Crystal Structure of the Bovine Mitochondrial Elongation Factor Tu-Ts Complex*

Received for publication, October 18, 2004, and in revised form, November 12, 2004
Published, JBC Papers in Press, November 22, 2004, DOI 10.1074/jbc.M411782200

Mads Gravers Jeppesen‡§, Tomas Navratil§§, Linda Lucy Spremulli¶, and Jens Nyborg‡¶
From the ‡Department of Molecular Biology, University of Aarhus, Gustav Wieds Vej 10 C, 8000 Aarhus C, Denmark and §Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290

The three-dimensional structure of the bovine mitochondrial elongation factor (EF)-Tu-Ts complex (EF-Tu₅₅Ts₅₅) has been determined to 2.2-Å resolution using the multi-wavelength anomalous dispersion experimental method. This complex provides the first insight into the structure of EF-Tsmt. EF-Tsmt is similar to Escherichia coli and Thermus thermophilus EF-Ts in the amino-terminal domain. However, the structure of EF-Tsmt deviates considerably in the core domain with a five-stranded β-sheet forming a portion of subdomain N of the core. In E. coli EF-Ts, this region is composed of a three-stranded sheet. The coiled-coil domain of the E. coli EF-Ts is largely eroded in EF-Tsmt, in which it consists of a large loop packed against subdomain C of the core. The conformation of bovine EF-Tu₅₅ in complex with EF-Tsmt is distinct from its conformation in the EF-Tu₅₅-GDP complex. When domain III of bovine EF-Tu₅₅-GDP is superimposed on domain III of EF-Tu₅₅ in the EF-Tu₅₅Ts₅₅ complex, helix B from domain I is also almost superimposed. However, the rest of domain I is rotated relative to this helix toward domain II, which itself is rotated toward domain I relative to domain III. Extensive contacts are observed between the amino-terminal domain of EF-Tsmt and domain I of EF-Tu₅₅. Furthermore, the conserved TDFV sequence of EF-Tsmt also contacts domain I with the side chain of Asp139 contacting helix B of EF-Tu₅₅ and inserting the side chain of Phe140 between helices B and C. The structure of the EF-Tu₅₅Ts₅₅ complex provides new insights into the nucleotide exchange mechanism and provides a framework for explaining much of the mutational data obtained for this complex.

Protein biosynthesis is the process by which the ribosome translates the sequence of nucleotides in a mRNA into the sequence of amino acids in a protein. During the cyclic elongation phase, the ribosome is assisted by elongation factors (EFs)1 (1, 2). In prokaryotes, elongation factor EF-Tu promotes the binding of aminoacyl-tRNA (aa-tRNA) to the A-site of the mRNA-programmed ribosome in the form of the ternary complex aa-tRNA-EF-Tu-GTP (3). Upon cognate interaction between the codon of mRNA and the anticodon of aa-tRNA, GTP is hydrolyzed, and EF-Tu-GDP is released from the ribosome. The nucleotide exchange factor, EF-Ts, binds the EF-Tu-GDP complex mediating the release of the GDP and forms a stable EF-Tu-Ts complex (1). The high concentrations of GTP in the cell help dissociate EF-Ts leaving the active EF-Tu-GTP complex. EF-Tu-GTP binds another aa-tRNA, forming a new ternary complex, and the cycle is repeated.

Mitochondria contain a highly specialized protein biosynthetic machinery that is responsible for the synthesis of 13 polypeptides of the electron transport chain and the ATP synthase in the inner membrane (4). The mitochondrial translational system has a number of unique features including an altered genetic code, unusual protein-rich ribosomes, and tRNAs that lack many of the conserved residues found in canonical tRNAs (5–7). Despite these differences, mammalian mitochondria possess a translational elongation machinery with significant similarities to that of bacteria (8).

Mitochondrial EF-Tu (EF-Tu₅₅) is highly conserved and is 55–60% identical to bacterial EF-Tu (9). The three-dimensional structure of the EF-Tu₅₅-GDP complex has been determined at 1.94-Å resolution (10). The overall structure is similar to that observed in the Escherichia coli and Thermus aquaticus factors, but the nucleotide-binding domain (domain I) of EF-Tu₅₅ is in a different orientation relative to the rest of the structure compared with that observed in prokaryotic EF-Tu (11, 12). Furthermore, domain III is followed by a short 11-amino acid extension that forms one helical turn. This extension seems to be specific to the mitochondrial factors and has not been observed in any of the prokaryotic factors.

Bovine liver EF-Tsmt is 338 amino acids in length. The amino terminus of the mature protein has been determined and indicates that removal of the 55-residue import signal leaves a mature protein of 283 amino acids (13). Bovine EF-Tsmt is only 25–35% identical to its bacterial homologs, and primary sequence alignments are a challenge due to the limited conservation observed between the mitochondrial and prokaryotic factors.

Previous crystallographic studies have determined the structure of the EF-Tu₅₅ complexes from E. coli and Thermus thermophilus (14, 15). The E. coli complex is a heterodimeric complex, whereas the T. thermophilus complex is heterotetrameric. In these complexes, EF-Ts makes extensive contacts with both domain I and domain III of EF-Tu. E. coli EF-Ts is organized into four structural modules (14): the amino-terminal domain (residues 1–54), the core domain (residues 55–179 and 229–263), the dimerization or coiled-coil domain (residues 180–228), and the carboxyl-terminal module (residues 264–282). The core domain can be further divided into subdomain N (residues 55–140) and subdomain C (residues 141–179 and 229–263). The amino-terminal domain, subdomain N, and the
carboxyl-terminal module interact with domain I of EF-Tu, whereas subdomain C interacts with domain III of EF-Tu. In the *Thermus thermophilus* (EF-Tu-Ts)2 complex, each EF-Tu moiety interacts with two EF-Ts subunits through a bipartite interface, which explains the need for an EF-Ts dimer in the nucleotide exchange reaction (15).

The mechanism of guanine nucleotide exchange in these factors is suggested to occur through a three-part mechanism. The interaction between EF-TU and EF-Ts results in the disruption of the Mg2+ ion binding site, which leads to a reduced affinity of EF-TU for guanine nucleotides. This process is induced by the intrusion of the side chains of Asp80 and Phe81 (E. coli numbering) from EF-Ts between helices B and C in domain I of EF-Tu. A peptide flip in the phosphate binding loop (P-loop) of EF-Tu destabilizes the binding of one β-phosphate oxygen of GDP. Finally, the movement of EF-Tu helix D affects the binding of the sugar and base of the bound nucleotide. The coordinated effects of this three-part mechanism lead to the release of GDP.

In the current study, we present the crystal structure of the bovine EF-Tu-mt Ts-mt complex in the absence of any bound nucleotide at 2.2-Å resolution. The structure provides the first picture of the structure of the mitochondrial nucleotide exchange factor and provides insight into the mechanism of nucleotide exchange for this protein complex.

