Distribution of innate efflux-mediated aminoglycoside resistance among different Achromobacter species

J. Bador, C. Neuwirth, P. Liszczynski, M.-C. Mézier, M. Chrétiennot, E. Grenot, A. Chapuis, C. de Curraize and L. Amoureux
Department of Bacteriology, University Hospital of Dijon, Dijon, France

Abstract

Achromobacter spp. are emerging respiratory pathogens in cystic fibrosis patients. Since 2013 the genus Achromobacter includes 15 species for which innate antibiotic resistance is unknown. Previously the AxyXY-OprZ efflux system has been described to confer aminoglycoside (AG) resistance in A. xylosoxidans. Nevertheless, some Achromobacter spp. strains are susceptible to AG. This study including 49 Achromobacter isolates reveals that AG resistance is correlated with different Achromobacter spp. It is noteworthy that the aoxXY-oprZ operon is detected only in AG-resistant species, including the most frequently encountered in cystic fibrosis patients: A. xylosoxidans, A. ruhlani and A. dolens and A. insuavis.

New Microbes and New Infections © 2015 The Authors. Published by Elsevier Ltd on behalf of European Society of Clinical Microbiology and Infectious Diseases.

Keywords: Achromobacter, aminoglycoside resistance, AxyXY-OprZ, cystic fibrosis, nrdA, selection pressure

Original Submission: 12 October 2015; Revised Submission: 27 November 2015; Accepted: 27 November 2015
Article published online: 12 December 2015

Corresponding author: C. Neuwirth, Laboratoire de Bactériologie, Hôpital Universitaire, Plateau technique de Biologie, BP 37013, 21070 Dijon, Cedex, France
E-mail: catherine.neuwirth@chu-dijon.fr
J. Bador and C. Neuwirth contributed equally to this article, and both should be considered first author.

Achromobacter spp. are nonfermenting Gram-negative bacilli considered as emerging pathogens in cystic fibrosis (CF) patients [1,2]. Since the description of the type species, A. xylosoxidans [3], 14 other species have been ranked into the genus Achromobacter: A. piechaudii and A. ruhlandii [4], A. denitrificans [5], A. spanius and A. insolitus [6], A. marblatensis [7], A. animicus, A. mucolaens, A. pulmanis and A. spiritinus [8], A. insuavis, A. aegrifaciens, A. axifer and A. dolens [9], and 6 other genogroups. These 21 species and genogroups can be distinguished by the multilocus sequence typing (MLST) scheme proposed by Spilker et al. [10]. The study demonstrated that sequencing a 765 bp internal fragment of the only nrdA gene is sufficient for correct identification [11]. Because of the actual difficulty in performing accurate species identification, most isolates are still referred by default as A. xylosoxidans, preventing the evaluation of the real epidemiology and clinical impact of each species. Moreover, the data about the mechanisms of innate antibiotic resistance are scarce [12,13]. The AxyXY-OprZ RND efflux system confers resistance to aminoglycosides (AG) in A. xylosoxidans AXA-A since reclassified as A. insuavis (accession number AFRQ01000000). Nevertheless, AG, which take an important part in CF antimicrobial therapy, remain active against some isolates of Achromobacter spp. [14,15].

We sought to describe the distribution of AG-resistant isolates among the different species of the genus Achromobacter and to search for the aoxXY-oprZ efflux operon in AG-resistant and -susceptible isolates to assess if AG resistance is correlated with the presence of the operon.

