Abstract: Requirements engineering (RE), the process of defining the requirements of a system, is critical to the successful implementation of software projects. Although many studies have been globally conducted on the different facets of RE in software engineering, studies explicitly focusing on the countries of the Gulf Cooperation Council (GCC) have been scarce. GCC-specific RE research studies are needed because of the unique cultural characteristics and common work ethics in GCC countries. Besides, the investigation of the state of RE practices in the countries of the GCC is crucial as the globalization of software development becomes imminent. This study compares the state of RE practices within the six countries of the GCC, namely, the Kingdom of Saudi Arabia (KSA), the United Arab Emirates (UAE), Qatar, Kuwait, Bahrain, and Oman, using six RE factors. To understand commonalities and differences in the RE practices and methods, 163 software practitioners in GCC countries are surveyed in this study. The results show that the RE practices are relatively similar among the six countries, with subtle differences. Initiating software-related projects with unclear requirements and undefined project scopes are the two major limitations of the RE practices among the survey participants. The results of this study contribute to providing project managers and system analysts, who are working globally and within the GCC countries, with valuable decision-making tools to help them consider the identified RE techniques, methods, and challenges and their related risks early in their software development projects.

Key words: Requirements engineering, gulf cooperation council, requirements engineering practices, project success, software projects.

1. Introduction

As the term itself explicitly suggests, Requirements Engineering (RE) is the process of articulating the requirements of a system [1]. Encapsulating a plethora of activities such as finding the needs of stakeholders, understanding the context of requirements, modeling, negotiating, validating, documenting, and managing such requirements. RE is an indispensable part of systems and software engineering as 70 percent of the project failures (according to Project Management Institute) [2] are due to various issues faced at the requirement engineering stage. Requirements can be classified into various types, like business requirements, solution requirements (functional-nonfunctional), stakeholders' requirements, transition requirements [3]. The building blocks in requirement engineering start with defining the scope of the project clearly and precisely with adequate analysis of business needs and objectives of the project; defining the role of various stakeholders involved in determining, documenting, and managing the requirements; defining and documenting requirement gathering tools and techniques; selecting appropriate software languages and tools that best fit the project's objective and managing the project successfully throughout its lifecycle.
Many organizations involved in project development and their implementation have defined a structured process and some uniform techniques of requirement engineering as the Globally Distributed Software (GDS) projects are being rapidly implemented across various regions, to meet the fast changing needs of the global business environment of today [4]. However, the adaptability of requirement engineering practices varies widely across regions, countries, organizations and the types of project undertaken, due to the customization requirements of projects as well as the social and cultural aspects of the environment in which such projects are going to function or operate. Recent trends also show that new locations are evolving as developmental sites and the GCC countries are an example of such locations in the Middle East. Moreover, the Information and Communication Technologies (ICTs) market and digital transformation growth trend report of Measuring the Information Society (MIS) [5] shows that the Middle East which includes the 6 GCC countries that are the focus of this research, is the fastest growing region in the world with an estimated Compound Annual Growth Rate (CAGR) of 42 per cent during 2016-2021, as compared to a global average CAGR of 25 per cent 1. Although several studies have been done on software developers’ challenges regarding RE practices and seeking possible solutions, little quantitative research has centered on the software companies in the GCC countries.

There are several studies available on requirement engineering practices and issues in various countries. Some of these studies found that there are no strong differences between organizations in different countries and regions in terms of RE practices [6]. Some other studies have cited organizational and technical factors as major challenges in developing countries like Malaysia [7]. In addition, others studies highlighted that cultural aspects need to be considered in countries like Saudi Arabia, Kuwait, Sudan and China [8], while some others highlighted the methodology, tools and techniques as a big challenge to RE practices [9], [10], [11], [12], [13], [14]. Interestingly, in the execution of large GDS projects with teams located in various countries, additional major impediments related to communication, coordination, domain knowledge, clarity, individual goals, etc. were found to impact the successful implementation of projects.

Studies covering the GCC countries are few and far between. At country level, some studies [15], [16] indicated that in the Arab countries the selection of requirement engineering techniques is influenced by their culture, with some of the cultural traits being very specific to a particular country. In fact, the adaption of agile-based or western techniques often creates confusion in the decision-making process [17] and hence due attention should be provided to social and cultural aspects during the entire project execution life cycle.

Owing to cultural diversity, language issues, level of education and understanding of digital skills 2, work ethics and unfamiliarity with western culture and practices, the GCC countries have some striking similarities as well as differences in the way they conduct their requirement engineering process, which can be linked to project success and failure. Since there are no studies available so far, which cover comparison of requirement engineering practices, the issues faced during such process and their resultant impact on the success and failure of a project across all the 6 GCC countries, this study will bring in novelty in terms of segregating i) cross-country similarities, wherein the project implementation team can apply an unified approach, from ii) cross-country differences, wherein they need to follow country-specific practices. As such, this study will assist project managers and system analysts in identifying RE practices that are common in these countries and RE issues that are different, thus enabling them to adopt a proactive approach in solving the requirement problems at an early stage, leading to better project success. The author believes that this study will add to existing literature on cross-

1 Measuring the Information Society Report 2018, Vol. 1
2 The Hays Global Skills Index (Hays, 2017) reports annual increases in “talent” mismatches with an undersupply of individuals with digital skills in relation to the need companies say they have. However, in 2017, for the first time, this was the case only for Europe and the Middle East, but not in Asia and the Americas. Nevertheless, it remains a problem even in those regions where there was no increase. Hays attributes this mismatch mostly to vacancies in positions for which higher education is required and in tech-related sectors.
country diversity in requirement engineering practices, while providing insightful views on causes and their effect on success and failure of projects in the GCC.

In a previous study [18], the author used a survey questionnaire which shows that essential success factors for projects include i) that requirements must be completed adequately, ii) using an appropriate requirement methodology and iii) that stakeholders must be involved throughout different project phases.

This study is conducted through a survey of local software companies involved in the requirement project engineering process and project implementation, with a clear objective of understanding cross-country similarities or differences faced by a project management team during the requirement engineering process, leading to project success or failures. Oman was excluded from this study owing to the unavailability of the adequate number of respondents. We followed a methodology adopted by Verner and Evanco [19], [20] in our survey, as they are one of the major contributors in the field of requirement engineering practices and their impact on failure or success of a project [11]. We surveyed 200 software companies with 163 complete responses across the 6 GCC countries using a 4-point Likert scale questionnaire and the survey data were analyzed using Chi-square, One-way ANOVA and Scheffe Test in order to determine the similarities and difference in cross-country practices.

The layout of this study is as follows: a background and a literature review are described in the following section. Section 3 explains the methodology, Section 4 explains the results, Section 5 explains the discussions; Section 6 describes the limitation and results validity, and the final section presents the conclusion and future scope for research.

2. Background and Literature Review

The RE process depends on the use of suitable techniques through which system analysts determine the opportunities, problems, and requirements of customers [21], [22]. The integration between a software and its environment, and the increasing globalization of software development makes RE a relatively challenging process. Since RE is a complex issue, several scholars have suggested different guidelines to assist system analysts during the RE practices. These RE techniques and tools include questionnaires, introspection, observations, prototyping, Joint Application Development, card sorting, document analysis, interviews, user scenario and laddering.

Hofmann et al. and Kiotins et al. [23], [24] identified RE practices as critical factors determining the success of a project. Many software engineering researchers have confirmed that RE practices are difficult to implement owing to their lengthy and cumbersome feedback cycles and high diversity [25], [26], [27], [28]. These difficulties make the selection of the apt RE practices difficult, especially when practitioners are unaware of the challenges they face, their importance, and their sources. Therefore, they tend to focus on traditional, or arbitrary methods based on their own experiences.

