SUPPLEMENTARY INFORMATION for

Multilaboratory evaluation of 15 bioassays for (eco)toxicity screening and hazard ranking of engineered nanomaterials: FP7 project NANOVALID

Nanotoxicology

Olesja M Bondarenko1*, Margit Heinlaan1, Mariliis Sihtmäe1, Angela Ivask1, Imbi Kurvet1, Elise Joonas1,2, Anita Jemec3, Marika Mannerström4, Tuula Heinonen4, Rohit Rekulapelly5, Shashi Singh5, Jing Zou6, Ilmari Pyykkö6, Damjana Drobne3, Anne Kahru1*

1 Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
2 Faculty of Science and Technology, Institute of Ecology and Earth Sciences, Tartu University, Tartu University, Lai st. 40, Tartu 51005, Estonia
3 University of Ljubljana, Biotechnical Faculty, Večna pot 111, 1000 Ljubljana, Slovenia
4 The Finnish Centre for Alternative Methods (FICAM), School of Medicine, University of Tampere, Tampere, Finland
5 The Centre for Cellular & Molecular Biology, Habsiguda, Hyderabad, Telangana 500007, India
6 Hearing and Balance Research Unit, Field of Oto-laryngology, School of Medicine, University of Tampere, Tampere, Finland

*Corresponding authors: olesja.bondarenko@kbfi.ee; telephone/fax: +372 639 8362; anne.kahru@kbfi.ee; telephone: +372 6 398 373, fax: +372 639 8362
The same batches of NMs were used by all partners: SiO₂, TiO₂, Au, MWCNTs, Ag, CuO and ZnO (≥ 99% pure)

Shape, specific surface area and primary size data were centrally provided by NM suppliers.
ζ-potential and dissolution of NMs were measured by NICPB.
The partners prepared the stock suspensions, measured hydrodynamic size in respective test medium and
performed the following (eco)toxicity tests:

- Bacterial growth inhibition assay (Escherichia coli, Staphylococcus aureus, Bacillus subtilis, Pseudomonas putida, P. aeruginosa)
- Vibrio fisheri bioluminescence inhibition assay
- Algal growth inhibition assay (Raphidocelis subcapitata)
- Yeast viability assay (Saccharomyces cerevisiae)
- Protozoan viability assay (Tetrahymena thermophila)
- Crustacean acute immobilization assay (Daphnia magna)

- Isopod (Porcellio scaber) membrane integrity assay

-Zebrafish (Danio rerio) embryo toxicity assay
- Human mesenchymal stem cell (hMSC) membrane integrity assay in vitro
- hMSC mitochondrial activity assay in vitro

-Murine fibroblast BALB/c 3T3 mitochondrial activity assay in vitro
-Murine fibroblast BALB/c 3T3 membrane integrity assay in vitro
-Rat macrophage NR8383 mitochondrial activity assay in vitro

Fig. S1 Experimental set-up of this study. Yellow boxes represent partner institutions involved: National Institute of Chemical Physics and Biophysics (NICPB, Estonia), University of Ljubljana (UL, Slovenia); Centre for Cellular & Molecular Biology (CCMB, India) and University of Tampere (UTA, Finland). Green boxes present bioassays performed by partner institutions.
Fig. S2 Dose-response curves of test organisms to CuO NMs (average from different independent experiments ± standard deviations): 30-min *Vibrio fischeri* luminescence inhibition assay, 72-h algal *Raphidocelis subcapitata* growth inhibition assay, 24-h human mesenchymal stem cell membrane integrity assay *in vitro* (propidium iodide staining), 48-h murine fibroblast BALB/c 3T3 mitochondrial activity assay *in vitro* (WST-1), 48-h crustacean *Daphnia magna* acute immobilization assay and 96-h zebrafish *Danio rerio* embryo toxicity assay.
Fig. S3 Toxicity (EC₅₀) of NMs to different organisms versus hydrodynamic size in the respective test medium (a) and ζ-potential in DI water (b). EC₅₀ >100 mg metal/l were not included. Data are plotted from Table 2, Table 4 and Table S2.
Table S1 95% confidence limits of EC$_{50}$ values of dissolution-prone NMs (Table 4) and the number of independent experiments performed to obtain these EC$_{50}$ values.

