Geometry, robustness, and emerging unitarity in
dissipation-projected dynamics
Paolo Zanardi and Lorenzo Campos Venuti
Phys. Rev. A 91, 052324 — Published 26 May 2015
DOI: 10.1103/PhysRevA.91.052324
Geometry, robustness, and emerging unitarity in dissipation-projected dynamics

Paolo Zanardi and Lorenzo Campos Venuti
Department of Physics and Astronomy, and Center for Quantum Information Science & Technology, University of Southern California, Los Angeles, CA 90089-0484

Quantum information can be encoded in the set of steady-states (SSS) of a driven-dissipative system. Non steady-states are separated by a large dissipative gap that adiabatically decouples them away while the dynamics inside the SSS is governed by an effective, dissipation-projected, Hamiltonian. The latter results from a non-trivial interplay between a weak driving with the fast relaxation process that continuously projects the system back to the SSS. This amounts to a novel type of environment-induced quantum Zeno effect. We prove that the dissipation-projected dynamics is of geometric nature and that it is robust against different types of hamiltonian and dissipative perturbations. Remarkably, in some cases an effective unitary dynamics can emerge out of purely dissipative interactions.

I. INTRODUCTION

Since the earliest days of quantum information processing (QIP) weak coupling to the environmental degrees of freedom has been regarded as one of the essential prerequisites. In fact decoherence and dissipation generally spoil the unitary character of the quantum dynamics and induce errors into the computational process. In order to overcome such an obstacle a variety of techniques have been devised including quantum error correction [1], decoherence-free subspaces (DFSs) [2–4], noiseless subsystems (NS) [5–8] and geometric/holonomic quantum computation [9–11].

However, it has been recently realized that dissipation and decoherence may even play a positive role to the aim of coherent quantum manipulations. Indeed, it has been shown that, properly engineered, dissipative dynamics can in principle be used to enact QIP primitives (see Ref [12] for an early important contribution in this direction) such as quantum state preparation [13–15], quantum simulation [16] and computation [17]. Exotic physical properties such as topological order [18] and non-abelian synthetic gauge fields [19] can also be achieved by engineered dissipation.

In a nutshell the idea is that one can design driven-dissipative systems such that their steady-states enjoy some computationally desirable property. For example in Ref. [14] the unique steady-state is maximally entangled, while in Ref. [17] the steady states encode for an arbitrary quantum computation! Moreover, the irreversible and attractive nature of dissipative dynamics endows these techniques with a degree of robustness against imperfections in preparation and control. All this leads to a dramatic paradigm shift in QIP: noise and dissipation should not be viewed as detrimental but may in fact be considered as a resource.

In this paper we will build upon our recent discovery on how to enact coherent dynamics over the set of steady states (SSS) of a strongly dissipative system [20]. Quantum information is encoded in sectors of the SSS while non steady-states are separated by the large dissipative gap that adiabatically decouples them away. A weak Hamiltonian control gives rise to an effective dynamics inside the SSS that is ruled by a dissipation-projected Hamiltonian. The latter results from a non-trivial interplay between the control and the fast relaxation process that continuously projects the system back onto the SSS. This amounts to a novel type of environment-induced quantum Zeno effect [21, 22].

In this paper we will show that the dissipation-projected dynamics is geometric in nature. This means that this approach can be regarded as a dissipative extension of the fault-tolerant techniques of geometric and holonomic quantum computation [9–11]. We will also prove that the dissipation-projected Hamiltonians are protected against several types of perturbations (unitary and dissipative) and may allow for robust QIP. Finally we will show how an effective unitary evolution may emerge out of suitable dissipative perturbations of a purely dissipative dynamics. This “emerging unitarity” phenomenon is perhaps the single most surprising one of our results.

II. THE DISSIPATION-PROJECTION THEOREM

We will consider quantum open systems whose dynamics is described by the equation

$$\frac{d\rho(t)}{dt} = \mathcal{L}\rho(t). \quad (1)$$

The superoperator \mathcal{L} will be referred as to the Liouvillian. An open quantum system generically admits a unique steady-state ρ_∞ that is approached by the time-evolving density matrix $\rho(t)$ as the time goes to infinity. Asymptotically the information-theoretic distance $D(\rho(t), \rho_\infty) := \frac{1}{2}||\rho(t) - \rho_\infty||_1$ decays exponentially with time where the time-scale τ_R is referred to as the relaxation time. For $t \gg \tau_R$ the time-evolved state becomes indistinguishable from the steady state. According to Eq. (1) the steady state satisfies $\mathcal{L}(\rho_\infty) = 0$ i.e. it lies in the kernel of the Liouvillian. Uniqueness of the steady-state translates into a one-dimensional kernel. In this paper we will focus on the case in which the Liouvillian can be decomposed as $\mathcal{L} = \mathcal{L}_0 + \mathcal{L}_1$ in such a way that

- i) The relaxation time of \mathcal{L}_0 is the shortest time-scale of the problem. Equivalently, the dissipative gap of \mathcal{L}_0, τ_R^{-1}, is the largest energy scale.
- ii) The kernel of \mathcal{L}_0 is high-dimensional and attractive (the non-zero eigenvalues of \mathcal{L}_0 have a negative real part)
We will denote by P_0 ($Q_0 = 1 - P_0$) the projection onto the kernel of L_0 (its complementary). The steady-state set (SSS) is given by those states ρ such that $P_0(\rho) = \rho$. The critical assumption is that the SSS is high-dimensional. A prototypical instance of this non-generic situation is the following:

Example 0.- Suppose a system S is joined to a system B and that the dissipation acts only on the latter. Let P_0 denote the (generically) unique steady-state of B and by ρ any state of S. It is then obvious that any bi-partite state of the form $\rho \otimes P_0$ is a steady-state of the full dynamical system when the S and B are decoupled. Clearly, any transformation over S is a symmetry of the dynamics. For the sake of concreteness one may think of a two-level atom S weakly coupled to a leaky cavity mode B. To a good approximation dissipation acts directly just on B. Formally, the Hilbert space is $H = H_S \otimes H_B$ and $L_0 = P_0 \otimes L_B$ where the Liouvillian L_B admits a unique steady-state P_0. In this case $P_0(X) = Tr_B(X) \otimes P_0$, the kernel of L_0 has dimension $(\dim H_S)^2$, and the SSS can be identified with the state-space of S. This apparently trivial example will be later considerably generalized resorting to the theory of NSSs [5].

