Development of a covalent inhibitor of gut bacterial bile salt hydrolases

Arijit A. Adhikari1, Tom C. M. Seegar1, Scott B. Ficarro2,3, Megan D. McCurry2, Deepti Ramachandran4, Lina Yao1, Snehal N. Chaudhari1, Sula Ndousse-Fetter1, Alexander S. Banks4, Jarrod A. Marto2,3, Stephen C. Blacklow1 and A. Sloan Devlin1*

Bile acid hydrolysis (BSH) enzymes are widely expressed by human gut bacteria and catalyze the gateway reaction leading to secondary bile acid formation. Bile acids regulate key metabolic and immune processes by binding to host receptors. There is an unmet need for a potent tool to inhibit BSHs across all gut bacteria to study the effects of bile acids on host physiology. Here, we report the development of a covalent pan-inhibitor of gut bacterial BSHs. From a rationally designed candidate library, we identified a lead compound bearing an alpha-fluoromethyl ketone warhead that modifies BSH at the catalytic cysteine residue. This inhibitor abolished BSH activity in conventional mouse feces. Mice gavaged with a single dose of this compound displayed decreased BSH activity and decreased deconjugated bile acid levels in feces. Our studies demonstrate the potential of a covalent BSH inhibitor to modulate bile acid composition in vivo.

Bile acids, long relegated to the role of undistinguished detergents, have recently emerged as likely candidates for the molecular messengers that allow members of the human gut microbiome to modulate the physiology and behavior of their hosts1–4. Investigating these potential roles in detail has been hampered by the lack of tools to regulate specific messages, and developing the appropriate tools has been hampered in turn by the complex biosynthesis of bile acids. Primary bile acids are produced in the liver from cholesterol and conjugated to taurine or glycine to produce primary conjugated bile acids (Fig. 1a). These molecules are stored in the gallbladder and released into the digestive tract where they aid in absorption of lipids and vitamins. Over 95% of bile acids are reabsorbed in the ileum and transported to the liver. The remaining ~5% pass into the colon where most gut bacteria reside. Gut bacteria then enzymatically modify these primary bile acids, producing a group of molecules called secondary bile acids (Fig. 1a). Roughly 50 secondary bile acids have been detected in human feces, and their concentrations can reach low millimolar levels5,6.

Bile acids, which share a carbon skeleton with steroids, can bind to host receptors, including nuclear hormone receptors and G-protein coupled receptors. By acting as either agonists or antagonists for these receptors, bile acids regulate host metabolism, including energy expenditure and glucose and lipid homeostasis2,7, and host immune response, including both innate and adaptive immunity6,8. Dysregulated bile acid metabolism is thought to play a causal role in the pathophysiology of diseases including hypercholesterolemia, obesity and cancer8,9, further highlighting the biological importance of these molecules.

The key reaction in the conversion of primary into secondary bile acids is the hydrolysis (deconjugation) of the C24-amide bond of conjugated primary bile acids (Fig. 1a). This enzymatic conversion is performed exclusively by gut bacterial BSH enzymes1. BSHs (EC 3.5.1.24) are widespread in human gut bacteria. A recent study identified BSHs in gut species from 117 genera and 12 phyla10. A nontoxic, small molecule pan-inhibitor of gut bacterial BSHs would provide a powerful tool to study how bile acids affect host physiology. Such a compound should limit bile acid deconjugation across most gut strains without significantly affecting bacterial growth. The use of a pan-inhibitor in vivo would significantly alter bile acid pool composition, shifting the pool toward conjugated bile acids and away from deconjugated bile acids and secondary bile acids (Fig. 1a).

Herein, we report the development of a covalent inhibitor of bacterial BSHs using a rational design approach. This compound completely inhibits BSH activity in conventional mouse feces, demonstrating its potential use as a pan-BSH inhibitor. This chemical tool may allow researchers to investigate previously unanswered questions, including how primary and secondary bile acids differentially affect physiology in a fully colonized host.

Results
Rational design of covalent BSH inhibitors. Covalent inhibitors can inactivate their protein target with a high degree of potency and selectivity even in the presence of large concentrations of native substrate11. The substrates for BSHs, conjugated bile acids, are found in high concentrations in the colon (1–10 mM), suggesting that covalent inhibition could be an effective strategy for targeting these enzymes. In addition, recent work has demonstrated that irreversible inhibitors of bacterial enzymes can be effective in the gut12, thus further validating our approach.

While there is significant divergence in BSH protein sequence across gut strains, all BSHs possess a conserved active site that includes a catalytic cysteine (Cys2) (Fig. 1b)11,12. We reasoned that by designing compounds that targeted this conserved residue, we could develop pan-BSH inhibitors. A co-crystal structure of the C. perfringens BSH and the substrate taurodeoxycholic acid showed that
hydrophobic interactions engaged the bile acid core and oriented the amide toward Cys2, leaving the amino acid solvent-exposed (Fig. 1c)14. Furthermore, \textit{C. perfringens} BSH tolerates a large degree of variability in the amino acid side chain, including longer chain conjugates14. These results suggested that the C-17 bile acid side chain was a possible site for incorporation of an electrophilic group.

Based on this rationale, we designed a small library of potential inhibitors containing both a bile acid core motif and a pendant electrophilic warhead (Fig. 1d). While previous literature indicated that conjugated amino acid identity largely drives BSH specificity9, sterol core configuration also affects BSH reactivity17. Indeed, in recent work, we determined that some \textit{Bacteroides} species cleave C12 = H but not C12 = OH primary bile acids (Fig. 1a)14. To target both Gram-negative and Gram-positive strains, we decided to use the steroidal portion of the human primary bile acid chenodeoxycholic acid (CDCA) (C12 = H) as our scaffold.

For the electrophilic trapping groups, we chose warheads that have been successfully deployed in the development of protease and kinase inhibitors14, including isothiocyanate (1)14, cyanoacrylate (2)15, α,β-unsaturated systems (3 and 4)20, acrylamide (5)31 and nitrile (6)22. We also synthesized an inhibitor with an α-fluoromethyl ketone warhead (FMK) (7). In contrast to the more electrophilic α-iodo-, α-bromo- and α-chloromethyl ketone warheads, the weak leaving group ability of fluorine renders the FMK warhead less reactive and hence more selective13,24. As a result, FMK-based inhibitors have been shown to result in minimal off-target effects31,25.

Biochemical characterization of BSHs. Following inhibitor synthesis (Supplementary Note), we sought to evaluate the activity of inhibitors 1–9 against both Gram-negative and Gram-positive BSHs. We decided to use a selective \textit{Bacteroides} BSH for inhibitor optimization, reasoning that the more limited substrate scope of this enzyme could make it more difficult to target. We heterologously expressed and purified the selective BSH (\textit{BSH}_\textit{BT}_2086) that we had previously identified in \textit{Bacteroides thetaiotaomicron} VPI-5482 (\textit{B. theta}) (Supplementary Table 1 and Supplementary Fig. 1)16. We then established kinetic parameters using a ninhydrin-based assay26. Consistent with our previous results from \textit{B. theta} cultures, purified
B. theta BSH displayed a preference for tauroursodeoxycholic acid (TUDCA) deconjugation and did not deconjugate taurocholic acid (TCA) (Table 1 and Supplementary Fig. 1). The Kₘ values for all of the recognized substrates are in the low millimolar range, which is approximately the concentration of these bile acids in the gut. While the Kₘ values are lower than the Kₘ reported for the Lactobacillus salivarius BSH, the Kₘ values for these enzymes are similar to those of previously characterized BSHs.

α-FMK compound 7 inhibits recombinant BSHs. We next evaluated the ability of the compounds in our library to inhibit B. theta and B. longum BSHs. We also tested riboflavin (10) and caffeic acid phenethyl ester (CAPE, 11), compounds that had been previously identified in a high-throughput screen for inhibition of a BSH from a L. salivarius chicken gut isolate (Supplementary Fig. 2). To determine BSH inhibitory activity, we preincubated the B. theta BSH with each inhibitor (100 μM) for 30 min and then added a mixture of conjugated bile acids (100 μM final concentration). Because BSHs display varying reactivities toward different conjugated bile acids, we used an equimolar combination of two primary and two secondary conjugated bile acids that are predominant in the gallbladder and small intestine of conventional mice as our substrate mixture (tauro-β-muricholic acid (TJMCA), TCA, TUDCA and TDCA)

Deconjugation of bile acids was monitored by ultra-performance liquid chromatography–mass spectrometry (UPLC–MS) over 21 h. Among the synthesized inhibitors, isothiocyanate (7) displayed approximately the concentration of these bile acids in the gut. While all six bacterial strains deconjugated bile acids in the presence of vehicle control, we observed almost no deconjugation in any of the cultures grown in the presence of 7 (Fig. 2c, Supplementary Fig. 8, and Supplementary Table 2). We then incubated an isogenic BSH-deleted B. theta strain with DMSO, 7 or CAPE. Under all three conditions, taurine-conjugated bile acids were recovered unmetabolized (Supplementary Fig. 9). These results indicate that BSH inhibition by 7 is not due to the effects of this inhibitor on other bile acid–using processes.

