Hitting Time Distribution for Skip-Free Markov Chains: A Simple Proof

Wenming Hong1 Ke Zhou2

Abstract

A well-known theorem for an irreducible skip-free chain with absorbing state \(d \), under some conditions, is that the hitting (absorbing) time of state \(d \) starting from state 0 is distributed as the sum of \(d \) independent geometric (or exponential) random variables. The purpose of this paper is to present a direct and simple proof of the theorem in the cases of both discrete and continuous time skip-free Markov chains. Our proof is to calculate directly the generation functions (or Laplace transforms) of hitting times in terms of the iteration method.

Keywords: skip-free, random walk, birth and death chain, absorbing time, hitting time, eigenvalues, recurrence equation.

Mathematics Subject Classification (2010): 60E10, 60J10, 60J27, 60J35.

1 Introduction

The skip-free Markov chain on \(\mathbb{Z}^+ \) is a process for which upward jumps may be only of unit size, and there is no restriction on downward jumps. If a chain start at 0, and we suppose \(d \) is an absorbing state. An interesting property for the chain is that the hitting time of state \(d \) is distributed as a sum of \(d \) independent geometric (or exponential) random variables.

There are many authors give out different proofs to the results. For the birth and death chain, the well-known results can be traced back to Karlin and McGregor \cite{7}, Keilson \cite{8}, \cite{9}, Kent and Longford \cite{10} proved the result for the discrete time version (nearest random walk) although they have not specified the result as usual form (section 2, \cite{10}). Fill \cite{4} gave the first stochastic proof to both nearest random walk and birth and death chain cases via duality which was established in \cite{2}. Diaconis and Miclo \cite{3} presented another probabilistic proof for birth and death chain. Very recently, Gong, Mao and Zhang \cite{6} gave a similar result in the case that the state space is \(\mathbb{Z}^+ \), they use the well established result to determine all the eigenvalues or the spectrum of the generator.

1School of Mathematical Sciences & Laboratory of Mathematics and Complex Systems, Beijing Normal University, Beijing 100875, P.R. China. Email: wnmhong@bnu.edu.cn

2 School of Mathematical Sciences & Laboratory of Mathematics and Complex Systems, Beijing Normal University, Beijing 100875, P.R. China. Email:zhouke@mail.bnu.edu.cn
For the skip-free chain, Brown and Shao [1] first proved the result in continuous time situation. By using the duality, Fill [5] gave a stochastic proof to both discrete and continuous time cases. The purpose of this paper is to present a direct and simple proof of the theorem in the cases of both discrete and continuous time skip-free Markov chains. Our proof is to calculate directly the generation functions (or Laplace transforms) of hitting times in terms of the iteration method.

Theorem 1.1. For the discrete-time skip-free random walk:
Consider an irreducible skip-free random walk with transition probability P on $\{0, 1, \cdots, d\}$ started at 0, suppose d is an absorbing state. Then the hitting time of state d has the generation function
\[
\varphi_d(s) = \prod_{i=0}^{d-1} \left[\frac{(1 - \lambda_i)s}{1 - \lambda_i} \right],
\]
where $\lambda_0, \cdots, \lambda_{d-1}$ are the d non-unit eigenvalues of P.

In particular, if all of the eigenvalues are real and nonnegative, then the hitting time is distributed as the sum of d independent geometric random variables with parameters $1 - \lambda_i$.

Theorem 1.2. For the skip-free birth and death chain:
Consider an irreducible skip-free birth and death chain with generator Q on $\{0, 1, \cdots, d\}$ started at 0, suppose d is an absorbing state. Then the hitting time of state d has the Laplace transform
\[
\varphi_d(s) = \prod_{i=0}^{d-1} \frac{\lambda_i}{1 - \lambda_i s},
\]
where λ_i are the d non-zero eigenvalues of $-Q$.

In particular, if all of the eigenvalues are real and nonnegative, then the hitting time is distributed as the sum of d independent exponential random variables with parameters λ_i.

