Nanovaccine Confers Dual Protection Against Influenza A Virus and Porcine Circovirus Type 2

Peiyang Ding1,2,*
Qiuyue Jin1,3,*
Xinping Chen1
Suzhen Yang1
Junqing Guo1
Guangxu Xing1
Ruigang Deng1
Aiping Wang4
Gaiping Zhang1

1Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People’s Republic of China; 2College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, People’s Republic of China; 3School of Life Sciences, Zhengzhou University, Zhengzhou 450001, People’s Republic of China; 4Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, People’s Republic of China
*These authors contributed equally to this work

Correspondence: Aiping Wang
School of Life Sciences, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
Tel +86 371 67739345
Fax +86 371 63558998
Email pingaw@126.com

Gaiping Zhang
College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, People’s Republic of China
Tel +86 371 65723268
Fax +86 371 65738179
Email zhanggaip@126.com

Background: The influenza A virus (IAV) is known for its high variability and poses a huge threat to the health of humans and animals. Pigs play a central role in the cross-species reassortment of IAV. Ectodomain of matrix protein 2 (M2e) is the most conserved protective antigen in IAV and can be used to develop nanovaccines through nanoparticles displaying to increase its immunogenicity. However, the high immunogenicity of nanoparticles can cause the risk of off-target immune response, and excess unwanted antibodies may interfere with the protective efficacy of M2e-specific antibodies. Therefore, it is necessary to select reasonable nanoparticles to make full use of antibodies against nanoparticles while increasing the level of M2e-specific antibodies. Porcine circovirus type 2 (PCV2) is the most susceptible virus in pigs and can promote IAV infection. It is meaningful to develop a vaccine that can simultaneously control swine influenza virus (SIV) and PCV2.

Methods: In the present study, M2e of different copy numbers were inserted into the capsid (Cap) protein of PCV2 and expressed in Escherichia coli to form self-assembled chimeric virus-like particles (VLPs) nanovaccine. BALB/c mice and pigs were immunized with these nanovaccines to explore optimal anti-IAV and anti-PCV2 immunity.

Results: Cap is capable of carrying at least 81 amino acid residues (three copies of M2e) at its C-terminal without impairing VLPs formation. Cap-3M2e VLPs induced the highest levels of M2e-specific immune responses, conferring protection against lethal challenge of IAVs from different species and induced specific immune responses consistent with PCV2 commercial vaccines in mice. In addition, Cap-3M2e VLPs induced high levels of M2e-specific antibodies and PCV2-specific neutralizing antibodies in pigs.

Conclusion: Cap-3M2e VLP is an economical and promising bivalent nanovaccine, which provides dual protection against IAV and PCV2.

Keywords: influenza A virus, porcine circovirus type 2, M2e, nanovaccine, virus-like particles, bivalent vaccine

Introduction
It is been 100 years since the 1918 Spanish flu (1918–1919) pandemic ended.1,2 Vaccines and treatments of influenza A virus (IAV) have continuously improved during the past 100 years.2 But the IAV remains a deadly threat over humans and animals. The IAV is known for its extreme variability because its genome consists of 8 segments of negative-strand RNA and is highly susceptible to mutation and recombination.3,4 There are usually no antibodies in human blood against IAV from other species; therefore, once the IAV crosses the species barrier into humans, it can be extremely lethal.5 Like the 1918 pandemic H1N1 IAV, the 2009 pandemic swine-origin H1N1 IAV was circulated in swine before it emerged in humans.1,6 The pandemic H3N2 IAV in
1968 was closely related to avian influenza virus (AIV) and later spread into pigs.\(^7\)\(^9\) It is now clear that swine, as “mixing vessel” hosts, contain receptors for IAV of human, avian and swine origin, support replication and reassortment of this IAV.\(^10\)\(^12\) The highly pathogenic H5N1 and H7N9 AIV (HP-AIV) have failed to spread widely among humans because these HP-AIVs have not yet stably propagated and spread in human respiratory epithelial cells. However, once these HP-AIVs acquire the ability to fully adapt to human respiratory epithelial cell receptors in the respiratory epithelial cells of pigs, it will be extremely terrible.\(^13\)\(^17\) Therefore, it is urgent to establish an IAV immune defense line for pigs to effectively prevent and control the outbreak of pandemic influenza.\(^17\)\(^18\)

Vaccines are essential weapons in establishing the immune defense line. Regrettably, current IAV vaccines only provide effective protection against matching strains.\(^19\) More importantly, the global swine influenza virus (SIV) surveillance program is lacking, and it is difficult to effectively detect the changes of IAV in pigs in real time. Therefore, it is imperative to develop a universal influenza vaccine for pigs.\(^2\)\(^20\)\(^21\) Unlike the high variability of hemagglutinin (HA) and neuraminidase (NA), the matrix 2 protein (M2e) is the most conserved surface protein of all subtypes of IAV.\(^22\) M2e-specific antibodies can be utilized in the treatment of human influenza and protect animals from lethal attacks by various IAV. Therefore, M2e is a promising candidate for the development of a universal IAV vaccine.\(^23\)\(^24\) However, M2e is composed of 23 amino acid residues, and it is difficult to induce an effective level of antibodies in a natural state.

Various platforms have been used to improve the immunogenicity of M2e, in which protein nanoparticles are the most dazzling.\(^2\)\(^5\)\(^2\)\(^6\)\(^2\)\(^7\)\(^2\)\(^8\)\(^2\)\(^9\)\(^2\)\(^0\)\(^2\)\(^1\) However, protein nanoparticles with strong immunogenicity can induce large amounts of unwanted antibodies leading to off-target effects, which are detrimental to the accurate generation of high levels of M2e-specific antibodies.\(^2\)\(^6\) A reasonable strategy is to select the appropriate presentation site on appropriate protein nanoparticles so that M2e can be fully exposed, such as N-terminal, C-terminal, or loops, while taking advantage of the unwanted antibodies for synergistic effect. Virus-like particles (VLPs) have editable sequences, large molecular weight, and precisely defined surface repeat structures that provide the opportunity to crosslink with more BCR receptors.\(^2\)\(^8\)\(^2\)\(^9\)\(^3\)\(^0\)\(^3\)\(^1\) However, these VLPs-M2e vaccines induced only a small fraction of antibodies against M2e, and a large number of antibodies to VLPs are useless. Therefore, it is necessary to select suitable VLPs to display a reasonable copy number of M2e at a suitable site. More importantly, a suitable VLP vector can become a potential bivalent vaccine, which simultaneously induces M2e-specific antibodies and protective antibodies against the corresponding viruses.

