Effect of seed rate on yield performance of dry direct seeded winter rice

Md Moshiur Rahman¹, Md Mehedi Masood¹, Md Abdur Rahman Sarkar¹

¹Department of Agronomy, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh

Seedling transplanting into the puddled soil is the conventional and most popular rice establishment method in Bangladesh but water scarcity is posing a serious threat to this system of rice cultivation especially in boro season. Dry direct seeding (DDS) is an alternative rice establishment technology which have potentiality to save irrigation water significantly. Seed is sown manually on dry cultivated land at 25 cm × 15 cm spacing but continuous line sowing can be done by power tiller operated seeder. Therefore, there is a need of evaluating the yield performance of line sown dry seeded rice at various seeding rates to standardize the seeding rate for further machine sowing recommendation. Two mega rice varieties for winter (boro) season viz. BRRI dhan28 and BRRI dhan29 were cultivated at five seeding rates (30, 40, 50, 60, and 70 kg ha⁻¹) in continuous line sowing and a spaced seeding (25 cm × 15 cm) using 30 kg seed ha⁻¹ as a control treatment. The results reveals that the highest grain yield (6.73 and 7.13 t ha⁻¹ in 2009–10 and 2010–11, respectively) was obtained from the seeding rate of 50 kg ha⁻¹ for BRRI dhan29 but this yield was significantly lower than that obtained (7.07 and 7.46 t ha⁻¹ in 2009–10 and 2010–11, respectively) in control. Although higher grain yield was obtained from the spaced seeding plots, this method is not economically viable as the machine seeding would save huge labour costs. Therefore, considering both yields and labour cost, dry direct seeding would be practiced with continuous seeding at 25 cm apart rows using 50 kg seed ha⁻¹ for both the boro rice varieties.

Keywords: Water scarcity, puddle transplanting, winter rice, seed rate, yield

Cite this article: Rahman MM, Masood MM, Sarkar MAR. 2019. Effect of seed rate on yield performance of dry direct seeded winter rice. Fundamental and Applied Agriculture 4(1): 642–648. doi: 10.5455/faa.4469
dled transplanted system. Despite these problems, soil and environmental problems are also associated with the puddling system. Puddling destroys the soil structure and adversely affects the soil productivity (Gupta et al., 2003). Considering these problems, rice production could be sustained by adopting alternate production technology such as dry direct seeding (DDS) which can save up to 60% irrigation water (Rahman et al., 2012). Direct seeding of rice offers certain advantages such as low labour cost, low soil degradation, less drudgery, early crop maturity by 7–10 days, high tolerance to water deficit, saving water and energy (Datta, 1986; Gautam, 2008) and less methane emissions (Joshi et al., 2013). A physiological shock to the seedlings due to uprooting and harmonizing during re-establishment after transplanting is clearly avoided in direct seeded systems. Therefore, a shift of puddled transplanted rice to dry direct seeded rice, farmers may be more benifitted. The sowing is generally done by hand but mechanical seeding will make this alternate crop establishment technology more acceptable and popular.

The appropriate plant density is a decisive factor that affects crop microenvironment by influencing the degree of inter- and intra-row plant competition. Therefore, appropriate seed rates for direct seeded rice is an important consideration in getting the optimum plant population for maximum yield (Ahmed et al., 2014). Previous study suggests that hand sowing at 25 cm × 15 cm spacing provided the best yield of dry direct seeded boro rice (Sultana et al., 2012). This spacing is similar to the recommended practice for puddle transplanted boro rice in Bangladesh. At present sowing of dry direct seeded rice is done manually which is labour intensive but in many countries, including Bangladesh sowing is now done using mechanical seeders (Gathala et al., 2014) such as power tiller operated seeder (PTOS) and versatile multi-crop planter (VMP). The present study was therefore, undertaken with the view to find out the optimum seed rate for continuous line sowing rice seed by machine in dry direct seeded system towards reducing rice establishment cost.

