Multilayered MapReduce Framework to Link Cybernetic Vulnerabilities and Cybernetic Laws from E-News Articles

SUDHANDRADEVI P (psudhandradevi@gmail.com)
Bharathiar University

Research Article

Keywords: Cyber Vulnerability, CERT-In, DT Classifier, Indian Penal Code, MapReduce, social media, Text Normalization

Posted Date: December 20th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-1188496/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

The growth of technology evaluation and the influence of smart gazettes, which have a very complex structure, the amount of data in an organization, E-Commerce, and ERP explodes. When data is processed as described, it becomes the engine of every individual. According to projections from 2025, social media, IoT, streaming data, and geodata will generate 80% of unstructured data, and there will be 4.8 billion tech enthusiasts. The most popular social media trend allows users to access publicly available data. Hackers are highly qualified in both the web space and the dark web, and the rise of complexity and digitization of this public access will cause loopholes in legislation. The major goal of this study is to gather information about the cyber vulnerability of electronic news. Data collection, text standardization, and feature extraction were all part of the initial step. In the second step, MapReduce was used to obtain demographic insights using a multi-layered categorization strategy. Cybercrime is classified using a classifier technique, and the model has a 53 percent accuracy rate. Phishing is a result of cyber weaknesses, and it has been discovered in a higher number of metropolitan cities. Men, rather than women, make up the majority of crime victims. Individuals should be made aware of secure access to websites and media, according to the findings of the study. People should be aware of cyber vulnerabilities, as well as cyber laws enacted under the IPC, the IT Act 2000, and CERT-In.

I. Introduction

The Internet has reduced the entire planet to a single little shell. The use of digital surfaces has increased as a result of technological advancements, digital repositories, and social media. The world has entered the BigData era; data is rapidly accumulating, and it is estimated that by 2025, the total volume of BigData will have increased from 4.4 zettabytes to 44 zettabytes, or 44 trillion gigabytes. The volume of data has grown at a faster rate from many sources, rendering traditional processing systems ineffective. Intrusion detection, according to Richard Zuech et al. [2015], helps users secure their systems in cyberspace by alerting them. For security analysis, BigData will analyze heterogeneous data and a large volume of data, as well as block network traffic. According to the author, BigData uses frameworks like Hadoop and Spark to handle the problem of storing and manipulating heterogeneous data [1] [2].

Social media is a type of computer-based technology that allows people to share information and ideas in a virtual setting. It is intended to let users to instantly exchange content via smart devices, such as personal data, images, videos, documents, blogging, social games, and social networks. According to projections, the number of social media users in the United States will reach 257 million by 2023. Pete Burnap et al. [2015] used machine learning categories to describe cybernetic hate speech on Twitter. Ethnicity, religion, and more generic responses are used to categorize textual data. For anticipating the anticipated spread of cyber hate speech on Twitter, the data is trained and tested using classification algorithms to categories the optimal utilizing a combination of probabilistic, rule-based, geographical based classifiers. [3]
According to a study on global tolls, cybercrime would cost $6 trillion in damages by 2021. The potential for cyberattacks should be used to organize the creation of anti-cybercrime policies. The processing of data in a secure manner is a vital aspect of digitalization. Data breaches have grown in importance as a type of cybercrime that can cause harm to people in either a trustworthy or untrustworthy setting. Unauthorized access, harmful code, denial of service, and theft all contribute to computer crime. Heinous content, Internet fraud, and misconduct are examples of traditional crimes. Access to control technologies, cryptography, surveillance, assurance tools, India’s legislative approach, and the IPC’s core purpose of increasing security awareness in India are all technological solutions [4]. Briefs by Vinit Kumar Gunjan et al. Traditional crime, online fraud, e-mail spoofing, virus/worm assault, Trojan virus, web hacking, hacking, and computer abuse are all examples of cybercrime. Phishing, email spoofing, and phone phishing are the experimental analyses of the numerous cyberattacks provided in the research. A phone phishing investigation targets 50 employees and their bank account information. In this percentage, 32% of employees used electronic banking to share their credentials. Employees revealed their passwords in 16 percent of cases, while 52 percent refused to do so. According to the report, emails are hacked due to two concerns: they are misleading and consumers overestimate the security and confidentiality of emails [5].

