Systematic review and meta-analysis of efficacy and safety of hydroxychloroquine and chloroquine in the treatment of COVID-19

Niti Mittal1*, Rakesh Mittal1, M. C. Gupta1, Jyoti Kaushal1, Ankita Chugh2, Daisy Khera3, Surjit Singh4*

1Department of Pharmacology, Postgraduate Institute of Medical Sciences, Rohtak, Haryana, 2Departments of Dentistry, 3Pediatrics and 4Pharmacology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India

* Dr N Mittal and Dr S Singh contributed equally to this article

ABSTRACT

Repurposed drugs like hydroxychloroquine (HCQ) and chloroquine (CQ) are being tested for potential therapeutic role in COVID-19. We aimed to evaluate efficacy and safety of HCQ and CQ in COVID-19. Using PubMed, EMBASE, medRxiv, Google Scholar, clinicaltrials.gov, electronic search was carried out to identify relevant articles till June 2020 with re-evaluation in last week of November 2020. Observational and interventional clinical studies comparing efficacy of CQ or HCQ to standard management or other drug/s for SARS-CoV-2 infection patients were included. Cochrane review manager version 5.3 was used for synthesis of meta-analysis results. For randomized controlled trials, risk of bias was assessed using Cochrane Collaboration risk of bias assessment tool, version 2.0 (ROB-2). ROBINS-I was used for quality assessment of observational studies. Overall evidence quality generated by review was graded as per GRADE Recommendation. A total of 903 studies were screened. Nineteen studies were included in synthesis of meta-analysis with total of 4,693, 1,626, and 6,491 patients in HCQ/CQ, HCQ/CQ + AZ and control groups, respectively. HCQ/CQ treatment was associated with significantly increased rates of virological cure (OR = 2.08, 95%CI = 1.36–3.17; P = 0.0007) and radiological cure (OR = 3.89, 95%CI = 1.35 – 11.23; P = 0.01) compared to control. HCQ/CQ had no difference in unadjusted mortality rate (unadjusted OR = 0.98 95% CI = 0.70–1.37, P = 0.89, random effect model) and adjusted hazard ratio for mortality (adjusted HR = 1.05, 95%CI = 0.86–1.29; P = 0.64). However, a significant increase in odds of disease progression (OR = 1.77, 95%CI = 1.46–2.13; P < 0.00001) and QT prolongation (OR = 11.15, 95%CI = 3.95–31.44; P < 0.00001) was noted.

The results with HCQ/CQ and azithromycin combination were similar to HCQ/CQ mono-therapy. In the light of contemporary evidence on effectiveness of HCQ/CQ, judicious and monitored use of HCQ/CQ for treatment of COVID-19 patients is recommended in low to middle income countries with emphasis on no mortality benefit.

Registration number of Systematic review. Register in PROSPERO database: CRD42020187710

Keywords: Azithromycin, chloroquine, COVID-19, hydroxychloroquine, SARS-CoV-2

Introduction

Infection due to a newly detected β-coronavirus was identified as responsible for an outbreak of pneumonia cases in Wuhan, China during December 2019.11 Due to its similarity to SARS-CoV (responsible for major coronavirus outbreak in 2003) on genome sequencing, this novel coronavirus was labelled as severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and the resulting illness as coronavirus disease-2019 (COVID-19).28

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

For reprints contact: WKHLRPMedknow_reprints@wolterskluwer.com

How to cite this article: Mittal N, Mittal R, Gupta MC, Kaushal J, Chugh A, Khera D, et al. Systematic review and meta-analysis of efficacy and safety of hydroxychloroquine and chloroquine in the treatment of COVID-19. J Family Med Prim Care 2021;10:2126-39.
Multiple clinical trials are being conducted internationally to come forward with effective treatment options for COVID-19. Besides newer investigational strategies being explored, current emphasis is also on few repurposed drugs like lopinavir/ritonavir, oseltamivir, ribavirin, interferons, chloroquine, hydroxychloroquine, etc. In particular, hydroxychloroquine (HCQ) and chloroquine (CQ) have received much media coverage after being labeled as potential “game changers” by American President for COVID-19 treatment.

CQ and HCQ have a long lasting history as effective antimalarial and immuno-modulatory agents. HCQ, a derivative of CQ with an extra hydroxyl group, has a superior safety profile as compared to chloroquine. In vitro studies have reported inhibitory potential of CQ and HCQ against SARS-CoV and SARS-CoV-2. CQ/HCQ have been reported to block multiple steps in viral life cycle, for example, viral binding and entry into cell, release of viral genome, viral replication, virion assembly and budding. Hence, HCQ/CQ furnish a promising avenue in treatment of COVID-19.

Despite the fact that HCQ/CQ have shown remarkable results against SARS-CoV-2 in in vitro studies, confirmatory findings from clinical trials are mandatory to bring about an evidence for utilizing them as weapons to combat COVID-19 infection. The current review was conducted with an objective to evaluate the therapeutic potential of CQ/HCQ given alone and in combination with azithromycin for treatment of confirmed COVID-19 infection caused by SARS-CoV-2, in comparison to standard management or other drugs.

Material and Methods

Protocol registration
The current systematic review was conducted on basis of PRISMA “(Preferred Reporting Items for Systematic Reviews and Meta-Analyses)” statement and “Cochrane guidelines for Systematic Reviews of Interventions”. Prospective registration of review was done in the database of the “International Prospective Register of Systematic Reviews (PROSPERO)” (protocol number CRD42020187710).

Study eligibility criteria
Observational (prospective/retrospective, case-control/cohort) and interventional clinical studies [randomized clinical trials (RCT)] assessing the efficacy and safety of HCQ/CQ in comparison to standard management or drug/s other than HCQ/CQ for treatment of SARS-CoV-2 infected patients were considered eligible for inclusion. Case reports, case series, expert opinions, literature review articles, in vitro and non-clinical studies were excluded.

Search strategy and study selection
Electronic search was done using PubMed, EMBASE, Google Scholar, preprint database like medRxiv and registry for clinical trial, that is, clinicaltrials.gov to identify pertinent articles till 15th June, 2020. Reevaluation of literature was done for any completed RCTs in last week of November, 2020. We manually conducted bibliographic search to identify other relevant studies. No restriction with respect to language and publication status was followed. Search strategy was developed consisting of these key terms and other associated MeSH (medical subject headings) terms: “hydroxychloroquine,” “chloroquine,” “COVID,” “novel coronavirus,” “SARS-CoV-2,” “COVID-19.”

Two independent researchers assessed the titles and abstracts collected for their potential inclusion and removed duplicates. For the eligible studies, quality assessment of full text articles was carried out by two authors independently. Any dissent between authors was sorted out by agreement or discussion with third review author.

