Natural Selection of ATP2B1 Underlies Susceptibility to Essential Hypertension

Lin-dan Ji 1,2†, Zhi-feng Xu 3†, Nelson L. S. Tang 4,5 and Jin Xu 2,6*

1 Department of Biochemistry, School of Medicine, Ningbo University, Ningbo, China, 2 Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China, 3 Department of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China, 4 Department of Cardiology, Ningbo No. 7 Hospital, Ningbo, China, 5 Department of Chemical Pathology, Faculty of Medicine, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China, 6 KZ-CUHK Joint Laboratory of Bio-resources and Molecular Research of Common Diseases, The Chinese University of Hong Kong, Hong Kong, China, 6 Department of Preventive Medicine, School of Medicine, Ningbo University, Ningbo, China

*Correspondence: Jin Xu
xujin1@nbu.edu.cn
† These authors have contributed equally to this work

Keywords: essential hypertension, ATP2B1, single nucleotide polymorphism, natural selection, genome-wide association study

INTRODUCTION

The high prevalence of essential hypertension and its uneven distribution across different populations is both a major public health concern and a puzzle in evolutionary biology (Rossier et al., 2017). Why is this deleterious disease so common when the causal variants are expected to be selected against by natural selection? Several hypotheses have been put forth to explain this paradox. Most of them hypothesize that in the past, these variants conferred an evolutionary advantage to our ancestors. The “thrifty genotype” hypothesis (Neel, 1962) and the “sodium and water retention” hypothesis (Young et al., 2005) propose that the risk factors for hypertension, such as enhanced salt and water avidity and vascular reactivity, are adaptive traits associated with salt scarcity and the hot and humid climate of the ancestral African environment (Gleibermann, 1973; Young et al., 2005). As humans migrated out of Africa to cooler climates, the genes originally selecting for hot and humid climates and sodium conservation became maladaptive for today’s environment, and individuals with these ancient genotypes could have an increased risk for developing hypertension (Weder, 2007). Therefore, it has been suggested that variability in hypertension susceptibility is due to selection in response to the various climates encountered during the out-of-Africa expansion (Young et al., 2005).

Three hypertension susceptibility genes—AGT, CYP3A5 and GNB3—have been suggested to have undergone natural selection (Nakajima et al., 2004; Thompson et al., 2004; Young et al., 2005), providing a new way to study genetic susceptibility to hypertension. Recently, we carried out a systematic evolutionary analysis on the six human renin-angiotensin-aldosterone system (RAAS) genes—ACE, AGT, AGTR1, AGTR2, CYP11B2, and REN—and found that five single nucleotide polymorphisms (SNPs) within AGTR1 underwent natural selection in Euro-Asian populations in relation to ambient temperature. Among these SNPs, only rs1873902 differed significantly between hypertensive patients and normotensive controls after Bonferroni correction. The risk allele was shown to be the ancestral African dominant allele (Ji et al., 2016). These studies strongly support the “thrifty genotype” hypothesis and the “sodium and water retention” hypothesis, which state that the genes originally selected for effective heat dissipation and sodium conservation are maladaptive in the present environment and could increase susceptibility to hypertension.
GENOME-WIDE ASSOCIATION STUDIES IDENTIFIED ATP2B1 AS A SUSCEPTIBILITY GENE FOR ESSENTIAL HYPERTENSION

Considering the relatively small sample sizes, biased study designs, and low genetic power, the results from candidate gene approach studies are usually unreliable. After dozens of GWASs on hypertension, ATP2B1 is the first gene to have been cross-validated in different GWASs. In 2009, a GWAS conducted by the Cohorts for Heart and Aging Research in Genome Epidemiology (CHARGE) consortium found that ATP2B1 genetic polymorphisms were significantly related to systolic blood pressure (SBP), diastolic blood pressure (DBP), and hypertension (Levy et al., 2009). These SNPs were replicated in European populations by the Global Blood Pressure Genetics (Global BPgen) Consortium (Newton-Cheh et al., 2009), and also in Asian populations by the Korean Association Resource (KARE) (Cho et al., 2009), the Japanese Millennium Genome Project (Tabara et al., 2010), the Genetic Epidemiology Network of Cardiovascular Disease in China (GENECDC) (Lu et al., 2015), and other Asian cohorts (Takeuchi et al., 2018). Moreover, combined analysis of the two largest cohorts, CHARGE and Global BPgen, further confirmed that only ATP2B1 variants were able to reach genome-wide significance ($P < 5 \times 10^{-8}$) with SBP (rs2681492), DBP (rs2681472) and hypertension (rs2681472) (Hirawa et al., 2013).

