Genome-wide analysis and functional characterization of the DELLA gene family associated with stress tolerance in *B. napus*

Rehman Sarwar, Ting Jiang, Peng Ding, Yue Gao, Xiaoli Tan and Keming Zhu*

Abstract

Background: *Brassica napus* is an essential crop for oil and livestock feed. Eventually, this crop's economic interest is at the most risk due to anthropogenic climate change. DELLA proteins constitute a significant repressor of plant growth to facilitate survival under constant stress conditions. DELLA proteins lack DNA binding domain but can interact with various transcription factors or transcription regulators of different hormonal families. Significant progress has been made on *Arabidopsis* and cereal plants. However, no comprehensive study regarding DELLA proteins has been delineated in rapeseed.

Results: In our study, we have identified 10 *BnaDELLA* genes. All of the *BnaDELLA* genes are closely related to five *AtDELLA* genes, suggesting a relative function and structure. Gene duplication and synteny relationship among *Brassica napus*, *Arabidopsis thaliana*, *Brassica rapa*, *Brassica oleracea*, and *Brassica nigra* genomes were also predicted to provide valuable insights into the *BnaDELLA* gene family evolutionary characteristics. Chromosomal mapping revealed the uneven distribution of *BnaDELLA* genes on eight chromosomes, and site-specific selection assessment proposes *BnaDELLA* genes purifying selection. The motifs composition in all *BnaDELLA* genes is inconsistent; however, every *BnaDELLA* gene contains 12 highly conserved motifs, encoding DELLA and GRAS domains. The two known miRNAs (bna-miR6029 and bna-miR603) targets *BnaC07RGA* and *BnaA09GAI*, were also predicted. Furthermore, quantitative real-time PCR (qRT-PCR) analysis has exhibited the *BnaDELLA* genes diverse expression patterns in the root, mature-silique, leaf, flower, flower-bud, stem, shoot-apex, and seed. Additionally, *cis*-acting element prediction shows that all *BnaDELLA* genes contain light, stress, and hormone-responsive elements on their promoters. The gene ontology (GO) enrichment report indicated that the *BnaDELLA* gene family might regulate stress responses. Combine with transcriptomic data used in this study, we detected the distinct expression patterns of *BnaDELLA* genes under biotic and abiotic stresses.

Conclusion: In this study, we investigate evolution feature, genomic structure, miRNAs targets, and expression pattern of the *BnaDELLA* gene family in *B. napus*, which enrich our understanding of *BnaDELLA* genes in *B. napus* and suggests modulating individual *BnaDELLA* expression is a promising way to intensify rapeseed stress tolerance and harvest index.

Keywords: *Brassica napus*, Gibberellins, DELLA, Abiotic stress, Genome-wide

*Correspondence: uegzlkg@sina.com
Institute of Life Sciences, Jiangsu University, Zhenjiang, China

Background

Since the 1970s, *Brassica napus* has become the world's most economically valuable crop [1]. In recent years significant progress has been made in advancing *B. napus* selective breeding to remove undesirable components...
for high-quality vegetable oil and palatable livestock feed. Unfortunately, *B. napus* yield is susceptible to various abiotic and biotic stresses, such as higher salinity, drought, high/low temperature, and pathogen infections. These stresses have led to severe loss in harvest index and oil production in many regions of the world and limited its geographical distribution [2, 3]. Consequently, the effects of environmental stresses on *B. napus* cultivation eventually losing their economic importance.

Plants as sessile organisms evolved varied strategies to modulate their physiology to cope with fluctuating environmental conditions [4]. Tremendous work has been done to understand the role of plants biochemical, molecular, and cellular responses to abiotic and biotic stresses [5, 6]. These studies suggested that phytohormones are the critical components that convey the internal and external stimuli to facilitate plant adaptive response to environmental challenges. Among these hormones, Gibberellins (GAs) are considered one of the most vital phytohormones that dramatically affect plant physiology by crosstalk with multiple hormones [7, 8]. However, under external pressure, plants mediate GAs and other phytohormones homeostasis through a family of coregulators DELLA proteins to balance the growth in reserving resources for plant survival [9, 10]. A significant function of the DELLA proteins is to regulate the wide variety of transcriptional factors (TFs) and transcriptional regulators (TRs) of multiple phytohormones. For instance, DELLA proteins interact with transcriptional factors, including PHYTOCHROME INTERACTING FACTORS (PIFs), BRASSINOSTEROID INSENSITIVE 1 (BZR1), and EXPANSIN-A2 (EXP2), in a light-dependent and temperature-dependent manner to suppress cell elongation and cell proliferation [11–13], or interacting with DEHYDRATION-RESPONSIVE ELEMENT-BINDING PROTEIN 1B (DREB1B), JASMONATE ZIM-domain 1 (JAZ1), and TEOSINTE BRANCHED1/CYCLOIDEA/PCF (TCPs) to prime defense focusing on plant survival rather than its growth [14–16]. DELLA proteins are the sub-family of the transcriptional regulators GRAS (named after GIBBERELLIC ACID INSENSITIVE 1, REPRESSOR OF GAI-3, and SCARECROW) [17]. Most GRAS subfamilies contain common N-terminal motifs, while DELLA proteins had a few α-helical segments called DELLA, LEXLE, and THYNP that have been termed the DELLA domain [18, 19]. Previously, it was proposed that mutation in 17 amino acids of the DELLA N-terminal region resulted in severe dwarf transgenic plant *gai-1* with dark green leaves but insensitive to salt and drought stress [20, 21]. Later it was demonstrated that the N-terminal region of the DELLA domain is responsible for DELLA stability, which is operated by a GAs receptor Gibberellin insensitive Dwarf 1 (GID1) in GAs dependent and independent manner to foster plant growth by lifting DELLA repression [22–24].

Rice, barley, tomato contain only one DELLA gene, *SLR1* (SLENDER RICE1), *SLN1* (SLENDER1), and *PROCERA*, respectively [9, 25, 26], while pea and maize hold two highly conserved DELLA genes. *LA*, *CRY*, and *d8, d9*, respectively [27, 28]. Additionally, researches on *Arabidopsis thaliana* reported the presence of five *AtDELLA* genes GA-Insensitive (GAI), Repressor of *ga*1-3 (RGA), RGA-Like1 (*RGL1*), (*RGL2*), (*RGL3*). Molecular cloning of the single and multiple *AtDELLA* genes in GA deficient mutant *ga*1 suggested the overlapping and unique roles of *AtDELLAs* in regulating GAs stimulated plant growth. For instance, *AtGAI* and *AtRGA* have been indicated as notable repressors of the plant vegetative growth [9, 29, 30], whereas *AtRGL1* and *AtRGL2* repressed floral augmentation and seed germination [31–34]. *AtRGL3* recently got attention in plant defense by positively regulating the jasmonic acid (JA), and salicylic acid (SA) mediated response against pathogen infections [10, 35].

Work over the last decade, the impact of DELLA on seeded plant productivity has been progressively investigated. Apart from the exogenous splattering of the GAs to improve plant growth by repressing the repressor, one key factor was to alter GAs synthesis by fine-tuning the DELLAs activity for the amelioration of semi-dwarf varieties [26, 36, 37]. This results in enhanced plant tolerance to abiotic stresses, which ultimately improves crops harvest index and survival [38–40]. In addition to this, a recent study identifies a DELLA loss of function semi-dwarf mutant *ds-3* in oilseed rape, which confers a similar phenotype to previously reported semi-dwarf varieties, with resistance to lodging stress [41]. However, the DELLAs gene family molecular mechanism and characterization in *B. napus* have not been well reported. Moreover, diversification of DELLAs gene family during *B. napus* polyploidization would be of interest.

