Intestinal microbe-dependent ω3 lipid metabolite αKetoA prevents inflammatory diseases in mice and cynomolgus macaques

Takahiro Nagatake1, Shigenobu Kishino2, Emiko Urano3, Haruka Murakami3, Nahoko Kitamura3, Kana Konishi4, Harumi Ohno4, Prabuk Tiwari1, Sakiko Morimoto3, Eri Node3, Jun Adachi5, Yuichi Abe6,5, Junko Isoyama5, Kento Sawane1,7, Tetsuya Honda8,9, Asuka Inoue10, Akiharu Uwamizu10,11, Takashi Matsuzaka12,13, Yoichi Miyamoto14, So-ichiro Hirata1,15, Azusa Saika1,7, Yuki Shibata1,7, Koji Hosomi1, Ayu Matsunaga1,16, Hitoshi Shimo12,13, Makoto Arita17,18, Junken Aoki10,11, Masahiro Oka14, Akira Matsutani20, Takeshi Tomonaga5, Kenji Kabashima8, Motohiko Miyachi4, Yasuhiro Yasutomi3, Jun Ogawa2 and Jun Kunisawa1,7,15,21,22,23

© The Author(s) 2021

Dietary ω3 fatty acids have important health benefits and exert their potent bioactivity through conversion to lipid mediators. Here, we demonstrate that microbiota play an essential role in the body's use of dietary lipids for the control of inflammatory diseases. We found that amounts of 10-hydroxy-cis-12-cis-15-octadecadienoic acid (αHYA) and 10-oxo-cis-12-cis-15-octadecadienoic acid (αKetoA) increased in the feces and serum of specific-pathogen-free, but not germ-free, mice when they were maintained on a linseed oil diet, which is high in α-linolenic acid. Intake of αKetoA, but not αHYA, exerted anti-inflammatory properties through a peroxisome proliferator-activated receptor (PPAR) dependent pathway and ameliorated hapten-induced contact hypersensitivity by inhibiting the development of inducible skin-associated lymphoid tissue through suppression of chemokine secretion from macrophages and inhibition of NF-κB activation in mice and cynomolgus macaques. Administering αKetoA also improved diabetic glucose intolerance by inhibiting adipose tissue inflammation and fibrosis through decreased macrophage infiltration in adipose tissues and altering macrophage M1/M2 polarization in mice fed a high-fat diet. These results collectively indicate that αKetoA is a novel postbiotic derived from α-linolenic acid, which controls macrophage-associated inflammatory diseases and may have potential for developing therapeutic drugs as well as probiotic food products.

Mucosal Immunology (2022) 15:289–300; https://doi.org/10.1038/s41385-021-00477-5

INTRODUCTION

The incidence of allergic and inflammatory skin diseases and metabolic disorders, including type 2 diabetes, is increasing.1–3 Accumulating evidence suggests that quantity of dietary lipid is a critical determinant in the development of inflammatory diseases.4–3 In addition to the quantity of dietary lipids, their fatty acid composition plays important roles in the regulation of inflammatory diseases. In fact, the potential benefits of ω3 fatty acids in prevention of inflammatory vascular disease were discovered in a cohort study more than 40 years ago.6 Yet, the
beneficial effects of ω3 fatty acids in clinical studies remain debated.7–9

Recent evidence suggests that the metabolism of dietary ω3 fatty acids is a key factor which influences their effectiveness in the regulation of health and diseases. The conversion of ω3 fatty acids into bioactive metabolites is mediated by mammalian enzymes including cyclooxygenase (COX), lipooxygenase (LOX), and cytochrome P450 (CYP).10,11 Eicosapentaenoic acid (EPA), n-3 docosapentaenoic acid (DPA), and docosahexaenoic acid (DHA) are representative ω3 fatty acids, which exert pro-resolution and anti-inflammatory properties through their conversion into bioactive lipid mediators, including EPA-derived resolvins, 17,18-epoxyeicosatetraenoic acid (EpETE) and 15-hydroxyeicosapentaenoic acid, n-3 DPA-derived 14-hydroxy DPA, and DHA-derived protectins and maresins.12–18 These studies highlight that conversion of ω3 fatty acids into bioactive metabolites is essential for the regulatory roles of these lipids.

In addition, intestinal bacteria contribute to dietary lipid metabolism and produce unique, non-mammalian lipid metabolites with potent biologic activities.19–21 For example, Lactobacillus plantarum AKU1009a use saturation metabolism by bacterial CLA-HY enzyme to convert ω6 linoleic acid to 10-hydroxy-cis-12-octadecenoic acid (HYA).19 HYA is further converted to 10-oxo-cis-12-octadecenoic acid (KetoA) by bacterial CLA-DH enzyme.19 These metabolites exert potent biologic activities.22–25 In addition, ω3 α-linolenic acid is reportedly metabolized in L. plantarum AKU1009a, too, with both the ω3 and ω6 forms undergoing the same transformations. α-Linolenic acid is metabolized to 10-hydroxy-cis-12-cis-15-octadecadienoic acid (αHYA) and 10-oxo-cis-12-cis-15-octadecadienoic acid (αKetoA) by CLA-HY and CLA-DH found in L. plantarum AKU1009a.20,28,29 However, the biologic activities of αHYA and αKetoA remain unclear.

In this study, we found that αKetoA exerted potent anti-inflammatory activities for the control of contact hypersensitivity in both mice and non-human primates and for the amelioration of diabetes in mice fed a high-fat diet (HFD) through regulating lipid metabolism and produce unique, non-mammalian lipid metabolites with potent biologic activities.19–21 For example, Lactobacillus plantarum AKU1009a use saturation metabolism by bacterial CLA-HY enzyme to convert ω6 linoleic acid to 10-hydroxy-cis-12-octadecenoic acid (HYA).19 HYA is further converted to 10-oxo-cis-12-octadecenoic acid (KetoA) by bacterial CLA-DH enzyme.19 These metabolites exert potent biologic activities.22–25 In addition, ω3 α-linolenic acid is reportedly metabolized in L. plantarum AKU1009a, too, with both the ω3 and ω6 forms undergoing the same transformations. α-Linolenic acid is metabolized to 10-hydroxy-cis-12-cis-15-octadecadienoic acid (αHYA) and 10-oxo-cis-12-cis-15-octadecadienoic acid (αKetoA) by CLA-HY and CLA-DH found in L. plantarum AKU1009a.20,28,29 However, the biologic activities of αHYA and αKetoA remain unclear.

In this study, we found that αKetoA exerted potent anti-inflammatory activities for the control of contact hypersensitivity in both mice and non-human primates and for the amelioration of diabetes in mice fed a high-fat diet (HFD) through regulating macrophage activity in a peroxisome proliferator-activated receptor (PPAR)y-dependent manner. These results extend our knowledge by revealing the important roles of bacteria in accomplishing the health-promoting effects of ω3 fatty acids by generating the unique intestinal microbial lipid metabolite αKetoA.