2 Materials and Methods

2.1 Experiment site description

The experiment was conducted at the Agronomy Field Laboratory, Bangladesh Agricultural University (BAU), Mymensingh (24°43.8'N, 90°25'41.2'E) during December 2009 to May 2010 and December 2010 to May 2011. The experiment site was a well drained medium low land belonging to Non-calcareous Dark Grey soil under the Old Brahmaputra Floodplain Agro-ecological Zone (AEZ–9). The soil had pH of 6.85 and contained 1.50% organic matter, 0.074% total nitrogen, 11.85 ppm phosphorus, 0.18% potassium, 9.5 ppm sulphur and 0.43 ppm zinc. The study site experiences high rainfall, high relative humidity, high temperatures, and long days during the Kharif season (April–September) while scarce rainfall, low relative humidity, low temperatures, and short days in the rabi season (October–March). During the experimental period, the average maximum temperatures were 29.0 and 28.2 °C in 2010 and 2011, and minimum temperatures were 18.0 and 22.9 °C, respectively. The relative humidity during the experimental period was 78.8–80.2%. The total rainfall of 20.3 and 45.7 mm occurred during January to March in 2010 and 2011, respectively.

2.2 Treatments and design

Two rice varieties (viz., BRRI dhan28 and BRRI dhan29) and six seed rates (viz., 30, 40, 50, 60 and 70 kg seed ha⁻¹ sown continuously in 25 cm apart lines and a control seed rate of 30 kg ha⁻¹ sown at 15 cm plant to plant distance) were used in a randomized complete block design (RCBD) with three replications. The unit plot size was 4.0 m × 2.5 m. The distances maintained between blocks and plots were 1.5 m and 0.5 m, respectively.

2.3 Crop management

The seeds were sown in dry cultivated well prepared soil on 25 December 2009 and 2010 as per experimental specifications. Before sowing, the seeds were primed by soaking into the water for 30 h followed by incubation for about 30 h or until the seed was about to sprout. The land was fertilized with cowdung, urea, triple super phosphate, muriate of potash, gypsum and zinc sulphate at the rate of 10 t, 260 kg, 70 kg, 100 kg, 100 kg, and 3 kg ha⁻¹, respectively. The whole amount of cowdung, triple super phosphate, muriate of potash, gypsum and zinc sulphate were applied at the time of final land preparation. Urea was applied in 4 equal splits such as at the final land preparation, at 45–50, 60–65 and 75–80 days after sowing (DAS). Weeds were controlled by doing hand weeding three times at 25, 45 and 60 DAS. Irrigation was given to the experimental plots (550–600 mm) in 8–10 occasions during the whole crop period.

2.4 Observations

The crop was harvested at full maturity (when about 80% of the seeds became golden yellow in colour) from central 2.1 m × 1.5 m area of each plot to record the yields of grain and straw. Five hills (excluding border hills) were randomly uprooted from each plot before harvest for recording the plant height, tiller production and yield contributing characters such as number of grains per panicle, 1000-grain weight. The harvested crop of each plot was separately bundled,
properly tagged and then brought to the threshing floor. The crop was threshed by a pedal thresher. Grain and straw were sun dried and cleaned. Finally, grain yield was adjusted at 14% moisture level.

2.5 Statistical analysis
The collected data were compiled and analyzed following Analysis of Variance (ANOVA) technique with the help of a computer based package programme MSTAT-C. The differences among the treatment means were adjudged by Duncan’s Multiple Range Test (Gomez and Gomez, 1984).

3 Results
3.1 Plant height
BRRI dhan28 produced taller plants (102.9 cm and 104.5 cm) than BRRI dhan29 (98.4 cm and 100.0 cm) in both the cropping seasons. The interaction of variety and seeding rate effect on plant height differed significantly only in 2010–11 but not in 2009–10. BRRI dhan28 at control treatment gave the highest plant height (108.1 cm) which was statistically similar with that of BRRI dhan28 at 50 and 60 kg seed ha$^{-1}$. The lowest plant height (98.8 cm) was found with BRRI dhan29 at 50 kg seed ha$^{-1}$ (Table 1).

3.2 Tiller density
Seeding rate had significant effect on total tillers, effective tillers of rice in both the seasons. The number of total tillers were higher at the highest seed rate of 70 kg ha$^{-1}$ for BRRI dhan28 (313 and 316 tillers m$^{-2}$) and BRRI dhan29 (349 and 353 tillers m$^{-2}$). The lowest number of tillers were recorded from the lowest seeding rate of 30 kg ha$^{-1}$. The lowest tiller densities for BRRI dhan28 were 185 and 189 (tillers m$^{-2}$), respectively, in 2009–10 and 2010–11. Those values for BRRI dhan29 at 30 kg seed ha$^{-1}$ were 205 and 209, respectively in 2009–10 and 2010–11 (Table 1). The number of effective tillers was the highest in BRRI dhan28 at the seeding rate of 70 kg ha$^{-1}$ (297 and 301 m$^{-2}$) and the lowest for BRRI dhan28 at the seeding rate of 30 kg seed ha$^{-1}$ (157 and 161 m$^{-2}$).

