Dental Caries Prevalence among 5- to 15-Year-Old Children from SEAR Countries of WHO: A Systematic Review and Meta-Analysis

Abstract
Objectives: The aim of this review was to estimate the prevalence of dental caries in children 5–15 years of age in the countries of the South-East Asia Region (SEAR) of World Health Organization (WHO) and to describe the different caries indices used in these population-based studies. Materials and Methods: A systematic search was carried out in two databases from 1st January 2005 to 31st May 2015. Studies were included if they met the predetermined eligibility criteria. Quality assessment was done with eight-item checklist. Meta-analysis was done for 5, 12, 15, and 6–15 years age group using software STATA version 12. Results: The search strategy yielded 265 unique articles of which 36 met the inclusion criteria included for the review. Data were available for only three SEAR countries. The quality of the majority of the studies ranged from moderate to high. Heterogeneity between the studies was high ($I^2 > 98\%$). Variation in dental caries prevalence was found among different ages and among different SEAR countries. The most commonly used index for measuring dental caries was the dentition status of the 1997 WHO criteria. Conclusion: Dental caries continues to be a prominent oral health problem among children in the SEAR countries with huge variation in the prevalence across ages and countries. This review results can be used to update the “WHO Oral Health Country/Area Profile Program” for dental caries among children for SEAR.

Keywords: Children, dental caries, meta-analysis, prevalence, Southeast Asia, systematic review

Introduction
Dental caries is considered to be the most important oral health burden worldwide. World Health Organization (WHO) has reported that about 60%–90% of the world’s school children and 100% adults have dental caries. Prevalence of caries is high not only in underprivileged areas and countries but also in industrialized and high-income countries.

The “WHO Oral Health Country/Area Profile Program (CAPP) presents information on dental diseases and oral health services for various countries/area. The decayed, missing, and filled teeth (DMFT) data for South-East Asian Region (SEAR) countries are available on “CAPP” from the year 1960. Of the 11 countries, 10 countries report mean DMFT for 12 years old and only one country East Timor is for 12–14 years old. There is no prevalence mentioned for any other age/age groups. However, the literature is replete with numerous cross-sectional studies reporting caries prevalence among children of other age/age groups belonging to SEAR countries.

In population-based studies, the selection of an index for assessing dental caries is critical because the index determines the real disease outcome based on which the prevalence is decided. Studies have shown that prevalence varies when different indices are used in the same population. This has been reported in a study undertaken by Joseph et al., among 6 years old children of France wherein the prevalence of dental caries was 32% by dmft index and 61% by ICDAS-II. Apart from the most popular and traditional 1930s DMFT/dmft index, many newer indices like the PUFA, ICDAS-I, ICDAS-II, CAST, and Nyvad’s caries diagnostic criteria have been developed in the past decade, for assessing dental caries. However, these scales are used sparingly in epidemiological studies.

With this background, the present review was undertaken, first to systematically

How to cite this article: Kale SS, Kakodkar P, Shethiya SH, Rizwan SA. Dental caries prevalence among 5- to 15-year-old children from SEAR countries of WHO: A systematic review and meta-analysis. Indian J Dent Res 2019;30:937-47.
review all available studies estimating the dental caries prevalence among 5- to 15-year-old children in different SEAR countries of WHO and second to describe the different types of caries indices used in these studies.

Materials and Methods

Literature search

The review protocol is registered in PROSPERO (CRD42016037157). This article presents the results of SEAR countries only. A systematic search was carried out in PubMed and Google Scholar using specific keywords [Table 1]. In addition, the reference list of eligible studies was also searched manually. The authors of articles not available in the web and those that needed clarification were emailed at least twice.

Eligibility criteria of studies

Inclusion criteria for the studies to be included were as follows: population/community-based studies, cross-sectional studies, national surveys, study including children between 5 and 15 years of age, study assessing oral health which includes caries prevalence as a part, manuscripts in English language and/or any other language with relevant summary in English, and published between 1st January 2005 and 31st May 2015. The exclusion criteria were as follows: studies not reporting prevalence, case-control, or cohort studies; letters or review articles; studies recording dental caries as a part of other objectives such as body mass index, nutrition status, and socioeconomic status; hospital-based studies; studies done in special populations like disabled children, immigrants, non-indigenous, adopted children of any country, and tribal community children; studies done in only males or only females; clinical surveys conducted before the year 2000 though reported between 2005 and 2015.

Assessment of relevant studies

Two reviewers independently performed the first stage of screening, by titles only. Round 2 included screening the abstracts. Round 3 was full-text assessment. Any discrepancies were resolved by discussion or referred to the co-author. The first author independently reviewed the included full-text articles and extracted the data. After completion of the data sheet, each data entry was then cross-checked by authors.

Data extraction

Data extracted included study ID, author’s name, year of publication, country, sample size, age/age group, dental caries index, caries prevalence, and dentition. The criteria used for extracting the caries prevalence data were as follows. For 5-year-old children, prevalence of caries in deciduous dentition was recorded, and for 6–16 years old children prevalence of caries in permanent dentition only was recorded. In cases where the prevalence of caries for deciduous, mixed, and permanent dentitions was given, only the prevalence of the permanent dentition was recorded. In cases where only one prevalence figure (deciduous and permanent together) was given, the same was recorded but not used for meta-analysis. As far as possible, the prevalence for individual ages was recorded, but if combined prevalence was given, the prevalence of that age group was recorded provided the age group was within 5–15 years. In studies that reported prevalence among immigrants and native children, data for native children alone were recorded.