Study data extraction
Two review authors extracted data on a structured form tested a priori consisting of items regarding study in general, institution or country of conduct, design, interventions, participants, efficacy, and safety outcomes.

Study outcomes
The primary efficacy objectives were virological cure (defined as negative RT-PCR test for SARS-CoV-2 RNA) and mortality (number of deaths per group). The secondary outcomes included clinical improvement (defined as relief or alleviation of respiratory symptoms, fever, improvement in SpO2), radiological cure (pulmonary findings on CT scan), discharge from hospital (defined as number of patients discharged in each group), disease progression (defined as ICU admission, need for intubation, increased severity of illness or radiological progression on CT scan). Safety outcomes reported were general and cardiovascular (cardiac arrest or arrhythmias or QT prolongation) adverse events.

Quality assessment of studies
Two researchers independently appraised methodological quality of studies according to “Cochrane Collaboration risk of bias assessment tool, version 2.0 (ROB-2)” for RCTs and ROBINS-I (“The Risk Of Bias In Non-randomized studies of Interventions”) guidelines for observational studies. The plots for risk of bias were synthesized using Robvis (visualization tool).

Publication bias was assessed using funnel plot. Egger’s regression test was also performed.

Data synthesis assessment and outcome measures
For summarizing dichotomous data, odd ratios (OR) and adjusted hazard ratios (AHR) with 95% confidence intervals (CI) were used as applicable. All analyses were conducted using Review Manager Version 5.3. software. Heterogeneity was assessed using I^2 statistic with I^2 of 25, 50, and 75% representing low, medium, or large heterogeneity. For significant (I^2 >50%) heterogeneity,
sensitivity analysis was performed after exclusion of studies. The results were presented using fixed effect model. For significant heterogeneity, analysis, and interpretation with random effect was also assessed if sensitivity analysis with exclusion of studies was not possible.\(^{[11,12]}\)

Evidence quality as per GRADE Pro
Quality of evidence of review was evaluated using GRADE pro GDT (guideline development tool) software,\(^{[13,14]}\) using parameters like study design, ROB, directness of outcomes, heterogeneity, precision within results, bias due to publication, estimate effect, dose relationship with response and confounders. Optimal information size (OIS) was derived as 245 subjects in either of the groups. Overall GRADE thus obtained can be high quality, moderate, low or very low quality evidence.

Results

Study selection
Study inclusion process has been represented using PRISMA flow chart [Figure 1]. Of the total 903 records screened, 18 studies were assessed in qualitative (systematic) and 19 (7 randomized controlled trials\(^{[15‑21]}\) and 12 observational studies\(^{[22‑33]}\)) in quantitative analysis. Study by Mehra et al. was excluded because of retraction of article by the authors.\(^{[34]}\) Due to non-availability of data on study design, patients, and outcomes, Gao et al.\(^{[35]}\) was excluded. Absence of efficacy data with HCQ/CQ (alone or combined with azithromycin) exclusive of other antivirals, precluded the inclusion of Shabrawishi et al.\(^{[36]}\) study in quantitative analysis. One study\(^{[37]}\) published in Chinese language was translated into English using Google translator web service prior to review conduct.

Study characteristics
Table 1 depicts the characteristics of various RCTs and observational studies (OS) included in this systematic review and outcomes data reported therein.

Methodological Quality - Risk of bias (ROB)
Among RCTs, overall ROB was recorded as high for Barbosa et al. (quasi-randomized design),\(^{[15]}\) some concerns for Chen J et al.\(^{[17]}\) and Huang et al. RCT\(^{[19]}\) (lack of details on allocation concealment in both), and low for Chen Z et al.,\(^{[18]}\) Tang et al.,\(^{[16]}\) WHO solidarity trial\(^{[21]}\) and recovery

![Figure 1: PRISMA flow chart depicting study selection process](image-url)
Table 1: Characteristics of clinical studies evaluating HCQ/CQ for treatment of COVID-19

