ON EMBEDDINGS BETWEEN SPACES OF FUNCTIONS OF GENERALIZED BOUNDED VARIATION

G. H. ESSLAMZADEH AND M. MOAZAMI GOODARZI

ABSTRACT. In this note, we aim to establish a number of embeddings between various function spaces that are frequently considered in the theory of Fourier series. More specifically, we give sufficient conditions for the embeddings \(\Phi V[h] \subseteq ABV(h\uparrow p) \), \(ABV[h_1] \subseteq TV[h_2] \), and \(ABV^{(p,\gamma)} \subseteq \Gamma BV^{(\gamma,\tau)} \). Our results are new even for the well-known spaces that have been studied in the literature. In particular, a number of results due to M. Avdispahić, that describe relationships between the classes \(\Lambda BV \) and \(V[h] \), are derived as special cases.

1. Introduction and preliminaries

The Jordan class \(BV \) of functions of bounded variation has been generalized by many authors in various ways (see [1]). In particular, Schembari and Schramm introduced the space \(\Phi V[h] \) in [7] to encompass previous generalizations:

Let \(\Phi = \{\phi_j\}_{j=1}^{\infty} \) be a sequence of increasing convex functions on \([0, \infty)\) such that \(\phi_j(0) = 0 \) for all \(j \), and \(0 < \phi_{j+1}(x) \leq \phi_j(x) \) for all \(x > 0 \). If \(h \) is a nondecreasing sequence of positive reals, we say that \(\Phi \) is a Schramm sequence (with respect to \(h \)) provided that for each \(x > 0 \), \(\sum_{j=1}^{\infty} \phi_j(x)/h(n) = \infty \) as \(n \to \infty \). A real-valued function \(f \) on \([a, b] \) is said to be of bounded \(\Phi \)-variation if

\[
V_{\Phi,h}(f) = \sup_{1 \leq n < \infty} \frac{v(n, \Phi, f)}{h(n)} < \infty,
\]

where \(v(n, \Phi, f) = v(n, \Phi, f, [a, b]) \) is the \(\Phi \)-modulus of variation of \(f \), that is, the supremum of the sums \(\sum_{j=1}^{n} \phi_j(|f(I_j)|) \), taken over all finite collections \(\{I_j\}_{j=1}^{\infty} \) of nonoverlapping subintervals of \([a, b] \) and \(f(I_j) = f(\sup I_j) - f(\inf I_j) \). We denote by \(\Phi V[h] \) the linear space of all functions \(f \) on \([a, b] \) such that \(V_{\Phi,h}(cf) < \infty \) for some constant \(c > 0 \).

It is shown in [7] that \(\Phi V[h] \) is indeed a Banach space with respect to the norm

\[
\|f\|_{\Phi,h} := |f(a)| + \inf\{c > 0 : V_{\Phi,h}(f - f(a)/c) \leq 1\}.
\]

This space has many applications in Fourier analysis as well as in treating topics such as integration, convergence, summability, etc. (see e.g. [12, 8, 7]).

If \(\phi \) is a strictly increasing convex function on \([0, \infty)\) with \(\phi(0) = 0 \), and if \(\Lambda = \{\lambda_j\}_{j=1}^{\infty} \) is a Waterman sequence (i.e., \(\Lambda \) is a nondecreasing sequence of positive numbers such that \(\sum_{j=1}^{\infty} \frac{1}{\lambda_j} = \infty \)), by taking \(\phi_j(x) = \phi(x)/\lambda_j \) for all \(j \), we get the class \(\phi\Lambda BV \) of functions of \(\phi\Lambda \)-bounded variation. This class was introduced by Schramm and Waterman in [9] (see also [?]). More specifically, if \(\phi(x) = x^p \) (\(p \geq 1 \)), we get the Waterman-Shiba class \(ABV(p) \), which was introduced by Shiba in [10]. When \(p = 1 \), we obtain the well-known Waterman class \(ABV \). Also, if \(h \) is a modulus of variation (i.e., a nondecreasing and concave sequence of positive reals) and \(\phi_j(x) = x \) for all \(j \), the Chanturiya class \(V[h] \) is obtained as a special subclass of \(\Phi V[h] \).