Organizations must mitigate their problems as early as possible in the RE stage to gain valuable business benefits [29]. Therefore, the RE process acts as a lynchpin for the success of almost every software development project [30]. Hall, Beecham, and Rainer [31] reported that 48% of development issues stem from requirement problems. In fact, fixing the requirements errors that were discovered late in a development cycle causes high cost of rework [32]. The Standish Group’s [33] report on the Comprehensive Human Appraisal for Originating Software (CHAOS) states that 44% of the reasons for the failure of projects are owing to insufficient RE. Whenever analysts lack familiarity with the distinctive RE techniques and attributes for improved stakeholder involvement, activities related to requirements are bound to fail and prove futile [34]. This failure may cause late system delivery and unreliability, which can cost more than the original estimation and lead to the failure of meeting users’ expectations [35], [36].

Verner and Cerpa [20] stated that good requirements, high level of involvement of customers and their effective management, have the most significant correlations with the success of projects. Many researchers
have conducted surveys in the area of RE and software engineering practices. In 2017, Fernández et al. [37] through their project NaPiRE across many countries and different geographical regions, found out that the ten most common factors for project failures are i) weak access to customer needs/ business information ii) inconsistent requirements support by customer iii) insufficient support by customer iv) stakeholders with difficulties in separating requirements from known solution designs v) flawed communication among the project team vi) time boxing, or not enough time in general vii) underspecified requirements that are too abstract viii) moving targets (changing goals, business processes and/or requirements ix) communication flaws between project team and customer and x) incomplete and/or hidden requirements. NaPiRE in its further studies [37], [38] conducted some country-specific difference or similarities between Australia and the US as well as Germany and Brazil. They found out that there are differences as well as similarities among these countries in their requirement engineering process and their problems leading to project success or failure.

There are several studies available on requirement engineering practices and issues in various countries. In a study conducted in 10 countries (Austria, Germany, Ireland, Canada, USA, Estonia, Finland, Norway, Sweden and Brazil) across different sizes of businesses and domains, ranging from embedded software systems, to consulting and projects related to cloud computing and web applications, custom software development, enterprise resource planning products, IT consulting services, etc. compiled and published in 2019 [6], among the 5 elicitation techniques provided in SWEBOK [39], interviews, facilitated meeting and prototyping were used by more than half of the respondents, whereas scenarios and observations were less often used; while documenting requirements, most of them used free form textual format, though for use cases and data models, semi-formal approaches are used. A study in Malaysia found out that feasibility study, requirements prioritization, having a standard template for requirements, using software systems for managing requirements, identifying non-functional requirements, were well practiced by the surveyed firms [7], another one highlighted organizational and technical challenges in getting their requirements [40]. In a few studies conducted in 10 different parts of the world including the Arab world, India, China, Africa and South America, it was concluded that culture affects the RE process. These include, respect for leader in Thailand; decision tree technique a favorite in the Arab world (Kuwait) as they like visuals more than descriptive documents. In a developing country like Sudan, the agile method requires extensive communication, whereas an unplanned or mixed method ends up having to alter requirements several times during the project due to lack of proper guidance on the project, risks, deliverables, objectives, assumptions, opportunities, challenges, stakeholders, functional and non-functional requirements [8]. Additionally, in China, providing sufficient time for RE elicitation as well as preference for prototype, document analysis and questionnaire were considered very important [30]. Some other studies highlighted the differences in the methodology, tools and techniques. For example, in Brazil, lack of knowledge in the requirement team, communication issues- as preference for agile techniques require extensive communication- were found to be impediments, while in Germany companies individualize their RE, often follow more often rigid processes with stronger contracting components and formal change management. In Austria and Brazil, while investigating into causes of incomplete and / or hidden requirements, inadequate qualifications of RE team members, lack of experience, missing domain knowledge, unclear business needs leading to poorly defined requirements, were found to be common problems in RE [9]. In a study covering small and medium software developing companies in New Zealand, the three major problem areas were identified as scope creep/changing requirements, client acceptance of time/cost/effort spent on requirements before build starts, and quality of specification (correctness, clarity, completeness) [10]. In a study covering companies involved in in-house software development in the U.S. and Australia, it was observed that the most important correlations for project success are to get good requirements such as high level of customer/user involvement, high-level sponsorship throughout, to scope the project effectively and
to manage those requirements effectively [11]. In Turkey, a study conducted across various sectors identified that inadequately defined requirements and demands are the most critical process problem for all sectors, though in regulated sectors such as telecom, finance and energy sector which demand higher than average education and experience, these issues were managed more effectively [12]. In Finland, a study showed that the most commonly used tool in the interviewed companies was a configuration management tool by ten companies, while eight companies used some special testing tools and four had CASE tools in use. No company had requirements management (RM) tools in use. It was observed that most of the companies have a need to improve their RE practices and they have very similar high-level development needs with regard to their own RE process adaptations, RE process improvement and automation of RE practices. Low specialization rate with regard to domain knowledge, well-defined processes, and also the support of special-purpose tools, lack of a systematic approach to RE using standard practices, templates, RM tools as well as configuring tools to the project usage, their integration and maturity with the project process were found to be most deficient, critical and challenging areas [13]. In another study covering Argentina, Brazil, Chile, Colombia, Costa Rica, Ecuador, Mexico and Peru, it was noted that interviews and use cases were the most frequently used techniques for requirements elicitation and analysis, while there was a low adoption rate of formal documentation techniques, tools and methodologies. The study also revealed that communication with the various stakeholders in the elicitation phase was the major problem area [14]. Interestingly, in the execution of large GDS projects with teams located in various countries (analysts in Argentina, developers and testers in India, configuration suppliers from Poland and core applications suppliers from Denmark; users based in Venezuela and Brazil) the following issues: inadequate communication; language and cultural barriers; geographical distance and time differences; knowledge management problems; lack of confidence and engagement; lack of knowledge about the problem domain; ambiguity, contradictions and lack of clarity in the specifications; individual goals; rotation of the team members; etc. were found to be major impediments in the successful implementation of projects [42].

As far as the GCC countries are concerned, they are among the 22 countries of the Arab world, sharing similar beliefs, culture, history, language, and geographic location. Most of the previous research literature concentrates on RE in the developed world (i.e., influence of the western culture), with the exclusion of the few studies that were conducted in developing countries [15], [16]. The countries of the GCC are among those that are considered developing countries and limited information is available about how RE is practiced in this region, and most research focuses on issues related to the satisfaction and acceptance of the IT system [43]. Some studies show that several software projects are likely to be vulnerable to high rates of failure due to problems related to RE in the GCC region. For instance, several hospitals and healthcare software systems have been listed as failed projects in the KSA [44]. A study in the KSA examined the successes and failures of IT projects and identified that the causes for their failures include unclear and incomplete requirements and poor planning [45]. Rouibah and Al-Rafee [46] observed that many IT projects failed in Kuwait owing to incomplete or misunderstood information system requirements. As far the GCC countries are concerned, a few studies have pointed out that cultural issues weigh high in influencing the selection of RE techniques. They further stated that the Arab countries are different from other parts of the world in terms of RE methods used for software development. In fact, choosing the adequate and most suitable RE technique often creates uncertainties in the decision-making process. Therefore, the expectation of the perceived value of the RE techniques may vary between nations that belong to diverse cultures. RE research conducted in other countries may not necessarily be applicable to the countries of the GCC. Most of the RE techniques were imbibed from the western culture and have standardized tools and techniques which may create differences in applications in the Arab world when
compared with western cultures [47]. For instance, Alsanoosy, Spichkova, and Harland [48] investigated the impact of the Kingdom of Saudi Arabia’s (KSA’s) national culture on RE practices. They found that there were ten cultural factors that impacted the RE practices and five of them were specific to the Saudi culture. These resonate well with Sutharshan’s [17] findings that certain agile practices can be useful in different cultures and some practices required major cultural adaptation. Moreover, the selection of RE techniques typically depends on personal preferences or existing business practices rather than on the project characteristics at hand [47]. Therefore, the evaluation of the social practice of software development is an important aspect of modern information technology (IT) systems. Denhere, Höme, and Van der Poll [48] investigated the management of development projects of GDS in Dubai, Abu Dhabi, and Oman along with India and Pakistan. Their study was predominantly aimed at outlining the factors that project managers consider important, including cultural and regional effects on the operation of virtual teams in the GDS environment in the Middle East. The results confirmed that cultural understanding, use of a common language, use of technology, and use of project management techniques, have a positive impact on virtual team operations.

