LENGTE OF LOCAL COHOMOLOGY IN POSITIVE CHARACTERISTIC AND ORDINARITY

THOMAS BITOUN

Abstract. Let D be the ring of Grothendieck differential operators of the ring R of polynomials in $d \geq 3$ variables with coefficients in a perfect field of positive characteristic p. We compute the D-module length of the first local cohomology module $H^1_f(R)$ of R with respect to an irreducible polynomial f with an isolated singularity, for p large enough. The expression we give is in terms of the Frobenius action on the top coherent cohomology of the structure sheaf of the exceptional divisor of a resolution of the singularity. Our proof rests on a tight closure computation due to Hara. Since the above length is quite different from that of the corresponding local cohomology module in characteristic zero, we also consider a characteristic zero D-module whose length is expected to equal that above, for ordinary primes.

1. Introduction

In this note, we compute the positive characteristic D-module length of the first local cohomology module of the structure sheaf with support in a hypersurface, in a large class of examples. Our main result can also be seen as part of our study of the b-function in positive characteristic, see [2]. On the one hand, in [2] using D-module (or unit F-module) techniques, for D the ring of Grothendieck differential operators, we associate to a non-constant polynomial f with coefficients in a perfect field of positive characteristic a set of p-adic integers, called the roots of the b-function of f. On the other, one may consider the F-jumping exponents of the generalised test ideals of f, see [12]. These are positive real numbers which are characterised by their intersection with the unit interval $(0, 1]$ and have been shown to be rational numbers in [7]. In [2] we prove that the roots of the b-function of f are exactly the opposites of the F-jumping exponents of f which are in $\mathbb{Q} \cap \mathbb{Z}_p$. It would thus seem that the information provided by the F-jumping exponents of f which are not in $\mathbb{Q} \cap \mathbb{Z}_p$, i.e. whose denominator is divisible by p, let us call them irregular, is lost in the theory. A consequence of the results presented here is that not all the information is lost. Namely the absence of irregular F-jumping exponents is well-known to be closely related to phenomena of ordinarity, see [17]. We claim that at the very least the D-module (or unit F-module) length of the module N_f used to define the b-function in [2] distinguishes ordinary primes from supersingular ones, for large enough primes. More precisely, using the terminology of [2], one can see that the joint eigenspace of the action of the higher Euler operators on N_f corresponding to the root -1 of the b-function of f is isomorphic to the first local cohomology module $H^1_f(R)$, where R is the ring of polynomials. For a d-dimensional proper variety Z over a field of characteristic $p > 0$, we let the p-genus $g_p(Z)$ of Z be the dimension of the stable part of $\overline{k} \otimes H^d(Z, \mathcal{O}_Z)$, that is $\dim_{\overline{k}}(\bigcap_{t \geq 0} F^t(\overline{k} \otimes H^d(Z, \mathcal{O}_Z)))$, where F is the Frobenius action on coherent cohomology and \overline{k} is an algebraic closure of the base field. Our main result is (see Theorem 1 for the precise general formulation):

Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK; thbitou@gmail.com.
Theorem. Suppose that \(f \) is an irreducible complex polynomial in \(n \geq 3 \) variables with an isolated singularity at the origin and let \(Y \xrightarrow{\pi} X \) be a resolution of the singularity. Then for almost all \(p \), the \(\mathcal{D} \)-module length of \(H^1_{f_p}(R) \) is \(1 + g_p(Z_p) \), where \(Z_p \) is the reduction modulo \(p \) of the exceptional fiber of \(\pi \).

The proof, which mostly belongs to the theory of unit \(F \)-modules, uses Blickle’s intersection homology \(\mathcal{D} \)-module \([3]\) and Lyubeznik’s enhancement of Matlis duality \([10]\) to reduce the main unit \(F \)-module length computation to a geometric description of the tight closure of 0 in the local cohomology of the singularity, due to Hara \([11]\). One then deduces the \(\mathcal{D} \)-module length from Blickle’s length comparison result \([5]\) and an application of Haastert’s positive characteristic Kashiwara’s equivalence \([10]\).

