Structured reporting of x-ray mammography in the first diagnosis of breast cancer: a Delphi consensus proposal

Emanuele Neri1,2 · Vincenza Granata3 · Stefania Montemezzi4 · Paolo Belli5 · Daniela Bernardi6 · Beniamino Brancato7 · Francesca Caumo8 · Massimo Calabrese9 · Francesca Coppola10 · Elsa Cossu11 · Lorenzo Faggioni11 · Alfonso Frigerio12 · Roberta Fusco13 · Antonella Petrillo1 · Veronica Girardi14 · Chiara Iaconi15 · Carolina Marini16 · Maria Adele Marino17 · Laura Martincich18 · Jacopo Nori19 · Federica Pediconi20 · Gianni Saguatti21 · Mario Sansone22 · Francesco Sardanelli23 · Gianfranco Paride Scaperrotta24 · Chiara Zuiani25 · Eleonora Ciaghi26 · Marco Montella27 · Vittorio Miele2,28 · Roberto Grassi2,29

Received: 17 January 2022 / Accepted: 25 February 2022 / Published online: 18 March 2022
© The Author(s) 2022

Abstract

Background Radiology is an essential tool in the management of a patient. The aim of this manuscript was to build structured report (SR) Mammography based in Breast Cancer.

Methods A working team of 16 experts (group A) was composed to create a SR for Mammography Breast Cancer. A further working group of 4 experts (group B), blinded to the activities of the group A, was composed to assess the quality and clinical usefulness of the SR final draft. Modified Delphi process was used to assess level of agreement for all report sections. Cronbach’s alpha (Cα) correlation coefficient was used to assess internal consistency and to measure quality analysis according to the average inter-item correlation.

Results The final SR version was built by including $n=2$ items in Personal Data, $n=4$ items in Setting, $n=2$ items in Comparison with previous breast examination, $n=19$ items in Anamnesis and clinical context; $n=10$ items in Technique; $n=1$ item in Radiation dose; $n=5$ items Parenchymal pattern; $n=28$ items in Description of the finding; $n=12$ items in Diagnostic categories and Report and $n=1$ item in Conclusions. The overall mean score of the experts and the sum of score for structured report were 4.9 and 807 in the second round. The Cronbach’s alpha (Cα) correlation coefficient was 0.82 in the second round. About the quality evaluation, the overall mean score of the experts was 3.3. The Cronbach’s alpha (Cα) correlation coefficient was 0.90.

Conclusions Structured reporting improves the quality, clarity and reproducibility of reports across departments, cities, countries and internationally and will assist patient management and improve breast health care and facilitate research.

Keywords Structured Reporting · Breast Cancer · Mammography

Introduction

Radiology is an essential tool in the management of a patient. The trend toward personalized imaging-based medicine increasingly requires specialized knowledge in order to be able to answer the particular clinical questions of referring specialists [1–3]. The communication occurs through the report written by the radiologist [4–6]. Describing and comprehending the imaging features as well as disposing for the probability-based differential diagnosis are the radiologist’s principal responsibility [7]. Traditionally, reports are free-form narrative. However, reducing difference in reports and creating guideline-concordant templates is essential to radiology’s success in value-based payment models and suitable for patient care [8, 9]. There has been a strong thrust in recent times on improved structure and standardization in radiology reporting. A notable example to structure in the field of breast imaging where the American College of Radiology (ACR) developed and promulgated the breast imaging reporting and data system (BI-RADS). BI-RADS includes a standardized lexicon for description of breast imaging findings and their clinical management [10].
Several proposal have been supported by the major international societies of radiology for the use of structured reports (SR), as the European Society of Radiology and the Radiological Society of North America in the so-called “Structured reporting initiative”. The Italian Society of Medical and Interventional Radiology (SIRM) have made available to members of society several templates that can be used in their daily practice [11].

The advantages of SR derive from several features. In oncological setting, there have been substantial advances in the quality of templates and the statement of imaging features. Several studies were able to show that using a SR caused significant progresses in the clarity and comprehensiveness of imaging findings [12–14]. In a paper on SR during staging phase for pancreatic lesions, the investigated surgeons conveyed that only 25–42% of narrative templates described all relevant features for surgical planning while an increase to 69–98% was realized in the case of SRs [15].

Outside of oncology, in all radiological fields, SR results in a relevant increase in quality, since, considerably more pertinent information were included in the templates and referring clinicians favored the SR to the free-text report (FTR). SR has advantages that go far beyond communication. In fact, the possibility to archive data concerning contrast medium or radiation exposure with consequent addition to the template would be easy technical employment [16, 17].

Despite all of these promising advances, SR has not yet convert in the clinical practice. A survey of SIRM members noticed that the Italian radiologists know SRs, but only a smaller group habitually use it in clinical practice [18].

Among women, breast cancer is the most commonly diagnosed cancer and the leading cause of cancer-related death in the world [19, 20]. Digital breast tomosynthesis (DBT) has rapidly gained ground in the realm of breast cancer screening and diagnosis [21]. Published data showed the superiority of DBT in comparison with the current standard digital mammography (DM). DBT has been shown to provide improved sensitivity and specificity, as well as improved lesion conspicuity and localization [21]. In this context, it is necessary that the current format of free-text reporting (FTR) should be organized and shifted toward SR. The three main reasons for moving from FTR to SR are quality, data-fication quantification and accessibility. A critical quality improvement resulting from the use of SR is standardization. The use of templates in SR provides a checklist as to whether all relevant items for a particular examination have been addressed. Thanks to this “structure”, the radiology report will also allow the association of radiological data and other key clinical features, leading to a precise diagnosis and personalized medicine.

The aim of our study was to propose a structured reporting template for x-ray mammography in the first diagnosis of Breast Cancer, to guide radiologists in a systematic reporting and improve the communication of the report to clinicians.

Materials and methods

Critical debate between specialist in Breast Radiology based on a multi-round consensus-building modified Delphi method was completed to improve a comprehensive SR for Mammography of patients with Breast Cancer.

