The Value and Clinical Significance of ZNF582 gene Methylation in the Diagnosis of Cervical Cancer

Chunhe Zhang
Shihezi University School of Medicine

Shaowei Fu
Shihezi University School of Medicine

Luyue Wang
Shihezi University School of Medicine

Fang Wang
Shihezi University School of Medicine

Dan Wu
Shihezi University School of Medicine

Xiangyi Zhe
Shihezi University School of Medicine

Huizhen Xin
Shihezi University School of Medicine

Hongtao Li
Shihezi University School of Medicine

Dongmei Li
Shihezi University School of Medicine

Fuyuan Jin
Shihezi University School of Medicine

Renfu Shao
Shihezi University School of Medicine

Zemin Pan (✉ panteacher89@sina.com)
Department of Biochemistry and Molecular Biology, School of Medicine, Shihezi University, Xinjiang, China.
https://orcid.org/0000-0001-5833-0369

Primary research

Keywords: cervical cancer, ZNF582 gene, promoter methylation, HPV16/18, gene expression

DOI: https://doi.org/10.21203/rs.3.rs-41008/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background This study aimed to determine whether ZNF582 gene methylation and tissue protein expression can be used as a tool with high sensitivity and specificity for cervical cancer screening. We analyzed the correlation between promoter methylation of the zinc finger protein 582 (ZNF582) gene and cervical cancer and high risk HPV16/18 infection.

Methods Tissue samples of normal cervical or chronic cervicitis (n=51), CIN (cervical intraepithelial neoplasia) (n=35), and cervical carcinoma (n=68) were tested for HPV16/18 infection by polymerase chain reaction (PCR). We also detected the methylation status of the ZNF582 gene promoter in the same tissues by methylation specific PCR (MSP), then analyzed the correlation between ZNF582 promoter methylation and HPV16/18 infection. Immunohistochemistry was used to analyze ZNF582 gene expression in 152 cervical tissues. We detected ZNF582 mRNA expression in cervical tissues (including cancer and non-cancer) by real-time fluorescence quantitative PCR (qRT-PCR).

Results Among 93 high grade cervical lesions (CINII and above) and cervical cancer samples, 57 cases were positive for HPV16/18 infection and 36 cases were negative. ZNF582 gene methylation occurred in 9 out of 51 cases in normal cervical tissues (17.6%), 16 of 35 cases in CIN tissues (45.7%), and 50 of 68 cases in cervical cancer (73.5%). The differences in methylation rate of the three groups were statistically significant ($P<0.05$). The ZNF582 methylation rate in the positive HPV16/18 infection group was 73.7%, while the negative group was 63.9%. Compared with normal tissues, ZNF582 protein was highly expressed in cervical cancer tissues, but mRNA expression was low.

Conclusion While ZNF582 protein is highly expressed in cervical cancer tissues, it was not sufficient for use as a standard for cervical cancer staging. On the other hand, ZNF582 promoter methylation had high specificity and sensitivity in detecting CINII and highly diseased cervical lesions and could be used as a diagnostic marker for cervical cancer of women.

Background

Cervical cancer is the second most common cancer and also the one of leading causes of cancer death in women in less developed regions[1, 2]. Xinjiang, especially in the south, has one of the highest incidences of cervical cancer in China. The prevalence and mortality of cervical cancer are both higher in Uygur women than in other ethnic groups in the same region[3]. Surveys suggested that the highest rate of infection in Xinjiang Uygur women is HPV16/18, followed by HPV52, and HPV53[4]. Although most women are infected with HPV at some point, research has shown that less than 1% of women will eventually progress to cervical cancer[5]. Although the diagnostic techniques and treatment strategies for cervical cancer have improved, cervical cancer mortality remains high, and tumor invasion and metastasis remain important obstacles for cervical cancer treatment[6]. Therefore, finding an early diagnosis of cervical cancer is crucial[7].

Genetic and epigenetic changes in the host and/or viral genome after the continuous infection of the high-risk type of human papillomavirus (hrHPV) are thought to be associated with the development of invasive cervical cancer[8–10]. It is known that cervical cancer is caused by the mutation and deletion of genes, but with in-depth exploration of tumors in recent years, there is increasing evidence that hypermethylation and histone modifications of promoter abnormalities are also necessary for cancer tissue metastasis[11]. Thus, HPV is sensitive to cervical cancer, but its specificity is low. A large number of false positive results can lead to unnecessary medical measures and
psychological burden[12]. Therefore, we need new and better markers with higher specificity and sensitivity for cervical cancer screening.