Porcine circovirus type 2 (PCV2), the smallest mammalian virus, causes severe immunosuppression and plays an important role in co-infection and multiple infection in pigs.\(^3\)\(^2\)\(^3\)\(^3\) Pigs infected with PCV2 promote SIV infection and increase clinical symptoms associated with SIV.\(^3\)\(^3\)\(^3\)\(^5\) Excitingly, vaccination with PCV2 vaccine can reduce the susceptibility of pigs to other viruses.\(^3\)\(^2\) Therefore, co-prevention of PCV2 and SIV is very necessary. The unique capsid (Cap) protein of PCV2 can self-assemble to form VLPs, which is an ideal candidate for PCV2 vaccines.\(^3\)\(^6\) The major neutralizing epitopes are located on the outer surface of PCV2 and away from the C-terminal.\(^3\)\(^7\)\(^3\)\(^8\)

In this study, we inserted different copy numbers of M2e into the C-terminal of the Cap protein of PCV2 to and self-assembled to form VLPs-based nanovaccines (Figure 1A). Then, we explored the rational display of the number of M2e in the mouse model to reach the best balance between anti-influenza and anti-PCV2. Results showed that the C-terminal of the Cap protein can display 3-sequential repeats of M2e (81 amino acid residues) without affecting the assembly of Cap VLPs (Figure 1B). The Cap-3M2e VLP nanovaccine induced the highest levels of M2e- and PCV2-specific neutralizing antibodies and protected mice from lethal infections of IAV of human, avian and swine origin.

Materials And Methods

Materials

Porcine Kidney-15 (PK-15) cells and MDCK cells were acquired from ATCC (Manassas, VA, USA). The PCV2 strain (GenBank: ADG07991) and several IAV strains (A/swine/Zhucheng/90/2014 (H1N1), A/swine/Henan/1/2010 (H3N2), A/Puerto Rico/8/1934 (H1N1), A/chicken/Guangzhou/GZ/2005 (H9N2) and A/Caliifornia/07/2009 (H1N1)) used in this research were stored in the laboratory. Carbopol 971P NF polymer (Carbomer) was purchased from Lubrizol (Cleveland, OH, USA). These M2e peptides used in the experiments are given in Table 1.

Expression And Purification Of Recombinant Cap-nM2e Protein

Different sequential repeats of the M2e peptide (SLLTEV ETPTRNGWESRYSDSSD) were combined with the C-terminal of the Cap protein (without nuclear localization
signal) using Gly-Gly-Gly-Gly linker (Figure 1A). Then, these sequences were cloned into the pET28a vector by double digestion with BamHI and HindIII and transformed into E. coli BL21 (DE3). Expressed protein amino acid
sequence is available in Note S1 (Supporting Information). For protein expression, these recombinant cells were induced expression at 18°C for 12 hrs by isopropyl-β-d-thiogalactoside (IPTG) at a final concentration of 0.1 mM. These Cap-nM2e proteins were purified by using Ni-NTA His Bind Resin (Novagen, Madison, WI, USA). These purified Cap-nM2e proteins were determined by SDS-PAGE. Then, in order to determine the reactogenicity of these proteins, Western blotting was performed using M2e-specific monoclonal antibody (14C2) and PCV2 polyclonal antibody. These Cap-nM2e proteins were dialyzed into the assembly buffer (10 mM Tris-HCl, 100 mM NaCl (pH 8.0)). These protein concentrations were determined with a BCA protein assay kit (Thermo) and then were tested for endotoxin concentrations using a ToxinSensor Single Tests Kit (GenScript, USA).

Particle Characteristics Of Cap-nM2e VLPs

The shape, size, and size distribution of the Cap-nM2e VLPs were determined by transmission electron microscopy (TEM) (JEM-1400; JEOL Ltd., Tokyo, Japan). Hydrodynamic diameter and zeta potential of these VLPs were monitored by dynamic light scattering (DLS) (Malvern, Worcestershire, UK) at 25°C.

Antigenic Characterization Of Cap-nM2e VLPs

To further determine whether insertion of these M2e affects the self-assembly of Cap VLPs and whether M2e on the outer surface of these VLPs, we evaluated the binding ability of different monoclonal antibodies to these VLPs by ELISA. Cap VLPs and Cap-nM2e VLPs were coated on 96-well microtiter plates with 100 µL of a 1/2-dilution series of carbonate buffer (pH 9.6) at 4°C overnight. The plates were washed with PBST buffer and blocked with skim milk (5% in PBST) at room temperature for 2 hrs. After washing with PBST five times, M2e-specific rabbit polyclonal antibody (Abcam, USA), PCV2-specific mouse monoclonal antibodies (mAb) 9F4, 6A5, and 8A10 (stored in our lab) were added to the wells and then incubated for 1 hr at 37°C, respectively.39 Mice were immunized with the commercial Inactivated PCV2 vaccine (Merial) for 4 times. These mAbs were obtained by screening for hybridoma cells capable of secreting mAbs that bind to PCV2 (GenBank: ADG07991). Then, the epitope characteristics corresponding to these monoclonal antibodies were identified. After washing with PBST five times, HRP-labeled goat anti-rabbit or anti-mouse IgG were added and incubated for 1 hr at 37°C. The reaction was developed using 3,3,5,5-tetramethylbenzidine (TMB) as the substrate. The OD value at 450 nm of each well was measured using an ELISA reader.

Immunization And Challenge

Groups of 6–8-week-old female BALB/c mice (24/group) were subcutaneously immunized (100 µL) thrice at an interval of 3 weeks with M2e peptide (2.2 µg), Cap-M2e VLPs (22.2 µg), Cap-2M2e VLPs (24.4 µg), Cap-3M2e VLPs (26.6 µg) or Cap VLPs (20 µg) (Cap molar equivalent). The dose of Cap VLPs is 20 µg to ensure that the candidate vaccine achieves the same level of protection as the commercial PCV2 vaccine. Carbopol 971P, an adjuvant, was mixed with the candidate vaccine at equal volume with a final concentration of 0.1%. Mice in another group were immunized with commercial PCV2 subunit vaccine (Ingelvac CircoFLEX®, Boehringer Ingelheim) (100 µL) as the positive control. Immune component of each group is available in Table 2. Sera samples were harvested at 63 days post-immunization (dpi) and stored at −20°C until use. Nine mice from each group were lightly anesthetized and intranasally challenged with lethal doses of different subtypes of IAV strains at 64 dpi. IAV strains used for challenging were A/swine/Zhucheng/90/2014 (H1N1), A/swine/Henan/1/2010 (H3N2), A/Puerto Rico/8/1934 (H1N1) and A/chicken/Guangzhou/GZ/2005 (H9N2).

