The Effect of the Presence of Lower Urinary System Symptoms on the Prognosis of COVID-19: Preliminary Results of a Prospective Study

Ibrahim Karabulut a Ahmet Emre Cinislioglu a Nazan Cinislioglu b Fatih Kursat Yilmazel a Mustafa Utluc c Handan Alay b Erkan Cem Celik d Senol Adanure e

a Department of Urology, Health Sciences University Regional Training and Research Hospital, Erzurum, Turkey; b Department of Infectious Diseases and Clinical Microbiology, Ataturk University Medical Faculty, Erzurum, Turkey; c Department of Internal Medicine, Health Sciences University Regional Training and Research Hospital, Erzurum, Turkey; d Department of Anesthesiology and Reanimation, Ataturk University Medical Faculty, Erzurum, Turkey; e Department of Urology, Ataturk University Medical Faculty, Erzurum, Turkey

Keywords
COVID-19 · Lower urinary tract symptoms · International prostate symptom score · Benign prostatic hyperplasia

Abstract

Purpose: To investigate the effectiveness of benign prostatic hyperplasia (BPH)-related lower urinary tract symptoms (LUTS), which occur as a natural result of aging and androgen exposure, in predicting disease prognosis in male patients diagnosed with COVID-19. Methods: The study was planned prospectively. The study included 63 male patients over 40 years of age diagnosed with COVID-19. The patients were diagnosed with COVID-19 based on the results of reverse transcription polymerase chain reaction tests of oropharyngeal and nasopharyngeal swabs obtained as per the World Health Organization guidelines. The presence of LUTS was assessed by the International Prostate Symptom Score (I-PSS), a subjective assessment, and the I-PSS was filled for the patients included in the study. The patients were divided into three groups based on their scores in the I-PSS survey: group 1: mild (0–7), group 2: moderate (8–19), and group 3: severe (20–35). The data of all three groups were statistically analyzed. Results: In the assessment performed between the groups, it was identified that for patients in group 3, the length of hospital stay was longer, intensive care requirement was more frequent, and their mortality rates were numerically higher. In the evaluation made regarding the time to intensive care admittance, this was identified to be the shortest in group 3. Conclusion: As a result of our study, we think that in patients with COVID-19, BPH-related LUTS can guide clinicians in predicting prognosis.
search, the etiology of BPH has still not been elucidated today. Still, the predominant hypotheses are that age-related changes and androgens play a role in the pathogenesis [4].

The coronavirus 2019 disease (COVID-19), which started in the city of Wuhan in China turned into a worldwide pandemic, infected millions of people, and caused the death of hundreds of thousands [5]. While infected individuals mostly experience mild symptoms such as fever, upper respiratory tract symptoms, shortness of breath, and diarrhea [6], or are asymptomatic [7], in severe cases, pneumonia, multiple organ failure, and death may occur [8]. The most common comorbidities in COVID-19-positive patients are chronic lung disease, diabetes and hypertension [9].

Studies conducted after the COVID-19 pandemic show that the disease is more severe and fatal in men, possibly due to the gender-based (androgens) immunological response and additional factors [10]. It has been shown that angiotensin-converting enzyme (ACE) receptors in the lung and the transmembrane serine protease 2 (TMPRSS2) enzyme group are effective in the penetration and spread of the virus into pneumocytes [11, 12]. In recent studies, androgen-mediated regulation of the ACE receptors and the TMPRSS2 enzyme group in the host has been implicated in the more frequent occurrence of acute respiratory syndrome coronavirus-2 (SARS-CoV2) infection and higher mortality in men [13, 14]. In this study, we aimed to investigate the effectiveness of BPH-related LUTS, which emerge as a natural result of aging and androgen exposure, in predicting disease prognosis in male patients diagnosed with COVID-19.

Material and Method

Prior to the study, approval was obtained from the local ethics committee and the Scientific Research Platform of the Ministry of Health of the Republic of Turkey. The study was planned prospectively. The study included 63 male patients over 40 years of age diagnosed with COVID-19 between April 1, 2020, and May 15, 2020. The patients were diagnosed with COVID-19 based on the results of reverse transcription polymerase chain reaction (RT PCR) tests of oropharyngeal and nasopharyngeal swabs obtained as per the World Health Organization guidelines [11]. PCR swabs were obtained using a specific swab under sterile conditions. The PCR swabs and nasopharyngeal swabs obtained from all COVID-19-positive patients were sent to the Health Ministry laboratories in specialized containers for testing. Only the patients with positive RT PCR results were included in the study.