In this study, 10 members of the *BnaDELLA* genes were systematically characterized and analyzed by their phylogenetic and syntenic relationship, subcellular localization, protein motifs, gene structure, and cis-elements in the *B. napus* genome. Furthermore, expression profiles of the *BnaDELLAs* in eight different tissues, root, mature-silique, leaf, flower, flower-bud, stem, shoot-apex, seed, were analyzed using the qRT-PCR. Pre-published RNA-Seq data were also predicted to investigate *BnaDELLAs* expression patterns under different stress conditions such as cold, heat, drought, abscisic acid (ABA), salinity, and *Sclerotinia sclerotiorum* infection. Gene Ontology (GO) and miRNAs targeting the *BnaDELLA* gene family were also examined to characterize *BnaDELLAs* role. These results will provide valuable insights to illustrate the multiple functions of the DELLA proteins in *B. napus* and a
basis for further genetic manipulation toward developing *B. napus* variants with increased stress tolerance to environmental fluctuation.

Results

Identification and characterization of BnaDELLAs

We have identified 10 BnaDELLAs in *B. napus* using the known five *A. thaliana* DELLAAs (GAI, RGA, RGL1, RGL2, RGL3) peptide sequence as queries, and performed BLASTP searches in the *B. napus* genome database (GENOSCOPE http://www.genos.cope.cns.fr/brassicicanapus/) [42]. To confirm the BnaDELLA proteins integrity in the *B. napus*, we further analyze the retrieved sequences in different *B. napus* cultivar Zhonghuang 11 (Z511) genome browser (BnPIR, http://cbi.hzau.edu.cn/bnapus), and manually corrected the redundant sequence information of the BnaDELLAs and named them according to their loci. Based on these methods, we found that each member in the AtDELLA gene family corresponds to multiple homologs in the *B. napus* genome (Table 1). Simultaneously, five DELLA genes in *B. rapa*, four in *B. oleracea*, nine in *B. juncea*, and five in *B. nigra* were classified using the same methods. We found that 10 BnaDELLAs members are derived from their progenitor *B. rapa* and *B. oleracea*. The genomic sequence length of the BnaDELLAs ranged from 1524-1740 bp, with a molecular weight varying from 55.83 to 63.32 KD (Table 1). Moreover, the isoelectric point (pl) values of the BnaDELLA proteins ranged from 4.69 to 5.94, which shows that these proteins are highly acidic. Besides, all BnaDELLA proteins showed a negative value of the grand average of hydrophobicity (GRAVY), indicating that BnaDELLAs are hydrophilic proteins. Moreover, the 10 BnaDELLA proteins subcellular localization signals were detected in the nucleus, which exhibits their transcriptional regulator role. The names of the BnaDELLAs and their locus id are also shown in (Table 1).

Evolutionary relationship and gene structure analysis of BnaDELLAs

The DELLAAs evolutionary history among six *Brassicaceae* species *A. thaliana* (At), *B. napus* (Bna), *B. rapa* (Bra), *B. oleracea* (Bol), *B. juncea* (Bju), and *B. nigra* (Bni) was deduced using the neighbor-joining method. Based on the phylogenetic analysis, 38 DELLA genes in which five AtDELLAs, 10 BnaDELLAs, five BraDELLAs, four BolDELLAs, nine BjuDELLAs, and five BniDELLAs were cluster into three groups according to the topologies and bootstrap support (Fig. 1). Group I contain GAI and RGA clade, Group II holds RGL1 clade, Group III holds RGL2 and RGL3 clade. *B. napus* DELLA genes were relatively closer to the *A. thaliana*. However, *B. napus* and *B. rapa* DELLAAs show 100% similarity between each other.

Besides, a homolog of *AtRGL1* was not identified in the *B. oleracea* compared to those of *B. napus*, *B. rapa*, *B. juncea*, and *B. nigra*. This might be due to gene loss during the evolution process or the emerging genome gaps in *B. oleracea*. However, in *B. napus*, Group I, II, III had four, two, four DELLA members, respectively. DELLA genes grouped into the same subfamily are previously known to have distinct or overlapping functions [21, 31, 35, 43]. To recognize the DELLA genes family diversification in *B. napus*, we have implemented the Gene Structure Display (GSDS) web analysis by comparing the coding sequence (CDS) and corresponding genomic sequences of AtDELLAs, BnaDELLAs, BraDELLAs, BolDELLAs, and BjuDELLAs. As shown in Fig. 2, members of the DELLA genes among denoted species are highly conserved and intronless with only one exon. Moreover, the exon location of DELLAAs among different phylogenetic-related species is conserved, suggesting a similar evolutionary relationship. However, the length of exon among the DELLA subfamily was different. For example, *BnaRGL1* exon length was smaller than other BnaDELLAs members in Group I and Group III, indicating gene structure diversification. In summary, the gene structure of the DELLA genes from different *Brassicaceae* species is highly conserved, with some difference in the exon length (Fig. 2).

Multiple sequence alignment and analysis of BnaDELLAs motifs

The putative sequences of the DELLA proteins from *B. napus*, *A. thaliana*, *B. rapa*, *B. oleracea*, *B. juncea*, and *B. nigra* were aligned to explore amino acid conservation in *B. napus*. Based on the alignment, we found five homologs DELLA proteins from *A. thaliana* show higher percent amino acid similarity with *B. napus* (Table S1). Similar to *A. thaliana*, the *B. napus* and other denoted species contain highly conserved DELLA and GRAS domains at the N-terminal and C-terminal region, respectively. It was known that the N-terminal DELLA domain is involved in stabilizing the DELLA gene activity [18, 44], while the GRAS domain acts as a coregulator to interact with several transcriptional factors and regulators (Figure S1) [37, 45, 46]. The presence of the (VHIID-PFYRE-SAW) and two leucine heptad repeats LHRI and LHRII on the C-terminal of the GRAS domain are responsible for the protein interaction [47, 48]. However, some studies have also proposed DELLA domain lower-affinity with intrinsically unstructured proteins [45, 49]. Overall, the domain arrangements in the *B. napus* DELLA gene family are comparable to *A. thaliana*, *B. rapa*, *B. oleracea*, *B. juncea*, and *B. nigra*. The secondary structure feature (alpha-helix and Beta sheets) from the *AtRGL1* accessions number (At1G66350.1) was displayed in Figure S1. However, the predicted secondary
Group	Gene Name	Gene LOCUS ID	Chromosome Number	Location	Protein	Arabidopsis Orthologs	Subcellular Location		
I	BnaA09GAI	BnaA09G0218400ZS	scaffoldA09	15,333,875	15,336,195	Reverse	1740 579 5.23 63,323.35 -0.247 81.07	AT1G14920 (AtGAI)	Nucleus
	BnaC09GAI	BnaC09G0254100ZS	scaffoldC09	23,759,020	23,761,368	Reverse	1710 569 5.32 62,327.38 -0.232 82.65	AT2G01570 (AtRGA)	Nucleus
	BnaA06RGA	BnaA06G0409200ZS	scaffoldA06	46,345,733	46,347,952	Forward	1722 573 5.38 62,511.61 -0.203 82.25	AT1G66350 (AtRGL1)	Nucleus
	BnaC07RGA	BnaC07G0269400ZS	scaffoldC07	41,375,597	41,377,853	Reverse	1734 577 5.41 62,782.98 -0.177 83.19	AT1G66350 (AtRGL1)	Nucleus
II	BnaC02RGL1	BnaC02G0205300ZS	scaffoldC02	17,476,351	17,477,874	Forward	1524 507 5.37 55,827.07 -0.159 92.92	AT1G66350 (AtRGL1)	Nucleus
	BnaA02RGL1	BnaA02G0160500ZS	scaffoldA02	9,357,771	9,367,517	Forward	1527 508 5.94 56,584.09 -0.215 89.84	AT1G66350 (AtRGL1)	Nucleus
III	BnaA05RGL2	BnaA05G0486300ZS	scaffoldA05	44,153,415	44,155,599	Forward	1635 544 4.71 59,184.6 -0.189 85.86	AT3G03450 (AtRGL2)	Nucleus
	BnaA05RGL2-2	BnaA05G0485400ZS	scaffoldA05	44,093,973	44,096,162	Forward	1641 546 4.69 59,456.9 -0.188 86.08	AT3G03450 (AtRGL2)	Nucleus
	BnaC09RGL3	BnaC09G0485900ZS	scaffoldC09	60,072,165	60,073,742	Forward	1578 525 4.8 57,604.95 -0.211 88.8	AT3G17490 (AtRGL3)	Nucleus
	BnaA10RGL3	BnaA10G0194400ZS	scaffoldA10	21,333,732	21,335,309	Forward	1578 525 4.78 57,634.01 -0.203 89.16	AT3G17490 (AtRGL3)	Nucleus

