LOGARITHMIC CONNECTIONS ON PRINCIPAL BUNDLES OVER A RIEMANN SURFACE

INDRANIL BISWAS, ANANYO DAN, ARJUN PAUL, AND ARIDEEP SAHA

ABSTRACT. Let E_G be a holomorphic principal G–bundle on a compact connected Riemann surface X, where G is a connected reductive complex affine algebraic group. Fix a finite subset $D \subset X$, and for each $x \in D$ fix $w_x \in \text{ad}(E_G)_x$. Let T be a maximal torus in the group of all holomorphic automorphisms of E_G. We give a necessary and sufficient condition for the existence of a T–invariant logarithmic connection on E_G singular over D such that the residue over each $x \in D$ is w_x. We also give a necessary and sufficient condition for the existence of a logarithmic connection on E_G singular over D such that the residue over each $x \in D$ is w_x, under the assumption that each w_x is T–rigid.

1. Introduction

Let X be a compact connected Riemann surface. Given a holomorphic vector bundle E on X, a theorem of Weil and Atiyah says that E admits a holomorphic connection if and only if the degree of every indecomposable component of E is zero (see [We], [At]). Now let G be a connected complex affine algebraic group and E_G a holomorphic principal G–bundle on X. Then E_G admits a holomorphic connection if and only if for every holomorphic reduction of structure group $E_H \subset E_G$, where H is a Levi factor of some parabolic subgroup of G, and for every holomorphic character χ of H, the degree of the associated line bundle

$$E_H(\chi) = E_H \times^\chi \mathbb{C} \longrightarrow X$$

(1.1)

is zero [AB]. Our aim here is to investigate the logarithmic connections on E_G with fixed residues, where (G, E_G) is as above. More precisely, fix a finite subset $D \subset X$ and also fix

$$w_x \in \text{ad}(E_G)_x$$

for each $x \in D$, where $\text{ad}(E_G)$ is the adjoint vector bundle for E_G. We investigate the existence of logarithmic connections on E_G singular over D such that residue is w_x for every $x \in D$.

Let $\text{Aut}(E_G)$ denote the group of all holomorphic automorphisms of E_G; it is a complex affine algebraic group. Fix a maximal torus

$$T \subset \text{Aut}(E_G).$$

This choice produces a Levi factor H of a parabolic subgroup of G as well as a holomorphic reduction of structure group $E_H \subset E_G$ to H [BBN]. This pair (H, E_H) is determined by T uniquely up to a holomorphic automorphism of E_G.

2010 Mathematics Subject Classification. 53B15, 14H60, 32A27.

Key words and phrases. Logarithmic connection, residue, automorphism, maximal tori.
The group $\text{Aut}(E_G)$ acts on the vector bundle $\text{ad}(E_G)$. An element of $\text{ad}(E_G)$ will be called T–rigid if it is fixed by the action of T; some examples are given in Section 4.2.

We prove the following (see Theorem 5.3):

Theorem 1.1. The following two are equivalent:

1. There is a T–invariant logarithmic connection on E_G singular over D with residue w_x at every $x \in D$.
2. The element w_x is T–rigid for each $x \in D$, and

$$\text{degree}(E_H(\chi)) + \sum_{x \in D} d\chi(w_x) = 0$$

for every holomorphic character χ of H, where $E_H(\chi)$ is the line bundle in (1.1), and $d\chi: \text{Lie}(H) \rightarrow \mathbb{C}$ is the homomorphism of Lie algebras corresponding to χ.

The Lie algebra \mathbb{C} being abelian the homomorphism $d\chi$ factors through the conjugacy classes in $\text{Lie}(H)$, so it can be evaluated on the elements of $\text{ad}(E_H)$.

We also prove the following (see Theorem 5.1):

Theorem 1.2. Assume that each w_x is T–rigid. Then there is a logarithmic connection on E_G singular over D, with residue w_x at every $x \in D$, if and only if

$$\text{degree}(E_H(\chi)) + \sum_{x \in D} d\chi(w_x) = 0,$$

where $E_H(\chi)$ and $d\chi(w_x)$ are as in Theorem 1.1.

2. Logarithmic connections and residue

2.1. Preliminaries. Let G be a connected reductive affine algebraic group defined over \mathbb{C}. A Zariski closed connected subgroup $P \subset G$ is called a parabolic subgroup if G/P is a projective variety [Bo, 11.2], [Hu]. The unipotent radical of a parabolic subgroup $P \subset G$ will be denoted by $R_u(P)$. The quotient group $P/R_u(P)$ is called the Levi quotient of P. A Levi factor of P is a Zariski closed connected subgroup $L \subset P$ such that the composition $L \hookrightarrow P \twoheadrightarrow P/R_u(P)$ is an isomorphism [Hu, p. 184]. We note that P admits Levi factors, and any two Levi factors of P are conjugate by an element of $R_u(P)$ [Hu, § 30.2, p. 185, Theorem].

The multiplicative group $\mathbb{C} \setminus \{0\}$ will be denoted by \mathbb{G}_m. A torus is a product of copies of \mathbb{G}_m. Any two maximal tori in a complex algebraic group are conjugate [Bo, p. 158, Proposition 11.23(ii)].

By a homomorphism between algebraic groups or by a character we will always mean a holomorphic homomorphism or a holomorphic character.

2.2. Logarithmic connections. Let X be a compact connected Riemann surface. Fix a finite subset

$$D := \{x_1, \ldots, x_n\} \subset X.$$

The reduced effective divisor $x_1 + \ldots + x_n$ will also be denoted by D.
Let
\[p : E_H \rightarrow X \quad (2.1) \]
be a holomorphic principal \(H \)-bundle on \(X \), where \(H \) is a connected affine algebraic group defined over \(\mathbb{C} \). The Lie algebra of \(H \) will be denoted by \(\mathfrak{h} \). Let
\[dp : T E_H \rightarrow p^* T X \quad (2.2) \]
be the differential of the map \(p \) in (2.1), where \(T E_H \) and \(T X \) are the holomorphic tangent bundles of \(E_H \) and \(X \) respectively; note that \(dp \) is surjective. The action of \(H \) on \(E_H \) produces an action of \(H \) on \(T E_H \). This action on \(T E_H \) clearly preserves the subbundle \(\text{kernel}(dp) \). Define
\[\text{ad}(E_H) := \text{kernel}(dp)/H \rightarrow X, \]
which is a holomorphic vector bundle on \(X \); it is called the adjoint vector bundle for \(E_H \). We note that \(\text{ad}(E_H) \) is identified with the vector bundle \(E_H \times^H \mathfrak{h} \rightarrow X \) associated to \(E_H \) for the adjoint action of \(H \) on its Lie algebra \(\mathfrak{h} \). So the fibers of \(\text{ad}(E_H) \) are Lie algebras isomorphic to \(\mathfrak{h} \). Define the Atiyah bundle for \(E_H \)
\[\text{At}(E_H) := (T E_H)/H \rightarrow X. \]
The action of \(H \) on \(T E_H \) produces an action of \(H \) on the direct image \(p_* T E_H \). We note that
\[\text{At}(E_H) = (p_* T E_H)^H \subset p_* T E_H \]
(see [At]). Taking quotient by \(H \), the homomorphism \(dp \) in (2.2) produces a short exact sequence
\[0 \rightarrow \text{ad}(E_H) \rightarrow \text{At}(E_H) \xrightarrow{d'p} T X \rightarrow 0, \quad (2.3) \]
where \(d'p \) is constructed from \(dp \); this is known as the Atiyah exact sequence for \(E_H \).