The progression of HPV-induced precancerous lesions to invasive cancer is due to the accumulation of genetic and epigenetic aberrations affecting host cell genes, leading to activation of oncogenes and/or inactivation of tumor suppressor genes[9]. DNA methylation is one of the epigenetic mechanisms that influence gene transcription, chromatin structure, genomic stability, and inactivation of imprinted genes, and X chromosomes[13]. When the promoter region of a tumor suppressor gene is highly methylated, this usually results in inactivation of the suppressor gene[14]. In some experiments, methylation profiles of human cervical cancer and normal cervix, methylation status in different degrees of cancer tissues and cervical smears, and protein expression were observed, and methylation of the ZNF582 promoter was observed in all cervical cancer samples[15–17]. Therefore, we investigated whether gene methylation can be used as a biomarker to examine disease progression and determine whether it can be used as a means of detecting cervical cancer.

Materials And Methods

Patients

We collected 154 cases of fresh cervical tissue specimens from Uygur women obtained by surgical resection or biopsy from May 2010 to May 2018 at the First Affiliated Hospital of Shihezi University, the Third Affiliated Hospital, the Kashgar People’s Hospital and the Xinjiang Autonomous Region Chinese Medicine Hospital. The patients had an average age of 47 years (range 23-73), with cervical cancer but had not received chemotherapy or radiotherapy. Lesions included 51 normal cervical tissue or chronic cervicitis cases, 35 cases of CIN, and 68 cases of cervical cancer. All samples were confirmed by the hospital pathology department and consent of the patient and her family was obtained. At the same time, we collected the name, age, pathological stage, and other major patient data. The specimen collection was approved by the “Ethics Committee of the First Affiliated Hospital of Shihezi University School of Medicine”, and all patients signed the informed consent.

Methods

Extracting tissue DNA

Genomic DNA was extracted from 30 mg of tissue with the DNAprep kit. Pure paraffin embedded tissue DNA is produced in Beijing Tiangen Biotech Co., Ltd. The quality of DNA was assessed by 0.7% agarose gel electrophoresis and stored at -20°C.

Sulfite modification of DNA

About 1 µg of DNA was subjected to bisulphite treatment using the DNA modification kit (CpGenomeTM, S7820 Kit, CHEMICON company). Then, bisulite-converted DNA was used as a template for detection of ZNF582 gene methylation in all samples using the methylation specific PCR (MSP) method.

High risk human papillomavirus (HPV16, 18) infection detection

Primer design: Optimal primers were designed according to the HPV16 and HPV18 gene sequences provided by the GenBank database on the NCBI website (Table 1). Primers were synthesized by Shanghai Sheng Gong Bioengineering Co., Ltd., and the mass spectrometry results were satisfactory.
PCR detection of HPV16 and HPV18 viral DNA was performed on all samples. PCR reactions were 25 µL and included 12.5 µL PCR mix, 10.5 µL sterile water, primers and DNA. Cycle parameters included: pre-denaturation at 95°C for 10 min, then 35 cycles 95°C 30 s, 57°C 40 s, 72°C 40 s, and a final extension for 5 min at 72°C. The amplified fragment size was 268 bp, the reaction products were run on a 2% agarose gel by electrophoresis, and identified in the gel imaging system.

Methylation-specific PCR

Primer design: The ZNF582 gene sequence was obtained from the UCSC website (http://genome.ucsc.edu/), and the methylation-specific PCR primers for ZNF582 were acquired from MethPrimer (http://www.urogene.org/cgi-bin/methprimer/methprimer.cgi) Website Design (Table 1).

RNA extraction and qRT-PCR

The RNA was extracted from tissue by Trizol. All reagents and solutions used in the procedure were RNase-free. The RNA was further extracted by the RNA extraction kit of Pure RNAprep paraffin embedded tissue sections, DP439. RNA was converted to cDNA by reverse transcriptase. Real-time PCR was performed using the SYBR® Green PCR Kit (Qiagen, Germany) and β-actin as an internal reference gene to detect the expression of the ZNF582 gene, and each sample was tested in three replicates.

