Olfactory regulation by dopamine and DRD2 receptor in the nose

Hai-Qian Zhoua,b,1, Liu-Jing Zhuangb,1, Hong-Qiang Baoa,d,1, Sheng-Ju Licia, Feng-Yan Dai, Ping Wangb, Qian LIC,d,2, and Dong-Min Yinb,a,2

Edited by Matt Wachowiak, University of Utah; received October 9, 2021; accepted January 31, 2022 by Editorial Board Member John R. Carlson

Olfactory behavior is important for animal survival, and olfactory dysfunction is a common feature of several diseases. Despite the identification of neural circuits and circulating hormones in olfactory regulation, the peripheral targets for olfactory modulation remain relatively unexplored. In analyzing the single-cell RNA sequencing data from mouse and human olfactory mucosa (OM), we found that the mature olfactory sensory neurons (OSNs) express high levels of dopamine D2 receptor (Drd2) rather than other dopamine receptor subtypes. The DRD2 receptor is expressed in the cilia and somata of mature OSNs, while nasal dopamine is mainly released from the sympathetic nerve terminals, which innervate the mouse OM. Intriguingly, genetic ablation of Drd2 in mature OSNs or intranasal application with DRD2 antagonist significantly increased the OSN response to odors and enhanced the olfactory sensitivity in mice. Mechanistic studies indicated that dopamine, acting through DRD2 receptor, could inhibit odor-induced cAMP signaling of olfactory receptors. Interestingly, the local dopamine synthesis in mouse OM is down-regulated during starvation, which leads to hunger-induced olfactory enhancement. Moreover, pharmacological inhibition of local dopamine synthesis in mouse OM is sufficient to enhance olfactory abilities. Altogether, these results reveal nasal dopamine and DRD2 receptor as the potential peripheral targets for olfactory modulation.

Significance

Despite the identification of neural circuits and circulating hormones in olfactory regulation, the peripheral targets for olfactory modulation remain relatively unexplored. Here we show that dopamine D2 receptor (DRD2) is expressed in the cilia and somata of mature olfactory sensory neurons (OSNs), while nasal dopamine (DA) is mainly released from the sympathetic nerve terminals, which innervate the mouse olfactory mucosa (OM). We further demonstrate that DA-DRD2 signaling in the nose plays important roles in regulating olfactory function using genetic and pharmacological approaches. Moreover, the local DA synthesis in mouse OM is reduced during hunger, which contributes to starvation-induced olfactory enhancement. Altogether, we demonstrate that nasal DA and DRD2 receptor can serve as the potential peripheral targets for olfactory modulation.
Expression of DRD2 in the Cilia and Somata of Mature OSNs from Mice. Analysis of our previous single-cell RNA sequencing data from mouse OM revealed that the mature OSNs expressed Drd2 receptor, but not other DA receptor subtypes (34). To further investigate the cellular expression pattern of Drd2 in mouse OM, we generated Drd2-reporter mice (35) that express tdTomato in Drd2-positive cells (Fig. 1A and SI Appendix, Figs. S1 A and B). Most cells expressing tdTomato also express OMP (olfactory marker protein, a typical marker for mature OSNs, OMP+/Drd2+ = 72.34 ± 3.123%, n = 12 slices from three mice), which indicates that most Drd2-positive cells in mouse OM are mature OSNs (Fig. 1B and SI Appendix, Fig. S1C). On the other hand, the majority of mature OSNs in mouse OM express Drd2 (Drd2+/OMP+ = 72.34 ± 3.123%, n = 12 slices from three mice) (Fig. 1B and SI Appendix, Fig. S1C). The distinct OSN subpopulations expressing TAAR5, a trace amine-associated receptor or MOR42-3/Olfr544, an odorant receptor, are also Drd2-positive (Fig. 1C and D and SI Appendix, Fig. S1 D and E). By contrast, we did not observe Drd1 expression in the mature OSNs from Drd1-reporter mice (SI Appendix, Fig. S1F), which is consistent with the previous study (36).

To explore the subcellular localization of DRD2 proteins in mouse OM, we performed immunostaining of DRD2 in the OM from adult wild-type (WT) and Drd2−/− mice. As shown in Fig. 1E, DRD2 is expressed in the somata but not the nucleus of mature OSNs. In addition, DRD2 is partially colocalized with acetylated-tubulin (Ac-tubulin, a protein marker for cilia), which suggests that DRD2 is trafficked into the cilia of mature OSNs. Note that the immunofluorescent signal of DRD2 is absent in the OM from Drd2−/− mice (37) (Fig. 1E), validating the specificity of the DRD2 antibody for immunostaining (38). Intriguingly, the single-cell RNA sequencing of human OM also indicated that mature OSNs express Drd2 rather than other DA receptor subtypes (39). Moreover, the expression levels of Drd2 in other types of cells are much lower than those in the mature OSNs from human OM (Fig. 1A). Altogether, these results indicate that the expression of Drd2 in mature OSNs is conserved between mouse and human.

Enhanced Olfactory Sensitivity by Genetic Ablation of Drd2 in Mature OSNs. Since DRD2 is a Gαi/o-coupled receptor (22), we speculate that genetic deletion of Drd2 in mature OSNs would lead to the disinhibition of mature OSNs and increase of olfactory abilities. To test this hypothesis, we generated Drd2 conditional knockout mice by crossing OmpCre/+; Drd2fl/fl mice were named Omp-Drd2−/− mice, where Drd2 is selectively deleted in mature OSNs (Fig. 2A). To avoid the potential effects of Cre insertion in the Omp gene, the OmpCre/+ mice were used as controls in the following experiments. The DRD2 proteins were significantly reduced in the OM but not in the OB from Omp-Drd2−/− mice, compared with controls (Fig. 2 B and C). Genetic ablation of Drd2 in mature OSNs did not alter the number of mature OSNs or their projections to the OB (SI Appendix, Fig. S2). The body weight and locomotion were similar between control and Omp-Drd2−/− mice (SI Appendix, Fig. S3 A–D). The time to find the visible food was also similar between control and Omp-Drd2−/− mice (SI Appendix, Fig. S3 E and F).