Date: September 16, 2018.
2010 Mathematics Subject Classification. Primary 46E35; Secondary 26A45.
Key words and phrases. generalized bounded variation, modulus of variation, Embedding, Banach space.
In the literature, much attention has been devoted to the study of relationships between the above-mentioned classes; see [12], [6], [2], [5], [3] and the references therein for some results in this direction. In particular, a characterization of embeddings between ΛBV classes was obtained by Perlman and Waterman [6]. Ge and Wang characterized the embeddings $\Lambda BV \subseteq \phi BV$ and $\phi BV \subseteq \Lambda BV$. Kita and Yoneda showed in [5] that the embedding $BV_p \subseteq BV^{(p, 1)}$ is both automatic and strict for all $1 \leq p < \infty$. Furthermore, Goginava characterized the embedding $\Lambda BV \subseteq BV^{(q_n, \infty)}$, and a characterization of the embedding $ABV^{(p) \subseteq BV^{(q_n, \infty)}}$ was given by Hormozi, Prus-Wiśniowski and Rosengren in [7]. More recently, the embeddings $ABV^{(p) \subseteq GV^{(q_n, \infty)}}$ and $ABV \subseteq BV^{(q_n, \infty)}$ $(1 \leq q < \infty)$ were investigated by Goodarzi, Hormozi and Memić (see [3]).

2. Results

Our first main result presents a sufficient condition for the embedding $\Phi V[h] \subseteq \Lambda ABV^{(p, \infty)}$ (see Theorem 2.2 below). Before that, we need a lemma.

If $\Phi = \{\phi_j\}_{j=1}^\infty$ is a Schramm sequence, we define $\Phi_k(x) := \sum_{j=1}^k \phi_j(x)$ for $x \geq 0$. Then $\Phi_k(x)$ is clearly an increasing convex function on $[0, \infty)$ such that $\Phi_k(0) = 0$ and $\Phi_k(x) > 0$ for $x > 0$. Without loss of generality we assume that $\Phi_k(x)$ is strictly increasing on $[0, \infty)$. We denote by $\Phi_k^{-1}(x)$ the inverse function of $\Phi_k(x)$. If $\lambda = \{\lambda_j\}$ and $\Gamma = \{\gamma_j\}$ are Waterman sequences, for each n we define $\Lambda(n) := \sum_{j=1}^n \frac{1}{\lambda_j}$ and $\Gamma(n) := \sum_{j=1}^n \frac{1}{\gamma_j}$.

Lemma 2.1. Let $1 < q < \infty$ and $k \in \mathbb{N}$. If $f \in \Phi V[h]$ and $x_1, x_2, ..., x_k$ are nonnegative real numbers such that

$$\sum_{j=1}^k \phi_j(x_{\tau(j)}) \leq v(k, \Phi, f)$$

for any permutation τ of k letters, then

$$\left(\sum_{j=1}^k x_j^q \right)^{\frac{1}{q}} \leq 16 (1 + V_{\Phi, h}(f)) \max_{1 \leq m \leq k} m^{\frac{1}{q}} \Phi_m^{-1}(h(k)).$$

Proof. Note first that following the arguments in the proof of [13, Theorem 2.1] one can verify that

$$\left(\sum_{j=1}^k x_j^q \right)^{\frac{1}{q}} \leq 16 \max_{1 \leq m \leq k} m^{\frac{1}{q}} \Phi_m^{-1}(v(k, \Phi, f)).$$

On the other hand, since the Φ_m^{-1} are strictly increasing concave functions with $\Phi_m^{-1}(0) = 0$, we get

$$\Phi_m^{-1}(at) \leq (1 + a)\Phi_m^{-1}(t), \quad \text{for any} \quad a, t > 0.$$

Now, applying the latter inequality with $a := V_{\Phi, h}(f)$ and $t := h(k)$ yields (2.1), as desired. \qed

