NC Geometry and Fractional Branes

El Hassan Saidi*

Lab/UFR-High Energy Physics, Physics Department, Faculty of Science, Rabat, Morocco.

and

National Grouping in High Energy Physics, Focal point: Faculty of Science, Rabat, Morocco

November 17, 2018

Abstract

Considering complex n-dimension Calabi-Yau homogeneous hyper-surfaces \(\mathcal{H}_n \) with discrete torsion and using Berenstein and Leigh algebraic geometry method, we study Fractional D-branes that result from stringy resolution of singularities. We first develop the method introduced in [hep-th/0105229] and then build the non commutative (NC) geometries for orbifolds \(\mathcal{O} = \mathcal{H}_n / \mathbb{Z}_{n+2} \) with a discrete torsion matrix \(t_{ab} = \exp \left[\frac{2\pi i}{n+2} (\eta_{ab} - \eta_{ba}) \right] \), \(\eta_{ab} \in SL(n, \mathbb{Z}) \). We show that the NC manifolds \(\mathcal{O}^{(nc)} \) are given by the algebra of functions on the real \((2n+4) \) Fuzzy torus \(T_{\beta_{ij}}^{2(n+2)} \) with deformation parameters \(\beta_{ij} = \exp \left[\frac{2\pi i}{n+2} (\eta_{ij}^{-1} - \eta_{ji}^{-1}) q_a^i q_j^b \right] \) with \(q_a^i \)'s being charges of \(\mathbb{Z}_{n+2} \). We also give graphic rules to represent \(\mathcal{O}^{(nc)} \) by quiver diagrams which become completely reducible at orbifold singularities. It is also shown that regular points in these NC geometries are represented by polygons with \((n+2) \) vertices linked by \((n+2) \) edges while singular ones are given by \((n+2) \) non connected loops. We study the various singular spaces of quintic orbifolds and analyze the varieties of fractional D branes at singularities as well as the spectrum of massless fields. Explicit solutions for the NC quintic \(\mathcal{Q}^{(nc)} \) are derived with details and general results for complex n dimension orbifolds with discrete torsion are presented.

Key words: Non Commutative Geometry and type II string compactification, Calabi-Yau Orbifolds with discrete torsion, Fractional D Branes, Fuzzy Torus fibrations.

Contents

1 Introduction 3

2 NC Quintic \(\mathcal{Q}^{n} \) 4
 2.1 The Quintic \(\mathcal{O} \) ... 4
 2.2 NC Quintic ... 6

3 NC Geometry and Discrete Torsion 7
 3.1 More on Solutions 2.14 ... 8

*E-mail: h-saidi@fsr.ac.ma
1 Introduction

Recently some interest has been given to build non commutative (NC) extensions of Calabi-Yau orbifolds O with discrete torsion [11]-[10]. These NC manifolds, which are involved in the twisted sector of type II string compactification, go beyond the standard non commutative R^5_0 and NC T^k_0 torii examples considered in brane physics [11]-[10]. They offer a manner to resolve non geometric stringy singularities [17], present a natural framework to study fractional D branes at singularities. We show that the Berenstein and Leigh (BL) construction is just a NC torus fibration with base the CY orbifold in complete agreement with the results obtained in [2, 24]-[17]; but also explore new issues such the connection between NC geometry and fractional D branes or the link between discrete torsion and rational tori. More precisely we will study other aspects of NCCY orbifolds with discrete torsion completing the partial results obtained in [2, 24]-[17]: also explore new issues such the connection between NC geometry and fractional D branes or the link between discrete torsion and rational tori.

From the algebraic geometry point of view, the NC manifold O^{nc} is covered by a finite set of holomorphic matrix coordinate patches $U_{(\alpha)} = \{Z^\alpha_i; 1 \leq i \leq n \alpha = 1, 2, \ldots \}$ and holomorphic transition functions mapping $U_{(\alpha)}$ to $U_{(\beta)}$; $\phi_{(\alpha,\beta)}: U_{(\alpha)} \rightarrow U_{(\beta)}$. In other words A^{nc} is covered by a collection of NC local algebras $A^{nc}_{(\alpha)}$, with analytic maps $\phi_{(\alpha,\beta)}$ on how to glue $A^{nc}_{(\alpha)}$ and $A^{nc}_{(\beta)}$. These $A^{nc}_{(\alpha)}$ local algebras have centers $Z_{(\alpha)} = Z(A^{nc}_{(\alpha)})$: when glued together give precisely the commutative target space manifold O. In this way a commutative singularity of $O \sim Z(A^{nc})$ can be made smooth in the NC space A^{nc} [11][2]. This idea was successfully used to build NC ALE spaces and some realizations of Calabi-Yau threefolds (CY3) such as the quintic threefolds Q. In this regards it was shown that the NC quintic Q^{nc} extending Q, when expressed in the coordinate patch $Z_5 = I_{id}$, is given by the following special algebra,

\[
\begin{align*}
Z_1Z_2 &= \alpha Z_2Z_1, & Z_3Z_4 &= \beta\gamma Z_4Z_3, & (a) \\
Z_1Z_4 &= \beta^{-1} Z_4Z_1, & Z_2Z_3 &= \alpha\gamma Z_3Z_2, & (b) \\
Z_2Z_4 &= \gamma^{-1} Z_4Z_2, & Z_1Z_3 &= \alpha^{-1}\beta Z_3Z_1, & (c) \\
Z_iZ_5 &= Z_5Z_i, & i = 1, 2, 3, 4;
\end{align*}
\]

where α, β and γ are fifth roots of the unity, the parameters of the Z^5_0 discrete group. The Z_i ’s are the generators of A^{nc}. One of the main features of this non commutative algebra is that its centre $Z(O^{nc})$ coincides exactly with Q, the commutative quintic threefolds. In [2], a special solution for this algebra using 5×5 matrices has been obtained and in [24] a class of solutions for eqs(1.1), depending on the orbifold group charge vectors, has been worked out and some partial results regarding higher dimensional CY hypersurfaces were given.

In this paper, we study other aspects of NCCY orbifolds with discrete torsion completing the partial results obtained in [2, 24]-[17]: but also explore new issues such the connection between NC geometry and fractional D branes or the link between discrete torsion and rational tori. More precisely we will compute the explicit dependence of NCCY orbifolds in the discrete torsion of the orbifold group and study the varieties of the fractional D branes at singularities. We show that the Berenstein and Leigh (BL) construction is just a NC torus fibration with base the CY orbifold in complete agreement with the idea of emergent dimension developed recently in [46], see also [37]. The result concerning NC torus fibration can be directly seen on eqs (1.1) which, for the case of generic complex d dimension CY hypersurfaces, can be rewritten formally as $Z_iZ_j = \alpha_{ij} Z_jZ_i$. A careful inspection of the solution of these eqs, shows that they describe a fibration whose base is indeed the H_d commutative space and a
fiber given by a NC rational torus defined as,
\[\alpha_i^{n+2} = 1, \quad Z_i^{n+2} \sim I_{id}. \] (1.2)

Throughout this paper, we will also show that the origin of these rational torii is due to a nice property of \(Z_{n+2} \) orbifolds, which induce a NC torus fibration on \(H_d \). In particular, we show that the NC structure has two sources: (i) either induced by quantum symmetries as usual or (ii) by considering NC complex one cycles as in the CDS solution for Matrix model compactification of M theory \([11]\). Both solutions lead to a finite number of fractional \(D \) branes and provide a new way to think about the B field.

The organization of this paper is as follows: In section 2, we review some general features of the commutative quintic and develop its non commutative extensions using the constrained method. We also complete partial results obtained in literature. The analysis we will develop in this section applies as well to all CY hypersurfaces and moreover to CY manifolds embedded in toric varieties \([33]\). In section 3, we develop non commutative geometry induced by discrete torsion and work out the full class of torsion dependent solutions for NC quintic. In section 4, we use this result to derive general solutions for the NCCY orbifolds. This analysis recovers the results of \([17]\) as special cases. We also study the symmetries of the moduli space of NC solutions we have obtained and discuss the varieties of fractional \(D \) branes as well as the full spectrum of massless fields on the \(D \) branes. In section 5, we collect some general results on NC complex \(d \)-dimensional CY orbifolds with a discrete torsion matrix
\[t_{ab} = \exp \left(\frac{i\pi}{d+2} (\eta_{ab} - \eta_{ba}) \right), \quad \eta_{ab} \in SL(d,\mathbb{Z}) \] and study the various classes of varieties of fractional \(D \) branes at singularities. The NC manifolds are given by the algebra of functions on the Fuzzy torus \(T_d^{2d} \), where \[\beta_{ab} = \exp \left(\frac{i\pi}{d+2} [(\eta_{cd}^{-1} - \eta_{dc}^{-1}) q_a^c q_b^d] \right). \] In section 6, we give our conclusion.

2 NC Quintic \(Q^{nc} \)

In this section, we study the algebraic geometry approach for building NC quintic by using constraint eqs method. This analysis applies as well to any complex \(d \) dimension CY homogeneous hypersurface \(P_{d+2}(z_1, \ldots, z_{d+2}) = 0 \) embedded in \(\mathbb{CP}^{d+1} \). Among the results we will derive here, we prove that the NC quintic obtained by Berenstein and Leigh is a special torus fibration based on \(Q \). We show that orbifolds of the quintic are characterized by a \(SL(3,\mathbb{Z}) \) matrix \(\eta_{ab} \) whose antisymmetric part encodes discrete torsions of the \(Z_3^5 \) orbifold group.

2.1 The Quintic \(Q \)

To begin consider the complex analytic homogeneous hypersurface \(P_5(z_1, \ldots, z_5) \) given by,
\[z_1^5 + z_2^5 + z_3^5 + z_4^5 + z_5^5 + a_0 \prod_{i=1}^{5} z_i = 0, \] (2.1)

where \((z_1, z_2, z_3, z_4, z_5)\) are commuting homogeneous coordinates of \(\mathbb{CP}^4 \), the complex four dimensional projective space, and \(a_0 \) a non zero complex moduli parameter. This polynomial describes a well known CY3s namely the commutative quintic denoted in this paper by \(Q \). Besides invariance under permutations of the \(z_i \) variables, \(Q \) has a set of geometric discrete isometries acting on the homogeneous coordinates \(z_i \) as:
\[z_i \rightarrow z_i \omega q_i^\alpha, \] (2.2)
with $\omega^5 = 1$ and q_i^a integer charges to which we will refer here below to as the CY charges\(^1\). These are the entries of the following 5d vectors $q^1 = (q_1^1, q_2^1, q_3^1, -q_1^1 - q_2^2 - q_3^3, 0), q^2 = (q_1^2, q_2^2, q_3^2, -q_1^1 - q_2^2 - q_3^3, 0)$ and $q^3 = (q_1^3, q_2^3, q_3^3, -q_1^1 - q_2^2 - q_3^3, 0)$. In these relations we have set $q_i^5 = 0$, a useful feature which correspond to working in $U_a [z_1, \ldots, z_4, z_5 = 1]$, the local coordinate patch of Q where $z_5 = 1$. For illustrating applications, we will mainly use the following special choice $q_1^1 = 1, q_2^1 = q_3^1 = q_4^1 = -1$; all remaining ones are equal to zero. In other words;

\[
q^1 = (1, -1, 0, 0, 0); \quad q^2 = (1, 0, -1, 0, 0); \quad q^3 = (1, 0, 0, -1, 0).
\]

(2.3)

The q_i^a charges in eqs (2.2) and eqs (2.3) are defined modulo five; $q_i^a \equiv q_i^a + 5Z$, and satisfy naturally the identities

\[
\sum_{i=1}^{5} q_i^a = 0 \mod(5); \quad a = 1, 2, 3.
\]

(2.4)

This constraint eq is a necessary condition required by invariance under eqs (2.2) of the $a_0 \prod_{i=1}^{5} z_i$ monomials of eq (2.1). It ensures that the holomorphic hypersurface of CY is indeed a CY manifold. Note in passing that the constraint eq (2.3) is just the analogue of the vanishing of the first Chern class of the quintic ($c_1 (Q) = 0$) in differential geometry language. It is also the condition under which the underlying 2d effective field theory flows in the infrared to a CFT \(^{[3]}\) [34, 35]. Orbifolds of the quintic with respect to Z_5^a are as usual obtained by identifying points that are related under the transformations \([1, 2, 3]\). Here we will show that such orbifolds are completely characterized by the q_i^a charges and an SL(3,Z) matrix η_{ab} and for general hypersurfaces by matrices in SL(n, Z). For symmetric matrices η_{ab}, that is $\eta_{ab} = \eta_{ba}$, one gets orbifolds without discrete torsion; while for non-symmetric η_{ab}, there is a discrete torsion. The idea behind this classification is that together with eqs (2.2) and (2.3), there exist extra symmetries of eqs (2.1) acting as $z_i \rightarrow z_i \omega^p_i$ where now the p_i^a charges are given by

\[
p_i^a = \eta_{ab} q_i^b,
\]

