Red deer on the move: home range size and mobility in Bulgaria

DIANA ZLATANOVA¹*, ELITSA POPOVA¹, ATIDZHE AHMED², IVAN STEPANOV³, ROSSEN ANDREEV⁴, PETER GENOV²

¹Sofia University “St. Kliment Ohridski”, Faculty of Biology, Blvd. “Dragan Tsankov” 8, Sofia 1164 Bulgaria
²Institute of biodiversity and ecosystem research, BAS, Blvd. “Tsar Osvoboditel” 1, Sofia 1000 Bulgaria
³State Hunting Enterprise “Rositsa”, Stokite locality Bulgaria
⁴Southwestern State Enterprise, Blagoevgrad, str. “Zora”18 Bulgaria

*Corresponding author: dianazlatanova@biofac.uni-sofia.bg

Received 13 July 2019 | Accepted by V. Pešić: 19 September 2019 | Published online 16 October 2019

Abstract
The red deer is a main game species in Bulgaria, as well as in large parts of Europe. However, its behaviour has not been studied in depth on a local scale, especially on the Balkans. This study presents the first GPS telemetry data for red deer in Bulgaria – in the Central and Eastern Balkan Mountains, the Rhodopi Mountains and the lowlands of North-eastern Bulgaria. 18 individuals (2 subadult stags, 12 adult stags and 4 adult hinds) were tracked, accumulating a total of 1159 (for males) and 1464 (for females) GPS fixes. In spite of the pronounced individual differences, all stags were more mobile (average step length/12 h = 857 m) and had larger home ranges (average HR = 7393 ha) than hinds (average HR = 2085 ha, average step length/12 h = 448 m). Three of the individuals (1 hind and 2 stags) dispersed, forming two distinct home ranges. The results from this study outline the need for detailed studies on the behavior of the species, as a vital part of its management and conservation.

Key words: Cervus elaphus, GPS telemetry, territory, core area, range.

Introduction
The red deer (Cervus elaphus L., 1756 Artiodactyla: Cervidae), one of the large ungulates native to Europe, is also an important game species on the continent. It is listed as “least concern” in the IUCN Red list of Threatened Species and its global population trend has been assessed as increasing and not severely fragmented (Lovari et al., 2018). However, the assessment includes some concerning conclusions, such as the following: continuing decline and extreme fluctuations in the extent of occurrence; continuing decline and extreme fluctuations in the area of occupancy; and continuing decline and extreme fluctuations in the number of locations. This brings up the need to study its populations in depth – data on their ecology, demography, behaviour, main threats and trends is vital for the species’ effective management and conservation.

Currently, most of these data are lacking for parts of the red deer’s range. Studies on aspects of the red deer’s behaviour, such as its home range sizes, mobility and habitat selection have been published for: Slovakia (Kropil, Smolko, & Garaj, 2015), Slovenia (Debeljak, Džeroski, Jerina, Kobler, & Adamič, 2001;
RED DEER ON THE MOVE: HOME RANGE SIZE AND MOBILITY IN BULGARIA

Jerina, 2009, 2012), Portugal (Alves, Alves da Silva, Soares, & Fonseca, 2014), the Netherlands (Ensing et al., 2014), Belgium (Alain M. Licoppe, 2006; Am M Licoppe, Crombrugghe, & De Crombrugghe, 2003; Prévot & Licoppe, 2013), Norway (Bonenfant et al., 2004; Godvik et al., 2009; Kleveland, 2007; Mysterud, Bischof, Loe, Odden, & Linnell, 2012), Sweden (Jarnemo, 2011), Italy (Bocci, Monaco, Brambilla, Angelini, & Lovari, 2010; Lovari et al., 2007; Luccarini, Mauri, Ciuti, Lamberti, & Apollonio, 2006), Austria (Duscher, Filli, Reimoser, & Lainer, 2009; Schmidt, 1993), Hungary (Náhlik, Sándor, Tari, & Király, 2009; Szemethy, Heltai, Matrai, & Peto, 1998), France (Adrados, Baltzinger, Janeau, & Pépin, 2008; Bonenfant et al., 2004; Hamann, Klein, & Saint-Andrieux, 1997; D. Pépin, Adrados, Mann, & Janeau, 2004; Dominique Pépin, Morellet, & Goulard, 2009), Poland (Borkowski & Ukalska, 2008; Kamler, Jędrzejewska, & Jędrzejewski, 2007; Kamler, Jedrzejewski, & Jedrzejewska, 2008; Theuerkauf & Rouys, 2008), the Czech Republic (Koubek & Hrabe, 1996; Prokešová, Barančeková, & Homolka, 2006), Switzerland (Duscher et al., 2009; Patthey, 2003; Suter, Suter, Kriisi, & Schütz, 2004), Spain (Braza & Alvarez, 1987; Carranza, Hidalgo de Trucios, Medina, Valencia, & Delgado, 1991; San José, Braza, Aragon, & Delibes, 1997), Scotland (Catt & Staines, 1987; Clutton-Brock, Iason, & Guinness, 1987; Hinge, 1986; Osborne, 1984; Welch, Staines, Catt, & Scott, 1990) and Germany (Georgii, 1980; Georgii & Schröder, 1983).

