Damped jump-telegraph processes

Nikita Ratanov

Universidad del Rosario, Cl. 12c, No. 4-69, Bogotá, Colombia

Abstract

We study a one-dimensional Markov modulated random walk with jumps. It is assumed that amplitudes of jumps as well as a chosen velocity regime are random and depend on a time spent by the process at a previous state of the underlying Markov process.

Equations for the distribution and equations for its moments are derived. We characterise the martingale distributions in terms of observable proportions between jump and velocity regimes.

Keywords: inhomogeneous jump-telegraph process, Volterra equation, martingale measure

2000 MSC: primary 60J27; secondary 60J75, 60K99

1. Introduction

Telegraph processes with different switchings and velocity regimes are studied recently in connection with possibility of different applications such as, for instance, queuing theory (see Zacks (2004), Stadje and Zacks (2004)) and mathematical biology (see Hadeler (1999)). Special attention is devoted to financial applications (see Ratanov (2007), López and Ratanov (2012)). In the latter case, an arbitrage reasoning demands the presence of jumps.

The motions with deterministic jumps are studied in detail, see the formal expressions of the transition densities in Ratanov (2007), Di Crescenzo and Martinucci (2013). Such a model is developed for the option pricing problem, which is based on the risk-neutral approach, see Ratanov (2007). If the jump amplitudes are random, the case is less known. The telegraph processes of this type are studied earlier only under the assumption of mutual independence of jump values and jump amplitudes, see Stadje and Zacks (2004) and Di Crescenzo and Martinucci (2013). Similar setting were used for the purposes of financial applications, López and Ratanov (2012).

We present here a jump-telegraph process when an amplitude of the next jump depends on the (random) time spent by the process at the previous state. This approach is of special interest for the economical and the financial applications, everywhere when the comportment of process relates with friction and memory.

Assume that the particle moves with random (and variable) velocities performing jumps of random amplitude whenever the velocity is changed. More precisely, the actual velocity regime and the amplitude of the next jump are defined as (alternated) functions of the time spent by the particle at the previous state. We assume also that the time intervals between
the subsequent state changes have sufficiently arbitrary alternated distributions. It creates an effect of damping process where a friction is generated by means of memory.

This setting generalises processes which were used before for market modelling by Ratanov (2007) and López and Ratanov (2012).

The underlying processes are described in Sections 2-3. Section 4 presents the result which can be interpreted as a Doob-Meyer decomposition. Several examples with different regimes of velocities and of jumps are presented.

2. Generalised jump-telegraph processes: distribution

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Consider two continuous-time Markov processes $\varepsilon_0(t), \varepsilon_1(t) \in \{0, 1\}, \ t \in (-\infty, \infty)$. The subscript $i \in \{0, 1\}$ indicates the initial state, $\varepsilon_i(0) = i$ (with probability 1). Assume that $\varepsilon_i = \varepsilon_i(t), \ t \in (-\infty, \infty)$ are left-continuous a. s.

Let $\{\tau_n\}_{n \in \mathbb{Z}}$ be a Markov flow of switching times. The increments $T_n := \tau_n - \tau_{n-1}, n \in \mathbb{Z}$ are independent and possess alternated distributions (with the distribution functions F_0, F_1, the survival functions \bar{F}_0, \bar{F}_1 and the densities f_0, f_1). We assume that $\tau_0 = 0$, i. e. the state process ε_i is started at the switching instant. The distributions of τ_n and T_n depend on the initial state i, $i \in \{0, 1\}$. For brevity, we will not always indicate this dependence.

Consider a particle moving on \mathbb{R} with two alternated velocity regimes c_0 and c_1. These velocities are described by two continuous functions $c_i = c_i(T, t), T, t > 0, i = 0, 1$. At each instant τ_n the particle takes the velocity regime $c_{\varepsilon_i(\tau_n)}(T_n, \cdot)$, where T_n is the (random) time spent by the particle at the previous state. We define a pair of the (generalised) telegraph processes $T_i, i = 0, 1$ driven by variable velocities c_0, c_1 as follows,

\begin{align*}
T_0(t) &= T_0(t; c_0, c_1) = \sum_{n=0}^{\infty} c_{\varepsilon_0(\tau_n)}(T_n, t - \tau_n)1_{\{\tau_n < t \leq \tau_{n+1}\}}, \\
T_1(t) &= T_1(t; c_0, c_1) = \sum_{n=0}^{\infty} c_{\varepsilon_1(\tau_n)}(T_n, t - \tau_n)1_{\{\tau_n < t \leq \tau_{n+1}\}}.
\end{align*}

The integral $\int_0^t T_i(s)ds, i = 0, 1$ is named the integrated telegraph process.

Let $N = N_i(t) := \max\{n \geq 0 : \tau_n \leq t\}, \ t \geq 0$ be a counting process. Notice that, $N_i(0) = 0$ and $\varepsilon_i(t) = (1 - (-1)^{N_i(t)})/2$ and $\varepsilon_1(t) = (1 + (-1)^{N_i(t)})/2$.