We note that in characteristic zero, the \(\mathcal{D} \)-module length of the first local cohomology module is of a quite different nature. It actually is a topological invariant. For example, let \(f \) be a rational cubic in three variables which is the equation of an elliptic curve \(E \) in \(\mathbb{P}^3_{\mathbb{Q}} \), of genus \(g = 1 \). Let \(R_C \) be the ring of complex polynomials in 3 variables and for all primes \(p \), let \(R_p \) be the ring of \(\mathbb{F}_p \)-polynomials in 3 variables. Then the \(\mathcal{D} \)-module length of the local cohomology module \(H^1_C(R_C) \) is \(3 = 1 + 2g \), see e.g. \([3\) Remark 1.2\]. But as will be seen in Example \([1]\) for almost all primes \(p \), the \(\mathcal{D}_p \)-module length of \(H^1_C(R_p) \) is \(2 = 1 + g \) if \(E_p \) is ordinary and 1 if \(E_p \) is supersingular, where \(E_p \) (resp. \(f_p \)) is the reduction of \(E \) (resp. \(f \)) modulo \(p \) and \(D_p = D_{R_{p}} \) is the ring of Grothendieck differential operators on \(\mathbb{A}_{p}^{3} \). Thus for (almost) all primes \(p \), the lengths of the first local cohomology modules in characteristic zero and in characteristic \(p \) are different. We end this note with a section on comparison with characteristic zero, arguing that in great generality, the \(\mathcal{D} \)-submodule \(\mathcal{D}^{1}_f \) of the local cohomology module \(H^1_f(R_C) \) generated by the class of \(\frac{1}{f} \) (which need not be equal to \(H^1_C(R_C) \)) is a better behaved characteristic zero analogue of \(H^1_{f_p}(R_p) \) than the whole local cohomology module \(H^1_f(R_C) \). (Recall that the left \(\mathcal{D}_p \)-module \(H^1_{f_p}(R_p) \) is generated by the class of \(\frac{1}{f_p} \), by \([1\) Theorem 1.1\].) For example, in the case of the elliptic curve above, we have that the \(\mathcal{D} \)-module length of \(\mathcal{D}^{1}_f \) is equal to the \(\mathcal{D}_p \)-module length of \(H^1_{f_p}(R_p) \), for almost all ordinary primes \(p \) of \(E \). The characteristic zero \(\mathcal{D} \)-module \(\mathcal{D}^{1}_f \) is studied in detail in \([3\). (See also \([18]\) for a different approach.\)

1.1. Acknowledgements. It is my pleasure to thank Manuel Blickle and Gennady Lyubeznik for interesting correspondence regarding the length of the positive characteristic first local cohomology module in the homogeneous case. I am also very grateful to Karl Schwede for explaining me a proof of Lemma \([1]\). The author was supported by EPSRC grant EP/L005190/1.

1.2. Notations. Throughout the note we will use the following notations: For an integer \(n \geq 2 \) and all fields \(K \), we let \(R_K \) be the ring of polynomials in \(n + 1 \) variables \(\{x_0, \ldots, x_n\} \) with coefficients in \(K \) and \(D_{R_K} \) be the ring of Grothendieck differential operators on \(\mathbb{A}^{n+1}_K \).

Let \(k \) be a perfect field of positive characteristic \(p \), we set \(D = D_{R_K} \). If \(A \) is a \(k \)-algebra, we denote by \(A[F] \) the twisted polynomial ring over \(A \) whose multiplication is defined by \(Fa = a^p F \), for all \(a \) in \(A \).

2. LENGTH OF THE FIRST LOCAL COHOMOLOGY IN POSITIVE CHARACTERISTIC

We first recall some definitions.
Definition 1. Let $f \in R_k$ be a non-constant polynomial in $n+1$ variables. The first local cohomology module $H^1_f(R_k)$ of R_k with respect to f is the left D-module cokernel of the natural inclusion $R_k \subset R_k(\frac{1}{f})$.

Remark 1. The Frobenius endomorphism of R_k induces a finitely generated unit F-module structure on $H^1_f(R_k)$. The associated action of D is the natural one. Hence it follows immediately from [16, Theorem 3.2] that $H^1_f(R_k)$ is of finite length as a unit F-module. It is thus of finite length as a left D-module by [16, Theorem 5.7].

The purpose of this note is to give an expression for the length of $H^1_f(R_k)$, when f has an isolated singularity. It will be in terms of the quasilength of a certain F-module. We now recall the definitions from [16, Section 4].

Definition 2. Let A be a local Noetherian k-algebra of Frobenius endomorphism F and let M be a left $A[F]$-module.

- $M^\ast := \cap_{n>0} F^n M$, where $F^n M$ is the A-submodule of M generated by the image $F^n(M)$
- $M_{nil} := \cup_{n>0} \ker\{M \xrightarrow{F^n} M\}$

Definition 3. Let A be a local Noetherian k-algebra of Frobenius endomorphism F and let M be a left $A[F]$-module. Suppose that M is Artinian as an A-module.