However, studies on this topic on the Balkans are practically missing. The aim of this work is to present the first red deer GPS-telemetry data for Bulgaria with analysis of the home range sizes and mobility. The species had a very large population density in the country during the 80s (approx. 60 000 ind.), but since then its population has been rapidly declining. Hunting managers also note the apparent deterioration of the trophy qualities of Bulgarian red deer (size, weight, etc.). All of this makes the current topic an important first step in improving the management and conservation of the species not only in Bulgaria, but on the Balkans as a whole.

Materials and Methods

Study area

This study was conducted in four locations 1. Central and 2. Eastern Balkan Mountains, 3. Rhodopi Mountains and 4. Lowlands of North-eastern Bulgaria (Table 1). These areas have diverse altitudinal and vegetation gradient. The altitude ranges from 304 to 2350 m.a.s.l.: average of 385 m for Eastern Balkan Mountain (range: 151 – 820 m); 304 m for North-eastern Bulgaria (range: 173 – 510 m); 760 m for Central Balkan Mountain (range: 167 – 2323 m) and 1524 m for Rhodopi Mountain (range: 695 – 2184 m).

The forest vegetation in the study areas is forming altitudinal belts in the following order (Asenov, 2006): 1. Lower altitudes (300-800 m.a.s.l.) are covered with xero-thermophilic oak (Quercus sp.) and hornbeam (Carpinus sp.); 3. The areas between 800 and 1900 m.a.s.l. are commonly covered with common beech (Fagus sylvatica) with the exception of Rhodopi Mountain where it is generally replaced by a coniferous belt; 4. The coniferous (mainly Abies alba, Pinus sp. and Picea abies) belt consists of scattered patches in Central / Eastern Balkan Mountains and the lowlands of North-eastern Bulgaria, while in Rhodopi Mountain it consists most of the upper altitude forest best. The areas above 2200 m.a.s.l. are generally sub-alpine meadows often covered with Juniperus sp. The main dominant tree species in the four parts of our study area are as follows: North-eastern Bulgaria (Carpinus betulus, Robinia pseudoacacia, Quercus cerris, Tilia tomentosa); Eastern Balkan Mtn (Q. cerris, C. betulus, Fagus sylvatica, Pinus sylvestris, P. nigra, Carpinus orientalis, Q. petraea, F. sylvatica, C. betulus, P. sylvestris, P. nigra, R. pseudoacacia, P. abies, Q. frainetto, Q. petraea, C. orientalis, T. tomentosa); Rhodopi Mtn (P. sylvestris, P. nigra, P. abies, A. alba, F. sylvatica, C. orientalis).

The Central Balkan area covers one national park (Central Balkan National Park) and about 10 State Hunting or State Forest Enterprises. The other four areas cover only State Hunting or State Forest Enterprises. State Hunting Enterprises are Forestry Enterprises (for management of forests and timber production), with additional sets of activities for intensive game management (including intensive supplementary ungulate feeding).
Capture and handling of the animals
During the period 2016-2019 we captured 18 red deer: 2 subadult stags, 12 adult stags and 4 adult hinds (Table 1). Two of the individuals (a male and a female) were captured in a box trap and sedated, while the other 16 were sedated directly by stalking from a hunting stand. For sedation a mixture of Sedin (4ml) + Ketamine (2 ml) or Sedin (3ml) + Ketamine (1 ml) + Zoletil (1ml) per 100 kg was used. The time to full sedation was between 15 - 35 min. After the sedation, the animals where examined, aged according to their dental status and antler development (males), weighted, measured and tagged with an ear tag. All manipulations lasted less than 15 minutes, with animals eyes covered during the procedure (Fig. 2).

Figure 1. Study area and 100 % minimum convex polygons from the locations of the GPS-collared red deer

All animals were equipped with Followit GPS/GSM collars. The data collected by the collars included local date and time, GPS location, altitude and activity record. The data was monitored online (http://geo.followit.se) and extracted for further analyses with GIS instruments.

Data collection and spatial analyses
A total of 1159 (for males) and 1464 (for females) GPS fixes were collected through the study period for an average of 304 tracking days for the males and 194 days for the females. The collars were set to take a location at a different interval, ranging from 6 to 12 hours, depending on the season. This called upon the need for sub-sampling to equal time frame, to be able to compare home range data and mobility across individuals throughout the whole study period. 12 hours between each location fix (at 00:00 and 13:00) were chosen (Table 1) to compromise between the shortest step length (length between fixes), the continuousness of the data flow and the possible effect of correlated locations. An average of 592 resampled fixes for the males and 338 resampled fixes for the females were used for the home range estimation. The period of tracking, the number of tracking days, the total number of fixes and the number of resampled fixes for each individual are presented in Table 1.
Spatial analyses
All spatial analyses were conducted with ArcGis Desktop 10.2.2 – ArcMap (ESRI). The subsampling of the locations to 12 hour interval and the calculation of individual displacement (the Euclidean distance between each location) for this timeframe were done with ArcMET 10.2.2.v3 extension for ArcGIS Desktop (Wall, 2014) – modules Resample tool (for 12 hours resampling), KDE UD Model (for home range size estimation), Create Percent Contours (for estimation of core area and total home range size) and Path tool (for calculation of step length displacement and speed). A fixed kernel density distribution (Worton 1989) with h-ref smoothing factor and raster resolution of 30 m was used for the utility distribution (kernel) modelling of the home range.

