DEMAZURE MODULES, CHARI-VENKATESH MODULES AND FUSION PRODUCTS

B. RAVINDER

Abstract. Let \(g \) be a finite-dimensional complex simple Lie algebra with highest root \(\theta \). Given two non-negative integers \(m, n \), we prove that the fusion product of \(m \) copies of the level one Demazure module \(D(1, \theta) \) with \(n \) copies of the adjoint representation \(e_0V(\theta) \) is independent of parameters and we give explicit defining relations. As a consequence, for \(g \) simply laced, we show that the fusion product of a special family of Chari-Venkatesh modules is again a Chari-Venkatesh module. We also get a nice description of the truncated Weyl modules with highest weight a multiple of \(\theta \).

1. INTRODUCTION

Let \(g \) be a finite-dimensional complex simple Lie algebra with highest root \(\theta \). The current algebra \(g[t] \) associated to \(g \) as a vector space is equal to \(g \otimes \mathbb{C}[t] \), where \(\mathbb{C}[t] \) is the polynomial ring in one variable. The degree grading on \(\mathbb{C}[t] \) gives a natural \(\mathbb{Z}_{\geq 0} \)-grading on \(g[t] \) and the Lie bracket is given in the obvious way such that the zeroth grade piece \(g \otimes 1 \) is isomorphic to \(g \). Let \(\hat{g} \) be the untwisted affine Lie algebra corresponding to \(g \). In this paper, we shall be concerned with the \(g[t] \)-stable Demazure modules of integrable highest weight representations of \(\hat{g} \). The Demazure modules are actually modules for a Borel subalgebra \(b \) of \(\hat{g} \). The \(g[t] \)-stable Demazure modules are known to be indexed by a pair \((l, \lambda)\), where \(l \) is a positive integer and \(\lambda \) is a dominant integral weight of \(g \) and we denote the corresponding module by \(D(l, \lambda) \) (see [7], [9]). We call \(D(l, \lambda) \) the level \(l \) Demazure module with weight \(\lambda \); it is in fact a finite-dimensional graded \(g[t] \)-module.

The study of the category of finite-dimensional graded \(g[t] \)-modules has been of interest in recent years for variety of reasons. An important construction in this category is that of the fusion product. The fusion product of finite-dimensional graded \(g[t] \)-modules \([5]\) is by definition, dependent on the given parameters. Many people have been working in recent years, to prove the independence of parameters for the fusion product of certain \(g[t] \)-modules, see for instance \([3], [4], [7], [9], [10]\). These works mostly considered the fusion product of Demazure modules of the same level and gave explicit defining relations for them. We ask the most natural question: what about the fusion product of different level Demazure modules? In this paper, we answer this question for some important cases; namely we prove (Corollary \([3]\)) that the fusion product of many copies of the level one Demazure module \(D(1, \theta) \) with many copies of the adjoint representation \(e_0V(\theta) \) is independent of parameters and we give explicit defining relations.

2010 Mathematics Subject Classification. 17B67 (17B10).

Key words and phrases. Current algebra, Demazure module, Chari-Venkatesh module, Truncated Weyl module, Fusion product.

The author acknowledges support from CSIR under the SPM Fellowship scheme.
independent of parameters, and we give explicit defining relations. We note that ev$_0 V(\theta)$ may be thought of as a Demazure module $D(l, \theta)$ of level $l \geq 2$.

More generally, the following is the statement of our main theorem (see §3 for notation).

Theorem 1. Let $k \geq 1$. For $0 \leq i \leq k$, we have the following:

1. A short exact sequence of $\mathfrak{g}[t]$-modules,

$$0 \to \tau_{2k+1-i} (D(1,k\theta)/ (x_\theta^- \otimes t^{2k-i}) \mathfrak{m}_{k\theta}) \xrightarrow{\phi^-} D(1,(k+1)\theta)/ (x_\theta^- \otimes t^{2k+2-i}) \mathfrak{m}_{(k+1)\theta}) \xrightarrow{\phi^+} D(1,(k+1)\theta)/ (x_\theta^- \otimes t^{2k+1-i}) \mathfrak{m}_{(k+1)\theta}) \to 0.$$

2. An isomorphism of $\mathfrak{g}[t]$-modules,

$$D(1,(k+1)\theta)/ (x_\theta^- \otimes t^{2k+2-i}) \mathfrak{m}_{(k+1)\theta}) \cong D(1,\theta)^* (k+1-i) * ev_0 V(\theta)^* i.$$

We obtain the following two important corollaries:

Corollary 2. Given $k \geq 1$ and $0 \leq i \leq k$, we have the following short exact sequence of $\mathfrak{g}[t]$-modules,

$$0 \to \tau_{2k+1-i} (D(1,\theta)^* (k-i) * ev_0 V(\theta)^* i) \to D(1,\theta)^* (k+1-i) * ev_0 V(\theta)^* i \to D(1,\theta)^* (k-i) * ev_0 V(\theta)^* (i+1) \to 0.$$

Corollary 3. Given $m, n \geq 0$, we have the following isomorphism of $\mathfrak{g}[t]$-modules,

$$D(1,\theta)^* m * ev_0 V(\theta)^* n \cong D(1,(m+n)\theta)/ (x_\theta^- \otimes t^{2m+n}) \mathfrak{m}_{(m+n)\theta}).$$

The Corollary 3 generalizes a result of Feigin (see [6, Corollary 2]), where he only considers the case $m = 0$. Theorem 1 Corollary 2 and Corollary 3 are proved in §4.

