Multi-Document Keyphrase Extraction: Dataset, Baselines and Review

Ori Shapira¹, Ramakanth Pasunuru², Ido Dagan¹, and Yael Amsterdamer¹

¹Bar-Ilan University ²UNC Chapel Hill
{obspp18, ramakanth.1729}@gmail.com
{dagan, amstery}@cs.biu.ac.il

Abstract

Keyphrase extraction has been extensively researched within the single-document setting, with an abundance of methods, datasets and applications. In contrast, multi-document keyphrase extraction has been infrequently studied, despite its utility for describing sets of documents, and its use in summarization. Moreover, no prior dataset exists for multi-document keyphrase extraction, hindering the progress of the task. Recent advances in multi-text processing make the task an even more appealing challenge to pursue. To stimulate this pursuit, we present here the first dataset for the task, MK-DUC-01, which can serve as a new benchmark, and test multiple keyphrase extraction baselines on our data. In addition, we provide a brief, yet comprehensive, literature review of the task.

1 Introduction

Keyphrase extraction (KPE) is the task of selecting important and topical phrases from within a body of text (Turney, 2000). Single-document KPE has been a long standing task (Dennis, 1967) garnering extensive research due to its vast practical uses. For example, keyphrases are listed on scientific or news articles, product descriptions and meeting transcripts to give the reader a hint at the matters of the source text. Additionally, these keyphrases are serviceable for downstream tasks like document categorization (Hulth and Megyesi, 2006), clustering (Jones and Mahoui, 2000), summarization (Jones et al., 2002) and search (Gutwin et al., 1999). Hence, single-document KPE is resourced with a multitude of datasets across several domains (e.g., scientific papers (Kim and Kan, 2009; Krapivin et al., 2009) or news (Wan and Xiao, 2008; Marujo et al., 2012)), and is frequently reviewed in survey papers to report on continual advancements of methods for solving the task (e.g. Hasan and Ng, 2014; Siddiqi and Sharan, 2015; Merroni et al., 2019; Papagiannopoulou and Tsoumakas, 2020).

Conversely, multi-document KPE (MKPE) has been sporadically researched, even though it is just as valuable for indicating the central aspects of a set of related documents. As laid out in §2, few works have explicitly targeted the task, however MKPE was also implemented within applications of information exploration. In addition, MKPE was implicitly leveraged as a medium for supporting multi-document summarization. To make matters trickier, no dataset was previously available for MKPE, consisting of sets of documents and corresponding gold lists of keyphrases. Previous works, therefore, did not evaluate with standard automatic KPE methods, or conducted extrinsic evaluations through summarization.

To stimulate a more established research line on MKPE, we first briefly review the research conducted around the task (§2), and then present our MKPE dataset,¹ which can provide a testing benchmark for the task (§3). The dataset is based on the existing DUC-2001 single-document KPE dataset (Wan and Xiao, 2008) in the news domain. We leverage the properties of the original DUC-2001 multi-document summarization dataset² to convert the single-document KPE dataset to a multi-document one using an automatic procedure followed by manual cleaning. We run several KPE algorithms on the dataset to demonstrate the current state of the task on the new benchmark (§4).

The multi-document setting poses the challenge of handling large inputs with cross-document relationships, which manifests high information redundancy along with dispersed complementing information. These issues were indeed apparent during our dataset creation process, and were treated accordingly. As for potential solutions, recent advances in multi-text processing (e.g., Caciularu et al., 2021; Mao et al., 2020) make MKPE an even more relevant and timely task to drive forward.

¹Reproducing code will be released upon publication.
²https://duc.nist.gov
2 Task Background

We outline the research conducted on MKPE. Few works have expressly tackled the task, however it has also been applied in several studies on multi-document summarization and exploration.

Works on MKPE. Redundancy is naturally a dominant characteristic to harness for consolidating information across a set of related documents. Hammouda et al. (2005) ranked word-sequences, common to all documents, with lexical features, and evaluated resulting keyphrases against the search-query used for retrieving the set of web documents. Bharti et al. (2017) also used term-frequency features, evaluating the keywords against the aggregated words in the source news articles’ headlines. Qing-sheng (2007) designed cluster-based and MMR-based (Carbonell and Goldstein, 1998) algorithms an Yangjie et al. (2008) used TF-IDF and word-level features to score words.

Another approach taken was merging keyphrase lists from individual documents in the document-set. Berend and Farkas (2013) classified candidate keyphrases using a maxent model with features of word surface-form and Wikipedia knowledge, and unified lists with an information gain metric. The final list of keyphrases was compared to a topic overview paragraph. Bayatmakou et al. (2017) applied RAKE (Rose et al., 2010) per document and word similarity for merging. Evaluation was conducted with manual satisfaction ratings. Relatedly, Wan and Xiao (2008) proposed a method for single-document KPE, that ranks a document’s keyphrases with respect to similar “collaborating” documents. That paper also introduced the single-document KPE dataset that we build upon for MKPE (§3).

As apparent, the works addressing the task employ rather simplistic methods, and, notably, evaluate inconsistently and in a non-methodological manner. We advocate revisiting the MKPE task with modern approaches, and with our dataset as a testing benchmark for comparability. While preparing training data is left for future work, extracting keyphrases from a document set may be facilitated by semi-supervised techniques. In summarization, for example, Mao et al. (2020) used reinforcement learning against reference summaries, which can be borrowed for detecting keyphrases rather than summary sentences. Lebanoff et al. (2018) capitalized on the abundant single-document summarization data and adapted it for the multi-document setting, as can be respectively applied in KPE. Additionally, it is worth exploring how to leverage multi-document word representations (Caciularu et al., 2021) for the use of phrase salience detection.

