Hyperfine splitting in positronium to $O(\alpha^7 m_e)$: one-photon annihilation contribution

M. Baker,1 P. Marquard,2 A.A. Penin,1,3 J. Piclum,4,5 and M. Steinhaeuser3

1Department of Physics, University of Alberta, Edmonton, Alberta T6G 2J1, Canada
2Deutsches Elektronen Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
3Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany
4Physik Department, Technische Universität München, 85748 Garching, Germany
5Institut für Theoretische Teilchenphysik und Kosmologie, RWTH Aachen, 52056 Aachen, Germany

We present the complete result for the $O(\alpha^7 m_e)$ one-photon annihilation contribution to the hyperfine splitting of the ground state energy levels in positronium. Numerically it increases the prediction of quantum electrodynamics by $217 \pm 1 \text{ kHz}$.

PACS numbers: 12.20.Ds, 31.30.jf, 36.10.Dr

Positronium, an electromagnetic bound state of an electron and a positron, is the lightest known atom. The strong interaction effects in positronium are suppressed by the small ratio of the electron mass m_e to the hadronic mass scale, and the properties of the bound state can be calculated perturbatively in quantum electrodynamics (QED) as an expansion in Sommerfeld’s fine-structure constant α, with very high precision only limited by the complexity of the calculations. Positronium is thus a unique laboratory for testing the QED theory of weakly bound systems. At the same time a deviation of the perturbative corrections to HFS split into nonanalytic and recoil effects. The result (5) is above the experimental precision [27, 28]. On the theoretical side the nonlogarithmic contribution to the HFS in muonium atom [26], which however does not include annihilation and recoil effects. The result (5) is above the experimental values (1) and (2) by 2.6 and 3.5 standard deviations, respectively. At the same time, it is only 1.2 standard deviations below the most recent result (3). Thus the status of the QED prediction for positronium HFS remains ambiguous.

Much activity is currently on the way to improve the experimental precision [27, 28]. On the theoretical side the accuracy is limited by the unknown third-order coefficient D. The corresponding uncertainty is only two to four times smaller than the experimental one and soon may become a limiting factor in the study of positronium HFS. On the other hand, the calculation of the nonlogarithmic third-order term in Eq. (5) would result in one of the most precise theoretical predictions in physics. This calculation, however, is an extremely challenging problem of perturbative quantum field theory complicated by the presence of multiple scales and bound-state dynamics.

In this Letter we make the first major step towards the solution of this problem and present the complete result for the $O(m_e \alpha^7)$ one-photon annihilation contribution. The perturbative corrections to HFS split into nonannihilation (radiative, radiative-recoil, and recoil corrections), one- and multiple-photon annihilation contribu-

$$\Delta \nu^\text{th} = 203.39169(41) \text{ GHz},$$

where the error is estimated by the size of the third-order nonlogarithmic contribution to the HFS in muonium atom [26], which however does not include annihilation and recoil effects. The result (5) is above the experimental values (1) and (2) by 2.6 and 3.5 standard deviations, respectively. At the same time, it is only 1.2 standard deviations below the most recent result (3). Thus the status of the QED prediction for positronium HFS remains ambiguous.

Much activity is currently on the way to improve the experimental precision [27, 28]. On the theoretical side the accuracy is limited by the unknown third-order coefficient D. The corresponding uncertainty is only two to four times smaller than the experimental one and soon may become a limiting factor in the study of positronium HFS. On the other hand, the calculation of the nonlogarithmic third-order term in Eq. (5) would result in one of the most precise theoretical predictions in physics. This calculation, however, is an extremely challenging problem of perturbative quantum field theory complicated by the presence of multiple scales and bound-state dynamics.

In this Letter we make the first major step towards the solution of this problem and present the complete result for the $O(m_e \alpha^7)$ one-photon annihilation contribution. The perturbative corrections to HFS split into nonannihilation (radiative, radiative-recoil, and recoil corrections), one- and multiple-photon annihilation contribu-

$$\Delta \nu^\text{LO} = 203.3875(16) \text{ GHz},$$

and

$$\Delta \nu^\text{exp} = 203.38910(74) \text{ GHz},$$

respectively. Recently a new result with reduced systematic uncertainty from the positronium thermalization effect has been reported [4] $$\Delta \nu^\text{exp} = 203.3941(16)_{\text{stat}}(11)_{\text{syst}} \text{ GHz},$$

which overshoots the previous measurements by 2.7 standard deviations.

