SMOOTH FREE INVOLUTION OF HCP^3 AND SMITH CONJECTURE FOR IMBEDDINGS OF S^3 IN S^6

BANG-HE LI AND ZHI LÜ

Abstract. This paper establishes an equivalence between existence of free involutions on HCP^3 and existence of involutions on S^6 with fixed point set an imbedded S^3, then a family of counterexamples of the Smith conjecture for imbeddings of S^3 in S^6 are given by known result on HCP^3. In addition, this paper also shows that every smooth homotopy complex projective 3-space admits no orientation preserving smooth free involution, which answers an open problem [Pe]. Moreover, the study of existence problem for smooth orientation preserving involutions on HCP^3 is completed.

1. Introduction

The original Smith conjecture, which states that no periodic transformation of S^3 can have a tame knotted S^1 as its fixed point set, has been solved in the DIFF category, but it is generally false in the TOP and PL categories except for some special cases (see [MB]). However, the generalized Smith conjecture of codimension two is not true in any category (see [Gi], [Go], [Su], and [Lü1]). The generalized Smith conjecture of codimension greater than two is directly associated with the knot theory of the imbedded S^m in S^n for $n - m > 2$. It is well known that any imbedded S^m in S^n is unknotted in the TOP and PL categories if $n - m > 2$, and in the DIFF category if $2n > 3(m+1)$ (see [Ha1], [Le], [St], [Ze]). Haefliger [Ha2], [Ha3] and Levine [Le] showed that there exists infinite imbeddings of S^m into S^n which are knotted in the DIFF category if $2n \leq 3(m+1)$ and $m+1 \equiv 0 \mod 4$, and that there exists a knotted S^{4k+1} in S^{6k+3} in the DIFF category. Using Brieskorn manifolds, some explicit counterexamples for the generalized conjecture of codimension greater than two were given in [Lü2] if $2n \leq 3(m+1)$ and $m+1 \equiv 0 \mod 4$ with $n - m$ being even more than two and n being odd.

The motivation of this paper is to consider the generalized Smith conjecture in the DIFF category for the extreme case $2n = 3(m+1)$ with $m+1 \equiv 0 \mod 4$; especially for $n = 6, m = 3$. Montgomery and Yang [MY] established the one-to-one correspondence η between Π and C_3^3, where Π is the group of diffeomorphism classes of all homotopy complex projective 3-spaces, denoted by HCP^3 (for the sum operation, see [MY]), and C_3^3 is the group of isotopy classes of all imbeddings of S^3 into S^6. Note that C_3^3 is infinite cyclic (see [Ha3]), so is Π. This provides a way of dealing with the Smith conjecture for imbeddings of S^3 in S^6 by associating to HCP^3. We will show that there exist infinite distinct imbeddings $i: S^3 \to S^6$ in C_3^3.

Keywords and phrases. Smith conjecture, homotopy complex projective space, involution.

2000 Mathematics Subject Classification. 57Q45, 55M35, 57R25, 57S17, 57R67.

The first named author is partially supported by the 973 Program of China. The second named author is partially supported by the scholar fund of the Ministry of Education in China and grants from NSFC (No. 10371020 and No. 10671034).
such that each knot \((S^6, i(S^3))\) admits a smooth involution, i.e., there is a smooth involution on \(S^6\) with \(i(S^3)\) as its fixed point set. This implies that the Smith conjecture for imbeddings of \(S^3\) in \(S^6\) is false (see Corollary 1.3 below). Notice that for \(k > 2\), there is no \(\mathbb{Z}_k\)-action on \(S^6\) with an imbedded \(S^3\) as the set of fixed points. So the only case concerned with Smith conjecture is the \(\mathbb{Z}_2\)-actions.

Our strategy to study the \(\mathbb{Z}_2\)-actions on \(S^6\) with an imbedded \(S^3\) as fixed point set is to establish its relation with free involutions on \(HCP^3\), which turns out to be equivalent as precisely stated by the following theorem.

Theorem 1.1. Let \([M]\) be an element in \(\Pi\). Then \(M\) admits a smooth orientation reversing free involution if and only if for any \(i : S^3 \to S^6\) in \(\eta[M]\), there is a smooth involution on \(S^6\) with \(i(S^3)\) as the set of fixed points.

With respect to \(HCP^3\), Petrie [Pe], Dovermann, Masuda and Schultz [DMS] have already the following

Theorem 1.2 ([Pe], [DMS]). There are infinitely many homotopy complex projective 3-spaces which admit a smooth orientation reversing free involution.

Notice that although Petrie’s original assertion that every \(HCP^3\) has an orientation reversing free involution is not really proved as pointed out in [DMS, p.4], but his proof still yields Theorem 1.2.

