagonist (ZINC13407541) was found to bind to FGF-23 that disrupts its interaction with the FGF/α-KL complex in a heterologous cell expression system.1 This FGF-23 antagonist was also shown to inhibit FGF-23 signaling in isolated renal tubules ex vivo and to increase serum phosphate and 1,25(OH)2D in a mouse model of FGF-23-related hypophosphatemic diseases.1 In addition, this FGF-23 antagonist slightly but significantly reduced FGF-23 levels along with increased PTH levels in mouse disease model.1 The findings of small molecule that antagonizes FGF-23 activation of FGFRs provide a new tool to probe the functions of FGF-23 and set the stage for developing clinical drug candidates to treat disorders of excess FGF-23. Furthermore FGF-23 antagonist can be cost-effective, orally bioavailable and easily dose titration compared to the FGF-23 antibody. This small molecule has been using to
develop lead compound for preclinical screening and late clinical trials.

THE POTENTIAL SIDE EFFECTS OF THESE FGF-23 TARGETED THERAPIES

As shown in Table 1, all of current FGF-23 targeted therapies have their advantages and disadvantages. The FGFR inhibitors show a strong inhibition of FGFR tyrosine kinase activity; these compounds can block both the production and end-organ effects of FGF-23, but demonstrate no specificity and potential tissue and organ toxicity. In contrast, FGF-23 antibody plays a function blocking on FGF-23 and displays a high specificity of treatment. However, FGF-23 antibody needs parenteral delivery and high cost treatment. FGF-23 C-terminal peptides also have a high specificity of treatment, but the increased proteolytic instability during treatment would limit its use as a long-time therapeutic strategy. CYP24A1 inhibitor almost completely recover rachitic bone of hypophosphatemic disorder, but this compound has no effect on levels of phosphorus and 1,25(OH)2D. FGF-23 antagonist could be a promising therapeutic strategy because of its oral bioavailability, dose titratability, and cost-effective if the optimization overcomes the short half-time of the compound.

CONCLUSION

Fibroblast growth factor-23 is a circulating hormone that regulates phosphate and vitamin D metabolism. Excess actions of FGF-23 result in reductions in serum phosphate and 1,25(OH)2D levels and hypophosphatemic crickets. Therefore, it is necessary to develop therapeutic methods to suppress the activities of this hormone. In fact, patients with hypophosphatemic disorders by FGF-23 excess were reported to benefit from FGF-23 blocking antibodies or inhibitors of FGF-23 signaling. However, these therapies need careful monitoring dosing-use because deficient actions of FGF-23 result in hyperphosphatemic disease. Indeed, management of FGF-23 levels in patients with CKD seems to be debatable since modest reductions in FGF-23 with calcimimetics could improve survival in patients with ESRD, while inhibiting FGF-23 with a high affinity blocking antibody increased mortality in CKD, leading to questionable benefit from these novel therapies in CKD. However, use of either low affinity FGF-23 antibody or FGF-23 inhibitors to control FGF-23 excess actions remains a promising therapy for both hereditary and acquired hyperphosphatemic diseases.

CONFLICTS OF INTEREST

The authors declare that they have no conflicts of interest.

REFERENCES

1. Weber TJ, Liu S, Indridason OS, Quarles LD. Serum FGF23 levels in normal and disordered phosphorus homeostasis. *J Bone Miner Res.* 2003; 18:1227-1234. doi: 10.1359/jbmr.2003.18.7.1227

2. Yamashita T, Yoshioka M, Itoh N. Identification of a novel...
fibroblast growth factor, FGF-23, preferentially expressed in the ventrolateral thalamic nucleus of the brain. *Biochem Biophys Res Commun.* 2000; 277: 494-498. doi: 10.1006/bbrc.2000.3696

3. Liu S, Gupta A, Quarles LD. Emerging role of fibroblast growth factor-23 in a bone-kidney axis regulating systemic phosphate homeostasis and extracellular matrix mineralization. *Carr Opin Nephrol Hypertens.* 2007; 16: 329-335. doi: 10.1097/MNH.0b013e3281ca6fffd

4. Quarles LD. The bone and beyond: 'Dem bones' are made for more than walking. *Nat Med.* 2011; 17: 428-430. doi: 10.1038/nm0411-428

5. Paul C, Amaral AP, Oskouei B, et al. FGF-23 induces left ventricular hypertrophy. *J Clin Invest.* 2011; 121: 393-408. doi: 10.1172/JCI46122

