Salvage low-dose-rate 125I partial prostate brachytherapy after dose-escalated external beam radiotherapy

Lynn Chang, MD,1 Mark K. Buyyounouski, MD, MS2
1Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA, 2Department of Radiation Oncology, Stanford University, Stanford, CA, USA

Abstract

Purpose: To report outcomes on 5 patients treated with salvage partial low-dose-rate (LDR) 125-iodine (125I) permanent prostate seed brachytherapy (BT) for biopsy-proven locally persistent prostate cancer, following failure of dose-escalated external beam radiotherapy (EBRT).

Material and methods: A retrospective review of the Fox Chase Cancer Center prostate cancer database identified five patients treated with salvage partial LDR 125I seed implant for locally persistent disease following dose-escalated EBRT to 76-84 Gy in 2 Gy per fraction equivalent. All patients had post-EBRT biopsies confirming unilateral locally persistent prostate cancer. Pre-treatment, EBRT and BT details, as well as post-treatment characteristics were documented and assessed.

Results: The median follow-up post-implant was 41 months. All five patients exhibited low acute genitourinary and gastrointestinal toxicities. Increased erectile dysfunction was noted in three patients. There were no biochemical failures following salvage LDR 125I seed BT to date, with a median post-salvage PSA of 0.4 ng/mL.

Conclusions: In carefully selected patients with local persistence of disease, partial LDR 125I permanent prostate seed implant appears to be a feasible option for salvage local therapy with an acceptable toxicity profile. Further study is needed to determine long-term results of this approach.

J Contemp Brachytherapy 2014; 6, 3: 304–310
DOI: 10.5114/jcb.2014.45134

Key words: brachytherapy, LDR, prostate cancer, recurrence, salvage, seeds.

Purpose

Locally recurrent prostate cancer following external beam radiotherapy (EBRT) is a therapeutic dilemma. Viable residual carcinoma has been estimated to occur in 10-54% of patients two or more years following EBRT [1-3]. Patients diagnosed with locally persistent disease often seek a second local treatment to the prostate with the goal of cure. Brachytherapy (BT) is an attractive option for these patients due to its ability to deliver a high radiation dose to the prostate with a high degree of conformity [4-7]. However, there is a risk of genitourinary toxicity, specifically incontinence, which approaches 31% [8,9], and gastrointestinal toxicity, associated with injury to the rectum, ranging from 3 to 35% [7-10].

Further complicating the risk-to-benefit balance of salvage BT is the lack of outcomes data in the era of EBRT dose-escalation. Higher doses of EBRT have been shown to reduce the risk of prostate cancer recurrence in several clinical trials [11-15]. Presently, the National Comprehensive Cancer Network (NCCN) guidelines recommend EBRT doses ranging from 75.6-81 Gy depending on risk categorization [16]. The current understanding of the potential toxicity associated with salvage BT is derived from literature based on EBRT doses of 63-68 Gy [4-7]. It is well-established that radiation toxicity is directly related to dose and patients treated with dose-escalated EBRT may be at higher risk of toxicity.

At Fox Chase Cancer Center (FCCC), dose-escalated EBRT of ≥ 76 Gy has been prescribed for over two decades [17]. Furthermore, in a recent trial of hypofractionation, a prescription of 70.2 Gy in 26 fractions was used, which is the equivalent of 84.4 Gy in 2.0 Gy fractions assuming an α/β ratio of 1.5 [18]. With the goal of mitigating risk of additional toxicity for carefully selected patients with unilateral recurrence, a salvage low-dose-rate (LDR) partial prostate implant approach has been implemented. The primary objective of this paper is to report the feasibility, preliminary toxicity, and biochemical outcomes for patients treated with salvage permanent LDR 125I seed partial prostate BT in the era of dose-escalated EBRT. To our knowledge, this is the first report of...
salvage LDR prostate BT following either dose-escalated or hypofractionated EBRT.

Material and methods

The FCCC prostate cancer database was queried to identify patients who had received primary definitive EBRT and subsequent LDR salvage BT for prostate cancer. A total of five patients treated from 2007 to 2011 were identified. Pre-treatment, treatment, and post-treatment characteristics were collected. T-stage was reported as per the American Joint Cancer Commission (AJCC) 7th edition.

