Spectral decimation of the magnetic Laplacian on the Sierpinski gasket: Hofstadter’s butterfly, determinants, and loop soup entropy

Joe P. Chen
Ruoyu (Tony) Guo

Department of Mathematics
Colgate University

2019 AMS Fall Eastern Sectional Meeting
Special Session “Stochastic Evolution of Discrete Structures”
Binghamton University, NY
October 12, 2019

arXiv:1909.05662
The Sierpinski gasket (SG)

We denote SG on level N by $G_N = (V_N, E_N)$ where V_N is the vertex set, and E_N is the edge set.
The Sierpinski gasket (SG)

We denote SG on level N by $G_N = (V_N, E_N)$ where V_N is the vertex set, and E_N is the edge set.

![Graphs of level 0, 1, and 2 of the Sierpinski gasket]

Remark

1. Let F_i be the contraction mappings for $i = 0, 1, 2$. Then the infinite SG is the unique nonempty compact set K such that
 \[K = \bigcup_{i=0}^{2} F_i(K) \]
2. $\# V_N = \frac{3^{N+1}+3}{2}$
3. SG is self-similar
The combinatorial graph Laplacian

Example: $G = (V, E)$, the level 1 SG

$$D_G(i,j) = \begin{cases}
\text{deg}(i) & \text{if } i = j \\
0 & \text{if } i \neq j
\end{cases}$$

$$A_G(i,j) = \begin{cases}
1 & \text{if } i \sim j \\
0 & \text{otherwise}
\end{cases}$$

$$
\begin{bmatrix}
\begin{array}{c}
a_0 \\
a_1 \\
a_2 \\
b_0 \\
b_1 \\
b_2
\end{array}
\end{bmatrix}
\begin{bmatrix}
a_0 & a_1 & a_2 & b_0 & b_1 & b_2 \\
2 & 0 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 4 & 0 & 0 \\
0 & 0 & 0 & 0 & 4 & 0 \\
0 & 0 & 0 & 0 & 0 & 4 \\
\end{bmatrix}
$$

$$
\begin{bmatrix}
\begin{array}{c}
a_0 \\
a_1 \\
a_2 \\
b_0 \\
b_1 \\
b_2
\end{array}
\end{bmatrix}
\begin{bmatrix}
a_0 & a_1 & a_2 & b_0 & b_1 & b_2 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 & 1 & 0 \\
\end{bmatrix}
$$

The combinatorial graph Laplacian of level 1 SG is $\Delta_G = D_G - A_G$.
We can normalize Δ_G by the degree to obtain the **probabilistic graph Laplacian** $\mathcal{L}_G = D_G^{-1} \Delta_G$, or

$$(\mathcal{L}_G u)(x) = \frac{1}{\deg_G(x)} \sum_{y \sim x} (u(x) - u(y)), \quad u \in \mathbb{R}^V$$
We can normalize Δ_G by the degree to obtain the \textbf{probabilistic graph Laplacian} $L_G = D_G^{-1} \Delta_G$, or

$$(L_G u)(x) = \frac{1}{\text{deg}_G(x)} \sum_{y \sim x} (u(x) - u(y)), \quad u \in \mathbb{R}^V$$

To obtain the magnetic Laplacian, we assign a set of unit complex values \textbf{(complex line bundle)} to replace the 1's in the adjacency matrix such that $\omega_{ij} = \omega_{ji}^{-1}$ for all i, j in V_N. The magnetic Laplacian on the level-N gasket graph G_N endowed with the set of weights ω is defined as

$$(L_N^\omega u)(x) = \sum_{y \sim x} \frac{1}{\text{deg}_{G_N}(x)} (u(x) - \omega_{xy} u(y)), \quad u \in \mathbb{C}^V$$
The magnetic Laplacian

We can normalize Δ_G by the degree to obtain the **probabilistic graph Laplacian** $\mathcal{L}_G = D_G^{-1} \Delta_G$, or

$$(\mathcal{L}_G u)(x) = \frac{1}{\deg_G(x)} \sum_{y \sim x} (u(x) - u(y)), \quad u \in \mathbb{R}^V$$

To obtain the magnetic Laplacian, We assign a set of unit complex values (**complex line bundle**) to replace the 1's in the adjacency matrix such that $\omega_{ij} = \omega_{ji}^{-1}$ for all i, j in V_N. The magnetic Laplacian on the level-N gasket graph G_N endowed with the set of weights ω is defined as

$$(\mathcal{L}_N^\omega u)(x) = \sum_{y \sim x} \frac{1}{\deg_{G_N}(x)} (u(x) - \omega_{xy} u(y)), \quad u \in \mathbb{C}^V$$

Remark

\mathcal{L}_N^ω is self-adjoint on $L^2(V_N, \deg_{G_N})$, so it has real eigenvalues.
Magnetic fluxes

Definition

The magnetic flux through each smallest upright (resp. downright) triangle on level N equals α_N (resp. β_N).

