A NEW PROOF OF THE THEOREMS OF LIN-ZAIDENBERG AND ABHYANKAR-MOH-SUZUKI

KAROL PALKA

Abstract. Using the theory of minimal models of quasi-projective surfaces we give a new proof of the theorem of Lin-Zaidenberg which says that every topologically contractible algebraic curve in the complex affine plane has equation $X^n = Y^m$ in some algebraic coordinates on the plane. This gives also a proof of the theorem of Abhyankar-Moh-Suzuki concerning embeddings of the complex line into the plane. Independently, we show how to deduce the latter theorem from basic properties of \mathbb{Q}-acyclic surfaces.

The following result is a homogeneous formulation of the theorems proved by Lin-Zaidenberg [ZL83] and Abhyankar-Moh [AM75] and Suzuki [Suz74]. Curves are assumed to be irreducible.

Theorem A. If a complex algebraic curve in \mathbb{C}^2 is topologically contractible then in some algebraic coordinates $\{x, y\}$ on \mathbb{C}^2 its equation is $x^n = y^m$ for some coprime $n > m > 0$.

The part proved by Lin-Zaidenberg concerns singular curves ($m \geq 2$). The part proved by Abhyankar-Moh and Suzuki concerns smooth curves ($m = 1$) and is usually stated in the following form.

Theorem B. If a complex algebraic curve in \mathbb{C}^2 is isomorphic to \mathbb{C}^1 then in some algebraic coordinates $\{x, y\}$ on \mathbb{C}^2 its equation is $x = 0$.

Theorem B has now several published proofs using variety of methods, from algebraic to topological. The easiest we know is by Gurjar [Gur02]. As for the singular case of Theorem A, the original proof relies on Teichmüller theory. A topological proof based on properties of knots was given in [NR87, NR88]. Proofs of both theorems using algebraic geometry can be found in [GM96] and [Kor07]. The latter two use the tools of the theory of open algebraic surfaces including the logarithmic Bogomolov-Miyaoka-Yau inequality established for surfaces of log general type by Kobayashi [Kob90] and Kobayashi-Nakamura-Sakai [KNS89]. Our proof of Theorem A also uses the theory of minimal models for log surfaces. We believe it is quite short and geometric. Both theorems are deduced from the following result.

Theorem 1. If $A \subseteq \mathbb{C}^2$ is a topologically contractible curve then there exists a minimal smooth completion (X, D) of $\mathbb{C}^2 \setminus A$, such that the proper transform of A is a fiber of a \mathbb{P}^1-fibration of X, whose restriction to $\mathbb{C}^2 \setminus A$ has irreducible fibers.

The basic new ingredient in the proof is to shift the focus from the surface $\mathbb{C}^2 \setminus A$, where A is the contractible curve, to the surface $X = (\mathbb{C}^2 \setminus A) \cup C$, where C is (some naturally defined open subset of) the last (-1)-curve created by the minimal log resolution of the singularity at infinity (see section 1). While the boundary of X is not any more connected,
the important property is that in general the Euler characteristic of X is negative. A similar idea was used in [PK13] and will be used in forthcoming papers (coauthored with M. Koras and P. Russell) finishing the classification of closed \mathbb{C}^*-embeddings into \mathbb{C}^2. Another new ingredient is that we rely on a more general version of the log BMY inequality which works for surfaces of non-negative logarithmic Kodaira dimension. We tried to make the article self-contained. In section 3 we give an independent, direct proof of Theorem B using some basic properties of \mathbb{Q}-acyclic surfaces.

The author would like to thank Peter Russell and the referee for a careful reading of the preliminary version of the article.

Contents

1. Preliminaries and notation 2
2. Proof of Theorem 1 4
3. Another proof of the Abhyankar-Moh-Suzuki theorem 10
References 11

1. Preliminaries and notation

We work in the category of complex algebraic varieties. The results of this section are well known, we give short proofs for completeness. Let $D = \sum_{i=1}^{n} D_i$ be a reduced effective divisor on a smooth projective surface, which has smooth components D_i and only normal crossings (i.e. D is an snc-divisor). The number of (irreducible) components of D is denoted by $\#D$. A component C of D is branching if it meets more than two components of $D - C$. A (k)-curve is a curve isomorphic to \mathbb{P}^1 which has self-intersection k. We say that D is snc-minimal if after a contraction of any (-1)-curve contained in D the image of D is not an snc-divisor, or equivalently, if every (-1)-curve of D is branching. We define the discriminant of D by $d(D) = \det([-D_i \cdot D_j]_{i,j \leq n})$. We put $d(0) = 1$.

A \mathbb{P}^1- (or \mathbb{C}^1-) fibration is a surjective morphism whose general fibers are isomorphic to \mathbb{P}^1 (respectively to \mathbb{C}^1). If (X, D) is a smooth completion of X and p is some fixed \mathbb{P}^1-fibration of \overline{X} we put $\Sigma_X = \sum_{F \not\subseteq D} (\sigma(F) - 1)$, where the sum is taken over all fibers of p not contained in D and $\sigma(F)$ is the number of components of F not contained in D. Clearly, $\Sigma_X \geq 0$ and the equality holds if and only if the restriction $p|_X$ has irreducible fibers. Let ν and h be respectively the number of fibers contained in D and the number
of horizontal components of D (i.e. those whose push-forward by p does not vanish). The following lemma is due to Fujita \cite[4.16]{Fuj82}.

Lemma 2. Let (X, D) be a smooth completion of a smooth surface X. With the above notation for every \mathbb{P}^1-fibration of X we have

\begin{equation}
(1.2) \quad h + \nu + \rho(X) = \Sigma_X + \# D + 2.
\end{equation}

Proof. Having a \mathbb{P}^1-fibration, X dominates some \mathbb{P}^1-bundle over a projective curve. The latter has $\rho = 2$, so we have $\rho(X) = \Sigma_X + \# D + 2 = 2(\# F - 1) = \Sigma F \# F \cap D + \Sigma F (\sigma(F) - 1) = \Sigma F - h + \Sigma_X - \nu. \quad \square$

It is well known that every singular fiber of a \mathbb{P}^1-fibration of a smooth projective surface can be inductively reconstructed from a 0-curve by blowing up. In particular, we deduce by induction the following lemma.

