Atomic properties of actinide ions with particle-hole configurations
M. S. Safronova, U. I. Safronova, and M. G. Kozlov
Phys. Rev. A 97, 012511 — Published 25 January 2018
DOI: 10.1103/PhysRevA.97.012511
Atomic properties of actinide ions with particle-hole configurations

M. S. Safronova¹,², U. I. Safronova³, and M. G. Kozlov⁴,⁵

¹Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA
²Joint Quantum Institute, National Institute of Standards and Technology and the University of Maryland, College Park, Maryland 20742, USA
³University of Nevada, Reno, Nevada 89557, USA
⁴Petersburg Nuclear Physics Institute of NRC “Kurchatov Institute”, Gatchina 188300, Russia and
⁵St. Petersburg Electrotechnical University “LETI”, Prof. Popov Str. 5, St. Petersburg, 197376, Russia

We study the effects of higher-order electronic correlations in the systems with particle-hole excited states using a relativistic hybrid method that combines configuration interaction and linearized coupled-cluster approaches. We find the configuration interaction part of the calculation sufficiently complete for eight electrons while maintaining good quality of the effective coupled-cluster potential for the core. Excellent agreement with experiment was demonstrated for a test case of La⁵⁺. We apply our method for homologue actinide ions Th⁴⁺ and U⁶⁺ which are of experimental interest due to a puzzle associated with the resonant excitation Stark ionization spectroscopy (RESIS) method. These ions are also of interest to actinide chemistry and this is the first precision calculation of their atomic properties.

I. INTRODUCTION

Last two decades of progress in atomic, molecular, and optical (AMO) physics brought forth a plethora of new AMO applications, ranging from quantum information [1] to dark matter searches [2–4]. These advances required further development of high-precision theory, first for alkali-metal and alkaline earth metal atoms, and then for more complicated systems with larger number of valence electrons. A hybrid method which combines configuration interaction and linearized coupled-cluster approaches was developed for these purposes [5–7] and applied for a wide range of problems in ultracold atoms [8–10] and search for physics beyond the Standard Model of particles and interactions [11–13]. This method has been tested and demonstrated to give accurate results up to four valence electrons [14, 15]. Recently, there was much interest in application of atoms and ions with even more complicated atomic structure, including lanthanides, actinides, various highly charged ions and negative ions [12, 16–18]. In particular, the ability to treat hole-particle states with good precisions is needed [19, 20]. The problem of applying CI+all-order method to predict properties of more complicated systems lies in the exponential scaling of the number of possible configurations with the number of valence electrons. However, if the most important sets of configuration are identified this method may still yield accurate values for larger number of electrons. In this work, we demonstrate a first accurate calculation of the systems with 8 valence electrons using the all-order effective Hamiltonian combined with a large-scale configuration interaction calculation in a valence sector.

We demonstrate the methodology on the example of Th⁴⁺ and U⁶⁺. These ions are of particular interest to actinide chemistry, as U and Th usually occur in chemical compounds and solutions as multiply-charged cations, most commonly near the Eu-like ion with a closed shell configuration [21]. No spectroscopy data exists for excited levels of the Eu-like U and Th ions, i.e. there is no experimental data for any of the energy levels. A very successful program was established to measure the dipole and quadrupole polarizabilities of Th ions with resonant excitation Stark ionization spectroscopy (RESIS) method [22–25]. In the RESIS method, a non-penetrating Rydberg electron is attached to the ion of interest to measure the binding energies of the resulting high-L Rydberg states [22]. The energy levels in the fine structure pattern are determined by the properties of the core ion, mainly by its dipole and quadrupole polarizabilities. Therefore, these properties can be extracted from the Rydberg high-L energy measurements. This method was successful for Th⁴⁺ and Th⁵⁺, but failed completely for the U⁶⁺ ions - no resolved spectral features were observed [27, 28]. This is particular puzzling since Th⁴⁺ and U⁶⁺ were predicted to have very similar energy levels structures [29]. However, the theory calculations were not of sufficient precision to definitively establish the order of the first two excited levels. Differences in the properties of the low-lying metastable states of Th⁴⁺ and U⁶⁺ may provide an explanation for the failure of the RESIS experiments in U⁶⁺ [27, 28]. In summary, reliable precision calculations are needed to resolve this puzzle.