Quality assessment

A self-designed scoring instrument was used to assess the quality of the study. The instrument consisted of eight questions [Table 2]. Content validity of the instrument was checked by three experts in the field, and the content validity ratio was 0.89. About 5% of studies were rechecked by the first reviewer and the intraexaminer reliability was 0.91. For each question, a score of 0 or 1 was awarded to the response of “No” or “Yes,” respectively. The sum of the points awarded to the eight questions was divided by the highest possible score (8) to generate a fraction (between 0 and 1). For ranking the studies, the following classification was followed: 0–0.3 low quality, 0.4–0.6 moderate quality, and 0.7–1.0 high quality.

![Table 1: Search strategy used and the number of articles in hits and after screening for titles](image)

Search strategy	Articles in hits	Selected articles
Dental caries AND prevalence AND children AND Bangladesh	6	0
Dental caries AND prevalence AND children AND Bhutan	0	0
Dental caries AND prevalence AND children AND Democratic people’s Republic of Korea	0	0
Dental caries AND prevalence AND children AND India	183	39
Dental caries AND prevalence AND children AND Indonesia	2	0
Dental caries AND prevalence AND children AND Maldives	6	0
Dental caries AND prevalence AND children AND Myanmar	3	2
Dental caries AND prevalence AND children AND Nepal	10	2
Dental caries AND prevalence AND children AND Sri Lanka	9	1
Dental caries AND prevalence AND children AND Thailand	46	2
Dental caries AND prevalence AND children AND Timor-Leste	0	0
Statistical analysis

Data analysis was done using STATA software version 12. Meta-analysis (pooled prevalence) was performed separately for children age 5 years (only deciduous dentition) and 12, 15, and 6–15 years considering only the permanent dentition. Prevalence was obtained irrespective of the type of index used. The heterogeneity between the studies was assessed with the software and random effect model was used because the heterogeneity observed was high.

Results

Figure 1 shows the PRISMA flowchart of search results and study selection. A total of 271 unique articles were found, of which 219 were excluded after title review. In all, 52 articles were screened for duplicates of which one was excluded. 51 articles were reviewed by abstract, of which 46 were available for full-text review. After full-text review, an additional 10 were excluded (the reasons are presented in Figure 1). Finally, 36 articles (and 80 estimates from these articles) were considered for systematic review.

Study characteristics

The characteristics of the included studies are presented in web Table 3. Of the 11 SEAR countries of WHO, information was available for only three countries (India, Myanmar, and Nepal). The majority of the studies were from India.

For systematic review, data were extracted from 80 estimates, out of which 10 gave detailed information for 5-year olds, 15 for 12-year olds, 6 for 15-year olds, and 46 for combined ages between 6 and 15 years old. Meta-analysis was performed on 56 estimates. The remaining 24 estimates were excluded because 2 estimates gave a combined prevalence, 13 provided deciduous dentition prevalence in 6–15 years age group, and in 9 there was no clarity whether prevalence was of deciduous, permanent, or mixed dentition.

Quality assessment

Table 4 shows in detail the results of the quality assessment per question, the total score, and quality grading. The majority of the studies, n = 20, were of high quality, n = 14 were of moderate quality, and only 2 studies belonged to low quality. The majority of the studies (n = 35) clearly mentioned the objectives. It was observed that in 11 studies the population description was not given, and in 15 studies the study setting was not explained. Eighteen studies failed to provide the eligibility criteria for study participants. Eight studies did not mention about sampling strategy, while there were five studies which did not explain the sample size calculation, and also the precision score was more than 20%. Seven studies did not use a standard measuring tool for assessing caries prevalence and 15 studies lacked generalizability.

Prevalence of caries

Figures 2 and 3 depict forest plot for the different SEAR countries of WHO. There was wide variation observed...
Table 3: Study characteristics of the included studies

