Longitudinal evaluation of risk factors and outcomes of blood stream infections due to *Staphylococcus* species in persons with HIV: An observational cohort study

Raynell Lang¹, M. John Gill¹,²,³, Quang Vu⁴, Jeannine Viczko², Chris Naugler²,³, Deirdre Church¹,²,⁎

¹Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alta, Canada
²Department of Pathology & Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alta, Canada
³Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alta, Canada
⁴Southern Alberta HIV Clinic, Alberta Health Services, Calgary, Alta, Canada

ARTICLE INFO

Article History:
Received 25 August 2020
Revised 20 November 2020
Accepted 20 November 2020
Available online 5 December 2020

Keywords:
Bloodstream infections
HIV/AIDS
Staphylococcus aureus
Coagulate-negative *Staphylococcus*
Outcomes

ABSTRACT

Background: Staphylococcal blood stream infections (SBSI) are a significant cause of morbidity and mortality, however there is little data on such infections in persons with HIV (PWH) in the combination antiretroviral therapy era, particularly when divided by species; methicillin-sensitive (MSSA) and methicillin-resistant *Staphylococcus aureus* (MRSA) and coagulase-negative *Staphylococcus* (CoNS).

Methods: Using linked longitudinal clinical and microbiologic databases, all cases of SBSI in PWH accessing care at Southern Alberta Clinic were identified and demographic features and outcomes characterized. We compared participants with SBSI to those with no SBSI and determined the 1-year all-cause mortality following SBSI and longitudinally over the study period.

Findings: From 2000 to 2018, 130 SBSI occurred in 95 PWH over 21,526 patient-years follow-up. MSSA caused 38.4%, MRSA 26.1% and CoNS 35.3% of SBSI. Highest risks for SSBI were in Hepatitis C coinfection, low CD4 nadir, Indigenous/Metis ethnicity and in persons who use injection drugs (PWID). During follow-up, 423 deaths occurred in all PWH. Mortality rates for PWH with SBSI was 74.9/1000 patient-years (95% CI 59.2–94.9) compared with no SBSI 16.0/1000 patient-years (95% CI 14.4–17.7). The mortality Hazard Ratio was 2.61 (95% CI 1.95–3.49, P < 0.001) for SBSI compared to no SBSI, following adjusting for confounding.

Interpretation: Incidence rates of SBSI are high in PWH, with identified characteristics that further increase this risk. PWH who experience SBSI have a significant mortality risk within the first year of follow-up, however they also have greater long-term all-cause mortality compared to those with no SBSI. Further investigation is needed in PWH evaluating host, environment and pathogen differences that lead to differing rates of SBSI and mortality seen here.

Funding: No funding was received for this work.

© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

Staphylococcal blood stream infection (SBSI) includes methicillin-susceptible (MSSA), methicillin-resistant *Staphylococcus aureus* (MRSA), and coagulate-negative *Staphylococcus* (CoNS). SBSI has an annual population-based incidence rate of 20–30 cases/100,000 population in high-income countries [1]. Several studies have shown that *Staphylococcus aureus* is the second most common pathogen causing blood stream infection (BSI), after *Escherichia coli* [2, 3]. In the past 20 years with aggressive use of antibacterial therapy and modern source control strategies, the mortality rate for SBSI is estimated at ~25% [2, 4].

In North America, the rates of MSSA are relatively stable, while rates of MRSA are increasing, believed to be due to increased community-acquired (CA) cases [5, 6]. A study from the Calgary Health Region (CHR) recently reported on 840 episodes of *Staphylococcus aureus* bacteremia (SAB), demonstrating increased incidence rates...
from 23.5–32.0/100,000 from 2012 to 2014 [4]. There are limited studies evaluating CoNS BSI. Souvenir et al. demonstrated that CoNS accounted for 45–60% of all Staphylococcal isolates recovered from blood cultures, but these organisms are often considered contaminants [7]. Only 10–12% of all CoNS recovered from blood cultures are implicated in true SBSI [7].

Despite advances in HIV care, invasive bacterial infections continue to be a significant source of morbidity and mortality in persons with HIV (PWH) [8, 9]. Many studies evaluating SBSI in PWH were done in the pre or early antiretroviral therapy (ART) era, less information is available on the documented risk factors, demographics and outcomes in the combined ART era [9-14]. Staphylococcus aureus is consistently reported as the most common cause of BSI in PWH [12, 13, 15, 16]. The prevalence of MRSA has been increasing in PWH and corresponds to homelessness and recent incarceration[18]. The majority of studies evaluated either community acquired, or hospital acquired infections, very few looked at total infections. Lastly, the majority of studies were done in the pre or early ART era with less studies evaluating SBSI in PWH during the combined ART era.

