Study of the exclusive initial-state-radiation production of the $D\bar{D}$ system

B. Aubert,1 M. Bona,1 D. Boutigny,1 Y. Karyotakis,1 J. P. Lees,1 V. Poureu,1 X. Prudent,1 V. Tisserand,1 A. Zghiche,1 J. Garra Tico,2 E. Kraus,2 L. Lopez,3 A. Palano,3 M. Pappalaggio,3 G. Eigen,4 B. Stugu,4 L. Sun,4 G. S. Abrams,5 M. Battaglia,5 D. N. Brown,5 J. Button-Shafer,5 R. N. Cahn,5 Y. Groyman,5 R. G. Jacobsen,5 J. A. Kadyk,5 L. T. Kerth,5 Y. G. Kolomensky,5 G. Kukartsev,5 D. Lopes Pegna,5 G. Lynch,5 L. M. Mir,5 T. J. Orimoto,5 L. L. Ospienkov,5 M. T. Ronan,5,* K. Tackmann,5 T. Tanabe,5 W. A. Wenzel,5 P. del Amo Sanchez,5 C. M. Hawkes,6 A. T. Watson,6 H. Koch,7 T. Schroeder,7 D. Walker,8 D. J. Ageeirsson,9 T. Cuhadar-Donszelmann,9 B. G. Fulsom,9 C. Heartby,9 T. S. Mattison,9 J. A. McKenna,9 M. Barrett,10 A. Khan,10 M. Saleem,10 L. Teodorescu,10 V. E. Blinov,11 A. D. Buijn,11 V. B. Golubev,11 A. P. Onuchin,11 S. I. Serydnoj,11 Yu. I. Skovpen,11 K. Yu. Todyshev,11 Bondioli,12 S. Curry,12 I. Eschrich,12 D. Kirkby,12 A. J. Lankford,12 P. Lund,12 M. Mandelkern,12 E. C. Martin,12 D. P. Stoker,12 S. Abachi,13 C. Buchanan,13 S. D. Foulkes,14 J. W. Gary,14 F. Liu,14 O. Long,14 B. C. Shen,14 G. M. Vitug,14 L. Zhang,14 H. P. Paar,15 S. Rahatlou,15 V. Sharma,16 J. W. Berryhill,16 C. Campagnari,16 A. Cunha,16 B. Dahmes,16 T. M. Hong,16 D. Kovalskyi,16 J. D. Richman,16 T. W. Beck,17 A. M. Eisner,17 J. C. Flacco,17 C. A. Heuscher,17 J. Kroseberg,17 W. S. Lockman,17 T. Schalk,17 B. A. Schumm,17 A. Seiden,17 M. G. Wilson,17 L. O. Winstrom,17 C. Chen,18 C. H. Cheng,18 F. Fang,18 D. G. Hitlin,18 T. Narski,18 T. Piatenko,18 F. C. Porter,18 R. Andreassen,19 G. Mancinelli,19 B. T. Meadows,19 K. Mishra,19 M. D. Sokoloff,19 F. Blanc,20 P. C. Bloom,20 S. Chen,20 W. T. Ford,20 J. F. Hirschauer,20 A. Kreisel,20 M. Nagel,20 U. Nauenberg,20 A. Olivas,20 J. M. Smith,20 K. A. Ulmer,20 S. R. Wagner,20 J. Zhang,20 A. M. Gabareen,20 A. Soffer,21 W. H. Toki,21 R. J. Wilson,21 F. Winklmeier,21 D. D. Altenburg,22 E. Feltresi,22 A. Hauke,22 H. Jasper,22 J. Merkel,22 A. Petzold,22 B. Spaan,22 K. Wacker,22 V. Close,22 M. J. Kobel,22 H. M. Lacker,22 W. F. Mader,22 R. Mogh,d,23 J. Schubert,23 K. Schubert,23 R. Schwierz,23 J. E. Sundermann,23 A. Volk,23 D. Bernard,24 G. R. Bonneau,24 E. Latour,24 V. Lombardo,24 Ch. Thiebaux,24 M. Verden,24 P. J. Clark,25 W. Gradl,25 F. Muheim,25 S. Player,25 A. I. Robertson,25 J. E. Watson,25 Xie,25 M. Andreotti,26 L. A. S. Costa,26 