External beam radiotherapy techniques

All patients received primary EBRT with 3-dimensional conformal radiation therapy (3DCRT) or intensity-modulated radiation therapy (IMRT). The 3DCRT [19,20] and IMRT [21] techniques have been previously described. In 3DCRT, a small pelvic four-field plan was treated to a dose of 46 Gy in 23 daily fractions with three subsequent field reductions to block the rectum and bladder, and achieve a total dose to the prostate of 78 Gy in 39 daily fractions. Intensity-modulated radiation therapy was delivered using the step-and-shoot technique with an 8 to 9 beam arrangement. On the IRB 02-602 clinical trial, patients were randomized to receive conventionally fractionated IMRT to 76 Gy in 38 fractions (2.0 Gy per day) versus hypofractionated IMRT to 70.2 Gy in 26 fractions (2.7 Gy per day) to the prostate. Assuming an α/β of 1.5, the latter dose-fractionation scheme would be biologically equivalent to 84.4 Gy in 2.0 Gy daily fractions.

Post-treatment biopsy

Post-treatment biopsies were performed for one of the following indications: as a two-year endpoint as indicated by the FCCC IRB #02-602 protocol, for a suspicious rising PSA, biochemical failure or for a suspicious palpable abnormality on digital rectal exam (DRE). All patients received extended core biopsies of both lobes of the prostate with at least 12 cores obtained. A pathologist with special expertise in urologic oncology reviewed the biopsy materials. A four-tier classification scheme was described [23]. Using a FCCC modified Best 125I seed loader (Best Medical International, Inc., Springfield, VA, USA), the seeds and spacers were positioned according to plan and inserted into the sleeve (hollow suture material), which were loaded into the applicator needles. The needles were inserted through a transperineal approach under ultrasound guidance, using the axial and sagittal views to confirm accurate needle and seed placement prior to deployment. Once all the seeds were placed, cystoscopy was performed by the urologist to ensure the absence of seeds from the bladder and urethra.

The median radioactive seed activity for 125I was 0.33 mCi. A total dose of 110 Gy was prescribed to 100% of the volume. Post-implant CT and MRI scans for Day 0 dosimetry was used to contour the CTV, which again was the appropriate right or left half of the prostate. Further dosimetric calculations were performed 30 days post-implant to ensure coverage and seed stability. Given the prior external beam radiation dose, all attempts were made at the time of implant to spare the rectum and urethra, with the goal of limiting rectal V100% to less than 1 cc and urethral V150% to 0 cc.

Follow-up

Patients returned for follow-up at 1 and 3 months following BT, and every 6 to 12 months thereafter. This generally consisted of a focused history, DRE (except 1 and 3 month visits), and PSA (except 1 month visit). Biochemical failure was determined using the Phoenix definition (i.e. PSA nadir + 2 ng/mL). Toxicity, including gastrointestinal (GI), genitourinary (GU), and erectile dysfunction (ED) was defined according to the Common Terminology Criteria for Adverse Events (CTCAE) version 3.0.
Results

The median follow-up was 41 months (range: 24–60). Descriptions of the five cases from the time of initial diagnosis to last follow-up are described below and summarized in Table 1. Brachytherapy characteristics and 30 day post-implant dosimetry are summarized in Table 2. Overall, there was no increase in GI or GU toxicity following salvage BT. There was some progression of ED in three patients, evidenced by a decline in their Sexual Health Inventory for Men (SHIM) scores. Figure 2 shows the American Urologic Association (AUA) Prostate Symptom Scores over time and no trends were observed. All patients had a decline in serum PSA following salvage BT without evidence of biochemical failure.

Patient 1

A 66 year old Caucasian male with presenting PSA of 5.2 ng/mL, GS 6 (3 + 3) disease in the right base, mid and apex, and clinical T2A disease on DRE. He was randomized to the hypofractionated arm of FCCC IRB #02-602, receiving 70.2 Gy in 26 fractions using IMRT. His PSA nadir was 0.2 ng/mL, 2.8 years after treatment. He had two post-treatment biopsies, the first at two years showing GS 6 (3 + 3) adenocarcinoma with radiation effect. A second biopsy at three years failed to show regression, with GS 6 (3 + 3) disease with treatment effect on the right. At the time of salvage BT, 3.4 years after EBRT, his PSA was 0.3 ng/mL. Brachytherapy and dosimetry details are shown in Table 2. At his last follow-up, five years post-salvage BT, his DRE was within normal limits and PSA was 0.1 ng/mL. He had no acute or late grade 2 or higher GI or GU toxicities throughout. There was evidence of grade 2 ED after EBRT, which was unchanged after salvage BT with SHIM scores ranging from 8-11 without interventions.

