Multi-parameter Dynamical Dark Energy Equation of State and Present Cosmological Tensions

Ravi Kumar Sharma,¹ Kanhaiya Lal Pandey,¹ and Subinoy Das¹

¹Indian Institute of Astrophysics, Bengaluru, Karnataka 560034, India

(Dated: February 8, 2022)

We study the consequences of an enlarged four parameter dynamical dark energy (4pDE) equation of state using the latest Planck, BAO, and Pantheon supernovae data. This parameterization of the dark energy equation of state incorporates a generic non-linear monotonic evolution of the dark energy equation of state, where the four parameters are the early and the present value of the equation of state, the transition scale factor and the sharpness of the transition. In this study we use SH0ES M_B prior and the KIDS/Viking S_8 prior while keeping the neutrino mass Σm_ν as a free parameter. We show that in this case the dynamical dark energy 4pDE model can bring down the Hubble tension to $\sim 2.5\sigma$ level and the S_8 tension to $\sim 1.5\sigma$ level when tested against Planck, BAO and Pantheon supernovae data together. We also compare our results with the well-explored CPL model. We find that the present data can not constrain all the four dark energy equations of state parameters ensuring the fact that the present observations do not demand a complex non-linear multi-parameter evolution of the time-dependent DE equation of state. We also report that with SH0ES M_B and KIDS/Viking S_8 prior 4pDE and CPL model favours a non-zero value for the neutrino mass parameter at the most at $\sim 1\sigma$ level ($\Sigma m_\nu \sim 0.2 \pm 0.1$ eV).

I. INTRODUCTION

The observations of type Ia supernovae show that the expansion of the Universe is accelerating. The acceleration requires the Universe to be dominated by an exotic fluid with negative pressure. The simplest explanation for dark energy is the cosmological constant or vacuum energy that explains the acceleration of the Universe. Though the cosmological constant is preferred from cosmological observations yet its theoretical understanding has been questionable [1]. The other alternatives of the cosmological constant that can act as dark energy are scalar fields such as quintessence field, modified gravity, phantom dark energy, etc [2]. There has not been any observational evidence of such alternatives but it has not been ruled out either. One such model is dynamical dark energy driven by a slowly rolling scalar field. If this is true, then it opens up many new observational windows which may shed light on the fundamental nature of this mysterious component of the Universe.

The other reason to explore beyond the ΛCDM model is the recently emerging and persistent anomalies in present high precision cosmological data. The mismatch between values of Hubble parameter inferred from CMB data and direct measurements is one of them. The SH0ES (Supernovae H0 for equation of state) team has measured the value of Hubble parameter $H_0 = 73.2 \pm 1.3$km/s/Mpc using the distance ladder method [3, 4]. However The Planck 2018 measurement of CMB (Cosmic Microwave Background) has measured the value of Hubble parameter $H_0 = 67.36 \pm 0.54$km/s/Mpc using ΛCDM model [5]. So there is a 4.2σ discrepancy between both measurements. This mismatch gained significance with various improved precision measurements see [6][10].

Similarly there is another tension related to the measured value of $S_8 \equiv \sigma_8 (\Omega_m/0.3)^{0.5}$, where σ_8 is the root mean square of matter fluctuations on a 8 h$^{-1}$Mpc scale, and Ω_m is the total matter abundance. The latest prediction from Planck CMB data within the ΛCDM framework is $S_8 = 0.832 \pm 0.013$ [5].

Originally, observations of galaxies through weak lensing by the CFHTLenS collaboration have indicated that the ΛCDM model predicts a S_8 value that is larger than the direct measurement at the 2σ level [11][12]. This tension has since then been further established within the KiDS/Viking data [13][14], but is milder within the DES data [15]. However, a re-analysis of the DES data, combined with KiDS/Viking, leads to a determination of S_8 that is discrepant with Planck at the 3σ level, $S_8 = 0.755^{+0.019}_{-0.021}$ [17]. Recently, the combination of KiDS/Viking and SDSS data has established $S_8 = 0.766^{+0.02}_{-0.014}$ [16]. However, a study in [17] shows fainter S_8 tension when redshift-space distortions (RSD) data is included.

There has been a wide range of solutions proposed to solve these cosmological tensions which requires new physics/modifications in the early Universe i.e. pre-recombination era as well as in the late Universe. Not a single model yet fully solves both H_0 and S_8 tensions simultaneously. The class of solutions which invokes modifications of the late-time Universe dynamics in dark energy generally leaves r_s unaffected by construction and has been studied extensively in recent times. The higher value of H_0 is then accommodated by a smaller value of Ω_{DE} or Ω_m redshift below z_s such that $d_A(z_s)$ stays unaffected as well. This can be done for instance by invoking variations in the dark-energy equation of state [18][27] or decaying dark matter [28][29] or non-thermal
The study of the dynamical behavior of dark energy is often done in terms of its equation of state \(w(z) = \frac{p(z)}{\rho(z)} \) that can vary as a function of redshift. Equation of state \(w = -1 \) corresponds to the cosmological constant. There are some recent studies where it has been shown that solving of \(H_0 \) and \(S_8 \) tensions require \(w(z) < -1 \) at some \(z > 0 \) and time-varying dark energy equation of state which cross the phantom barrier \[51\]. Also it has been shown that a large class of quintessence \((w > -1)\) models including the ones which arise from string swampland conjecture lower the \(H_0 \) parameter and thereby makes \(H_0 \) tension worse \[52\]. From observations, it’s required that equations of state at present time should be consistent with value \(w \approx -1 \), however, constraints on the equation of state at higher redshifts are weaker. There have already been several efforts to parameterize the equation of state of dark energy. Some recent works in this direction can be found in \[53–57\].

