

SuS-X: Training-Free Name-Only Transfer of Vision-Language Models

Vishaal Udandarao
University of Cambridge
vu214@cam.ac.uk

Ankush Gupta
DeepMind, London
ankushgupta@google.com

Samuel Albanie
University of Cambridge
sma71@cam.ac.uk

Abstract

Contrastive Language-Image Pre-training (CLIP) has emerged as a simple yet effective way to train large-scale vision-language models. CLIP demonstrates impressive zero-shot classification and retrieval performance on diverse downstream tasks. However, to leverage its full potential, fine-tuning still appears to be necessary. Fine-tuning the entire CLIP model can be resource-intensive and unstable. Moreover, recent methods that aim to circumvent this need for fine-tuning still require access to images from the target task distribution. In this paper, we pursue a different approach and explore the regime of names of downstream target categories. We propose a novel edge we possess about the downstream task comprises the training-free “name-only transfer” in which the only knowledge we pursue a different approach and explore the regime of images from the target task distribution. In this paper, we propose a novel method, **SuS-X**, consisting of two key building blocks—“SuS” and “TIP-X”, that requires neither intensive fine-tuning nor costly labelled data. **SuS-X** achieves state-of-the-art (SoTA) zero-shot classification results on 19 benchmark datasets. We further show the utility of TIP-X in the training-free few-shot setting, where we again achieve SoTA results over strong training-free baselines. Code is available at https://github.com/vishaal27/SuS-X.

1. Introduction

Vision-language pre-training has taken the machine learning community by storm. A broad range of vision-language models (VLMs) [57, 42, 73, 1, 37] exhibiting exceptional transfer on tasks like classification [80, 84], cross-modal retrieval [67, 2] and segmentation [63, 27] have emerged. These models are now the de facto standard for downstream task transfer in the field of computer vision.

One such prominent model, CLIP [57], is trained on 400M image-text pairs using a contrastive loss that maximises the similarities of paired image-text samples. CLIP pioneered the notion of zero-shot transfer in the vision-language setting [1], classification on unseen datasets. For a given classification task, CLIP converts the class labels into textual prompts (e.g. “A photo of a <CLASS>.”, where <CLASS> represents the ground-truth text label for each class). It then computes similarities between all the class prompts and the query image, selecting the class with the highest image similarity as the predicted label (see Eq. (2)).

CLIP’s zero-shot performance is however limited by its pre-training distribution [24, 60, 21, 51]. If the downstream dataset diverges significantly from the pretraining image distribution, CLIP’s zero-shot performance drastically drops [21]. To mitigate this, several lines of work propose to adapt CLIP on diverse downstream tasks—Tab. 1 briefly summarises these methods. Most of them employ fine-tuning on either labelled or unlabelled subsets of data from the target task. However, fine-tuning such an over-parameterised model can be unstable and lead to overfitting [15, 25]. Furthermore, having access to the true distribution of the target task can be prohibitive in data-scarce environments [12, 4, 38] and online learning settings [14, 65].

To alleviate these issues, in this paper, we aim to adapt CLIP and other VLMs for downstream classification in a name-only (requires only category names) but no samples classification setup introduced by Lampert et al. [41], in which the task is to generalise to classes not seen during training.

1This idea of zero-shot transfer is distinct from the traditional zero-shot classification setup introduced by Lampert et al. [41], in which the task is to generalise to classes not seen during training.

2We use category and class interchangeably in this paper.
Table 1: **Taxonomy of CLIP adaptation methods for downstream classification.** We underline the Zero-Shot CLIP model to signify that it is the base model that all others build on top of. *This method considers access to all test-set samples simultaneously, hence we still consider it zero-shot. †This method additionally uses class hierarchy maps.

Method	Does not require training	Does not require labelled data	Does not require target data data distribution
Few-shot fine-tuning methods			
LP-CLIP [57]	✗	✗	✗
CoOp [54]	✗	✗	✗
PLOT [11]	✗	✗	✗
LASP [9]	✗	✗	✗
SoftCPT [19]	✗	✗	✗
VT-CLIP [79]	✗	✗	✗
VPT [17]	✗	✗	✗
ProDA [43]	✗	✗	✗
CoCoOp [83]	✗	✗	✗
CLIP-Adapter [25]	✗	✗	✗
Intermediate methods			
TIP-Adapter [80]	✓	✗	✗
UPL [36]	✗	✓	✗
SVL-Adapter [54]	✗	✓	✗
TPT [48]	✗	✓	✗
CLIP+SYN [33]	✗	✓	✗
CaFo [78]	✗	✓	✓
Zero-shot methods			
Zero-Shot CLIP [57]	✓	✓	✓
CALIP [21]	✓	✓	✓
CLIP+DN [85]	✓	✓	✓
Training-free name-only transfer methods			
CuPL [56]	✓	✓	✓
VisDese [19]	✓	✓	✓
ChiLS [53]	✓	✓	✓
SuS-X (ours)	✓	✓	✓

from the target task) and training-free fashion. We propose **SuS-X** (see Fig. 1), consisting of two novel building blocks: (i) **SuS** (Support Sets), our dynamic support set curation strategy that forgoes the need for samples from the target task, and (ii) TIP-X, our main framework for performing zero-shot classification while being training-free. For a given downstream task, we first curate a support set by leveraging the task category labels, either in a parametric manner i.e., generating images from large-scale text-to-image models (e.g., Stable Diffusion [59]) or non-parametric manner i.e., retrieving real-world images from a large vision-language data bank (e.g., LAION-5B [61]). We then use the curated support set as a proxy few-shot dataset to inform our downstream predictions using TIP-X, in a similar vein to recent few-shot adaptation methods [25, 80].