- A finite chain of length s of $A[F]$-submodules $0 = M_0 \subset \cdots \subset M_s = M$ is quasimaximal if $(M_i/M_{i-1})_{nil}^\ast$ is a simple left $A[F]$-module, for all $i \in \{1, \ldots, s\}$.
- If $M_{nil} \subset M$, then M has a quasimaximal chain of submodules and all such chains are of the same length, called the quasilength $\text{ql}(M)$ of M. If $M = M_{nil}$, then we set $\text{ql}(M) = 0$. See [16, Theorems 4.5 and 4.6].

To state our main result, we need to introduce the following notations:

Let L be a field of characteristic 0 and let g be a non-constant polynomial in $n+1$ variables $\{x_0, \ldots, x_n\}$, with coefficients in L. Let (A, m) be the local ring of the zero-locus of g at a singular point z. Let us fix a resolution $X \xrightarrow{\pi_B} Z = \text{Spec}(A)$ of the singularity z and let Y be the fiber of π at z.

Definition 4. Let $B \subset L$ be a finitely generated subring, containing 1. We say that B is a ring of definition of π if the coefficients of g are contained in B and there is a resolution of singularities of B-schemes $X_B \xrightarrow{\pi_B} Z_B$ whose base-change $L \otimes_{\text{Frac}(B)} \pi_B$ is isomorphic to π.

For each closed point u of $\text{Spec}(B)$, we let $X_u \xrightarrow{\pi_u} Z_u$ (resp. g_u, resp. Y_u) be the fiber of π_B (resp. g, resp. Y) over $k(u)$. Finally, we consider the coherent cohomology groups $H^i(X_u, \mathcal{O}_{X_u})$ (resp. $H^i(Y_u, \mathcal{O}_{Y_u})$) as left $A[F]$-modules (resp. $k(u)[F]$-modules) for the action of the Frobenius endomorphism on the cohomology. Here is our main result:

Theorem 1. Suppose that $n \geq 2$ and that g is absolutely irreducible with an isolated singularity at the origin. Then there is a ring of definition $B \subset L$ of π such that, for all closed points u of $\text{Spec}(B)$:

1. the unit F-module length of the first local cohomology group $H^1_{g_u}(R_{k(u)})$ is $1 + \text{ql}(H^{n-1}(X_u, \mathcal{O}_{X_u})) = 1 + \text{ql}(H^{n-1}(Y_u, \mathcal{O}_{Y_u}))$
2. the $D_{k(u)}$-module length of $H^1_{g_u}(R_{k(u)})$ is $1 + \text{ql}(k(u) \otimes H^{n-1}(X_u, \mathcal{O}_{X_u})) = 1 + \dim_{k(u)}((k(u) \otimes H^{n-1}(Y_u, \mathcal{O}_{Y_u}))^\ast)$,
where \(\overline{k(u)} \) is any algebraic closure of \(k(u) \) and \((-)^*\) is the operation on \(\overline{k(u)}[F]\)-modules from Definition 2.

Proof. By Oستrowski’s Theorem, see [11] Lemma 11 for a quick proof, there is a definition ring \(B' \) of \(\pi \) such that, for all closed points \(u \) of \(\text{Spec}(B') \), \(g_u \) is absolutely irreducible.

For every closed point \(u \) of \(\text{Spec}(B') \), we will use the following notation: \((\mathcal{A}_u, \mathfrak{m}_u)\) is the local ring of the singularity, \((R_0, \mathfrak{m}) := ((R_k(\mathfrak{a}))_{(x_0, \ldots, x_n)}(x_0, \ldots, x_n)(R_k(\mathfrak{b}))_{(x_0, \ldots, x_n)})\) and \((\widehat{R}_0, \widehat{\mathfrak{m}}) := ((R_k(\mathfrak{a}))_{(x_0, \ldots, x_n)}, (x_0, \ldots, x_n)(\widehat{R_k(\mathfrak{b}))}_{(x_0, \ldots, x_n)})\). We denote their completion with respect to their maximal ideal by \((\widehat{\mathcal{A}_0}, \widehat{\mathfrak{m}}_0), (\widehat{R_0}, \widehat{\mathfrak{m}})\) and \((\widehat{R}_0, \widehat{\mathfrak{m}}_0)\), respectively.

