Implications of shared predation for space use in two sympatric leporids

Martijn J. A. Weterings1,2 | Sophie P. Ewert2 | Jeffrey N. Peereboom2 | Henry J. Kuipers2 | Dries P. J. Kuijper3 | Herbert H. T. Prins1 | Patrick A. Jansen1,4 | Frank van Langevelde1,5 | Sipke E. van Wieren1

Abstract
Spatial variation in habitat riskiness has a major influence on the predator–prey space race. However, the outcome of this race can be modulated if prey shares enemies with fellow prey (i.e., another prey species). Sharing of natural enemies may result in apparent competition, and its implications for prey space use remain poorly studied. Our objective was to test how prey species spend time among habitats that differ in riskiness, and how shared predation modulates the space use by prey species. We studied a one-predator, two-prey system in a coastal dune landscape in the Netherlands with the European hare (Lepus europaeus) and European rabbit (Oryctolagus cuniculus) as sympatric prey species and red fox (Vulpes vulpes) as their main predator. The fine-scale space use by each species was quantified using camera traps. We quantified residence time as an index of space use. Hares and rabbits spent time differently among habitats that differ in riskiness. Space use by predators and habitat riskiness affected space use by hares more strongly than space use by rabbits. Residence time of hare was shorter in habitats in which the predator was efficient in searching or capturing prey species. However, hares spent more time in edge habitat when foxes were present, even though foxes are considered ambush predators. Shared predation affected the predator–prey space race for hares positively, and more strongly than the predator–prey space race for rabbits, which were not affected. Shared predation reversed the predator–prey space race between foxes and hares, whereas shared predation possibly also released a negative association and promoted a positive association between our two sympatric prey species. Habitat riskiness, species presence, and prey species’ escape mode and foraging mode (i.e., central-place vs. noncentral-place forager) affected the prey space race under shared predation.

KEYWORDS
alternative prey, habitat characteristics, habitat riskiness, residence time, space race, vegetation structure
1 | INTRODUCTION

In the behavioral response race between predators and their prey (Sih, 2005), predators select locations and times in response to the use of space by prey (Laundré, 2010), resulting in "risky places" and "risky times" (Creel, Winnie, Christianson, & Liley, 2008, i.e., landscape of fear, Laundré, Hernández, & Altendorf, 2001), whereas prey in turn often seek places and times to avoid these risky places and times (Lima & Dill, 1990) (Figure 1a). The predator-prey space race, based on game theory, is affected by fear imposed by the habitat or the "inherent riskiness of the habitat" (sensu Hugie & Dill, 1994), which is determined by the habitat characteristics that affect the probabilities of attack and escape (Bednekoff & Lima, 1998).

The habitat characteristics that determine the probability of an attack (i.e., pre-encounter risk) are not necessarily the same habitat characteristics that determine the probability of escape from a predator (i.e., postencounter risk) (Gorini et al., 2012). For example, open habitats with low vegetation density, little cover, or short vegetation provide high visibility for the prey and facilitate movement or escape (Gorini et al., 2012; Lima, 1992), however, they have low possibilities for hiding and concealment. In contrast, more closed habitats have low visibility for the prey and hinder movement or escape, however, they have more possibilities for hiding and concealment (Wirsing, Cameron, & Heithaus, 2010). As a result, spatial variation in habitat riskiness has a major influence on the relation between the use of space by prey and predators (Chesson, 2000); however, its outcome can be modulated if prey shares enemies with fellow prey (i.e., another prey species).

Sharing of natural enemies by different prey species is common in natural communities (Chaneton & Bonsall, 2000). It may result in apparent competition, an indirect effect in which a given prey species experiences more predation risk resulting from the presence of fellow prey (Holt, 1977, 2009). Competition for enemy-free space causes prey species to avoid risky places and times as a result of the presence of fellow prey, that is, short-term apparent competition or aggregative response (Holt & Kotler, 1987; Holt & Lawton, 1994). The effect of a shared predator on each prey species, among others, depends on the amount of resource overlap and spatial overlap between prey species, and the riskiness of the habitat (DeCesare, Hebblewhite, Robinson, & Musiani, 2010). Additionally, differences in prey escape strategy (e.g., the use of refuges), predator type, and the density of additional prey and predators that influence the probability of an encounter and/or the subsequent probability of an attack can affect the response of prey to shared predation (Carbone & Gittleman, 2002; Holley, 1993).

However, the implications of shared predation on prey space use remain poorly studied (Chaneton & Bonsall, 2000). In particular, more insight is needed on the fine-scale space use by prey and predator species as a result of the interaction between habitat riskiness and the presence or absence of shared predation (see e.g., Camacho, Sáez-Gómez, Potti, & Fedriani, 2017). Spatial variation in habitat riskiness, for example, can prevent depensatory predation and extinction of prey (Sinclair et al., 1998). However, the effect of spatial variation in habitat riskiness on the relation between the use of space by prey that share a predator is not well understood (DeCesare et al., 2010; Oliver, Luque-Larena, & Lambin, 2009; Wirsing et al., 2010). Therefore, our objective was to test how prey species spend time among habitats that differ in riskiness, and how shared predation modulates the space use by prey species.

