Weighted Efficient Domination for \((P_5 + kP_2)\)-Free Graphs in Polynomial Time

Andreas Brandstädt∗ Vassilis Giakoumakis†

July 18, 2014

Abstract

Let \(G \) be a finite undirected graph. A vertex dominates itself and all its neighbors in \(G \). A vertex subset \(D \subseteq V \) is an efficient dominating set (e.d. for short) of \(G \) if every vertex of \(G \) is dominated by exactly one vertex of \(D \). The Efficient Domination (ED) problem, which asks for the existence of an e.d. in \(G \), is known to be \(\mathbb{NP} \)-complete even for very restricted graph classes such as for claw-free graphs, for chordal graphs and for \(2P_3 \)-free graphs (and thus, for \(P_7 \)-free graphs). We call a graph \(F \) a linear forest if \(F \) is cycle- and claw-free, i.e., its components are paths. Thus, the ED problem remains \(\mathbb{NP} \)-complete for \(F \)-free graphs, whenever \(F \) is not a linear forest. Let WED denote the vertex-weighted version of the ED problem asking for an e.d. of minimum weight if one exists.

In this paper, we show that WED is solvable in polynomial time for \((P_5 + kP_2)\)-free graphs for every fixed \(k \), which solves an open problem, and, using modular decomposition, we improve known time bounds for WED on \((P_4 + P_2)\)-free graphs, \((P_6, S_{1,2,2})\)-free graphs, and on \((2P_3, S_{1,2,2})\)-free graphs and simplify proofs. For \(F \)-free graphs, the only remaining open case is WED on \(P_6 \)-free graphs.

Keywords: Weighted efficient domination; \(F \)-free graphs; linear forests; \(P_k \)-free graphs; polynomial time algorithm; robust algorithm.

1 Introduction

Let \(G = (V,E) \) be a finite undirected graph. A vertex \(v \in V \) dominates itself and its neighbors. A vertex subset \(D \subseteq V \) is an efficient dominating set (e.d. for short) of \(G \) if every vertex of \(G \) is dominated by exactly one vertex in \(D \). Note that not every graph has an e.d.; the Efficient Dominating Set (ED) problem asks for the existence of an e.d. in a given graph \(G \). If a vertex weight function \(\omega : V \rightarrow \mathbb{N} \) is given, the Weighted Efficient Dominating Set (WED) problem asks for a minimum weight e.d. in \(G \) if there is one \(G \) or for determining that \(G \) has no e.d.

For a set \(\mathcal{F} \) of graphs, a graph \(G \) is called \(\mathcal{F} \)-free if \(G \) contains no induced subgraph isomorphic to a member of \(\mathcal{F} \). For two graphs \(F \) and \(G \), we say that \(G \) is \(F \)-free if \(G \) is \{\(F \)\}-free. We denote by \(G + H \) the disjoint union of graphs \(G \) and \(H \). Let \(P_k \) denote a chordless path with \(k \) vertices, and let \(2P_k \) denote \(P_k + P_k \), and correspondingly for \(kP_2 \). The claw is the 4-vertex tree with three vertices of degree 1.

∗Fachbereich Informatik, Universität Rostock, A.-Einstein-Str. 22, D-18051 Rostock, Germany. e-mail: ab@informatik.uni-rostock.de
†MIS (Modélisation, Information & Systèmes), Université de Picardie Jules Verne, Amiens, France. e-mail: vassilis.giakoumakis@u-picardie.fr
Many papers have studied the complexity of ED on special graph classes - see e.g. [2] for references. In particular, ED remains \(\text{NP}\)-complete for \(2P_3\)-free graphs, for chordal graphs, for line graphs and thus for claw-free graphs. A linear forest is a graph whose components are paths; equivalently, it is a graph which is cycle-free and claw-free. The \(\text{NP}\)-completeness of ED on chordal graphs and on claw-free graphs implies: If \(F \) is not a linear forest, then ED is \(\text{NP}\)-complete on \(F\)-free graphs. This motivates the analysis of ED/WED on \(F\)-free graphs for linear forests \(F \).

In this paper, we show that WED is solvable in polynomial time for \((P_5 + kP_2)\)-free graphs for every fixed \(k \), which solves an open problem, and, using modular decomposition, we improve known time bounds for WED on \((P_4 + P_2)\)-free graphs, \((P_6, S_{1,2,2})\)-free graphs, and on \((2P_3, S_{1,2,2})\)-free graphs and simplify proofs (see [2] [4] for known results). For \(F\)-free graphs, the only remaining open case is WED on \(P_6\)-free graphs.

Various of our algorithms are robust in the sense of [7], that is, a robust algorithm for a graph \(C \) works on every input graph \(G \) and either solves the problem correctly or states that \(G \notin C \). We say that the algorithm is weakly robust if it either gives the optimal WED solution for the input graph \(G \) or states that \(G \) has no e.d. or is not in the class.

