Liver resections can be performed safely without Pringle maneuver: A prospective study

Maurer, Christoph A; Walensi, Mikolaj; Käser, Samuel A; Künzli, Beat M; Lötscher, René; Zuse, Anne

Abstract: AIM: To evaluate liver resections without Pringle maneuver, i.e., clamping of the portal triad.
METHODS: Between 9/2002 and 7/2013, 175 consecutive liver resections (n = 101 major anatomical and n = 74 large atypical > 5 cm) without Pringle maneuver were performed in 127 patients (143 surgeries). Accompanying, 37 wedge resections (specimens < 5 cm) and 43 radiofrequency ablations were performed. Preoperative volumetric calculation of the liver remnant preceded all anatomical resections. The liver parenchyma was dissected by water-jet. The median central venous pressure was 4 mmHg (range: 5-14). Data was collected prospectively.
RESULTS: The median age of patients was 60 years (range: 16-85). Preoperative chemotherapy was used in 70 cases (49.0%). Liver cirrhosis was present in 6.3%, and liver steatosis of < 10% in 28.0%. Blood loss was median 400 mL (range 50-5000 mL). Perioperative blood transfusions were given in 22/143 procedures (15%). The median weight of anatomically resected liver specimens was 525 g (range: 51-1850 g). One patient died postoperatively. Biliary leakages (n = 5) were treated conservatively. Temporary liver failure occurred in two patients.
CONCLUSION: Major liver resections without Pringle maneuver are feasible and safe. The avoidance of liver inflow clamping might reduce liver damage and failure, and shorten the hospital stay.

DOI: https://doi.org/10.4254/wjh.v8.i24.1038

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-135142
Journal Article
Published Version

Originally published at:
Maurer, Christoph A; Walensi, Mikolaj; Käser, Samuel A; Künzli, Beat M; Lötscher, René; Zuse, Anne (2016). Liver resections can be performed safely without Pringle maneuver: A prospective study. World Journal of Hepatology. 8(24):1038-1046.
DOI: https://doi.org/10.4254/wjh.v8.i24.1038
Liver resections can be performed safely without Pringle maneuver: A prospective study

Christoph A Maurer, Mikolaj Walensi, Samuel A Käser, Beat M Künzli, René Lötscher, Anne Zuse

Abstract

AIM
To evaluate liver resections without Pringle maneuver, i.e., clamping of the portal triad.

METHODS
Between 9/2002 and 7/2013, 175 consecutive liver resections (n = 101 major anatomical and n = 74 large atypical > 5 cm) without Pringle maneuver were performed in 127 patients (143 surgeries). Accompanying, 37 wedge resections (specimens < 5 cm) and 43 radiofrequency ablations were performed. Preoperative volumetric calculation of the liver remnant preceded all anatomical resections. The liver parenchyma was dissected by waterjet. The median central venous pressure was 4 mmHg (range: 5-14). Data was collected prospectively.

RESULTS
The median age of patients was 60 years (range: 16-85). Preoperative chemotherapy was used in 70 cases (49.0%). Liver cirrhosis was present in 6.3%, and liver steatosis of ≥ 10% in 28.0%. Blood loss was median 400 mL (range 50-5000 mL). Perioperative blood transfusions were given in 22/143 procedures (15%). The median weight of anatomically resected liver specimens
was 525 g (range: 51-1850 g). One patient died postoperatively. Biliary leakages (n = 5) were treated conservatively. Temporary liver failure occurred in two patients.

CONCLUSION
Major liver resections without Pringle maneuver are feasible and safe. The avoidance of liver inflow clamping might reduce liver damage and failure, and shorten the hospital stay.

Key words: Liver resection; Pringle maneuver; Blood loss

© The Author(s) 2016. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: This retrospective cohort study on 175 consecutive liver resections (n = 101 major anatomical and n = 74 large atypical > 5 cm) shows that major liver resections without Pringle maneuver are feasible and safe. The avoidance of liver inflow clamping might reduce liver damage and failure, and shorten the hospital stay.

Maurer CA, Walensi M, Käser SA, Künzli BM, Lötscher R, Zuse A. Liver resections can be performed safely without Pringle maneuver: A prospective study. World J Hepatol 2016; 8(24): 1038-1046 Available from: URL: http://www.wjgnet.com/1948-5182/full/v8/i24/1038.htm DOI: http://dx.doi.org/10.4254/wjh.v8.i24.1038

INTRODUCTION
Massive haemorrhage is a key factor associated with poorer prognosis and outcome of patients undergoing liver resection[1,2,3]. The amount of blood loss correlates with postoperative morbidity and mortality[3]. Moreover, blood transfusion is linked to a decrease in cancer free survival[3]. Hence, it is a major goal to minimize the blood loss during liver resection. There are three main phases during liver resections when bleeding may occur: The liver mobilisation phase, the parenchymal dissection phase and the revascularization phase[4]. Portal triad clamping (PTC), also known as Pringle maneuver[5], is the most widely used technique to reduce bleeding during the parenchymal dissection phase. In addition, vascular clamping can also be applied to control venous backflow[6,7]. Thus, total hepatic vascular exclusion can be achieved when combining PTC with clamping of the liver veins or the inferior vena cava cranial and caudal of the liver[5]. Further techniques to minimize intraoperative blood loss such as hypoventilation[9] and reduction of the central venous pressure (CVP)[10] have been developed over the last decades.