RESULTS

αKetoA and αHYA are ω3 α-linolenic acid-derived and intestinal bacteria-dependent lipid metabolites

We first sought to examine whether dietary intake of linseed oil, which is high in α-linolenic acid, increases the amount of αHYA and αKetoA in mouse feces. We fed mice a diet containing either soybean oil (Soy-mice) or linseed oil (Lin-mice) for 2 months and collected feces for the analysis of fatty acid metabolites. Consistent with the fatty acid composition of the dietary oils, lipidomic analysis through liquid chromatography–tandem mass spectrometry (LC-MS/MS) revealed that the amount of α-linolenic acid was higher in the feces of Lin-mice than in those of Soy-mice (Fig. 1a). We also found that the amounts of αHYA and αKetoA were increased in the feces of Lin-mice (Fig. 1a). Furthermore, Lin-mice also showed increased serum levels of α-linolenic acid, αHYA, and αKetoA (Fig. 1a).

We next fed a linseed oil-containing diet to mice maintained under either specific-pathogen-free (SPF) or germ-free (GF) housing conditions for 2 months. The lipidomic analysis revealed that the amount of α-linolenic acid in the serum was comparable between SPF and GF mice (Fig. 1b). In contrast, the amounts of αHYA and αKetoA were lower or absent in the feces and serum of GF mice than in those of SPF mice (Fig. 1b). These results demonstrate that αHYA and αKetoA are lipid metabolites derived from ω3 α-linolenic acid and that their generation in the intestine and subsequent absorption into the body is dependent on the presence of intestinal bacteria.

Contact hypersensitivity is ameliorated by αKetoA through PPARy-dependent inhibition of the development of inducible skin-associated lymphoid tissue (iSALT)

We then examined whether αHYA and αKetoA exert anti-inflammatory properties. To address this issue, we applied the 2,4-dinitrofluorobenzene (DNFB)-induced murine contact hypersensitivity model, a representative type IV skin allergic inflammation model that comprises sensitization and elicitation phases. In the sensitization phase, skin exposure to DNFB activates skin dendritic cells to migrate to the regional lymph nodes and activate naïve T cells and consequently induce Th1 and Tc1 cells.8 In the elicitation phase, re-exposure to DNFB induces the development of iSALT, which enhances the production of IFNγ by skin effector T cells in situ.30 We orally administered the fatty acid metabolite to mice from before sensitization and during the experimental protocol, and we evaluated ear swelling as a representative inflammatory sign of contact hypersensitivity. We found that DNFB-induced ear swelling was ameliorated by oral administration of αKetoA but not αHYA (Fig. 2a). We next examined the therapeutic effects of αKetoA by administering it orally to mice at 1 day after elicitation with DNFB and measuring ear swelling the day after αKetoA administration. We found that αKetoA treatment effectively ameliorated ear swelling (Fig. 2b). Topical treatment with αKetoA also exerted anti-inflammatory activity in the inhibition of ear swelling (Fig. 2c).

We next sought to examine molecular mechanisms of αKetoA in the amelioration of contact hypersensitivity. The carbon length of fatty acids is an important determinant of receptor specificity: short-chain fatty acids are recognized by GPR41 and GPR43, whereas long-chain fatty acids are recognized by GPR40 and GPR120.31 In addition, long-chain fatty acids are directly recognized by PPARy.32 To identify the functional receptor of αKetoA, we applied specific antagonist treatment in the contact hypersensitivity model, using GW1100, AH7614, and GW9662 as selective antagonists of GPR40, GPR120, and PPARy, respectively. We found that the anti-inflammatory effect of αKetoA was dependent on PPARy but not GPR40 or GPR120, according to ear swelling at 24 h after elicitation (Fig. 2d). This effect continued 48 h after the elicitation (Supplementary Fig. S1). Consistent with the independence of αKetoA from GPR40 and GPR120 in exerting anti-inflammatory activity, transforming growth factor (TGF)β-shedding assays revealed that αKetoA had little activity in inducing GPR40- and GPR120-mediated signaling when compared with the positive control, 13-oxo-cis-9-cis-15-octadecadienoic acid (Supplementary Fig. S2).33

We next sought to examine cellular dynamics in the treatment with αKetoA. Flow cytometry analysis revealed that αKetoA decreased the number of IFNγ+ T cells and dendritic cells in the ear skin in a PPARy-dependent manner (Fig. 2e). Histologic analysis revealed that αKetoA disrupted the iSALT structure; this disruption was dependent on PPARy but independent from GPR40 and GPR120 (Fig. 2f). These results indicate that the αKetoA–PPARy axis ameliorates contact hypersensitivity by inhibiting IFNγ production by T cells through the disruption of iSALT formation.

We have developed a hapten-induced contact hypersensitivity model in cynomolgus macaques.13 In this model, macaques are sensitized with DNFB on the abdominal skin and then stimulated with DNFB on the back, thus inducing skin inflammatory signs, including epidermal hyperplasia and inflammatory cell infiltration (Supplementary Fig. S3).13 In the current study, we used this model to address whether αKetoA exerts anti-inflammatory activity in non-human primates and found that, as in the murine model, DNFB-induced skin inflammatory signs such as epidermal...
hyperplasia and the accumulation of CD3+ T cells were inhibited by topical application of αKetoA (Supplementary Fig. S3). These results show that αKetoA is effective for the treatment of skin inflammation not only in rodents but also in non-human primates and therefore is a promising candidate for drug development.

αKetoA inhibited chemokine expression by interfering with nuclear translocation of NF-κB in macrophages

To identify the target cells of αKetoA, we compared the gene expression level of Pparg among dendritic cells, T cells, and macrophages in the skin; dendritic cells and T cells are essential constituents of iSALT, and macrophages act as iSALT inducer cells.34 We found that macrophages expressed the highest level of Pparg among these cells (Fig. 3a). This finding prompted us to examine whether αKetoA affected the expression of macrophage-derived chemokines that recruit CXCR2+ dendritic cells for the formation of iSALT.34 Treatment of mice with αKetoA reduced the amount of CXCL1 in ear homogenates, with minimal effects on CXCL2 levels (Fig. 3b and Supplementary Fig. S4a). In addition, treatment with GW9662 abrogated the effects of αKetoA on CXCL1 levels, thus indicating their dependency on PPARγ (Fig. 3b and Supplementary Fig. S4a).

