Nephronophthisis (NPHP), the most common monogenic cause of end-stage renal disease (ESRD) during the first three decades of life, is responsible for 2.4%–15% of ESRD in this population. The estimated incidence varies from 1:50 000 live births in Finland to 1:1 000 000 in the United States. It is caused by mutations in many genes that encode nephrocystin protein, which is involved in the function of primary cilia, basal bodies, and centrosomes. These mutations result in renal disease and extra-renal manifestations. This review provides an update about the recent advances in the field of NPHP.

CLINICAL MANIFESTATIONS OF NPHP

Nephronophthisis is characterized by reduced ability of the kidneys to concentrate solutes, chronic tubulointerstitial nephritis, cystic renal disease, and progression to ESRD before age 30. The typical clinical symptoms of NPHP include polyuria, polydipsia with regular fluid intake at night, secondary enuresis, anaemia, and growth retardation. Patients with NPHP typically have a "bland" urinalysis without evidence of proteinuria, hematuria, or cellular elements until the late stage, when proteinuria may develop into secondary glomerulosclerosis.

Clinically, three clinical subtypes of NPHP have been recognized based on the median age of onset of ESRD: infantile, juvenile, and adolescent/adult. The main characteristics of these three subtypes of NPHP are summarized in Table 1. However, there have been several case reports of patients with NPHP who progressed to ESRD between the ages of 27 and 56 years. These cases of NPHP extend the age of ESRD from birth to the sixth decade of life. Extra-renal manifestations occur in approximately 10%–20% of patients, including retinitis pigmentosa, skeletal defects, hepatic fibrosis, neurologic abnormalities, and others.
Table 1 Main features of three clinical subtypes of nephronophthisis (NPHP)

Item	Infantile NPHP	Juvenile NPHP	Adolescent/ adult NPHP
Onset of ESRD (median in years)	1 year	13 years	19 years
Clinical manifestations	Oligohydramnios sequence in utero (limb contractures, pulmonary hypoplasia, and facial dysmorphisms), severe renal failure in the first years of life, severe hypertension	Impaired urinary concentrating ability (polyuria and polydipsia), impaired sodium reabsorption (hypovolaemia, hyponatraemia, chronic kidney disease [severe anaemia, growth retardation], proteinuria [late stage], normal blood pressure	Similar to juvenile NPHP
Renal ultrasound	Enlarged kidneys, large cortical microcysts, absent medullary cysts	Normal-sized or smaller hyperechogenic kidneys with corticomedullary cysts and poor corticomedullary differentiation	Similar to juvenile NPHP
Renal histology	Tubular atrophy, usually lack tubular basement membrane change, interstitial fibrosis, collecting tubule cystic dilatation, enlarged kidneys	Tubular atrophy, tubular basement membrane disruption, cysts at the corticomedullary border, diffuse interstitial fibrosis with chronic inflammation	Similar to juvenile NPHP
Extra-renal association	Liver fibrosis, severe cardiac valve or septal defects, recurrent bronchial infections	Retinal degeneration, cerebellar vermis aplasia, gaze palsy, liver fibrosis, skeletal defects	Similar to juvenile NPHP
Typical gene	NPHP2/INVS, NPHP3, NPHP12/ TTC21B/ BT511, NPHP14/ ZNF423, NPHP18/ CEP83	All NPHP genes except NPHP2/ INVS	NPHP3, NPHP4, NPHP9, NEK8

Cardiac defects.11 NPHP is also a major clinical finding in several syndromes, including Senior-Loken, Joubert, Meckel-Gruber, Cogan, and Sensenbrenner syndromes, and asphyxiating thoracic dystrophy (ATD, also known as Jeune syndrome). A summary of the main extra-renal manifestations associated with NPHP is described in Table 2.