Suppose that the figure below is part of a level N SG:

\[
\begin{align*}
e^{2\pi i \alpha_N} &= \omega_{a_1} \omega_{b_0} \omega_{b_2} \omega_{b_1} a_1 = \omega_{b_0} a_2 \omega_{a_2} b_1 \omega_{b_1} b_0 \\
e^{2\pi i \beta_N} &= \omega_{b_0} \omega_{b_1} \omega_{b_2} \omega_{b_0} \omega_{b_1} b_0 \\
e^{-2\pi i \beta_N} &= \omega_{b_0} \omega_{b_2} \omega_{b_1} \omega_{b_1} b_0
\end{align*}
\]
The magnetic flux through each smallest upright (resp. downright) triangle on level N equals α_N (resp. β_N).

Suppose that the figure below is part of a level N SG:

![Diagram](image)

$$e^{2\pi i \alpha_N} = \omega_{a_1 b_0} \omega_{b_0 b_2} \omega_{b_2 a_1} = \omega_{b_0 a_2} \omega_{a_2 b_1} \omega_{b_1 b_0}$$

$$e^{2\pi i \beta_N} = \omega_{b_0 b_1} \omega_{b_1 b_2} \omega_{b_2 b_0}$$

$$e^{-2\pi i \beta_N} = \omega_{b_0 b_2} \omega_{b_2 b_1} \omega_{b_1 b_0}$$

Remark

Having uniform magnetic field over SG implies $\alpha_N = \beta_N$.
The magnetic spectrum

Question

What is the magnetic spectrum when SG is subject to uniform magnetic field?

1 Bellissard, 1990; Ghez et. al, 1987
The magnetic spectrum

Question

What is the magnetic spectrum when SG is subject to uniform magnetic field?

Answer:¹

¹ Bellissard, 1990; Ghez et. al, 1987
Case I: magnetic spectrum under (half-) integer flux, $\alpha, \beta \in \{0, \frac{1}{2}\}$ (Chen–G. ’19)

$$\mathcal{L}^{(0,0)}_N \xrightarrow{R(0,0,\cdot)} \mathcal{L}^{(0,0)}_{N-1} \xrightarrow{R(0,0,\cdot)} \mathcal{L}^{(0,0)}_{N-2} \xrightarrow{\cdots} \mathcal{L}^{(0,0)}_0$$

α, β	$\sigma(\mathcal{L}^{(\alpha,\beta)}_N)$	Respective multiplicity
$(0, 0)^2$	$0, \frac{3}{2}, R(0,0,\cdot), \frac{3}{4}, R(0,0,\cdot), \frac{5}{4}$	$1, \frac{3^{N+3}}{2}, \frac{3^{N-k-1}+3}{2}, \frac{3^{N-k-1}}{2}$
$(\frac{1}{2}, \frac{1}{2})$	$(\frac{1}{2}, \frac{3}{4}, \frac{5}{4}, 2, \{\frac{3}{4}, \frac{5}{4}\})^{-1} (R_1 \cup R_2)$	$\frac{3^{N+3}}{2}, \frac{3^{N-1}-1}{2}, \frac{3^{N-1}+3}{2}, \frac{3^{N-2}-1}{2}, \frac{3^{N-2}+3}{2}, \frac{3^{N-k-3}}{2}$
$(\frac{1}{2}, 0)$	$(\frac{1}{2}, 1, \frac{5}{4}, \frac{7}{4}, \{\frac{3}{4}, \frac{5}{4}\})^{-1} (\{\frac{3}{4}, \frac{5}{4}\}), (R_3 \cup R_4)$	$\frac{3^{N+3}}{2}, \frac{3^{N-1}-1}{2}, \frac{3^{N-1}+3}{2}, \frac{3^{N-2}-1}{2}, \frac{3^{N-2}+3}{2}, \frac{3^{N-k-3}}{2}$
$(0, \frac{1}{2})$	$(\frac{1}{4}, \frac{3}{4}, 1, \frac{3}{2}, \{\frac{3}{4}, \frac{5}{4}\})^{-1} (\{\frac{3}{4}, \frac{5}{4}\}), (R_3 \cup R_4)$	$\frac{3^{N-1}+3}{2}, \frac{3^{N-1}-1}{2}, \frac{3^{N+3}}{2}, \frac{3^{N-2}-1}{2}, \frac{3^{N-2}+3}{2}, \frac{3^{N-k-3}}{2}$

where $R_1 = \bigcup_{k=0}^{N-2} (R(0,0,\cdot))^{-k} \left(\frac{3}{4}\right)$, $R_2 = \bigcup_{k=0}^{N-3} (R(0,0,\cdot))^{-k} \left(\frac{5}{4}\right)$, $R_3 = \bigcup_{k=0}^{N-3} (R(0,0,\cdot))^{-k} \left(\frac{3}{4}\right)$, $R_4 = \bigcup_{k=0}^{N-4} (R(0,0,\cdot))^{-k} \left(\frac{5}{4}\right)$