Lemma 3. Let F be a reduction of a singular complete fiber of a \mathbb{P}^1-fibration of some smooth projective surface. Then F is a rational snc-tree and its (-1)-curves are non-branching. Assume F contains a unique (-1)-curve L_F. Then $F - L_F$ has at most two connected components and if it has two then one of them is a chain of rational curves. Moreover, F contains exactly two components of multiplicity 1, they are tips of F and in case F is not a chain they belong to the same connected component of $F - L_F$.

Note that sections meet only vertical components of multiplicity 1. We need a description of snc-minimal boundary divisors of \mathbb{C}^2. We follow the proof by Daigle and Russell \cite[5.12]{Dai91}, \cite[§1]{Rus02} (which works for any surface completable by a chain). The lemma was originally proved by Ramanujam \cite{Ram71} using only the fact that \mathbb{C}^2 is a smooth contractible surface which is simply connected at infinity.

Lemma 4. If (\overline{X}, D) is a smooth snc-minimal completion of \mathbb{C}^2 then D is a chain.

Proof. First of all, consider a reduced divisor B (on some smooth projective surface) which can be transformed into a 0-divisor by a sequence of blowups and blowdowns by taking reduced total transforms and push forwards. Assume also that D_0 is either a zero divisor or a smooth curve not in B, such that the transformation can be done modulo D_0, i.e. that under all steps of the process the proper transform of D_0 is not contracted and stays smooth. We claim that B contains a (-1)-curve in B which is non-branching in $B_0 + B$ (in particular, $D_0 + B$ is not snc-minimal). To see this let B_0 be the first component of B which is contracted by the transformation, i.e. the transformation starts with a sequence of blowups and then it contracts the proper transform B'_0 of B_0. If follows that B'_0 is a (-1)-curve which is non-branching in the total reduced transform of $D_0 + B$ and hence that B_0 is a curve with $B'_0 \geq -1$, non-branching in $D_0 + B$. But the intersection matrix of B, and hence of all its transforms, is negative definite, so $B'_0 = -1$ and we are done.

Suppose D has a branching component D_0. By the factorization theorem for birational morphisms between smooth projective surfaces we know that D, being a boundary of \mathbb{C}^2, can be transformed into a chain of rational curves. Therefore, there is a connected component B of $D - D_0$ which can be transformed to 0 modulo D_0. By the above argument there is a (-1)-curve B_0 in B which is non-branching in $D_0 + B$. But then D is not snc-minimal; a contradiction. \hfill \square

The type of an ordered chain of rational curves $T = T_1 + \ldots + T_k$ is the sequence $[-T_1^2, \ldots, -T_k^2]$. We say that the chain is in a standard form if it is of type $[0]$, $[1]$ or $[0, 0, a_1, \ldots, a_k]$ for some $a_i \geq 2$. It is an elementary exercise to show that by blowing
up and down on T we can bring it into a standard form (the number of zeros is at most two by the Hodge index theorem). The formula [1.1] implies that if T is a boundary of \mathbb{C}^2 in a standard form then it is of type $[0, 0]$.

An snc-divisor is of \textit{quotient type} if it can be contracted algebraically to a quotient singularity, i.e. to a smooth or an isolated singular point which is locally analytically of type \mathbb{C}^2/G, where G is a finite subgroup of $GL(2, \mathbb{C})$. As a consequence, the intersection matrix of such a divisor is negative definite. Snc-minimal divisors of quotient type are well known, they are either negative definite chains of rational curves (corresponding to cyclic singularities $\mathbb{C}^2/\mathbb{Z}_k$) or special rational trees with unique branching components (forks). It is known that they do not contain (-1)-curves (see [Bri68]). For a general snc-divisor D we denote the set of its connected components of quotient type by $\text{qt}(D)$.

Let (X, D) be a smooth pair. For it we can run a minimal model program to obtain a birational morphism onto a log terminal surface (V, Δ) such that there is no curve L on V for which $L^2 < 0$ and $L \cdot (K_V + \Delta) < 0$. The pair (V, Δ) is called a \textit{minimal model} of (X, D). If (X, D) is snc-minimal (i.e. D is an snc-minimal divisor) and the resulting morphism contracts only curves with supports in D and its push-forwards then we say that (X, D) is \textit{almost minimal} (for another, more direct definition see [Miy01, §2.3.11]). Recall that a \textit{log resolution} of a pair (V, Δ) with reduced Δ is a proper birational morphism from a smooth pair $r: (\overline{X}, \overline{D}) \to (V, \Delta)$ such that D is the total reduced transform of Δ.

Let $c(D)$ denote the number of connected components of D. The following proposition follows from [Fuj82, 6.20]. We denote the logarithmic Kodaira-Iitaka dimension by κ.

Proposition 5. Let (X, D) be a smooth snc-minimal pair which is not almost minimal. Then there exists a (-1)-curve ℓ on X which meets at most two connected components of D, each at most once and transversally and for which $\kappa(X \setminus D) = \kappa(X \setminus (D \cup \ell))$. In particular, if $p: (X, D) \to (X', D')$, with $D' = p_* D$, is the contraction of ℓ then

$$\chi(X' \setminus D') + c(D') = \chi(X \setminus D) + c(D) - 1.$$

Note that (X', D') is a smooth pair and that if (X', D') is not snc-minimal then the sum $\chi(X' \setminus D') + c(D')$ does not change when we snc-minimalize D'.

2. Proof of Theorem 1

Assume that $A \subseteq \mathbb{C}^2$ is a topologically contractible curve. Let $k \geq 0$ be the number of singular points of A. We write \mathbb{C}^2 as $\mathbb{P}^2 \setminus L_\infty$, where L_∞ is the line at infinity. Let $\overline{A} \subseteq \mathbb{P}^2$ be the closure A and let

$$\pi: (\overline{X}', D') \to (\mathbb{P}^2, L_\infty + \overline{A})$$

be the minimal log resolution of singularities. We denote the proper transforms of \overline{A} and L_∞ on \overline{X}' by E and L_∞' respectively. Since the germ of \overline{A} at infinity is analytically irreducible, the reduced total transform of L_∞ contains a unique component C' meeting E. Moreover, their difference can be written as $(\pi^* L_\infty)_{\text{red}} - C' = D'_1 + D_2$, where D'_1 and D_2 are connected and D'_1 contains L'_∞. We may, and shall, assume that \overline{A} does not meet L_∞ transversally, otherwise \overline{A} is a line in which case the above theorems obviously hold. By the minimality of the resolution it follows that D_2 is a rational chain with negative definite intersection matrix and with no (-1)-curves. In particular, $d(D_2) \geq 2$. Let U be the reduced exceptional divisor over the singular points of A. Put $D_3 = E + U$. We have

$$D' = D'_1 + C' + D_2 + D_3.$$
Figure 1. The divisor D' on \overline{X}'. Lines denote chains of rational curves.

