FIBROBLASTS: THE UNKNOWN SENTINELS ELICITING IMMUNE RESPONSES AGAINST MICROORGANISMS

Luis Antonio Bautista-Hernández1,2,4, José Luis Gómez-Olivares2, Beatriz Buentello-Volante3, Victor Manuel Bautista-de Lucio1,*

1 Microbiology and Ocular Proteomics, Institute of Ophthalmology “Fundación de Asistencia Privada Conde de Valenciana”, Mexico City, Mexico
2 Department of Health Sciences, Autonomous Metropolitan University, Mexico City, Mexico
3 Cellular and Tissue Biology, Institute of Ophthalmology “Fundación de Asistencia Privada Conde de Valenciana”, Mexico City, Mexico
4 Doctorate Biological Science and Health, Autonomous Metropolitan University, Mexico City, Mexico

Received: April 17, 2017; Accepted: June 14, 2017

Fibroblasts are present in all tissues but predominantly in connective tissues. Some of their functions include contractility, locomotion, collagen and elastin fiber production, and the regulation and degradation of the extracellular matrix. Also, fibroblasts act as sentinels to produce inflammatory mediators in response to several microorganisms. There is evidence that fibroblasts can synthesize toll-like receptors (TLRs), antimicrobial peptides, proinflammatory cytokines, chemokines, and growth factors, which are important molecules involved in innate immune response against microorganisms. Fibroblasts can express TLRs (TLR-1 to TLR-10) to sense microbial components or microorganisms. They can synthesize antimicrobial peptides, such as LL-37, defensins hBD-1, and hBD-2, molecules that perform antimicrobial activity. Also, they can produce proinflammatory cytokines, such as TNFα, INFγ, IL-6, IL-12p70, and IL-10; other chemokines, such as CCL1, CCL2, CCL5, CXCL1, CXCL8, CXCL10, and CX3CL1; and the growth factors granulocyte/macrophage colony-stimulating factor (GM-CSF) and granulocyte colony-stimulating factor (G-CSF) to induce and recruit inflammatory cells. According to their immunological attributes, we can conclude that fibroblasts are sentinel cells that recognize pathogens, induce the recruitment of inflammatory cells via cytokines and growth factors, and release antimicrobial peptides, complying with the characteristics of real sentinels.

Keywords: fibroblasts, sentinel, microorganisms, cytokines, antimicrobial peptides

Introduction

Physical barriers are the first line of defense to prevent the entrance or establishment of microorganisms [1], and connective tissue participates actively in immune response [2]. The fibroblast is the principal cell that synthesizes connective tissue, and it is considered the main workhorse of this tissue [3]. Fibroblasts are present in all tissues but predominantly in connective tissues. Their origin is mesenchymal, and, depending on their localization, they have multiple morphologies. For example, they may be flattened, elongated, or of a certain spindle-shape, they may contain either one or two oval nuclei, and they are smoothly contoured with a concave and bordered projection. Some of their functions include contractility, locomotion, collagen and elastin fiber production, and the regulation and degradation of the extracellular matrix [4, 5].

Fibroblasts play an important role in wound healing and structural support, and they act as sentinels in produc-
ing inflammatory mediators (cytokines, chemokines, and growth factors) as well as acting in response to infections by several microorganisms [6–8].

The sentinel concept is defined in this way: “A subject who watches something and occupies a place and asks for entry passwords.” Given this definition, we think that fibroblasts have an immune repertoire in responding to different microbial agents. In this review, we will cover the immunologic components of fibroblasts that are expressed in an infection process. There is evidence that fibroblasts can synthesize toll-like receptors (TLRs), antimicrobial peptides, proinflammatory cytokines and chemokines, and growth factors, which are important molecules involved in an innate immune response against microorganisms. Their role is very important in expanding immune response and solving microbial infections. Previously, their role was believed to be related to functions connected to fibrosis and the repair of damage. However, other studies suggest that fibroblasts should be considered sentinels, and we concur with this and further believe that their role is as sentinels against microbial pathogens.