In [4], Chari and Venkatesh introduced a large collection of indecomposable graded $\mathfrak{g}[t]$-modules (which we call Chari-Venkatesh or CV modules) such that all Demazure modules $D(l, \lambda)$ belong to this collection. In the case that \mathfrak{g} is simply laced, Theorem 1 enables us to obtain (see Theorem 19) interesting exact sequences between CV modules and to show that the fusion product of a special family of CV modules is again a CV module. Theorem 19 generalizes results of Chari and Venkatesh (see [4, §6]), where they only consider the case $\mathfrak{g} = \mathfrak{sl}_2$.

Let $n \geq 1$, the truncated algebra $A_n = \mathbb{C}[t]/(t^n)$. We consider local Weyl modules $W_{A_n}(k\theta)$, $k \geq 1$ for the truncated current algebra $\mathfrak{g} \otimes A_n$. These modules are known to be finite-dimensional, but they are still far from being well understood; even their dimensions are not known. As a corollary to Theorem 1 we are able to obtain the following nice description about these truncated Weyl modules in terms of the local Weyl modules $W(k\theta), k \geq 1$ of the current algebra $\mathfrak{g}[t]$. These later modules are very well understood.

Corollary 4. Assume that \mathfrak{g} is simply laced. Given $k, n \geq 1$, we have the following isomorphism of $\mathfrak{g}[t]$-modules,

$$W_{A_n}(k\theta) \cong \begin{cases} W(\theta)^* (n-k) * ev_0 V(\theta)^* (2k-n) & k \leq n < 2k \\
W(k\theta) & n \geq 2k. \end{cases}$$
The Corollary is proved in §5.

Acknowledgements. The author thanks Vyjayanthi Chari, K.N. Raghavan and S. Viswanath for many helpful discussions and encouragement. Part of this work was done when the author was visiting the Centre de Recherche mathematique (CRM), Montreal, Canada, as a part of thematic semester on New Directions in Lie Theory. The author acknowledges the hospitality and financial support extended to him by CRM.

2. Preliminaries

Throughout the paper, \(\mathbb{C} \) denote the field of complex numbers, \(\mathbb{Z} \) the set of integers, \(\mathbb{Z}_{\geq 0} \) the set of non-negative integers, \(\mathbb{N} \) the set of positive integers and \(\mathbb{C}[t] \) the polynomial ring in the indeterminate \(t \).

2.1. Let \(\mathfrak{a} \) be a complex Lie algebra, \(U(\mathfrak{a}) \) the corresponding universal enveloping algebra. The current algebra associated to \(\mathfrak{a} \) is denoted by \(\mathfrak{a}[t] \) and defined as \(\mathfrak{a} \otimes \mathbb{C}[t] \), with the Lie bracket
\[
[a \otimes t^r, b \otimes t^s] = [a, b] \otimes t^{r+s} \quad \text{for all } a, b \in \mathfrak{a} \text{ and } r, s \in \mathbb{Z}_{\geq 0}.
\]

We let \(\mathfrak{a}[t]_+ \) be the ideal \(\mathfrak{a} \otimes t\mathbb{C}[t] \). The degree grading on \(\mathbb{C}[t] \) gives a natural \(\mathbb{Z}_{\geq 0} \)-grading on \(U(\mathfrak{a}[t]) \) and the subspace of grade \(s \)
\[
U(\mathfrak{a}[t])[s] = \text{span}\{(a_1 \otimes t^{r_1}) \cdots (a_k \otimes t^{r_k}) : k \geq 1, a_i \in \mathfrak{a}, r_i \in \mathbb{Z}_{\geq 0}, \sum r_i = s\} \quad \forall s \in \mathbb{N},
\]
and the subspace of grade zero \(U(\mathfrak{a}[t])[0] = U(\mathfrak{a}) \).

2.2. Let \(\mathfrak{g} \) be a finite-dimensional complex simple Lie algebra, with cartan subalgebra \(\mathfrak{h} \). Let \(R \) (resp. \(R^+ \)) be the set of roots (resp. positive roots) of \(\mathfrak{g} \) with respect to \(\mathfrak{h} \) and \(\theta \in R^+ \) be the highest root in \(R \). There is a non-degenerate, symmetric, Weyl group invariant bilinear form \((.,.) \) on \(\mathfrak{h}^* \), which we assume to be normalized so that the square length of a long root is two. For \(\alpha \in R \), \(\alpha^\vee \in \mathfrak{h} \) denotes the corresponding co-root and we set \(d_\alpha = 2/(\alpha|\alpha) \). For \(\alpha \in R \), \(\mathfrak{g}_\alpha \) be the corresponding root space of \(\mathfrak{g} \) and fix non-zero elements \(x_\alpha^+ \in \mathfrak{g}_{\pm \alpha} \) such that \([x_\alpha^+, x_\alpha^-] = \alpha^\vee \). We set \(n^\pm = \oplus_{\alpha \in R^+} \mathfrak{g}_{\pm \alpha} \).

Let \(P^+ \) be the set of dominant integral weights \(\mathfrak{q} \). For \(\lambda \in P^+, V(\lambda) \) be the corresponding finite-dimensional irreducible \(\mathfrak{g} \)-module generated by an element \(v_\lambda \) with the following defining relations:
\[
x_\alpha^+ v_\lambda = 0, \quad h v_\lambda = \langle \lambda, h \rangle v_\lambda, \quad (x_\alpha^-)^{\langle \lambda, \alpha^\vee \rangle + 1} v_\lambda = 0 \quad \text{for all } \alpha \in R^+, h \in \mathfrak{h}.
\]

2.3. A graded \(\mathfrak{g}[t] \)-module is a \(\mathbb{Z} \)-graded vector space
\[
V = \bigoplus_{r \in \mathbb{Z}} V[r] \quad \text{such that } (x \otimes t^r)V[r] \subset V[r+s], \quad r \in \mathbb{Z}, s \in \mathbb{Z}_{\geq 0}.
\]

