SHORT COMMUNICATION

Molecular Identification of Endophytic Fungi from Banana Leaves (Musa spp.)

Latiffah Zakaria* and Wan Nuraini Wan Aziz

School of Biological Sciences, Universiti Sains Malaysia, 11800 USM Pulau Pinang, Malaysia

Published online: 6 July 2018
To cite this article: Latiffah Zakaria and Wan Nuraini Wan Aziz. (2018). Molecular identification of endophytic fungi from banana leaves (Musa spp.). Tropical Life Sciences Research 29(2): 201–211. https://doi.org/10.21315/tlsr2018.29.2.14
To link to this article: https://doi.org/10.21315/tlsr2018.29.2.14

Abstract: Endophytic fungi are part of microbial community found in various types of plant tissues including the leaf, and display a range of symbiotic interactions with the plant host. In this study, endophytic fungi isolated from banana leaves were identified using ITS (Internal Transcribed Spacer region) sequences of which 10 genera comprising 17 species were molecularly identified. Endophytic fungal species identified were Nigrospora oryzae, Nigrospora sphaerica, Colletotrichum gloeosporioides, Colletotrichum siamense, Fusarium equiseti, Fusarium chlamydosporum, Phoma sorghina, Pestalotiopsis oxyanthi, Pestalotiopsis theae, Pestalotiopsis eugeniae, Penicillium steckii, Penicillium purpurogenum, Bipolaris papendorfii, Bipolaris sp., Lasidiodiplodia theobromae, Cochliobolus intermedius and Aspergillus niger. The present study showed that several endophytic fungal general species are common plant pathogen and there is a possibility that these endophytes can become pathogenic. Some of the fungal endophyte might be mutualist or saprophyte.

Keywords: Endophytic Fungi, Banana Leaves, Musa spp., ITS Sequences

*Corresponding author: Lfah@usm.my; latiffahz@yahoo.com

© Penerbit Universiti Sains Malaysia, 2018. This work is licensed under the terms of the Creative Commons Attribution (CC BY) (http://creativecommons.org/licenses/by/4.0/).
Endophytic fungi reside asymptomatically in internal tissues of plants and form integral part of microbial community associated with various types of plants including crop plants, trees, herbs, shrubs, grasses, ferns as well as lichens and mosses (Zhang et al. 2006). Complex relationship or interaction exists between the endophyte and the plant host, which include commensalism, parasitism and mutualism (Sieber 2007). The interaction is often regarded as ‘plastic’ depending on the developmental stage and nutritional status, genetic dispositions between the endophytes and the host as well as environmental factors (Redman et al. 2001; Schulz & Boyle 2005). Thus, the interaction can change from mutualism to parasitism.

Based on a study by Brown et al. (1998) on pathogenic taxa of wild banana (Musa acuminata), many potential pathogenic genera or species were encountered as endophytes. Some of the endophytes are latent pathogens of which the plant does not show disease symptoms when infected by the pathogen, but produce the disease symptoms when prompted by among others alteration of host physiology and changes in environmental and nutritional conditions (Verhoeff 1974). Similar observation might also occur in edible Musa spp. whereby endophytic fungi from the leaves are potential pathogenic genera or species.

For endophytic fungal studies, Internal Transcribed Spacer (ITS) region is frequently used for molecular identification as the region is recommended as universal DNA barcode marker for fungal identification (Schoch et al. 2012; Sun & Guo 2012). The use of ITS region as a marker has many advantages including availability of universal primers and databases, sufficient fragment length and high successful rate of amplification among all fungal lineages (Vilgalys 2003; Nilsson et al. 2009).

There is a possibility that some of the fungal endophyte resides in banana leaves are common genera or species of plant pathogens and some are saprophytes. Thus, the present study was conducted to isolate and molecularly identified endophytic fungi from leaves of Musa spp. to determine the endophytic and pathogenic fungal genera/species reside in banana leaves.

Symptomless banana leaves (Musa spp.) were obtained from banana trees at a banana farm in Balik Pulau, Kg Perlis, Pulau Pinang; banana trees from small garden near Bakti Permai hostel and banana trees near School of Biological Science plant house, Universiti Sains Malaysia main campus, Pulau Pinang. Young and healthy leaves were sampled and only one banana leave was chosen from the tree of which the estimated age of the banana plants were below six months. The samples were placed in plastic bags and brought to the laboratory to be processed. All the banana leaves were washed thoroughly under running tap water for 24 h and dried before isolation of endophytic fungi.

