Femto-cyclones and hyperon polarization in Heavy-Ion Collisions

Mircea Baznat, Konstantin Gudima, Alexander Sorin, and Oleg Teryaev

1Joint Institute for Nuclear Research, 141980 Dubna (Moscow region), Russia
2Institute of Applied Physics, Academy of Sciences of Moldova, MD-2028 Kishinev, Moldova
3National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe Shosse 31, 115409 Moscow, Russia

(Dated: July 17, 2015)

Abstract

We study the structure of vorticity and hydrodynamic helicity fields in peripheral heavy-ion collisions using the kinetic Quark-Gluon String Model. The angular momentum conservation within this model holds with a good accuracy. We observe the formation of specific toroidal structures of vorticity field (vortex sheets). Their existence is mirrored in the polarization of hyperons of the percent order.

PACS numbers: 25.75.-q
I. INTRODUCTION

The local violation \[1\] of discrete symmetries in strongly interacting QCD matter is now under intensive theoretical and experimental investigations. The renowned Chiral Magnetic Effect (CME) uses the (C)P-violating (electro)magnetic field emerging in heavy ion collisions in order to probe the (C)P-odd effects in QCD matter.

There is an interesting counterpart of this effect, Chiral Vortical Effect (CVE)\[2\] due to coupling to P-odd medium vorticity leading to the induced electromagnetic and all conserved-charge currents \[3\], in particular the baryonic one.

Another important P-odd observable is the baryon polarization. The mechanism analogous to CVE (known as axial vortical effect, see \[4\] and references therein) leads to induced axial current of strange quarks which may be converted to polarization of Λ-hyperons \[3, 5, 6\]. Another mechanism of this polarization is provided by so-called thermal vorticity in the hydrodynamical approach \[7\].

The zeroth component of axial current and correspondent axial charge are related to hydrodynamical helicity

$$H \equiv \int dV (\vec{v} \cdot \vec{w}),$$

being the projection of velocity \vec{v} to vorticity $\vec{w} = \text{curl} \vec{v}$. This quantity is manifesting the recently discovered \[5\] and confirmed \[8\] phenomenon of the separation, i.e. its mirror behavior with the same magnitudes but different signs in the half-spaces separated by the reaction plane.

The noncentral heavy ion collisions could naturally generate a rotation (global or local, both related to vorticity) with an angular velocity normal to the reaction plane, which is their generic qualitative feature. It is naturally to expect that angular momentum conservation plays an essential role in the defining the quantitative properties of vortical effects. At the same time, it remains to be studied to which extent the particles carrying the main part of angular momentum participate in the collisions.

In the current paper we address these problem by performing the extensive numerical simulations. We explore the distribution of angular momentum and find that the role of participant nucleons is relatively small, albeit noticeable. We study in some detail the structure of vorticity field and compare different approaches to polarization calculation. We observed the peculiar toroidal ”tire-like” structure manifesting themselves in the polarization
of hyperons. We will explore different approaches to polarization calculation which will lead to qualitatively similar results.

II. ANGULAR MOMENTUM CONSERVATION IN THE KINETIC MODEL

The natural source of the P-odd observables in heavy-ion collisions is the pseudovector of angular momentum. The question immediately emerges whether it is conserved in the course of evolution governed by Quark-Gluon String Model (QGSM) [9]. To check this we calculated the angular momentum at various time moments of collision taking into account both the contributions of participants and spectators. We consider the \(Au + Au \) collisions with \(b = 8 \) fm at \(\sqrt{s} = 5 \text{GeV/u} \) typical for future NICA collider. We observed (see Fig.1) that the participants carry about 20\% of angular momentum and that the total angular momentum of participants and spectators is conserved with a rather good accuracy.

![Figure 1: The time dependence of the total (\(M_T \)) and fireball (\(M_F \)) angular momenta in Planck constant units and that of hydrodynamical helicity (\(H \)).](image)

Figure 1: The time dependence of the total (\(M_T \)) and fireball (\(M_F \)) angular momenta in Planck constant units and that of hydrodynamical helicity (\(H \)).
One may conclude that the angular momentum is under the good control in QGSM model.

We also studied correlations of angular momentum and the hydrodynamic helicity and observed that these quantities vary in accordance with each other. In order to perform this comparison and further calculations, velocity, vorticity and helicity were determined following the earlier suggested procedure when the respective quantities were properly averaged over events and particles within the three-dimensional cells providing the transition from the kinetic to hydrodynamic description.

Let us pass to the corresponding results.

III. LARGE-SCALE STRUCTURES OF VORTICITY FIELDS

We start our studies with the qualitative structure of velocity and vorticity fields.

