Ketogenic diets, physical activity, and body composition: A review

Damoon Ashtary-Larky 1, Reza Bagheri 2*, Hoda Bavi 1, Julien S Baker 3, Tatiana Moro 4, Laura Mancin 4,5
Antonio Paoli 4,5,6,*

1- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
2- Department of Exercise Physiology, University of Isfahan, Isfahan, Iran.
3- Centre for Health and Exercise Science Research, Department of Sport, Physical Education and Health, Hong Kong Baptist University, Kowloon Tong, Hong Kong.
4- Department of Biomedical Sciences, University of Padua, Padua, Italy.
5- Human Inspired Technology Research Center, University of Padua, Padua, Italy.
6- Research Center for High Performance Sport, UCAM, Catholic University of Murcia, Murcia, Spain.

Corresponding authors: 1- Reza Bagheri, Email: Will.fivb@yahoo.com
2- Antonio Paoli, Email: Antonio.paoli@unipd.it

This peer-reviewed article has been accepted for publication but not yet copyedited or typeset, and so may be subject to change during the production process. The article is considered published and may be cited using its DOI
10.1017/S0007114521002609
The British Journal of Nutrition is published by Cambridge University Press on behalf of The Nutrition Society.
Abstract

Obesity remains a serious relevant public health concern throughout the world despite related countermeasures being well understood (i.e., mainly physical activity and an adjusted diet). Among different nutritional approaches, there is a growing interest in ketogenic diets (KDs) to manipulate body mass (BM) and to enhance fat mass (FM) loss. KDs reduce the daily amount of carbohydrate intake drastically. This results in increased fatty acid utilization, leading to an increase in blood ketone bodies (KBs) (acetoacetate [AcAc], 3-β-hydroxybutyrate [BHB], and acetone), and therefore metabolic ketosis. For many years, nutritional intervention studies have focused on reducing dietary fat with little or conflicting positive results over the long-term. Moreover, current nutritional guidelines for athletes propose carbohydrate-based diets to augment muscular adaptations. This review discusses the physiological basis of KDs and their effects on BM reduction and body composition improvements in sedentary individuals combined with different types of exercise (resistance training [RT] or endurance training [ET]) in individuals with obesity and athletes. Ultimately, we discuss the strengths and the weaknesses of these nutritional interventions together with precautionary measures that should be observed in both individuals with obesity and athletic populations. A literature search from 1921 to April 2021 using MEDLINE, GOOGLE SCHOLAR, PUBMED, WEB OF SCIENCE, SCOPUS, and SPORTDISCUS databases were used to identify relevant studies. In summary, based on the current evidence, KDs are an efficient method to reduce BM and body fat in both individuals with obesity and athletes. However, these positive impacts are mainly because of the appetite suppressive effects of KDs, which can decrease daily calorie intake. Therefore, KDs do not have any superior benefits to non-KDs in BM and body fat loss in individuals with obesity and athletic populations in an isocaloric situation. In sedentary individuals with obesity, it seems that fat-free mass (FFM) changes appear to be as great, if not greater, than decreases following a low-fat diet (LFD). In terms of lean mass, it seems that following a KD can cause FFM loss in resistance-trained individuals. In contrast, the FFM-preserving effects of KDs are more efficient in endurance-trained compared to resistance-trained individuals.

Keywords: body composition, fat-free mass, fat mass, resistance training, endurance training, Obesity, ketogenic diet
Accepted manuscript

Introduction

Obesity remains a significant public health concern throughout the world. According to the latest data from the World Health Organization (WHO), the prevalence of obesity is increasing, with 13% of adults worldwide classified as obese and 39% classified as overweight (1). Associated comorbidities such as cardiovascular disease, type 2 diabetes mellitus, and various types of cancers are expected to rise dramatically in conjunction with the global obesity epidemic (2; 3; 4). While increasing efforts continue to combat this disease, body mass (BM) loss strategies remain a complex and challenging dilemma for health care practitioners and individuals with obesity. Various dietary strategies have long been proposed for BM loss. One popular dietary strategy is classifying a diet based on macronutrient intake, including fat, protein, and carbohydrate. Based on dietary carbohydrate intakes, diets can be classified as very-low-carbohydrate ketogenic diet (< 5% carbohydrates or < 50 g/day), very-low-carbohydrate diet (< 10% carbohydrates), low-carbohydrate diets (LCDs) (< 25% carbohydrates or less than < 130 g/day), moderate-carbohydrate diet (25%-44%), high-carbohydrate diet (45% or greater) (5; 6; 7).

Nowadays, a low carbohydrate approach is a popular strategy for decreasing BM and fat mass (FM). Based on the previously mentioned classifications, a ketogenic diet (KD) is a very low-carbohydrate diet, high in fat, with variation in protein intake but may be classified as moderate or high (8). This macronutrient distribution leads to an increase in the production of ketone bodies (KBs) and consequently to physiological ketosis (i.e., blood ketone body [KB] concentrations between 1 and 4 mM and blood potential of hydrogen [pH] of ≈7.4) (9).

The literature outlines that carbohydrate-restricted diets (LCDs and KDs) are increasingly used to manage various health conditions, including neurological disorders, obesity, dyslipidemia, hypertension, diabetes, metabolic syndrome, and various cancers (6; 10). As a result, carbohydrate-restricted diets have gained substantial popularity. In the United States, The Health Information National Trends Survey of 5586 participants reported among respondents who were aware of carbohydrate-restricted diets that approximately 17% had tried LCDs during the last year and one-third of respondents who were aware of LCDs confirmed that they are employing a healthy strategy to control BM (11). In the United Kingdom, media reports suggest that 7% of men and 10% of women are experimenting with carbohydrate-restricted diets (12), and similar population values are reported from Finland (13).

KDs may act as a viable strategy for BM loss, particularly in the short-term; however, BM loss may be accompanied by a loss of lean mass. Due to the importance of BM and the relevance of properly maintaining
body composition (14), the efficacy of KD on BM and body composition is an intriguing area of experimental research (15; 16). A focus on body composition during BM loss is critical to monitor changes in FM while maintaining or even improving lean mass (17). A KD-derived BM loss program is acknowledged as an efficient intervention within the first few weeks of implementation (18). However, it has been suggested that a significant amount of BM loss includes reductions in lean mass and FM with changes in body fluid status (19).

Nevertheless, the evidence for body composition alterations during a KD is inconclusive. Therefore, we aim to review the current evidence regarding the impact of various KDs on body composition, with a focus on changes in body fat [(FM or body fat percentage (BFP)] and lean mass. We will also critique the methodologies used to evaluate changes in body composition in athletes and individuals who are overweight and obese.

Literature search

A literature search from 1921 to April 2021 using MEDLINE, GOOGLE SCHOLAR, PUBMED, WEB OF SCIENCE, SCOPUS, and SPORTDISCUS databases were used to identify relevant studies. The following keywords, alone or in conjunction, were used to find relevant articles: "ketogenic diet", "very-low-carbohydrate high-fat diet", "very-low-carbohydrate diet", "carbohydrate-restricted diet", "VLCD", "body composition", "weight", "fat mass", "fat-free mass", "lean body mass", "muscle mass", "keto-adaptation", "athletes", "obesity", "obese", "overweight", "resistance training", "strength training", "endurance training", "aerobic training", "high intensity interval training", and "HIIT". All eligible studies were in English. For this review, the inclusion criteria focused on using KD alone or in combination with exercise on BM loss and changes in lean mass and body fat. All studies had to provide a detailed explanation of their KD protocol. Studies included both males and females. As described in the following paragraph, a KD can vary slightly in the composition of the macronutrients and thus can be classified differently. In this review, we have considered only studies that used diets with <50 g/day and/or <5% of carbohydrates, and we will refer generically to a KD or very low-carbohydrate diet throughout the manuscript.

History and definition of KD

The KD has been studied periodically for more than 100 years (20; 21). However, over the past 30 years, a growing body of research has suggested that a link exists between the process of KD adaptation and a broad range of health benefits (20). Dr. Russel Wilder first used this type of diet to treat epilepsy in 1921 (22) and described the term "ketogenic diet." Because of Wilder’s observed beneficial results, the KD assumed a place in medical nutrition as a therapeutic diet for pediatric epilepsy and was widely used until its popularity declined as
Accepted manuscript

Antiepileptic agents were introduced (23; 24). The classic KD is a type of very-low-carbohydrate and high-fat diet that concurrently restricts calories. Typically, carbohydrate intake is reduced to less than 30 g/day; however, studies show that this number is not necessarily consistent to induce ketosis and fluctuates between 20 and 50 g/day (9; 24; 25).

This diet serves to mimic a fasting state by shifting the utilization of fats as a primary fuel source via the catabolism of fatty acids in the liver. KBs are produced by the liver (26). Nutritional ketosis is a clinically benign and physiological (27) metabolic state that should not be confused with a pathological state of ketoacidosis, a hazardous complication of conditions including diabetes mellitus or alcoholism (28). Ketosis in individuals typically leads to maximum blood KB concentrations of 4-5 mM, whereas concentrations in ketoacidosis often exceed ten times these values (29).

Types of KD

There are several versions of the KD. However, we considered only the following types of KDs, which are more readily available in the scientific literature. In addition to the explanations, Table 1 summarizes the information below.

Classic KD: Historically, classic KD was proposed by Dr. Wilder in a series of patients with epilepsy in the Mayo Clinic (22). The classic therapeutic KD (fat = 90%, protein = 6%, carbohydrate = 4%), initially created to manage childhood seizures, has a 4:1 ratio of grams of fat to grams carbohydrate plus protein (30; 31).

The Modified Atkins Diet (MAD): MAD limits the amount of carbohydrates consumed to 10-20 g/day (10 g for children and 20 g for adults), which was introduced as an alternative to the classic KD in 2003 (32). MAD does not restrict calories, fluid, or protein and allows a greater portion of carbohydrate and protein intake than the classic KD (33) (for example, fat = 65%, protein = 30%, carbohydrate = 5%) (34).

Very low-calorie ketogenic diet (VLCKD): VLCKD is a nutritional intervention that mimics fasting through a noticeable restriction of daily carbohydrate intake, usually lower than 30 g/day (≈ 13% of daily energy intake). The diet includes a relative increase in the proportions of fat (≈ 44%) and protein (≈ 43% or ≈ 1.2–1.5 g/kg of ideal BM), and with a total energy intake of less than 800 kcal/d, depending on the amount and quality of protein preparations (35).

Ketogenic Mediterranean diet (KMD)/Modified Mediterranean Ketogenic diet (MMKD): The Mediterranean version of the KD has been widely studied in previous years. Basically, it is a very low
carbohydrate diet (CHO lower than 30/50 g/day) in which emphasis is placed on the intake of lean meats, fish, olive oil, walnuts, and salad (36; 37; 38; 39; 40; 41) and, in some protocols, the addition of herbal extracts (42; 43; 44; 45; 46).

Food selections in KD

Food selection is a major consideration for individuals undergoing a KD. High-carbohydrate food consumption is strictly controlled and limited during a KD (47); however, it is not a "no carbohydrate diet." Meal preparation often incorporates unprocessed foods consisting primarily of cruciferous and leafy green vegetables, raw nuts and seeds, eggs, fish, unprocessed animal meats, high-fat dairy products, and natural plant oils, including fats, avocados, coconuts, and olives (48; 49; 50). In addition to the KD foods listed in Table 2, ketogenic eating plans frequently promote meals such as omelets, salads, and animal protein such as steak, salmon, or chicken with vegetables (51; 52). In addition, some proprietary/commercial meals are used that mimic the taste of carbohydrates but are very low in carbohydrates (53; 54).

Mechanism of ketogenesis

Glucose is a vital fuel substrate for fat oxidation and central nervous system (CNS) activity. Its role is particularly crucial in cell energy production because it is a precursor of oxaloacetate, a required substrate for the Krebs cycle (55). The Krebs cycle also gives its intermediates in other biosynthetic processes. This intermediate pool replenishment process is called anaplerosis (56). The endogenous production of glucose in the body, particularly in the liver, from lactate, glycerol, and the amino acids alanine and glutamine is known as gluconeogenesis. When gluconeogenesis fails to keep pace with bodily needs for glucose, ketogenesis begins in earnest to provide an alternate source of energy (57; 58).

In humans and most other mammals, acetyl-CoA formed in the liver during the oxidation of fatty acids can either enter the Krebs cycle or undergo conversion to KBs (59). During a KD, the concentrations of glucose drop, and the glucose reserve is not enough to guarantee oxaloacetate production for anaplerotic function. In this condition, the organism requires an alternative source of energy, which is found in the form of KBs (23; 60; 61). The three KBs are acetoacetate (AcAc), beta-hydroxybutyrate (BHB), and acetone (62). Production of KBs occurs in the liver from two acetyl-CoA molecules through a metabolic process called ketogenesis (63). When oxaloacetate is not available due to a shortage of glucose, acetyl-CoA accumulates and spontaneously diverts into the formation of AcAc, and then BHB (57). Two molecules of acetyl-CoA, catalyzed by thiolase and produce acetoacetyl-CoA (64; 65; 66). The acetoacetyl-CoA then condenses with acetyl-CoA to form beta-hydroxy-beta-methylglutaryl-CoA (HMG-CoA) cleaved to free AcAc and acetyl-CoA. The AcAc is reversibly reduced by
BHB dehydrogenase, a mitochondrial enzyme, to BHB. AcAc can also form acetone. In healthy people, acetone is formed in very small amounts either from acetoacetate, which is easily decarboxylated spontaneously or by the action of acetoacetate decarboxylase.

KBs are then released into the bloodstream and can be absorbed by other tissues to be reconverted to acetyl-CoA, and therefore provide a fuel substrate for the Krebs cycle. This process is of importance for the brain due to its incapability to utilize directly free fatty acids (FFAs) as a source of energy. FFAs are unable to cross the blood-brain barrier. For this reason, the brain ordinarily uses glucose, and in low glucose conditions, becomes dependent upon KBs. The rapid rise of circulating KBs leads to ketonemia and ketonuria. Excretion of acetone, the volatile KB, through the lungs causes the characteristic sickly-sweet odor of ketosis.

Nutritional ketosis and mechanisms of KD

Previously, interest in the KD focused on its role in epilepsy and expanded upon our knowledge of underlying biochemical mechanisms in both normal and pathologic brain function. The KD acts by inducing a state of physiological ketosis, which has been linked metabolically to some anticonvulsant properties via reduced glucose, elevated fatty acid concentrations, and enhanced bioenergetics reserves. Besides, regarding its effects on brain function and anticonvulsant effects, KDs affect numerous other physiological and biochemical processes. Dramatically reducing carbohydrate intake and thus decrements of insulin and leptin and increased glucagon concentrations also play a role in regulating protein and triacylglycerol balance, which results in reduced lipogenesis while increasing lipolysis. Interestingly, fuel sources in a KD are fatty acids (70% of caloric requirements from dietary fat and lipolysis of adipose tissue pools), KBs (20% of caloric requirements from lipolysis and ketogenesis adipose stores), and glucose (10% of caloric requirements from gluconeogenesis). Numerous factors such as basal metabolic rate, body mass index (BMI), and BFP may be improved through ketogenesis. Ketosis induced by nutritional strategy preserves concentrations of KBs at a physiological status without varying the blood pH, and consequently, is considered relatively safe. The body begins using primarily ketones as energy fuel after a few days or weeks from the beginning of the diet. This phenomenon is called “keto-adaptation” and can vary between individuals. The mechanisms that promote keto-adaptation are still poorly understood; however, some authors have proposed the hypothesis that mitochondrial biogenesis and decrements of mitochondrial damage in oxidative tissues (such as brain and muscle) may be one of the possible mechanisms. For example, studies on muscle tissue showed that a KD could contribute to mitochondrial biogenesis and reduce mitochondrial autophagy, contributing to a rich mitochondrial reservoir in the muscle tissue, enhancing exercise performance and athletic’ well-being. Others believe that KBs can
reduce histone deacetylation, which acts as active signaling molecules and promote important epigenetic modifications (79; 84).

Side effects of KDs

KD’s serious complications appear to be rare; however, pre-existing conditions such as porphyria, pyruvate carboxylase deficiency, defects in fatty acids oxidation, and mitochondrial disorders have reportedly worsened over time (85). Adverse events encountered during KD can be categorized into short-term and long-term side effects.

Dehydration is typically characterized by dry mouth, headache, dizziness/orthostatic hypotension, electrolyte abnormalities (such as hyponatremia and hypomagnesemia), and visual disturbance is the most common short-term side effect (86). Furthermore, hypoglycemia (due to carbohydrate restriction), lethargy (due to switching from utilizing carbohydrates to fat for Adenosine Triphosphate [ATP] production), halitosis (caused by ketosis and increasing in acetone concentrations), gastrointestinal disturbances, involving nausea/vomiting, diarrhea, or constipation (due to gastrointestinal response to high fat intake), and hyperuricemia are other short-term side effects of KDs (86; 87; 88).

Long-term side effects of KDs include hypoproteinemia (as a consequence of gluconeogenesis following carbohydrate restriction especially accomplished with low protein intake), hypocalcemia and bone damage (probably due to low calcium intake), increasing low-density lipoprotein (LDL), urolithiasis (represented by chronic acidosis, dehydration, and fat malabsorption), gallstones (due to rapid BM loss), and hair loss (especially when protein intake is insufficient) (86).

Effects of KD on BM and FM loss

During recent years, KDs have been commonly considered a beneficial strategy to treat numerous diseases and BM and FM control. In fact, many studies suggest that they could be more efficient than low-fat diets (LFDs) (89; 90; 91; 92). The efficacy of KD on BM and FM loss is related to predisposing factors, and its possible mechanisms are mainly a reduction of energy intake and appetite and an increase in daily energy expenditure.

Regarding predisposing factors, numerous findings have shown that baseline insulin dynamics or genotype patterns could play an important role in the success of a low-fat diet (LFD) vs. a KD on BM loss (93; 94; 95; 96; 97). For instance, individuals with greater insulin resistance might be more successful following KDs due to the reduced requirement on insulin to clear a lower quantity of dietary carbohydrates delivered in the blood.
Accepted manuscript

circulation (93). Rock et al. showed that insulin-sensitive women lost more BM at 12 months in the LFD than the LCDs group (98). However, some studies did not reveal differential effects following the low fat vs. LCDs on BM loss by baseline insulin status (99; 100). Moreover, some studies have reported that genotype variation could predispose individuals to differentially respond to BM loss influenced by diet type (101; 102). In the first retrospective study, a 3-fold difference was observed following 12-month BM loss for initially overweight women who were determined to have been appropriately matched (mean BM loss of 6 kg) vs. mismatched (mean BM loss of 2 kg) to a low-fat or LCD based on multilocus genotype patterns with single-nucleotide polymorphisms (SNPs) from 3 genes (Peroxisome Proliferator-Activated Receptor Gamma [PPARG], Adrenoceptor Beta 2 [ADRB2], and Fatty Acid Binding Protein 2 [FABP2]) relevant to fat and carbohydrate metabolism (a putative low-fat-responsive genotype and a low carbohydrate-responsive genotype, respectively). The participants with the low-fat-responsive genotype were observed to lose more BM when assigned to an LFD than those assigned to an LCD, and vice versa for those with the low-carbohydrate-responsive genotype (102; 103).