Isolation of endophytic fungi was carried out using surface sterilisation technique. After the banana leaves were thoroughly dried, the leaves were cut into 1 cm segment using a sterile scalpel. The pieces of banana leaves were sterilised by soaking in 2% sodium hypochlorite for 3 min, rinse in sterile distilled water for 1 min, blotted dried using sterilised filter paper to remove excess water.
After the banana leave pieces were thoroughly dried, imprint method was carried out by pressing the sterilised leaves segment gently onto the surface of Potato Dextrose Agar (PDA) to confirm the efficacy of the surface sterilisation technique and also to confirm only fungal endophyte were isolated. The absence of any fungal growth on the imprint plate showed that the surface sterilisation technique applied was effective in removing the surface fungi or epiphyte (Schulz et al. 1993).

The leaves segments were then transferred onto PDA and incubated at 25±1°C in a sterilised container. Four leaf segments were plated onto one PDA and 30 leaves were used for isolation. The PDA plated with the leaves segments were incubated for 1–4 days or until there was visible mycelium growth from the leave tissues. The mycelium grew from the banana leaves tissue were sub-cultured onto new PDA plates.

For DNA extraction, the fungal isolates were cultured on the surface of dialysis membrane on PDA, incubated for 5–7 days at 25±1°C or until there was visible mycelia growth. Invisorb® Spin Plant Mini Kit (STRATEC Molecular GmbH, Berlin, Germany) was used for DNA extraction according to the manufacturers’ instructions.

ITS regions were amplified using ITS1 (5' -TCC GTA GGT GAA CCT GCG G- 3') and ITS4 (5' -TCC TCC GCT TAT TGA TAT GC- 3') primers (White et al. 1990). PCR reaction mixture was prepared in 25 µl reaction containing 4 µL 1X PCR buffer, 4 µl 3.5 mM MgCl₂, 0.5 µl of 0.16 mM of dNTP mix (Promega, Seattle, WA, USA), 0.15 µl of 1.75 unit of GoTaq® DNA polymerase (Promega), 4 µl of 0.0275 µM ITS 1 primer, 4 µl of 0.028 µM ITS 4 primer, 0.3 µl template DNA and 8.05 µl of ddH₂O to make up a total volume of 25 µl. Paraffin oil (25 µl) was overlaid on each reaction. PCR was performed in MyCycler™ Thermal Cycler (Bio-RAD Hercules, CA, USA) with an initial denaturation at 95°C at 2 min followed by 35 cycles of 30 s denaturation at 95°C, 30 s annealing at 55°C and 1 min extension at 72°C. Final extension for 10 min at 72°C was performed after the cycles ended.

After PCR, electrophoresis was run to detect the PCR product by using 1.0% agarose gel. Negative control which has no template DNA was used to detect any contamination. One µl of the PCR product was mixed with 3 µl 6X loading dye (ThermoFisher, Waltham, MA USA) and loaded in 1.0% agarose gel. The electrophoresis was run for 70 min at 80 V and 400 mA. PCR products were sent for sequencing to a service provider.

After sequencing, the sequences were aligned by using BioEdit Sequence Alignment Editor Version 7.0.5 software by Hall (1999) to obtain consensus sequences. The consensus sequences were then compared with other DNA sequences in GenBank using basic local alignment search tool (BLAST) in National Centre for Biotechnology Information (http://www.ncbi.nlm.nih.gov/). Identification of the isolates was based on the highest similarity of the BLAST search.

From 30 leaves segment, 28 endophytic fungal isolates were recovered. Based on BLAST search, the isolates were identified into 10 genera and 17 species with percentage of similarity from 97% to 100% (Table 1). Many of the fungal genera including *Pestalotiopsis, Colletotrichum, Nigrospora, Cochliobolus, Fusarium* and...
Lasiodiplodia are common endophytic fungi as well as plant pathogenic fungi. Among the fungal species identified, pathogens of Musa spp. were also identified such as Colletotrichum gloeosporioides, causal pathogen of anthracnose (Jones & Slabaugh 1998), Lasiodiplodia theobromae, causal pathogen of crown rot (Jones & Slabaugh 1998) and Nigrospora sphaerica, causal pathogen of squirter disease of banana (Jones & Slabaugh 1998). In a study by Mohamed Abdalla et al. (2016), Nigrospora sp. and Pestalotiopsis sp. are saprophytes on organic banana fruits. The results of the present study suggested that endophytic stage may be important in the life cycles of some banana pathogens which conform to the statement by Brown et al. (1998).

Table 1: Endophytic fungi isolated from banana leaves identified using ITS sequences.

