We describe the non-perturbative trans-series, at both weak- and strong-coupling, of the large N approximation to the beta function of the Gross-Witten-Wadia unitary matrix model. This system models a running coupling, and the structure of the trans-series changes as one crosses the large N phase transition. The perturbative beta function acquires a non-perturbative trans-series completion at large but finite N in the ’t Hooft limit, as does the running coupling.

I. INTRODUCTION

One of the big puzzles concerning resurgent asymptotics in QFT [1] is how it applies to the situation where the coupling is not fixed, but runs with the scale. In this short note, we explore this phenomenon in a simple solvable model, the Gross-Witten-Wadia (GWW) unitary matrix model [2, 3], which mimics a running coupling through the dependence on the lattice plaquette scale. The form of the resurgent structure changes as one crosses the large N phase transition. The GWW unitary matrix model is a one-plaquette model of $2d$ Yang-Mills theory, and is defined by the partition function [2, 3]:

$$Z(t, N) = \int \frac{DU}{U(N)} \exp \left[\frac{N}{2t} \text{tr} (U + U^†) \right]$$ \hspace{1cm} (1)

Here $t \equiv N g^2 / 2$ is the ’t Hooft coupling. The GWW model has a third-order phase transition at infinite N, as the specific heat develops a cusp at $t = 1$. This large N third order phase transition occurs in many related examples in physics and mathematics [4–14].

For any N, the partition function in (1) can be compactly expressed as a Toeplitz determinant [5]:

$$Z(t, N) = \det \left[I_{j-k} \left(\frac{N}{t} \right) \right]_{j,k=1,...,N}$$ \hspace{1cm} (2)

where I_j is the modified Bessel function. While this formula is explicit, the determinant structure makes it of limited use for studying the large N limit. Many alternative techniques have been developed to analyze the large N limit [4–10], including the double-scaling limit described by the universal Tracy-Widom form [11]. Resurgent asymptotics for the large N limit in matrix models was introduced in [15], using the pre-string difference equation. To study the analytic continuation of the large N trans-series structure, where N becomes complex, one can alternatively map the GWW model to a Painlevé III equation (in terms of the ’t Hooft coupling t), in which N appears as a parameter [16].

The familiar double-scaling limit of the GWW model arises as the well-known coalescence limit reducing Painlevé III to Painlevé II [17]. In this paper, we extend this Painlevé-based approach to the analysis of the beta function of the GWW model, explaining the form of the large N trans-series, at both weak and strong coupling.

A. Running Coupling and Beta Function

The running coupling is defined [2] by reintroducing a length scale (the lattice spacing a) into the Wilson loop via the definition

$$W(t, N) \equiv \exp \left[-a^2 \Sigma \right]$$ \hspace{1cm} (3)

Keeping the string tension Σ fixed therefore defines $t \equiv t(a, N)$ as a function of the scale a. This running coupling $t(a, N)$ can be obtained by inversion of the expression

$$a^2 \equiv - \frac{1}{\Sigma} \ln W(t, N)$$ \hspace{1cm} (4)

The beta function is then defined [2]:

$$\beta(t, N) = - \frac{\partial t(a, N)}{\partial \ln a}$$ \hspace{1cm} (5)

1 Note that for any finite N, the relation between the ’t Hooft coupling t and the lattice scale a is monotonic.
From now on, we set the string tension $\Sigma = 1$, absorbing it into the units of a.

At infinite N, the Wilson loop at strong and weak coupling is \[W(t, N) \xrightarrow{N \to \infty} \begin{cases} \frac{1}{2t} & \text{strong coupling, } t \geq 1 \\ 1 - \frac{t}{2} & \text{weak coupling, } t \leq 1 \end{cases} \]