Adipose tissue is the main target of a BM loss program. KDs are based on the premise that reducing carbohydrate intake results in increased fat oxidation. Average interstitial glycerol concentrations (index of lipolysis) were higher following a short-term high-fat diet than an LFD based on the United States Department of Agriculture (USDA’s) food guide pyramid (104). Reducing dietary fat intake in LFDs can be an effective method to reduce energy intake and promote BM and FM loss compared to carbohydrate, protein, and mixed meals (105). In addition, in non-KDs, fat intake does not immediately increase fat oxidation (106). The amount of fatty acids that avoids capitation by adipose tissue appears to be small. It is insufficient to compensate for the decrease in free fatty acid (FFA) release through insulin secretion in response to carbohydrates, usually consumed, and fats (107). Conversely, KDs reduce insulin concentrations, and this reduction promotes lipolysis, fat oxidation and increases energy expenditure (108; 109). However, the metabolic advantage and hyperinsulinaemic effects of the KD (the carbohydrate-insulin model of obesity) that claims diets rich in carbohydrates are particularly fattening due to their propensity to elevate insulin secretion, which was not evidenced in previous studies (110; 111). Although it is well-established that KDs can be effective in FM loss, it seems that long-term (>6 months) periods may not be more effective than a well-balanced, energy-restricted diet (112; 113; 114; 115).

Previous studies have suggested that on a calorie-for-calorie basis, proteins are more satiating than either carbohydrates or fats (116; 117), and it can be suggested that the higher protein intake in KD plays a critical role in
limiting food intake \(^{(118)}\). Alternatively, Westerterp-Plantenga et al. showed higher satiety scores with high-protein and high-carbohydrate diets (protein/carbohydrate/fat: 29/61/10) even over a 24-h period when compared to a high-fat diet (protein/carbohydrate/fat: 9/30/61); accrediting to fat content, the greater sense of hunger after a meal \(^{(119)}\). A well-designed randomized crossover study has shown that high-protein, low-carbohydrate KDs reduce hunger and lower food intake significantly more than high-protein, medium-carbohydrate non-KDs \(^{(120)}\), suggesting that reduced carbohydrate intake resulted in a decrease of energy intake of 0.7 MJ/d (294 kcal/d) and a corresponding effect on negative energy balance. However, another study in which carbohydrate percentage was kept at 50%, while the protein was modified from 15% to 30%, demonstrated that greater protein intake could positively affect satiety, probably through a mechanism linked to leptin sensitivity in CNS \(^{(121)}\).

The concentrations of several hormones and nutrients influence appetite and are altered after BM loss induced by a KD \(^{(122; 123)}\). Human studies have found that a higher insulinemic response to meals may increase food intake \(^{(124; 125; 126)}\). Some studies showed that a strict LCD reduced appetite by decreasing insulin concentrations \(^{(16; 127; 128)}\). Moreover, other studies have shown a decrease in leptin and increased ghrelin concentrations, which are two hormones that regulate satiety; however, these effects were mitigated when BM-reduced participants were ketotic \(^{(122; 127)}\). The Liver-derived fibroblast growth factor 21 (FGF21) is an endocrine regulator of the ketogenic state and maybe another possible mechanism for appetite suppression following KDs \(^{(129)}\).

Regarding animal studies, it has been previously revealed that hepatic expression and FGF21 concentrations are induced through both KD and fasting states and are quickly suppressed by refeeding \(^{(129)}\). FGF21 also induces gluconeogenesis, fatty acid oxidation, and ketogenesis, a metabolic profile characteristic of fasting \(^{(130)}\). It has also been suggested that the anorexic effects of protein may contribute to the BM loss produced by LCDs \(^{(131)}\).

Furthermore, it has been proposed that limited food choices may be another cause of decreasing calorie intake in KD’s followers \(^{(132; 133)}\). A meta-analysis study showed a lower hunger and desire for calorie intake in individuals adhering to KDs \(^{(134)}\). In addition, a large number of ad libitum eating studies showed that KDs resulted in lower calorie intake \(^{(89; 92)}\). However, no significant differences were noted between KDs and very-low-energy diets in appetite suppression \(^{(134; 135)}\). It seems that increased dietary fat oxidation and an increase in the concentration of BHB (i.e., ketosis) may contribute to the increased appetite suppression on a high-protein, LCD, and high-fat diet \(^{(135)}\). As suggested in a recent meta-analysis, it is challenging to define a ‘threshold’ of circulating ketone for appetite suppression \(^{(134)}\). However, studies have shown that BHB concentrations of 0.5 mM or even lower may be a potential threshold for appetite control while higher concentrations (and
Accordingly more severe dietary carbohydrate restriction may not be necessary to prevent an increase in appetite in response to energy restriction (136; 137).

It has been hypothesized that KDs may reduce BM and FM by increasing daily energy expenditure (16). The higher thermic effects of high protein diets such as KDs can cause increases in total daily energy expenditure (138; 139; 140). Nevertheless, it has been formerly indicated that high-fat diets would generate a more metabolically effective state than glucose, and carbohydrates might produce more post-prandial thermogenesis than fats (141). Indeed, per calorie, carbohydrates produce about 3-fold higher thermogenesis than fats (approximately 5-10% for carbohydrates vs. and 3% for fat) (142), while proteins have greater thermogenic effects (approximately 20-30%). Therefore, due to significant protein intake, KD could be considered an “expensive” diet and consequently increased BM loss compared to other ‘less-expensive diets’ (143; 144; 145).

On the other hand, some authors encourage the hypothesis of a different metabolic benefit of KD on BM loss (143). Glycogen store depletion may encourage the body to switch the use of the particular energy-producing process such as gluconeogenesis and ketogenesis (146; 147). The required energy for gluconeogenesis has been estimated at ~400–600 kcal/day (140; 144). Compared to an iso-caloric high-carbohydrate diet, the metabolic advantage is estimated to be approximately 200 to 300 more calories burned (148; 149). Reduction in the resting respiratory quotient (RQ) and, therefore, a greater percentage of fats consumed for given total energy expenditure (TEE) may represent another possible mechanism of KD’s BM loss efficacy. It has been suggested that one of the main BM loss mechanisms of the KD might be attributed to an improvement in resting nutrient oxidation, and interestingly, this effect was long-lasting for at least 20 days following cessation of the KD (150). Consistent with the metabolic advantages of carbohydrate-restricted diets, Ebbeling et al. showed a linear trend of 52 kcal/d for every 10% decrease in the contribution of carbohydrate to total energy intake (151). Compared with high carbohydrate diets, the authors reported that the change in total energy expenditure was 91 kcal/d greater in the moderate carbohydrate diet and 209 kcal/d greater following LCD. In this study, the carbohydrate intake was 60%, 40%, and 20% of daily energy in high, moderate, and LCDs, protein fixed at 20% of daily energy intake, and fat were 20%, 40%, and 60%, respectively. Although Ebbeling et al. showed metabolic advantages of carbohydrate-restricted strategies, they did not determine total energy expenditure changes following very low carbohydrate KD. However, Hall et al. did not support a large metabolic advantage following a KD (152). In this study, authors investigated changes in energy expenditure, RQ, and body composition in participants consuming a high-carbohydrate baseline diet for four weeks, followed by four weeks of an isocaloric KD with clamped protein. The results showed that large isocaloric changes in the proportion of
dietary carbohydrates to fat transiently increase energy expenditure by only ~100 kcal/d after adjusting for BM and composition. The authors also mentioned that the BM and composition adjustments likely overestimated the energy expenditure changes during the KD because much of the BM loss was likely attributed to fluid loss rather than loss of metabolically active tissues (adipose tissue etc.). Another study by Hall et al. showed a trend for a greater degree of negative energy balance during a fat-reducing diet compared to an isocaloric carbohydrate-reducing diet, but this was not statistically significant \(^{(153)}\). These data from different studies suggest that if there are any metabolic advantages following KDs, they could be quite small. Future studies are needed to investigate the energy expenditure changes following KDs and non-KDs such as LFDs.

Mammals have evolved to utilize carbohydrates as their primary source of metabolic fuel, extracting energy through a series of intricate biochemical pathways \(^{(154)}\). The KD mimics the metabolic state of starvation, forcing the body to utilize fat as its primary source of energy \(^{(155)}\). Many studies have shown that this kind of nutritional approach has a solid physiological and biochemical basis, inducing effective FM loss \(^{(120; 140; 150; 156; 157)}\). It has been mentioned that there is an increase in lipolysis (due to reduced insulin concentrations) and promotion of BM loss by assessment of body composition in those following a KD \(^{(158)}\). The higher amount of lipolysis may have resulted in a higher rate of FM loss following a KD. Many studies have shown that carbohydrate-restricted diets promote greater BM loss than conventional energy-restricted LFDs \(^{(92; 112; 133; 159; 160)}\). However, a 36-month follow-up by Cardillo et al. showed that mean BM changes between baseline and 36 months were not different between the low carbohydrate/high protein and the low fat/high carbohydrate diet group \(^{(161)}\). In non-KD conditions, it seems that individuals with obesity showed no significant differences between LFDs and high-fat diets during BM loss \(^{(10; 162)}\). In addition, a meta-regression of 87 studies showed that LCDs were associated with a greater BM loss compared to high-carbohydrate diets, which was independent of energy intake \(^{(163)}\). It seems that the BM loss observed in such diets follows a biphasic pattern due to metabolic alterations, while later BM loss is more than likely attributable to restrictive food choices. It certainly seems that initial BM loss can be attributed to diuresis; KB excretion (ketonuria) increases renal sodium and hence urinary water loss \(^{(152; 164)}\). In addition, glycogenolysis, a prominent feature of the early stage of a KD, is associated with concomitant water release (for every 1 g of glycogen stored, approximately 3 g of water is stored) \(^{(165; 166; 167)}\).

Based on previously mentioned potential mechanisms, it seems that initial BM loss can be attributed to dieresis. Ketone body excretion (ketonuria) increases renal sodium; hence urinary water loss \(^{(168)}\), and the long-term benefits of adhering to a KD on BM loss are decreased calorie intake and appetite suppression. Moreover, based on the data derived from isocaloric studies, there are no significant metabolic advantages in following KDs in
increasing energy expenditure. However, some short-term isocaloric studies reported a higher BM loss following a KD than LFD \((168; 169; 170)\), mainly because of diet-induced diuresis. The findings from isocaloric studies underlined the "the calorie in, calorie out" hypothesis, which stated that BM loss is not primarily determined by varying proportions of carbohydrate and fat in the diet but by the number of calories ingested \((171; 172)\).

Similar to BM loss, there is a body of evidence suggesting greater FM loss by adhering to a KD instead of an LFD. In addition, the findings of a well-designed randomized controlled trial (RCT) found preferential FM loss in the trunk region with a KD, which was approximately three-fold greater than an LFD \((173)\), which may have important implications for cardiovascular disease treatment. Moreover, there is some evidence behind the FM-reducing effects of a KD. In general, using fat as the primary fuel source often results in greater benefits for FM loss and improved body composition \((174)\). Furthermore, KDs suppress appetite and have some metabolic advantages, as previously discussed. In adults, ketones are primarily derived from long-chain fatty acids stored in adipose tissue \((175)\) controlled by insulin \((176)\). When blood glucose and insulin decrease, stimulating lipolysis allows plasma-FFAs to increase \((177)\). The increase in plasma-FFAs helps meet the need for an alternative fuel to glucose for most tissues, except the brain's notable exception \((178)\). The increased supply of FFAs entering the liver leads to ketogenesis by condensation of two acetyl-CoAs, which are present in excess due to fatty acid beta-oxidation \((179)\).

In conclusion, a KD could be beneficial in BM loss. The anti-obesity effects of KDs are mainly through lowered calorie intake. Moreover, controlling appetite (induced by nutritional ketosis and higher daily protein intake), restrictive food choices, increasing energy expenditure, higher lipolysis, and diuresis are other possible mechanisms that help BM loss in individuals adhering to a KD. In regards to body fat, KDs may be a practical dietary approach for FM loss. Short-term studies demonstrate a strong FM loss effect on KDs compared to non-KDs \((180; 181)\). However, although long-term studies reported that adhering to a KD achieves a greater BM loss compared to those adhering to an LFD \((182; 183)\), the data relating to the long-term effects of KD on FM are limited \((184)\). Most long-term studies determined the KDs’ effects on body fat compared with very-low-calorie KDs with low-calorie diets \((185; 186)\). Obviously, in these studies, patients with obesity who followed very low-calorie KDs experienced lower body fat loss. Since very-low-calorie KDs consumed significantly lower amounts of calories in these studies, the lower body fat loss in the very-low-calorie KD group is related to more calorie restriction, but not the benefit of KD. Alternatively, in the most long-term studies, which evaluated the long-term effects of LCD, the carbohydrate intake was higher than 50 g/day and/or 5% of daily calorie intake \((89; 72)\).
Therefore, it is impossible to generalize these finding to KDs. However, in long-term studies that make a comparison between a KD and a LFD, Foster et al. did not see any benefit of following a KD after 2 years of intervention\(^{(184)}\). In other studies by Brinkworth under planned isoenergetic conditions, both dietary patterns (very-low-carbohydrate, high-saturated-fat KD and a high-carbohydrate, LFD) resulted in similar fat loss after one year of intervention\(^{(115; 193)}\). Therefore, in an isocaloric condition, there is no advantage in FM loss in individuals adhering to a KD compared to a LFD. Based on the available evidence regarding FM loss, although ad libitum short-term studies reported significantly higher body fat loss following a KD, there is not enough evidence about additional benefits of a KD compared to a LFD in long-term studies and isocaloric conditions. However, further studies are needed to show the long-term effects of KDs compared to an LFD on body fat.

Effect of KD on muscle mass

The main concern surrounding KDs is the potential loss of muscle mass. Regarding this topic, it is worth distinguishing between fat-free mass (FFM), the portion of the body composed of muscles, bones, ligaments, tendons, internal organs, essential fat, and lean mass essential fat is not included. We will refer to FFM or lean mass accurately reporting terminology in the cited study for this review.

Theoretically, some different mechanisms were claimed in which KDs may preserve muscle mass following BM loss. Firstly, it is hypothesized that elevated BHB concentrations may have played a minor role in preventing muscle mass catabolism by reducing\(^{(194; 195; 196)}\). KBs appear to depress muscle protein breakdown (MPB)\(^{(195; 197)}\). Previous findings have revealed that ketones, such as AcAc and its precursor BHB, may be a relevant metabolic fuel in the context of physical activity, improving athletic performance\(^{(198)}\), myocardial ATP generation\(^{(199)}\), and protective effects on muscle tissue\(^{(200)}\). Secondly, low blood glucose after adhering to a KD may be a potent stimulus to growth hormone (GH) secretion\(^{(201)}\). GH has a pivotal role in regulating in vivo protein metabolism\(^{(202; 203)}\). GH enhances protein anabolism at the whole-body level, mainly by stimulating muscle protein synthesis (MPS)\(^{(204)}\). However, previous reports from animal studies have revealed that GH concentrations are normal\(^{(205)}\) or elevated\(^{(206)}\), whereas circulating insulin-like growth factor-1 (IGF-1) concentrations are reduced in rodents fed with a KD\(^{(205; 207; 208; 209)}\). The IGF-1-lowering effects of KDs have also been reported in human studies\(^{(210; 211)}\). These findings suggest that KDs might have caused GH resistance, which could have been responsible for the IGF-1 reduction. Thirdly, in most cases, KDs are relatively high in protein\(^{(212)}\) (approximately 30-35% of daily calorie intake)\(^{(213)}\). It has been recently shown that a high protein
Accepted manuscript

diet could preserve muscle mass during BM and/or fat loss phase (214; 215; 216; 217; 218). The conceivable FFM-preserving mechanism of high protein diets can be related to dietary protein-induced alterations in protein turnover, particularly MPS, inhibiting 5'adenosine monophosphate-activated protein kinase (AMPK) phosphorylation and activating mammalian target of rapamycin complex 1 (mTORC1) signaling (219; 220; 221; 222).

However, it seems that, besides these possible FFM-preserving mechanisms, the amount of FFM loss is slightly higher following KDs compared to non-KD (223; 224; 225).

KD is a strategy often employed by individuals who are endeavoring to lose BM rapidly. It is well established that rapid BM loss diets are not efficient at preserving FFM (226; 227; 228; 229). Unfortunately, the main contributor to BM loss can be the result of decreased muscle mass, occurring to some extent to support the burden of adipose tissue (230). Following non-KDs, in participants with obesity, FFM contributes approximately 20-30% to total BM loss (72; 73; 75; 76; 77; 78; 231; 232). It seems that this amount of FFM loss is slightly higher following KDs (233; 234; 235). This catabolic effect of KDs may cause an inhibiting effect on the mechanistic target of rapamycin (mTOR) signaling pathway (236). By inducing a fasting-like state, KDs lead to alterations in the metabolic pathways and cellular processes such as autophagy (237). In an animal model, hypercorticosteronemia and hypoinsulinemia, along with decreased IGF-1 secretion induced by KDs, resulted in muscle atrophy via autophagy, particularly in muscle tissue that can reduce MPS (207). Moreover, the KD “mimics” energy restriction effects on AMPK, sirtuin-1 (SIRT-1), and peroxisome proliferator-activated receptor-gamma coactivator 1-alpha (PGC1-α), which are activated through phosphorylation and are important regulators of energy metabolism (237). In skeletal muscle, the activation of the AMPK/SIRT-1 pathway promotes fatty acid oxidation but consequently inhibits MPS (238; 239; 240; 241; 242). AMPK indirectly activates SIRT-1 in skeletal muscle by increasing nicotinamide adenine dinucleotide (NAD⁺) (24). This is accomplished through the increase in mitochondrial β-oxidation (239) and thus increased expression of nicotinamide phosphoribosyltransferase (NAMPT), which is the rate-limiting enzyme in NAD⁺ synthesis (243). Simply stated, the coordinated effects of AMPK and NAD-dependent deacetylase SIRT-1 are primarily mediated by PGC1-α, which is activated through phosphorylation of AMPK and deacetylation of SIRT-1 (239; 241; 244; 245; 246; 247; 248). PGC1-α relocates to the nucleus, where it functions as a transcription factor. This increases the expression of genes that code for proteins involved in fatty acid transport, fat oxidation, and oxidative phosphorylation. The activation by phosphorylation of PGC1-α may occur in several ways involving AMPK, calcium calmodulin-dependent protein kinase (CAMK), and p38 mitogen-activated protein kinase (MAPK) signaling pathways. AMPK can act in two ways: either by activating PGC1-α through phosphorylation or by promoting the expression of enzymes involved in
skeletal muscle oxidation and metabolism (249). Additionally, in participants with obesity, skeletal muscle is less oxidative and has lower AMPK activation during the fasting state (250).