Table 2 Immune Component Of Each Group

Immunogen	Adjuvant	Dose And Volume	Number Of Mice
M2e	Carbopol 971P	2.2µg;100µL	24
Cap-M2e VLPs	Carbopol 971P	20µg;100µL	24
Cap-2M2e VLPs	Carbopol 971P	22.2µg;100µL	24
Cap-3M2e VLPs	Carbopol 971P	24.4µg;100µL	24
Cap VLPs	Carbopol 971P	26.6µg;100µL	24
PCV2 subunit vaccine (Ingelvac CircoFLEX®)	Aqueous polymer	Unknown;100µL	24

Notes: Immune component of each group.
Abbreviations: Cap, Capsid; M2e, ectodomain of matrix protein 2; VLPs, virus-like particles; PCV2, porcine circovirus type 2.
Body weight loss and survival rates were monitored daily for 14 days post-challenge (dpc). Weight loss of ≥ 25% was considered as the endpoint at which moribund mice were killed, according to the Institutional Animal Care and Use Committee (IACUC) guidelines.

Fifteen 3-week-old pigs were randomized into three groups. These pigs were obtained from conventional herds and were serologically free of SIV, PCV2. PCV2-specific maternal antibodies could be detected in these pigs (maternal antibodies), but no M2e- and SIV-specific antibodies were detected. Group one were immunized with 266 μg Cap-3M2e VLPs (1 mL). Group two were immunized with commercial PCV2 subunit vaccine (product manual recommended to use 1 mL). Group three were immunized with 1mL PBS (PBS was mixed with the same amount of carbomer adjuvant) (Figure 9A).

Detection Of M2e- And PCV2-Specific Antibodies

M2e- and PCV2-specific antibodies and antibody subtypes in sera were determined by indirect ELISA. M2e peptide (1 μg/mL) was coated on 96-well ELISA plates for detecting antibodies to M2e. Commercial PCV2 antibody test kit (purified and inactivated PCV2 as coated antigens) (BioChek, Reeuwijk, Holland) was utilized to detect anti-PCV2 antibodies. After addition of sera, HRP-labeled goat anti-mouse or pig IgG, IgG1 or IgG2a were added. The color reaction was performed using TMB and then stopped with 2 M H₂SO₄. The level of sera M2e-specific IgG or IgG subtype titers was measured by antibody endpoint titer. The highest dilution which gives an OD450 value twice that of the naïve group at the same dilution was considered as the antibody endpoint titer.

The native M2 protein has a low abundance on IAV, but is abundantly expressed on IAV-infected MDCK cells, so immunoperoxidase monolayer assay (IPMA) can be used to detect antibody levels against native M2e in sera. Briefly, MDCK cells were seeded in 96-well plates at 2 × 10⁴ cells per well. MDCK cells grew to 80% confluency after approximately 12 hrs of incubation. Then, the cells were infected with different IAV strains (A/swine/Zhucheng/90/2014 (H1N1), A/swine/Henan/1/2010 (H3N2), A/Puerto Rico/8/1934 (H1N1), A/chicken/Guangzhou/GZ/2005 (H9N2)) and A/California/07/2009 (H1N1)) (100 μL) of 100 TCID₅₀, respectively. After incubation for 24 hrs, these cells were fixed with pre-cooled ethanol at −20 °C for 30 mins. After blocking with 5% skimmed milk at 37 °C for 1 hr, the cells were incubated with 2-fold serially diluted sera. Then, HRP-labeled goat anti-mouse or pig IgG was added. The color was developed with 3-Amino-9-ethylcarbazole (AEC). The highest dilution of wells with red particles was recorded as the titer of native M2e-specific antibodies in serum.

Virus Neutralization Test

IPMA was used to evaluate the PCV2-specific neutralizing antibodies in sera, according to the previous method. Briefly, the sera were inactivated for 30 mins at 56 °C and then serially diluted at 2-fold. The dilute sera were mixed with 200 TCID₅₀ of PCV2 at ratio 1:1 and incubated for 1 hr at 37°C. Subsequently, the mixtures were added to 96-well plates containing 20% confluent PK-15 cells. After incubation for 1hr at 37 °C, cell supernatants were discarded and fresh DMEM (2% FBS) was added. These cells were cultured for 72 hrs at 37 °C, and supernatants were discarded and then cells were fixed with pre-cooled ethanol. After blocking with 5% skimmed milk, the cells were incubated with 9F4 mAb, followed by HRP-labeled goat anti-mouse IgG. The color cells were developed with AEC. Neutralizing antibody titers were evaluated as the reciprocal of the highest dilution that completely protected PK-15 cells.

Lymphocyte Proliferation Assay

Three weeks after the final immunization, spleens were collected from immunized mice (n=3) from each group, and then lymphocytes were isolated. The lymphocytes were seeded into 96-well plates at 100 μL per well (5 × 10⁵ cells/mL in RPMI-1640 medium (10% FBS)). Then, lymphocytes were stimulated with M2e peptide (20 μg/mL) or Cap VLPs (20 μg/mL), respectively. The negative control group was stimulated with the medium. There are three parallel repeats per sample. Lymphocyte proliferative responses were determined using CCK-8 (Beyotime, Shanghai, China), 60 hrs after incubation. The stimulation index (SI) was calculated using the following formula:

\[
SI = \frac{the \ mean \ of \ OD \ 450 \ nm \ values \ of \ M2e \ or \ Cap \ VLPs \ stimulated \ wells}{the \ mean \ of \ OD \ 450 \ nm \ values \ of \ medium \ treated \ wells}
\]

Cytokine Detection

Cytokines (IL-2, IL-4, IL-10, IL-12, and IFN-γ) in the supernatant of stimulated lymphocytes were determined.
by ELISA kits (R&D Systems, R&D Minneapolis, MN, USA), after lymphocytes were incubated for 72 hrs. There are three parallel repeats per sample.

Determination Of IAV Titers
Mice (n=4) from each challenged group were sacrificed at the time when the virus reached its highest levels in the lungs of mice. Briefly, the lung tissues were homogenized and diluted with DMEM to achieve 10% (w/v) suspension and then centrifuged to remove tissue debris (10,000 rpm, 10 mins). The MDCK cells were seeded at 5 × 10^4 cells/well in 96-well cell culture plates. After cell adherence, the cells were infected with 100 µL of 10-fold serially diluted lung homogenate supernatant. After incubation for 1hr, supernatants were removed and fresh DMEM was added. After 24 hrs of incubation, cells were fixed, followed by IPMA to determine virus titration via TCID_{50} assay. IAV-specific mAbs were used as primary antibodies. The virus titers were measured by the Reed and Muench method.

Passive Immunization Of Mice
To explore the protective effects of M2e-specific antibody subtypes, 200 µL pooled sera from Cap-M2e VLPs-immunized mice or 34-time diluted from Cap-3M2e VLPs-immunized mice were intraperitoneally transferred to naïve mice. Before the injection, immunized sera were heat-inactivated at 56 °C for 30 mins. Twenty-four hours post-transfer, mice were challenged with 2 × LD_{50} of A/Puerto Rico/8/1934 (H1N1). Body weight loss and survival rates were monitored daily for 14 days (Figure 7A).

