Structural and energetic basis of folded-protein transport by the FimD usher

Sebastian Geibel1*, Erik Procko2*, Scott J. Hultgren3, David Baker2 & Gabriel Waksman1

Type 1 pili, produced by uropathogenic *Escherichia coli*, are multimeric fibres crucial in recognition of and adhesion to host tissues4. During pilus biogenesis, subunits are recruited to an outer membrane assembly platform, the FimD usher, which catalyses their polymerization and mediates pilus secretion5. The recent determination of the crystal structure of an initiation complex provided insight into the initiation step of pilus biogenesis resulting in pore activation, but very little is known about the elongation steps that follow5. Here, to address this question, we determine the structure of an elongation complex in which the tip complex assembly composed of FimC, FimF, FimG and FimH passes through FimD. This structure demonstrates the conformational changes required to prevent backsliding of the nascent pilus through the FimD pore and also reveals unexpected properties of the usher pore. We show that the circular binding interface between the pore lumen and the folded substrate participates in transport by defining a low-energy pathway along which the nascent pilus polymer is guided during secretion.

All pilus subunits exhibit an incomplete immunoglobulin-like fold lacking β-strand G, leaving a large hydrophobic groove across the subunit surface5,7. Folding of pilus subunits is catalysed by a periplasmic chaperone8 (FimC for type 1 pili) (Supplementary Fig. 1a). In a mechanism known as donor–strand complementation, FimC donates the missing β-strand in transf, thereby complementing and stabilizing the pilus subunit’s fold4,9 (Supplementary Fig. 1b). The resulting binary chaperone–subunit complexes are next recruited to an outer membrane assembly ‘nanomachine’, the usher (FimD for type 1 pili), for pilus assembly and secretion. Subunit polymerization occurs through a mechanism known as donor–strand exchange (DSE), whereby the amino-terminal extension (Nte) of the subunit next in assembly replaces the chaperone strand in the groove of the previously assembled (or receiving) subunit7 (Supplementary Fig. 1b).

Ushers consist of five functional domains: an N-terminal domain (NTD); a pore domain that, in the resting state, is occluded by a plug domain; and two carboxy-terminal domains (CTD1 and CTD2). Recently, the crystal structure of the pilus biogenesis initiation complex FimD–FimC–FimH (Supplementary Fig. 1c) inspired a model for subunit recruitment, polymerization and secretion by the usher4 (Supplementary Fig. 1d). FimH consists of two domains: a pilin domain (FimHp) similar to all other pilus subunits, and a receptor–binding domain referred to as the lectin domain8 (FimHl). In the FimD–FimC–FimH structure, FimHl is located inside the FimD pore. FimHl is still in donor–strand complementation interaction with the chaperone FimC bound to CTD1 and CTD2. The usher NTD, stabilized by the plug domain, is free and serves as a recruitment site for the next chaperone–subunit complex to be assembled (FimC–FimG; Supplementary Fig. 1d). Binding to the NTD places the FimG Nte peptide in an ideal position for DSE to occur4, leading to the dissociation of FimC bound to FimHl. FimC has no binding affinity for the usher CTDs on its own, and so dissociates from the complex. At this point, the entire nascent pilus translocates up inside the pore and the chaperone–subunit complex bound to the NTD transfers to the CTDs in a handover step (Supplementary Fig. 1d). The usher NTD is now free to enter another cycle of subunit incorporation by recruiting the next chaperone–subunit complex for assembly (FimC–FimF). This model for the subunit-incorporation cycle remains, however, to be structurally documented. Here we describe the structure of the elongation complex FimD–FimC–FimF–FimG–FimH, a post-initiation state during pilus biogenesis.