We then prepared bone marrow-derived macrophages and stimulated them with IL-1α to induce CXCR2 ligands.34 We found that αKetoA inhibited IL-1α-mediated induction of Cxcl1 and Cxcl2 (Fig. 3c and Supplementary Fig. S4b). To induce Cxcl1 and other pro-inflammatory cytokines and chemokines, the signaling pathway from IL-1α activates NF-κB,35 therefore we asked whether αKetoA inhibited the nuclear translocation of NF-κB, which is an essential step for NF-κB-mediated gene expression. We found that...
Fig. 2 Contact hypersensitivity is ameliorated by αKetoA, but not αHYA, through PPARγ-dependent inhibition of iSALT development. a Mice orally received αHYA (dose: 1 μg/mouse), αKetoA (dose: 1 μg/mouse), or 0.5% (vol/vol) ethanol dissolved in PBS (vehicle control) on days −10 to −6, days −3 to 1, and days 4–6; DNFB-induced ear swelling was evaluated on day 7. Data are combined from two independent experiments. b Mice orally received αKetoA (dose: 10 μg/mouse) or 0.5% (vol/vol) ethanol dissolved in PBS (vehicle control) on the days indicated 90 min before DNFB stimulation on days 0 and 5; DNFB-induced ear swelling was evaluated on day 7. Data are combined from two independent experiments. c Mice were topically treated with αKetoA (dose: 10 μg/mouse) or 50% (vol/vol) ethanol dissolved in PBS (vehicle control), 30 min before DNFB stimulation on days 0 and 5, and DNFB-induced ear swelling was evaluated on day 7. Data are combined from two independent experiments. d Mice were intraperitoneally injected with either GW1100, AH7614, or GW9662 30 min before oral administration of αKetoA on days 0 and 5. Mice were challenged with DNFB 90 min after oral administration of αKetoA, and ear swelling was evaluated on day 6. Data are combined from three independent experiments. e Mice were intraperitoneally injected with either GW1100, AH7614, or GW9662 30 min before oral administration of αKetoA on days 0 and 5. Mice were challenged with DNFB 90 min after oral administration of αKetoA, and the numbers of IFNγ+ T cells (7-AAD−CD45+TCRβ+IFNγ+) and dendritic cells (7-AAD−CD45+CD11c−F4/80−I-Ab+CD11b+) were calculated on the basis of total cell numbers and flow cytometric data on days 6 and 7, respectively. Data of IFNγ+ T cells and dendritic cells are combined from 4 and 2 independent experiments, respectively. f Mice were intraperitoneally injected with either GW1100, AH7614, or GW9662 30 min before oral administration of αKetoA on days 0 and 5. Mice were challenged with DNFB 90 min after the oral administration of αKetoA. Ears were obtained on day 7 and frozen sections were stained with hematoxylin and eosin or the indicated antibodies and reagent. Elicitation (−) indicates mice that were not stimulated with DNFB on day 5 and used as a control. Data are representative of three independent experiments. Scale bars, 100 μm. Each point represents data from individual mice Statistical significance was evaluated by using one-way ANOVA; ****p < 0.0001; ***p < 0.001; ** p < 0.01; * p < 0.05; N.S. not significant.
αKetoA inhibited IL-1α-mediated nuclear translocation of NF-κB in a PPARγ-dependent manner (Fig. 3d). These results collectively indicate that the αKetoA–PPARγ axis ameliorated contact hypersensitivity by disrupting iSALT formation through inhibiting NF-κB activation and chemokine expression in macrophages.

HFD-induced glucose intolerance is ameliorated by αKetoA through inhibiting adipose tissue inflammation

Given that αKetoA targets macrophages, we examined whether αKetoA ameliorates other macrophage-associated inflammatory diseases. Several lines of evidence indicate that obesity is associated with adipose tissue inflammation due to recruitment of pro-inflammatory M1 macrophages and contributes to the development of metabolic disorders, including diabetic glucose intolerance.35–38 When we fed mice an HFD combined with oral administration of either αKetoA or vehicle (as a control) for several months, neither body weight increase nor the weight of the epididymal adipose tissue differed between the 2 groups, suggesting that αKetoA did not affect the development of obesity (Supplementary Fig. S5a–c).

In contrast to obesity-associated phenotypes, we found that the number of macrophages infiltrated into the epididymal adipose tissue was decreased by oral administration with αKetoA (Fig. 4a). Consistently, αKetoA decreased the expression level of the M1 macrophage marker Nos2 and increased that of the M2 macrophage marker Fizz1 in macrophages isolated from epididymal adipose tissues (Fig. 4b). In addition, in vitro assays using bone marrow-derived macrophages revealed that αKetoA influenced the polarization of M1 and M2 macrophages. Indeed, αKetoA decreased the expression levels of the M1 markers Nos2 and Cdad6 yet promoted those of the M2 markers Fizz1, Chi3l3, and Arg1 (Fig. 4c, d). The effects of αKetoA on the gene expression levels of Nos2, Fizz1, and Arg1 were canceled by inhibition of PPARγ (Fig. 4c, d). These findings were consistent with a previous study showing the involvement of PPARγ in macrophage polarization to M2 phenotypes.39

In obesity-associated inflammation, adipocytes produce CCL2 and S100A8 for the recruitment of macrophages.36–38,40 Treatment with αKetoA had little effect on the expression of Ccl2 and S100A8 in adipocytes (Supplementary Fig. S6), suggesting that αKetoA acted directly on macrophages to inhibit their infiltration into adipose tissues and to alter macrophage polarization to M2 phenotypes.

In accordance with these findings, intraperitoneal glucose tolerance test (IPGTT) and insulin tolerance test (ITT) revealed that αKetoA decreased HFD-induced glucose intolerance (Fig. 5a, b). We then examined HFD-induced adipose tissue remodeling, such as the development of crown-like structures and fibrosis, which play key roles in promoting chronic inflammation and metabolic disorders.41 Histologic analysis revealed that αKetoA ameliorated cellular infiltration into epididymal adipose tissues (Fig. 5c). Furthermore, immunohistochemical analysis using an anti-F4/80 mAb to visualize macrophages revealed that αKetoA inhibited the development of crown-like structures (Fig. 5c).

Chronic inflammation in adipose tissue eventually leads to the development of interstitial fibrosis, which causes adipose tissue...
dysfunction and ectopic lipid accumulation; these conditions subsequently lead to non-alcoholic steatohepatitis, which shows hepatic insulin resistance due to reduced expression of insulin receptor β. Consistent with the finding that αKetoA inhibited adipose tissue inflammation and decreased glucose intolerance, we found that αKetoA prevented the development of adipose tissue fibrosis, as evaluated by Masson’s trichrome staining (Fig. 5c). In line with our current findings regarding the contact hypersensitivity model, the activities of αKetoA in inhibiting the formation of crown-like structures and fibrosis were dependent on PPARγ because these activities were abrogated by treatment with GW9662 (Fig. 5c). These results collectively demonstrate that the αKetoA–PPARγ axis ameliorates HFD-induced adipose tissue remodeling without affecting obesity-associated increases in body weight and epididymal adipose tissues.

