The Joule Heating Effect on MHD Natural Convective Fluid Flow In A Permeable Medium Over A Semi-Infinite Inclined Vertical Plate In The Presence Of The Chemical Reaction

B. Shankar Goud1, P Bindu2, Pudhari Srilatha3, Y. Hari Krishna4,

1Department of Mathematics, JNTUH College of Engineering Hyderabad, Kukatpally, Telangana-508206.
2Department of Mathematics, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur-522502, India.
3Department of Mathematics, Institute of Aeronautical Engineering, Hyderabad.
4Department of Mathematics, ANURAG Engineering College, Anathagiri (v), Kodad, Suryapet, Telangana-508206.

Abstract: In the current examination, the impact of the radiation on MHD convective fluid flow stream in a permeable medium over a semi-infinite inclined plate with the impact of the Joule heating. The governing Equation changed into nonlinear ODE’s with the assistance of the similarity transformation. By utilizing the Runge-Kutta fourth order with shooting technique. The effect of the fluid parameters on velocity and temperature along with concentration profiles examined through graphs.

Keywords: RK 4th order, Joule heating effect, Radiation, MHD, Porous medium, ODE’s.

1. INTRODUCTION
For a few issues in engineering and reality, a few movements are brought about by changes in concentration and temperature. There are numerous transportation measures in certain field where heat and mass exchange happen. Magnetohydrodynamics (MHD) is the investigation of the progression of electrically directing fluids magnetic fields. Because of its particular significance in science and innovation, the investigation of MHD affected by radiation transmission of heat and mass has motivated numerous researchers. Sharma and Mishra [1] contemplated the joined impacts of free convection and chemical reaction with heat-mass transition conditions: A semianalytical method. Geetha et al. [2] dissected the free convective heat and mass exchange initiated by a consistent mass motion on an allegorical began a vertical plate with variable temperature. Awasthi et al. [3] explored the impacts of heat and mass motion on MHD free convection course through a permeable medium with radiation and first-request chemical reaction. Rout et al. [4] introduced the chemical reaction impact on MHD free convection stream in a micropolar fluid. Jhankal and Manoj [5] examined the MHD Boundary layer stream past over a contracting sheet with Heat move and Mass attractions. Impacts of thermal radiation on MHD free convection stream past a vertical permeable plate within the sight of chemical reaction-FEM was concentrated by Shankar Goud et al [6]. Thermal radiation impacts on the MHD stagnation point stream over an extending sheet with slip limit conditions were examined by Goud, B.S.Goud.[7]. Isah, B.Y., et al[8] examined the thermal radiation and variable weight impacts on regular convective heat and mass exchange fluid stream in a permeable medium. Mazumdar and Deka [9] dissected the MHD stream past an incautiously begun unending vertical plate within the sight of thermal radiation. Babu et.al [10] considered the radiation impact on MHD heat and mass exchange stream over a contracting sheet with mass pull. Paul et.al [11] examined the chemical reaction impact on transient free convective stream past an endless moving vertical chamber. Shankar Goud et.al [12] researched the stagnation point move through a permeable medium towards extending surface within the sight of heat generation. The impact of thermal radiation on the heat and mass exchange stream of a variable thickness fluid past a vertical permeable plate saturated
by a cross over magnetic field was broke down by Makinde and Ogulu [13]. Odell and Azab[14]
examined the impact of chemical reaction on transient MHD free convection over a moving vertical
plate. Hari Singh Naik et.al[15] inspected the radiation and Hall impact on MHD blended convection
of Casson fluid over an extending sheet. many authors investigated on different field of the plates[17-
30].

In this examination, the consolidated effect for a inclined and semi-vertical plate with MHD
movement of viscous, incompressible fluid in a porous medium within the sight of heat assimilation
and joule heating impact. The resultant arrangement is acquired by RK fourth order with shooting
method and presented through graphs.

