Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19·2 million participants

NCD Risk Factor Collaboration (NCD-RisC)*

Summary

Background Underweight and severe and morbid obesity are associated with highly elevated risks of adverse health outcomes. We estimated trends in mean body-mass index (BMI), which characterises its population distribution, and in the prevalences of a complete set of BMI categories for adults in all countries.

Methods We analysed, with use of a consistent protocol, population-based studies that had measured height and weight in adults aged 18 years and older. We applied a Bayesian hierarchical model to these data to estimate trends from 1975 to 2014 in mean BMI and in the prevalences of BMI categories (<18·5 kg/m² [underweight], 18·5 kg/m² to <20 kg/m², 20 kg/m² to <25 kg/m², 25 kg/m² to <30 kg/m², 30 kg/m² to <35 kg/m², 35 kg/m² to <40 kg/m², ≥40 kg/m² [morbid obesity]), by sex in 200 countries and territories, organised in 21 regions. We calculated the posterior probability of meeting the target of halting by 2025 the rise in obesity at its 2010 levels, if post-2000 trends continue.

Findings We used 1698 population-based data sources, with more than 19·2 million adult participants (9·9 million men and 9·3 million women) in 186 of 200 countries for which estimates were made. Global age-standardised mean BMI increased from 21·7 kg/m² (95% credible interval 21·3–22·1) in 1975 to 24·2 kg/m² (24·0–24·4) in 2014 in men, and from 22·1 kg/m² (21·7–22·5) in 1975 to 24·4 kg/m² (24·2–24·6) in 2014 in women. Regional mean BMIs in 2014 for men ranged from 21·4 kg/m² in central Africa and south Asia to 29·2 kg/m² (28·6–29·8) in Polynesia and Micronesia; for women the range was from 21·8 kg/m² (21·4–22·3) in south Asia to 32·2 kg/m² (31·5–32·8) in Polynesia and Micronesia. Over these four decades, age-standardised global prevalence of underweight decreased from 13·8% (10·5–17·4) to 8·8% (7·4–10·3) in men and from 14·6% (11·6–17·9) to 9·7% (8·3–11·1) in women. South Asia had the highest prevalence of underweight in 2014, 23·4% (17·8–29·2) in men and 24·0% (18·9–29·3) in women. Age-standardised prevalence of obesity increased from 3·2% (2·4–4·1) in 1975 to 10·8% (9·7–12·0) in 2014 in men, and from 6·4% (5·1–7·8) to 14·9% (13·6–16·1) in women. 2·3% (2·0–2·7) of the world’s men and 5·0% (4·4–5·6) of women were severely obese (ie, have BMI ≥35 kg/m²). Globally, prevalence of morbid obesity was 0·64% (0·46–0·86) in men and 1·6% (1·3–1·9) in women.

Interpretation If post-2000 trends continue, the probability of meeting the global obesity target is virtually zero. Rather, if these trends continue, by 2025, global obesity prevalence will reach 18% in men and surpass 21% in women; severe obesity will surpass 6% in men and 9% in women. Nonetheless, underweight remains prevalent in the world’s poorest regions, especially in south Asia.

Funding Wellcome Trust, Grand Challenges Canada.

Introduction

High body-mass index (BMI) is an important risk factor for cardiovascular and kidney diseases, diabetes, some cancers, and musculoskeletal disorders. Concerns about the health and economic burden of increasing BMI have led to adiposity being included among the global non-communicable disease (NCD) targets, with a target of halting, by 2025, the rise in the prevalence of obesity at its 2010 level. Information on whether countries are on track to achieve this target is needed to support accountability towards the global NCD commitments.

Two previous studies estimated global trends in the prevalence of overweight and obesity. However, the largest health benefits of weight management are achieved by shifting the population distribution of BMI. The only global report on mean BMI, which characterises distributional shifts, estimated trends to 2008, before the global target was agreed. Epidemiological studies have shown substantial risks in people with very high BMI—eg, severe (≥35 kg/m²) or morbid (≥40 kg/m²) obesity. Being underweight is also associated with increased risk of morbidity and mortality (ie, a so-called J-shaped association) and with adverse pregnancy outcomes. Very few analyses of trends in underweight, especially for men, and in severe and morbid obesity have been done. Finally, no information is available on the likelihood of individual countries or the world as a whole achieving the global obesity target.

We pooled population-based data to estimate trends from 1975 to 2014 in both mean BMI and in prevalence of
BMI categories ranging from underweight to morbid obesity. We also estimated the probability of achieving the global obesity target.

Methods
Study design
We analysed population-based studies that had measured height and weight in adults aged 18 years and older with use of a consistent protocol. We estimated trends in mean BMI and prevalence of BMI categories (<18.5 kg/m² [underweight], 18.5 kg/m² to <20 kg/m², 20 kg/m² to <25 kg/m², 25 kg/m² to <30 kg/m², 30 kg/m² to <35 kg/m², 35 kg/m² to <40 kg/m², and ≥40 kg/m² [morbid obesity]) from 1975 to 2014, in 200 countries and territories. We report results for these categories, and for total obesity (BMI ≥30 kg/m²) and severe obesity (BMI ≥35 kg/m²). Countries and territories were organised into 21 regions, mostly on the basis of geography and national income (appendix pp 10, 11). The exception was a region consisting of high-income English-speaking countries because BMI and other cardiometabolic risk factors have similar trends in these countries, which can be distinct from other countries in their geographical region. Our analysis covered men and women aged 18 years and older, consistent with the Global Monitoring Framework for NCDs.

Our study had two steps: first, we identified, accessed, and reanalysed population-based studies that had measured height and weight; then, we used a statistical model to estimate mean BMI and prevalences of BMI categories for all countries and years.

Research in context
Evidence before this study
We searched MEDLINE (via PubMed) for manuscripts published in any language between Jan 1, 1950, and March 12, 2013, using the search terms “body size” [mh:noexp] OR “body height” [mh:noexp] OR “body weight” [mh:noexp] OR “birth weight” [mh:noexp] OR “overweight” [mh:noexp] OR “obesity” [mh] OR “thinness” [mh:noexp] OR “Waist-Hip Ratio” [mh:noexp] or “Waist Circumference” [mh:noexp] or “body mass index” [mh:noexp]) AND (“Humans” [mh]) AND ("1950"[PDAT] : "2013"[PDAT]) AND (“Health Surveys” [mh] OR "Epidemiological Monitoring" [mh] OR “Prevalence” [mh]) NOT Comment[ptyp] NOT Case Reports[ptyp]. Articles were screened according to the inclusion and exclusion criteria described in the appendix (pp 2–5).

The only global study on trends in mean body-mass index (BMI), which characterises shifts in the population distribution of BMI, reported trends to 2008 (before the global target on obesity was agreed) and no recent data are available. Two previous studies estimated global trends in the prevalence of overweight and obesity. Neither study reported trends in underweight, which is associated with increased risk of morbidity, mortality, and adverse pregnancy outcomes, or in high levels of BMI (eg, ≥35 or ≥40 kg/m²), which are associated with substantial risks of many non-communicable diseases.

