Occurrence of Spontaneous Tumors in the Central Nervous System (CNS) of F344 and SD Rats

Mariko Nagatani1*, Kayoko Kudo2, Seiki Yamakawa1, Toko Ohira1, Yuko Yamaguchi2, Shinichiro Ikezaki2, Isamu Suzuki2, Tsubasa Saito2, Toru Hoshiya2, Kazutoshi Tamura2, and Kazuyuki Uchida3

1 Hamamatsu Branch of Pathology Division, BOZO Research Center Inc., 164-2 Wada-cho, Higashi-ku, Hamamatsu, Shizuoka 435-0016, Japan
2 Pathology Division, Gotemba Laboratories, BOZO Research Center Inc., 1284 Kamado, Gotemba, Shizuoka 412-0039, Japan
3 Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan

Abstract: In order to accurately assess the carcinogenicity of chemicals with regard to rare tumors such as rat CNS tumors, sufficient information about spontaneous tumors are very important. This paper presents the data on the type, incidence and detected age of CNS tumors in F344/DuCrlCrlj (a total of 1363 males and 1363 females) and Crl:CD(SD) rats (a total of 1650 males and 1705 females) collected from in-house background data-collection studies and control groups of carcinogenicity studies at our laboratory, together with those previously reported in F344 and SD rats. The present data on F344/DuCrlCrlj rats (F344 rats) and Crl:CD(SD) rats (SD rats) clarified the following. (1) The incidences of all CNS tumors observed in F344 rats were less than 1%. (2) The incidences of malignant astrocytoma and granular cell tumor were higher in male SD rats than in female SD rats. (3) The incidences of astrocytoma and granular cell tumor were higher in SD rats than in F344 rats. (4) Among astrocytoma, oligodendroglioma and granular cell tumor, oligodendroglia was detected at the youngest age, followed by astrocytoma, and ultimately, granular cell tumor developed in both strains. The incidences observed in our study were almost consistent with those previously reported in F344 and SD rats. (DOI: 10.1293/tox.26.263; J Toxicol Pathol 2013; 26: 263–273)

Key words: historical control data, central nervous system tumor, F344 rat, SD rat

Introduction

Although there is no adequate information about spontaneous tumors in the rat central nervous system (CNS), certain types of tumors induced by N-nitrosoalkylureas in the rat CNS suggest a possibility of occurrence of similar tumors in the human CNS exposed to such chemicals1.

In the nearly 500 carcinogenicity reports of the National Toxicology Program (NTP), 10 compounds showed evidence of an increase in brain tumors. Within the 10 compounds, only glycidol clearly induced brain tumors in rats. The other 9 compounds were considered equivocal. Because statistically significant increased incidences, decreased survival and dose-response relationships were not observed, and several factors (such as the carcinogenicity evidence at other sites, mutagenicity, increases in malignant type, no brain neoplasms in concurrent controls or increased brain tumors in structurally related chemicals) supported the theory that marginal increases in brain tumor incidence were related to chemical exposure2. This indicates a difficulty in accurately evaluating chemical-related CNS tumors in a carcinogenicity study. This is probably due to a low incidence of CNS tumors even in a carcinogenicity study, and what is worse, it is probably also due to insufficient data on spontaneous tumors in the rat CNS. Therefore, more extensive data on the occurrence of rat CNS tumors are required3, 4. In this regard, data obtained from the same laboratory are thought to be valuable as historical control data (HCD)5, because it is said that diet6 and housing condition6, 7 probably influence the occurrence of tumors. In addition, it is important to survey the previously reported data in detail because rat CNS tumors are generally rare.

This paper presents the data on the occurrence of CNS tumors obtained from the in-house background data-collection studies and carcinogenicity studies at our laboratory, together with those previously reported in F344 and SD rats6, 7. In addition, some biological features of rat CNS tumors such as the age of tumor occurrence were also examined.
Materials and Methods

Regarding the F344/DuCrj rats (Charles River Laboratories Japan, Inc., Atsugi, Kanagawa, Japan), a total of 1363 males and 1363 females, which were obtained from 2 background data-collection studies and from control groups of 17 carcinogenicity studies, were examined. All studies started between 1991 and 2009. Except for the background data-collection studies, each carcinogenicity study had one or two control groups, and there were a total of 23 groups.

Regarding the Crl:CD(SD) rats (Charles River Laboratories Japan, Inc.), a total of 1650 males and 1705 females, which were obtained from 3 background data-collection studies in both sexes and from control groups of 22 and 23 carcinogenicity studies in males and females, respectively, were examined. All studies started between 1996 and 2009. Except for the background data-collection studies, each carcinogenicity study had one or two control groups, and the data consisted of 28 male groups and 29 female groups.