No.	Isolate	Species identity (% similarity)	Location
1	USM1-2	Nigrospora oryzae (99)	Kg Perlis, Balik Pulau
2	USM1-3B	N. oryzae (99)	Kg Perlis, Balik Pulau
3	USM2-1A	N. sphaerica (100)	Kg Perlis, Balik Pulau
4	USM 2-1B	N. sphaerica (100)	Kg Perlis, Balik Pulau
5	USM 2-8A	N. sphaerica (100)	Kg Perlis, Balik Pulau
6	USM 2-6A	Colletotrichum gloeosporioides (99)	Kg Perlis, Balik Pulau
7	USM 5-4	C. gloeosporioides (99)	Bakti Permai, USM
8	USM 7-5	C. gloeosporioides (100)	Plant House, USM
9	USM 6-2	C. siamense (100)	Bakti Permai, USM
10	USM 3-2A	Fusarium equiseti (100)	Kg Perlis, Balik Pulau
11	USM 3-3	F. chlamydosporum (99)	Kg Perlis, Balik Pulau
12	USM 3-8A	Phoma sorghina (100)	Kg Perlis, Balik Pulau
13	USM 4-3	Pestalotiopsis oxyanthi (97)	Bakti Permai, USM
14	USM 5-7	Pes. oxyanthi (99)	Bakti Permai, USM
15	USM 5-2	Pes. theae (99)	Bakti Permai, USM
16	USM 5-3	Pes. theae (99)	Bakti Permai, USM
17	USM 5-5	Pes. theae (99)	Bakti Permai, USM
18	USM 5-3A	Pes. eugeniae (99)	Bakti Permai, USM
19	USM 7-2	Pes. eugeniae (99)	Plant House, USM
20	USM 8-10	Penicillium steckii (99)	Plant House, USM
21	USM 8-11	P. steckii (99)	Plant House, USM
22	USM 8-12	P. steckii (99)	Plant House, USM
23	USM 7-4	P. purpurogenum (100)	Plant House, USM
24	USM 9-7	Bipolaris papendorfii (100)	Plant House, USM
25	USM 8-1	Bipolaris sp. (100)	Plant House, USM
26	USM 1-3A	Lasiodiplodia theobromae (100)	Kg Perlis, Balik Pulau
27	USM 8-7	Cochliobolus intermedius (99)	Plant House, USM
28	USM 7-1	Aspergillus niger (100)	Plant House, USM
Seven isolates of *Pestalotiopsis* spp. from banana leaf were identified as *Pes. theae* (*n* = 3), *Pes. eugeniae* (*n* = 2) and *Pes. oxyanthi* (*n* = 2). So far only *Pes. theae* is associated with banana of which the species was reported causing banana fruit rot (Ketabchi 2014). In nature, endophytic *Pestalotiopsis* is considered as a main part of *Pestalotiopsis* community (Kumar & Hyde 2004; Liu *et al.* 2006) and endophytic *Pestalotiopsis* from banana leaves give more information on the occurrence of this species in nature. Endophytic *Pes. theae* and *Pes. oxyanthi* have been reported as endophyte of Podocarpaceae, Theaceae and Taxaceae in southern China (Wei *et al.* 2007). They also suggested that *Pestalotiopsis* species could have endophytic and pathogenic stages in their life cycle.

According to Domsch and Gams (1993), *Nigrospora* is well-adapted as endophyte in plant tissues. In the present study, two *Nigrospora* spp. were identified as *N. oryzae* (*n* = 3) and *N. sphaerica* (*n* = 2). Endophytic *N. oryzae* is dominant species isolated from banana leaves in Hong Kong (Brown *et al.* 1998). Nevertheless, *N. oryzae* can also be saprophyte on banana leave (Holliday 1980; Surridge *et al.* 2003). *Nigrospora sphaerica* is closely related to *N. oryzae* and have been reported as pathogen of *Musa* spp. (Allen 1970; Wallbridge, 1981; Jones & Slabaugh 1998) as well as endophyte of Palmae (Rodrigues 1994). *Nigrospora sphaerica* was also among fungal isolates recovered from crown area of banana fruits (Wallbridge 1981). These studies suggested that *N. oryzae* and *N. sphaerica* can occur as endophyte and pathogen on different parts of banana plant.