2 | STUDY SYSTEM

We used a one-predator, two-prey system composed of the European hare (Lepus europaeus, Pallas, 1778) and European rabbit (Oryctolagus cuniculus, Linnaeus, 1758) as sympatric prey species and the red fox (Vulpes vulpes, Linnaeus, 1758) as their main predator. We used European hare as the focal species and rabbit as the fellow prey species and vice versa to investigate prey space use. Rabbits are social central-place herbivores and prefer edge habitat near grasslands (Bakker, Reiffers, Olff, & Gleichman, 2005; Barnes & Tapper, 1986), such as coastal dune habitat. The hare is a solitary non-central-place herbivore that is common in open grassland areas (Barnes & Tapper, 1986), such as agricultural (Smith, Jennings, & Harris, 2005), and coastal habitat (Kuijper & Bakker, 2008). Although there is considerable spatial overlap in habitat use between rabbits and hares, for example their habitat-specific escape modes differ markedly. Rabbits use their burrows to escape predation risk. According to Bakker et al. (2005), rabbit space use is not affected by habitat riskiness or predation risk. In contrast, the effect of hare predation has been suggested to depend on the available vegetation structure, cover, and openness of the landscape (Focardi & Rizzotto, 1999; Smith et al., 2005). Hares are known to use tall vegetation as cover or resting places (Neumann, Schai-Braun, Weber, & Amrhein, 2011). Additionally, hare space use is sometimes positively or negatively related to edge habitats (Bresinski, 1983; Caravaggi, Montgomery, & Reid, 2015), presumably depending on the associated riskiness of

![Figure 1](https://example.com/figure1.png)

Figure 1 Conceptual representation of the relationship between space use by prey and that of their predators: (a) single prey predator system with prey (P) and predator (E), (b) predator two-prey system with asymmetrical apparent competition between two prey species (P_e = rabbit; P_r = hare) that share a common predator (i.e., red fox) (adjusted from Chaneton & Bonsall, 2000). Solid lines are direct effects; dashed lines are indirect effects. Arrows point toward dependent entity. Negative magnitudes indicate spatial avoidance by prey; positive magnitudes indicate spatial aggregation by predator. Arrow widths indicate the relative strength of the effects.
the habitat. Hares stand up to predators and can make use of crypsis and flight (Focardi & Rizzotto, 1999). Foxes can substantially impact hare and rabbit populations (Banks, 2000; Schmidt, Asferg, & Forchhammer, 2004); however, foxes often prefer rabbits over other species (Díaz-Ruíz et al., 2011; Norbury, 2001; Smith & Quin, 1996). Red fox is known to make use of linear landscape features (Frey & Conover, 2006), and select for ecotones and habitats with protective cover (Kiener & Zaitsev, 2010) to ambush prey (Holley, 1993); however, foxes can also make use of open areas. We hypothesize that the habitat riskiness perceived by prey species is low in habitats in which predators are inefficient in searching or capturing prey species, such as structurally complex habitats (Hugie & Dill, 1994). Therefore, we expect prey species to perceive low risk in habitats with protective cover (e.g., areas with tall shrubs and half-open vegetation structures). Besides, we expect prey species to perceive low risk in nonedge habitats, because foxes are efficient in capturing (i.e., ambush) mobile prey using cover that can be associated with edges (Holley, 1993). Even though there is a lack of knowledge on species edge responses, edge habitats affect perceived predation risk by prey species differently than nonedge habitats, because many terrestrial predators probably hunt more effectively along habitat edges, increasing predation (Lesmeister, Nielsen, Schaub, & Hellgren, 2015; Lidicker, 1999; Tscharntke et al., 2012).

The high-risk open vegetation structures provide quality foraging ground for hares and rabbits (Kuijper & Bakker, 2008). Hares and rabbits have a considerable resource overlap (Kuijper, Wieren, & Bakker, 2004), and Homolka (1987) considered them as competitors when sympatric. Rabbits maintain high-quality patches with short vegetation (Bakker et al., 2005). Intense grazing by rabbits can change the plant species composition, vegetation height, and perceived predation risk, thereby affecting the interaction between hares and rabbits (Bakker, Olff, & Gleichman, 2007; Shipley, 2007). For example, a change in the plant species composition could lead to an increase or decrease in preferred food plants available for hares.

FIGURE 2 Location of the three study areas with fox, hare, and rabbit populations: Vennewater (VW), Koningsbos (KB), and Infiltration area Castricum (ICAS)
of vegetation with an average herb height ≥30 cm) vegetation structures. Open vegetation structures with low vegetation height provide quality foraging ground for hares and rabbits (Kuijper & Bakker, 2008), but little cover, whereas half-open vegetation structures provide visual cover from predators. Cover is provided when the vegetation is higher than the approximate height of the prey species (i.e., >30 cm for hares) (Neumann et al., 2011). We choose to use a threshold of 10% cover to separate open areas from half-open area, as especially habitats that have a less dense cover (i.e., <10%, such as pasture) provide little visual cover for predators during the day (Neumann et al., 2011). We considered prey species to perceive low risk in half-open vegetation structures. Second, we categorized each patch as an edge or nonedge location. We considered prey species to perceive low risk in nonedge locations. Edge habitat was defined as a 12.5-m strip parallel to a boundary between adjacent (contiguous) vegetation communities that are used differently by prey species, that is, open, half-open, shrub, and forest (Lidicker, 1999). We chose these dimensions, because (a) obligate rabbit burrowers experience a change in risk over distances less than 10 m (Crowell et al., 2016), (b) hare flight distance is on average less than 12 m (Neumann et al., 2011; Rizzotto & Focardi, 1997), and (c) camera traps are able to detect space use by our species at a maximum distance of 12.5 m.

