Ecological risks from zinc contamination to preys of the Irrawaddy dolphin (Orcaella brevirostris) in Banten Bay

M A Khalifa¹*, M M Kamal², E M Adiwilaga² and A Sunuddin³

¹ Fisheries Department, University of Sultan Ageng Tirtayasa, Indonesia,
² Aquatic Resources Management Department, Bogor Agricultural University, Indonesia
³ Marine Science and Technology Department, Bogor Agricultural University, Indonesia
*e-mail: ma.khalifa@untirta.ac.id

Abstract. Banten Bay is an estuarine ecosystem which serves as important habitat for Irrawaddy dolphin (Orcaella brevirostris), also functions as a fishing ground for artisanal fishers, maritime port, shipyard, and surrounded by industrial zones. One major impact from land-based industrial development is the load of heavy metal pollution (Zinc –Zn), which cause a potential threat to Irrawaddy dolphin population as a predator in the ecosystem through bioaccumulation process from its prey. This research aimed to measure ecological risks in Irrawaddy dolphin due to Zn contamination in its potential prey, i.e., sardines (Sardinella fimbriata) and squids (Loligo sp.). Survey on dolphin population was conducted in Banten Bay from Jan 2013 to Feb 2014 with participatory mapping and visual observation, while Zn concentration in dolphin's preys was measured using Atomic Absorption Spectrophotometer (AAS) and analyzed by Risk Quotient (RQ) with base assumption that Maximum Allowable Concentration (MAC) of Zn is 6.7 mg/kg wet weight. Results showed that concentration of Zn in squids (7.67±1.02 mg/kg WW) was higher than that of sardines (3.46±0.29 mg/kg WW). Thus, squids have a moderate risk, while sardines have low risk to bioaccumulation of Zn in Irrawaddy dolphin.

1. Introduction

Irrawady dolphin (Orcaella brevirostris) is one of protected species where found in Banten Bay [1]. Local name of Irrawaddy dolphin in Indonesia is Pesut Mahakam. Mahakam is one of the rivers in Kalimantan Island where was Irrawaddy dolphin’s habitat [2]. Irrawaddy dolphin also found in other coastal waters, river, and lake in Indonesia [3], [4], [5]. This member of Delphinidae has "Vulnerable" status, and some sub-population has "Critically endangered" category in International Union for Conservation of Nature (IUCN) [6].

Banten Bay is a shallow estuarine ecosystem, with a maximum depth is 30 meters. Banten Bay has rapid economic development, like fisheries activity, shipyard, and surrounded by industrial area [7]. Cilegon and Bojonegara was an industrial area in the west of the bay and produced the highest volume pollution to Banten Bay [8]. There are 16 metal industries [9], which could generate heavy metals contamination to environment. Previous Research [10] indicates high zinc contamination existed in Banten Bay.

Heavy metals pollution in Banten Bay will threaten Irrawady dolphin’s life. Ecological impact from pollution like habitat destruction and bioaccumulation in Irrawaddy dolphin's body. Heavy metals contamination in cetacean could lead organs and function damage until causing death [11]. This research aims to evaluate ecological risk from zinc contamination to prey of the Irrawaddy dolphin (Orcaella brevirostris) in Banten Bay.
2. Method
This research is part of Irrawaddy dolphin research in Banten Bay at 2013-2014. Irrawaddy dolphin main prey is small pelagic fish, cephalopods, and some species of macrozoobenthos [12]. This research sample is Sardines (Sardinella fimbriata) and Squid (Loligo sp.). Local fishing port reported during the year, sardines and squid are existed in Banten Bay. Prey's sample analyzed in Environmental Analysis Laboratory, Faculty of Agricultural Technology, Bogor Agricultural University. Samples analyzed by Atomic Absorption Spectrophotometer (AAS) with five replication.

Before ecological risk from metals contamination analyzed, Maximum Allowable Concentration (MAC) metals information is required. MAC value (mg/ kg WW) was estimate refer to [13]:

\[
MAC = \frac{RfD \times BW \times AT}{IR \times FI \times EF \times ED}
\]

where: \(RfD\) = References Dose Zn (mg/ kg ww per day); \(BW\) = Body Weight (kg); \(AT\) = Average Time (days); \(IR\) = Ingestion Rate (kg per day); \(FI\) = Fraction Ingested; \(EF\) = Exposure Frequency (days/ year); \(ED\) = Exposure Duration (year).

