ABSTRACT

Objective: To evaluate the effect of abdominal electrical stimulation (EE) on bowel movement frequency and feces consistency and expelled amount in people with constipation due to spinal cord injuries (SCI).

Method: This is an experimental, crossover, randomized pilot study with two treatment groups: conventional intestinal rehabilitation and conventional rehabilitation associated with EE via 8- and 20-Hz Functional Electrical Stimulation (FES) of the abdominal muscles. Both groups were followed for two weeks with daily 30-minute EE sessions. Participants were hospitalized in a rehabilitation institute in the municipality of São Paulo.

Data were analyzed using descriptive and inferential statistics.

Results: This study included 10 people with SCI, of which most were male (70%), with a mean age of 39 years (SD = 16.37). EE, associated with conventional treatment, was more effective in increasing defecation frequency (p = 0.029) and amount of feces expelled (p = 0.031).

Conclusion: Abdominal EE, associated with conventional treatment, helped to increase defecation frequency and amount of feces expelled in people with constipation due to SCI. This pilot study will serve as the basis for a future clinical trial with greater sampling and statistical evidence.

DESCRIPTORS

Spinal Cord Injuries; Constipation; Electric Stimulation; Abdominal Muscles; Enterostomal Therapy; Rehabilitation.
INTRODUÇÃO

A lesão medular (LM) é um tipo de lesão altamente incapacitante que não só pode levar a danos ou perda de sensibilidade e de função motora, como também a disfunções de múltiplos órgãos, de acordo com o nível de comprometimento(1). A incidência global de LM estimada é de 40 a 80 novos casos por milhão de habitantes por ano, variando entre13,019 e 163,420 por milhão de pessoas(3). Nesse contexto, estima-se que no Brasil a incidência de LM seja de 71 novos casos por milhão de habitantes/ano(2).

Cabe ressaltar que entre as complicações da LM destacam-se as gastrointestinais(2,3), nas quais ocorre o intestino neurogênico, que se caracteriza pela disfunção do cólon ou da musculatura lisa do intestino. A pessoa com LM apresenta alterações na motilidade, na sensibilidade anorretal e no controle do esfincter, resultando em constipação neurogênica, o que representa obstáculo de ordem física e psicológica para esses indivíduos, impactando negativamente na sua qualidade de vida(4). Um estudo com amostra de 291 participantes encontrou como complicações mais comuns após a LM, a constipação e a incontinência intestinal(3).

A literatura aponta que as práticas de autocuidado para o funcionamento intestinal mais utilizadas são: controle nutricional, manobra de Rosing (massagem abdominal, da direita para a esquerda e de baixo para cima com leve compressão durante aproximadamente 20 ou 30 minutos, após as refeições), estimulações digitais, laxantes, extração manual das fezes, irrigações anais, supositórios, uso de óleo mineral, considerados tratamentos convencionais(5). Essas práticas fazem parte de um programa de reabilitação intestinal, desenvolvido por enfermeiros que consideram também a alimentação, os hábitos culturais e educacionais e a frequência de esvaziamento intestinal anterior à lesão. Embora existam evidências de que essas práticas melhoram os sintomas de constipação, os resultados apresentam-se imprecisos na mensuração dos efeitos positivos, o que justifica a busca por novas alternativas(6,7).

Entre os tratamentos promissores, estão as técnicas que utilizam a eletrostimulação abdominal transcutânea (EE), conhecidas como neuromodulações, que podem ser realizadas de forma invasiva, como implantes de estimuladores elétricos; ou não invasiva, com correntes transcutâneas. Diante disso, a estimulação magnética funcional foi considerada como tratamento neuromodulador não invasivo comum para constipação neurogênica e para incontinência fecal, utilizado para alterar a motilidade do cólon em pessoas com LM e com outras doenças neurológicas(6).

Outra abordagem estudada é a EE funcional dos músculos abdominais por meio da Corrente Elétrica Funcional (FES – Functional Electrical Stimulation), ativando diretamente a fibra neural da terminação nervosa, produzindo a despolarização dessa fibra e sua consequente contração muscular, em que todas as unidades motoras estão ativadas com a mesma intensidade de estímulo, proporcionando maior tônus à musculatura, aumentando a pressão intra-abdominal, facilitando a propulsão do conteúdo intestinal, levando ao aumento da frequência de evacuação e produzindo efeito direto no peristaltismo(7). Isso porque a ineração intrínseca do intestino possui muitos neurônios que não se conectam ao Sistema Nervoso Central (SNC), a estimulação dessa ineração pode gerar impulso que se propagam para a parte superior e inferior do tubo digestório, influenciando a atividade dos músculos lisos e das glândulas no estômago, bem como o funcionamento dos arcos reflexos entéricos. É necessário compreender que neurônios sensoriais respondem a diversos estímulos, dentre eles o mecânico e, assim, iniciam respostas motora e secretora em músculo liso, no endotélio secretor, nas células endócrinas e nos vasos sanguíneos(8,9).

Vale ressaltar que o mecanismo pelo qual a FES melhora a motilidade intestinal ainda está sendo mais bem estudado na literatura, bem como seus efeitos a longo prazo. Embora não proporcione a reversão do dano neurológico imediato, a EE pode contribuir também para a conversão de fibras musculares do tipo II (contração rápida, brancas e anaeróbicas) de volta às fibras do tipo I (contração lenta, vermelhas e aeróbicas). Devido à inatividade, membros paralisados de pessoas com LM, proporcionalmente, possuem mais fibras tipo II do que tipo I, que também podem encontrar-se atrofiadas, levando à fraqueza muscular(10).