During five sessions of approximately 15 days each between 16 October 2014 and 8 January 2015, we randomly placed forty-two cameras (Reconyx Hyperfire: HC500 & HC600, infrared trigger) within the four strata (210 random points, 3,038 successful trap days). The research period was chosen to fall outside of the reproduction period for both prey species to eliminate factors that could confound space use. Before placement, we took a random sample of possible locations of camera traps from a high-resolution (1:5,000) GIS map from Everts, Pranger, Tolman, and Vries (2008), Everts, Pranger, Tolman, and Vries (2009). The final locations of the camera traps were interspaced on average by 689 m (SD ± 1.189, n = 135, range: 4–5,580 m) (Supporting Information Table S3), including >25 m from waterbodies and >16 m from recreational paths. We subdivided each patch near an edge location into three different types depending on the surrounding vegetation (forest, thicket, half-open, or open) reflecting differences in movement speed. During placement, we positioned cameras at edge locations on the edge itself, facing perpendicularly away from the edge. We directed cameras at nonedge locations north to avoid overexposure by sunlight during the day. Cameras were mounted on a wooden pole, and the line of sight measured from the camera-lens was calibrated to run parallel to the soil surface at a height of 30 cm up to at least 5 m (cf Jansen, Forrester, & McShea, 2014), without clearing any vegetation. In front of each camera, we measured the shrub height in five locations in a 12.5 × 12.5 m orthogonal layout, that is, related to the maximum detection distance. We considered prey species to perceive low risk in patches with tall shrubs. Cameras were set to record a burst of 10 photos (1 s⁻¹) when triggered, without any time lapse between bursts.

We quantified residence time by hares, rabbits, and foxes as an index of fine-scale space use (T). We visually assessed residence time
of a visit from sequences of camera trap photos. Sequences of trap photos without a quiet period longer than 120 s were defined as visits. Because the average visit of hares, rabbits, and foxes was much shorter than 120 s (Supporting Information Table S3), this seemed justified. We calculated average residence time per visit as a prey response to predation risk (e.g., Fortin et al., 2009; Visscher, Merrill, & Martin, 2017), because in contrast to the total residence time, the average residence time is independent of the frequency a species visits a camera location. The average prey residence time thus differentiates between many quick visits (i.e., high risk) and several longer visits (i.e., low risk) that could add up to the same total residence time. In a similar fashion, the average predator residence time differentiates between many quick visits (i.e., low risk) and several longer visits (i.e., high risk). We corrected residence time for the effective detection area, total deployment time of each camera and speed (Equation (1)).

Average residence time (s hr⁻¹ m⁻²):

\[T_s = \frac{t_{avg}}{(r_{eff})^2 \left(\frac{r_{avg}}{2} \right) t_{dep} \psi_s} \]

\(t_{avg} \) = average time spent active in front of a camera per visit (s); \(r_{eff} \) = effective detection distance in open or half-open vegetation structures (m), \(\theta_{eff} \) = effective detection angle in open or half-open vegetation structures (rad), \(t_{dep} \) = deployment time of the camera (hr), \(\psi_s \) = average geometric speed of animals in each habitat type, relative to the average geometric speed in open or half-open vegetation structures.

For each species, we measured the detection distance and detection angle of the first capture just before relocating each camera using a wild game viewer. For each species, we estimated the effective detection distance and angle in open and half-open vegetation structures using R and functions for fitting standard linear covariate detection models to the position of the first capture by camera traps (Rowcliffe, Carbone, Jansen, Kays, & Kranstauber, 2011; Supporting Information Table S2). The effective detection distance and angle defined the area of the habitat type that was surveyed. We measured the distance covered by individuals by a tape measure in front of the cameras, and this distance was used to calculate the average geometric speed of the species in all habitat types (Rowcliffe et al., 2011). We used the average geometric speed of each species in each habitat type relative to the average geometric speed in open or half-open vegetation structure to correct for the differences in the effective detection areas.

3.2 | Data analysis

We investigated prey space use by selecting camera locations that captured the species under investigation on at least one occasion. Furthermore, we selected datasets with camera locations that captured either rabbit or hare only to compare prey space use with and without shared predation. This resulted in six nonoverlapping datasets: hare only (21 cameras, 71 visits), rabbit only (36 cameras, 222 visits), hare and rabbit (8 cameras, 258 visits), hare and fox (18 cameras, 186 visits), rabbit and fox (55 cameras, 995 visits), and hare, rabbit, and fox (20 cameras, 1,065 visits). For each species in each dataset, we calculated the average residence time and per camera. Potential effects of undetected foxes were considered negligible, because camera detection correlates positively with body mass and average residence time in front of a camera (Rowcliffe et al., 2011). Effects of species avoiding camera patches, however closely present to a camera, were also considered negligible, because we investigated fine-scale effects of predation risk in front of the camera (±10–25 m²), whereas rabbits and hares experience a change in risk over distances smaller than 12 m (Crowell et al., 2016; Neumann et al., 2011; Rizzotto & Focardi, 1997). Additionally, we assumed that the residence time was not greatly influenced by individuals visiting multiple camera locations (i.e., spatial autocorrelation), because the average distance between camera traps during sessions was 689 m (SD ± 1,189, n = 135). An overview of the characteristics of the response and predictor variables used in the datasets can be found in the Supporting Information Table S3. Note that the range of habitat characteristics that determine habitat riskiness varies over the datasets.