Immunohistochemistry

Immunohistochemistry (IHC) was carried out in strict accordance with the kit instructions. The primary antibody was replaced with phosphate buffered saline (PBS) as a negative control. The primary antibody (ZNF582 antibody, purchased from Sigma-Aldrich (Shanghai) Trading Co., Ltd.) was diluted to 1:200. The second antibody is a rabbit and mouse universal antibody labeled with horseradish peroxidase.

Statistical analysis

The data was analyzed by the statistical package SPSS 17.0. The χ²- test was used to analyze the qualitative data and correlation. The results data of qRT-PCR detection and measurement data were analyzed by using a two-sample t-test. The P-value <0.05 was considered statistically significant.

Table 1 Primer information
Gene name	Primer information (5'-3')	Product size(bp)	Annealing temperature (°C)
ZNF582(M)	F:5'-GTAATTAGGGATTCGAATATACGA-3'	142	51
	R:5'-CCGAAAAACATAATCTTTAAACGTA-3'		
ZNF582(U)	F:5'-GTAATTTAGGGATTGAATATAGA-3'	142	51
	R:5'-CCAAAAAACATAATCTTTAAACATA-3'		
HPV16	F:5'-GACCCAGAAAGTTACCACAG-3'	268	57
	R:5'-CACAAACGTTTTGTTGATTG-3'		
HPV18	F:5'-TGCCAGAAACCGTTGAATCC-3'	268	55
	R:5'-TCTGAGTCGCTTAATTGCTC-3'		
β-actin	F:5'-CCCAGCACAATGAAGATCAA GATCAT-3'	101	56
	R:5'-ATCTGCTGGAAAGGTGGGACAGCG-3'		

M: Methylated-specific primers; U: unmethylated-specific primers; F: forward primer; R: reverse primer

Results

Infection of HPV 16 and 18 in cervical tissues with different degrees of lesion

Statistical analysis was performed on HPV16 and HPV18 infection in cervical tissues of 154 women. The results showed that in normal and chronic cervicitis, CIN, and cervical cancer tissues, the HPV16 infection rates were 19.6, 34.3, and 64.7%, respectively, and demonstrated an increasing trend with severity. The infection rates of HPV18 were 2, 8.6, and 13.2%, respectively. The multiple comparison of infection rates of HPV16 in the above groups, and the difference were statistically significant (P< 0.05), while that of HPV18 was not. HPV16 and HPV18 infection rates were statistically significant in the CIN and cervical cancer groups, and the difference was also significant in the normal and cervical cancer groups. (Table 2).
Table 2
The infection status of HPV16/18

groups	HPV16 infection(%)	χ^2 value	P value	HPV18 infection(%)	χ^2 value	P value	HPV16/18 infection(%)	χ^2 value	P value
normal	19.6(10/51)	45.75	0.000*	2.0(1/51)	0.826	0.363	21.6(11/51)	1.713	0.191
CIN	34.3(12/35)	8.619	0.003Δ	8.6(3/35)	0.14	0.708	34.3(12/35)	9.508	0.002Δ
cancer	64.7(44/68)	23.913	0.000#	13.2(9/68)	3.459	0.063	66.2(45/68)	23.277	0.000#

*: $P<0.05$, normal group compared with CIN group ; Δ: $P<0.05$, CIN group compared with cancer group ; #: $P<0.05$, normal group compared with cancer group.

The ZNF582 gene promoter is highly methylated in cervical cancer tissues.

We tested the methylation level of the ZNF582 gene promoter in the collected samples. ZNF582 methylation occurred in nine of 51 normal cervical tissues (17.6%), 16 of 35 CIN tissues (45.7%), and 50 out of 68 cervical cancer cases (73.5%). The difference in methylation rates of the ZNF582 gene in the three groups was statistically significant ($P<0.05$). With the development of the disease, the probability of methylation showed an increasing trend. (Table 3)

Table 3
The frequency of the ZNF582 promoter methylation

Groups	Total	Methylated(%)	Unmethylated(%)	χ^2 value	P value
normal	51	17.6(9/51)	82.4(42/51)	7.930	0.005*
CIN	35	45.7(16/35)	54.3(19/35)	7.767	0.005Δ
cancer	68	73.5(50/68)	26.5(18/68)	36.406	0.000#

*: Normal group compared with the CIN group ; Δ: CIN group compared with the cancer group ; #: normal group compared with the cancer group.