We have a short exact sequence of both \(D_k(u) \) and unit F-modules:

\[
0 \to \mathcal{L} \to \mathcal{H}^1_{g_u}(\mathcal{R}_k(u)) \to \mathcal{K} \to 0
\]

where \(\mathcal{L} \) is the intersection homology module \(\mathcal{L}(\mathcal{K}^{n+1}_{k(u)}) \{ g_u = 0 \} \) of [9] and \(\mathcal{K} \) is supported at the origin. Tensoring with the completion \(\widehat{R}_0 \) of the local ring at the origin, we get a short exact sequence:

\[
0 \to \widehat{R}_0 \otimes \mathcal{R}_k(u) \to \widehat{R}_0 \otimes \mathcal{R}_k(u) \mathcal{H}^1_{g_u}(\mathcal{R}_k(u)) \to \widehat{R}_0 \otimes \mathcal{R}_k(u) \mathcal{K} \to 0
\]

which we can rewrite as \(0 \to \mathcal{L}' \to \mathcal{H}^1_{g_u}(\widehat{R}_0) \to \mathcal{K}' \to 0 \), where \(\mathcal{L}' = \mathcal{L}(\frac{\widehat{R}_0}{\mathcal{R}_k(u)}, \widehat{R}_0) \) and \(\mathcal{K}' = \widehat{R}_0 \otimes \mathcal{R}_k(u) \mathcal{K} \). Indeed \(\mathcal{L}' \cong \widehat{R}_0 \otimes \mathcal{R}_k(u) \mathcal{L} \) by [9] Theorem 4.6 and it is well-known that local cohomology commutes with base-change by the completion. Clearly the length of \(\mathcal{K}' \) as a \(D_{\mathcal{R}_0} \)-module (resp. unit F-module) equals the length of \(\mathcal{K} \) as a \(D_{\mathcal{R}_0} \)-module (resp. unit F-module). Hence so is the case for \(\mathcal{H}^1_{g_u}(\mathcal{R}_k(u)) \) and \(\mathcal{H}^1_{g_u}(\widehat{R}_0) \), since \(\mathcal{L} \) and \(\mathcal{L}' \) are irreducible.

Let \(D' := D_{\mathcal{R}_0} \). We also let \(\lg_{\mathcal{R}_0}(\mathcal{R}_k(u)) \) be the unit F-module length and \(\lg_{\mathcal{R}_0}(\mathcal{R}_k(u)) \) to be the \(D' \)-module length. The proof of [11] thus reduces to: There exists a ring of definition \(B \supset B' \) of \(\pi \) such that \(\text{Spec}(B) \subset \text{Spec}(B') \) is a dense open subset and, for all closed points \(u \) of \(\text{Spec}(B') \), \(\lg_{\mathcal{R}_0}(\mathcal{R}_k(u)) \) is equal to \(q\mathcal{L}(\mathcal{H}^n_{\mathcal{R}_0}(\mathcal{A}_u)) \) and \(\mathcal{K}' = \mathcal{H}^n_{\mathcal{R}_0}(\mathcal{A}_u) \) is the tight closure of zero.

Since Lyubeznik-Matlis duality exchanges unit F-module length with quasilength by the proof of [11] Theorems 4.5, we have \(\lg_{\mathcal{R}_0}(\mathcal{R}_k(u)) = 1 + q\mathcal{L}(\mathcal{H}^n_{\mathcal{R}_0}(\mathcal{A}_u)) \). Moreover by Lemma [11] applied to \(R = \mathcal{R}_0 \) and \(M = \mathcal{A}_u \), \(q\mathcal{L}(\mathcal{H}^n_{\mathcal{R}_0}(\mathcal{A}_u)) \) is equal to \(q\mathcal{L}(\mathcal{H}^n_{\mathcal{R}_0}(\mathcal{A}_u)) \).

Finally, since \(A \) is an isolated singularity and \(n \geq 2 \), it is normal. Hence by [11] Theorem 4.7, there exists a ring of definition \(B \supset B' \) of \(\pi \) such that \(\text{Spec}(B) \subset \text{Spec}(B') \) is a dense open subset and, for all closed points \(u \) of \(\text{Spec}(B) \), \(0_{\mathcal{R}_0}^\mathcal{A}(\mathcal{A}_u) = \mathcal{H}^n_{\mathcal{R}_0}(\mathcal{A}_u, \mathcal{O}_{\mathcal{X}_u}) \), as \(\mathcal{A}_u[F] \)-modules. But by Lemma [11], \(q\mathcal{L}(\mathcal{H}^n_{\mathcal{R}_0}(\mathcal{A}_u, \mathcal{O}_{\mathcal{X}_u})) = q\mathcal{L}(\mathcal{H}^n_{\mathcal{R}_0}(\mathcal{A}_u, \mathcal{O}_{\mathcal{X}_u})) = \mathcal{H}^n_{\mathcal{R}_0}(\mathcal{A}_u, \mathcal{O}_{\mathcal{X}_u}) \). This concludes the proof of [11].

