KNOT MUTATION: 4–GENUS OF KNOTS AND ALGEBRAIC CONCORDANCE

SE-GOO KIM AND CHARLES LIVINGSTON

Abstract. Kearton observed that mutation can change the concordance class of a knot. A close examination of his example reveals that it is of 4–genus 1 and has a mutant of 4–genus 0. The first goal of this paper is to construct examples to show that for any pair of nonnegative integers \(m \) and \(n \) there is a knot of 4–genus \(m \) with a mutant of 4–genus \(n \).

A second result of this paper is a crossing change formula for the algebraic concordance class of a knot, which is then applied to prove the invariance of the algebraic concordance class under mutation. The paper concludes with an application of crossing change formulas to give a short new proof of Long’s theorem that strongly positive amphicheiral knots are algebraically slice.

1. Introduction

The main goal of this paper is to examine the effect of knot mutation on two concordance invariants of knots, the 4–ball genus and the algebraic concordance class. In the first case the extent to which mutation can change the 4–genus is completely described. In the second case it is shown that the algebraic concordance class of a knot, as defined by Levine [19], is invariant under mutation. In the course of our work we develop crossing change formulas for algebraic knot invariants. In the final sections of this paper we apply such an approach to demonstrate that Long’s theorem that strongly positive amphicheiral knots are algebraically slice is an immediate corollary of the Hartley-Kawauchi theorem that such knots have Alexander polynomials that are squares. Lastly, we show that the Hartley-Kawauchi theorem also follows from a similar crossing change approach.

Mutation and Algebraic Concordance. The construction of a mutant \(K^* \) of a knot \(K \) consists of removing a 3–ball \(B \) from \(S^3 \) that meets \(K \) in two proper arcs and gluing it back in via an involution \(\tau \) of its boundary \(S \), where \(\tau \) is orientation preserving and leaves the set \(S \cap K \) invariant. This is among the most subtle constructions of knot theory in that it leaves a wide range of knot invariants unchanged [1, 10, 11, 13, 14, 26, 29, 30, 31]. Most relevant to the work here is the statement of [4] that the Tristram-Levine signatures, \(\sigma_\omega \), are invariant under mutation, since, for \(\omega \) a prime power root of unity, these provide the strongest classical bounds on the 4–genus [27, 52]: \(|\sigma_\omega(K)|/2 \leq g_4(K) \). In Sections 7 and 8 we give proofs of the more general result:

Theorem 1.1. For any knot \(K \), \(\phi(K) = \phi(K^*) \), where \(\phi : \mathcal{C} \to \mathcal{G} \) is Levine’s homomorphism from the knot concordance group to the algebraic concordance group [19].

Date: March 29, 2022.

1991 Mathematics Subject Classification. Primary 57M25.
The proof of Section 7 is entirely self-contained and in addition gives a previously unnoticed crossing change formula for the algebraic concordance class of a knot. (As a side note, in Section 9 we use this crossing change formula to give a quick derivation of a result of Long that strongly positive amphicheiral knots are algebraically slice.) In Section 8 an alternate proof of Theorem 1.1 is presented; this argument is somewhat briefer, but depends on the detailed analysis of Seifert forms given in [4].

Mutation and the 4-Genus of a Knot. The 4–genus of a knot, \(g_4(K) \), is the minimum genus of an embedded surface bounded by \(K \) in the 4–ball. This can be defined in either the smooth or topological locally flat category; the results of this paper apply in either. It is an especially challenging invariant to compute; there remain low crossing number knots for which it is uncomputed, though the smooth category has advanced considerably in recent years, most notably with the solution of the Milnor conjecture which gives the 4–genus of torus knots [17].

Almost nothing has been known concerning the interplay between mutation and the 4–genus. Basically the only success in this realm consists of Kearton’s observation [12] that an example of [22] yields an example for which mutation changes the concordance class of a knot. A close examination of that example shows that it has 4–genus 1, but it has a mutant of 4–genus 0. Further such examples have since been developed in [15, 16]. Our main result regarding the 4–genus is the following.

Theorem 1.2. For every pair of nonnegative integers \(m \) and \(n \), there is a knot \(K \) with mutant \(K^* \) satisfying \(g_4(K) = m \) and \(g_4(K^*) = n \).

It should be noted that the original argument of [22] was based on a paper of Gilmer [5] in which it is now known an error appears. To correct for that, the argument of [22] should be based on a 3–fold branched cover rather than the 2–fold cover. The present work thus serves to give the corrected argument for [22].

Strongly Positive Amphicheiral Knots. A knot \(K \) is called strongly positive amphicheiral if when viewed as a knot in \(\mathbb{R}^3 \) it has a representative that is invariant under the map of \(\mathbb{R}^3 \), \(\tau(x, y, z) = (-x, -y, -z) \). We consider two theorems:

Theorem 1.3 (Long’s Theorem [25]). If \(K \) is strongly positive amphicheiral, then \(K \) is algebraically slice.

Theorem 1.4 (Hartley-Kawauchi Theorem [9]). If \(K \) is a strongly positive amphicheiral knot, then the Alexander polynomial \(\Delta_K(t) = (F(t))^2 \), where \(F \) is a symmetric polynomial.

In Section 9 we use crossing change formulas developed earlier to prove that Long’s theorem is an immediate corollary of the Hartley-Kawauchi result. In Section 10 we use a crossing change argument to give a new proof of the Hartley-Kawauchi theorem.