D. Estienne,26 R. Calabrese,26 A. Cecchi,26 G. Cibinetto,26 P. Franchini,26 E. Luppi,26 M. Negri,26 A. Petrella,26 L. Piemontese,26 P. Prencipe,26 V. Santoro,26 F. Anulli,27 R. Baldini-Ferroli,27 A. Calcaterra,27 R. de Sangro,27 G. Finocchiaro,27 S. Pacetti,27 P. Patteri,27 J. M. Peruzzi,27 M. Piccolo,27 M. Rama,27 A. Zallo,27 A. Buzzo,28 R. Contris,28 M. Lo Vetere,28 M. M. Macri,28 M. R. Monge,28 A. Passaggio,28 C. Patrignani,28 E. Robutti,28 A. Santroni,28 S. Tosi,28 K. S. Chaisangruan,29 M. Morii,29 J. Wu,29 R. S. Dubitzky,30 J. Marks,30 S. Schenk,30 U. Uwer,30 D. J. Bard,30 P. D. Dauncey,31 R. L. Flack,31 J. A. Nash,31 W. Panduro Vazquez,31 M. Tibberts,31 P. K. Behera,32 X. Chai,32 M. J. Charles,32 U. Mallik,32 J. Cochran,33 H. B. Crawley,33 L. Dong,33 V. Eyges,33 W. T. Meyer,33 S. Prell,33 E. I. Rosenberg,33 A. E. Rubin,33 Y. Y. Gao,34 A. V. Gritsan,34 Z. J. Guo,34 C. K. Lae,34 A. G. Denig,35 M. Fritsch,35 A. M. Arnaud,35 J. Béqueilleux,36 A. D’Orazio,36 M. Davier,36 G. Grosdidier,36 A. Höcker,36 V. Lepeltier,36 F. Le Diberder,36 A. M. Lutz,36 S. Pruvot,36 S. Rodier,36 P. Roubeau,36 M. H. Schune,36 J. Serrano,36 V. Sordini,36 A. Stocchi,36 W. F. Wang,36 G. Wormser,36 D. J. Lange,37 D. M. Wright,37 I. Bingham,38 J. P. Burke,38 C. A. Chavez,38 J. R. Fry,38 E. Gabathuler,38 R. Game,38 D. E. Hutchcroft,38 J. J. Yi,38 C. A. Chavez,38 J. R. Fry,38 E. Gabathuler,38 R. Gamet,38 A. Cecchi,26 G. Cibinetto,26 P. Franchini,26 E. Luppi,26 M. Negri,26 A. Petrella,26 L. Piemontese,26 P. Prencipe,26 V. Santoro,26 F. Anulli,27 R. Baldini-Ferroli,27 A. Calcaterra,27 R. de Sangro,27 G. Finocchiaro,27 S. Pacetti,27 P. Patteri,27 J. M. Peruzzi,27 M. Piccolo,27 M. Rama,27 A. Zallo,27 A. Buzzo,28 R. Contris,28 M. Lo Vetere,28 M. M. Macri,28 M. R. Monge,28 A. Passaggio,28 C. Patrignani,28 E. Robutti,28 A. Santroni,28 S. Tosi,28 K. S. Chaisangruan,29 M. Morii,29 J. Wu,29 R. S. Dubitzky,30 J. Marks,30 S. Schenk,30 U. Uwer,30 D. J. Bard,30 P. D. Dauncey,31 R. L. Flack,31 J. A. Nash,31 W. Panduro Vazquez,31 M. Tibberts,31 P. K. Behera,32 X. Chai,32 M. J. Charles,32 U. Mallik,32 J. Cochran,33 H. B. Crawley,33 L. Dong,33 V. Eyges,33 W. T. Meyer,33 S. Prell,33 E. I. Rosenberg,33 A. E. Rubin,33 Y. Y. Gao,34 A. V. Gritsan,34 Z. J. Guo,34 C. K. Lae,34 A. G. Denig,35 M. Fritsch,35 A. M. Arnaud,35 J. Béqueilleux,36 A. D’Orazio,36 M. Davier,36 G. Grosdidier,36 A. Höcker,36 V. Lepeltier,36 F. Le Diberder,36 A. M. Lutz,36 S. Pruvot,36 S. Rodier,36 P. Roubeau,36 M. H. Schune,36 J. Serrano,36 V. Sordini,36 A. Stocchi,36 W. F. Wang,36 G. Wormser,36 D. J. Lange,37 D. M. Wright,37 I. Bingham,38 J. P. Burke,38 C. A. Chavez,38 J. R. Fry,38 E. Gabathuler,38 R. Game,38 D. E. Hutchcroft,38 J. J. Yi,38 C. A. Chavez,38 J. R. Fry,38 E. Gabathuler,38 R. Gamet,38