6. Gutierrez OM, Mannstadt M, Isakova T, et al. Fibroblast growth factor-23 and mortality among patients undergoing hemodialysis. *N Engl J Med.* 2008; 359: 584-592. doi: 10.1056/NEJMoa0706130

7. Olaisson H, Larsson TE. FGF23 and Klotho in chronic kidney disease. *Carr Opin Nephrol Hypertens.* 2013; 22: 397-404. doi: 10.1097/MNH.0b013e32829761ee

8. Quarles LD. FGF23, PHEX, and MEPE regulation of phosphate homeostasis and skeletal mineralization. *Am J Physiol Endocrinol Metab.* 2003; 285: E1-E9. doi: 10.1152/ajpendo.00016.2003

9. Mackenzie NC, Zhu D, Milne EM, et al. Altered bone development and an increase in FGF-23 expression in Enpp1(-/-) mice. *PLoS One.* 2012; 7: e32177. doi: 10.1371/journal.pone.0032177

10. Han X, Li L, Yang J, King G, Xiao Z, Quarles LD. Counter-regulatory paracrine actions of FGF-23 and 1.25(OH)2 D in macrophages. *FEBS Lett.* 2016; 590: 53-67. doi: 10.1002/1873-3468.12040

11. Han X, Xiao Z, Quarles LD. Membrane and integrative nuclear fibroblastic growth factor receptor (FGFR) regulation of FGF-23. *J Biol Chem.* 2015; 290: 10447-10459. doi: 10.1074/jbc.M114.609230

12. Liu S, Guo R, Simpson LG, Xiao ZS, Burnham CE, Quarles LD. Regulation of fibroblastic growth factor-23 expression but not degradation by PHEX. *J Biol Chem.* 2003; 278: 37419-37426. doi: 10.1074/jbc.M304544200

13. Liu S, Zhou J, Tang W, Jiang X, Rowe DW, Quarles LD. Pathogenic role of Fgf-23 in Hyp mice. *Am J Physiol Endocrinol Metab.* 2006; 291: E38-E49. doi: 10.1152/ajpendo.00008.2006

14. Liu S, Zhou J, Tang W, Menard R, Feng JQ, Quarles LD. Pathogenic role of Fgf-23 in Dmp1-null mice. *Am J Physiol Endocrinol Metab.* 2008; 295: E254-E261. doi: 10.1152/ajpendo.90201.2008

15. Wang X, Wang S, Li C, et al. Inactivation of a novel FGF23 regulator, FAM20C, leads to hypophosphatemic rickets in mice. *PLoS genet.* 2012; 8: e1002708. doi: 10.1371/journal.pgen.1002708

16. Martin A, Liu S, David V, et al. Bone proteins PHEX and DMP1 regulate fibroblastic growth factor Fgf-23 expression in osteocytes through a common pathway involving FGF receptor (FGFR) signaling. *FASEB J.* 2011; 25: 2551-2562. doi: 10.1096/fj.10-177816

17. Xiao Z, Huang J, Cao L, Liang Y, Han X, Quarles LD. Osteocyte-specific deletion of Fgfr1 suppresses FGF-23. *PLoS One.* 2014; 9: e104154. doi: 10.1371/journal.pone.0104154

18. Zhang Q, Doucet M, Tomlinson RE, et al. The hypoxia-inducible factor-1alpha activates ectopic production of fibroblast growth factor-23 in tumor-induced osteomalacia. *Bone Res.* 2016; 4: 16011. doi: 10.1038/boneres.2016.11

19. Feng JQ, Ward LM, Liu S, et al. Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. *Nat Genet.* 2006; 38: 1310-1315. doi: 10.1038/ng1905

20. Wang X, Wang S, Li C, et al. Inactivation of a novel FGF23 regulator, FAM20C, leads to hypophosphatemic rickets in mice. *PLoS genet.* 2012; 8: e1002708. doi: 10.1371/journal.pgen.1002708

21. Whyte MP, McAlister WH, Fallon MD, et al. Raine syndrome (OMIM #259775), caused by FAM20C mutation, is congenital sclerosing osteomalacia with cerebral calcification (OMIM 259660). *J Bone Miner Res.* 2016; 32: 757-769. doi: 10.1002/jbmr.3034

22. Oya K, Ishida K, Nishida T, et al. Immunohistochemical analysis of dentin matrix protein 1 (DMP1) phosphorylation by FAM20C in bone: Implications for the induction of biomineralization. *Histochem Cell Biol.* 2016; 147: 341-351. doi: 10.1007/s00418-016-1490-z