Evidence before this study

Several studies have characterized staphylococcal blood stream infections (SBSI) in a general population, however few that have evaluated the specialized population of persons with HIV (PWH), particularly since the widespread usage of ART. We searched PubMed and MEDLINE for search concepts of “HIV/AIDS”, “Staphylococcus” and “Bacteremia” in addition to including many synonyms and relevant subject headings. The majority of data identified was based on Staphylococcus aureus both MSSA and MRSA, with minimal studies evaluating coagulase negative Staphylococcus (CoNS). Also, the majority of studies evaluated either community acquired, or hospital acquired infections, very few looked at total infections. Lastly, the majority of studies were done in the pre or early ART era with less studies evaluating SBSI in PWH during the combined ART era.

Added value of this study

The value of this study is in the comprehensive longitudinal databases that were utilized. We linked a clinical database of PWH with a microbiologic database overlapping in geographic region in order to capture and characterize all SBSI in PWH. This allowed us to evaluate and compare hospital-acquired and community-acquired cases as well as include MSSA, MRSA and CoNS over a longitudinal follow-up of 18 years. We were able to evaluate and compare clinical and epidemiologic characteristics as well as outcomes of our study population.

Implications of all the available evidence

Despite advances in HIV care, the incidence rates of SBSI are high in PWH and are associated with high mortality, particularly in the first-year of follow-up. There are epidemiologic and clinical characteristics that increase rates of SBSI and mortality in PWH. Further investigation is needed in PWH evaluating host, environment and pathogen differences that lead to increased rates of SBSI.
SBSI occurred when blood cultures yielded ≥2 different pathogenic organisms within 48 h of each other within the 5-day incubation period. Recurrence was defined as another SBSI more than 14 days after the first. CD4 counts and HIV viral load (VL) measurements collected most recent to diagnosis of a SBSI were used. Virologic suppression in plasma was defined as ≤200 RNA copies/mL [24, 25].

2.4. Statistical analysis

Descriptive analysis was performed using crude data. There were 132 missing values for ethnicity, 80 for CD4 nadir, 10 for age at HIV diagnosis and 18 for HIV risk factors. The number of participants with any missing values was low (n = 240, 7.0%). Univariate analysis was conducted using all data but observations with missing data were excluded for bivariate and multivariate analysis. Incidence rates for each type of BSI studied including MSSA, MRSA and CoNS, were calculated by dividing incident infections by the total number of patients attending SAC at year-end for each year of the study. Demographic data for those with each type of SBSI were compared using the chi-square test.

Unadjusted hazard ratios (HR) were calculated using a Poisson regression model to compare characteristics of PWH with SBSI versus those with no SBSI. Poisson regression was used as hazards appeared to be constant over time. Characteristics of participants with SBSI who died compared to those that survived 1-year following SBSI were compared using Cox proportional hazards model. A Poisson regression model was used to calculate HR for all-cause mortality over the 18-year follow-up for PWH with SBSI compared to those without. Confounding was assessed by sequential inclusion of each potential confounder in a regression model. Likelihood Ratio Tests (LRT) were used to test departures from linear effects. Variables included in the model as confounders a priori included: age, sex, CD4 nadir and PWID status [8-16]. All p-values are two-tailed tests with the statistical significance level set at p < 0.05 including 95% confidence intervals. All analysis was performed using STATA version 15.0 (College Station, TX).

2.5. Role of funding

No funding was received for this work.

3. Results

From the 3383 PWH in this study, 130 episodes of SBSI identified amongst 95 PWH with 34 cases of recurrent infections. There were 50 (38.4%) MSSA, 34 (26.1%) MRSA and 46 (35.3%) CoNS BSI (Table 1). Persons included were initially diagnosed with HIV between 1982 and 2017, HIV testing was introduced in 1985, therefore prior to 1985, diagnosis date was based on a transfusion date. HIV was diagnosed <14 days prior to SBSI in 6 (4.5%) episodes, and 11 (8.5%) episodes within ≤2 months of an HIV diagnosis. The mean duration between HIV diagnosis and incident SBSI was 8.6 years (0–30.4 yrs.). The mean duration of follow-up for all enrolled participants was 7.8 ± 6.0 yrs. (0.01–18 yrs.); those with and without SBSI had similar follow-up at 7.7 yrs. and 8.1 yrs, respectively. The overall rate of SBSI was 604/100,000 patient-years (PY) (Table 2).

Blood culture draws occurred on hospital wards in 58 (44.6%) SBSI episodes, 57 (43.9%) occurred in the Emergency Department and 15 (11.5%) were in a community-based setting. Most SBSI episodes (112, 86.2%) were CA with 18 (13.9%) being HA (Table 3). Most HA-SBSI were due to either MSSA (7, 38.9%) or CoNS (10, 55.6%), with only one case (5.6%) caused by MRSA. The first case of MRSA-BSI in this cohort was identified in 2005, and there has consistently been ≥1 case each year since. Central line associated BSI (CLABSI) accounted for 12 infections (4 MSSA, 3 MRSA, 5 CoNS).
Table 1
Characteristics of PWH who experience SBSI compared to those who do not between 2000 and 2018.