2. MATHEMATICAL FORMULATION:
The current examination is essentially on MHD movement of a viscous fluid that is incompressible,
pot a in penetrable medium. A slanted and semi-infinite vertical plate is likewise contemplated in this
investigation. Along the heading of the stream, x*-axis is expected while the normal direction is
assumed as y*. Likewise, a quality B0 magnetic field is applied along the y*-axis. Along these lines,
Viscous dispersal, Joule Dissipation is significant in the energy condition., Cogley radiative heat
transition is additionally distinguished cruciality. In this investigation, all fluid properties are thought
to be consistent except density in the body force term. Under the above assumption, the fluid stream
governing conditions are

\[
\frac{\partial u}{\partial y} = 0 \quad \ldots (1)
\]

\[
v' \frac{\partial u}{\partial y} = u \frac{\partial u}{\partial y} + g\beta(T' - T_\infty) \cos \alpha + g\beta(C' - C_\infty) \cos \alpha - \left(\frac{u}{\rho} + \frac{\sigma B_0^2}{\rho} \right) u' \quad \ldots (2)
\]

\[
v' \frac{\partial V}{\partial y} = -\frac{k}{\rho c_p} \frac{\partial T}{\partial y} + \frac{u}{\rho c_p} \frac{\partial u}{\partial y} \quad \ldots (3)
\]

\[
v' \frac{\partial C}{\partial y} = D \frac{\partial^2 C}{\partial y^2} \quad \ldots (4)
\]

The solution of Eqn(1) is defined as \(v' = -v_0 = \text{constant} \quad \ldots (5) \)

Here the \(v_0 > 0 \) refers to the constant suction velocity which is normal to the plate. We have the
following Cogley et al[16] as defined below, radiative heat flux: \(\frac{\partial q_r}{\partial y} = 4(T' - T_\infty) \frac{\sigma B_0^2}{\rho} \quad \ldots (6) \)

Where \(I = \int K_A \frac{\partial e_A}{\partial y} d\lambda \), \(K_A \) is the absorption coefficient of the plate and \(e_A \) is Planck’s function.

The appropriate boundary conditions are in this case

\[
u' = 0, \quad \frac{\partial V}{\partial y} = -\frac{q}{k} \frac{\partial C}{\partial y} = -\frac{m}{D} \text{ at } y' = 0 \quad \ldots (7)
\]

\[
u' \rightarrow 0, \quad T' \rightarrow T_\infty, \quad C' \rightarrow C_\infty \quad \text{as } y' \rightarrow \infty \quad \ldots (8)
\]

Eqs(2-4) changed to following form with the help of Eqs(5-6) as following form

\[
-v_0 \frac{\partial u}{\partial y} = u \frac{\partial^2 u}{\partial y^2} + g\beta(T' - T_\infty) \cos \alpha + g\beta(C' - C_\infty) \cos \alpha - \left(\frac{u}{\rho} + \frac{\sigma B_0^2}{\rho} \right) u' \quad \ldots (9)
\]

\[
-v_0 \frac{\partial V}{\partial y} = -\frac{k}{\rho c_p} \frac{\partial T}{\partial y} + \frac{u}{\rho c_p} \frac{\partial u}{\partial y} \quad \ldots (10)
\]

\[
-v_0 \frac{\partial C}{\partial y} = D \frac{\partial^2 C}{\partial y^2} - K_c(C' - C_\infty) \quad \ldots (11)
\]

With the following non-dimensional parameters
\[f(\eta) = \frac{v_0}{v_0}, \quad \phi = \frac{v_0}{v_0}, \quad Gr = \frac{\beta m q v^2}{\kappa v_0^2}, \quad Gm = \frac{\beta n q v^2}{\kappa v_0^2}, \quad K = \frac{\beta k v_0^2}{v^2} \]

\[
M = \frac{\nu n_0^2}{\nu v_0}, \quad F = \frac{\nu n_0^2}{\nu v_0}, \quad Ec = \frac{\nu n_0^2}{\nu v_0}, \quad Pr = \frac{\nu n_0^2}{\nu v_0}, \quad Sc = \frac{\nu n_0^2}{\nu v_0}, \quad Kr = \frac{\nu n_0^2}{\nu v_0} \]

\[\phi = \frac{\left(C - C \right) \nu n_0^2}{\nu v_0}, \quad \theta = \frac{\left(\tau - \tau \right) \nu n_0^2}{\nu v_0}, \quad Q = \frac{\nu n_0^2}{\nu v_0} \]