MATERIALS AND METHODS

Subcloning and Expression—The liganded independent cloning technique (Novagen) was used to remove the carboxyl-terminal His tag on mitochondrial Bos taurus EF-Tu-mt (9). The plasmid was purified by the miniprep procedure (Qiagen) and used as a template for PCR amplification using forward primer 5′-GAGGAGAAGCCGGTATTACCCTGGTGTTTTAGAAGACA-3′ and reverse primer 5′-GAGGAGAAGCCGGTATTACCCTGGTGTTTTAGAAGACA-3′. The sequence required for ligation independent cloning is shown in bold in both primers, the ribosomal entry site is italicized. The sequence required for ligation independent cloning is shown in bold in both primers, the ribosomal entry site is italicized. The reverse primer 5′-TATAACTCCACTTGATGTTC-3′ was annealed with Ef-Tu forward primer 5′-AGGAGATATACATGCTGTGGAGGCCAAGAAGACC-3′.

Purification of EF-Tu-mt—A single colony of cells expressing carboxy-terminally His6-tagged EF-Tu-mt (13) was grown in 4 l of LB media containing 25 μg/ml kanamycin at 37 °C while shaking until an A610 of 0.7–0.9 was reached. Protein expression was induced with 0.25 mM isopropyl-β-D-thiogalactopyranoside for 3.5 h (also at 37 °C), and the cells were harvested by centrifugation at 4 °C. The wet cells were resuspended in EF-Ts-mt lysis buffer (40 mM KCl, 50 mM Tris-HCl, pH 7.6, 10% (v/v) glycerol, 15 μM GDP, 2 μM β-mercaptoethanol, and 0.5 mM PMSF) to a total of 50 ml and stored at −80 °C. The lysed cells were broken using the EmulsiFlex-05 high pressure cell homogenizer (Avestin). The lysed cells were subjected to ultracentrifugation at 4 °C for 10 min at 75 000 × g. The pH of the supernatant was adjusted to ~8 with Tris-HCl and applied to a nickel-nitrioltriacetic acid column (Amersham Biosciences) equilibrated in EF-Tu-mt lysis buffer. The column was washed with 100 ml of 100 mM Tris-HCl, pH 7.6, 2 μM MgCl2, 10 mM DTT, and 0.5 mM PMSF containing 50 mM imidazole-HCl, pH 8. The remaining protein concentration was determined with an Amersham Biosciences protein assay. EF-Tu-mt was then loaded on a 1-ml ISO Resource column (Amersham Biosciences) equilibrated in EF-Tu-mt lysis buffer. The columns were washed with 100 ml of EF-Tu-mt elution buffer containing 250 mM imidazole-HCl, pH 8. The column was washed with 100 ml of EF-Tu-mt elution buffer containing 250 mM imidazole-HCl, pH 8. The protein was eluted with EF-Tu-mt elution buffer containing 250 mM imidazole-HCl, pH 8. This latter portion contains mainly EF-Tu-mt.

The eluted portion containing EF-Tu-mt was clarified in a tabletop centrifuge at 15 000 rpm for 10 min at 4 °C before being loaded on a 10-ml Source Q column (Amersham Biosciences) equilibrated in EF-Tu-mt Source Q Buffer A (40 mM KCl, 50 mM Tris-HCl, pH 7.6, 2 μM MgCl2, 10 mM DTT, and 0.5 mM PMSF) containing 40 mM imidazole-HCl, pH 8. The remainder of the protein to the column was eluted with EF-Tu-mt elution buffer containing 250 mM imidazole-HCl, pH 8. This latter portion contains mainly EF-Tu-mt.

Crystallization—Crystals of EF-Tu-mt were grown at 20 °C by the sitting drop vapor diffusion technique by mixing 1 μl of protein solution with 1 μl of reservoir solution (14–18% PEG 8k, 100 mM Tris-HCl, pH 7.6, 2 μM MgCl2, 10 mM DTT, and 0.5 mM NaN3) per gram of wet cells and frozen at −80 °C. The SeMet substituted protein complex was crystallized by the sitting drop vapor diffusion technique by mixing 1 μl of protein solution with 1 μl of reservoir solution (14–18% PEG 8k, 100 mM Tris-HCl, pH 7.6, 2 μM MgCl2, 10 mM DTT, and 0.5 mM NaN3) per gram of wet cells and frozen at −80 °C. The SeMet substitute protein complex was crystallized by the sitting drop vapor diffusion technique by mixing 1 μl of protein solution with 1 μl of reservoir solution (14–18% PEG 8k, 100 mM Tris-HCl, pH 7.6, 2 μM MgCl2, 10 mM DTT, and 0.5 mM NaN3) per gram of wet cells and frozen at −80 °C. The SeMet substitute protein complex was crystallized by the sitting drop vapor diffusion technique by mixing 1 μl of protein solution with 1 μl of reservoir solution (14–18% PEG 8k, 100 mM Tris-HCl, pH 7.6, 2 μM MgCl2, 10 mM DTT, and 0.5 mM NaN3) per gram of wet cells and frozen at −80 °C. The SeMet substitute protein complex was crystallized by the sitting drop vapor diffusion technique by mixing 1 μl of protein solution with 1 μl of reservoir solution (14–18% PEG 8k, 100 mM Tris-HCl, pH 7.6, 2 μM MgCl2, 10 mM DTT, and 0.5 mM NaN3) per gram of wet cells and frozen at −80 °C. The SeMet substitute protein complex was crystallized by the sitting drop vapor diffusion technique by mixing 1 μl of protein solution with 1 μl of reservoir solution (14–18% PEG 8k, 100 mM Tris-HCl, pH 7.6, 2 μM MgCl2, 10 mM DTT, and 0.5 mM NaN3) per gram of wet cells and frozen at −80 °C. The SeMet substitute protein complex was crystallized by the sitting drop vapor diffusion technique by mixing 1 μl of protein solution with 1 μl of reservoir solution (14–18% PEG 8k, 100 mM Tris-HCl, pH 7.6, 2 μM MgCl2, 10 mM DTT, and 0.5 mM NaN3) per gram of wet cells and frozen at −80 °C. The SeMet substitute protein complex was crystallized by the sitting drop vapor diffusion technique by mixing 1 μl of protein solution with 1 μl of reservoir solution (14–18% PEG 8k, 100 mM Tris-HCl, pH 7.6, 2 μM MgCl2, 10 mM DTT, and 0.5 mM NaN3) per gram of wet cells and frozen at −80 °C. The SeMet substitute protein complex was crystallized by the sitting drop vapor diffusion technique by mixing 1 μl of protein solution with 1 μl of reservoir solution (14–18% PEG 8k, 100 mM Tris-HCl, pH 7.6, 2 μM MgCl2, 10 mM DTT, and 0.5 mM NaN3) per gram of wet cells and frozen at −80 °C. The SeMet substitute protein complex was crystallized by the sitting drop vapor diffusion technique by mixing 1 μl of protein solution with 1 μl of reservoir solution (14–18% PEG 8k, 100 mM Tris-HCl, pH 7.6, 2 μM MgCl2, 10 mM DTT, and 0.5 mM NaN3) per gram of wet cells and frozen at −80 °C. The SeMet substitute protein complex was crystallized by the sitting drop vapor diffusion technique by mixing 1 μl of protein solution with 1 μl of reservoir solution (14–18% PEG 8k, 100 mM Tris-HCl, pH 7.6, 2 μM MgCl2, 10 mM DTT, and 0.5 mM NaN3) per gram of wet cells and frozen at −80 °C.
10% glycerol. After 18 h in this buffer, the crystal was frozen in a stream of liquid nitrogen gas at 100 K at the EMBL BW7a beamline at the DORIS storage ring, DESY (Hamburg, Germany). An x-ray fluorescence spectrum at the selenium K absorption edge was obtained by tuning the wavelength of the incident x-ray beam and used to determine the wavelengths necessary for subsequent data collection. A three-wavelength dataset was collected at the selenium peak (λ = 0.9818 Å), inflection point (λ = 0.9824 Å), and high energy remote (λ = 0.9716 Å), in that order. Data (360°) were collected for each wavelength, with 1° oscillation in each frame, but only 220° of data for each wavelength. The crystal belongs to space group C2 with 1° oscillation in each frame, but only 220° of data for each wave-length. Data collection and refinement statistics. Fig. 1, Nsdmt, and 322 water molecules could be modeled. The overall structure of the complex (Fig. 1A) is similar to that of the E. coli EF-Tu-Ts complex (14). As in the E. coli complex, the amino-terminal domain and subdomain N of EF-Tsmt contact domain I of EF-TuNmt, whereas subdomain C interacts with domain III. The buried surface area, when considering these contacts, constitutes 3140 Å² in the mitochondrial complex compared with 2623 Å² in the E. coli complex. When also considering the contacts made between domain I and the carboxyl-terminal module in the E. coli complex, the buried surface area in this complex is 3624 Å². This kind of interaction is not observed in the mitochondrial complex because EF-Tsmt is shorter than E. coli EF-Ts and the last 7 residues could not be modeled in the mitochondrial protein.