(2.5)

with η_{ab} the above mentioned 3×3 matrix of $SL(3; Z)$. These dual charges satisfy $\sum_{i=1}^{5} p_i^a = 0$, following naturally from eq (2.3). The η_{ab} matrix, which to our knowledge was not known before; turns out to play an important role in building NC geometries à la BL. It appears here as encoding matrix of the automorphisms of characters of the orbifold group. We will show later that η_{ab} is the carrier of the discrete torsion of the orbifold symmetry of CY Hypersurfaces. It antisymmetric part ($\eta_{ab} - \eta_{ba}$) is related to the logarithm of the t_{ab} torsion matrix of Z_5^{a+2}. Moreover, as far as Q is concerned, it interesting to note that there are different kinds of orbifolds one can build depending on the orbifold group. If we denote by $R_5 [[z_1, \ldots, z_5]]; R_5$ for short, the ring of complex holomorphic and homogeneous polynomials of degree five on \mathbb{CP}^4 and by $G_{[a]}$, a generic subgroup of Z_5^3, then one can build various orbifolds of the quintic as $Q^{[a]} = R_5 / G_{[a]}$. In addition to R_5 / Z_5^3, we have also the two following examples of the quintic orbifolds $Q^{[1]}$ and $Q^{[2]}$ associated respectively with $G_{[1]} = Z_5$ and $G_{[2]} = Z_5^2$ subgroups of $G = Z_5^3$.

\[
Q^{[1]} = R_5 / Z_5, \quad Q^{[2]} = R_5 / Z_5^2.
\]

(2.6)

Throughout this study, we will always stay in the coordinate patch $U_{(a)} [z_1, \ldots, z_4, z_5 = 1]$; the move to an other patch of the quintic, say $U_{(\beta)} [w_1, \ldots, w_4, w_5 = 1]$ with CY charges r_i^a, is ensured by

\(^1\)By CY charges we intend the $q_i^a = (q_i^a)$ vectors that define a basis for phase symmetries Z_5^{d+2} of the complex d dimension CY hypersurface $z_1^{d+2} + \ldots + z_{d+2}^{d+2} + \prod_{i=1}^{d+2} z_i = 0$. Since the a-th Z_5^{d+2} factor acts on the z_i local variables as $z'_i = z_i \omega^{a_i}$, invariance of the above polynomial requires that $\omega = \exp i \frac{2\pi a_i}{d+2}$ and moreover $\sum_{i=1}^{d+2} a_i = 0$. This q_i^a constraint relation is known to be equivalent to the vanishing condition of the first Chern class of CY manifolds.
holomorphic transition functions $\phi^{(\alpha, \beta)}_{\omega} \rightarrow \phi^{(\alpha, \beta)}_{\omega}$ carrying appropriate Z_3^n charges. Note that on the coordinate patch $U_{(\alpha)} [z_1, \ldots, z_4, z_5 = 1]$, the full Z_3^n orbifold symmetry has no fixed point; the only stable one, namely $(0, 0, 0, 0, 1)$, does not belong to R_5/Z_3^n. However thinking of the quintic orbifold R_5/Z_3^n as either a Z_3 orbifold of R_5/Z_5^n, that is $R_5/Z_3^n \sim (R_5/Z_5^n) / Z_5 \sim R_5/Z_3^n$ or again as a Z_3 orbifold of R_5/Z_5^n, one can consider the fixed points of the respective singular spaces of R_5/Z_3^n and R_5/Z_3^n. This procedure is also equivalent to set to zero some of the CY vector charges associated with Z_3^n symmetry. For example, the orbifold R_5/Z_3^n may also be linked to R_5/Z_5 just by setting $q^2 = q^3 = 0$. In section 5, we shall use both the R_5/Z_3^n and R_5/Z_3^n spaces to study fractional branes.

2.2 NC Quintic

A way to get NC extensions of Q by using discrete torsion is to start from the complex homogeneous hypersurface 2.1 and choose the coordinate patch $z_5 = 1$ and $q_5^a = 0$. Then associate to the $\{z_1, z_2, z_3, z_4\}$ local variables, the set of 5×5 matrix operators $\{Z_1, Z_2, Z_3, Z_4\}$ and Z_5 with the identity matrix I_{5d}. The NC quintic Q^{nc}, associated to eqs 2.1 and eqs 2.5, is a NC algebra generated by the Z_i’s. This is a special subalgebra of the ring of functions on the space of matrices $Mat(5, C)$; it reads in term of the Z_i matrix generators as:

$$Z_i Z_j = \beta_{ij} Z_j Z_i, \quad Z_i Z_5 = Z_5 Z_i, \quad i, j = 1, \ldots, 4.$$ \hfill (2.7)

In these eqs, β_{ij} is an invertible matrix constrained as,

$$\beta_{ji} = \beta_{ij}^{-1}, \quad \beta_{ii} = \beta_{ij}^2 = \beta_{ij}^3 = \beta_{ij}^4 = \beta_{ij} \beta_{ij} \beta_{ij} \beta_{ij} = 1, \quad \forall i.$$ \hfill (2.8)

These constraint eqs reflect just the property that the commutative Q should be in the centre $Z(Q^{nc})$ of eqs 2.7. In other words $Q = Z(Q^{nc})$ or equivalently;

$$[Z_j, Z_i^a] = 0, \quad \left[Z_j, \prod_{i=1}^4 Z_i \right] = 0.$$ \hfill (2.9)

A class of solutions of eqs 2.8 is obtained as follows: First parameterize β_{ij} as $\beta_{ij} = \omega^{L_{ij}}$ with $\omega = \exp i \frac{2\pi}{5}$ and L_{ij} is a 5×5 antisymmetric matrix satisfying $\sum_{i=1}^5 L_{ij} = 0$. This constraint relation comes from invariance of the term $a_0 z_1 z_2 z_3 z_4 z_5$ exactly as for the CY condition eq 2.4. This means that a possible solution for L_{ij} is as,

$$L_{ij} = \nu_{ab} (q_i^a q_j^b - q_j^a q_i^b)$$ \hfill (2.10)

where ν_{ab} is an arbitrary 3×3 matrix of integer entries. The matrix L_{ij} is built as bi-linears of the q_k^a charge vectors ensuring automatically $\sum_{i=1}^5 L_{ij} = 0$. This is why we shall still refer to the constraint eq $\sum_{i=1}^5 L_{ij} = 0$ as the CY condition. Moreover, since eq 2.10 can also be written as $L_{ij} = m_{ab} q_i^a q_j^b$, with $m_{ab} = \nu_{ab} - \nu_{ba}$, one suspects that m_{ab} matrix should be linked to the structure constants of the underlying Z_3^n orbifold symmetry. We will show in section 6, that L_{ij} should read in fact as;

$$L_{ij} = p_i^a q_j^a - p_j^a q_i^a,$$ \hfill (2.11)

where p_i^a are as in eqs 2.3. These integers are the charges of a hidden invariance induced by discrete torsion. By analogy with the geometric symmetry Z_3, this symmetry can be thought of as acting on the z_i variables as $z_i \rightarrow z_i \omega^{p_i^a}$, with $p_i^a = \nu_{ab} q_i^b$. To have an idea on how the formulas we have derived above work in practice, let us go the local patch $z_5 = 1$ with q_i^a charges as in eq 2.3 and perform some
generated by a strong constant external magnetic field such as in the Chern Simons model of the fractional quantum Hall effect \[48, 49\], NC geometry is interpretive \[36, 11, 12\]; see also \[37, 38, 39\]. In effective field theoretical models at very low energies, in quantum physics, non-commutativity appears in different ways and has various origins and different interpretations \[36, 11, 12\].

3 NC Geometry and Discrete Torsion

\[\prod_{i} Z_{i} = \omega^{k_{1}-k_{3}} Z_{2} Z_{1}, \quad Z_{i} Z_{3} = \omega^{-k_{1}+k_{2}} Z_{3} Z_{i}, \quad Z_{1} Z_{4} = \omega^{k_{3}-k_{2}} Z_{4} Z_{1}, \quad Z_{2} Z_{4} = \omega^{-k_{3}+k_{2}} Z_{4} Z_{2}, \quad Z_{3} Z_{4} = \omega^{k_{2}} Z_{4} Z_{3}. \] (2.13)

Putting \(\alpha = \omega^{k_{1}-k_{3}}, \beta = \omega^{k_{1}-k_{2}} \) and \(\gamma = \omega^{k_{3}} \), one discovers the algebra of \[2\] given by eqs(2.1). Moreover the solution of these eqs read, up to a normalization factor, as:

\[Z_{1} = x_{1} P_{\omega^{k_{1}+k_{2}+k_{3}}} Q^{3}, \quad Z_{2} = x_{2} P_{\omega^{k_{1}}} Q^{-1}, \quad Z_{3} = x_{3} P_{\omega^{k_{2}}} Q^{-1}, \quad Z_{4} = x_{4} P_{\omega^{k_{3}}} Q^{-1}, \] (2.14)

where \(x_{i} \) are as in eqs(2.1), \(\omega \) is the complex conjugate of \(\omega \) and where

\[P_{\alpha} = \text{diag}(1, \alpha, \alpha^{2}, \alpha^{3}, \alpha^{4}), \quad Q = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}, \] (2.15)

with \(\alpha \) standing for \(\omega^{k_{1}}, \omega^{k_{2}}, \omega^{k_{3}} \) and their products. This solution shows clearly that \(Z_{i}^{5} \), the product \(\prod_{i=1}^{4} Z_{i} \) and their linear combination are all of them in the centre \(Z(Q^{nc}) \) of the NC algebra \(Q^{nc} \).

3 NC Geometry and Discrete Torsion

In quantum physics, non-commutativity appears in different ways and has various origins and different interpretations \[36, 11, 12\]; see also \[37, 38, 39\]. In effective field theoretical models at very low energies, such as in the Chern Simons model of the fractional quantum Hall effect \[48, 49\], NC geometry is generated by a strong constant external magnetic field \(B \) which couple the two position vectors \(x^{i}(t) \) of electrons as \(B \varepsilon_{ij} x^{j}(t) \partial x^{i}(t)/\partial t \). Heisenberg quantization rule leads to a non vanishing commutator for these position vectors; i.e \([x^{i}, x^{j}] = i e^{ij}_{\nu L} \), where \(\nu L = \frac{1}{2} \) is the Laughlin filling factor. For large value of \(B (\sim 15 \text{ Tesla}) \), the quantum properties of the system of electrons are described by a NC Chern-Simons gauge theory on a D2 brane. Such a two dimensional condensed matter phase has received recently an important interest due to similarities with solitons built up with systems of D branes of type IIA string theory. At very high energies, say around the Planck scale as in string theory, non-commutativity is generated by the NS \(B_{\mu \nu} \) antisymmetric field and is linked to the existence of open strings ending on D branes with a dynamics governed by a boundary conformal invariance \[12\]. This issue has been subject to much interest during the few last years in connection with the derivation
of non commutative ADHM solitons 10 and the study of the tachyon condensation by following the GMS method 27 28. In M theory, NC geometry comes as a non trivial solution in the study of the matrix model torus compactification. Here also NC geometry is generated by an antisymmetric field; the eleven dimensional gauge three form field $C_{\mu\nu\rho}$.11 Elements g_1 and g_1 of the group of automorphism symmetries of the matrix model on a two torus T^2 are in general governed by the central relation $g_1g_2g_1^{-1}g_2^{-1}$ taken to be proportional to the identity operator; that is $g_1g_2g_1^{-1}g_2^{-1} = \lambda I_{id}$ with $\lambda \in \mathbb{C}^*$ as required by the Schur lemma 11 13.

In quantum mathematics, NC geometry is viewed as an algebraic structure $\mathcal{M}_h [X_1, \ldots, X_N]$ going beyond the usual $C [x_1, \ldots, x_N]$ commutative one with the ideal $\{ x_i x_j = x_j x_i \}$. Formally, the generic commutation relations of the generators of the quantum algebra $\mathcal{M}_h [X_1, \ldots, X_N]$, may be written as $X_I * X_J = r^{KL}_{I J}(X) X_K * X_L + b_{IJ}(x)$, where $r^{KL}_{I J}(X)$ and $b_{IJ}(X)$ are some polynomials in X_I which may be thought of as 20 41:

$$r^{KL}_{I J}(X) = \delta^L_I \delta^K_J + \hbar r^{KL}_{I J} + \ldots; \quad b_{IJ}(X) = \hbar (\Omega_{IJ} + t^K_{I J} X_K + \ldots)$$

(3.1)

In the limit $\hbar \to 0$, $r^{KL}_{I J}(X) \to \delta^L_I \delta^K_J$ and $b_{IJ}(X) \to 0$; one recovers the usual commutative structure of $C [x_1, \ldots, x_N]$. For the general cases, such for instance $(r^{KL}_{I J}(x), b_{IJ}(x))$ equals to $(0, B_{IJ})$ or $(0, t^K_{I J} X_K)$ or again $(R^{KL}_{I J}, 0)$, one gets respectively the canonical commutator, the Lie algebra bracket and the quantum Yang-Baxter spaces 36. The NC structure we are dealing with here corresponds to an other special situation where $b_{IJ}(x) = 0$ and,

$$r^{KL}_{I J}(x) = \beta_{KL} \delta^L_I \delta^K_J,$$

(3.2)

with β_{IJ} is a root of unity. This NC geometry is generated by the discrete torsion matrix of the orbifold group \mathbb{Z}_5^3 and has much to do with NC Fuzzy tori representations. Since discrete torsion is involved in string compactifications on orbifolds and twisted string sectors, one expects that this NC structure plays some role in string theory on orbifolds and more generally in supersymmetric field theories on orbifolds. As we shall show by explicit analysis, see section 4, NC geometry induced by discrete torsion leads to fractional D branes at orbifold singularities and offers a new way to resolve non geometric singularities. Points of the usual geometry are replaced by polygons in the NC case.