Added value of this study
This study provides the longest and most complete picture of trends in adult BMI, including, for the first time, in underweight and severe and morbid obesity, which are of enormous clinical and public health interest. We were able to robustly depict this rich picture by reanalysing and pooling hundreds of population-based sources with measurements of height and weight according to a common protocol. We also systematically projected recent trends into the future, and assessed the probability of the global obesity target being achieved.

Implications of all the available evidence
The world has transitioned from an era when underweight prevalence was more than double that of obesity, to one in which more people are obese than underweight. However, underweight remains a public health problem in the world’s poorest regions—namely south Asia and central and east Africa. If present trends continue, not only will the world not meet the global obesity target, but severe obesity will also surpass underweight in women by 2025.

Data sources
We used multiple routes for identifying and accessing data, including from publicly available sources and through requests to various national and international organisations, as described in the appendix (pp 2–5). We used data sources that were representative of a national, subnational, or community population and had measured height and weight. We did not use self-reported height and weight because they are subject to biases that vary by geography, time, age, sex, and socioeconomic characteristics. Because of these variations, present approaches to correcting self-reported data leave residual bias and error. Our data inclusion and exclusion criteria were designed to ensure population representativeness (appendix pp 2–5).

Statistical analysis
The statistical method is described in a statistical paper and in the appendix of a previous paper. In summary, the model had a hierarchical structure in which estimates for each country and year were informed by the country and year’s own data, if available, and by data from other years in the same country and in other countries, especially those in the same region with data for similar time periods. The hierarchical structure shares information to a greater degree when data are non-existent or weakly informative (eg, have a small sample size or are not national), and to a lesser extent in data-rich countries and regions.

The model incorporated non-linear time trends and age patterns; national versus subnational and community
and prevalence to the WHO standard population,25 by presentation, we age-standardised each estimated mean constituent country estimates by age group and sex. For calculated as population-weighted means of the close to 1·0. Estimates for regions and the world were the sum of each separately estimated prevalence was across draws was 1·05 for men and 1·07 for women—ie, age, sex, country, and year. The mean scaling factor prevalence of a BMI category represented a truly increasing that an estimated increase or decrease in mean BMI or change per decade. We also report the posterior probability categories) over the 40 years of analysis, which we report as mean BMI and relative change for prevalence of BMI well in terms of its prediction validity.

We tested how well our statistical model predicted mean BMI and the prevalence of each BMI category when a BMI and the prevalence of a BMI category separately. We rescaled the estimated prevalence different categories so that their sum was 1·0 in each age, sex, country, and year. The mean scaling factor across draws was 1·05 for men and 1·07 for women—ie, the sum of each separately estimated prevalence was close to 1·0. Estimates for regions and the world were calculated as population-weighted means of the constituent country estimates by age group and sex. For presentation, we age-standardised each estimated mean and prevalence to the WHO standard population,25 by taking weighted means of age–sex-specific estimates, with use of age weights from the standard population. We tested how well our statistical model predicted mean BMI and the prevalence of each BMI category when a country-year did not have data as described in the appendix (pp 8,9), which showed that it performed very well in terms of its prediction validity.

We estimated mean change in BMI (absolute change for mean BMI and relative change for prevalence of BMI categories) over the 40 years of analysis, which we report as change per decade. We also report the posterior probability that an estimated increase or decrease in mean BMI or prevalence of a BMI category represented a truly increasing or decreasing trend. Additionally, we made separate estimates of change for pre-2000 and post-2000 years to assess whether the increasing recognition of adiposity as an “epidemic” in the 1990s,26 and the subsequent public health attention and response,27,28 might have slowed down its rise. Finally, we calculated the posterior probability of meeting the global obesity target if post-2000 trends continue.

Role of the funding source
The funder of the study had no role in study design, data collection, data analysis, data interpretation, or writing of the report. MDC, JB, and Country and Regional Data Group members had full access to the data in the study and the corresponding author had final responsibility for the decision to submit for publication.

Results
We accessed and used 1698 population-based data sources, with more than 19·2 million participants (9·9 million men and 9·3 million women) aged 18 years or older whose height and weight had been measured, in 186 of 200 countries for which estimates were made (appendix pp 143, 144); these 186 countries covered 99% of the world’s population. 159 countries had at least two data sources, which allowed more reliable trend estimates. 827 sources (49%) were national, 236 (14%) were subnational, and the remaining 635 (37%) were community-based (appendix pp 145, 146). The mean number of data sources per country varied between regions from 2·8 data sources in Polynesia and Micronesia to 34·7 data sources in high-income Asia Pacific. 525 data sources (31%) were from years before 1995 and another 1173 (69%) data sources from 1995 and later. 1314 (77%) sources had data on men and women, 144 (8%) only on men, and 240 (14%) only on women.

Global age-standardised mean BMI in men increased from 21·7 kg/m² (95% CrI 21·3–22·1) in 1975 to 24·2 kg/m² (24·0–24·4) in 2014, and in women from 22·1 kg/m² (21·7–22·5) in 1975 to 24·4 kg/m² (24·2–24·6) in 2014 (figure 1); the posterior probability that the observed trends were true increases was greater than 0·9999 for both sexes. The mean increases of 0·63 kg/m² per decade (0·53–0·73) for men and 0·59 kg/m² per decade (0·49–0·70) for women are equivalent to the world’s population having become on average more than 1·5 kg heavier each decade.

Regional mean BMI in 2014 in men ranged from 21·4 kg/m² in central Africa and south Asia to 29·2 kg/m² (95% CrI 28·6–29·8) in Polynesia and Micronesia (figure 1). In women, the range was from 21·8 kg/m² (21·4–22·3) in south Asia to 32·2 kg/m² (31·5–32·8) in Polynesia and Micronesia. Mean BMI was also high in men and women in high-income English-speaking countries, and in women in southern Africa and in the Middle East and north Africa.

The largest increase in men’s mean BMI occurred in high-income English-speaking countries (1·00 kg/m² per decade; posterior probability >0·9999) and in women in central Latin America (1·27 kg/m² per decade; posterior probability >0·9999). The increase in women’s mean BMI was also more than 1·00 kg/m² per decade in Melanesia, Polynesia and Micronesia, high-income English-speaking countries, southeast Asia, Andean Latin America, and the Caribbean. Because of these trends, men and women in high-income English-speaking countries in 2014 had substantially higher BMIs than those in continental Europe, whereas in 1975 their BMI had been similar or lower, especially for women (figure 1). By contrast with these large increases, the rise in women’s mean BMI was less than 0·2 kg/m² per decade in central Europe, southwestern Europe, and high-income Asia Pacific.

In 1975, age-standardised mean BMI was less than 19 kg/m² in men in Timor-Leste, Burundi, India,
Figure 1: Trends in age-standardised mean BMI by sex and region
Lighter colours are 95% credible intervals. See appendix (pp 155–355) for results by sex and country. BMI=body-mass index.
Ethiopia, Vietnam, Rwanda, Eritrea, and Bangladesh (figure 2), and 17–18 kg/m² in women in Bangladesh, Nepal, Timor-Leste, Burundi, Cambodia, and Vietnam (figure 3). In the same year, men and women in Nauru and women in American Samoa already had mean BMIs of more than 30 kg/m². By 2014, age-standardised
mean BMI was more than 20·0 kg/m² in men and more than 20·7 kg/m² in women in every country, with Ethiopia, Eritrea, and Timor-Leste having the lowest BMIs for both sexes. At the same time, in American Samoa, the age-standardised mean BMIs were 32·2 kg/m² (95% CrI 30·5–33·7) for men and
34·8 kg/m² (33·2–36·3) for women, with mean BMI also more than 30 kg/m² in both sexes in some other islands in Polynesia and Micronesia, and in women in some countries in the Middle East and north Africa (eg, Egypt and Kuwait) and the Caribbean.

