SUPPLEMENT to

Phylogenetic distribution of csp1-types in *Aspergillus fumigatus* and their correlates to azole antifungal drug resistance

Oliver Bader

Institute for Medical Microbiology, University Medical Center Göttingen, Kreuzbergring 57, 37075 Göttingen, Germany
Supplementary figure 1: phylogenetic placement of csp1 types and cyp51A alleles, including SRA accession numbers. Rooted phylogenetic tree constructed from whole SNPomes of 211 shotgun genome sequences. Bold: reference genomes. cyp51A isoforms are given after csp1 types as compared to the A1163 reference. “wt” denotes resistant isolates without changes in Cyp51A sequence. Coloured balls are placed at branch intersections used for respective cluster definition.
Supplement

Supplementary Table 1: The 30 CSP types published to date among *Aspergillus fumigatus* isolates using classical repeat unit definitions

CSP type	Condon	Tandem repeat succession using classical repeat unit definitions	+1	+2	+3	First reported in reference
t11	CCG	TGG CTC CCG				
t18B	GGG	TGG CTC CCG				
t18A	GGG	TGG CTC CCG				
t09	GGG	TGG CTC CCG				
t01	GGG	TGG CTC CCG				
t10	GGG	TGG CTC CCG				
t16	GGG	TGG CTC CCG				
t24	GGG	TGG CTC CCG				
t05	GGG	TGG CTC CCG				
t25c	GGG	TGG CTC CCG				
t26c	GGG	TGG CTC CCG				
NF1	GGG	TGG CTC CCG				
t20	GGG	TGG CTC CCG				
t22	GGG	TGG CTC CCG				
t03	GGG	TGG CTC CCG				
t21	GGG	TGG CTC CCG				
t23	GGG	TGG CTC CCG				
t04A	GGG	TGG CTC CCG				
t04B	GGG	TGG CTC CCG				
t02	GGG	TGG CTC CCG				
t25c	GGG	TGG CTC CCG				
t17	GGG	TGG CTC CCG				
t14	GGG	TGG CTC CCG				
t12	GGG	TGG CTC CCG				
t06A	GGG	TGG CTC CCG				
t06B	GGG	TGG CTC CCG				
t27	GGG	TGG CTC CCG				
t15	GGG	TGG CTC CCG				
t08	GGG	TGG CTC CCG				
t13	GGG	TGG CTC CCG				
t07	GGG	TGG CTC CCG				
t19	GGG	TGG CTC CCG				

a CSP type t18A was previously designated only as t18. b there is naming conflict between refs (4), (7), and (6), see text for details.
Supplementary Table 2: detailed *csp1*-type-stratified epidemiologic data

origin	t01	t02	t03	t04A	t04B	t05	t06A	t06B	t07	t08	t09	t10	t11	t12	t13	t14	t15	t16	t17	t18A	t18B	t19	t20	t21	t22	t23	t24	t25C	t25D	t25G	t26	t27	total	reference							
A) isolates without documented susceptibility testing																																									
NL	78	21	23	36	2	19	1	1	7	4	2	4	4	1	1	6	1	1	1	6	1	1	1	6	1	1	1	6	1	1	1	1	6	1	1	1	6	1	1	209	(1)
OZ	26	9	29	35	2	3	1	1	4	2	1	1	2	1	2	5	1																		122	(5)					
MX	3	1	2	4																																	10	(8)			
CN	19	16	33	51	2	5	9	6	3	3	1	3	1	3	1	8	1	1																162	(2)						
AR	2	3	8	12																																54	(6)				
PE	2	1																																				3	(6)		
FR	1	3																																				4	(6)		
sum	137	57	100	163	2	23	9	18	1	7	5	15	4	4	6	12	1	1	3	2	3	5	1	1	8	1	1	2	593												
%	25.4	10.6	18.6	30.2	0.4	4.3	1.7	3.3	0.2	1.3	0.9	2.8	0.7	0.7	1.16	2.2	0.2	0.2	0.6	0.4	0.6	0.9	0.2	0.2	1.5	0.2	0.2	0.4	0.4												

B) azole susceptible isolates																																							
NL	15	4	7	16	2	5	1	1	2	1	1	2	1	1																								55	(9)
ES	24	11	15	32	3	4	4	2	1	3	1	4	1	1	2																					111	(4, 10)		
CN	57	11	21	38	1	3	1	7	1	1	1	1	4	4	2																					153	(7)		
IR	19	1	13	24	2	1	3																											63	(11)				
DE	24	14	43	13	14	3	2	4	1	3	1																											122	this study
UK																																						6	(12)
sum	82	30	79	88	20	2	4	14	5	9	3	4	8	2	2	2	2	2	1	1	1	1										357							
%	22.9	8.4	22.1	24.6	5.6	0.6	1.1	3.9	1.4	2.5	0.9	1.1	2.2	0.6	0.6	0.6	0.6	0.3	0.3	0.3	0.3	0.3																	