The present theoretical knowledge may be summarized as:

$$\Delta \nu^\text{th} = \Delta \nu^\text{LO} \left(1 - \frac{\alpha}{\pi} \left[\frac{32}{27} \ln 2 + \frac{6}{7} \ln 2 \right] - \frac{5}{14} \alpha^2 \ln \alpha \right) + \frac{\alpha^2}{\pi^2} \left[\frac{1367}{378} - \frac{5197}{2016} \pi^2 + \frac{6}{7} \frac{221}{84} \pi^2 \right] \ln 2.$$
tions. The nonannihilation and one-photon annihilation parts constitute about 47% and 32% of the second-order nonlogarithmic correction, respectively. Thus the one-photon annihilation contribution to the coefficient D presumably gives a significant fraction of the total nonlogarithmic third-order correction.

In the following, we briefly outline our method of calculation. Perturbation theory of the positronium bound state has to be developed about the nonrelativistic Coulomb approximation rather than free electron and positron states. This can be done within the nonrelativistic effective field theory [29], which is a systematic way to separate the multiple scales characteristic to the bound-state problem. The bound-state dynamics involves three different scales: the hard scale of electron mass m_e, the soft scale of the bound-state three-momentum αm_e, and the bound-state energy $\alpha^2 m_e$. Integrating out the hard and soft degrees of freedom results in the potential nonrelativistic QED (pNRQED) [30], an effective Schrödinger theory of a nonrelativistic electron-positron pair interacting with ultrasoft photons, which is a relevant framework for the calculation of the QED corrections to the positronium spectrum. We use dimensional regularization to deal with spurious divergences which appear in the process of scale separation. Systematic use of dimensional regularization [19, 31, 32] based on the asymptotic expansion approach [33, 34] is instrumental for the high-order analysis as it provides “built in” matching of the effective theory calculations to full QED.

The positronium HFS is given by the difference between the binding energy of the ortho and parapositronium states.

$$\Delta \nu = E_0 - E_\nu.$$

The leading order result can be written as $\Delta \nu^{\text{LO}} = \left(\frac{4}{3} \frac{m_e}{\alpha} \right) \alpha^4 m_e$, where nonannihilation (scattering) and one-photon annihilation contributions are given separately. By spin/parity conservation only the orthopositronium state is affected by the one-photon annihilation. The corresponding correction to the binding energy E_0 can be obtained by studying the threshold behavior of the vacuum polarization function $\Pi(q^2)$

$$\Pi(q^2) = \left(g, g - g_\mu g_\nu q^2 \right) = i \int d^4x \, e^{iqx} \langle 0 | T j_\mu(x) j_\nu(0) | 0 \rangle.$$

where j_μ is the electromagnetic current, $q^2 = (2m_e + E)^2$ and E is the energy counted from the threshold. Only one-particle irreducible contributions are retained on the right-hand side of Eq. (6) and the on-shell renormalization of the QED coupling constant requires $\Pi(0) = 0$. The vacuum polarization function has bound-state poles at approximately Coulomb energies

$$E_n^C = -\alpha^2 m_e/(4n^2)$$

with spin (orbital) angular momentum $S = 1$ ($I = 0$). Near the orthopositronium ground-state energy $E_0 = 209.5$ MeV, the first-order coefficients get only a one-loop hard contribution $\gamma^{(1)} = -4$ and $p^{(1)} = 8/9$, which yields $h^{(1)} = -44/9$. In the second order the soft scale starts

$$E_1^O + O(\alpha^4)$$

it reads

$$\lim_{E \to E_0^O} \Pi(q^2) = \frac{\alpha R_o}{4\pi E/E_o^O - 1 - i\varepsilon},$$

where E_0^O stands for E_0 without the total one-photon annihilation contribution. The pole position differs from the physical orthopositronium mass since the vacuum polarization function is defined as the one-particle irreducible contribution to the current correlator (6). By subtracting the pole one gets the regular part of the vacuum polarization function at $E = E_0^O$

$$P_o = \lim_{E \to E_0^O} \left(\frac{\alpha^2 R_o}{E/E_o^O - 1 - i\varepsilon} \right).$$