We explore in detail the possibility of dynamical DE with a more general model-independent approach where we go beyond the CPL (Chevalier-Polarski and Linder) parameterization \[52\] \[53\] where the dark energy equation of state \(w \) evolves linearly with expansion factor \(a \). To be specific, in this paper, we study a generic non-linearly evolving equation of state. Some of the recent works on dynamical dark energy scenario such as \[56\] suggest that CPL parameterization is not sensitive at low redshifts and thus provide motivation for going beyond CPL like parameterization. It was recently pointed out that if late-time cosmology is modified through time-varying \(w \), one should use the direct \(M_0 \) data instead of \(H_0 \) prior \[54\] \[56\] \[57\]. To our knowledge, this work is the first work where we present a detailed analysis of a four parameter dynamical DE model. To do so, we use a generic four parameter model of dynamical dark energy equation of state \(w_{de}(a) \) originally proposed in \[58\] and test it against the recent Planck-2018, Pantheon and BAO datasets. In comparison to CPL parameterization, this parameterization has two extra parameters to incorporate the possible non-linear evolution of the equation of state with time. The main interest of this parameterization is that it captures possible transition in the equation of state of the dynamical dark energy during the course of its evolution, which many quintessence/K-essence and phantom dark energy models exhibit \[58\].

In this study, we find that all four parameters of the equation of state can not be constrained with current observational data. Especially, Planck 2018 data alone has poor constraining ability on dark energy parameters. Once we include the BAO and Pantheon data, the constraints improve and the Hubble tension comes down to 2.5\(\sigma \) level from SHOES measurement and \(S_8 \) tension comes down to 1.5\(\sigma \) from KIDS/Viking measurement.

An important aspect of this paper is to get neutrino mass constraints in the 4pDE model. Standard massive neutrinos play an important role in the evolution of the Universe, they leave a non-negligible impact on the cosmic microwave background (CMB) and large-scale structure (LSS) at different epochs of the evolution of the Universe. This impact is used to get a bound on neutrino mass. Some of the effects of standard model neutrinos and dark energy are the same during specific cosmic time. Therefore nature of dark energy has an important role in constraining neutrino mass. Some of the relevant studies we find in the literature are \[59\] \[60\] \[61\] \[62\] \[20\] \[63\] \[64\]. In our analysis, we detect a non-zero neutrino mass at 1\(\sigma \) level \((\Sigma m_\nu \sim 0.2 \pm 0.1 \text{ eV})\) but consistent with zero at 2\(\sigma \) level unlike a previous study \[20\] where the analysis was done with earlier (2015) Planck data and the neutrino mass \(\Sigma m_\nu \) was found to be non-zero even at \(\gtrsim 2\sigma \).

The plan of the paper is as follows. A brief description of the four parameter dynamical dark energy equation of state, \(w_{de}(a) \), is given in section II. In Section III and IV we provide a detailed description of our analysis and results. Then Section V summarizes the paper and future outlook.

II. FOUR-PARAMETER MODEL FOR DARK ENERGY

To investigate the effect of a non-linearly evolving dark energy equation of state, we use a model independent, 4 parameter dynamical dark energy equation of state \(w_{de}(a) \), suggested by \[58\],

\[
w_{de}(a) = w_0 + (w_m - w_0) \times \Gamma(a)
\]

where \(w_0 \) and \(w_m \) are 2 parameters denoting the initial and final values of the dark energy equation of state, ie., \(w_0 = w_{de}(a = 1) \) and \(w_m = w_{de}(a \ll 1) \). The factor \(\Gamma(a) \) contains the other 2 parameters describing the course of the evolution of \(w_{de}(a) \), and is given as,

\[
\Gamma(a) = \frac{1 - \exp \left(-\frac{(a - 1)}{\Delta de} \right)}{1 - \exp \left(\frac{1}{\Delta de} \right)} \times \frac{1 + \exp \left(\frac{a_t}{\Delta de} \right)}{1 + \exp \left(-\frac{(a - a_t)}{\Delta de} \right)}
\]

where \(a_t \) is the scale factor at which the transition from \(w_m \) to \(w_0 \) takes place and the \(\Delta de \) is the steepness of the transition (see Figure A1 and A4 for more details on the nature of the parameters \(a_t \) and \(\Delta de \)).

Our parameterization is generic to a class of non-interacting scalar field dynamical dark energy models only, ie., we assume \(c_{de} = 1 \). Also this parameterization can only mimic monotonically evolving dynamical dark energy models.

