Analysis of Communication Time Delayed Automatic Generation Control via SMA with 2 DOF PI^δD^µ Controller for Interconnected Power System

Mustafa Saka¹, İbrahim Eke², M. Cengiz Taplamacıoğlu³

¹ Gazi University, Engineering Faculty, Electrical and Electronics Engineering Department, Ankara, Turkey (ORCID: 0000-0003-4157-2980)
² Kırıkkale University, Engineering Faculty, Electrical and Electronics Engineering Department, Kırıkkale, Turkey (ORCID: 0000-0003-4792-238X)
³ Gazi University, Engineering Faculty, Electrical and Electronics Engineering Department, Ankara, Turkey (ORCID: 0000-0001-5283-8866)

ATIF/REFERENCE: Saka M., Eke I., Taplamacıoğlu M.C. (2020). Analysis of Communication Time Delayed Automatic Generation Control via SMA with 2 DOF PI^δD^µ Controller for Interconnected Power System. European Journal of Science and Technology, (Apecial Issue), 172-180.

Abstract

Automatic generation control (AGC) is a vital process for the design and operation of electrical power systems. Quality of electrical energy is generated with effective AGC and sent to the consumers. Interconnected power systems are large and complex systems since they consist of more than one control area and they are connected to each other. Therefore, it is very difficult to control these systems. In this study, two different interconnected power systems are considered for AGC. First, an AGC system having reheat without time delay is analyzed. Secondly, an AGC system with communication time delay (CTD) is examined in order to make control analysis closer to real system. These CTDs are observed the AGC systems because of communication networks, phasor measurement units (PMUs), wide - area measurement - monitoring systems (WAMSs), supervisory control and data acquisition (SCADA) units etc. AGC becomes much more complicate and complex with the addition of CTDs to the system. Because of high flexibility and capability ratio, two degree of freedom fractional order proportional – integral – derivative (2 DOF PI^δD^µ) controller has been used for both reheated and time delayed power systems. A new meta heuristic Slime Mold Algorithm (SMA) is used to set of the 2 DOF PI^δD^µ controller parameters. SMA is based on nature of oscillation mode of slime mould and this algorithm is developed in 2020. System performances are examined in terms of settling time (for %0.005 band width), % overshoot and % undershoot for frequency deviation of each region and tie line power deviation. All results are expressed both numerically and graphically. It is clear that the results obtained with the proposed 2 DOF PI^δD^µ and SMA are more successful than the defined as the more realistic AGC systems in literature and also improved the system performance.

Keywords: Automatic generation control, Slime mould algorithm, Communication time delay, Interconnected power systems.

Enterkonnekte Güç Sistemleri için Haberleşme Zaman Geçikmeli Otomatik Üretim Kontrolünün SMA Aracılığyla 2 DOF PI^δD^µ Kontrolör ile Analizi

Öz

Elektrik güç sistemlerinin tasarım ve işletimi için otomatik üretim kontrolü (AGC) hayatı derecede önemli bir işlemidir. AGC ile kaliteli elektrik enerjisi üretilir ve tüketiciye gönderilir. Enterkonnekte sistemler birbirleriyle bağlantılı birden fazla kontrol bölgesinden oluştuğu için büyük ve karmaşık güç sistemleridir. Bu nedenle bu sistemlerin kontrolü oldukça zordur. Bu çalışmada

