On the fine structure of the quiet solar Ca\textsc{ii} K atmosphere

A. Tritschler1,2,3, W. Schmidt2, H. Uitenbroek3, and S. Wedemeyer-Böhm2

1 Big Bear Solar Observatory, New Jersey Institute of Technology, 40386 North Shore Lane, Big Bear City, CA-92314, U.S.
e-mail: ali@bbso.njit.edu, ali@kis.uni-freiburg.de, ali@nso.edu
2 Kiepenheuer-Institut für Sonnenphysik, Schöneckstr. 6, D–79104 Freiburg, Germany
e-mail: wolfgang@kis.uni-freiburg.de, wedemeyer@kis.uni-freiburg.de
3 National Solar Observatory/Sacramento Peak*, P.O. Box 62, Sunspot, NM-88349, U.S.A.
e-mail: huitenbroek@nso.edu

October 8, 2018

ABSTRACT

Aims. We investigate the morphological, dynamical, and evolutionary properties of the internetwork and network fine structure of the quiet sun at disk centre.

Methods. The analysis is based on a ∼6 h time sequence of narrow-band filtergrams centred on the inner-wing Ca\textsc{ii} K_α reversal at 393.3 nm. To examine the temporal evolution of network and internetwork areas separately we employ a double-Gaussian decomposition of the mean intensity distribution. An autocorrelation analysis is performed to determine the respective characteristic time scales. In order to analyse statistical properties of the fine structure we apply image segmentation techniques.

Results. The results for the internetwork are related to predictions derived from numerical simulations of the quiet sun. The average evolutionary time scale of the internetwork in our observations is 52 sec. Internetwork grains show a tendency to appear on a meshlike pattern with a mean cell size of ∼4-5 arcsec. Based on this size and the spatial organisation of the mesh we speculate that this pattern is related to the existence of photospheric downdrafts as predicted by convection simulations. The image segmentation shows that typical sizes of both network and internetwork grains are in the order of 1.6 arcs.

Key words. Sun: Chromosphere, Sun: Oscillations, techniques: image processing

1. Introduction

The solar chromosphere is the highly structured and very dynamic atmospheric link between the photosphere and the thin transition layer to the hot corona. Understanding its physical structure is most likely to shed light on outer-atmosphere heating mechanisms and the acceleration and composition of the solar wind. Well known chromospheric diagnostics are the cores and inner wings of strong absorption lines like H\textalpha and Ca\textsc{ii} H & K. Since the early work of Jensen & Orrall (1963), Orrall (1966), and Gram (1978) decades ago, the resonance lines have been extensively employed to explore chromospheric dynamics and chromospheric structure. For reviews and references therein we refer to Judge & Peter (1998) and Rutten (1999).

In low-spatial resolution filtergrams the internetwork regions appear rather homogeneous and dark, while the highly structured and inhomogeneous face of the chromosphere in the internetwork is only revealed in high-resolution filtergrams. Internetwork areas are intermittently filled with brightenings. These internetwork brightenings are most conspicuous in the emission feature in the blue wing of the Ca\textsc{ii} K and H lines. Thus, they have been named Ca\textsc{ii} K(H)$_{2v}$ grains or simply internetwork grains. The investigation of the properties of these grains is a diagnostic tool to probe chromospheric conditions in internetwork regions. For a detailed description of the K$_{2v}$ grain phenomenon we refer to Rutten & Uitenbroek (1991) and references therein.

Where does the intermittent chromospheric structure in space and time originate from? Observational evidence makes clear that the dynamic behaviour and radiative signature of the chromosphere is determined by its response to upward travelling waves (Wikstol et al., 2001; Judge et al., 2001) excited by the effects of convection (Hoekzema & Rutten, 1998; Skartlien et al., 2000; Hoekzema et al., 2002). While the waves propagate upwards they steepen into shocks and form high-frequency shock sequences pervading the internetwork regions. The formation of shocks is strongly supported by the numerical simulations of Carlsson & Stein (1992, 1997). However, because of the one-dimensionality of these simulations, interference with slanted waves cannot be taken into account and shock trajectories are assumed to be radial. Recent three-dimensional radiative hydrodynamic simulations result in a dynamic and thermally bimodal structure of the non-magnetic chromospheric layers (Wedemeyer et al., 2004). The simulations show that upward travelling and interfering waves and shocks lead to the formation of a network of hot upwelling filaments and enclosed cool regions. The non-magnetic numerical modelling corroborates observational findings that the internetwork atmosphere and its behaviour are predominantly determined by the chromospheric response to acoustic oscillations.