Patient 2

A 66 year-old Caucasian male with presenting PSA of 5.0 ng/mL, GS 7 (3 + 4) adenocarcinoma in the right base,
mid and lateral margin and apex, and clinical T2A disease on DRE. He received primary EBRT with 3DCRT to 78 Gy in 39 fractions. His PSA nadir five years post-treatment was 0.7 ng/mL. A repeat biopsy at nine years post-treatment, at which time his PSA was 2.1 ng/mL and his DRE showed firmness on the right, demonstrated GS 7 (4 + 3) and 6 (3 + 3) disease in 3 cores on the right. He underwent salvage BT more than 9 years after completion of EBRT. Brachytherapy and dosimetry details are shown in Table 2.

At his last follow-up, 4.4 years after salvage treatment, his PSA was 0.5 ng/mL and DRE was within normal limits. He had no acute or late grade 2 or higher GI or GU toxicities. He had late grade 2 ED following primary EBRT, which declined further after salvage BT with SHIM scores ranging from 5-10, for which he used a vacuum-assisted device with success.

Patient 3

A 52 year old Caucasian male with presenting PSA of 8.3 ng/mL, GS 6 (3 + 3) disease in the left apex, mid, base and lateral mid and base, and clinical T2A disease on DRE. He was randomized on FCCC IRB #02-602 to the conventional fractionation arm and received IMRT to 76 Gy in 38 fractions. His PSA nadir was 1.4 ng/mL, 1.3 years after treatment. He had a total of three post-treatment biopsies. The first biopsy at two years (per #02-602 protocol) and second biopsy at four years, both showed

Table 1. Patient characteristics

Factor	Patient 1	Patient 2	Patient 3	Patient 4	Patient 5
Age (yrs)	66	66	52	46	57
Gleason score	7 (3 + 4)	6 (3 + 3)	6 (3 + 3)	6 (3 + 3)	7 (3 + 4)
PSA (ng/mL)	5.2	5.0	8.3	10.4	4.7
T stage	T2a	T2a	T2b	T1c	T2a
EBRT technique;	IMRT;	3DCRT;	IMRT;	3DCRT;	IMRT;
dose/fractions	70.2 Gy/26	78 Gy/39	76 Gy/38	78 Gy/39	76 Gy/38
PSA nadir (ng/mL)	0.2	0.7	1.4	0.8	0.4
Number of post-RT biopsies	2	1	3	1	2
Post-RT biopsy GS	6 (3 + 3)	7 (4 + 3)	1	7 (3 + 4)	7 (3 + 4)
Time to salvage BT (yrs)	3.4	9	5.3	11	6.8
PSA at salvage BT (ng/mL)	0.3	2.1	2.6	2.5	3.1*
ADT	N/A	N/A	N/A	6 months	6 months
Duration of follow-up (yrs)	5	4.4	3.4	2	2
PSA at last follow-up (ng/mL)	0.1	0.5	1.4	0.4	0.2
Toxicity (≥ gr 2)	ED	ED	ED	N/A	ED
pre-salvage BT					
Toxicity (≥ gr 2)™	ED	ED	ED	ED	ED
post-salvage BT					

Table 2. Brachytherapy characteristics and 30 day post-implant prostate dosimetry

Factor	Patient 1	Patient 2	Patient 3	Patient 4	Patient 5
Laterality	Right	Right	Left	Right	Right
Target volume	14.1 cc	14 cc	9.4 cc	10 cc	13 cc
Prostate length	3 cm	3 cm	3 cm	3 cm	4 cm
Number of needles	9	8	7	6	5
Number of seeds	36	41	34	34	43
Total activity	11.85 mCi	13.53 mCi	11.22 mCi	11.22 mCi	14.19 mCi
D90%	125.4 Gy	129.9 Gy	137.6 Gy	138.3 Gy	100.5 Gy
V120 Gy	94.4%	95.3%	98.9%	96.2%	85.4%
V140 Gy	83.4%	86.2%	90.4%	89.4%	67.5%
V145 Gy	80.6%	84.0%	86.0%	87.5%	64.2%

cc – cubic centimeters, mCi – millicuries, D90% – dose delivered to 90% of the post-implant volume, V120 Gy – post-implant volume receiving 120 Gy, V140 Gy – post-implant volume receiving 140 Gy, V145 Gy – post-implant volume receiving 145 Gy