To get the right link between discrete torsion and NC orbifold solutions, in particular quintic ones given above, let us reconsider the solutions eqs(2.14) and explore their structure. To do so we shall first show that the NC solution 21 14 are not so general as claimed in 24 as these solutions form just a special class of a more general set of solutions involving general representations of \mathbb{Z}_5^3. We will then begin by giving some results regarding regular representations of \mathbb{Z}_5^3; after that we present our general discrete torsion dependent solution.

3.1 More on Solutions (2.14)

Eqs(2.14) involve various group elements of the representation of \mathbb{Z}_5 namely the $P_{\omega^{k_1}}, P_{\omega^{k_2}}$ and $P_{\omega^{k_3}}$ commuting operators and powers of Q. These five dimensional matrices system $\{ P_{\omega^{k_1}}, P_{\omega^{k_2}}, P_{\omega^{k_3}}, Q \}$ have the following torsion matrices,

$$t_{\mu\nu} = \begin{pmatrix} 1 & 1 & 1 & \omega^{k_1} \\ 1 & 1 & 1 & \omega^{k_2} \\ 1 & 1 & 1 & \omega^{k_3} \\ \omega^{-k_1} & \omega^{-k_2} & \omega^{-k_3} & 1 \end{pmatrix}, \quad \theta_{\mu\nu} = \begin{pmatrix} 0 & 0 & 0 & k_1 \\ 0 & 0 & 0 & k_2 \\ 0 & 0 & 0 & k_3 \\ -k_1 & -k_2 & -k_3 & 0 \end{pmatrix}$$

(3.3)
where we have set $\theta_{\mu \nu} = \frac{1}{2} \log t_{\mu \nu}$. Therefore discrete torsion exist whenever at least one of the k_a integers is non zero. Moreover since $P_{\alpha} P_{\beta} = P_{\alpha \beta}$, it follows that the expression of the Z_is may also be written as $Z_i = x_i \otimes T_i$, where the T_i’s are five dimensional matrices realized as,

$$ T_i = P^r_i Q^{s_i} = \prod_{a=1}^{3} P^{r^a_i} Q^{s^a_i}, \quad T_i T_j = \tau_{ij} T_j T_i, \quad \tau_{ij} = \prod_{a=1}^{3} \omega_a^{s^a_i r^a_j - s^a_j r^a_i} = \omega^{r_i r_j - r_j r_i}, \quad (3.4) $$

where we have set $P = P_\omega$ and where the numbers r^a_i and s^a_i are integers modulo five related to the k_i as $r_1 = \sum_{a=1}^{3} r^a_1 = k_1 + k_2 + k_3$, $s_1 = \sum_{a=1}^{3} s^a_1 = 3$ and $r_i = \sum_{a=1}^{3} r^a_i = -k_i$, $s_i = \sum_{a=1}^{3} s^a_i = -1$ for $i = 2, 3, 4$. One of the remarkable features of the solution (2.14) together with eq (3.4) is that it has only a manifest Z_5 sub symmetry and so constitutes a special class of realization of the NC quintic. More general solutions should have a full manifest Z^3_5 symmetry. Larger class of solutions corresponds to take the T_i operators of eq (3.4) as $T_i = \prod_{a=1}^{3} E^a_i J^a_i$ with E_as and J_as given by

$$ E_1 = P_1 \otimes I_{id} \otimes I_{id}, \quad E_2 = I_{id} \otimes P_2 \otimes I_{id}, \quad E_3 = I_{id} \otimes I_{id} \otimes P_3, \quad J_1 = Q_1 \otimes I_{id} \otimes I_{id}, \quad J_2 = I_{id} \otimes Q_2 \otimes I_{id}, \quad J_3 = I_{id} \otimes I_{id} \otimes Q_3. \quad (3.5) $$

These are respectively the generators of Z^3_5 and the group of automorphisms of their characters. In what follows, we explore further this general solution and give its geometric interpretation in terms of D-branes wrapping the compact manifold.

3.1.1 Torsion and NC rational torus

The solution $Z_i = x_i \otimes T_i$ may be given a remarkable geometric interpretation. The Z_is are the local coordinates of a NC fiber bundle whose base is a Chart of \mathbb{CP}^4 and its fiber is a NC rational torus \mathcal{T}^2. Generic points of this NC variety are then parameterized as $(x_i; P_{\omega_1}, Q_{\omega_1}; P_{\omega_2}, Q_{\omega_2}; P_{\omega_3}, Q_{\omega_3})$ where now P_{ω_a} and Q_{ω_a} are viewed as the cycles of a rational torus

$$ P^5_{\omega_a} = Q^5_{\omega_a} = I, \quad Q_{\omega_a} P_{\omega_a} = \omega_{\omega_a} P_{\omega_a} Q_{\omega_a}. \quad (3.6) $$

and where $\omega^3_\omega = 1$. This representation shows clearly that discrete torsion associated with each Z_5 subgroup factor induces a 2d NC torus fibration of the quintic. Since this 2d NC rational torus is finite dimensional\(^2\), the original commutative coordinates z_{i1} are now replaced by 5×5 matrices as

$$ z_{i1} \rightarrow Z_i = \sum_{k,l=1}^{5} Z_i^{kl} |k><l|, \quad (3.7) $$

where we have used the $\{e_{ij} = |i><j|\}$ matrix basis$\{|i>|$ and $\{<j\}$, with $<j|i| = \delta_{ij}$. In the case the three Z_5 factors are taken into account, one has a 6d NC torus fibration. In this case, the matrices are of order 5^3 and then the k and l indices in the expansion (3.7) should be thought of as multi-indices; that is $k = (k_1, k_2, k_3)$ and $l = (l_1, l_2, l_3)$.

3.1.2 Branes

Due to discrete torsion, we see form the above eq that the algebraic structure of the D-branes wrapping the compact manifold change. Brane points $\{z_i\}$ of commutative geometry become now fibers based on $\{z_i\}$ and valued in the group representation $\mathcal{D}(Z^3_5)$ as shown on eq (3.7). Following [17], this solution

\(^2\)Note that for the special limit of irrational tori corresponding to taking the $k \rightarrow \infty$ limit of $Z_5 \sim U(1)$, non compact extra dimensions appear. The infinite number of fractional Dp is mapped to a non compact $Dp + 2$ brane in agreement with the result of [10] [17].
has a nice interpretation in terms of quiver diagrams. Associating to each \(e_{kl} \) matrix vector basis, a segment \([k, l]\) oriented from \(k \) to \(l \) (an arrow \(\rightarrow^{kl} \)) and to each \(e_{kk} = \pi_k \equiv |k > < k| \) projector, a loop starting and ending at the position \(k \) as shown on the following table, one may draw a quiver diagram for each \(Z_i \) matrix generator of the NC algebra.

Operators	Diagrams		
\(a^+_k \equiv	k > < k + 1	\)	\(k \rightarrow^{(k+1)} \)
\(a^-_k \equiv	k + 1 > < k	\)	\((k+1) \leftarrow \rightarrow^{k} \)
\(\prod_{j=0}^{n} a^+_k a^-_{k+j} \equiv	k > < k + n	\)	\(k \rightarrow^{(k+n)} \)
\(\prod_{j=0}^{n} a^-_{k+j} \equiv	k + n > < k	\)	\((k+n) \leftarrow \rightarrow^{k} \)
\(\pi_k = a^+_k a^-_k =	k > < k	\)	\(k \equiv \rightarrow^{(k+1)} \equiv \bigcirc \equiv \bullet \)
\(\pi_k = a^+_k a^-_{k+1} a^+_k a^-_{k-1} =	k > < k	\)	\((k-1) \equiv \bullet \equiv \bigcirc \equiv k \equiv \bullet \)

Using these rules, one sees that for the quintic the generic quiver diagram for the \(Z_i \) operators is given by a polygon with five vertices (a pentagon) and in general twenty links joining the various vertices; see figure 1. Since matrix basis vectors type \(e_{k(k+n)} = |k > < k + n| \) can be usually decomposed as \(e_{k(k+n)} = a^+_k a^-_{k+1} a^+_k a^-_{k+n} \), where \(a^+_k = e_{k(k+1)} \), one concludes that points in NC quintic geometry are roughly speaking described by pentagons. On the NC quintic the D-branes acquire an internal structure and consequently singularities of the original commutative manifolds are resolved by NC geometry.

3.2 Discrete Torsion Matrix of \(\mathbb{Z}_5^3 \)

Here we want to study general \(D(\mathbb{Z}_5^3) \) representations in presence of torsion and derive their link with complex three dimension NC rational torus \(T^6_{\omega} \). We also give the quiver diagrams associated with these representations. To that purpose, we shall first consider the simplest situation where all \(\mathbb{Z}_5 \) factors commute amongst themselves; then we discuss the case where they do not commute.

3.2.1 Free torsion case

Naively, the geometric symmetry \(\mathbb{Z}_5^3 \) can be seen as the product of three abelian \(\mathbb{Z}_5 \) group factors whose generators may be defined by help of the tensor product as follows:

\[
E_1 = P_1 \otimes I_{id} \otimes I_{id}, \quad E_2 = I_{id} \otimes P_2 \otimes I_{id}, \quad E_3 = I_{id} \otimes I_{id} \otimes P_3,
\]
The E_as are the generators of the three \mathbb{Z}_5 factors of \mathbb{Z}_5^3; they satisfy the cyclic property $E_a^5 = I_d$. Since they are commuting operators, $E_aE_b = E_bE_a$, they can be diagonalized simultaneously in the same basis $\{|a,i>; 1 \leq a \leq 3; 1 \leq i \leq 5\}$. As such the P_as can be thought of as in eq (2.13) and E_as as diagonal blocks of matrices. Using the convention notation $a_{a,a}^+ = |a,n \rangle \langle a,n+1|$, $a_{a,a}^- = |a,n+1 \rangle \langle a,n|$, $\pi_n = a_{a,a}^+ a_{a,a}^-$ and the graphic representations of figure 2, it is not difficult to see that group elements of \mathbb{Z}_5 and their automorphisms can be decomposed as follows,

$$I_{id} = \sum_{n=1}^{5} \pi_n, \quad P_a = \sum_{n=1}^{5} a_{a,n} \pi_n, \quad Q_a = \sum_{n=1}^{5} a_{a,n}^+, \quad Q_a^{-1} = \sum_{n=1}^{5} a_{a,n}^-;$$

(3.10)

For explicit computations, we shall drop out the index a by working in special five dimensional matrix realizations.

Figure 2: The completely reducible diagram (Fig2a) represents the identity operator of 5d representation $D(\mathbb{Z}_5)$. Fig2b is an oriented pentagon representing Q automorphism operator while fig2c is its inverse.

Note that in absence of torsion generic elements of \mathbb{Z}_5^3 are denoted as $g = g_1 \otimes g_2 \otimes g_3$ and similarly for their representations $D(g) = D(g_1) \otimes D(g_2) \otimes D(g_3)$ which read in terms of the E_a generators as follows $D(g) = \prod_{i_1,i_2,i_3=1}^{5} \gamma_{i_1,i_2,i_3} E_{i_1}^{g_1} E_{i_2}^{g_2} E_{i_3}^{g_3}$, where the γ_{i_1,i_2,i_3} coefficients are such that $\gamma_{i_1,i_2,i_3} = 1$. Since the group multiplication law gg' of elements g and g' of \mathbb{Z}_5^3 is defined as usual by performing multiplications of individual elements; that is $gg' = g_1g'_1 \otimes g_2g'_2 \otimes g_3g'_3$; we have $E_a^d = I_{D(\mathbb{Z}_5)}$, with $I_{D(\mathbb{Z}_5)}$ stands for $I_{id} \otimes I_{id} \otimes I_{id}$; the group representation identity. The above eq tells us that the dimension d of $D(\mathbb{Z}_5^3)$ reads in terms of the d_i dimensions of the three $D(\mathbb{Z}_5)$ factors as $d = d_1d_2d_3$. As all elements of \mathbb{Z}_5^3 can be expressed as powers of E_as, we will focus our attention now on the monomials $E_{a}^{n_1}E_{b}^{n_2}E_{c}^{n_3}$; $1 \leq n_a \leq 5$.

