VSR: A Unified Framework for Document Layout Analysis combining Vision, Semantics and Relations

Peng Zhang¹
Can Li¹
Liang Qiao¹
Zh anzhan Cheng²¹
Shiliang Pu¹
Yi Niu¹
Fei Wu²

1. Hikvision Research Institute, Hangzhou, China
2. Zhejiang University, Hangzhou, China
Background

◆ Document Layout Analysis

- Vision
- Semantics
- Relations

Image
Table
Text
Title
Background

- Multimodal document layout analysis frameworks
 - NLP-based framework

Components generation: (e.g. PDF parsing)

Feature Extraction: vision + semantics

Relation Module: Sequence labeling

Limitations:
 - Insufficient capabilities in layout modeling
Multimodal document layout analysis frameworks

- CV-based framework

Limitations:
- Limited semantics
- Simple and heuristic modality fusion strategy
- Lack of relation modeling between components
Background

- Multimodal document layout analysis frameworks
 - VSR (Vision, Semantics and Relations)

Advantages:
- Semantics at multiple granularities (Character & Sentence)
- Two-stream network and adaptive aggregation module to exploit vision and semantics effectively
- A GNN-based relation module to support relation modeling in both NLP- and CV-based methods
Method

- Two-stream ConvNets
- Multi-scale Adaptive Aggregation
- Relation Module
Method

- Two-stream ConvNets

input (document image): \(V_0 = x \in \mathbb{R}^{H \times W \times 3} \)

output (multi-scale visual features):
\[
\{V_2, V_3, V_4\} \quad V_i \in \mathbb{R}^{\frac{H}{2^i} \times \frac{W}{2^i} \times c_i^V}
\]

input (text embedding maps):
\[
S_0 = \text{LayerNorm}(\text{Chargrid} + \text{Sentgrid}) \in \mathbb{R}^{H \times W \times c_0^S}
\]

- character granularity
- sentence granularity

output (multi-scale semantic features):
\[
\{S_2, S_3, S_4\} \quad S_i \in \mathbb{R}^{\frac{H}{2^i} \times \frac{W}{2^i} \times c_i^S}
\]
Method

- Multi-scale Adaptive Aggregation

\[
\{V_2, V_3, V_4\} \quad V_i \in \mathbb{R}^{H_i \times W_i \times C_i}
\]

\[
\{S_2, S_3, S_4\} \quad S_i \in \mathbb{R}^{H_i \times W_i \times C_i}
\]

\[
AM_i = h\left(g\left([V_i, S_i]\right)\right)
\]

\[
FM_i = AM_i \odot V_i + (1 - AM_i) \odot S_i
\]

\[
\{FM_2, FM_3, FM_4\}
\]

[·]: concatenation

\(g\): convolutional layer
\(h\): activation function
Method

- Relation Module

Nodes: $Z = \{z_1, \cdots, z_N\}$

self-attention

Updated Nodes: $Z' = \{z'_1, \cdots, z'_N\}$

node features: $z_j = \text{LayerNorm}(f_j + e_j^{pos}(b_j))$

visual features: $f_j = \text{RoIAlign}(FM, b_j)$

position embeddings: $e_j^{pos}(b_j)$

probabilities: $\hat{p}_j = \text{Softmax}(\text{Linear}_{cls}(z'_j))$

regression coordinates: $\tilde{b}_j = \text{Linear}_{reg}(z'_j)$
Outline

- Background
- Method
- Experiments
Experiment

- **Datasets**

Dataset	Num of Samples	Metric	Classes	Support tasks
Article Regions	822	mAP	Title, Authors, Abstract, Body, Figure, Figure Caption, Table, Table Caption, References	CV-based method
PubLayNet	360K	AP@IOU 0.5-0.95	Text, Title, List, Figure, Table	
DocBank	500K	F1-score mAP	Abstract, Author, Caption, Equation, Figure, Footer, List, Paragraph, Reference, Section, Table, Title	CV-based method + NLP-based method
Experiment

- SOTA results
 - Article Regions

Table 1. Performance comparisons on Article Regions dataset

Method	Title	Author	Abstract	Body	Figure Caption	Table Caption	Reference	mAP		
Faster RCNN [31]	-	1.22	-	87.49	-	-	-	46.38		
Faster RCNN *w/ context* [31]	-	10.34	-	93.58	-	-	-	70.3		
Faster RCNN *reimplement*	100.0	51.1	94.8	98.9	94.2	91.8	97.3	67.1	90.8	87.3
Faster RCNN *w/ context reimplement*	100.0	60.5	90.8	98.5	**96.2**	91.5	**97.5**	64.2	91.2	87.8
VSR	**100.0**	**94**	**95**	**99.1**	**95.3**	**94.5**	**96.1**	**84.6**	**92.3**	**94.5**

Note: missing entries are because those results are not reported in their original papers.
Experiment

- **SOTA results**
 - PubLayNet

Table 2. Performance comparisons on PubLayNet dataset.

