A JEU DE TAQUIN THEORY FOR INCREASING TABLEAUX, WITH APPLICATIONS TO K-THEORETIC SCHUBERT CALCULUS

HUGH THOMAS AND ALEXANDER YONG

ABSTRACT. We introduce a theory of jeu de taquin for increasing tableaux, extending fundamental work of [Schützenberger ’77] for standard Young tableaux. We apply this to give a new combinatorial rule for the K-theory Schubert calculus of Grassmannians via K-theoretic jeu de taquin, providing an alternative to the rules of [Buch ’02] and others. This rule naturally generalizes to give a conjectural root-system uniform rule for any minuscule flag variety \(G/P\), extending [Thomas-Yong ’06]. We also present analogues of results of Fomin, Haiman, Schensted and Schützenberger.

CONTENTS

1. Introduction 2
1.1. Main definitions 3
1.2. Minuscule Schubert calculus 5
1.3. Organization of this paper 6
2. Growth diagrams 6
3. The infusion involution 8
4. A generalization of Schützenberger’s evacuation involution 10
5. Proof of the \(K\)djt rule 11
6. Proof of the \(K\)rect theorem 13
7. Minuscule Schubert calculus conjectures: example and discussion 16
8. Counterexamples 17
9. Concluding remarks 18
9.1. Proctor’s \(d\)-complete posets 18
9.2. A product-differences conjecture 18
9.3. Hecke insertion and factor sequence formulae 19
Appendix: Grothendieck polynomials 19
Acknowledgments 20
References 21

Date: September 16, 2007.
HT was supported by an NSERC Discovery grant. AY was supported by NSF grant 0601010.
1. Introduction

In this paper, we introduce a *jeu de taquin* type theory for increasing tableaux, extending Schützenberger’s fundamental framework [Sc77] to the (K-theoretic) Grothendieck polynomial context introduced by Lascoux and Schützenberger [LaSc82].

One motivation and application for this work comes from Schubert calculus. Let $X = \text{Gr}(k, C^n)$ be the Grassmannian of k-planes in C^n and let $K(X)$ be the Grothendieck ring of algebraic vector bundles over X, see, e.g., the expositions [Br05, Bu05a] for definitions and discussion. To each partition, as identified with its Young shape $\lambda \subseteq \Lambda := k \times (n-k)$, let X_λ be the associated Schubert variety and \mathcal{O}_{X_λ} its structure sheaf. The classes $\{[\mathcal{O}_{X_\lambda}]\} \subseteq K(X)$ form an additive \mathbb{Z}-basis of $K(X)$. The (K-theoretic) Schubert structure constants $C^\nu_{\lambda,\mu}$ are defined by

$$[\mathcal{O}_{X_\lambda}] \cdot [\mathcal{O}_{X_\mu}] = \sum_{\nu \subseteq \Lambda} C^\nu_{\lambda,\mu} [\mathcal{O}_{X_\nu}].$$

Buch’s rule [Bu02a] established alternation of sign, i.e., $(-1)^{|\nu| - |\lambda| - |\mu|} C^\nu_{\lambda,\mu} \in \mathbb{N}$.

There has been significant interest in the Grothendieck ring of X and of related varieties, see work on, e.g., quiver loci [Bu02b, Bu05b, Mi05, BuKrShTaYo06], Hilbert series of determinantal ideals [KnMi05, KnMiYo05a, KnMiYo05b], applications to invariants of matroids [Sp06], and in relation to representation theory [GrRa04, LePo04, Wi06]. See also work of [LaPy07] concerning combinatorial Hopf algebras.

We aim to provide unifying foundational combinatorics in support of further such developments. Evidence of the efficacy of this approach is provided through our study of minuscule Schubert calculus; other uses are also suggested. In particular, as a non-algebraic geometric application, in forthcoming work [ThYo07+], we relate the ideas in this paper to [BuKrShTaYo06] and the study of longest strictly increasing subsequences in random words.

The classical setting for the Littlewood-Richardson coefficients is the cohomology case when

$$|\lambda| + |\mu| = |\nu|,$$

where $|\lambda| = \sum_i \lambda_i$ is the size of λ. Here, $C^\nu_{\lambda,\mu}$ counts points in the intersection of three general Schubert varieties. These numbers determine the ring structure of the cohomology $H^*(X, \mathbb{Q})$. Combinatorially, they are governed by the tableau theory of Schur polynomials. Schützenberger’s *jeu de taquin* theory, [Sc77] by which the first modern statement and proof of a Littlewood-Richardson rule was constructed, has had a central impact here.

While $H^*(X, \mathbb{Q})$ reflects important geometric data about X, this is even more true of $K(X)$. The combinatorics of the latter is encoded by the Grothendieck polynomials of Lascoux and Schützenberger [LaSc82] (for more details, see the Appendix). This richer environment parallels the Schur polynomial setting, as demonstrated by, e.g., [Le00, Bu02a, BuKrShTaYo06]. However, basic gaps in this comparison remain. In particular, one lacks an analogue of the *jeu de taquin* theory. This also raises questions of intrinsic combinatorial interest.

We introduce a jeu de taquin construction, thereby allowing for K-theoretic generalizations of a number of results from algebraic combinatorics. In particular, we give an analogue of Schützenberger’s Littlewood-Richardson rule. In addition, we also extend
Fomin’s growth diagrams, allowing for, e.g., a generalization of Schützenberger’s evacuation involution. On the other hand, it is interesting that natural generalizations of some results from the classical theory are not true, underlining some basic combinatorial obstructions.

One feature of our rule is that it has a natural conjectural generalization to any minuscule flag variety G/P, extending our earlier work [ThYo06, ThYo07a]; this provides the first generalized Littlewood-Richardson formula (even conjectural) for K-theory, outside of the Grassmannians. (There are already a number of more specialized K-theoretic Schubert calculus formulas proven for any G/P, such as the Pieri-type formulas of [LePo04] and others).

1.1. Main definitions. An increasing tableau T of shape ν/λ is a filling of the skew shape $\text{shape}(T) = \nu/\lambda$ with $\{1, 2, \ldots, q\}$ where $q \leq |\nu/\lambda|$ such that the entries of T strictly increase along each row and column. We write $\max T$ for the maximum entry in T. In particular, when $\max T = |\nu/\lambda|$ and each label appears exactly once, T is a standard Young tableau. Let $\text{INC}(\nu/\lambda)$ be the set of these increasing tableaux and $\text{SYT}(\nu/\lambda)$ be the set of standard Young tableaux for ν/λ. Below we give an example of an increasing tableau and a standard Young tableau, each of shape $\nu/\lambda = (5, 3, 1)/(2, 1)$:

$$
\begin{array}{cccc}
1 & 2 & 3 \\
1 & 3 \\
2
\end{array} \in \text{INC}((5, 3, 1)/(2, 1))
\quad
\begin{array}{cccc}
1 & 4 & 6 \\
2 & 5 \\
3
\end{array} \in \text{SYT}((5, 3, 1)/(2, 1))
$$

We also need to define the superstandard Young tableau S_μ of shape λ to be the standard Young tableau that fills the first row with $1, 2, \ldots, \lambda_1$, the second row with $\lambda_1 + 1, \lambda_1 + 2, \ldots, \lambda_1 + \lambda_2$ etc. For example,

$$
S_{(5,3,3,1)} =
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
6 & 7 & 8 \\
9 & 10 & 11 \\
12
\end{array}
$$

A short ribbon R is a connected skew shape that does not contain a 2×2 subshape and where each row and column contains at most two boxes. A alternating ribbon is a filling of a short ribbon R with two symbols where adjacent boxes are filled differently. We define $\text{switch}(R)$ to be the alternating ribbon of the same shape as R but where each box is instead filled with the other symbol. For example, we have:

$$
R = \begin{array}{ccc}
\bullet & \circ \\
\circ & \bullet & \circ \\
\bullet & \circ
\end{array}
\quad
\text{switch}(R) = \begin{array}{ccc}
\circ & \bullet \\
\bullet & \circ & \circ \\
\bullet & \circ
\end{array}
$$

By definition, if R is a ribbon consisting of a single box, switch does nothing to it. We define switch to act on a skew shape consisting of multiple connected components, each of which is a short ribbon, by acting on each separately.