For \(\mu \in \mathfrak{h}^* \), an element \(v \) of a graded \(\mathfrak{g}[t] \)-module \(V \) is said to be of weight \(\mu \), if \((h \otimes 1) v = \langle \mu, h \rangle v \) for all \(h \in \mathfrak{h} \). We define a morphism between two graded \(\mathfrak{g}[t] \)-modules as a degree zero morphism of \(\mathfrak{g}[t] \)-modules. For \(r \in \mathbb{Z} \), let \(\tau_r \) be the grade shift operator: if \(V \) is a graded \(\mathfrak{g}[t] \)-module then \(\tau_r V \) is the graded \(\mathfrak{g}[t] \)-module with the graded pieces shifted uniformly by \(r \) and the action of \(\mathfrak{g}[t] \) unchanged. For any graded \(\mathfrak{g}[t] \)-module \(V \) and a subset \(S \) of \(V \), \(<S> \) denotes the submodule of \(V \) generated
by S. For $\lambda \in P^+$, $ev_0 V(\lambda)$ be the irreducible graded $g[t]$-module such that $ev_0 V(\lambda)[0] \cong g V(\lambda)$ and $ev_0 V(\lambda)[r] = 0 \forall r \in \mathbb{N}$. In particular, $g[t]_+(ev_0 V(\lambda)) = 0$.

2.4. For $r, s \in \mathbb{Z}_{\geq 0}$, we denote

$$S(r, s) = \{(b_p)_{p \geq 0} : b_p \in \mathbb{Z}_{\geq 0}, \sum_{p \geq 0} b_p = r, \sum_{p \geq 0} pb_p = s\}.$$

For $\alpha \in R^+$ and $r, s \in \mathbb{Z}_{\geq 0}$, we define an element $x_\alpha^r (r, s) \in U(g[t])[s]$ by

$$x_\alpha^r (r, s) = \sum_{(b_p) \in S(r, s)} (x_\alpha^r \otimes 1)^{(b_0)}(x_\alpha^r \otimes t)^{(b_1)} \cdots (x_\alpha^r \otimes t^s)^{(b_s)},$$

(2.1)

where for any non-negative integer b and any $x \in g[t]$, set $x^{(b)} = x^b / b!$.

The following was proved in [S] (see also [4, Lemma 2.3]).

Lemma 5. Given $s \in \mathbb{N}, r \in \mathbb{Z}_{\geq 0}$ and $\alpha \in R^+$, we have

$$(x_\alpha^+ \otimes t)^s (x_\alpha^- \otimes 1)^s + (-1)^s x_\alpha^- (r, s) \in U(g[t])n^+[t] \oplus U(n^-[t])h[t]_+.$$

3. Weyl, Demazure modules and fusion product

In this section, we recall the definitions of local Weyl modules, level one Demazure modules and fusion products. We also understand them for multiples of θ.

3.1. Weyl module. The definition of the local Weyl module was given originally in [2], later in [11] and [5].

Definition 6. Given $\lambda \in P^+$, the local Weyl module $W(\lambda)$ is the cyclic $g[t]$-module generated by an element w_λ, with following defining relations:

$$n^+[t] w_\lambda = 0, \quad (h \otimes t^s) w_\lambda = (\lambda, h) \delta_{s,0}, \quad s \geq 0, \quad h \in \mathfrak{h},$$

$$(x_\alpha^- \otimes 1)^{(\lambda, \alpha^-)+1} w_\lambda = 0, \quad \alpha \in R^+.$$

(3.1)

(3.2)

We note that the relation (3.2) implies

$$(x_\alpha^- \otimes t^{(\lambda, \alpha^-)}) w_\lambda = 0, \quad \alpha \in R^+,$$

(3.3)

which is easy to see from Lemma 5. We set the grade of w_λ to be zero; then $W(\lambda)$ becomes a $\mathbb{Z}_{\geq 0}$-graded module with

$$W(\lambda)[0] \cong g V(\lambda).$$

Moreover, $ev_0 V(\lambda)$ is the unique graded irreducible quotient of $W(\lambda)$.

We now specialize to the case $\lambda \in \mathbb{N}\theta$, and obtain some further useful relations that hold in such $W(\lambda)$.

Lemma 7. Let $k \in \mathbb{N}$. The following relations hold in the local Weyl module $W((k + 1)\theta)$:

1. $(x_\theta^- \otimes 1)^{2k+1} (x_\theta^- \otimes t^{2k+1-i}) w_{(k+1)\theta} = 0 \forall 0 \leq i \leq k$.

2. $(x_\theta^- \otimes t^m) (x_\theta^- \otimes t^{m+1}) w_{(k+1)\theta} \leq (x_\theta^- \otimes t^{m+2}) w_{(k+1)\theta} \forall m \geq k$.