2. **Background on Casson-Gordon invariants**

A key tool in the proof of Theorem 1.2 is the main theorem from [6] bounding Casson-Gordon invariants in terms of the 4–genus of a knot. Here is a simplified description of that result, based on the statement of the theorem and later remarks in [6].
Theorem 2.1 (Gilmer’s Theorem). Let K be an algebraically slice knot such that $g_4(K) = g$ and let M_q be the q–fold branched cover of S^3 branched over K with q a prime power. Let β denote the linking form on $H_1(M_q, \mathbb{Z})$. Then β can be written as a direct sum $\beta_1 \oplus \beta_2$ such that 1) β_1 has a presentation of rank $2(q - 1)g$ and 2) β_2 has a metabolizer D such that for any character χ of prime power order on $H_1(M_q, \mathbb{Z})$ given by linking with an element in D, one has:

$$|\sigma(K, \chi)| \leq 2qg.$$

Here $\sigma(K, \chi)$ is the Casson-Gordon invariant, originally denoted $\sigma_1 \tau(K, \chi)$ in [2, 6]. We will need to know that D can be taken to be equivariant with respect to the deck transformation of M_q. Details concerning this and other points will be given below, as they arise.

In our applications the group $H_1(M_q, \mathbb{Z})$ will also be a vector space over a finite field, in which case a metabolizer for β_2 will be half-dimensional. Hence:

Corollary 2.2. In the statement of Gilmer’s Theorem, if $H_1(M_q, \mathbb{Z}) \cong H_1(M_q, \mathbb{Z}_p)$, a \mathbb{Z}_p–vector space, then the conclusion of (1) can be restated as 1) $\dim(\beta_1) \leq 2(q - 1)g$ and in (2) the metabolizer D satisfies $\dim(D) \geq (\dim(H_1(M_q, \mathbb{Z}_p)) - 2(q - 1)g)/2$.

3. The Building Blocks

Figure 1 illustrates a knot K_J of genus 1. The bands in the surface are tied in knots J and $-J$, for a knot J to be determined later. The twisting of the bands is such that the Seifert matrix for K_J is

$$\begin{pmatrix} 0 & 2 \\ 1 & 0 \end{pmatrix}.$$

Figure 1.

Knots related to this one have been carefully analyzed elsewhere, for example [8, 22, 23], and the details of the following results can be found there. Here are the relevant facts.

1) If M_3 denotes the 3–fold branched cover of S^3 branched over K_J, then $H_1(M_3, \mathbb{Z}) = \mathbb{Z}_7 \oplus \mathbb{Z}_7$.

2) As a \mathbb{Z}_7–vector space, $H_1(M_3, \mathbb{Z})$ splits as the direct sum of a 2–eigenspace, spanned by a vector e_2, and a 4–eigenspace, spanned by a vector e_4, with respect to the linear transformation induced by the deck transformation.
Linking with \(e_i \) induces a character \(\chi_i : H_1(M_3, \mathbb{Z}) \to \mathbb{Z}_7 \). Results of Litherland \[21\] (see also \[7, 8\]) give the following:

\[
\sigma(K, \chi_2) = \sigma_1/7(J) + \sigma_2/7(J) + \sigma_3/7(J),
\]

\[
\sigma(K, \chi_4) = -\sigma_1/7(J) - \sigma_2/7(J) - \sigma_3/7(J).
\]

Here \(\sigma_{a/b} \) denotes the classical Levine-Tristram signature, also written as \(\sigma_\omega \) with \(\omega = e^{(a/b)2\pi i} \). To simplify notation we abbreviate, for any knot \(J \),

\[
s_7(J) = \sigma_1/7(J) + \sigma_2/7(J) + \sigma_3/7(J).
\]

There are knots for which \(s_7 \) is arbitrarily large, for instance connected sums of trefoil knots.

4. The Basic Examples

We denote by \(L_J \) the connected sum of \(K_J \) with its mirror image, reversed:

\[
L_J = K_J^\# - K_J^\ast.
\]

As observed by Kearton, \(L_J \) is a mutant of the slice knot \(K_J^\# - K_J \).

Theorem 4.1. For any choice of \(J \), \(g_4(L_J) \leq 1 \) and thus \(g_4(nL_J) \leq n \).

Proof. Figure 2 illustrates \(L_J \). A simple closed curve on the genus 2 Seifert surface \(F \) is indicated. This curve has self-linking number 0 and represents the slice knot \(J^\# - J \). Thus \(F \) can be surgered in the 4–ball to reduce its genus to 1, showing that \(L_J \) bounds a surface of genus 1 in the 4–ball, as desired.

The homology of the 3–fold branched cover of \(L_J, N_3 \), naturally splits as \((\mathbb{Z}_7 \oplus \mathbb{Z}_7) \oplus (\mathbb{Z}_7 \oplus \mathbb{Z}_7)\) with a 2–eigenspace spanned by the vectors \(e_2 \oplus 0 \) and \(0 \oplus e_2' \), which we abbreviate simply by \(e_2 \) and \(e_2' \). Similarly for the 4–eigenspace. We denote the corresponding \(\mathbb{Z}_7 \)–valued characters given by linking with \(e_2 \) and \(e_2' \) by \(\chi_2 \) and \(\chi_2' \), respectively.

Theorem 4.2. The Casson-Gordon invariants of \(L_J \) are given by:

\[
\sigma(L_J, a\chi_2 + b\chi_2') = \epsilon(a)s_7(J) + \epsilon(b)s_7(J)
\]

\[
\sigma(L_J, a\chi_4 + b\chi_4') = -\epsilon(a)s_7(J) + \epsilon(b)s_7(J)
\]

where \(\epsilon(x) = 0 \) or 1 depending on whether \(x = 0 \) or \(x \neq 0 \) mod 7.
Proof. This follows from the additivity of Casson-Gordon invariants; see [21] or [5].

The only unexpected aspect of the formula is that, since we have $K_j \# - K_j'$, it might have been anticipated that the difference $\epsilon(a)s_7(J) - \epsilon(b)s_7(J)$ would appear rather than the sum. This switch occurs because the connected sum involves the mirror image of reverse, rather than simply the mirror image; thus the role of J and $-J$ are reversed in the second summand. \hfill \Box

5. Proof of Theorem 1.2

As observed by Kearton, for any knots L_1 and L_2, the connected sums $L_1\# - L_2$ and $L_1\# - L_2'$ are mutants of each other. Hence, it follows immediately that for $m < n$, nL_j is a mutant of $mL_j\#(n-m)(K_j\# - K_j)$. Since $K_j\# - K_j$ is slice, this second knot is concordant to, and hence of the same 4–genus as, mL_j. To prove Theorem 1.2, we show that for each positive integer n there exists a knot J so that for all $m \leq n$, $g_4(mL_j) = m$.