The complex FimD–FimC–FimF–FimG–FimH was purified to homogeneity and crystallized, and its structure was determined to a resolution of 3.8 Å (Supplementary Tables 1 and 2 and Supplementary Figs 2–4). The crystal structure of FimD–FimC–FimF–FimG–FimH captures the secretion of the type 1 pili tip consisting of pilus subunits FimF, FimG and FimH through the usher pore across the outer bacterial membrane (Fig. 1a). The adhesin FimH is incorporated at the distal end of the pilus tip and found on the extracellular side of the transporter. FimG occupies the lumen of the usher β-barrel and contacts the usher CTD1, plug and β-barrel domains. As the last-assembled pilus subunit, FimF is found still in donor–strand complementation interaction with its chaperone FimC, which is bound by the usher C-terminal domains CTD1 and CTD2 in the periplasm. Thus, the structure provides the remarkable view of a transporter entirely traversed by its protein polymer substrate, with one subunit having entirely emerged from the transporter and another still remaining on the cellular side of the transporter. The type 1 pili tip subunits FimH, FimG and FimF are linked non-covalently by DSE, where the N-terminal extension of FimF is inserted into FimG and that of FimG is inserted into FimHl. The usher NTD shares only an interface with the plug domain and is otherwise exposed. Modelling shows that the NTD is indeed available to bind the next incoming chaperone–subunit complex, FimC–FimA, bringing it into close proximity to FimF and in the appropriate orientation to undergo DSE (Fig. 1b). This is consistent with the DSE model for pilus subunit incorporation introduced in ref. 3.

When the FimH proteins in the initiation complex FimD–FimC–FimH and the elongation complex FimD–FimC–FimF–FimG–FimH are superimposed, it becomes apparent that FimH undergoes a large conformational change when exiting the usher pore, with the angle between its two domains (FimH2 and FimH1) decreasing9 (Fig. 2a and Supplementary Fig. 5). We speculate that such a conformational change may provide the necessary energy to favour translocation of FimH outside the pore and possibly prevent motion back into the periplasm. Another remarkable structural rearrangement affecting FimH during transport is the compression and decompression of the FimHl domain structure before and after transport, respectively (Fig. 2b).

Using the physically realistic ROSETTA energy function10,11, we next investigated the interactions between the usher pore and its inserted substrate, FimHl in the initiation complex FimD–FimC–FimH, or FimG in the elongation complex FimD–FimC–FimF–FimG–FimH.

©2013 Macmillan Publishers Limited. All rights reserved
In these calculations, the protein assemblies were represented as essentially rigid components. Subunits were moved along a central pore axis (Supplementary Fig. 6a–c) with only minor deviations that can be sampled by rigid-body minimization. This is a reasonable assumption owing to the close steric fit of subunits within the pore that would otherwise clash.

Translating FimG and FimH₂ subunits within the pore laterally along a fine grid and plotting the calculated energies reveals a steep energy well, with forces on all sides returning the perturbed subunits to their central, ground-state positions (Methods, Fig. 3a, b and Supplementary Fig. 6d). However, when translated parallel to the pore axis to mimic subunit entry or exit, the calculated energies with FimG in the barrel increase slowly (even for perturbations with a root mean squared deviation of 6 Å), whereas with FimH inside the pore there was a steep energy increase (Fig. 3c and Supplementary Fig. 6e). Thus, the subunit or domain inside the pore is more tightly held in the initiation complex than it is in the elongation complex.

In apo-FimD, the plug domain is found inside the pore and must be expelled and replaced by FimH₂ in an activation process that might be triggered by engagement of FimH with FimD. When the plug domain (beginning with the structure of apo-FimD (Protein Data Bank (PDB) ID, 3OHN)) was translated towards the periplasm to mimic its extrusion from the pore, the energy increased slowly as it did for FimG (Fig. 3c). Hence, whereas the plug domain and FimG may readily exit the usher pore along the pore axis, FimH₂ forms tight interactions. We propose that this may be essential for activation, in which FimH₂ displaces the plug domain from inside the pore.

By sweeping a 60°-sector window emanating from the pore axis around the usher barrel and computing the binding energy within this
window (Fig. 3d and Supplementary Figs 7 and 9), we observe two binding-energy troughs and two peaks that are roughly 180° apart for both FimH under the FimD pore of the FimD–FimC–FimH structure and FimG inside the FimD pore of the FimD–FimC–FimF–FimG–FimH structure. Regions of high binding energy correlate with closer atomic contacts as measured by solvent accessibility (Supplementary Fig. 7b), and regions that tightly bind FimG are distinct from those that tightly bind FimH under specialized binding sites. Usher pores seem to have evolved binding sites that face each other on opposite sides of the pore, resulting in the placement of the translocating substrate at the very centre of the pore. Because pilin subunits share the same immunoglobulin-like fold and have high sequence similarity (compared with FimG, the pilin domains of FimH, FimF and FimA share 19–25% sequence identity and 62–67% similarity), it is likely that all pilin subunits occupy the same central position in the usher pore, and our results for FimG are generalizable to the rest of these proteins.

