Oxygen drives benthic-pelagic decomposition pathways in shallow wetlands

van der Lee, G.H.; Kraak, M.H.S.; Verdonschot, R.C.M.; Vonk, J.A.; Verdonschot, P.F.M.

DOI
10.1038/s41598-017-15432-3

Publication date
2017

Document Version
Other version

Published in
Scientific Reports

License
CC BY

Citation for published version (APA):
van der Lee, G. H., Kraak, M. H. S., Verdonschot, R. C. M., Vonk, J. A., & Verdonschot, P. F. M. (2017). Oxygen drives benthic-pelagic decomposition pathways in shallow wetlands. Scientific Reports, 7, [15051]. https://doi.org/10.1038/s41598-017-15432-3
Title
Oxygen drives benthic and pelagic decomposition pathways in shallow wetlands

Author names and affiliations
Gea H. van der Lee, Michiel H.S. Kraak, Ralf C.M. Verdonschot, J. Arie Vonk, Piet F.M. Verdonschot
Supplementary material 1

Water temperature was measured every ten minutes during 55 days between May and July 2016 with HOBO® Dissolved oxygen loggers U26-001. Data for each ditch was averaged for one loggers placed 10 cm under the water surface and one logger placed 4 cm above the bottom sediments. Additionally, chemical characteristics of the water and sediment in the ditches were determined on three moments in time. Conductivity was measured using the TDS & EC meter hold (HQ EZ1). Surface water samples were taken, filtered with 0.2μm Whatman GF/F glass fiber filters, and analyzed for total carbon, dissolved organic carbon, and total nitrogen on the elemental analyzer (Elementar Vario EL), and for orthophosphate, sulphate and chloride on the continuous flow analyzer (Skalar SAN++ system). The top 2 cm of four sediment cores were pooled, sieved through 500 μm, stored in a freezer at -22 °C, and milled. The organic matter content was determined after heating dry sediment samples at 550 °C for 4 h. Homogenized portions of 200 mg dry sediment were digested with 4 mL HNO3 (65 %) and 1 mL H2O2 (30 %), using the microwave. Digestates were diluted and phosphorus concentrations were determined by ICP (Perkin Elmer ICP-OES 8000). A homogenized portion of dry sediment was used to determine carbon and nitrogen content, using the elemental analyzer as described above.
Oxygen	Water column	Sediment									
Benthic layer anoxic (%)	Water temp (°C)	Conductivity (μS/cm)	Tot C (mg/L)	DOC (mg/L)	Tot N (mg/L)	PO₄³⁻ (mg/L)	SO₄²⁻ (mg/L)	Cl (mg/L)	C:N ratio	Tot P (mg/g)	Organic matter (%)
0.3	19.7±2.2	372±131	45.6±1.5	20.6±7.9	1.4±0.3	0.05±0.03	14.7±2.8	28.6±13.6	12.4±6.3	0.3±0.1	5.4±1.7
4.0	19.2±2.2	404±76	44.2±6.3	18.1±5.0	1.3±0.1	0.03±0.01	14.4±6.4	34.7±7.8	13.0±5.5	0.2±0.1	4.3±1.0
7.2	18.3±2.1	262±31	34.5±8.3	10.5±1.6	0.9±0.4	0.05±0.03	1.6±0.3	12.3±0.6	15.3±1.1	0.4±0.3	10.7±6.9
10.7	19.0±2.3	204±33	31.6±4.7	12.6±1.0	0.8±0.1	0.03±0.01	1.2±0.3	11.7±0.7	15.4±1.1	0.3±0.3	7.8±7.7
20.4	18.6±2.1	226±6	45.9±5.2	22.8±7.5	1.5±0.2	0.07±0.00	4.5±1.7	7.7±1.0	15.3±3.7	1.1±0.3	26.3±2.5
37.5	19.0±2.2	365±43	58.6±29.5	33.1±27.6	2.4±1.2	0.07±0.04	10±3.9	28.5±14.8	14.5±4.9	0.6±0.1	13.7±0.6
38.0	19.1±1.9	395±70	48.6±4.7	19.3±3.5	1.3±0.1	0.07±0.09	8.9±4.7	31.5±7.0	14.8±5.2	1.1±0.4	20.5±8.5
47.3	18.9±2.3	269±37	65.8±12.1	43.8±8.0	2.6±0.3	0.09±0.05	8.3±4.3	9.0±1.9	14.9±4.4	0.9±0.5	25.3±22
55.1	18.4±2.4	223±10	45.7±2.1	25.4±1.0	1.5±0.0	0.07±0.09	7.2±1.2	7.7±0.2	14.6±3.8	0.8±0.1	26.1±1.4
57.8	17.8±2.1	273±39	37.3±7.1	11.5±1.7	0.9±0.3	0.08±0.01	4.5±0.9	10±0.6	13.3±4.0	0.4±0.2	7.1±4.0
58.5	19.5±2.1	386±104	56.1±11.2	30.1±12.8	2.0±0.7	0.05±0.05	13.2±10.4	29.2±7.5	13.6±7.5	0.6±0.1	11.2±0.5
59.4	18.5±1.9	248±28	43.7±10.3	18.4±6.2	1.1±0.2	0.04±0.05	2.6±1.5	5.2±1.3	14.5±4.2	0.9±0.9	22.2±23.8
69.1	17.7±1.9	226±12	33.0±2.5	10.2±2.3	0.8±0.1	0.09±0.03	1.5±0.2	7.8±0.1	13.9±1.1	0.4±0.3	7.3±5.0
70.7	19.4±2.3	239±44	39.3±5.3	21.1±6.5	1.3±0.3	0.04±0.05	3.3±4.0	16.2±3.7	15.4±4.6	0.5±0.2	16.8±15.7
91.4	19.2±2.3	276±50	39.1±9.2	15.5±5.2	0.9±0.3	0.04±0.04	4.1±2.3	13.0±1.9	16.6±4.8	1.1±0.1	53.9±4.3