All studies were conducted in compliance with laws and guidelines concerning animal welfare such as the Law for the Humane Treatment and Management of Animals (Law No. 105), Standards Relating to the Care and Management of Laboratory Animals and Relief of Pain (Notification No. 88 of the Ministry of the Environment, Japan), Guidelines for Proper Conduct of Animal Experiments (Scientific Council of Japan) and the Guide for Animal Care and Use of our facility.

Animals were housed individually in bracket-type stainless steel wire mesh cages and were maintained in a barrier-sustained room controlled at 23 ± 3°C and 50 ± 20% relative humidity, with air ventilation at 10 to 15 times per hour and artificial lighting for 12 hours per day. The animals were allowed free access to CRF-1 diet (Oriental Yeast Co., Ltd, Tokyo, Japan) and tap water.

All sections of CNS tissues with tumors were reviewed according to the International Harmonization of Nomenclature and Diagnostic Criteria (INHAND)³.

Results

Incidence of CNS tumors

The occurrence of CNS tumors in individual groups is shown in Table 1 (F344/DuCrj male rats), Table 2 (F344/DuCrj female rats), Table 3 (Crl:CD(SD) male rats) and Table 4 (Crl:CD(SD) female rats).

In the F344/DuCrj rats, malignant astrocytoma, malignant oligodendroglioma, malignant mixed glioma, medulloblastoma, granular cell tumor, malignant meningioma, osteosarcoma and malignant reticulosis were observed, and the incidences of these tumors were very low (one or two tumors/group in a small number of groups).

In the Crl:CD(SD) rats, malignant astrocytoma, malignant oligodendroglioma, granular cell tumor, benign/malignant meningioma, osteosarcoma, malignant reticulosis and hemangioma were observed. A maximum of 4 cases of malignant astrocytoma per group were detected in a small number of groups, but the incidences of other tumors were very low (one or two tumors/group in a small number of groups).

In both F344/DuCrj and Crl:CD(SD) rats, as shown in Tables 1–4, although the vehicles and administration routes varied among the groups, the incidence of every tumor was not influenced by the differences in vehicles and administration routes. In addition, there were no time-related changes in the incidences of any types of tumors in F344/DuCrj and Crl:CD(SD) rats during 1991 to 2009 and 1996 to 2009, respectively.

The incidences of CNS tumors in F344/DuCrj and Crl:CD(SD) rats in the present study are shown in Table 5. In F344/DuCrj rats, the incidences of tumors were exceptionally less than 1%. On the other hand, in Crl:CD(SD) rats, malignant astrocytoma was most common, and its incidence was more than 1%, while the incidences of tumors of other types were less than 1%. Among them, granular cell tumor was common next to malignant astrocytoma, and the incidences of malignant astrocytoma and granular cell tumor were higher in males than in females. In addition, the incidences of malignant astrocytoma and granular cell tumor were higher in Crl:CD(SD) rats than in F344/DuCrj rats.

Ages (days) when CNS tumors were detected

The ages (days) of rats when malignant astrocytoma, oligodendroglioma and granular cell tumor were detected are shown in Table 6.

Among these 3 types of tumors, malignant oligodendroglioma was detected at the youngest age, followed by malignant astrocytoma, and ultimately, granular cell tumor developed in both F344/DuCrj and Crl:CD(SD) rats. None of these 3 types of tumors developed earlier in F344/DuCrj rats than in Crl:CD(SD) rats.

The distributions of ages when these 3 types of tumors were detected are shown in Fig. 1 (F344/DuCrj rats) and Fig. 2 (Crl:CD(SD) rats). These 3 types of tumors generally occurred sparsely throughout the detected period in both F344/DuCrj and Crl:CD(SD) rats, although malignant astrocytoma in Crl:CD(SD) rats was frequently observed at an age of more than 600 days.

The previous reports of rat brain tumors

The cumulative incidences of rat brain tumors obtained from the present study and cited from the previous reports of HCD are shown in Table 7 (F344 rats) and Table 8 (SD rats).