Statistical analyses
The statistical analyses and the accompanying plots were done with Statgraphics Centurion 18.1.11 (Statgraphics Technologies, Inc.). The individuals were grouped as males and females to be studied for differences in their home range and mobility. Due to the variability and skewness of data for the home range size and mobility of the males (>2), the median was used instead of average in the group statistical comparisons. The differences are tested with two-tailed probabilities at 0.05 significance, within the 95.0% confidence level, alpha was reported with 0.01 significance only where strong differences were observed. Where appropriate, the average values were also reported for comparison purposes with other studies.

The variation of the Euclidean distances in 12 hours displacement was plotted with violin graph with cosine function and interval width (h) at 10 %. Mann–Whitney statistic was used to test for gender-specific differences. G test of goodness-of-fit was used to compare the difference in the home range size proportion (1:1) of before and after dispersal in three individuals.

Results

Home range size and shape
The home range sizes of the tracked deer show significant variability (Table 2). Males tend to have more variable in size core and total home range areas than the females (Fig. 3).

Three of the GPS-collared red deer (two males, at about two years old and one female at about three years old) showed a dispersal pattern with two well defined home ranges (individuals M01, M2 and F8 – Table 2, Figure 4).
Table 1. Captured and collared red deer individuals for the period of 2016-2019 – sex, approximate age, region of capture, period of tracking, number of tracking days, total number of fixes, number of resampled fixes for each individual, capture method and current status

Deer ID	Name	Sex	Age	Region	Period of tracking	# tracking days	total # of fixes	# of resampled fixes	Capture method	Current status
M00	Kutzar	Male	adult	Central Balkan Mtn	7.2.2016 - 16.2.2018	741	1824	1267	sedation by stalking	current status unknown
M01	Voden	Male	~ 2 years	Central Balkan Mtn	17.2.2017 - 11.7.2017	145	571	288	sedation by stalking	current status unknown
M1	Chavdar	Male	~ 2 years	Central Balkan Mtn	19.10.2017 - 17.4.2018	181	706	362	sedation by stalking	killed by wolves
M2	Anton	Male	~ 2 years	Central Balkan Mtn	17.1.2018 - 10.11.2018	297	1530	547	sedation by stalking	malfunctioned collar, unknown
F3	Antonia	Female	adult	Central Balkan Mtn	17.1.2018 - 9.03.2018	51	204	102	sedation by stalking	killed by wolves
M4	Boyan	Male	~ 2 years	Central Balkan Mtn	25.1.2018 - 13.6.2019	504	2529	987	sedation by stalking	ongoing tracking
F5	Vili	Female	~ 6-8 years	Central Balkan Mtn	25.1.2018 - 13.6.2019	504	2545	992	sedation by stalking	ongoing tracking
M6	Goran	Male	~ 2 years	Central Balkan Mtn	16.2.2018 - 9.3.2019	386	1937	769	sedation by stalking	collar not working, most likely poached
F7	Divna	Female	~ 5-6 years	Central Balkan Mtn	27.2.2018 - 13.6.2019	471	2333	931	sedation by stalking	ongoing tracking
F8	Poli	Female	~ 3 years	Eastern Balkan Mtn	13.3.2018 - 16.8.2018	156	775	310	trapping	malfunctioned collar, ind. alive
M9	Delcho	Male	~ 1.5 years	Eastern Balkan Mtn	13.3.2018 - 13.6.2019	457	2265	899	trapping	ongoing tracking
M10	Chocho	Male	~ 5-6 years	North-eastern Bulgaria	24.9.2018 - 12.06.2019	261	1273	517	sedation by stalking	ongoing tracking
M11	Simo	Male	~ 7-8 years	North-eastern Bulgaria	17.11.2018 - 12.6.2019	207	975	405	sedation by stalking	ongoing tracking
M12	Emil	Male	~ 6-7 years	Central Balkan Mtn	14.1.2019 - 13.6.2019	150	743	293	sedation by stalking	ongoing tracking
M13	Zhevko	Male	~ 1.5 years	Central Balkan Mtn	17.2.2019 - 12.6.2019	207	540	231	sedation by stalking	ongoing tracking
M14	Zaro	Male	~ 4-5 years	Rhodopi Mtn	28.2.2019 - 12.6.2019	104	486	170	sedation by stalking	ongoing tracking
M15	Dian	Male	~ 3-4 years	Central Balkan Mtn	9.3.2019 - 12.6.2019	95	453	188	sedation by stalking	ongoing tracking
M16	Ivo	Male	~ 6-7 years	Rhodopi Mtn	12.3.2019 - 25.5.2019	74	387	148	sedation by stalking	poached
The size comparison of the first (before dispersal) and the second (after dispersal) core and total areas for these individuals show statistically significant difference (G-test of goodness-of-fit, p<0.01: for core area M01 - G = 155.24; M2 - G = 69.89; F8 – G = 302.07; for overall home range M01 - G = 671.99; M2 - G = 847.45; F8 – G = 32.85)

The core areas size range from 192 to 6044 ha for males and from 44 to 1319 ha for females. There is no statistically significant difference between the core area sizes of the home range in males and females (Mann-Whitney W-test to compare medians, W = 17.0, p > 0.05).

The total male home range varies from 1461 to 39908 ha, while in females the home range is considerably smaller (186 to 4861 ha). (Mann-Whitney W-test to compare medians, W = 20.0, p > 0.05)

Table 2 Home range (HR) size (core and total areas) and number of tracking days for the estimation of the home range.