Fig. 1. Expression of DRD2 in the cilia and somata of mature OSNs in mice. (A) Drd2 reporter mice revealed expression of Drd2 in mature OSNs. The Drd2 reporter mice (Drd2-Cre; LSL-tdTomato+/-) were generated by crossing Drd2-Cre mice with loxp-stop-loxp-tdTomato (LSL-tdTomato+/-) reporter mice. The OM slices from Drd2 reporter mice were immunostained with antibody against OMP, a marker for mature OSNs. NC, nasal cavity; OE, olfactory epithelium; LP, lamina propria. (Scale bar, 20 μm.) (B) Enlarged images form the rectangle in A. The solid arrow indicates a mature OSN expressing Drd2. The empty arrow indicates a mature OSN not expressing Drd2. (Scale bar, 5 μm.) (C) Drd2-positive OSN expresses TAAR5. (Scale bar, 20 μm.) (D) Drd2-positive OSN also expresses MOR42-3. (Scale bar, 20 μm.) (E) Immunostaining of DRD2 and acetylated-tubulin (Ac-tubulin) in the OM from WT (top) and Drd2−/− (bottom) mice. Four independent experiments were repeated to get similar results. (Scale bar, 20 μm.) (F) Gene expression levels (TPM, transcripts per million) of Drd2 receptor in the major types of cells from human OM. The x axis indicates the value of log2 (1+ TPM). The y axis indicates different types of cells in the OM. The numbers of each type of cells are indicated in the bracket.
Next, the Omp-Drd2^{−/−} mice and their controls were subjected to the buried food finding test that is commonly used to study olfactory abilities (42) (Fig. 2D). The time to find the buried food was significantly less in Omp-Drd2^{−/−} mice compared with their controls (Fig. 2E), which suggests that genetic ablation of Drd2 in mature OSNs may increase olfactory abilities. To solidify this notion, we performed an olfactory sensitivity test in Omp-Drd2^{−/−} mice and their controls (Fig. 2F). Here we analyzed the olfactory sensitivity to trimethylamine (TMA) and nonanedioic acid (NA), the ligands for TAAR5 and nonanedioic acid (NA), the ligands for TAAR5 and MOR42-3, respectively (43, 44). Recall that the mature OSNs expressing TAAR5 or MOR42-3 also express Drd2 and MOR42-3, respectively (43, 44). Recall that the mature OSNs expressing TAAR5 or MOR42-3 also express Drd2 and MOR42-3, respectively (43, 44). Next, we investigated whether acute inhibition of DRD2 in the nose could affect olfactory abilities in WT mice. To this end, we treated mice with eticlopride (Eti, 0.1 mg/kg) (45), a DRD2 antagonist or vehicle through intranasal delivery 3 min before the buried food finding test (Fig. 3A). Intriguingly, intranasal application with Eti significantly reduced the time to find the buried food in WT mice (Fig. 3B). By contrast, intranasal delivery of Eti did not affect the time to find the buried food in Omp-Drd2^{−/−} mice (SI Appendix, Fig. S4 A and B), which indicates that intranasal application with Eti regulates olfactory ability mainly through DRD2 in the mature OSNs. Intranasal delivery of Eti did not affect the locomotion or the time to find the visible food in WT mice (SI Appendix, Fig. S4 C-G), excluding any nonolfactory effects. Altogether, these results suggest that acute inhibition of DRD2 in the nose can enhance the olfactory abilities in mice.

Fig. 2. Genetic ablation of Drd2 from mature OSNs increases olfactory abilities. (A) The breeding strategy to generate Omp-Drd2^{−/−} mice. (B) Reduction of DRD2 protein levels in the OM from Omp-Drd2^{−/−} mice. Top, representative blots. The homogenates of OM from control (Omp^{Cre+/+}) and Omp-Drd2^{−/−} mice were subjected to Western blot and probed with the indicated antibodies. Bottom, quantification of DRD2/GAPDH. The data were normalized to the control group. ***P < 0.0001, two-sided t test, n = 4 mice per group. Data are presented as mean values ± SEM. (C) No change of DRD2 protein levels in the OB from Omp-Drd2^{−/−} mice. Top, representative blots. The homogenates of OB from control (Omp^{Cre+/+}) and Omp-Drd2^{−/−} mice were subjected to Western blot and probed with the indicated antibodies. Bottom, quantification of DRD2/GAPDH. The data are normalized to the control group. NS, not significant (P = 0.5608), two-sided t test, n = 4 mice per group. Data are presented as mean values ± SEM. (D) Experimental design. The control (Omp^{Cre+/+}) and Omp-Drd2^{−/−} mice that had normal access to food were subjected to the buried food finding test. (E) The Omp-Drd2^{−/−} mice showed better olfactory abilities than controls. The time to find the buried food was quantified. ***P < 0.0001, two-sided t test, n = 12 mice per group. (F) Experimental design. The control (Omp^{Cre+/+}) and Omp-Drd2^{−/−} mice were habituated in the testing cages for 15 min and then tested for the olfactory sensitivity to TMA and NA. (G and H) Olfactory sensitivity to TMA (G) and NA (H) is increased in Omp-Drd2^{−/−} mice, compared with controls. Shown are the sniffing curves of two groups of mice. The x axis represents different concentrations of TMA or NA. The y axis indicates the latency to find the odor source within 5 min. n = 12 mice per group. (I and J) Latency to find TMA (I) and NA (J) is shortened in Omp-Drd2^{−/−} mice, compared with controls. Shown are the times taken to find the odor source TMA (I) and NA (J) in two groups of mice. Each point depicts a single individual. Mice that failed to find the odorants in 5 min were plotted at 5. The x axis represents different concentrations of TMA or NA. The y axis indicates the latency to find the odor source, P < 0.0001 for both TMA and NA, the Scherier-Ray-Hare test, n = 12 mice per group.