http://dergipark.gov.tr/ejosat
AGC için iki farklı enterkonnekte güç sistemi dikkate alınmıştır. Öncelikle, ara istmalı zaman geceğmesi dahil edilmeyen bir AGC sistemi analiz edilmiştir. Sonrasında, gereç ve daha yakın kontrol analizleri yapmak amacıyla haberleşme zaman geceğmesine (CTD) sahip bir AGC sistemi incelenmiştir. Haberleşme ağıları, fazör ölçüm üniteleri (PMUs), geniş alan ölçüm (WAMSs), merkezi denetleme kontrol ve veri toplama (SCADA) gibi birimlerden dolayı AGC sistemlerinde CTDs gözlenenlerdir. CTD’nin sisteme ekleneceği ileri birlikte, AGC sistemi çok daha karmaşık ve kompleks olmaktadır. Hem ara istmalı hem de zaman gecekmeli güç sistemi için yüksek esneklik ve kabiliyet oranına sahip olduğundan dolayı iki serbestlik dereceli kesirli mertebeden rezervasyon (DEPSO), % maksimum aşım ve % minimum aşım açısından incelenmiştir. Hem ara istmalı hem de zaman gecekmeli güç sistem için yüksek esneklik ve kabiliyet oranına sahip olduğundan dolayı iki serbestlik dereceli kesirli mertebeden rezervasyon (DEPSO), % maksimum aşım ve % minimum aşım açısından incelenmiştir. Elde edilen tüm sonuçlar hem sayısal olarak ifade edilmiş hem de grafiksel olarak gösterilmiştir.

Anahtar Kelimeler: Otomatik üretim kontrolü, Balçık küfü algoritması, Haberleşme zaman geceğmesi, Enterkonnekte güç sistemleri.

1. Introduction

Automatic generation control is one of the essential issues to operate power systems in stable. Especially for interconnected systems, AGC is a complex and complicate problem. When the communication time delay occurs in communication units such as RTUs, SCADA etc. is added to these systems, the power systems become both more realistic and more complex. CDTs reduce system dynamic performances, make the system more difficult to control and even make the unstabile system (Sonmez, Aysun, & Nwankpa, 2016). Fundamental goal of AGC is to reduce the frequency deviation of each area and tie line power and make the steady state error zero (Kundur, 1994).

Different multi area power systems have been analyzed from past to present for automatic generation control. Various methods and different controllers are used in the analysis of these systems. Bacterial Foraging Optimization Algorithm (BFOA) (Ali & Abd-Elazim, 2013), Ecological Technique and Coefficient Diagram Method (CDM+ECO) (Mohamed, Shabib, & Ali, 2016), Cuckoo Search Algorithm (CSO) (Abdelaziz & Ali, 2015), Grey Wolf Optimization (GWO) (Guhu, Roy, & Banerjee, 2016), Hybrid Differential Evolution Particle Swarm Optimization (DEPSO) (Sahu, Pati, & Panda, 2014) and Decentralized Sliding Mode Control (DSMC) (Mi, Fu, Wang, & Wang, 2013), Artificial Bee Colony (ABC) (Gark & Kaur) et. are the some of using techniques for AGC. When modeling power systems, communication time delay is included in the systems to create a more realistic model. For this reason, (Sonmez & Aysun, 2016) and (Saxena & Hote, 2018) are studied single area having delay system for \(\tau = 2.28 \) sec. PI controller parameters are founded for both study for control of AGC.

Mentioned techniques and controllers may give good results. However, these may exhibit weakness performance capability for large and complicate systems. Therefore, 2 DOF PI/PID controller, which is more capable and flexible than PI/PID controller, is used for interconnected power systems in this study. Slime Mould Algorithm (Li, Chen, Wang, Heidari, & Mirjallili, 2020), which is new optimization technique developed in 2020, selected for better convergence behaviour and applied for tuning of 2 DOF PI/PID controller. In this study, two different interconnected power system (having reheater system and time delayed system) are considered to shown effectiveness proposed controller and technique. Main contributions of this work; (i) interconnected systems performances are enhanced, (ii) errors are minimized and (iii) peak to peak of frequency deviation is decreased.

The other sections of this paper: Interconnected power systems for AGC, 2 DOF PI/PID controller and SMA are defined in Section 2. Obtained numerical and graphical results are given in Section 3. Conclusions of the study are given in Section 4.

2. Material and Method

2.1. Automatic Generation Control

Frequency control is necessary for quality energy in electrical power systems. Active power change in the system affects the frequency. Changes in frequency disrupt the stability of the system. Especially for interconnected systems, the frequency deviation of each region and the power deviation in the tie line should be examined. Changes in any region affects other regions as well. AGC minimizes the deviations that may occur in frequency and power of tie line and keeps it within a certain range (Kundur, 1994). A linear model of power systems can be used for AGC. The interconnected system considered in this study is shown as follows:
This model is formed two regions and a tie line. Each area has governor, turbine, reheater, inertia and load blocks. In here, β is bias factor of frequency, R is droop characteristic and τ is communication time delay. Each controller is selected as 2 DOF PI$^D\mu$ for this study.

