SEMI-PARALLEL MERIDIAN SURFACES IN \mathbb{E}^4

BETÜL BULCA & KADRI ARSLAN

Abstract. In the present article we study a special class of surfaces in the four-dimensional Euclidean space, which are one-parameter systems of meridians of the standard rotational hypersurface. They are called meridian surfaces. We classified semi-parallel meridian surface in 4-dimensional Euclidean space \mathbb{E}^4.

1. Introduction

Let M be a submanifold of a n-dimensional Euclidean space \mathbb{E}^n. Denote by \overline{R} the curvature tensor of the Vander Waerden-Bortoletti connection ∇ of M and h is the second fundamental form of M in \mathbb{E}^n. The submanifold M is called semi-parallel (or semi-symmetric [15]) if $\overline{R} \cdot h = 0$ [6]. This notion is an extrinsic analogue for semi-symmetric spaces, i.e. Riemannian manifolds for which $R \cdot R = 0$ and a direct generalization of parallel submanifolds, i.e. submanifolds for which $\nabla h = 0$. In [6] J. Deprez showed the fact that the submanifold $M \subset \mathbb{E}^n$ is semi-parallel implies that (M, g) is semi-symmetric. For references on semi-symmetric spaces, see [18]; for references on parallel immersions, see [8]. In [6] J. Deprez gave a local classification of semi-parallel hypersurfaces in Euclidean n-space \mathbb{E}^n.

Recently, the present authors considered the Wintgen ideal surfaces in Euclidean n-space \mathbb{E}^n. They showed that Wintgen ideal surfaces in \mathbb{E}^n satisfying the semi-parallelity condition

$$R(X, Y) \cdot h = 0$$

are of flat normal connection [2]. Further, the same authors in [3] proved that the tensor product surfaces in \mathbb{E}^4 satisfying the semi-parallelity condition (1.1) are totally umbilical.

In [15] Ganchev and Milousheva constructed special two dimensional surfaces which are one-parameter of meridians of the rotation hypersurfaces in \mathbb{E}^4 and called these surfaces meridian surfaces. The geometric construction of the meridian surfaces is different from the construction of the standard rotational surfaces with two dimensional axis in \mathbb{E}^4 [9]. The same authors classified the meridian surfaces with constant Gauss curvature ($K \neq 0$) and constant mean curvature H [13]. Recently, meridian surfaces with 1-type Gauss map is characterized by the present authors and Milousheva in [4]. Further, meridian surfaces were studied in [10] as a surface in Minkowski 4-space. For more details see also [11], [12] and [17].

In the present study we consider the meridian surfaces in 4-dimensional Euclidean space \mathbb{E}^4. We gave a classification of the meridian surfaces in 4-dimensional Euclidean space \mathbb{E}^4 satisfying the semi-parallelity condition (1.1).

Date: March 25, 2015.

2000 Mathematics Subject Classification. 53C15, 53C40.

Key words and phrases. Gaussian curvature, Meridian surface, Semi-parallel surface.
2. Basic Concepts

Let \(M \) be a smooth surface in \(n \)-dimensional Euclidean space \(\mathbb{E}^n \) given with the surface patch \(X(u, v) : (u, v) \in D \subset \mathbb{E}^2 \). The tangent space to \(M \) at an arbitrary point \(p = X(u, v) \) of \(M \) span \{ \(X_u, X_v \) \}. In the chart \((u, v)\) the coefficients of the first fundamental form of \(M \) are given by

\[
(2.1) \quad E = \langle X_u, X_u \rangle, \quad F = \langle X_u, X_v \rangle, \quad G = \langle X_v, X_v \rangle,
\]
where \(\langle , \rangle \) is the Euclidean inner product. We assume that \(W^2 = EG - F^2 \not= 0 \), i.e. the surface patch \(X(u, v) \) is regular. For each \(p \in M \), consider the decomposition \(T_p \mathbb{E}^n = T_p M \oplus T^\perp_p M \) where \(T^\perp_p M \) is the orthogonal component of the tangent plane \(T_p M \) in \(\mathbb{E}^n \), that is the normal space of \(M \) at \(p \).