Our starting point is the following new idea. Given $T \in \text{INC}(\nu/\lambda)$, an inner corner is any maximally southeast box $x \in \lambda$. Now fix a set $\{x_1, \ldots, x_s\}$ of inner corners and let each of these boxes is filled with a “•”. Consider the union of short ribbons R_1 which is made of boxes with entries • or 1. Apply switch to R_1. Now let R_2 be the union of short ribbons consisting of boxes with entries • or 2, and proceed as before. Repeat this process $\max T$
times, in other words, until the \(\bullet \)'s have been switched past all the entries of \(T \). The final placement of the numerical entries gives \(K_{jdt}(x_i)(T) \).

Example 1.1. Let \(T = \begin{array}{ccc}
1 & 2 & 3 \\
2 & 3 & 1 \\
\end{array} \) as above and \(\{x_i\} \) as indicated below:

\[
\begin{array}{c}
\bullet 1 2 3 \mapsto 1 \bullet 2 3 \mapsto 1 2 \bullet 3 \mapsto 1 2 3 \bullet \\
\bullet 2 3 \mapsto 2 \bullet 3 \mapsto 2 3 \bullet \\
\end{array}
\]

and therefore \(K_{jdt}(x_i) = \begin{array}{ccc}
1 & 2 & 3 \\
2 & 3 & 1 \\
\end{array} \).

It is easy to see that \(K_{jdt}(x_i)(T) \) is an increasing tableau also. Moreover, if \(T \) is a standard Young tableau, and only one corner \(x \) is selected, the result is an **ordinary jeu de taquin slide** \(jdt_x(T) \). Given \(T \in \text{INC}(\nu/\lambda) \) we can iterate applying \(K_{jdt} \)-slides until no such moves are possible. The result \(K_{\text{rect}}(T) \), which we call a \(K \)-**rectification** of \(T \), is an increasing tableau of straight shape, i.e., one whose shape is given by some partition \(\lambda \).

Theorem 1.2. Let \(T \in \text{INC}(\nu/\lambda) \). If \(K_{\text{rect}}(T) \) is a superstandard tableau \(S_\mu \) for some rectification order, then \(K_{\text{rect}}(T) = S_\mu \) for any rectification order.

It will also be convenient to define **reverse slides** \(K_{\text{rev}jdt}(x_i)(T) \) of \(T \in \text{INC}(\nu/\lambda) \), where now each \(x_i \) is an **outer corner**, i.e., a maximally northwest box \(x \in \Lambda \setminus \nu \). We can similarly define **reverse rectification** \(K_{\text{revrect}}(T) \). Clearly, Theorem 1.2 also implies the “reverse version”. When we refer to **slides**, we mean either \(K_{jdt} \) or \(K_{\text{rev}jdt} \) operations.

This result may be compared to what is often called the “confluence theorem” or the “First Fundamental Theorem” in the original setting of [Sc77]. There, the superstandard assumption is unnecessary and so rectification is always well-defined. However this is not true in our more general context, and thus one has the task of recognizing the additional hypothesis needed.

Example 1.3. Consider the following two \(K \)-rectifications of the same skew tableau \(T \):

\[
\begin{array}{ccc}
\bullet 2 \mapsto 2 \bullet 4 \mapsto 2 \bullet 4 \mapsto 1 2 4 \mapsto 1 2 4 1 = T_1 \\
1 3 4 \mapsto 1 3 4 \mapsto 1 3 \mapsto 1 3 \\
\end{array}
\]

and

\[
\begin{array}{ccc}
\bullet 2 \mapsto 2 \bullet 4 \mapsto 2 \bullet 4 \mapsto 1 2 4 \mapsto 1 2 4 1 = T_2 \\
1 3 4 \mapsto 1 3 4 \mapsto 1 3 \mapsto 1 3 \\
\end{array}
\]

Now \(T_1 \neq T_2 \). However, neither rectification is superstandard.

We need Theorem 1.2 to state our new combinatorial rule for \(C_{\lambda,\mu}^\nu \):**

Theorem 1.4. \((-1)^{|\nu| - |\lambda| - |\mu|} C_{\lambda,\mu}^\nu \) counts the number of \(T \in \text{INC}(\nu/\lambda) \) where \(K_{\text{rect}}(T) = S_\mu \).

Example 1.5. The computation \(C_{(2,2),(2,1)}^{(3,2,2,1)} = -2 \) is witnessed by the increasing tableaux:

\[
\begin{array}{c}
\begin{array}{c}
2 \\
1 3 \\
\end{array}
\end{array}
\quad \text{and} \quad \begin{array}{c}
\begin{array}{c}
2 \\
1 2 \\
\end{array}
\end{array}
\]
which both rectify to $\frac{1}{3}$.

One can replace the superstandard assumption by some other classes $\{C_{\mu}\}$ of tableau (most obviously the one where we consecutively number columns rather than rows), but we focus on the superstandard choice in this paper.

We will give a self-contained proof of Theorem 1.4 once granted Lenart’s Pieri rule [Le00].

A short review about past work on K-theoretic Littlewood-Richardson rules is in order: The first rule for $C_{\lambda,\mu}^\gamma$ was given by Buch [Bu02a], who gave a generalization of the reverse lattice word formulation of the classical Littlewood-Richardson rule. That formula utilized the new idea of set-valued tableaux (see the Appendix). Afterwards, another formula was given by Lascoux [La02] in terms of counting paths in a certain tree (generalizing the Lascoux-Schützenberger tree, see, e.g., [Ma01]). In [KnYo04], Lascoux’s rule was reformulated in terms of diagram marching moves, and it was also extended to compute a wider class of K-theoretic Schubert structure constants. More recently, in [BuKrShTaYo06], a rule was given for another class of combinatorial numbers generalizing $C_{\lambda,\mu}^\gamma$. This rule specializes to a new formula for $C_{\lambda,\mu}^\gamma$ and in fact gives an independent proof of Buch’s rule.

1.2. Minuscule Schubert calculus. In earlier work [ThYo06, ThYo07a], we introduced root-system uniform combinatorial rules for minuscule Schubert calculus. Theorem 1.4 has the advantage that it admits a straightforward conjectural generalization to the minuscule setting. We state one form of our conjecture below; more details will appear in forthcoming work.

Let G be a complex, connected reductive Lie group with root system Φ, positive roots Φ^+ and base of simple roots Δ. To each subset of Δ is associated a parabolic subgroup P. The generalized flag variety G/P has Schubert varieties

$$X_w := \overline{B_-wP/P} \text{ for } wW_P \in W/W_P,$$

where W is the Weyl group of G and W_P is the parabolic subgroup of W corresponding to P. Let $K(G/P)$ be the Grothendieck ring of G/P, with a basis of Schubert structure sheaves $\{[O_{X_w}]\}$. Define Schubert structure constants $C_{\mu,\nu}^\lambda(G/P)$ as before, by

$$[O_{X_\mu}] \cdot [O_{X_\nu}] = \sum_{wW_P \in W/W_P} C_{\mu,\nu}^\lambda(G/P)[O_{X_w}].$$

Brion [Br05] has established that

$$(-1)^{\ell(w)-\ell(u)-\ell(\nu)}C_{\mu,\nu}^\lambda(G/P) \in \mathbb{N},$$

where $\ell(w)$ is the Coxeter length of the minimal length coset representative of wW_P.

A maximal parabolic subgroup P is said to be minuscule if the associated fundamental weight ω_P satisfies $\langle \omega_P, \alpha^\vee \rangle \leq 1$ for all $\alpha \in \Phi^+$ under the usual pairing between weights and coroots. The minuscule flag varieties G/P are classified into five infinite families and two exceptional cases (the type A_{n-1} cases are the Grassmannians $Gr(k, \mathbb{C}^n)$).

Associated to each minuscule G/P is a planar poset $(\Lambda_{G/P}, \prec)$, obtained as a subposet of the poset of positive roots Ω_{G^\vee} for the dual root system of G. In this context, shapes λ are lower order ideals in this poset. These shapes are in bijection with the cosets wW_P indexing the Schubert varieties; in particular, if $wW_P \leftrightarrow \nu$ under this bijection, $\ell(w) = |\nu|$.

Define a skew shape $\nu/\lambda := \nu \setminus \lambda$ to be a set theoretic difference of two shapes. Define an increasing tableau of shape ν/λ to be an assignment

$$\text{label} : \nu/\lambda \to \{1, 2, \ldots, q\}$$

such that $\text{label}(x) < \text{label}(y)$ whenever $x < y$, and where each label appears at least once. An inner corner of ν/λ is a maximal element $x \in \Lambda_{G/P}$ that is below some element in ν/λ. With these definitions, we define notions of $\text{INC}_{G/P}(\nu/\lambda), \text{Kjdt}_{G/P, \{x_i\}}, \text{Krect}_{G/P}$, superstandard S_μ, etc., in a manner analogous to those we have given for the Grassmannian. The following rule is new for all minuscule G/P:

Conjecture 1.6. For any minuscule G/P, $(−1)^{\nu\setminus|\lambda|−|\mu|}C_{\lambda,\mu}^\gamma(G/P)$ equals the number of $T \in \text{INC}_{G/P}(\nu/\lambda)$ such that $\text{Krect}_{G/P}(T) = S_\mu$.