We observed no BSH inhibition in five out of the six bacterial strains grown in the presence of CAPE (Fig. 2c). Moreover, CAPE inhibited the cell viability of all three Gram-negative bacterial strains tested (Fig. 2d). These results suggest that the dominant effect of CAPE on Gram-negative bacteria is not inhibition of BSH activity but rather inhibition of growth.

Finally, to evaluate our hypothesis that C12-OH compounds would not be effective broad-spectrum inhibitors, we synthesized a compound in which we appended the α-FMK warhead to a C12-OH bile acid core, cholic acid (compound 9, Fig. 1d). Compound 9 displayed significantly reduced ability to inhibit BSH deconjugation in B. theta cultures compared to 7 (Supplementary Fig. 5). These results support the hypothesis that bile acid core structure, specifically C12 substitution, affects the ability of our probes to inhibit selective BSH. In addition, these results suggest that the α-FMK warhead is not broadly reactive but rather requires suitable positioning in the active site, a hypothesis that we later investigated using mass spectrometry and crystallography studies.

Compound 7 inhibits BSH activity in mouse feces. Previous literature had reported significant BSH activity in mouse feces in a dose-dependent fashion (half-maximal inhibitory concentration (IC₅₀) values of 427 and 108 nM, respectively, Supplementary Fig. 6). Taken together, these data indicate that compound 7 is a potent inhibitor of purified BSH protein from both a Gram-negative and a Gram-positive bacterial strain.

Compound 7 completely inhibited B. theta BSH, the more catalytically efficient of the two enzymes (Table 1), in 15 s at a concentration equimolar to substrate and without any preincubation of inhibitor with enzyme (Supplementary Fig. 7). In the presence of a large excess (~80-fold) of substrate, 7 entirely inhibited B. theta BSH activity in 15 min, the earliest measurable timepoint for product formation under these conditions. These results indicate that 7 is a kinetically efficient inhibitor of BSH activity.

Compound 7 inhibits BSHs in gut bacterial cultures. We next sought to evaluate the potency of 7 in growing bacterial cultures. To test the scope of BSH inhibition, we used three Gram-negative and three Gram-positive strains of BSH-containing human gut bacteria (Gram-negative, B. theta, B. fragilis ATCC 25285 and B. vulgatus ATCC 8482; Gram-positive, L. plantarum WCFS1, C. perfringens ATCC 13124 and B. adolescentis L2–32).

Bacterial cultures were diluted to prelog phase and both inhibitor (100 μM) and a mixture of conjugated bile acids (100 μM final concentration) were added simultaneously. Deconjugation was monitored over 21 h using UPLC–MS. While all six bacterial strains deconjugated bile acids in the presence of vehicle control, we observed almost no deconjugation in any of the cultures grown in the presence of 7 (Fig. 2b, Supplementary Figs. 3 and 4 and Supplementary Table 2). Compound 7 inhibited both B. theta and B. longum BSHs in a dose-dependent fashion (half-maximal inhibitory concentration (IC₅₀) values of 427 and 108 nM, respectively, Supplementary Fig. 6). Taken together, these data indicate that compound 7 is a potent inhibitor of purified BSH protein from both a Gram-negative and a Gram-positive bacterial strain.

Table 1 | Kinetic parameters for BSHs from B. thetaiotaomicron (B. theta) and Bifidobacterium longum (B. longum)

BSH source	Substrate	Kₘ (min⁻¹)	Kₘ (mM)	Kₘ/Kₘ (min⁻¹·mM⁻¹)
B. theta	TCA	15.3 ± 0.8	8.2 ± 1.0	1.9 ± 0.3
	TUDCA	12.9 ± 0.6	3.4 ± 0.6	3.8 ± 0.7
	TDCA	4.3 ± 0.6	2.9 ± 1.8	4.3 ± 0.9
B. longum	TCA	6.9 ± 0.9	8.3 ± 2.5	0.8 ± 0.3
	TUDCA	0.9 ± 0.2	4.1 ± 2.5	0.2 ± 0.1
	TDCA	3.5 ± 0.1	2.3 ± 0.3	1.5 ± 0.2
	TDCDA	4.6 ± 0.6	7.0 ± 2.3	0.6 ± 0.2

*Characterization was performed using ninhydrin reagent and experiments were performed in PBS buffer at pH 7.5 and 37 °C. **Conjugated primary and secondary bile acid used as substrates were TCA, TUDCA, taurodeoxycholic acid (TDCDA) and taurochenodeoxycholic acid (TCDCA). θ. theta did not deconjugate TCA. n = 3 biological replicates per condition. All data are presented as mean ± s.e.m.
We then determined the structure of the *B. theta* BSH, first in its apo form to 2.7 Å resolution and then covalently bound to 7 to 3.5 Å resolution (Supplementary Table 3) (PDB 6UYF and 6UH4, respectively). The structure of the BSH–inhibitor complex contains four copies of the protein in the asymmetric unit. The electron density map is best resolved in two of the four subunits, and electron density is clearly visible for the inhibitor in one of these subunits covalently attached to Cys2 (Fig. 3a,b). Comparison with the apo structure also suggests that there is a loop (residues 127–138) that repositions to clasp the inhibitor in the active site in a solvent-exposed channel (Supplementary Fig. 12).

These data indicate that 7 selectively labels the *B. theta* BSH at Cys2. Furthermore, the co-crystal structure reveals that the C3-hydroxyyl group is solvent-accessible, suggesting that this site might be amenable to further modification (Fig. 3b).

Compound 7 displays minimal off-target effects. Concerns have been raised that nonspecific reactivity of covalent inhibitors could result in acute toxicity11. Bile acids are ligands for the farnesoid X receptor (FXR) and the G-protein coupled bile acid receptor 1 (TGR5)1. In an in vitro coactivator recruitment assay showed that 7 is...
neither an agonist nor an antagonist for FXR at physiologically relevant concentrations (Supplementary Fig. 13)31. Next, we evaluated the effect of compound \textit{7} on TGR5 activation in a human intestinal cell line (Caco-2). Compound \textit{7} neither agonized nor antagonized TGR5 over the range of concentrations tested (Supplementary Fig. 13). These results suggest that \textit{7} does not induce off-target effects on either of these critical host receptors.

Bile acids are also known to be toxic due to their detergent properties33. We tested the toxicity of this compound against human intestinal cells (Caco-2 and NCI-H716). No resultant toxicity was observed when these cells were incubated with up to 50 or 100 \(\mu\)M of \textit{7}, respectively (Supplementary Fig. 13). Because the IC\textsubscript{50} values of \textit{7} range from 237 to 1,070 nM, these results suggest that it should be possible to achieve an effective, nontoxic in vivo dose.

To test the effect of compound \textit{7} on epithelial integrity, Caco-2 cells were differentiated in transwell inserts into a polarized monolayer with tight intercellular junctions34. Compound \textit{7} was incubated in the apical chamber of the transwells, and epithelial integrity was measured by passive diffusion of 4 kDa FITC-dextran. No significant increase in fluorescence was observed in \textit{7}-treated cells compared to control-treated cells, indicating that \textit{7} did not compromise epithelial monolayer integrity (Supplementary Fig. 14).

Despite these encouraging findings, it is important to understand the proteome-wide reactivity of \textit{7} (ref. 35). To assay target engagement and off-target interactions of compound \textit{7}, we synthesized a ‘clickable’ version of this inhibitor. We appended an \(\alpha\)-azido moiety36 to \textit{7} at the solvent-exposed C3 position to generate \textit{7}-N\textsubscript{3} (compound 12, Fig. 4a). Like \textit{7}, \textit{7}-N\textsubscript{3} potently inhibited BSH activity in mouse feces (Fig. 4b). These results demonstrate that azide substitution did not significantly perturb the BSH inhibitory activity of this molecule. To study on- and off-target effects in bacterial cells, cultures of \textit{B. adolescentis} L2–32 were treated for 1 h with 10 \(\mu\)M of \textit{7}-N\textsubscript{3}, a concentration at which \textit{7} inhibited BSHs in bacterial culture (Supplementary Fig. 5). Lysed bacterial supernatants were then reacted with fluor 488-alkyne under copper catalyzed azide-alkyne cycloaddition conditions, and proteins were visualized by in-gel fluorescence. Remarkably, only one fluorescent band was visible at a mass of ~35 kDa, the predicted mass of the annotated \textit{B. adolescentis} BSH (Fig. 4c and Supplementary Fig. 15). To identify this protein, we clicked the clarified lysate with desthiobiotin-alkyne and performed streptavidin pulldown. Bound proteins from control and treated samples were resolved by SDS–PAGE and visualized by silver staining (Fig. 4d and Supplementary Fig. 15). We observed a single silver-stained band at the predicted molecular weight (~35 kDa) of BSH. We excised this band along with the corresponding region of the control lane, digested both with trypsin and performed liquid chromatography–tandem mass spectrometry (LC–MS/MS). BSH was identified in the gel bands with high confidence, and a semi-quantitative analysis of these data indicated a 4.5-fold enrichment in \textit{7}-N\textsubscript{3}-versus vehicle-treated bacterial cultures (Supplementary Table 4). To assess off-target binding across the bacterial proteome, we digested streptavidin bead-bound proteins isolated from

