Snowmass White Paper:
The Quest to Define QFT

Mykola Dedushenko¹

¹Simons Center for Geometry and Physics,
Stony Brook University, Stony Brook, NY 11794-3636, USA

Abstract

This article provides a review of the literature on rigorous definitions and constructions in Quantum Field Theory, spanning the period of seven decades. Comparing with the ideas and constructions found in the modern physics literature, we conclude that none of the existing systems of QFT axioms can cover all the physical situations. Therefore, it is still an outstanding open problem to formulate a complete definition of QFT. We argue that the question is of relevance for both physicists and mathematicians.
1 Introduction

The subject of Quantum Field Theory is nearing the centennial, with its inception dating back to the papers [1,2], followed by [3,4] and many others. Growing mostly out of the need to reconcile special relativity with quantum mechanics, both young subjects at that time, it led to the development of the early version of perturbative QFT over the following two decades. An interesting historical account of those early years can be found in the first chapter of Weinberg’s excellent textbook [5]. One of the biggest challenges that had to be overcome were the UV divergences, which eventually led to the development of renormalization techniques by the end of forties in the works of Dyson, Feynman, Schwinger, and Tomonaga, [6–19].

A new field, with all its strange renormalization machinery, desperately needed a clear set of rules, or axioms, from which everything else would follow in a logical manner. Such rules would “distill” the subject into a mathematical subfield, but they were also necessary due to the limitations of the perturbative Lagrangian techniques. Thus starting from the fifties, various axiomatics for QFT began to appear. For the purpose of this paper, we will consider Wightman’s axioms [20–23] as the start of that process, which will inevitably miss some earlier attempts, such as the S-matrix program of Heisenberg [24], a closely related extended (off-shell) S-matrix approach of Bogolyubov-Medvedev-Polivanov [25], or axioms of Lehmann-Symanzik-Zimmermann [26,27] (the LSZ reduction formula, however, became part of the standard QFT formalism). Some of the other approaches are still being developed nowadays. Here we would like to give a brief overview of these issues, and discuss the range of applicability of various axiom systems. A point that we want to make is that none of the existing definitions covers the full range of notions of Quantum Field Theory that appears in the physics literature.

Having a rigorous system of axioms for a physics subfield has two philosophical motivations. On the one hand, it provides a starting point for mathematical investigations, sort of extracting the abstract truth from the messy reality. On the other, it indicates that the physical understanding of the subject has matured enough. Indeed, most other physics subfield (all the “non-quantum” physics and the nonrelativistic quantum mechanics) have already undergone this process. The fact that QFT does not have (as we will see) one clear and universal set of axioms likely shows that the physical understanding is still lacking. Hence, we argue, it is a challenge both for physicists and for mathematicians to define QFT. Below we will provide a brief overview of the existing approaches.

Announcement: comments are highly appreciated!
2 Existing axiomatics

2.1 Correlator-focused approaches

Wightman axioms. One of the older axiom systems that remains relevant to date is that due to Wightman \[20–23\] (see also books \[25, 28, 29\]). The axioms view fields as operator-valued tempered distributions and formalize the notion of expectation values of their products (“Wightman functions”). One starts with the assumption (W0) of relativistic invariance (as in Wigner’s classification \[30\] see also \[31–34\]): physical Hilbert space is a unitary representation of the Poincare group. This assumption is supplemented by the spectral condition (the energy-momentum spectrum lies in the closed upper light-cone) and the uniqueness and Poincare-invariance of the vacuum state \(\Psi_0 \in H\). The axiom W1 states that there is a set of fields \(\varphi_i[f]\) given by tempered distributions\(^2\) valued in the operators defined on (and preserving) a dense subset \(D\) (which includes the vacuum) of the Hilbert space \(H\). The subset \(D\) is assumed to be Poincare-invariant. Then W2 states covariance of fields with respect to the Poincare group, and W3 requires locality (also called microcausality) in the form of (anti)commutativity of spacelike-separated fields. A quantum field theory is said to satisfy W0–W3, and in addition obey cyclicity of the vacuum: The span of vectors of the form \(\varphi_1[f_1] \ldots \varphi_n[f_n] \Psi_0\) (for all possible \(n\) and \(f_i\)) is dense in \(H\). The latter condition guarantees that there are enough fields in the theory.

A number of important results follow from these axioms, e.g., various properties of the Wightman functions \(W(x_1, \ldots, x_n) = (\Psi_0, \varphi_1(x_1) \ldots \varphi_n(x_n) \Psi_0)\), such as relativistic transformation, spectral condition, Hermiticity condition, local commutativity, positive definiteness, and cluster decomposition, as well as analytic continuation \[35, 36\]. Most of these were proven in \[20\] and reviewed in \[28\], along with the reconstruction theorem recovering the data of (W0)–(W3) from the Wightman functions (for the case of scalar fields only). Other important references (especially on cluster decomposition stating that \(W(x_1, \ldots, x_n)\) tends to \(W(x_1, \ldots, x_k)W(x_{k+1}, \ldots, x_n)\) when the groups of points \(\{x_1, \ldots, x_k\}\) and \(\{x_{k+1}, \ldots, x_n\}\) are infinitely separated) include \[37–42\], see also \[43\] on reconstruction. Such classical results as CPT theorem \[44, 45\] and spin-statistics connection \[46, 47\] also follow from the axioms \[48, 52\]. The significance of local algebras of observables \(A(\Omega)\) associated to spacetime regions (which will feature prominently in the Haag-Kastler axioms below) was already discussed by Haag in connection to Wightman axioms in \[53\]. See \[40, 54, 55\] for their further properties, questions of irreducibility, and \[56\] for the famous Reeh-Schlieder theorem asserting the cyclicity of the vacuum with respect to \(A(\Omega)\). For some other important aspects, such as Haag’s theorem, Borchers classes of local fields, Haag-Ruelle theory etc, see \[57–64\].

\(^1\)Wigner’s classification, generally, serves as an excellent starting point for the perturbative description of Poincare-invariant QFT in flat space, as in, e.g., \[6\].

\(^2\)These distributions are defined on smooth Schwarz functions \(f \in S\), which allows to avoid the UV issues.
Axioms of Euclidean QFT. The Osterwalder-Schrader (OS) axioms [65–67], as well as their modifications by Glimm-Jaffe (GJ) [68] and the axioms of Nelson [69] provide, roughly, the Euclidean version of Wightman axioms. OS axioms are also based on formalizing the notion of correlation functions, known as Schwinger functions $S_n(x_1,\ldots,x_n) = \langle \phi_1(x_1)\ldots\phi_n(x_n) \rangle$ in the Euclidean case. They include: OS0 temperedness of S_n as distributions; OS1 Euclidean covariance; OS2 Reflection positivity; OS3 (anti)symmetry under permutations ("anti" in the fermionic case); OS4 cluster decomposition. Under a subtle additional property of linear growth condition, the OS theorem [66] (sometimes called the OS reconstruction theorem) states that the Schwinger functions can be analytically continued to the Minkowski signature to obey Wightman axioms there (see also modification by Zinoviev [77]). The Glimm-Jaffe axioms similarly formalize the generating functional $S[f] = \langle e^{i[f]} \rangle \equiv \int e^{i[f(\phi)]} d\mu$, where $d\mu$ is a measure on the space of distributions ϕ. They demand its analyticity, regularity (in the form of a certain growth bound), Euclidean covariance, reflection positivity, and ergodicity of the time translations. These axioms imply OS with the growth condition, and thus also Wightman axioms. Finally, Nelson axioms [69,69,78–80] similarly take the measure-theoretic approach seriously and, importantly, require Markov property, which essentially captures locality and implies that the state of a system in some region is assigned to the boundary of this region (and in particular, the Hilbert space is assigned to the boundary). He also requires ergodicity and proves that the Wightman axioms follow upon analytic continuation to the Minkowski space ("Nelson’s reconstruction theorem", see book [81] by B.Simon for the review of this and other topics; see also [82]). Also note the result of [83] extending the OS reconstruction to equilibrium statistical mechanics (see also [84]), and the result of [85] studying the reconstruction of representations of the Poincare group in the same context of Euclidean QFT. A recent work [86] also provides generalizations of W and OS axioms (and reconstruction theorems) that are supposed to be suitable for gauge theories.

Constructive Field Theory. The axioms discussed so far are completely non-constructive, one has to do extra work to provide examples. At first, only free fields (including generalized free fields defined in [87],) and various solvable models related to free fields were known to satisfy the Wightman axioms (and, naturally, other axiom systems). This led to the subject of Constructive Field Theory (CQFT) emerging in the 1960’s [88–92], whose main goal was to provide rigorous interacting examples of QFTs. An extensive review (as of 1987) can be found in the book [68] (it focuses on the Euclidean path integral approach, see also other books on the subject: [93–96], also see [97–101]. An early vision of the field can be found in [102,103], as well as a slightly later review [104]; a review summarizing some successes of CQFT as of 2000 is in [105], as well as a slightly more detailed review in [106]. More recent reviews include [107–109] and a talk [110]. Through a lot of work starting from the late sixties, success has been achieved in rigorously constructing

\footnote{See [70–75] as well as references in [76] for origins of the Euclidean QFT.}
and studying 2d scalar theories with arbitrary polynomial interaction (the so-called \(P(\phi)^2 \) theories) (see also book [81], recent papers [131,132], and [133,136] on other potentials), threedimensional \(\lambda \phi^4 \) theory [137-145] (see also more recent [146,150]), Gross-Neveu theory [151-156], Thirring model [157,161] (in particular, all these theories were shown to obey Wightman axioms); other theories with fermions include 2D and 3D Yukawa models [65,162-186] (see also [187]) and some supersymmetric models [188,194]. Random walks representations of Euclidean theories were introduced [73,75] and developed later [195-198], resulting in various applications [145,199], most prominently the proof of triviality of the \(\phi^4 \) theory in \(d \geq 5 \) spacetime dimensions [200,202] (see book [203]). The four-dimensional case turned out to be much more subtle [204-213] and has been resolved only recently in [214] (see also lecture notes [215]) confirming triviality of the \(\phi^4 \) model\(^4\). Lattice regularization has played role, especially in gauge theories [217,219], see for example [220] and many references therein, especially works [221,240] of Balaban, see also [241,243] that revisits Balaban’s approach to the renormalization group (illustrated with the \(\phi^4 \) theory) and [244,246]. The results of [232,234] and [247] (using different methods) provide a significant progress towards solving the Millennium problem on the four-dimensional Yang-Mills\(^5\) see [248,249] for discussions.

2.2 Algebraic QFT

Haag-Kastler axioms. Algebraic QFT (AQFT) is another approach to axiomatizing QFT that de-emphasizes the notion of fields, and instead formalizes the algebra of observables without referring to any Hilbert space at first. This subject was initiated by the formulation of Haag-Kastler (HK) axioms in [250] (with some elements appearing in earlier works, such as [39,40,53,251,254], see also reference [2] in [250]). There exists a number of books and monographs on AQFT [255-261] and on operator algebras [262,280], which should be consulted for details. Among the more recent literature, we mention a collection [281], a concise review [282], books and monographs [283,285] and a related book [286]. The key points and references are also summarized in [287]. The HK axioms (sometimes called Araki-Haag-Kastler axioms) are about relativistic local unitary QFTs in flat Minkowski space-time. For every causally closed\(^6\) subset \(U \) of observables one assigns a \(C^\ast \)-algebra\(^7\) \(\mathfrak{A}(U) \). Under an inclusion \(U_1 \subset U_2 \), one has an inclusion \(\mathfrak{A}(U_1) \subset \mathfrak{A}(U_2) \)

\(^4\)“Trivial” means “free” or “Gaussian”, and the statements are about UV-complete models (i.e., with cutoffs removed) in precisely integral dimensions. Of course nothing prevents models with cut-offs from being nontrivial effective field theories, and furthermore, \(d = 4 - \epsilon \) [216] is not covered by such statements.

\(^5\)Curiously, after two decades of rapid progress in the 70s and 80s, the field of Constructive Field Theory has gone so far away from the mainstream that, even though it hosts one of the most famous problems in theoretical physics, many young people nowadays do not even know that this field exists. In authors opinion, this state of affairs will change in the future, as more mathematicians are starting to think about QFT nowadays again.

\(^6\)See discussion of causal closedness in [288].

\(^7\)\(C^\ast \)-algebras were introduced in the works of Gelfand and Naimark. See above block of references and [256] on \(C^\ast \) algebras. In short, a \(C^\ast \)-algebra is characterized by the following data: a \(C \)-algebra with an involution \(\ast \) obeying natural properties (this is a \(* \)-algebra); norm \(||A|| \) obeying \(||AB|| \leq ||A|| ||B|| \) and \(||A^\ast|| = ||A|| \); completeness with respect to the topology induced by \(\| \cdot \| \) (Banach \(* \)-algebra, or \(B^\ast \)-algebra); the \(C^\ast \)-property \(||A^\ast A|| = ||A|| ||A^\ast|| \).
of C^*-algebras (this property is called isotony), which is functorial, i.e., respects compositions (this data is often called a local net of algebras; we could say that $\mathcal{A}(\cdot)$ is an isotonic pre-cosheaf, except it is defined on causally closed subsets rather than opens). The requirement of causal locality says that $\mathcal{A}(U_1)$ and $\mathcal{A}(U_2)$ commute with each other (inside $\mathcal{A}(U)$, where $U_i \subset U$) if U_1 and U_2 are spacelike separated. Furthermore, one usually imposes Poincare covariance in the form of a morphism $\alpha(p) : \mathcal{A}(U) \to \mathcal{A}(pU)$ for any Poincare transformation p. Another requirement, due to the existence of linear dynamics, known as a time slice axiom, states that if $U_1 \subset U_2$ and U_1 contains a Cauchy surface of U_2, then $\mathcal{A}(U_1) \to \mathcal{A}(U_2)$ is an isomorphism. One also often requires positivity of the energy spectrum (i.e., of the operator of time translations).

In the algebraic formulation, quantum states are understood as linear maps $\omega : \mathcal{A} \to \mathbb{C}$ satisfying the positivity condition $\omega(A^*A) \geq 0$ for all $A \in \mathcal{A}$, where $\omega(A)$ is the “expectation value of A”. One can consider faithful representations π_ω of algebras \mathcal{A} by bounded operators $\pi_\omega(\mathcal{A}(U)) \subset \mathcal{B}(\mathcal{H})$ on the Hilbert space \mathcal{H} obtained via the GNS construction from the state ω. The algebra $\mathcal{B}(\mathcal{H})$ has two useful notions of closed $*$-subalgebras: the above-mentioned C^*-algebras (closed in the norm topology), and von Neumann algebras (which are closed in either one of the three topologies: strong operator, weak $*$, and weak operator), see for example or any other textbook referred above. Sometimes $\mathcal{A}(U)$ is taken to be a C^*-algebra, but quite often one focuses on $\mathcal{R}(U) = (\mathcal{A}(U))^\prime\prime$, which is the minimal von Neumann algebra containing $\mathcal{A}(U)$, where $(\cdot)'$ denotes the commutant inside $\mathcal{B}(\mathcal{H})$. One often talks about the net $\mathcal{R}(U)$ forming a vacuum representation, see, e.g., a review. This then connects to the rich theory of von Neumann algebras (see collection and textbooks cited previously), in particular such topics as: Decomposition into factors of Type I, II, III depending on whether the spectrum of dimensions of projectors on the invariant subspaces in \mathcal{H} is, respectively, discrete containing all integers in an interval, continuous, or consisting of just 0 and ∞, and a deep result that in QFT we deal with the Type III factors; modular or Tomita-Takesaki theory (introduced by Tomita and clarified by Takesaki, see also and expositions by Borchers and Summers, or the book), which provides the structural theory of the Type III factors, and has connections to other topics, such as KMS states (see). There has been a lot of interest in the modular theory recently due to its connection to the entanglement properties in QFT (see as the entrance point into this portion of literature).

Similar to other approaches, it is possible to study general structural properties within the AQFT system of axioms, such as existence of scattering states, superselection sectors, spin-statistics and CPT theorems (see also the collection), also see the

\[8\text{In the subject of operator algebras, the “commutant” of X means everything that commutes with X, while in the rest of math this notion would be called a centralizer.}

\[9\text{The concept of superselection sectors, as it is apparent from , was from the beginning important in the development of AQFT, see also review . The idea was that different superselection sectors arise from the inequivalent representations of one algebraic structure.} \]
topological version in [324]), the Reeh-Schlieder theorem [56] (it was already mentioned earlier, but traditionally this theorem is viewed as part of the AQFT machinery), Goldstone theorem [325, 326].

One difference from the Wightman axioms should be clear: while they did not require bound-
edness of the operators (e.g., the momentum operator has unbounded spectrum), this was sort of an idealization. Any realistic experiment involves devices with finite ranges of possible values, thus any outcome should be predictable with arbitrary precision by a theory dealing with bounded operators only, like in the AQFT framework. In the discussion of connection to the Wightman axioms, one asks two questions: whether, starting with a Wightman field smeared out with a compactly supported test function, one can find a self-adjoint bounded operator, and whether, starting with a net of algebras of bounded operators, one can obtain Wightman fields by a limiting process shrinking the regions to points (such questions were studied, e.g., in [327–333]).

