Method Development and Validation for Multicomponent Analysis of Emtricitabine and Ritonavir in Bulk Drug by RP-HPLC

Aman Kapoor*, Amar Deep Ankalgi, Upasana Thakur, Vinay Pandit, Mahendra Singh Ashawat

Department of Pharmaceutical Analysis and Quality Assurance, Laureate Institute of Pharmacy Kathog Jawalaji, India

Abstract

A simple, sensitive, economic and specific reverse phase liquid chromatographic method was developed for the simultaneous estimation of Emtricitabine and Ritonavir in bulk drug. Chromatographic conditions consisted of C-18 Column (Shim-pack) 250 x 4.6 mm, particle size 5 µm, mobile phase combination of methanol and water (80:20), flow rate 1ml per minutes, run time 15 minutes and UV detection at 251nm. The retention time for Emtricitabine and Ritonavir were found to be 3.25 and 7.8 min and average percentage recoveries 99.42% and 99.63% respectively. The validation parameters were found to comply with ICH guidelines. These methods can be further employed in future for the routine determination of Emtricitabine and Ritonavir in bulk drug and formulation.

Keyword: Emtricitabine, Ritonavir, RP-HPLC, accuracy and linearity.

1. INTRODUCTION

Emtricitabine (Figure 1) is a synthetic fluoro derivative of thiacytidine with potent antiviral activity. Emtricitabine is phosphorylated to form Emtricitabine 5'-triphosphate within the cell. This metabolite inhibits the activity of human immunodeficiency virus (HIV) reverse transcriptase both by competing with the natural substrate deoxyctydine 5'-triphosphate and by incorporation into viral DNA causing a termination of DNA chain.

Ritonavir (Figure 2) is an antiretroviral protease inhibitor that is widely used in combination with other protease inhibitors in the therapy and prevention of human immunodeficiency virus (HIV) infection and the acquired immunodeficiency syndrome (AIDS).

Literature review revealed only few efficient methods was available for multicomponent analysis. Hence, an attempt has been made to develop cost effective, simple and precise RP-HPLC method to estimate both drugs in bulk drug.

Figure 1: Structure of Emtricitabine

Figure 2: Structure of Ritonavir
2. EXPERIMENTAL WORK:

2.1 Instrumentation: High Performance Liquid Chromatography (LC Prominence, Shimadzu), manual sampler, software Win chrome and detector (UV-visible), Column C-18 (Shim-pack) 250 x 4.6 mm, particle size 5 µm.

2.2 Preparation of stock solutions, working solutions and calibration standards

Standard Emtricitabine 100 mg was weighed and transferred to a 100 ml volumetric flask and dissolved in methanol. The flask was shaken and sonicated for 10 minutes and volume was made up to the mark with solvent. 10 ml of solution was pipetted out from this and transferred to 100 ml volumetric flask and the volume was made up to 100 ml with methanol. The conc. of prepared stock solution was 100 µg/ml.

Standard Ritonavir 100 mg was weighed and transferred to a 100 ml volumetric flask and dissolved in methanol. The flask was shaken and sonicated for 10 minutes and volume was made up to the mark with solvent 10 ml of solution was pipetted out from this and transferred to 100 ml volumetric flask and the volume was made up to 100 ml with methanol. The conc. of prepared stock solution was 100 µg/ml.

2.3 Selection of wavelength

10 mcg concentration of Emtricitabine and methanol spectra were recorded in the UV-Visible spectrophotometer. The overlain spectra showed iso-absorptive point at 251 nm.

2.4 Selection of chromatographic condition

Chromatographic separation was achieved at ambient temperature on a reversed phase isocratic high performance liquid chromatography using a mobile phase consisting of Methanol and water (80:20). Flow rate was 1.0 mL/min. The detector wavelength was set at 251 nm and run time was 15 minutes.

To optimize the chromatographic conditions, the effect of chromatographic variables such as mobile phase pH and flow rate were studied. The resulting chromatograms were recorded and the chromatographic responses were measured.