Detection of αKetoA in human feces
Given that αKetoA showed anti-diabetic effects in mice, we next asked whether αKetoA levels are decreased in human diabetic patients. As it is generally known that ordinary intake of dietary ω3 oil is low in normal life, the fecal αKetoA levels were low and comparable between healthy people and diabetic patients (Supplementary Fig. S7a). To assess the correlation between α-linolenic acid and αKetoA in feces, we then established another cohort that included participants who consumed various amounts of dietary α-linolenic acid due to ad libitum intake of α-linolenic acid-rich linseed-related products. We found that the amount of αKetoA was positively correlated with that of α-linolenic acid (Supplementary Fig. S7b). Although the precise effects of αKetoA on human diabetes are a subject for future study, these findings collectively suggest that dietary intake of α-linolenic acid promotes the production of αKetoA in humans.

DISCUSSION
Accumulating evidence suggests that the intestinal microbiome influences health and diseases, not only in the intestine but also in other tissues, including the respiratory tract, central nervous system, and skin, through the regulation of inflammation, allergy, and metabolic disorders. Microbial metabolites of food materials are known as ‘postbiotics’. Currently postbiotics are attracting attention as bioactive molecules that likely are important in the underlying mechanisms through which the intestinal microbiome can control multiple host organs remotely. Indeed, we detected αKetoA not only in feces but also in serum in mice. In addition, αKetoA exerted its anti-inflammatory activities through regulation of macrophage activities in the skin and adipose tissue to ameliorate contact hypersensitivity and metabolic disorder. A recent study similarly showed that the microbe-dependent ω6 linoleic acid metabolite HYA ameliorated metabolic disorders. HYA induced GPR40- and GPR120-dependent GLP1 secretion from enteroendocrine cells, facilitated glucose metabolism, and inhibited the development of obesity. Therefore, αKetoA and HYA are both microbe-dependent metabolites of essential fatty acids that improve glucose metabolism through the different molecular and cellular bases of the αKetoA–PPARγ axis in macrophages and the HYA–GPR40 and GPR120-dependent axes in enteroendocrine cells. These intestinal microbial metabolites, which are generated through reduction reactions, are chemically much more stable than the oxidation metabolites produced by
the host, because the reduction metabolites lack the unstable conjugated double-bond structure. This stability enhances the usefulness of these intestinal microbial metabolites as postbiotics.

With current dietary habits, people tend to consume only low amounts of ω3 fatty acids. In agreement with this trend, our cohort study indicated that Japanese adults generally ingest small quantities of ω3 fatty acids, which resulted in barely detectable levels of αKetoA even in the feces of healthy participants. αKetoA could be increased to more than 1000 pg per 50 mg feces in humans when they consumed a diet rich in α-linolenic acid, thus suggesting that these levels would result in an anti-inflammatory effect. Although αKetoA is not a critical determinant in the development of diabetes, these findings suggest that increasing αKetoA levels through increased intake of α-linolenic acid might ameliorate diabetic inflammation in human patients. We plan to establish another cohort to directly evaluate the effect of dietary intake of α-linolenic acid and its metabolism to αKetoA in regard to the development of diabetes.

It is worth noting that the population having the same amount of α-linolenic acid contains both αKetoA-high and -low producers, indicating that the composition of the intestinal microbiota would affect the level of αKetoA. Conversion of α-linolenic acid to αHYA is potentially mediated by several types of bacteria, including Lactobacillus plantarum, L. acidophilus, Streptococcus pyogenes, Stenotrophomonas nitritireducens, and Flavobacterium spp., and that of αHYA to αKetoA is mediated by L. plantarum and Flavobacterium spp. Therefore, rather than dietary supplementation with precursor compounds, a better strategy might be to take αKetoA itself to obtain suitable anti-inflammatory effects, because the microbiota differs among people. Several fermented

![Graphs and images related to glucose intolerance and inflammation](image-url)

Fig. 5 HFD-induced glucose intolerance is ameliorated by αKetoA through inhibiting adipose tissue inflammation. a IPGTT was performed after HFD feeding for 3 months with or without oral administration of αKetoA (dose: 10 μg/mouse, 3 times/week). b ITT was performed after HFD feeding for 3.5 months with or without oral administration of αKetoA (dose: 10 μg/mouse, 3 times/week). c After HFD feeding for 4 months with or without oral administration of αKetoA (dose: 10 μg/mouse, 3 times/week) and with or without intraperitoneal injection of GW9662, epididymal adipose tissues were examined histologically. Mice fed with control diet containing soybean oil were used as a control. Data are representative of four independent experiments (n = 12/group). Scale bars, 100 μm. Statistical significance was evaluated by using the Mann–Whitney test; **p < 0.01; *p < 0.05.
foods, including Japanese pickles, Korean kimchi, and German sauerkraut, are enriched with *L. plantarum*. Because these foods are produced through fermentation, they might contain bioactive microbial metabolites. Therefore, another prospective strategy involves adding the precursors of bioactive metabolites (e.g., α-linolenic acid) during fermentation to increase the amounts of desired bioactive microbial metabolites in food products.

In the contact hypersensitivity model, macrophages play important roles in the induction of iSALT formation by expressing CXCR2 ligands, which induces clustering of dermal dendritic cells. Consistent with the finding that the αketoA–PPARγ axis inhibited NF-κB activity, we found that the nuclear translocation of NF-κB, which plays central roles in triggering inflammation by initiating the expression of pro-inflammatory cytokines and chemokines, including *Ccl1*, was inhibited by αketoA in macrophages in a PPARγ-dependent fashion. This scenario is in accordance with previous reports indicating that the activation of PPARγ suppresses NF-κB activation and consequent inflammatory responses.

NF-κB-mediated gene induction of *Tnfa* and *Il1b* is a hallmark of M1 macrophage polarization. Consistent with the finding that the αketoA–PPARγ axis inhibited NF-κB activity, αketoA suppressed polarization to M1 macrophages. In addition, PPARγ activators are known to induce the polarization of macrophages to the M2 phenotype, thus supporting our finding that αketoA promoted M2 macrophage polarization. αketoA simultaneously inhibited M1 macrophage polarization and promoted M2 macrophage polarization, such that both activities contributed to the inhibition of adipose tissue inflammation. From the viewpoint of fibrosis, it is worth noting that macrophage production of nitric oxide plays a key role in the induction of adipose tissue fibrosis. Conversely, αketoA reduced the gene expression of Nos2 yet promoted that of Areg1 in macrophages, thereby decreasing tissue levels of nitric oxide.