We now prove [11]. From (1), we deduce the short exact sequence

\[
0 \to \overline{k(u)} \otimes \mathcal{L} \to \mathcal{H}^1_{g_u}(\mathcal{R}_k(u)) \to \overline{k(u)} \otimes \mathcal{K} \to 0
\]

Therefore, tensoring with the completion \(\widehat{\mathcal{R}}_0 \) of \(\mathcal{R}_0 \), we also have the short exact sequence

\[
0 \to \overline{k(u)} \otimes \mathcal{L}' \to \mathcal{H}^1_{g_u}(\widehat{\mathcal{R}}_0) \to \overline{k(u)} \otimes \mathcal{K}' \to 0,
\]
with \(\mathcal{L}' \) and \(\mathcal{K}' \) as above. Note that \(\overline{k(u)} \otimes \mathcal{L}' = \mathcal{L}(\overline{R}_{\mathfrak{g}_u R_{\mathfrak{m}}}, \overline{R}_{\mathfrak{m}}) \) by [3] Lemma 5.16. Moreover, since the injective hull \(H_{\mathfrak{m}}^{n+1}(\overline{R}_{\mathfrak{g}_u}) \) of \(\overline{k(u)} = \frac{\overline{\mathcal{L}}_{\mathfrak{m} \otimes \overline{k(u)}}}{\overline{\mathcal{L}}_{\mathfrak{m} \otimes \overline{k(u)}}} \) is isomorphic to \(H_{\mathfrak{m}}^{n+1}(\overline{R}_{\mathfrak{g}_u}) \otimes \overline{k(u)} \), it is easy to see that Matlis duality commutes with the field extension \(- \otimes \overline{k(u)} \). Hence Lyubeznik-Matlis duality commutes with \(- \otimes \overline{k(u)} \). We thus have that \(\overline{k(u)} \otimes \mathcal{L}' \cong \overline{k(u)} \otimes \mathcal{D}(H_{\mathfrak{m}}^{n+1}(\overline{R}_{\mathfrak{g}_u \otimes \overline{A}_0})) \cong \mathcal{D}(\overline{H}_{\mathfrak{m}}^{n+1}(\overline{R}_{\mathfrak{g}_u \otimes \overline{A}_0})). \) Therefore the length of the unit \(F \)-module \(H_{\mathfrak{g}_u}^1(\overline{R}_{\mathfrak{g}_u}) \) is equal to \(1 + \text{ql}(\overline{k(u)} \otimes \mathcal{D}(H_{\mathfrak{m}}^{n+1}(\overline{R}_{\mathfrak{g}_u \otimes \overline{A}_0}))) = 1 + \text{ql}(\overline{k(u)} \otimes H_{\mathfrak{m}}^{n+1}(\overline{R}_{\mathfrak{g}_u \otimes \overline{A}_0})). \) Also, similarly as above, the unit \(F \)-module length of \(H_{\mathfrak{g}_u}^1(\overline{R}_{\mathfrak{g}_u}) \) as a unit \(F \)-module. Thus for all \(\mathcal{L}' \otimes \mathcal{K} \) is isomorphic to \(\mathcal{D}(H_{\mathfrak{m}}^{n+1}(\overline{R}_{\mathfrak{g}_u \otimes \overline{A}_0})) \) for all \(\mathcal{K} \). By [3] Theorem 1.1], the length of \(H_{\mathfrak{g}_u}^1(\overline{R}_{\mathfrak{g}_u}) \) as a unit \(F \)-module is equal to its length as a \(D_{\mathfrak{g}_u}(\overline{R}_{\mathfrak{g}_u}) \)-module. Finally, we claim that the \(D_{\mathfrak{g}_u}(\overline{R}_{\mathfrak{g}_u}) \)-module length of \(H_{\mathfrak{g}_u}^1(\overline{R}_{\mathfrak{g}_u}) \) is equal to the \(D_{\mathfrak{g}_u}(\overline{R}_{\mathfrak{g}_u}) \)-module length of \(H_{\mathfrak{g}_u}^1(\overline{R}_{\mathfrak{g}_u}) \). This implies part (b) of the theorem.

