Characterization of Polymorphic Microsatellite Markers for Primula sikkimensis (Primulaceae) Using a 454 Sequencing Approach

Authors: Li, Chang-Han, Liu, Yun-Jiao, Zhang, Cai-Yun, Yan, Hai-Fei, Ge, Xue-Jun, et. al.

Source: Applications in Plant Sciences, 4(7)

Published By: Botanical Society of America

URL: https://doi.org/10.3732/apps.1600015
CHARACTERIZATION OF POLYMORPHIC MICROSATTELITE MARKERS FOR *PRIMULA SIKKIMENSI S* (PRIMULACEAE) USING A 454 SEQUENCING APPROACH

CHANG-HAN LI1,2,4, YUN-JIAO LII2,4, CAI-YUN ZHANG2, HAI-FEI YAN3, XUE-JUN GE3, AND GANG HAO2,5

1College of Life Sciences, South China Agricultural University, Guangzhou 510642, People’s Republic of China; 2,5*College of Life Sciences, South China Agricultural University, Guangzhou 510642, People’s Republic of China; and 3Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People’s Republic of China

Premise of the study: Microsatellite markers from *Primula sikkimensis* (Primulaceae) were developed for testing deep lineage divergence and speciation events.

Methods and Results: A total of 3112 microsatellites were identified from 61,755 unique reads though 454 pyrosequencing technology. Twenty-nine microsatellite loci were selected for PCR amplification and polymorphic analyses. Among the 29 tested markers, 17 microsatellite loci were further used for genotyping in three wild *P. sikkimensis* populations. The number of alleles varied from one to eight, and the observed heterozygosity ranged from 0.111 to 1.000. Ten simple sequence repeat loci could be successfully cross-amplified in two *Primula* species. The transferability values were 76.5% in *P. florindae* and 58.8% in *P. alpicola*, respectively.

Conclusions: These microsatellite markers will be valuable for testing the hypothesis of lineage divergence, genetic introgression, and cryptic speciation events between *P. sikkimensis* and its closely related taxa.

Key words: cross-amplification; deep lineage divergence; genetic introgression; microsatellites; *Primula sikkimensis*; Primulaceae.

The Himalayan region and the adjacent Hengduan Mountains of southwestern China, known as the Himalaya–Hengduan Mountains (HHM) region, have been designated as two of the world’s 34 most important biodiversity hotspots (Myers et al., 2000). The HHM region is considered to be the cradle of many endemic plant groups (Li and Li, 1993) and the center for rapid radiation of several large alpine genera, such as *Primula* L., *Pedicularis* L., and *Rhododendron* L., as well as the center of the Sino-Himalayan floristic subkingdom (Wu and Wang, 1983). Its high species endemism is a likely product of high net diversification rates in the region, as seen in páramo hotspots evaluated by Madriñán et al. (2013). A number of studies have been devoted to the differences between the two parts of the HHM region (the Himalayas and the Hengduan Mountains), such as the direction of the mountain ranges, the time scale of the Qinghai–Tibet plateau uplift process, and the effects of climate oscillations during the Quaternary (Favre et al., 2015). Correspondingly, the Sino-Himalayan floristic subkingdom in the HHM region has been recognized as including at least four subregions (Wu et al., 2011). However, it is not clear whether these differences between the Hengduan Mountains and the Himalayan regions have resulted in deep intraspecific lineage divergences and/or cryptic speciation in plant groups.

Primula sikkimensis Hook. (Primulaceae) is an endemic species in the HHM region (Hu and Kelso, 1996) and is the only species in *Primula sect. Sikkimensis* that is widely distributed in the region. It therefore provides a good example to examine the hypothesis of deep lineage divergence between the Himalaya and Hengduan mountains (Gao et al., 2007). Here, we developed a set of variable microsatellite markers using 454 pyrosequencing technology and further tested its cross-amplification in closely related taxa. These microsatellite markers will be important tools for surveying genetic divergence and cryptic speciation events in *P. sikkimensis* and its relatives.

METHODS AND RESULTS

Leaf samples of 62 individuals were collected in three populations from Chayu, Galongla, and Luding in China (Appendix 1). One individual of *P. sikkimensis* (sampled from Julong, China; Appendix 1) was used to isolate the microsatellite loci. Voucher specimens have been deposited at the herbarium of the South China Botanical Garden (IBSC), Guangzhou, Guangdong, China. Total DNA extraction of all samples was performed using a modified version of the cetyltrimethylammonium bromide (CTAB) protocol of Doyle and Doyle (1987). Microsatellite markers were isolated using a high-throughput genomic sequencing method as described by Wang et al. (2015). A shotgun library shearing 1 μg of genomic DNA was built using the DNA Library Preparation Kit (Roche Applied Science, Indianapolis, Indiana, USA) following the GS FLX+ library preparation protocol. The library was further enriched by hybridization with biotinylated primer probes. Leaf DNA libraries were sequenced on a Roche 454 GS FLX+ platform.