*Note: The table includes detailed *csp1*-type-stratified epidemiologic data for isolates without documented susceptibility testing and azole susceptible isolates. The data is presented by origin, with counts for each origin type. The total number of isolates and the reference source are also provided.*
Supplementary Table 2 (continued)

origin	t01	t02	t03	t04	t05	t06	t07	t08	t09	t10	t11	t12	t13	t14	t15	t16	t17	t18	t19	t20	t21	t22	t23	t24	t25	t26	t27	total	reference		
C) azole resistant isolates with TR34/L98H																															
NL	12	20		23																									55	(9)	
ES	9	1																												10	(4, 10)
DE	1	10	1	42				8																			62	(13, 14)			
IR	5	2	1																											9	(11)
TZ	1	2																7											3	(15)	
TH																														8	(16)
UK	1	9	2																											12	(12)
CH	4	1																												6	(17)
CN	3	1	1																											6	(18)
CN	5																													5	(19)
CNb	2	1																												8	(19)
sum	5	5	5	4	69			1	38																						178
%																															
D) azole resistant isolates with TR40-repeat alleles																															
ES	1																													1	(4, 10)
DE	5	1	4																											10	(13, 14, 20)
UK	1	3																1											1	(12)	
CN	4	2																												6	(19)
sum	11	4	6					1	1																					23	
%		41.2	23.5	23.5				5.9																							
E) resistant isolates with substitutions at M220																															
DE	1	2																												3	(13, 14)
%		33.3	66.7																												
Supplementary Table 2 (continued)

| origin | t01 | t02 | t03 | t04A | t04B | t05 | t06A | t06B | t07 | t08 | t09 | t10 | t11 | t12 | t13 | t14 | t15 | t16 | t17 | t18A | t18B | t19 | t20 | t21 | t22 | t23 | t24 | t25A | t25B | t25D | t26 | t27 | total | reference |
|--------|-----|-----|-----|------|------|-----|------|------|
| F) | | | | | | | | |
| TH | 3 | | | | | | | | 3 | (16) |
| CH | 1 | | | | | | | | 1 | (17) |
| DE | 1 | 2 | | | | | | | 3 | (14) |
| ES | 1 | | | | | | | | 1 | (21) |
| sum | 2 | 5 | 1 | | | | | | 8 | |
| % | 41.2| 23.5| 23.5| | | | | | 5.9| 5.9 |
| G) | | | | | | | | |
| IR | 1 | 1 | 2 | | | | | | 6 | (11) |
| DE | 2 | 1 | 4 | | | | | | 9 | (14) |
| ES | | 1 | | | | | | | 1 | (21) |
| sum | 3 | 1 | 5 | | | | | | 16| |
| % | 18.7| 6.3 | 31.3| 18.7 | | | | | 6.3| 6.3 |
| H) | | | | | | | | |
| DE | 1 | | | | | | | | 1 | (14) |
| NL | 4 | 1 | 1 | | | | | | 7 | (9) |
| ES | 2 | 2 | 2 | | | | | | 6 | (4, 10)|

a country codes: NL: The Netherlands; OZ: Australia; CN: China, MX: Mexico, AR: Argentina; PE: Peru, ES: Spain; IR: Ireland; DE: Germany; UK: United Kingdom; TZ: Tanzania; TH: Thailand; CH: Switzerland; USA: United States of America; b allele type TR34/L98H/S297T/F495I
Supplementary Table 3: details on genome data set

(excel sheet) available from https://github.com/oliverbader/Aspergillus_fumigatus_cyp51A

Supplementary file 1: SNP alignment

(.fasta.gz file) available from https://github.com/oliverbader/Aspergillus_fumigatus_cyp51A

Supplementary file 2: Data for Newick-format phylogenetic tree

(.nhx file) available from https://github.com/oliverbader/Aspergillus_fumigatus_cyp51A