Supplementary Table S1: Overview of the physicochemical characteristics of the water column and sediment in each ditch (water temperature n = 17280 readings, other parameters n = 3 samples, mean ± sd).
Supplementary material 2

Taxa	Family	Functional feeding group	Food	Detritivore		
		CG	SH	FI	DET	
Crangonyx pseudogracilis	Amphipoda	0	1	0	1	1
Gammarus pulex	Amphipoda	1	1	0	1	1
Argyroctena aquatica	Aranea	0	0	0	0	0
Sphaeridae	Bivalvia	0	0	1	1	1
Odontomyia sp.	Brachycera	1	1	0	1	1
Ablabesmyia sp.	Chironomidae	0	0	0	0	0
Chironomus sp.	Chironomidae	1	0	1	1	1
Cladopelma gr. lateralis	Chironomidae	1	0	0	1	1
Clionotanyx nervosus	Chironomidae	0	0	0	0	0
Cricotopus sp.	Chironomidae	1	0	0	1	1
Endochironomus sp.	Chironomidae	0	0	1	1	1
Microtendipes sp.	Chironomidae	1	0	0	1	1
Polypedilum sp.	Chironomidae	1	0	1	1	1
Procladius sp.	Chironomidae	1	0	0	0	0
Psectrocladius gr. limbatellus/sordidellus	Chironomidae	1	0	0	1	1
Psectrocladius gr. platypus/obvius	Chironomidae	1	0	0	0	0
Psectrotanyx varius	Chironomidae	0	0	0	0	0
Tanyphora ilicis	Chironomidae	1	0	1	1	1
Zavrelia marmorata	Chironomidae	1	0	0	1	1
Agabus bipustulatus	Coleoptera	1	1	0	0	0
Graphoderus cinereus	Coleoptera	0	1	0	0	0
Haliphus flavicollis	Coleoptera	0	1	0	0	0
Hydaticus seminiger	Coleoptera	0	0	0	0	0
Hydaticus transversalis	Coleoptera	0	0	0	0	0
Hydrochara caraboides	Coleoptera	1	0	0	1	1
Hyphrondrus ovatus	Coleoptera	0	0	0	0	0
Laccobius minutus	Coleoptera	0	1	0	0	0
Laccophilus hyalinus	Coleoptera	1	1	0	1	1
Laccophilus minutus	Coleoptera	1	0	0	1	1
Noterus crassicornis	Coleoptera	0	0	0	0	0
Rhantus exoletus	Coleoptera	0	0	0	0	0
Agabus sp.	Coleoptera	0	0	0	0	0
Cybister sp.	Coleoptera	0	0	0	0	0
Graptodytes sp.	Coleoptera	0	0	0	0	0
Haliplus sp.	Coleoptera	0	1	0	0	0
Hyphrondrus sp.	Coleoptera	0	0	0	0	0
Laccophilus sp.	Coleoptera	0	0	0	0	0
Astacidea	Decapoda	0	1	0	1	1
Caenis horaria	Ephemeroptera	1	0	0	1	1
Caenis robusta	Ephemeroptera	1	0	0	1	1
Cloeon dipterum	Ephemeroptera	1	0	0	1	1
Supplementary Table S2: List of detritivores based on combination of functional feeding group (CG = collector gatherer, SH = shredder, FI = filter feeder) and food (DET = detritus or dead plant). Information based on Tachet (2010). 1) Additional information Chironomidae based on Moller Pilot (2009, 2013). 2) Coleoptera larvae (lv) were assessed separate from adults for feeding groups (not for richness).