The prevalence and molecular mechanisms of mupirocin resistance in *Staphylococcus aureus* isolates from a Hospital in Cape Town, South Africa

Shima M. Abdulgader1*, Tshepiso Lentswe1, Andrew Whitelaw1,2 and Mae Newton-Foot1,2

Abstract

Background: Antimicrobial resistance is an increasingly serious problem in public health globally. Monitoring resistance levels within healthcare and community settings is critical to combat its ongoing increase. This study aimed to describe the rates and molecular mechanisms of mupirocin resistance in clinical *Staphylococcus aureus* isolates from Tygerberg Hospital, and to describe its association with strain types.

Methods: We retrospectively selected 212 *S. aureus* isolates which were identified from blood samples and pus swabs during the years 2009–2011 and 2015–2017. The isolates were identified using conventional microbiological methods and genotyping was done using spa typing. Cefoxitin (30 μg) disc diffusion and the two disc strategy (5 μg and 200 μg) were used to determine susceptibility to methicillin and mupirocin, respectively. Isolates with high-level resistance were screened for the plasmid mediated genes *mupA* and *mupB* by PCR, and sequencing of the *ileS* gene was done for all isolates exhibiting low-level resistance to describe the mutations associated with this phenotype. Chi-square test was used to assess the associations between mupirocin resistance and *S. aureus* genotypes.

Results: Of 212 *S. aureus* isolates, 12% (*n* = 25) were resistant to mupirocin, and 44% (*n* = 93) were methicillin resistant. Strain typing identified 73 spa types with spa t045 being the most predominant constituting 11% of the isolates. High-level mupirocin resistance was observed in 2% (*n* = 5), and low-level resistance in 9% (*n* = 20) of the isolates. The prevalence of high-level mupirocin resistance amongst MRSA and MSSA was 4% and 1% respectively, while the prevalence of low-level mupirocin resistance was significantly higher in MRSA (18%) compared to MSSA (3%) (*p* = 0.032). *mupA* was the only resistance determinant for high-level resistance, and the *IleS* mutation V588F was identified in 95% of the isolates which showed low-level resistance. A significant association was observed between spa type t032 and high-level mupirocin resistance, and types t037 and t012 and low-level resistance (*p* < 0.0001).

(Continued on next page)
Conclusion: The study reported higher rates of low-level mupirocin resistance compared to high-level resistance, and in our setting, mupirocin resistance was driven by certain genotypes. Our study advocates for the continuous screening for mupirocin resistance in *S. aureus* in clinical settings to better guide treatment and prescribing practices.

Keywords: *Staphylococcus aureus*, MRSA, Mupirocin, spa-typing, Antimicrobial resistance, South Africa

Introduction

Staphylococcus aureus is the second most frequent cause of nosocomial bloodstream infections worldwide [1]. *S. aureus* nasal carriage is a risk factor for subsequent infections, especially amongst surgical and dialysis patients [2, 3], and carriage of methicillin-resistant *S. aureus* (MRSA) is a particular problem in these high risk patients due to the limited therapeutic drugs available to treat postoperative infections [4]. Consequently, infection prevention strategies such as nasal decolonization are employed to minimize the occurrence of staphylococcal infection and reduce the risk of transmission within healthcare settings [5, 6]. In routine intensive care unit practice, universal decolonization has proven more effective in reducing nosocomial bloodstream infections caused by MRSA as well as any other pathogen, compared to a targeted approach [7]. In some settings, routine screening and decolonisation of MRSA carriers prior to hospital admission is also practiced [8]. The intranasal application of the antibiotic mupirocin (2%) 2–4 times daily for 4–7 days is an effective and affordable strategy for decolonization of MRSA, used alone or in combination with 4% chlorhexidine gluconate (CHG) based body wash [9, 10]. Mupirocin, also known as pseudomonic acid A, is naturally produced by *Pseudomonas fluorescens*, was first isolated in 1971 and first introduced into clinical practice in the United Kingdom in 1985 [5, 11]. It is also used as a topical agent to treat localised skin and soft tissue infections [10]. Mupirocin inhibits protein synthesis by binding to the bacterial isoleucyl-tRNA synthetase enzyme which is encoded by the *ileS* gene [11].

Resistance to mupirocin in *S. aureus* emerged largely due to long-term, unrestricted and unjustified use [12, 13]. Mupirocin resistance is phenotypically categorized into two levels based on the minimum inhibitory concentration (MIC); low-level resistance with MICs of 8–256 mg/ml, and high-level resistance with MICs > 512 mg/ml [4, 14]. The molecular mechanism of low-level mupirocin resistance involves point mutations in the *ileS* gene; V588F and V631F are two common mutations associated with this phenotype [15–17]. High level mupirocin resistance is mediated by the plasmid encoded genes *mupA* and *mupB*, which encode an alternative isoleucyl-tRNA synthetase (*ileS2*) that is not targeted by mupirocin [18, 19].