3. RESULT AND DISCUSSION

3.1 Optimized Method development:

The selection of the composition of mobile phase were studied and optimized. Separation was found to be satisfactory with Methanol and water in the ratio of 80:20%, v/v. UV detection was carried out at 251 nm where both the drugs exhibit maximum absorption. Isocratic mode was chosen as the retention for both the drugs were less than 8 min at a flow rate of 1ml/min. Retention time for Emtricitabine and Ritonavir were found to be 3.25 and 7.77 min respectively. The chromatogram of optimized trial is shown in Fig 3.

![Optimized chromatogram of standard drug at Ratio 80:20 of Meth:Water containing 10 µg/mL Emtricitabine and 60 µg/mL Ritonavir at wavelength 251 nm.](image)

Table 1: Linearity curve of Emtricitabine at wavelength 251 nm.

Sr. No	Conc. (µg/mL)	Area (µ volt sec.)
1	10	368524
2	20	673457
3	30	1023101
4	40	1329665
5	50	1612351

3.2 Validation of the developed method

3.2.1 Linearity curve for the Emtricitabine:

From the standard stock solution of Emtricitabine (100µg/mL) 1, 2, 3, 4 and 5 were pipetted out and transferred to separate 10 ml of volumetric flasks and the volume was made up to 10 ml with the help of mobile phase. These concentrations were of 10, 20, 30, 40 and 50 µg/ml respectively. The injection was given at time interval of 10 minutes with run time of 15 minutes. The linearity was obtained in selected conc. ranges. Linearity of Emtricitabine is shown in Table 1 and calibration plot in Fig 4.
3.2.2 Linearity curve for the Ritonavir:
For Ritonavir from standard stock solution (100 µg/mL) 6, 7, 8, 9 and 10 ml were pipetted out and transferred to separate 10 ml of volumetric flasks and the volume was made up to mark respectively with solvent. These concentrations were of 60, 70, 80, 90 and 100 µg/ml respectively. The linearity was obtained in selected conc. ranges. Linearity of Emtricitabine is shown in Table 2 and calibration plot in Fig 5.

Table 2: linearity curve of Ritonavir at wavelength 251 nm

Sr. No	Conc. (µg/mL)	Area (µ volt sec.)
1	60	807565
2	70	943472
3	80	1075238
4	90	1191207
5	100	1328949

3.2.3 Accuracy

Accuracy is the closeness of the test results obtained by the method to the true value. Accuracy may often express in terms of percent recovery of assay of known amount of analyte added. Recovery studies were carried out by addition of standard drug to the sample at 3 different levels of spiking i.e. 80%, 100% and 120% of the actual amount taking into consideration percentage purity of added bulk drug sample. Accuracy of Emtricitabine and Ritonavir are shown in table 3 & 4 respectively.

Table 3: Accuracy of Emtricitabine at wavelength 251 nm.

Sr. No	Amt. of sample Taken (µg/mL)	Amt. of drug added (µg/mL)	Level of addition (%)	Amount Recovered µg/mL 1	Amount Recovered µg/mL 2	Amount Recovered µg/mL 3	Mean	S.D.	% RSD	% Drug recovery
1	40	30	80%	69.73	69.75	69.77	69.75	0.020	0.028	99.79
2	40	40	100%	79.82	79.76	79.95	79.84	0.097	0.121	99.87
3	40	50	120%	89.74	89.80	89.83	89.79	0.045	0.051	99.88

Mean of % RSD 0.067

Mean of % Drug Recovery 99.42

Table 4: Accuracy of Ritonavir at wavelength 251 nm.

