An analogue of a formula for Chebotarev Densities

Biao Wang

Department of Mathematics
University at Buffalo, The State University of New York
Buffalo, NY 14260, USA
bwang32@buffalo.edu

In this short note, we show an analogue of Dawsey’s formula on Chebotarev densities for finite Galois extensions of \mathbb{Q} with respect to the Riemann zeta function $\zeta(ms)$ for any integer $m \geq 2$. Her formula may be viewed as the limit version of ours as $m \to \infty$.

Keywords: Largest prime divisor; smallest prime divisor; duality; prime number theorem; Chebotarev density.

Mathematics Subject Classification 2010: 11N13, 11R45

1. Introduction and statement of results

Let $\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$ for $\text{Re } s > 1$ be the Riemann zeta function and let $\mu(n)$ be the Möbius function defined by $\mu(n) = (-1)^k$ if n is the product of k distinct primes and is zero otherwise. It is well-known (e.g., [5, (4.5)]) that the prime number theorem is equivalent to the assertion that

$$\sum_{n=1}^{\infty} \frac{\mu(n)}{n} = 0 \quad (1.1)$$

or equivalently,

$$-\sum_{n=2}^{\infty} \frac{\mu(n)}{n} = 1. \quad (1.2)$$

Let $p(n)$ be the smallest prime divisor of n and let φ be the Euler totient function. Let $k \geq 1$, ℓ be integers and $(\ell, k) = 1$. In 1977, Alladi [2] proved that

$$-\sum_{\substack{n \geq 2 \\ p(n) \equiv \ell (\text{mod } k)}} \frac{\mu(n)}{n} = \frac{1}{\varphi(k)}. \quad (1.3)$$

In 2017, Dawsey [4] generalized formula (1.3) to the setting of Chebotarev densities for finite Galois extensions of \mathbb{Q}. That is, for any conjugacy class C in the Galois group $G = \text{Gal}(K/\mathbb{Q})$ of a finite Galois extension K of \mathbb{Q}, we have

$$-\sum_{\substack{n \geq 2 \\ [K(n):\mathbb{Q}] = C}} \frac{\mu(n)}{n} = \frac{|C|}{|G|}. \quad (1.4)$$

1
where
\[
\left[\frac{K}{\mathbb{Q}} \right]_p := \left\{ \left[\frac{K}{\mathbb{Q}} \right]_p : p \subseteq \mathcal{O}_K \text{ and } p \mid p \right\}
\]
for unramified prime \(p \) and \(\left[\frac{K}{\mathbb{Q}} \right]_p \) is the Artin symbol for Frobenius map. Here \(\mathcal{O}_K \) denotes the ring of integers in \(K \) and \(p \) denotes a prime ideal in \(\mathcal{O}_K \).

Alladi’s result (1.3) is the special case of (1.4) when \(K = \mathbb{Q}(\zeta_k) \) and \(C \) is the conjugacy class of \(\ell \), where \(\zeta_k \) is a primitive \(k \)-th root of unity.

In this note, we give an analogue of Alladi’s and Dawsey’s results relating to \(\zeta(ms) \) for any integer \(m \geq 2 \). Let \(\lambda_m(n) \) be the function defined as the coefficient of term \(\frac{1}{n^s} \) in the Dirichlet series expansion of \(\zeta(ms) \zeta(s) \) for \(\text{Re } s > 1 \). That is,
\[
\sum_{n=1}^{\infty} \frac{\lambda_m(n)}{n^s} = \frac{\zeta(ms)}{\zeta(s)} \quad (1.5)
\]
for \(\text{Re } s > 1 \). When \(m = 2 \), \(\lambda_2(n) = (-1)^{\Omega(n)} \) is the Liouville function (e.g., [7, Theorem 300]), where \(\Omega(n) = \sum_{p\mid n} \alpha \). Hence \(\lambda_m(n) \) is a generalization of Liouville function. In section 2 we will see that \(\lambda_m(n) = \sum_{d \mid n} \mu \left(\frac{n}{d^m} \right) \) and the prime number theorem is equivalent to the assertion that
\[
\sum_{n=1}^{\infty} \frac{\lambda_m(n)}{n} = 0. \quad (1.6)
\]

Analogous to Alladi’s formula (1.3), for \((\ell, k) = 1 \) we have that
\[
- \sum_{\substack{n \geq 2 \\text{mod } k \\mid \ell \\text{mod } k}} \frac{\lambda_m(n)}{n} = \frac{1}{\varphi(k)}. \quad (1.7)
\]
As [4], Eq. (1.7) can be thought of as a special case in the following main theorem.