Therefore, at infinite N the running coupling $t(a)$ is:

\[t(a, N) \xrightarrow{N \to \infty} \begin{cases} \frac{1}{2} \exp \left[a^2 \right] & \text{strong coupling, } t \geq 1 \\ \frac{1}{2} \left(1 - \exp \left[-a^2 \right] \right) & \text{weak coupling, } t \leq 1 \end{cases} \]

and the beta function is:

\[\beta(t, N) \xrightarrow{N \to \infty} \begin{cases} -\frac{2t \ln(2t)}{4 \left(1 - \frac{t}{2} \right) \ln \left(1 - \frac{t}{2} \right)} & \text{strong coupling, } t \geq 1 \\ -\frac{2t}{4 \left(1 - \frac{t}{2} \right) \ln \left(1 - \frac{t}{2} \right)} & \text{weak coupling, } t \leq 1 \end{cases} \]

Gross and Witten observed that if one only had the infinite N expressions at either weak or strong coupling, one might erroneously deduce the existence of spurious zeros of the beta function. See Figures 1 and 2. Similarly for the running coupling, one might deduce the incorrect behavior at small or large a, starting from the other limit at $N = \infty$. See Figure 3. The resolution of course is that infinite N should be approached from finite N, with suitable large N corrections included. In the next Sections we show that these finite N corrections yield non-perturbative trans-series expressions both for the beta function and for the running coupling, and when these are included, the weak coupling expressions match consistently to the strong-coupling expressions. The kink in the beta function, indicating the third order phase transition, develops at $N = \infty$. See Figures 1 and 2.

![Beta Function Graph](image.png)

FIG. 1. Plot of the GWW beta function $\beta(t, N)$ in (9). The red solid curve shows the exact beta function for $N = 20$. The dashed and dotted lines show the strong-coupling and weak-coupling approximations, respectively, at infinite N, from (8). The infinite N approximations show spurious zeros at $t = 1/2$ and $t = 2$, but in fact the true beta function has a single zero at $t = 0$. As $N \to \infty$, the jump at $t = 1$ shown in the red curve becomes a cusp, indicating the $N = \infty$ third-order phase transition [2, 3], and the beta function curve jumps from the infinite N strong-coupling form to the infinite N weak-coupling form as t decreases through the phase transition. See Fig. 2 for a close-up of the cusp at $t = 1$. The finite N corrections, which produce this jump, are described in Sec. II in the form of a large N trans-series.
FIG. 2. Plot of the ratio of the beta function $\beta(t, N)$ to the $N = 1$ beta function, which shows the development, as N increases, of the kink at the $N = \infty$ phase transition point $t = 1$.

FIG. 3. The running coupling $t(a, N)$ [red solid curve] as a function of the lattice scale a, for $N = 20$. The dashed and dotted curves show the strong coupling and weak coupling behavior, respectively, at infinite N. The true behavior of the running coupling jumps from one asymptotic curve to the other, near the $N = \infty$ phase transition point: $t = 1$. The finite N corrections, in the form of a large N trans-series, are described in Section III.
II. LARGE N TRANS-SERIES FOR THE BETA FUNCTION

From the definition \[\beta(t, N) = -2 \frac{\partial_t \ln W(t, N)}{W(t, N)} = -2 \frac{\partial_t (\ln \ln W(t, N))}{\partial_t W(t, N)} \] (9)

This implies that the beta function $\beta(t, N)$ inherits its non-perturbative trans-series structure directly from the trans-series structure of the Wilson loop $W(t, N)$. The large N trans-series for $W(t, N)$ was studied in [16], showing how the form of the trans-series changes across the phase transition at $t = 1$. Related changes therefore occur for the beta function. For other discussions of non-perturbative effects for the GWW Wilson loop, see [18, 19].

We briefly review some relevant results from [16]. The non-perturbative trans-series form of $W(t, N)$ at any N is efficiently expressed in terms of a solution to a Painlevé III equation. Define $\Delta(t, N)$ as the expectation value of the determinant in the Gross-Witten-Wadia model:

\[\Delta(t, N) \equiv \langle \det U \rangle \] (10)

Then $W(t, N)$ is related to $\Delta(t, N)$, for any N, as:

\[W(t, N) = \frac{1}{2t} \left[1 - \Delta^2 - \frac{t^2}{1 - \Delta^2} \left(\frac{t^2 (\partial_t \Delta)^2}{N^2} - 1 \right) \right] - \frac{t}{2} \] (11)