From 1975 to 2014, trends in men’s BMI ranged from virtually flat in Nauru (albeit at a very high level), North Korea, and several countries in sub-Saharan Africa, to an increase of more than 1·5 kg/m² per decade. Similarly, women’s BMI did not change in Bahrain and Nauru (both starting at high BMIs), Singapore, Japan, North Korea, and several European countries, but increased by more than 1·5 kg/m² per decade in some countries. BMI increased more slowly after the year 2000 than in the preceding 25 years in Oceania and in most high-income countries for both sexes, and for women in most countries in Latin America and the Caribbean (figure 4). By contrast, the post-2000 increase was steeper than pre-2000 in men in central and eastern Europe, east and southeast Asia, and most countries in Latin America and the Caribbean. In other regions, increases in BMI before and after 2000 were similar or they had a mixture of slow-down and acceleration. The standard deviation of BMI also increased from 1975 to 2014 (appendix pp 149, 150), which contributed to an increase in the prevalence of people at either or both extremes of BMI.

Mean BMI in 2014 varied more across countries in women than it did in men. For example, the difference in women’s mean BMI between American Samoa (the country with the highest mean BMI) and Timor-Leste (the country with the lowest mean BMI) was 14·1 kg/m² in 2014, which is equivalent to about a 35 kg difference in the mean weight per person, whereas in men, the difference in mean BMI was 12·1 kg/m², which is also equivalent to about a 35 kg difference in the mean weight per person (because men tend to be taller). Although male and female BMIs were correlated across countries, women on average had higher BMI than did men in 141 countries in 2014 (appendix pp 151, 152). The main exceptions from this sex pattern were countries in Europe and in high-income Asia Pacific and English-speaking countries. Changes in male and female BMI were weakly correlated across countries.

From 1975 to 2014, global age-standardised prevalence of underweight (BMI <18·5 kg/m²) decreased from 13·8% (95% CrI 10·5–17·4) to 8·8% (7·4–10·3) in men (figure 5) and from 14·6% (11·6–17·9) to 9·7% (8·3–11·1) in women (figure 6). Compared with the fall in underweight, prevalence of obesity (BMI ≥30 kg/m²) increased by a larger amount—from 3·2% (2·4–4·1) in 1975 to 10·8% (9·7–12·0) in 2014 in men, and from 6·4%...
Prevalence of obesity surpassed that of underweight in 2004 in women and in 2011 in men. 2·3% (2·0–2·7%) of the world’s men and 5·0% (4·4–5·6%) of women were severely obese in 2011. The global prevalence of morbid obesity (BMI ≥40 kg/m²) was 0·64% (0·46–0·86%) in men and 1·6% (1·3–1·9%) in women in 2014.

Age-standardised underweight prevalence in south Asia, where it is most common, decreased from more than 35% in both sexes in 1975 to 23·4% (95% CrI...
17.8–29.2) in men and 24.0% (18.9–29.3) in women in 2014 (figures 5, 6). Underweight prevalence also remained higher than 12% in women and higher than 15% in men in central and east Africa in 2014, despite some reductions. At the other extreme, more than 38% of men and more than 50% of women in Polynesia and Micronesia were obese in 2014. Obesity prevalence also surpassed 30% in men and women in high-income English-speaking countries, and in women in southern Africa and in the Middle East and north Africa.

Figure 6: Trends in age-standardised prevalence of BMI categories in women by region
See appendix (pp 155–355) for results by country. BMI=body-mass index.
Age-standardised prevalence of underweight in 2014 was less than 1% in men in 68 countries and in women in 11 countries (figure 7). At the other extreme, more than 20% of men in India, Bangladesh, Timor-Leste, Afghanistan, Eritrea, and Ethiopia, and a quarter or more of women in Bangladesh and India are still underweight.

In 1975, the proportion had been as high as 37% in Indian and Bangladeshi women.

In 2014, more men were obese than underweight in 136 (68%) of 200 countries; in 113 of these countries, more men were severely obese than underweight. For women, obesity surpassed underweight in 165 (83%) countries and severe obesity surpassed underweight in 135 countries. Obesity prevalence was less than 1% in men in Burundi and Timor-Leste and 1–2% in another 15 countries in central, east, and west Africa and in south and southeast Asia. The lowest prevalences in women were in Timor-Leste, Japan,

Figure 7: Age-standardised prevalence of underweight, obesity, and severe obesity by sex and country in 2014

Underweight (BMI <18·5 kg/m²); obesity (BMI ≥30 kg/m²); and severe obesity (BMI ≥35 kg/m²). See appendix (pp 65–107) for numerical results for all BMI ranges. BMI=body-mass index.

Figure 8: Trends in the number of obese and severely obese people by region

A person is obese if they have a body-mass index (BMI) of 30 kg/m² or higher, or is severely obese if they have a BMI of 35 kg/m² or higher.
Underweight in men

Rank	Country	Millions of underweight men (as % of global underweight)
1	India	63.4 (17.9)
2	China	29.6 (8.2)
3	Indonesia	11.4 (3.4)
4	Bangladesh	6.8 (1.6)
5	Pakistan	5.2 (1.2)
6	Egypt	5.1 (1.2)
7	Vietnam	2.2 (0.5)
8	Nigeria	2.4 (0.6)
9	Philippines	1.9 (0.5)
10	Thailand	1.7 (0.4)

Underweight in women

Rank	Country	Millions of underweight women (as % of global underweight)
1	India	10.8 (2.8)
2	China	18.0 (4.1)
3	Indonesia	11.9 (2.4)
4	Bangladesh	13.5 (2.5)
5	Pakistan	9.4 (1.8)
6	Vietnam	5.6 (1.2)
7	Nigeria	4.8 (1.2)
8	Ethiopia	3.6 (0.8)
9	Philippines	3.6 (0.8)
10	Thailand	3.1 (0.6)

Obesity in men

Rank	Country	Millions of obese men (as % of global obesity)
1	USA	17.0 (7.5)
2	Brazil	12.7 (5.7)
3	Germany	11.9 (4.6)
4	UK	10.5 (4.1)
5	France	9.8 (3.6)
6	Iran	9.0 (3.6)
7	Egypt	8.3 (3.3)
8	Poland	7.6 (2.6)
9	Italy	7.0 (2.4)
10	Israel	6.5 (2.2)

Obesity in women

Rank	Country	Millions of obese women (as % of global obesity)
1	USA	13.5 (4.3)
2	Brazil	12.8 (4.8)
3	Germany	10.7 (4.1)
4	Iran	9.6 (3.5)
5	Egypt	9.0 (3.5)
6	Poland	8.3 (3.1)
7	France	7.7 (2.6)
8	Italy	7.0 (2.5)
9	Israel	6.8 (2.4)
10	UK	6.0 (2.3)