It is widely accepted that obesity is the critical determinant in inducing adipose tissue inflammation, which is the mechanism underlying the development of metabolic disorders. However, we found that αketoA decreased glucose intolerance without affecting body weight gain, suggesting that obesity does not always lead to the development of metabolic disorders. The infiltration of macrophages is a primary event in obesity-induced adipose tissue inflammation. In obesity, adipocytes produce CCL2 and S100A8, which recruit CCR2-expressing pro-inflammatory monocytes/macrophages and monocytes to adipose tissue, thereby decreasing tissue levels of nitric oxide.

In summary, αketoA is found as α-linolenic acid-derived postbiotics and as such is only extracted from dietary ω3 fatty acids in the presence of intestinal microbiota. We found that, by regulating various activities of macrophages, αketoA exerted potent anti-inflammatory effects in mice and cymoligus macaques, ameliorated skin inflammation, and decreased diabetic glucose intolerance. These results pave the way for the development of new drugs and probiotics, functional fermented foods, and postbiotics for the treatment of macrophage-associated inflammatory diseases, including skin inflammation and diabetes.

Materials and Methods

Animals

For lipodomics, female C57BL/6j wild-type mice (6 weeks old) were purchased from Japan SLC (Hamamatsu, Japan), and were maintained for 2 months on chemically defined diets containing 4% (wt/wt) dietary oil (soybean oil or linseed oil, Oriental Yeast, Tokyo, Japan) in the SPF animal facility at National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN; Osaka, Japan). Male GF mice (ICR background), and their control ICR mice (age, 6 weeks) were purchased from Japan SLC (Hamamatsu, Japan); these mice were maintained for 2 months on chemically defined diets containing 4% (wt/wt) dietary oil (soybean oil or linseed oil) under GF or SPF conditions, respectively, at NIBIOHN and Oriental Bioservice, Inc. For contact hypersensitivity studies, female C57BL/6j wild-type mice (age, 7 weeks) were purchased from Japan SLC and maintained for 1 week before use in experiments in the SPF animal facility at NIBIOHN. These mice were maintained on a commercially available FR2 regular diet (Funabashi Farm, Chiba Japan). For diabetes experiments, male C57BL/6j wild-type mice (age, 8 weeks) were purchased from Japan SLC and CLEA Japan (Tokyo, Japan), and were maintained in the SPF animal facility at NIBIOHN for 3–4 months on HFD composed of chemically defined materials. Mice were maintained under conditions (16:8 h light/dark cycle, 22–24 °C, and 50–60% humidity), with ad libitum access to food and distilled water. Mice were euthanized by cervical dislocation under isoflurane (Forane, AbbVie, North Chicago, Illinois, USA) anesthesia.

Male cynomolgus macaques (Macaca fascicularis; age, 2 years; weight; 2 kg) were purchased from the Tsukuba Primate Research Center, NIBIOHN, according to the “Rules for Animal Care and Management of Tsukuba Primate Center” and the “Guiding Principles for Animal Experiments using Non-human Primates” formulated by the Primate Society of Japan. All experiments were conducted in accordance with the guidelines of the Animal Care and Use Committee of NIBIOHN (DS25-2, DS26-41, DS27-47, DS01-2, and DS01-3). The study was carried out in compliance with the ARRIVE guidelines.

LC-MS/MS

LC-MS/MS was performed as reported. Data analysis was performed by using the software Xcalibur 2.2 (ThermoFisher Scientific).

Production of αHYA, αketoA, and 13-oxo-cis-9, cis-15-octadecadienoic acid

To prepare αHYA and 13-hydroxy-cis-9, cis-15-octadecadienoic acid from α-linolenic acid, recombinant *E. coli* Rosetta2/pCLA-HY and Rosetta2(DE3)/pET21b-fa-hy1 were used as catalysts, respectively. To prepare αketoA and 13-oxo-cis-9, cis-15-octadecadienoic acid, recombinant E. coli Rosetta/pCLA-DH was used as the catalyst and purified αHYA and 13-hydroxy-cis-9, cis-15-octadecadienoic acid were used as substrates, respectively. These recombinants were cultured in 10 mL Luria–Bertani medium at 37 °C for 12 h with shaking at 300 strokes/minute. Seed cultures were each transferred into 750 mL fresh Luria–Bertani medium and incubated at 37 °C for 2 h with shaking at 100–150 strokes/minute. After the addition of 1.0 mM isopropyl-β-thiogalactopyranoside, recombinants were incubated at 16 °C for 12 h with shaking at 100 strokes/minute. After incubation, recombinants were harvested by centrifugation and used as catalysts. The reaction conditions were as described previously. Reaction products were purified by using an Isolera One automated flash purification system.
equipped with a SNAP Ultra 10-g cartridge (Biotage, Stockholm, Sweden). The purity of the products exceeded 95%, according to gas chromatographic analysis.

Induction of contact hypersensitivity in mice

Murine contact hypersensitivity was induced as described previously. In brief, on day 0, the abdominal skin of each mouse was shaved and then treated with 25 μL of 0.5% (vol/vol) DNFB (Nacalai Tesque, Kyoto, Japan) dissolved in a mixture of acetone and olive oil (acetone:olive oil, 4:1; both reagents from Nacalai Tesque). On day 5, the fronts and backs of both ears were challenged with 0.2% (vol/vol) DNFB (10 μL per site). In some experiments, mice intraperitoneally received either GW1100 (1 mg/kg body weight; Abcam plc, Cambridge, UK) which act as selective antagonist for body weight; Tocris Biosciences, Bristol, UK), or GW9662 (1 mg/kg body weight; Cayman Chemical, Ann Arbor, MI, USA), AH7614 (1 mg/kg body weight; InVivoPharm, Inc, Tokyo, Japan). Ear swelling was calculated as: (ear thickness [m] before DNFB application) – (ear thickness [μm] before DNFB application) = Δ μm.

Histologic analysis

Frozen and paraffin tissues were analyzed histologically as described previously. For staining of paraffin tissues with anti-CD3 mAb (Clone: CD3-12, GenexTech), antigen retrieval was conducted by heating sections in 1 mM EDTA solution (pH 9.0) for 15 min in a microwave oven after deparaffinization. The following antibodies and reagents were used for immunohistologic analysis: purified-anti-CD3ε mAb (1:100; 100302, for frozen tissue, BioLegend), purified-anti-i-A/E mAb (1:100: 107602, BioLegend), purified-anti-CD3 ε mAb (1:100; GTX42110, for paraffin tissue, GenexTech), purified-anti-F4/80 mAb (1:100; 123102, BioLegend), Cy3–anti-Armenian hamster IgG (1:200; 127-165-160, Jackson Immunoresearch Laboratories, West Grove, PA, USA), Cy3–anti-rat IgG (1:200; 721-165-153, Jackson Immunoresearch Laboratories), AF488–anti-rat IgG (1:200; A-11006, ThermoFisher Scientific), and BODIPY493/503 (1:1000; D3922, Molecular Probes, Eugene, OR, USA). Masson’s trichrome staining was conducted by using Trichrome Stain Kit (Modified Masson’s, ScyTek Laboratories, Logan, UT, USA) according to the manufacturer’s protocol. Tissue sections were examined under a fluorescence microscope (model BX-2500, Keyence, Osaka, Japan).

