Spatiotemporal Shoreline Change Analysis in the Downstream Area of Cisadane Watershed Since 1972

Warnadi 1, F R A’Rachman 10, and S N Hijrawadi 1
1Department of Geographic Education, Faculty of Social Science, Universitas Negeri Jakarta, Indonesia

*fauzi.ramadhoan@unj.ac.id

Abstract. Identifying shoreline changes in coastal areas is significant in order to achieve success in coastal management and planning. Understanding the shoreline changes and the driving factors can be an essential reference in developing appropriate preventive measures. This study analyzed changes in shoreline on the downstream area of Cisadane Watershed by utilizing multispectral Landsat Satellite Imagery from 1972 until 2019. The results of this study indicate that in the downstream region of the Cisadane River, there has been significant accretion. That can be caused by the Cisadane River carrying a lot of material, which then settles and forms new land. In other places, however, along the coast of the Cisadane watershed, abrasion generally occurs in residents' ponds areas, such as Kramat Village and Lemo Village, causing community losses. Abrasion in this area occurred due to ocean waves, sea-level rise, and the lack of mangrove areas.

1. Introduction

The coastline is an area that limits land and sea in a particular time condition [1]. The coastline is an important indicator of the dynamics of changes in the earth's surface. Coastal changes that continue to occur will be an indicator of whether erosion or accretion has occurred in an area. Both geological forces that occur in the long term or extreme phenomena in the short term can change the shape and location of the coastline [2]. In general, hydrometeorology, geological and vegetation are the main factors in shoreline changes [3]. However, often, human activities along the coast can also have a direct impact on changes [4].

Shoreline changes can be very complex and unstable and vary from place to place. Thus the measurement of shoreline changes becomes an important aspect in environmental monitoring and coastal area management activities [1]. For the protection and management of resources, the development of coastal areas must be planned. Changes in coastlines must be investigated, and maps of changes in coastlines must be updated [4][5][6]. Analysis of coastline changes can help to identify dangerous coastal areas and detect the dynamics of uncontrolled coastline changes in the short, medium or the long term [7].

The pattern of shoreline changes can be estimated by monitoring Spatio-temporal changes in coastal areas. Data sources used include historical and aerial photographs, coastal maps, ground and GPS surveying, and satellite images [7][8][9][10]. Each method has its advantages and disadvantages. Land surveying provides more detailed information but requires a lot of effort and cost in data collection. Coastal map, historical and aerial photographs usually can give good data but have limited and area and time. The use of satellite imagery will be efficient because it requires less time, less expensive and it covers more areas than other methods [5]. In fact, there is already a lot of literature describing satellite imagery extraction in a semi / automatic way, both using Landsat or Sentinel which can already be accessed online for free [4][11][7].

This study using geographic information systems (GIS) also remote sensing techniques, to analyzed shoreline changes in the downstream area of Cisadane Watershed. The length of the coastal area approximately is 32 km. Most of the research in this area is about the water quality of the stream or spatial planning. However there very limited studies about the shorelines changes in this area [12], the closes one is shoreline change in Jakarta [13] or the Muara Gembong, Bekasi Regency [14]. This study was analyzed temporal changes that happen in the shorelines of the downstream area in Cisadane Watershed during 1972-2019. Furthermore, to be able to determine the effect of shoreline changes in
the research area, shoreline changes will be analyzed using the Net Shoreline Movement (NSM), End Point Rate (EPR) and Shoreline Change Envelope (SCE) [15].

2. Methods

2.1. Study Area
The Cisadane watershed is one of the strategic areas in Indonesia where urbanization, industrialization and agricultural activities are the main activities. There are nine villages located alongside the coastline, which are Kramat, Kohod, Tanjung Burung, Tanjung Pasir, Muara, Lemo, Salembaranjaya, Kosambi, and Dadap. In the downstream area, agricultural was dominant along the coast. But over time some industrial areas began to grow in this region. As in figure 1, this area is located west of Jakarta bay. The total coastline in this area is around 32.83 km.