EF-Tsmt—The structure of EF-Ts is known for both the E. coli and T. thermophilus factors (14, 15). The structure of EF-Tsmt has been divided into five domains, the amino-terminal domain, subdomains N and C of the core region, the coiled-coil region (which is part of the dimerization domain), and the carboxyl-terminal module. There is a duplication of the secondary structure motif in subdomain N and C that gives rise to a local internal pseudo-symmetry (Fig. 1, B and C). The corresponding structure of the dimeric T. thermophilus EF-TsTs is created by the three-stranded anti-parallel β-sheet on each subunit interacting to form a truly symmetric β-sandwich corresponding to the β-sandwich structure observed between subdomain N and C of the core of E. coli EF-Ts (24).

The basic structure of EF-Tsmt has interesting similarities and also rather striking differences compared with that of the E. coli factor (Fig. 1, B and C). In contrast to T. thermophilus EF-TsTs, both E. coli and mitochondrial EF-Ts function as monomers in solution, and comparisons will therefore be made between the mitochondrial and E. coli factors. Overall, the amino-terminal domain is similar between the two factors. The two

TABLE I

Data collection, MAD data, and refinement statistics
Space group/unit cell
Dataset
Wavelength (Å)
Unique reflections
Redundancy
Resolution (Å)
Completeness (%)
Mean I/σ(I)
Rmerge (%)

MAD data statistics

	Centric	Acentric
Resolution (Å)	30–2.20	30–2.20
Reflections	37636	Free
Total residues/waters	645/322	1517
R-factor	21.8/24.7	21.8/24.7
Rfree	24.7/27.3	24.7/27.3
r.m.s.d. Bond (Å)	0.007	Angles (°)
Re	1.3	1.3

RESULTS

Overall Structure—The crystallographic asymmetric unit contains one heterodimeric complex of EF-TuNmt-Tsmt, and 322 water molecules could be modeled. The overall structure of the complex (Fig. 1A) is similar to that of the E. coli EF-Tu-Ts complex (14). As in the E. coli complex, the amino-terminal domain and subdomain N of EF-Tsmt contact domain I of EF-TuNmt, whereas subdomain C interacts with domain III. The buried surface area, when considering these contacts, constitutes 3140 Å² in the mitochondrial complex compared with 2623 Å² in the E. coli complex. When also considering the contacts made between domain I and the carboxyl-terminal module in the E. coli complex, the buried surface area in this complex is 3624 Å². This kind of interaction is not observed in the mitochondrial complex because EF-Tsmt is shorter than E. coli EF-Ts and the last 7 residues could not be modeled in the mitochondrial protein.

EF-Tsmt—The structure of EF-Ts is known for both the E. coli and T. thermophilus factors (14, 15). The structure of E. coli EF-Ts has been divided into five domains, the amino-terminal domain, subdomains N and C of the core region, the coiled-coil region (which is part of the dimerization domain), and the carboxyl-terminal module. There is a duplication of the secondary structure motif in subdomain N and C that gives rise to a local internal pseudo-symmetry (Fig. 1, B and C). The corresponding structure of the dimeric T. thermophilus EF-TsTs is created by the three-stranded anti-parallel β-sheet on each subunit interacting to form a truly symmetric β-sandwich corresponding to the β-sandwich structure observed between subdomain N and C of the core of E. coli EF-Ts (24).

TABLE I

Data collection, MAD data, and refinement statistics
Space group/unit cell
Dataset
Wavelength (Å)
Unique reflections
Redundancy
Resolution (Å)
Completeness (%)
Mean I/σ(I)
Rmerge (%)

MAD data statistics

	Centric	Acentric
Resolution (Å)	30–2.20	30–2.20
Reflections	37636	Free
Total residues/waters	645/322	1517
R-factor	21.8/24.7	21.8/24.7
Rfree	24.7/27.3	24.7/27.3
r.m.s.d. Bond (Å)	0.007	Angles (°)
Re	1.3	1.3
structures then begin to show some deviations. The cores of E. coli EF-Ts and EF-Tsmt are both formed by a /H9252-sandwich. However, the number of /H9252-strands and their arrangement differ between them. Most dramatically, the coiled-coil domain found in E. coli EF-Ts (helices /H92519, /H925110, and /H925111 in Fig. 1B) is almost completely eroded in the mitochondrial factor (Fig. 1A, loop region between /H92518 and /H925112).

The amino-terminal domain of bovine EF-Tsmt is structurally similar to the amino terminus of the EF-Ts from both E. coli and T. thermophilus (14, 15). It consists of the helical segments /H9251a1-/H9252a3 (Fig. 1, A and C). The insertion of 4 extra residues in the bovine protein located in helix /H9252a3 adds one helical turn to this helix and moves the amino-terminal domain slightly closer to helix D of EF-Tsmt compared with EF-Ts in the two other complexes. Helix /H9252a3 has a considerable kink in its middle at s/Ala99 (in the following sections, residues will be referred to by the prefixes u and s if they belong to EF-Tu or EF-Ts, respectively). The kink in the mitochondrial factor is more pronounced than that seen in E. coli at s/Gly44, whereas /H9252a3 is only slightly bent in T. thermophilus EF-Ts.