$R(\alpha, \beta, \lambda)$ is the decimation function, $k = \{0, 1, \cdots N-1\}$, Fukushima & Shima, 1992

Ruoyu Guo | Sierpinski-Hofstadter problem
Case I: magnetic spectrum under (half-) integer flux, $\alpha, \beta \in \{0, \frac{1}{2}\}$ (Chen–G. '19)

\[
\begin{align*}
\mathcal{L}_N^{(0, 0)} & \xrightarrow{R(0, 0, \cdot)} \mathcal{L}_N^{(0, 0)} & \mathcal{L}_N^{(0, 0)} & \xrightarrow{R(0, 0, \cdot)} \mathcal{L}_{N-1}^{(0, 0)} & \mathcal{L}_{N-2}^{(0, 0)} & \xrightarrow{\ldots} \mathcal{L}_0^{(0, 0)}
\end{align*}
\]

\[
\begin{align*}
\mathcal{L}_N^{(\frac{1}{2}, \frac{1}{2})} & \xrightarrow{R(\frac{1}{2}, \frac{1}{2}, \cdot)} \mathcal{L}_{N-1}^{(\frac{1}{2}, \frac{1}{2})}
\end{align*}
\]

(α, β)	$\sigma(\mathcal{L}_N^{(\alpha, \beta)})$	Respective multiplicity
$(0, 0)^2$	$0, \frac{3}{2}, R(0, 0, \cdot)^{-k} \left(\frac{3}{4}\right), R(0, 0, \cdot)^{-k} \left(\frac{5}{4}\right)$	$1, \frac{3N+3}{2}, \frac{3N-k-1+3}{2}, \frac{3N-k-1-1}{2}$
$(\frac{1}{2}, \frac{1}{2})$	$(R \left(\frac{1}{2}, \frac{1}{2}, \cdot\right))^{-1} (R_1 \cup R_2)$	$\frac{3N+3}{2}, \frac{3N-1+1}{2}, \frac{3N-1+3}{2}, \frac{3N-k-2+1}{2}, \frac{3N-k-2-1}{2}$
$(\frac{1}{2}, 0)$	$(\frac{1}{2}, 1, \frac{5}{4}, \frac{7}{4}, (R \left(\frac{1}{2}, 0, \cdot\right))^{-1} \left(\left\{\frac{3}{4}, \frac{5}{4}\right\}\right), (R \left(\frac{1}{2}, 0, \cdot\right))^{-1} \circ (R \left(\frac{1}{2}, \frac{1}{2}, \cdot\right))^{-1} (R_3 \cup R_4)$	$\frac{3N+3}{2}, \frac{3N-1+1}{2}, \frac{3N-1+3}{2}, \frac{3N-k-2+1}{2}, \frac{3N-k-2-1}{2}$
$(0, \frac{1}{2})$	$\left\{\frac{1}{4}, \frac{3}{4}, 1, \frac{3}{2}\right\}, (R \left(0, 1, \cdot\right))^{-1} \left(\left\{\frac{3}{4}, \frac{5}{4}\right\}\right)$, $(R \left(0, 1, \cdot\right))^{-1} \circ (R \left(1, \frac{1}{2}, \cdot\right))^{-1} (R_3 \cup R_4)$	$\frac{3N+3}{2}, \frac{3N-1+1}{2}, \frac{3N-1+3}{2}, \frac{3N-k-2+1}{2}, \frac{3N-k-2-1}{2}$

where

- $R_1 = \bigcup_{k=0}^{N-2} (R(0, 0, \cdot))^{-k} \left(\frac{3}{4}\right)$
- $R_2 = \bigcup_{k=0}^{N-3} (R(0, 0, \cdot))^{-k} \left(\frac{5}{4}\right)$
- $R_3 = \bigcup_{k=0}^{N-3} (R(0, 0, \cdot))^{-k} \left(\frac{3}{4}\right)$
- $R_4 = \bigcup_{k=0}^{N-4} (R(0, 0, \cdot))^{-k} \left(\frac{5}{4}\right)$

\[R(\alpha, \beta, \lambda) \text{ is the decimation function, } k = \{0, 1, \ldots, N-1\}, \text{ Fukushima & Shima, 1992} \]
Case I: magnetic spectrum under (half-) integer flux, $\alpha, \beta \in \{0, \frac{1}{2}\}$ (Chen–G. ’19)

\[
\begin{align*}
\mathcal{L}_N^{(0,0)} & \xrightarrow{R(0,0,\cdot)} \mathcal{L}_N^{(0,0)} \xrightarrow{R(0,0,\cdot)} \mathcal{L}_N^{(0,0)} \xrightarrow{\cdots} \mathcal{L}_0^{(0,0)} \\
\mathcal{L}_N^{(\frac{1}{2},\frac{1}{2})} & \xrightarrow{R(0,0,\cdot)} \mathcal{L}_N^{(\frac{1}{2},\frac{1}{2})} \xrightarrow{R(0,0,\cdot)} \mathcal{L}_N^{(0,\frac{1}{2})}
\end{align*}
\]

