Transforming Growth Factor β1 (TGF-β1) Enhances Expression of Profibrotic Genes through a Novel Signaling Cascade and MicroRNAs in Renal Mesangial Cells*

Nancy E. Castro†, Mitsuo Kato‡, Jung Tak Park§, and Rama Natarajan‡,¶*

From the †Department of Diabetes and Division of Molecular Diabetes Research and the ‡Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, California 91010 and the ¶Department of Internal Medicine, College of Medicine, Yonsei University, 120-752 Seoul, Korea

* This work was supported, in whole or in part, by National Institutes of Health Grants DK081705 and DK058191 (to R. N.) and a Diversity Supplement Grant DK081705 (to support N. C.). This work was also supported by American Diabetes Association mentor-based postdoctoral fellowship ADA-7-10-MI-07 (to N. C.).

† To whom correspondence should be addressed: Dept. of Diabetes, City of Hope, Beckman Research Institute, 1500 E. Duarte Rd., Duarte, CA 91010. Tel.: 626-256-4673 (ext. 62289); Fax: 626-301-8136; E-mail: RNatarajan@coh.org.

MicroRNAs (miRNAs)² are endogenously produced single-stranded, short (average 22 nucleotides), non-coding regulatory RNAs that can repress target gene expression (1, 2). Increasing evidence shows that miRNAs play important roles in gene regulation by binding to the 3′-untranslated regions (3′-UTRs) of their target mRNAs to block protein translation or to induce mRNA degradation. Thus, miRNAs have the potential to regulate a multitude of genes under specific physiological and pathological conditions. miRNAs are emerging as important players and modulators in the pathogenesis of many human diseases, including diabetic nephropathy (DN), a severe microvascular complication of diabetes.

Key structural features of DN include glomerular mesangial cell expansion and hypertrophy due to increased accumulation of extracellular matrix (ECM) proteins, such as collagens and fibronectin, as well as glomerular basement membrane thickening, tubulointerstitial fibrosis, and podocyte apoptosis, all of which contribute to renal dysfunction and end stage renal failure (3–5). Several biochemical pathways and profibrotic factors, such as transforming growth factor-β1 (TGF-β1) and angiotensin II, can enhance the expression of ECM proteins, including collagens, in renal cells and have been implicated in the pathogenesis of DN (3, 6–11). Increased TGF-β1 expression in glomerular mesangial cells (MC) has been shown to promote the accumulation of fibrotic factors, ECM proteins, and hypertrophy during the progression of DN (4, 5, 7–9, 12). Studies from our laboratory and others have recently demonstrated the mediatory role of several miRNAs and their key target genes in the actions of TGF-β1 and high glucose in MC and other renal cells related to the pathogenesis of DN as well as molecular mechanisms of regulation of key miRNAs by TGF-β1 and high glucose (13–21). However, it is likely that
miR-130b and Diabetic Nephropathy

there are other as yet unidentified miRNAs that modulate TGF-β1-induced regulation of ECM genes in MC to promote DN.

We hypothesized that key miRNAs that target the same gene may exert synergistic and amplifying effects in the diabetic kidney. While examining miRNAs that are differentially regulated by TGF-β1 in renal MMC and in glomeruli of diabetic mice, we observed a significant down-regulation in the miRNAs, miR-130b and let-7b. Interestingly, through computational target predictions, we identified TGF-β receptor 1 (TGF-βR1), which mediates the fibrotic actions of TGF-β1, as a potential target for both miRNAs, miR-130b and let-7b. let-7b was originally identified in Caenorhabditis elegans as an important regulator for normal development (22). The let-7 family is highly conserved among various species. In mice and humans, it consists of 11 very closely related family members (23). let-7 family members have been extensively studied for their tumor-suppressive functions in lung, pancreatic, and breast cancer cells (24, 25).

let-7b inhibits the expression of key oncopgenes, such as MYC, RAS, and HMGA2 (26–28). let-7 is regulated by the RNA-binding protein, Lin28, which inhibits the processing of let-7 family miRNAs and their expression levels. Thus, the expression levels of let-7 and Lin28 are inversely correlated (29). Recently, it was identified in renal MMC and in glomeruli of diabetic mice, we report the identification of miR-130b as a new endogenous key interacting mediator (NF-YC, 2610318N02RIK, miR-130bmut) to promote the progression of DN. Together, these data provide further insights into the complex amplifying cross-talk between growth factors and miRNAs and the related post-transcriptional regulatory mechanisms that modulate the progression of DN and also identify additional miRNAs that can be evaluated as therapeutic targets.

EXPERIMENTAL PROCEDURES

Cell Culture—Primary MMC were isolated and cultured in RPMI 1640 medium supplemented with 10% FBS as described previously (7). Recombinant human TGF-β1 was purchased from R&D Systems (Minneapolis, MN) and used at a final concentration of 10 ng/ml.

Mouse Models—All animal studies were performed in accordance with a protocol approved by the Institutional Animal Care and Use Committee. C57BL/6 mice (Jackson Laboratories, Bar Harbor, ME) were injected with 50 mg/kg streptozotocin (STZ) intraperitoneally for 5 consecutive days. Blood glucose levels were measured 1 week after final STZ injection to confirm the onset of diabetes (fasting glucose >300 mg/dl). For this study, mice were sacrificed 4 weeks after the onset of diabetes. Sieved glomeruli from mouse renal cortical tissue were prepared as described (14, 15) and stored at −80 °C for further analysis.

Real-time Quantitative PCR—RNA was extracted from MMC using miRNeasy columns (Qiagen, Inc., Valencia, CA). The qScript miRNA cDNA synthesis kit (Quanta Biosciences, Gaithersburg, MD) or GeneAmp RNA PCR kit (Applied Biosystems, Carlsbad, CA) were utilized for cDNA synthesis. Harvested mature miRNAs were polyadenylated in a poly(A) polymerase reaction. The poly(A) tailed miRNAs were then converted to cDNAs using an oligo(dT) primer with universal tag. Forward-specific primer sequences were designed for amplification of mature miRNAs, and reverse primers were provided by the cDNA kit. PerfeCTa SYBR Green Supermix (Quanta Biosciences) or POWER SYBR Green mix (Applied Biosystems) was used for quantitative PCR amplification on a 7500 real-time PCR system (Applied Biosystems, Foster City, CA) according to the manufacturer’s protocol. PCR primer sequences were designed as follows: TGF-βR1, 5′-CGGTTCCTACTTTCTTACTTTCTTCAACGG-3′ and 5′-AAATGGCTCGACGCTGTGTCTTATGG-3′; RIK, 5′-AAAGAAGCCACATGCCTGGATCTCGA-3′ and 5′-CGGAGTATGAGAAATGGAAGCCCTCC-3′; Col4a1, 5′-GCTCTCCGGGCTTCTCAG-3′ and 5′-TTATACACAGTGGTCCG-3′; Col2a1, 5′-TTTGTCCTGAGAGAAAGTG-3′ and 5′-GATACCTGAGTTTCTGCTTACG-3′.