Severe obesity in men

Rank	Country	Millions of severely obese men (as % of global severe obesity)
1	USA	5.1 (2.0)
2	Mexico	4.7 (1.8)
3	Brazil	4.1 (1.7)
4	Mexico	4.1 (1.7)
5	Brazil	3.9 (1.6)
6	Mexico	3.7 (1.5)
7	Brazil	3.5 (1.4)
8	Mexico	3.4 (1.3)
9	Brazil	3.3 (1.3)
10	Mexico	3.2 (1.2)

Severe obesity in women

Rank	Country	Millions of severely obese women (as % of global severe obesity)
1	USA	2.9 (1.1)
2	Mexico	2.6 (1.0)
3	Brazil	2.5 (0.9)
4	Mexico	2.5 (0.9)
5	Brazil	2.4 (0.9)
6	Mexico	2.3 (0.8)
7	Brazil	2.3 (0.8)
8	Mexico	2.1 (0.8)
9	Brazil	2.0 (0.7)
10	Mexico	1.9 (0.7)

This table and diagram provide a visual representation of the underweight and obesity rates in men and women across different countries, with data spanning from 1975 to 2014. The data includes countries such as China, Brazil, USA, India, and Mexico, among others. The percentages are calculated as a fraction of the global population for each country.
Vietnam, North Korea, Cambodia, Laos, and Bangladesh, all less than 5%. At the other extreme, more than 45% of men in six island nations in Polynesia and Micronesia, and more than 50% of women in 11 such island nations were obese. The prevalence of obesity in women in several Caribbean and Middle Eastern countries was 40–50%. Severe obesity surpassed 20% in men and 30% in women in some Polynesian and Micronesian islands, reaching 33·4% (95% CrI 23·6–43·5) in American Samoa in 2014. More than 15% of women in Nauru and American Samoa were morbidly obese. In 2014, about 266 million men (95% CrI 240–295 million) and 375 million women (344–407 million) were obese in the world, compared with 34 million men (26–44 million) and 71 million women (57–87 million) in 1975 (figure 8). 58 million (49–68 million) of these men and 126 million (112–141 million) of these women were severely obese in 2014. 18·4% of the world’s obese adults (118 million) lived in high-income English-speaking countries and these countries contained an even larger share of the world’s severely obese people (27·1%; 50 million), followed by 13·9% (26 million) in the Middle East and north Africa. Countries where large numbers of overweight people lived in 1975 and in 2014 were mostly large countries in Asia and sub-Saharan Africa, with an increasing share of underweight people living in south Asia over time (figure 9). By contrast with this stability of underweight geography, countries with the largest number of obese and severely obese people changed over these four decades, with more middle-income countries joining the USA, especially for women. In 2014, slightly more obese men and women lived in China than in the USA, and even for severe obesity, China moved from 60th place for men and 41st place for women in 1975, to 2nd rank for both men and women in 2014. Nonetheless, more than one in four severely obese men and almost one in five severely obese women in the world still live in the USA.

Discussion

Over the past four decades, we have transitioned from a world in which underweight prevalence was more than double that of obesity, to one in which more people are obese than underweight, both globally and in all regions except parts of sub-Saharan Africa and Asia. The rate of increase in BMI since 2000 has been slower than in the preceding decades in high-income countries, where adiposity became an explicit public health concern around this time,27,28 and in some middle-income countries. However, because the rate of BMI increase has accelerated in some other regions, the global increase in BMI has not slowed down. If post-2000 trends continue, not only will the world not meet the global target for halting the increase in obesity, but also severe obesity will surpass underweight in women by 2025. Nonetheless, underweight remains a public health problem in south Asia and central and east Africa.

We estimated a slightly larger increase in mean BMI since 1980 than Finucane and colleagues did,11 especially in men, because our estimates for 1980 were lower, globally and in most regions; this difference might be because our study included substantially more data, from a larger number of countries. Our global estimates of overweight prevalence are similar to those reported by Stevens and colleagues13 for 2008, and by Ng and colleagues for 2013.29 Our estimates for obesity for the same years are slightly lower than those of Stevens and colleagues and slightly higher than those of Ng and colleagues. Furthermore, we estimated a lower prevalence of obesity for 1980 than Ng and colleagues had, which means we have attributed a larger role to the rise over the past few decades for the present extent of obesity. Differences between our study and that of Ng and colleagues were greater at the regional level; for example, our estimates for obesity prevalence in men in south Asia and central, east, and west Africa were less than half of those by Ng and colleagues. None of these previous works had estimated underweight or severe and morbid obesity, which are important clinical and public health outcomes.

The strengths of our study include its unique scope of making consistent estimates of mean BMI and the prevalence of all BMI categories with clinical and public health relevance, including the first-ever estimates of underweight and severe and morbid obesity. These estimates helped reveal the details of the transition from underweight to overweight and obesity throughout the world. We also reported on the probability of each country meeting the global obesity target. We put great emphasis on data quality and used only population-based data sources that had measured height and weight to avoid the bias in self-reported data. Characteristics and quality of data sources were verified by Collaborating Group members (appendix pp 2–5). Data were analysed according to a common protocol to obtain the required mean and prevalence by age and sex, which in turn minimised reliance on

Figure 9: Ten countries with the largest number of underweight, obese, and severely obese men and women in 1975 and 2014

Colours for each country indicate its region, using the same colour scheme as in figure 4. Underweight (BMI <18·5 kg/m²); obesity (BMI ≥30 kg/m²); and severe obesity (BMI ≥35 kg/m²). BMI=body-mass index.
models for filling such gaps, as done in previous studies.32–35 Finally, we pooled data using a statistical model designed to take into account the epidemiological features of outcomes such as BMI, and one that used all available data while giving more weight to national data than subnational and community studies.

Despite our efforts in identifying and accessing country-level data, some countries had few data sources, especially those in Polynesia and Micronesia, the Caribbean, and central Asia. Additionally, only 42% of sources included people older than 70 years. In view of ageing trends throughout the world, older people should be included in health and nutrition surveys, which have traditionally focused on childbearing ages. Even measured height and weight data can have error depending on how closely measurement protocols are followed. Although data held by Collaborating Group members were analysed to provide all needed details by sex and age group and BMI level, individual participant data could not be accessed for 19.4% of data used in our analysis, hence conversions across categories were still needed; nonetheless, the conversion regressions had high predictive accuracy (appendix pp 41–55). A novel component of our study is that we estimated the prevalences of a complete set of BMI categories, but the uncertainty intervals for BMIs of 30 kg/m² or more and 35 kg/m² or more, prevalences that span more than one of the analysed categories, could be affected by the fact that we combined posterior distributions across Bayesian models. We did not estimate trends in measures of adiposity other than BMI, such as waist circumference and waist-to-hip ratio, because these were measured in less than half of all the data sources and their measurement became more common after the 1980s. A systematic review31 of epidemiological studies reported that, taken together, studies that had measured BMI and either waist circumference or waist-to-hip ratio, because these could slow down and stop the worldwide increase in BMI.38–40 To avoid an epidemic of severe obesity, the next step must be to implement these policies, and to systematically assess their effect.41

Contributors
ME designed the study and oversaw research. Members of the Country and Regional Data Group collected and reanalysed data, and checked pooled data for accuracy of information about their study and other studies in their country. MDC and GAS led data collection and JB led pooled data analysis and Writing Group collated data, checked all data sources in consultation with the Country and Regional Data Group, analysed pooled data, and prepared results. ME wrote the first draft of the report with input from other members of Pooled Analysis and Writing Group. Members of Country and Regional Data Group commented on draft report.