2 Proof of Theorem 1.1

Define the transition probability matrix P as
\[
P = \begin{pmatrix}
 r_0 & p_0 & p_1 & \cdots & \cdots & \cdots & \cdots & p_{d-1} & p_d-1 \\
 q_{1,0} & r_1 & p_1 & \cdots & \cdots & \cdots & \cdots & p_{d-1} & 1 \\
 \vdots & \ddots \\
 q_{d-1,0} & q_{d-1,1} & q_{d-1,2} & \cdots & r_{d-1} & p_{d-1} & 1 \\
\end{pmatrix}_{(d+1) \times (d+1)},
\]
and for $0 \leq n \leq d - 1$, P_n denote the first $n + 1$ rows and first $n + 1$ lines of P.

Let $\tau_{i,i+j}$ be the hitting time of state $i+j$ starting from i. By the Markov property, we have
\[
\tau_{i,i+j} = \tau_{i,i+1} + \tau_{i+1,i+2} + \cdots + \tau_{i+j-1,i+j}.
\]
(2.1)

If $f_{i,i+1}(s)$ is the generation function of $\tau_{i,i+1}$,
\[
f_{i,i+1}(s) = \mathbb{E}s^{\tau_{i,i+1}} \quad \text{for } 0 \leq i \leq d - 1,
\]
(2.1) says that
\[f_{i,i+j}(s) = f_{i,i+1}(s) \cdot f_{i+1,i+2}(s) \cdots f_{i+j-1,i+j}(s), \quad \text{for } 1 \leq j \leq d - i. \]

Let
\[g_{0,0}(s) = 1, \quad g_{i,i+j}(s) = \frac{p_0 p_{i+1} \cdots p_{i+j-1}}{f_{i,i+j}(s)} s^j, \quad \text{for } 1 \leq j \leq d - i. \]

Lemma 2.1. Define \(I_n \) as a \((n + 1) \times (n + 1)\) identity matrix. We have
\[g_{0,n+1}(s) = \det(I_n - sP_n), \quad \text{for } 0 \leq n \leq d - 1. \]

Proof. We will give a key recurrence to prove this lemma. By decomposing the first step, the generation function of \(\tau_{n,n+1} \) satisfy
\[f_{n,n+1}(s) = r_n s f_{n,n+1}(s) + p_n s + q_{n,n-1} s f_{n-1,n+1}(s) + q_{n,n-2} s f_{n-2,n+1}(s) + \cdots + q_{n,0} s f_{0,n+1}(s). \]

Recall the definition of \(g_{i,i+j}(s) \), substitute it into the formula above, we have
\[g_{0,n+1}(s) = (1 - r_n s) g_{0,n}(s) - q_{n,n-1} s p_{n-1} g_{0,n-1}(s) - q_{n,n-2} s p_{n-2} g_{0,n-2}(s) - \cdots - q_{n,0} s^2 g_{0,0}(s). \]

By expanding the bottom row of the matrix, we obtain
\[\det(I_n - sP_n) = (1 - r_n s) A_{n,n} - q_{n,n-1} s A_{n,n-1} - q_{n,n-2} s A_{n,n-2} - \cdots - q_{n,0} s A_{n,0}. \]

By some calculation, we can deduce
\[A_{n,n} = \det(I_n - sP_{n-1}), \quad A_{n,0} = p_0 p_1 \cdots p_{n-1} s^n, \]
and for \(1 \leq i < n \),
\[A_{n,n-i} = p_{n-i} p_{n-i+1} \cdots p_{n-1} s^i \det(I_{n-i-1} - sP_{n-i}). \]

Now we prove the lemma by induction. At first, \(g_{0,1}(s) = \det(I_0 - sP_0) = 1 - r_0 s \). If (2.2) holds for \(n < k \), we calculate \(g_{0,k+1}(s) \). By (2.4),
\[g_{0,k+1}(s) = (1 - r_k s) \det(I_{k-1} - sP_{k-1}) - q_{k,k-1} s^2 p_{k-1} \det(I_{k-2} - sP_{k-2}) - q_{k,k-2} s^3 p_{k-2} \det(I_{k-3} - sP_{k-3}) - \cdots - q_{k,0} s^{k+1} p_0 p_1 \cdots p_{k-1}. \]