\textbf{GENOTYPE–PHENOTYPE CORRELATION OF NPHP}

To date, more than 25 different genes have been found to be associated with NPHP (Table 3).2,12–51 Mutations in the NPHP1 gene are the most common, being reported in approximately 20% of cases. Each of the remaining NPHP genes probably account for 1% or fewer of all cases of NPHP, and around two-thirds of cases remain genetically unknown.41

Most nephrocystins are located in the transition zone, inversin compartment, or subunits of intraflagellar transport (IFT) complexes.6 However, genome-wide homozygosity mapping identified pathogenic mutations in NPHP1L and NPHP2L of which the protein product localizes to mitochondria.32 Currently, at least four distinct nephrocystin modules have been found: the NPHP1-4-8 module, NPHP2-3-9-ANKS6 module, NPHP5-6 module, and MKS module (Fig. 1). These nephrocystin modules are related to different signalling pathways, including the Wnt pathway, Hedgehog pathway, DNA damage response (DDR) pathway, Hippo pathway, intracellular calcium signalling pathway, cAMP signalling pathway, and mTOR pathway.

NPHP shows genetic and phenotypic heterogeneity. Mutations in single ciliary genes are often associated with multiple phenotypes (Table 1 and Table 3). Single locus allelism is insufficient to explain the variability in phenotypic heterogeneity in NPHP. Digenic and triallelic inheritance may provide an explanation. Triallelic inheritance was first demonstrated for BBS.53 To date, oligogenic inheritance has been noted in some patients with mutations in NPHP1, NPHP5, NPHP6, NPHP8, NPHP9, NPHP11, and TTC21B genes.12,54–56

\textbf{APPROACH TO CLINICAL DIAGNOSIS OF NPHP}

The diagnosis of NPHP is suggested by clinical features and confirmed by a positive genetic test (Fig. 2). The role of renal biopsy in diagnosis is controversial. Renal biopsy should be limited to cases in which tissue diagnosis can be used to distinguish it from other differential diagnoses. Molecular genetic analysis is currently the only method available to diagnose NPHP and thus provide patients and families with an unequivocal diagnosis. Due to an increasing number of potentially causative monogenic genes and to advances in next-generation sequencing, whole-exome sequencing has mostly replaced targeted-sequencing panels in the diagnosis of NPHP.57 Using this method, a causative single-gene mutation can be detected in up to 60% of cases depending on the composition of the cohort. However, the absence of mutation is not sufficient to exclude the diagnosis of NPHP. Most importantly, genetic testing should always be combined with thorough phenotyping and genetic counseling.
Early onset autosomal dominant polycystic kidney disease and autosomal recessive polycystic kidney disease are often in the main differential diagnosis for patients with NPHP. Renal imaging may be useful in differential diagnosis. But genetic testing is required to make a definite diagnosis.

TREATMENT OF NPHP

There is no specific therapy for NPHP. Management is supportive, focusing on slowing the progression of CKD, controlling complications, and maintaining the promotion of growth. This disease does not recur after transplantation, so renal transplantation is the preferred renal replacement therapy.