Some of the variables for calculated MAC was not available for Irrawaddy dolphin. Therefore, some variable information applied from other species with the same ecological niche. This paper refers to Finless porpoises (Neophocaena phocaenoides) [14], shown in Table 1.

Variables	Values
References Dose Zn	0.3 mg/ kg WW
Body Weight	60 kg
Average Time	10.220 days
Ingestion Rate	3 kg/ day
Fraction Ingested	0.9
Exposure Duration	28 years
Exposure Frequency	365 days/ year

Ecological risk evaluates with Risk Quotient (RQ) value from metals concentration in prey compared with MAC value [13]:

\[
RQ = \frac{2 \times \text{Concentration}}{MAC}
\]

Risk classification: \(RQ < 1\) : Low Risk, \(1 \leq RQ < 10\) : Moderate Risk, \(RQ \geq 10\) : High Risk.

3. Result and discussion
Last research reported about heavy metals pollution in Banten Bay’s water and sediment, the highest concentration was Zinc [10]. These case predicted because of some metal industry near Banten Bay used Zinc for material in the industrial process [9]. Zinc is one of essential element for organism, with particular function for metabolism. However, an excess of zinc can cause organism health disorders. Zinc concentration from sardines and squid samples are shown in figure 1
Figure 1. Zinc concentration at Irrawaddy dolphin’s prey.

Figure 1 shown Zn concentration in sardines is 3.51 ± 0.52 mg/ kg WW and while in squid is 7.67 ± 1.03 mg/ kg WW. Zinc concentration in squid higher than in sardines due to the squid has bioaccumulation capacity greater than small pelagic fish [15]. Bioaccumulation capacity related to the ecological trophic food chain, squid was on the higher trophic level than sardines.

The result of zinc MAC value calculation is 6.7 mg/kg WW. Less information about Irrawaddy dolphin became an entire constrain for this research. Therefore, Irrawaddy dolphin research enhancement was required for making conservation effort. MAC value higher than zinc concentration in sardines, inversely in squid. Comparison of MAC value and Zinc concentration define as RQ value. RQ value for sardines and squid shown in figure 2.

Figure 2. RQ values of squid and sardines Zn concentration.
Based on RQ value in figure 2, zinc contamination to Irrawaddy dolphin from sardines has low risk. Meanwhile, zinc concentration from squid has moderate risk contaminated to Irrawaddy dolphin. Zinc contamination could cause trouble for Irrawaddy dolphin’s health.

High concentration of mercury and zinc founded in harbor porpoise died from infectious disease than physical trauma [16], [17]. Those indicate that excess mercury and zinc in the cetacean body are decreasing bodies resistance capacity from infectious disease (from bacteria, fungus, virus, parasite-like pneumonia disease).

Potential risk from zinc contamination to Irrawaddy dolphin is the devastation of the nervous system, degrade immunity, may even cause death. Previous research reported necropsy from several Irrawaddy dolphin accumulated low concentration of heavy metal in liver and kidney but was not mortality factors [18], [19]. In MeKong river, a low concentration of zinc in liver and kidney of Irrawaddy dolphin were found [20].

Irrawaddy dolphin's habitat is often overlapping with an anthropogenic activity that produces pollutant. This case requires deep research for resulting detail information about the effect of metal pollution to Irrawaddy dolphin, contaminant accumulation in Irrawaddy dolphin and many more. That information will be principle information for holistic conservation effort.

4. Conclusion
Banten Bay is already contaminated by zinc. Ecological risk of zinc contamination to Irrawaddy dolphins from sardines is low, while squid has moderates risk contaminated to Irrawaddy dolphins in Banten Bay.

Acknowledgments
This research funded by Education Fund Management Institution, Ministry of Monetary and Excellence High Education Scholarship, Ministry of Research, Technology and Higher Education, Indonesia. This research supported by Karangantu National Fishing Port, Indonesia.