To assess the effects of predator space use and habitat riskiness on prey space use, we tested the effects of (a) the average residence time of the predator, (b) habitat riskiness (i.e., open or half-open vegetation structure, edge or nonedge location, and shrub height), and (c) their interactions on the prey average residence time. We hypothesized that hares and rabbits perceived a high risk when fox average residence time increased (Lima & Dill, 1990) (see overview hypotheses in Table 1). Moreover, we hypothesized that risk associated with fox average residence time depended on the habitat riskiness (i.e., context dependent; Kuijper, Bubnicky, Churski, Mols, & Hoft, 2015).

To compare datasets and assess whether and how shared predation affected prey space use, we additionally tested the effects of (a) the average residence time of fellow prey, (b) the interaction between the average residence time of fellow prey and predators, and (c) the interaction between the average residence time of fellow prey and habitat riskiness on the prey average residence time. We hypothesized that hares and rabbits perceived a high risk with an increase in the fellow prey average residence time that can increase predation risk for prey with a shared predator (Holt, 2009). Moreover, we hypothesized that risk associated with fellow prey average residence time depended on predator space use and the habitat riskiness (Kuijper et al., 2015).

We assessed the prey average residence time by running linear mixed models (lmer, R Package lme4 version 1.1-12). Models were kept simple (a maximum of three parameters, i.e., two main effects and one interaction; 2 number of parameters ≤ number of cameras) because of the low number of cameras in each dataset. We assessed multicollinearity of continuous predictor variables by a script from Zuur, Ieno, and Elphick (2010). The variance inflation factor (VIF) of all continuous predictor variables remained below 1.9 in all datasets, except for dataset B (i.e., hare and rabbit), in which the average residence time of rabbits was highly correlated with shrub height. Each model included the session number as a random factor and was weighted
according to the square root of the number of photos of the response species taken at a camera location (Lipták, 1958). We could not use IT criteria (i.e., AICc) to compare models in different datasets, because the selected datasets contained different samples, that is, not all cameras where visited by all species studied. We thus assessed the relative strength of the parameters using standardized regression coefficients. The hare, rabbit, and fox residence times were right skewed and log_{10} transformed for the analysis. We centered the binary predictor variables (open or half-open vegetation structure, edge or noneedge location) and scaled the continuous predictor variables by dividing their means by two standard deviations (Gelman, 2008). The data points of the standardized predictor variables were within two standard deviations from the mean. We verified the assumptions by visual inspection and plotted the residuals against the predicted values. Finally, we corrected for the false discovery rate in each dataset by a simple sequential Bonferroni-type procedure (Benjamini & Hochberg, 1995).

Results

Effects of predator and habitat on prey residence time

The presence of foxes affected the average residence time of hares in habitats that differed in shrub height, open or half-open vegetation structure, and edge or noneedge location (Table 2, compare dataset A and C). Hares spent less time in habitats with low shrub height, open vegetation structure, or habitats away from edges. Additionally, hare average residence time was negatively related to fox average residence time in areas with a half-open vegetation structure (Figure 3), whereas it was unrelated in areas with an open vegetation structure. The presence of foxes did not affect the average residence time of rabbits, although in the absence of foxes, rabbits spent more time in half-open vegetation structures compared to open vegetation structures (Table 3, compare dataset E and F).
Residence time of foxes was only correlated with edge habitat when hares were present. When hares were present, foxes spent more time in edge habitats compared to nonedge habitats ($t = 4.9, n = 36, p < 0.0001$).

4.2 Effects of fellow prey on predator–prey residence time

The presence of rabbits (i.e., introducing shared predation) affected the relation between the residence times of foxes and hares. In the presence of rabbits, hare average residence time was positively related to fox average residence time in areas with a half-open vegetation structure, whereas it was unrelated in areas with an open vegetation structure (Figure 4). This interaction was reversed in the absence of rabbits (see Figure 3; Table 2, compare dataset C and D). Additionally, when rabbits (and foxes) were present, hares did not avoid habitats with low shrub height, open vegetation structure, or

FIGURE 3

Hare average residence time ($\bar{X} \pm 95\% CI$) as a determinant of the interaction between the fox average residence time and vegetation structure (18 cameras, 186 visits, standardized). Rabbits were not detected by cameras.
habitats away from edges, comparable to locations where only hare was present (Table 2, compare dataset A, C, and D). The presence of hares did not affect the predator–prey space race between foxes and rabbits.

4.3 Effects of predator on fellow prey–prey residence time

The presence of foxes (i.e., introducing shared predation) affected the relation between the residence times of rabbits and hares. In the absence of foxes, hare average residence time was negatively related to rabbit average residence time in open vegetation structures, whereas it was unrelated in areas with a half-open vegetation structure (Figure 5). However, hare average residence time and rabbit average residence time were unrelated in open or half-open vegetation structures when foxes were present (Table 2, compare dataset B and D). In the absence of foxes (but presence of hares), rabbit average

![Figure 4](image-url)
residence time was negatively related to shrub height, whereas rabbit average residence time and shrub height were unrelated when foxes (and hares) were present (Table 3, compare dataset B and D).