The electronic configuration of the Th⁴⁺ and U⁶⁺ excited states makes accurate calculations difficult: the ground state configuration is a Ru-like closed shell system [Hg(6p⁶], while the first two excited states have a hole in the 6p shell, resulting in the 6p⁵5f configuration. Since both of these configurations are of even parity, they have to be included in the calculations on the same footing, i.e. including the mixing of these configurations. In this work, we separate the treatments of the electronic correlations into two problems: (1) treatment of strong valence-valence correlations and (2) inclusion of core excitations from the entire core. We test the predictive ability of our method on the homologue case of Xe-like
La$^{3+}$ where the energies have been measured to high precision.

II. METHOD

We use a hybrid approach developed in [5–7] that efficiently treats these two problems by combining configuration interaction (CI) and a linearized coupled-cluster methods, referred to as the CI+all-order method. The first problem is treated by a large-scale CI method in the valence space. The many-electron wave function is obtained as a linear combination of all distinct many-electron states of a given angular momentum J and parity:

$$
\Psi_J = \sum_i c_i \Phi_i. \tag{1}
$$

Usually, the energies and wave functions of the low-lying states are determined by diagonalizing the Hamiltonian in the CI method:

$$
H = H_1 + H_2, \tag{2}
$$

where H_1 is the one-body part of the Hamiltonian, and H_2 represents the two-body part, which contains Coulomb + Breit matrix elements. In the CI+all-order approach this bare Hamiltonian is replaced by the effective one,

$$
H_1 \rightarrow H_1 + \Sigma_1, \tag{3}
$$

$$
H_2 \rightarrow H_2 + \Sigma_2, \tag{4}
$$

where Σ_i corrections incorporate all single and double excitations from all core shells to all basis set orbitals (up to $n_{\text{max}} = 35$ and $l_{\text{max}} = 5$, efficiently solving the second problem. The effective Hamiltonian H^{eff} is constructed using a coupled cluster method [31]. The size of the core rather weakly affect the accuracy of the CI+all-order approach for $Z \gtrsim 20$ and the method was used even for superheavy atoms with $Z > 100$.

III. METHOD TESTS - La$^{3+}$ CALCULATION

To test the method, we carried out the calculation for a homologue system, La$^{3+}$, which has $[\text{Pd}]5s^25p^6$ ground state and $5s^25p^5f$ low-lying configurations. The experimental values for relevant La$^{3+}$ states are available [30] for benchmark comparisons. We started with the assumption that $5s^2$ shell may be kept closed. In this calculation, we used a V^{N-6} Dirac-Hartree-Fock (DHF) starting potential [32], where N is the number of electron, i.e. the potential of Cd-like ionic core of La$^{9+}$. Such calculation yielded poor results for the excited states of interest. Further tests showed that the $5s6s5p^5f$ configuration gives the largest contribution to the low-lying states after the $5s^25p^6$ and $5s^25p^54f$ configurations. The next largest contributions come from the $5s^25p^5f$ and $5s^25p^6p$ configurations, as expected. Therefore, the La$^{3+}$ calculations have to be carried out as a 8-valence electron computation, with both 5s and 5p shells open. We used a V^{N-8} starting potential, i.e. the potential of the La$^{11+}$ ionic core. To construct the set of the most important even parity configurations, we started ionic core with the $5s^25p^6$ and $5s^25p^54f$ configurations and allowed to excite one or two electrons from these configurations to excited states up to $7f$. This produced the list of 3277 (relativistic) configurations resulting in 360 633 Slater determinants. Below we refer to this run as “small”. For the next run, we reordered the original set of configurations by their weight and allow further one-two excitations up to $7f$ electrons from the 21 configurations with highest weights. This (medium) set has...
TABLE II. Energies of the Th$^{4+}$ and U$^{6+}$ even states calculated using the CI+all-order method. The results obtained considering 6s^2 to be valence electrons are listed in rows labelled “6-el”. Results obtained with small and large sets of configuration are given in the corresponding rows.

