Opposite product system for the multiparameter CAR flows

Anbu Arjunan

January 5, 2021

Abstract

We consider the multiparameter CAR flows and describe its opposite. We also characterize the symmetricity of CAR flows in terms of associated isometric representations.

AMS Classification No. : Primary 46L55; Secondary 46L99.

Keywords : E_0-semigroups, CCR flow, CAR flow, opposite product system.

1 Introduction

Let P be a closed convex cone in \mathbb{R}^d. We assume that $P - P = \mathbb{R}^d$ and $P \cap -P = \{0\}$. Let V be a pure isometric representation of P and let α be the CCR flow associated to the isometric representation V. The author in [4] have shown that the CCR flow is not cocycle conjugate to the CAR flow when the isometric representation V is proper. The product system associated with the CAR flow is not decomposable in general; see [1]. It was shown in [5] that α is cocycle conjugate to α^{op} if and only if V is unitary equivalent to its opposite V^{op}. This result uses the characterization of decomposable product system which admits a unit; see [6]. It is natural to ask whether the analogous result holds true for the multiparameter CAR flows. In this article we answer this question affirmatively; see Theorem 3.5. We will achieve this by identifying the opposite of the product system for a CAR flow with the product system for an appropriate CAR flow. Also we will also use this to study the symmetricity of the CAR flows.
2 Preliminaries

Let H be a Hilbert space and let $\Gamma_a(H)$ be the antisymmetric Fock space over H. For $f \in H$, define a bounded operator $a(f)^*$ on $\Gamma_a(H)$ as

$$a(f)^*(\Omega) = f$$

and

$$a(f)^*(h_1 \wedge h_2 \wedge \ldots \wedge h_n) = f \wedge h_1 \wedge h_2 \wedge \ldots \wedge h_n$$

where Ω is the vacuum vector of $\Gamma_a(H)$ and $h_1 \wedge h_2 \wedge \ldots \wedge h_n$ is an arbitrary antisymmetric elementary tensor element with $h_1, h_2, \ldots, h_n \in H$ and $n \geq 1$. Let $a(f)$ be the adjoint of $a(f)^*$. The operators $a(f)^*$ and $a(f)$ are called the creation and the annihilation operator associated to a vector f.

By an isometric representation of P on a Hilbert space H, we mean a strongly continuous map $V : P \rightarrow B(H)$ such that each V_x is an isometry and $V_x V_y = V_{x+y}$ for each $x, y \in P$. For a given isometric representation $V : P \rightarrow B(H)$, there exists a unique E_0-semigroup, denoted by β^V, on $\Gamma_a(H)$ satisfying

$$\beta^V_x(a(f)) = a(V_x f)$$

for each $f \in H$.

This E_0-semigroup β^V is called the CAR flow associated to the isometric representation V; see [4].

Let H and K be Hilbert spaces. For an isometry $W : H \rightarrow K$, there exists a unique bounded operator $\Gamma_a(W)$, called the second quantization of W, from $\Gamma_a(H)$ to $\Gamma_a(K)$, satisfying

$$\Gamma_a(W)(\Omega) = \Omega,$$

$$\Gamma_a(W)(f_1 \wedge f_2 \wedge \ldots \wedge f_n) = W f_1 \wedge W f_2 \wedge \ldots \wedge W f_n,$$

where Ω is the vacuum vector in the appropriate antisymmetric Fock space and $f_1 \wedge f_2 \wedge \ldots \wedge f_n$ is any antisymmetric elementary tensor element with $f_1, f_2, \ldots, f_n \in H$ and $n \geq 1$.

3 Opposite product system for a CAR flow

Let V be a pure isometric representation of P on a Hilbert space H. Let β^V be the CAR flow associated to the isometric representation V and denote its concrete product system by \mathcal{E}_{β^V}. Set $E^V(x) = \Gamma_a(\text{Ker}(V_x^*))$. Consider the set E^V as

$$E^V = \{(x, f) : x \in \Omega \text{ and } f \in E^V(x)\}.$$

2
Since E^V is a Borel subset of $\Omega \times \Gamma_a(H)$, E^V is a standard Borel space. Define a multiplication on E^V as

$$(x, f) \cdot (y, g) := (x + y, f \otimes \Gamma_a(V_x)g)$$

for every $(x, f), (y, g) \in E^V$. E^V equipped with the above multiplication defines a product system structure over Ω. We define another multiplication \circ on E^V as

$$(x, f) \circ (y, g) := (x + y, g \otimes \Gamma_a(V_y)f).$$

Then the pair (E^V, \circ) also has a structure of product system over Ω, called the opposite product system for (E^V, \cdot), denoted by $(E^V)^{\text{op}}$.