Theorem 1.1. Let \(K \) be a finite Galois extension of \(\mathbb{Q} \) with Galois group \(G = \text{Gal}(K/\mathbb{Q}) \). Then for any conjugacy class \(C \subseteq G \), we have
\[
- \sum_{\left[\frac{K}{\mathbb{Q}} \right]_p = C} \frac{\lambda_m(n)}{n} = \frac{|C|}{|G|}. \quad (1.8)
\]

Remark 1.2. Since \(\lim_{m \to \infty} \zeta(ms) = 1 \) for \(s > 1 \), we have \(\lim_{m \to \infty} \lambda_m(n) = \mu(n) \). Hence Alladi’s and Dawsey’s results may be viewed as the limit version of (1.7) and (1.8), respectively.

Remark 1.3. In 2019, Sweeting and Woo [9] generalized (1.4) to finite Galois extensions of number fields. One may also generalize (1.8) to number fields.

For the proof of Theorem (1.1), we shall use a prime divisor function \(P_m(n) \) which will be defined in section 3 to estimate the difference between the partial sums of (1.4) and (1.8). As a result, \(P_m(n) \) is very close to the largest prime divisor function \(P(n) \) and satisfies Alladi’s duality property. Then we apply Dawsey’s result in [4].
2. Some properties of $\lambda_m(n)$

In this section, we mainly introduce the relation between λ_m and μ and prove the prime number theorem with respect to λ_m.

Lemma 2.1. Let $m \geq 2$ be a fixed integer. For the λ_m defined by (1.3), we have

(1) λ_m is a multiplicative function.
(2) $\lambda_m(n) = \sum_{d|m \mid n} \mu\left(\frac{n}{d}\right)$.
(3) For any integer $n \geq 1$, we can write it as $n = k^m \cdot l$ for $k,l \geq 1$ and l is m-th power-free (i.e., it has no m-th power divisor except 1). Then $\lambda_m(n) = \mu(l)$.
(4) $\mu(n) = \mu^2(n)\lambda_m(n)$ for all integer $n \geq 1$.

Proof. Set

$$a(n) := \begin{cases} 1, & \text{if } n = d^m \text{ for some integer } d \geq 1; \\ 0, & \text{otherwise.} \end{cases}$$

Then $a(n)$ is multiplicative and $\sum_{n=1}^{\infty} \frac{a(n)}{n^s} = \zeta(ms)$ for $\text{Re } s > 1$.

(1) It is well known (e.g. [6, Corollary 11.3]) that $\frac{1}{\zeta(s)} = \sum_{n=1}^{\infty} \frac{\mu(n)}{n^s}$ for $\text{Re } s > 1$.

By (1.5), the definition of $\lambda_m(n)$, for $\text{Re } s > 1$ we have

$$\sum_{n=1}^{\infty} \frac{\lambda_m(n)}{n^s} = \sum_{n=1}^{\infty} \frac{a(n)}{n^s} \sum_{n=1}^{\infty} \frac{\mu(n)}{n^s}. \quad (2.2)$$

It follows that $\lambda_m = a \ast \mu$ is the Dirichlet convolution of a and μ, which are both multiplicative functions. Hence λ_m is multiplicative.

(2) Since $\lambda_m = a \ast \mu$, we have

$$\lambda_m(n) = \sum_{d|n} a(d) \mu\left(\frac{n}{d}\right). \quad (2.3)$$

Plugging (2.1) into (2.3), we get the part (2).