ORF (Open reading frame); *AI* (Aliphatic index); *pI* (Isoelectric point); *GRAVY* (Grand average of hydropathicity)
structures of all DELLA genes from the denoted plant species were relatively different.

To gain more insights into the diversity of BnaDELLAs in B. napus, we generated a graph showing domains and their position on AtDELLAs and BnaDELLA protein members. We found that the DELLA and GRAS domains are conserved in all DELLA proteins of A. thaliana and B. napus, but motifs were unevenly distributed (Fig. 3). Every BnaDELLA member contains four to 16 conserved motifs, and their length ranged from six to 50 amino acids. Motif 1 to 13 were identified in all groups except AtRGL3, BnaA10RGL3, and BnaC09RGL3 lacking motif 12. In which motif 7 and 8 are annotated as DELLA domain (Fig. 3).

Motif 1 to 13 were identified in all groups except AtRGL3, BnaA10RGL3, and BnaC09RGL3 lacking motif 12. In which motif 7 and 8 are annotated as DELLA domain (Fig. 3). Moreover, Motif 14 and 15 were not detected in AtRGL2, BnaA05RGL2, BnaA05RGL2-2, and Group II, respectively. Motif 16 was detected in AtRGL3, BnaA10RGL3, BnaC09RGL3, BnaA09GAI, and BnaC09GAI. Furthermore, Motif 17 was only present in the N-terminal region of the AtRGA, BnaC07RGA, BnaA06RGA, BnaA05RGL2, and BnaA05RGL2-2 genes. Motif 18 was detected in AtRGA, BnaA09GAI, BnaC09GAI, BnaC07RGA, and BnaA06RGA. In contrast, Group I, AtRGL2, BnaA05RGL2, and BnaA05RGL2-2 had an extra motif 19 and 20, respectively. These results exhibit that the BnaDELLAs subfamilies differ in motif arrangements, indicating the BnaDELLA gene family functional divergence during duplication events. However, proteins with similar motifs arrangements specified the functional similarities among BnaDELLA members.

A schematic logo diagram of BnaDELLAs motifs was shown in Figure S2.

Chromosome location and collinearity analysis

Chromosomal mapping analysis showed that 10 BnaDELLAs distributed on eight B. napus scaffolds (Fig. 4), which have not been assembled into a chromosome. Furthermore, no distribution of BnaDELLAs were observed in the scaffoldA01, scaffoldA03, scaffoldA04, scaffoldA07, scaffoldA08, scaffoldC01, scaffoldC03, scaffoldC04, scaffoldC05, scaffoldC06, and scaffoldC08. However, six BnaDELLAs, including, BnaA02RGL1, BnaA05RGL2, BnaA05RGL2-2, BnaA06RGA, BnaA09GAI, and
Fig. 2 Exon and intron location of the BnaDELLAs. Blue double-sided wedge represents exon, and upstream/downstream regions are indicated as cyan-colored boxes. The scale can estimate the length of the exon at base.

Fig. 3 The length of the 20 motifs ranged from 6 to 50 amino acid residues and represented by different colors and numbers, p-values of the motifs on each protein is less than 10^{-5}.
BnaA10RGL3, are located on the AA subgenome. In contrast, four BnaDELLAs, including BnaCO2RGL1, BnaC09GAI, BnaC07RGA, and BnaC07RGL3, located on the CC subgenome, suggesting the uneven distribution of BnaDELLAs in the B. napus genome (Fig. 4). Furthermore, by using the BLAST and MCScanX methods, we detected the six segmental duplication pairs such as BnaA09GAI/BnaC09GAI, BnaA06RGA/BnaC07RGA, BnaA06RGA/BnaA09GAI/BnaC09GAI, BnaC07RGA/BnaC09GAI/BnaA09GAI, BnaA02RGL1/BnaC02RGL1, BnaA10RGL3/BnaC09RGL3, and one tandem duplication BnaA05RGL2-2 was determined (Fig. 5), which exhibits that during evolution segmental duplication events were the main reason for the divergence of the DELLA gene family in B. napus. In addition, comparative synteny of DELLA gene pairs between B. napus, A. thaliana, B. rapa, B. oleracea, and B. nigra was conducted (Fig. 6). The result shows that BnaDELLAs displayed the most collinearity relationship with B. rapa, B. oleracea, followed by A. thaliana, and B. nigra. A total of five, five, and 10 BnaDELLAs showed syntenic relationships with B. rapa, B. oleracea, and B. nigra, respectively (Table S2). However, five AtDELLAs show a collinearity relationship with 10 BnaDELLAs, which are more than one orthologous copy in the B. napus genome. For instance, AtGAI and AtRGA show syntenic relationships with BnaA09GAI, BnaC09GAI, BnaA06RGA, and BnaC07RGA, implying that AtDELLAs genes might contribute to the evolution of the DELLA gene family in Brassicaceae species. Moreover, we also evaluated the pressure of selective constraint on each pair of duplicated BnaDELLAs and calculated the nonsynonymous (Ka) and synonymous (Ks) ratio (Table S3, Figure S3). Our findings showed that all of the BnaDELLA pairs had the Ka/Ks ratio lower than 1, indicating that the BnaDELLA gene family experienced strong purifying selective pressure.

