Ibuprofen supplementation and its effects on NF-κB activation in skeletal muscle following resistance exercise

Luke Vella¹, James F. Markworth², Jonathan M. Peake³, Rod J. Snow¹, David Cameron-Smith², Aaron P. Russell¹

1. Centre for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Burwood, Australia
2. Liggins Institute, University of Auckland, Auckland, New Zealand
3. School of Biomedical Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia

Corresponding Author:
Mr Luke Vella, Centre for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Burwood, Australia, Email: lve@deakin.edu.au

Running title: NF-κB and resistance exercise.

Key words: NF-κB, inflammation, NSAID treatment, resistance exercise, exercise recovery
Abstract:

Resistance exercise triggers a subclinical inflammatory response that plays a pivotal role in skeletal muscle regeneration. Nuclear factor-κB (NF-κB) is a stress signaling transcription factor that regulates acute and chronic states of inflammation. The classical NF-κB pathway regulates the early activation of post-exercise inflammation; however there remains scope for this complex transcription factor to play a more detailed role in post-exercise muscle recovery. Sixteen volunteers completed a bout of lower body resistance exercise with the ingestion of three 400 mg doses of ibuprofen or a placebo control. Muscle biopsy samples were obtained prior to exercise and at 0, 3 and 24 h post-exercise and analysed for key markers of NF-κB activity. Phosphorylated p65 protein expression and p65 inflammatory target genes were elevated immediately post-exercise independent of the two treatments. These changes did not translate to an increase in p65 DNA binding activity. NF-κB p50 protein expression and NF-κB p50 binding activity were lower than pre-exercise at 0 and 3 h post-exercise, but were elevated at 24 h post-exercise. These findings provide novel evidence that two distinct NF-κB pathways are active in skeletal muscle after resistance exercise. The initial wave of activity involving p65 resembles the classical pathway and is associated with the onset of an acute inflammatory response. The second wave of NF-κB activity comprises the p50 subunit, which has been previously shown to resolve an acute inflammatory program. The current study showed no effect of the ibuprofen treatment on markers of the NF-κB pathway, however examination of the within group effects of the exercise protocol suggests that this pathway warrants further research.
Introduction:

Unaccustomed resistance exercise causes skeletal muscle damage that impairs muscle function and promotes sensations of pain. The precise signaling mechanisms that initiate muscle repair following exercise-induced damage remain a topic of ongoing debate (previously reviewed by Paulsen et al. (26)). The onset of muscle damage triggers a complex interplay of intracellular events that involve myofibre injury, acute inflammation and cellular repair. At a symptomatic level, inflammation in skeletal muscle is characterised by swelling and soreness (26). Consequently post-exercise inflammation is often ascribed as a cause of delayed-onset muscle soreness (DOMS). DOMS typically occurs 24–48 hours post-exercise, and is accompanied by a secondary reduction in muscle force-generating capacity. Treatment of DOMS has focused on reducing inflammation; however this may be detrimental to processes of cellular repair (36). Attenuating exercise-induced inflammation using non-steroidal anti-inflammatory drugs reduces skeletal muscle protein synthesis (34) and impairs satellite cell proliferation (23).

To develop more efficacious treatments for DOMS, a better understanding of the mechanisms that govern inflammation and tissue repair in skeletal muscle after exercise is required.

The nuclear factor-kappa B (NF-κB) transcription factor acts as a central regulator of inflammatory signaling pathways. The NF-κB family consists of five subunits, including NF-κB1 (p105/p50), NF-κB2 (p100/p52), RelA (p65), RelB and cREL that share an amino terminus Rel homology domain. The Rel domain permits DNA binding, nuclear localization, dimerization and interaction with its own inhibitory protein IκB (1, 6, 24). Under basal conditions RelA (p65), cREL and RelB subunits remain sequestered within the
cytoplasm bound to an inhibitory IκB protein. The IκB family that regulates NF-κB includes the subunits IκBβ, IκBα, IκBγ, IκBε, and Bcl-3. Unlike the Rel proteins, subunits p50 and p52 are synthesized as large precursor proteins (p105 and 100, respectively) that require proteolytic processing to permit nuclear localization. These subunits lack a REL domain, to initiate gene transcription, and hence are primarily considered as repressors of gene transcription (1, 3).

Upon stimulation, the IκB kinase complex (IKK) controls the degradation of IκB and its precursor proteins, thereby enabling the NF-κB REL subunits to control gene transcription. The IKK complex consists of two catalytic kinases IKKα and IKKβ, and a regulatory IKKγ subunit. IKKβ activates the classical NF-κB signaling pathway through the phosphorylation and subsequent degradation of the inhibitor IκBα (25, 40). The classical pathway typically comprises p65:p50 heterodimers, and is essential for the activation of acute inflammation by controlling the transcription on inflammatory cytokines and acute phase proteins (25, 40). More recently an alternative NF-κB pathway has been described, which is dependent on IKKα (30). Alternative signaling involves the activation of a secondary NF-κB inducing kinase (NIK), and has been linked to the activation of both p52 and p50 subunits. The functional significance of IKKα-dependent gene expression in acute inflammation is not yet well established. However, preliminary research in rat muscle tissue suggests p50 homodimers may play a crucial role in the resolution of acute inflammation (2, 17).