Panel experts

A working group of 16 experts (group A), members of the board of the SIRM study section on breast radiology, was composed to create a structured report for the first diagnosis of breast cancer in x-ray mammography. A further working group of 4 experts in breast radiology (group B), chosen among senior past board members who gave their availability to participate in the consensus, and blinded to the activities of the group A, was composed to assess the quality and clinical usefulness of the final draft of the structured report. All panellist of group A analyzed literature papers on the main scientific databases, including Pubmed, Scopus, and Google Scholar, to assess papers on Mammography findings of Breast Cancer from December 2000 to December 2020. The full text of the selected studies was reviewed and helped the panelists to compose a first list of items of the reports, via emails and/or teleconferences.

SR was divided into 10 section: (a) Personal Data, (b) Setting, (c) Comparison with previous breast examination, (d) Anamnèsis and clinical context; (e) Technique; (f) Radiation dose; (g) Parenchymal pattern; (h) Description of the finding; (i) Diagnostic categories and Report and (j) Conclusions. As a part of template we added a dedicated section of more relevant images.

Delphi rounds

Preliminary, each panellist autonomously provided to improving the draft of the SR by means of online meetings or mail exchanges. Subsequently, three Delphi rounds were performed [17].

During the first round, a Google Form survey was used to test the panellists’ agreement for the SR draft. Each section of the SR (i.e., Patient Clinical Data, Clinical Evaluation, Exam Technique, Report, Findings, and Conclusion) was tested by using a five-point Likert scale (1 = strongly disagree, 2 = slightly disagree, 3 = neither agree nor disagree, 4 = slightly agree, 5 = strongly agree).

Afterward the second round, the final version of the structure report was generated on the dedicated RSNA website (radreport.org) by using T-Rex template in HTML format.
in line with IHE (Integrating Healthcare Enterprise) and the MRRT (management of radiology report templates) profile, accessible as open-source software, with the technical support of Exprivia (Molfetta, Bari, Italy). These determine both the format of radiology report templates [by using both the version 5 of Hypertext Markup Language (HTML5)], and the transporting mechanism to request, get back, and stock these schedules [18]. The radiology report was structured by using a series of “codified queries” integrated in the T-Rex editor’s preselected sections [18]. The third round of the Delphi process, the experts group B was asked to express their level of agreement, by using a five-point Likert scale, on the quality of reporting. In particular, the experts were asked to express the level of agreement on the following statements: 1) The structured report contains all the descriptive elements of a first diagnosis mammogram, 2) The structured report allows the diagnosis to be clearly expressed, 3) The structured report allows you to clearly indicate the patient’s management, 4) The structured report allows to reduce the reporting time compared to the descriptive one already used in clinical practice, 5) The structured report is easy for the radiologist to implement in clinical practice, 6) A training period for the radiologist is required to adopt the structured report.

Statistical analysis

Each panellist answers were exported in Microsoft Excel document for data collection and statistical analysis. Mean score, standard deviation, and the sum of scores were used as statistical descriptors of scores attributed by panellists for each section. A mean score of 3 was considered good while a score of 5 excellent.

The internal consistency of the panellist scores for each section was assessed and a quality analysis with the average inter-item correlation was performed using Cronbach’s alpha (Cα) correlation coefficient [22, 23]. Cα was determined after each round.

An alpha coefficient (α) > 0.9 was considered excellent, α > 0.8 good, α > 0.7 acceptable, α > 0.6 questionable, α > 0.5 poor, and α < 0.5 unacceptable. In the iterations an α of 0.8 was considered a reasonable goal for internal reliability.

The data analysis was performed using Statistic Toolbox of Matlab (The MathWorks, Inc., Natick, MA, USA).

Results

Structured report

The final SR version (Appendix 1) was built by including n = 2 items in Personal Data, n = 4 items in Setting, n = 2 items in Comparison with previous breast examination, n = 19 items in Anamnesis and clinical context; n = 10 items in Technique; n = 1 item in Radiation dose; n = 5 items Parenchymal pattern; n = 28 items in Description of the finding; n = 12 items in Diagnostic categories and Report and n = 1 item in Conclusions. Overall, 84 items composed the definitive version of SR.

The “Personal Data” section includes patient clinical information, as weight, height, BMI, waist circumference, pathologies as hyperglycemia, hypercholesterolemia, hypertriglyceridemia, arterial hypertension.

The “Setting” section clarifies the examination clinical setting, as organized screening assessment of recalls, diagnostic mammogram (spontaneous/opportunistic screening) in asymptomatic or symptomatic woman.

The “Comparison with previous breast examinations” section, when possible, includes data obtained from previous examinations, in order to compare current data with them.

The “Anamnesis and clinical context” section includes previous or familiarity to malignancies, risk factors, genetic panel as well as data on the presence of symptoms such as breast lump, axillary lump, nipple discharge, skin/ nipple alterations, mastodynia or others.

The “Technique” section includes data on the type of exam performed, such as film screen mammography or digital mammography, as well as on the methodology used.

“Radiation dose” section includes data on the category of radiation exposure.

“Parenchymal pattern” section is based on ACR classification:

1) Almost entirely adipose tissue with sparse areas of fibroglandular tissue
2) Heterogeneously dense, with possible masking of small lesions
3) Homogeneously dense, with reduced sensitivity

The “Description of the finding” section includes data on lesion location, type of lesions (masses or not masses), size, shape, margins, density, the presence and the type of calcifications and associated clinical findings (such as skin retraction, skin thickening, nipple retraction, axillary adenopathy).

In the “Diagnostic categories and Report conclusions” section, the lesion is stratified in the different categories (negative, benign, probably benign finding, indeterminate lesion, finding highly suggestive of malignancy and known breast malignancy already demonstrated at histopathology), with consequent follow-up or diagnostic suggestion.

The “Conclusions” section is a free-text section, with radiological diagnosis.
Consensus agreement

Table 1 reports single score and sum of scores of the 16 panellists for SR in the first round. One of the experts did not participate to the second round; Table 2 reports single score and sum of scores of panellists for SR in the second round.

Both in the first and second round, as reported in Table 1 and 2, all parts had more than a good assessment. The overall mean score of the experts (n.16) and the sum of score for SR were 4.7 (range 2–5) and 896 (Table 1) in the first round. The overall mean score of the panellists (n.15) and the sum of score for SR were 4.9 (range 2–5) and 807 (Table 2) in the second round.