As a consequence of Theorems 1.1 and 1.2, we have

Corollary 1.3. There exist infinitely many knotted imbeddings of \(S^3\) into \(S^6\) which offer counterexamples for the Smith conjecture.

In addition, we are also concerned with an open problem. In [Pe], Petrie said that the question of existence of an orientation preserving (free) involution on every \(HCP^3\) is still open. The following answers this question negatively.

Theorem 1.4. On every smooth \(HCP^3\), there is no smooth orientation preserving free involution.

Theorem 1.4 means that if an \(HCP^3\) admits a smooth free involution, then the involution must be orientation reversing.

Remark. In his paper [Ma], Masuda studied smooth (nonfree but orientation preserving) involutions on \(HCP^3\), and proved using Montgomery and Yang correspondence that every \(HCP^3\) admits a smooth involution with two copies of \(\mathbb{Z}_2\)-cohomology \(\mathbb{C}P^1\) as fixed point set. In contrast to this, he also proved that only the standard \(\mathbb{C}P^3\) admits a smooth involution with \(\mathbb{Z}_2\)-cohomology \(\mathbb{C}P^2\) and \(\mathbb{C}P^0\) as fixed point set. Thus, Theorem 1.4 with Masuda’s results together completes the study of existence problem for smooth orientation preserving involutions on \(HCP^3\).

The paper is organized as follows. In Section 2, we first give a proof of Theorem 1.4, and then prove a basic lemma concerning the 2-dimensional homology of the orbit space of a smooth free involution on an \(HCP^3\). In Section 3, we show that the surgery processes for Montgomery and Yang correspondence can still be carried on for \(\mathbb{Z}_2\)-actions. This establishes Theorem 1.1.
Acknowledgement. The authors would like to express their gratitude to M. Masuda for his suggestion of studying the Smith conjecture by using Montgomery and Yang correspondence, and for his comments on this paper. The first named author thanks the Institute of Mathematics of Fudan University for their invitation, generosity and hospitality, this work is done during his visit to the institute. The authors also would like to express their gratitude to the referee, who did an extremely careful reading and detected some flaws in the original version. The many suggestions and comments made by him or her considerably improve the presentation of this paper.

2. Smooth free involutions of HCP^3

First, we prove Theorem 1.4 and then give a lemma which is fundamental for further results.

Proof of Theorem 1.4. Let $M = HCP^n$. Then there is a class $x \in H^2(M; \mathbb{Z})$ such that $H^*(M; \mathbb{Z}) = \mathbb{Z}[x]/(x^{n+1})$ and $x^n \in H^{2n}(M; \mathbb{Z})$ is dual to the fundamental homology class of M ([Sp], Theorem 5, p. 265). If M admits a free involution τ, then $\tau^*(x) = \pm x$, but $\tau^*(x) = x$ implies that τ_* is the identity on $H_*(M; \mathbb{Z})$ and so τ has a fixed point by the Lefschetz theorem ([Sp], Theorem 7, p. 195) which is impossible since τ is assumed to be free. So $\tau^*(x) = -x$ and τ_* sends a generator of $H_2(M; \mathbb{Z})$ into its negative and since $\pi_2(M) = H_2(M; \mathbb{Z})$, the action of $\pi_1(N)$ on $\pi_2(N)$ is nontrivial ([Sp], Corollary 7, p. 383), where N is the orbit space of the action τ on M. Since $\tau^*(x^n) = (-1)^n x^n$, this means that τ preserves the orientation if and only if n is even. Thus, when $n = 3$, there exists no orientation preserving free involution on HCP^3. The proof is completed. \hfill \square

The proof of Theorem 1.4 also gives the following result in the general case.

Corollary 2.1. Suppose that M is an HCP^n admitting a free involution τ. Then τ preserves the orientation if and only if n is even.

Lemma 2.1. Let M be an HCP^3 with a smooth free involution τ, and $p : M \to N = M/\tau$ be the orbit space projection. Then $H_2(N; \mathbb{Z}) = 0$.

Proof. Let B be a closed Möbius band with S^1 as center, and $f : S^1 \to N$ be a smooth imbedding representing the generator of $\pi_1(N) \cong \mathbb{Z}_2$. It is easy to see that f may extend to a map from B to N, still denoted by f. Since $f : \partial B \to N$ represents twice of the generator, it is homotopic to zero. Let $\mathbb{R}P^2 = B \cup_\lambda D$, where D is a 2-disk, and λ is a diffeomorphism of ∂D and ∂B. Then f extends to a map from $\mathbb{R}P^2$ to N, also denoted by f. Change f on the interior of D by a map $\alpha : S^2 \to N$, we get a map $f_\alpha : \mathbb{R}P^2 \to N$.