M. A. Mazur, M. Morganti, N. Neri, E. Paoloni, G. Rizzo, J. J. Walsh, J. Biesiada, P. Elmer, Y. P. Lau, C. Lu, J. Olsen, A. J. S. Smith, E. Baracchini, F. Bellini, G. Cavoto, del Re, E. Di Marco, R. Faccini, F. Ferrarotto, M. Gaspero, P. D. Jackson, L. Li Gioi, M. A. Mazzoni, G. Piredda, F. Renga, C. Voenia, M. Ebert, T. Hartmann, H. Schroeder, R. Waldi, T. Adye, G. Castelli, B. Franek, E. O. Olaiya, W. Roethel, F. F. Wilson, S. Emery, M. Escalier, A. Gaidot, S. F. Ganzhur, G. Hamel de Monchenault, W. Kozanecki, G. Vasseur, Ch. Y`eché, M. Zito, X. R. Chen, H. Liu, W. Park, M. V. Purohit, R. M. White, J. R. Wilson, M. T. Allen, D. Aston, R. Bartoldus, P. Bechtle, R. Claus, J. P. Coleman, M. R. Convery, J. C. Dingfelder, J. Dorfan, G. P. Dubois-Felsmann, W. Dunwoodie, R. C. Field, T. Glanzman, S. J. Gowdy, M. T. Graham, P. Grenier, C. Hast, W. R. Innes, J. Kaminski, M. H. Kelsey, H. Kim, P. Kim, M. L. Kocian, D. W. G. S. Leith, S. Li, S. Luitz, V. Luth, H. L. Lynch, D. B. MacFarlane, H. Marsiske, R. Muller, C. P. O’Grady, I. Ofte, A. Perazzo, M. Perl, T. Pulliam, B. N. Ratcliff, A. Roodman, A. A. Salnikov, R. H. Schindler, J. Schwiening, D. Su, M. K. Sullivan, K. Suzuki, S. K. Swain, J. M. Thompson, J. Va’vra, A. P. Wagner, M. Weaver, W. J. Wisniewski, M. Wittgen, D. H. Wright, A. K. Yarritu, K. Yi, C. C. Young, V. Ziegler, P. R. Burchat, A. J. Edwards, S. A. Majewski, T. S. Miyashita, B. A. Petersen, L. Wilden, S. Ahmed, M. S. Alam, R. Bula, J. A. Ernst, V. Jain, B. Pan, M. A. Saeed, F. R. Wappler, S. B. Zain, M. Krishnamurthy, S. M. Spanier, R. Eckmann, J. L. Ritchie, A. M. Ruland, C. J. Schilling, R. F. Schwitters, J. M. Izen, X. C. Lou, S. Ye, F. Bianchi, F. Gallo, D. Gamba, M. Pelliccioni, M. Bomben, L. Bosisio, C. Cartaro, F. Costantini, G. Della Ricca, L. Lanceri, L. Vitale, V. Azzolini, N. Lopez-March, F. Martinez-Vidal, D. A. Milanes, A. Oyanguren, J. Albert, Sw. Banerjee, K. Hamano, R. Kowalewski, I. M. Nugent, J. M. Roney, R. J. Sobie, P. F. Harrison, J. Ilic, T. E. Latham, G. B. Mohanty, K. T. Flood, J. J. Hollar, P. E. Kutter, Y. Pan, M. Pierini, R. Prepost, S. L. Wu, H. Neal