Study ID (Study design)	Institution/Country of study conduct	Study Interventions (n)/Regimen	Study control (n)/Regimen	Study population characteristics	Study outcomes	
Barbosa et al. 2020[13] (Quasi-randomised, open label, parallel group trial)	University School of Medicine, Michigan, USA	HCQ (32)	Standard supportive care (31)	Males: 37 (58.7%); Age: 62.7±15.1 years	Change in respiratory support level at 5 days: HCQ: 0.63±0.79, Supportive care: 0.16±0.64; P=0.013; Change in Absolute Lymphocyte Count (K/µL): HCQ: -0.16±0.52, Supportive care: -0.61±0.38; P=0.413; Change in neutrophil to lymphocyte ratio: HCQ: +9.55±21.5, Supportive care: +1.58±1.26; P=0.051; Mortality: HCQ: 4/31 (12.9%); Supportive care: 1/32 (3.1%); P=0.196; Torsades de pointes: no reports during study timeframe. 28-day negative conversion rate of SARS-CoV-2: 85.8% (73.8-93.8%) in HCQ vs 81.3% (71.2-89.6%) in SOC only arm; P=0.341 (similar negative conversion rates for the two groups at days 4, 7, 10, 14, and 21). Symptom relief at 28 days (fever, respiratory symptoms, SpO2): 59.9% (45.7-53.3%) with HCQ vs 66.6% (39.5-90.9%) with SOC alone; Adverse events: 30% in HCQ vs 8.8% in SOC arm; diarrhea most common, 2 serious adverse events in HCQ arm (disease progression, upper respiratory tract infection).	
Tang et al. 2020[14] (Multi-center, parallel, open-label, randomized, trial)	China	HCQ (75)	Standard of care (SOC) (75)	Males: 82 (54.7%); Mean age: 45±14.7 years	Virologic clearance at day 7: 13 (86.7%) cases in the HCQ group and 14 (93.3%) cases in the control group (for mild-moderate or severe disease)	Radiologic improvement in pneumonia: 25 (80.6%) vs 17 (54.8%) in HCQ and control groups respectively. Adverse events: HCQ group: 2 patients (mild rash, headache).
Chen J et al. 2020[15] (Randomised controlled trial)	Fudan University, Shanghai, China	HCQ (15)	Standard treatment (15)	Males: 21 (70%); Mean age: 50±3.8 yrs in HCQ; 46.7±3.6 yrs in control group	Time to clinical recovery (TTCR): Body temperature recovery time [2.2 (0.4) days vs 3.2 (1.3) days] in HCQ vs control group (P=0.0008); cough remission time [2.0 (0.2) vs 3.1 (1.5) days] in HCQ vs control group, (P=0.0016). Progression to severe disease: 4 patients in control vs 0 in HCQ. Radiological improvement in pneumonia: 25 (80.6%) vs 17 (54.8%) in HCQ and control groups respectively. Adverse events: HCQ group: 2 patients (mild rash, headache).	
Chen Z et al. 2020[16] (Randomised, double blind, controlled trial)	Renmin Hospital of Wuhan University, Wuhan, China	HCQ (31)	Standard care (31)	Males: 29/62 (46.8%); Age (mean±SD): 44.7 (15.3) years	Virologic cure: 10 (100%) in CQ vs 11 (91.67%) in Lop/rit gp. Hospital discharge at Day 14: 10 (100%) vs 6 (50%) in CQ and Lop/rit gp. Clinical recovery at Day 10: 8 (80%) vs 7 (58.33%) in CQ and Lop/rit group; CT scan improvement at day 14:100% vs 9 (75%) in CQ and Lop/rit group; Adverse events: 5 patients with 9 adverse events in CQ group (diarrhea and vomiting most common), no serious adverse events reported.	
Huang M et al. 2020 RCT[17] (Randomised controlled trial)	Sun Yat-sen University, Zhuhai, China	CQ (10)	Healthy matched controls	Healthy matched controls	Virologic clearance: 10 (100%) in CQ vs 11 (91.67%) in Lop/rit gp. Hospital discharge at Day 14: 10 (100%) vs 6 (50%) in CQ and Lop/rit gp. Clinical recovery at Day 10: 8 (80%) vs 7 (58.33%) in CQ and Lop/rit group; CT scan improvement at day 14:100% vs 9 (75%) in CQ and Lop/rit group; Adverse events: 5 patients with 9 adverse events in CQ group (diarrhea and vomiting most common), no serious adverse events reported.	
Gautret et al. 2020 OS#22 (Non-randomised, open label, comparative trial)	IHU-Méditerranée Infection, Marseille, France	HCQ (14), HCQ+AZ (6), HCQ: 600 mg daily for 10 days; AZ: 500 mg on day 1, 250 mg daily for next 4 days	Controls (not receiving HCQ from other centers and those not giving consent) (16)	Males: 13/22 (59%); Age: 44.0 (36.5-57.5) years	Virologic clearance at day 6 post inclusion: HCQ: 57.1% (8/14), HCQ + AZ: 100% (6/6), Controls: 12.5% (2/16); P=0.001; Mortality: 1/20 (5%). 6 HCQ patients lost to follow up (3 transferred to ICU, 1 died, 1 left the hospital and 1 stopped treatment due to nausea).	
Cipriani et al. 2020[20] (Observational case-control study)	University of Padua Medical School, Italy	HCQ + AZ (22), HCQ (200 mg, twice daily) and AZ (500 mg, once daily)	Healthy matched controls	Males: 18 (82%); Age [median (IQR)]: 64 (56-70)	QTc interval (ms): 450 (416-476) after therapy vs 426 (403-447) before therapy; P=0.02; QTc >480 ms; n (%): 4 (18) after vs 0 before therapy; P=0.04	
Table 1: Contd...