After introducing the nondimensional parameter into Eqn (8-10) becomes as

\[\dot{f} + f' - \left(\frac{1}{K} + M \right) f' + Gr \theta + Gm \phi = 0 \]

\[\frac{1}{Pr} \dot{\theta} + \theta' - \left(\frac{\beta m q}{\beta n} v_0^2 - Q \right) \theta + Ec(f')^2 + Me f^2 = 0 \]

\[\frac{1}{Sc} \dot{\phi} + \phi' - \phi K r = 0 \]

Now the corresponding boundary conditions are transformed to

\[f = 0, \quad \theta' = -1, \quad \phi' = -1 \quad \text{at} \quad \eta = 0 \]

\[f \to 0, \quad \theta \to 0, \quad \phi \to 0 \quad \text{as} \quad \eta \to \infty \]

3. SOLUTION OF THE PROBLEM:

The arrangement of nonlinear coupled conventional differential conditions (12-14) trailed by the boundary conditions (15) are unravelled mathematically by the Runge-Kutta fourth-order alongside the shooting method. To start with, the higher-request ODE’s change into synchronous direct ODE’s of first order initial value problems by applying the shooting methods. By utilizing the RK fourth-order to the initial value problem. The progression size \(\Delta \eta = 0.001 \) is utilized to accomplish the mathematical arrangement as the convergence criterion with decimal place accuracy.

4. RESULTS AND DISCUSSION

Figures 2 to 13 explain the arrangements in the above examination. In the current study, the boundaries taken over are three dependent fluid dynamic factors (\(f, 0, \phi \)), one independent variable (\(\eta \)), body power control boundaries and thermophysical boundaries. The parametric defaults are \(M = 1, Gr = 5, Gm = 5, K = 0.5, Ec = 0.001, Pr = 0.71, Sc = 0.22, Kr = 2.5, F = 1 \). During calculations, characteristic parameter esteems are taken as \(M = 1, K = 0.5, Gr = Gm = 5, Ec = 0.001, Sc = 0.22, Kr = 0.71, F = 1 \) For each graph, numerical qualities are derived for all boundaries.

Figures 2 to 7 depict velocity profiles for changing boundaries. The impact of porous media that expanding \(Gr \) prompts higher speeds. Consequently, as \(Gr \) builds, the thermal lightness power increments. The proportion of solutal lightness power to thick power is \(Gr \). An expansion in fluid speed is portrayed with expanded estimations of \(Gr \).}

Figure 6 portrays the impact of the heat age boundary on the speed profile. Structure the figure shows that the speed bends increment with an expansion of the \(Q \) esteems.
Figure 7 purposeful the effect of the edge of tendency on the speed profile. It is noticed that the speed diminishes with the expansion in α.

Temperature profiles are outlined in Figures 8-11. From Figures 8 and 9, an expansion in Ec the outcome in temperature increments, and Pr depicts a lower temperature esteem. Pr is the proportion of energy diffusivity to thermal diffusivity. Consequently, it is sure that thermal diffusivity diminishes with an expansion in Pr subsequently initiating fluid temperature all through the limit layer area.

From figure 10, an expansion in F portrays a drop in temperature. In figure 11, the conduct of the heat age boundary on the temperature profile. It is discovered that the temperature increments with an expansion of Q esteems. Figures 12 and 13 spotlight on fixation profiles for the impact of Sc and Kr separately. On expanding estimations of Sc and Kr, fixation is found to decrease.

Because of the chemical reaction in the limit layer locale, the speed of the fluid diminishes. It very well may be perceived from this that the fixation field diminish is because of chemical species utilization. Additionally, lightness impacts will in general decrease, prompting a diminished speed of fluid stream accordingly. From figure 11, an expansion in Gr prompts lesser skin erosion. From figure 12, with an expansion in Ec, Nu is found to increment. Nu is the distinction in the pace of heat move. So also, from figure 13, on expanding Sc, Sherwood number Sh is found to increment. This shows that on expanding Sc, fluid fixation diminishes. Plainly, mass diffusivity is found to cause an expansion in the concentration within the boundary layer region.
Fig 3. Velocity v/s Gr

Fig 4. Velocity v/s Gm.
Fig. 5. velocity v vs Q

Fig. 6. velocity v vs α
5. CONCLUSIONS
The RK fourth order and shooting method gives the closed-form answers for the nonlinear ODEs. The impacts of the different physical boundaries associated with the stream issue are frequently examined and graphically tended to. The ends are as per the following, dependent on the perceptions and conversations above.