At this point we fix some positive integer n and select an arbitrary m, $1 \leq m \leq n$. The knot J will be chosen as its necessary properties become apparent.

Suppose that mL_j bounds a surface F in the 4-ball with genus $g(F) = k < m$. Let V_j denote the 3–fold branched cover of $B^4 \text{ branched over } F$, having boundary the m–fold connected sum, mN_3. Also, abbreviate by D the image of $\text{Tor}(H_2(V_j, mN_3, \mathbb{Z}))$ in $H_1(mN_3, \mathbb{Z})$. An examination of the proof of Gilmer’s Theorem in [6] reveals that this D is the metabolizer given in our statement of his theorem above. Thus, for any χ corresponding to an element in D we have $|\sigma(mL_j, \chi)| \leq 6k$.

With \mathbb{Z}_7–coefficients, $H_1(mN_3, \mathbb{Z})$ has dimension $4m$, so by Gilmer’s Theorem we have $\text{dim}(H_1(mN_3, \mathbb{Z})) - 2\text{dim}(D) \leq 2(3 - 1)k = 4k$. Hence, since $k < m$, we have that D is nontrivial.

Observe that by its construction, D is equivariant with respect to the deck transformation and hence contains an eigenvector. Assume that it is a 2–eigenvector. If we write $H_1(mN_3, \mathbb{Z}) = \oplus mH_1(N_3, \mathbb{Z})$ then the 2-eigenvectors are naturally denoted $e_{2,i}$ and $e_{2,i}'$, with $1 \leq i \leq m$, where $e_{2,i}$ and $e_{2,i}'$ are the 2–eigenvector in the ith summand. A nontrivial 2–eigenvector in D will be of the form $\sum_i a_i e_{2,i} + \sum_i b_i e_{2,i}'$. Using additivity, the Casson-Gordon invariant corresponding to the dual character is given by:

$$\left(\sum_i \epsilon(a_i) \right) s_7(J) + \left(\sum_i \epsilon(b_i) \right) s_7(J).$$

To complete the proof, observe that this sum is greater than or equal to $s_7(J)$, so that if J is chosen so that $s_7(J) > 6n$ a contradiction is achieved. Notice that the choice of J depends only on n and not m.

A similar argument applies if D contains only a 4–eigenvector.

6. The Growth of $g_4(nK)$ for Algebraically Slice Knots K.

For a general knot K one has $g_4(nK) \leq ng_4(K)$ but one does not usually have an equality. In the case of a knot T, such as the trefoil, for which the 4–genus is detected by a classical (additive) invariant, such as the signature, one can sometimes demonstrate that $g_4(nT) = ng_4(T)$. But for algebraically slice knots with $g_4(K) \neq 0$ such arguments are not possible. In fact, it is unknown whether in the topological category there is such an algebraically slice knot for which the equality...
holds for all \(n \). (In the smooth setting the second author, in \cite{ Livingston24}, has constructed an algebraically slice knot \(K \) for which \(g_4(K) = \tau(K) = 1 \), where \(\tau \) is the invariant defined by Ozsváth and Szabó \cite{ OS28}. Since \(\tau \) is additive and bounds \(g_4 \), it follows that \(g_4(nK) = ng_4(K) \) for all \(n \).) We will here observe that one can come quite close for the knot \(T_J \), where \(T_J \) is the knot illustrated in Figure 3, built as \(K_J \) is, only with \(J \) tied in both bands rather than \(J \) in one band and \(-J \) in the other. (Similar results hold for \(K_J \) and \(L_J \) but the proof would require the continued use of 3–fold covers rather than the 2–fold cover for which the estimates are simpler.)

Theorem 6.1. For all \(\epsilon \) with \(0 < \epsilon < 1 \), there is a knot \(J \) such that \(g_4(nT_J) > (1 - \epsilon)ng_4(T_J) \) for all \(n > 0 \).

Proof. Our proof builds upon Gilmer’s original argument \cite{ Gil}. Observe first that \(g_4(T_J) \leq 1 \). For the 2–fold branched cover we have that \(H_1(M_2, \mathbb{Z}) = \mathbb{Z}_3 \oplus \mathbb{Z}_3 \) and the \(\mathbb{Z}_3 \)–dimension satisfies \(\dim(H_1(nM_2, \mathbb{Z}_3)) = 2n \).

If \(nT_J \) bounds a surface in the 4–ball of genus \(k \) less than or equal to \((1 - \epsilon)n \), then by Gilmer’s theorem there exists a self–annihilating summand \(D \) with \(\dim(H_1(nM_2, \mathbb{Z}_3)) - 2\dim(D) \leq 2k \) such that for all characters \(\chi \) dual to elements in \(D \), one has

\[
|\sigma(nK_J, \chi)| \leq 4k.
\]

One computes that \(\dim(D) \geq n - k \). A linear algebra argument, basically Gauss-Jordan elimination, now implies that some element of \(D \) will be of the form \(\oplus_i \chi_i \) with at least \(n - k \) of the \(\chi_i \) nontrivial, and for each of these \(\chi_i \) the corresponding Casson-Gordon invariant is at least \(2\sigma_{1/3}(J) \). Thus we have the equation

\[
|(n - k)2\sigma_{1/3}(J)| \leq 4k.
\]

Since \(k \leq (1 - \epsilon)n \), this reduces to

\[
|en2\sigma_{1/3}(J)| \leq 4(1 - \epsilon)n.
\]

Simplifying yields

\[
|\sigma_{1/3}(J)| \leq 2(1 - \epsilon)/\epsilon.
\]

The proof is completed by noting that for any \(\epsilon \) one can select a \(J \) for which this inequality does not hold. \(\square \)
7. Mutation and Algebraic Concordance

In this section we develop a crossing change formula for the algebraic concordance class of a knot in order to prove Theorem 1.1: mutation preserves that algebraic concordance class of a knot. Certain knot invariants, such as the Alexander polynomial and Tristram-Levine signatures, provide algebraic concordance invariants, and these have been shown to be mutation invariants (see for instance [4, 20]) but the general question of whether mutation can change the algebraic concordance class has remained open. We should note that changing a knot to its orientation reverse is a very special case of mutation and reversal does not change the algebraic concordance class of a knot, as follows from work of Long [25]. (More directly, it can be shown that the complete set of algebraic concordance invariants defined by Levine [18] are unchanged by matrix transposition, the operation on Seifert matrices induced by reversal.)