We will consider a homogeneous and isotropic flat background for the universe described by a FLRW metric. If we neglect the radiation density today, Friedmann equation will have the following form,

\[
\frac{H^2}{H_0^2} = \Omega_M/a^3 + \Omega_{DE} \exp \left(3 \times \int_1^a \frac{1 + w_{de}(a')}{a'} \, da' \right)
\]

where \(\Omega_M \) and \(\Omega_{DE} \) is matter density and dark energy density parameters respectively and for a flat universe \(\Omega_{DE} + \Omega_M = 1 \).
III. NUMERICAL ANALYSIS

A. Data Sets

- Planck 2018 measurements of the low-ℓ CMB TT, EE, and high-ℓ TT, TE, EE power spectra, together with the gravitational lensing potential reconstruction 65.
- The BAO measurements from 6dFGS at $z = 0.106$ 66, SDSS DR7 at $z = 0.15$ 67, BOSS DR12 at $z = 0.38,0.51$ and 0.61 68, and the joint constraints from eBOSS DR14 Ly-α autocorrelation at $z = 2.34$ 69 and cross-correlation at $z = 2.35$ 70.
- The measurements of the growth function $f\sigma_8(z)$ (FS) from the CMASS and LOWZ galaxy samples of BOSS DR12 at $z = 0.38, 0.51$, and 0.61 68.
- The Pantheon SNIa catalogue, spanning redshifts 0.01 < z < 2.3 71.
- The SH0ES result, modeled with a Gaussian likelihood centered on $H_0 = 73.2 \pm 1.3$ km/s/Mpc 4; however, choosing a different value that combines various direct measurements would not affect the result, given their small differences.
- The KIDS1000+BOSS+2dfLenS weak lensing data, compressed as a split-normal likelihood on the parameter $S_8 = 0.760^{+0.023}_{-0.014}$ 10.
- The Gaussian prior on $M_B = -19.244 \pm 0.037$ mag 56, corresponding to the SN measurements from SH0ES.

B. Methodology

Our baseline cosmology consists in the following combination of the six ΛCDM parameters ($\omega_b, \omega_{cdm}, 100 \times \theta_s, n_s, \ln(10^{10} A_s), \tau_{reio}$), plus four dark energy equation of state parameters as discussed in Sec 11, namely w_0, w_m, a_t, Δ_{de} and neutrino mass Σm_ν. We dub this model as 4pDE. We do MCMC analysis of 4pDE model against various combinations of the CMB, BAO and supernovae data sets (details of which is given in Sec III A) with the Metropolis-Hasting algorithm as implemented in the MontePython-v3 72 code interfaced with our modified version of CLASS. All reported χ^2_{min} are obtained with the python package iMINUIT 73. We make use of a Choleski decomposition to better handle the large number of nuisance parameters 74 and consider chains to be converged with the Gelman-Rubin convergence criterion $R - 1 < 0.05$ 75.

TABLE I. Comparison of $\Delta\chi^2_{min}$ and ΔAIC for 4pDE and CPL models.

Data	Planck+Ext+MB	Planck+Ext+MB+S8		
Model	$\Delta\chi^2_{min}$	ΔAIC	$\Delta\chi^2_{min}$	ΔAIC
ΛCDM	0	0	0	0
4pDE	-8.46	-0.46	-5.61	+2.39
ν4pDE	-6.53	+3.47	-5.5	+4.5
νCPL	-7.23	-1.23	-2.76	+3.24

IV. RESULTS

We ran two sets of models, the first one is the “4pDE Model” and the second is “ΛCDM Model”. Each model is constrained with two sets of data combinations. The first data set is “Planck TT, EE, TE+Planck Lensing”, the second data set is “Planck TT, EE, TE+Planck Lensing+BAO+Pantheon”. Additionally, we also confront the CPL model for the dark energy equation of state with “Planck+BAO+Pantheon” for comparison with the 4pDE model. To see the impact on cosmological tensions, we perform our analysis with and without M_B and S_8 priors.

The results for the 4pDE model with combined data sets for various cases are reported in Table III. 2D posterior distributions are shown in Figure 1. We find that w_0 is well constrained for each data set and is consistent with the cosmological constant. However, the other three DE parameters are less constrained or unconstrained. Especially in the case of parameter $\log_{10}(a_i)$ we don’t find the lower bound. However there is a upper bound on $\log_{10}(a_i)$ in Planck+Ext+S8 case. We also find 1σ bounds on parameters w_m and $\log_{10}(\Delta_{de})$. The posteriors of equation of state parameters are shown in Figure 3. We also get a peak in the posterior of the neutrino mass (see Figure 1)- though in this case, the model still has the H_0 tension at $\sim 3.2\sigma$ and S_8 tension at $\sim 2.5\sigma$. The overall χ^2_{min} is -1.7 compared to ΛCDM model. The χ^2_{min} values of 4pDE model corresponding to different data sets are reported in Table III.

When using the M_B prior, there is no major impact on the equation of state parameters except the values of w_m shift slightly more negative. In this case, the model has H_0 tension at $\sim 2.6\sigma$ with SH0ES results. The overall χ^2_{min} shift is -6.5 compared to ΛCDM model.

But when we use S_8 prior, (see Figure 3 right panel) the impact on the equation of state is more. Especially peak of posterior density of w_0 has been shifted towards more negative value and with better lower and upper bounds. The posterior distribution of Δ_{de} also shifted to a more negative value and is better constrained. There is a slight change in the value of w_0 which also moved towards a more negative value. There is a positive correlation between the value of w_m and H_0. We also find that value of σ_8 has been reduced significantly. This is also because of the positive correlation between w_m and σ_8. But as Ω_M is poorly constrained, the overall S_8 also has larger error bars. If we compare χ^2_{min} values, we

\footnotetext[1]{https://iminuit.readthedocs.io/}
TABLE II. Best-fit χ^2 per experiment (and total) in the 4pDE model.

