Quantum de Finetti Theorem under Fully-One-Way Adaptive Measurements
Ke Li and Graeme Smith
Phys. Rev. Lett. 114, 160503 — Published 24 April 2015
DOI: 10.1103/PhysRevLett.114.160503
Quantum de Finetti theorem under fully one-way adaptive measurements

Ke Li1,2,* and Graeme Smith1,*

1IBM TJ Watson Research Center, Yorktown Heights, NY 10598, USA
2Center for Theoretic Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

We prove a version of the quantum de Finetti theorem: permutation-invariant quantum states are well approximated as a probabilistic mixture of multi-fold product states. The approximation is measured by distinguishability under fully one-way LOCC (local operations and classical communication) measurements. Our result strengthens Brandão and Harrow’s de Finetti theorem where a kind of partially one-way LOCC measurements was used for measuring the approximation, with essentially the same error bound. As main applications, we show (i) a quasipolynomial-time algorithm which detects multipartite entanglement with amount larger than an arbitrarily small constant (measured with a variant of the relative entropy of entanglement), and (ii) a proof that in quantum Merlin-Arthur proof systems, polynomially many provers are not more powerful than a single prover when the verifier is restricted to one-way LOCC operations.

Consider random variables $X_1, ..., X_n$ representing the color of a sequence of balls drawn without replacement from a bag of 100 red balls and 100 blue balls. These variables are not independent, since the probability of withdrawing a red ball on the kth withdrawal depends on the number of balls of each color remaining. They are, however, exchangeable: the probability of removing a particular sequence of balls $(x_1, ..., x_n)$ is equal to the probability of removing any reordering of that sequence $(x_{\pi(1)}, ..., x_{\pi(n)})$ for permutation π. Remarkably, the de Finetti theorem tells us that any such exchangeable random variables can be represented by independent and identically distributed ones [1, 2], yielding a profound result in probability theory and a powerful tool in statistics.

A series of works have established analogues of this theorem in the quantum domain [3–10], where a classical probability distribution is replaced by a quantum state and the situation is more complicated and interesting, due to entanglement and the existence of many different ways to distinguish states of multipartite systems. These quantum de Finetti theorems are appealing not only due to their own elegance on the characterization of symmetric states, but also because of the successful applications in many-body physics [5, 11, 12], quantum information [9, 13, 14], and computational complexity theory [10, 15, 16].

More precisely, a quantum de Finetti theorem concerns the structure of a symmetric state $\rho_{A_1...A_n}$ that is invariant under any permutations over the subsystems [17]. It tells how the reduced state $\rho_{A_1...A_k}$ on a smaller number $k < n$ of subsystems could be approximated by a mixture of k-fold product states, namely, de Finetti states of the form $\int d\mu(\sigma) \sigma^\otimes k$. Here μ is a probability measure over density matrices. Using the conventional distance measure, trace norm, Ref. [8] proved a standard de Finetti theorem with an essentially optimal error bound $2|A|^2k/n$ for the approximation ($|A|$ denotes the dimension of the subsystems). However, in many situations this bound is too large to be applicable. Luckily it is possible to circumvent this obstruction. For example, Renner’s exponential de Finetti theorem employs the “almost de Finetti states” and has an error bound that decreases exponentially in $n - k$ [9], being very useful in dealing with cryptography or information theory problems [9, 13, 14].

In a beautiful work [10] Brandão and Harrow recently proved an LOCC (local operations and classical communication) de Finetti theorem, generalizing a similar result for the case $k = 2$ [16]. Both [10] and [16] have overcome the limitation of the standard de Finetti theorem regarding the dimension dependence. The basic idea is to relax the measure of approximation by employing a kind of one-way LOCC norm. This gives an error bound $\sqrt{2|A|\ln |A| \over n-k}$ [18], scaling polynomially in $\ln |A|$ instead of polynomially in $|A|$ as in earlier de Finetti results, which is crucial to the complexity-theoretic applications.