Fig. 1. A, cartoon representation of the bovine EF-Tu7Tsmt complex. EF-Tu7 is colored orange, and EF-Tsmt is colored violet (amino-terminal domain), green (subdomain N), and blue (subdomain C). The amino terminus and carboxyl terminus of both proteins are labeled along with domain I, II, and III and helices B, C, and D of EF-Tu7 and the secondary structure elements of EF-Tsmt. Not shown in cartoon are four 3_10-helices of EF-Tsmt (see the Fig. 2 legend). B, cartoon of E. coli EF-Ts (helix a13 and connecting loop have been omitted for clarity) (14). The overall structure of the E. coli EF-Ts molecule is very similar to that of bovine EF-Tsmt. It has been colored as described for the domains of EF-Tsmt, and additionally, the E. coli EF-Ts coiled-coil motif consisting of helices /H92519, /H925110, and /H925111 is shown in red. C, secondary structure projection of the bovine EF-Tsmt and E. coli EF-Ts structures. Secondary structure elements common with E. coli EF-Ts are named as in E. coli EF-Ts. In bovine EF-Tsmt, the amino-terminal domain consists of a1, a2, and a3; subdomain N consists of /H9252a1, /H9252a2, /H9251a4, /H9251a5, /H9252a6, /H9251a7, /H9251a8, and /H9252a9; and subdomain C consists of /H9252a6.
Subdomain N of EF-Tsmt consists of four helical segments (α4-α7) and a five-stranded β-sheet (β1, β2, β2', β3, and β4') (Fig. 1, A and C). In E. coli EF-Ts, subdomain N of the core consists of four helical segments (α4-α7) and a three-stranded β-sheet (β1-β3) (Fig. 1B). Helix α3 from the amino-terminal domain leads into β-strand β1 in subdomain N of the core. This strand makes a turn and runs anti-parallel to strand β2. Strand β2 is followed by a short helix, α4ε, which contains the important aspartic acid and phenylalanine residues that play a role in the nucleotide exchange reaction. This section then leads into helix α5. In E. coli EF-Ts, α5 is followed by another helical segment (α6). However, in EF-Tsmt, there is a large insertion of residues between helices α5 and α6, creating an extra β-strand (β'2) consisting of five residues that runs anti-parallel to β-strand β3 (Fig. 1C). The polypeptide chain then turns ~90° perpendicular to the β-sheet and forms a short helix (α6) consisting of 5 residues. This helix is followed by a loop remarkably similar in size and shape to the one found in T. thermophilus EF-Ts between helices α7 and α8 (15) and distinct from the corresponding region in E. coli EF-Ts, where α6 leads directly into α7 (Figs. 1 and 2). The loop in EF-Tsmt is followed by a helix that corresponds to α7 in E. coli EF-Ts. This helix leads into the last β-strand, β3, of the β-sheet in subdomain N.

Subdomain C of the core of EF-Tsmt begins where strand β3 leads into strand β4 (Fig. 1). An insertion of 3 residues between β3 and β4 compared with E. coli EF-Ts extends these strands in bovine EF-Tsmt, and stabilizes the amino terminus of strand β2' in the mitochondrial factor. In E. coli EF-Ts, strand β4 leads directly into strand β5. In EF-Tsmt, there is another insertion between β4 and β5 that folds back across the pseudo 2-fold symmetry axis of EF-Ts to subdomain N of the core domain. It forms a loop and a small β-strand, β4', consisting of 3 residues. It is fixed in place by hydrogen bonds to β1, and the chain then returns back to form strand β5 in subdomain C of the core domain. This organization means that the β-sheet in subdomain N of the core consists of five β-strands, instead of three β-strands as in the other two EF-Tu Ts complexes. Residues 255–262 form a loop between β5 and α8 that contains a 31β-turn (residues 250–261) (data not shown). This loop is similar to but 2 residues shorter than the one seen in T. thermophilus EF-Ts between β2 and α5 of the second EF-Ts moiety of the (EF-Tu Ts)2 complex (15). In T. thermophilus, this region contains the conserved TDFV sequence motif that interacts with EF-Tu.

The region between helices α8 and α12 corresponding to the coiled-coil segment in E. coli EF-Ts is reduced to a large loop in bovine EF-Tsmt that packs against subdomain C of the core domain (Fig. 1A). Due to the less well defined density at the carboxyl terminus of mitochondrial EF-Tsmt following sGly331, the last 7 residues of EF-Tsmt could not be modeled. In the E. coli EF-Ts structure, this region is followed by a loop and an additional helix, α13, which interacts with domain I of EF-Ts. The carboxyl terminus of T. thermophilus EF-Ts is found at the position to which EF-Tsmt could be modeled.

The EF-Tsmt Interface—There are basically three major areas of contact between EF-Tu and EF-Tsmt two regions involving contacts with domain I and one major region contacting domain III of EF-Tu. The amino-terminal domain of EF-Tsmt interacts with residues in helix D and the loop leading into helix C of domain I of EF-Tu. Subdomain N of the core contacts EF-Tu through residues in helix C and the region between helices B and C. Finally, subdomain C of the core makes contacts with domain III of EF-Tu.

Contacts between the amino-terminal domain of EF-Tsmt and domain I of EF-Tu result in a significant displacement of helix D, which moves away from domain III. Helix α1 from the amino terminus of bovine EF-Tsmt interacts primarily with helix D of EF-Tu (Fig. 3A). The methylene groups from the side chain of sLys78, sLeu63, sMet64, and sPhe74 form a hydrophobic pocket for uLeu194. Numerous electrostatic contacts are also present (Fig. 3A). The side chain of uGlu190 is within hydrogen bonding distance with the amino-terminal amine of sSer26 (the amino-terminal residue of the mature protein) and its carbonyl oxygen (Fig. 3A). Residue sLYs60 forms a salt bridge to uGlu193 Oε1. The side chain of residue sArg67 forms a hydrogen bond to the backbone carbonyl of uPro157 and sTyr72 and is further fixed in place by salt bridges with uGlu198 through Oε4 to Nε2 and Oε5 to Nε2. The side chain of sArg68 forms salt bridges with uGlu201 through Nε1 to Oε2 and Nε2 to Oε5. Residues sLeu63, sPhe74, and the aliphatic part of sLYs78 form a hydrophobic patch that accommodates the side chain of sMet191. An electrostatic interaction takes place between sLYs78 and uAsp188 Oε5 (3.6 Å). The backbone amide of sPhe74...
and sLe75 from the amino terminus of helix $\alpha 2$ of EF-Ts$_{mt}$ makes hydrogen bonds with the backbone carbonyl of residue uAsn154 from the loop leading to helix C of EF-Tu$_{mt}$.

Subdomain N of the core of EF-Ts$_{mt}$ plays a critical role in the rearrangements in EF-Tu$_{mt}$ that lead to the release of the bound nucleotide. Residue sPhe140 from the conserved TDFV sequence motif found in all EF-Ts sequences is inserted directly between helices B and C of EF-Tu$_{mt}$. The electrostatic and hydrogen bond interactions are shown. Hydrophobic interactions are also present in this region (see “Results”). Subdomain C of the core of EF-Ts$_{mt}$ and domain III of EF-Tu$_{mt}$. The electrostatic and hydrogen bond interactions are illustrated in Fig. 3B. Note that there are considerable hydrophobic contacts in this region (see “Results”). See also Fig. 6.

FIG. 3. Schematic diagram showing some of the interactions in the bovine EF-Tu$_{mt}$-Ts$_{mt}$ interface. A, electrostatic and hydrogen bond interactions between residues in the amino-terminal domain of EF-Tu$_{mt}$ and domain I of EF-Tu$_{mt}$. Hydrophobic interactions are also present in this region (see “Results”). B, subdomain N of the core interactions near helices B and C in EF-Tu$_{mt}$. Hydrogen bond and electrostatic interactions are shown. C, interactions between subdomain C of the core of EF-Ts$_{mt}$ and domain III of EF-Tu$_{mt}$. The electrostatic and hydrogen bond interactions are illustrated in Fig. 3B.