3.3 Panicle length
Panicle length affected significantly by the effect of varieties, seeding rates and their interaction. Panicle size was longer when seeding rate was lower while panicle size was shorter when seeding rate was higher. Considered with the varieties, the longer panicle was found in BRRI dhan29 (24.7 cm and 25.2 cm) than BRRI dhan28 (24.4 cm and 24.8 cm). The panicle length found in spaced seeded crop was similar to that obtained at the seeding rate of 50 kg ha$^{-1}$ (Table 2). Seed rate higher than 50 kg reduced the panicle length in both the varieties.

3.4 Number of grains per panicle
Numbers of filled grains and unfilled spikelets per panicle were significantly affected by variety, seeding density and their interaction in both the seasons. The numbers of grains panicle$^{-1}$ and unfilled spikelets panicle$^{-1}$ was higher in BRRI dhan29 than the BRRI dhan28. The number of grains panicle decreased with increase in seeding rate from 30 to 70 kg ha$^{-1}$. The number of filled grain in BRRI dhan29 at 30 kg seed rate was 125 and 127 in 2009–10 and 2010–11, respectively, while those values were 81 and 83 panicle$^{-1}$ in case of BRRI dhan28 with the highest seeding rate of 70 kg ha$^{-1}$. The grains panicle$^{-1}$ was higher in control treatment (spaced planted crop) than the continuous seeding for both the varieties.

3.5 1000-grain weight
Seeding rate, variety and their interaction affected grain weight of rice significantly. The 1000-grain weight was always higher for lower seeding rate and it was true for both varieties. Grain weight decreased consistently with the seeding rate increased from 30 kg to 70 kg ha$^{-1}$. The 1000-grain weight for 40 kg ha$^{-1}$ was similar to that for spaced planted crops. Between the two varieties, BRRI dhan29 had lower 1000-grain weight than the BRRI dhan28. The interaction showed that BRRI dhan28 sown at 30 kg continuous seeding gave the highest 1000-seed weight (23.99 g and 24.12 g) while the lowest 1000-grain weight was found with BRRI dhan29 at 70 kg ha$^{-1}$ seed rate (19.72g and 19.86 g).

3.6 Grain and straw yield
Varieties, seeding rates and their interaction had significant effect on grain and straw yields. The control treatment produced the highest grain yield for BRRI dhan29 (7.07 and 7.46 t ha$^{-1}$ in 2009–10 and 2010–11). Grain yields were lower for both the lowest and highest seeding rates in both the seasons. BRRI dhan29 produced higher grain yield by 21 and 20% in 2009–10 and 2010–11 than the BRRI dhan28. There was an interaction between variety and seeding rates and the highest grain yield was obtained from BRRI dhan29 sown at 25 cm × 15 cm spacing (7.07 t ha$^{-1}$ and 7.46 t ha$^{-1}$ in 2009–10 and 2010–11). The straw yield was higher for the highest seeding rate and the lower for the lowest seeding rate. The control (spaced planted crop) produced straw yield similar to those plots received seed rates of 50 and 60 kg ha$^{-1}$. Between the two varieties, BRRI dhan29 produced higher straw yield than the BRRI dhan28. The interaction between...
Table 1. Plant height, tiller density, number of effective tillers hill\(^{-1}\) of two rice varieties under different seeding rates in dry direct seeded system