Although partial or complete vascular clamping results in reduction of blood loss, there are concerns regarding ischemia/reperfusion (I/R) injury to the liver remnant mediated by cytokines and reactive oxygen species[11,12]. Therefore, various attempts have been made to decrease the I/R-injury associated with prolonged clamping of liver vessels: Use of drugs[13], in situ cooling[14], intermittent clamping[15,16], ischemic preconditioning[17] and ischemic postconditioning[18]. Ischemic preconditioning involves I/R for a short period of time before exposure to prolonged I/R. The molecule nitric oxide plays a critical role in the early[11,12] and late phases[11] of ischemic preconditioning. Furthermore, during I/R-injury neutrophil and kuffer cell-induced oxidative stress, hepatic circular disturbance as well as inflammatory processes occur. Circular dysfunction is based on sinusoidal endothelial damage[20] as well as unbalance of vasoconstrictive and vasodilating transmitters such as endothelin[20], tumor necrosis factor α[21], and interleukins[22]. Other mediators and pathways, e.g., CD39 and purinergic signalling, are believed to play a role in hepatic ischemia and reperfusion injury[23].

Thus, the molecular hepatic system is far better understood today and recent advances in surgical strategies and perioperative care have made liver resections much safer, allowing low mortality and morbidity in experienced hands. However, the question remains whether the risk of resective liver surgery can be further reduced by complete avoidance of any vascular clamping of the liver remnant and hence by minimizing the I/R injury.

The purpose of this retrospective single center data analysis was to assess the feasibility and safety of major liver resections without any Pringle maneuver or its variations. In the second step, we were interested in any differences in outcome between three subgroups: Anatomical resections, atypical resections and the combination of both, i.e., the combination of anatomical and atypical resection.

MATERIALS AND METHODS

Study population
From September 2002 through July 2013, a prospective database was established including 175 liver resections [anatomical resections (n = 101) and large atypical resections (specimens > 5 cm in at least one diameter, n = 74)] which were performed at the occasion of 143 consecutive liver surgeries. Twenty-five patients had two stage procedures, 2 patients had 3 or more staged liver resections. The indications for these 143 liver surgeries were liver metastases (n = 91, from the following primaries: 73 colorectal cancer, 2 ovarian, 5 breast, 1 gallbladder, 1 esophageal, 1 stomach, 1 leiomyosarcoma, 1 melanoma, 2 gastrointestinal stroma tumor, and 4 with unknown primary), hepatocellular carcinoma (n = 11), follicular nodular hyperplasia (n = 4), liver hemangioma (n = 9), carcinoma of the gallbladder (n = 4), cholangiolar carcinomas (n = 8), liver adenomas (n = 4), hepatocellulitis (n = 4), echinococal cysts (n = 5), benign liver cysts (n = 2) and one sclerotic steatohepatitis. Patients’ characteristics were summarized in Table 1. The extent of hepatectomy was depending on tumor size and localization, severity of liver steatosis and cirrhosis, age, nutritional status, preoperatively determined liver function and preopera-
Table 1 Patients’ characteristics shown as total and as subgroups according to the types of resection n (%)

Patient characteristics	Total	Anatomical resections	Atypical resections > 5 cm	Combination of anatomical and atypical resections > 5 cm	P-values
No. of liver resections	175	84	54	37	n.d.
No. of liver surgeries	143	77	50	16	n.d.
No. of surgeries with ≥ 2 similar resections	14 (9.8)	7 (9.1)	4 (8.0)	3 (18.8)	n.d.
No. of surgeries with ≥ 1 additional wedge resection	29 (20.3)	10 (13.0)	14 (28)	5 (31.3)	n.d.
No. of surgeries with ≥ 1 additional radiofrequency ablation	25 (17.5)	7 (9.1)	11 (22)	7 (43.8)	n.d.

Demographics

Gender (female/male)	74/69	41/36	24/26	9/7	0.4804
BMI (kg/m²)	25.5 (17.4-53.2)	24.8 (17.4-53.2)	27.1 (18.1-36.0)	25.2 (18.8-29.6)	0.3660
Age (yr)	60.0 (16-85)	59.0 (16-85)	61.5 (28-84)	63.5 (22-78)	0.4952
Preoperative ASA scores 1/2/3/4	8/77/58/0	3/42/32/0	2/28/20/0	3/7/6/0	0.4247

Indications for liver surgery	5/54/41/0	4/54/42/0	4/56/40/0	19/44/37/0	< 0.0001
Malignant primary liver tumors	23 (16.1)	15 (19.5)	8 (16.0)	0	
Liver metastases	91 (63.6)	44 (57.1)	34 (68.0)	13 (81.2)	
Benign liver tumors	19 (13.3)	10 (13.0)	6 (12.0)	3 (18.8)	
Others	10 (7.0)	8 (10.4)	2 (4.0)	0	
Preoperative chemotherapy	70 (49.0)	33 (42.9)	26 (52)	11 (68.8)	0.4281
Steatosis grade of normal liver	9 (6.3)	5 (6.5)	4 (8.0)	0	0.8566
Steatosis 0%-9% (grade 0)	103 (72.0)	56 (72.7)	37 (74.0)	10 (62.5)	
Steatosis 10%-29% (grade 1)	26 (18.2)	14 (18.2)	8 (16.0)	4 (25.0)	
Steatosis ≥ 30% (grade 2)	14 (9.8)	7 (9.1)	5 (10.0)	2 (12.5)	
Cirrhosis (Child-Pugh A)	9 (6.3)	5 (6.5)	4 (8.0)	0	