Our extensive experiments show that **SuS-X** outperforms zero-shot methods on 19 benchmark datasets across three VLMs, namely, CLIP, BLIP and TCL by 4.60%, 5.97% and 11.37% absolute average accuracy respectively. We further extend the TIP-X framework to the few-shot regime, outperforming previous SoTA methods in the training-free domain. Our main contributions are three-fold: (1) We propose **SuS-X**, a SoTA method in the training-free name-only transfer setting for downstream adaptation of VLMs, (2) We present **SuS**, an effective strategy for curating support sets using parametric or non-parametric methods to mitigate the lack of data samples available from the target task distribution, and (3) We propose TIP-X, a novel training-free method for adapting VLMs to downstream classification in both the name-only transfer and few-shot regimes.

2. Related Work

Vision-Language (VL) Foundation Models. Recent years have seen a Cambrian explosion in large-scale VL foundation models [6]. In a seminal work, Radford et al. [57] introduced CLIP, a large VLM trained on a web-scale corpus (400M image-text pairs), that exhibits strong downstream visual task performance. The introduction of CLIP inspired further development of VLMs [42, 1, 37, 18, 81, 75, 72, 10, 70, 26, 28, 43, 46, 74], each pre-trained on web-scale datasets to learn joint image-text representations. These representations can then be applied to tackle downstream tasks like semantic segmentation [63, 27], object detection [30, 20], image captioning [50, 3] and generative modelling [59, 58]. In this work, we adapt such VLMs in a training-free setting to diverse downstream tasks.

Adaptation of VL models. CLIP introduces a paradigm shift with its zero-shot transfer ability [57]. In this setup, none of the target dataset classes are known a-priori and the task is to adapt implicitly at inference time to a given dataset. Since CLIP’s training objective drives it to assign appropriate similarities to image-text pairs, it acquires the
ability to perform zero-shot classification directly.

Inspired by CLIP’s zero-shot success, further work has sought to improve upon its performance. In Tab. 1 we characterise some of these methods along three major axes: (i) if the method requires training, (ii) if the method requires labelled samples from the target task, and (iii) if the method requires samples from the target task distribution.

In this work, we focus on the training-free name-only transfer regime—our goal is to adapt VLMs to target tasks without explicit training or access to samples from the target distribution. Instead, we assume access only to category names of target tasks. This formulation was recently considered for semantic segmentation, where it was called name-only transfer [62]—we likewise adopt this terminology. To the best of our knowledge, only two other concurrent approaches, CuPL [56] and VisDesc [49], operate in this regime. They use pre-trained language models to enhance textual prompts for zero-shot classification. By contrast, SuS-X pursues a support set curation strategy to adapt VLMs using knowledge of category names. These approaches are complementary, and we find that they can be productively combined. Two other related works operating purely in the zero-shot setting are: (1) CALIP [31], which uses parameter-free attention on image-text features, and (2) CLIP+DN [65], which uses distribution normalisation. We compare with these four baselines in Sec. 4.

3. SuS-X: Training-Free Name-Only Transfer

We describe the two main building blocks of SuS-X—(1) Support Set (SuS) construction, and (2) training-free inference using our novel TIP-X method. Fig. 2 depicts our overall training-free name-only transfer framework.

3.1. SuS Construction

We follow recent adaptation methods [80, 25] that use a small collection of labelled images to provide visual information to CLIP. However, differently from these methods, rather than accessing labelled images from the target distribution, we propose two methods (described next) to construct such a support set (SuS) without such access.

(I) Stable Diffusion Generation. Our first method leverages the powerful text-to-image generation model, Stable Diffusion [59]. We employ specific prompting strategies for generating salient and informative support images. Concretely, given a set of downstream textual class labels, \(T = \{t_1, t_2, \ldots, t_C\} \), where \(C \) denotes the number of categories, we prompt Stable Diffusion to generate \(N \) images per class. In this way, we construct our support set of size \(NC \), with each image having its associated class label.

Note that (iii) subsumes (ii). (ii) refers to access to labelled data samples from the target dataset whereas (iii) refers to a more general setting where the samples from the target dataset can be unlabelled. We distinguish between the two for clarity.

By default, we prompt Stable Diffusion using the original CLIP prompts, i.e., “A photo of a <CLASS>.”, where <CLASS> is the class text label. To further diversify the generation process, we follow CuPL [56] to first generate customised textual prompts for each class by prompting GPT-3 [8] to output descriptions of the particular class. We then feed this customised set of prompts output by GPT-3 into Stable Diffusion for generating images. For example, to generate images from the “dog” class, we prompt GPT-3 to describe “dogs”, and then prompt Stable Diffusion with the resulting descriptions. In section 4.4 we compare the performance of the default (called Photo) and this augmented prompting procedure (called CuPL). Unless otherwise specified, all our experiments with Stable Diffusion support sets use the CuPL strategy.

(II) LAION-5B Retrieval. Our second method leverages the large-scale vision-language dataset, LAION-5B [61]. It contains 5.85 billion image-text pairs, pre-filtered by CLIP. Using LAION-5B, we retrieve task-specific images using class text prompts for constructing the support set. Concretely, given textual class labels, \(\mathcal{T} = \{t_1, t_2, \ldots, t_N\} \), we rank all images in LAION-5B by their CLIP image-text similarity to each text class label \(t_i \), where \(i \in [1, C] \). We then use the top \(N \) image matches as our support set for class \(i \), resulting in an \(NC \)-sized support set of images with their associated class labels. Note that curating supporting knowledge by search is a classical technique in computer vision [23] that was recently revisited in the task of semantic segmentation [63]. Here we adapt this idea to the name-only transfer classification setting. For efficient retrieval, we leverage the approximate nearest neighbour indices released by the authors. Similar to the Stable Diffusion generation approach, we experiment with both Photo and CuPL prompting strategies for curating our LAION-5B support set (see Sec. 4.4). By default, we use Photo prompting for all our experiments with LAION-5B support sets.

