Lipid Trait Variants and the Risk of Non-Hodgkin Lymphoma Subtypes: A Mendelian Randomization Study

Geffen Kleinern, Nicola J. Camp, Sonja I. Berndt, Brenda M. Birmann, Alexandre Nieters, Paige M. Bracci, James D. McKay, Hervé Ghyseniuëres, Qing Lan, Henrik Hjalgrim, Yolanda Benavente, Alain Monnereau, Sophia S. Wang, Yawei Zhang, Mark P. Purdue, Anne Zeniënich-Jacquotte, Graham G. Giles, Roel Vermeulen, Pierluigi Cocco, Demetrios Albanis, Lauren R. Teras, Angela R. Brooks-Wilson, Claire M. Vajdič, Eleanor Kane, Neil E. Caporaso, Karin E. Smedby, Gilles Salles, Joseph Vijai, Stephen J. Chanock, Christine F. Skibola, Nathaniel Rothman, Susan L. Slager, and James R. Cerhan

ABSTRACT

Background: Lipid traits have been inconsistently linked to risk of non-Hodgkin lymphoma (NHL). We examined the association of genetically predicted lipid traits with risk of diffuse large B-cell lymphoma (DLBCL), chronic lymphocytic leukemia (CLL), follicular lymphoma (FL), and marginal zone lymphoma (MZL) using Mendelian randomization (MR) analysis.

Methods: Genome-wide association study data from the InterLymph Consortium were available for 2,661 DLBCLs, 2,179 CLLs, 2,142 FLs, 824 MZLs, and 6,221 controls. SNPs associated (P < 5 x 10^-8) with high-density lipoprotein (HDL), n = 164, low-density lipoprotein (LDL), n = 137, total cholesterol (TC), n = 161, and triglycerides (TG), n = 123 were used as instrumental variables (IV) explaining 14.6%, 27.7%, 16.8%, and 12.8% of phenotypic variation, respectively. Associations between each lipid trait and NHL subtype were calculated using the MR inverse variance–weighted method, estimating odds ratios (OR) per standard deviation and 95% confidence intervals (CI).

Results: HDL was positively associated with DLBCL (OR = 1.14; 95% CI, 1.00–1.30) and MZL (OR = 1.09; 95% CI, 1.01–1.18), while TG was inversely associated with MZL risk (OR = 0.90; 95% CI, 0.83–0.99), all at nominal significance (P < 0.05). A positive trend was observed for HDL with FL risk (OR = 1.08; 95% CI, 0.99–1.19; P = 0.087). No associations were noteworthy after adjusting for multiple testing.

Conclusions: We did not find evidence of a clear or strong association of these lipid traits with the most common NHL subtypes. While these IVs have been previously linked to other cancers, our findings do not support any causal associations with these NHL subtypes.

Impact: Our results suggest that prior reported inverse associations of lipid traits are not likely to be causal and could represent reverse causality or confounding.

Introduction

Lipid traits such as high-density lipoprotein (HDL), low-density lipoprotein (LDL), total cholesterol (TC), and triglyceride (TG) have been suggested as non-Hodgkin lymphoma (NHL) risk factors, ever, results are inconclusive. Of the strongest studies addressing this hypothesis (1–3), a nested case–control study from the Multi-Ethnic Cohort (275 NHL cases and 549 controls) found inverse associations of TC and HDL, but not LDL or TG, with NHL risk (1). In the
Alpha-Tocopherol Beta-Carotene Cancer Prevention Study cohort study, HDL was inversely associated with NHL risk during the first 10 years of follow-up, but not with diagnoses after 10 years of follow-up (2). Recently, a large case-control study from the Cancer Research Network examined the relationship of cholesterol with lymphomagenesis in the 10 years prior to lymphoma diagnosis and found that lymphoma cases had lower estimated TC, HDL, and LDL levels than controls, but this was mainly observed in the 3 to 4 years prior to diagnosis/index date (3). The authors concluded that low cholesterol could indicate an altered systemic metabolic profile associated with the natural history of lymphoma prediagnosis and a potential biomarker of subclinical disease. However, it is not established whether the observed inverse association between TC and HDL and risk of NHL is a result of protective actions of these lipids and lipoproteins, confounding, or reverse causation.