The fundamental technical result we would like to build upon is the following fact proved in [20] (see also Sec. A):

Projection Theorem. Suppose $L = L_0 + L_1$ with $\|L_1\| = O(1/T)$ then

$$\sup_{t \in [0,T]} \|(E_t - e^{L_0 t})P_0\| = O(1/T)$$

where $L_{\text{eff}} := P_0 L P_0 = P_0 L_1 P_0$ and $E_t = e^{t L}$. In words: if the system is prepared at time $t = 0$ inside the SSS then, in the large T limit, the time-evolution leaves the SSS invariant and it is governed by the effective generator L_{eff}.

In several of the applications we will discuss below the perturbation will be of Hamiltonian type i.e., $L_1 = -i[K, \bullet]$, $(K = K^\dagger)$; in that case it will be denoted by K. The key point is that $K_{\text{eff}} = P_0 K P_0$ turns out to be a Hamiltonian; it will be referred to as the dissipation-projected Hamiltonian. Physically, this means that strong dissipation, while dressing the Hamiltonian by a continuous projection onto the SSS, does not alter its unitary character. Non steady-states are adiabatically decoupled away. The SSS and unitarity are protected by the large dissipative gap of L_0.

For example, in the Example 0 discussed above, where the Liouvillian L_B has a unique steady-state P_0, one finds $K_{\text{eff}} = -i[K_{\text{eff}}, \bullet]$ where $K_{\text{eff}} = Tr_B(K P_0) \otimes I_B$. We see that in fact K_{eff} is Hamiltonian.

In Sec. A we prove Eq. (2) and we give a rigorous estimate for the coefficient in its RHS. It turns out [see Eq. (A14)] that the numerical factor is $ct \tau$ where τ is the relaxation time of the unperturbed dynamics and c is a $O(1)$ constant. This fact is important as it implies that the error can be made small, either by making T larger (which also makes the waiting time $O(T)$ longer) or by making dissipation faster (i.e. τ smaller).

Indeed, measuring times in unit of τ_0 one realizes that the expansion parameter in Eq. (2) is really $\tau_0 T / T$. In other terms the “long T limit” just means that the Hamiltonian norm has to be much smaller than the dissipative gap (= $O(\tau_0^1)$). The latter represents the physical quantity that in real applications has to be engineered in order to make it as large as possible. Equivalently, one wants to make the relaxation time τ_0 as short as possible. We have to operate in the deep dissipative regime.

III. DISSIPATIVE HOLONOMIES

Let us now discuss the intimate relation between our basic result (2) and geometric and holonomic quantum computation [9, 10]. We will show that the effective evolution (2) is in fact geometric and is given by a super-operator holonomy.

The possibility of merging dissipation dynamics and holonomic quantum computation [10, 11, 23] by reservoir engineering was first suggested in Refs. [24, 25]. More specifically, in [25] a time-dependent Lindbladian dynamics admitting a DFS was considered, and it was shown that under a suitable adiabatic condition, a state initially in a DFS remains inside the subspace and, hence, is rigidly transported around the Hilbert space together with the DFS. The evolution is, in fact, coherent, although entirely produced by an incoherent phenomenon. Moreover, when the DFS eventually returns to its initial configuration, the net effect is a holonomic transformation on the states in the subspace. Counterintuitively, the effect of the dissipation on the (time-dependent) DFS can be made smaller by making the dissipation rate larger. The authors qualitatively explain this phenomenon in terms of some sort of environment-induced quantum Zeno effect where the action of a strong environment can be regarded as a measuring apparatus continuously monitoring the slowly moving DFS.

In order to establish a connection between these findings and the results we have discussed so far it suffices to move to a rotated reference frame by defining $\tilde{\rho}(t) := U_t^\dagger \rho(t)$ where $U_t(X) := e^{iK X} e^{-iK X}$. In this rotated frame $\tilde{\rho}(t)$ evolves in a time-dependent bath

$$\frac{d\tilde{\rho}(t)}{dt} = L_t \tilde{\rho}(t), \quad L_t := U_t^\dagger L_0 U_t$$

In the rotated frame the dynamical semi-group is given by $\tilde{E}_t = U_t E_t U_t^\dagger$ and a state ρ_0 is an instantaneous steady-state of L_t iff $\tilde{\rho}_t = U_t^\dagger \rho_0$ where ρ_0 is a steady-state of L_0. It follows that the projector onto the kernel of L_t is given by $P_t = U_t^\dagger P_0 U_t = e^{-iK} P_0 e^{iK}$. Moreover, in the rotated-frame the dissipation-projected dynamics is geometric.

Proposition 1.- a) The Projection Theorem (2) can be reformulated in the form

$$\|\tilde{E}_t P_0 - \text{T exp} \left(\int_0^t dt [\tilde{P}_t, \tilde{P}_r] P_0 \right)\| = O(1/T)$$

where T denotes the chronological ordering symbol.

b) The T-ordered geometric superoperator in (4) can be rewritten as

$$X(t) = \lim_{N \to \infty} T \prod_{j=1}^N \tilde{P}_{t_j} = e^{-iK} \lim_{N \to \infty} (e^{iK} P_0)^N$$

where $t_j = j T$. Namely the evolution corresponds to an infinite, time-ordered, succession of projections.
onto the instantaneous SSS. Equivalently, to a succession of \mathcal{P}_0 interleaved with infinitesimal unitaries evolutions $e^\tau K$.