Experiment	4pDE					
Planck high-ℓ TT, TE, EE	$\chi^2=2343.80$	$\Delta\chi^2_{min}=2347.00$				
Planck low-ℓ EE	$\chi^2=395.65$	$\Delta\chi^2_{min}=396.05$				
Planck low-ℓ TT	$\chi^2=22.53$	$\Delta\chi^2_{min}=22.57$				
Planck lensing	$\chi^2=9.31$	$\Delta\chi^2_{min}=8.67$				
Pantheon	$\chi^2=0$	$\Delta\chi^2_{min}=0$				
BAO FS BOSS DR12	$\chi^2=0$	$\Delta\chi^2_{min}=0$				
BAO BOSS low-z	$\chi^2=0$	$\Delta\chi^2_{min}=0$				
SS	$\chi^2=0.013$	$\Delta\chi^2_{min}=0.28$				
absolute M	$\chi^2=0$	$\Delta\chi^2_{min}=0$				
SHOES	$\chi^2=0.49$	$\Delta\chi^2_{min}=0$				
Total	$\chi^2=2771.31$	$\Delta\chi^2_{min}=2771.88$	$\chi^2=3810.13$	$\Delta\chi^2_{min}=3815.39$	$\chi^2=3830.39$	$\Delta\chi^2_{min}=3831.50$

TABLE III. The mean (best-fit) $\pm 1\sigma$ error of the cosmological parameters reconstructed from the lensing-marginalized Planck+BAO+SN1a data for 4pDE model for various cases. We also report the corresponding $\Delta\chi^2_{min}$ values.

Model	CPL			
Parameter	Planck+Ext	Planck+Ext+S$_H$	Planck+Ext+M$_B$	Planck+Ext+S$_H$+M$_B$
ω_{cdm}	$0.1200(1.013)$	$0.1192(0.997)$	$0.1185(0.995)$	$0.1188(0.997)$
Λ	0.000292	0.000293	0.000293	0.000293
Ω_m	$0.9630(0.964)$	$0.9650(0.965)$	$0.9665(0.967)$	$0.9690(0.968)$
Ω_m	0.0066	0.0067	0.0067	0.0067
Σm_n	0.1198	0.1200	0.1201	0.1201
Δm_n	0.0117	0.0118	0.0118	0.0118
H_0	$68.21(68.53)$	$68.88(69.21)$	$69.22(69.41)$	$69.44(69.87)$
χ^2_{min}	3809.86	3818.34	3824.43	3833.08
$\Delta\chi^2_{min}$	-1.67	-0.32	-7.23	-2.76

TABLE IV. The mean (best-fit) $\pm 1\sigma$ error of the cosmological parameters reconstructed from the lensing-marginalized Planck+BAO+SN1a data for CPL model for various cases. We also report the corresponding $\Delta\chi^2_{min}$ values.

Model	CPL			
Parameter	Planck+Ext	Planck+Ext+S$_H$	Planck+Ext+M$_B$	Planck+Ext+S$_H$+M$_B$
ω_{cdm}	$0.1200(1.013)$	$0.1192(0.997)$	$0.1185(0.995)$	$0.1188(0.997)$
Λ	0.000292	0.000293	0.000293	0.000293
Ω_m	$0.9630(0.964)$	$0.9650(0.965)$	$0.9665(0.967)$	$0.9690(0.968)$
Ω_m	0.0066	0.0067	0.0067	0.0067
Σm_n	0.1198	0.1200	0.1201	0.1201
Δm_n	0.0117	0.0118	0.0118	0.0118
H_0	$68.21(68.53)$	$68.88(69.21)$	$69.22(69.41)$	$69.44(69.87)$
χ^2_{min}	3809.86	3818.34	3824.43	3833.08
$\Delta\chi^2_{min}$	-1.67	-0.32	-7.23	-2.76

have got a significant improvement of $\Delta\chi^2_{min} = -8.39$ over ΛCDM model.
value, but no significant decrease in σ_8 but as Ω_M is comparatively low, we find there is a decrease in overall S_8 value. More importantly, we find that there is a negative correlation between parameter S_8 and H_0. This model brings down the S_8 tension below $\leq 1.5\sigma$ and H_0 tension from $\leq 2.5\sigma$. However the Overall χ^2_{min} is improved with only -5.45 in comparison to ΛCDM Model.

When using the prior on H_0 instead of M_B, the main impact on results is on the parameters w_0 and H_0 (both have negative correlation with each other). The parameter H_0 attains a slightly higher value compared to M_B prior case and as a result w_0 shifts towards a lower value. The results are compared in Figure 4. The goodness of fit also improved over ΛCDM model by $\Delta \chi^2_{\text{min}} = -4.3$ that was -5.5 in case of M_B prior.

A. Comparison with CPL Model

We also run the CPL model with same data combinations. Results of this model reported in Table IV. 2D posterior distributions are shown in Figure 2. Both the parameters w_0 and w_a are well constrained for CPL model. We find the posterior distribution of main cosmological parameters$(\{\omega_b, \omega_{\text{cdm}}, 100 \times \theta_s, n_s, \ln(10^{10} A_s), \tau_{\text{reio}}\})$ of this model are matched with 4pDE model. However the model parameters $(w_0$ and w_a) are obviously different. The parameter w_0 is constrained more in 4pDE model compare to CPL model. When we don’t use any prior, we do not notice a significant change in H_0 and S_8 compared to ΛCDM model. But when we use M_b prior, the level of H_0 tension is reduced, and is within 2.5σ level with SH0ES measurement. Similarly, when we use S_8 prior, we notice a slight reduction in the S_8 parameter also. However the overall $\Delta \chi^2_{\text{min}} = -2.78$.