Applications using MKPE. To alleviate the consumption of information from within document sets, there is a line of research developing interactive systems for knowledge exploration (Shapira et al., 2021). Many applications provide a form of a keyphrase list to highlight relevant sub-topics in the document set (e.g. Leuski et al., 2003; Handler and O’Connor, 2017; Shahpura et al., 2021; Hirsch et al., 2021). Here too, keyphrases were extracted using redundancy-based methods, like TF-IDF, TextRank (Mihalcea and Tarau, 2004) or cross-document coreference resolution (Cattan et al., 2021).

KPE for multi-document summarization. Multi-document summarization (MDS) aims to generate a passage covering the salient issues of the source document-set. Keyphrases naturally point to central aspects, and can therefore assist in marking the information for a summary. Some works detected salient phrases in the document-set, e.g., with conventional term-frequency methods (Alshahrani and Bikdash, 2019), by using single-document KPE algorithms on the concatenated documents (Nayeem and Chali, 2017), or through query-similarity for query-focused summarization (Ma et al., 2008). Hong and Nenkova (2014) assigned importance to documents’ content words based on their appearance in reference summaries. ILP frameworks were also employed (Li et al., 2015; Li and Zheng, 2020) for weighting phrases around which to summarize. While most of these methods, in consequence, produce keyphrases, their intention is generating summaries that are standardly evaluated against reference summaries.

KPE evaluation. Most single-document KPE works automatically evaluate a keyphrase list against a gold list, as we now enable also for MKPE with our new dataset. The most prominent metric is $F1@k$, which considers the recall and precision of the predicted list, truncated to k items, against the full gold list. To allow for some reasonable lexical variation of keyphrases, words are often stemmed, and unigram-level $F1@k$ is used – where the two lists of keyphrases are each flattened out to respective lists of words.

A major disadvantage of this evaluation approach is that it penalizes synonymous keyphrases not contained in the gold list. This is potentially
further exacerbated in the multi-document setting, which contains higher paraphrasic diversity across documents. Our dataset annotation process facilitated preparation of substitute clusters within gold keyphrase lists, thus allowing for some synonymy of predicted keyphrases (§3).

3 New Dataset

Our MKPE dataset, named MK-DUC-01, builds upon the DUC-2001 single-document KPE dataset (Wan and Xiao, 2008), for the news domain.

The DUC-2001 MDS dataset (Over, 2001) consists of 30 topics, each containing ~10.3 related news articles (308 total). Experts summarized each individual article, as well as each of the document-sets, yielding three 100-token-long summaries per document, and three summaries per document-set, at lengths 50, 100, 200 and 400 tokens. Wan and Xiao (2008) further annotated the data with lists of ~8.1 keyphrases per document, at ~2.1 words per keyphrase. This data is still widely used for the single-document KPE task.

The availability of document-level keyphrases and document clusters – unique to the DUC-2001 dataset – allows deducing multi-document-level keyphrases. The single-document KPE dataset is restructured for the multi-document setting by carrying out an automatic merging and reranking process, followed by a manual refinement procedure:

Automatic merging and reranking. For each topic t with its corresponding document set $D_t = \{d_1, ..., d_{n_t}\}$, and 400-token reference summaries $S_t = \{s_1, s_2, s_3\}$, we first scored each stemmed word w in D_t as $\text{word_score}(w, t) = \text{avg}(d_f(w, D_t), d_f(w, S_t))$ where $d_f(w, X)$ stands for w’s document-frequency in document-set X, i.e. the percentage of documents of X in which w appears. As expressed earlier, the frequency of words in the document set are useful for indicating the importance of concepts for the topic. We additionally leverage the reference summaries for providing a strong signal for topic-level salience.

We then unified D_t’s n_t lists of keyphrases (from the single-document KPE dataset), removing duplicates and phrases not appearing in D_t, to form a single list of potential keyphrases, K_t'. Each phrase $p \in K_t'$ was then scored as $\text{phrase_score}(p, t) = \text{avg}_{w \in p}(\text{word_score}(w, t))$, i.e. the average of p’s stem scores. This generated a ranked list of keyphrases, K_t, ordered by a salience score.

Lastly, we merged pairs of phrases in K_t where one was contained within the other (stemmed and disregarding word order), leaving only the longer variant or the one earlier in K_t, e.g., merging “routine training”/“routine train flight”. Due to the variance of keyphrases’ informativeness across documents, we found that this heuristic effectively filtered out overly generic or repetitive keyphrases.

Manual refinement. As we strived to generate a high-quality MKPE benchmark dataset, we further refined the keyphrase lists produced by the automatic stage above. One of the authors looked over the 30 K_t lists with the relevant topic documents and reference summaries open for assistance, and carried out the following: (1) removed phrases that were particularly scarce or of low informativeness (e.g., “similar transmission” in the “Mad Cow Disease” topic); (2) removed phrases that were not synonymous with others, but were clearly implied from other phrases (e.g., “U.S. Senate” where other keyphrases mention the Senate); (3) clustered together phrases that can be used replaceably (e.g., “1990 census” and “1990 population count”) to form keyphrase substitute clusters, with the more commonly used variant as the preferred alternative; (4) produced substitute clusters for persons’ titled proper nouns, when the title is optional (e.g., a cluster for “Bill Clinton” containing “President Clinton” and “Governor Bill Clinton”), leaving the untitled version as the preferred alternative. These annotation actions emphasize the need for proper consolidation of repetitive and complementing information in the multi-document setting.

