Radiographic Assessment of Prevalence of Laminitis from the Hoof-Related Forelimb Lameness Feet of Nigerian Horses

Ogbanya KC1*, Eze CA1 and Ihedioha JI2

1Department of Veterinary Surgery, University of Nigeria, Nsukka, Nigeria
2Department of Veterinary Pathology and Microbiology, University of Nigeria, Nsukka, Nigeria

*Corresponding author: KC Ogbanya, Department of Veterinary Surgery, University of Nigeria, Nsukka, Nigeria, Tel: +08036027640; E-mail: kenneth.ogbanya@unn.edu.ng

Abstract

The objectives of the study were to uses radiological indices to confir laminitis in hoof-related forelimb lameness and to determine its prevalent rate between sexes, seasons and among age groups in a cross-sectional study. Lateromedial radiographic examination of the hooves of 66 Nigerian horses that presented with hoof-related forelimb lameness were investigated. The horses were aged as young, adult and old. Independent sample t-test was used to analyze the radiological indices between laminic and non laminic horses. Data for prevalence of laminitis were subjected to descriptive statistics and association between sex, age and season were analyzed using Chi square. Significance was accepted at P<0.05. Of the 66 hoof-related forelimb lameness horses examined, 42 horses had laminitis. The mean values of the radiographic soft tissue indices of the hooves such as hoof distance phalangeal distance proximal (HDPDP), hoof distance phalangeal distance distal (HDPDD), ratios of HDPDP and HDPDD to the palmarocorticular length (PCL), angle of rotation (AR), sole depth (SD) and coronary extensor distance (CED) varied significantly (P<0.05) between laminitic and non laminic horses. Male horses had 27.3% prevalence of laminitis while females had 31.8%. Prevalence of laminitis showed no significant association with sex (P>0.05). Young horses had the least prevalent rate of laminitis (4.5%) whereas adult and old horses had 28.8% and 25.8% respectively. Prevalence of laminitis at dry and rainy seasons was 21.2% and 37.9% respectively.

Keywords: Nigerian horse; Hoof; Radiographs; Laminitis

Introduction

Laminitis is one of the most common causes of lameness in horses [1,2]. Laminae are the structures which attach the pedal bone to the inside of the hoof wall; if these laminae become inflamed or damaged they can cause severe pain and distress. When laminitis occurs, some of the laminae die off, which results in an unstable foot. The pedal bone may then rotate within the foot, or in more severe cases the pedal bone may sink within the foot [2]. Laminitis can occur in all shapes and sizes of horses and ponies, although it is more commonly seen in small, overweight native ponies [3]. Most frequently, laminitis will occur in both front feet which is logical given that horses bear approximately 60% of their weight on their front limbs [4].

Even the most experienced clinician cannot determine the location of the osseous structures within the hoof capsule in the absence of radiography. Therefore, radiographs are indicated in every suspected laminitis case because they provide valuable information about the presence, severity, relative chronicity and progressive nature of the disease [5]. In order to obtain maximum information from radiographs, preparation of the foot is essential. Particular attention should be paid to the cleanliness of the angles of the bars and the central and lateral sulci of the frog [6]. In horses with laminitis, radiographs are primarily obtained to determine the position of the distal phalanx within the hoof and the nature of the soft tissue changes. Although radiographs are poor at imaging soft tissues, information can be gleaned from plain film radiographs obtained with soft tissues in mind [6]. Radiographic assessment of the laminic horse foot is of primary diagnostic importance and a lateromedial radiograph represents the 'gold standard' for diagnosis of anatomical change [7]. The purpose of this study was to radiographically diagnose laminitis in Nigerian trade horses with hoof-related forelimb lameness and to assess its prevalence with respect to sex, age and season of the year.

Materials and Methods

Design

The study was a cross sectional study carried out in Nigerian trade horses at Obollo-Afor horse depot, Southeastern Nigerian. Nigerian horses are a collection of mixed Arewa breed and their crosses with the Arabian, Dongola, Barb-Arab and sudaness breeds which are not distinguishable from one another based on any specific breed characteristics [8].

The study period was 4 months comprising of 2 months of dry season and 2 months of rainy season. Research visit to the depot was made once every week during the study period.

Clinical assessment of lameness

Each of the horses at the horse depot was observed while standing, walking and trotting and the gait evaluated according to Baxter [4]. Those that showed signs of lameness were further reexamed using palmar digital nerve blocks as follows; 25 gauge needle containing 2 ml of two percent Lidocaine HCL was inserted just in front of the superficial flexor tendon which is half way between the fetlock and the coronary band to desensitize the lateral and the medial posterior...
The frog sulci and the sole surface of the digits were cleaned prior to radiography. A metal marker (3 cm) was used to determine the distance for each projection was 75 cm.