In the previous reports, F344 rats included those of the F344/CrBR, F344, F344/Ducrj, F344/NTac and F344/N strains, and SD rats included those of the Crl:SD(IGS), Crl:SDBR, Crl:SDBR(IGS), Crl:SD, Crl:SD and Hsd:SD strains. In the previously reported HCD, the incidences of all types of tumors were less than 1% in F344 rats, while the incidences of astrocytoma, oligodendroglioma, granular cell tumor and/or meningioma were sometimes or rarely more than 1% in SD rats. The incidences of astrocytoma...
Table 1. The Occurrence of CNS Tumors by Study Group for F344/DuCrjCrlj Rats (Male)

Study ID:	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	#13	#14	#15	#16	#17	#18	#19	Total	Mean (%)	Range (%)	
Year study started:	1991	1992	1992	1993	1993	1993	1993	1994	1994	1994	1995	1997	2000	2000	2003	2004	2005	2008	2009				
Route of administration:	FD	FD	FD	IV	UT	FD	FD	BD	BD	MC	UT	FD	PC	GA	GA	GA	GA	SC	FD	PO	PO	GA	
Vehicle*:	BD	BD	ST	ST	BD	BD	BD	MC	BD	ST	MC	BD	ST	MC	BD	BD	BD	MC	BD	DW	ST	MC	
Number of animals:	50	238	50	50	50	50	50	50	55	55	55	55	55	55	55	55	55	55	55	1363			

Brain
- Astrocytoma, malignant
 - 0 0 0 0 0 1 0 0 0 0 0 0 2 0 1 2 0 0 0 0 2 0 0 8 0.6 0–4.0
- Oligodendroglioma, malignant
 - 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 4 0.3 0–2.0
- Glioma, mixed, malignant
 - 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 2 0.1 0–2.0
- Tumor, granular cell
 - 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 2 0.1 0–1.8
- Meningioma, malignant
 - 0 1 0 2 0.1 0–1.8
- Osteosarcoma
 - 0 1 0.1 0–1.8
- Reticulosis, malignant
 - 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0.1 0–1.8

Spinal cord
- Astrocytoma, malignant
 - 0 1 0.1 0–0.0

Brain+spinal cord
- Astrocytoma, malignant
 - 0 0 0 0 0 1 0 0 0 0 1 0 2 0 1 2 0 0 0 2 0 0 9 0.7 0–4.0
- Oligodendroglioma, malignant
 - 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0.1 0–2.0
- Glioma, mixed, malignant
 - 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0.1 0–2.0
- Tumor, granular cell
 - 0 1 0 2 0.1 0–1.8
- Meningioma, malignant
 - 0 1 0.1 0–2.0
- Osteosarcoma
 - 0 1 0.1 0–1.8
- Reticulosis, malignant
 - 0 1 0.1 0–1.8

FD, UT, IV, GA, PC, SC, BD, MC, DW, TG, GL and ST represent feeding, untreated, intravenous, gavage, percutaneous, subcutaneous, basal diet, methylcellulose, distilled water, powdered tragacanth, glucose and special for the study, respectively.
Table 2. The Occurrence of CNS Tumors by Study Group for F344/DuCrI Crj Rats (Female)

Study ID:	#1	#2	#3	#4	#5	#6	#8	#9	#10	#11	#12	#13	#14	#15	#16	#17	#18	#18	Total	Mean (%)	Range (%)			
Year study started:	1991	1992	1992	1993	1993	1993	1994	1994	1994	1995	1995	1997	2000	2000	2003	2003	2004	2005	2008	2008	2009	2009		
Route of administration:	FD	FD	UT	FD	IV	UT	FD	FD	FD	GA	UT	FD	PC	GA	GA	GA	GA	SC	FD	GA	GA	GA	GA	GA
Vehicle:	BD	BD	ST	ST	BD	BD	BD	MC	BD	ST	MC	BD	TG	BD	DW	ST	MC	BD	DW	ST	MC	BD	DW	
Number of animals:	50	238	50	50	50	50	50	50	50	55	55	20	50	55	55	55	55	55	55	55	1363			
Brain																					1.8			
Astrocytoma, malignant	0	0	0	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0.2	0–2.0	
Oligodendroglioma, malignant	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0.2	0–2.0	
Medulloblastoma	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0.1	0–1.8	
Reticulosis, malignant	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0.1	0–2.0	
Spinal cord																					1.8			
Astrocytoma, malignant	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0.1	0–1.8	
Brain+spinal cord																					1.8			
Astrocytoma, malignant	0	0	0	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	4	0.3	0–2.0	
Oligodendroglioma, malignant	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0.2	0–2.0	
Medulloblastoma	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0.1	0–1.8	
Reticulosis, malignant	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0.1	0–2.0	

FD, UT, IV, GA, PC, SC, BD, MC, DW, TG, GL and ST represent feeding, untreated, intravenous, gavage, percutaneous, subcutaneous, basal diet, methylcellulose, distilled water, powdered tragacanth, glucose and special for the study, respectively.
Table 3. The Occurrence of CNS Tumors by Study Group for Crl:CD(SD) Rats (Male)