\textbf{Fig. 3 | Compound 7 covalently modifies \textit{B. theta} BSH at the active site cysteine residue.} \textit{a}, X-ray structure of \textit{7} bound to \textit{B. theta} BSH. The BSH (cyan) is shown in ribbon representation, with indicated side chains (cyan, with heteroatoms in Corey–Pauling–Koltun colors) rendered as sticks. Compound \textit{7} (green, with heteroatoms in Corey–Pauling–Koltun colors) is rendered in stick form. There is electron density visible at the active site of one of the four subunits in the asymmetric unit, consistent with the conclusion that the inhibitor is covalently attached to Cys2. \textit{b}, Co-crystal structure of \textit{B. theta} BSH and \textit{7} shown in ribbon (left, with electron density of the compound shown as a blue net) and surface (right) representations. The A ring of \textit{7}, which includes the C3 hydroxyl group, is solvent-exposed. \textit{a} and \textit{b} were prepared using PYMOL software (Schroedinger).
Fig. 4 | Compound 7 exhibits BSH engagement and minimal off-target effects. **a**, Structure of ‘clickable’ 7, 7-N3 (12), for on- and off-target studies. **b**, 7-N3 displayed significant BSH inhibition in conventional mouse feces, showing that this probe retained its function as a BSH inhibitor. **c**, Treatment of *B. adolescentis* L2-32 culture with 7-N3 for 1 h followed by cell lysis, click reaction with fluor 488-alkyne, and visualization using in-gel fluorescence revealed labeling of only one protein (~35 kDa in size, the mass of the annotated *B. adolescentis* BSH. Proteins were loaded at a concentration of 1.5 mg ml⁻¹. *B. theta* recombinant BSH (BT_BSH, 1 μM) was used as a positive control for the click reactions and as a standard to show 38 kDa. **d**, Lysate from the treatment of *B. adolescentis* cultures with 7-N3 was reacted with desthiobiotin-alkyne, resolved by SDS–PAGE, and visualized by silver staining. Arrow indicates a band in the probe-treated sample at the predicted molecular weight (~35 kDa) of BSH. (For full gels in triplicate, see Supplementary Fig. 15.) In-gel digestion followed by LC–MS/MS identified this band as BSH with high confidence. Semi-quantitative analysis indicated a 4.5-fold enrichment in 7-N3-treated versus vehicle-treated bacterial cultures (see Supplementary Table 4). **e**, Treatment of *B. adolescentis* cultures with decreasing concentrations of 7 followed by treatment with 10 μM 7-N3, and click reaction with fluor 488-alkyne resulted in a dose-dependent increase in fluorescence labeling of annotated *B. adolescentis* BSH. Experiment was repeated twice with similar results. (For full gels in triplicate, see Supplementary Fig. 15.) **f**, One-hour treatment of NCI-H716 intestinal cells with 7-N3 followed by click reaction with fluor 488-alkyne and visualization by in-gel fluorescence resulted in no significant labeling of proteins compared to control-treated cells. (For triplicate gels, see Supplementary Fig. 16.) For **b–d** and **f**, n = 3 biological replicates per condition. For **b**, data is presented as mean ± s.e.m.

treated and control bacterial cultures. Label-free LC–MS/MS analysis identified BSH as 3.6-fold enriched in probe-treated cultures (Supplementary Tables 5–7). No other proteins exceeded a two-fold enrichment threshold across biological triplicate experiments. Competition of 7 with 7-N3 showed dose-dependent labeling of the annotated *B. adolescentis* BSH (Fig. 4e and Supplementary Fig. 15), further confirming on-target activity of 7.

We then profiled the off-target effects of compound 7 in mammalian intestinal cells (NCI-H716). These cells were also treated with 7-N3, and processed in the same manner as the bacterial cells. Click reaction with fluor 488-alkyne showed no enrichment of any band by in-gel fluorescence (Fig. 4f and Supplementary Fig. 16). No proteins were enriched (≥2-fold) in probe-treated lysates based on label-free LC–MS/MS analysis (Supplementary Tables 8–10). Collectively, our data demonstrate on-target BSH binding of 7 and limited off-target activity against other bacterial proteins or mammalian proteins in intestinal cells.

Single dose of 7 inhibits BSH activity in vivo. We next sought to evaluate the activity of this inhibitor in vivo. C57BL/6 mice were gavaged with a single dose of either 7 (10 mg kg⁻¹, see Methods for dose calculation) or vehicle control, and BSH activity in feces was monitored over time in half-day increments (Fig. 5a). As predicted, we observed a significant decrease in BSH activity in feces 1 and 1.5 d postgavage, while at subsequent timepoints, BSH activity recovered (Fig. 5b). We also observed a significant increase in fecal conjugated bile acids and a decrease in deconjugated bile acids 1 d postgavage (Fig. 5g). The 16S recombinant DNA sequencing and plating of fecal samples from these mice indicated that compound 7 did not substantially affect gut bacterial operational taxonomic units (OTUs), biomass or community composition (Fig. 5d and Supplementary Fig. 17). Taken together, our results indicate that one dose of 7 can inhibit gut bacterial BSH activity and modulate the bile acid pool in vivo while not significantly affecting the gut bacterial community.

Proof of concept of gut restriction of 7. To further minimize the likelihood that 7 would induce off-target effects, ideally, this molecule would be confined to the gastrointestinal tract. As a proof of principle that derivatives of 7 could be restricted to the gut, we synthesized a C3-sulfated variant (gut-restricted 7 or GR-7, compound 13, Fig. 5c). Sulfation of endogenous bile acids in the liver detoxifies these compounds and increases their water solubility. As a result, sulfated bile acids largely remain in the gut². We reasoned that sulfation of 7 would also decrease its systemic absorption. We chose to modify the C3 position due to its solvent exposure (Fig. 3b). Evaluation of GR-7 in mouse feces revealed that GR-7 remains a potent pan-BSH inhibitor (Supplementary Fig. 18). Because bile acids are secreted postprandially, we hypothesized that feeding GR-7 in chow would ensure that the inhibitor was present when high concentrations of conjugated bile acids were also present. We fed C57BL/6 mice with either powdered chow containing 0.09% GR-7 (w/w) for 1 d or powdered chow alone (Fig. 5f). We observed significant inhibition of the BSH activity in the feces of inhibitor-treated mice 8 h postdiet change (Fig. 5g). We detected GR-7 in feces collected at 8 h, demonstrating that the inhibitor was being excreted at a rate consistent with mouse colonic transit time⁴. We detected 20 picomol mg⁻¹ wet mass (~20 μM) of this compound in cecal contents (mean value, Fig. 5b). This concentration was effective at BSH inhibition in the mouse feces assay and lower than the toxicity threshold of 100 μM for 7 (Supplementary Figs. 13 and 18). Moreover, GR-7 (60 μM) did not affect epithelial barrier integrity of
Caco-2 cells, suggesting that this compound is relatively nontoxic (Supplementary Fig. 14). GR-7 also did not affect microbial biomass (Supplementary Fig. 18). We did not detect any GR-7 in the serum and liver of inhibitor-treated mice (Fig. 5h). Collectively, these results provide proof of concept that 7 can be chemically modified to minimize absorption, and when fed in chow, a gut-restricted 7 derivative can inhibit BSH activity.

Discussion

To uncover the effects of bacterial metabolites on host health, tools are needed that control the levels of these compounds in conventional animals. In this work, we report the development of such a chemical tool, a potent, selective, pan-inhibitor of gut bacterial BSHs. We identified a lead inhibitor, GR-7, that effectively inhibits deconjugation in vitro and in vivo, and does not significantly affect the viability of gut bacteria.