Sr. No	Amt. of sample Taken (µg/mL)	Amt. of drug added (µg/mL)	Level of addition (%)	Amount Recovered µg/mL 1	Amount Recovered µg/mL 2	Amount Recovered µg/mL 3	Mean	S.D.	% RSD	% Drug recovery
1	70	60	80%	129.70	129.85	129.74	129.76	0.077	0.059	99.55
2	70	70	100%	139.77	139.91	139.68	139.78	0.115	0.082	99.63
3	70	80	120%	149.89	149.80	149.75	149.81	0.070	0.047	99.71

Mean of % RSD 0.063

Mean of % Drug Recovery 99.63
3.2.4 Precision

The precision of an analytical method is the degree closeness of agreement between a series of measurements obtained from the multiple sampling of the same sample. Precision include repeatability, inter and intraday precision and reproducibility.

3.2.4 Interday & intraday precision

Interday & intraday precision of conc. 20, 30, 40 µg/mL was prepared and data was obtained for Emtricitabine. 3 replicates were prepared for 3 days. Intraday and Inter day precision of Emtricitabine are shown in table 5 & 7 respectively.

Interday & intraday precision of conc. 60, 70, 90 µg/mL was prepared and data was obtained for Ritonavir. 3 replicates were prepared for 3 days. The absorbance for intraday were measured in 2 hours of interval table 6 & 8 respectively.

Table 5: Intraday precision of Emtricitabine at wavelength 251 nm.
Conc.

Area (µ volt sec.)
Mean
S D
% RSD

Table 6: Intraday precision of Ritonavir at wavelength 251 nm.
Conc.

Area (µ volt sec.)
Mean
S D
% RSD

Table 7: Interday precision of Emtricitabine at wavelength 251 nm.
Conc.

Absorbance
Mean
S D
% RSD

Table 8: Interday precision of Ritonavir at wavelength 251 nm.
Conc.

Area (µ volt sec.)
Mean
S D
% RSD
3.2.5 Repeatability

For repeatability minimum of 6 determinants were prepared of 30 µg/mL and 80 µg/mL conc. of Emtricitabine and Ritonavir, respectively. The chromatogram responses were obtained by injecting one by one. The standard deviation & relative standard deviation was calculated for each type of precision. Repeatability of Emtricitabine and Ritonavir are shown in table 9 & 10 respectively.

Table 9: Repeatability of Emtricitabine at wavelength 251nm

Sr. No	Area (µ volt sec.)
1	1023119
2	1023120
3	1023115
4	1023118
5	1023115
6	1023117
Mean	1023117
SD	2.065591
%RSD	0.000202

Table 10: Repeatability of Ritonavir at wavelength 251nm

Sr. No	Area (µ volt sec.)
1	1075237
2	1075232
3	1075235
4	1075239
5	1075241
6	1075242
Mean	1075238
SD	3.777124
%RSD	0.000351

3.2.6 Limit of detection (LOD)

LOD is the lowest amount of analyte in a sample which can be detected but not necessarily quantitated as an exact value. LOD was calculated by the standard deviation of the response and the slope.

\[
LOD = \frac{3.3 \times \sigma}{S}
\]

Where, \(\sigma\) = the standard deviation of the response
S = the slope of the calibration curve

The slope and standard deviations were calculated from the linearity curve obtained for conc. ranges of 10-50 µg/mL for Emtricitabine and 50-100 µg/mL for Ritonavir.

3.2.7 Limit of quantitation (LOQ)

It is the lowest amount of analyte in a sample which can be quantitatively determined with suitable precision and accuracy. LOQ was calculated by the standard deviation of the response and the slope. The data was obtained from linearity curve and the LOQ was calculated.

\[
LOQ = \frac{10 \times \sigma}{S}
\]

Where, \(\sigma\) = the standard deviation of the response
S = the slope of the calibration curve

The slope and standard deviations were calculated from the linearity curve obtained for conc. ranges of 15-50 µg/mL for Emtricitabine and 50-100 µg/mL for Ritonavir.

LOD & LOQ for Emtricitabine and Ritonavir are shown in table 11 & 12 respectively.