Perturbative AQFT. Requirements of bounded, C^* or von Neumann, are dropped in *perturbative AQFT*, where instead one deals with formal series star-algebras. Reviews include [284, 334, 335], see also a book [336] and expositions [337, 338]. A few references on causal perturbation theory relevant in this context are: [339, 345], books [346, 348] and a review [349]. A more recent block of papers on the formalism of perturbative AQFT is [350–362] (including [353] on the $1/N$ expansion) and [363] (see also comments in [364]). See also [365, 369] and [284, Chapter 7] on the role of Batalin-Vilkovisky formalism [370, 371], and [372–376] on the relation to deformation quantization.

AQFT in curved space. Quantum field theory on curved space pushes the limits of appli-
cability of the QFT machinery. It comes with new physical phenomena (such as particle pro-
duction effects [377]; Hawking effect [378], with earlier precursors [379, 381]; Fulling-Davies-Unruh effect [382, 384]). They generally follow from the absence of Poincaré invariance, and, as a result, absence of the distinguished vacuum, no particle interpretation, no momentum space representation, etc. Continuation from Mikowskian to Euclidean signature is also not generically available, and, relatedly, there is no unique choice of the Feynman propagator. All these subtleties put traditional particle-based techniques in danger, and it was recognized early on [38, 12] that the AQFT framework extended to general curved backgrounds must be the right way to proceed [13]. By the 80s, some version of such an approach was available [386–391], but it had shortcomings: it could only describe free fields; there were also problems in subtracting singularities when renormalizing composite operators, such as the stress-energy tensor [394] or general Wick polynomials, where the answer

10 The idea to replace unbounded operators by bounded, bypassing technical issues in quantum mechanics, goes back to works of von Neumann, and in the case of QFT I. Segal suggested to use the same method [253].

11 Here we set the Newton constant to 0, so the background is classical and non-dynamical.

12 See Section 6 of Dyson’s famous “Missed opportunities” essay [385].

13 Another plausible approach, — Euclidean path integrals, — will be discussed later.

14 Singularity structure of the two-point functions was studied in [392, 393].
depended on the choice of a reference quasi-free Hadamard state. This prevented both analyzing backreaction and building consistent perturbation theory in the interacting case. Imposing locality and covariance would eventually help to fix these issues. Real progress, however, began in the 90s when it became clear that the microlocal analysis gave a more refined control over the singularities of distributions and allowed to overcome these issues in a more systematic way. The works studied the microlocal aspects, in particular: Formulated the microlocal spectral condition, developed a proper (local and covariant) notion of Wick polynomials, including constructions of the covariantly conserved stress tensor, and reduced the renormalization ambiguity to that generated by local gravity counterterms. The gravity counterterms (and more general background counterterms) are generic in the discussion of QFT on classical backgrounds, they lead to fundamental ambiguities and regularization scheme-dependencies that will be mentioned later. QFT in curved space has been a subject of books, monographs and reviews, in particular see a recent accessible introduction and the follow-up. In this context one usually talks about globally hyperbolic spacetimes (see for a departure from this condition). The AQFT axioms on globally hyperbolic spacetimes were formulated in, see also reviews and the collection for the history briefly outlined above, and the review and the collection for more technical details. These axioms are often referred to as locally covariant quantum field theory (LCQFT). They are similar to the Haag-Kastler axioms, yet have important differences. Again, there is a net of C^*-algebras, but not just on a single globally hyperbolic M and its causal globally hyperbolic subsets; instead, it is defined on all globally-hyperbolic d-manifolds simultaneously, with a natural local covariance property with respect to isometric embeddings. Clearly, the Poincare covariance is dropped, and other conditions present in the Haag-Kastler system are replaced by their locally covariant analogs. In superselection sectors and the spin-statistics on curved spaces were considered, for further aspects of the theory see: . An alternative approach to AQFT formalizing the OPE on curved spacetime is presented in. Constructions of concrete interacting models proceed via the perturbation theory and renormalization, see the original papers and the reviews. Note also a construction of quantum Yang-Mills (YM) as the perturbative AQFT in, see also. Other references on gauge theories include.

Dynamical C^* algebras. A novel C^*-algebraic approach to QFT is being developed in the recent series of papers. It is based on the Lagrangian formulation of field theory, and could probably be called constructive AQFT. Indeed, given a Lagrangian L, this approach produces a concrete C^*-algebra A_L called the dynamical C^*-algebra in this context. The output obeys the
Haag-Kastler axioms and at the same time incorporates ideas from perturbative QFT.

Homotopical AQFT. Perturbative gauge theories live in the topologically trivial sector. Inclusion of the topological effects like instantons, however, breaks some the axioms of LCQFT: The isotony is violated, as well as the ability to reconstruct global algebras from the local ones. This fact is explained, for example, in the talks [457–459], see also [445, 460]. One way to address this problem replaces the space of gauge orbits (configuration space) by a stack given by the corresponding gauge groupoid (a category, whose objects are the bundle-connection pairs and whose morphisms are gauge equivalences). Correspondingly, the “quantized algebra of functions on fields” typical to the usual approach is now replaced by some appropriate homotopy dg-algebra. In such a generalized approach (called by practitioners the *homotopical LCQFT*) one obtains, instead of locally covariant nets of C^*-algebras, their homotopic dg-versions. Such structures are currently under investigation, see reviews [461, 462], the monograph [463] and the papers [464–476] in which the subject is being developed (see also [477]).

Haag duality and DHR. The global symmetries and their role in AQFT (in particular, superselection sectors) were studied by Doplicher, Haag, and Roberts (DHR) [315, 316, 478, 479]. To include gauge theories, a modification of the local QFT rules was proposed [259, 480, 481], suggesting to consider, in addition to the bounded regions in Minkowski space, infinite cones. Another approach is being developed in [482–484], where the violation of Haag duality $\mathfrak{A}(U) = \mathfrak{A}(U')'$ is at the heart of issue (these authors also consider generalized symmetries and associated extended operators that are responsible for the breakdown of Haag duality, see also [320, 486]).

Factorization algebras and Euclidean perturbative AQFT. Another approach to Euclidean perturbative QFT, which spiritually fits into the AQFT philosophy, is that of factorization algebras (FA). The notion of FA goes back to [487, 488]. The perturbative renormalization in QFT and formulation via factorization algebras was developed in [489–491] (see also [492]). The idea of FA looks superficially similar to the nets of algebras in AQFT, and indeed [493] made comparison between the FA approach and the perturbative AQFT, concluding that the two are closely related. At least for free theories, they show them to be equivalent. In a later paper [494] the same authors relate observables in the perturbative AQFT and the FA. A general result of [495] (where FA are considered on Lorentzian oriented time-oriented globally hyperbolic spaces) abstractly shows their equivalence, modulo natural hypotheses. Therefore, the likely status of the FA approach is that it provides an alternative viewpoint, and technically quite a different approach to constructing

We did not describe the latter property in this review, but it is discussed in most of the references.

In this context, the word “homotopy” means that various relations like commutativity or associativity hold up to higher homotopies.
concrete models. Some papers that use this framework include [496–511], also [512–515]. It is also suggested by [510] that this approach has close relations to [517].

2.3 Atiyah-Segal-like approach, or Functorial Field Theory

Following the Atiyah-Segal’s axiomatization of TQFT [518] (and its many successes, e.g., classification of fully extended TQFTs [488]), as well as earlier ideas from the work on CFT [519,520], G.Segal, in a series of lectures [521], proposed another set of axioms that are supposed to define a general Euclidean QFT. Similar axioms have been used by Stolz and Teichner [522,523], and, apparently, were also considered by Kontsevich (unpublished). These are sometimes referred to as Functorial Field Theory (FFT) [524], though the name is slightly abused, since locally covariant AQFTs discussed earlier are also defined as functors between the appropriate categories (of globally hyperbolic spaces and C^*-algebras). We will nevertheless use the term FFT here for concreteness, but we should mention that some authors [525–527] call it geometric field theory because it depends on some geometric data on the spacetime, such as the metric. These latter authors seem to have seriously undertaken the task of developing the geometric FFT ideas, and claim to have a definition and even classification (as in the cobordism hypothesis of [488]) of the fully extended geometric FFTs [526,527]. Recently, the FFT framework was used by Segal and Kontsevich [528], where the definition of QFT on Riemannian manifolds was extended to “allowable” complex metrics (a notion serving as a bridge between the Euclidean and the Lorentzian cases). In general, the FFT philosophy for non-topological QFTs has been gaining momentum in the past decade, even though the number of papers devoted to non-topological FFTs is still relatively small. We should note that an approach to FFTs on CW-complexes (serving as a discretization of spacetime) was developed in [530–533]. The main idea of FFT is that the field theory is a functor from the category of geometric bordisms (i.e., decorated by some geometric structure) to the category of topological vector spaces (see [528]). The functoriality here encodes the gluing axiom that follows from the locality and means that spacetime can be glued from pieces, and these pieces talk to each other only through the boundaries. Namely, FFT on each piece produces a state (co)vector in the tensor product of vector spaces assigned to its boundary components, and gluing (at least in the absence of corners) is done via composing vectors and covectors. In essence, this is the very same Markov property of Euclidean path integrals that was noticed by Nelson in the 70s [69], as we discussed earlier (see also [534]). The relation between FFT and AQFT and how the former implies the latter is proposed in [535]. See also a discussion of physics and formal properties of the gluing axiom in [536].

19For example, it is apparent from reading [529, Section 2] that the authors of this article think about QFT in terms of the FFT paradigm. One can find more examples like this in the literature.

20On the other hand, the field of topological FFT (often called TQFT or Atiyah-Segal TQFT) is thriving, so we omit talking about it, for the same reason that we had to skip CFTs above: the subfield is simply too huge and deserves a separate review. Unfortunately, the related topic of cohomological field theories also has to be skipped.
2.4 Conformal Field Theory (CFT)

CFTs form a special subclass of QFTs as they correspond to fixed points of the RG flows. Due to the constraints of conformal symmetry, the operator product expansion (OPE) of their local observables becomes much more concrete and tangible than in generic QFTs. Axiomatically, we could start with any of the approaches reviewed above and specialize them to CFTs. Wightman’s and Osterwalder-Schrader axioms in the presence of conformal invariance (really, scale-invariance is enough) are supplied with the OPE relations under the correlators. Historically, this has been the most popular approach to CFT, see recent works \[537,538\] reviewing, among other things, Euclidean CFT axioms and their relation to (W) and (OS) axioms. Functorial QFT in the presence of conformal symmetry in two dimensions leads to the definition of conformal field theory by Segal \[519,520\], which actually predates the FQFT axioms. Finally, AQFT axioms supplied by conformal invariance in 2D lead to the notion of conformal nets \[539,546\] (they are known to be related to Vertex Operator Algebras (VOAs), see \[546,549\], the last two of which also mention the relation to FQFT), see also series of works \[550,555,556\] and \[557\].

Most results on CFTs appear in the physics literature, but they are often mathematically rigorous (or there are no conceptual obstacles to making them rigorous). The CFTs are usually characterized by the spectrum of local observables and their OPE data, and in two-dimensional spacetime, the enhanced Virasoro symmetry often affords exact solutions \[558\], connecting to the theory of Vertex Operator Algebras (VOAs). Higher-dimensional CFTs are a subject of an active subfield reviewed in a separate Snowmass paper \[559\], and there is another one reviewing some aspects of the VOAs \[560\]. Here, we only briefly scratched the surface of the subject, mostly because the CFT literature is really vast and cannot be given any justice in this review.

3 Discussion

As is apparent from this review and an inevitably incomplete yet huge list of references, the amount of intellectual resources invested into understanding QFT is enormous. Despite that, it is also clear that we are still lacking a single satisfactory unifying viewpoint on the subject. To some extent, the LCQFT axioms of Brunetti-Fredenhagen-Verch-Fewster and the FFT axioms of the last section present the most general and advanced attempts to axiomatize QFT, but even the oldest Wightman axioms still play role in the modern literature (see, for example, \[537,538\]). There are, however, some obvious issues with these axioms:

- The fact that LCQFT faces difficulties in gauge theories and has to be replaced by homotopic AQFT teaches us something. Over the past decades we have learned about dualities in field theories, and understood that “being a gauge theory” is not an intrinsic property of a QFT
but merely a construction. Indeed, there are known cases when a gauge theory admits a dual non-gauge formulation. Therefore, a model-independent formalism such as AQFT should not treat gauge theories separately. In fact, topological effects occur not only in gauge theories. This suggests that perhaps homotopic AQFT is the right arena for general AQFT machinery, not only gauge theories (it goes in line with the derived mathematics playing more and more role in physics, starting, perhaps, with the Batalin-Vilkovisky formalism). On the other hand, some progress on the issue of gauge theories is being made in [482,483].

• One can ask a few obvious questions about the FFT approach. It implants the notion of spaces of states, essentially, into the axioms, while the AQFT paradigm emphasizes that the Hilbert space of states is a secondary object not part of the axioms. Furthermore, in case the spatial slices are non-compact, as was emphasized recently in [416], the Hilbert space does not even have to exist. Of course one may overcome this in FFT by only allowing compact spatial slices, but the situation seems a bit uncomfortable.

• Another issue that does not seem to be addressed in the FFT framework are ambiguities. As we mentioned in the text, QFTs on generic backgrounds have ambiguities due to the background counterterms that render partition functions regularization-dependent. In some cases, in the presence of extra symmetries, such ambiguities make partition functions valued in bundles, like the S^2 partition function in 2d (2, 2) SCFTs, which is valued in the Kähler bundle [561] over the moduli space. In more generic cases (like 2d theories with (1, 1) SUSY or less), such an interpretation is lost and the partition function appears completely ambiguous. Thus it might be too naive to assume that the FFT functor always produces a unique answer, in particular always assigns a complex number to a closed spacetime. However, this might be just a normalization issue.

• Currently available axiomatic approaches to non-topological QFT do not take extended operators and defects very seriously. That is not say it is impossible: One can include extended operators in the nets of local observables, and it is possible to include defects by modifying the algebras assigned to regions that intersect the defect [21]. One can also incorporate all sorts of (extended or not) observables in the FFT formalism by excising a tubular neighborhood of the observable and assigning the corresponding state to the boundary. However, these issues do not appear to be particularly explored. Even less understood and more mysterious is the case of corners (i.e., extending the theory to codimension ≥ 2 in the non-topological case).

Additionally, we should note that there exists a philosophy typical to the condensed matter literature that QFT describes small perturbations around a critical point of some lattice, many-body or other finite system. We did not include this in the main text as it does not provide a system

\[\text{21} \] We thank O. Gwilliam for a discussion on this point.
of axioms. It is not very clear how to relate such a philosophy to any of the axiomatic approaches we have, especially to the AQFT. For example, a lattice system usually comes with a well-defined unique Hilbert space, while the QFT that should emerge from it must, somehow, lose this property. These are of course old questions, some of them have been partially answered in the Constructive Field Theory program for concrete models. We also note a recent increased interest in the lattice approach to QFTs, in particular papers [562–564], where a specially designed continuum limit is supposed to address the above questions.

Besides the issues mentioned before, a number of QFTs studied in the modern literature do not fit into any of the axiom systems currently available. QFT was originally introduced to marry quantum mechanics with special relativity, but today we know that this was more of a historic accident. For instance, QFTs exist outside the Lorentz-invariant setting, examples including Lifshitz field theories (see a review [565] and references therein), Horava gravity [566] (which, however, is a gravitational theory,) and many others. Surely, when placed on curved spaces, such theories are expected to obey some modified version of local covariance, if any at all. Hence they do not fit into any of the axiom systems described above.

More generally, it has been recently appreciated in the hep-th community [567] that our understanding of QFT is incomplete. The standard techniques are very limited, and a number of physically acceptable theories do not fit the old profile of QFT. Such theories include field theories on non-commutative spaces, little string theories, and various exotic theories such as those from [568–571] and references therein. Combining everything we said, there is a clear problem: we do not have the general definition of QFT.

While it is not known how to generalize the notion of QFT yet, one idea is worth mentioning. In [572] A.Losev and S.Hu made a bold proposal that one should modify the geometry on which the QFT is defined. Instead of working on ordinary manifolds, Riemannian or Lorentzian, one should consider a certain generalization that captures the algebraic operations that are used in constructing QFTs. The authors of [572] coined the name “Feynmann geometry,” and suggested that it should be described by an A_{∞}-algebra with trace-class operations (such a definition covers many UV regulators: momentum cut-offs, lattices, non-commutativity). In this respect, one should also mention the work of Kontsevich-Soibelman on the A_{∞} approach to non-commutative geometry [573], which perhaps can be of use. It is also possible that the correct notion of “Feynman geometry” should be even more general to cover all the instances of exotic QFTs, if this is the right approach.
References

[1] M. Born, W. Heisenberg, and P. Jordan, “Zur Quantenmechanik. II.,” *Z. Phys.* **35** no. 8-9, (1926) 557–615.

[2] P. A. M. Dirac, “Quantum theory of emission and absorption of radiation,” *Proc. Roy. Soc. Lond. A* **114** (1927) 243.

[3] W. Heisenberg and W. Pauli, “On Quantum Field Theory. (In German),” *Z. Phys.* **56** (1929) 1–61.

[4] W. Heisenberg and W. Pauli, “On Quantum Field Theory. 2. (In German),” *Z. Phys.* **59** (1930) 168–190.

[5] S. Weinberg, *The Quantum theory of fields. Vol. 1: Foundations*. Cambridge University Press, 6, 2005.

[6] J. S. Schwinger, “On Quantum electrodynamics and the magnetic moment of the electron,” *Phys. Rev.* **73** (1948) 416–417.

[7] J. S. Schwinger, “Quantum electrodynamics. 2. Vacuum polarization and selfenergy,” *Phys. Rev.* **75** (1948) 651.