3.2.2 Discrete Torsion

In presence of discrete torsion\(^3\), the g_a elements of the three \mathbb{Z}_5 factors of \mathbb{Z}_5^3 do not commute among each others. Geometrically this situation corresponds to the case where the three complex cycles \mathcal{T}_{2a} associated with discrete group factors do not commute. Generic couples (F_a, F_b) of elements of $\mathcal{T}_{2a} \otimes \mathcal{T}_{2b}$ satisfy then,

$$F_a F_b = t_{ab} F_b F_a,$$

(3.11)

where t_{ab} is the torsion matrix between the three \mathbb{Z}_5 factors of the orbifold group. Note that this relation is quite similar to the one defining the rational torus \mathcal{T}_2^2, eq (3.12). Instead of one \mathbb{Z}_5, we have now the full \mathbb{Z}_5^3 orbifold group. Eq (3.11) define a complex three dimension NC rational torus \mathcal{T}_2^6 where a priori

\(^3\)With one \mathbb{Z}_5 factor, one has discrete torsion induced by quantum symmetry. Here we discuss the general case of discrete torsion between the various geometric orbifold subgroup factors of \mathbb{Z}_5^3.\]
the six real cycles are non commuting. Moreover, like for the E_a, the F_a satisfy equally $F_a^5 = I_{D(Z_5^*)}$ requiring that the matrix torsion should be of the form $t_{ab} = \exp i\frac{2\pi}{5}\theta_{ab}$, where θ_{ab} is antisymmetric 3×3 matrix with integer entries.

Representations There are different ways to represent eq. (3.11) by using tensor products or/and direct sums involving the d_a dimension matrix generators E_a of the three $D(Z_5^*)$ and the Q_a automorphisms rotating their characters. In the case where one uses tensor products, the matrix representation we get has dimension $d = d_1d_2d_3$ containing as a particular case the solutions obtained in [22]. To see how this representation is built, we introduce the following parameterization of torsion $\theta_{ab} = \eta_{ab} - \eta_{ba}$ where η_{ab} is the invertible $SL(3,Z)$ matrix considered before. Note in passing that the fact that η_{ab} belongs to $SL(3,Z)$ appears here as a necessary condition for consistency; but this may have a string interpretation in terms of allowed values of the NS B field along the rational elliptic fibers. This parameterization allows us to rewrite eq. (3.11) as $\omega^{\eta_{ab}} F_a F_b = \omega^{\eta_{ba}} F_b F_a$ whose matrix solution reads as

$$F_1 = P_1 \otimes Q_2^{\eta_{12}} \otimes Q_3^{\eta_{13}}, \quad F_2 = Q_1^{\eta_{21}} \otimes P_2 \otimes Q_3^{\eta_{23}}, \quad F_3 = Q_1^{\eta_{31}} \otimes Q_2^{\eta_{32}} \otimes P_3,$$ \hspace{1cm} (3.12)

where the P_a's and the Q_a's are as in eq. (2.10) with $P_a Q_b = \alpha_a Q_b P_a \delta_{ab}$ and α_a fifth roots of unity. To fix the ideas, we set for simplicity $\alpha_1 = \alpha_2 = \alpha_3 = \omega$ and consider the special case where the three basis of the three representation factors of $D(Z_5)$, namely $\{a, i \geq 1, 1 \leq i \leq d_a; 1 \leq a \leq 3\}$, have the same dimension $d_1 = d_2 = d_3$. In this case $d_1 = d_2 = d_3 = 5$ and so $P_1 = P_2 = P_3 = P$ and $Q_1 = Q_2 = Q_3 = Q$ with a realization as in eqs (3.6). Thus the F_a reduce to:

$$F_1 = P \otimes Q^{\eta_{12}} \otimes Q^{\eta_{13}}, \quad F_2 = Q^{\eta_{21}} \otimes P \otimes Q^{\eta_{23}}, \quad F_3 = Q^{\eta_{31}} \otimes Q^{\eta_{32}} \otimes P.$$ \hspace{1cm} (3.13)

This matrix representation has an a 53 order and satisfies $F_a^5 = I$. It extends eqs (3.9) which appears as special cases. Indeed, the d dimensional generic representations of the F_a shows that it is possible to build different realizations for F_a generators (3.11). The representation eqs (2.10) and (3.4) built in [22], correspond to take (d_1, d_2, d_3) equal to either $(5,1,1)$, $(1,5,1)$, or $(1,1,5)$ respectively obtained by setting $\eta_{a2} = \eta_{a3} = 0$, $\eta_{a1} = \eta_{a3} = 0$ and $\eta_{a1} = \eta_{a2} = 0$. In all of these cases, the fiber of the NC quintic is just the NC rational torus T^4_d. This property may be viewed as the geometric interpretation of the codimension one fixed planes considered in [17]. In addition to these examples, there are other special cases such as the 25 dimensional matrix realizations of the F_a's. They correspond to the situations where the fibration is T^4_d and $(d_1, d_2, d_3) = (5,1,1)$ as well as permutations.

Quiver Diagrams Like for the case of one abelian factor, one can also build the projectors for full the Z_5^* group. Using the individual Z_5 projectors $\pi_{k_a} = \frac{1}{5} \sum_{i=1}^{5} \omega^{-k_aP_i}$, we can construct various kinds of projectors on the representation space of Z_5^*. First, the Π_{k_a} projectors on the Z_5 representation spaces:

$$\Pi_{k_1} = \pi_{k_1} \otimes I_{d_1} \otimes I_{d_1}, \quad \Pi_{k_2} = \pi_{k_2} \otimes \pi_{k_2} \otimes I_{d_1}, \quad \Pi_{k_3} = I_{d_1} \otimes I_{d_1} \otimes \pi_{k_3},$$ \hspace{1cm} (3.14)

They have quiver diagrams more a less similar to that of π_{k_3}, except that now we have general realizations coming from the decomposition of the identity operators. The full quiver diagram is given by the cross product of the individual graphs and one ends with higher dimensional lattices. Second, the $\Pi_{(k_a,k_b)}$ and $\Pi_{(k_1,k_2,k_3)}$ projectors on the Z_5^* and Z_5^* representation spaces, respectively obtained by taking tensor products of Π_{k_a}'s:

$$\Pi_{(k_a,k_b)} = \Pi_{k_a} \Pi_{k_b}, \quad \Pi_{(k_1,k_2,k_3)} = \Pi_{k_1} \Pi_{k_2} \Pi_{k_3}.$$ \hspace{1cm} (3.15)
Accordingly, the identity matrix \(\mathbf{I}_{D(G)} \) can be decomposed in different, but equivalent, ways as shown here below:

\[
\mathbf{I}_{D(G)} = \sum_{k_a=1}^{5} \Pi_{k_a} = \sum_{k_a,k_b=1}^{5} \Pi_{k_a,k_b} = \sum_{k_1,k_2,k_3=1}^{5} \Pi_{k_1} \Pi_{k_2} \Pi_{k_3}.
\] (3.16)

So \(\mathbf{I}_D \) can be represented by a completely reducible quiver diagram with \(d_1 d_2 d_3 = 5 \times 5 \times 5 \) vertices.

Similar expansion to eqs (3.16) may be written down for the generators \(J_a \) of the quantum symmetries. Setting

\[
A_{k_1}^\pm = a_{1,k_1}^\pm \otimes I_{id} \otimes I_{id}, \quad A_{k_2}^\pm = I_{id} \otimes a_{1,k_1}^\pm \otimes I_{id}, \quad A_{k_3}^\pm = I_{id} \otimes I_{id} \otimes a_{k_3}^\pm,
\] (3.17)

we can write for instance \(J_a \) and \(J_{a_1} J_{a_2} \) as follows;

\[
J_a = \sum_{k_a=1}^{5} A_{k_a}^+, \quad J_{a_1} J_{a_2} = \sum_{k_{a_1},k_{a_2}=1}^{5} A_{k_{a_1}}^+ A_{k_{a_2}}^+.
\] (3.18)

While the quiver diagram for the \(J_a \) is similar to that given by figures 2b, 2c and figures 3, the quiver diagrams associated with \(J_{a_1} J_{a_2} \) are obtained by taking cross products and are of type figure 4.

Figure 3: Fig3a represents the diagram of \(Q^2 \); the oriented links define the independent massless chiral fields on the \(D \) brane at singularity. Fig3b represents the quiver of \(Q^3 \). Fig 3c represents the diagram of the \(Q^4 \) operator and Fig3d represents the completely reducible quiver diagram of \(Q^5 \).

4 General Solutions

Here we give our general solutions for NCCY orbifolds extending the ones obtained in [2, 24]. These solutions exhibit manifestly both torsion dependence and the full orbifold geometric symmetry. The solution we will derive provide novel regularizations of NC field theories on orbifolds containing as special models gauge theories embedded in string theory. To avoid repetitions, we will treat simultaneously the example quintic threefolds \(Q \) and more generally all the elements of the class of homogeneous complex \(n \) \((n > 1) \) dimension hypersurfaces \(\mathcal{H}_n \). To start recall that the algebraic relations defining the NC quintic \(Q^{(nc)} \) as appeared first in [2] reads as,

\[
Z_1 Z_2 = \alpha Z_2 Z_1, \quad Z_1 Z_3 = \alpha^{-1} \beta Z_3 Z_1, \quad Z_1 Z_4 = \beta^{-1} Z_4 Z_1, \quad Z_2 Z_3 = \alpha \gamma Z_3 Z_2,
\]

\[
Z_2 Z_4 = \gamma^{-1} Z_4 Z_2, \quad Z_3 Z_4 = \beta \gamma Z_4 Z_3, \quad Z_i Z_5 = Z_5 Z_i, \quad i = 1, 2, 3, 4; \quad (4.1)
\]
where α, β, γ are fifth roots of unity. In [24], it was noted that the above relations are very special and can be generalized to any complex n-dimension holomorphic homogeneous CY hypersurfaces as $Z_iZ_j = \beta_{ij}Z_jZ_i$, $i, j = 1, \ldots, (n+1)$ and $Z_iZ_{d+2} = Z_{d+2}Z_i$ with $i = 1, \ldots, (n+1)$ and β_{kl}s are realized as,

$$\beta_{ij} = \exp i \left(\frac{2\pi}{n+2} m_{ab} \eta^a \eta^b j_{ij} \right) = \omega^{m_{ab} \eta^a \eta^b j_{ij}}. \quad (4.2)$$

In this relation $\omega = \exp i \frac{2\pi}{n+2}$ and m_{ab} is some given matrix with integer entries which remained without interpretation in [24]. Here, we will prove that m_{ab} is equal to

$$m_{ab} = \eta_{ab}^{-1} - \eta_{ba}^{-1} \quad (4.3)$$

where η_{ab} is as before. The antisymmetric part of the η_{ab} matrix encodes then torsion and it is required to belong to $\text{SL}(n,Z)$.

4.1 More on NC Quintic

First of all note that the NC quintic and more generally NCCY hypersurfaces are no uniquely defined. The following eqs may be also used as definitions for Q^{nc} and $H_n^{(nc)}$,

$$\Phi_i \Phi_j = \Phi_j \Phi_i, \quad i, j = 1, \ldots, n+2$$

$$F_a \Phi_i = \Phi_i F_a \exp i \left(\frac{2\pi}{n+2} \eta^a \right), \quad (4.4)$$

$$F_a F_b = F_b F_a \exp i \left(\frac{2\pi}{n+2} \eta_{ab} \right).$$

These eqs have also a centre that coincide exactly with H_n. Therefore the two sets of matrix coordinates Z_i and Φ_i, of eqs (1.1, 4.2) and (4.4) should be linked. In fact as shown in [17], Z_i and Φ_i are two Morita equivalent coordinates of $H_n^{(nc)}$ and so are related as

$$Z_i = \Gamma_i \Phi_i, \quad (4.5)$$

where Γ_is are matrix operators which can be directly derived by comparing eqs (1.2) and (4.4). We will give their explicit expressions later on. For the moment, let us comment the absence of a relation such that $F_a \Phi_i = \Phi_i F_a \exp i \frac{2\pi \eta^a}{3}$ in eqs (1.1, 4.2). At first sight this seems a little bit ambiguous as the naive counting of the degrees of freedom in relations (1.2) and (4.4) do not match. However, this is not a problem since though the F_a group generators do not appear manifestly in eqs (1.1, 4.2); they act as outer automorphisms on these eqs. It turns out that F_a act trivially on Z_i; that is $F_a Z_i F_a^{-1} = Z_i$ which can be also rewritten like,

$$F_a Z_i = Z_i F_a \quad (4.6)$$

This relation will play an important role in building the general explicit fiber dependent solutions of eqs (1.2, 4.4). Indeed as $F_a \Phi_i = \Phi_i F_a \omega^{\eta^a}$ is just the Morita transformation of (1.1), one can use it to determine Γ_i. Acting by F_a on (1.1) and using (1.2), one gets the following constraint on Γ_i; $F_a \Gamma_i = \omega^{-\nu_{ia}} \Gamma_i F_a$, where ν_{ia} are integers.