Table 11: LOD & LOQ of Emtricitabine at 251 nm wavelength

Conc.	Abs.	Amount Recovered µg/mL	% Drug recovery
10	368524	9.868729921	98.68729921
20	673457	19.56792519	97.89626594
30	1023101	30.68927129	102.297571
40	1329665	40.44034479	101.100862
50	1612351	49.43191577	98.8633155
Mean			99.75783793
SD			1.862712756
SE of Intercept			20816.33453
SD Of Intercept			46546.73905
LOD			4.885786407
LOQ			14.80541335
Table 12: LOD & LOQ of Ritonavir at 251 nm wavelength

Conc.	Abs.	Amount Recovered µg/mL	% Drug recovery
60	807565	59.71956606	99.5326101
70	943472	70.2509105	100.3584436
80	1075238	80.46137156	100.5767145
90	1191207	89.44773344	99.38637049
100	1328949	100.1212708	100.1212708

Mean	99.99508189
SD	0.517363878
SE of Intercept	15716.41021
SD Of Intercept	35142.96158
LOD	8.986576771
LOQ	27.23205082

3.2.8 Robustness

Robustness is a measure of its capacity to remain unaffected by small, but deliberate variations in method parameter. For HPLC robustness was carried out by changing wavelength and flow rate. Robustness of a method was done by change in wavelength, or change in flow rate of a mobile phase. Injection of 20 µg/mL was prepared from the stock solution and the recorded. Robustness data for Emtricitabine and Ritonavir are shown in Table 13 and 14.

Change in Wavelength

Table 13: Robustness of Emtricitabine and Ritonavir at wavelength 251±2 nm.

Wavelength	Difference	R_t of Emtricitabine (min.)	R_t of Ritonavir (min.)
249	-2	3.272	7.826
251	0	3.275	7.827
253	+2	3.278	7.829

Table 14: Robustness of Emtricitabine and Ritonavir at wavelength 251nm by changing the flow rate.

Flow rate (ml/min.)	Difference	Emtricitabine (min.)	Ritonavir (min.)
0.9	-0.1	3.278	7.829
1	0	3.278	7.828
1.1	+0.1	3.278	7.827

The overall validation parameter data are shown in Table 15. It complied with ICH guidelines.

Table 15: Summary of validation parameters of RP-HPLC at 251 nm wavelength.

Parameter	Emtricitabine	Ritonavir
Linear range in (µg/mL)	10-50	60-100
Regression coefficient (R²)	0.998	0.999
%Accuracy	99.42	99.63
%RSD (n=6)	%RSD NMT 2	%RSD NMT 2
Precision		
Interday precision	%RSD NMT 2	%RSD NMT 2
Intraday precision		
LOD	4.885786407	8.986576771
LOQ	14.80541335	27.23205082
D I S C U S S I O N

Reversed phase-high performance liquid chromatography (RP-HPLC)

The method was developed for the simultaneous estimation of Emtricitabine and Ritonavir using Reverse Phase – High Performance Liquid Chromatography. All the parameters were validated according to the ICH guidelines and meet all the limits. Various trials were taken for the Emtricitabine and Ritonavir at certain conditions. The linearity for method was obtained at 251 nm for Emtricitabine and Ritonavir. The R² values were found 0.9988 and 0.9993 for Emtricitabine and Ritonavir respectively. The R² value was within the limits of 0.995-0.999, and has good linearity. For accuracy of method the % drug recovery was calculated for all drugs at wavelength 251 nm at conc. of 80, 100, 120% and average recovery was found 99.42 % for Emtricitabine and 99.63 % for Ritonavir. As the % drug recovery should be considered within limits i.e. 100 ± 2%. Interday precision was calculated by preparing dilutions of 20, 30 and 40 µg/ml conc for Emtricitabine and 70, 80, 90 µg/ml concentrations for Ritonavir & responses were obtained at wavelength 251 nm. Interday precision for Emtricitabine for 1st day the %RSD was found 0.0003, 0.0007 and 0.0001 at wavelength 251 nm. For 2nd day the %RSD was found 0.0004, 0.0002 and 0.0002 at wavelength 251 nm. For 3rd day the %RSD was found 0.0003, 0.0001 and 0.0001% at wavelength 251 nm. The concentration 70, 80 and 90 µg/ml was used in triplicate at different days. Interday precision for Ritonavir for 1st day the %RSD was found 0.0001, 0.0001 and 0.0002 at wavelength 251 nm. For 2nd day the %RSD was found 0.0001,0.0001 and 0.0002 at wavelength 251 nm. For 3rd day the %RSD was found 0.0002, 0.0001 and 0.0002% at wavelength 251 nm. The concentration 20, 30, 40 µg/ml of Emtricitabine was used in triplicate at different days. For repeatability the % RSD was found 0.0001 % at wavelength 251 nm for Emtricitabine. The concentration 70, 80, 90 µg/ml of Ritonavir was used in triplicate at different days. For Ritonavir the % RSD was found 0.0002% at wavelength 251 nm i.e. within the limit. It shows that the method qualifies the criteria of repeatability.