Detection of miR-130b—In order to verify the expression of let-7 and Lin28 are inversely correlated (29). Recently, it was found that under normal conditions, let-7 maintains low levels of TGF-βR1 expression in human umbilical vein endothelial cells and in adult human liver cells (30, 31). In addition, in tubular epithelial cells, lipoxins were shown to down-regulate TGF-βR1-induced fibrosis by up-regulating let-7c (32). Another recent paper also showed that let-7b targets TGF-βR1 related to kidney fibrosis (33). On the other hand, very little is known about the function of miR-130b in any cellular system. A few reports indicate that miR-130b promotes the growth and self-renewal of CD133+ (hepatocellular carcinoma marker) liver tumor-initiating cells via down-regulation of TP53INP1 (34, 35). However, the function of miR-130b in DN is unknown, and it is also not known if it cooperates with let-7b. Herein, we report the identification of miR-130b as a new endogenous anti-fibrotic protective miRNA in MC and also a novel miRNA-mediated cascade, where TGF-β1 is able to enhance the expression of TGF-βR1 and collagens via the regulation of a cascade of key interacting mediators (NF-YC, 2610318N02RIK, miR-130b, and let-7b) to promote the progression of DN. Together, these data provide further insights into the complex amplifying cross-talk between growth factors and miRNAs and the related post-transcriptional regulatory mechanisms that modulate the progression of DN and also identify additional miRNAs that can be evaluated as therapeutic targets.
miR-130b and Diabetic Nephropathy

Decreased Expression of miR-130b and let-7b in TGF-β1-treated MMC—We first sought to identify miRNAs that are differentially regulated under TGF-β1-induced (diabetic) conditions in MMC. In examining several candidate miRNAs, we found a consistent down-regulation of key members of the let-7 family, miR-30 family, and miR-130b. We observed a TGF-β1-induced decrease of miR-130b, let-7b, and miR-30e\(^*\) at 6 and 24 h compared with the serum-depleted (SD) control condition (Fig. 1, A–C). Recent reports have identified TGF-βR1 as a target of let-7c and let-7b in renal cells (30, 32, 33). Interestingly, computational analysis using TargetScan software identified TGF-βR1 as a potential pro-fibrotic target of not only let-7b but also the other two miRNAs, miR-130b and miR-30e\(^*\). Collagen type XII α1 (Col12a1) was also identified as a potential target of miR-30e\(^*\) with the Col12a1 3′-UTR having three potential miR-30e\(^*\) target sites (Fig. 1D). TGF-βR1 and Col12a1 mRNA expression levels were significantly increased at 24 h of TGF-β1 treatment, reaffirming the idea that miR-130b and let-7b may be targeting the TGF-βR1 3′-UTR, and miR30e\(^*\) may be targeting the Col12a1 3′-UTR in a TGF-β1-induced manner in MMC (Fig. 1E and F). The mRNA expression levels of profibrotic genes, CTGF (connective tissue growth factor) and PAI-1 (plasminogen activator of inhibitor-1) were also evaluated in MMC as positive controls for TGF-β1 treatment because these genes have been previously shown to be enhanced by TGF-β1 in MC (36–38). As expected, we observed significant increases in PAI-1 and CTGF mRNA expression, with peak expression occurring at 6 h after TGF-β treatment (Fig. 1G and H).

TGF-β1 Induces TGF-βR1 Expression via Down-regulation of miR-130b and let-7b—It was recently reported that let-7c and let-7b directly bind and target the TGF-βR1 3′-UTR in renal epithelial cells, leading to an attenuation of downstream genes associated with renal fibrosis (32, 33). let-7 was also shown to target TGF-βR1 in adult human liver cells to regulate human liver development (30). However, miR-130b has not been examined previously in DN pathogenesis. We first determined whether miR-130b and let-7b directly target TGF-βR1 in MMC. We generated WT as well as mutant luciferase reporter constructs harboring a single mutation in either the miR-130b or let-7b binding site within the TGF-βR1 3′-UTR or a double mutation where both the miR-130b and let-7b binding sites were mutated (Fig. 2A). miR-130b sequence alignment on TGF-βR1 3′-UTR is at bp 180–186 (Fig. 2B). To determine the effects of miR-130b on TGF-βR1 3′-UTR luciferase activity, MMC were co-transfected with negative control oligonucleotides (NC) or miR-130b mimic or miR-130b inhibitor oligonucleotides. Luciferase activity was significantly reduced in the presence of exogenous miR-130b mimic (miR-130b-M). Conversely, MMC transfected with miR-130b inhibitor (miR-130b-I) increased the TGF-βR1 3′-UTR activity (Fig. 2C), verifying that miR-130b targets TGF-βR1 3′-UTR.