Let \(\chi(M) \) and \(\chi^\perp(M) \) be the space of the smooth vector fields tangent and normal to \(M \) respectively. Denote by \(\nabla \) and \(\nabla^\perp \) the Levi-Civita connections on \(M \) and \(\mathbb{E}^n \), respectively. Given any vector fields \(X_i \) and \(X_j \) tangent to \(M \) consider the second fundamental form \(h : \chi(M) \times \chi(M) \to \chi^\perp(M) \);

\[
(2.2) \quad h(X_i, X_j) = \nabla_{X_i}X_j - \nabla_{X_j}X_i; \quad 1 \leq i, j \leq 2.
\]
where \(\nabla \) is the induced. This map is well-defined, symmetric and bilinear.

For any normal vector field \(N_\alpha \) \(1 \leq \alpha \leq n - 2 \) of \(M \), recall the shape operator \(A : \chi^\perp(M) \times \chi^\perp(M) \to \chi^\perp(M) \);

\[
(2.3) \quad A_{N_\alpha}X_i = -\nabla^\perp_{N_\alpha}X_i + D_{X_i}N_\alpha; \quad 1 \leq i \leq 2.
\]
where \(D \) denotes the normal connection of \(M \) in \(\mathbb{E}^n \). This operator is bilinear, self-adjoint and satisfies the following equation:

\[
(2.4) \quad \langle A_{N_\alpha}X_i, X_j \rangle = \langle h(X_i, X_j), N_\alpha \rangle, \quad 1 \leq i, j \leq 2.
\]

The equation \(\Box \) is called Gaussian formula, and

\[
(2.5) \quad h(X_i, X_j) = \sum_{\alpha=1}^{n-2} h^\alpha_{ij}N_\alpha, \quad 1 \leq i, j \leq 2
\]
where \(h^\alpha_{ij} \) are the coefficients of the second fundamental form \(h \). If \(h = 0 \) then \(M \) is called totally geodesic. \(M \) is totally umbilical if all shape operators are proportional to the identity map. \(M \) is an isotropic surface if for each \(p \) in \(M \), \(\|h(X, X)\| \) is independent of the choice of a unit vector \(X \) in \(T_p M \).

If we define a covariant differentiation \(\nabla h \) of the second fundamental form \(h \) on the direct sum of the tangent bundle and normal bundle \(TM \oplus T^\perp M \) of \(M \) by

\[
(2.6) \quad (\nabla_X h)(X_j, X_k) = D_X h(X_j, X_k) - h(\nabla_X X_j, X_k) - h(X_j, \nabla_X X_k),
\]
for any vector fields \(X_i, X_j, X_k \) tangent to \(M \). Then we have the Codazzi equation

\[
(2.7) \quad (\nabla_{X_i}h)(X_j, X_k) = (\nabla_{X_j}h)(X_i, X_k),
\]
where \(\nabla \) is called the Vander Waerden-Bortolotti connection of \(M \).

We denote \(R \) and \(\bar{R} \) the curvature tensors associated with \(\nabla \) and \(D \) respectively;

\[
(2.8) \quad R(X_i, X_j)X_k = \nabla_{X_i}\nabla_{X_j}X_k - \nabla_{X_j}\nabla_{X_i}X_k - \nabla_{[X_i, X_j]}X_k,
\]
(2.9) \quad \bar{R}(X_i, X_j)N_\alpha = h(X_i, A_{N_\alpha}X_j) - h(X_j, A_{N_\alpha}X_i).

The equation of Gauss and Ricci are given respectively by

\[
(2.10) \quad \langle R(X_i, X_j)X_k, X_l \rangle = \langle h(X_i, X_l), h(X_j, X_k) \rangle - \langle h(X_i, X_k), h(X_j, X_l) \rangle,
\]
(2.11) \[\langle R^i(X_i, X_j)N_\alpha, N_\beta \rangle = \langle [A_{N_\alpha}, A_{N_\beta}]X_i, X_j \rangle, \]

for the vector fields \(X_i, X_j, X_k \) tangent to \(M \) and \(N_\alpha, N_\beta \) normal to \(M \).