[8] J. S. Schwinger, “Quantum electrodynamics. I A covariant formulation,” *Phys. Rev.* **74** (1948) 1439.

[9] J. S. Schwinger, “Quantum electrodynamics. III: The electromagnetic properties of the electron: Radiative corrections to scattering,” *Phys. Rev.* **76** (1949) 790–817.

[10] R. P. Feynman, “Space-time approach to nonrelativistic quantum mechanics,” *Rev. Mod.* **20** (1948) 367–387.

[11] R. P. Feynman, “Relativistic cutoff for quantum electrodynamics,” *Phys. Rev.* **74** (1948) 1430–1438.

[12] R. P. Feynman, “A Relativistic cutoff for classical electrodynamics,” *Phys. Rev.* **74** (1948) 939–946.

[13] S. Tomonaga, “On a relativistically invariant formulation of the quantum theory of wave fields,” *Prog. Theor. Phys.* **1** (1946) 27–42.

[14] Z. Koba, T. Tati, and S. i. Tomonaga, “On a Relativistically Invariant Formulation of the Quantum Theory of Wave Fields. II: Case of Interacting Electromagnetic and Electron Fields,” *Prog. Theor. Phys.* **2** no. 3, (1947) 101–116.
[15] Z. Koba, T. Tati, and S.-i. Tomonaga, “On a Relativistically Invariant Formulation of the Quantum Theory of Wave Fields. III: Case of Interacting Electromagnetic and Electron Fields,” *Progress of Theoretical Physics* **2** no. 4, (12, 1947) 198–208.

[16] S. Kanesawa and S.-i. Tomonaga, “On a Relativistically Invariant Formulation of the Quantum Theory of Wave Fields. IV: Case of Interacting Electromagnetic and Meson Fields,” *Progress of Theoretical Physics* **3** no. 1, (03, 1948) 1–13.

[17] Z. Koba and S.-i. Tomonaga, “On Radiation Reactions in Collision Processes. I: Application of the “Self-Consistent” Subtraction Method to the Elastic Scattering of an Electron*,” *Progress of Theoretical Physics* **3** no. 3, (09, 1948) 290–303.

[18] S.-I. Tomonaga and J. R. Oppenheimer, “On Infinite Field Reactions in Quantum Field Theory,” *Phys. Rev.* **74** (1948) 224–225.

[19] F. J. Dyson, “The Radiation theories of Tomonaga, Schwinger, and Feynman,” *Phys. Rev.* **75** (1949) 486–502.

[20] A. S. Wightman, “Quantum Field Theory in Terms of Vacuum Expectation Values,” *Phys. Rev.* **101** (1956) 860–866.

[21] A. S. Wightman, “Quelques problèmes mathématique de la théorie quantique relativiste,” *Colloq. Int. CNRS* **75** (1959) 1–38.

[22] A. S. Wightman and L. Garding, “Fields as operator-valued distributions in relativistic quantum theory,” *Arkiv Fys.*. https://www.osti.gov/biblio/4606723.

[23] A. Wightman, “Recent Achievements of Axiomatic Field Theory,” in *Theoretical Physics*, pp. 11–58. IAEA, Vienna, 1963.

[24] W. Heisenberg, “Die “beobachtbaren Größen” in der Theorie der Elementarteilchen,” *Zeitschrift für Physik* **120** (1943) 513–538.

[25] N. N. Bogolyubov, A. A. Logunov, A. I. Oksak, and I. T. Todorov, *General principles of quantum field theory*. Mathematical Physics and Applied Mathematics. Kluwer Academic Publishers, 1990.

[26] H. Lehmann, K. Symanzik, and W. Zimmermann, “On the formulation of quantized field theories,” *Nuovo Cim.* **1** (1955) 205–225.

[27] H. Lehmann, K. Symanzik, and W. Zimmermann, “On the formulation of quantized field theories. II,” *Nuovo Cim.* **6** (1957) 319–333.
[28] R. F. Streater and A. S. Wightman, *PCT, Spin and Statistics, and All That*. Princeton University Press, 1964. https://doi.org/10.1515/9781400884230.

[29] N. Bogoliubov, A. Logunov, and I. Todorov, *Introduction to Axiomatic Quantum Field Theory*. Mathematical physics monograph series. W. A. Benjamin, Advanced Book Program, 1975.

[30] E. P. Wigner, “On Unitary Representations of the Inhomogeneous Lorentz Group,” *Annals Math.* 40 (1939) 149–204.

[31] V. Bargmann, “Irreducible Unitary Representations of the Lorentz Group,” *Annals of Mathematics* 48 no. 3, (1947) 568–640. http://www.jstor.org/stable/1969129.

[32] V. Bargmann, “On Unitary Ray Representations of Continuous Groups,” *Annals of Mathematics* 59 no. 1, (1954) 1–46. http://www.jstor.org/stable/1969831.

[33] *Representations of the Rotation and Lorentz Groups and Their Applications*.

[34] Y. Ohnuki, *Unitary representations of the Poincare group and relativistic wave equations*. World Scientific Pub Co Inc, 1988.

[35] G. Kallen, “Properties of Vacuum Expectation Values of Field Operators,” *Les Houches Lect. Notes* 10 (1960) 387–454.

[36] A. Wightman, “Quantum Field Theory and Analytic Functions of several Complex Variables,” *J Indian Math. Soc. 24* no. 3-4, (1960) 625.

[37] H. Araki, “On asymptotic behavior of vacuum expectation values at large space-like separation,” *Annals of Physics* 11 no. 2, (1960) 260–274.

[38] K. Hepp, R. Jost, D. Ruelle, and O. Steinmann, “Necessary restriction on Wightman functions,” *Helv. Phys. Acta* 34 no. V, (1961) 542–544.

[39] R. Haag and B. Schroer, “Postulates of Quantum Field Theory,” *Journal of Mathematical Physics* 3 no. 2, (1962) 248–256.

[40] D. Ruelle, “On the asymptotic condition in quantum field theory,” *Helv. Phys. Acta* 35 no. III, (1962) 147–163.

[41] R. Jost and K. Hepp, “Über die Matrizelemente des Translationsoperators,” *Helv. Phys. Acta* 35 no. 1, (1962) 34–46.

[42] H. Araki, K. Hepp, and D. Ruelle, “On the asymptotic behaviour of Wightman functions in space-like directions,” *Helv. Phys. Acta* 35 no. III, (1962) 164–174.
[43] W. Schmidt and K. Baumann, “Quantentheorie der felder als distributionstheorie,” *Il Nuovo Cimento (1955-1965)* 4 (1956) 860–886.

[44] G. Luders, “On the Equivalence of Invariance under Time Reversal and under Particle-Antiparticle Conjugation for Relativistic Field Theories,” *Kong. Dan. Vid. Sel. Mat. Fys. Med.* 28N5 no. 5, (1954) 1–17.

[45] W. Pauli, *Exclusion Principle, Lorentz Group and Reflection of Space-Time and Charge*. Pergamon Press, New York, 1955.

[46] M. Fierz, “Force-free particles with any spin,” *Helv. Phys. Acta* 12 (1939) 3–37.

[47] W. Pauli, “The Connection Between Spin and Statistics,” *Phys. Rev.* 58 (1940) 716–722.

[48] R. Jost, “A remark on the C.T.P. theorem,” *Helv. Phys. Acta* 30 (1957) 409–416.

[49] F. J. Dyson, “Connection between local commutativity and regularity of Wightman functions,” *Phys. Rev.* 110 (1958) 579–581.

[50] G. Luders and B. Zumino, “Connection between Spin and Statistics,” *Phys. Rev.* 110 (1958) 1450–1453.

[51] “On the connection of spin with statistics,” *Nuovo Cimento* 8 (1958) 607–609.

[52] G. Dell’Antonio, “On the connection between spin and statistics,” *Annals of Physics* 16 no. 2, (1961) 153–157.

[53] R. Haag, *Discussion des “axiomes” et des propriétés asymptotiques d’une théorie des champs locales avec particules composées*. Colloque Internationaux du CNRS LXXV (Lille 1957). CNRS Paris, 1959.

[54] R. Jost, “Properties of wightman functions,” in *Lectures on the Many-body Problems*, E. CAIANIELLO, ed., pp. 127–145. Academic Press, 1961.

[55] H. J. Borchers, “On structure of the algebra of field operators,” *Nuovo Cim.* 24 no. 2, (1962) 214–236.

[56] H. Reeh and S. Schlieder, “Bemerkungen zur unitärtäquivalenz von lorentzinvarianten feldern,” *Nuovo Cim.* 22 no. 5, (1961) 1051–1068.

[57] R. Haag, “On quantum field theories,” *Kong. Dan. Vid. Sel. Mat. Fys. Med.* 29N12 (1955) 1–37.

[58] D. Hall and A. Wightman, “A Theorem on invariant analytic functions with applications to relativistic quantum field theory,” *Mat. Fys. Medd. Dan. Vid. Selsk.* 31 (1957).
[59] O. W. Greenberg, “Haag’s Theorem and Clothed Operators,” *Phys. Rev.* **115** (1959) 706–710.

[60] P. G. Federbush and K. A. Johnson, “Uniqueness Property of the Twofold Vacuum Expectation Value,” *Phys. Rev.* **120** (1960) 1926–1926.

[61] H.-J. Borchers, “Über die mannigfaltigkeit der interpolierenden felder zu einer kausalen S Matrix,” *Il Nuovo Cimento* **15** (03, 1960) 784–794.

[62] S. Kamefuchi, L. O’Raifeartaigh, and A. Salam, “Change of variables and equivalence theorems in quantum field theories,” *Nucl. Phys.* **28** (1961) 529–549.

[63] H. Epstein, “On the borchers class of a free field,” *Il Nuovo Cimento* **27** (1963) 886–893.

[64] R. Jost, *The General Theory of Quantized Fields*. Lectures in Applied Mathematics. American Mathematical Society, Providence, Rhode Island.

[65] K. Osterwalder and R. Schrader, “Axioms for Euclidean Green’s Functions,” *Commun. Math. Phys.* **31** (1973) 83–112.

[66] K. Osterwalder and R. Schrader, “Axioms for Euclidean Green’s Functions. 2.,” *Commun. Math. Phys.* **42** (1975) 281.

[67] V. Glaser, “On the equivalence of the Euclidean and Wightman formulation of field theory,” *Commun. Math. Phys.* **37** (1974) 257–272.

[68] J. Glimm and A. M. Jaffe, *Quantum Physics. A Functional Integral Point of View*. Springer, 1987.

[69] E. Nelson, “Construction of quantum fields from Markoff fields,” *Journal of Functional Analysis* **12** no. 1, (1973) 97–112.

[70] J. Schwinger, “On the Euclidean Structure of Relativistic Field Theory,” *Proc. Nat. Acad. Sci.* **44** no. 9, (1958) 956–965.

[71] J. Schwinger, “Euclidean quantum electrodynamics,” *Phys. Rev.* **115** (Aug, 1959) 721–731.

[72] T. Nakano, “Quantum Field Theory in Terms of Euclidean Parameters,” *Progress of Theoretical Physics* **21** no. 2, (02, 1959) 241–259.

[73] K. Symanzik, “A Modified Model of Euclidean Quantum Field Theory,” http://www.arthurjaffe.com/Assets/pdf/Symanzik-ModifiedModel.pdf.

[74] K. Symanzik, “Euclidean quantum field theory. i. equations for a scalar model,” *Journal of Mathematical Physics* **7** no. 3, (1966) 510–525.
[75] K. Symanzik, “Euclidean quantum field theory,” in Local quantum theory (Varenna, 1968), R. Jost, ed. Academic Press, New York, 1969.

[76] A. Jaffe, “Euclidean quantum field theory,” Nuclear Physics B 254 (1985) 31–43.

[77] Y. M. Zinoviev, “Equivalence of Euclidean and Wightman field theories,” Communications in Mathematical Physics 174 no. 1, (1995) 1 – 27.

[78] E. Nelson, “Quantum fields and Markoff fields,” in Partial Differential Equations, pp. 413–420. American Mathematical Society, Providence, R.I., 1973.

[79] E. Nelson, “The free Markoff field,” Journal of Functional Analysis 12 no. 2, (1973) 211–227.

[80] E. Nelson, “Probability theory and euclidean field theory,” in International School of Mathematical Physics, Ettore Majorana: 1st course: Constructive Quantum Field Theory, pp. 94–124. 1973.

[81] B. Simon, The $P(\phi)_2$ Euclidean (Quantum) Field Theory. Princeton Univ. Press, 1974.

[82] G. C. Hegerfeldt, “From Euclidean to relativistic fields and on the notion of Markoff fields,” Communications in Mathematical Physics 35 (1974) 155–171.

[83] Fr “Unbounded, symmetric semigroups on a separable Hilbert space are essentially selfadjoint,” Advances in Applied Mathematics 1 no. 3, (1980) 237–256.

[84]

[85] J. Frohlich, J. Osterwalder, and E. Seiler, “On Virtual Representations of Symmetric Spaces and Their Analytic Continuation,” Annals of Mathematics 118 no. 3, (1983) 461–489. http://www.jstor.org/stable/2006979

[86] M. C. Lee and J. Glimm, “Axioms for Quantum Gauge Fields,” arXiv:2112.08575 [math-ph].

[87] O. W. Greenberg, “Generalized Free Fields and Models of Local Field Theory,” Annals Phys. 16 (1961) 158–176.

[88] A. Jaffe, “Existence Theorems for a Cut-off $\lambda\varphi^4$ Field Theory,” in Conference on the Mathematical Theory of Elementary Particles. MIT Press, Cambridge, Massachusetts, 1966.

[89] O. Lanford, Construction of quantum fields interacting by a cutoff Yukawa coupling. PhD thesis, 1966.
[90] E. Nelson, “A quadratic interaction in two dimensions,” in Conference on the Mathematical Theory of Elementary Particles. MIT Press, Cambridge, Massachusetts, 1966.

[91] J. Glimm and A. M. Jaffe, “A $\lambda \varphi^4$ quantum field theory without cutoffs. 1,” Phys. Rev. 176 (1968) 1945–1951.

[92] A. M. Jaffe, O. E. Lanford, and A. S. Wightman, “A General class of cut-off model field theories,” Commun. Math. Phys. 15 (1969) 47–68.

[93] B. Simon, Functional Integration and Quantum Physics: Second Edition. AMS Chelsea Publishing, 2nd ed., 2005.

[94] J. R. Klauder, A Modern Approach to Functional Integration. Applied and Numerical Harmonic Analysis. Birkhäuser Basel, 1 ed., 2011.

[95] S. Albeverio, R. Høegh-Krohn, and S. Mazzucchi, Mathematical Theory of Feynman Path Integrals. Lecture Notes in Mathematics. Springer, Berlin, Heidelberg, 2nd ed., 2008.

[96] S. Mazzucchi, Mathematical Feynman Path Integrals and Their Applications. WORLD SCIENTIFIC, 2nd ed., 2021.

[97] A. Jaffe and G. Ritter, “Quantum field theory on curved backgrounds. I. The Euclidean functional integral,” Commun. Math. Phys. 270 (2007) 545–572, arXiv:hep-th/0609003.

[98] A. Jaffe and G. Ritter, “Quantum field theory on curved backgrounds. II. Spacetime symmetries,” arXiv:0704.0052 [hep-th].

[99] V. Rivasseau, From Perturbative to Constructive Renormalization. Princeton Series in Physics. Princeton University Press, 2014.

[100] J. C. Baez, I. E. Segal, and Z. Zhou, Introduction to Algebraic and Constructive Quantum Field Theory. Princeton Series in Physics. Princeton University Press, 1992.

[101] “Constructive Physics Results in Field Theory, Statistical Mechanics and Condensed Matter Physics,” Lecture Notes in Physics. Springer, 1995.

[102] A. S. Wightman, “Constructive field theory - introduction to the problems,” Stud. Nat. Sci. 3 (1973) 1–85.

[103] “Constructive Quantum Field Theory,” Lect Notes Phys. Springer, Berlin, Heidelberg, 1973.

[104] T. Balaban and A. M. Jaffe, “Constructive Gauge Theory,” NATO Sci. Ser. B 141 (1986) 207–263.
[105] A. M. Jaffe, “Constructive quantum field theory,” in *Mathematical physics 2000*, A. Fokas, A. Grigorian, T. Kibble, and B. Zegarlinski, eds., pp. 111–127. 2000.

[106] V. Rivasseau, “Constructive field theory and applications: Perspectives and open problems,” *Journal of Mathematical Physics* **41** no. 6, (Jun, 2000) 3764–3775, [math-ph/0006017](https://arxiv.org/abs/math-ph/0006017).

[107] A. Jaffe, “Quantum Theory and Relativity,” 2007. https://www.arthurjaffe.com/Assets/pdf/Quantum-Theory_Relativity.pdf.

[108] S. J. Summers, “A Perspective on Constructive Quantum Field Theory,” 2016. https://people.clas.ufl.edu/sjs/constructive-quantum-field-theory/.

[109] S. Summers, “Constructive Quantum Field Theory.” https://people.clas.ufl.edu/sjs/constructive-quantum-field-theory/.

[110] A. Jaffe, “Is relativity compatible with quantum theory?,” December 2, 2020. https://mathpicture.fas.harvard.edu/news/arthur-jaffe-presents-cmsaymsc-talk-relativity-compatible-quantum-theory.

[111] J. Glimm and A. M. Jaffe, “A $\lambda\phi^4$ quantum field theory without cutoffs, II. The field operators and the approximate vacuum,” *Ann. of Math.* **91** no. 2, (1970) 362–401. http://www.jstor.org/stable/1970582.