Next, to verify the effects of let-7b on TGF-βR1 3′-UTR in MMC, luciferase reporter assays were performed where WT or Mut-let-7b (mutation in the let-7b binding site in the
FIGURE 1. Decreased expression of miR-130b and let-7b in TGF-β1-treated MMC. A–C, quantitative PCR analysis of miR-130b, let-7b, and miR-30e* expression levels in SD MMC treated without or with 10 ng/ml TGF-β1 for 6 and 24 h. D, schematic representation of miR-30e* seed sequence alignment and Col12a1 3'-UTR. E–H, TGF-βR1, Col12a1, PAI-1, and CTGF mRNA levels were measured in MMC at 6 and 24 h of TGF-β1 treatment. TGF-βR1 and Col12a1 expression levels were significantly increased at 24 h of TGF-β1 treatment, whereas PAI-1 and CTGF mRNA levels were increased at both time periods. Results for miRNAs were normalized with internal control 18 S. *, **, and *** p < 0.05, p < 0.005, and p < 0.0005, respectively, versus SD control condition. Expression of other genes were normalized to CypA internal control. Results shown are mean ± S.E. (error bars) (n = 3). *, **, and *** p < 0.05, p < 0.005, and p < 0.0005, respectively, versus SD control condition.
FIGURE 2. **TGF-β1 induces TGF-βR1 expression via down-regulation of miR-130b and let-7b.** A, schematic diagram showing several 3′-UTR luciferase reporter constructs, which include WT-TGF-βR1 3′-UTR (with WT intact let-7b and miR-130b target sites), Mut-miR-130b binding site, Mut-let-7b binding site, and double mutant (DM; where both miR-130b and let-7b binding sites have been mutated). B, schematic representation of miR-130b seed sequence alignment to the TGF-βR1 3′-UTR. C, luciferase reporter assays using WT-TGF-βR1 3′-UTR in MMC transfected with miR-130b mimic (M) or miR-130b inhibitor (I). Transfection with miR-130b-M decreased WT-TGF-βR1 3′-UTR activity; conversely, WT-TGF-βR1 3′-UTR reporter activity was increased with miR-130b-I relative to negative control (NC). D, luciferase reporter assay in cells co-transfected with WT-TGF-βR1 3′-UTR or Mut-let-7b with either negative control mimic (NC-M) or let-7b mimic (M) in the presence or absence of 10 ng/ml TGF-β1 for 24 h in MMC. E, luciferase reporter assays in MMC transfected with WT-TGF-βR1 3′-UTR, Mut-let-7b, Mut-130b, or double mutant in the presence or absence of TGF-β1 for 24 h. F, MMC transfected with miR-130del mutant elicited higher basal activity and greater TGF-β1-induced activity compared with WT-TGF-βR1. G, luciferase reporter assay in cells co-transfected with WT-TGF-βR1 3′-UTR and either NC-M, let-7b-M, 130b-M, or double mimic (DM; where both let-7b-M and 130b-M were transfected) and in cells with Mut-let-7b co-transfected with NC-M or 130b-M-H, luciferase reporter assays showing increased basal and TGF-β1-induced TGF-βR1 3′-UTR activity in MMC co-transfected with the double mutant construct and either NC-M, 130b-M, or let-7b-M compared with WT control. Results shown are mean ± S.E. (error bars) (n = 3). *, **, and ***, p < 0.05, p < 0.005, and p < 0.0005, respectively, versus WT or NC-M conditions.

TGF-βR1 3′-UTR luciferase constructs were co-transfected with negative control mimic (NC-M) or let-7b mimic (let-7b-M) and treated with or without TGF-β1 for 24 h. WT-TGF-βR1 3′-UTR co-transfected with NC-M showed a TGF-β1-induced increase in luciferase activity. However, cells transfected with Mut-let-7b showed an increase in basal activity and still responded to TGF-β1 compared with the WT control condition (Fig. 2D). Similar results were observed for cells transfected with let-7b-M, where the WT condition still responded to TGF-β1 and Mut-let-7b showed an increase in basal activity and also responded to TGF-β1, together demonstrating that loss of the functional let-7b site (Mut-let-7b-transfected condition) results in an increase in luciferase activity.
miR-130b and Diabetic Nephropathy

Next, we examined MMC transfected with WT-TGF-β1, Mut-let-7b, Mut-130b, or double mutant constructs (where both miR-130b and let-7b binding sites are mutated) and treated with or without TGF-β1 for 24 h (Fig. 2E). Similar to previous results, Mut-let-7b resulted in an increase in basal activity but still responded to TGF-β1 treatment compared with WT control. Double mutation on the TGF-β1 3′-UTR resulted in increased basal activity and a TGF-β1-induced increase in TGF-β1 activity. However, no significant difference was observed with Mut-130b alone compared with WT control. Because this could be due to ineffectiveness of the miR-130b mutation, we designed another construct, namely a miR-130 deletion mutant in which several bases of the miR-130b target site in the TGF-β1 3′-UTR were removed. This miR-130del construct now showed an increase in basal TGF-β1 activity and an increase in TGF-β1 response compared with WT-TGF-β1 (Fig. 2F).

To determine whether miR-130b and let-7b have additive or synergistic effects on the TGF-β1 3′-UTR, MMC were co-transfected with WT-TGF-β1 3′-UTR and either NC-M, let-7b-M, 130b-M, or double mimics (D-M; the addition of miR-130b mimic and let-7b mimic combined) with or without TGF-β1 for 24 h (Fig. 2G). TGF-β1-induced TGF-β1 3′-UTR activity was decreased with let-7b-M or miR-130b-M alone. Interestingly, this decrease was even more pronounced in the D-M condition (Fig. 2G), suggesting an additive effect between let-7b and miR-130b actions on TGF-β1 3′-UTR. In addition, Mut-let-7b constructs were co-transfected with NC-M or 130b-M in the presence or absence of TGF-β1 treatment for 24 h. The addition of exogenous miR-130b-M with the Mutlet-7b construct significantly attenuated basal and TGF-β1-induced increase in TGF-β1 3′-UTR activity under these conditions (Fig. 2G, last four bars).

Finally, MMC were transfected with WT-TGF-β1 3′-UTR alone or with double mutant constructs along with NC-M, 130b-M, or let-7b-M (Fig. 2H). Similar to previous experiments, whereas we observed a TGF-β1-induced increase in luciferase activity in WT, a further increase in basal activity was observed with the double mutant construct. The addition of exogenous mimics, 130b-M or let-7b-M, in combination with the double mutant construct had no further additional effect on the reporter activity relative to NC-M, suggesting, as expected, that the mimics did not recognize their target sites when mutated. Taken together, these results demonstrate that miR-130b and let-7b regulate TGF-β1 3′-UTR through their own target sites in MMC.

