Solving Price Per Unit Problem Around the World: Formulating Fact Extraction as Question Answering

Tarik Arici
aricit@amazon.com
Amazon.com Inc.
New York, NY, USA

Kushal Kumar
kushlkku@amazon.com
Amazon.com Inc.
Bengaluru, KA, India

Hayreddin Çeker
hayro@amazon.com
Amazon.com Inc.
Seattle, WA, USA

Anoop S V K K Saladi
saladias@amazon.com
Amazon.com Inc.
Bengaluru, KA, India

Ismail Tutar
ismailt@amazon.com
Amazon.com Inc.
Seattle, WA, USA

ABSTRACT
Price Per Unit (PPU) is an essential information for consumers shopping on e-commerce websites when comparing products. Finding total quantity in a product is required for computing PPU, which is not always provided by the sellers. To predict total quantity, all relevant quantities given in a product’s attributes such as title, description and image need to be inferred correctly. We formulate this problem as a question-answering (QA) task rather than named entity recognition (NER) task for fact extraction. In our QA approach, we first predict the unit of measure (UoM) type (e.g., volume, weight or count), that formulates the desired question (e.g., “What is the total volume?”) and then use this question to find all the relevant answers. Our model architecture consists of two subnetworks for the two subtasks: a classifier to predict UoM type (or the question) and an extractor to extract the relevant quantities. We use a deep character-level CNN architecture for both subtasks, which enables (1) easy expansion to new stores with similar alphabets, (2) multi-span answering due to its span-image architecture and (3) easy deployment by keeping model-inference latency low. Our QA approach outperforms rule-based methods by 34% in precision and also BERT-based fact extraction approach in all stores globally, with largest precision lift of 10.6% in the US store.

KEYWORDS
BERT, deep learning, multi-span question, natural language understanding, question-answering, SQuAD, transformers

ACM Reference Format:
Tarik Arici, Kushal Kumar, Hayreddin Çeker, Anoop S V K K Saladi, and Ismail Tutar. 2022. Solving Price Per Unit Problem Around the World: Formulating Fact Extraction as Question Answering. In Proceedings of ACM Conference (ACM SIGKDD '21). ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/nnnnnn.nnnnnn

Table 1: Below, quantity information relevant to PPU task is shown in red for a few example catalog items.

Product Title	Total Quantity
Maxwell House Original Roast Ground Coffee K-Cup Pods, Caffeinated, 24 ct - 8.3 oz Box	24
Maxwell House Original Roast Medium Ground Coffee, Caffeinated, 42.5 oz Canister (2 Pack)	85 oz
Tansukh Panchkol Powder for Hyperacidity and Digestion, red 60 gm (Pack of 2), (total 120 gm)	120 gm
Niconi Advanced Hand Sanitizer with 8 Hour Germ Protection Lemon - 200 ml (pack of 2), (100 ml each)	200 ml
Nutratech Creatine Monohydrate Micronized - 200 g (Blueberry Flavor), 5000 mg Amino powder, 100 g extra	300 gm

1 INTRODUCTION
PPU enables consumers to compare same or substitutable products when they come in a variety of packet sizes. Especially in the case of consumable products, PPU can be an important factor in customer purchase decisions. PPU information leads to a better consumer experience, and customers are sensitive to this especially in online retailing. This sensitivity leads to competitive pricing across online retailers regardless of the location of the customer and even moved offline retailers towards competitive pricing [1]. Grocery products with PPU information had higher purchase rate compared to those without PPU information. Also, some U.S. states and some EU stores such as UK have regulations on PPU reporting [5]. To this end, we train models that can correct wrong PPU information supplied by sellers and also fill in missing PPU information.