The subsheaf \(T X \otimes \mathcal{O}_X(-D) \) of \(T X \) will be denoted by \(T X(-D) \). Now define
\[\text{At}(E_H, D) := (d'p)^{-1}(T X(-D)) \subset \text{At}(E_H), \]
where \(d'p \) is the projection in (2.3). So from (2.3) we have the exact sequence of vector bundles on \(X \)
\[0 \rightarrow \text{ad}(E_H) \xrightarrow{i_0} \text{At}(E_H, D) \xrightarrow{\sigma} T X(-D) \rightarrow 0, \quad (2.4) \]
where \(\sigma \) is the restriction of \(d'p \); this will be called the \textit{logarithmic Atiyah exact sequence} for \(E_H \).

A logarithmic connection on \(E_H \) singular over \(D \) is a holomorphic homomorphism
\[\theta : T X(-D) \rightarrow \text{At}(E_H, D) \quad (2.5) \]
such that \(\sigma \circ \theta = \text{Id}_{T X(-D)} \), where \(\sigma \) is the homomorphism in (2.4). Note that giving such a homomorphism \(\theta \) is equivalent to giving a homomorphism \(\varpi : \text{At}(E_H, D) \rightarrow \text{ad}(E_H) \) such that \(\varpi \circ i_0 = \text{Id}_{\text{ad}(E_H)} \), where \(i_0 \) is the homomorphism in (2.4).
2.3. **Residue of a logarithmic connection.** Given a vector bundle \(W \) on \(X \), the fiber of \(W \) over any point \(x \in X \) will be denoted by \(W_x \). For any \(\mathcal{O}_X \)-linear homomorphism \(f : W \to V \) of holomorphic vector bundles, its restriction \(W_x \to V_x \) will be denoted by \(f(x) \).

From (2.3) and (2.4) we have the commutative diagram of homomorphisms

\[
\begin{array}{cccccc}
0 & \to & \text{ad}(E_H) & \overset{i_0}{\to} & \text{At}(E_H, D) & \overset{\sigma}{\to} & TX(-D) & \to & 0 \\
\| & & & \downarrow j & & & \downarrow \iota & & \\
0 & \to & \text{ad}(E_H) & \overset{i}{\to} & \text{At}(E_H) & \overset{d'p}{\to} & TX & \to & 0 \\
\end{array}
\]

(2.6)
on \(X \). So for any point \(x \in X \), we have

\[d'p(x) \circ j(x) = \iota(x) \circ \sigma(x) : \text{At}(E_H, D)_x \to (TX)_x = T_xX. \]

Note that \(\iota(x) = 0 \) if \(x \in D \), therefore in that case \(d'p(x) \circ j(x) = 0 \). Consequently, for every \(x \in D \) there is a homomorphism

\[R_x : \text{At}(E_H, D)_x \to \text{ad}(E_H)_x \]

(2.7)

uniquely defined by the identity \(i(x) \circ R_x(v) = j(x)(v) \) for all \(v \in \text{At}(E_H, D)_x \). Note that

\[R_x \circ i_0(x) = \text{Id}_{\text{ad}(E_H)_x}, \]

where \(i_0 \) is the homomorphism in (2.6). Therefore, from (2.4) we have

\[\text{At}(E_H, D)_x = \text{ad}(E_H)_x \oplus \text{kernel}(R_x) = \text{ad}(E_H)_x \oplus TX(-D)_x; \]

(2.8)

note that the composition \(\text{kernel}(R_x) \hookrightarrow \text{At}(E_H, D)_x \overset{\sigma(x)}{\to} TX(-D)_x \) is an isomorphism.

For any \(x \in D \), the fiber \(TX(-D)_x \) is identified with \(\mathbb{C} \) using the Poincaré adjunction formula \([GH,\ p.\ 146]\). Indeed, for any holomorphic coordinate \(z \) around \(x \) with \(z(x) = 0 \), the image of \(z \frac{\partial}{\partial z} \) in \(TX(-D)_x \) is independent of the choice of the coordinate function \(z \); the above mentioned identification between \(TX(-D)_x \) and \(\mathbb{C} \) sends this independent image to \(1 \in \mathbb{C} \). Therefore, from (2.8) we have

\[\text{At}(E_H, D)_x = \text{ad}(E_H)_x \oplus \mathbb{C} \]

(2.9)

for all \(x \in D \).

For a logarithmic connection \(\theta : TX(-D) \to \text{At}(E_H, D) \) as in (2.5), and any \(x \in D \), define

\[\text{Res}(\theta, x) := R_x(\theta(1)) \in \text{ad}(E_H)_x, \]

(2.10)

where \(R_x \) is the homomorphism in (2.7); in the above definition \(1 \) is considered as an element of \(TX(-D)_x \) using the identification of \(\mathbb{C} \) with \(TX(-D)_x \) mentioned earlier.

The element \(\text{Res}(\theta, x) \) in (2.10) is called the **residue**, at \(x \), of the logarithmic connection \(\theta \).
2.4. **Extension of structure group.** Let M be a complex affine algebraic group and
\[\rho : H \rightarrow M \]
a homomorphism. As before, E_H is a holomorphic principal H–bundle on X. Let
\[E_M := E_H \times^\rho M \rightarrow X \]
be the holomorphic principal M–bundle obtained by extending the structure group of
E_H using ρ. So E_M is the quotient of $E_H \times M$ obtained by identifying (y, m) and
$(y h^{-1}, \rho(h) m)$, where y, m and h run over E_H, M and H respectively. Therefore, we
have a morphism
\[\hat{\rho} : E_H \rightarrow E_M, \ y \mapsto (y, e_M), \]
where (y, e_M) is the equivalence class of (y, e_M) with e_M being the identity element of M.
The homomorphism of Lie algebras $d\rho : \mathfrak{h} \rightarrow \mathfrak{m} := \text{Lie}(M)$ associated to ρ produces a
homomorphism of vector bundles
\[\alpha : \text{ad}(E_H) \rightarrow \text{ad}(E_M). \quad (2.11) \]
The maps $\hat{\rho}$ and $d\rho$ together produce a homomorphism of vector bundles
\[\tilde{A} : \text{At}(E_H) \rightarrow \text{At}(E_M). \]
This map \tilde{A} produces a homomorphism
\[A : \text{At}(E_H, D) \rightarrow \text{At}(E_M, D), \quad (2.12) \]
which fits in the following commutative diagram of homomorphisms
\[\begin{array}{ccc}
0 & \rightarrow & \text{ad}(E_H) \\
\downarrow \alpha & & \downarrow A \\
0 & \rightarrow & \text{ad}(E_M) \\
\end{array} \]
\[\begin{array}{ccc}
\text{At}(E_H, D) & \rightarrow & \text{At}(E_M, D) \\
\downarrow \sigma & & \downarrow \text{TX}(\neg D) \\
\text{TX}(\neg D) & \rightarrow & 0 \\
\end{array} \quad (2.13) \]
where the top exact sequence is the one in (2.4) and the bottom one is the corresponding
sequence for E_M.