| Varieties (V) | Seeding rate (kg ha\(^{-1}\)) | Plant height (cm) | Tiller density (no. m\(^{-2}\)) | Effective tillers (no. m\(^{-2}\)) |
|--------------|-------------------------------|-------------------|-------------------------------|-------------------------------|
|              | 2009–10 2010–11               | 2009–10 2010–11   | 2009–10 2010–11               | 2009–10 2010–11               |
| BRRI dhan28  | Control                       | 106.5 108.11a     | 249.67e 253.33e                | 226.00e 230.00e               |
|              | 30                            | 100.77 102.38b    | 185.00h 188.66h                | 157.33h 161.33h               |
|              | 40                            | 100.63 102.25b    | 221.00f 224.66f                | 186.67g 190.66g               |
|              | 50                            | 105.23 106.85ab   | 249.67e 253.33e                | 217.33ef 221.33ef             |
|              | 60                            | 104.53 106.15ab   | 281.00d 284.66d                | 238.67d 242.66d               |
|              | 70                            | 99.67 101.28bc    | 313.00c 316.66c                | 260.33c 264.33c               |
| BRRI dhan29  | Control                       | 98.37 99.98c      | 276.33d 280.00d                | 253.00c 257.00c               |
|              | 30                            | 98.63 100.25c     | 205.33g 209.00g                | 178.00g 182.00g               |
|              | 40                            | 100.23 101.85bc   | 256.67e 260.33e                | 215.00f 219.00f               |
|              | 50                            | 97.13 98.75c      | 317.33bc 321.00bc              | 273.33b 277.33b               |
|              | 60                            | 97.53 99.15c      | 328.67b 332.33b                | 282.33b 286.33b               |
|              | 70                            | 98.6 100.21c      | 349.33a 353.00a                | 297.00a 301.00a               |
| SEM (±)      |                               | 3.205 2.438       | 8.908 6.287                    | 10.099 4.857                  |
| Variety (V)  | **                            | **                | **                            | **                            |
| Seeding rate (SR) | ns    | ns                | **                            | **                            |
| V × SR       | ns                            | *                 | **                            | **                            |
| CV%          | 3.9                            | 2.92              | 4.05                         | 2.82                         | 5.33                         | 2.52                         |

In a column, with same letter(s) or without letter(s) do not differ significantly whereas figures with dissimilar letter differ significantly (as per DMRT) at 5% level of probability; ns = Not significant, * = Significant at 5% level of probability, ** = Significant at 1% level of probability; Control: sowing of seeds at 25 cm \(\times\) 15 cm spacing allocating 5 seeds hill\(^{-1}\)

Table 2. Panicle length, filled grains and unfilled spikelets of two rice varieties under different seeding rates in dry direct seeded systems

| Varieties | Seeding rate (kg ha\(^{-1}\)) | Panicle length (cm) | No. of filled grains panicle\(^{-1}\) | No. of unfilled spikelets panicle\(^{-1}\) |
|-----------|-------------------------------|---------------------|-------------------------------------|----------------------------------------|
|           | 2009–10 2010–11               | 2009–10 2010–11     | 2009–10 2010–11                     | 2009–10 2010–11                       |
| BRRI dhan28 | Control                       | 24.27d 24.71d       | 111.50ef 113.67de                  | 9.40f 10.33h                          |
|           | 30                            | 26.13ab 26.58ab     | 117.87cd 119.67c                   | 13.07e 14.00g                         |
|           | 40                            | 25.37bc 25.81bc     | 107.77f 109.67e                    | 16.40cd 17.33f                        |
|           | 50                            | 25.00cd 25.45cd     | 109.10f 111.00e                    | 17.20c 18.33e                         |
|           | 60                            | 23.40e 23.85e       | 89.90h 91.66g                      | 21.13b 22.33cd                        |
|           | 70                            | 22.17f 22.61f       | 80.67i 82.66h                      | 24.60a 25.66a                         |
| BRRI dhan29 | Control                       | 25.77abc 26.21abc   | 125.37b 127.33b                    | 14.43de 15.66fg                       |
|           | 30                            | 25.48a 26.93a       | 134.20a 136.00a                    | 14.97cde 16.00fg                      |
|           | 40                            | 25.70abc 26.15abc   | 121.73bc 123.67b                   | 19.60b 20.66d                         |
|           | 50                            | 25.20c 25.65c       | 115.13de 117.00cd                  | 21.63b 23.00bc                        |
|           | 60                            | 22.77ef 23.21ef     | 101.50g 103.33f                    | 21.40b 22.33cd                        |
|           | 70                            | 22.30f 22.75f       | 91.37h 93.66g                      | 24.10a 25.00ab                        |
| SEM (±)   |                               | 0.421 0.389         | 3.217 1.854                       | 0.927 0.727                           |
| Variety (V) | **                            | **                  | **                                | **                                      |
| Seeding rate (SR) | **                            | **                  | **                                | **                                      |
| V × SR    | **                            | *                   | **                                | **                                      |
| CV%       | 2.1                            | 1.91                | 3.62                             | 2.05                                    | 6.25                         | 6.45                         |