(BABAR Collaboration)

1 Laboratoire de Physique des Particules, IN2P3/CNRS et Université de Savoie, F-74941 Annecy-Le-Vieux, France
2 Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona, Spain
3 Università di Bari, Dipartimento di Fisica and INFN, I-70126 Bari, Italy
4 University of Bergen, Institute of Physics, N-5007 Bergen, Norway
5 Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
6 University of Birmingham, Birmingham, B15 2TT, United Kingdom
7 Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany
8 University of Bristol, Bristol BS8 1TL, United Kingdom
9 University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
10 Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
11 Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
12 University of California at Irvine, Irvine, California 92697, USA
13 University of California at Los Angeles, Los Angeles, California 90024, USA
14 University of California at Riverside, Riverside, California 92521, USA
15 University of California at San Diego, La Jolla, California 92093, USA
16 University of California at Santa Barbara, Santa Barbara, California 93106, USA
17 University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA
18 California Institute of Technology, Pasadena, California 91125, USA
19 University of Cincinnati, Cincinnati, Ohio 45221, USA
20 University of Colorado, Boulder, Colorado 80309, USA
21 Colorado State University, Fort Collins, Colorado 80523, USA
22 Universität Dortmund, Institut für Physik, D-44221 Dortmund, Germany
23 Technische Universität Dresden, Institut für Kern- und Teilchenphysik, D-01062 Dresden, Germany
24 Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, F-91128 Palaiseau, France
25 University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
26 Università di Ferrara, Dipartimento di Fisica and INFN, I-44100 Ferrara, Italy
27 Laboratori Nazionali di Frascati dell’INFN, I-00044 Frascati, Italy
28 Università di Genova, Dipartimento di Fisica and INFN, I-16146 Genova, Italy
29 Harvard University, Cambridge, Massachusetts 02138, USA
30 Universität Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany
31 Imperial College London, London, SW7 2AZ, United Kingdom
A search for charmonium and other new states is performed in a study of exclusive initial-state-radiation production of $D\bar{D}$ events from electron-positron annihilations at a center-of-mass energy of 10.58 GeV. The data sample corresponds to an integrated luminosity of 384 fb^{-1} and was recorded by the
The surprising discovery of new states decaying to $J/\psi\pi^+\pi^-$ [1,2] has renewed interest in the field of charmonium spectroscopy, as the new states are not easy to accommodate in the quark model. In particular, the BABAR experiment has discovered a new broad state, $Y(4260)$, decaying to $J/\psi\pi^+\pi^-$ in the initial-state-radiation (ISR) reaction $e^+e^- \rightarrow \gamma_{\text{ISR}} Y(4260)$. The quantum numbers $J^{PC} = 1^{--}$ are inferred from the single virtual-photon production mechanism. Structure, possibly related to the $e^+e^-\rightarrow$ hadrons interaction region; only candidates with a χ^2 fit probability greater than 0.1% are retained. Extra π^0 candidates may originate from random combinations of photons. Aside from π^0's from D^0 decays, we require that there be no more than one other π^0 candidate in the event (except for channel 4, where we require that there are none).

For D channels without a π^0 candidate, the D momentum is determined from the summed 3-momenta of the decay particles and the energy is computed using the nominal D mass value [6,14]. For the $D^0 \rightarrow K^-\pi^-\pi^0$ channel, the 4-momentum from the mass constrained fit is used. This procedure gives similar $D\bar{D}$ mass resolutions for all the channels.

The ISR photon, preferentially emitted at small angles with respect to the beam axis, escapes detection in approximately 90% of events. We therefore reconstruct the ISR photon as a missing particle. We define the squared recoil mass (M_{rec}^2) to the $D\bar{D}$ system using the four-momenta of the beam particles (p_{e^+}) and the reconstructed D (p_D) and \bar{D} ($p_\bar{D}$):

$$M_{\text{rec}}^2 = (p_{e^+} + p_{e^-} - p_D - p_\bar{D})^2.$$

This quantity should peak near zero for ISR events and for exclusive production of $e^+e^-\rightarrow D\bar{D}$ or $e^+e^-\rightarrow D\bar{D}^*$. In the latter case, the $D\bar{D}$ mass distribution peaks at masses well above 6 GeV/c^2. Therefore we select ISR events by