Let $x \in \Omega$ and let $f \in E^V(x)$ be given. Define a bounded operator T_f on $\Gamma_a(H)$ as

$$T_f \eta = f \otimes \Gamma_a(V_x)\eta,$$

for every $\eta \in \Gamma_a(H)$.

Then we have the following lemma.

Lemma 3.1 The map $\theta : E^V \ni (x, f) \mapsto (x, T_f) \in \mathcal{E}_{\beta^V}$ is an isomorphism as product systems.

Proof: Let $(x, f), (y, g) \in E^V$ be given. Since $T_fT_g = T_f \otimes \Gamma_a(V_x)g$, it follows that $\theta(x, f)\theta(y, g) = \theta((x, f)(y, g))$. For each $x \in \Omega$, the restriction of θ to $E^V(x)$, $\theta|_{E^V(x)} : E^V(x) \to \mathcal{E}_{\beta^V}(x)$ is a unitary. For let $f, g \in E^V(x)$ be given. Note that $T_g^*T_f = \langle f, g \rangle 1_{E^V(x)}$ and $T_f \in \mathcal{E}_{\beta^V}(x)$. This implies that the map $E^V(x) \ni f \mapsto T_f \in \mathcal{E}_{\beta^V}(x)$ is an isometry. To prove that the map is a unitary it suffices to show that whenever $T \in \mathcal{E}_{\beta^V}(x)$ such that $\langle T_f, T \rangle = 0$ for all f, then $T = 0$. Since the linear span of the set $\{f \otimes \Gamma_a(V_x)\eta : f \in E^V(x) \text{ and } \eta \in \Gamma_a(H)\}$ is dense in $\Gamma_a(H)$, we see that $T = 0$.

Since E^V and \mathcal{E}_{β^V} are standard Borel spaces and the restriction of θ to each fibre is a unitary, it follows that the map θ is a Borel isomorphism and hence it is an isomorphism as product systems by [2].

Let us recall the opposite isometric representation V^{op} for the given isometric representation V considered in [6]. Let U be a minimal unitary dilation of V. More precisely, there exists a Hilbert space \tilde{H} containing H as a subspace and a unitary representation U of \mathbb{R}^d on a Hilbert \tilde{H} such that the following conditions hold.

1. For $x \in P$, $U_x \xi = V_x \xi$.

2. The set $\cup_{x \in P}U_x^*H$ is dense in \tilde{H}.

3
Note that for $x \in P$, $K = H^\perp$ is invariant under U_x. For $x \in P$, define V_x^{op} on K to be the restriction of U_{-x} to K i.e. $V_x^{\text{op}} := U_{-x}|_K$. Then $V^{\text{op}} := \{V_x^{\text{op}}\}_{x \in P}$ is an isometric representation of P, called the opposite isometric representation for V. This isometric representation V^{op} is pure [5, Proposition 3.2].

Proposition 3.2 The map $\phi : (E^V)^{\text{op}} \ni (x, f) \mapsto (x, \Gamma_a(U_{-x})f) \in E^{V^{\text{op}}}$ is an isomorphism as product systems.

Proof: For each $x \in \Omega$, the map $\text{Ker}(V_x^*)h \mapsto U_{-x}h \in \text{Ker}((V_x^{\text{op}})^*)$ is a unitary; see the proof of [5, Proposition 3.2]. Then it follows that the map $\phi : (E^V)^{\text{op}} \ni (x, f) \mapsto (x, \Gamma_a(U_{-x})f) \in E^{V^{\text{op}}}$ is a continuous bijection and its inverse is given by $E^{V^{\text{op}}} \ni (x, \xi) \mapsto (x, \Gamma_a(U_x)\xi) \in (E^V)^{\text{op}}$. Hence it is a Borel isomorphism by [2]. Now it remains to show that ϕ follows product system structure. Let $(x, f), (y, g) \in E^V$ be given. Then we have

$$
\phi((x, f)(y, g)) = \phi(x + y, f \otimes \Gamma_a(V_x)g) \\
= (x + y, \Gamma_a(U_{-(x+y)})(f \otimes \Gamma_a(V_x)g)) \\
= (x + y, \Gamma_a(U_{-(x+y)})\Gamma_a(V_x)g \otimes \Gamma_a(U_{-(x+y)})f) \\
= (x + y, \Gamma_a(U_{-y})g \otimes \Gamma_a(U_{-y})\Gamma_a(U_{-x})f) \\
= (y, \Gamma_a(U_{-y})g)(x, \Gamma_a(U_{-x})f) \\
= \phi(y, g)\phi(x, f).
$$