While [10] showed approximation in the parallel one-way LOCC norm associated with the measurement class LOCC_1^\parallel, here we prove a de Finetti theorem where the approximation is measured with the fully one-way LOCC norm (or relative entropy) associated with LOCC_1 (cf. Fig. 1). The error bound remains essentially the same as that of [10]. This improves Brandão and Harrow’s LOCC

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{fig1.png}
\caption{Parallel vs. fully one-way LOCC. (a) LOCC_1^\parallel: Parallel one-way LOCC measurements used in [10]. Here the first $k - 1$ parties make measurements in parallel and report their outcomes to the kth, who then makes a measurement that depends on the messages he receives. (b) LOCC_1: Fully one-way LOCC measurements. We adopt a more complete generalization of one-way LOCC: all the parties measure their own systems sequentially, but in a fully adaptive way where each party chooses his own measurement setting depending on the outcomes of all the previous measurements performed by the other parties.}
\end{figure}
de Finetti theorem considerably: it is conceptually more complete and when applied to the problems considered in [10, 16, 19] gives new and improved results. For entanglement detection, a central problem in quantum information theory and experiment, we present strong guarantees for the effectiveness of the well-known hierarchy of entanglement tests of [20]. We also consider the power of multiple-prover quantum Merlin Arthur games, which bears directly on the problems of pure-state vs mixed-state N-representability [21] as well as the entanglement properties of sparse Hamiltonian’s ground states [22].

Operational norms as distance measures. We identify every positive operator-valued measure $\{M_x\}_x$ with a measurement operation M: for any state ω, $M(\omega) := \sum_x |x\rangle\langle x| \text{Tr}(\omega M_x)$ with $\{|x\rangle\}_x$ an orthonormal basis. For simplicity we call them both quantum measurement. Given a class of measurements M, the operational norm is defined as [23]

$$\|\rho - \sigma\|_M = \max_{M \in M} \|M(\rho) - M(\sigma)\|_1.$$

It measures the distinguishability of two quantum states under restricted classes of measurements. We will be particularly interested in $\|\cdot\|_{\text{LOCC}}$ and $\|\cdot\|_{\text{LOCC}^i}$. In fact, these two norms can differ substantially: using a recent result obtained in [24], we can show for all d there are constant C and $d \times d \times 2$ states ρ_{ABC} and σ_{ABC} such that $\|\rho_{ABC} - \sigma_{ABC}\|_{\text{LOCC}^i} = 2$ but $\|\rho_{ABC} - \sigma_{ABC}\|_{\text{LOCC}^i} \leq C/\sqrt{d}$ (see the Supplemental Material [25]).

Improved LOCC de Finetti theorem. Our main result is the following Theorem 1. Besides the improvement with the fully one-way LOCC norm, for the first time we employ relative entropy $D(\rho||\sigma) = \text{Tr}(\rho \log(\rho - \log(\sigma)))$ to measure the approximation, defining $D_{\text{LOCC}}(\rho||\sigma)$ as the maximal relative distance $D(A(\rho)||A(\sigma))$.

In the proof, we will use information-theoretic methods similar to [10], along with some new ideas. In particular, Lemma 2 presented below is a crucial technical tool, which may be of independent interest. We employ and manipulate entropic quantities to derive the final result: apart from relative entropy, the mutual information of a state ω_{AB} is defined as $I(A;B) := D(\omega_{AB}||\omega_A \otimes \omega_B)$, and the conditional mutual information of a state ω_{ABC} is defined as $I(A;B|C) := I(A;BC) - I(A;C)$.

Theorem 1 Let $\rho_{A_1\ldots A_k}$ be a permutation-invariant state on $\mathcal{H}_A^{\otimes n}$. Then for integer $0 \leq k \leq n$ there exists a probability measure μ on density matrices on \mathcal{H}_A such that

$$D_{\text{LOCC}}(\rho_{A_1\ldots A_k} \| \int \sigma \otimes k d\mu(\sigma)) \leq \frac{(k-1)^2 \log |A|}{n-k}, \quad (1)$$

$$\|\rho_{A_1\ldots A_k} - \int \sigma \otimes k d\mu(\sigma)\|_{\text{LOCC}^i} \leq \sqrt{\frac{2(k-1)^2 \ln |A|}{n-k}}. \quad (2)$$

Proof. Eq. (2) follows from Eq. (1) immediately by using the Pinsker’s inequality [26], $D(\rho||\sigma) \geq \frac{1}{2 \ln 2} \|\rho - \sigma\|_1^2$. So it suffices to prove Eq. (1).