DNA methylation was modified in the ZNF582 genomic promoter region and we designed methylation and non-methylation specific primers. The non-methylated PCR product was 142 bp. A band corresponding to the methylated promoter was present in the sample with methylation, and absent in the unmethylated sample. (Fig. 1)

Relationship between methylation of ZNF582 gene and HPV infection in cervical cancer tissues

Among 93 high grade cervical lesions and cervical cancer tissue samples, 57 HPV16/18 positive and 36 negative samples were included. In the positive group, 42 cases (73.7%) were methylated at the ZNF582 promoter. The negative group had 23 cases (63.9%) of methylation. There was no statistically significant difference between the two groups ($\chi^2 = 1.006, P>0.05$) (Table 4).
Table 4
The distribution of ZNF582 promoter methylation and HPV16/18 infection of in CINI, III and cervical cancer tissues

Group	Total	Methylated	Unmethylated	Methylation rate(%)
HPV16/18 positive	57	42	15	73.7
HPV16/18 negative	36	23	13	63.9

$\chi^2 = 1.006 \ P = 0.316$

The mRNA expression level of ZNF582 promoter methylation was significantly reduced.

The mRNA expression in 10 cases of cervical cancer with methylation was 0.46 ± 0.33, while in 10 cases of normal cervical tissue with no methylation the RNA expression was 1.05 ± 0.16. The expression level of mRNA, in the methylation positive group, was significantly lower than the negative group ($P < 0.01$), the differences were statistically significant. (Table 5, Fig. 2)

Table 5
ZNF582 gene expression analysis

Groups	mRNA expression (\(\bar{x} \pm s\))
Methylation negative	1.0493 ± 0.16315
Methylation positive	0.4554 ± 0.32580
\(P\)	< 0.000

Correlation between promoter methylation of ZNF582 gene and clinical pathological factors

The results showed that there was no correlation between age, FIGO stage or ZNF582 gene promoter methylation ($P > 0.05$) in 68 cases of cervical cancer (Table 6).

Table 6
ZNF582 promoter methylation with clinical information of cervical cancer patients

Clinical factor	Total	Methylated	Unmethylated	Methylation rate(%)	χ^2 value	\(P\) value
Age/year						
< 50	38	26	12	68.4(26/38)	1.155	0.283
\geq 50	30	24	6	80.0(24/30)		
FIGO stage						
I	42	30	12	71.4(30/42)	0.753	0.785
II	18	13	5	72.2(13/18)		
III	8	7	1	87.5(7/8)		

Diagnostic efficacy of ZNF582 promoter methylation and HPV16/18 infection

We compared the sensitivity, specificity, and positive and negative predictive value of ZNF582 promoter methylation and HPV16/18 infection detection in normal cervical tissue, low-grade cervical intraepithelial neoplasia (CINI), high-
grade cervical intraepithelial neoplasia (CINII and CINIII) and cervical cancer tissue. The results showed that with the sensitivity and specificity of cervical cancer diagnosis, the ZNF582 promoter methylation was 69.9% and 83.6%, respectively. The sensitivity and specificity of methylation of ZNF582 gene promoter was higher than that of HPV16/18 infection, and its sensitivity and specificity are 61.3% and 82.0%, respectively (Table 7).

Table 7

Groups	Sensitivity(%)	Specificity(%)	PPV(%)	NPV(%)		
	HSIL/cancer	Normal	Normal/LSIL	HSIL/Cancer	Normal	Normal /LSIL
HPV16/18	61.3(57/93)	78.4(40/51)	82.0(50/61)	83.8(57/68)	52.6(40/76)	65.8(50/76)
ZNF582	69.9(65/93)	84.3(42/51)	83.6(51/61)	86.7(65/75)	53.2(42/79)	64.6(51/79)

HSIL: High grade cervical squamous cell injury, including CINII and CINIII. LSIL: Low grade cervical squamous cell injury, including CINI. PPV: positive predictive value. NPV: positive predictive value

ZNF582 protein expression is increased expression in cervical cancer tissues.

We analyzed ZNF582 protein levels in 88 tissues of cervical cancer tissue and normal cervical tissue by immunohistochemistry. Compared with normal tissues, ZNF582 expression was abnormally upregulated; 86 of 87 cancer patient samples were positive, suggesting ZNF582 protein expression levels can be used to diagnosis cervical cancer (Table 8, Fig. 3).