The expectation value $\Delta(t, N)$ satisfies the following nonlinear ordinary differential equation, as a function of the ’t Hooft coupling t, for any value of N [5, 16, 20]:

\[t^2 \partial_t^2 \Delta + \frac{N^2 \Delta}{t^2} (1 - \Delta^2) = \frac{\Delta}{1 - \Delta^2} \left(N^2 - t^2 (\partial_t \Delta)^2 \right) \] (12)

Notice that N appears as a parameter in this equation, thereby enabling a simple analysis of the large N limit, including analytic continuation in N. The equation [12] is directly related to the Painlevé III equation, and standard resurgent asymptotic techniques [21] permit the development of explicit trans-series expansions in various limits: for example, weak or strong ’t Hooft coupling [19].

Combining [5] and [11], the GWW beta function can also be expressed in terms of $\Delta(t, N)$:

\[\beta(t, N) = -2t \left(1 - \frac{2 (\Delta^2 - 1)^2}{\Delta^4 - (t^2 + 2) \Delta^2 + 1 + t^4 (\partial_t \Delta)^2 / N^2} \right) \times \ln \left[\frac{1}{2t} \left(1 - \Delta^2 - \frac{t^2}{1 - \Delta^2} \left(\frac{t^2 (\partial_t \Delta)^2}{N^2} - 1 \right) \right) - \frac{t}{2} \right] \] (13)

For example, from [12] we see that at infinite N

\[\Delta(t, N) \overset{N \to \infty}{\rightarrow} \begin{cases} 0 & \text{strong coupling, } t \geq 1 \\ \sqrt{1 - t} & \text{weak coupling, } t \leq 1 \end{cases} \] (14)

from which follows the infinite N beta function in [8].

The correspondence [13] means that we can use the trans-series structure of $\Delta(t, N)$ to study the trans-series structure of $\beta(t, N)$. And since the trans-series expansions of $\Delta(t, N)$ were shown in [16] to display concrete resurgence relations between different non-perturbative sectors in the trans-series, it follows that the same is true for the beta function $\beta(t, N)$.

We can also use the relation [13] to plot the beta function as a function of coupling, for various values of N: see Figures [1] and [2]. These figures illustrate the fact that for any given N, the weak coupling dependence merges consistently with the strong coupling dependence, with a cusp developing at the critical ’t Hooft coupling only at $N = \infty$. In particular, it is clear that the zeros of the infinite N beta function at $t = 1/2$ and $t = 2$ (see Fig. [1]) are indeed spurious.

It is instructive to study the leading trans-series corrections to the infinite N beta functions in [8]. The form of the trans-series changes across the phase transition, so we illustrate this change of structure by considering the leading contributions at large but finite N. Express the Wilson loop for any finite N as

\[W = W_{\text{pert}} + W_{\text{non-pert}} \] (15)
Keeping the leading power of the non-perturbative term, we obtain the following expression for the beta function:

\[
\beta(t, N) = -\frac{2 \ln W_{\text{pert}}(t, N)}{\partial_t \ln W_{\text{pert}}(t, N)} + \frac{2}{\partial_t W_{\text{pert}}} \left(\frac{\ln W_{\text{pert}}}{\partial_t \ln W_{\text{pert}}} \partial_t W_{\text{non-pert}} - \ln (e W_{\text{pert}}) W_{\text{non-pert}} \right) + \ldots
\]

\[
\equiv \beta_{\text{pert}}(t, N) + \beta_{\text{non-pert}}(t, N)
\]

(16)

where the dots refer to higher powers of \(W_{\text{non-pert}} \).