At the same time, AMPK activation also inhibits mTOR signaling by boosting Tuberous Sclerosis 2 (TSC2), an antagonist of mTOR signaling activation, which is the most critical signaling mechanism in regulating MPS (251). Although there is some evidence that these changes have health benefit effects such as modulating effects on glucose homeostasis and insulin action, KDs, similar to fasting, blunts the protein kinase b (Akt) / mTOR pathway and reduces the possibility of muscle mass gains despite energy sufficiency (250; 251). It is well established that increasing dietary protein intake following exercise interventions, especially resistance training (RT), attenuates BM loss-induced reduction in muscle mass (252; 253; 254). Dietary interventions that could lead to superior muscle mass retention during BM loss would be beneficial for several reasons, including maintenance of resting metabolic rate (255). However, most studies show that KDs have no positive effect on preserving FFM than an LFD (229).

In addition to the molecular pathways involved, another possible explanation is that the body recruits amino acids (through de-amination or transamination) from muscle proteins to maintain blood glucose via gluconeogenesis. Carbohydrate restriction leads to decreases in blood glucose, and it is possible that increased gluconeogenic activity could promote MPB to provide an amino acid substrate. Consequently, the primary fuel for gluconeogenesis is the amino acid pools, along with glycerol derived from triglycerides (256). Using amino acids through gluconeogenesis can be a reason for an increase in amino acids released from muscle tissue, resulting in muscle mass decrements (257). While this is known to occur during complete fasting, KDs promote a pseudo-fasted state in which the oxidation of fatty acids primarily meets energy requirements due to the lack of dietary carbohydrates, but catabolism is not as pronounced as during a complete fast (258; 259; 260). For instance, it has been reported that young men with obesity lost only 3% of FFM during a 10-day hypocaloric KD than 65% of BM as FFM during 10-day fasting (258).

Conversely, several investigations found that KDs are more effective in preserving FFM compared to LCDs. For instance, Young et al. compared three isocaloric (1,800 kcal/day) and isonitrogenous (115 g/day) dietary interventions that differed in carbohydrate content. After nine weeks on the 30-g, 60-g, and 104-g carbohydrate diets, BM loss was 16.2 kg, 12.8 kg, and 11.9 kg, respectively, and fat accounted for 95%, 84%, 75% of the total BM loss, respectively (261). Although these results should be interpreted with caution given the low number of participants, this study strongly suggests that KDs promote FM loss while preserving muscle mass compared to
LCDs. While it seems that KDs cause more FFM loss than a high carbohydrate diet, this finding suggests that compared to LCDs, KDs may be superior to preserving FFM. Moreover, data from the study by Young et al. provides further evidence that supports the notion that "a calorie is not a calorie." (144; 262; 263).

In addition, it has been recently shown that a high protein diet could preserve muscle mass during BM and/or FM loss phase (214; 215; 217; 218; 254). In most cases, a KD consists of a moderate to a high amount of protein, which generally contains animal-based high protein sources (264), an important factor for dietary protein-induced alterations in protein turnover, particularly MPS, and activating mTOR signaling (163; 222; 265; 266). It has been mentioned that the plausible FFM-preserving mechanism of high protein diets can be related to dietary protein-induced alterations in protein turnover, particularly MPS, inhibiting AMPK phosphorylation and activating mTOR signaling (163; 220; 221; 222). Nevertheless, there are a limited number of studies comparing KDs with different protein intakes. However, a KD with 40% protein maintained muscle mass in community-dwelling elite athletes (267). Therefore, it seems that increasing the proportion of daily protein intake is a practical application for preserving FFM (260). For example, Volek et al. determined the differences between energy-restricted KD (30% protein) and LFD (20% protein) on BM loss and body composition in overweight men and women (173). Although both men and women following KDs showed a greater decline in lean mass, the differences were insignificant. Therefore, a KD with correct amounts of protein could help the preservation of FFM. However, it should be considered that exceeding protein consumption could interrupt the ketogenic process.

Positive effects of carbohydrate intake on net muscle protein balance could be another possible mechanism of higher FFM loss in KDs. Although it is reported that carbohydrate consumption may not significantly affect MPS (269; 270), some previous studies have shown its beneficial effects on net muscle protein balance by reducing MPB (271; 272). These positive effects of carbohydrates may be mediated by insulin (273; 274; 275; 276). The anti-catabolic effect of insulin acting on MPB was confirmed in a systematic review and meta-analysis of 44 human studies, which concluded insulin did not significantly affect MPS but had a crucial role in reducing MPB (277). According to their findings, overall, insulin significantly increased net balance protein acquisition. However, it seems that the anti-catabolic effects of carbohydrates are small compared to protein or protein plus carbohydrate intake (271; 278; 279; 280; 281; 282).

Alterations in body water during KDs could also cause the differences in lean mass observed (283). Readings from dual-energy X-ray absorptiometry scans and biological impedance (two commonly used methods of
assessing body composition) demonstrate fluctuations in body composition that occur following variations in body water content. Furthermore, these methods generally include total body water as a component of lean mass \(^{106, 284, 285}\). Therefore, the water loss that typically occurs during the initiation of carbohydrate restriction can result in an incorrect indication of functional muscle mass loss. Yancy et al. showed that within the first two weeks of a person adhering to a KD, the individual lost a greater amount of water than those who adhered to an LFD. However, after the first two weeks, estimations of total body water were similar between groups \(^{133}\). The authors also reported that FFM changes in both groups were largely explained by changes in total body water but not lean mass tissue.

A longer duration study by Brehm et al. showed that similar to BM and FM, lean mass decreased more in the KD group compared with the LFD group at both 3 and 6 months. These authors also mentioned that it is implausible that differences in BM between the two groups at 3 and 6 months result from extreme changes in body water in the very low-carbohydrate dieters \(^{112}\). Decreasing energy intake by 500 calories daily should result in 1 pound (0.45 kg) per week \(^{286}\). However, KDs typically produce a 2 to 3-kg BM loss in the first week; thus, at least in the early phase of KD, diet-induced diuresis plays a vital role in BM loss \(^{287}\).

In conclusion, BM loss following KDs, like other non-KDs, may result in FFM and/or muscle mass reductions. It seems there are no specific advantages for KDs compared to high carbohydrate-low fat diets. Moreover, it seems that this amount of lean mass loss is slightly higher following KDs, especially in short-term trials. Activation of AMPK and inhibition of mTOR signaling, inducing gluconeogenesis, increasing the net balance protein acquisition, and diuresis may be the possible mechanisms of lean mass loss in individuals adhering to a KD. However, increasing the portion of protein in KDs may be a practical approach for preserving muscle mass following the BM loss phase. However, it should be considered that protein intake does not have to notably modify the level of glycemia and insulinemia with the risk to exit the status of ketosis: a sufficient level of ketonemia is a mandatory condition for a successful KD. It seems that the short-term adverse effects of KDs on FFM are because of body water reduction. However, muscle mass reduction following long-term adherence to KDs may not be related to body water. Further research is needed to determine whether the effect of KDs in individuals following this dietary approach. In addition, possible mechanisms underlying the effects of KDs on FFM should also be examined.
Sex-specific effects of KDs on body composition

Although there is evidence outlining the beneficial effects of KDs on BM and/or fat loss, little is known about the effect of sex differences on body composition changes induced following a KD. The sex-specific impact of different dietary interventions is important because it is generally more difficult for females to lose BM (288). Females are also likely to lose less BM than males during a dietary intervention (288), although they are more likely to adopt and adhere to a diet initially (289). Although some evidence suggests sex-specific effects of KDs in animal studies (290; 291), findings of the sex differences in body composition changes induced by KDs in humans are limited. However, like other dietary interventions, KDs may be more beneficial in men than women. For example, Lyngstad et al. compared body composition changes following 13 weeks of KD in men and women. According to their findings, males had a greater BM (kg and %) and FM loss than females at week 9 (BM: 17% and 20.6 kg BM loss in men compared with 15% and 15.3 kg BM loss in women, FM: 15.5 kg FM loss in men compared to 12.2 kg FM loss in women) (292). These differences were also apparent at week 13, with males achieving a greater reduction in BM, FM, and FFM (from baseline) than females.

Interestingly, although it has been suggested that females are also likely to lose more FFM than males during BM loss, Lyngstad et al. showed that men lost more FFM at both weeks 9 (4.9 kg vs. 3.1 kg FFM loss in men and female, respectively) and 13 (3.2 kg vs. 1.8 kg FFM loss in men and female, respectively) (292). In another study by D’Abbondanza et al., the authors reported that men seem to experience larger benefits than females in BM and FM loss after 25 days following a KD. In terms of FFM changes, no sex-specific differences were observed. In an isocaloric study with a moderate energy restriction of ~30% of energy, Brinkworth et al. compared sex-specific differences following eight weeks of a KD (293). According to the results, males had a greater BM and FM loss than females (BM: 10 kg BM loss in men compared with 7.4 kg BM loss in women, FM: 8.2 kg FM loss in men compared to 5.2 kg FM loss in women). However, FFM decreased during both interventions at a similar amount (2 kg FM loss in men compared to 2.2 kg FM loss in women), with no effect of diet or gender.

Moreover, Volek et al. revealed that BM, FM, and trunk FM reductions were significantly greater after a KD than the LFD for men but not for women (173). Although KDs’ sex-specific mechanisms of action are unclear, higher basal energy expenditure because of higher FFM in men may be the main cause of these differences (294). In contrast to these findings, Gu et al. showed similar beneficial effects of KDs on body composition in both genders (181). Further studies are needed to evaluate the sex-specific effects of KDs on body composition.
Effects of KD and exercise on body composition

It is well-documented that exercise intervention can improve body composition, including decreasing FM and/or preserving or increasing lean mass in different populations (295; 296; 297; 298; 299). Effects of exercise on body composition are mainly accounted for by regulation of genes, hormone concentrations (e.g., testosterone, IGF-1), and metabolic pathways (especially by activating the mTOR signaling) (300; 301; 302). Although professional organizations have historically focused on endurance or aerobic training-based guidelines for BM loss and maintenance (303), recent guidelines and position statements targeting BM reduction and maintenance have suggested that RT may also be effective for reducing FM (304). Moreover, RT results in superior improvements in muscle mass and muscular strength (305; 306).

Numerous studies have demonstrated various macronutrient ratios on body composition in trained populations (307; 308; 309; 310). Existing sports nutrition guidelines propose carbohydrate-based or periodized carbohydrate-based diets to augment muscular adaptations to exercise (311; 312; 313). Carbohydrate feeding may play an important role in improving body composition and recovery in endurance and resistance-trained individuals (314; 315). For example, in resistance-trained individuals, carbohydrates are suggested to augment muscle development via an increased insulin response. Specifically, insulin promotes anti-catabolic effects on muscle, thereby shifting protein balance to favor anabolism (316). Co-infusion of amino acids and insulin increases amino acid delivery to muscle (317; 318; 319), and it may increase MPS (320). Findings from a study by Bird et al. indicated that 12 weeks of carbohydrate plus essential amino acid ingestion enhances muscle anabolism following RT to a greater extent than either carbohydrate or essential amino acids consumed independently (321). However, in the last few years, there has been a surge in popularity in low-carbohydrate and high-fat approaches such as KD due to its purported beneficial effects on body composition (29; 249). Like untrained individuals, a KD may be an effective BM and FM loss strategy in athletes (322). Mainly, in trained individuals, anti-obesity benefits of KDs were shown in ad libitum studies (323; 324). The BM and/or FM loss may likely be explained by a resultant calorie deficit created by the KD, as enhanced feelings of satiety and a reduction in overall food intake (325). However, some evidence suggests that following a KD combined with exercise resulted in more fat oxidation and more ATP production from fat (325; 326). These findings underline the efficacy of KDs on mitochondrial function and efficiency towards fat oxidation in athletes. However, there are still some concerns about FFM decrement in athletes performing high-intensity exercises (327; 328). In regards to the effects of a combination of exercise with a KD on adiposity, studies showed more efficacy of KDs in BM and FM loss, especially in ad libitum conditions (329; 330; 331; 332).
The KBs, BHB, and AcAc are optimal substrates for muscle tissue and are rapidly oxidized. Unlike severe energy restrictions, KDs provide adequate amounts of energy and protein to athletes. Therefore, KDs avoid protein deficiency but induce a "fasting-like" state, leading to alterations in the metabolic pathways (249; 267). Although both fasting and KDs result in glycogen depletion and increased serum FFA, physiological adaptations following a KD are different from fasting. Losses of the magnitude encountered in fasting cannot be accounted for by adipose tissue breakdown alone and more likely represent significant lean tissue catabolism (333). Since KB plays an essential role in regulating muscle substrate utilization, these differences may cause differences in KB concentrations (334; 335; 336). KBs exert a restraining effect on MPB (212). Thomsen et al. reported that BHB has potent anti-catabolic effects in muscle at the whole-body level; in muscle, reduction of MPB overrides inhibition of MPS (195). Besides the dietary interventions, prolonged physical exercise performed in a fasted state also stimulates ketogenesis and results in post-exercise hyperketonemia (337; 338; 339). For example, KB concentrations can reach ~0.5–1.0 mmol/L in response to 2 h of exercise performed in an overnight fasted state and subsequently increase to ~1–4 mmol/L during early post-exercise recovery (339; 340; 341). The extent of exercise-induced hyperketonemia during and after exercise is influenced by the intensity and volume of the exercise performed, as well as nutritional status (337, 338). Alternative fueling strategies, based on adaptation to a KD, increase fat oxidation during exercise and might help spare the body’s limited glycogen stores (342). In addition, KDs have been used to increase fat oxidation during exercise. This also increases the production of KBs, which may provide an additional energy substrate for the brain and muscle tissue (343).

Moreover, higher quality and quantity of protein stimulated MPS (344; 345; 346; 347). It is well established that muscle mass gains depend highly on a net balance between MPS and MPB (348). Therefore, besides the similarities between KDs and fasting, a KD could positively affect muscle mass by decreasing MPB while stimulating MPS to a greater extent than fasting. However, it seems KDs are not substituted for a high carbohydrate diet regarding preserving muscle mass.

In summary, KDs can be a practical approach for BM and FM loss in both resistance and endurance-trained individuals. However, its effects on muscle mass depending on the type and intensity of training employed. Later in this paper, we will enlarge on body composition changes in RT and ET athletes adhered to KDs.

Resistance training

KD combined with RT interventions may increase the rate of FM loss in athletes, but compared to non-KDs, it is not an appropriate dietary approach for increasing muscle mass. While KDs may be helpful in endurance
performance (198; 349) by increasing fat oxidation capacity (326; 350) (especially in long-distance events lasting from 2 to 5 h), it is an oxymoron when athletes seek to boost muscle hypertrophy (249). Previous animal studies suggested that KDs might impair the balance between anabolic and catabolic pathways within skeletal muscle. For instance, Kennedy et al. reported that mice fed with a low-calorie KD (79% of fat, 10% of protein) over nine weeks exhibited 17% lower absolute lean mass compared with mice fed a standard chow diet (6% of fat, 24% of protein) (351). They also showed that KD feeding is associated with a twofold increase in AMPK in the liver and more than a threefold increase in the soleus muscle. Moreover, Frommelt et al. reported that two KD consisting of 75% fat, 10% protein, 65% of fat, 20% of protein, reduced whole-body nitrogen balance and carcass protein content in rats compared with those fed a standard chow diet (5% of fat and 21% of protein) after four weeks (352). Furthermore, it has been reported that the KD inhibits the mTOR signaling pathway by reducing the expression of Ribosomal protein S6 kinase beta-1 (S6K1) and Akt (236). These findings have led others to contend that increased KD-induced skeletal muscle AMPK activation may blunt anabolic mTOR signaling despite energy sufficiency (249). Indeed, this hypothesis is supported by several human studies that have reported that chronic KDs result in attenuated muscle mass. For example, Volek et al. reported that despite a KD significantly reducing whole-body and abdominal fat over 12 weeks, lean mass also declined by 3.4 kg vs. 1.0 kg in participants that were placed on LFDs (353). Noakes et al. also showed that a KD reduced lean mass by 2.6 kg over 12 weeks (233). However, it should be noted that equivocal reports suggested that KDs do not affect muscle mass (267; 354; 355). It should be mentioned that higher BM decrements can result in higher FFM loss, and therefore, higher FFM loss may be the result of more BM loss during KDs. In this situation, FFM percentage changes can be a more reliable index for the FFM-preserving effects of KD. Therefore, future studies should focus more on FFM percentage changes to evaluate KDs’ effects on lean mass changes.