The integrated telegraph process can be interpreted as the sum of random number of random variables. If $N_i(t) = 0$, then

$$
\int_0^t T_i(s)ds = l_i(T_0; t); \quad (2.2)
$$

if $N_i(t) > 0$, then the integrated telegraph process is expressed as

$$
\int_0^t T_i(s)ds = \sum_{n=0}^{N_i(t)-1} l_{\varepsilon_i(\tau_n)}(\tau_n, T_n, t) + l_{\varepsilon_i(\tau_{N_i(t)})}(T_{N_i(t)}; \tau_{N_i(t)}, t). \quad (2.3)
$$

Here

$$
l_i(T; u, t) := \int_u^t c_i(T, s)ds, \quad i = 0, 1.
$$
Notice that \(l_i(T; u, s) + l_i(T; s, t) \equiv l_i(T; u, t), \ i = 0, 1. \) Simplifying we write \(l_i(T; t) \) instead of \(l_i(T; 0, t). \)

In the same manner we define the jump component. Let \(h_0 = h_0(T) \) and \(h_1 = h_1(T) \), \(T \geq 0 \) be a pair of deterministic continuous (or, at least, boundary measurable) functions. Consider telegraph processes (2.1) based on \(h_i(T) \) instead of \(c_i = c_i(T, \cdot), \ i = 0, 1, \)

\[
\mathcal{T}_i(t; h_0, h_1) = \sum_{n=1}^{\infty} h_{\varepsilon_i(T_n)}(T_n) \mathbf{1}_{\{\tau_n < t \leq \tau_{n+1}\}}, \ i = 0, 1.
\]

An integrated jump process is defined in the form of compound Poisson process by the integral

\[
\int_0^t \mathcal{T}_i(s; h_0, h_1) dN_i(s) = \sum_{n=1}^{N_i(t)} h_{\varepsilon_i(T_n)}(T_n), \ i = 0, 1.
\]

The amplitude of a jump depends on the time spent by the particle at the current state.

Finally, the generalised integrated jump-telegraph process is the sum of the integrated telegraph process defined by (2.2)-(2.3) and the jump component defined by (2.4):

\[
X_i(t) = \int_0^t \mathcal{T}_i(s; c_0, c_1) ds + \int_0^t \mathcal{T}_i(s; h_0, h_1) dN_i(s), \ t \geq 0, \ i = 0, 1.
\]

It describes the particle which moves, alternating the velocity regimes at random times \(\tau_n \), starting from the origin at the velocity regime \(c_i \). Each velocity reversal is accompanied by jumps of random amplitudes, \(X_i(t) \) is the current particle’s position.

Conditioning on the first velocity reversal, notice that

\[
\begin{align*}
X_0(t) &\overset{D}{=} l_0(T_0; t) \mathbf{1}_{\{\tau_1 > t\}} + [l_0(T_0; \tau_1) + h_0(\tau_1) + X_1(t - \tau_1)] \mathbf{1}_{\{\tau_1 < t\}}, \\
X_1(t) &\overset{D}{=} l_1(T_0; t) \mathbf{1}_{\{\tau_1 > t\}} + [l_1(T_0; \tau_1) + h_1(\tau_1) + X_0(t - \tau_1)] \mathbf{1}_{\{\tau_1 < t\}}.
\end{align*}
\]

Here \(\overset{D}{=} \) denotes the equality in distribution. At each of two equalities the first term represents the movement without velocity reversal; the second one is the sum of three terms: the path till the first reversal, the jump value and the movement which is initiated after the first reversal.

The distribution of \(X(t), \ t > 0 \) is separated into the singular and absolutely continuous parts.

The singular part of the distribution corresponds to the movement without any velocity reversals; let \(\mathbb{P}_i^{(0)}, \ i = 0, 1 \) be the respective conditional distribution, if the initial state \(i = \varepsilon_i(0) \) is fixed: for any Borel set \(A \) we set

\[
\mathbb{P}_i^{(0)}(A) := \mathbb{P}(X_i(t) \in A, N_i(t) = 0), \ i = 0, 1.
\]

We denote the corresponding expectation by \(\mathbb{E}_i^{(0)} \{ \cdot \}. \) On the space of (continuous) test-functions \(\varphi \) consider the linear functional (generalised function), \(\varphi \to \mathbb{E}_i^{(0)} \{ \varphi(X(t)) \}. \) It is easy to see that

\[
\mathbb{E}_i^{(0)} \{ \varphi(X(t)) \} = \int_{-\infty}^{\infty} \varphi(y) \mathbb{P}_i^{(0)}(dy) = F_i(t) \int_{0}^{\infty} \varphi(l_i(s; t)) f_{1-i}(s) ds =: p_i(\cdot, t; 0), \quad \varphi > .
\]
The generalised function
\[p_i(x, t; 0) = F_i(t) \int_0^\infty \delta_{l_i(s; t)}(x) f_{1-i}(s) ds = F_i(t) \int_0^\infty \delta_0(x - l_i(s; t)) f_{1-i}(s) ds \] (2.7)
can be viewed as the distribution “density”. Here \(\delta_a(x) \) is the Dirac measure (of unit mass) at point \(a \).