It has been previously proposed that incoming chaperone–pilin subunits are recruited to the usher NTD and then transfer after DSE to the usher CTDs during assembly (see above). This requires a rotation of the NTD-bound chaperone–subunit complex by about 100–120° after DSE has occurred (Supplementary Fig. 8a). The torque produced by the transfer of the incoming subunit from the NTD to the CTDs might be accommodated through rotations around linker residues between pilus building blocks. Alternatively, rigid-body rotation of the entire tip assembly might necessitate a rotation of the translocating subunit within the pore.

To investigate such a possibility, we calculated an energy landscape as the FimG pilin was rotated in 2° steps and translated in steps of 1 Å up or down the usher pore. The calculated landscape reveals a continuous low-energy path for FimG as it enters and exits the FimD pore (visualized by following the ‘low-energy’ colours in Fig. 4a and Supplementary Fig. 8) that requires an anticlockwise twist. To predict a possible trajectory through the energy landscape, we introduced a torsional spring term to limit the extent to which FimG can rotate at each translation step (this ensures connectivity in the low-energy path); the entry–exit trajectory for FimG pilin is then derived from the lowest-energy states (Fig. 4b). By repeating these calculations using input structures minimized with and without constraints from the crystallographic electron density, different spring constants and structures refined to a resolution of either 3.8 or 4.1 Å, a twist of 1.6°–3.0° per angström translation was observed in the trajectories (Supplementary Fig. 8). The presence of a low-energy exit path requiring pilin rotation was further validated with an alternatively defined pore axis based on the membrane-like packing of FimD within the crystal lattice (Supplementary Fig. 9). Visual inspection of the FimD–FimC–FimF–FimG–FimH crystal structure revealed that the three assembled pilin subunits respectively representing entrance into (FimF), residence within (FimG) and exit from (FimH) the usher pore are each separated by a translation by 53 Å and an anticlockwise rotation by 110° or 120° (Supplementary Fig. 8a). Hence, the twist undergone by FimG pilin as it enters or exits the pore and that is captured in the computed energy landscape matches the magnitude and direction of the rotations observed and anticipated from static crystallographic evidence. These results are probably generalizable to other pilin subunits owing to high sequence and structural similarity.

Similar analysis was applied to FimH, within the FimD lumen, using the FimD–FimC–FimH crystal structure, but no single, clear low-energy entry–exit path was observed (Supplementary Fig. 10). This is not surprising. Indeed, FimH differs markedly from all other pilus subunits or domains: whereas FimH, FimG, FimF and FimA have a classical pilin fold that consists of six β-strands complemented by the donor strand of the next subunit in assembly, FimH has a β-barrel ‘jelly roll’ fold. Furthermore, as shown here, the FimD pore forms tighter interactions with FimH than with a representative pilin subunit. Thus, whereas all other pilus subunits and domains are easily extracted from and guided through the pore, unbinding and translocation of FimH will require more energy, probably through conformational changes yet to be characterized.

The crystal structure presented here provides unprecedented structural evidence supporting the model first proposed in ref. 3 for the usher-mediated subunit-incorporation cycle during pilus biogenesis. It also demonstrates that usher pores form finely tuned, circular protein–protein interfaces specifically geared to maximize transport, by forming diametrically opposed binding sites that position substrates at the very centre of the pore, and to facilitate specific steps during transport, by imposing rotational and translational constraints through defined energy paths. We anticipate that all transporters will demonstrate similar levels of sophistication by having evolved function-specific features facilitating defined steps during substrate translocation.

METHODS SUMMARY

Expression and purification of FimD–FimC–FimF–FimG–FimH. Escherichia coli Tuner cells (Novagen) were transformed with plasmids pNH237 encoding fimC/fimF/fimG/fimH under arabinose control and pAN2 encoding fimD/Strep under isopropylthiogalactoside control. The complex FimD–FimC–FimF–FimG–FimH was then expressed and purified as described in ref. 3.

