SETX sumoylation

A link between DNA damage and RNA surveillance disrupted in AOA2

Patricia Richard and James L Manley*
Department of Biological Sciences; Columbia University; New York, NY USA

Senataxin (SETX) is a putative RNA/DNA helicase that is mutated in two distinct juvenile neurological disorders, AOA2 and ALS4. SETX is involved in the response to oxidative stress and is suggested to resolve R loops formed at transcription termination sites or at sites of collisions between the transcription and replication machineries. R loops are hybrids between RNA and DNA that are believed to lead to DNA damage and genomic instability. We discovered that Rrp45, a core component of the exosome, is a SETX-interacting protein and that the interaction depends on modification of SETX by sumoylation. Importantly, we showed that AOA2 but not ALS4 mutations prevented both SETX sumoylation and the Rrp45 interaction. We also found that upon replication stress induction, SETX and Rrp45 co-localize in nuclear foci that constitute sites of R-loop formation generated by transcription and replication machinery collisions. We suggest that SETX links transcription, DNA damage, and RNA surveillance, and discuss here how this link can be relevant to AOA2 disease.

Senataxin (SETX) is a large protein of more than 300 kDa that is considered to be the counterpart of the yeast DNA/RNA helicase Sen1. Indeed SETX carries a conserved helicase motif in its C terminus, but so far helicase activity has only been shown for the S. Pombe protein.1 Sen1 (tRNA splicing endonuclease) was originally discovered as an endonuclease that processes tRNA2 but has been further characterized as an important factor in non-coding RNA processing and, for some genes, transcription termination.3,4 For example, SETX has been suggested to be involved in transcription termination at G-rich pause sites, which appear to be R-loop hot spots.5 (R loops are hybrids between nascent transcripts and the DNA template.) Additionally, Sen1 and SETX have both been implicated in R-loop resolution at DNA damage sites.6-10 For example, it is now believed that SETX plays a role in resolving R loops that form when the transcription and replication machineries collide. Defects in R-loop resolution are known to lead to accumulation of DNA double-strand breaks (DSBs), resulting in DNA rearrangements and genome instability.6,11

Interest in SETX increased in 2004 when it was found that mutations in SETX can lead to two distinct neurological disorders, a form of autosomal recessive ataxia named AOA2 (ataxia with oculomotor apraxia 2)12 and a juvenile form of ALS (amyotrophic lateral sclerosis or Lou Gehrig disease), ALS4.13 Mutations leading to AOA2 are recessive, can be homozygous or compound heterozygous, and are believed to result in SETX loss of function, while mutations responsible for ALS4 are dominant and most likely gain of function. In both cases, disease onset occurs generally at adolescence, and patient life span is rarely affected. To date, many mutations including missense, nonsense, and deletion mutations scattered throughout the ORF, are linked to AOA2,14 and eight mutations associated with ALS4 have been described.13,15-17 It is important to note that a growing number of SETX mutations have been found in patients that display atypical and/or
intermediate phenotypes distinct from AOA2 or ALS4.15,16,18-21

While a growing number of AOA2 cases are diagnosed and new \textit{SETX} mutations are revealed, there has been limited information about how those mutations affect \textit{SETX} function and how they are related to the disease. In an effort to address this issue, we studied three previously described AOA2 mutations (E65K,22 W305C, and P413L23) and two ALS4 mutations (T31 and L389S23), all lying within the putative protein interaction domain of \textit{SETX} located at its N terminus.23 Our approach was to first identify proteins expressed in brain that interact with this region of \textit{SETX} (Nter-\textit{SETX}, residues 1–665) using a yeast two-hybrid (Y2H) screen with Nter-SETX and a human brain cDNA library.24 We found that Nter-SETX interacted with a relatively small number of proteins in this assay, and one that was detected repeatedly was Rrp45, a core component of the multisubunit exosome. The exosome is a large complex that processes and/or degrades RNAs in the nucleus and nucleolus, as well as the cytoplasm.25-27 It consists of a core of nine subunits (including Rrp45) and is associated with two 3′–5′ exoribonucleases, Rrp6 and Dis3, that can have distinct RNA specificities.28 This novel interaction—which, importantly, we also confirmed by co-immunoprecipitation (coIP) in human cells—suggested a possible connection between RNA transcription and/or replication machineries collide. During transcription, \textit{SETX}, which has been shown to interact with RNAPII,31 likely unwinds the RNA-DNA hybrid, and then, we propose, the exosome degrades the RNA moiety (Fig. 1). If the exosome is not recruited to the collision sites, the released RNA might itself have deleterious consequences to the cell, or perhaps rehybridize to the DNA, regenerating the R loop and leading to DSBs. Of course, many questions remain regarding this proposed mechanism, not to mention its relevance to AOA2, but perhaps not ALS4.