Despite the importance of inflammation in tissue regeneration post-exercise, very little is known about how NF-κB activity is regulated in skeletal muscle after acute exercise. A
transient increase in various components of the classical NF-κB signaling pathway is observed in rat muscle post-exercise (9, 11, 14, 15, 31). In contrast, a decrease in NF-κB DNA binding at 0 hours post-exercise with a return to near baseline 1 hour post-exercise was observed in human muscle following a traditional resistance exercise model (8). Recent work from our laboratory, using a similar resistance exercise model, demonstrated an increase in NF-κB binding to the promoter region of key inflammatory cytokines at 2 hours post-exercise, with a return to baseline levels at 4 hours post-exercise (37). These findings suggest that a transient NF-κB response contributes to acute post-exercise inflammation.

To enhance our understanding of the cellular mechanisms that regulate both the onset and resolution of post-exercise inflammation, the current study aimed to investigate changes in the activity of the subunits that comprise the classical and alternative NF-κB signaling pathways. We hypothesized that the regulation of NF-κB post-exercise would involve two distinct waves of activation. Specifically, we hypothesized that the classical NF-κB pathway, involving p65 and p50 dimers, would be activated soon after exercise during the early phases of inflammation, while the alternative pathway, comprising mainly the p50 subunit, would be activated at later time points after exercise that correspond with the resolution of acute inflammation (2, 13). We also hypothesized that the administration of ibuprofen would blunt both waves of NF-κB activation, providing a potential mechanism through which anti-inflammatory medication might attenuate exercise-induced inflammation in skeletal muscle.
Methods:

Participants:
As previously described, sixteen healthy male subjects were recruited to participate in the study (characteristics shown in Table 1) (20). All participants completed a medical history questionnaire that was used to identify and exclude participants with a diagnosed condition or illness that prevented them from completing strenuous exercise. Exclusion criteria included participation in a lower body resistance exercise program within the last 6 months to ensure a muscle damage response from the exercise stimulus, and/or chronic treatment with anti-inflammatory drugs. Current use of prescription medication or nutritional supplements also excluded subjects from participating.

Ethics approval:
Prior to participation each subject received written and oral information regarding the nature of the experiment before providing written consent to participate. All procedures involved in this study were approved by the Deakin University Human Research Ethics Committee (DUHREC 2010-019). All muscle sampling procedures were performed in accordance with the Helsinki declaration.

Familiarization and strength testing:
Each participant completed a familiarization session at least 7 days prior to completing the exercise trial. Participants performed repetition maximum testing to determine the experimental exercise load (80% of 1 repetition maximum (1RM)). The maximal weight each subject could lift was determined for the Smith machine-assisted
squat, the leg press, and the leg extension. These data were substituted into the validated
Brzycki equation to predict 1RM for each participant (21, 38). The participants were
required to abstain from any further exercise until completion of the trial.

Experimental procedures:

The participants reported to the laboratory in an over-night fasted state, having
abstained from caffeine, tobacco and alcohol for the preceding 24 h. Following 30 min of
supine resting a pre-exercise muscle biopsy was taken. Participants then completed a 10
min warm up consisting of low intensity cycling on a bicycle ergometer, and one low
resistance set for each exercise at approximately 30-50% of the participants 1RM. Each
participant then completed a single bout of intense resistance exercise. This session
consisted of 3 sets of 8-10 repetitions of a bilateral Smith machine assisted squat, 45
degree leg press and leg extension. These exercises were all performed at 80% 1RM. The
exercises were performed sequentially as a circuit, with 1 min rest between each exercise,
and 3 min rest between sets. We have previously used this exercise protocol and
demonstrated that it activates inflammatory signaling pathways (37). Following the
completion of the exercise bout, the participants rested in a supine position while muscle
biopsy samples were collected. The participants returned to the laboratory the following
morning in an over-night fasted state for a final muscle biopsy sample. Standardized meals
were provided to participants the night preceding the trial (carbohydrate 57%, fat 22%,
protein 21%), in the laboratory immediately following the exercise bout (carbohydrate 71%,
fat 13%, protein 16%), as additional snacks throughout the day and an evening meal
(carbohydrate 64%, fat 27%, protein 18%).
NSAID administration:

Prior to the exercise bout, the participants were randomly assigned to either the ibuprofen (NSAID) group \((n = 8)\) or the placebo group (PLA) \((n = 8)\). Participants in the NSAID group consumed the maximum recommended over-the-counter dose of 1200 mg of ibuprofen as three doses of 400 mg throughout the trial day. The first dose was administered upon arriving to the laboratory on the first morning of the trial, immediately prior to the first muscle biopsy sample. Participants were instructed to consume two additional doses at 2:00 pm and 8:00 pm the same evening. This dosing structure was prescribed to optimise levels of circulating ibuprofen to biologically active levels throughout the course of the trial day. This protocol has previously been validated by our research group in this same group of study participants and the same NSAID administration protocol (20). Alternatively the placebo consumed a gelatin capsule containing powdered sugar, identical in appearance to the ibuprofen capsule.