Let \mathbb{Z}_ξ be the local integer coefficient on N twisted by the line bundle ξ determined by τ. As shown in [Ol], there is a canonical isomorphism between $H_2(N; \mathbb{Z}_\xi)$ and $\Omega_2(N; \xi)$, so f and f_α may represent two elements in $H_2(N; \mathbb{Z}_\xi)$, denoted by $[f]$ and $[f_\alpha]$ respectively. Notice that $\Omega_n(X; \phi)$ was defined in [Ko] where ϕ is a stable bundle over a space X, and Olk in his dissertation [Ol] proved that

$$\tilde{\Omega}_n(X; \phi) \cong H_n(X; \mathbb{Z}_\phi) \text{ for } n = 0, 1, 2, 3$$
where Z_{ϕ} is the local integer coefficient associated to ϕ (see also [Li]). To see the picture more clearly, we assume $f : \mathbb{R}P^2 \rightarrow N$ is an imbedding (this is guaranteed by reason of dimension), and $f_\alpha = f \circ \alpha$ is the connected sum of f and an imbedding $\alpha : S^2 \rightarrow N$ with $\alpha(S^2) \cap f(\mathbb{R}P^2) = \emptyset$. Then $p^{-1}f(\mathbb{R}P^2)$ and $p^{-1}f_\alpha(\mathbb{R}P^2)$ are embedded 2-dimensional spheres in M. Let $\alpha' : S^2 \rightarrow M$ be such that $p \circ \alpha' = \alpha$.

From the proof of Theorem 1.4, we know that the action of $\pi_1(N)$ on $\pi_2(N)$ is nontrivial, i.e., the action of the generator of $\pi_1(N)$ sends $x \in \mathbb{Z}$ to $-x \in \mathbb{Z}$. Then the nontriviality of the action of $\pi_1(N)$ on $\pi_2(N)$ means that α' and $\tau \circ \alpha'$ represent the elements in $H_2(M; \mathbb{Z})$ (via Hurewicz homomorphism) with opposite signs. Geometrically, $p^{-1}f_\alpha(\mathbb{R}P^2)$ is the connected sum of $p^{-1}f(\mathbb{R}P^2)$ with α' and $\tau \circ \alpha'$. When making connected sum with α', the 2-disk D in $p^{-1}f(\mathbb{R}P^2)$ is removed, and when making connected sum with $\tau \circ \alpha'$, the 2-disk $\tau(D)$ is removed. Since $\tau : p^{-1}f(\mathbb{R}P^2) \rightarrow p^{-1}f(\mathbb{R}P^2)$ is orientation reversing, we have

$$[p^{-1}f_\alpha(\mathbb{R}P^2)] = [p^{-1}f(\mathbb{R}P^2)] + 2[\alpha']$$

in $H_2(M; \mathbb{Z})$. By the Gysin homology sequence

$$0 = H_3(M; \mathbb{Z}) \xrightarrow{p^*} H_3(N; \mathbb{Z}) \xrightarrow{t} H_2(N; \mathbb{Z}_2) \xrightarrow{\alpha} H_2(M; \mathbb{Z}_2) \xrightarrow{\beta} H_1(N; \mathbb{Z}_2)$$

(2.1) where t is the transfer and the fact that $H_1(N; \mathbb{Z}_2) = 0$ (which can be seen by $\Omega_1(N; \xi) \cong H_1(N; \mathbb{Z}_2)$, and that a map $g : S^1 \rightarrow N$ with $g^*\xi \cong T(S^1)$ must be null-homotopic), we see that $H_2(N; \mathbb{Z}_2)$ contains at least one factor of \mathbb{Z}, and $H_2(N; \mathbb{Z}) = 0$ or \mathbb{Z}_2. By another Gysin homology sequence ([Sp], Problem J, pp. 282-283)

$$H_2(N; \mathbb{Z}) \xrightarrow{t} H_2(M; \mathbb{Z}) \xrightarrow{p^*} H_2(N; \mathbb{Z}_2) \xrightarrow{\beta}$$

$$H_1(N; \mathbb{Z}_2) \cong \mathbb{Z}_2 \xrightarrow{\beta} H_1(M; \mathbb{Z}) = 0$$

(2.2)

we have that $H_2(N; \mathbb{Z}_2)$ contains only one factor of \mathbb{Z} and that

$$H_2(N; \mathbb{Z}_2) \cong \mathbb{Z} \text{ or } \mathbb{Z} \oplus \mathbb{Z}_2.$$

Next we shall prove that

$$H_2(N; \mathbb{Z}_2) \cong \mathbb{Z} \oplus \mathbb{Z}_2$$

is impossible.