Covalent inhibitors display several advantages compared to reversible compounds, and these benefits could be particularly advantageous in the context of BSH inhibition. First, covalent inhibitors demonstrate high potencies even in the presence of reversible compounds, and these benefits could be particularly advantageous in the context of BSH inhibition. First, covalent inhibitors demonstrate high potencies even in the presence of high concentrations of competing endogenous substrates, in this case, conjugated bile acids in the gut. Second, the duration of...
inhibition is dependent on protein resynthesis, making rapidly cleared compounds more acceptable and leading to lower systemic inhibitor exposure and fewer off-target effects\(^ \text{65} \). Indeed, we observed significant amounts of GR-7 in feces in 8 h and undetectable levels of this molecule in circulation, suggesting that GR-7 is efficiently eliminated from the mouse gut at approximately the same rate as gastrointestinal transit\(^ \text{64} \). Further studies that determine the rate of BSH turnover and protein resynthesis will aid in the establishment of optimal dosing strategies for BSH inhibitors. Third, targeting the active site cysteine residue with an irreversibly binder has allowed us to develop a pan-inhibitor of BSHs. While in mammalian cells, the cross-reactivity of covalent inhibitors with other proteases has proved to be an impediment for the development of selective inhibitors\(^ \text{66,61} \), in this case, the conservation of the catalytic cysteine residue in BSHs across gut bacterial phyla has proved to be an asset.

Despite the potential benefits of covalent inhibitors, it is imperative to understand the target engagement and off-target interactions of all new covalent probes\(^ \text{66} \). To this end, we synthesized a ‘clickable’ version of our lead inhibitor, 7-N3. By incubating this probe with bacterial and mammalian intestinal cells, we showed that 7 displays on-target selectivity and limited off-target activity. In growing cultures of\(^ \text{B. adolescentis}, 7-N3\), labeled only BSH to an appreciable extent. Likewise, 7-N3 did not appreciably label any proteins in intestinal NCI-H716 cells. In addition, the proof-of-principle development of GR-7 demonstrates that it is possible to confine a potent BSH inhibitor to the gastrointestinal tract.

Nonetheless, it is possible that in the long-term, a noncovalent inhibitor of BSHs may prove to be the most effective tool for in vivo use. While covalent inhibition is the most effective strategy when complete inactivation of a protein target is required\(^ \text{41} \), it is possible that long-term treatment with a covalent BSH inhibitor could result in the emergence of resistant bacterial strains in the microbiome community\(^ \text{39} \). In this case, a reversible inhibitor that results in partial BSH inhibition and thereby avoids the development of resistance mutations might be preferable.

Despite the potential drawbacks of covalent BSH inhibitors, our results suggest that 7 or derivatives thereof can be used as tools to study the biological roles of primary and secondary bile acids in conventional animals, including both wild-type and knock-out mouse strains. These investigations would broaden our understanding of how bile acids affect host immune and metabolic systems and reveal how these metabolites affect the composition and biogeography of the gut bacterial community.

In particular, BSH inhibitors could be used to better understand the effects of bile acids on host metabolism. Previous studies have reported conflicting results about how altering BSH activity in vivo may affect host metabolic responses\(^ \text{52,53} \). Moreover, in previous work, we demonstrated that mice colonized with a\(^ \text{B. theta}\) BSH knockout strain gained less weight and displayed a decreased respiratory exchange ratio compared to mice colonized with the\(^ \text{B. theta}\) wild-type strain\(^ \text{39} \). However, these experiments were performed in mono-colonized germ-free mice and do not reveal how limiting activity of all BSHs will affect the metabolism of conventional animals. Use of a nontoxic, pan-BSH inhibitor would enable investigation of how BSH activity directly affects metabolism in fully colonized hosts.

In addition, BSH inhibitors could enable investigation of how bile acids affect host immune response in the context of liver cancer. A recent study proposed a causal connection between the conversion of primary to secondary bile acids and a decrease in a tumor-suppressive environment in the liver mediated by the accumulation of natural killer T cells\(^ \text{62} \). Use of a BSH inhibitor in mouse models of liver cancer could further test this hypothesis by shifting the endogenous in vivo bile acid pool toward primary bile acids without significantly perturbing the enterohepatic system and the microbial community.

Looking ahead, if use of BSH inhibitors in vivo beneficially affects host physiology, these compounds could be developed as new drug candidates. In this way, development of mechanism-based, nontoxic chemical probes for bacterial enzymes could lay the groundwork for potential therapeutic agents that target the microbiota\(^ \text{13,14} \).

Online content

Any methods, additional references, Nature Research reporting summaries, source data, extended data, supplementary information, acknowledgements, peer review information; details of author contributions and competing interests; and statements of data and code availability are available at https://doi.org/10.1038/s41589-020-0467-3.

Received: 15 May 2019; Accepted: 3 January 2020; Published online: 10 February 2020

References

1. Ridlon, J. M., Kang, D.-J. & Hylemon, P. B. Bile salt biotransformations by human intestinal bacteria. \textit{J. Lipid Res.} \textbf{47}, 241–259 (2006).

2. Fiorucci, S. & Distefani, E. Bile acid-activated receptors, intestinal microbiota, and the treatment of metabolic disorders. \textit{Trends Mol. Med.} \textbf{21}, 702–714 (2015).

3. Setchell, K. D., Lawson, A. M., Tanida, N. & Sjövall, J. General methods for the analysis of metabolic profiles of bile acids and related compounds in feces. \textit{J. Lipid Res.} \textbf{24}, 1085–1100 (1983).

4. Hamilton, J. P. et al. Humanecal bile acids: concentration and spectrum. \textit{Am. J. Physiol. Gastrointest. Liver Physiol.} \textbf{293}, G256–G263 (2007).

5. Modica, S., Gadaleta, R. M. & Moschetta, A. Deciphering the nuclear bile acid receptor FXR paradigm. \textit{Nucl. Recept Signal} \textbf{8}, e605 (2010).

6. Pavazza, P., Mencarelli, A., Renga, B., Distefani, E. & Fiorucci, S. The bile acid receptor FXR is a modulator of intestinal innate immunity. \textit{J. Immunol.} \textbf{183}, 6251–6261 (2009).

7. Pols, T. W. H. et al. Lithocholic acid controls adaptive immune responses by inhibition of Th1 activation through the Vitamin D receptor. \textit{PloS One} \textbf{12}, e0176715 (2017).

8. Regley, M., Hill, C. & Gahan, C. G. M. Bile salt hydrolase activity in probiotics. \textit{Appl. Environ. Microbiol.} \textbf{72}, 1729–1738 (2006).

9. Chiang, Y. J. Recent advances in understanding bile acid homeostasis. \textit{F1000Res} \textbf{6}, 2029 (2017).

10. Song, Z. et al. Taxonomic profiling and populational patterns of bacterial bile salt hydrolase (BSH) genes based on worldwide human gut microbiome. \textit{Microbiome} \textbf{7}, 9 (2019).

11. Strewel, J. M. A perspective on the kinetics of covalent and irreversible inhibition. \textit{SLAS Discos} \textbf{2}, 3–20 (2017).

12. Roberts, A. B. et al. Development of a gut microbe-targeted nonlethal therapeutic to inhibit tumor-associated potential. \textit{Nat. Med.} \textbf{24}, 1407–1417 (2018).

13. Rossocha, M. et al. Conjugated bile acid hydrolase is a tetrameric N-terminal thiol hydrolase with specific recognition of its cholyl but not of its tauroyl product. \textit{Biochem.} \textbf{44}, 5739–5748 (2005).

14. Huijgevaert, S. M. & Hofmann, A. F. Influence of the amino acid moiety on deconjugation of bile acid amides by cholyglycine hydrolase or human fecal cultures. \textit{J. Lipid Res.} \textbf{27}, 742–752 (1986).

15. Kawamoto, K., Horibe, I. & Uchida, K. Purification and characterization of a new hydrolase for conjugated bile acids, chenodeoxycholyltaurine hydrolase, from \textit{Bacteroides vulgaris}. \textit{J. Biochem.} \textbf{106}, 1049–1053 (1989).

16. Yao, L. et al. A selective gut bacterial bile salt hydrolase alters host metabolism. \textit{eLife} \textbf{7}, 675 (2018).

17. Liu, Q. et al. Developing irreversible inhibitors of the protein kinase cysteine. \textit{Chem. Biol.} \textbf{20}, 146–159 (2013).

18. Wilson, A. J., Kerns, J. K., Callahan, J. F., & Moody, C. J. Keep calm, and carry on covalently. \textit{J. Medicinal Chem.} \textbf{56}, 7463–7476 (2013).

19. Serafimova, I. M. et al. Reversible targeting of noncatalytic cysteines with chemically tuned electrophiles. \textit{Nat. Chem. Biol.} \textbf{8}, 471–476 (2012).

20. Henise, J. C. & Taunton, J. Irreversible Nek2 kinase inhibitors with cellular activity. \textit{J. Med. Chem.} \textbf{54}, 4133–4146 (2011).

21. Xie, T. et al. Pharmacological targeting of the pseudokinase H3. \textit{Nat. Chem. Biol.} \textbf{10}, 1006–1012 (2014).