5 | DISCUSSION

5.1 | Prey and predator distribution among habitats differing in habitat riskiness

Overall, predator space use and habitat riskiness more strongly affected space use by hares than space use by rabbits. Noncentral-place foragers like hares are more capable of shifting their use of space as a response to a change in predation risk, as they have larger home ranges, have access to a wider range of food resources, and possess multiple escape modes (Stott, 2007; Wirsing et al., 2010). Moreover, hares have a relatively small digestive system, which acts as a weight-minimizing adaptation to enhance flight and maximizes the passage rate to cope with low-quality forage (Kuijper et al., 2004; Stott, 2007). Therefore, hares can compensate for a poorer diet that comes at the cost of a shift in space (Laundré, Hernández, & Ripple, 2010). As a central-place forager, rabbits are less capable of shifting their use of space as a result of predation risk. Even though predation risk is predicted to increase with distance from the central location of central-place foragers (Lima & Dill, 1990), space use by a central-place forager like rabbit was not affected by predation risk; instead space use was strongly affected by food quality (Bakker et al., 2005). However, rabbit space use could be affected by the spatial arrangement of their refuges (Wilson, Rayburn, & Edwards, 2012). Central-place foragers should maximize net energy gain and have more difficulty to compensate for a poorer diet that comes at the cost of a shift in space (Demment & Van Soest, 1985; Schoener, 1979; Shipley, 2007; Stott, 2007). Hence, as a response to predation risk, central-place foragers could shift their activities in time (Bakker et al., 2005).

As expected, hares spent more time in locations with tall shrubs and half-open vegetation structures when foxes were present. Structure-rich tall shrub and half-open vegetation may reduce risk for prey that hide from predators by a reducing their encounter rate with predators (Lima & Dill, 1990; Riginos & Grace, 2008; Verdolfini, 2006). However, hares also spent more time in locations near edges when foxes were present, even though foxes prefer protective cover, and ecotones, and are considered ambush predators (Holley, 1993; Kiener & Zaitsev, 2010). Prey escape mode is context dependent (Kuijper et al., 2015; Wirsing et al., 2010). Even though hares use closed vegetation as a hiding place (Neumann et al., 2011), and can conceal themselves from predators by their cryptic coloration (Focardi & Rizzotto, 1999), they could retain the option of flight by hiding in edge habitat. Possibly hares did not prefer to use open vegetation structures away from edges, because habitat riskiness of open vegetation structures in a mosaic of vegetation patches may depend on landscape characteristics, such as the patch size of the vegetation that can affect the probability of attack and the probability of escape (Heithaus, Wirsing, Burkholder, Thomson, & Dill, 2009).

5.2 | The effects of shared predation on space use by prey

Few field studies on terrestrial systems have quantitatively investigated the effects of shared predation on fine-scale space use by prey species (Camacho et al., 2017; Johnson et al., 2013; Oliver et al., 2009). As expected, the presence of rabbits (i.e., introducing shared predation) affected the predator–prey space race for hares more strongly than vice versa. However, we did not find shared predation to negatively affect space use by hare as expected. In contrast, we found that shared predation reduced predation risk for hares and did not affect rabbit. Fellow prey that are preferred prey, such as rabbit, can attract predators (Díaz-Ruiz et al., 2011; Doherty et al., 2015; Norbury, 2001; Smith & Quin, 1996) that can reduce the probability of being targeted or increase the probability of escape for other prey when collectively detected (Bednekoff & Lima, 1998). Predation risk for the weaker competitor is expected to be lower, if the stronger competitor is more vulnerable to predation (Grand & Dill, 1999). Both prey are then expected to aggregate in the risky but productive open habitat. This corroborates our results, particularly, if we assume that the smaller rabbits have an exploitative competitive advantage over the larger hares (Flux, 2008; Persson, 1985; Shipley, 2007), and that rabbits are more vulnerable to predation because they are preferred prey of predators like feral cat and red fox. Preferred prey species experience regulatory predation, in contrast to prey species that are less preferred, which are more prone to depensatory predation (DeCesare et al., 2010; Sinclair et al., 1998).

Hares and rabbits seemed to be negatively associated in open vegetation structure and in tall shrubs in the absence of foxes. This behavior could erroneously be interpreted as apparent competition, but in our case, this is most likely the result of exploitative competition (Halliday & Morris, 2013). However, exploitative and apparent competition can act simultaneously between sympatric species (Chase et al., 2002;
The presence of foxes (i.e., introducing shared predation) affected the space use between hares and rabbits. The presence of a shared predator can release competition between prey species and promote their coexistence in productive open vegetation structures with high risk, and in landscapes that contain spatial variation in habitat riskiness (Bonsall, Bull, Pickup, & Hassell, 2005; Bonsall & Hassell, 2000; DeCesare et al., 2010; Grand & Dill, 1999; Gurevitch, Morrison, & Hedges, 2000). Nevertheless, it seemed that even though foxes were present, the negative association between hares and rabbits in tall shrubs with low risk persisted (see Table 2 data set D), possibly because rabbit as a stronger competitor prefers burrows in edge habitat with protective shrub cover (Bakker et al., 2005).

Several other factors could explain the response of prey to shared predation. First, the presence and density of other prey species, such as mice, and ground breeding birds will affect the relationship between our prey and their shared predator, because additional prey can affect the density of predators (Carbone & Gittleman, 2002; Duffy et al., 2007). Nevertheless, in our coastal dune landscape, a small part of the fox diet (<25% of feces content) did not constitute of rabbit and hares (Mulder, 2005). Second, the timing of prey responses to predation risk is important (Lima & Dill, 1990). Prey species can vary in their space use over time and can shift their space use in time as a response to increased predation risk (Eccard, Pusenius, Sundell, Halle, & Ylönen, 2008; Tambling et al., 2015), affecting the temporal overlap between prey and predator (Linkie & Ridout, 2011). Third, the prey space use is affected by the trade-off between food and the risk of predation that is related to prey body size and food availability (Hopcraft, Anderson, Pérez-Vila, Mayemba, & Olff, 2012; Hopcraft, Olff, & Sinclair, 2010; Owen-Smith, Fryxell, & Merrill, 2010). Compared to hare, rabbit is much smaller in body size. Space use by rabbits is thus more strongly affected by food than predation (Bakker et al., 2005; Hopcraft et al., 2012, 2010), because the metabolic rate of smaller prey is relatively higher, mass-specific nutritional requirements increase with declining body mass, and smaller herbivorous mammals are more limited in their digestive efficiency (Demment & Van Soest, 1985; Owen-Smith, 1988; Schmidt-Nielsen, 1990). Possibly, rabbits are thus unable to avoid predation risk via spatial shifts, because of their foraging mode as a result of their food requirements and the central place of their burrow.