A total of 3112 microsatellites were identified from 61,755 unique reads though 454 pyrosequencing technology. Twenty-nine microsatellite loci were selected for PCR amplification and polymorphic analyses. Among the 29 tested markers, 17 microsatellite loci were further used for genotyping in three wild *P. sikkimensis* populations. The number of alleles varied from one to eight, and the observed heterozygosity ranged from 0.111 to 1.000. Ten simple sequence repeat loci could be successfully cross-amplified in two *Primula* species. The transferability values were 76.5% in *P. florindae* and 58.8% in *P. alpicola*, respectively.

Conclusions: These microsatellite markers will be valuable for testing the hypothesis of lineage divergence, genetic introgression, and cryptic speciation events between *P. sikkimensis* and its closely related taxa.

Key words: cross-amplification; deep lineage divergence; genetic introgression; microsatellites; *Primula sikkimensis*; Primulaceae.

1Manuscript submitted 10 February 2016; revision accepted 16 March 2016.

The authors thank Xu Yuan and Wang Zheng-Feng for providing plant material and helping in data analyses. The project was supported by the National Natural Science Foundation of China (2014A030310120) and the National Natural Science Foundation of China (31500173) and the Guangdong Natural Science Foundation (2014A030310120). These authors contributed equally to this work.

4 These authors contributed equally to this work.

5Author for correspondence: haogang@scau.edu.cn
doi:10.3732/apps.1600015

Applications in Plant Sciences 2016 4(7): 1600015; http://www.bioone.org/loi/apps © 2016 Li et al. Published by the Botanical Society of America. This work is licensed under a Creative Commons Attribution License (CC-BY-NC-SA).
Table 1. Characteristics of 17 microsatellite loci developed in *Primula sikkimensis*.

Locus	Primer sequences (5′–3′)	Repeat motif	Fluorescent dye	Allele size range (bp)	T_e (°C)	GenBank accession no.
S1	F: CCCCCTGTCGCAAGATTGCTT	(AG)$_{12}$	HEX	148–168	54	KU697616
	R: AAGATCGACCCACGATCAAT	(CT)$_{14}$	FAM	228–288	60	KU697617
S2	F: CCAACACACAAACACCC	(AAC)$_{13}$	HEX	148–191	60	KU697618
S3	F: CCACTTGATGGATTAGGCGG	(AG)$_{18}$	HEX	106–124	59.8	KU697619
S4	F: CCCTAGATCTCCAGCGAGTG	(AG)$_{16}$	HEX	124–131	60	KU697620
S5	F: GATTTGCAATAGCGAGAGCC	(AG)$_{16}$	HEX	98–122	60	KU697623
S6	F: GGGTGTTCCAAGATTTGGTG	(AG)$_{15}$	HEX	118–130	64.9	KU697624
S7	F: GGGCAGCGATGGATTAGGCGG	(CT)$_{13}$	HEX	160–182	60	KU697627
S8	F: GAGAGACCGATGGATTAGGCGG	(AG)$_{13}$	HEX	234–300	59.8	KU697622
S9	F: GGGTAGCCGTCTCTCTCC	(GT)$_{15}$	HEX	272–290	62.3	KU697624
S10	F: AAACGCTATTCTTGGTCTGAG	(AG)$_{16}$	HEX	260–328	60	KU697625
S11	F: CGATGAAAGAAACTGAGACGA	(AG)$_{16}$	HEX	198–218	59.8	KU697630
S12	F: CAAAACACACAAACACCC	(AAC)$_{13}$	HEX	148–191	60	KU697618
S13	F: ATGTTACCGACTCTTTCTCA	(AG)$_{16}$	HEX	234–300	59.8	KU697622
S14	F: GGAATTGAGAGGAGACGAGA	(AG)$_{16}$	HEX	98–122	60	KU697623
S15	F: ATGTTACCGACTCTTTCTCA	(AG)$_{16}$	HEX	118–130	64.9	KU697624
S16	F: GGTACCGGCTTATCCTTTTA	(TC)$_{14}$	FAM	234–300	59.8	KU697622
S17	F: GGTACCGGCTTATCCTTTTA	(AG)$_{15}$	HEX	118–130	64.9	KU697626
S18	F: GGTACCGGCTTATCCTTTTA	(AG)$_{15}$	HEX	118–130	64.9	KU697626
S19	F: GGTACCGGCTTATCCTTTTA	(AG)$_{15}$	HEX	118–130	64.9	KU697626

Note: T_e = annealing temperature.
genetic studies. Cross-amplification of these microsatellite loci in two related Primula species (P. alpica and P. florinidae) was successful, which enables further studies to clarify underlying genetic introgression and cryptic speciation events between P. sikkimensis and its closely related taxa.