Prediction of the bna-microRNAs putative targets sites

The regulatory purpose of DELLA and their interacting targets have been characterized widely in various plant species; however, a possible underlying post-transcriptional modification of DELLA in response to environmental stresses is still unclear [50–52]. It has been reported that miRNAs play a significant role in transcriptional and post-transcriptional levels to modulate gene expression under stresses [28, 53]. To identify miRNAs interaction with BnaDELLAs isoforms, we obtained the bna-miRNAs data from B. napus comprehensive study to predict the targeted BnaDELLAs sites. We found that 10 BnaDELLAs from B. napus targets for 18 conserved B. napus miRNAs. These miRNAs lengths reached from 1–24 base pairs, with 11 nt being the most frequent in all BnaDELLAs (Table 2). Target prediction analysis shows that BnaDELLAs BnaC07RGA and BnaA09GAI are targeted by two well-known miRNAs, bna-miR6029 and bna-miR6031, respectively. Among the other bna-miRNAs identified in our study, bna-miR172b targets BnaA02RGL1 and BnaA05RGL2. Additionally, bna-miR390a and bna-miR168a are found to target BnaRGL3. Based on this analysis, we perceived that bna-miRNAs potentially target B. napus, both A and C genome, to regulate BnaDELLAs expression under constant stresses to stabilize plant growth and defense tradeoff.
cis-element analysis in promoter regions of BnaDELLAs and their distribution

Physiological and molecular studies on DELLAs suggested their role in multiple hormonal signaling pathways by interacting with a wide variety of transcriptional regulators and transcriptional factors. However, the molecular mechanism of interaction and regulation of DELLA genes are quite unclear. To gain more insights into the potential function and regulatory mechanism of the BnaDELLAs, we analyzed the cis-regulatory elements in the 1500 bp upstream promoter region of the BnaDELLAs by using the plantCARE database and divided them into four categories (Fig. 7A). We found that the individual DELLA gene in B. napus contains multiple cis-acting elements (Table S4). Nearly all of the BnaDELLAs promoters
have CAAT-box, TATA-box, light, stress, hormone, and development-related responsive cis-elements. However, the distribution and numbers varied significantly between the BnaDELLAs (Fig. 7B). In detail, BnaA09GAI, BnaA02RGL1 has a higher number of light-responsive and hormone-responsive elements. In contrast, BnaA06RGA, BnaA05RGL2, and BnaA10RGL3 carried a higher number of stress-responsive and development-related cis-elements, respectively. However, some of the cis core elements were only found in some BnaDELLAs. For example, GC-motif (enhancer-like element involved in anoxic specific inducibility), DRE-core (cis-acting regulatory element regulate cold stress, induce dehydration), and 3-AF binding site (part of a conserved DNA module array CMA3) were found in BnaA06RGA and BnaC07RGA. Similarly, GATA-motif (cis-acting regulatory element involved in light-responsive floral, hypocotyl, and seed development), AT-Rich sequence (cis-element for maximal elicitor-mediated activation) were present in BnaCO9GAI and BnaA09GAI. ATCT-motif (Part of a conserved DNA module involved in light responsiveness), Gap-Box (cis-acting element related to light-responsive GapA gene) was present in BnaC02RGL1 and BnaA02RGL1, respectively. Moreover, AuxRR-Core (cis-acting regulatory element involved in auxin responsiveness) was only found in BnaA05RGL2 and BnaA05RGL2-2. In contrast, O2-site (cis-regulatory element involved in zein metabolism regulation) was absent in all BnaDELLAs except BnaC09RGL3 and BnaA10RGL3 (Fig. 7A). These results showed that the BnaDELLA gene family contains a wide variety of stress and defense-related cis-elements compared to development, light, and hormone-responsive cis-elements, suggesting the BnaDELLAs diverse function in response to various biotic and abiotic stresses.

Transcriptomic and qRT-PCR analysis of BnaDELLAs in different tissues
The BnaDELLA gene family transcriptomic expression data from the roots, cotyledon, leaf, sepal, petal, filament, pollen, bud, middle stem, lower stem, upper stem,
Table 2 bna-miRNA targets BnaDELLA genes

miRNA_Acc	Gene symbol	Target_Acc	Target start	Target end	miRNA aligned fragment	Alignment length	e-value
bna-miR6029	BnaC07RGA	BnaC07G0269400ZS	590	610	UGGGGUUGUGAUUUCAGGCUU	21	5
bna-miR6031	BnaA09GAI	BnaA09G0218400ZS	1667	1690	AAGGGUUGGAGGGGUUGAAGC	24	5
bna-miR6036	BnaA09GAI	BnaA09G0218400ZS	1581	1591	AUAUGACUAGLUCUUGCAUGAUC	11	5.5
BnaC09GAI	BnaC09G0254100ZS	1551	1561	11	5.4		
BnaA06RGA	BnaA06G0409200ZS	1563	1573	11	5.4		
BnaC07RGA	BnaC07G0269400ZS	566	578	13	0.35		
bna-miR6028	BnaC09GAI	BnaC09G0254100ZS	1635	1645	UGGAGAUAAGGCAUCAGA	11	5.4
BnaA06RGA	BnaA06G0409200ZS	1647	1657	11	5.4		
BnaC07RGA	BnaC07G0269400ZS	1659	1669	11	5.4		
bna-miR390a	BnaA06RGA	BnaA06G0409200ZS	275	285	AAGCUCAGGAGGAGAUCG	11	5.4
bna-miR171f	BnaA06RGA	BnaA06G0409200ZS	888	898	UGAUGAGCCGCGCCAUAUC	11	5.4
bna-miR156b	BnaC07RGA	BnaC07G0269400ZS	108	123	UUGGAGAAGGAGGAGGAGC	16	1.4
bna-miR168b	BnaC07RGA	BnaC07G0269400ZS	1079	1089	UCUCUGGAGGGAGGAGGAA	11	5.4
bna-miR160a	BnaC07RGA	BnaC07G0269400ZS	1530	1540	UGGCCUGCCUGUAGUGCCA	11	5.4
bna-miR2111a	BnaC02RGL1	BnaC02G0205300ZS	1375	1391	GUCUCUGGAGGAGGAGGAG	17	0.31
bna-miR172b	BnaC02RGL1	BnaC02G0205300ZS	1038	1048	GGAUUGAGGAGGAGGAGGAG	11	4.8
bna-miR166e	BnaC02RGL1	BnaC02G0205300ZS	612	623	UCCUCUCAGGAGGAGGAG	12	1.2
bna-miR166a	BnaA02RGL1	BnaA02G0160500ZS	1187	1198	UCGCCAGGGACGCGCUUCUCCC	12	1.2
bna-miR6030	BnaC02RGL1	BnaC02G0205300ZS	736	746	UCCACCCCAUACCACAGAC	11	4.8
bna-miR2111c	BnaC02RGL1	BnaC02G0205300ZS	1288	1298	UAAACGCAUACCACAGAC	11	4.8
bna-miR172b	BnaC02RGL1	BnaC02G0205300ZS	1041	1051	GGAUUGAGGAGGAGGAGGAG	11	4.8
bna-miR390a	BnaA10RGL3	BnaA10G0194400ZS	1442	1452	AAGCUCAGGAGGAGGAGGAG	11	4.9
bna-miR168a	BnaC09RGL3	BnaC09G0489900ZS	404	414	AAGCUCAGGAGGAGGAGGAG	11	4.9

