Effectiveness and Safety of Tolvaptan in Patients with Aortic Stenosis

KOUTATSU SHIMOZONO AND YOSHIHIRO FUKUMOTO

Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan

Received 20 September 2019, Accepted 26 January 2020
J-STAGE advance publication 26 November 2021
Edited by TAKAFUMI UENO

Summary: Background: Heart failure in severe aortic stenosis (AS) before aortic valve has a poor prognosis with high risk. Although the overuse of loop diuretics may induce hypovolemia, cardiac output reduction, and critical hypotension in severe AS, tolvaptan is characterized by its ability to help maintain hemodynamics and seems to be appropriate for use in heart failure caused by AS. Therefore, we retrospectively examined the effects and safety of tolvaptan use in patients with heart failure caused by severe AS.

Methods and Results: Ten patients with heart failure caused by severe AS were enrolled. Tolvaptan administration did not cause blood pressure decrease significantly, whereas urine volume increased significantly from 896±318 to 1322±502 mL/day (P<0.05). Although there was no statistical significance, functional classes tended to be improved. Blood tests indicated no worsening of kidney function and N-terminal pro-brain natriuretic peptide levels after the use of tolvaptan. Echocardiography also showed no hypovolemia and no worsening of aortic valve flow (18.3±3.8 to 15.5±5.5 cm/s, n.s).

Conclusions: Tolvaptan use in AS patients with heart failure is effective and safe before aortic valve intervention.

Keywords heart failure, aortic stenosis, tolvaptan, aortic valve velocity, intravascular volume, blood pressure, urine volume

INTRODUCTION

Aortic stenosis (AS) is one of the major valvular heart diseases in an aging society [1,2]. In terms of its natural history, AS patients may remain asymptomatic for a long period [3]; however, after patients with AS suffer from symptoms, the prognosis is poor in severe AS, with a reported survival rate of only 15-50% at 5 years [3]. Sudden cardiac death often occurs in symptomatic patients, but is rare in truly asymptomatic patients with severe AS (<1% per year) [3].

The main symptoms in patients with severe AS are exertional dyspnea, angina, syncope, and ultimately heart failure [4]. It is reported that the average survival is 2 years after heart failure occurs [4]. Initially, heart failure symptoms occur during preserved left ventricular ejection fraction [5]. Although diuretics are usually used before surgical treatment to improve congestion [5], the overuse of loop diuretics may induce hypovolemia, cardiac output reduction, and critical hypotension in severe AS.

Tolvaptan is one of the vasopressin type 2 receptor antagonists, which are novel diuretics to treat congestive heart failure [6]. Tolvaptan is characterized by the improvement of congestive symptoms, hyponatremia, and relatively well-maintained hemodynamics [6]. Due to the differences of clinical features between tolvaptan and loop diuretics [7], tolvaptan seems to be better for treating heart failure caused by AS, so far as hemodynamics and renal function are concerned [8]. Therefore, we retrospectively examined the effects and safety of tolvaptan use in patients with heart fail-
ure caused by severe AS.

METHODS

This study complies with the Declaration of Helsinki, and the Ethics Committee of Kurume University Hospital approved the study protocol. The authors had full access to the data and take full responsibility for its integrity.

Study population

All patients with heart failure caused by severe AS, who required additional diuretics to treat heart failure after hospitalization, from April 2015 to March 2019, were enrolled in the present study. All patients with heart failure were diagnosed according to the Framingham criteria [9].

Data Collections

Baseline demographic data were collected based on medical records, including age, sex, height, body weight, waist, medications, risk factors (hypertension, glucose intolerance/diabetes mellitus and dyslipidemia), blood pressure, pulse rate, heart rate, and comorbidities (coronary artery disease, hypertensive heart disease, cardiomyopathy, valvular heart diseases, and congenital heart diseases) [10].

Blood sampling

After overnight fast, peripheral blood was drawn from the antecubital vein for measurements of blood cell counts, lipid profiles, liver and renal function markers, glycemic parameters, uric acid, and N-terminal pro-brain natriuretic peptide (NT-proBNP) [10]. These chemistries were measured at a commercially available laboratory in Kurume University Hospital [10].