3. Methodology

This section explains the questionnaire design, administration of the questionnaire, selection of the respondents, and collection and analysis of the data and data analysis.

3.1. Questionnaire Design

The research questionnaire highlighted several software engineering problems related to the customers or users, project management, software development process, requirements, and development team. The author used questionnaires related to RE practices only to be congruent with the objectives of this study. Further, this study follows a survey-based empirical approach. The author used three techniques for data collection: questionnaires, telephone calls, and face-to-face interviews. Most of the questionnaires were sent to the participants those live in a country other than Kuwait by Email to save cost and time. It is also easy to collect data from a large population and provide data that are relatively easy to communicate [39]. However, during the survey, the results could only be generalized to the sample population [40]. This study is considered as exploratory in nature and is based on the aims of the RQs.

3.2. Questionnaire Administration, Selection of Respondents, and Data Collection

The author sent the survey to 200 software development companies in the countries of the GCC and received 163 completed questionnaires (37 from Bahrain, 36 from the KSA, 12 from Kuwait, six from Oman, 36 from the UAE, and 36 from Qatar), each reported on different projects on the basis of the survey questionnaire. The participants included 37 project managers, 25 system analysts, 28 users, 17 information system managers, 31 application developers, and 25 programmers. All of these respondents were actively involved in the softwares used in their own organizations, including banks, educational institutions, and government institutions, in the GCC countries.

The author treated the missing data values by taking the average of the total dimensions for scale items (e.g., if the participant answered four questions out of six, the author used the average to represent the dimension and then the average for the comparison). However, the author excluded all the cases with any cross-missing information and then calculated the chi-square test after excluding the missing values from that table.

The response rate was 82%. The author believed that a sample of 163 participants was acceptable to conduct an empirical study on the software engineering practitioners as the response rate was within the range of similar studies (see, e.g., [20]). The software engineers striving to develop the in-house softwares
to be used by their organizations were the core targets of this study, assuming that they were interested in the results. The author made it a point to categorically inform the participants of the stipulated time in which the survey would be completed and declared that the delay would be subsequently followed by a total of three reminders. This data collection process may be the reason why this survey had a high response rate. The results were consistent with the observations of the authors in [52], [53]. Although the results cannot be expected to apply to all the organizations, the author believes that they are fairly representative of the organizations that create in-house softwares. Surveys are usually driven by personal data, showing what people say has happened, not what they have done or experienced [47]. As the author interrogated the software developers, the study results were limited to their awareness and perspectives on the projects and to the point of view of the project managers with whom they were associated. Participants considered 150 successful projects, eight unsuccessful and five unfinished or challenged projects. Unsuccessful projects included four from Qatar and four from the KSA. Approximately, 77% of the respondents worked in the development projects, and 23% worked in the maintenance and enhancement projects (the participants classified 15% maintenance and enhancement projects as successful). They considered all the projects in Bahrain as successful. The analysis suggested that either these organizations had a high rate of successful projects or a tendency to report only successful projects.

As the author observed in the sample, the software practitioners were not randomly selected. Instead, the author used a convenience sample that comprised software engineers and practitioners who could be easily contacted. The convenience sample can be biased, and the inferences are not as valid as those drawn from a random sample. Therefore, convenience sampling can be considered less reliable than random sampling. Nevertheless, Saunders et al. [40] suggest that such bias sample is less relevant because of a low degree of variability; all the respondents were involved in the development of softwares across a variety of sectors, sizes, and internal projects.

Based on the prior studies [28], [11], [18], [55], we expected that the projects that were considered successful would 1) start with complete and accurate requirements and 2) were gathered using a particular methodology with a well-defined scope, and the customers and users were given adequate time for gathering requirements. With these factors in mind, the questionnaire covered RE factors, and the participants from the six countries were asked to answer the following six questions:

1) Were the requirements gathered by a particular method?
2) Were the requirements complete and accurate at the start of the project?
3) Were the requirements completed adequately in all the GCC countries?
4) Was the scope of the project clearly defined in all the GCC countries?
5) Did the size of the project negatively affect requirements elicitation in all the GCC countries?
6) Did the customers and users make adequate time available for requirement gathering?

3.3. Data Analysis

In this questionnaire, the author used a 4-point Likert-type scale (i.e., yes, only partially, not sure, or not at all) for most of the questions. Using a 4-point scale is the best option for recording opinions on the services or products has the user has experienced. The major advantage of using a Likert scale is that it dissuades the participants from giving a neutral answer and thus, functions unequivocally [56]. Given that the questionnaire had four possible answers, two positive answers, and two negative answers, the author sometimes consolidated the 4-point Likert scale to just 2 (success/failure) for analysis and reporting purposes.

The author used the following statistical methods to identify the similarities and differences in software requirement practices in the region of the GCC:

Chi-square: The chi-square made it possible to examine the best-fit model for each hypothesis. It also
allowed the analysis of individual responses based on the success of the project. A significance level of greater than 0.05 is considered sufficient for determining model fitness.

One-way ANOVA: The ANOVA test determined the similarities and significant differences among the means of the groups (i.e., compare and contrast responses from each country).

Scheffe Test or Post-hoc Test: This test compares the possible simple and complex pairs of means due to a narrow confidence interval. The author used this test only if the null hypothesis was rejected in the ANOVA test, indicating different country means. Exploring the differences between country means is crucial for providing specific details on which the country differs significantly from the rest.

4. Results

In this section, the author presents the outcome of the chi-square, one-way ANOVA, and post-hoc Scheffe tests for all the six questions.

4.1. Were the Requirements Gathered by a Particular Method?

Table 1: “Were the Requirements Gathered by a Particular Method?” by Country

Country	Requirements Gathered by a particular Method	Total	% Not Using a particular Method		
	No	Partially	Yes		
UAE	30	0	6	36	83.3%
Saudi Arabia (KSA)	30	1	5	36	83.3%
Kuwait	7	1	4	12	58.3%
Qatar	19	0	17	36	52.8%
Bahrain	36	0	1	37	97.3%
Oman	2	0	4	6	33.3%
Total	124	2	37	163	76.07%

Table 2: Significance Value for Requirements Gathered by a Particular Method with Project Success and Failure

	Project Success/Using No Method	Project Success/Using Method	Project Failure/Using No Method	Project Failure/Using Method	Chi-square	df	Sig.
UAE	30	6	0	0	1.345	2	.510
KSA	26	6	4	0	2.945	3	.400
Kuwait	7	5	0	0	0.343	2	.842
Qatar	16	17	3	0	3.567	2	.168
Bahrain	36	0	0	1	17.986	2	.000
Oman	2	4	0	0	3.000	2	.223

* The chi-square statistic is significant at 0.05.