Fig. 7 cis-acting element prediction in the BnaDELLAs. A The values in the circle indicated the count of cis-acting element in the promoter of BnaDELLAs. B The different colored block lines represent the different types and positions of cis-acting elements in each BnaDELLA gene
vegetative rosette, siliques, silique wall, and seed of the *B. napus* cultivar ZS11, were obtained from the BnTIR database http://yanglab.hzau.edu.cn/BnTIR. The extracted data normalized by log2 fold change and heatmap was generated. As shown in Figure S4, the expression patterns of the 10 *BnaDELLA*s were different among roots, cotyledon, leaf, sepal, petal, filament, pollen, bud, middle stem, lower stem, upper stem, vegetative rosette, siliques, silique wall, and seed, which points out that the additional copies of the homologs *BnaDELLA*s show variations in expression during seed germination to reproductive development. This can provide important insights into these genes distinct roles in *B. napus*. To better understand the expression pattern of the *BnaDELLAs*, we performed qRT-PCR in eight primary tissues (root, mature-siliques, leaf, flower, flower-bud, stem, shoot-apex, seed) of *B. napus* cultivar ZS11. We found a strong correlation between the transcriptomic and our qRT-PCR results (Fig. 8). On the whole, *BnaGAI* and *BnaRGA* are highly expressed in the stem and shoot-apex, while *BnaRGL1* and *BnaRGL2* were mainly expressed in the floral organs and seed, respectively. Conversely, in our qRT-PCR analysis, *BnaRGL3* shows minimal expression in any tissues. However, combined with transcriptomic data analysis, *BnaRGL3* expression was highly observed in the siliques. The contradiction between the qRT-PCR and transcriptomic data, especially in the *BnaRGL3* expression, might be due to the harvesting of siliques at six and 28 days after flowering, which show the complex variation of the *BnaDELLA*s from seed germination to vegetative and reproductive development. This result indicates the unique expression patterns of the *BnaDELLA*s at multiple plant tissues, which might play an indispensable role in regulating gibberellins and other phytohormones signals to mediate plant growth and survival tradeoff under constant stress conditions.

Expression analysis of BnaDELLAs under different stress

To further explore and gain more insights into possible *BnaDELLA*s function under biotic and abiotic stresses. We studied the pre-published RNA-seq data to detect the genes expression patterns under different stress conditions, such as MA (Cold shock at chilling 4 °C and freezing −4 °C temperatures), CA (4 degree Celsius 12 h following cold acclimation 14 days 4 degree Celsius), FA (4 degree Celsius 12 h following cold acclimation 14 days 4 degree Celsius), DT (Drought treated), HT (Heat treatment), ABA (Abscisic acid), salinity, and *Sclerotinia sclerotiorum*. Overall, RNA-seq data analysis exhibits the *BnaDELLA*s expression patterns varied upon different stress treatments. For instance, *BnaRGL2* was upregulated by all denoted stresses except in drought and salt (Fig. 9). Whereas, *BnaGAI* show putatively induced expression in response to MA, HT, DT, and salinity. In
contrast, BnaA10RG3, BnaC09RGL3 almost exhibits reduced expression in response to heat, drought, ABA, and salt treatment. However, higher expression was observed during cold and Sclerotinia sclerotiorum treatment. Many previous studies on AtDELLA genes have provided evidence of their distinct and fundamental role in regulating plant physiology under abiotic and biotic stresses [33, 54–56], suggesting the strong relation of the BnaDELLA gene family in improving stress tolerance.

Gene Ontology

In order to understand the functional regulatory mechanism of the BnaDELLA gene family, we used the AtDELLA orthologous pairs of the A. thaliana to performed GO enrichment analysis. Three common categories of GO terms were observed including, biological process (BP), cellular component (CC), and molecular function (MF). In the MF category, DELLA genes are highly enriched in binding (GO:0,003,700), (GO:0,005,515), and transcriptional regulation activity (GO:0,140,110). CC is enriched in the nucleus (GO:0,005,634), which exhibits that DELLA are nuclear proteins. Similarly, most of the GO terms (GO:0,009,737, GO:0,009,739, GO:0,009,740, GO:0,009,753, GO:0,042,538, GO:0,009,863, GO:0,072,593, GO:0,009,651, GO:0,009,908, GO:2,000,033, GO:0,030,154, GO:0,010,187, GO:0,009,938, GO:0,006,355, GO:0,010,218, GO:0,009,723) were abundant in biological process, indicating a response to hormones and stresses (Figure S5, Table S8). This GO enrichment results suggested that the BnaDELLAs play a pivotal role in regulating hormonal signaling in response to stresses, which is consistent with previous studies [9, 57–59].

Discussion

In this study, 10 putative BnaDELLAs were identified from the B. napus genome and grouped into three sub-families BnaGAI/BnaRGA, BnaRGL1, and BnaRGL2/BnaRGL3 based on their homology. Systematic analyses such as phylogenetic relation, gene structure, motif composition, physicochemical properties, gene duplication, miRNA prediction, and cis-element analysis in the promoters were performed. Moreover, qRT-PCR and
pre-published RNA-seq data were analyzed to disclose the expression profiling of the BnaDELLAs. These results provide valuable insight for further functional characterization of the BnaDELLA gene family, which could improve molecular breeding to accommodate rapeseed plants to the expected climate conditions.

DELLA proteins are well-known as negative coregulators that mediate crosstalk between GAs and various hormonal signals to maintain plant growth and survival tradeoff, responding to abiotic and biotic conditions [8, 10]. Previous reports on the seeded plant had identified one, two, and five DELLA genes in Oryza sativa [25], Pisum sativum [27], and A. thaliana, respectively. Cloning and modulating DELLA proteins in these plants resulted in increased harvest index, seed quality, tillering, flowering, and stress tolerance. For example, overaccumulation of the DELLA protein enhances the submergence tolerance [60], salt stress [61], and shade avoidance [62, 63], which significantly improves plant fitness. In contrast, reduced DELLA protein expression decreases tillering [64, 65] and seed dormancy [66], thus increasing seed weight and germination. In this study, a total of 10 BnaDELLAs have been identified in B. napus, which means that the individual AtDELLA have multiple homologs in B. napus. Rapeseed is an allotetraploid (AACC) crop that originated from the hybridization of two diploid progenitors B. rapa (AA) and B. oleracea (CC) [67]. Chromosomal mapping indicated that five and four BnaDELLAs are located on the proximal or the distal ends of AA and CC subgenome, respectively (Fig. 4), which exhibits that homologs of BnaDELLAs might play a similar role in biological function as both ancestral species.

DELLA gene family contain two highly conserved N-terminal DELLA and C-terminal GRAS domain in various plant species. In this study, it was found that the BnaDELLA gene family shared similar types of conserved domains. However, motif numbers and their composition between BnaDELLAs are unevenly distributed, indicating the domain shuffling in the protein structure of the BnaDELLAs, which may suggest functional diversification of the BnaDELLA gene family.

DELLA gene family in A. thaliana, B. napus, B. rapa, B. oleracea, and B. juncea shows a significant gene structure containing a single exon and does not have any introns. It has been shown that the genes with no or fewer introns expressed rapidly in response to biotic and abiotic stresses [68, 69]. Compared with transcriptomic data used in this study, we detected the distinct expression patterns of the intronless BnaDELLAs in response to cold, drought, heat, Sclerotinia sclerotiorum, salinity, and ABA treatments, suggesting the strong relation of BnaDELLAs to biotic and abiotic stresses (Fig. 9, Table S7). Moreover, exon composition exhibited the higher evolutionary conservation of DELLA genes among Brassicaceae species (Fig. 2).

DELLA proteins are well described as master repressors of GAs signaling to modulate plant physiology [70, 71]. GAs derepress DELLA repression through several positive regulators, including GA receptors GA-INSENSITIVE DWARF 1 (GID1), SPINDLY (SPY), and F-box protein (SLY1, SNE) under natural environment to stimulate plant growth [44]. However, several studies have illustrated that the DELLA stability can be regulated through GAs dependent and independent proteolysis [72, 73]. A recent study has hypothesized that the rice microRNA (OsmiR396) putatively regulates the rice DELLA gene SLR1, targeting GA-responsive growth-regulating factors (GRFs) to inhibit growth promotion in rice [74]. In this study, a total of 18 bna-miRNAs were predicted in targeting the BnaDELLAs (Table 2). In which, BnaC07RGA and BnaA09GAI are putatively regulated by the two known miRNAs bna-miR6029 and bna-miR6031, respectively. In compliance with this, a recent study has shown that the increased expression of the bna-miR6029 regulates fatty acid biosynthesis to mediate seed development in response to environmental challenges [75]. Thus, we speculate that the BnaDELLAs were the most likely targeted genes by the predicted bna-miRNAs to mediate plant growth and survival tradeoff under constant exogenous or endogenous stimuli. However, further investigation is needed to elucidate the miRNA process with BnaDELLA genes.