![Figure 1. Research Area](image)

2.2. Material and methods
The use of Landsat temporally to map changes in coastlines has been carried out in various places, such as Turkey [3], China [16][17] and Indonesia [18]. Landsat was used in many aspects related to earth surface mapping. In this research, we try to cover the longest period possible. The oldest satellite imagery of this area was taken is in 1972, the Landsat 1 MSS (Multispectral Scanner). The newest satellite imagery of this area was taken is in 2019, the Landsat 8 OLI (Operational Land Imager). The data are analyzed from a variety of data sources, as seen in table 1. There are about fourteen satellite images that we use to see the shorelines dynamic in 47 years. The shortest interval data that we use is two years and the longest is seven years, this is happening because of the limitation of the data available to be processed. Landsat is used because it has a wide recording area coverage in each scene, has many bands that contain several values in the electromagnetic spectrum range that can be used to assess changes in coastline, have records that can be analyzed over a period of several decades, and the data is easy, fast, and free through the internet [19]. Because the lowest tide and highest tide on the coastal area of Java is generally not very varied in one year, the selection of data can be made without being affected by the recording month.
Table 1. Data source and their specification.

Acquisition year	Data Type	Path/Row	Resolution
Oct 1, 1972	Landsat 1 MSS	131 / 064	60
Jun 21, 1976	Landsat 2 MSS	131 / 064	60
Aug 28, 1982	Landsat 3 MSS	131 / 064	60
May 3, 1989	Landsat 3 MSS	131 / 064	60
May 27, 1992	Landsat 5 TM	122 / 064	30
Aug 08, 1995	Landsat 5 TM	122 / 064	30
Sept 14, 2000	Landsat 5 TM	122 / 064	30
Sept 4, 2005	Landsat 5 TM	122 / 064	30
June 22, 2007	Landsat 5 TM	122 / 064	30
Aug 1, 2010	Landsat 5 TM	122 / 064	30
Oct 12, 2013	Landsat 8 OLI	122 / 064	30
Oct 18, 2015	Landsat 8 OLI	122 / 064	30
Sept 9, 2017	Landsat 8 OLI	122 / 064	30
May 22, 2019	Landsat 8 OLI	122 / 064	30

Shorelines can be identified by using the bands in the infrared also visible wavelengths. This is can happen because the water show low reflectance, whereas vegetation and soils exhibit high reflectance in the infrared wavelength [17]. Think about at temporal and economic factors, remote sensing is considered as the most economical and fastest method of identifying coastlines [6]. In addition, the possibility of monitoring one area on a different time makes remote sensing far superior to other methods in studies that determine shoreline changes. Considering the lack of data on the field, especially in developing countries like Indonesia, the use of satellite imagery is considered the most economically and appropriate method because it provides access to current and archived data. [20]. The method used to extract the coastline from satellite images is divided into two groups: first, digitization on the screen as a manual method using visual interpretation and second, semi-automatic/automatic coastline extraction using some parameter [21][22].

The next stage, as shown in Figure 2, is image preprocessing, which is the stage that ensures that the image to be processed is ready for use. The stages carried out include rectification, radiometric calibration, and radiometric correction. Normalized Difference Water Index (NDWI) was used for water-featured extraction, the evaluation of the index results through visual interpretation of satellite images and comparing with the maps revealed that the NDWI index produced the best result in the study area. Extraction of shorelines from the raster into vector data then analyzed by the Digital Shoreline Analysis System (DSAS). Analysis of shoreline changes conducted among others Net Shoreline Movement (NSM), End Point Rate (EPR) and Shoreline Change Envelope (SCE). The NSM is a method calculation of the distance between the most recent and the earlier shorelines in every transect zone. The SCE is a method calculation of the distinction between the closest and farthest shorelines. ERP is a method that calculates the yearly rate of shoreline change, the ERP value is acquired by dividing the distance shoreline changes and time elapsed between the first and the latest data measurements. After statistical data and shorelines map that comes from DSAS analysis, we are doing the result interpretation or the act of explaining, reframing, or otherwise showing the understanding of shorelines dynamics in the research location.