The overall mean score of the panellists in the second round was higher than the overall mean score of the first round with a lower standard deviation value.

The Cα correlation coefficient was 0.78 in the first round while was 0.82 in the second round for structured report.

Table 3 reports single score of panellists for structured report in the third round about the answers of 4 panellists about the SR quality evaluation. All questions received more than a good rating (≥ 3). The overall mean score of the experts (n.4) was 3.3 (range 2–5). The Ccorrelation coefficient was 0.90 in this third round for structured report.

Discussion

In this study, a SR for x-ray mammography in the first diagnosis of breast cancer has been proposed and built with a multi-round Delphi modified consensus. An additional round has been introduced involved a group of experts, blinded to the activities of the group A, to evaluate the quality and the clinical usefulness of the final draft of the SR. Both in the first and second round all parts had more than a good assessment. The overall mean score of the panellists and the sum of score for SR were 4.7 and 896 in the first round. The overall mean score of the panellists and the sum of score for SR were 4.9 and 807 in the second round. The overall mean score of the experts in the second round was higher than the overall mean score of the first round with a lower standard deviation value.

The Cronbach’s alpha (Cα) correlation coefficient was 0.90 in this third round for structured report.

With regard to “Personal data”, this section obtained mean and SD values slightly inferior to other sections, with a trend confirmed in both first and second “rounds”. In our opinion, it is due to the panellist idea that this meticulous process of data could slow down the normal work flow and was not considered to be easy to use. However, it is necessary to point out that all the sections are independent from each other and, therefore, this is an optional section which may not even be filled in, although it was conceived with the aim of creating databases. In fact, the possibility of collecting all these data allowed the creation of a large database, not only for epidemiological studies, but in the highest conception of radiology to lay the foundations for radiomics studies.

The present study provides the first mammography template established on standardized structure and lexicon, essential features for the observance to diagnostic-therapeutic proposal in order to reduce the uncertainty that could result from a non-standardized lexicon; it is authors opinion that the proposed structured report will enable a clear communication between radiologists and clinicians; of not the conclusion allow to express a definite diagnosis or a weighted differential diagnosis (DD) [24]. Several sections are included in the present template and, the evaluation of these allow to stratify the lesion in the different categories (negative, benign, probably benign finding, indeterminate lesion, finding highly suggestive of malignancy and known malignancy), with consequent follow-up or diagnostic suggestion. SR of mass lesions is based on the BI-RADS lexicon provided by the American College of Radiology [25]. The BI-RADS lexicon needs the understanding of radiologist to designate a final category. However, there is a significant inconstancy among radiologists for the assignment of BI-RADS categories due to the level of exercising site and the single radiologist [26, 27]. It is possible to reduce this variability to educating the readers in practice of the lexicon [26].

Several authors have reported that the use of a checklist may improve diagnostic accuracy [27–29]. The development of a SR to guide the assessment of the lesion should decrease variability among radiologists. Another key question is related to the presence of multiple lesions; however, radiologists usually described the lesion that is most essential to clinicians in defining the management of patients. Thus, identifying and extracting the index lesion is a critical clinical task [30, 31].

The present SR is built not only considering the categories suggested by the ACR and, therefore, should favor a correct evaluation of the lesion, but it is composed of different sections that allow the correlation of the radiological features with the clinical history. This radiology report is conceived to be rich in data that could potentially be pooled, analyzed, and correlated with patient outcomes,
Panellist #	Personal data	1. Setting	2. Comparison with previous breast examinations	3. Anamnesis and diagnostic question	4. Informed consent to Mammography	5. Technique	6. Parenchymal pattern (ACR classification)	7.1. Location	7.2. Type of findings	7.3. Size	7.4. Associated changes and Report conclusions	Sum of scores
1	5	5	5	5	5	5	4	5	5	5	5	59
2	3	5	5	5	5	5	5	5	5	5	5	58
3	4	5	5	5	5	5	4	5	4	4	5	57
4	5	5	5	5	4	5	5	5	5	5	5	59
5	5	5	5	5	5	5	5	5	5	5	5	60
6	2	3	5	5	4	2	3	5	3	2	5	44
7	5	3	5	5	5	5	5	5	5	5	5	58
8	5	5	5	5	5	5	5	5	5	5	5	60
9	5	5	5	5	3	5	5	5	5	5	5	58
10	5	4	5	4	4	5	5	5	5	5	5	56
11	5	5	5	5	3	4	5	5	5	5	5	57
12	4	4	5	5	5	5	4	5	5	5	5	57
13	4	4	5	4	2	4	4	4	5	4	5	50
14	3	5	5	3	5	2	4	5	5	5	5	49
15	3	5	4	5	5	5	5	5	5	5	5	56
16	4	5	5	5	4	5	5	5	5	5	5	58
Mean value	4.19	4.56	4.94	4.69	4.31	4.44	4.75	4.81	5.00	4.75	4.75	56.00
Standard deviation value	0.98	0.73	0.25	0.60	1.08	0.96	0.45	0.54	0.40	0.77	0.58	4.46
Table 2 Single score and sum of scores of panellists for structured report (II round)

Panellist #	Personal data	1. Setting	2. Comparison with previous breast examinations	3. Anamnesis and diagnostic question	5. Technique	6. Parenchymal pattern (ACR classification)	7.1. Location of findings	7.2. Type of findings	7.3. Size associated changes	7.4. Diagnostic categories and Report conclusions	Sum of scores
1	5	5	5	5	5	5	5	5	5	5	55
2	5	5	5	4	5	5	5	5	5	4	53
3	5	5	5	5	5	5	5	5	5	5	55
4	2	5	5	5	5	5	5	5	5	5	53
5	5	5	5	5	5	5	5	5	5	4	54
6	5	5	5	2	5	5	2	5	5	5	49
7	5	5	5	5	5	5	5	5	5	5	55
8	5	5	5	4	5	5	5	5	5	5	54
9	4	5	5	5	5	5	5	5	5	5	54
10	5	5	5	5	5	5	5	5	5	5	55
11	5	3	5	5	5	5	5	5	5	5	53
12	5	5	5	5	5	5	5	4	5	5	54
13	5	5	5	5	5	5	5	5	5	5	55
14	5	5	5	5	5	5	5	4	5	4	54
15	5	5	5	5	5	5	5	5	5	5	55
Mean value	4.73	5.00	4.87	4.80	5.00	5.00	4.93	4.93	4.93	4.87	53.80
Standard deviation value	0.80	0.00	0.52	0.77	0.35	0.00	0.77	0.27	0.26	0.35	1.61
thereby informing future clinical and imaging guidelines. However, use of non-standardized lexicon should limit the effort of data collection across multiple institutions [32, 33].