Characteristics	Total n (%)	Total n with no SBSI (%)	Total n with SBSI (%)	CoNS (%) (n = 46)	MSSA (%) (n = 50)	MRSA (%) (n = 34)	P-value *	Rate of SBSI/1000 PY (95% CI)	Hazard ratio (HR) for SBSI (95% CI)	P-value for HR	
PWID											
No	2744 (81.1)	2143 (65.8)	64 (40.2)	28 (60.9)	22 (44.0)	12 (35.3)	0.062	2.78 (2.16–3.58)	1.00		
Yes	580 (17.1)	1051 (32.3)	66 (30.8)	18 (39.1)	28 (56.0)	22 (64.7)			16.62 (13.08–21.12)	5.97 (<0.001)	
Missing	59 (1.7)	59 (1.8)	0 (0)								
Age at HIV diagno-sis, years											
≤30	1275 (37.7)	1233 (37.9)	42 (32.3)	12 (26.1)	19 (38.0)	11 (32.4)	0.626	3.93 (2.95–4.51)	1.00		
31–40	1190 (35.2)	1137 (35.0)	53 (40.8)	20 (43.5)	18 (36.0)	15 (44.1)			5.82 (4.45–7.62)	0.057	
41–50	594 (17.6)	570 (17.5)	75 (57.9)	34 (73.9)	33 (60.0)	29 (85.3)	0.142	4.83 (3.94–5.91)	1.00		
>50	247 (7.3)	239 (7.4)	8 (6.2)	4 (8.7)	1 (2.0)	3 (8.8)			4.84 (2.42–9.69)	0.587	
Missing	77 (2.3)	74 (2.3)	3 (2.3)	2 (4.4)	1 (2.0)	0 (0)					
Sex											
Male	2582 (76.3)	2480 (76.2)	96 (73.9)	34 (73.9)	33 (60.0)	29 (85.3)					
Female	801 (23.7)	767 (23.8)	34 (26.2)	12 (26.1)	17 (34.0)	5 (14.7)					
Missing	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)					
Ethnicity											
Caucasian	1839 (54.4)	1764 (54.2)	75 (57.7)	30 (60.0)	19 (55.9)	30.210		4.84 (3.85–6.08)	1.00		
Indigenous/Metis	395 (11.7)	358 (11.0)	37 (28.5)	10 (21.7)	16 (32.0)	11 (32.4)					
African/Caribbean/Black	695 (20.5)	686 (21.1)	9 (6.9)	4 (8.7)	4 (8.0)	1 (2.9)		1.63 (0.85–3.13)	0.34 (0.17–0.67)	0.002	
Other	322 (9.5)	313 (9.6)	9 (6.9)	6 (13.0)	0 (0)	3 (8.8)		3.31 (1.58–6.95)	0.68 (0.32–1.49)	0.338	
Missing	132 (3.9)	132 (4.1)	0 (0)	0 (0)	0 (0)	0 (0)					
CD4 Nadir											
>200 cells/mm³	1983 (58.6)	1949 (59.9)	34 (26.2)	7 (15.2)	14 (28.0)	12 (35.3)	0.198	2.43 (1.73–1.40)	1.00		
≤200 cells/mm³	1294 (38.3)	1216 (37.4)	78 (60.0)	33 (71.7)	27 (54.0)	19 (55.9)		6.91 (5.33–8.62)	2.85 (1.90–4.26)	<0.001	
Missing	106 (3.1)	88 (2.7)	18 (13.9)	6 (13.0)	9 (18.0)	3 (8.8)					
HIV Risk Factor											
gbMSM	1548 (45.8)	1512 (46.5)	36 (27.7)	15 (32.6)	15 (30.0)	6 (17.7)	0.005	2.84 (2.05–3.94)	1.00		
Heterosexual	1182 (34.9)	1094 (33.6)	88 (67.7)	25 (54.4)	35 (70.0)	28 (82.4)			10.77 (8.73–13.29)	3.79 (2.57–5.59)	<0.001
Other	566 (16.7)	563 (17.3)	3 (2.3)	3 (6.5)	0 (0)	0 (0)		0.62 (0.20–1.94)	0.22 (0.08–0.71)	0.012	
Missing	87 (2.6)	84 (2.6)	3 (2.3)	3 (6.5)	0 (0)	0 (0)					
HCV											
No	2388 (70.6)	2351 (72.3)	37 (28.5)	18 (39.1)	11 (22.0)	8 (23.5)	0.081	1.89 (1.38–2.60)	1.00		
Yes	460 (13.6)	391 (12.0)	69 (53.1)	18 (39.1)	28 (56.0)	23 (67.7)			19.15 (15.12–24.24)	10.15 (6.80–15.13)	<0.001
Missing	535 (15.8)	511 (15.7)	24 (18.5)	10 (21.7)	11 (22.0)	3 (8.8)					

* Rate of SBSI comparing different demographic characteristics. Hazard ratio calculated using Poisson regression analysis for SBSI adjusting by different characteristics.
Table 2

Incident Rates of SBSI for PWH between 2000 and 2018, assessing rates of MSSA, MRSA and CoNS.