Suppose that $H_2(N; \mathbb{Z}_2) \cong \mathbb{Z} \oplus \mathbb{Z}_2$. Let l be a generator of $H_2(M; \mathbb{Z}) \cong \mathbb{Z}$. Then there is a pair (m_0, n_0) for $m_0 \in \mathbb{Z}, n_0 \in \mathbb{Z}_2$ such that $p_*(l) = (m_0, n_0)$. If $m_0 = 0$, then all $(m, 0) \in \mathbb{Z} \oplus \mathbb{Z}_2$ with $m \neq 0$ are not in the image of p_*, which is impossible by (2.2). If $m_0 \neq 0$, then $(0, 1)$ is not in the image of p_*. We claim that

there exists (m_1, n_1) with $m_1 \neq 0$ in $\mathbb{Z} \oplus \mathbb{Z}_2$ such that (m_1, n_1) does not belong to the image of p_* in (2.2).

Choose an f_α defined above having the property $[p^{-1}f_\alpha(\mathbb{R}P^2)] \neq 0$, then $[f_\alpha] = (m_1, n_1)$ with $m_1 \neq 0$. For the homomorphism β, it can be seen by the relation of
normal bordism groups and homology groups, or by the Thom isomorphism with local coefficients ([Sp], Problem J, pp. 282-283) that \(\beta(x) = w_1(\xi) \cap x \) for \(x \in H_2(N; \mathbb{Z}_2) \) and \(w_1(\xi) \in H^1(N; \mathbb{Z}_2) \) the unreduced first Stiefel-Whitney class of \(\xi \) as explained in [Ste]. By the first point of view, \(\beta[f_\alpha] \) can be taken as follows.

For any section \(s \) of \(f_\alpha^* \xi \) over \(\mathbb{R}P^2 \) transversal to the zero section, let

\[S = \{ x \in \mathbb{R}P^2 | s(x) = 0 \}, \]

then \(f_\alpha(S) \) represents \(\beta[f_\alpha] \). Obviously we may take \(S \) as being the circle in \(\mathbb{R}P^2 \) representing the generator of \(\pi_1(\mathbb{R}P^2) \cong \mathbb{Z}_2 \), thus \(f_\alpha(S) \) represents the generator of \(H_1(N; \mathbb{Z}) \cong \mathbb{Z}_2 \), and the claim holds. Then by (2.2) the image of \(\beta \) will have \(\mathbb{Z}_2 \) as a proper subgroup. This leads to a contradiction.

Thus \(H_2(N; \mathbb{Z}_2) \cong \mathbb{Z}_2 \), and all \([f_\alpha]\) are odd elements.

Now by (2.1) we have that

\[H_3(N; \mathbb{Z}) = 0. \tag{2.3} \]

If \(H_2(N; \mathbb{Z}) \cong \mathbb{Z}_2 \), then by (2.3) and \(H_1(N; \mathbb{Z}) \cong \mathbb{Z}_2 \) and the universal coefficient theorem, we have that

\[H_0(N; \mathbb{Z}_2) = H_1(N; \mathbb{Z}_2) = H_3(N; \mathbb{Z}_2) = \mathbb{Z}_2, \quad H_2(N; \mathbb{Z}_2) = \mathbb{Z}_2 \oplus \mathbb{Z}_2. \]

By Poincaré duality,

\[H_4(N; \mathbb{Z}_2) = \mathbb{Z}_2 \oplus \mathbb{Z}_2, \quad H_5(N; \mathbb{Z}_2) = H_6(N; \mathbb{Z}_2) = \mathbb{Z}_2. \]

Thus the Euler characteristic number of \(N \) would be 3, but it should be half of that of \(M \) which is 2. This contradiction shows that \(H_2(N; \mathbb{Z}) \cong \mathbb{Z}_2 \) is impossible.

Thus we have proved that \(H_2(N; \mathbb{Z}) = 0 \). This completes the proof. \(\square \)

3. Montgomery and Yang Correspondence in \(\mathbb{Z}_2 \)-actions

The proof of Theorem 1.1 is equivalent to establishing the surgery processes for Montgomery and Yang correspondence under \(\mathbb{Z}_2 \)-actions. For this, we first prove some lemmas.

Lemma 3.1. Let \(M \) be a smooth \(HCP^3 \) with a smooth free involution \(\tau \), and \(p : M \to N = M/\tau \) be the orbit space projection. Then there is an imbedding \(j : \mathbb{R}P^2 \to N \) such that \(p^{-1}j(\mathbb{R}P^2) \) is represented by an imbedded sphere which represents a generator of \(\pi_2(M) \).