LITERATURE CITED

DOYLE, J. L., and J. L. DOYLE. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. *Phytochemical Bulletin* 19: 11–15.

FAVRE, A., M. PACKERT, S. U. PAULS, S. C. JAING, D. ÜHL, I. MIHALAK, and A. N. MUELLNER-REBIL. 2015. The role of the uplift of the Qinghai-Tibetan Plateau for the evolution of Tibetan biota. *Biological Reviews* 90: 236–253.

GAO, L. M., M. MÖLLER, X. M. ZHANG, M. L. HOLLINGSWORTH, J. LIU, R. R. MILL, M. GIBRY, and D. Z. LI. 2007. High variation and strong phylogeographic pattern among cpDNA haplotypes in *Taxus wallichiana* (Taxaceae) in China and North Vietnam. *Molecular Ecology* 16: 4684–4698.

HÜ, C. M., and S. KELSO. 1996. Primulaceae. In Z. Y. Wu and P. H. Raven [eds.], *Flora of China*, vol. 15: Myrsinaceae through Loganiaceae. Science Press, Beijing, China, and Missouri Botanical Garden Press, St. Louis, Missouri, USA.

LI, X. W., and J. LI. 1993. A preliminary floristic study on the seed plants from the region of Hengduan Mountain. *Acta Botanica Yunnanica* 15: 217–231.

MADEŠNÍK, S., A. J. CORTÉS, and J. E. RICHARDSON. 2013. Páramo is the world’s fastest evolving and coolest biodiversity hotspot. *Frontiers in Genetics* 4: 192.

MYERS, N., R. A. MITTERMBAER, C. G. MITTERMBAER, G. A. B. DA FONSECA, and J. KENT. 2000. Biodiversity hotspots for conservation priorities. *Nature* 403: 853–858.

PEAKALL, R., and P. E. SMOUSE. 2012. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research— an update. *Bioinformatics* (Oxford, England) 28: 2537–2539.

ROUSSET, F. 2008. GENEPOP’007: A complete re-implementation of the GENEPOP software for Windows and Linux. *Molecular Ecology Resources* 8: 103–106.

ROZEN, S., and H. SCALESKY. 1999. Primer3 on the WWW for general users and biologist programmers. In S. MISENER and S. A. KRAWETZ [eds.], Methods in molecular biology, vol. 132: Bioinformatics methods and protocols, 365–386. Humana Press, Totowa, New Jersey, USA.

THEIL, T., W. MIHALAK, R. K. VARSHNEY, and A. GRANER. 2003. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (*Hordeum vulgare* L.). *Theoretical and Applied Genetics* 106: 411–422.

TÖTH, Z., G. GÁSPÁR, and J. JURKA. 2000. Microsatellites in different eukaryotic genomes: Survey and analysis. *Genome Research* 10: 967–981.

VAN OOSTERHOUT, C., W. F. HUTCHINSON, D. P. WILLS, and P. SHIPLEY. 2004. MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. *Molecular Ecology Notes* 4: 535–538.

WANG, X., J. LI, and Y. LI. 2015. Isolation and characterization of microsatellite markers for an endemic tree in East Asia, *Quercus variabilis* (Fagaceae). *Applications in Plant Sciences* 3: 1500032.

WU, Z. Y., and H. S. WANG. 1983. Plant geography of China. Science Press, Beijing, China.

WU, Z. Y., and H. S. WANG. 2011. Floristics of seed plants from China. Science Press, Beijing, China.

ZANE, L., L. BARGLIOMI, and T. PATARNELLO. 2002. Strategies for microsatellite isolation: A review. *Molecular Ecology* 11: 1–16.
APPENDIX 1. Locality and voucher information for *Primula* individuals used in this study. Voucher specimens are deposited at the herbarium of the South China Botanical Garden (IBSC), Guangzhou, Guangdong, China.

Species	Population code	Collection locality	Geographic coordinates	Voucher no.
Primula sikkimensis	XZCY	Chayu, Tibet	27°00′N, 100°10′E	Hao 934
	SCLD	Luding, Sichuan	29°55′N, 102°3′E	Hao 456
	XZGLL	Galongla, Tibet	29°16′N, 95°05′E	Wuxing s.n.
		Juulong, Sichuan	29°0′N, 101°30′E	Y2014163
Primula alpicola	—	Paizhen, Tibet	29°19′N, 95°19′E	Hao & Xu 120195
Primula florindae	—	Lulang, Tibet	29°42′N, 94°43′E	Hao & Xu 120281