Forty-nine Achromobacter isolates harbouring various AG resistance patterns were included in this study: 21 from CF patients’ sputum, 20 from non-CF clinical samples and eight from environmental samples (Table 1). Most of them (n = 35) were collected in our laboratory; nine collection strains were purchased from the Institut Pasteur, France, including six type strains, and five were kindly provided by J. J. LiPuma (Department of Pediatrics and Communicable Diseases, University of Michigan Medical School). Isolates were identified at the genus level either by using the conventional biochemical method API 20NE (bioMérieux) or by sequencing the 16S rRNA gene. The identification to the species level was performed by sequencing the 765 bp internal nrdA fragment followed by Achromobacter PubMLST database query (http://pubmlst.org/achromobacter/). Minimal inhibitory concentrations (MICs) of tobramycin, amikacin, gentamicin and netilmicin were measured by the Etest method (bioMérieux). Mueller-Hinton agar plates were inoculated by swabbing from a 0.5 McFarland turbidity bacterial suspension, and MICs were recorded after overnight incubation at 37°C by two persons independently. The phenotype “AG-susceptible” (AG-S) was attributed to isolates susceptible to all
AG and the phenotype “AG-resistant” (AG-R) to the other by using the European Committee on Antimicrobial Susceptibility Testing clinical breakpoints for *Pseudomonas* spp. (http://www.eucast.org/clinical_breakpoints/; version 5.0). Detection of the *axyY* operon was performed by 2 PCRs targeting the genes (a) *axyY*, encoding the RND transporter, and (b) *oprZ*, encoding the outer membrane factor. PCRs were carried out in reaction mixtures containing dNTP (0.2 mM), forward and reverse primers (0.25 μM each), Taq polymerase (Fermentas) (2.5 U) with the supplied buffer, MgCl₂ (1.5 mM), dimethyl sulfoxide (5% volume) and template DNA (1 μL), adjusted with water to a final volume of 50 μL. The cycling parameters were 94°C for 10 minutes, 30 cycles of 94°C for 90 seconds, annealing primers temperature for 90 sections, 72°C for 60 seconds, and 72°C for 10 minutes. The results are summarized in Table 1.

The *nrdA* sequences analysis allowed identification of 48 of the 49 isolates. *nrdA* sequence of ACH-CF-583 harboured 39 nucleotide differences, with its closest match in database (genogroup 19) (Fig. 1) indicating that this isolate belonged to a novel genogroup or a novel species. Fourteen of the 49 studied isolates were categorized as AG-S. Interestingly, all isolates belonging to a same species harboured the same AG resistance pattern. In the resistant species, the level of resistance was sometimes variable among the isolates. Nevertheless, none of these isolates had been categorized as susceptible for all four AG molecules. A variable expression level of the efflux operon might account for these differences as already observed for