Channel	First D decay mode	Second D decay mode	$e_i^R(m_{D\bar{D}}) \times 10^{-3}$
1. $D^0\bar{D}^0$	$D^0 \rightarrow K^-\pi^+$	$\bar{D}^0 \rightarrow K^+\pi^-$	0.14
2. $D^0\bar{D}^0$	$D^0 \rightarrow K^-\pi^+$	$\bar{D}^0 \rightarrow K^+\pi^-\pi^0$	0.42
3. $D^0\bar{D}^0$	$D^0 \rightarrow K^-\pi^+$	$\bar{D}^0 \rightarrow K^+\pi^+\pi^-\pi^0$	0.18
4. $D^0\bar{D}^0$	$D^0 \rightarrow K^-\pi^+$	$\bar{D}^0 \rightarrow K^+\pi^-\pi^0$	0.26
5. D^+D^-	$D^+ \rightarrow K^-\pi^+\pi^+$	$D^- \rightarrow K^+\pi^-\pi^+\pi^0$	0.37
6. D^+D^-	$D^+ \rightarrow K^-\pi^+\pi^+$	$D^- \rightarrow K^+K^-\pi^-\pi^0$	0.057
7. D^+D^-	$D^+ \rightarrow K^-\pi^+\pi^+$	$D^- \rightarrow K_0^0\pi^-$	0.042
requiring a $D\bar{D}$ invariant mass below 6 GeV/c^2 and $|M_{\text{rec}}^2| < 1$ GeV2/c4.

Monte Carlo simulations of $e^+e^- \to \gamma_{\text{ISR}}D\bar{D}$ and candidates from the process $e^+e^- \to \gamma_{\text{ISR}}J/\psi, J/\psi \to K^+K^-\pi^+\pi^-$ in data are used to validate the requirement on the number of residual π^0 and the shape of the M_{rec}^2 distribution.

To estimate the number of background events in the signal region, the two-dimensional space spanned by the invariant masses of the two D candidates in each event is divided into nine regions: a central signal region and eight sideband regions above and below the signal regions, as illustrated in Fig. 1 for $D\bar{D}$ candidates reconstructed for the case of the $K^-\pi^+$ and $K^+\pi^-$ modes. The mass range for the signal region is within $\pm 2.5\sigma$ of the D mass, and the sideband regions are 2.5σ wide and are separated from the signal region by 3.5σ, where σ is the mass resolution determined from a fit of a single Gaussian to the D candidate mass spectrum.

The distribution of M_{rec}^2 summed over all $D\bar{D}$ channels, is shown in Fig. 2. The shaded histogram corresponds to the background in the signal region estimated from the $D\bar{D}$ mass sidebands. The small inset in Fig. 2 shows the distribution of the $D\bar{D}$ center-of-mass polar angle θ for $D\bar{D}$ candidates with $|M_{\text{rec}}^2| < 1$ GeV2/c4. The sharp peak at $\cos \theta = -1$ is typical of ISR production and agrees with Monte Carlo simulations.

The purity of each reconstructed D channel is demonstrated in Fig. 3 where projections of the candidate D mass distribution for events with $|M_{\text{rec}}^2| < 1$ GeV2/c4 are shown. Background is low in all channels.

The $D\bar{D}$ mass spectrum summed over all channels (860 events) is shown in Fig. 4 where the curves are the results from the fit described later. The shaded histogram represents the background determined using the $D\bar{D}$ sideband regions and corresponds to $17.5%$ and $7.1%$ of the signal candidates for $D^0\bar{D}^0$ and $D^+\bar{D}^-$, respectively. We observe a clear $\psi(3770)$ signal and other structures at the positions of $\psi(4040)$ and $\psi(4415)$. We also observe a significant structure in the 3.9 GeV/c^2 region, which may not be due to a resonance; the coupled-channel model of Ref. [15] in fact describes qualitatively the observed $D\bar{D}$ mass spectrum and the structure around 3.9 GeV/c^2 without any need for additional ψ states.

To understand the background, we compute the expected contribution from ISR production of the $D^{*+}\bar{D}^0$ system. Using Monte Carlo simulations and the cross section estimate from Ref. [11] we find $= 6\%$ as possible contamination. This is confirmed by the examination of $D\gamma$ and $D\pi^0$ mass distributions where we find little evidence for $D\pi^0$ signal. In contrast, strong evidence for D^{*0} production is observed for $M_{\text{rec}}^2 > 1.5$ GeV2/c4. We investigate the possibility of background contributions from DX final states (where $X \neq \gamma$) by exploring events in the M_{rec} sideband region $1.5 < M_{\text{rec}}^2 < 2.5$ GeV2/c4. The $D\bar{D}$ mass spectrum for these events shows no structure. We conclude that the residual background to our signal is consistent with originating mostly from combinatorial non-$D\bar{D}$ events.

