The Laplacian Eigenvalues and Invariants of Graphs

Rong-Ying Pan
School of Science, Suzhou Vocational University
Suzhou, Jiangsu 215004, P.R.China

Jing Yan
School of Science, Jiangsu University of Technology
Changzhou, Jiangsu, 213001, P.R.China

Xiao-Dong Zhang
Department of Mathematics, and MOE-LSC, Shanghai Jiao Tong University
1954 Huashan road, Shanghai,200030, P.R. China
Email: xiaodong@sjtu.edu.cn

Abstract

In this paper, we investigate some relations between the invariants (including vertex and edge connectivity and forwarding indices) of a graph and its Laplacian eigenvalues. In addition, we present a sufficient condition for the existence of Hamiltonicity in a graph involving its Laplacian eigenvalues.

Key words: Laplacian eigenvalue, Connectivity, Hamiltonicity, Forwarding index.

AMS Classifications: 05C50, 15A42

1 introduction

Let $G = (V, E)$ be a simple graph with vertex set $V(G) = \{v_1, \cdots, v_n\}$ and edge set $E(G) = \{e_1, \cdots, e_m\}$. Denote by $d(v_i)$ the degree of vertex v_i. If $D(G) = diag(d_u, u \in V)$ is the diagonal matrix of vertex degrees of G and $A(G)$ is the $0 - 1$ adjacency
matrix of G, the matrix $L(G) = D(G) - A(G)$ is called the Laplacian matrix of a graph G. Moreover, the eigenvalues of $L(G)$ are called Laplacian eigenvalues of G. Furthermore, the Laplacian eigenvalues of G are denoted by

$$0 = \sigma_0 \leq \sigma_1 \leq \cdots \leq \sigma_{n-1},$$

since $L(G)$ is positive semi-definite. In recent years, the relations between invariants of a graph and its Laplacian eigenvalues have been investigated extensively. For example, Alon in [1] established that there are relations between an expander of a graph and its second smallest eigenvalue; Mohar in [13] presented a necessary condition for the existence of Hamiltonicity in a graph in terms of its Laplacian eigenvalues. The reader is referred to [3], [9] and [11] etc.

The purpose of this paper is to present some relations between some invariants of a graph and its Laplacian eigenvalues. In Section 2, the relations between the vertex and edge connectivities of a graph and its Laplacian eigenvalues are investigated. In Section 3, we present a sufficient condition for the existence of Hamiltonicity in a graph involving its Laplacian eigenvalues. In last Section, the lower bounds for forwarding indices of networks are obtained. Before finishing this section, we present a general discrepancy inequality from Chung[4], which is very useful for later.

For a subset X of vertices in G, the volume $\text{vol}(X)$ is defined by $\text{vol}(X) = \sum_{v \in X} d_v$, where d_v is the degree of v. For any two subsets X and Y of vertices in G, denote

$$e(X,Y) = \{(x,y) : x \in X, y \in Y, \{x,y\} \in E(G)\}.$$

Theorem 1.1 Let G be a simple graph with n vertices and average degree $d = \frac{1}{n} \text{vol}(G)$. If the Laplacian eigenvalues σ_i of G satisfy $|d - \sigma_i| \leq \theta$ for $i = 1, 2, \cdots, n-1$, then for any two subsets X and Y of vertices in G, we have

$$|e(X,Y) - \frac{d}{n} |X||Y| + d|X \cap Y| - \text{vol}(X \cap Y)| \leq \frac{\theta}{n} \sqrt{\frac{1}{n} |X| (n-|X|)|Y| (n-|Y|)}.$$

2 Connectivity

The vertex connectivity of a graph G is the minimum number of vertices that we need to delete to make G is disconnected and denoted by $\kappa(G)$. Fiedler in [6] proved that if G is not the complete graph, then $\kappa(G)$ is at least the value of the second smallest Laplacian eigenvalue. In here, we present another bound for the vertex connectivity of a graph.
Theorem 2.1 Let G be a simple graph of order n with the smallest degree $\delta \leq \frac{n}{2}$ and average degree d. If the Laplacian eigenvalues σ_i satisfies $|d - \sigma_i| \leq \theta$ for $i \neq 0$, then

$$\kappa(G) \geq \delta - (2 + 2\sqrt{3})^2 \theta^2 \frac{\delta}{n}.$$

Proof. Let $c = 2 + 2\sqrt{3}$. If $\theta \geq \frac{\delta}{c}$, there is nothing to show. We assume that $\theta < \frac{\delta}{c}$.

