Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Correspondence

Cerebral venous thrombosis associated with COVID-19 infection: Causality or coincidence?

Background

The full spectrum of COVID-19 infection remains uncertain. Some authors have reported neurologic manifestations such as leptomeningeal involvement, acute ischemic strokes or acute hemorrhagic necrotizing encephalopathy [1–3]. Others described a higher prevalence of acute pulmonary embolism in context of COVID-19 infection [4,5]. Here we report 2 cases of patients presenting with cerebral venous thrombosis associated with COVID-19 infection.

Case 1

A 62-year-old woman with history of morbid obesity presented with fever, cough and dyspnea. Nasal swabs were positive for COVID-19 on reverse transcriptase-polymerase chain reaction (RT-PCR) test. CT-scan demonstrated typical findings for COVID-19. Fifteen days after the onset of symptoms, she presented with headache and altered vision, rapidly followed by sudden right hemispheric deficit and altered consciousness. Laboratory results showed leukocytosis (18.32 × 10⁹/L, normal 4.0–10.0 × 10⁹/L), elevated liver enzymes (AST = 54 IU/L, normal < 32 IU/L; ALT = 68 IU/L, normal < 33 IU/L; GGT = 87 IU/L, normal 5–35 IU/L) and D-dimer elevation (14.2 mg/L, normal < 0.5 mg/L).

Non-contrast brain CT and MRI revealed large confluent intrapenichymal hemorrhage in the left fronto-temporal lobes. CT venogram showed cerebral venous thrombosis (CVT) of the left transverse sinus, straight vein, vein of Galen and internal cerebral veins (Fig. 1).

Case 2

A 54-year-old woman presented with fever, asthenia. She has a history of breast cancer in remission, initially treated by surgery, radiotherapy and for the past 5 years with hormone therapy without any complications reported. Despite initial symptomatic treatment, the patient rapidly worsened her condition, rapidly developing cough and then severe headache about 2 weeks after the onset of symptoms. Chest CT-scan revealed typical subpleural ill-defined ground glass opacities of COVID-19 infection. Laboratory results showed leukocytosis (18.32 × 10⁹/L, normal 4.0–10.0 × 10⁹/L), high level of CRP (170.8 mg/L, normal < 5 mg/L) and D-dimer elevation (2.36 mg/L, normal < 0.5 mg/L).

Non-contrast brain CT and MRI revealed large hemorrhagic infarction in the left temporal lobe. CT venogram and MR angiography showed cerebral venous thrombosis (CVT) of the left transverse sinus (Fig. 2).

Discussion

COVID-19 is a pandemic infection caused by severe acute respiratory syndrome coronavirus 2. When symptomatic, COVID-19 is known to typically present with systemic and respiratory manifestations [6,7]. COVID-19 can also cause hyperactivation of inflammatory factors and damage to the coagulation system causing D-dimer and platelet abnormalities. It increases the risk of abnormal blood clotting leading to deep vein thrombosis or pulmonary embolism [4–6]. Central nervous system symptoms or diseases have recently been reported [1,2,8]. However, these are the first reported cases of CVTs associated with COVID-19 infection.

As the number of patients diagnosed with COVID-19 increases worldwide, clinicians should be cautious when managing patients presenting with headache with or without other neurological symptoms, especially those who, like our patients, have known risk factors for venous thromboembolic disease [9]. These isolated results require further large studies to confirm a possible causal relationship between CVT and COVID-19 infection. Epidemiological studies evaluating the incidence of CVTs during the currently pandemic period as compared to previous years might support our findings. Nevertheless, our cases suggest that a careful examination of cerebral venous sinuses should be systematically performed in patients with COVID-19 infection to look for CVT. Similarly, patients presenting with acute CVT in the current epidemic setting should benefit from a simultaneous chest CT to confirm or rule out COVID-19. This approach might help improve managing and treating patients with CVTs associated with COVID-19. Our case also highlights the importance of prophylactic measures for avoiding thromboembolism.
Fig. 1. Patient 1. Non-contrast brain CT (a, b) revealed large confluent hyperdensity of the left fronto-temporal lobes (white arrows), consistent with intraparenchymal hemorrhage, as well as hyperdense left transverse sinus (black arrowhead), suggestive of cerebral venous thrombosis (CVT). CT venogram (c, d) demonstrated filling defect in the left transverse sinus, confirming CVT. Susceptibility-weighted MRI (e,f) showed loss of signal of the left fronto-temporal lobes (white arrow) and left transverse sinus (black arrowheads), confirming intraparenchymal hemorrhage complicating CVT. CT-scan (g, h) demonstrated bilateral areas of peripheral ground glass opacities and consolidations (black arrows), highly suggestive of COVID-19.
Correspondence

Journal of Neuroradiology 48 (2021) 121–124

Fig. 2. Patient 2. Non-contrast brain CT (a) and brain susceptibility-weighted MRI (b) revealed large hemorrhagic infarction of the left temporal lobe (white arrows). CT venogram (c) and MR venography (d) demonstrated filling defect in the left transverse sinus (white arrowheads) confirming CVT. CT-scan demonstrated subpleural ill-defined ground-glass (black arrow) and linear opacities (black arrowhead), highly suggestive of COVID-19.

Disclosure of interest

The authors declare that they have no competing interest.

References

[1]. Poyiadji N, Shahin G, Noujaim D, Stone M, Patel S, Griffith B. COVID-19 – associated acute hemorrhagic necrotizing encephalopathy: CT and MRI features, radiology. Radiol Soc North Am. 2020;2011187.

[2]. Helms J, Kremer S, Merdji H, et al. Neurologic features in severe SARS-CoV-2 infection. N Engl J Med. 2020.

[3]. Viguier A, Delamarre L, Duplantier J, Olivot JM, Bonneville F. Acute ischemic stroke complicating common carotid artery thrombosis during a severe COVID-19 infection. J Neuroradiol. 2020 [Accessed May 6, 2020] http://www.sciencedirect.com/science/article/pii/S0150986120301590.

[4]. Xie Y, Wang X, Yang P, Zhang S. COVID-19 complicated by acute pulmonary embolism radiol cardiothorac imaging. Radiol Soc North Am. 2020;2(2):e672000.

[5]. Grillet F, Behr J, Calame P, Aubry S, Delabrousse E. Acute pulmonary embolism associated with COVID-19 pneumonia detected by pulmonary CT angiography. Radiology. 2020, 201544.
Correspondence

Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–1062.

Ai T, Yang Z, Hou H, et al. Correlation of chest CT and RT-PCR testing in coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases radiology. Radiol Soc North Am. 2020;200642.

Mao L, Wang M, Chen S, et al. Neurological manifestations of hospitalized patients with COVID-19 in Wuhan, China: a retrospective case series study. medRxiv. Cold Spring Harbor Laboratory Press; 2020, 2020.02.22.20026500.

Anderson FA. Risk factors for venous thromboembolism. Circulation. 2003;107(90231):9I–16I.

Guillaume Poillon a,∗
Mickael Obadia b
Mathilde Perrin c
Julien Savatovsky a
Augustin Lecler a

a Department of Neuroradiology, Adolphe de Rothschild Foundation Hospital, 29, rue Manin, 75019 Paris, France
b Department of Neurology, Adolphe de Rothschild Foundation Hospital, Paris, France
c Neuro-Intensive Care Unit, Adolphe de Rothschild Foundation Hospital, Paris, France

∗ Corresponding author.
E-mail address: gpoillon@for.paris (G. Poillon)

Available online 11 May 2020