CONCLUSIONS

Hares and rabbits spent time differently among habitats that differ in riskiness. Space use by predators and habitat riskiness affected space use by hares as a noncentral-place forager more strongly than space use by rabbits as a central-place forager. Residence time of hare was shorter in habitats in which the predator was efficient in searching or capturing prey species. However, hares spent more time in edge habitat when foxes were present, even though foxes are considered ambush predators. Habitat riskiness and species presence interacted with the space use by predators and the space use by fellow prey on the space use by prey. Shared predation affected the predator–prey space race for hares positively, and more strongly than the predator–prey space race for rabbits, which were not affected. Shared predation reversed the predator–prey space race between foxes and hares, whereas shared predation possibly also released a negative association and promoted a positive association between hares and rabbits. Prey species’ properties, such as escape mode and characteristics that affect foraging mode (i.e., body size, competitive ability, and dependence or independence of a prey to a central place), affect the space use by prey among habitats that differ in riskiness by shared predation.

ACKNOWLEDGMENTS

We are indebted to Bart Albers, Lisa van Erp, Kyra Fastenau, Rick Heeres, Inger de Jonge, Jingyue Songma, Julia Kestler, Theo Meijer, Sander Moonen, Robert Oudejans, Kira Rokx, David Smit, Nina Schouten, Arjen Strijkstra, Martijn Struijff, Sharon Boekhout, and Martijn van der Ende for field assistance. We thank the two anonymous referees as well as the assistant editor for their constructive comments on the manuscript. We are grateful for the logistical support by Hubert Kivit, Paul van der Linden, Dave Nanne, and Evert-Jan Woudsma from PWN Waterleidingbedrijf Noord-Holland, and for PWN to provide access to the study area. This study was funded by the Netherlands Organization for Scientific Research (NWO) (023.001.222 to MW), Van Hall Larenstein University of Applied Sciences, and Wageningen University.

CONFLICT OF INTEREST

The authors declare they have no conflict of interest.

AUTHOR CONTRIBUTIONS

Conception and design: MW, SE, JP, HK, PJ, and SvW, acquisition of data: MW, SE, and JP, analysis and interpretation of data: MW, HK, PJ, and FvL, manuscript: MW, DK, HP, PJ, FvL, and SvW wrote the manuscript. All authors read, reviewed, and approved the final manuscript.

DATA ACCESSIBILITY

The data are deposited in the Dryad Digital Repository.

ORCID

Martijn J. A. Weterings https://orcid.org/0000-0002-2951-2929
Patrick A. Jansen https://orcid.org/0000-0002-4660-0314
Frank van Langevelde https://orcid.org/0000-0001-8870-0797

REFERENCES

Bakker, E. S., Olff, H., & Gleichman, J. M. (2007). Contrasting effects of large herbivore grazing on smaller herbivores. Basic and Applied Ecology, 10, 141-150. https://doi.org/10.1016/j.baae.2007.10.009
Hopcraft, J. G., Olff, H., & Sinclair, A. R. E. (2010). Herbivores, predation and community organization. In S. A. Levin (Ed.), *The Princeton guide to ecology*. Princeton, NJ: Princeton University Press.

Holt, R. D., & Kotler, B. P. (1987). Short-term apparent competition. *The American Naturalist*, 130(3), 412–430. https://doi.org/10.1086/284718

Holt, R. D., & Lawton, J. H. (1994). The ecological consequences of shared natural enemies. *Annual Review of Ecology, Evolution, and Systematics*, 25, 495–520. https://doi.org/10.1146/annurev.es.25.110194.002431

Homolka, M. (1987). The diet of brown hare (*Lepus europaeus*) in central Bohemia. *Fauna Zoologica*, 36(2), 103–110.

Hopcraft, J. G. C., Anderson, T. M., Pérez-Vila, S., Mayemba, E., & Olff, H. (2012). Body size and the division of niche space: Food and predation differentially shape the distribution of Serengeti grazers. *Journal of Animal Ecology*, 81, 201–213. https://doi.org/10.1111/j.1365-2656.2011.01885.x

Hopcraft, J. G. C., Olff, H., & Sinclair, A. R. E. (2010). Herbivores, resources and risks: Alternating regulation along primary environmental gradients in savannas. *Trends in Ecology and Evolution*, 25, 119–128. https://doi.org/10.1016/j.tree.2009.08.001

Hugie, D. M., & Dill, L. M. (1994). Fish and game: A game theoretic approach to habitat selection by predators and prey. *Journal of Fish Biology*, 45, 151–169.

Jansen, P. A., Forrester, T. D., & McShea, W. J. (2014). Protocol for camera-trap surveys of mammals at CTFS-ForestGEOSites. Ancon, Panamá: Smithsonian Tropical Research Institute, Center for Tropical Forest Science.