2 Basic Notions and Results

2.1 Some Basic Notions

All graphs considered in this paper are finite, undirected and simple (i.e., without loops and multiple edges). For a graph \(G \), let \(V(G) \) or simply \(V \) denote its vertex set and \(E(G) \) or simply \(E \) its edge set; throughout this paper, let \(|V| = n \) and \(|E| = m \). We can assume that \(G \) is connected (otherwise, WED can be solved separately for its components); thus, \(m \geq n - 1 \). A graph is nontrivial if it has at least two vertices. For a vertex \(v \in V \), \(N(v) = \{ u \in V \mid uv \in E \} \) denotes its (open) neighborhood, and \(N[v] = \{ v \} \cup N(v) \) denotes its closed neighborhood. A vertex \(v \) sees the vertices in \(N(v) \) and misses all the others. The anti-neighborhood of vertex \(v \) is \(A(v) = V \setminus N[v] \).

For a vertex set \(U \subseteq V \), its neighborhood is \(N(U) = \{ x \mid x \notin U, \exists y \in U, xy \in E \} \), and its anti-neighborhood \(A(U) \) is the set of all vertices not in \(U \) missing \(U \).

The degree of a vertex \(x \) in a graph \(G \) is \(d(x) := |N(x)| \). Let \(\delta(G) \) denote the minimum degree of any vertex in \(G \).

A vertex \(u \) is universal for \(G = (V, E) \) if \(N[u] = V \). Independent sets, complement graph, and connected components are defined as usual. Unless stated otherwise, \(n \) and \(m \) will denote the number of vertices and edges, respectively, of the input graph.

2.2 A General Approach for the WED Problem

For a graph \(G = (V, E) \) and a vertex \(v \in V \), the distance levels with respect to \(v \) are

\[
N_i(v) = \{ w \in V \mid \text{dist}(v, w) = i \}
\]

for all \(i \in N \). If \(v \) is fixed, we denote \(N_i(v) \) by \(N_i \). Let \(R := V \setminus (\{ v \} \cup N_1 \cup N_2) \), and let \(G_v := G[N_2 \cup R] \) where vertices in \(N_2 \) get weight \(\infty \). Obviously, we have: \(G \) has a finite weight e.d. \(D_v \) with \(v \in D_v \) if and only if \(G_v \) has a finite weight e.d. \(D \), and \(D_v = \{ v \} \cup D \).

In some cases, for every vertex \(v \in V \), the WED problem can be efficiently solved on \(G_v \), say in time \(t(m) \) with \(t(m) \geq m \).
If graph $G = (V, E)$ has an e.d. D then for any vertex $v \in V$, either $v \in D$ or one of its neighbors is in D. Thus, if $deg_G(v) = \delta(G)$, one has to consider the WED problem on G_x for $\delta(G) + 1$ vertices $x \in N[v]$. Thus we obtain:

Lemma 1. If for a graph class \mathcal{C} and input graph $G = (V, E)$ in \mathcal{C}, WED is solvable in time $t(m)$ on G_v for all $v \in V$ then WED is solvable in time $O(\delta(G) \cdot t(m))$ for graph class \mathcal{C}.

2.3 Linear Forests

As already mentioned, if F is a linear forest such that one of its components contain $2P_3$, or two of its components contain P_3, the WED problem is \mathbb{NP}-complete for F-free graphs. For $2P_2$-free graphs and more generally, for kP_2-free graphs, it is known that the number of maximal independent sets is polynomial \cite{1, 8} and can be enumerated efficiently \cite{8}. Since every e.d. is a maximal independent set, WED can be solved in polynomial time for kP_2-free graphs.

In Section 2 we show that WED is solvable in polynomial time for $(P_5 + kP_2)$-free graphs for every fixed k. Thus, the only remaining open case is the one of P_6-free graphs; our approach used for $(P_5 + kP_2)$-free graphs shows that if WED is polynomial for P_6-free graphs then it is polynomial for $(P_6 + kP_2)$-free graphs as well.

2.4 Modular Decomposition for the WED Problem

A set H of at least two vertices of a graph G is called *homogeneous* if $H \neq V(G)$ and every vertex outside H is either adjacent to all vertices in H, or to no vertex in H. Obviously, H is homogeneous in G if and only if H is homogeneous in the complement graph \overline{G}. A graph is *prime* if it contains no homogeneous set. A homogeneous set H is *maximal* if no other homogeneous set properly contains H. It is well known that in a connected graph G with connected complement \overline{G}, the maximal homogeneous sets are pairwise disjoint and can be determined in linear time using the so called *modular decomposition* (see, e.g., \cite{4}). The *characteristic graph* G^* of G is the graph obtained from G by contracting each of the maximal homogeneous sets H of G to a single representative vertex $h \in H$, and connecting two such vertices by an edge if and only if they are adjacent in G. It is well known (and can be easily seen) that G^* is a prime graph.

For a disconnected graph G, the WED problem can be solved separately for each component. If \overline{G} is disconnected, then obviously, D is an e.d. of G if and only if D is a single universal vertex of G. Thus, from now on, we can assume that G and \overline{G} are connected, and thus, maximal homogeneous sets are pairwise disjoint. Obviously, we have:

Lemma 2. Let H be a homogeneous set in G and D be an e.d. of G. Then the following properties hold:

(i) $|D \cap H| \leq 1$.

(ii) If H has no vertex which is universal for H then $|D \cap H| = 0$.