Area control error (ACE) can be described as follows (Topno & Chanana, 2016):

\begin{align*}
ACE_1 &= \beta_1 \Delta f_1 + \Delta P_{\text{tie}} \\
ACE_2 &= \beta_2 \Delta f_2 - \Delta P_{\text{tie}}
\end{align*}

where Δf_1 and Δf_2 is frequency deviation of area 1 and area 2 respectively. ΔP_{tie} is tie line power deviation.

2.2. 2 DOF PI$^D\mu$ Controller

PID is very useful and ability controller. However, sometimes this controller may not give desired system performance. For this reason, 2 DOF PID controller can be used. This controller has extra two parameters from PID. First is proportional set point coefficient (P_c) and second is derivative set point coefficient (D_c). 2 DOF PID is used ACE signal and output of system signal as inputs (Mohapatra, Dey, & Sahu, 2019). For large systems this controller may exhibit insufficient performance. Thus, fractional terms are added to 2 DOF PID to improve effectiveness and capability. In this way, 2 DOF PFD$^\mu$ controller may give better results according to the 2 DOF PID and PID controller.

PID can be described as follows:

\begin{equation}
 u = K_pACE_i + K_i \int ACE_i + K_d \frac{d}{dt}[ACE_i]
\end{equation}

2 DOF PID can be described as follows:

\begin{equation}
 u = K_p[ACE_iP_c - \Delta f_i] + K_i \int [ACE_i - \Delta f_i] + K_d \frac{d}{dt}[ACE_iD_c - \Delta f_i]
\end{equation}

2 DOF PI$^D\mu$ can be described as follows:

\begin{equation}
 u = K_p[ACE_iP_c - \Delta f_i] + K_i \frac{d^{-1}}{dt^{-1}}[ACE_i - \Delta f_i] + K_d \frac{d^{\mu}}{dt^{\mu}}[ACE_iD_c - \Delta f_i]
\end{equation}

In here; i is ith control area; u is output signal, K_p is proportional, K_i is integral and K_d is derivative gain of controller.
2.3. Slime Mould Algorithm

Slime mould algorithm is recently developed meta heuristic algorithm. It’s based on slime mould behavior for food seek in the nature. If the initial found food has lower quality, slime mould seek higher quality food in their surroundings (Li et al., 2020). Slime mould’s behavior towards food is described as follows:

\[X(t + 1) = \begin{cases} X_b(t) + vb \cdot (W \cdot X_a(t) - X_b(t)) & ; \quad r < p \\ vc \cdot X(t) & ; \quad r \geq p \end{cases} \] (6)

In here; \(X_A \) and \(X_B \) are random chosen two slime mould, \(X \) is location. \(vb \) can be described as follows:

\[vb = [-a, a] \] (7)

In here, \(a \) can be represented as follows:

\[a = \text{arctanh}\left(-\left(\frac{t}{\max_t}\right) + 1\right) \] (8)

\(p \) is given as follows:

\[p = \text{tanh}\left|S(i) - DF\right| \] (9)

\(W \) is weight of slime mould and it can be expressed as follows:

\[W(SmellIndex(i)) = \begin{cases} 1 + r \cdot \log\left(\frac{bF - S(i)}{bf-wF}\right) + 1 & ; \quad \text{condition} \\ 1 - r \cdot \log\left(\frac{bF - S(i)}{bf-wF}\right) + 1 & ; \quad \text{others} \end{cases} \] (10)

\[SmellIndex = \text{sort}(S) \] (11)

In here; \(bF \) is best fitness, \(wF \) is worst fitness, \(r \) is random number, \(S(i) \) is fitness of \(X \) and condition is \(S(i) \) ranks first half of the population.