Implicit in this conjecture is the conjecture that an analogue of Theorem 1.2 holds. A weaker form of these conjectures is that there is a tableau C_μ for each shape μ such that the aforementioned conjectures hold after replacing S_μ by C_μ.

Briefly, using the ideas contained in this paper, together with those in [ThYo06, ThYo07a], it is not hard to show that $\text{Kjdt}_{G/P, \{x_i\}}$ is well-defined. The next aim is to establish the analogue of Theorem 1.2. Once this is achieved we can prove that our conjectural rule defines an associative, commutative ring with an additive \mathbb{Z}-basis indexed by shapes. It would then remain to show that such rules compute the correct geometric numbers.

1.3. **Organization of this paper.** In Section 2, we introduce an analogue of Fomin’s growth diagrams, which compute K-rectifications; their symmetries make it possible to give a simple proof of the infusion involution of Section 3. In Section 4, we again exploit growth diagrams to give an analogue of Schützenberger’s evacuation involution. In Section 5, we use the infusion involution to show that if Theorem 1.2 holds, then Theorem 1.4 indeed computes Schubert calculus. Theorem 1.2 itself is actually proved in Section 6, where we also need a connection to longest strictly increasing subsequences of reading words of tableaux. In Section 7, we give more details of our conjectural minuscule Schubert calculus rule, together with an example. In Section 8, we give counterexamples to natural analogues of various results that are true for classical Young tableau theory. Finally, in Section 9 we give some concluding remarks and further conjectures. In order to be self-contained, we provide an appendix giving background about Grothendieck polynomials so that our results can be given a completely elementary and concrete origin.

2. **Growth diagrams**

A construction that is important to this paper is a generalization of Fomin’s growth diagram ideas to the K-theory context.

Let \mathbb{Y} be the Young lattice, the partial order \leq on all shapes where $\lambda \leq \mu$ when λ is contained inside μ. The covering relations on \mathbb{Y} are $\lambda \leq \mu$ such that μ/λ is a single box.

Each increasing tableau T can be viewed as a shape sequence of increasing shapes in \mathbb{Y} where each successive shape is grown from the previous one by adding some number of boxes, no two in the same row or column.
Example 2.1.

Now, consider the following choice of rectification order:

where the •’s indicate the set of boxes to use in each Kjdt step. Each of these increasing tableaux also has a shape sequence, which we put one atop of another so the shapes increase moving up and to the right. The result is a K-theory growth diagram; in our example, we have:

Consider the following local conditions on any 2×2 subsquare α/γ of such a grid of shapes, where by assumption $\gamma \subseteq \alpha \subseteq \beta$ and $\gamma \subseteq \delta \subseteq \beta$, as in the example above:

(G1) α/γ is a collection of boxes no two in the same row or column, and similarly for β/α, β/δ, and δ/γ.

(G2) $\delta = Kjdt_{\alpha/\gamma}(T)$ where T is the filling of β/α by 1’s. This uniquely determines δ from γ, α and β. Similarly, α is uniquely determined by γ, δ and β.

In particular, (G1) and (G2) are symmetric in α and δ.

Proposition 2.2. If α/γ is a 2×2 square in a K-theory growth diagram, then (G1) and (G2) hold.

Proof. This is a straightforward verification. □

Note therefore that if G is a growth diagram, then so is G reflected about its antidiagonal.

Let $K\text{GROWTH}(\lambda, \mu; \nu)$ be the number of K-theory growth diagrams such that:

- the leftmost column encodes the superstandard tableau of shape λ;
- the bottom-most row encodes the superstandard tableau of shape μ;
- the top right corner is the shape ν.

The following fact is immediate from Theorem 1.4, giving an alternative formulation of Theorem 1.4:

Corollary 2.3. (of Theorem 1.4) $(-1)^{|\nu|-|\lambda|-|\mu|}C^\nu_{\lambda, \mu} = K\text{GROWTH}(\lambda, \mu; \nu)$.

By the symmetry of growth diagrams, the roles of the λ and μ can be interchanged, resulting in the same growth diagram (up to reflection). Therefore, the rule of Corollary 2.3 manifests the \mathbb{Z}_2 commutation symmetry $C_{\lambda,\mu} = C_{\mu,\lambda}$ coming from $[O_{\lambda}] [O_{\mu}] = [O_{\mu}] [O_{\lambda}]$.

An \mathbb{Z}_3-symmetric rule preserving the triality symmetry

$$C_{\lambda,\mu,\nu} = C_{\mu,\nu,\lambda} = C_{\nu,\lambda,\mu}$$

where $C_{\lambda,\mu,\nu} := C_{\nu,\lambda,\mu}$ etc., exists in the form of puzzles; see [Va05]). (Unlike in cohomology, in K-theory, this latter symmetry is not immediate from the geometric definitions; for a proof see [Bu02a, Va05]. In fact, this symmetry is not expected to hold for general G/P, although A. Knutson has informed us, in private communication, that it holds in the minuscule setting.) One can also hope for a manifestly S_3-symmetric rule, as is available for the cohomological Littlewood-Richardson coefficients via cartons [ThYo07b]. However we do not know how to extend cartons to the present context; see Section 8 for more notes.

Growth diagrams corresponding to the classical rectifications of a standard tableau (using only jdt moves) were first introduced by Fomin, see [St99, Appendix 1] and the references therein. In that case, the above Proposition simplifies. Specifically,

1. (F1) shapes increase by precisely one box in the “up” and “right” directions.
2. (F2) if α is the unique shape containing γ and contained in β, then $\delta = \alpha$; otherwise there is a unique such shape different than α, and this shape is δ.

(Similarly, α is uniquely determined by β, γ and δ.)

Fomin’s growth diagrams provide further useful combinatorial ideas that we extend below to the K-theory setting. These diagrams also arise (along with other classical tableau algorithms we generalize) in an elegant geometric context, due to work of van Leeuwen [vaLe00]; there are reasons to hope that one can extend his work to the setting of this paper.

3. THE INFUSION INVOLUTION

Given $T \in \text{INC}(\lambda/\alpha)$ and $U \in \text{INC}(\nu/\lambda)$ define

$$\text{Kinfusion}(T, U) = (\text{Kinfusion}_1(T, U), \text{Kinfusion}_2(T, U)) \in \text{INC}(\gamma/\alpha) \times \text{INC}(\nu/\gamma)$$

(for some straight shape γ) as follows: consider the largest label “m” that appears in T, appearing at x_1, \ldots, x_k. Apply the slide $K_{jdt_{\{x_i\}}}(U)$, leaving some “holes” at the other side of ν/λ. Place “m” in these holes and repeat, moving the labels originally from U until all labels of T are exhausted. The resulting tableau of shape γ/α and skew tableau of shape ν/γ are the outputted tableaux. To define

$$\text{Krevinfusion}(T, U) = (\text{Krevinfusion}_1(T, U), \text{Krevinfusion}_2(T, U)) \in \text{INC}(\gamma/\alpha) \times \text{INC}(\nu/\gamma)$$

we apply K_{revjdt} moves to T, moving into boxes of U. We begin by removing the labels “1” appearing in U at boxes $\{x_i\} \in \nu/\lambda$, apply $rev_{jdt_{\{x_i\}}}(T)$, and place the “1” in the vacated holes of λ and continuing with higher labels of U.

It is easy to show Kinfusion and Krevinfusion are inverses of one another, by inductively applying the observation that if $\{y_i\}$ are the boxes vacated by $K_{jdt_{\{x_i\}}}(T)$ then

$$K_{revjdt_{\{y_i\}}}(K_{jdt_{\{x_i\}}}(T)) = T.$$
We will need the following fact (the “infusion involution”, cf. [Ha92, BeStSo96]):

Theorem 3.1. For any increasing tableaux T and U such that $\text{shape}(U)$ extends $\text{shape}(T)$ then $\text{Kinfusion}(T, U) = \text{Krect}(T, U)$. That is, $\text{Kinfusion}(\text{Kinfusion}(T, U)) = (T, U)$.