Crystallization of FimD–FimC–FimF–FimG–FimH. Crystals of the complex were grown in hanging drops at 20 °C using the vapour diffusion method, where 1 μl of the complex (8 mg ml⁻¹) was mixed with an equal volume of 1.2–2.0 M sodium formate.

Structure determination of FimD–FimC–FimF–FimG–FimH. Data were collected at the Diamond Light Source (beamline I02) at 100 K and were indexed, integrated and scaled to a resolution of 3.8 Å using the XDS software package (4). A high-resolution cut-off for the data was chosen following ref. 15. The space group was determined using POINTLESS (4). The space group, cell dimensions and data collection statistics are reported in Supplementary Table 1. The phase problem was solved by molecular replacement using PHASER and the structures of FimD (PDB ID, 3RF1), FimC–FimF (3BUW) and FimG–FimH (3JWN) as search models (9). The molecular replacement model for FimD–FimC–FimF–FimG–FimH obtained by PHASER was refined by alternating rounds of model building with COOT and resulted in tight restraints. Finally, Rfree converged to 29.8% (Supplementary Table 1).
Tables 1 and 2 and Supplementary Figs 3 and 4. The same $R_{	ext{free}}$ flag was maintained for cross-validation throughout the refinement process.

Computational methods. Before binding-energy calculations were performed, crystal structure coordinates were relaxed in the ROSETTA force field using FASTRELAX with electron density constraints12,24 (Methods and Supplementary Figs 11 and 12). FimD sectors were generated on the basis of the angle a residue’s Cx atom makes with FimD–D208 (set to 0°) when projected on a plane perpendicular to the pore axis. Only FimD and the subunit within the pore were considered (FimG pilin (amino acids 12–144)/FimF Nte (1–12) or FimH, (1–157)), and calculations of binding energy and buried solvent-accessible surface area were made using ROSETTASCRIPTS25 (Supplementary Fig. 13). Translational and rotational perturbations of the translocating subunit were made with the MMTSB suite26 (Supplementary Fig. 13). Full Methods and any associated references are available in the online version of the paper.

Received 2 October 2012; accepted 14 February 2013.