If $\theta : \text{TX}(\neg D) \rightarrow \text{At}(E_H, D)$ is a logarithmic connection on E_H as in (2.5), then
\[A \circ \theta : \text{TX}(\neg D) \rightarrow \text{At}(E_M, D) \quad (2.14) \]
is a logarithmic connection on E_M singular over D. From the definition of residue in
(2.10) it follows immediately that
\[\alpha(\text{Res}(\theta, x)) = \text{Res}(A \circ \theta, x) \quad (2.15) \]
for all $x \in D$. This proves the following:

Lemma 2.1. With the above notation, if E_H admits a logarithmic connection θ singular over D with residue $w_x \in \text{ad}(E_H)_x$ at each $x \in D$, then E_M admits a logarithmic connection $\theta' = A \circ \theta$ singular over D with residue $\alpha(w_x)$ at each $x \in D$.

Proof.
3. Connections with given residues

3.1. Formulation of residue condition. Fix a holomorphic principal \(H \)-bundle \(E_H \) on \(X \), and fix elements

\[
 w_x \in \text{ad}(E_H)_x
\]

for all \(x \in D \). Consider the decomposition of \(\text{At}(E_H, D)_x \) in \([2.9]\). For any \(x \in D \), let

\[
 \ell_x := \mathbb{C} \cdot (w_x, 1) \subset \text{ad}(E_H)_x \oplus \mathbb{C} = \text{At}(E_H, D)_x
\]

be the line in the fiber \(\text{At}(E_H, D)_x \). Let

\[
 \mathcal{A} \subset \text{At}(E_H, D)
\]

be the subsheaf that fits in the short exact sequence

\[
 0 \to \mathcal{A} \to \text{At}(E_H, D) \to \bigoplus_{x \in D} \text{At}(E_H, D)_x / \ell_x \to 0. \tag{3.1}
\]

Note that the composition

\[
 \text{ad}(E_H)_x \xrightarrow{i_0(x)} \text{At}(E_H, D)_x \xrightarrow{\phi_x} \text{At}(E_H, D)_x / \ell_x
\]

is injective, hence it is an isomorphism, where \(i_0 \) is the homomorphism in \([2.13]\); this composition will be denoted by \(\phi_x \). Therefore, from \([2.4]\) and \((3.1)\) we have a commutative diagram

\[
\begin{array}{ccccccccc}
0 & \to & \text{ad}(E_H) \otimes \mathcal{O}_X(-D) & \to & \mathcal{A} & \xrightarrow{\sigma_1} & TX(-D) & \to & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \\
0 & \to & \text{ad}(E_H) & \xrightarrow{i_0} & \text{At}(E_H, D) & \xrightarrow{\sigma} & TX(-D) & \to & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \\
0 & \to & \bigoplus_{x \in D} \text{ad}(E_H)_x & \xrightarrow{\bigoplus_{x \in D} \phi_x} & \bigoplus_{x \in D} \text{At}(E_H, D)_x / \ell_x & \to & 0 & \to & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \\
0 & & 0 & & 0 & & 0 & & \tag{3.2}
\end{array}
\]

where all the rows and columns are exact; the restriction of \(\sigma \) to the subsheaf \(\mathcal{A} \) is denoted by \(\sigma_1 \).

Lemma 3.1. Consider the space of all logarithmic connections on \(E_H \) singular over \(D \) such that the residue over every \(x \in D \) is \(w_x \). It is in bijection with the space of all holomorphic splittings of the short exact sequence of vector bundles

\[
 0 \to \text{ad}(E_H) \otimes \mathcal{O}_X(-D) \to \mathcal{A} \xrightarrow{\sigma_1} TX(-D) \to 0
\]

on \(X \) in \((3.2)\).
Proof. Let $\theta : \text{TX}(-D) \to \text{At}(E_H, D)$ be a logarithmic connection on E_H singular over D such that the residue over every $x \in D$ is w_x. From the definition of residue and the construction of \mathcal{A} it follows that

$$\theta(\text{TX}(-D)) \subseteq \mathcal{A} \subseteq \text{At}(E_H, D).$$

Therefore, θ defines a holomorphic homomorphism

$$\theta' : \text{TX}(-D) \to \mathcal{A}.$$

Evidently, we have $\sigma_1 \circ \theta' = \text{Id}_{\text{TX}(-D)}$. So θ' is a holomorphic splitting of the exact sequence in the lemma.

To prove the converse, let $\theta_1 : \text{TX}(-D) \to \mathcal{A}$ be a holomorphic homomorphism such that $\sigma_1 \circ \theta_1 = \text{Id}_{\text{TX}(-D)}$. Consider the composition $\nu \circ \theta_1 : \text{TX}(-D) \to \text{At}(E_H, D)$, where ν is the homomorphism in (3.2). This defines a logarithmic connection on E_H singular over D, because $\sigma \circ \nu \circ \theta_1 = \text{Id}_{\text{TX}(-D)}$ by the commutativity of (3.2).

From (3.2) it follows immediately that $\nu \circ \theta_1(\text{TX}(-D)_x) = \ell_x \subseteq \text{At}(E_H, D)_x$ for every $x \in D$. Now from the definition of residue it follows that the residue of the connection $\nu \circ \theta_1$ at any $x \in D$ is w_x. \qed

3.2. Extension class. The short exact sequence in Lemma 3.1 determines a cohomology class

$$\beta \in H^1(X, \text{Hom}(\text{TX}(-D), \text{ad}(E_H) \otimes \mathcal{O}_X(-D))) = H^1(X, \text{ad}(E_H) \otimes K_X),$$

where $K_X = (\text{TX})^*$ is the holomorphic cotangent bundle of X. Therefore, E_H admits a logarithmic connection singular over D with residue $w_x \in \text{ad}(E_H)_x$ at each $x \in D$ if and only if the cohomology class β in (3.3) vanishes.