Some potential therapeutic interventions have arisen from several lines of investigation into the pathogenesis of NPHP. Various personalized drugs include isosorbide dinitrate and tolvaptan (vasopressin V2 receptor antagonist), dimethyl fumarate, rapamycin (mTOR inhibitor), roscovitine and its analog S-CR8 (cyclin-dependent kinases inhibitor), purmorphamine (Shh signalling pathway agonist). Despite the many promising interventions that have arisen from preclinical studies, no clinical trials have
Gene	Chromosome	Protein	Location	Interaction partners	Functionary mechanism	Disorders associated with mutations	Reference
NPHP1	2q12.3	Nephrocystin-1	Adherens junction, focal adhesion, transition zone	Inversin, nephrocystin-3, nephrocystin-4, filamin A and B, tensin, β-tubulin, PTK2B, p130 Cas, focal adhesion kinase 2	Maintains the cellular scaffolding or cytoskeleton, role in cell–cell adhesion and cell signalling	NPHP, SLSN, JBTS	12
NPHP2/INVS	9q21-22	Inversin	Inversin compartment	Nephrocystin-1, nephrocystin-3, calmodulin, catenins, β-tubulin, APC2	Acts in Wnt pathway and planar cell polarity	Infantile NPHP, SLSN, Situs inversus, congenital heart defects	13
NPHP3	3q22.1	Nephrocystin-3	Inversin compartment, axoneme	Nephrocystin-1, inversin, NEK8, ANKS6, PTK2B, BCAR1	Inhibits Wnt pathway	NPHP, liver fibrosis, RP, Situs inversus, MKS, SLSN, congenital heart defects	14–16
NPHP4	1p36.31	Nephrocystin-4	Transition zone	Nephrocystin-1, BCAR1, PTK2B, p130Cas, filamin, tensin	Inhibits Wnt and Hippo pathways	Juvenile NPHP, RP, OMA, SLSN, liver fibrosis	17
NPHP5/IQCB1	3q13.33	Nephrocystin-5/IQ motif containing B1	Transition zone, basal body	Calmodulin, RGR, nephrocystin-1, nephrocystin-4, nephrocystin-6	Forms complexes with RGR	Juvenile NPHP, early-onset RP, LCA	18
NPHP6/CEP290	12q21.32	Nephrocystin-6/centrosomal protein 290	Transition zone, centrosome	ATF4, nephrocystin-5, CC2D2A, TMEM67	Regulates activity of transcription factor ATF4/CREB2, role in cAMP-dependent renal cyst formation, cell signalling, DNA damage response (DDR), and renal cystogenesis	NPHP, RP, LCA, JBTS, MKS	19–23
NPHP7/GLI2	16p13.3	Nephrocystin-7/ GLI similar 2	Nucleus	N/A	Regulates Hedgehog signalling	NPHP	24,25
NPHP8/RPGRIP1L/MKS5	16q12.2	Nephrocystin-8/RPGRIP1-like	Transition zone	Nephrocystin-1, nephrocystin-4	Involved in Shh signalling	Juvenile NPHP, JBTS, MKS, RP, LCA, COACH	26
NPHP9/NEK8	17q11.2	Nephrocystin-9/NEK8	Inversin compartment	ANKS6	Regulates cell cycle, involved in Hippo and DDR signalling	Infantile NPHP	27,28
NPHP10/SDCCAG8/SLSN7	1q43-q44	Nephrocystin-10/Serologically defined colon cancer antigen 8	Basal body	Nephrocystin-5, OFD1	Involved in DDR signalling	Juvenile NPHP, RP, SLSN, BBS	29,30
NPHP11/TMEM67/MKS3	8q22.1	Nephrocystin-11/Transmembrane protein 67	Transition zone	Nephrocystin-1, nephrocystin-4, nephrocystin-6, CEP290, MKS1, TMEM216, nesprin-2, Ciliopathy modifier	Maintains cellular structure and mitigates centrosome migration	NPHP, JBTS, MKS, liver fibrosis, COACH	31,32
NPHP12/TTC21B/JBTS11	2q24.3	Nephrocystin-12/Intraflagellar transport protein 130	iFT-A	iFT-A	Regulates retrograde trafficking in the primary cilium,	Juvenile NPHP, JS, MKS, JBTS	33

(Continues)
yet been conducted in NPHP patients. Furthermore, large numbers of compounds which may be potential therapies are being screened in the zebrafish models of NPHP.66

The lack of a clear-cut genotype–phenotype correlation remains a major challenge for physicians treating children with NPHP, even though the development of a single

Table 3 (Continued)