ELISA for CXCL1 and CXCL2

The amounts of CXCL1 and CXCL2 proteins in ear homogenates were analyzed by using Mouse CXCL1/KC Quantikine ELISA Kit (R&D Systems, Minneapolis, Minnesota, USA) and Mouse CXCL2 Quantikine ELISA Kit (R&D Systems), respectively, according to the manufacturer’s protocol. In brief, ear samples were homogenized for 30 sec with one 4.8-φ and three 3.2-φ beads in PBS containing protease inhibitor (PBS340, Sigma) and centrifuged (10,000 rpm, 20 min, 4°C); supernatants were collected and used for ELISA (protein concentration; 4 mg/mL). Absorbance at OD450 and OD570 was measured by using an iMark microplate reader (Bio-Rad, Hercules, CA, USA).

Reverse transcription and quantitative PCR analysis

Reverse transcription and quantitative PCR were performed as described. Primer sequences are as follows: Cxcl1 sense, 5′-gacctgacagttggtgac-3′; Cxcl1 anti-sense, 5′-cttggtttctgcttgagg-3′; Pparg sense, 5′-gaaacagaacggaaatc-3′; Pparg anti-sense, 5′-gggtggttaagttgtcaacctg-3′; Nos2 sense, 5′-ctttgacaggctgac-3′; Nos2 anti-sense, 5′-tcttctactcctgtggtgctgc-3′; Fizz1 sense, 5′-ccctccctgctaggaactc-3′; Fizz1 anti-sense, 5′-cacccacccagctagctcct-3′; Chi3l3 sense, 5′-aagaacacgtagctacactc-3′; Chi3l3 anti-sense, 5′-agagagagatgacaggaacg-3′; Arg1 sense, 5′-gaaacagactggaagag-3′; Arg1 anti-sense, 5′-gaagctgctgatgtgctgc-3′; Cdk6 sense, 5′-gaagccagaggctgac-3′; Cdk6 anti-sense, 5′-cagcgttgctctcatctttg-3′; Actinb sense, 5′-aagggcaagcgggtctaat-3′; Actinb anti-sense, 5′-ggtatgtctgtgtgtctgg-3′.

In vitro assay of bone marrow-derived macrophages

Bone marrow cells were prepared from the femurs and tibias of 5- to 8-week-old C57BL/6 wild-type mice, and the differentiation of macrophages was induced as described previously with modification.

For immunocytochemistry, bone marrow cells were cultured on microscope cover glasses (18 mm; Matsunami, Osaka, Japan) placed in 12-well tissue culture plates (2 × 10^4 cells/mL; WellCorning, Corning, NY, USA) containing Dulbecco’s modified Eagle medium (high glucose, Nacalai Tesque) supplemented with macrophage colony-stimulating factor (50 ng/mL, Peprotech, Cranbury, NJ, USA), 10% (vol/vol) fetal bovine serum (Gibco), and 1% (vol/vol) penicillin and streptomycin (Nacalai Tesque); and incubated at 37°C in 5% CO2. Culture medium was replaced on days 3, 7, and 10. On day 7, cells were incubated with GW9662 (1 μM) or 0.1% (vol/vol) ethanol as a vehicle control for 30 min and incubated with interleukin (IL)-4 (20 ng/mL), 10% (vol/vol) fetal bovine serum, and 1% (vol/vol) penicillin and streptomycin (Nacalai Tesque). Cells were then washed with PBS, stained with DAPI, and examined under a fluorescence microscope (model BX-2500, Keyence, Osaka, Japan).

Histologic analysis

Frozen and paraffin tissues were analyzed histologically as described previously. For staining of paraffin tissues with anti-CD3 mAb (Clone: CD3-12, GenexTech), antigen retrieval was conducted by heating sections in 1 mM EDTA solution (pH 9.0) for 15 min in a microwave oven after deparaffinization. The following antibodies and reagents were used for immunohistologic analysis: purified-anti-CD3ε mAb (1:100; 100302, for frozen tissue, BioLegend), purified-anti-i-A/E mAb (1:100: 107602, BioLegend), purified-anti-CD3 ε mAb (1:100; GTX42110, for paraffin tissue, GenexTech), purified-anti-F4/80 mAb (1:100; 123102, BioLegend), Cy3–anti-Armenian hamster IgG (1:200; 127-165-160, Jackson Immunoresearch Laboratories, West Grove, PA, USA).
and streptomycin at 37 °C and 5% CO2. Culture medium was replaced on days 3, 7, and 10. On day 7, cells were incubated with IL-4 (20 ng/mL) and either αketoA (30 nM) or 0.1% (vol/vol) ethanol as a vehicle control. On day 10, cells were stimulated with IL-1α (10 ng/mL) with αketoA (30 nM) or 0.1% (vol/vol) ethanol as a vehicle control. On day 11, mRNA was prepared from cells and used for reverse transcription and quantitative PCR analysis of the expression of Nos2 and Ceb1 as M1 polarization markers and ofFizz1, Arg1, and Chi3L3 as M2 polarization markers.

TGFA-sheding assay
TGFA-sheding assays were performed as described previously.70 The agonistic activities of αketoA, αHYA, and α-linolenic acid (3 μM) toward GPR40 and GPR120 were evaluated; 13-oxo-α-agonistic activities of markers.

polarization markers and of quantitative PCR analysis of the expression of ethanol as a vehicle control for 30 min before cytokine stimulation. On day 0.1% (vol/vol) ethanol as a vehicle control. On day 11, mRNA was prepared from cells and used for reverse transcription and quantitative PCR analysis of the expression of Nos2 and Ceb1 as M1 polarization markers and of Fizz1, Arg1, and Chi3L3 as M2 polarization markers.