Values are total number of patients (%); 1Continuous variables are expressed as median (range); 2P-values of categorical variables; 3Calculated by χ² test and continuous ones by One-way Anova analysis of variance. No significance between the group of anatomical, atypical, and combined resections for selected variables was found, except for indications for surgery; 4Liver wedge resection is defined as obtaining a liver specimen with a maximum diameter of less than 5 cm. n.d.: Not determined; BMI: Body mass index.

Table 2 Extent of anatomical resections based on segmental and sectorial anatomy of the liver according to Brisbane classification

Type of anatomical liver resection	n
Extended right hemihepatectomy	6
Extended left hemihepatectomy	3
Right hemihepatectomy	31
Left hemihepatectomy	12
Right posterior sectorectomy	4
Right anterior sectorectomy	1
Left lateral sectionectomy	19
Segmentectomy	19
Bisegmentectomy	24
Trisegmentectomy	2
Total of anatomical liver resections	121

Ventricular assistive chemotherapy. The various extents of anatomical resections were classified according to Brisbane nomenclature and were shown in Table 2.

Intraoperative anasthesia management

Surgery was generally performed under low central venous pressure (LCVP). Therefore, the patient’s internal jugular vein was cannulated using a dual-channel catheter and CVP was continuously measured. Values below 5 mmHg were targeted by limiting the volume of crystalloidal infusion (lactated Ringer) and stimulating diuresis with furosemide (10-20 mg i.v.). At the same time, mean arterial blood pressure, determined within the radial artery, was maintained above 60 mmHg by intravenous infusion of norepinephrine (0-10 μg/min). During dissection of liver parenchyma intermittent positive pressure ventilation was reduced to an end-expiratory level of zero mmHg to further minimize the CVP.

Surgical procedures

Following an intravenous antibiotic single shot prophylaxis, either a roof-top or midline abdominal incision without thoracotomy was used in all patients. After exclusion of extrahepatic intraabdominal tumor spread by exploration of the abdominal cavity and the hepatoduodenal ligament, careful visual and bimanual examination of the liver was performed. At least partial mobilization of the liver including dissection of round and falciform ligament was done in almost all procedures. Inferior hepatic veins were dissected for hemihepatectomies and/or segment 1 resections, and as necessary in other types of resection. Intraoperative ultrasonography of the liver was systematically done to accurately determine the number and location of liver tumors and their relation to hepatic blood vessels and bile ducts. A Tru-Cut®-needle (CareFusion Temno needle 14G, 11 cm, distributed by Admedics, Zuchwil, Switzerland) biopsy of grossly normal liver was sent to frozen section to assess the grades of steatosis and cirrhosis.

Blood vessels of the liver were clamped and dissected from the later liver specimen, only. Temporary or intermittent clamping of vascular structures of the liver remnant or of the liver hilum has been strictly avoided in all patients. And, neither ischemic preconditioning nor
ischemic postconditioning has been used in any of the patients. Only twice, an anterior approach according to Launois\(^{[25]}\) was necessary due to a large tumor mass of the right liver lobe.

In all surgeries, the liver parenchyma was cut by means of water-jet dissection. The hereby visualized intrahepatic blood vessels and bile ducts were dissected between ligatures or metal clips, small ones were electro-coagulated. The resection surface was treated punctually by argon plasma coagulation and checked for small bile leaks using white gauzes. The resection surface was then covered by the fibrin-based hemostytic Tachosil\(^{[26]}\) or Beralast\(^{[27]}\) (Takeda/Nycomed, Basel, Switzerland). In all patients a silicone drain (EasyFlow\(^{®}\), Teleflex Medical GmbH, Kernen, Germany) without suction was inserted.

Perioperative assessment of liver function

The liver function was assessed by measurement of indocyanine green (ICG) clearance\(^{[28]}\). The dye ICG is metabolized and eliminated by the liver, only. Therefore, their elimination velocity is directly corresponding with the functional capacity of the liver. Plasma disappearance rate (range of normal values from 18%-25%) of ICG and the residual ICG after 15 min (R15, normal range between 0%-10%) were examined pre-, intra- and postoperatively. At the beginning of the series, 6 patients had measurement of galactose elimination capacity (GEC) instead of ICG-clearance. No intra- or postoperative controls of GEC were performed at that time. Additionally, various serum parameters were measured repeatedly, most of them daily.

The volumina of total functional liver and the anticipated functional liver remnant (FLR) were calculated by computed tomography (CT), when a resection volume of more than 40% of the total functional liver volume was anticipated. Twenty percent to 25% of total functional liver volume was regarded as a sufficient FLR in an otherwise healthy and non-steatotic liver, and 30%-40% in a steatotic or chemotherapeutically pretreated liver, respectively. In advance of 8 anatomical liver resections, induction of an atrophy-hypertrophy complex by embolization or ligation of right or left portal vein was regarded necessary. One patient underwent preoperative chemoembolization. Patients with cirrhosis Child-Pugh stage B were not considered candidates for surgery, and stage A patients (n = 9) had ≤ 2 liver segments resected.