This study also discovers diverse cis-elements in BnaDELLAs promoter, including light-responsive, hormones responsive, and stress-related elements (Fig. 7), but their distribution is uneven. For instance, BnaA02RGL1, BnaC02RGL1, and BnaA09RGL3, BnaC09RGL3 had two ABREs in their promoter regions, while BnaA05RGL2 and BnaA05RGL2-2 had no ABREs, although they were considered to induced ABA response differently. Additionally, BnaA05RGL2 and BnaA05RGL2-2 had one MBS cis-element in their promoter regions. Intriguingly, the BnaRGL2 gene relative expression was not observed in the drought treatment (Fig. 9). Thus, these findings indicate the presence of unidentified cis-elements and signify that the expression of BnaDELLAs might be regulated through post-transcriptional modification [50, 52], which provides the clue for gene expression studies under different biotic and abiotic stresses. Researches on A. thaliana have identified five AtDELLA genes GA-Insensitive (GAI), Repressor of ga1-3 (RGA), RGA-Like1 (RGL1), (RGL2), (RGL3). Cloning and sequencing of these AtDELLA genes reported the distinct and overlapping role in regulating GAs stimulated plant growth. For instance,
AtGAI and AtRGA control hypocotyl cell division and floral induction [29, 30, 76]. AtRGL1 and AtRGL2 are involved in modulating leaf senescence, male sterility, and seed germination [32, 33]. While AtRGL3 has been reported to contribute plant defense in response to biotic stresses [10, 35, 77]. Consistent with this, our gene expression profiling and pre-published RNA-Seq data analysis (Table S5, Table S7) putatively indicate the distinct expression patterns of the BnaDELLA gene family in response to biotic and abiotic stresses.

For instance, BnaRGL2 shows higher expression in all tested stresses except in drought, salinity, and Sclerotinia sclerotiorum (Fig. 9). Whereas, BnaGAI is expressed in stems and shows a response to MA, HT, DT, and salinity. In contrast, BnaRGL3 almost exhibited reduced expression in response to heat, drought, and ABA treatment. However, induced expression was observed during cold and salt treatment. These findings are consistent with studies that have also been found on their homologs in A. thaliana [78, 79]. Moreover, previous studies also confirmed the increased expression of the AtRGL3 in response to the plant defense [10, 35, 77]. Combined with transcriptomic data used in this study, we observed the increased expression of the BnaA09RGL3 and BnaC09RGL3 in 24 h of Sclerotinia sclerotiorum infection (Fig. 9), suggesting the BnaRGL3 vital role in mediating B. napus survival under constant stress condition. Furthermore, BnaRGL2 homolog in A. thaliana AtRGL2 is indicated as an essential component to positively regulate ABA responses to promote seed dormancy [80–82]. In our qRT-PCR and RNA-seq analysis, we found that BnaRGL2 was mainly expressed in the seeds and putatively showed induced expression after 4 h of ABA treatment but eventually reduced after 24 h of ABA treatment. However, further experimental studies are required to gain more insights into the BnaDELLAs in the ABA signal transduction pathway. In contrast, during salt stress, the transcripts of the BnaA09GAI, BnaC09GAI, and BnaCO9RGL3 were up-regulated, whereas the rest of the BnaDELLAs were down-regulated (Fig. 9), suggesting the importance of BnaGAI in susceptibility to severe salt stress. Importantly the link of AtGAI with salt stress has been identified, which confirmed the enhanced salt tolerance by restraining the plant growth [83, 84].

Our study provides functional diversification and comprehensive knowledge of the BnaDELLA gene family in B. napus. However, further experimental studies are needed to better understand the distinct roles of the BnaDELLAs under biotic and abiotic stress conditions, which will help consolidate our understanding of plant ontogenesis and enhance agronomic techniques to improve B. napus yield.

Conclusions

A significant role of DELLA proteins is to mediate GAs and almost all phytohormones signaling pathways to maintain a dilemma between plant defense and growth under constant stresses. In our study, we identified and characterized the BnaDELLA gene family in B. napus. A total of 10 BnaDELLAs have been identified in the B. napus genome and classified into three groups. All of the BnaDELLAs are closely related to the A. thaliana five DELLA genes, suggesting a comparable function and gene structure. The motifs composition within the same subfamily is uneven; however, individual BnaDELLA gene contains 12 highly conserved motifs, encoding the DELLA and GRAS domains. Phylogenetic and syntenic study of the DELLA genes between B. napus and its ancestral species provides helpful hints or evolutionary features of the BnaDELLAs. Moreover, miRNAs targets, cis-acting elements, and transcriptional regulation of the BnaDELLA gene family were also predicted. Overall, these results provide valuable clues into the evolutionary relationship and potential functions of the BnaDELLAs, which will be helpful for further genetic manipulation toward developing B. napus variants with enhanced tolerance to environmental fluctuation.

Methods

Identification and protein sequence analysis of BnaDELLAs

In order to search the DELLA gene family in B. napus, the peptide sequence of the five DELLA genes from A. thaliana was used as queries to perform BLAST P search in B. napus Genome browser (BnPIR, http://cbi.hzau.edu.cn/bnapus), and (GENOSCOPE, https://www.genoscope.cns.fr/brassicanapus/). Those from B. oleracea, B. rapa, B. juncea, and B. nigra were downloaded from Brassica Database (BRAD, http://brassicadb.cn/#). The sequences with 80% similarity were selected, and incorrectly or repeated sequences were manually re-annotated for DELLA domain analysis in the scan ScanProsite (https://prosite.expasy.org) and InterProScan (https://www.ebi.ac.uk/interpro/search/sequence/). The protein sequences were then used to calculate the isoelectric point (pI), molecular weight (MW), and the number of amino acids by the ProtParn tool (http://web.expasy.org/). Furthermore, prediction of subcellular localization pattern of each BnaDELLA was carried out using the web-server PlantmPLoc (http://www.csbio.sjtu.edu.cn/bioinf/plant-multi/) [85], and ProtComp v.9.0 in softberry (http://linux1.softberry.com/).
Phylogenetic and gene structure assessment of the DELLA in *B. napus*, *A. thaliana*, *B. rapa*, *B. oleracea*, *B. juncea*, *B. nigra*

Putative peptide sequences from the six *Brassicaceae* species *B. napus*, *A. thaliana*, *B. rapa*, *B. oleracea*, *B. juncea*, and *B. nigra* aligned using the MUSCLE (https://www.ebi.ac.uk/Tools/msa/muscle) with default parameters. Aligned sequences were then used to construct the evolutionary tree with the MEGA 10.2 software by the neighbor-joining (NJ) method [86]. The authenticity of the tree was tested by performing 1000 bootstrap replications. The phylogenetic tree Newick format was then uploaded to the iTOL web server (http://itol.embl.de/) for better visualization. Furthermore, genomic and coding sequences of the *B. napus*, *B. oleracea*, *B.rapa*, *B. juncea*, and *A. thaliana* DELLA genes were rendered in Gene Structure Display Server (GSDS2.0) (http://gsds.cbi.pku.edu.cn) to predict gene structure and exon/intron location.