It may happen that L'_∞ is a (-1)-curve (necessarily non-branching in D'_1). Moreover, its contraction may introduce new non-branching (-1)-curves in the boundary. Let $\psi: (\overline{X}', D') \to (\overline{X}, D)$ be the composition of successive contractions of non-branching (-1)-curves contained in D'_1 and its images. Since the curves contracted by ψ are disjoint from $D_2 + D_3$, we denote D_2, E, U, D_3 and their images on \overline{X} by the same letters. We have $D = D_1 + C + D_2 + D_3$. Put $B = D_1 + D_2 + D_3 = D - C$ and $X = \overline{X} \setminus B$.

Clearly, $(\overline{X}, D_1 + D_2 + D_3)$ is a smooth completion of X and the D_i's are the connected components of the boundary. It may happen that $D_1 = 0$. Also, $X \setminus C = C^2 \setminus A$, with the smooth completion (\overline{X}, D). It follows that $\chi(X) = \chi(C^2 \setminus A) + \chi(C \setminus (D_1 \cup D_2 \cup E)) = 2 - \#C \cap (D_1 \cup D_2 \cup E) = -\#C \cap D_1$. Thus, $\chi(X) = -1$, unless $D_1 = 0$.

Because the log resolution $\pi: (\overline{X}', D') \to (\mathbb{P}^2, L_\infty + \tilde{A})$ is minimal, each connected component of U contains a unique component U_i, $i = 0, \ldots, k$, meeting E. Moreover, each U_i is a (-1)-curve and $U_i \cdot E = 1$. The divisor B is snc-minimal except the case when $E^2 = -1$ and U has at most two connected components. Note however, that the minimality of the resolution implies that the only components of B which meet E are the (-1)-curves of U. So, even if E is a non-branching (-1)-curve in B, its contraction does not introduce new non-branching (-1)-curves.

Proof of Theorem 1.

Claim 1. If $D_1 = 0$ then Theorem 1 holds.

Proof. We have $C^2 \geq (C')^2 + 1 \geq 0$. Let D_C be the component of D_2 meeting C. Now [1.1] gives $-C^2d(D_2) - d(D_2 - D_C) = -1$, so $C^2d(D_2) + d(D_2 - D_C) = 1$. Because $d(D_2) \geq 2$, we obtain $C^2 = 0$ and $d(D_2 - D_C) = 1$, hence D_2 is irreducible. If we blow up once on $E \cap C$ and contract the proper transform of C the new boundary of X has the same dual graph but the self-intersection of D_2 increases. Repeating this elementary transformation we may assume $D_2^2 = 0$. Then the contraction of U maps \overline{X} to a smooth
surface \mathbb{F} with $\rho = 2$ and the linear system of (the proper transform of) D_2 induces a projection $p: \mathbb{F} \to \mathbb{P}^1$. Moreover, (the proper transform of) E is disjoint from D_2, so it is a 0-curve. Then $U = 0$ and Theorem [1] holds.

Thus from now on we assume $D_1 \neq 0$ (and $D_2 \neq 0$).

Claim 2. There is no curve $\ell \not\subseteq D_1 + D_2 + U$ for which the intersection matrix of $\ell + D_1 + D_2 + U$ is negative definite.

Proof. We have $\#(\ell + D_1 + D_2 + U) = \#D - 1 = \rho(\mathbb{X})$, so the claim follows from the Hodge index theorem. □

Claim 3. If D_1 is not negative definite then it is not a chain and C is a (-1)-curve.

Proof. Suppose D_1 is a chain. We change it into a standard form \tilde{D}_1, so that the zero-curve is a tip of D. Denote the proper transform of C by \tilde{C}. If \tilde{D}_1 is irreducible then it is a 0-curve, so by (1.1) $-1 = d(\tilde{D}_1 + \tilde{C} + D_2) = -d(D_2) \leq -2$, which is impossible. Thus \tilde{D}_1 is not irreducible. Then $E + \tilde{C} + D_2$ is vertical for the \mathbb{P}^1-fibration induced by the 0-tip, so either \tilde{C} is a branching component of a fiber or it meets two components of a fiber and the section contained in \tilde{D}_1. By Lemma [3] \tilde{C} cannot be a (-1)-curve, hence $(\tilde{C})^2 \leq -2$. Then $\tilde{D}_1 + \tilde{C} + D_2$ is a boundary of \mathbb{C}^2 in a standard form, so it is of type $[0, 0]$. But then $D_2 = 0$; a contradiction. Thus D_1 is not a chain. By Lemma [4] $D_1 + C + D_2$ is not snc-minimal, so $C^2 = -1$. □

Claim 4. D_3 is not a (-1)-curve.

Proof. Suppose D_3 is a (-1)-curve. Then $U = 0$ and $D_3 = E$. Taking $\ell = E$ in Claim 2 we see that D_1 is not negative definite. By Claim 3 D_1 is not a chain and C is a (-1)-curve. Consider the \mathbb{P}^1-fibration given by the linear system of $E + C$. We have $h = 2$, so $\Sigma_X = \nu$. The divisor B contains no fibers. Indeed, otherwise D would contain more than one fiber $(E + C$ is one of them), hence D would contain a loop, which is false. We obtain $\Sigma_X = \nu = 0$. Let F be a singular fiber and L_F its unique component not contained in B. The two sections contained in B belong to different connected components of B, so the two components of F of multiplicity one meeting them belong to different connected components of $F - L_F$. By Lemma [8] it follows that F is a chain and meets the sections in tips. Since the vertical part of D_2 is connected, there is at most one singular fiber other than $E + C$. It follows that D_1 is a chain; a contradiction. □

Claim 5. If $U \neq 0$ then D_3 is not contained in a divisor of quotient type.