Proof. To prove part (1), consider \((x_\theta^+ \otimes t^{2k+1-i}) (x_\theta^- \otimes 1)^{2k+3} w_{(k+1)}^{(k+1)}\). Since \((x_\theta^+ \otimes t^{2k+1-i}) w_{(k+1)}^{(k+1)} = 0\), we get
\[
(x_\theta^+ \otimes t^{2k+1-i}) (x_\theta^- \otimes 1)^{2k+3} w_{(k+1)}^{(k+1)} = [x_\theta^+ \otimes t^{2k+1-i}, (x_\theta^- \otimes 1)^{2k+3}] w_{(k+1)}^{(k+1)}
= \sum_{j=1}^{2k+3} (x_\theta^- \otimes 1)^{j-1} (\theta^\vee \otimes t^{2k+1-i}) (x_\theta^- \otimes 1)^{2k+3-j} w_{(k+1)}^{(k+1)}.
\]
Since \((\theta^\vee \otimes t^{2k+1-i}) w_{(k+1)}^{(k+1)} = 0\), we may replace \((\theta^\vee \otimes t^{2k+1-i}) (x_\theta^- \otimes 1)^{2k+3-j}\) by
\[
[\theta^\vee \otimes t^{2k+1-i}, (x_\theta^- \otimes 1)^{2k+3-j}] = (-2)(2k + 3 - j)(x_\theta^- \otimes 1)^{2k+2-j}(x_\theta^- \otimes t^{2k+1-i}).
\]
After simplifying, we get
\[
(x_\theta^+ \otimes t^{2k+1-i}) (x_\theta^- \otimes 1)^{2k+3} w_{(k+1)}^{(k+1)} = (-1)(2k + 2)(2k + 3)(x_\theta^- \otimes 1)^{2k+1} (x_\theta^- \otimes t^{2k+1-i}) w_{(k+1)}^{(k+1)}.
\]
Now, using \((x_\theta^- \otimes 1)^{2k+3} w_{(k+1)}^{(k+1)} = 0\) in \(W((k+1)\theta)\), completes the proof of part (1). Part (2) follows easily by putting \(r = 2, s = 2m + 1\) and \(\alpha = \theta\) in Lemma 5 and using the fact that \((x_\theta^- \otimes 1)^{2m+3} w_{(k+1)}^{(k+1)} = 0\) for \(m \geq k\) by (3.2). \(\square\)

3.2. Level one Demazure module. Let \(\lambda \in P^+\) and \(\alpha \in R^+\) with \(\langle \lambda, \alpha^\vee \rangle > 0\). Let \(s_\alpha, m_\alpha \in \mathbb{N}\) be the unique positive integers such that
\[
\langle \lambda, \alpha^\vee \rangle = (s_\alpha - 1)d_\alpha + m_\alpha, \quad 0 < m_\alpha \leq d_\alpha.
\]
If \(\langle \lambda, \alpha^\vee \rangle = 0\), set \(s_\alpha = 0 = m_\alpha\). We take the following as a definition of the level one Demazure module.

Definition 8. (see [4] Corollary 3.5) The level one Demazure module \(D(1, \lambda)\) is the graded quotient of \(W(\lambda)\) by the submodule generated by the union of following two sets:
\[
\{(x_\alpha^- \otimes t^{s_\alpha}) w_\lambda : \alpha \in R^+ \text{ such that } d_\alpha > 1\}
\]
\[
\{(x_\alpha^- \otimes t^{s_\alpha-1})^2 w_\lambda : \alpha \in R^+ \text{ such that } d_\alpha = 3 \text{ and } m_\alpha = 1\}. \tag{3.5}
\]
In particular, for \(\mathfrak{g}\) simply laced, \(D(1, \lambda) \cong_{\mathfrak{gl}\theta} W(\lambda)\). We denote by \(\overline{w}_\lambda\), the image of \(w_\lambda\) in \(D(1, \lambda)\).

The following proposition gives explicit defining relations for \(D(1, k\theta)\).

Proposition 9. Given \(k \geq 1\), the level 1 Demazure module \(D(1, k\theta)\) is the graded \(\mathfrak{g}[t]\)-module generated by an element \(\overline{w}_{k\theta}\), with the following defining relations:
\[
\mathfrak{n}^+[t] \overline{w}_{k\theta} = 0, \quad (h \otimes t^s) \overline{w}_{k\theta} = (k\theta, h) \delta_{s,0}, \quad s \geq 0, \quad h \in \mathfrak{h},
\]
\[
(x_\alpha^- \otimes 1) \overline{w}_{k\theta} = 0, \quad \alpha \in R^+, \quad (\theta | \alpha) = 0,
\]
\[
(x_\alpha^- \otimes 1)^{kd_\alpha+1} \overline{w}_{k\theta} = 0, \quad (x_\alpha^- \otimes t^k) \overline{w}_{k\theta} = 0, \quad \alpha \in R^+, \quad (\theta | \alpha) = 1,
\]
\[
(x_\theta^- \otimes 1)^{2k+1} \overline{w}_{k\theta} = 0.
\]
Proof. Observe that, from the abstract theory of root systems $(\theta|\alpha) = 0$ or $1 \forall \alpha \in \mathbf{R}^+ \setminus \{\theta\}$. This implies that $(k\theta, \alpha') = 0$ or $kd_\alpha \forall \alpha \in \mathbf{R}^+ \setminus \{\theta\}$. Hence the relations (3.3) do not occur in $D(1, k\theta)$ and the relations (3.4) are

$$(x_{\alpha}^- \otimes t^k) \overline{m}_{k\theta} = 0, \quad \alpha \in \mathbf{R}^+, \quad (\theta|\alpha) = 1.$$

For a long root $\alpha \in \mathbf{R}^+$ with $(\theta|\alpha) = 1$, by (3.3) it follows that $(x_{\alpha}^- \otimes t^k) \overline{m}_{k\theta} = 0$. Now the other relations are precisely the defining relations of $W(k\theta)$. This proves Proposition 9. \hfill \Box

We record below a well-known fact, for later use:

$$D(1, \theta) \cong \mathbf{V}(\theta) \oplus \mathbb{C}.$$

In particular,

$$\dim D(1, \theta) = \dim \mathbf{V}(\theta) + 1.$$

(3.6)

The following is a crucial lemma, which we use in proving Theorem 11.