Increase of Olfactory Abilities by Intranasal Inhibition of DRD2. Next, we investigated whether acute inhibition of DRD2 in the nose could affect olfactory abilities in WT mice. To this end, we treated mice with eticlopride (Eti, 0.1 mg/kg) (45), a DRD2 antagonist or vehicle through intranasal delivery 3 min before the buried food finding test (Fig. 3A). Intriguingly, intranasal application with Eti significantly reduced the time to find the buried food in WT mice (Fig. 3B). By contrast, intranasal delivery of Eti did not affect the time to find the buried food in Omp-Drd2^{−/−} mice (SI Appendix, Fig. S4 A and B), which indicates that intranasal application with Eti regulates olfactory ability mainly through DRD2 in the mature OSNs. Intranasal delivery of Eti did not affect the locomotion or the time to find the visible food in WT mice (SI Appendix, Fig. S4 C-G), excluding any nonolfactory effects. Altogether, these results suggest that acute inhibition of DRD2 in the nose can enhance the olfactory abilities in mice.
Elevation of Olfactory Response to Odors by Inhibition of DRD2 in the OM. The aforementioned data demonstrate that genetic deletion or intranasal inhibition of DRD2 can enhance olfactory sensitivity to TMA and NA. Next, we addressed whether inhibition of DRD2 in the OM could increase the OSN responses to TMA or NA. To study whether DA-DRD2 can inhibit the cAMP signaling downstream of olfactory receptors (48) in Hana3A cells transiently expressing DRD2 and TAAR5 or MOR42-3, we performed a luciferase assay to analyze CREB-induced gene transcription.

Attenuation of Olfactory Receptor Signaling by DA-DRD2. Since DRD2 is a G_{ai/o}-coupled receptor (22) while most olfactory receptors are G_{olf/G_{ai}}-linked receptors (46), we speculate that the DA-DRD2 pathway can inhibit the cAMP signaling of olfactory receptors. The increase of cAMP caused by odorant binding to olfactory receptors leads to activation of protein kinase A (PKA) and phosphorylation of cAMP response element binding (CREB) protein, which promotes gene transcription (47). To study whether DA-DRD2 can inhibit the cAMP signaling pathway of TAAR5 and MOR42-3, we performed a luciferase assay to analyze CREB-induced gene transcription downstream of olfactory receptors in Hana3A cells transiently expressing DRD2 and TAAR5 or MOR42-3. The signaling curve of TAAR5 stimulated by different concentrations of TMA shifted rightward after DA treatment (Fig. 4B). These results suggest that DA-DRD2 can attenuate TMA-TAAR5 signaling (half-maximum effective concentration \([EC_{50}] = 6.69 \pm 1.48 \mu M\) with Veh, \(EC_{50}\) of TAAR5 = 21.06 \pm 5.93 \mu M with 10 \mu M DA, \(P < 0.0001\), two-sided Hare test, \(n = 12\) mice per group). The inhibitory effects of DA on TMA-TAAR5 signaling were specific because DA could not affect TMA-TAAR5 signaling in the absence of DRD2 (Fig. 4C). Moreover, DA-DRD2 inhibited TMA-TAAR5 signaling in a dose-dependent manner (IC_{50} of DA = 0.022 \pm 0.01 \mu M, \(n = 4\) (Fig. 4C). Likewise, DA-DRD2 reduced NA-MOR42-3 signaling (EC_{50} of NA = 29.35 \pm 12.78 \mu M with vehicle [Veh], EC_{50} of TMA = 6.69 \pm 1.48 \mu M with Veh, EC_{50}\) of TMA = 21.06 \pm 5.93 \mu M with 10 \mu M DA, \(P < 0.0001\), two-sided Hare test, \(n = 12\) mice per group).
NA = 87.92 ± 17.31 μM with 10 μM DA, P < 0.0001, two-way ANOVA, n = 4 in a dose-dependent way (IC50 of DA = 0.052 ± 0.05 μM, n = 3) (Fig. 4 D and E). Collectively, these results demonstrate that DA-DRD2 can inhibit TMA- and NA-mediated olfactory receptor signaling.

Reduction of Local DA Synthesis in Mouse OM during Starvation.

We next sought to address the physiological relevance of our finding that the DA-DRD2 pathway in mouse OM had a tonic inhibition on olfactory abilities. Starvation can enhance olfactory abilities across species, which is beneficial for food seeking and animal survival (4, 6). To determine whether DA levels in mouse OM change after starvation, we collected the OM from WT fed mice with normal access to food and WT fasted mice that were deprived of food for 24 h. The high-performance liquid chromatography (HPLC)-electrochemical detection results indicated that the concentration of DA, but not other monoamines such as 5-hydroxytryptamine (5-HT) or norepinephrine (NE), was significantly reduced in the OM from fasted mice, compared with fed mice (Fig. 5 A–C and SI Appendix, Fig. S5A). The reduction of DA in mouse OM during starvation could be due to decreased DA synthesis and/or increased DA degradation. However, both DA and its metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) were reduced in the OM during starvation (Fig. 5 A and B and SI Appendix, Fig. S5B), suggesting decrease of DA synthesis in the OM from fasted mice. By contrast, the concentrations of DA and 5-HT in the OB were similar between fed and fasted mice (SI Appendix, Fig. S5C). Altogether, these results indicate that DA synthesis was reduced in the OM during starvation in mice.