Worldwide, sellers often do not provide information about the total quantity directly but specify it in free-text fields like product titles, descriptions or even images. Moreover, this information is usually unstructured which renders regex-based extraction unfeasible which is highlighted in Table 1. In the first product title, the relevant quantity is 24 while 8.3 is not relevant in calculating the final quantity. In the second title, which is also a ground coffee product, all quantities are relevant. Even when there is some structure in the title, computing total quantity can be a challenge. For instance, the third and fourth product titles in Table 1 follow similar syntactic structure, yet the context, words like total and each, decides the selection of the most relevant quantity. In the last product
title although all quantities are related to weight, 5000 mg is not a relevant quantity as it indicates the concentration of the amino acid. These examples show that complex patterns, which depend on seller conventions, need to be learned, moreover, high-level information such as Unit of Measure (UoM) type is needed to guide quantity extraction. For example in the first product title knowing that the UoM type is count will increase the model’s confidence to select quantity 24 and not 8.3 due to its context.

To the best of our knowledge, Named Entity Recognition (NER) is a de facto formulation for fact extraction problem, where the task is to assign tags to words in a sentence that indicates the begin and end of the answer. Traditionally, these named entities represent either a person, location or an organization [4]. We may formulate our quantity extraction problem similarly, in which we can either have a single extraction class (i.e., relevant quantity) or multiple classes corresponding to the relevant quantities in each UoM type. However, NER solutions do not enable the model to couple start and end indices explicitly, and check for their compatibility during training. Constraints such as the end index has to be bigger than the start index, can not be embedded during training. Moreover, they are prone to small variations in the tokens, for e.g., “fluid ounce” or “fl oz”, which need to be explicitly tagged. Other span characteristics such as shorter answers are more likely to occur, can not be learned by the model, which can help eliminating the need for post-processing or regularization. Also, UoM type information, which is shown to be important for quantity extraction, cannot be efficiently fed to NER model other than learning different token representations for each UoM type. To overcome these limitations, we introduce a span-image architecture that works at a character-level and employ a QA approach to quantity extraction which conditions the extractor model with UoM type information.

QA models such as the ones used in Stanford Question Answering Dataset (SQuAD) competition find an answer span given a context paragraph and a question. A significant advance in answer span prediction is the BiDAF method proposed in [6], which uses bi-directional LSTM on query-to-context and context-to-query sequences and applies a softmax normalization across the sequence dimension. Hence, a single start index and a single end index is predicted to compute a single answer over context given query. BERT is a language model that significantly improved over the BiDAF model by enabling learning from unlabeled text [2] [3]. BERT and its alikes still use a softmax over the sequence as their goal is to find a single answer span. This is optimal since an answer span requires only one span start and end, and likelihood of start and end locations can be maximized separately. However, our task dictates as many quantity values as reported in product attributes (most likely up to three: weight/volume, items per package, and number of packages). Since we have to extract as many “answers” as needed, we couple start and end prediction outputs and predict spans. We achieve this by outputting a vector for each location in a two-dimensional grid (span-image), where each location (i, j) corresponds to a possible quantity span from character location i to j. All acceptable spans occur in the upper triangular part of the span-image.

Our model uses available free-form textual attributes of a product, optical character recognition (OCR) text extracted from product images, and categorical features derived from product taxonomy.

We designed a lightweight model that uses only character-level embeddings and convolutional layers, and is deep and large enough to learn semantic information to predict UoM type. Constructing a word-vocabulary and learning embeddings requires large number of parameters which is exacerbated by the heavy-tail distribution of words in our dataset (many rare words) as can be seen in Figure 1. Unlike word vocabularies, a character vocabulary of size 128 applies to many stores with alphabets sharing characters. This enables sharing character-based models across various international stores and enjoy benefits of warm-start due to shared information such as brand names, measurements units, linguistic similarities, etc. Character-level convolutional networks have been successfully applied before to several text classification tasks and achieve state-of-the-art results for classification [7]. Our model has multiple use cases that can lead to enhanced quality of an e-commerce catalog by improving coverage and consistency of PPU related information in products display pages. These use cases include, but not limited to, defect rate reduction, backfilling missing values and real-time validation of PPU related information entered during registration of a new product (see Section 3).

Our contributions in this work are as follows:

- We propose using a question-answering framework for extraction, where UoM classifier predicts a question that guides the quantity extractor. We employ a two-stage training approach. UoM classifier is trained in the first stage using more data available for this task, and quantity extractor is trained in the second stage by exploiting the predicted question as a latent variable.
- We enable more than one possible answer spans in the input text by introducing a span-image architecture.
- We propose a character-based model deep enough to construct concepts and words from characters but light enough to satisfy our latency requirements and real-time use case.