Sumoylation is a dynamic process that has been shown to control a variety of cellular processes. It regulates, for example, protein-protein interactions, protein stability, localization, and transcriptional activity.34,35 Small ubiquitin-like modifiers (SUMO) are peptides of \textasciitilde11 kDa that are covalently conjugated to target proteins through the amino side chains of lysine residues. Four SUMO paralogues exist in mammals (SUMO1–4). While SUMO2 and SUMO3 are very similar, SUMO1 shares only 50% sequence identity with SUMO2/3,36 and SUMO4 expression might be restricted to a few cell types, e.g., immune cells.39 Conjugation of SUMO to a target protein is similar to conjugation of ubiquitin, first requiring activation of SUMO by an E1 activating enzyme. This is followed by transfer of SUMO to an E2 conjugating enzyme, Ubc9 (the only known E2), which in turn transfers SUMO to the target protein, facilitated by an E3 ligase. The target lysine is frequently found within the consensus sequence ΨKxK/E/D (Ψ represents
hydrophobic amino acids). Interestingly, SUMO has the ability to form poly-SUMO conjugates. In fact, SETX had already been detected as a sumoylated protein and had been shown to be poly-sumoylated, by SUMO2, after heat shock. Poly-sumoylated SETX shows an apparent MW of ~600 KDa, which suggests that SETX actually carries about 600 SUMO peptides. Our Y2H screen also revealed interaction of SETX with two other components of the sumoylation machinery, Ubc9 and the E3 ligase PIAS1. Notably, the E65K AOA2 mutation showed the most complete loss of interaction with Rrp45, and sumoylation, and also lost interaction with Ubc9, implying that this mutation prevents sumoylation by disrupting Ubc9 binding. How the other two AOA2 mutations disrupt sumoylation remains to be determined.

Sumoylated SETX in normal cells appears to be present at very low levels, as it is barely detectable by western blotting after IP and, as has already been shown with heat shock, is probably increased by stress induction. Indeed, it is well known that various cellular stresses increase sumoylation. It is then very likely that the stress induced by APH treatment leads to a hyper-sumoylation of SETX, which in turn is necessary for its association with Rrp45. In the brain, managing various stresses is thought to be more important than in other cell types, and sumoylation is known to play crucial roles. It is perhaps then not surprising that loss of SETX sumoylation has a direct impact on AOA2 cells. In fact, SETX sumoylation appears to be an efficient and powerful factor in the rapid response to DNA damage. Indeed, proteins from the sumoylation machinery, including SUMO2/3, PIAS1, and Ubc9, accumulate at sites of DSBs, suggesting that SUMO conjugation takes place at DNA damage sites. Very interestingly, BLM, another helicase from the RecQ family involved in DSB repair, and which is defective in Bloom syndrome, is also sumoylated, and mutations that impaired its sumoylation led to greater DNA damage. There is now more and more evidence that sumoylation is important for accumulation of DNA repair factors at sites of damage.

Many proteins that have the potential to be sumoylated have already been shown to be involved in a variety of diseases. Neurodegenerative disorders seem to be particularly linked to sumoylation. SETX should now be added to the growing list of disease-associated proteins that are sumoylated. Sumoylation of many such proteins has been linked to their capacity to aggregate in the cell. For example, spinocerebellar ataxia type 1 (SCA1) is caused by an expansion of polyglutamine (polyQ) repeats in ataxin-1. Sumoylation of Ataxin-1 can be exacerbated by oxidative stress and lead to an increase in protein aggregation. However, Ataxin-1 sumoylation is decreased in a polyQ expansion mutant. Some proteins involved in ALS are also known to aggregate in patient cells and animal models. For example, superoxide dismutase 1 (SOD1), which is mutated in about 20% of familial cases of ALS, has been shown to be sumoylated in mutant and WT proteins, in both cases possibly leading to an increase and stabilization of aggregates. There is so far no evidence of SETX aggregates in AOA2 patient cells.