Regarding to the “Technique” section, revealing the examination technique, not only within one’s own department, but also with departments of other centers, answers to a double reason. First, it permits the standardization of study protocols, and then, it permits to optimize the study protocols between the different centers. The protocol optimization should guide the quality progress through enhanced patient safety (e.g., radiation dose reduction), best practice, image quality and reduce medical error [34–40].

The benefits of SR over narrative report comprise standardized structure and lexicon, features mandatory for observance to diagnostic and therapeutic proposal and for admission in clinical trials. SR decreases the equivocality due to a non-uniform lexicon. Wide application of SR is essential to offer referring physicians the best quality of service and to researchers the best quality information in the setting of big data [38–54].

Despite the favorable results, there are several weaknesses which we should ponder. Firstly, the panelists were of the same country; the involvement of internationally specialists would permit a larger involvement and would spread the uniformity of the SR. Second, this study not assess the clinical effect of the SR on the managing of breast cancer patient. However, this study has the advantage of having been supported by a multidisciplinary team, where several experts have assessed the quality of the clinical impact.

Conclusion

In this study, a structured reporting template for x-ray mammography in the first diagnosis of breast cancer, has been proposed and built with a multi-round Delphi modified consensus. An additional round has been introduced involved a group of experts, blinded to the activities of the group A, to assess the quality and clinical usefulness of the final draft of the structured report. Both in the first and second round all parts had more than a good assessment. A standardized approach with best practice guidelines will improve training in and the performance of assignment of BI-RADS assessment categories, and offer the base for quality assurance procedures within centers and across international borders.
Appendix 1

Template Mammography

Personal data.

- Weight, height, BMI, waist circumference.
- Pathologies.
 - Absent.
 - Present, specify:

1. Setting
 1.1. Organized screening assessment of recalls

2. Diagnostic mammogram (spontaneous/opportunistic screening) in asymptomatic woman

3. Diagnostic mammogram in symptomatic woman

4. Other

2. Comparison with previous breast examinations
2.1. Availability (exam and date; images and/or reports)

2.2. Non-availability

3. Anamnesis and clinical context
3.1. Anamnesis

3.1.1. Family and general clinical history

3.1.1.1. Hormone replacing therapy

3.1.1.2. Female lymphoma survivor who had chest radiation therapy

3.1.1.3. Family history breast cancer (who and age)

3.1.1.4. Genes mutations

3.1.1.4.1. BRCA1

3.1.1.4.2. BRCA2

3.1.1.4.3. TP53 (Li–Fraumeni syndrome)

3.1.1.4.4. PTEN (Cowden syndrome)

3.1.1.4.5. CDH1

3.1.1.4.6. STK11 (Peutz–Jeghers syndrome)

3.1.1.4.7. ATM

3.1.1.4.8. CHEK2

3.1.1.4.9. PALB2

3.1.1.5. Others, specify

3.1.1.6. Optional: breast cancer risk assessment

3.1.2. Breast clinical history

3.1.2.1. Previous percutaneous biopsy

3.1.2.2. Previous surgery for benign lesions

3.1.2.3. Previous additive mastoplasmy

3.1.2.4. Previous reductive mastoplasmy

3.1.2.5. Other

3.1.2.6. If any, specify (location)

3.2. Diagnostic question (if any)

3.2.1. Asymptomatic subject

3.2.2. Breast lump

3.2.3. Axillary lump

3.2.4. Nipple discharge

3.2.5. Skin/nipple alterations

3.2.6. Mastodinia

3.2.7. Symptoms of inflammation

3.2.8. Other, specify

4. Technique

4.1. Bilateral

4.2. One-sided

4.2.1. Right

4.2.2. Left

4.3. Film screen mammography

4.4. Digital mammography

4.4.1. CR

4.4.2. FFDM

4.5. Tomosynthesis

4.6. Other

5. Radiation dose: source DICOM data

6. Parenchymal pattern

6.1. ACR classification

6.1.1. a) Almost entirely fatty tissue

6.1.2. b) With sparse areas of fibroglandular tissue

6.1.3. c) Heterogeneously dense, with possible masking of small lesions

6.1.4. d) Homogeneously dense, with reduced sensitivity

6.2. Automatic quantitative assessment

6.2.1. Free text

7. Description of the findings

7.1. Location

7.1.1. Laterality, quadrant (4 plus central-retroareolar), polar coordinates with respect to the nipple, depth and distance from the nipple