A. Large N expansion at strong ‘t Hooft coupling

In the strong coupling limit, \(\Delta_{\text{pert}} \) is identically zero, so \(\Delta(t, N) \) is purely non-perturbative \([16]\). Consequently, from \([11]\) we deduce that the Wilson loop \(W(t, N) \) has only one perturbative term, \(W_{\text{pert}} = \frac{1}{2t} \), which is independent of \(N \), and equal to the familiar infinite \(N \) Wilson loop in \([8]\). At finite \(N \), the further corrections are all non-perturbative. Keeping the leading such non-perturbative correction \([16, 18, 19]\),

\[
W_{\text{strong}}(t, N) = \frac{1}{2t} - \frac{t e^{-2NS_{\text{strong}}(t)}}{4\pi N^2 (t^2 - 1)} \left(1 - \frac{t (3 + 14t^2)}{12N(t^2 - 1)^{3/2}} + \frac{t^2 (81 + 804t^2 + 340t^4)}{288N^2(t^2 - 1)^3} + \ldots \right) + \ldots
\]

(17)

where the large \(N \) instanton action at strong coupling is

\[
S_{\text{strong}}(t) = \text{arccosh}(t) - \sqrt{1 - 1/t^2}
\]

(18)

This translates into a non-perturbative large \(N \) instanton correction to the infinite \(N \) beta function in \([8]\):

\[
\beta_{\text{strong}}(t, N) = -2t \ln(2t)
\]

\[
-\frac{1}{N\pi} \frac{2t^2 \ln(2t)}{\sqrt{t^2 - 1}} e^{-2NS_{\text{strong}}(t)} \left(1 + \frac{t (6t^2 - 6 - (14t^2 - 9) \ln(2t))}{12N(t^2 - 1)^{3/2} \ln(2t)} + \ldots \right) + \ldots
\]

(19)

Note the appearance of further terms involving \(\ln(t) \) in the fluctuations about the leading large \(N \) instanton term, consistent with general trans-series structure \([21][23]\).

At any finite \(N \), the expression \([19]\) has an unphysical divergence at \(t = 1 \), arising from use of the Debye expansion for the Bessel functions \([24]\). In \([16]\), the leading large \(N \) correction for the Wilson loop at strong coupling was calculated more precisely to be:

\[
W_{\text{strong}}(t, N) \approx \frac{1}{2t} - \frac{1}{2t} \left[(J_N(N/t))^2 - J_{N-1}(N/t) J_{N+1}(N/t) \right] + \ldots
\]

(20)

This leading correction, in terms of Bessel J functions, is exponentially small at large \(N \), and represents a resummation of all fluctuations about the leading large \(N \) instanton exponential factor in \([17]\). At finite \(N \), expression \([20]\) is therefore much more accurate than the conventional large \(N \) expression \([17]\) in the vicinity of the large \(N \) phase transition, at \(t = 1 \), where instantons and their fluctuations condense \([16][23]\).

A uniform large \(N \) instanton expression is obtained by using the uniform large \(N \) approximation \([26]\) for the Bessel functions appearing in \([20]\). This is a nonlinear analogue of the uniform WKB approximation, smooth through the transition point for any finite \(N \), and expressed in terms of an Airy function rather than an exponential \([16][26]\). Physically, this uniform large \(N \) approximation arises from the merging of two saddles at the large \(N \) phase transition. A similar expression, along with a corresponding uniform approximation, can be deduced for the beta function at large \(N \), in the strong coupling regime:

\[
\beta_{\text{strong}}(t, N) \approx -2t \ln(2t) - 2t \left((J_N(N/t))^2 + (2 \ln(2t) - 1)J_{N-1}(N/t) J_{N+1}(N/t) \right) + \ldots
\]

(21)

B. Large N expansion at weak ‘t Hooft coupling

In the weak coupling regime, the infinite \(N \) expression in \([14]\), \(\Delta \sim \sqrt{1 - t} \), receives both perturbative and non-perturbative corrections at finite \(N \):

\[
\Delta(t, N) = \Delta_{\text{pert}}(t, N) + \Delta_{\text{nonpert}}(t, N)
\]

(22)
This structure flows through to the Wilson loop and to the beta function.

\[W_{\text{weak}}(t, N) = \left(1 - \frac{t}{2} - \frac{t^2}{8N^2(1-t)} + \ldots \right) \]

\[- \frac{i}{2\sqrt{2\pi N^{3/2}}} \frac{t}{(1-t)^{1/4}} e^{-NS_{\text{weak}}(t)} \left(1 + \frac{8 + 12t + 9t^2}{96N(1-t)^{3/2}} + \ldots \right) \]