In addition, constructs harboring a mutated miR-30e* binding site on TGF-β1 3′-UTR were also tested. Results showed no significant change in TGF-β1 3′-UTR activity with the miR-30e* binding site mutation (data not shown), suggesting that TGF-β1 is not a bona fide target of miR-30e*.

miR-130b and let-7b Down-regulate Endogenous TGF-β1 and Col4a1—Next, to determine the effects of miR-130b and let-7b on endogenous gene expression, we analyzed RNA samples from MMC transfected with NC-M, 130b-M, let-7b-M, or D-M (miR-130b-M and let-7b-M combined). TGF-β1 mRNA expression levels were significantly increased with TGF-β1 treatment in the presence of NC-M (Fig. 3A), but this was significantly reduced by the addition of exogenous 130b-M or let-7b-M. This effect was further abrogated in the TGF-β1-induced D-M condition, suggesting the additive actions of these two miRNAs on endogenous target gene expression. Similar to mRNA levels, TGF-β1-induced TGF-β1 protein levels were also down-regulated with the addition of exogenous mimics compared with NC-M (Fig. 3B). Notably, there was a further decrease in the expression levels of TGF-β1 protein in the D-M condition compared with the NC-M condition, again suggesting that miR-130b and let-7b can have additive effects on decreasing TGF-β1 protein expression. β-actin was used as a loading control (Fig. 3B).

Identifying key players downstream of the miR-130b/let-7b/TGF-β1 signaling pathway involved in the progression of DN is imperative to the understanding of this disease. Similar to TGF-β1, Col4a1 mRNA expression was increased with TGF-β1 treatment in the NC-M sample but significantly reduced in the presence of exogenous miR-130b and let-7b mimics, suggesting that Col4a1 expression downstream of TGF-β1 signaling is also functionally modulated by the actions of these miRNAs (Fig. 3C).

To further confirm that Col4a1 expression is mediated via the TGF-β1 pathway, we performed siRNA experiments. The successful knockdown of TGF-β1-induced TGF-β1 expression led to a decrease in TGF-β1-induced Col4a1 mRNA expression levels compared with the NC (Fig. 3D), indicating that Col4a1 is a downstream target of the TGF-β1 signaling pathway and can contribute to fibrosis.

To further test whether inhibition of miR-130b and let-7b affects TGF-β1 expression, MMC were transfected with NC-I, 130b-I, let-7b-I, or double inhibitor (D-I; miR-130b inhibitor and let-7b inhibitor combined) (Fig. 3E). Inhibiting miR-130b in MMC increased TGF-β1 mRNA levels, whereas let-7b-I alone had no significant effect. No further increase in TGF-β1 expression was observed even with D-I compared with miR-130b-I alone, suggesting that miR-130b may be a more potent regulator of basal TGF-β1 levels than let-7b. However, this could also be due to lesser efficiency of the let-7b inhibitor. Taken together, these results suggest that TGF-β1 increases profibrotic genes, such as Col4a1, via up-regulation of TGF-β1 mediated at least in part via down-regulation of miR-130b and let-7b, both of which target TGF-β1 (Fig. 3F).

NF-YC Regulates the Promoter of the miR-130b Host Gene—Because the mechanisms involved in the regulation of miR-130b expression are unknown, we were interested in identifying some of the key players. We examined whether miR-130b expression depends upon the transcriptional regulation of its host gene. miR-130b forms a cluster with miR-301b within the first intron of the 2610318N02RIK (RIK) gene (Fig. 4A). Relative to cells in the SD condition, MMC treated with TGF-β1 for 6 and 24 h showed a significant decrease in RIK mRNA expression levels. These results suggest that miR-130b may be co-regulated with its host gene, RIK (Fig. 4A). Interestingly, further investigation of the RIK promoter identified the presence of three potential nuclear transcription factor-Y (NF-Y) sites located at −200, −240, and −285 bp upstream from the transcription start site (Fig. 4B). To examine whether these NF-Y sites are important for RIK promoter activity, two luciferase
reporter constructs were generated (Fig. 4B), a WT-RIK luciferase reporter construct containing all three intact NF-Y sites and a RIK-Del construct in which all three NF-Y sites have been removed. MMC cells transfected with WT-RIK in the presence of TGF-β/R1 showed a significant decrease in RIK promoter activity, which was further abrogated in the RIK-Del reporter, suggesting that the absence of NF-Y sites leads to very low promoter activity (Fig. 4B). These results implicate the importance of the NF-Y sites in regulating the promoter activity of the RIK gene.

NF-Y consists of three subunits, NF-YA, NF-YB, and NF-YC, which are highly conserved from Drosophila to humans. NF-Y complexes have been reported to regulate the transcription of numerous genes related to the cell cycle, cancer, and various human diseases (39–45). All three subunits are important for the formation of NF-Y complexes and bind specifically to CCAAT motifs within the promoter region of target genes (45, 46). This CCAAT motif is one of the most common cis-acting elements in the promoter and enhancer region of a large number of eukaryotic genes (47). Furthermore, this specific motif has been shown to be enriched in several genes overexpressed in a variety of cancers, including breast, colon, thyroid, prostate, and leukemia (48). However, its role in DN is not known. To further examine the significance of these NF-Y sites on the RIK promoter, we tested the effect of loss of NF-YC using specific siRNAs. MMC cells were transfected with WT-RIK or RIK-Del

FIGURE 3. miR-130b and let-7b down-regulate endogenous TGF-βR1 and Col4a1. A and C, MMC transfected with 130b-M, let-7b-M, or double mimic (Double-M) display a TGF-β1-induced decrease of TGF-βR1 (A) and Col4a1 mRNA (C) expression compared with NC-M. B, similar to mRNA results, TGF-β1 protein expression levels were significantly reduced with exogenous miR-130b-M, let-7b-M, and double-mimic conditions. D, TGF-β1-induced TGF-βR1 and Col4a1 mRNA levels were reduced in MMC transfected with TGF-βR1 siRNA oligonucleotides compared with NC siRNA oligonucleotides. E, MMC transfected with NC-I, 130b-I, let-7b-I, or double inhibitor (Double-I; where 130-I and let-7b-I were both transfected) resulted in increased TGF-βR1 mRNA expression when miR-130b alone or in combination with let-7b (double inhibitor condition) was blocked. F, schematic model depicting miR-130b and let-7b directly binding to TGF-βR1 3′-UTR to regulate TGF-βR1 and other downstream profibrotic genes, such as Col4a1, CTGF, and PAI-1. Results shown are mean ± S.E. (error bars) (n = 3 except Western blot (n = 2)). * and **, p < 0.05 and p < 0.005, respectively, versus NC conditions.
miR-130b and Diabetic Nephropathy