While it has been reported that KDs result in a decrease in lean mass, there is limited evidence to suggest that a KD combined with RT may be beneficial for attenuating the decrease in lean mass. For instance, Jabbeke et al. reported that while RT on a regular diet may increase lean mass without significantly affecting FM, RT combined with a KD may reduce FM without negatively affecting lean mass (356). It has been revealed that adopting a KD with RT causes marked reductions in whole-body adiposity while not impacting lean mass (357). In contrast, most studies reported a significant decrease in FFM following a KD with RT. In a crossover study, the KD (≤50 g or ≤10% daily intake of carbohydrates) phase resulted in significantly lower BM (3.26 kg, p = 0.038) and lean mass (2.26 kg, p = 0.016) compared with the ad libitum usual diet (>250 g daily intake of
Accepted manuscript

carbohydrate)\(^{(14)}\). In addition, results from a study by Wood et al. indicated that a KD without exercise led to less FFM loss than an LFD and similar losses compared to an LFD combined with RT\(^{(358)}\). More recently, Vargas-Molina et al. found that in an ad libitum condition, a KD helped decrease more FM compared to a non-KD after eight weeks of RT in trained women (-1.1 vs. 0.3 kg). However, absolute changes were more favored for non-KD (-0.7 vs. 0.7 kg)\(^{(359)}\). Moreover, in another ad libitum study using US military personnel, KD combined with RT showed a remarkable BM loss compared to a normal mixed diet (-7.7 kg vs. 0.1 kg). FM and BFP decreased in KD compared to non-KD (-5.9 kg vs. -0.6 kg and -5.1% vs. -0.7% respectively). However, lean mass decreased in KD while non-KD participants gained weight (-1.4 vs. 0.8 kg)\(^{(360)}\). One possible reason that KDs failed to adopt during RT is that during high-intensity exercise, the rate of ATP breakdown is too high to be matched by the rate of ATP production from FFA\(^{(361)}\). This phenomenon limits the use of fat loading in sport disciplines that require high-intensity efforts from the athletes. High-intensity exercise also suppresses lipolysis, thereby reducing the availability of fatty acids to the muscle\(^{(362)}\). An increased rate of glycolysis and lactate production during exercise also hinders fat oxidation by reducing the entry of long-chain fatty acids into the mitochondria\(^{(363)}\). On the other hand, Wilson et al. is the only study that reported an increase in FFM after ten weeks of KD and two weeks of carbohydrate reintroduction in resistance-trained males\(^{(364)}\). However, it seems that muscle mass increments in the Wilson et al. study were because of a 2-week carbohydrate loading, which strongly suppressed the TSC2 protein as an antagonistic of mTOR signaling activation. It is important to note that the evaluation of FFM by Dual-energy X-ray absorptiometry (DEXA) includes intracellular water, which is stored in concert with muscle glycogen in a ~3:1 ratio\(^{(365)}\). Thus, another reason for increasing FFM following two weeks of carbohydrate refeed to the ten weeks of KD in the study by Wilson et al. maybe because of increasing intracellular water which can positively influence final FFM results. Almost all of the research reported a decrease or no significant changes in FFM following a KD combined with RT. It seems that increasing protein intake preserves lean mass in resistance-trained individuals adhering to KDs. Studies that reported similar (non-significant) changes in lean mass, consumed higher protein intakes in KDs group (= 17-58% or 18-118 g more protein intake in KD group)\(^{(267; 330; 332; 356; 358; 365)}\). However, in the study by Vargas-Molina et al., higher protein intake (115 vs. 97 g in KD and non-KD group respectively) in KDs could not help muscle mass preservation and there was a significant lean mass loss following KD\(^{(359)}\). In another study, Paoli et al. reported that KD may be used with the caution during body building preparation because it can blunt hypertrophic responses\(^{(360)}\). Recently, Vidic et al. compared the effects of two iso-energetic hypo-caloric ketogenic hyper-ketonemic and non-ketogenic low carbohydrate high-fat high cholesterol diets on body
composition in strength-trained middle-aged men \(^{(367)}\). Based on their findings, these two diets have a similar impact on body composition. A recent meta-analysis of 13 RCTs by Ashtary-Larky et al. showed that a combination of RT with KD was associated with declines in all body composition indices, including BM, BMI, FM, BFP, and FFM \(^{(111)}\). Based on the results derived from this meta-analysis, although KD resulted in more BM and FM loss, significant changes in these two indices occurred only in ad libitum studies but not in isocaloric studies. Although all included studies in the analysis lasted less than three months, the pooled results demonstrated that KD interventions resulted in 1.26 kg of FFM loss. Surprisingly, the amount of BM and FM loss were 3.67 and 2.21, respectively. These finding suggested that one third (34\%) of BM loss in individuals performing RT may be from FFM.

In conclusion, it seems that KDs may be a practical dietary approach for reducing BM and FM. In ad libitum studies, KDs resulted in more BM and FM loss in resistance-trained individuals \(^{(329; 330)}\). However, these advantages did not report in non-ad libitum studies (same calorie restriction in both KDs and non-KD groups) \(^{(358; 365)}\). Moreover, there are some concerns about FFM decreasing in RT athletes who adhered to a KD in both ad libitum and non-ad libitum conditions. KD-induced skeletal muscle AMPK activation, which blunt anabolic mTOR signaling, may be a possible mechanism of lean mass loss in KDs. Higher protein intakes may be beneficial to lean mass preservations in resistance-trained individuals following a KD. Further longer-term research is needed to determine the effects of KDs on resistance-trained individuals.

Endurance training

Under usual dietary conditions, athletes utilize carbohydrates as their predominant fuel source following high-volume endurance training (ET) \(^{(368)}\). However, it is well established that ET can increase lipolysis and help decrease FM during the BM loss phase \(^{(369; 370)}\). Since the body can metabolize fat more efficiently during ET \(^{(371)}\), KDs could efficiently prepare carbohydrates and promote fat oxidation \(^{(372)}\). There is robust evidence that substantial increases in fat oxidation occur, even in elite endurance athletes, within 3–4 weeks and possibly 5–10 days of adherence to a KD \(^{(373; 374; 375; 376)}\). Previous studies involving KDs have reported increases in intramuscular triglyceride \(^{(377)}\), hormone-sensitive lipase \(^{(378)}\), expression of fatty acid translocase FAT/CD36 protein \(^{(379)}\), and carnitine palmitoyltransferase \(^{(380)}\). Collectively, these changes suggest increases in fat availability, mobilization, and transport activities within the complex regulation of fat utilization by muscle tissue \(^{(381; 382; 383)}\). Even short-term interventions have shown a reduction in respiratory exchange ratio during exercise, and it generally indicates enhanced fat oxidation \(^{(384)}\). A reduced respiratory exchange ratio has been
considered a metabolic benefit of LCDs (385, 386). However, compared to long-term studies, short-term investigations show less substantial effects on body composition, likely due to the absence of keto-adaptation (387).

In a prospective, randomized, 2-week pilot study, compared to non-KD, adhering to a KD combined with ET failed to show significant improvements in body composition (385). In an isocaloric study with a moderate energy restriction of ~30% of energy, Brinkworth et al. reported a slightly higher but significant BM loss in the KD group compared to a high carbohydrate group (~8.1 and ~6.7 kg, respectively) for eight weeks (293). Authors also reported similar BM loss in both diet groups for women but greater BM loss in KD than high carbohydrate groups for men. Similarly, there was a greater reduction in FM in men consuming the KD than the high carbohydrate diet, but similar reductions for both diet groups in women. Finally, FFM decreased during both interventions at a similar amount, with no effect of diet or gender. In another study by Burke et al., BM decreased over the three weeks of intensified training and a mild energy deficit, with losses being greater in the KD group than the high carbohydrate diet group (388). Compared to a high carbohydrate diet, the authors also reported that the KD was associated with the highest rates of whole-body fat oxidation ever reported across exercise of varying speeds and intensities. There is evidence that those who adhered to a KD comfortably exceeded the time frame shown to produce robust cellular adaptations to "retool" the muscle to increase its capacity for fat oxidation (331). Dostal et al. showed that 12 weeks of a KD resulted in more BM, FM, and BFP decrements without any significant changes in FFM in recreationally trained individuals performing interval training and home-based and endurance-type (e.g., running, cycling, sports games) exercises (332). In an ad libitum study by McSwiney et al., 12 weeks of KD showed a significantly greater decrease in BM (~0.8 vs. ~5.9 kg) and BFP (~0.7%, vs. ~ 5.2%) without any changes in lean mass (~0.1 vs. ~0.3 kg) compared to a non-KD in endurance-trained men (389). A single-arm, before-and-after comparison study consisting of a 6-week KD, Urbain et al. revealed that a combination of ET with KD was associated with declines in all body composition indices, including BM, FM, and FFM in healthy adults participating in aerobic exercises (210).

However, because of the absence of a control group, these findings should be interpreted with caution. Furthermore, McSwiney et al. investigated the effects on substrate utilization during incremental exercise and changes in body composition in response to seven days ad libitum consumption of a KD by athletes in endurance sports (390). Their finding suggested higher fat oxidation, 76% of BM loss was from FFM decrement (-1.82 kg FFM and -2.4 kg BM-loss). However, a high FFM loss in this short-term study may be attributed to diet-induced diuresis following keto-adaptation. The body can use more fat as fuel while freeing itself from
degrading muscle and liver glycogen at high rates \(^{391}\). In an animal study, Ma et al. evaluated the effects of an 8-week intervention of a KD and running on a treadmill using mice \(^{392}\). They found that the KD may potentially prevent muscle damage by altering the interleukin-6 (IL-6) secretion. These results suggested that a long-term KD, which warrants keto-adaptation, could be a valuable aid to endurance athletes to improve body composition by decreasing BM and body fat while possibly preserving lean mass.

It seems that the beneficial effects of KDs on body composition and endurance performance in endurance-trained individuals are due to greater fat oxidation during exercise \(^{393; 394; 395; 396}\). The appeal of KD for endurance athletes is likely due to the shift in fuel utilization, from a carbohydrate-based model to one that utilizes fat primarily, of which stores are virtually unlimited compared to carbohydrates (i.e., muscle glycogen) \(^{397}\). This metabolic shift was observed after a period of KD adhering almost named "fat-adapted," which has been well-documented in studies since the 1980s \(^{398}\). These adaptations may be the reason for the advantageous effects of KDs on FM in endurance-trained athletes \(^{115}\). High-fat KDs may require a significant amount of time for adaption in endurance-trained individuals \(^{399}\). It is common for individuals to report fatigue and energy deficiency in the first few weeks after adopting a KD \(^{400}\). Volek et al. have indicated that several months may be necessary for adaptation, fatigue symptoms to subside, and adjustments in glycogen homeostasis \(^{387}\). These could be potential mechanisms for longer-term studies that showed improvements in body composition and endurance performance in endurance-trained individuals.

During exercise, fat is recruited in the form of FFA (and albumin-bound FA), as very-low-density lipoprotein triacylglycerol (VLDL-TG), and from muscle tissue as triacylglycerol (either from intra- or extracellular stores) \(^{401}\). Seven days following the start of a KD combined with ET, triglyceride-derived fatty acid oxidation (VLDL or intramuscular triglycerides) plays a role in increasing fat oxidation plasma-derived fatty acids remain the major source for fat oxidation \(^{402}\). After a 7-week adaptation to the diet and training (1 h of exercise at 50% of maximal power output), increases in fat oxidation were derived from increased utilization of VLDL-TG, plasma fatty acids \(^{395}\). In addition, it has been shown that high-fat diet-induced increases in muscle lipoprotein lipase activity \(^{403}\). Accordingly, it could be suggested that, during exercise, fat recruited from both plasma FFA and plasma VLDL-TG is responsible for the increased fat oxidation after long-term high-fat diet adaptation. Intriguingly, muscle triacylglycerol utilization is not increased after a high-fat diet considering that high dietary fat content would lead to increased muscle triacylglycerol storage, and vice versa a low dietary fat content results in decreased muscle triacylglycerol storage \(^{404; 405}\).
Interestingly, it seems that muscle glycogen is not different following KDs and high carbohydrate diets. Volek et al. compared the metabolic adaptations in elite ultra-marathoners and ironman distance triathletes following a 20 month KD and high carbohydrate diet (387). They showed that muscle glycogen was significantly decreased by 62% immediately post-exercise (a 180 min submaximal run at 64% VO2max on a treadmill) and 38% at 2 hours post-exercise in the high carbohydrate diet group, while in the KD group, muscle glycogen was decreased by 66% immediately post-exercise and 34% at 2 hours post-exercise. In contrast, two-fold higher rates of peak fat oxidation were detected during graded exercise in the KD group, greater capacity to oxidize fat at higher exercise intensities and two-fold higher rates of fat oxidation during sustained submaximal running (387).

Besides, the effects of KDs combined with ET on body composition and the impact of carbohydrate loading are unclear. Only one study investigated 7-day carbohydrate loading following KDs and increased BM, FFM, and FM, which may be related to the increased blood concentration of insulin and glucose responsible for increasing the rate of lipogenesis, as shown through increased BM and FM (406). It seems that increments in FFM after the 7-day carbohydrate loading procedure were most likely due to the increased carbohydrate intake and greater synthesis and storage of muscle glycogen (407).

Regarding high-intensity interval training (HIIT), there is limited data about KDs’ effects in individuals performing HIIT. In an ad libitum study, Cipryan et al. evaluated the effects of altering from a habitual mixed Western-based diet to a KD over a 4-week time-course during HIIT (408). BM (-4.7 vs. -0.8 kg) and BFP (-3.2 vs. -1.1%) decreased more in the KD trial. Moreover, in a crossover study, Gyorkos et al. determined the influences of a KD with and without HIIT exercise in participants with metabolic syndrome (409). Their findings showed that KD with and without HIIT significantly improved body composition by decreasing BM, BFP, and waist circumference compared to baseline. However, the addition of HIIT to KD improved body composition (BM, BFP, and waist circumference) more than following a diet alone. To the best of our knowledge, there is no study to determine the effects of a KD combined with HIIT on lean mass. Since the impact of a KD combined with HIIT has not been adequately studied, further studies are needed.

Studies suggested that KDs are a practical dietary approach for improving body composition in ET athletes by decreasing BM and FM while probably preserving FFM. According to current evidence, it seems that the FFM-preserving effects of KDs are more efficient in endurance-trained than resistance-trained individuals. It also appears that the beneficial effects of KDs on body composition in endurance-trained individuals are due to shifting fuel utilization toward greater fat oxidation during exercise, which occurred after adaptation to a KD. These findings underlined better adaptation of KDs in endurance-trained individuals.
Conclusions

A KD may help improve body composition by decreasing BM and body fat by controlling hunger and improving fat oxidation in both individuals with obesity in athletic populations. Regarding BM and body fat loss effects of KDs, KDs do not have any superior benefit than non-KDs in individuals with obesity and athletes in an isocaloric situation. In sedentary individuals with obesity, it seems that FFM changes appear to be as great, if not greater, than decreases following an LFD. However, there are some concerns regarding the FFM decrement in individuals following KDs, especially in resistance-trained athletes. Moreover, the FFM-preserving effects of KDs are more efficient in athletes performing ET compared to resistance-trained individuals. Future well-controlled research (iso-energetic and iso-protein) should be conducted in participants of different ages and various training experiences (e.g., novice, trained, or elite).

Declaration:

Funding: No funds received.

Competing interests: The authors declare no conflict of interest.

Availability of data and material: None

Code availability: None

Authors’ contributions: DAL and RB conceived and designed research. DAL, RB, and HB wrote the manuscript. JSB, TM, LM, and AP revised the manuscript. All authors read and approved the manuscript.
Accepted manuscript

References:

1. Organization WH (2016) Global Health Observatory (GHO) data.

2. Han TS, Lean ME (2016) A clinical perspective of obesity, metabolic syndrome and cardiovascular disease. *JRSM Cardiovasc Dis* 5, 2048004016633371.

3. Goodwin PJ, Chlebowski RT (2016) Obesity and Cancer: Insights for Clinicians. *J Clin Oncol* 34, 4197-4202.

4. Mokdad A, S Ford E, A Bowman B et al. (2003) Prevalence of Obesity, Diabetes, and Obesity-Related Health Risk Factors, 2001. *JAMA: the journal of the American Medical Association* 289, 76-79.

5. Oh R, Uppaluri KR (2020) Low carbohydrate diet. In *StatPearls [Internet]*: StatPearls Publishing.

6. Harvey CJdC, Schofield GM, Zinn C et al. (2019) Low-carbohydrate diets differing in carbohydrate restriction improve cardiometabolic and anthropometric markers in healthy adults: A randomised clinical trial. *PeerJ* 7, e6273.

7. Goldenberg JZ, Day A, Brinkworth GD et al. (2021) Efficacy and safety of low and very low carbohydrate diets for type 2 diabetes remission: systematic review and meta-analysis of published and unpublished randomized trial data. 372.

8. Aragon AA, Schoenfeld BJ, Wildman R et al. (2017) International society of sports nutrition position stand: diets and body composition. 14, 16.

9. Paoli A (2014) Ketogenic diet for obesity: friend or foe? *International journal of environmental research and public health* 11, 2092-2107.

10. Lu M, Wan Y, Yang B et al. (2018) Effects of low-fat compared with high-fat diet on cardiometabolic indicators in people with overweight and obesity without overt metabolic
disturbance: a systematic review and meta-analysis of randomised controlled trials. *British Journal of Nutrition* **119**, 96-108.

11. Lazarus Yaroch A, Colón-Ramos U, Atienza A (2008) Awareness, Use, and Perceptions of Low-Carbohydrate Diets. *Preventing Chronic Disease* **5**.

12. Churuangsuk C, Griffiths D, Lean ME *et al.* (2019) Impacts of carbohydrate-restricted diets on micronutrient intakes and status: A systematic review. *20*, 1132-1147.

13. Jallinoja P, Niva M, Helakorpi S *et al.* (2014) Food choices, perceptions of healthiness, and eating motives of self-identified followers of a low-carbohydrate diet. *58*, 23552.

14. Greene DA, Varley BJ, Hartwig TB *et al.* (2018) A low-carbohydrate ketogenic diet reduces body mass without compromising performance in powerlifting and olympic weightlifting athletes. *The Journal of Strength & Conditioning Research* **32**, 3373-3382.

15. Paoli A, Rubini A, Volek J *et al.* (2013) Beyond weight loss: a review of the therapeutic uses of very-low-carbohydrate (ketogenic) diets. *European journal of clinical nutrition* **67**, 789.

16. Bueno NB, de Melo ISV, de Oliveira SL *et al.* (2013) Very-low-carbohydrate ketogenic diet v. low-fat diet for long-term weight loss: a meta-analysis of randomised controlled trials. *British Journal of Nutrition* **110**, 1178-1187.

17. Willoughby D, Hewlings S, Kalman D (2018) Body composition changes in weight loss: strategies and supplementation for maintaining lean body mass, a brief review. *Nutrients* **10**, 1876.

18. Mohorko N, Černelič-Bizjak M, Poklar-Vatovec T *et al.* (2019) Weight loss, improved physical performance, cognitive function, eating behavior, and metabolic profile in a 12-week ketogenic diet in obese adults. *62*, 64-77.

19. Kirkpatrick C, Bolick J, Kris-Etherton P *et al.* (2019) Review of current evidence and clinical recommendations on the effects of low-carbohydrate and very-low-carbohydrate (including ketogenic) diets for the management of body weight and other cardiometabolic
risk factors: A scientific statement from the National Lipid Association Nutrition and Lifestyle Task Force. *Journal of Clinical Lipidology.*

20. Winesett SP, Bessone SK, Kossoff EH (2015) The ketogenic diet in pharmacoresistant childhood epilepsy. *Expert review of neurotherapeutics* 15, 621-628.