(α, β)	$\sigma(\mathcal{L}_N^{(\alpha,\beta)})$	Respective multiplicity
$(0, 0)$	$0, \frac{3}{2}, R(0, 0, \cdot)^{-k} \left(\frac{3}{4}\right), R(0, 0, \cdot)^{-k} \left(\frac{5}{4}\right)$	$1, \frac{3^N+3}{2}, \frac{3^N-k-1+3}{2}, \frac{3^N-k-1-1}{2}$
$(\frac{1}{2}, \frac{1}{2})$	$\frac{1}{2}, \frac{3}{4}, \frac{5}{4}, 2,$	$\frac{3^N+3}{2}, \frac{3^N-k-2-3}{2}, \frac{3^N-k-2-1}{2}$
$(\frac{1}{2}, 0)$	$\left(R \left(\frac{1}{2}, 0, \cdot\right)\right)^{-1} \left(\frac{3}{4}\right), \left(R \left(\frac{1}{2}, 0, \cdot\right)\right)^{-1} \left(\frac{5}{4}\right)$	$\frac{3^N+3}{2}, \frac{3^N-k-3-3}{2}, \frac{3^N-k-3-1}{2}$
$(0, \frac{1}{2})$	$\left(R \left(0, \frac{1}{2}, \cdot\right)\right)^{-1} \left(\frac{3}{4}\right), \left(R \left(0, \frac{1}{2}, \cdot\right)\right)^{-1} \left(\frac{5}{4}\right)$	$\frac{3^N+3}{2}, \frac{3^N-k-3-3}{2}, \frac{3^N-k-3-1}{2}$

where $R_1 = \bigcup_{k=0}^{N-2} (R(0, 0, \cdot))^{-k} \left(\frac{3}{4}\right)$, $R_2 = \bigcup_{k=0}^{N-3} (R(0, 0, \cdot))^{-k} \left(\frac{5}{4}\right)$, $R_3 = \bigcup_{k=0}^{N-3} (R(0, 0, \cdot))^{-k} \left(\frac{3}{4}\right)$, $R_4 = \bigcup_{k=0}^{N-4} (R(0, 0, \cdot))^{-k} \left(\frac{5}{4}\right)$

$R(\alpha, \beta, \lambda)$ is the decimation function, $k = \{0, 1, \cdots N-1\}$, Fukushima & Shima, 1992.
Other cases

Theorem: Magnetic spectra under non-(half-)integer fluxes (Chen–G. ’19)

Let $\mathcal{E}(\alpha_N, \beta_N)$ be the **exceptional set for spectral decimation**. Suppose not both of α_N and β_N are in $\{0, \frac{1}{2}\}$. Then

$$\sigma \left(\mathcal{L}_N^{(\alpha_N, \beta_N)} \right) = \left\{ \lambda \in \mathbb{R} \setminus \mathcal{E}(\alpha_N, \beta_N) : R(\alpha_N, \beta_N, \lambda) \in \sigma \left(\mathcal{L}_{N-1}^{(\alpha_{N-1}, \beta_{N-1})} \right) \right\}$$

$$\quad \sqcup \left\{ \lambda : \mathcal{D}(\beta_N, \lambda) = 0, \ \text{mult} \left(\mathcal{L}_N^{(\alpha_N, \beta_N)}, \lambda \right) > 0 \right\} \sqcup \left\{ \begin{array}{ll}
3/2, & \text{if } \alpha_N = 0 \\
1/2, & \text{if } \alpha_N = 1/2
\end{array} \right\},$$
Spectral decimation is a process in which we project the eigenspace of L^Ω_N to that of L^Ω_{N-1}. We do so by computing the Schur complement.