Study ID (Study design)	Institution/Country of study conduct	Study Interventions (n)/Regimen	Study control (n)/Regimen	Study population characteristics	Study outcomes
Rosenberg et al. 2020† (Retrospective multicenter cohort)	25 hospitals in New York metropolitan region	HCQ (271), AZ (211), HCQ+AZ (735), Lopinavir/ritonavir (13)	Supportive (221)	Males: 858 (59.7%); Age (median): 63 years	In-hospital mortality: (unadjusted analyses) HCQ + AZ (n=189, 25.7% [95% CI, 22.3‑28.9%]), HCQ (n=54, 19.9% [15.2‑24.7%]), AZ (n=21, 10.0% [5.9‑14.0%]), and neither-drug (n=28, 12.7% [8.3‑17.1%]) (P<0.001); (adjusted analysis) no significant difference in mortality between groups. Cardiac arrest: more likely in HCQ + AZ group (adjusted OR, 2.13 [1.12‑4.05], but not HCQ (1.91, 0.96 to 3.81) or AZ (0.64, 0.27 to 1.56), Abnormal ECG findings: no significant differences in the relative likelihood between different groups.
Gelenis et al. 2020‡ (Observational study)	New York-Presbyterian Hospital (NYP)-Northern Manhattan, US Veterans Health Administration medical centers	HCQ (811) (600 mg twice on day 1, then 400 mg daily for a median of 5 days)	No HCQ (565)	Males: 772 (95.6%); Age (median): 60 (59‑77) yrs in control group.	Composite end point of intubation or death: HCQ: 262 (32.5%), No HCQ: 84 (14.9%); hazard ratio: 2.37 (1.84‑3.02); no significant association between HCQ use and intubation or death (hazard ratio, 1.04, 0.82‑1.32)
Magagnoli et al. 2020‡ (Retrospective cohort study)	4 tertiary hospitals, France	HCQ (n=84) 600 mg daily	No HCQ (n=97)	Males: 71.1%; Age (median [IQR]): 71 (62‑76.8) in HCQ, 68 (59‑74) in HCQ+AZ, 70 (59‑77) yrs in control group.	Mortality rate (%): HCQ (19.2), HCQ+AZ (22.9), No HCQ (9.4); P<0.001. Rate of ventilation (%): HCQ (19), HCQ+AZ (20.5), No HCQ (19.9); P=0.94. Risk of ventilation: HCQ (aHR, 1.19, 95% CI, 0.78‑1.82; P=0.42); HCQ+AZ (1.09; 0.72‑1.66; P=0.69), compared with no HCQ group. Risk of death from any cause: HCQ (aHR,1.83; 1.16‑2.89; P=0.009); HCQ+AZ: (1.31; 0.60‑2.15; P=0.28) compared with no HCQ group
Yu et al. 2020‡ (Retrospective cohort)	Wuhan, China	HCQ (48) Low dose - 200 mg BD x 10 days	Standard treatment (502)	Critically ill patients; Males: 62.5%; Age: 68 (59‑77) years	Mortality: 18.8% (9/48) in HCQ group, 47.4% (238/502) in NHCQ group (P<0.001); Duration of hospitalization before death: 15 (10‑21) days and 8 (4‑14) days for the HCQ and NHCQ groups, respectively (P<0.05). Change in inflammatory cytokine IL-6 levels: Significant reduction from 22.2 (8.3‑118.9) pg mL‑1 at the beginning of treatment to 5.2 (3.0‑23.4) pg mL‑1 (P<0.05) at the end of treatment in HCQ group, no change in NHCQ group.
Hraiech et al. 2020† (Retrospective case-control study)	France	HCQ+AZ (17) Lopinavir/ritonavir (13), Standard care (15)	Patients with SARS-CoV-2 related moderate to severe ARDS: Males: 35 (77.8%); Age: 60±17, 62±13 and 60±16 yrs in HCQ+AZ, Lop/rit and control groups, respectively	Negative SARS-CoV-PCR at day 6 of treatment: 3 (18%) in HCQ + AZ, 5 (38%) in Lop/rit and 2/10 patients assessed (20%) in control group; P=0.39; Negative SARS-CoV-PCR at day 6 from ARDS: 2 (12%) in HCQ + AZ, 5 (38%) in Lop/rit and 2 (13%) in control group; P=0.14; Mortality: 2/45 (4.4%), both deaths in HCQ + AZ group	
Huang M et al. 2020 OS† (multicenter prospective observational study)	China	CQ (197) CQ phosphate 500 mg OD/BD	Non-CQ (176)	COVID-19 patients (excluding critically ill); Males: 373 (53.1%); Age: 43.8±13.1 in CQ; 45.6±13.5 yrs in non-CQ group	Time from treatment initiation to undetectable viral RNA, median (IQR) days: 3 (3‑5) in CQ vs 9 (6‑12) in non-CQ group; P<0.0001; Duration of hospitalization, median (IQR) days: 19 (16‑23) in CQ vs 20 (15.8‑24) in non-CQ group; P=0.25; Adverse events: 53 patients (26.9%) in CQ group and 57 (32.4%) in non-CQ group; no serious adverse event
Study ID (Study design)	Institution/Country of study conduct	Study Interventions (n)/Regimen	Study control (n)/Regimen	Study population characteristics	Study outcomes
------------------------	-------------------------------------	---------------------------------	--------------------------	---------------------------------	----------------
Mallat et al. 2020[^31] (Retrospective observational study)	Cleveland Clinic Abu Dhabi	HCQ (23) 400 mg BD x 1 day followed by 400 mg daily x 10 days	Non-HCQ (11)	COVID-19 patients with mild to moderate disease; Males: 25 (73.5%); Age: 37 (31-48) yrs	Time to SARS-CoV-2 negativity test: 17 [13-21] vs 10 [4-13] days in HCQ vs non-HCQ groups; P=0.023; Duration of hospitalization: 17 (6-20) vs 9 (6-12.7) days in HCQ vs non-HCQ groups; P=0.068
Singh et al. 2020[^32] Analysis of Federated electronic medical record network	West Virginia University Health Sciences Center, Charleston Division, Charleston, WV	HCQ (910); HCQ + AZ (701)	Control: (Matched cohorts) 910 for HCQ arm; 701 for HCQ + AZ arm	Males: 991 (54.4%); Mean age: 62.17±16.81 and 62.55±17.62 yrs in HCQ and control groups, respectively.	HCQ vs control Mortality 30 day: 11.43% in HCQ vs 11.98% in control group. Mechanical ventilation: 5.05% in HCQ vs 6.26% in control group. HCQ+AZ versus control. Mortality 30 day: 12.27% in HCQ + AZ vs 10.27% in control group. Mechanical ventilation: 5.71% in HCQ + AZ vs 5.85% in control group.
Membrillo et al.[^33] Observational cohort study	Central Defense Hospital “Gómez Ulla”, Madrid, Spain	HCQ (123)	No HCQ (43)	Males: 103 (62%); Mean age: 61.6±16.2 and 68.7±18.8 yrs in HCQ and control groups, respectively.	Mean cumulative survival: Mild group- 14.4 days (95% CI: 13.7-15.2 days) in HCQ, 8.2 days (95% CI: 6.5-9.9 days) in control arm; P=0.032 Moderate group - 10.9 days (9.3-12.5) in HCQ, 7.7 days (4.4-10.9) in control arm; P=0.205 Severe group - 6 days (3.3-8.5) in HCQ, 4 days (1.7-6.1); P=0.297 Virological cure, n (%): 33 (73.3) in intervention group vs 33 (68.8) in control group, P=0.655
Shabrawishi et al. [^34] Retrospective cohort study	Tertiary hospital in Mecca, Saudi Arabia	HCQ (15), HCQ + AZ (25), HCQ + antivirals (5)	Supportive care (48)	Males: 49 (52.7%); Mean age: 43.9±15.9 yrs	Mortality rate=rate ratio, 1.09; 95% CI - 0.97 to 1.23; P=0.15 Invasive mechanical ventilation or death=risk ratio, 1.14; 95% CI, 1.03-1.27
RECOVERY Trial RCT (20)	Multicentric, World	HCQ (1561)	Standard of care (3155)	Mean age: HCQ=65.2±15.2 Control=65.4±15.4	More number of patients having lesions in both lungs and on supplemental oxygen in HCQ group.
WHO Solidarity Trial RCT[^21]	Multicentric, WHO	HCQ (947)	Standard of care (906)	More number of patients having lesions in both lungs and on supplemental oxygen in HCQ group.	104 of 947 - HCQ; 84 of 906 - Control Mortality rate=rate ratio, 1.19; 95% CI - 0.89 to 1.59; P=0.23

[^31]: RCT (Randomised controlled trial), OS (Observational study), ARBs: angiotensin receptor blockers, NEWS: National Early Warning Score
trial.[29] [Figure 2a]. For observational studies (OS), ROB was low for Singh \textit{et al.}[32] and Cipriani \textit{et al.}[23] moderate for five studies[24-28] and serious for five studies[22,29-31,33] (2 had missing data,[22,30] and one had moderate concerns with selection of participants[31] [Figure 2b]. Hence, overall ROB for OS was judged as moderate to high.

Efficacy outcomes

Virological cure

In pooled analysis, we observed a statistically significant increase in virological cure rate with HCQ/CQ compared to control [OR (95% CI) = 2.08 (1.36–3.17), \(P = 0.0007; I^2 = 80\%\)] [Figure 3]. Data was derived from three RCTs and three OS including 340 and 305 patients in HCQ/CQ and control groups, respectively. In sub-group analysis, significantly improved virological cure rates with HCQ/CQ vs control was observed only with OS [OR = 4.03 (2.22–7.32), \(P < 0.00001; I^2 = 83\%\)] [Figure 3] and not RCTs [OR = 0.83 (0.43–1.62), \(P = 0.59; I^2 = 0\%\)] [Figure 3]. Sensitivity analysis on excluding the study by Mallat \textit{et al.} (moderate selection bias) resulted in \(I^2 = 0\%\) among OS without any change in overall virological cure [OR = 7.10 (3.44–14.67), \(P < 0.00001; I^2 = 0\%\)].