NCD Risk Factor Collaboration

Pooled Analysis and Writing (equal contribution)—Mariachiara Di Cesare (Imperial College London, London, UK; Middlesex University, London, UK); James Bentham (Imperial College London, London, UK); Gretchen A Stevens (World Health Organization, Geneva, Switzerland); Bin Zhou (Imperial College London, London, UK); Goodarz Danaei (Harvard T H Chan School of Public Health, Boston, MA, USA); Yuan Lu (Harvard T H Chan School of Public Health, Boston, MA, USA); Honor Bixby (Imperial College London, London, UK); Melanie J Cowan (World Health Organization, Geneva, Switzerland); Leanne M Riley (World Health Organization, Geneva, Switzerland); Kaveh Hajifathalian (Harvard T H Chan School of Public Health, Boston, MA, USA); Lía Fortunato (Imperial College London, London, UK); Cristina Taddei (University of Florence, Florence, Italy); James E Bennett (Imperial College London, London, UK); Nayu Ikeda (National Institute of Health and Nutrition, Tokyo, Japan); Prof Young-Ho Khang

1390 www.thelancet.com Vol 387 April 2, 2016
Développement, France)*; Kloodian Dhana (Erasmus Medical Center Rotterdam, Netherlands)*; Augusto F Di Castelnuovo (IRCCS Istituto Neurologico Mediterraneo NeuroShine, Italy)*; Juvenal Soares Dias-da-Costa (Universidade do Vale do Rio dos Sinos, Brazil)*; Alejandro Diaz (National Council of Scientific and Technical Research, Argentina)*; Shirin Djaliania (Non-Communicable Diseases Research Center, Iran)*; Ha T P Do (National Institute of Nutrition, Vietnam)*; Annette J Dobson (University of Queensland, Australia)*; Chiara Donfrancesco (Istituto Superiore di Sanità, Italy)*; Angela DÖring (Helmholtz Zentrum München, Germany)*; Kouamellou Doua (Ministère de la Santé et de la Lutte contre le Sida, Côte d’Ivoire)*; Wojciech Drygas (The Cardinal Wyszynski Institute of Cardiology, Poland)*; Erkei E Egbaenge (University of Benin College of Medical Sciences, Nigeria)*; Robert Eggertsen (University of Gothenburg, Sweden)*; Ulf Elekholm (Norwegian School of Sport Sciences, Norway)*; Jalila El Ati (National Institute of Nutrition and Food Technology, Tunisia)*; Paul Elliott (Imperial College London, UK)*; Reina Engle-Stone (University of California Davis, USA)*; Rajiv T Erasmus (University of Stellenbosch, South Africa)*; Cihan Gure (Karađozbey Technical University, Turkey)*; Louise Eriksen (University of Southern Denmark, Denmark)*; Jorge Escobedo-de la Peña (Instituto Mexicano del Seguro Social, Mexico)*; Alun Evans (The Queen’s University of Belfast, UK)*; David Fahey (University of Cork, Ireland)*; Caroline H Full (University of Southampton, UK)*; Farshad Farzadfar (Tehran University of Medical Sciences, Iran)*; Francisco J Felix-Redondo (Centro de Salud Villanueva Norte, Spain)*; Trevor S Ferguson (The University of the West Indies, Jamaica)*; Daniel Fernandez-Borges (Hospital Don Benito-Villanueva de la Serena, Spain)*; Daniel Ferrante (Ministry of Health, Argentina)*; Marika Ferrari (Council for Agricultural Research and Economics, Italy)*; Catterina Ferreccio (Pontificia Universidad Católica de Chile, Chile)*; Jean Ferrieres (Toulouse University School of Medicine, France)*; Joseph D Finn (University of Manchester, UK)*; Krista Fischer (University of Tartu, Estonia)*; Ann-Sofi E Forslund (Luleå University, Sweden)*; Bernhard Füger (Agency for Preventive and Social Medicine, Austria)*; Leng Huat Foo (Universiti Sains Malaysia, Malaysia)*; Ann-Sofie Frändén (Luleå University, Sweden)*; Stephen P Fortmann (Stanford University, USA)*; Hela M Fouad (WHO Regional Office for the Eastern Mediterranean, Egypt)*; Damian K Francis (The University of the West Indies, Jamaica)*; Maria do Carmo Franco (Federal University of São Paulo, Brazil)*; Oscar H Franco (Erasmus Medical Center Rotterdam, Netherlands)*; Guillermo Frontera (Hospital Universitario Son Espases, Spain)*; Flavio D Fuchs (Hospital de Clínicas de Porto Alegre, Brazil)*; Sandra C Fuchs (Universidade Federal do Rio Grande do Sul, Brazil)*; Yuki Fujita (Kinki University Faculty of Medicine, Japan)*; Takuro Furuwasa (Kyoto University, Japan)*; Zbigniew Gaciong (Medical University of Warsaw, Poland)*; Mihai Găfecu (Victor Babes University of Medicine and Pharmacy, Romania)*; Dickman Gareta (University of the West Indies, Jamaica)*; Licia Iacoviello (IRCCS Istituto Neurologico Mediterraneo Neuromed, Italy)*; Anna G Iannone (Cardiologia di Mercato S. Severino, Italy)*; M Mohsen Ibrahim (Cairo University, Egypt)*; Nanu Ikeda (National Institute of Health and Nutrition, Japan)*; Michael Hobbs (University of Western Australia, Australia)*; Albert Hofman (Erasmus Medical Center Rotterdam, Netherlands)*; Claudia M Hormiga (Fundación Oftalmológica de Santander, Colombia)*; Bernardo I. Horton (Universidade Federal de Pelotas, Brazil)*; Leila Houti (Université de Oran 1, Algeria)*; Thein T Htay (Ministry of Health, Myanmar)*; Autog Soe Htet (University of Oslo, Norway)*; Maung Maung Than Htike (Ministry of Health, Myanmar)*; Yonghua Hu (Peking University Health Science Center, China)*; Abduallah S Hussien (Birzeit University, Palestine)*; Chinh Nguyen Huu (National Institute of Nutrition, Vietnam)*; Inge Huysbrechts (International Agency for Research on Cancer, France)*; Nabil Hwala (American University of Beirut, Lebanon)*; Lucia Iacoviello (IRCCS Istituto Neurologico Mediterraneo Neuromed, Italy)*; Jost B Jonas (Ruprecht-Karls-Universität Heidelberg, Germany)*; Torben Jørgensen (Research Centre for Prevention and Health, Denmark)*; Pradeep Joshi (World Health Organization Country Office, India)*; Alison J Hayes (University of Sydney, Australia)*; Sai Yin Ho (University of Hong Kong, China)*; Suzanne C Ho (The Chinese University of Hong Kong, China)*; Michael Hóp (University of Western Australia, Australia)*; Ilpo Tapani Hihtaniemi (Imperial College London, UK)*; Sai Yin Ho (University of Hong Kong, China)*; Anna Juolevi (National Institute for Health and Welfare, Finland)*; Sai Yin Ho (University of Hong Kong, China)*; Thein Thein Htay (Ministry of Health, Myanmar)*; Anna Juolevi (National Institute for Health and Welfare, Finland)*; Tazeen Jafar (Duke-NUS Graduate Medical School, Singapore)*; Kazi M Jamal (Kuwait Institute for Scientific Research, Kuwait)*; Konrad Jamrozik (University of Adelaide, Australia; deceased)*; Grażyna Jasieniak (Jagiellonian University Medical College, Poland)*; Chao Qiang Jiang (Guangzhou 12th Hospital, China)*; Michel Joffres (Institute of Public Health of Vojvodina, Serbia)*; Dongfeng Gu (National Institute of Cardiovascular Diseases, China)*; Ong Peng Guan (Singapore Eye Research Institute, Singapore)*; Vilmundur Gudnason (Icelandic Heart Association, Iceland)*; Ramiro Guerrero (Universidad Icesi, Colombia)*; Idris Guesous (Geneva University Hospitals, Switzerland)*; Andre I Guzmanes (University of Montes Claros, Brazil)*; Martin C Guillford (King’s College London, UK)*; Johanna Gunlaugsdottir (Icelandic Heart Association, Iceland)*; Marc Gunter (Imperial College London, UK)*; Xiufeng Guo (Capital Medical University, China)*; Yin Guo (Capital Medical University, China)*; Prakash C Gupta (Heals-Sokhahrat Institute for Public Health, India)*; Oye Gureje (University of Ibadan, Nigeria)*; Beata Gurzowska (The Children’s Memorial Health Institute, Poland)*; Laura Gutierrez (Institute for Clinical Effectiveness and Health Policy, Argentina)*; Felix Guzzewitz (University of Zurich, Switzerland)*; Yette Halkjær (Danish Cancer Society Research Centre, Denmark)*; Rebecca Hardy (University College London, UK)*; Rakhakula Hari Kumar (Indian Council of Medical Research, India)*; Alison J Hayes (University of Sydney, Australia)*; Jiang He (Tulane University, USA)*; Marleen Elisabeth Hendriks (University of Amsterdam Academic Medical Center, Netherlands)*; Friedrich Hoffmann (University of Zurich, Switzerland)*; Caroline H Full (University of Southampton, UK)*; summer
Articles