Level	COWAN	8el-small	8el-large	Level	COWAN	8el-small	8el-large
6p$^6 \ 1S_0$	0	0	0	6p$^6 \ 1S_0$	0	0	0
6p$^5f \ 3D_1$	135013	137121	134995	6p$^5f \ 3D_1$	87975	92458	90850
6p$^5f \ 3D_2$	140469	142088	139842	6p$^5f \ 3D_2$	94775	98554	96863
6p$^5f \ 3G_4$	143819	145579	143160	6p$^5f \ 3G_4$	97064	101288	99539
6p$^5f \ 3G_5$	145660	147001	144714	6p$^5f \ 3G_5$	102529	105492	103627
6p$^5f \ 3F_3$	147698	148752	146314	6p$^5f \ 3F_3$	101946	105732	104079
6p$^5f \ 1F_3$	150769	150615	148081	6p$^5f \ 1F_3$	107300	109051	107240
6p$^5f \ 3F_4$	156377	157221	154552	6p$^5f \ 3F_4$	113656	116417	114499
6p$^5f \ 1D_2$	160980	162300	159248	6p$^5f \ 1D_2$	116277	119989	117725
6p$^5f \ 3G_3$	209865	208535	205597	6p$^5f \ 3G_3$	188185	186470	183699
6p$^5f \ 3D_3$	215174	213424	210417	6p$^5f \ 3D_3$	196853	193827	190953
6p$^5f \ 3G_4$	217527	217054	214015	6p$^5f \ 3G_4$	196653	197749	193197

11785 configurations and 3 453 220 determinants, making it ten times larger than the small run. Note that it is the number of Slater determinants that defines the computational time. Finally, we also allow a single excitation from the 59 highest weight configurations to all electrons up to 20$sp^6d^6f^2$g. This (large) run has 18187 configurations and 4 187 914 determinants.

The results for the energies of even states of xenon-like lanthanum (La$^{3+}$) are summarized in Table I. The CI+all-order results obtained considering 5s2 to be a core shell are listed in rows labeled “6-el”. The CI+all-order results obtained considering 5s2 to be valence electrons are listed in rows labeled “8-el”. Results obtained with small, medium and large sets of configuration are given in the corresponding rows. The results are compared with experimental data from NIST database [30]. The COWAN code [33] data are given for reference. The table clearly demonstrates problems of the 6-el approach. The differences between medium and large runs all relatively small. The results of the small run are larger than the experimental values and the results of both larger runs are smaller than the experimental values. Therefore, the accuracy of the inclusion of the core-valence correlations via the effective Hamiltonian is comparable with the contribution of the remaining configurations. Since the inclusion of further configurations can only lower the values, inclusion of the further configuration will not improve the accuracy of the theory.

IV. Th$^{4+}$ AND U$^{6+}$ CI+ALL-ORDER CALCULATIONS

We use the results of La$^{3+}$ tests to construct the Th$^{4+}$ and U$^{6+}$ configuration sets for 8 valence electrons with about 3 800 000 determinants. We used a V^{N-8} starting potentials, i.e. the potentials of the Th$^{12+}$ and U$^{14+}$ ionic cores. The resulting energies are given in Table II. Results obtained with small and large sets of configurations are given in the corresponding rows. The small set is equivalent to the La$^{3+}$ small set. The results for the reduced $M1$ (in μ_0) and $E2$ (in eα_0^2) matrix elements between first three states are given in Table III. Corresponding transition energies in cm$^{-1}$, transition rates in s$^{-1}$, branching ratios, and radiative lifetimes of the 6p$^5f \ 3D_{1,2}$ states in seconds are also listed. The transition rates (in s$^{-1}$) are obtained as

$$A(M1) = \frac{2.69735 \times 10^{13}}{2(J+1)\lambda^3} \left(\frac{\langle M1 \rangle}{\mu_0} \right)^2,$$

$$A(E2) = \frac{1.11995 \times 10^{18}}{2(J+1)\lambda^5} \left(\frac{\langle E2 \rangle}{e\alpha_0^2} \right)^2,$$

where $\langle M1 \rangle$ and $\langle E2 \rangle$ are reduced matrix elements of the magnetic dipole and electric quadrupole operators, λ is the transition wavelength in Å, and J is the total angular momentum of the upper state. The branching ratios are the ratios of the rate of the given transition to the total rate, and the lifetime is the inverse of the total transition rate.