Sample collection:

Muscle biopsy samples were obtained under local anaesthesia (Xylocaine 1%) from the vastus lateralis muscle of either leg using the percutaneous needle biopsy technique modified to include suction (4). Samples were obtained prior to exercise, immediately following exercise and at 3 h and 24 h post-exercise. The muscle biopsy sample obtained immediately post-exercise was taken within 1-2 min of the completion of the exercise protocol, and will herein after be referred to as 0 h post-exercise. The muscle biopsy procedure has been shown to trigger a local inflammatory response (19). To minimize interference from the biopsy procedure, samples prior to exercise and at 24 h post-exercise were taken from the same leg, while muscle samples obtained at 0 and 3 h post-
exercise were taken from the opposite leg. Samples within the same leg were taken at least 5 cm from the previous site. We have previously reported that this technique is effective for minimizing cytokine gene expression and NF-κB activity in response to muscle biopsies (37). Excised tissue was immediately immersed in liquid nitrogen and stored at −80°C until further analysis.

Subjective assessment of DOMS and range of movement:

Subjective assessment of muscle soreness (DOMS) and range of movement were recorded prior to exercise and at 24 h post exercise. Subjects were asked to rate their levels of muscle soreness and range of movement on a 0-10 scale. In both instances 0 was considered as the best possible result and a rating of 10 was considered to be the worst result. The data from this assessment is included in a separate manuscript which is yet to be submitted for publication.

Protein extraction and quantification:

Muscle samples were homogenized in ice cold RIPA buffer (50 mM Tris-HCl, pH 7.4, 150 mM NaCl, 0.25% deoxycholic acid, 1% NP-40, 1 mM EDTA supplemented with protease and phosphatase inhibitors including 1 mM PMSF, 1 µg/ml aprotinin, 1 µg/ml leupeptin, 1 mM Na3VO4 & 1mM NaF). The homogenate was agitated for 1 h at 4°C and centrifuged at 13,000 × g at 4°C for 15 min. The resultant supernatant was removed and stored at −80°C until further analysis. Total protein concentration was determined using a BCA protein assay kit according to the manufacturer’s instruction (Pierce, Rockford, IL). Protein samples (50 µg) were denatured in loading buffer and separated by a 10% SDS-
PAGE and transferred to a PVDF membrane. Membranes were blocked for 90 min at room temperature in 5% BSA/Tris buffered saline with 0.1% Tween 20 (TBST). Primary antibodies [phosphorylated NF-κB p65 Ser\(^{536}\), total NF-κB p65, NF-κB p100/p52, NF-κB p105/p50, NF-κB cREL and β-actin (all obtained from Cell Signaling Technologies, Arundel, QLD)] were diluted to 1:1,000 in 5% BSA/TBST, applied and incubated overnight at 4°C with gentle agitation. Membranes were washed for 30 min in TBST and probed with HRP conjugated secondary antibodies diluted to 1:2,000 in 5%BSA/TBST, and incubated for 1 h at room temperature. Proteins were visualised by using Western Lighting enhanced chemiluminescence (Perkin Elmer Lifesciences, Boston, MA). Signals were captured using a Kodak Digital Image Station 2000M (model: 440CF; Eastman Kodak, Rochester, NY) and quantified by densitometry band analysis using Kodak Molecular Imaging Software (Version 4.0.5, © 1994-2005, Eastman Kodak). Phosphorylated NF-κB p65 protein was normalized to total p65 protein (Supplementary Figure 1A). NF-κB p50 protein expression was normalized to its precursor protein p105 (Supplementary Figure 1B). NF-κB p52 and cREL protein was normalized to β-actin (Supplementary Figure 1C).

RNA extraction and RT-PCR:

Total cellular RNA was extracted as previously described (35) using the ToTALLY RNA Kit (Ambion, Austin, TX). RNA quality and concentration were determined using the Agilent 2100 Biolalyzer (Agilent Technologies, Palo Alto, CA). First strand cDNA was generated from 0.5 µg total RNA using the AMV RT kit (Promega, Madison, WI). RT-PCR was performed in duplicate using the Biorad CFX384 system (Biorad, Hercules, CA), containing 5XHOT FirePol® EvaGreen Mix (Integrated Science, Sydney, NSW), forward and reverse primer, sterile nuclease free water and cDNA (0.125 ng/µL). Data were
analysed using a comparative critical threshold (Ct) method, where the amount of the specified target gene normalised to the amount of endogenous control, relative to the control value is given by $2^{-\Delta\Delta\text{Ct}}$. The endogenous control used in this experiment was GAPDH. The efficacy of GAPDH as an endogenous control was examined using the equation $2^{-\Delta\text{Ct}}$. Primers were designed using Primer Express software package version 3.0 (Applied Biosystems). Gene sequences were obtained from GenBank (Table 2). Primer sequence specificity was confirmed using BLAST. A melting point dissociation curve was generated by the PCR instrument for all PCR products to confirm the presence of a single amplified product.