Lemma 10. Let $k \geq 1$ and $0 \leq i \leq k$. The following relations hold in the module $D(1, (k+1)\theta)$:

1. $(x_{\alpha}^- \otimes 1)^{kd_\alpha+1} (x_{\theta}^- \otimes t^{2k+1-i}) \overline{m}_{(k+1)\theta} = 0, \quad \forall \alpha \in \mathbf{R}^+, \quad (\theta|\alpha) = 1.$

2. $(x_{\alpha}^- \otimes t^k) (x_{\theta}^- \otimes t^{2k+1-i}) \overline{m}_{(k+1)\theta} < (x_{\theta}^- \otimes t^{2k+2-i}) \overline{m}_{(k+1)\theta}, \quad \forall \alpha \in \mathbf{R}^+, \quad (\theta|\alpha) = 1.$

3. $(x_{\theta}^- \otimes t^{2k-i}) (x_{\theta}^- \otimes t^{2k+1-i}) \overline{m}_{(k+1)\theta} < (x_{\theta}^- \otimes t^{2k+2-i}) \overline{m}_{(k+1)\theta}.$

Proof. Let $\alpha \in \mathbf{R}^+$ with $(\theta|\alpha) = 1$. This implies that $\theta - \alpha$ is also a root of \mathfrak{g} and $(\theta|\theta - \alpha) = 1$. We now prove part (1). Consider $(x_{\alpha}^+ \otimes 1)^{d_\alpha} (x_{\theta}^- \otimes 1)^{(k+1)d_\alpha+1} (x_{\theta}^- \otimes t^{2k+1-i}) \overline{m}_{(k+1)\theta}$. Observe that $(x_{\theta}^- \otimes t^{2k+1-i}) \overline{m}_{(k+1)\theta}$ is an element of weight $k\theta$. Further $(x_{\alpha}^- \otimes 1) (x_{\theta}^- \otimes t^{2k+1-i}) \overline{m}_{(k+1)\theta} = 0$, since $(x_{\alpha}^- \otimes 1) \overline{m}_{(k+1)\theta} = 0$ and $(x_{\theta}^- \otimes t^{2k+1-i}) \overline{m}_{(k+1)\theta} = 0$ for all $0 \leq i \leq k$. Considering the copy of \mathfrak{sl}_2 spanned by $x_{\alpha}^+ \otimes 1, x_{\alpha}^- \otimes 1, \alpha' \otimes 1$, we obtain by standard \mathfrak{sl}_2 arguments that:

$$(x_{\alpha}^- \otimes 1)^{d_\alpha} (x_{\theta}^- \otimes 1)^{(k+1)d_\alpha+1} (x_{\theta}^- \otimes t^{2k+1-i}) \overline{m}_{(k+1)\theta} = (-1)^{d_\alpha} (x_{\alpha}^- \otimes 1)^{(kd_\alpha+1)} (x_{\theta}^- \otimes t^{2k+1-i}) \overline{m}_{(k+1)\theta},$$

where for any non-negative integer b and any $x \in \mathfrak{g}[t]$, recall $x^{(b)} = x^b / b!$. Now part (1) follows by using $[x_{\alpha}^+, x_{\theta}^-] = 0$ and $(x_{\alpha}^- \otimes 1)^{(k+1)d_\alpha+1} \overline{m}_{(k+1)\theta} = 0$. We now prove part (2). Putting $r = 2, s = (3k+1-i)$ and $\alpha = \theta$ in Lemma 5 we get

$$(x_{\theta}^- \otimes t^k) (x_{\theta}^- \otimes t^{2k+1-i}) \overline{m}_{(k+1)\theta} - \sum_{k+1 \leq p \leq q \leq 2k+i} (x_{\theta}^- \otimes t^p) (x_{\theta}^- \otimes t^q) \overline{m}_{(k+1)\theta} < (x_{\theta}^- \otimes t^{2k+2-i}) \overline{m}_{(k+1)\theta},$$

(3.7) since $(x_{\theta}^- \otimes 1)^{3k+3-i} \overline{m}_{(k+1)\theta} = 0 \forall 0 \leq i \leq k$. Now we act both sides of (3.7) by $x_{\theta}^+ - \alpha$ and use the relations $(x_{\alpha}^- \otimes t^r) \overline{m}_{(k+1)\theta} = 0$ for all $r \geq (k+1)$, gives part (2). Part (3) is immediate from the part (2) of Lemma 7. \hfill \Box
3.3. **Fusion product.** In this subsection, we recall the definition of the fusion product of finite-dimensional graded cyclic \(g[t] \)-modules given in [5] and give some elementary properties.

For a cyclic \(g[t] \)-module \(V \) generated by \(v \), we define a filtration \(F^rV, r \in \mathbb{Z}_{\geq 0} \) by

\[
F^rV = \sum_{0 \leq s \leq r} U(\mathfrak{g}[t])[s] v.
\]

We say \(F^{-1}V \) is the zero space. The associated graded space \(\text{gr} V = \bigoplus_{r \geq 0} F^rV/F^{r-1}V \) naturally becomes a cyclic \(g[t] \)-module generated by \(v + F^{-1}V \), with action given by

\[
(x \otimes t^s)(w + F^{r-1}V) := (x \otimes t^s) w + F^{r+s-1}V \quad \forall \ x \in \mathfrak{g}, \ w \in F^rV, \ r, s \in \mathbb{Z}_{\geq 0}.
\]

Observe that, \(\text{gr} V \cong V \) as \(\mathfrak{g} \)-modules.

The following lemma is trivial but useful.

Lemma 11. Let \(V \) be a cyclic \(g[t] \)-module. For \(r, s \in \mathbb{Z}_{\geq 0} \), the following equality holds in the quotient space \(F^{r+s}V/F^{r+s-1}V \).

\[
(\otimes t^s)(w + F^{r-1}V) = ((\otimes (t - a_1) \cdots (t - a_s)) w) + F^{r+s-1}V,
\]

for all \(a_1, \ldots, a_s \in \mathbb{C} \), \(x \in \mathfrak{g} \), \(w \in F^rV \).

Given a \(g[t] \)-module \(V \) and \(z \in \mathbb{C} \), we define an another \(g[t] \)-module action on \(V \) as follows:

\[
(\otimes t^s)v = (\otimes (t + z)^s)v, \quad x \in \mathfrak{g}, \ v \in V, \ s \in \mathbb{Z}_{\geq 0}.
\]

We denote this new module by \(V^z \).