All of the values are obtained from the “large” runs. We found only a weak dependence of the matrix elements on the size of the configuration space with the exception of the 6p$^5f \ 3D_2 - 6p^5f \ 3D_1$ $E2$ matrix element in U$^{6+}$. The values of this $E2$ matrix element in Th$^{4+}$ and U$^{6+}$ calculated with small, medium, and large number of configurations are listed in Table IV. The final results in Table III all include the random-phase approximation (RPA) correction to the $M1$ and $E2$ operators. In Table IV we listed the values without the RPA corrections as well. It is clear that while the value of this matrix element are similar for all runs in
TABLE III. Transition energies (in cm$^{-1}$), matrix elements M1 (in μ_0) and E2 (in $e\alpha_0^2$), transition rates (in 1/s), and radiative lifetimes (in s) of the $6p^5f^3D_{1,2}$ levels in Th$^{4+}$ and U$^{6+}$.

Ion	Upper level	Lower level	Transition energy	Matrix element	Transition rate	Branching ratio	Lifetime	
Th$^{4+}$	$6p^5f^3D_1$	$6s^2\ 1S_0$	M1	905850	5.8E-04	0.0022	1	450
U$^{6+}$	$6p^5f^3D_1$	$6s^2\ 1S_0$	M1	134994	5.6E-04	0.0070	1	140
Th$^{4+}$	$6p^5f^3D_2$	$6s^2\ 1S_0$	E2	96863	0.183	6.38	0.610	
U$^{6+}$	$6p^5f^3D_2$	$6p^5f^3D_1$	M1	6013	1.87	4.09	0.390	
Th$^{4+}$	$6p^5f^3D_2$	$6p^5f^3D_1$	E2	-0.039	2.7E-07	0.000	0.0955	
Th$^{4+}$	$6p^5f^3D_2$	$6p^5f^3D_1$	E2	4848	1.913	2.3	0.008	
U$^{6+}$	$6p^5f^3D_2$	$6p^5f^3D_1$	E2	-0.320	6.2E-06	0.000	0.00361	

TABLE IV. $E2$ $6p^5f\ 3D_2 - 6p^5f\ 3D_1$ reduced matrix element in $e\alpha_0^2$.

Ion	no RPA	RPA	no RPA	RPA	
Th$^{4+}$	Small	0.348	0.301	Medium	0.303
U$^{6+}$	Small	0.0399	0.0026	Large	0.0389
Th$^{4+}$	Large	0.320	0.0034		

V. SUMMARY OF THE DIFFERENCES BETWEEN THE TH$^{4+}$ AND U$^{6+}$ RESULTS FOR LOW-LYING LEVELS

Below, we outline the resulting differences between the low-lying metastable levels of the two ions.

- The $6p^5f$ levels lie closer to the ground state in U$^{6+}$ than in Th$^{4+}$. This is expected, as in hydrogenic ions the $5f$ shell lies below the $6p$ shell. Therefore, the level crossing must take place along the isoelectronic sequence.

- The lifetime of the first, 3^1D_1, excited state in U$^{6+}$ is more than 3 times longer (450 s). This is purely due to smaller transition energy in U$^{6+}$ as the M1 matrix element is practically the same. Note that M1 transition rates scale as λ^{-3}.

- The lifetime of the second, 3^3D_2, excited state in U$^{6+}$ is 26 times longer. This is both due to λ^{-5} scaling of the $E2$ transition rate and smaller $E2$ matrix element, compared to Th$^{4+}$.

- The branching ratio of the 3^3D_2 level to the ground state is over 99% in Th ion, but only 61% in U ion. As a result, the large fraction of the U ions from 3^3D_2 state ends up in a highly metastable 3^1D_1 level, but very few Th ions do.