Nuclear extraction and Transcription Factor (TF) Assay:

Nuclear and cytoplasmic proteins were extracted from 20 mg of muscle tissue using a NE-PER Nuclear and Cytoplasmic Extractions Reagents (Pierce, Rockford, IL), according to the manufacturer’s instructions. Western blot analysis probed for GAPDH, α-tubulin and Lamin A was performed to ensure the nuclear extract was not contaminated by cytoplasmic proteins. A Transcription Factor Assay detecting specific transcription factor DNA binding activity was performed according to manufacturer’s instructions (Cayman Chemical, Ann Arbour, MI). Briefly, 10 µg of nuclear protein were loaded into a well containing an immobilized NF-κB consensus sequence (5’GGGACTTTCC-3’) and incubated overnight at 4°C. Primary antibodies for NF-κB subunits p65 and p50 were loaded into each well and incubated at room temperature for 1 h. Each well was flushed using a diluted wash buffer for 30 min. Following a secondary 30 min wash, samples were incubated with secondary HRP-conjugated antibody for a further 1 h at room temperature. To quantify transcription factor binding, a developing solution containing a 3,3’,5,5’-
Tetramethylbenzidine (TMB) solution was added to each well and incubated for 45 min at room temperature. DNA binding was then quantified using photospectrometry with absorbance measurements taken at 450 nm using a Multiscan RC plate reader (Labsystems, Finland) and Gen5 Data Analysis Software (BioTek, Winooski, VT).

Statistics:

Data are expressed as means ± SEM. Prior to analysis the data displaying a lack of normality were log transformed to stabilise variance. Data were analysed using a two-way ANOVA with repeated measures for time. The sphericity adjustment was checked, and if required, a Greenhouse-Geisser epsilon to the residual degrees of freedom was applied. A data point was considered to be a statistical outlier where a z-score exceeded a pre-determined threshold of ± 4.00. Where appropriate we explored within-group pair-wise comparisons between individual time-points using the Least Significant Differences of means at $P < 0.05$ to determine statistically significant changes (22, 29). Statistical analyses were performed using GenStat for Windows 16th Edition (VSN International, Hemel Hempstead, UK).
Results:

Expression of NF-κB phosphorylated p65 (Ser 536) increased over time (time effect p=0.006), but this response was overall not different between the groups (interaction effect p=0.253, treatment effect p= 0.176). Nevertheless, LSD pairwise comparisons indicated that the main increase from baseline was in the placebo group at 0 h post-exercise. Within the placebo group phosphorylated p65 protein expression remained elevated at 3 h post-exercise and returned to baseline by 24 h (Figure 1A). No significant changes were observed in the ibuprofen group by LSD comparisons. There was no effect of time or treatment for NF-κB total p65 (Supplementary Figure 1A).

There was a trend toward a significant time × treatment interaction (p=0.057) for the protein expression of the p50 subunit, although a main effect for time (p=0.376) or treatment (p=0.865) was not achieved. Our analysis revealed a statistical outlier in the ibuprofen group at the 24 h time point. When this subject was removed from the analysis, this trend was weaker (p=0.115) (Figure 1B). LSD comparisons indicated an increase in p50 protein expression was observed at 24h post exercise in the placebo group only (Figure 1B). There were no main or interaction effects for the NF-κB p50 precursor protein p105 (Supplementary Figure 1B) or for p52 and cREL subunits (Figure 1C and Figure 1D).

To determine subunit-specific DNA binding of NF-κB following exercise, transcription factor binding assays were performed for p50 and p65 subunits. NF-κB p50 showed a main effect for time (p=0.035), with no time × treatment interaction (p=0.851) or main effect for treatment (p =0.488) (Figure 2B). LSD comparisons identified a significant increase in p50 binding that occurred at 24 h post-exercise when compared to 0 and 3 h post-exercise within the placebo group. This coincided with the increase in p50 protein expression
No change in p65 DNA binding was observed, despite an increase in phosphorylated p65 protein expression (Figure 2B).