FIGURE 1 | The risk T allele of rs2681472 is strongly associated with precipitation among CEPH-HGDP populations.
analysis between the derived allele frequency and daily sunshine duration, temperature, ultraviolet radiation and precipitation using correlation analysis. The effects of these environmental factors, along with the geographic parameters, such as longitude, latitude and altitude, were evaluated using multiple linear regression analysis. Both the bivariate correlation analysis and the multiple linear regression analysis revealed that rs2681472 was significantly associated with precipitation ($R = 0.431, P = 0.006$, Figure 1). We also searched the dbCLINE (Hancock et al., 2011), a software of genome-wide scan for evidence of positive selection in response to climatic variation, and it also indicated that rs2681472 is associated with summer precipitation rate. Because only rs2681472 exhibited a positive selection signal, it was further genotyped by Tm-shift method (Yuan et al., 2012) in 2032 individuals from a sample Chinese population. The 1,016 essential hypertension patients and 1,016 healthy participants were recruited in Ningbo, a city in east China, and the case and control were well-matched for age and sex. The result revealed significant differences between the case and control groups ($P = 0.002, OR=1.23, 95\% CI=1.08–1.39$). The risk allele T was shown to be the ancestral African dominant allele.

DISCUSSION

Based on the GWA5s and the following replication studies, the SNP rs2681472 of the **ATP2B1** gene was confirmed to be associated with blood pressure or hypertension in various populations (Levy et al., 2009; Newton-Cheh et al., 2009; Hirawa et al., 2013; Kato et al., 2015; Nikpay et al., 2015; Liu et al., 2016; Nelson et al., 2017; Takeuchi et al., 2018). The current study suggests that **ATP2B1** became a susceptibility gene for hypertension via natural selection of this SNP. Moreover, according to the Genotype-Tissue Expression (GTEx) project, although rs2681472 is an intron SNP, it is a typical expression quantitative trait loci (eQTL) in multi-tissues, including artery and aorta (Consortium, 2020). Therefore, rs2681472 is not only a tagSNP but also a functional variant have undergone natural selection.

The **ATP2B1** gene encodes the plasma membrane calcium ATPase isoform 1, and results from **ATP2B1** knockout mouse studies suggest that **ATP2B1** may play an important role in the regulation of BP through alterations in calcium handling and vasoconstriction of vascular smooth muscle cells (Kobayashi et al., 2012). Because heat dissipation through sweating results in large volume losses, further enhancement of vasoconstriction was likely part of our adaptation to the hot and humid African environment. As our ancestors migrated out of Africa, the primary thermodynamic requirement shifted from heat dissipation to heat conservation. Selection for salt and water avidity and vasoconstriction lessened. This difference in volume avidity and vasoconstriction, an important physiologic source of hypertension susceptibility, may be a consequence of differential exposure to selection pressures since the out-of-Africa expansion.

AUTHOR CONTRIBUTIONS

L-dJ and JX conceived the opinion. L-dJ and Z-IX completed the evolutionary analysis and case-control replication study. L-dJ, NT, and JX wrote the manuscript. All authors contributed to the article and approved the submitted version.

FUNDING

This work was supported by the National Natural Science Foundation of China (81402747), Funding of Science and Technology on Medicine and Health in Zhejiang Province (2019KY650), as well as the K.C. Wong Magna Fund in Ningbo University.