Proof. We look at all \(p^{-1}f_\alpha(\mathbb{R}P^2) \) stated in the proof of Lemma 2.1. Notice that we have seen in the proof of Lemma 2.1 that \([f_\alpha(\mathbb{R}P^2)]\) are odd elements. Since \(H_2(N; \mathbb{Z}) = 0 \) and \(H_3(N; \mathbb{Z}) = 0 \) by Lemma 2.1 and (2.3), \(t \) is an isomorphism in (2.2), so all \([p^{-1}f_\alpha(\mathbb{R}P^2)]\) are odd elements in \(H_2(M; \mathbb{Z}) = \pi_2(M) = \mathbb{Z} \). Thus there is some \(\alpha_1 \) such that \(p^{-1}f_{\alpha_1}(\mathbb{R}P^2) \) represents a generator of \(\pi_2(M) \). This completes the proof. \(\square \)

Recall from [MY] that the standard \(CP^3 \) can be obtained by gluing two \(S^2 \times D^4 \) on their boundaries by a map

\[f : S^2 \times S^3 \to S^2 \times S^3 \tag{3.1} \]
where \(f(Gu, v) = (Gu, v^{-1}) \), \(u \mapsto Gu \) is the Hopf map \(S^3 \to S^2 \), and \(S^3 \) is regarded as the space of unit quaternions, and \(G \subset S^3 \) consists of unit complex numbers.

Regard \(S^2 \) as the unit sphere in \(\mathbb{R}^3 = \mathbb{R} \times \mathbb{C} \), and \(\mathbb{R}^4 \) as the quaternion field which is identified with \(\mathbb{C}^2 \) by

\[
x_0 + x_1 i + x_2 j + x_3 k = x_0 + x_1 i + (x_2 + x_3 i)j \mapsto (x_0 + x_1 i, x_2 + x_3 i).
\]

Then the Hopf map is given by \(\mathbb{C}^2 \to \mathbb{R} \times \mathbb{C} \) sending

\[
(\psi_1, \psi_2) \mapsto (|\psi_1|^2 - |\psi_2|^2, 2\psi_1 \psi_2).
\]

It is easy to check that multiplying \(j \) on the left side of the above mapping induces the antipodal map on \(S^2 \), i.e., there is a commutative diagram

\[
\begin{array}{ccc}
S^3 & \xrightarrow{w} & S^3 \\
\downarrow & & \downarrow \\
S^2 & \xrightarrow{Gu} & S^2
\end{array}
\]

Therefore

\[
f(Gju, v) = (Gju, v^{-1}) = (-Gu, v^{-1}) = f(-Gu, v)
\]

on \(S^2 \times D^4 \) defines a smooth involution by mapping \((Gu, \ast)\) to \((-Gu, \ast)\). This involution commutes with \(f \), so there is a smooth free involution \(\tau_0 \) on \(\mathbb{C}P^3 \) such that \(\mathbb{C}P^3/\tau_0 \) is glued by two copies of \(\mathbb{R}P^2 \times D^4 \) along their boundaries. Thus, \(\mathbb{C}P^3/\tau_0 \) is actually a \(\mathbb{R}P^2 \)-bundle over \(S^4 \). This leads to the following

Lemma 3.2. Let \(M \) be an \(HCP^3 \) with a smooth free involution \(\tau \) and \(N = M/\tau \). Then \(N_0 = \mathbb{C}P^3/\tau_0 \) and \(N \) are homotopy equivalent.

Proof. First we claim that every \(\mathbb{R}P^2 \)-bundle over \(S^4 \) has a CW-complex structure such that it contains a cell in each dimension \(i = 0, 1, 2, 4, 5, 6 \). Every \(\mathbb{R}P^2 \)-bundle over \(S^4 \) is the union of two copies of \(\mathbb{R}P^2 \times D^4 \) by gluing boundaries of two \(\mathbb{R}P^2 \times D^4 \)'s. It is well-known that \(\mathbb{R}P^2 \) has a CW-decomposition such that it contains a cell in each dimension \(i = 0, 1, 2 \), and it is the union of those three cells. Thus, one of two copies of \(\mathbb{R}P^2 \times D^4 \) offers one cell in each dimension \(i = 4, 5, 6 \). On the other hand, another of two copies of \(\mathbb{R}P^2 \times D^4 \) has a natural deformation to \(\mathbb{R}P^2 \), so the \(i \)-cell for \(i = 0, 1, 2 \) is given by this \(\mathbb{R}P^2 \), and the \(i \)-cell for \(i = 4, 5, 6 \) from the first copy extends to an \(i \)-cell by the deformation. Then we obtain the required CW-decomposition.