Thus, the WED problem on a connected graph G for which \overline{G} is connected can be easily reduced to its characteristic graph G^* by contracting each homogeneous set H to a single representative vertex h whose weight is either ∞ if H has no universal vertex or the minimum weight of a universal vertex in H otherwise. Obviously, G has an e.d. D of finite weight if and only if G^* has a corresponding e.d. of the same weight. Thus, we obtain:
Theorem 1. Let \(\mathcal{G} \) be a class of graphs and \(\mathcal{G}^* \) the class of all prime induced subgraphs of the graphs in \(\mathcal{G} \). If the (W)ED problem can be solved for graphs in \(\mathcal{G}^* \) with \(n \) vertices and \(m \) edges in time \(O(T(n,m)) \), then the same problem can be solved for graphs in \(\mathcal{G} \) in time \(O(T(n,m) + m) \).

The modular decomposition approach leads to a linear time algorithm for WED on \(2P_2 \)-free graphs (see [2]) and to a very simple \(O(\delta(G)m) \) time algorithm for WED on \(P_5 \)-free graphs (a simplified variant of the corresponding result in [2]); the modular decomposition approach is also described in [3].

3 WED in Polynomial Time for \((P_5 + kP_2) \)-Free Graphs

In this section we solve an open problem from [2]. Let \(G \) be a \((P_5 + P_2) \)-free graph and assume that \(G \) is not \(P_5 \)-free; otherwise, WED can be solved in time \(O(\delta(G)m) \) as described in [2]. Let \(v_1, v_2, v_3, v_4, v_5 \) induce a \(P_5 \) \(H \) in \(G \) with edges \(v_1v_2, v_2v_3, v_3v_4, v_4v_5 \), let \(X = N(H) = \{ x \mid x \notin V(H), \exists i (xv_i \in E) \} \) denote the neighborhood of \(H \) and let \(Y \) denote the anti-neighborhood \(A(H) \) of \(H \) in \(G \). Since \(G \) is \((P_5 + P_2) \)-free, we have:

Claim 1. \(Y \) is an independent set.

Assume that \(G \) has an e.d. \(D \). Then:

Claim 2. \(|(V(H) \cup X) \cap D| \leq 5\).

Proof of Claim 2. Obviously, \(|V(H) \cap D| \leq 2\). If \(|V(H) \cap D| = 2\) then \(|X \cap D| = 0\) or \(|X \cap D| = 1\) since \(D \) is an e.d. If \(|V(H) \cap D| = 1\) then \(|X \cap D| \leq 3\). Finally, if \(|V(H) \cap D| = 0\) then \(|X \cap D| \leq 5\) which shows Claim 2.

Let \(D = D_1 \cup D_2 \) be the partition of \(D \) into \(D_1 = D \cap (V(H) \cup X) \) and \(D_2 = D \cap Y \).

Claim 3. \(D_2 = A(D_1) \cap Y \).

Proof of Claim 3. Since the anti-neighborhood \(Y \) of \(H \) is an independent set, every vertex in \(Y \) can only be dominated by itself or by a vertex from \(D \cap X \). Thus, Claim 3 holds.

This leads to the following simple algorithm for checking whether \(G \) has an e.d. \(D \):

1. Check whether \(G \) is \(P_5 \)-free; if yes, apply the corresponding algorithm for WED on \(P_5 \)-free graphs (which works in time \(O(\delta(G)m) \)), otherwise let \(H \) be a \(P_5 \) in \(G \). Determine \(X = N(H) \) and \(Y = A(H) \). If \(Y \) is not independent then \(G \) is not \((P_5 + P_2) \)-free. Otherwise do the following:

2. For every independent set \(S \subseteq V(H) \cup X \) with \(|S| \leq 5\), check whether \(S \cup (A(S) \cap Y) \) is an e.d.

3. If there is such a set then take one of minimum weight, otherwise output “\(G \) has no e.d.”.

Obviously, the algorithm is correct and its running time is at most \(O(n^5m) \).

For every fixed \(k \), the approach for \((P_5 + P_2) \)-free graphs can be generalized to \((P_5 + kP_2) \)-free graphs: Assume inductively that WED can be solved in polynomial time for \((P_5 + (k-1)P_2) \)-free graphs. Thus, if the given graph \(G \) is \((P_5 + (k-1)P_2) \)-free, we can use the assumption,
Corollary 1. For every fixed \(k\), WED is solvable in polynomial time for \((P_5 + kP_2)\)-free graphs.

The approach can be easily generalized to \((H + kP_2)\)-free graphs whenever WED is solvable in polynomial time for \(H\)-free graphs. However, WED remains \(\mathbb{NP}\)-complete for \((H + kP_2)\)-free graphs whenever WED is \(\mathbb{NP}\)-complete for \(H\)-free graphs. If WED is solvable in polynomial time for \(P_5\)-free graphs then it is solvable in polynomial time for \((P_5 + kP_2)\)-free graphs for every fixed \(k\).