A slight difference in the coordination of the P-loop in domain I of EF-Tu by EF-Ts can be
observed among the mitochondrial, *E. coli*, and *T. thermophilus* complexes. The mitochondrial residues sArg¹⁹⁹ and sArg¹³³ from α3 coordinate the carboxyl side chain of mitochondrial uAsp⁶⁷. In *E. coli*, sLys⁵¹ coordinates uAsp²³¹, whereas *T. thermophilus* EF-Ts has both sLys⁶⁸ and sArg¹³³ contacting uAsp⁶⁷.

Subdomain C of the core of EF-Tsmt contacts domain III of EF-Tu_{mt}. The relative position of domain III of EF-Tu_{mt} in relation to subdomain C of the EF-Tsmt core is different from that in the *E. coli* complex. When helices B and C from EF-Tu_{mt} and the regions from the core of EF-Tsmt that interact with EF-Tu_{mt} are superimposed, there is a rotation of ~18° of domain III around helix B in a clockwise manner when looking from the amino terminus toward the carboxyl terminus of this helix. The difference is minimal at the interface to EF-Tsmt and progresses further away from the domain III/EF-Tsmt interface. In comparison, the *E. coli* and *T. thermophilus* complexes superimpose almost perfectly for domains II and III. A hydrophobic patch on EF-Tu_{mt} consisting of the methylene groups of uLys³⁶⁸, uPro³⁶⁹, uVal³⁷¹, uLeu³⁹⁷, and uMet³⁹⁹ faces residues sGly²⁷⁵, sMet²⁷⁶, sLeu³⁰², and sLeu³⁰³ on EF-Tsmt. The carboxyl oxygens of uGlu³⁹⁶ are held in place by interactions from sGln²⁷¹Ne₂ and sArg⁶²⁷N_{γ_2} and more weakly by sArg²⁶⁶N_e and sArg²⁶⁸N_{γ_2} (Fig. 3C). There is also contact between sHis²³¹ at the end of β4 and uGlu⁴⁰² in the loop between strands c3 and d3 in EF-Tu_{mt}. The side chain hydroxyl group of sTyr²²⁹ stabilizes sHis²³¹ through a hydrogen bond to N_ε1.

EF-Tu_{mt}—The conformation of bovine EF-Tu_{mt} in complex with EF-Tsmt is distinct from the EF-Tu_{mt}-GDP complex (10). When superimposing domain III of bovine EF-Tu_{mt} in the GDP and EF-Tsmt complexed forms, helix B in domain I in the two structures is almost superimposed (Fig. 4A). However, the remainder of domain I is rotated ~25° as a rigid body relative to this helix away from domain III toward domain II. The solvent-accessible surface of EF-Tu_{mt} from the EF-Tsmt complex decreases by 140 Å² compared with the GDP-bound form as a result of the movement of the carboxyl-terminal part of helix C away from domain III. Besides the changes in the P-loop and near the guanine nucleotide binding site, which will be described later, there are no changes in this domain. This is similar to the changes observed in domain I of *E. coli* EF-Tu between the GDP and EF-Ts complexed forms (12, 14). Surprisingly, domain II of EF-Tu_{mt} in the EF-Tu_{mt}-Tsmt complex is also rotated ~18° as a rigid body toward domain I relative to domain III when compared with the EF-Tu_{mt}-GDP complex (Fig. 4A). This rotation is exemplified by the movement of the loop between β-strands b2 and c2 in domain II by ~7.8 Å. The shape of the “hole” between the three domains of EF-Tu_{mt} is slightly altered, mainly as a result of the relative movements of domain I and the linker between domains I and II. The rotation of domain II is probably a result of the movement of domain I, which mediates its effect through the linker between these two domains, because there are no major changes in domain III.

As a result of the domain rearrangements, some of the interface interactions between domain II and III have changed upon EF-Tu_{mt}-Tsmt complex formation from the EF-Tu_{mt}-GDP complex (Fig. 4B). In the EF-Tu_{mt}-GDP structure, residues uHis²⁹⁵ and uSer²⁹⁶, from the loop between β-strands e2 and f2, of domain II interact with residues sMet³⁸⁵, sGlu⁴¹², uPro⁴¹³, and uMet⁴¹⁴ from domain III (10). Residue uHis²⁹⁵ is held in place by uMet³⁸⁵ and uMet⁴¹⁴ from domain III and uArg³³⁵ from domain II. In the EF-Tu_{mt}-Tsmt complex, the peptide bond between uGly²⁹⁴ and uHis²⁹⁵ has flipped ~170°, causing the following residues in the loop to assume a different conformation than that observed in the EF-Tu_{mt}-GDP complex. The relative movement of the C_α atoms of uHis²⁹⁵ and uSer²⁹⁶ is 6.1 and 5.8 Å, respectively, when domain III is superimposed in the two structures. In the equivalent *E. coli* structures, there is essentially no change between the relative positions of domain II and III upon complex formation with EF-Ts (12, 14). The interface between domains II and III is also basically the same in the *E. coli* EF-Tu-GDPNP-Phe-tRNA_{kirromycin} complex, indicating that in the bacterial EF-Tu, these domains act together as a rigid body. The loop between β-strands e2 and f2 in domain II of EF-Tu_{mt} is similar but not identical in shape or position to the corresponding region in domain II of the *T. thermophilus* EF-Tu_{mt} complex (15).

Rearrangements Leading to Guanine Nucleotide Exchange—

The dramatic conformational changes observed in domain I of EF-Tu_{mt} are critical for the nucleotide exchange process. The changes lead to the disruption of the binding site for the guanine nucleotide. The changes observed encompass portions of EF-Tu_{mt} that interact with the guanine base and regions binding the β-phosphate and Mg²⁺ ion. The GTP-binding site is defined by three consensus sequence elements (for review, see Ref. 26). The first sequence motif, GXXGGXG(S/T), also called the P-loop, coordinates the α- and β-phosphate groups of the bound nucleotide. The second motif, DXGX, which is part of the switch II region, is involved in the coordination of the γ-phosphate. The third motif, NKXD, determines the specificity for the guanine base. Furthermore, a conserved threonine residue from the switch I region coordinates the Mg²⁺ ion.

The mechanism of guanine nucleotide exchange in EF-Tu is suggested to occur through a three-part mechanism. The interaction between EF-Tu and EF-Ts results in the disruption of the Mg²⁺ ion binding site that is induced by the intrusion of the side chains of Asp⁹⁰ and Phe⁹¹ (*E. coli* numbering) from EF-Ts between helices B and C in domain I of EF-Tu. A peptide flip in the P-loop of EF-Tu destabilizes the binding of one β-phosphate oxygen of GDP, and the movement of EF-Tu helix D affects the binding of the sugar and base of the bound nucleotide.

The region in EF-Tu_{mt} (K¹³⁶ADAVQ¹⁴⁷) containing part of the conserved NKXD motif involved in nucleotide binding was very difficult to model and had less well defined density even after the final refinement. The orientation of this loop is different from that of the EF-Tu_{mt}-GDP complex (Fig. 5). In *E. coli*, sLys⁶⁸ in the amino-terminal domain of EF-Ts makes an electrostatic contact with uAsp¹⁴¹ from the loop following the NKXD motif. In EF-Tu_{mt}, the aspartic acid residue found in *E. coli* EF-Tu (uAsp¹⁴¹) is replaced by uGln²⁰² that points in a different direction than in the *E. coli* protein. The side chain of uGln²⁰² forms two hydrogen bonds with the side chain of uAsn¹⁶⁴ in the mitochondrial EF-Tu_{mt}-Tsmt complex. The mitochondrial residue equivalent to *E. coli* sLys⁶⁸ (sLys⁷⁸) is conserved in EF-Tu_{mt} but makes a salt bridge with uAsp¹⁸⁸ (3.6 Å). A similar orientation of the equivalent of EF-Tu_{mt} uLys¹⁹² is seen in two other G-proteins complexed with their nucleotide exchange factor, namely, that of Ras-Sos1 and Ran-RCC1 (27, 28). The conformation observed in the EF-Tu_{mt}-Tsmt complex could represent a state in the exchange mechanism distinct from that observed in the *E. coli* and *T. thermophilus* complexes.