Remark. SuS can be seen as a visual analogue to CuPL [56]—we augment VLMs with rich, class-specific images, instead of generating customised text descriptions.

3.2. TIP-X Inference

Given our support set from the previous section, we now leverage it in a training-free method to inform CLIP’s zero-shot predictions. We first briefly review CLIP zero-shot classification and TIP-Adapter [80] (a training-free adaptation method). We then highlight a critical shortcoming in TIP-Adapter due to uncalibrated intra-modal embedding distances, which we address in our method—TIP-X.

Zero-shot CLIP. For classification into \(C \) classes, CLIP converts class labels into text prompts and encodes them with its text encoder. Collectively, the encoded prompt vectors can be interpreted as a classifier weight matrix \(W \in \mathbb{R}^{C \times D} \), where \(D \) is the latent dimension of the classifier.

Unlike TIP-Adapter, we take into account the uncalibrated embedding distances between class labels. Formally, given our support set \(\mathcal{T} = \{t_1, t_2, \ldots, t_N\} \), we use the approximate nearest neighbour indices to retrieve labelled images for each class. We then feed this customised set of prompts output by GPT-3 into Stable Diffusion for generating images. For example, to generate images from the “dog” class, we prompt GPT-3 to describe “dogs”, and then prompt Stable Diffusion with the resulting descriptions. In section 4.4 we compare the performance of the default (called Photo) and this augmented prompting procedure (called CuPL). Unless otherwise specified, all our experiments with Stable Diffusion support sets use the CuPL strategy.

(II) LAION-5B Retrieval. Our second method leverages the large-scale vision-language dataset, LAION-5B [61]. It contains 5.85 billion image-text pairs, pre-filtered by CLIP. Using LAION-5B, we retrieve task-specific images using class text prompts for constructing the support set. Concretely, given textual class labels, \(\mathcal{T} = \{t_1, t_2, \ldots, t_N\} \), we rank all images in LAION-5B by their CLIP image-text similarity to each text class label \(t_i \), where \(i \in [1, C] \). We then use the top \(N \) image matches as our support set for class \(i \), resulting in an \(NC \)-sized support set of images with their associated class labels. Note that curating supporting knowledge by search is a classical technique in computer vision [23] that was recently revisited in the task of semantic segmentation [63]. Here we adapt this idea to the name-only transfer classification setting. For efficient retrieval, we leverage the approximate nearest neighbour indices released by the authors. Similar to the Stable Diffusion generation approach, we experiment with both Photo and CuPL prompting strategies for curating our LAION-5B support set (see Sec. 4.4). By default, we use Photo prompting for all our experiments with LAION-5B support sets.

Remark. SuS can be seen as a visual analogue to CuPL [56]—we augment VLMs with rich, class-specific images, instead of generating customised text descriptions.

3.2. TIP-X Inference

Given our support set from the previous section, we now leverage it in a training-free method to inform CLIP’s zero-shot predictions. We first briefly review CLIP zero-shot classification and TIP-Adapter [80] (a training-free adaptation method). We then highlight a critical shortcoming in TIP-Adapter due to uncalibrated intra-modal embedding distances, which we address in our method—TIP-X.

Zero-shot CLIP. For classification into \(C \) classes, CLIP converts class labels into text prompts and encodes them with its text encoder. Collectively, the encoded prompt vectors can be interpreted as a classifier weight matrix \(W \in \mathbb{R}^{C \times D} \), where \(D \) is the latent dimension of the classifier.
the encoder is applied to produce test image features: distances to compute similarities between the support set retrieval images from LAION-5B) manner. (2) We construct support sets either in a parametric (generating images using Stable Diffusion) or non-parametric (retrieving images from LAION-5B) manner. (2)

Finally, these affinities are used as attention weights over the support set vectors. This implies that the intra-image CLIP embedding similarities are distributed differently—the inter-modal similarities have larger means and variances. This mismatch happens because contrastive training maximises the inter-modal cosine similarities of paired samples without regard to intra-modal similarities. This implies that the intra-image CLIP embedding similarities employed by TIP-Adapter may not reflect the true intra-image similarities. Fig. 3b illustrates this idea with a simple example. Consider two image embeddings that are required to be a distance \(r \) away from a particular text embedding. The two image embeddings can satisfy this condition by being very close to each other or very far apart from each other. Fig. 3b shows that this constraint can be satisfied by any two arbitrary points on a hypersphere of radius \(r \). While we expect loose constraints to be imposed via transitivity, we nevertheless expect a lower quality of calibration in intra-modal (e.g., image-image) comparisons.

TIP-X to the rescue. To get around the problem of un-
Finally, before using our affinity matrix M as attention weights for L (one-hot encoded class labels), we rescale (denoted by ψ) the values of M to have the same range (min, max values) as the TIP-Adapter affinities (A). Further, since our affinity matrix M consists of KL-divergence values, the most similar samples will get small weights since their KL-divergence will be low (close to 0). To mitigate this, we simply negate the values in M. We then blend our predicted logits with T_L using a scalar γ:

$$T_{XL} = fW^T + \alpha AL + \gamma \psi(-M)L$$ \hspace{1cm} (8)

The entire TIP-X method is shown in Fig. 2 (bottom right).