23. Shimada T, Mizutani S, Muto T, et al. Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. *Proc Natl Acad Sci U S A.* 2001; 98: 6500-6505. doi: 10.1073/pnas.101545198

24. Fukumoto S, Yamashita T. Fibroblast growth factor-23 is the phosphaturic factor in tumor-induced osteomalacia and may be phosphatonin. *Bone Res.* 2012; 2002: 11: 385-389. doi: 10.1097/00041552-200207000-00003

25. White KE, Jonsson KB, Carn G, et al. The autosomal dominant hypophosphatemic rickets (ADHR) gene is a secreted polypeptide phosphatonin. *Biochem Biophys Res Commun.* 2000; 277: 494-498. doi: 10.1006/bbrc.2000.3696

26. Komaba H, Fukagawa M. The role of FGF23 in CKD--with or without Klotho. *Proc Natl Acad Sci U S A.* 2011; 2014; 11: 385-389. doi: 10.1097/00041552-200207000-00003
27. Quarles LD. Evidence for a bone-kidney axis regulating phosphate homeostasis. J Clin Invest. 2003; 112: 642-646. doi: 10.1172/JCI1200319687

28. Gutierrez OM, Januzzi JL, Isakova T, et al. Fibroblast growth factor-23 and left ventricular hypertrophy in chronic kidney disease. Circulation. 2009; 119: 2545-2552. doi: 10.1161/CIRCULATIONAHA.108.844506

29. Isakova T, Xie H, Yang W, et al. Fibroblast growth factor-23 and risks of mortality and end-stage renal disease in patients with chronic kidney disease. JAMA. 2011; 305: 2432-2439. doi: 10.1001/jama.2011.826

30. Hsu HJ, Wu MS. Fibroblast growth factor-23: A possible cause of left ventricular hypertrophy in hemodialysis patients. Am J Med Sci. 2009; 337: 116-122. doi: 10.1097/MAJ.0b013e3181815498

31. Jean G, Bresson E, Terrat JC, et al. Peripheral vascular calcification in long-haemodialysis patients: Associated factors and survival consequences. Nephrol Dial Transplant. 2009; 24: 948-955. doi: 10.1093/ndt/gfn571

32. Munoz Mendoza J, Isakova T, Ricardo AC, et al. Fibroblast growth factor-23 ameliorates FGF23-mediated hypophosphatemic rickets. J Bone Miner Res. 2012; 7: 1155-1162. doi: 10.2215/CJN.13281211

33. Hanks LJ, Cassaza K, Judd SE, Jenny NS, Gutierrez OM. Associations of fibroblast growth factor-23 with markers of inflammation, insulin resistance and obesity in adults. PLoS One. 2015; 10: e0122885. doi: 10.1371/journal.pone.0122885

34. Wöhrle S, Henninger C, Bonny O, et al. Pharmacological inhibition of fibroblast growth factor (FGF) receptor signaling ameliorates FGF23-mediated hypophosphatemic rickets. J Bone Miner Res. 2013; 28: 899-911. doi: 10.1002/jbmr.1810

35. Wöhrle S, Bonny O, Beluch N, et al. FGF receptors control survival consequences. Am J Med. 2009; 145: 5269-5279.

36. Bai X, Miao D, Xiao S, et al. CYP24 inhibition as a therapeutic target in FGF23-mediated renal phosphate wasting disorders. J Clin Invest. 2016; 126: 667-680. doi: 10.1172/JCI81928

37. Carpenter TO, Imel EA, Ruppe MD, et al. Randomized trial of the anti-FGF23 antibody KRN23 in X-linked hypophosphatemia. J Clin Invest. 2014; 124: 1587-1597. doi: 10.1172/JCI72829

38. Shalhoub V, Shatzen EM, Ward SC, et al. FGF23 neutralization improves chronic kidney disease-associated hyperparathyroidism yet increases mortality. J Clin Invest. 2012; 122: 2543-2553. doi: 10.1172/JCI61405

39. Goetz R, Nakada Y, Hu MC, et al. Isolated C-terminal tail of FGF23 alleviates hypophosphatemia by inhibiting FGF23-FGFR-Klotho complex formation. Proc Natl Acad Sci U S A. 2010; 107: 407-412. doi: 10.1073/pnas.090200610