REFERENCES
1. Weidinger, S. & Novak, N. Atopic dermatitis. Lancet 387, 1109–1122 (2016).
2. Peiser, M. et al. Allergic contact dermatitis: epidemiology, molecular mechanisms, in vitro methods and regulatory aspects. Current knowledge assembled at an international workshop at BFR, Germany. Cell. Mol. Life Sci. 69, 763–781 (2012).
3. Geiss, L. S. et al. Prevalence and incidence trends for diagnosed diabetes among adults aged 20 to 79 years, United States, 1980-2012. JAMA 312, 1218–1226 (2014).
4. Nakamizo, S. et al. High fat diet exacerbates murine psoriatic dermatitis by increasing the number of IL-17-producing γδ T cells. Sci. Rep. 7, 14676 (2017).
5. Sasaki, A. et al. Obesity suppresses cell-competition-mediated apical elimination of RasV12-transformed cells from epithelial tissues. Cell Rep. 23, 974–982 (2018).
6. Dyreberg, J., Bang, H. O., Stoffersen, E., Moncada, S. & Vane, J. R. Eicosapentaenoic acid and prevention of thrombosis and atherosclerosis? Lancet 2, 117–119 (1978).
7. Bowman, L. et al. Effects of n-3 fatty acid supplements in diabetes mellitus. N. Engl. J. Med. 379, 1540–1550 (2018).
8. Manson, J. E. et al. Marine n-3 fatty acids and prevention of cardiovascular disease and cancer. N. Engl. J. Med. 380, 23–32 (2019).
9. Bhattacharjee, D. L. et al. Cardiovascular risk reduction withicosapent ethyl for hypertriglyceridemia. N. Engl. J. Med. 380, 11–22 (2019).
10. Miyata, J. & Arita, M. Role of omega-3 fatty acids and their metabolites in asthma and allergic diseases. Allergol. Int. 64, 27–34 (2015).
11. Nagatake, T. & Kunisawa, J. Emerging roles of metabolites of ω3 and ω6 essential fatty acids in the control of intestinal inflammation. Int. Immunol. 31, 569–577 (2019).
12. Kunisawa, J. et al. Dietary ω3 fatty acid exerts anti-allergic effect through the conversion to 17,18-epoxyeicosatetraenoic acid in the gut. Sci. Rep. 5, 9750 (2015).
13. Nagatake, T. et al. The 17,18-epoxyeicosatetraenoic acid-G protein-coupled receptor 40 axis ameliorates contact hypersensitivity by inhibiting neutrophil mobility in mice and cymomolgus macaques. J. Allergy Clin. Immunol. 142, 470–484 (2018).
14. Takeuchi, M. et al. Characterization of the linoleic acid δ6 hydratase catalyzing the first step of polysaturated fatty acid saturation metabolism in Lactobacillus plantarum AKU 1009a. J. Biosci. Bioeng. 119, 636–641 (2015).
15. Saika, A. et al. 17S(18R)-epoxyeicosatetraenoic acid generated by cytochrome P450 BM-3 from Bacillus megaterium inhibits the development of contact hypersensitivity via G-protein-coupled receptor 40-mediated neutrophil suppression. FASEB J. 22, 59–71 (2008).
16. Sawane, K. et al. Dietary omega-3 fatty acid dampens allergic rhinitis via eosphilic production of the anti-inflammatory lipid mediator 15-hydroxyeicosapentaenoic acid in mice. Nutrients 11, 2868 (2019).
17. Hirata, S. I. et al. Maternal ω3 docosapentaenoic acid inhibits infant allergic dermatitis through TRAIL-expressing plasmacytid dendritic cells in mice. Allergy 75, 1939–1955 (2020).
18. Serhan, C. N. & Levy, B. D. Resolvins in inflammation: emergence of the pro-resolving superfamily of mediators. J. Clin. Investig. 128, 2657–2668 (2018).
19. Ishihara, T., Yoshida, M. & Arita, M. Omega-3 fatty acid-derived mediators that control inflammation and tissue homeostasis. Int. Immunol. 31, 559–567 (2019).
20. Kishino, S. et al. Polysaturated fatty acid saturation by gut lactic acid bacteria affecting host lipid composition. Proc. Natl Acad. Sci. USA 110, 17808–17813 (2013).
21. Takeuchi, M. et al. Characterization of the linoleic acid δ6 hydratase catalyzing the first step of polysaturated fatty acid saturation metabolism in Lactobacillus plantarum AKU 1009a. J. Biosci. Bioeng. 119, 636–641 (2015).
22. Saika, A., Nagatake, T. & Kunisawa, J. Host- and microbe-dependent dietary lipid metabolism in the control of allergy, inflammation, and immunity. Front. Nutr. 6, 36 (2019).
23. Miyamoto, J. et al. A gut microbial metabolite of linoleic acid, 10-hydroxy-cis-12-octadecenoic acid, ameliorates intestinal epithelial barrier impairment partially via GPR40-MEK-ERK pathway. J. Biol. Chem. 290, 2902–2918 (2015).
24. Kaikiri, H. et al. Supplemental feeding of a gut microbial metabolite of linoleic acid, 10-hydroxy-cis-12-octadecenoic acid, alleviates spontaneous atopic dermatitis and modulates intestinal microbiota in NC/NGa mice. Int. J. Food Sci. Nutr. 69, 941–951 (2017).
25. Yamada, M. et al. A bacterial metabolite ameliorates periodontal pathogen-induced gingival epithelial barrier disruption via GPR40 signaling. Sci. Rep. 8, 9008 (2018).
26. Kim, M. et al. 10-oxo-12(Z)-octadecenoic acid, a linoleic acid metabolite produced by gut lactate bacteria, enhances energy metabolism by activation of TPVR1. FASEB J. 31, 5036–5046 (2017).
27. Goto, T. et al. 10-oxo-12(Z)-octadecenoic acid, a linoleic acid metabolite produced by gut lactate bacteria, potently activates PPARy and stimulates adipogenesis. Biochem. Biophys. Res. Commun. 459, 597–603 (2015).
28. Nanthirudjanar, T. et al. Gut microbial fatty acid metabolites reduce triacylglycerol levels in hepatocytes. Lipids 50, 1093–1102 (2015).
29. Takeuchi, M. et al. Efficient enzymatic production of hydroxy fatty acids by linoleic acid δ6 hydratase from Lactobacillus plantarum AKU 1009a. J. Appl. Microbiol. 120, 1282–1288 (2016).
30. Takeuchi, M., Kishino, S., Park, S. B., Kitamura, N. & Ogawa, J. Characterization of hydroxy fatty acid dehydrogenase involved in polysaturated fatty acid saturation metabolism in Lactobacillus plantarum AKU 1009a. J. Mol. Catal., B Enzym. 117, 7–12 (2015).
31. Honda, T., Egawa, G. & Kabashima, K. Antigen presentation and adaptive immune responses in skin. Int. Immunol. 31, 423–429 (2019).
32. Kimura, I., Ichimura, A., Ohue-Kitano, R. & Igarashi, M. Free fatty acid receptors in health and disease. Physiol. Rev. 100, 171–210 (2020).