[University of Bari, Italy]*; Emily Sonestedt (Lund University, Sweden)*; Thorild I A Sørensen (University of Copenhagen, Denmark)*; Marjoe Sorci (University of Zagreb, Croatia)*; Charles Sossa (Institut Régional de Santé Publique, West Africa)*; Aicha Soumare (University of Bordeaux, France)*; Jan A Staessen (University of Leuven, Belgium)*; Gregor Stark (University of Ljubljana, Slovenia)*; Maria G Stathopoulou (INSERM, France)*; Kaspar Staub (University of Zurich, Switzerland)*; Bill Stavreski (Heart Foundation, Australia)*; Jostein Stenseth-Johannessen (Norwegian School of Sport Sciences, Norway)*; Peter Stehle (Bonn University, Germany)*; Aryeh D Stein (Emory University, USA)*; George S Stergiou (Sotiria Hospital, Greece)*; Jochanan Stessman (Hadassah University Medical Center, Israel)*; Jutta Stieber (Helmholtz Zentrum München, Germany)*; Doris Stoeckl (Helmholtz Zentrum München, Germany)*; Tanja Stocks (Lund University, Sweden)*; Jakub Stokowsiowski (National Institute of Public Health-National Institute of Hygiene, Poland)*; Gareth Strattoon (Swansea University, UK)*; Maria Wany Struludla (Federal University of São Paulo, Brazil)*; Chien-An Sun (Fu Jen Catholic University, Taiwan)*; Johan Sundström (Uppsala University, Sweden)*; Yu-Te Sung (The Chinese University of Hong Kong, China)*; Jordi Sunyer (Centre for Research in Environmental Epidemiology, Spain)*; Païboul Suryawongpaisal (Mahidol University, Thailand)*; Boyd A Swinburn (The University of Auckland, New Zealand)*; Rody G Sy (University of the Philippines, Philippines)*; Xuan Tang (Peking University Health Science Center, China)*; Frank Tanner (University of KwaZulu-Natal, South Africa)*; Yong Tao (Peking University, China)*; Mohammed Tarawneh (Ministry of Health, Jordan)*; Jakob Tarp (University of Southern Denmark, Denmark)*; Carolina B Tarqui-Mamani (National Institute of Health, Peru)*; Anne Taylor (The University of Adelaide, Australia)*; Felicite Thlhibindat (UNICEF, Cameroon)*; Lutgarde Thijs (University of Leuven, Belgium)*; Betina H Thuesen (Centre for Research in Prevention and Health, Denmark)*; Anne Tjonneland (Danish Cancer Society Research Centre, Denmark)*; Hanna K Tolonen (National Institute for Health and Welfare, Finland)*; Janne S Tolstrup (University of Southern Denmark, Denmark)*; Murali Topchas (Karadeniz Technical University, Turkey)*; Roman Topór-Madry (Jagiellonian University Medical College, Poland)*; Tamás Torzai (IB-SALUT Area de Salut de Menorca, Spain)*; Pierre Traissac (Institut de Recherche pour le Développement, France)*; Antonio Trichopoulos (Hellenic Health Foundation, Greece)*; Dimitrios Trichopoulos (Harvard T H Chan School of Public Health, USA; deceased)*; Oanh Th Trinh (University of Pharmacy and Medicine of Ho Chi Minh City, Vietnam)*; Atul Trivedi (Government College of Medicine, India)*; Maria G Stathopoulou (INSERM, France)*; Bharathi Viswanathan (Ministry of Health, Malaysia)*; Kaspar Staub (University of Zurich, Switzerland)*; Jyrki K Virtanen (University of Eastern Finland, Finland)*; Sophie Visvikis-Strest (INSERM, France)*; Bharathis Visvanathan (Ministry of Health, Seychelles)*; Peter Vollenweider (Lausanne University Hospital, Switzerland)*; Martine Vrijheid (Centre for Research in Environmental Epidemiology, Spain)*; Aliha U N Wade (University of the Witwatersrand, South Africa)*; Aline Wagner (University of Strasbourg, France)*; Janette Walton (University College Cork, Ireland)*; Wan Nazaimoon Wan Mohamad (Institute for Medical Research, Malaysia)*; Ming-Dong Wang (Public Health Agency of Canada, Canada)*; Qian Wang (Xinjiang Medical University, China)*; Ya Xing Wang (Beijing Tongren Hospital, China)*; S Goya Wannamethee (University College London, UK)*; Nicholas Wareham (University of Cambridge, UK)*; Deepa Weerasena (Ministry of Health, New Zealand)*; Peter H Whincup (St George’s, University of London, UK)*; Kurt Widhalm (Medical University of Vienna, Austria)*; Indah S Widayahreni (Universitas Indonesia, Indonesia)*; Andrezej Wieck (Medical University of Silesia, Poland)*; Rainford J Wilks (The University of the West Indies, Jamaica)*; Johann Willett (Medical University Innsbruck, Austria)*; Bogdan Wojtyniak (National Institute of Public Health-National Institute of Hygiene, Poland)*; Jyh Eiin Wong (Universiti Kebangsaan Malaysia, Malaysia)*; Tien Yin Wong (Duke-NUS Graduate Medical School, Singapore)*; Jean Woo (The Chinese University of Hong Kong, China)*; Mark Woodward (University of Sydney, Australia; University of Oxford, UK)*; Frederic C Wu (University of Manchester, UK)*; JianFeng Wu (Shandong University of Traditional Chinese Medicine, China)*; Shou Ling Wu (Kailuan General Hospital, China)*; Haqian Xu (Institute of Food and Nutrition Development of Ministry of Agriculture, China)*; Liang Xu (Capital Medical University, China)*; Uruwan Yamborisut (Mahidol University, Thailand)*; Weili Yan (Fudan University, China)*; Xiaoguang Yang (Chinese Center for Disease Control and Prevention, China)*; Nana Yarding (Ministry of Health, Turkey)*; Xingwang Ye (University of Chinese Academy of Sciences, China)*; Panayiotis K Yiallouros (Cyprus University of Technology, Cyprus)*; Akihiro Yoshida (Nagata University, Japan)*; Qi Sheng You (Capital Medical University, China)*; Nove Y Younger-Coleman (The University of the West Indies, Jamaica)*; Ahmad F Yusof (Ministry of Health, Malaysia)*; Ahmad A Zainuddin (Universiti Teknologi MARA, Malaysia)*; Sahina Zambon (University of Padova, Italy)*; Tomasz Zdrojewski (Medical University of Gdańsk, Poland)*; Yi Zeng (Duke University, USA; Peking University, China)*; Dong Zhao (Capital Medical University Beijing Anzhen Hospital, China)*; Wenhua Zhao (Chinese Center for Disease Control and Prevention, China)*; Yingfeng Zheng (Singapore Eye Research Institute, Singapore)*; Maigeng Zhou (Chinese Center for Disease Control and Prevention, China)*; Dan Zhu (Inner Mongolia Medical University, China)*; Esther Zimmermann (Biopharm and Frederiksberg Hospitals, Denmark)*; Julio Zúñiga Cisneros (Gallup Medical Research Institute of Public Health, Panama)