Patients who had a history of previous pelvic organ surgery and/or radiotherapy, who were under medical treatment (alpha-blocker, etc.) or had a history of surgical treatment for BPH, those with an active urinary system infection or who were under medical treatment (alpha-blocker, etc.) or had a history of surgical treatment for BPH, those with a history of cystoscopy for urethral stenosis, and those with a history of previous pelvic organ surgery and/or radiotherapy, who were under medical treatment (alpha-blocker, etc.) or had a history of surgical treatment for BPH, those with a history of cystoscopy for urethral stenosis, and those with a history of surgical treatment for BPH, were excluded from the study.

The presence of LUTS was assessed by the International Prostate Symptom Score (IPSS), a subjective assessment, and the IPSS was filled for the patients included in the study. Due to the density of patients in the wards participating in this study in our pandemic hospital and the possibility of transmission to health studies, the study was limited to the IPSS survey only. The patients were divided into three groups based on their scores in the IPSS survey: group 1: mild (0–7), group 2: moderate (8–19), and group 3: severe (20–35). The patients’ findings at presentation such as fever, cough, sore throat, headache, fatigue, muscle pain and dyspnea, and the current accompanying diseases (diabetes mellitus, hypertension, chronic lung diseases, malignancy, chronic organ failure, etc.) were recorded. In cases where intensive care hospitalizations had been necessary during the treatment period, the number of days that the patients had been hospitalized at the regular ward prior to referral to the intensive care unit and the mortality rates were recorded. The data of all three groups were statistically analyzed.

Sample Size Calculation and Power Analysis

The post hoc sample size calculation was based on the primary outcome variable, the duration of hospitalization. Calculations were made with the G*Power program (Heinrich-Heine-University, Düsseldorf, Germany). The effect size was calculated from our findings. Sample size calculation for a two-sided hypothesis with three groups having 22, 22 and 19 patients, consecutively I-PS 1, I-PS 2 and I-PS 3 (total: 63 participants), provides a power of 82% and a Cohen’s f effect size of 0.41 (medium-large) to compare the three groups with one-way ANOVA. This result shows that the sample size is sufficient.

Statistical Analysis

Data analysis was carried out using the IBM SPSS 20.0 software (SPSS Inc., Chicago, IL, USA). The distribution of variables was evaluated for normality using the Shapiro-Wilk tests. The descriptive data were expressed as the mean ± standard deviation. Categorical variables were analyzed using the Pearson χ² test. The normally distributed data including continuous variables were analyzed using the Kruskal Wallis-Monte Carlo (post hoc Dunn’s) test. A p value of < 0.05 was considered statistically significant.

Results

The study was launched with 78 patients. After the exclusion criteria, it was completed with 63 patients (Fig. 1). Group 1 with IPSS scores between 0–7 included 22 (34%), group 2 with IPSS scores between 8–19 included 22 (34%), and group 3 with IPSS scores between 20–35 included 19 (32%) of the 63 patients. The characteristics of the patients are presented in Table 1. No significant difference was observed between the groups in terms of demographic findings, comorbid diseases, or presentation symptoms (Table 1).
In the assessment performed between the groups, it was identified that for patients in group 3, the length of hospital stay was longer, intensive care requirement was more frequent and their mortality rates were numerically higher. This difference was statistically significant between group 1 and group 3. The data on the length of hospital stay, intensive care requirement, and mortality rates between the groups are displayed in Table 2.

In the evaluation made regarding the time to intensive care admittance, this was identified to be the shortest in group 3, and it was observed that this difference was statistically significant (Fig. 2; Table 3).

Table 1. Comparison of demographic findings and voiding parameters of patients in Group 1 and Group 2 before treatment

	Group 1 (n=34)	Group 2 (n=34)	p
Age, years	46.5±9.9	43.1±7.2	0.708
BMI, kg/m²	24.8±2.2	24.5±2.2	0.896
Daily urinations, n	11.2±2.1	11.2±2.0	0.830
Urine volume, mL	252.2±81.7	261.4±94.4	0.668
Qmax, mL/s	11.0±2.7	11.1±2.6	0.964
Qmean, mL/s	6.0±1.1	6.0±1.1	0.918
PVR, mL	83.2±25.4	82.7±24.8	0.942
Udi 6, median score	13.5	13.5	0.995
EMG, n (%)	34 (100)	34 (100)	1b

Data are presented as mean ± SD or as stated. a Kruskal Wallis. b Intergroup comparison was performed using the χ² test.
30, 2020, 97,689 confirmed cases and 10,779 deaths from the disease were reported in Italy [18]. According to the latest age-related mortality analysis published by the Italian “Istituto Superiore di Sanità” (ISS) on March 30th, 2020, 8.9% of the deceased patients were over 90, 39.7% were 80–89 years of age, 35.5% were 70–79, 11.2% were 60–69, and 0.9% were 40–49 years of age. Similar to the statistics of the research from China, this study also reported that patients with one or more comorbidity diagnosed with COVID-19 had higher mortality rates [19].