Method	Dataset	Text	Title	List	Table	Figure	AP
Faster R-CNN [43]	val	91.6	84	88.6	96	94.9	91
Mask R-CNN [43]							
VSR		96.7	93.1	94.7	97.4	96.4	95.7
Faster R-CNN [43]	test	91.3	81.2	88.5	94.3	94.5	90
Mask R-CNN [43]							
DocInsightAI		94.51	88.31	94.84	95.77	97.52	94.19
SCUT		94.3	89.72	94.25	96.62	97.68	94.51
SRK		94.65	89.98	95.14	97.16	97.95	94.98
SiliconMinds		96.2	89.75	94.6	96.98	97.6	95.03
VSR		96.69	92.27	94.55	97.03	97.90	95.69
Experiment

- SOTA results
- DocBank

Table 3. Performance comparisons on DocBank dataset in F1 Score.

Method	Abstract	Author	Caption	Equation	Figure	Footer	List	Paragraph	Reference	Section	Table	Title	Macro Average
BERT_base	92.94	84.84	86.29	81.52	100.0	78.05	71.33	96.19	93.10	90.81	82.96	94.42	87.70
RoBERT_base	92.88	86.18	89.44	82.48	100.0	80.14	73.53	96.46	93.41	93.37	83.89	95.11	88.91
LayoutLM_base	98.16	85.95	95.97	89.47	100.0	89.57	89.48	97.88	93.38	95.98	86.33	95.79	93.16
BERT_large	92.86	85.77	86.50	81.77	100.0	78.14	69.60	96.19	92.84	90.65	83.20	94.30	87.65
RoBERT_large	94.79	87.24	90.81	83.70	100.0	83.92	74.51	96.65	93.34	94.07	84.94	94.61	89.88
LayoutLM_large	97.84	87.83	95.56	89.74	100.0	91.46	90.04	97.90	93.32	95.96	86.79	95.52	93.50
X101	97.17	82.27	94.35	89.38	88.12	90.29	90.51	96.82	87.98	94.12	83.53	91.58	90.51
X101+LayoutLM_base	98.15	89.07	96.69	94.30	99.90	92.92	93.00	98.43	94.37	96.64	88.18	95.75	94.78
X101+LayoutLM_large	98.02	89.64	96.66	94.40	99.94	93.52	92.93	98.44	94.30	96.70	88.75	95.31	94.88
VSR	**98.29**	**91.19**	**96.32**	**95.84**	**99.96**	**95.11**	**94.66**	**98.66**	**95.05**	**97.11**	**89.24**	**95.63**	**95.59**

Table 4. Performance comparisons on DocBank dataset in mAP.

Models	Abstract	Author	Caption	Equation	Figure	Footer	List	Paragraph	Reference	Section	Table	Title	mAP
Faster RCNN	96.2	88.9	93.9	**78.1**	85.4	93.4	86.1	67.8	89.9	76.7	77.2	**95.3**	86.3
VSR	**96.3**	**89.2**	**94.6**	77.3	**97.8**	93.2	**86.2**	**69.0**	**90.3**	**79.2**	**77.5**	**94.9**	**87.6**
Ablation results
- Effects of multi-granularity semantic features

Table 5. Effects of semantic features at different granularities.

Vision	Semantics	Title	Author	Abstract	Body	Figure	Figure	Table	Table	Reference	mAP
✓	Char	100.0	51.1	94.8	98.9	94.2	91.8	97.3	67.1	90.8	87.3
✓	✓	100.0	71.4	96.5	98.9	95.6	93.6	96.9	68.6	89.9	90.2
✓	✓	100.0	60.2	95.5	99.0	97.8	93.2	98.9	73.0	91.2	89.8
✓	✓	100.0	84.3	96.1	98.7	95.7	92.5	99.4	71.4	92.4	**92.3**
Experiment

- Ablation results
 - Effects of two-stream network with adaptive aggregation

Table 6. Effects of two-stream network with adaptive aggregation.

Method	Title	Author	Abstract	Body	Figure Caption	Table	Table Caption	Reference	mAP	FPS
Single-stream at input level	R101	94.7	58.7	82.7	98.1	97.9	96.3	91.8	63.7	91.5
	R152	100.0	50.5	85.3	97.9	98.0	94.4	93.3	62.6	90.5
Single-stream at decision level	R101	99.5	67.6	95.1	98.8	95.0	93.2	96.6	70.7	91.3
	R152	100.0	80.2	91.0	99.4	96.0	92.4	98.3	73.8	91.7
VSR	R101	100.0	84.3	96.1	98.7	95.7	92.5	99.4	71.4	92.4
Experiment

- Ablation results
 - Effects of relation module

Table 7. Effects of relation module.

Method	Title	Author	Abstract	Body	Figure	Figure caption	Table	Table caption	Reference	mAP
Faster RCNN w/o RM	1	51.1	94.8	98.9	**94.2**	91.8	97.3	67.1	90.8	**87.3**
Faster RCNN w/ RM	1	**88.4**	**99.1**	**99.1**	85.4	**92.6**	**98.0**	79.2	**91.6**	**92.6**
VSR w/o RM	1	84.3	96.1	98.7	**95.7**	92.5	99.4	71.4	92.4	**92.3**
VSR w/ RM	1	**94**	95	**99.1**	95.3	**94.5**	96.1	**84.6**	92.3	**94.5**

Fig. 4. Qualitative comparison between VSR w/wo RM. Introducing RM effectively removes duplicate predictions and provides more accurate detection results (both labels and coordinates). The colors of semantic labels are: Figure, Body, Figure Caption.
https://davar-lab.github.io/index.html
See Far, Go Further