Figure 2: a: RoB-2: Risk of bias in randomized clinical trials evaluating HCQ/CQ in the treatment of COVID-19. b: ROBINS-I: Risk of bias in observational studies evaluating HCQ/CQ in the treatment of COVID-19

Figure 3: Virological cure (HCQ/CQ vs control treatment)
Mittal, et al.: HCQ/CQ in COVID‑19 treatment

Mortality [Mortality rate (MR) or Hazard ratio (HR)]

For unadjusted MR, pooled results demonstrated increased risk of mortality with HCQ/CQ compared to control [OR (95% CI) = 1.12 (1.01–1.24), P = 0.03; I² = 81%, fixed effect model]; data obtained from five RCTs and 10 OS comprising of 4,612 and 6,422 patients in HCQ/CQ and control groups, respectively. Sensitivity analysis with random effect model presented no significant difference in overall mortality [OR = 0.98 (0.70–1.37), P = 0.89; I² = 81%] [Figure 4a]. Pooled analysis of adjusted MR showed no increase in adjusted HR with HCQ/CQ versus control [Figure 4b] [HR (95% CI) = 1.05 (0.86–1.29), P = 0.64; I² = 73%; 5 OS]. Sensitivity analysis on excluding the study by Yu et al.[28] showed similar results [HR = 1.25 (0.98–1.59), P = 0.08; I² = 73%].

However, the result was insignificant for adjusted mortality rate between groups [Adjusted HR = 1.33 (0.91–1.93), P = 0.14; I² = 0%; 2 OS] [Figure 4b].

For HCQ/CQ + AZ combination, there was a statistically significant rise in unadjusted MR compared to control, [unadjusted OR = 1.84 (1.47–2.31), P < 0.00001; I² = 73%; 4 OS] [Figure 15a]. Sensitivity analysis excluding the study by Singh et al.[28] showed similar results [HR = 2.59 (1.89–3.56), P < 0.00001; I² = 0%; 3 OS].

Disease progression

Pooled analysis of nine studies revealed a statistically significant increase in rate of disease progression [Figure 5] with HCQ/CQ treatment versus standard of care [OR = 1.77 (1.46–2.13), P < 0.00001; I² = 78%]; results included from three RCTs and six OS comprising of 1,646 patients in HCQ/CQ and 1,627 in control group.

Figure 4: ab: Mortality rate (unadjusted-4a)(adjusted-4b) (HCQ/CQ vs control treatment)
HCQ/CQ + AZ resulted in statistically significant increased odds of disease progression compared to control [OR = 1.74 (1.36–2.22), \(P < 0.0001; I^2 = 81\%\); 4 OS] [Figure 2S].

Radiological cure
In pooled analysis, HCQ/CQ resulted in significant increase in odds of radiological improvement compared to control [OR = 3.89 (1.35–11.23), \(P = 0.01; I^2 = 0\%\)]; results obtained from two RCTs with 41 and 43 individuals in HCQ and control groups, respectively [Figure 3S].

Clinical improvement
Number of subjects achieving clinical improvement were similar in HCQ/CQ and control groups [OR = 0.89 (0.45–1.77), \(P = 0.74; I^2 = 40\%\)]; results extracted from 2 RCTs with a total of 76 and 65 individuals in control and HCQ/CQ groups, respectively [Figure 4S].

Hospital discharge
In pooled analysis, standard of care resulted in 36% increase in odds of discharge from hospital in comparison to HCQ/CQ treatment [OR = 0.64 (0.53–0.78), \(P < 0.00001; I^2 = 86\%\)]. Results were derived from one RCT and four OS with 1,234 and 1,104 individuals in HCQ and control arms, respectively [Figure 5S].

Safety outcomes
Cardiovascular adverse events
Similar to mortality rate, there was a significant rise in odds of QT prolongation [Figure 6S] in subjects administered HCQ/CQ versus control [OR = 11.15 (3.95–31.44), \(P < 0.00001; I^2 = 0\%\)]; results obtained from 3 OS comprising of 347 and 278 patients in HCQ group and controls, respectively. In Rosenberg et al.\(^{24}\) HCQ + AZ resulted in significant increase in number of individuals with QT prolongation [OR = 7.32 (2.28–23.49), \(P = 0.0008\)].

Rosenberg et al. showed no difference in number of individuals having cardiac arrest or arrhythmias in HCQ/CQ versus controls arms [unadjusted OR = 1.67 (0.66–4.20), \(P = 0.28; 1\) OS]; adjusted OR = 1.91 (0.96–3.80), \(P = 0.07; 1\) OS]. However, HCQ/CQ + AZ resulted in 1.52 times (1.13 times in adjusted analysis) increase in number of events versus control [unadjusted OR = 2.52 (1.44–4.42), \(P = 0.001; 1\) OS; adjusted OR = 2.13 (1.12–4.05), \(P = 0.02\)].

Other adverse events
There was no difference in adverse events in two treatment groups (OR = 1.26, 0.93–1.70; \(P = 0.14; I^2 = 52\%\)) [Figure 7S]. In sub-group analysis, significant increase in adverse events were reported in HCQ/CQ group as compared to control in RCTs only and not in OS.

Publication bias
Overall publication bias was regarded as low for current review. The funnel plot of 15 studies included for mortality rate estimation appears asymmetrical [Figure 8S], however, Egger’s regression test indicated low publication bias, with \(t \) value = -0.5415 and \(P \) value = 0.5974. Egger’s regression
test for virological cure ($t = -0.2039$, P value = 0.8484), disease progression ($t = -1.5724$, P value = 0.1599), discharge from hospital ($t = 2.2800$, P value = 0.1069), prolonged QT interval ($t = 3.3295$, P value = 0.1858) indicated low bias for publication. Therefore, overall bias due to publication has been considered as low.

GRADE analysis using GRADE Pro GDT

The GRADE Pro GDT recommendation for primary objective, that is, unadjusted MR was “Very Low” evidence quality as there were serious issues with ROB of included studies, inconsistency, and imprecision. The ROB for adjusted MR was considered as low as adjustment for confounding factors was done during analysis. Sensitivity analysis with exclusion of Yu et al. had resulted in heterogeneity of 31%, hence no serious inconsistency. Therefore, GRADE was analyzed as “Moderate” quality evidence for adjusted MR. The GRADE recommendation for virological cure and radiological cure was “Moderate” evidence quality, due to serious concerns in ROB and imprecision, respectively. The GRADE analysis for progression of disease and hospital discharge were graded as “Low evidence” quality because of serious concerns in ROB and heterogeneity. The prolonged QT interval was graded as having “High” quality evidence because of large effect size which confers strong association of outcomes with intervention. The results of quality of evidence as per guiding principles of GRADE Pro are shown in Table 2.