![Diagram](image)

FIGURE 4. NF-YC regulates the promoter of the miR-130b host gene. A, quantitative PCR analysis of RIK expression levels in SD MMC treated without or with 10 ng/ml TGF-β1 for 6 and 24 h. RIK mRNA levels were significantly decreased throughout the time course. miR-130b gene location reveals that it forms a cluster with miR-301b between exon 1 and exon 2 of the RIK host gene. B, WT-RIK luciferase promoter construct depicting three NF-Y sites located –200, –240, and –285 bp upstream of the transcription start site of the RIK gene. The RIK-Del construct lacks these three NF-Y sites. MMC were transfected with WT-RIK or RIK-Del constructs and treated with or without TGF-β1 for 24 h. C, MMC were co-transfected with WT-RIK or RIK-Del and either NC siRNA (20 nM) or NF-YC siRNA (20 nM) oligonucleotides. WT-RIK promoter activity was significantly reduced with NF-YC siRNA compared with NC siRNA. Similarly, the absence of promoter NF-Y sites (RIK-Del construct) significantly abrogated any promoter activity with or without NF-YC siRNA. These results again implicate the importance of NF-Y sites in the regulation of RIK promoter activity.

DISCUSSION

TGF-β1 is an important regulatory and profibrotic cytokine that affects the expression of numerous downstream miRNAs that play a role in the progression of DN (13–21, 33, 49, 50). A large body of work has been dedicated to identifying key miRNAs involved in the renal fibrotic processes because of their potential to serve as novel biomarkers of therapeutic targets for DN. In this study, we identified miR-130b as a new player and also studied the functional role of TGF-β1-induced down-regulation of miR-130b and expression of upstream effectors related to the pathogenesis of DN. miR-130b was evaluated in this study because it was found to be significantly down-regulated by TGF-β1 in MMC. Several reports have implicated a role for miR-130b in various cancers (34, 35, 51–54). However,
the role of miR-130b in DN has not been studied previously. In the present study, we demonstrate the participation of miR-130b in a novel signaling cluster and also the functional ability of TGF-β1 to initiate an amplifying cascade involving several key component players (NF-YC, RIK, miR-130b, and TGF-β1) that results in the up-regulation of profibrotic factors associated with the accelerated progression of DN.

Preliminary data from high throughput RNA sequencing revealed that miR-130b, let-7b, and miR-30e* were decreased in a TGF-β1-dependent manner in MMC. Further validation of these data in the current study showed that these miRNAs were down-regulated not only in TGF-β1-treated MMC but also in the glomeruli of diabetic mice (in vivo miR-30e* data not shown). miRNA mimic and inhibitor experiments confirmed TGF-β1 to be a bona fide target of miR-130b and let-7b in MMC. The actions of miR-130b and let-7b on TGF-β1 3′-UTR appear to be specific because mutant 3′-UTR constructs lacking the miR-130b and let-7b binding sites were unresponsive to mimics. Our data suggest that the down-regulation of miR-130b and let-7b by TGF-β1 can cooperatively enhance, at least in part, the TGF-β1 signaling pathway and regulate subsequent downstream profibrotic factors, such as Col4a1. These results also highlight the redundancy among certain miRNAs, namely miR-130b and let-7b, both with the ability to target TGF-β1 3′-UTR and influence the fibrotic phenotype. The data presented in this study suggest that miR-130b may be a more potent inhibitor of TGF-β1, although more experiments are needed to confirm this.

3 M. Kato and R. Natarajan, unpublished data.

FIGURE 5. NF-YC regulates RIK and other downstream components. A–C, MMC transfected with NF-YC siRNA showed a significant decrease in basal and TGF-β1-induced mRNA expression of NF-YC and other downstream components (namely RIK and miR-130b) compared with the NC siRNA condition. D, conversely, basal levels of TGF-β1 mRNA expression were up-regulated in the presence of NF-YC siRNA. E, schematic diagram depicting how decreased expression of NF-YC in response to TGF-β1 leads to reduced binding of NF-YC to the CCAAT domains (NF-Y sites) within the RIK promoter, thereby decreasing RIK transcriptional activity and consequently decreasing the expression of miR-130b located within the RIK gene, ultimately resulting in increased TGF-β1 expression. Mean ± S.E. (error bars) (n = 3), *, **, and ***, p < 0.05, p < 0.005, and p < 0.0005, respectively, versus NC conditions.
miR-130b and Diabetic Nephropathy

A. **Normalized levels**

- **miR-130b**
 - Control
 - STZ

- **let-7b**
 - Control
 - STZ

B. **Normalized levels**

- **RIK**
 - Control
 - STZ

C. **Normalized levels**

- **TGF-βR1**
 - Control
 - STZ

D. **Normalized levels**

- **Col4a1**
 - Control
 - STZ

- **Col12a1**
 - Control
 - STZ

E. **Normalized levels**

- **PAI-1**
 - Control
 - STZ

- **CTGF**
 - Control
 - STZ

F. **Normalized protein levels**

- **TGF-βR1**
 - Control
 - STZ

- **β-actin**
 - Control
 - STZ

G. **NF-YC**

- **Control**
- **STZ**

H. **PAS**

- **Control**
- **STZ**
miR-130b and Diabetic Nephropathy

miR-130b is located within the intron of the non-coding RNA, 2610318N02Rik (Rik) (UCSC Genome Browser), and we found that the expressions of both miR-130b and Rik were similarly down-regulated by TGF-β1. Further, miR-130b expression was dependent upon the transcriptional activity of the Rik host gene. To date, no known function has been reported for this Rik gene. Further analysis of the Rik promoter region revealed three functional NF-YC sites capable of regulating the promoter activity of the Rik gene. NF-Y complexes are composed of three individual subunits (namely NF-YA, NF-YB, and NF-YC), which bind to promoter CCAAT motifs. Understanding the mechanism by which TGF-β1 down-regulates NF-YC would be beneficial in further elucidating the importance of NF-YC as a protective factor in DN. Previously, our group demonstrated that miR-216a is induced by TGF-β1 and mediates TGF-β1-induced Akt kinase activation and collagen expression in MMC by targeting Ybx1 and Pten (49, 50). Because Ybx1 also recognizes Y-box (CCAAT) (48), it is possible that the decrease of Rik and miR-130b is caused by miR-216a-mediated down-regulation of Ybx1 (49) (Fig. 7). On the other hand, computational analysis revealed a potential target site for miR-216a in the NF-YC 3′-UTR. However, further experiments with miR-216a mimics and inhibitors are needed to fully substantiate NF-YC as a true target of miR-216a.