In the first subsection here we present a proof that the normalized Alexander polynomial is invariant under mutation. This argument is not new but must be presented to set up the needed notation for the analysis of algebraic concordance that follows. The second subsection presents a review of the theory and algebra of Levine’s algebraic concordance group G [18]. In the final subsection we present a crossing change formula for the algebraic concordance class of a knot and use this to prove the mutation invariance of this class.

7.1. The Alexander and Conway Polynomial. For an oriented link L, a choice of connected Seifert surface F for L and a choice of basis for $H_1(F, \mathbb{Z})$ there is a Seifert matrix $V(L)$, say of dimension $r \times r$. The (normalized) Alexander polynomial of L, $\Delta_L(t)$, can be defined by setting

$$V_t(L) = (1 - t)V + (1 - \bar{t})V^t, \quad \text{and}$$

$$\Delta_L(t) = \frac{1}{(z)^r} \det(V_t(L)),$$

where V^t denotes the transpose, $\bar{t} = t^{-1}$ and $z = t^{-1/2} - t^{1/2}$. (Recall that $\Delta_L(t)$ can be expressed as a polynomial in z, $\Delta_L(t) = C_L(z) \in \mathbb{Z}[z]$, and this defines the Conway polynomial [31].) Notice that $z^2 = -(1 - \bar{t})(1 - t)$, so that if r is even (for instance, when L is connected, $r = 2 \text{ genus}(F)$) $\Delta_L \in \mathbb{Z}[\bar{t}, t]$ and elementary algebraic manipulations then result in the usual normalized Alexander polynomial:

$$\Delta_L(t) = t^{-r/2} \det(V - tV^t).$$

(This polynomial is clearly independent of change of basis and an observation below will show that it is an S–equivalence invariant [33] and thus depends only on K.)

\[\text{Figure 4.} \]
Figure 4 illustrates a local picture of link diagrams for links L_-, L_+, and L_s, with the diagrams identical outside the local picture. Any crossing change and smoothing can be achieved using this local change. In the diagram for L_- a Reidemeister move eliminates the two crossings. If Seifert’s algorithm is used to construct a Seifert surface F_0 for L_- using this simplified diagram, the corresponding Seifert matrix will be denoted A. The Seifert surfaces for the links L_- and L_+ that arise from Seifert’s algorithm applied to the given diagrams are formed from F_0 by adding two twisted bands. From this we have that $V(L_{\pm})$ is given by a $(r + 2) \times (r + 2)$ matrix of the form:

\[
V(L_{\pm}) = \begin{pmatrix}
A & & & & \\
& a_1 & 0 & & \\
& & \ddots & \ddots & \\
& & & a_r & 0 \\
& & & & b \varepsilon_{\pm}
\end{pmatrix},
\]

where all entries are identical in these two matrices except that $\varepsilon_- = 0$ and $\varepsilon_+ = -1$. Also, $V(L_s)$ is given by the same matrix, except with the last row and column deleted.

A few consequences of these calculations follow quickly.

Theorem 7.1. The normalized Alexander polynomial is an S–equivalence invariant and hence is a knot invariant.

Proof. S–equivalence is generated by the operation on Seifert matrices which takes a matrix A and replaces it with the matrix denoted $V(L_-)$ above. That this doesn’t change the Alexander polynomial is easily checked: expand the relevant determinant along the last column and then along the last row. \hfill \Box

Theorem 7.2. Conway skein relation. The Alexander polynomial satisfies $\Delta_{L_+} - \Delta_{L_-} = z \Delta_{L_s}$.

Proof. This again is a simple exercise in algebra, expanding the determinant along the last column and then last row. \hfill \Box

Theorem 7.3. The Alexander polynomials of mutant knots are the same.

Proof. In the construction the mutant K^*, if the intersection of K with the ball B that is being taken out and replaced via an involution is invariant under the extension of that involution to the 3–ball, then $K^* = K$ and the polynomials are the same. In general, a series of crossing changes and smoothings converts $K \cap B$ into invariant tangles, so, via the Conway skein relation, the polynomial of K^* is the same as that for K. \hfill \Box

If K is a knot, then the Alexander polynomial satisfies $\Delta_K(1) = 1$ and in particular, $\Delta_K(t)$ is nontrivial. Hence, in the above matrices, working now with K instead of L, A_t is nonsingular. Thus, for $V_t(K_{\pm})$ the same set of row and column operations can be used to eliminate the entries corresponding to the a_i in V. There results the following matrix, $W_t(K_{\pm})$, where the entries are rational functions in t, and the matrix is hermitian with respect to the involution induced by the map.
\[t \to \bar{t}: \]
\[
W_t(K_{\pm}) = \begin{pmatrix}
A_t & 0 & 0 \\
\vdots & \vdots & \vdots \\
0 & 0 & c(t) \\
0 & 0 & 1 - t \\
0 & 0 & 1 - \bar{t} - \epsilon_\pm(1-t)(1-\bar{t})
\end{pmatrix},
\]

Lemma 7.4. The ratio \(\Delta_{K_{+}}/\Delta_{K_{-}} \) is equal to \(c(t) + 1 \).