2 MODEL ARCHITECTURE

Our neural network model consists of two subnetworks: UoM classification network and quantity extraction network as shown.

![Figure 1: Word frequency plot for American English corpus and our dataset for top 5000 most common words. For an easier comparison, word frequency values are normalized in both corpuses so that log of word frequencies corresponding to most common words is one.](image)
in Figure 2. Character embeddings are not shared between the two subnetworks since vocabulary size is small. Given text attributes \{\textit{a}^1, \textit{a}^2, \ldots\}, model input comprises of character sequences \(x^i = \{x^i_1, x^i_2, \ldots, x^i_n\}\), where \(x^i_j \in \mathbb{R}^k\) are \(k\)-dimensional character embedding corresponding to the \(j^{th}\) character in the input sequence of length \(n\) for attribute \(a^i\). We also pass categorical embeddings as inputs for each category the product belongs to in the product taxonomy.

2.1 UoM Classifier and Quantity Extractor

UoM classifier consists of below stages (see Figure 2):

- Character embedding layer maps each character to a \(k\) dimensional vector and the resulting vector sequence is fed into convolutional layers.
- Convolutional layers consist of multiple layers with filter sizes 3 and 5. We used \textit{maxpooling} on the activations. Output sequence vectors are batch normalized and dropout is employed.
- Attention module computes an attention vector from all input attributes. Each attribute-encoding vector is affine transformed to obtain attention keys, which are element-wise scaled and summed to find the scores for softmax weights. Weighted averaged attribute-encoding vectors constitute a product-description vector.
- Categorical embeddings vectors are created by embedding categorical indices into a high dimensional space \(1/\sqrt{M}\) dim, where \(M\) is the number of categories. Every product in our catalog belongs to predefined categories.
- Product-description vector and category-embedding vectors are concatenated and passed to classification layers to produce logits for UoM type. Softmax normalization is applied on the logits to predict the UoM type.

Quantity extraction (QE) model consists of below stages:

- Character embedding layer same as above.
- 1D convolutional layers are applied to obtain an encoded sequence \(y\) without any strided pooling. Resultant sequence is batch normalized and dropout is used during training. No pooling is applied since sequence length needs to be kept.

- Each vector in \(y\) is concatenated with UoM softmax outputs, and fed into two different 1D convolutional layers to compute two vector sequences \(s\) and \(e\) of length \(n\), with a shrunken depth \(d\). This permits specialization for start and end index prediction. We also concatenate different positional dimensions to both these vector sequences to segregate them.
- \(s\) is tiled horizontally and \(e\) is tiled vertically to produce two tensors of size \(n \times d\). These two tensors are multiplied element-wise to create a span-image of width and height equal to \(n\) and depth of \(d\). 2D convolutional filters are applied on the span-image to produce an image of size \(n \times n\) and depth 2.
- Softmax normalization is applied on the depth dimension as opposed to the sequence dimension. Post-processing is done on the extracted quantities above a certain threshold to obtain the final quantity.

2.2 Training and Inference

Our model training is performed in two phases. In the first phase, UoM classifier is trained, in the second phase QE is trained while UoM classifier weights are frozen. This two-phase training strategy suits well with our model architecture. We use auditors to decide on UoM type and total quantity value for each product audited. Our model training is performed in two phases. In the first phase, UoM classifier is trained, in the second phase QE is trained while UoM classifier weights are frozen. This two-phase training strategy suits well with our model architecture. We use auditors to decide on UoM type and total quantity value for each product audited. Our auditors specify a UoM type and total quantity value for each product audited. UoM type is a predefined class (i.e., weight, volume, count). Hence, all available audits can be used for training the UoM classifier. However, total quantity is often a multiplication of other quantities such as number of items and/or packages, and item volume or weight. Since our auditor only provide final quantity value and do not explicitly tag parts-of-text within product attributes, we use some high precision heuristics (see Algorithm 1) to create the ground truth span required for quantity extraction model training. This approach of using heuristics to tag ground truth values does not work well for all samples, resulting in a small loss of audited examples. Our training dataset for learning the quantity extractor is about 15% smaller than our UoM dataset for learning the classifier.