As a special \(\mathbb{R}P^2 \)-bundle over \(S^4 \), \(N_0 \) has such one CW-decomposition as above. Then we see that the inclusion of \(\mathbb{R}P^2 \) in \(N_0 \) induces isomorphisms of homotopy groups up to dimension 2. Now, for any \(HCP^3 \) space \(M \) with free involution \(\tau \), by Lemma 3.1 there is an imbedding \(j : \mathbb{R}P^2 \to N \) such that the inclusion \(j(\mathbb{R}P^2) \hookrightarrow N \) also induces isomorphisms of homotopy groups up to dimension 2. Let \(f \) be a homeomorphism from the \(\mathbb{R}P^2 \) in \(N_0 \) to \(j(\mathbb{R}P^2) \) in \(N \). Since the CW-decomposition of \(N_0 \) contains no 3-dimensional cells, the 2-skeleton and 3-skeleton of the CW-decomposition of \(N_0 \) are equal, and both are just \(\mathbb{R}P^2 \). Thus, \(f \) has been defined on the boundary of the 4-cell in the CW-decomposition of \(N_0 \). Since \(\pi_3(N) = 0 \), the
obstruction theory tells us that \(f \) can extend to the 4-cell, denoted still by \(f \). Now \(f \) is defined on the 4-skeleton of \(N_0 \), i.e., on the boundary of the 5-cell of \(N_0 \). Since \(\pi_4(N) = \pi_5(N) = 0 \), the same argument as above shows that finally \(f \) can extend to the 6-skeleton of \(N_0 \), i.e., \(f \) is exactly defined on \(N_0 \). By the definition of \(f \), \(f \) induces isomorphisms of homotopy groups up to dimension 2. Since \(\pi_i(N_0) = \pi_i(N) = 0 \) for \(i = 3, 4, 5, 6 \), by Theorem 3.1 in page 107 of [Hi], we conclude that \(f \) is a homotopy equivalence.

\[\square \]

Lemma 3.3. Let \(M \) be an \(H\mathbb{C}P^3 \) with a smooth free involution \(\tau \), and let \(j: \mathbb{R}P^2 \to N = M/\tau \) be the smooth imbedding described in Lemma 3.1. Then the normal bundle of \(j(\mathbb{R}P^2) \) is trivial.

Proof. Since
\[\mathbb{C}P^3/\tau_0 = (\mathbb{R}P^2 \times D^4) \cup_{\lambda} (\mathbb{R}P^2 \times D^4) \]
where \(\lambda: \mathbb{R}P^2 \times S^3 \to \mathbb{R}P^2 \times S^3 \) is such that \(\lambda: \mathbb{R}P^2 \times v \to \mathbb{R}P^2 \times v^{-1} \) is a homeomorphism, an easy argument by using Mayer-Vietoris sequence shows that \(H_2(\mathbb{C}P^3/\tau_0; \mathbb{Z}_2) = \mathbb{Z}_2 \) and its generator is represented by \(\mathbb{R}P^2 \times * \). The proof of Lemma 3.1 contains the fact that a generic inclusion \(j: j(\mathbb{R}P^2) \to N \) induces an isomorphism of homotopy groups at levels 1 and 2 and so it induces an integral homology isomorphism at these levels by the Whitehead theorem ([Sp], Theorem 9, p. 399). It follows from the universal coefficient theorems that \(j \) induces homology and cohomology isomorphism at levels 1 and 2 with arbitrary coefficients. In particular, \(j(\mathbb{R}P^2) \) represents the generator of \(H_2(N; \mathbb{Z}_2) = \mathbb{Z}_2 \). Since the tangent bundle \(T(\mathbb{C}P^3/\tau_0) \) restricted to \(\mathbb{R}P^2 \times * \) is
\[T(\mathbb{C}P^3/\tau_0)|_{\mathbb{R}P^2 \times *} = T(\mathbb{R}P^2 \times *) \oplus \text{trivial bundle} \]
we see that the Stiefel-Whitney classes \(w_1(\mathbb{C}P^3/\tau_0) = w_1(\mathbb{R}P^2 \times *) \neq 0 \) and \(w_2(\mathbb{C}P^3/\tau_0) = w_2(\mathbb{R}P^2 \times *) \neq 0 \). By the proof of Lemma 3.2, a homotopy equivalence \(f: \mathbb{C}P^3/\tau_0 \to M/\tau = N \) can be chosen so that \(f: \mathbb{R}P^2 \times * \to j(\mathbb{R}P^2) \) is a homeomorphism.