We sought to determine whether any increase in NF-κB signaling coincided with an increase in downstream inflammatory cytokines, and if the administration of ibuprofen influenced post-exercise cytokine expression. The mRNA levels of IL-6 (Figure 3A), IL-8 (Figure 3B) and MCP-1 (Figure 3C) demonstrated a main effect for time (p<0.01), with the highest elevation in expression levels at 3 h post-exercise after significant increases at 0 h post-exercise. TNF-α mRNA remained unchanged after exercise (Figure 3D). COX-2 mRNA showed a main effect for time (p<0.01), increasing at 0, 3 and 24 h post-exercise (Figure 3E). There were no significant interaction effects or main effects for treatment for the inflammatory cytokines or COX-2 mRNA expression. Consistently, LSD pairwise comparisons revealed similar changes over time from baseline within both groups.
Discussion:

The current study aimed to explore the regulation of the different NF-κB subunits following a single bout of lower body resistance exercise, and investigate the mechanism through which ibuprofen treatment may influence post-exercise inflammation. The results of this study show for the first time that an alternative NF-κB signaling pathway comprising mainly p50 subunits is activated 24 h post-exercise. This pathway appears distinctly different to the activation of NF-κB p65 subunit that occurs during the early stages of acute post-exercise inflammation.

Phosphorylated NF-κB p65 protein expression was significantly elevated in the placebo group when measured at 0 and 3 h post-exercise, and returned to baseline levels at 24 h post-exercise. These findings support those of previous research showing a post-exercise increase in key components of the classical NF-κB signaling pathway in skeletal muscle, including phosphorylated NF-κB p65 protein (14, 37), phosphorylated IκBα protein (9, 37) and NF-κB p65 DNA binding activity (12, 33). In the present study, the increase in phosphorylated NF-κB p65 protein expression was not associated with an increase in p65 transcription factor binding activity at 0, 3 and 24 h post-exercise. However, NF-κB regulated cytokine genes including MCP-1, IL-6 and IL-8 were increased at 3 h post-exercise. Previous work from our group showed an increase in NF-κB p65 binding to the promoter region of genes coding for inflammatory cytokines at 2 h after traditional resistance exercise (37). This research performed a series of electrophoretic mobility shift assays that looked specifically NF-κB binding to genes coding MCP-1, IL-6 and IL-8 and thus differences in the methodology may explain conflicting results. Furthermore, the discrepancy in the results between our two trials may be explained by the short half-life of NF-κB in the absence of an activating stimulus. In a HL60 cell line, the half-life of NF-κB
has been reported to be less than 30 mins (10). Likewise, the inhibitory IκBα protein has a half-life of 25 min in Jurkat cells (7). Therefore, in the present study, NF-κB activation may have returned to resting levels by 3 h post-exercise. Research models using an extreme eccentric resistance exercise model were able to demonstrate an increase in p65 DNA binding to nuclear protein at 3 h post-exercise (12, 39). By contrast, research from Durham et al showed a decrease in NF-κB DNA binding activity immediately post-exercise, which returned to baseline levels at 1 h post-exercise (8). Collectively, these findings suggest that the activation of NF-κB DNA binding occurs transiently within the first few hours of exercise. Changes in NF-κB activity in skeletal muscle may depend on the mode of exercise and training status of participants.

This research also provides novel evidence for a potential role of NF-κB p50 activation as a component of inflammation-resolution. In our initial analysis of p50 protein expression, there was a trend towards a time × group interaction effect (p=0.057) but this trend was weaker (p=0.115) after removing a statistical outlier. Despite this weaker interaction, within-group analysis by LSD comparisons revealed that p50 protein expression was elevated in the placebo group at 24 h post-exercise. Coincident with this response, p50 transcription factor binding activity was highest at 24 h post-exercise. The biological significance of this delayed increase in NF-κB p50 signaling during the latter stages of post-exercise recovery remains uncertain. However, in vitro work suggests that it may play a role in regulating the active resolution of acute inflammation in skeletal muscle (16, 17, 30). In a model of carrageenan-induced pleurisy in rats, Lawrence et al (17) provided preliminary evidence for a complex interplay between distinct NF-κB signaling pathways that control an acute and transient inflammatory response. They reported that the preliminary phase of NF-κB activation that occurred at 6 h was characteristic of the
classical NF-κB pathway, and was associated with the onset of acute inflammation. The secondary phase was typical of the alternative NF-κB pathway, comprising p50 homodimers. Importantly, inhibiting this wave of activity caused a prolonged inflammatory response (17). Findings from the present study support the concept of two functionally distinct waves of NF-κB activity following traditional resistance exercise. Future work is warranted to determine how this secondary wave of NF-κB pathway activity influences post-exercise inflammation and skeletal muscle recovery.