Proof.– a) From unitarity of $\mathcal{U}_t = e^{\tau K}$ and Eq. (2) one has

$$||\mathcal{E}_t\mathcal{P}_0 - e^{\tau_{0} K}\mathcal{P}_0|| = ||\mathcal{E}_t\mathcal{P}_0 - X(t)|| = O(1/T)$$

where $X(t) := e^{-\tau K} e^{\tau_{0} K} \mathcal{P}_0$. By differentiation

$$X(t) = -K e^{-\tau K} e^{\tau_{0} K} \mathcal{P}_0 + e^{-\tau K} \mathcal{P}_0 K e^{\tau_{0} K} \mathcal{P}_0 =$$

$$= -K \mathcal{P}_0 X(t) + \mathcal{P}_t K X(t) = [-K, \mathcal{P}_t] X(t) = \tilde{\mathcal{P}}_t X(t)$$

Notice also that $\tilde{\mathcal{P}}_t X(t) = \mathcal{P}_t X(t)$ and $\tilde{\mathcal{P}}_t \mathcal{P}_t \mathcal{P}_t = 0$, whence $\tilde{X}(t) = \mathcal{P}_t X(t) = \mathcal{P}_t \tilde{X}(t) = (\mathcal{P}_t \mathcal{P}_t - \mathcal{P}_t) \mathcal{P}_t X(t)$, namely

$$\frac{dX(t)}{dt} = [\tilde{\mathcal{P}}_t, \mathcal{P}_t] X(t) \Rightarrow X(t) = T e^{\int_{0}^{t} d\tau [\mathcal{P}_t, \mathcal{P}_t]} X(0).$$

Eq. (4) is now obtained by using (6) and $X(0) = \mathcal{P}_0$.

b) Proceeding formally, if $\tilde{X}(t) = \prod_{\tau \in [0,t]} \mathcal{P}_t$ then

$$\tilde{X}(t + dt) - \tilde{X}(t) = \mathcal{P}_{t+dt} \tilde{X}(t) - \tilde{X}(t) =$$

$$(\mathcal{P}_{t+dt} - \mathcal{P}_t) \tilde{X}(t) = \tilde{\mathcal{P}}_t \tilde{X}(t) dt + O(dt^2).$$

Whence $\tilde{X}(t) = \mathcal{P}_t \tilde{X}(t)$. Since $X(t)$ and $\tilde{X}(t)$ fulfill the same ODE and the same initial condition $X(0) = \tilde{X}(0) = \mathcal{P}_0$ they have to be the same function. This proves the first equality in (5) while the second can be verified by direct inspection using the definition of the \mathcal{P}_t’s. \hfill \square

The integral in (4) is clearly invariant under time reparametrizations $\tau \rightarrow \tau' = \tau'(\tau)$ and it is therefore of geometric nature i.e., it depends only on the path $t \rightarrow \mathcal{P}_t$ in the space of (super) projections. We also see that the superoperator holonomy is the line integral of the “tautological” connection $A = [\mathcal{P}(\tau), \mathcal{P}(\tau)]$ [26].

If one replaces in Eq. (5) the projection \mathcal{P}_0 with a more general CP map e.g., generalized measurement, basically all the Quantum-Zeno like QIP protocols recently discussed in the literature are recovered [24, 27–29]. In all these works the geometric and holonomic nature of the resulting dynamics have been discussed on the basis of the particular case at hand, and a general comprehensive theoretical understanding seems to be lacking. The formalism discussed in this paper may be able to provide such an underlying conceptual framework.

\section{IV. SSS and Interaction Algebras}

In this section we would like to discuss an important class of dissipative systems whose SSS can be safely from the influence of the environment described by of \mathcal{L}_0 and Ker $\mathcal{L}_0 = \mathcal{A}'$ [31]. Such a \mathcal{L}_0 will be referred to as unitial. From the second Eq. in (13) we see that the SSS is given by the convex hull of states of the form $e_{\omega} \otimes \mathbb{1}_{d_j}/d_j$ where e_{ω} is a state over the factor \mathbb{C}^{n_1}. Since Ker $\mathcal{L}_0 = \mathcal{A}'$ it follows that \mathcal{P}_0 is the projection onto the commutant algebra \mathcal{A}', namely [20]

$$\mathcal{P}_0(X) = \int dU UXU^\dagger = \sum_j \text{Tr}_{d_j}(\Pi_j X \Pi_j) \otimes \mathbb{1}_{d_j}/d_j \in \mathcal{A}'$$

where the Haar-measure integral is performed over the unitary group of the algebra \mathcal{A} and $\Pi_j := \mathbb{1}_{d_j}/d_j$ are the projectors on the $\mathbb{C}^{n_1} \otimes \mathbb{C}^{d_j}$ sectors of \mathcal{H}. In Ref. [20] we have shown that

$$K_{\text{eff}}|_{\text{Ker} \mathcal{L}_0} = -i[K_{\text{eff}}, \bullet], \quad K_{\text{eff}} := \mathcal{P}_0(K) \in \mathcal{A}'.$$
FIG. 1. Robustness against dissipative errors. Distance from the exact evolution and the effective one as a function of $1/T$. The unperturbed Lindbladian is of the form $\mathcal{L}_0 = \sum_{i} \gamma_i \mathcal{L}_i$, where \mathcal{L}_i is generated by a collective Lindblad operator $S^\alpha = \sum_{i=1}^{N} \sigma_i^\alpha$ with $N = 4$. The control Hamiltonians are $\mathbf{K}^\alpha = -i [\mathbf{H}, \bullet]$ with $H^\alpha = (3/2)(\sigma^z_i \sigma^z_j + \sigma^x_i \sigma^x_j) + \mathbb{I}$ and $H^\beta = (-\sqrt{3}/2)(\sigma^x_i \sigma^x_j - \sigma^z_i \sigma^z_j) + \sigma^z_i$. The effective dynamics generate the unitary gates u^α with \mathbf{K}^α. The plot is obtained fixing $\gamma = 0.001$, $\alpha = 0.005$, and $\beta = 0.005$. The norm used is the linear fit.

As a consequence, its action is trivial on the “noise-full” C^{d_j} factors in (12). In other terms dissipation can also be regarded as a resource to the end of dynamical decoupling [32–35].

V. ROBUSTNESS

One of the main motivations behind the type of dissipation-assisted manipulations we are considering, is that it features built-in resilience against certain types of perturbations. This means that dissipation, besides providing assistance for QIP, may provide protection. This stems from the simple observation that the projection theorem (2) clearly indicates that any extra term V in the Liouvillian, either Hamiltonian or dissipative, such that $\|V\| = O(1/T)$ is also true.

$$P_0 V P_0 = 0,$$

will not contribute to the effective dynamics (2). For instance in the context of Example 0 any pair of Hamiltonians K_1 and K_2 such that $\text{Tr}_\rho [\rho_\theta (K_1 - K_2)] = \lambda \mathbb{I}_S$, $(\lambda \in \mathbb{R})$ generate the same projected dynamics.

A. Hamiltonian perturbations: unital case

In the Interaction Algebra case associated with the unital Liouvillian in Eq. (10), one can prove the following result which is reminiscent of the correctability condition in operator error correction [36] (see e.g., Eq. (4) therein).