Let \(X_i \wedge X_j \) denote the endomorphism \(X_k \rightarrow \langle X_j, X_k \rangle X_i - \langle X_i, X_k \rangle X_j \). Then the curvature tensor \(R \) of \(M \) is given by the equation

\[
R(X_i, X_j)X_k = \sum_{\alpha=1}^{n-2} (A_{N_\alpha}X_i \wedge A_{N_\alpha}X_j) X_k.
\]

It is easy to show that

\[
R(X_i, X_j)X_k = K (X_i \wedge X_j) X_k,
\]

where \(K \) is the Gaussian curvature of \(M \) defined by

\[
K = \langle h(X_1, X_1), h(X_2, X_2) \rangle - \|h(X_1, X_2)\|^2
\]

(see [14]).

The normal curvature \(K_N \) of \(M \) is defined by (see [5])

\[
K_N = \left\{ \sum_{1=\alpha<\beta}^{n-2} \langle R^i(X_1, X_2)N_\alpha, N_\beta \rangle^2 \right\}^{1/2}.
\]

We observe that the normal connection \(D \) of \(M \) is flat if and only if \(K_N = 0 \), and by a result of Cartan, this equivalent to the diagonalisability of all shape operators \(A_{N_\alpha} \) of \(M \), which means that \(M \) is a totally umbilical surface in \(\mathbb{E}^n \).

3. Semi-Parallel Surfaces

Let \(M \) a smooth surface in \(n \)-dimensional Euclidean space \(\mathbb{E}^n \). Let \(\nabla \) be the connection of Vander Waerden-Bortoletti of \(M \). Denote the tensors \(\nabla \) by \(\overline{\nabla} \). Then the product tensor \(\overline{R} \cdot h \) of the curvature tensor \(\overline{R} \) with the second fundamental form \(h \) is defined by

\[
(\overline{R}(X_i, X_j) \cdot h)(X_k, X_l) = \nabla_{X_i}(\nabla_{X_j}h(X_k, X_l)) - \nabla_{X_j}(\nabla_{X_i}h(X_k, X_l))
\]

for all \(X_i, X_j, X_k, X_l \) tangent to \(M \).

The surface \(M \) is said to be semi-parallel if \(\overline{R} \cdot h = 0 \), i.e. \(\overline{R}(X_i, X_j) \cdot h = 0 \) ([15], [6], [7], [10]). It is easy to see that

\[
(\overline{R}(X_i, X_j) \cdot h)(X_k, X_l) = R^i(X_i, X_j)h(X_k, X_l)
\]

\[
-h(R(X_i, X_j)X_k, X_l) - h(R(X_i, X_j)X_l, X_k),
\]

This notion is an extrinsic analogue for semi-symmetric spaces, i.e. Riemannian manifolds for which \(R \cdot R = 0 \) and a generalization of parallel surfaces, i.e. \(\nabla h = 0 \).

Substituting (2.3) and (2.4) into (2.9) we get

\[
R^i(X_1, X_2)N_\alpha = h^\alpha_2(h(X_1, X_1) - h(X_2, X_2) + (h^\alpha_2 - h^\alpha_1)h(X_1, X_2).
\]

Further, by the use of (2.13) we get

\[
R(X_1, X_2)X_1 = -K X_2, R(X_1, X_2)X_2 = K X_1.
\]
So, substituting (3.2) and (3.3) into (3.1) we obtain

\[
\left(\mathcal{R}(X_1, X_2) \cdot h\right)(X_1, X_1) = \left(\sum_{\alpha=1}^{n-2} h_{11}^\alpha (h_{22}^\alpha - h_{11}^\alpha) + 2K\right) h(X_1, X_2)
\]

\[
+ \sum_{\alpha=1}^{n-2} h_{11}^\alpha h_{12}^\alpha (h(X_1, X_1) - h(X_2, X_2)),
\]

(3.4) \[
\left(\mathcal{R}(X_1, X_2) \cdot h\right)(X_1, X_2) = \left(\sum_{\alpha=1}^{n-2} h_{22}^\alpha (h_{22}^\alpha - h_{11}^\alpha) \right) h(X_1, X_2)
\]

\[
+ \sum_{\alpha=1}^{n-2} h_{12}^\alpha h_{12}^\alpha (h(X_1, X_1) - h(X_2, X_2)).
\]