Within the quantum-mechanical perturbation theory of pNRQED it is straightforward to derive the following expression for the one-photon annihilation contribution to the HFS

$$\Delta_{1-\gamma}^\text{n} = \Delta_{1-\gamma}^\text{e} E_0 = \frac{\alpha^4 m_e}{4} \frac{R_o}{1 + P_o}.$$

The factor R_o in this equation has a natural interpretation: annihilation is a local process which probes the positronium wave function at the origin and the residue of Eq. (7) defines this quantity in full QED beyond nonrelativistic quantum mechanics. On the other hand the factor $1/(1 + P_o)$ results from the Dyson resummation of the vacuum polarization corrections to the off-shell photon propagator in the annihilation amplitude. Eq. (9) can be computed order by order in perturbation theory

$$\Delta_{1-\gamma}^\text{n} = \frac{\alpha^4 m_e}{4} \left[1 + \sum_{n=1}^{(\alpha \pi)^n h^{(n)}} \right],$$

where the coefficients $h^{(n)}$ are determined by the series

$$R_o = 1 + \sum_{n=1}^{(\alpha \pi)^n p^{(n)}}$$

and $P_o = \sum_{n=1}^{(\alpha \pi)^n p^{(n)}}$ so that $r^{(1)} = r^{(1)} = p^{(1)}$ and so on. For the calculation of the third order corrections to the HFS we need all coefficients $r^{(n)}$ and $p^{(n)}$ up to $n = 3$. Typical three-loop Feynman diagrams contributing to R_o and P_o are presented in Fig. 1.

The first-order coefficients get only a one-loop hard contribution $r^{(1)} = -4$ and $p^{(1)} = 8/9$, which yields $h^{(1)} = -44/9$. In the second order the soft scale starts
to contribute and one has to take into account an arbitrary number of Coulomb photon exchanges. The second-order correction to \(R_0 \) can be read off the QCD result for the photon-mediated heavy quarkonium production rate [35–38] by adopting the QED group factors \(C_F = 1, \ C_A = 0, \ T_F = 1, \) as well as the number of the light (heavy) fermions \(n_l = 0 \ (n_h = 1) \)

\[
r^{(2)} = \frac{527}{36} + \left(-\frac{2}{3} \ln \alpha - \frac{235}{72} + 2 \ln 2 \right) \pi^2 - \zeta(3),
\]

where \(\zeta(3) = 1.20206 \ldots \) is a value of Riemann’s zeta-function. By using the method outlined above we evaluate the second-order correction to \(P_o \) with the result

\[
p^{(2)} = \frac{3}{4} + \left(-\ln \alpha + \frac{27}{16} - \frac{\ln 2}{2} \right) \pi^2 - \frac{21}{8} \zeta(3).
\]

This gives

\[
h^{(2)} = \frac{1477}{81} + \left(-\frac{\ln \alpha}{6} - \frac{1183}{288} + \frac{9}{4} \ln 2 \right) \pi^2 + \frac{13}{8} \zeta(3),
\]

in agreement with Ref. [16].

The third-order coefficients get contributions from all the scales present in the problem. By adjusting the QCD results [39, 40] we obtain the following expression

\[
r^{(3)} = \frac{383}{18} + \left[\frac{3}{2} \ln^2 \alpha + \left(-\frac{7}{2} + 8 \ln 2 \right) \ln \alpha \right. \\
- \left. \frac{1019}{180} - 4 \ln 2 + \delta_0^{us} \right] \pi^2 + 2 \zeta(3) - \frac{109}{864} \pi^4 + 2c_v^{(3)}.
\]

Here \(\delta_0^{us} \) is an analog of the Bethe logarithm in hydrogen Lamb shift, which parametrizes the ultrasoft contribution [39]. It does not scale with the group factors and requires independent evaluation in the QED case, which gives \(\delta_0^{us} = 18.8646(17) \). The coefficient \(c_v^{(3)} \) in Eq. (14) parametrizes the third-order hard contribution to the Wilson coefficient in the effective theory decomposition of the vector current \(j = c_v \psi \gamma^\mu \sigma \chi + \ldots \) in terms of the nonrelativistic electron and positron two-component Pauli spinors \(\psi \) and \(\chi \). The third-order term of the perturbative series \(c_v = 1 + \sum_{n=1}^{\infty} \left(\frac{\alpha}{\pi} \right)^n c_v^{(n)} \) is given by the three-loop vertex diagrams (see e.g. Fig. 1(a)) evaluated at the threshold and has been recently computed in QCD [41]. The coefficients of the series are in general infrared divergent. These spurious divergences result from the scale separation in the effective theory framework and cancel out in the final result for physical observables. The value \(c_v^{(3)} = 35.76 \pm 0.53 \) corresponds to the coefficient \(c_v^{(3)} \) defined within the \(\overline{\text{MS}} \) subtraction scheme at the renormalization scale \(\mu = m_e \). The logarithmic part of Eq. (14) agrees with Ref. [42]. The third-order term in Eq. (8) reads