Table 1. Achromobacter isolates and main results

nrdA identification	Isolate	Origin	MIC (mg/L)	AG S/R	PCR *axyY*	PCR *oprZ*
A. aegrifaciens	ACH-CF-59	CF sputum	>256 >256 >256 >256	R	+	+
A. aegrifaciens	ACH-CF-802	CF sputum	64 48 16 32	R	+	+
A. aegrifaciens	ACH-ENV-2	Hospital hand-washing sink	12 8 3 8	R	+	+
A. aegrifaciens	ACH-CF-766	CF sputum	192 48 12 64	R	+	+
A. anonicus	ACH-CF-864	CF sputum	1.5 4 1 1	S	−	−
A. anonicus	ACH-NCF-33	Catherin	1.5 6 2 2	S	−	−
A. anonicus	ACH-CF-63	CF sputum	1.5 4 1.5 1	S	−	−
A. anonicus	ACH-CF-64	CF sputum	2 8 2 1.5	S	−	−
A. anonicus	ACH-CF-65	CF sputum	2 3 1.5 1.5	S	−	−
A. anonicus	ACH-CF-711	CF sputum	2 4 1.5 1.5	S	−	−
A. denitrescens	CIP-77.1ST	Soil	32 256 64 64	R	+	+
A. dolens	AUCH-8022	CF sputum	>256 64 >256 12	R	+	+
A. dolens	AUCH-80310	CF sputum	>256 >256 >256 >256	R	+	+
A. dolens	AUCH-ENV-3	Dialysis water	3 32 8 8	R	+	+
Novel species	ACH-CF-583	CF sputum	24 >256 96 >256	R	+	+
A. insulsus	CIP-108207	Leg wound	256 32 48 >256	R	+	+
A. insulsus	ACH-CF-476	CF sputum	>256 >256 >256 >256	R	+	+
A. insulsus	ACH-CF-777	CF sputum	96 >256 >256 >256	R	+	+
A. insulsus	AXX-A	Ear swab	16 256 24 64	R	+	+
A. insulsus	CIP-102062	Blood	12 256 16 24	R	+	+
A. maporensis	ACH-ENV-4	Lake	12 256 24 32	R	+	+
A. mucolaenesis	ACH-NCF-34	Tracheal aspirate	1.5 6 1.5 1.5	S	−	−
A. mucolaenesis	ACH-NCF-35	Tracheal aspirate	2 8 2 1.5	S	−	−
A. mucolaenesis	ACH-NCF-36	Blood	2 6 2 2	S	−	−
A. mucolaenesis	ACH-NCF-510	CF sputum	2 8 2 2	S	−	−
A. perchaudis	CIP-60.75T	Pharynx	1.5 6 3 3	S	−	−
A. nihlandi	CIP-77.26T	Soil	8 24 12 16	R	+	+
A. nihlandi	AUCH-9877	CF sputum	16 >256 48 64	R	+	+
A. nihlandi	AUCH-9891	CF sputum	3 48 6 12	R	+	+
A. nihlandi	AUCH-9929	CF sputum	>256 >256 >256 >256	R	+	+
A. sponius	CIP-108199T	Blood	1.5 6 4 4	S	−	−
A. sponius	AUCH-NCF-37	Foot wound	1 4 1 1	S	−	−
A. sponius	ACH-CF-746	CF sputum	2 6 2 2	S	−	−
A. svalisodens	ACH-CF-809	CF sputum	128 >256 256 >256	R	+	+
A. svalisodens	ACH-NCF-39	Insertion-site skin swab	24 >256 64 128	R	+	+
A. svalisodens	ACH-NCF-18	Tracheal aspirate	64 >256 128 256	R	+	+
A. svalisodens	CIP-37.32T	Ear discharge	192 >256 >256 >256	R	+	+
A. svalisodens	CIP-101903	Pleural fluid	>256 >256 >256 >256	R	+	+
A. svalisodens	CIP-102236	Sputum	48 >256 256 >256	R	+	+
A. svalisodens	ACH-NCF-41	Sputum	32 >256 64 128	R	+	+
A. svalisodens	ACH-NCF-42	Tracheal aspirate	8 >256 256 64	R	+	+
A. svalisodens	ACH-ENV-1	Dental instrument	192 >256 >256 >256	R	+	+
A. svalisodens	ACH-NCF-13	Tracheal aspirate	64 >256 128 >256	R	+	+
A. svalisodens	ACH-CF-805	CF sputum	24 >256 48 192	R	+	+
A. svalisodens	ACH-NCF-11	Sputum	16 256 32 48	R	+	+
A. svalisodens	ACH-CF-842	CF sputum	8 192 24 32	R	+	+
A. svalisodens	ACH-NCF-40	Blood	32 >256 96 192	R	+	+
A. svalisodens	ACH-ENV-5	River	16 >256 24 64	R	+	+
A. svalisodens	ACH-ENV-6	Domestic hand-washing sink	32 >256 48 128	R	+	+

AG, aminoglycoside; *AMK*, amikacin; *CF*, cystic fibrosis; *GEN*, gentamicin; *MIC*, minimum inhibitory concentration; *NET*, netilmicin; *R*, resistant.; *S*, susceptible; *TOB*, tobramycin.

†Isolates collected in our laboratory.