Can fibroblasts express TLRs against microorganisms or microbial components?

The answer is yes.

All good sentinels must have components by which they can recognize the enemy agents; in this case, the enemies (microorganisms or microbial components) are recognized by TLRs: These sentinel molecules recognize pathogens and ask them, “Where is your ticket to enter this place?”

We know that the innate immune system is the first line of response to pathogens, and this response generally includes three events: microbial recognition, activation of signaling pathways, and activation of an effector mechanism. The recognition of pathogens is mediated by TLRs, which are membrane proteins that recognize specific pathogens associated molecular patterns (PAMPs). TLRs have an amino terminal leucine rich repeat (LRR) domain and an intracellular carboxy terminal domain that contains a conserved region known as the toll/intercellular receptor (TIR). The TLR family comprises 10 TLRs (TLR1 to TLR10 have been reported thus far) [9, 10].

The recognition of PAMPs by TLRs can occur at the cell surface (TLR1, TLR2, TLR4, TLR5, and TLR6) and in intracellular vesicles (TLR3, TLR7, TLR8, and TLR9). TLRs play an important role in recognizing microbial components from bacteria, fungi, parasites, and viruses [11].

TLR1, TLR2, and TLR4 recognize bacterial cell wall components, and TLR2 forms heterodimer complexes with TLR1 or TLR6. TLR3 recognizes polyinosinic–polycytidylic acid (poly I:C) and double-stranded viral ribonucleic acid (RNA). The flagellin of gram-negative bacteria can be recognized by TLR5 and TLR7, while TLR8 recognizes single-stranded viral RNA and TLR9 identifies viral and bacterial deoxyribonucleic acid (DNA) unmethylated CpG motifs [9, 10, 12], and expression of TLR10 has been induced by exposure to Helicobacter pylori [13].

Yao and colleagues demonstrated the expression of 10 different TLRs in skin fibroblasts and also showed that fibroblasts are functionally active (TLR1 to TLR9, but not TLR10). The authors further showed the importance of fibroblasts in sensing PAMPs and in synthesizing the cytokines and antimicrobial peptides involved in an immune response [14].

A gram-positive cellular wall possesses many layers including peptidoglycan and lipoteichoic and teichoic acids [1]; these PAMPs can be recognized by corneal fibroblast TLRs. Peptidoglycan (PGN; fsa = from Staphylococcus aureus) induces the specific expression of TLR1, TLR2, and TLR6 for these PAMPs, but also the expression of TLR5, TLR7, or TLR8, which are not specific for these PAMPs, while stimulation with lipoteichoic acid (LTA; fsa) induces TLR5 expression and muramyl dipeptide (MDP; fsa) induces TLR9 expression [15].

On the other hand, gram-negative bacteria possess a slim PGN layer, while in the outer membrane there is a lipopolysaccharide (LPS) formed of lipid A and O-linked polysaccharide [1, 16]. There are components of gram-negative bacteria that can induce TLR corneal and gingival fibroblast expression, such as an LPS from Pseudomonas aeruginosa, the tetra-acylated lipid A LPS from Porphyromonas gingivalis, and the LPS from Escherichia coli which also induces TLR4 expression [16–18].

The synthetic CpG oligodeoxynucleotide (CpG ODN) is another component that mimics the response to bacterial DNA. CpG ODN is a potent activator of immune response [19]; its CpG ODN induces TLR9 response on synovial fibroblasts [20].

It has been demonstrated that fibroblasts express TLR4 in the presence of the hyphae or conidia of Fusarium solu [21]. This expression has been observed in other diseases where corneal cells expressed TLR2 and TLR4 in the presence of Aspergillus fumigatus [22].