Group the n subsystems as shown in Fig. 2: except for one subsystem, the others are divided into groups of $k - 1$ subsystems each (we discard the possibly remaining qubits, of which there will be fewer than $k - 1$). So, we have $m = \lfloor \frac{n}{k-1} \rfloor \geq \frac{n}{k-1}$ groups. Label the groups as bigger subsystems B_1, B_2, \ldots, B_m and the isolated system as A. Let the $k - 1$ subsystems in B_1 be $A_1, A_2, \ldots, A_{k-1}$ and the system A is also identified with A_k.

![FIG. 2: Grouping and relabeling the n subsystems.](image)

Obviously the total state is invariant under permutations over B_1, B_2, \ldots, B_m. So Lemma 3 applies. Thus there exists a measurement $Q^*: B_2 \ldots B_m \rightarrow X$, such that for any measurement $P: B_1 \rightarrow Y$ we have

$$I(A;Y|X) \leq \frac{\log |A|}{m} \leq \frac{(k-1) \log |A|}{n-k}. \quad (3)$$

Q^* effectively decomposes the state on AB_1 into an ensemble. Specifically, we have $\rho_{AB_1} = \sum_x p_x \rho_{A_{1\ldots A_k}}^{x}$, where p_x is the probability of obtaining the measurement outcome x and $\rho_{A_{1\ldots A_k}}^{x}$ is the resulting state on $A_1 \ldots A_k$. Note that since $\rho_{A_1\ldots A_n}$ is permutation-invariant, the post-measurement states $\rho_{A_{1\ldots A_k}}^{x}$ are also permutation-invariant. Now we rewrite Eq. (3) in terms of the relative entropy: for any measurement P on $A_1 \ldots A_{k-1}$,

$$\sum_x p_x D(P \otimes \text{id}_{A_k} (\rho_{A_{1\ldots A_k}}^{x}) || P(\rho_{A_{1\ldots A_{k-1}}}) \otimes \rho_{A_k}^{x}) \leq \frac{(k-1) \log |A|}{n-k}. \quad (4)$$

Pick a one-way LOCC measurement Λ^k acting on systems A_1, \ldots, A_k and denote its reduced measurement on the first ℓ systems as Λ^{ℓ}. Now we apply Lemma 2 to each state $\rho_{A_{1\ldots A_k}}^{x}$ and get

$$D(\Lambda^k(\rho_{A_{1\ldots A_k}}^{x}) || \Lambda^k(\rho_{A_1}^{x} \otimes \ldots \otimes \rho_{A_k}^{x}))$$

$$\leq \sum_{\ell=2}^k D(\Lambda^{k-\ell} \otimes \text{id}(\rho_{A_{1\ldots A_k}}^{x}) || \Lambda^{k-\ell}(\rho_{A_{1\ldots A_{k-\ell}}}^{x}) \otimes \rho_{A_k}^{x})$$

$$\leq \lim_{\ell \rightarrow 1} D(\Lambda^{k-\ell} \otimes \text{id}(\rho_{A_{1\ldots A_k}}^{x}) || \Lambda^{k-1}(\rho_{A_{1\ldots A_{k-1}}}^{x}) \otimes \rho_{A_k}^{x})$$

where for the first inequality we have also applied the monotonicity of relative entropy [27] and for the second
inequality we used the monotonicity of relative entropy again as well as the symmetry of the state $\rho_{A_1\ldots A_k}$. Combining Eq. (4) and Eq. (5) we arrive at
\[
D \left(\Lambda^k(\rho_{A_1\ldots A_k}) \mid |A| \right)
\leq \sum_{x} p_x D \left(\Lambda^k(\rho_{A_1\ldots A_k}) \mid |A| \right)
\leq (k-1)^2 \log |A| - n - k,
\]
where the first inequality is due to the joint convexity of relative entropy. At this point we are able to conclude Eq. (1) from Eq. (6), noticing that $\Lambda^k \in \text{LOCC}_1$ is picked arbitrarily and $\sum_{x} p_x \rho_{A_1\ldots A_k}$ is a de Finetti state of the form $\sum_{x} p_x (\rho_{x}) \otimes \rho_{A_k}$.