[112] J. Glimm and A. Jaffe, “The $\lambda(\phi^4)_2$ quantum field theory without cutoffs, III. The physical vacuum,” *Acta Mathematica* **125** no. none, (1970) 203 – 267.

[113] J. Glimm and A. M. Jaffe, “The $\lambda\phi^4$ in Two-dimensions Quantum Field Theory Without Cutoffs. 4. Perturbations of the Hamiltonian,” *J. Math. Phys.* **13** (1972) 1568–1584.

[114] J. T. Cannon and A. M. Jaffe, “Lorentz covariance of the $\lambda(\phi^4)_2$ quantum field theory,” *Commun. Math. Phys.* **17** (1970) 261–321.

[115] F. Guerra, “Uniqueness of the vacuum energy density and van hove phenomenon in the infinite-volume limit for two-dimensional self-coupled bose fields,” *Phys. Rev. Lett.* **28** (May, 1972) 1213–1215.

[116] F. Guerra, L. Rosen, and B. Simon, “The $p(\phi)_2$ euclidean quantum field theory as classical statistical mechanics,” *Annals of Mathematics* **101** no. 1, (1975) 111–189. http://www.jstor.org/stable/1970988.

[117] J. Glimm, A. Jaffe, and T. Spencer, “The particle structure of the weakly coupled $P(\phi)_2$ model and other applications of high temperature expansions, Part II: The cluster expansion.,” in *Constructive Quantum Field Theory*, vol. 25 of *Springer Lecture Notes in Physics*. Springer, 1973.
[118] J. Glimm and A. M. Jaffe, “Absolute Bounds on Vertices and Couplings,” *Ann. Inst. H. Poincare Phys. Theor. A* **22** (1975) 97.

[119] J. Glimm, A. Jaffe, and T. Spencer, “The wightman axioms and particle structure in the $P(\phi)_2$ quantum field model,” *Annals of Mathematics* **100** no. 3, (1974) 585–632. http://www.jstor.org/stable/1970959

[120] T. Spencer, “The Absence of Even Bound States for $\lambda(\phi^4)$ in Two-Dimensions,” *Commun. Math. Phys.* **39** (1974) 77–79.

[121] T. Spencer and F. Zirilli, “Scattering States and Bound States in $\lambda \varphi^2$ in Two-Dimensions,” *Commun. Math. Phys.* **49** (1976) 1.

[122] J. Fröhlich, “Verification of axioms for euclidean and relativistic fields and Haag’s theorem in a class of $P(\varphi)_2$-models,” *Annales de l'I.H.P. Physique théorique* **21** no. 4, (1974) 271–317. http://www.numdam.org/item/AIHPA_1974__21_4_271_0/.

[123] J. Fröhlich, “Schwinger functions and their generating functionals I.,” *Helv. Phys. Acta* **47** no. 3, (1974) 265–306.

[124] J. Dimock and J. P. Eckmann, “On the Bound State in Weakly Coupled $\lambda(\phi^6 - \phi^4)$ in Two-Dimensions,” *Commun. Math. Phys.* **51** (1976) 41–54.

[125] J. Glimm, A. Jaffe, and T. Spencer, “Existence of phase transitions for ϕ^4_2 quantum fields,” in *Mathematical Methods of Quantum Field Theory*. CNRS, Paris, 1976.

[126] J. Frohlich and B. Simon, “Pure states for general $p(\phi)_2$ theories: Construction, regularity and variational equality,” *Annals of Mathematics* **105** no. 3, (1977) 493–526. http://www.jstor.org/stable/1970921.

[127] J. Glimm, A. M. Jaffe, and T. Spencer, “Phase Transitions for φ^4_2 Quantum Fields,” *Commun. Math. Phys.* **45** (1975) 203.

[128] S. J. Summers, “A New Proof of the Asymptotic Nature of Perturbation Theory in $P(\phi)_2$ Models,” *Helv. Phys. Acta* **53** (1980) 1.

[129] Z. Haba, “Fluctuations of $P(\phi)$ Random Fields,” *J. Math. Phys.* **22** (1981) 1687.

[130] E. Dynkin, “Markov processes as a tool in field theory,” *Journal of Functional Analysis* **50** no. 2, (1983) 167–187.

[131] H. Shen, R. Zhu, and X. Zhu, “An SPDE approach to perturbation theory of Φ^4_2: asymptoticity and short distance behavior;” arXiv:2108.11312 [math.PR]
[132] J. Fröhlich, A. Knowles, B. Schlein, and V. Sohinger, “The Euclidean ϕ^4_2 theory as a limit of an interacting Bose gas,” arXiv:2201.07632 [math-ph].

[133] J. Frohlich and Y. M. Park, “Remarks on Exponential Interactions and the Quantum Sine-Gordon Equation in Two Space-Time Dimensions,” Helv. Phys. Acta 50 (1977) 315–329.

[134] Y. M. Park, “Massless Quantum Sine-Gordon Equation in Two Space-Time Dimensions: Correlation Inequalities and Infinite Volume Limit,” J. Math. Phys. 18 (1977) 2423–2426.

[135] E. P. Osipov, “Possible Approach to the Construction of the $\exp\xi$ quantum field theory in a finite volume,” J. Math. Phys. 25 (1984) 633.

[136] N. Barashkov and F. C. De Vecchi, “Elliptic stochastic quantization of Sinh-Gordon QFT,” arXiv:2108.12664 [math.PR].

[137] J. Glimm and A. M. Jaffe, “Positivity of the ϕ^4_3 Hamiltonian,” Fortsch. Phys. 21 (1973) 327–376.

[138] J. S. Feldman and K. Osterwalder, “The Wightman Axioms and the Mass Gap for Weakly Coupled $(\phi^4)_3$ Quantum Field Theories,” Annals Phys. 97 (1976) 80–135.

[139] J. Magnen and R. Seneor, “The Infinite Volume Limit of the ϕ^3_3 Model,” Ann. Inst. H. Poincare Phys. Theor. 24 (1976) 95–159.

[140] J. Glimm, A. M. Jaffe, and T. Spencer, “A Convergent Expansion About Mean Field Theory. 1. the Expansion,” Annals Phys. 101 (1976) 610.

[141] J. Glimm, A. M. Jaffe, and T. Spencer, “A Convergent Expansion About Mean Field Theory. 2. Convergence of the Expansion,” Annals Phys. 101 (1976) 631–669.

[142] J. Frohlich, B. Simon, and T. Spencer, “Infrared Bounds, Phase Transitions and Continuous Symmetry Breaking,” Commun. Math. Phys. 50 (1976) 79–95.

[143] J. Magnen and R. Seneor, “Phase Space Cell Expansion and Borel Summability for the Euclidean ϕ^3_3 Theory,” Commun. Math. Phys. 56 (1977) 237.

[144] Y. M. Park, “Convergence of Lattice Approximations and Infinite Volume Limit in the $(\lambda\phi^4 - \sigma\phi^2 - \tau\phi)_3$ Field Theory,” J. Math. Phys. 18 (1977) 354–366.

[145] D. C. Brydges, J. Fröhlich, and A. D. Sokal, “A new proof of the existence and nontriviality of the continuum φ^4_2 and φ^4_3 quantum field theories,” Communications in Mathematical Physics 91 (1983) 141–186.
[146] M. Gubinelli and M. Hofmanová, “A PDE Construction of the Euclidean Φ^4_3 Quantum Field Theory,” *Commun. Math. Phys.* **384** no. 1, (2021) 1–75, arXiv:1810.01700 [math-ph].

[147] S. Albeverio and S. Kusuoka, “Construction of a non-Gaussian and rotation-invariant Φ^4-measure and associated flow on \mathbb{R}^3 through stochastic quantization,” arXiv:2102.08040 [math.PR].

[148] M. Hairer and R. Steele, “The Φ^4_3 Measure Has Sub-Gaussian Tails,” *J. Statist. Phys.* **186** no. 3, (2022) 38, arXiv:2102.11685 [math.PR].

[149] T. Oh, M. Okamoto, and L. Tolomeo, “Stochastic quantization of the Φ^3_3-model,” arXiv:2108.06777 [math.PR].

[150] A. Jagannath and N. Perkowski, “A simple construction of the dynamical Φ^4_3 model,” arXiv:2108.13335 [math.PR].

[151] K. Gawedzki and A. Kupiainen, “Exact Renormalization for the Gross-Neveu Model of Quantum Fields,” *Phys. Rev. Lett.* **54** (1985) 2191–2194.

[152] K. Gawedzki and A. Kupiainen, “Gross-Neveu Model Through Convergent Perturbation Expansions,” *Commun. Math. Phys.* **102** (1985) 1.

[153] J. Feldman, J. Magnen, V. Rivasseau, and R. Seneor, “Massive Gross-Neveu Model: a Rigorous Perturbative Construction,” *Phys. Rev. Lett.* **54** (1985) 1479–1481.

[154] J. Feldman, J. Magnen, V. Rivasseau, and R. Seneor, “A Renormalizable Field Theory: The Massive Gross-Neveu Model in Two-dimensions,” *Commun. Math. Phys.* **103** (1986) 67–103.

[155] M. Disertori and V. Rivasseau, “Continuous constructive fermionic renormalization,” *Annales Henri Poincare* **1** (2000) 1–57, arXiv:hep-th/9802145.

[156] M. Salmhofer and C. Wieczerkowski, *Construction of the renormalized GN$_{2-\epsilon}$ trajectory*, pp. 1–19, 2002.

[157] J. Frohlich and E. Seiler, “The Massive Thirring-Schwinger Model (QED in Two-Dimensions): Convergence of Perturbation Theory and Particle Structure,” *Helv. Phys. Acta* **49** (1976) 889.

[158] G. Benfatto, P. Falco, and V. Mastropietro, “Functional Integral Construction of the Thirring model: Axioms verification and massless limit,” *Commun. Math. Phys.* **273** (2007) 67–118, arXiv:hep-th/0606177.
[159] G. Benfatto, P. Falco, and V. Mastropietro, “Massless sine-Gordon and massive Thirring models: Proof of the Coleman’s equivalence,” Commun. Math. Phys. 285 (2009) 713–762, arXiv:0711.5010 [hep-th].

[160] V. Mastropietro, “Schwinger functions in Thirring and Luttinger models,” Nuovo Cim. B 108 (1993) 1095–1107.

[161] P. Falco, Rigorous construction of the Thirring model: Ward-Takahashi Identities, Schwinger-Dyson Equations and New Anomalies. PhD thesis, Rome U., La Sapienza, 2005. arXiv:hep-th/0703274.

[162] K. Osterwalder and R. Schrader, “Feynman-kac formula for euclidean fermi and bose fields,” Phys. Rev. Lett. 29 (1972) 1423–1425.

[163] R. Schrader, “Yukawa quantum field theory in two space-time dimensions without cutoffs,” Annals Phys. 70 (1972) 412–457.

[164] K. Osterwalder and R. Schrader, “Euclidean fermi fields and a feynman-kac formula for boson-fermion models,” Helv. Phys. Acta 46 (1973) 277–302.

[165] J. Glimm and A. M. Jaffe, “Quantum field theory models,” in Les Houches Summer School of Theoretical Physics: Statistical mechanics and quantum field theory, pp. 1–108. 1971.

[166] J. Glimm and A. Jaffe, “The Yukawa$_2$ quantum field theory without cutoffs,” J. Funct. Anal. 7 no. 2, (1971) 323–357.

[167] E. Seiler, “Schwinger Functions for the Yukawa Model in Two-Dimensions with Space-Time Cutoff,” Commun. Math. Phys. 42 (1975) 163.

[168] E. Seiler and B. Simon, “On Finite Mass Renormalizations in the Two-Dimensional Yukawa Model,” J. Math. Phys. 16 (1975) 2289.

[169] E. Seiler and B. Simon, “Bounds in the Yukawa in Two-Dimensions Quantum Field Theory: Upper Bound on the Pressure, Hamiltonian Bound and Linear Lower Bound,” Commun. Math. Phys. 45 (1975) 99.

[170] E. Seiler and B. Simon, “Nelson’s Symmetry and All That in the Yukawa-2 and ϕ^4_3 Field Theories,” Annals Phys. 97 (1976) 470–518.

[171] O. A. McBryan, “Higher Order Estimates for the Yukawa Two-Dimensional Quantum Field Theory,” Commun. Math. Phys. 42 (1975) 1.

[172] O. A. McBryan, “Recent Progress on the Yukawa-2 Quantum Field Theory,” in Symposium on Mathematical Problems of Quantum Dynamics - Models and Mathematics. 1975.
[173] O. A. McBryan, “Volume Dependence of Schwinger Functions in the Yukawa-2 Quantum Field Theory,” *Commun. Math. Phys.* 45 (1975) 279.

[174] O. A. McBryan, “Finite Mass Renormalizations in the Euclidean Yukawa-2 Field Theory,” *Commun. Math. Phys.* 44 (1975) 237.

[175] O. A. McBryan, “Convergence of the Vacuum Energy Density, phi-Bounds and Existence of Wightman Functions for the Yukawa-2 Model,” in *International Colloquium on Mathematical Methods of Quantum Field Theory*, pp. 237–252. 1975.

[176] O. A. McBryan and Y. M. Park, “Lorentz covariance of the yukawa2 quantum field theory,” *Journal of Mathematical Physics* 16 no. 1, (1975) 104–110.

[177] J. Magnen and R. Seneor, “The Wightman Axioms for the Weakly Coupled Yukawa Model in Two-Dimensions,” *Commun. Math. Phys.* 51 (1976) 297–313.

[178] A. Cooper and L. Rosen, “The Weakly Coupled Yukawa Field Theory: Cluster Expansion and Wightman Axioms,” *Trans. Am. Math. Soc.* 234 no. 1, (1977) 1–88.

[179] E. P. Osipov, “The Yukawa-2 Quantum Field Theory: Linear n (tau) Bound, Locally Fock Property,” *Ann. Inst. H. Poincare Phys. Theor.* 30 (1979) 159–192.

[180] E. P. Osipov, “The Yukawa-2 Quantum Field Theory: Lorentz Invariance,” *Annals Phys.* 125 (1980) 53–66.

[181] P. Renouard, “Analyticity and Borel Summability of Schwinger Functions in the Two-Dimensional Yukawa Model. 1. Finite Volume Approximation,” *Ann. Inst. H. Poincare Phys. Theor.* 27 (1977) 237–277.

[182] P. Renouard, “Analyticity and Borel Summability of Schwinger Functions in the Two-Dimensional Yukawa Model. II. The 'Adiabatic Limit'. (In French),” *Ann. Inst. H. Poincare Phys. Theor.* 31 (1979) 235–318.

[183] J. Magnen and R. Seneor, “Yukawa Quantum Field Theory in Three Dimensions (Y_3)*,” *Annals of the New York Academy of Sciences* 337 no. 1, (1980) 13–43.

[184] T. Balaban and K. Gawedzki, “A Low Temperature Expansion for the Pseudoscalar Yukawa Model of Quantum Fields in Two Space-time Dimensions,” *Ann. Inst. H. Poincare Phys. Theor.* 36 (1982) 271.

[185] A. Lesniewski, “Effective Action for the Yukawa(2) Quantum Field Theory,” *Commun. Math. Phys.* 108 (1987) 437–467.
[186] J. Frohlich and K. Osterwalder, “Is There a Euclidean Field Theory for Fermions,” *Helv. Phys. Acta* 47 (1975) 781.

[187] J. Frohlich and P. A. Marchetti, “Bosonization, Topological Solitons and Fractional Charges in Two-dimensional Quantum Field Theory,” *Commun. Math. Phys.* 116 (1988) 127.

[188] H. Nicolai, “A Possible Constructive Approach to Super ϕ^3 in Four-dimensions. 2. Regularization of the Model,” *Nucl. Phys. B* 156 (1979) 157.

[189] H. Nicolai, “On the Normalization of Schwinger Functions in the Euclidean Wess-Zumino Model,” other thesis, 10, 1978.

[190] A. M. Jaffe, A. Lesniewski, and J. Weitsman, “The Two-dimensional $N = 2$ Wess-Zumino Model on a Cylinder,” *Commun. Math. Phys.* 114 (1988) 147.

[191] A. M. Jaffe and A. Lesniewski, “A Priori Estimates for $N = 2$ Wess-Zumino Models on a Cylinder,” *Commun. Math. Phys.* 114 (1988) 553–575.

[192] A. M. Jaffe and A. Lesniewski, “Supersymmetric Quantum Fields and Infinite Dimensional Analysis,” in *NATO Advanced Summer Institute on Nonperturbative Quantum Field Theory (Cargese Summer Institute)*. 12, 1987. https://lib-extopc.kek.jp/preprints/PDF/2000/0031/0031810.pdf.

[193] A. M. Jaffe, A. Lesniewski, and J. Weitsman, “The Loop Space $S(1) \to \mathbb{R}$ and Supersymmetric Quantum Fields,” *Annals Phys.* 183 (1988) 337.

[194] S. A. Janowsky and J. Weitsman, “The Phase structure of the two-dimensional $N=2$ Wess-Zumino model,” *Commun. Math. Phys.* 142 (1991) 25–66.

[195] D. Brydges, J. Fröhlich, and T. Spencer, “The random walk representation of classical spin systems and correlation inequalities,” *Communications in Mathematical Physics* 83 no. 1, (1982) 123 – 150.

[196] D. C. Brydges, J. Fröhlich, and A. D. Sokal, “The random-walk representation of classical spin systems and correlation inequalities. II. The skeleton inequalities,” *Communications in Mathematical Physics* 91 no. 1, (1983) 117 – 139.