Study Id	Author’s Name	Year of Publication	Country	Sample size	Age/age group included	Dental caries index	Caries Prevalence	Dentition
1	Saravanam S et al.123	2005	India	1009	5yrs	Dentition status WHO 1997 criteria	44.40%	D
2	Joshi N et al.16	2005	India	150	6-12yrs	Klein, Palmer and Knutson 1938 for DMFT index/ Grunobel AO for deft index	77%	?
3	Sudha P et al.7(A)	2005	India	193	5-7yrs	Klein, Palmer and Knutson 1938 for dmft index	94.30%	D
4	Sudha P et al.7(B)	2005	India	160	8-10yrs	Klein, Palmer and Knutson 1938 for DMFT index/ Grunobel AO for deft index	82.50%	?
5	Sudha P et al.7(C)	2005	India	171	11-13yrs	Klein, Palmer and Knutson 1938 for DMFT index/ Grunobel AO for deft index	82.50%	?
6	Kumar M et al.14(A)	2005	India	600	5yrs	Dentition status WHO 1997 criteria for dmft index	83%	D
7	Kumar M et al.14(B)	2005	India	600	12yrs	Dentition status WHO 1997 criteria for DMFT index	80%	P
8	Mahajabeen R et al.7	2006	India	821	5yrs	Dentition Status, WHO 1997 criteria for dmft index	60.90%	D
9	Dhar V et al.20(A)	2007	India	188	5-7yrs	Dentition Status, WHO 1997 criteria for DMFT index	18.62%	P
10	Dhar V et al.20(B)	2007	India	587	8-10yrs	Dentition Status, WHO 1997 criteria for DMFT index	49.23%	P
11	Dhar V et al.20(C)	2007	India	812	11-14yrs	Dentition Status, WHO 1997 criteria for DMFT index	51.48%	P
12	Bhat M et al.1(A)	2007	India	96	5-9yrs	Dentition Status, WHO 1997 criteria for DMFT index	11.46%	P
13	Bhat M et al.1(B)	2007	India	155	10-14yrs	Dentition Status, WHO 1997 criteria for DMFT index	63.88%	P
14	Saravanam S et al.1(A)	2008	India	181	5-6yrs	Dentition Status, WHO 1997 criteria for DMFT index	15.70%	P
15	Saravanam S et al.1(B)	2008	India	198	7-8yrs	Dentition Status, WHO 1997 criteria for DMFT index	22.60%	P
16	Saravanam S et al.1(C)	2008	India	129	9-10yrs	Dentition Status, WHO 1997 criteria for DMFT index	41.10%	P
17	Grewal H et al.13(A)	2009	India	168	7-9yrs	Dentition Status, WHO 1997 criteria for dmft index	67.26%	D
18	Grewal H et al.13(B)	2009	India	554	10-12yrs	Dentition Status, WHO 1997 criteria for dmft/DMFT index	80.86%	?
19	Dhar V & Bhatnagar M.12(A)	2009	India	163	6-7yrs	Dentition Status, WHO 1997 criteria for dmft index	51.53%	D

Contd...

in the caries prevalence and the heterogeneity was significantly high.

In an attempt to explain heterogeneity, subgroup analysis was performed: first, selecting studies by quality. The two low-quality studies were excluded and there was no significant difference noted in the prevalence between moderate and high-quality studies. Second, by age, caries prevalence was analyzed by the WHO age categories (5, 12, and 15). Wide variation in prevalence was obtained for the data coming from the same age too. Forest plots [Figure 2] present the pooled prevalence values for children of 5, 12, and 15 years of age. The pooled prevalence for 5 years old for deciduous dentition was obtained as 55%, for 12 years it was 45%, and for 15 years as 51%,
respectively. Pooled caries prevalence was calculated for DMFT and dmft separately; however, all the studies were combined irrespective of the index used. Except for one study\cite{7} (which used PUFA), all of them expressed caries prevalence as DMFT and dmft/deft although they used different indices [Table 5]. The heterogeneity was significantly high for the individual ages too.

It was also observed that even if the data came from the same geographical area, the prevalence trend was not consistent.

The indices used in these studies are mentioned in Table 5. Of 36 studies, 21 studies\cite{8-28} used WHO 1997 criteria for assessing DMFT/dmft status and expressing prevalence, three studies\cite{29-31} used WHO 1987 criteria, six studies\cite{32-37} used ICADS-II criteria, and one study\cite{7} used PUFA criteria.

Table 3: Contd...

No.	Authors and Year	Location	Population	Age (yrs)	Index	Caries Prevalence		
20	Dhar V & Bhatnagar M2(B)	2009	India	587	8-10yrs	Dentition Status, WHO 1997 criteria for dmft	66.44%	D
21	Simratvir M et al38	2009	India	275	5-5.11	deft index by Gruenberg AO	58.55%	D
22	Das UM et al39(A)	2009	India	229	6yrs	Dentition status, WHO 1987 criteria for dmft index	57.20%	D
23	Das UM et al39(B)	2009	India	201	12yrs	Dentition status, WHO 1987 criteria for DMFT index	49.25%	P
24	Grewal H et al40(A)	2011	India	18	9yrs	Dentition Status, WHO 1997 criteria for dmft/DMFT	61.11%	?
25	Grewal H et al40(B)	2011	India	80	10yrs	Dentition Status, WHO 1997 criteria for dmft/DMFT.	63.75%	?
26	Grewal H et al40(C)	2011	India	169	11yrs	Dentition Status, WHO 1997 criteria for dmft/DMFT.	69.82%	?
27	Grewal H et al40(D)	2011	India	253	12yrs	Dentition Status, WHO 1997 criteria for dmft/DMFT.	36.36%	?
28	Moses J et al40	2011	India	1484	5-15yrs	Dentition status, WHO 1987 criteria for DMFT/dmft index	63.83%	?
29	Singh S et al40	2012	India	273	5yrs	deft index by Gruenberg AO	41%	D
30	Basha S & Hiremath SS51(A)	2012	India	196	6yrs	Dentition status WHO criteria for dmft, ICADS-II by Braga MM et al 2009	50.51%	D
31	Basha S & Hiremath SS51(B)	2012	India	204	13yrs	Dentition status WHO criteria for DMFT, ICADS-II by Braga MM et al 2010	37.75%	P
32	Sohi RK et al51(A)	2012	India	579	5yrs	Dentition status, WHO 1987 criteria for dmft index	48.30%	D
33	Sohi RK et al51(B)	2012	India	534	12yrs	Dentition status, WHO 1987 criteria for DMFT index	30.50%	P
34	Fotedar S et al52(A)	2013	India	497	12yrs	Dentition Status, WHO 1997 criteria for DMFT.	32.60%	P
35	Fotedar S et al52(B)	2013	India	514	15yrs	Dentition Status, WHO 1997 criteria for DMFT.	42.20%	P
36	Das D et al53(A)	2013	India	417	6-8yrs	Dentition Status, WHO 1997 criteria for DMFT.	15.11%	P
37	Das D et al53(B)	2013	India	623	9-11yrs	Dentition Status, WHO 1997 criteria for DMFT.	27.93%	P
38	Das D et al53(C)	2013	India	724	12-14yrs	Dentition Status, WHO 1997 criteria for DMFT.	42.40%	P
39	Joshi N et al54(A)	2013	India	225	6yrs	Klein, Palmer and Knutson 1938 for dmft index	68%	D