Electrocardiography

A 12-lead electrocardiography (ECG, 10 mm = 1 mV, 25 mm/s) was acquired in a supine position during quiet respiration (ECG-1550; NIHON KOHDEN, Fukuoka, Japan) [10]. ECG findings including rhythm were assessed.

Echocardiography

Echocardiograms were obtained using a commercially available ultrasound unit, General Electric Vivid 9 (GE Healthcare, Horten, Norway), and stored on a dedicated workstation for off-line analysis (EchoPAC, GE Healthcare) by well-trained sonographers [10]. All echocardiographic parameters were calculated according to the American Society of Echocardiography guidelines [10]. All data, including demographic data, blood tests, and echocardiography, were obtained before and 10 to 14 days after tolvaptan administration.

Statistical analysis

Data were presented as mean ± standard deviation. The Shapiro-Wilk test was performed to evaluate the assumption of normality. Statistical analysis was performed by means of appropriate parametric and nonparametric methods. Unpaired Student t test was performed for comparisons between pre- and post-tolvaptan therapy. Chi-square test was used for categorical variables. Values of p < 0.05 were considered to indicate statistical significance. All statistical analyses were performed with the use of the JMP® 14 (SAS Institute Inc., Cary, NC, USA).

RESULTS

Patients Characteristics

Ten patients with heart failure caused by severe AS (2 males and 8 females, age 83.1 ± 4.4 years old) were enrolled in the present study. There were 4 patients with atrial fibrillation, 2 ischemic heart disease, 6 hypertension, 5 diabetes mellitus, and 4 dyslipidemia (Table 1). The mean dosage of loop diuretics was 38 mg/day as calculated by furosemide, and 12.5 mg/day of spironolactone (Table 2).

Efficacy and Safety of Tolvaptan

In all 10 patients, no tolvaptan was administered at baseline (Table 2). After we administered tolvaptan, blood pressure did not significantly decrease and urine volume was significantly increased (Table 2). There were no statistically significant differences in furosemide dose before and after tolvaptan (Table 2), however functional classes and clinical assessment tended to be improved (Figure 1 and Table 3). Blood tests indicated no worsening of kidney function and NT-proBNP levels after the use of tolvaptan (Table 2). Echocardiography also showed no hypovolemia and no worsening of aortic valve flow (Table 4). In chronic phases, 8 out of 10 patients received aortic valve replacement (AVR) or transcatheter aortic valve implantation (TAVI). The other 2 patients were discharged from our hospital without aortic valve intervention due to social reasons.

DISCUSSION

The novel finding of the present study was that
Tolvaptan increased urine volume and improved heart failure symptoms without significant change of aortic valve flow in patients with severe AS. In patients with severe AS, reduced blood volume caused by diuretics can increase aortic valve flow and worsen AS severity. Tolvaptan has a diuretic effect without causing hemodynamic changes in severe AS, probably due to preserved intravascular volume, which is a clinically important issue. In patients with pulmonary congestion in severe AS, surgical treatment is indicated after diuretics reduce congestion; however, loop diuretics may decrease intravascular volume and increase aortic valve flow, leading to worsening of the AS. In contrast, tolvaptan is a useful tool because it is able to reduce congestion without decreasing intravascular volume in severe AS.

Exertional dyspnea, one of the most common features in patients with AS, may be caused by impaired left ventricular diastolic function, in which end-diastolic pressure excessively rises, leads to pulmonary congestion, and limits the ability to increase cardiac output with exercise [3,5]. It is known that more severe exertional dyspnea, including orthopnea or pulmonary edema, are associated with increased pulmonary venous pressure [3]. In current practice, surgical or transcatheter intervention is typically undertaken before this disease stage [3].

To increase the safety of surgical or transcatheter intervention, patients with heart failure and volume overload should be prepared before the procedure [3]. Diuretics are usually used to reduce congestion prior to valve intervention. Otherwise, nitroprusside or

![Fig. 1. Heart failure status before and after tolvaptan.](image)

TABLE 1.