Deer ID	Sex	Age	Core HR size, ha	Total HR size, ha	Days in HR
M00	Male	adult	791	4215	741
M01-1	Male	~ 2 years	680	3282	36
M01-2	Male	~ 2 years	296	1509	102
M1	Male	~ 2 years	192	1461	181
M2-1	Male	~ 2 years	1110	4065	115
M2-2	Male	~ 2 years	1540	7125	180
F3	Female	adult	44	186	51
M4	Male	~ 2 years	4423	20591	504
F5	Female	~ 6-8 years	66	400	504
M6	Male	~ 2 years	1791	11264	386
F7	Female	~ 5-6 years	138	665	471
F8-1	Female	~ 3 years	1319	4861	98
F8-2	Female	~ 3 years	573	4312	58
M9	Male	~ 1.5 years	759	6721	457
M10	Male	~ 5-6 years	426	2309	261
M11	Male	~ 7-8 years	664	5799	207
M12	Male	~ 6-7 years	386	1709	150
M13	Male	~ 1.5 years	329	1532	207
M14	Male	~ 4-5 years	6044	39908	104
M15	Male	~ 3-4 years	620	2849	95
M16	Male	~ 6-7 years	840	3953	74

Four of the males (M4, M10, M13 and M15) have fragmented core areas. M4 (about two years old male) has three varying in size core areas (1116, 435 and 2872 ha) distributed between densely located villages. M10 (~ 5-6 years old) has two as the second one is recently formed. M15 is caught in the Central Balkan National Park, but after moving to the surrounding hunting enterprises splits its core area into two parts (114 and 506 ha). None of the females has fragmented core areas.

There is significant overlap in the home ranges between males and males, males and females and females – females. The males not only partially overlap each other’s home range, but some of the males (M00, M11, M14) completely overlap the core areas of other males. Three of the males (M2, M4, M6) also show almost complete overlap of their core areas.

Mobility
Both male and female red deer show great variability in their 12 hours displacement (Table). The males are twice as mobile as females (median: 606 m vs. 367 m 12 h displacement), and the difference is statistically significant (Mann-Whitney W-test on medians, W = 0, p = 0.00349). The interquartile range is also confirming this pattern (753 m in males vs. 421 m in females). The maximum observed displacement for the 12 hour period is 16017 m for the males and 4252 m for the females.

Ecologica Montenegrina, 23, 2019, 47-59
Figure 3. Comparison of the core and total area in males and females. Boxes – the interquartile range (25-75 percentiles); middle line in boxes – median values; diamonds – average values; whiskers – minimum and maximum values within the 95.0% confidence level; circles – outliers; circles with plus sign - “Far outside” outliers, points more than 3 times above the interquartile range.

Figure 4. Home range (core and total area of the GPS-collared red deer: 1 - Central Balkan Mtn (individuals M00, M01, M1, M2, F3, M4, F5, M6, F7, M12, M13, M15); 2 - Rhodopi Mtn (individuals M14 and M16); 3 - North-eastern Bulgaria (individuals M10 and M11); 4 - Eastern Balkan Mtn (individuals F8 and M9).
Table 3. Mobility comparison in males and females with sample size

MALES	Sample size	Average, m.	Median, m.	Min., m	Max., m	Range, m	Interquartile range, m
M00	1266	732	452	7	7307	7300	732
M01	287	678	447	49	7200	7152	504
M1	361	666	552	12	3137	3125	618
M2	573	814	599	14	8998	8984	663
M4	986	1113	743	11	10195	10184	1002
M6	768	809	669	8	8604	8595	688
M9	898	1028	800	8	6822	6814	804
M10	516	911	602	20	5738	5718	907
M11	404	984	560	16	5106	5090	957
M12	292	622	510	0	4129	4129	511
M13	230	693	603	11	3540	3529	588
M14	169	1003	607	0	16017	16017	811
M15	187	648	460	14	3843	3829	476
M16	118	667	493	56	4632	4576	510

FEMALES	Sample size	Average, m.	Median, m.	Min., m	Max., m	Range, m	Interquartile range, m
F3	101	354	333	11	1041	1030	264
F5	991	518	480	5	2362	2357	448
F7	930	434	352	11	2162	2151	394
F8	309	294	188	0	4252	4252	254

The 12 hour mobility of the males and females differ not only in the median and interquartile values but also in the density distribution of the all displacement distances (Table 3). Females are showing three distinctive peaks of these densities (around 200, 350 and 500 m), while the males have two more compact peaks (around 450 and 600 m).

The maximum displacement speed for the 12 hour step length observed in the male red deer was 0.78 km/h (median - 0.05 km/h, interquartile range - 0.06 km/h), while in the female it was 0.39 km/h (median and interquartile range - 0.03 km/h).

Discussion

Sample size
The captured red deer in our study show a skewed sex ratio of males to females (14:4). This was caused by the extreme cautiousness of the females, related to capture/stalking, compared to the males. This skewedness might introduce a bias in the averaged home range size and mobility. Yet, the literature review for the red deer home range size in other countries (see below) shows similarities. Further on, the average sample size of the fixes (males vs. females) in our study are similar (505 : 584, for the resampled fixes used for home range estimation and mobility). All this allows us to assume that if a bias exists, it will have a minimal effect.