References

1. Klaassen CH, de Valk HA, Balajee SA, Meis JF. 2009. Utility of CSP typing to sub-type clinical *Aspergillus fumigatus* isolates and proposal for a new CSP type nomenclature. J Microbiol Methods 77:292-6.
2. Gao LJ, Sun Y, Wan Z, Li RY, Yu J. 2013. CSP typing of Chinese *Aspergillus fumigatus* isolates: identification of additional CSP types. Med Mycol 51:683-7.
3. Balajee SA, Tay ST, Lasker BA, Hurst SF, Rooney AP. 2007. Characterization of a novel gene for strain typing reveals substructuring of *Aspergillus fumigatus* across North America. Eukaryot Cell 6:1392-9.
4. Garcia-Rubio R, Gil H, Monteiro MC, Pelaez T, Mellado E. 2016. A New *Aspergillus fumigatus* Typing Method Based on Hypervariable Tandem Repeats Located within Exons of Surface Protein Coding Genes (TRESP). PLoS One 11:e0163869.
5. Kidd SE, Nik Zulkepeli NA, Slavin MA, Morrissey CO. 2009. Utility of a proposed CSP typing nomenclature for Australian *Aspergillus fumigatus* isolates: Identification of additional CSP types and suggested modifications. J Microbiol Methods 78:223-6.
6. Duarte-Escalante E, Friass-De-Leon MG, Martinez-Herrera E, Acosta-Altamirano G, de Paz ER, Resendiz-Sanchez J, Refojo N, Reyes-Montes MDR. 2020. Identification of CSP Types and Genotypic Variability of Clinical and Environmental Isolates of *Aspergillus fumigatus* from Different Geographic Origins. Microorganisms 8.
7. Chen Y, Lu Z, Zhao J, Zou Z, Gong Y, Qu F, Bao Z, Qiu G, Song M, Zhang Q, Liu L, Hu M, Han X, Tian S, Zhao J, Chen F, Zhang C, Sun Y, Verweij PE, Huang L, Han L. 2016. Epidemiology and Molecular Characterizations of Azole Resistance in Clinical and Environmental *Aspergillus fumigatus* Isolates from China. Antimicrob Agents Chemother 60:5878-84.
8. Kidd SE, Ling LM, Meyer W, Orla Morrissey C, Chen SC, Slavin MA. 2009. Molecular epidemiology of invasive aspergillosis: lessons learned from an outbreak investigation in an Australian hematology unit. Infect Control Hosp Epidemiol 30:1223-6.
9. Camps SM, Rijs AJ, Klaassen CH, Meis JF, O’Gorman CM, Dyer PS, Melchers WJ, Verweij PE. 2012. Molecular epidemiology of *Aspergillus fumigatus* isolates harboring the TR34/L98H azole resistance mechanism. J Clin Microbiol 50:2674-80.
10. Garcia-Rubio R, Escribano P, Gomez A, Guinea J, Mellado E. 2018. Comparison of Two Highly Discriminatory Typing Methods to Analyze *Aspergillus fumigatus* Azole Resistance. Front Microbiol 9:1626.
11. Falahatinejad M, Vaezi A, Fakhim H, Abastabar M, Shokohi T, Zahedi N, Ansari S, Meis JF, Badali H. 2018. Use of cell surface protein typing for genotyping of azole-resistant and -susceptible *Aspergillus fumigatus* isolates in Iran. Mycoses 61:143-147.
12. Sewell TR, Zhang Y, Brackin AP, Shelton JMG, Rhodes J, Fisher MC. 2019. Elevated prevalence of azole resistant *Aspergillus fumigatus* in urban versus rural environments in the United Kingdom. Antimicrob Agents Chemother doi:10.1128/AAC.00548-19.
13. Bader O, Weig M, Reichard U, Lugert R, Kuhns M, Christner M, Held J, Peter S, Schumacher U, Buchheidt D, Tintelnot K, Gross U, MykoLabNet DP. 2013. cyp51A-Based mechanisms of Aspergillus fumigatus azole drug resistance present in clinical samples from Germany. Antimicrob Agents Chemother 57:3513-7.

14. Bader O, Tunnermann J, Dudakova A, Tangwattanachuleeporn M, Weig M, Gross U. 2015. Environmental isolates of azole-resistant Aspergillus fumigatus in Germany. Antimicrob Agents Chemother 59:4356-9.

15. Mushir MF, Buname G, Bader O, Gross U, Mshana SE. 2016. Aspergillus fumigatus carrying TR16/L98H resistance allele causing complicated suppurative otitis media in Tanzania: Call for improved diagnosis of fungi in sub-Saharan Africa. BMC Infect Dis 16:464.

16. Tangwattanachuleeporn M, Minarin N, Sairan S, Sermsri P, Mitkornburee R, Gross U, Chindamporn A, Bader O. 2017. Prevalence of azole-resistant Aspergillus fumigatus in the environment of Thailand. Med Mycol 55:429-435.

17. Riat A, Plojoux J, Gindro K, Schrenzel J, Sanglard D. 2018. Azole Resistance of Environmental and Clinical Aspergillus fumigatus Isolates from Switzerland. Antimicrob Agents Chemother 62.

18. Fan H, Chen Y, Duan L, Zhao J, Qin C, Li H, Sun J, Han L. 2020. Comparison of Two Typing Methods for Characterization of Azole Resistance in Aspergillus fumigatus from Potting Soil Samples in a Chinese Hospital. Antimicrob Agents Chemother 64.

19. Chen Y, Dong F, Zhao J, Fan H, Qin C, Li R, Verweij PE, Zheng Y, Han L. 2020. High Azole Resistance in Aspergillus fumigatus Isolates from Strawberry Fields, China, 2018. Emerg Infect Dis 26:81-89.

20. Rossler S, Bader O, Stolzel F, Sommer U, Spiess B, Geibel S, Buchheidt D, Gross U, Baretton G, Jacobs E, Ostrosky-Zeichner L. 2017. Progressive Dispersion of Azole Resistance in Aspergillus fumigatus: Fatal Invasive Aspergillosis in a Patient with Acute Myeloid Leukemia Infected with an A. fumigatus Strain with a cyp51A TR35/1212F/M172I/T289A Allele. Antimicrob Agents Chemother 61:e00270-17.

21. Gonzalez-Jimenez I, Lucio J, Amich J, Cuesta I, Sanchez Arroyo R, Alcazar-Fuoli L, Mellado E. 2020. A Cyp51B Mutation Contributes to Azole Resistance in Aspergillus fumigatus. J Fungi (Basel) 6.