Magnetic fields play a minor role in the internetwork grain generation (von Uexkull & Kneer, 1995; Remling et al., 1996; Hofmann et al., 1996; Steffens et al., 1996; Hoekzema & Rutten, 1998; Lites et al., 1999; De Pontieu, 2006).
and are only occasionally involved in form of the flashers (Brandt et al., 1992; Nindos & Zirin, 1998; Krijger et al., 2001; de Wijn et al., 2005). However, magnetic fields appear to play a major role in the higher atmosphere where plasma β (ratio of gas pressure over magnetic pressure) becomes small (McIntosh et al., 2001) and wave reflection and conversion between acoustic and magneto-acoustic modes takes place (Rosenthal et al., 2002; Bogdan et al., 2003).

In the present work we investigate the Ca II K chromosphere and its distinct fine structure based on an analysis of a long time sequence (~6h) of narrow-band (60 pm FWHM) filtergrams featuring a spatial resolution of 0.7 arcsec. We concentrate on morphological, dynamical, and evolutionary differences between the network and the internetwork. We employ image segmentation techniques to establish statistics of properties like size and nearest-neighbour distance that can be used to validate current and future simulations.

The paper is organised as follows. The observations are introduced and the data reduction process is reviewed in Sect. 2 and Sect. 3, respectively. In Sect. 4 we go into image segmentation processing and describe the applied techniques (a) to distinguish on large-scales between the network and the internetwork, and (b) to identify and isolate small-scale chromospheric brightenings. In Sect. 5 the temporal evolution is studied as a result from a correlation analysis Section 6 is dedicated to a morphological analysis of chromospheric brightenings. The results of our investigation are concluded in Sect. 7.

2. Observations

The observations discussed here have been carried out at the Vacuum Tower Telescope of the Kiepenheuer-Institut at the Observatorio del Teide on Tenerife, May 7, 1999. A Halle Lyot filter was used to obtain narrow-band filtergrams in the Ca II K line at 393.3 nm. The width of the filter was set to 60 pm and the transmission band was centred ~0.017 nm away from line core on the K$_{2\alpha}$ emission reversal. A ~6h sequence was recorded with a cadence of 6.04 s on a blue-sensitive 1024x1024 pixel CCD camera operated in a 512x512 summing mode. The resulting image scale on the detector was 0.35x0.35 arcsec2. The exposure time was 250 msec. For image stabilisation the VTT correlation tracker system was used (Schmidt & Kentischer, 1995; Ballesteros et al., 1996). Figure 1 (a) shows the atlas profile of the central part of the Ca II K line taken from Neckel (1999) and the theoretical transmission function of the Lyot filter. Figure 1 (b) shows the best Ca II K filtergram of the observed quiet sun region. The observed intensities in the filtergram are dominated by the K$_{2\alpha}$ emission feature and contaminations from K$_{3\alpha}$ and K$_{1\alpha}$ are strongly suppressed due to the rather sharp decline of the transmission function. Even in case the K$_{2\alpha}$ reversal is absent, the main contribution to the integrated intensity comes from the range of heights that contribute to reversal features, although at a much reduced source function. The influence from red-shifted K$_{1\alpha}$ or blue-shifted K$_{3}$ is expected to be small within the 60 pm filter passband in our observations. To estimate the formation height range more quantitatively we performed a preliminary analysis employing response functions to examine the influence of temperature changes in the solar atmosphere on the filter integrated signal (see Fossum & Carlsson, 2005). From the response functions computed through a hydrostatic model of the solar atmosphere we conclude that our filtergram observations basically reflect conditions prevailing in the height range 350-650 km. Experiments show that this height range is very similar in one-dimensional snapshots from simulations of chromospheric dynamics (e.g. Carlsson & Stein, 1997). For a more thorough study of the influence of temperature changes in the solar atmosphere on the response of the filter integrated signal we refer to Uitenbroek (2004).

MDI on-board SoHO acquired magnetograms and continuum intensity data in the full-disk mode (2 arcsec spatial resolution) with a cadence of 96 min. These data were averaged in time, rescaled and co-aligned to the mean Ca II K filtergram.
outlining the chromospheric network (see Fig. 1b). The smallest occasionally, the correlation tracker, working on normal granulation, lost its tracking position in moments of bad seeing. All data were corrected for dark current and any optical surface. Therefore the images of the series were aligned by shifting and minimising the root-mean-square difference for each image, with a precision of about 0.2 pixel. To this end, every 100th image was selected as a reference image, and these images were aligned first. If the chosen reference image had poor contrast, we used a neighbouring, good-quality image instead. In a second step, the full sequence was then aligned with respect to the nearest reference image. The post-facto alignment procedure reduced the common field of view to about 150×150 arcsec2. The remaining image displacements are below 1 pixel, and are mostly due to distortion within the field of view. They do not affect our data analysis.

