Existence and Uniqueness of a Fractional Fokker-Planck Equation

Li Lin *
Center for Mathematical Sciences, Huazhong University of Science and Technology
Wuhan, 430074, China
June 8, 2020

Abstract

Stochastic differential equations with Lévy motion arise the mathematical models for various phenomenon in geophysical and biochemical sciences. The Fokker-Planck equation for such a stochastic differential equations is a nonlocal partial differential equations. We prove the existence and uniqueness of the weak solution for this equation.

keywords: Fractional Laplacian operator, Fokker-Planck equation, Lax-Milgram theorem, Existence and uniqueness

1 introduction

For a system described by a stochastic differential equation with a α-stable Lévy motion L^α_t for $\alpha \in (0, 2)$,

$$dX_t = b(X_t)dt + a dB_t + dL^\alpha_t,$$

the corresponding Fokker-Planck equation [1] contains a nonlocal Laplacian operator,

$$u_t = a \Delta u - \left(-\Delta\right)^{\alpha/2} u - div(b(x) \cdot u),$$

where b is a two-dimensional vector function and $\left(-\Delta\right)^{\alpha/2}$ is a nonlocal Laplacian operator defined by

$$\left(-\Delta\right)^{\alpha/2} f(x) = \int_{\mathbb{R}^d \times [0]} \frac{f(x) - f(y)}{|x - y|^{d+\alpha}} dy.$$

Fractional partial differential equations arise the mathematical models for various phenomenon in physics and biology. Such as anomalous diffusion of particles [2] and the cell density evolution in certain biological processes [3].

*E-mail address: linli@hust.edu.cn
Volume constraints are natural extensions to the fractional case of boundary conditions for differential equations [4].

The Fokker-Planck equations have been used in the modeling of many physical phenomena, in particular, for the description of the evolution of plasmas [5]. Moreover, there are some settings in which particles may have long jumps [6]. Questions such as existence of solutions, hydrodynamic limits, and long-time behavior for the Fokker-Planck system has been extensively studied by many authors [7, 8, 9].

There are few works dealing with the existence and uniqueness of the Fokker-Planck equations. Wei and Tian [10] obtain the existence and uniqueness of weak L^p solution on the whole space. AcevesSanchez and Cesbron [11] studied the nonlocal Fokker-Planck problem on \mathbb{R}^d in fractional Sobolev space with the drift term is a direct proportion function. In [12], the weak solution is just considered in the Sobolev space H^1. Moreover, there is no proof of the well-posedness for equation with Laplace operator.

This paper is devoted to the study of the nonlocal Fokker-Planck equation on a bounded interval in \mathbb{R}^2. There are two main results: For $a \geq 0$, we obtain the existence and uniqueness in the Sobolev space H^1 with respect to spatial variables; for $a = 0$, we reach the conclusion in a fractional sobolev space $H^{\alpha/2}$ with respect to spatial variables. We can see that, This is more accurate.

2 Well-posedness of Fokker-Planck equation

In this section, we give some function spaces and obtain the existence and uniqueness of the weak solution of a fractional Fokker-Planck equation on a bounded domain in \mathbb{R}^2.

2.1 Function spaces

Denote $Q_T = D \times (0, T)$. Let $\partial_t Q_T$ and $\partial_p Q_T$ be the lateral boundary $D^c \times (0, T)$ and the parabolic boundary $\partial_t Q_T \cup \{(x, t); x \in D, t = 0\}$ of Q_T. Denote by \dot{W}, \dot{W} the set of all functions in W vanish on $\partial_p Q_T$ and $\partial_l Q_T$ respectively.

For the integer $\beta, r \in \{0, 1\}$, the set
\[
\{u; \nabla^\beta u, \partial^r_t u \in L^2(Q_T)\}
\]
edowed with the norm
\[
||u||_{W^{1,1}_2(Q_T)}^2 = \int \int_{Q_T} \sum_{\beta \in \{0, 1\}} |\nabla^\beta u|^2 + \sum_{r \in \{0, 1\}} |\partial^r_t u|^2 dxdt
\]
is denoted by $W^{1,1}_2(Q_T)$. Denote
\[
V(Q_T) := \{u \in \dot{W}^{1,1}_2(Q_T), \nabla u_t \in L^2(Q_T; \mathbb{R})\},
\]
and define the inner product as
\[
(u, v)_{V(Q_T)} = (u, v)_{W^{1,1}_2(Q_T)} + (\nabla u_t, \nabla v_t)_{L^2(Q_T)}.
\]
2.2 Main result