Let $\rho : H \to M$ be a homomorphism of affine algebraic groups. Let $E_M := E_H \times^\rho M$ be the principal M–bundle over X obtained by extending the structure group of E_H to M by ρ. Consider the homomorphism α in (2.11). It produces a homomorphism

$$\overline{\rho} : H^1(X, \text{ad}(E_H) \otimes K_X) \to H^1(X, \text{ad}(E_M) \otimes K_X).$$

From (2.13) we have a commutative diagram

$$
\begin{array}{ccc}
0 & \to & \text{ad}(E_H) \otimes \mathcal{O}_X(-D) \\
\downarrow & & \downarrow \sigma_1 \\
0 & \to & \text{ad}(E_M) \otimes \mathcal{O}_X(-D)
\end{array}
\begin{array}{ccc}
\longrightarrow & \to & \mathcal{A} \\
& \sigma_1 \rightarrow & \text{TX}(-D) \\
& \| & \\
& \| & \\
\longrightarrow & \to & 0 \\
\longrightarrow & \to & \mathcal{A}(E_M) \\
\longrightarrow & \to & \text{TX}(-D) \\
\longrightarrow & \to & 0
\end{array}
$$

where the top exact sequence is the one in Lemma 3.1 and the bottom one is the same sequence for E_M. From this diagram it follows that the cohomology class in $H^1(X, \text{ad}(E_M) \otimes K_X)$ for the short exact sequence in Lemma 3.1 for E_M coincides with $\overline{\rho}(\beta)$, where β is the cohomology class in (3.3).
Corollary 3.2. Assume that E_H admits a holomorphic reduction of structure group $E_J \subset E_H$ to a complex algebraic subgroup $J \subset H$. The cohomology class β in (3.3) is contained in the image of the natural homomorphism $H^1(X, \text{ad}(E_J) \otimes K_X) \hookrightarrow H^1(X, \text{ad}(E_H) \otimes K_X)$.

3.3. A necessary condition for logarithmic connections with given residue. Let θ be a logarithmic connection on E_H singular over D. Take any character

$$\chi : H \to \mathbb{G}_m.$$

The group H acts on \mathbb{C}; the action of $h \in H$ sends any $c \in \mathbb{C}$ to $\chi(h) \cdot c$. Let

$$E_H(\chi) := E_H \times^x \mathbb{C} \to X$$

be the holomorphic line bundle over X associated to E_H for this action of H on \mathbb{C}. Since \mathbb{G}_m is abelian, the adjoint vector bundle for $E_H(\chi)$ is the trivial holomorphic line bundle \mathcal{O}_X over X. The above logarithmic connection θ induces a logarithmic connection on $E_H(\chi)$ (see (2.14)); this induced logarithmic connection on $E_H(\chi)$ will be denoted by θ^χ.

For any $x \in D$, let

$$\text{Res}(\theta^\chi, x) \in \mathbb{C}$$

be the residue of θ^χ. The residue $\text{Res}(\theta, x)$ defines a conjugacy class in the Lie algebra \mathfrak{h}, because any fiber of $\text{ad}(E_H)$ is identified with \mathfrak{h} uniquely up to conjugation. From (2.15) it follows immediately that $\text{Res}(\theta^\chi, x)$ coincides with $d\chi(\text{Res}(\theta, x))$, where $d\chi : \mathfrak{h} \to \mathbb{C}$ is the homomorphism of Lie algebras associated to χ; note that since the Lie algebra \mathbb{C} is abelian, the homomorphism $d\chi$ factors through the conjugacy classes in \mathfrak{h}.

As θ^χ is a logarithmic connection on the line bundle $E_H(\chi)$ with residue $d\chi(\text{Res}(\theta, x))$ at each $x \in D$, using a computation in [Oh] it follows that

$$\text{degree}(E_H(\chi)) + \sum_{x \in D} d\chi(\text{Res}(\theta, x)) = 0$$

(see [BDP] Lemma 2.3)).

Therefore, we have the following:

Lemma 3.3. Let E_H be a holomorphic principal H–bundle on X. Fix

$$w_x \in \text{ad}(E_H)_x$$

for every $x \in D$. If there is a logarithmic connection on E_H singular over D with residue w_x at every $x \in D$, then

$$\text{degree}(E_H(\chi)) + \sum_{x \in D} d\chi(w_x) = 0$$

for every character χ of H, where $E_H(\chi)$ is the associated holomorphic line bundle, and $d\chi$ is the homomorphism of Lie algebras corresponding to χ.

Let $\rho : H \to M$ be an injective homomorphism to a connected complex algebraic group M and $E_M := E_H \times^\rho M$ the holomorphic principal M–bundle on X obtained by
extending the structure group of E_H using ρ. As before, the Lie algebras of H and M will be denoted by \mathfrak{h} and \mathfrak{m} respectively. Using the injective homomorphism of Lie algebras

$$d\rho : \mathfrak{h} \rightarrow \mathfrak{m} \quad (3.4)$$

associated to ρ, we have an injective homomorphism α as in (2.11). For every $x \in D$, fix an element $w_x \in \text{ad}(E_H)_x$.

Lemma 3.4. Assume that H is reductive. There is a logarithmic connection on E_H singular over D with residue w_x at each $x \in D$ if there is a logarithmic connection on E_M singular over D with residue $\alpha(x)(w_x)$ at each $x \in D$, where α is the homomorphism in (2.11).

Proof. The adjoint action of H on \mathfrak{h} makes it an H–module. On the other hand, the homomorphism ρ composed with the adjoint action of M on \mathfrak{m} produces an action of H on \mathfrak{m}. The injective homomorphism $d\rho$ in (3.4) is a homomorphism of H–modules. Since H is reductive, there is an H–submodule $V \subset \mathfrak{m}$ which is a complement of $d\rho(\mathfrak{h})$, meaning

$$\mathfrak{m} = d\rho(\mathfrak{h}) \oplus V.$$

Let $\eta : \mathfrak{m} \rightarrow \mathfrak{h}$ be the projection constructed from this decomposition of \mathfrak{m}; in particular, we have $\eta \circ d\rho = \text{Id}_\mathfrak{h}$.

Since the above η is a homomorphism of H–modules, it produces a projection

$$\widehat{\eta} : \text{ad}(E_M) \rightarrow \text{ad}(E_H)$$

such that $\widehat{\eta} \circ \alpha = \text{Id}_{\text{ad}(E_H)}$, where α is the homomorphism in (2.11).

Now if $\theta : \text{At}(E_M, D) \rightarrow \text{ad}(E_M)$ is a logarithmic connection on E_M singular over D with residue $\alpha(x)(w_x)$ at each $x \in D$, consider the composition

$$\widehat{\eta} \circ \theta \circ A : \text{At}(E_H, D) \rightarrow \text{ad}(E_H),$$

where A is constructed in (2.12). Evidently, it is a logarithmic connection on E_H singular over D with residue w_x at each $x \in D$. \qed

4. T–Rigid Elements of Adjoint Bundle

4.1. Definition. As before, H is a complex affine algebraic group and $p : E_H \rightarrow X$ a holomorphic principal H–bundle on X. An automorphism of E_H is a holomorphic map $F : E_H \rightarrow E_H$ such that

- $p \circ F = p$, and
- $F(zh) = F(z)h$ for all $z \in E_H$ and $h \in H$.