\textbf{Lemma 2} Let Λ^k be a fully one-way LOCC measurement on quantum systems A_1, \ldots, A_k. Denote its reduced measurement corresponding to the first ℓ steps on A_1, \ldots, A_ℓ as Λ^ℓ. Then for any state $\rho_{A_1\ldots A_k}$ we have
\[
D \left(\Lambda^\ell(\rho_{A_1\ldots A_k}) \mid |A| \right)
= \sum_{\ell=2}^k D \left(\Lambda^\ell(\rho_{A_1\ldots A_k}) \mid |A| \right).
\]

\textbf{Proof.} It suffices to show
\[
D \left(\Lambda^k(\rho_{A_1\ldots A_k}) \mid |A| \right)
= D \left(\Lambda^{k-1}(\rho_{A_1\ldots A_{k-1}}) \mid |A| \right)
+ D \left(\Lambda^{k}(\rho_{A_1\ldots A_k}) \mid |A| \right).
\]

because applying this relation recursively allows us to obtain the equation claimed in Lemma 2. Write $\Lambda^{k-1}(\rho_{A_1\ldots A_{k-1}}) = \sum_{x} p_x [x|x]$ and $\Lambda^{k-1}(\rho_{A_1\ldots A_{k-1}}) = \sum_{x} q_x [x|x]$. Let Λ^{k} be realized as follows. We first apply Λ^{k-1} on A_1, \ldots, A_{k-1}. Then depending on the measurement outcome x we apply a measurement M_x on A_k. Thus we can write
\[
\Lambda^{k}(\rho_{A_1\ldots A_k}) = \sum_{x} p_x [x|x] \otimes M_x(\rho_{A_k}),
\]
\[
\Lambda^{k}(\rho_{A_1\ldots A_{k-1}}) \otimes \rho_{A_k} = \sum_{x} p_x [x|x] \otimes M_x(\rho_{A_k}),
\]
\[
\Lambda^{k}(\rho_{A_1\ldots A_{k-1}}) \otimes \rho_{A_k} = \sum_{x} q_x [x|x] \otimes M_x(\rho_{A_k}),
\]

where $\rho_{A_k}^x$ is the state of A_k when Λ^{k-1} is applied on $\rho_{A_1\ldots A_k}$ and outcome x is obtained. With these, we can confirm by direct computation that
\[
D \left(\Lambda^k(\rho_{A_1\ldots A_k}) \mid |A| \right)
= D \left(\Lambda^{k-1}(\rho_{A_1\ldots A_{k-1}}) \mid |A| \right)
+ \sum_{x} p_x D \left(M_x(\rho_{A_k}) \mid |A| \right).
\]

\textbf{Eq. (8)} and \textbf{Eq. (9)} together lead to Eq. (7) and this concludes the proof.

\textbf{Remark.} The quantity $D(\rho_{A_1\ldots A_k} \mid |A|)$ is sometimes denoted as $I(\rho_{A_1;A_2;\ldots;A_k})$ and called the multipartite mutual information. It is easy to see that $I(\rho_{A_1;A_2;\ldots;A_k}) = I(A_1;A_2;A_{k+1};\ldots;A_k) + I(A_1;\ldots;A_k) + I(A_{k+1};\ldots;A_k)$. Using this repeatedly we can write the multipartite mutual information as a sum of bipartite mutual information quantities. This decomposition can be done in many different ways depending on how we split the subsystems. Lemma 2 is a similar result. However, with the one-way LOCC measurement Λ^k, the decomposition only works for our special choice of splitting.