Theorem 2.2. The embedding $\Phi V[h] \subseteq \Lambda ABV^{(p)}$ holds whenever

$$\sum_{k=1}^{\infty} \Delta \left(\frac{1}{\lambda_k} \right) \max_{1 \leq m \leq k} m \left(\Phi_m^{-1}(h(k)) \right)^p < \infty,$$

where $\Delta(a_k) = a_k - a_{k+1}$.
Proof. Let \(f \in \Phi V[h] \), so there exists some \(c > 0 \) such that \(V_{\Phi,h}(cf) < \infty \). Without loss of generality we may assume that \(c = 1 \). Let \(\{I_j\}_{j=1}^s \) be a nonoverlapping collection of subintervals of \([0,1]\). When \(q \geq 1 \) we may use Lemma (2.1) with \(x_j = |f(I_j)| \) to get

\[
(2.2) \quad \left(\sum_{j=1}^s |f(I_j)|^q \right)^{\frac{1}{q}} \leq 16 \left(1 + V_{\Phi,h}(f)\right) \max_{1 \leq m \leq s} \frac{1}{m} \Phi^{-1}_m(h(s)).
\]

In order to prove that \(V_A(f) < \infty \), we need to estimate the sum \(\sum_{k=1}^s \frac{|f(I_k)|^p}{\lambda_k} \). Taking \(x_k := \frac{1}{\lambda_k} \) and \(y_k := |f(I_k)|^p \) in Abel’s partial summation formula

\[
\sum_{k=1}^s x_k y_k = \sum_{k=1}^{s-1} \Delta(x_k) \sum_{j=1}^k y_j + s \sum_{j=1}^s y_j,
\]

one can write

\[
\sum_{k=1}^s \frac{|f(I_k)|^p}{\lambda_k} = \sum_{k=1}^{s-1} \Delta \left(\frac{1}{\lambda_k} \right) \sum_{j=1}^k |f(I_j)|^p + \frac{1}{\lambda_s} \sum_{j=1}^s |f(I_j)|^p.
\]

Then, applying (2.2) with \(q = p \) to estimate the right-hand side of the preceding equality, it follows that

\[
\sum_{k=1}^s \frac{|f(I_k)|^p}{\lambda_k} \leq \sum_{k=1}^{s-1} \Delta \left(\frac{1}{\lambda_k} \right) C^p \max_{1 \leq m \leq k} m \left(\Phi^{-1}_m(h(k)) \right)^p + \frac{1}{\lambda_s} C^p \max_{1 \leq m \leq s} m \left(\Phi^{-1}_m(h(s)) \right)^p
\]

\[
\leq \sum_{k=1}^{s-1} \Delta \left(\frac{1}{\lambda_k} \right) C^p \max_{1 \leq m \leq k} m \left(\Phi^{-1}_m(h(k)) \right)^p + \sum_{k=s}^\infty \Delta \left(\frac{1}{\lambda_k} \right) C^p \max_{1 \leq m \leq k} m \left(\Phi^{-1}_m(h(k)) \right)^p
\]

\[
\leq C^p \sum_{k=1}^\infty \Delta \left(\frac{1}{\lambda_k} \right) \max_{1 \leq m \leq k} m \left(\Phi^{-1}_m(h(k)) \right)^p < \infty,
\]

where \(C = 16 \left(1 + V_{\Phi,h}(f)\right) \) and the penultimate inequality is due to the fact that

\[
\frac{1}{\lambda_s} \max_{1 \leq m \leq s} m \left(\Phi^{-1}_m(h(s)) \right)^p \leq \sum_{k=s}^\infty \Delta \left(\frac{1}{\lambda_k} \right) \max_{1 \leq m \leq k} m \left(\Phi^{-1}_m(h(k)) \right)^p.
\]

This means that \(f \in \Lambda BV^{(p)} \), as desired. \(\square \)

Corollary 2.3. The embedding \(\Phi BV \subseteq ABV \) holds whenever

\[
\sum_{n=1}^\infty \Delta \left(\frac{1}{\lambda_n} \right) n \Phi^{-1}_n(1) < \infty.
\]