Schur complement

Define the **Schur complement** of $L^\omega_N - \lambda I$ with respect to the minor $D - \lambda I$ as

$$S^\omega_N(\lambda) := (A - \lambda I) - B(D - \lambda I)^{-1}C,$$

where

- $A : \ell(V_{N-1}) \to \ell(V_{N-1})$,
- $B : \ell(V_N \setminus V_{N-1}) \to \ell(V_{N-1})$,
- $C : \ell(V_{N-1}) \to \ell(V_N \setminus V_{N-1})$,
- $D : \ell(V_N \setminus V_{N-1}) \to \ell(V_N \setminus V_{N-1})$,

and make the connection by writing

$$S^\omega_N(\alpha, \beta, \lambda) := \phi(\alpha, \beta, \lambda)(L^\Omega_{N-1} - R(\alpha, \beta, \lambda)). \quad \lambda \in \mathbb{C},$$

Then, L^ω_N and L^Ω_{N-1} are said to be spectrally similar, and if $\lambda \notin E(\alpha_N, \beta_N)$, then

$$\lambda \in \sigma(L^\omega_N) \iff R(\alpha_N, \beta_N, \lambda) \in \sigma(L^\Omega_{N-1})$$
Recall that we write
\[S_N^\omega(\alpha, \beta, \lambda) = \phi(\alpha, \beta, \lambda)(L_N^\Omega - R(\alpha, \beta, \lambda)) \]
and if \(\lambda \notin \mathcal{E}(\alpha_N, \beta_N) \), then
\[\lambda \in \sigma(L_N^\omega) \iff R(\lambda) \in \sigma(L_N^\Omega) \]

Computations

\[R(\alpha, \beta, \lambda) = 1 + \frac{A(\alpha, \beta, \lambda) - 64D(\beta, \lambda)(1 - \lambda)}{16|\Psi(\alpha, \beta, \lambda)|}, \]
\[\phi(\alpha, \beta, \lambda) = \frac{|\Psi(\alpha, \beta, \lambda)|}{4D(\beta, \lambda)}, \]
\[A(\alpha, \beta, \lambda) = 16\lambda^2 - (32 + 4\cos(2\pi\alpha))\lambda + 15 + 4\cos(2\pi\alpha) + \cos(2\pi(\alpha + \beta)), \]
\[D(\beta, \lambda) = -\lambda^3 + 3\lambda^2 - \frac{45}{16}\lambda + \frac{13}{16} - \frac{1}{32}\cos(2\pi\beta), \]
\[\Psi(\alpha, \beta, \lambda) = (1 - \lambda)^2 - \frac{1}{16} + \frac{1 - \lambda}{4}(2e^{-2\pi i\alpha} + e^{-2\pi i(2\alpha + \beta)}) \]
\[+ \frac{1}{16}(e^{-4\pi i\alpha} + 2e^{-2\pi i(\alpha + \beta)}), \]
\[\mathcal{E}(\alpha, \beta) = \{ \lambda \in \mathbb{R} : \Psi(\alpha, \beta, \lambda) = 0 \text{ or } D(\beta, \lambda) = 0 \} \]
Flux changes in spectral decimation

\[\Omega_{a_1a_2}(\alpha, \beta, \lambda) = \omega_{a_1b_0} \omega_{b_0a_2} e^{2\pi i \theta(\alpha, \beta, \lambda)} \]

Therefore,

\[\theta(\alpha, \beta, \lambda) = \frac{\arg \Psi(\alpha, \beta, \lambda)}{2\pi} \quad \text{(arg : } \mathbb{C} \rightarrow [0, 2\pi)) \}, \]

\[\alpha_{N-1} = \alpha_\downarrow(\alpha_N, \beta_N, \lambda) \quad \text{and} \quad \beta_{N-1} = \beta_\downarrow(\alpha_N, \beta_N, \lambda), \]

\[\alpha_\downarrow(\alpha, \beta, \lambda) = 3\alpha + \beta - 3\theta(\alpha, \beta, \lambda) \quad \text{(mod 1)}, \]

\[\beta_\downarrow(\alpha, \beta, \lambda) = 3\beta + \alpha + 3\theta(\alpha, \beta, \lambda) \quad \text{(mod 1)} \]

3-parameter non-rational function

\[U(\alpha, \beta, \lambda) = (3\alpha + \beta - 3\theta, 3\beta + \alpha + 3\theta, R(\alpha, \beta, \lambda)) \]
Other cases

Theorem: Magnetic spectra under non-(half-)integer fluxes (Chen–G. ’19)

Let $\mathcal{E}(\alpha_N, \beta_N)$ be the **exceptional set for spectral decimation**. Suppose not both of α_N and β_N are in $\{0, \frac{1}{2}\}$. Then

$$
\sigma \left(\mathcal{L}_N^{(\alpha_N, \beta_N)} \right) = \left\{ \lambda \in \mathbb{R} \setminus \mathcal{E}(\alpha_N, \beta_N) : R(\alpha_N, \beta_N, \lambda) \in \sigma \left(\mathcal{L}_{N-1}^{(\alpha_{N-1}, \beta_{N-1})} \right) \right\}
$$

$$
\sqcup \left\{ \lambda : D(\beta_N, \lambda) = 0, \ \text{mult} \left(\mathcal{L}_N^{(\alpha_N, \beta_N)}, \lambda \right) > 0 \right\} \sqcup \left\{ \begin{array}{ll}
\frac{3}{2}, & \text{if } \alpha_N = 0 \\
\frac{1}{2}, & \text{if } \alpha_N = \frac{1}{2}
\end{array} \right\},
$$
The exceptional set for spectral decimation