Years of follow up	Total active patient-years	Total SBSI	Total Rate/100,000 years	CoNS	CoNS rate/100,000yr	MSSA	MSSA rate/100,000yr	MRSA	MRSA rate/100,000yr
2000–2005	4468	34	761.0	14	331.3	19	425.2	1	22.4
2006–2011	7145	44	615.8	15	209.9	11	154.0	18	251.9
2012–2018	9913	52	524.6	17	171.5	20	201.8	15	151.3
Totals	**21,526**	**130**	**603.9**	**46**	**213.7**	**50**	**232.3**	**34**	**157.9**

Number of total active patient at SAC were obtained from the database starting January 1st to December 31st.

3.1. Demographics

The mean age at HIV diagnosis was 35.6 ± 9.5 yrs. (16–63 yrs.), while the mean age at SBSI was 46.3 ± 9.2 yrs. (28–72 yrs.). The majority of those with SBSI were male (73.9%). PWH with SBSI episode were more likely to have HCV-coinfected compared to PWH with no SBSI (53.1% vs. 12.0% \(P < 0.001 \)). Due to small numbers of comorbidities in this cohort further associations could not be made (Fig. 2). Of HIV-coinfected persons, MSSA/MRSA accounted for most SBSI episodes (73.9%). Rates of SBSI were also higher among PWID and heterosexual populations compared to gbMSM gay, bisexual, men who have sex with men (Table 1). Among those categorized other as their main HIV risk, the majority were from an endemic country followed by blood transfusion risk. Among cases of SBSI in gbMSM 57.1% were due to MSSA/MRSA, compared to 69.2% in the heterosexual population. In PWID, 49 (74.2%) were due to MSSA/MRSA, whereas 17 (25.8%) were due to CoNS (chi-square \(P = 0.020 \)). Indigenous/metis persons had higher rates of SBSI 16.2/1000 PY compared to Caucasian 4.8/1000 PY and African/Caribbean/Black populations 1.6/1000 PY (Table 1).

3.2. HIV clinical characteristics

PWH with SBSI had a mean CD4 nadir of 159 cells/mm\(^3\), with 69.6% having a CD4 nadir of <200 cells/mm\(^3\). At the time of bacteremia, the most recent CD4 count averaged 228 cells/mm\(^3\) (0–959 cells/mm\(^3\)), with 58.6% of participants having a CD4 <200 cells/mm\(^3\). HIV VL was undetectable (<200 copies/mL) in 46 (40.4%) at the time of the initial SBSI. Most patients were being prescribed ART at the time of SBSI (92, 70.8%), and 65 (50%) were also on prophylactic antiretrovirals for opportunistic infections (OIs) (Table 3). Use of trimethoprim-sulfamethoxazole and/or azithromycin prophylaxis had no association with SBSI (chi-square \(P = 0.230 \)) (Table 4).

3.3. Recurrent episodes of staphylococcal bacteremia

Twenty-two persons had recurrent infections; 13 persons had 2 episodes, 6 patients had 3 episodes, 2 patients had 4 episodes and 1 patient had 5 episodes. The average duration between each SBSI...
Fig. 2. Comorbidities/coinfections in PWH at SAC between 2000 and 2018 comparing those with SBSI to those without SBSI. HCV ab = hepatitis C antibody positive (n = 2824 no SBSI, n = 104 SBSI), Syphilis EIA = syphilis enzyme immunoassay (n = 1566 no SBSI, n = 49 SBSI), CVA = cerebrovascular event, TB = tuberculosis, defined as current disease or latent. Liver disease is defined as all cause; including persons with cirrhosis or hepatitis. Diabetes including both insulin dependent and not insulin dependent. Neutropenia defined as absolute neutrophil count <500/mm³ (n = 1253 no SBSI, n = 130 SBSI, unless otherwise specified).