Table 8

	Negative	Weak	Moderate	Strong	Total	Z value	P value
Cervicitis tissues	10	28	26	4	68	47.57	< 0.0001
Cervical cancer tissues	1	2	38	46	87	101.78	

Experimental results were tested by the Wilcoxon rank sum test. Data show that ZNF582 was highly expressed in cancer tissues, and the difference was significant.

Discussion

Cervical cancer is one of the leading causes of cancer death in women, and the 5-year survival rate of these patients is low[18]. Although research in cervical cancer has made great strides, it is still a serious burden, especially in China[19]. The overall survival rate of a patient with an early diagnosis of cervical cancer has increased in recent years; however, the prognosis of metastatic cervical cancer remains poor[20]. For individualized care and management of patients with cervical cancer, it is important to identify diagnostic and prognostic biomarkers that can be effectively used to guide treatment decisions[7, 21, 22]. Epidemiological and molecular studies support the conclusion that persistent infections of high risk types of human papillomavirus (HPV) are essential but not exclusive prerequisites for cervical carcinogenesis, and has led to the development of HPV DNA testing to improve cervical cancer screening strategies[23, 24]. Additional genetic and epigenetic alterations are required for progression from precancerous disease to invasive cancer[25, 26]. Specific epigenetic processes include DNA methylation, chromatin remodeling, histone modification, and microRNA regulations[27]. CpG methylation of promoters, an important epigenetic mechanism for gene silencing, is an early and frequently identified alteration in carcinogenesis[28].
Immunohistochemical staining showed that ZNF582 was weakly expressed in normal cervical tissues but highly expressed in cervical cancer. However, experimental studies have shown that ZNF582 mRNA has low expression in cervical tissues.

The specific mechanism of the inconsistent expression of ZNF582 at the mRNA and protein levels is unclear, and further experimental verification is required[29–31]. It is possible to measure ZNF582 protein expression by immunohistochemistry for cervical cancer diagnosis.

Methylation results showed that in normal tissues, CIN, and cervical cancer tissues, the methylation rates of ZNF582 gene were 17.6, 45.7, and 73.5%, respectively. With the severity of disease, the methylation rate of the ZNF582 promoter increased gradually.

At the same time, our study found that there was no significant correlation between age or FIGO stage and the methylation rate of ZNF582 in 68 cases of cervical cancer. We used real-time quantitative PCR to detect ZNF582 gene expression in methylation positive and negative cervical tissues. The results showed that the expression level of the methylation positive group was significantly lower than the negative group ($P<0.01$). In this study, we analyzed 93 cases of high grade cervical injury (CINII and above) and cervical cancer samples, and a total of 57 samples of HPV16/18 infection, 36 cases without infection. The ratio of methylated ZNF582 in the HPV16/18 infection positive group was 73.7%, while the negative was 63.9%. The difference was not statistically significant. This result suggested that HPV16/18 infection may have no relation to the methylation of the ZNF582 gene promoter.

Our results indicated that ZNF582 mRNA was weakly expressed, possibly caused by excessive methylation of the ZNF582 gene, but its protein was highly expressed in cervical cancer tissues, due to other unclear mechanisms in vivo. In the diagnosis of cervical cancer, we compared the sensitivity and specificity of ZNF582 gene methylation and HPV16/18 infection detection. In the HPV infection negative and positive samples, the methylation rate of the ZNF582 gene promoter was 69.9% and 83.6%, respectively. The methylation rate of the ZNF582 gene promoter was not affected by cervical lesion grade.

Conclusion

In order to reduce the large number of false positive results of HPV testing, which may cause unnecessary medical measures and psychological burden in women, the degree of methylation of the ZNF582 gene promoter can be measured. Because of its high specificity and sensitivity to CINII and above, it can be used as a diagnostic indicator of cervical cancer. In addition, ZNF582 protein expression is increased in cervical cancer tissues, and is a possible diagnostic tool for cervical cancer.

Abbreviations
Table 9
List of abbreviations

Abbreviations	Definitions
CIN	Cervical intraepithelial neoplasia
HPV	Human papillomavirus
hrHPV	High-risk type of human papillomavirus
MSP	Methylation specific PCR
ZNF582	Zinc finger protein 582

Declarations

Ethical approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and materials

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Funding

We acknowledge funding support from the International Science and Technology Collaboration Projector of Xinjiang Production and Construction Corps (grant numbers 2019BC007), the National Natural Science Foundation of China (grant numbers: U1503125, 81660462), the Youth Project Development and Regeneration Key Laboratory of Sichuan Province, the General Project Scientific Research Fund of Chengdu Medical College (grant number: SYS18-07), and the Xinjiang Production and Construction Corps Key Areas Innovation Team Project (grant number: 2018CB002).