Suppose that there exists a subset $S \subset V(G)$ with $|S| < \delta - (c\theta)^2 \frac{\delta}{n}$ such that the induced graph $G[V \setminus S]$ is disconnected. Denote by U the set of vertices of the smallest connected component of $G[V \setminus S]$ and $W = V \setminus (S \cup U)$. Since the smallest degree of G is δ, $|S| + |U| > \delta$, which implies $|U| \geq \frac{\delta}{c\theta}$. Moreover, $|W| = n - (|U| + |S|) \leq \frac{n - \delta}{2} \leq \frac{n}{4}$. Because U and W are disjoint for two subsets of G, by 1.1, we have

$$\frac{d}{n} |U||W| \leq \theta \frac{n}{d} \sqrt{|U||W|(n - |U|)(n - |W|)} \leq \sqrt{|U||W|}.$$

Hence

$$|U| \leq \frac{\theta^2 n^2}{d^2 |W|} \leq \frac{\theta}{d} \frac{n}{d} \frac{\theta n}{d} \frac{4 \theta n}{c} \frac{n}{d},$$

since $\frac{\theta}{d} < \frac{\theta}{c} < \frac{1}{c}$. By using Corollary 4 in [4], we have

$$|2e(U)| - \frac{d|U|(|U| - 1)}{n} \leq \frac{2\theta}{n} |U|(n - \frac{|U|}{2}).$$

Then

$$2|e(U)| \leq 2\theta |U| + \frac{d}{n} |U|^2$$

$$\leq (2\theta + \frac{4 \theta n}{nc})|U|$$

$$= (2 + \frac{4}{c})\theta |U|.$$

Hence, by $\theta < \frac{\delta}{c}$ and $c = 2 + 2\sqrt{3}$,

$$|e(U, S)| \geq \delta |U| - 2|e(U)|$$

$$\geq (\delta - (2 + \frac{4}{c})\theta)|U|$$

$$> (1 - (2 + \frac{4}{c}))\delta |U|$$

$$> (\frac{1}{2} + \frac{1}{c})\delta |U|.$$
On the other hand, by 1.1 and $|S| \leq \delta$, $|U| \geq \frac{2\theta^2}{\delta}$ and $\frac{d}{n} \leq \frac{1}{2}$, we have

$$|e(U, S)| \leq \frac{d}{n}|U||S| + \theta \sqrt{|U||S|}$$

$$\leq \left(\frac{d\delta}{n} + \theta \frac{\delta \sqrt{\delta}}{c\theta} \right) |U|$$

$$= \left(\frac{1}{2} + \frac{1}{c} \right) \delta |U|.$$

It is a contradiction. Therefore the result holds. □

Corollary 2.2 ([10]) Let G be a d–regular graph of order n with $d \leq \frac{n}{2}$. Denote by λ the second largest absolute eigenvalue of $A(G)$. Then

$$\kappa(G) \geq d - \frac{36\lambda^2}{d}.$$

Proof. Since G is a d–regular graph, the eigenvalues of $A(G)$ are $d - \sigma_0, d - \sigma_1, \ldots, d - \sigma_{n-1}$. Hence λ satisfies $|d - \sigma_i| \leq \lambda$ for $i \neq 0$. It follows from Theorem 2.1 that $\kappa(G) \geq d - \frac{(2+2\sqrt{3})d^2}{d} \geq d - \frac{36\lambda^2}{d}$. □

From [10], for a d–regular graph, the lower bound for $\kappa(G)$ in Corollary 2.2 is tight up to a constant factor, which implies Theorem 2.1 is tight up to a constant factor.

It is known that the edge connectivity $\kappa'(G)$ of a graph G is the minimum number of edges that need to delete to make disconnected. In [7], Goldsmith and Entringer gave a sufficient condition for edge connectivity equal to the smallest degree. In here, we present also a sufficient condition for edge connectivity equal to the smallest degree in terms of its Laplacian eigenvalues.

Theorem 2.3 Let G be a graph of order n with average degree d and the smallest degree δ. If the Laplacian eigenvalues satisfy $2 \leq \sigma_1 \leq \sigma_{n-1} \leq 2d - 2$, then $\kappa'(G) = \delta$.