We further studied how starvation led to reduction of DA synthesis in mouse OM. The protein levels of TH, the rate-limiting enzyme for DA synthesis (19), were significantly down-regulated in the OM but not in the OB during starvation (Fig. 5 D and E). The TH proteins in the OM are from the sympathetic nerve terminals (17). In contrast, TH protein levels in the SCG where the somata of the sympathetic nerve was localized did not change in fasted mice (Fig. 5 F). Altogether, these results suggest that starvation reduces the local TH protein levels in the sympathetic nerve terminals that innervate mouse OM.

The Th mRNA can be translated in the sympathetic nerve axons, which facilitates local DA synthesis (21, 49). To illustrate whether the reduced TH proteins in the OM from fasted mice results from a decrease of Th mRNA expression, we performed RT-qPCR on the mRNA extracts from mouse OM. Surprisingly, the Th mRNA levels were not significantly altered in the OM from fasted mice, compared to fed mice (Fig. 5 G and H). The ac1C modification of mRNA has recently been shown to promote translation efficiency in mammalian cells (50). To address whether starvation could affect the ac1C modification of Th

Fig. 4. DA-DRD2 inhibits cAMP signaling of TAARS and MOR42-3 in Hana3A cells. (A) Schematic diagram illustrating the principle of luciferase assay to study the cAMP signaling of olfactory receptors. Shown are the olfactory receptor signaling pathway in Hana3A cells. OR, olfactory receptor. RTP, receptor-transducing protein. PKA, protein kinase A; AC, adenylyl cyclase; CREB, cAMP response element binding protein; CRE, cAMP response element. (B) DA-DRD2 inhibited CRE-mediated transcription of TMA-TAARS signaling. Shown are the CRE luciferase curves of TMA-TAARS signaling. The x axis represents different concentrations of TMA plus vehicle or 10 μM DA. The EC50 for TAARS in control cells is 6.69 ± 1.48 μM; The EC50 for TAARS in DA-treated cells is 21.06 ± 5.39 μM; P < 0.0001, two-way ANOVA, n = 4 independent experiments. Data are represented as mean values ± SEM. (C) DA inhibited CRE-mediated transcription of TMA-TAARS signaling in Hana3A cells coexpressing DRD2 and TAARS in a dose-dependent manner. The maximum inhibitory concentration (IC50) of DA is 0.022 ± 0.01 μM, n = 4 independent experiments. Note that DA could not inhibit CRE-mediated transcription of TMA-TAARS signaling in the absence of DRD2. Data are represented as mean values ± SEM. (D) DA-DRD2 inhibited CRE-mediated transcription of NA-MOR42-3 signaling. Shown are the CRE luciferase curves of NA-MOR42-3 signaling. The x axis represents different concentrations of NA plus vehicle or 10 μM DA. The IC50 for NA-MOR42-3 signaling is 87.92 ± 17.31 μM; P < 0.0001, two-way ANOVA, n = 4 independent experiments. Note that DA could not inhibit CRE-mediated transcription of NA-MOR42-3 signaling in the absence of DRD2. Data are represented as mean values ± SEM.
mRNA in mouse OM, we performed acetylated RNA immunoprecipitation (acRIP) followed by RT-qPCR to quantitively compare the acetylated Th mRNA levels (Fig. 5G). The mRNA levels were very low when immunoprecipitated with IgG, compared with anti-ac4C antibodies (Fig. 5H), indicating the specificity of acRIP. The results showed that the ac4C-Th mRNA levels were significantly decreased in the OM from fasted mice, compared with fed mice (Fig. 5I). Altogether, these results suggest that starvation down-regulates the ac4C modification of Th mRNA and thus reduces local TH proteins and DA synthesis in mouse OM.

Requirement of Nasal DA Reduction in Starvation-Induced Olfactory Enhancement. Next, we investigated whether DA reduction in the OM was required for the enhanced olfactory abilities in fasted mice. Toward this goal, we treated the WT fasted mice with DA (8 μM in 10 μL saline) or vehicle through intranasal delivery 3 min before the buried food finding test (Fig. 6A). The DA concentration in the fasted mouse OM 3 min after intranasal delivery of DA reached 136.4 pmol/g (Fig. 6B), which is similar to the DA levels in the OM of fed mice (Fig. 5B). Strikingly, intranasal application of DA significantly increased the time taken to find the buried food in fasted mice, compared with vehicle-treated fasted mice (Fig. 6C). Furthermore, the time taken to find the buried food in DA-treated fasted mice was comparable to that in fed mice (Fig. 6C), suggesting that the DA pathway is the key player in olfactory regulation during starvation. By contrast, intranasal treatment with DA did not change the locomotion or the time to find the visible food in WT fasted mice (SI Appendix, Fig. S6), excluding other nonolfactory effects. These results demonstrate that intranasal delivery of DA can reverse the enhanced olfactory abilities in WT fasted mice, supporting a necessary role of nasal DA reduction in the starvation-induced olfactory enhancement.

Although intranasal delivery of DA increased the time taken to find the buried food in fasted Omp-Drd2+/− mice, DA had no effects on food finding in fasted Omp-Drd2+/+ mice (Fig. 6D). This result indicates that intranasal treatment with DA attenuates olfactory abilities through DRD2 expressed in mature OSNs in fasted mice. Note that the vehicle-treated Omp-Drd2+/− mice performed better in the buried food finding tests, compared with vehicle-treated controls during starvation (Fig. 6D), which supports the previous finding that DRD2 in the mature OSNs has a tonic inhibition on olfaction (Fig. 2). Altogether, these results suggest that intranasal application of DA can reduce the olfactory abilities through DRD2 in mature OSNs in fasted mice.