B. Quantitative model comparison using Akaike Information Criterion (AIC)

Akaike Information Criterion (AIC) is one of the popular methods of estimating the relative quality of proposed models for a given data. AIC is based on using a trade-off between the goodness of fit of the model and the simplicity. AIC uses a model’s log-likelihood as a measure of fit and the number of parameters in the model as the complexity of the model. If N_{Model} is the total number of parameters in a model the AIC score for that model is
FIG. 2. Reconstructed 2D posterior distributions of $(H_0, S_8, \Omega_m, \Sigma m_\nu, M_B, w_0, w_a)$ is shown for CPL model with Planck+BAO/FS+SN1a data. We also have added 68% (dark brown) and 95% (light brown) bands corresponding to a Gaussian H_0 prior from SH0ES and 68% (dark gray) and 95% (light gray) bands corresponding to S_8 prior from KIDS1000+BOSS+2dfLenS.

FIG. 3. Reconstructed 2D posterior distributions of equation of state parameters $(w_0, w_m, \log_{10}(a_t), \log_{10}(\Delta_{de}))$ is shown for 4pde model with Planck+BAO/FS+Pantheon data with a combination of priors (see legends).
The 4pDE model can bring down the Hubble tension to \(\sim 2.5\sigma \) level and the \(S_8 \) tension to \(\sim 1.5\sigma \) level when tested against Planck, BAO and Pantheon supernovae data together. More importantly, we find that there is a negative correlation between parameter \(S_8 \) and \(H_0 \) which is very interesting. However, both the 4pDE model and CPL model improves \(\Delta \chi^2 \) for the Planck+Ext data set and the recent measurements of \(H_0 \) and \(S_8 \) in comparison to \(\Lambda \text{CDM} \), this lowering of \(\chi^2 \) is achieved at the expense of adding extra parameters. So if we follow \(\Delta \text{AIC} \) criteria like recently done by [7], the level of success of these models degrades as none of the models has significantly improved \(\Delta \text{AIC} \) value over \(\Lambda \text{CDM} \) model.

We find that with Planck data alone, the equation of state parameters are poorly constrained. This may be because of the fact that some of the CMB constraints come from low multipole data of CMB power spectra and Planck data has large error bars in the low l region. Because of this, the equation of state parameter today also has large error bars that reflect in other parameters like posteriors of \(H_0 \) and \(\sigma_8 \) which attain high value and have larger error bars too (see [A1]). It is interesting to note that when we use \(H_0 \) prior, both the \(H_0 \) and \(S_8 \) tensions nearly disappear. Once we include Pantheon+BAO data into analysis, the model falls again in the category of these tensions, although the level of \(H_0 \) and \(S_8 \) tensions decreases, and the equation of state parameters have better constraints. This is in agreement with the results of [79], where they show in their analysis that the low-\(z \) data prefers models with behavior close to a cosmological constant, whereas CMB alone is more accommodating to dark energy models having both phantom and non-phantom behavior.

We also analyzed the CPL parameterization of the dark energy equation of state for similar settings as 4pDE to make a comparison between the two. We find that the best-fit values of base six parameters \(\{\omega_b, \omega_{c\text{cdm}}, 100 \times \theta_s, n_s, \ln(10^{10}A_s), \tau_{\text{reio}}\} \) are same for the CPL and the 4pDE case and over all chi square has not improved much with 4pDE.

We also see that with added \(S_8 \) prior 4pDE favours a non-zero value for the neutrino mass parameter \(\Sigma m_\nu \sim 0.2 \pm 0.1 \text{ eV} \), which is in agreement with earlier work using the CPL parameterization [80] however our analysis suggests that \(\Sigma m_\nu \) is consistent with zero at \(\sim 2\sigma \) unlike in [80] where with 2015 Planck data, the neutrino mass \(\Sigma m_\nu \) was found to be non-zero even at \(\gtrsim 2\sigma \).