Mupirocin resistance in *S. aureus*, especially high-level resistance, is a serious clinical problem, since it is associated with failure of decolonization, especially among MRSA carriers [20]. This is of particular concern for infection prevention and control practices involved in the management of MRSA outbreaks and in the pre-admission management of surgical patients to minimize post-operative MRSA infections [10]. A recent systematic review describing mupirocin resistance in Africa highlighted the scarcity of data and advocated for the need for surveillance studies to monitor the levels of mupirocin resistance both in the community and healthcare settings [6]. Screening for mupirocin resistance has only been carried out in 12 of the 54 African countries, with an estimated pooled prevalence of 14% resistance amongst MRSA isolates. Only six studies have been conducted in South Africa reporting prevalences of 7–50%, 4–47%, and 0.9–23%, for overall mupirocin resistance, low-level and high-level mupirocin resistance, respectively, in MRSA [6]. There is a paucity of data describing associations between mupirocin resistance and the genetic background of *S. aureus* in Africa. However, studies from the United States as well as low-middle income countries such as Iran have reported associations between *spa* types t002, t008, and t064 and mupirocin resistance [21, 22]. Few studies have described mupirocin resistance in the public healthcare sector in the Western Cape of South Africa, however, they reported aggregated data from multiple provinces across South Africa, and mainly investigated resistance rates in MRSA isolates [23–25]. Therefore this study aimed to describe the rates of mupirocin resistance in *S. aureus* isolates collected at Tygerberg Hospital, to describe the associations between mupirocin resistance and the genotypes which are circulating in our setting, and to investigate the molecular mechanisms of low- and high-level mupirocin resistance.

Methods

This study took place at Tygerberg Hospital, a 1384 bed tertiary academic hospital that serves a population of approximately 1.9 million in the Western Cape, South Africa. *S. aureus* isolates were identified at the National Health Laboratory Service (NHLS) microbiology laboratory as part of the diagnostic investigation of patients presenting to the hospital. Our Biobank was retrospectively
searched for any *S. aureus* isolates which had been collected from clinical specimens between the years 2009 and 2017. A subset of these isolates was randomly selected to be included in this study. Information on the date of collection and the type of clinical specimen were retrieved from laboratory records. The study was approved by the Health Research Ethics Committee of Stellenbosch University (Reference number N14/06/065).

Bacterial identification and strain typing
The selected *S. aureus* isolates were identified by standard microbiological methods such as Gram morphology, catalase, mannitol fermentation and DNase activity, and methicillin susceptibility was determined using cefoxitin disc diffusion, according to the CLSI guidelines [26]. Confirmed *S. aureus* isolates were stored at −80 °C. All *S. aureus* isolates were genotyped using spa typing as described previously [27].

Mupirocin susceptibility testing
The stored isolates were streaked on Tryptone Blood Agar (Diagnostic Media Products, South Africa). Overnight cultures were used to perform mupirocin susceptibility testing on Muller-Hinton Sensitivity medium using two different mupirocin containing discs: a 5 μg disc to detect low-level mupirocin resistance and a 200 μg disc to detect high-level mupirocin resistance (Mast diagnostic group, United Kingdom). Zones of inhibition were interpreted according to the CLSI guidelines [26].

Molecular mechanisms of mupirocin resistance
S. aureus isolates which exhibited high-level mupirocin resistance were screened for the presence of the plasmid mediated *mupA* and *mupB* genes using the primers and conditions published previously [28]. For low-level resistance, a 450 bp region in the *ileS* gene was amplified using the modified primers *mup*LL-F1 5′CCGGATAATAGTTCCCAGC-3′ and *mup*LL-R 5′ CAAAAGTTTCATAGTTGTTAATCGT3′ [29]. Sanger sequencing was done to describe the presence of point mutations within the *ileS* gene.

Statistical analysis
Statistical analysis was done using STATA version 12 (StataCorp LLC, USA). The difference in the rates of mupirocin resistance between MRSA and MSSA was determined using z-test. Chi-square test was used to assess the associations between strain type and mupirocin resistance. Statistical significance was defined as *p*-values of <0.05.