The general structure of velocity field follows the "little bang" pattern which may be quantified by the velocity dependence allowing to extract the "little Hubble" constant. We calculated the dependence of average cell velocity on the transverse distance \(\rho = \sqrt{x^2 + y^2} \) and found (see Fig.2) that it is consistent with the linear "Hubble" law

\[
< v/c > = \frac{v_0}{c} + H\rho.
\]

The Hubble constant \(H \) is measured in the units \(10^{-22} \text{ sec} = 30 \text{ fm/c} \) and changes in the range

\[H = 0.024 \div 0.028 \text{ (fm/c)}^{-1}. \]

It corresponds to the "little Universe" lifetime of about \(40 \text{ fm/c} \) which is only twice larger than the collision time.

Our key observation is that while velocity field represent the "little bang" picture, vorticity field form the relatively thin toroidal "tire-like" structures (Fig. 3), which emerge in the layer (where velocity field changes rapidly) separating the "core" and "corona" regions \([10, 11]\) and form the sort of vortex sheet.

The interesting property of these structures is that, while emerging due to angular momentum pseudovector \(\vec{M} \) in the non-central collisions they do not "remember" the production plane and possess the cylindrical symmetry w.r.t. collisions axis \(z \). This may be
Figure 2: The cell velocity dependence on the transverse distance.

observed (Fig.4) by considering the vortex sheet in the case of the particular direction of \vec{M} along the y axis.

Such behaviour may resemble cyclones appearing at femtoscopic scale.

Let us now discuss the observable signatures of these nice structures.

IV. HYPERON POLARIZATION

We consider hyperon polarization as the observable related to vorticity and helicity \[3\].

We shall concentrate mostly on \(\Lambda \) hyperon production, which has some advantages: they
are produced in large numbers, their polarization may be easily determined in their weak
decays, and their spin is carried by strange quark.

We compare the two rather distinct methods of determining the hyperon polarization.
The first corresponds to its earlier suggested \[3\] and explored \[5\] relation to the induced
axial current while the second one follows the procedure based on the thermal vorticity \[7\].

The first method is based on the calculation of strange axial charge

\begin{equation}
Q_5^s = \frac{N_c}{2\pi^2} \int d^3 x \mu^2(x) \gamma^2 \epsilon^{ijk} u_i \partial_j u_k = \frac{\langle \mu^2 \gamma^2 \rangle}{2\pi^2} N_c H.
\end{equation}

In \[5\] we used the latter equality exploring the mean-value theorem, while here the spatial
variation of strange chemical potential μ is taken into account. To do so, the description of kinetic distribution functions by the correspondent equilibrium equation was performed, providing the matching of kinetic and thermodynamical descriptions. As a result, the time dependence of the distribution of strange chemical potential takes the form represented at Fig. 5. The average polarization can be estimated by dividing $Q^s_5 \, (2)$ by the number of Λ’s, assuming that the pseudovector of axial current is proportional to the pseudovector of polarization, $Q^s_5 \sim < \Pi^\Lambda_{lab}^0 >$. Selecting the axial charge related to the particles in the definite rapidity or transverse momentum interval, the respective dependence of polarization may be also obtained.

As the axial charge should be related to the zeroth component of hyperon polarization in laboratory frame $\Pi^\Lambda_{lab}^0$, the transformation to hyperon rest frame should be performed. Taking into account that polarization pseudovector should be directed along y axis (as it
Figure 5: The time dependence of strange chemical potential.

has to be collinear to \(\vec{M} \) pseudovector), one get

\[
\Pi^\Lambda_{0,lab} = \frac{\Pi^\Lambda_0 p_y}{M_\Lambda},
\]

(3)

so that the rest frame polarization can be obtained as

\[
< \Pi^\Lambda_0 > = Q^\Lambda_y < \frac{M_\Lambda}{N_\Lambda p_y} >.
\]

(4)

The possible violation of positivity (\(|\Pi_\Lambda| \geq 1\)) or even the divergence is due to the fact, that hyperons with zero \(y \) component of the momentum should not have the zeroth component
of polarization and therefore should not contribute to Q_5^s. To avoid this problem one may instead attribute the factor p_y/M to each hyperon in the denominator of (4). Nevertheless the comparison (see Fig. 6) of various approaches shows the similar scale and rapidity dependence of polarization.

Figure 6: The rapidity dependence of polarization in helicity-based approach.