- As described above, the $3^3D_2 - 3^1D_1$ E2 matrix element is much smaller in U ion. We note that this $E2$ transition is extremely weak in both cases and M1 decay is orders of magnitude stronger. The M1 matrix elements $3^2D_2 - 3^2D_1$ are similar in both ions and M1 transition rate is factor of 2 larger in U ion.

Th$^{4+}$, this is not the case in U$^{6+}$. This is explained as follows. The dominant one-electron contributions to the $6p^5f\ 3D_2 - 6p^5f\ 3D_1$ E2 matrix element come from the $6p_{3/2} - 6p_{3/2}$ and $5f_{5/2} - 5f_{5/2}$, and $5f_{5/2} - 5f_{7/2}$ matrix elements. These contributions strongly cancel, leading to a small final value. In Th$^{4+}$ there is noticeable addition from the configurations containing $7p$ and $6f$ orbitals, which are mixed with the $6p^5f$ configuration.

In U$^{6+}$, the $5f$ electron becomes stronger bound and closer to the ground configuration. This is due to a level crossing mechanism, which is responsible for the presence of optical transitions in highly charged ions [34]. As a result, the configuration mixing with higher orbitals, such as $7p$ and $6f$, is suppressed. For example, the admixture of the $6f$ orbital to the $6p^5f$ configuration is almost two times larger in Th$^{4+}$, than in U$^{6+}$. This weakens the cancellation between $np - np$ and $nf - nf$ contributions. As a result, the E2 matrix element $6p^5f\ 3D_2 - 6p^5f\ 3D_1$ in U$^{6+}$ is highly dependent on the details of the calculations, but is more stable for Th$^{4+}$. Because of that for uranium we can not predict this amplitude reliably. It is certain significantly smaller than in Th$^{4+}$, most likely by an order of magnitude.
VI. CONCLUSION

We have established that the ns electrons have to be considered as valence for an accurate determination of the properties of particle-hole states with a hole in the respective np shell. We find that the CI+all-order method works well with the V^{N-8} starting potential which extends the applicability of this approach. We have developed an algorithm for the efficient construction of the large-scale CI configuration sets. The methodology is tested on the La$^{3+}$ ion and excellent agreement with experiment is obtained. These results suggest that the uncertainties of our predictions for the energy levels in Th$^{4+}$ and U$^{6+}$ ions are expected to be less than 1%. Matrix elements, branching ratios and lifetimes of the Th$^{4+}$ and U$^{6+}$ low-lying states were calculated and analyzed.

ACKNOWLEDGEMENT

We thank Steve Lundeen for bringing our attention to the problem of RESIS measurements in U$^{6+}$ and helpful discussions. This work is partly supported by NSF Grant No. PHY-1620687. M.G.K. acknowledges support from Russian Foundation for Basic Research under Grant No. 17-02-00216.