Patient	Pt 1	Pt 2	Pt 3	Pt 4	Pt 5	Pt 6	Pt 7	Pt 8	Pt 9	Pt 10
Sex	F	F	F	F	F	M	F	M	F	F/M 8/2
Age	87	81	83	80	85	90	83	86	83	83.1±4.4
AF	N	Y	N	N	Y	N	Y	N	N	Y/N 4/6
CAD	N	N	Y	N	Y	N	N	N	N	Y/N 2/8
HT	Y	Y	Y	N	N	Y	N	Y	Y	Y/N 6/4
DM	Y	N	Y	Y	N	Y	N	N	N	Y/N 5/5
DyL	N	N	Y	Y	N	Y	N	N	N	Y/N 4/6

AF=atrial fibrillation, CAD=coronary artery disease, HT=hypertension, DM=diabetes mellitus, DyL=dyslipidemia, F=female, M=male, N=no, Y=yes
TABLE 2.	Clinical characteristics before and after tolvaptan											
Tolvaptan	Pt 1	Pt 2	Pt 3	Pt 4	Pt 5	Pt 6	Pt 7	Pt 8	Pt 9	Pt 10	mean	P value
NYHA pre	III	II	II	III	II	II	III	II	III	II	121.2	0.1213
post	II	I	II	111.0								
Nohria-Stevenson pre	L	B	B	C	B	B	B	B	B	B	84.8	0.0988
post	L	B	B	C	A	A	B	B	B	A	45.4	0.487
Systolic BP (mmHg) pre	138	131	129	85	112	125	125	104	133	130	121.2	0.1213
post	97	110	122	94	116	131	119	88	102	122	111.0	
Diastolic BP (mmHg) pre	98	85	61	58	74	83	54	70	75	90	74.8	0.0988
post	49	77	58	51	74	75	56	58	71	78	64.7	
Pulse pressure (mmHg) pre	40	46	68	27	38	42	71	34	58	40	46.4	0.8707
post	48	33	64	43	42	56	63	30	31	44	45.4	0.487
Heart rate (bpm) pre	75	81	85	68	103	75	55	96	89	120	84.7	0.4087
post	70	81	71	80	88	75	58	90	63	108	78.4	
Body weight (kg) pre	54.7	54	51.1	35	38.2	54.4	31.3	54	51.7	56.9	48.2	0.9204
post	54.3	51.8	50.5	35.8	36.2	55.1	32.7	53	51.8	56.2	47.7	0.0361
Urine volume (mL) pre	800	1080	900	750	960	350	450	1100	1320	1250	896	0.0361
post	1020	1990	1200	2160	1220	1380	450	910	1590	1300	1322	
Medication												
Furosemide pre	60	40	20	60	40	20	40	20	38.0	0.7075		
post	0	0	0	0	0	0	0	0	36.0	0.7915		
Azosemide pre	0	0	0	0	60	0	60	0	0	0	0	0.2643
(mg) post	0	0	0	0	60	0	60	0	0	0	0	0.2643
Furosemide equivalent dose pre	60	40	20	60	40	20	40	40	40	20	38.0	0.7915
(mg) post	0	0	0	0	60	0	60	0	0	0	0	0.2643
Spironolactone pre	0	25	0	0	25	25	25	25	25	25	12.5	0.2643
(mg) post	0	25	0	0	25	25	25	25	25	25	20.0	0.2643
Dobutamine pre	0	0	0	0	0	0	0	1	0	0	0	0.2643
(µg/kg/min) post	0	0	0	0	0	0	0	0	0	0	0	0.2643
Tolvaptan initial dose	7.5	15	3.75	7.5	15	3.75	3.75	3.75	3.75	3.75	6.75	0.2643
(mg) post	15	15	15	7.5	15	7.5	7.5	7.5	7.5	7.5	10.88	0.2643
Blood test												
BUN pre	42.3	21.1	53.9	40.2	21.9	17.1	26.8	18.4	14.9	46.2	30.3	0.4312
(mg/dL) post	54.6	29.4	38.5	60.1	22.6	20.5	39.6	26.1	23.2	38	35.3	
Creatinine pre	1.5	0.79	2.42	1.19	0.84	0.77	1.59	1.19	0.71	1.65	1.27	0.9607
(mg/dL) post	1.74	1.06	1.63	1.17	0.78	0.82	1.42	1.42	1.03	1.48	1.26	0.9607
eGFR (mL/min/1.73 m²) pre	25.5	52.6	15.3	33.7	48.5	71	24.3	44.7	58.7	24.2	39.9	0.6688
post	21.7	38.1	23.6	34.3	52.6	66.3	27.5	36.8	39.1	27.3	36.7	0.6688
Na pre	139	145	131	135	142	145	141	140	141	143	140.2	0.6508
(mEq/L) post	140	137	140	136	138	143	141	140	140	140	139.5	0.6508
K pre	4.5	3.1	4.9	4.4	3.4	3.5	3.7	3.5	4.5	5.6	4.1	0.4960
(mEq/L) post	4.2	4.3	4.7	4.4	4.3	3.9	4.3	4.3	4.3	4.9	4.3	0.4960
NT-proBNP pre	9791	5956	7822	12024	3881	3824	32101	1865	257	14530	9205	0.7393
(pg/mL) post	6823	4498	7667	4850	2242	3290	23063	2887	228	11350	11059	0.7393