To characterise the quality of our data set we computed the root-mean-square (rms) intensity contrast for each image, which is displayed in Fig. 2. The rms values fluctuate around a mean of ~9\% with a maximum and minimum of almost 12\% and 6\%, reflecting the best and the worst moments, respectively.

3. Data reduction

All data were corrected for dark current and offset and for intensity inhomogeneities caused by the CCD or any optical surface. The guiding was not perfect throughout the whole sequence; occasionally, the correlation tracker, working on normal granulation, lost its tracking position in moments of bad seeing. Therefore the images of the series were aligned by shifting and minimising the root-mean-square difference with a precision of about 0.2 pixel. To this end, every 100th image was selected as a reference image, and these images were aligned first. If the chosen reference image had poor contrast, we used a neighbouring, good-quality image instead. In a second step, the full sequence was then aligned with respect to the nearest reference image. The post-facto alignment procedure reduced the common field of view to about 150x150 arcsec2. The remaining image displacements are below 1 pixel, and are mostly due to distortion within the field of view. They do not affect our data analysis.

To characterise the quality of our data set we computed the root-mean-square (rms) intensity contrast for each image, which is displayed in Fig. 2. The rms values fluctuate around a mean of ~9\%, with a maximum and minimum of almost 12\% and 6\%, reflecting the best and the worst moments, respectively.

3. Data reduction

All data were corrected for dark current and offset and for intensity inhomogeneities caused by the CCD or any optical surface. The guiding was not perfect throughout the whole sequence; occasionally, the correlation tracker, working on normal granulation, lost its tracking position in moments of bad seeing. Therefore the images of the series were aligned by shifting and minimising the root-mean-square difference with a precision of about 0.2 pixel. To this end, every 100th image was selected as a reference image, and these images were aligned first. If the chosen reference image had poor contrast, we used a neighbouring, good-quality image instead. In a second step, the full sequence was then aligned with respect to the nearest reference image. The post-facto alignment procedure reduced the common field of view to about 150x150 arcsec2. The remaining image displacements are below 1 pixel, and are mostly due to distortion within the field of view. They do not affect our data analysis.

To characterise the quality of our data set we computed the root-mean-square (rms) intensity contrast for each image, which is displayed in Fig. 2. The rms values fluctuate around a mean of ~9\%, with a maximum and minimum of almost 12\% and 6\%, reflecting the best and the worst moments, respectively.

4. Image segmentation

This section introduces the image segmentation methods we employ to determine statistical properties of internetwork and network fine structure (see Sect. 6). To distinguish between internetwork and network areas on large spatial scales we employ a threshold technique, and to identify and isolate individual bright structures on relatively small spatial scales, we apply morphological image processing techniques.

4.1. Definition of network and internetwork

We use the very different temporal behaviour of the network and the internetwork to distinguish between the two. After normalising the intensities of each individual filtergram to the mean intensity of the image I_{mean} the mean intensity map (Fig. 3 left) was calculated by averaging over all 3483 single filtergrams. Motivated by the visual impression that the intensity map is dominated by two different populations of intensity we fitted the histogram (Fig. 3 middle) of the mean intensity map by a double-Gaussian function. The two maxima of the Gaussian components, located at 0.97 and 1.02, were used as intensity thresholds: pixels darker than < 0.97 and brighter than > 1.02 are considered as internetwork and network, respectively (see e.g. Kneer & von Uexkull 1993, Steffens et al. 1996, Krüger et al. 2001). The right panel of Fig. 3 shows the binary mask that results from thresholding the mean intensity map with the values provided by the double-Gaussian fit. White areas define network regions and grey areas define internetwork regions. Black areas are indefinite and are not included in the analysis described in Sect. 5 and Sect. 6. If not mentioned otherwise in the following all intensities are given in units of I_{mean}.

4.2. Morphological image processing

We pursue an image segmentation (or tessellation) approach to identify and isolate individual chromospheric brightenings in the network and the internetwork. We use an IDL implementation of the watershed transformation to segment each filtergram into watershed regions (cells) and their boundaries. As a result each individual cell harbours one maximum and thus isolates and defines a single structure. The transformation makes use of the morphological watershed operator labelling each watershed region with an unique index, and boundaries set to zero. For further details see Dougherty (1992). Prior to the image segmentation process an optimum filter is applied to each filtergram to suppress high-frequency noise and to avoid over-segmentation.