[1] J. Zhang, G. Pagano, P. W. Hess, A. Kyprianidis, P. Becker, H. Kaplan, A. V. Gorshkov, Z.-X. Gong, and C. Monroe, Nature 551, 601 (2017).
[2] A. Arvanitaki, J. Huang, and K. Van Tilburg, Phys. Rev. D 91, 015015 (2015).
[3] B. M. Roberts, G. Blewitt, C. Dailey, M. Murphy, M. Pospelov, A. Rollings, J. Sherman, W. Williams, and A. Derevianko, Nature Comm. 8, 1195 (2017).
[4] F. Ficek, D. F. Jackson Kimball, M. G. Kozlov, N. Leefer, S. Pustelny, and D. Budker, Phys. Rev. A 95, 032505 (2017), arXiv:1608.05779.
[5] M. G. Kozlov, Int. J. Quant. Chem. 100, 336 (2004), arXiv: physics/0306061.
[6] M. S. Safronova, M. G. Kozlov, W. R. Johnson, and D. Jiang, Phys. Rev. A 80, 012516 (2009).
[7] S. G. Porsev, M. G. Kozlov, M. S. Safronova, and I. I. Tupitsyn, Phys. Rev. A 93, 012501 (2016), 1510.06679.
[8] M. S. Safronova, M. G. Kozlov, and C. W. Clark, Phys. Rev. Lett. 107, 143006 (2011).
[9] M. S. Safronova, S. G. Porsev, and C. W. Clark, Phys. Rev. Lett. 109, 230802 (2012).
[10] X. Zhang, M. Bishof, S. L. Bromley, C. V. Kraus, M. S. Safronova, P. Zoller, A. M. Rey, and J. Ye, Science 345, 1467 (2014).
[11] S. G. Porsev, M. S. Safronova, and M. G. Kozlov, Phys. Rev. Lett. 108, 173001 (2012).
[12] M. S. Safronova, V. A. Dzuba, V. V. Flambaum, U. I. Safronova, S. G. Porsev, and M. G. Kozlov, Phys. Rev. Lett. 113, 030801 (2014).
[13] M. S. Safronova, D. Budker, D. DeMille, D. F. J. Kimball, A. Derevianko, and C. W. Clark, ArXiv e-prints (2017), arXiv:1710.01833 [physics.atom-ph].
[14] M. S. Safronova, U. I. Safronova, and C. W. Clark, Phys. Rev. A 90, 032512 (2014).
[15] V. A. Dzuba, M. S. Safronova, and U. I. Safronova, Phys. Rev. A 90, 012504 (2014).
[16] E. Jordan, G. Cerchiaro, S. Fritzshe, and A. Kellerbauer, Physical Review Letters 115, 113001 (2015).
[17] K. Van Tilburg, N. Leefer, L. Bougas, and D. Budker, Phys. Rev. Lett. 115, 011802 (2015).
[18] Y. Tang, A. G. Sykes, N. Q. Burdick, J. M. DiSciacca, D. S. Petrov, and B. L. Lev, Phys. Rev. Lett. 117, 155301 (2016).
[19] J. C. Berengut, V. A. Dzuba, V. V. Flambaum, and A. Ong, Phys. Rev. Lett. 106, 210802 (2011).
[20] N. Huntemann, C. Sanner, B. Lipphardt, C. Tamm, and E. Peik, Phys. Rev. Lett. 116, 063001 (2016).
[21] I. R. Morss, N. M. Edelstein, and J. Fuger, The Chemistry of the Actinide and Transactinide Elements (2011).
[22] M. E. Hanni, J. A. Keele, S. R. Lundeen, and C. W. Fehrenbach, Phys. Rev. A 82, 022512 (2010).
[23] J. A. Keele, S. R. Lundeen, and C. W. Fehrenbach, Phys. Rev. A 83, 062509 (2011).
[24] J. A. Keele, M. E. Hanni, S. L. Woods, S. R. Lundeen, and C. W. Fehrenbach, Phys. Rev. A 83, 062501 (2011).
[25] J. A. Keele, C. S. Smith, S. R. Lundeen, and C. W. Fehrenbach, Phys. Rev. A 85, 064502 (2012).
[26] J. A. Keele, C. S. Smith, S. R. Lundeen, and C. W. Fehrenbach, Phys. Rev. A 88, 022502 (2013).
[27] Steve Lundeen, private communication.
[28] Christopher Smith, Studies of U$^{6+}$ with the RESIS Method: difficulties and future directions, Ph.D. Thesis (2015), https://dspace.library.colostate.edu/handle/10217/167083.
[29] U. I. Safronova and M. S. Safronova, Phys. Rev. A 84, 052515 (2011).
[30] A. Kramida, Y. Rakonen, J. Reader, and NIST ASD Team (2016), (2016), NIST Atomic Spectra Database (version 5.4), [Online]. Available: http://physics.nist.gov/asd. National Institute of Standards and Technology, Gaithersburg, MD.
[31] S. A. Blundell, W. R. Johnson, Z. W. Liu, and J. Sapirstein, Phys. Rev. A 40, 2233 (1989).
[32] V. A. Dzuba, Phys. Rev. A 71, 032512 (2005), physics/0501032.
[33] R. D. Cowan, http://www.tcd.ie/Physics/People/Cormac.McGuinness/Cowan.
[34] J. C. Berengut, V. A. Dzuba, and V. V. Flambaum, Phys. Rev. Lett. 105, 120801 (2010).