Question (Bellissard, 1990)

Is the dynamical spectrum equal to the actual spectrum of the original operator? This is a question with no answer yet.

\[S_{\omega N}(\alpha, \beta, \lambda) = \phi(\alpha, \beta, \lambda)(L_{\Omega N} - 1 - R(\alpha, \beta, \lambda)) \]

so naturally,

\[E(\alpha, \beta) = \{ \lambda \in \mathbb{R} : \Psi(\alpha, \beta, \lambda) = 0 \text{ or } D(\beta, \lambda) = 0 \} \]

Given any fluxes \(\alpha \) and \(\beta \), the exceptional set (for spectral decimation of \(L_{\omega N} \)) \(E(\alpha, \beta) \) consists of:

- The three zeros of \(D(\beta, \cdot) \);
- The corresponding values \(x \) in the table below if any of the conditions in the first column is met.

Condition	Value
\(\alpha = 0 \)	3/2
\(\alpha = \frac{1}{2} \)	1/2
\(\alpha + \beta = \frac{1}{2} \) (mod 1)	\(1 + \frac{1}{2} \cos(2\pi\alpha) \)

where \(D(\beta, \lambda) = -\lambda^3 + 3\lambda^2 - \frac{45}{16}\lambda + \frac{13}{16} - \frac{1}{32}\cos(2\pi\beta) \).
Question (Bellissard, 1990)

Is the dynamical spectrum equal to the actual spectrum of the original operator? This is a question with no answer yet.

Recall that we write

\[S^\omega_N(\alpha, \beta, \lambda) = \phi(\alpha, \beta, \lambda)(L^\Omega_{N-1} - R(\alpha, \beta, \lambda)), \quad \phi(\alpha, \beta, \lambda) = \frac{|\Psi(\alpha, \beta, \lambda)|}{4D(\beta, \lambda)}, \]

so naturally,

\[E(\alpha, \beta) = \{ \lambda \in \mathbb{R} : \Psi(\alpha, \beta, \lambda) = 0 \text{ or } D(\beta, \lambda) = 0 \} \]

Given any fluxes \(\alpha \) and \(\beta \), the exceptional set (for spectral decimation of \(L^\omega_N \)) \(E(\alpha, \beta) \) consists of:

- The three zeros of \(D(\beta, \cdot) \); and
- The corresponding values \(x \) in the table below if any of the conditions in the first column is met.

Condition	Value \(x \) to be added to \(E(\alpha, \beta) \)
\(\alpha = 0 \)	\(\frac{3}{2} \)
\(\alpha = \frac{1}{2} \)	\(\frac{1}{2} \)
\(3\alpha + \beta = \frac{1}{2} \) (mod 1)	\(1 + \frac{1}{2} \cos(2\pi\alpha) \)

where \(D(\beta, \lambda) = -\lambda^3 + 3\lambda^2 - \frac{45}{16} \lambda + \frac{13}{16} - \frac{1}{32} \cos(2\pi\beta) \).
Additional analysis on the exceptional set

\[\mathcal{E}(\alpha, \beta) = \{ \lambda \in \mathbb{R} : \Psi(\alpha, \beta, \lambda) = 0 \text{ or } D(\beta, \lambda) = 0 \} \]

Case I: \(\alpha, \beta \in \{0, \frac{1}{2}\} \). Spectral decimation can be carried out explicitly.

Case II: Only one of \(\alpha \) and \(\beta \) is in \(\{0, \frac{1}{2}\} \). There is only one \(\mathbb{R} \)-valued zero of \(\Psi(\alpha, \beta, \cdot) \).

Case III: \(3\alpha + \beta = \frac{1}{2} \pmod{1} \), excluding flux values already discussed in Cases I & II. There is only one \(\mathbb{R} \)-valued zero of \(\Psi(\alpha, \beta, \cdot) \).

Case IV: The remaining case. There are no \(\mathbb{R} \)-valued zeros of \(\Psi(\alpha, \beta, \cdot) \).

There is a standard way to analyze the exceptional set using complex analysis. However, it is necessary to use real analysis in our case.

3 Bajorin et. al, 2008 - Ruoyu Guo

Sierpinski-Hofstadter problem
Other cases

\[\mathcal{E}(\alpha, \beta) = \{ \lambda \in \mathbb{R} : \Psi(\alpha, \beta, \lambda) = 0 \text{ or } D(\beta, \lambda) = 0 \} \]

Case I: \(\alpha, \beta \in \{0, \frac{1}{2}\} \). Spectral decimation can be carried out explicitly.
Case II: Only one of \(\alpha \) and \(\beta \) is in \(\{0, \frac{1}{2}\} \). There is only one \(\mathbb{R} \)-valued zero of \(\Psi(\alpha, \beta, \cdot) \).
Case III: \(3\alpha + \beta = \frac{1}{2} \pmod{1} \), excluding flux values already discussed in Cases I & II. There is only one \(\mathbb{R} \)-valued zero of \(\Psi(\alpha, \beta, \cdot) \).
Case IV: The remaining case. There are no \(\mathbb{R} \)-valued zeros of \(\Psi(\alpha, \beta, \cdot) \).