3.3. SuS-X: Combining SuS and TIP-X

Since our constructed support sets act as pseudo few-shot datasets, we directly replace the few-shot features F in the TIP-X framework with the features of our support set. We call our method SuS-X-LC if we combine TIP-X with the LAION-5B curated support set, and SuS-X-SD when combined with the Stable Diffusion generated support set. These methods enable training-free name-only adaptation of zero-shot VLMs.

4. Experiments

First, we evaluate SuS-X against strong baselines in the training-free zero-shot/name-only transfer regimes, across three VLMs. Next, we illustrate the adaptation of TIP-X into the few-shot training-free regime. Finally, we ablate and analyse our method to provide additional insights.

4.1. Training-free name-only transfer evaluation

Datasets. For a comprehensive evaluation, we test on 19 datasets spanning a wide range of object, scene and fine-grained categories: ImageNet [16], StanfordCars [39], UCF101 [64], Caltech101 [22], Caltech256 [29], Flowers102 [52], OxfordPets [55], Food101 [71], SUN397 [71], DTD [13], EuroSAT [34], FGVC Aircraft [47], Country211 [57], CIFAR-100 [40], CIFAR-100 [40], Birdsnap [3], CUB [68], ImageNet-Sketch [69] and ImageNet-R [35]. Previous few-shot adaptation methods [77, 25, 82] benchmark on a subset of 11 of these 19 datasets. We report results on the 19-dataset suite in the main paper and compare results using only the 11-dataset subset in the supp. mat.

Experimental Settings. We compare against six baselines. For zero-shot CLIP, we use prompt ensembling with 7 different prompt templates following [57, 80]. We run CuPL [VisDes](name-only transfer) and CLIP+DN[6].

[6] The 7 prompt templates are: “itap of a <class>”, “a origami <class>”, “a bad photo of the <class>”, “a photo of the large <class>”, “a <class> in a video game”, “art of the <class>”, and “a photo of the small <class>”.

https://github.com/sarahpratt/CuPL

https://github.com/sachit-menon/classify_by_description_release

https://github.com/fengyuli2002/distribution-normalization
4.3. Adapting to the few-shot regime
but can improve performance across different VLMs.
models by 11.37% and 5.97% on average across 19 datasets.
shows our SuS-X serving all other experimental settings from Sec. 4.1. Tab. 3
coders of these models for computing features, while pre-
TCL [72] and BLIP [42]. We only retain image and text en-
4.2. Transfer to different VLMs
ods.
SuS-X is still competitive with these meth-
Main Results. In Tab. 2 we compare both variants of
SuS-X with the baselines. We report an average across 19
datasets. We also include results on ImageNet, EuroSAT,
DTD, Birdsnap, ImageNet-R and ImageNet-Sketch (results
on all 19 datasets in the supp. mat.). SuS-X methods
outperform zero-shot CLIP by 4.6% on average across all
19 datasets. We observe striking gains of 18%, 8% and
7% on EuroSAT, DTD and Birdsnap respectively. We also
outperform the SoTA training-free adaptation methods—
CuPL-ensemble and VisDesc by 1.1% and 3.1% on aver-
age respectively. To further probe where we attain the most
gains, we plot the absolute improvement of our models over
zero-shot CLIP in Fig. 4a. We observe large gains on fine-
gained (Birdsnap, CUB, UCF101) and specialised (Eu-
roSAT, DTD) datasets, demonstrating the utility of SuS-X
in injecting rich visual knowledge into zero-shot CLIP (ad-
ditional fine-grained classification analysis in supp. mat.).
We further compare SuS-X to few-shot methods that use la-
belled samples from the true distribution in the supp. mat.—
despite being at a disadvantage due to using no target distri-
bution samples, SuS-X is still competitive with these meth-
ods.
4.2. Transfer to different VLMs
We evaluate transfer to VLMs other than CLIP, namely
TCL [72] and BLIP [42]. We only retain image and text en-
coders of these models for computing features, while pre-
serving all other experimental settings from Sec. 4.1 Tab. 3
shows our SuS-X methods strongly outperform all baseline
methods across both VLMs—we improve on zero-shot models by 11.37% and 5.97% on average across 19 datasets.
This demonstrates that our method is not specific to CLIP,
but can improve performance across different VLMs.
4.3. Adapting to the few-shot regime
A key component of our SuS-X method is TIP-X. In
the previous section, we showcased SoTA results in the
training-free name-only transfer regime. Due to its for-
mulation, TIP-X can directly be extended to the few-shot
regime, where our support sets are labelled samples from
the target dataset rather than curated/generated samples. To
evaluate TIP-X on such real-world support sets, we con-
duct training-free few-shot classification using TIP-X. We
compare against the SoTA method in this regime—TIP-
Adapter [80]. We report results on the 11-dataset subset
used by TIP-Adapter on five different shot settings of the
K-shot classification task: 1, 2, 4, 8 and 16.
We present average accuracy results on all shots in Fig. 4b—TIP-X outperforms both Zero-shot CLIP and
TIP-Adapter (absolute gain of 0.91% across shots). No-
tably, on OxfordPets, we achieve 2.1% average gain.
This further demonstrates the generalisability of the TIP-X
method in transferring to the few-shot training-free setting.
4.4. Analysis
We conduct several ablations and provide additional vi-
sualisations to offer further insight into the SuS-X method.
Component Analysis. SuS-X consists of two major build-
ing blocks—SuS construction and TIP-X. We compare the
performance difference (with average accuracy across 19
datasets) of using SuS with TIP-Adapter instead of TIP-X
in Tab. 4 We use both default ensemble prompts and CuPL
prompts for CLIP’s text classifier to break down the perfor-
mance gains further. We note that both SuS and TIP-X are
crucial for achieving the best results.
Transfer to different visual backbones. We evaluate
the scalability of our model across different CLIP visual
backbones—Fig. 4c shows that both SuS-X variants consis-
tently improve upon zero-shot CLIP across ResNet and
VisionTransformer backbones of varying depths and sizes.
SuS size. We study the effect of varying support set size
for SuS-LC and SuS-SD—we generate three different sup-
port sets with random seeds for support sizes of 1, 5, 10,
25, 50, 75 and 100 samples. From Fig. 6 we observe two
broad trends—some tasks benefit (ImageNet-R, DTD) from
having more support set samples while others do not (Coun-
try211, Flowers102). We suggest that this is connected to
the domain gap between the true data distribution and sup-
port sets—if the domain gap is large, it is inimical
to provide a large support set, whereas if the domains are
similar, providing more support samples always helps.
SuS visualisation. We visualise samples from both support
set construction methods on ImageNet in Fig. 5. It is hard to
distinguish between the true ImageNet samples and the SuS
samples—we can therefore construct support sets to mimic
the true data distribution, with access to only the category
names. A caveat is that the support set does not always
capture the domain characteristics of the true distribution,
leading to a domain gap (lighting conditions, diverse scene
backgrounds, confounding objects etc). To fully close the
gap to using true few-shot datasets as support sets [25][80],
further research into exact unsupervised domain matching
of support sets and few-shot datasets is required.
Table 2: **Training-free adaptation of CLIP on 19 datasets with RN50 visual backbone.** The best and second best results for each dataset are **bolded** and *underlined*, respectively. Individual results for all 19 datasets are available in the supp. mat. *Average reported across 19 datasets. †Our re-implementation.