Fig. 3. Cumulative Survival Curve for PWH with SBSI compared to those without. The mortality rate was greater in those who had SBSI at 74.9/1000 PY (95% CI 59.2–94.9) compared to those with no SBSI at 16.0/1000 PY (95% CI 14.4–17.7) generating an unadjusted mortality Hazard Ratio (HR) for SBSI of 4.88 (95% CI 3.77–6.32 P <0.001).
episode was 491 days (range 33–3121 days). In the person who had 5 episodes, these were all MRSA and separated by a minimum of 209 days. There was one case of polymicrobial SBSI due to MSSA followed 6 days later by CoNS-BSI. There were 11 instances where the recurrent BSI was with a different etiology all separated by at least 57 days. One PWH had a MSSA, MRSA and CoNS bacteremia all during the study period. The initial MSSA episode was followed by another MSSA-BSI 164 days later, an MRSA-BSI 82 days later and 273 days later had a CoNS-BSI. Most recurrent SBSI (60%) and the polymicrobial episode occurred in PWID.

3.4. Outcomes analysis

Overall, 423 deaths occurred over the 19-year follow-up period with a total mortality rate of 18.3/1000 patient-years (PY) (95% CI 16.6–20.1). The mortality rate was greater in those who had SBSI at 74.9/1000 PY (95% CI 59.2–94.9) compared to those with no SBSI at 16.0/1000 PY (95% CI 14.4–17.7) generating an unadjusted mortality Hazard Ratio (HR) for SBSI of 4.88 (95% CI 3.77–6.32, P < 0.001) (Fig. 3). The mortality for persons with SBSI remained higher HR=2.61 (95% CI 1.95–3.49, P < 0.001) following adjusting for age at HIV diagnosis, ethnicity, sex, CD4 nadir and HIV risk category when compared to PWH with no SBSI (Table 5).

Seventy deaths occurred in persons with SBSI over the 19-year follow-up period with 28 (40%) occurring in the first year following SBSI. The overall 30-day mortality for all SBSI was 9.2% with 1-year mortality of 21.5%. The 30-day mortality rate was higher amongst those with MRSA (14.7%) compared to those with MSSA (10.0%), however likely due to low numbers this did not reach significance (P = 0.278). 1-year mortality rates for those with MSSA/MRSA was 23.8%. The rate was higher amongst MRSA (26.5%) compared to those with MSSA (22.0%), however this did not reach significance (P = 0.618) (Fig. 4). CoNS had the lowest 30-day mortality (4.3%). Those with recurrent bacteremia had 30-day mortality rates of 5.7%, with 1-year mortality being 20.0%.

![Cumulative Survival by Organism](image_url)
Most patients with SBSI (65.4%) were hospitalized with 34.6% being managed in an ambulatory/community-based healthcare setting. Of outpatient cases, 40% had MSSA, 17% had MRSA and 42% had CoNS. While average duration of hospitalization was 31.6 days (range 2–209 days), those with CoNS bacteremia had longer length of stay (LOS) (36.9 days) compared to either types of SAB (LOS MRSA 29.8 days and MSSA 28.31 days). The most common reason for hospitalization for those who had MSSA BSI was due to cardiac disease or respiratory disease, MRSA was due to respiratory disease or the bacteremia itself and for CoNS-BSI was HIV related disease or psychiatric admission (Supplemental Figure 1). Hospitalized cases had a 15% 30-day mortality rate and 25% 1-year mortality. No deaths occurred in the community treated patients.

HA-SBSI had higher 30-day mortality compared to CA-SBSI, 22.2% vs 7.1%, (chi-square P = 0.040) as well as higher 1-year mortality 44.4% vs 17.9% (chi-square P = 0.011). Being a CA-pathogen was associated with improved 1-year mortality HR=0.33 (95% CI 0.15–0.76, P = 0.009) (Table 3). Of the 8 persons who died within one-year following HA-SBSI, 2 were MSSA, 1 MRSA and 5 were CoNS. Of persons with CLABSIs, 5/12 (41.7%) died within 1-year.

4. Discussion

The greatest association for SBSI among PHIV was seen in persons with PWID or heterosexual HIV risk factors, with CD4 nadirs less than 200 cells/mm², of Indigenous/Metis ethnicity and coreidence with HCV. The rates of SBSI were greater among heterosexual populations compared to gbMSM, this is most likely explainable by PWID status, as those with self-reported IDU (injection drug use) were more likely to be heterosexual (79%) than gbMSM (21%). As previously described, rates of SBSI were greater among PWID as well as HCV-coreidence [12, 26, 27]. There were more episodes of MSSA and MRSA among PWID than CoNS. There was no significant difference between age at HIV diagnosis, sex and ethnicity among etiology of SBSI. A greater proportion of PWID and HCV-corefected PWH had MSSA/MRSA rather than CoNS.

Indigenous/Metis populations were at higher risk of SBSI. This may be attributable to risk from IDU as 47% of Indigenous/Metis persons in our cohort had current or prior self-reported history of IDU compared to the entire cohort (21%). It is possible that other variables could be impacting the association such as comorbidities (i.e. Diabetes or CKD [28]) or sociodemographic factors. Other studies have also identified an association between incidence rates of Staphylococcal infections and ethnicity [29, 30, 31]. Further data is needed to evaluate specific reasons why differences among ethnicities are seen.