Contd...
Table 3: Contd...

Sl. No	Authors	Year	Country	Age (Years)	Methodology	Prevalence (%)	Criteria
40	Joshi N et al.	2013	India	227	7 yrs	73%	D
						Klein, Palmer and Knutson 1938 for dmft index	
41	Joshi N et al.	2013	India	226	8 yrs	74.33%	D
						Klein, Palmer and Knutson 1938 for dmft index	
42	Joshi N et al.	2013	India	228	9 yrs	77.63%	D
						Klein, Palmer and Knutson 1938 for dmft index	
43	Joshi N et al.	2013	India	233	10 yrs	74.24%	P
						Klein, Palmer and Knutson 1938 for DMFT index	
44	Joshi N et al.	2013	India	230	11 yrs	66.95%	P
						Klein, Palmer and Knutson 1938 for DMFT index	
45	Joshi N et al.	2013	India	231	12 yrs	50.21%	P
						Klein, Palmer and Knutson 1938 for DMFT index	
46	Ravishankar PL et al.	2013	India	109	6 yrs	43%	P
47	Ravishankar PL et al.	2013	India	149	7 yrs	50%	P
48	Ravishankar PL et al.	2013	India	139	8 yrs	59%	P
49	Ravishankar PL et al.	2013	India	134	9 yrs	63%	P
50	Ravishankar PL et al.	2013	India	159	10 yrs	62%	P
51	Ravishankar PL et al.	2013	India	154	11 yrs	58%	P
52	Ravishankar PL et al.	2013	India	112	12 yrs	42%	P
53	Datta P & Datta PP\(\)	2013	India	49	13 yrs	Not mentioned	61.20%
54	Datta P & Datta PP\(\)	2013	India	65	14 yrs	Not mentioned	80%
55	Munjal V et al.	2013	India	1250	12 yrs	81.36%	P
56	Munjal V et al.	2013	India	1250	15 yrs	Dentition status WHO 1997 criteria for DMFT index	86.16%
57	Sarumathi T et al.	2013	India	168	5 yrs	Dentition status WHO 1997 criteria for DMFT index	72%
58	Sarumathi T et al.	2013	India	135	6 yrs	Klein, Palmer and Knutson 1938 for dmft index	74.10%
59	Sharma A et al.	2014	India	1878	5-8 yrs	Dentition Status, WHO 1997 criteria for dmft/DMFT.	56.80%

Discussion

A large number of studies have been conducted on caries prevalence in different parts of SEAR, but as there were no data which gave a pooled picture of the prevalence

used DMFT/dmft index proposed by Klein, Palmer, and Knutson, three\(^{[38-40]}\) studies used deft index proposed by Gruebbel, and one\(^{[7]}\) used PUFA index. One study\(^{[41]}\) did not mention what index was used, while one\(^{[2]}\) other did not mention which WHO criteria were used.
across all the countries in SEAR, this systematic review and meta-analysis was commenced with the aim of obtaining prevalence among children of 5–15 years of age of SEAR countries and to gauge the choice of index used in these studies.

The pooled dental caries prevalence of 55% for 5 years old was slightly high as compared to the target which was set by WHO for the year 2000. (Caries-free children at 5 years should be not less than 50%).[2] For 12 years old, the pooled prevalence was 45%, and for 15 years old children, it was 51%. The age group of 6–15 years gave a pooled prevalence of 47%.