Two species of *Colletotrichum* were identified in this study, *C. gloeosporioides* (*n* = 3) and *C. siamense* (*n* = 1). *Colletotrichum gloeosporioides* was among dominant endophytes isolated from banana in Hong Kong (Brown *et al.* 1998). *Colletotrichum gloeosporioides* is also causal pathogen of anthracnose and leaf spot of banana, however endophytic *C. gloeosporioides* from wild banana did not cause leaf spots on banana leaves *in-vitro* (Photita *et al.* 2004). *Colletotrichum siamense* is commonly a pathogen on wide host ranges (Phoulivong *et al.* 2012). The only report of *C. siamense* as an endophyte was from Refaei *et al.* (2011) of which *C. siamense* was among the endophytic fungi isolated from *Rafflesia cantley*.

Penicillium spp. are commonly reported in studies of endophytic fungal assemblages of various types of plants and have been recovered from different plant parts (Nicoletti *et al.* 2014). From banana leaf segments, four isolates of *Penicillium* were isolated comprising three isolates of *P. steckii* and one isolate of *P. purpurogenum*. *Penicillium steckii* has not been reported as endophyte of banana but this species has been reported as among endophytic *Penicillium* spp. associated with coffee plant (Vega *et al.* 2006). Endophytic *P. purpurogenum* is common in plants and has been isolated from twigs of *Ginkgo biloba* (Qiu *et al.* 2010), different plant parts of *Acorus calamus* (Shukla & Mishra 2012), and green leaves of *Ziziphu* spp. (El-Nagerabi *et al.* 2013). *Penicillium purpurogenum* is also plant pathogen causing fruit rot (Gubler & Converse 1994; Bhadwal & Sharma 2011) and root rot (Avasthi *et al.* 2015). In the present study, endophytic *P. steckii* might be mutualist in banana leaves, and there is a possibility that endophytic *P. purpurogenum* is latent pathogen of banana.
Fusarium is among fungal genera that have been reported as endophyte of many plants and several endophytic Fusarium spp. have been reported to be associated with banana plants (Marin et al. 1996; Photita et al. 2001; Athman 2006; Latiffah & Nur Hidayah 2011). In this study, two isolates of Fusarium identified as *F. equiseti* and *F. chlamydosporum* were recovered from banana leaves. Nevertheless, there is no report of endophytic *F. equiseti* and *F. chlamydosporum* associated with banana. Endophytic *F. equiseti* has been recovered from root of *Lygeum spartum*, a Gramineae (Maciá-Vicente et al. 2008), leaves of soybean plants (Russo et al. 2016) and from Poaceae (Szécsi et al. 2013). As for endophytic *F. chlamydosporum*, the endophyte was recovered from healthy roots of *Dendrobium crumenatum* (Orchidaceae) (Siddiquee et al. 2010), cocoa branches (Rubini et al. 2005), green leaves of *Ziziphus* sp. (El-Nagerabi et al. 2013) and stem of *Tylophora indica* (Chaturvedi et al. 2014). According to Leslie and Summerell (2006), *F. equiseti* and *F. chlamydosporum* are saprophyte or secondary coloniser of disease plant part. Therefore, both endophytic *F. equiseti* and *F. chlamydosporum* reside in banana leaves could later become saprophyte or secondary coloniser as the leaves aged.

Two endophytic *Bipolaris*, *Bipolaris* sp. and *B. papendorfii* as well as one species of Cochliobolus identified as *C. intermedium* were isolated from banana leaves. *Cochliobolus* is the sexual stage or teleomorph of *Bipolaris* (anamorph). Another anamorph of *Cochliobolus* is Curvularia. Both genera are worldwide pathogens of mostly grasses (Poaceae), however there are some species of *Cochliobolus* and *Bipolaris* reported as endophytes with different plant species (Manamgoda et al. 2011). Endophytic *Cochliobolus* was recovered from leaves of a medicinal plant, *Sapindus saponaria* L. (Garcia et al. 2012), and endophytic *Bipolaris* was the most frequent genus recovered from *Piper hispidum*, a medicinal shrub (Orlandelli et al. 2012). Both endophytic *Bipolaris* and *Cochliobolus* have not been reported from banana plants but *Curvularia* has been reported as endophyte of *Musa* spp. by Photita et al. (2004) and they regarded *Curvularia* as latent pathogen of *Musa* spp. There ia a possibility that *Bipolaris* and *Cochliobolus* might become pathogen to banana leaves.