Cross-Binding Tests To M2e Of Different IAV Subtypes
Cross-binding ability of sera from Cap-3M2e VLPs-immunized mice or pigs to M2e peptides of various IAV strains was measured by ELISA. M2e peptides (1 µg/mL) were coated on 96-well microtiter plates as antigen (M2e peptides were coated directly to the plates). Plates were blocked by skim milk (5% in PBST), followed by an incubation with serially diluted sera samples. Then, the HRP-conjugated secondary antibodies were added. The reaction was developed using TMB. The level of sera M2e-specific IgG or IgG subtype titers was measured by antibody endpoint titer. The highest dilution which gives an OD450 value twice that of the naïve group at the same dilution was designated as the antibody endpoint titer.

Ethics Statement
All BALB/c mice received humane care in compliance with the animal welfare guidelines of the Institutional Animal Care and Use Committee (IACUC) under the approval of the Henan Academy of Agricultural Sciences (Approval number SYXK 2014–0007). All efforts were made to alleviate and minimize animal suffering.

Statistical Analysis
Statistical data analyses were performed via GraphPad Prism 7.0 (GraphPad Software, San Diego, CA, USA). All data were expressed as means ± SEM. Comparisons among vaccinated groups were performed using one-way ANOVA analysis. Statistical significance was determined at p < 0.05 (*), p < 0.01 (**), p < 0.001 (**), p < 0.0001 (**).
which recognize neutralizing epitopes on the outer surface of the Cap VLPs. These results indicate that the C-terminus of the Cap protein can insert three copies of M2e without masking the neutralizing epitope of Cap VLPs (Figure 2E and F). However, 8A10 can recognize the decoy epitope Cap (169–180) of PCV2, which was exposed in Cap protein monomers, but masked when forming VLPs. ELISA results showed that the insertion of three M2e peptides did not affect the Cap protein to form VLPs (Figure 2G). In general, PCV2 neutralizing epitopes and three copies of M2e were exposed on the surface of VLPs. The Cap-nM2e VLP has the potential to simultaneously induce antibodies against PCV2 and M2e.

Humoral Immune Effects Of Cap-nM2e VLPs

As shown in Figure 3A, mice were immunized 3 times and sera were collected at 63 dpi. All Cap-nM2e VLP-immunized mice were vaccinated with equal amounts of Cap VLPs. As shown in Figure 3B, Cap-3M2e VLPs induced significantly the highest titers of M2e-specific IgG in all groups than that of the M2e peptides. The highest dilution of M2e-specific IgG in the Cap-3M2e VLP group can reach 100×2^{15}. The M2e-specific IgG level of the Cap-3Me VLPs group was 34 times that of the Cap-Me VLPs group. The M2e-specific IgG1 level of the Cap-3Me VLPs group was 29 times that of the Cap-Me VLPs group, and the IgG2a level was 83 times (Figure 3C and D). The ratio of IgG1/IgG2a of Cap-3Me VLPs group was lower than Cap-Me VLPs and Cap-2Me VLPs groups. These results showed that M2e-specific antibodies induced by Cap-3M2e VLPs were more biased toward Th1-type immune response than other groups (Figure S1A, Supporting Information). Four IAV strains which were used to challenge mice in this study were utilized to infect MDCK cells for the detection of the binding capacity of M2e-specific antibodies in sera to native M2e from different strains. The immune sera reacted similarly to the native M2e and M2e peptide, suggesting that Cap-nM2e VLPs-induced
antibodies can recognize conformational epitopes on native M2e from different strains (Figure 3E). These results indicate that the display of M2e on the surface of Cap VLPs increases the immunogenicity of M2e, while multiple copies of the tandem display of M2e can further increase the level of induced antibodies.

As shown in Figure 3F, Cap-2M2e VLPs- and Cap-3M2e VLPs-induced PCV2-specific antibodies were lower than Cap VLPs and commercial subunit vaccine groups. But there was no significant difference between these groups in PCV2-specific neutralizing antibodies (Figure 3I). This may be because Cap-2M2e VLPs and Cap-3M2e VLPs induced a higher level of PCV2-specific IgG2a, which is more potent in antiviral immunity than IgG1 (Figure 3G and H and Figure S1B). In summary, these Cap-nM2e VLPs induced high levels of M2e-specific antibodies and PCV2-specific neutralizing antibodies simultaneously. The Cap-3M2e VLPs have the most potential to become bivalent vaccines for IAV and PCV2 than Cap-M2e VLPs and Cap-2M2e VLPs.

Lymphocyte Proliferation Assay And Cytokines

As shown in Figure 4A, under the stimulation of M2e, the stimulation index (SI) in the Cap-3M2e VLPs group was
significantly higher than SI in the other groups. However, the SI in the Cap-3M2e VLPs group was significantly lower than SI in Cap VLPs when Cap VLPs were stimulated. This is caused by Cap-3M2e VLPs that displayed more M2e, while some epitopes on Cap VLPs were masked by 3M2e. IL-4 and IL-10 are Th2-biased cytokines that promote the production of IgG1.42,43 Cap-3M2e VLPs induced the highest levels of IL-4 and IL-10 when M2e stimulated, but the lowest levels of IL-4 and IL-10 when Cap VLPs stimulated (Figure 4C and D). Correspondingly, the Cap-3M2e VLPs induced the highest M2e-specific IgG1 and the lowest PCV2-specific IgG1 (Figure 3C and G). IL-2, IL-12 and interferon-gamma (IFN-γ) are Th1-biased cytokines that stimulate the production of IgG2a.42,43 The Cap-3M2e VLPs group induced the highest levels of IL-2, IL-12 and IFN-γ (Figure 4B, E and F). Correspondingly, the M2e- and PCV2-specific IgG2a in the Cap-3M2e VLPs group was greater than other groups (Figure 3D and H). These results suggest that Cap-3M2e VLPs elicit a balanced Th1/Th2 immune response than Cap-M2e VLPs and Cap-2M2e VLPs groups.

Protective Efficacy Of Cap-nM2e VLPs Against SIV

Mice were challenged with 5 × LD50 of A/swine/Zhucheng/90/2014 (H1N1) or A/swine/Henan/1/2010 (H3N2) virus to evaluate the protective efficacy of Cap-nM2e VLPs to different subtype SIV, at 64 dpi. Four mice from each group were sacrificed at 3 dpc, at which time the virus titers were highest in the lungs. As shown in Figure 5, all mice immunized with M2e alone or Cap VLPs died by 5 to 6 dpc (Figure 5B and E) with the highest virus titers in the lungs (Figure 5C and F) and over 25% body weight loss (Figure 5A and D). The protection efficacy of Cap-3M2e VLPs was the highest among all groups and conferred complete protection against H1N1 and H3N2 SIV. The virus titers in the lungs of the Cap-3M2e VLPs group were much lower than that of the Cap VLPs group (18 times lower for H1N1 SIV and 42 times lower for H3N2 SIV). In general, Cap-3M2e VLPs have the best immune protection.