To increase our recall, we perform noising on our inputs by adding and deleting random gibberish words and tokens that are
3 PPU MODEL USE CASES

Our PPU model can be used primarily for the following three tasks on an e-commerce catalog.

3.1 Correction

This task involves fixing incorrect UoM and total quantity information provided by sellers. As this information may exist in one or more attributes, they may conflict with each other, e.g., having a different size in product title versus product image. We can use PPU models to predict UoM type and quantity for products at a particular cadence. If the prediction and associated attribute values in the catalog do not match, we can send them for manual correction. This can help remove defects, ensuring consistent information across attributes.

3.2 Backfilling

We can also use our model predictions for backfilling quantity information. For certain stores, we found correlations between the quality of catalog information and the popularity of the product. Specifically, the tail products tend to have inconsistent or missing attribute values along with distribution shifts on UoM types for same categories compared to head products. This leads to lower coverage at the time of backfilling. To address such problems, we experimented with active learning technique by obtaining manual audits on a small set of tail products where the model confidence was low. It helped improve recall on tail products by 13% with only 1% drop on the head products in that store.

3.3 Validation

As new products are created in an e-commerce catalog everyday, the challenge of fixing incorrect information or backfilling missing values is ever lasting. Instead, we can ensure consistent attribute information during creation itself by using real-time model validation owing to low model latency. Quantity related attributes can be validated using our model predictions, and the merchant can be notified to recheck and correct inconsistent attribute values.

4 EXPERIMENTS

We evaluate our Quantity Extraction model based on its predicted total quantity and UoM type and not individual quantity spans. This is a stricter metric since a true prediction requires all relevant quantities in the input to be extracted correctly. We compare precision for quantity extraction task as we need to meet a high precision threshold for deployment, while for classification task, we compare F1 scores as both precision and recall are important.

4.1 Dataset

Our dataset was created within a 16-month time frame. We first used a rule-based model as a UoM classifier, and flagged items in the top 3 product categories (we will refer to them as A, B and C.
categories in this paper) when the prediction did not match the
catalog values. Initially, we worked with internal audit teams to
correct UoM and quantity values manually. After collecting about
40K examples in our dataset, we trained our deep learning-based
UoM classifier, which had about 120K parameters. Designing a
lightweight model allowed us to use deep learning techniques early
in our project. As we obtained more audits, our model size scaled
proportional to our dataset sizes. Currently, our model includes
657K number of parameters. As the model performance improved,
we started choosing candidates based on the correctness of quantity
values as well as of the UoM type. Table 2 shows the distribution
of products with respect to the number of spans. Large proportion
of the products in our training dataset did not contain any span,
which either meant that the relevant quantities are missing from
the text or that the product is of type count and the total quantity
is 1.

Similar to US catalog, IN catalog is also in English and shares
the same vocabulary, yet there are several distribution differences
when compared to US catalog. Fine-tuning US model even on a
small training dataset can lift performance by increasing confi-
dence scores on tokens including but not limited to unit words
in the metric system for e.g. kilogram, millilitre, etc. IN catalog is also
rife with out-of-vocabulary (OOV) words for US model, which are
borrowed directly from the regional language, for eg - atta which is
Hindi for flour and agarbatti which is Hindi for incense sticks, that
carry useful signals for UoM classification task. We also observed
that longer text attributes such as product description and bullet
points were seldom informative on PPU related information over
shorter attributes like title. Moreover, there were some distribu-
tional changes as well, like the distribution of UoM types across
same product categories varied across the stores. Also, count UoM
type was more noisy where it was difficult to predict UoM type
by using the product titles alone, and needed signals from product
taxonomy. These differences needed to be addressed appropriately
when testing US model and improving it further in IN store.

4.2 Baselines to our PPU Model

4.2.1 Rule-based models. The rule based model is the first base-
line to PPU model, which comprises of regex rules for predicting
UoM type and capturing all quantities present in the text. For pre-
dicting UoM type, the rule-based model relies on UoM specific
keywords like ounce, liquid, pieces, etc. A simple regex rule to cap-
ture weight quantities for instance, can be as follows: "[decimal
number][space][weight unit]". Regex also catered to various com-
posite patterns such as "2 × 200 ml". We also applied guardrails to
the per unit quantity value for each UoM type for better precision.