In a column, with same letter(s) or without letter(s) do not differ significantly whereas figures with dissimilar letter differ significantly (as per DMRT) at 5% level of probability; ns = Not significant, * = Significant at 5% level of probability, ** = Significant at 1% level of probability; Control: sowing of seeds at 25 cm \(\times\) 15 cm spacing allocating 5 seeds hill\(^{-1}\)
Table 3. Effect of seeding rate, varieties and their interactions on 1000-grain weight, grain and straw yield of boro rice under dry direct seeded systems of cultivation

| Varieties       | 1000-grain wt. (g) | Grain yield (t ha\(^{-1}\)) | Straw yield (t ha\(^{-1}\)) |
|-----------------|--------------------|------------------------------|-----------------------------|
|                 | 2009–10  | 2010–11 | 2009–10 | 2010–11 | 2009–10 | 2010–11 |
| BRRI dhan28     |         |         |         |         |         |         |
| Control         | 23.17b  | 23.30b  | 5.83c   | 6.23c   | 6.73c   | 7.18c   |
| 30              | 23.99a  | 24.12a  | 4.43g   | 4.83e   | 5.17f   | 5.61f   |
| 40              | 24.31b  | 25.34b  | 4.60fg  | 5.00e   | 5.57e   | 6.01e   |
| 50              | 23.20b  | 23.34b  | 5.50de  | 5.90cd  | 6.60c   | 7.05c   |
| 60              | 22.46b  | 23.59c  | 4.73f   | 5.13e   | 6.67c   | 7.11c   |
| 70              | 22.07d  | 22.20d  | 4.47fg  | 4.86e   | 6.87c   | 7.31c   |
| BRRI dhan29     |         |         |         |         |         |         |
| Control         | 22.33c  | 22.47c  | 7.07a   | 7.46a   | 8.13b   | 8.58b   |
| 30              | 22.40c  | 22.54c  | 5.33e   | 5.73d   | 6.20d   | 6.65d   |
| 40              | 21.90d  | 22.04d  | 5.70cd  | 6.10c   | 6.83c   | 7.28c   |
| 50              | 21.37e  | 21.51e  | 6.73b   | 7.13b   | 8.10b   | 8.55b   |
| 60              | 20.04f  | 20.18f  | 5.70cd  | 6.10c   | 8.33b   | 8.78b   |
| 70              | 19.72g  | 19.86g  | 5.30e   | 5.70d   | 8.67a   | 9.11a   |
| SEM (±)         | 0.184   | 0.105   | 0.183   | 0.154   | 0.271   | 0.143   |
| Variety (V)     | **      | **      | **      | **      | **      | **      |
| Seeding rate (SR)| **      | **      | **      | **      | **      | **      |
| V × SR          | **      | **      | *       | *       | **      | *       |
| CV%             | 1.02    | 0.67    | 4.12    | 3.23    | 4.75    | 2.36    |

In a column, with same letter(s) or without letter(s) do not differ significantly whereas figures with dissimilar letter differ significantly (as per DMRT) at 5% level of probability; ns = Not significant, * = Significant at 5% level of probability, ** = Significant at 1% level of probability; Control: sowing of seeds at 25 cm × 15 cm spacing allocating 5 seeds hill\(^{-1}\).

Discussion

Rice seed is sown by hand at 25 cm × 15 cm spacing in dry seeding system. Hand sowing is very tedious and labour intensive. On the other hand, seeding by machine could be a labour saving practice. The present study compares the performance of continuous line sowing at different seed rates with recommended spacing of 25 cm × 15 cm towards optimizing the seeding rate in boro season for machine sowing. The result showed that both the rice varieties (BRRI dhan28 and BRRI dhan29) produced the highest straw yield when planted at the highest seeding rate of 70 kg ha\(^{-1}\).