Method	Average*	ImageNet	ImageNet-R	ImageNet-Sketch	EuroSAT	DTD	Birdsnap
Zero-shot							
CLIP	52.27	60.31	59.34	35.42	26.83	41.01	30.56
CALIP							
Photo CuPL							

Table 3: SuS-X generalises to different VLMs. *Average reported across 19 datasets.

VLM	Method	Average*	ImageNet	EuroSAT	DTD	Birdsnap
TCL	Zero-shot	31.38	35.55	20.80	28.55	4.51
	CuPL	34.79	41.60	26.30	43.84	6.83
	CuPL+e	32.79	41.36	25.88	41.96	6.60
	VisDesc	33.94	40.40	21.77	34.28	5.69
	SuS-X-SD	41.49	52.29	28.75	48.17	13.60
	SuS-X-LC	42.75	52.36	36.90	46.63	17.93
BLIP	Zero-shot	48.73	50.89	44.10	34.48	10.21
	CuPL	51.11	52.96	39.37	52.95	12.24
	CuPL+e	51.36	53.07	41.48	53.30	12.18
	VisDesc	49.91	50.94	42.25	47.45	11.69
	SuS-X-SD	53.20	55.53	45.36	56.15	16.95
	SuS-X-LC	54.64	56.75	51.62	55.91	23.78

Prompting strategies for SuS construction. Tab. 5 depicts the performance of Photo and CuPL prompting—best results are achieved with the LC-Photo and SD-CuPL strategies. We further compare the diversity of images produced by the two strategies on ImageNet[16]—from Tab. 5 it is evident that CuPL prompting leads to more diverse support sets as compared to Photo prompting.

Hyperparameter Sensitivity. We perform a sensitivity test for our γ hyperparameter (refer Eq. 8) on ImageNet-R, OxfordPets, and DTD. We fix α and β to be 1, and run a sweep over γ ∈ [0, 1]. From Tab. 5 we observe that moderate values of γ are typically preferred, and the variance of the accuracy values is small. However, note that for DTD, the optimal γ is slightly larger (0.75)—this is due to its spe-

Figure 4: (a) Comparison of SuS-X with Zero-shot CLIP. (b) Results of training-free few-shot classification. (c) Performance comparison of SuS-X across visual backbones.
Figure 5: Support samples from the generated SuS-SD, retrieved SuS-LC and true training distribution for ImageNet. By randomising the image order in each subfigure, we pose a challenge question—can you match the three images for each subfigure to their source i.e. SuS-SD, SuS-LC or ImageNet train set? The answers are provided at the bottom of the page.

4.5. Limitations and broader impact

While demonstrating promising results, we note some limitations of our approach: (1) To perform name-only transfer, we rely on CLIP having seen related concepts during pre-training. For rare concepts not seen during pre-training, transfer might not be feasible. (2) We employ LAION-5B [61] as a source of knowledge. While reasonable for a proof of concept, this data is relatively uncurated and may contain harmful content. As such, our approach is unsuitable for real-world deployment without careful mitigation strategies to address this. Similar arguments apply to Stable Diffusion [59].

5. Conclusion

In this paper, we studied the training-free name-only transfer paradigm for classification tasks with vision-language models. We systematically curated support sets with no access to samples from the target distribution and showed that they help improve CLIP’s zero-shot predictions by providing rich, task-specific knowledge. We further motivated the TIP-X framework through the observation that CLIP’s intra-modal embedding spaces are not optimal for computing similarities. With these two building blocks, we demonstrated superior performance to prior state-of-the-art.