Study ID:	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#13	#14	#15	#16	#17	#18	#19	#20	#21	#22	#23	#24	#25	#26	Total		
Year study started:	1996	1996	1998	1999	1999	2001	2001	2003	2003	2004	2004	2004	2005	2005	2005	2006	2007	2007	2008	2008	2008	2008	2008	2008	2009	2009		
Route of administration:	UT	UT	FD	GA																								
Vehicle:	BD	MC	TD	DW	ST	MC	DW	MC	MC	MC	WD	MC	DW	ST														
Number of animals:	50	50	75	60	60	60	60	60	50	60	60	60	55	60	55	60	60	55	60	60	55	60	60	55	60	60	55	1650

Brain

- **Astrocytoma, malignant**: 0 0 3 2 1 3 2 1 2 1 0 0 1 1 1 1 0 0 0 2 2 4 2 0 0 2 33 2.0 0–6.7
- **Oligodendroglioma, malignant**: 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 0 6 0.4 0–2.0
- **Tumor, granular cell**: 0 1 2 0 0 0 0 0 0 1 1 0 1 0 1 0 0 0 1 0 0 1 1 1 0 1 0 0 1 11 0.7 0–2.7
- **Meningioma, benign**: 0 0 0 1 0 1 0.1 0–1.7
- **Meningioma, malignant**: 0 1 0 1 0.1 0–1.7
- **Osteosarcoma**: 0 1 0 0 0 1 0.1 0–1.7
- **Reticulosis, malignant**: 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0.1 0–1.7

Spinal cord

- **Astrocytoma, malignant**: 0 0 1 0 1 0.1 0–1.3
- **Oligodendroglioma, malignant**: 0 0 0 0 1 0 1 0.1 0–1.7

Brain+Spinal cord

- **Astrocytoma, malignant**: 0 0 4 2 1 3 2 1 2 2 1 0 0 1 1 1 1 1 0 0 2 2 4 2 0 0 2 34 2.1 0–6.7
- **Oligodendroglioma, malignant**: 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 0 7 0.4 0–2.0
- **Tumor, granular cell**: 0 1 2 0 0 0 0 0 0 1 1 0 1 0 0 0 1 0 0 0 1 1 1 0 1 0 0 0 11 0.7 0–2.7
- **Meningioma, benign**: 0 0 0 1 0 1 0.1 0–1.7
- **Meningioma, malignant**: 0 1 0 0 0 1 0.1 0–1.7
- **Osteosarcoma**: 0 1 0 0 0 1 0.1 0–1.7
- **Reticulosis, malignant**: 0 0 0 0 0 1 0 1 0.1 0–1.7

T, FD, GA, BD, MC, TG, DW, ST, MCT and AG represent untreated, feeding, gavage, basal diet, methylcellulose, powdered tragacanth, distilled water, special for the study, ethanol containing Miglyol and gum arabic, respectively.
Table 4. The Occurrence of CNS Tumors by Study Group for Crl:CD(SD) Rats (Female)

| Study ID: | #1 | #2 | #3 | #4 | #5 | #6 | #7 | #8 | #9 | #10 | #11 | #12 | #13 | #14 | #15 | #16 | #17 | #18 | #19 | #20 | #21 | #22 | #23 | #24 | #25 | #26 | Total | Mean | Range |
|----------|
| Year study started: | 1996 | 1996 | 1998 | 1999 | 2001 | 2003 | 2004 | 2005 | 2005 | 2005 | 2005 | 2006 | 2006 | 2007 | 2007 | 2008 | 2008 | 2008 | 2008 | 2008 | 2008 | 2008 | 2008 | 2008 | 2009 | 2009 |
| Route of administration: | UT | UT | FD | GA | Total | Mean | Range |
| Vehicle: | BD | MC | MCT | BD | AG | MC | ST |
| Number of animals | 50 | 50 | 75 | 60 | 60 | 60 | 60 | 50 | 60 | 55 | 55 | 60 | 55 | 60 | 55 | 60 | 60 | 55 | 60 | 60 | 60 | 60 | 60 | 55 | 55 | 1705 |

Brain

- Astrocytoma, malignant: 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 2 2 0 1 3 1 19 1.1 0–5.0
- Oligodendroglioma, malignant: 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 3 0.2 0–1.8
- Tumor, granular cell: 0 3 0.2 0–3.3
- Hemangioma: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0.1 0–1.7

Spinal cord

- Astrocytoma, malignant: 0 0 0 0 0 1 0 1 0.1 0–1.7
- Meningioma, malignant: 0 0 0 0 0 0 1 0 1 0.1 0–1.7

Brain+Spinal cord

- Astrocytoma, malignant: 0 0 0 0 0 1 0 1 0 3 0 1 0 2 0 0 0 1 0 1 0 1 0 2 2 0 1 3 1 20 1.2 0–5.0
- Oligodendroglioma, malignant: 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 3 0.2 0–1.8
- Tumor, granular cell: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0.2 0–3.3
- Meningioma, malignant: 0 0 0 0 0 0 1 0 1 0.1 0–1.7
- Hemangioma: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0.1 0–1.7