Proof. Let U be a subset of vertices of G with $|U| \leq \frac{n}{2}$.

If $1 \leq |U| \leq \delta$, then for every vertex $u \in U$, u is adjacent to at least $\delta - |U| + 1$ vertices in $G \setminus U$. Therefore,

$$|e(U, G \setminus U)| \geq |U|(|\delta - |U| + 1) \geq \delta.$$

If $\delta < |U| \leq \frac{n}{2}$, let $\theta = d - 2$. Since $2 \leq \sigma_1 \leq \sigma_{n-1} \leq 2d - 2$, $|d - \sigma_i| \leq \theta$ for $i \neq 0$. By Theorem 1.1,

$$||e(U, V \setminus U)| - \frac{d}{n}|U||V \setminus U|| \leq \frac{\theta}{n}|U|(n - |U|).$$
Thus,
\[|e(U, V \setminus U)| \geq \frac{d - \theta}{n} |U| (n - |U|) \geq \frac{d - \theta}{n} \delta (n - \delta) \geq \frac{2 \delta (n - \delta)}{n} \geq \delta. \]

Hence there are always at least \(\delta \) edges between \(U \) and \(V \setminus U \). Therefore \(\kappa'(G) = \delta \).

\[\blacksquare \]

3 Hamiltonicity and the chromatic number

In this section, we first give an upper bound for the independence number \(\alpha(G) \), which is used to present a sufficient condition for a graph to have a Hamilton cycle. Moreover, a lower bound for the chromatic number of a graph is obtained. The independence number is the maximum cardinality of a set of vertices of \(G \) no two of which are adjacent.

Lemma 3.1 Let \(G \) be a graph of order \(n \) with average \(d \). If the Laplacian eigenvalues satisfies \(|d - \sigma_i| \leq \theta \) for \(i \neq 0 \), then

\[\alpha(G) \leq \frac{2n \theta + d}{d + \theta}. \]

Proof. Let \(U \) be an independent set with the size \(\alpha(G) \). By Corollary 4 in [4], we have

\[|2|e(U)| - d|U||(|U| - 1)| \leq \frac{2 \theta}{n} |U| (n - |U|/2). \]

Hence \(|U| \leq \frac{2 \theta + d}{d + \theta} \). \(\blacksquare \)

Lemma 3.2 [5] Let \(G \) be a graph. If the vertex connectivity of \(G \) is at least as large as its independence number, then \(G \) is Hamiltonian.

Theorem 3.3 Let \(G \) be a graph of order \(n \) with average \(d \) and the smallest degree \(\delta \). If the Laplacian eigenvalues satisfies \(|d - \sigma_i| \leq \theta \) for \(i \neq 0 \) and \(\delta - (2 + 2 \sqrt{3}) \frac{2 \theta^2}{\delta} \geq \frac{2n \theta + d}{d + \theta} \), then \(G \) is Hamiltonian.

Proof. By Theorem 2.1, \(G \) has at least \(\delta - (2 + 2 \sqrt{3}) \frac{2 \theta^2}{\delta} \) vertex connected. On the other hand, by Lemma 3.1, the independence number of \(G \) is at most \(\frac{2n \theta + d}{d + \theta} \). It follows from Lemma 3.2 that \(G \) is Hamiltonian. \(\blacksquare \)
Theorem 3.4 Let G be a connected graph of order n with the smallest degree δ. If $\sigma_1 \geq \frac{\sigma_{n-1} - \delta}{\sigma_{n-1}} n$, then G is Hamiltonian.

Proof. By a theorem in [6], $\kappa(G) \geq \sigma_1$. On the other hand, by Corollary 3.3 in [15], the independence number $\alpha(G) \leq \frac{\sigma_{n-1} - \delta}{\sigma_{n-1}} n$. It follows from Lemma 3.2 that G is Hamiltonian.

The proper coloring of the vertices of G is an assignment of colors to the vertices in such a way that adjacent vertices have distinct colors. The chromatic number, denoted by $\chi(G)$, is the minimal number of colors in a vertex coloring of G.

Theorem 3.5 Let G be a graph of order n with the smallest degree $\delta \geq 1$. Then

$$\chi(G) \geq \frac{\sigma_{n-1}}{\sigma_{n-1} - \delta}.$$

Moreover, if G is a $d-$ regular bipartite graph, or a complete $r-$partite graph $K_{s,s,\ldots,s}$, then equality holds.

