Up-conversion luminescence of LaF$_3$:Pr$^{3+}$ crystal

O A Morozov, A K Naumov, A V Lovchev and E Yu Tselishcheva

Kazan Federal University, 420008, Kremlevskaja str., 18, Kazan, Russian Federation

uh4rad@rambler.ru

Abstract. LaF$_3$:Pr$^{3+}$ crystal is proposed as a promising media for an infrared quantum counter in the mid-infrared spectrum range. In this paper it has been shown that this crystal can work as an infrared quantum counter in the range of spectra of about 3 µm at the temperatures 170 K and 210 K with the efficiency of about 5%.

1. Introduction

This paper is devoted to a problem of creating a solid-state infrared quantum counter (IRQC) based on LaF$_3$:Pr$^{3+}$ crystal. The topic of IQRC creation is relevant due to a number of circumstances. Currently there are number of monographs about the up-conversion luminescence of rare-earth ions in crystals, one of them for example is the work of Chukova [1], which summarizes the results of work on the issue until 1980. Auzel in his paper [2] summarized the results of a similar orientation up to 2004. In addition there are several works in which close to practice results on IQRC were obtained on LaCl$_3$ crystal with REI. Thus, LaCl$_3$ crystal, activated by REI, occupies a special place in the study of up-conversion IQRC. This is due to its low phonon energy [3]. Transmittance of the crystal in the infrared spectrum region increases and probability of a nonradiative relaxation between closely spaced energy levels reduces. In the paper [4] it was directly demonstrated that energy levels and selection rules for REI in the anhydrous salt LaCl$_3$ are best suited to implement IQRC. The article [5] disclosed the results of the IQRC realization on the basis of LaCl$_3$:Pr$^{3+}$ for 4.5 µm spectrum range. It would seem that LaCl$_3$ crystal is an ideal media for the problem of IQRC. However, it has a significant disadvantage – the crystal is extremely hygroscopic. This property restricts greatly of IQRC at its base. But LaF$_3$ crystal hasn’t got this disadvantage, and it has a phonon spectrum width close to LaCl$_3$ crystal - 350 and 260 cm$^{-1}$, respectively. LaF$_3$ crystal has a broad band of transparency up to 9 µm and a low phonon wing.

However, most works on IQRC based on LaF$_3$ crystal contains information only about the possibility of such counters creation, which is based on authors theoretical assumptions of a simple transport phenomena from LaCl$_3$ crystal to LaF$_3$ crystal. In other works authors have implemented IQRC, but only in the infrared region from 0.8 to 1.5 µm. But we are interested in the region of 2 - 6 µm. Thus, this question still remains open.

2. Samples and research technique

The samples of LaF$_3$ crystal were grown in the MRS laboratory, Institute of Physics, Kazan Federal University, using the method of directional solidification in graphite crucibles. Three samples of LaF$_3$ crystal, doped by Pr$^{3+}$ ions with concentration 0.1, 0.3 and 1 at. % were grown. The samples were cylinders of 6 mm diameter and 20 mm length. On the side surfaces of the boule two flattened areas
were polished. They were parallel to the axis of the crystal, as well as to each other. It allows us to perform experiments with \(\pi \)- and \(\sigma \)-polarized light.

Experimental setup for carrying out studies of up-conversion transitions properties in LaF\(_3\):Pr\(^{3+}\) crystal contained several blocks. A block of tunable dye laser for sample pumping. A block of probe IR light for illumination of a sample, which consisted of removable positionally dependent filters and IR source "globar". A block of temperature setpoint with a cryogenic nitrogen gas cooling system and a thermal insulated box with a sample holder and a temperature sensor. A block of luminescence registration with a CCD spectrometer. This setup allows us to record the luminescence spectra of the samples, as well as their temperature dependence from 77 K up to a room temperature.

2. Luminescence spectra of LaF\(_3\):Pr\(^{3+}\) crystal

During the experiments at a room temperature without IR illumination, it was found that the maximum luminescence intensity for LaF\(_3\):Pr\(^{3+}\) crystal excited by \(\pi \)-polarized radiation was observed at an excitation wavelength - 0.5985 \(\mu \)m (16708 cm\(^{-1}\)), and for \(\sigma \)-polarized – at a wavelength of - 0.5945 \(\mu \)m (16820 cm\(^{-1}\)). The luminescence spectra of the samples with different concentration under excitation by a \(\sigma \)-polarized laser beam with a wavelength of 0.5945 \(\mu \)m are shown in figure 1. From these spectra one can see that the luminescence is also caused by the transitions from levels lying higher than \(3P_0 \), and occurs even in the absence of IR illumination. The mechanism of this up-conversion luminescence excitation was considered in details and described in [6].