Declaration of interests JMJ reports funding from Medtronics Foundation, outside the submitted work. All other authors declare no competing interests.

Acknowledgements We thank Christina Banks, Quentin Hennocq, Dheeya Rizmie, and Yasaman Vali for assistance with data extraction. We thank WHO country and regional offices and the World Heart Federation for support in data identification and access.

References

1 Singh GM, Danaei G, Farzadfar F. et al. The age-specific quantitative effects of metabolic risk factors on cardiovascular diseases and diabetes: a pooled analysis. PLoS One 2013; 8: e65174.

www.thelancet.com Vol 387 April 2, 2016 1395

Science and Technology, Norway)*; Tomas Vega (Consejería de Sanidad Center, Netherlands)*; Dirk Vanderschueren (Katholieke Universiteit Hoang Van Minh (Hanoi Medical University, Vietnam)*; Koen Van Herck (Ghent University, Belgium)*; Damaskini Valvi (Harvard T H Chan School of Public Health, USA)*; Peter Ueda (Harvard T H Chan School of Public Health, USA)*; Jesus Vique (Universidad Miguel Hernandez, Spain)*; Jyrki K Virtanen (University of Eastern Finland, Finland)*; Sophie Visvikis-Strest (INSERM, France)*; Bharathis Visvanathan (Ministry of Health, Seychelles)*; Peter Vollenweider (Lausanne University Hospital, Switzerland)*; Martine Vrijheid (Centre for Research in Environmental Epidemiology, Spain)*; Aliha U N Wade (University of the Witwatersrand, South Africa)*; Aline Wagner (University of Strasbourg, France)*; Janette Walton (University College Cork, Ireland)*; Wan Nazaimoon Wan Mohamad (Institute for Medical Research, Malaysia)*; Ming-Dong Wang (Public Health Agency of Canada, Canada)*; Qian Wang (Xinjiang Medical University, China)*; Ya Xing Wang (Beijing Tongren Hospital, China)*; S Goya Wannamethee (University College London, UK)*; Nicholas Wareham (University of Cambridge, UK)*; Deepa Weerasena (Ministry of Health, New Zealand)*; Peter H Whincup (St George’s, University of London, UK)*; Kurt Widhalm (Medical University of Vienna, Austria)*; Indah S Widayahreni (Universitas Indonesia, Indonesia)*; Andrzej Wieck (Medical University of Silesia, Poland)*; Rainford J Wilks (The University of the West Indies, Jamaica)*; Johann Willett (Medical University Innsbruck, Austria)*; Bogdan Wojtyniak (National Institute of Public Health-National Institute of Hygiene, Poland)*; Jyh Eiin Wong (Universiti Kebangsaan Malaysia, Malaysia)*; Tien Yin Wong (Duke-NUS Graduate Medical School, Singapore)*; Jean Woo (The Chinese University of Hong Kong, China)*; Mark Woodward (University of Sydney, Australia; University of Oxford, UK)*; Frederic C Wu (University of Manchester, UK)*; JianFeng Wu (Shandong University of Traditional Chinese Medicine, China)*; Shou Ling Wu (Kailuan General Hospital, China)*; Haqian Xu (Institute of Food and Nutrition Development of Ministry of Agriculture, China)*; Liang Xu (Capital Medical University, China)*; Uruwan Yamborisut (Mahidol University, Thailand)*; Weili Yan (Fudan University, China)*; Xiaoguang Yang (Chinese Center for Disease Control and Prevention, China)*; Nana Yarding (Ministry of Health, Turkey)*; Xingwang Ye (University of Chinese Academy of Sciences, China)*; Panayiotis K Yiallouros (Cyprus University of Technology, Cyprus)*; Akihiro Yoshida (Nagata University, Japan)*; Qi Sheng You (Capital Medical University, China)*; Nove Y Younger-Coleman (The University of the West Indies, Jamaica)*; Ahmad F Yusof (Ministry of Health, Malaysia)*; Ahmad A Zainuddin (Universiti Teknologi MARA, Malaysia)*; Sahina Zambon (University of Padova, Italy)*; Tomasz Zdrojewski (Medical University of Gdańsk, Poland)*; Yi Zeng (Duke University, USA; Peking University, China)*; Dong Zhao (Capital Medical University Beijing Anzhen Hospital, China)*; Wenhua Zhao (Chinese Center for Disease Control and Prevention, China)*; Yingfeng Zheng (Singapore Eye Research Institute, Singapore)*; Maigeng Zhou (Chinese Center for Disease Control and Prevention, China)*; Dan Zhu (Inner Mongolia Medical University, China)*; Esther Zimmermann (Biopharm and Frederiksberg Hospitals, Denmark)*; Julio Zúñiga Cisneros (Gallup Medical Research Institute of Public Health, Panama)

Declaration of interests JMJ reports funding from Medtrons Foundation, outside the submitted work. All other authors declare no competing interests.