Fig. 3. Left: Mean intensity map (averaged over the whole sequence). Middle: histogram of the mean intensity map (dotted), double-Gaussian fit to the data points (full) and single-Gaussian profiles (dashed, dashed-dotted). The shaded area indicates the range of relative intensities that is excluded from the statistical analysis. Right: Masks used for the definition of the internetwork (grey) and the network (white). Black areas define regions which do not belong to the network nor to the internetwork according to our definition.
Figure 4: Left: Segmented image as a result from the watershed transformation. Right: Binary mask indicating the intensity peak position of identified fine structure from the watershed transformation. For better visibility the positions are marked using more than one pixel.

Figure 5: Autocorrelation versus time. Dots: individual autocorrelation functions for all subfields that belong either to the internetwork (upper panel, 73 subfields corresponding to the filled circles in Fig. 6, right) or to the network (lower panel, 10 subfields corresponding to the open circles in Fig. 6, right). Thick solid: average over all network/internetwork subfields. Thick dash-dotted: individual autocorrelation functions.

Figure 6: Left: Evolutionary time scale versus mean intensity. Vertical dotted lines indicate the intensity threshold chosen to differ between internetwork (filled circles) and network (open circles) subfields. Diamond: internetwork subfield with comparably long time scale. Triangles: network subfields with comparably short time scales. Crosses: network subfields with time scales longer than the duration of the used data set (see text). Right: Evolutionary time scale per subfield.

5. Temporal evolution of the chromosphere

In the following, we analyse the temporal evolution of the chromospheric network and internetwork regions. First, we deduce characteristic time scales for the network and internetwork, separately. Second, the results from the segmentation processing are used to visualise and study the appearance of the fine structure. Third, we examine the temporal and spatial frequency behaviour using the $k - \nu$-diagram as well as power maps as a diagnostic tool.

5.1. Autocorrelation Analysis

In order to specify the temporal evolution in more detail characteristic time scales are derived from an autocorrelation analysis. To compare with the numerical results of Wedemeyer et al. (2004), the whole field-of-view is divided into 22×22 pixel subfields with 50% overlap so that the subfield size corresponds to the simulation size which covers a $\sim 5.6 \times 5.6 \text{ Mm}^2$ region of the quiet Sun horizontally. Each individual subfield is allocated to the network or to the internetwork if 100% of the pixels coincide with network or internetwork pixels as defined by a mask similar to the one described in Sect. 4.1 but using an intensity map averaged over $\sim 75 \text{ min}$ (instead of the full $\sim 350 \text{ min}$). For computational reasons we performed the autocorrelation analysis for all subfields on the first 750 images ($\sim 75 \text{ min}$) only which provides a statistical relevance of the autocorrelation function up to 25 min.

In Fig. 5 each single autocorrelation function is plotted as a function of time for all internetwork (upper panel) and network
and only those that have intensities show the result for an integration time of 350 min. We display in dependence of integration time. Figure 7 (upper panels) fied brightenings, and compute the cumulative bright point num-

5.2. Image segmentation analysis
tation processing that provides a list of positions of all identi-
fied treatment (grey, LTE), whereas the dynamics and the related timescales are connected to already realistically modelled lower layers. An indirect qualitative comparison can be done if one considers the following effects: (a) the observed intensity originates from an extended formation height range instead of a geometrical height, (b) intensities refer to corrugated surfaces of optical depth instead of plane horizontal cuts like used for the model, (c) observations are subject to seeing (spatial smearing) and instrumental effects, in particular spatial resolution, (d) the simulations cover horizontally a limited range of ~6 Mm only and do not account for dynamic phenomena larger than these scales, (e) the simulations are purely hydrodynamic. The mean value of 52 sec derived from our observations is too short for being due to reversed granulation in the middle photosphere (70 sec in the model) but, considering the mentioned effects, is actually in a plausible range expected for (low) chromospheric layers.

Comparison with simulations. Evolutionary time scales based on horizontal cross-sections of gas temperature at fixed geometrical heights in the 3D hydrodynamical simulations of Wedemeyer et al. (2004) of the quiet sun are height dependent with values in the range 20-25 sec at chromospheric heights (~ 1000 km) and about 70 sec in the middle photosphere (Wedemeyer et al. 2003). The temperature amplitudes of the model chromosphere might be somewhat uncertain due to the simplified treatment (grey, LTE), whereas the dynamics and the related timescales are connected to already realistically modelled lower layers. An indirect qualitative comparison can be done if one considers the following effects: (a) the observed intensity originates from an extended formation height range instead of a geometrical height, (b) intensities refer to corrugated surfaces of optical depth instead of plane horizontal cuts like used for the model, (c) observations are subject to seeing (spatial smearing) and instrumental effects, in particular spatial resolution, (d) the simulations cover horizontally a limited range of ~6 Mm only and do not account for dynamic phenomena larger than these scales, (e) the simulations are purely hydrodynamic. The mean value of 52 sec derived from our observations is too short for being due to reversed granulation in the middle photosphere (70 sec in the model) but, considering the mentioned effects, is actually in a plausible range expected for (low) chromospheric layers.