References
[1] Khalifa M A, Kamal M M, Adiwilaga E M and Sunuddin A 2014 Preliminary study on the distribution of Irrawaddy Dolphin, *Orcaella brevirostris*, in Banten Bay Open Journal of Marine Science 4(4) 338-343
[2] Kreb D and Noor I Y 2012 Abundance and Threats Monitoring Surveys During Low Water Levels July and September 2012-Pesut Mahakam Conservation Program Technical Reports (Samarinda: Yayasan Konservasi RASI)
[3] Tas’an and Leatherwood S 1984 Cetaceans Live-Captured for Jaya Ancol Oceanarium, Djakarta 1974-1982 International Whaling Commission Document SC/35/SM2: 485-489
[4] Rudolph P, Smeenk C and Leatherwood S 1997 Preliminary checklist of Cetacea in the Indonesian Archipelago and adjacent waters (Leiden: Nationaal Natuurhistorisch Museum)
[5] Kreb D and Budiono 2005 Cetacean Diversity and Habitat Preferences in Tropical Waters of East Kalimantan, Indonesia The Raffles Bulletin of Zoology 53(1) 149-155
[6] Reeves R R, Jefferson T A, Karczmarski L, Laidre K, O’Corry-Crowe G, Rojas-Bracho L, Secchi E R, Slooten E, Smith B D, Wang J Y and Zhou K 2008 *Orcaella brevirostris* The IUCN Red List of Threatened Species 2008: e.T15419A4579987 http://dx.doi.org/10.2305/IUCN.UK.2008.RLTS.T15419A4579987.en
[7] Indonesia Institute of Sciences 2001 Laporan Penelitian Wilayah Pesisir Teluk Banten Tahap Kedua (Jakarta: Indonesian Institute of Sciences)
[8] Sjaifuddin 2007 Pengelolaan Lingkungan Wilayah Pesisir dan Laut Teluk Banten Berkelanjutan [Disertation] (Bogor: Bogor Agricultural University)
[9] Salim J 2009 Model Pengelolaan Limbah Industri Baja Sebagai Upaya Untuk Mempertahankan Kelestarian Wilayah Pesisir Kawasan Industri Krakatau Cilegon [Disertation] (Bogor: Bogor Agricultural University)
[10] Rochayutun E, Lestari and Abdul R 2005 Kualitas Lingkungan Perairan Banten dan Sekitanya Ditinjau dari Kondisi Logam Berat Oceanologi dan Limnology di Indonesia 38 23 – 46
[11] Das K, Debacker V, Pillet S and Bouquegneau J M 2003 Toxicology of Marine Mammals, ed Vos J G, Bossart G D, Fournier M, and O’Shea T J (London: Taylor&Francis)

[12] Baros N B and Clarke M R 2009 Encyclopedia of Marine Mammals (2nd edition) ed WF Perrin B Würsig and JGM Thewissen (Oxford: Elsevier Inc)

[13] Hung C L H, So M K, Connel D W, Fung C N, Lam M H W, Nicholson S, Richardson B J and Lam P K S 2004 A preliminary risk assessment of trace elements accumulated in fish to the Indo-Pacific Humpback Dolphin (Sousa chinensis) in the Northwestern Waters of Hongkong Chemosphere 54 643-651

[14] Hung C L H, Lau R K, Lam J C W, Jefferson T A, Hung K S, Lam M H W and Lam P K S 2007 Risk assessment of trace elements in the stomach contents of Indo-Pacific Humpback Dolphins and Finless Porpoises in Hongkong Waters Chemosphere 66 1175-182

[15] Wahyuni H, Sasongko S B and Sasongko D P 2013 Konsentrasi logam berat di perairan, sediment dan biota dengan faktor biokonsentrasiinya di Perairan Batu Belubang, Kab Bangka Tengah METANA 9(2) 8-18

[16] Bennet P M, Jepson P D, Law R J, Jones B R, Kuiken T, Baker J R, Rogan E and Kirkwood J K 2001 Exposure to heavy metals and infectious disease mortality in Harbour Porpoise from England and Wales Environmental Pollution 112 33-40

[17] Kaskuschke A and Prange A 2007 The Influence of metal pollution on the immune system a potential stressor for marine mammals in the North Sea International Journal of Comparative Psychology 20 179-193

[18] Beasley I, Chooruk S and Piwpong N 2002 The status of the Irrawaddy Dolphin, Orcaella brevirostris, in Songkhla Lake, Southern Thailand The Raffles Bulletin of Zoology 10 75-83

[19] Beasley I 2007 Conservation of the Irrawaddy Dolphin, Orcaella brevirostris (Owen in Gray, 1866) in the Mekong River: Biological and Social Considerations Influencing Management [Ph.D. Thesis] (Queensland: James Cook University)

[20] Siebert U and Das K 2011 Evaluation of The Ecotoxicological Effects of POPs and Heavy Metals, Reflecting Pathological, Microbiological and Genetic Analyses, on The Mekong River Population of Irrawaddy Dolphins (Orcaella brevirostris) (Washington: World Wildlife Fund)