Slime mould updates the position as following equation:

\[X^* = \begin{cases} rand \cdot (UB - LB) + LB & ; \quad \text{rand} < z \\ X_b(t) + vb \cdot (W \cdot X_a(t) - X_b(t)) & ; \quad r < p \\ vc \cdot X(t) & ; \quad r \geq p \end{cases} \] (12)

In here; \(LB \) is represents lower bound and \(UB \) is represents upper bound.

Detail information about SMA and expression of mathematical equations of this method can be found out from (Li et al., 2020).

In this paper, integral time absolute error (ITAE) function is selected as objective function. ITAE can be described as follows:

\[ITAE = \int (time|error|)dt \] (13)

The main objective function used in this study is given as follows:

\[J = \int w_1(t|\Delta f_1|) + w_2(t|\Delta f_2|) + w_3(t|\Delta P_{tie}|) dt \] (14)

In here; \(w_1, w_2 \) and \(w_3 \) are weight coefficients.

3. Results and Discussions

In this section, two different multi area system are analyzed. All results are examined in terms of settling time for %0.005 band width, % overshoot and % undershoot values of the signal.

3.1. AGC for Reheater System

Reheater turbine power system is considered for AGC. System parameters are given in (Gozde, Cengiz Taplamacioglu, & Kocaarslan, 2012). \(\tau_1 \) and \(\tau_2 \) are equaled to 0 for this system. Obtained control parameters are given in Table 1.
Table 1. Controller parameters

Reference	K_{p_1}	K_{i_1}	K_{d_1}	λ_1	μ_1	P_{c_1}	D_{c_1}
Proposed	5.000	5.000	1.8536	0.9387	1.2615	5.000	0.4076
(Abdel-Magid & Abido, 2003)	-0.0360	0.4900	---	---	---	---	---
(Gozde et al., 2012)	1.9660	9.5902	3.9320	---	---	---	---

Reference	K_{p_2}	K_{i_2}	K_{d_2}	λ_2	μ_2	P_{c_2}	D_{c_2}
Proposed	4.5542	4.2583	1.4700	1.1420	0.9734	1.6920	0.1547
(Abdel-Magid & Abido, 2003)	-0.0360	0.4900	---	---	---	---	---
(Gozde et al., 2012)	0.7100	0.6827	0.7420	---	---	---	---

Comparative frequency deviations of each are shown in Figure 2 and Figure 3 respectively.

Figure 2. Comparative frequency deviations for Area 1

Figure 3. Comparative frequency deviations for Area 2
Comparative tie line power deviations are shown in Figure 4.

![Tie Line Power Deviation](image)

Figure 4. Comparative power deviations for Tie line

Obtained numerical results are given for this system in Table 2.

Area 1	Reference	Method	Settling Time	% Overshoot	% Undershoot
Proposed	SMA	2.435	1.411e-3	-2.625e-1	
(Abdel-Magid & Abido, 2003)	PSO	---	8.443e-1	-2.623e-0	
(Gozde et al., 2012)	ABC	12.368	2.109e-1	-5.256e-1	

Area 2	Reference	Method	Settling Time	% Overshoot	% Undershoot
Proposed	SMA	4.759	8.524e-5	-3.806e-2	
(Abdel-Magid & Abido, 2003)	PSO	---	7.661e-1	-2.889e-0	
(Gozde et al., 2012)	ABC	12.928	2.216e-1	3.343e-1	

Tie Line	Reference	Method	Settling Time	% Overshoot	% Undershoot
Proposed	SMA	7.346	2.873e-4	-3.536e-2	
(Abdel-Magid & Abido, 2003)	PSO	---	9.095e-2	-7.460e-1	
(Gozde et al., 2012)	ABC	8.332	4.963e-2	-1.023e-1	

When obtained results are analysed, PSO is not settled to %0.005 band width. Settling time is improved 5.08 times for Area 1 and 2.71 times for Area 2. % overshoot is; 314.88 times lower than PSO and 149.47 times lower than ABC for Area 1, 8987 times lower than PSO and 2599 times lower than ABC for Area 2, 316.56 times lower than PSO and 172.74 times lower than ABC for tie line. % undershoot is; 9.99 times lower than PSO and 2.0 times lower than ABC for Area 1, 75.9 times lower than PSO and 8.78 times lower than ABC for Area 2, 21.09 times lower than PSO and 2.89 times lower than ABC for tie line.