It is well known that Stiefel-Whitney classes are homotopy invariant, so \(w_1(N) \neq 0 \) in \(H^1(N; \mathbb{Z}_2) \) and \(w_2(N) \neq 0 \) in \(H^2(N; \mathbb{Z}_2) = \mathbb{Z}_2 \). Thus \(w(T(N)|_{j(\mathbb{R}P^2)}) = w(j(\mathbb{R}P^2)) \), and the Stiefel-Whitney classes of the normal bundle are trivial. This means that the normal bundle of \(j(\mathbb{R}P^2) \) is stably trivial since its Stiefel-Whitney classes vanish at levels 1 and 2 and \(j(\mathbb{R}P^2) \) is a 2-complex. Thus, the normal bundle of \(j(\mathbb{R}P^2) \) is trivial since its fiber has dimension 4 (which is strictly larger than 2). This completes the proof. \(\square \)

With the above understood, we are going to complete the proof of Theorem 1.1.

Proof of Theorem 1.1. Suppose that \(M \) admits a smooth free involution \(\tau \). Then by Lemma 3.3 there is an imbedding \(h: \mathbb{R}P^2 \times D^4 \to M/\tau \). Hence there is an imbedding \(h: S^2 \times D^4 \to M \) such that
\[h(S^2 \times D^4) = p^{-1}(\mathbb{R}P^2 \times D^4) \]
where \(p: M \to M/\tau \) is the projection. By Lemma 3.1, \(h: S^2 \times 0 \to M \) is a primary imbedding defined in [MY]. Now, by Lemma 5 in [MY], there is another primary
imbeeding $h': S^2 \times D^4 \to M$ such that
\[h(S^2 \times D^4) \cup h'(S^2 \times D^4) = M \]
and
\[h(S^2 \times D^4) \cap h'(S^2 \times D^4) = h(S^2 \times S^3) = h'(S^2 \times S^3). \]
Clearly, on $h(S^2 \times D^4)$,
\[\tau h(x, y) = h(-x, y). \]
According to [MY, Appendix and Lemma 11], an imbedding $i: S^3 \to S^6$ is given by
\[S^6 = (M - \text{int}(h(S^2 \times D^4))) \cup \alpha(D^3 \times S^3) \]
where $\alpha: h(S^2 \times S^3) \to \partial(D^3 \times S^3) = S^2 \times S^3$ is defined by $\alpha = fh^{-1}$ and $f(Gu, v) = (Guv, v^{-1})$.

Now on $(M - \text{int}(h(S^2 \times D^4))) = h'(S^2 \times D^4) \subset S^6$, there is the involution $\tau_1(= \tau)$. We define an involution τ_2 on $D^3 \times S^3$ by $\tau_2(x, y) = (-x, y)$. Since on $h(S^2 \times S^3)$, we have
\[\alpha \tau_1 h(x, y) = fh^{-1} \tau h(x, y) = fh^{-1}h(-x, y) = f(-x, y) \]
and
\[\tau_2 \alpha h(x, y) = \tau_2 fh^{-1}h(x, y) = \tau_2 f(x, y). \]
Represent $(x, y) \in S^2 \times S^3$ by (Gu, v), then
\[f(Gu, v) = (Guv, v^{-1}) \]
and
\[\tau_2 f(Gu, v) = (-Guv, v^{-1}) = f(-Gu, v). \]
Hence
\[\alpha \tau_1 = \tau_2 \alpha \]
on $h(S^2 \times S^3)$. Combining τ_1 with τ_2 together, we obtain then an involution on S^6 with $i(S^3)$ as the set of fixed points.

Conversely, let $i: S^3 \to S^6$ be an imbedding such that there is an involution τ on S^6 with $i(S^3)$ as the set of fixed points. Take a τ-invariant Riemannian metric on S^6, then τ induces a bundle map of the normal bundle of $i(S^3)$, i.e., the orthogonal bundle of $T(i(S^3))$ in $T(S^6)$ according to the Riemannian metric, covering the identity map of $i(S^3)$, and on every fiber of the normal bundle of $i(S^3)$, the bundle map must set v to $-v$. Then by using the exponential map, it follows that there is an Z_2-equivariant imbedding $h: D^3 \times S^3 \to S^6$ such that
\[h(0, x) = i(x) \text{ and } \tau h(v, x) = h(-v, x). \]
By [MY], there is an imbedding $k: S^2 \times D^4 \to S^6$ such that
\[S^6 = k(S^2 \times D^4) \cup h(D^3 \times S^3) \]
and
\[k(S^2 \times D^4) \cap h(D^3 \times S^3) = k(S^2 \times S^3) = h(S^2 \times S^3). \]
By the proof of Lemma 12 in [MY], we may change h by a map $\mu : S^3 \to SO(3)$ to get an imbedding $k' : D^3 \times S^3 \to S^6$, so that k and k' satisfy the condition of [MY, Lemma 12], and

$$\tau k'(v, x) = k'(-v, x).$$

Now let $\lambda : k(S^2 \times S^3) \to S^2 \times S^3$ be the map defined by $\lambda = f k'^{−1}$, where f is the map stated in (3.1), then