Proof. This follows from a calculation of the relevant determinants. \(\square \)

7.2. Algebraic Concordance. An algebraic Seifert matrix is a square integral matrix \(V \) satisfying \(\det(V - V^t) = \pm 1 \). Such a matrix is called metabolic if it is congruent to a matrix of the form
\[
\begin{pmatrix}
0 & A \\
B & C
\end{pmatrix},
\]
with \(A, B, \) and \(C \) square. Levine defined the algebraic concordance group \(G \) to be the set of equivalence classes of algebraic Seifert matrices, with \(V_1 \) and \(V_2 \) equivalent if \(V_1 \oplus -V_2 \) is metabolic. The group operation is induced by direct sum.

A rational algebraic concordance group \(G^Q \) can be similarly defined, where now it is required that \(\det((V - V^t)(V + V^t)) \neq 0 \). Levine proved in [18] that the inclusion \(G \to G^Q \) is injective.

Consider next the set of nonsingular hermitian matrices with coefficients in the field \(Q(t) \), where \(Q(t) \) has the involution \(t \to \bar{t} \). In this case the equivalence relation generated by congruence to metabolic matrices results in the Witt group of \(Q(t) \), denoted \(W(Q(t)) \).

Theorem 7.5. The map
\[
V \to V_t = (1-t)V + (1-\bar{t})V^t
\]
induces an injection \(G \to W(Q(t)) \).

Proof. A proof is presented by Litherland [21] for \(G^Q \), and the theorem follows from the injectivity of the inclusion \(G \to G^Q \). Note that in defining \(G^Q \) (denoted \(W_S(Q, -) \) in [21]) Litherland restricts to nonsingular matrices, but as he notes, Levine proved that every class in \(G \) has a nonsingular representative. To simplify notation, we will use \(W_t(K) \) to denote both the matrix and the Witt class represented by the matrix when the meaning is clear in context. \(\square \)

7.3. Crossing Changes and Algebraic Concordance. From the calculations and notation above, if a crossing change is performed on a knot \(K \), the difference of Witt classes associated to the Seifert forms is given by
\[
W_t(K_{+}) - W_t(K_{-}) = (A_t \oplus C_{+}) \oplus -(A_t \oplus C_{-}),
\]
where
\[
C_{\pm} = \begin{pmatrix}
c(t) & 1 - t \\
1 - \bar{t} & \epsilon_\pm(1-t)(1-\bar{t})
\end{pmatrix}.
\]

Since \(A_t \oplus -A_t \) is Witt trivial, as is \(C_{-} \), only \(C_{+} \) contributes to the difference of Witt classes. Diagonalization, the identification of \(c(t) + 1 \) with \(\Delta_{L+}/\Delta_{K_{-}} \), and a final multiplication of a basis element (by \(\Delta_{K_{-}} \)) yields the following theorem.
Corollary 7.7. \[\text{For } \omega \text{ a prime power root of unity, } \text{sign}(\Delta_K(\omega)) = (-1)^{\sigma_K(K)/2}. \]

We now have the main result of this section, the following corollary of Theorem 7.6.

Corollary 7.8. The algebraic concordance class of a knot is invariant under mutation; that is, \(W_i(K) = W_i(K^*) \) for any knot \(K \) and its mutant \(K^* \).

Proof. A sequence of crossing changes in the tangle in \(K \) that is being mutated converts it into a tangle that is invariant under mutation. Thus we have a sequence of knots \(K = K_0, K_1, \ldots, K_n = K_n^*, K_n^{*-1}, \ldots, K_0 = K^* \), where \(K_n = K_n^* \). By the previous theorem and the mutation invariance of the Alexander polynomial, each pair of successive differences are equal: \(W_i(K_t) - W_i(K_{t+1}) = W_i(K_t^*) - W_i(K_{t+1}^*) \). Thus, \(W_i(K) - W_i(K_n) = W_i(K^*) - W_i(K_n^*) \). Since \(K_n = K_n^* \), the proof is complete. \(\square \)

8. Generalized Mutation

In [4] Cooper and Lickorish study the effect of a generalization of mutation, called genus 2 mutation, on the Seifert form of a knot. Here we deduce from their result an alternative proof of Theorem 7.6.

Genus 2 mutation consists of removing a solid handlebody of genus 2 that contains a knot \(K \) from \(S^3 \) and replacing it via an involution of the boundary. The involution is selected to extend to the solid handlebody so that it has three fixed arcs. The resulting knot is called \(K^* \). According to [4] there are Seifert matrices for \(K \) and \(K^* \) of the form

\[
V = \begin{pmatrix} A & B^t \\ B & C \end{pmatrix} \quad \text{and} \quad V^* = \begin{pmatrix} A & B^t \\ B & C^t \end{pmatrix},
\]

respectively, where \(A \) and \(C \) are square and \(B \) is of the form \((0 \mid b)\) for some single column \(b \). Since \(V \) is a Seifert matrix and \(V - V^t = (A - A^t) \oplus (C - C^t) \), \(A \) and \(C \) are also algebraic Seifert matrices. Note that

\[
V_t = \begin{pmatrix} A_t & -z^2B^{t} \\ -z^2B & C_t \end{pmatrix} \quad \text{and} \quad V_t^* = \begin{pmatrix} A_t & -z^2B^{t} \\ -z^2B & (C^t)^t \end{pmatrix},
\]

where \(z = t^{-1/2} - t^{1/2} \) and \(z^2 = -(1-t)(1-t) = -(1-t - (1-t)) \).