Protective Efficacy Of Cap-3M2e VLPs Against Human And Avian IAV

Mice were challenged with 5 × LD50 of A/Puerto Rico/8/1934 (H1N1) or 20 µL 109 TCID50/mL of A/chicken/Guangzhou/GZ/2005 (H9N2) to evaluate the protective efficacy of Cap-3M2e VLPs to human and avian IAV, at 64 dpi. Four mice from each group were sacrificed at 4 dpc, at which time the virus titers were highest in the lungs. As shown in Figure 6, all mice immunized with M2e alone died by 4 to 6 dpc (Figure 6B and E) with higher virus titers in the lungs (Figure 6C and F) and over 25% body weight loss (Figure 6A and D).
Passive immunization experiment results displayed that Cap-3M2e VLPs-immunized mice sera can provide protection against human and avian IAV (Figure S2). These results further suggest that Cap-3M2e VLPs can induce antibody responses and provide protective immunity to IAV from different origins.
Role Of M2e-Specific Antibody Subtype In Immune Protection

As shown in Figure 3B and D, the IgG2a/IgG ratio of Cap-3Me VLPs group was 2.44 times that of the Cap-Me VLPs group. In order to verify whether M2e-specific IgG2a exerts a better antiviral effect than IgG1, we diluted the Cap-3M2e VLPs-immunized sera 34 fold, which is the same level as the antibody induced by Cap-M2e VLPs. IgG2a in diluted Cap-3M2e VLPs-immunized sera is 2.4 times that of Cap-M2e VLPs-immunized sera. Then, we transferred these sera to naïve mice intraperitoneally. After challenging, the survival rate in diluted Cap-3M2e VLPs-immunized sera group was higher (Figure 7C). In addition, weight loss in diluted Cap-3M2e VLPs-immunized sera group was lower (Figure 7B). These results indicate that M2e-specific IgG2a plays a central role in the anti-IAV process.

Sera Cross-Binding Capability Of M2e Of Various IAV Strains

To investigate whether Cap-3M2e VLPs have the potential ability to confer protection against IAV of different subtypes, we investigated the cross-binding activity of Cap-3M2e VLPs-immunized sera to M2e of different subtypes of IAV (Table 1). ELISA results showed that Cap-3M2e VLPs immune sera can bind to different M2es of different subtypes (from H1 to H11) of IAV including pandemic influenza, indicating that Cap-3M2e VLPs have the potential ability to provide cross-protection against diverse subtypes of IAV strains and can be a promising universal influenza vaccine (Figure 8).

Antibody Response In Pigs

To verify the reactivity of the Cap-3M2e VLPs in pigs, Cap-3M2e VLPs were injected into pigs to detect the antibody response. The commercial PCV2 subunit vaccine as a positive control. The nanovaccine induced high-level M2e-specific antibodies (Figure 9B). The binding capacity of swine sera to M2e of different IAV strains is similar to that of mice sera. The swine sera can react well with native M2e of several IAV strains that included the 2009 pandemic H1N1 IAV (Figure 9C). What is more, the nanovaccine induced high-level PCV2-specific antibodies and neutralizing antibodies which are similar to the commercial subunit vaccine (Figure 9D and E). In addition, swine sera can react well with M2e of various IAV strains, which are similar to mice sera.

Discussion

In this study, we designed and constructed a bivalent VLPs-based nanovaccine which confers dual protection...
Figure 8 Cross-binding ability of Cap-3M2e VLPs-immunized sera.

Notes: Cross-binding tests of sera from Cap-3M2e VLPs-immunized mice to M2e peptides of IAV of different subtypes (n=6). p < 0.001 (** **).

Abbreviations: Cap, Capsid; M2e, ectodomain of matrix protein 2; VLPs, virus-like particles; IAV, influenza A viruses.

Figure 9 Reactivity of the Cap-3M2e VLPs in pigs.

Notes: Cap-3M2e VLPs nanovaccine was injected into pigs twice to detect the antibody response. (A) Scheme of immunization. (B) Anti-M2e IgG levels in swine sera (n = 5). (C) Anti-native M2e IgG levels in swine sera. MDCK cells were infected with IAV (n = 5). (D) Anti-PCV2 IgG levels in swine sera, sera samples were diluted 1:10000 (n = 5). (E) PCV2-specific neutralizing antibodies' levels in swine sera (n = 5). These figures show the smallest difference between the PBS group and other two groups. p < 0.001 (** **), p < 0.0001 (** ** ** **).

Abbreviations: Cap, Capsid; M2e, ectodomain of matrix protein 2; VLPs, virus-like particles; IAV, influenza A viruses; PCV2, porcine circovirus type 2; MDCK, Madin–Darby canine kidney.
against IAV and PCV2. High variability is the most prominent feature of IAV. M2e is the most conserved protective antigen of all subtypes of influenza viruses, and so it is a very promising candidate for universal influenza vaccine. However, there are still some differences in the M2e sequence between different strains, which may affect the protective effect of the nanovaccine. Therefore, M2e-specific antibodies do not solely depend on the level of IgG2a, and more complex protection mechanisms need further study.

Previous studies have demonstrated protection against IAV challenge in animal models using different sites of different VLPs to display M2e, like hepatitis B virus core, human papillomavirus, nodavirus and rabbit hemorrhagic disease virus. However, other studies do not support this view. These studies demonstrate that alveolar macrophages, which express all activated FcγRs, are considered to play the key role in M2e-specific antibodies-dependent elimination of influenza A virus-infected cells. Moreover, Van den Hoecke Silvie et al revealed that by interacting with multiple activating FcgRs, mouse M2e-specific IgG2a are far more efficient in controlling IAV. In this research, we adjusted the IgG in Cap-3M2e VLPs-immunized sera and Cap-M2e VLPs-immunized sera to the same level, and then intraperitoneally injected into naïve mice, and found that the diluted Cap-3M2e VLPs-immunized sera group had better protection. This result supports the conclusion that M2e-specific IgG2a has a stronger protective effect than IgG1. However, there was only 2.4-fold difference in IgG2a levels between the two groups, and there was no significant difference between the protective effects. In addition, after the immune sera were diluted, the contents of other components in the serum (such as complement and IgG1) changed. Whether these ingredients play a protective role remains unclear, which is a limitation of the experiment. Previous researchers have found that IgG2a plays an important protective role through gene knockout mouse models. However, gene knockout cause mice immunodeficiency and can interfere with experimental results. Overall, the protective mechanism of M2e-specific antibodies does not solely depend on the level of IgG2a, and more complex protection mechanisms need further study.