3.2. AGC for Delayed System

Non-reheat turbine having communication time delayed power system is considered for AGC. System parameters are given in (Sönmez, 2019). Because of non-reheat turbine system is considered, K_{r1}, K_{r2}, T_{r1}, and T_{r2} are equaled to zero. Obtained control parameters are given in Table 3.
Table 3. Controller parameters

Area 1	Reference	\(K_{p1} \)	\(K_{i1} \)	\(K_{d1} \)	\(\lambda_1 \)	\(\mu_1 \)	\(P_{ci} \)	\(D_{ci} \)
Proposed	0.6369	0.4711	0.5606	1.0278	0.9884	0.7698	0.3971	
(Sönmez, 2019)	0.5000	0.6190	---	---	---	---	---	

| Area 2 | Reference | \(K_{p2} \) | \(K_{i2} \) | \(K_{d2} \) | \(\lambda_2 \) | \(\mu_2 \) | \(P_{ci} \) | \(D_{ci} \) |
|--------|-----------|----------------|----------------|----------------|----------------|----------------|----------------|
| Proposed | 0.4716 | 0.4887 | 0.7762 | 1.0254 | 0.6092 | 0.6926 | 0.2155 |
| (Sönmez, 2019) | 0.5000 | 0.6190 | --- | --- | --- | --- | --- |

Comparative frequency deviations of each area shown in Figure 5 and Figure 6 respectively.

![Area 1 Frequency Deviation](image1.png)

Figure 5. Comparative frequency deviations for Area 1

![Area 2 Frequency Deviation](image2.png)

Figure 6. Comparative frequency deviations for Area 2
Comparative tie line power deviations are shown in Figure 7.

![Figure 7. Comparative power deviations for Tie line](image)

Obtained numerical results are given for time delayed system in Table 4.

Area 1	Reference	Method	Settling Time	% Overshoot	% Undershoot
Proposed	SMA	10.071	1.875e-1	-5.831e-1	
(Sönmez, 2019)	SBL	77.759	4.641e-1	-5.831e-1	

Area 2	Reference	Method	Settling Time	% Overshoot	% Undershoot
Proposed	SMA	12.821	5.922e-2	-5.604e-1	
(Sönmez, 2019)	SBL	29.078	2.318e-1	-5.746e-1	

Tie Line	Reference	Method	Settling Time	% Overshoot	% Undershoot
Proposed	SMA	11.476	1.051e-2	-2.296e-1	
(Sönmez, 2019)	SBL	72.324	2.446e-1	-3.651e-1	

When Area 1 results are analysed, the frequency signal is settled to %0.005 band width 7.72 times faster. % Overshoot is decreased approximately 2.5 times but % undershoot is not change. When Area 2 results are analysed, frequency signal is settled to %0.005 band width 2.27 times faster. % Overshoot is decreased approximately 3.91 times and % undershoot is obtained at lower value. When tie line results are analysed, signal is settled to %0.005 band width 6.3 times faster. % Overshoot and % undershoot are decreased approximately 23.27 times and 1.6 times respectively.

4. Conclusions

In this study two different type AGC systems are analyzed via SMA with 2 DOF PI²Dµ. Reheater system AGC is performed for first case and time delayed AGC system is performed for second case. When all obtained results are analysed, lower settling time, % overshoot and % undershoot values are found (except for Area 1 of delayed system) against the compared studies. It is explicitly understood that, system performances highly improved for both cases with proposed method and controller. Based on these results, proposed controller and technique can be used for much larger and also hybrid systems for future studies.
References

Abdel-Magid, Y., & Abido, M. (2003). AGC tuning of interconnected reheat thermal systems with particle swarm optimization. Paper presented at the 10th IEEE international conference on electronics, circuits and systems.