New Microbes and New Infections © 2015 The Authors. Published by Elsevier Ltd on behalf of European Society of Clinical Microbiology and Infectious Diseases, NMNI, 10, 1–5

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Pseudomonas aeruginosa [16]. Distribution of the AG-S and AG-R isolates according to species identification is represented in a dendrogram (Fig. 2) generated from the nrdA sequences using the neighbour-joining method with 1000 bootstrap replications (MEGA6). We also included in the dendrogram the nrdA sequences of the type strains (LMG) of the recently described novel species. AG-S isolates were divided up into two clusters of species including A. animicus and A. mucicolens (cluster 1), and A. spanius and A. piechaudii (cluster 2). These two clusters were supported by high bootstrap values. All other isolates were AG-R and did not belong to cluster 1 or 2. They included the 16 A. xylosoxidans isolates and all isolates from the species A. aegrifaciens, A. denitrificans, A. dolens, A. genogroup 12, A. insolitus, A. insuavis, A. marplatensis and A. ruhlandii. A similar tree topology was obtained by using the maximum likelihood and the maximum parsimony methods (data not shown). There was a perfect correlation between the AG resistance profile and the presence of the AxyXY-OprZ efflux system. Indeed, the operon was detected in all AG-R isolates and not in the AG-S ones. An additional PCR was performed in all AG-S isolates with primers designed in flanking sequences of the axyXY-oprZ operon and confirmed the absence of the whole operon. Because the GC content of the efflux operon is similar to that of whole genome, we hypothesized that a deletion occurred in the course of evolution. These findings indicate that susceptibility or resistance to AG might be a phenotypic trait correlated with Achromobacter species evolution.

To date, and to our knowledge, only four studies including an appropriate Achromobacter identification method report distribution of the different Achromobacter species in clinical samples. They indicate that A. xylosoxidans is the species the most frequently recovered from CF patients [11,17–19]. Other species are also widely prevalent: A. ruhlandii, A. dolens and A. insuavis. It is noteworthy that all isolates belonging to these four species have been categorized as AG-R in the present work. One can therefore wonder whether these AG-R species are more pathogenic than the AG-S ones, which might explain their high prevalence. One might also hypothesize that these species have emerged under the selection pressure of AG treatment frequently prescribed to those in the CF population.

In conclusion, AG resistance is the first phenotypic characteristic correlated with the different species of the genus Achromobacter. More studies including accurate species level identification are required in order to improve knowledge about the epidemiology and virulence of these pathogens. They might also help to elucidate whether the use of inhaled AG promotes selection of Achromobacter that belong to the species harbouring the AxyXY-OprZ efflux system.

FIG. 1. ACH-CF-583 nrdA sequence alignment with its closest match (genogroup 19) in Achromobacter PubMLST database. Query: ACH-CF-583; Ref: closest match in database.
FIG. 2. Neighbour-joining dendrogram based on nrdA sequence. Numbers at nodes indicate bootstrap values. Scale bar indicates number of substitutions per site. AG-resistant (AG-R) isolates are in upper box; AG-susceptible (AG-S) isolates are in boxes 'cluster 1' and 'cluster 2.' AG resistance was not determined for the LMG strains.
Acknowledgements

We thank J. J. LiPuma for providing isolates and T. Spilker for his help in analysing nrdA sequences.

Conflict of interest

None declared.