PSA – prostate specific antigen, **T stage** – tumor stage, **EBRT** – external beam radiotherapy, **RT** – radiotherapy, **GS** – Gleason score, **BT** – brachytherapy, **ADT** – androgen deprivation therapy, **gr** – grade, **ED** – erectile dysfunction

™*new PSA definition for biochemical failure per Phoenix criteria (PSA nadir + 2 ng/mL)

*Unable to be graded

†Grade 2 or higher gastrointestinal (GI), genitourinary (GU), or erectile dysfunction (ED) according to CTCAE v.3
prostatic adenocarcinoma with treatment effect. A final biopsy, five years post-treatment showed adenocarcinoma (unable to be graded) in 3 cores on the left. He underwent salvage BT, 5.3 years after EBRT, at which time his PSA was 2.6 ng/mL. Brachytherapy and dosimetry details are shown in Table 2. At his last follow-up, 3.4 years post-salvage treatment, his PSA was 1.4 ng/mL and DRE was within normal limits. He had no acute or late grade 2 or higher GI or GU toxicities. After primary EBRT, he experienced grade 2 ED with SHIM scores of 20 with phosphodiesterase-5 enzyme (PDE-5) inhibitors. Following salvage BT, his erectile function declined further with SHIM scores of 5-12, and was subsequently referred to the ED clinic.

Patient 4
A 46 year-old Caucasian male with presenting PSA of 10.4 ng/mL, GS 6 (3 + 3) adenocarcinoma in the left base and right base, mid and apex, and clinical T1C disease on DRE. He was treated with 3DCRT to 78 Gy in 39 fractions. His PSA nadir was 0.76 ng/mL, 5.5 years after completion of treatment. A repeat biopsy at 10.4 years post-treatment, at which time his PSA was 2.46 ng/mL and there was firmness on DRE, showed GS 7 (3 + 4) adenocarcinoma in 6 cores on the right. He underwent salvage BT 11 years after EBRT. Brachytherapy and dosimetry details are shown in Table 2. He also received 6 months of ADT, beginning the day of his implant due to his GS 7 and high bulk disease. At his last follow-up 2 years post-salvage BT, his PSA was 0.19 ng/mL and testosterone was 153 ng/mL, and DRE was within normal limits. He experienced some acute grade 2 toxicities during primary EBRT, but no acute or late grade 2 or higher GI or GU toxicities following salvage BT. He had evidence of ED following primary EBRT with SHIM scores of 16-17 with use of a PDE-5 inhibitor. After salvage BT, his erectile function was unchanged, with SHIM scores of 11 without and 16 with medications.

Discussion
The management of locally recurrent or persistent prostate cancer following EBRT is challenging. As evidence that local persistence of prostate cancer translates to the development of distant metastasis and disease-specific death mounts [24], the need for an effective salvage therapy is emphasized. Local salvage therapy is potentially curative and advisable in healthy patients with local recurrence without metastases. Re-irradiation with EBRT, however, is generally not advised due to concerns of insufficient conformity to spare surrounding normal tissues that have previously received tolerance dose. Furthermore, the mechanism of radioresistance that resulted in persistent disease can prevail if a similar EBRT approach is used for salvage. Accepted local salvage treatment options include radical prostatectomy, cryotherapy, or BT.

Few men undergo salvage radical prostatectomy with even the most experienced centers performing on average five or six cases per year [25]. Patient selection and preference are most likely the predominant factors, heavily influenced by a narrow risk-to-benefit ratio. Common complications of salvage radical prostatectomy include urinary incontinence (30-73%), urethral strictures (0-30%), erectile dysfunction (29-72%), and rectal injury (0-35%). Success rates are <50% [26,27]. Utilization of cryosurgery is scarcer, with a comparable risk-to-benefit profile, but availability and expertise appears to be limited [28,29]. In general, the toxicities of salvage BT are minimal and tolerable. Compared to other modalities, BT provides at least a similar if not better risk-to-benefit ratio, because of reduced toxicity to the urinary tract. Urinary incontinence rates following salvage prostatectomy and cryotherapy have been reported to be as high as 73-79% [26,27,30-32] compared to 6-31% with salvage LDR BT [4,8].