Outcome measures and perioperative management

Intraoperative blood loss was calculated by adding the blood volume in the suction device plus the blood kept in towels. The indications for blood transfusions were determined individually, according to patients’ preoperative heart status and haemoglobin. Generally, patients with ASA-scores 1 or 2 did not receive blood transfusions before the haemoglobin decreased below a value of 80 g/L. For patients with coronary heart disease or hemodynamic instability, the administration of blood transfusion was less restrictive. Blood transfusions referred to the total time of hospital stay.

Postoperatively, patients were closely monitored at the intensive care unit (ICU). The Simplified Acute Physiology Score (SAPS) I\(^{[27]}\) was used to assess the severity of illness in intensive care patients. The SAPS II predicts the risk of hospital mortality and provides an reliable estimation of the risk of death\(^{[27]}\).

Bilirubin content was measured from the silicon drainage tube at days 2 and 4, or daily when the drained fluid was suspicious for bile leak. Bile leakage was defined as suggested by Koch et al\(^{[28]}\) as bilirubin concentration in the drain fluid at least 3 times the serum bilirubin concentration on or after postoperative day 3; or further as the need for radiologic or operative intervention resulting from biliary collections or biliary peritonitis\(^{[29]}\).

Resected specimens were weighed immediately after removal. Specimens of malignant neoplasias were sent to the department of pathology for marking the resection margins with ink before formaline fixation.

Liver cirrhosis was defined as F4 fibrosis according to the METAVIR score\(^{[29]}\).

Statistical analysis

Data in this study are presented as median and range or as mean ± standard error of mean. Statistical analysis of data was performed using the GraphPad PRISM6 software (GraphPad Software Inc., San Diego, CA, United States). Comparisons of continuous variables between groups were analyzed using one-way ANOVA analysis for multiple comparisons. Categorical variables were compared by chi-square test (\(\chi^2\) test). Values of \(P < 0.05\) are considered statistically significant.

RESULTS

Data related to the operative procedure such as operation time, CVP, blood loss and substitution, length of ICU stay, SAPS, and specimen weight is summarized in Table 3. Data are presented as total of the \(n = 143\) liver surgeries and as subgroups according to the types of resection. From the 22 patients needing perioperative blood transfusions, 7 received them intraoperatively, 1 preoperatively and 14 postoperatively.

In patients with provided preoperative volumetry of the liver, \(i.e.,\) patients with anticipated minimum resected volume of \(> 40\%\) of total functional liver volume, the median effectively resected functional volume was 53\% (20%-76\%). A R0-resection at the liver site could be achieved in 98/114 (86.0\%) procedures for malignant liver disease. No local R2-resection did occur.

Laboratory results

Perioperative increases or decreases of relevant laboratory parameters are shown in Table 4, as total and as subgroups according to the types of resection. Table 5 summarizes the ICG-measurements preoperatively, intraoperatively immediately upon removal of the speci-
Maurer CA et al. Liver resections safe without Pringle maneuver

Table 3 Perioperative parameters and characteristics of hepatic resections, shown as total and as subgroups according to the types of resection

Perioperative data	Total (n = 143)	Anatomical resections (n = 77) > 5 cm (n = 50)	Atypical resections (n = 50)	Combination of anatomical and atypical resections (n = 16)	P-values	
Intraoperative parameters	Median operation time (min)	361 (78-726)	386 (134-726)	299 (78-692)	362 (120-567)	0.0061^1
	Median CVP_{min} during liver resection (mmHg)	4 (-5 to 14)	3 (-5 to 12)	5 (-3 to 14)	4 (-4 to 12)	0.0351
	Median total blood loss per procedure (n = 143) (mL)	500 (50-5000)	500 (50-5000)	400 (50-1500)	700 (150-2400)	0.0214^1
	No. of patients needing ECs (% of n = 143 procedures)^1	22 (15%)	14 (18%)	6 (12%)	2 (13%)	0.9854
	Mean number of ECU during total hospital stay, per procedure (n = 143)^1	0.4 ± 0.1	0.5 ± 0.1	0.3 ± 0.1	0.2 ± 0.1	0.4844
Postoperative parameters	Median length of ICU stay (d)	3 (0-44)	3 (0-15)	3 (0-44)	3 (2-5)	0.2960
	Median length of hospital stay (d)	13 (3-99)	14 (3-95)	12 (4-99)	12 (7-32)	0.0451^1
	Maximum SAPS, median (range)	27 (7-40)	26 (14-40)	27 (7-40)	27 (14-39)	0.6001
	Median weight of resected liver tissue (g) per procedure (n = 143)	340 (8-1850)	525 (51-1850)	53 (8-490)	352 (40-1018)	< 0.0001^1

^1Since some patients had simultaneously more than 1 resection, the percentage of the perioperative need for ECs is calculated per number of procedures.

^2Continuous variables are expressed as median (range), except presented as mean ± SEM; *Denote statistical significance among resections in the group of anatomical, atypical, and combined resections. CVP: Central venous pressure; EC: Erythrocyte concentrate; ECU: Erythrocyte concentrate unit; ICU: Intensive care unit; SAPS: Simplified acute physiology score.