One of the most frequently reported epidemiological data is the gender-related COVID-19 mortality [19]. Studies conducted in various countries show that males are more vulnerable to COVID-19 infections, and for this reason, the male gender is considered a poor prognostic factor by some authors [20]. Male patients comprise 73% [21] of the deaths in China, 59% of the deaths in South Korea [22], and ISS has reported that 70% of the patients that died in Italy were male [19]. Furthermore, a recent review of current epidemiological studies that gathered data from 59,254 patients from 11 different countries has shown there is a relationship between the male gender and higher mortality rates [23]. These findings indicate there is a vulnerability regarding the male gender. The experimental study conducted by Channappanavar et al.

Table 2. Comparison of the voiding parameters of patients in Group 1 and Group 2 measured before and after treatment

	Group 1 (n = 34)	Group 2 (n = 34)	p
	before treatment	12th week	
Daily urinations, n	11.2±2.1	7.7±2.9	<0.001
Urine volume, mL	252.2±81.7	261.7±77.7	0.622
Q_{max}, mL/s	11.0±2.7	14.8±2.6	0.001
Q_{mean}, mL/s	6.0±1.1	8.0±1.0	0.001
PVR, mL	83.2±25.4	54.7±31.5	<0.001
Udi6, score	13.5	9	<0.001
EMG, n (%)	34 (100)	14 (41.2)	0.391^a

Data are presented as mean ± SD or as stated. ^a Intergroup comparison was performed using the χ² test.

Table 3. Comparison of voiding parameters of patients in Group 1 and Group 2 at week 12

	Group 1 (n = 34)	Group 2 (n = 34)	p
Daily urinations, n	7.7±2.9	9.0±3.1	0.078
Urine volume, mL	261.7±77.5	258.0±82.0	0.850
Q_{max}, mL/s	14.8±2.6	12.8±2.9	0.026
Q_{mean}, mL/s	8.0±1.0	6.7±1.1	0.043
PVR, mL	54.7±31.5	65.7±24.1	0.023
Udi6, score	9	12	0.034
EMG, n (%)	14 (41.2)	22 (64.7)	0.009^a

Data are presented as mean ± SD or as stated. ^a Intergroup comparison was performed using the χ² test.

Fig. 2. Kaplan-Meier survival curves of the critical care requirement of the patients during the first 12 days (log rank p < 0.05).
Effect of Lower Urinary System Symptoms on COVID-19

[24] revealed that male rats were more vulnerable to SARS-CoV infections than age-matched female rats. Epidemiological COVID-19 studies are essential to better understand the pathogenic mechanisms of the disease and to identify superior therapeutic strategies. Although the question of why COVID-19 is more common and fatal in men remains a critical question awaiting an answer, and recent studies have suggested that one of the reasons for the increased vulnerability of men could be androgen-mediated mechanisms [13, 14].

BPH is one of the common causes of LUTS in older men. Age is the main factor in the development of BPH. The incidence of BPH increases from 8% in the 4th decade to over 70% in the 7th decade [25]. Testicular androgens are needed besides aging for the development of prostatic hyperplasia. Since the prostate gland maintains its number of androgen receptors throughout life, unlike other androgen-sensitive organs, it can respond to androgens. BPH does not develop in those who have been emasculated before puberty or who have genetic diseases that inhibit the effect or production of androgens. The 5a reductase 2 enzyme bound to the nuclear membrane converts the majority of testosterone in the prostate to dihydrotestosterone (DHT), which is the primary androgen. Although the level of testosterone in the systemic circulation decreases with aging, the level of DHT and androgen receptor function within the prostate is not affected. Although the pathophysiological mechanism of BPH is not fully understood, in animal and human studies, the opinion is that the factor effective in this process is the DHT-supported balance between cellular reproduction and death becoming impaired in favor of reproduction. Another contributing factor in the hyperplastic effect of androgens in the prostate is the androgen receptor activity [26].