4 WED for \((P_4 + P_2)\)-Free Graphs in Time \(O(\delta(G)m)\)

In this section we slightly improve the time bound \(O(nm)\) for WED \([2]\) to \(O(\delta(G)m)\) and simplify the proof in \([2]\). According to Lemma \([1]\) for a vertex \(v \in V\) with minimal degree \(\delta(G)\), we check for all \(x \in N[v]\) whether \(G_x\) has an e.d. \(D_x\). We first collect some properties assuming that \(G\) is \((P_4 + P_2)\)-free and has an e.d. \(D_v\). As before, let \(G_v := G[N_v \cup R]\); we can assume that \(G_v\) is prime. We are looking for an e.d. of \(G_v\) with finite weight and assume that \(D_v \setminus \{v\}\) is such an e.d. Since \(G\) is \((P_4 + P_2)\)-free, we have:

Claim 4. \(G[R]\) is a cograph.

Let \(R_1, \ldots, R_\ell\) denote the connected components of \(G[R]\). Note that an e.d. of a connected cograph \(H\) has only one vertex, namely a universal vertex of \(H\). Thus:

Claim 5. For all \(i \in \{1, \ldots, \ell\}\), \(|D_v \cap R_i| = 1\), and in particular, if \(d \in D_v \cap R_i\) then \(d\) is universal for \(R_i\).

For all \(i \in \{1, \ldots, \ell\}\), let \(D_v \cap R_i = \{d_i\}\). Let \(U_i\) be the set of universal vertices in \(R_i\). Thus, if \(U_i = \emptyset\) then \(G\) has no e.d., and if \(U_i = \{d_i\}\) then necessarily \(d_i \in D_v\). From now on, assume that for every \(i \in \{1, \ldots, \ell\}\), \(|U_i| \geq 2\). We first claim that \(\ell > 1\): Since \(G_v\) is prime and in case \(\ell = 1\), \(G_v\) has an e.d. (of finite weight) if and only if \(G_v\) contains a universal vertex \(z \in R_1\) for \(G_v\), it follows:

Claim 6. For prime \(G_v\) with e.d. \(D_v\) of finite weight, \(\ell > 1\) holds.

Since for finding an e.d. in \(G_v\), every \(R_i\) can be reduced to the set \(U_i\) of its universal vertices (since the non-universal vertices in \(R_i\) cannot dominate all \(R_i\) vertices), we can assume that for all \(i \in \{1, \ldots, \ell\}, R_i\) is a clique. If \(|N_2| = 1\) then, since \(G_v\) is prime, for all \(i \in \{1, \ldots, \ell\}, |R_i| \leq 2\) and thus, \(G_v\) is a tree (in particular: If there are \(i, j \in \{1, \ldots, \ell\}, i \neq j, |R_i| = |R_j| = 1\) then \(G_v\) has no e.d., if there is exactly one \(i \in \{1, \ldots, \ell\}\) with \(|Z_i| = 1\) then this determines the \(D_v\) vertices in \(Z\) and if for all \(i \in \{1, \ldots, \ell\}, |R_i| = 2\) then one has to choose the e.d. with smallest weight in the obvious way). From now on, let \(|N_2| \geq 2\). If for all \(z \in R\), either \(z\) has a join or a co-join to \(N_2\) then \(N_2\) would be homogeneous in \(G_v\) - contradiction. Thus, from now on we have:

Claim 7. There is a vertex \(z \in R\) having a neighbor and a non-neighbor in \(N_2\).
Since G is $(P_4 + P_2)$-free, we have:

Claim 8. If $x \in N_2$ has a neighbor in R_i then for all $j \neq i$, it has at most one non-neighbor in R_j.

In particular, this means:

Claim 9. If $x \in N_2$ is adjacent to $d_i \in R_i \cap D_v$ then for all $j \neq i$, x has exactly one non-neighbor in Z_j which is the D_v-vertex in R_j.

Claim 10. If a vertex $z \in R_i$ has a non-neighbor $x \in N_2$ and $z \notin D_v$ then for all $j \neq i$, x has exactly one non-neighbor in R_j, namely $x d_j \notin E$ for $d_j \in R_j \cap D_v$.

Proof of Claim 10. Let $z \in R_i$ have non-neighbor $x \in N_2$, and $z \notin D_v$, i.e., $z \neq d_1$. Then, since G is $(P_4 + P_2)$-free, $x d_1 \in E$. By Claim 9, x has exactly one non-neighbor in R_j for each $j \in \{2, \ldots, \ell\}$ (which is the corresponding D_v vertex in R_j). □

Algorithm $(P_4 + P_2)$-Free-WED-G_v:

Given: Graph $G = (V, E)$ and prime graph $G_v = G[N_2 \cup R]$ as constructed above with vertex weights $w(x)$; for all $x \in N_2$, $w(x) = \infty$.

Output: An e.d. D_v of G_v of finite minimum weight, if G_v has an e.d., or the statement that G is not $(P_4 + P_2)$-free or G_v does not have any e.d. of finite weight.

(0) Initially, $D_v := \emptyset$.

(1) Check if $G[R]$ is a cograph. If not then G is not $(P_4 + P_2)$-free - STOP. Else determine the connected components R_1, \ldots, R_{ℓ} of $G[R]$. If $\ell = 1$ then G_v has no e.d. of finite weight - STOP.

(2) For all $i \in \{1, \ldots, \ell\}$, determine the set U_i of universal vertices in R_i. If for some i, $U_i = \emptyset$ then G_v has no e.d. - STOP. From now on, let $R_i := U_i$. If $U_i = \{d_i\}$ then $D_v := D_v \cup \{d_i\}$.

