Well before the Covid-19 pandemic, proponents of digital mental health were touting the promise of various tools and techniques, from mHealth to digital phenotyping, that could revolutionize mental health care. As social distancing and its knock-on effects (economic hardship, increased stress, decreased community support) have strained existing mental health infrastructures, calls have grown louder for implementing various digital mental health solutions.

Commentaries have urged mental health professionals to “turn the crisis into an opportunity” by widely deploying digital mental health tools.1 John Torous and colleagues argue that we need to “accelerate and bend the curve on digital health.”2 Dror Ben-Zeev contends that “the digital mental health genie is out of the bottle.” 3 And, in fact, there have been record levels of investment in various digital mental health initiatives. One recent estimate suggests that digital behavioral health start-ups raised $588 million in the first half of 2020 alone.4

At the outset of the pandemic, decisions about the rapid and widespread adoption of various digital health initiatives were necessarily made quickly, under conditions of uncertainty and stress. Medicare rapidly modified their policies to allow clinicians to use (and bill for) telehealth by FaceTime and Skype. Similarly, some Health Insurance Portability and Accountability Act (HIPAA) rules were initially relaxed. Many states also waived requirements for psychiatrists to provide services only to patients in states in which they are licensed.

But as the pandemic drags on, policy-makers are faced with difficult choices about these emergency measures. Should they stay in place? If so, for how long? Decisions made in crisis contexts often have a way of gaining a slow and steady momentum and then appearing inevitable in hindsight. Philosophers of science and technology have helpfully described these phenomena in terms of “path dependencies” leading to “lock-in.” The case of surveillance technologies following the September 11, 2001, terrorist attacks are perhaps the clearest example. And indeed, an April 2020 headline asked, “After 9/11, we gave up privacy for security. Will we make the same trade-off after Covid-19?” 5 In much the same way that the 9/11 crisis accelerated and locked in surveillance technologies in the name of national security, so, too, might the Covid-19 crisis accelerate and lock in various digital technologies in the name of health security.

Medicine exhibits many path dependencies of this sort. In the United States, hospitals were established as a decentralized and highly competitive system, a structure that, over time, has become widespread and deeply engrained.6 This has created a fixed system in which reforms oriented toward collaboration and universal coverage are incredibly difficult to achieve, in part because they require not just doing but also an immense amount of undoing.

Similarly, path dependencies in the Diagnostic and Statistical Manual of Mental Disorders (the DSM) lead to lock-ins that make substantive revisions nearly impossible, despite widespread dissatisfaction with the categorical classification system. The costs of taking a new path (such as adopting dimensional classifications for personality disorders) are perceived to be too high because they would complicate medical record keeping, create administrative and clinical barriers, require massive retraining efforts, and disrupt longitudinal data collection and meta-analyses.7 It is easy to imagine a not-too-distant future where this very same logic is applied to various digital health tools, first implemented as emergency measures, then rationalized as the “new normal.”

We are thus at a turning point, where the urgency of the pandemic has us rushing headlong toward various digital health “solutions.” But decisions made today will put us on paths that shape the future of mental health care for a long

Joshua August Skorburg and Phoebe Friesen, “Mind the Gaps: Ethical and Epistemic Issues in the Digital Mental Health Response to Covid-19,” Hastings Center Report 51 (2021): 1-4. DOI: 10.1002/hast.1292
time to come. Will the easing of lockdowns have come at the cost of technological lock-in? 11
As Melanie Tuerke, Marti Gorlin, and Dominic Sisti argue in 2019 in this journal, bioethicists have a crucial role to play in examining how health research and services are being transformed by new technology. We agree, and we see bioethicists as uniquely positioned to cut through the hype surrounding digital mental health, which can obscure crucial ethical and epistemic gaps that ought to be considered by policymakers before society commits to a digital health future. Here, we describe four such gaps.

The Evidence Gap

While there is a substantial body of evidence supporting the efficacy of telehealth by video conference or phone, many newer digital mental health tools are also gaining traction, including smartphone-delivered therapy, artificial intelligence chatbots, and symptom-monitoring using smartwatches and smartrings. It is precisely the scalability of these tools that makes them attractive to solve the mental health fallout from the pandemic. However, the majority of commercially available mental health apps are not supported by robust empirical evidence. In one study, researchers found that while seventy-three of the most downloaded mental health apps in the iTunes and Google Play stores claim to be effective at improving symptoms, only one of them included a citation to a published study. 10 Yet downloads of these apps have been surging since the start of the pandemic. The best available evidence suggests that smartphone apps, chatbots, and the like may be effective as adjuncts to traditional forms of psychotherapy but, at best, fail to offer significant benefit on their own. Some even lead to worse outcomes. 12 This does not fit neatly with the arguments for the scalability of these digital tools. When the weak evidence base for newer digital mental health tools is weighed against other important ethical considerations, such as data privacy, potential data misuse, and threats to autonomy, many of them seem less adequate. Thus, before limited health care dollars are allocated, it will be important to ensure that proposed digital mental health solutions do not contribute to the development of tools and interventions that can reduce that suffering.