Tariq Mahmood et al [2013] provided a security analysis solution for cybersecurity in the context of big data. Because of the continuous expansion of data, the type and frequencies of cyber-attacks are increasing at an exponential rate. The worldwide network is connected to a secure system in every country. In 2000, 45 million people were affected by cybercrime, according to a poll. Cybercrime includes spamming, botnets, denial of service (DoS), phishing, malware, and website threats. As a result of Big Data, cyber attackers’ hacking skills have improved. They split the data into passive and active users and implemented security analytics using BDA technology [6].

Users are completely ignorant of the occurrence of cybercrime. Preventing cybercrime and attacks is the responsibility of law enforcement agencies such as the Computer Emergency Readiness Team (CERT-In) and the Government of India. The Indian Penal Code (IPC) sections of the IT Act 2000 provide legal cyber punishment/penalty in India for certain cybercrime attacks. Cybercrime, issues, trends, and difficulties, as well as solutions, were the focus of Vineet Kandpal et al [2013]. According to polls, cybercrime increased by 57.1 percent in 2012. 61.0 percent of IT Act offenders and 45.2 percent of IPC Sections offenders were between the ages of 18 and 30. According to CERT-In 78, the 308371 government and other websites were hacked between 2011 and 2013. Updating computers, choosing a secure password, protecting computers, being social media savvy, and securing a wireless network are all important skills to reduce cybercrime threats. [8]

Ii. Related Methods

A multi-layered technique was used to implement the architecture. Data are gathered in the first layer from various news sources and IPC Laws. Data were extracted and processed in a structured format in the second layer. The Crime corpus is created for storage in the third tier. Cybercrime is classified into
demographic data such as gender, geographic attributes, cyber offences, and criminal legislation in the fourth layer. The study was released as an analytical report charts and statistics reports at the bottom layer. The critical reflections on Big Data security by Matteo La Terro et al [2018] aim to identify the risks and problems of data security as well as the social and economic benefits of Big Data. They definitively define the dangers of BigData as a loss of confidentiality, integrity, and availability. The problem will be remedied by improving human capital through know-how and inventions, relational capital through improved client relationships, and structural capital through management process modifications. BigData was primarily concerned with technological, sociological, and ethical ramifications, as well as moral judgments [9]. Figure 1 depicts the multi-layer architecture of cybercrime vulnerability.

Using the MapReduce technique, a multi-layered architecture was used to associate the labels with the document label. Data are divided into two categories: socioeconomic cybercrime and domain-based cybercrime, using a tiered method. Table 1 shows multi-layered data extraction. [9] [12].

Data Sources	Socioeconomic Cybercrime	Domain-Based Cybercrime	
Article Report	Cyber Offence	Cyber Article Label	
		IPC Crime Label	
Geographic Location	Geographic Parameters	State	
Gender	Cyber Victim	Cyber Criminals	
Crime Report (IPC)	Crime Laws	Cert-In, IPC/IT Act Section	Punishment

iii. Framework And Methods

The objective of this research is to create a framework for Cyber Crime Attacks (CCA). Cybercrime attacks are classified using the cyber vulnerabilities found in articles and cyber legislation found in the IPC/IT sections (CVCL). Figure 2 describes the methodology of Cybercrime Attacks (CCA) [10].

i) Techniques for building a database of cyber-vulnerabilities and laws

ii) The multi-layered cyber vulnerability approach considers demographic aspects as well as crimes.

iii) Classify cybercrime by category and test the model using the classifier technique.

3.1 Methods

3.1.1 Data Acquisition

Cybercrime news is gathered from e-news stories and presented systematically. Most of the news pieces are unstructured and clear.

E-news Dataset
A manual data collection of 100 instances of newspaper diaries is performed. Article Labels, Headlines, Content, States, Year, Gender, and URL are the attributes of the dataset.

Cyber Law Dataset

The Cyber Law Dataset is a collection of cyber law sections and punishments obtained from India's cybercrime initiatives. The Cyber Law dataset contains 78 cases, with Crime labels as the first attribute, followed by sections and sanctions. As per India rules, the crime section and punishments are CERT-In and the Indian Penalty Code (IPC) IT Act 2000. Table 2 shows the statistical reports for both the datasets.