Semi-parallel surfaces in \(E^n\) are classified by J. Deprez [6]:

Theorem 3.1. [6] Let \(M\) a surface in \(n\)-dimensional Euclidean space \(E^n\). Then \(M\) is semi-parallel if and only if locally:

i) \(M\) is equivalent to a 2-sphere, or

ii) \(M\) has trivial normal connection, or

iii) \(M\) is an isotropic surface in \(E^5 \subset E^n\) satisfying \(\|H\|^2 = 3K\).

4. **Meridian Surfaces in \(E^4\)**

In the following sections, we will consider the meridian surfaces in \(E^4\) which is first defined by Ganchev and Milousheva [9]. The meridian surfaces are one-parameter systems of meridians of the standard rotational hypersurface in \(E^4\).

Let \(\{e_1, e_2, e_3, e_4\}\) be the standard orthonormal frame in \(E^4\), and \(S^2(1)\) be a 2-dimensional sphere in \(E^3 = \text{span}\{e_1, e_2, e_3\}\), centered at the origin \(O\). We consider a smooth curve \(C : r = r(v), v \in J, J \subset \mathbb{R}\) on \(S^2(1)\), parameterized by the arc-length \(\left\|\left(\left(\frac{dr}{dv}\right)^2\right)\right\| = 1\). We denote \(t = r'\) and consider the moving frame field \(\{t(v), n(v), r(v)\}\) of the curve \(C\) on \(S^2(1)\). With respect to this orthonormal frame field the following Frenet formulas hold good:

\[
r' = t;
\]

\[
t' = \kappa n - r;
\]

\[
n' = -\kappa t,
\]

where \(\kappa\) is the spherical curvature of \(C\).

Let \(f = f(u), g = g(u)\) be smooth functions, defined in an interval \(I \subset \mathbb{R}\), such that

\[
(f')^2(u) + (g')^2(u) = 1, \ u \in I.
\]
In [9] Ganchev and Milousheva constructed a surface M^2 in \mathbb{E}^4 in the following way:

\begin{equation}
M^2 : X(u, v) = f(u) r(v) + g(u) e_4, \quad u \in I, \ v \in J.
\end{equation}

The surface M^2 lies on the rotational hypersurface M^3 in \mathbb{E}^4 obtained by the rotation of the meridian curve $\alpha : u \to (f(u), g(u))$ around the Oe_4-axis in \mathbb{E}^4. Since M^2 consists of meridians of M^3, we call M^2 a meridian surface [9]. If we denote by κ_α the curvature of meridian curve α, i.e.,

\begin{equation}
\kappa_\alpha = f'(u)g''(u) - f''(u)g(u) = \frac{-f''(u)}{\sqrt{1 - f'^2(u)}},
\end{equation}

We consider the following orthonormal moving frame fields, X_1, X_2, N_1, N_2 on the meridian surface M^2 such that X_1, X_2 are tangent to M^2 and N_1, N_2 are normal to M^2. The tangent space of M^2 is spanned by the vector fields:

\begin{equation}
X_1 = \frac{\partial X}{\partial u}, \quad X_2 = \frac{1}{r} \frac{\partial X}{\partial v},
\end{equation}

\begin{equation}
N_1 = n(v), \quad N_2 = -g'(u) r(v) + f'(u) e_4.
\end{equation}

By a direct computation we have the components of the second fundamental forms as;

\begin{equation}
\begin{aligned}
h_{11}^1 &= h_{12}^1 = h_{21}^1 = 0, & h_{22}^1 &= \frac{2}{r}, \\
h_{11}^2 &= \kappa_\alpha, & h_{12}^2 = h_{21}^2 = 0, & h_{22}^2 &= \frac{\kappa'}{r}.
\end{aligned}
\end{equation}

Therefore the shape operator matrices of M^2 are of the form

\begin{equation}
A_{N_1} = \begin{bmatrix} 0 & 0 \\ 0 & \frac{\kappa'}{r} \end{bmatrix}, \quad A_{N_2} = \begin{bmatrix} \kappa_\alpha & 0 \\ 0 & \frac{\kappa'}{r} \end{bmatrix}
\end{equation}

and hence we have

\begin{equation}
K = \frac{\kappa_\alpha \kappa'}{r}, \quad K_N = 0,
\end{equation}

which implies that the meridian surface M^2 is totally umbilical surface in \mathbb{E}^4.