Several centers have reported their experience with salvage whole prostate LDR BT following EBRT to do-

![Fig. 2. Patient-reported American Urologic Association (AUA) scores as a function of time](image)
es of 63-68 Gy. In the early series by Grado et al. [4] and Beyer et al. [33], the 5-year biochemical disease-free survival rates were 34% and 53%, respectively. More recent series from Lo et al. [6] showed an 8-year actuarial freedom from relapse of 61.5%, whereas Aaronson et al. [7] reported a biochemical disease-free survival rate of 88% at 30 months. Unfortunately, there are no reports of salvage LDR BT for patients treated in the era of EBRT dose-escalation.

The goal of this technique was to provide a minimally-invasive procedure that would both limit the risk of toxicity in men treated to EBRT doses ≥ 76 Gy in 2 Gy fractions and provide equal efficacy to whole prostate salvage BT. Central to this goal was selecting patients with limited post-EBRT toxicity, and who are most likely to have unilaterally recurrent disease. All the men reported here had little or no late GU toxicity following EBRT, and thus were ideal candidates. Prior to salvage therapy, all patients had good rectal function, none required alpha-blockers, and the AUA scores were low (median 3, range: 2-20). Patients in the series had either no evidence of bilateral disease upon initial diagnosis or a microfocus of low grade GS 3 + 3 disease, which definitive doses of EBRT of ≥ 76 Gy should eradicate.

The ideal BT dose for salvage therapy is undefined. In previous studies, the median prescribed salvage BT doses for ranged from 100 to 160 Gy [4-7]. These salvage BT doses were used prior to the era of dose-escalated EBRT, and thus could only be applied to our patient population with caution. In addition, these series reported on whole prostate salvage BT, with no data to suggest appropriate doses for partial or unilateral salvage BT. Given these considerations, a prescription dose of 110 Gy was selected based upon extrapolation from the available literature, while being conservative as day 30 dosimetry is often higher. Since higher salvage BT doses can lead to worse toxicity, we limited both the volume and dose. Despite the smaller volume and lower dose in the current study, the coverage of the target volume was excellent with a mean D90 of 118%. None of the patients experienced grade 2 or higher Gd or GU toxicity and all had good biochemical response with no evidence of BF to date.

High-dose-rate (HDR) BT may be a safer and more effective way of delivering partial salvage BT. The advantages of HDR are: 1) less dependence on the accuracy of needle placement compared to LDR; 2) inverse treatment planning can allow the plan to be optimized on a case by case basis; 3) the implant is temporary; therefore, there is no concern over seed migration or need to repeat post-implant dosimetry several weeks later; 4) radiation safety advantages compared to LDR, with less radiation exposure to personnel due to the remote afterloading technique, and 5) it also lends itself to fractionation, which may allow for even superior tumor control due to delivery of higher biologically effective doses.

Possible disadvantages of HDR BT are that it is a relatively newer technique with overall less experience and long-term toxicity data; it produces more dose inhomogeneities within the treatment volume, and it often requires fractionation, which is less convenient for the patient [34]. Yamada et al. recently published the results of their phase II study of salvage HDR alone after high dose EBRT. The biochemical relapse-free survival was 68.5% at 5 years with late grade 2 GI and GU toxicities of 8% and 48%, respectively, with minimal late grade 3 GU toxicity [35]. As such, salvage HDR BT may become a more favorable option for local salvage therapy following dose-escalated EBRT in the future.

Conclusions

Preliminary follow-up suggests that partial salvage permanent prostate BT with 125I may be a safe and effective local salvage therapy following dose-escalated EBRT. To our knowledge, this is the first report of permanent LDR partial prostate BT. Although short-term follow-up is encouraging, further study is needed to determine the long-term toxicity and effectiveness of this approach.

Disclosure

Authors report no conflict of interest.