In order to measure efficiency and $D\bar{D}$ mass resolution, ISR events are simulated at eight different values of the $D\bar{D}$ invariant mass between 3.75 and 7.25 GeV/c^2. These events are generated using the GEANT4 detector simula-
and then compute \(/ .0015 \) Monte Carlo and data mining from the difference between generated and reconstructed \(D \bar{D} \) mass. The mass resolution is determined from the difference between generated and reconstructed \(D \bar{D} \) mass. The \(D \bar{D} \) mass resolution is similar for all channels and increases with \(D \bar{D} \) mass from 1.5 to 5 MeV/c^2. We observe good agreement between Monte Carlo and data \(M_{recc} \) distributions.

We define \(N_i(m_{D\bar{D}}) \) as the number of \(D \bar{D} \) candidates for channel \(i \). The channel branching fraction is \(B_i \), and \(\epsilon_i(m_{D\bar{D}}) \) is the efficiency as parametrized by the fitted polynomial. We define \(\epsilon^B_i(m_{D\bar{D}}) \) the product efficiency times branching fraction for each channel,

\[
\epsilon^B_i(m_{D\bar{D}}) = \epsilon_i(m_{D\bar{D}}) \times B_i,
\]

and then compute \(\epsilon^B(m_{D\bar{D}}) \) as

\[
\epsilon^B(m_{D\bar{D}}) = \frac{\sum_{i=1}^{7} N_i(m_{D\bar{D}})}{\sum_{i=1}^{7} \epsilon^B_i(m_{D\bar{D}})}.
\]

The values of \(\epsilon^B_i(m_{D\bar{D}}) \) are proportional to the expected yield for each channel. Their values, integrated over the \(D \bar{D} \) mass spectrum, are reported in Table I. The resulting yields, corrected for efficiency and branching fractions, are found to be consistent within the errors.

The \(D \bar{D} \) cross section is computed using

\[
\sigma_{e^+e^-\rightarrow D\bar{D}}(m_{D\bar{D}}) = \frac{dN/dm_{D\bar{D}}}{\epsilon^B(m_{D\bar{D}})dL/dm_{D\bar{D}}}. \tag{4}
\]

The differential luminosity is computed as [17]

\[
\frac{dL}{dm_{D\bar{D}}} = L \frac{2m_{D\bar{D}}}{s} \frac{\alpha}{\pi x} (\ln(s/m_{e}^2) - 1)(2 - 2x + x^2), \tag{5}
\]

where \(\alpha \) is the fine-structure constant, \(x = 1 - m_{D\bar{D}}^2/s \), \(s \) is the square of the electron momentum, \(m_e \) is the electron mass, and \(L \) is the integrated luminosity of 384 fb^{-1}. The background-subtracted cross sections for \(D^0 \bar{D}^0 \) and \(D^+ \bar{D}^- \), averaged over 20 MeV/c^2 bins, are shown in Fig. 5.

Systematic errors on the cross sections (10.9% for \(D^0 \bar{D}^0 \) and 8.1% for \(D^+ \bar{D}^- \)) include uncertainties in the particle identification efficiencies and tracking efficiency, possible inaccuracies in the simulation of extraneous \(\pi^0 \) candidates, and uncertainties in the background estimates (\approx 6%) and on the luminosity function (\approx 1%).

FIG. 3. \(D \)-candidate mass projections for events with \(|M_{recc}|<1 \) GeV^2/c^4 and a \(D \bar{D} \) invariant mass below 6 GeV/c^2. (a) \(K^-\pi^+ \) mass spectrum summed over channels 1, 2, and 3. (b) \(K^-\pi^+\pi^0 \) mass spectrum summed over channels 2 and 4. (c) \(K^-\pi^+\pi^+\pi^- \) mass spectrum summed over channels 3 and 4. (d) \(K^-\pi^+\pi^- \) mass spectrum for channel 5.
Integrating the cross sections in the $\psi(3770)$ region (3.74–3.80 GeV/c²), we compute the ratio of branching fractions,

$$\frac{\mathcal{B}(\psi(3770) \to D^0\bar{D}^0)}{\mathcal{B}(\psi(3770) \to D^+\bar{D}^-)} = 1.78 \pm 0.33 \pm 0.24,$$

(6)

to be compared with the value of 1.28 ± 0.14 reported by the PDG [6].