Let \(V_i \) be a finite-dimensional cyclic graded \(g[t] \)-module generated by \(v_i \), for \(1 \leq i \leq m \), and let \(z_1, \ldots, z_m \) be distinct complex numbers. We denote

\[
V = V_1^{z_1} \otimes \cdots \otimes V_m^{z_m},
\]

the corresponding tensor product of \(g[t] \)-modules. It is easily checked (see [5, Proposition 1.4]) that \(V \) is cyclic \(g[t] \)-module generated by \(v_1 \otimes \cdots \otimes v_m \). The associated graded space \(\text{gr} V \) is called the fusion product of \(V_1, \ldots, V_m \) w.r.t. parameters \(z_1, \ldots, z_m \), and is denoted by \(V_1^{z_1} \ast \cdots \ast V_m^{z_m} \). We denote \(v_1 \ast \cdots \ast v_m = (v_1 \otimes \cdots \otimes v_m) + F^{-1}V \), a generator of \(\text{gr} V \). For ease of notation we mostly, just write \(V_1 \ast \cdots \ast V_m \) for \(V_1^{z_1} \ast \cdots \ast V_m^{z_m} \). But unless explicitly stated, it is assumed that the fusion product does depend on these parameters.

The following lemma is very useful in showing some elements in fusion products are zero.

Lemma 12. Given \(1 \leq i \leq m \), let \(V_i \) be a finite-dimensional cyclic graded \(g[t] \)-module generated by \(v_i \), and \(s_i \in \mathbb{Z}_{\geq 0} \). Let \(x \in \mathfrak{g} \). If \((\otimes t^{s_i}) v_i = 0 \ \forall \ 1 \leq i \leq m \), then \((\otimes t^{s_1 + \cdots + s_m}) v_1 \ast \cdots \ast v_m = 0 \).

Proof. Let \(z_1, \ldots, z_m \) be distinct complex numbers and let \(V = V_1^{z_1} \otimes \cdots \otimes V_m^{z_m} \). By using Lemma 11 we get the following equality in \(\text{gr} V \),

\[
(\otimes t^{s_1 + \cdots + s_m})(v_1 \otimes \cdots \otimes v_m) + F^{-1}V = ((\otimes (t - z_1)^{s_1} \cdots (t - z_m)^{s_m}) v_1 \otimes \cdots \otimes v_m) + F^{s_1 + \cdots + s_m - 1}V.
\]

Now proof follows by the definition of fusion product. \(\square \)
4. Proof of the main theorem

In this section, we prove the existence of maps ϕ^+ and ϕ^- and then prove our main theorem (Theorem 1).

4.1. Given $k \geq 1$ and $0 \leq i \leq k$, we denote

$$V_{i,k} = D(1,k\theta)/ < (x_\theta^{-} \otimes t^{2k-i}) \|_{k\theta},$$

and $\overline{v}_{i,k}$ be the image of $v_{i,k}$ in $V_{i,k}$.

Using Proposition 9, $V_{i,k}$ is the cyclic graded $g[t]$-module generated by the element $\overline{v}_{i,k}$, with the following defining relations:

\[(x_\alpha^+ \otimes t^s) \overline{v}_{i,k} = 0, \quad s \geq 0, \quad \alpha \in R^+, \quad (4.1)\]
\[(h \otimes t^s) \overline{v}_{i,k} = (k\theta, h)\delta_{s,0}, \quad s \geq 0, \quad h \in \mathfrak{h}, \quad (4.2)\]
\[(x_\alpha^- \otimes 1) \overline{v}_{i,k} = 0, \quad \alpha \in R^+, \quad (\theta|\alpha) = 0, \quad (4.3)\]
\[(x_\alpha^- \otimes 1)^{kd_\alpha+1} \overline{v}_{i,k} = 0, \quad (x_\alpha^- \otimes t^k) \overline{v}_{i,k} = 0, \quad \alpha \in R^+, \quad (\theta|\alpha) = 1, \quad (4.4)\]
\[(x_\theta^- \otimes 1)^{2k+1} \overline{v}_{i,k} = 0, \quad (x_\theta^- \otimes t^{2k-i}) \overline{v}_{i,k} = 0. \quad (4.5)\]

Existence of ϕ^+ is trivial, which we record below.

Proposition 13. The map $\phi^+ : V_{i,k+1} \rightarrow V_{i+1,k+1}$ which takes $\overline{v}_{i,k+1} \rightarrow \overline{v}_{i+1,k+1}$ is a surjective morphism of $g[t]$-modules with $\ker \phi^+ = < (x_\theta^- \otimes t^{2k+1-i}) \overline{v}_{i,k+1} >$.

Now we prove the existence of ϕ^- in the following proposition.

Proposition 14. There exist a surjective morphism of $g[t]$-modules such that

$$\phi^- : \tau_{2k+1-i} V_{i,k} \rightarrow \ker \phi^+, \quad \phi^-(\overline{v}_{i,k}) = (x_\theta^- \otimes t^{2k+1-i}) \overline{v}_{i,k+1}.$$

Proof. We only need to show that, $\phi^-(\overline{v}_{i,k})$ satisfies the defining relations of $V_{i,k}$. We start with the relation (4.4). First, for $\alpha = \theta$ it is clear. Let $\alpha \in R^+ \setminus \{\theta\}$; if $(\theta|\alpha) = 0$ then also it is clear. If $(\theta|\alpha) = 1$ then $(\theta - \alpha) \in R^+ \setminus \{\theta\}$ and $(\theta|\theta - \alpha) = 1$, now it is clear from the relations $(x_\alpha^- \otimes t^s) \overline{v}_{i,k+1} = 0$ for all $r \geq (k+1)$ in $V_{i,k+1}$. The relations (4.2), (4.3) are trivially satisfy by $\phi^-(\overline{v}_{i,k})$. Finally the last two relations (4.4), (4.5) are also satisfied by $\phi^-(\overline{v}_{i,k})$; in fact these are exactly the statements of Lemma 10 and Lemma 7.