Assim, sugere-se exercícios de estimulação elétrica, visto que aumentam a contração e a resistência à fadiga muscular, à medida que mais fibras se tornam do tipo I(10). Isso dá devido ao uso de baixas frequências e à sua ação no perfil metabólico das fibras musculares, aumentando o volume mitocondrial, alterando a atividade enzimática oxidativa e diminuindo a atividade glicolítica(5,10). Não foram descritos efeitos adversos no tratamento com corrente FES, utilizada para alívio dos sintomas de constipação(7), apenas a fadiga, que pode ser evitada no manejo da frequência e forma de estímulos ofertados(9).

Estudos em pessoas com constipação e com esclerose múltipla, submetidos à EE com FES nos músculos oblíquos e transversos do abdômen, demonstraram aumento da frequência de evacuação intestinal(7). Essas pessoas apresentam tempo de trânsito intestinal lento, fraqueza de músculos do assoalho abdominal e pélvico, sensação intestinal e reflexo gastrocólico reduzidos, características comuns à pessoas com LM.

Diante dos efeitos positivos encontrados na literatura sobre a estimulação de músculos abdominais, este estudo teve como objetivo avaliar o efeito da EE abdominal transcutânea sobre a frequência de evacuação, a consistência e a quantidade de fezes eliminadas em pessoas com LM, bem como caracterizar o padrão evacuatório antes da LM e as técnicas convencionais de esvaziamento utilizadas. A partir disso, a hipótese é que a estimulação dos músculos esqueléticos abdominais, responsáveis pela contração de musculatura lisa do intestino grosso, principalmente cólons ascendente e descendente, favoreça o movimento fisiológico peristáltico e, possivelmente, contribua com a neuromodulação intestinal. É provável que a estimulação abdominal tenha um efeito semelhante ao das técnicas invasivas de EE sacral, modulando o sistema autonômico e otimizando os mecanismos reflexos da evacuação(9,10). Com isso, o deslocamento do bolo fecal seria facilitado e permitiria melhoria no trânsito colônico, evitando maiores complicações intestinais às pessoas com LM.

MÉTODO

DESENHO DO ESTUDO

O presente trabalho consiste em um estudo piloto experimental do tipo crossover, sendo aleatório a ordem dos tratamentos recebidos.
LOCAL
O estudo foi realizado no Instituto de Reabilitação Lucy Montoro, centro de referência em reabilitação de indivíduos com deficiência física e incapacitante. O instituto fica localizado no município de São Paulo, SP, Brasil.

POPULAÇÃO
A população do estudo foi composta por participantes com LM e sintomas de constipação, internados para programa de reabilitação física.

CRITÉRIOS DE SELEÇÃO
Critérios de inclusão – ambos os sexos, maiores de 18 anos; com LM classificação ASIA A, B, C e D(12), com paraplegia e tetraplegia; que estavam em programa de reabilitação de internação e que foram diagnosticados com constipação intestinal de queixa posterior à LM, segundo a Escala de Bristol para caracterização da consistência das fezes e segundo os critérios de Roma III(13) para compreensão das características da evacuação e análise da frequência de esvaziamento intestinal.

Critérios de exclusão: pessoas com doenças intestinais crônicas anteriores à LM, aqueles com contra indicação ao uso da EE com corrente FES, como: portadores de marca-passo; gestantes; pessoas com hipertensão; região abdominal com excesso de tecido adiposo, apresentando valores de IMC maiores ou igual a 27,0 Kg/m²; adultos com obesidade ou com IMC maior ou igual a 27,0 Kg/m²; idosos com sobrepeso(14) ou com sinais de inflamação/infeccão na região abdominal como: dor, calor, rubor, edema ou infecções ativas na pele local – apresentando rompimento da epiderme, pústulas, bolhas, secreção purulenta ou processo de queixa anterior à LM, aquele com paraplegia e tetraplegia; que estavam em programa de reabilitação de internação e que foram diagnosticados com constipação intestinal de queixa posterior à LM, segundo a Escala de Bristol para caracterização da consistência das fezes e segundo os critérios de Roma III(13) para compreensão das características da evacuação e análise da frequência de esvaziamento intestinal.

Critérios de exclusão: pessoas com doenças intestinais crônicas anteriores à LM, aqueles com contra indicação ao uso da EE com corrente FES, como: portadores de marca-passo; gestantes; pessoas com hipertensão; região abdominal com excesso de tecido adiposo, apresentando valores de IMC maiores ou igual a 27,0 Kg/m²; adultos com obesidade ou com IMC maior ou igual a 27,0 Kg/m²; idosos com sobrepeso(14) ou com sinais de inflamação/infeccão na região abdominal como: dor, calor, rubor, edema ou infecções ativas na pele local – apresentando rompimento da epiderme, pústulas, bolhas, secreção purulenta ou processo alérgico; além de qualquer irritação visível ou referida pelos indivíduos; instabilidade clínica dos sinais vitais; queixa de dor intensa (independente da intensidade) ou de qualquer desconforto na região abdominal com necessidade de ser medicado; apresentar fezes moles ou aquosas em pelo menos 75% das evacuações(13,15).

Caso o indivíduo apresentasse fezes moles ou aquosas, foi observada a frequência das evacuações após o primeiro evento, conforme critério de Roma III.

TAMANHO DA AMOSTRA
Por ser este um estudo piloto, não foi realizado cálculo amostral. Dessa forma, foi acordado entre os colaboradores do projeto um número de amostra igual a 10 participantes, sendo divididos em dois grupos de cinco voluntários cada. A amostra foi selecionada conforme a admissão dos pacientes no Instituto e os critérios de inclusão e exclusão.