Interestingly, analysis of the NF-YC genome region also revealed an miRNA cluster consisting of miR-30e* and miR-30c-1 within intron 5, suggesting that NF-YC may be the host gene of miR-30e* and that the expression of miR-30e* may be dependent on NF-YC expression (Fig. 7). Further experiments to confirm this and also whether miR-30e* directly targets Col12a1 3′-UTR remain for a future study.

To further examine the in vivo relevance of our in vitro findings, we examined the mRNA expression levels of the key players within this novel pathway in the glomeruli of diabetic and control mice. Similar to our in vitro studies, miR-130b, let-7b, Rik, and NF-YC (immunohistochemistry staining) were down-regulated in the glomeruli of 4-week STZ-induced diabetic mice compared with control mice. Conversely, TGF-βR1, Col4a1, Pai-1, and CTGF profibrogenic genes were up-regulated in the diabetic mice.

In summary, the current results demonstrate a novel amplifying cascade where TGF-β (diabetic conditions) is able to regulate the expression of various downstream key components, including NF-YC and Rik, to down-regulate miR-130b and thereby increase the expression of pathologic profibrogenic genes, such as TGF-βR1 and Col4a1 (Fig. 7). These data also show a cooperation between miR-130b and let-7b and further add to our earlier reports demonstrating that several miRNAs induced by TGF-β1 can cooperate with each other and create amplifying circuits to fine-tune and augment the progression of DN (12, 14–16, 49, 50). There are clearly several alternative and parallel signaling pathways that further enhance the progression of DN, including Smads and other miRNAs. This collaboration among several key players could explain why our effects are relatively modest, indicating synergism among these multiple contributing pathways with the ability to cooperatively accelerate DN.

Notably, here, for the first time, miR-130b has been implicated as a potential protective miRNA in the pathology of renal fibrosis related to DN. Interestingly, it was previously reported that miR-130 can modulate adipocyte differentiation by repressing peroxisome proliferator-activated receptor γ, a key mediator of adipogenesis, thereby reducing adipogenesis and limiting the probability of obesity (55). This protective role of miR-130 in obesity may also translate to its protective role in DN, whereby increased levels of miR-130 impair the progression of adipogenesis and insulin resistance and decrease the potential for developing diabetes and DN. Conversely, the reduction of miR-130b has the potential to induce not only

FIGURE 7. Schematic model. Under diabetic conditions where TGF-β1 levels are increased, NF-YC expression is down-regulated (possibly via up-regulated miR-216a), resulting in reduced binding of NF-YC to the NF-Y sites (CCAAT) within the Rik promoter. Alternatively, miR-216a can target and down-regulate Ybx1, which can result in reduced binding of Ybx1 to Y-box (CCAAT) within the Rik promoter. Decreased Rik promoter activity leads to reduced transcriptional activity of the Rik gene, thereby attenuating miR-130b expression, because miR-130b expression is dependent upon transcriptional activity of the host gene, Rik. This feed-forward amplifying cascade results in elevated expression of TGF-βR1 and subsequently other downstream profibrotic and ECM genes involved in mediating the progression of diabetic nephropathy, such as Col4a1, CTGF, and Pai-1. Down-regulation of miR-30e* might be a consequence of reduced NF-YC, a putative host gene for miR-30e* that can potentially target Col12a1.

FIGURE 6. Expression of miR-130b and key parameters of DN in glomeruli of diabetic mice. A and B, glomeruli were isolated from kidney cortical tissues from six mice in the control group and nine mice in the STZ-diabetic group. miR-130b, let-7b, and Rik mRNA expression levels were significantly decreased in glomeruli of STZ-injected diabetic mice (STZ) (4 weeks of diabetes) compared with vehicle-injected (Control) mice. C–E, conversely, TGF-βR1, Col4a1, Col12a1, Pai-1, and CTGF mRNA expression levels were significantly increased in glomeruli of these diabetic mice compared with control non-diabetic mice. Results shown are mean ± S.E. (error bars) (n = 3), ** and *** p < 0.05, p < 0.005, and p < 0.0005, respectively, versus control conditions. Results were normalized to CycA internal control for regular genes and 18 S internal control for miRNAs. F, protein lysates were made from renal cortical tissues of STZ mice and control mice. TGF-βR1 protein expression levels were increased under diabetic conditions compared with control. β-Actin was used as a loading control for protein lysates. G, representative NF-YC immunostaining images and quantification using NF-YC antibody in cortical tissue from STZ-injected diabetic mice and control mice. NF-YC protein expression was significantly reduced in the STZ mice glomeruli compared with control mice. H, representative PAS staining images and quantification using cortical tissue from STZ-injected diabetic mice and control mice. Significantly increased PAS staining was observed in diabetic mice compared with control mice. Results shown are mean ± S.E. * and ***, p < 0.05 and p < 0.0005 (n = 50 glomeruli counted/condition). Scale bar, 20 μm.
miR-130b and Diabetic Nephropathy

obesity (or insulin resistance) but also DN. Therefore, reinstating the levels of miR-130b with oligonucleotide mimics during high TGF-β1 levels (diabetic conditions) would be a potential translational intervention for reducing renal fibrosis and slowing down the progression of DN. The reno-protective effects of miR-130b alone or in conjunction with other miRNAs in vivo could thus be further exploited for the development of better treatment strategies for DN and other fibrotic disorders.

Acknowledgments—We are thankful to all members of the Natrajan laboratory for insightful suggestions and input.