Let us prove this last claim. We let \(\text{lg}_{D_{\mathfrak{g}_u}(\overline{R}_{\mathfrak{g}_u})}(-) \) denote the \(D_{\mathfrak{g}_u}(\overline{R}_{\mathfrak{g}_u}) \)-module length. Localising at the origin, one sees by [4] Lemma 5.16] that \(\overline{k(u)} \otimes \mathcal{L} \) is the intersection homology module. Thus \(\text{lg}_{D_{\mathfrak{g}_u}(\overline{R}_{\mathfrak{g}_u})}(\overline{k(u)} \otimes \mathcal{L}) = 1 = \text{lg}_{D_{\mathfrak{g}_u}(\overline{R}_{\mathfrak{g}_u})}(\overline{k(u)} \otimes \mathcal{L}). \) Hence the claim reduces to the equality \(\text{lg}_{D_{\mathfrak{g}_u}(\overline{R}_{\mathfrak{g}_u})}(\overline{k(u)} \otimes \mathcal{L}) = \text{lg}_{D_{\mathfrak{g}_u}(\overline{R}_{\mathfrak{g}_u})}(\overline{k(u)} \otimes \mathcal{K}) = \text{lg}_{D_{\mathfrak{g}_u}(\overline{R}_{\mathfrak{g}_u})}(\overline{k(u)} \otimes \mathcal{K}). \) But this follows immediately from the compatibility with base-field extension of Kashiwara’s equivalence, see [10] Corollary 8.13] (the proof of which is well-known to be valid over an arbitrary field of positive characteristic). Indeed by Kashiwara’s equivalence, we have \(\text{lg}_{D_{\mathfrak{g}_u}(\overline{R}_{\mathfrak{g}_u})}(\overline{k(u)} \otimes \mathcal{L}) = \dim_{k(u)}(\overline{k(u)} \otimes V) = \dim_{k(u)}(V) = \text{lg}_{D_{\mathfrak{g}_u}(\overline{R}_{\mathfrak{g}_u})}(\overline{k(u)} \otimes \mathcal{K}), \) for a certain finite dimensional \(k(u) \)-vector space \(V). \)

Recall that a ring \(R \) is \(F \)-finite if it is of positive characteristic, Noetherian and if the Frobenius map \(\text{Spec}(R) \xrightarrow{F} \text{Spec}(R) \) is finite.

Lemma 1. Let \((R, \mathfrak{m})\) be an \(F \)-finite regular local ring and let \(M \) be a finitely generated \(R \)-module. Then for all \(i \geq 0 \), the canonical isomorphism \(H_{\mathfrak{m}}^i(M) \cong H_{\mathfrak{m}}^i(M) \) induces an isomorphism of tight closures \(0^*_{H_{\mathfrak{m}}^i(M)} \cong 0^*_{H_{\mathfrak{m}}^i(M)} \), where \((\hat{R}, \hat{\mathfrak{m}}) \) (resp. \(M \)) is the \(\mathfrak{m} \)-adic completion of \((R, \mathfrak{m}) \) (resp. \(M \)).

Proof. The isomorphism \(H_{\mathfrak{m}}^i(M) \cong H_{\mathfrak{m}}^i(M) \) is well-known, see [15] Proposition 2.15]. Furthermore the existence of completely stable big test elements for \(R \) ([14] Theorem p.77]) immediately implies the equality of tight closures.

Lemma 2. Let \(K \) be an algebraically closed field of positive characteristic \(p \) and let \(V \) be a \(K \)-finite dimensional left \(K[F] \)-module. Then the quasilength of \(V \) is \(\dim_K(V^*) \), where \((-)^* \) is the operation on \(K[F] \)-modules from Definition 2.

Proof. By definition of quasilength, we have \(\text{ql}(V) = \text{ql}(V^*) \). Moreover, \(F \) acts surjectively and thus injectively on \(V^* \). Hence, by [5] Proposition 4.6] for example, \(V^* \) has a \(K \)-basis of vectors fixed by \(F \). The lemma easily follows.
Lemma 3. Let \((A, \mathfrak{m})\) be a local Noetherian \(k\)-algebra of Frobenius endomorphism \(F\) and let \(M\) be a left \(A[F]\)-module. Suppose that \(M\) is Artinian and Noetherian as an \(A\)-module. If \(M\) is supported at the maximal ideal \(\mathfrak{m}\), then \(M\) and \(\frac{M}{\mathfrak{m}M}\) have the same quasi-length.

Proof. Let us show that \(\mathfrak{m}M \subset M_{nil}\). This implies the lemma since \(\text{ql}(M_{nil}) = 0\).