Prostatic hyperplasia increases urethral resistance, leading to compensatory changes in bladder function. As a result of increased bladder outlet resistance, the detrusor pressure also increases for urine flow. Increased detrusor resistance also causes LUTS by affecting the bladder storage function [27]. LUTS are best assessed by approved questionnaires such as the I-PSS or the American Urology Association (AUA) symptom score [28]. In the study we conducted, we identified that the intensive care requirement and the mortality rates were significantly higher in patients diagnosed with COVID-19 with high I-PSS scores than those with low I-PSS scores. We also observed that the time to admission to intensive care was shorter in patients with high I-PSS scores compared to patients with low I-PSS scores. The data we obtained in this study conducted following the hypothesis that LUTS can be effective in predicting the severity of COVID-19 suggest that LUTS can be a predictor for the course and severity of COVID-19. Due to the load on the services of our pandemic hospital that participated in this study, it was limited with only the I-PSS survey. Currently, our group plans to conduct a controlled clinical trial to determine whether there is a correlation between androgens and COVID-19 severity following this preliminary observation. If LUTS caused by BPH were identified as a risk factor for the increased infection severity of COVID-19, we believe that these symptoms can guide physicians on the clinical course and severity of the disease. Furthermore, although no direct link has been established between the polymorphisms at the androgen receptor and COVID-19 severity as a result of our pilot study, we believe that gender inequality in the prognosis of the disease may be related to androgen receptor sensitivity or androgen exposure. We consider that 5-alpha reductase inhibitor administration alone or in combination with alpha blocker treatment would contribute to treatment of the patients who have LUTS due to BPH.

The limitations of our study were the use of I-PSS, which is only a subjective assessment of patients due to the reasons we explained in the discussion, not including a control group in the study, and the small study group.

In conclusion, in the light of the data we obtained in our study, we believe that LUTS can guide physicians in the course of COVID-19, and multicenter randomized prospective studies are needed to determine the potential relationship between androgens and COVID-19 severity.

Statement of Ethics

Prior to this single-center prospective study, approval was obtained from the Ethics Committee of Ataturk University Faculty of Medicine (approval No.: B.30.2.ATA.01.00/322). This study was conducted as per the latest version of the Helsinki Declaration and the Guidelines for Good Clinical Practice. Informed consent was obtained from all patients who participated in the study.

Conflict of Interest Statement

There is no conflict of interest of any authors in relation to the submission.
Funding Sources

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author Contributions

Ibrahim Karabulut: writer, design, analysis; Ahmet Emre Cinisioglu: supervision, design; Nazan Cinisioglu: design; Hadan Alay: data collection, design; Fatih Kursat Yilmazel: data collection, design; Mustafa Ulu: data collection, design; Erkan Cem Celik: analysis; Senol Adanur: design.

References

1. Abrams P, Cardozo L, Fall M, Griffiths D, Rosier P, Ulmsten U, et al. Standardisation Sub-committee of the International Continence Society. The standardisation of terminology of lower urinary tract function: report from the Standardisation Sub-committee of the International Continence Society. Neurourol Urodyn. 2002;21(2):167–78.

2. McNicholas T, Kirby R. Benign prostatic hyperplasia and male lower urinary tract symptoms. Am Fam Physician. 2012 Aug 15;86(4):359–60.

3. Langan RC. Benign Prostatic Hyperplasia. Prim Care. 2019 Jun;46(2):223–32.

4. Gandaglia G, Briganti A, Gontero P, Montagnani N, Novara G, Salonia A, et al. The role of chronic prostatic inflammation in the pathogenesis and progression of benign prostatic hyperplasia (BPH). BJU Int. 2013 Aug;112(4):432–41.

5. Ge H, Wang X, Yuan X, Xiao G, Wang C, Deng T, et al. The epidemiology and clinical information about COVID-19. Eur J Clin Microbiol Infect Dis. 2020 Jun;39(6):1011–9.

6. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, Wu X, et al. Clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China. N Engl J Med. 2020 Apr;382(18):1708–20.

7. Bai Y, Yao L, Wei T, Tian F, Jin DY, Chen L, et al. Presumed Asymptomatic Carrier Transmission of Coronavirus-19. JAMA. 2020 Feb;323(14):1406–7.

8. Weiss P, Murdoch DR. Clinical course and mortality risk of severe COVID-19. Lancet. 2020 Mar;395(10229):1014–5.

9. Cheng VC, Wong SC, Chen JH, Yip CC, Chuang VW, Tsang OT, et al. Escalating infection control response to the rapidly evolving epidemiology of the coronavirus disease 2019 (COVID-19) due to SARS-CoV-2 in Hong Kong. Infect Control Hosp Epidemiol. 2020 May;41(5):493–8.

10. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020 Feb;395(10223):507–13.

11. Leung JM, Yang CX, Tam A, Shaipanich T, Hackett TL, Singhera GK, et al. ACE-2 expression in the small airway epithelia of smokers and COPD patients: implications for COVID-19. Eur Respir J. 2020 May;55(5):2000688.

12. Stoppas KH, Mucci LA, Antonarakis ES, Nelson PS, Kantoff PW, TMPRSS2 and COVID-19: Serendipity or Opportunity for Intervention? Cancer Discov. 2020 Jun;10(6):779–82.

13. Wambier CG, Goren A. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is likely to be androgen mediated. J Am Acad Dermatol. 2020 Jul;93(1):308–9.

14. Pozzilli P, Lenzi A. Commentary: Testosterone, a key hormone in the context of COVID-19 pandemic. Metabolism. 2020 Jul;108:154252.

15. Johns Hopkins Coronavirus Resource Center. https://coronavirus.jhu.edu/map.html [accessed March 30, 2020].

16. Rodriguez-Morales AJ, Cardona-Ospina JA, Gutiérrez-Ocampo E, Villamizar-Peña R, Holguín-Rivera Y, Escalera-Antezana JP, et al.; Latin American Network of Coronavirus Disease 2019—COVID-19 Research (LANCOCVID-19). Electronic address: https://www.lancocovid.org. Clinical, laboratory and imaging features of COVID-19: A systematic review and meta-analysis. Travel Med Infect Dis. 2020 Mar-Apr;34:101623.

17. Epidemiology Working Group for NCIP Epidemiological Response, Chinese Center for Disease Control and Prevention. The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China. Zhonghua Liu Xing Bing Xue Za Zhi. 2020;41(2):145–51.

18. Porreca A, Colicchia M, D’Agostino D, Ragonese O, Di Fiore A, Partin AW, Oesterling JE, Epstein JI, Horton H, et al. Prostate-specific antigen and mortality: effect of age and androgen therapy. Int J Mol Sci. 2020 Apr;21(8):E2948.

19. Mo P, Xing Y, Xiao Y, Deng L, Zhao Q, Wang H, et al. Clinical characteristics of refractory COVID-19 pneumonia in Wuhan, China. Clin Infect Dis. 2020 Mar 16;ciaa270. doi: 10.1093/cid/ciaa270. Online ahead of print.

20. Chen T, Wu D, Chen H, Yan W, Yang D, Chen G, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ. 2020 Mar 30;368:m1091.

21. Korean Society of Infectious DiseasesKorean Society of Pediatric Infectious DiseasesKorean Society of EpidemiologyKorean Society for Antimicrobial TherapyKorean Society for Healthcare-associated Infection Control and PreventionKorea Centers for Disease Control and Prevention. Report on the Epidemiological Features of Coronavirus Disease 2019 (COVID-19) Outbreak in the Republic of Korea from January 19 to March 2, 2020. J Korean Med Sci. 2020 Mar;35(10):e112.

22. Borges do Nascimento JI, Cacic N, Abdu-lazem HM, von Groote TC, Jayarajah U, Weerasekara I, et al. Novel Coronavirus Infection (COVID-19) in Humans: A Scoping Review and Meta-Analysis. J Clin Med. 2020 Mar;9(4):E941.

23. Channappanavar R, Fett C, Mack M, Ten Eyck PP, Meyerholz DK, Perlman S. Sex-Based Differences in Susceptibility to Severe Acute Respiratory Syndrome Coronavirus Infection. J Immunol. 2017 May;198(10):4046–53.

24. Partin AW, Oesterling JE, Epstein JJ, Horton R, Walsh PC. Influence of age and endocrine factors on the volume of benign prostatic hyperplasia. J Urol. 1991 Feb;145(2):405–9.

25. Chen S, Chang HC, Tian J, Shang Z, Niu Y, Chang C. Stromal androgen receptor roles in the development of normal prostate, benign prostate hyperplasia, and prostate cancer. Am J Pathol. 2015 Feb;185(2):293–301.

26. Chughtai B, Forde JC, Thomas DD, Laor L, Hossack T, Woo HH, et al. Benign prostatic hyperplasia. Nat Rev Dis Primers. 2016;2:16031.

27. Karavitakis M, Kyriazis I, Omar MJ, Gravas S, Cornu JN, Drake MJ, et al. Management of Urinary Retention in Patients with Benign Prostatic Obstruction: A Systematic Review and Meta-analysis. Eur Urol. 2019 May;75(5):788–98.