[197] J. Fröhlich, “Quantum Field Theory in Terms of Random Walks and Random Surfaces,” *NATO Sci. Ser. B* 115 (1984) 169–233.

[198] M. Aizenman, *The Intersection of Brownian Paths as a Case Study of a Renormalization Group Method for Quantum Field Theory*, pp. 91–110. Springer Berlin Heidelberg, Berlin, Heidelberg, 1985.
[199] J. T. Chayes, L. Chayes, and J. Frohlich, “The Low Temperature Behavior of Disordered Magnets,” Commun. Math. Phys. 100 (1985) 399.

[200] M. Aizenman, “Proof of the Triviality of ϕ^4_3 Field Theory and Some Mean Field Features of Ising Models for $D>4$,” Phys. Rev. Lett. 47 (1981) 1–4.

[201] M. Aizenman, “Geometric Analysis of ϕ^4 Fields and Ising Models (Parts 1 & 2),” Commun. Math. Phys. 86 (1982) 1.

[202] J. Frohlich, “On the Triviality of $\lambda \phi^4_d$ Theories and the Approach to the Critical Point in $d \geq 4$ Dimensions,” Nucl. Phys. B 200 (1982) 281–296.

[203] R. Fernandez, J. Fröhlich, and A. D. Sokal, Random Walks, Critical Phenomena, and Triviality in Quantum Field Theory. Texts and Monographs in Physics. Springer, Berlin, Heidelberg, 1992.

[204] A. D. Sokal, “An Alternate Constructive Approach to the ϕ^4_3 Quantum Field Theory, and a Possible Destructive Approach to ϕ^4_4,” Ann. Inst. H. Poincare Phys. Theor. A 37 (1982) 317–398.

[205] K. Gawedzki and A. Kupiainen, “Triviality of ϕ^4_3 and All That in a Hierarchical Model Approximation,” J. Statist. Phys. 29 (1982) 683–698.

[206] C. Aragao De Carvalho, S. Caracciolo, and J. Frohlich, “Polymers and $g\phi^4$ Theory in Four-Dimensions,” Nucl. Phys. B 215 (1983) 209–248.

[207] M. Aizenman and R. Graham, “On the renormalized coupling constant and the susceptibility in ϕ^4_3 field theory and the Ising model in four dimensions,” Nuclear Physics B 225 no. 2, (1983) 261–288.

[208] K. Gawedzki and A. Kupiainen, “Masless Lattice ϕ^4_4 Theory: a Nonperturbative Control of a Renormalizable Model,” Phys. Rev. Lett. 54 (1985) 92–94.

[209] K. Gawedzki and A. Kupiainen, “Nontrivial Continuum Limit of a ϕ^4_4 Model With Negative Coupling Constant,” Nucl. Phys. B 257 (1985) 474–504.

[210] K. Gawedzki and A. Kupiainen, “Massless lattice ϕ^4 theory: Rigorous control of a renormalizable asymptotically free model,” Communications in Mathematical Physics 99 (1985) 197–252.

[211] T. Hara and H. Tasaki, “A rigorous control of logarithmic corrections in four-dimensional φ^4 spin systems,” Journal of Statistical Physics 47 (1987) 99–121.
[212] J. Feldman, J. Magnen, V. Rivasseau, and R. Sénéor, “Construction and Borel summability of infrared Φ^4_4 by a phase space expansion,” *Communications in Mathematical Physics* **109** no. 3, (1987) 437 – 480.

[213] R. Bauerschmidt, D. C. Brydges, and G. Slade, “Scaling limits and critical behaviour of the 4-dimensional n-component $|\phi|^4$ spin model,” arXiv:1403.7424 [math-ph].

[214] M. Aizenman and H. Duminil-Copin, “Marginal triviality of the scaling limits of critical 4D Ising and ϕ^4_4 models,” *Annals Math.* **194** no. 1, (2021) arXiv:1912.07973 [math-ph].

[215] M. Aizenman, “A geometric perspective on the scaling limits of critical Ising and ϕ^4_d models,” 12, 2021. arXiv:2112.04248 [math-ph].

[216] K. G. Wilson and M. E. Fisher, “Critical exponents in 3.99 dimensions,” *Phys. Rev. Lett.* **28** (1972) 240–243.

[217] K. G. Wilson, “Quarks and Strings on a Lattice,” in *13th International School of Subnuclear Physics: New Phenomena in Subnuclear Physics*. 11, 1975.

[218] T. L. Bell and K. G. Wilson, “Finite-lattice approximations to renormalization groups,” *Phys. Rev. B* **11** no. 9, (1975) 3431.

[219] K. G. Wilson, “Quantum Chromodynamics on a Lattice,” in *Cargese Summer Institute: New Developments in Quantum Field Theory and Statistical Mechanics*. 1, 1977.

[220] A. Brothier and A. Stottmeister, “Canonical quantization of 1+1-dimensional Yang-Mills theory: An operator-algebraic approach,” arXiv:1907.05549 [math-ph].

[221] T. Balaban, “(Higgs)$_{2,3}$ QUANTUM FIELDS IN A FINITE VOLUME. 1. A LOWER BOUND,” *Commun. Math. Phys.* **85** (1982) 603–636.

[222] T. Balaban, “(Higgs)$_{2,3}$ QUANTUM FIELDS IN A FINITE VOLUME. 2. AN UPPER BOUND,” *Commun. Math. Phys.* **86** (1982) 555–594.

[223] T. Balaban, “(Higgs)$_{2,3}$ Quantum Field in a Finite Volume. 3. Renormalization,” *Commun. Math. Phys.* **88** (1983) 411.

[224] T. Balaban, “Propagators and Renormalization Transformations for Lattice Gauge Theories. I,” *Commun. Math. Phys.* **95** (1984) 17–40.

[225] T. Balaban, “Regularity and Decay of Lattice Green’s Functions,” *Commun. Math. Phys.* **89** (1983) 571.
[226] T. Balaban, “Propagators and Renormalization Transformations for Lattice Gauge Theories. 2.,” Commun. Math. Phys. 96 (1984) 223

[227] T. Balaban, J. Imbrie, A. M. Jaffe, and D. Brydges, “The Mass Gap for Higgs Models on a Unit Lattice,” Annals Phys. 158 (1984) 281

[228] T. Balaban, “Spaces of Regular Gauge Field Configurations on a Lattice and Gauge Fixing Conditions,” Commun. Math. Phys. 99 (1985) 75

[229] T. Balaban, J. Imbrie, and A. M. Jaffe, “Renormalization of the Higgs Model: Minimizers, Propagators and the Stability of Mean Field Theory,” Commun. Math. Phys. 97 (1985) 299

[230] T. Balaban, “Averaging Operations for Lattice Gauge Theories,” Commun. Math. Phys. 98 (1985) 17–51

[231] T. Balaban, “Propagators for Lattice Gauge Theories in a Background Field,” Commun. Math. Phys. 99 (1985) 389

[232] T. Balaban, “Ultraviolet Stability of Three-Dimensional Lattice Pure Gauge Field Theories,” Commun. Math. Phys. 102 (1985) 255

[233] T. Balaban, “The Variational Problem and Background Fields in Renormalization Group Method for Lattice Gauge Theories,” Commun. Math. Phys. 102 (1985) 277

[234] T. Balaban, “Renormalization Group Approach to Lattice Gauge Fields Theories. 1. Generation of Effective Actions in a Small Fields Approximation and a Coupling Constant Renormalization in Four-dimensions,” Commun. Math. Phys. 109 (1987) 249

[235] T. Balaban, J. Z. Imbrie, and A. M. Jaffe, “Effective Action and Cluster Properties of the Abelian Higgs Model,” Commun. Math. Phys. 114 (1988) 257

[236] T. Balaban, “Renormalization group approach to lattice gauge field theories. II. Cluster expansions,” Communications in Mathematical Physics 116 no. 1, (1988) 1 – 22

[237] T. Balaban, “Convergent Renormalization Expansions for Lattice Gauge Theories,” Commun. Math. Phys. 119 (1988) 243–285

[238] T. Balaban, M. O’Carroll, and R. Schor, “Block Averaging Renormalization Group for Lattice and Continuum Euclidean Fermions: Expected and Unexpected Results,” Lett. Math. Phys. 17 (1989) 209–214

[239] T. Balaban, “Large Field Renormalization. 1: The Basic Step of the R Operation,” Commun. Math. Phys. 122 (1989) 175–202
[240] T. Balaban, “Large Field Renormalization. 2: Localization, Exponentiation, and Bounds for the R Operation,” Commun. Math. Phys. 122 (1989) 355–392.

[241] J. Dimock, “The Renormalization Group According to Balaban, I. Small fields,” Rev. Math. Phys. 25 no. 7, (2013) 1330010 arXiv:1108.1335 [math-ph].

[242] J. Dimock, “The Renormalization Group According to Balaban - II. Large fields,” J. Math. Phys. 54 no. 9, (2013) 092301 arXiv:1212.5562 [math-ph].

[243] J. Dimock, “The Renormalization Group According to Balaban III. Convergence,” Annales Henri Poincare 15 no. 11, (2014) 2133–2175 arXiv:1304.0705 [math-ph].

[244] J. Dimock, “Nonperturbative renormalization of scalar quantum electrodynamics in d=3,” J. Math. Phys. 56 no. 10, (2015) 102304 arXiv:1502.02946 [math-ph].

[245] J. Dimock, “Ultraviolet regularity for QED in d=3,” J. Math. Phys. 59 no. 1, (2018) 012301 arXiv:1512.04373 [math-ph].

[246] J. Dimock, “Multiscale block averaging for QED in d = 3,” J. Math. Phys. 61 no. 3, (2020) 032302 arXiv:1712.10029 [math-ph].

[247] J. Magnen, V. Rivasseau, and R. Seneor, “Construction of YM(4) with an infrared cutoff,” Commun. Math. Phys. 155 (1993) 325–384.

[248] A. M. Jaffe and E. Witten, “Quantum Yang-Mills theory,”. https://www.claymath.org/sites/default/files/yangmills.pdf.

[249] M. R. Douglas, “Report on the Status of the Yang-Mills Millenium Prize Problem,”. http://www.claymath.org/sites/default/files/ym2.pdf.

[250] R. Haag and D. Kastler, “An Algebraic approach to quantum field theory,” J. Math. Phys. 5 (1964) 848–861.

[251] H. Araki, “Einführung in die axiomatische quantenfeldtheorie.”.

[252] R. Haag, “Quantum field theories with composite particles and asymptotic conditions,” Phys. Rev. 112 (1958) 669–673.

[253] I. E. Segal, “Postulates for General Quantum Mechanics,” Annals of Mathematics 48 no. 4, (1947) 930–948.

[254] I. Segal, “Mathematical Problems of Relativistic Physics,” ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 43 no. 12, (1963) 572–572.
[255] R. Haag, *Local Quantum Physics: Fields, Particles, Algebras* Texts and Monographs in Physics. Springer, Berlin, Heidelberg, 1996.

[256] H. Araki, *Mathematical theory of quantum fields.*, vol. 101. Oxford: Oxford University Press, 1999.

[257] H. Baumgaertel and M. Wollenberg, *Causal nets of operator algebras: Mathematical aspects of algebraic quantum field theory.* Akademie Verlag, 1992.

[258] H. Baumgaertel, *Operator algebraic methods in quantum field theory: A Series of lectures.* Akademie Verlag, 1995.

[259] S. Horuzhy, *Introduction to Algebraic Quantum Field Theory.* Kluwer Academic Publishers, 1990.

[260] G. G. Emch, *Algebraic Methods in Statistical Mechanics and Quantum Field Theory.* Interscience Monographs and Texts in Physics and Astronomy (Edited by R.E. Marshak). Wiley-Interscience, 1972.

[261] H. J. Borchers, *Translation group and particle representations in quantum field theory*, vol. 40. 1996.

[262] O. Bratteli and D. Robinson, *Operator algebras and quantum statistical mechanics, I* Springer, 1979.

[263] O. Bratteli and D. Robinson, *Operator algebras and quantum statistical mechanics II* Springer, 1981.

[264] J. Dixmier, *Von Neumann Algebras.* North Holland, 1981, 2011.

[265] J. Dixmier, *C*-Algebras. North Holland, 2011.

[266] R. V. Kadison and J. R. Ringrose, *Fundamentals of the Theory of Operator Algebras.* American Mathematical Society, Volumes I-IV, 1997.

[267] M. A. Naimark, *Normed Algebras.* Springer Netherlands, 1 ed., 1972.

[268] G. K. Pedersen, *C*-algebras and their automorphism groups. Academic Press, 2 ed., 2018.

[269] S. Sakai, *C*-Algebras and W*-Algebras. Classics in Mathematics. Springer, springer ed., 1997.

[270] S. Sakai, *Operator algebras in dynamical systems.* Encyclopedia of Mathematics and its Applications. Cambridge University Press, 1991.
[271] V. Sunder, *An invitation to von Neumann algebras*. Universitext. Springer-Verlag, 1 ed., 1987.

[272] S. V. Stratila and L. Zsido, *Lectures on von Neumann Algebras*. Cambridge IISc Series. Cambridge University Press, 2 ed., 2019.

[273] S. V. Stratila, *Modular Theory in Operator Algebras*. Cambridge Univ Press US, 2 ed., 2021.

[274] M. Takesaki, *Theory of operator algebras I*. Encyclopaedia of mathematical sciences, Operator algebras and non-commutative geometry. Springer, 2001.

[275] M. Takesaki, *Theory of Operator Algebras II*. Enc.Math.Sci.125. Springer, 1 ed., 2002.

[276] M. Takesaki, *Theory of Operator Algebras III*. Enc.Math.Sci.127. Springer, 1 ed., 2002.

[277] V. F. Jones, *Von Neumann Algebras*. 2009.
https://math.berkeley.edu/~vfr/VonNeumann2009.pdf

[278] D. E. Evans and M. Takesaki, *Operator Algebras and Applications: Volume 1, Structure Theory; K-theory, Geometry and Topology*. London Mathematical Society Lecture Note Series. Cambridge University Press, 1989.

[279] D. E. Evans and M. Takesaki, *Operator Algebras and Applications: Volume 2*. London Mathematical Society Lecture Note Series. Cambridge University Press, 1989.

[280] A. Inoue, *Tomita-Takesaki Theory in Algebras of Unbounded Operators*. Lecture Notes in Mathematics. Springer-Verlag Berlin Heidelberg, 1 ed., 1998.

[281] “Advances in Algebraic Quantum Field Theory,” Mathematical Physics Studies. Springer International Publishing, 2015.

[282] C. J. Fewster and K. Rejzner, “Algebraic Quantum Field Theory – an introduction,”
arXiv:1904.04051 [hep-th]

[283] H. Halvorson and M. Muger, “Algebraic quantum field theory,” in *Philosophy of physics*, J. Butterfield and J. Earman, eds., pp. 731–864. 2007. arXiv:math-ph/0602036

[284] K. Rejzner, *Perturbative Algebraic Quantum Field Theory: An Introduction for Mathematicians*. Mathematical Physics Studies. Springer International Publishing, 2016.

[285] M. Dütsch, “From Classical Field Theory to Perturbative Quantum Field Theory,”.

[286] S. Hollands and K. Sanders, “Entanglement Measures and Their Properties in Quantum Field Theory,”.
[287] “Haag-kastler axioms.” http://ncatlab.org/nlab/show/Haag-Kastler+axioms

[288] “Causal complement.” http://ncatlab.org/nlab/show/causal+complement.

[289] I. Gelfand and M. Neumark, “On the imbedding of normed rings into the ring of operators in Hilbert space,” Rec. Math. [Mat. Sbornik] N.S. 12(54) (1943) 197–217. http://mi.mathnet.ru/msb6155

[290] I. Segal, “Irreducible representations of operator algebras,” Bull. Amer. Math. Soc. 53 (1947).

[291] J. von Neumann, “Zur Algebra der Funktionaloperationen und Theorie der normalen Operatoren,” Mathematische Annalen 102 no. 1, (1930) 370–427.

[292] “Haag-kastler vacuum representation.” https://ncatlab.org/nlab/show/Haag-Kastler+vacuum+representation

[293] F. J. Murray and J. von Neumann, “On Rings of Operators,” Annals of Mathematics 37 no. 1, (1936) 116–229.

[294] F. J. Murray and J. von Neumann, “On rings of operators. II,” Trans. Amer. Math. Soc. 41 (1937) 208–248.

[295] J. von Neumann, “On infinite direct products,” Compositio Mathematica 6 (1939) 1–77. http://eudml.org/doc/88704

[296] J. von Neumann, “On Rings of Operators. III,” Annals of Mathematics 41 no. 1, (1940) 94–161.

[297] F. J. Murray and J. von Neumann, “On Rings of Operators. IV,” Annals of Mathematics 44 no. 4, (1943) 716–808.

[298] J. von Neumann, “On Some Algebraical Properties of Operator Rings,” Annals of Mathematics 44 no. 4, (1943) 709–715.

[299] J. V. Neumann, “On Rings of Operators. Reduction Theory,” Annals of Mathematics 50 no. 2, (1949) 401–485.

[300] J. Von Neumann, “Collected Works, Volume III: Rings of Operators,” Pergamon Press, 1961.

[301] H. Araki, “Type of von Neumann Algebra Associated with Free Field,” Progress of Theoretical Physics 32 no. 6, (12, 1964) 956–965.
[302] R. Longo, “Algebraic And Modular Structure of Von Neumann Algebras of Physics,” vol. 38. 1982.