Neurological diseases have been linked for some time with defects in DNA damage repair pathways. Patients suffering from ataxia telangiectasia (AT), another autosomal recessive ataxia, have mutations in ATM (AT mutated), leading to deregulation of many pathways involved in genomic stability including DSB repair. AOA2 patient cells have also been shown to be sensitive to oxidative stress, leading to DSBs and a number of studies have now established a role for Sen1/SETX in the DNA damage response, most likely by resolving R loops. ASSETX aggregates in AOA2 patient cells. There is now more and more evidence that sumoylation is important for accumulation of DNA repair factors at sites of damage. SETX aggregates in AOA2 patient cells.

Figure 1. SETX, SUMO, and the exosome: Working together to fight transcription-related DNA damage. SETX is shown already associated with RNAPII to resolve any R loops that may form naturally during transcription. Upon transcription and/or replication stress, created for example when RNAPII and DNA polymerase collide, SETX becomes sumoylated. Sumoylated SETX then interacts and/or recruits the exosome through its interaction with Rrp45. SETX resolves the R loop, perhaps inducing RNAPII release from DNA template, while the exosome then degrades the released RNA, to prevent possible reformation of the R loop and/or deleterious effects of the prematurely terminated RNA.
whether SETX is indeed recruited to CFS or any other R loop-forming sequences.

If SETX can be classified as a DNA damage response protein, then our data imply that the exosome, or at least Rrp45, can also be considered to be a DNA damage factor. While some evidence of the RNA surveillance machinery being involved in the DNA damage response has been found in yeast, human data in humans was lacking before our study. While knockdown of exosome subunits appears to increase DSBs in human cells (unpublished data), further experiments will be needed to confirm whether the exosome is indeed a DNA damage response factor.

SETX appears to have a specific and crucial role in preventing DSBs created by oxidative stress. One of the main features of AOA2 is an atrophy of the cerebellum, and it is known that cerebellar cells are very vulnerable to oxidative stress (OS). Indeed, cerebellar granule cells appear significantly more sensitive to OS than do cortical neurons. This selective OS neuronal vulnerability could explain why SETX dysfunction seems to be deleterious exclusively in the brain and more prominent in the cerebellum of AOA2 patients. OS is involved in many pathogenic cellular processes and is responsible for a large fraction of DNA damage events. In many cases, this might be linked to R-loop formation. Indeed, AOA2 cells have also been shown to be sensitive to camptothecin (CPT), which can also generate OS. CPT is a topoisomerase I (Top1) inhibitor that blocks transcription and causes DSBs in an R loop-dependent manner. Top1 is believed to prevent collisions between the transcription and replication machineries, and thus also prevent formation of R loops.

An important question raised by our study is how replicative defects, such as transcription-replication fork collisions, can be relevant in a neurological disorder since neurons are mostly post-mitotic cells. We suggest two possibilities. First, AOA2 arises at adolescence when some neurogenesis is still ongoing and replication defects, especially in the cerebellum, might be deleterious enough to lead to disease. Consistent with this, brain cells are known to be highly vulnerable to neurotoxicity during adolescence. Second, increasing evidence points to the possibility that neurological diseases are not solely the result of neuronal dysfunction. Glial cells, which “feed” and “support” neurons, appear to have considerable responsibilities in disease pathology, and defects in the response to replicative stress in such cells might also be deleterious to neurons. It is also important to mention that R loops can be generated by various mechanisms, and SETX might play a role in resolving them not only when transcription and replication meet but also, for example, at G-rich sequences such as termination sites or downstream of unmethylated CpG island promoters.