(3) Since λ_m is multiplicative, it suffices to consider the prime powers. Suppose $n = p^{\alpha}$, $\alpha \geq 1$. Write α as $\alpha = m\beta + r$ with integers $\beta \geq 0$ and $0 \leq r < m$.

Then $p^\alpha = (p^\beta)^m \cdot p^r$ and we can use part (2) to compute $\lambda_m(p^\alpha)$ as follows:

$$\lambda_m(p^\alpha) = \sum_{d|m|p^\alpha} \mu\left(\frac{p^\alpha}{d}\right) = \sum_{j=0}^{\beta} \mu\left(\frac{p^\alpha}{p^{jm}}\right) = \sum_{j=0}^{\beta} \mu(p^{m(\beta-j)+r}) = \mu(p^r).$$

(4) By part (3), $\lambda_m(n) = \mu(n)$ if n is square-free. Then part (4) follows immediately by the fact that μ is supported on square-free numbers. \(\square\)

Remark 2.2. Due to Lemma 2.1(2), analogous to the Möbius function $\mu(n)$, the Riemann hypothesis is equivalent to the estimate that for all $\epsilon > 0$ we have

$$\sum_{n \leq x} \lambda_m(n) = O(x^{\frac{1}{2}+\epsilon}) \quad (2.4)$$
where the implied constant depends on \(\epsilon \), see [3, Theorem 4.16, 4.18].

Remark 2.3. Sarnaks conjecture with respect to \(\mu \) is equivalent to Sarnaks conjecture with respect to \(\lambda_m \) due to Lemma 2.1(2) and (4), see [6, Corollary 11.25].

Lemma 2.4. The prime number theorem is equivalent to the assertion that

\[
\sum_{n=1}^\infty \frac{\lambda_m(n)}{n} = 0. \tag{2.5}
\]

Proof. Let

\[
A(x) := \sum_{n \leq x} \frac{\mu(n)}{n}.
\]

Then by [2, (2.24)], we have

\[
A(x) = O \left(\exp(-c(\log x)^{\frac{1}{4}}) \right) \tag{2.6}
\]

for some constant \(c > 0 \). Here we note that the aftermentioned \(c \) is always a positive constant that may vary according to the context.

By Lemma 2.1(2), we have

\[
\sum_{n \leq x} \frac{\lambda_m(n)}{n} = \sum_{n \leq x} \frac{1}{n} \sum_{d^m = n} \mu(e) = \sum_{d^m \leq x^\frac{1}{m}} \frac{1}{d^m} A \left(\frac{x}{d^m} \right) = \sum_{d^m \leq x^\frac{1}{m}} \frac{1}{d^m} A \left(\frac{x}{d^m} \right) + \sum_{x^{\frac{1}{m}} < d^m \leq x} \frac{1}{d^m} A \left(\frac{x}{d^m} \right) \tag{2.7}
\]

For the first sum, note that \(\frac{x}{d^m} \geq x^{\frac{1}{2}} \) and \(\sum_{d=1}^\infty \frac{1}{d^m} \leq \zeta(2) < \infty \). So

\[
\sum_{d^m \leq x^{\frac{1}{m}}} \frac{1}{d^m} A \left(\frac{x}{d^m} \right) = \sum_{d^m \leq x^{\frac{1}{m}}} \frac{1}{d^m} \cdot O \left(\exp(-c(\log x)^{\frac{1}{4}}) \right) = O \left(\exp(-c(\log x)^{\frac{1}{4}}) \right). \tag{2.8}
\]

For the second sum, we have

\[
\sum_{x^{\frac{1}{m}} < d^m \leq x} \frac{1}{d^m} A \left(\frac{x}{d^m} \right) = O \left(\sum_{x^{\frac{1}{m}} < d^m \leq x} \frac{1}{d^m} \right) = O \left(x^{-\frac{m-1}{m}} \right) \tag{2.9}
\]

Combining (2.7), (2.8) and (2.9) together, we get an estimate for the partial sum

\[
\sum_{n \leq x} \frac{\lambda_m(n)}{n} = O \left(\exp(-c(\log x)^{\frac{1}{2}}) \right) \tag{2.10}
\]

and Eq. (2.5) follows immediately, as \(x \to \infty \). \(\square \)
3. Duality of prime factors