REFERENCES

Cho, Y. S., Go, M. J., Kim, Y. J., Heo, J. Y., Oh, J. H., Ban, H. J., et al. (2009). A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits. *Nat. Genet.* 41, 527–534. doi: 10.1038/ng.357

Consortium, G. T. (2020). The GTEx Consortium atlas of genetic regulatory effects across human tissues. *Science* 369, 1318–1330. doi: 10.1126/science.aaz1776

Gleibermann, L. (1973). Blood pressure and dietary salt in human populations. *Ecol. Food Nutr.* 2, 143–156. doi: 10.1080/03670244.1973.9990329

Hancock, A. M., Witonsky, D. B., Alkorta-Aranburu, G., Beall, C. M., Gebremedhin, A., Sukernik, R., et al. (2011). Adaptations to climate-mediated selective pressures in humans. *PLoS Genet.* 7:e1001375. doi: 10.1371/journal.pgen.1001375

Hirawa, N., Fujisawa, A., and Umeumura, S. (2013). ATP2B1 and blood pressure: from associations to pathophysiology. *Curr. Opin. Nephrol. Hypertens.* 22, 177–184. doi: 10.1097/MNH.0b013e328335da6c

Ji, L., Wu, D., Xie, H., Yao, B., Chen, Y., Irwin, D. M., et al. (in press). Ambient temperature is a strong selective factor influencing human development and immunity. *Genomics Proteomics Bioinformatics.* doi: 10.1016/j.gpb.2019.11.009

Ji, L. D., Tang, N. L., and Xu, J. (2016). AGTR1 has undergone natural selection in response to climatic variation, and it also indicated that the SNP rs2681472 of the **ATP2B1** gene encodes the plasma membrane calcium ATPase isoform 1, and results from **ATP2B1** knockout mouse studies suggest that **ATP2B1** may play an important role in the regulation of BP through alterations in calcium handling and vasoconstriction of vascular smooth muscle cells (Kobayashi et al., 2012). Because heat dissipation through sweating results in large volume losses, further enhancement of vasoconstriction was likely part of our adaptation to the hot and humid African environment. As our ancestors migrated out of Africa, the primary thermodynamic requirement shifted from heat dissipation to heat conservation. Selection for salt and water avidity and vasoconstriction lessened. This difference in volume avidity and vasoconstriction, an important physiologic source of hypertension susceptibility, may be a consequence of differential exposure to selection pressures since the out-of-Africa expansion.

L-dJ and JX conceived the opinion. L-dJ and Z-IX completed the evolutionary analysis and case-control replication study. L-dJ, NT, and JX wrote the manuscript. All authors contributed to the article and approved the submitted version.

FUNDING

This work was supported by the National Natural Science Foundation of China (81402747), Funding of Science and Technology on Medicine and Health in Zhejiang Province (2019KY650), as well as the K.C. Wong Magna Fund in Ningbo University.

REFERENCES

Cho, Y. S., Go, M. J., Kim, Y. J., Heo, J. Y., Oh, J. H., Ban, H. J., et al. (2009). A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits. *Nat. Genet.* 41, 527–534. doi: 10.1038/ng.357

Kato, N., Loh, M., Takeuchi, F., Verweij, N., Wang, X., Zhang, W., et al. (2015). Trans-ancestry genome-wide association study identifies 12 genetic loci influencing blood pressure and implicates a role for DNA methylation. *Nat. Genet.* 47, 1282–1293. doi: 10.1038/ng.3405

Kobayashi, Y., Hirawa, N., Tabara, Y., Muraoka, H., Fujita, M., Miyazaki, N., et al. (2012). Mice lacking hypertension candidate gene **ATP2B1** in vascular smooth muscle cells show significant blood pressure elevation. *Hypertension* 59, 854–860. doi: 10.1161/HYPERTENSIONAHA.110.165068

Levy, D., Ehret, G. B., Rice, K., Verwoert, G. C., Launer, L. J., Dehghan, A., et al. (2009). Genome-wide association study of blood pressure and hypertension. *Nat. Genet.* 41, 677–687. doi: 10.1038/ng.384

Li, J. Z., Absher, D. M., Tang, H., Southwick, A. M., Casto, A. M., Ramachandran, S., et al. (2008). Worldwide human relationships inferred from genome-wide patterns of variation. *Science* 319, 1100–1104. doi: 10.1126/science.1153717