7.1.2. Correspondence with clinical find (specify the clinical find)

7.1.2.1. Yes

7.1.2.2. No

7.2. Type of findings

7.2.1. Masses

7.2.1.1. Shape

7.2.1.1.1. Oval

7.2.1.1.2. Round

7.2.1.1.3. Irregular

7.2.1.2. Margins

7.2.1.2.1. Circumscribed

7.2.1.2.2. Obscured

7.2.1.2.3. Microlobulated

7.2.1.2.4. Indistinct or ill defined

7.2.1.2.5. Spiculate

7.2.1.3. Density high-density

7.2.1.3.1. Isodense or equal density

7.2.1.3.2. Low-density

7.2.1.3.3. Fat-containing

7.2.2. Calcifications

7.2.2.1. Morphology
7.2.2.1.1. Typically benign (ring rim calcifications, round calcifications, other typically benign calcifications as skin, vascular, coarse or popcorn, dystrophic, calcium milk, and suture calcifications)
7.2.2.1.2. Suspicious morphology (heterogeneously coarse, amorphous, finely pleomorphic, linear, or branched calcifications)
7.2.2.2. Distribution pattern
7.2.2.2.1. Grouped
7.2.2.2.2. Segmental
7.2.2.2.3. Regional
7.2.2.2.4. Diffuse
7.2.2.2.5. Linear
7.2.3. Asymmetries
7.2.3.1. Global increase
7.2.3.2. Focal increase
7.2.4. Architectural distortions
7.2.4.1. With radiotransparent center
7.2.4.2. With opacity center
7.3. Size
7.3.1. The larger diameter in mm
7.3.2. The comparison with the previous exam carried out with the date
7.4. Associated changes
7.4.1. Skin retraction, skin thickening, trabecular thickening, nipple retraction, axillary adenopathy. Of course, also architectural distortion and calcifications can be changes associated to other findings
8. Diagnostic categories and Report conclusions
8.1. Category 0. Additional imaging evaluation needed
8.1.1. a) Use of spot compression, magnification or other special mammographic views, tomosynthesis, ultrasound, etc.
8.1.2. b) When requesting previous images that were not available when evaluating the mammography
8.2. Category 1-negative
8.2.1. Subsequent mammography at 12 months
8.2.2. Subsequent mammography at 24 months
8.3. Category 2-benign
8.3.1. Subsequent mammography at 12 months
8.3.2. Subsequent mammography at 24 months
8.4. Category 3- probably benign finding (< 2% malignancy)
8.4.1. 6-months one-sided mammogram followed by bilateral diagnostic mammography at 12 months and 24 months
8.4.2. Image-guided needle biopsy according to the radiologist’s choice, woman’s preference, or as resulting from the agreement with other clinicians
8.5. Category 4 - indeterminate lesion
8.5.1. Required further investigations
8.5.2. Image-guided biopsy
8.6. Category 5- finding highly suggestive of malignancy
8.6.1. Image-guided biopsy
8.7. Category 6- known breast malignancy already demonstrated at histopathology
9. Conclusions (free text)

Authors' contributions Each author have participated sufficiently in any submission to take public responsibility for its content: conceptualization; Data curation; Formal analysis; Investigation; Methodology; Supervision; Validation; Visualization; Roles/Writing—original draft; Writing—review & editing.

Funding None.

Data availability All data are reported in the manuscript.

Declarations

Conflict of interest The authors have no conflict of interest to be disclosed. The authors confirm that the article is not under consideration for publication elsewhere. Each author has participated sufficiently to take public responsibility for the manuscript content.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Ierardi AM, Wood BJ, Arrichiello A, Bottino N, Bracchi L, Forzenigo L, Andrisani MC, Vespro V, Bonelli C, Amalou A, Turkbey EB, Turkbey BI, Granata G, Pinto A, Grasselli G, Stochetti N, Carrafiello G (2020) Preparation of a radiology department in an Italian hospital dedicated to COVID-19 patients. Radiol Med. 125(9):894–901. https://doi.org/10.1007/s11547-020-01248-1 (Epub 2020 Jul 11. PMID: 32654028; PMCID: PMC7352089)
2. Caranci F, Leone G, Ponsiglione A, Muto M, Tortora F, Muto M, Cirillo S, Brunese L, Cerase A (2020) Imaging findings in hypophysitis: a review. Radiol Med 125(3):319–328. https://doi.org/10.1007/s11547-019-01120-x (Epub 2019 Dec 20 PMID: 31863360)
3. Bécares-Martínez C, López-Llames A, Martín-Pagán A, Cores-Prieto AE, Arroyo-Domingo M, Marco-Algarra J,
Morales-Suárez-Varela M (2020) Cervical spine radiographs in patients with vertigo and dizziness. Radiol Med 125(3):272–279. https://doi.org/10.1007/s11547-019-01111-y (Epub 2019 Nov 29 PMID: 31784927)

4. Neri E, Coppola F, Larici AR, Sverzellati N, Mazzei MA, Sacco P, Dalpiaz G, Feragalli B, Miele V, Grassi R (2020) Structured reporting of chest CT in COVID-19 pneumonia: a consensus proposal. Insights Imaging 11(1):92. https://doi.org/10.1186/s13244-020-00901-7 PMID:32785803; PMCID:PMC7422456

5. Sobez LM, Kim SH, Angstwurm M, Störmann S, Pförringer D, Neri E, Coppola F, Grassi R, Brunese L, Neri E, Miele V, Grace F, Faggioni L (2021) Structured reporting of computed tomography and magnetic resonance in the staging of pancreatic adenocarcinoma: a delphi consensus proposal. Diagnostics (Basel) 11(11):2033. https://doi.org/10.3390/diagnostics111102033; PMID:34829384; PMCID:PMC8621603

6. Segrelles JD, Medina R, Blanquer I, Martí-Bonmatí L (2017) Increasing the efficiency on producing radiology reports for breast cancer diagnosis by means of structured reports. A Comparative Study Methods Inf Med 56(3):248–260. https://doi.org/10.3414/ME16-01-0091 (Epub 2017 Feb 21 PMID: 28220929)

7. Granata V, Faggioni L, Grassi R, Fusco R, Coppola A, Rega D, Maggiarelli N, Bucicardi D, Frittioli B, Rengo M, Bortolotto C, Prost R, Lacasella GV, Montella M, Ciaghi E, Bellifemine F, De Muzzio F, Grazzini G, De Filippo M, Cappabianca S, Laghi A, Grassi R, Brunese L, Neri E, Miele V, Coppola F (2021) Structured reporting of computed tomography in the staging of colon cancer: a Delphi consensus proposal. Radiol Med. https://doi.org/10.1007/s11547-021-14189-3 (Epub ahead of print) 34741722

8. Pinto Dos Santos D, Hempel JM, Mildenberger P, Klöckner R, Persiengil T (2019) Structured reporting in clinical routine. Rofo 191(1):33–39. https://doi.org/10.1055/a-0636-3851 (Epub 2018 Aug 13 PMID: 30103236)