UT, FD, GA, BD, MC, TG, DW, ST, MCT and AG represent untreated, feeding, gavage, basal diet, methylcellulose, powdered tragacanth, distilled water, special for the study, ethanol containing Miglyol and gum arabic, respectively.
Table 5. Incidence of CNS Tumors in F344/DuCrI Crlj and Crl:CD(SD) Rats

Strain:	SD	F344	Male	Female	Male	Female
Sex:			1991-2009	1991-2009	1996-2009	1996-2009
Number of animals:	1363	1363	1650	1705		
Brain						
Astrocytoma, malignant	2.0	1.1	0.6	0.2		
Oligodendroglioma, malignant	0.4	0.2	0.3	0.2		
Glioma, mixed, malignant	0	0	0.1	0.1		
Meduloblastoma	0	0	0	0		
Tumor, granular cell	0.7	0.2	0	0		
Meningioma, benign	0.1	0.1	0	0		
Meningioma, malignant	0.1	0.1	0	0		
Osteosarcoma	0.1	0.1	0	0		
Reticulosis, malignant	0.1	0.1	0.1	0.1		
Hemangioma	0	0	0	0.1		
Spinal cord						
Astrocytoma, malignant	0.1	0.1	0.1	0.1		
Oligodendroglioma, malignant	0	0	0.1	0		
Meningioma, malignant	0	0	0	0.1		
Brain + Spinal cord						
Astrocytoma, malignant	2.1	1.2	0.7	0.3		
Oligodendroglioma, malignant	0.4	0.2	0.3	0.2		
Glioma, mixed, malignant	0	0	0.1	0.1		
Meduloblastoma	0	0	0	0		
Tumor, granular cell	0.7	0.2	0.1	0.1		
Meningioma, benign	0	0	0.1	0.1		
Meningioma, malignant	0.1	0.1	0.1	0.1		
Osteosarcoma	0.1	0.1	0	0		
Reticulosis, malignant	0.1	0.1	0.1	0		
Hemangioma	0	0	0	0.1		

Numbers in the table indicate incidences (%).

Table 6. Age at Detection of CNS Tumors in F344/DuCrI Crlj and Crl:CD(SD) Rats

Strain:	F344/DuCrI Crlj	Crl:CD(SD)						
Sex:	Male	Female	Male	Female	Male	Female		
Number of animals:	1363	1363	1650	1705				
Total*	Range (days**)	Total	Range (days)	Total	Range (days)	Total	Range (days)	
Brain + Spinal cord								
Astrocytoma, malignant	9	589–772	4	616–773	34	371–773	20	350–771
Oligodendroglioma, malignant	4	538–772	3	290–776	7	212–772	3	677–721
Tumor, granular cell	2	771–772	0		11	684–773	3	752–773

* Number of tumors, ** Detected age.

Fig. 1. Distribution of age at detection of malignant astrocytoma, malignant oligodendroglioma and granular cell tumor in F344/DuCrI Crlj rats.

Fig. 2. Distribution of age at detection of malignant astrocytoma, malignant oligodendroglioma and granular cell tumor in Crl:CD(SD) rats.
CNS Tumors in F344 and SD Rats

were higher in SD rats than in F344 rats and also in male SD rats than in female SD rats. The incidences of granular cell tumor showed a tendency to be higher in SD rats than in F344 rats and also in male SD rats than in female SD rats. There were no clear differences in the incidences of brain tumors among the previously reported HCD and the present HCD in both F344 and SD rats.

Discussion

In order to accurately assess the carcinogenicity of chemicals in the rat CNS, sufficient information concerning occurrence and biological features of spontaneous tumors is very important. The present study presents the data on the type, incidence and age at detection of CNS tumors in F344/DuCrj and Crl:CD(SD) rats collected from in-house background data-collection studies and control groups of carcinogenicity studies at our laboratory, together with those previously reported in F344 and SD rats.

It seems reasonable to consider that the type and incidence of rat CNS tumors may change with time. However, there were no time-related changes detected in the present data obtained from F344/DuCrjCrj and Crl:CD(SD) rats during around 15 years. In addition, the incidence of every tumor was similar, even though different vehicles and administration routes were employed. Moreover, there were little differences in the type and incidence of rat CNS tumors between the present and previously reported data. This suggests that CNS tumors are hardly influenced by circumstances in F344 and SD rats.