- The velocity fluid stream improves by expanding Gr, K, Q, and Gm.
- It has been indicated that the fluid velocity diminishes with the M and α rise.
- Also, the temperature increments with an expansion of Ec, and the converse impact happens with F, Pr, and Q increment.
- It has it was discovered that the fluid focus diminishes ascending in Sc and Kr.
REFERENCES:

[1]. Sharma, R.P. and S. Mishra, Combined effects of free convection and chemical reaction with heat–mass flux conditions: A semianalytical technique. Pramana, 2019. 93(6): p. 99.

[2]. Geetha, E. and R. Muthucumaraswamy, Free convective heat and mass transfer induced by a constant mass flux on a parabolic started vertical plate with variable temperature. International Journal of Advanced Scientific Technologies in Engineering Management Sciences, 2016. 2(6): p. 1-12.

[3]. Awasthi, B., Effects of heat and mass flux on MHD free convection flow through a porous medium with radiation and first order chemical reaction. International Journal of Applied Mechanics Engineering, 2018. 23(4): p. 855-871.

[4]. Rout, P., et al., Chemical reaction effect on MHD free convection flow in a micropolar fluid. Alexandria Engineering Journal, 2016. 55(3): p. 2967-2973.

[5]. Jhankal, A.K., Manoj, MHD Boundary layer flow past over a shrinking sheet with Heat transfer and Mass suction. International Journal of Computational Applied Mathematics, 2017. 2: p. 441-448.

[6]. B. Shankar Goud., P.S., Someswar Siddi., Amraj Srilatha., Effects of thermal radiation on MHD free convection flow past a vertical porous plate in the presence of chemical reaction- FEM. Journal of critical reviews, 2020. 7(18): p. 2600-2609.

[7]. Goud, B.S., Thermal Radiation Influences on MHD Stagnation Point Stream over a Stretching Sheet with Slip Boundary Conditions. International Journal of Thermo Fluid Science and Technology, 2020. 7(2): p. Paper No.070201.

[8]. Isah, B.Y., M.M. Altine, and S. Ahmad, Thermal Radiation and Variable Pressure Effects on Natural Convective Heat and Mass Transfer Fluid Flow in Porous Medium. Nigerian Journal of Basic Applied Sciences, 2019. 27(1): p. 48-58.

[9]. Mazumdar, M. and R. Deka, MHD flow past an impulsively started infinite vertical plate in presence of thermal radiation. J Romanian Journal of Physics, 2007. 52(5-6): p. 529-535.

[10]. Babu, P., J. Rao, and S. Sheri, Radiation effect on MHD heat and mass transfer flow over a shrinking sheet with mass suction. Journal of applied fluid Mechanics, 2014. 7(4): p. 641-650.

[11]. Paul, A. and R.K. Deka, Chemical reaction effect on transient free convective flow past an infinite moving vertical cylinder. International Journal of Chemical Engineering Article ID 531513 2013. 2013.

[12]. B. Shankar Goud, G.Narender., E. Ranjit Kumar, Stagnation Point Flow through a Porous Medium towards Stretching Surface in the Presence of Heat Generation. International Journal of Engineering and Advanced Technology, 2019. 9(1): p. 2646-2650.

[13]. Makinde, O.D. and A. Ogulu, The effect of thermal radiation on the heat and mass transfer flow of a variable viscosity fluid past a vertical porous plate permeated by a transverse magnetic field. Chemical Engineering Communications, 2008. 195(12): p. 1575-1584.

[14]. Al-Odat, M., Al-Azab, TA Influence of chemical reaction on transient MHD free convection over a moving vertical plate. J Emirates Journal for Engineering Research, 2007. 12(3): p. 15-21.

[15]. Hari Singh Naik, B.Shankar.Goud., P.Suresh, M.V.Ramana Murthy, Radiation and Hall Effect on MHD mixed convection of Casson fluid over a stretching sheet. International Journal of Advanced Science and Technology, 2020. 29(7): p. pp. 1121-1131.