\[
p^{(3)} = (2 \ln \alpha - 3) \pi^2 + p^{(3)}_0,
\]

where the last term parametrizes the third-order hard contribution given by the three-loop vacuum polarization diagrams (see e.g. Fig. 1(b)) evaluated at the threshold. As in the case of the vertex correction, this quantity is infrared divergent and the coefficient \(p^{(3)}_h = 0.16 \pm 0.04 \) corresponds to the \(\overline{\text{MS}} \) subtraction scheme with \(\mu = m_e \). By adding up all the relevant terms we get

\[
h^{(3)} = -\frac{3}{2} \pi^2 \ln \alpha + \left(-\frac{1181}{270} + 8 \ln 2 \right) \pi^2 \ln \alpha + h_{0}^{(3)},
\]

where the nonlogarithmic part reads

\[
h_{0}^{(3)} = \frac{49309}{1458} + \frac{16573}{3240} - \frac{65}{9} \ln 2 + \delta_0^{us} \pi^2 - \frac{221}{18} \zeta(3)
\]

\[
\frac{109}{864} \pi^4 + 2c_v^{(3)} - p^{(3)}_h.
\]

or numerically \(h_{0}^{(3)} = 197.8 \pm 1.1 \). From the effective theory point of view the structure of the third-order logarithmic corrections in the one-photon annihilation contribution to the positronium HFS is identical to the orthopositronium three-photon decay width. The coefficients of the logarithmic terms in Eq. (16) do agree with the series for the width [43–45] up to a substitution of the coefficient \(\frac{A}{\alpha} \rightarrow -\frac{A}{2}\beta \zeta(3) \) in the interference term between the one-loop and the two-loop single-logarithmic corrections.

Finally for the third-order nonlogarithmic one-photon annihilation contribution to the HFS we obtain

\[
D_{ann}^{1-\gamma} = \frac{3}{\pi} h_{0}^{(3)} = 84.8 \pm 0.5,
\]

which is the main result of this Letter. The coefficients of the third-order corrections to HFS in positronium and muonium atom [26] are compared in Table I. It is interesting to note that the ultrasoft contribution due to \(\delta_0^{us} \) approximates the complete result (18) with 5% accuracy. The nonannihilation contribution includes a similar term and we may speculate that it is also dominated by the ultrasoft contribution. This does not seem implausible since the fully relativistic corrections from the hard scale are known to usually be suppressed. For example, the pure radiative corrections to the HFS related to the electron anomalous magnetic moment \(a_e \), \(\Delta_{a_e} \mu = \alpha \sqrt{2} m_e / 4 \left[(1 + a_e^2)^2 - 1 \right] \), gives only a tiny contribution \(D_{a_e} = 1.16229 \ldots \), where we used the two and three-loop result for \(a_e \) [10, 46]. In this case the nonannihilation contribution would be given by \(D_{ann} \approx 4 \pi^2 \delta_0^{us} \approx 106 \), which slightly exceeds the one-photon annihilation contribution (18) in full analogy with the structure of the second-order corrections. Then we get an estimate \(D \approx 191 \), which is close to the muonium result.

To summarize, in this Letter we presented the \(\mathcal{O}(\alpha^4 m_e) \) one-photon annihilation contribution to the positronium HFS, which is the first nontrivial third-order
The error due to the missing part of the $O(\alpha^2 m_e)$ corrections is estimated by the size of the evaluated one-photon annihilation contribution (18) and is reduced by a factor of two with respect to the previous estimate based on the size of the nonlogarithmic corrections to the muonium HFS. This agrees with an error estimate based on the approximation of the missing nonannihilation correction by the ultrasoft contribution discussed above. At the same time if we include the nonannihilation correction approximated in this way into the numerical analysis, our central value changes to $\Delta \nu^{\text{th}} = 203.392 \pm 11$ GHz, i.e. gets within one standard deviation from the most recent experimental result (3).