Since \(A \) is a Seifert matrix, \(A_t \) is nonsingular and hermitian. Let

\[
P = \begin{pmatrix} I & -z^2(A_t)^{-1}B^t \\ 0 & I \end{pmatrix}.
\]
Then V_t and V^*_t are congruent to \bar{P}^tV_tP and $\bar{P}^tV^*_tP$, respectively, which are, after a simple computation,

\[
\begin{pmatrix}
A_t & 0 \\
0 & C_t - z^4B(A_t)^{-1}B^t
\end{pmatrix}
\quad \text{and} \quad
\begin{pmatrix}
A_t & 0 \\
0 & (C^t)_t - z^4B(A_t)^{-1}B^t
\end{pmatrix},
\]

respectively. Suppose that A is an $m \times n$ matrix. Let $\alpha(t) \in \mathbb{Q}(t)$ be the (m, m) entry of $(A_t)^{-1}$ and recall that $B = (0 \mid b)$ for some single column b with integral entries. It is easy to see that

\[B(A_t)^{-1}B^t = \alpha(t)bb^t.\]

In particular, it is symmetric. For simplicity, let $E = C_t - z^4B(A_t)^{-1}B^t$. Then $E^t = (C^t)_t - z^4B(A_t)^{-1}B^t$ and we have that V_t and V^*_t are congruent to $A_t \oplus E$ and $A_t \oplus E^t$, respectively. The difference of Witt classes of V_t and V^*_t is given by

\[(A_t \oplus E) \oplus -(A_t \oplus E^t).\]

Since $A_t \oplus -A_t$ is Witt trivial, only $E \oplus -E^t$ contributes to the difference of Witt classes. Observe that E is a nonsingular hermitian matrix since $A_t \oplus E$ and A_t are. There is a nonsingular matrix Q such that $F = \bar{Q}^tEQ$ is diagonal. This implies that $F - F^t = \bar{Q}^tE^t\bar{Q}$. Using congruence by base change $Q \equiv \bar{Q}$, we see $E \oplus -E^t$ is congruent to $F \oplus -F$, which is Witt trivial. Thus, $V_t = V^*_t$ in $W(\mathbb{Q}(t))$ and K and K^* are algebraically concordant since \(G \to W(\mathbb{Q}(t))\) is injective.

9. Strongly Positive Amphicheiral Knots

A knot K is called strongly positive amphicheiral if it is invariant under an orientation reversing involution of S^3 that preserves the orientation of K. This is easily seen to be equivalent to the statement that K, when viewed as a knot in $\mathbb{R}^3 \subset S^3$, is isotopic to a knot, again denoted K, which is invariant under the involution $\tau : \mathbb{R}^3 \to \mathbb{R}^3$ given by $\tau(x) = -x$.

Hartley and Kawauchi \[1\] proved that if K is strongly positive amphicheiral then $\Delta_K(t) = (F(t))^2$ for some Alexander polynomial F. As a complementary result Long \[2\] proved that strongly positive amphicheiral knots are algebraically slice. Here we demonstrate that Long’s theorem is in fact a corollary of the Hartley-Kawauchi theorem and the crossing change formula for the algebraic concordance class.

A bit of notation will be helpful: for a strongly amphicheiral knot that is invariant under the involution τ, τ defines a pairing of the crossing points in a diagram of K. A \textit{paired crossing change} on such a K consists of changing both of a pair of crossings. Notice that since τ is orientation reversing, the two crossings will be of opposite sign, so we denote the original knot $K_{\pm\pm}$ and the knot formed by making the paired crossing changes $K_{\pm\pm}$.

Lemma 9.1. A sequence of paired crossing changes converts a strongly positive amphicheiral knot into the unknot.

Proof. Since an involution of S^1 cannot have one fixed point, K misses the origin in \mathbb{R}^3 and thus projects to a knot \bar{K} in the quotient $\mathbb{R}^3 - \{0\}/\tau \equiv \mathbb{RP}^2 \times \mathbb{R}$. Since \bar{K} lifts to a single component in the cover, it is homotopic to standard generator of $\pi_1(\mathbb{RP}^2 \times \mathbb{R})$, whose lift is an unknot in the cover. That homotopy can be carried out by a sequence of crossing changes, each of which lifts to a pair of crossing changes in the cover.

\[\square\]
Theorem 9.2 (Long’s Theorem). *If K is strongly positive amphicheiral, then K is algebraically slice.*

Proof. By the previous lemma we need only show that $W_t(K_{+}) - W_t(K_{-})$ represents 0 in $W(Q(t))$.

Working in the Witt group we can write

$$W_t(K_{+}) - W_t(K_{-}) = (W_t(K_{+}) - W_t(K_{-})) - (W_t(K_{+}) - W_t(K_{-})).$$

Applying Theorem 7.6, this is represented by the difference

$$\left(\Delta_{K_{+}}(t) \Delta_{K_{-}}(t) \begin{array}{cc} 0 & 0 \\ 0 & -1 \end{array} \right) \oplus - \left(\Delta_{K_{+}}(t) \Delta_{K_{-}}(t) \begin{array}{cc} 0 & 0 \\ 0 & -1 \end{array} \right).$$

Applying the Hartley-Kawauchi theorem, we write $\Delta_{K_{+}}(t) = F(t)^2$ and $\Delta_{K_{-}}(t) = G(t)^2$, and then cancel the (-1) summands to arrive at the difference

$$\left(F(t)^2 \Delta_{K_{-}}(t) \begin{array}{cc} 0 \\ 0 \end{array} - G(t)^2 \Delta_{K_{-}}(t) \right).$$

This form has a metabolizer generated by the vector $(G(t), F(t)) \in Q(t)^2$, and hence it is trivial in the Witt group, as desired. □

10. The Hartley-Kawauchi Theorem

Here we present a combinatorial proof of the theorem that for strongly positive amphicheiral knots the Alexander polynomial is a square of an Alexander polynomial. The proof also gives an alternative, though longer, route to Long’s theorem than was given in the previous section. We begin by considering the existence of an equivariant Seifert surface for such a knot.

If Seifert’s algorithm for constructing a Seifert surface is applied to a diagram for a strongly amphicheiral knot that is invariant under τ, the resulting surface will be invariant. In addition, τ restricted to this surface is orientation preserving since τ preserves the orientation of the knot that is the boundary of the surface. However τ reverses the positive normal direction since it reverses the orientation of R^3. Thus we have the following.

Lemma 10.1. Let K be a strongly positive amphicheiral knot with involution τ. Then a Seifert surface F of K can be constructed so that F is invariant under τ and its Seifert form θ satisfies $\theta(\tau u, \tau v) = -\theta(u, v)$ for all $u, v \in H_1(F)$.