Reports	Feature Extraction	E-News Dataset	Cyber Law Dataset
Data Acquisition Report	Number of Sources	2	2
Sources	The Indian Express, The Hindu		CERT-In, IPC/IT Act 2000
Domain-Level Reports	Crime Labels	Email Spoofing, Clone Finger Prints, Facebook, Debit Card, social media, Twitter, Hacking, WhatsApp, Online Crime, Ransomware, Harassment, Internet Fraud, Data-Wiping Virus	Phishing, Profile Hacking, Cyber Bullying, Web Jacking, Online Scams, Software Piracy, Cyber-Stalking
Dataset Instance Reports	Number of Instances	100	78
Number of Attributes	7	3	
Attributes	Article Label, Headlines, Content, District, States, Year, URL	Crime Label, IPC Sections, Punishment	

3.1.2 Extraction of Relations

In the context of the newspaper, punctuation marks, special characters, and images are determined. To provide a more user-friendly and distinct representation for higher-level modelling, which is also legible by humans. It's tokenized, with stop words eliminated, morphological normalization, and collocation. The text pre-processing phase is illustrated in Figure 3.

The text is standardized in this part using NLP algorithms. To achieve a consistent structure, the first step is to remove the punctuation expressions and convert them to a lower case. They're listed below.
i) Tokenization

Tokenization divides the text into bits based on how it is used in the context. The "Sentence tokenization" or "Word Tokenization" techniques can be used to tokenize the context. Word tokenization is done with this task.

#1

```
#before pre-process
A team of two police constables on night patrol nabbed two foreigners in the act of trying to fix a card reader and a micro-camera in an ATM in Hegde Nagar.

#after pre-process
Terms
 Docs team two police constables night patrol nabbed two foreigners act trying fix card reader microcamera atm hedge
```

The document is cleaned using the pre-processing technique in step #1. Because the punctuation marks in the document take up unnecessary memory, they are eliminated. The documents have been changed to lower case for unique identification. Converting to a lower expression can sometimes modify the context's semantic meaning. Part-of-speech refines this issue by revealing the world's syntactic behavior.

ii) Stopwords Removal

Stop word removal is used to locate data that isn't relevant. The information containing words has no sense and is also noisy. Dimension is utilized to greatly minimize the tokenization document.

#2

In #2, unique space characters are used to tokenize words. Following tokenization, a few common terms arise, which add noise to the study and have little meaning. These words are known as stopwords or empty words. Removing stopwords also allows for a large reduction in the number of tokens in documents, as well as a reduction in the feature dimension.is represented.
iii) Morphological Normalization

The method is known as morphomes, and it seeks to find stem words. Stemming is a normalization approach that removes common suffixes from a term's output and returns the term's underlying word. Lemmatization is the correct application of the word's morphological analysis vocabulary.

Building up from smaller meaning-bearing pieces is what normalization is all about. The first document in #3 contains two stem words, such as "constables" and "nabbed." 'constabl' and 'nab' are the results of eliminating the suffix. The word 'constabl' is incorrect. It will attempt to return the dictionary format as 'constable' after removing the inflectional endings.

3.1.3 Crime Corpus of Relations: Label Extraction

The keyword is retrieved from the n-gram approach in collocation to discover the most relevant terms and better insight into the examined material.

i) Collocation: Bigram (Two-gram) Approach and Trigram (Three-gram) Approach
After pre-processing the newspaper articles, a corpus was constructed for labelling cybercrime categories with article label domains. The frequency of document terms is calculated for all documents, and important terms are identified using the n-gram method. \(\text{IDF}(t, D) = \log \frac{N}{|\{d \in D : t \in d\}|} \), where \(N \) is the number of documents in the corpus (\(N = |D| \)), \(T \) is the number of occurrences, and \(|\{d \in D : t \in d\}|\) is the number of document terms.