visibility of the internetwork regions the cumulative maps are displayed on a logarithmic scale. The top left panel of Fig. 7 shows locations that are void of brightenings during the whole observing time. These are locations close-by the network and around strong magnetic elements where almost no brightenings appear nor move to. The map with an intensity threshold value of 1.2 I_{\text{mean}} (Fig. 7 upper panel, right), shows that there are also internetwork regions with a deficit in the occurrence of brightenings like the one in the lower left part of our FOV (extending 70 arcsec in x-direction and 40 arcsec in y-direction). We cannot exclude completely that these internetwork regions directly surrounding the network are a byproduct of the image segmentation process. Network bright points appear to be diffuse in intensity because of scattering effects in the solar atmosphere. As a consequence localised peaks produced by internetwork grains moving towards or emerging close by the network are harder to detect against the diffuse halo around the network bright points which results in a deficit of detected brightenings. The lower panel of Fig. 7 shows a zoom-in into the cumulative maps for integration times of 3 min (left) and 10 min (right) of integration. One minor tick corresponds to 2 arcsec.

5.2. Image segmentation analysis

We turn now to the question whether the internetwork brightenings occur at preferred locations. We use the image segmentation processing that provides a list of positions of all identified brightenings, and compute the cumulative bright point number in dependence of integration time. Figure 7 (upper panels) shows the result for an integration time of 350 min. We display two maps: if all the brightenings are taken into account (left) and only those that have intensities >1.2 I_{\text{mean}} (right). For better

![Fig. 7. Upper panels: Cumulative number of bright points after an integration time of 350 min (left) and with a threshold intensity of >1.2 I_{\text{mean}} (right). One minor tick corresponds to 5 arcsec. Lower panels: Zoom-in (by a factor of two) into the cumulative number of bright points (at coordinates X \approx 48 - 93 arcsec and Y = 4 - 49 arcsec as indicated by the white square in the upper panel, left) after 3 min (left) and 10 min (right) of integration. One minor tick corresponds to 2 arcsec.](image-url)
movie made of 3 min cumulative maps, shows evidence that the mesh pattern itself develops and migrates.

What is the physical mechanism that causes the bright grains to appear on an organised mesh? Simulations of solar convection show the organisation of strong downdraft fingers on a similar spatial scale (Stein & Nordlund, 1989). Strong turbulence is associated with these downdrafts. According to Rimmele et al. (1995) this turbulence gives rise to acoustic noise, which is a potential source for the \text{Ca} \text{~II} \kappa excitation. This would explain that the grains appear preferentially on a meso scale dictated by the downdraft fingers. The locations with a high number of accumulated bright points (brightest areas in Fig. \ref{fig:7} lower left panel) may well correspond to locations of such strong downdrafts. The bright points that appear in other locations may be generated by weaker turbulence in the more pronounced intergranular lanes that outline the meso-scale downdraft pattern. The latter could explain the slow migration of the pattern on time scales corresponding to granular evolution while the changes in the location of the more persistent bright points corresponds to the times over which the meso-scale downdrafts evolve. Note, however, that there is not necessarily a one-to-one correspondence between the location of the photospheric excitation and the resulting occurrence of a bright point (Hoekzema et al. 1998; Hoekzema & Rutten 1998; Leenaarts & Wedemeyer-Böhm 2005) because the waves may not propagate vertically.

5.3. Power maps

We compute the power over the \(~6\) hours at each pixel and apply a bandpass filter to extract the contributions from signal with a 3 min and 5 min periodicity. The bandpass filters are centred at 5.5 mHz and 3.33 mHz, with a FWHM of 0.4 mHz each. Large-scale intensity variations in time are eliminated by a linear fit to the data points. To apodise we apply a one-dimensional Hanning window function that covers 8\% of the data vector length and tapers the edges to zero.

Figure \ref{fig:8} shows the resulting power maps thus visualising the well-established effect that internetwork and network respond in a different way to wave motions most likely excited in the photosphere (Liu & Sheeley, 1971; Cram & Dame, 1983; Dame et al., 1983; Lites et al., 1993; 1994; Judge et al., 2001). The network participates predominantly in long-period oscillations (>5 min) while in the internetwork short-period oscillations (~3 min, and shorter) dominate the picture.