[303] K. Fredenhagen, “On the modular structure of local algebras of observables,”
Communications in Mathematical Physics 97 no. 1-2, (1985) 79 – 89.

[304] M. Tomita, “Quasi-standard von neumann algebras,” 1967.

[305] M. Takesaki, Tomita’s Theory of Modular Hilbert Algebras and its Applications Lecture Notes in Mathematics. Springer-Verlag, 1970.

[306] H. J. Borchers, “On revolutionizing quantum field theory with Tomita’s modular theory,” J. Math. Phys. 41 (2000) 3604–3673.
https://www.mat.univie.ac.at/~esiprpr/esi773.pdf

[307] S. J. Summers, “Tomita-Takesaki modular theory,” arXiv:math-ph/0511034.

[308] R. Haag, N. M. Hugenholtz, and M. Winnink, “On the Equilibrium states in quantum statistical mechanics,” Commun. Math. Phys. 5 (1967) 215–236.

[309] M. Takesaki and M. Winnink, “Local normality in quantum statistical mechanics,” Commun. Math. Phys. 30 (1973) 129–152

[310] H. J. Borchers and J. Yngvason, “Modular groups of quantum fields in thermal states,” J. Math. Phys. 40 (1999) 601–624 arXiv:math-ph/9805013

[311] E. Witten, “APS Medal for Exceptional Achievement in Research: Invited article on entanglement properties of quantum field theory,” Rev. Mod. Phys. 90 no. 4, (2018) 045003, arXiv:1803.04993 [hep-th]

[312] G. C. Wick, A. S. Wightman, and E. P. Wigner, “The intrinsic parity of elementary particles,” Phys. Rev. 88 (1952) 101–105

[313] G. C. Wick, A. S. Wightman, and E. P. Wigner, “Superselection rule for charge,” Phys. Rev. D 1 (1970) 3267–3269

[314] R. F. Streater, “Outline of Axiomatic Relativistic Quantum Field Theory,” Rept. Prog. Phys. 38 (1975) 771–846

[315] S. Doplicher, R. Haag, and J. E. Roberts, “Local observables and particle statistics. 1,” Commun. Math. Phys. 23 (1971) 199–230

[316] S. Doplicher, R. Haag, and J. E. Roberts, “Local observables and particle statistics. 2,” Commun. Math. Phys. 35 (1974) 49–85

34
[317] N. P. Landsman, “Quantization and Superselection Sectors. 1. Transformation Group C* Algebras,” Rev. Math. Phys. 2 (1990) 45–72.

[318] N. P. Landsman, “Quantization and Superselection Sectors. 2. Dirac Monopole and Aharonov-Bohm Effect,” Rev. Math. Phys. 2 (1990) 73–104.

[319] N. P. Landsman, “Algebraic theory of superselection sectors and the measurement problem in quantum mechanics,” Int. J. Mod. Phys. A 6 (1991) 5349–5372.

[320] H. Casini, M. Huerta, J. M. Magán, and D. Pontello, “Entanglement entropy and superselection sectors. Part I. Global symmetries,” JHEP 02 (2020) 014, arXiv:1905.10487 [hep-th].

[321] D. Guido and R. Longo, “An Algebraic spin and statistics theorem,” Commun. Math. Phys. 172 (1995) 517, arXiv:funct-an/9406005.

[322] R. Verch, “A spin statistics theorem for quantum fields on curved space-time manifolds in a generally covariant framework,” Commun. Math. Phys. 223 (2001) 261–288, arXiv:math-ph/0102035.

[323] H. J. Borchers and J. Yngvason, “On the PCT theorem in the theory of local observables,” Fields Inst. Commun. 30 (2001) 39–64, arXiv:math-ph/0012020.

[324] T. Johnson-Freyd, “Spin, statistics, orientations, unitarity,” Algebr. Geom. Topol. 17 no. 2, (2017) 917–956, arXiv:1507.06297 [math-ph].

[325] D. Kastler, D. W. Robinson, and A. Swieca, “Conserved currents and associated symmetries; Goldstone’s theorem,” Commun. Math. Phys. 2 no. 1, (1966) 108–120.

[326] H. Ezawa and J. A. Swieca, “Spontaneous Breakdown of Symmetries and Zero-Mass States,” Commun. Math. Phys. 5 (1967) 330–336.

[327] H. J. Borchers and W. Zimmermann, “On the self-adjointness of field operators,” Il Nuovo Cimento 31 (1964) 1047–1059.

[328] W. Driessler, S. J. Summers, and E. H. Wichmann, “On the Connection Between Quantum Fields and Von Neumann Algebras of Local Operators,” Commun. Math. Phys. 105 (1986) 49–84.

[329] H. J. Borchers and J. Yngvason, “Positivity of Wightman Functionals and the Existence of Local Nets,” Commun. Math. Phys. 127 (1990) 607.

[330] H. J. Borchers and J. Yngvason, “Local nets and selfadjoint extensions of quantum field operators,” Lett. Math. Phys. 21 (1991) 151–155.
[331] H. J. Borchers and J. Yngvason, “From quantum fields to local von Neumann algebras,” *Rev. Math. Phys.* **4** no. spec01, (1992) 15–47.

[332] K. Fredenhagen and J. Hertel, “Local Algebras of Observables and Point-Like Localized Fields,” *Commun. Math. Phys.* **80** (1981) 555.

[333] S. J. Summers, “From Algebras of Local Observables to Quantum Fields: Generalized H Bonds,” *Helv. Phys. Acta* **60** (1987) 1004–1023.

[334] K. Fredenhagen and K. Rejzner, “Perturbative algebraic quantum field theory,” in *Winter School in Mathematical Physics: Mathematical Aspects of Quantum Field Theory*, pp. 17–55. Springer, 8, 2012. [arXiv:1208.1428 [math-ph]].

[335] K. Fredenhagen and K. Rejzner, *Perturbative Construction of Models of Algebraic Quantum Field Theory*, pp. 31–74. 3, 2015. [arXiv:1503.07814 [math-ph]].

[336] M. Dütsch, *From Classical Field Theory to Perturbative Quantum Field Theory*, vol. 74 of *Progress in Mathematical Physics*. Springer, 2019.

[337] U. Schreiber, “Mathematical Quantum Field Theory,” 2017. http://ncatlab.org/nlab/files/Schreiber_pQFT20211103.pdf.

[338] “Perturbative algebraic quantum field theory.” http://ncatlab.org/nlab/show/perturbative%20algebraic%20quantum%20field%20theory.

[339] E. C. G. Stueckelberg, “Relativistic quantum theory for finite time intervals,” *Phys. Rev.*, **II. Ser.** **81** (1951) 130–133.

[340] E. C. G. Stueckelberg and D. Rivier, “Causalite et structure de la matrice S,” *Helv. Phys. Acta* **23** (1950) 215–222.

[341] E. C. G. Stueckelberg and A. Petermann, “Normalization of constants in the quanta theory,” *Helv. Phys. Acta* **26** (1953) 499–520.

[342] A. Salam, “Overlapping divergences and the S-matrix,” *Phys. Rev., II. Ser.* **82** (1951) 217–227.

[343] N. N. Bogoliubow and O. S. Parasiuk, “Über die Multiplikation der Kausalfunktionen in der Quantentheorie der Felder,” *Acta Math.* **97** (1957) 227–266.

[344] H. Epstein and V. Glaser, “The role of locality in perturbation theory,” *Annales de l’I.H.P. Physique théorique* **19** no. 3, (1973) 211–295. http://www.numdam.org/item/AIHPA_1973__19_3_211_0/.
[345] V. A. Ilyin and D. A. Slavnov, “Observable Algebras in the S Matrix Approach,” Teor. Mat. Fiz. 36 (1978) 32–41.

[346] G. Scharf, Finite quantum electrodynamics. Texts and monographs in physics. Springer-Verlag, 1989.

[347] G. Scharf, Finite Quantum Electrodynamics: The Causal Approach. Dover, 3 ed., 2014.

[348] G. Scharf, Gauge field theories : spin one and spin two : 100 years after general relativity. Dover Publications, 2016.

[349] A. Aste, C. von Arx, and G. Scharf, “Regularization in quantum field theory from the causal point of view,” Prog. Part. Nucl. Phys. 64 (2010) 61–119, arXiv:0906.1952 [hep-th]

[350] M. Dütsch and K. Fredenhagen, “A Local (perturbative) construction of observables in gauge theories: The Example of QED,” Commun. Math. Phys. 203 (1999) 71–105, arXiv:hep-th/9807078

[351] M. Dütsch and K. Fredenhagen, “Algebraic quantum field theory, perturbation theory, and the loop expansion,” Commun. Math. Phys. 219 (2001) 5–30, arXiv:hep-th/0001129.

[352] M. Düetsch and K. Fredenhagen, “The Master Ward Identity and generalized Schwinger-Dyson equation in classical field theory,” Commun. Math. Phys. 243 (2003) 275–314, arXiv:hep-th/0211242

[353] S. Hollands, “Algebraic Approach to the 1/N Expansion in Quantum Field Theory,” Reviews in Mathematical Physics 16 no. 04, (2003) 509–558

[354] R. Brunetti and K. Fredenhagen, “Algebraic approach to quantum field theory,” arXiv:math-ph/0411072

[355] M. Dütsch and K. Fredenhagen, “Causal perturbation theory in terms of retarded products, and a proof of the action Ward identity,” Rev. Math. Phys. 16 (2004) 1291–1348, arXiv:hep-th/0403213

[356] M. Dütsch and K. Fredenhagen, “Action Ward identity and the Stuckelberg-Petermann renormalization group,” Prog. Math. 251 (2007) 113–124, arXiv:hep-th/0501228

[357] F. Brennecke and M. Dütsch, “Removal of violations of the Master Ward Identity in perturbative QFT,” Rev. Math. Phys. 20 (2008) 119–172, arXiv:0705.3160 [hep-th]

[358] K. J. Keller, Dimensional Regularization in Position Space and a Forest Formula for Regularized Epstein-Glaser Renormalization. PhD thesis, Hamburg U., 2010. arXiv:1006.2148 [math-ph]
[359] K. Rejzner, “Fermionic fields in the functional approach to classical field theory,” *Rev. Math. Phys.* 23 (2011) 1009–1033, arXiv:1101.5126 [math-ph]

[360] M. Duetsch, K. Fredenhagen, K. J. Keller, and K. Rejzner, “Dimensional Regularization in Position Space, and a Forest Formula for Epstein-Glaser Renormalization,” *J. Math. Phys.* 55 (2014) 122303, arXiv:1311.5424 [hep-th]

[361] S. Crawford, K. Rejzner, and B. Vicedo, “Lorentzian 2D CFT from the pAQFT Perspective,” *Annales Henri Poincare* 23 no. 10, (2022) 3525–3585, arXiv:2107.12347 [math-ph]

[362] S. Crawford, K. Rejzner, and B. Vicedo, “Chirality in 2d pAQFT,” arXiv:2205.01003 [math-ph]

[363] R. Brunetti, M. Dütsch, and K. Fredenhagen, “Perturbative Algebraic Quantum Field Theory and the Renormalization Groups,” *Adv. Theor. Math. Phys.* 13 no. 5, (2009) 1541–1599, arXiv:0901.2038 [math-ph]

[364] R. Stora, “Renormalized Perturbation Theory: A Missing Chapter,” *Int. J. Geom. Meth. Mod. Phys.* 5 (2008) 1345–1360, arXiv:0901.3426 [hep-th]

[365] K. Fredenhagen and K. Rejzner, “Batalin-Vilkovisky formalism in the functional approach to classical field theory,” *Commun. Math. Phys.* 314 (2012) 93–127, arXiv:1101.5112 [math-ph]

[366] K. Fredenhagen and K. Rejzner, “Batalin-Vilkovisky Formalism in Perturbative Algebraic Quantum Field Theory,” *Communications in Mathematical Physics* 317 (2011) 697–725, 1110.5232

[367] K. A. Rejzner, *Batalin-Vilkovisky formalism in locally covariant field theory*. PhD thesis, Hamburg U., 2011. arXiv:1111.5130 [math-ph]

[368] K. Rejzner, “Remarks on Local Symmetry Invariance in Perturbative Algebraic Quantum Field Theory,” *Annales Henri Poincare* 16 no. 1, (2015) 205–238 arXiv:1301.7037 [math-ph]

[369] K. Rejzner, “BV quantization in perturbative algebraic QFT: Fundamental concepts and perspectives,” 4, 2020. arXiv:2004.14272 [math-ph]

[370] I. A. Batalin and G. A. Vilkovisky, “Gauge Algebra and Quantization,” *Phys. Lett. B* 102 (1981) 27–31
[371] I. A. Batalin and G. A. Vilkovisky, “Quantization of Gauge Theories with Linearly Dependent Generators,” *Phys. Rev. D* 28 (1983) 2567–2582 [Erratum: Phys.Rev.D 30, 508 (1984)].

[372] J. Dito, “Star product approach to quantum field theory: The free scalar field,” *Lett. Math. Phys.* 20 (1990) 125–134.

[373] M. Dütsch and K. Fredenhagen, “Perturbative algebraic field theory, and deformation quantization,” *Fields Inst. Commun.* 30 (2001) 151–160, arXiv:hep-th/0101079.

[374] A. C. Hirshfeld and P. Henselder, “Star products and perturbative quantum field theory,” *Annals Phys.* 298 (2002) 382–393, arXiv:hep-th/0208194.

[375] G. Collini, “Fedosov Quantization and Perturbative Quantum Field Theory,” arXiv:1603.09626 [math-ph].

[376] E. Hawkins and K. Rejzner, “The star product in interacting quantum field theory,” *Letters in Mathematical Physics* 110 (2016) 1257–1313, 1612.09157.

[377] L. Parker, “Quantized fields and particle creation in expanding universes. 1.,” *Phys. Rev.* 183 (1969) 1057–1068.

[378] S. W. Hawking, “Particle Creation by Black Holes,” *Commun. Math. Phys.* 43 (1975) 199–220. [Erratum: Commun.Math.Phys. 46, 206 (1976)].

[379] Y. B. Zeldovich and A. A. Starobinsky, “Particle production and vacuum polarization in an anisotropic gravitational field,” *Zh. Eksp. Teor. Fiz.* 61 (1971) 2161–2175.

[380] A. A. Starobinsky, “Amplification of waves reflected from a rotating ”black hole”.,” *Sov. Phys. JETP* 37 no. 1, (1973) 28–32.

[381] W. G. Unruh, “Second quantization in the Kerr metric,” *Phys. Rev. D* 10 (1974) 3194–3205.

[382] S. A. Fulling, “Nonuniqueness of canonical field quantization in Riemannian space-time,” *Phys. Rev. D* 7 (1973) 2850–2862.

[383] P. C. W. Davies, “Scalar particle production in Schwarzschild and Rindler metrics,” *J. Phys. A* 8 (1975) 609–616.

[384] W. G. Unruh, “Notes on black hole evaporation,” *Phys. Rev. D* 14 (1976) 870.

[385] F. J. Dyson, “Missed opportunities,” *Bull. Am. Math. Soc.* 78 (1972) 635–639.

[386] A. Ashtekar and A. Magnon, “Quantum Fields in Curved Space-Times,” *Proc. Roy. Soc. Lond. A* 346 (1975) 375–394.
[387] J. Dimock, “Algebras of local observables on a manifold,” *Communications in Mathematical Physics* **77** (1980) 219–228.

[388] J. Dimock, “Dirac quantum fields on a manifold,” *Trans. Amer. Math. Soc.* **269** (1982) 133–147.

[389] G. L. Sewell, “Quantum fields on manifolds: PCT and gravitationally induced thermal states,” *Annals Phys.* **141** (1982) 201–224.

[390] B. S. Kay, “Linear Spin 0 Quantum Fields in External Gravitational and Scalar Fields. 1. A One Particle Structure for the Stationary Case,” *Commun. Math. Phys.* **62** (1978) 55–70.

[391] B. S. Kay, “The Double Wedge Algebra for Quantum Fields on Schwarzschild and Minkowski Space-times,” *Commun. Math. Phys.* **100** (1985) 57.

[392] S. A. Fulling, M. Sweeny, and R. M. Wald, “Singularity Structure of the Two Point Function in Quantum Field Theory in Curved Space-Time,” *Commun. Math. Phys.* **63** (1978) 257–264.

[393] S. A. Fulling, F. J. Narcowich, and R. M. Wald, “Singularity Structure of the Two Point Function in Quantum Field Theory in Curved Space-time. II,” *Annals Phys.* **136** (1981) 243–272.

[394] R. M. Wald, *Quantum field theory in curved spacetime and black hole thermodynamics.* Chicago, IL: Univ. of Chicago Press, 1994.

[395] M. Radzikowski, *The Hadamard condition and Kay’s conjecture in (axiomatic) quantum field theory on curved space-time.* PhD thesis, Princeton University, 1992.

[396] M. J. Radzikowski, “Micro-local approach to the Hadamard condition in quantum field theory on curved space-time,” *Commun. Math. Phys.* **179** (1996) 529–553.

[397] M. J. Radzikowski and R. Verch, “A Local to global singularity theorem for quantum field theory on curved space-time,” *Commun. Math. Phys.* **180** (1996) 1–22.

[398] R. Brunetti, K. Fredenhagen, and M. Kohler, “The Microlocal spectrum condition and Wick polynomials of free fields on curved space-times,” *Commun. Math. Phys.* **180** (1996) 633–652, arXiv:gr-qc/9510056.