The absolutely continuous part of the distribution of \(X_i(t) \) is characterised by the densities
\[p_i(x, t; n) = \mathbb{P}\{X_i(t) \in dx, N_i(t) = n\}/dx, \quad i = 0, 1, n \geq 1. \]

The sum
\[p_i(x, t) = \sum_{n=1}^\infty p_i(x, t; n) \]
corresponds to the absolutely continuous part of distribution of \(X_i(t) \), \(i = 0, 1 \).

Conditioning on the first velocity reversal, similarly to (2.6) we obtain the following equations, \(n \geq 1 \),
\[p_0(x, t; n) = \int_0^\infty f_1(\tau) d\tau \int_0^t p_1(x - l_0(\tau; s) - h_0(s), t - s; n-1) f_0(s) ds, \]
\[p_1(x, t; n) = \int_0^\infty f_0(\tau) d\tau \int_0^t p_0(x - l_1(\tau, s) - h_1(s), t - s; n-1) f_1(s) ds \] (2.8)
(if \(n = 1 \) the inner integrals are understood in the sense of the theory of generalised functions). Summing up in (2.8) we get the system of integral equations for (complete) distribution densities,
\[p_0(x, t) = p_0(x, t; 0) + \int_0^\infty f_1(\tau) d\tau \int_0^t p_1(x - l_0(\tau; s) - h_0(s), t - s) f_0(s) ds, \]
\[p_1(x, t) = p_1(x, t; 0) + \int_0^\infty f_0(\tau) d\tau \int_0^t p_0(x - l_1(\tau, s) - h_1(s), t - s) f_1(s) ds \] (2.9)

Here \(p_0(x, t; 0) \) and \(p_1(x, t; 0) \) are defined by (2.4).

If \(c_0, c_1 \equiv const, h_0, h_1 \equiv const \) equations (2.8) and (2.9) can be solved explicitly using the following notations,
\[\xi = \xi(x, t) := \frac{x - c_1 t}{c_0 - c_1} \quad \text{and} \quad t - \xi = \frac{c_0 t - x}{c_0 - c_1}. \]

Notice that \(0 < \xi(x, t) < t \), if \(x \in (c_1 t, c_0 t) \) (say, \(c_0 > c_1 \)). Define the functions \(q_i(x, t; n) \), \(i = 0, 1 \): for \(c_1 t < x < c_0 t \),
\[q_0(x, t; 2n) = \frac{\lambda_0^n \lambda_1^n}{(n-1)! n!} \xi^n (t - \xi)^{n-1}, \quad n \geq 1, \]
and
\[q_1(x, t; 2n) = \frac{\lambda_0^n \lambda_1^n}{(n-1)! n!} \xi^{n-1} (t - \xi)^n, \quad n \geq 1, \]
\[q_0(x, t; 2n + 1) = \frac{\lambda_0^{n+1} \lambda_1^n}{(n)!^2} \xi^n (t - \xi)^n, \quad n \geq 0, \]
\[q_1(x, t; 2n + 1) = \frac{\lambda_0^n \lambda_1^{n+1}}{(n)!^2} \xi^n (t - \xi)^n. \] (2.10)
Denote $\theta(x, t) = \frac{1}{c_0 c_1} e^{-\lambda_0 x - \lambda_1 t} 1_{(0 < x < t)}$.

Equations (2.9) have the following solution:

$$
\begin{align*}
p_i(x, t; 0) &= e^{-\lambda_i t}(x - c_i t), \\
p_i(x, t; n) &= q_i(x - j_{in}, t; n) \theta(x - j_{in}, t), \quad n \geq 1, \quad i = 0, 1,
\end{align*}
$$

(2.12)

where the displacements j_{in} are defined as the sum of alternating jumps, $j_{in} = \sum_{k=1}^n h_{ik}$, where $i_k = i$, if k is odd, and $i_k = 1 - i$, if k is even.

Summing up we obtain the solution of (2.9):

$$
p_i(x, t) = e^{-\lambda_i t} \cdot \delta_0(x - c_i t)
\begin{align*}
&+ \frac{1}{c_0 - c_1} \left[\lambda_i \theta(x - h_i, t) I_0 \left(\frac{2 \sqrt{\lambda_0 \lambda_1 c_0 t - x + h_i} (x - h_i - c_i t)}{c_0 - c_1} \right) \\
&+ \sqrt{\lambda_0 \lambda_1 \theta(x, t)} \left(\frac{x - c_i t}{c_0 t - x} \right)^{\frac{1}{2} - i} I_1 \left(\frac{2 \sqrt{\lambda_0 \lambda_1 (c_0 t - x) (x - c_i t)}}{c_0 - c_1} \right) \right],
\end{align*}
$$

(2.13)

where $I_0(z) = \sum_{n=0}^{\infty} \frac{(z/2)^{2n}}{(n!)^2}$ and $I_1(z) = I_0'(z)$ are the modified Bessel functions.