There was wide variation in caries prevalence. Probably the reason for variation could be the heterogeneity of the study population itself. The authors of the included studies

Study	Authors	Year	Country	Age	Index	WHO 1997 Criteria	Pooled Prevalence	
60	Sharma A et al[22] (B)	2014	India	1191	9-12yrs	9-12yrs	61.20%	M
61	Sukhobogi JR et al[23] (i)(A)	2014	India	331	12yrs	Klein, Palmer and Knutson 1938 for DMFT index	51.70%	P
62	Sukhobogi JR et al[23] (i)(B)	2014	India	273	15yrs	Klein, Palmer and Knutson 1938 for DMFT index	28.90%	P
63	Sukhobogi JR et al[23] (ii)(A)	2014	India	924	12yrs	Dentition Status, WHO 1997 criteria for DMFT.	39.90%	P
64	Sukhobogi JR et al[23] (ii)(B)	2014	India	951	15yrs	Dentition Status, WHO 1997 criteria for DMFT.	46.70%	P
65	Mehta A & Bhalla S[24]	2014	India	603	5-6yrs	Monse B et al 2010 for pufa index	69.50%	D
66	Ingle NA et al[25] (A)	2014	India	700	12yrs	Dentition Status, WHO 1997 criteria for DMFT.	47.80%	P
67	Ingle NA et al[25] (B)	2014	India	700	15yrs	Dentition Status, WHO 1997 criteria for DMFT.	44%	P
68	Mittal M et al[26] (A)	2014	India	619	5yrs	Dentition Status, WHO 1997 criteria for dmfl.	68.50%	D
69	Mittal M et al[26] (B)	2014	India	384	12yrs	Dentition Status, WHO 1997 criteria for DMFT.	37.50%	P
70	Malvania EA et al[27]	2014	India	1539	12yrs	Dentition status WHO 1997 criteria for DMFT index	17.15%	P
71	Gupta D et al[28]	2015	India	568	5yrs	dfc index by Grueneb AO	47.30%	D
72	Chu CH et al[29] (A)	2012	Myanmar	95	5yrs	Dentition status WHO 1997 criteria for dmft index	25.20%	D
73	Chu CH et al[29] (B)	2012	Myanmar	80	12yrs	Dentition status WHO 1997 criteria for DMFT index	15%	P
74	Phyo AZZ et al[30]	2013	Myanmar	220	12-13yrs	Dentition status WHO 1997 criteria for DMFT index	51.20%	P
75	Subedi B et al[31] (A)	2011	Nepal	313	5-6yrs	WHO criteria 1997 for dmft, SIC index	69%	D
76	Subedi B et al[31] (B)	2011	Nepal	325	12-13yrs	WHO criteria 1997 for DMFT & dmft, SIC index	53.23%	P
77	Khanal S & Acharya J[32] (A)	2014	Nepal	115	12yrs	Dentition status WHO 1997 criteria for DMFT index	67.80%	P
78	Khanal S & Acharya J[32] (B)	2014	Nepal	51	13yrs	Dentition status WHO 1997 criteria for DMFT index	52.90%	P
79	Khanal S & Acharya J[32] (C)	2014	Nepal	46	14yrs	Dentition status WHO 1997 criteria for DMFT index	39.10%	P
80	Khanal S & Acharya J[32] (D)	2014	Nepal	40	15yrs	Dentition status WHO 1997 criteria for DMFT index	60.00%	P
Kale, et al.: Dental caries prevalence among children of 5–15 years of age in SEAR countries

Table 4: Quality assessment of the included studies

Sr. No	Authors	Clearly mentioned objectives	Population description (general/special group or area)	Study setting	Eligibility criteria	Sampling strategy	Sample size/Precession	Measurement tool	Generalizability	Total	Quality
1	Basha S & Hiremath S	1	1	1	1	1	1	1	0.88	High	
2	Bhat M et al	1	0	1	0	0	1	1	0.50	Moderate	
3	Chu Ch et al(i)	1	0	0	0	0	1	1	0.25	Low	
4	Das D et al	0	0	1	0	1	0	1	1	1.50	Moderate
5	Das UM et al	1	1	0	1	0	1	0	0.50	Moderate	
6	Datta P & Datta PP	1	0	0	0	0	0	1	1	0.25	Low
7	Dhar V & Bhatnagar M	1	0	1	1	1	1	0	0.63	Moderate	
8	Dhar V et al	1	0	1	0	1	0	1	0.50	Moderate	
9	Fotedar S et al	1	1	1	1	1	1	1	1.00	High	
10	Grewal H et al 2009	1	1	1	0	1	1	1	1.00	High	
11	Grewal H et al 2011	1	0	1	0	1	1	1	1.00	High	
12	Gupta D et al	1	0	0	0	1	1	1	1.00	High	
13	Ingle NA et al	1	1	0	1	1	1	1	0.88	High	
14	Joshi N et al	1	0	1	1	1	1	0	0.63	Moderate	
15	Joshi N et al 2013	1	1	0	1	1	1	0	0.63	Moderate	
16	Khanal S & Acharya J	1	1	0	1	0	1	1	0.75	High	
17	Kumar M et al	1	1	0	1	1	1	1	0.75	High	
18	Mahajabeen R et al	1	1	0	1	0	1	1	1.00	High	
19	Malvania EA et al	1	1	1	1	1	1	1	1.00	High	
20	Mehta A & Bhalla S	1	1	1	1	1	1	1	1.00	High	
21	Mittal M et al	1	0	1	1	0	1	1	0.63	Moderate	
22	Moses J et al	1	1	1	1	1	1	1	1.00	High	
23	Munjal V et al(B)	1	1	1	1	1	1	1	1.00	High	
24	Picho AZZ et al	1	1	1	0	1	1	1	1.00	High	
25	Ravishankar PL et al	1	1	1	0	0	0	0	1	0.50	Moderate
26	Saravanam S et al 2005	1	1	0	1	1	1	0	0.63	Moderate	
27	Saravanam S et al 2008	1	0	1	0	0	1	1	0.50	Moderate	
28	Sarumathi T et al	1	1	0	0	1	1	1	0.75	High	
29	Sharma A et al	1	1	1	1	1	1	1	1.00	High	
30	Simratvir M et al	1	1	0	0	1	1	1	0.63	Moderate	
31	Singh S et al	1	1	0	1	0	1	1	0.75	High	
32	Sohi RK et al	1	1	0	0	1	1	1	1.00	High	
33	Subedi B et al	1	1	0	1	1	1	1	1.00	High	
34	Sudha P et al	1	1	1	1	1	0	1	0.88	High	
35	Sukhabogi JR et al(i)	1	1	1	1	1	1	1	1.00	High	
36	Sukhabogi JR et al(ii)	1	1	1	1	1	1	0	0.88	High	