In [13] Ganchev and Milousheva constructed three main classes of meridian surfaces:

I. $\kappa = 0$; i.e. the curve C is a great circle on $S^2(1)$. In this case $N_1 = \text{const}$. and M^2 is a planar surface lying in the constant 3-dimensional space spanned by $\{X_1, X_2, N_2\}$. Particularly, if in addition $\kappa_\alpha = 0$, i.e. the meridian curve is a part of a straight line, then M^2 is a developable surface in the 3-dimensional space spanned by $\{X_1, X_2, N_2\}$.

II. $\kappa_\alpha = 0$, i.e. the meridian curve is a part of a straight line. In such case M^2 is a developable ruled surface. If in addition $\kappa = \text{const.}$, i.e. C is a circle on $S^2(1)$, then M^2 is a developable ruled surface in a 3-dimensional space. If $\kappa \neq \text{const.}$,i.e. C is not a circle on $S^2(1)$, then M^2 is a developable ruled surface in \mathbb{E}^4.

III. $\kappa_\alpha \kappa \neq 0$, i.e. C is not a circle on $S^2(1)$ and α is not a straight line. In this general case the parametric lines of M^2 given by [13] are orthogonal and asymptotic.

We proved the following Theorem.
Theorem 4.1. Let M^2 be a meridian surface in E^4 given with the parametrization (4.3). Then M^2 is semi-parallel if and only if one of the following holds:

i) M^2 is a developable ruled surface in E^3 or E^4 which considered in Case II of the classification above,

ii) the curve C is a circle on $S^2(1)$ with non-zero constant spherical curvature and the meridian curve is determined by

$$f(u) = \pm \sqrt{u^2 - 2au + 2b}, \quad g(u) = -\sqrt{2b - a^2} \ln\left(u - a - \sqrt{u^2 - 2au + 2b}\right),$$

where $a = \text{const}, b = \text{const}$. In this case M^2 is a planar surface lying in 3-dimensional space spanned by $\{X_1, X_2, N_2\}$.

Proof. Let M^2 be a meridian surface in E^4 given with the parametrization (4.3). Then by the use of (2.5) with (4.6) we see that

$$h(X_1, X_2) = 0,$$

$$(X_1, X_2) = -\frac{\kappa}{f}N_1 + \left(\kappa_\alpha - \frac{g'}{f}\right) N_2.$$

Further, substituting (4.9) and (4.10) into (3.4) and after some computation one can get

$$(\overline{R}(X_1, X_2) \cdot h)(X_1, X_1) = 0,$$

$$-K \left(-\frac{\kappa}{f}N_1 + \left(\kappa_\alpha - \frac{g'}{f}\right) N_2 \right),$$

$$\overline{R}(X_1, X_2) \cdot h)(X_2, X_2) = 0.$$

Suppose that, M^2 is semi-parallel then by definition

$$(\overline{R}(X_1, X_2) \cdot h)(X_i, X_j) = 0, \quad 1 \leq i, j \leq 2,$$

is satisfied. So, we get

$$K \left(-\frac{\kappa}{f}N_1 + \left(\kappa_\alpha - \frac{g'}{f}\right) N_2 \right) = 0.$$