Home range size and shape
The home range sizes obtained from our analysis correlate to results from some other studies in Europe. The red deer classified as ‘migratory’ in Luccarini et al. (2006) in the Italian Alps have similar mean HR sizes to ours, ranging from 1141-1289 ha, while the ‘stationary’ individuals have HR of 260-843 ha. The same is true for the ‘shifter’ hinds studied by Bocci et al., (2010) – with HR sizes of 142-1699 ha, whereas the ‘resident’
individuals in the same study exhibit much smaller ranges (74-593 ha). Other research in the Alps also confirms our results - Duscher et al. (2009) report HR varying from 5 to 340 hectares for females in winter and 130 to 790 hectares in summer in an Austrian study site with supplementary feeding. In the Swiss study site (without supplementary feeding) ranges varied between 150 and 8990 ha (higher than our results) in winter and 170 and 5350 ha in summer (similar to our results). The male Slovakian red deer in the Western Carpathians (migrant and resident with HRs 6393±2800 and 1762±678 ha respectively) apparently are most similar to the Bulgarian (Kropil et al., 2015). The red deer studied in Poland are also close to our results: 3600 ha for males and 840 ha for females (Kamler et al., 2008).

The hinds studied in Spain (Carranza et al., 1991) also exhibit similar HR sizes (258.4 ± 59.0 ha), whereas the stags’ are much smaller than those obtained in our study (655.4 ha). Our results also fall in line with the sizes reported for Scotland - 406-1008 ha for females and 1062-3059 ha for males (Catt & Staines, 1987). According to two studies in France the females’ HR measure 444-1921 ha and 536-538 ha respectively (similar to our results), but the males’ HR are much lower than ours (977-1466 ha) (Hamann et al., 1997; Dominique Pépin et al., 2009). It is worth noting that despite the similar total HR size reported by Hamman er et al. (1997), the Bulgarian red deer hinds exhibit a larger core area (44-1319 ha), compared to the French (76-200 ha). However, most publications do not report core area sizes. Other studies reporting similar values to ours are published from Hungary: in a lowland area: 6697 ha for stags and 2555 ha of hinds (Szemethy et al., 1998); in Zala County: 1310 ± 700 ha in summer and the 2570 ± 1,130 ha in winter; in Sopron 530 ± 415 ha in summer and 1,140 ± 600 ha in summer for hinds (Náhlik et al., 2009).

There is also a number of studies that report much smaller HR sizes than the results of our study: in Sardinia (Italy) - 36.5 ha hinds and 65.0 ha stags (Lovari et al., 2007); in the German Alps: 65 ha during winter, 167 ha in spring and autumn and 121 ha in summer for hinds (Georgii, 1980); and 113 ha in winter and 386 ha from spring to autumn for stags (Georgii & Schröder, 1983); Slovenia: 90–2107 ha (average 460

Figure 5. Comparison between male and female red deer mobility. Boxes – the interquartile range (25-75 percentiles); middle line in boxes – median values; diamonds – average values; whiskers – minimum and maximum values within the 95.0% confidence level; circles – outliers; the perimeter outside boxes shows the probability density of the of the 12 hours step-length displacement in males and females.
RED DEER ON THE MOVE: HOME RANGE SIZE AND MOBILITY IN BULGARIA

ha) (Jerina, 2012); Czech republic: 35-174 ha for females and 84-429 ha for males in different seasons (Koubek & Hrabe, 1996); Belgium: 529 ha (Prévot & Licoppe, 2013), Norway in summer (293.84 ha in summer 237.92 ha in winter (Kleveland, 2007).

Our results regarding the overlapping of home ranges between males/males, females/males and females/females are in agreement with other studies (Carranza et al., 1991; Catt & Staines, 1987; Staines, Crisp, & Parish, 1982). Concerning the differences between males and females, Jerina (2012) reports 580 ha versus 400 ha HRs respectively for Slovenia, whereas in our study area the difference is much larger, close to 10 times larger HR for the males compared to females. A much smaller difference is also observed in all the papers cited above.

Mobility

Most other studies do not report the mean displacement per day. However, this data is important, especially since it has applications in other methodological approaches. For example, the Random Encounter Model (REM) used to estimate the population density of species without individual recognition, relies on a number of parameters, including the mobility of the species (Rowcliffe, Field, Turvey, & Carbone, 2008). However, this parameter may vary greatly within the species’ distribution range, depending on habitat, climate, predators, anthropogenic disturbance and other factors. This is why the best estimates of population density can be achieved only by applying data from local individuals of the same species (Popova, Stepanov, Ahmed, Genov, & Todev, 2018).

In our case, the results are similar to those observed in France and Denmark where hinds moved 1.7-3.5 km/24h (Hamann et al., 1997) and 0.45 km/24h (Jeppsen, 1987) respectively. However, another study reports moving distances for stags of 1.5-2.3 km and 1.5-7.6 km/24h for hinds (D. Pépin et al., 2004). This is dissimilar to our estimation, according to which the males are twice as mobile as the females. Results from Spain also show a higher mean daily displacement - 3.04 to 4.21 km/24h for females and 4.3 km/24h for males (Carranza et al., 1991). Pépin et al. (2009) report a velocity of 1.63 km/h, which is twice as high as the obtained for Bulgarian male red deer. However, it should be noted that our estimation is based on a 12h step length and the actual travelled distance by the individuals can be much larger, and thus the actual velocity is most likely higher.