The whole dataset formation procedure yielded the final MK-DUC-01 dataset, with basic statistics appearing in Table 1. We suggest a version of the dataset where the keyphrase lists are truncated at 20 items, denoted here Trunc-20. This establishes a more representational task-setting since

	Full	Trunc-20
# topics	30	30
Avg (StD) # docs per topic	10.27 (2.24)	10.27 (2.24)
Avg (StD) # KPs per topic	43.8 (15.6)	19.97 (0.18)
Avg (StD) KP word-length	2.13 (0.66)	2.17 (0.66)
# KPs with substitute cluster	142 of 1314	104 of 599
Avg (StD) # KPs in clusters	2.82 (1.26)	3.07 (1.37)
Avg (StD) % unique stems in cluster	0.72 (0.06)	0.71 (0.07)

Table 1: MK-DUC-01 stats, on the full data and when truncating the keyphrase lists to 20. (KP = keyphrase)
Table 2: Precision results on various KPE algorithms tested with the Trunc-20 version of our MK-DUC-01 dataset.

In Concat mode all topic documents are concatenated as a single text input, and in Merge mode algorithms are run on individual documents after which keyphrase lists are heuristically merged and reranked. The bottom two algorithms are multi-document based KPE algorithms, and work in Merge mode only. BERT-KPE is limited in input size and hence cannot be run in Concat mode. This table corresponds to Table 3, which presents F1 scores.

Note that the variability of contextually similar keyphrases across documents enabled the formation of clusters of substitute keyphrases, which is a novel conception in KPE datasets. This assists in the evaluation process when a system outputs a keyphrase that is worded differently in the gold list of keyphrases, as seen in Table 6 (appendix). On average over all baselines, ~15% of output keyphrases are synonymous with others, with respect to the available substitute clusters. We may hence infer that improving detection of phrase redundancy in context, may improve overall results. We also observe that keyphrase token-length (Table 6) influences unigram-level scores: shorter keyphrases, likely more informationally generic, tend to yield higher precision and lower recall scores.

Table 2 shows Precision@k results, with stemming, on the Trunc-20 version of MK-DUC-01 and using the substitute clusters (evaluation procedure, F1 scores and scores on the full data in appendix). Overall, we witness the benefit of the Merge strategy, which explicitly considers redundancy across documents during the merging step. Meanwhile, some baselines tend to output many synonymous keyphrases, as seen in Table 6 (appendix). On average over all baselines, ~15% of output keyphrases are synonymous with others, with respect to the available substitute clusters. We may hence infer that improving detection of phrase redundancy in context, may improve overall results. We also observe that keyphrase token-length (Table 6) influences unigram-level scores: shorter keyphrases, likely more informationally generic, tend to yield higher precision and lower recall scores.

4 Baseline Results

We demonstrate the use of MK-DUC-01 by testing 11 existing single-document KPE algorithms and a multi-document one. Algorithms are applied in two modes: (1) Concat, where all topic documents are concatenated into a single text that is then fed to the algorithm to output a list of keyphrases per topic; (2) Merge, where for each topic, the algorithm is fed one document at a time, and the generated lists of keyphrases are merged using a similar strategy as in the automatic merging and reranking procedure in §3, except that \(\text{word_score}(w, t) = df(w, D_t) \), i.e., it does not consider the reference summary set – which is unavailable in the KPE task. BERT-KPE (Sun et al., 2021), a RoBERTa (Liu et al., 2019) model trained on the single-document OpenKP (Xiong et al., 2019) dataset, has a strict input size limit, and cannot work in Concat mode. CollabRank (Wan and Xiao, 2008) uses its collaborating documents, hence only Merge is applied. The MKPE algorithm by Bayatmakou et al. (2017) uses a merge approach different from ours.

Table 2 shows Precision@k results, with stemming, on the Trunc-20 version of MK-DUC-01 and using the substitute clusters (evaluation procedure, F1 scores and scores on the full data in appendix). Overall, we witness the benefit of the Merge strategy, which explicitly considers redundancy across documents during the merging step. Meanwhile, some baselines tend to output many synonymous keyphrases, as seen in Table 6 (appendix). On average over all baselines, ~15% of output keyphrases are synonymous with others, with respect to the available substitute clusters. We may hence infer that improving detection of phrase redundancy in context, may improve overall results. We also observe that keyphrase token-length (Table 6) influences unigram-level scores: shorter keyphrases, likely more informationally generic, tend to yield higher precision and lower recall scores.

5 Conclusion

We review the multi-document KPE task, which is far understudied compared to its single-document counterpart. While few works have tackled the MKPE task head-on, without the existence of a suitable dataset, MKPE has also been applied for document-set summarization and exploration. We introduce the first MKPE dataset as a benchmark, and test various KPE baselines on it. Alongside recent progress in multi-text processing, we hope our dataset spurs the advancement of the MKPE task.
Acknowledgements

This work was supported in part by the German Research Foundation through the German-Israeli Project Cooperation (DIP, grant DA 1600/1-1); by the Israel Science Foundation (grants no. 2827/21 and 2015/21); and by a grant from the Israel Ministry of Science and Technology.

References

Saud Alshahrani and Marwan Bikdash. 2019. Multi-Document Summarization Based on Keyword Fusion. In 2019 SoutheastCon, pages 1–5. IEEE.