We used ibuprofen supplementation to investigate whether manipulating the inflammatory response to exercise through the cyclooxygenase-prostaglandin pathway alters post-exercise NF-κB signaling. Previous reports indicate that NF-κB can function upstream of COX-2 to control transcription of this gene (25, 27). Alternatively, prostaglandin activity may also affect NF-κB (27, 28, 32). In-vitro studies demonstrate that the effect of prostaglandins on NF-κB activity is specific to the class of prostaglandin. Prostaglandin E2 activates the classical NF-κB pathway, whereas prostaglandin A2, and prostaglandin J2 and its downstream analogues can inhibit NF-κB activation in response to pro-inflammatory stimuli (5, 18, 28, 32). Our group recently reported changes in prostaglandins in blood serum samples after traditional resistance exercise (20). Interestingly, PGE2, PGA2 and PGD2 all peaked in expression at 2 h post-exercise. We did not find any significant time × group interaction effects for the change in p65 phosphorylation; however, LSD comparisons suggested that phosphorylated p65 expression only seemed to increase in the placebo group. Similarly the observed changes in p50 protein expression and DNA binding were only identified within the placebo group. These findings are supported by data from the study by Lawrence et al (17), which demonstrated no change in the secondary wave of NF-κB DNA binding activity following the administration of an
alternative COX inhibitor, NS398, in rats with pleurisy. While these findings do not offer any conclusive evidence that ibuprofen treatment inhibits the NF-κB pathway, it does provide justification to further explore this pathway as a potential mechanism through which ibuprofen treatment inhibits post-exercise inflammation.

There were several limitations to the present study that need to be considered. Firstly, this analysis was run as part of a bigger study looking at the effects of ibuprofen administration on multiple components of the post-exercise inflammatory and hypertrophy response. Therefore, limited muscle sample remained to complete a more comprehensive analysis. Future research should consider the regulation of upstream markers including IKKα and IKKβ post-exercise. Furthermore, due to the invasive nature of muscle biopsies our subject population was small (n = 16).
Conclusion:

This research provides new insights into the regulation of NF-κB following a bout of acute resistance exercise. The primary finding from this study is that NF-κB activation follows a biphasic activation pattern that is subunit-specific. The first wave involves the classical NF-κB p65 subunit, and corresponds with the onset of an acute inflammatory response and an increase in inflammatory cytokine gene expression. The second wave is consistent with a previously identified secondary wave of NF-κB activity that involves the alternative p50 subunit. Research in alternative models of inflammation suggests that this second wave of activity may be associated with an active inflammatory resolution program. Further research into the role of p50 signaling in skeletal muscle represents a key area for future research in order to better understand the mechanisms that regulate post-exercise inflammation. Analysis of the LSD to examine pair-wise within-group differences suggested that the observed changes in both NF-κB p65 and p50 were detected only within the placebo group. The complex interplay between the NF-κB and the COX/prostaglandin pathway in exercise-induced muscle damage remains poorly understood, and should be a focus for future research.
Acknowledgements:

The authors would like to acknowledge the assistance of Associate Professor John Reynolds for his contributions in the statistical analysis of the dataset.

Disclosures:

There were no conflicts of interest relevant to this paper.
References:

1. Bakkar N, and Guttridge DC. NF-kappaB signaling: a tale of two pathways in skeletal myogenesis. Physiological Reviews 90: 495-511, 2010.

2. Bohuslav J, Kravchenko VV, Parry GC, Erlich JH, Gerondakis S, Mackman N, and Ulevitch RJ. Regulation of an essential innate immune response by the p50 subunit of NF-kappaB. The Journal Of Clinical Investigation 102: 1645-1652, 1998.

3. Bonizzi G, and Karin M. The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends In Immunology 25: 280-288, 2004.

4. Buford TW, Cooke MB, and Willoughby DS. Resistance exercise-induced changes of inflammatory gene expression within human skeletal muscle. European Journal Of Applied Physiology 107: 463-471, 2009.

5. Castrillo A, Díaz-Guerra MJ, Hortelano S, Martín-Sanz P, and Boscá L. Inhibition of IkappaB kinase and IkappaB phosphorylation by 15-deoxy-Delta(12,14)-prostaglandin J(2) in activated murine macrophages. Molecular And Cellular Biology 20: 1692-1698, 2000.

6. Delhalle S, Blasius R, Dicato M, and Diederich M. A beginner's guide to NF-kappaB signaling pathways. Annals Of The New York Academy Of Sciences 1030: 1-13, 2004.

7. Dodd SL, Hain B, Senf SM, and Judge AR. Hsp27 inhibits IKKβ-induced NF-κB activity and skeletal muscle atrophy. FASEB Journal 23: 3415-3423, 2009.

8. Durham WJ, Yi-Ping L, Gerken E, Farid M, Arbogast S, Wolfe RR, and Reid MB. Fatiguing exercise reduces DNA binding activity of NF-κB in skeletal muscle nuclei. Journal of Applied Physiology 97: 1740-1745, 2004.

9. Ho RC, Hirshman MF, Li Y, Cai D, Farmer JR, Aschenbach WG, Witczak CA, Shoelson SE, and Goodyear LJ. Regulation of IkappaB kinase and NF-kappaB in contracting adult rat skeletal muscle. American Journal Of Physiology Cell Physiology 289: C794-C801, 2005.

10. Hohmann HP, Remy R, Scheiderit C, and van Loon AP. Maintenance of NF-kappa B activity is dependent on protein synthesis and the continuous presence of external stimuli. Molecular And Cellular Biology 11: 259-266, 1991.