See the proof of (2.10)-(2.13) in Ratanov (2007).

3. Generalised jump-telegraph processes: moments

Using (2.9) the equations for the expectations can be derived also. Let $\mu_i(t) := \mathbb{E}\{X_i(t)\}$ and $\bar{I}_i(\cdot) := \mathbb{E}\{I_i(T; t)\} = \int_0^\infty f_{1-i}(\tau) I_i(\tau; t) d\tau$, $t \geq 0$. Equations (2.9) lead to

$$
\mu_i(t) = \bar{F}_i(t) \bar{I}_i(t) + \int_0^t \left(\bar{I}_i(s) + h_i(s) + \mathbb{E}\{X_{1-i}(t - s)\} \right) f_i(s) ds, \quad i = 0, 1.
$$

Therefore the expectations μ_i, $i = 0, 1$ follow the equations of Volterra type:

$$
\begin{align*}
\mu_0(t) &= a_0(t) + \int_0^t \mu_1(t - s) f_0(s) ds, \\
\mu_1(t) &= a_1(t) + \int_0^t \mu_0(t - s) f_1(s) ds,
\end{align*}
$$

(3.1)

where

$$
a_i(t) := \bar{F}_i(t) \bar{I}_i(t) + \int_0^t (\bar{I}_i(s) + h_i(s)) f_i(s) ds, \quad i = 0, 1.
$$

Integrating by parts at the latter integral we have

$$
\int_0^t \bar{I}_i(s) f_i(s) ds = -\bar{F}_i(t) \bar{I}_i(t) + \int_0^t \bar{c}_i(s) \bar{F}_i(s) ds,
$$

which gives the following simplification for functions a_i:

$$
a_i(t) = \int_0^t \left(\bar{F}_i(s) \bar{c}_i(s) + f_i(s) h_i(s) \right) ds.
$$

(3.2)

Here we denote $\bar{c}_i(s) = \mathbb{E}\{c_i(\cdot; s)\} = \int_0^\infty f_{1-i}(\tau) c_i(\tau; s) d\tau$, $i = 0, 1$.

5
Equations for variances \(\sigma_i(t) := \text{var}\{X_i(t)\} = \mathbb{E}\{(X_i(t) - \mu_i(t))^2\} \) can be derived similarly:

\[
\sigma_0(t) = b_0(t) + \int_0^t \sigma_1(t - s)f_0(s)ds, \\
\sigma_1(t) = b_1(t) + \int_0^t \sigma_0(t - s)f_1(s)ds,
\]

where

\[
b_i(t) := F_i(t) (\bar{t}_i(t) - \mu_i(t))^2 + \int_0^t (\bar{l}_i(s) + h_i(s) + \mu_{i-1}(t - s) - \mu_i(t))^2 f_i(s)ds, \quad i = 0, 1.
\]

Generalising (3.1)-(3.3), we have the following result.

Theorem 3.1. Let \(g = g(x), \ -\infty < x < \infty \) be a locally bounded measurable function. Assume that

\[
\int_0^\infty f_{1-i}(\tau)|g(x + l_i(\tau; t))|d\tau < \infty, \quad i = 0, 1.
\]

Then the expectations

\[
u_0(x, t) = \mathbb{E}\{g(x + X_0(t))\}, \quad u_1(x, t) = \mathbb{E}\{g(x + X_1(t))\}
\]

exist, and they satisfy the system

\[
u_0(x, t) = G_0(x, t) + \int_0^\infty \int_0^t u_1(x + l_0(\tau; s) + h_0(s), t - s)f_1(\tau)f_0(s)d\tau ds, \quad (3.5)
\]

\[
u_1(x, t) = G_1(x, t) + \int_0^\infty \int_0^t u_0(x + l_1(\tau; s) + h_1(s), t - s)f_0(\tau)f_1(s)d\tau ds, \quad (3.6)
\]

where \(G_i(x, t) = \bar{F}_i(t) \int_0^\infty f_{1-i}(\tau)g(x + l_i(\tau; t))d\tau, \quad i = 0, 1. \)

Proof. Equations (3.5)-(3.6) follow by conditioning on the first velocity reversal, see (3.4).

The equations for the moments \(\mu_i^{(N)}(t) := \mathbb{E}\{X_i(t)^N\}, \ t \geq 0, \ N \geq 0 \) can be derived by using Theorem 3.1 with \(g(x) = x^N \), see (3.3)-(3.6).