Authors’ contributions

ZP and XZ designed the study. CZ and DW performed the gene methylation analysis and wrote the manuscript. SF and HX carried out specimen collection and DNA extraction. LW and HL carried out HPV16 identification. FW and FJ performed the statistical analyses. DL and RS participated in the experimental design and revision the manuscript. All authors read and approved the final manuscript.

Acknowledgements
We thank International Science Editing (http://www.internationalscienceediting.com) for editing this manuscript.

References

1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–86.

2. Kent A. HPV Vaccination and Testing. Rev Obstet Gynecol. 2010;3(1):33–4.

3. Wu D, Zhang J, Fan P, Li H, Li D, Pan H, He H, Ren X, Pan Z, Shao R, et al. Methylation in the promoter regions of WT1, NKX6-1 and DBC1 genes in cervical cancer tissues of Uygur women in Xinjiang. Genet Mol Biol. 2018;41(1):9–17.

4. Pan ZZ, Song YN, Zhang Q, Yu JJ, Zhang KN, Liang N, Zhang N, Ma X, Zhu JL, Zhe XY, et al: [Screening different HPV genotypes infection and type-specific in cervical exfoliated cells of women in Yili area of Xinjiang Uygur Autonomous Region, China]. Zhonghua yu fang yi xue za zhi [Chinese journal of preventive medicine] 2018, 52(9):946–950.

5. Woodman CB, Collins SI, Young LS. The natural history of cervical HPV infection: unresolved issues. Nature reviews Cancer. 2007;7(1):11–22.

6. du Toit GC, Kidd M. Prospective quality of life study of South African women undergoing treatment for advanced-stage cervical cancer. Clin Ther. 2015;37(10):2324–31.

7. Zhang L, Liu SK, Song L, Yao HR: SP1-induced up-regulation of lncRNA LUCAT1 promotes proliferation, migration and invasion of cervical cancer by sponging miR-181a. Artif Cells Nanomed Biotechnol 2019, 47(1):556–564.

8. Snijders PJ, Steenbergen RD, Heideman DA, Meijer CJ. HPV-mediated cervical carcinogenesis: concepts and clinical implications. J Pathol. 2006;208(2):152–64.

9. Steenbergen RD, Snijders PJ, Heideman DA, Meijer CJ. Clinical implications of (epi)genetic changes in HPV-induced cervical precancerous lesions. Nature reviews Cancer. 2014;14(6):395–405.

10. A DSLM MMCJL, Johannes B, T HA FSPJ. M SRD, M HDA: Methylation analysis of the FAM19A4 gene in cervical scrapes is highly efficient in detecting cervical carcinomas and advanced CIN2/3 lesions. Cancer prevention research (Philadelphia, Pa) 2014, 7(12).

11. Fang J, Zhang H, Jin S. Epigenetics and cervical cancer: from pathogenesis to therapy. Tumor Biology. 2014;35(6):5083–93.

12. Lyne E, Reboli M. Primary HPV screening for cervical cancer prevention: results from European trials. Nature reviews Clinical oncology. 2009;6(12):699–706.

13. Bird A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002;16(1):6–21.

14. van Splunter AP, Meijer CJLM, Duin S, Steenbergen RDM, van der Zee RP, Prins JM, Richel O, de Vries HJC, van Noesel CJM, Ciocanea-Teodorescu I, et al. Host Cell Deoxyribonucleic Acid Methylation Markers for the Detection of High-grade Anal Intraepithelial Neoplasia and Anal Cancer. Clin Infect Dis. 2018;68(7):1110–7.

15. Huang R-L, Chang C-C, Su P-H, Chen Y-C, Liao Y-P, Wang H-C, Yo Y-T, Chao T-K, Huang H-C, Lin C-Y, et al. Methylomic analysis identifies frequent DNA methylation of zinc finger protein 582 (ZNF582) in cervical neoplasms. PloS one. 2012;7(7):e41060–0.