We consider the following nonlocal Fokker-Planck equation

\[
\begin{align*}
\frac{du}{dt} &= a\Delta u - (-\Delta)^{\alpha/2} u - \text{div}(b(x) \cdot u) \quad x \in D \subset \mathbb{R}^2, \ t \in (0, T), \\
\left. u \right|_{D^c} &= 0, \\
 u(x, 0) &= u_0(x),
\end{align*}
\]

(1)

where \(D = (0, 1)\) is an bounded domain in \(\mathbb{R}^2\), and \(D^c\) is the complement of \(D\). We will prove the existence and uniqueness of the solution to the equation (1).

Remark 1. We define nonlocal divergence operator \(\mathcal{D}\) on \(\beta\) as

\[
\mathcal{D}(\beta)(x) := \int_{\mathbb{R}^d} (\beta(x, z) + \beta(z, x)) \cdot \gamma(x, z) dz \quad \text{for } x \in D.
\]

For a function \(\phi(x)\), the adjoint operator \(\mathcal{D}^*\) corresponding to \(\mathcal{D}\) is the operator whose action on \(\phi\) is given by

\[
\mathcal{D}^*(\phi)(x, z) = -(\phi(z) - \phi(x)) \gamma(x, z) \quad \text{for } x, z \in D.
\]

Here we take \(\gamma(x, z) = \frac{1}{\sqrt{2}} \frac{1}{|z-x|^{\frac{d+2+\alpha}{2}}}\). we have

\[
\mathcal{D}\mathcal{D}^* = -(\Delta)^{\alpha/2}.
\]

Definition 1. Consider \(u_0\) in \(L^2(D)\). We say that \(u\) is a weak solution of equation (1), if for any \(\phi \in C^\infty_c([0, T] \times D),\)

\[
\int_{Q_T} u(\partial_t \phi + a\Delta \phi - (-\Delta)^{\alpha/2} \phi + b(x) \cdot \nabla \phi) dx dt + \int_{Q_T} u_0(x) \phi(0, x) dx = 0
\]

(2)

Theorem 1. Consider \(u_0 \in L^2(D),\)

1. If \(a = 0\) and \(\text{div} b(x) \geq 0\), there exists a unique weak solution and this solution satisfies

\[
f \in \mathcal{X} := \{ f : f \in L^2(Q_T), \frac{|f(t, x) - f(t, y)|}{|x - y|^{\frac{d+2}{2}}} \in L^2(Q_T \times \mathbb{R}^2) \}.
\]

2. For \(a \geq 0\), there exist a unique weak solution in \(\bar{W}^{1,1}_2(Q_T)\).

Remark 2. Note that this definition of \(\mathcal{X}\) is equivalent to saying that it is the set of functions which are in \(L^2([0, T])\) with respect to time and in \(H^{\alpha/2}(D)\) with respect to space.

Proof. 1. We consider the Hilbert space \(\mathcal{X}\) provided with the norm

\[
||u||_\mathcal{X}^2 = ||u||^2_{L^2(Q_T)} + ||D^*u||^2_{L^2(Q_T \times \mathbb{R}^2)}.
\]
Let us denote T the operator, given by

$$T u = \partial_t u + \text{div}(b(x) \cdot u).$$

Moreover, we define the Hilbert space Y as

$$Y = \{ f \in X : T u \in X' \}.$$

where X' is the dual of X. From the fact that the space $C_c^\infty(Q_T)$ is a subspace of X with a continuous injection, we define the pre-Hilbertian norm:

$$|\varphi|_{C_c^\infty(Q_T)} = ||\varphi||^2_X + \frac{1}{2}||\varphi(0, x)||^2_{L^2(D)}.$$

Now, we introduce the bilinear form $a : X \times C_c^\infty(Q_T) \rightarrow \mathbb{R}$ as

$$a(u, \varphi) = \int \int_{Q_T} -u \varphi_t + (D^* u, D^* \varphi)_{L^2(\mathbb{R})} - b(x) u \cdot \nabla \varphi dxdt.$$

(3)

and

$$L(\varphi) = -\int_D u_0(x) \varphi(0, x) dx.$$

Then find a solution u in X of (1) is equivalent to finding a solution u in X of $a(u, \varphi) = L(\varphi)$ for any $\varphi \in C_c^\infty(Q_T)$. First $a(u, \varphi)$ is continuous. Next we will obtain the coercivity of a.