In conclusion, we can infer that Bulgarian red deer have HR sizes in the higher end of the spectrum for Europe, including very high values, rarely reported in the literature. However, their daily mobility is similar or lower than the values observed in other parts of Europe. The large similarity with the results reported from Białowieża National Park (BNP), Poland and the Western Carpathians, Slovenia (Kamler et al., 2008; Kropil et al., 2015) are expected. The three study areas have similar habitats – mainly broadleaved forests with well-preserved biodiversity and presence of large carnivores: gray wolves (Canis lupus L.) in all three, brown bear (Ursus arctos L.) in the Bulgarian and Slovenian study sites and Eurasian lynx (Lynx lynx L.) in the Polish and Slovenian study sites. As Kamler et al. (2008) suggest large carnivores might be one of the possible explanations for the observed large home ranges and high mobility – in these conditions the ungulates (as main prey) should manage the trade-off between foraging and avoiding predators, thus increasing their overall movement. Another important factor that should be considered is the hinting pressure. Most of our study area falls within National Hunting Enterprises, where hunting is permitted throughout the year, which could also explain the larger HRs. Moreover, trophy hunting in Bulgaria is aimed mainly at males, contributing additionally to their disproportionally large ranges compared to the females’. Additional evidence supporting this hypothesis is the fact, that two of the studied stags exhibit a marked change in their behavior with the beginning of the hunting season within the areas not belonging to a Hunting Enterprise. M6, occupying mainly a Forestry Enterprise, moves to the Central Balkan National Park (where hunting is strictly forbidden) within 3 weeks of the hunting season’s start. Similarly, M2 also retreats to its second home range closer to the National Park’s borders. Unfortunately, M6 and M16 were poached, which indicates a considerable problem.

Our study, as the first of its kind on the Balkans, forms an important basis for further investigation of the spatial and behavioral characteristics of the red deer, which will contribute to its better management and conservation.
Acknowledgments
This work was supported by project № 195/10.10.2016 “Population studies, migration and status of the red deer (Cervus elaphus) in Bulgaria” of the Southwestern State Enterprise, Blagoevgrad, and the Institute of biodiversity and ecosystem research, BAS. We thank the staff of the State Hunting Enterprises for their cooperation and contribution, as well as Vladimir Todorov and Ivan Todev for their involvement in the fieldwork.

References

Asenov, A. (2006). Biogeography of Bulgaria [in Bulgarian] (First edition). Sofia: An-Di.
Adrados, C., Baltzinger, C., Janeu, G., & Pépin, D. (2008). Red deer Cervus elaphus resting place characteristics obtained from differential GPS data in a forest habitat. European Journal of Wildlife Research, 54(3), 487–494. https://doi.org/10.1007/s10344-008-0174-y
Alves, J., Alves da Silva, A., Soares, A. M. V. M., & Fonseca, C. (2014). Spatial and temporal habitat use and selection by red deer: The use of direct and indirect methods. Mammalian Biology, 79(5), 338–348. https://doi.org/10.1016/j.mambio.2014.05.007
Asenov, A. (2006). Biogeography of Bulgaria [in Bulgarian] (Fiist edit). Sofia: An-Di.
Bocci, A., Monaco, A., Brambilla, P., Angelini, I., & Lovari, S. (2010). Alternative Strategies of Space use of Female Red Deer in a Mountainous Habitat. Annales Zoologici Fennici, 47, 57–66. https://doi.org/10.5735/086.047.0106
Bonenfant, C., Loe, L. E., Mysterud, A., Langvatn, R., Stenseth, N. C., Guillard, J.-M. J. M. J.-M., & Klein, F. (2004). Multiple causes of sexual segregation in European red deer: Enlightenments from varying breeding phenology at high and low latitude. Proceedings of the Royal Society B: Biological Sciences, 271, 883–892. https://doi.org/10.1098/rspb.2003.2661
Borkowski, J., & Ukalska, J. (2008). Winter habitat use by red and roe deer in pine-dominated forest. Forest Ecology and Management, 255(3–4), 468–475. https://doi.org/10.1016/j.foreco.2007.09.013
Braza, F., & Alvarez, F. (1987). Habitat use by red deer and fallow deer in Doñana National Park. Misc. Zool., 11, 363–367.
Carranza, J., Hidalgo de Trucios, S. J., Medina, R., Valencia, J., & Delgado, J. (1991). Space use by red deer in a Mediterranean ecosystem as determined by radio-tracking. Applied Animal Behaviour Science, 30(3–4), 363–371. https://doi.org/10.1016/0168-1591(91)90141-J
Catt, D. C., & Staines, B. W. (1987). Home range use and habitat selection by Red deer (Cervus elaphus) in a Sitka spruce plantation as determined by radio-tracking. Journal of Zoology, 211, 681–693.
Clutton-Brock, T. H., Iason, G. R., & Guinness, F. (1987). Sexual segregation and density-related changes in habitat use in male and female Red deer (Cervus elaphus). Journal of Zoology (London), 211, 275–289.
Debeljak, M., Džeroski, S., Jerina, K., Kobler, A., & Adamič, M. (2001). Habitat suitability modelling for red deer (Cervus elaphus L.) in South-central Slovenia with classification trees. Ecological Modelling, 138, 321–330. https://doi.org/10.1016/s0304-3800(00)00411-7
Duscher, A., Filli, F., Reimoser, F., & Lainer, F. (2009). Impact of supplementary feeding on winter home range size and activity patterns of female red deer (Cervus elaphus) in alpine regions. In 4th Symposium of the Hohe Tauern National Park for Research in Protected Areas (pp. 73–76). Castle of Kaprun.
Ensing, E. P., Ciuti, S., de Wijs, F. A. L. M., Lentferink, D. H., ten Hoedt, A., Boyce, M. S., & Hut, R. A. (2014). GPS Based Daily Activity Patterns in European Red Deer and North American Elk (Cervus elaphus): Indication for a Weak Circadian Clock in Ungulates. PLoS ONE, 9(9), e106997. https://doi.org/10.1371/journal.pone.0106997
Georgii, B. (1980). Home Range Patterns of Female Red Deer (Cervus elaphus L.) in the Alps. Oecologia, 285(1), 127–136. https://doi.org/10.1007/BF00376910
Georgii, B., & Schröder, W. (1983). Home range and activity patterns of male red deer (Cervus elaphus L.) in the Alps. Oecologia, 58, 238–248. https://doi.org/10.1007/BF00399224
Godvik, I. M. R., Loe, L. E., Vik, J. O., Veiberg, V., Langvatn, R., & Mysterud, A. (2009). Temporal scales, trade-offs, and functional responses in red deer habitat selection. Ecology, 90(3), 699–710. https://doi.org/10.1890/08-0576.1
Hamann, J. L., Klein, F., & Saint-Andrieux, C. (1997). Domaine vital diurne et déplacements de biches (Cervus elaphus) sur le secteur de la Petite Pierre (Bas-Rhin). *Gibier Faune Sauvage, 14*(mars), 1–17.