In particular, the embedding \(\phi ABV \subseteq \Gamma BV \) holds whenever

\[
\sum_{n=1}^\infty \Delta \left(\frac{1}{\gamma_n} \right) n \phi^{-1}(\Lambda(n)^{-1}) < \infty.
\]

Corollary 2.4. ([2, Theorem 2]) The embedding \(V[h] \subseteq \Lambda BV \) holds whenever

\[
\sum_{n=1}^\infty \Delta \left(\frac{1}{\lambda_n} \right) h(n) < \infty.
\]
Recently the second author et al. [3] obtained the following inequality and used it to characterize the embedding $\Lambda BV^{(p)} \subseteq \Gamma BV^{(q, q)}$:

$$\left(\sum_{j=1}^{n} x_{j}^{q} z_{j} \right)^{\frac{1}{q}} \leq \max_{1 \leq k \leq n} \left(\sum_{j=1}^{k} z_{j} \right)^{\frac{1}{q}} \left(\sum_{j=1}^{k} y_{j} \right)^{-1},$$

where $1 \leq q < \infty$, and $\{x_{j}\}$, $\{y_{j}\}$ and $\{z_{j}\}$ are positive nonincreasing sequences. In the sequel, we will further exploit (2.3) to prove the forthcoming results.

Theorem 2.5. Let $1 \leq p \leq q < \infty$. Let either $\left\{ \Gamma(n)^{\frac{2}{q}}/\Lambda(n)^{\frac{1}{p}} \right\}$ or $\left\{ h_{2}(n)^{\frac{2}{q}}/h_{1}(n)^{\frac{1}{p}} \right\}$ be nondecreasing. Then the embedding $\Lambda BV[h_{1}]^{(p)} \subseteq \Gamma BV[h_{2}]^{(q)}$ holds whenever

$$\sup_{1 \leq n < \infty} \left(\frac{\Gamma(n)}{h_{2}(n)} \right)^{\frac{2}{q}} \left(\frac{h_{1}(n)}{\Lambda(n)} \right)^{\frac{1}{p}} < \infty.$$

Proof. Let $f \in \Lambda BV[h_{1}]^{(p)}$ and consider a fixed n. Let $\{I_{j}\}_{j=1}^{n}$ be a nonoverlapping collection of subintervals of $[0, 1]$. Set $x_{j} := |f(I_{j})|^{p}$, $y_{j} := 1/\lambda_{j}$ and $z_{j} := 1/\gamma_{j}$. In view of the equimonotonic sequences inequality [4, Theorem 368] we can, and do, assume that the x_{j} are arranged in descending order. Now, applying (2.3) with $q/p \geq 1$ in place of q we obtain

$$\left(\sum_{j=1}^{n} \frac{|f(I_{j})|^{q}}{\gamma_{j}} \right)^{\frac{1}{q}} \leq \sum_{j=1}^{n} \frac{|f(I_{j})|^{p}}{\lambda_{j}} \max_{1 \leq k \leq n} \frac{\Gamma(k)^{\frac{2}{q}}}{\Lambda(k)^{\frac{1}{p}}}.$$

Therefore, we get

$$\left(\sum_{j=1}^{n} \frac{|f(I_{j})|^{q}}{\gamma_{j}} \right)^{\frac{1}{q}} \leq \left(\sum_{j=1}^{n} \frac{|f(I_{j})|^{p}}{\lambda_{j}} \right)^{\frac{1}{p}} \max_{1 \leq k \leq n} \frac{\Gamma(k)^{\frac{2}{q}}}{\Lambda(k)^{\frac{1}{p}}}$$

$$\leq \left(v(n; \Lambda, p, f) \right)^{\frac{1}{p}} \max_{1 \leq k \leq n} \frac{\Gamma(k)^{\frac{2}{q}}}{\Lambda(k)^{\frac{1}{p}}}$$

$$\leq C h_{1}(n)^{\frac{1}{p}} \frac{h_{2}(n)^{\frac{1}{q}}}{h_{1}(n)^{\frac{1}{p}}} = C h_{2}(n)^{\frac{1}{q}}.$$

for some positive constant C, depending solely on f. As a result, taking supremum over all collections $\{I_{j}\}_{j=1}^{n}$ as above, it follows that

$$v(n; \Gamma, q, f) \leq C^{q} h_{2}(n),$$

which means that $f \in \Gamma BV[h_{2}]^{(q)}$. \hfill \Box

An important consequence of the preceding theorem is the following result which provides a sufficient condition for the embedding $\Lambda BV \subseteq V[h]$ (see Remark (2.7)).