Example 3.2. If $T = \begin{array}{ccc} 1 & 2 & 3 \\ 4 & 3 & 2 \\ \end{array}$ and $U = \begin{array}{cc} 2 & 3 \\ 1 & 4 \\ \end{array}$ then we compute Kinfusion as follows:

$$
\begin{array}{c|c|c|c|c|c|c|c|c|c}
1 & 2 & 3 & 2 & 2 & 3 & 2 & 2 & 3 & 2 \\
4 & 3 & 2 & 2 & 3 & 2 & 2 & 3 & 2 & 2 \\
\hline
1 & 2 & 3 & 2 & 2 & 3 & 2 & 2 & 3 & 2 \\
4 & 3 & 2 & 2 & 3 & 2 & 2 & 3 & 2 & 2 \\
\hline
1 & 2 & 3 & 2 & 2 & 3 & 2 & 2 & 3 & 2 \\
4 & 3 & 2 & 2 & 3 & 2 & 2 & 3 & 2 & 2 \\
\hline
\end{array}
$$

Hence

$$
\text{Kinfusion}(T, U) = \begin{pmatrix}
1 & 2 & 4 & 2 \\
2 & 3 & 4 & 2 \\
3 & 4 & 2 & 1 \\
4 & 2 & 1 & 3
\end{pmatrix}.
$$

The reader can check that applying Kinfusion to this pair returns (T, U), in agreement with the Theorem.

Proof. Construct the growth diagram for $\text{Krect}(U)$ using the slides suggested by the entries of T. Notice the bottom row represents $\text{Kinfusion}_1(T, U)$ and the right column represents $\text{Kinfusion}_2(T, U)$. However, by the antidiagonal symmetry of growth diagrams, the growth diagram computing Kinfusion applied to $\text{Kinfusion}(T, U)$ is simply the one for $\text{Kinfusion}(T, U)$ reflected about the antidiagonal.

Finally, the growth diagram formalism makes it straightforward to observe facts such as the following, which we will need in Section 6:

Lemma 3.3. Let $T \in \text{INC}(\nu/\lambda)$, $R \in \text{INC}(\lambda)$ and fix $a \in \mathbb{N}$. If A be the increasing tableau consisting of entries from 1 to a of T, and $B = T \setminus A$ is the remaining tableau, then $\text{Kinfusion}_1(R, T) = \text{Kinfusion}_1(R, A) \cup \text{Kinfusion}_1(\text{Kinfusion}_2(R, A), B)$.

Proof. Draw the growth diagram for $\text{Kinfusion}(R, T)$, encoding R on the left and T on the top. The shape $\text{shape}(R) \cup \text{shape}(A)$ appears on the top row. Draw a vertical line through the growth diagram at that point. The diagram to the left of this line encodes the rectification of A by R. The diagram to the right of the line encodes the rectification of $B = T \setminus A$ by the tableau encoded along the dividing line, which is $\text{Kinfusion}_2(R, A)$. □
While on the topic of growth diagrams, we take this opportunity to introduce a generalization of another classical result from tableau theory. This section will not be needed in the remainder of the paper.

For \(T \in \text{INC}(\lambda) \), let \(\circ T \) be obtained by erasing the (unique) entry 1 in the northwest corner \(c \) of \(T \) and subtracting 1 from the remaining entries. Let

\[
\Delta(T) = K \Delta t_{ij}(\circ T).
\]

The K-evacuation \(\text{Kevac}(T) \in \text{INC}(\lambda) \) is defined by the shape sequence

\[
\emptyset = \text{shape}(\Delta_{\text{max}}^T(T)) - \text{shape}(\Delta_{\text{max}}^{T-1}(T)) - \ldots - \text{shape}(\Delta^1(T)) - T.
\]

The following result extends Schützenberger’s classical theorem for \(T \in \text{SYT}(\lambda) \).

Theorem 4.1. \(\text{Kevac} : \text{INC}(\lambda) \rightarrow \text{INC}(\lambda) \) is an involution, i.e., \(\text{Kevac}(\text{Kevac}(T)) = T \).

Example 4.2. Let \(T = \begin{array}{cccc}
1 & 2 & 3 & 5 \\
2 & 3 & 4 & \\
4 & 5 & &
\end{array} \in \text{INC}((4, 3, 2)) \). Then the K-evacuation is computed by

\[
\Delta^1(T) = \begin{array}{ccc}
1 & 2 & 3 \\
2 & 3 & 4 \\
3 & 4 &
\end{array} \quad \Delta^2(T) = \begin{array}{ccc}
1 & 2 & 3 \\
2 & 3 & 2 \\
3 & &
\end{array} \quad \Delta^3(T) = \begin{array}{ccc}
1 & 2 & 3 \\
2 & 3 & \\
3 & &
\end{array} \quad \Delta^4(T) = \begin{array}{ccc}
1 & 2 & 3 \\
2 & & \\
3 & &
\end{array} \quad \Delta^5(T) = \emptyset.
\]

Thus \(\text{Kevac}(T) = \begin{array}{cccc}
1 & 2 & 3 & 4 \\
2 & 3 & 5 & \\
3 & 4 & &
\end{array} \). One checks that applying \(\text{Kevac} \) to this tableau returns \(T \).

Proof of Theorem 4.1. Express each of the increasing tableaux

\[
T, \Delta^1(T), \ldots, \Delta_{\text{max}}^{T-1}(T), \Delta_{\text{max}}^T(T) = \emptyset
\]

as a shape sequence and place them right justified in a triangular growth diagram. In the example above, we have Table 2. Noting that each “minor” of the table whose southwest corner contains a “\(\emptyset \)” is in fact a growth diagram, it follows that the triangular growth diagram can be reconstructed using (G1) and (G2), by Proposition 2.2. Observe that the right column encodes \(\text{Kevac}(T) \). By the symmetry of growth diagrams, it follows that applying the above procedure to \(\text{Kevac}(T) \) would give the same triangular growth diagram, after a reflection across the antidiagonal. Thus the result follows.

\[
\begin{array}{cccccc}
\emptyset & (1) & (2, 1) & (3, 2) & (3, 3, 1) & (4, 3, 2) \\
\emptyset & (1) & (2, 1) & (3, 2, 1) & (4, 2, 2) & \\
\emptyset & (1) & (2, 1) & (3, 2, 1) & & \\
\emptyset & (1) & (2, 1) & & & \\
\emptyset & & & & &
\end{array}
\]

Table 2. A triangular growth diagram for Example 4.2.
5. Proof of the Kjdt Rule

The strategy of our proof is based on the following fact. In the cohomological context, this approach was utilized in [KnKaWo03, BuKrTa04].

Lemma 5.1. Let \(\{d_{\lambda,\mu}^\nu\} \) be integers indexed by shapes \(\lambda, \mu, \nu \subseteq \Lambda \) that:

(A) define a commutative and associative ring \((\mathbb{R}, \circ) \), with \(\mathbb{Z} \)-basis \(\{a_{\lambda}\} \) indexed by shapes \(\lambda \subseteq \Lambda \), by:

\[
a_{\lambda} \circ a_{\mu} = \sum_{\nu \subseteq \Lambda} d_{\lambda,\mu}^\nu a_{\nu}, \text{ and}
\]

(B) \(d_{\lambda,\mu}^\nu = c_{\lambda,\mu}^\nu \) whenever \(\rho = (t) \) for \(0 \leq t \leq n - k \)

then \(d_{\lambda,\mu}^\nu = c_{\lambda,\mu}^\nu \).

Proof. The class \([\mathcal{O}_{X_\lambda}] \) can be expressed as a polynomial in \([\mathcal{O}_{X_1}], \ldots, [\mathcal{O}_{X_{n-k}}] \). This follows by an easy downward induction on \(|\lambda| \) using the fact that such an expression exists in cohomology for \([X_\lambda] \in H^*(X, \mathbb{Q}) \) as a polynomial in the classes \([X_t] \) (the Jacobi-Trudi identity) and the lowest order term in K-theory agrees with cohomology under the Chern isomorphism. Let this polynomial be \(P_\lambda(X_1, \ldots, X_{n-k}) \) (where above \(X_t = [\mathcal{O}_{X_t}] \)). Now (A) and (B) imply \(a_{\lambda} = P_\lambda(a_{11}, \ldots, a_{t1}) \). Using (B) again, we see that the map from \([\mathbb{R}, \circ] \) to \(K(X) \) sending \(a_{\lambda} \mapsto [\mathcal{O}_{X_\lambda}] \) is a ring isomorphism, so the desired conclusion follows. \(\Box \)

To apply the lemma, let \(d_{\lambda,\mu}^\nu \) be the integers computed by the rule given in the statement of the theorem. It remains to check associativity and agreement with Pieri’s rule, which we do below. Note, in our proof of associativity we assume Theorem 1.2 is true – this latter result is actually proved in the following section, using some of the elements introduced in the proof of agreement of Pieri’s rule, which of course, does not use this assumption.