Gene	Chromosome	Protein	Location	Interaction partners	Functionary mechanism	Disorders associated with mutations	Reference
NPHP13/	4p14	Nephrocystin-13/WD repeat domain 19/IFT protein 144	IFT-A	N/A	regulates Hedgehog signalling	NPHP, JS, RP, Caroli, Sensenbrenner syndrome	34,35
WDR19					Participates in retrograde IFT; acts in ciliogenesis	Infantile NPHP, JBTS, Situs inversus	36
NPHP14/	16q12.1	Nephrocystin-14/Zinc finger protein 423	Nucleus	DDR protein PARP1, nephrocystin-6	Involved in DDR signalling	NPHP, liver fibrosis, RP, JBTS	37
ZNF423							
NPHP15/	11q23.3	Nephrocystin-15 centrosomal protein 164	Basal body	Nephrocystin-3, nephrocystin-4, TTBK2, ATRIP, CCDC92, CEP83, Dvl3	Involved in DDR signalling, regulates ciliogenesis		
CEP164							
NPHP16/	9q22.33	Nephrocystin-16/ANKS6	Axoneme	INVS, nephrocystin-3, NEK8, ANKS3, NEK7, BICC1, HIF1AN	Connects key components of NEK8, INVS, and NPHP3	NPHP, liver fibrosis, Situs inversus	38-40
ANKS6			Inversin compartment				
NPHP17/	2p23.3	Nephrocystin-17/IFT protein 172	IFT-B	IFT80, IFT140	Involved in intraflagellar transport	NPHP, JS, JBTS, MZSDS	41
IFT172							
NPHP18/	12q22	Nephrocystin-18/centrosomal protein 83	Basal body	IFT20, CEP164	N/A	NPHP, liver fibrosis, mental retardation, hydrocephalus	42
CEP83							
NPHP19/	6p22.3	Doublecortin domain-containing protein 2	Axoneme	DVL	Involved in Wnt signalling	NPHP, renal-hepatic ciliopathy	43
DCDC2							
NPHP20/	15q15.1	Mitogen-activated protein kinase binding protein 1	Cytoplasm	N/A	Involved in DDR signalling and JNK signalling	NPHP	2
MAPKBP1							
NPHP1L/	22q13	X-prolyl aminopeptidase 3	Mitochondria	Cleaves LRRC50, ALMS1, nephrocystin-6	Interferes with cilia function by cleaving certain ciliary proteins	NPHP, myocardiosis, epilepsy	44,45
XPNPEP3							
NPHP2L/	1q32.1	Solute carrier family 41 member 1	Tubules at the borders of the cortex and medulla	N/A	Affects Mg2+ transport	NPHP, bronchiectasia	46
/SLC41A1							
TRAF3/	2q37.3	TRAF3 interacting protein 1	Axonemes, basal bodies	N/A	Affects microtubule stabilization by IFT54	NPHP, SLSN, RP	47
JBTS3			Basal bodies				
AH11/	6q23.3	Jouberin		N/A	Affects cerebellar and cortical development	JBTS, RP	48,49
JBTS5							
CC2D2A/	4p15.32	Coiled coil and C2 domain containing 2A	Basal bodies	CEP290	Acts in ciliogenesis	MKS, COACH, JBST	50,51
MKS5							

ALMS1, Alstrom Syndrome 1; APC2, anaphase-promoting complex 2; ATF4, activating transcription factor 4; ATRIP, ATR interacting protein; BBS, Bardet-Biedl syndrome; BCA1, breast cancer anti-estrogen resistance 1; BIC1, Bicaudal-C1; CAD, cranioectodermal dysplasia; CCDC92, centrosomal protein 290; CHD, congenital heart disease; COACH, cerebellar vermis hypoplasia, oligophrenia, congenital ataxia, ocular coloboma and hepatic fibrosis; DVL3, dishevelled 3; HIF1AN, hypoxia inducible factor 1 alpha subunit inhibitor; IFT, intraflagellar transport; JATD, Jeune asphyxiating thoracic dysplasia; JBTS, Joubert syndrome; JS, Jeune syndrome; LCA, Leber congenital amaurosis; LRRC50, leucine-rich repeat containing protein 50; MKS, Meckel-Gruber syndrome; MZSDS, Mainzer-Saldino syndrome; OFD1, oral-facial-digital protein1; OMA, oculomotor apraxia; PTK2B, protein tyrosine kinase 2B; RP, retinitis pigmentosa; RPGR, retinitis pigmentosa GTPase regulator; SBS, Sensenbrenner syndrome; SLSN, Senior-Loken syndrome; TMEM67, transmembrane protein 67; TTBK2, Tau-tubulin kinase 2.