#4

Two-gram Approach	Three-gram Approach
A tibble: 29,805 x 2	**A tibble:** 29,805 x 2
word	**word**
<chr>	<chr>
1 of the	1 the cyber crime
2 in the	2 commissioner of police
3 cyber crime	3 cyber police station
4 to the	4 of cyber crime
5 the police	5 cyber crime cell

Narrow down the news content based on a certain theme, such as crime labels or article label, to have a better understanding of the behavioral insights. Collocation aids in the retrieval of two or more words that are extremely likely to occur together. News The documents contain content that is closely related to the term 'cyber,' such as 'cybercrime,' 'cyberspace,' 'cyber criminals,' 'cybersecurity,' and so on. The bi-gram (two-gram) or tri-gram (three-gram) approaches might be used depending on the findings. The sentence in 1, 2, 4 documents does not give any significant phrase in the #4 bi-gram technique. To infer more insights, always prefer the tri-gram approach based on behavior analysis.

ii) Association of Cyber News – Visualizing Bigrams Approach

#5
The relationships between the news terms are visualized using a 'network' or 'graph' to find them all at once. In #5, phrases connected to cybercrime, such as 'cybercrime,' 'police,' 'bank,' and 'crime,' are nodes that are frequently followed by others. #5 shows how to see a graph.

iii) Cybercrime Binary Classification

The current traffic between People-centric and Techno-centric has clearly demonstrated the complexity of cybercrime and its impact. These two words are linked to the cyber-factor vs. the human element of criminal crimes. Figure 4 [11] shows the categories of cybercrime based on cyber enabled and cyber dependent.

iv) Semantic Mapping Model – Corpus Creation

To execute semantic modelling, associate the label with the MapReduce technique. The Cyber Vulnerable Label corpora is mapped with IPC Section [Law Punishment] using a MapReduce technique. Figure 5 shows the key (Crime labels) and value (Accusation) pair.

A multi-layered architecture is used to model the dataset. To determine the Crime vulnerabilities, the qualities are modelled from a domain perspective. The various outcomes of the semantic match are discussed in the following sections.

#6 Mapping of Cyber Elements and Crime Label

```json
{"id": {"Cyber_Element": "Techno Centric"}, "Crime_Label": ["Software Piracy", "Web Jacking", "Phishing", "Cyber Bullying"], "count": 87}
{"id": {"Cyber_Element": "People Centric"}, "Crime_Label": ["Online Scams", "Profile Hacking", "Cyber-Stalking"], "count": 13}
```
In case #6, 87 percent of cyber vulnerabilities are classified as "Techno Centric," and they occur as a result of gadgets such as mobile phones, laptops, and smart devices. "Software piracy, Web jacking, Phishing, and Cyber Bullying" are the key contributions of technology aspects, while "Online Scams, Profile Hacking, and Cyber-Stalking" are the main contributions of people-based factors.

#7 Mapping of Cyber Labels, Article Labels

```json
[{
  "id": "{"Crime_Label": "Phishing"}, "Article_Label": [{"debit card", "email spoofing", "phishing"}], "count": 38
}, {
  "id": "{"Crime_Label": "Cyber Bullying"}, "Article_Label": [{"facebook", "twitter", "whatsapp", "instagram"}], "count": 23
}, {
  "id": "{"Crime_Label": "Web Jacking"}, "Article_Label": [{"hacking"}], "count": 17
}, {
  "id": "{"Crime_Label": "Software Piracy"}, "Article_Label": [{"ransomeware", "ransom data-wiping virus"}], "count": 9
}, {
  "id": "{"Crime_Label": "Cyber-Stalking"}, "Article_Label": [{"internet fraud", "cyber crime", "cyber fraud"}], "count": 6
}, {
  "id": "{"Crime_Label": "Online Scams"}, "Article_Label": [{"on-line crime"}], "count": 6
}, {
  "id": "{"Crime_Label": "Profile Hacking"}, "Article_Label": [{"close face prints"}], "count": 1
}
]
```

#7 implies that the majority of susceptible crime is reported as "Phishing." According to the data, Phishing and kinds accounted for 38% of all offences. Email spoofing and debit card access are both common vulnerabilities. Furthermore, because of the prevalence of social media apps such as Facebook, WhatsApp, Twitter, and Instagram, 23 percent of offences were reported as "Cyber Bullying."