Lemma 3.1 (Duality Lemma). For any arithmetic function \(f(n) \) with \(f(1) = 0 \), we have

\[
\sum_{d \mid n} \lambda_m(d) f(p(d)) = -f(P_m(n)) \tag{3.1}
\]

where \(p(1) = 1 \) and \(P_m(n) \) is the largest prime factor of \(n \) of order \(\not\equiv 0 \pmod{m} \) and is 1 if \(n \) is a perfect \(m \)-th power.

Proof. Let \(a(n) \) be the function defined by (2.1). By (1.5), we have \(\zeta(ms) = \zeta(s) \sum_{n=1}^\infty \frac{\lambda_m(n)}{n^s} \), which implies that \(a(n) = \sum_{d \mid n} \lambda_m(d) \). Note that \(\lambda_m(n) \) is a multiplicative function. Following [2], for \(n = p_1^{\alpha_1} \cdots p_r^{\alpha_r} \), \(p_1 < \cdots < p_r \), we have

\[
\sum_{d \mid n} \lambda_m(d) f(p(d)) = \lambda_m(1)f(1) + \sum_{j=1}^r f(p_j) \sum_{d \mid n, p(d) = p_j} \lambda_m(d)
\]

\[
= \sum_{j=1}^r f(p_j) \sum_{k=1}^{\alpha_j} \sum_{e \mid d_{j+1}} \lambda_m(p_j^k e)
\]

\[
= \sum_{j=1}^r f(p_j) \left(\sum_{k=1}^{\alpha_j} \lambda_m(p_j^k) \right) \sum_{e \mid d_{j+1}} \lambda_m(e)
\]

\[
= \sum_{j=1}^r f(p_j) \left(a(p_j^{\alpha_j}) - 1 \right) a(d_{j+1}) \tag{3.2}
\]

where \(d_i = p_{j_i}^{\alpha_i} p_{j_i+1}^{\alpha_{i+1}} \cdots p_{r_i}^{\alpha_{r_i}} \) for \(1 \leq j \leq r \) and \(d_{r+1} = 1 \).

Let \(j_0 \) be the largest index \(j \) such that \(m \not\mid \alpha_j \). Then \(a(p_j^{\alpha_j}) = 1 \) for \(j > j_0 \), \(a(d_{j+1}) = 1 \) for \(j \geq j_0 \) and \(a(d_{j+1}) = 0 \) for \(j < j_0 \). The sum (3.2) turns out to be \(-f(p_{j_0}) \) and (3.1) follows. \(\square \)

Remark 3.2. Similarly, one can prove that for \(n = p_1^{\alpha_1} \cdots p_r^{\alpha_r} \), \(p_1 < \cdots < p_r \),

\[
\sum_{d \mid n} \lambda_m(d) f(P_m(d)) = -\sum_{j=1}^{j_0} f(p_j)d_j(n)
\]

where \(d_j(n) = \sum_{m \mid \alpha_1, \ldots, m \mid \alpha_{j-1}, \quad d^m \mid p_j^{\alpha_j} p_{j+1}^{\alpha_{j+1}} \cdots p_r^{\alpha_r}} 1 \) and \(j_0 \) is the first index \(j \) such that \(m \not\mid \alpha_j \).
4. Proof of Theorem 1.1

Theorem 4.1 ([8, Theorem (1.7)]). Let $P(n)$ be the largest prime divisor of n. Then for $r > -1$,

$$
\sum_{\substack{n \leq x \\ P(n) \neq P(n)} } \frac{1}{P(n)^r} = x \exp\left\{ -(2r+2)\frac{x}{\log x} \left[1 + g_r(x) + O\left(\left(\frac{\log x}{\log(2) x} \right)^3 \right) \right] \right\}
$$

where $\log^{(k)} x = \log(\log^{(k-1)} x)$ is the k-fold iterated natural logarithm of x and

$$
g_r(x) = \frac{\log^{(3)} x + \log(1+r) - 2 - \log 2}{2 \log^{(2)} x} \left(1 + \frac{2}{\log^{(2)} x} \right) - \frac{\log^{(3)} x + \log(1+r) - 2}{8 (\log^{(2)} x)^2}.
$$