Fibroblasts can recognize viral molecules. TLR3 is implicated in the recognition of viral molecules such as double-stranded RNA (dsRNA) [9]. This behavior was observed in myofibroblasts stimulated with poly I:C that mimic a viral infection [23]. Epstein Barr virus is a γ-herpes virus involved in systemic sclerosis (SSc) or sclerodema. This virus induces TLR3 expression in fibroblasts [24]. These data indicate the ability of fibroblasts to recognize PAMPs through the TLRs of different microorganisms and to carry out a synthesis of antimicrobial peptides, proinflammatory cytokines, and chemokines, as well as growth factors, to contain the pathogens (Fig. 1).

The sentinel fibroblasts said, “We are difficult fellows, and we detect enemies. Their names are pathogens, and they cannot win with us.”
Fibroblasts: unknown sentinels

What about antimicrobial peptide synthesis by fibroblasts in the presence of microorganisms or microbial components?

Good sentinels have different weapons; in this case, the fibroblasts have important molecules used as antimicrobial peptides when they are stimulated with pathogens or when pathogen components produce antimicrobial peptides. The fibroblast sentinels demand, “Where are you going, bad boy (pathogen)?” Then they shoot antimicrobial peptide-reaching pathogens.

Antimicrobial peptides are important components of the host innate immune response. They perform activity against gram-positive and gram-negative bacteria, fungi, and viruses. This family includes α-defensins and β-defensins (hBD1 to hBD4), adrenomedullin, histatins, and cathelicidins (LL-37) [25].

Results from osteoblast cultures revealed that LL-37 is capable of eliminating extra- and intracellular *S. aureus* and showing more antimicrobial activity than conventional antibiotics, such as doxycycline and cefazoline. However, the LL-37 concentrations and the susceptibility of *E. coli* to LL-37 increase the probability of developing urinary tract infections (UTI) [26, 27].

β-Defensin 3 (hBD-3) is able to suppress the biofilm formation of *S. aureus* [28]. Common ocular pathogens (*P. aeruginosa*, *S. aureus*, and *S. epidermidis*) challenged with hBD-3 decreased their viability in a dose-dependent fashion [29].

Fibroblasts produce defensins and cathelicidins when challenged by microorganisms. In several studies, limbo-corneal fibroblasts produced β-defensin hBD-1 and cathelicidin LL-37 when stimulated with mycobacteria (*Mycobacterium tuberculosis*, *M. smegmatis*, and *M. abscessus*); on the other hand, gingival fibroblasts secreted hBD-2 in the presence of intracellular bacteria such as *Chlamydia* spp., while corneal fibroblasts expressed DEFA-3, which is an α-defensin, when they were stimulated with PGN from *S. aureus* (Table 1) [30–32].

This information indicates that the fibroblasts secrete molecules important to the innate immune response with respect to antimicrobial activity. The fibroblasts said, “We have and effective weapon against the pathogens. We are amazing cells!”

European Journal of Microbiology and Immunology
Table 1. Immunological molecules synthesized when the fibroblasts were stimulated with different microbial components or microorganisms

Fibroblast strain	Microbial component or microorganisms	Cytokine/growth factor/antimicrobial peptide
HGF [16]	LPS tetra acylated peptide A	GM-CSF, CXCL10, G-CSF, IL-6, IL-8, and CCL2
HDF [17]	Flagellin	CXCL8 (IL-8)
CF [18]	*P. aeruginosa* LPS	MMP-9, IL-2, IL-8, IL-10, IL-12p70, GM-CSF, INFγ, TNFα, IL-6, MCP-1, and MIP-1β (CCL4)
SFHTI [21]	Hyphae and conidia *Fusarium solu*	IL-10, IL-1β
LCM [23]	Poly I:C	CCL1, CCLC, CCL5, CXCL1, CXCL8 (IL-8), CXCL10, G-SCF, IL-6
LCF [30]	Mycobacteria	hBD1 and LL3
EP [38]	Biofilm and planktonic supernatant	INFγ, IL-6, IL-8, VEGF, TGF-β1, EGF HB, and MMP-3
OCF [39]	*C. albicans*	CX3CL, IL-6, IL-8
HGF [40]	Chlamydia sp	IL-6, IL-8, hBD2

HGF = human gingival fibroblasts; HDF = human dermal fibroblasts; CF = corneal fibroblasts; SFHTI = stromal fibroblasts human telomerase immortalized; LCM = limbo-corneal myofi broblasts; LCF = limbo-corneal fibroblasts; EP = epidermal fibroblasts; OCF = oral cavity fibroblasts

What about the synthesis of cytokines expressed by fibroblasts against present microorganisms?