LOD & LOQ was calculated from the linearity curve at wavelength 251 nm and the LOD was found 1.1350 µg/ml and LOQ was found 3.4395 µg/ml for Emtricitabine. For Ritonavir LOD was found 4.5240 µg/ml and LOQ was found 13.7091 µg/ml at wavelength 251 nm. Robustness of Emtricitabine and Ritonavir at 251 nm

The method was found robust as there was change in wavelength to ± 2 mL and change in flow rate of ± 0.1 mL/min.

4. CONCLUSION:

RP-HPLC method was developed for Emtricitabine and Ritonavir. The chromatographic condition for optimized method was found to consisting of Column C-18 (Shim-pack) 250 x 4.6 mm, particle size 5 µm , mobile phase methanol and water in the ratio 80:20. The retention time were found to be 3.25 and 7.8 min and average percentage recovery 99.42% and 99.63% for Emtricitabine and Ritonavir respectively. The proposed methods were found to comply with ICH guidelines. These methods can be further employed in future for the routine determination of Emtricitabine and Ritonavir in bulk drug.

REFERENCES:

1. Gu SX, Lu HH, Liu GY, Ju XL, Zhu YY. Advances in diarylpyrimidines and related analogues as HIV-1 nonnucleoside reverse transcriptase inhibitors. European Journal of Medicinal Chemistry. 2018 Oct 5; 158:371-92.

2. Simon V, Ho DD, Karim QA. HIV/AIDS epidemiology, pathogenesis, prevention, and treatment. The Lancet. 2006 Aug 5; 368(9534):489-504.

3. Li X, Zhang L, Tian Y, Song YN, Zhan P, Liu X. Novel HIV-1 non-nucleoside reverse transcriptase inhibitors: a patent review (2011–2014). Expert opinion on therapeutic patents. 2014 Nov 1; 24(11):199-227.

4. Paleka JF, Delaney KM, Moorman AC, Loveless MO, Frehrer J, Sarien GA, Aschman DJ, Holmberg SD. HIV Outpatient Study Investigators. Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. New England Journal of Medicine. 1998 Mar 26; 338(13):853-60.

5. Tripathi KD. Essential of medical pharmacology. 6th ed. Jaypee brothers medical publishers. (2009): pg 202.

6. Guanhart HF, Saag MS, Benson CA, et al. Antiretroviral drugs for treatment and prevention of HIV infection in adults: 2016 recommendations of the International Antiviral Society-USA Panel. JAMA; 2016; 316: 191–210