Morbidity and mortality

There was one death in our series due to a preoperatively unknown high-grade stenosis at the origin of the superior mesenteric artery with consecutive extended mesenteric infarction in the postoperative course. Hence, in-hospital mortality was 1/143 procedures (0.7%).

The following major procedure-specific complications (9/143 procedures, 6.3%) occurred: 1 hemorrhage on postoperative day 9 after right hemihepatectomy in a patient needing therapeutic dosages of heparin, 5 biliary leakages treated conservatively and 2 temporary liver failures. From the later, one occurred in a patient after right hemihepatectomy who suffered from ischemic colon perforation, fecal peritonitis and multiorgan dysfunction. Another patient with extended left hemihepatectomy including segment 1 and includes hepatic artery and bile duct reconstruction for a Klatskin tumor developed intercurrent portal vein thrombosis with prolonged hepatic insufficiency. Relief was achieved by insertion of a portal stent. Finally, 1 patient with right hemihepatectomy developed postoperative peritonitis from an accidental small bowel leak, needing reintervention and laparostomy. No hepato-renal syndrome did occur.

Overall, the following advanced grades of complications according Ding et al^39 were encountered: 2 patients with grade IIIA, 4 with grade IVB and 1 with grade V complication.

DISCUSSION

During hepatectomy, portal triad clamping developed by Pringle^5^ is still commonly applied today as a routine procedure and gold standard to limit haemorrhage worldwide^18,31-35^.

Clamping of the hepatoduodenal ligament and hence control of the hepatic vascular inflow is thought to reduce blood loss and to avoid blood transfusions^5^, both associated with increased perioperative morbidity and mortality^4,36,37^ as well as impaired long-term outcome^24^.

Albeit the huge importance of this topic, only few studies investigated the value of Pringle maneuver in the past. No randomized study using a standard Pringle maneuver could be found in literature. And to our knowledge, only three randomized trials comparing liver resections with or without intermittent Pringle maneuver were performed so far^38-40^.

The value of the intermittent Pringle maneuver is even more questionable, since these studies report conflicting results. Therefore, a very recent paper from Hoekstra et al^26^ was entitled "vascular occlusion or not during liver resection: The continuing story".

Feasibility and safety of liver resections without Pringle maneuver

In the present paper, a consecutive series of major liver resections is reported without any Pringle maneuver during the total operation time in all procedures. Accordingly, a conversion to Pringle maneuver as a salvage clamping was necessary in none of the patients. Furthermore, only a minor number of patients needed perioperative blood transfusions and in-hospital-mortality was minimal with 0.7%. Hence, the feasibility and safety
to principally avoid the Pringle maneuver seems to be demonstrated.

Comparison of blood loss and blood transfusions without Pringle maneuver in the present series vs the literature with Pringle maneuver

In the present series, having used water jet dissection but no Pringle maneuver for all hepatic resections, the median blood loss of 500 mL was comparable with other reported series using a Pringle maneuver varying between 370 and 610 mL. Additionally, the percentage of patients who needed perioperative blood transfusions was 15 in this data and again comparable with data from studies having used Pringle maneuver, ranging from 13% to 36%. It is noteworthy that excessive intraoperative blood losses in this series, in one patient up to 5000 mL, were exceptional and resulted all from bleeding from the inferior vena cava or the liver veins that would not have been improved by the use of a Pringle maneuver.

Conditions facilitating the avoidance of Pringle maneuver

The following points are regarded as crucial if avoidance of Pringle maneuver is intended: Good exposure of the liver, careful planning of the dissection plane(s) on behalf of the preoperative imaging procedures and the intraoperative ultrasound, knowledge of the liver anatomy and its variants, low CVP during parenchyma dissection phase and a completed learning curve in major hepatic surgery. Furthermore, various dissection tools such as water jet, harmonic knife, ultrasound, humid bipolar clamp and other devices are thought to facilitate a well controlled parenchyma dissection and avoidance of major blood loss.

How to obtain low CVP?

The goal is a CVP below 5 mmHg at the time point of hepatic parenchyma dissection. There is a direct relation between the pressure of the hepatic sinusoidal system with CVP. Bleeding during resection phase is proportional to the portal vein pressure.
to the pressure gradient across vascular walls and diameter of injured vessels. Therefore, lowering of the CVP contributes to minimizing the blood loss during dissection phase\cite{45}. Besides a close cooperation and communication between surgeon and anesthesiologist, the following measures may support lowering the CVP: Omitance of any positive endexpiratory pressure during ventilation, restrictive intravenous fluid administration, forced diuresis, and a liberal use of drugs sustaining arterial blood pressure.

Advantages of liver resections without Pringle maneuver

The most important advantage of abstaining from Pringle maneuver is the fact that the I/R injury to the liver remnant is almost nihil. This is especially relevant in patients with pre-existing liver damage since the toxic effects of liver ischemia with consecutive liver dysfunction lead to morbidity and mortality\cite{15}.

Furthermore, PTC may lead to significant higher systemic vascular resistance combined with decrease in cardiac index as well as increase in mean arterial pressure and, thus, increasing risk of perioperative cardio-vascular complications\cite{45}.