Table 1 shows how RE practices are conducted in a requirement gathering process. Only six projects (out of 36) in the UAE used a particular method for the requirement gathering. Most respondents (83.3% in the UAE) did not use a particular method for the requirement gathering. Table 2 shows that the significance value for the UAE was 0.510, suggesting that no significant correlation exists between this factor and the
success of the project. A total of six out of 36 projects resorted to a specific method in the KSA. Most respondents (83.3%) in the KSA did not use a particular method for the requirement gathering. The significance value (0.400) in Table 2 suggests that this factor has no significant correlation with the success of the project. Kuwait shows that only five of the 12 projects were used a particular method for requirement gathering, and 58.3% of the respondents in Kuwait did not use a particular method for requirement gathering. The significance value (0.842) shows that no significant correlation exists between this factor and the success of the project. Most respondents in Qatar (47.2% or 17 out of the 36 projects) used a particular method for requirement gathering, and 52.8% of them did not use a particular method. The significance value (0.168) shows that no significant correlation emerges between this factor and the success of the project. In Bahrain, 97.3% of the respondents did not use a particular method for requirement gathering. However, the significant value (0.000) shows that there is a significant correlation with project success. It is noteworthy that all their projects were considered successful as depicted in Table 2.

The author failed to examine the relationship between this factor and the success of the project owing to the minimum number of respondents in Oman.

The methods the six countries used for requirement gathering were as follows:

- Meetings (nine respondents)
- Interviews (six respondents)
- Workshops (two respondents)
- Brainstorming meetings (two respondents)
- Analysis of previous systems (one respondent)
- Emails, online requirement gathering, and telephone calls (four respondents)
- An agile method (two respondents)
- ASAP (two respondents)
- Questionnaire (one respondent)

The ANOVA test in Table 3 shows that the significant value of the countries that used a particular method for requirement gathering is highly significant (sig. value of 0.000 is less than the alpha level 0.05). The results from the one-way ANOVA test prove that differences arise among the six countries, but do not indicate which of these countries are different from one another when using a particular method for requirement gathering. Therefore, the hypothesis of RQ1 is rejected, and the alternative hypothesis is accepted. The author continued the analysis with the post-hoc test. A statistically significant difference emerged at the p < 0.000 level in using a particular method for collecting requirements for the six countries F (5, 157) = 8.003, p < 0.000. The post-hoc test indicates that Qatar (M = 0.47, SD = 0.506) is significantly using more methods for requirements gathering than the other countries. However, the UAE and KSA (M = 0.17, SD = 0.378) have the same results, and no statistically significant difference appears in the mean between them. This indicates that both the countries use almost the same methods for requirements gathering. Bahrain has not used a particular method for requirements gathering with a mean score (M = 0.000, SD = 0.000). Moreover, Qatar is significantly different from Kuwait (M = 0.42, SD = 0.515) and Oman (M = 0.67, SD = 0.516). Therefore, if Kuwait and Oman are excluded from the assessment because of the availability of fewer respondents, then Qatar turns out to be the sole country that took recourse to the requirement gathering factor as opposed to the remaining five countries. Then, the KSA and UAE came together, and Bahrain exhibited the least number of methods used, which did not use an appropriate method for the requirements gathering.
Table 3. ANOVA Table for Requirement Gathering by Particular Methods

Requirements gathered by a particular method?	Sum of Square	df	Mean Square	F	Sig.
Between groups	5.919	5	1.184	8.003	0.000
Within groups	23.222	157	0.148		
Total	29.141	162			

4.2. Were the Requirements Complete and Accurate at the Start of the Project?

Table 4 shows that 77.7%, (28 out of 37) of the UAE respondents completed their requirements accurately and considered their projects successful. The significant value of 0.138 in Table 5 shows a minimal deviation between this factor and the success of the project. In the KSA, as high as 91.6% of the participants considered that their requirements were complete and accurate. This was the reason why they showed predilections toward considering their projects successful. The significant value (0.465) in Table 5 shows a large deviation between this factor and the success of the project. In Kuwait, 83.3% of the respondents made their requirements complete and accurate, and they considered their project a success. The significant value (0.223) also reveals a minimal deviation between this factor and the success of the project. In Qatar, 94.4% of the respondents made their requirements complete and accurate, and they considered their projects successful. The significant value (0.081) also reveals a minimal deviation between this factor and the success of the project. In Bahrain, 89.1% of the respondents completed their requirements accurately and they considered their projects successful. The significant value (0.704) exhibits a large deviation between this factor and the success of the project. In Oman, almost 100% of the respondents had complete and accurate requirements.

Table 4. “Were the Requirements Complete and Accurate at the Start of the Project?” Per Country

Country	Requirements Complete and Accurate	Total	% of Complete and (Partially Completed) Accurate	Requirements	
	No	Partially	Yes		Complete
UAE	8	2	26	36	77.7%
Saudi Arabia (KSA)	3	15	18	36	91.6%
Kuwait	2	5	5	12	83.3%
Qatar	2	11	23	36	94.4%
Bahrain	4	5	28	37	89.1%
Oman	0	3	3	6	100%
Total	19	41	103	163	88.3%

Table 5. Significance Value for the Requirements, Complete and Accurate at the Start of the Project with Project Success and Failure

Country	Project Success/ Requirements (Not) Complete	Project Success/ Requirements Complete	Project Failure/ Requirements (Not) Complete	Project Failure/ Requirements Complete	Chi-square	df	Sig.
UAE	8	29	0	0	3.956	2	0.138bc
KSA	3	29	0	4	2.559	3	
Kuwait	2	10	0	0	3.000	2	
Qatar	2	30	0	4	5.029	2	

116 Volume 16, Number 3, May 2021
Table 6 shows the one-way ANOVA test conducted to compare the factor for complete and accurate requirements within the six countries. The significant value of 0.051 indicates no statistical significance among the countries for completing an accurate requirement and shows no differences between them when using this factor, thereby depicting a striking similarity among all the countries completing accurate requirements. Therefore, the author accepts the hypothesis (RQ1).

Table 6. ANOVA Table for Requirement, Complete and Accurate

Requirements complete and accurate?	Sum of Square	df	Mean Square	F	Sig.
Between groups	1.021	5	0.204	2.256	0.051
Within groups	14.206	157	0.090		
Total	15.227	162			

4.3. Were the Requirements Complete and Adequate in All the Countries of the GCC?

Table 7 shows that, in the UAE, 86.1% of the respondents did not complete their requirements adequately. However, they considered their projects successful. Table 8 shows that the significance value is equal to 0.016, which indicates no deviation toward the success of the project in the UAE’s performance. In the KSA, 55.5% of the respondents did not complete their requirements adequately and considered their projects successful. The significant value (0.000) in Table 8 shows that this factor is significantly correlated with successful projects. In Kuwait, 41.6% of the respondents did not complete the requirements adequately and considered their projects successful. The significant value (0.424) shows that this factor does not significantly correlate with successful projects. In Qatar, 77.7% of the respondents claimed that they did not complete their requirements adequately and considered their projects successful. The significance value (0.020) is less than 0.05, showing that this factor is significantly correlated with successful projects. In Bahrain, 78.3% of the respondents did not complete their requirements adequately as well. The significance value (0.411) does not significantly correlate with project success. The author did not consider Oman in this analysis owing to the low number of respondents.