REFERENCES

1. Inui, M., Martello, G., and Piccolo, S. (2010) MicroRNA control of signal transduction. Nat. Rev. Mol. Cell Biol. 11, 252–263
2. Bartel, D. P. (2009) MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233
3. Kanwar, Y. S., Sun, L., Xie, P., Liu, F. Y., and Chen, S. (2011) A glimpse of various pathogenetic mechanisms of diabetic nephropathy. Annu. Rev. Pathol. 6, 395–423
4. Qian, Y., Feldman, E., Pennathur, S., Kretzler, M., and Brosius, F. C., 3rd (2006) Transforming growth factor β signaling and diabetic complications. J. Cell. Biochem. 97, 1576–1579
5. Ziyadeh, F. N. (1993) The extracellular matrix in diabetic nephropathy. J. Cardiovasc. Transl. Res. 5, 85–94

18. Kantharisid, P., Wang, B., Carew, R. M., and Lan, H. Y. (2011) Diabetes complications: the microRNA perspective. Diabetes 60, 1832–1837
19. Lan, H. Y. (2012) Transforming growth factor-β/Smad signalling in diabetic nephropathy. Clin. Exp. Pharmacol. Physiol. 39, 731–738
20. Badal, S. S., Danesh, F. R. (2014) MicroRNAs and their applications in kidney diseases. Pediatr Nephrol. 10.1007/s00467-014-2867-7
21. Kato, M., Dang, V., Wang, M., Park, J. T., Deshpande, S., Kadam, S., Mardiros, A., Zhan, Y., Oettgen, P., Putta, S., Yuan, H., Lanting, L., and Nataraajan, R. (2013) TGF-β1 induces acetylation of chromatin and of Ets-1 to alleviate repression of miR-192 in diabetic nephropathy. Sci. Signal. 6, ra43
22. Reinhart, B. J., Slack, F. J., Basson, M., Pasquinelli, A. E., Bettinger, J. C., Rougvie, A. E., Horvitz, H. R., and Ruvkun, G. (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caeinorhabditis elegans. Nature 403, 901–906
23. Rouss, S., and Slack, F. J. (2008) The let-7 family of microRNAs. Trends Cell Biol. 18, 505–516
24. Yu, F., Yao, H., Zhu, P., Zhang, X., Pan, Q., Gong, C., Huang, Y., Hu, X., Su, F., Lieberman, J., and Song, E. (2007) let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 131, 1109–1123
25. Dangi-Garimella, S., Strouch, M. J., Grippio, P. J., Bentrem, D. J., and Munshi, H. G. (2011) Collagen regulation of let-7 in pancreatic cancer involves TGF-β1-mediated membrane type 1-matrix metalloproteinase expression. Oncogene 30, 1002–1008
26. Johnson, S. M., Grosshans, H., Shingara, J., Byrom, M., Jarvis, R., Cheng, A., Labourier, E., Reinert, K. L., Brown, D., and Slack, F. J. (2005) RAS is regulated by the let-7 microRNA family. Cell 120, 635–647
27. Sampson, V. B., Rong, N. H., Han, J., Yang, Q., Aris, V., Soteropoulos, P., Petrelli, N. J., Dunn, S. P., and Krueger, L. J. (2007) MicroRNA let-7a down-regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells. Cancer Res. 67, 9762–9770
28. Mayr, C., Hemmann, M. T., and Bartel, D. P. (2007) Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science 315, 1576–1579
29. Hagan, J. P., Piskounova, E., and Gregory, R. I. (2009) Lin28 recruits the TUTase Zce11 to inhibit let-7 maturation in mouse embryonic stem cells. Nat. Struct. Mol. Biol. 16, 1021–1025
30. Tzur, G., Israel, A., Levy, A., Benjamin, M., Meiri, E., Shufaro, Y., Meir, K., Khvalovsky, E., Spector, Y., Rojansky, N., Bentwich, Z., Reubinoff, B. E., and Galun, E. (2009) Comprehensive gene and microRNA expression profiling reveals a role for microRNAs in human liver development. PLoS One 4, e7511
31. Chen, P. Y., Qin, L., Barnes, C., Charisse, K., Yi, T., Zhang, X., Ali, R., Medina, P. P., Yu, J., Slack, F. J., Anderson, D. G., Koteliavski, V., Wang, F., Tellides, G., and Simons, M. (2012) FGF regulates TGF-β signaling and endothelial-to-mesenchymal transition via control of let-7 miRNA expression. Cell Rep. 2, 1684–1696
32. Brennan, E. P., Nolan, K. A., Börgeson, E., Gough, O. S., McEvoy, C. M., Docherty, N. G., Higgins, D. F., Murphy, M., Sadlier, D. M., Ali-Shah, S. T., Guiry, P. J., Savage, D. A., Maxwell, A. P., Martin, F., Godson, C., and GENIE Consortium (2013) Lipoxins attenuate renal fibrosis by inducing let-7c and suppressing TGFBR1. J. Am. Soc. Nephrol. 24, 627–637
33. Wang, B., Jha, J. C., Hagiwara, S., McClelland, A. D., Jandelet-Dahm, K., Thomas, M. C., Cooper, M. E., and Kantharisid, P. (2014) Transforming growth factor-β1-mediated renal fibrosis is dependent on the regulation of transforming growth factor receptor 1 expression by let-7b. Kidney Int. 85, 352–361
34. Ma, S., Tang, K. H., Chan, Y. P., Lee, T. K., Kwan, P. S., Castilho, A., Ng, I., Man, K., Wong, N., To, K. F., Zheng, B. P., Lai, P. B., Lo, C. M., Chan, K. W., and Guan, Y. X. (2010) miR-130b promotes CD133+ liver tumor-initiating cell growth and self-renewal via tumor protein 53-induced nuclear protein 1. Cell Stem Cell 7, 694–707
35. Yeung, M. L., Yasunaga, J., Bennasser, Y., Dusetti, N., Harris, A., Ahmad, N., Matsuoka, M., and Jeang, K. T. (2008) Roles for microRNAs, miR-93 and miR-130b, and tumor protein 53-induced nuclear protein 1 tumor suppressor in cell growth dysregulation by human T-cell lymphoblastic virus 1. Cancer Res. 68, 8976–8985
36. Jiang, Z., Seo, J. Y., Ha, H., Lee, E. A., Kim, Y. S., Han, D. C., Uh, S. T., Park,
C. S., and Lee, H. B. (2003) Reactive oxygen species mediate TGF-β1-induced plasminogen activator inhibitor-1 upregulation in mesangial cells. *Biochem. Biophys. Res. Commun.* **309**, 961–966