Let $\text{Aut}(E_H)$ be the group of all automorphisms of E_H. We will show that $\text{Aut}(E_H)$ is a complex affine algebraic group.

First consider the case of $H = \text{GL}(r, \mathbb{C})$. For a holomorphic principal $\text{GL}(r, \mathbb{C})$–bundle E_{GL} on X, let $E := E_{\text{GL}} \times^{\text{GL}(r, \mathbb{C})} \mathbb{C}^r$ be the holomorphic vector bundle of rank r on X associated to E_{GL} for the standard action of $\text{GL}(r, \mathbb{C})$ on \mathbb{C}^r. Then $\text{Aut}(E_{\text{GL}})$ is identified with the group of all holomorphic automorphisms $\text{Aut}(E)$ of the vector bundle E over the
identity map of X. Note that $\text{Aut}(E)$ is the Zariski open subset of the complex affine space $H^0(X, \text{End}(E))$ consisting of all global endomorphisms f of E such that $\det(f(x_0)) \neq 0$ for a fixed point $x_0 \in X$; since $x \mapsto \det(f(x))$ is a holomorphic function on X, it is in fact a constant function. Therefore, $\text{Aut}(E_{\text{GL}})$ is an affine algebraic variety over \mathbb{C}.

For a general H, fix an algebraic embedding $\rho : H \hookrightarrow \text{GL}(r, \mathbb{C})$ for some r. For a holomorphic principal H–bundle E_H on X, let $E_{\text{GL}} := E_H \times^\rho \text{GL}(r, \mathbb{C})$ be the holomorphic principal $\text{GL}(r, \mathbb{C})$–bundle on X obtained by extending the structure group of E_H using ρ. The injective homomorphism ρ produces an injective homomorphism $\rho' : \text{Aut}(E_H) \hookrightarrow \text{Aut}(E_{\text{GL}})$.

The image of ρ' is Zariski closed in the algebraic group $\text{Aut}(E_{\text{GL}})$. Hence ρ' produces the structure of a complex affine algebraic group on $\text{Aut}(E_H)$. This structure of a complex algebraic group is independent of the choices of r, ρ. Therefore, $\text{Aut}(E_H)$ is an affine algebraic group. Note that $\text{Aut}(E_H)$ need not be connected, although the automorphism group of a holomorphic vector bundle is always connected (as it is a Zariski open subset of a complex affine space).

The Lie algebra of $\text{Aut}(E_H)$ is $H^0(X, \text{ad}(E_H))$. The group $\text{Aut}(E_H)$ acts on any fiber bundle associated to E_H. In particular, $\text{Aut}(E_H)$ acts on the adjoint vector bundle $\text{ad}(E_H)$. This action evidently preserves the Lie algebra structure on the fibers of $\text{ad}(E_H)$.

Let $\text{Aut}(E_H)^0 \subset \text{Aut}(E_H)$ be the connected component containing the identity element. Fix a maximal torus $T \subset \text{Aut}(E_H)^0$.

An element $w \in \text{ad}(E_H)_x$, where $x \in X$, will be called T–rigid if the action of T on $\text{ad}(E_H)_x$ fixes w.

Consider the adjoint action of H on itself. Let

$$\text{Ad}(E_H) := E_H \times^H H \longrightarrow X$$

be the associated holomorphic fiber bundle. Since this adjoint action preserves the group structure of H, the fibers of $\text{Ad}(E_H)$ are complex algebraic groups isomorphic to H. More precisely, each fiber of $\text{Ad}(E_H)$ is identified with H uniquely up to an inner automorphism of H. The corresponding Lie algebra bundle on X is $\text{ad}(E_H)$.

The group $\text{Aut}(E_H)$ is the space of all holomorphic sections of $\text{Ad}(E_H)$. For any $x \in X$, the action of $\text{Aut}(E_H)$ on the fiber $\text{ad}(E_H)_x$ coincides with the one obtained via the composition

$$\text{Aut}(E_H) \xrightarrow{\text{ev}_x} \text{Ad}(E_H)_x \xrightarrow{\text{ad}} \text{Aut}(\text{ad}(E_H)_x),$$

where ev_x is the evaluation map that sends a section of $\text{Ad}(E_H)$ to its evaluation at x, and ad is the adjoint action of the group $\text{Ad}(E_H)_x$ on its Lie algebra $\text{ad}(E_H)_x$.

Therefore, an element $w \in \text{ad}(E_H)_x$ is T–rigid if and only if the adjoint action of $\text{ev}_x(T) \subset \text{Ad}(E_H)_x$ on $\text{ad}(E_H)_x$ fixes w.
4.2. **Examples.** The center of H will be denoted by Z_H. Let E_H be a holomorphic principal H–bundle on X. Since Z_H commutes with H, for any $t \in Z_H$, the map $E_H \rightarrow E_H, z \mapsto zt$ is H–equivariant. Therefore, we have $Z_H \subset \text{Aut}(E_H)$. The principal H–bundle E_H is called simple if $Z_H = \text{Aut}(E_H)$. Note that if E_H is simple then every element of $\text{ad}(E_H)$ is T–rigid, where T is any maximal torus in $\text{Aut}(E_H)^0$.

Let H be connected reductive, and let E_H be stable. Then Z_H is a finite index subgroup of $\text{Aut}(E_H)$. Therefore, any maximal torus of $\text{Aut}(E_H)^0$ is contained in Z_H. This implies that every element of $\text{ad}(E_H)$ is T–rigid, where T is any maximal torus in $\text{Aut}(E_H)^0$.

Take E_H to be the trivial holomorphic principal H–bundle $X \times H$. Then the left–translation action of H identifies H with $\text{Aut}(E_H)$. Also, $\text{ad}(E_H)$ is the trivial vector $X \times h$, where h is the Lie algebra of H. Let T be a maximal torus of $H = \text{Aut}(E_H)$. Then an element $v \in h = \text{ad}(E_H)x$ is T–rigid if and only if $v \in \text{Lie}(T)$.

5. **A criterion for logarithmic connections with given residue**

5.1. **Logarithmic connections with T–rigid residue.** As in Section 2.1, G is a connected reductive affine algebraic group defined over \mathbb{C}. Let E_G be a holomorphic principal G–bundle over X. Fix a maximal torus $T \subset \text{Aut}(E_G)^0$, where $\text{Aut}(E_G)^0$ as before is the connected component containing the identity element of the group of automorphisms of E_G.

We now recall some results from [BBN], [BP].