Farnoush Bayatmakou, Abbas Ahmadi, and Azadeh Mohebi. 2017. Automatic Query-based Keyword and Keyphrase Extraction. In 2017 Artificial Intelligence and Signal Processing Conference (AISP), pages 325–330. IEEE.

Gábor Berend and Richárd Farkas. 2013. Single-Document Keyphrase Extraction for Multi-Document Keyphrase Extraction. Computación y Sistemas, 17(2):179–186.

Santosh Kumar Bharti, Korra Sathya Babu, Anima Pradhan, S Devi, TE Priya, E Orhorhorho, O Orhorhorho, V Atumah, E Baruah, P Konwar, et al. 2017. Automatic Keyword Extraction for Text Summarization in Multi-document E-newspaper Articles. European Journal of Advances in Engineering and Technology, 4(6):410–427.

Florian Boudin. 2016. PKE: an Open Source Python-based Keyphrase Extraction Toolkit. In Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: System Demonstrations, pages 69–73, Osaka, Japan. The COLING 2016 Organizing Committee.

Florian Boudin. 2018. Unsupervised Keyphrase Extraction with Multipartite Graphs. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pages 667–672, New Orleans, Louisiana. Association for Computational Linguistics.

Adrien Bougouin, Florian Boudin, and Béatrice Daille. 2013. TopicRank: Graph-Based Topic Ranking for Keyphrase Extraction. In Proceedings of the Sixth International Joint Conference on Natural Language Processing, pages 543–551, Nagoya, Japan. Asian Federation of Natural Language Processing.

Avi Caciu laru, Arm an Cohan, Iz Beltagy, Matthew Peters, Arie Cattan, and Ido Dagan. 2021. CDLM: Cross-Document Language Modeling. In Findings of the Association for Computational Linguistics: EMNLP 2021, pages 2648–2662, Punta Cana, Dominican Republic. Association for Computational Linguistics.

Ricardo Campos, Vítor Mangaravite, Arian Pasquali, Alípio Jorge, Célia Nunes, and Adam Jatowt. 2020. YAKE! Keyword Extraction from Single Documents using Multiple Local Features. Information Sciences, 509:257–289.

Jaime G. Carbonell and Jade Goldstein. 1998. The Use of MMR, Diversity-Based Reranking for Reordering Documents and Producing Summaries. In SIGIR, pages 335–336.

Arie Cattan, Alon Eirew, Gabriel Stanovsky, Mandar Joshi, and Ido Dagan. 2021. Cross-document Coreference Resolution over Predicted Mentions. In Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages 5100–5107, Online. Association for Computational Linguistics.

Sally F. Dennis. 1967. The Design and Testing of a Fully Automatic Indexing-Searching System for Documents Consisting of Expository Text. In Information Retrieval: a Critical Review, pages 67–94, Washington DC. Thompson Book Company.

Samh L El-Beltagy and Ahmed Rafea. 2009. KP-Miner: a keyphrase extraction system for English and Arabic documents. Information Systems, 34(1):132–144.

Corina Florescu and Cornelia Caragea. 2017. Position-Rank: An Unsupervised Approach to Keyphrase Extraction from Scholarly Documents. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1105–1115, Vancouver, Canada. Association for Computational Linguistics.

Carl Gutwin, Gordon Paynter, Ian Witten, Craig Nevill-Manning, and Eibe Frank. 1999. Improving Browsing in Digital Libraries with Keyphrase Indexes. Decision Support Systems, 27(1-2):81–104.

Khaled M Hammouda, Diego N Matute, and Mohamed S Kamel. 2005. Corephrase: Keyphrase Extraction for Document Clustering. In International workshop on machine learning and data mining in pattern recognition, pages 265–274. Springer.

Abram Handler and Brendan O’Connor. 2017. ROOKIE: A unique approach for exploring news archives. In Proceedings of Data Science + Journalism workshop at KDD, Halifax, Nova Scotia, Canada. Association for Computing Machinery.

Kazi Saidul Hasan and Vincent Ng. 2014. Automatic Keyphrase Extraction: A Survey of the State of the Art. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1262–1273, Baltimore, Maryland. Association for Computational Linguistics.

Eran Hirsch, Alon Eirew, Ori Shapira, Avi Caciularu, Arie Cattan, Ori Ernst, Ramakanth Pasunuru, Hadar Ronen, Mohit Bansal, and Ido Dagan. 2021. iFacetSum: Coreference-based Interactive Faceted
Summarization for Multi-Document Exploration. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 283–297, Online and Punta Cana, Dominican Republic. Association for Computational Linguistics.

Kai Hong and Ani Nenkova. 2014. Improving the Estimation of Word Importance for News Multi-Document Summarization. In Proceedings of the 14th Conference of the European Chapter of the Association for Computational Linguistics, pages 712–721, Gothenburg, Sweden. Association for Computational Linguistics.

Matthew Honnibal, Ines Montani, Sofie Van Landeghem, and Adrian Boyd. 2020. spaCy: Industrial-strength Natural Language Processing in Python.

Anette Hulth and Beáta A. Megyesi. 2006. A Study on Automatically Extracted Keywords in Text Categorization. In Proceedings of the 21st International Conference on Computational Linguistics and 44th Annual Meeting of the Association for Computational Linguistics, pages 537–544, Sydney, Australia. Association for Computational Linguistics.

Steve Jones, Stephen Lundy, and Gordon W Paynter. 2002. Interactive Document Summarisation using Automatically Extracted Keyphrases. In Proceedings of the 35th Annual Hawaii International Conference on System Sciences, pages 1160–1169. IEEE.