Proof. Let V_1, V_2, \ldots, V_χ denote the color class of G. Denote by e the vector with all component equal to 1. Let s_i be the restriction vector of $\frac{1}{|V_i|} e$ to V_i; that is, $(s_i)_j = \frac{1}{|V_i|}$, if $j \in V_i$; $(s_i)_j = 0$, otherwise. Thus $S = (s_1, \ldots, s_\chi)$ is an $n \times \chi$ matrix and $S^T S = I_n$. Let $B = S^T L(G) S = (b_{ij})$ and its eigenvalues $\mu_0 \leq \mu_1 \leq \cdots \leq \mu_{\chi-1}$.

By eigenvalue interlacing, it is easy to see that $\mu_0 = 0$ and $\mu_{\chi-1} \leq \sigma_{n-1}$. Moreover, $b_{ii} = \frac{1}{|V_i|} \sum_{v \in V_i} d_v \geq \delta$. Hence

$$\delta \chi \leq \text{tr}B = \mu_0 + \cdots \mu_{\chi-1} \leq (\chi - 1)\sigma_{n-1},$$

which yields the desired inequality. If G is a $d-$ regular graph, then $\chi = 2$, $\delta = d$ and $\sigma_{n-1} = 2d$. So equality holds. If G is a complete $r-$partite graph, then $\chi = r$, $\delta = (r - 1)s$ and $\sigma_{n-1} = \frac{r}{r-1}s$. Hence equality holds.

4 Forwarding indices of graphs

In this section, we discuss some relations between the Laplacian eigenvalues of a graph and its forwarding indices.

A routing R of a graph G of order n is a set of $n(n-1)$ paths specified for all ordered pairs u and v of vertices of G. Denote $\xi(G, R, v)$ by the number of paths of
Let X be a proper subset of V. The vertex cut induced by X is

$$N(X) = \{ y \in V \mid \{x, y\} \in E(G) \}.$$

Moreover, denote X^+ by the complement of $X \cup N(X)$ in V.

The vertex expanding factor is defined by

$$\gamma(G) = \min \{ \frac{|N(X)|}{|X||X^+|} \mid X \subseteq V, 1 \leq |X| \leq n - 1, |X^+| \geq 1 \},$$

where the min on a void set of X is taken to be infinite.

Theorem 4.1 Let G be a graph of order n with average degree d. If the Laplacian eigenvalues satisfies $|d - \sigma_i| \leq \theta$ for $i \neq 0$, then

$$\gamma(G) \geq \frac{d^2 - \theta^2}{n\theta^2}.$$

Proof. Let U be a subset of G such that

$$\gamma(G) = \frac{|N(U)|}{|U||U^+|}, \quad 1 \leq |U| \leq n - 1, \quad |U^+| \geq 1.$$

Set $W = V \setminus (U \cup N(U))$. By Theorem 1.1, we have

$$||e(U, W)| - \frac{d}{n}|U||W|| \leq \frac{\theta}{n}\sqrt{|U|(n - |U|)|W|(n - |W|)}.$$

Hence

$$d^2|U||W| \leq \theta^2(|U| + |N(U)|)(|W| + |N(W)|).$$

Then

$$\frac{|N(U)|}{|U||U^+|} = \frac{|N(U)|}{|U|(n - |W|)} \geq \frac{d^2 - \theta^2}{n\theta^2}.$$

We complete the proof. □

Theorem 4.2 Let G be a graph of order n. If $\sigma_1 \leq \frac{1}{2}$, then $\xi(G) \geq \sqrt{\frac{1 - 2\sigma_1}{\sigma_1}}$.

7
Proof. By Lemma 2.4 in [1], we have
\[\sigma_1 \geq \frac{c^2}{4 + 2c^2}, \]
where \(c \) satisfies \(\frac{|N(X)|}{|X|} \geq c \) for every \(|X| \leq \frac{n}{2} \) and \(X \subset U \). Hence
\[\gamma(G) \leq c \leq \sqrt{\frac{4\sigma_1}{1 - 2\sigma_1}}. \]
On the other hand, there exists a subset \(U \) such that \(\gamma(G) = \frac{|N(U)|}{|U||U^+|} \). It follows from the definition of \(\xi(G) \) that \(2|U||U^+| \geq \xi(G)|N(U)| \), since there does not exist edges between \(U \) and \(U^+ \). Hence
\[\xi(G) \geq \frac{2|U||U^+|}{|N(U)|} = \frac{2}{\gamma(G)} \geq \frac{1 - 2\sigma_1}{\sigma_1}. \]
We finish the proof.