From the 3 min map we recover that there are regions that according to our definition clearly belong to the internetwork, but show a significant suppression of 3 min power. The most conspicuous area is the slanted one between \(X = 20 - 70\) arcsec and \(Y = 0 - 35\) arcsec (also apparent in Figures \ref{fig:3} left, and \ref{fig:7} upper panel, left). These voids have been observed before (e.g. Judge et al. 2001; Krüger et al. 2001) and named magnetic shadows by Judge et al. (2001). The phenomenon is ascribed to the spreading of the magnetic field with height and forming the canopy, shadowing its immediate surroundings and thus hampering (or modifying) upward propagating waves (see also Rosenthal et al. 2003; Bogdan et al. 2003). The shadows also appear around strong network bright points with a persistent magnetic signal as can be seen in the right panel of Fig. \ref{fig:8} and in addition as narrow lanes along the network as indicated by the map of the cumulative number of bright points (see Fig. \ref{fig:7} upper panel, left). Inspecting the radial behaviour of azimuthally averaged power spectra from the centre of the indicated network bright points (BP1-BP4 in Fig. \ref{fig:8} right) onwards we find the tendency that the integrated power is sharply decreasing with distance giving rise to the shadows around the bright points. Power increases again to average levels in the internetwork beyond the indicated circles.

6. Morphology

The results of image segmentation are visualised in terms of occurrence distributions separately for the internetwork and the network. Our network and internetwork masks (Sect. \ref{sec:morphology}) avoid regions that show mean intensities between 0.97 < \(I_{\text{mean}} < 1.02\) by definition. For comparison, we also show the occurrence distribution representative for all identified brightenings inside the FOV. Note that these occurrence distributions include brightenings with 0.97 < \(I_{\text{mean}} < 1.02\). Each occurrence distribution is normalised to the total number of identified brightenings.

Since we do not track each individual identified brightening in time, our sample of brightenings is not statistically independent. Therefore, and to be more independent from seeing conditions, only those filtergrams contribute to the distributions, that show a rms-contrast of 7.5\% higher than the value of a smoothed version of the contrast variation at the same time step (see Fig. \ref{fig:2}). This leads to a selection of 360 filtergrams with a mean cadence of 57 sec (not equidistant). We count only those structures that span more than two pixels in both cell size and effective diameter, and that have nearest-neighbour distances larger than 3 pixels. This leaves us with a sample of 206056 identified structures.
6.1. Size distributions

The image segmentation techniques (see Sect. 4) are used to derive three different size measures: effective diameters, cell sizes, and mean distances to next neighbour elements. Figure 9 displays the resulting occurrence distributions. They are single-peaked and asymmetric with a steep rise to the peak, followed by a gradual fall-off with size. All size measures peak almost at equal values for the network and the internetwork: we find typical effective diameters of 1.6 arcsec for both internetwork and network structures. We partly ascribe this to the limitations of the image segmentation process. Characteristic cell sizes are almost twice as large as effective diameters and peak around 2.8 arcsec and 3.0 arcsec while nearest-neighbour distances are typically 4.0 arcsec and 4.2 arcsec for the internetwork and network, respectively. Arithmetic mean values are larger than the characteristic values since they reflect the asymmetry of the corresponding distribution function. The mean value for the nearest-neighbour distance in the internetwork amounts to 5 arcsec quantifying and confirming the impression we got from the cumulative bright point number maps (see Fig. 7) that reveal the existence of a ~4-5 arcsec (judged by eye) mesh-like pattern in the internetwork.

6.2. Discussion

The simulations of Carlsson & Stein (1997) do reproduce the spectral and temporal behaviour of the Ca II H line profile quite well but are one-dimensional and thus cannot predict morphological properties. On the other hand, current three-dimensional radiative hydrodynamic simulations (Wedemeyer et al., 2004) have to neglect time-dependent Hydrogen ionisation and non-grey NLTE radiative transfer, so that no realistic Ca II line profiles can be synthesised.

Seeing conditions, differential image motion, and instrumental effects influence the spatial resolution and thus affect the image segmentation algorithm. We resolve structures that are larger than 0.7 arcsec. Spatially unresolved conglomerates of small structures are interpreted as a large single structure, which leads to an underestimation of the frequency of small-scale brightenings. We argue that this is predominantly the case for the internetwork. It is most likely that we predominantly detect the brightest structures and are unable to resolve their substructure. Underestimation of the occurrence of faint structures on the one side and not resolving the substructure of the rare brightest structures shifts e.g. the peak of the size distributions to larger scales. This might explain the similarities found in the size distribution functions of the network and the internetwork. To clarify this data sets with better spatial resolution are needed.