#8 State-wise Mapping of Cyber Elements

```json
[{
  "id": "{"Cyber_Element": "Techno Centric"}, "State": [{"DELHI", "ANDHRA PRADESH", "KARNATAKA", "HARYANA", "MAHARASHTRA", "UTTAR PRADESH"}, "Assam", "CHANDIGARH", "KERALA", "WEST BENGAL", "TAMIL NADU", "BIHAR"], "count": 87
}, {
  "id": "{"Cyber_Element": "People Centric"}, "State": [{"DELHI", "ANDHRA PRADESH", "KARNATAKA", "HARYANA", "MAHARASHTRA", "UTTAR PRADESH"}, "Gujarat"], "count": 13
}
]
```

#8 It reports on the geographical study of cyber susceptibility victims in India. It alludes to the fact that the majority of crimes in India occur as a result of technological influences. In comparison, the Western zone of India was hit by 48 percent of crimes, while the South was hit by 23 percent. India's most affected states are Maharashtra and Delhi. Both are affected by technology and are centered on people.

#9 Mapping of States and District

```json
[{
  "id": "{"State": "MAHARASHTRA"}, "District": [{"Wardha", "Pune", "Mumbai", "Nagpur", "Ahmadnagar"}, "count": 44
}, {
  "id": "{"State": "DELHI"}, "District": [{"Delhi", "New Delhi"}, "count": 15
}, {
  "id": "{"State": "KARNATAKA"}, "District": [{"Kodagu", "Chikmagalur", "Bangalore"}, "count": 11
}, {
  "id": "{"State": "KERALA"}, "District": [{"Kochi", "Idukki", "Kozhikode", "Thiruvantapuram"}, "count": 5
}, {
  "id": "{"State": "ANDHRA PRADESH"}, "District": [{"Guntur", "Hyderabad", "Vishakapatnam", "Telangana"}, "count": 5
}, {
  "id": "{"State": "UTTAR PRADESH"}, "District": [{"Lucknow", "Meerut", "Bulandshahr"}, "count": 4
}, {
  "id": "{"State": "GUJARAT"}, "District": [{"Ranchchh", "Ahmedabad", "Jamnagar", "Bhavnagar"}, "count": 4
}, {
  "id": "{"State": "HARYANA"}, "District": [{"Dhenkanal", "Panipat"}, "count": 3
}, {
  "id": "{"State": "BIHAR"}, "District": [{"Jharkhand", "Ranchi"}, "count": 3
}, {
  "id": "{"State": "CHANDIGARH"}, "District": [{"Chandigarh"}, "count": 2
}, {
  "id": "{"State": "TAMIL NADU"}, "District": [{"Chennai"}, "count": 2
}, {
  "id": "{"State": "ASSAM"}, "District": [{"Jorhat"}, "count": 1
}, {
  "id": "{"State": "WEST BENGAL"}, "District": [{"Jalpaiguri"}, "count": 1
}
```
#9 refers to Maharashtra, which is heavily impacted by cybercrime in India's Western zone. The central zone of Delhi is the second most afflicted, and Karnataka is the most affected state in India's southern zone. In the northern section of India, the number of crimes is the lowest.

3.2 Results

3.2.1 Classification of Relations: Decision Tree Classifier

To classify cybercrime, the methodology is tested using a Decision Tree classifier. Various metrics, such as Gini and Entropy, are used to validate the decision tree. Table 3 shows the decision tree, which is divided into two phases.

Building Phase	Operational Phase
Import the dataset	Make Predictions
Pre-process the dataset	Measure Performance
Split the data based on the train/test ratio	
Build the model for classifier	

Decision Tree Algorithm - Pseudo Code

i) *Assign all the training data to the root node*

ii) *Partition input data recursively based on selected attributes*

iii) *Test attributes at each node are selected based on a heuristic or statistical measure*

iv) *Conditions to stop partition*

v) *If all samples belong to the same class, then no further partitioning*

Decision Tree: Outcome

#10 Dataset: A View
In this dataset, the crime label (IPCV_CL) is a subset based on domain expertise (B_LAB). Here the dependent variable is crime label (IPCV_CL) and the independent variable is Article_label (CAL). Article_label is fetched from articles and linked to Crime vulnerability activity (IPCV_CL). The data is pre-processed by removing null values and missing values. The structure of the dataset is given in below.

#11 Split of Train/Test

```r
dim(data_train)
> [1] 70 6
dim(data_test)
> [1] 30 6
```

Random sampling was used to divide the dataset into the train and test sets. A random id is generated so that the value can be split in the ratio at random. 70% of the data is used to train the model, while 30% of the data is used to improve the forecast.