NYHA=New York Heart Association, A=warm & dry, B=warm & wet, L=cold & dry, C=cold & wet, BP=blood pressure, BUN=blood urea nitrogen, Crea=creatinin, eGFR=estimated glomerular filtration rate, NT-proBNP= N-terminal pro-brain natriuretic peptide.
TABLE 3.
Functional class and clinical profiles before and after tolvaptan

NYHA	I	II	III	IV	
Tolvaptan	pre	0	5	5	0
	post	1	9	0	0
Nohria-Stevenson	A	B	L	C	

Tolvaptan | pre | 0 | 8 | 1 | 1 |
| | post| 3 | 5 | 1 | 1 |

NYHA=New York Heart Association, A=warm & dry, B=warm & wet, L=cold & dry, C=cold & wet.

TABLE 4.
Echocardiographic characteristics before and after tolvaptan

Tolvaptan	Pt 1 (mm)	Pt 2 (mm)	Pt 3 (mm)	Pt 4 (mm)	Pt 5 (mm)	Pt 6 (mm)	Pt 7 (mm)	Pt 8 (mm)	Pt 9 (mm)	Pt 10 (mm)	mean	P value
LVDDd	41.1	34.8	50	48.9	56	51	50	63	33	45.5	47.3	0.7075
LVDs	20.7	21.9	36	40.8	46	34	30	53	20	40	34.2	0.9641
LA	41.1	54.5	38	50.7	46	45	50	41	35	50.9	45.2	0.2807
IVS	14.1	18.8	7	11.4	6	12	9	7	11	9.1	10.5	0.392
PWT	13.9	17.8	8	10.7	9	12	8	8	10	10	10.7	0.5329
LV EF (%)	81.2	68.1	50	34.5	45	57.3	70.3	33	70	30.2	54.0	0.5508
IVC	12.2	22.7	17	14.5	24	16.5	17	20	17.4	22.1	18.3	0.195
AV peak velocity (cm/s)	6	19	15	8	13.1	17	24	14.5	17.1	21.2	15.5	
Mean systolic PG(AoV) (mmHg)	113.5	62	15	55	15	58.1	28.9	45	17.5	16	42.6	0.8172
AVA (cm²)	0.45	0.31	0.57	0.22	0.69	0.65	0.62	0.66	0.79	1	0.60	0.8324
RA-RV-ΔPG (mmHg)	51	81	43	0	35	36	77	52	33	49	45.7	
E/e'	37.9	31.1	38.3	50	11.2	29.3	24.1	27.3	16	15.6	28.1	0.9093

AoV=aortic valve, AVA=aortic valve area, IVC= inferior vena cava, IVS=interventricular septum, LA=Left atrium, LVDD=Left ventricular dimension (end-diastolic), LVDs=Left ventricular dimension (systolic), LVEF=left ventricular ejection fraction, MR=mitral valve regurgitation, PG=pressure gradient, PWT=posterior LV wall thickness, RA=right atrium, RV=right ventricle, TR=tricuspid valve regurgitation.
phosphodiesterase type 5 inhibitor has been shown to provide improvements in pulmonary and systemic hemodynamics to unload the left heart, reduce congestion, and improve forward flow [11,12]. These medications may improve the patients’ hemodynamic status, allowing the interventional procedure to be performed more easily.