Associativity: Let \(\alpha, \beta, \gamma, \nu \) be straight shapes and fix superstandard tableaux \(S_\alpha, S_\beta, S_\gamma \) and \(S_\nu \).

Associativity is the assertion that

\[
\sum_\sigma d_{\sigma,\beta}^\gamma d_{\sigma,\gamma}^\nu = \sum_\tau d_{\alpha,\tau}^\nu d_{\beta,\gamma}^\tau.
\]

The lefthand side of (1) counts pairs of tableaux \((B, C) \) where \(B \) is of shape \(\sigma/\alpha \) such that \(\text{Krect}(B) = S_\beta \), and \(C \) is of shape \(\nu/\sigma \) such that \(\text{Krect}(C) = S_\gamma \).

Let \(\text{Kinfusion}(S_\alpha, B) = (S_\beta, A) \) where \(A \) is of shape \(\sigma/\beta \), and \(\text{Krect}(A) = S_\alpha \). Next compute \(\text{Kinfusion}(A, C) = (D, E) \). We have that \(\text{Krect}(E) = S_\alpha \) (since this was the case with \(A \)) and that \(\text{shape}(E) = \nu/\tau \) for some \(\tau \), and similarly \(\text{Krect}(D) = S_\gamma \) (since this was the case for \(C \) and \(\text{shape}(D) = \tau/\beta \).

By Theorem 3.1 it follows that the above process establishes a bijection

\[
(B, C) \mapsto (E, D)
\]

into the set of pairs of tableaux counted by the righthand side of (1). (More precisely, for pairs counted by

\[
\sum_\tau d_{\tau,\alpha}^\nu d_{\beta,\gamma}^\tau = \sum_\tau d_{\alpha,\tau}^\nu d_{\beta,\gamma}^\tau
\]
where the equality $d_{\nu,\alpha} = d_{\alpha,\nu}$ follows from an easy argument using Kinfusion.) Associativity follows.

Agreement with Pieri’s rule: We prove our rule agrees with the following formula, due to Lenart [Le00]:

Theorem 5.2. Let $r(\nu/\lambda)$ be the number of rows of ν/λ. Then

$$[O_{X_\lambda}][O_{X_\nu}] = \sum_{\nu} (-1)^{|\nu| - |\mu| - t} \left(r(\nu/\lambda) - 1 \right) [O_{X_\nu}],$$

where the sum ranges over all $\nu \subseteq \Lambda$ obtained by adding a horizontal strip (no two added boxes are in the same column) to λ of size at least t.

Our task is to show that $d_{\lambda(t)}^{\nu} = (r(\nu/\lambda) - 1)$ when ν is of the form in the statement of Theorem 5.2 and is zero otherwise.

First assume ν is of the desired form. Note that if $|\nu/\lambda| - t > r(\nu/\lambda) - 1$ then no increasing filling by $\{1, \ldots, t\}$ is possible, as desired. So assuming otherwise, we proceed to construct the required number of increasing tableaux on ν/λ, as follows. Select $|\nu/\lambda| - t$ of the non-bottom-most $r(\nu/\lambda) - 1$ rows of ν/λ. Now fill the bottom row with consecutive entries $1, 2, \ldots, k$ where k is the number of boxes in that bottom row of ν/λ. Proceeding to fill the remaining boxes of ν/λ from southwest to northeast. If the current row to be filled was one of the $|\nu/\lambda| - t$ selected rows then begin with the last entry e used in the previously filled row. Otherwise use $e + 1$.

Call these fillings t-Pieri fillings.

Example 5.3. Suppose $\lambda = (5, 3, 2)$, $\nu = (6, 5, 2, 2)$ and $t = 4$. Then $r(\nu/\lambda) = 3$ and $|\nu/\lambda| - t = 1$. Hence the two 4-Pieri fillings we construct are

\[
\begin{array}{|c|c|c|c|}
\hline
& & 4 & \\
\hline
1 & 2 & 3 & \\
\hline
\end{array}
\quad \text{and} \quad
\begin{array}{|c|c|c|c|}
\hline
& & 4 & \\
\hline
1 & 2 & 3 & \\
\hline
\end{array}
\]

which both rectify to \(1234\). (In the first tableau we selected the second row and in the second we selected the top row.)

Lemma 5.4. For any rectification order, a t-Pieri filling K-rectifies to $S_{(t)}$. No other increasing tableau K-rectifies to $S_{(t)}$, for any choice of rectification order.

Proof. That the t-Pieri fillings all K-rectify (under any rectification order) to $S_{(t)}$ follows from a straightforward induction on $|\lambda| \geq 0$ where we show in fact that any $Kjdt$ slide applied to a t-Pieri filling results in a t-Pieri filling.

A similar induction shows that no other increasing tableau from $\text{INC}(\nu/\lambda)$ K-rectifies to $S_{(t)}$ (noting that any such tableau with entries in $\{1, \ldots, t\}$ has a pair of entries $i < j$ where j is southwest of i). Separately, but for similar reasons, when ν/λ is not a horizontal strip, one more induction on $|\lambda|$ proves no increasing tableau can K-rectify to $S_{(t)}$. \qed

This completes the proof of Theorem 1.4 assuming Theorem 1.2. \qed

12
We now prove Theorem 1.2. First define the reading word of a tableau T to be the word obtained by reading the rows of T from left to right, starting from the bottom and moving up. Let $\text{LIS}(T)$ be the length of the longest strictly increasing subsequence of the reading word of T.

The following result is crucial to our proof of Theorem 1.2.

Theorem 6.1. $\text{LIS}(K_{jdt}_{\{x_i\}}(T)) = \text{LIS}(T)$. In particular, any rectification order applied to T results in a straight shape whose first row has length equal to $\text{LIS}(T)$.

Example 6.2. Consider the two (different) rectifications of the same tableau T performed in Example 1.3. The reading word of T is $1\ 3\ 4\ 2\ 2$ (where the unique longest strictly increasing subsequence has been underlined) so $\text{LIS}(T) = 3$. Note that also $\text{LIS}(T_1) = \text{LIS}(T_2) = 3$, that is the lengths of the first rows of T_1 and T_2 agree, although $T_1 \neq T_2$.

Proof of Theorem 6.1. We will show that if I is a set of boxes of T which forms a strictly increasing subsequence of the reading word of T, then there is a string of boxes of equal length in $K_{jdt}_{\{x_i\}}(T)$ which also forms a strictly increasing subsequence of the reading word. A symmetric argument using reverse slides gives the other desired inequality, thereby implying the theorem.

Fix I as above. We will analyze the slide $K_{jdt}_{\{x_i\}}(T)$, switch by switch. Set $T_0 := T$, and let T_i be the result of switching the \bullet’s and the i’s of T_{i-1}. Initially set $I_0 := I$. In a moment, we will describe I_i as a collection of some of the boxes of T_i.

We will show that, at each step, I_i has the following properties:

(P1) The labels of I_i are strictly increasing in the reading word order, except for perhaps one \bullet box.

(P2) If I_i contains a \bullet box, then the labels in I_i preceding the \bullet box in the reading word order are weakly less than i, while the labels of boxes following the \bullet box are strictly greater than i.

(P3) If there is a \bullet box y_i in I_i, then there must be some box z_i in I_i, in the same row as y_i and weakly to its right, such that the entry in the box a_i immediately below z_i is strictly smaller than the entry in the next box b_i of I_i after z_i, in the reading word order.

Example 6.3. (P1) and (P2) are self explanatory. For (P3), a possible configuration that can arise in our discussion below is

```
1 2 4 5 7 9
\bullet 2 3 6 8 9
```

where the underlined labels indicate members of I_1. Here the role of z_1 is played by the \bullet, so a_1 is the 8 and b_1 is the 9. Note that b_1 need not be immediately to the right of the \bullet.

We need the following:

Lemma 6.4. If I_{i-1} satisfies (P1)–(P3) and contains an \bullet box and a box labelled i then the i is immediately to the right of the \bullet box.