Discussion

Notwithstanding the present predicament on whether the uncertain efficacy from these drugs is worth the clear risks they pose to infected patients, HCQ/CQ are being recommended worldwide alone or in combination with azithromycin in a compassionate manner as an unproven COVID-19 treatment cocktail. National Health Commission of the People’s Republic of China recommended CQ phosphate for COVID-19 treatment based upon a preliminary report with unpublished results[35] which was later included in other international guidelines as well.[27,38] However, we as a medical community need to be wise enough to pause and appraise the evidence before using them indiscriminately. Hence, this systematic review was conducted to evaluate overall efficacy and safety of CQ/HCQ in confirmed COVID-19 patients in comparison to standard management or other drugs.

In our review, we found statistically significant increase in virological cure in HCQ/CQ compared to control group; the results were mainly attributed to OS because of insignificant results with RCTs on subgroup analysis. However, overall moderate quality evidence as per GRADE suggests possibility of change in effect estimate with the inclusion of more well conducted studies. An explanation for lack of virological cure in some studies can be inability of HCQ to reach the 50% effective concentrations (EC50) against SARS-CoV-2. Although dosage of HCQ chosen in most studies was comparable and enough to reach EC50, the fact remains that altered genome of SARS-CoV-2 strains and/or host factors determining the drug’s pharmacokinetic or pharmaco-dynamic profile can have a strong bearing on treatment outcome. In fact, the role of genetics in determining blood HCQ concentrations and the need to consider individual cytochrome (particularly CYP2D6) polymorphisms before prescribing HCQ has been emphasized earlier.[39]

No difference in unadjusted mortality rate with HCQ/CQ alone versus control was observed although when combined with AZ there was higher probability of death. The results were not significant for adjusted hazard ratios for HCQ/CQ as well as HCQ/CQ + AZ versus standard therapy. Due to “Very low” quality evidence for unadjusted MR, the results were not interpreted for drawing any conclusions. Adjusted HR results were more valid, as adjustment for confounding factors was done and GRADE generated “Moderate” quality evidence. Mahervas et al.[23] presented results after adjustment for age, sex, comorbidities. Rosenberg et al. have adjusted for clinical findings like respiratory rate greater than 22 per min., O_2 saturation of less than 90%, abnormal chest imaging findings and comorbidities like DM, aspartate aminotransferase more than 40 U/L, as these findings were more likely to be in patients receiving HCQ/CQ + AZ. Geleris et al.[25] presented HR from multivariable Cox proportional model. Stratification was done for sex, chronic lung disease, body mass index. Additional adjustment for age, race, past diagnoses, ethnicity, drug treatment, vital parameters, etc., at baseline was done. Magangoli et al.[39] and Yu et al.[40] also presented HR adjusted for difference in baseline characteristics. Also, WHO Solidarity trial[21] and recovery trial[20] with large number of subjects (large dataset), showed no difference in mortality rates between HCQ and standard therapy, which is similar to conclusion of our meta-analysis.

In the study by Yu et al., a lower dose of HCQ was used compared to other studies reporting higher mortality in HCQ treated groups. Yu et al. assumed that in critically ill COVID-19 patients having cytokine storm, HCQ mainly acts as anti-inflammatory and immuno-modulatory agent rather than as direct anti-viral and therefore HCQ was administered in lower anti-inflammatory doses. This was further confirmed by significant decline in IL-6 levels in HCQ group compared to control. The clinical potential of HCQ to limit acute inflammatory response was also highlighted in a clinical trial[15] demonstrating encouraging results with respect to C-reactive protein levels and lymphocytopenia.

An inverse relationship between rate of disease progression and hospital discharge is usually expected which was also confirmed in our review as patients receiving standard of care treatment had a lesser probability of disease progression and higher probability of hospital discharge than those receiving HCQ/CQ. Although HCQ/CQ group exhibited increased odds of radiological improvement than control group, yet clinical significance of this finding might not be established due to its presence in small number of patients and in the absence of any clinically significant improvement over control group.
Table 2: GRADE recommendation for outcomes evaluated for the use of HCQ/CQ in patients with COVID-19 infection caused by SARS-CoV-2

Outcomes	No of patients	Effect	Certainty, Importance		
Virological Cure (RT-PCR negative)					
Efficacy	6 RCT	293/340 (86.2%)	233/305 (76.4%)	OR 2.08 (1.36-3.17)	107 more per 1,000 (from 51 more to 147 more)
Placebo		233/305 (76.4%)			
Relative (95% CI)					
Absolute (95% CI)					
Inconsistency	not serious				
Indirectness	not serious				
Imprecision	not serious				
Other considerations	none				
Improvement Healthy					
Death	10 OS; 5 RCT	840/4612 (18.2%)	1319/6422 (20.5%)	OR 0.98 (0.70-1.37)	3 fewer per 1,000 (from 52 fewer to 56 more)
Hospital admission/Intubation					
Severe Illness/CT progression					
Prognosis	2 RCT	35/41 (85.4%)	26/43 (60.5%)	OR 3.89 (1.35-11.23)	251 more per 1,000 (from 69 more to 340 more)
Radiological Cure (CT scan)					
Malignant Prognosis					
Progression - ICU					
Death	6 OS; 3 RCT	383/1646 (23.3%)	229/1627 (14.1%)	OR 1.77 (1.46-2.13)	84 more per 1,000 (from 52 more to 118 more)
Admission/Intubation					
Hospital discharge	4 OS; 1 RCT	829/1234 (67.2%)	824/1104 (74.6%)	OR 0.64 (0.53-0.78)	93 fewer per 1,000 (from 137 fewer to 50 fewer)
Prolong QT interval	3 OS	49/347 (14.1%)	3/278 (1.1%)	OR 11.15 (3.95-31.44)	98 more per 1,000 (from 31 more to 245 more)
Mortality (HR)	5 OS	-/0	-/0	HR 1.05 (0.86-1.29)	1 fewer per 1,000 (from 1 fewer to 1 fewer)
Mortality					
Death					
CI: Confidence interval; OR: Odds ratio; HR: Hazard Ratio; RCT - Randomized control trials; OS - Observational study. "Huang et al and Chen et al. have some concerns with randomization concealment, which will affect the virological cure estimate, hence downgraded for quality of evidence." Confounding in all three studies, along with missing data (Huang M et al.) and selection of patients (McKll et al.) may affect the estimate. Studies have serious overall ROB, hence downgraded for evidence. Although I² >40%, but exclusion of Mallat et al. (moderate selection bias) resulted in I²=0% without change in overall effect estimate. Hence heterogeneity ignored. ^I The Optimal Information Size (OIS) is 245 patients in each group, which was not met in the outcome. OR 2. Effect estimate 95% Confidence interval (CI) includes one. OR Both of the above reasons hence downgraded for Imprecision. RCT’s have a negligible contribution to the overall effect estimate and observational studies have moderate to serious ROB for unadjusted mortality rate, progression of disease, hospital discharge. Hence downgraded for overall ROB. As F >5%, hence Quality of evidence downgraded for high heterogeneity. # As 95% CI includes one, hence downgraded for imprecision. b. Studies have low to moderate ROB, hence not downgraded. c. Adjusted Hazard ratios (HR) was presented by all the authors. Adjustment of all the covariates which might have led to the variability in mortality or cardiac arrest has been adjusted during analysis for mortality or cardiac arrest. Hence, not downgraded for risk of bias. Although F >40%, sensitivity analysis with exclusion of study done by Yu et al. resulted in F=31% (<40%) without a change in overall mortality estimate. Only Yu et al. have concluded decreased mortality with the use of HCQ/CQ, hence heterogeneity was ignored.					
limitations and strengths

One major limitation of current review is extraction of most of the data from 12 observational studies which have innate selection bias. Few not yet peer reviewed studies obtained from pre-print servers were also included. Major strengths of our review are inclusion of large datasets (WHO Solidarity and recovery trial) and GRADE analysis.