Corollary 2.6. The embedding $\Lambda BV \subseteq V[h]$ holds whenever

$$\sup_{1 \leq n < \infty} \frac{n}{\Lambda(n) h(n)} < \infty.$$

Proof. Note that $\{n \Lambda(n)^{\frac{1}{p}}\}$ is nondecreasing and apply Theorem (2.5) with $p = q = 1$, $h_{2} = h$, $h_{1}(n) = 1$ for all n, and $\gamma_{j} = 1$ for all j. \hfill \Box

Remark 2.7. It is worth noting that the existence of a condition that characterizes when ΛBV can be embedded into $V[h]$ seems to have been unknown for a long time. We conjecture that (2.5) is a necessary condition as well.
As an application of Corollary (2.6), we deduce the following result by taking $h(n) = \frac{n}{\lambda(n)}$.

Corollary 2.8. ([2, Theorem 1]) The following embedding holds:

$$\Lambda BV \subseteq V[n\Lambda(n)^{-1}].$$

Corollary 2.9. Let $1 \leq p \leq q < \infty$. Then the embedding $\Lambda BV^{(p)} \subseteq \Gamma BV^{(q)}$ holds whenever

$$\sup_{1 \leq n < \infty} \frac{\sum_{j=1}^{s} |f(I_j)|^p}{\Lambda(n)^{p}} < \infty.$$

Corollary 2.10. The embedding $V[h_1] \subseteq V[h_2]$ holds whenever

$$\sup_{1 \leq n < \infty} \frac{h_1(n)}{h_2(n)} < \infty.$$

Let $\{p_n\}_{n=1}^{\infty}$ be a sequence of positive real numbers such that $1 \leq p_n \uparrow p \leq \infty$. A real-valued function f on $[a, b]$ is said to be of p_n-a-bounded variation if

$$V_{\Lambda}(f) = V_{\Lambda}(f; p_n \uparrow p) := \sup_{n \geq 1} \sup_{I \subseteq [a, b]} \left(\sum_{j=1}^{s} \frac{|f(I_j)|^{p_n}}{\lambda_j} \right)^{\frac{1}{p_n}} < \infty,$$

where the $\{I_j\}_{j=1}^{s}$ are collections of nonoverlapping subintervals of $[a, b]$ such that $\inf_{j} |I_j| \geq \frac{b-a}{2n}$. The class of functions of p_n-a-bounded variation is denoted by $\Lambda BV^{(p_n \uparrow p)}$. This class was introduced by Vyas in [11]. When $\lambda_j = 1$ for all j, we obtain the class $BV^{(p_n \uparrow p)}$—introduced by Kita and Yoneda [5]—which is a generalization of the well-known Wiener class BV_p.

The mutual relationship between the generalized Wiener classes $\Lambda BV^{(p_n \uparrow p)}$ is rather chaotic even in the special case where $p_n = q_n = 1$ for all n; see [?] for a nice and detailed discussion on this. Besides, in order to determine when $BV^{(p_n \uparrow p)} \subseteq BV^{(q_n \uparrow q)}$ and $\Lambda BV^{(p)} \subseteq \Gamma BV^{(q_n \uparrow q)}$ ([5, Theorem 3.1] and [3, Theorem 1.4]), fairly significant restrictions have been imposed. So, it would be highly desirable to find a condition that implies the embedding $\Lambda BV^{(p_n \uparrow p)} \subseteq \Gamma BV^{(q_n \uparrow q)}$ without any additional restrictions on the p_n, q_n, Λ and Γ. Theorem (2.12) provides such a condition.

Next lemma supplements (2.3) and is used in the proof of Theorem (2.12).