Endophytic *P. sorghina*, *L. theobromae* and *A. niger* were recovered from banana leaf segments. *Phoma sorghina* and *L. theobromae* are common plant pathogens and *A. niger* is well-known spoilage fungus, however, the three fungal species have also been found as endophyte in many types of plant. Endophytic *P. sorghina* has been reported in association with *Tithonia diversifolia* (Asteraceae) (Borges & Pupo 2006), rice plant (Fisher & Petrini 1992) and leaves of maize (Sziliagyi-Zecchin et al. 2016). For endophytic *L. theobromae*, the species has been found to be associated with Araucariaceae (Huang & Wang 2011), as part of endophytic fungal community of cacao (*Theobroma cacao* L.) (Rubini et al. 2005) and among endophytes isolated from two types of orchids, *Bulbophyllum neilgherrense* and *Pholidota pallida* (Kotian et al. 2013). Endophytic *A. niger* has been isolated from leaves of *Platanus orientalis* (Robl et al. 2015), *Acacia arabica* (Tamanreet et al. 2016) and *Mangifera indica* (Nayak 2015). Similar with other endophytic fungi in the present study, *P. sorghina* and *L. theobromae* have the
potential to become pathogens to banana leaves. As for *A. niger*, this species might become saprophyte when the leaves aged which is similar with *Fusarium*, *Bipolaris* and *Cochliobolus* recovered in this study.

The results of the present study suggested that several endophytic species are potential pathogens which in a latent phase. Similar observation was also reported by Photita *et al.* (2004) of which several endophytic fungi from wild banana leaves were able to cause leaf spot disease. Several factors that might contribute endophyte to become pathogenic including when the host plant is stressed (Andrews *et al.* 1985), change in host susceptibility due to poor nutrient supply and excessive humidity (Fisher & Petrini 1992). According to Bayman (2006), any factors that can weaken the host plant’s ability to limit growth of fungal endophyte could allow certain endophyte to become pathogenic.

As a conclusion, endophytic fungi isolated from banana leaves were identified into 10 genera comprising 17 species, namely *N. oryzae*, *N. sphaerica*, *C. gloeosporioides*, *C. siamense*, *F. equiseti*, *F. chlamydosporum*, *Phoma sorghina*, *P. oxyanthi*, *P. theae*, *P. eugeniae*, *P. steckii*, *P. purpurogenum*, *B. papendorfii*, *Bipolaris* sp., *L. theobromae*, *Cochliobolus intermedius* and *A. niger*. The present study showed that several endophytic fungal genera/species are common plant pathogens and there is a possibility they might become pathogen. Some of the fungal endophytes might be mutualist or saprophyte. The information on fungal endophyte of banana leaves also contributes to the knowledge on the biodiversity of endophytic fungi in Malaysia.

ACKNOWLEDGEMENTS

This work was supported in part by Universiti Sains Malaysia Research University grant (grant number 1001/PBIOLOGI/811179).

REFERENCES

Allen R N. (1970). Control of black-end and squirter diseases in bananas with benzimidazole and salicylanilide compounds. *Australian Journal of Experimental Agriculture and Animal Husbandry* 10(45): 490–492. https://doi.org/10.1071/EA9700490

Andrews J H, Hecht P and Bashirian S. (1985). Association between the fungus Acremonium curvulum and Eurasian water milfoil, *Myriophyllum spicatum*. *Canadian Journal of Botany* 60(7): 1216–1221. https://doi.org/10.1139/b82-154

Athman S Y. (2006). Genetic diversity of endophytic *Fusarium* species associated with Cavendish banana in South Africa. PhD dissertation. University of Pretoria, South Africa.

Avasthi S, Gautam A K and Bhadauria R. (2015). First report of *Penicillium purpurogenum* causing collar and root rot infection in *Aloe vera*. *Plant Pathology and Quarantine* 5(1): 20–24. https://doi.org/10.5943/ppq/5/1/4
Bayman P. (2006). Diversity, scale and variation of endophytic fungi in leaves of tropical plants. In: M J Bailey, A K Lilley, T M Timms-Wilson and P T N Spencer-Phillips (eds.). *Microbial ecology of aerial plant surfaces*. Oxfordshire, U.K.: CABI Wallingford, 37–50. https://doi.org/10.1079/9781845930615.0037

Bhadwal J and Sharma Y P. (2011). Unrecorded post harvest fungal rots of fresh apricots from India. *Proceedings of the National Academy of Sciences, India, Section B* 88: 288–290.

Borges W de S and Pupo M T. (2006). Novel anthraquinone derivatives produced by Phoma sorghina, an endophyte found in association with the medicinal plant *Tithonia diversifolia* (Asteraceae). *Journal of the Brazilian Chemical Society* 17(5): 929–934. https://doi.org/10.1590/S0103-5053200600000017

Brown K B, Hyde K D. and Guest D J. (1998). Preliminary studies on endophytic fungal communities of *Musa acuminata* species complex in Hong Kong and Australia. *Fungal Diversity* 1: 27–51.