We perform an unbinned maximum likelihood fit to the $D\bar{D}$ mass spectrum summed over all channels. The parameters of the $\psi(4040)$, $\psi(4160)$, and $\psi(4415)$ are fixed to the values reported in Ref. [18] while the $Y(4260)$ parameters are taken from our measurement from the $J/\psi \pi^+ \pi^-$ channel [2]. The parameters of the $\psi(3770)$ are left free in the fit. In addition, we search for evidence of the $Y(4260)$ in this spectrum. Resolutions effects have been ignored since the widths of the resonances are much larger than the experimental resolution.

We express the total $D\bar{D}$ production as

$$f[P + c_1 W_1 e^{i\phi_1} + c_2 \sqrt{G} e^{i\phi_2} + \ldots + c_n W_n e^{i\phi_n}]^2 + (1 - f)\mathcal{B},$$

(7)

where c_i and ϕ_i are free parameters, W_i are spin-1 relativistic Breit-Wigner distributions, P represents the nonresonant contribution, \mathcal{B} describes the non-$D\bar{D}$ background and f (0.829 ± 0.015) is the signal fraction. The efficiency $e^\mathcal{B}(m_{D\bar{D}})$ is almost linear and increases from $= 2 \times 10^{-3}$ to $= 4 \times 10^{-3}$ in the fitted mass region. It has been parametrized by a 2nd order polynomial and it has been multiplied by P and W_i. The data require that we include the 3.9 GeV/c² structure, as suggested in Ref. [15], which we parameterize empirically as the square root of a Gaussian times a phase factor ($\sqrt{G} e^{i\phi_2}$). The parameters of the Gaussian are left free, and the phase allows interference with the ψ states.

We find that, in order to have a satisfactory description of the data, interference must be allowed between the resonances and the nonresonant contribution P. The latter contribution is parametrized either as a linear $(a + bm)$. In addition, we search for evidence of the $Y(4260)$ in this spectrum. Resolutions effects have been ignored since the widths of the resonances are much larger than the experimental resolution.

FIG. 4 (color online). (a) The ISR $D\bar{D}$ mass spectrum. The shaded mass spectrum is from $D\bar{D}$ mass sidebands. The curve results from the fit described in the text. (b) An expanded view of the region with $m_{D\bar{D}} < 4.2$ GeV/c².

FIG. 5. (a) $D^0\bar{D}^0$ and (b) $D^+\bar{D}^-$ cross sections with statistical uncertainties only.
B. AUBERT et al.

a threshold function \((m - m_{th})^a e^{-b(m - c)^2}\), where \(m = m_{DD}\), \(m_{th}\) is the threshold \(DD\) mass, and \(a, b,\) and \(c\) are free parameters. This threshold function has also been used to describe the non-\(DD\) background \(B\).

The two different parametrizations give similar results, which are considered in the evaluation of the systematic errors. These include also uncertainties in the \(D\) mass and on the overall \(DD\) mass scale. The size of the nonresonant production is determined by the fit.

The fit with a linear nonresonant contribution is shown in Fig. 4(a). Figure 4(b) shows an expanded view of the threshold region.

The fit returns the following parameters for the \(G(3900)\) structure and for the \(\psi(3770)\):

\[
m(G(3900)) = (3943 \pm 17^{\text{stat}} \pm 12^{\text{syst}}) \text{ MeV}/c^2, \quad (8)
\]

\[
\sigma(G(3900)) = (52 \pm 8^{\text{stat}} \pm 7^{\text{syst}}) \text{ MeV}/c^2, \quad (9)
\]

\[
m(\psi(3770)) = (3778.8 \pm 1.9^{\text{stat}} \pm 0.9^{\text{syst}}) \text{ MeV}/c^2, \quad (10)
\]

\[
\Gamma(\psi(3770)) = (23.5 \pm 3.7^{\text{stat}} \pm 0.9^{\text{syst}}) \text{ MeV}. \quad (11)
\]

The systematic error on the \(\psi(3770)\) mass includes uncertainties in the \(D\) mass, background parametrization, and detector related issues such as magnetic field, EMC corrections and energy loss. We measure a significantly higher \(\psi(3770)\) mass with respect to previous measurements \(3772.4 \pm 1.1) \text{ MeV}/c^2 \) [6]. The change in likelihood due to the inclusion of a \(Y(4260)\) amplitude in the fit is given by \(\Delta(2\ln(L)) = 0.1\) with two additional fit parameters.