As mentioned, two of the dominant residues in the interaction between EF-Tu and EF-Ts are from the conserved TDFV motif in subdomain N of the core of bovine EF-Tsmt, namely, sAsp¹³⁹ and sPhe¹⁴⁰ (Figs. 3B and 6). The phenyl ring of sPhe¹⁴⁰ sits in a hydrophobic region with uTyr¹³³ and uLeu¹⁶⁷ and between the side chains of uHis¹³⁶ and uHis¹⁶⁴. This position inserts sPhe¹⁴⁰ between helices B and C and clearly disrupts the binding site for the Mg²⁺·GDP. Residues 84–111 containing the switch I region of EF-Tu_{mt} could not be modeled.

²R. C. Nielsen, O. Kristensen, M. Kjeldgaard, S. Thirup, J. Nyborg, and P. Nissen, manuscript in preparation.
This region is involved in large conformational changes between the GDP- and GTP-bound state of EF-Tu (29, 30). A peptide flip between residues uVal66 and uAsp67 causes the P-loop to change conformation as seen in other complexes of G-proteins and their exchange factors (14, 15, 31).

Mutations versus Structure—A number of mutations have been made in residues of EF-Tsmt that were predicted to interact with EF-Tumt. These predictions were based on the alignment of the sequences of the bacterial and mitochondrial factors and on the structure of the E. coli EF-Tu-Ts complex (14, 32–34). The variants made have been divided into three groups, based on their location in the structure of EF-Ts (Table II and Fig. 6). The first group is located in the amino-terminal domain. In the E. coli EF-Tu-Ts complex, sArg12 makes an electrostatic contact with uGlu152 and a hydrogen bond with the backbone carbonyl of uPro111 (3.4 Å). It plays an essential role in the interaction of these two factors (32). The corresponding position in EF-Tsmt is sArg67. This residue makes electrostatic interactions with uGlu198 and a hydrogen bond contact with the backbone carbonyl of uPro157 (2.9 Å). The adjacent residue sArg68 makes salt bridge contacts with uGlu201 in helix D of EF-Tumt (Fig. 3A). However, a triple mutant in this region of mitochondrial EF-Tsmt (R67A, R68A, and K69A) that eliminates these interactions is as active as wild-type EF-Tsmt. Hence, unlike the E. coli complex, these interactions between EF-Tumt and EF-Tsmt do not contribute significantly to the guanine nucleotide exchange in the mitochondrial system.

Contacts between helix α2 in the amino-terminal domain of EF-Tsmt and helix D in domain I of EF-Tu mt also were predicted to involve residues sPhe74 and sLeu76. In the crystal
FIG. 5. Conformational changes at the guanine base binding site in domain I of EF-Tu_{mt}-EF-Ts_{mt} complex and colored in orange, respectively. The GDP moiety is shown in gray stick representation, with nitrogen colored blue, oxygen colored red, and phosphorus colored yellow. Residues uAsn₁₈₁, sLys₁₈₂, and uAsp₁₈₄ from the NKXD motif (also shown in stick representation), along with helices A, C, and D and the P-loop, have been labeled. The loop following the NKXD motif in EF-Tumt is in a distinct conformation after complex formation with EF-Ts_{mt}. The P-loop, as in other G-protein-nucleotide exchange factor complexes, is seen to have a different conformation due to a peptide flip in this loop.

structure of the bovine EF-Tu_{mt}-Ts_{mt} complex, sPhe₇₄ makes hydrophobic contacts with the side chains projecting from helix D of EF-Tu_{mt}, although it is not tightly nestled in this pocket. The backbone amide group of sPhe₇₄ forms a weak hydrogen bond to the backbone carbonyl oxygen of uAsn₁₅₄ on EF-Tumt (3.3 Å). The backbone amide group of sLeu₇₇ also hydrogen bonds to the backbone carbonyl oxygen of uAsn₁₅₄ (3.2 Å), and its side chain may make a hydrophobic contact with the C_γ-methylen of this residue. Three different mutants in these residues have been made (Table II) (34). Conversion of both sPhe₇₄ and sLeu₇₇ to alanines results in a 2-fold reduction in the activity of EF-Ts_{mt}, suggesting that the hydrophobic interactions play some role in stabilizing the interaction of EF-Ts_{mt} with EF-Tumt. Replacement of both residues with methionine converts this sequence into one identical to that observed in E. coli EF-Ts. This variant has an activity indistinguishable from that of the wild-type factor. Clearly, a methionine at both positions is sufficient to maintain strong contacts between these two factors, allowing GDP exchange to occur readily. It is essential to maintain hydrophobic residues in this region because replacement of sPhe₇₄ and sLeu₇₇ with glutamic acid residues completely inactivates EF-Ts_{mt}.

Mutational analysis shows that mutation of sLeu₇₈ and sLys₇₉ to alanine in EF-Ts_{mt} has no effect on the activity of EF-Ts_{mt} (Table II). Based on the structural information, the mutation of sLeu₇₈ could be expected to destabilize the interaction of EF-Ts_{mt} with the amino-terminal of helix D following the NKXD motif in EF-Ts_{mt}. Apparently, however, this contact is not important. The adjacent sLeu₇₉ points away from EF-Ts_{mt}, and its mutation is not expected to have an effect on the activity of EF-Ts_{mt}.

Mutation of either sAsp₁₃₉ or sPhe₁₄₀ with alanine completely inactivates EF-Ts_{mt}, demonstrating that EF-Ts_{mt} must be able to disrupt the region between helices B and C in EF-Tu_{mt} to promote nucleotide exchange. The mutation of both these residues to alanine does not completely inactivate E. coli EF-Ts, indicating that they are not essential for the function of the bacterial factor (33).

EF-Ts_{mt} interacts with domain III of EF-Tu_{mt} over a significant surface (924 Å²). One residue predicted to be important in this region of contact is sHis₂₃₁ located in subdomain C of the core of EF-Ts_{mt} (Figs. 3C and 6). The side chain of this residue interacts with the loop between β-strands c3 and d3 of domain III. The Nε2 of the imidazole ring of sHis₂₃₁ hydrogen bonds to an oxygen of uGlu₃₉₆, and Nδ1 is hydrogen bonded to sTy₂₂₅, whereas hydrophobic contacts are made with the side chains of uLeu₃₉₇ and uMet₃₉₉. Mutation of sHis₂₃₁ to alanine results in the loss of the side chain hydrogen bond and leads to a 6-fold reduction in the ability of EF-Ts_{mt} to stimulate the activity of EF-Tu_{mt} (Table II). Subdomain C also makes significant hydrophobic contacts with domain III of EF-Ts_{mt}. Two of these contacts involve sLeu₃₀₂ and sLeu₃₀₃. Conversion of these residues to valine and methionine, respectively (the residues found in E. coli EF-Ts), had no effect on the activity of EF-Ts_{mt}. This observation is reasonable because these changes maintain the hydrophobic interactions between the two factors. However, conversion of the two residues to glutamic acids completely inactivated EF-Ts_{mt}, indicating that the hydrophobic contacts between EF-Ts_{mt} and domain III of EF-Tu_{mt} are essential for their interaction, as seen in the E. coli complex (34).