$$M = k(S^2 \times D^4) \cup_\lambda (S^2 \times D^4)$$

is an HCP^3 by [MY, Lemma 12], and $\eta[M] = [i]$. To see that M has a free involution, let $\tau_1 = \tau$ on $k(S^2 \times D^4)$, and τ_2 on $S^2 \times D^4$ is given by

$$\tau_2(v, x) = (-v, x).$$

Then on $k(S^2 \times S^3) = k'(S^2 \times S^3)$, $\lambda \tau_1 k'(v, x) = \lambda k'(-v, x) = f(-v, x)$ and

$$\tau_2 \lambda k'(v, x) = \tau_2 f(v, x).$$

As we have seen before,

$$\tau_2 f(v, x) = f(-v, x)$$

so

$$\lambda \tau_1 = \tau_2 \lambda$$

on $k(S^2 \times S^3)$. Therefore, combining τ_1 and τ_2 gives a free involution on M. This completes the proof. \(\square\)

References

[DMS] K.H. Dovermann, M. Masuda and R. Schultz, *Conjugation involutions on homotopy complex projective spaces*, Japan J. Math. 12 (1986), 1-35.

[Gi] C.H. Giffen, *The generalized Smith conjecture*, Amer. J. Math. 88 (1966), 187-198.

[Go] C.M. Gordon, *On the higher-dimensional Smith conjecture*, Proc. London Math. Soc. (3) 29 (1971), 98-110.

[Ha1] A. Haefliger, *Plongements différentiables de variétés dans variétés*, Comment. Math. Helv. 36 (1961), 47-82.

[Ha2] A. Haefliger, *Knotted $(4k - 1)$-spheres in $6k$-space*, Ann. of Math. 75 (1962), 452-466.

[Ha3] A. Haefliger, *Differentiable embeddings of S^n in $S^{n+q} for q > 2$, Ann. of Math. 83 (1966), 402-436.

[Hi] P. J. Hilton, *An introduction to homotopy theory*, Cambridge Tracts in Mathematics and Mathematical Physics, 43. Cambridge, at the University Press, 1953.

[Ko] U. Koschorke, *Vector fields and other vector bundle morphisms–A singularity approach*, Lecture in Math. 847, Springer-Verlag, Berlin Heidelberg New York, 1981.

[Le] J. Levine, *A classification of differentiable knots*, Ann. of Math. 82 (1965), 15-50.

[Li] B.H. Li, *On the Koschorke normal bordism sequence*, Science in China (Series A) 35 (1992), 1294-1305.

[Lü] Z. Lü, *A note on Brieskorn spheres and the generalized Smith conjecture*, Michigan Math. J. 47 (2000), 325-333.

[Lü2] Z. Lü, *The generalized Smith conjecture of codimension greater than two*, J. Knot Theory and its Ramifications 9 (2000), 479-490.

[Ma] M. Masuda, *Smooth involutions on homotopy $\mathbb{C}P^3$, Amer. J. Math. 106 (1984), 1487-1501.

[MB] J.W. Morgan and H. Bass (eds.), *The Smith conjecture*, Pure Appl. Math. 112, Academic Press, Orlando, FL, 1984.

[MY] D. Montgomery and C.T. Yang, *Differentiable actions on homotopy seven spheres*, Trans. Amer. Math. Soc. 122 (1966), 480-498.

[Ol] C. Olk, *Immersien von Mannigfaltigkeiten in Euklidische Räume*, Dissertation, Siegen University, 1980.

[Pe] T. Petrie, *Involutions on homotopy complex projective spaces and related topics*, Lecture Notes in Math. Vol. 298, 234-259, Springer, New York, 1972.

[Sp] E.H. Spanier, *Algebraic Topology*, Springer-Verlag, 1966.
[St] J. Stallings, *On topologically unknotted spheres*, Ann. of Math. **77** (1963), 490-503.

[Ste] N. Steenrod, *Topology of Fiber Bundles*, Princeton Univ. Press, 1974.

[Su] D.W. Sumners, *Smooth \mathbb{Z}_p-actions on spheres which leave knots pointwise fixed*, Trans. Amer. Math. Soc. **205** (1975), 193-203.

[Ze] E.C. Zeeman, *Unknotting combinatorial balls*, Ann. of Math. **78** (1963), 501-526.

 Academy of Mathematics and System Science, Academia Sinica, Beijing, 100080, P.R. China.

E-mail address: libh@iss06.iss.ac.cn

Institute of Mathematics, School of Mathematical Science, Fudan University, Shanghai, 200433, P.R. China.

E-mail address: zlu@fudan.edu.cn