Table 7. “Were the Requirements Completed Adequately in all the GCC Countries?” Per Country

Country	No	Partially	Yes	Total	% of Not Completed Requirements
UAE	31	1	4	36	86.1%
Saudi Arabia (KSA)	20	13	3	36	55.5%
Kuwait	5	3	4	12	41.6%
Qatar	28	6	2	36	77.7%
Bahrain	29	2	6	37	78.3%
Oman	1	4	1	6	16.6%
Total	114	29	20	163	69.9%

The ANOVA test in (Table 9) shows high significance among the countries for completing adequate requirements, owing to the significance value of 0.000, which is less than the alpha value 0.05. The results from the one-way ANOVA test prove that differences arise among the six countries, but do not indicate
which of these countries are different from one another when using this factor. Thus, the author continued the analysis with the post-hoc test. The post-hoc test for the comparison of all the countries indicates that the UAE and Oman had a significant difference in completing their requirements adequately. No significant differences emerged among the other countries. However, no major disparity has occurred in the case of the KSA, Kuwait, Bahrain, and Qatar, owing to the broad essential principles of certain countries. All the GCC countries, in this case except Oman, are identical because none of them completed their requirements adequately. Therefore, if Oman is excluded owing to the low number of participants, then the author accepts the hypothesis question (RQ1), which states that all the six countries are similar in not completing their requirements adequately.

Table 8. Significance Value for Requirements, Complete and Adequate in all the GCC Countries with Project Success and Failure

	Project Success/Requirements (Not) Complete	Project Success/Requirements Complete	Project Failure/Requirements (Not) Complete	Project Failure/Requirements Complete
UAE	31	5	0	0
	Chi-square 8.236	df 2	Sig. 0.016*c	
KSA	20	12	0	4
	Chi-square 17.885	df 3	Sig. 0.000*c	
Kuwait	5	7	0	0
	Chi-square 1.714	df 2	Sig. 0.424*c	
Qatar	27	5	1	3
	Chi-square 7.795	df 2		
Bahrain	29	8	0	0
	Chi-square 1.779	df 2	Sig. 0.411*c	
Oman	1	5	0	0
	Chi-square 2.400	df 2	Sig. 0.301*c	

* The chi-square statistic is significant at 0.05.

Table 9. ANOVA Table for Requirements Completed Adequately

Requirements completed adequately?	Sum of Square	df	Mean Square	F	Sig.
Between groups	4,833	5	0.967	5.155	0.000
Within groups	29,437	157	0.187		
Total	34,270	162			

Table 10. Significance Value for Project Scope Clearly Defined in all the GCC Countries with Project Success and Failure

	Project Success/Scope (Not) Defined	Project Success/Scope Defined	Project Failure/Scope (Not) Defined	Project Failure/Scope Defined
UAE	32	4	0	0
	Chi-square 2.380	df 2	Sig. 0.304*	
KSA	20	11	4	1
	Chi-square 1.154	df 3	Sig. 0.764*	
Kuwait	9	3	0	0
	Chi-square 2.222	df 2	Sig. 0.329*	
Qatar	29	3	1	3
	Chi-square 12.900	df 2	Sig. 0.002*	
4.4. Was the Project Scope Clearly Defined in All the Countries of the GCC?

In Table 11, 88.8% of the respondents in the UAE did not define the project scope and considered their project successful (2.7% partially defined their project scope and only 8.3% defined their project scope completely). The significance value (0.304) in Table 10 shows no significant correlation with the success of the project. In the KSA, 66.6% of the respondents claimed that the scope of their project was not defined. Only 33.3% of their project scope was defined. The significance value (0.764) is more than 0.05, showing no significant correlation with the success of the project. Besides, 75% of the respondents in Kuwait claimed an undefined project scope. The others (25%) claimed that their project scope was defined. The significance value (0.329) shows no significant correlation with project success. In Qatar, 83.3% of the respondents claimed that their project scope was not defined. However, they considered their project a success. The significance value (0.002) indicates a contradictory result as most respondents considered their projects to be a success. In Bahrain, 78.3% of the respondents had a poorly defined project scope. The significance value (0.016) shows a contradictory result because most respondents consider their project a success. In Oman, 50% of the respondents did not have a well-defined project. The significance value (0.513) exhibits that this factor has no significant correlation with the success of the project.

Table 11. “Was the Project Scope Clearly Defined in all the GCC Countries?” Per Country

Country	Project Scope Clearly Defined	Total	% of Not Defined Project Scope		
	No	Partially	Yes		
UAE	32	1	3	36	88.8%
Saudi Arabia (KSA)	24	4	8	36	66.6%
Kuwait	9	0	3	12	75%
Qatar	30	0	6	36	83.3%
Bahrain	29	2	6	37	78.3%
Oman	3	1	2	6	50%
Total	**127**	**8**	**28**	**163**	**77.9%**

Table 12. ANOVA Table for Project Scope Clearly Defined

The scope of the project is well defined?	Sum of Square	df	Mean Square	F	Sig.
Between groups	0.920	5	0.184	1.165	0.329
Within groups	24.798	157	0.158		
Total	**25.718**	**162**			

The one-way ANOVA test in Table 12 is conducted to compare the six countries in defining their scope of the projects; the significance value is 0.329 (greater than the alpha value 0.05). Therefore, the UAE, Kuwait, Bahrain, Oman, the KSA, and Qatar had no significant differences in practicing a well-defined scope in their projects. Thus, the author accepts the hypothesis RQ1.

4.5. Did the Size of the Project Negatively Affect Requirements Elicitation in All the GCC Countries?

According to Table 14, in the UAE, only 25% of the project size has affected the requirements elicitation process and 75% of the projects did not. The significance value (0.744) in Table 13 is not significantly
associated with the success of the project. In the KSA, 75% of the respondents claimed that their project size did not affect the elicitation process, and only 25% project size affected the requirement process. The significance value (0.043) in Table 13 is significantly associated with project success. In Kuwait, only 58% of the participants claimed that their project size did affect the elicitation process. The significance value (0.710) is not significantly associated with the success of the project. In Qatar, 33.3% of the respondents claimed that their project size did not affect the elicitation process. The significance value (0.375) is not significantly associated with the success of the project. In Bahrain, 29.7% of the respondents claimed that their project size affected the requirements elicitation process and 70.3% projects did not. The significance value (0.428) shows that this factor is not significantly correlated with the success of the project. The author did not consider Oman in the analysis because of less number of participants.

Table 13. Significance Value for the Size of the Project Negatively Affects Requirements Elicitation in all the GCC Countries with Project Success and Failure

Country	Project Success/ Size of Project (Not) Affected	Project Failure/Size of Project (Not) Affected	Chi-square	df	Sig.
UAE	27	9	0	0	0.591
KSA	25	7	4	1	8.170
Kuwait	5	7	0	0	0.686
Qatar	22	8	2	2	2.250
Bahrain	26	11	0	0	1.698
Oman	3	3	0	0	3.333

* The chi-square statistic is significant at 0.05.

Table 14. “Did the Size of the Project Negatively Affect Requirements Elicitation?” Per Country

Country	Size of the Project Negatively Affect Requirements Elicitation	Total	% of the Project Size Effect on Requirements Elicitation		
	No	Partially	Yes	Total	
UAE	27	1	8	36	25%
Saudi Arabia (KSA)	27	2	7	36	25%
Kuwait	5	1	6	12	58.3%
Qatar	24	0	12	36	33.3%
Bahrain	26	1	10	37	29.7%
Oman	3	1	2	6	50%
Total	112	6	45	163	31.2%

Table 15. ANOVA Table for the Size of the Project Negatively Affect Requirements Elicitation

Was the scope changed during the project?	Sum of Square	df	Mean Square	F	Sig.
Between groups	1.397	5	0.279	1.303	0.265
Within groups	33.646	157	0.214		
Total	35.043	162			
The one-way ANOVA test in Table 15 is conducted to compare the six countries on the effect of the project size on the requirements elicitation process. The significance value is 0.265 (greater than the alpha value 0.05). Therefore, the UAE, Kuwait, Bahrain, Oman, the KSA, and Qatar had no significant differences and there was no negative effect of the project size on the requirements elicitation process in all the six countries. Thus, the author did not further analyze the results of this section using the post-hoc tests and considered that all the countries are similar in this aspect. Hence, the first hypothesis question (RQ1) was accepted.