Currently, single-nucleotide polymorphisms (SNP) associated with lipid traits explain 12% to 28% of the total variation in these traits in populations of European ancestry (4). Here, we apply a Mendelian randomization (MR) analysis to examine the possibility of a causal relationship between four genetically predicted lipid traits and the risk of four common NHL subtypes: diffuse large B-cell lymphoma (DLBCL), chronic lymphocytic leukemia (CLL), follicular lymphoma (FL), and marginal zone lymphoma (MZL).

Materials and Methods

Genome-wide association study data from the InterLymph Consortium were available for 2,661 DLBCLs, 2,179 CLLs, 2,142 FLs, 824 MZLs, and 6,221 controls of European descent (5–8). SNPs associated ($P < 5 \times 10^{-8}$) with HDL ($N = 164$), LDL ($N = 137$), TC ($N = 161$), and TG ($N = 123$) that were identified through the Global Lipids Genetics Consortium were used as instrumental variables (IV; ref. 4). SNPs were not in strong linkage disequilibrium ($r^2 < 0.05$). MR estimates for the association between each lipid trait and NHL subtype were calculated using the inverse variance-weighted (IVW), simple median, and weighted median methods, after testing for evidence of pleiotropy using MR–Egger regression to test for violation of the standard IV assumptions (9). Associations were reported as odds ratios (OR) per standard deviation increase in the MR genetic risk score along with 95% confidence intervals (CI). We defined statistical significance by a Bonferroni-corrected threshold of $P < 0.003$ ($0.05/16 = 0.003$, 16 comparisons of four lipid traits across four NHL subtypes).

Results

In our study sample, there was no evidence of violation of the assumptions for the associations tested using MR–Egger regression. We found at nominal significance ($P < 0.05$) that genetically predicted HDL was positively associated with DLBCL.
Table 1. Associations between B-cell NHL subtypes per SD increase in the MR genetic risk score for each lipid trait.

Trait	OR per SD Increase (95% CI)	MR-Egger	IVW	
LDL	1.14 (0.94–1.38)	0.176	1.14 (1.00–1.30)	0.049
HDL	0.97 (0.81–1.17)	0.716	0.98 (0.94–1.02)	0.273
TC	0.91 (0.74–1.12)	0.381	1.07 (0.91–1.26)	0.216
TG	1.02 (0.81–1.30)	0.862	1.08 (0.92–1.25)	0.437
MZL	1.04 (0.83–1.28)	0.779	1.04 (0.89–1.22)	0.585
FL	0.95 (0.82–1.09)	0.458	0.94 (0.84–1.05)	0.292
HDL	1.06 (0.94–1.18)	0.516	1.07 (0.96–1.18)	0.219
LDL	0.98 (0.84–1.14)	0.777	1.01 (0.90–1.13)	0.864
TC	1.03 (0.91–1.22)	0.483	0.98 (0.87–1.03)	0.157
TG	0.98 (0.84–1.14)	1.02	1.08 (1.00–1.10)	0.027
OR per SD Increase (95% CI)	0.008	0.90 (0.83–0.99)	0.025	

Abbreviations: CI, confidence interval; CLL, chronic lymphocytic leukemia; DLBCL, diffuse large B-cell lymphoma; FL, follicular lymphoma; HDL, high-density lipoprotein; LDL, low-density lipoprotein; MR, Mendelian randomization; MZL, marginal zone lymphoma; NHL, non-Hodgkin lymphoma; OR, odds ratio; SD, standard deviation; TC, total cholesterol; TG, triglyceride.

Discussion

Our large study of NHL found no evidence of a causal association for these lipid traits with the most common B-cell NHL subtypes. The amount of variance accounted for by these SNPs for the lipid traits is larger than for many MR studies, and the IVs have been previously associated with risk of NHL (OR = 0.90; 95% CI, 0.83–0.99; P = 0.025; Fig. 1C; Table 1). In addition, we observed a suggestive positive trend for genetically predicted HDL and FL risk (OR = 1.08; 95% CI, 0.99–1.19; P = 0.087; Fig. 1D; Table 1).