References

1. Crook JM, Malone S, Perry G et al. Twenty-four-month postradiation prostate biopsies are strongly predictive of 7-year disease-free survival: results from a Canadian randomized trial. Cancer 2009; 115: 673-679.
2. Zelefsky MJ, Fuks Z, Hunt M et al. High dose radiation delivered by intensity modulated conformal radiotherapy improves the outcome of localized prostate cancer. J Urol 2001; 166: 876-881.
3. Stoyanova R, Walker G, Sandler K et al. Determinants of prostate biopsy positivity 2 years after radiation therapy for men with prostate cancer treated on a randomized trial. Int J Radiat Oncol Biol Phys 2012; 84: 560.
4. Grado GL, Collins JM, Kriegshauser JS et al. Salvage brachytherapy for localized prostate cancer after radiotherapy failure. Urol 1999; 53: 2-10.
5. Beyer DC. Brachytherapy for recurrent prostate cancer after radiotherapy. Semin Radiat Oncol 2003; 13: 158-165.
6. Lo K, Stock RG, Stone NN. Salvage prostate brachytherapy following radiotherapy failure. Int J Radiat Oncol Biol Phys 2005; 63: S290-S291.
7. Aaronson DS, Yamasaki I, Gottschalk A et al. Salvage permanent perineal radioactive-seed implantation for treating recurrence of localized prostate adenocarcinoma after external beam radiotherapy. BJU Int 2009; 104: 600-604.
8. Wallner KE, Nori D, Morse MJ et al. odine reimplantation for locally progressive prostatic carcinoma. J Urol 1990; 144: 704-706.
9. Coffinet DR, Martinez A, Freiba F et al. 125Iodine prostate implants for recurrent carcinomas after external beam irradiation: preliminary results. Cancer 1980; 45: 2717-2724.
10. Wong WW, Buskirk SJ, Schild SE et al. Combined prostate brachytherapy and short-term androgen deprivation therapy as salvage therapy for locally recurrent prostate cancer after external beam irradiation. J Urol 2006; 176: 2020-2024.
11. Zelefsky MJ, Pei X, Chou JF et al. Dose escalation for prostate cancer radiotherapy: predictors of long-term biochemical tumor control and distant metastases-free survival outcomes. Eur Urol 2011; 60: 1133-1139.
12. Kuban DA, Tucker SL, Dong L et al. Long-term results of the M. D. Anderson randomized dose-escalation trial for prostate cancer. Int J Radiat Oncol Biol Phys 2008; 70: 67-74.
13. Zietman AL, Bae K, Slater JD et al. Randomized trial comparing conventional-dose with high-dose conformal radiation therapy in early-stage adenocarcinoma of the prostate: long-term results from proton radiation oncology group/American College of Radiology 95-09. J Clin Oncol 2010; 28: 1106-1111.

14. Peeters ST, Heemsbergen WD, Koper PC et al. Dose-response in radiotherapy for localized prostate cancer: results of the Dutch multicenter randomized phase III trial comparing 68 Gy of radiotherapy with 78 Gy. J Clin Oncol 2010; 28: 1106-1111.

15. Dearnaley DP, Sydes MR, Graham JD et al. Escalated-dose versus standard-dose conformal radiotherapy in prostate cancer: first results from the MRC RT01 randomized controlled trial. Lancet Oncol 2007; 8: 475-487.

16. Pollack A, Walker G, Buyyounouski M et al. Randomized trial of hypofractionated external-beam radiotherapy for prostate cancer. J Natl Compr Canc Netw 2013; 11: 3860-3868.

17. Hanks GE, Hanlon AL, Pinover WH et al. Dose selection for prostate cancer patients based on dose comparison and dose response studies. Int J Radiat Oncol Biol Phys 2000; 46: 823-832.

18. Horwitz EM, Hanlon AL, Pinover WH et al. Defining the optimal radiation dose with three-dimensional conformal radiation therapy for patients with nonmetastatic prostate carcinoma by using recursive partitioning techniques. Cancer 2001; 92: 1281-1287.

19. Sharma NK, Cohen RJ, Eade TN et al. Salvage cryosurgical ablation of the prostate for local recurrence after definitive external beam radiotherapy: improved outcomes utilizing a capromab pendetide scan and biopsy algorithm. Can J Urol 2007; 14: 24-27.