Molecular detection of lactose fermenting enteroinvasive Escherichia coli from patients with diarrhea in Tehran-Iran

Mohammad Mohammadzadeh, Hossein Goudarzi*, Hossein Dabiri, Fatemeh Fallah

1Department of Medical Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

ABSTRACT

Background and Objectives: Enteroinvasive Escherichia coli (EIEC) is one the cause of acute diarrhea and bacillary dysentery in developing countries. Routine diagnostic microbiology tests are not capable to distinguish EIEC from other pathogenic or non-pathogenic E. coli. PCR, targeting ipaH, virF, virB and other virulence genes, is a diagnostic method for detecting E. coli pathotypes. Using PCR, we identified EIEC by PCR targeting ipaH and virF genes among E. coli isolates from patients with diarrhea at the selected hospitals in Tehran.

Materials and Methods: Isolates of E. coli were cultured from 140 specimens of patients with diarrhea using culture and IMViC test. DNA was extracted using commercial kits and and tested for uidA, ipaH and virF genes by PCR.

Results: Totally, 140 E. coli isolates were confirmed by IMViC tests and PCR targeting uidA gene. Of 140 E. coli isolates, 5 (3.6%) were positive for the ipaH gene, 4 (2.9%) contained virF gene and 4 (2.9%) were positive for both ipaH and virF genes.

Conclusion: These results indicated that EIEC is a considerable acute diarrheagenic pathogen in adults and infants. Moreover, virF gene is suggested for evaluation of invasiveness of EIEC.

Keywords: Enteroinvasive Escherichia coli, diarrhea, ipaH, virF

INTRODUCTION

Enteroinvasive Escherichia coli (EIEC) is one of the intestinal pathotypes of E. coli, that cause diarrhea, very similar to Shigellosis (1, 2). This organism is capable to invade and penetrate to the epithelium of the colon leading to dysentery that is an important cause of morbidity and mortality among children in developing countries (3, 4). Dysentery can be characterized with abdominal pain, fever and diarrhea, sometimes vomiting, and the stool contains blood and leukocyte. In addition EIEC might cause an invasive inflammatory colitis, small bowel syndrome and watery diarrhea that is not distinguishable from infections by other E. coli pathotypes (5).

Pathogenesis and especially the ability to invade the epithelium of the colon is dependant on a 220kb plasmid, called pInv, which carries the genes for a type III secretion system that is used as the virulence factor (6, 7).

There are no biochemical tests for distinguishing of EIEC from other E. coli pathotypes and routine laboratory tests can not discriminate E. coli pathotypes from other non-infectious E. coli and very few biochemical tests can distinguish EIEC from Shigella. Therefore, in many cases EIEC pathotype is misreported as Shigella (8). Regarding to remarkable EIEC acute diarrhea and poor isolation tests,
molecular methods like PCR are more applicable for detection of this pathotype. Since detection of EIEC leads to appropriate therapeutic strategies.

The PCR of virulence genes has been used for detection of EIEC and *Shigella*, which all are located in *plv* plasmid. The invasion associated pathogen antigen or *ipaH* is present both on the chromosome and the invasion plasmid of *Shigella* and EIEC strains (9, 10). The *virF* is a member of the AraC family gene, which is a transcription activator and their action is necessary for virulence regulon (11). The *uidA* gene is a housekeeping gene that encode beta D-glucuronidase in *E. coli*. This gene can be used for confirmation of *E. coli* isolates and differentiation of *E. coli* from non-*E. coli* isolates by PCR (12).

Considering the high prevalence of gastrointestinal disorders, including diarrhea in populations of developing countries, appropriate detection and treatment of diarrhea has high value of importance. However, there is a very limited study concerning *E. coli* pathotypes in these regions. The aim of this study was to study the EIEC distribution in patients with diarrhea referring to the selected governmental hospitals in Tehran during 2013 to 2014 using molecular techniques.

MATERIALS AND METHODS

Studied population and sampling. In this descriptive study a total of 140 patients with diarrhea were investigated by culture. Diarrhea was defined as three or more watery, loose or mucoidal stool in one day in the current study. Prior to sampling, the medical information was collected from each patient. The stool samples were collected from all age groups between April 2013 to September 2013 from selected hospitals of Tehran considering standard protocols for microbial analysis of stool (13). Diarrhea samples were evaluated for PMN, RBC and microscopic situation.