Lemma 2.11. If $0 < q < 1$, then (2.3) holds whenever the sequence $\left\{ \frac{\sum_{i=1}^{k} z_i}{\sum_{i=1}^{k} y_i} \right\}_{k}$ is nondecreasing.

Proof. First, we apply (2.3) with $q = 1$ to obtain

$$\sum_{j=1}^{n} x_j z_j \leq \sum_{j=1}^{n} x_j y_j \max_{1 \leq k \leq n} \left(\sum_{i=1}^{k} z_i \right) \left(\sum_{i=1}^{k} y_i \right)^{-1}. \quad (2.6)$$

Then an application of the Hölder inequality yields

$$\sum_{j=1}^{n} x_j^q z_j = \sum_{j=1}^{n} (x_j z_j)^{q} z_j^{1-q} \leq \left(\sum_{j=1}^{n} x_j z_j \right)^{q} \left(\sum_{j=1}^{n} z_j \right)^{1-q} \leq \left(\sum_{j=1}^{n} x_j y_j \right)^{q} \left(\sum_{j=1}^{n} z_j \right)^{1-q} \max_{1 \leq k \leq n} \left(\sum_{i=1}^{k} z_i \right)^{q} \left(\sum_{i=1}^{k} y_i \right)^{-q}.$$
where the last two inequalities are due, respectively, to (2.6) and the fact that \(\left\{ \sum_{i=1}^{k} z_i / \sum_{i=1}^{k} y_i \right\}_k \) is nondecreasing.

Theorem 2.12. The embedding \(ABV^{(p_n, q_n)} \subseteq \Gamma BV^{(q_n, q)} \) holds whenever

\[
\sup_{1 \leq n < \infty} \sum_{k=1}^{\infty} \Delta \left(\frac{1}{\gamma_k} \right) \max_{1 \leq m \leq k} m \Lambda(m)^{-\frac{q_n}{p_n}} < \infty.
\]

Proof. Assume that \(f \in ABV^{(p_n, q_n)} \). For an arbitrary but fixed \(n \), let \(\{I_j\}_{j=1}^{s} \) be a nonoverlapping collection of subintervals of \([0, 1]\) with \(\inf |I_j| \geq \frac{1}{m} \), and put \(q = q_n/p_n \), \(x_j = |f(I_j)|^{p_n} \), \(y_j = 1/\lambda_j \), \(z_j = 1/\gamma_j \). Without loss of generality, we may also assume that the \(x_j \) are arranged in descending order. Now, by Abel's transformation and applying (2.3) we obtain

\[
\sum_{k=1}^{s} \left| f(I_k) \right|^{q_n} \gamma_k^{-1} = \sum_{k=1}^{s-1} \Delta \left(\frac{1}{\gamma_k} \right) \sum_{j=1}^{k} \left| f(I_j) \right|^{p_n} \gamma_k + \frac{1}{\gamma_s} \sum_{j=1}^{s} \left| f(I_j) \right|^{q_n} \gamma_s
\]

\[
\leq \sum_{k=1}^{s-1} \Delta \left(\frac{1}{\gamma_k} \right) \sum_{j=1}^{k} \left| f(I_j) \right|^{p_n} \lambda_j \gamma_k \gamma_s \max_{1 \leq m \leq k} m \Lambda(m)^{-\frac{q_n}{p_n}} + \frac{1}{\gamma_s} \sum_{j=1}^{s} \left| f(I_j) \right|^{p_n} \lambda_j \gamma_s \max_{1 \leq m \leq s} m \Lambda(m)^{-\frac{q_n}{p_n}}
\]

\[
\leq \sum_{k=1}^{s-1} \Delta \left(\frac{1}{\gamma_k} \right) V_{\Lambda}(f)^{q_n} \max_{1 \leq m \leq k} m \Lambda(m)^{-\frac{q_n}{p_n}} + \frac{1}{\gamma_s} V_{\Lambda}(f)^{q_n} \max_{1 \leq m \leq s} m \Lambda(m)^{-\frac{q_n}{p_n}}
\]