4 Discussion

Rice seed is sown by hand at 25 cm × 15 cm spacing in dry seeding system. Hand sowing is very tedious and labour intensive. On the other hand, seeding by machine could be a labour saving practice. The present study compares the performance of continuous line sowing at different seed rates with recommended spacing of 25 cm × 15 cm towards optimizing the seeding rate in boro season for machine sowing. The result showed that both the rice varieties (BRRI dhan28 and BRRI dhan29) produced the highest straw yield when planted at the highest seeding rate of 70 kg ha\(^{-1}\).

4 Discussion

Rice seed is sown by hand at 25 cm × 15 cm spacing in dry seeding system. Hand sowing is very tedious and labour intensive. On the other hand, seeding by machine could be a labour saving practice. The present study compares the performance of continuous line sowing at different seed rates with recommended spacing of 25 cm × 15 cm towards optimizing the seeding rate in boro season for machine sowing. The result showed that both the rice varieties (BRRI dhan28 and BRRI dhan29) produced the highest straw yield when planted at the highest seeding rate of 70 kg ha\(^{-1}\).
with total number of tillers and numbers of effective tillers (Ameen et al., 2014). The present study showed that the seeding rate of 70 kg ha\(^{-1}\) produced the highest total and effective tillers m\(^{-2}\) while 30 kg ha\(^{-1}\) (continuous seeding at 25 cm apart rows) produced the lowest total and effective tillers m\(^{-2}\) in both the cropping years. Ameen et al. (2014) found the maximum numbers of tillers (389) at the seeding density of 75 kg ha\(^{-1}\) and the minimum (245) for 30 kg ha\(^{-1}\). Kehinde (2002) reported that seed rate of 150 kg ha\(^{-1}\) produced 577 tillers m\(^{-2}\) and it was at par with 125 kg ha\(^{-1}\) and these were significantly higher than the seeding rate of 100 kg ha\(^{-1}\). Rice cultivars sown at high seeding rate ultimately resulted in higher number of tillers per unit area. These results are consistent with the Chauhan et al. (2011) who mentioned that increased seed rate caused an increase in number of tillers.

The highest number of sterile spikelets panicle\(^{-1}\) was obtained from the combination BRRI dhan28 and 70 kg seed ha\(^{-1}\) (continuous seeding at 25 cm apart rows) and the lowest number of sterile spikelets panicle\(^{-1}\) was observed from the combination BRRI dhan28 at 30 kg seed ha\(^{-1}\) (25 cm × 15 cm spacing with 4 seeds hill\(^{-1}\)) in both the years. Higher percentage of sterile spikelets at the higher seeding rate was attributed to dense population which exerted severe competition for photosynthates at reproductive stage and resulted in high sterility of spikelets particularly at lower part of panicle. The findings of the present study are in line with Akbar and Ehsanullah (2004) who reported that percentage of sterile spikelets increased by increasing the seeding density.

5 Conclusions

The highest yield of rice under dry direct seeding system was obtained at 25 cm × 15 cm spacing using five seeds hill\(^{-1}\) for manual seeding. The next highest yield was obtained from line sowing at 25 cm apart rows with 50 kg ha\(^{-1}\) which yield was 5% lower than the spaced planting. Therefore, considering both the yield and labour cost, dry direct seeded rice would be practiced with continuous seeding at 25 cm apart rows using 50 kg seed ha\(^{-1}\).

Acknowledgements

We thank the Program for Agriculture and Life Science (PALS) of Bangladesh Academy of Sciences (BAS) and the United States Department of Agriculture (USDA) for providing the funds for this research under the project of CR# 21.

Conflict of Interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

References

Ahmed S, Awan T, Salim M, Chauhan B. 2015. Economics of nitrogen and integrated weed management in dry seeded rice. Journal of Animal and Plant Sciences 25:1675–1684.

Ahmed S, Humphreys E, Salim M, Chauhan BS. 2014. Optimizing sowing management for short duration dry seeded aman rice on the High Ganges River Floodplain of Bangladesh. Field Crop Research 169:77–88. doi: 10.1016/j.fcr.2014.09.009.

Akbar N, Ehsanullah. 2004. Agro-qualitative responses of direct seeded fine rice to different seeding densities. Pakistan Journal of Agricultural Sciences 41.