Liu, C., Kraja, A. T., Smith, J. A., Brody, J. A., Franceschini, N., Bis, J. C., et al. (2012). Trans-ancestry genome-wide association studies identify genetic loci influencing blood pressure and overlapping with metabolic trait loci. *Nat. Genet.* 48, 1162–1170. doi: 10.1038/ng.3660

Lu, X., Wang, L., Lin, X., Huang, J., Charles Gu, C., He, M., et al. (2015). Genome-wide association study in Chinese identifies novel loci for blood pressure and hypertension. *Hum. Mol. Genet.* 24, 865–874. doi: 10.1093/hmg/ddu478

Nakajima, T., Wooding, S., Sakagami, T., Emi, M., Tokunaga, K., Tamiya, G., et al. (2004). Natural selection and population history in the human angiotensinogen
gene (AGT): 736 complete AGT sequences in chromosomes from around the world. Am. J. Hum. Genet. 74, 898–916. doi: 10.1086/420793
Neel, J. V. (1962). Diabetes mellitus: a “thrifty” genotype rendered detrimental by “progress?” Am. J. Hum. Genet. 14, 353–362.
Nelson, C. P., Goel, A., Butterworth, A. S., Kanoni, S., Webb, T. R., Marouli, E., et al. (2017). Association analyses based on false discovery rate implicate new loci for coronary artery disease. Nat. Genet. 49, 1385–1391. doi: 10.1038/ng.3913
Newton-Cheh, C., Johnson, T., Gateva, V., Tobin, M. D., Bochud, M., Coin, L., et al. (2009). Genome-wide association study identifies eight loci associated with blood pressure. Nat. Genet. 41, 666–676. doi: 10.1038/ng.361
Nikpay, M., Goel, A., Won, H. H., Hall, L. M., Willenborg, C., Kanoni, S., et al. (2015). A comprehensive 1,000 Genomes-based genome-wide association meta-analysis of coronary artery disease. Nat. Genet. 47, 1121–1130. doi: 10.1038/ng.3396
Rossier, B. C., Bochud, M., and Devuyst, O. (2017). The hypertension pandemic: an evolutionary perspective. Physiology 32, 112–125. doi: 10.1152/physiol.00026.2016
Tabara, Y., Kohara, K., Kita, Y., Hirawa, N., Katsuya, T., Ohkubo, T., et al. (2010). Common variants in the ATP2B1 gene are associated with susceptibility to hypertension: the Japanese Millennium Genome Project. Hypertension 56, 973–980. doi: 10.1161/HYPERTENSIONAHA.110.153429
Takeuchi, F., Akiyama, M., Matoba, N., Katsuya, T., Nakatochi, M., Tabara, Y., et al. (2018). Interethnic analyses of blood pressure loci in populations of East Asian and European descent. Nat. Commun. 9:3052. doi: 10.1038/s41467-018-07345-0
Thompson, E. E., Kuttab-Boulos, H., Witonsky, D., Yang, L., Roe, B. A., and Di Rienzo, A. (2004). CYP3A variation and the evolution of salt-sensitivity variants. Am. J. Hum. Genet. 75, 1059–1069. doi: 10.1086/426406
Weder, A. B. (2007). Evolution and hypertension. Hypertension 49, 260–265. doi: 10.1161/01.HYP.0000255165.84684.9d
Young, J. H., Chang, Y. P., Kim, J. D., Chretien, J. P., Klag, M. J., Levine, M. A., et al. (2005). Differential susceptibility to hypertension is due to selection during the out-of-Africa expansion. PLoS Genet. 1:e82. doi: 10.1371/journal.pgen.0010082
Yuan, F., Xu, J., Ji, L. D., Fei, L. J., Liu, P. P., and Zhang, L. N. (2012). [Application of Tm-shift genotyping method in genetic studies]. Yi Chuan 34, 1484–1490. doi: 10.3724/SP.J.1005.2012.01484

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Ji, Xu, Tang and Xu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.