1. Waismann, G. & Hultgren, S. J. Structural biology of the chaperone-usher pathway of pilus biogenesis. *Nature Rev. Microbiol.* 7, 765–774 (2009).
2. Nishiyama, M., Ishikawa, T., Rechsteiner, H. & Glockshuber, R. Reconstitution of pilus assembly reveals a bacterial outer membrane catalyst. *Science* 320, 376–379 (2008).
3. Phan, G. et al. Crystal structure of the FimD usher bound to its cognate FimC-FimH substrate. *Nature* 474, 49–53 (2011).
4. Sauer, F. G. et al. Structural basis of chaperone function and pilus biogenesis. *Science* 285, 1058–1061 (1999).
5. Sauer, F. G., Pinkner, J. S., Waismann, G. & Hultgren, S. J. Chaperone priming of pilus subunits facilitates a topological transition that drives fiber formation. *Cell* 111, 543–551 (2002).
6. Choudhury, D. et al. X-ray structure of the FimC-FimH chaperone-adhesin complex from uropathogenic Escherichia coli. *Science* 285, 1061–1066 (1999).
7. Zavialov, A. V. et al. Structure and biogenesis of the capsular F1 antigen from Yersinia pestis: preserved folding energy drives fiber formation. *Cell* 113, 587–596 (2003).
8. Vetvicka, M. et al. Pilus chaperones represent a new type of protein-folding catalyst. *Nature* 431, 329–333 (2004).
9. Le Trong, I. et al. Structural basis for mechanical force regulation of the adhesin FimH via finger trap-like β-sheet twisting. *Cell* 141, 645–655 (2010).
10. Das, R. & Baker, D. Macromolecular modeling with Rosetta. *Annu. Rev. Biochem.* 77, 363–382 (2008).
11. Leaver-Fay, A. et al. Rosetta3: an object-oriented software suite for the simulation and design of macromolecules. *Methods Enzymol.* 487, 545–574 (2011).
12. Huang, Y., Smith, B. S., Chen, L. X., Baxter, R. H. & Deisenhofer, J. Insights into pilus assembly and secretion from the structure and functional characterization of usher PapC. *Proc. Natl Acad. Sci. USA* 106, 7403–7407 (2009).
13. Remaut, H. et al. Fiber formation across the bacterial outer membrane by the chaperone/usher pathway. *Cell* 133, 640–652 (2008).
14. Kabesh, W. *XDS. Acta Crystallogr.* D 66, 125–132 (2010).
15. Karplus, P. A. & Diederichs, K. Linking crystallographic model and data quality. *Science* 336, 1030–1033 (2012).
16. Evans, P. Scaling and assessment of data quality. *Acta Crystallogr.* D 62, 72–82 (2006).
17. McCoy, A. J. et al. PHASER: a comprehensive Python-based system for macromolecular structure solution. *Acta Crystallogr.* D 66, 213–221 (2010).
18. Murshudov, G. N. et al. REFMAC5 for the refinement of macromolecular crystal structures. *Acta Crystallogr.* D 67, 355–367 (2011).
19. Schröder, G. F., Levitt, M. & Brunger, A. T. Super-resolution biomolecular crystallography with low-resolution data. *Nature* 464, 1218–1222 (2010).
20. Brungar, A. T. Version 1.2 of the Crystallography and NMR System. *Nature Protocols* 2, 2728–2733 (2007).
21. O’Donovan, D. J. et al. A grid-enabled web service for low-resolution crystal structure refinement. *Acta Crystallogr.* D 68, 261–267 (2012).
22. DiMaio, F., Tyka, M. D., Baker, M. L., Chiu, W. & Baker, D. Refinement of protein structures into low-resolution density maps using Rosetta. *J. Mol. Biol.* 392, 181–190 (2009).
23. Fleishman, S. J. et al. RosettaScripts: a scripting language interface to the Rosetta macromolecular modeling suite. *PLoS ONE* 6, e20161 (2011).
24. Feig, M., Karanicolas, J. & Brooks, C. L. III. MMTSB tool set: enhanced sampling and multiscale modeling methods for applications in structural biology. *J. Mol. Graph. Model* 22, 377–395 (2004).

Supplementary Information is available in the online version of the paper.

Acknowledgements This work was funded by Medical Research Council grant 85602 to G.W.D.B. and E.P. are supported by grant P41 GM103533 from the National Institute of General Medical Studies at the US National Institutes of Health (NIH). S.J.H. was supported by grant AI029549 from the National Institute of Allergy and Infectious Disease at the NIH. We thank the staff of beamline I02 at the Diamond Light Source, the staff of beamline I02 at the Diamond Light source and A. Cole for technical assistance during data collection.

Author Contributions S.G. and E.P. carried out the crystallographic and computational work, respectively. D.B. and G.W. supervised the work. S.G., E.P., D.B. and G.W. analysed the data. S.G., E.P., S.J.H., D.B. and G.W. wrote the paper.

Author Information The atomic coordinates and structure factors of FimD–FimC–FimF–FimH have been deposited in the Protein Data Bank under accession ID 4J30. Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests. Readers are welcome to comment on the online version of the paper. Correspondence and requests for materials should be addressed to G.W. (g.waismann@ucl.ac.uk) or D.B. (dbaker@uwashington.edu).
METHODS

Expression and purification of FimD–FimC–FimF–FimG–FimH. Escherichia coli Tuner (Novagen) was transformed with plasmids pNH237 encoding fimC,FimG,FimH,FimF,FimD under arabinose control and pAN2 encoding fimD under isopropylthiogalactoside (IPTG) control13. Bacteria were grown in TB media containing 35 mg ml\(^{-1}\) kanamycin and 25 mg ml\(^{-1}\) chloramphenicol at 37 °C. Protein overexpression was induced by addition of 100 µM IPTG and 0.1% (w/v) l-arabinoce suplemented with 0.1% (v/v) glycerol at 38 °C for 18 h at 16 °C. By not providing the FimA subunit to the assembly system, pilus production stalls after incorporation of the last tip subunit, FimF, resulting in production of homo- geneous FimD-tip complexes.