4.6. Did the Customers or Users Make Adequate Time Available for Requirement Gathering?

According to Table 16, in the UAE, 58.3% respondents allowed adequate time for gathering requirements, and 42% respondents did not allow adequate time for the requirement gathering. The significance value (0.307) in Table 17 is not significantly associated with the success of the project. In the KSA, 95% respondents claimed that customers/users allowed adequate time for requirement gathering completely and partially. The significance value (0.718) in Table 17 is not significantly associated with the success of the project. In Kuwait, only 75% participants claimed that the customers and users had enough time to gather requirements completely and partially. The significance value (0.324) does not demonstrate any clear connection to the project's performance. In Qatar, 95% of the respondents claimed that customers/users allowed adequate time for requirement gathering completely and partially. The significant value (0.081) shows no significant correlation with the success of the project. In Bahrain, 73% respondents claimed that customers and users allowed adequate time for requirement gathering completely and partially, and only 27% did not. The significance value (0.343) shows that this factor is not significantly correlated with the project success. The author did not consider Oman in the analysis because of less number of participants.

Country	Customers/Users Make Adequate Time Available for Requirement Gathering	Total	% of Allowing Adequate Time (Partially and Completely)		
	No	Partially	Yes		
UAE	15	3	18	36	58.3%
Saudi Arabia (KSA)	2	9	25	36	94.4%
Kuwait	3	0	9	12	75%
Qatar	2	11	23	36	94.4%
Bahrain	10	7	20	37	72.9%
Oman	1	2	3	6	83.3%
Total	33	32	98	163	79.7%

* The chi-square statistic is significant at 0.05.

The results from the one-way ANOVA test in Table 18 prove that differences emerge among the six countries on this factor, and the significance value is p = 0.001. Still, it does not indicate which of the six countries are different from one another. Therefore, The RQ1 hypothesis is rejected, and the alternative hypothesis (RQ2) is accepted. Hence, the author continued the analysis with the Scheffe post-hoc test. A statistically significant difference emerged at p < 0.001 level with customers and users making an adequate time available for requirement gathering in the six countries, F (5, 157) = 4.675, p < 0.001. The post-hoc comparison test indicates that the mean score for Qatar and the KSA (M = 0.94, SD = 0.232) both have the same results; no statistically significant difference appears in the mean between them. This also indicates
that both of them allow their customers and users more adequate time for requirements gathering than the other GCC countries. Bahrain (M = 0.73, SD = 0.450), Kuwait (M = 0.75, SD = 0.452), and Oman (M = 0.83, SD = 0.408) have no significant difference among them. The UAE appears to be significantly different from Qatar. The KSA has a mean value of M = 0.58 and SD = 0.500; thus, it is considered to be the country that allows the lowest time for gathering requirements from customers and users. Most of the countries are less dedicated to this factor; however, they do not substantially vary in evaluating the position of consumers and users in giving adequate time to complete their requirements.

Table 17. Significance Value for Customers/Users Make Adequate Time Available for Requirement Gathering with Project Success
Project Success/ with Adequate Time for Requirements
UAE
KSA
Kuwait
Qatar
Bahrain
Oman
Chi-square
df
Sig.

* The chi-square statistic is significant at 0.05.

Table 18. ANOVA Table for Customers/Users Make Adequate Time for Requirements

Sum of Square	df	Mean Square	F	Sig.	
Between groups	3.411	5	0.682	4.675	0.001
Within groups	22.908	157	0.146		
Total	26.319	162			

5. Discussion

The results from analyzing the first RE factor indicates that the GCC countries are different when utilizing a particular method for a requirements gathering process. Although the percentage of the projects that used a particular method in all the six countries was 23.9%, Qatar tended to be the frontrunner to use a method for gathering requirements preceded by the KSA and UAE, and Bahrain, which is the least that used an appropriate method for requirements gathering. Other than Bahrain, the chi-square test finding for the GCC countries (in Table 2) shows that there is no evidence of finding a significance associated between this factor and the success of the project as per the respondents. The author related this result to the low number of projects using an appropriate requirements method. The results would not preclude the use of a requirement method from contributing to project success if more projects were included in the study using suitable requirement methods. The author also suggests that software engineers either used their own requirement methods or preferred not to use any method, for example, in Bahrain.

Although, the second RE factor shows that the GCC countries were similar in having their requirements
A defined scope means that the team understood what must be achieved and what work must be done to deliver a project on time [58]. Unfortunately, most of the GCC countries did not define their projects’ scope from the start and endusers were not involved in the project scope from the beginning. The UAE and Qatar did not define their project scope very clearly.

The size of the project did not affect the requirements elicitation process negatively in all the GCC countries. Based on the dataset, the author relates this issue to the fact that in the total number of projects that were complete, accurate requirements were relatively small; therefore, the requirements were easy to elicit and collect before development and were not affected by the size of the project.

In the GCC countries, 79.7% of the respondents either completely or partially accepted the fact that the customers or users allowed adequate amount of time for requirement gathering. The significant value shows no significant correlation with the success of the project because it is more than 0.05. The KSA’s and Qatar’s customers and users were allowed more adequate time for requirement gathering than the other countries. Bahrain and the UAE had their projects with fewer customers or users those allowed adequate time for requirement gathering.

The study results might not be applicable to Omani companies as the number of participants from this country could be an outlier.

As GDS is gaining more popularity in the software industry, RE practices become very difficult and challenging when implemented in the GDS paradigm [59]. This study helps to identify risks otherwise overlooked by project managers and provides project leaders with a comprehensive overview of the RE status of the different GCC countries that can help project managers control their software projects in the early stages, thereby facilitating the completion of projects on the agreed schedule and budget.

To identify what can be learned from the results of the analyzed RE factors based on their differences and similarities when implemented in the GCC countries, the author illustrated the followings:
Qatar appeared to be using more methods for the requirement gathering factor compared with the other five countries, then the KSA and UAE together, and finally, Bahrain.

The GCC countries were similar in having complete and accurate requirements. Bahrain, Qatar, and the UAE had more accurate requirement completions.

The UAE, KSA, and Qatar were more statistically significant in completing their requirements adequately, compared with the other GCC countries.

The GCC countries were similar in not defining the scope of their projects at the beginning of the projects.

The GCC countries were similar in not having the size of the project effect on requirements elicitation process negatively.

The KSA and Qatar customers and users were allowed more time for requirement gathering than the users of the other GCC countries. Bahrain and the UAE had their projects with fewer customers and users who were allowed adequate time for requirement gathering.

The data observation provides evidence that all the software companies in the GCC are currently facing almost the same RE challenges. Project managers should take into account that the GCC countries share the same problems when implementing the RE practices. Therefore, when working in the GCC, project managers need to encourage a balance between formal western methods and social aspects within this region.

6. Limitation and Validity of the Results

This study has limitations that might affect the validity of its results. The author constructed this study through an in-depth review of the literature. Owing to the small amount of literature regarding the RE practices in the GCC region, the author used some old literature as evidence. Moreover, the author checked some of the participants’ software documentation, which they had obtained during the interview as a second source of evidence. The survey provided only the software engineers’ perceptions. However, when conducting a survey, the author relied on the information the respondents provided. There is a high possibility that the software engineers’ perceptions might change after the project is finished. It is also possible that the respondents liked to choose only successful projects. Because software engineers were the only participants surveyed by the author, the findings were limited to their views and opinions about the projects and teams in which they worked. The study has limitations because the author investigated the perceptions of software engineers on the RE practices in six different countries using questionnaires, and the answers cannot be verified directly. Therefore, the software engineers’ perceptions might not be correct, or the factors the author described might not be important at all. Nonetheless, like other opinion-based research, our findings are derived from the data collected by the software engineers working in various roles and directly participating in the projects; the opinions of the software engineers were investigated without the author’s influence. The questionnaire used by the author had been used effectively in other studies [20], [11], [60], [61], [62].