21. Newburgh L, MARSH PL (1920) The use of a high fat diet in the treatment of diabetes mellitus: First paper. *Archives of Internal Medicine* 26, 647-662.

22. WILDER RM (1921) The effects of ketonemia on the course of epilepsy. *Mayo Clin Proc* 2, 307-308.

23. Masood W, Uppaluri KR (2019) Ketogenic Diet. In *StatPearls [Internet]: StatPearls Publishing.*

24. Miller VJ, Villamena FA, Volek JS (2018) Nutritional ketosis and mitohormesis: potential implications for mitochondrial function and human health. *Journal of nutrition and metabolism* 2018.

25. Urbain P, Strom L, Morawski L et al. (2017) Impact of a 6-week non-energy-restricted ketogenic diet on physical fitness, body composition and biochemical parameters in healthy adults. *Nutrition & metabolism* 14, 17.

26. D'Andrea-Meira I, Krüger LT, Romão T et al. (2019) Ketogenic diet and epilepsy: what we know so far. *Frontiers in neuroscience* 13, 5.

27. Krebs HA (1966) The regulation of the release of ketone bodies by the liver. *Advances in Enzyme Regulation* 4, 339-354.

28. Fedorovich SV, Voronina PP, Waseem TV (2018) Ketogenic diet versus ketoacidosis: what determines the influence of ketone bodies on neurons? *Neural regeneration research* 13, 2060.

29. Tinsley GM, Willoughby DS (2016) Fat-Free mass changes during ketogenic diets and the potential role of resistance training. *International journal of sport nutrition and exercise metabolism* 26, 78-92.
30. Masino SA (2016) *Ketogenic diet and metabolic therapies: expanded roles in health and disease*: Oxford University Press.

31. Bergqvist AG, Schall JI, Gallagher PR et al. (2005) Fasting versus gradual initiation of the ketogenic diet: a prospective, randomized clinical trial of efficacy. *Epilepsia* **46**, 1810-1819.

32. Kossoff EH, Cervenka MC, Henry BJ et al. (2013) A decade of the modified Atkins diet (2003–2013): results, insights, and future directions. *Epilepsy & Behavior* **29**, 437-442.

33. Kossoff EH, Hartman AL (2012) Ketogenic diets: new advances for metabolism-based therapies. *Current opinion in neurology* **25**, 173.

34. Kossoff EH, Cervenka MC, Henry BJ et al. (2013) A decade of the modified Atkins diet (2003-2013): Results, insights, and future directions. *Epilepsy Behav* **29**, 437-442.

35. Caprio M, Infante M, Moriconi E et al. (2019) Very-low-calorie ketogenic diet (VLCKD) in the management of metabolic diseases: systematic review and consensus statement from the Italian Society of Endocrinology (SIE). *42*, 1365-1386.

36. Neth BJ, Mintz A, Whitlow C et al. (2020) Modified ketogenic diet is associated with improved cerebrospinal fluid biomarker profile, cerebral perfusion, and cerebral ketone body uptake in older adults at risk for Alzheimer's disease: a pilot study. *Neurobiol Aging* **86**, 54-63.

37. Nagpal R, Neth BJ, Wang S et al. (2019) Modified Mediterranean-ketogenic diet modulates gut microbiome and short-chain fatty acids in association with Alzheimer's disease markers in subjects with mild cognitive impairment. *EBioMedicine* **47**, 529-542.

38. Perez-Guisado J, Munoz-Serrano A (2011) The effect of the Spanish Ketogenic Mediterranean Diet on nonalcoholic fatty liver disease: a pilot study. *Journal of medicinal food* **14**, 677-680.

39. Perez-Guisado J, Munoz-Serrano A (2011) A pilot study of the Spanish Ketogenic Mediterranean Diet: an effective therapy for the metabolic syndrome. *Journal of medicinal food* **14**, 681-687.
40. Perez-Guisado J, Munoz-Serrano A, Alonso-Moraga A (2008) Spanish Ketogenic Mediterranean Diet: a healthy cardiovascular diet for weight loss. Nutrition journal 7, 30.

41. Perng BC, Chen M, Perng JC et al. (2017) A Keto-Meditet Approach with Coconut Substitution and Exercise May Delay the Onset of Alzheimer’s Disease among Middle-Aged. J Prev Alzheimers Dis 4, 51-57.

42. Paoli A, Bianco A, Grimaldi KA et al. (2013) Long term successful weight loss with a combination biphasic ketogenic mediterranean diet and mediterranean diet maintenance protocol. Nutrients 5, 5205-5217.

43. Paoli A, Cenci L, Fancelli M et al. (2010) Ketogenic diet and phytoextracts Comparison of the efficacy of Mediterranean, zone and tisanoreica diet on some health risk factors. Agro Food Industry Hi-Tech 21, 24-29.

44. Paoli A, Cenci L, Grimaldi KA (2011) Effect of Ketogenic Mediterranean diet with phytoextracts and low carbohydrates/high-protein meals on weight, cardiovascular risk factors, body composition and diet compliance in Italian council employees. Nutrition journal 10, 112.

45. Paoli A, Mancin L, Giacona MC et al. (2020) Effects of a ketogenic diet in overweight women with polycystic ovary syndrome. J Transl Med 18, 104.

46. Paoli A, Moro T, Bosco G et al. (2015) Effects of n-3 polyunsaturated fatty acids (omega-3) supplementation on some cardiovascular risk factors with a ketogenic Mediterranean diet. Mar Drugs 13, 996-1009.

47. McDonald L (1998) The Ketogenic Diet: A complete guide for the dieter and practitioner: Lyle McDonald.

48. Noakes TD CS, Proudfoot J, et al. (2013) The real meal revolution. 2nd edn.

49. Wylie-Rosett J, Aebersold K, Conlon B et al. (2013) Health effects of low-carbohydrate diets: where should new research go? Current diabetes reports 13, 271-278.

50. Hussain TA, Mathew TC, Dashti AA et al. (2012) Effect of low-calorie versus low-carbohydrate ketogenic diet in type 2 diabetes. 28, 1016-1021.
51. Noakes TD, Windt J (2017) Evidence that supports the prescription of low-carbohydrate high-fat diets: a narrative review. *Br J Sports Med* **51**, 133-139.

52. Stafstrom CE, Rho JM (2004) *Epilepsy and the ketogenic diet*: Springer Science & Business Media.

53. Lodi A, Zarantonello L, Bisiacchi PS *et al.* (2020) Ketonemia and Glycemia Affect Appetite Levels and Executive Functions in Overweight Females During Two Ketogenic Diets. *Obesity*.

54. Lodi A, Karsten B, Bosco G *et al.* (2016) The effects of different high-protein low-carbohydrates proprietary foods on blood sugar in healthy subjects. *Journal of medicinal food* **19**, 1085-1095.

55. Nelson DL, Lehninger AL, Cox MM (2008) *Lehninger principles of biochemistry*: Macmillan.

56. Owen OE, Kalhan SC, Hanson RW (2002) The key role of anaplerosis and cataplerosis for citric acid cycle function. *J Biol Chem* **277**, 30409-30412.

57. Dhillon KK, Gupta S (2019) Biochemistry, ketogenesis.

58. Herdt THJVCFAP (2000) Ruminant adaptation to negative energy balance: Influences on the etiology of ketosis and fatty liver. **16**, 215-230.

59. Puchalska P, Crawford PAJCm (2017) Multi-dimensional roles of ketone bodies in fuel metabolism, signaling, and therapeutics. **25**, 262-284.

60. Gupta. KKDS (April 21, 2019.) Biochemistry, Ketogenesis. *StatPearls [Internet]*

61. Rui L (2011) Energy metabolism in the liver. *Comprehensive physiology* **4**, 177-197.

62. Fedorovich SV, Voronina PP, Waseem TVJNrr (2018) Ketogenic diet versus ketoacidosis: what determines the influence of ketone bodies on neurons? **13**, 2060.

63. Laffel LJDMr, reviews (1999) Ketone bodies: a review of physiology, pathophysiology and application of monitoring to diabetes. **15**, 412-426.
64. Dhillon KK, Gupta SJS (2020) Biochemistry, ketogenesis.

65. Cantrell CB, Mohiuddin SSJS (2020) Biochemistry, Ketone Metabolism.

66. Grabacka M, Pierzchalska M, Dean M et al. (2016) Regulation of ketone body metabolism and the role of PPARα. 17, 2093.

67. Leino R, Z. Gerhart D, Duelli R et al. (2001) Diet-induced ketosis increases monocarboxylate transporter (MCT1) levels in rat brain. Neurochemistry international 38, 519-527.

68. Nehlig A (2004) Brain uptake and metabolism of ketone bodies in animal models. Prostaglandins Leukot Essent Fatty Acids 70, 265-275.

69. Laffel L (1999) Ketone bodies: a review of physiology, pathophysiology and application of monitoring to diabetes. Diabetes/metabolism research and reviews 15, 412-426.

70. Neal EG, Chaffe H, Schwartz RH et al. (2008) The ketogenic diet for the treatment of childhood epilepsy: a randomised controlled trial. 7, 500-506.

71. Levy RG, Cooper PN, Giri P et al. (2012) Ketogenic diet and other dietary treatments for epilepsy.

72. Masino SA, Rho JM (2012) Mechanisms of ketogenic diet action. In Jasper's Basic Mechanisms of the Epilepsies [Internet] 4th edition: National Center for Biotechnology Information (US).

73. Saponaro C, Gaggini M, Carli F et al. (2015) The Subtle Balance between Lipolysis and Lipogenesis: A Critical Point in Metabolic Homeostasis. Nutrients 7, 9453-9474.

74. Ebbeling CB, Feldman HA, Klein GL et al. (2018) Effects of a low carbohydrate diet on energy expenditure during weight loss maintenance: randomized trial. BMJ 363, k4583.

75. Westman EC, Feinman RD, Mavropoulos JC et al. (2007) Low-carbohydrate nutrition and metabolism. The American journal of clinical nutrition 86, 276-284.
76. Inoue N, Matsunaga Y, Satoh H et al. (2007) Enhanced energy expenditure and fat oxidation in humans with high BMI scores by the ingestion of novel and non-pungent capsaicin analogues (capsinoids). Bioscience, biotechnology, and biochemistry 71, 380-389.

77. Schultz L (1971) Management and nutritional aspects of ketosis. Journal of dairy science 54, 962-973.

78. Cox PJ, Kirk T, Ashmore T et al. (2016) Nutritional ketosis alters fuel preference and thereby endurance performance in athletes. Cell metabolism 24, 256-268.

79. Gershuni VM, Yan SL, Medici V (2018) Nutritional ketosis for weight management and reversal of metabolic syndrome. Current nutrition reports 7, 97-106.

80. Bough KJ, Wetherington J, Hassel B et al. (2006) Mitochondrial biogenesis in the anticonvulsant mechanism of the ketogenic diet. Ann Neurol 60, 223-235.

81. Ahola-Erkkila S, Carroll CJ, Peltola-Mjösund K et al. (2010) Ketogenic diet slows down mitochondrial myopathy progression in mice. Hum Mol Genet 19, 1974-1984.

82. Bough KJ, Wetherington J, Hassel B et al. (2006) Mitochondrial biogenesis in the anticonvulsant mechanism of the ketogenic diet. 60, 223-235.

83. Ahola-Erkkilä S, Carroll CJ, Peltola-Mjösund K et al. (2010) Ketogenic diet slows down mitochondrial myopathy progression in mice. 19, 1974-1984.

84. Newman JC, Verdin E (2017) β-Hydroxybutyrate: a signaling metabolite. Annual review of nutrition 37, 51-76.

85. Wheless JW (2001) The ketogenic diet: an effective medical therapy with side effects. Journal of child neurology 16, 633-635.

86. Muscogiuri G, Barrea L, Laudisio D et al. (2019) The management of very low-calorie ketogenic diet in obesity outpatient clinic: a practical guide. 17, 356.

87. Cohen CW, Fontaine KR, Arend RC et al. (2019) A Ketogenic Diet Is Acceptable in Women with Ovarian and Endometrial Cancer and Has No Adverse Effects on Blood Lipids: a Randomized, Controlled Trial. Nutrition and cancer, 1-11.
88. Joshi S, Ostfeld RJ, McMacken M (2019) The Ketogenic Diet for Obesity and Diabetes—Enthusiasm Outpaces Evidence. JAMA Internal Medicine 179, 1163-1164.

89. Stern L, Iqbal N, Seshadri P et al. (2004) The effects of low-carbohydrate versus conventional weight loss diets in severely obese adults: one-year follow-up of a randomized trial. 140, 778-785.

90. Gardner CD, Kiazand A, Alhassan S et al. (2007) Comparison of the Atkins, Zone, Ornish, and LEARN diets for change in weight and related risk factors among overweight premenopausal women: the A TO Z Weight Loss Study: a randomized trial. Jama 297, 969-977.

91. Shai I, Schwarzfuchs D, Henkin Y et al. (2008) Weight loss with a low-carbohydrate, Mediterranean, or low-fat diet. 359, 229-241.

92. Foster GD, Wyatt HR, Hill JO et al. (2003) A randomized trial of a low-carbohydrate diet for obesity. 348, 2082-2090.

93. Cornier MA, Donahoo WT, Pereira R et al. (2005) Insulin sensitivity determines the effectiveness of dietary macronutrient composition on weight loss in obese women. 13, 703-709.

94. Ebbeling CB, Leidig MM, Feldman HA et al. (2007) Effects of a low–glycemic load vs low-fat diet in obese young adults: a randomized trial. 297, 2092-2102.

95. McClain AD, Otten JJ, Hekler EB et al. (2013) Adherence to a low-fat vs. low-carbohydrate diet differs by insulin resistance status. 15, 87-90.

96. McLaughlin T, Carter S, Lamendola C et al. (2006) Effects of moderate variations in macronutrient composition on weight loss and reduction in cardiovascular disease risk in obese, insulin-resistant adults. 84, 813-821.

97. Pittas AG, Das SK, Hajduk CL et al. (2005) A low-glycemic load diet facilitates greater weight loss in overweight adults with high insulin secretion but not in overweight adults with low insulin secretion in the CALERIE Trial. 28, 2939-2941.
98. Rock CL, Flatt SW, Pakiz B et al. (2016) Effects of diet composition on weight loss, metabolic factors and biomarkers in a 1-year weight loss intervention in obese women examined by baseline insulin resistance status. 65, 1605-1613.

99. Gardner CD, Trepanowski JF, Del Gobbo LC et al. (2018) Effect of low-fat vs low-carbohydrate diet on 12-month weight loss in overweight adults and the association with genotype pattern or insulin secretion: the DIETFITS randomized clinical trial. 319, 667-679.

100. Gardner CD, Offringa LC, Hartle JC et al. (2016) Weight loss on low-fat vs. low-carbohydrate diets by insulin resistance status among overweight adults and adults with obesity: A randomized pilot trial. 24, 79-86.

101. Qi Q, Bray GA, Hu FB et al. (2012) Weight-loss diets modify glucose-dependent insulinotropic polypeptide receptor rs2287019 genotype effects on changes in body weight, fasting glucose, and insulin resistance: the Preventing Overweight Using Novel Dietary Strategies trial. 95, 506-513.

102. Dopler Nelson M, Prabakar P, Kondragunta V et al. (2010) Genetic phenotypes predict weight loss success: the right diet does matter. 79-80.

103. Stanton MV, Robinson JL, Kirkpatrick SM et al. (2017) DIETFITS study (diet intervention examining the factors interacting with treatment success)–Study design and methods. 53, 151-161.

104. Howe III HR, Heidal K, Choi MD et al. (2011) Increased adipose tissue lipolysis after a 2-week high-fat diet in sedentary overweight/obese men. Metabolism 60, 976-981.

105. Swaminathan R, King R, Holmfield J et al. (1985) Thermic effect of feeding carbohydrate, fat, protein and mixed meal in lean and obese subjects. The American journal of clinical nutrition 42, 177-181.

106. Jeukendrup A, Gleeson M (2018) Sport nutrition: Human Kinetics.

107. Flatt J, Ravussin E, Acheson KJ et al. (1985) Effects of dietary fat on postprandial substrate oxidation and on carbohydrate and fat balances. The Journal of clinical investigation 76, 1019-1024.
108. Czech MPJNm (2017) Insulin action and resistance in obesity and type 2 diabetes. 23, 804.

109. Samuel VT, Shulman GIJC (2012) Mechanisms for insulin resistance: common threads and missing links. 148, 852-871.

110. Hu S, Wang L, Togo J et al. (2020) The carbohydrate-insulin model does not explain the impact of varying dietary macronutrients on the body weight and adiposity of mice. 32, 27-43.

111. Ashtary-Larky D, Bagheri R, Asbaghi O et al. (2021) Effects of resistance training combined with a ketogenic diet on body composition: a systematic review and meta-analysis. 1-16.

112. Brehm BJ, Seeley RJ, Daniels SR et al. (2003) A randomized trial comparing a very low carbohydrate diet and a calorie-restricted low fat diet on body weight and cardiovascular risk factors in healthy women. The Journal of Clinical Endocrinology & Metabolism 88, 1617-1623.

113. Gaspari A Scientific Review of Ketogenic Diet.

114. Dansinger ML, Gleason JA, Griffith JL et al. (2005) Comparison of the Atkins, Ornish, Weight Watchers, and Zone diets for weight loss and heart disease risk reduction: a randomized trial. Jama 293, 43-53.

115. Brinkworth GD, Noakes M, Buckley JD et al. (2009) Long-term effects of a very-low-carbohydrate weight loss diet compared with an isocaloric low-fat diet after 12 mo. 90, 23-32.

116. Barkeling B, Rössner S, Björvell H (1990) Effects of a high-protein meal (meat) and a high-carbohydrate meal (vegetarian) on satiety measured by automated computerized monitoring of subsequent food intake, motivation to eat and food preferences. International journal of obesity 14, 743-751.
117. Stubbs R, Johnstone A, Harbron C (1996) Breakfasts high in protein, fat or carbohydrate: effect on within-day appetite and energy balance. *European journal of clinical nutrition* **50**, 409-417.

118. Astrup A (2005) The satiating power of protein—a key to obesity prevention?: Oxford University Press.

119. Westerterp-Plantenga M, Rolland V, Wilson S *et al.* (1999) Satiety related to 24 h diet-induced thermogenesis during high protein/carbohydrate vs high fat diets measured in a respiration chamber. *European journal of clinical nutrition* **53**, 495.