Although various modifications of Pringle maneuver such as intermittent PTC, ischemic preconditioning and more recently pharmacological preconditioning have been developed to limit these disadvantages\cite{16,46-48}, excessive bleeding during reperfusion period partially counterbalances the positive effects regarding minimizing damage of residual liver tissue.

Perioperative monitoring of I/R-injury and liver function

Ischemia/reperfusion (I/R)-injury is usually monitored by measuring levels of aminotransaminases, bilirubin and prothrombin. The trauma during liver surgery caused by manipulation and parenchyma dissection usually result in a mild to moderate increase of transaminases in the serum (not more than 10-fold normal values), with a quick tendency to recover from postoperative day 1 or 2 on. Such mild increases in liver enzymes are usually not relevant for clinical outcome. However, strong elevation of transaminases (more than 20-fold normal level) with a continuous increase over at least 3 postoperative days may be the result of I/R-injury or decreased blood supply to the liver remnant. Levels of transaminases are well correlating with the ischemic damage\cite{45}. I/R-injury may cause postoperative liver failure, mainly in preconditioned patients (e.g., steatosis) with lower tolerance towards ischemia. In the present series without Pringle maneuver, no death occurred due to postoperative liver failure. Only 2 patients experienced temporary liver insufficiency, one due to a septic complication, and another due to postoperative thrombosis of portal vein. It is supposed that these favorable results with regard to postoperative liver failure may be attributed to the maintenance of optimum blood supply to the liver remnant at any time and hence the avoidance of I/R-injury. Accordingly, only moderate increases of transaminases (AST and ALT) in this series were noticed (Table 4).

Additional serum markers that are thought to have stronger validity and more sensitive indication for liver failure and prognosis are increased bilirubin and ammonia as well as decreased prothrombin levels\cite{50}. No serious changes in these parameters were observed with the exception of the 2 mentioned patients with severe complications.

Comparison of anatomical vs atypical resection

As expected, no significant difference in perioperative and laboratory parameters was observed between the group of anatomical resections vs the group of atypical resections, with two exceptions: Operation time was significantly shorter and prothrombin time was significantly less reduced in the atypically resected group when compared to the group with anatomical resections. Especially, blood loss, blood transfusions and the length of stay in the ICU were similar in both groups.

Limitations of the study

Data of this study originates from a single center. However, it is a consecutive series with prospective data recording. Large atypical liver resections were also included in this study although they would not belong to major liver resections per definition. However, with view on the study aim, we considered the inclusion of atypical liver resections of at least 5 cm diameter as appropriate, since atypical resections may be accompanied by technical difficulties and inadvertent blood loss similar to segment oriented liver resections.

In conclusion, the data of this study suggests that major liver resections may be performed safely without Pringle maneuver. The low morbidity and mortality rate might be due to minimizing the postoperative liver failure rate by avoidance of the I/R injury to the liver. Anatomical and large atypical liver resections may attempted to be performed without portal triad clamping.

ACKNOWLEDGMENTS

The authors thank the co-workers of the department of anesthesia and intensive care unit for the appreciated help in optimizing the intra- and post-operative management for the patients undergoing liver surgery.

COMMENTS

Background

The role of Pringle maneuver in liver resection is under debate.

Research frontiers

Different techniques of Pringle maneuver have been compared.

Innovations and breakthroughs

The present study shows that major liver resections may be performed safely without Pringle maneuver.

Applications

Major liver resections can be done avoiding Pringle maneuver.
Peer-review
This study suggests that major liver resections may be performed safely without Pringle maneuver.