Since \(M\) is supported at \(\mathfrak{m}\) and is Noetherian, \(\mathfrak{m}^lM = 0\) for some \(l \geq 0\). Thus \(F^r(\mathfrak{m}M) \subset \mathfrak{m}^rM = 0\) for some \(r \geq 0\). Hence \(\mathfrak{m}M \subset M_{nil}\), as claimed.

If \(g\) is homogeneous, Theorem 1 may be rephrased without mentioning a resolution of the singularity. Let \(Y\) be the hypersurface of the zeros of \(g\) in \(\mathbb{P}^n\). We first fix the notation.

Definition 5. Let \(B \subset L\) be a finitely generated subring, containing 1. We say that \(B\) is a ring of definition of \(Y\) if the coefficients of \(g\) are contained in \(B\) and there is a smooth projective hypersurface \(Y_B\) of \(\mathbb{P}^n_B\) whose base-change \(L \otimes_{\text{Frac}(B)} Y_B\) is isomorphic to \(Y\).

Given such an hypersurface \(Y_B\), for each closed point \(u\) of \(\text{Spec}(B)\), we let \(Y_u\) be the fiber of \(Y_B\) over \(k(u)\). Here is the result:

Corollary 1. Under the same hypotheses as Theorem 1, assume that \(g\) is homogeneous and let \(Y\) be the hypersurface of its zeros in \(\mathbb{P}^n\). Then there is a ring of definition \(B \subset L\) of \(Y\) such that, for all closed points \(u\) of \(\text{Spec}(B)\):

(a) the unit \(F\)-module length of \(H^1_{g_u}(R_{k(u)})\) is \(1 + \text{ql}(H^{n-1}(Y_u, \mathcal{O}_{Y_u}))\)

(b) the \(D_{k(u)}\)-module length of \(H^1_{g_u}(R_{k(u)})\) is \(1 + \dim_{k(u)}(k(u) \otimes_{k(u)} H^{n-1}(Y_u, \mathcal{O}_{Y_u}))^*\), where \(k(u)\) is any algebraic closure of \(k(u)\) and \((-)^*\) is the operation on \(k(u)[F]\)-modules from Definition 2.

Proof. It is well-known that in this case the blow-up of the origin is a resolution \(\pi'\) of the singularity and that the fiber at the origin is isomorphic to \(Y\). The result then immediately follows from Theorem 1 applied to \(\pi'\).

Thus the \(D_{k}\)-module length of the first local cohomology is closely related to ordinarity. Here is a simple example:

Example 1. Let \(g\) be a rational cubic in three variables which is the equation of an elliptic curve \(E\) in \(\mathbb{P}^2_{\mathbb{Q}}\). Then, for almost all primes \(p\), the \(D_{R_{p}}\)-module length of \(H^1_{g_u}(R_{p})\) is 2 if \(E_p\) is ordinary and 1 if \(E_p\) is supersingular, where \(E_p\) (resp. \(g_p\)) is the reduction of \(E\) (resp. \(g\)) modulo \(p\).

3. Comparison with characteristic zero

Here, given a complex polynomial \(g\), we consider a holonomic \(D_{R_{C}}\)-module \(N_g\) whose length compares well to the \(D_{k(u)}\)-module length of \(H^1_{g_u}(R_{k(u)})\). We set \(D = D_{R_{C}}\).

Definition 6. Let \(g \in R_{C}\) be a complex polynomial. Then \(N_g\) is the left \(D\)-submodule of the first local cohomology \(D\)-module \(H^1_{g}(R_{C})\) generated by the class of \(\frac{1}{g}\).

The following is proved in [3, Theorem 1.1].

Theorem 2. Let \(g\) be a non-constant homogeneous complex polynomial in \(n + 1\) variables with an isolated singularity at the origin. Then, using the notations of Corollary 1, the \(D\)-module length of \(N_g\) is \(1 + \dim_{C} H^{n-1}(Y, \mathcal{O}_{Y})\).
Remark 2. There is a ring of definition $B \subset \mathbb{C}$ of Y such that, for all closed points u of $\text{Spec}(B)$, $\dim_{\mathbb{C}} H^{n-1}(Y, \mathcal{O}_Y) = \dim_{k(u)}(k(u) \otimes_{k(u)} H^{n-1}(u, \mathcal{O}_{Y_u}))$. Hence by Corollary 7 and Theorem 2, there is a ring of definition $B' \supset B$ of Y such that for all closed points u of $\text{Spec}(B')$, if the Frobenius F acts bijectively on $k(u) \otimes_{k(u)} H^{n-1}(u, \mathcal{O}_{Y_u})$, then the length of N_g is equal to the $D_{k(u)}$-module length of $H^1_{g_u}(R_{k(u)})$. Indeed in that case, $\dim_{\mathbb{C}} H^{n-1}(Y, \mathcal{O}_Y) = \dim_{k(u)}(k(u) \otimes_{k(u)} H^{n-1}(u, \mathcal{O}_{Y_u}))^*$. This property of the Frobenius is called weak ordinarity and is expected to hold for a dense set of closed points of $\text{Spec}(B')$, see [17] Conjecture 1.1.