$$a(\varphi, \varphi) = \int \int_{Q_T} -\varphi_t \varphi + (D^* \varphi, D^* \varphi)_{L^2(\mathbb{R})} - b(x) \varphi \cdot \nabla \varphi dxdt$$

$$= \frac{1}{2} \int_D \varphi^2(0, x) dx + \int \int_{Q_T} (D^* \varphi, D^* \varphi)_{L^2(\mathbb{R})} dxdt + \frac{1}{2} \int_D \text{div} b(x) \varphi^2 dxdt.$$

(4)

Then, there exists a positive constant δ such that $a(\varphi, \varphi) \geq \delta |\varphi|_{C_c^\infty(Q_T)}$. Thus the Lax-Milgram theorem implies the existence of u in X satisfying equation (1). That yields existence of a solution u in X of $a(u, \varphi) = L(\varphi)$ for any $\varphi \in C_c^\infty(Q_T)$. For $u \in X$, the linear bounded operator T maps $u \in T$ to $-(\Delta)^{\alpha/2} u \in X'$, hence the weak solution u is in Y.

Since the equation (1) is linear, to show the uniqueness, it is enough to show the unique solution with zero initial is the function $u \equiv 0$. Let u be a solution of this problem on Y. Through integration by parts we have

$$2(\mathcal{T} u, u)_{X' X'} = (\partial_t u + \text{div}(b(x) \cdot u), u)_{X' X'}$$

$$= \int_D u^2(T, x) dx + \int_{Q_T} \text{div}(b(x) u)^2 dxdt \geq 0.$$

On the other hand, since u satisfies equation (1), $\mathcal{T} u = -(\Delta)^{\alpha/2}$ in the weak sense, then

$$2(\mathcal{T} u, u)_{X' X'} = -(D^* u, D^* u) \leq 0.$$
That means \(u \equiv 0 \) a.e. on \(Q_T \). The solution is unique.

2. For the first part we set \(a > 0 \). To show the unique of the equation (1), it is enough to show the unique solution with zero initial is the function \(w \equiv 0 \).

\[
\begin{aligned}
 &\begin{cases}
 w_t = a\Delta w - (-\Delta)^{\alpha/2}w - \text{div}(b(x) \cdot w) \quad x \in D \subset \mathbb{R}^2, \\
 w|_{D^c} = 0, \\
 w(x,0) = 0.

 \end{cases}
\end{aligned}
\]

(5)

Set \(B[u,v,t] = \int_D a\nabla u \cdot \nabla v + (D^*u, D^*v)_{L^2(D \times \mathbb{R})} - b(x) \cdot u \cdot \nabla wdx \), then

\[
\frac{d}{dt} \left(\frac{1}{2}||w||^2_{L^2(D)} \right) + B[w,w,t] = (w,w') + B[w,w,t] = 0.
\]

This means

\[
a \int_D |\nabla w|^2 dx + (D^*w, D^*w)_{L^2(D \times \mathbb{R})}
= B[w,w,t] + \int_D b(x) \cdot w \cdot \nabla wdx
\leq B[w,w,t] + \varepsilon \int_D |\nabla w|^2 dx + \frac{C}{4\varepsilon} \int_D |w|^2 dx.
\]

(6)

From Poincaré inequality

\[||w||_{L^2(D)} \leq C_1 ||D^*w||_{L^2(D \times \mathbb{R})}. \]

Then choose \(\varepsilon \) small enough, then

\[\sigma||w||_{H^1} + \beta||w||_{H^{\alpha/2}} \leq B[w,w,t] + \gamma||w||^2_{L^2(D)}, \]

for positive constant \(\sigma, \beta, \) and \(\gamma \geq 0 \). We can see that

\[B[w,w,t] \geq -\gamma||w||^2_{L^2(D)}. \]

By Gronwall inequality, we obtain

\[w = 0. \]

The solution is unique.