Proof. Suppose Q is a divisor of quotient type containing D_3. The (-1)-curve U_1 is branching in D_3, hence in Q. Because the self-intersection of U_1 is (-1), the snc-minimalization of Q does not touch U_1, hence leads to an snc-minimal divisor of quotient type which contains a branching (-1)-curve. But there are no such divisors. A contradiction. □

We now analyze the creation of the almost minimal model of (\mathbb{X}, B). Let ϵ be the contraction of E in case it is a non-branching (-1)-curve, otherwise put $\epsilon = \text{id}_{\mathbb{X}}$. Let

$$(\mathbb{X}, B) \xrightarrow{\epsilon} (\mathbb{X}_0, B_0) \xrightarrow{p_1} (\mathbb{X}_1, B_1) \xrightarrow{p_2} \ldots \xrightarrow{p_n} (\mathbb{X}_n, B_n)$$

be a sequence of birational morphisms leading to the almost minimal model (\mathbb{X}_n, B_n) of (\mathbb{X}, B) grouped so that p_{i+1} is a composition of a contraction of some (-1)-curve $\ell_i \not\subseteq B_i$, witnessing the non-almost minimalty of (\mathbb{X}_i, B_i) followed by the snc-minimalization of the image of B_i. Put $p = p_n \circ \ldots \circ p_1 \circ \epsilon$ and $X_i = \mathbb{X}_i \setminus B_i$. We denote ℓ_i’s and their proper transforms on \mathbb{X} by the same letters.
Claim 6. \(\chi(X) = \chi(X_0) \) and \(\chi(X_i) \geq \chi(X_{i+1}) \).

Proof. Since \(D_3 \) is not a \((-1)\)-curve, we have \(\chi(X_0) = \chi(X) \). Suppose \(\chi(X_{i+1}) > \chi(X_i) \). Since \(B_i \) is snc-minimal, \(\ell_i \) meets two connected components of \(B_i \), each transversally in a unique point, and together with these components contracts to a smooth point on \(X_{i+1} \). Suppose \(U \neq 0 \). By Claim 5 these two connected components do not contain the image of \(D_3 \), so they contain the images of \(D_1 \) and \(D_2 \). Thus \(D_1 + \ell + D_2 \) is contained in a divisor of quotient type disjoint from \(D_3 \), which contradicts Claim 1. Thus \(U = 0 \) and Claim 1 implies that the connected components met by \(\ell \) do not contain the image of \(D_1 \), hence contain images of \(D_2 \) and \(E \). Let \(X \to \tilde{X} \) be the contraction of \(D_2 \) and \(E \). We have \(-1 = d(D_1) \cdot d(C + D_2) - d(D_2) \), so since \(d(D_2) \geq 2 \), we see that \(d(D_1) \) and \(d(D_2) \) are coprime. In particular, \(d(D_1) \neq 0 \). Then the components of \(D_1 \) generate \(H_2(\tilde{X}, \mathbb{Q}) \). Using Nakai’s criterion we show easily that \(D \) supports an ample divisor (see [Fuj82, 2.4]), so \(\tilde{X} \setminus D_1 \) is affine. But it contains the image of \(\ell \), which is projective; a contradiction.

Claim 7. \(\kappa(X) = -\infty \).

Proof. Suppose \(\kappa(X) \geq 0 \). Then \(\kappa(X_n) = \kappa(X) \geq 0 \), so since \((X_n, B_n) \) is almost minimal, the log BMY inequality (see [Lan03, 3.4, §9] and [Pal11, 2.5]) gives

\[
0 \leq \frac{1}{3}((K_{X_n} + B_n)^{+})^2 \leq \chi(X_n) + \frac{1}{2} \# \text{qt}(B_n).
\]

The divisor \(B_n \) is snc-minimal, so each \(\Gamma(T) \) is nontrivial, hence \(0 \leq \chi(X_n) + \frac{1}{2} \# \text{qt}(B_n) \leq \chi(X) + \frac{1}{2} \# \text{qt}(B_n) \). If \(B_n \) has more than two connected components of quotient type then \(D_1 \), \(D_2 \) and \(D_3 \) are contained in disjoint divisors of quotient type, which is impossible by Claim 1 (take \(\ell = E \)). It follows that all the above inequalities become equalities, so \(B_n \) has exactly three connected components, two of them are of quotient type with \(|G_i| = 2 \) and \(\chi(X_n) = \chi(X) = -1 \). It follows that two connected components of \(B_n \) are \((-2)\)-curves and \(\chi(X_i) = \chi(X_{i+1}) \) for every \(i \). By Proposition \(5 \) \(n = 0 \), i.e. \((X_0, B_0) \) is almost minimal.

If \(U \neq 0 \) then by Claim 5, \(D_1 \) and \(D_2 \) are of type \([2]\). But as we have seen in the proof of Claim 6, \(d(D_1) \) and \(d(D_2) \) are coprime. Thus \(U = 0 \). By Claim 1 \(E + D_1 \) is not negative definite, so the only possibility is that \(D_2 \) and \(E \) are \((-2)\)-curves and \(D_1 \) is not negative definite. By Claim 3 \(C^2 = -1 \). Consider the \(\mathbb{P}^1 \)-fibration of \(X \) induced by the linear system of \(D_2 + 2C + E \). We have \(h = 1 \) hence \(0 \leq \Sigma_X = \nu - 1 \). Since \(D \) contains no loop, the 2-section contained in \(D_1 \) meets \(F_\infty \) in one point. Since \(D \) is snc-minimal we infer that \(F_\infty \) is of type \([2,1,2]\). Denote the middle \((-1)\)-curve by \(L \). When we snc-minimize \(D_1 + C + D_2 \) starting from the contraction of \(C \) and \(D_2 \) we do not touch \(F_\infty - L \). By Lemma \([4]\) the result of this minimalization is of type \([2,a,2]\) for some \(a \leq 0 \). However, the discriminant of \([2,a,2]\) is even, hence a chain of this type cannot be a boundary of \(\mathbb{C}^2 \); a contradiction.

Claim 8. \(X \) has a \(\mathbb{C}^1 \)-fibration.