ACKNOWLEDGEMENTS

We thank Prof. Vivian Poulin for reading the draft and for his valuable inputs. We thank Prof. Pier Stefano Corasaniti for his valuable inputs. SD and KP acknowledge SERB DST Government of India grant CRG/2019/006147 for supporting the project. We acknowledge HPC NOVA, IIA Bangalore where numerical simulations were performed.
[1] V. Sahni, The Cosmological constant problem and quintessence, Class. Quant. Grav. 19, 3435 (2002) [arXiv:astro-ph/0202076]
[2] S. Nojiri, S. D. Odintsov, and V. K. Oikonomou, Modified Gravity Theories on a Nutshell: Inflation, Bounce and Late-time Evolution, Phys. Rept. 692, 1 (2017) [arXiv:1705.11098 [gr-qc]]
[3] W. Y. L. M. a. D. S. A. G. Riess, S. Casertano, Large Magellanic Cloud Cepheid Standards Provide a 1% Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics Beyond LambdaCDM, ApJ, 10.3847/1538-4357/ab1422 (2019), arXiv:1903.07603 [astro-ph.CO]
[4] A. G. Riess, S. Casertano, W. Yuan, J. B. Bowers, L. Macri, J. C. Zinn, and D. Scolnic, Cosmic Distances Calibrated to 1% Precision with Gaia EDR3 Parallaxes and Hubble Space Telescope Photometry of 75 Milky Way Cepheids Confirm Tension with ΛCDM, Astrophys. J. Lett. 908, L6 (2021) [arXiv:2012.08534 [astro-ph.CO]]
[5] N. Aghanim et al. (Planck), (2018), arXiv:1807.06209
[6] W. L. Freedman, Cosmology at a Crossroads, Nature 502, 633 (2013), arXiv:1303.1808 [astro-ph.CO]
[7] N. Schöneberg, G. Franco Abellán, A. Pérez Sánchez, S. J. Witte, V. Poulin, and J. Lesgourgues, The H0 Olympics: A fair ranking of proposed models, (2021), arXiv:2107.10291 [astro-ph.CO]
[8] E. Di Valentino, A combined analysis of the H0 late time direct measurements and the impact on the Dark Energy sector, Mon. Not. Roy. Astron. Soc. 502, 2065 (2021) [arXiv:2011.00246 [astro-ph.CO]]
[9] E. Di Valentino, O. Mena, S. Pan, L. Visinelli, W. Yang, A. Melchiorri, D. F. Mota, A. G. Riess, and J. Silk, In the realm of the Hubble tension—a review of solutions, Class. Quant. Grav. 38, 153001 (2021) [arXiv:2103.01183 [astro-ph.CO]]
[10] E. Di Valentino et al., Snowmass2021 - Letter of interest cosmology intertwined II: The hubble constant tension, Astropart. Phys. 131, 102605 (2021) [arXiv:2008.11284 [astro-ph.CO]]
[11] C. Heymans et al., CFHTLenS tomographic weak lensing cosmological parameter constraints: Mitigating the impact of intrinsic galaxy alignments, Mon. Not. Roy. Astron. Soc. 432, 2433 (2013) [arXiv:1303.1808 [astro-ph.CO]]
[12] N. MacCrann, J. Zuntz, S. Bridle, B. Jain, and M. R. Becker, Cosmic Discordance: Are Planck CMB and CFHTLenS weak lensing measurements out of tune?, Mon. Not. Roy. Astron. Soc. 451, 2877 (2015) [arXiv:1408.4742 [astro-ph.CO]]
[13] H. Hildebrandt et al., KiDS+VIKING-150: Cosmic shear tomography with optical and infrared data, Astron. Astrophys. 633, A69 (2020) [arXiv:1812.06076 [astro-ph.CO]]
[14] S. Joudaki et al., KiDS+VIKING-450 and DES-Y1 combined: Cosmology with cosmic shear, Astron. Astrophys. 638, L1 (2020) [arXiv:1906.09262 [astro-ph.CO]]
[15] T. Abbott et al. (DES), Dark Energy Survey year 1 results: Cosmological constraints from galaxy clustering and weak lensing, Phys. Rev. D 98, 043526 (2018) [arXiv:1708.01530 [astro-ph.CO]]
[16] C. Heymans et al. (2020), 2007.15632 [astro-ph.CO]
[17] R. C. Nunes and S. Vagnozzi, Arbitrating the S8 discrepancy with growth rate measurements from redshift-space distortions, Mon. Not. Roy. Astron. Soc. 505, 5427 (2021) [arXiv:2106.01208 [astro-ph.CO]]
[18] V. Poulin, T. L. Smith, T. Karwal, and M. Kamionkowski, Early Dark Energy Can Resolve The Hubble Tension, arXiv e-prints , arXiv:1811.04083 (2018), arXiv:1811.04083 [astro-ph.CO]
[19] A. Bhattacharyya, U. Alam, K. Lal Pandey, S. Das, and S. Pal, Are H0 and σ8 Tensions Generic to Present Cosmological Data?, ApJ 876, 143 (2019) [arXiv:1805.04716 [astro-ph.CO]]
[20] V. Poulin, K. K. Boddy, S. Bird, and M. Kamionkowski, Implications of an extended dark energy cosmology with massive neutrinos for cosmological tensions, Phys. Rev. D 97, 123504 (2018) [arXiv:1803.02474 [astro-ph.CO]]
[21] E. Di Valentino, A. Melchiorri, E. V. Linder, and J. Silk, Constraining dark energy dynamics in extended parameter space, Phys. Rev. D 96, 023523 (2017) [arXiv:1704.00762]
[22] E. Di Valentino, A. Melchiorri, and J. Silk, Reconciling Planck with the local value of H0 in extended parameter space, Physics Letters B 761, 242 (2016) [arXiv:1606.00634]
[23] E. Di Valentino, A. Melchiorri, and J. Silk, Beyond six parameters: Extending Λ CDM, Phys. Rev. D 92, 121302 (2015) [arXiv:1507.06646]
[24] V. Poulin, T. L. Smith, T. Karwal, and M. Kamionkowski, Early Dark Energy Can Resolve The Hubble Tension, Phys. Rev. Lett. 122, 221301 (2019) [arXiv:1811.04083 [astro-ph.CO]]
[25] A. Gogoi, R. K. Sharma, P. Chanda, and S. Das, Early Mass-varying Neutrino Dark Energy: Nugget Formation and Hubble Anomaly, Astrophys. J. 915, 132 (2021) [arXiv:2005.11889 [astro-ph.CO]]
[26] L. Visinelli, S. Vagnozzi, and U. Danielsson, Revisiting a negative cosmological constant from low-redshift data, Symmetry 11, 1035 (2019) [arXiv:1907.07953 [astro-ph.CO]]
[27] S. Vagnozzi, New physics in light of the H0 tension: An alternative view, Phys. Rev. D 102, 023518 (2020) [arXiv:1907.07569 [astro-ph.CO]]
[28] K. L. Pandey, T. Karwal, and S. Das, Alleviating the H0 and σ8 anomalies with a decaying dark matter model, J. Cosmology Astropart. Phys. 2020, 026 (2020) [arXiv:1902.10636 [astro-ph.CO]]
[29] V. Poulin, P. D. Serpico, and J. Lesgourgues, A fresh look at linear cosmological constraints on a decaying dark matter component, JCAP 08, 036 [arXiv:1606.02073 [astro-ph.CO]]
[30] S. Das, A. Maharana, V. Poulin, and R. Kumar, Non-thermal hot dark matter in light of the S8 tension, (2021), arXiv:2104.03329 [astro-ph.CO]
[31] L. Heisenberg, H. Villarrubia-Rojo, and J. Zosso, Can late-time extensions solve the H0 and σ8 tensions?, arXiv e-prints , arXiv:2202.01202 (2022), arXiv:2202.01202 [astro-ph.CO]
[32] A. Banerjee, H. Cai, L. Heisenberg, E. ´O. Colg´ ain, M. M. Sheikh-Jabbari, and T. Yang, Hubble sinks in the low-redshift swampland, Phys. Rev. D 103, L081305 (2021) [arXiv:2006.00244 [astro-ph.CO]]
[68] S. Alam et al. (BOSS), The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample, *Mon. Not. Roy. Astron. Soc.* **470**, 2617 (2017), arXiv:1607.03155 [astro-ph.CO].