6.1. Internal Validity

The author used exploratory research to explore the subject of the RE practices from the viewpoint of the software engineers within the GCC region. They included project managers, users and customers, and programmers and developers, who had different perceptions on project success.

6.2. Construct Validity

The questionnaire that the author used in this study was successfully used many times with other software developers from different countries [20], [11]. Therefore, as it had been validated many times, the
author could use the questionnaire as a valid instrument for exploring the RE practices for software engineering in the GCC countries.

6.3. **External Validity**

As this study sample is convenient and not a random sample, the author cannot consider the results to be as reliable as a random survey. This is because a convenient sample might be biased and involve inference. However, the respondents participated in the software development processes in different types of projects. As this study took place in the GCC countries, which is a small part of the world, the findings cannot be generalized. The study is limited to the sample population size at the time they conducted the survey.

6.4. **Conclusion Validity**

In this study, the author used ordinal data and nonparametric statistics for their analysis. The author believes that the analysis is reliable since he obtained the variables from the experienced software engineers those have a good knowledge of different software development projects. Key limitations of this study are the small number of projects in Kuwait and Oman, and the low number of failed projects in all the countries.

7. **Conclusions**

This study has looked at the current state of the RE practices within the GCC countries based on the six RE factors. It has focused on identifying the commonalities and differences of the six RE factors within the six countries. The author collected and analyzed the data using a questionnaire-based survey from the software professionals working in software organizations in the GCC countries.

To understand the state of the RE practices in the GCC countries, the results show that more similarities rather than differences emerged among these countries. Many project managers started their projects with inappropriate requirements methods and undefined project scopes and used their own requirement tools and techniques. Besides, the most well-known RE gathering methods that were used within the GCC region were traditional methods, such as meetings and interviews. Many advanced RE methods and techniques that are used in the western countries are not used in this region. This is owing to either the lack of familiarity from project managers and system analysts’ side or the uncertainty of choosing the right methods and tools for RE practices.

In a GDS paradigm, research results are essential to allow project managers and system analysts gain adequate knowledge about how RE practices are performed within the cultures of the GCC region, as the perceived value of RE techniques may vary between countries belonging to the cultures that are distinct from the western culture. Therefore, this study could be the first move in knowing the GCC environment, which may play a significant role in the progress of the GDS initiatives to know how RE practices are perceived in the GCC countries. Project managers should provide a project environment that supports culture differences in a GDS, so that the delivered system can be sustainable and applicable.

The contributions of this study will be essential for project managers and system analysts in identifying the challenges of RE practices in the GCC countries and assert that using the standard RE practice and appropriate methods and tools will help software companies define the RE stage correctly, which accordingly will improve the success rates of their projects.

Future research should propose guidelines or a framework based on the highlighted problems for the software firms in the GCC countries. These guidelines will facilitate the system analysts to choose suitable tools and methods when applying RE practices in the GCC region.

Conflict of Interest
The author declares no conflict of interest.

Acknowledgement

I would like to thank the Public Authority of Applied Education and Training (PAAET) and the manager of the research department for their support and understanding during the writing of this research and for providing the needed funds to complete this work. The research number is BS-18-03.

References

[1] Abbasi, M. A., Jabeen, J., Hafeez, Y., Batool, D., & Fareen, N. (2015). Assessment of requirement elicitation tools and techniques by various parameters. *Software Engineering, 3*(2), 7-11.

[2] Project Management Institute. (2018). PMI Pulse of the profession®. Retrieved from: https://www.pmi.org/learning/thought-leadership/pulse/pulse-of-the-profession-2018

[3] Maritato, M. (2013). Mastering project requirements: Assessing how good you are. Paper presented at PMI Global Congress 2013- North America, New Orleans, LA. Newtown Square, PA: Project Management Institute.

[4] Cusumano, M. A. (2008). Managing software development in globally distributed teams. *Communications of the ACM, 51*, 215-217.

[5] Measuring the Information Society Report. (2018), Retrieved from: Geneva: ITU. https://www.itu.int/en/ITU-D/Statistics/Documents/publications/misr2018/MISR-2018-Vol-1-E

[6] Stefan, W., et. al. (2019). Status quo in requirements engineering: A theory and a global family of surveys. *ACM Transactions on Software Engineering and Methodology.*

[7] Tahir, A., & Ahmad, R. (2010). Requirement engineering practices - An empirical study. *Proceedings of the International Conference on Computational Intelligence and Software Engineering.*

[8] Ayman, S., & Abd, E. K. S. (2017). Culture effect on requirements elicitation practice in developing countries. *International Journal of Software Engineering and Applications, 8*(1), 49-58.

[9] Kalinowski, M., et al. (2016). Preventing incomplete/hidden requirements: Reflections on survey data from Austria and Brazil. *Lecture Notes in Business Information Processing, 238*, 63-78.

[10] Talbot, A., & Connor, A. (2011). Requirements engineering current practice and capability in small and medium software development enterprises in New Zealand. *Proceedings of the 9th International Conference on Software Engineering Research, Management and Applications.*

[11] Verner, J., Cox, K., Bleistein, S., & Cerpa, N. (2005). Requirements engineering and software project success: An industrial survey in Australia and the US. *Australasian Journal of Information Systems, 13*(1), 225-238.

[12] Kadir, Ç., & Rembiye, K., (2019). A survey of software requirements engineering practices in Turkey, *International Journal of Science and Research, 8*(7), 255-262.

[13] Nikula, U., Sajaniemi, J., & Kälviäinen, H. (2000). A state-of-the-prac-tice survey on requirements engineering in small- and medium-sized enterprises, research report. Telecom Business Research Center Lappeenranta.

[14] Jorge, R., & Dante, C., (2017). Gap in requirements engineering between scientific literature and practice in the latin American software industry. *Interciencia, 42*(10), 676-682.

[15] Arnott, D., Jirachiepattana, W., & O’Donnell, P. (2007). Executive information systems development in an emerging economy. *Decision Support Systems, 42*(4).

[16] Thanasankit, T., & Corbitt, B. (2000). Cultural context and its impact on requirements elicitation in Thailand. *The Electronic Journal of Information Systems in Developing Countries, 1*(1), 1-19.

[17] Sutharshan, A. (2013). Human factors and cultural influences in implementing agile philosophy and
agility in global software development. School of Computer and Security Services, Edith Cowan University.

[18] Alzayed, A., & Verner J. (2019). A survey on the state of practice of requirements engineering in GCC countries. Journal of Convergence Information Technology, 14(1), 91-99.

[19] Verner, J. M., & Evanco, W. M. (2005). In-house software development: What software project management practices lead to success? IEEE Software, 22(1), 86-93.

[20] Verner, J. M., & Cerpa, N. (2005). Australian software development: What software project management practices lead to success?. Proceedings of the 2005 Australian Software Engineering Conference.

[21] Nisar, S., Nawaz, M., & Sirshar, M. (2015). Review analysis on requirement elicitation and its issues. International Journal of Computer and Communication System Engineering, 2(3), 484-489.

[22] Ramdhani, M., Maylawati, D., Amin, A., & Aulawi, H. (2018). Requirements elicitation in software engineering. Int. J. Eng. Technol, 6(2.29), 772-775.

[23] Hofmann, H. F., & Lehner, F. (2001). Requirements engineering as a success factor in software Projects. IEEE Software, 18(4), 58-66.