Corollary 3.1. Let \(N = 0, 1, 2, \ldots \)

Functions \(\mu_0^{(k)}(t), \mu_1^{(k)}(t), \ t \geq 0, k = 0, 1, \ldots N \) satisfy the equations

\[
\mu_0^{(N)}(t) = \bar{F}_0(t) \int_0^\infty f_1(\tau) l_0(\tau; t)^N d\tau + \sum_{k=0}^N \binom{N}{k} \int_0^t g_{0,N-k}(s) \mu_1^{(k)}(t - s)f_0(s)ds, \\
\mu_1^{(N)}(t) = \bar{F}_1(t) \int_0^\infty f_0(\tau) l_1(\tau; t)^N d\tau + \sum_{k=0}^N \binom{N}{k} \int_0^t g_{1,N-k}(s) \mu_0^{(k)}(t - s)f_1(s)ds.
\]

Here \(g_{0,0} = g_{1,0} \equiv 1 \) and

\[
g_{0,m}(t) = \int_0^\infty f_1(\tau) (l_0(\tau; t) + h_0(t))^m d\tau, \\
g_{1,m}(t) = \int_0^\infty f_0(\tau) (l_1(\tau; t) + h_1(t))^m d\tau, \quad m \geq 1.
\]
In general, systems \((3.8), (3.9)\) and \((3.11)\) have the form of the recursive Volterra equations of the second kind:
\[
\mu^{(N)}_0(t) = a^{(N)}_0(t) + \int_0^t \mu^{(N)}_1(t-s) f_0(s) \, ds,
\]
\[
\mu^{(N)}_1(t) = a^{(N)}_1(t) + \int_0^t \mu^{(N)}_0(t-s) f_1(s) \, ds,
\] \hspace{1cm} (3.8)
where \(a^{(N)}_i(t), \ i = 0, 1\) are generated by the preceding moments, \(\mu^{(k)}_{i-1}, \ k = 0, \ldots N-1\):
\[
a^{(N)}_0(t) := F_0(t) \int_0^\infty l_0(\tau; t)^N f_1(\tau) d\tau + \sum_{k=0}^{N-1} \binom{N}{k} \int_0^t g_{0,N-k}(s) \mu^{(k)}_i(t-s) f_0(s) \, ds,
\]
\[
a^{(N)}_1(t) := F_1(t) \int_0^\infty l_1(\tau; t)^N f_0(\tau) d\tau + \sum_{k=0}^{N-1} \binom{N}{k} \int_0^t g_{1,N-k}(s) \mu^{(k)}_0(t-s) f_1(s) \, ds.
\] \hspace{1cm} (3.9)
Here \(N \geq 1\).

System \((3.8)\) possesses a unique solution, see e.g. Linz (1985). Under appropriate assumptions the solution can be found explicitly. Consider the following example. Let the distributions of interarrival times are exponential:
\[f_i(t) = \lambda_i \exp(-\lambda_i t), \quad t \geq 0, \ i = 0, 1.\]
In this particular case system \((3.8)\) is solved by
\[
\mu(t) = a(t) + \int_0^t (I + \varphi(t-s) \Lambda) L a(s) \, ds,
\] \hspace{1cm} (3.10)
where \(\varphi(t) = (1 - e^{-2\lambda t})/(2\lambda), \ 2\lambda := \lambda_0 + \lambda_1\). Here we use the matrix notations \(\mu = \mu^{(N)}_0, \mu^{(N)}_1\)', \(a = a^{(N)}_0, a^{(N)}_1\)', \(L = \begin{pmatrix} 0 & \lambda_0 \\ \lambda_1 & 0 \end{pmatrix}\) and \(\Lambda = \begin{pmatrix} -\lambda_0 & \lambda_0 \\ \lambda_1 & -\lambda_1 \end{pmatrix}\).

To check it, notice that system \((3.8)\) is equivalent to ODE with zero initial condition:
\[
\frac{d\mu}{dt} = \Lambda \mu(t) + \phi(t), \quad \mu(0) = 0,
\]
where \(\phi = \frac{da}{dt} + (L - \Lambda) a\). We get this equation by differentiating in \((3.8)\) with subsequent integration by parts. Clearly, the unique solution is
\[
\mu(t) = \int_0^t e^{(t-s)\Lambda} \phi(s) \, ds.
\] \hspace{1cm} (3.11)
Integrating by parts in \((3.11)\) we obtain
\[
\mu(t) = a(t) + \int_0^t e^{(t-s)\Lambda} L a(s) \, ds.
\]
Now, the desired representation \((3.10)\) follows from
\[
\exp\{t\Lambda\} = I + \varphi(t) \Lambda = \frac{1}{2\lambda} \begin{pmatrix} \lambda_1 + \lambda_0 e^{-2\lambda t} & \lambda_0 (1 - e^{-2\lambda t}) \\ \lambda_1 (1 - e^{-2\lambda t}) & \lambda_0 + \lambda_1 e^{-2\lambda t} \end{pmatrix}.
\] \hspace{1cm} (3.12)
4. Martingales

Let \(X_0 = X_0(t) \) and \(X_1 = X_1(t) \) be (integrated) telegraph processes defined by (2.5) on the probability space \((\Omega, \mathcal{F}, \mathbb{P})\). Let \(\mu_i(t) = \mathbb{E}\{X_i(t)\}, i = 0, 1 \) denote the expectations, and coefficients \(a_i(t), i = 0, 1 \) are defined by (3.2).