Solutions of NC algebra $Z_i Z_j = \beta_{ij} Z_j Z_i$: Using the matrix realization of the E_a and J_a generators of the rational torus fibers eqs (5.5) and (2.13), as well as the relations $E_a^{\eta^a} J_b^{\eta^b} = \delta_{ab} \omega \eta^a \eta^b J_b^{\eta^b} E_a^{\eta^a}$, it is not difficult to check that the Z_is eq (4.2) are solved as,

$$Z_i = \prod_{a=1}^n E_a^{\eta^a} J_a^{\eta^a}. \quad (4.7)$$
Next, solving the constraint eq $F_a Z_i = Z_i F_a$ by using eq (4.7) and the explicit expression of the F_as namely $F_a = \prod_{b=1}^{n} E_a J_b^n$, we find:

$$\sum_{b=1}^{n} \eta_{ab} b_i = q_i^a. \quad (4.9)$$

This relation shows that the p_i^as are related to the q_i^as via the torsion matrix as $p_i^a = \sum_{b=1}^{3} \eta_{ab}^{-1} q_i^b$. Since the p_i^as are integers, eq (4.9) requires that the matrix η_{ab} has to belong to $SL(n, \mathbb{Z})$ and shows moreover that p_i^bs satisfy themselves the identity,

$$\sum_{i=1}^{n} p_i^a = 0. \quad (4.10)$$

This eq (4.10) tells us whenever torsion is present, the orbifold of the hypersurface \mathcal{H}_n admits an extra hidden discrete symmetry acting on the z_i’s as $z_i \rightarrow z_i \exp i \frac{2\pi}{n+2} \eta_{ab}^{-1} q_i^b$. This eq requires η_{ab} to be invertible and can be viewed a geometric way to define orbifolds. For η_{ab}^{-1} antisymmetric, the orbifolds have then a discrete torsion. Finally using eq (4.9) and comparing eq (4.8) with eq (4.2), one discovers eq (4.3).

Solution of eqs (4.3): Since the Φ_is commute, a natural solution corresponds is to take Φ_i as depending uniquely of the E_as or again uniquely of J_a generators. For the second case for instance, the Φ_is are realized as,

$$\Phi_i = z_i \prod_{a=1}^{n} J_a^n. \quad (4.11)$$

In addition to commutativity, this representation fulfills naturally $F_a \Phi_i = \Phi_i F_a \exp i \frac{2\pi q_i^n}{n+2}$ due to the basic relation $E_a^n J_b^n = \delta_{ab} \omega^{-\phi_a \phi_b} J_b^n E_a^n$. Moreover, comparing the two representations (4.7) and (4.11), one gets the expression of the automorphisms Γ_i of eq (4.10),

$$\Gamma_i = \prod_{a=1}^{n} E_a^{\pi q_i^n}, \quad (4.12)$$

where the p_i^as are as in eqs (4.9).

More on Morita equivalence: We end this discussion by noting that given a set of q_i^n integers, defining the charges of the z_i variables under the Z_i^{n+2}, and non symmetric $n \times n$ matrix η_{ab} of SL(n; Z); we can build various, but Morita equivalent, realizations of the NC algebra describing \mathcal{H}_n^{ac} where eqs (4.7) and (4.11) appear as two special coordinates basis amongst many others. If we let $\{F_a, W_i\}$ a generic basis of \mathcal{H}_n^{ac} related to $\{F_a, \Phi_i\}$ as $W_i = \Omega_i \Phi_i$ where $\Omega_i = \Omega_i(E_a, J_a)$ are constrained as,

$$\Omega_i \Omega_j = \varepsilon_{ij} \Omega_j \Omega_i, \quad F_a \Omega_i = \kappa_{ai}^{-1} \Omega_i F_a. \quad (4.13)$$

In these eqs, ε_{ij} and κ_{ai} are some given phases satisfying $\varepsilon_{ij}^{n+2} = \kappa_{ai}^{n+2} = 1$. In this basis, the defining relations of the NC algebra for \mathcal{H}_n^{ac} reads as,

$$W_i W_j = \tau_{ij}^{-1} \tau_{ij} W_j W_i, \quad F_a W_i = \kappa_{ai}^{-1} \lambda_a W_i F_a, \quad F_a F_b = F_b F_a \exp i \frac{2\pi \theta_{ab}}{n+2}. \quad (4.14)$$

4More general relations use $W_i = \Omega_i \Phi_j$.

Computing the products $Z_i Z_j$ and $Z_j Z_i$, one gets the explicit expression of the β_{ij} parameters namely,

$$\beta_{ij} = \exp i \frac{2\pi}{n+2} \sum_{a=1}^{n} [p_i^a q_j^a - p_j^a q_i^a]. \quad (4.8)$$
where τ_{ij}, κ_{ai} and λ_{ai} are structure constants of the H_n. In these eqs, the W_i generators do no longer commute among themselves nor with the group representation generators F_a as it was the case for eqs (4.9) and (4.11) which are recovered as two extreme situations.

4.2 Example

To fix the ideas, let consider the example of the quintic by choosing Ω_4 as $F_1^{(3)} F_2^{(3)} F_3^{(5)}$ with r_4^i some given integers. In this case, the structure constants appearing in eqs (4.13) and (4.14) read as:

$$\tau_i = \omega^{\sum_a r_a^i q_a^i}, \quad \varepsilon_{ij} = \omega^{\theta_{ab} r_a^i r_b^j}, \quad \kappa_{ai} = \omega^{-\frac{1}{2} r_a^i}.$$ (4.15)

From these relations we see that for η_{ab} symmetric, the structure constants ε_{ij} and κ_{ai} are torsion free ($\varepsilon_{ij} = 1$ and $\kappa_{ai} = 1$). Note that in the $\{W_i; F_a\}$ basis, the generators of the NC algebra of the quintic do not commute in general; except for the two following special cases where they take remarkable forms:

(a) $\{F_a; \Phi_i\}$ basis which is recovered by choosing the structure constants as $\tau_i^{-1} \varepsilon_{ij} \tau_j = 1$; i.e,

$$\varepsilon_{ij} = \tau_i \tau_j^{-1}, \quad \kappa_{ai} = 1.$$ (4.16)

In this case, the matrix Ω_i is just the inverse of Γ_i; that is $\Omega_i = \Gamma_i^{-1}$ eq (4.12). (b) $\{F_a; Z_i\}$ basis obtained from the generic $\{F_a, W_i\}$ frame by requiring commuting Z_i and F_a operators. This is equivalent to setting $\kappa_{ai} \sigma_{ai} = 1$ which imply in turns,

$$\sigma_{ai} = \kappa_{ai}^{-1}, \quad \beta_{ij} = \tau_i^{-1} \varepsilon_{ij} \tau_j, \quad \Omega_i = \Gamma_i.$$ (4.17)

Since the two sets of matrix generators $\{Z_i\}$ and $\{F_a\}$ decouple completely, the NC quintic $A[Z_i; F_a]$ is then described by a trivial fibration as $A[Z_i; F_a] \equiv A[Z_i] \otimes A[F_a]$.

5 Fractional Branes

The realization of the NC quintic we have studied here above concerns only the regular points of the algebra, that is non singular ones. In this section, we want to complete this analysis by considering the representations for singular points. This is not only important for the study of fractional branes at singularities but also for answering the question regarding the nature of fractional branes on the NC quintic and more generally on NCCY hypersurfaces. To do so, we shall first determine the various sets $S_{(\mu)}$ of singular points of orbifolds of the quintic. Then we give the corresponding singular solutions. At first sight and as far as the full Z_5 geometric symmetry is concerned we have only one fixed point under the Z_5 actions namely $(z_1, z_2, z_3, z_4, 1) = (0, 0, 0, 0, 1)$. This point belongs however to the $\mathbb{C}P^4$ projective space; but does not belong to the quintic Q; no point of the quintic is then fixed by the full symmetry. This property is valid for all CY hypersurfaces; no point of complex n dimensional CY hypersurfaces $\mathcal{P}(z_1, \ldots, z_{n+2})$ is fixed under the full Z_{n+2} geometric invariance. We will therefore consider points of Q that are fixed under subgroups $G_{(a)}$ of Z_5. Then we describe the various fractional branes living at these singularities, the corresponding quiver diagrams and the massless chiral fields of the effective theory on the D branes. As there are several subgroups $G_{(a)}$ in Z_5, we shall fix our attention on two categories of subsymmetries; those isomorphic to Z_5; i.e $G_{[1]} \simeq Z_5$ and those isomorphic to \mathbb{Z}_2^3; i.e $G_{[2]} \simeq \mathbb{Z}_2^3$. The CY charges will be taken as in eqs (4.12). Generalization to subgroups of Z_{n+2}, though tedious, is a priori straightforward.
5.1 Fixed subspaces of $Q^{[\alpha]}$

We will consider first the spaces $S_{(a)}$ of fixed points under a generic \mathbb{Z}_5 factor of \mathbb{Z}_3^5. Then we examine the spaces $S_{(ab)}$ of fixed points under \mathbb{Z}_2^5 factors. To have an idea on how these spaces look like, it is interesting to think about the quintic homogeneous hypersurface eq(2.1) as a fiber bundle described by the following equation

$$P(z_1, \ldots, z_5) = \sum_{n=0}^{5} b_{n_1 \ldots n_5} z_1^{n_1} \ldots z_5^{n_5} = 0,$$

where $b_{n_1 \ldots n_5} = b_{n_1 \ldots n_5}(z_1, \ldots, z_5)$ are some given monomials in the z_1, \ldots, z_5 complex variables, with appropriate degrees. Let us give examples on how this works in practice.

5.1.1 $\mathbb{CP}^2 \bowtie S_1$ Fibration

A simple example for realizing fibrations of the quintic consists to rewrite $P(z_1, \ldots, z_5)$ as,

$$P(z_1, \ldots, z_5) = b_{00} + b_{11} z_1 z_2 + b_{50} z_1^5 + b_{05} z_2^5,$$

where the b_{mn} coefficients are holomorphic functions given by

$$b_{00}(z_3, z_4, z_5) = z_3^5 + z_4^5 + z_5^5, \quad b_{11}(z_3, z_4, z_5) = a_0 z_3 z_4 z_5,$$
$$b_{50}(z_3, z_4, z_5) = 1, \quad b_{05}(z_3, z_4, z_5) = 1.$$

The remaining others are equal to zero. Eqs(5.1,5.2) mean that the quintic may be viewed as a fibration space with base \mathbb{CP}^2 and fiber S_1 given by,

$$z_1^5 + z_2^5 + b_1 z_1 z_2 = 0.$$

This relation is invariant under the change $(z_1, z_2) \rightarrow (\omega z_1, \omega^{-1} z_2)$; that is under the \mathbb{Z}_5 subsymmetry of charges q_1^1; the B_1 base is not affected under this change. The symmetry of the S_1 fiber has one fixed point namely $(0,0)$ and so S_1 is singular at the origin $z_1 = z_2 = 0$. To see what eq(5.3) represents, note that from the z_1 and z_2 variables, one can build three invariant namely $u = z_1^5, v = z_2^5$ and $w = z_1 z_2$ having an A_4 singularity. In terms of the new variables, the equation of the S_1 complex curve reads as

$$u + v + b w = 0; \quad uv = w^5.$$

Therefore near the fixed point $z_1 = z_2 = 0$, the \mathbb{Z}_5 orbifold of the commutative quintic Q can be then viewed as given by the fiber bundle $\mathbb{CP}^2 \bowtie S_1$ with a vanishing two cycle at $z_1 = z_2 = 0$. Before going ahead, let us comment briefly the complex resolution of this kind of singularity and give its toric
geometry diagram representation as shown here below,

A₄ Singularity	uv = w⁵
Complex Resolution of A₄	uv = w⁵ + α₄w⁴ + α₃w³ + α₂w² + α₁w + α₀

Rules

i) White nodes such as are associated to each non compact C variables x and y

ii) Nodes such as are associated with blown up spheres with self intersection (−2)

iii) Each link ←→ represents intersecting spheres with a weight (1)

Quiver Diagrams

i) Quiver diagram for the resolution of A₂:

ii) Quiver diagram for the resolution of A₄

More details on this graphic representation of Kahler and complex resolution of ADE singularities as well as their applications in string compactifications may be found in [42, 45].

5.1.2 B ≪ S₁₂ Fibration

The second example we want to give corresponds to the fibration B ≪ F ≡ CP¹ ≪ S₁₂. In this case, the analogue of the above equations read for S₁₂ as follows:

P(z₁, ..., z₅) = b₀₀₀ + b₁₁₁ z₁z₂z₃ + b₅₀₀ z₁⁵ + b₀₅₀ z₂⁵ + b₀₀₅ z₃⁵, (5.6)

where the bₘₙₙ coefficients are as follows,

b₀₀₀(z₄, z₅) = z₄⁵ + z₅⁵, b₁₁₁(z₄, z₅) = a₀z₄z₅,

b₅₀₀(z₄, z₅) = 1, b₀₅₀(z₄, z₅) = 1, b₀₀₅(z₄, z₅) = 1, (5.7)

and all others are equal to zero. The equation of the singular fiber S₁₂ is given by z₅⁵ + z₂⁵ + z₃⁵ + b z₁z₂z₃ = 0; this is a complex surface which has one fixed fiber point at (0, 0, 0) under the change (z₁, z₂, z₃) → (ω²z₁, ω⁻¹z₂, ω⁻¹z₃) generating the Z₅ ⊗ Z₅ subsymmetry with charges (q₁, q₂). Note that this subsymmetry does not affect the B₁₂ base space. Now introducing the following four invariant

u₁ = z₁⁵, u₂ = z₂⁵, u₃ = z₃⁵ and t = z₁z₂z₃, one sees that they are related as

u₁u₂u₃ = t⁵; (5.8)

while the S₁₂ complex surface reads in terms of these invariants as u₁ + u₂ + u₃ + bt = 0. From this relation, one recognizes the two individual singularities associated with each factor of the Z₅ ⊗ Z₅ symmetry. These are given by the following A₄ eqs;

u₁u₂ = t⁵ / u₃, for u₃ ≠ 0,

u₁u₃ = t⁵ / u₂, for u₂ ≠ 0. (5.9)
Eq.(5.8) describes the case where both of the above singularities collapse; it has a nice description in terms of quiver diagrams.