Although it is impossible to correctly determine the day of onset of CNS tumors, it is possible to presume which type of tumors occurs earlier or later based on the day of death or premature termination in a large cohort of rats. Among astrocytoma, oligodendroglioma and granular cell tumor, oligodendroglioma developed earliest and granular cell tumor latest in both F344/DuCrj and Crl:CD(SD) rats. This order is the same as that in Rcc Han:Wistar rats and it seems to be common in F344, SD and Wistar rats.

Although it was difficult to detect sex and strain differences in the incidences of rare tumors in F344 and SD rats, the incidences of astrocytoma and granular cell tumors were sometimes more than 1% in the present data and/or the previously reported HCD. Increased incidences of these tumors in carcinogenicity studies should be carefully evaluated from the viewpoints of statistical analysis, dose-response relationship, incidence range, age at tumor detection, survival period and so on.

Table 7. Cumulative Incidences of Spontaneous Brain Tumors in F344 Rats

Tumor Type	M	F	M	F	M	F	M	F	M	F
Glial tumors										
Astrocytoma	0.6	0.2	0.7	0.5	0.5	0.9	0.1	0.1	0.4	0.3
Oligodendroglioma	0.3	0.2	0.2	0.1	0.1	0.2	0.0	0.1	0.4	0.3
Mixed glioma	0.1	0.0							0.2	0.0
Mixed glioma or glioma					0.1	0.1	0.1	0.3	0.0	0.3
Neuronal tumors										
Medulloblastoma	0.0	0.1	0.1	0.1						
Neuroblastoma					0.1	0.0				
Meningeal tumors										
Granular cell tumor	0.1	0.0	0.2	0.0	0.2	0.0	0.2	0.1	0.2	0.0
Meningioma			0.1	0.1			0.1	0.1		
Meningeal sarcoma	0.1	0.0								
Epithelial tumors										
Ependymoma	0.1	0.0							0.2	0.0
Miscellaneous										
Malignant reticulosis	0.1	0.1								
Hemangioma					0.1	0.0				
Osteosarcoma	0.1	0.0							0.1	0.0
Sarcoma										

M and F represent male and female, respectively. Numbers in the table indicate incidences (%).
Table 8. Cumulative Incidences of Spontaneous Brain Tumors in SD Rats

Tumor Type	Present study	McMartin et al. 1992	Charles River Lab. 1992	Perry et al. 1999	Perry et al. 1999	Iwata et al. 1999	Iwata et al. 1999	Charles River Lab. 2001	Charles River Lab. 2004	Baldrick 2005	Baldrick 2005	Hsd: SD	Hsd: SD
	M F	M F	M F	M F	M F	M F	M F	M F	M F	M F	M F	M F	M F
Glial tumors													
Astrocytoma	2.0 1.1	0.7 0.5	1.3 0.2	1.2 0.4	1.9 0.0	3.6 0.0	2.0 0.0	0.9 0.6	1.2 0.5	1.5 1.2	1.6 0.4	0.4	2.0
Oligodendroglioma	0.4 0.2	0.2 0.0	0.4 0.4					0.2 0.1	0.1 0.1	0.1 0.2	0.2	0.0	
Glioma	0.2 0.0	0.2 0.0	0.4 0.4										
Neuronal tumors													
Medulloblastoma	0.2 0.0												
Ganglieneuroma													
Neuroma								0.0 0.1					
Meningeal tumors													
Granular cell tumor	0.7 0.2	0.2 0.0	0.3 0.2	1.2 0.0	0.0 0.3	0.0 0.9	0.0 0.0	0.7 0.4	0.6 0.3	1.0 0.3	1.3 0.8		
meningioma	0.1 0.0			0.6 0.0	0.0 0.9	0.0 0.0	2.0 0.0	0.7 0.4	0.6 0.3	1.7 0.6	1.3 0.6		
Meningeal sarcoma	0.1 0.0			0.3 0.0	0.0 0.0	0.0 0.0	2.0 0.0	0.7 0.4	0.6 0.3	1.7 0.6	1.3 0.6		
Epithelial tumors													
Ependymoma	0.0 0.3							0.0 0.3					
Ependymoblastoma	0.2 0.0							0.1 0.1					
Choroid plexus papilloma	0.0 0.0							0.1 0.1					
Miscellaneous													
Malignant reticulosis	0.1 0.0												
Hemangiomatosa	0.0 0.1												
Hemangiosarcoma													
Osteosarcoma	0.1 0.0												
Malignant pinealoma													

M and F represent male and female, respectively. Numbers in the table indicate incidences (%).
dition, the incidence of astrocytoma was almost consistently higher in SD rats than in F344 rats and also in males than in females, suggesting that the difference in the occurrence of astrocytoma may be related to rat strain and sex. A similar tendency was also sometimes observed in the incidence of granular cell tumor, although the tendency was not always consistent.