(3) If $|N_2| = 1$ then check whether G_v is a tree and solve the problem in the obvious way. If $|N_2| > 1$, choose a vertex $z \in R$ with a neighbor $w \in N_2$ and a non-neighbor $x \in N_2$, say $z \in R_i$.

(3.1) Check if $z \in D_v$ leads to an e.d. (by using neighbor w of z and Claim 9).

(3.2) Check if $z \notin D_v$ leads to an e.d. (by using the non-neighbors of x in R_j, $j \neq i$ and Claim 10).

(3.3) If there is no e.d. in both cases (3.1) and (3.2) then either G is not $(P_4 + P_2)$-free or has no e.d. of finite weight - STOP.

Theorem 2. Algorithm $(P_4 + P_2)$-Free-WED-G_v is correct and runs in time $O(m)$.

Proof. Correctness. The correctness follows from Claims 4 - 10

Time bound. The linear time bound is obvious. □

Corollary 2. WED is solvable in time $O(\delta(G)m)$ for $(P_4 + P_2)$-free graphs.
5 WED for Some Subclasses of P_6-Free Graphs

Recall that the complexity of WED for P_6-free graphs is open. In this section we consider WED for some subclasses of P_6-free graphs. Let $G = (V, E)$ be a prime P_6-free graph, let $v \in V$ and let N_1, N_2, \ldots be the distance levels of v. Then we have:

$$N_k = \emptyset \ \text{for all} \ k \geq 5 \ \text{and} \ N_4 \ \text{is an independent vertex set.} \quad (1)$$

Assume that G admits an e.d. D_v of finite weight with $v \in D_v$. Let $G_v := G[N_2 \cup N_3 \cup N_4]$; we can assume that G_v is prime. As before, $D_v \cap (N_1 \cup N_2) = \emptyset$; set $w(x) = \infty$ for $x \in N_2$.

Thus, vertices of N_2 have to be dominated by vertices of $D_v \cap N_3$. We claim:

At most one vertex in $D_v \cap N_3$ has neighbors in N_4. \quad (2)

Proof. Assume that there are two vertices $d_1, d_2 \in N_3 \cap D_v$ with neighbors in N_4, say $x_i \in N_4$ with $d_i x_i \in E$ for $i = 1, 2$. Let $b_i \in N_2$ with $b_i d_i \in E$ for $i = 1, 2$. Since D_v is an e.d., $b_1 \neq b_2$ and $x_1 \neq x_2$ and d_1 misses b_2, x_2 while d_2 misses b_1, x_1. Since N_4 is independent, $x_1 x_2 \notin E$ holds. Now, if $b_1 b_2 \in E$, then $x_1, d_1, b_1, b_2, d_2, x_2$ induce a P_6 in G, and if $b_1 b_2 \notin E$, there is a P_6 as well (together with N_1 vertices), a contradiction. \hfill \square

5.1 WED for $(P_6, S_{1,2,2})$-free graphs in time $O(\delta(G)m)$

In this subsection we improve the time bound $O(n^2 m)$ for WED [2] to $O(\delta(G)m)$ and simplify the proof in [2]. Let $G = (V, E)$ be a connected $(P_6, S_{1,2,2})$-free graph, let $v \in V$ and let N_1, N_2, \ldots be the distance levels of v. We claim:

$$D_v \cap N_4 = \emptyset. \quad (3)$$

Proof. Assume to the contrary that there is a vertex $d \in D_v \cap N_4$. Let $c \in N_3$ be a neighbor of d, let $b \in N_2$ be a neighbor of c and let $a \in N_1$ be a neighbor of b. Then b has to be dominated by a D_v-vertex $d' \in N_3$, and since D_v is an e.d., $cd' \notin E$ and $dd' \notin E$ but now, v, a, b, c, d, d' induce an $S_{1,2,2}$, a contradiction. \hfill \square

Thus, set $w(x) := \infty$ for all $x \in N_4$. By [3], $D_v \subseteq N_3 \cup \{v\}$. Claim [2] means that D_v vertices in N_3 have either a join or a co-join to N_4. Thus for finding an e.d. of G_v, we can delete all vertices in N_3 which have a neighbor and a non-neighbor in N_4. Reducing G_v in this way gives G'_v; again, we can assume that G'_v is prime. Now, N_4 is a module and thus, $|N_4| \leq 1$. Let $N_4 = \{z\}$ if N_4 is nonempty. Let Q_1, \ldots, Q_ℓ denote the connected components of $G[N_3]$. We claim:

No component Q_i in $G[N_3]$ contains two vertices of D_v. \quad (4)

Proof. Assume to the contrary that Q_1 contains $d_1, d_2 \in D_v$, $d_1 \neq d_2$. Let $x \in N_2$ be a neighbor of d_1, and let P denote a path in Q_1 connecting d_1 and d_2, i.e., either $P = (d_1, x_1, x_2, d_2)$ or $P = (d_1, x_1, x_2, x_3, d_2)$. Let a be a common neighbor of x and v. If $P = (d_1, x_1, x_2, d_2)$ then x is not adjacent to x_2 since G is $S_{1,2,2}$-free (otherwise v, a, x, d_1, x_2, d_2 induce an $S_{1,2,2}$) and since G is P_6-free, x is adjacent to x_1 (otherwise v, a, x, d_1, x_1, x_2 induce a P_6) but now v, a, x, x_1, x_2, d_2 induce a P_6 - contradiction. If $P = (d_1, x_1, x_2, x_3, d_2)$, the arguments are similar. \hfill \square