Attenuation of Olfaction during Starvation by Acute Activation of Nasal DRD2. To investigate whether acute activation of nasal DRD2 could attenuate olfaction during starvation, we treated fasted mice with sumaninrole maleate (Sum, 0.1 mg/kg) (51), a DRD2 agonist or vehicle via intranasal delivery 3 min before the buried food finding test. Intranasal application of Sum...
sufficiently increased the time taken to find the buried food in fasted Omp^{Cref+} mice, but not in the fasted Omp-Drd2^{−/−} mice (Fig. 6E). Intranasal treatment with Sum did not alter the locomotion or the time taken to find the visible food in WT fasted mice (SI Appendix, Fig. S6), excluding other nonolfactory effects. These data indicate that intranasal delivery with Sum attenuates olfaction mainly through DRD2 in mature OSNs during starvation.

To further study whether acute activation of DRD2 in the nose could reduce the olfactory sensitivity in WT fasted mice, we performed intranasal delivery of DA, Sum, or vehicle 3 min before the olfactory sensitivity test (Fig. 6F). Again, we analyzed the olfactory sensitivity to TMA and NA. As shown in Fig. 6 G and H, the sniffing curves toward different concentrations of TMA and NA shifted rightward in DA- and Sum-treated mice, compared with vehicle-treated mice. A total of 58.3% (7/12) of control mice could find 300 pM TMA in 5 min, whereas only 33.3% (4/12) of DA-treated mice and 33.3% (4/12) of Sum-treated mice could (Fig. 6G). A total of 50% (6/12) of control mice could find 10 pM NA in 5 min, whereas only 33.3% (4/12) of DA-treated mice and 25% (3/12) of Sum-treated mice could (Fig. 6H). Likewise, the latency to find the odor source of TMA and NA is significantly increased in DA- and Sum-treated mice, compared with vehicle-treated mice (Fig. 6 I and J). All these results demonstrate that intranasal activation of DRD2 can attenuate olfactory sensitivity in WT fasted mice.

Next, we explored whether acute activation of nasal DRD2 from WT fasted mice could reduce OSN responses to TMA and NA. Toward this goal, we acutely isolated the OM from WT fasted mice and performed ex vivo EOG recordings. The OSN responses to odorants were quantified by the relative power (ΔP)—the power of local field potential after odorant
stimulation subtracted from the power of local field potential at baselines. Application of the DRD2 agonist Sum in the recording solution decreased the ΔP of OSNs in a dose-dependent manner (Fig. 6 K–N). These results suggest that acute activation of DRD2 in the OM from WT fasted mice can reduce OSN responses to odorants.

Enhanced Olfaction by Down-Regulation of DA Synthesis in Mouse OM. We reasoned that if DA reduction in mouse OM is important for the olfactory enhancement during starvation, down-regulation of DA in the OM from WT fed mice should mimic the enhanced olfaction in fasted mice. To test this hypothesis, we performed intranasal delivery of 6-hydroxydopamine (6-OHDA, 100 mg/kg) or Veh (saline containing 0.1% ascorbic acid) every other day for 6 d and then were subjected to immunostaining, Western blot, and buried food finding tests on day 7. (B) Destruction of sympathetic nerve terminals after intranasal application of 6-OHDA for 6 d. The OM slices from vehicle and 6-OHDA-treated mice were stained with anti-TH, a marker for sympathetic nerve terminals. (Scale bar, 20 μm.) (C) Quantification of the TH immunofluorescent intensity in B. ***P < 0.0001, two-sided t test, n = 10 slices from three mice per group. Data are presented as mean values ± SEM. (D) Decrease of DA levels in mouse OM after intranasal application of 6-OHDA for 6 d. The homogenates of OM tissues from vehicle and 6-OHDA-treated mice were subjected to HPLC-electrochemical detection assay to determine the DA concentration. ***P = 0.0004, two-sided t test, n = 12 mice per group. Data are presented as mean values ± SEM. (E) No changes of TH protein levels in mouse OB after intranasal application of 6-OHDA for 6 d. Left, representative blots. The homogenates of OB from vehicle and 6-OHDA-treated mice were subjected to Western blot and probed with the indicated antibodies. Right, quantification of TH/GAPDH. The data were normalized to the control group. NS, not significant (P = 0.9471); two-sided t test, n = 6 mice per group. Data are presented as mean values ± SEM. (F) No alteration of DA levels in mouse OB after intranasal application of 6-OHDA for 6 d. The homogenates of OB from vehicle and 6-OHDA-treated mice were subjected to HPLC-electrochemical detection assay to determine the DA concentration. NS, not significant (P = 0.1112), two-sided t test, n = 12 mice per group. Data are presented as mean values ± SEM. (G) Intranasal delivery of 6-OHDA in WT fed mice increased the olfactory abilities to the levels of WT fasted mice. The time to find the buried food in different groups of mice was quantified. NS, not significant (P = 0.7231). *P = 0.0176, one-way ANOVA, n = 12 mice per group. Data are presented as mean values ± SEM.

DA levels were greatly down-regulated in the OM after intranasal treatment with 6-OHDA (Fig. 7E). By contrast, neither the TH proteins nor the DA concentration were altered in the OB after intranasal application of 6-OHDA (Fig. 7 F and G). These results indicate that intranasal delivery of 6-OHDA specifically reduced DA levels in the OM but not in the OB.