Krinke et al. described that meningioma was not observed in SD rats. In addition, several researchers reported that meningioma was never detected in HCD for SD (not-IGS) rats obtained from Charles River UK. On the other hand, its incidence was reported to be more than 1% by Iwata et al. and Baldrick. The data of Iwata et al. were obtained from a small number of CD(SD)IGS rats (incidence: 2% (1/50) of females), while the data of Baldrick were collected from 13 studies with a total of more than 460 male and 460 female rats of an SD (not-IGS) strain (Charles River UK) (incidences: 1.7% (8/470) and 1.3% (6/461) in each male group, and 0.6% (3/476) and 0.6% (3/468) in each female group). Thus, the relation between the occurrence of meningioma and rat sub-strain was not clear.

In conclusion, the present study clarified the following. (1) The incidences of all CNS tumors observed in F344/DuCrIcrj rats were less than 1%. (2) The incidences of malignant astrocytoma and granular cell tumor were higher in males than in females in Crl:CD(SD) rats. (3) The incidences of astrocytoma and granular cell tumor were higher in Crl:CD(SD) rats than in F344/DuCrIcrj rats. (4) Among astrocytoma, oligodendroglioma and granular cell tumor, oligodendroglioma was detected at the youngest age, followed by astrocytoma, and ultimately, granular cell tumor developed in both F344/DuCrIcrj and Crl:CD(SD) rats. The incidences observed in our study were almost consistent with those previously reported in F344 and SD rats.

Acknowledgments: The authors gratefully acknowledge Dr. Kunio Doi, Professor Emeritus of the University of Tokyo, for critical review of the manuscript. We are also grateful to Mr. Pete Aughton, ITR Laboratories Canada Inc., for proofreading.

References

1. Rice JM, and Wilbourn JD. Tumor of the nervous system in carcinogenic hazard identification. Toxicol Pathol. 28: 202–214. 2000. [Medline]
2. Sills RC, Hailey JR, Neal J, Boorman GA, Haseman JK, and Melnick RL. Examination of low-incidence brain tumor responses in F344 rats following chemical exposures in national toxicology program carcinogenicity studies. Toxicol Pathol. 27: 589–599. 1999. [Medline]
3. Deschsl U, Kittel B, Rittinghausen S, Morawietz G, Kohler M, Mohr U, and Keenan C. The value of historical control data-scientific advantages of pathologists, industry and agencies. Toxicol Pathol. 30: 80–87. 2002. [Medline]
4. Greim H, Gelbke H-P, Reuter U, Thielmann HW, and Edler L. Evaluation of historical control data in carcinogenicity studies. Hum Exp Toxicol. 22: 541–549. 2003. [Medline]
5. Keenan C, Elmore S, Francke-Carroll S, Kemp R, Kerlin R, Peddada S, Pletcher J, Rinke M, Schmidt SP, Taylor I, and Wolf DC. Best practices for use of historical control data of proliferative rodent lesions. Toxicol Pathol. 37: 679–693. 2009. [Medline]
6. Haseman JK, Ney E, Nyska A, and Rao GN. Effect of diet and animal care/housing protocols on body weight, survival, tumor incidences, and nephropathy severity of F344 rats in chronic studies. Toxicol Pathol. 31: 674–681. 2003. [Medline]
7. Nyska A, Leininger JR, Maronpot RR, Haseman JK, and Hailey JR. Effect of individual versus group caging on the incidence of pituitary and Leydig cell tumors in F344 rats: proposed mechanism. Med Hypotheses. 50: 525–529. 1998. [Medline]
8. Kaufmann W, Bolon B, Bradley A, Butt M, Czasch S, Garman RH, George C, Groters S, Krinke G, Little P, McKay J, Narama I, Rao D, Shibutani M, and Sills R. Proliferative and non-proliferative lesions of the rat and mouse central and peripheral nervous systems. Toxicol Pathol. 40: 878–1575. 2012. [Medline]
9. Charles River Laboratories, Inc. Spontaneous neoplastic lesions in the CDF (F344/Crl)BR rat. 1990, from Charles River website: http://www.criver.com/sitecollectiondocuments/rm_rm_r_snl_cdf_f344_crbr_rat.pdf.
10. Haseman JK, Eustis SL, and Arnold J. Tumor incidences in Fischer 344 rats: NTP historical data. In: Pathology of the Fischer Rat. GA Boorman, SL Eustis, MR Elwell, CA Montgomery Jr, and WF Mackenzie (eds). Academic Press, San Diego, New York, Boston, London, Sydney, Tokyo, Toronto. 555–564. 1990.
11. Iwata H, Hirouchi Y, Koike Y, Yamakawa S, Kobayashi K, Yamamoto T, Kobayashi K, Inoue H, and Enomoto M. Historical control data of non-neoplastic and neoplastic lesions in F344/Crlj rats. J Toxicol Pathol. 4: 1–24. 1991.
12. Haseman JK, Hailey JR, and Morris RW. Spontaneous neoplasms incidences in Fischer 344 rats and B6C3F1 mice in two-year carcinogenicity studies: A national toxicology program update. Toxicol Pathol. 26: 428–441. 1998. [Medline]
13. Dinse GE, Peddada SD, Harris SF, and Elmore SA. Comparison of NTP historical control tumor incidence rates in female Harlan Sprague Dawley and Fischer 344/N rats. Toxicol Pathol. 38: 765–775. 2010. [Medline]
14. NTP (U.S. National Toxicology Program). Historical control data in F344/N rats. 2011, from NTP website: http://ntp.niehs.nih.gov/ntp/Historical_Controls/NTP2000_2011_HistCont2011_Rats_AllRoutes.pdf.
15. McMartin DN, Sahota PS, Gunson DE, Hsu HH, and Spate RH. Neoplasms and related proliferative lesions in control Sprague-Dawley rats from carcinogenicity studies. Historical data and diagnostic considerations. Toxicol Pathol. 20: 212–225. 1992. [Medline]
16. Charles River Laboratories, Inc. Spontaneous neoplastic lesions and selected non-neoplastic lesions in the Crl:CD®BR rat. 1992, from Charles River website: http://www.criver.com/sitecollectiondocuments/rm_rm_r_lesions_selected_non-neo_crlbr_rat.pdf.
17. Perry CJ, Bleakley J, and Finch JM. Background pathology data from carcinogenicity studies comparing Crl:CD(SD) IGS and Crl:CD rats – (1) neoplastic lesions. CD(SD)IGS.
18. Iwata H, Kakamu S, Sugiyama Y, Mukai D, Iida M, Yamakawa S, Yamamoto T, and Inoue H. A control data of the mortality, body weight, food consumption, hematological data and neoplastic lesions in long-term examination in Crj:CD(SD)IGS rats -comparison with data in Crj:CD(SD) rats-. CD(SD)IGS. 243–251. 1999.