REFERENCES
1. Belghiti J, Noun R, Zante E, Ballet T, Sauvanet A. Portal triad clamping or hepatic vascular exclusion for major liver resection: A controlled study. Ann Surg 1996; 224: 155-161 [PMID: 8757378 DOI: 10.1097/00000658-199608000-00007]
2. Makuuchi M, Takayama T, Gunvön P, Kosuge T, Yamazaki S, Hasegawa H. Restrictive versus liberal blood transfusion policy for hepatocarcinoma in cirrhotic patients. World J Surg 1989; 13: 644-648 [PMID: 2554598 DOI: 10.1007/BF01658893]
3. Matsumata T, Ikeda Y, Hayashi H, Kamakura T, Taketomi A, Sugimachi K. The association between transfusion and cancer-free survival after curative resection for hepatocellular carcinoma. Cancer 1993; 72: 1866-1871 [PMID: 8393966]
4. de Boer MT, Molenear IJQ, Porte RJ. Impact of blood loss on outcome after liver resection. Dig Surg 2007; 24: 259-264 [PMID: 17657150 DOI: 10.1159/000103656]
5. Pringle JH. V. Notes on the Arrest of Hepatic Hemorrhage Due to Trauma. Ann Surg 1908; 48: 541-549 [PMID: 17862242 DOI: 10.1097/00000658-190810000-00005]
6. Hoeckstra LT, van Trigt GD, Reiners MJ, Busch OR, Gouma DJ, van Gulik TM. Continuous versus intermittent portal triad clamping for liver resection: a controlled study. Ann Surg Innov 2010; 4: 2 [PMID: 2046153 DOI: 10.1186/1759-1164-4-2]
7. Heaney JP, Stanton WK, Halbert DS, Seidel J, Vice T. An im-
8. Chouillard EK, Gumbs AA, Cherqui D. Vascular clamping in liver surgery: physiology, indications and techniques. Ann Surg Innov Res 2010; 4: 2 [PMID: 2046153 DOI: 10.1186/1759-1164-4-2]
9. Hansel P, Al-Mukhtar A, Takayama T, Gunvön P, Kosuge T, Yamazaki S, Selzner M, Valentino KL, Fritz LC, Srinivasan A. Protection of sinusoidal endothelial cells occurs during liver preservation injury by a caspase-dependent mechanism. Transplantation 1999; 68: 89-96 [PMID: 10428274 DOI: 10.1097/00000709-199907150-00018]
10. Zhang JX, Pegoli W, Clemens MG. Endothelin-1 induces direct constriction of hepatic sinusoids. Am J Physiol 1994; 266: G624-G632 [PMID: 8179001]
11. Funaki H, Shimizu K, Harada S, Tsyuma H, Fushida S, Tani T, Miwa K. Essential role for nuclear factor kappaB in ischemic preconditioning for ischemia-reperfusion injury of the mouse liver. Transplantation 2002; 74: 551-556 [PMID: 12352918 DOI: 10.1097/01.TPS.000007890-200208270-00021]
12. Suzuki T, Toleda-Pereyra LH. Interleukin 1 and tumor necrosis factor production as the initial stimulants of liver ischemia and reperfusion injury. J Surg Res 1994; 57: 253-258 [PMID: 7518017 DOI: 10.1016/j.jv.1994.1140]
13. Boldt G, Banz Y, Kromer A, Sun X, Wu Y, Graubardt N, Rellstab A, Nowak K, Enjoji K, Li X, Junger W, Gandin D, Robson SC. Deletion of CD39 on natural killer cells attenuates hepatic ischemia/reperfusion injury in mice. Hepatology 2010; 51: 1702-1711 [PMID: 20146261 DOI: 10.1002/hep.23510]
14. Strasberg SM. Nomenclature of hepatic anatomy and resections: a review of the Brisbane 2000 system. J Hepatobiliary Pancreat Surg 2005; 12: 351-355 [PMID: 16258801 DOI: 10.1007/s00534-005-0999-7]
15. Launois B, Jamieson G. The posterior intrahepatic approach for hepatectomy or removal of segments of the liver. Surg Gynecol Obstet 1992; 174: 155-158 [PMID: 1734576]
16. Hsieh CB, Chen CJ, Chen TW, Yu JC, Shen KL, Chang TM, Liu YC. Accuracy of indocyanine green pulse spectrophotometry clearance test for liver function prediction in transplanted patients. World J Gastroenterol 2004; 10: 2394-2396 [PMID: 15285026 DOI: 10.3748/wjg.v10.i16.2394]
17. Agha A, Bein T, Fröhlich D, Höfler S, Krenz D, Jauch KW. [“Simplified Acute Physiology Score” (SAPS II) inna the assessment of severity of illness in surgical intensive care patients]. Chirurg 2002; 73: 439-442 [PMID: 12089827 DOI: 10.1007/s00104-001-0734-4]
18. Koch M, Garden OJ, Padbury R, Rahbari NN, Adam R, Capussotti L, Fan ST, Yokoyama Y, Crawford M, Makuuchi M, Christophi C, Banting S, Brooke-Smith M, Uasoff V, Nagino M, Maddern G, Hugh JT, Vauthy JN, Greig P, Rees M, Nimura Y, Figueras J, DeMatteo RP, Büchler MW, Weitl J. Bile leakage after hepatobiliary and pancreatic surgery: a definition and grading of severity by the International Study Group of Liver Surgery. Surgery 2011; 149: 680-688 [PMID: 21316725 DOI: 10.1016/j.surg.2010.12.002]
19. Poynard T, Bedossa P, Opolon P. Natural history of liver fibrosis progression in patients with chronic hepatitis C. The OBSVIRC, METAVIR, CLINIVIR, and DOSVIRC groups. Lancet 1997; 349: 825-832 [PMID: 9121257 DOI: 10.1016/S0140-6736(96)67042-8]
20. Dindo D, Demartines N, Clavien PA. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg 2004; 240: 205-213 [PMID: 15273542 DOI: 10.1097/01.sla.0000130836.54934.ae]
21. Belghiti J, Hiramatsu K, Benoist S, Massault P, Sauvanet A, Farges O. Seven hundred forty-seven hepatectomies in the 1990s: an update to evaluate the actual risk of liver resection. J Am Coll Surg 2000; 191: 38-46 [PMID: 10898182 DOI: 10.1016/
Maurer CA et al. Liver resections safe without Pringle maneuver

S1072-7515(00)00261-1

32 Jarnagin WR, Gonen M, Fong Y, DeMatteo RP, Ben-Porat L, Little S, Corvera C, Weber S, Blumgart LH. Improvement in perioperative outcome after hepatic resection: analysis of 1,803 consecutive cases over the past decade. Ann Surg 2002; 236: 397-406; discussion 406-7 [PMID: 12366677 DOI: 10.1097/00000658-200201000-00001]