A ordem dos tratamentos ofertados ocorreu de forma aleatória, utilizando um site de randomização (randomization.com), que aleatorizou a lista contendo: o tratamento 1, sendo esse o convencional; e o tratamento 2, correspondendo ao convencional associado à EE abdominal com FES. Nesse processo, usou-se cinco participantes pertencentes ao Grupo 1 e outros cinco pertencentes ao Grupo 2. O estudo teve duração de cinco semanas, correspondente ao tempo de internação dos indivíduos no Instituto.

A primeira semana foi destinada à avaliação dos indivíduos pela equipe multiprofissional e pela enfermeira pesquisadora, por meio dos instrumentos selecionados para o estudo, considerado esse período de baseline. Nas quatro semanas restantes, o Grupo 1 recebeu o tratamento convencional inicialmente e, nas duas semanas seguintes, continuaram a receber o mesmo tratamento, associando diariamente à EE (8Hz na terceira semana; 20 Hz na quarta semana). Já no Grupo 2, o protocolo foi inverso (Figura 1). Aos finais de semana (sábados e domingos) os indivíduos receberam alta terapêutica, retornando ao tratamento às segundas-feiras. Não foi possível estabelecer período de wash-out como preconizado em estudos crossover, devido ao período de internação no Instituto de Reabilitação ser de no máximo seis semanas. Diante do exposto, se o período de wash-out fosse realizado, impossibilitaria a coleta de dados completa, pois os indivíduos receberiam alta antes do término dos tratamentos.

COLETA DE DADOS
A coleta de dados foi realizada no período de julho a outubro de 2019 e foram utilizados os instrumentos descritos a seguir.

Instrumento para identificação das variáveis socioeconômicas, demográficas e clínicas e para a investigação da ocorrência das complicações intestinais, tomando como referência o funcionamento intestinal antes e após a LM. Dentre as complicações, foram questionados quanto à impactação das fezes, hemorroidas, sangramento, incontinência fecal, constipação, diarreia e dor.(16).

A escala de classificação da American Spinal Injury Association (ASIA) avaliada pela equipe médica de fisiatria e descrita em prontuário eletrônico: ASIA A (LM completa); ASIA B (lesão motora completa e sensitiva incompleta); ASIA C (lesão sensitiva e motora incompletas); e ASIA D (lesão incompleta com função motora preservada abaixo do nível da LM)(12). Para avaliar a constipação intestinal, foram utilizados os critérios de Roma III(13). A constipação foi considerada presente quando relatados em dois tratamentos.

Figura 1 – Desenho experimental para avaliação do efeito da EE abdominal nos participantes internados no Instituto de Reabilitação Lucy Montoro com LM e constipação.
ou mais dos sinais/sintomas, a seguir, nos últimos três meses: esforço evacuatório (em pelo menos 25% das defecações); fezes grumosas ou duras (pelo menos 25% das defecações); sensação de evacuação incompleta (pelo menos 25% das defecações); sensação de obstrução/bloqueio anorretal das fezes (pelo menos 25% das defecações); necessidade de manobras para facilitar defecação (pelo menos 25% das defecações); menos de três evacuações por semana\(^{(14)}\). A frequência evacuatória com três ou mais evacuações por semana no máximo três evacuações ao dia foi o parâmetro utilizado para estabelecer padrão intestinal normal, além dos outros fatores que vêm sendo incorporados, como: o esforço evacuatório, a consistência das fezes e o esvaziamento retal\(^{(15)}\). A Escala Bristol de Forma Fecal (Bristol Stool Form Scale) faz parte dos critérios de Roma III, identificando a constipação funcional e tendo o objetivo de avaliar a forma do conteúdo fecal, por meio de gravações que representam sete tipos de fezes, de acordo com a forma e a consistência, incluindo duas que são características da constipação: tipo 1 e 2\(^{(16)}\). O diário evacuatório preenchido pelos próprios participantes ou com a ajuda de seus cuidadores, durante os períodos de intervenção, continha informações sobre a frequência de evacuação, a consistência da fezes, de acordo com a Escala de Bristol, além de informar se houve presença de esforço evacuatório e/ou utilização de outro recurso (laxantes, enemas, estimulação anal digital ou extração manual), também foi observada na forma eliminada, conforme percepção do participante, em pequena, média e grande\(^{(17)}\).

Na semana correspondente ao tratamento convencional, associado à EE de corrente FES, foi utilizada frequência de 8 Hz/10 mA\(^{(18)}\) para desensibilização da musculatura abdominal em cinco sessões. Na semana seguinte, foi utilizada frequência de 20 Hz/10 mA também em cinco sessões, ambas com duração de 30 minutos cada\(^{(19)}\). Devido à alteração de sensibilidade após LM, a intensidade foi aumentada a cada cinco minutos até a observação de contração muscular visível ou até atingir 80mA, conforme avaliação de segurança em estudo com pessoas em estado crítico\(^{(20)}\). Os participantes foram instruídos que as unidades de intensidade (mA) deveriam ocorrer sem desconforto e sem sensação de queimação e dor\(^{(15)}\). Vale ressaltar que a frequência de 20 Hz foi selecionada devido a sua ação sobre fibras musculares tipo 1\(^{(19)}\).

Antes do início da EE, era realizada antisepsia da pele da região abdominal com solução líquida de álcool 70% e, após a pele estar completamente seca, eram posicionados dois eletrodos autoadesivos individuais sobre a musculatura dos músculos obliquos, em direção linear, abaixo da última costela até a crista ilíaca ântero-superior bilateralmente, e sobre musculatura de transverso do abdômen lateralizados. Para isso, foram utilizados eletrodos padrões de 5 × 9 cm ou 4 × 4 cm, conforme melhor se adequassem ao tamanho do abdômen de cada indivíduo. Durante o tratamento com a EE e ao final de cada sessão, a pele dos participantes foi inspecionada, eles foram questionados sobre sensação de dor ou de incômodo, observou-se alterações no padrão dos espasmos e foi verificado qualquer outro sinal ou sintoma relatado pelos participantes ou pela equipe de enfermagem após a terapia elétrica.