© 2018 The Authors Nephrology published by John Wiley & Sons Australia, Ltd on behalf of Asian Pacific Society of Nephrology
comprehensive histopathology and the discovery of specific disease genes and molecular mechanisms have significantly improved our understanding of NPHP. Only about 30% of NPHP patients have clear genetic mutations, suggesting that more NPHP genes have yet to be discovered. Novel genes will enable us to better understand the pathogenesis and relationship between cilia and cystic diseases. It is necessary to find new therapeutic strategies and develop alternative treatments other than conservative approaches and renal replacement therapy.

CONFLICTS OF INTEREST

There authors declare that they have no potential or actual competing interests.
ACKNOWLEDGEMENT

No.

REFERENCES

1. Ala-Mello S, Koskimies O, Rapola J, Kääriäinen H. Nephronophthisis in Finland: Epidemiology and comparison of genetically classified subgroups. *Eur. J. Hum. Genet.* 1999; 7(2): 205–11.
2. Macia MS, Halbritter J, Delous M et al. Mutations in MAPKBPI cause juvenile or late-onset cilia-independent Nephronophthisis. *Am. J. Hum. Genet.* 2017; 100(2): 233–33.
3. Hildebrandt F, Attanasio M, Otto E. Nephronophthisis: Disease mechanisms of a ciliopathy. *J. Am. Soc. Nephrol.* 2009; 20(1): 23–35.
4. Georges B, Cosyns JP, Dahan K et al. Late-onset renal failure in Senior-Loken syndrome. *Am. J. Kidney Dis.* 2000; 36(6): 1271–5.
5. Hoelefe J, Nayir A, Chaki M et al. Pseudodominant inheritance of nephronophthisis caused by a homozygous NPHP1 deletion. *Pediatr. Nephrol.* 2011; 26(6): 967–71.
6. Srivastava S, Sayer JA. Nephronophthisis. *J. Pediatr. Genet.* 2014; 3(2): 103–14.
7. Kang HG, Ahn YH, Kim JH et al. Atypical retinopathy in patients with nephronophthisis type 1: An uncommon ophthalmological finding. *Clin. Experiment. Ophthalmol.* 2015; 43(5): 437–42.
8. Bujat G, Huber C, El HJ et al. Asphyxiating thoracic dysplasia: Clinical and molecular review of 39 families. *J. Med. Genet.* 2013; 50(2): 91–8.
9. Gunay-Aygun M. Liver and kidney disease in ciliopathies. *Am. J. Med. Genet. C Semin. Med. Genet.* 2009; 151C(4): 296–306.
10. Barker AR, Thomas R, Dawe HR. Meckel-Gruber syndrome and the role of primary cilia in kidney, skeleton, and central nervous system development. *Organogenesis* 2014; 10(1): 96–107.
11. Otto EA, Schermer B, Obara T et al. Mutations in INVS encoding invs in renal ciliopathy type 2, linking renal cistic disease to the function of primary cilia and left-right axis determination. *Nat. Genet.* 2003; 34(4): 413–20.
12. Terry K, Lacoste T, Burgen L et al. High NPHP1 and NPHP6 mutation rate in patients with Joubert syndrome and nephronophthisis: Potential epistatic effect of NPHP6 and AHII mutations in patients with NPHP1 mutations. *J. Am. Soc. Nephrol.* 2007; 18(5): 1566–75.
13. O’Toole JF, Otto EA, Frishberg Y, Hildebrandt F. Retinitis pigmentosa and renal failure in a patient with mutations in INVS. *Nephrol. Dial. Transplant.* 2006; 21(7): 1989–91.
14. Olbrich H, Fliegauf M, Hoelefe J et al. Mutations in a novel gene, NPHP3, cause adolescent nephronophthisis, tapeto-retinal degeneration and hepatic fibrosis. *Nat. Genet.* 2003; 34(4): 455–9.
15. Sun L, Tong H, Wang H et al. High mutation rate of NPHP3 in 18 Chinese infantile nephronophthisis patients. *Nephrology (Carlton)* 2016; 20(3): 209–16.
16. Terry K, Rousset-Rouvière C, Gubler MC et al. Mutations of NPHP2 and NPHP3 in infantile nephronophthisis. *Kidney Int.* 2009; 75(8): 839–47.
17. Bakkaloglu SA, Kandur Y, Bedir-Demirda T, Isık-Gönül M, Hildebrandt F. Diverse phenotypic expression of NPHP4 mutations in four siblings. *Turk. J. Pediatr.* 2014; 56(4): 423–6.
18. Otto EA, Loeyes B, Khanna N et al. Nephrocystin-5, a ciliary IQ domain protein, is mutated in Senior-Loken syndrome and interacts with RPGR and calmodulin. *Nat. Genet.* 2005; 37(1): 282–8.