37. Baricos, W. H., Cortez, S. L., Deboisblanc, M., and Xin, S. (1999) Transforming growth factor-β is a potent inhibitor of extracellular matrix degradation by cultured human mesangial cells. *J. Am. Soc. Nephrol.* **10**, 790–795

38. Seo, J. Y., Park, J., Yu, M. R., Kim, Y. S., Ha, H., and Lee, H. B. (2009) Positive feedback loop between plasminogen activator inhibitor-1 and transforming growth factor-β1 during renal fibrosis in diabetes. *Am. J. Nephrol.* **30**, 481–490

39. Hu, Q., Bhattacharya, C., and Maity, S. N. (2002) CCAAT binding factor (CBF) binding mediates cell cycle activation of topoisomerase IIA. Conventional CBF activation domains are not required. *J. Biol. Chem.* **277**, 37191–37200

40. Kao, C. Y., Tanimoto, A., Arima, N., Sasaguri, Y., and Padmanabhan, R. (1999) Transactivation of the human cdc2 promoter by adenovirus E1A. E1A induces the expression and assembly of a heteromeric complex consisting of the CCAAT box binding factor, CBF/NF-Y, and a 110-kDa DNA-binding protein. *J. Biol. Chem.* **274**, 23043–23051

41. Manni, I., Mazzaro, G., Gurtner, A., Mantovani, R., Haugwitz, U., Krause, K., Engeland, K., Sacchi, A., Soddu, S., and Piaggio, G. (2001) NF-Y mediates the transcriptional inhibition of the cyclin B1, cyclin B2, and cdc25C promoters upon induced G2 arrest. *J. Biol. Chem.* **276**, 5570–5576

42. Reith, W., Siegrist, C. A., Durand, B., Barras, E., and Mach, B. (1994) Function of major histocompatibility complex class II promoters requires cooperative binding between factors RFX and NF-Y. *Proc. Natl. Acad. Sci. U.S.A.* **91**, 554–558

43. Basile, V., Mantovani, R., and Imbriano, C. (2006) DNA damage promotes histone deacetylase 4 nuclear localization and repression of G2/M promoters, via p53 C-terminal lysines. *J. Biol. Chem.* **281**, 2347–2357

44. Wiebe, M. S., Wilder, P. J., Kelly, D., and Rizzino, A. (2000) Isolation, characterization, and differential expression of the murine Sox-2 promoter. *Gene* **246**, 383–393

45. Ly, L. L., Yoshida, H., and Yamaguchi, M. (2013) Nuclear transcription factor Y and its roles in cellular processes related to human disease. *Am. J. Cancer Res.* **3**, 339–346

46. Mantovani, R. (1998) A survey of 178 NF binding CCAAT boxes. *Nucleic Acids Res.* **26**, 1135–1143

47. Li, X. Y., Mantovani, R., Hoof van Huijsduijnen, R., Andre, I., Benoist, C., and Mathis, D. (1992) Evolutionary variation of the CCAAT-binding transcription factor NF-Y. *Nucleic Acids Res.* **20**, 1087–1091

48. Dolfini, D., and Mantovani, R. (2013) Targeting the Y/CCAAT box in cancer: YB-1 (YBX1) or NF-Y? *Cell Death Differ.* **20**, 676–685

49. Kato, M., Wang, L., Putta, S., Wang, M., Yuan, H., Sun, G., Lanting, L., Todorov, I., Rossi, J. J., and Natarajan, R. (2010) Post-transcriptional up-regulation of Tsc-22 by Ybx1, a target of miR-216a, mediates TGF-β-induced collagen expression in kidney cells. *J. Biol. Chem.* **285**, 34004–34015

50. Kato, M., Putta, S., Wang, M., Yuan, H., Lanting, L., Nair, I., Gunn, A., Nakagawa, Y., Shimano, H., Todorov, I., Rossi, J. J., and Natarajan, R. (2009) TGF-β activates Akt kinase through a microRNA-dependent amplifying circuit targeting PTEN. *Nat. Cell Biol.* **11**, 881–889

51. Vickers, M. M., Bar, J., Gorn-Hondermann, I., Yarom, N., Daneshmand, M., Hanson, J. E., Addison, C. L., Asmis, T. R., Jonker, D. J., Maroun, J., Lorimer, I. A., Goss, G. D., and Dimitroulakos, J. (2012) Stage-dependent differential expression of microRNAs in colorectal cancer: potential role as markers of metastatic disease. *Clin. Exp. Metastasis* **29**, 123–132

52. Kim, B. H., Hong, S. W., Kim, A., Choi, S. H., and Yoon, S. O. (2013) Prognostic implications for high expression of oncogenic microRNAs in advanced gastric carcinoma. *J. Surg. Oncol.* **107**, 505–510

53. Scheffer, A. R., Holdenrieder, S., Kristiansen, G., von Ruecker, A., Müller, M., Hanson, J. E., Addison, C. L., Asmis, T. R., Jonker, D. J., Maroun, J., Lorimer, I. A., Goss, G. D., and Dimitroulakos, J. (2012) Stage-dependent differential expression of microRNAs in colorectal cancer: potential role as markers of metastatic disease. *Clin. Exp. Metastasis* **29**, 123–132

54. Liu, A. M., Yao, T. J., Wang, W., Wong, K. F., Lee, N. P., Fan, S. T., Poon, R. T., Gao, C., and Luk, J. M. (2012) Circulating microRNAs in serum: novel biomarkers for patients with bladder cancer? *World J. Urol.* **30**, 353–358

55. Lee, E. K., Lee, M. J., Abdelmohsen, K., Kim, W., Kim, M. M., Srikantan, S., Martindale, J. L., Hutchison, E. R., Kim, H. H., Marasa, B. S., Selimyan, R., Egan, J. M., Smith, S. R., Fried, S. K., and Gorospe, M. (2011) miR-130b suppresses adipogenesis by inhibiting peroxisome proliferator-activated receptor γ expression. *Mol. Cell. Biol.* **31**, 626–638