Bacterial culture and identification. Diarrhea samples initially were cultured on MaCconkey and Hekton enteric agar (Merck, Germany) and incubated for 24 hours at 37 °C. The lactose fermented colonies were tested by biochemical routine tests including citrate, Methyl Red, Voges Proskauer, indole production, and lysine decarboxylasion for identification of *E. coli*. All *E. coli* isolates were saved at -20 in Luria Bertani broth (Merck, Germany) with 20% glycerol for molecular procedures.

Nucleic acid extraction. DNA was extracted with a commercial genomic DNA extraction kit (Bioneer, South Korea) according to the manufacturer’s recommendations. Total DNA was extracted from 0.5 ml of Luria Bertani broth culture grown overnight for all the bacterial isolates. The concentration of DNA samples was measured as micrograms per milliliter based on A260 on A280 values by the nanodrop system (Thermo, USA).

PCR assays. All *E. coli* isolates were evaluated for the presence of the *uidA*, *ipaH* and *virF* genes by PCR assay using specific primers (Table 1). PCR amplification was performed in a 25μL reaction mixture containing 200 ng of DNA template (1μL), 12μL ready to use Mastermix (Fermentas, Germany), 10 μL of distilled water and 1μL of 20 pmols forward and reverses primers. DNA amplification was carried out with a thermal cycler (Eppendorf, Germany) with the following thermal cycling program: initial denaturation at 95°C for 5 min followed by 30 cycles of amplification (denaturation at 95°C for 30 sec, annealing for 30 sec at 67°C for *uidA*, 58°C for *virF* and 61°C for *ipaH* and extension at 72°C for 30sec) ending with a final extension at 72°C for 5 min. The *E. coli* K12 was used as positive control for *uidA* and *Shigella flexneri* ATCC 12122 was used as positive PCR control for *ipaH* and *virF*. PCR products were visualized after electrophoresis on 1.5% agarose gel stained with ethidium bromide and the product size estimated using a 50bp DNA ladder (Fermentas, Germany).

Data analysis. Chi squared and Fisher’s exact tests were used for analysis of categorical data and ANOVA was used for containing data. Analyses were done using Sigma Stat for Windows V2.03 (SPSS, Chicago, IL, USA). A P value less than 0.05 was accepted as statistically significant.

RESULTS

A total of 140 (100%) *E. coli* isolates were detected from 140 patients with diarrhea throughout three gen-
eral hospitals. The patients’ age range was between 0 to 66 years and mean age of the patients was 32 years. Among 140 patients, 31 (22.1%) had abdominal pain and 13 (12.1%) had a fever.

Among diarrhea samples, PMNs and RBCs were seen in 38 (27.1%) and 14 (10%) of samples, respectively (Table 2).

As we expected, all E. coli isolates were positive for uidA. Of 140 E. coli isolates, 5 (3.6%) were positive for ipaH, while virF was detected in 4 ipaH positive isolates. On the other hand, 4 (2.9%) isolates were positive for both of ipaH and virF genes.

All patients infected with ipaH+/virF+ E. coli isolates, had abdominal pain and fever while one patient infected with ipaH+/virF- showed no symptoms (Table 3).

Table 1. The sequences of primers and sizes of PCR products of the oligonucleotide primers to amplify specific, fragments of the uidA, ipaH and virF genes.

Primer	Sequence (5’–3’)	Product size bp	Reference
uidA	5-GCGTCTGTGACTGGCAGGTGGTGG-3	503 bp	(14)
	5-GTGGCCGCTTCGAAACCAATGCCT-3		
ipaH	5-CTCGGCACGTTTAATACTGCTGG-3	933 bp	(14)
	5-GTGGAGAGCTGAATTTTCTGTC-3		
virF	5-AGCTCAGGCAATGAAACTTTGAC-3	618 bp	(14)
	5-TGGGCTTTGATATTCCGATAAGTC-3		

Table 2. Microscopic situations of diarrheal samples and clinical symptoms in patients infected with EIEC and non-EIEC isolates.

		Sex	Age	WBC	RBC	Abdominal pain	Fever	
		Female	Male					
EIEC	n=5	2(40%)	3(60%)	44±22	23±18	28± 20	4(80%)	4(80%)
Non- EIEC		51(38%)	84(62%)	32±34	4±1	6±2	27(20%)	9(6.6%)
E. coli	n=135							
P value		0.581	0.544	0.021	0.003	0.009	0.001	

Table 3. Microscopic situations of diarrheal samples and clinical symptoms in patients infected with virF+ and virF- EIEC isolates.