The following were the radiographic soft tissue indices of the hoof assessed:

- Hoof distance phalangeal distance proximal (HDPDP) or also called total soft tissue thickness dorsal to the proximal aspect of the third phalanx (STTP).
- Hoof distance phalangeal distance distal (HDPDD), or also called total soft tissue thickness dorsal to the distal aspect of the third phalanx (STTD).
- Palmarocortical length (PCL) of the third phalanx: The distance from the tip of the solar margin to the middle of the articulation between the phalanx and the navicular bone.

Radiographic soft tissue indices	Laminitic horses	Non laminitic horses
HDPDP (mm)	23.45 ± 0.6a	16.58 ± 0.50b
HDPDD (mm)	24.45 ± 0.3a	14.58 ± 0.21b
PCL (mm)	65.86 ± 2.19a	66.60 ± 4.60a
HDPDP/PCL (%)	30.71 ± 1.15a	25.30 ± 0.46b
HDPDD/PCL (%)	32.19 ± 1.10a	24.84 ± 0.52b
HWA (0)	47.86 ± 1.84a	46.400 ± 2.29a
AP3 (0)	54.00 ± 1.65a	47.600 ± 2.25b
AR (0)	6.14 ± 0.74a	1.40 ± 0.11b
SD (mm)	11.43 ± 0.67a	16.40 ± 09.43b
CED (mm)	21.029 ± 1.26a	13.06 ± 0.84b

Table 1: Mean ± SEM of the radiographic soft tissue indices of the hooves of laminitic and non-laminitic horses. Indices with different superscript indicate significant difference (P<0.05)
horses differed significantly (P<0.05). The mean CED (mm) values for laminitic and non-laminitic horses varied significantly (P<0.05). The results of the prevalence of laminitis showed that male horses had a higher prevalence of laminitis than females (Table 2). However, prevalence of laminitis showed no significant association with sex (P>0.05) (Table 2).

Sex	No of horse presented with lameness	Freq. of laminitis	Prevalence of laminitis (%)
Male	30	18	27.3%
Female	36	21	31.8%
Total	66	39	59.1%

\[\chi^2=0.019, \text{ df }=1 (P>0.05) \]

Table 2: Prevalence of laminitis between sexes

Young horses had the least prevalent rate of laminitis whereas adult and old horses had the least respectively (Table 3). Prevalence of laminitis was higher at rainy season than dry season (Table 4). Prevalent of laminitis had a significant association with age and season (Tables 3 and 4).

Age of horse	No of horse with hoof-related lameness	Frequency of laminitis	Prevalence of laminitis (%)
1 – 5 years	13	3	4.5%
6 – 10 years	28	19	28.8%
11 years plus	25	17	25.8%
Total	66	39	59.1%

\[\chi^2=8.69, \text{ df }=2 (P<0.05) \]

Table 3: Prevalence of laminitis between age groups.

The significant higher coronary extensor distance (CED) in laminotic than non laminotic horses could be due to lamellae collapse with resultant distal displacement of the third phalanx. The mean range of CED for the non laminotic horses in this study is in consonant with the work of Redden and Linford et al. who reported a mean range of 2 -15 mm [6,14]. An increase in the CED above the normal range is commonly identified when the lamellae collapse evenly all around the hoof due to excessive shear forces [14].

In the laminotic group of this study, the ratios of both the proximal and the distal HDPD were greater than 30% of the palmarocorticular length of the distal phalanx (>30%) whereas the non laminotic groups had their mean values less than 30% of the length of distal phalanx. This result agrees with the work of Peloso et al. who reported that greater than 30% ratio of the HDPD to the length of third phalanx (P3) is laminotic suggestive [10]. However, this result fail to agree with the work of Redden who reported that in normal horses (non laminotic) the mean values of the ratio of the HDPD to the length of distal phalanx is ≤ 25% and that an increase above the 25% is suggestive of laminosis [6]. When this occur, the distal phalanx drops within the hoof capsule (distal displacement of the distal phalanx, 'sinking') making the solar margin of the distal phalanx to becomes closer to the ground surface [12].