There were significant numbers of reinfection among this cohort, with 35 episodes being recurrent infections. A large population-based cohort study identified that SAB reinfection rates in PWH were six-fold higher than in HIV negative populations [32]. Other risk factors identified for SAB reinfection include; renal disease, diabetes, liver disease, peptic ulcer and paraplegia [32]. One study identified HIV and IDU as independent risk factors for SAB reinfection [9].

PWH with SBSI are at increased risk of mortality and particularly within the first year following SBSI. The mortality rates between MSSA, MRSA and CoNS were not significantly different, however this may be due to a small number of cases. In an earlier study looking at the entire Calgary Health Region population by Lam et al., the 30-day mortality rates were 30.6% for MRSA and 21.3% for MSSA [4, 33]. In our PWH cohort the 30-day mortality rates for MRSA was 14.7%, 10.0% for MSSA and 4.3% for CoNS. Age has been found to be associated with increased mortality in SBSI, the average age of our cohort at time of bacteremia was 46.3 yrs. compared to 62 yrs. in the study by Lam et al. [4, 34]. HA-SBSI was associated with higher mortality rates as previously shown in other studies [4, 33]. A small proportion of our cases were HA (13.9%) compared to the study by Lam et al. (26.1%) [4]. As PWH were younger at the time of SBSI as well as more cases were CA, this may explain the reduced mortality rates seen in PWH.

Prior to 2005, there were no cases of MRSA-BSI in our cohort, however since, there have been 34 cases. Only one was HA-MRSA. A recent study reported that 52.5% of positive MRSA infections in Calgary between 2004 and 2014 were CA-MRSA [17]. The prevalence increased substantially from 3.6/100,000 population in 2004 to 41.3 cases/100,000 in 2014 [17]. In our PWH cohort in 2014 the rate for MRSA bacteremia was 251/100,000 population, which is over 6 times greater than the general population. The rates of CoNS-BSI in PWH are decreasing with time and there has been relative stability with MSSA-BSI rates, one possible explanation for this is in the improvement in management of HIV and greater accessibility to ART.

In our cohort of PWH the number of persons on ART increased from 57.9% in 2000 to 93.4% in 2017 and viral suppression of <200 copies/mL increased from 79.4% in 2000 to 96.8% in 2017 with HIV-related annual mortality rate declining from 11% in 1994 to 0.1% in 2017 [33]. Another explanation for the decline in rates of CoNS and

Characteristic Unadjusted HR	95% CI	P-Value				
Unadjusted HR of all-cause mortality based on SBSI	No SBSI	SBSI	1.00	4.88	3.77–6.32	<0.001

Adjusted HR for all-cause mortality in SBSI by different characteristics	Adjusted HR	95% CI	P-Value	
SBSI	2.61	1.95–3.49	<0.001	
Age at HIV diagnosis	1.26	1.13–1.39	<0.001	
Sex	Male	1.00		
	Female	0.75	0.56–0.99	0.042
Ethnicity	Caucasian	1.00		
	Indigenous/Metis	1.23	0.93–1.62	0.144
	African/Caribbean/Black	0.49	0.27–0.87	0.015
	Other	0.37	0.21–0.67	0.001
CD4 Nadir	>200 cells/mm³	1.00		
	≤200 cells/mm³	1.50	1.24–1.87	<0.001
PWID	No	1.00		
	Yes	2.04	1.58–2.63	<0.001
HIV Risk Factor	gbMSM	1.00		
	Heterosexual	1.33	1.03–1.71	0.027
	Other/Unknown	0.75	0.38–1.45	0.388

Follow up duration is 19 years as morality data was collected until January 1st 2019 to ensure capture of 1 year mortality of all SBSI evaluated.

* LRT done and shows no evidence that including separate effects for each group, therefore a linear trend was assumed and reported HR per group.
MRSA is likely due to improvements in infection control strategies in hospital and outpatient settings [36-38].

CoNS was more likely to be HA when compared to MSSA and MRSA and this is likely explained as it is accepted as a common nosocomial pathogen. Declercq et al. found that out of 54 BSI in a cohort of PWH, the most common organism identified was CoNS accounting for 26% of cases [11]. CoNS are also the most common cause of pseudodobacteremia [7]. We tried to include only true pathogens by excluding all cultures with growth of only one specimen from the blood sample collected. The 1-year mortality rates were higher for MSSA and MRSA, however there was no strong evidence to suggest this was significantly different compared to CoNS.