Corollary 4.2. There exists some constant C_m such that

$$
\sum_{\substack{n \leq x \\ P_m(n) \neq P(n)} } 1 = O(x \exp(-c(\log x \log^{(2)} x)^{\frac{1}{2}}))
$$

and

$$
\sum_{\substack{n \leq x \\ P_m(n) \neq P(n)} } \frac{1}{n} = C_m + O(\exp(-c(\log x \log^{(2)} x)^{\frac{1}{2}})),
$$

where $c > 0$ is a positive constant.

Proof. Equation (4.2) follows by the case $r = 0$ in Theorem 4.1.

Put $e(x) = \sum_{\substack{n \leq x \\ P_m(n) \neq P(n)} } 1$. Then (4.3) can be deduced by (4.2) as follows

$$
\sum_{\substack{n \leq x \\ P_m(n) \neq P(n)} } \frac{1}{n} = \int_1^x \frac{e(t)}{t} dt = e(t) \bigg|_1^x + \int_1^x \frac{c(t) dt}{t^2} = C_m - \int_x^{\infty} \frac{c(t) dt}{t^2} + \frac{e(x)}{x},
$$

where $C_m = \int_1^{\infty} \frac{e(t) dt}{t^2}$.

Remark 4.3. Due to this corollary, $P_m(n)$ inherits a lot of properties of $P(n)$. For example, one can get a version of Theorem 4.1 for $P_m(n)$. Another example we would like to mention is that $P_m(n)$ is equi-distributed (mod k) for $k \geq 2$ by Theorem 1 in [2].

Now we prove the Theorem 1.1 by showing the following theorem.

Theorem 4.4. Under the notations and assumptions of Theorem 1.1 we have

$$
- \sum_{\substack{2 \leq n \leq x \\ \left(\frac{k}{P(n)} \right) = 1}} \frac{\lambda_n(n)}{n} = \frac{|C|}{|G|} + O\left(\exp(-c(\log x)^{\frac{1}{2}}) \right),
$$
where \(c \) is a positive constant.

Proof. Here we follow the ideas in the proof 2 of [2, Theorem 4] and the proof of [4, Theorem 1].

Let \(f(n) \) be an arithmetic function defined by

\[
 f(n) = \begin{cases}
 1, & \text{if } \left[\frac{K/Q}{p} \right] = C, n = p > 1; \\
 0, & \text{otherwise.}
 \end{cases}
\]

Then

\[
 \sum_{2 \leq n \leq x, \left[\frac{K/Q}{p(n)} \right] = C} \frac{\lambda_m(n)}{n} = \sum_{n \leq x} \frac{\lambda_m(n)f(p(n))}{n}.
\]

As [2, (2.35)], by Möbius inversion formula and Duality Lemma 3.1 we have

\[
 \sum_{n \leq x \frac{1}{2}} \frac{\lambda_m(n)f(p(n))}{n} = - \sum_{n \leq x} \frac{1}{n} \sum_{d|n} \mu(n/d)f(P_m(d)) = - \sum_{n \in \mathfrak{N}} \mu(n) \cdot \frac{f(P_m(n))}{n} - \sum_{n \leq x} \frac{f(P_m(n))}{n} \sum_{d \leq x} \frac{\mu(d)}{d}.
\]

It follows that the difference between the partial sums on \(\lambda_m \) and \(\mu \) is

\[
 \sum_{2 \leq n \leq x, \left[\frac{K/Q}{p(n)} \right] = C} \frac{\lambda_m(n)}{n} = \sum_{n \in \mathfrak{N}} \frac{\mu(n)}{n} \sum_{d \leq x} \frac{f(P_m(d)) - f(P(d))}{d} = S_1 + S_2 \tag{4.5}
\]