Proof. First we use (P3): since the box a_{i-1} below z_{i-1} is southeast of the \bullet box y_{i-1}, its label cannot be strictly less than i, because we are in T_{i-1}. Thus the label of b_{i-1} is greater...
than i. By (P1) and (P2) combined, this implies that the i in I_{i-1} must be in the same row as the • box, and therefore must be immediately to its right (again, for the reason that we are in T_{i-1}). □

We now proceed to define I_i inductively for $i \geq 1$. Assume that I_{i-1} satisfies (P1)–(P3). After performing the slide interchanging • boxes with i’s we define I_i as follows:

(i) If I_{i-1} has no box containing i, then $I_i := I_{i-1}$.
(ii) If I_{i-1} has a box containing i and a • box (i.e., we are in the position of Lemma 6.4), then $I_i := I_{i-1}$.
(iii) If I_{i-1} has a box containing i, but does not have a • box, and the i in I_{i-1} does not move, then $I_i := I_{i-1}$.
(iv) If I_{i-1} has a box containing i, but does not have a • box, and there is a • box (not in I_{i-1}) immediately to the left of the i in I_{i-1}, then let I_i be I_{i-1} with the box containing i in I_{i-1} replaced by the box to its left (into which i has moved).
(v) If I_{i-1} has a box containing i, but does not have a • box, there is a • box (not in I_{i-1}) immediately above the i, and we are not in case (iv), then let I_i be I_{i-1} with the box containing i in I_{i-1} and all the other boxes in I_{i-1} to the right of it in the same row, replaced by the boxes immediately above them.

Clearly (i)–(v) indeed enumerates all of the intermediate possibilities during a Kjdt slide.

We now prove that I_i satisfies (P1)–(P3).

Case (i): We split this case up into three subcases. First, we consider the case that I_{i-1} has no • box. In this case, (P1) is trivially satisfied (since it held for I_{i-1}), and (P2) and (P3) are vacuously true.

Next, we consider the subcase that I_{i-1} has a • box into which an i (not in I_{i-1}) moves in. Since (P1) and (P2) are satisfied for I_{i-1}, (P1) will be satisfied after this, and (P2) and (P3) are vacuously true since I_i has no • box.

Finally, we consider the subcase where I_{i-1} has a • box which stays as such in I_i. Since the contents of I_{i-1} and I_i are the same, (P1) and (P2) are satisfied. To show (P3) is satisfied, observe that the label in the box below z_{i-1} is strictly greater than i (otherwise z_{i-1} has a label weakly smaller than $i - 1$ and is southeast of a •, a contradiction), so it does not move, and thus we can take $z_i := z_{i-1}$.

Using Lemma 6.4, it is clear that case (ii) preserves (P1) and (P2). To check (P3), as in the previous case, we can take $z_i := z_{i-1}$. This would not work if $z_{i-1} = y_{i-1}$, but this is impossible, because the entry in the box below z_{i-1} should be less than the next entry in I_{i-1} after z_{i-1}, which is i. So the • box is immediately above a box which is at most $i - 1$, and this can’t happen in T_{i-1}.

Cases (iii) and (iv) are trivial: (P1) holds since the contents of I_{i-1} and I_i are the same, and (P2) and (P3) are vacuously true since I_i contains no • box.

Now we consider case (v). (P1) is trivial, so if I_i has no • box, then we are done. So assume it does. The only way a • box could appear in I_i is in the following situation:

\[
\begin{array}{c}
\bullet i \\
\hline
i
\end{array} \rightarrow
\begin{array}{c}
i \\
\hline
\end{array}
\]

where the box containing j is also in I_{i-1}.
In this situation the the top two boxes will be in I_i, and so we will have introduced a • box into I_i. (P2) is clearly satisfied. Set z_i to be the rightmost of the boxes that are in I_i but not in I_{i-1}. Now (P3) is satisfied because (P1) was satisfied for I_{i-1}.

This completes the proof that I_i satisfies (P1)–(P3). Thus after iteration, we eventually terminate with a set of boxes I_m in $T_m := K_{jdt_{[x_i]}}(T)$ which satisfies (P1)–(P3). We wish to show that I_m contains no • box. Suppose that it did. This • box of I_m must be an outer corner of T (by the way K_{jdt} is defined). This contradicts (P3), since the square below z_i is southeast of the • box, and thus contains no label. Thus I_m contains no • box, so (P1) implies that there is a strictly increasing subsequence of the reading word of $K_{jdt_{[x_i]}}(T)$ whose length equals the length of I_i, as desired. □

Remark 6.5. Theorem 6.1 may be regarded as a generalization of the classical result of Schensted which asserts that the longest increasing subsequence of a permutation $w = w_1w_2\ldots w_n$ in the symmetric group S_n (written in one-line notation) is equal to the first row of the common shape of the corresponding insertion and recording tableaux under the Robinson-Schensted algorithm; see, e.g., [St99]. To see this, one needs to use the well-known fact that the insertion tableau of w is equal to the (classical) rectification of the "permutation tableau" T_w of skew shape

$$(n, n - 1, n - 2, \ldots, 3, 2, 1)/(n - 1, n - 2, \ldots, 3, 2, 1),$$

where w_1 occupies the southwest-most box, followed by w_2 in the box to its immediate northeast, etc. In [ThYo07+] we further explore this observation, and connect K_{rect} to the Hecke algorithm of [BuKrShTaYo06].

Recall the definition of t-Pieri filling given in the previous section.

Lemma 6.6. If an increasing tableau T rectifies (with respect to any rectification order) to a tableau V which has precisely 1, 2, \ldots, t in the first row and no labels weakly smaller than t elsewhere, then:

(1) the labels 1, 2, \ldots, t form a subtableau of T that is a t-Pieri filling, and

(2) $LIS(T) = t$.

Conversely, if T satisfies (1) and (2), then its K-rectification with respect to any rectification order must have 1, 2, \ldots, t as its first row.

Proof. By Lemma 3.3 V contains the rectification of the subtableau of T consisting of the entries between 1 and t; by results of the previous section, it follows that these entries must form a t-Pieri filling; this proves that (1) holds. By Theorem 6.1 $LIS(T) = LIS(V) = t$, proving (2).

Now suppose T satisfies (1) and (2). By the discussion of t-Pieri fillings of Section 5, and by Theorem 6.1 these properties are preserved under K_{jdt} slides. Thus, any rectification of T must satisfy these properties. Any filling of a straight shape satisfying these properties must have first row 1, 2, \ldots, t and no entries weakly smaller than t elsewhere. □

Proof of Theorem 1.2. Let $R \in \text{INC}(\lambda)$ encode a rectification where $K_{\text{infusion}_1}(R, T) = S_{\mu}$. Let us suppose that the first row of S_{μ} is S_{μ_1}. By Theorem 6.1 $LIS(T) = t$. By Lemma 6.6 the subtableau P of T, consisting of the boxes containing one of the labels 1, 2, \ldots, t, is a t-Pieri filling.
Suppose \(Q \in \text{INC}(\lambda) \) is another rectification order. Since the labels of \(P \) and \(T \backslash P \) contain labels weakly smaller than \(t \), a strictly larger than \(t \), respectively, by Lemma 3.3, we can compute \(V := K_{\text{infusion}}(Q, T) \) in two stages. First, by Lemma 5.4, \(K_{\text{infusion}}(Q, P) \) is simply \(S_{(t)} \), because \(P \) is a \(t \)-Pieri filling. Secondly, we use \(K_{\text{infusion}}(Q, P) \) to (partially) rectify \(T \backslash P \). A priori, this could contribute extra boxes to first row of \(V \) but since, by Theorem 6.1, \(\text{LIS}(V) = \text{LIS}(T) = t \), it does not. Thus the rectification of \(T \) by \(Q \) consists of the row \(S_{(t)} \) with a rectification of \(T \backslash P \) to a straight shape underneath it.

Now, by assumption \(T \backslash P \) has a (partial) rectification to a superstandard tableaux (using labels starting from \(t + 1 \)), namely \(S \backslash S_{(t)} \). So by induction on the number of boxes of the starting shape, we can conclude that \(T \backslash P \) will (partially) rectify to \(S \backslash S_{(t)} \) under any rectification order. Therefore \(V = S \), as desired. \(\square \)

7. Minuscule Schubert Calculus Conjectures: Example and Discussion

As stated in the introduction, the minuscule \(G/P \) are classified into five infinite families of spaces (Grassmannians, odd/even orthogonal Grassmannians, odd projective space, even dimensional quadrics) associated to the classical Lie groups, and two exceptional cases (the Cayley plane and \(G_{\omega}(O_3, O_6) \)) associated to the Lie types \(E_6 \) and \(E_7 \). The interested reader may find details compatible with the notation used here in [ThYo06]; in particular, there we concretely describe \(\Lambda_{G/P} \) in each of these cases. Thus, for brevity, we content ourselves with an example to illustrate our conjecture.