We next performed the buried food finding test after 6-OHDA treatment. As shown in Fig. 7H, the time to find the buried food was significantly reduced in WT fed mice treated with 6-OHDA, compared with WT fed mice treated with vehicle. Of note, the time to find the buried food in WT fed mice after 6-OHDA treatment was similar to that in WT fasted mice (Fig. 7H). By contrast, intranasal application of 6-OHDA did not alter the locomotion or the time to find the visible food in WT fed mice (SI Appendix, Fig. S7 B–F), excluding other nonolfactory effects. Altogether, these results demonstrate that reduction of DA in mouse OM is sufficient to increase olfactory abilities.

Discussion

Our results demonstrate that nasal DA and DRD2 receptor may serve as the peripheral targets for olfactory modulation in mice. Intranasal delivery of 6-OHDA that destructs the sympathetic nerve terminals (53) leads to reduction of DA in the OM, which supports the hypothesis that the major source of DA in the OM is from sympathetic nerves (17). The activities
of sympathetic nerves are decreased during starvation (54), which is consistent with reduction of DA synthesis in the nerve terminals in the OM from hungry mice. We also provide ex vivo and in vivo evidence that DA-DRD2 signaling in the mature OSNs has a tonic inhibition on odor response.

The findings presented here might have a potential application to humans. Firstly, the TH-positive nerve terminals are also distributed in human OM (55, 56), which suggests that DA can be produced locally in the human nose. Secondly, DRD2 is also expressed in the mature OSNs from human (39). Lastly, DA overflow is observed in schizophrenia patients, and DRD2 is the target of several antipsychotic drugs (23, 24). Our finding that intranasal application of DRD2 antagonist Eti could increase olfactory abilities might be beneficial for the treatment of olfactory dysfunction in patients with psychiatric disorders. It should be noted that Eti might have effects on olfaction beyond the nose. Because the food finding time is already significantly reduced in OMP-Drd2−/− mice compared with WT mice, testing Eti effects in the nose of OMP-Drd2−/− mice does not rule out redundant effects of Eti in the brain or elsewhere.

We also show that DRD2 is expressed in the cilia of mature OSNs. In addition, the luciferase assay indicates that DA-DRD2 attenuates odor-induced cAMP signaling of TAA5 and MOR24-3. We also provide evidence that DRD2 is coexpressed with TAA5 or MOR24-3 in the mature OSNs. Based on these facts, it is possible that DA-DRD2 directly inhibits ciliary cAMP signaling of olfactory receptors and thus reduces odor responses. Given that DRD2 is also expressed in the somata of mature OSNs, DA-DRD2 could also inhibit cAMP signaling in the somata and in turn affect voltage gated ion channels and cell excitability (57, 58). Regardless, our results demonstrate potential mechanisms underlying the peripheral regulation of olfaction.

Unlike the olfactory receptor genes, which follow the principle of “one receptor, one neuron” (59), a large population of mature OSNs express Drd2, which is conserved among humans, rats, and mice (35, 39, 60). Future studies are warranted to investigate whether DA-DRD2 can inhibit the odor signaling of other olfactory receptors in addition to TAA5 and MOR24-3. In sum, our results reveal nasal DA and DRD2 receptor as the potential peripheral targets for olfactory modulation, which may open the door to new approaches for olfactory regulation in both health and disease.

Materials and Methods

Further information and request for resources should be made to D.-M.Y. at dmyin@brain.ecnu.edu.cn. Raw data of Western blot is presented in SI Appendix, Fig. S8.

Treatment and Analysis of the Mice. Male mice aged at 2.5 to 3 mo were used in all experiments. The detailed information of transgenic mouse lines is available in SI Appendix. The OM tissues and slices were prepared and analyzed by histological, biochemical, and EOG methods as indicated in SI Appendix. The mice were treated with DRD2 agonist and antagonist through intranasal delivery, and the olfactory behavioral tests were performed as indicated in SI Appendix.

Cell Culture Experiments. Hana3A cells were used for the luciferase assay of olfactory receptor signaling as indicated in SI Appendix.

Data Availability. All data are included in the article and SI Appendix.

ACKNOWLEDGMENTS. This work was supported by the National Key Research and Development Program of China (2021ZD0202500 and 2021ZD0203100), the National Natural Science Foundation of China (31800826, 31627801, 32122038, and 31970933), the Fundamental Research Funds for the Central Universities, the Basic Research Project (21JC1404500), the Shanghai Brain-Intelligence Project (18JC1420302) from the Science and Technology Commission of Shanghai Municipality, Shuqiang Program supported by Shanghai Education Development Foundation and Shanghai Municipal Education Commission (215G16), and Program for Young Scholars of Special Appointment at Shanghai Institutions of Higher Learning (OD0218017). We thank Dr. Zhi-Li Huang (Fudan University) for proving Drd2−/− mice, Dr. Zhengang Yang (Fudan University) for providing Drd1-Cre and Drd2-Cre mice, and Dr. Hiroaki Matsumura for sharing Hana3A cells. We thank the Gilad Barnea laboratory (Brown University) for kindly providing primary antibody against TAAR5. We thank the Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology for helping with the analysis of monoamines.