4.2. The existence of the surjective maps ϕ^+ and ϕ^-, give the following:

$$\dim V_{i,k+1} \leq \dim V_{i,k} + \dim V_{i+1,k+1}. \quad (4.6)$$

The following proposition helps in proving the reverse inequality.

Proposition 15. The map $\psi : V_{i,k+1} \rightarrow D(1,\theta)^{s(k+1-i)} \ast ev_0 V(\theta)^{s_i}$ such that $\psi(\overline{v}_{i,k+1}) = \overline{w}_{\theta}^{s(1+k-1)} \ast v_{\theta}^{s_i}$ is well-defined and surjective morphism of $g[t]$-modules. In particular,

$$\dim V_{i,k+1} \geq (\dim D(1,\theta))^{k+1-i}(\dim V(\theta)^{s_i}). \quad (4.7)$$

Proof. We only need to show that, $\psi(\overline{v}_{i,k+1})$ satisfies the defining relations of $V_{i,k+1}$. But they follow easily from the relations $(x_\alpha^- \otimes 1)^{(k+1)}(\theta, \alpha^{(1)})^{1} \overline{w}_{\theta}^{s(1+k-1)} \otimes v_{\theta}^{s_i} = 0 \forall \alpha \in R^+ \in D(1,\theta)^{(k+1-1)} \otimes ev_0 V(\theta)^{s_i}$. Further from Lemma 12 by using the defining relations of $D(1,\theta)$ and $ev_0 V(\theta)$. \[\square\]
We record below a result from [6] in our notation, and use this in proving our main theorem.

Proposition 16. [6] Corollary 2] Given \(k \geq 1 \), the following is an isomorphism of \(g[t] \)-modules,

\[
ev_0 V(\theta)^k \cong D(1,k\theta)/ \langle x_0^k \otimes t^k \rangle.
\]

4.3. We now prove Theorem 1 proceeding by induction on \(k \). First, for \(k = 1 \), we prove Theorem 1 for \(i = 0 \), observe that \(V_{1,1} \cong g[t] \ev_0 V(\theta) \). Using Proposition 16, \((4.6) \), \((3.6) \) and \((4.7) \) this case follows. Let \(i = 0 \), now observe that \(V_{0,1} \cong g[t] D(1,\theta) \). Using part (2) of Theorem 1 for \(i = 1 \) and \(k = 1 \), \((4.6) \), \((3.6) \) and \((4.7) \) this case also follows. Now let \(k \geq 2 \), and assume Theorem 1 for \((k-1) \). We prove for \(k \), proceeding by induction on \(i \). For \(i = k \), it follows from Proposition 16, \((4.6) \), \((3.6) \) and \((4.7) \). Now let \(i \leq (k-1) \), and assume Theorem 1 for \((i+1) \). We now prove for \(i \). Using part (2) of Theorem 1 for \((i+1) \) and \(k \), also for \(i \) and \((k-1) \), and \((4.6) \), we get

\[
\dim V_{i,k+1} \leq (\dim D(1,\theta))^{k-i}(\dim V(\theta))^{i+1} + (\dim D(1,\theta))^{k-i}(\dim V(\theta))^i.
\]

Together with \((3.6) \), we see

\[
\dim V_{i,k+1} \leq (\dim D(1,\theta))^{k+1-i}(\dim V(\theta))^i.
\]

Now proof of Theorem 1 in this case follows by \((1.7) \). This completes proof of Theorem 1.

Combining parts (1) and (2) of Theorem 1 we get Corollary 2. Using part (2) of Theorem 1 and Proposition 16 we obtain Corollary 3.

5. CV modules and truncated Weyl modules

We start this section by recalling the definition of CV modules given in [4]. For \(g \) simply laced, we shall restate Theorem 1 in terms of these modules. At the end, we also discuss truncated Weyl modules.

5.1. Given \(\lambda \in P^+ \), we say that \(\xi = (\xi(\alpha))_{\alpha \in R^+} \) is a \(\lambda \)-compatible \(|R^+| \)-tuple of partitions, if

\[
\xi(\alpha) = (\xi(\alpha)_1 \geq \cdots \geq \xi(\alpha)_j \geq \cdots \geq 0), \quad |\xi(\alpha)| = \sum_{j \geq 1} \xi(\alpha)_j = (\lambda, \alpha^\vee) \forall \alpha \in R^+.
\]

Definition 17. (see [4, §2]) The Chari-Venkatesh module or CV module \(V(\xi) \) is the graded quotient of \(W(\lambda) \) by the submodule generated by the following set

\[
\{ x_0^s (r,s) w_\lambda : \alpha \in R^+, s,r,k \in \mathbb{N}, s + r \geq 1 + r k + \sum_{j \geq k+1} \xi(\alpha)_j \}.
\]

The following lemma (implicit in the proof of Theorem 1 of [4]) useful in understanding CV modules.

Lemma 18. Let \(\lambda \in P^+, r \in \mathbb{N} \) and \(\xi = (\xi(\alpha))_{\alpha \in R^+} \) a \(\lambda \)-compatible \(|R^+| \)-tuple of partitions. If \(r \geq \xi(\alpha)_1 \), then \(x_0^s (r,s) w_\lambda = 0 \) in \(W(\lambda) \) for all \(\alpha \in R^+, s,k \in \mathbb{N}, s + r \geq 1 + r k + \sum_{j \geq k+1} \xi(\alpha)_j \).