7. https://www.drugbank.ca/drugs/DB00879
8. https://pubchem.ncbi.nlm.nih.gov/compound/Emtricitabine
9. https://www.drugbank.ca/drugs/DB00605
10. https://pubmed.ncbi.nlm.nih.gov/8891466/
11. Backett AH, Stenlake JB. Practical of pharmaceutical chemistry. 4th ed. New Delhi. CBS publishers & distributors. 2005: p. 284.
12. Lloyd S R, Joseph J et al. Practical HPLC method development. 2nd ed. Jon Wiley and Sons, New York p. 653.
13. Snyder LR, Kirkland JI, Glajch JL. Practical HPLC method development. John Wiley & Sons; 2012 Dec 3.
14. Hema SR. A Review On New Analytical Method Development And Validation By Rp-HPLC. Int Res J Pharm BioSci. 2017; 4:41-50.
15. Ravikankan P, Nayna CY, Pravallika D, Sri DN. A review on step-by-step analytical method validation. IOSR J Pharm 2015; 5-7:19.
16. https://www.britannica.com/science/chromatography/Method
ds
17. http://www.mourntrainingservices.co.uk/resources/#hplc_book
18. https://www.ich.org/page/quality-guidelines
19. Gill MS, Hassan SS, Ahemad N. Evolution of HIV-1 reverse transcriptase and integrase dual inhibitors: recent advances and developments. European journal of medicinal chemistry. 2019 Oct 1; 179:423-48.
20. Rezaii M, Ramazani A, Hokmabadi F. Simultaneous Estimation and Validation of Tenofovir Disoproxil Fumarate, Emtricitabine and Efavirenz by RP-HPLC Method in Combined Tablet Dosage Form. Current Pharmaceutical Analysis. 2019 Oct 1; 15(6):561-7.
21. Kokhirala TK, Suryakala D. RP-HPLC method development and validation for the estimation of Emtricitabine, Bictegravir and Tenofovir alafenamide in bulk and pharmaceutical dosage form. Journal of Taibah University for Science. 2019 Dec 11; 13(1):1137-46.
22. Kalamkar CS, Bhawar SB. Development and Validation of RP-HPLC Method for the Simultaneous Estimation of Tenofovir Alafenamide Fumarate and Emtricitabine in Bulk and Tablet Dosage Form. Journal of Drug Delivery and Therapeutics. 2019 Jun 15; 9(3-s):243-7.
23. Kale RN. A review on analytical methods for estimation of tenofovir disoproxil fumarate and emtricitabine in bulk and pharmaceutical dosage forms. International Journal of Pharmaceutical and Biological Science Archive. 2019 Jun 16; 7(3).
24. Ibrahim AE, Saraya RE, Saleh H, Elhenawee M. Development and validation of eco-friendly micellar-HPLC and HPTLC-densitometry methods for the simultaneous determination of paritaprevir, ritonavir and ombitasvir in pharmaceutical dosage forms. Helyon. 2019 Apr 1; 5(4):e00158.
25. Sri KV, Deepthi S, Madhuri M, Ashwarya PV. Development and Validation of UV Spectroscopic by Q-absorption Ratio, RP-HPLC Method for Simultaneous Estimation of Atazanavir and Ritonavir in bulk and Pharmaceutical Dosage Form. Asian Journal of Pharmaceutical Analysis. 2019; 9(3):138-50.
26. Ayyen FQ, Yasmeen R, Badar H. Development and Validation of RP-HPLC Method for Determination of Ritonavir and Lopinavir. Research Journal of Pharmacy and Technology. 2019; 12(7):3413-7.
27. Rathnasamy R, Karunavam RP, Pakkath R, Kamalakannan P, Swasubramanian A. RP-HPLC Method Development and Method
Validation of Lopinavir and Ritonavir in Pharmaceutical Dosage Form. Am J Clin Microbiol Antimicrob. 2018; 1(1):1002.

28. Uppalapati Y, Ghosh B, Deshpande K, Tadimarri VS. Method Development and Validation for the Simultaneous Estimation of Emtricitabine and Tenofovir in Pharmaceutical Dosage Forms by RP-HPLC. J Drug Dev Del. 2018; 1(1):07-12.

29. Ashok G, Sumanta M. Development and Validation of Stability Indicating Method for the Simultaneous Quantification of Emtricitabine, Tenofovir Disoproxil Fumarate and Rilpivirine Hydrochloride in Pharmaceutical Dosage Forms by RP-HPLC. 2018, 15:175183.