9. Larson DB, Towsin AJ, Pryor RM, Donnelly LF (2013) Improving consistency in radiology reporting through the use of department-wide standardized structured reporting. Radiology 267(1):240–250. https://doi.org/10.1148/radiol.12121502 (Epub 2013 Jan 17 PMID: 23329657)

10. Eghtedari M, Chong A, Rakow-Penner R, Ojeda-Fournier H (2021) Current status and future of BI-RADS in multimodality imaging. From the AJR special series on radiology reporting and data systems. AJR Am J Roentgenol 214(4):860–873. https://doi.org/10.2214/AJR.20.24894 (Epub 2021 Feb 24 PMID: 33295802)

11. https://www.sirm.org

12. Fiusberg M, Ganeles J, Ekinci T, Goldberg-Stein S, Paroder V, Kobi M, Chernyak V (2017) Impact of a structured report template on the quality of CT and MRI reports for hepatocellular carcinoma diagnosis. J Am Coll Radiol 14(9):1206–1211. https://doi.org/10.1016/j.jacr.2017.02.050 (Epub 2017 May 6 PMID: 28483546)

13. Sahn VI, Silveira PC, Sainani NI, Khorasani R (2015) Impact of a structured report template on the quality of MRI reports for rectal cancer staging. AJR Am J Roentgenol 205(3):548–588. https://doi.org/10.2214/AJR.14.14053 (PMID 26295645)

14. Nörenberg D, Sommer WH, Thasler W, D’Haeze J, Rentsch M, Kolben T, Schreyer A, Rist C, Reiser M, Armbruster M (2017) Structured reporting of rectal magnetic resonance imaging in suspected primary rectal cancer: potential benefits for surgical planning and interdisciplinary communication. Invest Radiol 52(4):232–239. https://doi.org/10.1097/RLI.0000000000000336 (PMID 27861230)

15. Brook OR, Brook A, Vollmer CM, Kent TS, Sanchez N, Pedrosa I (2015) Structured reporting of multiphasic CT for pancreatic cancer: potential effect on staging and surgical planning. Radiology 274(2):464–472. https://doi.org/10.1148/radiol.14140206 (Epub 2014 Oct 3 PMID: 25286323)

16. Lee MC, Chuang KS, Hsu TC, Lee CD (2016) Enhancement of structured reporting - an integration reporting module with radiation dose collection supporting. J Med Syst. 40(11):250. https://doi.org/10.1007/s10916-016-0618-y (Epub 2016 Oct 4 PMID: 27704459)

17. Granata V, Morana G, D’Onofrio M, Fusco R, Coppola F, Grassi F, Cappabianca S, Reginelli A, Maggialetti N, Bucicardi D, Barile A, Rengo M, Bortolotto C, Urraro F, La Casella GV, Montella M, Ciaghi E, Bellifemine F, De Muzzio F, Danti G, Grazzini G, Barresi C, Brunese L, Neri E, Grassi R, Miele V, Faggioni L (2021) Structured reporting of computed tomography and magnetic resonance in the staging of pancreatic adenocarcinoma: a delphi consensus proposal. (Epub 2021 May 6 PMID: 32861230)

18. Pediconi F, Galati F, Bernardi D, Belli P, Brancato B, Calabrese M, Camera L, Carbonaro LA, Caumo F, Clauser P, Girardi V, Iaconci C, Martinich L, Panizza P, Petrillo A, Schiaffino S, Tagliafico A, Trimboli RM, Ziaiuni C, Sardanelli F, Monterelesse M (2020) Breast imaging and cancer diagnosis during the COVID-19 pandemic: recommendations from the Italian College of breast radiologists by SIRM. Radiol Med. 125(10):926–930. https://doi.org/10.1007/s00330-016-4553-6 (Epub 2018 Aug 29 PMID: 27572812)

19. Sun H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. https://doi.org/10.3322/caac.21660

20. Becker G (2000) Creating comparability among reliability coefficients: the case of Cronbach Alpha and Cohen Kappa. Psychol Rep 87:1171

21. Alabouyi M, Zha N, Salameh JP, Samoilov L, Sharifabadi AD, Pozdnyakov A, Sadeghriad B, Freitas V, McIntes MDF, Alabouyi A (2020) Digital breast tomosynthesis for breast cancer detection: a diagnostic test accuracy systematic review and meta-analysis. Eur Radiol 30(4):2058–2071. https://doi.org/10.1007/s00330-019-06549-2 (Epub 2020 Jan 3 PMID: 31900699)

22. Becker G (2000) Creating comparability among reliability coefficients: the case of Cronbach Alpha and Cohen Kappa. Psychol Rep 87:1171

23. Cronbach LJ (1951) Coefficient alpha and the internal structure of tests. Psychometrika 16:297–334

24. Weiss DL, Bolos PR (2009) Reporting and dictation. In Branstetter IV BF: practical imaging informatics: foundations and applications for PACS professionals. Springer, Heidelberg

25. Breast imaging reporting and data system (BI-RADS). 5. American College of Radiology; Reston, VA: 2013

26. Berg WA, Campassi C, Langenberg P, Sexton MJ (2000) Breast Imaging Reporting and data system: inter-and intraobserver variability in feature analysis and final assessment. Am J Roentgenol 174:1769–1777 ([PubMed: 10845521])

27. Hawkins CM, Hall S, Zhang B, Towbin AJ (2014) Creation and implementation of department-wide structured reports: an analysis of the impact on error rate in radiology reports. J Digit Imaging 27:581–587

28. Roskopf AB, Dietrich TJ, Hirschmann A, Buck FM, Sutter R, Pfirrmann CW (2015) Quality management in musculoskeletal imaging: form, content, and diagnosis of knee MRI reports and imaging dose collection supporting. J Med Syst. 40(11):250. https://doi.org/10.1007/s11547-021-14189-3 (Epub 2021 Feb 24 PMID: 33295802)