This work does have several limitations. Our population is geographically defined to Southern Alberta, therefore may not be generalizable to other populations. Due to small numbers of SBSI and deaths in our cohort, significance may not have been demonstrated in our analysis, especially when cases were subdivided into groups. It is possible that there are confounders of these associations that were not collected and evaluated in this study. Due to missing data for HCV status, this was not included in the Poisson regression model. Mortality outcomes were all cause, therefore direct linkage to SBSI cannot be made, future work should evaluate specific causes of mortality to identify associations among PWH that may benefit from prophylactic measures.

The strength of this study lies in the comprehensive, longitudinal clinical and microbiologic databases that were utilized. We identified all PWH with SBSI accessing HIV care and utilized the SAC database to provide a representative control population of PWH in our region to optimize the external validity of this study. The duration of cohort follow-up made it possible to calculate and compare mortality rates over time and in the different eras of HIV management strategies and ART availability.

While the incidence rate of SBSI is higher in PWH, the mortality rate is lower than in the past reported studies on SBSI in the same general population. PWH with SBSI were however at increased risk of mortality and particularly within the first year following SBSI. Higher 1-year mortality rates occurred in hospital-acquired infections and in gBMSM. While the mortality rates between MSSA, MRSA and CoNS, were not significant differences among SBSI may benefit from prophylactic measures.

Funding
No funding was received for this work.

Data sharing
Due to the confidential and identifiable nature of this dataset, data sharing will not be available. All authors have accessed the database and verified its accuracy.

Declaration of Competing Interest
M.J. Gill has received honoraria as ad hoc member of national HIV advisory Boards to Merck, ViiV and Gilead. All other authors report no conflict.

Supplementary materials
Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.eclinm.2020.100675.

References
[1] Laupland KB, Lytyikainen O, Sogaard M, et al. The changing epidemiology of Staphylococcus aureus bloodstream infection: a multinational population-based surveillance study. Clin Microbiol Infect 2013;19(3):463–71.
[2] Laupland KB, Church DL. Population-based epidemiology and microbiology of community-onset bloodstream infections. Clin Microbiol Rev 2014;27(4):647–64.
[3] Laupland KB, Church DL, Gregson DB. Blood cultures in ambulatory outpatients. BMC Infect Dis 2005;5:35.
[4] Lam JC, Gregson DB, Robinson S, Somayaji R, Conly JM, Parkins MD. Epidemiology and outcome determinants of staphylococcus aureus bacteraemia revisited: a population-based study. Infection 2019;47(6):961–71.
[5] Boulet SL, Daum RS. Community-associated methicillin-resistant Staphylococcus aureus: epidemiology and clinical consequences of an emerging epidemic. Clin Microbiol Rev 2010;23(3):616–87.
[6] Allard C, Carignan A, Bergevin M, et al. Secular changes in incidence and mortality associated with Staphylococcus aureus bacteraemia in Quebec, Canada, 1991–2005. Clin Microbiol Infect 2008;14(5):421–8.
[7] Souvenir D, Anderson Jr. DE, Dalpan P, et al. Blood cultures positive for coagulase-negative staphylococci: antiseptics, pseudobacteraemia, and therapy of patients. J Clin Microbiol 1998;36(7):1023–6.
[8] Huson MA, Stolp SM, van der Poll T, Grobusch MP. Community-acquired bacterial bloodstream infections in HIV-infected patients: a systematic review. Clin Infect Dis 2014;58(1):79–92.
[9] Stammerer Jahlf B, Dahl-Knutson J, Petersen A, Skov R, Benfield T. Outcome and reinfection after Staphylococcus aureus bacteremia in individuals with and without HIV-1 infection: a case-control study. BMJ Open 2014;4(4):e004075.
[10] Meyer CN, Skningar P, Prag J. Bacteremia in HIV-positive and AIDS patients: incidence, species distribution, risk factors, outcomes, and influence of long-term prophylactic antibiotic treatment. Scand J Infect Dis 1994;26(6):635–42.
[11] Declercq S, De Munter P, Derdeleinckx I, et al. Characteristics, causes, and outcome of 54 episodes of bloodstream infections in a cohort of HIV patients. Infect Dis (Lond) 2014;47(9):631–3.
[12] Yehia BR, Fleishman JA, Wilson L, et al. Incidence of and risk factors for bacteremia in HIV-infected adults in the era of highly active antiretroviral therapy. HIV Med 2011;12(9):535–43.
[13] Ortega M, Almeida M, Soriano A, et al. Bloodstream infections among human immunodeficiency virus-infected adult patients: epidemiology and risk factors for mortality. Eur J Clin Microbiol Infect Dis 2008;27(10):959–76.
[14] Burley MD, Wilson LE, Moore RD, Lucas GM, Francis J, Gebe KA. The incidence and risk factors for MRSA bacteraemia in an HIV-infected cohort in the HAART era. HIV Med 2008;9(10):858–62.
[15] Meynard JL, Guiguet M, Fonquernie L, et al. Impact of highly active antiretroviral therapy on the occurrence of bacteremia in HIV-infected patients and their epidemiologic characteristics. HIV Med 2003;4(2):127–32.
[16] Afessa B, Morales I, Weaver B. Bacteremia in hospitalized patients with human immunodeficiency virus: a prospective, cohort study. BMC Infect Dis 2001;1:13.
[17] Gill VC, Ma L, Guo M, Gregson DB, Naugler C, Church DL. Sociodemographic and geospatial associations with community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) infections in a large Canadian city: an 11 year retrospective study. BMC Public Health 2019;19(1):914.
[18] Gilbert M, Macdonald G, Gregson D, et al. Outbreak in Alberta of community-acquired (USA300) methicillin-resistant Staphylococcus aureus in people with a history of drug use, homelessness or incarceration. CMAJ 2006;175(2):149–54.
[19] Haddy RJ, Richmond BW, Trappe FM, Fannin KZ, Ramirez JA. Septicemia in patients with AIDS admitted to a university health system: a case series of eighty-three patients. J Am Board Fam Med 2012;25(3):318–22.
[20] Miller JM, Binnicker MJ, Campbell S, et al. A guide to utilization of the microbiology laboratory for diagnosis of infectious diseases: 2018 update by the infectious diseases society of America and the American society for microbiology. Clin Infect Dis 2018;67(6):e1–694.
[21] Wilson ML, Mirrett S, Keller LB, Weinstein MP, Reimer LG. Recovery of clinically important microorganisms from the BacT/Alert blood culture system does not require testing for seven days. Diagn Microbiol Infect Dis 1993;16(1):31–32.
[22] Coombs RV, Reid T. Outcome and risk factors for MRSA bacteremia in an HIV-infected cohort in the HAART era. J Acquir Immun Defic Syndr 2015;70(1):32–3.
[23] Canadian Diabetes Association Clinical Practice Guidelines Expert C, Harris SB, Bhattacharyya O, Dyck R, Hayward MN, Toth EL. Type 2 diabetes in Aboriginal peoples. Can J Diabetes 2013;37(Suppl 1):S191–6.
[29] Irvine J, Canadian Paediatric Society FNI, Metis Health C. Community-associated methicillin-resistant Staphylococcus aureus in Indigenous communities in Canada. Paediatr Child Health 2012;17(7):395–8.