120. Johnstone AM, Horgan GW, Murison SD *et al.* (2008) Effects of a high-protein ketogenic diet on hunger, appetite, and weight loss in obese men feeding ad libitum. *The American journal of clinical nutrition* **87**, 44-55.

121. Weigle DS, Breen PA, Matthys CC *et al.* (2005) A high-protein diet induces sustained reductions in appetite, ad libitum caloric intake, and body weight despite compensatory changes in diurnal plasma leptin and ghrelin concentrations. *The American journal of clinical nutrition* **82**, 41-48.

122. Sumithran P, Prendergast LA, Delbridge E *et al.* (2013) Ketosis and appetite-mediating nutrients and hormones after weight loss. *European journal of clinical nutrition* **67**, 759.

123. Deemer SE, Plaisance EP, Martins CJNR (2020) Impact of ketosis on appetite regulation—a review. **77**, 1-11.

124. Holt SH, Miller JB (1995) Increased insulin responses to ingested foods are associated with lessened satiety. *Appetite* **24**, 43-54.

125. Miller S, Petocz PJEJoCN (1996) Interrelationships among postprandial satiety, glucose and insulin responses and changes in subsequent food intake. **50**, 788-797.

126. Rodin JJHP (1985) Insulin levels, hunger, and food intake: an example of feedback loops in body weight regulation. **4**, 1.
127. Boden G, Sargrad K, Homko C et al. (2005) Effect of a low-carbohydrate diet on appetite, blood glucose levels, and insulin resistance in obese patients with type 2 diabetes. *Annals of internal medicine* **142**, 403-411.

128. Westman EC, Volek JS (2002) Very-low-carbohydrate weight-loss diets revisited. *Cleveland Clinic journal of medicine* **69**, 849.

129. Badman MK, Pissios P, Kennedy AR et al. (2007) Hepatic fibroblast growth factor 21 is regulated by PPARα and is a key mediator of hepatic lipid metabolism in ketotic states. *Cell metabolism* **5**, 426-437.

130. Kliewer SA, Mangelsdorf DJ (2009) Fibroblast growth factor 21: from pharmacology to physiology. *The American journal of clinical nutrition* **91**, 254S-257S.

131. Nair KS, Halliday D, Garrow J (1983) Thermic response to isoenergetic protein, carbohydrate or fat meals in lean and obese subjects. *Clinical Science* **65**, 307-312.

132. Stubbs J, Ferres S, Horgan G (2000) Energy density of foods: effects on energy intake. *Critical reviews in food science and nutrition* **40**, 481-515.

133. Yancy WS, Olsen MK, Guyton JR et al. (2004) A low-carbohydrate, ketogenic diet versus a low-fat diet to treat obesity and hyperlipidemia: a randomized, controlled trial. *Annals of internal medicine* **140**, 769-777.

134. Gibson AA, Seimon RV, Lee CM et al. (2015) Do ketogenic diets really suppress appetite? A systematic review and meta-analysis. *Obesity Reviews* **16**, 64-76.

135. Johnstone AM, Horgan GW, Murison SD et al. (2008) Effects of a high-protein ketogenic diet on hunger, appetite, and weight loss in obese men feeding ad libitum. *Am J Clin Nutr* **87**, 44-55.

136. Rosen JC, Gross J, Loew D et al. (1985) Mood and appetite during minimal-carbohydrate and carbohydrate-supplemented hypocaloric diets. *The American journal of clinical nutrition* **42**, 371-379.

137. Bogardus C, LaGrange BM, Horton ES et al. (1981) Comparison of carbohydrate-containing and carbohydrate-restricted hypocaloric diets in the treatment of obesity.
Endurance and metabolic fuel homeostasis during strenuous exercise. *The Journal of clinical investigation* 68, 399-404.

138. Crovetti R, Porrini M, Santangelo A *et al.* (1998) The influence of thermic effect of food on satiety. 52, 482-488.

139. Dauncey M, Bingham SJBJon (1983) Dependence of 24 h energy expenditure in man on the composition of the nutrient intake. 50, 1-13.

140. Veldhorst MA, Westerterp-Plantenga MS, Westerterp KR (2009) Gluconeogenesis and energy expenditure after a high-protein, carbohydrate-free diet. *The American journal of clinical nutrition* 90, 519-526.

141. Westerterp KR (2004) Diet induced thermogenesis. *Nutrition & metabolism* 1, 5.

142. Acheson K (1993) Influence of autonomic nervous system on nutrient-induced thermogenesis in humans. *Nutrition (Burbank, Los Angeles County, Calif)* 9, 373.

143. Feinman RD, Fine EJ (2007) Nonequilibrium thermodynamics and energy efficiency in weight loss diets. *Theoretical Biology and Medical Modelling* 4, 27.

144. Fine EJ, Feinman RD (2004) Thermodynamics of weight loss diets. *Nutrition & metabolism* 1, 15.

145. Halton TL, Hu FB (2004) The effects of high protein diets on thermogenesis, satiety and weight loss: a critical review. *Journal of the American College of Nutrition* 23, 373-385.

146. Jagadish S, Payne ET, Wong-Kisiel L *et al.* (2019) The Ketogenic and Modified Atkins Diet Therapy for Children With Refractory Epilepsy of Genetic Etiology. *Pediatric neurology* 94, 32-37.

147. Mohorko N, Černelič-Bizjak M, Poklar-Vatovec T *et al.* (2019) Weight loss, improved physical performance, cognitive function, eating behavior, and metabolic profile in a 12-week ketogenic diet in obese adults. *Nutrition research* 62, 64-77.

148. Westerterp-Plantenga M, Nieuwenhuizen A, Tome D *et al.* (2009) Dietary protein, weight loss, and weight maintenance. *Annual review of nutrition* 29, 21-41.
149. Ebbeling CB, Feldman HA, Klein GL et al. (2018) Effects of a low carbohydrate diet on energy expenditure during weight loss maintenance: randomized trial. *bmj* **363**, k4583.

150. Paoli A, Grimaldi K, Bianco A et al. (2012) Medium term effects of a ketogenic diet and a Mediterranean diet on resting energy expenditure and respiratory ratio. *BMC proceedings* **6**, P37.

151. Ebbeling CB, Feldman HA, Klein GL et al. (2018) Effects of a low carbohydrate diet on energy expenditure during weight loss maintenance: randomized trial. **363**.

152. Hall KD, Chen KY, Guo J et al. (2016) Energy expenditure and body composition changes after an isocaloric ketogenic diet in overweight and obese men. **104**, 324-333.

153. Hall KD, Bemis T, Bry lda R et al. (2015) Calorie for calorie, dietary fat restriction results in more body fat loss than carbohydrate restriction in people with obesity. *Cell metabolism* **22**, 427-436.

154. Paoli A, Tinsley G, Bianco A et al. (2019) The Influence of Meal Frequency and Timing on Health in Humans: The Role of Fasting. *Nutrients* **11**.

155. Vidali S, Aminzadeh S, Lambert B et al. (2015) Mitochondria: The ketogenic diet—A metabolism-based therapy. *The international journal of biochemistry & cell biology* **63**, 55-59.

156. Paoli A, Cenci L, Fancelli M et al. (2010) Ketogenic diet and phytoextracts. *From the Scientific Advisory Board* **21**, 24.

157. Tagliaabue A, Bertoli S, Trentani C et al. (2012) Effects of the ketogenic diet on nutritional status, resting energy expenditure, and substrate oxidation in patients with medically refractory epilepsy: A 6-month prospective observational study. *Clinical nutrition* **31**, 246-249.

158. Volek JS, Sharman MJ (2004) Cardiovascular and hormonal aspects of very-low-carbohydrate ketogenic diets. *Obesity research* **12**, 115S-123S.

159. Samaha FF, Iqbal N, Seshadri P et al. (2003) A low-carbohydrate as compared with a low-fat diet in severe obesity. *New England Journal of Medicine* **348**, 2074-2081.
160. Bazzano LA, Hu T, Reynolds K et al. (2014) Effects of low-carbohydrate and low-fat diets: a randomized trial. *Annals of internal medicine* **161**, 309-318.

161. Cardillo S, Seshadri P, Iqbal N (2006) The effects of a low-carbohydrate versus low-fat diet on adipocytokines in severely obese adults: three-year follow-up of a randomized trial. *European review for medical and pharmacological sciences* **10**, 99.

162. Tobias DK, Chen M, Manson JE et al. (2015) Effect of low-fat diet interventions versus other diet interventions on long-term weight change in adults: a systematic review and meta-analysis. *The lancet Diabetes & endocrinology* **3**, 968-979.

163. Krieger JW, Sitren HS, Daniels MJ et al. (2006) Effects of variation in protein and carbohydrate intake on body mass and composition during energy restriction: a meta-regression. *The American journal of clinical nutrition* **83**, 260-274.

164. McPherson PAC, McEneny J (2012) The biochemistry of ketogenesis and its role in weight management, neurological disease and oxidative stress. *Journal of physiology and biochemistry* **68**, 141-151.

165. Fernández-Elías VE, Ortega JF, Nelson RK et al. (2015) Relationship between muscle water and glycogen recovery after prolonged exercise in the heat in humans. **115**, 1919-1926.

166. Shiose K, Yamada Y, Motonaga K et al. (2016) Segmental extracellular and intracellular water distribution and muscle glycogen after 72-h carbohydrate loading using spectroscopic techniques. **121**, 205-211.

167. Olsson KE, Saltin BJAPS (1970) Variation in total body water with muscle glycogen changes in man. **80**, 11-18.

168. Rabast U, Vornberger K, Ehl MJAoN et al. (1981) Loss of weight, sodium and water in obese persons consuming a high-or low-carbohydrate diet. **25**, 341-349.

169. Rabast U, Kasper H, Schönborn JJN et al. (1978) Comparative studies in obese subjects fed carbohydrate-restricted and high carbohydrate 1,000-calorie formula diets. **269-277**.
170. Yang M-U, Van Itallie TBJJoci (1976) Composition of weight lost during short-term weight reduction. Metabolic responses of obese subjects to starvation and low-calorie ketogenic and nonketogenic diets. 58, 722-730.

171. Howell S, Kones RJAJoP-E, Metabolism (2017) “Calories in, calories out” and macronutrient intake: the hope, hype, and science of calories. 313, E608-E612.

172. Aragon AA, Schoenfeld BJ, Wildman R et al. (2017) International society of sports nutrition position stand: diets and body composition. 14, 1-19.

173. Volek JS, Sharman MJ, Gómez AL et al. (2004) Comparison of energy-restricted very low-carbohydrate and low-fat diets on weight loss and body composition in overweight men and women. 1, 13.

174. Arner PJBP, endocrinology rC, metabolism (2005) Human fat cell lipolysis: biochemistry, regulation and clinical role. 19, 471-482.

175. Girard J, Duee P, Ferre P et al. (1985) Fatty acid oxidation and ketogenesis during development. 25, 303-319.

176. McGarry JD, Foster DW (1976) Ketogenesis and its regulation: Elsevier.

177. Morigny P, Houssier M, Mouisel E et al. (2016) Adipocyte lipolysis and insulin resistance. 125, 259-266.

178. Courchesne-Loyer A, Croteau E, Castellano C-A et al. (2017) Inverse relationship between brain glucose and ketone metabolism in adults during short-term moderate dietary ketosis: a dual tracer quantitative positron emission tomography study. 37, 2485-2493.

179. Takeyama N, Itoh Y, Kitazawa Y et al. (1990) Altered hepatic mitochondrial fatty acid oxidation and ketogenesis in endotoxic rats. 259, E498-E505.

180. Kong Z, Sun S, Shi Q et al. (2020) Short-Term Ketogenic Diet Improves Abdominal Obesity in Overweight/Obese Chinese Young Females. 11, 856.

181. Gu Y, Yu H, Li Y et al. (2013) Beneficial effects of an 8-week, very low carbohydrate diet intervention on obese subjects. 2013.
182. Bueno NB, de Melo ISV, de Oliveira SL et al. (2013) Very-low-carbohydrate ketogenic diet v. low-fat diet for long-term weight loss: a meta-analysis of randomised controlled trials. 110, 1178-1187.

183. Castellana M, Conte E, Cignarelli A et al. (2020) Efficacy and safety of very low calorie ketogenic diet (VLCKD) in patients with overweight and obesity: A systematic review and meta-analysis. 21, 5-16.

184. Foster GD, Wyatt HR, Hill JO et al. (2010) Weight and metabolic outcomes after 2 years on a low-carbohydrate versus low-fat diet: a randomized trial. 153, 147-157.

185. Moreno B, Crujeiras AB, Bellido D et al. (2016) Obesity treatment by very low-calorie-ketogenic diet at two years: reduction in visceral fat and on the burden of disease. 54, 681-690.

186. Moreno B, Bellido D, Sajoux I et al. (2014) Comparison of a very low-calorie-ketogenic diet with a standard low-calorie diet in the treatment of obesity. 47, 793-805.

187. Truby H, Baic S, Delooy A et al. (2006) Randomised controlled trial of four commercial weight loss programmes in the UK: initial findings from the BBC “diet trials”. 332, 1309-1314.

188. Gardner CD, Kiazand A, Alhassan S et al. (2007) Comparison of the Atkins, Zone, Ornish, and LEARN diets for change in weight and related risk factors among overweight premenopausal women: the A TO Z Weight Loss Study: a randomized trial. 297, 969-977.

189. Iqbal N, Vetter ML, Moore RH et al. (2010) Effects of a low-intensity intervention that prescribed a low-carbohydrate vs. a low-fat diet in obese, diabetic participants. 18, 1733-1738.

190. Davis NJ, Tomuta N, Schechter C et al. (2009) Comparative study of the effects of a 1-year dietary intervention of a low-carbohydrate diet versus a low-fat diet on weight and glycemic control in type 2 diabetes. 32, 1147-1152.
191.Dansinger ML, Gleason JA, Griffith JL et al. (2005) Comparison of the Atkins, Ornish, Weight Watchers, and Zone diets for weight loss and heart disease risk reduction: a randomized trial. 293, 43-53.

192. McAuley K, Smith K, Taylor R et al. (2006) Long-term effects of popular dietary approaches on weight loss and features of insulin resistance. 30, 342-349.

193. Brinkworth GD, Wycherley TP, Noakes M et al. (2016) Long-term effects of a very-low-carbohydrate weight-loss diet and an isocaloric low-fat diet on bone health in obese adults. 32, 1033-1036.

194. Manninen AHJ, JotISoSN (2004) Metabolic effects of the very-low-carbohydrate diets: misunderstood" villains" of human metabolism. 1, 1-5.

195. Thomsen HH, Rittig N, Johannsen M et al. (2018) Effects of 3-hydroxybutyrate and free fatty acids on muscle protein kinetics and signaling during LPS-induced inflammation in humans: anticatabolic impact of ketone bodies. 108, 857-867.

196. Benlloch M, López-Rodríguez MM, Cuerda-Ballester M et al. (2019) Satiating effect of a ketogenic diet and its impact on muscle improvement and oxidation state in multiple sclerosis patients. 11, 1156.

197. Koutnik AP, D’Agostino DP, Egan BJTiE et al. (2019) Anticatabolic effects of ketone bodies in skeletal muscle. 30, 227-229.

198. Cox PJ, Kirk T, Ashmore T et al. (2016) Nutritional ketosis alters fuel preference and thereby endurance performance in athletes. 24, 256-268.

199. Sato K, Kashiwaya Y, Keon C et al. (1995) Insulin, ketone bodies, and mitochondrial energy transduction. 9, 651-658.

200. Parker BA, Walton CM, Carr ST et al. (2018) β-Hydroxybutyrate elicits favorable mitochondrial changes in skeletal muscle. 19, 2247.

201. Huang Z, Huang L, Waters MJ et al. (2020) Insulin and growth hormone balance: implications for obesity.
202. Møller N, Vendelbo MH, Kampmann U et al. (2009) Growth hormone and protein metabolism. 28, 597-603.

203. Hayashi AA, Proud CGJAJoP-E, Metabolism (2007) The rapid activation of protein synthesis by growth hormone requires signaling through mTOR. 292, E1647-E1655.

204. Møller N, Copeland KC, Nair KSJE et al. (2007) Growth hormone effects on protein metabolism. 36, 89-100.

205. Bielohuby M, Sawitzky M, Stoehr BJ et al. (2011) Lack of dietary carbohydrates induces hepatic growth hormone (GH) resistance in rats. 152, 1948-1960.

206. Murata Y, Nishio K, Mochiyama T et al. (2013) Fgf21 impairs adipocyte insulin sensitivity in mice fed a low-carbohydrate, high-fat ketogenic diet. 8, e69330.

207. Nakao R, Abe T, Yamamoto S et al. (2019) Ketogenic diet induces skeletal muscle atrophy via reducing muscle protein synthesis and possibly activating proteolysis in mice. 9, 1-14.

208. Caton SJ, Bielohuby M, Bai Y et al. (2012) Low-carbohydrate high-fat diets in combination with daily exercise in rats: effects on body weight regulation, body composition and exercise capacity. 106, 185-192.

209. Widiatmaja DM, Prabowo GI, Rejeki PSJJoHUNS (2021) A Long-Term Ketogenic Diet Decreases Serum Insulin-Like Growth Factor-I Levels in Mice. 48.

210. Urbain P, Strom L, Morawski L et al. (2017) Impact of a 6-week non-energy-restricted ketogenic diet on physical fitness, body composition and biochemical parameters in healthy adults. 14, 1-11.

211. Fraser D, Thoen J, Bondhus S et al. (2000) Reduction in serum leptin and IGF-1 but preserved T-lymphocyte numbers and activation after a ketogenic diet in rheumatoid arthritis patients. 18, 209-214.

212. Manninen AHJN, metabolism (2006) Very-low-carbohydrate diets and preservation of muscle mass. 3, 1-4.
213. Masood W, Annamaraju P, Uppaluri KR (2020) Ketogenic Diet. In StatPearls [Internet]: StatPearls Publishing.

214. Luger M, Holstein B, Schindler K et al. (2013) Feasibility and efficacy of an isocaloric high-protein vs. standard diet on insulin requirement, body weight and metabolic parameters in patients with type 2 diabetes on insulin therapy. 121, 286-294.

215. Kim JE, O’Connor LE, Sands LP et al. (2016) Effects of dietary protein intake on body composition changes after weight loss in older adults: a systematic review and meta-analysis. 74, 210-224.

216. Mettler S, Mitchell N, Tipton KDJM et al. (2010) Increased protein intake reduces lean body mass loss during weight loss in athletes. 42, 326-337.