Study Limitations
Several limitations of the present study should be mentioned. First, this was a single center, retrospective study with a small number of patients. Second, the prognostic impact of tolvaptan in AS patients remains to be examined in future studies, keeping in mind that such patients need aortic valve intervention. However, tolvaptan use in AS patients with heart failure may improve hemodynamics before AVR or TAVI, which may lead to safer intervention for AS. Third, we have no data regarding free water clearance and fractional excretion of sodium.

CONCLUSIONS
In conclusion, our study demonstrates that tolvaptan use in AS patients with heart failure is effective and safe before aortic valve intervention.

FUNDING: None.

DISCLOSURES: Drs. Fukumoto and Shimozono have received speakers’ Bureau/Honorariums from Otsuka Pharmaceutical Co., Ltd.

REFERENCES
1. Nkomo VT, Gardin JM, Skelton TN, Gott diener JS, Scott CG et al. Burden of valvular heart diseases: a population-based study. Lancet 2006;368:1005-1011.
2. Jung B, Baron G, Butchart EG, Delahaye F, Gohlke-Bärwolf C et al. A prospective survey of patients with valvular heart disease in Europe: The Euro Heart Survey on Valvular Heart Disease. Eur Heart J 2003;24:1231-1243.
3. Vahanian A, Alfieri O, Andreotti F, Antunes MJ, Bar on-Esquivias G et al. Guidelines on the management of valvular heart disease (version 2012): The Joint Task Force on the Management of Valvular Heart Disease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J 2012;33:2451-2496.
4. Carabello BA and Paulus WJ. Aortic stenosis. Lancet 2009;373:956-966.
5. Lindman BR, Bonow RO, and Otto CM. Current Management of Calcific Aortic Stenosis. Circ Res 2013;113:223-237.
6. Imamura T and Kinugawa K. Update of acute and long-term tolvaptan therapy. J Cardiol 2019;73:102-107.
7. Yamamoto T, Miura S, Shirai K, and Urata H. Renoprotective Benefit of Tolvaptan in Acute Decompensated Heart Failure Patients With Loop Diuretic-Resistant Status. J Clin Med Res 2019;11:49-55.
8. Takasu K, Miyazaki T, Negoro K, Yatsu S, Shimizu M et al. Successful Treatment of Congestive Heart Failure Due to Severe Aortic Valve Stenosis With Low Dose Tolvaptan in Elderly Patients. Int Heart J 2017;58:378-384.
9. Do e Z, Fukumoto Y, Sugimura K, Miura Y, Tatebe S et al. Rho-Kinase Activation in Patients With Heart Failure. Circ J 2013;77:2542-2550.
10. Igata S, Tahara N, Sugiyama Y, Bekki M, Kumanomido J et al. Utility of the amplitude of RV1+SV5/6 in assessment of pulmonary hypertension. PLoS One 2018;13:e0206856.
11. Lloyd JW, Nishimura RA, Borlaug BA and Eleid MF. Hemodynamic Response to Nitroprusside in Patients With Low-Gradient Severe Aortic Stenosis and Preserved Ejection Fraction. J Am Coll Cardiol 2017;70:1339-1348.
12. Lindman BR, Zajarias A, Madrazo JA, Shah J, Gage BF et al. Effects of Phosphodiesterase Type 5 Inhibition on Systemic and Pulmonary Hemodynamics and Ventricular Function in Patients With Severe Symptomatic Aortic Stenosis. Circulation 2012;125:2353-2362.