VLPs are probably the most precisely defined nanometer-sized protein cage architectures that can be formed by self-assembly and serve as effective stand-alone vaccines. Previous studies have demonstrated protection against IAV challenge in animal models using different sites of different VLPs to display M2e, like hepatitis B virus core, human papillomavirus, nodavirus and rabbit hemorrhagic disease virus. In this study, we selected the VLPs of PCV2 to display M2e because PCV2 is often co-infected with SIV and aggravates SIV-related clinical disease. However, peptide insertions may affect the ability of recombinant Cap protein to assemble into VLPs. The N-terminal of the Cap protein is located inside the VLPs and cannot effectively induce antibodies. It is unsuitable for insertion of M2e. The C-terminal of the Cap protein is far from the 2-, 3-, and 5-fold axis of the VLPs and does not participate in the self-assembly of the Cap protein (Figure S3). More importantly, the C-terminal of the Cap protein is present on the surface of VLPs and can induce PCV2-specific antibodies. Therefore, the C-terminal of the Cap protein was utilized to display M2e. Although several prominent loops in the Cap protein have the potential to allow insertion or substitution of small fragments of foreign peptides, these positions are key neutralizing epitopes of PCV2 and may hinder the formation of VLPs. Insertion of M2e may reduce the level of neutralizing antibodies against PCV2 and interfere with self-assembly. Loop CD may be the most promising insertion site without destroying neutralizing epitopes and the self-assembly capability of the Cap protein (Figure S4). However, current research suggests that it may allow a maximum of 18 amino acid residues to be inserted. Therefore, the loop CD is not suitable for display M2e. Previous studies have shown that high-density display of M2e contributes to the improvement of M2e-specific antibody levels. Therefore, M2e-specific antibody levels can...
be elevated by tandem expression of multiple copies of M2e at the C-terminal of Cap. However, excessive M2e runs the risk of masking neutralizing epitopes of PCV2. In the research, 3M2e may mask a portion of the epitopes of PCV2, resulting in a decrease in the level of PCV2-specific antibodies induced by Cap-3M2e VLPs (Figure 3F). However, Cap-3M2e VLPs induced a higher level of PCV2-specific IgG2a, and thus the level of neutralizing antibodies induced by Cap-3M2e VLPs did not decrease (Figure 2H and I). The present study demonstrated that Cap is capable of carrying at least 81 amino acid residues at its C-terminal without impairing VLP formation, and without masking neutralizing epitope of PCV2, making it a potential carrier for bivalent nanovaccines.

The bivalent nanovaccine obtained from the E. coli expression system can be used as an effective universal influenza vaccine while providing efficient protection against PCV2. In addition, since almost no M2e-specific antibodies can be detected after influenza infection, the nanovaccine can be used as a M2e-labeled PCV2 vaccine to serologically distinguish the natural infection of PCV2, which is very beneficial for the promotion of the nanovaccine. In addition, it is very meaningful to prevent and control these two related respiratory diseases. It will save a lot of manpower and resources. A previous study showed that Cap VLPs could protect pigs against PCV2 and the protect efficiency is consistent with commercial vaccines.\(^\text{64}\) Present knowledge on the adaptive immune response against PCV2 infection suggests that neutralizing antibodies play a central role in antiviral responses, while cell-mediated responses play a supporting role.\(^\text{65}\) Although PCV2 has multiple subtypes, current vaccines can provide protection against viruses of various subtypes.\(^\text{65}\) In this research, Cap-3M2e VLPs can induce high levels of PCV2-specific neutralizing antibodies consistent with widely recognized commercialized PCV2 vaccine in mice and pig models. In the mice model, Cap-3M2e VLPs and commercialized PCV2 vaccine induced similar levels of Th1 (IL-2, IL-12 and IFN-γ) and Th2 (IL-4 and IL-10)-type immune-related cytokines, while PCV2-specific antibody subtypes were at the same level. Therefore, it is reasonable to believe that Cap-3M2e VLPs can provide protection against PCV2 in pigs. Although mice and pigs are suitable for IAV and PCV2 studies, it is hard to construct the co-infection model, and so we did not perform PCV2 challenge experiments in mice and pigs. In addition, previous studies show that M2e-based vaccines contributed to prevent SIV infection in pigs and can effectively reduce the shedding of SIV.\(^\text{40,66}\) This Cap-3M2e VLPs nanovaccine induces higher levels of M2e-specific antibodies than previous studies, and so we speculate that the nanovaccine can defend against the challenge of SIV. However, it does not fully indicate that the Cap-3M2e VLPs nanovaccine can provide protection for both PCV2 and SIV in the pig model experiment. Therefore, recommendations for future studies include optimization of assembly efficiency of the nanovaccine and challenge evaluation in pig model.

Conclusion

In summary, we developed an economical bivalent nanovaccine, which can provide protection against IAV from different species and induce high levels of PCV2-specific neutralizing antibodies. Three tandem copies of M2e were inserted into the C-terminal of Cap of PCV2 without burying neutralizing epitopes and expressed in E. coli and then self-assembled to form the nanovaccine. Inoculation with Cap-3M2e VLPs nanovaccine induced robust M2e- and PCV2-specific immune responses and provided protection against swine, human and avian IAV. We conclude that Cap-3M2e VLPs nanovaccine has the potential to be used as a PCV2 vaccine and cross-protective influenza A virus vaccine.

Acknowledgments

The authors are grateful to Professor Ning Sun (Henan University of Chinese medicine) for technical assistance with TEM analysis. The A/swine/Zhucheng/90/2014 (H1N1) virus was generously presented by Dr. Wenbo Sun (Shandong Academy of Agricultural Sciences). The A/swine/Henan/1/2010 (H3N2) virus was generously presented by Professor Xinshe Li (Henan Agricultural University). This work is funded by the National Key Research and Development Program of China (2016YFD0500701, 2016YFD0500709, 2017YFD0501103) and China Agriculture Research System (CARS-36); Science-Technology Foundation for Outstanding Young Scientists of Henan Academy of Agricultural Sciences (Grant no. 2018YQ29).

Disclosure

The authors report no conflicts of interest in this work.