Our work has highlighted a connection between SETX, RNA surveillance, and DNA damage that is disrupted in AOA2. But of course many questions remain. First, we tested only three AOA2 mutations and it is very possible, even likely, that all the reported mutations do not interfere with SETX sumoylation and/or interaction with Rrp45. It would be interesting to test other mutations, especially some outside the N-terminal domain of SETX. Second, SETX is a very large protein that probably performs many functions, and it is not difficult to imagine that mutations affect different functions. This would explain the variability observed in patients’ symptoms with SETX mutations. Are all these mutationally-sensitive functions linked to DNA repair? Or can other functions of SETX, e.g., in transcription termination, be relevant to AOA2 or ALS4? Finally, how does disruption of sumoylation and/or exosome interaction caused by the AOA2 mutations we studied specifically affect the brain during the first two decades of life? If SETX/exosome are involved in DNA damage repair and prevent genomic instability, why do AOA2 and ALS4 patients not display a heightened incidence of cancer? The use of iPS cells obtained from AOA2 patients and studies of additional mutations in SETX might shed light on these and other questions.

Disclosure of Potential Conflicts of Interest

No potential conflict of interest was disclosed.

Acknowledgments

This work was supported by the Muscular Dystrophy Association (MDA), the Columbia University Motor Neuron Center (MNC), and an EMBO fellowship to P.R., and NIH grant RO1 GM28983 to J.L.M.

References

1. Kim HD, Cho J, Seo YS. The sen1+ gene of Schizosaccharomyces pombe, a homologue of budding yeast Set1, encodes an RNA and DNA helicase. Biochemistry 1999; 38:14697-710; PMID:10545196; http://dx.doi.org/10.1021/bi991470c
2. Winney M, Calbertson MR. Mutations affecting the tRNA-splicing endonuclease activity of Saccharomyces cerevisiae. Genetics 1988; 118:609-17; PMID:2584787
3. Urisic D, Himmel KL, Gurley KA, Webb F, Calbertson MR. The yeast Set1 gene is required for the processing of diverse RNA classes. Nucleic Acids Res 1997; 25:6778-85; PMID:92336526; http://dx.doi.org/10.1093/ nar/25.23.6778
4. Steinmetz EJ, Warren CL, Kuehner JN, Panbehi B, Ansari AZ, Brow DA. Genome-wide distribution of yeast RNA polymerase II and its control by Sen1 helicase. Mol Cell 2006; 24:735-46; PMID:17157256; http://dx.doi.org/10.1016/j.molcel.2006.10.023
5. Skourti-Stathaki K, Proudfoot NJ, Gromak N. Human senataxin resolves RNA/DNA hybrids formed at transcriptional pause sites to promote Xrn2-dependent termination. Mol Cell 2011; 42:794-805; PMID:21700224; http://dx.doi.org/10.1016/j.molcel.2011.04.026
6. Aguilera A, García-Muse T. Rloops: from transcription byproducts to threats to genome stability. Mol Cell 2012; 46:115-24; PMID:22451954; http://dx.doi. org/10.1016/j.molcel.2012.04.009
7. Muscho HE, Gómez-González B, Grzechnik P, Rondón AG, Wei W, Steinmetz L, Aguilera A, Proudfoot NJ. Yeast Sen1 helicase protects the genome from transcription-associated instability. Mol Cell 2011; 41:21-32; PMID:21217220; http://dx.doi.org/10.1016/j.molcel.2010.12.007
8. Alzu A, Bermejo R, Begnis M, Lucca C, Piccini D, Carotenuto W, Saponaro M, Brambati A, Cocito A, Foiani M, et al. Senataxin associates with replication forks to protect integrity across RNA-polymerase-II-transcribed genes. Cell 2012; 151:835-46; PMID:23145140; http://dx.doi.org/10.1016/j.cell.2012.09.041
9. Yuce O, West SC. Senataxin, defective in the neurodegenerative disorder ataxia with oculomotor apraxia 2, lies at the interface of transcription and the DNA damage response. Mol Cell Biol 2013; 33:406-17; PMID:23419945; http://dx.doi.org/10.1128/ MCB.01959-12
10. Becherel OJ, Yee AJ, Stellati A, Heng EY, Laff J, Suraweera AM, Woods R, Fleming J, Carrie D, McKinney K, et al. Senataxin plays an essential role with DNA damage response proteins in meiotic recombination and gene silencing. PLoS Genet 2013; 9:e1003454; PMID:23993030; http://dx.doi.org/10.1371/journal.pgen.1003454
11. Li X, Manley JL. Inactivation of the SR protein splicing factor ASF/SF2 results in genomic instability. Cell 2005; 122:365-78; PMID:16096507; http:// dx.doi.org/10.1016/j.cell.2005.06.008
12. Moreira MC, Khrz S, Waranabe M, Németh AH, Le Ber I, Moniz JL, Tranchant C, Aubourg P, Tazir M, Schols L, et al. Senataxin, the ortholog of a yeast RNA helicase, is mutant in ataxia-oculomotor apraxia 2. Nat Genet 2004; 36:225-7; PMID:14770181; http://dx.doi.org/10.1038/ng3903