[69] V. de Sainte Agathe et al., Baryon acoustic oscillations at $z = 2.34$ from the correlations of Lyα absorption in eBOSS DR14, *Astron. Astrophys.* **629**, A85 (2019), arXiv:1904.03400 [astro-ph.CO].

[70] M. Blomqvist et al., Baryon acoustic oscillations from the cross-correlation of Lyα absorption and quasars in eBOSS DR14, *Astron. Astrophys.* **629**, A86 (2019), arXiv:1904.03430 [astro-ph.CO].

[71] D. M. Scolnic et al., The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample, *Astrophys. J.* **859**, 101 (2018), arXiv:1710.00845 [astro-ph.CO].

[72] J. L. Thejs Brinckmann, MontePython 3: boosted MCMC sampler and other features, (2018), arXiv:1804.07261 [astro-ph.CO].

[73] F. James and M. Roos, Minuit – a system for function minimization and analysis of the parameter errors and correlations, *Computer Physics Communications* **10**, 343 (1975).

[74] A. Lewis, A. Challinor, and A. Lasenby, Efficient computation of CMB anisotropies in closed FRW models, *ApJ* **538**, 473 (2000), arXiv:astro-ph/9911177 [astro-ph].

[75] A. Gelman and D. B. Rubin, *Statist. Sci.* **7**, 457 (1992).

[76] G.-B. Zhao, M. Raveri, L. Pogosian, Y. Wang, R. G. Crittenden, W. J. Handley, W. J. Percival, F. Beutler, J. Brinkmann, C.-H. Chuang, A. J. Cuesta, D. J. Eisenstein, F.-S. Kitaura, K. Koyama, B. L'Huillier, R. C. Nichol, M. M. Pieri, S. Rodriguez-Torres, A. J. Ross, G. Rossi, A. G. Sánchez, A. Shafieloo, J. L. Tinker, R. Tojeiro, J. A. Vazquez, and H. Zhang, Dynamical dark energy in light of the latest observations, *Nature Astronomy* **1**, 627 (2017), arXiv:1701.08165.

[77] Y.-C. Zhang, H.-Y. Zhang, D.-D. Wang, Y.-H. Qi, Y.-T. Wang, and G.-B. Zhao, Probing dynamics of dark energy with latest observations, *Research in Astronomy and Astrophysics* **17**, 050 (2017), arXiv:1703.08293.

[78] E. V. Linder and D. Huterer, How many dark energy parameters?, *Phys. Rev. D* **72**, 043509 (2005), arXiv:astro-ph/0505330.

[79] D. K. Hazra, S. Majumdar, S. Pal, S. Panda, and A. A. Sen, Post-Planck dark energy constraints, *Phys. Rev. D* **91**, 083005 (2015), arXiv:1310.6161 [astro-ph.CO].

[80] V. Poulin, K. K. Boddy, S. Bird, and M. Kamionkowski, Implications of an extended dark energy cosmology with massive neutrinos for cosmological tensions, *Phys. Rev. D* **97**, 123504 (2018), arXiv:1803.02474 [astro-ph.CO].
Appendix A: Characteristics of the 4 parameter dynamical dark energy model

The factor \(\Gamma(a) \) in Eq. 1 characterizes the course of the evolution of \(w_{de}(a) \). Figure A1 elaborates the nature of the parameters \(a_t \) and \(\Delta_{de} \). It can be easily shown that for the two extreme limits of \(\Delta_{de} \) Eq. 1 takes the following form,

\[
\begin{align*}
\lim_{\Delta_{de} \to -\infty} w_{de}(a) &= w_0 + (w_m - w_0) \times (1 - a) \quad (A1) \\
\lim_{\Delta_{de} \to 0} w_{de}(a) &= w_0 + \mathcal{H}(a_t - a) \times (w_m - w_0) \quad (A2)
\end{align*}
\]

ie., Equation 1 approaches to standard 2 parameter parameterization with \(w_a = w_m - w_0 \) in the limit of \(\Delta_{de} \to \infty \) (\(\Delta_{de} \gg 0.5 \)) as this is also evident from the last panel of the Figure A1. Also when \(\Delta_{de} \to 0 \) the function \(\Gamma(a) \) tend to become a step function (Heaviside function, \(\mathcal{H} \)) around \(a = a_t \).