Acknowledgements We thank Christina Banks, Quentin Hennocq, Dheeya Rizmie, and Yasaman Vali for assistance with data extraction. We thank WHO country and regional offices and the World Heart Federation for support in data identification and access.

References

1 Singh GM, Danaei G, Farzadfar F. et al. The age-specific quantitative effects of metabolic risk factors on cardiovascular diseases and diabetes: a pooled analysis. PLoS One 2013; 8: e65174.
The Global Burden of Metabolic Risk Factors for Chronic Diseases Collaboration (BMI Mediated Effects). Metabolic mediators of the effects of body-mass index, overweight, and obesity on coronary heart disease and stroke: a pooled analysis of 97 prospective cohorts with 1·8 million participants. Lancet 2014; 383: 970–83.

13. WHO. Global action plan for the prevention and control of noncommunicable diseases 2013–2020. Geneva, Switzerland: World Health Organization, 2013.

14. Kontis V, Mathers CD, Rehm J, et al. Contribution of six risk factors to achieving the 25×25 non-communicable disease mortality reduction target: a modelling study. Lancet 2014; 384: 427–37.

15. Beaglehole R, Bonita R, Ezzati M, et al. NCD Countdown 2025: accountability for the 25×25 NCD mortality reduction target. Lancet 2014; 384: 105–07.

16. Finucane MM, Stevens GA, Cowan MJ, et al. National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9·1 million participants. Lancet 2011; 377: 557–67.

17. Ng M, Fleming T, Robinson M, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 2014; 384: 766–81.

18. Stevens GA, Singh GM, Lu Y, et al. National, regional, and global trends in adult overweight and obesity and obesity prevalences. Popul Health Metr 2012; 10: 22.

19. Kitahara CM, Flint AJ, Berrington de Gonzalez A, et al. Association between class III obesity (BMI of 40–59 kg/m²) and mortality among 1·46 million white adults. Lancet 2014; 383: 65–61.

20. Han Z, Mullu S, Beyene J, Lian G, McDonald SD. Maternal underweight and the risk of preterm birth and low birth weight: a systematic review and meta-analyses. Int J Epidemiol 2011; 40: 65–101.

21. Mamun AA, Finlay JE. Shifting of undernutrition to overnutrition and its determinants among women of reproductive ages in the 36 low to medium income countries. Obes Rev Clin Pract 2015; 9: 75–86.

22. Danaei G, Finucane MM, Lin JK, et al. National, regional, and global trends in systolic blood pressure since 1980: systematic analysis of health examination surveys and epidemiological studies with 786 country-years and 5·4 million participants. Lancet 2011; 377: 568–77.

23. Danaei G, Singh GM, Paciorek CJ, et al. The global cardiovascular risk transition: associations of four metabolic risk factors with national income, urbanization, and Western diet in 1980 and 2008. Circulation 2013; 127: 1493–502.

24. Ezzati M, Riboli E. Behavioral and dietary risk factors for noncommunicable diseases. N Engl J Med 2013; 369: 954–64.

25. Ahmad OB, Boschi-Pinto C, Lopez AD, Murray CJ, Lozano R, Inoue M. Age standardization of rates: a new WHO standard. Geneva: World Health Organization, 2001.

26. Stamler J. Epidemic obesity in the United States. Arch Intern Med 1993; 153: 1040–44.

27. US Department of Health and Human Services. The surgeon general's call to action to prevent and decrease overweight and obesity. Rockville, MD: US Department of Health and Human Services, Public Health Service, Office of the Surgeon General, 2001.

28. Hilton S, Patterson C, Trehan A. Escalating coverage of obesity in UK newspapers: the evolution and framing of the ‘obesity epidemic’ from 1996 to 2010. Obesity (Silver Spring) 2012; 20: 1688–95.

29. McGarvey ST. Obesity in Samoans and a perspective on its etiology in Polynesians. Am J Clin Nutr 1991; 53 (suppl 6): 1586S–94S.

30. Zimmet P, Arlbruster M, Thoma K. The effect of westernization on native populations. Studies on a Micronesian community with a high diabetes prevalence. Aust N Z J Med 1978; 8: 141–46.

31. Huyler R, Mendoz S, Zheleznyakov E, Reddy S, Chan J. Body mass index, waist circumference and waist:hip ratio as predictors of cardiovascular risk—a review of the literature. Eur J Clin Nutr 2010; 64: 16–22.

32. de Onis M, Onyango AW, Borghi E, Siyam A, Shindóa C, Siekmann J. Development of a WHO growth reference for school-aged children and adolescents. Bull World Health Organ 2007; 85: 660–67.

33. Popkin BM, Conde W, Hov N, Monteiro C. Is there a lag globally in overweight trends for children compared with adults? Obesity (Silver Spring) 2006; 14: 1846–53.

34. Pednekar MS, Hakamma M, Hebert JR, Gupta PC. Association of body mass index with all-cause and cause-specific mortality: findings from a prospective cohort study in Mumbai (Bombay), India. Int J Epidemiol 2008; 37: 524–35.

35. Ezzati M, Obermeyer Z, Tzoulaki I, Mayosi BM, Elliott P, Leon DA. Contributions of risk factors and medical care to cardiovascular mortality trends. Nat Rev Cardio 2013; 12: 508–30.

36. Di Cesare M, Bennett JE, Best N, Stevens GA, Danaei G, Ezzati M. The contributions of risk factor trends to cardiometabolic mortality decline in 26 industrialized countries. Int J Epidemiol 2013; 42: 838–48.

37. Poirier P, Cornier MA, Mazzone T, et al. Bariatric surgery and cardiovascular risk: a review of the literature. Obes Reviews 2007; 8: 376–84.

38. Danaei G, Singh GM, Paciorek CJ, et al. The global cardiovascular risk transition: associations of four metabolic risk factors with national income, urbanization, and Western diet in 1980 and 2008. Circulation 2013; 127: 1493–502.

39. Ezzati M, Riboli E. Behavioral and dietary risk factors for noncommunicable diseases. N Engl J Med 2013; 369: 954–64.

40. Ahmad OB, Boschi-Pinto C, Lopez AD, Murray CJ, Lozano R, Inoue M. Age standardization of rates: a new WHO standard. Geneva: World Health Organization, 2001.

41. Stamler J. Epidemic obesity in the United States. Arch Intern Med 1993; 153: 1040–44.

42. US Department of Health and Human Services. The surgeon general's call to action to prevent and decrease overweight and obesity. Rockville, MD: US Department of Health and Human Services, Public Health Service, Office of the Surgeon General, 2001.

43. Hilton S, Patterson C, Trehan A. Escalating coverage of obesity in UK newspapers: the evolution and framing of the ‘obesity epidemic’ from 1996 to 2010. Obesity (Silver Spring) 2012; 20: 1688–95.