217. Johnston CS, Sears B, Perry M et al. (2017) Use of novel high-protein functional food products as part of a calorie-restricted diet to reduce insulin resistance and increase lean body mass in adults: a randomized controlled trial. 9, 1182.

218. Haghighat N, Ashtary-Larky D, Bagheri R et al. (2020) The effect of 12 weeks of equicaloric high protein diet in regulating appetite and body composition of women with Normal Weight Obesity: a randomized controlled trial. British Journal of Nutrition, 1-20.

219. Krieger JW, Sitren HS, Daniels MJ et al. (2006) Effects of variation in protein and carbohydrate intake on body mass and composition during energy restriction: a meta-regression. 83, 260-274.

220. Pasiakos SM, Cao JJ, Margolis LM et al. (2013) Effects of high-protein diets on fat-free mass and muscle protein synthesis following weight loss: a randomized controlled trial. 27, 3837-3847.

221. Cuthbertson D, Smith K, Babraj J et al. (2005) Anabolic signaling deficits underlie amino acid resistance of wasting, aging muscle. 19, 422-424.

222. Fujita S, Dreyer HC, Drummond MJ et al. (2007) Nutrient signalling in the regulation of human muscle protein synthesis. 582, 813-823.
223. Noakes M, Foster PR, Keogh JB et al. (2006) Comparison of isocaloric very low carbohydrate/high saturated fat and high carbohydrate/low saturated fat diets on body composition and cardiovascular risk. 3, 7.

224. Brehm BJ, Spang SE, Lattin BL et al. (2005) The role of energy expenditure in the differential weight loss in obese women on low-fat and low-carbohydrate diets. 90, 1475-1482.

225. Tinsley GM, Willoughby DSJJjosn, metabolism e (2016) Fat-free mass changes during ketogenic diets and the potential role of resistance training. 26, 78-92.

226. Ashtary-Larky D, Daneghian S, Alipour M et al. (2018) Waist Circumference to Height Ratio: Better Correlation with Fat Mass Than Other Anthropometric Indices During Dietary Weight Loss in Different Rates. International journal of endocrinology and metabolism 16.

227. Ashtary-Larky D, Ghanavati M, Lamuchi-Deli N et al. (2017) Rapid weight loss vs. slow weight loss: which is more effective on body composition and metabolic risk factors? International journal of endocrinology and metabolism 15.

228. Vink RG, Roumans NJ, Arkenbosch LA et al. (2016) The effect of rate of weight loss on long-term weight regain in adults with overweight and obesity. Obesity 24, 321-327.

229. Peos JJ, Norton LE, Helms ER et al. (2019) Intermittent dieting: theoretical considerations for the athlete. Sports 7, 22.

230. Raymond JL, Morrow K (2020) Krause and Mahan’s Food and the Nutrition Care Process E-Book: Elsevier Health Sciences.

231. Gormsen LC, Svarth M, Thomsen HH et al. (2017) Ketone Body Infusion With 3-Hydroxybutyrate Reduces Myocardial Glucose Uptake and Increases Blood Flow in Humans: A Positron Emission Tomography Study. Journal of the American Heart Association 6, e005066.

232. Ashtary Larky D, Bagheri R, Abbasnezhad A et al. (2020) Effects of gradual weight loss vs rapid weight loss on body composition and resting metabolic rate: A systematic review and meta-analysis.
233. Noakes M, Foster PR, Keogh JB et al. (2006) Comparison of isocaloric very low carbohydrate/high saturated fat and high carbohydrate/low saturated fat diets on body composition and cardiovascular risk. *Nutrition & metabolism* 3, 7.

234. Brehm BJ, Spang SE, Lattin BL et al. (2005) The role of energy expenditure in the differential weight loss in obese women on low-fat and low-carbohydrate diets. *The Journal of Clinical Endocrinology & Metabolism* 90, 1475-1482.

235. Gomez-Arbelaez D, Crujeiras AB, Castro AI et al. (2018) Resting metabolic rate of obese patients under very low calorie ketogenic diet. 15, 18.

236. McDaniel SS, Rensing NR, Thio LL et al. (2011) The ketogenic diet inhibits the mammalian target of rapamycin (mTOR) pathway. *Epilepsia* 52, e7-e11.

237. Longo VD, Mattson MP (2014) Fasting: molecular mechanisms and clinical applications. *Cell metabolism* 19, 181-192.

238. Bolster DR, Crozier SJ, Kimball SR et al. (2002) AMP-activated protein kinase suppresses protein synthesis in rat skeletal muscle through down-regulated mammalian target of rapamycin (mTOR) signaling. *J Biol Chem* 277, 23977-23980.

239. Cantó C, Gerhart-Hines Z, Feige JN et al. (2009) AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. *Nature* 458, 1056.

240. Garcia D, Shaw RJ (2017) AMPK: Mechanisms of Cellular Energy Sensing and Restoration of Metabolic Balance. *Mol Cell* 66, 789-800.

241. Jäger S, Handschin C, Pierre JS- et al. (2007) AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α. *Proceedings of the National Academy of Sciences* 104, 12017-12022.

242. Merrill GF, Kurth EJ, Hardie DG et al. (1997) AICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle. *Am J Physiol* 273, E1107-1112.
243. Fulco M, Cen Y, Zhao P et al. (2008) Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt.

Developmental cell **14**, 661-673.

244. Nemoto S, Fergusson MM, Finkel T (2005) SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1α. *Journal of Biological Chemistry* **280**, 16456-16460.

245. Gerhart-Hines Z, Rodgers JT, Bare O et al. (2007) Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1α. *The EMBO journal* **26**, 1913-1923.

246. Rodgers JT, Lerin C, Haas W et al. (2005) Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1. *Nature* **434**, 113.

247. Lagouge M, Argmann C, Gerhart-Hines Z et al. (2006) Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. *Cell* **127**, 1109-1122.

248. Anderson RM, Barger JL, Edwards MG et al. (2008) Dynamic regulation of pgc-1α localization and turnover implicates mitochondrial adaptation in calorie restriction and the stress response. *Aging cell* **7**, 101-111.

249. Paoli A, Bianco A, Grimaldi KA (2015) The ketogenic diet and sport: a possible marriage? *Exercise and sport sciences reviews* **43**, 153-162.

250. Draznin B, Wang C, Adochio R et al. (2012) Effect of dietary macronutrient composition on AMPK and SIRT1 expression and activity in human skeletal muscle. *Hormone and Metabolic Research* **44**, 650-655.

251. Sandri M, Barberi L, Bijlsma A et al. (2013) Signalling pathways regulating muscle mass in ageing skeletal muscle. The role of the IGF1-Akt-mTOR-FoxO pathway. *Biogerontology* **14**, 303-323.

252. Verreijen AM, Verlaan S, Engberink MF et al. (2014) A high whey protein-, leucine-, and vitamin D–enriched supplement preserves muscle mass during intentional weight loss in
Accepted manuscript

obese older adults: a double-blind randomized controlled trial. *The American journal of clinical nutrition* **101**, 279-286.

253. Weiss EP, Racette SB, Villareal DT *et al.* (2007) Lower extremity muscle size and strength and aerobic capacity decrease with caloric restriction but not with exercise-induced weight loss. *Journal of applied physiology* **102**, 634-640.

254. Mettler S, Mitchell N, Tipton KD (2010) Increased protein intake reduces lean body mass loss during weight loss in athletes. *Medicine & Science in Sports & Exercise* **42**, 326-337.

255. Stiegler P, Cunliffe A (2006) The role of diet and exercise for the maintenance of fat-free mass and resting metabolic rate during weight loss. *Sports medicine* **36**, 239-262.

256. Fromentin C, Tomé D, Nau F *et al.* (2013) Dietary proteins contribute little to glucose production, even under optimal gluconeogenic conditions in healthy humans. *Diabetes* **62**, 1435-1442.

257. Pozefsky T, TANcREDI RG, MoxLEY RT *et al.* (1976) Effects of brief starvation on muscle amino acid metabolism in nonobese man. *The Journal of clinical investigation* **57**, 444-449.

258. BENOIT FL, MARTIN RL, WATTEN RH (1965) Changes in body composition during weight reduction in obesity: balance studies comparing effects of fasting and a ketogenic diet. *Annals of internal medicine* **63**, 604-612.

259. Freeman J, Veggiotti P, Lanzi G *et al.* (2006) The ketogenic diet: from molecular mechanisms to clinical effects. *Epilepsy Res* **68**, 145-180.

260. Soeters MR, Soeters PB, Schooneman MG *et al.* (2012) Adaptive reciprocity of lipid and glucose metabolism in human short-term starvation. *American Journal of Physiology-Endocrinology and Metabolism* **303**, E1397-E1407.

261. Young CM, Scanlan SS, Im HS *et al.* (1971) Effect on body composition and other parameters in obese young men of carbohydrate level of reduction diet. *The American journal of clinical nutrition* **24**, 290-296.
262. Manninen AH (2004) Is a calorie really a calorie? Metabolic advantage of low-carbohydrate diets. *Journal of the International Society of Sports Nutrition* 1, 21.

263. Manninen AH (2006) Very-low-carbohydrate diets and preservation of muscle mass. *Nutrition & metabolism* 3, 9.

264. Mathai JK, Liu Y, Stein HHJBJoN (2017) Values for digestible indispensable amino acid scores (DIAAS) for some dairy and plant proteins may better describe protein quality than values calculated using the concept for protein digestibility-corrected amino acid scores (PDCAAS). 117, 490-499.

265. Pasiakos SM, Cao JJ, Margolis LM et al. (2013) Effects of high-protein diets on fat-free mass and muscle protein synthesis following weight loss: a randomized controlled trial. 27, 3837-3847.

266. Cuthbertson D, Smith K, Babraj J et al. (2005) Anabolic signaling deficits underlie amino acid resistance of wasting, aging muscle. 19, 1-22.

267. Paoli A, Grimaldi K, D’Agostino D et al. (2012) Ketogenic diet does not affect strength performance in elite artistic gymnasts. *Journal of the International Society of Sports Nutrition* 9, 34.

268. Urbain P, Strom L, Morawski L et al. (2017) Impact of a 6-week non-energy-restricted ketogenic diet on physical fitness, body composition and biochemical parameters in healthy adults. 14, 17.

269. Churchward-Venne TA, Burd NA, Phillips SM (2012) Nutritional regulation of muscle protein synthesis with resistance exercise: strategies to enhance anabolism. *Nutrition & metabolism* 9, 1-8.

270. Greenhaff PL, Karagounis L, Peirce N et al. (2008) Disassociation between the effects of amino acids and insulin on signaling, ubiquitin ligases, and protein turnover in human muscle. 295, E595-E604.

271. Roy B, Tarnopolsky M, MacDougall J et al. (1997) Effect of glucose supplement timing on protein metabolism after resistance training. *Journal of Applied Physiology*.

272. Børsheim E, Cree MG, Tipton KD et al. (2004) Effect of carbohydrate intake on net muscle protein synthesis during recovery from resistance exercise. *Journal of applied physiology* **96**, 674-678.

273. Greenhaff PL, Karagounis L, Peirce N et al. (2008) Disassociation between the effects of amino acids and insulin on signaling, ubiquitin ligases, and protein turnover in human muscle. *American Journal of Physiology-Endocrinology and Metabolism* **295**, E595-E604.

274. Gelfand RA, Barrett EJ (1987) Effect of physiologic hyperinsulinemia on skeletal muscle protein synthesis and breakdown in man. *The Journal of clinical investigation* **80**, 1-6.

275. Biolo G, Williams BD, Fleming R et al. (1999) Insulin action on muscle protein kinetics and amino acid transport during recovery after resistance exercise. *Diabetes* **48**, 949-957.

276. Wilkes EA, Selby AL, Atherton PJ et al. (2009) Blunting of insulin inhibition of proteolysis in legs of older subjects may contribute to age-related sarcopenia. **90**, 1343-1350.

277. Abdulla H, Smith K, Atherton PJ et al. (2016) Role of insulin in the regulation of human skeletal muscle protein synthesis and breakdown: a systematic review and meta-analysis. **59**, 44-55.

278. Børsheim E, Tipton KD, Wolf SE et al. (2002) Essential amino acids and muscle protein recovery from resistance exercise. *American Journal of Physiology-Endocrinology And Metabolism*.

279. Miller SL, Tipton KD, Chinkes DL et al. (2003) Independent and combined effects of amino acids and glucose after resistance exercise. *Medicine and science in sports and exercise* **35**, 449-455.

280. Rasmussen BB, Tipton KD, Miller SL et al. (2000) An oral essential amino acid-carbohydrate supplement enhances muscle protein anabolism after resistance exercise. *Journal of applied physiology* **88**, 386-392.

281. Tipton KD, Ferrando AA, Phillips SM et al. (1999) Postexercise net protein synthesis in human muscle from orally administered amino acids. *American Journal of Physiology-Endocrinology And Metabolism* **276**, E628-E634.
282. Tipton KD, Rasmussen BB, Miller SL et al. (2001) Timing of amino acid-carbohydrate ingestion alters anabolic response of muscle to resistance exercise. *American Journal of Physiology-Endocrinology And Metabolism.*

283. Gomez-Arbelaez D, Bellido D, Castro AI et al. (2017) Body composition changes after very-low-calorie ketogenic diet in obesity evaluated by 3 standardized methods. 102, 488-498.

284. Going SB, Massett MP, Hall MC et al. (1993) Detection of small changes in body composition by dual-energy x-ray absorptiometry. *The American journal of clinical nutrition* 57, 845-850.

285. Koulmann N, Jimenez C, Regal D et al. (2000) Use of bioelectrical impedance analysis to estimate body fluid compartments after acute variations of the body hydration level. *Medicine and science in sports and exercise* 32, 857-864.

286. Guth E (2014) Healthy weight loss. *Jama* 312, 974-974.

287. Denke MA (2001) Metabolic effects of high-protein, low-carbohydrate diets. *American Journal of Cardiology* 88, 59-61.

288. Williams R, Wood L, Collins C et al. (2015) Effectiveness of weight loss interventions—is there a difference between men and women: a systematic review. 16, 171-186.

289. Kashubeck-West S, Mintz LB, Weigold IJSR (2005) Separating the effects of gender and weight-loss desire on body satisfaction and disordered eating behavior. 53, 505-518.

290. Salvador AC, Arends D, Barrington WT et al. (2021) Sex-specific genetic architecture in response to American and ketogenic diets. 1-14.

291. Sahagun E, Bachman BB, Kinzig KPJN, Metabolism et al. (2021) Sex-specific effects of ketogenic diet after pre-exposure to a high-fat, high-sugar diet in rats. 31, 961-971.

292. Lyngstad A, Nymo S, Coutinho SR et al. (2019) Investigating the effect of sex and ketosis on weight-loss-induced changes in appetite. 109, 1511-1518.
293. Brinkworth GD, Noakes M, Clifton PM et al. (2009) Effects of a low carbohydrate weight loss diet on exercise capacity and tolerance in obese subjects. 17, 1916-1923.

294. Gerdts E, Regitz-Zagrosek VJNm (2019) Sex differences in cardiometabolic disorders. 25, 1657-1666.

295. Moghadam B, Bagheri R, Ashtary-Larky D et al. (2020) The Effects of Concurrent Training Order on Satellite Cell-Related Markers, Body Composition, Muscular and Cardiorespiratory Fitness in Older Men with Sarcopenia. 1-9.

296. Ashtary-Larky D, Vanani AN, Hosseini SA et al. (2018) Relationship between the body fat percentage and anthropometric measurements in athletes compared with non-athletes. 20, e10422.

297. Mohammadi HR, Khoshnam MS, Khoshnam EJljompm (2018) Effects of different modes of exercise training on body composition and risk factors for cardiovascular disease in middle-aged men. 9.

298. Bagheri R, Moghadam BH, Church DD et al. (2020) The effects of concurrent training order on body composition and serum concentrations of follistatin, myostatin and GDF11 in sarcopenic elderly men. 133, 110869.

299. Wong A, Figueroa A, Fischer SM et al. (2020) The Effects of Mat Pilates Training on Vascular Function and Body Fatness in Obese Young Women With Elevated Blood Pressure. 33, 563-569.

300. You T, Disanzo BL, Wang X et al. (2011) Adipose tissue endocannabinoid system gene expression: depot differences and effects of diet and exercise. 10, 194.

301. Theodorakopoulos C, Jones J, Bannerman E et al. (2017) Effectiveness of nutritional and exercise interventions to improve body composition and muscle strength or function in sarcopenic obese older adults: A systematic review. 43, 3-15.

302. Yamaguchi T, Saiki A, Endo K et al. (2011) Effect of exercise performed at anaerobic threshold on serum growth hormone and body fat distribution in obese patients with type 2 diabetes. 5, e9-e16.
303. Jakicic JM, Clark K, Coleman E et al. (2001) Appropriate intervention strategies for weight loss and prevention of weight regain for adults.

304. Donnelly JE, Blair SN, Jakicic JM et al. (2009) Appropriate physical activity intervention strategies for weight loss and prevention of weight regain for adults. 41, 459-471.

305. Chilibeck PD, Calder AW, Sale DG et al. (1997) A comparison of strength and muscle mass increases during resistance training in young women. 77, 170-175.

306. Candow DG, Burke DGJJos, research c (2007) Effect of short-term equal-volume resistance training with different workout frequency on muscle mass and strength in untrained men and women. 21, 204.

307. Antonio J, Ellerbroek A, Silver T et al. (2015) A high protein diet (3.4 g/kg/d) combined with a heavy resistance training program improves body composition in healthy trained men and women—a follow-up investigation. Journal of the International Society of Sports Nutrition 12, 39.

308. Antonio J, Ellerbroek A, Silver T et al. (2016) The effects of a high protein diet on indices of health and body composition—a crossover trial in resistance-trained men. Journal of the International Society of Sports Nutrition 13, 3.

309. Wycherley TP, Noakes M, Clifton PM et al. (2010) A high-protein diet with resistance exercise training improves weight loss and body composition in overweight and obese patients with type 2 diabetes. Diabetes care 33, 969-976.

310. Aragon AA, Schoenfeld BJ, Wildman R et al. (2017) International society of sports nutrition position stand: diets and body composition. Journal of the International Society of Sports Nutrition 14, 16.

311. Kerksick CM, Wilborn CD, Roberts MD et al. (2018) ISSN exercise & sports nutrition review update: research & recommendations. 15, 38.

312. Burke LM, Hawley JA, Wong SH et al. (2011) Carbohydrates for training and competition. 29, S17-S27.
313. Jeukendrup AEJSM (2017) Periodized nutrition for athletes. 47, 51-63.