The following lemma, a statement of the monogamy of entanglement, is adapted from [10]. For completeness we give a proof in the Supplemental Material [25].

\textbf{Lemma 3} Let $\rho_{AB_1\ldots B_m}$ be a state that is invariant under any permutation over B_1, B_2, \ldots, B_m. Let $P^{B_1\rightarrow Y}$ and $Q^{B_2\rightarrow B_3\ldots B_m\rightarrow X}$ be measurement operations performed on systems B_1 and $B_2 \ldots B_m$, respectively. We have
\[
\min_{P} \max_{Q} I(A;X|Y)_{id^A \otimes P \otimes Q(\rho_{AB_1\ldots B_m})} \leq \frac{\log |A|}{m}.
\]

\textbf{Applications.} Using Theorem 1, we obtain a couple of interesting results as follows. The technical proofs are given in the Supplemental Material [25].

\textbf{Detecting multipartite entanglement.} Deciding whether a density matrix is entangled or separable is one of the most basic problem in quantum information theory [28]. Despite the existence of many entanglement criteria, up to date the only complete ones that detect all entangled states are infinite hierarchies [28]. Among them searching for symmetric extensions is probably the most useful [20]. This is exactly the scenario where quantum de Finetti theorems could be expected to be useful.

We consider the situation where a small error ϵ is permitted, meaning that we must detect all the entangled states except for those very weak ones that are ϵ-close to separable (at the same time all the separable states should be detected correctly). This is equivalently formulated as the Weak Membership Problem for separability: given a state $\rho_{A_1,A_2\ldots A_k}$ that is either separable or ϵ-away from any separable state, we want to decide which is the case. It has been shown that this problem is NP-hard when ϵ is of the order no larger than inverse polynomial of local dimensions (in trace norm) [29–31]. Surprisingly, Brandão, Christandl and Yard found a quasipolynomial-time algorithm for constant ϵ in one-way LOCC norm for
bipartite states [16]. This algorithm was generalized to multipartite states in [19], then in [10] using a stronger method. These algorithms are all based on the searching for symmetric extensions of [20]. Along these lines, we present the following result, which is obtained by applying Theorem 1 to bound the distance between properly extendible states and separable states.

Corollary 4 Testing multipartite entanglement of a state \(\rho_{A_1A_2...A_k} \) with constant error \(\epsilon \) can be done via searching for symmetric extensions in time

\[
\exp\left(c \left(\sum_{i=1}^{k} \log |A_i| \right)^2 k^2 f(\epsilon) \right),
\]

where \(f(\epsilon) = \epsilon^{-2} \) if the error is measured by the norm \(\| \cdot \|_{LOCC} \) and \(f(\epsilon) = \epsilon^{-1} \) if it is measured by the relative entropy \(D_{LOCC} \).

The algorithm in [19] using \(LOCC_1 \)-norm behaves exponentially slower than ours with respect to the number of particles \(k \), while the algorithm of [10] has the same runtime as ours but works only for \(LOCC_1 \)-norm rather than our \(LOCC_1 \)-norm approximation. Thus our result has bridged the gap between these two works. Furthermore, here for the first time we catch the importance of the amount of entanglement in this problem. The quantity

\[
P_r^{LOCC}(\rho) := \min\{D_{LOCC}(\rho) : \sigma \text{ being separable}\},
\]

introduced in [32], is asymptotically normalized since \(P_r^{LOCC}(\Phi_d) = \log(d+1) - 1 \) for maximally entangled state \(\Phi_d \) of local dimension \(d \) [33]. Corollary 4 shows that, detecting all the \(k \)-partite entangled states \(\rho \) such that \(P_r^{LOCC}(\rho) \geq \epsilon \) can be done in quasi-polynomial time in local dimensions. This is a stronger statement than using \(LOCC_1 \)-norm as the error measure. We point out that for the bipartite case this result can also be obtained by combining the algorithm of [16] with the “commensurate lower bound” for squashed entanglement of [33].