Johnson, H. E., Hebblewhite, M., Stephenson, T. R., German, D. W., Pierce, B. M., & Bleich, V. C. (2013). Evaluating apparent competition in limiting the recovery of an endangered ungulate. *Oecologia*, 171, 295–307. https://doi.org/10.1007/s00442-012-2397-6

Kooijman, A. M., Dopheide, J. C. R., Sevink, J., Takken, I., & Verstraten, J. M. (1998). Nutrient limitations and their implications on the effects of atmospheric deposition in coastal dunes; lime-poor and lime-rich sites in the Netherlands. *Journal of Ecology*, 86, 511–526. https://doi.org/10.1046/j.1365-2745.1998.00273.x

Kuiper, D. P. J., & Bakker, J. P. (2008). Unpreferred plants affect patch choice and spatial distribution of Brown hares. *Acta Oecologica*, 34, 339–344.

Kuiper, D. P. J., Bubenicki, J. W., Churski, M., Mols, B., & Van Hooft, P. (2015). Context dependence of risk effects: Wolves and tree logs create patches of fear in an old-growth forest. *Behavioural Ecology*, 26(6), 1558–1568. https://doi.org/10.1093/beheco/avr107

Kuiper, D. P. J., van Wieren, S. E., & Bakker, J. P. (2004). Digestive strategies in two sympatrically occurring lagomorphs. *Journal of Zoology London*, 264, 1–8. https://doi.org/10.1017/S0952836904005722

Laundré, J. W. (2010). Behavioral response races, predator-prey shell games, ecology of fear, and patch use of pumas and their ungulate prey. *Ecology*, 91(10), 2995–3007. https://doi.org/10.1890/08-2345.1

Laundré, J. W., Hernández, L., & Altendorf, K. B. (2001). Wolves, elk, and bison: Re-establishing the “landscape of fear” in Yellowstone National Park, U.S.A. *Canadian Journal of Zoology*, 79, 1401-1409. https://doi.org/10.1139/z01-094

Laundre, J. W., Hernandez, L., & Ripple, W. J. (2010). The landscape of fear: Ecological implications of being afraid. *The Open Ecology Journal*, 3, 1–7.

Lesmeister, D. B., Nielsen, C. K., Schauer, E. M., & Hellgren, E. C. (2015). Spatial and temporal structure of a mesocarnivore guild in Midwestern North America. *Wildlife Monographs*, 191, 1–61. https://doi.org/10.1002/wmn1015

Lidicker, W. Z. Jr (1999). Responses of mammals to habitat edges: An overview. *Landscape Ecology*, 14, 333–343.

Lima, S. L. (1992). Strong preferences for apparently dangerous habitats? A consequence of differential escape from predators. *Oikos*, 64, 597–600. https://doi.org/10.2307/3545181

Lima, S. L., & Dill, L. M. (1990). Behavioral decisions made under the risk of predation: A review and prospectus. *Canadian Journal of Zoology*, 68, 619–640. https://doi.org/10.1139/c90-092

Linkie, M., & Ridout, M. S. (2011). Assessing tiger-prey interactions in Sumatran rainforests. *Journal of Zoology*, 284, 224–229. https://doi.org/10.1017/j.1469-7998.2011.00801.x

Lipták, T. (1958). On the combination of independent tests. *Publications of the Mathematical Institute of the Hungarian Academy of Sciences*, 3, 171–196.

Mulder, J. L. (2005). Vossenonderzoek in de duinstreken van 1979 tot 2000. VZZ report 2005.72. Zoogdiervereniging VZZ, Arnhem, The Netherlands.

Neumann, F., Schai-Braun, S., Weber, D., & Amrhein, V. (2011). European hares select resting places for providing cover. *Hystric, the Italian Journal of Mammalogy*, 22(2), 291–299.

Noonburg, E. G., & Byers, J. E. (2005). More harm than good: When in-vader vulnerability to predators enhances impact on native species. *Ecology*, 86(10), 2555–2560. https://doi.org/10.1890/05-0143

Norbury, G. (2001). Conserving dryland lizards by reducing predator-mediated apparent competition and direct competition with introduced rabbits. *Journal of Applied Ecology*, 38, 1350–1361. https://doi.org/10.1046/j.0021-8901.2001.00685.x

Oliver, M., Luque-Larena, J. J., & Lambin, X. (2009). Do rabbits eat voles? Apparent competition, habitat heterogeneity and large-scale coexistence under mink predation. *Ecology Letters*, 12, 1201–1209. https://doi.org/10.1111/j.1461-0248.2009.01375.x

Owen-Smith, N. (1988). *Megaherbivores: The influence of very large body size on ecology*. Cambridge, UK: Cambridge University Press.

Owen-Smith, N., Fryxell, J. M., & Merrill, E. H. (2010). Foraging theory upcaled: The behavioural ecology of herbivore movement. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 365, 2267–2278. https://doi.org/10.1098/rstb.2010.0095

Persson, L. (1985). Asymmetrical competition: Are larger animals competitively superior? *The American Naturalist*, 126, 261–266.

Prins, H. H. T., & Olff, H. (1998). Species-richness of African grazer assemblages: Towards a functional explanation. In D. M. Newbery, H. T. T. Prins, & N. D. Brown (Eds.) *Dynamics of tropical communities*. 37th Symposium of the British Ecological Society.