Protein purification of FimD–FimC–FimF–FimG–FimH. FimD–FimC–FimF–FimG–FimH was purified as described in ref.3 for FimD–FimC–FimH. Initial rigid-body refinement (rigid bodies were assigned for subunits FimC, FimF, FimG and FimH) and resulted in a mean-free value of 31%. The final refinement protocol included three rounds of Cartesian and individual B-factor refinement. The atomic displacement parameters and stereochemistry weights were optimized during the refinement and resulted in tight restraints. Finally, R_free converged to 29.8%. The same R_free flag was maintained for cross-validation throughout the refinement process. Note that high-resolution data to a resolution of 3.8 Å were included because the resulting final model had a better R_free value, improved stereochemistry and improved electron density (Supplementary Tables 1 and 2 and Supplementary Figs 3 and 4).

Computational methods. For analysis of static structures, the refined crystal structures were relaxed in the ROSETTA force field using two rounds of FASTRELAX and Cartesian space minimization (F. DiMaio, manuscript in preparation) with electron density constraints15. B-factor-sharpened 2mFo-DFc density maps were generated in PHENIX19 using deposited structure factors for FimD–FimC–FimG–FimH or structure factors to a resolution of 4.1 Å for FimD–FimC–FimF–FimG–FimH and RSETTA command line and score term weights are detailed in Supplementary Fig. 11. The electron-density-constraining score term accounts for ~40% and ~55% of the total score for FimD–FimC–FimF–FimG–FimH and FimD–FimC–FimH, respectively. Relaxed decoys from 50 relaxation runs were well converged both in total score (scores ranged from ~5,964 to ~5,911 for FimD–FimC–FimF–FimG–FimH and ~6,376 to ~6,326 for FimD–FimC–FimH) and structure (root mean squared deviation from an arbitrary reference decoy was ~0.22 Å for FimD–FimC–FimF–FimG–FimH and ~0.14 Å for FimD–FimC–FimH). The lowest-scoring decoys (Supplementary Fig. 12 shows fits of relaxed structures to electron density) were chosen for final analysis in Fig. 3 and Supplementary Figs 7, 8g, h and 9e–h. The ROSETTA correlation coefficient for measuring agreement between coordinates and a density map13 decreased by 3% for FimD–FimC–FimF–FimG–FimH and by 2% for FimD–FimC–FimH following relaxation, indicating a small trade-off between minimizing structural features within the ROSETTA force field and maintaining a close fit to the experimental electron density map.

To generate FimD sectors, residues were included if the Cα atom’s projection on a plane perpendicular to the pore axis fell within the sector’s desired angle range, with the Cα projection of FimD–D208 set to 0°. This creates a PDB file containing FimG-pilin (amino acids 12–144)/FimF Nte (1–12) or FimH lectin (1–157) bound to only a subset of FimD residues. Binding energy and buried solvent-accessible surface area were calculated using ROSETTASCRIPts (Supplementary Fig. 13) without rotamer repacking in either the bound or unbound state25 (rotamer repacking at the edges of a FimD sector would be meaningless). We confirmed that the combined binding energy from any set of sectors adding up to a full 360° sweep consistently approximates the binding energy calculated for the complete FimD protein bound to its transported substrate.

Translational and rotational perturbations were made using the conrepdb.pl application in the MMTSB suite29. Perturbed structures were minimized in ROSETTA using full-atom score12 with rounds of rotamer repacking, and side-chain and backbone gradient minimization11,25 (Supplementary Figs 14–16). In these cases, where large dynamic subunit motions were explored (Figs 3c and 4 and Supplementary Figs 6, 8b–f, 9i and 10), starting structures were also first pre-minimized in full-atom score12, ensuring that any measurements of root mean squared deviation from the initial ground state accurately reflected the applied perturbations, not simply differences from minimizing in different score functions.

For determining potential FimG trajectories with the FimD pore, noise in the energy landscape was dampened by averaging the energy at each sampled FimG rotation–translation with the energies calculated for FimG rotations within 4°. Starting with FimG at 0° and 0 Å, a torsional spring potential (E = 8Δ0^2/2) was added to the energy calculated using ROSETTA. The angle Δ0 was measured relative to the lowest-energy conformation in the previous translational step.

Structure figures were generated using The PyMOL Molecular Graphics System, Version 1.5.0.4 Schrödinger, LLC (http://www.pymol.org/).