Singularity	Equations
$u_1u_2u_3 = t^5$	

Complex Resolution

Rules	Equations
Same rules as in previous table.	$u_1u_2u_3 = t^5 + \alpha_4t^4 + \alpha_3t^3 + \alpha_2t^2 + \alpha_1t + \alpha_0$

Symmetries

The following symmetries are associated with the fixed points of the discrete symmetries reported above:

\[
\begin{align*}
Z_5 &: \quad z_1 \rightarrow \omega z_1, \quad z_3 \rightarrow \omega^{-1}z_3, \quad z_1z_3 \text{ is an invariant.} \\
Z_5 \otimes Z_5 &: \quad z_1 \rightarrow \omega^2 z_1, \quad z_2 \rightarrow \omega^{-1}z_2, \quad z_3 \rightarrow \omega^{-1}z_3, \\
Z_5 &: \quad z_1 \rightarrow \omega z_1, \quad z_2 \rightarrow \omega^{-1}z_2, \quad z_1z_2 \text{ is an invariant.}
\end{align*}
\]

Quiver Diagram

Here it is represented the three graphs associated to the resolution of the singularities of the discrete symmetries reported above.

Note that the $Z_5 \otimes Z_5$ symmetry has a total charge $q^1 + q^2 = (2, -1, -1, 0, 0)$, behaving then as the Z_5 diagonal symmetry. The remaining off diagonal factor has a total charge $q^1 - q^2 = (0, -1, 1, 0, 0)$.

5.1.3 Other Fibrations

Following the same method we have used for S_1 and S_{12}, we can work out the other $B_a \bowtie S_a$ and $B_{(ab)} \bowtie S_{(ab)}$ quintic fibrations associated with the natural subgroups of Z_5^2. Denoting the various invariants under the subgroups of Z_5^3 as $u = z_1^5$, $w_{ij} = z_i z_j$ and $t_{ijk} = z_i z_j z_k$, one can work out the different equations of the S_a and fibers $S_{(ab)}$: the basis B_a and $B_{(ab)}$ are respectively given by the \mathbb{CP}^2 and \mathbb{CP}^4 complex projective spaces. The results are collected in the table eq.(5.11).

Fibers	Equations
S_1	$u_1 + u_2 + b_1 w_{12} = 0$
	$u_1u_2 = u_{12}^5$.
S_2	$u_1 + u_3 + b_2 w_{13} = 0$
	$u_1u_3 = u_{13}^5$.
S_3	$u_1 + u_4 + b_3 w_{14} = 0$
	$u_1u_4 = u_{14}^5$.

Fibers	Equations
S_{12}	$u_1 + u_2 + u_3 + b t_{123} = 0$,
	$u_1u_2u_3 = t_{123}^5$.
S_{23}	$u_1 + u_3 + u_4 + b t_{134} = 0$,
	$u_1u_3u_4 = t_{134}^5$.
S_{13}	$u_1 + u_2 + u_4 + b t_{124} = 0$,
	$u_1u_2u_4 = t_{124}^5$.

Having these results at hand, we turn now to give some details by studying the fixed spaces under the orbifold subgroups Z_5 and Z_5^2. We first consider the orbifolds $Q^{[1]} \simeq R'/Z_5$ and then the Z_5^2 orbifolds $Q^{[2]} \simeq R''/Z_5^2$. These orbifolds correspond also to start from eq.(5.21) and choose either one of the three q_p^2 vector charges non vanishing say $q_1^2 = (1, -1, 0, 0, 0)$ while the two others $(q_2^2) = (q_3^2) = 0$; or two vector charges non vanishing while the third is zero such as for instance $q_1^2 = (1, -1, 0, 0, 0)$, $q_2^2 = (1, 0, -1, 0, 0)$ and $(q_3^2) = 0$.

\[(q_1^2) = 0.\]
5.2 Fractional Branes on $Q^{[1]}$

As there are three manifest Z_5 sub-symmetry factors in the orbifold group Z_5^3, each one generated by an operator F_a, one can write down three corresponding $B_a \triangleright S_a$ fibrations for the commutative quintic. The B_a spaces are the bases of the fiberation and the S_a's their fibers.

Example: $Q^{[1]} \simeq B_1 \triangleright S_1$

Consider the Z_5 subgroup generated by E_1 with q_i^1 charges taken as $q_i^1 = (1, -1, 0, 0, 0)$; the $B_1 \triangleright S_1$ fibration of the quintic is just that given by eqs (5.1, 5.3). Since we are working in the coordinate patch $z_5 = 1$, the B_1 base is a patch of \mathbb{CP}^2; that is $B_1 \sim \mathbb{C}^2$ parameterized by the z_3 and z_4 complex coordinates. The codimension two fiber S_1 is given by the following complex curve with an A_4 singularity,

$$u + v + \frac{v^5}{u} = 0. \quad (5.12)$$

Results

The $B_a \triangleright S_a$ fibrations of the quintic are completely determined by the q_i^a CY charges. The B_a base manifolds are parameterized by those holomorphic coordinates z_i with $q_i^a = 0$ while the S_a fibers are parameterized by those complex variables with non zero q_i^a charges with fixed points at the origin. For the q_i^a's taken as in eq (5.11), we have the following results collected in the table eq (5.13).

Generators F_a	F_1	F_2	F_3
Fixed Points	$(0, 0, z_3, z_4, z_5)$	$(0, z_2, 0, z_4, z_5)$	$(0, z_2, z_3, 0, z_5)$
$B_a = \mathbb{CP}^2$	$B_{12} = \{z_3, z_4, z_5\}$	$B_{23} = \{z_2, z_4, z_3\}$	$B_{31} = \{z_2, z_3, z_5\}$
S_a Fibers	$u_1 + w_{12} + \frac{w_{12}}{w_{13}} = 0$	$u_1 + w_{13} + \frac{w_{13}}{w_{12}} = 0$	$u_1 + w_{14} + \frac{w_{14}}{w_{13}} = 0$
	$u_1 = z_5^1, u_2 = z_5^2$,	$u_1 = z_5^5, u_3 = z_5^3$,	$u_1 = z_5^1, u_4 = z_5^5$,
	$u_{13} = z_1 z_3$.	$u_{12} = z_1 z_2$.	$w_{14} = z_1 z_4$.

Having the above features in mind, the singular representations of the NC quintic may be obtained by starting from the regular representation eqs (1.14) and taking the appropriate limits. For the S_1 singular space for instance, the field moduli are obtained from eqs (1.14) by setting $q_i^1 = q_i^2 = 0$ and taking the zero limit of z_1 and z_2. We have for the fiber S_1,

$$\Phi_1 = (Q \otimes I_{id} \otimes I_{id}) \lim_{z_1 \to 0} z_1, \quad \Phi_2 = (Q^{-1} \otimes I_{id} \otimes I_{id}) \lim_{z_1 \to 0} z_2, \quad F_1 = P \otimes Q^{n_{12}} \otimes Q^{n_{13}}, \quad (5.14)$$

and for B_1 base,

$$\Phi_3 = z_3 (I_{id} \otimes I_{id} \otimes I_{id}), \quad \Phi_4 = z_4 (I_{id} \otimes I_{id} \otimes I_{id}), \quad \Phi_5 = z_5 (I_{id} \otimes I_{id} \otimes I_{id}),$$

$$F_2 = Q^{n_{21}} \otimes P \otimes Q^{n_{23}}, \quad F_3 = Q^{n_{31}} \otimes Q^{n_{32}} \otimes P. \quad (5.15)$$

As one sees, once the limit to the singular point is taken, the non vanishing matrix field moduli Φ_i, $i = 3, 4, 5$ are proportional to the identity $(I_{id} \otimes I_{id} \otimes I_{id}) = I_{D(G)}$ of the group representation $D(G)$; i.e. $\Phi_i = z_i \otimes I_{D(G)}$. This is a very remarkable feature at singularity and has algebraic and brane interpretations.

Fractional branes on R'/Z_5

To fix the ideas, let start from the $D9$ brane of type IIB string wrapped on the quintic Q. Let $(x^\mu; y_1, y_2, y_3)$ denote the $D9$ coordinates with $x^\mu = (x^0, x^1, x^2, x^3)$ being the longitudinal non compact variables (representing a $D3$ brane embedded in $D9$) and the y_i's the compact transverse
complex coordinates of the wrapped $D9$ branes ($D9 \sim D3 \times Q$). In the coordinate patch $z_5 = z_4 = 1$, the y coordinates may be imagined as related to those of the quintic as,

$$y_1 = z_1, \quad y_2 = z_2, \quad y_3 = \frac{-a_0 z_1 z_2 z_3}{(2 + z_1^5 + z_2^5 + z_3^5)}.$$

(5.16)

In the case of $Q^{[1]}$ with discrete torsion, the wrapped $D9$ becomes a NC brane generated by the algebra eqs(4.11). At the fixed point of $Q^{[1]}$, a real two cycle shrinks to zero and the original NC wrapped $D9$ reduces to a NC wrapped $D7$ described by;

$$\Phi_3 = z_3 I_{D(Z_5)}, \quad \Phi_4 = z_4 I_{D(Z_5)}, \quad \Phi_5 = z_5 I_{D(Z_5)},$$

$$F_1 = P, \quad F_2 = Q^{21}, \quad F_3 = Q^{31}.$$

(5.17)

The singular modes at the orbifold point are carried by the Q operator and its inverse Q^{-1} as shown on the following eqs.

$$\Phi_1 = Q \lim_{z_1 \to 0} z_1, \quad \Phi_2 = Q^{-1} \lim_{z_2 \to 0} z_2.$$

(5.18)

However due to the complete reducibility property of $I_{D(Z_5)}$ namely $I_{D(Z_5)} = \sum_{n=1}^{5} \Pi_n$, eqs(5.17) describe in fact a set of five commuting Euclidean wrapped $D7$ branes parameterized as

$$\Phi_{3,n} = z_3 \Pi_n, \quad \Phi_{4,n} = z_4 \Pi_n, \quad \Phi_{5} = z_{5,n} \Pi_n.$$

(5.19)

Therefore at the orbifold point of $\mathcal{R}'/\mathbb{Z}_5$, we have five fractional wrapped $D7$ branes. Moreover since near the singularity, Φ_1 and Φ_2 split as

$$\Phi_1 = \left(\lim_{z_1 \to 0} \sum_{n=1}^{5} a_n^+ \right), \quad \Phi_2 = \left(\lim_{z_2 \to 0} \sum_{n=1}^{5} a_n^- \right),$$

(5.20)

there are also massless modes $\phi_{1,n} \sim a_n^+$ and $\phi_{2,n} \sim a_n^-$ living on the wrapped $D7$ branes. They are propagating modes traveling between $\Phi_{3,n}$ and $\Phi_{4,n} \Pi_n$ fractional branes. The quiver diagram representing the fractional D branes is also a Δ_5 pentagon with wrapped $D7$ sitting at the vertices and massless modes represented by the links. A similar analysis to that we have developed above may be also written down for the $\mathbb{B}_2 \bowtie S_2$ and $\mathbb{B}_3 \bowtie S_3$ quintic fibrations. The five links joining the neighboring π_n nodes describe massless fields of the effective field theory on the $D4$ branes at singularity. For each fibration, there are (2×5) massless complex fields which we denote as $\chi_{a,k_a} \sim a_{k_a}^+$ and $\psi_{a,k_a} \sim a_{k_a}^-$. In particular at $z_1 = z_2 = z_3 = 0$, we have therefore triplets of massless fields as shown on table (5.21) where we give the fields spectrum on the fractional wrapped $D7$ branes on \mathbb{B}_a at the various singularities.

Fields Spectrum

Chiral fields \rightarrow	Massless complex fields	Number of massless fields
Singularity S_1	$\chi_{1,k_1}, \psi_{1,k_1}$	2×5
Singularity S_2	$\chi_{2,k_2}, \psi_{2,k_2}$	2×5
Singularity S_3	$\chi_{3,k_3}, \psi_{3,k_3}$	2×5
Locus $z_1 = 0$	$\chi_{1,k_1}, \chi_{2,k_2}, \chi_{3,k_3}$	3×5

(5.21)

Such analysis can also be extended to the case where the orbifold is realized as $Q^{[2]} \sim \mathcal{R}''/\mathbb{Z}_5$.

5.3 Fractional Branes on $Q^{[2]}$

There are three manifest fibrations of the commutative quintic orbifold $Q^{[2]}$ depending on the nature of the \mathbb{Z}_5^2 subgroups of \mathbb{Z}_5^3 one is considering. Let us describe them briefly here below.