22. Quintás-Cardama, A., Kastarian, H., Cortes, J. & Verstovsek, S. Janus kinase inhibitors for the treatment of myeloproliferative neoplasias and beyond. \textit{Nat. Rev. Drug Discov.} \textbf{10}, 127–140 (2011).

23. Cohen, M. S., Zhang, C., Shokat, K. M. & Taunton, J. Structural bioinformatics-based design of selective, irreversible kinase inhibitors. \textit{Science} \textbf{308}, 1318–1321 (2005).

24. Angliker, H., Wikström, P., Rauher, P. & Shaw, E. The synthesis of lysylfluoromethanes and their properties as inhibitors of trypsin, plasmin and cathespin B. \textit{Biochem. J.} \textbf{241}, 871–875 (1987).
25. Miller, R. M. & Taunton, J. Targeting protein kinases with selective and semipromiscuous covalent inhibitors. *Meth. Enzymol.* **548**, 93–116 (2014).

26. Coleman, J. P. & Hudson, L. L. Cloning and characterization of a conjugated bile acid hydrolase gene from *Clostridium perfringens*. *Appl. Environ. Microbiol.* **61**, 2514–2520 (1995).

27. Tanaka, H., Hashiba, H., Kok, J. & Mierau, I. Bile salt hydrolase of *Bifidobacterium longum*: biochemical and genetic characterization. *Appl. Environ. Microbiol.* **66**, 2502–2512 (2000).

28. Wang, Z. et al. Identification and characterization of a bile salt hydrolase from *Lactobacillus salivarius* for development of novel alternatives to antibiotic growth promoters. *Appl. Environ. Microbiol.* **78**, 8795–8802 (2012).

29. Stellwag, E. J. & Hylemon, P. B. Purification and characterization of bile salt hydrolase from *Bacteroides fragilis* subsp. fragilis. *Biochimica et. Biophysica Acta–Enzymol.* **452**, 165–176 (1976).

30. Sayin, S. I. et al. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. *Cell Metab.* **17**, 225–235 (2013).

31. Hofmann, A. F. The function of bile salts in fat absorption. The solvent properties of dilute micellar solutions of conjugated bile acids. *Biochem. J.* **89**, 57–68 (1963).

32. Ferruzza, S., Rossi, C., Scarino, M. L. & Sambuy, Y. A protocol for differentiation of human intestinal Caco-2 cells in asymmetric serum-containing medium. *Toxicol. Vitr.* **26**, 1252–1255 (2012).

33. Lanning, B. R. et al. A road map to evaluate the proteome-wide selectivity of covalent kinase inhibitors. *Nat. Chem. Biol.* **10**, 760–767 (2014).

34. Parasar, B. et al. Chemoproteomic profiling of gut microbiota-associated bile salt hydrolase activity. *ACS Cent. Sci.* **5**, 867–873 (2019).

35. Turk, B. Targeting proteases: successes, failures and future prospects. *Nat. Rev. Drug Discov.* **5**, 785–799 (2006).

36. Johnson, D. S., Weerapana, E. & Cravatt, B. F. Strategies for discovering and derisking covalent, irreversible enzyme inhibitors. *Future Med. Chem.* **2**, 949–964 (2010).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature America, Inc. 2020
Methods
Reagents and Chemical Synthesis. All bile acids and reagents for synthesis were commercially purchased from Steraloids Inc. and Sigma Aldrich. Stock solutions of all bile acids and inhibitors were prepared in molecular biology grade DMSO (Sigma Aldrich) at 1.0% w/v concentrations. Solvents used for preparing UPLC–MS samples were high-performance liquid chromatography grade. New biological materials reported here are available from the authors on request. 100 µM bile acid pool consisted of TCA, TβMCA, TUDCA and TDCA (25 µM each). For detailed synthetic procedures, see Supplementary Information.

Bacterial culturing. All bacterial strains were cultured at 37 °C in Cullen–Haser Gut (CHG) media (which consists of brain heart infusion media (Becto BH), BD supplemented with 1% BBL vitamin K₁, hemin solution (BD), 1% trace minerals solution (ATCC), 1% trace vitamins solution (ATCC), 5% fetal bovine serum (BFS) (HyClone), 1 g l⁻¹, cellulose, 1 g l⁻¹ maltose and 1 g l⁻¹ fructose) or BHI (Becto BH, BD, supplemented with with 5 mg l⁻¹ hemin and 2.5 µM l⁻¹ vitamin K₁. All strains were grown under anaerobic conditions in a anaerobic chamber (Coy Lab Products Airlock) with a gas mix of 5% hydrogen and 20% carbon dioxide nitrogen. Escherichia coli was grown aerobiically at 37 °C in LB medium supplemented with ampicillin to select for the pET21b plasmid.

UPLC–MS analysis. Bile acid profiling by UPLC–MS was performed using a published method. Correction factors for extraction efficiency were used and were determined by extraction of known concentrations of relevant bile acids from buffer or bacterial media and comparison to standard curves. The limits of detection for the bile acids were determined using commercially available standards/synthesized compounds solubilized in 1:1 MeOH/water and are as follows: βMCA, 0.03 picomol µl⁻¹; TβMCA, 0.01 picomol µl⁻¹; CA, 0.04 picomol µl⁻¹; TCA, 0.01 picomol µl⁻¹; UDCA, 0.04 picomol µl⁻¹; TUDCA, 0.01 picomol µl⁻¹; deoxycholic acid, 0.04 picomol µl⁻¹; TDCA, 0.05 picomol µl⁻¹; GCDCa-d₄, 0.1 picomol µl⁻¹; CDCA-d₄, 0.1 picomol µl⁻¹; 7-oxo-CA, 0.5 picomol µl⁻¹; 2,3-dihydroxy-4-oxo-CA, 0.05 picomol µl⁻¹.

Protein expression and purification. B. thetaiotaomicron rBSH. BT. 2086 (without the leader sequence) was codon-optimized for E. coli and cloned into the pET21b⁺ vector containing a C-terminal His tag (see Supplementary Table 1 for primers). The expression plasmid was then transformed into BL21(DE3) pLysS E. coli (New England Biolabs) cells under ampicillin selection. Overnight cultures grown in LB media with ampicillin (50 µg ml⁻¹) were diluted 1:1000 in fresh LB media with ampicillin and grown at 37 °C. Expression was induced at an optical density (OD₆₀₀) of 0.6–0.7 by the addition of 1 mM isopropyl-1-thio-galactopyranoside (IPTG) and further incubated at 37 °C for 2 h. The solution was acidified to pH 1 using 6 M HCl and then processed as per the method described in Inhibitor screen using rBSHs. The procedure was repeated with 8.2 mM TUDCA.

Inhibitor screen in bacteria. Bacterial cultures were diluted to OD₆₀₀ of 0.1 in 4 ml BH, containing 100 µM taurine-conjugated bile acid pool and 100 µl IPTG. These cultures were then grown anaerobiically at 37 °C. After 21 h, serial dilutions were plated on BHI⁺ agar to determine cell viability (colony forming units (CFU) ml⁻¹). Then 1 ml of the entire bacterial culture was acidified to pH 1 using 6 M HCl followed by addition of 3 ml 1 M sodium acetate and vortexed. The cultures were spun down in a centrifuge at 2,500 g for 5 min to obtain better separation. The organic layer was then removed and the aqueous layer was extracted again using 2 ml of ethyl acetate. The dried organic extracts were resuspended in 1:1 methanol:water and transferred to mass spectrometry vials and analyzed as per the method described in UPLC–MS analysis. The obtained concentrations of bile acids were used to determine percentage deconjugation.

Screen of inhibitors in conventional mouse feces. BSH activity in fecal pellets were quantified using a modified version of a published method. Fecal pellets (approximately 10–20 mg) were broken into fine particles in buffer (10% PBS, 90% sodium acetate at pH 5.2) to obtain a concentration of 1 mg ml⁻¹. Indicated concentration of inhibitors were added to the fecal slurry and the mixture was incubated at 37 °C for 30 min. Next, 100 µM glycodeoxycholic acid-d₄ (GDCA-d₄) was added to the mixture and incubated at 37 °C for 1 h. The tubes were then frozen in dry ice for 5 min and on thawing were diluted with an equal volume of methanol. The slurry was centrifuged at 12,300 g for 10 min. The supernatant was removed into a clean Eppendorf tube and centrifuged again. The supernatant was transferred to mass spectrometry vials and samples were analyzed as per the method described in UPLC–MS analysis. The concentration of product detected from these assays was reported directly.