Formula (2.5) tell us that \(g_{0,k+1}(s) = \det(I_k - sP_k) \). The proof is complete. \(\square \)

Proof of Theorem 1.1 Denote \(\varphi_d(s) \) the generation function of \(\tau_{0,d} \), then \(\varphi_d(s) = f_{0,d}(s) \). By (2.1) and (2.2), we have
\[\varphi_d(s) = f_{0,1}(s) f_{1,2}(s) \cdots f_{d-1,d}(s) = \frac{p_0 p_1 \cdots p_{d-1} s^d}{g_{0,d}(s)} = \frac{p_0 p_1 \cdots p_{d-1} s^d}{\det(I_{d-1} - sP_{d-1})}. \]
It is easy to prove that 1 is the unique unit eigenvalue of P, and for $i = 0, 2 \cdots d - 1$, λ_i are the d non-unit eigenvalues. So
\[
\det(I_d - sP_{d-1}) = (1 - \lambda_0 s)(1 - \lambda_1 s) \cdots (1 - \lambda_{d-1} s).
\]

By Lemma 2.1 and the definition of $g_{0,d}(s)$,
\[
p_0 p_1 \cdots p_{d-1} = s^{-d} f_{0,d}(s) \det(I_d - sP_{d-1}) \\
= s^{-d} f_{0,d}(s)(1 - \lambda_0 s)(1 - \lambda_1 s) \cdots (1 - \lambda_{d-1} s).
\]
Let $s = 1$, because $f_{0,d}$ is a generation function, $f_{0,d}(1) = 1$. Then
\[
p_0 p_1 \cdots p_{d-1} = (1 - \lambda_0)(1 - \lambda_1) \cdots (1 - \lambda_{d-1}).
\]
As a consequence we have
\[
\varphi_d(s) = \frac{(1 - \lambda_0)(1 - \lambda_1) \cdots (1 - \lambda_{d-1})s^d}{(1 - \lambda_0 s)(1 - \lambda_1 s) \cdots (1 - \lambda_{d-1} s)} \\
= \prod_{i=0}^{d-1} \frac{(1 - \lambda_i)s}{1 - \lambda_i s}.
\]

\[\square\]

3 Proof of Theorem 1.2

Denote the generator Q of the skip-free Markov chain as
\[
Q = \begin{pmatrix}
-\gamma_0 & \alpha_0 \\
\beta_{1,0} & -\gamma_1 & \alpha_1 \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
\beta_{d-1,0} & \beta_{d-1,1} & \beta_{d-1,2} & \cdots & -\gamma_{d-1} & \alpha_{d-1} \\
0 & & & & & \gamma_{d-1} \\
\end{pmatrix}_{(d+1) \times (d+1)}.
\]
and for $0 \leq n \leq d - 1$, Q_n denote the sub-matrix of the first $n + 1$ rows and first $n + 1$ lines of Q. $\tau_{i,i+j}$ be the hitting time of state $i + j$ starting from i. The idea of proof is similar as Theorem 1.1. We just give a briefly description here.

It is well known that the skip-free chain on the finite state has an simple structure. The process start at i, it stay there with an Exponential (γ_i) time, then jumps to $i+1$ with probability $\frac{\alpha_i}{\gamma_i}$, to $i-k$ with probability $\frac{\beta_{i-k,i}}{\gamma_i}$ (1 $\leq k \leq i$). Let $\tilde{f}_{i,i+j}(s)$ be the Laplace transform of $\tau_{i,i+j}$,
\[
\tilde{f}_{i,i+j}(s) = \mathbb{E} e^{-s\tau_{i,i+j}}.
\]
Recall that if a random variable $\xi \sim \text{Exponential} (\theta)$,
\[
\mathbb{E} e^{-s\xi} = \frac{\theta}{\theta + s}.
\]
By decomposing the trajectory at the first jump,