Hence the map ϕ is an isomorphism as product systems. \qed

Let \mathcal{E}_{β^V} be the concrete product system for β^V and let $\mathcal{E}_{\beta^V}^{\text{op}}$ be its opposite product system. By [3, Theorem 3.14], there exists an E_0-semigroup denoted by $(\beta^V)^{\text{op}}$ such that $\mathcal{E}_{\beta^V}^{\text{op}}$ is isomorphic to $\mathcal{E}_{(\beta^V)^{\text{op}}}$.

Corollary 3.3 An E_0-semigroup $(\beta^V)^{\text{op}}$ is cocycle conjugate to $\beta^{V^{\text{op}}}$.

Proof: By Proposition 3.2 and Lemma 3.1, we conclude that $(E^V)^{\text{op}}$ is isomorphic to $\mathcal{E}_{\beta^{V^{\text{op}}}}$. This implies that the product system $\mathcal{E}_{(\beta^{V^{\text{op}}})}$ is isomorphic to $\mathcal{E}_{\beta^{V^{\text{op}}}}$ by Lemma 3.1. Then by [3, Theorem 2.9], we have $(\beta^V)^{\text{op}}$ is cocycle conjugate to $\beta^{V^{\text{op}}}$. \qed

Remark 3.4 The above corollary implies that the opposite of a CAR flow over P is again a CAR flow over P.

Theorem 3.5 Let β^V be the CAR flow associated to an isometric representation V. Then the following are equivalent.

4
1. The CAR flow β^V is cocycle conjugate to its opposite $(\beta^V)^{op}$

2. The isometric representation V is unitary equivalent to its opposite V^{op}.

Proof: Proof follows from [4, Proposition 4.7] and Corollary 3.3. \qedsymbol

4 Examples for symmetric and asymmetric CAR flows

By a P-module we mean a non-empty closed subset A of \mathbb{R}^d such that $A + P \subseteq A$. Let A be a P-module. For $x \in P$, define an operator V_x^A on $L^2(A)$ as

$$(V_x^A f)(y) = \begin{cases} f(y - x) & \text{if } y - x \in A, \\ 0 & \text{if } y - x \notin A. \end{cases}$$

for each $f \in L^2(A)$. Then the family $\{V_x^A\}_{x \in P}$ is an isometric representation of P.

Proposition 4.1 (See [5, Proposition 3.4]) We have the following.

1. The isometric representation $(V^A)^{op}$ is unitary equivalent to V^A.

2. There exists an element $z \in \mathbb{R}^d$ such that $A = -(\text{int}(A)^c) + z$.

Here $\text{int}(A)$ is the interior of A and $\text{int}(A)^c$ is the complement of $\text{int}(A)$ in \mathbb{R}^d.

Let β^A be the CAR flow associated to the isometric representation V^A. It follows from Theorem 3.5 and Proposition 4.1 that the CAR flow β^A is cocycle conjugate to its opposite $(\beta^A)^{op}$ if and only if $A = -(\text{int}(A)^c) + z$ for some $z \in \mathbb{R}^d$.

Remark 4.2 By considering the existence of such P-modules, we can see that there are uncountably many symmetric CAR flows as well as asymmetric CAR flows over P.

Acknowledgment

The author would like to thank The Institute of Mathematical Sciences for the Institute Postdoctoral fellowship.
References

[1] Anbu Arjunan, *Decomposability of multiparameter CAR flows*, (2020), arXiv:2008.04752.

[2] William Arveson, *An invitation to C*-algebras*, Springer-Verlag, New York-Heidelberg, 1976, Graduate Texts in Mathematics, No. 39. MR 0512360

[3] S. P. Murugan and S. Sundar, *E0-semigroups and product systems*, (2017), arXiv:1706.03928.

[4] R. Srinivasan, *CCR and CAR flows over convex cones*, (2019), arXiv:1908.00188.

[5] S. Sundar, *An asymmetric multiparameter CCR flow*, (2019), arXiv:2001.00136.

[6] ______, *Arveson’s characterisation of CCR flows: the multiparameter case*, (2019), arXiv:1906.05493.