Acknowledgements. This work was supported by the Isaac Newton Trust and an EPSRC access-to-HPC grant. SA would like to acknowledge the support of Z. Novak and N. Novak in enabling his contribution. VU would like to thank Gyungin Shin, Surabhi S. Nath, Jonathan Roberts, Vlad Bogolin, Kaiqi Liang and Anchit Jain for helpful discussions and feedback.
References

[1] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hassan, Karel Lenc, Arthur Mensch, Katie Millican, Malcolm Reynolds, et al. Flamingo: a visual language model for few-shot learning. arXiv preprint arXiv:2204.14198, 2022.

[2] Max Bain, Arsha Nagrani, Gül Varol, and Andrew Zisserman. A clip-hitchhiker’s guide to video retrieval. arXiv preprint arXiv:2205.08508, 2022.

[3] Manuele Barraco, Marcella Cornia, Silvia Ciascianelli, Lorenzo Baraldi, and Rita Cucchiara. The unreasonable effectiveness of clip features for image captioning: An experimental analysis. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 4662–4670, 2022.

[4] Sara Beery, Grant Van Horn, and Pietro Perona. Recognition in terra incognita. In Proceedings of the European conference on computer vision (ECCV), pages 456–473, 2018.

[5] Thomas Berg, Jiongxin Liu, Seung Woo Lee, Michelle L Alexander, David W Jacobs, and Peter N Belhumeur. Birdsnap: Large-scale fine-grained visual categorization of birds. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 2011–2018, 2014.

[6] Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx, Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportunities and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

[7] Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101—mining discriminative components with random forests. In European conference on computer vision, pages 446–461. Springer, 2014.

[8] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

[9] Adrian Bulat and Georgios Tzimiropoulos. Language-aware soft prompting for vision & language foundation models. arXiv preprint arXiv:2210.01115, 2022.

[10] Delong Chen, Zhao Wu, Fan Liu, Zaiquan Yang, Yixi Huang, Yiping Bao, and Erjin Zhou. Prototypical contrastive language image pretraining. arXiv preprint arXiv:2206.10996, 2022.

[11] Guangyi Chen, Weinan Yao, Xiangchen Song, Xinyue Li, Yongming Rao, and Kun Zhang. Prompt learning with optimal transport for vision-language models. arXiv preprint arXiv:2210.01253, 2022.

[12] Gordon Christie, Neil Fendley, James Wilson, and Ryan Mukherjee. Functional map of the world. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 6172–6180, 2018.

[13] Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. Describing textures in the wild. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 3606–3613, 2014.

[14] Andrea Cossu, Tinne Tuytelaars, Antonio Carta, Lucia Pasaro, Vincenzo Lomonaco, and Davide Bacciu. Continual pre-training mitigates forgetting in language and vision. arXiv preprint arXiv:2205.09157, 2022.

[15] Guillaume Couairon, Matthijs Douze, Matthieu Cord, and Holger Schwemen. Embedding arithmetic of multimodal queries for image retrieval. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 4950–4958, 2022.

[16] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition, pages 248–255. Ieee, 2009.

[17] Mohammad Mahdi Derakhshani, Enrique Sanchez, Adrian Bulat, Victor Guillerme Turrisi da Costa, Cees GM Snoek, Georgios Tzimiropoulos, and Brais Martinez. Variational prompt tuning improves generalization of vision-language models. arXiv preprint arXiv:2210.02390, 2022.

[18] Karan Desai and Justin Johnson. Virtex: Learning visual representations from textual annotations. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 11162–11173, 2021.

[19] Kun Ding, Ying Wang, Pengzhang Liu, Qiang Yu, Haojian Zhang, Shiming Xiang, and Chunhong Pan. Prompt tuning with soft context sharing for vision-language models. arXiv preprint arXiv:2208.13474, 2022.

[20] Yu Du, Fangyun Wei, Zihe Zhang, Miaojing Shi, Yue Gao, and Guoqi Li. Learning to prompt for open-vocabulary object detection with vision-language model. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 14084–14093, 2022.

[21] Alex Fang, Gabriel Ilharco, Mitchell Wortsman, Yahao Wan, Vaishaal Shunkar, Achal Dave, and Ludwig Schmidt. Data determines distributional robustness in contrastive language image pre-training (clip). arXiv preprint arXiv:2205.01397, 2022.

[22] Li Fei-Fei, Rob Fergus, and Pietro Perona. Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories. In 2004 conference on computer vision and pattern recognition workshop, pages 178–178. IEEE, 2004.

[23] Robert Fergus, Li Fei-Fei, Pietro Perona, and Andrew Zisserman. Learning object categories from google’s image search. In Tenth IEEE International Conference on Computer Vision (ICCV’05) Volume 1, volume 2, pages 1816–1823. IEEE, 2005.

[24] Benjamin Feuer, Ameya Joshi, and Chinmay Hegde. Caption supervision enables robust learners. arXiv preprint arXiv:2210.07396, 2022.

[25] Peng Gao, Shijie Geng, Renrui Zhang, Teli Ma, Rongyao Fang, Yongfeng Zhang, Hongsheng Li, and Yu Qiao. Clip-adapter: Better vision-language models with feature adapters. arXiv preprint arXiv:2110.04544, 2021.

[26] Yuting Gao, Jinfeng Liu, Zihan Xu, Jun Zhang, Ke Li, and Chunhua Shen. Pyramidclip: Hierarchical feature alignment for vision-language model pretraining. arXiv preprint arXiv:2204.14095, 2022.
[27] Golnaz Ghiasi, Xiuye Gu, Yin Cui, and Tsung-Yi Lin. Open-vocabulary image segmentation. arXiv preprint arXiv:2112.12143, 2021.

[28] Shashank Goel, Hritik Bansal, Sumit Bhatia, Ryan Rossi, Vishwa Vinay, and Aditya Grover. Cyclip: Cyclic contrastive language-image pretraining. arXiv preprint arXiv:2205.14459, 2022.