[399] R. Brunetti and K. Fredenhagen, “Microlocal analysis and interacting quantum field theories: Renormalization on physical backgrounds,” *Commun. Math. Phys.* **208** (2000) 623–661, arXiv:math-ph/9903028.
[400] R. Brunetti, K. Fredenhagen, and R. Verch, “The Generally covariant locality principle: A New paradigm for local quantum field theory,” *Commun. Math. Phys.* **237** (2003) 31–68, arXiv:math-ph/0112041.

[401] S. Hollands and R. M. Wald, “Local Wick polynomials and time ordered products of quantum fields in curved space-time,” *Commun. Math. Phys.* **223** (2001) 289–326, arXiv:gr-qc/0103074.

[402] S. Hollands and R. M. Wald, “Existence of local covariant time ordered products of quantum fields in curved space-time,” *Commun. Math. Phys.* **231** (2002) 309–345, arXiv:gr-qc/0111108.

[403] H. Sahlmann and R. Verch, “Microlocal spectrum condition and Hadamard form for vector valued quantum fields in curved space-time,” *Rev. Math. Phys.* **13** (2001) 1203–1246, arXiv:math-ph/0008029.

[404] A. Strohmaier, R. Verch, and M. Wollenberg, “Microlocal analysis of quantum fields on curved space-times: Analytic wavefront sets and Reeh-Schlieder theorems,” *J. Math. Phys.* **43** (2002) 5514–5530, arXiv:math-ph/0202003.

[405] S. Hollands and R. M. Wald, “On the renormalization group in curved space-time,” *Commun. Math. Phys.* **237** (2003) 123–160, arXiv:gr-qc/0209029.

[406] S. Hollands and R. M. Wald, “Conservation of the stress tensor in perturbative interacting quantum field theory in curved spacetimes,” *Rev. Math. Phys.* **17** (2005) 227–312, arXiv:gr-qc/0404074.

[407] K. Sanders, “Equivalence of the (Generalised) Hadamard and Microlocal Spectrum Condition for (Generalised) Free Fields in Curved Spacetime,” *Communications in Mathematical Physics* **295** (2010) 485–501, 0903.1021.

[408] B. S. DeWitt, “Quantum Field Theory in Curved Space-Time,” *Phys. Rept.* **19** (1975) 295–357.

[409] N. D. Birrell and P. C. W. Davies, *Quantum Fields in Curved Space*. Cambridge Monographs on Mathematical Physics. Cambridge Univ. Press, Cambridge, UK, 2, 1984.

[410] S. A. Fulling, *Aspects of Quantum Field Theory in Curved Space-time*, vol. 17. Cambridge University Press, 1989.

[411] I. L. Buchbinder, S. D. Odintsov, and I. L. Shapiro, *Effective Action in Quantum Gravity*. Institute of Physics Publishing, 1992.
[412] L. Ford, *Quantum field theory in curved spacetime*. lectures ed., 1997.

[413] L. Parker and D. Toms, *Quantum Field Theory in Curved Spacetime: Quantized Fields and Gravity*. Cambridge Monographs on Mathematical Physics. Cambridge University Press, 2009.

[414] “Quantum Field Theory on Curved Spacetimes: Concepts and Mathematical Foundations,” Lecture Notes in Physics. Springer-Verlag, 2009.

[415] S. Hollands and R. M. Wald, “Quantum fields in curved spacetime,” *Phys. Rept.* 574 (2015) 1–35, arXiv:1401.2026 [gr-qc].

[416] E. Witten, “Why Does Quantum Field Theory In Curved Spacetime Make Sense? And What Happens To The Algebra of Observables In The Thermodynamic Limit?,” arXiv:2112.11614 [hep-th].

[417] E. Witten, “Gravity and the Crossed Product,” arXiv:2112.12828 [hep-th].

[418] B. S. Kay, “The Principle of locality and quantum field theory on (nonglobally hyperbolic) curved space-times,” *Rev. Math. Phys.* 4 no. spec01, (1992) 167–195.

[419] R. Brunetti and K. Fredenhagen, “Quantum Field Theory on Curved Backgrounds,” *Lect. Notes Phys.* 786 (2009) 129, arXiv:0901.2063 [gr-qc].

[420] C. J. Fewster and R. Verch, “Algebraic Quantum Field Theory in Curved Spacetimes,” Advances in Algebraic Quantum Field Theory. Mathematical Physics Studies., pp. 125–189. Springer, 2015. 1504.00586

[421] K. Fredenhagen, “Locally covariant quantum field theory,” in *14th International Congress on Mathematical Physics*, pp. 29–37. 3, 2004. arXiv:hep-th/0403007.

[422] R. M. Wald, “The History and Present Status of Quantum Field Theory in Curved Spacetime,” *Einstein Stud.* 12 (2012) 317–331, arXiv:gr-qc/0608018.

[423] R. M. Wald, “The Formulation of Quantum Field Theory in Curved Spacetime,” *Einstein Stud.* 14 (2018) 439–449, arXiv:0907.0416 [gr-qc].

[424] K. Fredenhagen and K. Rejzner, “Quantum field theory on curved spacetimes: Axiomatic framework and examples,” *J. Math. Phys.* 57 no. 3, (2016) 031101, arXiv:1412.5125 [math-ph].

[425] C. J. Fewster, “Locally covariant quantum field theory and the problem of formulating the same physics in all space–times,” *Phil. Trans. Roy. Soc. Lond. A* 373 (2015) 20140238, arXiv:1502.04642 [gr-qc].
[426] C. J. Fewster and R. Verch, “Dynamical locality and covariance: What makes a physical theory the same in all spacetimes?,” *Annales Henri Poincare* 13 (2012) 1613–1674, arXiv:1106.4785 [math-ph]

[427] C. J. Fewster and R. Verch, “Dynamical locality of the free scalar field,” *Annales Henri Poincare* 13 (2012) 1675–1709, arXiv:1109.6732 [math-ph]

[428] C. J. Fewster, “On the notion of ‘the same physics in all spacetimes’,” in *Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework*, pp. 207–227. 2012. arXiv:1105.6202 [math-ph]

[429] D. Guido, R. Longo, J. E. Roberts, and R. Verch, “Charged sectors, spin and statistics in quantum field theory on curved space-times,” *Rev. Math. Phys.* 13 (2001) 125–198, arXiv:math-ph/9906019

[430] R. Brunetti and G. Ruzzi, “Superselection sectors and general covariance. I.,” *Commun. Math. Phys.* 270 (2007) 69–108, arXiv:gr-qc/0511118

[431] C. J. Fewster, “Endomorphisms and automorphisms of locally covariant quantum field theories,” *Rev. Math. Phys.* 25 (2013) 1350008, arXiv:1201.3295 [math-ph]

[432] C. J. Fewster and R. Verch, “The Necessity of the Hadamard Condition,” *Class. Quant. Grav.* 30 (2013) 235027, arXiv:1307.5242 [gr-qc]

[433] C. J. Fewster and B. Lang, “Pure quasifree states of the Dirac field from the fermionic projector,” *Classical and Quantum Gravity* (2015), 1408.1645

[434] M. Brum and K. Fredenhagen, “Vacuum-like’ Hadamard states for quantum fields on curved spacetimes,” *Class. Quant. Grav.* 31 (2014) 025024, arXiv:1307.0482 [gr-qc]

[435] C. J. Fewster and A. Schenkel, “Locally covariant quantum field theory with external sources,” *Annales Henri Poincare* 16 no. 10, (2015) 2303–2365, arXiv:1402.2436 [math-ph]

[436] C. Becker, A. Schenkel, and R. J. Szabo, “Differential cohomology and locally covariant quantum field theory,” *Rev. Math. Phys.* 29 no. 01, (2016) 1750003, arXiv:1406.1514 [hep-th]

[437] C. J. Fewster, “The Split Property for Locally Covariant Quantum Field Theories in Curved Spacetime,” *Letters in Mathematical Physics* 105 (2015) 1633–1661, 1501.02682

[438] M. Ferguson, “Dynamical locality of the nonminimally coupled scalar field and enlarged algebra of Wick polynomials,” *Annales Henri Poincare* 14 (2013) 853–892, arXiv:1203.2151 [math-ph]
[439] K. Sanders, “On the Reeh-Schlieder Property in Curved Spacetime,” Communications in Mathematical Physics 288 (2008) 271–285, 0801.4676.

[440] S. Hollands and R. M. Wald, “Axiomatic quantum field theory in curved spacetime,” Commun. Math. Phys. 293 (2010) 85–125 arXiv:0803.2003 [gr-qc].

[441] I. Khavkine and V. Moretti, “Analytic Dependence is an Unnecessary Requirement in Renormalization of Locally Covariant QFT,” Commun. Math. Phys. 344 no. 2, (2016) 581–620, arXiv:1411.1302 [gr-qc].

[442] S. Hollands, “Renormalized Quantum Yang-Mills Fields in Curved Spacetime,” Rev. Math. Phys. 20 (2008) 1033–1172 arXiv:0705.3340 [gr-qc].

[443] J. Dimock, “Quantized electromagnetic field on a manifold,” Rev. Math. Phys. 4 (1992) 223–233.

[444] M. J. Pfenning, “Quantization of the Maxwell field in curved spacetimes of arbitrary dimension,” Class. Quant. Grav. 26 (2009) 0902.4887.

[445] C. Dappiaggi and B. Lang, “Quantization of Maxwell’s equations on curved backgrounds and general local covariance,” Lett. Math. Phys. 101 (2012) 265–287 arXiv:1104.1374 [gr-qc].

[446] C. Dappiaggi and D. Siemssen, “Hadamard States for the Vector Potential on Asymptotically Flat Spacetimes,” Rev. Math. Phys. 25 (2013) 1350002, arXiv:1106.5575 [gr-qc].

[447] K. Sanders, C. Dappiaggi, and T.-P. Hack, “Electromagnetism, Local Covariance, the Aharonov-Bohm Effect and Gauss’ Law,” Commun. Math. Phys. 328 (2014) 625–667 arXiv:1211.6420 [math-ph].

[448] T.-P. Hack and A. Schenkel, “Linear bosonic and fermionic quantum gauge theories on curved spacetimes,” Gen. Rel. Grav. 45 (2013) 877–910 arXiv:1205.3484 [math-ph].

[449] D. Buchholz and K. Fredenhagen, “Correction to: A C*-algebraic Approach to Interacting Quantum Field Theories [doi: 10.1007/s00220-020-03700-9],” Commun. Math. Phys. 377 no. 2, (2020) 947–969 arXiv:1902.06062 [math-ph].

[450] D. Buchholz and K. Fredenhagen, “Classical dynamics, arrow of time, and genesis of the Heisenberg commutation relations,” Expositiones Mathematicae 38 no. 2, (2020) 150–167 arXiv:1905.02711 [quant-ph]. Special Issue in Honor of R.V. Kadison (1925–2018).
D. Buchholz and K. Fredenhagen, “From path integrals to dynamical algebras: a macroscopic view of quantum physics,” *Found. Phys.* **50** no. 7, (2020) 727–734, arXiv:1905.04250 [quant-ph]

D. Buchholz and K. Fredenhagen, “Dynamical C*-algebras and kinetic perturbations,” *Annales Henri Poincare* **22** no. 3, (2021) 1001–1033, arXiv:2008.02034 [math-ph]

R. Brunetti, M. Dütsch, K. Fredenhagen, and K. Rejzner, “C*-algebraic approach to interacting quantum field theory: Inclusion of Fermi fields,” arXiv:2103.05740 [math-ph]

R. Brunetti, M. Dütsch, K. Fredenhagen, and K. Rejzner, “The unitary Master Ward Identity: Time slice axiom, Noether’s Theorem and Anomalies,” arXiv:2108.13336 [math-ph]

R. Brunetti, M. Dütsch, K. Fredenhagen, and K. Rejzner, “Unitary, anomalous Master Ward Identity and its connections to the Wess-Zumino condition, BV formalism and L_∞-algebras,” arXiv:2210.05908 [math-ph]

R. Brunetti, K. Fredenhagen, and K. Rejzner, “Locally covariant approach to effective quantum gravity,” arXiv:2212.07800 [gr-qc]

“On the problem of gauge theories in locally covariant qft,” Trento, 2014. https://ncatlab.org/nlab/files/SchenkelTrento2014.pdf talk at Operator and Geometric Analysis on Quantum Theory.

“Towards homotopical algebraic quantum field theory,” Mainz Institute for Theoretical Physics, 2017. http://aschenkel.eu/Mainz17.pdf talk at Foundational and Structural Aspects of Gauge Theories.

“From fredenhagen’s universal algebra to homotopy theory and operads,” Hamburg, 2017. http://aschenkel.eu/Hamburg17.pdf talk at Quantum Physics meets Mathematics.

C. J. Fewster and B. Lang, “Dynamical Locality of the Free Maxwell Field,” *Annales Henri Poincaré* **17** (2016) 401–436, 1403.7083

M. Benini and A. Schenkel, “Higher Structures in Algebraic Quantum Field Theory,” *Fortsch. Phys.* **67** no. 8-9, (2019) 1910015, arXiv:1903.02878 [hep-th]

S. Bruinsma, “Coloring Operads for Algebraic Field Theory,” *Fortsch. Phys.* **67** no. 8-9, (2019) 1910004, arXiv:1903.02863 [hep-th]

D. Yau, “Homotopical Quantum Field Theory,” 1802.08101
[464] M. Benini, C. Dappiaggi, and A. Schenkel, “Quantized Abelian principal connections on Lorentzian manifolds,” *Commun. Math. Phys.* **330** (2014) 123–152, [arXiv:1303.2515](https://arxiv.org/abs/1303.2515) [math-ph].

[465] M. Benini, A. Schenkel, and R. J. Szabo, “Homotopy colimits and global observables in Abelian gauge theory,” *Lett. Math. Phys.* **105** no. 9, (2015) 1193–1222, [arXiv:1503.08839](https://arxiv.org/abs/1503.08839) [math-ph].

[466] M. Benini and A. Schenkel, “Quantum field theories on categories fibered in groupoids,” *Commun. Math. Phys.* **356** no. 1, (2017) 19–64, [arXiv:1610.06071](https://arxiv.org/abs/1610.06071) [math-ph].

[467] M. Benini, A. Schenkel, and U. Schreiber, “The Stack of Yang–Mills Fields on Lorentzian Manifolds,” *Commun. Math. Phys.* **359** no. 2, (2018) 765–820, [arXiv:1704.01378](https://arxiv.org/abs/1704.01378) [math-ph].

[468] M. Benini, A. Schenkel, and L. Woike, “Operads for algebraic quantum field theory,” *Commun. Contemp. Math.* **23** no. 02, (2021) 2050007, [arXiv:1709.08657](https://arxiv.org/abs/1709.08657) [math-ph].

[469] M. Benini, A. Schenkel, and L. Woike, “Homotopy theory of algebraic quantum field theories,” *Lett. Math. Phys.* **109** no. 7, (2019) 1487–1532, [arXiv:1805.08795](https://arxiv.org/abs/1805.08795) [math-ph].

[470] M. Benini, S. Bruinsma, and A. Schenkel, “Linear Yang–Mills Theory as a Homotopy AQFT,” *Commun. Math. Phys.* **378** no. 1, (2019) 185–218, [arXiv:1906.00999](https://arxiv.org/abs/1906.00999) [math-ph].

[471] M. Benini, M. Perin, A. Schenkel, and L. Woike, “Categorification of algebraic quantum field theories,” *Lett. Math. Phys.* **111** (2021) 35, [arXiv:2003.13713](https://arxiv.org/abs/2003.13713) [math-ph].

[472] M. Benini, A. Schenkel, and B. Vicedo, “Homotopical Analysis of 4d Chern-Simons Theory and Integrable Field Theories,” *Commun. Math. Phys.* **389** no. 3, (2022) 1417–1443, [arXiv:2008.01829](https://arxiv.org/abs/2008.01829) [hep-th].

[473] V. Carmona, “Algebraic Quantum Field Theories: a homotopical view,” 2021. [arXiv:2107.14176](https://arxiv.org/abs/2107.14176) [math-ph].

[474] S. Bruinsma, C. J. Fewster, and A. Schenkel, “Relative Cauchy evolution for linear homotopy AQFTs,” [arXiv:2108.10592](https://arxiv.org/abs/2108.10592) [math-ph].

[475] A. Anastopoulos and M. Benini, “Homotopy theory of net representations,” [arXiv:2201.06464](https://arxiv.org/abs/2201.06464) [math-ph].

[476] A. Grant-Stuart, “Spacetimes categories and disjointness for algebraic quantum field theory,” [arXiv:2201.09166](https://arxiv.org/abs/2201.09166) [math-ph].
“Homotopical algebraic quantum field theory.” \url{https://ncatlab.org/nlab/show/homotopical%20algebraic%20quantum%20field%20theory}

S. Doplicher, R. Haag, and J. E. Roberts, “Fields, observables and gauge transformations I,” \textit{Commun. Math. Phys.} 13 (1969) 1–23.

S. Doplicher, R. Haag, and J. E. Roberts, “Fields, observables and gauge transformations. 2.” \textit{Commun. Math. Phys.} 15 (1969) 173–200.

D. Buchholz and K. Fredenhagen, “Locality and the Structure of Particle States,” \textit{Commun. Math. Phys.} 84 (1982) 1.