Proposition 2. Eq. (16) is satisfied by an Hamiltonian perturbation V iff

$$P_0 (V) \in \mathcal{A} \cap \mathcal{A}' =: \mathcal{Z}(\mathcal{A}).$$

The solution space of the Hamiltonian robustness Eq. (17) is a linear subspace of the full operator algebra $L(\mathcal{H})$ with codimension $\sum_j (n^2_j - 1)$. This subspace, in particular, contains the kernel of P_0 and the interaction algebra \mathcal{A}.

Proof. From Eq. (15) we see that the condition (16), for $V = -i [V, \bullet]$, means $[P_0 (V), \rho] = 0$, $\forall \rho \in \mathcal{A}$, namely the projected dynamics does not change by perturbing K with any term V such that $\|V\| = O(1/T)$ and $P_0 (V) \in \mathcal{A}' = \mathcal{Z}(\mathcal{A})$. Since, by construction $P_0 (V) \in \mathcal{A}'$ as well one finds that (16) is satisfied by an Hamiltonian perturbation V iff Eq. (17) is satisfied. Moreover, if $V \in \mathcal{Z}(\mathcal{A}) \Rightarrow P_0 (V) = V$ implies that the solution space of Eq. (17) is the linear space $\ker P_0 + \mathcal{Z}(\mathcal{A})$. More concretely, the Hamiltonian perturbations V fulfilling the robustness condition Eq. (17) have the form

$$V = V^{\text{off}} + \sum_{n \neq j} \delta_{n} \mathbb{I} \otimes \mathbb{I} + \sum_{n \neq j} \lambda_{n} \mathbb{I} \otimes \mathbb{I},$$

where $\delta_{n} \mathbb{I} = 0$, $(\forall n \beta,)$, and V^{off} is off-diagonal in the decomposition (13). The first two terms in the (18) represent the kernel P_0 whose dimension is then $\sum_{n \neq j} (n^2_j - 1) = \sum_{n \neq j} n^2_j - \sum_{n \neq 1} n_j = \dim \mathcal{L}(\mathcal{H}) - \dim \mathcal{Z}(\mathcal{A})$. The third term in (18) represent the center $\mathcal{Z}(\mathcal{A})$ of the interaction algebra whose dimension is $\sum_j 1$. Overall we see that the solution space of (17) has dimension $\dim \mathcal{L}(\mathcal{H}) - \sum_j n^2_j + \sum_j 1 = \dim \mathcal{L}(\mathcal{H}) - \sum_j (n^2_j - 1)$ i.e., it has codimension $\sum_j (n^2_j - 1)$.

For example, in the collective decoherence case the interaction algebra \mathcal{A} is the algebra of permutation-invariant operators acting on the N-qubit space $[2, 3]$. Since

$$P_0 (\sigma^y_j) = \int_{S^1 / (U(2))} dU U^\otimes N \sigma^y_j U^\otimes N = \int_{S^1 / (U(2))} dU U \sigma^y_j U^\dagger,$$

it follows that all symmetry-breaking V’s of the form $V = \sum_{n > j, \alpha = x, y, \beta} \delta_{n} \alpha \beta \mathbb{I}$ with $|\delta_{n}| = O(1/T)$ can be tolerated.

B. Perturbation of the Lindblad operators

Besides unitary perturbations $K \rightarrow K + V$ in practical applications one has also to consider dissipative ones $\mathcal{L}_0 \rightarrow \mathcal{L}_0 + \mathcal{L}_1$ where \mathcal{L}_1 denotes a dissipative Liouvillian with $\|L_1\| = O(1/T)$. It is important to stress that the resilience of the projected dynamics extends to non-unitary perturbations e.g., extra noise sources.

To begin with, we observe that in the unit-preserving case all Lindbladian perturbations \mathcal{L}_1 of the form of Eq. (10) whose Lindblad operators are in the interaction algebra \mathcal{A} [see Eq. (11)], satisfy $P_0 ^* L_1 P_0 = 0$. Let us then consider perturbations that take the Lindblad operators outside of \mathcal{A}. More precisely, we consider Eq. (10) with Lindblad operators given by collective spin operators $S^\mu = \sum_{j=1}^{N} \sigma^\mu_j$ ($\mu = x, y, z$) and then...
we perturb them by permutational symmetry breaking terms $S^\mu \to S^\mu + T^{-1}X^\mu$ where $\|X^\mu\| = O(1)$. This leads to a perturbed Liouvillian $\hat{L}_0 = L_0 + T^{-1}L_1 + T^{-2}L_2$. Where

$$L_1(\rho) = \sum_\alpha \left(X^\alpha \rho S^\alpha + S^\alpha \rho X^\alpha - \frac{1}{2} \{ X^\alpha, S^\alpha \}, \rho \right)$$

and L_2 is a quadratic expression in the X^α's.

Proposition 3. If L_1 is given by (19) then $P_0 L_1 P_0 = 0$.

Proof. To see that is enough to notice that $\rho \in \mathcal{A} \Rightarrow \rho = \oplus f_j I_j \otimes I_d \delta$, and $S^\mu = \oplus f_j S^\mu_j$. Since P_0 annihilates any off-diagonal contribution in (19) one can assume a J block-diagonal structure for the perturbation: $X^\mu = \oplus f_j X^\mu_j \otimes Y^\mu_j$. Therefore by considering, for example, the term $P_0(X^\mu \rho S^\mu) = P_0(X^\mu S^\mu \rho) = P_0(X^\mu S^\mu \rho)$ one obtains

$$P_0(X^\mu S^\mu) = P_0(\oplus f_j X^\mu_j \otimes Y^\mu_j) = \oplus f_j \text{Tr}_{d_j}(Y^\mu_j S^\mu_j X^\mu_j \otimes I) = \oplus f_j \text{Tr}_{d_j}(S^\mu_j Y^\mu_j X^\mu_j \otimes I) = P_0(S^\mu X^\mu).$$

This shows that any term in $P_0 L_1 P_0$ arising e.g., from the first term in (19) is canceled by an identical one arising from the anti-commutator side as $P_0(S^\mu \rho X^\mu + X^\mu \rho S^\mu) = 2P_0(S^\mu X^\mu \rho)$. Notice that in particular for $X^\mu \in \mathcal{A}$ one has the stronger property $\hat{L}_1 P_0 = 0$. \square

In Fig. 1 we report a numerical simulation for the four qubits system discussed in the former section. The simulation confirms that for small $1/T$ the Liouvillians \hat{L}_0 and \hat{L}_0 generate the same projected dynamics [20]. In words: one can exploit (symmetric) noise to wash out other noise.