Example 7.1. Let \(G/P = O\mathbb{P}^2 \) be the Cayley plane. Here we have

\[
\Lambda_{O\mathbb{P}^2}:
\]

We conjecturally compute \(C^\nu_{\lambda, \mu}(O\mathbb{P}^2) \) where

\[
\lambda = \mu = \star \star \star \star \star, \quad \text{and} \quad \nu = \star \star \star \star \star \star.\]

where the southwest-most box is the unique minimum of \(\Lambda_{O\mathbb{P}^2} \) and the poset increases as one moves “right” or “up”.

The relevant shapes/lower order ideals of \(\Lambda_{O\mathbb{P}^2} \) are indicated by the boxes filled with \(\star \)’s. We can encode the shapes by the size of columns as read from left to right, so \(\lambda = \mu = (1, 1, 2, 1) \) and \(\nu = (1, 1, 2, 4, 3, 1) \). Here “superstandard” means that we consecutively fill the first row, followed by the second row, etc.

Below, we observe there are only two tableaux \(T, U \) on \(\nu/\lambda \) that \(K \)-rectify to \(S_{\mu} \):

\[
S_{\mu} = \begin{array}{cccc}
1 & 2 & 3 & 4 \\
5 & & &
\end{array}, \quad T = \begin{array}{cccc}
5 & 1 & 2 & 3 \\
4 & 5 & &
\end{array} \quad \text{and} \quad U = \begin{array}{cccc}
3 & 4 & 5 & 1 \\
2 & 4 & 5 & 1 \\
1 & & &
\end{array}
\]

Therefore, our conjecture states that:

\[
C^{(1,1,2,4,3,1)}_{(1,1,2,1),(1,1,2,1)}(O\mathbb{P}^2) = (-1)^{12-5-5}2 = 2.
\]
The reader can check that the rectification order does not affect the result. For either T or U, there are three initial ways to begin the K-rectification, after which, all further K_{jdt} slides are forced.

Note that once one establishes an analogue of Theorem [1.2] one can give an easy modification of the proof of associativity in Section 6 to establish that Conjecture [1.6] defines an associative product. One can check that the analogue of Theorem [1.2] holds in specific instances, say, with the help of a computer. Indeed, we have made exhaustive checks when G/P is the odd orthogonal Grassmannian $OG(5,11)$ and when it is the Cayley plane OP^2, corresponding to the types B_5 and E_6. We also made numerous checks in the case of the space $G_\omega(O^3, O^6)$ associated to E_7, which while not exhaustive, left us convinced.

We emphasize that this rule agrees in type A with the correct product, and as well as in cohomology for all minuscule cases. We also have some computational evidence that our numbers agree with small known cases of Schubert structure constants in type B (as supplied to us by M. Shimozono in private correspondence), although admittedly this is not a convincing amount of evidence on its own. Part of the difficulty in checking Conjecture [1.6] is that it seems to be a challenging task to construct efficient software to compute the K-theory Schubert structure constants for the main cases of the minuscule G/P’s outside of type A. In principle, such an algorithm is linear algebra using torus-equivariant fixed-point localization methods such as [Wi06].

Granted associativity, the conjectures would follow if they agree with multiplication in $K(G/P)$ whenever μ is drawn from some set of multiplicative generators P for $K(G/P)$. (That is, they agree with a “Pieri rule".) We will report on our progress on these conjectures in forthcoming work.

We also mention that the results of Sections 2-4 also have straightforward minuscule generalizations in cohomology, cf., [ThYo07a].

8. Counterexamples

It is interesting that natural analogues of a number of results valid in the standard Young tableau theory are actually false in our setting. We have already seen in the introduction that in general K_{rect} is not well-defined. This aspect can also be blamed for the following two other situations where counterexamples exist:

Haiman’s dual equivalence: One can define K-theoretic dual equivalence, extending ideas in Haiman’s [Ha92]. Two increasing tableaux are K-dual equivalent if any sequence of slides $(\{x_{1t}^{(1)}\}, \ldots, \{x_{kt}^{(k)}\})$ for T and U results in increasing tableaux of the same shape. In this case we write $T \equiv_D U$. By definition, $T \equiv_D U$ implies shape$(T) = \text{shape}(U)$.

One application of this theory (in the classical setting) is that it leads to a proof of the fundamental theorem of jeu de taquin. For a minuscule (but not K-theoretic) generalization, see [ThYo07a]. However, it is important for this application that all standard Young tableau of the same shape are dual equivalent. In view of Theorem [1.2] it is not surprising that this is not true in our setting. Consider the computations

\[
\text{Kinfusion}_2 \begin{pmatrix} 1 & 3 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \quad \text{and} \quad \text{Kinfusion}_2 \begin{pmatrix} 1 & 2 \\ 3 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \end{pmatrix}.
\]
These calculations represent two sequences of \(K \)-jet slides applied to different tableaux of the same shape \((2, 1)\), but whose results are tableaux of different (skew) shapes.

Cartons: In an earlier paper [ThYo07b], we gave an \(S_3 \)-symmetric Littlewood-Richardson rule in terms of *cartons*. This idea also has a minuscule extension (which we will report on elsewhere). However, the naïve \(K \)-theoretic generalization does not work.

Briefly, the *carton* of [ThYo07b] is a three-dimensional box with a grid drawn rectilinearly on the six faces of its surface, each of whose sides are growth diagrams. We fix at the outset standard Young tableaux of shape \(\lambda, \mu \) and \(\nu \) along three edges. Shapes are associated to each vertex so that the Fomin growth conditions (F1) and (F2) reproduced in Section 2 hold. The number of such cartons (with fixed initial data) is equal to the classical Littlewood-Richardson number.

The temptation is to attempt to generalize this to \(K \)-theory by replacing the initial standard Young tableau with superstandard tableau of shapes \(\lambda, \mu \) and \(\nu \), and to instead utilize the growth conditions (G1) and (G2) we introduced in Section 2. This does not work: one computes using Theorem 1.4 that if \(k = n - k = 3 \), \(\lambda = \mu = (2, 1) \) and \(\nu = (2) \) then the constant \(C_{(2,1),(2,1),(2)} := C_{(2,1),(2,1)}^{(3,3,1)} \) is \(-2\). However one cannot consistently complete a legal filling of this \(K \)-carton.

Remark 8.1. These obstructions are closely related to failure of associativity of a certain tableau product defined in [BuKrShTaYa06, Section 3.7].

9. **Concluding remarks**

9.1. **Proctor’s d-complete posets.** Proctor [Pr04] has studied the class of *d-complete posets*. These posets generalize those required in our discussion of minuscule \(G/P \) Schubert calculus; see also [ThYo06, ThYo07a]. In particular, d-complete posets were shown by Proctor to have a well-defined *jeu de taquin* procedure.

It would be interesting to generalize our arguments to show that for any d-complete poset \(D \), there is an associative ring \(K(D) \) with an additive \(\mathbb{Z} \)-basis indexed by lower order ideals of \(D \) and structure constants defined by a rule generalizing Theorem 1.4. Observing that our notions of \(K \)-jet, \(K \)-rect \emph{a priori} make sense in this more general context, we ask:

Problem 9.1. Fix a d-complete poset. For which classes of tableaux \(C = \{ C_\mu \} \) (indexed by lower order ideals \(\mu \) of \(D \)) is it true that an analogue Theorem 1.2 holds (that is if \(K_{\text{rect}}(T) = C \in C \) under one rectification order, this holds for any rectification order)?

It seems plausible that good classes \(C \) that play the role of the superstandard tableaux of Theorem 1.2 always exist. As we have said, for the minuscule cases, we believe that the superstandard tableaux suffice. Perhaps this also holds more generally.

Assuming the Conjecture holds, one would also like to find a geometric origin to the ring \(K(D) \) (outside of the cases where it should be isomorphic to the \(K \)-theory ring of a minuscule \(G/P \)).

9.2. **A product-differences conjecture.** Let \(\lambda, \mu \in \mathbb{Y} \). Since this poset is in fact a lattice, we can speak of their *meet* \(\lambda \land \mu \) and *join* \(\lambda \lor \mu \).
Conjecture 9.2. Suppose $\lambda, \mu \subseteq \Lambda$. Let

$$[O_{X_{\lambda \wedge \mu}}][O_{X_{\lambda \vee \mu}}] - [O_{X_{\lambda}}][O_{X_{\mu}}] = \sum_{\nu} d_{\nu}[O_{X_{\nu}}].$$

Then $(-1)^{|\nu|-|\lambda|-|\mu|} d_{\nu} \geq 0$.