QMA proof system with multiple proofs. QMA, the quantum analogue of the complexity class \(NP \), is the set of decision problems whose solutions can be efficiently verified on a quantum computer, provided with a polynomial-size quantum proof [34]. In recent years there have been significant advances on the structure of QMA systems, where multiple unentangled proofs and possibly locally restricted measurements in the verification were considered [10, 16, 35–37]. It has been proven that many natural problems in quantum physics are characterized by QMA proof systems (see, e.g., [21, 22, 38, 39]).

To solve a problem, the verifier performs a quantum algorithm on the input \(x \in \{0, 1\}^n \) along with the quantum proofs. The algorithm then returns “yes” or “no” as the answer to the instance \(x \). This procedure of verification can be effectively described as a set of two-outcome measurements \(\{(M_x, I - M_x)\}_{x} \) on the proofs. In the definition below, a problem is formally identified with a “language”.

Definition 5 A language \(L \) is in \(QMA^M(k)_{m,c,s} \) if there exists a polynomial-time implementable verification \(\{(M_x, I - M_x)\}_{x} \) with each measurement from the class \(M \) such that

- **Completeness:** If \(x \in L \), there exist \(k \) states as proofs \(\omega_1, \ldots, \omega_k \), each of size \(m \) qubits, such that
 \[
 \Tr(M_x(\omega_1 \otimes \ldots \otimes \omega_k)) \geq c.
 \]
- **Soundness:** If \(x \notin L \), then for any \(\omega_1, \ldots, \omega_k \),
 \[
 \Tr(M_x(\omega_1 \otimes \ldots \otimes \omega_k)) \leq s.
 \]

We are also interested in QMA systems with multiple symmetric proofs. \(SymQMA^M(k)_{m,c,s} \) is defined in a similar way but here we replace independent proofs \(\omega_1, \ldots, \omega_k \) with identical ones \(\omega \otimes k \) in both completeness and soundness parts. As a convention, we set \(M \) to be \(ALL \) (the class of all measurements), \(m = \text{poly}(n), k = 1 \), \(c = 2/3 \) and \(s = 1/3 \) as defaults [41]. We can now state our application of Theorem 1 to these complexity classes.

Corollary 6 We have

\[
QMA = QMA^{LOCC}(\text{poly}) = SymQMA^{LOCC}(\text{poly}).
\]

In particular,

\[
SymQMA^{LOCC}(k)_{m,c,s} \subseteq QMA_{0.6m^2k^2s^{-2},c,s+\epsilon},
\]
\[
QMA^{LOCC}(k)_{m,c,s} \subseteq QMA_{0.6m^2k^4s^{-2},c,s+\epsilon}
\]

In words, Eq. (11) shows that polynomially many provers are not more powerful than a single one when the verifier is restricted to one-way \(LOCC \) measurements. This generalizes the result obtained in [16] that \(QMA = QMA^{LOCC}(k) \) for constant \(k \). It is also a generalization of the results in [10, 42] which prove the reduction of \(QMA^L(k) \) to \(QMA \) (\(LOCC \) denotes local measurements).

Arguably the biggest open question in the study of QMA proof systems is whether \(QMA = QMA(2) \) (note that Harrow and Montanaro have proved that \(QMA(2) = QMA(k) \) for any polynomial \(k \geq 2 \) [37]). On the one hand, there are natural problems from quantum physics that are in \(QMA(2) \) but not obviously in \(QMA \) [21, 22, 39]. On the other hand, Harrow and Montanaro showed that if the first equality in Eq. (11) holds for a kind of separable measurements (even only for the case of two proofs), then \(QMA = QMA(2) \). Our result here, although does not touch this open question directly, is a step towards a larger measurement class compared to [10] and we hope it will stimulate future progress in solving this open question.

Polynomial optimization over hyperspheres. Theorem 1 also gives some improved results on the usefulness of
a general SDP relaxation method, called the Sum-of-Squares (SOS) hierarchy [43, 44], for polynomial optimization over hyperspheres (see, e.g., [10, 45]). The relevance in physics is that pure states of a quantum system form exactly a hypersphere and hence some computational problems in quantum physics are indeed to optimize a polynomial over hyperspheres. See the Supplemental Material [25] for details.