Table 5: Indices used for assessing prevalence

Index used	No. of studies
WHO 1997 criteria	20
DMFT (Klein, Palmer, Knutson, 1938)	6
WHO 1987 criteria	3
deft (Gruebel AO, 1944)	3
Others*	4

*PUFA index, WHO criteria not mentioned, index not mentioned

increased consumption of sugary food and rich carbohydrate diet,[8,9,14-17,33] low socioeconomic status of family,[8,11,33,35-45] lack of utilization of dental services,[33,43] poor oral hygiene practices,[18,29,35,38] and low parental education.[11,34,39]

The children who presented with low caries prevalence were found to have less access to refined and sugary food stuffs,[19,36] had a special anti-cariogenic diet,[20] had a constant exposure to fluorides through drinking water,[19,21,35] belonged to lower social class, and were not able to afford sugary food and followed good oral hygiene practices.[22]

It was observed that of 11 countries in SEAR, data for only three countries were found. Probably, for the remaining countries the data were either not published or were not included because it did not fit our eligibility criteria. Maximum studies reported were from India (32 studies,[22,8,15,34,41] with 71 estimates) followed by
Nepal (2 studies\cite{17,18} with 6 estimates), and Myanmar (2 studies\cite{16,19} with 3 estimates) accounting for a total of 80 estimates [Table 3].

India, Myanmar, and Nepal do not have community water fluoridation, but various oral health programs are being conducted in these countries. In Nepal, there is a project for oral health care of rural area and a school-based oral health project called Hasilo (“smiley”) by Health and Development society which started in 2008 incorporating school dental check-ups, camps, and training of school teachers regarding oral health.\cite{44} In Myanmar, an Oral Health Project was started in 2008 which helped in improving the awareness regarding oral health among children.\cite{45} Among all the SEAR countries, India has the highest number of dental colleges (n = 309). Mostly, every college on their level conducts oral health check-up camps in villages and nearby schools. Along with this, preventive treatments like topical fluoride application and pit and fissure sealant placements are also done by the colleges. Indian Dental Association in collaboration with Colgate-Palmolive Pvt Ltd observes the month of October as an Oral Health Month\cite{46} and conducts free check-ups and also distributes oral health kit to school children. Though National Oral Health Policy is drafted for India, it is not yet implemented. Oral health programs at the community level are conducted sporadically for children by government and private undertaking. However, India is falling short in providing preventive care programs for the community. In Sri Lanka though National Oral Health Policy is drafted but not yet implemented, while Bangladesh does not have dental hygienist or oral health workers who would carry out the programs in the community. Bhutan provides free oral health services in the community but lack manpower to provide these services.

It was found that the most common choice for caries assessment was the Dentition status of the WHO criteria 1997. In spite of development of newer indices capable of expressing the exact caries load, it was found that only few studies used newer indices. Unlike the traditional DMFT index, newer indices will help in identifying caries and treating the lesions at initial stages rather than categorizing the initial caries and white spots into sound tooth and waiting for caries to advance and later treating them at dentinal level (D$_3$) which will eventually cause extra tooth destruction. During quality assessment, a number of remarkable points were noted which should be considered by the researchers for future studies. More importantly, caries prevalence should be reported separately for deciduous and permanent dentition. Along with the mean prevalence of the age groups considered in the study, caries prevalence should also be mentioned clearly for individual ages. The accuracy of prevalence estimates largely depends on the sample size, and hence in cross-sectional studies, the sample size should be calculated to increase the precision of the study results. In order to ensure generalizability of the study results, a correct sampling frame should be chosen giving representation to the entire geographical location.

This review has few limitations. Since only two databases were searched, we would have missed on articles from other sources. The other limitation was that we had to exclude many articles because the authors presented a combined prevalence of deciduous and permanent teeth together as a single value, and also on few occasions there was no clarity whether the prevalence obtained is of deciduous or permanent dentition. Moreover, studies published only in English language were included, and thus more databases along with different language articles of other countries of SEAR need to be searched.

Conclusion

Dental caries is still a prevailing problem among children in SEAR countries. A huge variation in prevalence was found among 5, 12, 15 years, and 6–15 years age group across the countries of SEAR. The results of this review can be used to update CAPP\cite{3} More population-based studies are required to fill the gap in literature for the countries whose data are not available. Also, a standard dental caries assessment tool should be used in future studies permitting for unbiased comparison between the countries. Such a kind of data will help in planning and implementing preventive programs and working on policy development for enhancing the life of children.