Steve Jones and Malika Mahoui. 2000. Hierarchical Document Clustering using Automatically Extracted Keyphrases. Computer Science Working Papers.

Su Nam Kim and Min-Yen Kan. 2009. Re-examining automatic keyphrase extraction approaches in scientific articles. In Proceedings of the Workshop on Multiword Expressions: Identification, Interpretation, Disambiguation and Applications (MWE 2009), pages 9–16, Singapore. Association for Computational Linguistics.

Mikalai Krapivin, Aliaksandr Autaeu, and Maurizio Marchese. 2009. Large Dataset for Keyphrases Extraction.

Logan Lebanoff, Kaqiqiang Song, and Fei Liu. 2018. Adapting the neural encoder-decoder framework from single to multi-document summarization. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 4131–4141, Brussels, Belgium. Association for Computational Linguistics.

Anton Leuski, Chin-Yew Lin, and Eduard Hovy. 2003. iNeATS: Interactive Multi-Document Summarization. In The Companion Volume to the Proceedings of 41st Annual Meeting of the Association for Computational Linguistics, pages 125–128, Sapporo, Japan. Association for Computational Linguistics.

Chen Li, Yang Liu, and Lin Zhao. 2015. Using External Resources and Joint Learning for Bigram Weighting in ILP-Based Multi-Document Summarization. In Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 778–787, Denver, Colorado. Association for Computational Linguistics.

Zongyi Li and Xiaoping Zheng. 2020. Unsupervised Summarization by Jointly Extracting Sentences and Keywords. arXiv preprint arXiv:2009.07481.

Yinhua Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. RoBERTa: A Robustly Optimized BERT Pretraining Approach. arXiv preprint arXiv:1907.11692.

Liang Ma, Tinting He, Fang Li, Zhoumin Gui, and Jinguang Chen. 2008. Query-focused Multi-document Summarization using Keyword Extraction. In 2008 International Conference on Computer Science and Software Engineering, volume 1, pages 20–23. IEEE.

Yuning Mao, Yanru Qu, Yiqing Xie, Xiang Ren, and Jiawei Han. 2020. Multi-document Summarization with Maximal Marginal Relevance-guided Reinforcement Learning. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1737–1751, Online. Association for Computational Linguistics.

Luís Marujo, Anatole Gershman, Jaime Carbonell, Robert Frederking, and João P. Neto. 2012. Supervised Topical Key Phrase Extraction of News Stories using Crowdsourcing, Light Filtering and Co-reference Normalization. In Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC’12), pages 399–403, Istanbul, Turkey. European Language Resources Association (ELRA).

Zakariae Alami Mernouni, B. Frikh, and B. Ouhbi. 2019. Automatic Keyphrase Extraction: a Survey and Trends. Journal of Intelligent Information Systems, 54:391–424.

Rada Mihalcea and Paul Tarau. 2004. TextRank: Bringing Order into Text. In Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing, pages 404–411, Barcelona, Spain. Association for Computational Linguistics.

Mir Tafseer Nayeem and Yllias Chali. 2017. Extract with Order for Coherent Multi-Document Summarization. In Proceedings of TextGraphs-11: the Workshop on Graph-based Methods for Natural Language Processing, pages 51–56, Vancouver, Canada. Association for Computational Linguistics.

Paul Over. 2001. Introduction to DUC-2001: an Intrinsic Evaluation of Generic News Text Summarization Systems. In Proceedings of DUC 2001 Document Understanding Conference, volume 49.
Eirini Papagiannopoulou and Grigorios Tsoumakas. 2020. A Review of Keyphrase Extraction. *WIREs Data Mining and Knowledge Discovery*, 10(2):e1339.

Cai Qing-sheng. 2007. Research on Keyword-Extraction from Multi-Document in User Model. *Computer Simulation*.

Stuart Rose, Dave Engel, Nick Cramer, and Wendy Cowley. 2010. *Automatic Keyword Extraction from Individual Documents*, chapter 1. John Wiley & Sons, Ltd.

Ulrich Schäfer, Jonathon Read, and Stephan Oepen. 2012. Towards an ACL Anthology Corpus with Logical Document Structure. An Overview of the ACL 2012 Contributed Task. In *Proceedings of the ACL-2012 Special Workshop on Rediscovering 50 Years of Discoveries*, pages 88–97, Jeju Island, Korea. Association for Computational Linguistics.

Ori Shapira, Ramakanth Pasunuru, Hadar Ronen, Mohit Bansal, Yael Amsterdamer, and Ido Dagan. 2021. Extending Multi-Document Summarization Evaluation to the Interactive Setting. In *Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies*, pages 657–677, Online. Association for Computational Linguistics.

Sifatullah Siddiqi and Aditi Sharan. 2015. Keyword and Keyphrase Extraction Techniques: A Literature Review. *International Journal of Computer Applications*, 109:18–23.

Lucas Sterckx, Thomas Demeester, Johannes Deleu, and Chris Develder. 2015. Topical Word Importance for Fast Keyphrase Extraction. In *Proceedings of the 24th International Conference on World Wide Web*, WWW ’15 Companion, page 121–122, New York, NY, USA. Association for Computing Machinery.

Si Sun, Chenyan Xiong, Zhenghao Liu, Zhiyuan Liu, and Jie Bao. 2021. Capturing Global Informativeness in Open Domain Keyphrase Extraction. In *Proceedings of the tenth CCF International Conference on Natural Language Processing and Chinese Computing*, Qingdao, China. China Computer Federation.

Peter D. Turney. 2000. Learning Algorithms for Keyphrase Extraction. *Information Retrieval*, 2:303–336.