29. La radiologia medica (2022) 127:471–483
29. Demner-Fushman D, Chapman WW, McDonald CJ (2009) What can natural language processing do for clinical decision support? J Biomed Inform 42:760–772. https://doi.org/10.1016/j.jbi.2009.08.007
30. Bozkurt S, Lipson JA, Senol U, Rubin DL (2015) Automatic abstraction of imaging features with their characteristics from mammography reports. J Am Med Inform Assoc 22:81–92. https://doi.org/10.1136/amiajnl-2014-003009
31. Cai T, Giannopoulos AA, Yu S, Kelil T, Ripley B, Kumamaru KK et al (2016) Natural language processing technologies in radiology research and clinical applications. Radiographics 36(1):76–91. https://doi.org/10.1148/radiographics.2016150080
32. Berg WA, D’Orsi CJ, Jackson VP et al (2002) Does training with experienced breast imagers at mammography? Radiology 224:871–880 ([PubMed: 12202727])
33. Brady AP (2018) Radiology reporting—from Hemingway to HAL? Insights Imaging 9:237–246
34. Weiss DL, Langlotz CP (2008) Structured reporting: patient communication: part 4: quality assurance and education. J Digit Radiol 1248. https://doi.org/10.1007/s11547-020-01209-8 ([PubMed: 29502583])
35. Reiner BI (2014) Strategies for radiology reporting and communication: part 4: quality assurance and education. J Digit Imaging 27(1):1–6. https://doi.org/10.1007/s10278-013-9656-x ([PMID:24306389];[PMCID:PMC3903966])
36. Granata V, Pradella S, Fusco R, Faggioni L, Laghi A, Grassi R, Miele V, Neri E, Miele V, Faggioni L (2021) Structured reporting of lung cancer staging: a consensus proposal. Diagnostics (Basel) 11(9):1569. https://doi.org/10.3390/diagnostics11091569; PMCID: PMC8456400
37. Deandra S, Cavazzana L, Principi N, Luconi E, Campoleoni M, Bastiaimpilai AJ, Bracchi L, Bucchi L, Pedilaro S, Piscitelli A, Sfondrini MS, Silvestri AR, Castaldi S (2021) Screening of women with aesthetic prostheses in dedicated sessions of a population-based breast cancer screening programme. Radiol Med 126(7):998–1006. https://doi.org/10.1007/s11547-021-01351-x ([Epub 2021 Apr 16 PMID: 33861421];[PMCID: PMC8050998])
38. Nori J, Bicchierai G, Amato F, De Benedetto D, Boeri C, Vanzi E, Di Naro F, Bianchi S, Miele V (2021) A new technique for the histological diagnosis of Paget’s disease of the breast using a semiautomated core needle biopsy with a 14-gauge needle. Radiol Med 126(7):936–945. https://doi.org/10.1007/s11547-021-01355-4 ([Epub 2021 Apr 26 PMID: 33900526])
39. Romanucci G, Mercogliiano S, Carucci E, Cina A, Zantedeschi E, Caneva A, Benassuti C, Formaro G (2021) Diagnostic accuracy of resection margin in specimen radiography: digital breast tomosynthesis versus full-field digital mammography. Radiol Med 126(6):768–773. https://doi.org/10.1007/s11547-021-01337-9 ([Epub 2021 Feb 24 PMID: 33625658])
40. D’Angelo A, Orlandi A, Bufo E, Mercogliano S, Belli P, Manfredi R (2021) Automated breast volume scanner (ABVS) compared to handheld ultrasound (HHUS) and contrast-enhanced magnetic resonance imaging (CE-MRI) in the early assessment of breast cancer during neoadjuvant chemotherapy: an emerging study. Radiol Med 126(7):946–955. https://doi.org/10.1007/s11547-021-01356-5 ([Epub 2021 May 5 PMID: 33954896])
41. Brunetti N, Di Giorgis S, Zaideeh J, Rossi F, Calabrese M, Tagliafico AS (2020) Comparison between execution and reading time of 3D ABUS versus HHUS. Radiol Med 125(12):1243–1248. https://doi.org/10.1007/s11547-020-01209-8 ([Epub 2020 May 4 PMID: 32367322])
42. Carlo RC, Kahn CE, Halabi S (2018) Data science: big data, machine learning, and artificial intelligence. J Am Coll Radiol (3 Pt B):497–498. https://doi.org/10.1016/j.jacr.2018.01.029 ([PMID: 29502583])
43. Morris MA, Saboury B, Burkett B, Gao J, Siegel E (2018) Reinventing radiology: big data and the future of medical imaging. J Thorac Imaging 33(1):4–16. https://doi.org/10.1097/RTI.0000000000000311 ([PMID: 29252898])
44. Kansagra AP, Yu JP, Chatterjee AR, Lenchik L, Chow DS, Prater AB, Yeh J, Doshi AM, Hawkins CM, Heilbrun ME, Smith SE, Oselkin M, Gupta P, Ali S (2016) Big data and the future of radiology informatics. Acad Radiol 23(1):30–42. https://doi.org/10.1016/j.acra.2015.10.004 ([Epub 2015 Nov 6 PMID: 26683510])
45. Granata V, Coppola F, Grassi R, Fusco R, Tafutto S, Izzo F, Reginelli A, Maggioletti N, Bucciardci D, Fritelli B, Rengo M, Bortolotto C, Prost R, Lacasella GV, Montella M, Ciaghi E, Bellifèmine F, De Muzio F, Danti G, Grazzini G, De Filippo M, Cappabianca S, Barresi C, Iafatre F, Stoppono LP, Laghi A, Grassi R, Brunese L, Neri E, Miele V, Faggioni L (2021) Structured reporting of computed tomography in the staging of neuroendocrine neoplasms: a delphi consensus proposal. Front Endocrinol (Lausanne) 30(12):748944. https://doi.org/10.3389/fendo.2021.748944; PMCID: PMC8470531
46. Granata V, Grassi R, Miele V, Larici AR, Sverzuttali N, Cappabianca S, Brunese L, Maggioletti N, Borghesi A, Fusco R, Balbi M, Urraro F, Bucciardci D, Bortolotto C, Prost R, Rengo M, Baratella E, De Filippo M, Barresi C, Palmucci S, Busso M, Calandriello L, Sansone M, Neri E, Coppola F, Faggioni L (2021) Structured reporting of computed tomography in the staging of neuroendocrine neoplasms: a delphi consensus proposal. Front Endocrinol (Lausanne) 30(12):748944. https://doi.org/10.3389/fendo.2021.748944; PMCID: PMC8470531
47. Ballaridita L, Colciago RR, Frasca S, De Santis MC, Gay S, Palorini F, La Rocca E, Valdagni R, Rancati T, Lozza L (2021) Breast cancer patient perspective on opportunities and challenges of a genetic test aimed to predict radio-induced side effects before treatment: analysis of the Italian branch of the REQUITE project. Radiol Med 126(10):1366–1373. https://doi.org/10.1007/s11547-021-01351-x ([Epub 2021 Jul 15 PMID: 34268681])
48. Granata V, Pradella S, Cozzi D, Fusco R, Faggioni L, Coppola F, Grassi R, Maggioletti N, Bucciardci D, Lacasella GV, Montella M, Ciaghi E, Bellifèmine F, De Filippo M, Rengo M, Bortolotto C, Prost R, Barresi C, Cappabianca S, Brunese L, Neri E, Grassi R, Miele V (2021) Computed tomography structured reporting in the staging of lymphoma: a delphi consensus proposal. J Clin Med 10(17):4007. https://doi.org/10.3390/jcm10174007; PMCID: PMC4501455; PMCID: PMC8432477
49. Deandra S, Cavazzana L, Principi N, Luconi E, Campoleoni M, Bastiaimpilai AJ, Bracchi L, Bucchi L, Pedilaro S, Piscitelli A, Sfondrini MS, Silvestri AR, Castaldi S (2021) Screening of women with aesthetic prostheses in dedicated sessions of a population-based breast cancer screening programme. Radiol Med 126(7):946–955. https://doi.org/10.1007/s11547-021-01357-5 ([Epub 2021 May 5 PMID: 33954896])
50. Panzironi G, Moffa G, Galati F, Pediconi F (2021) Ultrasound-guided 8-Gauge vacuum-assisted excision for selected B3 breast lesions: a preliminary experience. Radiol Med. https://doi.org/10.1007/s11547-021-01358-4 ([Epub 2021 Apr 26 PMID: 33900526])
52. Girometti R, Linda A, Conte P, Lorenzon M, De Serio I, Jerman K, Londero V, Zuiani C (2021) Multireader comparison of contrast-enhanced mammography versus the combination of digital mammography and digital breast tomosynthesis in the preoperative assessment of breast cancer. Radiol Med 126(11):1407–1414. https://doi.org/10.1007/s11547-021-01400-5 (Epub 2021 Jul 24 PMID: 34302599)