Financial support and sponsorship

Nil.
Conflicts of interest

There are no conflicts of interest.

References

1. World Health Organization. Oral health [online]. Available from: http://www.who.int/mediacentre/factsheets/fs318/en/. [Last accessed on 2017 Jan 20].
2. WHO.int. (2017). WHO | What is the burden of oral disease? [online]. Available from: http://www.who.int/oral_health/disease_burden/global/en/. [Last accessed on 2017 Mar 1].
3. Mah.se. (2017). SEARO – Malmö University [online]. Available from: http://www.mah.se/CAPP/Country-Oral-Health-Profiles/SEARO/. [Last accessed on 2017 Mar 1].
4. Joseph C, Velley AM, Pierre A, Bourgeois D, Muller-Bolla M. Dental health of 6-year-old children in Alpes Maritimes, France. Eur Arch Paediatr Dent 2011;12:256-63.
5. Mehta A. Comprehensive review of caries assessment systems developed over the last decade. Revista Sul-Brasileira de Odontologia 2012;9:316-21.
6. World Health Organization. WHO regional offices [online]. Available from: http://www.who.int/about/regions/en/. [Last accessed on 2017 Jan 20].
7. Mehta A, Bhalla S. Assessing consequences of untreated carious lesions using pufa index among 5-6 years old school children in an urban Indian population. Indian J Dent Res 2014;25:150-3.
8. Grewal H, Verma M, Kumar A. Prevalence of dental caries and treatment needs amongst the school children of three educational zones of urban Delhi, India. Indian J Dent Res 2011;22:517-9.
9. Mehta A, Bhalla S, Kulkarni SS, Anegundi R. Dental caries prevalence among preschool children of Hubli Dharwad city. Indian J Pedod Prev Dent 2006;32:24-22.
10. Mittal M, Chaudhary P, Chopra R, Khattar V. Oral health status of 5 years and 12 years old school going children in rural Gurgaon, India: An epidemiological study. J Indian Soc Pedod Prev Dent 2014;32:3-8.
11. Saravanan S, Kalyani V, Vijayarani MP, Jayakodi P, Felix J, Arumoozhi P, et al. Caries prevalence and treatment needs of rural school children in Chidambaram Taluk, Tamil Nadu, South India. Indian J Dent Res 2008;19:186-90.
Kale, et al.: Dental caries prevalence among children of 5–15 years of age in SEAR countries

12. Dhar V, Bhattachar M. Dental caries and treatment needs of children (6-10 years) in rural Udaipur, Rajasthan. Indian J Dent Res 2009;20:256-60.

13. Grewal H, Verma M, Kumar A. Prevalence of dental caries and treatment needs in the rural child population of Nainital District, Uttarakhand. J Indian Soc Pedod Prev Dent 2009;27:224-6.

14. Mahesh Kumar P, Joseph T, Varma RB, Jayanthi M. Oral health status of 5 years and 12 years school going children in Chennai city – An epidemiological study. J Indian Soc Pedod Prev Dent 2005;23:17-22.

15. Meghashyam B, Nagesh L, Ankola A. Dental caries status and treatment needs of children of fisher folk communities, residing in the coastal areas of Karnataka region, south India. West Indian Med J 2007;56:96-8.

16. Phyoo AZ, Chansatitporn N, Nariskawat K. Oral health status and oral hygiene habits among children aged 12-13 years in Yangon, Myanmar. Southeast Asian J Trop Med Public Health 2013;44:1108-14.

17. Subedi B, Shyaka P, Kc U, Jnawali M, Paudyal BD, Acharya, A et al. Prevalence of dental caries in 5-6 years and 12-13 years age group of school children of Kathmandu valley. JNMA J Nepal Med Assoc 2011;51:176-81.

18. Datta P and Datta PP. Prevalence of dental caries among school children in Sundarban, India. Epidemiology. 2013;3:135.

19. Chu CH, Chau AM, Wong ZS, Hui BS, Lo EC. Oral health status and behaviours of children in Myanmar – A pilot study in four villages in rural areas. Oral Health Prev Dent 2012;10:365-71.

20. Das D, Misra J, Mitra M, Bhattacharya B, Bagchi A. Prevalence of dental caries and treatment needs in children in coastal areas of West Bengal. Contemp Clin Dent 2013;4:482-7.

21. Sukhabogi Jr, Shekar C, Hameed Ia, Ramana I, Sandhu G. Oral health status among 12- and 15- year-old children from government and private schools in Hyderabad, Andhra Pradesh, India. Ann Med Health Sci Res 2014;4(Suppl 3):S272-7.

22. Malvanya EA, Ajithkrishnan CG, Thanveer K, Hongal S. Prevalence of dental caries and treatment needs among 12-year-old school going children in Vadodara City, Gujarat, India: A cross-sectional study. Indian J Oral Sci 2014;5:3-9.

23. Saravanan S, Madivanan I, Subashini B, Felix JW. Prevalence pattern of dental caries in the primary dentition among school children. Indian J Dent Res 2005;16:140-6. Erratum in: Indian J Dent Res 2006;17:10. Subashini, B [corrected to Subashini, B].