This work has been supported by the DFG SFB/TR 9 “Computergestützte Theoretische Teilchenphysik”. P.M. was supported in part by the EU Network HICPHE- NOnet PITN-GA-2010-264564 and HIGGSTOOLS PITN-GA-2012-316704. The work of A.P. was supported in part by NSERC, Alberta Ingenuity Foundation, and Mercator DFG grant.

TABLE I. The coefficients of α^3/π in perturbative series for positronium and muonium HFS.

	$\ln^2 \alpha$	$\ln \alpha$	D/π^2
Positronium	$-\frac{2}{3}$	$-\frac{62}{12} + \frac{69}{9} \ln 2 \approx 2.6001$	8.59(5)
Muonium	$-\frac{2}{3}$	$-\frac{221}{120} + \frac{7}{2} \ln 2 \approx 0.2873$	16.233

\(\Delta \nu^{\text{th}} = 203.3919(22) \text{ GHz}. \) (19)

The QED result in positronium spectroscopy beyond the logarithmic approximation. This opens a prospect of advancing the theoretical analysis of positronium to a completely different level of precision. Our final prediction for the positronium HFS including the $O(\alpha^2 m_e)$ one-photon annihilation term reads

\[
\Delta \nu = \frac{\alpha}{\pi} \ln^2 \alpha \approx \frac{\alpha}{\pi} \ln \alpha = \frac{\alpha}{\pi} \left(-\frac{2}{3} \right) + \frac{2}{3} \ln 2 \approx 2.6001
\]

This approximation is estimated by the size of the evaluated one-photon annihilation contribution (18) and is reduced by a factor of two with respect to the previous estimate based on the size of the nonlogarithmic corrections to the muonium HFS. This agrees with an error estimate based on the approximation of the missing nonannihilation correction by the ultrasoft contribution discussed above. At the same time if we include the nonannihilation correction approximated in this way into the numerical analysis, our central value changes to $\Delta \nu^{\text{th}} = 203.39211$ GHz, i.e. gets within one standard deviation from the most recent experimental result (3).

This work has been supported by the DFG SFB/TR 9 “Computergestützte Theoretische Teilchenphysik”. P.M. was supported in part by the EU Network HICPHE-NOnet PITN-GA-2010-264564 and HIGGSTOOLS PITN-GA-2012-316704. The work of A.P. was supported in part by NSERC, Alberta Ingenuity Foundation, and Mercator DFG grant.