Next, we will prove the existence of the problem. Without loss of generality, we just consider the case \(u_0 = 0 \).

\[
a(u,v) = \int_Q (u_t v_t + a\nabla u \nabla v_t + (D^*u, D^*v_t)_{L^2(D \times \mathbb{R})} + \text{div}(b(x) \cdot u)v_t) e^{-\theta t} dx dt, \theta > 0.
\]

Then

\[|a(u,v)| \leq ||u||_{W^{1,1}(Q_T)} ||v||_{V(Q_T)}. \]

set

\[a(v,v) := A + B + C + D \]
For \(v \in V(Q_T) \),

\[
B = a \int \int_{Q_T} \nabla v \cdot \nabla v e^{-\theta t} \, dx \, dt = a \int \int_{Q_T} \frac{1}{2} \frac{\partial}{\partial t} |\nabla v|^2 e^{-\theta t} \, dx \, dt
\]

\[
= a \int \int_{Q_T} \frac{1}{2} \frac{\partial}{\partial t}(|\nabla v|^2 e^{-\theta t}) \, dx \, dt + \frac{\theta}{2} \int \int_{Q_T} e^{-\theta t} |\nabla v|^2 \, dx \, dt
\]

\[
= \frac{a}{2} e^{-\theta t} \int_D |\nabla v|^2 |_{t=T} \, dx - \frac{a}{2} \int_D \gamma |\nabla v|^2 |_{t=0} \, dx + \frac{a\theta}{2} \int \int_{Q_T} e^{-\theta t} |\nabla v|^2 \, dx \, dt
\]

(7)

Since \(v \in V(Q_T) \), then \(\gamma |\nabla v|^2 |_{t=0} = 0 \), combine with Poincaré inequality

\[
B \geq \frac{\theta}{2} \int \int_{Q_T} e^{-\theta t} |\nabla v|^2 \, dx \, dt
\]

\[
\geq \frac{a\theta}{4} \int \int_{Q_T} e^{-\theta t} |\nabla v|^2 \, dx \, dt + \frac{a\theta}{4\mu} \int \int_{Q_T} e^{-\theta t} v^2 \, dx \, dt.
\]

(8)

Similarly,

\[
C \geq \frac{\theta}{2} \int \int_{Q_T} ||D^* v||_{L^2(R)}^2 \, dx \, dt.
\]

On the other hand, we have

\[
D = \int \int_{Q_T} \text{div}(b(x) \cdot v) v e^{-\theta t} \, dx \, dt
\]

\[
= \int \int_{Q_T} \text{div}b(x) \cdot v \cdot v e^{-\theta t} \, dx \, dt + \int \int_{Q_T} b(x) \cdot \nabla v \cdot v e^{-\theta t} \, dx \, dt
\]

\[
:= E + F,
\]

where

\[
|E| \leq \varepsilon \int \int_{Q_T} v_t^2 e^{-\theta t} \, dx \, dt + \frac{C_2}{\varepsilon} \int \int_{Q_T} v^2 e^{-\theta t} \, dx \, dt.
\]

\[
|F| \leq \varepsilon \int \int_{Q_T} v_t^2 e^{-\theta t} \, dx \, dt + \frac{C_3}{\varepsilon} \int \int_{Q_T} |\nabla v|^2 e^{-\theta t} \, dx \, dt.
\]

Then we have

\[
a(v, v) \geq (1 - 2\varepsilon) \int \int_{Q_T} v_t^2 e^{-\theta t} \, dx \, dt + \frac{\theta}{2} \int \int_{Q_T} ||D^* v||_{L^2(R)}^2 e^{-\theta t} \, dx \, dt
\]

\[
(\frac{a\theta}{4} - \frac{C_4}{\varepsilon}) \int \int_{Q_T} |\nabla v|^2 e^{-\theta t} \, dx \, dt + (\frac{a\theta}{4\mu} - \frac{C_5}{\varepsilon}) \int \int_{Q_T} v^2 e^{-\theta t} \, dx \, dt
\]

(10)

Choose \(\varepsilon \) small enough and \(\theta > 0 \) large enough, we have

\[
a(v, v) \geq \delta \|v\|_{W^{1,1}(Q_T)}^2
\]

where \(\delta \) is a positive constant. Then the Lax-Milgram theorem implies the existence of equation (1).

For \(a = 0 \), it is similar to the work that He and Duan did in [12].
3 Example

Langevin equation provide models of a diffusing particle. We consider the following system of stochastic differential equations

\[
\begin{aligned}
 dx_t &= v_t dt, \\
 m dv_t &= -\gamma v_t dt + \sigma dL^\alpha_t,
\end{aligned}
\]

(11)

where \(m \) is the mass of the particle, \(\gamma \) and \(\sigma \) are the dissipation and diffusion coefficient, respectively, and \(L^\alpha_t \) is a Lévy process with generator \((-\Delta)^{\alpha/2})\).