33. Marion-Letellier, R., Savoye, G. & Ghosh, S. Fatty acids, eicosanoids and PPAR gamma. Eur. J. Pharm. 785, 44–49 (2016).
33. Ohue-Kitano, R. et al. Δ-linolenic acid-derived metabolites from gut lactic acid bacteria induce differentiation of anti-inflammatory M2 macrophages through G protein-coupled receptor 40. FEBS J. 32, 304–318 (2018).
34. Natsuki, Y. et al. Perivascular leukocyte clusters are essential for efficient acti-
vation of effector T cells in the skin. Nat. Immunol. 15, 1064–1069 (2014).
35. Lie, P. P., Cheng, C. Y. & Mruk, D. D. The biology of interleukin-1: emerging concepts in the regulation of the actin cytoskeleton and cell junction dynamics. Cell. Mol. Life Sci. 69, 487–500 (2012).
36. Lumeng, C. N., Bodzin, J. L. & Saltiel, A. R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Investig. 117, 175–184 (2007).
37. Kanda, H. et al. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J. Clin. Investig. 116, 1594–1605 (2005).
38. Weisberg, S. P. et al. CCR2 regulates inflammatory and metabolic effects of high-
fat feeding. J. Clin. Investig. 116, 115–124 (2006).
39. Croasdell, A. et al. PPARα and the innate immune system mediate the resolution of inflammation. PPAR Res 2015, 20149691 (2015).
40. Sekimoto, R. et al. Visualized macrophage dynamics and significance of S100A8 in obese fat. Proc. Natl Acad. Sci. USA 112, E2058–2066 (2015).
41. Tanaka, M., Itoh, M., Ogawa, Y. & Suganami, T. Macrophage-specific NF-κB activity increases monocyte chemotaxis in endometriosis. J. Clin. Endocrinol. Metab. 96, 2516–2528 (2011).
42. Xu, H. et al. Metformin improves hepatic IRS2/PI3K/Akt signaling in insulin-
resistant mice. J. Physiol. 587, 4739–4753 (2009).
43. Odegaard, J. I. et al. Macrophage-speciﬁc PPARγ controls alternative activation and improves insulin resistance. Nature 447, 1116–1120 (2007).
44. Yao, Q. et al. Peroxisome proliferator-activated receptor γ (PPARγ) induces the gene expression of integrin αβ and stimulates macrophage M2 polarization. J. Biol. Chem. 293, 16572–16582 (2018).
45. Jang, J. E. et al. Nitric oxide produced by macrophages inhibits adipocyte dif-
ferentiation and promotes proinflammatory responses in preadipocytes to induce adipose tissue ﬁbrosis. Diabetes 65, 2516–2528 (2016).
46. Hornung, D. et al. Nuclear peroxisome proliferator-activated receptors α and γ have opposing effects on monocyte chemotaxis in endometriosis. J. Clin. Endo-
crinol. Metab. 96, 2516–2528 (2011).
47. Tanaka, T. et al. Therapeutic potential of thiazolidinediones in activation of per-
oxisome proliferator-activated receptor γ for monocyte recruitment and endo-
thelial regeneration. Eur. J. Pharmacol. 508, 255–265 (2005).
48. Babaev, V. R. et al. Conditional knockout of macrophage PPARγ increases atherosclerosis in C57BL/6 and low-density lipoprotein receptor-deﬁcient mice. Arterioscler. Thromb. Vasc. Biol. 25, 1647–1653 (2005).
49. Kumase, F. et al. AMPK-activated protein kinase suppresses Ccr2 expression by inhibiting the NF-κB pathway in RAW264.7 macrophages. PLoS One 11, e0147279 (2016).
50. Leesnitzer, L. M. et al. Functional consequences of cysteine modiﬁcation in the ligand binding sites of peroxisome proliferator-activated receptors by GW9662. Biochemistry 41, 6640–6650 (2002).
51. Byrdloss, M. X. et al. Microbiota-activated PPAR-γ signaling inhibits diabetic Enterobacteriaceae expansion. Science 357, 570–575 (2017).
52. Xu, M. J. et al. Fat-speciﬁc protein 27/CIDEC promotes development of alcoholic steatohepatitis in mice and humans. Gastroenterology 149, 1030–1041 (2015).
53. Odegaard, J. I. et al. Macrophage-speciﬁc PPARγ controls alternative activation and improves insulin resistance. Nature 447, 1116–1120 (2007).
54. Yao, Q. et al. Peroxisome proliferator-activated receptor γ (PPARγ) induces the gene expression of integrin αβ and stimulates macrophage M2 polarization. J. Biol. Chem. 293, 16572–16582 (2018).
55. Jang, J. E. et al. Nitric oxide produced by macrophages inhibits adipocyte dif-
ferentiation and promotes proinflammatory responses in preadipocytes to induce adipose tissue ﬁbrosis. Diabetes 65, 2516–2528 (2016).
56. Hornung, D. et al. Nuclear peroxisome proliferator-activated receptors α and γ have opposing effects on monocyte chemotaxis in endometriosis. J. Clin. Endo-
crinol. Metab. 96, 2516–2528 (2011).
57. Tanaka, T. et al. Therapeutic potential of thiazolidinediones in activation of per-
oxisome proliferator-activated receptor γ for monocyte recruitment and endo-
thelial regeneration. Eur. J. Pharmacol. 508, 255–265 (2005).
58. Babaev, V. R. et al. Conditional knockout of macrophage PPARγ increases atherosclerosis in C57BL/6 and low-density lipoprotein receptor-deﬁcient mice. Arterioscler. Thromb. Vasc. Biol. 25, 1647–1653 (2005).
59. Kumase, F. et al. AMPK-activated protein kinase suppresses Ccr2 expression by inhibiting the NF-κB pathway in RAW264.7 macrophages. PLoS One 11, e0147279 (2016).
60. Leesnitzer, L. M. et al. Functional consequences of cysteine modiﬁcation in the ligand binding sites of peroxisome proliferator-activated receptors by GW9662. Biochemistry 41, 6640–6650 (2002).
61. Byrdloss, M. X. et al. Microbiota-activated PPAR-γ signaling inhibits diabetic Enterobacteriaceae expansion. Science 357, 570–575 (2017).
62. Xu, M. J. et al. Fat-speciﬁc protein 27/CIDEC promotes development of alcoholic steatohepatitis in mice and humans. Gastroenterology 149, 1030–1041 (2015).
and S.K. are the member of inventors of this patent. M.A. reports grants from JSPS, during the conduct of the study. The remaining authors disclose no conflicts.

ADDITIONAL INFORMATION

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41385-021-00477-5.

Correspondence and requests for materials should be addressed to Jun Kunisawa.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021