#12 Randomization of Train/Test Split

```r
# Randomization
table(data_train$IPCV_CL)
> Phishing Profile Hacking Software Piracy Web Jacking
> Cyber-Stalking 0.05714286 0.25714286 0.07142857 0.35714286 0.15714286
> Cyber Bullying 0.10000000 0.16666667 0.06666667 0.33333333 0.16666667

prop.table(table(data_train$IPCV_CL))
> Phishing Profile Hacking Software Piracy Web Jacking
> Cyber-Stalking 0.35714286 0.25714286 0.07142857 0.35714286 0.15714286
> Cyber Bullying 0.10000000 0.16666667 0.06666667 0.33333333 0.16666667

prop.table(table(data_train$IPCV_CL))
> Phishing Profile Hacking Software Piracy Web Jacking
> Cyber-Stalking 0.35714286 0.25714286 0.07142857 0.35714286 0.15714286
> Cyber Bullying 0.10000000 0.16666667 0.06666667 0.33333333 0.16666667
```

Create two data frames depending on the train and test split, using random sampling. To begin, construct the model using the training data. 70 observations are in the train set (data_train) and 30 observations are in the test set (data_test) based on the ratio. The probability of the randomization method is given in #12.

#13 Classification of Cyber Vulnerabilities

Create a criminal element-based model. It depicts the percentage of the tool that is a major victim of cyberattack. This node checks for "Phishing," "Web Jacking," "Software Piracy," "Cyber-Stalking," "Cyber Bullying," "Online Scams," and "Profile Hacking" in the element. If TRUE, then shift to the left child node of the root node. It will delve into the features and determine which ones have an impact on the risk of criminal factors. Figure 6 shows how the article label is categorized once the decision tree model is built based on the criminal label.

#14 Accuracy Test
The confusion matrix is used to evaluate the classification accuracy. The TRUE NEGATIVE is accounted for. Each column represents a predicted target, whereas each row represents an actual target. It calculated the projected value for test data using the train data as input. In #14 there is a comparison between the expected and actual value. The model's correctness is assessed using a fine-tuning technique, and this model achieves a 53 percent accuracy level.

IV. Discussion

The purpose of this paper is to examine the crime that was reported in the news article. The unstructured data retrieved from the news story was converted to structured data using multi-level crime categorization label mapping of the IPC legal code and a demographic of location and gender. Based on the analysis of the dataset (CVCL), the following conclusion can be drawn. The most common criminal article is "Phishing," which is followed by Bullying and Cyber Stalking. "Jacking, webspaces, and the last few are allegations of profile hacking and data theft," according to the typical criminal record.

Qualitative Insights - Cyber News

The basic qualitative insights from the news given in the article are depicted using a word cloud. The cloud is visualized based on the word occurrence. Dark typefaces are used to highlight words with a high frequency. Small typefaces are used for the terms with the fewest occurrences. Figure 7 shows one example of this. The most frequently used terms in a news item or 'crime,' 'bank,' 'account,' and 'online.'

Domain wise Inference

Email spoofing is determined to be the most common type of crime, and social networking sites are also used to fund cyberattacks. Financial services are the target of cyberattacks. This project aims to map cyber vulnerabilities in accordance with the IPC, IT Act 2000, as well as to comprehend the penalties and sections of the "IPC - Section 465".

Location-wise Analysis

Maharashtra is one of the most vulnerable states in India to cybercrime. The central zone of Delhi is the second most afflicted, whereas Karnataka is the most hit in the southern zone. Figure 8 depicts a crime analysis by location.
Gender wise Analysis

In comparison to women, most men are reported to be quite vulnerable. It has received a lot of attention in Mumbai and New Delhi. Andhra Pradesh, Tamil Nadu, and Kerala are the southern states with the lowest reported incidences.

Year-wise Analysis

Because of the tendencies of social networking and digitalized technologies in India, cyber susceptible crimes have increased in 2018.

V. Conclusion

Cybercrime vulnerability to the IPC Section is recommended as a specific goal in this article. The dataset was built using news stories extracted from top news publications that dealt with cybercrime. For the years 2012-2018, 100 articles have been downloaded. Cybercrime label mapping, IPC Sections, and demographics are all classified using a framework using a methodology. The Decision Tree Classifier was used to examine the results of the crime classification approach, and it was discovered that 100% of the crime labels are classed as Article labels.