16. Li N, He Y, Mi P, Hu Y. ZNF582 methylation as a potential biomarker to predict cervical intraepithelial neoplasia type III/worse: A meta-analysis of related studies in Chinese population. Med (Baltim). 2019;98(6):e14297.
17. Liou YL, Zhang TL, Yan T, Yeh CT, Kang YM, Cao L, Wu N, Chang CF, Wang HJ, Yen C, et al. Combined clinical and genetic testing algorithm for cervical cancer diagnosis. Clin Epigenetics. 2016;8:66.
18. Zhang Y, Li T, Zhang L, Shangguan F, Shi G, Wu X, Cui Y, Wang X, Wang X, Liu Y, et al: Targeting the functional interplay between endoplasmic reticulum oxidoreductin-1 alpha and protein disulfide isomerase suppresses the progression of cervical cancer. *EBioMedicine* 2019.
19. Torbati MB, Ebrahimian M, Yousefi M, Shaabanzadeh M. GO-PEG as a drug nanocarrier and its antiproliferative effect on human cervical cancer cell line. Artif Cell Nanomed B. 2017;45(3):568–73.
20. Dasari S, Wudayagiri R, Valluru L. Cervical cancer: Biomarkers for diagnosis and treatment. Clin Chim Acta. 2015;445:7–11.
21. Somashekhar SP, Ashwin KR. Management of Early Stage Cervical Cancer. Rev Recent Clin Trials. 2015;10(4):302–8.
22. Cong J, Liu R, Wang X, Jiang H, Zhang Y. MiR-634 decreases cell proliferation and induces apoptosis by targeting mTOR signaling pathway in cervical cancer cells. Artif Cells Nanomed Biotechnol. 2016;44(7):1694–701.
23. Suba EJ, Michelow PM, Raab SS. Re: Human papillomavirus testing in the prevention of cervical cancer. J Natl Cancer Inst. 2011;103(19):1482–3. author reply 1483–1484.
24. Zhu Y, Ren C, Yang L, Zhang X, Liu L, Wang Z. Performance of p16/Ki67 immunostaining, HPV E6/E7 mRNA testing, and HPV DNA assay to detect high-grade cervical dysplasia in women with ASCUS. BMC Cancer. 2019;19(1):271.
25. Soto D, Song C, McLaughlin-Drubin ME. **Epigenetic Alterations in Human Papillomavirus-Associated Cancers.** *Viruses* 2017, 9(9).
26. Lattanzio L, Nigro CL. Epigenetics and DNA methylation in cancer. World Journal of Translational Medicine. 2015;4(01):11–24.
27. Saavedra KP, Brebi PM, Roa JC. Epigenetic alterations in preneoplastic and neoplastic lesions of the cervix. Clin Epigenetics. 2012;4(1):13.
28. Yang HJ. Aberrant DNA methylation in cervical carcinogenesis. Chin J Cancer. 2013;32(1):42–8.
29. Klaes R, Friedrich T, Spitkovsky D, Ridder R, Rudy W, Petry U, Dallenbach-Hellweg G, Schmidt D, Doeberitz MV. Overexpression of p16(ink4a) as a specific marker for dysplastic and neoplastic epithelial cells of the cervix uteri. Int J Cancer. 2001;92(2):276–84.
30. Sano T, Oyama T, Kashiwabara K, Fukuda T, Nakajima T. Expression status of p16 protein is associated with human papillomavirus oncogenic potential in cervical and genital lesions. Am J Pathol. 1998;153(6):1741–8.
31. Li Y, Nichols MA, Shay JW, Xiong Y. Transcriptional repression of the D-type cyclin-dependent kinase inhibitor p16 by the retinoblastoma susceptibility gene product pRb. Cancer Res. 1994;54(23):6078–82.

Figures
Figure 1

A. The MSP results of the promoter of ZNF582. M: marker (100–700 bp); m: Methylation-specific PCR products; u: Unmethylated-specific PCR products; 1,2: cervical cancer tissues; 3,4: cervical intraepithelial neoplasia tissues; 5,6: Normal cervical tissues. Fig. 3B and 3C show the sequencing results of the MSP products of the ZNF582 promoter. Fig. 3B is the methylation-specific PCR products and Fig. 3C is the unmethylated-specific PCR products (the reverse sequencing results); Arrows indicate the CpG loci.
Figure 2

The mRNA expression in 10 cases of cervical cancer tissue and in 10 cases of normal cervical tissue.

Condition	mRNA Expression
Cervicitis(-)	negative
Cervicitis(+)	positive
cancer(++)	
cancer(+++)	

Figure 3

ZNF582 protein expression in cervicitis and cervical cancer tissues by immunohistochemistry.