3. Properties of LaF\(_3\):Pr\(^{3+}(1\%)\) crystal as IRQC

The luminescence spectra of the samples in the temperature range from 140 to 280 K at a constant value of the \(\sigma \)-polarized pumping radiation energy in the visible range of the spectrum - 0.5945 \(\mu \)m with the illumination by IR radiation at 3 \(\mu \)m, and without it as well was recorded. When the temperature changes in the range from 140 to 280 K under illumination with IR radiation, we observed the luminescence intensity increase of individual lines. Figure 2 shows fragments of two luminescence spectrum: with IR illumination and without it. On the figure, one can see an increase in the intensity of up-conversion luminescence with IR illumination. Such luminescence response on IR illumination was stable in all experiments.

For obtained data analyze we constructed temperature dependences of relative intensity \((I_{IR} - I_0)/I_0\) versus a luminescence spectral lines of LaF\(_3\):Pr\(^{3+}(1\%)\) crystal, which is shown in figure 3. Here \(I_0 \) - luminescence intensity of a pumped sample, \(I_{IR} \) - luminescence intensity of a pumped sample with additional illumination by IR radiation.
From the curves in the figure 3, one can see positive response to IR illumination from several spectral lines of luminescence, such as lines with wave numbers 13751 cm\(^{-1}\), 14204 cm\(^{-1}\), 14138 cm\(^{-1}\) and 20631 cm\(^{-1}\). For other lines under illumination by an infrared radiation in the same conditions, there are no significant changes in their increase. It can also be seen from the figure that there are two temperature optima points, in which the response to IR illumination of some spectral lines has maxima. One of them corresponds to the temperature point of 170 K, and the other – 200 K.

4. Energy levels diagram of Pr\(^{3+}\) ions and electron transitions between them in LaF\(_3\) crystal

For a better understanding of the processes occurring in LaF\(_3\):Pr\(^{3+}\) crystal under IR illumination it is necessary to take a look at the energy levels diagram of Pr\(^{3+}\) ions in this crystal and to transitions between them.
The interpretation of luminescence spectra (as transitions between states) with IR illumination shown on the energy levels diagram of Pr$^{3+}$ ions (figure 4). The dash-dot arrow pointing upward on the diagram indicates the transition with absorption of IR quantum and excitation of Pr$^{3+}$ ion from the excited (by radiation 0.5945 μm) state - solid arrow pointing up 1D_2 state to 3P_0 state. IR photon energy is approximately 3300 cm$^{-1}$ or about 3 μm. It is evident that with IR illumination the intensity of individual lines of up-conversion luminescence corresponding to radiative transitions from 3P_0 level to the lower energy levels increases based on the plots shown in the figure 3. These transitions are marked on the diagram by solid arrows pointing downwards. Thus, in these experiments with LaF$_3$:Pr$^{3+}$ crystal pumped by 0.5945 μm radiation at low temperatures an increase in intensity of the individual lines of up-conversion luminescence with additional IR illumination with a wavelength of about 3 μm was observed and interpreted.

5. Conclusion
As a result of this work it has been shown that LaF$_3$:Pr$^{3+}$ crystal can be used as a quantum counter in the mid-infrared spectrum range. For this purpose the increment of up-conversion luminescence of pumped LaF$_3$:Pr$^{3+}$ crystal under IR illumination has been detected and interpreted.

The results are obtained under the following conditions: pumping was carried out with a pulsed laser with wavelength of 0.5945 μm and IR illumination of the crystal with a wavelength of 3 μm and power 10^{-7} W. Thus, at a low temperature 5% intensity increasing of the individual up-conversion luminescence lines was observed. Moreover, this effect occurred at two temperature optima 170 K and 210 K.

Increase of efficiency can be achieved by increasing of the interaction length of IR radiation with a pumped sample. For example, it can be done through the usage of crystalline optical fibers.

Acknowledgements
This work was funded by the subsidy allocated to Kazan Federal University for the project part of the state assignment in the sphere of scientific activities.

References
[1] Chukova Yu P 1980 Russian book M.: Sovetskoye Radio 193
[2] Auzel F 2004 Chem. Rev. 104 139
[3] Soga K, Wang W, Riman R E, Brown J B and Mikeska K R 2003 Appl. Phys. 93 2946
[4] John F 1961 J. Appl. Phys. 32 825
[5] Case W E, Chivian S and Reynolds R W 1979 J. Appl. Phys. 50 4509
[6] Morozov O A, Naumov A K, Korableva S L and Tselishchev D I 2013 Optics and Spectroscopy 114 827