References

1. Medina RA. 1918 influenza virus: 100 years on, are we prepared against the next influenza pandemic? *Nat Rev Microbiol.* 2018;16 (2):61–62. doi:10.1038/nrmicro.2017.174
2. Esposito S. 100 years since the 1918 influenza pandemic. *Hum Vaccin Immunother.* 2018;14(3):504–507. doi:10.1080/21645515.2018.1446591
3. Lowen AC. Constraints, drivers, and implications of influenza A virus reassortment. *Ann Rev Virool.* 2017;4(1):105–121. doi:10.1146/annurev-virology-101416-041726
4. Cheung TK, Poon LL. Biology of influenza a virus. *Ann N Y Acad Sci*. 2007;1102:1–25. doi:10.1196/annals.1408.001

5. Krammer F. The human antibody response to influenza A virus infection and vaccination. *Nat Rev Immunol*. 2019;19:383–397. doi:10.1038/s41577-019-0143-6

6. Neumann G, Noda T, Kawaoka Y. Emergence and pandemic potential of swine-origin H1N1 influenza virus. *Nature*. 2009;459(7249):931–939. doi:10.1038/nature08157

7. Khishaban H, Trifonov V, Rabadan R. Reassortment patterns in swine influenza viruses. *PloS Curr*. 2009;1:RRN1008. doi:10.1371/currents.rrn1008

8. Bean WJ, Schell M, Katz J, et al. Evolution of the H3 influenza virus hemagglutinin from human and nonhuman hosts. *J Virol*. 1992;66 (2):1129–1138.

9. Zhou N, He S, Zhang T, et al. Influenza infection in humans and pigs in southeastern China. *Arch Virol*. 1996;141(3–4):649–661. doi:10.1007/bf01718323

10. Reperant LA, Moesker FM, Osterhaus AD. Influenza: from zoonosis to pandemic. *ERJ Open Res*. 2016;2(1):00013–2016. doi:10.1183/23120541.00013-2016

11. Shortridge KF. Pandemic influenza: a zoonosis? *Semin Respir Infect*. 1992;7(1):11–25.

12. Nelson MI, Vincent AL. Reverse zoonosis of influenza a virus hemagglutinin from human and nonhuman hosts. *J Virol*. 2010;84(6):3294–3299

13. Kalthoff D, Globig A, Beer M. (Highly pathogenic) avian influenza as a zoonotic agent. *Vet Microbiol*. 2010;140(3–4):237–245. doi:10.1016/j.vetmic.2009.08.022

14. Liu Q, Liu DY, Yang ZQ. Characteristics of human infection with avian influenza a virus hemagglutinin and development of new antagonistic agents. *Acta Pharmacol Sin*. 2013;34(10):1257–1269. doi:10.1038/aps.2013.121

15. Gambotto A, Barratt-Boyce SM, de Jong MD, Neumann G, Kawaoka Y. Human infection with highly pathogenic H5N1 influenza virus. *Lancet*. 2008;371(9622):1464–1475. doi:10.1016/S0140-6736(08)60627-3

16. Short KR, Kedzierska K, van de Sandt CE. Back to the future: lessons learned from the 1918 influenza pandemic. *Front Cell Infect Microbiol*. 2018;8:343. doi:10.3389/fcimb.2018.00026

17. Pappaisanou M, Gramer M. Lessons from pandemic H1N1 2009 to improve prevention, detection, and response to influenza pandemics from a one health perspective. *Ikar J*. 2010;51(3):268–280. doi:10.1038/irar.51.3.268

18. Keshavarz M, Mirzaei H, Salemi M, et al. Influenza vaccine: where are we and where do we go? *Rev Med Virol*. 2019;29(1):e2014. doi:10.1002/rmv.2014

19. Vincent AL, Perez DR, Rajao D, et al. Influenza A virus vaccines for swine. *Vet Microbiol*. 2017;206:35–44. doi:10.1016/j.vetmic.2016.11.026

20. Cohen J. Pandemic influenza. Straight from the pig’s mouth: swine research with swine influenzas. *Science*. 2009;325(5937):140–141. doi:10.1126/science.325.140

21. Kolpe A, Schepens B, Fiers W, Saelens X. M2-based in

22. Cohen J. Pandemic influenza. Straight from the pig’s mouth: swine research with swine influenzas. *Science*. 2009;325(5937):140–141. doi:10.1126/science.325.140

23. Kolpe A, Schepens B, Fiers W, Saelens X. M2-based in

24. Neumann G, Noda T, Kawaoka Y. Emergence and pandemic potential of swine-origin H1N1 influenza virus. *Nature*. 2009;459(7249):931–939. doi:10.1038/nature08157

25. Khishaban H, Trifonov V, Rabadan R. Reassortment patterns in swine influenza viruses. *PloS Curr*. 2009;1:RRN1008. doi:10.1371/currents.rrn1008

26. Bean WJ, Schell M, Katz J, et al. Evolution of the H3 influenza virus hemagglutinin from human and nonhuman hosts. *J Virol*. 1992;66 (2):1129–1138.

27. Zhou N, He S, Zhang T, et al. Influenza infection in humans and pigs in southeastern China. *Arch Virol*. 1996;141(3–4):649–661. doi:10.1007/bf01718323

28. Kalthoff D, Globig A, Beer M. (Highly pathogenic) avian influenza as a zoonotic agent. *Vet Microbiol*. 2010;140(3–4):237–245. doi:10.1016/j.vetmic.2009.08.022

29. Liu Q, Liu DY, Yang ZQ. Characteristics of human infection with avian influenza a virus hemagglutinin and development of new antagonistic agents. *Acta Pharmacol Sin*. 2013;34(10):1257–1269. doi:10.1038/aps.2013.121

30. Gambotto A, Barratt-Boyce SM, de Jong MD, Neumann G, Kawaoka Y. Human infection with highly pathogenic H5N1 influenza virus. *Lancet*. 2008;371(9622):1464–1475. doi:10.1016/S0140-6736(08)60627-3

31. Short KR, Kedzierska K, van de Sandt CE. Back to the future: lessons learned from the 1918 influenza pandemic. *Front Cell Infect Microbiol*. 2018;8:343. doi:10.3389/fcimb.2018.00026

32. Pappaisanou M, Gramer M. Lessons from pandemic H1N1 2009 to improve prevention, detection, and response to influenza pandemics from a one health perspective. *Ikar J*. 2010;51(3):268–280. doi:10.1038/irar.51.3.268

33. Keshavarz M, Mirzaei H, Salemi M, et al. Influenza vaccine: where are we and where do we go? *Rev Med Virol*. 2019;29(1):e2014. doi:10.1002/rmv.2014

34. Vincent AL, Perez DR, Rajao D, et al. Influenza A virus vaccines for swine. *Vet Microbiol*. 2017;206:35–44. doi:10.1016/j.vetmic.2016.11.026

35. Cohen J. Pandemic influenza. Straight from the pig’s mouth: swine research with swine influenzas. *Science*. 2009;325(5937):140–141. doi:10.1126/science.325.140

36. Kolpe A, Schepens B, Fiers W, Saelens X. M2-based influenza vaccines: recent advances and clinical potential. *Expert Rev Vaccines*. 2017;16(2):123–136. doi:10.1080/14760584.2017.1240041