VI. EMERGING UNITARITY

A unitary dynamics gives rise to a non-unitary one as soon as some unobserved degrees of freedom are traced out. This is an ubiquitous situation in physics. The converse process, to obtain a unitary evolution from an underlying dissipative one, appears a much more difficult task. Here we show how this phenomenon of *emerging unitarity* manifests itself in the context we have discussed in this paper.

We begin by slightly generalizing our set-up i.e., going beyond the unital case where the kernel of L_0 is the commutant of the interaction algebra. According to Ref [38] any generator of the Lindblad type (10) is such that its SSS is given by states ρ of the form $\rho = \sum_{\alpha} \lambda_\alpha \omega \otimes \rho_{0,\alpha}$ where the state space block structure is still of the form (12). Here the ω's are arbitrary states in $\mathcal{C}^{n\omega}$, the $\rho_{0,\alpha}$'s are uniquely defined states in $\mathcal{C}^{n\alpha}$ and the λ_α's are non-negative scalars. In the unital case we mostly considered so far $\rho_{0,\alpha} = I_d_j / d_j$. The robustness calculation of the former section can be now generalized to this non-unital Liouvillians case. As before we perturb the (not necessarily hermitean) Lindblad operators $L_\alpha \mapsto L_\alpha + \delta L_\alpha$ and consider as perturbation the first order variation of L_0.

$$L_1(\rho) = \sum_\alpha \left(\delta L_\alpha \rho L_\alpha^\dagger - \frac{1}{2} \{ \delta L_\alpha, L_\alpha^\dagger \} \rho \right) + \text{h.c.}$$

If $\|\delta L_\alpha\| = O(1/T)$ then Eq. (2) holds with \hat{K} replaced by L_1.

Proposition 4. Let us add, to a Liouvillian generator of the type (10), a perturbation of the form (21). Then, for ρ in the SSS, one has that $P_0 L_1 P_0(\rho) = -i [A, \rho]$, where

$$A = \text{Im} \sum_\alpha \sum_{d_j} \text{Tr}_{d_j} \left(L_\alpha^\dagger L_\alpha \right) \otimes I = A$$

in which $X := \frac{1}{2}(X - X^\dagger)$. In particular, for the unital case $L_0(\|) = 0$, one can write

$$A = \text{Im} \sum_\alpha \delta L_\alpha I_\alpha.$$

Proof. Let us consider the Lindbladian $L_0(\rho) = L_\rho L_\rho^\dagger - \frac{1}{2} [L_\rho, L_\rho]$. Perturbing the Lindblad operators $L_\alpha \mapsto L + \delta L$ one finds the variation $L_0 \mapsto L_0 + \delta L_0$, where

$$\delta L_0(\rho) = \delta L \rho L^\dagger - \frac{1}{2} \{ L, \delta L \} \rho.$$

Without loss of generality we can consider δL as block-diagonal in the decomposition (13) and work on a fixed J sector $\mathcal{C}^{n\omega} \otimes \mathcal{C}^{d_j}$. In that sector we write: $\delta L = X \otimes Y, L = \| \otimes L$ and $\rho = \omega \otimes \rho_0$ in the SSS. Here ρ_0 denotes the unique steady-state in the \mathcal{C}^{d_j} factor of the J block i.e., $\| / d_j / d_j$ in the unital case. The first three terms in (24) give rise to the following three contributions respectively

$$X\omega \otimes Y \rho_0 L^\dagger, \quad -\frac{1}{2} X\omega \otimes Y L \rho_0, \quad -\frac{1}{2} X^\dagger \omega \otimes Y^\dagger L \rho_0.$$

Applying P_0: $A \otimes B \mapsto \text{Tr}(B) A \otimes \rho_0$ and adding the h.c., terms one finds

$$P_0 \delta L P_0(\rho) = \frac{\alpha}{2} X \omega - \frac{\alpha}{2} X^\dagger \omega) \otimes \rho_0 + \text{h.c.} =$$

$$-i \left[\frac{\alpha}{2} X^\dagger \omega \otimes \rho_0, \quad \omega \right] \otimes \rho_0, \quad \alpha := \text{Tr}(L^\dagger Y \rho_0).$$

(25)
On the other hand $\delta L^1 L = (X^i \otimes Y^j)(I \otimes \tilde{L}) = X^i \otimes Y^j \tilde{L}$ from which we see that (25) can be written as $-i[A, \rho_0]$. The index d^j denotes the second factor i.e., C^{d_j} in the bipartition of the given J block. Let us now consider a Liouvillian L_ω with more than one Lindblad operator $(L_\omega)^{d_j}$. Putting together all the different J-blocks, we obtain $P_0 L_\omega P_0(\rho) = -i[A, \rho]$ where A is given by Eq. (22) with $\rho = \sum_{l=0}^{d_j} \rho_0, \text{ and } (P_0(\rho) = \rho)$. In the unital case one has $\rho_0 j^{-1} = J d_j$ and Eq. (23) follows from (22) and (14).

Remark i) If all the L_ω’s and perturbations δL_ω’s are Hermitian $A = 0$; ii) If $\delta L_\omega \in \mathcal{A} = (X_n j) \sim (J_n)$ then $A_j \sim (J_n j) \Rightarrow P_0 \delta \mathcal{L} P_0 = 0$.

While mathematically simple the Proposition 4 is, on physical grounds, a remarkable and surprising result. Combined with the dissipation-projection theorem Eq. (2), it indeed implies that a small, generic, Lindblad perturbation induces an effective unitary dynamics over the SSS generated by the Hamiltonian (22). This even in absence of any Hamiltonian term in both the unperturbed and unperturbed Liouvillian. In principle, by tailoring the dissipative terms δL_ω’s, one can obtain a desired effective unitary generator A.