30. Akram N, Umamahesh M. A New Validated RP-HPLC Method for the Determination of Emtricitabine and Tenofovir AF in its Bulk and Pharmaceutical Dosage Forms. Journal of Chemical and Pharmaceutical Sciences. 2017; 10(4):2349-8552.

31. Badgujar BP, Mahajan MP, Savant SD. Development and validation of RP-HPLC method for the simultaneous estimation of tenofovir alafenamide and emtricitabine in bulk and tablet dosage form. International Journal of Chem Tech Research. 2017; 10(5):731-9.

32. Gummaluri RK, Parthasarathi TV, Anjanamadhulika G. Simultaneous method for determination of emtricitabine, tenofovir disoproxil fumarate, elvitegravir and cobicistat in tablets by HPLC. Indian Journal of Pharmaceutical Sciences. 2016 Jun 28; 78(4):532-7.

33. Premij R. Ritonavir literature review. 2015 May ; 276059436.

34. Venkatesan S, Kamappan N. Simultaneous spectrophotometric method for determination of emtricitabine, tenofovir disoproxil fumarate, elvitegravir and cobicistat in three-component tablet formulation containing rilpivirine hydrochloride. International scholarly research notices.

35. Ramaswamy A, Das S.A. Development and validation of analytical method for quantitation of Emtricitabine, Tenofovir, Efavirenz based on HPLC. Arabian Journal of Chemistry. 2014; 11(2):1-7.

36. Rao BV, Vidyaadhara S, Babu RR, Kumar BP, Kumar GK. Analytical method development and validation for simultaneous estimation of lopinavir and ritonavir by RP-HPLC 2014 June.

37. Sri KV, Madhuri M, Jain GV, Suresh K. Rapid RP-HPLC Method for Quantitative Determination of Emtricitabine in Bulk and Pharmaceutical Dosage Form. Research Journal of Pharmacy and Technology. 2014; 7(8):897-901.

38. Trivedi CD, Mardia RB, Suhagia BN, Chauhan SP. Development and validation of spectrophotometric method for the estimation of ritonavir in tablet dosage form. International Journal of Pharmaceutical Sciences and Research. 2013 Dec 1; 4(12):4567.

39. Pawar DS, Dole M, Sawant S, Salunke JM. Development and validation of RP-HPLC method for the simultaneous estimation of Atazanavir sulphate and Ritonavir in bulk and formulations. International Journal of Pharmacy and Pharmaceutical Sciences. 2013; 5(Suppl 3):905-9.

40. Vasavi N, Patan A. Method development and validation for the simultaneous estimation of Atazanavir and Ritonavir in tablet dosage form by RP-HPLC. Indian Journal of Research in Pharmacy and Biotechnology. 2013 Nov 1; 1(6):808.

41. Varaprasad B, Baba H, Ravikumar A, Vijaykumar G. Development method validation of RP-HPLC method for simultaneous determination of lopinavir and ritonavir in bulk and formulation dosage. International Research Journal of Pharmaceutical and Applied Sciences. 2012 Aug 31; 2(4):84-90.

42. Chiranjeevi K, Channabasavaraj KP, Lakshminarayana B, Kumar BK. Development and validation of RP-HPLC method for quantitative estimation of ritonavir in bulk and pharmaceutical dosage forms. International Journal of Pharmaceutical Sciences and Research. 2011 Feb 1; 2(2):336.

43. Ponnilavarasan I, Rajasekaran A, Bharuman JG, Kalayarasi D, Senthilkumar M. RP-HPLC method for simultaneous estimation of antiretroviral drugs lopinavir and ritonavir in tablet dosage form. Digest journal of nanomaterials and biostructures. 2010 Jul 1; 5(3):771-8.

44. Watson PD, Cox S, Utkin I, Gerber N, Crim L, Brady M, Koranyi K. Clinical use of a simultaneous HPLC assay for indinavir, saquinavir, ritonavir and nelfinavir in children and adults. Therapeutic drug monitoring. 2003 Dec 1; 25(6):650-6.