[24] Kiotins, E., Unterkalmsteiner, M. & Gorschek, T., (2019). Software engineering in start-up companies: An Analysis of 88 Experience Report. Empir. Software Eng, 24, 28-102.

[25] Casale, G., et al., (2016). Current and future challenges of software engineering for services and applications. In Cloud Forward, 97, 34-42.

[26] Chakraborty, A., Baowaly, M. K., Arefin, A., & Bahar, A. N. (2012). The role of requirements engineering in software development life cycle. Journal of Emerging Trends in Computing and Information Sciences, 3(5), 723-729.

[27] Rodriguez, M. V., Villanueva, B. J., Cousillas, F. S. M., & Ortega, F. F. (2018). Exploring project complexity through project failure factors: Analysis of cluster pattern using self-organizing maps. Complexity, 1-17.

[28] Trammell, M. T. I., Moulton, A., & Madnick, S. E. (2016). Effects of funding fluctuations on software development: A system dynamics analysis. Engineering Management Journal, 28(2), 71-85.

[29] Sommerville, I. (2004). Software Engineering (7th Ed.). Addison-Wesley, Harlow, UK.

[30] Jin, Z. (2018). Environment modeling-based requirements engineering for software intensive systems. Morgan Kaufmann, Oxford.

[31] Hall, T., Beecham, S., & Rainer, A. (2002). Requirements problems in twelve software companies: An empirical analysis. IEEE Proceedings Software, 149(5), 153-160.

[32] Iqbal, D., Abbas, A., Ali, M., Khan, M. U. S., & Nawaz, R. (2020). Requirement validation for embedded systems in automotive industry through modeling. IEEE Access, 8, 8697-8719.

[33] Clancy, T. (2014). The standish group chaos report. project smart. Retrieved from https://www.projectsmart.co.uk/white-papers/chaos-report.pdf

[34] Anwar, F., & Razali, R. (2012). A practical guide to requirements elicitation techniques selection: An empirical study. Middle-East Journal of Scientific Research, 11(8), 1059-1067.

[35] Mulla, N., & Girase, S. (2012). A new approach to requirement elicitation based on stakeholder recommendation and collaborative filtering. International Journal of Software Engineering and Applications, 3(3), 51.

[36] Mulla, N., & Girase, S. (2012). Comparison of various elicitation techniques and requirement prioritisation techniques. International Journal of Engineering Research and Technology, 1(3), 1-4.

[37] Fernández, D. et al. (2017). Naming the pain in requirements engineering - contemporary problems, causes, and effects in practice. Empirical Software Engineering, 22(5), 2298-2338.

[38] Fernández, D. M., et al. (2015). Naming the pain in requirements engineering: Comparing practices in Brazil and Germany. IEEE Software, 32(5), 16-23.
[39] Pierre, B., Richard, E. F., et al. (2014). *Guide to the Software Engineering Body of Knowledge (SWEBOK): Version 3.0*. IEEE Computer Society Press, Washington, DC, USA.

[40] Solomon, B., Sahibuddin, S., & Ghani, A. A. A. (2009). Requirements engineering problems and practices in software companies: An industrial survey. *Communications in Computer and Information Science*.

[41] Liu, L., Zhang, H., Ma, W., Shan, Y., Xu, J., Peng, F., & Burda, T. (2009). Understanding chinese characteristics of requirements engineering. *Proceedings of the 17th IEEE International Requirements Engineering Conference* (pp 261–266).

[42] Juan, P. M., & Graciela, D. S. H. (2016). A requirements engineering process adapted to global software development. *Montevideo Dic*.

[43] Rouibah, K. (2008). Social usage of instant messaging by individuals outside the workplace in Kuwait: A structural equation model. *Information Technology and People, 21*(1), 34-68.

[44] Abouzahr, M. (2011). Causes of failure in healthcare IT projects. *Proceedings of the 3rd International Conference on Advanced Management Science* (pp. 46-50).

[45] Alfaadel, F., Alawairdhi, M., & Al-Zyoud, M. (2012). Success and failure of it projects: A study in Saudi Arabia. *Proceedings of the 11th WSEAS International Conference on Applied Computer and Applied Computational Science* (pp. 77-82).

[46] Rouibah, K., & Al-Rafee, S. (2009). Requirements engineering elicitation methods: A Kuwaiti empirical study about familiarity, usage and perceived value. *Information Management & Computer Security, 17*(3), 192-217.

[47] Smite, D., Moe, N. B., Šablis, A., & Wohlin, C. (2017). Software teams and their knowledge networks in large-scale software development. *Information and Software Technology, 86*, 71-86.

[48] Alsanouoisy, T., Spichkova, M., & Harland, J. (2019). Cultural influences on requirements engineering process in the context of Saudi Arabia. *Evaluation of Novel Approaches to Software Engineering*.

[49] Jiang, L., Eberlein, A., Far, B. H., & Mousavi, M. (2008). A methodology for the selection of requirements engineering techniques. *Software and Systems Modeling, 7*(3), 303-328.

[50] Denhere, N., Hörne, T., & Poll, V. D. J. A. (2015). Managing globally distributed software development projects using virtual teams: A middle east case study. *Proceedings of the 2015 Annual Research Conference on South African Institute of Computer Scientists and Information Technologists*.

[51] Singer, J., Sim, S. E., & Lethbridge, T. C. (2008). Software engineering data collection for field studies. *Guide to Advanced Empirical Software Engineering*.

[52] Dillman, D. A. (2007). Mail and internet surveys: The total design method for surveys.

[53] Porter, S. R., & Whitcomb, M. E. (2005). Nonresponse in student surveys: The role of demographic engagement and personality. *Research in Higher Education, 46*(2), 127-152.

[54] Saunders, M., Lewis, P., & Thornhill, A. (2009). *Research Methods for Business Students* (5th Ed.). Pearson Education Limited, Edinburgh Gate.

[55] Cerpa, N., Bardeen, M., Kitchenham, B., & Verner, J. M. (2010). Evaluating logistic regression models to estimate software project outcomes. *Information and Software Technology, 52*(9), 934-944.

[56] De, C. A. (2018). A classification of response scale characteristics that affect data quality: A literature review. *Quality and Quantity, 52*(4), 1523-1559.

[57] Berntsson-Svensson, R., & Aurum, A. (2006). Successful software project and product: An empirical investigation. *Proceedings of ISESE* (pp. 144-153).

[58] Ghosh, A. (2007). Importance of scope in project management, Aspalliance. Retrieved from: http://aspalliance.com/1152_Importance_of_Scope_in_Project_Management

[59] Chen, C. Y., Chen, P. C. & Lu, Y. E. (2013). The coordination processes and dynamics within the inter-organizational context of contract-based outsourced engineering projects. *Journal of Engineering and*
[60] Fricker, S. A., Grau, R., & Zwingli, A. (2015). Requirements engineering: Best practice. Requirements Engineering for Digital Health. 25-46.

[61] Geethalakshmi, S. N., & Shanmugam, A. (2007). Success factors of software projects. Proceedings of the First International Conference on Knowledge Management for Productivity and Competitiveness, National Productivity Council

[62] Pereira, J., Cerpa, N., Verner, J., Rivas, M., & Procaccino, J. D. (2008). What do software practitioners really think about project success: A cross-cultural comparison. Journal of Systems and Software, 897-907.

Copyright © 2021 by the authors. This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0)

Asaad Alzayed received his Ph.D. from Loughborough University, England in 1990. He is currently an associate professor at the Department of Computer & Information Technology, Business College, Public Authority for Applied Education and Training, Kuwait. His research interests include the areas of software engineering, requirements engineering, software development and IT / business alignment.