[16]. Cogley, A.C.V., Walter G Gilles, Scott E "Differential approximation for radiative transfer in a nongrey gas near equilibrium”. J AIAA Journal, 1968. 6(3): p. 551-553.

[17]. B. Shankar Goud, Pudhari Srilatha, Someshwar Siddi, Amraj Srilatha “Effects of thermal radiation on MHD free convection flow past a vertical porous plate in the presence of chemical reaction- FEM”, Journal of Critical Reviews, 7(18), 2020, pp.2600-2609.

[18]. E. Ranjit Kumar, B.Shankar Goud, B. Suresh Babu , G.Srinivas “Diffusion-Thermo Effect on a Free Combined MHD Flow with Mass Diffusion and Temperature Variation past an
Inclined Oscillating Plate”, International Journal of Recent Technology and Engineering, Volume-8 Issue-4, November 2019, pp.9430-9435.
[19]. P. Pramod Kumar, B. Shankar Goud, Bala Siddulu Malga “Finite element study of Soret number effects on MHD flow of Jeffrey fluid through a vertical permeable moving plate”, Partial Differential Equations in Applied Mathematics, 1 (2020) 100005.
[20]. B. Shankar Goud, Pudhari Srilatha, MN Raja Shekar “Effects of Mass Suction on MHD Boundary Layer Flow and Heat Transfer over a Porous Shrinking Sheet with Heat Source/Sink” International Journal of Innovative Technology and Exploring Engineering, 8(10), pp-263-266, 2019.
[21]. Hari Singh Naik, B. Shankar Goud, P. Suresh, M. V. Ramana Murthy “Suction/injection effects on free convective fluid flow over a moving vertical porous plate with variable time”, Journal of Critical Reviews, 7(18), 2020, pp. 1324-1328.
[22]. B. Shankar Goud, D Mahendar, and M. N. Raja Shekar “Thermal radioactive influence on MHD free convection flow across a porous medium in a vertical surface with temperature”, AIP Conference Proceedings 2246, pp. 020081-7 (2020).
[23]. Shankar Goud, Dharmendar Reddy Yanala “Radiation and magnetic field effects of free convective flow over a linearly moving permeable vertical surface in the presence of suction”, Journal of Xi'an University of Architecture & Technology, Page No: 2696-2701, 12(5), 2020.
[24]. Ibrahim S.M., Mabood F., Suneetha K., Lorenzini G. (2017), ‘Effects of chemical reaction on combined heat and mass transfer by laminar mixed convection flow from vertical surface with induced magnetic field and radiation’, Journal of Engineering Thermophysics, 26(2), PP.234-255.
[25]. Y. Hari Krishna, G.VenkataRamana Reddy, and O.D. Makinde “Chemical reaction effect on MHD flow of Casson fluid with a porous stretching sheet”, Defect and Diffusion Forum, 389, 2018, pp. 100-109
[26]. N Vijaya, Y Hari Krishna, K Kalyani, GVR Reddy “Soret and radiation effects on unsteady flow of a Casson fluid through porous vertical channel with expansion and contraction”, Frontiers in Heat and Mass Transfer, 11, 2018, pp.1-11
[27]. G.V.R. Reddy And Y. Hari Krishna, “Soret and Dufour effects on MHD micropolar fluid flow over a linearly stretching sheet, through a non -darcy porous medium”, Int. J. of Applied Mechanics and Engineering,23(2),2018,pp.485-502.
[28]. Chandra Sekhar K.V. (2018), ‘MHD free convective heat and mass transfer flow past an accelerated vertical plate through a porous medium with hall current, rotation and soret effects’, International Journal of Mechanical and Production Engineering Research and Development ,8(3), 2018, PP. 685-706.
[29]. Konda J.R., Madhusudhana N.P., Konijeti R.(2018), ‘MHD mixed convection flow of radiating and chemically reactive Casson nanofluid over a nonlinear permeable stretching sheet with viscous dissipation and heat source’, Multidiscipline Modeling in Materials and Structures ,14(3), 2018,PP. 609-630
[30]. Sekhar K.V.C., Manjula V.(2018), ‘MHD slip flow of casson fluid over an exponentially stretching inclined permeable sheet with soret-dufour effects’, International Journal of Civil Engineering and Technology .9(3), PP. 400-417.