Sequence alignment and evaluation of *BnaDELLAs* motifs

To classify the DELLA characteristic domains in the *B. napus*, we have aligned the 38 DELLA coding sequence from *B. napus*, *A. thaliana*, *B. rapa*, *B. oleracea*, *B. juncea*, and *B. nigra* by using the Muscle option in the MEGA 10 with default parameters. Furthermore, Motif Elicitation version 5.1.1 (MEME http://meme-suite.org/tools/meme) was used to identify the conserved motifs in the *BnaDELLAs* with the maximum motif search set to 20, and other parameters are set to default. Any repetitions were considered motifs sites that spread throughout the sequence [87]. Further annotation of the identified motifs was implemented by the InterProScan (InterPro ebi.ac.uk). The conserved motifs were visualized by using the TBtools software [88]. Additionally, the secondary structure of the *BnaDELLAs* proteins is carried by PSIPRED (http://bioinf.cs.ucl.ac.uk/PSIPRED).

Chromosome location, collinearity analysis, and site-specific selection assessment and testing

BnaDELLAs detailed chromosome location was acquired from the GFF genome file downloaded from *B. napus* genomic database (BnPIR, http://cbi.hzau.edu.cn/bnapus), and mapped the predicted location on the chromosome by using the TBtools software with red-colored gene names indicated as relative position. Gene duplication events were identified by aligning the *BnaDELLAs* sequences using BLASTP and MCScanX to characterize the *BnaDELLAs* into a tandem and segmental duplication [89]. Furthermore, the syntenic map of DELLA orthologous among *B. napus*, *A. thaliana*, *B. rapa*, *B. oleracea*, and *B. nigra* were obtained by the custom phyton script. For examining the site-specific selection, Bayesian inference approach Selecton Server (http://selecton.tau.ac.il/) [90] was used to predict the positive and purifying selection. Besides this, we also calculated the synonymous (Ks) and nonsynonymous mutation (Ka) at each codon by Kaks_Calculator 2.0 [91]. In addition, *BnaDELLA* gene pairs divergence time was presumed using the formula $T = Ks/2r$ with $r (1.5 \times 10^{-8})$ representing neutral substitution per site per year [92].

miRNA target prediction and cis-acting elements regulatory analysis

To validate the interactions between miRNA and their targets, we obtained the *B. napus* stem-loop and mature miRNA sequences from the PNRD (http://structuralbiology.cau.edu.cn/PNRD/index.php) [93] and miRbase (http://www.mirbase.org/) database. The Plant small RNA Target analysis server psirnATarget [94] with default parameters was used to predict the bna-miRNAs target genes in the *BnaDELLA* gene family. For cis-element analysis, 1500 bp upstream promoter sequence from the translation start site of the *BnaDELLAs* were inspected in the plantCARE database (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/) [95], and distribution of the cis-acting elements visualized by TBtools software [88].

Plant material RNA extraction and qRT-PCR

The seeds of *B. napus* cultivar ‘ZS11’ was donated by professor Liu Shengyi of Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan. *B. napus* was grown in the greenhouse of Institute of Life sciences Jiangsu University under the following conditions 20 ± 5°C, 16 h light /8 h dark at a light intensity of 50 μmol/m2/s and 70% relative humidity. Tissues from roots, mature-silique, leaves, flowers, flower-bud, stems, shoot-apex, and seeds were collected from adult plants and immediately frozen in liquid nitrogen and stored at -80°C for RNA extraction. The total RNA was extracted using Trizol (Invitrogen, Carlsbad, CA) and treated with RNase-free DNaseI (Invitrogen, Carlsbad, CA). Total RNA was then employed to produce cDNA with HiScript III-RT SuperMix for qPCR (Vazyme, China) according to the manufacturer’s instructions. Real-time fluorescence quantitative analysis (qPCR) was performed by Thermo Fisher Scientific QuantStudio 5 Real-Time PCR system with three independent replicates. The *B. napus* Actin gene (GenBank ID: XM_013858892) was used as an internal control. The $2^{-\Delta\Delta Ct}$ method was implemented to measure the relative gene expression level of *BnaDELLAs*. The relative expression of the *BnaDELLAs* in root was used as control, and a t-test was implemented to measure the significant difference among tissues, and the
results were visualized using GraphPad Prism8.0 software [96]. All of the gene-specific primers used in this study were designed by the Beacon primer design program (Primer Biosoft International, Palo Alto, CA) and listed in (Table S6).

Gene ontology and expression pattern analysis of BnaDELLAs

The BnaDELLAs functional properties were analyzed using the online web server DAVID (https://david.ncifcrf.gov/) and panther (http://go.pantherdb.org/webservices/go.overrep.jsp) to conduct Gene Ontology enrichment analysis. The predicted GO terms were annotated using the TBtools software. In addition, expression profiles of BnaDELLAs under heat, drought, cold, ABA induce, salt and Sclerotinia sclerotiorum stress condition were obtained from the pre-published transcriptomic data sets (SRP277041), (SRP190170) [97], (CRA001775) [98], and (SRP075294) [99]. The differential expression analysis was performed using the DESeq2 package in R. The predicted values were normalized by log2 fold change, and heatmap was generated via TBtools.

Abbreviations

B. napus: Brassica napus; A. thaliana: Arabidopsis thaliana; B. rapa: Brassica rapa; B. oleracea: Brassica oleracea; B. nigra: Brassica nigra; B. juncea: Brassica juncea; AtDELLA: Arabidopsis thaliana DELLA; BnaDELLA: Brassica napus DELLA; GAs: Gibberellins; GO: Gene ontology; BLASTP: Basic local alignment search tool; P-D and Y-G provided the RNA-seq data. R-S wrote the manuscript draft, and KM-Z revised and edited the manuscript. XL-T supervised the manuscript. All authors read and approved the final manuscript.

Funding

This work was supported by the National Key Research and Development Program of China (2016YFD0100305; 2016YFD0101904) and the National Natural Science Foundation of China (31671720), and the Distinguished Scholars Research Foundation of Jiangsu University (No. 10JDG134). The funding agencies did not play any role in the design, analysis, or interpretation of this study and the relevant data.

Availability of data and materials

The genome, protein, and genome transfer format (GTF) file of Arabidopsis thaliana, Brassica napus, Brassica rapa, Brassica oleracea, and Brassica nigra was downloaded from the Ensemble FTP download (http://plantsensembl.org/info/data/ftp/index.html). The RNA seq data under salinity and ABA treatment were available under the project ID: CRA001775 (https://bigd.big.ac.cn/). The supporting transcriptomic datasets have been deposited in the NCBI Sequence Read Archive (SRA, https://www.ncbi.nlm.nih.gov/sra) repository under accession numbers: SRP277041, SRP190170, and SRP075294. All data that support this study are included within the article and its additional files.

Supplementary Information

The online version contains supplementary material available at https://doi.org/10.1186/s12870-021-03054-x.