Fibration $Q^{[2]} \simeq CP^1 \bowtie S_{12}$: Here the \mathbb{Z}_5^2 orbifold sub symmetry of the \mathbb{Z}_5^2 group has the vector charges $q^1_i = (1, -1, 0, 0, 0)$ and $q^2_i = (1, 0, -1, 0, 0)$. The q^3_i vector charge of the third factor may be thought of as being set to zero. As such the B_{12} basis of the fibration is parameterized by the z_4 and z_5 coordinates while the codimension one fiber S_{12} is given by the following complex surface with an A_4 singularity,

$$u + v + t + \frac{\epsilon^5}{uv} = 0. \quad (5.22)$$

Like for the $B_u \bowtie S_u$ fibrations, the B_{ab} bases are parameterized by those holomorphic coordinates z_i with $q^a_i = 0$ and the S_{ab} fibers by the complex variables with non zero q^a_i charges with fixed points at the origin.

Fibration $Q^{[2]} \simeq CP^1 \bowtie S_{23}$: In this fibration the \mathbb{Z}_5^2 orbifold subgroup has the following vector charges $q^1_i = (1, 0, -1, 0, 0)$ and $q^2_i = (1, 0, 0, -1, 0)$. The B_{23} basis and the S_{23} fiber of the quintic are respectively parameterized by (z_2, z_5) and (z_1, z_3, z_4). Locally $B_{23} \sim \mathbb{C}$ while the S_{23} singular surface with an A_4 singularity at the origin.

Fibration $Q^{[2]} \simeq CP^1 \bowtie S_{31}$: In this case the CY vector charges of the \mathbb{Z}_5^2 orbifold subgroup are given by $q^1_i = (1, -1, 0, 0, 0)$ and $q^2_i = (1, 0, 0, -1, 0)$. The base is parameterized by z_3 and z_5 coordinates and the S_{31} fiber has a singularity at $z_1 = z_2 = z_4 = 0$. Its complex equation $u_1 + u_2 + t + \frac{\epsilon^5}{u_1u_2} = 0$ has an A_4 singularity at $u_1 = u_2 = t = 0$.

The main features of the various $B_{(ab)} \bowtie S_{(ab)}$ fibrations are collected in the following table.

Fix Points	$F_1 \otimes F_2$	$F_2 \otimes F_3$	$F_3 \otimes F_1$
$(0,0,0,z_4,z_5)$	$(0,z_2,0,0,z_5)$	$(0,0,z_3,0,z_5)$	

Fibrations	B_{ab}	S_{ab}	Fields
$u_1 + u_2 + t + \frac{\epsilon^5}{u_1u_2} = 0$	$CP^1 = \{z_4, z_5\}$	$u_1 + u_3 + v + \frac{\epsilon^5}{u_1u_2} = 0$	$u_1 + u_4 + w + \frac{\epsilon^5}{u_1u_4} = 0$
$u_1 = z_5^1, u_2 = z_2^2$	$u_1 = z_1^3, u_3 = z_3^3$	$u_1 = z_5^1, u_4 = z_2^5$	$w = z_1z_2z_4$
$t = z_1z_2z_3$	$v = z_1z_3z_4$	$v = z_1z_3z_4$	$v = z_1z_3z_4$

The singular representations of NC $Q^{nc[2]}$ may be obtained by starting from the regular representation eq.(4.11) and taking the appropriate limits. For the S_{12} singular space, the field moduli are associated with $q^1_i = q^2_i = 0$ and taking z_1, z_2 and z_3 to zero. We have for the S_{12} fiber,

$$\Phi_1 = (Q \otimes I_{id} \otimes I_{id}) \lim_{z_1 \to 0} z_1, \quad \Phi_2 = (Q^{-1} \otimes I_{id} \otimes I_{id}) \lim_{z_2 \to 0} z_2, \quad \Phi_3 = (I_{id} \otimes Q^{-1} \otimes I_{id}) \lim_{z_3 \to 0} z_3, \quad F_1 = P \otimes Q^{n_{12}} \otimes Q^{n_{13}}, \quad F_2 = Q^{n_{23}} \otimes P \otimes Q^{n_{23}}, \quad (5.24)$$

and for B_{12},

$$\Phi_4 = z_4 \otimes I_{D(G)}, \quad \Phi_5 = z_5 \otimes I_{D(G)}, \quad F_3 = Q^{n_{31}} \otimes Q^{n_{32}} \otimes P. \quad (5.25)$$

Once the limit to the singular point is taken, the non vanishing matrix moduli $\Phi_i, i = 4, 5$, are proportional to the identity $I_{D(G)}$ of $D(G)$. As before this property reflects just the existence of fractional D branes at the orbifold point $z_1 = z_2 = z_3 = 0$. To illustrate the idea, let us reconsider the example of
the D9 brane of type IIB string wrapped on \(Q^{[2]} \); with local coordinates \((x^\mu; y_1, ..., y_3)\): the \(x^\mu \)'s being the longitudinal non compact coordinates of the D3 part of D9, while the \(y \) compact coordinates are as in eqs (5.10). In presence of discrete torsion, the wrapped D9 on \(Q^{[2]} \) becomes a NC brane generated by the algebra eqs (4.4) where the \(q^a \) charges are as indicted above. At the fixed points of \(Q^{[2]} \) where a real four cycle shrinks to zero, the NC wrapped D9 give rise to twenty five fractional wrapped D5 branes on \(B_{12} \sim \mathbb{CP}^1 \). The transverse coordinates of these fractional D5 branes are given by:

\[
\Phi_{4,n,m} = x_4 \Pi_{n,m}, \quad \Phi_{5,n,m} = x_5 \Pi_{n,m},
\]

where \(\Pi_{n,m} \) are the projectors on the \(D (Z_5^2) \) representation states. The singular modes at the orbifold point are carried by the \(Q \otimes Q, Q^{-1} \otimes I_{\mu} \) and \(I_{\mu} \otimes Q^{-1} \) operators of \(D (Z_5^2) \). Moreover since near the singularity the \(\Phi_1, \Phi_2 \) and \(\Phi_3 \) operators may also be split as

\[
\Phi_1 = \lim_{z_1 \to 0} (x_1) \sum_{n_1,n_2=1}^5 A_{n_1}^+ A_{n_2}^+ A_{1,n}, \quad \Phi_2 = \lim_{z_2 \to 0} (x_2) \sum_{n_1,n_2=1}^5 A_{n_1}^- \Pi_{n_2}, \quad \Phi_3 = \lim_{z_3 \to 0} (x_3) \sum_{n_1,n_2=1}^5 \Pi_{n_1} A_{n_2}^-, \quad (5.27)
\]

one gets \(3 \times 25 \) massless modes \(\phi_{1;n_1,n_2} \sim A_{n_1}^+ A_{n_2}^+ \), \(\phi_{2;n_1,n_2} \sim A_{n_1}^- \Pi_{n_2} \), and \(\phi_{3;n_1,n_2} \sim \Pi_{n_1} A_{n_2}^- \) living on the D5 branes wrapping \(\mathbb{CP}^1 \). They are propagators between the \(\Phi_{1;n_1,n_2} \) and \(\Phi_{i,n_1 \pm 1, n_2 \pm 1} \) fractional D5 branes. The quiver diagram representing the fractional D5 branes wrapping \(\mathbb{CP}^1 \) is a \(\Delta_5 \times \Delta_5 \) polygon with D5 branes sitting at the vertices and the \(\phi_{a;n_1,n_2} \) massless modes propagating along the links; see figure 4.

![Figure 4: Here is represented the 25 vertices of fractional D branes quiver at \(z_1 = z_2 = z_3 = 0 \) singularity of \(Z^2 \) orbifold subsymmetry. Links between vertices represent massless modes of wrapped D5 branes on \(\mathbb{CP}^1 \)](image)

An analogous analysis may be also made for the \(B_{23} \cong S_{23} \) and \(B_{31} \cong S_{31} \) fibrations. As the results one gets are similar, we will omit this part. In the end of this discussion, let us give the results for orbifold of \(H_n \).

Extension: Here we give the results for generic complex \(n \) dimension hypersurface \(z_1^{n+2} + ... + z_{n+2}^{n+2} + a_0 \prod_{i=1}^{n+2} z_i = 0 \) with orbifold group \(Z_{n+2}^\bullet \). In this case the torsion matrix \(\eta_{ab} = \eta_{[ab]} + \eta_{[ab]} \) has to belong to \(SL(n, \mathbb{Z}) \) where the antisymmetric part \(\eta_{[ab]} \) is non zero in presence of discrete torsion. Geometrically, the corresponding NC geometry is an elliptic fibration with base \(H_n \) and fiber a real \((n + 2)\) dimensional Fuzzy torus \(T_{\beta_{1,j}}^{n+2} \). The \(\beta_{ij} \) cocycles are as

\[
\beta_{ij} = \exp \left(- \frac{2\pi}{n+2} \eta_{[ab]} q_i^a q_j^b \right),
\]

(5.28)
where now the n vectors $q^i = (q^i_a)$ have $(n+2)$ integer entries and satisfy the CY condition $\sum_{i=1}^{n+2} q^i_a = 0$. These charge vectors can be chosen as,

\[
\begin{align*}
Z_{n+2} : & \quad q^1 = (1, -1, 0, 0, \ldots, 0, 0), \\
Z_{n+2} : & \quad q^2 = (1, 0, -1, 0, \ldots, 0, 0), \\
& \quad \ldots \\
Z_{n+2} : & \quad q^{n-1} = (1, 0, 0, 0, \ldots, -1, 0), \\
Z_{n+2} : & \quad q^n = (1, 0, 0, 0, \ldots, 0, -1).
\end{align*}
\]

Fractional D-branes at orbifold points depend on the orbifold subgroups $G[\alpha]$ of Z_{n+2} one is considering. Since there are several subgroups in Z_{n+2}, we have then several possible representations. The natural ones are those associated with the manifest factors $G[\alpha] = Z_{n+2}$ with $1 \leq \alpha \leq (n-1)$. Let us give some comments regarding this point, but forget for a while about string applications by letting n to be a generic positive integer greater than one and suppose that we have a p-brane ($p > n$) wrapping the H_n compact manifold.

(a) Fractional branes on H_n/Z_{n+2} Since there are n manifest Z_{n+2} subsymmetries in Z_{n+2}, we have n classes of fractional $(p-2)$-branes at the n kinds of singularities $z_1 = z_{a+1} = 0$. Extending the analysis we have made for the quintic to generic H_n’s by thinking about H_n/Z_{n+2} as a fiber bundle $B_3 \cong S_n$ of base $\mathbb{C}P^{n-1}$ and a fiber S_n given by the complex curve $u + v + \frac{(n+2)}{u} = 0$ with an A_{n-1} singularity at the origin $u = v = 0$, we will have d_1 fractional branes at each orbifold point $(d_1 = \dim D (Z_{n+2}))$ and $2n$ massless modes living on the $(p-2)$ branes. Points in this NC geometry are represented by polygons Δ_{n+2} with $(n+2)$ vertices and $(n+2)$ edges.

(b) Fractional branes on H_n/Z_{n+2} Before giving the result concerning H_n/Z_{n+2}, note that the action of Z_{n+2} on the z_i variables is additive. If one performs two successive Z_{n+2} actions with charges, say q^i and q^j, then the total Z_{n+2} action has the charge $q^i_a + q^j_a$.

\[
\begin{align*}
Z_{n+2} : & \quad z_i \longrightarrow z_i \omega^{q^i}, \\
Z_{n+2} : & \quad z_i \longrightarrow z_i \omega^{q^j}.
\end{align*}
\]

From these relations, one sees that this Z_{n+2} action is equivalent to a Z_{n+2} diagonal sub symmetry with $q^i_a + q^j_a$ charge. The remaining $q^j_a - q^i_a$ charge is associated with the off diagonal sub symmetry which play no role here. Using eqs (5.30), we get,

\[
Z^{n+2}_2 : \quad q^1 + q^2 = (2, -1, -1, 0, \ldots, 0, 0, 0).
\]

The fixed points of (5.31) are at $z_1 = z_2 = z_3 = 0$; but for generic $q^i_a + q^j_a$ vector charge fixed points are at $z_1 = z_{a+1} = z_{b+1} = 0$. This property shows that the H_n^{nc} geometries have the following features: (i) the $B_{ab} \cong S_{ab}$ realizations of H_n^{nc} have a $\mathbb{C}P^{n-2}$ base and a fiber S_{ab} described by the complex surface $u + v + t + \frac{a+b+1}{u} = 0$ with an A_{n-1} singularity at the origin $u = v = t = 0$. (ii) there are $\frac{(n-1)}{2}$ possible fibrations for H_n/Z_{n+2} and $\frac{n(n-1)}{2}$ classes of fractional $(p-4)$-branes at the $z_1 = z_{a+1} = z_{b+1} = 0$ singularities. Each class contains d_1d_2 fractional $D (p-4)$-branes and $2 (d_1d_2 - d_1 - d_2)$ massless modes living on thses branes ($d_1 = \dim D (Z_{n+2})$). Points in this NC geometry are given by the crossed product of two polygons $\Delta_{d_1} \times \Delta_{d_2}$.