Limitations

- The dataset has a minimum size that needs to be expanded, which is one of the study work’s drawbacks.
- The corpus developed for the research effort can be used to create an automation web crawler.
- This study does not take into account the mapping of security features in other cloud systems.

Future Scope

- On future research, an automatic web crawler will be used.

Declarations

Conflict of Interest:

I P SUDHANDRADEVI, declare that no funds, grants, or other support were received during the preparation of this manuscript.

Acknowledgement

I would like to express my deep gratitude to my research supervisors, for their patient guidance, enthusiastic encouragement and useful critiques of this research work.
References

1. Zuech, Richard, et al. “Intrusion Detection and Big Heterogeneous Data: A Survey”, Journal of Big Data, Vol. 2, No. 3, February 2015, https://doi.org/10.1186/s40537-015-0013-4.

2. C.L.Philip Chen, Chun-Yang Zhang, “Data-intensive Applications, Challenges, Techniques and Technologies: A Survey on Big Data”, Information Sciences, Vol. 275, January 2014, pp.314–347, https://doi.org/10.1016/j.ins.2014.01.015

3. Burnap Pete, Matthew L. Williams, “Cyber Hate Speech on Twitter: An Application of Machine Classification and Statistical Modeling for Policy and Decision Making”, Policy & Internet, published by Wiley Periodicals Inc, Vol. 7, No. 2, April 2015, pp.223–242, https://doi.org/10.1002/poi3.85.

4. Dr.P.B.Pathak, “A Dangerous Trend of Cybercrime: Ransomware Growing Challenge”, International Journal of Advanced Research in Computer Engineering & Technology, Vol. 7, No. 2, February 2016, pp.371–373.

5. Vinit Kumar, et al, “A Survey of Cyber Crime in India”, 15th International Conference on Advanced Computing Technologies (ICACT), January 2019, https://doi.org/10.1109/ICACT.2013.6710503.

6. Tariq Mahmood, Uzma Afzal, “Security Analytics: Big Data Analytics for Cybersecurity: A Review of Trends, Techniques and Tools”, 2nd National Conference on Information Assurance (NCIA), 2013, https://doi.org/10.1109/NCIA.2013.6725337.

7. Vineet Kandpal, “Latest Face of Cybercrime and its Prevention in India”, International Journal of Sciences: Basic and Applied Research (IJSBAR), Vol. 2, No. 4, January 2013, pp.150–156.

8. Saurabh Mittal, Ashu Singh, “A Study of Cyber Crime and Perpetration of Cyber Crime in India”, Cyber Law, Privacy and Security: Concepts, Methodologies, Tools, And Applications, 2019, pp.1080–1096, https://doi.org/10.4018/978-1-5225-8897-9.ch050.

9. Matteo La Torre, John C Dumay, “Breaching Intellectual Capital: Critical Reflections on Big Data Security”, Intellectual Capital and Big Data: A Managerial Revolution or Reality? - Meditari Accountancy Research Journal, Vol. 26, No. 3, July 2018, pp.463–482, https://doi.org/10.1108/MEDAR-06-2017-0154.

10. Maria Grazia Porcedda, David S. Wall, “Data Science, Data Crime and the Law”, Research Handbook on Data Science and the Law, SSRN Publication, 2018

11. Suleman Ibrahim, “Social and Contextual Taxonomy of Cybercrime: Socioeconomic Theory of Nigerian Cybercriminals”, International Journal of Law, Crime and Justice, Vol. 47, August 2016, pp.44–57, https://doi.org/10.1016/j.iijlcj.2016.07.002.

12. Syam Chandrala, Allogene Therapeutics, “Interactive Clinical Dashboards Using RStudio”, PharmaSUG Proceedings, Ephicacy Consulting Group Inc, May 2021.

Figures
Figure 1

Multi-Layered Architecture

Figure 2

Framework: Cyber Crime Attacks (CCA)

Figure 3

Extractions of Relations

Figure 4

Cybercrime Label Classification
Figure 5

Multi-Layered Architecture: MapReduce Approach

DT Classifier: Cybercrime Labels [IPC Label Vs. Article Label]

Figure 6

DT Classifier: Cybercrime Labels [IPC Label Vs. Article Label]

Figure 7

Qualitative Insights: Cyber News
Figure 8

Cyber Vulnerabilities - India