Using the simple median and weighted median methods did not change the conclusions (Fig. 1A–D). No associations were noteworthy after adjusting for multiple testing.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.
Lipid Traits and NHL Risk: A Mendelian Randomization Study

ELCCS: Leukaemia and Lymphoma Research.
ENGELA: Fondation ABC pour la Recherche sur le Cancer. Fondation de France. French Agency for Food, Environmental and Occupational Health & Safety (ANSES), the French National Cancer Institute (INCa).
EPIC: Coordinated Action (Contract #006438, SP23-CT-2005-006438). HuGeF (Human Genetics Foundation), Torino, Italy.
EPILYPHE: European Commission (grant references QLK4-CT-2000-00422 and FOOD-CT-2006-023103); the Spanish Ministry of Health (grant references CIBER-ESP, PI11/01810, RCEPS/03/09, RTCESP/03/10, and RTIC RD06/0020/0095), the Marató de TV3 Foundation (grant reference 051210), the Agencia de Gestió d'Ajuts Universitaris de Recerca – Generalitat de Catalunya (grant reference 2009SGR-456), which had no role in the data collection, analysis, or interpretation of the results; the NIH (contract ROI-CA-12400); the Compagnia di San Paolo – Programma Oncologia; the Federal Office for Radiation Protection grants StStC4261 and StStC4240; the José Carreras Leukaemia Foundation grant DJCLS-RL2-1223; the German Federal Ministry for Education and Research (BMBF-01 EO-1303); the Health Research Board, Ireland and Cancer Research Ireland, Czech Republic supported by MH C.Z. – DRO (MMCI, 02098805) and RECAMO, CZ.1.05/2.1.00/03.0101; and Fondation de France and Association de Recherche contre le Cancer. Spanish Ministry of Economy and Competitiveness - Carlos III Institute of Health cofunded by FEDER funds/European Regional Development Fund (ERDF) - a way to build Europe (grant numbers P110702810 and P110401219); Centro de Investigación Biomédica en Red: Epidemiología y Salud Pública (CIBERESP, Spain; grant sponsor: Agencia de Gestión d’Ajuts Universitaris de Recerca (AGAUR)), CERCA Programme/Generalitat de Catalunya for institutional support, grant number: 2017SGR1885.
GEC: NIH CA 118444.
GELA: The French National Cancer Institute (INCa).
HPFS: The HPFS was supported in part by NIH grants U01 CA167552, R01 CA149445, and R01 CA098122. We would like to thank the participants and staff of the Health Professionals Follow-Up Study for their valuable contributions as well as the following state cancer registries for their help: AL, AZ, AR, CA, CO, CT, DE, FL, GA, ID, IL, IN, IA, KY, LA, ME, MD, MA, MI, NE, NH, NJ, NY, NC, ND, OH, OK, OR, PA, RI, SC, TN, TX, VA, WA, and WY. The study protocol was approved by the institutional review boards of the Brigham and Women’s Hospital and Harvard T.H. Chan School of Public Health, and those of participating registries as required.
NSW: Was supported by grants from the Australian National Health and Medical Research Council (ID999092), the Cancer Council NSW, and the University of Sydney Faculty of Medicine.
NYUWHIS: NCI (UM1CA182934 and P01 CA106877) and by contracts from the Division of Cancer Prevention, NCI, NIH, DHHS.
SCALE: Swedish Cancer Society (2009/659), Stockholm County Council (20110209) and the Strategic Research Program in Epidemiology at Karolinska Institute, Swedish Cancer Society grant (02 6661), Danish Cancer Research Foundation Grant, Lundbeck Foundation Grant (R1W-A2364), Danish Cancer Society Grant (DP 08-155), NIH (5R01 CA69669-02), and Plan Denmark.
UCSF: The UCSF studies were supported by the NCI, NIH, CA1046282 and CA154643. The collection of cancer incidence data used in this study was supported by the California Department of Health Services as part of the statewide cancer reporting program mandated by California Health and Safety Code Section 30384; the NCI’s Surveillance, Epidemiology, and End Results Program under contract HHSN261201000140C awarded to the Cancer Prevention Institute of California, contract HHSN261201000035C awarded to the University of Southern California, contract HHSN261201000034C awarded to the Public Health Institute; and the Centers for Disease Control and Prevention’s National Program of Cancer Registries, under agreement #1USP DP000807-01 awarded to the Public Health Institute. The ideas and opinions expressed herein are those of the authors, and endorsement by the State of California, the California Department of Health Services, the NCI, or the Centers for Disease Control and Prevention or their contractors and subcontractors is intended nor should be inferred.
UTAH: NIH CA134674, partial support for data collection at the Utah site was made possible by the Utah Population Database (UPDB) and the Utah Cancer Registry (UCR), partial support for all datasets within the UPDB is provided by the Huntsman Cancer Institute (HCI) and the HCI Comprehensive Cancer Center Support Grant, P30 CA134523, and the UCR as supported in part by NCI contract HHSN261201000026C from the NCI SEER Program with additional support from the Utah State Department of Health and the University of Utah.
WHI: The WHI program is funded by the National Heart, Lung, and Blood Institute, NIH, U.S. Department of Health and Human Services through contracts HHSN268201600001C, HHSN268201600002C, HHSN268201600003C, and HHSN268201600004C. The authors thank the WHI investigators and staff for their dedication, and the study participants for making the program possible. A full listing of WHI investigators can be found at: http://www.whi.org/researchers/Documents%20%20Write%20a%20Paper/WHI%20Investigator%20Long%20List.pdf
YALE: NCI (CA62006).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received August 22, 2019; revised December 8, 2019; accepted February 7, 2020; published first February 27, 2020.