(23)

where the large \(N \) instanton action at weak coupling is

\[S_{\text{weak}}(t) = \frac{2\sqrt{1-t}}{t} - 2 \arctanh \left(\sqrt{1-t} \right) \]

(24)

The corresponding large \(N \) trans-series expansion for the beta function has the form

\[\beta_{\text{weak}}(t, N) = 2(2-t) \log \left(1 - \frac{t}{2} \right) \left[1 - \frac{t}{2} \left(t - t^2 + \frac{4 - 3t}{4N^2(2-t)(1-t)^2} \log \left(1 - \frac{t}{2} \right) + \ldots \right) \right] \]

\[- i \sqrt{\frac{2}{\pi N}} \frac{(1-t)^{1/4}}{t} e^{-NS_{\text{weak}}(t)} (1 + \ldots) + \ldots \]

(25)

C. Large N Double-scaling Limit

It is well known that the double-scaling limit is described by the Painlevé II equation [2][3][15]. In our approach this can be seen as follows. In the double-scaling limit, zoomed in to the immediate vicinity of the GWW phase transition at \(t = 1 \), the Rossi equation (12) reduces to a Painlevé II equation in terms of the scaled variable \(\kappa \) which measures the scaled deviation from \(t = 1 \):

\[t = 1 + \frac{\kappa}{N^{2/3}}, \quad \Delta(t, N) = \frac{t^{1/3}}{N^{2/3}} V(\kappa) \]

(26)

Here \(V(\kappa) \) is the real Hastings-McLeod solution of the Painlevé II equation [15][16]. In this double-scaling limit, the Wilson loop behaves as

\[W_{\text{double-scaling}}(\kappa) \approx \frac{1}{2} - \frac{\kappa}{2N^{2/3}} + \frac{(\kappa + V^2(\kappa))^2 - (V'(\kappa))^2}{2N^{4/3}} + O \left(\frac{1}{N^2} \right) \]

(27)

and the beta function as

\[\beta_{\text{double-scaling}}(\kappa) \approx -2 \ln(2) - \frac{4 \ln 2}{N^{2/3}} \left(\kappa \ln(2e) + V^2(\kappa) + 2\kappa V(\kappa)V'(\kappa) + 2V^3(\kappa)V'(\kappa) - V'(\kappa)V''(\kappa) \right) \]

\[+ O \left(\frac{1}{N^{4/3}} \right) \]

(28)

This matches smoothly to the strong- and weak-coupling sides of the phase transition, as shown for the double-scaling limit of \(\Delta(t, N) \) in [16].

III. LARGE N TRANS-SERIES FOR THE RUNNING COUPLING

At infinite \(N \), the running coupling has the form in [7]. The finite \(N \) corrections, described in the previous section for the beta function, lead also to trans-series structures for \(t(a, N) \). At strong coupling, where the scale \(a \) is large, the corrections are naturally expressed in terms of the Wilson loop, \(W = \exp[-a^2] \); while at weak coupling, where the scale \(a \) is small, the corrections are naturally expressed in terms of \(1 - W = 1 - \exp[-a^2] \). The infinite \(N \) phase transition occurs at \(W = 1/2 \). At any finite \(N \), the running coupling, \(t(a, N) \) solves the scaling equation

\[\frac{\partial t}{\partial a} = 2 \frac{W(t, N) \ln W(t, N)}{\partial_t W(t, N)} \]

(29)
which is both non-linear and non-perturbative. It is convenient to consider the coupling as a function of the Wilson loop W. At $N = \infty$ we have:

$$t(W, N) \xrightarrow{N \to \infty} \begin{cases} \frac{1}{2W} & \text{strong coupling, } W \leq \frac{1}{2} \\ 2(1 - W) & \text{weak coupling, } W \geq \frac{1}{2} \end{cases}$$ \hspace{1cm} (30)