Crystallization, data collection and structure determination. Crystals of BSH and BSH in complex with 7 were grown in 24-well format hanging drops at room temperature. BSH crystals (5.0 mg ml⁻¹) grew from microseeding with 42% tacimate 100 mM Tris pH 7.4. The B–SH complex (5.0 mg ml⁻¹) crystals grew after 5 d in 21% PEG 3350 and 100 mM X Sodium citrate tribasic dihydrate pH 5.0. Crystals were cryoprotected by supplementing the mother liquor with 10% 2-mercaptoethanol (v/v). Data collection was performed at Advanced Photon Source NE-CAT beamline 24 ID-C at 100 K using a wavelength of 0.979 Å. Diffraction images were processed and scaled using X-ray Detector Softward (XDS). To obtain phases for the apo BSH structure, molecular replacement was

NATURE CHEMICAL BIOLOGY | www.nature.com/naturechemicalbiology
performed in Phenix with Phaser using 3HBC as the search model. Iterative model building and reciprocal space refinement was performed in COOT and phenix.refine, respectively. The BSH-7 structure was phased using molecular replacement with apo BSH as a search model. Iterative model building and refinement for the BSH-7 grouped atomic B-factors and used an applied twinlaw of k = h – 1. Model quality for both structures was evaluated using composite omit density maps. In final cycles of model building, NCS restraints were removed. Final model quality was assessed using MolProbity. For 6EU, 97% of residues were in favored regions of the Ramachandran plot; 3% were in allowed regions and none were in outlier regions; for 6HUH, 89.3% of residues were in favored regions, 10.3% were in allowed regions and 0.4% were outliers. All crystallographic data processing, refinement and analysis software was compiled and supported by the SBGrid Consortium. Data acquisition and refinement statistics are presented in Supplementary Table 3. Figures were prepared using PYMOL (Schrödinger).

Mass spectrometry analysis for identifying labeled residue on BSH. BSH protein was incubated with DMSO or a tenfold molar excess of inhibitor for 2 h at room temperature. Reactions were then analyzed by LC–MS using a Shimadzu LC and autosampler system (Shimadzu) interfaced to an LTQ ion trap mass spectrometer (ThermoFisher Scientific). To determine the site of modification, compound 7-modified protein was analyzed as described above, except that the LC system was interfaced to an Orbitrap Lumos Mass Spectrometer (ThermoFisher Scientific). The mass spectrometer was programmed to perform continuous cycles consisting of one mass spectrometry scan (m/z 200–2,000, proteolytic mode, electron multiplier detection) followed by electron transfer dissociation–MS/MS (ETD–MS/MS) scans targeting the +41 charge state precursor of compound 7 modified protein (ETD reagent, target 200 ms, image current detection at 60 K resolution, target value, 2E6, ETD reaction time, 100 or 200 ms). Ion assignments were performed using mzStudio software.

Effect of 7 on FXR. LanthaScreen TR-FRET Coactivator Assay (Invitrogen) was used to test the effect of 7 on FXR according to the manufacturer’s instructions. Known FXR agonist GW40646 (Sigma, G5172) was used as a positive control (agonism assay) or added at its half-maximal effective concentration (EC50) (50.3 nM, measured in this assay) (antagonism assay). Following 1 h incubation at room temperature, the 520/495 TR-FRET ratio was measured with a PerkinElmer Envision Fluorescent plate reader using the following filter set: excitation 340 nm, emission 495 nm, and emission 520 nm. A 100 µs delay followed by a 200 µs integration time was used to collect the time-resolved signal.

Cell culture. Caco-2 cells and NCI-H716 cells were obtained from American Type Culture Collection. Caco-2 cells were maintained in Minimum Essential Medium (MEM) supplemented with GlutaMAX and Earle’s Salts, while NCI-H716 cells were maintained in Roswell Park Memorial Institute (RPMI) medium (Gibco, Life Technologies). All cell culture media were supplemented with 10% FBS, 100 units per ml penicillin and 100 µg/ml streptomycin (Genc1one). Cells were grown in FBS-and antibiotic-supplemented ‘complete’ media at 37°C in an atmosphere of 5% CO2.

Plasmids and transient transfections. For luciferase reporter assays, vectors expressing human reporter constructs were used. The pGL4.29[luc2P/CRE/Plasmids and transient transfections.](HMS). Fluorescence reading was normalized to the DMSO control. Luciferase reporter assay. Luminescence was measured using the Dual-Luciferase Reporter Assay System (Promega Corporation) according to the manufacturer’s instructions. Cells were washed gently with PBS and lysed in PLB from the kit. Luminescence was measured using a SpectraMax M5 plate reader (Molecular Devices) at the ICBB-Longwood Screening Facility at HMS. Luminescence was normalized to Renilla luciferase activity and percentage relative luminescence was calculated compared to DMSO control. Cell viability assay. Caco-2 and NCI-H716 cell lines were treated with indicated compounds diluted in DMSO in complete MEM and RPMI media, respectively. The concentration of DMSO was kept constant and used as a negative control. Cells were incubated with compound overnight at 37°C in an atmosphere of 5% CO2. The next day, cells were treated with 0.25% trypsin in HBSS (Genc1one) for 10 min at 37°C. Cell viability was measured in Countess II automated cell counter (Invitrogen). Percentage relative viability was calculated compared to DMSO control.

Epithelial permeability assay. Undifferentiated Caco-2 cells were seeded in 24-well plate transwells (0.4 µm pore size, Costar) at 200,000 cells per transwell. Media was changed on days 4, 8, 12, 16 and 18 to differentiate Caco-2 cells in vitro. On day 21, fully differentiated and polarized cells were used for FITC-dextran permeability assay. Briefly, 7 and GR-7 were added in PBS at indicated concentrations to the apical chamber of the transwells containing differentiated Caco-2 cells and incubated for 6 or 12 h. The apical chamber of the transwells contained a volume of 100 µl PBS with compounds or DMSO control, while the basolateral chamber contained 1 ml of fresh buffer. Diffusion from the apical to basolateral side was measured by fluorescence reading in PBS on the basolateral side of the transwell system using a SpectraMax M5 plate reader (Molecular Devices) at the ICBB-Longwood Screening Facility at Harvard Medical School (HMS). Fluorescence reading was normalized to the DMSO control.

Target validation and off-target profiling in B. adolescentis using 7-N3. Pilot studies with 7-N3 were performed using B. adolescentis (Gram-positive) and B. theta (Gram-negative). We chose to use B. adolescentis due to the stronger total fluorescent signal detected by in-gel fluorescence. B. adolescentis cultures were diluted to an OD600 of 0.1 in 1 ml fresh CHG media containing 100 µM taurine-conjugated bile acid pool. Cultures were allowed to grow anaerobically at 37°C for 21 h. Ten, 10µM 7-N3 (10 mM stock in DMSO) or 6µl DMSO (to control cultures) was then added to the cultures and incubated anaerobically at 37°C for 1 h. The cultures were centrifuged at 2,500 g at 4°C for 15 min. Then, the supernatant was removed and the concentration of proteins in the lysate was quantified by Bradford assay. The lysates were then subjected to click reaction as per Click chemistry for in-gel fluorescence imaging for fluorescence imaging and Click chemistry for MS/MS on bacterial lysate for mass spectrophotometer-based quantification and identification.

Dose-dependent labeling of BSH in B. adolescentis via competition of 7 and 7-N3. B. adolescentis cultures were diluted to an OD600 of 0.1 in 6 ml fresh CHG containing 100 µM taurine-conjugated bile acid pool. Cultures were allowed to grow anaerobically at 37°C for 21 h. Decreasing concentrations of 7 were added to different tubes and the cultures were incubated anaerobically at 37°C for 1 h. Ten, 10µM 7-N3 was then added to the cultures and incubated anaerobically at 37°C for an additional hour. The cultures were further processed as per the reported method in Target validation and off-target profiling in B. adolescentis using 7-N3, and Click chemistry for in-gel fluorescence imaging.

Off-target profiling in mammalian cells using 7-N3. The human epithelial cell line NCI-H716 was used to study interactions with mammalian proteins. Then 10µM 7-N3 (10 mM stock in DMSO) or 1 µl DMSO (for control) were added to ~8x105 cells in 1 ml DPBS (HiMedia) and incubated for 1 h. Cells were collected in 15 ml Falcon tubes and washed twice in 15 ml DPBS by centrifugation at 500g for 5 min. A third wash by centrifugation was performed in 1 ml of fresh buffer and spun down at 500g for 5 min. The supernatant was removed and protein concentration was measured by Bradford assay. The lysates were then subjected to click reaction as per Click chemistry for in-gel fluorescence imaging for in-gel fluorescence and Click chemistry for MS/MS on mammalian lysate for mass spectrophotometer-based quantification and identification.