Riginos, C., & Grace, J. B. (2008). Savanna tree density, herbivores, and the herbaceous community: Bottom-up vs. top-down effects. *Ecology*, 89, 2228–2238. https://doi.org/10.1890/07-1250.1

Rizzotto, M., & Focardi, S. (1997). A physiologically-based model of a self-motivated hare in relation to its ecology. *Ecological Modelling*, 95, 191–209. https://doi.org/10.1016/S0304-3800(96)00037-3

Rowcliffe, J. M., Carbone, C., Jansen, P. A., Kays, R., & Kranstauber, B. (2011). Quantifying the sensitivity of camera traps: An adapted distance sampling approach. *Methods in Ecology and Evolution*, 2, 464–476. https://doi.org/10.1111/j.2041-210X.2011.00094.x

Schmidt, N. M., Asfeg, T., & Forchhammer, M. C. (2004). Long-term patterns in European brown hare population dynamics in Denmark: Effects of agriculture, predation and climate. *BMC Ecology*, 4, 15. https://doi.org/10.1186/1472-6785-4-15

Schmidt-Nielsen, K. (Ed.) (1990). *Animal physiology: Adaptation and environment*. Cambridge, UK: Cambridge University Press.
Schoener, T. W. (1979). Generality of the size-distance relation in models of optimal feeding. The American Naturalist, 114(6), 902–914. https://doi.org/10.1086/283537
Shipley, L. A. (2007). The influence of bite size on foraging at larger spatial and temporal scales by mammalian herbivores. Oikos, 116, 1964–1974. https://doi.org/10.1111/j.2007.0030-1299.15974.x
Sih, A. (2005). Predator-prey space use as an emergent outcome of a behavioural response race. In P. Barbosa, & I. Castellanos (Eds.), The ecology of predator-prey interactions (pp. 240–255). Oxford, UK: Oxford University Press.
Sinclair, A. R. E., Pech, R. P., Dickman, C. R., Hik, D., Mahon, P., & Newsome, A. E. (1998). Predicting effects of predation on conservation of endangered prey. Conservation Biology, 12, 564–575. https://doi.org/10.1046/j.1523-1739.1998.97030.x
Smith, A. P., & Quin, D. G. (1996). Patterns and causes of extinction and decline in Australian conilurin rodents. Biological Conservation, 77, 243–267.
Smith, R. K., Jennings, N. V., & Harris, S. (2005). A quantitative analysis of the abundance and demography of European hares Lepus europaeus in relation to habitat type, intensity of agriculture and climate. Mammal Review, 35(1), 1–24. https://doi.org/10.1111/j.1365-2907.2005.00057.x
Stott, P. (2007). Comparisons of digestive function between the European hare (Lepus europaeus) and the European rabbit (Oryctolagus cuniculus): Mastication, gut passage, and digestibility. Mammalian Biology, 72, 276–286. https://doi.org/10.1016/j.mambio.2007.07.002
Tambling, C. J., Minnie, L., Meyer, J., Freeman, E. W., Santymire, R. M., Adendorff, J., & Kerley, G. I. H. (2015). Temporal shifts in activity of prey following large predator reintroductions. Behavioral Ecology and Sociobiology, 69, 1153–1161. https://doi.org/10.1007/s00265-015-1929-6
Trehella, W. J., Harris, S., & McAllister, F. E. (1988). Dispersal distance, home-range size and population density in the red fox (Vulpes vulpes): A quantitative analysis. Journal of Applied Ecology, 25(2), 423–434. https://doi.org/10.2307/2403834
Tscharnkte, T., Tylianakis, J. M., Rand, T., Didham, R. K., Fahrig, L., Batáry, P., ... Westphal, C. (2012). Landscape moderation of biodiversity patterns and processes – eight hypotheses. Biological Review, 87, 661–685. https://doi.org/10.1111/j.1469-185X.2011.00216.x
Verdolin, J. L. (2006). Meta-analysis of foraging and predation risk trade-offs in terrestrial systems. Behavioral Ecology and Sociobiology, 60, 457–464. https://doi.org/10.1007/s00265-006-0172-6
Visscher, D. R., Merrill, E. H., & Martin, P. K. (2017). Hierarchical trade-offs between risk and reward mediated by behaviour. Mammal Research, 62, 129–140.
Whinam, J., Fitzgerald, N., Visoiu, M., & Copson, G. (2014). Thirty years of vegetation dynamics in response to a fluctuating rabbit population on sub-Antarctic Macquarie Island. Ecological Management & Restoration, 15(1), 41–51. https://doi.org/10.1111/emr.12076
Wilson, T. L., Rayburn, A. P., & Edwards, T. C. (2012). Spatial ecology of refuge selection by an herbivore under risk of predation. Ecosphere, 3(1), 1–18.
Wirsing, A. J., Cameron, K. E., & Heithaus, M. R. (2010). Spatial responses to predators vary with prey escape mode. Animal Behaviour, 79, 531–537. https://doi.org/10.1016/j.anbehav.2009.12.014
Zuur, A. F., Ieno, E. N., & Elphick, C. S. (2010). A protocol for data exploration to avoid common statistical problems. Methods in Ecology and Evolution, 1, 3–14. https://doi.org/10.1111/j.2041-210X.2009.00001.x

SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section at the end of the article.

How to cite this article: Weterings MJA, Ewert SP, Peereboom JN, et al. Implications of shared predation for space use in two sympatric leporids. Ecol Evol. 2019;9:3457–3469. https://doi.org/10.1002/ece3.4980