11. Hollander J, Fiebig R, Gore M, Ookawara T, Ohno H, and Ji LL. Superoxide dismutase gene expression is activated by a single bout of exercise in rat skeletal muscle. Pflügers Archiv: European Journal Of Physiology 442: 426-434, 2001.

12. Hyldahl RD, Xin L, Hubal MJ, Moeckel-Cole S, Chipkin S, and Clarkson PM. Activation of nuclear factor-κB following muscle eccentric contractions in humans is localized primarily to skeletal muscle-residing pericytes. FASEB Journal: Official Publication Of The Federation Of American Societies For Experimental Biology 25: 2956-2966, 2011.

13. Ishikawa H, Claudio E, Dambach D, Raventós-Suárez C, Ryan C, and Bravo R. Chronic inflammation and susceptibility to bacterial infections in mice lacking the polypeptide (p)105 precursor (NF-kappaB1) but expressing p50. The Journal Of Experimental Medicine 187: 985-996, 1998.

14. Ji LL, Gomez-Cabrera MC, Steinhafel N, and Vina J. Acute exercise activates nuclear factor (NF)-kappaB signaling pathway in rat skeletal muscle. The FASEB Journal: Official Publication Of The Federation Of American Societies For Experimental Biology 18: 1499-1506, 2004.

15. Kramer HF, and Goodyear LJ. Exercise, MAPK, and NF-kappaB signaling in skeletal muscle. Journal Of Applied Physiology (Bethesda, Md: 1985) 103: 388-395, 2007.

16. Lawrence T, Bebien M, Liu GY, Nizet V, and Karin M. IKKalpha limits macrophage NF-kappaB activation and contributes to the resolution of inflammation. Nature 434: 1138-1143, 2005.
17. Lawrence T, Gilroy DW, Colville-Nash PR, and Willoughby DA. Possible new role for NF-kappaB in the resolution of inflammation. *Nature Medicine* 7: 1291-1297, 2001.
18. Lawrence T, Willoughby DA, and Gilroy DW. Anti-inflammatory lipid mediators and insights into the resolution of inflammation. *Nature Reviews Immunology* 2: 787-795, 2002.
19. Malm C, Nyberg P, Engstrom M, Sjodin B, Lenkei R, Ekblom B, and Lundberg I. Immunological changes in human skeletal muscle and blood after eccentric exercise and multiple biopsies. *The Journal Of Physiology* 529 Pt 1: 243-262, 2000.
20. Markworth JF, Vella L, Lingbar BS, Tull DL, Rupasinghe TW, Sinclair AJ, Maddipati KR, and Cameron-Smith D. Human inflammatory and resolving lipid mediator responses to resistance exercise and ibuprofen treatment. *American Journal Of Physiology Regulatory, Integrative And Comparative Physiology* 305: R1281-R1296, 2013.
21. Mayhew JL, Prinster JL, Ware JS, Zimmer DL, Arabas JR, and Bemben MG. Muscular endurance repetitions to predict bench press strength in men of different training levels. *The Journal Of Sports Medicine And Physical Fitness* 35: 108-113, 1995.
22. Mead R. The design of experiments: Statistical principles for practical applications. New York, NY US: Cambridge University Press, 1988.
23. Mikkelsen UR, Langberg H, Helmark IC, Skovgaard D, Andersen LL, Kjaer M, and Mackey AL. Local NSAID infusion inhibits satellite cell proliferation in human skeletal muscle after eccentric exercise. *Journal Of Applied Physiology (Bethesda, Md)* 107: 1600-1611, 2009.
24. Mourkioti F, and Rosenthal N. NF-kappaB signaling in skeletal muscle: prospects for intervention in muscle diseases. *Journal of Molecular Medicine* 86: 747-759, 2008.
25. Pahl HL. Activators and target genes of Rel/NF-kappaB transcription factors. *Oncogene* 18: 6853-6866, 1999.
26. Paulsen G, Mikkelsen UR, Raastad T, and Peake JM. Leucocytes, cytokines and satellite cells: what role do they play in muscle damage and regeneration following eccentric exercise? *Exercise Immunology Review* 18: 42-97, 2012.
27. Poligone B, and Baldwin AS. Positive and negative regulation of NF-kappaB by COX-2: roles of different prostaglandins. *The Journal Of Biological Chemistry* 276: 38658-38664, 2001.
28. Rossi A, Kapahi P, Natoli G, Takahashi T, Chen Y, Karin M, and Santoro MG. Anti-inflammatory cyclopentenone prostaglandins are direct inhibitors of IkappaB kinase. *Nature* 403: 103-108, 2000.
29. Saville DJ. Multiple comparison procedures: The practical solution. *American Statistician* 44: 174, 1990.
30. Sentilheben U, Cao Y, Xiao G, Greten FR, Krähn G, Bonizzi G, Chen Y, Hu Y, Fong A, Sun SC, and Karin M. Activation by IKKalpha of a second, evolutionary conserved, NF-kappa B signaling pathway. *Science (New York, NY)* 293: 1495-1499, 2001.
31. Spangenburg EE, Brown DA, Johnson MS, and Moore RL. Exercise increases SOCS-3 expression in rat skeletal muscle: potential relationship to IL-6 expression. *The Journal Of Physiology* 572: 839-848, 2006.
32. Straus DS, Pascual G, Li M, Welch JS, Ricote M, Hsiang CH, Sengchanthalangsy LL, Ghosh G, and Glass CK. 15-deoxy-delta 12,14-prostaglandin J2 inhibits multiple steps in the NF-kappa B signaling pathway. *Proceedings Of The National Academy Of Sciences Of The United States Of America* 97: 4844-4849, 2000.
33. Tantiwong P, Shanmugasundaram K, Monroy A, Ghosh S, Li M, DeFronzo RA, Cersosimo E, Sreiwijitkamol A, Mohan S, and Musi N. NF-kB activity in muscle from obese and type 2 diabetic subjects under basal and exercise-stimulated conditions. *American Journal Of Physiology Endocrinology And Metabolism* 299: E794-E801, 2010.
34. **Trappe TA, White F, Lambert CP, Cesar D, Hellerstein M, and Evans WJ.** Effect of ibuprofen and acetaminophen on postexercise muscle protein synthesis. *American Journal of Physiology: Endocrinology & Metabolism* 45: E551, 2002.