Para uma melhor compreensão, a Figura 2 ilustra o posicionamento dos eletrodos sobre a musculatura abdominal, durante a aplicação da EE com corrente FES (Figura 2).

Figura 2 - Foto do posicionamento dos eletrodos transcutâneos sobre musculatura de transversos e oblíquos abdominais.

Vale destacar que todos os participantes realizaram as terapias do programa de reabilitação e, dentro das atividades do programa, receberam o tratamento convencional realizado pelos enfermeiros reabilitadores da Instituição, que envolveu: orientações diárias sobre o funcionamento do sistema digestório após a LM, manobras de esvaziamento intestinal (manobras de Rosing, posicionamento no vaso, toque dígito-anal), medições reguladoras intestinais (lactulose e simbioflora) e dieta laxativa padronizada para todos conforme avaliação e indicação do serviço de nutrição.

ANÁLISE E TRATAMENTOS DOS DADOS

O armazenamento dos dados foi realizado no Programa Microsoft Excel versão 2013 e a análise deles no Software de Estatística **Statia**. Assim, os dados obtidos foram analisados, empregando-se a estatística descritiva, sendo as frequências absolutas e relativas para as variáveis categóricas e média e desvio padrão para as variáveis numéricas. Para a análise estatística comparativa entre as variáveis frequência de evacuação (FE) e quantidade das fezes (QF) com os períodos de avaliação (base-line, tratamento convencional e tratamento convencional associado à EE), foi utilizado o teste estatístico de Wilcoxon Signed-rank test. Além disso, utilizou-se esse mesmo teste para verificar se houve efeito de carregamento entre os tratamentos ofertados, devido ausência de intervalos entre eles, ou seja, para saber se o primeiro tratamento interferiu no segundo.

A variável QF foi avaliada quantitativamente sendo 1 = pequena, 2 = média e 3 = grande quantidade. Na análise da variável consistência das fezes (CF) foi utilizado o teste exato de Fisher para comparar o grupo com tratamento convencional e o grupo com ambos os tratamentos (convencional e EE). Para isso, calculou-se a média da frequência evacuatória de cada indivíduo correspondente às duas semanas do tratamento convencional e às duas semanas do tratamento convencional mais EE e subtraído à frequência evacuatória do **Baseline**.

Em todos os testes estatísticos considerou-se um nível de significância de 5% (p < 0,05).

ASPECTOS ÉTICOS

O estudo foi avaliado e aprovado pelo Comitê de Ética em Pesquisa, sendo o número do parecer consubstanciado 3.402.561/2019, e foi obtido consentimento informado de todos os participantes, conforme resolução 466/2012, referente à pesquisa realizada com seres humanos.
RESULTADOS

Participaram do estudo sete homens com idade entre 23 e 63 anos e três mulheres com idade entre 19 e 59 anos. A média de idade masculina foi de 37,7 anos (DP = 15,91) e a feminina de 42 anos (DP = 20,66). A média de idade de todos os indivíduos foi de 39 anos (DP = 16,37). Em relação à escolaridade, sete (70%) possuíam Ensino Médio completo, dois (20%) Ensino Fundamental completo e um (10%) era analfabeto. Em relação ao estado civil, cinco (50%) eram casados, dois solteiros (20%), dois (20%) separados e um (10%) viúvo.

As causas das LM correspondiam a: quatro (40%) decorrentes de acidentes de trânsito com bicicleta, motocicleta e carro; três (30%) decorrentes de traumas não descritos; dois (20%) por quedas; e um (10%) por ferimento por arma de fogo. Quanto ao tempo da LM, até o início do programa de reabilitação na internação, oito (80%) possuíam menos de dois anos de lesão e dois (20%) acima desse intervalo de tempo.

Seis participantes apresentavam tetraplegia entre os níveis medulares de C2 a C7, sendo três (30%) deles com lesões incompletas e três (30%) com lesões completas; e quatro com paraplegia abrangendo os níveis medulares de T4 a L3, sendo três (30%) lesões incompletas e um (10%) lesão completa. A amostra abrangeu indivíduos de ASIA A à C.

A frequência de evacuação antes da LM dos participantes era diária em seis (60%) indivíduos e a cada dois dias em quatro (40%) deles. Nenhum participante relatou dificuldades prévias quanto ao funcionamento intestinal. A frequência de evacuação após a LM era a cada quatro ou cinco dias para quatro (40%) participantes, a cada três dias para três (30%), a cada 7 ou 10 dias para um (10%) em dias alternados para um (10%) e diário para um (10%). Os participantes com hábito diário e dias alternados foram caracterizados como constipados devido a outros fatores considerados de forma binária (consistência normal: Bristol 3 e 4; e endurecida: Bristol 1 e 2). Foi excluído um participante que apresentava consistência das fezes normais no baseline. Outro fator importante é que não houve diferença estatisticamente significativa entre a semana do tratamento convencional e a semana do tratamento convencional com EE (valor de p = 0,21). Os resultados com relação à quantidade de fezes eliminada pela percepção dos participantes constam na Tabela 3.

Tabela 1 – Estratégias utilizadas para o funcionamento intestinal durante os tratamentos ofertados (convencional e EE) pelos participantes da pesquisa – São Paulo, SP, Brasil, 2019.