©2014 Landes Bioscience. Do not distribute.
23. Anheim M, Monga B, Fleury M, Charles P, Barbot C, Salih M, Delaunoy JP, Frisch M, Arning L, Synofzik M, et al. Ataxia with ocular motor apraxia type 2: clinical, biological and genotypic/phenotype correlation study of a cohort of 90 patients. Brain 2009; 132:2688-98; PMID:19690632; http://dx.doi.org/10.1093/brain/awp211

24. Hirano M, Quinzii CM, Mitsutomo H, Hays AP, Roberts JK, Richard P, Rowland LP. Senataxin mutations and amyotrophic lateral sclerosis. Amyotroph Lateral Scler 2011; 12:237-73; PMID:21909395; http://dx.doi.org/10.3109/174829 X4.2011.603281

25. Zhao ZH, Chen WZ, Wu ZY, Wang N, Zhao GX, Chen WJ, Muong XG. A novel mutation in the senataxin gene identified in a Chinese patient with sporadic amyotrophic lateral sclerosis. Amyotroph Lateral Scler 2009; 10:118-22; PMID:19095804; http://dx.doi.org/10.1080/2009025276

26. Schulis L, Arning L, Schule I, Epplen JT, Timmann D. "Pseudodominant inheritance" of ataxia with oculomotor apraxia type 2 (AOA2). J Neurol 2008; 255:495-501; PMID:18350539; http://dx.doi.org/10.1007/s00415-008-0707-7

27. Rudnik-Schöneborn S, Arning L, Epplen JT, Zetres K. SETX gene mutations in a family diagnosed autosomal dominant proximal spinal muscular atrophy. Neuromusc Disord 2012; 22:258-62; PMID:22088787; http://dx.doi.org/10.1016/j. nmd.2011.09.006

28. Basuik AG, Chen YZ, Batish SD, Nagan N, Opl A, Chance PF, Bennett CL. In cis autosomal dominant mutation of Senataxin associated with tremor/ataxia syndrome. Neurogenetics 2007; 8:49-9; PMID:17906908; http://dx.doi.org/10.s101084-006-0067-8

29. Di Bello D, Guida E, Furlan G, Scandurra M, Menegatti E, Cristofaro R, Cimmino A, Solinas L, Valente M, et al. Senataxin 2 mutations cause developmental delay with cerebellar atrophy and brainstem findings. J Hum Genet 2013; 58:455-63; http://dx.doi.org/10.1629/jhge.12076

30. Vescio M, Solinas L, Valente M, et al. Senataxin 2 mutations cause developmental delay with cerebellar atrophy and brainstem findings. J Hum Genet 2013; 58:455-63; http://dx.doi.org/10.1629/jhge.12076

31. Vitale E, Di Bello D, Guida E, Furlan G, Scandurra M, Menegatti E, Cristofaro R, Cimmino A, Solinas L, Valente M, et al. Senataxin 2 mutations cause developmental delay with cerebellar atrophy and brainstem findings. J Hum Genet 2013; 58:455-63; http://dx.doi.org/10.1629/jhge.12076
RARE DISEASES

Volume 2 Issue 1

©2014 Landes Bioscience. Do not distribute.