Ameen A, Aslam Z, Zaman QU, Ehsanullah, Zamir SI, Khan I, Subhani MJ. 2014. Performance of different cultivars in direct seeded rice (Oryza sativa L.) with various seeding densities. American Journal of Plant Sciences 5:3119–3128. doi: 10.4236/ajps.2014.521328.

Bhuiyan S, Sattar M, Khan M. 1995. Improving water use efficiency in rice irrigation through wet-seeding. Irrigation Science 16:1–8. doi: 10.1007/bf00208389.

Bouman B, Tuong T. 2001. Field water management to save water and increase its productivity in irrigated lowland rice. Agricultural Water Management 49:11–30. doi: 10.1016/s0378-3774(00)00128-1.

Chauhan B, Opena J. 2012. Effect of tillage systems and herbicides on weed emergence, weed growth, and grain yield in dry-seeded rice systems. Field Crops Research 137:56–69. doi: 10.1016/j.fcr.2012.08.016.

Chauhan BS, Singh VP, Kumar A, Johnson DE. 2011. Relations of rice seeding rates to crop and weed growth in aerobic rice. Field Crops Research 121:105–115. doi: 10.1016/j.fcr.2010.11.019.

Datta SKD. 1986. Technology development and the spread of direct-seeded flooded rice in Southeast Asia. Experimental Agriculture 22:417–426. doi: 10.1017/s0014479700014666.

Gathala M, Yadav S, Mazid M, Humphreys E, Sharif A, Krupnik T, Rashid M, Chauhan B, Kumar V, Russell T, Saleque M, Kamboj B, Jat M, Malik R, Tiwari T, Mondal M, Rahman M, Saha A, Khaled S, Islam S, McDonald A. 2014. Guidelines for
Dry Seeded Aman Rice (DSR) in Bangladesh. IFAD and CSISA Joint Publication. International Rice Research Institute (IRRI) and the International Maize and Wheat Improvement Center (CIMMYT).

Gautam P. 2008. Emerging issues and strategies in the rice wheat cropping system in the Indo-gangatic plains. In Singh Y, Singh VP, Chauhan B, Orr A, Mortimer A M, Johnson DE, Hardy, B. (ed.) Direct seeding of rice and weed management in the irrigated rice-wheat cropping system of the Indo-gangetic plains. International Rice Research Institute and Pantnagar (India): Directorate of Experiment Station, G. B. Pant University of Agriculture and Technology.

Gomez K, Gomez A. 1984. Statistical Procedure for Agricultural Research. 2nd Edn. John Wiley & Sons, New York, USA.

Gupta R, Hobbs P, Harington L, Ladha J. 2003. Rice wheat system, problem analysis and strategic entry points, addressing resource conservation issues in rice wheat systems of South Asia: A resource book, rice wheat Consortium for the Indo-gangetic Plains. International Maize and Wheat Improvement Centre, New Delhi, India.

Joshi E, Kumar D, Lal B, Nepalia V, Gautam P, Vyas A. 2013. Management of direct seeded rice for enhanced resource-use efficiency. Plant Knowledge Journal 2:119–134.

Kehinde J. 2002. Influence of seed rate and weed management practices on weed control and performance of upland rice. Nigerian Journal of Weed Science 15:1–6.

Rahman M, Uddin M, Masood M. 2012. Irrigation water saving, yield performance and cost effectiveness of different rice cultivation systems in Boro season. Bangladesh Agronomy Journal 15:99–106.

Rangit J, Sharma S, Gautam D. 2013. Response of direct dry seeded rice (Oryza sativa L.) to seeding dates and seed rates. Agronomy Journal of Nepal 1:22–24. doi: 10.3126/ajn.v1i0.7538.

Singh R, Kumar R. 2009. Direct seeding rice in eastern Indo-Gangetic Plains of India. In Proceedings of National Workshop on Scope and Problems of Direct Seeded Rice held at PAU, Ludhiana.

Sultana MR, Rahman MM, Rahman MH. 2012. Effect of row and hill spacing on the yield performance of boro rice (cv. BRRI dhan45) under aerobic system of cultivation. Journal of the Bangladesh Agricultural University 10:39–42. doi: 10.3329/jbau.v10i1.12037.

Walia U, Gill G, Walia S, Sidhu A. 2011. Production of direct seeded rice (Oryza sativa) under differential plant densities and herbicides in central plains of Punjab. Journal of Crop and Weed 7:1–5.