Then the corresponding Lévy Fokker-Planck equation is

\[
\begin{aligned}
 u_t + v \cdot \nabla_x u &= -\frac{\sigma}{m}(-\Delta)^{\alpha/2}u + \frac{\gamma}{m} \text{div}_v(v \cdot u) \\
 u|_{D^c} &= 0, \\
 u(x, 0) &= u_0(x)
\end{aligned}
\]

(12)

We can define the bilinear form as

\[
a_1(u, \varphi) = \int \int_{Q_T \times D} u t - vu \cdot \nabla_x \varphi + \frac{\sigma}{m} (D^\alpha_v u, D^\alpha_v \varphi)_{L^2(\mathbb{R})} + \frac{\gamma}{m} vu \cdot \nabla_v \varphi dxdtdv.
\]

and from the fact \(\text{div}_v(v) > 0 \), and

\[
\int \int_{Q_T \times D} v \varphi \cdot \nabla_x \varphi dxdtdv = 0,
\]

Then, there exists a positive constant \(\delta_1 \) such that \(a(\varphi, \varphi) \geq \delta_1 |\varphi|_{C^\infty_0(Q_T \times D)} \), we verified that the equation (12) has a unique weak solution in \(X_1 \) by Theorem 1, where,

\[
X_1 := \{ f : f \in L^2(Q_T \times D), \frac{|f(t, x, v) - f(t, x, w)|}{|v - w|^{2+\alpha}} \in L^2(Q_T \times D \times \mathbb{R}^2) \}.
\]

Clearly, the result of the example agree with the theoretical finding in this study.

References

[1] D. Applebaum, Lévy Processes and Stochastic Calculus, second ed., Cambridge University Press, Cambridge, 2009.

[2] M.M. Meerschaert, A. Sikorskii, Stochastic Models for Fractional Calculus, Walter de Gruyter GmbH and Co. KG, Berlin, Boston, 2012. https://doi.org/10.1515/9783110258165.

[3] J.D. Murray, Mathematical Biology I: An Introduction, third ed., Springer, 2017.
[4] Q. Du, M. Gunzburger, R.B. Lehoucq, K. Zhou, Analysis and approximation of nonlocal diffusion problems with volume constraints, SIAM Review. 54 (4) (2012)667-696. https://doi.org/10.1137/110833294.

[5] H. Risken and T. Frank, The Fokker-Planck Equation: Methods of Solution and Applications, Springer Series in Synergetics 18, Springer-Verlag, Berlin, Heidelberg, 1996.

[6] D. Schertzer, M. Larchevêque, J.Q Duan, V. Yanovsky, and S. Lovejoy, Fractional Fokker-Planck equation for nonlinear stochastic differential equations driven by non-Gaussian Lévy stable noises, Journal of Mathematical Physics. 42(2001)200–212. https://doi.org/10.1063/1.1318734.

[7] F. Bouchut, J. Dolbeault, On long time asymptotics of the Vlasov-Fokker-Planck equation and of the Vlasov-Poisson-Fokker-Planck system with Coulombic and Newtonian potentials, Differential and Integral Equations.8(3)(1995)487-514.

[8] N.E. Ghani, N. Masmoudi, Diffusion limit of the Vlasov-Poisson-Fokker-Planck system, Communications in Mathematical Sciences. 8(2)(2010)463-479.

[9] T. Goudon, J. Nieto, F. Poupaud, and J. Soler, Multidimensional high-field limit of the electrostatic Vlasov–Poisson–Fokker–Planck system, Journal of Differential Equations. 213 (2005) 418-442. https://doi.org/10.1016/j.jde.2004.09.008.

[10] J.L. Wei, R.R. Tian, Well-posedness for the fractional Fokker-Planck equations, Journal of Mathematical Physics 56, 031502(2015). https://doi.org/10.1063/1.4916286.

[11] P. AcevesSanchez, and L. Cesbron, Fractional diffusion limit for a fractional Vlasov-Fokker-Planck equation, Siam Journal on Mathematical Analysis, 51(1)(2019) 469-488. https://doi.org/10.1137/17M1152073.

[12] J.C. He, J.Q. Duan, H.J. Gao, A nonlocal Fokker Planck equation for non-Gaussian stochastic dynamical systems, Applied Mathematics Letters,49(2015)1-6. https://doi.org/10.1016/j.aml.2015.03.013.