4.2.2 Fine-tuned BERT models. We fine-tuned BERT models separa-
ately for both the UoM and quantity extraction tasks as another baseline. We took pre-trained Google BERT base model
(bert_uncased_L-12_H-768_A-12) and trained it further on our cat-
alog corpus for both MLM and NSP tasks for English stores like
US and IN [2]. This model is then fine-tuned for the UoM classifi-
cation task in the US store which has the largest share of training
examples.

For quantity extraction task, we used BERT model to compare
our approach with fact extraction formulation. We used BERT-base
(bert-base-uncased) model that is available from Transformers li-
brary which is trained on lower-cased English text with 12 layer, 768
hidden dimensions, 12 attention-heads and 110M parameters. We
fine-tune it with PPU dataset as a fact extraction problem using a
UoM agnostic question "What is the total quantity?". Current imple-
mentation of BERT does not support multi-span answer prediction.
We modify the last linear layer and use two affine transformations
(outer-product) to convert the separate begin and end vectors into
a matrix where each pixel corresponds to a potential answer. The
probability of each span can be computed by applying sigmoid func-
tion on each pixel in the output matrix. Using sigmoid makes no
assumption on number of spans. This way, we can set a threshold
to find out all plausible answers.

4.3 Results

We note that all results reported in this paper are in absolute terms.

4.3.1 Comparison with rule-based models. Table 3 shows perform-
cance comparison between rule based versus deep learning based
PPU model in US store. Despite handling the most common quan-
tity patterns in the rule-based model, rule-based model fails due to
more complex patterns in the text and due to lack of semantic un-
derstanding of the product. We see that the deep learning approach
significantly outperforms such rule-based models with F1 jump of
over 65% in UoM classification task and over 34% in precision
for quantity extraction task, where deep learning model crossed
the set precision threshold for all UoM types but rule-based model
did not. Also, the deep learning-based model has the potential to
improve continuously as our corrections process yields more data
as a byproduct while rule-based model has limited improvement
potential (see Section 3.1).

4.3.2 Comparison with BERT models. Table 4 compares perform-
ce in the UoM type classification task across all three stores
between pre-trained BERT model and our UoM Classifier model.
We compare F1 score for classification tasks, and as we can see
in Table 4, our model outperforms in US store while performs
somewhat comparably to BERT in IN store, although BERT model
performs better in EU-5 store. Overall, despite any prior knowledge
on English language or the e-commerce catalog and with much
less parameters, our model comes reasonably close to BERT per-
formance globally. This shows that our CNN architecture is deep
enough to learn the semantic information to accurately predict
UoM type.

As mentioned previously, the task of quantity extraction can also
be viewed as a fact extraction problem, where the model directly
predicts whether a certain quantity in the text attribute is relevant or
not. We compare our Question Prediction and Answering approach
on the lightweight PPU model against fact extraction approach
using a bulkier BERT based model which was pre-trained for better
English language understanding (see Table 5). We see that our
model outperforms BERT in US store by 10.6% and in EU-5 store by
0.9% in precision while performing comparably in IN store, despite
added advantage to the BERT model. Notably, our model crossed

\[\text{AP - lift in micro-averaged precision, \Delta R - lift in micro-averaged recall} \]
Table 3: Performance gains for our PPU model over the rule-based model in US store

Task	PPU model (Δ)				
	Volume	Weight	Count	Overall	
UoM Classification	ΔP	1.6	26.0	17.9	16.4
	ΔR	64.0	56.9	90.0	76.3
	ΔF1	51.6	44.1	86.8	65.4
Quantity Extraction	ΔP	11.5	37.4	42.2	34.4
	ΔR	19.1	0.2	27.7	19.1
	ΔF1	22.4	8.0	40.6	26.1

Table 4: Performance gains across stores over pre-trained Google BERT Base model fine-tuned first on catalog from English stores for both MLM and NSP tasks and then on UoM Classification task across all stores: EU-5, IN and US