[29] Gregory Griffin, Alex Holub, and Pietro Perona. Caltech-256 object category dataset. 2007.

[30] Xiuye Gu, Tsung-Yi Lin, Weicheng Kuo, and Yin Cui. Open-vocabulary object detection via vision and language knowledge distillation. arXiv preprint arXiv:2104.13921, 2021.

[31] Ziyu Guo, Renrui Zhang, Longtian Qiu, Xianzheng Ma, Xupeng Miao, Xuming He, and Bin Cui. Calip: Zero-shot enhancement of clip with parameter-free attention. arXiv preprint arXiv:2209.14169, 2022.

[32] Kaiming He, Xiangyu Zhang, Shaqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

[33] Ruifei He, Shuyang Sun, Xin Yu, Chuhui Xue, Wenqing Zhang, Philip Torr, Song Bai, and Xiaojian Qi. Is synthetic data from generative models ready for image recognition? arXiv preprint arXiv:2210.07574, 2022.

[34] Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel dataset and deep learning benchmark for land use and land cover classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(7):2217–2226, 2019.

[35] Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kada-vath, Frank Wang, Evan Dorundo, Rahul Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A critical analysis of out-of-distribution generalization. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 8340–8349, 2021.

[36] Tony Huang, Jack Chu, and Fangyun Wei. Unsupervised prompt learning for vision-language models. arXiv preprint arXiv:2204.03649, 2022.

[37] Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan Sung, Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning with noisy text supervision. In International Conference on Machine Learning, pages 4904–4916. PMLR, 2021.

[38] Daniel S Kermany, Michael Goldbaum, Wenjia Cai, Carolina CS Valentim, Huijing Liang, Sally L Baxter, Alex McKeown, Ge Yang, Xiaoqiang Wu, Fangbing Yan, et al. Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell, 172(5):1122–1131, 2018.

[39] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3D object representations for fine-grained categorization. In Proceedings of the IEEE international conference on computer vision workshops, pages 554–561, 2013.

[40] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

[41] Christoph H Lampert, Hannes Nickisch, and Stefan Harmeling. Learning to detect unseen object classes by between-class attribute transfer. In 2009 IEEE conference on computer vision and pattern recognition, pages 951–958. IEEE, 2009.

[42] Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-training for unified vision-language understanding and generation. arXiv preprint arXiv:2201.12086, 2022.

[43] Yangguang Li, Feng Liang, Lichen Zhao, Yufeng Cui, Wanli Ouyang, Jing Shao, Fengwei Yu, and Junjie Yan. Supervision exists everywhere: A data efficient contrastive language-image pre-training paradigm. arXiv preprint arXiv:2110.05208, 2021.

[44] Weixin Liang, Yuhui Zhang, Yongchan Kwon, Serena Yeung, and James Zou. Mind the gap: Understanding the modality gap in multi-modal contrastive representation learning. arXiv preprint arXiv:2203.02053, 2022.

[45] Yunung Lu, Jianzhuang Liu, Yonggang Zhang, Yajing Liu, and Xinmei Tian. Prompt distribution learning. arXiv preprint arXiv:2205.03340, 2022.

[46] Yiwei Ma, Guohai Xu, Xiaoshuai Sun, Ming Yan, Ji Zhang, and Rongrong Ji. X-clip: End-to-end multi-grained contrastive learning for video-text retrieval. arXiv preprint arXiv:2207.07285, 2022.

[47] Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschkos, and Andrea Vedaldi. Fine-grained visual classification of aircraft. arXiv preprint arXiv:1306.5151, 2013.

[48] Shu Manli, Nie Weili, Huang De-An, Yu Zhiding, Goldstein Tom, Anandkumar Anima, and Xiao Chaowei. Time prompt tuning for zero-shot generalization in vision-language models. In NeurIPS, 2022.

[49] Sachit Menon and Carl Vondrick. Visual classification via description from large language models. arXiv preprint arXiv:2210.07183, 2022.

[50] Ron Mokady, Amir Hertz, and Amit H Bermano. Clipcap: Clip prefix for image captioning. arXiv preprint arXiv:2211.09734, 2021.

[51] Thao Nguyen, Gabriel Ilharco, Mitchell Wortsman, Se-woong Oh, and Ludwig Schmidt. Quality not quantity: On the interaction between dataset design and robustness of clip. arXiv preprint arXiv:2208.05516, 2022.

[52] Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number of classes. In 2008 Sixth Indian Conference on Computer Vision, Graphics & Image Processing, pages 722–729. IEEE, 2008.

[53] Zachary Novack, Saurabh Garg, Julian McAuley, and Zachary C Lipton. Chils: Zero-shot image classification with hierarchical label sets. arXiv preprint arXiv:2210.07183, 2022.

[54] Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats and dogs. In 2007 IEEE conference on computer vision and pattern recognition, pages 3498–3505. IEEE, 2012.
[56] Sarah Pratt, Rosanne Liu, and Ali Farhadi. What does a platypus look like? generating customized prompts for zero-shot image classification. arXiv preprint arXiv:2209.03320, 2022.

[57] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural language supervision. In International Conference on Machine Learning, pages 8748–8763. PMLR, 2021.

[58] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 2022.

[59] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image synthesis with latent diffusion models. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2022.

[60] Shibani Santurkar, Yann Dubois, Rohan Taori, Percy Liang, Robin Rombach, Andreas Blattmann, Dominik Lorenz, Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural language supervision. In International Conference on Machine Learning, pages 8748–8763. PMLR, 2021.