Conclusions drawn from current meta-analysis will play a major role in guiding the primary care physicians to make decisions with regard to COVID-19 management in community.

GRADE Pro analysis

Overall GRADE Pro was recommended as “Moderate” because important objectives such as adjusted MR had “Moderate” evidence. The critical outcomes like virological cure and radiological cure have “moderate” while QT prolongation have “high” quality of evidence. The outcomes like unadjusted MR and progression of disease were graded as “Very low” and “Low,” which implies that there is a high probability of future research having significant impact on our observations and is likely to change the estimate of effect. Hence, the results of both these outcomes were not given due consideration while drawing conclusions. Therefore, overall GRADE was recommended as “Moderate” quality evidence implying the potential of further research to have a bearing on the conclusions of this review.

Conclusion

Given the severity of disease and chaotic pandemic urgency, recommendations for treatment of COVID-19 are being made globally on the basis of insufficient evidence. The presence of sufficiently powered studies, moderate quality evidence generated for virological cure in favor of HCQ/CQ, and no difference in mortality carries conviction for its use in treatment of COVID-19 infection. However, safety concerns like QT prolongation, with high quality GRADE evidence raise enough red flags for random use of CQ/HCQ alone or co-administered with AZ in high-risk population for SARS-CoV-2. With current evidence, we recommend judicious and monitored use of HCQ/CQ in treatment of COVID-19 infection caused by SARS-CoV-2 in low to middle income countries with emphasis on lack of mortality benefit.

Ethics approval and consent to participate

Not a clinical trial, hence not applicable

Consent for publication

Done

Availability of data and material

All data is with authors.
Acknowledgements

We acknowledge GRADE Pro team [McMaster University and Evidence Prime Inc. available from: https://gradepro.org/] for letting us use the software for the synthesis and overall assessment and grading of systematic review.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

References

1. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A Novel Coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020;382:727-33.
2. Guo YR, Cao QD, Hong ZS, Tan YY, Chen SD, Jin HJ, et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak—An update on the status. Mil Med Res 2020;7:11.
3. Sanders JM, Monogue ML, Jodlowski TZ, Cutrell JB. Hydroxychloroquine and azithromycin as a treatment for COVID-19: A quasi-randomized comparative study. N Engl J Med 2020. Available from: https://www.nejm.org/doi/full/10.1056/nejmoa2001761.
4. Ben-Zvi I, Kivity S, Langevitz P, Shoenfeld Y. The antiviral effects of chloroquine against coronavirus: What to expect for COVID-19? Int J Antimicrob Agents 2020;56:105938. doi: 10.1016/j.ijantimicag.2020.105938.
5. Yao X, Ye F, Zhang M, Cui C, Huang B, Niu P, et al. Effect of hydroxychloroquine in patients with COVID-19: A quasi-randomized comparative study. N Engl J Med 2020. Available from: https://www.nejm.org/doi/full/10.1056/nejmoa2001761.
6. Liu J, Cao R, Xu M, Wang X, Zhang H, Hu H, et al. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov 2020;6:16.
7. Sterne JA, Savovic J, Page MJ, Elbers RG, Blencowe NS, Boutron I, et al. RCT 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019;366:l4898. doi: 10.1136/bmj.l4898.
8. Sterne JA, Hernan MA, Reeves BC, Savovic J, Berkman ND, Viswanathan M, et al. ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ 2016;355:i4919. doi: 10.1136/bmj.i4919.
9. McGuinness LA, Higgins JP. Risk-of-bias VISualization (robvis): An R package and Shiny web app for visualizing risk-of-bias assessments. Res Synth Methods 2020. doi: 10.1002/jrsm.1411.
10. Higgins J, Green S, editors. Cochrane Handbook for Systematic Reviews of Interventions: The Cochrane Collaboration; 2011; 2014 [cited 2020 28 May]. Available from: www.handbook.cochrane.org.
11. Kjaergard LL, Villumsen J, Gluud C. Reported methodologic quality and discrepancies between large and small randomized trials in meta-analyses. Ann Intern Med 2001;135:982-9.
12. Schünemann H, Brozek J, Guyatt G, Oxman A, editors. GRADE Handbook for Grading Quality of Evidence and Strength of Recommendations. Updated October 2013. The GRADE Working Group; 2013. 2013. Available from: guidelinedevelopment.org/handbook.
13. GRADEpro GDT: GRADEpro Guideline Development Tool [Software]. McMaster University, 2015 (developed by Evidence Prime, Inc.). [Internet]. Available from: gradepro.org.
14. Barbosa J, Kaitis D, Freedman R, Le Kim, XL. Clinical outcomes of hydroxychloroquine in hospitalized patients with COVID-19: A quasi-randomized comparative study. N Engl J Med 2020. Available from: https://www.nejm.org/doi/full/10.1056/nejmoa2001761.
15. Group RC, Horby P, Mafham M, Linsell L, Bell JL, Staplin N, et al. Effect of hydroxychloroquine in hospitalized patients with moderate COVID-19. Zhejiang Da Xue Xue Bao Yi Xue Ban 2020;49:215-9.
16. Chen Z, Hu J, Zhang Z, Jiang S, Hsu S, Yan D, et al. Efficacy of hydroxychloroquine in patients with COVID-19: Results of a randomized clinical trial. 2020. Available from: https://www.medrxiv.org/content/10.1101/2020.03.22.20040758v3.
17. Huang M, Tang T, Pang P, Li M, Ma R, Lu J, et al. Treating COVID-19 with Chloroquine. J Mol Cell Biol 2020;12:322-5.
18. Group RC, Horby P, Mafham M, Linsell L, Bell JL, Staplin N, et al. Effect of hydroxychloroquine in hospitalized patients with Covid-19. N Engl J Med 2020;383:2030-40.
19. Consortium WH, Pan H, Peto R, Hennu-Restrepo AM, Preziosi MP, Sathiyamoorthy V, et al. Repurposed antiviral drugs for Covid-19-Interim WHO Solidarity Trial Results. N Engl J Med 2021;384:497-511.
20. Gautret P, Lagier JC, Parola P, Hoang VT, Meddeb L, Mailhe M, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial. Int J Antimicrob Agents 2020;56:105949. doi: 10.1016/j.ijantimicag.2020.105949.
21. Cipriani A, Zorzi A, Ceccato D, Capone F, Parolin M, Donato F, et al. Arrhythmic profile and 24-hour QT interval variability of hydroxychloroquine in patients with Covid-19. J Cardiovasc Electrophysiol 2020;316:280-4.
22. Rosenberg ES, Dufort EM, Udo T, Wilberschied LA, Rosenblum LM, et al. Association of treatment with hydroxychloroquine or azithromycin with in-hospital mortality in patients with COVID-19. N Engl J Med 2020;383:2493-502.
23. Geleris J, Sun Y, Platt J, Zucker J, Baldwin M, Hripcsak G, et al. Observational study of hydroxychloroquine in hospitalized patients with Covid-19. N Engl J Med 2020;382:2411-8.
24. Magagnoli J, Narendran S, Pereira F, Cummings T, Hardin J, Sutton S, et al. Outcomes of hydroxychloroquine usage in United States veterans hospitalized with Covid-19. 2020. Available from: https://www.medrxiv.org/content/10.1101/2020.04.16.20065920v2.
25. Mahervas M, Tran VT, Roumier M, Chabrol A, Paule R, Guillaud C, et al. Clinical efficacy of hydroxychloroquine in patients with covid-19 pneumonia who require oxygen: Observational comparative study using routine care data. BMJ 2020;369:m1844.
28. Yu B, Li C, Chen P, Zhou N, Wang L, Li J, et al. Low dose of hydroxychloroquine reduces fatality of critically ill patients with COVID-19. Sci China Life Sci 2020;63:1515-21.