The Prediction-Intervention Gap

One of the most rapidly growing areas of digital mental health is predictive analytics, which is often depicted as revolutionizing clinical practice in psychiatry. 13 But it is not clear that this claim will hold true. Prediction analytic tools find patterns in multimodal data by examining features such as how individuals interact with their cell phones (e.g., downloading apps, making calls, using specific keywords). These features can be highly predictive. For example, people experiencing depression may be alone with the door closed—a privacy requirement for teletherapy. The Prediction-Intervention Gap is not a direct result, being hit hardest by the pandemic. 15 Some cases, digital mental health services are used not only to detect the presence of risk or suffering or offer support to those seeking care but also to determine when police officers should be dispatched to perform a wellness check. For example, Facebook’s suicide prevention program was developed as a last-ditch approach for those in crisis. Although there is little public transparency about how this program operates and how decisions are made, a brief sketch can be offered. In essence, Facebook’s algorithms constantly scan public and private messages for content that may suggest suicidal intent. If a post or message is flagged as high risk by an algorithm (due to keywords that have been associated with suicidal behavior), it is sent to a (human) moderator for assessment. If the moderator decides that a response is warranted, then local police are alerted and dispatched to intervene. 16

While this may seem like a positive contribution to public health on Facebook’s behalf, it is becoming increasingly clear that police wellness checks can do more harm than good. Between 2015 and August 2020, 2,562 people who were experiencing mental health issues were killed by police in the United States. This remarkable number constitutes 23 percent of police fatalities in that time. 17

The Safety Gap

Calls for an increased reliance on digital mental health tools are taking place amidst a global reckoning with anti-Black racism. It is essential to consider how digital responses to Covid-19 might disproportionately impact individuals and communities of color, who have long experienced the epidemics of systemic racism and class, as a direct result, being hit hardest by the pandemic. 18 In some cases, digital mental health services are used not only to detect the presence of risk or suffering or offer support to those seeking care but also to determine when police officers should be dispatched to perform a wellness check. For example, Facebook’s suicide prevention program was developed as a last-ditch approach for those in crisis. Although there is little public transparency about how this program operates and how decisions are made, a brief sketch can be offered. In essence, Facebook’s algorithms constantly scan public and private messages for content that may suggest suicidal intent. If a post or message is flagged as high risk by an algorithm (due to keywords that have been associated with suicidal behavior), it is sent to a (human) moderator for assessment. If the moderator decides that a response is warranted, then local police are alerted and dispatched to intervene. 19

For example, people experiencing depression use first-person pronouns more often than others. 15 However, while this may seem like a positive contribution to public health on Facebook’s behalf, it is becoming increasingly clear that police wellness checks can do more harm than good. Between 2015 and August 2020, 2,562 people who were experiencing mental health issues were killed by police in the United States. This remarkable number constitutes 23 percent of police fatalities in that time. 20

The Inequality Gap

Proponents of digital mental health regularly tout the power of these tools to reach underrepresented populations, such as refugees and veterans. 11 However, there is a substantial risk that these technologies will perpetuate existing social biases and inequalities. The Covid-19 pandemic has brought these inequalities into sharp relief, and it is already clear that the mental health fallout will be most significant for those with overlapping vulnerabilities.
as we have argued, there are good reasons to pause before
digital mental health tools are adopted too widely or too
permanently. Many epistemic and ethical gaps are yet to be
filled in, and the space within them is worrying. Not only is
there a lack of evidence for the health benefits to be gained
from most novel digital mental health tools, but they also
may serve to exacerbate existing inequalities, they may over-
promise innovative treatments when they merely succeed in
identifying risk, and they may strain overburdened and in-
appropriate emergency response systems, potentially ending
in more lives lost.