Chaturvedi P, Srikanth G, Roy S S, Dudhale R and Chowdhary A. (2014). Determination of Kaempferol in extracts of *Fusarium chlamydosporum*, an endophyticfungi of *Tylophora indica* (Asclepeadaceae) and its anti-microbial activity. *IOSR Journal of Pharmacy and Biological Sciences* 6(9): 51–55. https://doi.org/10.9790/3008-09155155

Domsch K H and Gams W. (1993). *Compendium of soil fungi. Volume 1*. Germany: IMW Verlag.

El-Nagerabi S A F, Elshafie A and Alkanjari S S. (2013). Endophytic fungi associated with *Ziziphus* species and new records from mountainous area of Oman. *Biodiversitas* 14(1): 10–16. https://doi.org/10.13057/biodiv/d140102

Fisher P J and Petrini O. (1992). Fungal saprobes and pathogens as endophytes of rice (*Oryza sativa* L.). *New Phytopathologist* 120(1): 137–143. https://doi.org/10.1111/j.1469-8137.1992.tb01066.x

García A, Rhoden S A, Rubin Filho C J, Nakamura C V and Pamphile J A. (2012). Diversity of foliar endophytic fungi from the medicinal plant *Sapindus saponaria* L. and their localization by scanning electron microscopy. *Biological Research* 45(2): 139-148. https://doi.org/10.4067/S0716-97602012000200006

Gubler W D and Converse R H. (1994). Diseases of strawberry (*Fragaria x ananassa* Duch.). http://www.apsnet.org/publications/commonnames/Pages/Strawberry.aspx (accessed on 11 April 2017).

Hall T A. (1999). Bioedit: A user friendly biological sequence alignment editor and analysis program from windows 95/97/NT. *Nucleic Acids Symposium Series* 41: 95–98.

Holliday P. (1980). *Fungus disease of tropical crops*. Cambridge, UK: Cambridge University Press.

Huang C-L and Wang Y-Z. (2011). New records of endophytic fungi associated with the Araucariaceae in Taiwan. *Collection and Research* 24: 87–95.

Jones D R and Slabaugh W R. (1998). Anthracnose and fungal scald. Banana diseases caused by fungi. In: Ploetz R C, Zentmeyer G A, Nishijima W T, Rohrbach K G and Ohr H D. (eds.). *Compendium of tropical fruit diseases*. St Paul, MN: APS (American Phytopathology Society) Press, 4–5.

Ketabchi M. (2014). First report of banana fruit rot by *Pestalotiopsis theae*. *Iranian Journal of Plant Pathology* 50(1): 103–104.

Kotian S, Thanvanthri G V and Thokur S M. (2013). Fungal endophytes from two orchid species – pointer towards organ specificity. *Czech Mycology* 65(1): 89–101.

Kumar D S S and Hyde K D. (2004). Biodiversity and tissue-recurrence of endophytic fungi in *Tripterygium wilfordii*. *Fungal Diversity* 17: 69–90.
Endophytic Fungi from Banana Leaves

Latiffah Z and Nur Hidayah A. Rahman. (2011). Endophytic Fusarium spp. from wild banana (Musa acuminata) roots. African Journal of Microbiology 5(21): 3600–3602. https://doi.org/10.5897/AJMR11.298

Leslie J F and Summerell B A. (2006). The fusarium laboratory manual. Hoboken, NJ: Blackwell Publishing. https://doi.org/10.1002/9780470278376

Liu A R, Wu X P, Xu T, Guo L D and Wei J G. (2006). Notes on endophytic Pestalotiopsis from Hainan, China. Mycosystema 25(3): 389–397.

Manamgoda D S, Cai L, Bahkali A H, Ekachai C and Hyde K D. (2011). Cochliobolus: An overview and current status of species. Fungal Diversity 51(1): 32–42. https://doi.org/10.1007/s13225-011-0139-4

Marcia-Vicente J G, Jansson H B, Abdullah S K, Descols E and Salinas J. (2008). Fungal endophytes from natural vegetation in Mediterranean environments with special reference to Fusarium species. FEMS Microbiology Ecology 64(1): 90–105. https://doi.org/10.1111/j.1574-6941.2007.00443.x

Marin D H, Sutton T B, Blankenship M and Swallow W H. (1996). Pathogenicity of fungi associated with crown rot of banana in Latin America on Grandeaine and disease-resistant hybrid banana. Plant Disease 80(5): 525–528. https://doi.org/10.1094/PD-80-0525

Mohamed Abdalla M K, Cortesia P and Saracchi M. (2016). Etiological agents of crown rot of organic bananas in Dominican Republic. Postharvest Biology and Technology 120: 112–120. https://doi.org/10.1016/j.postharvbio.2016.06.002

Nayak B K. (2015). Isolation and identification of phylloplane and endophytic fungi from one ornamental plant, Mangifera indica. International Journal of TechnoChem Research 1(3): 188–192.