J. Frohlich and T. Kerler, \textit{Quantum groups, quantum categories and quantum field theory}, 6, 1993.

H. Casini, M. Huerta, J. M. Magan, and D. Pontello, “Entropic order parameters for the phases of QFT,” \textit{JHEP} 04 (2021) 277 \texttt{arXiv:2008.11748 [hep-th]}

H. Casini and J. M. Magan, “On completeness and generalized symmetries in quantum field theory,” \textit{Mod. Phys. Lett. A} 36 no. 36, (2021) 2130025 \texttt{arXiv:2110.11358 [hep-th]}

V. Benedetti, H. Casini, and J. M. Magan, “Generalized symmetries of the graviton,” \textit{JHEP} 05 (2022) 045 \texttt{arXiv:2111.12089 [hep-th]}

H. Araki, “A Lattice of Von Neumann Algebras Associated with the Quantum Theory of a Free Bose Field,” \textit{Journal of Mathematical Physics} 4 no. 11, (1963) 1343–1362.

R. Brunetti, D. Guido, and R. Longo, “Modular structure and duality in conformal quantum field theory,” \textit{Commun. Math. Phys.} 156 (1993) 201–220 \texttt{arXiv:funct-an/9302008}

A. Beilinson and V. G. Drinfeld, \textit{Chiral algebras}. American Mathematical Society, 2004.

J. Lurie, “On the Classification of Topological Field Theories,” \textit{Current Developments in Mathematics} 2008 (2009) 129–280 \texttt{arXiv:0905.0465 [math.CT]}

K. Costello, \textit{Renormalization and effective field theory}, vol. 170 of \textit{Mathematical Surveys and Monographs}. American Mathematical Society, 2011.

K. Costello and O. Gwilliam, \textit{Factorization algebras in quantum field theory. Vol.1}. New mathematical monographs: 31. Cambridge University Press, 2017.

K. Costello and O. Gwilliam, \textit{Factorization Algebras in Quantum Field Theory. Vol.2}. New Mathematical Monographs: 41. Cambridge University Press, 2021.
[492] O. Gwilliam, *Factorization algebras and free field theories*. PhD thesis, Northwestern University, 2012.

[493] O. Gwilliam and K. Rejzner, “Relating Nets and Factorization Algebras of Observables: Free Field Theories,” *Communications in Mathematical Physics* **373** (2017) 107–174, arXiv:1711.06674.

[494] O. Gwilliam and K. Rejzner, “The observables of a perturbative algebraic quantum field theory form a factorization algebra,” arXiv:2212.08175 [math-ph].

[495] M. Benini, M. Perin, and A. Schenkel, “Model-independent comparison between factorization algebras and algebraic quantum field theory on Lorentzian manifolds,” *Commun. Math. Phys.* **377** no. 2, (2019) 971–997, arXiv:1903.03396 [math-ph].

[496] B. Williams, “The Virasoro vertex algebra and factorization algebras on Riemann surfaces,” *Letters in Mathematical Physics* **107** no. 12, (Aug, 2017) 2189–2237, 1603.02349.

[497] V. Gorbounov, O. Gwilliam, and B. R. Williams, “Chiral differential operators via Batalin-Vilkovisky quantization,” *Asterisque* **419** (2020) 1610.09657.

[498] O. Gwilliam and B. Williams, “The holomorphic bosonic string,” arXiv:1711.05823 [math-ph].

[499] C. Elliott, B. Williams, and P. Yoo, “Asymptotic Freedom in the BV Formalism,” *J. Geom. Phys.* **123** (2018) 246–283, arXiv:1702.05973 [math-ph].

[500] B. R. Williams, “Renormalization for Holomorphic Field Theories,” *Communications in Mathematical Physics* **374** (2018) 1693–1742, 1809.02661.

[501] O. Gwilliam and B. R. Williams, “Higher Kac–Moody algebras and symmetries of holomorphic field theories,” *Adv. Theor. Math. Phys.* **25** no. 1, (2021) 129–239, arXiv:1810.06534 [math.QA].

[502] I. Saberi and B. R. Williams, “Twisted characters and holomorphic symmetries,” arXiv:1906.04221 [math-ph].

[503] I. Saberi and B. R. Williams, “Superconformal algebras and holomorphic field theories,” arXiv:1910.04120 [math-ph].

[504] O. Gwilliam and B. R. Williams, “A one-loop exact quantization of Chern-Simons theory,” arXiv:1910.05230.

[505] O. Gwilliam, E. Rabinovich, and B. R. Williams, “Factorization algebras and abelian CS/WZW-type correspondences,” arXiv:2001.07888 [math.QA].
[506] C. Elliott and B. R. Williams, “Holomorphic Poisson Field Theories,” \texttt{arXiv:2008.02302 [math-ph]}

[507] I. Saberi and B. R. Williams, “Constraints in the BV formalism: six-dimensional supersymmetry and its twists,” \texttt{arXiv:2009.07116 [math-ph]}

[508] E. Rabinovich, “Factorization Algebras for Classical Bulk-Boundary Systems,” \texttt{arXiv:2008.04953 [math.QA]}

[509] D. Bruegmann, “Vertex Algebras and Costello-Gwilliam Factorization Algebras,” \texttt{arXiv:2012.12214 [math.QA]}

[510] E. Rabinovich, \textit{Factorization Algebras for Bulk-Boundary Systems}. PhD thesis, University of California, Berkeley, 2021. \texttt{2111.01757}

[511] C. Elliott, O. Gwilliam, and B. R. Williams, “Higher Deformation Quantization for Kapustin-Witten Theories,” \texttt{arXiv:2108.13392 [math-ph]}

[512] G. Ginot, T. Tradler, and M. Zeinalian, “Higher Hochschild Homology, Topological Chiral Homology and Factorization Algebras,” \textit{Communications in Mathematical Physics} \textbf{326} (2010) 635–686, \texttt{1011.6483}

[513] G. Ginot, “Notes on factorization algebras, factorization homology and applications,” Mathematical Aspects of Quantum Field Theories, Mathematical Physics Studies, pp. 429–552. 2013. \texttt{1307.5213}

[514] J. Francis and D. Gaitsgory, “Chiral Koszul duality,” \textit{Selecta Mathematica} \textbf{18} (2011) 27–87, \texttt{1103.5803}

[515] E. Cliff, “Universal factorization spaces and algebras,” \textit{Mathematical Research Letters} \textbf{26} no. 4, (2019) 1059–1096, \texttt{1608.08122}

[516] “Factorization algebra.” \url{https://ncatlab.org/nlab/show/factorization+algebra}

[517] S. Hollands, “Quantum field theory in terms of consistency conditions. I. General framework, and perturbation theory via Hochschild cohomology,” \textit{SIGMA} \textbf{5} (2009) 090, \texttt{arXiv:0802.2198 [hep-th]}

[518] M. Atiyah, “Topological quantum field theories,” \textit{Publications Mathématiques de l’Institut des Hautes Études Scientifiques} \textbf{68} no. 1, (Jan, 1988) 175–186, \url{https://doi.org/10.1007/BF02698547}

[519] G. B. Segal, “The Definition of Conformal Field Theory,” in \textit{Differential Geometrical Methods in Theoretical Physics}, vol. 250, pp. 165–171. 1987.
[520] G. Segal, *The definition of conformal field theory*, p. 421–577. London Mathematical Society Lecture Note Series. Cambridge University Press, 2004.

[521] G. Segal, “Three roles of quantum field theory.”

http://www.mpim-bonn.mpg.de/node/3372/abstracts May, 2011.

[522] P. Teichner and S. Stolz, “What is an elliptic object?,” *Topology, geometry and quantum field theory*, 247-343 (2004) 308 (06, 2004).

https://math.berkeley.edu/~teichner/Papers/Oxford.pdf

[523] S. Stolz and P. Teichner, “Supersymmetric field theories and generalized cohomology,” vol. 83 of *Proceedings of Symposia in Pure Mathematics*, pp. 279–340. 2011.

[524] “Functorial field theory.” https://ncatlab.org/nlab/show/functorial+field+theory.

[525] M. Ludewig and A. Stoffel, “A Framework for Geometric Field Theories and their Classification in Dimension One,” *Symmetry, Integrability and Geometry: Methods and Applications* (Jul, 2021) http://dx.doi.org/10.3842/SIGMA.2021.072

[526] D. Grady and D. Pavlov, “Extended field theories are local and have classifying spaces,” 2011.01208.

[527] D. Grady and D. Pavlov, “The geometric cobordism hypothesis,” 2111.01095

[528] M. Kontsevich and G. Segal, “Wick Rotation and the Positivity of Energy in Quantum Field Theory,” *Quart. J. Math. Oxford Ser.* 72 no. 1-2, (2021) 673–699, arXiv:2105.10161 [hep-th]

[529] D. S. Freed and C. Teleman, “Relative quantum field theory,” *Commun. Math. Phys.* 326 (2014) 459–476, arXiv:1212.1692 [hep-th]

[530] A. S. Cattaneo, P. Mnev, and N. Reshetikhin, “Classical BV theories on manifolds with boundary,” *Commun. Math. Phys.* 332 (2014) 535–603 arXiv:1201.0290 [math-ph].

[531] A. S. Cattaneo, P. Mnev, and N. Reshetikhin, “Perturbative quantum gauge theories on manifolds with boundary,” *Commun. Math. Phys.* 357 no. 2, (2018) 631–730, arXiv:1507.01221 [math-ph]

[532] A. S. Cattaneo, P. Mnev, and N. Reshetikhin, “Perturbative BV theories with Segal-like gluing,” arXiv:1602.00741 [math-ph]

[533] A. S. Cattaneo, P. Mnev, and N. Reshetikhin, “A cellular topological field theory,” *Commun. Math. Phys.* 374 no. 2, (2020) 1229–1320 arXiv:1701.05874 [math.AT]
[534] J. Dimock, “Markov Quantum Fields on a Manifold,” *Reviews in Mathematical Physics* **16** no. 02, (Mar, 2004) 243–255, [math-ph/0305017](https://arxiv.org/abs/math-ph/0305017).

[535] U. Schreiber, “AQFT from n- Functorial QFT,” *Communications in Mathematical Physics* **291** no. 2, (May, 2009) 357–401, [0806.1079](https://arxiv.org/abs/0806.1079).

[536] M. Dedushenko, “Gluing. Part I. Integrals and symmetries,” *JHEP* **04** (2020) 175, [arXiv:1807.04274 [hep-th]](https://arxiv.org/abs/1807.04274).

[537] P. Kravchuk, J. Qiao, and S. Rychkov, “Distributions in CFT. Part I. Cross-ratio space,” *JHEP* **05** (2020) 137, [arXiv:2001.08778 [hep-th]](https://arxiv.org/abs/2001.08778).

[538] P. Kravchuk, J. Qiao, and S. Rychkov, “Distributions in CFT. Part II. Minkowski space,” *JHEP* **08** (2021) 094, [arXiv:2104.02090 [hep-th]](https://arxiv.org/abs/2104.02090).

[539] F. Gabbiani and J. Frohlich, “Operator algebras and conformal field theory,” *Commun. Math. Phys.* **155** (1993) 569–640.

[540] R. Longo, “Conformal subnets and intermediate subfactors,” *Commun. Math. Phys.* **237** (2003) 7–30, [arXiv:math-ph/0102196](https://arxiv.org/abs/math-ph/0102196).

[541] Y. Kawahigashi and R. Longo, “Classification of local conformal nets: Case c < 1,” *Annals Math.* **160** (2004) 493–522, [arXiv:math-ph/0201015](https://arxiv.org/abs/math-ph/0201015).

[542] Y. Kawahigashi and R. Longo, “Classification of two-dimensional local conformal nets with c less than 1 and 2 cohomology vanishing for tensor categories,” *Commun. Math. Phys.* **244** (2004) 63–97, [arXiv:math-ph/0304022](https://arxiv.org/abs/math-ph/0304022).

[543] Y. Kawahigashi, “Classification of operator algebraic conformal field theories in dimensions one and two,” in *14th International Congress on Mathematical Physics*, pp. 476–485. 8, 2003, [arXiv:math-ph/0308029](https://arxiv.org/abs/math-ph/0308029).

[544] S. Carpi, R. Hillier, Y. Kawahigashi, R. Longo, and F. Xu, “N =2 Superconformal Nets,” *Commun. Math. Phys.* **336** (2015) 1285–1328, [arXiv:1207.2398 [math.OA]](https://arxiv.org/abs/1207.2398).

[545] S. Carpi, R. Conti, R. Hillier, and M. Weiner, “Representations of Conformal Nets, Universal C*-Algebras and K-Theory,” *Commun. Math. Phys.* **320** (2013) 275–300, [arXiv:1202.2543 [math.OA]](https://arxiv.org/abs/1202.2543).

[546] S. Carpi, Y. Kawahigashi, R. Longo, and M. Weiner, “From vertex operator algebras to conformal nets and back,” [arXiv:1503.01260 [math.OA]](https://arxiv.org/abs/1503.01260).

[547] S. Carpi, “Operator algebras and vertex operator algebras,” in *The Fourteenth Marcel Grossmann Meeting*. WORLD SCIENTIFIC, Nov, 2017.
[548] J. E. Tener, “Geometric realization of algebraic conformal field theories,” *Advances in Mathematics* **349** (2019) 488–563, arXiv:1611.01176.

[549] J. E. Tener, “Representation theory in chiral conformal field theory: from fields to observables,” arXiv:1810.08168 [math-ph].

[550] A. Bartels, C. L. Douglas, and A. G. Henriques, “Conformal nets and local field theory,” arXiv:0912.5307 [math.AT].

[551] A. Bartels, C. L. Douglas, and A. Henriques, “Conformal Nets I: Coordinate-Free Nets,” *International Mathematics Research Notices* **2015** no. 13, (06, 2014) 4975–5052, arXiv:1302.2604.

[552] A. Bartels, C. L. Douglas, and A. Henriques, “Conformal nets II: conformal blocks,” *Commun. Math. Phys.* **354** (2017) 393–458.

[553] A. Bartels, C. L. Douglas, and A. Henriques, “Conformal nets III: fusion of defects,” arXiv:1310.8263.

[554] A. Bartels, C. L. Douglas, and A. Henriques, “Conformal nets IV: The 3-category,” *Algebraic & Geometric Topology* **18** (2018) 897–956, arXiv:1605.00662.

[555] A. Bartels, C. L. Douglas, and A. Henriques, “Conformal Nets V: Dualizability,” *Commun. Math. Phys.* **391** (2022) 1–31.

[556] A. Henriques, “Three-tier CFTs from Frobenius algebras.”.

[557] “Conformal net.” http://ncatlab.org/nlab/show/conformal%20net.

[558] A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov, “Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory,” *Nucl. Phys. B* **241** (1984) 333–380.

[559] T. Hartman, D. Mazac, D. Simmons-Duffin, and A. Zhiboedov, “Snowmass White Paper: The Analytic Conformal Bootstrap,” in *2022 Snowmass Summer Study*. 2, 2022, arXiv:2202.11012 [hep-th].

[560] S. M. Harrison, J. A. Harvey, and N. M. Paquette, “Snowmass White Paper: Moonshine,” arXiv:2201.13321 [hep-th].

[561] E. Gerchkovitz, J. Gomis, and Z. Komargodski, “Sphere Partition Functions and the Zamolodchikov Metric,” *JHEP* **11** (2014) 001, arXiv:1405.7271 [hep-th].

[562] D. Radicevic, “The Ultraviolet Structure of Quantum Field Theories. Part 1: Quantum Mechanics,” arXiv:2105.11470 [hep-th].
[563] D. Radicevic, “The Ultraviolet Structure of Quantum Field Theories. Part 2: What is Quantum Field Theory?,” arXiv:2105.12147 [hep-th]

[564] D. Radicevic, “The Ultraviolet Structure of Quantum Field Theories. Part 3: Gauge Theories,” arXiv:2105.12751 [hep-th].

[565] J. Alexandre, “Lifshitz-type Quantum Field Theories in Particle Physics,” Int. J. Mod. Phys. A 26 (2011) 4523–4541, arXiv:1109.5629 [hep-ph]

[566] P. Horava, “Quantum Gravity at a Lifshitz Point,” Phys. Rev. D 79 (2009) 084008, arXiv:0901.3775 [hep-th]

[567] N. Seiberg, “What is Quantum Field Theory?.” https://www.youtube.com/watch?v=GZvs-ae4YRA

[568] N. Seiberg, “Field Theories With a Vector Global Symmetry,” SciPost Phys. 8 no. 4, (2020) 050, arXiv:1909.10544 [cond-mat.str-el]

[569] N. Seiberg and S.-H. Shao, “Exotic $U(1)$ Symmetries, Duality, and Fractons in 3+1-Dimensional Quantum Field Theory,” SciPost Phys. 9 no. 4, (2020) 046, arXiv:2004.00015 [cond-mat.str-el]

[570] P. Gorantla, H. T. Lam, N. Seiberg, and S.-H. Shao, “More Exotic Field Theories in 3+1 Dimensions,” SciPost Phys. 9 (2020) 073, arXiv:2007.04904 [cond-mat.str-el]

[571] P. Gorantla, H. T. Lam, N. Seiberg, and S.-H. Shao, “Low-energy limit of some exotic lattice theories and UV/IR mixing,” Phys. Rev. B 104 no. 23, (2021) 235116, arXiv:2108.00020 [cond-mat.str-el]

[572] S. Hu and A. Losev, “Feynman Geometries,” in 60 Years of Yang–Mills Gauge Field Theories: C N Yang’s Contributions to Physics, pp. 453–471.

[573] M. Kontsevich and Y. Soibelman, “Notes on \mathcal{A}-Algebras, \mathcal{A}-Categories and Non-Commutative Geometry,” Lect. Notes Phys. 757 (2009) 153–220, arXiv:math/0606241