Lemma 4.3 Let \(G \) be a graph of order \(n \) with average degree \(d \) and let \(\beta(G) = \min \{ \frac{|e(U,V \setminus U)|}{|U|(n-|U|)} \mid 1 \leq |U| \leq n-1 \} \). If the Laplacian eigenvalues satisfy \(|d - \sigma_i| \leq \theta \) for \(i \neq 0 \), then
\[\beta(G) \leq \frac{d + \theta}{n}. \]

Proof. By the definition of \(\beta(G) \), there exists a subset \(U \) such that \(\beta(G) = \frac{|e(U,V \setminus U)|}{|U|(n-|U|)} \). On the other hand, by Theorem 1.1, we have
\[||e(U,V \setminus U)| - \frac{d}{n}|U|(n-|U|)||e \theta |n|U|(n-|U|). \]
Hence \(\beta(G) \leq \frac{d + \theta}{n} \).

Theorem 4.4 Let \(G \) be a graph of order \(n \) with average degree \(d \). If the Laplacian eigenvalues satisfy \(|d - \sigma_i| \leq \theta \) for \(i \neq 0 \), then
\[\pi(G) \geq \frac{2n}{d + \theta}. \]

Proof. It follows from Theorem 1 \(\pi(G) \beta(G) \geq 2 \) in [14] and Lemma 4.3 that the result holds.

Remark The lower bounds for \(\xi(G) \) and \(\pi(G) \) are tight up to a constant factor. For example, Let \(P_n \) be a path of order \(n \). It is easy to see that \(\xi(P_n) = 2(\lfloor \frac{n}{2} \rfloor (\lceil \frac{n}{2} \rceil - 1) \), \(\pi(G) = 2(\lceil \frac{n}{2} \rceil (\lfloor \frac{n}{2} \rfloor) \); while \(\sigma_1 = 4 \sin^2 \frac{\pi}{2n} \).
References

[1] N. Alon, Eigenvalues and expanders, *Combinatorica*, 6(1986), 83-96.

[2] J. A. Bondy and U. S. R. Murty, *Graph theory with applications*, Macmillan Press, New York, 1976.

[3] F.R.K.Chung, Spectral Graph Theory, CBMS Lecture Notes, AMS Publications, 1997.

[4] F.R.K.Chung, Discrete isoperimetric inequalities, *Surveys in Differential Geometry IX*, International Press, (2004), 53–82.

[5] V. Chvatal and P. Erdos, A note on Hamiltonian circuits, *Discrete Mathematics*, 27(1972) 111-113.

[6] M. Fiedler, Algebraic connectivity of graphs, *Czechoslovak Math. J.* 23(1973), 298-305.

[7] D. C. Goldsmith and R. C. Entringer, A sufficient condition for equality of edge connectivity and minimum degree of a graph, *J. Graph Theory* 3(1979) 251-255.

[8] R. Grone and R. Merris, The Laplacian spectrum of a graph. II. *SIAM J. Discrete Math.*, 7 (1994), no. 2, 221-229.

[9] M. C. Heydemanna, J. C. Meyer and D. Sotteau, On forwarding indices of networks, *Discrete Applied Mathematics* 23(1989)101-123.

[10] M. Krivelevich and B. Sudakov, Pseudo-random graphs, In: *More sets, graphs and numbers*, E. Győri, G. O. H. Katona and L. Lovász, Eds., Bolyai Society Mathematical Studies Vol. 15, 199-262.

[11] R. Merris, Laplacian matrices of graphs: A survey, *Linear Algebra and Applications*, 197-198 (1994): 143-176.

[12] R. Merris, A note on Laplacian graph eigenvalues, *Linear Algebra and Applications*, 285(1998), 33-35.

[13] B. Mohar, A domain monotonicity theorem for graphs and Hamiltonicity, *Discrete Applied Mathematics* 36(1992)169-177.
[14] P. Sole, Expanding and forwarding, *Discrete Applied Mathematics* 58(1995)67-78.

[15] X. D. Zhang, On the two conjectures of Graffiti, *Linear Algebra and Applications*, 385(2004) 369-379.