Hinge, M. (1986). *Ecology of red and roe deer in a mixed-age conifer plantation: Comparative studies on habitat selection, ranging behaviour and feeding strategies*. Aberdeen University.

Jarmemo, A. (2011). Male red deer (Cervus elaphus) dispersal during the breeding season. *Journal of Ethology, 29*(2), 329–336. https://doi.org/10.1007/s10164-010-0262-9

Jeppsen, J. L. (1984). Habitat Use By Red Deer (Cervus elaphus L.) and Hill Sheep in the West Highlands. *Journal of Applied Ecology, 21*(2), 497–506.

Jerina, K. (2012). Roads and supplemental feeding affect home-range size of Slovenian red deer more than natural factors. *Journal of Mammalogy, 93*(4), 1139–1148. https://doi.org/10.1644/11-mamm-a-136.1

Kamler, J. F., Jędrzejewska, B., & Jędrzejewski, W. (2007). Factors affecting daily ranges of red deer Cervus elaphus in Białowieża Primeval Forest, Poland. *Acta Theriologica, 52*(2), 113–118. https://doi.org/10.1007/BF03194206

Kamler, J. F., Jędrzejewski, W., & Jędrzejewska, B. (2008). Home Ranges of Red Deer in a European Old-growth Forest. *The American Midland Naturalist, 159*(1), 75. https://doi.org/10.1674/0003-0031(2008)159[75:hrordi]2.0.co;2

Kleveland, K. (2007). *Seasonal home ranges and migration of red deer (Cervus elaphus) in Norway*. University of Oslo.

Koubek, P., & Hrabe, V. (1996). Home range dynamics in the red deer (Cervus elaphus) in a mountain forest in Central Europe. *Folia Zoologica, 45*(3), 219–222.

Kropil, R., Smolko, P., & Garuj, P. (2015). Home range and migration patterns of male red deer Cervus elaphus in Western Carpathians. *European Journal of Wildlife Research, 61*(1), 63–72. https://doi.org/10.1007/s10344-014-0874-4

Licoppe, Alain M. (2006). The diurnal habitat used by red deer (Cervus elaphus L.) in the Haute Ardèche. *European Journal of Wildlife Research, 52*(3), 164–170. https://doi.org/10.1007/s10344-006-0027-5

Licoppe, Am M, Crombrugghe, S. a De, & De Crombrugghe, S. a. (2003). Assessment of spring habitat selection of red deer (Cervus elaphus L.) based on census data. *Zeitschrift Für Jagdwissenschaft, 49*(August 2002), 1–13. https://doi.org/10.1007/bf02192009

Lovari, S., Cuccu, P., Murgia, A., Murgia, C., Soi, F., & Plantamura, G. (2007). Space use, habitat selection and browsing effects of red deer in Sardinia. *Italian Journal of Zoology, 74*(2), 179–189. https://doi.org/10.1080/1125000701249777

Lovari, S., Lorenzini, R., Masetti, M., Pereladova, O., Carden, R. F., Brook, S. M., & Mattioli, S. (2018). Cervus elaphus (errata version published in 2019). *The IUCN Red List of Threatened Species, 2018*, e.T55997072A142404453. https://doi.org/http://dx.doi.org/10.2305/IUCN.UK.2018-2.RLTS.T55997072A142404453.en

Luccarini, S., Mauri, L., Ciuti, S., Lamberti, P., & Appollonio, M. (2006). Red deer (Cervus elaphus) spatial use in the Italian alps: Home range patterns, seasonal migrations, and effects of snow and winter feeding. *Ethology Ecology and Evolution, 18*(2), 127–145. https://doi.org/10.1080/08927014.2006.9522718