Author affiliations: *Key Laboratory of Brain Functional Genomics, Ministry of Education and Shanghai, School of Life Science, East China Normal University, Shanghai 200062, China; **Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; ♂Center for Brain Science, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; ♀Department of Anatomy and Physiology, Ministry of Education—Shanghai Key Laboratory of Children’s Environmental Health in Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; and ♠Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai 201210, China

1. K. L. Whitcroft, T. Hummel, Olfactory dysfunction in COVID-19: Diagnosis and management. JAMA 323, 2512-2514 (2020).
2. P. J. Moberg et al., Olfactory dysfunction in schizophrenia: A qualitative and quantitative review. Neuropsychopharmacology 21, 325-340 (1999).
3. R. I. Mesholam, P. J. Moberg, R. N. Mahr, R. L. Doty, Olfaction in neurodegenerative disease: A metanalysis of olfactory functioning in Alzheimer’s and Parkinson’s diseases. Arch. Neurol. 55, 84-90 (1998).
4. P. Sengupta, The belly rules the nose: Feeding state-dependent modulation of peripheral chemosensory responses. Curr. Opin. Neurobiol. 23, 68-75 (2013).
5. Q. U. S. D. Lederle, Aversion and attraction through olfaction. Curr. Biol. 25, R128-R129 (2015).
6. B. Palouzier-Paulignan et al., Olfaction under metabolic influences. Chem. Senses 37, 769-797 (2012).
7. S. C. J. K. I. K. A. Jafar, J. W. Wang, Presynaptic facilitation by neuropeptide signaling mediates odor-driven food search. Cell 145, 133-144 (2011).
8. M. L. Andermann, B. L.owell, Towards a wiring diagram understanding of appetite control. Neuron 95, 757-778 (2017).
9. S. Renganjan, K. A. Yankura, M. L. Guillermu, W. Fung, F. E. Hallem, Feeding state sculpts a circuit for sensory valence in Caenorhabditis elegans. Proc. Natl. Acad. Sci. U.S.A. 116, 1774-1781 (2019).
10. K. Voge et al., Internal state configures olfactory behavior and early sensory processing in Drosophila larvae. Sci. Adv. 7, eabf6990 (2021).
11. N. Haro, S. D. Lederle, Hunger enhances food-odor attraction through a neuropeptide Y spotlight. Nature 592, 262-264 (2021).
12. M. L. Lucero, Peripheral modulation of smell: Fact or fiction? Semin. Cell Dev. Biol. 24, 58-70 (2013).
13. A. Carlsson, M. Lindqvist, T. Magnusson, 3,4-Dihydroxyphenylalanine and 5-hydroxytryptophan as reserpine antagonists. Nature 180, 1200 (1957).
14. A. Carlsson, M. Lindqvist, T. Magnusson, B. Waldeck, On the presence of 3-hydroxytryptamine in brain. Science 127, 471 (1958).
15. C. Bell, Dopamine release from sympathetic nerve terminals. Prog. Neurobiol. 30, 193-208 (1988).
16. M. O. Thorn, Dopamine is an important neurotransmitter in the autonomic nervous system. Lancet 1, 662-665 (1975).
17. T. Kawan, F. L. Mangalis, Catecholamines in olfactory mucosa decline following superior cervical ganglionectomy. Chem. Senses 10, 353-356 (1985).
18. F. Mogini, D. Tomassoni, E. Traini, F. Amenta, Dopamine, vesicular transporters and dopamine receptor expression and localization in rat thymus and spleen. J. Neuroimmunol. 206, 5-13 (2009).
19. I. Nagatsu, Tyrosine hydroxylase: Human isoforms, structure and regulation in physiology and pathology. Essays Biochem. 30, 15-35 (1995).
20. H. Toenoes, R. A. Mueller, J. Axelrod, Phase difference in the induction of tyrosine hydroxylase in cell body and nerve terminals of sympathetic neurons. Proc. Natl. Acad. Sci. U.S.A. 65, 58-62 (1970).
21. N. M. Genavi et al., The local expression and trafficking of tyrosine hydroxylase mRNA in the axons of sympathetic neurons. RNA 22, 883-895 (2016).
22. J. A. Gingrich, M. G. Caron, Recent advances in the molecular biology of dopamine receptors. Annu. Rev. Neurosci. 16, 299-321 (1993).
23. S. H. Snyder, The dopamine hypothesis of schizophrenia: Focus on the dopamine receptor. Am. J. Psychiatry 133, 197-202 (1976).
24. D. F. Wong et al., Position emission tomography reveals elevated D2 dopamine receptors in drug-naive schizophrenics. Science 234, 1538-1543 (1986).
25. F. Amendani et al., Association of dopamine D2 receptor molecular variant with schizophrenia. Lancet 343, 703-704 (1994).
26. K. Blum et al., Allergic association of human dopamine D2 receptor gene in alcoholism. JAMA 263, 2053-2060 (1990).
27. S. Wang et al., Tourette International Collaborative Genetics Study (TIC Genetics). Tourette Syndrome Genetics Southern and Eastern Europe Initiative (TSGENSEE), Tourette Association of America International Consortium for Genetics (TAAICG). De novo sequence and copy number variants are strongly associated with Tourette disorder and implicate cell polarity in pathogenesis. *Cell Rep.* **24**, 3441–3454.e12 (2018).

28. B. V. Hallidson et al., Characterizing mutagenic effects of recombination through a sequence-level genetic map. *Science* **363**, eaau1043 (2019).

29. A. Usiello et al., Distinct functions of the two isoforms of dopamine D2 receptors. *Nature* **408**, 199–203 (2000).

30. T. X. Xu et al., Hydroporphomeric tone erodes prefrontal long-term potential via a D2 receptor-operated protein phosphatase gate. *J. Neurosci.* **29**, 14086–14099 (2009).

31. A. Y. Hsia, J. D. Vincent, P. M. Lledo, Dopamine depresses synaptic inputs into the olfactory bulb. *J. Neurophysiol.* **82**, 1082–1085 (1999).

32. M. Ennis et al., Dopamine D2 receptor-mediated presynaptic inhibition of olfactory nerve terminals. *J. Neurophysiol.* **86**, 2986–2997 (2001).

33. Y. Q. Zhang et al., Dopamine D2 receptor regulates cortical synaptic pruning in rodents. *Nat. Commun.* **12**, 6444 (2021).