The results showed that laminotic horses had a mean value of sole depth (SD) less than 15 mm (<15 mm), and this agrees with the findings of Redden which state that less than 15 mm of SD is abnormal in most horses. Thinning of the sole is suggestive of structural damage as digital venograms performed in horses with sole depth less 15 mm (>15 mm) show solar papillae that are bent, compressed or even absent predisposing to further pain and lameness [6]. Therefore, horses with laminosis, a sole depth of greater than 15 mm (<15 mm) is more likely to be clinically significant and is suggestive of displacement of the tip of the distal phalanx distally which causes crush injuries to the distal soft tissues [6]. Absence of significant difference (P>0.05) in the mean values of HWA between laminotic and non laminotic horses could be that the HWA is usually not affected during the episode of laminosis. However, the means of the angle of third phalanx (P3) in the age groups varied significantly between the laminotic and non laminotic groups. The reason for the significant variation could be because the angle of third phalanx (P3) increases when the P3 is sinking or rotating as seen in the cases of chronic laminitis [1,6].

The means of angle of rotation of the P3 (AR) in the study varied significantly between laminotic and non laminotic horses. This finding is expected since the more the P3 sinks into the solar corium of the hooves.
hoof, the higher the angle of the P3 which correlate with the degree of the rotation of the P3 [6].

A relative high prevalence of laminitis in male than female horses may be due to mechanical factors since male horses are more often engaged in varied activities ranging from racing and agricultural purposes than female horses. However, prevalence of laminitis showed no significant association between sexes and this is in consonant with the work of Slater et al. The seasonal increase in risk of laminitis in the rainy season compared with dry season is more likely to be related to true seasonal factors such as grazing behavior and the nutritional content of the forage. This is because pollit associated pasture as a major risk factor for laminitis in horses irrespective of breed, age and uses. Again, since all the sampled horses were unshed, working and walking on barefeet might also have predisposed them to laminitis.

Hamilton-Fletcher, reported that horses that are overworked on hard surfaces are often predisposed to laminitis and other hoof lesions. A higher prevalence of laminitis in horses aged 11 years and above agrees with the work of Allford et al. who reported that for chronic laminitis, horses aged 10 years and above are of greater risk for laminitis.

Conclusion

All the radiographic soft tissue indices of the hoof showed significant variation between laminitic and non laminitic horses with the exception of hoof wall angle (HW A) and length of the third phalanx (i.e., palmarocorticular length).

Laminitis had a high prevalence in male horses than the female horses but was not significantly associated with sex. Laminitis showed a significant association with age and season of the year.

References

1. Baxter G (1994) Acute laminitis. Vet Clin N Am Equine Pract 10: 627-642.

2. Biggi M, Dyson S (2013). Hind foot lameness: Result of magnetic resonance imaging in 38 horses (2001-2011). Equine Vet J 45: 427-434.

3. Collins SN, Dyson SJ, Murray RC, Burden F, Crawford A (2011) Radiological anatomy of the donkey’s foot: Objective characterisation of the normal and laminitic donkey foot. Equine Vet J 43: 478-486.

4. Cripps PJ, Eustace RA (1999) Radiological measurements from the feet of normal horses with relevance to laminitis. Equine Vet J 31: 427-432.

5. Fraley BT (2007) Acute Sinker syndrome - diagnosis and therapeutic options, North American Veterinary Conference, 117-118.

6. Herthel D, Hood DM (1999) Clinical presentation, diagnosis, and prognosis of chronic laminitis. Vet Clin N Am: Equine Pract 15: 375-394.

7. Ihedioha JI, Agina OA (2013) Serum biochemistry profile of Nigerian horses (Equus caballus, Linnaeus 1758). Animal Research International 10: 1826-1833.

8. Linford RL, O’Brien TR, Trout DR (1993) Qualitative and morphometric radiographic findings in the distal phalanx and digital soft tissues of sound Thoroughbred racehorses. American Journal of Veterinary Research 54: 38-51.

9. Peloso JG, Cohen ND, Walker MA, Watkins JP, Gayle JM, et al. (1996) Case control study of risk factors for the development of laminitis in the contralateral limb in Equidae with unilateral lameness. J Am Vet Med Ass 209: 1746-1749.

10. Redden RF (2003) Clinical and radiographic examination of the equine foot. Proc Am Ass Equine Practnrs 49: 169-185.

11. Rendano VT, Grant B (1978) The equine third phalanx: its radiographic appearance. J Am Vet Radiol 19: 125-135.

12. Sherlock C, Parks A (2013) Radiographic and radiological assessment of laminitis. Equine Vet Edu 25: 524-535.

13. Stashak TS (2002) The Foot. In: Adams SA Baltimore MD (Ed.) Lameness in Horses. 5th edn, Lippincott Williams and Wilkins, pp: 645-743.

14. Tachio G, Davies HMS, Morgate M, Bernardini D (2002) A radiographic technique to assess longitudinal balance in front hooves. Equine Vet J Supl 34: 368-372.