[30] Tong SY, van Hal SJ, Ensiedel L, Currie BJ, Turnidge JD. Australian New Zealand Cooperative on Outcomes in Staphylococcal S. Impact of ethnicity and socio-economic status on Staphylococcus aureus bacteremia incidence and mortality: a heavy burden in Indigenous Australians. BMC Infect Dis 2012;12:249.

[31] Serota DP, Niehaus ED, Schechter MC, et al. Disparity in quality of infectious disease vs addiction care among patients with injection drug use-associated staphylococcus aureus bacteremia. Open Forum Infect Dis 2019;6(7):ofz289.

[32] Wiese L, Mejer N, Schonheyder HC, et al. A nationwide study of comorbidity and risk of reinfection after Staphylococcus aureus bacteremia. J Infect 2013;67(3):199–205.

[33] Laupland KB, Ross T, Gregson DB. Staphylococcus aureus bloodstream infections: risk factors, outcomes, and the influence of methicillin resistance in Calgary, Canada, 2000-2006. J Infect Dis 2008;198(3):336–43.

[34] van Hal SJ, Jensen SO, Vaska VL, Espedido BA, Paterson DL, Gosbell IB. Predictors of mortality in Staphylococcus aureus Bacteremia. Clin Microbiol Rev 2012;25(2):362–86.

[35] Hanhoff N, Vu Q, Lang R, Gill M. Impact of three decades of antiretroviral therapy in a longitudinal population cohort study. Antivir Ther 2019;24(3):153–69.

[36] Walz JM, Ellison RT, 3rd MackDA, et al. The bundle “plus”: the effect of a multidisciplinary team approach to eradicate central line-associated bloodstream infections. Anesth Analg 2015;120(4):868–76.

[37] Henderson DM, Strager TG, Peterson GN, et al. A collaborative, systems-level approach to eliminating healthcare-associated MRSA, central-line-associated bloodstream infections, ventilator-associated pneumonia, and respiratory virus infections. J Healthc Qual 2012;34(5):39–47 quiz 8-9.

[38] Lawes T, Lopez-Lozano JM, Nebot CA, et al. Effects of national antibiotic stewardship and infection control strategies on hospital-associated and community-associated meticillin-resistant Staphylococcus aureus infections across a region of Scotland: a non-linear time-series study. Lancet Infect Dis 2015;15(12):1438–49.