Thus, by [4], if D_v is an e.d. of G_v then $|D_v \cap Q_i| = 1$ for all i, $1 \leq i \leq \ell$, and the corresponding D_v-vertex is universal for Q_i. Thus, we can restrict Q_i to its universal vertices.
U_i (which means that now, Q_i is a clique; if $U_i = \emptyset$ then G_v has no e.d.) In case $\ell = 1$ this means that if G_v has an e.d., G_v must have a universal vertex (since a D_v-vertex being universal for Q_1 must also be universal for $N_2 \cup N_4$) which is impossible since G_v is prime. This implies $\ell > 1$. If $|Q_i| = 1$ then the corresponding vertex in Q_i is a forced vertex for D_v and has to be added to D_v. We claim:

$$N_2 \text{ vertices cannot distinguish more than one } Q_i, i \in \{1, \ldots, \ell\}. \quad (5)$$

Proof. Since G is $S_{1,2,2}$-free, no vertex in N_2 can distinguish two components Q_i, Q_j in N_3. To show (5), assume to the contrary that there are components Q_1, Q_2 in G_v with $c_1, d_1 \in Q_1$ and $c_2, d_2 \in Q_2$ which are distinguished by vertices $x_1, x_2 \in N_2$ such that $x_1d_1 \in E$, $x_1c_1 \notin E$, and $x_2d_2 \in E$, $x_2c_2 \notin E$. Since no vertex in N_2 can distinguish two components Q_i, Q_j, $x_1 \neq x_2$ holds, and since G is $S_{1,2,2}$-free, $x_1c_2 \notin E$ and $x_1d_2 \notin E$, and by symmetry also $x_2c_1 \notin E$ and $x_2d_1 \notin E$, but now $c_1, d_1, x_1, x_2, d_2, c_2$ induce a P_6 if $x_1x_2 \in E$ or a P_6 together with N_1 vertices if $x_1x_2 \notin E$ - contradiction. □

First assume $N_4 \neq \emptyset$, i.e., $N_4 = \{z\}$. For every $i \in \{1, \ldots, \ell\}$, let Q_i^+ denote the neighbors of z in Q_i and let Q_i^- denote the non-neighbors of z in Q_i. By (3), at most one Q_i has more than two vertices, say $|Q_i| \leq 2$ for all $i \in \{2, \ldots, \ell\}$ since in this case, Q_i^+ and Q_i^- are modules. Since D_v is an e.d., there is a vertex $d \in D_v$ with $dz \in E$; say $d \in Q_1^+$. Let $b \in N_2$ with $bd \in E$ and $a \in N_1$ with $ab \in E$. Now for $j \neq i$, every neighbor $x \in Q_j^+$ of z must see b since otherwise v, a, b, d, z, x induce a P_6, and every non-neighbor $y \in Q_j^-$ of z must miss b since otherwise v, a, b, d, z, y induce an $S_{1,2,2}$ but if Q_j contains both x and y then v, a, b, d, x, y induce an $S_{1,2,2}$ - contradiction. Thus, we have:

At most one Q_i has more than one vertex. \quad (6)

Say $|Q_i| = 1$ for all $i \in \{2, \ldots, \ell\}$. If $N_4 = \emptyset$, this holds as well.

This leads to the following algorithm for WED with time bound $O(m)$ for every v:

Algorithm ($P_6, S_{1,2,2}$)-Free-WED-G_v:

Given: Connected graph $G = (V, E)$ and prime graph $G_v = G[N_2 \cup N_3 \cup N_4]$ as constructed above with vertex weights $w(x)$; for all $x \in N_2 \cup N_4$, $w(x) = \infty$.

Output: An e.d. D_v of G_v of finite weight, if G_v has such an e.d., or the statement that G is not ($P_6, S_{1,2,2}$)-free or G_v does not have any e.d. of finite weight.

(0) Initially, $D_v := \emptyset$.

(1) Check if $G[N_3] = \emptyset$; if not then G is not P_6-free - STOP. Else determine the connected components Q_1, \ldots, Q_ℓ of $G[N_3]$. If $\ell = 1$ then G_v has no e.d. of finite weight - STOP.

(2) For all $i \in \{1, \ldots, \ell\}$, determine the set U_i of universal vertices in Q_i. If $U_i = \emptyset$ then G_v has no e.d. - STOP. From now on, let $Q_i := U_i$. If $U_i = \{d_i\}$ then $D_v := D_v \cup \{d_i\}$. Delete all vertices $x \in N_3$ which have a neighbor and a non-neighbor in N_4. Contract N_4 to one vertex z if $N_4 \neq \emptyset$.

(3) For all $|Q_i| = 1$, add its vertex to D_v and delete its neighbors from N_2. If there is an $i \in \{1, \ldots, \ell\}$ with $|Q_i| > 1$, say $|Q_1| > 1$, then check whether there is a vertex $d \in Q_1$ which has exactly the remaining N_2 vertices as its neighborhood in N_2 and sees z for $N_4 = \{z\}$.