Xiaojun Wan and Jianguo Xiao. 2008. ColabRank: Towards a Collaborative Approach to Single-Document Keyphrase Extraction. In *Proceedings of the 22nd International Conference on Computational Linguistics* (Coling 2008), pages 969–976, Manchester, UK. Coling 2008 Organizing Committee.

Lee Xiong, Chuan Hu, Chenyan Xiong, Daniel Campos, and Arnold Overwijk. 2019. Open Domain Web Keyphrase Extraction Beyond Language Modeling. In *Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)*, pages 5175–5184, Hong Kong, China. Association for Computational Linguistics.

Ji YangJie, Cai Dong-feng, Lin Xiao-qing, and Bai Yu. 2008. Keyword Extraction in Multi-Document Based on Joint Weight. *Journal of Chinese Information Processing*, page 06.
A Further Experiment Details

Additional baseline evaluations. Table 3 presents the F1 scores on the Trunc-20 version of the dataset, corresponding to Table 2 in §4. Tables 4 and 5 present the results on the full gold keyphrase lists (non-truncated). When compared to the results on the Trunc-20 truncated lists (Tables 2 and 3), there is an expected degradation in all scores, since the keyphrases lower in the lists are less representative keyphrases of the respective document sets. This, and the longer absolute lengths of the lists, make it less likely for the KPE baselines to extract correct keyphrases, and hence yield considerably lower recall scores across the board (not shown here).

Evaluation details. For computing F1@k, the top-k predicted keyphrases and all gold keyphrases are stemmed, duplicates are removed from the predicted list, and stemmed keyphrases are lexically matched. If a predicted keyphrase is found in a gold keyphrase substitute cluster, then that gold keyphrase cluster cannot be matched with another predicted keyphrase. This mimics the removal of duplicates from the predicted list, just with synonymous keyphrases. Notice that this means that repeated/synonymous keyphrases are marked as appearing only once, which affects precision unfavourably.

For computing unigram-F1@k: (1) the top-k items in the system keyphrase list are retrieved; (2) unique keyphrases from that sub-list are flattened out to a single list of stems; (3) each substitute cluster in the gold list is flattened out to a list of unique stems; (4) all gold clusters – including those with one element – are pooled together to one list of stems; (5) the predicted stems are evaluated against gold stems with recall and precision.

The average precision and average F1 scores over all instances are the final scores presented.

Concat mode implementation. When inputting one long concatenation of documents to a single-document KPE algorithm, the order of the documents may have an effect on the results. Therefore, for each of the 30 test topics, we shuffled the documents, and kept that order for all baselines.

Keyphrase sizes. Table 6, on the left side, presents the average token-length of the 20 keyphrases output by each baseline, over all topics, when using the Concat and Merge generation modes. The keyphrase sizes in Concat are representative of the corresponding algorithms’ output sizes, while the sizes in Merge go through an additional process, hence slightly altering the natural output sizes of the algorithms. As mentioned in §4, the keyphrase token-length has an influence on the unigram-level precision and recall scores. When a keyphrase is shorter, it has less of a chance of containing words not in the gold keyphrases, allowing for higher precision. On the other hand, it also has less opportunity to catch those gold words, leading to lower recall.

KP synonymity in outputs. For each baseline used, Table 6, on the right side, presents the average (over 20 keyphrases per topic, and over all topics) percent of keyphrases that are synonymous with others, with respect to the substitute clusters in the test dataset (i.e., this does not take into account synonymous keyphrases that do not appear in the gold list). Notably, we see that about 1 of every 4 keyphrases in TopicalPageRank outputs are synonymous with others. Nevertheless, this baseline is still one of the superior tested methods.

Single-document KPE results. We ran the algorithms from Tables 2, 3, 4 and 5 on the single-document DUC-2001 KPE dataset (308 documents and 8.08 keyphrases per document), to get a sense of their comparable quality in the single and multiple document settings. Results are presented in Table 7. There are 7 documents that were not processed in the KPMiner algorithm due to processing errors.

Overall, we see that the algorithm rankings are quite similar in the two settings, across the k values and in both metrics.

Algorithm implementations. We used the PKE Python toolkit package (Boudin, 2016) for most KPE algorithms. We adapted the code available for BERT-KPE4 (Sun et al., 2021) for the DUC-2001 data, and used the available trained model (RoBERTa (Liu et al., 2019) on OpenKP data (Xiong et al., 2019)). We implemented the algorithm by Bayatmakou et al. (2017) ourselves, which uses RAKE (Rose et al., 2010) as its underlying single-document KPE component (we used the nltk-rake library5). As RAKE outputted very long keyphrases yielding low scores, we used only those up to 3 words. For CollabRank, we considered all

4https://github.com/thunlp/BERT-KPE
5https://pypi.org/project/rake-nltk
other documents in its original topic document-set as “collaborating” documents, and computed their similarity scores using spaCy (Honnibal et al., 2020) text similarity.

Execution resources. All algorithms (except for BERT-KPE) and automatic methods used for annotation and experimentation were run on a standard laptop, and no special hardware was required. BERT-KPE was run (only inference was needed) on a NVIDIA GeForce GTX 1080 Ti GPU with 11GB memory, and used less than 1GB memory during inference.

Run times were up to about a second per keyphrase extraction instance, except for ColabRank which required about 15-20 seconds per document. Running the Merge mode on the document-sets required tens of seconds for some baselines as the process iterates over all documents separately. The Concat mode, which requires a single run per document-set, was substantially faster overall.