There are hydrogen bond contacts between sArg₂₆₇ and sArg₂₆₈ of EF-Ts_{mt} and uGlu₃₉₆ of EF-Tu_{mt}. However, mutation of both sArg₂₆₇ and sArg₂₆₈ to alanines did not affect the ability of EF-Ts_{mt} to promote guanine nucleotide exchange with EF-Tu_{mt}, indicating that these contacts do not play a significant role in the interaction between these two factors.

DISCUSSION

One of the striking differences between EF-Ts_{mt} and E. coli EF-Ts is the loss of the majority of the coiled-coil domain in the mitochondrial factor. The deletion of the coiled-coil motif in E. coli EF-Ts affects its ability to compete with guanine nucleotides for binding to EF-Tu (35). The concentration of either GDP or GTP needed to dissociate the mutant EF-Tu_{mt} complex was 2 orders of magnitude lower than that for the wild-type complex. Furthermore, an E. coli strain harboring the EF-Ts mutant is resistant to phage Qβ (36). The Qβ complex is responsible for the replication of the single-stranded RNA genome of coliphage Qβ. Both EF-Tu and EF-Ts are components of the Qβ-polymerase complex along with the Qβ-replicase subunit and ribosomal protein S1 (37–39). The region that corresponds to the T. thermophilus coiled-coil region of one monomer is reduced in size in bovine EF-Tu_{mt} and forms a β-strand, β2′, in subdomain N. The coiled-coil region of the second EF-Ts moiety in the T. thermophilus EF-Tu_{mt}-Ts_{mt} complex, which is equivalent to the coiled-coil motif of E. coli EF-Ts, is reduced to a large loop packing against subdomain C of bovine EF-Ts_{mt}. The coiled-coil motif is conserved in bacteria and chloroplasts. It has been suggested that the coiled-coil motif of E. coli EF-Ts is involved in an isomerization step within EF-Ts during the formation of the EF-Tu-GDP-EF-Ts complex that acts as an intermediate in the nucleotide exchange reaction (35). This type of isomerization step has been studied with the nucleotide exchange reaction taking place with the ternary EF-Tu-thioGDP-EF-Ts complex (40). Furthermore, it has been suggested that the binary EF-Tu-Ts complex and the ternary complex with either GDP or GTP are structurally distinct (41). Clearly, the absence of the coiled-coil motif in EF-Ts_{mt} suggests that any isomerization reaction occurring with the mitochon-
drial factor must involve other parts of the molecule.

The observation that the EF-Ts proteins have the highest sequence identity in the amino terminus obviously signifies the importance of this domain in the nucleotide exchange reaction. The fact that mutation of the aspartic acid and phenylalanine residues from the TDFV motif in E. coli and bovine mitochondrial EF-Ts yielded different results reflects the idea that the amino terminus obviously signifies the importance of this domain in the nucleotide exchange reaction. Of particular interest is the difference in the interface between domain II and III of EF-Tu mt as well as their relative position between the GDP and EF-Tu mt complexed forms. These differences have not been observed in the other EF-Ts mt complexes from E. coli and T. thermophilus (14, 15). Thus, in the bovine EF-Tu mt-Ts mt complex, domains II and III do not act as a rigid body as observed in E. coli and T. thermophilus EF-Tu.

When superimposing the parts of EF-Ts that interact with EF-Tu along with EF-Tu helices B and C of domain I from E. coli, T. thermophilus, and B. taurus, there is a relatively large shift in the position of domain III of EF-Tu mt relative to domain III in the other complexes that are almost superimposed. The three complexes differ mainly in the distance between helix D of EF-Tu and helix α1 of EF-Ts. Helix α1 in EF-Tu mt is extended compared with the corresponding helices in the prokaryotic factors, and it lies closer to helix D than in either of the other two bacterial complexes. The implications of these differences must await further biochemical and structural studies.

Acknowledgment—We thank Santosh Panjikar at the DORIS storage ring (DESY) for technical assistance during data collection.

REFERENCES
1. Cwokowski, J., and Moore, P. B. (1996) Prog. Nucleic Acid Res. Mol. Biol. 54, 293–332
2. Green, R., and Noller, H. F. (1997) Annu. Rev. Biochem. 66, 679–716
3. Clark, B. F., and Nyborg, J. (1997) Curr. Opin. Struct. Biol. 7, 110–116
4. Scheffler, I. E. (1999) Mitochondria Wiley-Liss, Inc., New York
5. Fox, T. D. (1987) Annu. Rev. Genet. 21, 67–91
6. Helm, M., Brue, H., Friede, D., Giege, R., Putz, D., and Florentz, C. (2000) RNA (N. Y.) 6, 1356–1379
7. O’Brien, T. W. (2002) Gene (Amst.) 286, 73–79
8. Spremulli, L. L., Coursey, A., Navratil, T., and Hunter, S. E. (2004) Prog. Nucleic Acid Res. Mol. Biol. 77, 211–261
9. Wurtax, V. L., Burkhardt, W., and Spremulli, L. L. (1995) Biochim. Biophys. Acta 1264, 347–356
10. Andersen, G. R., Thirup, S., Spremulli, L. L., and Nyborg, J. (2000) J. Mol. Biol. 207, 421–436

Table II

Interpretation of mutations in EF-Ts mt made previously

EF-Ts mt mutant	Location	Effect on activity	Structural analysis	Ref.
R67A, R68A, K69A	Amino-terminal	No change	Hydrogen bonding here not important	34
K78A, K79A	Amino-terminal	No change	sLys35 too far away to make contact with EF-Tumt	34
F74A, F75A	Amino-terminal	Down 2-fold	Loss of hydrophobic interactions with helix D of EF-Ts mt	34
F74M, I75M	Amino-terminal	Inactive	Met can replace the hydrophobic interactions of Phe and Ile	34
F74E, I75E	Amino-terminal	No change	Interaction of N-terminal domain of EF-Ts mt with domain I of EF-Tu mt is essential	34
D139A	Subdomain N	Down 5-fold	Loss of hydrogen bond interactions with helix B of EF-Tu mt	33
F140A	Subdomain N	Down 5-fold	Loss of hydrophobic interactions with uTyre195 and uLeu196. Can not disrupt orientation of helices B and C of EF-Tumt	33
D139A, F140A	Subdomain N	Inactive	The disruption of this region of EF-Tu mt is essential for release of guanine nucleotides	33
H231A	Subdomain C	Down 6-fold	Hydrogen bond of His side chain with domain III of EF-Tu mt is important in their interaction, and loss of this interaction decreases its ability to promote guanine nucleotide exchange	34
R267A, R268A	Subdomain C	No change	Hydrogen bond from sArg66 to EF-Tumt not important for their interaction	34
L302V, L303M	Subdomain C	No change	Hydrophobic contacts maintained	34
L302E, V303E	Subdomain C	Down 7-fold	Disrupts binding due to loss of hydrophobic contacts with domain III	34

Numbering refers to the precursor protein and is different from the numbering in the indicated reference, which refers to the mature protein.