Proof. Suppose \(X \) has a \(\mathbb{P}^1 \)-fibration. It extends to a \(\mathbb{P}^1 \)-fibration of \(\overline{X} \). Then \(D_3 \) is vertical, so it cannot contain a branching \((-1)\)-curve. It follows that \(U = 0 \). We have now \(\Sigma_X = \nu - 2 \), so there are at least 2 fibers contained in \(B \). It follows that \(D_1 \) is a fiber, hence \(d(D_1) = 0 \) and \(d(D_1) \) and \(d(D_2) \) are not coprime; a contradiction. Thus \(X \) has no \(\mathbb{P}^1 \)-fibration. Suppose it also has no \(\mathbb{C}^1 \)-fibration. Because \(\kappa(X) = -\infty \), the structure theorems for smooth surfaces of negative logarithmic Kodaira dimension imply
that \((\overline{X}_n, B_n)\) is a minimal log-resolution of a log del Pezzo surface \([\text{Miy01}, 2.3.15]\).
Moreover, since not all connected components of \(B\) are of quotient type, this log del Pezzo is open, hence has a structure of a Platonic \(\mathbb{C}^*\)-fibration by \([\text{MTS1}]\). In particular, \(\chi(X_n) = 0\). Then \(\chi(X_n) > \chi(X) = -1\), which contradicts Claim 6.

Claim 9. \(X\) has a \(\mathbb{C}^1\)-fibration onto \(\mathbb{C}^1\) with irreducible fibers.

Proof. Let \(\tilde{\pi}: (\tilde{X}, \tilde{B}) \rightarrow (\overline{X}_0, B_0)\) be a minimal modification of \((\overline{X}_0, B_0)\) such that the above \(\mathbb{C}^1\)-fibration can be written as \(r|_X\), where \(r: \tilde{X} \rightarrow \mathbb{P}^1\) is a \(\mathbb{P}^1\)-fibration. Because the base point of \(r: \overline{X}_0 \rightarrow \mathbb{P}^1\) (if exists) belongs to \(B_0\), we have \(\rho(\tilde{X}) = \rho(\overline{X}_0) - \#B_0 = 0\), hence \(h + \nu = 2 + \Sigma_X\) by \([1,2]\).
But because \(r|_X\) is a \(\mathbb{C}^1\)-fibration, \(h = 1\), so \(\nu \geq 1\), i.e. \(\tilde{B}\) contains a fiber \(F_\infty\) of \(r\). Suppose there is more than one fiber contained in \(\tilde{B}\). Since the reduced total transform of \(D\), \(\tilde{D} = \tilde{B} + C\), contains no loop, \(C\) is vertical. In particular, \(C^2 \leq 0\). But \(C\) is a branching component of \(D\), since \(h = 1\), it cannot be a fiber. Thus \(C\) is a \((-1)\)-curve, and hence it is a non-branching component of a fiber containing it. But \(C\) is branching in \(\tilde{D}\), so it meets exactly two other vertical components of \(\tilde{D}\) and the section contained in \(\tilde{D}\). However, the former implies that its multiplicity in the fiber is at least two and the latter implies that its multiplicity is one; a contradiction. Thus \(\nu = 1\) and hence \(\Sigma_X = 0\), so \(r(X) \cong \mathbb{C}^1\) and \(r|_X\) has irreducible fibers. \(\square\)

Claim 10. The \(\mathbb{C}^1\)-fibration of \(X\) has no base points on \(\overline{X}_0\).

Proof. Denote the unique fiber and the unique section of \(r\) contained in \(\tilde{B}\) respectively by \(F_\infty\) and \(H\). The divisor \(B_0\) is snc-minimal and, since \(D_3 \neq [1]\) and \(D_1 \neq 0\), it has three connected components. Let \(T_1, T_2, T_3\) be the connected components of \(B\), say \(T_3\) contains \(H\). Then \(T_3\) contains \(F_\infty\) and the divisors \(T_1\) and \(T_2\) are vertical and snc-minimal. After snc-minimalizing \(T_3 - H\) if necessary we may assume \(\tilde{B} - H\) contains only branching \((-1)\)-curves. But then arguing as in the proof of the previous claim we see that in fact \(T_3 - H\) contains no \((-1)\)-curves at all. Let \(F\) be a singular fiber other than \(F_\infty\). Since \(\Sigma_X = 0\), we infer that \(F\) contains a unique \((-1)\)-curve \(L_F\). By Lemma \([3]\) \(F - L_F\) has at most two connected components and one of them meets \(H\). Since \(T_1, T_2\) and \(T_3\) are disjoint, there are at least two singular fibers other than \(F_\infty\). It follows that \(H\) is a branching component of \(\tilde{B}\). But then \(\tilde{\pi} = \text{id}\), i.e. the \(\mathbb{C}^1\)-fibration of \(X\) is a restriction of a \(\mathbb{P}^1\)-fibration of \(\overline{X}_0\). \(\square\)

Since \(B_0\) is snc-minimal, \(B_0 - H\) contains no \((-1)\)-curves, so \(F_\infty\) is a 0-curve. It remains to prove that \(F_\infty = E\). Since \(C\) is a branching component of \(\epsilon_*D\) with \(C^2 \geq -1\), it follows that it is horizontal. Then \(F_\infty\) meets \(C\). In particular, \(F_\infty\) is a tip of \(B_0\) and \(C\) is a section. If \(F_\infty \subseteq D_1\) then the snc-minimalization of \(D_1 + C + D_2\) does not contract \(F_\infty\), hence by Claim 3 leads to an snc-minimal boundary of \(\mathbb{C}^2\) which is not a chain. But the latter is impossible by Lemma \([4]\). Since \(D_2\) is negative definite, we get \(F_\infty \subseteq \epsilon_*D_3\). Since \(U_i\) is branching in \(D_3\), \(\epsilon_*U_i\) is branching in \(\epsilon_*U_i\), which implies that \(F_\infty\) is not one of the \(\epsilon_*U_i\)’s. Therefore, \(\epsilon = \text{id}\) and hence \(F_\infty = E\). \(\square\)

We now show how Theorem A follows from Theorem \([1]\)