Tests model	95% confidence limit	Number of independent experiments
BACTERIA:		
Escherichia coli	1.36-4.76 not applicable*	4 2 2
Staphylococcus aureus	1.83-8.55 not applicable*	12.2-20.2
Bacillus subtilis	2.71-6.33 not applicable*	8.8-18.8
Pseudomonas putida	2.31-5.33 not applicable*	26.9-81.6
Pseudomonas aeruginosa	2.0-4.34 not applicable*	not applicable*
Vibrio Fischeri	2.48-3.36 3.29-3.82	7.88-12.55
YEAST: *Saccharomyces cerevisiae*	not applicable**	not applicable**
ALGAE: *Raphidocelis subcapitata*	0.00597 - 0.01003	0.41-1.07
PROTOZOA: *Tetrahymena thermophila*	3.11-5.11 not applicable*	3.53-8.12
Mammalian cell cultures in vitro		
human mesenchymal stem cells (PI)	1.94-10.74 0.72-6.78	0.91-4.29
human mesenchymal stem cells (MTT)	2.80-8.56 not applicable*	11.4-21.22
murine fibroblasts BALB/c 3T3 (WST-1)	2.7-3.3*** 0.55-0.87	6.55-11.6
murine fibroblasts BALB/c 3T3 (NRU)	2.7-2.9*** 0.93-1.11	5.95-7.73
rat macrophages NR8383 (WST-1)	9.4-10.2 not determined	not determined
CRUSTACEAN: *Daphnia magna*	0.00206 - 0.00266	0.82-1.22
CRUSTACEAN: *Porcellio scaber* (isolated digestive gland) (AO/EB)	not applicable**	not applicable**
FISH: *zebrafish (Danio rerio)* embryo	2.19-4.02 0.84-2.24	1.56-1.91

*EC$_{50}$ >100 mg/l; **Toxicity endpoint is minimal bactericidal concentration (yeast S. cerevisiae) or LOEC (crustacean P. scaber); ***Published in Zou et al. 2014. AO/EB, acridine orange/ethidium bromide; MTT, 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; NRU, neutral red uptake; PI, propidium iodide; WST-1, 2-(4-Iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium.
Test medium	Respective assay	Hydrodynamic size, nm					
		SiO₂	TiO₂	Au	Ag	CuO	ZnO
LB medium¹	Bacterial growth inhibition assay	921±138	759±48	24±2	107±1.3	1039±141	125±2
2% NaCl	*Vibrio fischeri* bioluminescence inhibition assay	1101±76	865±354	552±34	137±0.9	1221±250	1561±123
Deionised (DI) water	Yeast spot assay; Protozoan viability assay	854±38	367±60	23±4	132±0.5	152±2	102±1
Algal growth medium	Algae growth inhibition test	575±65	478±44	not determined	83±2.9	970±253	1476±576
Artificial freshwater²	*Daphnia magna* immobilization assay and zebrfish embryo toxicity assay	not determined	767±13	528±41	111±0.6	1497±77	1733±185
DMEM containing 10% foetal bovine serum (FBS)	Assays with human mesenchymal stem cells	6858±1120	6513±2783	489±120	87±1	171±4	277±44
DMEM containing 5.0% newborn calf serum	Assays with murine fibroblasts BALB/c 3T3	493±266	365±169	48±31	121±53	227±89	187±100
Kaighn’s Modification of Ham’s F-12 with 7.5% FBS	Assays with rat alveolar macrophages NR8383	620±285	not determined	52±43	1929±372	not determined	not determined

¹ Composition: 10 g tryptone and 5 g yeast extract per liter, pH=7 (NaCl was not added to the medium to reduce the agglomeration of NMs).
² 294 mg/l CaCl²·2H₂O, 123.3 mg/l MgSO₄·7H₂O, 65 mg/l NaHCO₃, 5.75 mg/L KCl dissolved DI water.