Abdelaziz, A. Y., & Ali, E. S. (2015). Cuckoo Search algorithm based load frequency controller design for nonlinear interconnected power system. *International Journal of Electrical Power & Energy Systems, 73*, 632-643. doi:10.1016/j.ijepes.2015.05.050

Ali, E. S., & Abd-Elazim, S. M. (2013). BFOA based design of PID controller for two area Load Frequency Control with nonlinearities. *International Journal of Electrical Power & Energy Systems, 51*, 224-231. doi:10.1016/j.ijepes.2013.02.030

Gark, K., & Kaur, J. Particle Swarm Optimization Based Automatic Generation Control of Two Area Interconnected Power System. *International Journal of Scientific and Research Publications, 4*(1), 1-8.

Gozde, H., Cengiz Taplamacioglu, M., & Kocaarslan, İ. (2012). Comparative performance analysis of Artificial Bee Colony algorithm in automatic generation control for interconnected reheat thermal power system. *International Journal of Electrical Power & Energy Systems, 42*(1), 167-178. doi:10.1016/j.ijepes.2012.03.039

Guha, D., Roy, P. K., & Banerjee, S. (2016). Load frequency control of interconnected power system using grey wolf optimization. *Swarm and Evolutionary Computation, 27*, 97-115. doi:10.1016/j.swevo.2015.10.004

Kundur, P. (1994). *Power system stability and control*. New-York: McGraw Hill.

Li, S., Chen, H., Wang, M., Heidari, A. A., & Mirjallili, S. (2020). Slime mould algorithm: A new method for stochastic optimization. *Future Generation Computer Systems, 117*, 300-323. doi:10.1016/j.future.2020.03.055

Mi, Y., Fu, Y., Wang, C., & Wang, P. (2013). Decentralized Sliding Mode Load Frequency Control for Multi-Area Power Systems. *IEEE Transactions on Power Systems, 28*(4), 4301-4309. doi:10.1109/tpwrs.2013.2277131

Mohamed, T. H., Shabib, G., & Ali, H. (2016). Distributed load frequency control in an interconnected power system using ecological technique and coefficient diagram method. *International Journal of Electrical Power & Energy Systems, 82*, 496-507. doi:10.1016/j.ijepes.2016.04.023

Mohapatra, T. K. M., Dey, A. K., & Sahu, B. K. (2019). Implementation of SSA based two-degree-of freedom fractional order PID controller for AGC with diverse source of generations. *International Journal of Recent Technology and Engineering, 7*(6S2), 346-356.

Sahu, B. K., Pati, S., & Panda, S. (2014). Hybrid differential evolution particle swarm optimisation optimised fuzzy proportional–integral derivative controller for automatic generation control of interconnected power system. *IET Generation, Transmission & Distribution, 8*(11), 1789-1800. doi:10.1049/iet-gtd.2014.0097

Saxena, S., & Hote, Y. V. (2018). PI Controller Based Load Frequency Control Approach for Single-Area Power System Having Communication Delay. *IFAC PapersOnLine, 51*(4), 622-626.

Sonmez, S., & Ayasun, S. (2016). Stability Region in the Parameter Space of PI Controller for a Single-Area Load Frequency Control System With Time Delay. *IEEE Transactions on Power Systems, 31*(1), 829-830. doi:10.1109/tpwrs.2015.2412678

Sonmez, S., Ayasun, S., & Nwankpa, C. O. (2016). An Exact Method for Computing Delay Margin for Stability of Load Frequency Control Systems With Constant Communication Delays. *IEEE Transactions on Power Systems, 31*(1), 370-377. doi:10.1109/tpwrs.2015.2403865

Sönmez, Ş. (2019). Computation of stability regions for load frequency control systems including incommensurate time delays. *Turkish Journal of Electrical Engineering & Computer Sciences, 27*(6), 4596-4607. doi:10.3906/elk-1904-6

Topno, P. N., & Chanana, S. (2016). Load frequency control of a two-area multi-source power system using a tilt integral derivative controller. *Journal of Vibration and Control, 24*(1), 110-125. doi:10.1177/1077546316634562