A. Examples

To illustrate this mechanism we first consider a simple two-qubit example. We set $L = I \otimes \sigma^x$ and $\delta L = \sigma^x \otimes \sigma^x$. In this case $P_0(X) = \text{Tr}_R (X(I \otimes |0\rangle\langle 0| + |0\rangle\langle 0| + |1\rangle\langle 1|)) \otimes |1\rangle\langle 1|$, where Tr_R denotes the partial trace over the second qubit. Using Eqs. (25), (22) with $J = 0, 1$; $d_0 = d_1 = 1$; $\rho_0 = 0, \text{ and } Y = \sigma^x$ one finds

$$A = \text{Im} P_0(\delta L^1 L = \sigma^x \otimes |0\rangle\langle 0| + |0\rangle\langle 0| + |1\rangle\langle 1| = \sigma^x \otimes I).$$

A numerical simulation of this dissipation generated gate is shown in Figs. 2, 3 left panel. To highlight the unitary character of the dynamics we use the fact that matrix elements of the density matrix $\rho(t)$ evolve as phases in the Hamiltonian eigenbasis and therefore result in circles on the complex plane [Fig. 2]. Similarly as E_T approaches a unitary evolution within the SSS, the eigenvalues of $E_T P_0$ converge to the unit circle increasing T as depicted in Fig. 3.

Let us now consider a four-qubit system subject to general collective decoherence [2, 3]. In this case L_ω has the form (10) with the Lindblad operators given by collective spin operators i.e., $L_\omega = \sum_{j=1}^4 \sigma^{x,y}(x,y,z)$. In this unital case the interaction algebra \mathcal{A} coincides with algebra of totally symmetric operators and the commutant \mathcal{A}' is 14-dimensional [20] and generated by qubit permutation operators in the group S_4. We consider perturbations of the form $\delta L_\omega = U L_\omega U$ where $U \in S_4$. Then $\sum_{j=0}^3 \delta L_\omega L_\omega = 4U^1 S^2$, where S is the total spin operator. We also have $P_0(\delta L_\omega U) = U^1 S^2$ and $U^1 S^2 - U S^2 = 2(U^1 - U)$. We further fix U to perform the right-shift permutation $(1, 2, 3, 4) \rightarrow (4, 1, 2, 3)$. One obtains

$$A = 4 \text{Im} P_0(U^1 S^2) = 8 \text{Im}(U^1)$$

$$= [((\sigma_1 + \sigma_2) \times \sigma_3) \cdot \sigma_4 + (\sigma_2 \times (\sigma_3 + \sigma_4)) \cdot \sigma_1],$$

where in the last equation we used the fact that $U = S_{2,3} S_{3,4} S_{1,4}$ with $S_{ij} = (I + \sigma_i \cdot \sigma_j) / 2$ the operator swapping site i with j. A numerical simulation confirming this unitary behavior emerging from a dissipative dynamics, is shown in Figs. 2,3 right panel.

VII. CONCLUSIONS

The traditional avenue to quantum information processing (QIP) primitives, such as quantum gates, requires the dissipation due to the environment to be as small as possible compared to the control Hamiltonian. A number of powerful techniques have been developed to combat the detrimental effects of dissipation [1]. However, over the last few years there has been a growing amount of evidence that dissipation may on the contrary provide a resource for QIP see e.g., [13, 14, 16–19].

In this spirit in ref. [20] we have shown how it is possible to generate coherent quantum manipulations also in the opposite regime in which the dissipation is much stronger than the control Hamiltonian. The only requirement is essentially that the dissipation must provide a degenerate set of steady states (SSS). The coherent control drives the system away from the SSS but the strong dissipation effectively projects the dynamics back onto the SSS. As a consequence a quantum evolution governed by an effective Hamiltonian coherently unfolds within the SSS [20].

In this paper we further investigated the consequences of this approach. The following are the main findings of this paper. i) We provided further details on the rigorous estimate of the error between the exact evolution and the effective projected dynamics. ii) Moving to a suitable rotated frame, we have shown that the effective dynamics in the SSS is of geometric origin i.e., it is the holonomy associated with a superoperator-valued connection. iii) The effective dynamics
is protected against a large class of Hamiltonian and dissipative perturbations. iv) As a corollary of this result, we have shown that certain dissipative perturbations of purely, dissipative, Lindbladian (i.e., one for which the eigenvalues are real negative) generate an effective unitary dynamics.

Dissipative dynamics is easily obtained from a unitary one as soon as some degrees of freedom are traced out. On the contrary the emergent unitarity phenomenon we have discussed is a quite surprising example of a unitary dynamics obtained from a purely dissipative one. Understanding its fundamental origin and potential application in QIP is a topic worthwhile of future investigations.

ACKNOWLEDGMENTS

This work was partially supported by the ARO MURI grant W911NF-11-1-0268. We thank I. Marvian for useful discussions.