As in (4.1), define the adjoint bundle $\text{Ad}(E_G) = E_G \times^G G$. For any point $y \in X$, consider the evaluation homomorphism

$$\varphi_y: T \rightarrow \text{Ad}(E_G)_y, \ s \mapsto s(y).$$

Then φ_y is injective and its image is a torus in G [BBN, p. 230, Section 3]. Since G is identified with $\text{Ad}(E_G)_y$ uniquely up to an inner automorphism, the image $\varphi_y(T)$ determines a conjugacy class of tori in G; this conjugacy class is independent of the choice of y [BBN, p. 230, Section 3], [BP, p. 63, Theorem 4.1]. Fix a torus

$$T_G \subset G$$

(5.1)

in this conjugacy class of tori. The centralizer

$$H := C_G(T_G) \subset G$$

(5.2)

of T_G in G is a Levi factor of a parabolic subgroup of G [BBN, p. 230, Section 3], [BP, p. 63, Theorem 4.1]. The principal G–bundle E_G admits a holomorphic reduction of structure group

$$E_H \subset E_G$$

(5.3)

to the above subgroup H [BBN, p. 230, Theorem 3.2], [BP, p. 63, Theorem 4.1]. Since T_G is in the center of H, the action of T_G on E_H commutes with the action of H, so $T_G \subset \text{Aut}^0(E_H)$ (this was noted in Section 4.2). The image of T_G in $\text{Aut}^0(E_H)$ coincides
with T. This reduction E_H is minimal in the sense that there is no Levi factor L of some parabolic subgroup of G such that

- $L \subset H$, and
- E_G admits a holomorphic reduction of structure group to L.

(See [BBN, p. 230, Theorem 3.2].)

The above reduction E_H is unique in the following sense. Let L be a Levi factor of a parabolic subgroup of G and $E_L \subset E_G$ a holomorphic reduction of structure group to L satisfying the condition that E_G does not admit any holomorphic reduction of structure group to a Levi factor L' of some parabolic subgroup of G such that $L' \subset L$. Then there is an automorphism $\varphi \in \text{Aut}(E_G)^0$ such that $E_L = \varphi(E_H)$ [BP, p. 63, Theorem 4.1]. In particular, the subgroup $L \subset G$ is conjugate to H.

The Lie algebras of G and H will be denoted by \mathfrak{g} and \mathfrak{h} respectively. The inclusion of \mathfrak{h} in \mathfrak{g} and the reduction in (5.3) together produce an inclusion $\text{ad}(E_H) \hookrightarrow \text{ad}(E_G)$. This subbundle $\text{ad}(E_H)$ of $\text{ad}(E_G)$ coincides with the invariant subbundle $\text{ad}(E_G)^T$ for the action of T on $\text{ad}(E_G)$ [BBN, p. 230, Theorem 3.2], [BP, p. 61, Proposition 3.3] (this action is explained in Section 4.1), in other words,

\[
\text{ad}(E_H) = \text{ad}(E_G)^T \subset \text{ad}(E_G). \tag{5.4}
\]

For every $x \in D$ fix a T–rigid element

\[
w_x \in \text{ad}(E_G)_x \tag{5.5}
\]

(see Section 4.1). Since each w_x is T–rigid, from (5.4) we conclude that

\[
w_x \in \text{ad}(E_H)_x \quad \forall \ x \in D. \tag{5.6}
\]

So w_x determines a conjugacy class in \mathfrak{h}. For any character χ of H, the corresponding homomorphism of Lie algebras $d\chi : \mathfrak{h} \rightarrow \mathbb{C}$ factors through the conjugacy classes in \mathfrak{h}, because \mathbb{C} is abelian. Therefore, we have $d\chi(w_x) \in \mathbb{C}$.

Theorem 5.1. There is a logarithmic connection on E_G singular over D, and with T–rigid residue w_x at every $x \in D$ (see (5.5)), if and only if

\[
\text{degree}(E_H(\chi)) + \sum_{x \in D} d\chi(w_x) = 0 \tag{5.7}
\]

for every character χ of H, where $E_H(\chi)$ is the holomorphic line bundle on X associated to E_H for χ, and $d\chi$ is the homomorphism of Lie algebras corresponding to χ.

Proof. Assume that there is a logarithmic connection on E_G singular over D such that the residue at each $x \in D$ is w_x. Since the group H is reductive, from Lemma 3.4 it follows that E_H admits a logarithmic connection singular over D such that the residue at each $x \in D$ is w_x (see (5.6)). Now from Lemma 3.3 we know that (5.7) holds for every character χ of G.

To prove the converse, assume that (5.7) holds for every character χ of H. We will show that E_G admits a logarithmic connection singular over D such that the residue at each $x \in D$ is w_x.

Since E_G is the extension of structure group of E_H using the inclusion of H in G (see (5.3)), a logarithmic connection on E_H induces a logarithmic connection on E_G (this is explained in Section (2.4)). Therefore, in view of (2.13) and (5.6), the following proposition completes the proof of the theorem.

Proposition 5.2. There is a logarithmic connection on E_H singular over D such that the residue over any $x \in D$ is $w_x \in \text{ad}(E_H)_x$.

Proof. The connected component of the center of H containing the identity element coincides with T_G in (5.1). Define the quotient groups

$$S := H/T_G, \quad Z := H/[H, H].$$

So S is semisimple, and Z is a torus. The projections of H to S and Z will be denoted by p_S and p_Z respectively. Let E_S (respectively, E_Z) be the principal S–bundle (respectively, Z–bundle) on X obtained by extending the structure group of E_H using p_S (respectively, p_Z). Consider the homomorphism

$$\varphi : H \rightarrow S \times Z, \quad h \mapsto (p_S(h), p_Z(h)). \quad (5.8)$$

It is surjective with finite kernel, hence it induces an isomorphism of Lie algebras. Let $E_{S \times Z}$ be the principal $S \times Z$–bundle on X obtained by extending the structure group of E_H using φ. Note that $E_{S \times Z} \cong E_S \times_X E_Z$. Since φ induces an isomorphism of Lie algebras, we have

$$\text{ad}(E_H) = \text{ad}(E_{S \times Z}) = \text{ad}(E_S) \oplus \text{ad}(E_Z) \quad (5.9)$$

and

$$\text{At}(E_H) = \text{At}(E_{S \times Z}), \quad \mathcal{A} = \mathcal{A}_{E_{S \times Z}},$$

where $\mathcal{A}_{E_{S \times Z}}$ is constructed as in (5.1) for $(E_{S \times Z}, \{w_x\}_{x \in D})$ (see (5.9)). Consequently, E_H admits a logarithmic connection singular over D, with residue w_x for all $x \in D$, if and only if $E_{S \times Z}$ admits a logarithmic connection singular over D with residue w_x for all $x \in D$.