Estratégias	N	%
Massagem abdominal diariamente	5	50
Toque anal ou extração manual	2	20
Evacuações apenas após lavagem intestinal	1	10
Toque anal, massagem abdominal e manobra de vareta	1	10
Massagem abdominal e posição inclinada para frente	1	10
Total	10	100

Os resultados com relação à quantidade de fezes eliminada pela percepção dos participantes constam na Tabela 3.

Tabela 2 – Frequência evacuatória dos indivíduos com LM, considerando-se os períodos de avaliação no tratamento convencional e EE (baseline) – São Paulo, SP, Brasil, 2019.

Variável Frequncia de Evacuação	Média (DP)	Mediana	*Valor de p
Convencional	2,5 (0,86)	2,25	0,029
Convencional + Eletroestimulação	3,0 (0,90)	3,25	
Baseline	2,25 (0,88)	2,5	0,029
Convencional + Eletroestimulação	3,0 (0,90)	3,25	

* Wilcoxon Signed-rank test

Tabela 3 – Quantidade de fezes eliminada dos indivíduos com LM, segundo os períodos de avaliação no tratamento convencional e EE (baseline) – São Paulo, SP, Brasil, 2019.

Variável Quantidade de Fezes	Média (DP)	Mediana	*Valor de p
Convencional	1,95 (0,43)	2	0,031
Convencional + Eletroestimulação	2,35 (0,41)	2,25	
Baseline	1,7 (0,67)	2	0,023
Convencional + Eletroestimulação	2,35 (0,41)	2,25	

* Wilcoxon Signed-rank test
Os participantes e/ou cuidadores relataram, no decorrer da coleta de dados, alterações percebidas por eles nas características das evacuações durante o tratamento associado com EE, sendo que cinco (50%) expressaram menor esforço evacuatório, três (30%) aumento da sensação de desejo evacuatório, dois (20%) aumento da sensação de desejo evacuatório e eliminação de flutuação.

É necessário salientar que em todos esses testes, para a verificação do efeito de carregamento entre os grupos, os resultados não apresentaram significância estatística (Tabela 4).

A não significância estatística da comparação entre as somas das sequências terapêuticas ofertadas implica que não houve interferências acumulativas entre os tratamentos, mesmo sem período de wash-out (intervalo), preconizado em estudos crossover.

DISCUSSÃO

A eficácia e a segurança da EE em intestinos neurogênicos têm sido discutidas em revisões robustas, sempre apontando para desfechos positivos, como aumento da frequência de evacuação e redução da dificuldade evacuatória em pessoas com constipação de leve a moderada. Vale ressaltar que são escassos os estudos com EE abdominal para avaliar a melhora da função intestinal, principalmente em pessoas com LM. Entretanto, os resultados aqui encontrados pela associação da técnica da EE com o tratamento convencional de reabilitação intestinal mostraram aumento da frequência evacuatória para o padrão satisfatório dentro do preconizado pelos critérios de Roma III, com no mínimo três evacuações semanais e aumento da quantidade de fezes eliminada na percepção do próprio indivíduo.

Ademais, em revisão sistemática, verificou-se que, entre os vários estudos que abordam métodos de EE para o tratamento de intestinos neurogênicos após LM, o principal citado foi a EE transcutânea, e grande parte dos estudos utilizou frequências de 20 a 25Hz, alcançando resultados positivos com relação à eficácia e à segurança da EE. Assim, os resultados corroboram com o estudo que teve como população alvo pessoas com esclerose múltipla e foram submetidas ao uso da EE abdominal, com aumento da frequência evacuatória após análise dos diários intestinais. No presente estudo, o tratamento convencional demonstrou-se potencializado pela EE.

Outro estudo realizado com 18 participantes, que apresentavam o quadro de constipação intestinal de trânsito lento, verificou que a EE percutânea do nervo tibial, variando as aplicações de três a seis vezes por semana, e protocolos com até 12 semanas, mostrou melhora na gravidade da constipação como resultado de impulso parassimpático melhorado, com aumento da frequência evacuatória (p = 0,048) e diminuição do uso de laxantes (p = 0,025). Cabe analisar que é possível que certas comorbidades, que causam menor grau de disfunção do cólon, respondam melhor à neuromodulação distal do que doenças mais graves. Portanto, a eficácia da neuromodulação distal, seja por via transcutânea ou percutânea, pode ser melhorada com a cuidadosa seleção do perfil clínico dos participantes quanto à LM.

O método com EE transcutânea consiste em uma intervenção não invasiva que oferece benefícios clínicos e segurança, além do baixo custo e da possibilidade de aplicação em regime ambulatorial ou domiciliar, sem a necessidade de cirurgias, o que tem sido apontado como uma vantagem no restabelecimento da função intestinal.

No presente estudo, os participantes com LM completas, principalmente a nível cervical, mesmo apresentando mudanças positivas nas variáveis analisadas e em percepções individuais, mantiveram a necessidade regular do auxílio de terceiros. As diferentes causas e níveis neurológicos da LM podem influenciar nos efeitos e nos resultados da EE. Desse modo, em estudo realizado com 33 participantes com LM, divididos em dois grupos de acordo com o nível neurológico da lesão (acima de T9 e de T9 a L2), depois de quatro semanas com EE transcutânea em dermátomos sacrais, constatou-se aumento da pressão retoanal e, consequentemente, melhora do esvaziamento intestinal nos participantes com LM de T9 a L2. Com isso, encontreu-se melhores resultados em participantes com LM incompletas ao tratarmos intestinos neurogênicos.

No presente estudo, devido ao tamanho reduzido da amostra, não foi possível avaliar o grau de melhora nos diferentes tipos de LM, porém observou-se que em lesões mais baixas e incompletas os participantes foram mais participativos na continuidade do tratamento convencional, possivelmente por ocorrência de resultados mais positivos de acordo com o seu relato. Em nove casos (90%) houve prescrição médica de medicações laxativas orais para auxílio aos sintomas de constipação, deixando claro que a adição da EE não exclui a individualidade e a necessidade de continuidade dos tratamentos convencionais anteriormente ofertados.