All the sentinels have devices by which to communicate with their crew partners and to try to stop and eliminate intruders (pathogens). The sentinel fibroblasts said to their crew partners, “We think that we saw a nasty pathogen”, and they released the alarm (proinflammatory cytokines and chemokines) to notify the remaining cells.

Cytokines are proteins secreted by the cells of the innate or adaptive immune response; these proteins can be secreted in the presence of microorganisms and can induce the activation of different effector cells. Cytokines are known as interleukins (ILs) and are secreted by different immune cell strains [33].

The interferon gamma (INFγ) is an important cytokine directed against both intracellular and extracellular pulmonary pathogens. INFγ increases the cytotoxic and phago- cytic activity of macrophages, restricting the growth of infected cells [34, 35]. IL-6 is an inflammatory cytokine and is synthesized and activated in an acute immune response when infection occurs [36]. IL-12p70 is synthesized by dendritic cells when they are stimulated with major membrane protein (MMP)-II, in addition to producing tumor necrosis factor alpha (TNFα) [37].

Skin fibroblasts can synthesize proinflammatory cytokines such as INFγ, IL-6, and IL-8 in response to conditioned biofilm and planktonic cultures of *S. aureus* cells [38]. Corneal fibroblasts stimulated with LPS from *P. aeruginosa* synthesize IL-6, IL-2, IL-10, IL-12p70, and INF-γ [39]. Human gingival fibroblasts express IL-6 and IL-8 in the presence of LPS tetra-acylated peptide A from *P. gingivalis* [23]. The same effect occurs when the oral fibroblast cavity is exposed to *C. albicans* and *Chlamydia* spp. [31, 39]. Finally, limbo-corneal myofibroblasts synthesize IL-6 in the presence of poly I:C [23].

TNFα is a cytokine with inflammatory and autoimmune activity which provides different responses to tissue damage, fever, tumor necrosis, proliferation, differentiation, and apoptosis, as well as a number of other conditions. Monocytes, macrophages, natural killer cells, lymphocytes, mast cells, Paneth cells, mesenchymal intestine cells, and keratocytes, among others, can produce TNFα. In bacterial infections, TNFα is released by intestinal epithelial cells. The exposure of intestinal epithelial cells to LPS induces the production of TNFα [40]. In corneal fibroblasts, it has been found that stimulation with LPS from *P. aeruginosa* induces TNFα expression [18].

Chemokines are cytokines that function to regulate monocyte and leucocyte trafficking and induce migration to peripheral sites of the pathogen challenge. Chemokines are subdivided as CC, CXC, and CX3C [41, 42].

In malarial infections, there are the synthesis of pro-inflammatory cytokines and the recruitment of monocytes and macrophages; there are also expressions of chemokines such as CCL2, CCL3, CCL4, CXCL8 (IL-8), CXCL9, CXCL13, and CXCL16 in the placentae of women with malaria [41]. The chemokine CXCL8 is primarily produced by fibroblasts and other cells in response to periodontal bacteria and bacterial components [42]. The expression of CXCL10 increases in airway epithelial cells when the cells are stimulated with dsRNA and INFγ [43]. CXCL10, CXCL9, CCL2, CCL3, and CCL5 are involved in the cellular migration of natural killer cells (NK), macrophages, T cells, neutrophils, and plasmacytoid dendritic cells in a model of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) [44].