References
1. Morimoto Y, Conroy SM, Olberding NJ, Henning SM, Franke AA, Wilkens LR, et al. Erythrocyte membrane fatty acid composition, serum lipids, and non-Hodgkin’s lymphoma risk in a nested case-control study: the multiethnic cohort. Cancer Causes Control 2012;23: 1693–703.
2. Lim U, Nyvold T, Katki HA, Stolenberg-Solomon R, Weinstein SJ, Pietinen P, et al. Serum high-density lipoprotein cholesterol and risk of non-Hodgkin lymphoma. Cancer Res 2007;67:5569–74.
3. Alford SH, Divine G, Chao C, Habel LA, Janakiraman N, Wang Y, et al. Serum cholesterol trajectories in the 10 years prior to lymphoma diagnosis. Cancer Causes Control 2018;29:143–56.
4. Liu DJ, Pilsos GM, Yu H, Butterworth AS, Wang X, Mahajan A, et al. Exome-wide association study of plasma lipids in >300,000 individuals. Nat Genet 2017;49:1758–66.
5. Cerhan JR, Berndt SI, Vijai J, Quesenberry H, McKay J, Wang SS, et al. Genome-wide association study identifies multiple susceptibility loci for diffuse large B cell lymphoma. Nat Genet 2014;46:1233–8.
6. Berndt SI, Camp NJ, Skibola CF, Vijai J, Wang Z, Gu J, et al. Meta-analysis of genome-wide association studies discovers multiple loci for chronic lymphocytic leukemia. Nat Commun 2016;7:10933.

7. Skibola CF, Berndt SI, Vijai J, Conde L, Wang Z, Yeager M, et al. Genome-wide association study identifies five susceptibility loci for follicular lymphoma outside the HLA region. Am J Hum Genet 2014;95:462–71.

8. Vijai J, Wang Z, Berndt SI, Skibola CF, Slager SL, de Sanjose S, et al. A genome-wide association study of marginal zone lymphoma shows association to the HLA region. Nat Commun 2015;6:5751.

9. VanderWeele TJ, Tchetgen Tchetgen EJ, Cornelis M, Kraft P. Methodological challenges in mendelian randomization. Epidemiology 2014;25:427–35.