Theorem: Magnetic spectra under non-(half-)integer fluxes (Chen–G. ’19)

Let \(\mathcal{E}(\alpha_N, \beta_N) \) be the **exceptional set for spectral decimation**. Suppose not both of \(\alpha_N \) and \(\beta_N \) are in \(\{0, \frac{1}{2}\} \). Then

\[
\sigma \left(\mathcal{L}_N^{(\alpha_N, \beta_N)} \right) = \left\{ \lambda \in \mathbb{R} \setminus \mathcal{E}(\alpha_N, \beta_N) : R(\alpha_N, \beta_N, \lambda) \in \sigma \left(\mathcal{L}_{N-1}^{(\alpha_{N-1}, \beta_{N-1})} \right) \right\}
\]

\[\cup \left\{ \lambda : D(\beta_N, \lambda) = 0, \ \text{mult} \left(\mathcal{L}_N^{(\alpha_N, \beta_N)}, \lambda \right) > 0 \right\} \cup \begin{cases}
\frac{3}{2}, & \text{if } \alpha_N = 0 \\
\frac{1}{2}, & \text{if } \alpha_N = \frac{1}{2}
\end{cases} \]
Theorem: Magnetic spectra under non-(half-)integer fluxes (Chen–G. '19)

Let $\mathcal{E}(\alpha_N, \beta_N)$ be the exceptional set for spectral decimation. Suppose not both of α_N and β_N are in $\{0, \frac{1}{2}\}$. Then

$$\sigma \left(\mathcal{L}_N^{(\alpha_N, \beta_N)} \right) = \left\{ \lambda \in \mathbb{R} \setminus \mathcal{E}(\alpha_N, \beta_N) : R(\alpha_N, \beta_N, \lambda) \in \sigma \left(\mathcal{L}_{N-1}^{(\alpha_N-1, \beta_N-1)} \right) \right\}$$

$$\sqcup \left\{ \lambda : D(\beta_N, \lambda) = 0, \mult \left(\mathcal{L}_N^{(\alpha_N, \beta_N)}, \lambda \right) > 0 \right\} \sqcup \left\{ \begin{array}{ll}
\frac{3}{2}, & \text{if } \alpha_N = 0 \\
\frac{1}{2}, & \text{if } \alpha_N = \frac{1}{2}
\end{array} \right\},$$

Theorem: Magnetic spectra under (half-)integer fluxes (Chen–G. '19)

(α, β)	$\sigma(\mathcal{L}_N^{(\alpha, \beta)})$	Respective multiplicity
$(0, 0)^*$	$0, \frac{3}{2}, R(0, 0, \cdot)^{-1} \left(\frac{3}{4} \right), R(0, 0, \cdot)^{-1} \left(\frac{5}{4} \right)$	$1, \frac{3N+3}{2}, \frac{3N-k-1+3}{2}, \frac{3N-k-1-1}{2}$
$(\frac{1}{2}, \frac{1}{2})$	$\left(R \left(\frac{1}{2}, \frac{1}{2}, \cdot \right) \right)^{-1} \left(R_1 \cup R_2 \right)$	$\frac{3N+3}{2}, \frac{3N-1-1}{2}, \frac{3N-1+3}{2}, 1, \frac{3N-k-2^2+3}{2}, \frac{3N-k-2^2-1}{2}$
$(\frac{1}{2}, 0)$	$\left(R \left(\frac{1}{2}, 0, \cdot \right) \right)^{-1} \left(\frac{3}{4}, \frac{5}{4} \right), \left(R \left(\frac{1}{2}, 0, \cdot \right) \right)^{-1} \left(\frac{3}{4}, \frac{5}{4} \right), \left(R \left(\frac{1}{2}, \frac{1}{2}, \cdot \right) \right)^{-1} \left(R_3 \cup R_4 \right)$	$\frac{3N+3}{2}, \frac{3N-1-1}{2}, \frac{3N-1+3}{2}, \frac{3N-k-2^2-1}{2}, \frac{3N-k-3^2+3}{2}, \frac{3N-k-3^2-1}{2}$
$(0, \frac{1}{2})$	$\left(R \left(0, \frac{1}{2}, \cdot \right) \right)^{-1} \left(\frac{3}{4}, \frac{5}{4} \right), \left(R \left(0, \frac{1}{2}, \cdot \right) \right)^{-1} \left(\frac{3}{4}, \frac{5}{4} \right)$	$\frac{3N+3}{2}, \frac{3N-1-1}{2}, \frac{3N-1+3}{2}, 1, \frac{3N-k-2^2+3}{2}, \frac{3N-k-2^2-1}{2}, \frac{3N-k-3^2+3}{2}, \frac{3N-k-3^2-1}{2}$
Determinants of the magnetic Laplacian under (half-) integer fluxes (Chen–G. ’19)