Domínguez et al. demonstrated the expression of chemokines, such as CCL1, CCL2, CCL5, CXCL1, CXCL8 (IL-8), and CXCL10, on limbo-corneal myofibroblasts with the stimulus of poly I:C [23]. Herath et al. showed
the expression of CCL2 and CX3CL1 by gingival fibroblasts [16]. Previous data had suggested the capacity of fibroblasts to induce chemokines when there was a microbial infection and to cause the recruitment of inflammatory cells (Table 1).

The sentinel fibroblasts said that their communication method with the gremmie members was the best. “We do not need social networks to organize the response against pathogenic agents.”

Can fibroblasts synthesize growth factors in the presence of microorganisms or microbial components?

The sentinels have other instruments with which to defend against intruders and to stimulate cell proliferation as growth factors. The sentinel fibroblasts release another alarm: “Hey partners, this is the second warning. Come with us! The intruder will not escape.”

Vascular endothelial growth factor (VEGF-A) is a factor involved in inflammatory neovascularization, and it is able to recruit monocytes/macrophages [45]. VEGF-A increases in *C. albicans* keratitis; this growth factor was present in the epithelium and stroma of infected corneas in a murine model of fungal keratitis [46]. Fibroblasts are also important stromal cells. Kirker and colleagues found VEGF expression in epidermal fibroblasts challenged with supernatants from planktonic cells of *S. aureus* [38]. This information indicates the ability of the fibroblasts to synthesize VEGF, to promote the recruitment of cells, such as monocytes and macrophages, and to induce inflammatory neovascularization.

The growth factors granulocyte/macrophage colony-stimulating factor (GM-CSF) and granulocyte colony-stimulating factor (G-CSF) play roles in immune responses, survival, cancer pathogenesis, proliferation of macrophages, erythrocytes, eosinophils, megakaryocytes, and multipotent progenitors. The expression of GM-CSF is associated with inflammatory diseases, such as rheumatoid arthritis and inflammatory renal disease. GM-CSF induces proinflammatory cytokines in response to exposure to LPS in mice. The production of G-CSF is induced by TLRs and ligands such as LPS. The G-CSF induces the recruitment of neutrophils to sites of inflammation [47, 48].

The production of growth factors by fibroblasts has also been reported [47]. According to Herath’s study, *P. gingivalis* induced the expression of GM-CSF in human gingival fibroblasts [16], and Lu et al. [49] observed the synthesis of GMC-CSF in corneal fibroblasts when stimulated by *P. aeruginosa* LPS, while Domínguez-Lopez reported poly I:C-induced G-CSF expression on limbo-corneal myofibroblasts [23]. These reports permit us to conclude that the fibroblast produces GM-CSF upon bacterial stimulation and G-CSF in a viral infection. These growth factors indicate that the fibroblasts recruit inflammatory cells in response to microorganisms and induce cellular proliferation (Table 1).

Conclusions

The innate immune response comprises different mechanisms to defend the host against pathogenic agents, for example, in the case of the physical barriers in the skin or ocular surfaces where the barriers are constituted by layers that have specialized cells with certain functions. The fibroblasts are stromal cells that play an important role in establishing a response against microorganisms. We consider that fibroblasts are stromal sentinel cells that possess “weapons” as TLR’s to recognize microbial agents. When the pathogens are recognized, the fibroblasts begin to synthesize cytokines and growth factors to expand the immune responses and finally secrete antimicrobial peptides as “mortal weapons” to prevent or eliminate the establishment of the invading enemies.

Acknowledgements

Victor Manuel Bautista-Lucio, Gomez-Olivares Jose Luis, and Buentello-Volante Beatriz are SNI fellows. Bautista-Hernández Luis Antonio is CONACYT fellow and student of Doctorate Biological Science and Health, Autonomus Metropolitan University academic unit Iztapalapa. We thank the Autonomus Metropolitan University, academic unit Iztapalapa, and the Inst of Ophthalmology “Fundación de Asistencia Privada Conde de Valenciana”.

Funding sources

This work was partially supported by the Institute of Ophthalmology “Fundación de Asistencia Privada Conde de Valenciana”.