Results

Rates of mupirocin resistance
We included 212 *S. aureus* isolates based on the availability in the Biobank. Of these, 93 were collected between 2009 and 2011, and 119 between 2015 and 2017. Ninety-two percent (*n* = 194) of the isolates were from blood cultures and 8% (*n* = 18) were isolated from pus swabs. Forty four percent (*n* = 93) of the isolates were MRSA. Strain typing was successful for 180 isolates and 73 spa types were identified.

Mupirocin resistance was observed in 12% (*n* = 25) of the isolates; five (2%) and 20 (9%) exhibited high-level and low-level resistance, respectively. The prevalence of mupirocin resistance was significantly different between MRSA (23%; *n* = 21), and MSSA (3%; *n* = 4) isolates (*p* = 0.04) (Fig. 1).

This was consistent for low- and high-level mupirocin resistance; with low level resistance rates of 18% (*n* = 17) among MRSA and 3% (*n* = 3) among MSSA (*p* = 0.032), and high-level mupirocin resistance rates of 4% (*n* = 4) and 1% (*n* = 1) among MRSA and MSSA, respectively (*p* < 0.005).

Correlation between mupirocin resistance and strain types
Figure 2 shows the spa type distribution in the isolate collection, with spa types identified in ≤2 isolates (*n* = 100) grouped as “others”. Type t045 was the most common, representing 11% of isolates, followed by t037 which constituted 7% of the isolate collection. Of the 16 most common spa types (*n* = 112), six contained only MRSA isolates (Fig. 2). Mupirocin resistance was represented in nine different spa types (Table 1). A significant association was noted between spa types t012 and t037 and low-level mupirocin resistance, while the spa type t032 was associated with high-level mupirocin resistance (*p* < 0.0001). Although all the isolates with spa type t045 were MRSA, they were all mupirocin susceptible. Seventy six percent of susceptible isolates belonged to spa types in which no resistant isolates were detected (Table 1).

Molecular mechanisms of mupirocin resistance
The *mupA* gene was detected in all five high-level mupirocin resistant isolates and the amplification product confirmed by Sanger sequencing. *mupB* was not detected, however the absence could not be confirmed as a positive control was not available. The absence of *mupA* and *mupB* was also noted in all isolates with low-level mupirocin resistance. The IleS V588F mutation was detected in 95% (*n* = 19) of the isolates with low-level resistance. One isolate (spa type t073) carried a possible novel ileS mutation, S570A.
Fig. 1 Distribution of mupirocin resistance among *S. aureus* isolates categorized by methicillin-susceptibility. S: mupirocin susceptible; LL: Low-level mupirocin resistance; HL: high-level mupirocin resistance. The asterisks show the significant differences in the resistance rates between MSSA and MRSA. *p*-value =0.032, **p*-value < 0.005.

Fig. 2 Distribution of the *spa* types identified in all the clinical *S. aureus* isolates. The data shown are the percentages of the different *spa* types. The asterisks indicate the *spa* types that contained only MRSA isolates. “Others” represent the *spa* types with ≤2 isolates.
Monitoring the levels of antimicrobial resistance within healthcare settings is critical to combat the ongoing increase in resistance. In the current study we sought to describe the rates and molecular mechanisms of mupirocin resistance at Tygerberg Hospital, and to determine possible associations between mupirocin resistance and specific *S. aureus* lineages.

Twelve percent of the isolates selected for this study exhibited resistance to mupirocin, and the prevalence of mupirocin resistance was significantly higher in MRSA (23%) than MSSA (3%). This trend is consistent with other studies across South Africa; 17% mupirocin resistance was described in MRSA and 2% in MSSA isolates collected from 13 public academic healthcare centres in Gauteng, KZN, Free-State and Western Cape in the years 2010–2012 [24]. The association between MRSA and resistance to a wide range of other antibiotics is well-established [30], and is considered a serious problem due to the limited available therapeutic drugs. In keeping with this, a study from the private sector in the Western Cape of South Africa, which investigated *S. aureus* isolates from all clinical specimens, reported 28% mupirocin resistance and a strong association between methicillin resistance and *S. aureus* [30].

Clinically, high-level mupirocin resistance is associated with decolonization failure, however, recent studies have shown that low-level resistance is also associated with reduced effectiveness of mupirocin in eradicating MRSA carriage [17, 32, 33]. We detected higher rates of low-level mupirocin resistance than high-level resistance. The *mupA* gene was the only resistance determinant observed in the five high-level resistant isolates, which is consistent with what is commonly described world-wide [17, 22, 34]. The *mupA* gene is usually carried on plasmids, however a previous study identified a chromosomally encoded *mupA* gene in isolates with low-level resistance.