What is the physical mechanism that causes the bright grains to appear on an organised mesh (see Sect. 5.2). Simulations of solar convection show the organisation of strong downdraft fingers on a similar spatial scale (Stein & Nordlund, 1989). Strong turbulence is associated with these downdrafts. According to Rimmple et al. (1995) this turbulence gives rise to acoustic noise, which is a potential source for the Ca II K excitation. This would explain that the grains may appear preferentially on a meso scale dictated by the downdraft fingers. The locations with a high number of accumulated bright points (brightest areas in Fig. 7 lower left panel) may well correspond to locations of such strong downdrafts. The bright points that appear in other locations may be generated by weaker turbulence in the more pronounced intergranular lanes that outline the meso-scale downflow pattern. The latter could explain the slow migration of the pattern on time scales corresponding to granular evolution while the changes in the location of the more persistent bright points corresponds to the times over which the meso-scale downflows evolve. Note, however, that there is not necessarily a one-to-one correspondence between the location of the photospheric excitation and the resulting occurrence of a bright point (Hoekzema et al., 1998; Hoekzema & Rutten, 1998, Leenaarts & Wedemeier-Bohm, 2005) because the waves may not propagate vertically.

7. Conclusions

We analysed a long time sequence of narrowband Ca II K filtergrams to investigate the morphological, dynamical, and evolutionary, properties of the solar chromosphere separately for the internetwork and the network. Quantifying these properties is important for comparison with current and future numerical simulations.

From an autocorrelation analysis on small subfields we find average evolutionary time scales of 52 sec in the internetwork. Individual values can be found in the range 40-90 sec. The predicted time scales of temperature variations in the numerical simulations compare favourably with the observed time scales of intensity variations in the internetwork notwithstanding the
severe simplifications in the simulations. Differences between the two time scales may occur because of intensity variations are the result of variations of temperatures over a range of optical depths and these vary with height themselves. In addition, seeing and instrumentation affect spatial resolution leading to longer time scales.

To identify and isolate small-scale features we apply image segmentation techniques and find evidence for internetwork grain patternning on spatial scales of ~4-5 arcsec (see Sect. 5.2 Fig. 7). We argue that this pattern is related to photospheric downdrafts, which occur on similar spatial scales, through the enhanced excitation of acoustic waves that these downdrafts provide.

We separated network from the internetwork by a double-Gaussian decomposition of the intensity distribution averaged over the full duration of the observation. The validity of this decomposition is confirmed by the 3 min power map (Fig. 8) left in which the power deficit on the network coincides almost perfectly with the network mask. There is, however, one region (lower left) that appears dark in both the mean intensity map (Fig. 1 left) and the 3 min power map. We speculate that the region contains magnetic field that has not penetrated yet into the chromosphere. Either the magnetic field hinders the propagation of acoustic waves or these waves suffer mode conversion at low altitude before giving rise to Ca K emission. The latter is also the mechanism proposed for the small-scale shadows we see around strong network bright points (Fig. 8 right).

From a statistical analysis based on results from image segmentation we find that internetwork grains and network bright points appear to have very similar typical sizes (~1.6 arcsec). This is somewhat surprising because of their different physical nature as is evident from differences in the power spectra and the disparity in their temporal behaviour. We surmise that this has to be attributed in part to insufficient spatial resolution.

For better understanding of the statistical properties in the Ca K filtergrams and how they are related to physical properties in the solar atmosphere both simulations that allow realistic modelling the formation of Ca K, and observations with higher spatial and spectral resolution are required, preferably in the form of two-dimensional spectroscopy.

Acknowledgements. The VTT is operated by the Kiepenheuer-Institut für Sonnenphysik, Freiburg, Germany. Part of this work (AT) was supported by the DFG under grant, by NSF under grants ATM 00-86999 and AST MRI 00-79482, and by NASA under grant NAG 5-12782. We thank the referee Rob Rutten for extensive comments.

References

Ballesteros, E., Collados, M., Bonet, J. A., et al. 1996, A&ASS, 115, 353
Berger, T. E., Loefsdahl, M. G., Shine, R. S., & Title, A. M. 1998, ApJ, 495, 973
Berger, T. E. & Title, A. M. 1996, ApJ, 463, 365
Bogdan, T. J., Hansteen, M. C. V., McMurry, A., et al. 2003, ApJ, 599, 626
Brandt, P. N., Rutten, R. J., Shine, R. A., & Trujillo Bueno, J. 1992, in ASP Conf. Ser. 26: Cool Stars, Stellar Systems, and the Sun, 161–165
Carlsson, M. & Stein, R. 1992a, in ASP Conf. Ser. 26: Cool Stars, Stellar Systems, and the Sun, 515–526
Carlsson, M. & Stein, R. F. 1992b, ApJL, 397, L59
Carlsson, M. & Stein, R. F. 1997, ApJ, 481, 500
Cram, L. F. 1978, A&A, 70, 345
Cram, L. E. & Dame, L. 1983, ApJ, 272, 355
Dame, L., Gouttebroze, P., & Malherbe, J.-M. 1984, A&A, 130, 331
De Pontieu, B. 2002, ApJ, 569, 474
de Wijn, A. G., Rutten, R. J., Haverkamp, E. M. W. P., & Sutterlin, P. 2005, A&A, 441, 1183
Dougherty, E. R. 1992, in An Introduction to Morphological Image Processing. Edited by Edward R. Dougherty. SPIE-International Society for Optical Engineering (1992).