B Dataset

Distribution of data. For our work, the DUC-2001 MDS dataset was obtained according to NIST instructions, and the DUC-2001 keyphrases were taken from github.com/boudinfl/duc-2001-pre. Since the documents from the DUC-2001 dataset cannot be freely re-distributed, we make available a script for one-click MK-DUC-01 dataset re-construction using the properly acquired DUC-2001 MDS dataset from NIST.

Example. Table 8 presents an example list of keyphrases from our MK-DUC-01 dataset. The top 20 keyphrases are used in the Trunc-20 dataset version, while the full list is used in the full dataset version. Some keyphrases have multiple wording variations, acting as the substitute clusters. The first item in a cluster can be used in the standard evaluation when a flat list of keyphrases is required.

C Previous MKPE Evaluation Methods

As discussed in §2, the previous works explicitly solving the MKPE task did not have a proper dataset to test their resulting keyphrases. Consequently, each work tested their results differently, described as follows:

Hammouda et al. (2005) targeted the web-document domain. To evaluate, 10 sets of 30 documents were retrieved via query search by submitting a short query (2 to 3 words) into a search engine for each such set (about 30 documents per set with 500 words per document). The system keyphrases were compared, by word-stem overlap, to the single corresponding document-set search query, as an indicator for keyphrase-salience.

Berend and Farkas (2013) work on the scientific paper domain. Sets of papers from ACL workshops (Schäfer et al., 2012) focusing on a clearly distinguishable scientific area (110 workshops with ~14 articles each) were paired with their respective “call-for-papers” (CFP) website sections. A system keyphrase list on a paper set was then compared to the CFP text via word-level cosine similarity. Also, NLP experts assessed whether keyphrase lists indeed properly characterized the corresponding workshop.

Bayatmakou et al. (2017) retrieved common documents with a search query. While an automatic evaluation was proposed (measuring against the search query, and co-occurrence of keywords and query in documents), the actual assessment was a manual satisfaction rating against the search query. Experiments were performed over a large dataset of 13,870 scientific abstracts (https://www.webofknowledge.com).

Bharti et al. (2017) evaluated the resulting keyword list against the aggregated words in the news articles’ headlines, with recall and precision.

Qing-sheng (2007) tested against proprietary expert-annotated data.
Table 3: F1 results on various KPE algorithms tested with the Trec-20 version of our MK-DUC-01 dataset. In Concat mode all topic documents are concatenated as a single text input, and in Merge mode algorithms are run on individual documents after which keyphrase lists are heuristically merged and reranked. The bottom two algorithms are multi-document based KPE algorithms, and work in Merge mode only. BERT-KPE is limited in input size and hence cannot be run in Concat mode. This table corresponds to Table 2, which presents precision scores.

Algorithm	Precision/K	1	5	10	20	1	5	10	20
TF-IDF	1.87	5.83	8.34	10.56	12.78	5.83	8.34	10.56	12.78
KPMiner [El-Beltagy and Rafea, 2009]	1.27	5.32	7.94	10.56	12.78	5.32	7.94	10.56	12.78
YAKE [Campos et al., 2020]	4.50	16.26	20.82	25.40	30.00	16.26	20.82	25.40	30.00
TextRank [Mihalcea and Tarau, 2004]	4.75	16.62	21.28	26.24	31.00	16.62	21.28	26.24	31.00
SingleRank [Wan and Xiao, 2008]	5.12	17.00	21.62	26.24	31.00	17.00	21.62	26.24	31.00
TopRank [Boudin et al., 2015]	5.60	17.50	22.12	26.74	32.00	17.50	22.12	26.74	32.00
TopicalPageRank [Sterckx et al., 2015]	5.61	17.50	22.12	26.74	32.00	17.50	22.12	26.74	32.00
PositionRank [Florescu and Caragea, 2017]	5.60	17.50	22.12	26.74	32.00	17.50	22.12	26.74	32.00
MultipartiteRank [Boudin, 2018]	6.10	18.00	22.62	27.24	32.50	18.00	22.62	27.24	32.50
BERT-KPE [Sun et al., 2021]	6.86	18.00	22.62	27.24	32.50	18.00	22.62	27.24	32.50
CollabRank [Wan and Xiao, 2008]	7.17	18.50	23.12	27.74	33.00	18.50	23.12	27.74	33.00
(Baymakou et al., 2017) [multi-doc]	7.17	18.50	23.12	27.74	33.00	18.50	23.12	27.74	33.00

Table 4: Precision results on various KPE algorithms tested with our full MK-DUC-01 dataset. In Concat mode all topic documents are concatenated as a single text input, and in Merge mode algorithms are run on individual documents after which keyphrase lists are heuristically merged and reranked. The bottom two algorithms are multi-document based KPE algorithms, and work in Merge mode only. BERT-KPE is limited in input size and hence cannot be run in Concat mode. This table corresponds to Table 5, which presents F1 scores.