Proof of Theorem A. Let \((\overline{X}, D)\) and \(r: \overline{X} \rightarrow D\) be respectively a minimal smooth completion of \(\mathbb{C}^2 \setminus A\) and a \(\mathbb{P}^1\)-fibration as in Theorem \([1]\). Denote the proper transform of \(A\) on \(\overline{X}\) by \(E\). Since \((\overline{X}, D - E)\) is a smooth completion of \(\mathbb{C}^2 \setminus \text{Sing } A\), \(D - E\) has a unique connected component \(D_\infty\) which is a rational tree with non-negative definite intersection
matrix, and such that $U = D - E - D_\infty$ consists of $\# \text{Sing} A$ connected components contractible to smooth points (of \mathbb{C}^2). In particular, connected components of U are negative definite rational trees. By the minimality of (\mathcal{X}, D) and by the analytical irreducibility of the singularities of A, each such tree contains a unique (-1)-curve U_i and E meets U exactly in U_i’s, each once and transversally. Since the analytic branch of A at infinity (considered, say, in \mathbb{P}^2) is irreducible, there is a unique component C of D_∞ meeting E. We obtain that D is a rational tree with $\rho(\mathcal{X}) + 1$ irreducible components. Note D has $h = \# \text{Sing} A + 1$ horizontal components. We have $\Sigma_{\mathcal{X}/D} = 0$, so by (1.2) $h = 3 - \nu \leq 2$, so A has at most one singular point. Clearly, C is a horizontal component of D and $D_\infty - C$ has at most two connected components, call them D_1 and D_2. If A is singular ($U \neq 0$) then U_1, the (-1)-curve of U meeting E, is the second horizontal component of D. They are both sections of r. Because (\mathcal{X}, D) is minimal, $D - C - U_1$ contains no (-1)-curves. Indeed, such a curve would be a non-branching component of a fiber and, since the horizontal components of D are sections, also a non-branching (-1)-curve in D.

Up to this point we just reproved for (\mathcal{X}, D) what could be obtained by taking the special minimal completion of $\mathbb{C}^2 \setminus A$ as defined in section 1. Suppose $U = 0$. Then $h = 1$, so $\nu = 2$, i.e. there is a unique fiber of r contained in $D_1 + D_2$. Since $D-C$ contains no (-1)-curves, the fiber is a 0-curve. It follows that, say, D_1 is a 0-curve. Making an elementary transformation on D_1 we may assume $C^2 = -1$. The snc-minimization of D_∞ does not contract D_1, which by Lemma 4 implies that D_2 is a chain (negative definite or empty). Since D_∞ is a boundary of \mathbb{C}^2, (1.1) gives $-1 = d(D_1) \cdot (d(C + D_2) - d(D_2)) = -d(D_2)$, so $d(D_2) = 1$. Thus $D_2 = 0$ and hence \mathcal{X} is a Hirzebruch surface. The contraction of C maps it to \mathbb{P}^2 and $C + D_1$ into a pair of lines, so we are done.

We may therefore assume that $U \neq 0$. Then A has a unique singular point. Let F be a singular fiber of r. Its unique component L_F not contained in D is also the unique (-1)-curve in F. Now C and U_1 are sections of r, so they meet components of F of multiplicity one. By Lemma 3 $F - L_F$ has at most two connected components. It follows that F is a chain. Indeed, otherwise only one connected component of $F - L_F$ contains components of multiplicity 1, which would imply that D contains a loop. Thus, every singular fiber of r is a chain with a unique (-1)-curve. Also, $F - L_F$ has exactly two connected components, both contained in D. Each such chain contains exactly two components of multiplicity one, which are tips of the chain. Since U can be contracted to a point by iterating contractions of (-1)-curves, it follows that U_1 meets exactly two components of $U - U_1$, and hence $U_1 \cdot (D - U_1) = 3$. Thus r has exactly two singular fibers, F_1 and F_2. Let L_i be the unique (-1)-curve of F_i. We have $D - E = D_\infty + U$ and we can write $U - U_1 = V_1 + V_2$ and $D_\infty - C = D_1 + D_2$, so that D_i and V_i are connected and $F_i = V_i + L_i + D_i$. Put $Y = \mathcal{X} \setminus D_\infty$. The morphism $\pi_{|Y}: (Y, U + E \setminus \{\infty\}) \to (\mathbb{C}^2, A)$ is a log resolution of singularities. The curves $\pi(L_1 \cap Y)$ and $\pi(L_2 \cap Y)$ are isomorphic to \mathbb{C}^1 and meet in one point, transversally.

We claim there exist coordinates $\{x_1, x_2\}$ on \mathbb{C}^2 such that $\pi(L_i \cap Y)$ is given by $x_i = 0$. To see this first contract U. The images of L_1 and L_2 are smooth, meet transversally and have non-negative self-intersections. Now blow up on $(L_1 + L_2) \cap D_\infty$, so that the proper transforms of L_1 and L_2 are again (-1)-curves and denote the resulting projective surface by \tilde{X}, the total reduced transform of D_∞ by \tilde{D}_∞ and the proper transforms of L_i by \tilde{L}_i. By construction, \tilde{D}_∞ is a chain met by \tilde{L}_1 in a tip W_1 which is a (-1)-curve. Also, $(\tilde{X}, \tilde{D}_\infty)$ is a smooth completion of \mathbb{C}^2. For the \mathbb{P}^1-fibration $\tilde{X} \to \mathbb{P}^1$ induced by the linear system of $\tilde{L}_1 + \tilde{L}_2$ we have $\Sigma_{\mathbb{C}^2} \geq 1$ and $h = 2$, so by (1.2) $\nu = \Sigma_{\mathbb{C}^2} \geq 1$, i.e. \tilde{D}_∞ contains.
a fiber F. Because $D_\infty - W_1 - W_2$ is connected and does not meet $\hat{L}_1 + \hat{L}_2$, it follows that $F = D_\infty - W_1 - W_2$. Let W_3 and W_4 be the (different) components of F meeting W_1 and W_2 respectively. Contracting successively (-1)-curves in $F - W_3 - W_4$ if necessary we may assume there are no (-1)-curves in $F - W_3 - W_4$. Because W_3 and W_4 meet sections, they have multiplicity 1, so then F is necessarily of type $[1, 2, \ldots, 2, 1]$, where the subchain of (-2)-curves has length $s \geq 0$. Since $W_1 + F + W_2$ is a boundary of \mathbb{C}^2, its discriminant is -1, which gives $s = 0$. Blowing up once on $W_1 + W_2$ we may assume F is of type $[1, 2, 1]$. Then the contraction of $W_1 + W_2 + W_3 + W_4$ maps the completion of \mathbb{C}^2 onto \mathbb{P}^2 and $L_1 + L_2$ onto a pair of lines meeting transversally. This gives the coordinates \(\{x_1, x_2\} \).