References

1. Kimber D, McGregor D. Brassica oilseeds: production and utilization: Cab international; 1995.
2. Zhang X, Zhang C, Xing L, Wang H. Investigation on 2008 low temperature and freeze injury on winter rape along Yangtze River. Oil Crop Science. 2008;30:122–6.
3. Boter M, Calleja-Cabera J, Carrera-Castano G, Wagner G, Hatzig SV, Snowdon RJ, Legaohc L, Bianchetti G, Boucheareau A, Nesi N, et al. An Integrative Approach to Analyze Seed Germination in Brassica napus. Front Plant Sci. 2019;10:1342–1342.
4. Huot B, Yao J, Montgomery BL, He SY. Growth-defense tradeoffs in plants: a balancing act to optimize fitness. Mol Plant. 2014;7:1267–87.
5. Vanstraalen M, Benkova E. Hormonal Interactions in the Regulation of Plant Development. Annu Rev Cell Dev Biol. 2012;28:463–87.
6. Albrecht T, Argueso CT. Should I fight or should I grow now? The role of cytokinins in plant growth and immunity and in the growth–defence trade-off. Ann Bot. 2017;119:725–33.
7. Patel D, Franklin KA. Temperature-regulation of plant architecture. Plant Signal Behav. 2009;4:577–9.
8. Hedden P, Thomas SG. Annual plant reviews, the gibberellins, vol. 49: John Wiley & Sons; 2016.
9. Daviere JM, Achard P. A Pivotal Role of DELLAs in Regulating Multiple Hormone Signals. Mol Plant. 2016;9:10–20.
10. Li Y, Yang Y, Hu Y, Liu H, He M, Yang Z, Kong F, Liu X, Hou X. DELLA and EDS1 Form a Feedback Regulatory Module to Fine-Tune Plant Growth-Defense Tradeoff in Arabidopsis. Mol Plant. 2019;12:1485–98.

11. Li Q-F, Wang C, Jiang L, Li S, Sun SS, He J-X. An interaction between BZR1 and DELLAs mediates direct signaling crosstalk between brassinosteroids and gibberellins in Arabidopsis. Sci. Signal. 2012;5:ra72-ra72.

12. Li K, Yu R, Fan LM, Wei N, Chen H, Deng XW. DELLAs-mediated PIF degradation contributes to coordination of light and gibberellin signalling in Arabidopsis. Nat Commun. 2016;7:11868–11868.

13. Sechet J, Frey A, Effroy-Cuzzi D, Berger A, Perreau F, Cuffe G, Charif D, Rajou L, Mouille G, North HA, et al. Xyloglucan metabolism differentially impacts the cell wall characteristics of the endosperm and embryo during Arabidopsis seed germination. Plant Physiol. 2016;170:1367–80.

14. Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He J, Blazquez MA, Alabadí D. Regulation of xylem fiber differentiation by gibberellins through DELLA-KNAT1 interaction. Development. 2018;145.

15. Zhao B, Li H, Li J, Wang B, Dai C, Wang J, Liu K. Brassinica napus DS-3, encoding a DELLA protein, negatively regulates stem elongation through gibberellin signaling pathway. Theor Appl Genet. 2017;130:727–41.

16. Fuentes S, Ljung K, Sorefan K, Alvey E, Harberd NP, Østergaard L. Fruit development. Plant Signal Behav. 2009;4:689–92.

17. Liang N, Zhan Y, Yu L, Wang Z, Zeng F. Characteristics and expression analysis of FmTCP15 under abiotic stresses and hormones and interact with DELLA protein in Fraxinus mandschurensa Rupr. Forests. 2018;9:650–60.

18. Li K, Yu R, Fan LM, Wei N, Chen H, Deng XW. DELLAs-mediated PIF degradation contributes to coordination of light and gibberellin signalling in Arabidopsis. Nat Commun. 2016;7:11868–11868.

19. Cheng H, Qin L, Lee S, Fu X, Richards DE, Cao D, Luo D, Harberd NP, Peng J. Gibberellin regulates Arabidopsis floral development via suppression of DELLA protein function. Development. 2004;131:1053–64.

20. Achard P, Gowing F, Cheminant S, Alioua M, Hedden P, Genschik P. The cold-inducible CBF1 factor-dependent signaling pathway modulates the accumulation of the growth-suppressing DELLA proteins via its effect on gibberellin metabolism. Plant Cell. 2008;20:2117–29.

21. Li Q-F, Wang C, Jiang L, Li S, Sun SS, He J-X. An interaction between BZR1 and DELLAs mediates direct signaling crosstalk between brassinosteroids and gibberellins in Arabidopsis. Sci. Signal. 2012;5:ra72-ra72.

22. Liang N, Zhan Y, Yu L, Wang Z, Zeng F. Characteristics and expression analysis of FmTCP15 under abiotic stresses and hormones and interact with DELLA protein in Fraxinus mandschurensa Rupr. Forests. 2018;9:650–60.

23. Li Q-F, Wang C, Jiang L, Li S, Sun SS, He J-X. An interaction between BZR1 and DELLAs mediates direct signaling crosstalk between brassinosteroids and gibberellins in Arabidopsis. Sci. Signal. 2012;5:ra72-ra72.

24. Li K, Yu R, Fan LM, Wei N, Chen H, Deng XW. DELLAs-mediated PIF degradation contributes to coordination of light and gibberellin signalling in Arabidopsis. Nat Commun. 2016;7:11868–11868.
COP1 destabilizes DELLA proteins in Arabidopsis. Proc Natl Acad Sci USA. 2020;117:17929–32.

Zhou M, Chen H, Wei D, Ma H, Lin J. Arabidopsis CBF3 and DELLA proteins positively regulate each other in response to low temperature. Sci Rep. 2017;7:1–13.

Hauvermale AL, Tuttel KM, Takebayashi Y, Seo M, Steber CM. Loss of Arabidopsis thaliana Seed Dormancy is Associated with Increased Accumulation of the GID1- GA Hormone Receptors. Plant Cell Physiol. 2014;56:1773–85.

Achard P, Liao LL, Jiang CF, Desnos T, Bantlett J, Fu XD, Harberd NP. DELLA contribute to plant photomorphogenesis. Plant J. 2007;43:163–72.

De Vleesschauwer D, Seifi HS, Filipe O, Haeck A, Huu SN, Demeestere K, Achard P, Liao LL, Jiang CF, Desnos T, Bartlett J, Fu XD, Harberd NP. Arabidopsis thaliana Seed Dormancy is Associated with Increased Accumulation of the GID1- GA Hormone Receptors. Plant Cell Physiol. 2014;56:1773–85.

Achard P, Liao LL, Jiang CF, Desnos T, Bantlett J, Fu XD, Harberd NP. DELLA contribute to plant photomorphogenesis. Plant J. 2007;43:163–72.

Zhou M, Chen H, Wei D, Ma H, Lin J. Arabidopsis CBF3 and DELLA proteins positively regulate each other in response to low temperature. Sci Rep. 2017;7:1–13.

De Vleesschauwer D, Seifi HS, Filipe O, Haeck A, Huu SN, Demeestere K, Achard P, Liao LL, Jiang CF, Desnos T, Bartlett J, Fu XD, Harberd NP. Arabidopsis thaliana Seed Dormancy is Associated with Increased Accumulation of the GID1- GA Hormone Receptors. Plant Cell Physiol. 2014;56:1773–85.

Achard P, Liao LL, Jiang CF, Desnos T, Bantlett J, Fu XD, Harberd NP. DELLA contribute to plant photomorphogenesis. Plant J. 2007;43:163–72.
of genomic SSRs and demonstration of their utility in genetic diversity analysis. Sci Rep. 2020; 10.
99. Girard IJ, Tong CB, Becker MC, Mao XY, Huang JY, de Kievit T, Fernando WGD, Liu SY, Belmonte MF. RNA sequencing of Brassica rapus reveals cellular redox control of Sclerotinia infection. J Exp Bot. 2017;68:5079–91.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.