19. Frank V, den Hollander AL, Briechle NO et al. Mutations of the CEP290 gene encoding a centrosomal protein cause Meckel-Gruber syndrome. *Hum. Mutat.* 2008; 29(1): 45–52.
20. Helou J, Otto EA, Attanasio M et al. Mutation analysis of NPHP6/CEP290 in patients with Joubert syndrome and Senior-Løken syndrome. *J. Med. Genet.* 2007; 44(10): 657–63.
21. Leitch CC, Zaghloul NA, Davis EE et al. Hypomorphic mutations in syndromic encephalocoele genes are associated with Bardet-Biedl syndrome. *Nat. Genet.* 2008; 40(4): 443–8.
22. Valente EM, Silhavy JL, Brancati F et al. Mutations in CEP290, which encodes a centrosomal protein, cause pleiotropic forms of Joubert syndrome. *Nat. Genet.* 2006; 38(6): 623–5.
23. den Hollander AL, Koenekeop RK, Yzer S et al. Mutations in the CEP290 (NPHP6) gene are a frequent cause of Leber congenital amaurosis. *Am. J. Hum. Genet.* 2006; 79(3): 556–61.
24. Attanasio M, Uhlenhaut NH, Sousa VH et al. Loss of GLI2 causes nephronophthisis in humans and mice by increased apoptosis and fibrosis. *Nat. Genet.* 2007; 39(8): 1018–24.
25. Ramachandran H, Yakulov TA, Engel C, Müller B, Walz G. The C175R mutation alters nuclear localization and transcriptional activity of the nephronophthisis NPHP7 gene product. *Eur. J. Hum. Genet.* 2016; 24(5): 774–8.
26. Wolf MT, Saumier S, O'Toole JF et al. Mutational analysis of the RPRGIP1 gene in patients with Joubert syndrome and nephronophthisis. *Kidney Int.* 2007; 72(12): 1520–6.
27. Otto EA, Trapp ML, Schultheiss UT, Helou J, Quarmby LM, Hildebrandt F. NEK8 mutations affect ciliary and centrosomal localization and may cause nephronophthisis. *J. Am. Soc. Nephrol.* 2008; 19(3): 587–92.
28. Rajapalan R, Grochowski CM, Gilbert MA et al. Compound heterozygous mutations in NEK8 in siblings with end-stage renal disease associated with hepatic and cardiac anomalies. *Am. J. Med. Genet. A* 2016; 170(3): 750–3.
29. Arik R, Shastra GG, Guo Z et al. Retinal-retinal ciliopathy gene Sdc2ag8 regulates DNA damage response signaling. *J. Am. Soc. Nephrol.* 2014; 25(11): 2573–83.
30. Otto EA, Hurd TW, Arik R et al. Candidate exome capture identifies mutation of SDC2AG8 as the cause of a retinal-retinal ciliopathy. *Nat. Genet.* 2010; 42(10): 840–50.
31. Doherty D, Parisi MA, Finn LS et al. Mutations in 3 genes (MKS3, CC2D2A and RPRGIP1) cause COACH syndrome (Joubert syndrome with congenital hepatic fibrosis). *J. Med. Genet.* 2010; 47(1): 8–21.
32. Otto EA, Terry K, Attanasio M et al. Hypomorphic mutations in meckelin (MKS3/TEMM67) cause nephronophthisis with liver fibrosis (NPHP11). *J. Med. Genet.* 2009; 46(10): 663–70.
33. Davis EE, Zhang Q, Liu Q et al. TTC21B contributes both causal and modifying alleles across the ciliopathy spectrum. *Nat. Genet.* 2011; 43(5): 189–96.
34. Feihrenbach H, Decker C, Eisenberger T et al. Mutations in WDR19 encoding the intraflagellar transport component IFT144 cause a broad spectrum of ciliopathies. *Pediatr. Nephrol.* 2014; 29(8): 1451–6.
35. Park E, Lee JM, Ahn YH, Kang HG, Ha IS, Lee JH, Park YS, Kim NKD, Park WY, Cheong HII. Hepatorenal fibrocytic diseases in children. *Pediatr. Nephrol.* 2016; 31(1): 113–19.
36. Chaki M, Arik R, Ghosh AK et al. Exome capture reveals ZNF423 and CEP164 mutations, linking renal ciliopathies to DNA damage response signaling. *Cell 2012; 150(3): 533–48.
37. Slats GG, Ghosh AK, Falke LL et al. Nephronophthisis-associated CEP164 regulates cell cycle progression, apoptosis and epithelial-to-mesenchymal transition. *PloS Genet.* 2014; 10(10): e1004594.
38. Hoff S, Halbritter J, Epting D et al. ANKS6 is a central component of a nephronophthisis module linking NEK8 to INVS and NPHP3. *Nat. Genet.* 2013; 45(8): 951–6.
39. Ramachandran H, Engel C, Müller B, Dengiel J, Walz G, Yakulov TA. Anks3 alters the sub-cellular localization of the Nek7 kinase. *Biochem. Biophys. Res. Commun.* 2015; 464(3): 901–7.
40. Taskiran EZ, Korkmaz E, Gucer S et al. Mutations in ANKS6 cause a nephronophthisis-like phenotype with ESRD. J. Am. Soc. Nephrol. 2014; 25(8): 1653–61.