Fossum, A. & Carlsson, M. 2005, ApJ, 625, 556
Hoekzema, N. M., Rimmele, T. R., & Rutten, R. J. 2002, A&A, 390, 681
Hoekzema, N. M. & Rutten, R. J. 1998, A&A, 329, 725
Hoekzema, N. M., Rutten, R. J., Brandt, P. N., & Shine, R. A. 1998, A&A, 329, 276
Hofmann, J., Steffens, S., & Deubner, F.-L. 1996, A&A, 308, 192
Jensen, E. & Orrall, F. Q. 1963, ApJ, 138, 252
Judg, P. G. & Peter, H. 1998, Space Science Reviews, 85, 187
Judge, P. G., Tarbell, T. D., & Wilhelm, K. 2001, ApJ, 554, 424
Kneer, F. & von Uexkull, M. 1993, A&A, 274, 584
Krüger, J. M., Rutten, R. J., Lites, B. W., et al. 2001, A&A, 379, 1052
Leenaarts, J. & Wedemeyer-Böhm, S. 2005, A&A, 431, 687
Lites, B. W., Rutten, R. J., & Berger, T. E. 1999, ApJL, 517, 1013
Lites, B. W., Rutten, R. J., & Kalkofen, W. 1993, ApJL, 414, 345
Lites, B. W., Rutten, R. J., & Thomas, J. H. 1994, in Solar Surface Magnetism, 159–174
Liu, S. Y. & Sheeley, N. R. 1971, Sol. Phys., 20, 282
Liu, Y., Zhang, H., Ai, G., Wang, H., & Zirin, H. 1994, A&A, 283, 215
McIntosh, S. W., Bogdan, T. J., Cally, P. S., et al. 2001, ApJL, 548, L237
Muller, R. 1994, in Solar Surface Magnetism, 55–65
Neckel, H. 1999, Sol. Phys., 200, 421
Nindos, A. & Zirin, H. 1998, Sol. Phys., 179, 253
Nisenson, P., van Ballegooijen, A. A., de Wijn, A. G., & Sutterlin, P. 2003, ApJ, 587, 458
Orrall, F. Q. 1966, ApJ, 143, 917
Remling, B., Deubner, F.-L., & Steffens, S. 1996, A&A, 316, 196
Rimmele, T. R., Goode, P. R., Harold, E., & Stebbs, R. T. 1995, ApJL, 444, L119
Rosenthal, C. S., Bogdan, T. J., Carlsson, M., et al. 2002, ApJ, 564, 508
Rutten, R. J. 1999, in ASP Conf. Ser. 184: Third Advances in Solar Physics-Euroconference: Magnetic Fields and Oscillations, 181–200
Rutten, R. J. & Uitenbroek, H. 1991, Sol. Phys., 134, 15
Schmidt, W. & Kentischer, T. 1995, A&A, 313, 63
Skratlien, R., Stein, R. F., & Nordlund, Å. 2000, ApJ, 541, 468
Steffens, S., Hofmann, J., & Deubner, F. L. 1996, A&A, 307, 288
Stein, R. F. & Nordlund, Å. 1989, ApJL, 342, L95
Tritschler, A. & Schmidt, W. 2002, A&A, 388, 1048
Uitenbroek, H. 2006, in ASP Conf. Ser. 354: Solar MHD: Theory and Observations - a High Spatial Resolution Perspective, ed. H. Uitenbroek, J. Leibacher, & R. Stein, ??
von Uexkuell, M. & Kneer, F. 1995, A&AS, 294, 252
Wedemeyer, S. 2003, in PhD thesis, University of Kiel, ed. http://e-diss.uni-kiel.de/diss_2764
Wedemeyer, S., Freytag, O., Steffen, M., Ludwig, H.-G., & Holweg, H. 2004, A&A, 414, 1121
Wikstål, Ö., Hansteen, V. H., Carlsson, M., & Judge, P. G. 2000, ApJ, 531, 1150