Table 1 Correlation between *S. aureus* genotypes and mupirocin resistance

Spa type	High-level N (%)	Low-level N (%)	Susceptible N (%)	Molecular mechanism	Methicillin resistance	P-value
t037	0 (0)	11 (55)	5 (3)	VS88F	MRSA	< 0.0001
t012	0 (0)	5 (25)	1 (0.5)	VS88F	MRSA	< 0.0001
t032	3 (60)	0 (0)	5 (3)	*mupA*	MRSA	< 0.0001
t127	1 (20)	0 (0)	0 (0)	*mupA*	MSSA	–
t1467	1 (20)	0 (0)	0 (0)	*mupA*	MRSA	–
t891	0 (0)	1 (5)	5 (3)	VS88F	MSSA	–
t1517	0 (0)	1 (5)	1 (0.5)	VS88F	MSSA	–
t2360	0 (0)	1 (5)	1 (0.5)	VS88F	MSSA	–
t073	0 (0)	1 (5)	2 (1)	S570A	MSSA & MRSA	–
Mupirocin susceptible spa types	0 (0)	0 (0)	167 (88.5)	–	MSSA & MRSA	–
Total	5 (100)	20 (100)	187 (100)	–	–	–

Only significant p-values (Chi-square test) are shown in the table.
resistance [35]. In our study neither mupA nor mupB were detected in the low-level resistant isolates. The ileS mutation V588F was the most common mechanism of low-level resistance, detected in 95% of low level resistant isolates, and is strongly linked to this phenotype [17]. In-vitro studies have shown that the presence of a single mutation (including the common ileS V588F) may have a small effect on bacterial growth rate. These mutations could occur after a single cycle of exposure to mupirocin, which provides selective pressure for low-level resistant MRSA strains within settings where mupirocin is commonly used [16, 17]. This could explain the high rate of low-level mupirocin resistance in our setting. A possibly novel ileS mutation, S570A, was identified in one of the low-level resistant isolates. However, further investigation is warranted since not all mutations within the ileS gene translate to phenotypic resistance [17], and only a small region of the ileS gene was sequenced in this study.

Certain strains were associated with mupirocin resistance; spa types t037 (linked to multilocus sequence type clonal complex (CC) 8) and t012 (linked to CC5) had strong associations with low-level resistance (mainly harbouring the mutation V588F), and t032 (linked to CC22) was associated with high-level (mupA) resistance. Studies within South Africa and even within Africa either did not correlate strain typing data with mupirocin resistance, or used typing methods which are not comparable across different laboratories [25, 36, 37]. In Africa, a single study from Ghana reported a mupirocin resistant isolate belonging to the spa type t4805 from a healthcare worker in Korle Bu Teaching Hospital [38]. In the United States, low-level resistance was predominantly reported amongst spa types linked to CC5 and CC8 [21, 39], consistent with the findings of our study. Furthermore, these genetic backgrounds (CC5 and CC8) are more prone to developing mutations within the ileS even following a single short treatment course with mupirocin [17]; which is consistent with the findings of this study.

Conclusion
Although the method of selecting the S. aureus isolates from the biobank limited our ability to calculate the overall prevalence of mupirocin resistance, our data provided a baseline overview of the rates of resistance to mupirocin at Tygerberg Hospital. We reported high rates of low-level mupirocin resistance, driven by spa types t012 and t037, and low rates of high-level resistance, associated with spa type t032. Our study advocates for the continuous screening for mupirocin resistance in S. aureus from a wide range of clinical specimens in order to monitor resistance rates and to inform prescribing practices.
Antimicrob Chemother. 2015; divk169. Available from: http://www.jac.oxfordjournals.org/lookup/doi/https://doi.org/10.1093/jac/divk169.

11. Schmitz FJ, Jones ME. Antibiotics for treatment of infections caused by MRSA and elimination of MRSA carriage. What are the choices? Int J Antimicrob Agents. 1997;9:1–19.

12. Conly JM, Johnston BL. Mupirocin - Are we in danger of losing it? Can. J Infect Dis. Pulsys Group Inc; 2002. p. 157–9.

13. Hetem DJ, Bonten MJM. Clinical relevance of mupirocin resistance in Staphylococcus aureus. J Hosp Infect. 2013;79:249–56.

14. Hodgson JE, Cumock SP, Dyke KGH, Morris R, Sylverster DR, Gross MS. Molecular characterization of the gene encoding high-level mupirocin resistance in Staphylococcus aureus J2870. Antimicrob Agents Chemother. 1994;38:5–8.