\[
\leq \sum_{k=1}^{s-1} \Delta \left(\frac{1}{\gamma_k} \right) V_{\Lambda}(f)^{q_n} \max_{1 \leq m \leq k} m \Lambda(m)^{-\frac{q_n}{p_n}} + \sum_{k=s}^{\infty} \Delta \left(\frac{1}{\gamma_k} \right) V_{\Lambda}(f)^{q_n} \max_{1 \leq m \leq k} m \Lambda(m)^{-\frac{q_n}{p_n}}
\]

\[
= V_{\Lambda}(f)^{q_n} \sum_{k=1}^{\infty} \Delta \left(\frac{1}{\gamma_k} \right) \max_{1 \leq m \leq k} m \Lambda(m)^{-\frac{q_n}{p_n}} < \infty,
\]

where we have used the fact that

\[
\frac{1}{\gamma_s} \max_{1 \leq m \leq s} m \Lambda(m)^{-\frac{q_n}{p_n}} \leq \sum_{k=s}^{\infty} \Delta \left(\frac{1}{\gamma_k} \right) \max_{1 \leq m \leq k} m \Lambda(m)^{-\frac{q_n}{p_n}}.
\]

Taking suprema over all collections \(\{I_j\}_{j=1}^{s} \) as above, and over all \(n \) yields \(V_{\Gamma}(f) < \infty \). That is, \(f \in \Gamma BV^{(q_n, q)} \). \(\square \)

Corollary 2.13. The embedding \(ABV^{(p)} \subseteq \Gamma BV^{(q)} \) holds whenever

\[
\sum_{n=1}^{\infty} \Delta \left(\frac{1}{\gamma_n} \right) \max_{1 \leq k \leq n} \frac{k}{\Lambda(k)^{p}} < \infty.
\]

In particular, the embedding \(ABV \subseteq \Gamma BV \) holds whenever

\[
\sum_{n=1}^{\infty} \Delta \left(\frac{1}{\gamma_n} \right) \frac{n}{\Lambda(n)} < \infty.
\]
References

[1] J. Appell, J. Banaś, N. Merentes, Bounded Variation and Around, De Gruyter Ser. Nonlinear Anal. Appl., vol. 17, Walter de Gruyter, Berlin, 2013.

[2] M. Avdispahić, On the classes ABV and V[ν], Proc. Amer. Math. Soc. 95 (2) (1985) 230–234.

[3] M. Moazami Goodarzi, M. Hormozi, N. Memić, Relations between Schramm spaces and generalized Wiener classes, J. Math. Anal. Appl. 450 (2017) 829–838.

[4] G. Hardy, J.E. Littlewood, G. Polya, Inequalities, 2nd edn., Cambridge University Press, Cambridge, 1952.

[5] H. Kita, K. Yoneda, A generalization of bounded variation, Acta Math. Hungar. 56 (3-4) (1990) 229–238.

[6] S. Perlman, D. Waterman, Some remarks on functions of Λ-bounded variation, Proc. Amer. Math. Soc. 74 (1979) 113–118.

[7] N. Paul Schembari, M. Schramm, ΦV[h] and Riemann–Stieltjes integration, Colloq. Math. 60/61 (2) (1990) 421–441.

[8] M. Schramm, Functions of Φ-bounded variation and Riemann–Stieltjes integration, Trans. Amer. Math. Soc. 267 (1) (1985) 49–63.

[9] M. Shiba, On the absolute convergence of Fourier series of functions of class ΛBV(ρ), Sci. Rep. Fac. Ed. Fukushima Univ. 30 (1980) 7–10.

[10] R.G. Vyas, A note on functions of (n)-Λ-Bounded Variation, J. Indian Math. Soc. (N.S.) 78 (1-4) (2011) 199–204.

[11] D. Waterman, On convergence of Fourier series of bounded generalized variation, Studia Math. 44 (1972) 107–117.

[12] X. Wu, Embedding of classes of functions with bounded Φ-variation into generalized Lipschitz spaces, Acta Math. Hungar. 150 (1) (2016) 247–257.