Conflict of interests

The authors declare no conflict of interest.

References

1. Delves PJ, Martin SM, Burton DR, Roitt IM (2014): Immuno- nología Fundamentos. 12th ed. Panamericana, Mexico
2. Jakab L: Connective tissue and inflammation. Orv Hetil 155, 453–460 (2014)
3. Kendall RT, Feghali-Bostwick CA: Fibroblasts in fibrosis: novel roles and mediators. Front Pharmacol 5, 1–13 (2014)
4. Abercrombie M: Fibroblasts. J Clin Pathol Suppl (R Coll Pathol) 12, 1–6 (1978)
5. Acosta A: El fibroblasto: su origen, estructura, funciones y heterogeneidad dentro del pedilonoto. Univ Odontol 25, 26–33 (2006)
6. Jordana Särnstrand B, Sime PJ, Ramis I: Immune-inflam- matory functions of fibroblasts. Eur Respir J 12, 2212–2222 (1994)
7. Xi X, McMillan DH, Leahmann GM, Sime PJ, Libby RT, Huxlin KR, Feldon SE, Phipps RP: Ocular fibroblasts diversity: implications for inflammation and ocular wound healing. Invest Ophthalmol Vis Sci 52, 4859–4865 (2011)

8. Palm E, Khalaf, Bengtsson T: Porphyromonas gingivalis downregulates the immune response of fibroblasts. BMC Microbiol 13, 1–9 (2013)

9. Arment MA, Fenton MJ: Toll-like receptors: a family of pattern-recognition receptors in mammals. Genome Biol 3, 1–6 (2002)

10. Winkler P, Ghadimi D, Scherezenmeir J, Kraerhenbuhl JP: Cellular and molecular basis of microflora–host interactions. J Nutr 137, 756S–72S (2007)

11. Pietracola G, Arciola CR, Rindi S, Di Poto, Missineo A, Montanaro L, Speziale P: Toll-Like receptors in innate immune defense against Staphylococcus aureus. Int J Artif Organs 34, 799–810 (2011)

12. Kumagai Y, Akira S: Identification and functions of pattern-recognition receptors. J Allergy Clin Immunol 125, 985–992 (2010)

13. Nagashima H, Iwatani S, Cruz M, Jiménez Abreu JA, Uchiha T, Mahachai V, Vilaichone RK, Graham DY, Yamaoka Y: Toll like receptor 10 in Helicobacter pylori infection. J Infect Dis 212, 1666–1676 (2015)

14. Yao C, Oh JH, Lee DH, Bae JS, Jin CL, Park CH, Chung JH: Toll-like receptor family members in skin fibroblasts are functional and have a higher expression compared to skin keratinocytes. Int J Mol Med 35, 1443–1450 (2015)

15. Guez-Martínez SR, Sanchez-Zauno NA, González-Ramírez I, Cancino-Díaz JC, Cancino-Díaz ME: Peptidoglycan from Staphylococcus aureus induces the overexpression of TLRs 1-8 mRNA in corneal fibroblasts, but its lipoteichoic acid and muramyl dipeptide only induced overexpression of TLR5 or TLR9. Braz J Microbiol 42, 1056–1060 (2011)

16. Herath TD, Darveau RP, Seneviratne CJ, Wang CY, Wang Y, Jin L: Tetra- and penta-acylated lipid A structures of Porphyromonas gingivalis LPS differentially activate TLR4-mediated NF-κB signal transduction cascade and immune-inflammatory response in human gingival fibroblasts. PLoS One 8:e58496 (2013)

17. Mahanonda R, Sa-Ard-Iam N, Montreekachon P, Pimkhaokham A, Yongvanichit K, Fukuda MM, Pichyangkul J: Defensin production by human limbo-corneal fibroblasts infected with mycobacteria. Pathogens 2, 13–32 (2013)