Notice that by (3.1) \(\mu_0 = \mu_1 \equiv 0 \) if and only if \(a_0 = a_1 \equiv 0 \), which is equivalent to the set of identities, see (3.2),

\[
\begin{align*}
F_0(t)\bar{c}_0(t) + h_0(t)f_0(t) & \equiv 0 \\
F_1(t)\bar{c}_1(t) + h_1(t)f_1(t) & \equiv 0, \quad t \geq 0. \tag{4.1}
\end{align*}
\]

Let \(\mathcal{F}_t, t \geq 0 \) be the filtration, generated by \(\{(X_0(s), X_1(s)) \mid s \leq t\} \).

Theorem 4.1. The integrated jump-telegraph processes \(X_0 \) and \(X_1 \) defined by (2.5) are \(\mathcal{F}_t \)-martingales if and only if (4.1) holds.

Proof. The proof can be done by computing the conditional expectation \(\mathbb{E}\{X_i(t_2) - X_i(t_1) \mid \mathcal{F}_{t_1}\} \) for \(0 \leq t_1 \leq t_2 \). Indeed,

\[
\begin{align*}
\mathbb{E}\{X_i(t_2) - X_i(t_1) \mid \mathcal{F}_{t_1}\} &= \mathbb{E}\left\{ \int_{t_1}^{t_2} T_i(s; c_0, c_1)ds + \sum_{n=N_i(t_1)}^{N_i(t_2)+1} h_{\epsilon_i(n)}(T_n) \mid \mathcal{F}_{t_1}\right\} \\
&= \mathbb{E}\left\{ \int_{0}^{t_2-t_1} T_i(s+t_1+s)(t_1 + s)ds + \sum_{n=1}^{N_i(t_2)-N_i(t_1)} h_{\epsilon_i(n+N_i(t_1))}(T_{n+N_i(t_1)}) \mid \mathcal{F}_{t_1}\right\} \\
&= \mathbb{E}\left\{ \int_{0}^{t_2-t_1} T_{\bar{\epsilon}_i(s)}(t_1 + s)ds + \sum_{n=1}^{N_i(t_2)-N_i(t_1)} h_{\epsilon_i(n)}(T_{n+N_i(t_1)}) \mid \mathcal{F}_{t_1}\right\}.
\end{align*}
\]

According to the Markov property applied to the processes \(\epsilon_i = \epsilon_i(t), N_i = N_i(t) \) and \(\{\tau_k\} \) we have

\[
\begin{align*}
\epsilon_i(t_1 + s) & \overset{D}{=} \epsilon_i(t_1)(s), \quad N_i(t_1 + s) \overset{D}{=} N_i(t_1) + \tilde{N}_{\epsilon_i(t_1)}(s), \quad s \geq 0, \\
\tau_{n+N_i(t_1)} & \overset{D}{=} \bar{\tau}_n, \quad T_{n+N_i(t_1)} \overset{D}{=} \tilde{T}_n, \quad n \geq 1,
\end{align*}
\]

where \(\tilde{\epsilon}(s), \tilde{N}(s), \bar{\tau}_n \) and \(\tilde{T}_n \) are copies of \(\epsilon(s), N(s), \tau_n \) and \(T_n \) respectively, independent of \(\mathcal{F}_{t_1} \). Therefore,

\[
\mathbb{E}\{X_i(t_2) - X_i(t_1) \mid \mathcal{F}_{t_1}\} = \mathbb{E}\{\tilde{X}_{\epsilon_i(t_1)}(t_2 - t_1)\}.
\]

Here \(\tilde{X}_{\epsilon_i(t_1)} \) denotes the integrated jump-telegraph process, which is initiated from the state \(\epsilon_i(t_1) \), and is based on \(\tilde{\epsilon}(s), \tilde{N}(s), \bar{\tau}_n \) and \(\tilde{T}_n \). The latter expectation is equal to zero, \(\mathbb{E}\{\tilde{X}_{\epsilon_i(t_1)}(t_2 - t_1)\} \equiv 0 \), if and only if (4.1) holds. \(\square \)

Remark 4.1. Notice that if (4.1) holds, then the direction of jump should be opposite to the (mean) velocity value.