Algorithm	Precision	1	5	10	20	1	5	10	20
TF-IDF	1.87	5.83	8.34	10.56	12.78	5.83	8.34	10.56	12.78
KPMiner [El-Beltagy and Rafea, 2009]	1.27	5.32	7.94	10.56	12.78	5.32	7.94	10.56	12.78
YAKE [Campos et al., 2020]	4.50	16.26	20.82	25.40	30.00	16.26	20.82	25.40	30.00
TextRank [Mihalcea and Tarau, 2004]	4.75	16.62	21.28	26.24	31.00	16.62	21.28	26.24	31.00
SingleRank [Wan and Xiao, 2008]	5.12	17.00	21.62	26.24	31.00	17.00	21.62	26.24	31.00
TopRank [Boudin et al., 2015]	5.60	17.50	22.12	26.74	32.00	17.50	22.12	26.74	32.00
TopicalPageRank [Sterckx et al., 2015]	5.61	17.50	22.12	26.74	32.00	17.50	22.12	26.74	32.00
PositionRank [Florescu and Caragea, 2017]	5.60	17.50	22.12	26.74	32.00	17.50	22.12	26.74	32.00
MultipartiteRank [Boudin, 2018]	6.10	18.00	22.62	27.24	32.50	18.00	22.62	27.24	32.50
BERT-KPE [Sun et al., 2021]	6.86	18.00	22.62	27.24	32.50	18.00	22.62	27.24	32.50
CollabRank [Wan and Xiao, 2008]	7.17	18.50	23.12	27.74	33.00	18.50	23.12	27.74	33.00
(Baymakou et al., 2017) [multi-doc]	7.17	18.50	23.12	27.74	33.00	18.50	23.12	27.74	33.00

Table 5: F1 results on various KPE algorithms tested with our full MK-DUC-01 dataset. In Concat mode all topic documents are concatenated as a single text input, and in Merge mode algorithms are run on individual documents after which keyphrase lists are heuristically merged and reranked. The bottom two algorithms are multi-document based KPE algorithms, and work in Merge mode only. BERT-KPE is limited in input size and hence cannot be run in Concat mode. This table corresponds to Table 4, which presents precision scores.
Table 6: The average (over all topics) number of tokens per keyphrase produced by the different algorithms, and the average (over all topics) percent of keyphrases in a topic that are “synonymous”, i.e., share substitute clusters with others, in the Trunc-20 dataset version. Results are shown for the two generation modes (Concat and Merge), on the 20 output keyphrases of each baselines.

Algorithm	Avg. KP Word Count	Avg. % Synon. KPs		
	Concat	Merge		
Tf-Idf	1.30	2.22	2	7
KPMiner	1.42	1.39	4	1
YAKE	1.99	2.58	9	17
TextRank	3.64	2.68	18	21
SingleRank	3.24	2.57	22	23
TopicRank	1.51	2.08	4	13
TopicalPageRank	3.14	2.52	27	26
PositionRank	2.52	2.32	26	25
MultipartiteRank	1.51	2.12	5	14
BERT-KPE	-	2.81	-	19
CollabRank	-	2.54	-	23
(Bayatmakou et al., 2017)	-	3.00	-	0

Table 7: The results of various single-document KPE algorithms on the single-document DUC-2001 KPE dataset (Wan and Xiao, 2008), for reference as a comparison to algorithms’ results in the multi-document setting (Tables 2, 3, 4, 5 and 6). The average number of KPs in each document’s gold list in the dataset is 8.08, and all KPs are used in the evaluation. CollabRank is a single-document KPE algorithm that uses related documents (within the same topic) in its operation.

Algorithm	unigram-Precision/F1@k				
	1	5	10	20	Avg. KP Length
Tf-Idf	14.61	3.45	11.75	9.28	9.17
KPMiner	27.24	6.43	18.18	14.31	12.53
YAKE	18.83	4.43	15.84	12.44	12.44
TextRank	12.99	3.16	14.81	11.47	15.88
SingleRank	29.55	7.04	25.72	20.06	21.33
TopicRank	35.39	8.36	25.01	19.51	19.41
TopicalPageRank	32.14	7.59	26.89	20.98	22.26
PositionRank	38.04	8.22	29.65	22.97	25.19
BERT-KPE	41.56	9.66	29.55	23.14	22.66
CollabRank	37.99	8.94	29.23	22.88	24.29
#	Keyphrase				
----	--				
1	drug testing				
2	illegal steroid use				
	drug use				
	illegal performance-enhancing drugs				
3	Olympics gold medal				
4	Seoul Olympics				
5	banned steroid				
	illegal anabolic steroid				
6	Ben Johnson				
	Canadian Ben Johnson				
	Sprinter Ben Johnson				
	Canadian Olympic sprinter				
7	world record				
8	anabolic steroid stanozolol				
	illegal steroid stanzolol				
9	world championships				
10	Charlie Francis				
	Canadian coach Charlie Francis				
	Canadian national sprint coach				
11	100-meter dash				
	100-metre sprint				
12	stanozolol use				
13	Carl Lewis				
	American Carl Lewis				
	U.S. sprinter Carl Lewis				
14	urine sample				
15	steroid furazabol				
16	Jamie Astaphan				
17	steroid combination				
18	Toronto				
19	personal physician				
20	disgraced Olympic sprinter				
21	Canadian inquiry				
	federal inquiry				
22	drug scandal				
23	Angella Issajenko				
24	Johnson scandal				
25	stripping				
26	controlled substance				
27	world record-holder				
28	Hamilton spectator indoor games				
29	disappointed nation				
30	record crowd				
31	world-class sprinter				
32	two-year suspension				
33	news conference				
34	first race				
35	second-place finish				
36	Lynda Huey				
37	first indoor loss				
38	slow start				
39	Daron Council				
40	homecoming				
41	expectation				

Table 8: The keyphrases in our MK-DUC-01 dataset for topic d31 about the Ben Johnson steroid scandal, containing 13 documents. Keyphrases with multiple items represent substitute clusters, where the first item in the cluster is the marked preferred keyphrase wording when using standard KPE evaluation using a flat list of gold keyphrases. The top 20 keyphrases are used in the Trunc-20 dataset version.