To understand the effect of crossing changes, we consider two figures. Figure 5 represents a portion of a symmetric diagram of a strongly amphicheiral knot, say K_{+}. The dot in center of the figure represents the origin in R^3, the center of symmetry.

![Figure 5](image_url)
For the knot K_{-+} the diagram will be the same, only a symmetric pair of crossing changes has been made. Thus, for K_{-+} the clasps pull apart, leaving a knot, denoted K', with diagram as illustrated in Figure 6.

![Figure 6](image_url)

Suppose that K' has an equivariant Seifert surface F_0 given by Seifert’s algorithm and $H_1(F_0)$ has symplectic basis w_1, \ldots, w_r. Then an equivariant Seifert surface F for K_{-+} is given by adding four bands to F_0. The basis for $H_1(F)$ can be naturally extended to symplectic one for $H_1(F)$, $w_1, \ldots, w_r, x, y, \tau x, \tau y$, where y has trivial Seifert pairing with all elements other than x and itself, and x has trivial Seifert pairing with τy.

Let A be the Seifert matrix of F_0 with respect to w_1, \ldots, w_r and let T denote the matrix representing the action of τ on $H_1(F_0)$. Then Lemma 10.1 applied to F_0 can be rewritten in terms of matrices: $T^t A T = -A^t$. After hermitianizing and taking inverses, we have

$$T(A_t)^{-1} T^t = -(A_t^t)^{-1} = -(A_t)^{-1}.$$

To find the Seifert matrix for F with respect to the above basis, a couple of things have to be clarified. First, note that $\theta(x, \tau x) = -\theta(\tau x, \tau x) = -\theta(x, \tau x)$ and hence $\theta(x, \tau x) = 0$. Similarly, $\theta(\tau x, x) = 0$.

Second, let $a = \begin{pmatrix} \theta(w_1, x) \\ \vdots \\ \theta(w_r, x) \end{pmatrix}$ and $T = (t_{ij})_{1 \leq i, j \leq r}$. Then

$$\begin{pmatrix} \theta(w_1, \tau x) \\ \vdots \\ \theta(w_r, \tau x) \end{pmatrix} = \begin{pmatrix} -\theta(x, \tau w_1) \\ \vdots \\ -\theta(x, \tau w_r) \end{pmatrix} = \begin{pmatrix} -\sum_j t_{j1} \theta(x, w_j) \\ \vdots \\ -\sum_j t_{jr} \theta(x, w_j) \end{pmatrix} = -T^t \begin{pmatrix} \theta(x, w_1) \\ \vdots \\ \theta(x, w_r) \end{pmatrix} = T^t a.$$

It follows readily that the Seifert matrix for K_{-+} is the $(r+4) \times (r+4)$ matrix:

$$V^\epsilon = \begin{pmatrix} A & a & 0 & -T^t a & 0 \\ a^t & b & 1 & 0 & 0 \\ 0 & 0 & \epsilon & 0 & 0 \\ -a^t T & 0 & 0 & -b & 0 \\ 0 & 0 & 0 & -1 & -\epsilon \end{pmatrix},$$

where $\epsilon = -1$.
Similarly, for K_{++} the same matrix arise, only in this case $\epsilon = 0$. After hermitianizing

$$V_t^* = \begin{pmatrix} A_t & -z^2a & 0 & z^2T^4a & 0 \\ -z^2a^4 & -z^2b & 1 - t & 0 & 0 \\ 0 & 1 - \tilde{t} & -z^2\epsilon & 0 & 0 \\ z^2a'T & 0 & 0 & z^2b & -(1 - \tilde{t})/z^2\epsilon \\ 0 & 0 & 0 & -(1 - t) & z^2\epsilon \end{pmatrix},$$

where $z = t^{-1/2} - t^{1/2}$. Let

$$P = \begin{pmatrix} I & z^2(A_t)^{-1}a & 0 & -z^2(A_t)^{-1}T^4a & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}.$$

Let $W_t^* = \bar{P}^t V_t^* P$. Then

$$W_t^* = \begin{pmatrix} A_t & 0 & 0 & 0 & 0 \\ -z^2b - z^4a'(A_t)^{-1}a & 1 - t & z^4a'(A_t)^{-1}T^4a & 0 & 0 \\ 0 & 1 - \tilde{t} & -z^2\epsilon & 0 & 0 \\ z^4a'T(A_t)^{-1}a & 0 & z^2b - z^4a'T(A_t)^{-1}T^4a & -(1 - \tilde{t})/z^2\epsilon \\ 0 & 0 & 0 & -(1 - t) & z^2\epsilon \end{pmatrix}.$$

Let $c(t) = -z^2b - z^4a'(A_t)^{-1}a$. Since W_t^* is hermitian, $c(t) = \overline{c(t)}$. The $(1,1)$ entry of the lower right 2×2 submatrix of W_t^* is

$$z^2b - z^4a^t(T(A_t)^{-1}T^4a) = z^2b + z^4a'(A_t)^{-1}a = -c(t) = -\overline{c(t)}.$$

Let $d(t) = z^4a'(A_t)^{-1}T^4a$. Then the 1×1 matrix $d(t)$ is equal to its transpose

$$z^4a'T(A_t)^{-1}a = z^4a'T(-T(A_t)^{-1}T^4a) = -z^4a'(A_t)^{-1}T^4a = -d(t)$$

and hence $d(t) = 0$. Also, note that $z^4a'(A_t)^{-1}a = d(t) = 0$ since W_t^* is hermitian.

Thus V_t^* is congruent to, by base change P,

$$A_t \oplus C \oplus -C^t,$$

where $C = \begin{pmatrix} c(t) & 1 - t \\ 1 - \tilde{t} & -z^2\epsilon \end{pmatrix}$.