We would like to put forward the following questions:

Question 1. Let g be a non-constant complex polynomial in $n+1$ variables. Is there a unitary finitely generated subring $B \subset \mathbb{C}$ containing the coefficients of g such that:

1. (1) for all closed points $u \in \text{Spec}(B)$, $\lg_{D_{k(u)}}(H^1_{g_u}(R_{k(u)})) \leq \lg_D(N_g)$?

2. (2) there is a dense set of closed points of $\text{Spec}(B)$ for which $\lg_{D_{k(u)}}(H^1_{g_u}(R_{k(u)})) = \lg_D(N_g)$?

As explained in Remark 2 for g homogeneous with an isolated singularity and $n \geq 2$, the first part of Question 1 has a positive answer. In the same case, the second part has a positive answer as well, if the weak ordinarity conjecture of [17] Conjecture 1.1] is satisfied by Y. We finally note that by Theorem 1, 3 Conjecture 1.4] (which is equivalent to [8 Conjecture 3.8]) implies a positive answer to the first part of Question 1 for g (not necessarily homogeneous) with an isolated singularity at the origin and $n \geq 2$.

References

[1] Josep Alvarez-Montaner, Manuel Blickle, and Gennady Lyubeznik. Generators of D-modules in positive characteristic. *Math. Res. Lett.*, 12(4):459–473, 2005.

[2] Thomas Bitoun. On a theory of the b-function in positive characteristic. arXiv preprint arXiv:1501.00185, 2015.

[3] Thomas Bitoun and Travis Schedler. On d-modules related to the b-function and hamiltonian flow. arXiv preprint arXiv:1606.07761, 2016.

[4] Manuel Blickle. The intersection homology d-module in finite characteristic. arXiv preprint math/0110244, 2001.

[5] Manuel Blickle. The D-module structure of $R[F]$-modules. *Trans. Amer. Math. Soc.*, 355(4):1647–1668, 2003.

[6] Manuel Blickle. The intersection homology D-module in finite characteristic. *Math. Ann.*, 328(3):425–450, 2004.

[7] Manuel Blickle, Mircea Mustaţă, and Karen E. Smith. F-thresholds of hypersurfaces. *Trans. Amer. Math. Soc.*, 361(12):6549–6565, 2009.

[8] Pavel Etingof and Travis Schedler. Invariants of Hamiltonian flow on locally complete intersections. *Geom. Funct. Anal.*, 24(6):1885–1912, 2014.

[9] Michael Fried. On a conjecture of Schur. *Michigan Math. J.*, 17:41–55, 1970.

[10] Burkhard Haastert. On direct and inverse images of D-modules in prime characteristic. *Manuscripta Math.*, 62(3):341–354, 1988.

[11] Nobuo Hara. A characterization of rational singularities in terms of injectivity of Frobenius maps. *Amer. J. Math.*, 120(5):981–996, 1998.

[12] Nobuo Hara and Ken-Ichi Yoshida. A generalization of tight closure and multiplier ideals. *Trans. Amer. Math. Soc.*, 355(8):3143–3174 (electronic), 2003.

[13] Robin Hartshorne and Robert Speiser. Local cohomological dimension in characteristic p. *Ann. of Math. (2)*, 105(1):45–79, 1977.

[14] Melvin Hochster. Foundations of tight closure theory. *Lecture notes from a course taught on the University of Michigan Fall, 2007.*
[15] Craig Huneke. Lectures on local cohomology. In Interactions between homotopy theory and algebra, volume 436 of Contemp. Math., pages 51–99. Amer. Math. Soc., Providence, RI, 2007. Appendix 1 by Amelia Taylor.

[16] Gennady Lyubeznik. F-modules: applications to local cohomology and D-modules in characteristic $p > 0$. J. Reine Angew. Math., 491:65–130, 1997.

[17] Mircea Mustaţă and Vasudevan Srinivas. Ordinary varieties and the comparison between multiplier ideals and test ideals. Nagoya Math. J., 204:125–157, 2011.

[18] Morihiko Saito. D-modules generated by rational powers of holomorphic functions. arXiv preprint arXiv:1507.01877, 2015.