Nicoletti R, Fiorentino A and Scognamiglio M. (2014). Endophytism of Penicillium species in woody plants. The Open Mycology Journal 8: 1–26. https://doi.org/10.2174/1874437001408010001

Nilsson R H, Ryberg M, Abarenkov K, Sjökvist E and Kristiansson E. (2009). The ITS region as a target for characterization of fungal communities using emerging sequencing technologies. FEMS Microbiology Letters 296(1): 97–101. https://doi.org/10.1111/j.1574-6968.2009.01618.x

Orlandelli R C, Alberto R N, Rubin Filho C J and Pamphile J A. (2012). Diversity of endophytic fungal community associated with Piper hispidum (Piperaceae) leaves. Genetics and Molecular Research 11(2): 1575–1585. https://doi.org/10.4238/2012.May.22.7

Photita W, Lumyong S, Lumyong P and Hyde K D. (2001). Endophytic fungi of wild banana (Musa acuminata) at Doi Suthep Pui National Park, Thailand. Mycological Research 105(12): 1508–1513. https://doi.org/10.1017/S0953756201004968

Photita W, Lumyong S, Lumyong P, McKenzie E H C and Hyde K D. (2004). Are some endophytes of Musa acuminata latent pathogens? Fungal Diversity 16: 131–140.

Phoulivong S, McKenzie E H C and Hyde K D. (2012). Cross infection of Colletotrichum species: A case study with tropical fruits. Current Research in Environmental and Applied Mycology 2(2): 99–111. https://doi.org/10.5943/cream/2/2/2

Qiu M, Xie R, Shi Y, Chen H, Wen Y, Gao Y and Hu X. (2010). Isolation and identification of endophytic fungus SX01, a red pigment producer from Ginkgo biloba. World Journal of Microbiology and Biotechnology 26(6): 993–998. https://doi.org/10.1007/s11274-009-0261-6

Redman R S, Dunigan D D and Rodriguez R J. (2001). Fungal symbiosis from mutualism to parasitism: Who controls the outcome, host or invader? New Phytologist 151(3): 705–716. https://doi.org/10.1046/j.0028-646x.2001.00210.x
Refaei J, Jones E B G, Sakayaroj J and Santhanam J. (2011). Endophytic fungi from *Rafflesia cantleyi*: Species diversity and antimicrobial activity. *Mycosphere* 2(4): 429–447.

Robl D, Delabona P da-S, Costa P dos S, Lima D J da-S, Rabelo S C, Pimentel I C, Büchli F, Squina F M, Padilla G and Pradella J G da-C. (2015). Xylanase production by endophytic *Aspergillus niger* using pentose-rich hydrothermal liquor from sugarcane bagasse. *Biocatalysis and Biotransformation* 33(3): 175–187. https://doi.org/10.3109/10242422.2015.1084296

Rodrigues K F. (1994). The foliar fungal endophytes of the Amazonian palm *Euterpe oleracea*. *Mycologia* 86(3): 376–385. https://doi.org/10.2307/3760568

Rubini M R, Silva-Ribeiro R T, Pomella A W V, Maki C S, Araújo W L, Santos D R and Azevedo J L. (2005). Diversity of endophytic fungal community of cacao (*Theobroma cacao* L.) and biological control of *Crinipellis perniciosa*, causal agent of Witches’ Broom Disease. *International Journal of Biological Sciences* 1(1): 24–33. https://doi.org/10.7150/ijbs.1.24

Russo M L, Pelizza S A, Cabello M N, Stenglein S A, Vianna M F and Scorsetti A C. (2016). Endophytic fungi from selected varieties of soybean (*Glycine max* L. Merr.) and corn (*Zea mays* L.) grown in an agricultural area of Argentina. *Revista Argentina de Microbiologia* 48(2): 154–160. https://doi.org/10.1016/j.ram.2015.11.006