[61] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. Gyungin Shin, Weidi Xie, and Samuel Albanie. Named-mask: Distilling segmenters from complementary foundation models. arXiv preprint arXiv:2207.07635, 2022.

[62] Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An open large-scale dataset for training next generation image-text models. arXiv preprint arXiv:2210.08402, 2022.

[63] Gyungin Shin, Weidi Xie, and Samuel Albanie. Named-mask: Distilling segmenters from complementary foundation models. arXiv preprint arXiv:2209.11228, 2022.

[64] Gyungin Shin, Weidi Xie, and Samuel Albanie. Reco: Retrieve and co-segment for zero-shot transfer. arXiv preprint arXiv:2206.07045, 2022.

[65] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. Ucf101: A dataset of 101 human actions classes from videos in the wild. arXiv preprint arXiv:1212.0402, 2012.

[66] Tejas Srinivasan, Ting-Yun Chang, Leticia Leonor Pinto Alva, Georgios Chochlakis, Mohammad Rostami, and Jesse Thomason. Climb: A continuing learning benchmark for vision-and-language tasks. arXiv preprint arXiv:2206.09059, 2022.

[67] Vishaal Udandarao. Understanding and Fixing the Modality Gap in Vision-Language Models. Master’s thesis, University of Cambridge, 2022.

[68] Vishaal Udandarao, Abhishek Maiti, Deepak Srivatsav, Suryatej Reddy Vylla, Yifang Yin, and Rajiv Ratn Shah. Cobra: Contrastive bi-modal representation algorithm. arXiv preprint arXiv:2005.03687, 2020.

[69] Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd birds-200-2011 dataset. 2011.

[70] Zirui Wang, Jiahui Yu, Adams Wei Yu, Zihang Dai, Yulia Tsvetkov, and Yuan Cao. Simvlm: Simple visual language model pretraining with weak supervision. arXiv preprint arXiv:2108.10904, 2021.

[71] Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva, and Antonio Torralba. Sun database: Large-scale scene recognition from abbey to zoo. In 2010 IEEE computer society conference on computer vision and pattern recognition, pages 3485–3492. IEEE, 2010.

[72] Jinyu Yang, Jiali Duan, Sun Tran, Yi Xu, Sampath Chanda, Liqun Chen, Belinda Zeng, Trishul Chilimbi, and Junzhou Huang. Vision-language pre-training with triple contrastive learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 15671–15680, 2022.

[73] Lewei Yao, Runhui Huang, Lu Hou, Guansong Lu, Minzhe Niu, Hang Xu, Xiaodan Liang, Zhenguo Li, Xin Jiang, and Chunjing Xu. Filip: Fine-grained interactive language-image pre-training. arXiv preprint arXiv:2111.07783, 2021.

[74] Haoxuan You, Luowei Zhou, Bin Xiao, Noel Codella, Yu Cheng, Ruochen Xu, Shih-Fu Chang, and Lu Yuan. Learning visual representation from modality-shared contrastive language-image pre-training. arXiv preprint arXiv:2207.12661, 2022.

[75] Jiahui Yu, Zirui Wang, Vijay Vasudevan, Legg Yeung, Mohuba Seyedinseini, and Yonghui Wu. Coca: Contrastive captioners are image-text foundation models. arXiv preprint arXiv:2205.01917, 2022.

[76] Youngjae Yu, Jiwan Chung, Heeseung Yun, Jack Hessel, JaeSung Park, Ximing Lu, Prithviraj Ammanabrolu, Rowan Zellers, Ronan Le Bras, Gunhee Kim, et al. Multimodal knowledge alignment with reinforcement learning. arXiv preprint arXiv:2205.12630, 2022.

[77] Renrui Zhang, Rongyao Fang, Peng Gao, Wei Zhang, Kunchang Li, Jifeng Dai, Yu Qiao, and Hongsheng Li. Tip-adapter: Training-free clip-adapter for better vision-language modeling. arXiv preprint arXiv:2111.03930, 2021.

[78] Renrui Zhang, Xiangfei Hu, Bohao Li, Siyuan Huang, Hanqiu Deng, Hongsheng Li, Yu Qiao, and Peng Gao. Prompt, generate, then cache: Cascade of foundation models makes strong few-shot learners. arXiv preprint arXiv:2303.02151, 2023.

[79] Renrui Zhang, Longtian Qiu, Wei Zhang, and Ziyao Zeng. Vt-clip: Enhancing vision-language models with visual-guided texts. arXiv preprint arXiv:2112.02399, 2021.

[80] Renrui Zhang, Wei Zhang, Rongyao Fang, Peng Gao, Kunchang Li, Jifeng Dai, Yu Qiao, and Hongsheng Li. Tip-adapter: Training-free adaption of clip for few-shot classification. arXiv preprint arXiv:2207.09519, 2022.

[81] Yuhao Zhang, Hang Jiang, Yasuhide Miura, Christopher D Manning, and Curtis P Langlotz. Contrastive learning of medical visual representations from paired images and text. arXiv preprint arXiv:2010.00747, 2020.

[82] Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to prompt for vision-language models. arXiv preprint arXiv:2109.01134, 2021.
[83] Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Conditional prompt learning for vision-language models. *arXiv preprint arXiv:2203.05557*, 2022.

[84] Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to prompt for vision-language models. *International Journal of Computer Vision*, 130(9):2337–2348, 2022.

[85] Yifei Zhou, Juntao Ren, Fengyu Li, Ramin Zabih, and Ser-Nam Lim. Distribution normalization: An “effortless” test-time augmentation for contrastively learned visual-language models. *arXiv preprint arXiv:2302.11084*, 2023.