Mysterud, A., Bischof, R., Loe, L. E., Odden, J., & Linnell, J. D. C. (2012). Contrasting migration tendencies of sympatric red deer and roe deer suggest multiple causes of migration in ungulates. *Ecosphere, 3*(10), 92. https://doi.org/10.1890/ES12-00177.1

Náhlik, A., Sándor, G., Tari, T., & Király, G. (2009). Space Use and Activity Patterns of Red Deer in a Highly Forested and in a Patchy Forest-Agricultural Habitat. *Acta Silv. Lign. Hung., 5*, 109–118. Retrieved from http://aslh.nyue.hu/fileadmin/dokumentumok/fmk/acta_silvatica/cikkek/Vol05-2009/acta_vol5.pdf#page=107

Osborne, B. C. (1984). Habitat Use By Red Deer (Cervus elaphus L.) and Hill Sheep in the West Highlands. *Journal of Applied Ecology, 21*(2), 497–506.

Patthey, P. (2003). *Habitat and corridor selection of an expanding red deer (Cervus elaphus) population*. Université de Lausanne.
Pépin, D., Adrados, C., Mann, C., & Janeau, G. (2004). Assessing real daily distance traveled by ungulates using differential GPS locations. *Journal of Mammalogy, 85*(4), 774–780.

Pépin, Dominique, Adrados, C., Janeau, G., Joachim, J., & Mann, C. (2008). Individual variation in migratory and exploratory movements and habitat use by adult red deer (Cervus elaphus L.) in a mountainous temperate forest. *Ecological Research, 23*, 1005–1013. https://doi.org/10.1007/s11284-008-0468-2

Pépin, Dominique, Morellet, N., & Goulard, M. (2009). Seasonal and daily walking activity patterns of free-ranging adult red deer (Cervus elaphus) at the individual level. *European Journal of Wildlife Research, 55*(5), 479–486. https://doi.org/10.1007/s10344-009-0267-2

Popova, E., Stepanov, I., Ahmed, A., Genov, P., & Todev, I. (2018). Red deer (Cervus elaphus L.) population density in a hunting area in the Central Balkan Mountains (Bulgaria) revealed by camera traps. *Proceedings of "Seminar Of Ecology – 2018" with International Participation*, 14–21.

Prévot, C., & Licoppe, A. (2013). Comparing red deer (Cervus elaphus L.) and wild boar (Sus scrofa L.) dispersal patterns in southern Belgium. *European Journal of Wildlife Research, 59*(6), 795–803. https://doi.org/10.1007/s10344-013-0732-9

Prokešová, J., Barančeková, M., & Homolka, M. (2006). Density of red and roe deer and their distribution in relation to different habitat characteristics in a floodplain forest. *Folia Zoologica, 55*(1), 1–14.

Rowcliffe, J. M., Field, J., Turvey, S. T., & Carbone, C. (2008). Estimating animal density using camera traps without the need for individual recognition. *Journal of Applied Ecology, 45*, 1228–1236. https://doi.org/10.1111/j.1365-2664.2008.01621.x

San José, C., Braza, F., Aragon, S., & Delibes, J. R. (1997). Habitat use by roe and red deer in Southern Spain. *Miscellania Zoologica, 20*(1), 27–38.

Schmidt, K. (1993). Winter ecology of nonmigratory Alpine red deer. *Oecologia, 95*(2), 226–233. https://doi.org/10.1007/BF00323494

Staines, B. W., Crisp, J. M., & Parish, T. (1982). Differences in the Quality of Food Eaten by Red Deer (Cervus elaphus) Stags and Hinds in Winter. *Journal of Applied Ecology, 19*(1), 65–77. https://doi.org/10.2307/2402991

Suter, W., Suter, U., Kriisi, B., & Schütz, M. (2004). Spatial variation of summer diet of red deer Cervus elaphus in the eastern Swiss Alps. *Wildlife Biology, 10*(1), 43–50. https://doi.org/10.2981/wlb.2004.008

Szemethy, L., Heltai, M., Matrai, K., & Peto, Z. (1998). Home ranges and habitat selection of red deer (Cervus elaphus) on a lowland area. *Gibier Fane Sauvage - Game and Wildlife, 15*(2). Retrieved from https://www.researchgate.net/publication/236000961

Theuerkauf, J., & Rouys, S. (2008). Habitat selection by ungulates in relation to predation risk by wolves and humans in the Bialowieza Forest, Poland. *Forest Ecology and Management, 256*(6), 1325–1332. https://doi.org/10.1016/j.foreco.2008.06.030

Wall, J. (2014). Movement Ecology Tools for ArcGIS (ArcMET) 10.3.1 v1.

Wall, J. (2014). Movement Ecology Tools for ArcGIS (ArcMET) 10.3.1 v1.

Welch, D., Staines, B. W., Catt, D. C., & Scott, D. (1990). Habitat usage by red (Cervus elaphus) and roe (Capreolus capreolus) deer in a Scottish Sitka spruce plantation. *J. Zool. Lond., 221*(3), 453–476. https://doi.org/10.1111/j.1469-7998.1990.tb04013.x

Worton, BJ. (1989) Kernel Methods for Estimating the Utilization Distribution in Home-Range Studies. *Ecology 70*: 164–168