Store	PPU Model Classifer (Δ)				
	Volume	Weight	Count	Overall	
EU-5	ΔP	-11.8	-20.8	-7.2	-12.0
	ΔR	-9.0	-7.8	-3.9	-5.4
	ΔF1	-10.2	-13.5	-5.6	-8.6
IN	ΔP	0.0	0.0	0.0	0.0
	ΔR	-8.0	-4.4	-3.9	-5.0
	ΔF1	-4.4	-2.3	-2.1	-2.7
US	ΔP	0.5	-5.0	0.3	-0.7
	ΔR	5.8	12.3	3.6	6.8
	ΔF1	3.3	3.7	2.0	3.2

Table 5: Problem formulation - Performance gains for Question Prediction and Answering approach using our PPU model over Fact Extraction approach using BERT across all stores: EU-5, IN and US

Store	Question Prediction and Answering (Δ)				
	Volume	Weight	Count	Overall	
EU-5	ΔP	1.7	1.2	0.3	0.9
	ΔR	-27.3	-20.2	-15.3	-19.6
	ΔF1	-30.7	-25.7	-17.2	-22.4
IN	ΔP	0.1	0.1	-0.6	0.1
	ΔR	-14.1	-7.4	11.3	-0.5
	ΔF1	-8.7	-4.7	10.8	1.8
US	ΔP	-0.3	-0.1	19.8	10.6
	ΔR	-8.3	-4.8	8.5	1.6
	ΔF1	-7.6	-5.0	12.0	3.8

the set precision threshold for US store and on two out of three UoM types in both IN and EU-5 stores, while fact extraction using BERT crossed it only for weight and volume UoM types in IN and US stores. This reinstates that our approach of question prediction (in the form of UoM type) and answering is desirable since the UoM latent variables are critical in disambiguating among candidate quantity spans. It helps in achieving comparable performance to BERT with orders of magnitude smaller architecture which is easy to deploy.

4.3.3 Product Categories. Table 6 shows performance comparison across stores for the three most prominent product categories in our dataset - A, B and C. Across all stores, product category A has a particularly lower F1 score on weight UoM type than the overall performance on that store. This is mainly because of incorrect UoM type classification since a lot of products in A had a weight information in the product title but the audited UoM type was count. For example a product title may look like - "Patanjali Saundarya Swarn Kanti Fairness Cream(1.75 Oz)" where the model predicts
its UoM type as weight but the audited UoM type is count and total quantity is 1. For the same reason, recall on count is higher in general for product category A than the overall average. Also, we found that volume and weight UoM types have better precision than count UoM type across categories. This is intuitive despite comparable classification performance across types as count UoM type products usually have many more count related numbers (thread count, roll count, number of packs, etc.) whose relevance need to be accurately predicted. Due to the same reason, for EU-5 and IN stores, we are unable to reach the set precision bar for count UoM type across all 3 categories, unlike for weight and volume UoM types, using our PPU model.

4.3.4 Feature Selection in IN. As seen in Section 4.1, there are data distribution differences between US and IN stores. We found that a simple replacement of OOV words in IN store with US counterpart lifts US model’s confidence by up to 10% and even correct the predicted UoM type in some cases. Given our model is built on character-level features, it quickly adapts to the new set of words that are important for UoM classification task when fine-tuned (US fine-tuned (all text) model), giving a substantial lift in recall by 26% with respect to US baseline model. Inferring using only short text attributes such as title with fine-tuned model (US fine-tuned (short text) model) led to no notable drop in recall with improvements in weight and volume UoM types. Thus, the longer text attributes like product description and bullet points rarely contained extra information related to PPU over shorter attributes.

Furthermore, we trained a model from scratch using all the text attributes (IN (all text & categories) model) and found that recall only increases lower than the overall average. Also, we found that volume and weight UoM types have better precision than count UoM type across categories. This is intuitive despite comparable classification performance across types as count UoM type products usually have many more count related numbers (thread count, roll count, number of packs, etc.) whose relevance need to be accurately predicted. Due to the same reason, for EU-5 and IN stores, we are unable to reach the set precision bar for count UoM type across all 3 categories, unlike for weight and volume UoM types, using our PPU model.