15. Antonio M, McFerran N, Pallen MJ. Mutations affecting the Rossmann fold of isoleucyl-tRNA synthetase are correlated with low-level mupirocin resistance in Staphylococcus aureus. Antimicrob Agents Chemother. 2002;46:438–42.

16. Hurdle JG, O’Neill AJ, Ingham E, Fishwick C, Chopra I. Analysis of mupirocin resistance and fitness in Staphylococcus aureus by molecular genetic and structural modeling techniques. Antimicrob Agents Chemother. 2004;48:4366–76.

17. Lee AS, Gizard Y, Empel J, Bonetti EJ, Harbarth S, François P. Methicillin-resistant Staphylococcus aureus J2870. J Clin Microbiol. 2014;52:3749–54.

18. Gilbart J, Perry CR, Stobbe CM. High-level mupirocin resistance in Staphylococcus aureus: evidence for two distinct isoleucyl-RNA synthetase. Antimicrob Agents Chemother. 1993;37:32–8.

19. Seeh C, Alexander DC, Louie L, Tenover FC. Characterization of nasal and blood culture isolates of methicillin-resistant Staphylococcus aureus from patients in United States hospitals. Antimicrob Agents Chemother. 2012;56:1324–30.

20. Patel JB, Gorwitz RJ, Morrison JA, Mupirocin Resistance. Clin Infect Dis. 2009;49:3935–41.

21. Tenover FC, Tickler IA, Goering RV, Kreiswirth BN, Mediavilla JR, Perninga DH. Phenotypic and genotypic determinants of mupirocin resistance and fitness in methicillin-resistant Staphylococcus aureus. J Hosp Infect. 2013:249–56.

22. Goudarzi M, Kobayashi N, Hashemi A, Fazeli M, Navidinia M. Genetic variability of methicillin resistant Staphylococcus aureus strains isolated from burns patients. Osong Public Health Res Perspect. 2019;10:1–7.

23. Marais E, Aithna M, Perovic O, Oosthuysen WF, Musenge E, Duél AG. Prevalence and trends of Staphylococcus aureus bacteraemia in hospitalized patients in South Africa, 2010 to 2012: laboratory-based surveillance mapping of antimicrobial resistance and molecular epidemiology. PLoS One. 2015;10:1–14.

24. Singh-Moodley A, Perovic O, Characterisation of Staphylococcus aureus bloodstream isolates from Gauteng and Western Cape provinces, South Africa, 2016 and 2017. Public Heal Survell Bull. 2018;16:99–106.

25. CLSI. M24-A12 Performance Standards for Antimicrobial Disk. Cli. 2015.

26. Harmsen D, Claus HH, Witte W, Rothäger J, Turnwald D, Voge U, et al. Typing of methicillin-resistant Staphylococcus aureus in a university hospital setting by using novel software for spa repeat determination and database management. J Clin Microbiol. 2003;41:5442–8.

27. Mahmoudi S, Mamiśli S, Mohammadi M, Banar M, Ashrtani MTH, Mahzari M, et al. Phenotypic and genotypic determinants of mupirocin resistance among Staphylococcus aureus isolates recovered from clinical samples of children: an Iranian hospital-based study. Infect Drug Resist. 2019;12:137–43.

28. Wättergross E, Orth H, Senekal H, Harvey K. High prevalence of mupirocin resistance associated with resistance to other antibacterial agents in Staphylococcus aureus isolates from patients in private health care, Western Cape, South Africa. J Infect Dis. 2014;29.

29. Zinn CS, Westh H, Rosdahl VT. An international multicenter study of antimicrobial resistance and typing of hospital Staphylococcus aureus isolates from 21 laboratories in 19 countries or states. Microb Drug Resist. 2004;10:160–8.

30. Walker ES, Vasquez JE, Dula R, Bullock H, Sarubbi FA. Mupirocin-resistant, methicillin-resistant Staphylococcus aureus: does Mupirocin remain effective? Infect Control Hosp Epidemiol. 2003;24:342–6.

31. Simor AE, Phillips E, McGeer A, Konvalinka A, Loeb M, Devlin HR, et al. Randomized controlled trial of Chlorhexidine Gluconate for washing, intranasal Mupirocin, and rifampin and doxycycline versus no treatment for the eradication of methicillin-resistant Staphylococcus aureus colonization. Clin Infect Dis. 2007;44:178–85.

32. Shittu AO, Lin J. Antimicrobial susceptibility patterns and characterization of clinical isolates of Staphylococcus aureus in KwaZulu-Natal province. South Africa BMC Infect Dis. 2006;6:125.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.