Discussions. The advantage of our method, inherited from [10], is that it tells us more information than that of [16, 33] about the valid de Finetti (separable) state that approximates the symmetric (extendible) state. As a result, we obtain a huge improvement over [19] on the particle-number dependence, and we are able to strengthen the relation $\text{QMA} = \text{QMA}^\text{LOCC}_k(k)$ from the constant k of [16] to polynomial k. We hope that the de Finetti theorem presented in this letter will find more applications in the future.

We ask whether Theorem 1 can be further improved, to work for two-way LOCC or even separable measurements. This would accordingly give stronger applications, and possibly, solve the QMA vs QMA(2) puzzle due to the result of [37]. Another open question is, in Theorem 1, for a state supported on the symmetric subspace (aka Bose-symmetric state), whether its reduced states have pure-state approximations of the form $\int \varphi \otimes k \, d\mu(\varphi)$ with φ pure. We notice that this is indeed the case for the de Finetti theorem of [8] and a similar statement holds for [9]. However, our method, as well as that of [10] seems to require that the state φ must be generally mixed.

Acknowledgements. KL is supported by NSF Grant CCF-1110941 and CCF-1111382. GS acknowledges NSF Grant CCF-1110941 and CCF-1111382. FGSB acknowledges NSF Grant CCF-1111091. We thank Charles Bennett, Fernando Brandão, Aram Harrow and John Smolin for interesting discussions, and the anonymous referees for helping improve the manuscript.

* Electronic address: carl.ke.lee@gmail.com
† Electronic address: gbsmith@gmail.com