[1] Quantum Error Correction, D. A. Lidar, T. Brun Eds. Cambridge University Press (2013)
[2] P. Zanardi and M. Rasetti, Noiseless quantum codes Phys. Rev. Lett. 79, 3306 (1997); P. Zanardi, Decoherence and dissipation in a quantum register, Phys. Rev. A 57, 3276 (1998);
[3] D. A. Lidar, I. L. Chuang, and K. B. Whaley, Decoherence free subspaces for quantum computation, Phys. Rev. Lett. 81, 2594 (1998).
[4] D. Kielpinski et al, A Decoherence-Free Quantum Memory Using Trapped Ions, Science 291, 1013 (2001);
[5] E. Knill, R. Laflamme, and L. Viola, Theory of quantum error correction for general noise, Phys. Rev. Lett. 84, 2525 (2000).
[6] P. Zanardi, Stabilizing quantum information, Phys. Rev. A 63, 012301 (2000).
[7] P. Zanardi, S. Lloyd, Topological protection and noiseless quantum subspaces, Phys. Rev. Lett 90, 067902 (2003)
[8] L. Viola et al, Experimental realization of noiseless subsystems for quantum information processing, Science 293, 2059 (2001)
[9] Jones, J. A., Vedral, V., Ekert, A. Castagnoli, G. Geometric quantum computation using nuclear magnetic resonance, Nature 403, 869 (2000).
[10] P. Zanardi and M. Rasetti, Holonomic quantum computation, Phys. Lett. A 264, 94 (1999).
[11] Duan, L. M., Cirac, I. L Zoller, P. Geometric manipulation of trapped ions for quantum computation, Science 292, 1695 (2001)
[12] A. Beige, D. Braun, B. Tregenna, P.L. Knight, Quantum Computing Using Dissipation to Remain in a Decoherence-Free Subspace, Phys. Rev. Lett. 85, 1762 (2000)
[13] B. Kraus, H. P. Büchler, S. Diehl, A. Kantian, A. Micheli, and P Zoller, Preparation of entangled states by quantum Markov processes, Phys. Rev. A 78, 042307 (2008)
[14] M. J. Kastoryano, F. Reiter, and A. S. Sorensen, Dissipative preparation of entanglement in optical cavities, Phys. Rev. Lett. 106, 090502 (2011).
[15] F. Ticozzi, L. Viola, Steady-State Entanglement by Engineered Quasi-Local Markovian Dissipation, Quantum Information and Computation, 14, 0265 (2014)
[16] J. T. Barreiro et al., An open-system quantum simulator with trapped ions, Nature (London) 470, 486 (2011).
[17] F. Verstraete, M.M. Wolf, and J.I. Cirac, Quantum computation and quantum-state engineering driven by dissipation, Nat. Phys. 5, 633 (2009).
[18] C-E. Bardyn et al., Topology by dissipation, New J. Phys. 15, 085001 (2015)
[19] K. Stannigel, P. Hauke, D. Marcos, M. Hafezi, S. Diehl, M. Dalmon, P. Zoller, Constrained dynamics via the Zeno effect in quantum simulation: Implementing non-Abelian lattice gauge theories with cold atoms, Phys. Rev. Lett. 112, 120406 (2014)
[20] P. Zanardi, L. Campos Venuti, Coherent quantum dynamics in steady-state manifolds of strongly dissipative systems, Phys. Rev. Lett. 113, 240406 (2014)
[21] P. Facchi and S. Pascazio, Quantum Zeno Subspaces, Phys. Rev. Lett. 89, 080401 (2002).
[22] G. A. Paz-Silva, A. T. Rezakhani, J. M. Dominy, and D. A. Lidar, Zeno effect for quantum computation and control, Phys. Rev. Lett. 108, 080501 (2012)
[23] J. Pachos, P. Zanardi, and M. Rasetti, Non-Abelian Berry connections for quantum computation. Phys. Rev. A, 61:010305(R), (1999).
[24] O. Oreshkov, J. Caflamiglia, Adiabatic markovian dynamics, Phys. Rev. Lett. 105, 050503 (2010)
[25] A. Carollo, M. F. Santos, V. Vedral, Coherent quantum evolution via reservoir driven holonomies, Phys. Rev. Lett. 96, 020403 (2006)
[26] M. Nakahara, Geometry. Topology and Physics, IOP Publishing Ltd., 1990.
[27] D. Burgarth, P. Facchi, V. Giovannetti, H. Nakazato, S. Pascazio, K. Yuasa, Exponential Rise of Dynamical Complexity in Quantum Computing through Projections, Nat. Comm. 5, 5173 (2014)
[28] Y. Li, D. Herrera-Martí, L. C. Kwek, Quantum Zeno Effect of General Quantum Operations, arXiv:1305.2464
[29] D. Burgarth et al., Non-Abelian Phases from a Quantum Zeno Dynamics, Phys. Rev. A 88, 042107 (2013).
[30] G. Lindblad, On the generators of quantum dynamical semigroups, Commun. Math. Phys. 48, 119 (1976)
[31] D. W. Kribs, Quantum channels, wavelets, dilatations and representations of Qn, Proc. Edin. Math. Soc. 46 (2003)
[32] P. Zanardi, Symmetrizing evolutions, Phys. Lett. A 258 77 (1999); P. Zanardi, Computation on an error-avoiding quantum code and symmetrization, Phys. Rev. A 60 729 (1999);
[33] L. Viola, E. Knill, S. Lloyd, Dynamical decoupling of open quantum systems, Phys. Rev. Lett. 82, 2417 (1999)
[34] K. Khodjasteh and D. A. Lidar, Fault Tolerant Quantum Dynamical Decoupling, Phys. Rev. Lett. 95, 180501 (2005)
[35] G. Uhrig, Keeping a Quantum Bit Alive by Optimized π-Pulse Sequences, Phys. Rev. Lett. 98, 100504 (2007)
[36] D. Kribs, R. Laflamme, D. Poulin, Unified and Generalized Approach to Quantum Error Correction, Phys. Rev. Lett. 94, 180501 (2005)
[37] Lorenzo Campos Venuti and Paolo Zanardi, Excitation Transfer through Open Quantum Networks: Three Basic Mechanisms, Phys. Rev. B 84, 134206 (2011)
[38] B. Baumgartner and H. Narnhofer, Analysis of quantum semi-groups with GKS-Lindblad generators: II. General and Quantum-State Engineering Driven by Dissipation, Phys. Rev. A, 050305(R), (1999).
Appendix A: Error estimate

Here we are going to estimate the error term appearing in the RHS of Eq. (2). In this section we use the following notation for the total Liouvillian: $L(x) = L_0 + xL_1$, where L_0 is the dominant, dissipative, term, L_1 is the perturbation (which often will be taken as a unitary generator, i.e. $L_1 = K$), and x is a small dimensionless parameter. The relation between x and the T in the main text is $T^{-1} = x\tau_0^{-1}$ where τ_0 is some time-scale which will become more explicit below. We are going to show that the expression inside the norm in the LHS of Eq. (2) is analytic in x around zero starting with a linear term and we are going to estimate its coefficient. Let us assume that $\text{Ker}(L_0)$ is d-dimensional, i.e. d eigenvalues of L_0 are zero. If we turn on the perturbation xL_1, some of these eigenvalues will move a little bit. The collection of all these d eigenvalues forms the so called λ-group [39] and identifies an invariant subspace of $L(x)$. The projection $P(x)$ onto such subspace turns out to be an analytic function of x [39]. As shown in [39], the restriction of $L(x)$ to the λ-group, $K(x) := P(x)L(x) = L(x)P(x) = P(x)L(x)P(x)$, is also an analytic function of x. The λ-group projection $P(x)$ is a standard tool in the spectral theory of linear operators (see e.g., the classic Kato’s book [39]). It is basically the sum of all the (non necessarily orthogonal) spectral projections associated with λ-group itself and is analytic even at the exceptional points where the degeneracy changes. It can be obtained by integrating the resolvent $(z-L(x))^{-1}$ along a contour enclosing all (and only) the eigenvalues belonging to the λ-group.