41. Halbritter J, Bizet AA, Schmidts M et al. Defects in the IFT-B component IFT172 cause Jeune and Mainzer-Saldino syndromes in humans. Am. J. Hum. Genet. 2013; 93(5): 915–25.

42. Failler M, Gec HY, Krug P et al. Mutations of CEP83 cause infantile nephronophthisis and intellectual disability. Am. J. Hum. Genet. 2014; 94(6): 905–14.

43. Oey O, Rao P, Luciuk M et al. Effect of dimethyl fumarate on renal disease progression in a genetic ortholog of nephronophthisis. Exp. Biol. Med. (Maywood) 2018; 243(5): 428–36.

44. Békési S, Molnár E et al. Whole-exome resequencing identifies cystic kidney diseases from phenocopies in renal ciliopathies. Kidney Int. 2014; 85(4): 880–7.

45. Bukanov NO, Smith LA, Klinger KW, Ledbetter SR, Ibraghimov-Beskrovnya O. Long-lasting arrest of murine polycystic kidney disease with CDK inhibitor roscovitine. Nature 2006; 444(7121): 949–52.

46. Srivastava S, Ramsbottom SA, Molinari E et al. A human patient-derived cellular model of Joubert syndrome reveals ciliary defects which can be rescued with targeted therapies. Hum. Mol. Genet. 2018; 27(5): 1023–6.