É importante destacar que os participantes que compuseram a amostra do presente estudo foram atendidos por uma equipe de enfermagem capacitada para fornecer o tratamento convencional, com orientações em saúde quanto à reabilitação intestinal. Contudo, quanto à comparação dos valores do baseline com o tratamento convencional, não houve melhora significativa nas variáveis analisadas: FE, QF e CF, sendo possível que esse esforço tenha relação com a adesão dos indivíduos e dos cuidadores às orientações comportamentais ofertadas.

O tratamento convencional e de EE nos protocolos oferecidos não foi proveitoso para um único participante, que não apresentou alteração do padrão evacuatório, pois dependia de lavagem intestinal semanal para evacuar. A equipe médica suspeitava de alterações estruturais na musculatura intestinal, porém não puderam ser confirmadas com exames de imagem a tempo do desfecho na pesquisa. Um estudo radiológico em participantes com LM constatou que 74% apresentam megacólon.

Tabela 4 – Comparação entre os grupos 1 e 2 das somas das sequências de tratamentos ofertados, considerando-se as variáveis analisadas – São Paulo, SP, Brasil, 2019.

Variáveis	Médias (DP)	Soma das medianas	*p
Grupo 1			
FE	6,0±2,17	5,5±1,03	6,0
CF	5,1±1,98	5,5±1,22	6,0
QF	4,2±1,03	4,4±0,22	4,0
Grupo 2			
FE	5,0±2,17	5,5±1,03	5,5
CF	5,5±2,17	5,5±1,22	5,5
QF	4,4±1,03	4,4±0,22	4,5

FE (Frequência de evacuação); CF (Consistência das fezes); QF (Quantidade de fezes); *WilcoxonSigned-rank test
(diametro colônico maior que 6 cm) e que 55% apresentavam retenção moderada a grave em todos os segmentos intestinais. Vale ressaltar que os fatores de risco para o megacolon incluem idade avançada, longa duração pós-lesão, sintomas de distensão abdominal, constipação radiológica e uso de laxativos e anticolinérgicos(23), fatores esses presentes nesse participante, além da informação verbal de adesão insuficiente às orientações comportamentais oferecidas.

Quanto à consistência das fezes no presente estudo, não foram constatadas significativas alterações após a associação com EE. A escala de Bristol demonstra que a forma das fezes correlaciona-se também com o tempo de trânsito intestinal e de ingestão hídrica(17), e, mesmo com o aumento da FE, outros estudos com populações maiores são necessários.

A maioria das publicações relacionadas às complicações decorrentes da LM tem o foco principal na função vesical, sendo a intestinal menos sistematicamente descrita e, portanto, menos conclusiva. Apesar disso, os resultados da neuroestimulação são promissores para o tratamento futuro de intestinos neurogênicos. Nesse sentido, pessoas com disfunções intestinais secundárias a lesões ou a doenças neurológicas são um grupo extremamente heterogêneo e é provável que o tratamento futuro com EE reflita a patologia subjacente. Isso requer melhor compreensão dos mecanismos de ação para cada tipo de EE(24), visto que essas terapias destinam-se a modular as vias neurais, com necessidade de melhor aprofundamento da literatura quanto aos efeitos residuais. Portanto, as pessoas com intestino neurogênico são, com efeito, o grupo mais lógico a se beneficiar desses tratamentos(25). Os protocolos de EE exercem um número programado de sessões e, devido aos curtos períodos de estimulação, alguns tratamentos são baseados na suposição de um efeito que dura além disso(24).

Conclui-se que à medida que mais se conhece sobre a modulação de sinais elétricos, maiores graus de controle podem ser obtidos para as funções vesicais e intestinais, bem como para os demais sistemas. Desse modo, apesar do potencial da neurorodulação não invasiva para melhorar os desfechos clínicos em pessoas com LM, suas características são pouco específicas e as revisões de eficácia são escassas na literatura(6).

PERSPECTIVAS

Espera-se que a utilização da EE melhore a eliminação fecal, diminuindo tempo e esforço gasto, juntamente com as técnicas para o autocuidado convencionais, necessárias à evacuação de indivíduos com LM, desempenhadas pelos próprios participantes e cuidadores, de forma a impactar positivamente na melhora dos sintomas de constipação e na qualidade de vida desses indivíduos.

O uso da corrente FES é uma técnica de fácil aplicabilidade e baixo custo, tem-se mostrado um método seguro e não invasivo que pode ser administrado pelos próprios indivíduos e cuidadores em ambiente doméstico(7). Isso posto, a literatura tem apontado para resultados consistentes no uso diário da EE, porém os efeitos de aplicação ambulatorial nos serviços de saúde são possibilidades a serem estudadas, como a quantidade de dias de aplicação viável, tanto para a realidade prática como para a aquisição de resultados satisfatórios e de custo-benefício na aquisição de dispositivos portátil pelo usuário(9).

LIMITAÇÕES DO ESTUDO

As possíveis diferenças entre os indivíduos com tetra e paraplegia, com lesões completas e incompletas, não foram avaliadas devido ao tamanho de amostra reduzido; caso houvesse separação desses indivíduos em grupos homogêneos, os resultados poderiam apontar qual grupo se beneficiaria mais com o tratamento. O tempo para início da reabilitação após a LM não foi padronizado, participando do estudo indivíduos com lesões mais recentes e outros com lesões tardias, além do conhecimento prévio deles quanto ao tratamento convencional também não ter sido avaliado.