\[
\tilde{f}_{n+1}(s) = \frac{\gamma_n}{\gamma_n + s} \alpha_n + \frac{\gamma_n}{\gamma_n + s} \beta_{n-1} \tilde{f}_{n-1}(s) + \frac{\gamma_n}{\gamma_n + s} \beta_{n-2} \tilde{f}_{n-2}(s) + \cdots + \frac{\gamma_n}{\gamma_n + s} \beta_0 \tilde{f}_0(s)
\]

\[
= \frac{\alpha_n}{\gamma_n + s} + \frac{\beta_{n-1}}{\gamma_n + s} \tilde{f}_{n-1}(s) + \frac{\beta_{n-2}}{\gamma_n + s} \tilde{f}_{n-2}(s) + \cdots + \frac{\beta_0}{\gamma_n + s} \tilde{f}_0(s).
\]

Define

\[
\tilde{g}_{0,0}(s) = 1, \quad \tilde{g}_{i,j}(s) = \frac{\alpha_i \alpha_{i+1} \cdots \alpha_{i+j-1} f_{i,j}(s)}{f_{i,j}(s)}, \quad \text{for } 1 \leq j \leq d - i.
\]

The following lemma can be proved by use the method similar as Lemma 2.1, we omit the details.

Lemma 3.1.

\[
\tilde{g}_{n+1}(s) = \text{det}(sI_n - Q_n), \quad \text{for } 0 \leq n \leq d - 1.
\]

Then we can calculate the Laplace transform of \(\tau_{0,d}\), recall that \(\lambda_0, \ldots, \lambda_{d-1}\) are the \(d\) non-zero eigenvalues of \(-Q\), we can see they are not equal to 0 easily. And we have

\[
\alpha_0 \alpha_1 \cdots \alpha_{d-1} = \lambda_0 \lambda_1 \cdots \lambda_{d-1}.
\]

So

\[
\varphi_d(s) = \tilde{f}_{0,1}(s) \tilde{f}_{1,2}(s) \cdots \tilde{f}_{d-1,d}(s)
\]

\[
= \frac{\alpha_0 \alpha_1 \cdots \alpha_{d-1}}{\text{det}(sI_{d-1} - Q_{d-1})} = \prod_{i=0}^{d-1} \frac{\lambda_i}{1 - \lambda_i s}
\]

complete the proof. \(\square\)

References

[1] Brown, M. and Shao, Y. S. Identifying coefficients in the spectral representation for first passage time distributions. *Probab. Eng. Inform. Sci.* 1 (1987), 69–74.

[2] Diaconis, P. and Fill, J. A. Strong stationary times via a new form of duality. *Ann. Probab.* 18 (1990), 1483–1522.

[3] Diaconis, P. and Miclo, L. On times to quasi-stationarity for birth and death processes. *J. Theoret. Probab.* 22 (2009), 558–586.

[4] Fill, J. A. The passage time distribution for a birth-and-death chain: Strong stationary duality gives a first stochastic proof. *J. Theoret. Probab.* 22 (2009), 543–557.

[5] Fill, J. A. On hitting times and fastest strong stationary times for skip-free and more general chains. *J. Theoret. Probab.* 22 (2009), 587–600.
[6] Gong, Y. Mao, Y. H and Zhang, C. Hitting time distributions for denumerable birth and death processes. *J. Theoret. Probab.* 25 (2012), 950–980.

[7] Karlin, S. and McGregor, J. Coincidence properties of birth and death processes. *Pacific J. Math.* 9 (1959), 1109–1140.

[8] Keilson, J. Log-concavity and log-convexity in passage time densities for diffusion and birth-death processes. *J. Appl. Probab.* 8 (1971), 391–398.

[9] Keilson, J. *Markov Chain Models—Rarity and Exponentiality.* Springer, New York, 1979.

[10] Kent, J. T. and Longford, N. T. An eigenvalue decomposition for first hitting times in random walk. *Z. Wahrscheinlichkeitstheorie verw. Gebiete* 63 (1983), 71–84.