Click chemistry for in-gel fluorescence imaging. Click reactions were performed on a 25 µl scale. Lysates (normalized to 1.5 mg/ml for both bacterial and mammalian cells) pretreated with 10 µM Compound 7-N3 were incubated with 100 µM fluor 488-alkyne (10 mM stock in DMSO), 100 µM Cy5 (5 mM stock in DMSO) and 100 µM Tris–[1-(benzyl-1H-1,2,3-triazol-4-yl)methyl]amine (5 mM stock in 4:1 rExOH/0.05 M) for 1 h at 37°C in the dark. Then, 10 µl of 2x Laemmli buffer (containing 5% β-mercaptoethanol) was added to the reaction and the tubes were heated at 95°C for 5 min. The protein samples were then reduced by 10% SDS–PAGE. The ladder was diluted 100-fold and 10 µl was loaded. Gels were destained for 30 min using 40% methanol, 50% acetic acid, 10% water and visualized using BioRad ChemiDoc MP Imaging System. Gels were stained for 20 min in Coomassie blue and destained for 2 h before imaging.

Click chemistry for MS/MS on bacterial lysate. Click reactions were performed on 100 µl scale. Lysates (normalized to 1.3 mg/ml) pretreated with 10 µM 7-N3 were incubated with 100 µM desthiobiotin-PEG4-alkyne (10 mM stock in DMSO), click chemistry for MS/MS on bacterial lysate for mass spectrophotometer-based quantification and identification.
Click chemistry for MS/MS on mammalian lyase. Click reactions were performed on 100 μl scale. Lyases (1.5 mg·mL−1 for mammalian cells) pretreated with 10 μM 7-Ni were incubated with 100 μM desthiobiotin-PEG4-alkyne (10 μM stock in DMSO), 100 μM CuCl2 (5 mM stock in DMSO) and 100 μM Tris-[1-benzyl-1H-1,2,3-triazol-4-yl]methylamine (5 mM stock in 4:1 r-BuOH/DMSO) for 1 h at 37 °C. The samples were then processed for further analysis as per Proteomic analysis of click-tagged proteins.

Proteomic analysis of click-tagged proteins. Pulldown of desthiobiotinylated proteins and on bead digestion was performed similar to a previously described protocol42. After resuspending tryptic peptides in 5% acetonitrile with 0.1% formic acid, peptides were analyzed by nanoflow LC–MS/MS as described53. Raw data were converted to.mgf using multiplierz and searched using Mascot v.2.6.2 against forward reverse databases of either human or B. adolescentis proteins (Uniprot). Search results were downloaded from Mascot, converted to Excel, and filtered to 1% false discovery rate using multiplierz scripts. Normalized spectral abundance factors were derived as described8. Data were filtered for proteins with more than five spectral counts (averaged across biological triplicates) for 7-Ni treated samples. In separate experiments, clicked bacterial lyase proteins were subjected to avidin enrichment and washed as described above. Proteins were then eluted with LDS loading buffer and subjected to SDS–PAGE and silver staining. Indicated bands were excised, subjected to in-gel digestion and extracted peptides analyzed by nanoflow LC–MS/MS as described8.

Animal studies. C57BL/6 mice obtained from Jackson laboratories were maintained under a strict 12 h light/dark cycle and a constant temperature (21 ± 1 °C) and humidity (55–65%). All experiments were conducted on 8–9 week-old male mice.

Single gavage of 7. Based on the efficacy of 7 at 10 to 100 μM in in vitro assays, our goal concentration of 7 in vivo was ~50 μM (0.00005 M) (~10 μl volume / 1 mouse gastrointestinal tract) (1 mmol compound 7/408 mg) = 0.2 mg/mouse (~0.02 kg) = 10 mg·kg−1. Mice were maintained on a standard chow diet (LabDiet, catalog no. 5053) for the duration of the experiment. Mice were split into two groups of four mice each and were gavaged with either 200 μl of corn oil containing 5% DMSO (vehicle group) or with 200 μl of corn oil containing 7 at a concentration of 1.25 mg·ml−1 (experimental group). For the fecal pellet collection, each mouse was transferred to a temporary cardboard cage for a few minutes until it defecated.

Feeding of GR-7 in chow for 1 day. Mice were fed powdered standard chow diet (LabDiet, catalog no. 5053) for the duration of the experiment. Mice were split into two groups of ten mice each and were maintained on powdered chow (control group) or fed powdered chow containing the 7 (experimental group). Feces from these mice were collected as described above at 8 h. Mice were euthanized after 30 h of access to the powdered chow with or without GR-7 using carbon dioxide. Blood samples were collected by cardiac puncture and placed in EDTA-coated tubes on ice. The liver and cecal contents were then collected from each mouse, snap frozen in liquid nitrogen and stored at −80 °C until further analysis. The blood samples were then centrifuged at 2,500g for 15 min at 4 °C. The resulting supernatant (plasma) was collected and stored at −80 °C until analysis.

BSH activity in feces. BSH activity in fecal pellets were quantified using a modified version of a published method43. Fecal pellets (approximately 10–20 mg) were suspended in buffer (10% PBS, 90% sodium acetate at pH 5.2) containing 100 μM (GGCDCA-d4) to obtain a concentration of 20 mg·ml−1. The fecal pellets were broken into fine particles and the mixture was incubated at 37 °C for 25 min. Samples were processed and analyzed as per the method described in Screen of Bacterial culturing) and incubated at 37 °C.

Quantification of bile acids in tissues and plasma. Bile acids from tissues and plasma that were collected from mouse experiments were extracted using a previously published method44.

Determination of microbial biomass by plating. Frozen fecal pellets were used to determine colony forming units (CFU g−1). Feces were suspended in PBS buffer in an anaerobic chamber. Serial dilutions were plated on CHG agar plates (see Bacterial culturing) and incubated at 37 °C.

Isolation of fecal bacterial microbiota and 16S ribosomal RNA gene sequencing analysis. Mouse fecal microbiota DNA was isolated by using ZymoBIOMICS 96 DNA Kit (ZymoResearch). Samples were then incubated at 70 °C for 10 min and then snap frozen and stored at −80 °C. Mouse fecal microbiota DNA was isolated by using ZymoBIOMICS 96 DNA Kit (ZymoResearch). Samples were then incubated at 70 °C for 10 min and then snap frozen and stored at −80 °C. DNA samples were then isolated using the Ideate protocol and analyzed using the ZymoBIOMICS 96 DNA Kit (ZymoResearch). DNA samples were then isolated using the Ideate protocol and analyzed using the ZymoBIOMICS 96 DNA Kit (ZymoResearch). DNA concentration of the aggregated library was measured by the Quant-iT dsDNA high sensitivity assay. The DNA in the library was denatured by NaOH and diluted to 7.5 pM with HT buffer provided in the Illumina kit. Next, 600 μl of the denatured and diluted library with 20% phiX (120 μl, 7.5 pM of phiX) was loaded onto the MiSeq V2 reagent cartridge (Illumina) and was sequenced with paired-end 250 bp reads using the custom primers described above. After MiSeq running, demultiplexed fastq files were generated by the Illumina MiSeq control software using default parameters and quality control was done by the pipeline at the Massachusetts Host-Microbiome Center. The resulting FASTQ sequences were then quality-filtered and analyzed by following QIIME_mothur_DADA2 (refs. 45–47). OTUs were picked with 97% sequence similarity. The phylogenetic affiliation of each OTUs were aligned to the Greengenes reference database and 99% ID.

Quantification of bacterial 16S rDNA copy number. Bacterial DNA was isolated from mouse cecal contents using AllPrep DNA/RNA/Protein Kit (QIAGEN). The 16S rDNA was then amplified using 10 μM of the following pair of primers: forward 5′-AGAGTTTTGATCCTGGCTCAG-3′, reverse 5′-CTCTGCGGTCCGTGA-3′. Amplification was performed using LightCycler 480 SYBR Green 1 Master on a QuantStudio 7 Flex Real-Time PCR system according to the provided quantitative PCR protocol. The cycle threshold of each sample was compared to a standard curve, obtained from serial dilution of B. thetaiotaomicron DNA30.

Ethics. All mouse experiments were performed under the approval of the Beth Israel Deaconess Medical Center IACUC.

Data availability
The 16S rDNA datasets analyzed in the manuscript are available through the NCBI under accession number PRJNA574158. The coordinates for both the apo and covalently inhibited forms of the BSH are deposited in the PDB and have PDB ID codes 6UFY and 6UH4, respectively. Raw mass spectrometry data were deposited at MassIVE (massive.ucsd.edu). Native mass spectrometry data files are available for download from the MassIVE archive at the University of California, San Diego (http://massive.ucsd.edu/MSV00084491). All other data generated or analyzed during this study are included in this article and its Supplementary Information files.

Code availability
No custom code or mathematical algorithms were used in this study.