No presente estudo não houve a suspensão das medicações laxativas no baseline antes de iniciar as intervenções. Embora a influência das medicações tenha sido minimizada pela manutenção das doses ao longo do protocolo, sua ausência poderia contribuir para melhor compreensão dos efeitos da EE.

CONCLUSÃO

À luz dos experimentos e análises mobilizados, o estudo piloto mostrou que a EE abdominal, em conjunto como tratamento convencional para a reabilitação intestinal de pessoas constipadas após LM, melhorou a frequência de evacuações e a quantidade de fezes eliminadas em comparação ao baseline. No entanto, é imperativo ressaltar que há necessidade de maior e melhor aprofundamento e embasamento teórico, com estudos envolvendo amostras maiores, assim como também mais semanas de EE com frequência diária, possibilitando análises mais robustas. Desse modo, este estudo piloto servirá como base para um futuro ensaio clínico com maior amostragem e comprovação estatística.

AGRADECIMENTOS

Agradecimentos especiais a Milton Oshiro (in memoriam), que auxiliou significativamente na estrutura do emba- samento científico do protocolo de eletroestimulação utilizado. Agradecimentos aos enfermeiros André Luís da Silva, Antenor Bispo dos Santos Silva, Lisley Keller Liditke Cintra e Talita dos Santos Rosa, pelas contribuições pertinentes quanto ao embasamento de uma prática baseada em evidências. Agradecimentos ao Dr. Daniel Rubio de Souza, Dra. Kátia Lina Miyahara, Dr. Felipe Fregni e Dra. Linamara Battistella por contribuírem no incentivo e reconhecimento da pesquisa pela equipe de Enfermagem, pelo apoio no desenvolvimento do método e na conceituação do estudo.

RESUMO

Objetivo: Avaliar o efeito da eletroestimulação (EE) abdominal sobre a frequência de evacuações, a consistência e a quantidade de fezes em pessoas com constipação decorrente da lesão medular (LM). Método: Estudo piloto experimental do tipo crossover-randomizado em dois grupos de tratamento: convencional de reabilitação intestinal e convencional associado à EE com Functional Electrical Stimulation (FES) de 8 e 20 Hz aplicados na musculatura abdominal. Ambos os grupos em seguimento por duas semanas, com 30 minutos de sessão diária de EE. Os pacientes estavam internados em um instituto de reabilitação da cidade de São Paulo. Os dados foram analisados por meio de estatística descritiva e inferencial. Resultados: Participaram do estudo 10 pessoas com LM, a maioria do sexo masculino (70%), com média de idade de 17 anos.
Efeito da eletroestimulação abdominal transcutânea no quadro de constipação em pessoas com lesão medular: estudo piloto

39 anos (DP = 16,37). A EE, associada ao tratamento convencional, mostrou-se mais eficaz no aumento da frequência evacuatória (p = 0,029) e na quantidade de fezes (p = 0,031). **Conclusão:** A EE abdominal associada ao tratamento convencional auxiliou no aumento da frequência evacuatória e na quantidade de fezes no quadro de constipação em pessoas com LME. Este estudo piloto servirá como base para um futuro ensaio clínico com maior amostragem e comprovação estatística.

DESCRITORES
Traumatismos de la Médula Espinal; Constipación Intestinal; Estimulación Eléctrica; Músculos Abdominales; Estomaterapia; Rehabilitación.

RESUMEN
Objetivo: Evaluar el efecto de la electroestimulación abdominal (EE) sobre la frecuencia de las evacuaciones, la consistencia y la cantidad de heces en personas con estreñimiento debido a una lesión de la médula espinal (LME). **Método:** Estudio piloto experimental de tipo crossover-aleatorizado en dos grupos de tratamiento: convencional rehabilitación intestinal y convencional asociado a EE con **Functional Electrical Stimulation (FES)** de 8 y 20 Hz aplicados a los músculos abdominales. Se realizó un seguimiento de ambos grupos durante dos semanas con 30 minutos de sesión diaria de EE. Los participantes estaban hospitalizados en un instituto de rehabilitación de la ciudad de São Paulo. Los datos se analizaron mediante estadística descriptiva e inferencial. **Resultados:** Diez personas con LME participaron en el estudio, la mayoría hombres (70%) con una edad media de 39 años (DE = 16,37). La EE asociada al tratamiento convencional demostró ser más eficaz en el aumento de la frecuencia de evacuación (p = 0,029) y la cantidad de heces (p = 0,031). **Conclusión:** La EE abdominal asociada al tratamiento convencional ayudó a aumentar la frecuencia de evacuación y la cantidad de heces en el contexto de estreñimiento en personas con LME. Este estudio piloto servirá de base para futuros ensayos clínicos con mayor muestreo y evidencia estadística.

DESCRITORES
Traumatismos de la Médula Espinal; Estreñimiento; Estimulación Eléctrica; Músculos Abdominales; Estomaterapia; Rehabilitación.