Proof. Let \(\alpha \in R^+ \) and \(s,k \in \mathbb{N} \) such that \(s + r \geq 1 + r k + \sum_{j \geq k+1} \xi(\alpha)_j \). Given \(r \geq \xi(\alpha)_1 \), it follows that \(s + r \geq 1 + \sum_{j \geq 1} \xi(\alpha)_j = 1 + (\lambda, \alpha^\vee) \). Now proof follows by using Lemma 5 and \((3.2) \). □
For $\lambda \in P^+$, we associate two λ-compatible $|R^+|$-tuple of partitions as follows:

$$\{\lambda\} := (((\lambda, \alpha^\vee))_{\alpha \in R^+}, \quad \xi(\lambda) := (((\lambda, \alpha^\vee))_{\alpha \in R^+}.$$

The CV modules corresponding to these two, have nice descriptions, which we record below for later use.

$$V(\{\lambda\}) \cong_{g[t]} ev_0 V(\lambda), \quad V(\xi(\lambda)) \cong_{g[t]} W(\lambda). \quad (5.1)$$

The first isomorphism follows by the definition of CV modules and the second isomorphism follows from Lemma 18.

5.2. Given $k \geq 1$ and $0 \leq i \leq k$, we define the following $|R^+|$-tuple of partitions:

$$\xi_i^- := (\xi_i^-(\alpha))_{\alpha \in R^+}, \quad \xi_i^-(\alpha) = \begin{cases} (1^{(k+1)i, \alpha^\vee}) & \alpha \neq 0 \\ (2^i \geq 1^{2(k-i)}) & \alpha = 0, \end{cases}$$

$$\xi_i := (\xi_i(\alpha))_{\alpha \in R^+}, \quad \xi_i(\alpha) = \begin{cases} (1^{(k+1)i, \alpha^\vee}) & \alpha \neq 0 \\ (2^i \geq 1^{2(k+1-i)}) & \alpha = 0, \end{cases}$$

$$\xi_i^+ := (\xi_i^+(\alpha))_{\alpha \in R^+}, \quad \xi_i^+(\alpha) = \begin{cases} (1^{(k+1)i, \alpha^\vee}) & \alpha \neq 0 \\ (2^{i+1} \geq 1^{2(k-i)}) & \alpha = 0. \end{cases}$$

For g simply laced, we can restate Theorem 1 in terms of CV modules as follows:

Theorem 19. Assume that g is simply laced. Given $k \geq 1$ and $0 \leq i \leq k$, we have the following:

1. A short exact sequence of $g[t]$-modules,

 $$0 \to \tau_{2k+1-i} V(\xi_i^-) \to V(\xi_i) \to V(\xi_i^+) \to 0.$$

2. An isomorphism of $g[t]$-modules,

 $$V(\xi_i) \cong V(\xi(\theta))^{(k+1-i)} * V(\{\theta\})^{(i)}.$$

Proof. This follows from Theorem 1 by using Lemma 18 and (5.1). \qed

5.3. For $n \geq 1$, we define $A_n = \mathbb{C}[t]/(t^n)$. The truncated current algebra $g \otimes A_n$, can be thought of as the graded quotient of the current algebra $g[t]$:

$$g \otimes A_n \cong g[t]/(g \otimes t^n \mathbb{C}[t]).$$

Let $k \geq 1$. The local Weyl module $W_{A_n}(k\theta)$ for the truncated current algebra $g \otimes A_n$ is defined in [1], and we call as the truncated Weyl module. It is easy to see that $W_{A_n}(k\theta)$ naturally becomes a $g[t]$-module and the following is an isomorphism of $g[t]$-modules,

$$W_{A_n}(k\theta) \cong W(k\theta)/ (x_{\theta} \otimes t^n) w_{k\theta} > . \quad (5.2)$$

Now Corollary 4 is immediate from Corollary 3 by using (5.2) and (5.3).
References

[1] V. Chari, G. Fourier, T. Khandai, A categorical approach to Weyl modules, Transform. Groups 15 (2010), no.3, 517–549.
[2] V. Chari, A. Pressley, Weyl modules for classical and quantum affine algebras, Represent. Theory 5 (2001), 191–223.
[3] V. Chari, P. Shereen, R. Venkatesh, J. Wand, A Steinberg type decomposition theorem for higher level Demazure modules, (2014), arXiv:1408.4090.
[4] V. Chari, R. Venkatesh, Demazure modules, fusion products, and Q-systems, Comm. Math. Phys. (to appear), (2013), arXiv:1305.2523.
[5] B. Feigin, S. Loktev, On generalized Kostka polynomials and the quantum Verlinde rule, in Differential Topology, Infinite-Dimensional Lie Algebras, and Applications, Amer. Math. Soc. Transl. Ser. 2, Vol. 194, (1999), 61–79.
[6] E. Feigin, The PBW filtration, Demazure modules and toroidal current algebras, SIGMA Symmetry Integrability Geom. Methods Appl. 4 (2008), Paper 070, 21 pp.
[7] G. Fourier, P. Littelmann, Weyl modules, Demazure modules, KR-modules, crystals, fusion products and limit constructions, Adv. Math. 211 (2007), no.2, 566–593.
[8] H. Garland, The arithmetic theory of loop algebras, J. Algebra 53 (1978), 480–551.
[9] K. Naoi, Weyl modules, Demazure modules and finite crystals for non-simply laced type, Adv. Math. 229 (2012), no.2, 875–934.
[10] R. Venkatesh, Fusion Product Structure of Demazure Modules, Algebras and Representation theory (to appear), (2013), arXiv:1311.2224.

The Institute of Mathematical Sciences, CIT campus, Taramani, Chennai 600113, India
E-mail address: bravinder@imsc.res.in