Corollary 4.1. If the jump-telegraph processes \(X_0 \) and \(X_1 \) defined by (2.5) are martingales, then

\[
\begin{align*}
\frac{\tilde{\epsilon}_i(t)}{\tilde{h}_i(t)} & < 0 \quad \forall t \geq 0, \tag{4.2} \\
\int_0^{\infty} \frac{\tilde{\epsilon}_i(s)}{\tilde{h}_i(s)} ds & = \infty, \quad i = 0, 1. \tag{4.3}
\end{align*}
\]

8
Moreover, X_0 and X_1 are martingales, if and only if the distribution densities of interarrival times satisfy the following integral relations:

$$f_i(t) = -\frac{\bar{c}_i(t)}{h_i(t)} \exp \left\{ \int_0^t \frac{\bar{c}_i(s)}{h_i(s)} ds \right\}, \quad i = 0, 1. \tag{4.4}$$

Proof. Inequality (4.2) follows directly from (4.1). Identities (4.1) are equivalent to

$$\frac{\bar{c}_i(t)}{h_i(t)} = -f_i(t) = (\ln \bar{F}_i(t))', \quad i = 0, 1. \tag{4.5}$$

Therefore

$$\bar{F}_i(t) = \exp \left\{ \int_0^t \frac{\bar{c}_i(s)}{h_i(s)} ds \right\}, \quad t \geq 0, \quad i = 0, 1.$$

The latter equality is equivalent to (4.1).

Notice that by definition $\lim_{t \to +\infty} \bar{F}_i(t) = 0$. Hence, condition (4.3) is fulfilled. □

In this framework various particular cases of the martingale distributions and the corresponding distributions of interarrival times can be presented by applying Corollary 4.1. Consider the following examples.

Exponential distribution. Assume that functions $\bar{c}_i(t)$ and $h_i(t)$ are proportional:

$$\frac{\bar{c}_i(t)}{h_i(t)} = -\lambda_i, \quad \lambda_i > 0, \quad i = 0, 1. \tag{4.6}$$

Relations (4.6) mean that the integrated jump-telegraph process is the martingale if the distributions of interarrival times are exponential: $f_i(t) = \lambda_i \exp(-\lambda_i t), \quad t > 0, \quad i = 0, 1.$

Identities (4.6) can be written in detail as follows. The (observable) parameters of the model, i.e., the regimes of velocities c_0, c_1 and the regimes of jumps h_0, h_1, satisfy the equations

$$\lambda_0 \int_0^\infty e^{-\lambda_1 \tau} c_0(\tau, t) d\tau = -\lambda_0 h_0(t), \quad \lambda_0 \int_0^\infty e^{-\lambda_0 \tau} c_1(\tau, t) d\tau = -\lambda_1 h_1(t)$$

with some positive constants λ_0 and λ_1. These equations help to compute the switching intensities λ_0 and λ_1 by using the (observable) proportion between velocity and jump values.

On the other hand, if mean velocity regimes are given, \bar{c}_0 and \bar{c}_1, from these equations we can conclude that small jumps occur with high frequency, and big jumps are rare. The direction of jump should be opposite to the velocity sign, see also Remark 4.1.

Proposition 4.1. In the framework of (2.3) we assume that the Markov flow of switching times $\mathcal{S} = \{\tau_k\}_{k=0}^\infty$ has interarrival intervals $\tau_k - \tau_{k-1}, \quad k \geq 1$ which are exponentially distributed with alternated constant intensities $\mu_0, \mu_1 > 0$. Let the velocity regimes $c_i = c_i(t)$ and jump amplitudes $h_i = h_i(t)$ are given, and they are proportional as in (4.6), $c_i(t)/h_i(t) = -\lambda_i, \quad i = 0, 1.$

The martingale measure for (X_0, X_1) exists and it is unique.

Proof. According to the Girsanov Theorem, see Ratanov (2007), we apply Radon-Nikodym derivative of the form

$$\frac{d\mathbb{Q}}{d\mathbb{P}} = \mathcal{E}_t \{ X^* \} = \exp \left\{ \int_0^t \mathcal{T}_i(s; c_0^*, c_1^*) ds \right\} \kappa_i^*(t), \tag{4.7}$$
where \(\kappa_i^r(t) = \prod_{k=1}^{N_i(t)} (1 + h_{\varepsilon_i(t_k-1)}^r) \) is produced by the jump process with constant jump amplitudes \(h_i^r = -c_i^r/\mu_i \), and \(\int_0^t T_i(s; c_i^r, \kappa_i^r)\,ds \) is the integrated telegraph process with constant velocities \(c_i^r = \mu_i - \lambda_i \). Under the new measure \(\mathbb{Q} \) the underlying Markov flow takes the intensities \(\lambda_i, \ i = 0, 1 \) (see Theorem 2 and Theorem 3 by Ratanov (2007)). Therefore, process \(X_i(t) \) becomes the martingale.