Fig. 6. Position of previously mutated residues in the bovine EF-Tu mt-Ts mt interface. See Table II for an overview of mutations made in mitochondrial EF-Ts mt. Some of the mutated residues of EF-Ts mt are shown in stick representation and labeled along with helices B and C from EF-Tumt. Coloring of the EF-Tumt complex is as described in Fig. 1A. See “Results” for discussion.

Ras-Sos1 (27) both possess a NKXD motif that is structurally different from that seen in E. coli and T. thermophilus EF-Tu-Ts but somewhat similar to the one in the EF-Ts mt-Ts mt complex. However, the weak density in this region of our structure does not convincingly suggest the specific mechanism at work. A higher mobility of the guanine binding region was suggested as the main reason for the low affinity of EF-Tumt for nucleotides (10).

The interaction between EF-Ts mt and EF-Tu mt-GDP leads to quite large conformational changes in EF-Tu mt. These conformational changes involve a considerable shift in the interactions of the three domains of EF-Tu mt. Of particular interest is the difference in the interface between domain II and III of EF-Tu mt, as well as their relative position between the GDP and EF-Tu mt complexed forms. These differences have not been observed in the other EF-Ts mt complexes from E. coli and T. thermophilus (14, 15).

Thus, in the bovine EF-Tu mt-Ts mt complex, domains II and III do not act as a rigid body as observed in E. coli and T. thermophilus EF-Tu.

When superimposing the parts of EF-Ts that interact with EF-Tu along with EF-Tu helices B and C of domain I from E. coli, T. thermophilus, and B. taurus, there is a relatively large shift in the position of domain III of EF-Tu mt relative to domain III in the other complexes that are almost superimposed. The three complexes differ mainly in the distance between helix D of EF-Tu and helix α1 of EF-Ts. Helix α1 in EF-Tu mt is extended compared with the corresponding helices in the prokaryotic factors, and it lies closer to helix D than in either of the other two bacterial complexes. The implications of these differences must await further biochemical and structural studies.
11. Polekhina, G., Thirup, S., Kjeldgaard, M., Nissen, P., Lippmann, C., and Nyborg, J. (1996) *Structure (Lond.)* 4, 1141–1151
12. Song, H., Parsons, M. R., Rowsell, S., Leonard, G., and Phillips, S. E. (1999) *J. Mol. Biol.* 285, 1245–1256
13. Xin, H., Woriax, V., Burkhardt, W., and Sprenulli, L. L. (1995) *J. Biol. Chem.* 270, 17343–17249
14. Kawashima, T., Berthet-Colominas, C., Wulff, M., Cusack, S., and Leberman, R. (1996) *Nature* 379, 511–518
15. Wang, Y., Jiang, Y., Meyering-Voss, M., Sprinzl, M., and Sigler, P. B. (1997) *Nat. Struct. Biol.* 4, 650–656
16. Bradford, M. M. (1976) *Anal. Biochem.* 72, 248–254
17. Otwinowski, Z., and Minor, W. (1997) in *Macromolecular Crystallography*, Part A, Methods in Enzymology Series, Vol. 276 (Carter, C. W., Jr., and Sweet, R. S., eds) pp. 307–326, Academic Press, New York
18. Brunger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P., Grosse-Kunstleve, R. W., Jiang, J. S., Kuszewski, J., Nilges, M., Pannu, N. S., Read, R. J., Rice, L. M., Simonson, T., and Warren, G. L. (1998) *Acta Crystallogr. Sect. D Biol. Crystallogr.* 54, Pt 5, 905–921
19. Jones, T. A., Zou, J. Y., Cowan, S. W., and Kjeldgaard. (1991) *Acta Crystallogr. Sect. A* 47, Pt 2, 110–119
20. Laskowski, R. A., MacArthur, M. W., Moss, D. S., and Thornton, J. M. (1993) *J. Appl. Cryst.* 26, 283–291
21. Kabsch, W., and Sander, C. (1983) *Biopolymers* 22, 2577–2637
22. DeLano, W. L. (2002) *The PyMOL User’s Manual*, DeLano Scientific, San Carlos, CA
23. Jiang, Y., Nock, S., Nespor, M., Sprinzl, M., and Sigler, P. B. (1996) *Biochemistry* 35, 10269–10278
24. Deleted in proof
25. Sprang, S. R. (1997) *Annu. Rev. Biochem.* 66, 639–678
26. Boriack-Sjodin, P. A., Margarit, S. M., Bar-Sagi, D., and Kuriyan, J. (1998) *Nature* 394, 337–343
27. Renault, L., Kuhlmann, J., Henkel, A., and Wittinghofer, A. (2001) *Cell* 105, 245–255
28. Kjeldgaard, M., Nissen, P., Thirup, S., and Nyborg, J. (1993) *Structure (Lond.*) 1, 35–50
29. Andersen, G. R., Pedersen, L., Valente, L., Chatterjee, I., Kinzy, T. G., Kjeldgaard, M., and Nyborg, J. (2000) *Mol. Cell* 6, 1261–1266
30. Zhang, Y., Yu, N. J., and Sprenulli, L. L. (1998) *J. Biol. Chem.* 273, 4556–4562
31. Zhang, Y., Li, X., and Sprenulli, L. L. (1996) *Eur. J. Biochem.* 249, 331–336
32. Zhang, Y., and Sprenulli, L. L. (1998) *Eur. J. Biochem.* 249, 3314–3316
33. Karring, H., Bjornsson, A., Thirup, S., Clark, B. F., and Knudsen, C. R. (2003) *Eur. J. Biochem.* 270, 4294–4305
34. Karring, H., Mathu, S. G., van Duin, J., Clark, B. F., Kraal, B., and Knudsen, C. R. (2004) *J. Biol. Chem.* 279, 1878–1884
35. Kamen, R. (1970) *Nature* 228, 527–533
36. Blumenthal, T., Landers, T. A., and Weber, K. (1972) *Proc. Natl. Acad. Sci. U. S. A.* 69, 1313–1317
37. Wahba, A. J., Miller, M. J., Niveloeau, A., Landers, T. A., Carmichael, G. G., Weber, K., Hawley, D. A., and Slebin, L. I. (1974) *J. Biol. Chem.* 249, 3314–3316
38. Eccleston, J. F., Kanagasabai, T. F., and Geeves, M. A. (1988) *J. Biol. Chem.* 263, 4668–4672
39. Gromadski, K. B., Wieden, H. J., and Rodnina, M. V. (2002) *Biochemistry* 41, 162–169
Crystal Structure of the Bovine Mitochondrial Elongation Factor Tu-Ts Complex
Mads Gravers Jeppesen, Tomas Navratil, Linda Lucy Spremulli and Jens Nyborg

J. Biol. Chem. 2005, 280:5071-5081.
doi: 10.1074/jbc.M411782200 originally published online November 22, 2004

Access the most updated version of this article at doi: 10.1074/jbc.M411782200

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

Supplemental material:
http://www.jbc.org/content/suppl/2005/01/03/M411782200.DC1

This article cites 37 references, 7 of which can be accessed free at
http://www.jbc.org/content/280/6/5071.full.html#ref-list-1