34. L. Tan, Q. Li, X. X. Xie, Olfactory sensory neurons transiently express multiple olfactory receptors during development. *Mol. Syst. Biol.* **11**, 844 (2015).

35. Q. Yu et al., Genetic labeling reveals temporal and spatial expression pattern of D2 dopamine receptor in rat forebrain. *Brain Struct. Funct.* **224**, 1035–1049 (2019).

36. V. Coronas, L. K. Srivastava, J. J. Liang, F. Jourdan, E. Moyse, Identification and localization of dopamine receptor subtypes in rat olfactory mucosa and bulb: A combined in situ hybridization and ligand binding radioligand approach. *J. Chem. Neuroanat.* **12**, 243–257 (1997).

37. H. Yamaguchi et al., Dopamine D2 receptor plays a critical role in cell proliferation and proopiomelanocortin expression in the pituitary. *Genes Cells* **1**, 253–268 (1996).

38. T. Stojanovic et al., Validation of dopamine receptor D1 and D2 receptors using receptor deficient mice. *Amino Acids* **49**, 1101–1109 (2017).

39. M. A. Durante et al., Single-cell analysis of olfactory neurogenesis and differentiation in adult humans. *Nat. Neurosci.* **23**, 323–326 (2020).

40. J. Li, T. Ishi, P. Feinstein, P. Mombaerts, Odorant receptor gene choice is reset by nuclear transfer from mouse olfactory sensory neurons. *Nature* **428**, 393–399 (2004).

41. E. P. Bello et al., Cucaine supersensitivity and enhanced motivation for reward in mice lacking dopamine D2 autoreceptors. *Nat. Neurosci.* **14**, 1033–1038 (2011).

42. M. Yang, J. N. Crawley, Simple behavioral assessment of mouse olfaction. *Curr. Protoc. Neurosci.* Chapter 8, Unit 8.24 (2009).

43. S. D. Libeles, L. B. Buck, A second class of chemosensory receptors in the olfactory epithelium. *Nature* **442**, 645–653 (2006).

44. T. Abaffy, A. Malhotra, C. W. Luefte, The molecular basis for ligand specificity in a mouse olfactory receptor: A network of functionally important residues. *J. Biol. Chem.* **282**, 1216–1224 (2007).

45. P. Svenningsson et al., Regulation of the phosphorylation of the dopamine- and cAMP-regulated phosphoprotein of 32 kDa in vivo by dopamine D1, dopamine D2, and adenosine A2A receptors. *Proc. Natl. Acad. Sci. U.S.A.* **97**, 1856–1860 (2000).

46. L. Buck, R. Axel, A novel multigene family may encode odoscent receptors: A molecular basis for odor recognition. *Cell* **65**, 175–187 (1991).

47. G. A. Gonzalez, M. R. Montminy, Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133. *Cell* **59**, 675–680 (1999).

48. H. Zhuang, H. Matsunami, Evaluating cell-surface expression and measuring activation of mammalian odorant receptors in heterologous cells. *Nat. Protoc.* **3**, 1402–1413 (2008).

49. A. Aschra, A. E. Gozo, L. Dong, B. B. Kaplan, Disruption of the axonal trafficking of tyrosine hydroxylase mRNA impairs catecholamine biosynthesis in the axons of sympathetic neurons. *eNeuro* **4**, ENEURO.0385-16.2017 (2017).

50. D. Jeang et al., Acetylation of cytidine in mRNA promotes translation efficiency. *Cell* **175**, 1872–1886.e1824 (2018).

51. G. T. Collins, J. A. Jackson, W. Kael, C. P. France, Effects of dopamine D2-like receptor agonists in mice trained to discriminate cocaine from saline: Influence of feeding condition. *Eur. J. Pharmacol.* **729**, 123–131 (2014).

52. A. Kondo, A. Togari, In vivo stimulation of sympathetic nervous system modulates osteoblastic activity in mouse calvaria. *Am. J. Physiol. Endocrinol. Metab.* **285**, E661–E667 (2003).

53. G. Cohen et al., Destruction of sympathetic nerve terminals by 6-hydroxydopamine: Protection by 1-phenyl-1-(2-thiazolyl)-2-thiourea, diethyldithiocarbamate, methimazole, cysteamine, ethanol and n-butanol. *J. Pharmacol. Exp. Ther.* **199**, 336–352 (1976).

54. T. Sakaguchi, K. Ause, J. S. Fieder, G. A. Bray, Effect of starvation and food intake on sympathetic activity. *Am. J. Physiol.* **255**, R289–R288 (1988).

55. Y. Chen, T. V. Getchell, D. L. Sparks, M. L. Getchell, Patterns of adrenergic and peptidergic innervation in human olfactory mucosa: Age-related trends. *J. Comp. Neurol.* **334**, 104–116 (1993).

56. M. L. Getchell, T. V. Getchell, Fine structural aspects of secretion and extrinsic innervation in the olfactory mucosa. *Microsc. Res. Tech.* **23**, 111–127 (1992).

57. G. Vargas, M. T. Lucero, Dopamine modulates inwardly rectifying hyperpolarization-activated current (Ih) in cultured rat olfactory receptor neurons. *J. Neurophysiol.* **81**, 149–158 (1999).

58. Y. Okada, T. Miyamoto, K. Toda, Dopamine modulates a voltage-gated calcium channel in rat olfactory receptor neurons. *Brain Res.* **968**, 248–255 (2003).

59. M. G. Nguyen, Z. Zhou, C. A. Marks, N. J. Ryba, L. Belluscio, Prominent roles for odorant receptor coding sequences in allelic exclusion. *Cell* **131**, 1009–1017 (2007).

60. N. L. Koster et al., Olfactory receptor neurons express D2 dopamine receptors. *J. Comp. Neurol.* **411**, 666–673 (1999).