For $x \in D$, let

$$w_x = w_x^s \oplus w_x^z, \quad w_x^s \in \text{ad}(E_S)_x, \quad w_x^z \in \text{ad}(E_Z)_x$$

be the decomposition given by (5.9). Consider the short exact sequences

$$0 \rightarrow \text{ad}(E_S) \otimes \mathcal{O}_X(-D) \rightarrow \mathcal{A}_{E_S} \xrightarrow{\sigma_{1,S}} TX(-D) \rightarrow 0 \quad (5.10)$$

and

$$0 \rightarrow \text{ad}(E_Z) \otimes \mathcal{O}_X(-D) \rightarrow \mathcal{A}_{E_Z} \xrightarrow{\sigma_{1,Z}} TX(-D) \rightarrow 0, \quad (5.11)$$

as in Lemma 3.1 for the data $(E_S, \{w_x^s\}_{x \in D})$ and $(E_Z, \{w_x^z\}_{x \in D})$ respectively. Let

$$q_S : \mathcal{A}_{E_S} \oplus \mathcal{A}_{E_Z} \rightarrow \mathcal{A}_{E_S}, \quad q_Z : \mathcal{A}_{E_S} \oplus \mathcal{A}_{E_Z} \rightarrow \mathcal{A}_{E_Z}$$

be the projections. Note that

$$\mathcal{A}_{E_S} \oplus \mathcal{A}_{E_Z} \supset \text{kernel}(\sigma_{1,S} \circ q_S - \sigma_{1,Z} \circ q_Z) = \mathcal{A}_{E_S} \times_{TX(-D)} \mathcal{A}_{E_Z} = \mathcal{A}_{E_{S \times Z}}.$$

Therefore, giving a holomorphic splitting of the exact sequence

$$0 \rightarrow \text{ad}(E_{S \times Z}) \otimes \mathcal{O}_X(-D) \rightarrow \mathcal{A}_{E_{S \times Z}} \rightarrow TX(-D) \rightarrow 0$$
Let E be the element corresponding to β of $\text{ad}(\pi)$ such that (5.10) splits holomorphically.

Consider the homomorphism of character groups $\text{Hom}(Z, \mathbb{C}_m) \rightarrow \text{Hom}(H, \mathbb{C}_m)$ given by the projection p_z. It is an isomorphism because being semisimple $[H, H]$ does not admit any nontrivial character. Since $E_Z = E_H \times^{p_z} Z$, for any character $\chi \in \text{Hom}(Z, \mathbb{C}_m)$, the holomorphic line bundle $E_Z(\chi) = E_Z \times^x \mathbb{C}$ is identified with the holomorphic line bundle $E_H(\chi \circ p_Z)$.

A holomorphic line bundle L on X admits a logarithmic connection singular over D with residue $\lambda_x \in \mathbb{C}$ for every $x \in D$ if and only if

$$\text{degree}(L) + \sum_{x \in D} \lambda_x = 0$$

(see [BDP, Lemma 2.3]). Since $Z = H/[H, H] = (\mathbb{C}_m)^d$ for some d, it follows that E_Z admits a logarithmic connection singular over D with residue w_x^z at each $x \in D$ if and only if for each $1 \leq i \leq d$, the line bundle $E_Z(\pi_i)$ admits a logarithmic connection singular over D with residue $d\pi_i(w_x^z)$ at each $x \in D$, where $\pi_i : Z = (\mathbb{C}_m)^d \rightarrow \mathbb{C}_m$ is the projection to the i-th factor. From this and the given condition in (5.7) we conclude that E_Z admits logarithmic connection singular over D with residue w_x^z for all $x \in D$.

To complete the proof of the proposition we need to show that E_S admits logarithmic connection singular over D such that the residues over each $x \in D$ is w_x^s. We will show that (5.10) splits holomorphically.

Let

$$\beta \in H^1(X, \text{Hom}(TX(-D), \text{ad}(E_S) \otimes \mathcal{O}_X(-D)))) = H^1(X, \text{ad}(E_S) \otimes K_X)$$

be the extension class for (5.10) as in (3.3). The exact sequence in (5.10) splits holomorphically if and only if

$$\beta = 0.$$ (5.13)

The Lie algebra of S will be denoted by \mathfrak{s}. Consider \mathfrak{s} as a S–module using the adjoint action of S on \mathfrak{s}. Since S is semisimple, the Killing form

$$\kappa : \mathfrak{s} \times \mathfrak{s} \rightarrow \mathbb{C}, \quad (v, w) \mapsto \text{trace(ad}_v \circ \text{ad}_w),$$

is nondegenerate, where $\text{ad}_u(u') := [u, u']$. Therefore, the Killing form induces an isomorphism $\mathfrak{s} \rightarrow \mathfrak{s}^*$ of S–modules. This isomorphism produces a holomorphic isomorphism of $\text{ad}(E_S)$ with the dual vector bundle $\text{ad}(E_S)^*$. Now Serre duality gives

$$H^1(X, \text{ad}(E_S) \otimes K_X) = H^0(X, \text{ad}(E_S)^*)^* = H^0(X, \text{ad}(E_S))^*.$$ (5.12)

Let

$$\beta' \in H^0(X, \text{ad}(E_S))^*$$

be the element corresponding to β (defined in (5.12)) by the above isomorphism. Then

$$\beta'(\gamma) = \int_X \kappa(\widehat{\beta}, \gamma), \quad \forall \gamma \in H^0(X, \text{ad}(E_S)), \quad (5.14)$$
where $\hat{\beta}$ is an $\text{ad}(E_S)$–valued $(1, 1)$–form on X which represents the cohomology class β using the Dolbeault isomorphism.

As before, $\text{Aut}(E_H)^0 \subset \text{Aut}(E_H)$ (respectively, $\text{Aut}(E_G)^0 \subset \text{Aut}(E_G)$) is the connected component containing the identity element, and $T \subset \text{Aut}(E_G)^0$ is the fixed maximal torus. Since T is abelian, from [5.4] it follows immediately that

$$T \subset \text{Aut}(E_H)^0 \subset \text{Aut}(E_G)^0.$$

Therefore, the maximal torus $T \subset \text{Aut}(E_G)^0$ (see [5.1]) is also a maximal torus of $\text{Aut}(E_H)^0$. Since T_G is the connected component, containing the identity element, of the center of H, and T is the image of T_G in $\text{Aut}(E_H)^0$, it now follows that the maximal torus of $\text{Aut}(E_S)^0$ is trivial. Hence every holomorphic section of $\text{ad}(E_S)$ is nilpotent.

Take any nonzero element $\gamma \in H^0(X, \text{ad}(E_S))$. Following the proof of [AB, Proposition 3.9], using γ we construct a holomorphic reduction of the structure group of E_S to a parabolic subgroup of S as follows. For each $x \in X$, since $\gamma(x) \in \text{ad}(E_S)_x$ is nilpotent, there is a parabolic Lie subalgebra $\mathfrak{p}_x \subset \text{ad}(E_S)_x$ canonically associated to $\gamma(x)$ [AB, p. 340, Lemma 3.7]. Exponentiating \mathfrak{p}_x we get a proper parabolic subgroup $P_x \subset \text{Ad}(E_S)_x$ associated to $\gamma(x)$. Since there are only finitely many conjugacy classes of nilpotent elements of \mathfrak{s}, and the algebraic subvariety of \mathfrak{s} defined by the nilpotent elements has a natural filtration defined using the adjoint action of S, there is a finite subset $C \subset X$ such that the conjugacy classes of P_x, $x \in X \setminus C$, coincide. Fix a parabolic subgroup $P \subset S$ in this conjugacy class.