33 Imamura H, Seyama Y, Kokudo N, Maema A, Sugawara Y, Sano K, Takayama T, Makuchii M. One thousand fifty-six hepatectomies without mortality in 8 years. Arch Surg 2003; 138: 1198-1206; discussion 1206 [PMID: 14698967 DOI: 10.1001/archsurg.138.11.1198]

34 Poon RT, Fan ST, Lo CM, Liu CL, Lam CM, Yuen WK, Yeung C, Wong J. Improving perioperative outcome expands the role of hepatocellular carcinoma in management of benign and malignant hepatobiliary diseases: analysis of 1222 consecutive patients from a prospective database. Ann Surg 2004; 239: 698-708; discussion 708-710 [PMID: 15383797 DOI: 10.1097/01.sla.0000141195.66155.0c]

35 van der Bilt JD, Livestro D, van den Elsken, Borel, R. Randomized clinical trial of liver resection with and without intermittent Pringle manoeuvre. Br J Surg 2003; 90: 33-41 [PMID: 12520572 DOI: 10.1002/bjs.40418]

36 Lee KF, Cheung YS, Wong J, Lai PB. Randomized clinical trial of open hepatectomy with or without intermittent Pringle manoeuvre. Br J Surg 2012; 99: 1203-1209 [PMID: 22828986 DOI: 10.1002/bjs.8863]

37 Capussotti L, Muratore A, Ferrero A, Massucco P, Ribero D, Polastri R. Randomized clinical trial of liver resection with and without hepatic pedicle clamping. Br J Surg 2006; 93: 685-689 [PMID: 16703653 DOI: 10.1002/bjs.5301]

38 Man K, Fan ST, Ng IO, Lo CM, Li CL, Wong J. Prospective evaluation of Pringle manoeuvre in hepatectomy for liver tumors by a randomized study. Ann Surg 1997; 226: 704-711; discussion 711-713 [PMID: 9405659 DOI: 10.1097/00000658-199712000-00007]

39 Lee KF, Wong J, Ng W, Cheung YS, Lai P. Feasibility of liver resection without the use of the routine Pringle manoeuvre: an analysis of 248 consecutive cases. HPB (Oxford) 2009; 11: 332-338 [PMID: 19718361 DOI: 10.1111/j.1477-2578.2009.00053.x]

40 Chau GY, Lui WY, King KL, Wu CW. Evaluation of effect of hepatic vascular occlusion and the Pringle manoeuvre during hepatic resection for patients with hepatocellular carcinoma and impaired liver function. World J Surg 2005; 29: 1374-1383 [PMID: 16240064 DOI: 10.1007/s00268-005-7766-4]

41 Rau HG, Duesel AF, Wurzbacher S. The use of water-jet dissection in open and laparoscopic liver resection. HPB (Oxford) 2008; 10: 275-280 [PMID: 18773110 DOI: 10.1002/bjs.6141]

42 Hassana M, Metrakos P, Fisette A, Doi SA, Schricker T, Lattermann R, Carvalho G, Wykes L, Molla H, Cianfoni K. Randomized clinical trial of the impact of insulin therapy on liver function in patients undergoing major liver resection. Br J Surg 2013; 100: 610-618 [PMID: 23339047 DOI: 10.1002/bjs.9034]

43 Melendez JA, Arslan V, Fischer ME, Wuest D, Jarnagin WR, Fong Y, Blumgart LH. Perioperative outcomes of major hepatic resections under low central venous pressure anesthesia: blood loss, blood transfusion, and the risk of postoperative renal dysfunction. J Am Coll Surg 1998; 187: 620-625 [PMID: 9849736 DOI: 10.1016/S1072-7515(98)00240-3]

44 Choukér A, Schachter T, Schauer R, Dugas M, Löhe F, Martignoni A, Polwein B, Niklas M, Rau HG, Jauch KW, Peter K, Thiel M. Effects of Pringle manoeuvre and ischaemic preconditioning on haemodynamic stability in patients undergoing elective hepatectomy: a randomized trial. Br J Anaesth 2004; 93: 204-211 [PMID: 15194628 DOI: 10.1093/bja/aeh195]

45 Clavien PA, Yadav S, Sindram D, Bentley RC. Protective effects of ischemic preconditioning for liver resection performed under inflow occlusion in humans. Ann Surg 2000; 232: 155-162 [PMID: 10903590 DOI: 10.1097/00000658-200008000-00001]

46 Rahbari NN, Wente MN, Schernmer P, Diener MK, Hoffmann K, Motschall E, Schmidt J, Weitz J, Büchler MW. Systematic review and meta-analysis of the effect of portal triad clamping on outcome after hepatic resection. Br J Surg 2008; 95: 424-432 [PMID: 18314921 DOI: 10.1002/bjs.6141]

47 Bismuth H, Castaing D, Garden OJ. Major hepatic resection under total vascular exclusion. Ann Surg 1989; 210: 13-19 [PMID: 2742411 DOI: 10.1097/00000658-198907000-00002]

48 Balzan S, Belgithi J, Farges O, Ogata S, Sauvanet A, Delefosse D, Durand F. The “50-50 criteria” on postoperative day 5: an accurate predictor of liver failure and death after hepatectomy. Ann Surg 2005; 242: 824-828, discussion 828-829 [PMID: 16327492]

P- Reviewer: Chen JL, Morales-Gonzalez J
S- Editor: Qiu S L- Editor: A E- Editor: Li D