35. **Trenerry MK, Carey KA, Ward AC, and Cameron-Smith D.** STAT3 signaling is activated in human skeletal muscle following acute resistance exercise. *J Appl Physiol* 102: 1483-1489, 2007.

36. **Urso ML.** Anti-inflammatory interventions and skeletal muscle injury: benefit or detriment? *Journal Of Applied Physiology (Bethesda, Md: 1985)* 115: 920-928, 2013.

37. **Vella L, Caldow MK, Larsen AE, Tassoni D, Della Gatta PA, Gran P, Russell AP, and Cameron-Smith D.** Resistance exercise increases NF-κB activity in human skeletal muscle. *American Journal Of Physiology Regulatory, Integrative And Comparative Physiology* 302: R667-R673, 2012.

38. **Whisenant MJ, Panton LB, East WB, and Broeder CE.** Validation of submaximal prediction equations for the 1 repetition maximum bench press test on a group of collegiate football players. *Journal Of Strength And Conditioning Research / National Strength & Conditioning Association* 17: 221-227, 2003.

39. **Xin L, Hyldahl RD, Chipkin SR, and Clarkson PM.** A contralateral repeated bout effect attenuates induction of NF-κB DNA-binding following eccentric exercise. *Journal Of Applied Physiology (Bethesda, Md: 1985)* 2013.

40. **Zandi E, Rothwarf DM, Delhase M, Hayakawa M, and Karin M.** The IkappaB kinase complex (IKK) contains two kinase subunits, IKKalpha and IKKbeta, necessary for IkappaB phosphorylation and NF-kappaB activation. *Cell* 91: 243-252, 1997.

Figure Captions:

Figure 1: Protein expression of NF-κB subunits p65, p50, p52 and cREL. Representative Western blots for p-p65 normalized to total p65 (A), p50 normalized to p105 (B), p52 normalized to β-actin (C) and cREL normalized to β-actin (D) measured in muscle biopsy samples. Data are mean arbitrary units ± SEM. * denotes statistical significance from pre-exercise values in the placebo group; ^ denotes statistical significance from 24 h post-exercise in the control group (p<0.05). White bars = placebo group; black bars = ibuprofen group.
Figure 2: NF-κB subunits p65 (A) and p50 (B) binding to nuclear protein. Data are mean arbitrary units ± SEM. # denotes statistical significance from 0 h post-exercise in the control group; $ denotes statistical significance from 3 h post-exercise in the control group. White bars = placebo group; black bars = ibuprofen group.

Figure 3: RT-PCR analysis of NF-κB target genes IL-6 (A), IL-8 (B), MCP-1 (C), TNF-α (D) and COX-2 (E) in skeletal muscle cDNA. Data are mean arbitrary units ± SEM. * denotes statistical significance from pre exercise in the same treatment group; # denotes statistical significance from 0 h post-exercise in the same treatment group; ^ denotes statistical significance from 24 h post-exercise in the same treatment group (p<0.05). White bars = placebo group; black bars = ibuprofen group.

Supplementary Figure 1: Protein expression of total NF-κB p65, NF-κB p105 and β-actin. Data are mean arbitrary units ± SEM. White bars = placebo group; black bars = ibuprofen group.

Table legends:

Table 1: Subject characteristics and strength testing data. Values are mean values ± SEM. No significant differences were observed between the two groups.
Table 2: Primer sequences were designed using Primer Express Software v 3.0 (Applied Biosystems) using sequences accessed through Genbank and checked for specificity using nucleotide-nucleotide BLAST search.