19. Charles River Laboratories, Inc. Compilation of spontaneous neoplastic lesions and survival in Crl:CD® (SD)BR rats from control groups. 2001, from Charles River website: http://www.criver.com/sitecollectiondocuments/rm_rm_r_lesions_survival_crlcd-sd_br_rats.pdf.

20. Charles River Laboratories, Inc. Compilation of spontaneous neoplastic lesions and survival in Crl:CD® (SD) rats from control groups. 2004, from Charles River website: http://www.criver.com/sitecollectiondocuments/rm_rm_r_lesions_survival_crlcd_sd_rats.pdf.

21. Baldrick P. Carcinogenicity evaluation: comparison of tumor data from dual control groups in the Sprague-Dawley rat. Toxicol Pathol. 33: 283–291. 2005. [Medline]

22. NTP (U.S. National Toxicology Program). Historical control data in Harlan SD rats. 2011, from NTP website: http://ntp.niehs.nih.gov/ntp/Historical_Controls/NTP2000_2011/HistCont2011_HSD_allroutes.pdf.

23. Peto R, Pike MC, Day NE, Lee PN, Parish S, Peto J, Richard S, and Wahrendorf J. Guidelines for simple, sensitive tests for carcinogenic effects in long-term animal experiments. IARC Monogr Eval Carcinogenic Risk Chem Human. Suppl 2: 365–367. 1980.

24. Guidance for industry: Statistical aspect of the design, analysis, and interpretation of chronic rodent carcinogenicity studies of pharmaceuticals. Draft guidance. U.S. Department of Health and Human Services, FDA, and CDER. 2001.

25. Ando R, Nakamura A, Nagatani M, Yamakawa S, Ohira T, Takagi M, Matsushima K, Aoki M, Fujita Y, and Tamura K. Comparison of past and recent historical control data in relation to spontaneous tumors during carcinogenicity testing in Fischer 344 rats. J Toxicol Pathol. 21: 53–60. 2008.

26. Weber K, Garman RH, Germann P-G, Hardisty JF, Krinke G, Millar P, and Pardo ID. Classification of neural tumors in laboratory rodents, emphasizing the rat. Toxicol Pathol. 39: 129–151. 2011. [Medline]

27. Krinke GJ, Kaufmann W, Mahrous AT, and Schaetti P. Morphologic characterization of spontaneous nervous system tumors in mice and rats. Toxicol Pathol. 28: 178–192. 2000. [Medline]