Since $\det(P) = 1$,

$$\Delta_{K_{--}} = (c(t) + 1)^2 1/z^\epsilon \det(A_t) = (c(t) + 1)^2 \Delta_{K_{++}},$$

where $c(t) = \overline{c(t)}$. This proves Hartley-Kawauchi theorem.

Next, to prove Long’s theorem, we will show that $V_t(K_{--})$, A_t, and $V_t(K_{++})$ are all Witt-equivalent. It suffices to show that $C \oplus -C^t$ is Witt-trivial. Observe that C is nonsingular and hermitian since $A_t \oplus C \oplus -C^t$ and A_t are. There is a nonsingular matrix Q such that $D = Q^tCQ$ is diagonal. This implies that $D = D^t = Q^tC^tQ$.

Using congruence by base change $Q \oplus \tilde{Q}$, we see $C \oplus -C^t$ is congruent to $D \oplus -D$, which is Witt trivial. Thus, K_{--} and K_{++} are algebraically concordant. This proves Long’s theorem.
References

[1] C. C. Adams, *Tangles and the Gromov invariant*, Proc. Amer. Math. Soc. **106** (1989), 269–271.
[2] A. J. Casson and C. McA. Gordon, *Cobordism of classical knots*, A la Recherche de la Topologie Perdue (A. Marin and L. Guillou, eds.), Progress in Mathematics, vol. 62, Birkhäuser, 1986, 181–199.
[3] J. Conway, *An enumeration of knots and links, and some of their algebraic properties*, 1970 Computational Problems in Abstract Algebra (Proc. Conf., Oxford, 1967) 329–358 Pergamon, Oxford.
[4] D. Cooper and W. B. R. Lickorish, *Mutations of links in genus 2 handlebodies*, Proc. Amer. Math. Soc. **127** (1999), 309–314.
[5] P. M. Gilmer, *Slice knots in S^3*, Quart. J. Math. Oxford Ser. (2) **34** (1983), 305–322.
[6] P. M. Gilmer, *On the slice genus of knots*, Invent. Math. **66** (1982), 191–197.
[7] P. M. Gilmer, *Classical knot and link concordance*, Comment. Math. Helv. **68** (1993), 1–19.
[8] P. M. Gilmer and C. Livingston, *The Casson-Gordon invariant and link concordance*, Topology **31** (1992), 475–492.
[9] R. Hartley and A. Kawauchi, *Polynomials of amphicheiral knots*, Math. Ann. **243** (1979), 63–70.
[10] A. Kawauchi, *Topological imitation, mutation and the quantum $SU(2)$ invariants*, J. Knot Theory Ramifications **3** (1994), 25–39.
[11] A. Kawauchi, *Mutative hyperbolic homology 3-spheres with the same Floer homology*, Geom. Dedicata **61** (1996), 205–217.
[12] C. Kearton, *Mutation of knots*, Proc. Amer. Math. Soc. **105** (1989), 206–208.
[13] P. Kirk, *Mutations of homology spheres and Casson’s invariant*, Math. Proc. Cambridge Philos. Soc. **105** (1989), 313–318.
[14] P. Kirk and E. Klassen, *Chern-Simons invariants of 3–manifolds and representation spaces of knot groups*, Math. Ann. **287** (1990), 343–367.
[15] P. Kirk and C. Livingston, *Twisted knot polynomials: inversion, mutation and concordance*, Topology **38** (1999), 663–671.
[16] P. Kirk and C. Livingston, *Concordance and mutation*, Geom. Topol. **5** (2001), 831–883.
[17] P. Kronheimer and T. Mrowka, *Gauge theory for embedded surfaces. I*, Topology **32** (1993), 773–826.
[18] J. Levine, *Invariants of knot cobordism*, Invent. Math. **8** (1969), 98–110.
[19] J. Levine, *Knot cobordism groups in codimension two*, Comment. Math. Helv. **44** (1969), 229–244.
[20] W. B. R. Lickorish and K. Millett, *A polynomial invariant of oriented links*, Topology **26** (1987), 107–141.
[21] R. Litherland, *Cobordism of satellite knots*, Four–Manifold Theory, Contemporary Mathematics, eds. C. Gordon and R. Kirby, American Mathematical Society, Providence RI 1984, 327–362.
[22] C. Livingston, *Knots which are not concordant to their reverses*, Quart. J. Math. Oxford Ser. (2) **34** (1983), 323–328.
[23] C. Livingston, *Infinite order amphicheiral knots*, Algebr. Geom. Topol. **1** (2001), 231–241.
[24] C. Livingston, *Splitting the concordance group of algebraically slice knots*. Preprint at arxiv.org/math.GT/0305363
[25] D. Long, *Strongly plus-amphicheiral knots are algebraically slice*, Math. Proc. Cambridge Philos. Soc. **95** (1984), 309–312.
[26] R. Meyerhoff and D. Ruberman, *Mutation and the η–invariant*, J. Differential Geom. **31** (1990), 101–130.
[27] K. Murasugi, *On a certain numerical invariant of link types*, Trans. Amer. Math. Soc. **117** (1965) 387–422.
[28] P. Ozsváth and Z. Szabó, *Knot Floer homology and the four-ball genus*. Preprint at arxiv.org/math.GT/0301149.
[29] Y. W. Rong, *Mutation and Witten invariants*, Topology **33** (1994), 499–507.
[30] D. Ruberman, *Mutation and volumes of knots in S^3*, Invent. Math. **90** (1987), 189–215.
[31] D. Ruberman, *Mutation and gauge theory. I*, Yang-Mills invariants, Comment. Math. Helv. **74** (1999), 615–641.
[32] A. Tristram, *Some cobordism invariants for links*, Proc. Cambridge Philos. Soc. 66 (1969) 251–264.

[33] H. F. Trotter, *On S-equivalence of Seifert matrices*, Invent. Math. 20 (1973), 173–207.

Department of Mathematics, University of California, Santa Barbara, CA 93106

Department of Mathematics, Indiana University, Bloomington, IN 47401

E-mail address: sekim@math.ucsb.edu

E-mail address: livingst@indiana1.edu