This conjecture generalizes a theorem in the cohomological case due to [LaPoPy05]; see related work by [Ok03, FoFuLiPo05, ChDeWe07]. (We also know of no counterexample for the corresponding minuscule conjecture, even in the cohomology case.)

Example 9.3. Let $\lambda = (4, 2, 1)$, $\mu = (3, 3, 2) \subseteq \Lambda = 4 \times 5$. The join is the unique minimal shape that contains λ and μ, i.e., $\lambda \vee \mu = (4, 3, 2)$. Similarly, the meet is the unique maximal shape contained in λ and μ. Hence $\lambda \wedge \mu = (3, 2, 1)$. One computes using Theorem 1.4 (or otherwise), preferably with the help of computer, that:

$$[O_{X_{(4,3,2)}}] - [O_{X_{(3,3,2)}}] - [O_{X_{(4,2,1)}}] \cdot [O_{X_{(3,3,2)}}] = ([O_{X_{(5,5,3,2)}}] + 2[O_{X_{(5,5,4,1)}}] + [O_{X_{(5,5,5,2)}}] + [O_{X_{5,5,4,2}}])$$

$$- (3[O_{X_{(5,5,5,1)}}] + 5[O_{X_{(5,5,4,4,2)}}] + [O_{X_{(5,5,4,4,3)}}]) - (3[O_{X_{(5,5,5,2)}}] + [O_{X_{(5,5,4,4,3)}}]),$$

in agreement with Conjecture 9.2.

9.3. Hecke insertion and factor sequence formulæ. In [BuKrShTaYo06] a generalization of the Robinson-Schensted and Edelman-Greene insertion algorithms was given. In fact, increasing tableaux also play a prominent role there, although in a different, but related way. As we have mentioned in the introduction, this will be explored, in part, in [ThYo07+], in connection to longest strictly increasing subsequences in random words. There we show that the insertion tableau of a word under Hecke insertion can be alternatively computed as a K-rectification of a permutation tableau (for a particular choice of rectification order).

Another sample question: is there a “plactification map” in the sense of [ReSh95]?

We believe that further developing this connection may allow one to, for example, prove a K-theory analogue of the “factor sequence formula” conjectured in [BuFu99] and proved in [KnMiSh03], which is a problem that has remained open in this topic, see [Bu02b, Bu05b]. (In [BuKrShTaYo06] a different factor sequence formula, generalizing the one given in [Bu05b], was given.)

APPENDIX: GROTHENDIECK POLYNOMIALS

The goal of this appendix is to provide combinatorial background for the results of Sections 1–7, in terms of the Grothendieck polynomials of Lascoux and Schützenberger [LaSc82]. This presentation is not needed for the paper.

Fix a shape λ and define a set-valued tableau T to be an assignment of nonempty sets of natural numbers to each box of λ [Bu02a]. Such a tableau is semistandard if for every box, the largest entry is weakly smaller than the minimum entry of the box immediately to its right and strictly smaller than the minimum entry of the box immediately below it. The ordinary case is when T assigns a singleton to each box.

Associate to each semistandard tableau a weight

$$\omega(T) := (-1)^{|T|-|\lambda|} x^T.$$
where here $x^T = x_1^{i_1} x_2^{i_2} \cdots$ if i_j is the number of j’s appearing in T, and $|T|$ is the number of entries of T. For example, we have

$$\omega(T_1) = x_1 x_2 x_3 x_4 x_5 x_6$$

and

$$\omega(T_2) = (-1)^{19-9} x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8.$$

The Grothendieck polynomial is defined as

$$G_\lambda(x_1, x_2, \ldots, x_k) := \sum_T \omega(T)$$

with the sum over all set-valued semistandard tableaux using the labels of size at most k. This is an inhomogenous symmetric polynomial whose lowest degree ($= |\lambda|$) homogeneous component is equal to the Schur polynomial $s_\lambda(x_1, x_2, \ldots, x_k)$.

It is not immediately obvious from the definitions, but true [Bu02a] (for an alternative proof, see [BuKrShTaYo06]) that the $G_\lambda(x_1, \ldots, x_k)$ (for λ with at most k parts) form a \mathbb{Z}-linear basis for the ring of symmetric polynomials in x_1, \ldots, x_k (say, with coefficients in \mathbb{Q}). Thus we can write

$$G_\lambda(x_1, \ldots, x_k) G_\mu(x_1, \ldots, x_k) = \sum_\nu C^\nu_{\lambda, \mu} G_\nu(x_1, \ldots, x_k).$$

The coefficients $C^\nu_{\lambda, \mu}$ agree with the K-theory structure constants for $Gr(k, \mathbb{C}^n)$ whenever $\nu \subseteq \Lambda$.

There are more general Grothendieck polynomials $\mathcal{G}_\pi(x_1, \ldots, x_n)$ defined in [LaSc82] for any permutation $\pi \in S_n$. The polynomials G_λ amount to the case that π is Grassmannian: it has a unique descent at position k. In [BuKrTaYo05] a formula was first given that expresses any \mathcal{G}_π in terms of the G_λ’s. Other formulas for both \mathcal{G}_π and G_λ are also available, see, e.g., [BuKrShTaYo06, KnYo04, KnMiYo05a, La02] and the references therein.

ACKNOWLEDGMENTS

This work was partially completed while HT was visiting the Norges Teknisk-Naturvitenskapelige Universitet; he would like to thank the Institutt for Matematik og Matematiske Fag for its hospitality. AY utilized the resources of the Fields Institute, Toronto, while a visitor there. We thank Allen Knutson, Victor Reiner and Mark Shimozono for helpful discussions, as well as Anders Buch for supplying us with software to independently compute the K-theoretic numbers $C^\nu_{\lambda, \mu}$ (for Grassmannians).
[Mi05] E. Miller, Alternating formulas for K-theoretic quiver polynomials, Duke Math. J. 128(2005), 1–17.

[Ok03] A. Okounkov, Why would multiplicities by log-concave? In “The orbit method in geometry and physics (Marseille, 2000)”, volume 213 of Progress in Mathematics, 329–347. Birkhauser, Boston, MA, 2003.

[Pr04] R. Proctor, d-Complete posets generalize Young diagrams for the jeu de taquin property, preprint, 2004, available at http://www.math.unc.edu/Faculty/rap/

[ReSh95] V. Reiner and M. Shimozono, Plactification, J. Alg. Comb., 4(1995), no. 4, 331–351.

[Sc77] M.-P. Schützenberger, Combinatoire et représentation du groupe symétrique (Actes Table Ronde CNRS, Univ. Louis-Pasteur Strasbourg, Strasbourg, 1976), pp. 59–113. Lecture Notes in Math., Vol. 579, Springer, Berlin, 1977.

[Sp06] D. Speyer, A matroid invariant via the K-theory of the Grassmannian, preprint math.AG/0603551.

[St99] R. P. Stanley, Enumerative Combinatorics, Volume 2 (with an appendix by S. Fomin), Cambridge University Press, 1999.

[ThYo06] H. Thomas and A. Yong, A combinatorial rule for (co)minuscule Schubert calculus, preprint math.AG/0608273.

[ThYo07a] ———, Cominuscule tableau combinatorics, preprint math.CO/0701215.

[ThYo07b] ———, An S3-symmetric Littlewood-Richardson rule, preprint arXiv:0704.0817.

[ThYo07+] ———, Longest increasing subsequences, Plancherel-type measure and the Hecke insertion algorithm, in preparation, 2007.

[Va05] R. Vakil, A geometric Littlewood-Richardson rule, Annals of Math, to appear.

[vaLe00] M. van Leeuwen, Flag varieties, and interpretations of Young tableau algorithms, J. Algebra, 224(2000), 397–426.

[Wi06] M. Willems, K-théorie équivariante des tours de Bott. Application à la structure multiplicative de la K-théorie équivariante des variétés de drapeaux, Duke Math. J., 132(2006), no. 2, 271–309.

DEPARTMENT OF MATHEMATICS AND STATISTICS, UNIVERSITY OF NEW BRUNSWICK, FREDERICTON, NEW BRUNSWICK, E3B 5A3, CANADA
E-mail address: hugh@math.unb.ca

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MINNESOTA, MINNEAPOLIS, MN 55455, USA
E-mail address: ayong@math.umn.edu