18. Wong Y, Sethu C, Louafi, Hossain P: Lipopolysaccharide regulation of toll-like receptor-4 and matrix metalloproteinase-9 in human primary corneal fibroblasts. Invest Ophthalmol Vis Sci 52, 2796–2803 (2011)

19. Obermeier F, Strauch UG, Dunger N, Grunwald N, Rath HC, Herfarth H, Schölmerich J, Falk W: In vivo CpG DNA/ toll-like receptor 9 interaction induces regulatory properties in CD4+CD62L+ T cells which prevent intestinal inflammation in the SCID transfer model of colitis. Gut 54, 1428–1436 (2005)

20. Kubyurz D, Rethage J, Seihl R, Lauener R, Gay RE, Carson DA, Gay S: Bacterial peptidoglycans but not CpG oligodeoxynucleotides activate synovial fibroblasts by toll-like receptor signaling. Arthritis Rheum 48, 642–650 (2003)

21. Guo H, Wu X, Yu FS, Zhao J: Toll-like receptor 2 mediates the induction of IL-10 in corneal fibroblasts in response to Fusarium solu. Immunol Cell Biol 86:271–276 (2008)

22. Jie Zhao, Wu XY, Yu FS: Activation of Toll-like receptors 2 and 4 in Aspergillus fumigatus Keratitis. Innate Immun 15, 155–168 (2009)

23. Domínguez-Lopez A, Bautista-de Lucio VM, Serafín-López J, Robles-Sanches E, Garfias Y: Amniotic membrane modulates innate immune response inhibiting PRRs expression and NF-κB nuclear translocation on limbal myofibroblasts. Exp Eye Res 127, 215–223 (2014)

24. Farina GA, York MR, Di Marzio M, Collins CA, Sella M, Hommeby B, Ritzkin IR, Marshak-Rothstein A, Radske TR, Lafyatis R: Poly(I:C) drives type I IFN- and TGFβ-mediated inflammation and dermal fibrosis simulating altered gene expression in systemic sclerosis. J Invest Dermatol 130, 2583–2593 (2010)

25. Hans M, Madaan Hans V: Epithelial antimicrobial peptides: guardian of the oral cavity. Int J Pept, 370297 (2014)

26. Noore J, Noore A, Li B: Cationic antimicrobial peptide LL-37 is effective against both extra- and intracellular Staphylococcus aureus. Antimicrob Agents Chemother 57, 1283–1290 (2013)

27. Nielsen KL, Dynesen P, Larsen P, Jakobsen L, Anderssen PS, Frimodt-Møller N: Role urinary cathetidin LL-37 and human B-defensin 1 in uncomplicated Escherichia coli urinary tract infections. Infect Immune 82, 1572–1578 (2014)

28. Huang Q, Fei J, Yu HJ, Gou YB, Huang XK: Effects of human β-defensin-3 on biofilm formation-regulating genes dltB and icaA in Staphylococcus aureus. Mol Med Rep 10, 825–831 (2014)

29. Huang LC, Jean D, Proske RJ, Reins RY, McDermott AM: Ocular surface expression and in vitro activity of antimicrobial peptides. Curr Eye Res 32, 595–609 (2007)

30. Castañeda-Sanchez JI, Garcia-Perez BE, Muñoz-Duarte AR, Baltierrez-Urtibe SL, Mejia-Lopez C, Lopez-Lopez C, Bautista-De Lucio VM, Robles-Contreras A, Luna-Herrera J: Defensin production by human limbo-corneal fibroblasts infected with mycobacteria. Pathogens 2, 13–32 (2013)

31. Rizzo A, Polillo R, Buonminio E, Lanza AG, Guinda L, Amuzita M, Carretali CR: Modulation of cytokine and beta-defensin 2 expressions in human gingival fibroblasts infected with Chlamydia pneumoniae. Int Immunopharmacol 8, 1239–1247 (2008)