Put $n = d(V_1)$ and $m = d(V_2)$. The morphism $r_Y : Y \to \mathbb{P}^1$ is a \mathbb{C}^1-fibration and x_1^n/x_2^m is a coordinate on \mathbb{C}^1. Since $E \setminus \{\infty\}$ is a fiber of r_Y, it has equation $x_1^n/x_2^m = \alpha$ for some $\alpha \in \mathbb{C}^*$ and we may assume $\alpha = 1$. Then A has equation $x_1^n = x_2^m$. \hfill \Box

3. Another proof of the Abhyankar-Moh-Suzuki theorem

We now give another, independent of section 2 proof of Theorem B. We need the following lemma. In case of contractible surfaces it was obtained by similar methods by Gurjar and Miyanishi [GM98].

Lemma 6. [Pal13, 3.1(vii)] Let $X \to X'$ be a log resolution of a rational \mathbb{Q}-acyclic normal surface, let \hat{E} be the reduced exceptional divisor and (\overline{X}, D) a smooth completion of X. If $\hat{E} + D$ is a sum of rational trees then

$$|d(D)| = d(\hat{E}) \cdot |H_1(X', \mathbb{Z})|^2.$$

Proof. Let M_D and M be the boundaries of closures of tubular neighborhoods of D and \hat{E}. We may assume that M_D and M are disjoint oriented 3-manifolds. Since \hat{E} is a sum of rational trees, $H_1(\hat{E}, \mathbb{Q}) = 0$. By the \mathbb{Q}-acyclicity of X' the components of $D + \hat{E}$ freely generate $H_2(\overline{X}, \mathbb{Q})$, so $d(D + \hat{E}) \neq 0$. By [Mum61] $H_1(M_D, \mathbb{Z})$ and $H_1(M, \mathbb{Z})$ are finite groups of orders respectively $|d(D)|$ and $d(\hat{E})$. By the Poincare duality $H_2(M_D, \mathbb{Z})$ and $H_2(M, \mathbb{Z})$ are trivial. Let $K = \overline{X} \setminus (\text{Tub}(D) \cup \text{Tub}(\hat{E}))$. By the Lefschetz duality $H_i(K, M_D) \cong H^{4-i}(K, M) = H^{4-i}(X', \text{Sing } X')$, which for $i > 1$ implies that $H_i(K, M_D) \cong H^{4-i}(X') \cong H_{3-i}(X')$ by the universal coefficient formula. Thus the reduced homology exact sequence of the pair (K, M_D) with \mathbb{Z}-coefficients gives:

$$0 \to H_2(K) \to H_1(X') \to H_1(M_D) \to H_1(K) \to H_2(X') \to 0.$$

On the other hand, since $H_i(K, M) \cong H_i(X', \text{Sing } X')$ and $H_1(X', \text{Sing } X') = H_1(X') \oplus \hat{H}_0(\text{Sing } X')$, the reduced homology exact sequence of the pair (K, M) gives:

$$0 \to H_2(K) \to H_2(X') \to H_1(M) \to H_1(K) \to H_1(X') \to 0.$$

From the two exact sequences we obtain $|H_2(K)| \cdot |d(D)| \cdot |H_2(X')| = |H_1(X')| \cdot |H_1(K)|$ and $|H_2(K)| \cdot d(\hat{E}) \cdot |H_1(X')| = |H_2(X')| \cdot |H_1(K)|$, hence

$$|d(D)| \cdot |H_2(X', \mathbb{Z})|^2 = d(\hat{E}) \cdot |H_1(X', \mathbb{Z})|^2.$$

Because a rational \mathbb{Q}-acyclic surface is necessarily affine by an argument of Fujita ([Fuj82, 2.4]), X is an affine variety, and hence has a structure of a CW-complex of real dimension 2. It follows that $H_2(X', \mathbb{Z})$ is torsionless, hence $H_2(X', \mathbb{Z}) = 0$. \hfill \Box
Assume $A \subseteq \mathbb{C}^2$ is a smooth contractible planar curve. Let (\overline{X}, D) be a completion of $\mathbb{C}^2 \setminus A$ defined in section 2. We have $U = 0$, so $D_3 = E$. Assume that $D_1 \neq 0$. Let D_C be the component of D_1 meeting C. Because $D_1 + C + D_2$ is a boundary of \mathbb{C}^2, its discriminant is -1. By (1.1)

$$-1 = d(D_1 + C + D_2) = d(D_1) \cdot d(C + D_2) - d(D_1 - D_C) \cdot d(D_2),$$

which gives $\text{gcd}(d(D_1), d(D_2)) = 1$. Since $d(D_2) \geq 2$, we infer that $d(D_1) \neq 0$.

Suppose $E^2 > 0$. By blowing up on $E \setminus C$ we may replace it with a chain $\hat{E} + H + D_4$, where \hat{E}, the proper transform of E, is a 0-curve, H is a (-1)-curve and D_4 is a chain of (-2)-curves of length $E^2 - 1$. Now \hat{E} induces a \mathbb{P}^1-fibration of the constructed projective surface, such that H is the unique horizontal component of $\hat{B} = D_1 + D_2 + \hat{E} + H + D_4$. Since H and $D_1 + D_2$ are disjoint, \hat{E} is the unique fiber contained completely in \hat{B}. Then (1.2) gives $\Sigma_X = 0$. It follows that every singular fiber F contains a unique component L_F not contained in \hat{B} and this component is a unique (-1)-curve of F. Since H is a section of the fibration, by Lemma 3 $L_F \cdot H = 0$ and $F - L_F$ has at most two connected components. One of these components (the one meeting H, necessarily non-empty) is contained in D_4. But D_4 is connected, so we see that there is at most one singular fiber. Then $D_1 + D_2$ is contained in this fiber, hence it is connected, so $D_1 = 0$, in contradiction to the assumption.