\[
\det(L_N^{(1/2, 1/2)}) = \frac{1}{\kappa(G_N)} \cdot 2 \cdot 3^{N-2} \cdot \frac{3}{2} \cdot 3 \cdot \frac{3}{2} \cdot N - \frac{3}{2} \cdot 5 \cdot \frac{3}{2} + \frac{3}{2} \\
\times \left[\prod_{k=0}^{N-2} \left(H(k) + \frac{1}{2} \right) \right]^{3N-k-2+3} \left[\prod_{k=0}^{N-3} \left(H(k) + \frac{5}{2} \right) \right]^{3N-k-2-1},
\]

where \(H(0) = 26.5 \), and for \(k \geq 1 \), \(H(k) = [H(k - 1)]^2 - \frac{15}{4} \).

\[
\det(L_N^{(1/2, 0)}) = \frac{1}{\kappa(G_N)} \cdot 2 \cdot 13 \cdot 3^{N-1} \cdot \frac{5}{2} \cdot 3 \cdot \frac{3}{2} \cdot N - \frac{3}{2} \cdot 5 \cdot \frac{3}{2} \cdot 3^{N-2} - 1 \cdot 7 \cdot \frac{3}{2} + \frac{3}{2} \cdot 17 \cdot \frac{3}{2} + \frac{3}{2} \\
\times \left[\prod_{k=0}^{N-3} \left(\tilde{H}(k) + \frac{1}{2} \right) \right]^{3N-k-3+3} \left[\prod_{k=0}^{N-4} \left(\tilde{H}(k) + \frac{5}{2} \right) \right]^{3N-k-3-1},
\]

where \(\tilde{H}(0) = 302.5 \), and for \(k \geq 1 \), \(\tilde{H}(k) = [\tilde{H}(k - 1)]^2 - \frac{15}{4} \).

\[
\det(L_N^{(0, 1/2)}) = \frac{1}{\kappa(G_N)} \cdot 2 \cdot 13 \cdot 3^{N-1} \cdot \frac{5}{2} \cdot 3 \cdot \frac{3}{2} \cdot 3^{N-1} - N + 3 \cdot 7 \cdot \frac{3}{2} - 1 \frac{1}{2} \\
\times \left[\prod_{k=0}^{N-3} \left(\hat{H}(k) + \frac{1}{2} \right) \right]^{3N-k-3+3} \left[\prod_{k=0}^{N-4} \left(\hat{H}(k) + \frac{5}{2} \right) \right]^{3N-k-3-1},
\]

where \(\hat{H}(0) = 86.5 \), and for \(k \geq 1 \), \(\hat{H}(k) = [\hat{H}(k - 1)]^2 - \frac{15}{4} \).
Loop soup entropy

A cycle-rooted spanning forest (CRSF) is a spanning forest whose connected components are unicycles (a tree plus an edge to form a single cycle).

Matrix-CRSF Theorem\(^4\): Let \(\mathcal{L}_{(G,c)}^{\omega} \) be the line bundle Laplacian, then

\[
\det (\mathcal{L}_{(G,c)}^{\omega}) = \sum_{\text{OCRFSs}} \prod_{e \in \text{bushes}} c(e) \prod_{\gamma \in \text{cycles}} C(\gamma) (1 - \omega(\gamma)).
\]

Asymptotic complexity (tree entropy\(^5\)):

\[
h(G_{\infty}, \mathcal{L}_{\infty}^{\omega}) := \lim_{N \to \infty} \frac{\log (\kappa(G_N) \det(\mathcal{L}^\omega_N))}{|V_N|}
\]

Loop soup entropy:

\[
h_{\text{loop}}(G_{\infty}, \mathcal{L}_{\infty}^{\omega}) := h(G_{\infty}, \mathcal{L}_{\infty}^{\omega}) - h(G_{\infty}, \mathcal{L}_{\infty}^{\text{Id}}).
\]

Probabilistic interpretation:

\[
\lim_{N \to \infty} \lim_{c \downarrow 0} \frac{1}{|V_N|} \log P_{N,c}^{(\alpha,\beta)} [\text{no loops}] = -h_{\text{loop}}(SG, \mathcal{L}_{\infty}^{(\alpha,\beta)})
\]

\(^4\) Kenyon, 2011

\(^5\) Lyons, 2005
Thank you for your attention!