32. Rodriguez-Martínez S, Cancino-Díaz M, Cancino-Díaz J: Expression of CRAMP via PNG-TLR-2 and of alpha-defensin-3 via CpG-ODN-TLR-9 in corneal fibroblasts. Br J Ophthalmol 90, 378–382 (2006)

33. Abbas AK, Lichtman AP (2004): Inmunología Celular y Molecular. 5th ed. Elsevier, España

34. Lei D, Lancaster JR Jr, Joshi MS, Nelson S, Stoltz D, Bagby GJ, Odom G, Shellito JC, Kolls JK: Activation of alveolar macrophages and lung host defenses using transfer of the interferon-gamma gene. Am J Physiol 272, L852–859 (1997)

35. Mata-Espinosa DA, Hernández-Pando R: Interferon gamma: aspectos básicos, importancia clínica y usos terapéuticos. Rev Investigación Clin, 60, 421–431 (2008)

36. Tanaka T, Kishimoto T: The biology and medical implication of interleukin-6. Cancer Immunol Res 2, 288–294 (2014)

37. Maeda Y, Mukai T, Spencer J, Makino M: Identification of an immunomodulating agent from Mycobacterium leprae. Infect Immun 73, 2744–2750 (2005)
38. Kirker KR, James GA, Fleckman P, Orelund JE, Stewart PS: Differential effects of planktonic and biofilm MRSA on human fibroblasts. Wound Repair Regen 20, 253–261 (2012)
39. Dongari-Bagtzoglou A, Wen K, Lamster IB: *Candida albicans* triggers interleukin-6 and interleukin-8 responses by oral fibroblasts in vitro. Oral Microbiol Immunol 14, 364–370 (1999)
40. Falfán VR: Factor de necrosis tumoral: actividad biológica en neumopatías intersticiales. Rev Inst Nal Enf Resp Mex 15, 48–53 (2002)
41. Ioannidis LJ, Nie CQ, Hansen DS: The Role of chemokines in severe malaria: more than meets the eye. Parasitology 141, 602–613 (2014)
42. Sahingur SE, Yeudall WA: Chemokine function in periodontal disease and oral cavity cancer. Front Immunol 6, 1–15 (2015)
43. Oslund KL, Zhou X, Lee B, Zhu L, Duong T, Shih R, Baumgarth N, Hung LY, Wu Y, Chen Y: Synergistic up-regulation of CXCL10 by virus and INFγ in human airway epithelial cells. PLoS One 9, e00978 (2014)
44. Chen J, Lau YF, Lamirande EW, Paddock CD, Bartlett JH, Zaki SR, Subbarao K: Cellular immune responses to severe acute respiratory syndrome coronavirus (SARS-CoV) infection in senescent BALB/c mice: CD4+ T cells are important in control of SARS-CoV. J Virol 84, 1289–1301 (2010)
45. Cursiefen C, Chen L, Borges LP, Jackson D, Cao J, Radziejewski C, D’Amore PA, Dana MR, Wiegand SJ, Streilein JW: VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. J Clin Invest 113, 1040–1050 (2004)
46. Yuan X, Wilhelms KR: Corneal neovascularization during experimental fungal keratitis. Mol Vis 15, 1988–1996 (2009)
47. Martins A, Han J, Kim SO: The multifaceted effects of granulocyte colony-stimulating factor in immunomodulating and potential roles in intestinal immune homeostasis. IUBMB Life 62, 611–617 (2010)
48. Shi Y, Liu CH, Roberts AI, Das J, Xu G, Ren G, Zhang ZR, Tan HS, Das G, Devadas S: Granulocyte-macrophage colony-stimulating factor (GM-CSF) and T-cell responses: What we do and don’t know. Cell Res 16, 126–133 (2006)
49. Lu Y, Liu Y, Fukuda K, Nakamura Y, Kumagai N, Nishida T: Inhibition by triptolide of chemokine, proinflammatory cytokine, and adhesion molecule expression induced by lipopoly saccharide in corneal fibroblasts. Invest Ophthalmol Vis Sci 47, 3796–3800 (2006)