Erlang distribution. Telegraph processes with Erlang-distributed interarrival times have been studied by Perry et al. (1999) and Di Crescenzo (2001). In our setting, it is easy to see that the martingale distribution can be obtained by means of alternated Erlang amplitudes \(h_i \) (see Proposition 4.1).

\[
\tilde{c}_i(t)/h_i(t) = -\lambda_i t^{\alpha_i} \frac{1}{\alpha_i+1}, \quad \alpha_i > -1, \ \lambda_i > 0, \ i = 0, 1,
\]

we have \(f_i(t) = \lambda_i t^{\alpha_i} \exp\left\{-\frac{\lambda_i}{\alpha_i+1} t^{\alpha_i+1}\right\} 1_{t > 0} \).

1. **Weibull distribution.** Assuming that

\[
\tilde{c}_i(t)/h_i(t) = -\lambda_i t^{\alpha_i} \frac{1}{\alpha_i+1}, \quad \alpha_i > -1, \ \lambda_i > 0, \ i = 0, 1,
\]

we have \(f_i(t) = \lambda_i t^{\alpha_i} \exp\left\{-\frac{\lambda_i}{\alpha_i+1} t^{\alpha_i+1}\right\} 1_{t > 0} \).

2. **Pareto distribution.** Let \(0 < \lambda_0, \lambda_1 < 2 \). For \(b_0, b_1 > 0 \) assume that

\[
\tilde{c}_i(t)/h_i(t) = -\frac{\lambda_i}{t} 1_{t > b_i}, \quad i = 0, 1.
\]

Hence, the martingale distribution is determined by a Pareto distribution for interarrival times, i.e. \(f_i(t) = \lambda_i b_i t^{\lambda_i-1} 1_{t > b_i} \) for \(b_0, b_1 > 0 \).

3. **Logistic distribution.** Let interarrival times \(T_n, \ n \in \mathbb{Z} \) have (alternated) logistic distributions with the density \(f_i(t) = \lambda_i e^{-\lambda_i t} \frac{1}{1 + e^{-\lambda_i t}} 1_{t \geq 0} \), see Di Crescenzo and Martinucci (2011). This produces the martingale distribution, if

\[
\tilde{c}_i(t)/h_i(t) = -\frac{\lambda_i e^{-\lambda_i t}}{1 + e^{-\lambda_i t}}, \quad t \geq 0.
\]
4. Cauchy distribution. The distribution f_i takes the form of Cauchy, such that $f_i(t) = \frac{2a_i/\pi}{a_i^2 + t^2}1_{(t \geq 0)}$, if

$$c_i(t)/h_i(t) = -\frac{a_i}{(a_i^2 + t^2)(\frac{a_i}{2} - \arctan(t/a_i))}, \quad t \geq 0.$$

5. Uniform distribution. Let

$$c_i(t)/h_i(t) = -\frac{1}{A_i-t}1_{0<t<A_i}.$$

Then, in this blow-up case, we have the uniform distribution, $f_i(t) = \frac{1}{A_i}1_{0<t<A_i}$.

References

Di Crescenzo, A. 2001. On random motions with velocities alternating at Erlang-distributed random times. Adv. Appl. Probab. 33, 690-701.

Di Crescenzo, A., Martinucci, B. 2010. A damped telegraph random process with logistic stationary distribution. J. Appl. Probab. 47, 84-96.

Di Crescenzo, A., Martinucci, B. 2013. On the generalized telegraph process with deterministic jumps. Methodol. Comput. Appl. Probab. 15, Issue 1, 215-235.

Feller, W. 1971. An Introduction to Probability Theory and Its Applications, vol. II, 2nd edition, Wiley Series in Probability and Mathematical Statistics, Wiley, New York, 1971.

Föllmer, H., Protter, P. 2011. Local martingales and filtration shrinkage. ESAIM: Probability and Statistics, May 2011, Vol. 15, 25-38.

Hadeler, K. P. 1999. Reaction transport systems in biological modelling, In Mathematics inspiring by biology, Lect. Notes in Math. 1714 95-150 (Springer, 1999).

Linz P. (1985). Analytical and Numerical Methods for Volterra Equations. SIAM. Philadelphia.

López, O., Ratanov, N., 2012. Option pricing under jump-telegraph model with random jumps. J. Appl. Probab., 49, 838-849.

Perry, D., Stadje, W., Zacks, S. 1999. First-exit times for increasing compound processes. Commun. Statist. - Stochastic Models, 15(5), 977-992.

Protter, P. 2005. Stochastic Integration and Differential Equations, 2nd edition, Version 2.1. Springer-Verlag, Heidelberg.

Ratanov, N. 2007. A jump telegraph model for option pricing, Quant. Finance, 7, 575-583.

Stadje, W., Zacks, S. 2004. Telegraph Processes with Random Velocities Journal of Applied Probability, Vol. 41, No. 3 (Sep., 2004), 665-678.

Zacks, S., 2004. Generalized integrated telegraph processes and the distribution of related stopping times. J. Appl. Probab. 41, 497-507.