(4) Finally check whether \(D_v \) is an e.d. of \(G_v \) - if not then either \(G \) is not \((P_6, S_{1,2,2}) \)-free or has no e.d. (containing \(v \)) of finite weight.

Theorem 3. Algorithm \((P_6, S_{1,2,2})\)-Free-WED-\(G_v \) is correct and runs in time \(O(m) \).

Proof. *Correctness.* The correctness follows from the previous claims and considerations.

Time bound. The linear time bound is obvious. \(\square \)

Corollary 3. WED is solvable in time \(O(\delta(G)m) \) for \((P_6, S_{1,2,2})\)-free graphs.

5.2 WED for \(P_6 \)-free graphs of diameter 3

In this subsection, we reduce the WED problem on \(P_6 \)-free graphs in polynomial time to such graphs having diameter 3. Let \(D \) be an e.d. of \(G \). By Theorem 1 we can assume that \(G \) is prime. As before, we check for every vertex \(v \in V \) if \(v \in D \) leads to an e.d. of \(G \). For this purpose, let \(N_i \), \(i \geq 1 \), again be the distance levels of \(v \). Recall that by \(1 \), \(N_k = \emptyset \) for \(k \geq 5 \) and \(N_4 \) is an independent vertex set, and by \(2 \), at most one vertex in \(D_v \cap N_3 \) has neighbors in \(N_4 \).

Recall that \(A(x) \) denotes the anti-neighborhood of \(x \). Thus, if \(N_4 \neq \emptyset \) then check for every vertex \(x \in N_3 \) whether \(\{v, x\} \cup (A(x) \cap N_4) \) is an e.d. in \(G \); since \(N_4 \) is independent, vertices in \(N_4 \) not dominated by \(x \) must be in \(D_v \). This can be done in polynomial time for all \(v \) with \(N_4 \neq \emptyset \).

Now we can assume that the diameter of \(G \) is at most 3, i.e., for every \(v \in V \), the distance level \(N_4 \) is empty.

Corollary 4. If WED is solvable in polynomial time for \(P_6 \)-free graphs of diameter 3 then WED is solvable in polynomial time for \(P_6 \)-free graphs.

6 WED for \((2P_3, S_{1,2,2})\)-Free Graphs in Time \(O(\delta(G)n^3) \)

In this section we improve the time bound \(O(n^5) \) for WED \(2 \) to \(O(\delta(G)n^3) \) and simplify the proof in \(2 \). Let \(G = (V, E) \) be a connected \((2P_3, S_{1,2,2})\)-free graph, let \(v \in V \) and let \(N_1, N_2, \ldots \) be the distance levels of \(v \). Since \(G \) is \(2P_3 \)-free, we have \(N_k = \emptyset \) for \(k \geq 6 \). Let \(R := V \setminus \{v\} \cup N_1 \cup N_2 \). Assume that \(G \) admits an e.d. \(D_v \) of finite weight with \(v \in D_v \). Let \(G_v := G[N_2 \cup N_3 \cup N_4 \cup N_5] \), i.e. \(G_v = G[N_2 \cup R] \); we can assume that \(G_v \) is prime. Since \(D_v \) is an e.d., \(R \neq \emptyset \). Let \(Q_1, \ldots, Q_{\ell} \), \(\ell \geq 1 \), denote the connected components of \(G[R] \). Clearly, \(D_v \cap Q_i \neq \emptyset \) for every \(i \). Let \(D_v \setminus \{v\} = \{d_1, \ldots, d_k\} \), and assume that \(k \geq 2 \) (otherwise, \(G_v \) would have a universal vertex which is impossible for a prime graph). Since \(G \) is \(S_{1,2,2} \)-free and \(D_v \) is an e.d., we have:

Every \(x \in N_2 \) seeing a vertex \(d_i \in D_v \) misses \(N[d_j] \cap R, j \neq i \). \hspace{1cm} (7)

We claim:

For every \(i = 1, \ldots, k, N[d_i] \cap R \) is a clique. \hspace{1cm} (8)

Proof. Suppose that \(N[d_1] \cap R \) is not a clique, i.e., there are neighbors \(x, y \in R \) of \(d_1 \) with \(xy \notin E \). Let \(b \in N_2 \) be a neighbor of \(d_2 \). By \(7 \), \(b \) misses \(x \) and \(y \) but now, \(a, b, d_2, x, d_1, y \) induce \(2P_3 \), a contradiction. \(\square \)
Next we claim:

If $k \geq 3$ then $G[N_3]$ is the disjoint union of cliques. \hfill (9)

Proof. Suppose that $k \geq 3$ and there is an edge $uw \in E$ for $u \in N(d_2) \cap R$ and $w \in N(d_3) \cap R$. Let $x \in N_2$ with $xd_1 \in E$ and $a \in N_1$ with $ax \in E$. Then by (7), v, a, x, d_2, u, w induce $2P_3$, a contradiction. \hfill \Box

Thus, for $k \geq 3$, every Q_i is a clique containing exactly one D_v vertex:

$$|D_v \cap Q_i| = 1.$$ \hfill (10)

If Q_i is a single vertex q_i then q_i is forced and has to be added to D_v. From now on assume that for all i, $|Q_i| \geq 2$. By (7), we have:

If $z \in N_2$ sees Q_i then it misses all $Q_j, j \neq i$. \hfill (11)

Let S_i denote the set of vertices in N_2 distinguishing vertices in Q_i. Since Q_i is not a module, $S_i \neq \emptyset$ for all $i \in \{1, \ldots, k\}$. Let U_i denote the vertices in Q_i which have a join to S_i; $U_i \neq \emptyset$ since S_i vertices must have a D_v neighbor in Q_i. We claim:

For all $i \in \{1, \ldots, k\}$, $|U_i| = 1$. \hfill (12)

Proof. Assume to the contrary that $|U_1| > 1$. If $x \in S_1$ then by (7), $xd_1 \in E$, i.e., $d_1 \in U_1$. Now, a vertex distinguishing U_1 would be in S_1 but vertices in U_1 have a join to S_1 and thus cannot be distinguished which is a contradiction to the assumption that G_v is prime. \hfill \Box

The other case when $k \leq 2$, i.e., $|D_v \setminus \{v\}| \leq 2$, can be easily done via the adjacency matrix of G: For any pair $x, y \in R$, $x \neq y$, with $xy \notin E$, check whether all other vertices in G_v are adjacent to exactly one of them; this can be done in time $O(n^2)$.

This leads to the following:

Algorithm $(2P_3, S_{1,2,2})$-Free-WED-G_v:

Given: Connected graph $G = (V, E)$ and prime graph $G_v = G[N_2 \cup R]$ as constructed above with vertex weights $w(x)$; for all $x \in N_2$, $w(x) = \infty$.

Output: An e.d. D_v of G_v of finite weight if G_v has such an e.d., or the statement that G is not $(2P_3, S_{1,2,2})$-free or G_v does not have any e.d. of finite weight.

(0) Initially, $D_v := \emptyset$.

(1) Determine N_1, N_2 and R. If $R = \emptyset$ then $G_v = G[N_2 \cup R]$ has no e.d. - STOP. Else determine the connected components Q_1, \ldots, Q_ℓ of R.

(2) If $G[R]$ is not the disjoint union of cliques Q_1, \ldots, Q_ℓ, $\ell \geq 3$, then check whether G_v has a finite weight e.d. with two vertices, and determine an e.d. with minimum weight. If not, G_v has no e.d. of finite weight - STOP.

(3) (Now $G[R]$ is the disjoint union of cliques Q_1, \ldots, Q_ℓ, $\ell \geq 3$) If $Q_i = \{d_i\}$ then d_i is forced - $D_v := D_v \cup \{d_i\}$. If $|Q_i| > 1$ then determine the set S_i of vertices distinguishing Q_i, and determine the set U_i of vertices in Q_i having a join to S_i. If $U_i = \emptyset$ then G_v has no e.d. - STOP. Otherwise, $U_i = \{d_i\}$ and d_i is forced - $D_v := D_v \cup \{d_i\}$.
(4) Finally check whether \(D_v \) is an e.d. of finite weight of \(G_v \) - if not then either \(G \) is not \((2P_3, S_{1,2,2})\)-free or has no e.d. of finite weight.

Theorem 4. Algorithm \((2P_3, S_{1,2,2})\)-Free-WED-\(G_v\) is correct and runs in time \(O(n^3)\).

Proof. Correctness. The correctness follows from the previous claims and considerations.

Time bound. The time bound is obvious since step (1) can be done in time \(O(m)\), step (2) can be done in time \(O(n^3)\), and steps (3) and (4) can be done in time \(O(m)\).

Corollary 5. \(WED\) is solvable in time \(O(\delta(G)n^3)\) for \((2P_3, S_{1,2,2})\)-free graphs.

Acknowledgement. The authors thank Martin Milanič for various helpful comments and the cooperation on the topic of Efficient Domination.

References

[1] E. Balas and C.S. Yu, On graphs with polynomially solvable maximum-weight clique problem, Networks 19.2 (1989) 247-253.

[2] A. Brandstädt, M. Milanič, and R. Nevries, New polynomial cases of the weighted efficient domination problem, extended abstract in: Conference Proceedings of MFCS 2013, LNCS 8087, 195-206; full version: arXiv:1304.6255v1.

[3] M. Farber, On diameters and radii of bridged graphs, Discrete Mathematics, 73.3 (1989) 249-260.

[4] R.M. McConnell, J.P. Spinrad, Modular decomposition and transitive orientation, Discrete Math. 201 (1999) 189-241.

[5] R. Nevries, Efficient Domination and Polarity, Ph.D. Thesis, University of Rostock, 2014.

[6] E. Prisner, Graphs with few cliques, in: Graph Theory, Combinatorics, and Applications: Proceedings of 7th Quadrennial International Conference on the Theory and Applications of Graphs (Y. Alavi, A. Schwenk ed.) John Wiley and Sons, Inc. (1995) 945-956, New York, Wiley, 1995.

[7] J.P. Spinrad, Efficient Graph Representations, Fields Institute Monographs, American Math. Society, 2003.

[8] S. Tsukiyama, M. Ide, H. Ariyoshi and I. Shirakawa, A New Algorithm for Generating All the Maximal Independent Sets, SIAM J. Comput. 6.3 (1977) 505-517.