References
45. Xie, C. et al. An intestinal farnesoid X receptor-ceramide signaling axis modulates hepatic gluconeothesis in mice. Diabetes 66, 613–626 (2017).
46. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).
47. Afonine, P. V. et al. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr. D. 68, 352–367 (2012).
48. Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D. 66, 12–21 (2010).
49. Morin, A. et al. Collaboration gets the most out of software. eLife 2, e01456 (2013).
50. Ficarro, S. B., Alexander, W. M. & Marto, J. A. mzStudio: a dynamic digital canvas for user-driven interrogation of mass spectrometry data. Proteomes 5, 20 (2017).
51. Verhoecx, K. et al. Caco-2 Cell Line. Impact Food Bioact. Health 175, 103–111 (2015).
52. Weerapan, E., Spears, A. E. & Cravatt, B. F. Tandem orthogonal proteolysis-activity-based protein profiling (TOP-ABPP)—a general method for mapping sites of probe modification in proteomes. Nat. Protoc. 2, 1414–1425 (2007).
53. Ficarro, S. B. et al. Improved electrospray ionization efficiency compensates for diminished chromatographic resolution and enables proteomics analysis of tyrosine signaling in embryonic stem cells. Anal. Chem. 81, 3440–3447 (2009).
54. Alexander, W. M., Ficarro, S. B., Adelmant, G. & Marto, J. A. multiplier v2.0: a Python-based ecosystem for shared access and analysis of native mass spectrometry data. *Proteomics* 17, 1700891 (2017).

55. Zybailov, B. et al. Statistical analysis of membrane proteome expression changes in *Saccharomyces cerevisiae*. *J. Proteome Res.* 5, 2339–2347 (2006).

56. Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. *Nat. Methods* 13, 581–583 (2016).

57. Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. *Nat. Methods* 7, 335–336 (2010).

58. Schloss, P. D. et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. *Appl. Environ. Microbiol.* 75, 7537–7541 (2009).

59. Weber, N. et al. Nephelio: a cloud platform for simplified, standardized and reproducible microbiome data analysis. *Bioinformatics* 34, 1411–1413 (2018).

60. Wrozesk, L. et al. Transplantation of human microbiota into conventional mice durably reshapes the gut microbiota. *Sci. Rep.* 8, 6854–6859 (2018).

Acknowledgements

This research was supported National Institutes of Health (NIH) grant nos. R35 GM128618 (to A.S.D.), R35 CA220340 (to S.C.B.), R01 CA222218 (to J.A.M.), an Innovation Award from the Center for Microbiome Informatics and Therapeutics at MIT (to A.S.D.), a grant from Harvard Digestive Diseases Center (supported by NIH grant no. 5P30DK034853-32 to A.S.D.), a Karin Grunebaum Cancer Research Foundation Faculty Research Fellowship (to A.S.D.), a John and Virginia Kaneb Fellowship (to A.S.D.), a Quadrangle Fund for the Advancement and Seeding of Translational Research at Harvard Medical School (Q-FASTR) grant (to A.S.D.) and an HMS Deans Innovation Grant in the Basic and Social Sciences (to A.S.D.). L.Y. and S.N.C. acknowledge a Wellington Postdoctoral Fellowship and an American Heart Association Postdoctoral Fellowship, respectively. M.D.M. acknowledges an NSF Graduate Research Fellowship (no. DGE1745303). D.R. is supported by the Early postdoc mobility fellowship from the Swiss National Science Foundation. We thank N. Gray, D. Scott, J. M. Hatcher, J. Wang, J. Clardy, M. Henke and members of the Clardy group for helpful discussions. We thank the ICCB-Longwood Screening Facility for use of their fluorescent plate reader.

Author contributions

A.A.A. and A.S.D. conceived the project and designed the experiments. A.A.A. performed most of the experiments. T.C.M.S. and S.C.B. performed the crystallization studies. S.B.F. and J.A.M. performed the mass spectrometry studies. D.R. and A.S.B. performed the in vivo experiments and provided fresh mouse feces. M.D.M. purified and performed experiments with *B. longum* BSH and performed kinetic studies with *B. theta* BSH. L.Y. performed the in vitro FXR assays and provided help with experiments. S.N.C. performed the cell culture assays. S.N.F. assisted with bacterial culture experiments. A.A.A. and A.S.D. wrote the manuscript. All authors edited and contributed to the critical review of the manuscript.

Competing interests

A.S.D. is an ad hoc consultant for Kintai Therapeutics and HP Hood. S.C.B. serves on the SAB for Erasca, Inc., is a consultant on unrelated projects for Ayala Pharmaceutical and IFM Therapeutics and receives funding from Novartis for an unrelated project. J.A.M. serves on the SAB of 908 Devices (Boston, MA). The other authors declare that no competing interests exist.

Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/s41589-020-0467-3.

Correspondence and requests for materials should be addressed to A.S.D.

Reprints and permissions information is available at www.nature.com/reprints.
Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

☐ X The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
☐ X A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
☐ X The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.
☐ X A description of all covariates tested
☐ X A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
☐ X A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
☐ X For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted Give P values as exact values whenever possible.
☐ X For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
☐ X For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
☐ X Estimates of effect sizes (e.g. Cohen’s d, Pearson’s r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection
As described in the Online Methods, for 16sRNA sequencing, demultiplexed fastq files were generated by the Illumina MiSeq control software using default parameters and quality control was done by the pipeline in Massachusetts Host-Microbiome Center. For crystallography, data collection was performed at Advanced Photon Source NE-CAT beamline 24 ID-C. Details of data collection for proteomics are described in the Online Methods.

Data analysis
Statistical analysis was performed using Graph Pad Prism 8, GraphPad Software, La Jolla California USA. Crystal structure determination: Diffraction images were processed and scaled using XDS. Molecular replacement was performed in Phenix with Phaser. Iterative model building and reciprocal space refinement was performed in COOT and phenix.refine, respectively. Final model quality was assessed using MolProbity. All crystallographic data processing, refinement, and analysis software was compiled and supported by the SBGrid Consortium. Figures were prepared using Pymol.
Mass spectrometry analysis of BSH: Ion assignments were performed using mzStudio. Proteomic analyses: Raw data were converted to .mgf using multiplier and searched using Mascot 2.6.2 16sRNA gene sequencing: Demultiplexed fastq files were generated by the Illumina MiSeq control software. Raw fastq sequences were quality-filtered and analyzed by following QIME_mothur_DADA2. The phylogenetic affiliation of each OTU was aligned to the Greengenes reference database.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A list of figures that have associated raw data
- A description of any restrictions on data availability

16S rRNA datasets analyzed in the manuscript are available through NCBI under accession number PRJNA574158. The coordinates for both the apo and covalently inhibited forms of the BSH are deposited in the PDB and have PDB ID codes 6VQF and 6VQH, respectively. Native mass spectrometry data files are available for download from the MassIVE archive at UCSF (ftp://massive.ucsd.edu/MSV000084491/). All other data generated or analyzed during this study are included in this article and its supplementary information files.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

- Life sciences
- Behavioural & social sciences
- Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size
No statistical methods were used to predetermine sample size. Sample sizes were determined by magnitude and consistency of measurable differences. Sample sizes for in vitro and in vivo experiments are fully disclosed in the manuscript. In vitro and in vivo experiments were performed in at least 3 biological replicates to sufficiently detect statistical significance, and the number of technical replicates for in vitro studies were determined according to manufacturers instructions for data acquisitions.

Data exclusions
No data were excluded from the analyses.

Replication
In vitro studies were repeated in at least two independent experiments with similar results with the exception of the NCI-H716 cell viability experiment, which was performed once, in biological triplicate.
In vivo BSH inhibitory activities of compounds 7 and GR-7 (compound 13) were each confirmed in two independent mouse experiments with similar results.
All in vitro and in vivo experiments were performed with biological and technical replicates which are fully disclosed in the manuscript.

Randomization
Mice were randomized prior to treatment with vehicle control or compound.

Blinding
Investigators were not blinded to group allocation during data collection and/or analysis. Blinding was not relevant to this study as all values were determined by methods that are independent of operator bias.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems

n/a	Involved in the study
☒	Antibodies
☒	Eukaryotic cell lines
☒	Palaeontology
☒	Animals and other organisms
☒	Human research participants
☒	Clinical data

Methods

n/a	Involved in the study
☒	ChIP-seq
☒	Flow cytometry
☒	MRI-based neuroimaging

Eukaryotic cell lines

Policy information about cell lines

Cell line source(s)

Intestinally-derived human Caco-2 and NCI-H716 cell lines were obtained from ATCC.
Animals and other organisms

Policy information about studies involving animals, ARRIVE guidelines recommended for reporting animal research.

Category	Details
Laboratory animals	Male C57Bl/6 mice were obtained from Jackson laboratories. All experiments were conducted on 8–9 week old male mice.
Wild animals	This study did not involve wild animals.
Field-collected samples	This study did not involve samples collected from the field.
Ethics oversight	All protocols were improved by the Beth Israel Deaconess Medical Center Institutional Animal Care and Use Committee. Animals were cared for according to guidelines set forth by the American Association for Laboratory Animal Science.

Note that full information on the approval of the study protocol must also be provided in the manuscript.