	PMN	RBC	Abdominal pain	Fever			
			Yes	No	Yes	No	
ipaH+, virF+	n=4	22±16	28±18	4	0	4	0
ipaH+, virF-	n=1	4±1	2±1	0	1	0	1
P value	0.007	0.001	0.002	0.001			
DISCUSSION

EIEC strains are known as one of clinically important E. coli pathotypes that cause watery diarrhea to dysentery (2, 3). EIEC are closely related to E. coli from non-pathogenic, the EIEC is usually ignored and most of the time it is misreported as Shigella spp. Thereby molecular methods seem to be an ideal option for this purpose. Due ipaH wide distribution in EIEC chromosome and plasmid, often was used for detecting of this pathotype (4).

A few studies have been done on EIEC in Iran. In the present study, ipaH gene was used for targeting EIEC in E. coli isolates from diarrheal samples. Our results showed 3.6% of isolated E. coli form diarrheal samples were EIEC.

Recently Alizadeh et al (15) in a study in the south of Iran showed EIEC in 1.4% of total E. coli isolates from <5 years children with diarrhea by PCR on ipaH. Akbari et al (20) in a similar study was evaluated EIEC in under 5 years, infants with acute diarrhea in Tehran (16). They were reported EIEC in 2.7% of samples by amplifying ipaH gene.

Mostafa et al (17) studied diarrheagenic E. coli pathotypes in Libyan children with diarrhea in 2012 using ipaH gene but did not detected EIEC in any sample. Hein et al (2009) were found only 0.8% of isolates as EIEC <5 years Vietnamese children (18).

Hegde et al (19) detected EIEC from diarrhea samples among Indian children <5 years by amplifying iai gene. They indicate EIEC were present in 3.5% of total E. coli isolates.

ipaH gene was also used for detection of EIEC for the same purpose in Ecuador. EIEC were found in 3.2% of isolates and diarrhea samples among <5 years children in that country which is comparable to the results of our study.

Considering our result and data extracted from literature, the frequency of EIEC varies from 0 to 3.5% (15, 20). This prevalence shows that EIEC in the last years and in different geographic areas are generally considered to be one of the causes of acute diarrhea. Because of differences in time, place and the study conditions it seems to be reasonable for different reported results in reviewing studies.

In spite of majority of studies carried out on children under 5 years, we included patients without any age limitation (age 32±34). However, there were no significant differences between current study results with others. Our study indicates that EIEC is a considerable acute diarrhea producing pathogen in adults as well as infants.

The invasive EIEC illness is characterized by abdominal cramps, diarrhea, vomiting, fever, chills, and a generalized malaise (5). In the current study, we studied clinical symptoms of patients as well as microscopic parameters. In the 80% of EIEC isolates from diarrheal samples PMNs and RBCs were present and patients, which were infected with this isolates had fever and abdominal pain that is evidence of invasive intestinal infection.

The EIEC virulence genes are carried by pInv. Two pInv-encoded activators, the VirF and VirB, are involved in the transcriptional control of the invasion genes. The VirF activates transcription of the secondary regulator virB gene, which activates the operons that are associated with EIEC invasion (21). In addition to ipaH gene, the virF gene was used as a gene involved in the EIEC invasion in our study. Among 5 EIEC isolates 4 (2.8%) isolates were virF+ and one isolate was virF−. The virF negative EIEC was isolated from a sample which has any PMNs and RBCs and associated patient had no fever and abdominal pain.

Also the presence of RBCs in samples and abdominal pain and fever in patients was associated with EIEC infection. The present study showed that EIEC can be cause of acute diarrhea in all age groups. Also applying the molecular diagnostic methods for detecting EIEC and other diarrheagenic E. coli pathotypes and subsequent appropriate treatment can be helpful.

REFERENCES

1. Wei J. Complete genome sequence and comparative genomics of Shigella flexneri serotype 2a strain 2457T. Infect Immun 2003; 71: 2775–2786.
2. Pupo G M, Lan R, Reeves P R. Multiple independent origins of Shigella clones of Escherichia coli and convergent evolution of many of their characteristics. Proc Natl Acad Sci USA 2000; 97: 10567–10572.
3. Sansonetti P. Host–pathogen interactions: the seduction of molecular cross talk. Gut 50, Suppl 2002; 3:
MOHAMMAD MOHAMMADZADEH ET AL.

2–8.

4. Peng J, Yang J, Jin Q. The molecular evolutionary history of Shigella spp. and enteroinvasive Escherichia coli. Infect Genet Evol 2009; 9: 147-152.