References

[1] Amoureux L, Bador J, Siebor E, Taillefumier N, Fanton A, Neuwirth C. Epidemiology and resistance of Achromobacter xylosoxidans from cystic fibrosis patients in Dijon, Burgundy; first French data. J Cyst Fibros 2013;12:170–6.
[2] Emerson J, McNamara S, Buccat AM, Worrell K, Burns JL. Changes in cystic fibrosis sputum microbiology in the United States between 1995 and 2008. Pediatr Pulmonol 2010;45:363–70.
[3] Yabuuchi E, Oyama A. Achromobacter xylosoxidans n. sp. from human ear discharge. Jpn J Microbiol 1971;15:477–81.
[4] Yabuuchi E, Kawamura Y, Kosako Y, Ezaki T. Emendation of genus Achromobacter and Achromobacter xylosoxidans (Yabuuchi and Yano) and proposal of Achromobacter rutilandi (Packe and Vishniac) comb. nov., Achromobacter piechaudii (Kiredjian et al.) comb. nov., and Achromo-
bacter xylosoxidans subsp. dentitricus (Rüger and Tan) comb. nov. Microbiol Immunol 1998;42:429–38.
[5] Coenye T, Vancanneyt M, Cnockaert MC, Falsen E, Swings J, Vandamme P. Kerstersia gyiorum gen. nov., sp. nov., a novel Alcaligenes fecalis–like organism isolated from human samples, and reclassifi-
cation of Alcaligenes denitrificans Rüger and Tan 1983 as Achromobacter denitrificans comb. nov. Int J Syst Evol Microbiol 2003;53:1825–31.
[6] Coenye T, Vancanneyt M, Falsen E, Swings J, Vandamme P, Achromobacter insolitus sp. nov. and Achromobacter spinius sp. nov., from human clinical samples. Int J Syst Evol Microbiol 2003;53:1819–24.
[7] Gomila M, Tvrzová L, Teshim A, et al. Achromobacter mariplastonis sp. nov., isolated from a pentachlorophenol-contaminated soil. Int J Syst Evol Microbiol 2011;61:2231–7.
[8] Vandamme P, Moore ER, Cnockaert M, et al. Achromobacter aninicus sp. nov., Achromobacter muckolens sp. nov., Achromobacter pulmonis sp. nov. and Achromobacter spirinus sp. nov., from human clinical samples. Syst Appl Microbiol 2013;36:1–10.
[9] Vandamme P, Moore ER, Cnockaert M, et al. Classification of Achromobacter genogroups 2, 5, 7 and 14 as Achromobacter insuavis sp. nov., Achromobacter aeruginosus sp. nov., Achromobacter anicus sp. nov. and Achromobacter dolens sp. nov., respectively. Syst Appl Microbiol 2013;36:474–82.
[10] Spilker T, Vandamme P, LiPuma JJ. A multilocus sequence typing scheme implies population structure and reveals several putative novel Achromobacter species. J Clin Microbiol 2012;50:3010–5.
[11] Spilker T, Vandamme P, LiPuma JJ. Identification and distribution of Achromobacter species in cystic fibrosis. J Cyst Fibros 2013;12:298–301.
[12] Bador J, Amoureux L, Duez JM, et al. First description of an RND-type multidrug efflux pump in Achromobacter xylosoxidans, AxyABM. Antimicrob Agents Chemother 2011;55:4912–4.
[13] Bador J, Amoureux L, Blanc E, Neuwirth C. Innate aminoglycoside resistance of Achromobacter xylosoxidans is due to AxyXY–OprZ, an RND-type multidrug efflux pump. Antimicrob Agents Chemother 2013;57:603–5.
[14] Saiman L, Chen Y, Tabibi S, et al. Identification and antimicrobial susceptibility of Alcaligenes xylosoxidans isolated from patients with cystic fibrosis. J Clin Microbiol 2001;39:3942–5.
[15] Wang M, Ridderberg W, Hansen CR, et al. Early treatment with inhaled antibiotics postpones next occurrence of Achromobacter in cystic fibrosis. J Cyst Fibros 2013;12:638–43.
[16] Voge C, Aires JR, Bailly C, Hocquet D, Plesiat P. Role of the multi-drug efflux system MexXY in the emergence of moderate resistance to aminoglycosides among Pseudomonas aeruginosa isolates from patients with cystic fibrosis. Antimicrob Agents Chemother 2004;48:1676–80.
[17] Ridderberg W, Wang M, Nørskov-Lauritsen N. Multilocus sequence analysis of isolates of Achromobacter from patients with cystic fibrosis reveals infecting species other than Achromobacter xylosoxidans. J Clin Microbiol 2012;50:2688–94.
[18] Barrado L, Brañas P, Orellana MA, et al. Molecular characterization of Achromobacter isolates from cystic fibrosis and non–cystic fibrosis patients in Madrid, Spain. J Clin Microbiol 2013;51:1927–30.
[19] Dupont C, Michon AL, Jumas-Bilak E, Nørskov-Lauritsen N, Chiron R, Marchandin H. Intrapatient diversity of Achromobacter spp. involved in chronic colonization of cystic fibrosis airways. Infect Genet Evol 2015;32:214–23.