Suppose $E^2 < 0$. Then $d(B) = d(D_1)\cdot d(D_2)\cdot d(E) \neq 0$, so the components of B are independent in $H_2(\overline{X}, \mathbb{Q})$, hence they generate freely the latter space. Let $X \to X'$ be the contraction of E and D_2. We check using Lefschetz duality and standard exact sequences that X' is \mathbb{Q}-acyclic. Applying Lemma 6 to (\overline{X}, D_1) and $\hat{E} = D_2 + E$ we get that $d(D_2 + E)$ divides $d(D_1)$. But $d(D_2 + E) = d(D_2) \cdot d(E)$, so $d(D_2)$ divides $d(D_1)$: a contradiction.

Thus E is a 0-curve. Then D_1 and D_2 are vertical for the \mathbb{P}^1-fibration of \overline{X} induced by the linear system of E. Since D_2 is negative definite, we have $\nu \leq 2$. By (1.2), $\nu = 2 + \Sigma_X$, so $\nu = 2$. This means that D_1, being snc-minimal, is a 0-curve, so $d(D_1) = 0$; a contradiction.

Therefore, we proved that $D_1 = 0$. As in the Claim 1 in the previous section we argue that $C^2 = 0$ and D_2 is irreducible. Then $\rho(\overline{X}) = 2$, so \overline{X} is a Hirzebruch surface. Again, after making some elementary transformation we may assume that $D_2^2 = -1$. Then the contraction of D_2 maps \overline{X} onto \mathbb{P}^2 and E onto a line. Theorem B follows.

References

[AM75] Shreeram S. Abhyankar and Tzuong Tsieng Moh, Embeddings of the line in the plane, J. Reine Angew. Math. 276 (1975), 148–166.

[Bri68] Egbert Brieskorn, Rationale Singularit¨ aten komplexer Fl¨ achen, Invent. Math. 4 (1967/1968), 336–358.

[Dai91] D. Daigle, Birational endomorphisms of the affine plane, J. Math. Kyoto Univ. 31 (1991), no. 2, 329–358.

[Fuj82] Takao Fujita, On the topology of noncomplete algebraic surfaces, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 29 (1982), no. 3, 503–566.

[GM96] Rajendra Vasant Gurjar and Masayoshi Miyanishi, On contractible curves in the complex affine plane, Tohoku Math. J. (2) 48 (1996), no. 3, 459–469. MR 1404515 (97h:14052)

[GM98] , Some results on $\mathbb{C}^3/\mathbb{C}^*$, preprint, 1998.

[Gur02] R. V. Gurjar, A new proof of the Abhyankar-Moh-Suzuki theorem, Transform. Groups 7 (2002), no. 1, 61–66.

[KNS89] Ryoichi Kobayashi, Shu Nakamura, and Fumio Salai, A numerical characterization of ball quotients for normal surfaces with branch loci, Proc. Japan Acad. Ser. A Math. Sci. 65 (1989), no. 7, 238–241. MR 1030189 (90k:32034)
THEOREMS OF LIN-ZAIDENBERG AND ABHYANKAR-MOH-SUZUKI

[12] Ryoichi Kobayashi, Uniformization of complex surfaces, Kähler metric and moduli spaces, Adv. Stud. Pure Math., vol. 18, Academic Press, Boston, MA, 1990, pp. 313–394.

[Kor07] Mariusz Koras, On contractible plane curves, Affine algebraic geometry, Osaka Univ. Press, Osaka, 2007, pp. 275–288.

[Lan03] Adrian Langer, Logarithmic orbifold Euler numbers of surfaces with applications, Proc. London Math. Soc. (3) 86 (2003), no. 2, 358–396.

[Miy01] Masayoshi Miyanishi, Open algebraic surfaces, CRM Monograph Series, vol. 12, American Mathematical Society, Providence, RI, 2001.

[MT84] Masayoshi Miyanishi and Shuichiro Tsuchida, Noncomplete algebraic surfaces with logarithmic Kodaira dimension $-\infty$ and with nonconnected boundaries at infinity, Japan. J. Math. (N.S.) 10 (1984), no. 2, 195–242.

[Mum61] David Mumford, The topology of normal singularities of an algebraic surface and a criterion for simplicity, Inst. Hautes Études Sci. Publ. Math. (1961), no. 9, 5–22.

[NR87] Walter Neumann and Lee Rudolph, Unfoldings in knot theory, Math. Ann. 278 (1987), no. 1-4, 409–439.

[NR88], Corrigendum: “Unfoldings in knot theory”, Math. Ann. 282 (1988), no. 2, 349–351.

[Pal11] Karol Palka, Exceptional singular Q-homology planes, Ann. Inst. Fourier (Grenoble) 61 (2011), no. 2, 745–774, arXiv:0909.0772.

[Pal13] Classification of singular Q-homology planes. I. structure and singularities, Israel J. Math. 195 (2013), 1–33, arXiv:0806.3110.

[PK13] Karol Palka and Mariusz Koras, Singular Q-homology planes of negative Kodaira dimension have smooth locus of non-general type, Osaka J. Math. 50 (2013), no. 1, 61–114, arXiv:1001.2256.

[Ram71] C. P. Ramanujam, A topological characterisation of the affine plane as an algebraic variety, Ann. of Math. (2) 94 (1971), 69–88.

[Rus02] Peter Russell, Some formal aspects of the theorems of Mumford-Ramanujam, Algebra, arithmetic and geometry, Part I, II (Mumbai, 2000), Tata Inst. Fund. Res. Stud. Math., vol. 16, Tata Inst. Fund. Res., Bombay, 2002, pp. 557–584.

[Suz74] Masakazu Suzuki, Propriétés topologiques des polynômes de deux variables complexes, et automorphismes algébriques de l’espace \mathbb{C}^2, J. Math. Soc. Japan 26 (1974), 241–257.

[ZL83] M. G. Zaïdenberg and V. Ya. Lin, An irreducible, simply connected algebraic curve in \mathbb{C}^2 is equivalent to a quasihomogeneous curve, Dokl. Akad. Nauk SSSR 271 (1983), no. 5, 1048–1052.

Karol Palka: INSTITUTE OF MATHEMATICS, POLISH ACADEMY OF SCIENCES, UL. ŚNIADECKICH 8, 00-656 WARSAW, POLAND

E-mail address: palka@impan.pl