5. Nataro J P, Kaper J B. Diarrheagenic Escherichia coli. Clin Microbiol Rev 1998; 11: 142–201.

6. Ogawa M, Handa Y, Ashida H, Suzuki M, and Sakakawa C. The versatility of Shigella effectors. Nature Rev Microbiol 2008; 6: 11–16.

7. Schroeder G N, Hilbi H. Molecular pathogenesis of Shigella spp.: controlling host cell signaling, invasion, and death by type III secretion. Clin Microbio. Rev 2008; 21: 134–156.

8. Lan R, Alles M C, Donohoe K, Martinez M B, and Reeves P R. Molecular evolutionary relationship of enteroinvasive Escherichia coli and Shigella spp. Infect Immun 2004; 72: 5080–5088.

9. Venkatesan MM, Buysse JM, Kopecko DJ. Use of Shigella flexneri ipaC and ipaH gene sequences for the general identification of Shigella spp. and enteroinvasive Escherichia coli. J Clin Microbiol 1989; 27: 2687–2691.

10. Horakova K, Meljnkova H, Meljnek P. Specific detection of Escherichia coli isolated from water samples using polymerase chain reaction targeting 4 genes: cytochrome bd complex, lactose permease, beta-D-glucuronidase, and beta galactosidase. J Appl Microbiol 2004; 105: 970-976.

11. Adler B, Sasakawa C, Tobe T, Makino S, Komatsu K, Yoshikawa M. A dual transcriptional activation system for the 230-kb plasmid genes coding for virulence-associated antigens of Shigella flexneri. Mol Microbiol 1989; 3: 627–635.

12. Asim K B, Joseph L D, Haff I A, Ronald M A. Detection of Escherichia coli and Shigella spp. in Water by Using the Polymerase Chain Reaction and Gene Probes for uid. Appl Environ Microbiol 1991: 1013-1017.

13. Van Goor T, Weijts R, Lommerse E, Mank TG. The triplefaeces test: an effective tool for the detection of intestinal parasites in the routine clinical practice. Eur J Clin Microbiol Infect Dis 2003; 22: 284-28.

14. Oscar G, Gomez D, Octavio A, Delfina U, Jing B, Julio G, et al. Detection of Escherichia coli Enteropathogens by Multiplex Polymerase Chain Reaction from Children’s Diarrheal Stools in Two Caribbean–Colombian Cities. Foodborne Pathog Dis 2010; 7:199-206.

15. Alizade H, Ghanbarpour A, Aflatoonian MR. Molecular study on diarrheagenic Escherichia coli pathotypes isolated from under 5 years old children in southeast of Iran. Asian Pac J Trop Dis 2014; 4: S813–S817.

16. Akbari A, Pourmand M R, Sharifi Yazdi M K, Hossein M, Soltan Dallal M M. Isolation of enteroinvasive Escherichia coli (EIEC) from diarrhea in children by polymerase chain reaction (PCR) technique. The Journal of Allied Medical Sciences School, Medical Sciences/Tehran University 2009; 3 (3-4): 25-30.

17. Mostafa MA, Zienat KM, John DK, Salwa FA, Tarek AM, Khalifa SG. Molecular Characterization of Diarrheagenic Escherichia coli from Libya. Am J Trop Med Hy 2012;86: 866–871.

18. Hien BT, Scheutz F, Cam PD, Serichantalergs O, Huong TT, Thu TM, et al. Diarrheagenic Escherichia coli and Shigella strains isolated from children in a hospital case-control Study in Hanoi, Vietnam. J Clin Microbiol 2008; 46: 996–1004.

19. Hegde A, Ballal M, Sheny S. Detection of diarrheagenic Escherichia coli by multiplex PCR. Indian J Med Microbiol 2012; 30: 279-284.

20. Viera N, Bates S J, Solberg O D, Ponce K, Howsmon R, Cevallos W, et al. Diarrheagenic Escherichia coli and Shigella strains isolated from children in a remote region of Northern Coastal Ecuador. Am J Trop Med Hyg 2007; 76:528–533.

21. Falconi M, Colonna B, Proseda G, Micheli G, Gualerzi CO. Thermoregulation of Shigella and Escherichia coli EIEC pathogenicity. A temperature-dependent structural transition of DNA modulates accessibility of virF promoter to transcriptional repressor H-NS. The EMBO Journal 1998; 17: 7033–7043.