1. P. P. Sust et al., “Turning the Crisis into an Opportunity: Digital
Health Strategies Deployed during the COVID-19 Outbreak,” JMIR
Public Health and Surveillance 6, no. 2 (2020): doi:10.2196/19106.
2. J. Torous et al., “Digital Mental Health and COVID-19: Using
Technology Today to Accelerate the Curve on Access and Quality
Tomorrow,” JMIR Mental Health 7, no. 3 (2020): doi:10.2196/18848.
3. D. Ben-Zeev, “The Digital Mental Health Genie Is out of the
Bottle,” Psychiatric Services 71, no. 12 (2020): 1212-13.
4. H. Landi, “Digital Behavioral Health Startups Scored $588M
in Funding amid COVID-19 Pandemic,” Fierce Healthcare, July 6,
2020, https://www.fiercehealthcare.com/tech/funding-for-digital-be-
havioral-health-startups-surged-amid-covid-19-pandemic.
5. C. Ross, “After 9/11, We Gave Up Privacy for Security. Will
We Make the Same Trade-off after Covid-19?,” STAT, April 8, 2020,
https://www.statnews.com/2020/04/08/coronavirus-will-we-give-up-
privacy-for-security/.
6. D. Wilsford, “Path Dependency, or Why History Makes It
Difficult but Not Impossible to Reform Health Care Systems in a Big
Way,” Journal of Public Policy (1994): 251-83.
7. R. Cooper, “Why Is the Diagnostic and Statistical Manual
of Mental Disorders so Hard to Revise? Path-Dependence and ‘Lock-
In’ in Classification,” Studies in History and Philosophy of Science
Part C: Studies in History and Philosophy of Biological and Biomedical
Sciences 51 (2015): 1-10, at 6.
8. M. Terrasse, M. Gorin, and D. Sisti, “Social Media, E-Health,
and Medical Ethics,” Hastings Center Report 49, no. 1 (2019): 24-33.
9. M. E. Larsen et al., “Using Science to Sell Apps: Evaluation of
Mental Health App Store Quality Claims,” NPJ Digital Medicine 2,
no. 1 (2019): 1-6.
10. K. K. Weisel et al., “Standalone Smartphone Apps for Mental
Health—a Systematic Review and Meta-analysis,” NPJ Digital
Medicine 2, no. 1 (2019): 1-10.
11. Ş. T ekin, “Is Big Data the New Stethoscope? Perils of
Digital Phenotyping to Address Mental Illness,” Philosophy &
Technology (2020): 1-15.
12. Terrasse, Gorin, and Sisti, “Social Media, E-Health, and
Medical Ethics.”
13. R. Armitage and L. B. Nellums, “COVID-19 and the
Consequences of Isolating the Elderly,” Lancet Public Health 5,
no. 5 (2020): e256.
14. “Internet/Broadband Fact Sheet,” Pew Research Center, April 7,
2021, accessed August 23, 2021, https://www.pewresearch.org/internet/
fact-sheet/internet-broadband/#who-has-home-broadband.
15. T. Hahn, A. A. Nierenberg, and S. Whitfield-Gabrieli,
“Predictive Analytics in Mental Health: Applications, Guidelines,
Challenges and Perspectives,” Molecular Psychiatry 22, no. 1 (2017):
37-43.
16. J. W. Pennebaker, M. R. Mehl, and K. G. Niederhoffer,
“Psychological Aspects of Natural Language Use: Our Words, Our
Selves,” Annual Review of Psychology 54, no. 1 (2003): 547-77.
17. M. Scriven, “Explanation and Prediction in Evolutionary
Theory,” Science 130, no. 3374 (1959): 477-82.
18. C. M. Corcoran et al., “Prediction of Psychosis across Protocols
and Risk Cohorts Using Automated Language Analysis,” World
Psychiatry 17, no. 1 (2018): 67-75, at 67 (in the abstract).
19. “The COVID Racial Data Tracker,” The COVID Tracking
Project at The Atlantic, accessed August 5, 2020, https://covidtrack-
ing.com/race.
20. M. Marks, “Artificial Intelligence-Based Suicide Prediction,”
Yale Journal of Health Policy, Law, and Ethics (2019): 1-36.
21. “Fatal Force,” Washington Post, accessed December 15, 2020,
https://www.washingtonpost.com/graphics/investigations/police-
shootings-database/.
22. A. Cooke, “Recent Deaths Prompt Questions about Police
Wellness Checks,” Canadian Broadcasting Company, June 23, 2020,
https://www.cbc.ca/news/canada/nova-scotia/police-wellness-checks-
deaths-indigenous-black-1.5622320.

4 HASTINGS CENTER REPORT