Another approach to polarization is based on the so-called thermal vorticity \[7\]. To provide the comparison we calculated (see Fig. 7) the thermal vorticity field and respective polarization. While a scale of the polarization in the thermal vorticity-based approach is several times larger, its rapidity dependence, surprisingly enough, appear to be similar in these rather distinct approaches.
Figure 7: The rapidity dependence of the multiplicity and polarization in the thermal vorticity-based approach. The magnitudes of polarization at different times are rescaled by the identified factors.

V. CONCLUSIONS AND OUTLOOK

We investigated vorticity and hydrodynamical helicity in noncentral heavy-ion collisions in the framework of the kinetic Quark-Gluon String Model. We have confirmed our earlier observation that the vorticity field is predominantly localized in a relatively thin layer (2 ÷
3 fm) on the boundary between the participant and spectator nucleons and observed that it is forming the specific toroidal structures, which might be considered as vortex sheets with the unexpected cylindrical symmetry. They look as cyclones appearing at femtoscopic scale.

The vorticity and helicity fields are manifested in the Λ hyperons polarization. We performed its detailed calculations including the simulations of the strange chemical potential. We found that the polarization magnitude may reach a percent level. The comparison with the very different approach exploring the thermal vorticity leads to qualitatively similar results, although the polarization scale is several times larger.

Acknowledgements

This work was supported in part by the Russian Foundation for Basic Research, Grant No. 14-01-00647.

[1] K. Fukushima, D. E. Kharzeev and H. J. Warringa, “The Chiral Magnetic Effect,” Phys. Rev. D 78, 074033 (2008) [arXiv:0808.3382 [hep-ph]].

[2] D. Kharzeev and A. Zhitnitsky, “Charge separation induced by P-odd bubbles in QCD matter,” Nucl. Phys. A 797, 67 (2007) [arXiv:0706.1026 [hep-ph]].

[3] O. Rogachevsky, A. Sorin and O. Teryaev, “Chiral vortical effect and neutron asymmetries in heavy-ion collisions,” Phys. Rev. C 82, 054910 (2010) [arXiv:1006.1331 [hep-ph]].

[4] T. Kalaydzhyan, “Temperature dependence of the chiral vortical effects,” Phys. Rev. D 89, no. 10, 105012 (2014) [arXiv:1403.1256 [hep-th]].

[5] M. Baznat, K. Gudima, A. Sorin and O. Teryaev, “Helicity separation in Heavy-Ion Collisions,” Phys. Rev. C 88, 061901 (2013) [arXiv:1301.7003 [nucl-th]].

[6] J. -H. Gao, Z. -T. Liang, S. Pu, Q. Wang and X. -N. Wang, “Chiral Anomaly and Local Polarization Effect from Quantum Kinetic Approach,” Phys. Rev. Lett. 109, 232301 (2012) [arXiv:1203.0725 [hep-ph]].

[7] F. Becattini, L. Csernai and D. J. Wang, “A polarization in peripheral heavy ion collisions,” Phys. Rev. C 88, no. 3, 034905 (2013) [arXiv:1304.4427 [nucl-th]].

[8] O. Teryaev and R. Usubov, “Parity-odd effects in heavy-ion collisions in the HSD model,” arXiv:1406.4451 [nucl-th]; “Vorticity and hydrodynamic helicity in heavy-ion collisions in the
hadron-string dynamics model,” Phys. Rev. C 92, no. 1, 014906 (2015).

[9] V. D. Toneev, N. S. Amelin, K. K. Gudima and S. Y. Sivoklokov, “Dynamics of relativistic heavy ion collisions,” Nucl. Phys. A 519, 463C (1990).

N. S. Amelin, K. K. Gudima, S. Y. Sivoklokov and V. D. Toneev, “Further Development of a Quark - Gluon String Model for Describing High-energy Collisions With a Nuclear Target,” Sov. J. Nucl. Phys. 52, 172 (1990) [Yad. Fiz. 52, 272 (1990)].

N. S. Amelin, E. F. Staubo, L. P. Csernai, V. D. Toneev and K. K. Gudima, “Strangeness production in proton and heavy ion collisions at 14.6-A/GeV,” Phys. Rev. C 44, 1541 (1991).

[10] J. Aichelin and K. Werner, “Centrality Dependence of Strangeness Enhancement in Ultrarelativistic Heavy Ion Collisions: A Core-Corona Effect,” Phys. Rev. C 79, 064907 (2009) [Phys. Rev. C 81, 029902 (2010)] [arXiv:0810.4465 [nucl-th]].

[11] J. Steinheimer and M. Bleicher, “Core-corona separation in the UrQMD hybrid model,” Phys. Rev. C 84, 024905 (2011) [arXiv:1104.3981 [hep-ph]].