For \(S_2 \), by [2, (2.24)]

\[
 \sum_{n \leq x \frac{1}{2}} \frac{\mu(n)}{n} = O\left(\exp\left(-c\left(\log x\right)^{\frac{1}{2}} \right) \right) \tag{4.6}
\]

we get that

\[
 \sum_{x \frac{1}{2} < d \leq x} \frac{\mu(d)}{d} = O\left(\exp\left(-c\left(\log \frac{x}{n}\right)^{\frac{1}{2}} \right) \right) \tag{4.7}
\]

This implies that

\[
 S_2 = O\left(\sum_{n \leq x \frac{1}{2}} \frac{1}{n} \exp\left(-c\left(\log \frac{x}{n}\right)^{\frac{1}{2}} \right) = O\left(\exp(-c(\log x)^{\frac{1}{2}}) \right) \right) \tag{4.8}
\]
For S_1, by (4.3) in Corollary 4.2
\[
\sum_{d \leq x} f(P_m(d)) - f(P(n)) = C_m + O\left(\exp\left(-c(\log\frac{x}{n})^{1/2}\right)\right). \tag{4.10}
\]
Similar to (4.9) and by (4.7) again, we get that
\[
S_1 = -C_m \sum_{n \leq x} \frac{\mu(n)}{n} + O\left(\exp\left(-c(\log x)^{1/2}\right)\right) = O\left(\exp\left(-c(\log x)^{1/2}\right)\right). \tag{4.11}
\]
Thus, (4.4) follows by combining (4.6), (4.9), (4.11) and [4, (10)] together. \hfill \Box

Remark 4.5. Similar to the proof of Theorem 4.4 one can also prove the analogues of formula (1.7) and (1.8) for functions \((-1)\omega(n)\) and \((-1)A(n)\), where \(\omega(n) = \sum_{p \mid n} \alpha_p\) is the prime divisor counting function and \(A(n) = \sum_{p \mid n} \alpha_p\) is the additive prime divisor function which was introduced by Alladi and Erdős [1] in 1977. This is mainly due to the Duality Lemma 3.1 with respect to \((-1)\omega(n)\) and \((-1)A(n)\) holds for the numbers \(n\) satisfying \(P(n)\mid n\) and \(P(n) \geq 3\).

Acknowledgments

The author would like to thank his advisor Professor Xiaoqing Li for recommending the article which leads him to write down this note. The author would also like to thank the anonymous referee for the detailed comments, corrections and valuable suggestions.

References

[1] K. Alladi and P. Erdős, On an additive arithmetic function, Pacific J. Math. 71(2)(1977) 275–294.
[2] K. Alladi, Duality between prime factors and an application to the prime number theorem for arithmetic progressions, J. Number Theory 9(4)(1977) 436–451.
[3] K. Broughan, Equivalents of the Riemann hypothesis I: Arithmetic equivalents (Cambridge University Press, 2017).
[4] M.L. Dawsey, A new formula for Chebotarev densities, Res. Number Theory 3(2017) Article 27, 13 pp.
[5] H. G. Diamond, Elementary methods in the study of the distribution of prime numbers, Bull. Amer. Math. Soc. (N.S.) 7(3)(1982) 553–589.
[6] S. Ferenczi, J. Kulaga-Przymus, and M. Lemańczyk, Sarnak’s conjecture: what’s new, in Ergodic theory and dynamical systems in their interactions with arithmetics and combinatorics, ed. S. Ferenczi, J. Kulaga-Przymus, and M. Lemańczyk, Lecture Notes in Math. Vol 2213 (Springer, 2018), pp. 163–235.
[7] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, sixth edition (Oxford University Press, 2008).
[8] A. Ivić and C. Pomerance, Estimates for certain sums involving the largest prime factor of an integer, in Topics in classical number theory, Vol. I, II (Budapest, 1981), ed. G. Halász, Colloq. Math. Soc. János Bolyai Vol 34 (North-Holland, 1984), pp. 769–789.
[9] N. Sweeting and K. Woo, Formulas for Chebotarev densities of Galois extensions of number fields, Res. Number Theory 5(1)(2019) Article 4, 13 pp.