[1] S. L. Glashow, Phys. Lett. B 167 (1986) 35.
[2] A. P. Mills, Jr. and G. H. Bearman, Phys. Rev. Lett. 34, 246 (1975). A. P. Mills, Phys. Rev. A 27, 262 (1983).
[3] M. W. Ritter, P. O. Egan, V. W. Hughes, and K. A. Woodle, Phys. Rev. A 30, 1331 (1984).
[4] A. Ishida, T. Namba, S. Asai, T. Kobayashi, H. Saito, M. Yoshida, K. Tanaka and A. Yamamoto, arXiv:1310.6923 [hep-ex].
[5] J. Piremne, Arch. Sci. Phys. Nat. 29, 265 (1947).
[6] V. B. Berestetski and L. D. Landau, Zh. Eksp. Teor. Fiz. (USSR) 19, 673 (1949).
[7] R. A. Ferrell, Phys. Rev. 84, 858 (1951).
[8] R. Karplus and A. Klein, Phys. Rev. 87, 848 (1952).
[9] S. J. Brodsky and G. W. Erickson, Phys. Rev. 148, 26 (1966).
[10] R. Barbieri, J. A. Mignaco and E. Remiddi, Nuovo Cim. A 11, 824 (1972).
[11] G. T. Bodwin and D. R. Yennie, Phys. Rept. 43, 267 (1978).
[12] W. E. Caswell and G. P. Lepage, Phys. Rev. A 20, 36 (1979).
[13] J. R. Sapirstein, E. A. Terray and D. R. Yennie, Phys. Rev. D 29, 2290 (1984).
[14] G. S. Adkins, M. H. T. Bui and D. Zhu, Phys. Rev. A 37, 4071 (1988).
[15] G. S. Adkins, Y. M. Aksu and M. H. T. Bui, Phys. Rev. A 47, 2640 (1993).
[16] A. H. Hoang, P. Labelle and S. M. Zebardj, Phys. Rev. Lett. 79, 3387 (1997); Phys. Rev. A 62, 012109 (2000).
[17] K. Pachucki, Phys. Rev. Lett. 79, 4120 (1997); Phys. Rev. A 56, 297 (1997).
[18] K. Pachucki and S. G. Karshenboim, Phys. Rev. Lett. 80, 2101 (1998).
[19] A. Czarnecki, K. Melnikov and A. Yelkhovsky, Phys. Rev. Lett. 82, 311 (1999); Phys. Rev. A 59, 4316 (1999).
[20] G. S. Adkins and J. Sapirstein, Phys. Rev. A 58, 3552 (1998) [Erratum *ibid* 61 069902 (2000)].
[21] A. P. Burichenko, hep-ph/0004063.
[22] S. G. Karshenboim, Zh. Eksp. Teor. Fiz. 103, 1105 (1993) [Sov. Phys. JETP 76, 541 (1993)].
[23] R. J. Hill, Phys. Rev. Lett. 86, 3280 (2001).
[24] K. Melnikov and A. Yelkhovsky, Phys. Rev. Lett. 86, 1498 (2001).
[25] B. A. Kniehl and A. A. Penin, Phys. Rev. Lett. 85, 5094 (2000).
[26] M. No and T. Kinoshita, Phys. Rev. D 55, 7267 (1997), and references therein.
[27] T. Yamazaki, A. Miyazaki, T. Suehara, T. Namba, S. Asai, T. Kobayashi, H. Saito and I. Ogawa et al., Phys. Rev. Lett. 108, 253401 (2012).
[28] D. B. Cassidy, T. H. Hisakado, H. W. K. Tom and A. P. Mills, Phys. Rev. Lett. 109, 073401 (2012).
[29] W. E. Caswell and G. P. Lepage, Phys. Rev. B 167, 437 (1986).
[30] A. Pineda and J. Soto, Nucl. Phys. Proc. Suppl. 64, 428 (1998).
[31] A. Pineda and J. Soto, Phys. Lett. B 420, 391 (1998).
[32] B. A. Kniehl, A. A. Penin, V. A. Smirnov and M. Steinhauser, Nucl. Phys. B 635, 357 (2002).
[33] M. Beneke and V. A. Smirnov, Nucl. Phys. B 522, 321 (1998).
[34] V. A. Smirnov, *Applied asymptotic expansions in momenta and masses*, Springer Tracts Mod. Phys. 177 (2002) 1.
[35] K. Melnikov and A. Yelkhovsky, Phys. Rev. D 59 (1999) 114009.
[36] A. A. Penin and A. A. Pivovarov, Nucl. Phys. B 549, 217 (1999).
[37] A. Czarnecki and K. Melnikov, Phys. Rev. Lett. 80, 2531 (1998).
[38] M. Beneke, A. Signer, and V. A. Smirnov, Phys. Rev. Lett. 80, 2535 (1998).
[39] M. Beneke, Y. Kiyo and A. A. Penin, Phys. Rev. B 653, 53 (2007).
[40] M. Beneke, Y. Kiyo and K. Schuller, Phys. Lett. B 658, 222 (2008).
[41] P. Marquard, J. H. Piclum, D. Seidel and M. Steinhauser, arXiv:1401.3004 [hep-ph].
[42] B. A. Kniehl, A. A. Penin, M. Steinhauser and V. A. Smirnov, Phys. Rev. Lett. 90, 212001 (2003).
[43] B. A. Kniehl and A. A. Penin, Phys. Rev. Lett. 85, 1210.
(2000) [Erratum *ibid.* 85, 3065 (2000)].

[44] R. J. Hill and G. P. Lepage, Phys. Rev. D 62, 111301 (2000).

[45] K. Melnikov and A. Yelkhovsky, Phys. Rev. D 62, 116003 (2000).

[46] S. Laporta and E. Remiddi, Phys. Lett. B 379, 283 (1996).