Hence, two possible cases occur; $K = 0$ or $\kappa = 0$ and $\kappa_\alpha - \frac{g'}{f} = 0$. For the first case $\kappa_\alpha = 0$, i.e. the meridian curve is a part of a straight line. In such case M^2 is a developable ruled surface given in the Case II. For the second case $\kappa = 0$ means that the curve c is a great circle on $S^2(1)$. In this case M^2 lies in the 3-dimensional space spanned by $\{X_1, X_2, N_2\}$. Further, using (4.4) the equation $\kappa_\alpha - \frac{g'}{f} = 0$ can be rewritten in the form

$$f(u)f''(u) - (f'(u))^2 + 1 = 0,$$

which has the solution

$$f(u) = \pm \sqrt{u^2 - 2au + 2b}. \quad (4.10)$$

Consequently, by substituting (4.10) into (4.2) one can get

$$g(u) = -\sqrt{2b - a^2} \ln\left(u - a - \sqrt{u^2 - 2au + 2b}\right).$$

This completes the proof of the theorem. \qed
References

[1] Chen, B. Y., *Geometry of Submanifolds*. Dekker, New York (1973).
[2] Bulca, B. and Arslan, K., *Semi-parallel Wintgen Ideal Surfaces in \mathbb{E}^n*. Compt. Rend. del Acad. Bulgare des Sci., 67(2014), 613-622.
[3] Bulca, B. and Arslan, K., *Semi-parallel Tensor Product Surfaces in \mathbb{E}^4*. Int. Elect. J. Geom., 7(2014), 36-43.
[4] Bulca, B., Arslan, K. and Milousheva, V., *Meridian Surfaces in \mathbb{E}^4 with 1-type Gauss Map*. Bull. Korean Math. Soc., 51(2014), 911-922.
[5] Decruyenaere, F., Dillen, F., Verstraelen, L., Vrancken, L, *The semiring of immersions of manifolds*. Beitrage Algebra Geom. 34(1993), 209–215.
[6] Deprez, J., *Semi-parallel surfaces in Euclidean space*. J. Geom. 25(1985), 192-200.
[7] Deszcz, R., *On pseudoisometric spaces*. Bull. Soc. Math. Belg., 44 ser. A (1992), 1-34.
[8] Forus, D., *Symmetric submanifolds of Euclidean space*. Math. Ann. 247(1980), 81-93.
[9] Ganchev, G. and Milousheva, V., *Invariants and Bonnet-type theorem for surfaces in \mathbb{R}^4*. Cent. Eur. J. Math. 8(2010), No.6, 993-1008.
[10] Ganchev, G. and Milousheva, V., *Marginally trapped meridian surfaces of parabolic type in the four-dimensional Minkowski space*. Int. J. Geom. Meth. in Modern Physics, 10:10(2013), 1-17.
[11] Ganchev, G. and Milousheva, V., *Meridian Surfaces of Elliptic or Hyperbolic Type in the four dimensional Minkowski space*. ArXiv: 1402.6112v1 (2014).
[12] Ganchev, G. and Milousheva, V., *Special class of Meridian surfaces in the four dimensional Euclidean space*. ArXiv: 1402.5848v1 (2014).
[13] Ganchev, G. and Milousheva, V., *Geometric Interpretation of the Invariants of a Surface in \mathbb{R}^4 via the tangent indicatrix and the normal curvature ellipse*. [arXiv:0905.4453v1(2009)].
[14] Guadalupe, I.V., Rodriguez, L., *Normal curvature of surfaces in space forms*. Pacific J. Math. 106(1983), 95-103.
[15] Lumiste, Ú., *Classification of two-codimensional semi-symmetric submanifolds*. TRÜ Töme-tised 803(1988), 79-84.
[16] Özgür, C., Arslan, K., Murathan, C., *On a class of surfaces in Euclidean spaces*. Commun. Fac. Sci. Univ. Ank. series A1 51(2002), 47-54.
[17] Öztürk, G., Bulca, B., Bayram, B.K. and Arslan, K., *Meridian surfaces of Weingarten type in 4-dimensional Euclidean space \mathbb{E}^4*. [arXiv:1305.3155v1 (2013)].
[18] Szabo, Z.I., *Structure theorems on Riemannian spaces satisfying $R(X,Y) \cdot R = 0$. I. The local version*, J. Differential Geometry 17(1982), 531-582.

ULUĐAĞ UNIVERSITY, ART AND SCIENCE FACULTY, DEPARTMENT OF MATHEMATICS, BURSA-TURKEY

E-mail address: bbulca@uludag.edu.tr; arslan@uludag.edu.tr