[1] B. de Finetti, Ann. Inst. H. Poincare 7, 1 (1937).
[2] P. Diaconis and D. Freedman, The Annals of Probability 8, 745 (1980).
[3] E. Størmer, J. Funct. Anal. 3, 48 (1969).
[4] R. L. Hudson and G. R. Moody, Z. Wahrsch. Verw. Geb. 33, 343 (1976).
[5] G. A. Raggio and R. F. Werner, Helv. Phys. Acta 62, 980 (1989).
[6] C. M. Caves, C. A. Fuchs and R. Schack, J. Math. Phys. 43, 4537 (2002).
[7] R. König and R. Renner, J. Math. Phys. 46, 122108 (2005).
[8] M. Christandl, R. König, G. Mitchison and R. Renner, Commun. Math. Phys. 273, 473 (2007).
[9] R. Renner, PhD thesis, ETHZ, Zurich (2005), arXiv:quant-ph/0512258; Nature Phys. 3, 645 (2007).
[10] F. G. S. L. Brandão and A. W. Harrow, in Proc. of the 45th ACM Symposium on theory of computing (STOC 2013), pp. 861-870 (2013), arXiv:1210.6367.
[11] M. Fannes and C. Vandenplas, J. Phys. A 39, 13843 (2006).
[12] M. Lewin, P. T. Nam and N. Rougerie, arXiv:1303.0981.
[13] F. G. S. L. Brandão and M. B. Plenio, Comm. Math. Phys. 295, 791 (2010).
[14] M. Christandl and R. Renner, Phys. Rev. Lett. 109, 120403 (2012).
[15] S. Beigi, P. Shor and J. Watrous, Theory of Computing 7, 101 (2011).
[16] F. G. S. L. Brandão, M. Christandl and J. Yard, Comm. Math. Phys. 306, 805 (2011); Proc. of the 43rd ACM Symposium on theory of computing (STOC 2011), pp. 343–352 (2011); arXiv:1010.1750.
[17] The exchange of two systems A_i and A_j causes a unitary transformation $U_{ij}|\varphi_{A_i}\rangle|\varphi_{A_j}\rangle = |\varphi_{A_j}\rangle|\varphi_{A_i}\rangle$ on their state. We say $\rho_{A_1...A_n}$ is permutation-invariant if $U_{ij}\rho_{A_1...A_n}U_{ij}^\dagger = \rho_{A_1...A_n}$ for any $0 < i < j \leq n$.
[18] In the present paper, ln and log are logarithms with base e and 2, respectively.
[19] F. G. S. L. Brandão and M. Christandl, Phys. Rev. Lett. 109, 160502 (2012).
[20] A. C. Doherty, P. A. Farrilo and F. M. Spedalieri, Phys. Rev. Lett. 88, 187904 (2002); Phys. Rev. A 69, 022308 (2004); Phys. Rev. A 71, 032333 (2005).
[21] Y.-K. Liu, M. Christandl and F. Verstraete, Phys. Rev. Lett. 98, 110503 (2007).
[22] A. Chailloux and O. Sattath, in Proc. of IEEE 27th Annual Conference on Computational Complexity (CCC), pp 32 – 41 (2012).
[23] W. Matthews, S. Wehner and A. Winter, Comm. Math. Phys. 291,813 (2009).
[24] G. Aubrun and C. Lancien, arXiv:1406.1959.
[25] See the Supplemental Material at [to be inserted] for proofs and technical details.
[26] C. A. Fuchs and J. van de Graaf, IEEE. Tran. Inf. Theory 45, 1216 (1999).
[27] G. Lindblad, Comm. Math. Phys. 40, 147 (1975); A. Uhlmann, Comm. Math. Phys. 54, 21 (1977).
[28] R. Horodecki, P. Horodecki, M. Horodecki and K. Horodecki, Rev. Mod. Phys. 81, 865 (2009).
[29] L. Gurvits, in Proc. of the 35th ACM Symposium on theory of computing (STOC 2003), pp. 10–19 (2003).
[30] S. Gharibian, Quantum Inf. Comput. 10, 343 (2010).
[31] S. Beigi, Quantum Inf. Comput. 10, 141 (2010).
[32] M. Piani, Phys. Rev. Lett. 103, 160504 (2009).
[33] K. Li and A. Winter, Comm. Math. Phys. 326,63 (2014).
[34] J. Watrous, in Encyclopedia of Complexity and System Science (Springer, 2009).
[35] H. Kobayashi, K. Matsumoto and T. Yamakami, In Proc. of the 14th Annual International Symposium on Algorithms and Computation, pp. 189–198 (2003), arXiv:quant-ph/0306051.
[36] S. Aaronson, R. Impagliazzo, D. Moshkovitz and P. Shor, Theory of Computing 5, 1 (2009).
[37] A. W. Harrow and A. Montanaro, J. ACM 60 (1), article 3 (2013); earlier version in Proc. of the IEEE 51st Symp. on Found. of Comp. Sci. (FOCS 2010), pp. 633–642 (2010).
[38] J. Kempe, A. Kitaev and O. Regev, SIAM J. Comput. 35, 1070 (2006); N. Schuch and F. Verstraete, Nature
Phys. 5, 732 (2009); T.-C. Wei, M. Mosca and A. Nayak, Phys. Rev. Lett. 104, 040501 (2010).

[39] G. Gutoski, P. Hayden, K. Milner and M. Wilde, arXiv:1308.5788.

[40] C. Marriott and J. Watrous, Computational Complexity 14, 122 (2005).

[41] Actually the values of c and s can be chosen arbitrarily as long as $c - s \geq 1/poly(n)$, because this gap can be amplified to have exponentially small errors. See [36, 40] for the amplification of $\text{QMA}^{\text{LOCC}}(k)$ and QMA. The amplification of $\text{SymQMA}^{\text{LOCC}}(k)$ follows from Eq. (12) together with the amplification of QMA.

[42] F. G. S. L. Brandão, PhD thesis, Imperial College, London (2008), arXiv:0810.0026.

[43] J. B. Lasserre, SIAM J. Opt. 11, 796 (2001).

[44] P. A. Parrilo, PhD thesis, MIT, 2000.

[45] B. Barak, J. Kelner and D. Steurer, in Proc. of the 46th ACM Symposium on theory of computing (STOC 2014), pp. 31–40 (2014), arXiv:1312.6652.