For any $x \in X \setminus C$, consider the projection map

$$\xi_x : (E_S)_x \times S \longrightarrow \text{Ad}(E_S)_x, \quad (z, s) \longmapsto \overset{\sim}{(z, s)},$$

where $\overset{\sim}{(z, s)}$ is the equivalence class of (z, s). Define

$$(E_P)_x := \{ z \in (E_S)_x | \xi_x(z, g) \in P_x, \forall g \in P \}.$$

For the natural action of S on $(E_S)_x$, the action of $P \subset S$ preserves $(E_P)_x$. Since P is a parabolic subgroup of S, its normalizer $N_S(P)$ is P itself [Hu, p. 143, Corollary B]. So the action of P on $(E_P)_x$ is transitive (and also free, since the G–action on $(E_S)_x$ is free). Therefore, we have a holomorphic reduction of structure group $E_P \subset E_S$ to $P \subset S$ over $X \setminus C$. This holomorphic reduction defines a holomorphic section $\eta : X \setminus C \longrightarrow E_S/P$ which is meromorphic over X. Since S/P is a projective variety, the above section η extends holomorphically to a section $\overset{\sim}{\eta} : X \longrightarrow E_S/P$. This defines a holomorphic reduction of structure group $E_P \subset E_S$ to P.

From Corollary 3.2 it follows that the cohomology class β in (5.12) lies in the image of the natural homomorphism $H^1(X, \text{ad}(E_P) \otimes K_X) \longrightarrow H^1(X, \text{ad}(E_S) \otimes K_X)$. Therefore, β is represented by an $\text{ad}(E_P)$–valued $(1, 1)$–form $\overset{\sim}{\beta}$ on X.

Now for all $x \in X \setminus C$, the element $\gamma(x) \in \text{ad}(E_S)_x$ lies in the Lie algebra \mathfrak{u}_x of the unipotent radical of $\text{ad}(E_P)_x$ [Hu, p. 186, Corollary A], and $\overset{\sim}{\beta}(x) \in \mathfrak{p}_x$. Therefore, $\kappa(\overset{\sim}{\beta}(x), \gamma(x)) = 0$, since \mathfrak{u}_x is the orthogonal complement $(\text{ad}(E_P)_x)^\perp$ with respect to
the Killing form on $\text{ad}(E_S)_x$. Hence from (5.14) we have $\beta'(\gamma) = 0$. This proves (5.13), and completes the proof of the proposition.

As noted before, Proposition 5.2 completes the proof of Theorem 5.1.

5.2. T–invariant logarithmic connections with given residue. The automorphism group $\text{Aut}(E_G)$ has a natural action on the space of all logarithmic connections on E_G singular over D. Given a maximal torus $T \subset \text{Aut}(E_G)^0$, by a T–invariant logarithmic connection we mean a logarithmic connection on E_G singular over D which is fixed by the action of T.

Theorem 5.3. Let E_G be a holomorphic principal G–bundle on X, where G is reductive. Fix $w_x \in \text{ad}(E_G)_x$ for each $x \in D$. Fix a maximal torus $T \subset \text{Aut}(E_G)^0$. The following two are equivalent:

1. There is a T–invariant logarithmic connection on E_G singular over D with residue w_x at every $x \in D$.
2. The element w_x is T–rigid for each $x \in D$, and (5.7) holds for every character χ of H.

Proof. Let θ be a T–invariant logarithmic connection on E_G singular over D with residue w_x at every $x \in D$. Since θ is T–invariant, its residues are also T–invariant. Hence w_x is T–rigid for each $x \in D$. From Theorem 5.1 we know that (5.7) holds for every character χ of H.

Now assume that the second statement in the theorem holds. From Theorem 5.1 we know that there is a logarithmic connection on E_G singular over D with residue w_x at every $x \in D$.

As noted in Section 4.2, for a holomorphic principal M–bundle E_M on X, the center Z_M of M is contained in the automorphism group $\text{Aut}(E_M)$. It is straight-forward to check that the action of $Z_M \subset \text{Aut}(E_M)$ on the space of all logarithmic connections on E_M is trivial.

Since T_G is contained in the center of H (see (5.2)), and T is the image of T_G in $\text{Aut}(E_H)$, every logarithmic connection on the principal H–bundle E_H in Proposition 5.2 is T–invariant. Consequently, from Proposition 5.2 it follows that E_G admits a T–invariant logarithmic connection singular over D with residue w_x at every $x \in D$.

Acknowledgements

The first author is supported by a J. C. Bose Fellowship. The second author is supported by ERCEA Consolidator Grant 615655-NMST and also by the Basque Government through the BERC 2014 – 2017 program and by Spanish Ministry of Economy and Competitiveness MINECO: BCAM Severo Ochoa excellence accreditation SEV-2013 – 0323.
References

[At] M. F. Atiyah, Complex analytic connections in fibre bundles, Trans. Amer. Math. Soc. 85 (1957), 181–207.

[AB] H. Azad and I. Biswas, On holomorphic principal bundles over a compact Riemann surface admitting a flat connection, Math. Ann. 322 (2002), 333–346.

[BBN] V. Balaji, I. Biswas and D. S. Nagaraj, Krull–Schmidt reduction for principal bundles, Jour. Reine Angew. Math. 578 (2005), 225–234.

[BP] I. Biswas and A. J. Parameswaran, On the equivariant reduction of structure group of a principal bundle to a Levi subgroup, Jour. Math. Pures Appl. 85 (2006), 54–70.

[BDP] I. Biswas, A. Dan and A. Paul, Criterion for logarithmic connections with prescribed residues, Manuscr. Math. (to appear), arXiv:1703.09864.

[Bo] A. Borel, Linear algebraic groups, Second edition, Graduate Texts in Mathematics, 126. Springer–Verlag, New York, 1991.

[GH] P. Griffiths and J. Harris, Principles of algebraic geometry, Pure and Applied Mathematics. Wiley-Interscience, New York, 1978.

[Hu] J. E. Humphreys, Linear algebraic groups, Graduate Texts in Mathematics, Vol. 21, Springer-Verlag, New York, Heidelberg, Berlin, 1987.

[Oh] M. Ohtsuki, A residue formula for Chern classes associated with logarithmic connections, Tokyo Jour. Math. 5 (1982), 13–21.

[We] A. Weil, Généralisation des fonctions abéliennes, Jour. Math. Pure Appl. 17 (1938), 47–87.

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India

E-mail address: indranil@math.tifr.res.in

BCAM – Basque Centre for Applied Mathematics, Alameda de Mazarredo 14, 48009 Bilbao, Spain

E-mail address: adan@bcamath.org

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India

E-mail address: apmath90@math.tifr.res.in

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India

E-mail address: arideep@math.tifr.res.in