FIG. A1. Evolution of \(w_{de} \) for different sets of values for \(a_t \) and \(\Delta_{de} \), parameters \(w_0 \) and \(w_m \) are fixed to -0.8 and -1.2 respectively.

Appendix B: Results : Without external (Pantheon+BAO) datasets

The results of Planck only data are reported in Table A1. When we confront the 4pDE model with only Planck data (i.e. Planck TT, EE, TE+Planck Lensing), we find that the equation of state parameters are poorly constrained. Parameter \(w_0 \) deviates from value “-1” with larger error bars. The rest of the three parameters remains unconstrained. The value of the Hubble parameter is also increased and has larger error bars. Similarly, \(\sigma_8 \) also has got high value and large error bars. This high increase in \(H_0 \) and \(\sigma_8 \) is since both have a negative correlation with parameter \(w_0 \).

With Planck only data after applying \(H_0 \) prior we get better constraints for most of the parameters. Especially, the value of \(w_0 \) comes much closer to the cosmological constant. The posterior of \(H_0 \) is also now more constrained and in nearly perfect agreement with SH0ES measurement. The overall fit is improved by \(\Delta \chi^2_{\text{min}} = -21.5 \) compared to the ΛCDM model.

When we use the only \(S_8 \) prior, it impacts on the equation of state parameter \(w_0 \) it is constrained more compared to no prior case but still deviates from cosmological constant behavior. The other parameters remain unconstrained. However, when we use \(S_8 \) prior also, the parameters \(H_0 \) and \(\sigma_8 \) still attains high value but error bars shrink for both the parameters this time. Apart from these parameters, the posterior of neutrino mass has also a peak when using \(S_8 \) prior. The overall fit is improved by \(\Delta \chi^2_{\text{min}} = -11.8 \) compared to ΛCDM model.

When we use the \(H_0 \) and \(S_8 \) prior together, the posteriors of \(H_0 \) and \(S_8 \) have smaller error bars and it removes the \(H_0 \) and \(S_8 \) tension completely and in fine agreement with SH0ES and KIDS/Viking respectively. The overall fit is improved by \(\Delta \chi^2_{\text{min}} = -22.9 \) compared to ΛCDM model.

Appendix C: Results : Without external (Pantheon+BAO) datasets

We also run the 4pDE model without neutrino case. The equation of state parameter of dark energy is slightly better constrained. However there is not much change in the value of Hubble parameter. The value of \(\omega_{\text{CDM}} \) is slightly higher in this case in comparison to the case with neutrino, though the \(S_8 \) parameter shifts to slightly lower value in comparison to the neutrino case. These comparison is shown in Figure 4 and the results of this run is given in Table A2. The goodness of fit improved over ΛCDM model, in without neutrino case is \(\chi^2_{\text{min}} = -5.61 \).
Parameter	Planck	Planck + S_8	Planck + H_0	Planck + $H_0 + S_8$
$100 \, \omega_b$	2.236(2.243)	2.2357(2.2440)	2.233(2.2474)	2.234(2.2477)
ω_{cdm}	0.1196(0.1198)	0.1197(0.1185)	0.112(0.1118)	0.1196(0.1186)
$100 \, \theta_s$	1.0419(1.0418)	1.0419(1.04206)	1.042(1.042105)	1.042(1.04219)
$\ln(10^{10} A_s)$	3.0395(3.0304)	3.0398(3.0248)	3.041(3.0560)	3.041(3.0429)
n_s	0.9644(0.9656)	0.9643(0.9683)	0.9639(0.9676)	0.9639(0.9684)
τ_{reio}	0.05285(0.04901)	0.05283(0.04583)	0.05353(0.06124)	0.0535(0.0577)
Σm_{ν} [eV]	0.1387(0.028)	0.1290(0.0024)	0.1357(0.0356)	0.2146(0.0654)
w_0	$-1.8247(-1.567)$	$-1.394(-1.398)$	$-0.9806(-1.024)$	$-1.080(-1.717)$
w_ω	unconstrained	unconstrained	unconstrained	unconstrained
$\log_{10}(a_i)$	unconstrained	unconstrained	unconstrained	unconstrained
$\Delta \chi^2_{min}$	2771.31	2771.88	2773.46	2776.91

TABLE A1. The mean (best-fit) $\pm 1\sigma$ error of the cosmological parameters reconstructed from the lensing-marginalized Planck data for 4PDE model for the cases when we do not include external (Pantheon+BAO) datasets. We also report the corresponding $\Delta \chi^2_{min}$ values.

Model without neutrino
\begin{tabular}{
Parameter & Planck + Ext + M_B & Planck + Ext + $S_8 + M_B$

$100 \, \omega_b$
ω_{cdm}
$100 \, \theta_s$
n_s
$\ln(10^{10} A_s)$
τ_{reio}
Σm_{ν} [eV]
w_0
w_ω
$\log_{10}(a_i)$
$\Delta \chi^2_{min}$

TABLE A2. The mean (best-fit) $\pm 1\sigma$ error of the cosmological parameters reconstructed from the lensing-marginalized Planck+BAO+SN1a data for 4PDE model without neutrino for various cases. We also report the corresponding $\Delta \chi^2_{min}$ values.