29. Hraiech S, Bourenne J, Kutéfán K, Helms J, Carvelli J, Gannier M, et al. Lack of viral clearance by the combination of hydroxychloroquine and azithromycin or lopinavir and ritonavir in SARS-CoV-2-related acute respiratory distress syndrome. Ann Intensive Care 2020;10:63.

30. Huang M, Li M, Xiao F, Pang P, Liang J, Tang T, et al. Preliminary evidence from a multicenter prospective observational study of the safety and efficacy of chloroquine for the treatment of COVID-19. Natl Sci Rev 2020;7:1138-52. doi: 10.1093/nsr/nwa113.

31. Mallat J, Hamed F, Balkis M, Mohamed M, Mooty M, Malik A, et al. Hydroxychloroquine is associated with slower viral clearance in clinical COVID-19 patients with mild to moderate disease: A retrospective study. 2020. Available from: https://www.medrxiv.org/content/10.1101/2020.04.27.20082180v1.

32. Singh S, Khan A, Chowdhry M, Chatterjee A. Outcomes of hydroxychloroquine treatment among hospitalized COVID-19 patients in the United States: Real-world evidence from a federated electronic medical record network. MedRxiv 2020. doi: 10.1101/2020.05.12.20099028.

33. Membrillo de Novales FJ, Ramírez-Olivencia G, Estébanez M, de Dios B, Herrero MD, Mata T, et al. Early hydroxychloroquine is associated with an increase of survival in COVID-19 patients: An observational study. Preprints 2020, 2020050057. doi: 10.20944/preprints202005.0057.v1.

34. Mehra MR, Ruschitzka F, Patel AN. Retraction—Hydroxychloroquine or chloroquine with or without a macrolide for treatment of COVID-19: A multinational registry analysis. Lancet 2020;395:184-90.

35. Gao J, Tian Z, Yang X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci Trends 2020;14:72-3.

36. Shabrawishi M, Naser A, Alwafi H, Aldobyany A, Touman A. Negative nasopharyngeal SARS-CoV-2 PCR conversion in response to different therapeutic interventions. MedRxiv 2020. doi: 10.1101/2020.05.08.20095679.

37. Ministry of Health & Family Welfare. Revised Guidelines on Clinical Management of COVID – 19 [Internet]. 2020. Available from: https://www.mohfw.gov.in/pdf/RevisedNationalClinicalManagementGuidelineforCOVID1931032020.pdf.

38. US Food & Drug Administration. Emergency Use Authorization [Internet]. 2020. Available from: https://www.fda.gov/emergency-preparedness-and-response/mcm-legal-regulatory-and-policy-framework/emergency-use-authorization#covidtherapeutics.

39. Lee JY, Vinayagamoorthy N, Han K, Kwok SK, Ju JH, Park KS, et al. Association of polymorphisms of cytochrome P450 2D6 with blood hydroxychloroquine levels in patients with systemic lupus erythematosus. Arthritis Rheumatol 2016;68:184-90.

40. Gautret P, Lagier JC, Parola P, Hoang VT, Meddeb L, Sevestre J, et al. Clinical and microbiological effect of a combination of hydroxychloroquine and azithromycin in 80 COVID-19 patients with at least a six-day follow up: A pilot observational study. Travel Med Infect Dis 2020;34:101663. doi: 10.1016/j.tmaid.2020.101663.

41. Roden DM, Harrington RA, Poppas A, Russo AM. Considerations for drug interactions on QTc interval in exploratory COVID-19 treatment. J Am Coll Cardiol 2020;75:2623-4.

42. Leung LS, Neal JW, Wakelee HA, Sequist LV, Marmor MF. Rapid onset of retinal toxicity from high-dose hydroxychloroquine given for cancer therapy. Am J Ophthalmol 2015;160:799-805.e1.

43. Marmor MF, Kellner U, Lai TY, Melles RB, Mieler WF. Recommendations on screening for chloroquine and hydroxychloroquine retinopathy (2016 Revision). Ophthalmology 2016;123:1386-94.
Figure 1S: Mortality rate (unadjusted OR-1Sa)(adjusted HR-1Sb) (HCQ/CQ + AZ vs control treatment)

Figure 2S: Number of patients showing evidence of disease progression (HCQ/CQ + AZ vs control treatment)

Figure 3S: Number of patients showing evidence of radiological cure (HCQ/CQ vs control treatment)

Figure 4S: Number of patients showing clinical improvement (HCQ/CQ vs control treatment)
Figure 5S: Rate of hospital discharge (HCQ/CQ vs control treatment)

Figure 6S: QT prolongation (HCQ/CQ vs control treatment)

Figure 7S: Adverse events except QT prolongation and cardiac arrest or arrhythmias (HCQ/CQ vs control treatment)
Figure 8S: Funnel plot depicting publication bias for studies included in the review