Schoch C L, Seifert K A, Huhndorf S, Robert V, Spouge J L, Levesque C A, Chen W and Fungal Barcoding Consortium. (2012). Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. *Proceeding of National Academy of Science USA* 109(16): 6241–6246. https://doi.org/10.1073/pnas.1117018109

Schulz B and Boyle C. (2005). The endophytic continuum. *Mycological Research* 109(6): 661–686. https://doi.org/10.1017/S095375620500273X

Schulz B, Wanke U, Drager S. and Aust H J. (1993). Endophytes from herbaceous plants and shrubs: Effectiveness of surface sterilization methods. *Mycological Research* 97(12):1447–1450. https://doi.org/10.1016/S0953-7562(09)80215-3

Shukla M and Mishra M K. (2012). Mycoflora associated with five commonly used medicinal plants of Karaikal (U.T. of Puducherry). *International Journal of Scientific and Research Publications* 2(1): 1–4.

Siddiquee S, Umi Kalsom Y and Nur Ain Izzati M Z. (2010). Morphological and molecular detection of *Fusarium chlamydosporum* from root endophytes of *Dendrobium crumenatum*. *African Journal of Biotechnology* 9(26): 4081–4090.

Sieber T. (2007). Endophytic fungi in forest trees: are they mutualists? *Fungal Biology Reviews* 21(2–3): 75–89. https://doi.org/10.1016/j.fbr.2007.05.004

Sun X and Guo L-D. (2012). Endophytic fungal diversity: Review of traditional and molecular techniques. *Mycology* 3(1): 65–76.

Surridge A K J, Viljoen A and Wehner F C. (2003). Mycosphaerella leaf spot diseases of bananas: Present status and outlook. In: L Jacome, P Lepoivre, D Marin, R Ortiz, R Romero and J V Escalant (eds.). Proceedings of the 2nd International workshop on Mycosphaerella leaf spot diseases held in San José, Costa Rica, CIRAD-AMIS, Montpellier, France, 20–23 May 2002.

Szécsi Á, Magyar D, Tóth S and Szőke C. (2013). Poacea: A rich source of endophytic fusaria. *Acta Phytopathologica et Entomologica* 48(1): 19–32. https://doi.org/10.1556/APhyt.48.2013.1.2
Szilagyi-Zecchin V J, Adamski D, Gomes R R, Hungria M, Ikeda A C, Kava-cordeiro V, Glienke C and Galli-terasawa L V. (2016). Composition of endophytic fungal community associated with leaves of maize cultivated in South Brazilian field. *Acta Microbiologica et Immunologica Hungarica* 63(4): 449–466. https://doi.org/10.1556/030.63.2016.020

Tamanreet K, Jasleen K, Amarjeet K and Sanehdeep K. (2016). Larvicidal and growth inhibitory effects of endophytic *Aspergillus niger* on a polyphagous pest, *Spodoptera litura*. *Phytoparasitica* 44(4): 465–476. https://doi.org/10.1007/s12600-016-0541-2

Vega F E, Posada F, Peterson S W, Thomas J, Gianfagna T J and Chaves F. (2006). *Penicillium* species endophytic in coffee plants and ochratoxin A production. *Mycologia* 98(1): 31–42. https://doi.org/10.1080/15572536.2006.11832710

Verhoeff K. (1974). Latent infections by fungi. *Annual Review of Phytopathology* 12(1): 99–110. https://doi.org/10.1146/annurev.py.12.090174.000531

Vilgalys R. (2003). Taxonomic misidentification in public DNA database. *New Phytologist* 160(1): 4–5. https://doi.org/10.1046/j.1469-8137.2003.00894.x

Wallbridge A. (1981). Fungi associated with crown-rot disease of boxed bananas from the Windward Islands during a two-year survey. *Transactions of the British Mycological Society* 77(3): 567–577. https://doi.org/10.1016/S0007-1536(81)80105-2

Wei J G, Xu T, Guo L D, Liu A R, Zhang Y and Pan X H. (2007). Endophytic *Pestalotiopsis* species associated with plants of Podocarpaceae, Theaceae and Taxaceae in southern China. *Fungal Diversity* 24(1): 55–74.

White T J, Bruns T, Lee S. and Taylor J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M A Innis, D H Gelfand, J J Sninsky and T J White (eds.). *PCR protocols: A guide to methods and applications*. New York: Academic Press, 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1

Zhang H W, Song Y C. and Tan R X. (2006). Biology and chemistry of endophytes. *Natural Product Reports* 23: 753–771. https://doi.org/10.1039/b609472b

211