37. Schepens B, De Vlieger D, Saelens X. Vaccine options for influenza: thinking small. *Curr Opin Immunol*. 2018;53:22–29. doi:10.1016/j.coi.2018.03.024

38. Neirynck S, Deroo T, Saelens X, Vanlandschoot P, Jou WM, Fiers W. A universal influenza A vaccine based on the extracellular domain of the M2 protein. *Nat Med*. 1999;5(10):1157–1163. doi:10.1038/13484

39. Qi M, Zhang XE, Sun X, et al. Intranasal nanovaccine confers homo- and hetero-subtypic influenza protection. *Small*. 2018;14(13):e1703207. doi:10.1002/smll.201703207
44. Cho KJ, Schepens B, Moonens K, et al. Crystal structure of the conserved amino terminus of the extracellular domain of matrix protein 2 of influenza A virus gripped by an antibody. J Virol. 2016;90(1):611–615. doi:10.1128/JVI.02015-15

45. Cho KJ, Schepens B, Seok JH, et al. Structure of the extracellular domain of matrix protein 2 of influenza A virus in complex with a protective monoclonal antibody. J Virol. 2015;89(7):3700–3711. doi:10.1128/JVI.02576-14

46. Deng L, Cho KJ, Fiers W, Saelens X. M2e-based universal influenza A vaccines. Vaccines. 2015;3(1):105–136. doi:10.3390/vaccines3010105

47. Jegerlehner A, Schmitz N, Storni T, Bachmann MF. Influenza vaccine based on the extracellular domain of M2: weak protection mediated via antibody-dependent NK cell activity. J Immunol. 2004;172(9):5598–5605. doi:10.4049/jimmunol.172.9.5598

48. El Bakkouri K, Descamps F, De Filette M, et al. Universal vaccine based on ectodomain of matrix protein 2 of influenza A: Fe receptors and alveolar macrophages mediate protection. J Immunol. 2011;186(2):1022–1031. doi:10.4049/jimmunol.0902147

49. Song JM, Van Rooijen N, Bozja J, Compans RW, Kang SM. Vaccination inducing broad and improved cross protection against multiple subtypes of influenza A virus. Proc Natl Acad Sci U S A. 2011;108(2):757–761. doi:10.1073/pnas.1012199108

50. Van den Hoecke S, Ehrhardt K, Kolpe A, et al. Hierarchical and redundant roles of activating FcgammaRs in protection against influenza disease by M2e-specific IgG1 and IgG2a antibodies. J Virol. 2017;91(7). doi:10.1128/JVI.00955-17.

51. CARETTE N, ENGELKAMP H, AKPA E, et al. Virus-based bioconstruct. Nat Nanotechnol. 2007;2(4):226–229. doi:10.1038/nnano.2007.76

52. Kim MC, Sung JM, Eunjoo O, et al. Virus-like particles containing multiple M2 extracellular domains confer improved cross-protection against various subtypes of influenza virus. Mol Ther. 2013;21(2):485–492. doi:10.1038/tmt.2012.246

53. Kim MC, Lee JS, Kwon YM, et al. Multiple heterologous M2 extracellular domains presented on virus-like particles confer broader and stronger M2 immunity than live influenza A virus infection. Antiviral Res. 2013;99(3):328–335. doi:10.1016/j.antiviral.2013.06.010

54. Matie S, Rinaldi R, Masenga Y, Noris E. Efficient production of chimeric human papillomavirus 16 L1 protein bearing the M2e influenza epitope in Nicotiana benthamiana plants. BMC Biotechnol. 2011;11:106. doi:10.1186/1472-6750-11-35

55. Yong CY, Yeap SK, Ho KL, Omar AR, Tan WS. Potential recombinant vaccine against influenza A virus based on M2e displayed on nodavirus capsid nanoparticles. Int J Nanomedicine. 2015;10:2751–2763. doi:10.2147/IJN.S77405

56. Moreno N, Mena I, Angulo I, et al. Rabbit hemorrhagic disease virus capsid, a versatile platform for foreign B-cell epitope display inducing protective humoral immune responses. Sci Rep. 2016;6:31844. doi:10.1038/srep31844

57. Wang D, Zhang S, Zou Y, et al. Structure-based design of porcine circovirus type 2 Chimeric VLPs (cVLPs) displays foreign peptides on the capsid surface. Front Cell Infect Microbiol. 2018;8:232. doi:10.3389/fcimb.2018.00026

58. Zhang H, Qian P, Liu L, Qian S, Chen H, Li X. Virus-like particles of chimeric recombinant porcine circovirus type 2 as antigen vehicle carrying foreign epitopes. Viruses. 2014;6(12):4839–4855. doi:10.3390/v6124839

59. Liu Z, Guo F, Wang F, Li TC, Jiang W. 2.9 A resolution Cryo-EM 3D reconstruction of close-packed virus particles. Structure. 2016;24(2):319–328. doi:10.1016/j.str.2015.12.006

60. Barker S, Toret MC, Khandokar Y, et al. Structural insights into the assembly and regulation of distinct viral capsid complexes. Nat Commun. 2016;7:13014. doi:10.1038/ncomms13014

61. Hu G, Wang N, Yu W, et al. Generation and immunogenicity of porcine circovirus type 2 chimeric virus-like particles displaying porcine reproductive and respiratory syndrome virus G5s epitope of influenza A virus. Vaccine. 2016;34(16):1896–1903. doi:10.1016/j.vaccine.2016.02.047

62. Zhou C, Zhou L, Chen YH. Immunization with high epitope density of M2e derived from 2009 pandemic H1N1 elicits protective immunity in mice. Vaccine. 2012;30(23):3463–3469. doi:10.1016/j.vaccine.2012.03.021

63. Liu W, Peng Z, Liu Z, Lu Y, Ding J, Chen YH. High epitope density in a single recombinant protein molecule of the extracellular domain of influenza A virus M2 protein significantly enhances protective immunity. Vaccine. 2004;23(3):366–371. doi:10.1016/j.vaccine.2004.05.028

64. Xi X, Mo X, Xiao Y, et al. Production of Escherichia coli-based virus-like particle vaccine against porcine circovirus type 2 challenge in piglets: structure characterization and protective efficacy validation. J Biotechnol. 2016;233:8–12. doi:10.1016/j.jbiotec.2016.02.025

65. Segales J. Best practice and future challenges for vaccination against porcine circovirus type 2. Expert Rev Vaccines. 2015;14(3):473–487. doi:10.1586/14760584.2015.983084

66. Kitikoon P, Vincent AL, Janke BH, et al. Swine influenza matrix 2 (M2) protein contributes to protection against infection with different H1 swine influenza virus (SIV) isolates. Vaccine. 2009;28(2):523–531. doi:10.1016/j.vaccine.2009.09.130