47. Halbritter J, Bizet AA, Collura RV et al. Triallelic inheritance in Bardet-Biedl syndrome, a Mendelian recessive disorder. Science 2001; 293(5538): 2256–9.

48. Schueler M, Braun DA, Chandrasekar G et al. DCDC2 mutations cause a renal-hepatic ciliopathy by disrupting WNT signaling. J. Am. Soc. Nephrol. 2019; 30(4): 545–54.

49. Sugiyama N, Kohno M, Yokoyama T. Inhibition of the p38 MAPK pathway ameliorates renal fibrosis in an NPHP2 mouse model. Nephrol. Dial. Transplant. 2012; 27(4): 1351–8.

50. Westhoff JH, Giselbrecht S, Schmidts M et al. Development of an automated imaging pipeline for the analysis of the zebrafish larval kidney. PLoS One 2013; 8(12): e82137.

51. Al-Hamed MH, Kurdi W, Alsahan N et al. Nephronophthisis. Nephron. Dial. Transplant. 2012; 27(4): 1351–8.

52. Békési S, Molnár E et al. Whole-exome resequencing identifies cystic kidney diseases from phenocopies in renal ciliopathies. Kidney Int. 2014; 85(4): 880–7.

53. Strong A, Muniruddin S, Parrish R, Lui D, Conley SB. Isosorbide dinitrate in nephronophthisis treatment. Pediatr. Nephrol. 2015; 23(11): 2095–9.

54. Hoefele J, Wolf MT, O’Toole JF et al. Evidence of oligogenic inheritance in nephronophthisis. J. Am. Soc. Nephrol. 2007; 18(10): 2789–95.

55. Penchev V, Boueva A, Kamenarova K et al. A familial case of severe infantile nephronophthisis explained by oligogenic inheritance. Eur. J. Med. Genet. 2017; 60(6): 321–5.

56. Louie CM, Cardi G, Lopes VS et al. AHI1 is required for photoreceptor outer segment development and is a modifier for retinal degeneration in nephronophthisis. Nat. Genet. 2010; 42(2): 175–80.

57. Gee HY, Otto EA, Hurd TW et al. Whole-exome resequencing distinguishes cystic kidney diseases from phenocopies in renal ciliopathies. Kidney Int. 2014; 85(4): 880–7.

58. Otte MJ, Hurd TW et al. Whole-exome resequencing distinguishes cystic kidney diseases from phenocopies in renal ciliopathies. Kidney Int. 2014; 85(4): 880–7.

59. Schueler M, Braun DA, Chandrasekar G et al. DCDC2 mutations cause a renal-hepatic ciliopathy by disrupting WNT signaling. J. Am. Soc. Nephrol. 2019; 30(4): 545–54.

60. Tobin JL, Beales PL. Restoration of renal function in zebra fish models of ciliopathies. Pediatr. Nephrol. 2008; 23(11): 2095–9.

61. Ramachandran H, Herfurth K, Grosschedl R, Schäfer T, Walz G. SUMOylation blocks the ubiquitin-mediated degradation of the Nephronophthisis gene product Glis2/NPHP7. J. Clin. Invest. 2010; 120(3): 660–3.

62. Bizet AA, Becker-Heck A, Ryan R et al. Mutations in TRAF3IP1/IFT54 reveal a new role for IFT proteins in microtubule stabilization. Nat. Commun. 2013; 5: 8666.

63. Al-Hamed MH, Kurdi W, Alsahan N et al. Genetic spectrum of Saudi Arabian patients with antenatal cystic kidney disease and ciliopathy phenotypes using a targeted renal gene panel. J. Med. Genet. 2016; 53(5): 338–47.

64. Al-Hamed MH, Kurdi W, Alsahan N et al. Genetic spectrum of Saudi Arabian patients with antenatal cystic kidney disease and ciliopathy phenotypes using a targeted renal gene panel. J. Med. Genet. 2016; 53(5): 338–47.