(c) Fractional branes on H_n/Z_{n+2} Extending the above reasoning to H_n/Z_{n+2}, the orbifold symmetry Z_{n+2} with charge vectors q^1, \ldots, q^{n}, acts in practice through ist diagonal Z_{n+2} subgroup with a CY charge $Q_{(a_1, \ldots, a_k)} = q^{a_1} + \ldots + q^{a_k}$; it has fixed points located at $z_1 = z_{a_1+1} = \ldots = z_{a_k+1} = 0$.

For the example of the leading k factors \mathbb{Z}_{n+2}^k of \mathbb{Z}_{n+2}^n, the vector charge $Q_{(1,...,k)}$ of \mathbb{Z}_{n+2}^k is given by:

$$Z_{n+2}^k: \quad Q_{(1,...,k)} = (k, -1, -1, ..., -1, 0, ..., 0); \quad (5.32)$$

where the first $(k + 1)$ entries are non zero and all remaining ones are null. A simple counting of the degrees of freedom shows that there are $\frac{n!}{(n-k)k!}$ possible \mathbb{Z}_{n+2}^k subgroups in \mathbb{Z}_{n+2}^n. The $B_{(a_1,...,a_k)}$ $d\times S_{(a_1,...,a_k)}$ representations of the manifold $\mathcal{H}_{n}/\mathbb{Z}_{n+2}^k$ have a $\mathbb{C}P^{n-k}$ base and a fiber $S_{(a_1,...,a_k)}$ given by the complex dimension k hypersurface $u_1 + ... + u_k + t + \frac{t^{n+2}}{\varepsilon} = 0$ with $\varepsilon = \prod_{j=1}^k u_j$ and an A_{n-k} singularity at $u_1 = ... = u_k = t = 0$. Together with these realizations, there are $\frac{n!}{(n-k)k!}$ classes of fractional $D(p-2k)$-branes at the $u_1 = ... = u_k = t = 0$ singularities. Each class contains $\prod_{j=1}^k d_j$ fractional $(p-2k)$-branes and $k \prod_{j=1}^k d_j - \sum_{i=1}^k \prod_{j \neq i} d_i$ massless modes living on these.

6 Conclusion

Using results on type II string compactification on CY orbifolds and the algebraic geometry method of Berenstein and Leigh, we have developed the study fractional D branes on generic complex n dimension NC orbifolds of CY hypersurfaces \mathcal{H}_n. This is an explicit study which give the general solutions for NC geometry and complete by the way special results obtained previously in [2] [21]. It also allows a more insight in NC geometry induced by discrete torsion and recovers as a particular case stringy constructions in connection with orbifolds of $D = 4$ SYM theory embedded in type II string compactifications on local CY orbifolds with discrete torsion [33]. The general solutions we have obtained have geometric and algebraic interpretations and can moreover be viewed as an explicit verification of Adams and Fabinger conjecture regarding emergent dimensions considered recently in [36].

Geometrically, we have shown that the NC orbifolds with discrete torsion are special elliptic fiber bundles on \mathcal{H}_n and fuzzy torii as fibers. The latter resolve singularities and lead to a fractionalisation of D branes due to the complete reducibility property of the representations of the orbifold group at singularities. In the large n limit our analysis extends naturally: the discrete \mathbb{Z}_{n+2} group factors tends to $U(1)$ and the original Dp branes are mapped to $Dp+2$ ones in accord with the prediction of [40]; but also with the explicit computation made in [2] [21]. In the continuous limit the solutions are quite similar; rational torii fibers considered in the present study are replaced in the continuum by irrational ones; for details see [24] [33].

Algebraically, the general solutions we have derived in this paper offers, amongst others, a remarkable classification of NC orbifolds. This classification is completely characterized by the following: (i) the q_i^a vector charges of the orbifold group \mathbb{Z}_{n+2}^n with $n > 1$ and (ii) a $n \times n$ matrix $\eta_{ab} = \eta_{(ab)} + \eta_{[ab]}$ of the group $SL(n,Z)$ defining the various possible orbifolds. Discrete torsion exists whenever the $\eta_{[ab]}$ antisymmetric part is non zero. In addition to the fact that they go beyond the known ones in literature, our solutions exhibit manifestly the discrete torsion dependence embodied by $\eta_{[ab]}$ and full orbifold geometric invariance carried by the q_i^a’s. In this regards it is worthwhile to recall that the β_{ij} cocycles appearing in $Z_i Z_j = \beta_{ij} Z_j Z_i$ NC geometry relations read, in terms of q_i^a charges and the matrix $\eta_{ab} = \beta_{ij} = \exp i \frac{2\pi}{\eta_{ab} q_i^a q_j^b}$. Supersymmetric field theoretic aspects of this construction seems to be linked to deformations by $\mathcal{N} = 1$ adjoint matter superpotentials; progress in this issue will be considered in a future occasion.

Acknowledgement 1 I am grateful to Julius Wess for kind hospitality at Munich University where part of this work has been done. I thank A.Belhaj, M.Bennai and E.M Sahraoui for earlier collaborations on this subject. This work is supported by Protars III, CNRST, Rabat, Morocco.
References

[1] David Berenstein, Vishnu Jejjala, Robert G. Leigh, D-branes on Singularities: New Quivers from Old, Phys. Rev. D64 (2001) 046011, hep-th/0012050.

[2] David Berenstein, Robert G. Leigh, Phys. Lett. B499 (2001), hep-th/0009209.

[3] Matthias Klein, Raul Rabadan, $Z_N \times Z_M$ orientifolds with and without discrete torsion, JHEP 0010 (2000) 049, hep-th/0008173.

[4] Eric R. Sharpe, Recent Developments in Discrete Torsion, Phys. Lett. B498 (2001) 104-110, hep-th/0008191.

[5] Paul S. Aspinwall, M. Ronen Plesser, D-branes, Discrete Torsion and the McKay Correspondence, JHEP 0102 (2001) 009, hep-th/0009042.

[6] Paul S. Aspinwall, A Note on the Equivalence of Vafa’s and Douglas’s Picture of Discrete Torsion, JHEP 0012 (2000) 029, hep-th/0009045.

[7] Keshav Dasgupta, Seungjoon Hyun, Kyungho Oh, Radu Tatar, Conifolds with Discrete Torsion and NCG, JHEP 0009 (2000) 043, hep-th/0008091.

[8] M.R Douglas, D-branes and Discrete torsion, hep-th/9807235.

[9] M.R Douglas and B.Fiol, D-branes and Discrete torsion, hep-th/9903031.

[10] D.Berenstein, R.G. Leigh, Discrete torsion and Duality, JHEP 01 (2000) 038, hep-th/0001055.

[11] A. Connes, M.R. Douglas et A. Schwarz, JHEP 9802, 003 (1998), hep-th/9711162.

[12] N. Seiberg and E. Witten, JHEP 9909(1999) 032, hep-th/990814.

[13] David J. Gross, Nikita A. Nekrasov, Solitons in NC Gauge Theory, 0103 (2001) 044 hep-th/0010090.

[14] I. Benkaddour, M. Bennai, E. Diaf and H. Saidi CQG 17(2000)1765.

[15] A. Belhaj, M. Hssaini, E.M.Sahraoui, E. H. Saidi, Class. Quant. Grav. 18(2001) 2339, hep-th/0007137.

[16] N. Nekrasov and A. Schwarz, Commun Math. Phys 198(1998) 689-703, hep-th/9802068.

[17] D.Berenstein, R.G. Leigh, Resolution of Stringy Singularities by NCAs, JHEP 0106 (2001) 030, hep-th/0105229.

[18] M. Bertolini, P. Di Vecchia, M. Frau, A. Lerda, R. Marotta, N=2 Gauge theories on systems of fractional D3/D7 branes, Nucl. Phys. B621 (2002) 157-178, hep-th/010705.

[19] M. Cvetic, G.W. Gibbons, James T. Liu, H. Lu, C.N. Pope, A New Fractional D2-brane, G_2 Holonomy and T-duality, hep-th/0009045.

[20] Tadashi Takayanagi, Holomorphic Tachyons and Fractional D-branes, Nucl. Phys. B603 (2001) 259-285, hep-th/0103021.

[21] Subir Mukhopadhyay, Koushik Ray, Fractional Branes on a Non-compact Orbifold, JHEP 0107 (2001) 007, hep-th/0102146.
[22] M. Frau, A. Liccardo, R. Musto, The Geometry of Fractional Branes, Nucl.Phys. B602 (2001) 39-60, hep-th/0012035.

[23] M. Billo’, L. Gallot, A. Liccardo, Fractional branes on ALE orbifolds, the proceedings of the RTN meeting “The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions”, (Corfu, September 2001), hep-th/0112190.

[24] A. Belhaj, E.H. Saidi, On NCCY Hypersurfaces, hep-th/0108143, Phys.Lett. B523 (2001) 191-198.

[25] I. Bars, H. Kajiura, Y. Matsuo, T. Takayanagi, Tachyon Condensation on NC Torus, Phys.Rev. D63 (2001) 086001, hep-th/0010101.

[26] B. R. Greene, C. I. Lazaroiu, P. Yi, D-particles on T^4/Z_n orbifolds, hep-th/9807040, Nucl.Phys.B539 (1999) 135.

[27] E. M. Sahraoui, E.H. Saidi, Solitons in large NC Class, Quant.Grav. 18 (2001) 3339, hep-th/0012259.

[28] E. M. Sahraoui, E.H. Saidi, D-branes on NC Orbifolds, JHEP 0205 (2002) 063, hep-th/0105188.

[29] Julius Wess and J Bagger, Supersymmetry and Supergravity, Princeton Univ. Press, (1983).

[30] Juan M. Maldacena, The Large N Limit of Superconformal Field Theories and Supergravity, Adv.Theor.Math.Phys. 2 (1998) 231-252; Int.J.Theor.Phys. 38 (1999) 1113-1133, hep-th/9711200.

[31] E. Witten, Multi-Trace Operators, AdS/CFT Correspondence, hep-th/0112258.

[32] V. Aharony, S.S. Gubser, J. Maldacena, H. Ooguri, Y. Oz, Large N Field Theories, String Theory and Gravity, Phys.Rept. 323 (2000) 183-386, hep-th/9905111.

[33] M. Bennai, E.H. Saidi, NCCY in Toric Varieties with NC fibration, Phys.Lett. B550 (2002) 108-116.

[34] S. Gukov, C. Vafa, E. Witten, CFT’s From CY4s, Nucl.Phys. B584 (2000) 69-108, hep-th/9906070.

[35] K. Hori, H.Ooguri, C. Vafa, Non-Abelian Conifold Transitions and N=4 Dualities in 3D, Nucl.Phys. B504 (1997) 147-174, hep-th/9705220.

[36] Julius Wess, Proc of Workshop on High Energy Physics 2 (2000) 1-11, Rabat University.

[37] Philip Candelas, Eugene Perevalov, Govindan Rajesh, Toric Geometry and Enhanced Gauge Symmetry of F-Theory/Heterotic Vacua, Nucl.Phys. B507 (1997) 445-474, hep-th/9704097.

[38] A. Lawrence, N. Nekrasov, C. Vafa, On CFT4, Nucl.Phys. B533 (1998) 199-209, hep-th/9803015.

[39] A. Belhaj, E.H. Saidi, Hyperkahler Singularities in Superstrings Compactification and N=4 CFT2, Class.Quant.Grav. 18 (2001) 57-82, hep-th/0002205.

[40] B. Jurco, L. Möller, S. Schraml, P. Schupp, J. Wess, Eur.Phys.J. C21 (2001) 383-388, hep-th/0104153.

[41] J. Madore, S. Schraml, P. Schupp, J. Wess, Gauge Theory on NC Spaces, Eur.Phys.J. C16 (2000) 161-167, hep-th/0001203.

[42] S. Katz, D.R. Morrison, M. R. Plesser, Enhanced Gauge Symmetry in Type II String Theory, Nucl.Phys. B477 (1996) 105-140, hep-th/9601108.
[43] S.Katz, P.Mayr, C.Vafa, Mirror symmetry and Exact Solution of 4D N=2 Gauge Theories I, Adv.Theor.Math.Phys. 1 (1998) 53-114, Adv.Theor.Math.Phys. 1 (1998) 53-114.

[44] N.C.Leung, C.Vafa, Branes and Toric Geometry, Adv.Theor.Math.Phys.2 (1998) 91-118, hep-th/9711013

[45] A. Belhaj, A. E. Fallah , E. H, Saidi, CQG 17 (2000)515-532.

[46] A. Adams, M. Fabinger, Deconstructing NC with a Giant Fuzzy Moose, JHEP 0204 (2002) 006.

[47] Nima Arkani-Hamed, Andrew G. Cohen, Howard Georgi, (De)Constructing Dimensions, Phys.Rev.Lett. 86 (2001) 4757-4761.

[48] A.El Rhalami, E.M.Sahraoui, E.H.Saidi, NC Branes,Hierarchies in QHFs, JHEP 0205:004,2002.

[49] A.El Rhalami, E.H. Saidi, NC Effective gauge model for FQH states, JHEP 0210:039,2002.