By matching the expansions of W, we deduce the following large N trans-series structures for t as a function of W (and hence of a)

$$t(W, N) = \begin{cases} \frac{1}{2W} + \sum_{k=1}^{\infty} e^{-kN\hat{S}_{\text{strong}}(W)} f_{\text{strong}}^{(k)}(W, N), & \text{strong coupling, } W \leq \frac{1}{2} \\ \sum_{k=0}^{\infty} e^{-kN\hat{S}_{\text{weak}}(W)} f_{\text{weak}}^{(k)}(W, N), & \text{weak coupling, } W \geq \frac{1}{2} \end{cases}$$ \hspace{1cm} (31)

The actions $\hat{S}_{\text{strong}}(W)$ and $\hat{S}_{\text{weak}}(W)$ are the strong and weak coupling actions $S_{\text{strong}}(t)$ and $S_{\text{weak}}(t)$, evaluated at the infinite N values of t as given in (30):

$$\hat{S}_{\text{strong}}(W) = S_{\text{strong}} \left(\frac{1}{2W} \right) = \arccosh \left(\frac{1}{2W} \right) - \sqrt{1 - 4W^2}$$

$$\hat{S}_{\text{weak}}(W) = S_{\text{weak}} \left(2(1 - W) \right) = \frac{\sqrt{2W - 1}}{1 - W} - 2 \text{arctanh} \left(\sqrt{2W - 1} \right)$$ \hspace{1cm} (32)

The leading terms in the strong coupling trans-series (31) read:

$$t_{\text{strong}}(W, N) \approx \frac{1}{2W} e^{-N\hat{S}_{\text{strong}}(W)} \left(1 - \frac{6W^2 + 7}{6N(1 - 4W^2)^{3/2}} - \frac{324W^4 + 804W^2 + 85}{72N^2(1 - 4W^2)^3} + \ldots \right) + \ldots$$ \hspace{1cm} (33)

understood as being expanded in $W = \exp[-a^2]$. At weak coupling

$$t_{\text{weak}}(W, N) \approx 2(1 - W) \left(1 - \frac{1}{2N^2(2W - 1)} + \frac{(8W^2 + 5W - 9)(1 - W)^2}{8N^4(2W - 1)^4} + \ldots \right)$$

$$- \frac{2i}{\pi N^{3/2}} \frac{1 - W}{(2W - 1)^{1/4}} e^{-N\hat{S}_{\text{weak}}(W)} \left(1 - \frac{9W^2 + 5}{24N(2W - 1)^{3/2}} + \ldots \right) + \ldots$$ \hspace{1cm} (34)

understood as being expanded in $(1 - W) = (1 - \exp[-a^2])$.

IV. CONCLUSIONS

The Gross-Witten-Wadia unitary matrix model is a one-plaquette model of 2 dimensional lattice Yang-Mills theory, which has the interesting feature of a third-order phase transition at infinite N, in addition to a running coupling $[2, 3]$. The perturbative beta function for this model acquires a non-perturbative trans-series completion at large but finite N in the ’t Hooft limit, as does the running coupling. The ’t Hooft coupling runs with the scale a, and the trans-series rearranges itself across the phase transition. Physically, this transition is identified with the condensation of instantons $[24]$, with different kinds of instantons dominating at weak- and strong-coupling $[15, 27, 28]$. Technically, the beta function $\beta(t, N)$ can be expressed explicitly in terms of the expectation value $\Delta(t, N) \equiv \langle \det U \rangle$, whose resurgent trans-series structure was studied in detail in $[15]$. The beta function $\beta(t, N)$ inherits its trans-series structure from that of $\Delta(t, N)$, and therefore the beta function trans-series also has full resurgent properties, including concrete relations between different instanton sectors. It would be interesting to study further this trans-series structure directly in the renormalization group approach to matrix models $[29, 32]$.

Acknowledgments: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of High Energy Physics under Award Number de-sc0010339.

[1] G. V. Dunne and M. Ünsal, “New Nonperturbative Methods in Quantum Field Theory: From Large-N Orbifold Equivalence to Bions and Resurgence,” Ann. Rev. Nucl. Part. Sci. 66, 245 (2016). [arXiv:1601.03414].