40. Johnson K, Levine K, Sergi J, et al. Therapeutic effects of FGF23 c-tail Fe in a murine preclinical model of X-linked hypophosphatemia via the selective modulation of phosphate reabsorption. J Bone Miner Res. 2017; 32: 2062-2073. doi: 10.1002/jbmr.3197

41. Xiao Z, Riccardi D, Velazquez HA, et al. A computationally identified compound antagonizes excess FGF-23 signaling in renal tubules and a mouse model of hypophosphatemia. Sci Signal. 2016; 9: ra113. doi: 10.1126/scisignal.aaf5034

42. Urakawa I, Yamazaki Y, Shimada T, et al. Klotho converts canonical FGF receptor into a specific receptor for FGF23 in bone elongation. Am J Hum Genet. 2005; 76: 361-367. doi: 10.1086/427956

43. White KE, Cabral JM, Davis SL, et al. Mutations that cause osteoglophonic dysplasia define novel roles for FGFR1 in bone elongation. Am J Hum Genet. 2013; 102: 369-377.

44. Herbert C, Schieburr U, Saxena K, et al. Molecular mechanism of SSR128129E, an extracellularly acting, small-molecule, allosteric inhibitor of FGF receptor signaling. Cancer Cell. 2013; 23: 489-501. doi: 10.1016/j.ccr.2013.02.018

45. Herbert C, Schieburr U, Saxena K, et al. Molecular mechanism of SSR128129E, an extracellularly acting, small-molecule, allosteric inhibitor of FGF receptor signaling. Cancer Cell. 2016; 30: 176-178. doi: 10.1016/j.cccell.2016.06.015

46. Aono Y, Yamazaki Y, Yasutake J, et al. Therapeutic effects of anti-FGF23 antibodies in hypophosphatemic rickets/osteomalacia. J Bone Miner Res. 2009; 24: 1879-1888. doi: 10.1359/jbmr.090509

47. Moe SM, Chertow GM, Parfrey PS, et al. Cinacalcet, fibroblast growth factor-23 and cardiovascular disease in hemodialysis: The evaluation of cinacalcet HCl therapy to lower cardiovascular events (EVOLVE) trial. Circulation. 2015; 132: 27-39. doi: 10.1161/CIRCULATIONAHA.114.013876

48. Murphy D, McCulloch CE, Lin F, et al. Trends in prevalence of chronic kidney disease in the United States. Ann Intern Med. 2016; 165: 473-481. doi: 10.7326/M16-0273

49. Bai XY, Miao D, Goltzman D, Karaplis AC. The autosomal dominant hypophosphatemic rickets R176Q mutation in fibroblast growth factor 23 resists proteolytic cleavage and enhances in vivo biological potency. J Biol Chem. 2003; 278: 9843-9849. doi: 10.1074/jbc.M210490200

50. Bai X, Miao D, Li J, Goltzman D, Karaplis AC. Transgenic mice overexpressing human fibroblast growth factor 23 (R176Q) delineate a putative role for parathyroid hormone in renal phosphate wasting disorders. Endocrinology. 2004; 145: 5269-5279. doi: 10.1210/en.2004-0233
51. Beck L, Soumounou Y, Martel J, et al. Pex/PEX tissue distribution and evidence for a deletion in the 3' region of the Pex gene in X-linked hypophosphatemic mice. *J Clin Invest*. 1997; 99: 1200-1209. doi: 10.1172/JCI119276

52. Otvos L, Wade JD. Current challenges in peptide-based drug discovery. *Front Chem*. 2014; 2: 62 doi: 10.3389/fchem.2014.00062

53. Florenzano P, Gafni RI, Collins MT. Tumor-induced osteomalacia. *Bone Rep*. 2017; 7: 90-97. doi: 10.1016/j.bonr.2017.09.002

54. Fukumoto S. Targeting fibroblast growth factor-23 signaling with antibodies and inhibitors, is there a rationale?. *Front Endocrinol (Lausanne)*. 2018; 9: 48. doi: 10.3389/fendo.2018.00048

55. Ichikawa S, Imel EA, Kreiter ML, et al. A homozygous missense mutation in human KLOTHO causes severe tumoral calcinosis. *J Clin Invest*. 2007; 117: 2684-2691. doi: 10.1172/JCI31330

56. Topaz O, Shurman DL, Bergman R, et al. Mutations in GALNT3, encoding a protein involved in O-linked glycosylation, cause familial tumoral calcinosis. *Nat Genet*. 2004; 36: 579-581. doi: 10.1038/ng1358