314. Burke LM, Loucks AB, Broad NJJoss (2006) Energy and carbohydrate for training and recovery. 24, 675-685.

315. Burke LM, Cox GR, Cummings NK et al. (2001) Guidelines for daily carbohydrate intake. 31, 267-299.

316. Kerkscie C, Harvey T, Stout J et al. (2008) International Society of Sports Nutrition position stand: nutrient timing. 5, 1-12.

317. Fujita S, Glynn EL, Timmerman KL et al. (2009) Supraphysiological hyperinsulinaemia is necessary to stimulate skeletal muscle protein anabolism in older adults: evidence of a true age-related insulin resistance of muscle protein metabolism. 52, 1889-1898.

318. Hillier TA, Fryburg DA, Jahn LA et al. (1998) Extreme hyperinsulinemia unmasks insulin’s effect to stimulate protein synthesis in the human forearm. 274, E1067-E1074.

319. Nygren J, Nair KSJD (2003) Differential regulation of protein dynamics in splanchnic and skeletal muscle beds by insulin and amino acids in healthy human subjects. 52, 1377-1385.

320. Abdulla H, Smith K, Atherton PJ et al. (2016) Role of insulin in the regulation of human skeletal muscle protein synthesis and breakdown: a systematic review and meta-analysis: Springer.

321. Bird SP, Tarpenning KM, Marino FEJEjoap (2006) Independent and combined effects of liquid carbohydrate/essential amino acid ingestion on hormonal and muscular adaptations following resistance training in untrained men. 97, 225-238.

322. Kiens B, Astrup AJE, reviews ss (2015) Ketogenic diets for fat loss and exercise performance: benefits and safety? 43, 109.

323. Zinn C, Wood M, Williden M et al. (2017) Ketogenic diet benefits body composition and well-being but not performance in a pilot case study of New Zealand endurance athletes. 14, 22.
324. Sawyer JC, Wood RJ, Davidson PW et al. (2013) Effects of a short-term carbohydrate-restricted diet on strength and power performance. 27, 2255-2262.

325. Miller VJ, LaFountain RA, Barnhart E et al. (2020) A Ketogenic diet combined with exercise alters mitochondrial function in human skeletal muscle while improving metabolic health. 319, E995-E1007.

326. Durkalec-Michalski K, Nowaczyk PM, Siedzik KJJotISoSN (2019) Effect of a four-week ketogenic diet on exercise metabolism in CrossFit-trained athletes. 16, 16.

327. LaFountain RA, Miller VJ, Barnhart EC et al. (2019) Extended ketogenic diet and physical training intervention in military personnel. 184, e538-e547.

328. Vargas S, Romance R, Petro JL et al. (2018) Efficacy of ketogenic diet on body composition during resistance training in trained men: a randomized controlled trial. 15, 31.

329. Jabekk PT, Moe IA, Meen HD et al. (2010) Resistance training in overweight women on a ketogenic diet conserved lean body mass while reducing body fat. 7, 17.

330. Gregory RM, Hamdan H, Torisky D et al. (2017) A low-carbohydrate ketogenic diet combined with 6-weeks of crossfit training improves body composition and performance. 3, 1-10.

331. McSwiney FT, Wardrop B, Hyde PN et al. (2018) Keto-adaptation enhances exercise performance and body composition responses to training in endurance athletes. Metabolism 81, 25-34.

332. Dostal T, Plews DJ, Hofmann P et al. (2019) Effects of a 12-week very-low carbohydrate high-fat diet on maximal aerobic capacity, high-intensity intermittent exercise, and cardiac autonomic regulation: non-randomized parallel-group study. 10, 912.

333. Benoit FL, Martin RL, WATTEN RHJ (1965) Changes in body composition during weight reduction in obesity: balance studies comparing effects of fasting and a ketogenic diet. 63, 604-612.

334. Robinson AM, Williamson DH (1980) Physiological roles of ketone bodies as substrates and signals in mammalian tissues. Physiological reviews 60, 143-187.
335. Newman JC, Verdin E (2014) Ketone bodies as signaling metabolites. *Trends in Endocrinology & Metabolism* **25**, 42-52.

336. Newman JC, Verdin E (2014) β-hydroxybutyrate: much more than a metabolite. *Diabetes research and clinical practice* **106**, 173-181.

337. Koeslag J, Noakes T, Sloan A (1980) Post-exercise ketosis. *The Journal of physiology* **301**, 79-90.

338. Balasse EO, Féry F (1989) Ketone body production and disposal: effects of fasting, diabetes, and exercise. *Diabetes/metabolism reviews* **5**, 247-270.

339. Johnson R, Walton J, Krebs H *et al.* (1969) Metabolic fuels during and after severe exercise in athletes and non-athletes. *The Lancet* **294**, 452-455.

340. Fery F, Balasse E (1986) Response of ketone body metabolism to exercise during transition from postabsorptive to fasted state. *American Journal of Physiology-Endocrinology And Metabolism* **250**, E495-E501.

341. Johnson R, Walton J (1971) Fitness, fatness, and post-exercise ketosis. *The Lancet* **297**, 566-568.

342. Goedecke JH, Christie C, Wilson G *et al.* (1999) Metabolic adaptations to a high-fat diet in endurance cyclists. *Metabolism* **48**, 1509-1517.

343. Klement RJ, Frobel T, Albers T *et al.* (2013) A pilot case study on the impact of a self-prescribed ketogenic diet on biochemical parameters and running performance in healthy and physically active individuals. *Nutrition and Medicine* **1**.

344. Mitchell WK, Wilkinson DJ, Phillips BE *et al.* (2016) Human skeletal muscle protein metabolism responses to amino acid nutrition. **7**, 828S-838S.

345. Phillips SMJPotns (2011) The science of muscle hypertrophy: making dietary protein count. **70**, 100-103.

346. Tipton KD, Phillips SM (2013) Dietary protein for muscle hypertrophy. In *Limits of Human Endurance*, vol. 76, pp. 73-84: Karger Publishers.
347. van Loon LJ, Gibala MJ (2011) Dietary protein to support muscle hypertrophy. In Sports Nutrition: More Than Just Calories-Triggers for Adaptation, vol. 69, pp. 79-96: Karger Publishers.

348. Paoli A, Cancellara P, Pompei P et al. (2019) Ketogenic diet and skeletal muscle hypertrophy: a frenemy relationship? 68, 233-247.

349. McKay AK, Peeling P, Pyne DB et al. (2019) Acute carbohydrate ingestion does not influence the post-exercise iron-regulatory response in elite keto-adapted race walkers. 22, 635-640.

350. Ma S, Suzuki KJS (2019) Keto-adaptation and endurance exercise capacity, fatigue recovery, and exercise-induced muscle and organ damage prevention: a narrative review. 7, 40.

351. Kennedy AR, Pissios P, Otu H et al. (2007) A high-fat, ketogenic diet induces a unique metabolic state in mice. American Journal of Physiology-Endocrinology and Metabolism 292, E1724-E1739.

352. Frommelt L, Bielohuby M, Menhofer D et al. (2014) Effects of low carbohydrate diets on energy and nitrogen balance and body composition in rats depend on dietary protein-to-energy ratio. Nutrition 30, 863-868.

353. Volek JS, Phinney SD, Forsythe CE et al. (2009) Carbohydrate restriction has a more favorable impact on the metabolic syndrome than a low fat diet. Lipids 44, 297-309.

354. Volek JS, Sharman MJ, Love DM et al. (2002) Body composition and hormonal responses to a carbohydrate-restricted diet. Metabolism-Clinical and Experimental 51, 864-870.

355. Willi SM, Oexmann MJ, Wright NM et al. (1998) The effects of a high-protein, low-fat, ketogenic diet on adolescents with morbid obesity: body composition, blood chemistries, and sleep abnormalities. Pediatrics 101, 61-67.
356. Jabekk PT, Moe IA, Meen HD et al. (2010) Resistance training in overweight women on a ketogenic diet conserved lean body mass while reducing body fat. *Nutrition & metabolism* 7, 17.

357. Kephart W, Pledge C, Roberson P et al. (2018) The three-month effects of a ketogenic diet on body composition, blood parameters, and performance metrics in CrossFit trainees: a pilot study. *Sports* 6, 1.

358. Wood RJ, Gregory SM, Sawyer J et al. (2012) Preservation of fat-free mass after two distinct weight loss diets with and without progressive resistance exercise. 10, 167-174.

359. Vargas-Molina S, Petro JL, Romance R et al. (2020) Effects of a ketogenic diet on body composition and strength in trained women. *Journal of the International Society of Sports Nutrition* 17, 1-10.

360. LaFountain RA, Miller VJ, Barnhart EC et al. (2019) Extended Ketogenic Diet and Physical Training Intervention in Military Personnel. *Military medicine* 184, e538-e547.

361. Zajac A, Poprzecki S, Maszczyk A et al. (2014) The effects of a ketogenic diet on exercise metabolism and physical performance in off-road cyclists. *Nutrients* 6, 2493-2508.

362. Coggan AR, Raguso CA, Gastaldelli A et al. (2000) Fat metabolism during high-intensity exercise in endurance-trained and untrained men. *Metabolism* 49, 122-128.

363. Boyd III A, Giamber S, Mager M et al. (1974) Lactate inhibition of lipolysis in exercising man. *Metabolism* 23, 531-542.

364. Wilson JM, Lowery RP, Roberts MD et al. (2017) The Effects of Ketogenic Dieting on Body Composition, Strength, Power, and Hormonal Profiles in Resistance Training Males. *Journal of strength and conditioning research*.

365. Rhyu H-s, Cho S-YJJoer (2014) The effect of weight loss by ketogenic diet on the body composition, performance-related physical fitness factors and cytokines of Taekwondo athletes. 10, 326.
366. Paoli A, Cenci L, Pompei P et al. (2021) Effects of two months of very low carbohydrate ketogenic diet on body composition, muscle strength, muscle area, and blood parameters in competitive natural body builders. 13, 374.

367. Vidić V, Ilić V, Toskić L et al. (2021) Effects of calorie restricted low carbohydrate high fat ketogenic vs. non-ketogenic diet on strength, body-composition, hormonal and lipid profile in trained middle-aged men. 40, 1495-1502.

368. Burke LM, Hawley JA, Wong SH et al. (2011) Carbohydrates for training and competition. Journal of sports sciences 29, S17-S27.

369. Despres J, Bouchard C, Savard R et al. (1984) The effect of a 20-week endurance training program on adipose-tissue morphology and lipolysis in men and women. 33, 235-239.

370. Kelley GA, Kelley KSJM (2006) Effects of aerobic exercise on C-reactive protein, body composition, and maximum oxygen consumption in adults: a meta-analysis of randomized controlled trials. 55, 1500-1507.

371. Yeo WK, Carey AL, Burke L et al. (2011) Fat adaptation in well-trained athletes: effects on cell metabolism. Applied Physiology, Nutrition, and Metabolism 36, 12-22.

372. Volek JS, Noakes T, Phinney SDJEjoss (2015) Rethinking fat as a fuel for endurance exercise. 15, 13-20.

373. Burke LMJTJop (2021) Ketogenic low-CHO, high-fat diet: the future of elite endurance sport? 599, 819-843.

374. Burke LM, Ross ML, Garvican-Lewis LA et al. (2017) Low carbohydrate, high fat diet impairs exercise economy and negates the performance benefit from intensified training in elite race walkers. 595, 2785-2807.

375. Shaw DM, Merien F, Braakhuis A et al. (2019) Effect of a Ketogenic Diet on Submaximal Exercise Capacity and Efficiency in Runners. 51, 2135-2146.
376. Burke LM, Whitfield J, Heikura IA et al. (2021) Adaptation to a low carbohydrate high fat diet is rapid but impairs endurance exercise metabolism and performance despite enhanced glycogen availability. 599, 771-790.

377. Yeo WK, Lessard SJ, Chen Z-P et al. (2008) Fat adaptation followed by carbohydrate restoration increases AMPK activity in skeletal muscle from trained humans. 105, 1519-1526.

378. Stellingwerff T, Spriet LL, Watt MJ et al. (2006) Decreased PDH activation and glycogenolysis during exercise following fat adaptation with carbohydrate restoration. 290, E380-E388.

379. Cameron-Smith D, Burke LM, Angus DJ et al. (2003) A short-term, high-fat diet up-regulates lipid metabolism and gene expression in human skeletal muscle. 77, 313-318.

380. Goedecke JH, Christie C, Wilson G et al. (1999) Metabolic adaptations to a high-fat diet in endurance cyclists. 48, 1509-1517.

381. Yeo WK, Paton CD, Garnham AP et al. (2008) Skeletal muscle adaptation and performance responses to once a day versus twice every second day endurance training regimens. Journal of Applied Physiology 105, 1462-1470.

382. Stellingwerff T, Spriet LL, Watt MJ et al. (2006) Decreased PDH activation and glycogenolysis during exercise following fat adaptation with carbohydrate restoration. American Journal of Physiology-Endocrinology and Metabolism 290, E380-E388.

383. Cameron-Smith D, Burke LM, Angus DJ et al. (2003) A short-term, high-fat diet up-regulates lipid metabolism and gene expression in human skeletal muscle. The American journal of clinical nutrition 77, 313-318.

384. White AM, Johnston CS, Swan PD et al. (2007) Blood ketones are directly related to fatigue and perceived effort during exercise in overweight adults adhering to low-carbohydrate diets for weight loss: a pilot study. 107, 1792-1796.

385. White AM, Johnston CS, Swan PD et al. (2007) Blood ketones are directly related to fatigue and perceived effort during exercise in overweight adults adhering to low-
carbohydrate diets for weight loss: a pilot study. *Journal of the American Dietetic Association* **107**, 1792-1796.

386. Phinney SD, Bistrian BR, Evans *et al.* (1983) The human metabolic response to chronic ketosis without caloric restriction: preservation of submaximal exercise capability with reduced carbohydrate oxidation. *Metabolism* **32**, 769-776.

387. Volek JS, Freidenreich DJ, Saenz *et al.* (2016) Metabolic characteristics of keto-adapted ultra-endurance runners. *Metabolism* **65**, 100-110.

388. Burke LM, Ross ML, Garvican-Lewis *et al.* (2017) Low carbohydrate, high fat diet impairs exercise economy and negates the performance benefit from intensified training in elite race walkers. *The Journal of Physiology* **595**, 2785-2807.

389. McSwiney FT, Wardrop B, Hyde *et al.* (2018) Keto-adaptation enhances exercise performance and body composition responses to training in endurance athletes. **81**, 25-34.

390. McSwiney FT, Fusco B, McCabe *et al.* (2021) Changes in body composition and substrate utilization after a short-term ketogenic diet in endurance-trained males. **38**.

391. Kang J, Ratamess NA, Faigenbaum *et al.* (2020) Ergogenic properties of ketogenic diets in normal-weight individuals: a systematic review. **39**, 665-675.

392. Ma S, Huang Q, Tominaga *et al.* (2018) An 8-week ketogenic diet alternated interleukin-6, ketolytic and lipolytic gene expression, and enhanced exercise capacity in mice. **10**, 1696.

393. Burke LM, Angus DJ, Cox *et al.* (2000) Effect of fat adaptation and carbohydrate restoration on metabolism and performance during prolonged cycling. **89**, 2413-2421.

394. Burke LM, Hawley JA, Angus *et al.* (2002) Adaptations to short-term high-fat diet persist during exercise despite high carbohydrate availability. **34**, 83-91.

395. Helge JW, Watt PW, Richter *et al.* (2001) Fat utilization during exercise: adaptation to a fat-rich diet increases utilization of plasma fatty acids and very low density lipoprotein-triacylglycerol in humans. **537**, 1009-1020.
396. Lambert EV, Speechly DP, Dennis SC et al. (1994) Enhanced endurance in trained cyclists during moderate intensity exercise following 2 weeks adaptation to a high fat diet. *69*, 287-293.

397. Zinn C, Wood M, Williden M et al. (2017) Ketogenic diet benefits body composition and well-being but not performance in a pilot case study of New Zealand endurance athletes. *Journal of the International Society of Sports Nutrition* 14, 22.

398. V. Lambert E, Hawley J, Goedecke J et al. (1997) Nutritional strategies for promoting fat utilization and delaying the onset of fatigue during prolonged exercise. *Journal of sports sciences* 15, 315-324.

399. Webster CC, Noakes TD, Chacko SK et al. (2016) Gluconeogenesis during endurance exercise in cyclists habituated to a long-term low carbohydrate high-fat diet. *594*, 4389-4405.

400. Puglisi M (2019) Dietary Fat and Sports Performance. In *Nutrition and Enhanced Sports Performance*, pp. 555-569: Elsevier.

401. Turcotte LP (1999) Role of fats in exercise: types and quality. *Clinics in sports medicine* 18, 485-498.

402. Schrauwen P, Wagenmakers A, van Marken Lichtenbelt WD et al. (2000) Increase in fat oxidation on a high-fat diet is accompanied by an increase in triglyceride-derived fatty acid oxidation. *Diabetes* 49, 640-646.

403. Kiens B, Essen-Gustavsson B, Gad P et al. (1987) Lipoprotein lipase activity and intramuscular triglyceride stores after long-term high-fat and high-carbohydrate diets in physically trained men. *Clinical Physiology* 7, 1-9.

404. Coyle EF, Jeukendrup AE, Oseto MC et al. (2001) Low-fat diet alters intramuscular substrates and reduces lipolysis and fat oxidation during exercise. *American Journal of Physiology-Endocrinology And Metabolism* 280, E391-E398.

405. Starling RD, Trappe TA, Parcell AC et al. (1997) Effects of diet on muscle triglyceride and endurance performance. *Journal of Applied Physiology* 82, 1185-1189.
406. Michalczyk M, Zajac A, Mikolajec K et al. (2018) No modification in blood lipoprotein concentration but changes in body composition after 4 weeks of low carbohydrate diet (LCD) followed by 7 days of carbohydrate loading in basketball players. *Journal of human kinetics* **65**, 125.

407. Hearris M, Hammond K, Fell J et al. (2018) Regulation of muscle glycogen metabolism during exercise: implications for endurance performance and training adaptations. *Nutrients* **10**, 298.

408. Cipryan L, Plews DJ, Ferretti A et al. (2018) Effects of a 4-week very low-carbohydrate diet on high-intensity interval training responses. *17*, 259.

409. Gyorkos A, Baker MH, Miutz LN et al. (2019) Carbohydrate-restricted diet and high-intensity interval training exercise improve cardio-metabolic and inflammatory profiles in metabolic syndrome: A randomized crossover trial. *11*.