Table 6: Performance gains on 3 main Product Categories across different UoM types on quantity extraction task with respect to the overall performance in that store

Store	A	B	C						
	Volume	Weight	Count	Volume	Weight	Count	Volume	Weight	Count
EU-5	ΔP 0.4	0.0	0.4	0.0	-0.1	0.2	0.0	-0.1	0.2
	0.25	0.26	0.14	0.17	0.16	0.17	0.14	0.17	0.17
IN	ΔP 0.36	0.35	0.36	0.34	0.36	0.35	0.36	0.34	0.34
US	ΔP 0.4	0.0	0.4	0.0	-0.1	0.2	1.0	-4.6	0.7
	0.25	0.26	0.14	0.17	0.16	0.17	0.14	0.17	0.17

4.4 Latency

Model latency is a critical aspect for deployment, especially in the real-time validation use case (see Section 3.3). The validation models are required to have low-latency (less than 50 milliseconds). Given our PPU model is designed to be light-weight and sufficiently deep, when compared to large language models like BERT, our model scales well with latency. On a machine with 2 CPU cores, mean latency for PPU model is 17% better than BERT model and further improves as the number of CPU cores increases. Even with 16 CPU cores, we were unable to achieve less than 50 milliseconds of mean latency for BERT model. Latency improves tremendously if we drop long text attributes like product description & bullet points and use short text and categorical attributes, as in IN store (see Table 8).
Table 8: Latency scaling (in milliseconds) with respect to number of CPU cores. BERT and PPU Model rely on all the text attributes for inference, while PPU Model for IN use short text attributes and categorical features.

Number of CPU cores	BERT Mean	P90	PPU model Mean	P90	PPU model - IN Mean	P90
2	126	150	104	205	12	21
4	73	89	56	105	8	13
8	69	86	33	56	7	9
16	56	66	21	32	6	7

5 CONCLUSION
We presented a lightweight deep learning model that can i) perform semantic learning and ii) scale well with our dataset sizes and iii) be shared across different stores, thanks to its fully character based architecture. UoM for computing quantity depends on factors such as brand, product type, conventions in a store etc. This can only be learned from domain experts for each store through rigorous audit processes. As human labeled data is limited in size, large language models are not the best fit. A model fully scalable with dataset sizes is desired while low latency is a must for real-time use cases. Also, sharing models across stores is important as brands, product types, etc., have mostly same unit of measure. These restrictions coupled with the need to avoid tokenization errors makes fully character based architectures desirable, while span-image architecture allows multi-answering. Solving quantity extraction as a question prediction and answering task gives better performance over fact extraction formulation even with bulkier pre-trained language models like BERT.

REFERENCES
[1] Alberto Cavallo. 2018. More Amazon Effects: Online Competition and Pricing Behaviors. Working Paper 25138. National Bureau of Economic Research. https://doi.org/10.3386/w25138
[2] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. CoRR abs/1810.04805 (2018). arXiv:1810.04805 http://arxiv.org/abs/1810.04805
[3] Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S. Weld, Luke Zettlemoyer, and Omer Levy. 2019. SpanBERT: Improving Pre-training by Representing and Predicting Spans. CoRR abs/1907.10529 (2019). arXiv:1907.10529 http://arxiv.org/abs/1907.10529
[4] Erik F. Tjong Kim Sang and Fien De Meulder. 2003. Introduction to the CoNLL-2003 Shared Task-Language-Independent Named Entity Recognition. SIGNLL Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL 2003 (2003), 142–147. https://www.aclweb.org/anthology/W03-0419
[5] David Sefcik. 2015. Unit Pricing Guide: A Best Practice Approach to Unit Pricing. NIST Special Publication 1181. National Institute of Standards and Technology. https://doi.org/10.3386/w25138
[6] Min Joon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. 2016. Bidirectional Attention Flow for Machine Comprehension. CoRR abs/1611.01603 (2016). arXiv:1611.01603 http://arxiv.org/abs/1611.01603
[7] Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015. Character-level convolutional networks for text classification. In Advances in neural information processing systems. 649–657.