One has the following expansions

$$P(x) = P_0 + xP_1 + O(x^2)$$ \hspace{1cm} (A1)

$$K(x) = xR_1 + x^2R_2 + x^3R_3 + O(x^4).$$ \hspace{1cm} (A2)

The Liouvillian character of L_0 (i.e. that fact that $P_0 = \lim_{t \to \infty} e^{tL}$) assures that zero is a semisimple eigenvalue of L_0, i.e. there is no Jordan block associated with the zero eigenvalue of L_0. Whereas this is not strictly required it does simplify the following formulae. In the semisimple case one has for instance [39]:

$$P_1 = -(P_0L_1S + SL_1P_0)$$ \hspace{1cm} (A3)

$$R_1 = P_0L_1P_0$$ \hspace{1cm} (A4)

$$R_2 = -(P_0L_1P_0L_1S + P_0L_1SL_1P_0 + SL_1P_0L_1P_0).$$ \hspace{1cm} (A5)

In the above formulae, S is the projected resolvent of L_0 at zero satisfying $L_0S = SL_0 = 1 - P_0$ and is given by

$$S = -\lim_{z \to 0} (z-L_0)^{-1} (1-\mathcal{P}_0)$$ \hspace{1cm} (A6)

$$= - \sum_{k \neq 0} \left(- \Lambda_k^{-1} \mathcal{P}^{(k)} + \sum_{n=1}^{m_k-1} \Lambda_k^{-n-1} (D^{(k)})^n \right).$$ \hspace{1cm} (A7)

In the last equation we assumed that L_0 has the following Jordan decomposition

$$L_0 = \sum_k \left(\Lambda_k \mathcal{P}^{(k)} + D^{(k)} \right)$$ \hspace{1cm} (A8)
with \(\lambda_k \) eigenvalues with (algebraic) multiplicity \(m_k \), projectors \(P^{(k)} \) and nilpotent blocks \(L^{(k)} \) (note that \(\lambda_0 = 0 \) and \(P^{(0)} \equiv P_0 \)). Note that all the \(L_j \), \(R_j \)’s have the dimension of inverse of time, the \(P_j \)’s are dimensionless and \(S \) has units of time. In particular \(xR_1 \) is precisely \(L_{\text{eff}} \) in our applications. We denote it \(R_{\text{eff}} := txR_1 \) here for notational consistency.

Clearly \(P(x) \) commutes with \(L(x) \) and so one has the identity

\[
\exp[\lambda L(x)]P(x) = \exp[\lambda P(x)]P(x).
\]

We now choose times \(t \) such that \(tx \) is bounded by a given finite time in some unit, i.e. \(tx = O(1)\tau_0 \). In the following we will adopt the so-called 1 − 1 norm for maps \(E \) i.e., \(\|E\| := \sup_{\|X\| = 1} \|E(X)\| \). This is a submultiplicative and automorphism-invariant norm for superoperators such that \(\|\exp[\lambda E(x)]\| \leq 1 \).

Note that \(\|\exp[\lambda E(x)]\| \leq 1 \) because the evolution maps states to states (i.e. because of complete positivity). Instead from \(\|\exp[\lambda E(x)]\| \leq \exp[\|\lambda R(x)\|] \) we get \(\|\lambda R(x)\| \leq O(1) \). Hence we obtain

\[
\left(\exp[\lambda L(x)] - \exp[\lambda P(x)]\right)P_0 = -\left(\exp[\lambda L(x)] - \exp[\lambda P(x)]\right)xP_1 + O(x^2).
\]

(A10)

Now define \(\Delta := \exp[\lambda P(x)] - \exp[\lambda R(x)] \). Clearly \(\Delta = O(x) \) (we will later determine the coefficient), so we finally get

\[
\left(\exp[\lambda L(x)] - \exp[\lambda R(x)]\right)P_0 = +\Delta P_0 - \left(\exp[\lambda L(x)] - \exp[\lambda R(x)]\right)xP_1 + O(x^2).
\]

(A11)

Using Dyson expansion one can easily estimate \(\Delta \):

\[
\Delta = tx^2 \int_0^1 e^{(1-\gamma_0)\tau_0/s} R_2 e^{\gamma_0 R_0/s} ds + O(x^2).
\]

(A12)

We now take the norm of Eq. (A11), use triangle inequality and bound all the resulting terms. Defining \(C = \sup_{x,\gamma_0}[\|\exp[\lambda R(x)]\|] \), we get \(||\Delta|| \leq tx^2 C^2 ||R_2|| + O(x^2) \), \(||R_2|| \leq 3 ||P_0||^2 ||L_1||^2 ||S|| \), and \(||P_1|| \leq 2 ||P_0|| ||L_1|| ||S|| \). Putting things together we finally obtain

\[
\left(\|\exp[\lambda L(x)] - \exp[\lambda R(x)]\|P_0\right) = \leq x^2 ||S|| ||L_1|| ||P_0|| \times \left(3txC^2 ||P_0||^2 ||L_1|| + 2(C + 1)\right) + O(x^2).
\]

(A13)

In order to make more apparent the connection with physical constants, we define dimensionless (tilded) operators via \(L = \gamma_0 \tilde{L}_0 + \gamma_1 \tilde{L}_1 \) such that \(\gamma_0^{-1} = \tau_R \) is the (short) relaxation time of the unperturbed dissipation and \(\gamma_1^{-1} = T \) is the timescale of the control term. Measuring times in units of \(\tau_R \) the evolution becomes \(e^{\left(tx/L_0 + x\tilde{L}_1\right)} \) and we see that \(x = \gamma_1/\gamma_0 = \tau_R/T \) is the small parameter. The requirement that the effective generator \(R_{\text{eff}} = \gamma_1 P_0 \tilde{L}_0 \tilde{P}_0 \) is finite and non-zero implies \(\gamma_0 x = \gamma_1 = O(1) \). This means that the waiting time is given by \(t = O(T) \). The bound Eq. (A13) then translates into (all the tilded operators are dimensionless)

\[
\left(\|\exp[\lambda L] - \exp[\lambda \tilde{R}_{\text{eff}}]\|P_0\right) = \leq \frac{\tau_R}{T} ||S|| ||\tilde{L}_1|| ||\tilde{P}_0|| \times \left(3\frac{x}{T} C^2 ||\tilde{P}_0||^2 ||\tilde{L}_1|| + 2(C + 1)\right) + O(x^2).
\]

(A14)

Equation above can often be further simplified. For example, if \(L_0 \) generate a positive map \(||\tilde{P}_0|| = 1 \), whereas if \(R_{\text{eff}} \) generates a unitary one has \(C = 1 \).