24. Dhar V, Jain A, Van Dyke TE, Kohli A. Prevalence of dental caries and treatment needs in the school-going children of rural areas in Udaipur district. J Indian Soc Pedod Prev Dent 2007;25:119-21.

25. Shailee F, Girish MS, Kapil RS, Nidhi P. Oral health status and treatment needs among 12- and 15-year-old government and private school children in Shimla city, Himachal Pradesh, India. J Int Soc Prev Community Dent 2013;3:44-50.

26. Munjul V, Gupta A, Kaur P, Garewal R. Dental caries prevalence and treatment needs in 12 and 15-year-old children of Ludhiana city. Indian J Oral Sci 2013;4:27-30.

27. Sharma A, Bansa1 P, Grover A, Sharma S, Sharma A. Oral health status and treatment needs among primary school going children in Nagrota Bagwan block of Kangra, Himachal Pradesh. J Indian Soc Periodontol 2014;18:762-6.

28. Ingle NA, Dubey HV, Kaur N, Gupta R. Prevalence of dental caries among school children of Bharatpur city, India. J Int Soc Pedod Prev Community Dent 2014;4:52-5.

29. Moses J, Rangeeth BN, Gurunathan D. Prevalence of dental caries, socio-economic old school going children of Chidambararam status and treatment needs among 5 to 15 year. J Clin Diagn Res 2011;5:146-51.

30. Das UM, Beena JP, Azher U. Oral health status of 6- and 12-year-old school going children in Bangalore city: An epidemiological study. J Indian Soc Pedod Prev Dent 2009;27:6-8.

31. Sohi RK, Gambhir RS, Veeresha KL, Randhawa AK, Singh G. Assessment of prevalence of dental caries among 5 and 12-year-old schoolchildren in Chandigarh (U.T.), India. Arch Oral Res 2012;8:39-45.

32. Joshi N, Sujan S, Joshi K, Parekh H, Dave B. Prevalence, severity and related factors of dental caries in school going children of vadodara city – An epidemiological study. J Int Oral Health 2013;5:35-9.

33. Ravishankar PL, Jayapalan CS, Gondhalekar RV, Krishna BJ, Shaloob KM, Unmer PF. Prevalence of dental caries and oral hygiene status among school going children: An epidemiological study. J Contemp Dent Pract. 2013;14:743-6.

34. Sarumathi T, Kumar S, Datta M, Hemalatha VT, Aarthi Nisha V. Prevalence, severity and associated factors of dental caries in 3-6 year old children. J Clin Diagn Res 2013;7:1789-92.

35. Sukhabogi Jr, Parthasarathi P, Anjum S, Shekar B, Padma C, Rani A. Dental fluorosis and dental caries prevalence among 12 and 15-year-old school children in Nalgonda district, Andhra Pradesh, India. Ann Med Health Sci Res 2014;4(Suppl 3):S245-52.

36. Joshi N, Rajesh R, Sunita M. Prevalence of dental caries among school going children in Kulasekharam village: A correlated prevalence survey. J Indian Soc Pedod Prev Dent 2005;23:138-40.

37. Sudha P, Bhasin A, Anegundu RT. Prevalence of dental caries among 5-13-year-old children of Mangalore city. J Indian Soc Pedod Prev Dent 2005;23:74-9.

38. Simratvir M, Moghe GA, Thomas AM, Singh N, Chopra S. Evaluation of caries experience in 3-6-year-old children, and dental attitudes amongst the caregivers in the Ldhiana city. J Indian Soc Pedod Prev Dent 2009;27:164-9.

39. Singh S, Vijayakumar N, Priyadarshini HR, Shobha M. Prevalence of early childhood caries among 3-5 year old pre-schoolers in schools of Marathahalli, Bangalore. Dent Res J (Isfahan) 2012;9:710-4.

40. Gupta D, Momin RK, Mathur A, Srinivas KT, Jain A, Dommaraju N, Dalai DR, Gupta RK. Dental caries and their treatment needs in 3-5 year old preschool children in a rural district of India. N Am J Med Sci 2015;7:143-50.

41. Khanal S, Acharya J. Dental caries status and oral health practice among 12-15 year old children in Jorpati, Kathmandu. Nepal Med Coll J 2014;16:84-7.

42. Aggertd Y. Goals for oral health in the year 2000: Cooperation between WHO, FDI and the national dental associations. Int Dent J 1983;33:55-9.

43. Basha S, Swamy HS. Dental caries experience, tooth surface distribution and associated factors in 6- and 13-year-old school children from Davangere, India. J Clin Exp Dent 2012;4:e210-6.

44. Global Healing 2011 Annual Report. Available from: http://globalhealing.org/wp-content/uploads/2014/10/2011_GHAR.pdf. [Last accessed on 2018 Apr 24].

45. Oral Health Project Myanmar. Available from: http://www.uni-wh.de/en/university/student-initiatives/oral-health-project-myanmar/. [Last accessed on 2018 Apr 24].

46. Oral Health Month. Available from: https://www.indiainfoline.com/article/general-otherscolgate-and-ida-announce–%E2%80%999oral-health-month%E2%80%99-113103001084_1.html. [Last accessed on 2018 May 10].