53. Trombadori CML, D’Angelo A, Ferrara F, Santoro A, Belli P, Manfredi R. Radial Scar: a management dilemma. Radiol Med. 2021 Jun;126(6):774–785. doi: https://doi.org/10.1007/s11547-021-01344-w. Epub 2021 Mar 20. PMID: 33743143; PMCID: PMC8154762.

54. Park SH, Kim YS, Choi J (2021) Dosimetric analysis of the effects of a temporary tissue expander on the radiotherapy technique. Radiol Med 126(3):437–444. https://doi.org/10.1007/s11547-021-01297-6 (Epub 2020 Oct 6 PMID: 33025303)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Authors and Affiliations

Emanuele Neri1,2, Vincenza Granata3, Stefania Montemezzi4, Paolo Belli5, Daniela Bernardi6, Beniamino Brancato7, Francesca Caumo8, Massimo Calabrese9, Francesca Coppola10, Elsa Cozzu11, Lorenzo Faggioni1, Alfonso Frigerio12, Roberta Fusco13, Antonella Petritto1, Veronica Girardi14, Chiara Iacconi15, Carolina Marin16, Maria Adele Mar17, Laura Martinich18, Jacopo Nori19, Federica Peciconi20, Gianni Sagautti21, Mario Sansone22, Francesco Sardanelli23, Gianfranco Paride Scaperrotta24, Chiara Zuiani25, Eleonora Ciaghi26, Marco Montella27, Vittorio Miele2,28, Roberto Grassi2,29

Emanuele Neri
Emanuele.Neri@med.unipi.it; Neriemanuele.neri@med.unipi.it
Stefania Montemezzi
stefania.montemezzi@aovr.veneto.it
Paolo Belli
paolo.belli@policlinicogemelli.it
Daniela Bernardi
dnlbernardi@gmail.com
Beniamino Brancato
beniamino.brancato@gmail.com
Francesca Caumo
francesca.caumo@iov.veneto.it
Massimo Calabrese
maxcalabrese1968@gmail.com
Francesca Coppola
francesca_coppola@hotmail.com
Elsa Cozzu
ecossu@sirm.org
Lorenzo Faggioni
lfaggioni@sirm.org
Alfonso Frigerio
alfonso.frigerio@gmail.com
Roberta Fusco
r.fusco@igeamedical.com
Veronica Girardi
giravero@yahoo.it
Chiara Iacconi
chiara.iacconi@gmail.com
Carolina Marin
chimarini@ao-pisa.toscana.it
Maria Adele Mar
mariadele84@hotmail.com
Laura Martinich
martinicichlaura@gmail.com
Jacopo Nori
jakopo@tin.it
Federica Peciconi
federica.pediconi@uniroma1.it
Gianni Sagautti
gianni.sagautti@ausl.bologna.it
Mario Sansone
msansone@unina.it
Francesco Sardanelli
francesco.sardanelli@unimi.it
Gianfranco Paride Scaperrotta
gianfranco.scaperrotta@istitutotumori.mi.it
Chiara Zuiani
chiara.zuiani@uniud.it
Eleonora Ciaghi
eleonora.ciaghi@exprivia.com
Marco Montella
marco.montella@unicampania.it
Vittorio Miele
vmiele@sirm.org
Roberto Grassi
roberto.grassi@unicampania.it
1 Department of Translational Research, University of Pisa, Via Roma, 67, 56126 Pisa, Italy
2 Italian Society of Medical and Interventional Radiology SIRM, SIRM Foundation, Via della Signora 2, 20122 Milan, Italy
3 Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale – IRCCS di Napoli, Naples, Italy