The systematic errors due to the masses and the widths of the \(\psi(4040), \psi(4160), \psi(4415),\) and \(Y(4260)\) resonances in the fit are evaluated by varying them by their statistical uncertainties. The signal fraction has been varied within its statistical error and the meson radius used in the Blatt-Weisskopf damping factor [19] present in the relativistic Breit-Wigner has been varied between 0 and 5 GeV\(^{-1}\). The deviations from the central values are added in quadrature. The uncertainty on \(e^B(m_{DD})\) is evaluated by using a weighted mean of branching fraction and efficiency un-
certainties for the different channels. The fitted \(Y(4260)\) yield before efficiency correction is \(0.2 \pm 6.1^{\text{stat}} \pm 2.8^{\text{syst}}\) events.

This \(Y(4260)\) yield in the \(DD\) channel is used to compute the cross section times branching fraction, which can then be compared to our measurement from the \(J/\psi\pi^+\pi^-\) channel [2]. We obtain

\[
\frac{\mathcal{B}(Y(4260) \rightarrow DD)}{\mathcal{B}(Y(4260) \rightarrow J/\psi\pi^+\pi^-)} < 1.0, \quad (12)
\]

or

\[
\Gamma(Y(4260) \rightarrow e^+e^-) \cdot \mathcal{B}(Y(4260) \rightarrow DD) < 5.7 \text{ eV}, \quad (13)
\]

at 90% confidence level.

In conclusion, we have studied the exclusive ISR production of the \(DD\) system. The mass spectrum is dominated by \(J^{PC} = 1^{--}\) states; in particular, the \(\psi(3770)\) is clearly seen. In order to fit the mass spectrum, signals from \(\psi(4040), \psi(4160),\) and \(\psi(4415)\) have been included. The fit requires the presence of a broad structure near 3900 MeV/c\(^2\). The presence of an enhancement in this region is predicted by a coupled channel model from Eichten et al. [15], although the possibility of the presence of a new \(\psi\) state cannot be excluded.

If the \(Y(4260)\) is a \(1^{--}\) charmonium state, it should decay predominantly to \(DD\) [4]; however no evidence is found for \(Y(4260)\) decays to \(DD\). Other explanations have been proposed, such as a hybrid, baryonium, or tetraquark state.

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), MEC (Spain), and STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union) and the A. P. Sloan Foundation.

[1] S.-K. Choi et al. (Belle Collaboration), Phys. Rev. Lett. 91, 262001 (2003).

[2] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 95, 142001 (2005).

[3] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 98, 212001 (2007); X.L. Wang et al. (Belle Collaboration), Phys. Rev. Lett. 99, 142002 (2007).

[4] E.J. Eichten, K. Lane, and C. Quigg, Phys. Rev. D 73, 014014 (2006).

[5] X.H. Mo et al., Phys. Lett. B 640, 182 (2006).

[6] W.-M. Yao et al. (Particle Data Group), J. Phys. G 33, 1 (2006) and 2007 partial update.

[7] S.L. Zhu, Phys. Lett. B 625, 212 (2005); E. Kou and O. Pene, Phys. Lett. B 631, 164 (2005); F.E. Close and P.R. Page, Phys. Lett. B 628, 215 (2005).

[8] L. Maiani, V. Riquer, F. Piccinini, and A. D. Polosa, Phys.
[9] X. Liu, X. Q. Zeng, and X. Q. Li, Phys. Rev. D 72, 054023 (2005).

[10] E. S. Swanson, Phys. Rep. 429, 243 (2006).

[11] G. Pakhlova et al. (Belle Collaboration), Phys. Rev. Lett. 98, 092001 (2007).

[12] B. Aubert et al. (BABAR Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 479, 1 (2002).

[13] Charge conjugate states are implied throughout this work.

[14] C. Cawlfield et al. (CLEO Collaboration, Phys. Rev. Lett. 98, 092002 (2007).

[15] E. Eichten, K. Gottfried, T. Kinoshita, K. D. Lane, and T. M. Yan, Phys. Rev. D 21, 203 (1980).

[16] S. Agostinelli et al. (GEANT Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).

[17] M. Benayoun et al., Mod. Phys. Lett. A 14, 2605 (1999).

[18] M. Ablikim et al. (BES Collaboration), arXiv:0705.4500.

[19] J.M. Blatt and W.F. Weisskopf, Theoretical Nuclear Physics (John Wiley & Sons, New York, 1952).