REFERÊNCIAS
1. Kang Y, Ding H, Zhou HX, Wei ZJ, Liu L, Pan DY, et al. Epidemiology of worldwide spinal cord injury: a literature review. J Neurorestoratolog. 2018;6:1–9. DOI: https://doi.org/10.2147/JN.S143236
2. Barbetta DC, Smanioto TR, Poletto MF, Ferreira RFA, Lopes ACG, Casaro FM, et al. Spinal cord injury epidemiological profile in the Sarah network of rehabilitation hospitals – a Brazilian population sample. Spinal Cord Ser Cases. 2018;4:32. DOI: https://doi.org/10.1038/s41394-018-0049-8
3. Tate DG, Forchheimer M, Rodríguez G, Chiado A, Cameron AP, Meade M, et al. Risk factors associated with neurogenic bowel complications and dysfunction in spinal cord injury. Arch Phys Med Rehabil. 2016;97(10):1679–86. DOI: https://doi.org/10.1016/j.apmr.2016.03.019
4. Campoy LT, Rabeh SAN, Castro FFS, Nogueira PC, Terçarol CAS. Bowel rehabilitation of individuals with spinal cord injury: video production. Rev Bras Enferm. 2018;71(5):2376-82. DOI: https://doi.org/10.1590/2317-16812017-0283
5. Deng Y, Dong Y, Liu Y, Zhang Q, Guan X, Chen X, et al. A systematic review of clinical studies on electrical stimulation therapy for patients with neurogenic bowel dysfunction after spinal cord injury. Medicine (Baltimore). 2018;97(41):e12778. DOI: https://doi.org/10.1097/MD.0000000000012778
6. Parittotokkaporn S, Varghese C, O’Grady G, Svirskis D, Subramanian S, O’Carroll S. Non-invasive neuromodulation for bowel, bladder and sexual restoration following spinal cord injury: A systematic review. Clin Neurol Neurosurg. 2020;194:105822. DOI: https://doi.org/10.1016/j.clineuro.2020.105822
7. Singleton C, Bakheit AM, Peace C. The efficacy of functional electrical stimulation of the abdominal muscles in the treatment of chronic constipation in patients with multiplesclerosis: a pilot study. Mult Scler Int. 2016;2016:4860315. DOI: https://doi.org/10.1155/2016/4860315
8. Ethier C, Gallego JA, Miller LE. Brain-controlled neuromuscular stimulation to drive neural plasticity and functional recovery. Curr Opin Neurobiol. 2015;33:95–102. DOI: https://doi.org/10.1016/j.conb.2015.03.007
9. Luo S, Xu H, Zuo Y, Liu X, All AH. A Review of Functional Electrical Stimulation Treatment in Spinal Cord Injury. Neuromolecular Med. 2020;22:447–63. DOI: https://doi.org/10.1007/s12017-019-08589-9
10. Ragnarsson KT. Functional electrical stimulation after spinal cord injury: current use, therapeutic effects and future directions. Spinal Cord. 2008;46(4):255-74. DOI: https://doi.org/10.1038/sj.sc.3102091
11. Casas SGL, Pérez RJ, Ambrosy AS, Álvarez-Gallego M, Martín JLM, et al. Sacral nerve stimulation for constipation: long-term outcomes. Tech Coloproctol. 2019;23(6):559-64. DOI: https://doi.org/10.1007/s10155-019-02011-z
12. Roberts TT, Leonard GR, Cepela DJ. Classifications in brief: American Spinal Injury Association (ASIA) Impairment Scale. Clin Orthop Relat Res. 2017;475:1499–504. DOI: https://doi.org/10.1007/s00264-017-0019-5
13. Drossman DA, Corazziari E, Delvaux M, Spiller R, Talley NJ, Thompson WG, et al. Apêndice B. Os critérios diagnósticos de Roma III para os transtornos gastrointestinais funcionais. Revista Clínica MD. 2008;46(4):255-74. DOI: https://doi.org/10.1038/sj.sc.3102091
14. Casas SGL, Pérez RJ, Ambrosy AS, Álvarez-Gallego M, Martín JLM, et al. Sacral nerve stimulation for constipation: long-term outcomes. Tech Coloproctol. 2019;23(6):559-64. DOI: https://doi.org/10.1007/s10155-019-02011-z
19. Cecatto RB, Chadi G. A estimulação elétrica funcional (FES) e a plasticidade do sistema nervoso central: revisão histórica. Acta Fisiatr. 2012;19(4):246-57. DOI: https://doi.org/10.5935/0104-7795.20120040

20. Collins B, Norton C, Meda Y. Percutaneous tibial nervestimulation for slow transit constipation: a pilot study. Colorectal Dis. 2012;14(4):165-70. DOI: https://doi.org/10.1111/j.1463-1318.2011.02820.x

21. Chen J, Song GQ, Yin J, Koothan T, Chen JDZ. Electro acupuncture improves impaired gastric motility and slow waves induced by rectal distension in dogs. Am J Physiol Gastrointest Liver Physiol. 2008;295(3):G614-20. DOI: https://doi.org/10.1152/ajpgi.90322.2008

22. Iqbal F, Collins B, Thomas GP, Askari A, Tan E, Nicholls RJ, et al. Bilateral transcutaneous tibial nervestimulation for chronic constipation. Colorectal Dis. 2016;18(2):173-8. DOI: https://doi.org/10.1111/codi.13105

23. Failli V, Kopp MA, Gericke C, Martus P, Klingbeil S, Brommer B, et al. Functional neurological recovery after spinal Cord injury simpaired in patients with infections. Brain. 2012;135(11):3238-50. DOI: https://doi.org/10.1093/brain/aws267

24. Worsøe J, Fynne L, Laurberg S, Krogh K, Rijkhoff NJM. Acute effect of electrical stimulation of the dorsal genital nerve on rectal capacity in patients with spinal cord injury. Spinal Cord. 2012;50(6):462-6. DOI: https://doi.org/10.1038/sc.2011.159

25. Van Rey FS, Heesakkers JPF. Applications of neurostimulation for urinary storage and voiding dysfunction in neurological patients. Urol Int. 2008;81(4):373-8. DOI: https://doi.org/10.1159/000167831

EDITOR ASSOCIADO
Vanessa de Brito Poveda

Apoio financeiro
O pesquisador Marcel Simis agradece o apoio da Fundação de Amparo à Pesquisa do Estado de São Paulo – FAPESP.