![Figure 2. Workflow Scheme of the Research](image-url)
3. Results and Discussion

3.1. Shoreline Extraction

The Shoreline extraction can be used with the high water-line of the ocean was considered to be an indication of the coastline. The high water line uses typically the shoreline indicator because it is can be seen in most of the satellite images[23]. NDWI was used to extract the series coastline data from the satellite images. The assessment of the index outcome through the visual interpretation of Landsat images and then comparing the result with the maps disclosed that the NDWI index makes the best outcome in this research area. The coastlines that were transformed to vector form from the raster form were edited by visible interpretation of assorted band combinations. The vector form also transferred into the geodatabase after making the obligatory rectifications. In a simple word, the raster data were transformed into vector form and then the vector data were generalized.

Temporal coastline changes continue in the downstream area of Cisadane Watershed. The coastline is identified by extracting the boundary between land and sea. Histogram threshold approach using various wave combinations can display land-sea by calcifying pixels into two classes that are land and sea. As seen in Figure 3, the dark color indicates water conditions, while the light indicates dry areas or land. In plain view of the two satellite images, the most striking change is sedimentation in the upper Cisadane river or around Tanjung Burung. As for the eastern and western regions, coast abrasion has been seen.

![Figure 3](image_url)

Figure 3. Differentiation of Land and Water Interface on Landsat imagery, (1972) Landsat 1 RGB: NI2 NI1 R; (2019) Landsat 8 RGB: SW2 SW1 NI

3.2. Shoreline Identification from 1972 to 2019

Identification of abrasion and accretion is done by overlaying shoreline extraction from 1972 until 2019. The length of the coastline in 1972 was 27.81 km while in 2019 it increased to 32.83 km. As seen in figure 4, the greatest dynamic changes in the coastline occur in the upper Cisadane river, the Tanjung Burung area. Whereas the east and west areas are much less dynamic in shoreline changes. In the middle region, accretion occurs while in the erosion of the eastern and western regions generally occurs. Only the Dadap and Kosambi regions in the eastern area of das Cisadane experienced accretion. Overall the total accretion that occurs in this area is 608.31 Ha, while the abrasion that occurs is about half smaller, 366.17 Ha.
3.3. Analysis of spatiotemporal shoreline changes from 1972 to 2019

In total, there are 421 transects with a distance of 50 meters to analyze spatial changes temporally in the research area. Intervals every 50 m are good enough for this study because transect intervals below 30 m will not provide further estimates for the detection of shoreline changes due to data resolution. Changes that occur during the measurement period will be detected and analyzed using the NSM, EPR and SCE methods utilizing Geographic Information System. Polygon overlay analysis will also be used to determine changes in the coastline and determine areas that have changed.

The Net Shoreline Movement (NSM) method is a calculation of the distance between the oldest and most recent coastlines in each transect area [24]. The maximum value of NSM was 2.607 m (accretion) located in Tanjung Burung Village, the minimum was -1.430 m (Abrasion) located in Salembaran Jaya, and the average value of NSM is 245 m. In the SCE method is the calculation of the difference between the closest and farthest coastlines. In this calculation method, very different from NSM, the most significant changes will be calculated independently from time to time [25] [24]. The maximum value of Shoreline Change Envelope (SCE) was 2.965 m also located in Tanjung Burung Village, the minimum was 44 m in Tanjung Pasir Village, and the average value of SCE is 686 m. Both NSM and SCE report a distance (Figure 5) [26].

![Figure 4. Left – The Accretion and Abrasion Area Since 1972; Right – Shorelines Dynamics by Year](image)

![Figure 5. The SCE and NSM Graphic](image)
The EPR method is very different from the NSM and SCE, the ERP method calculates the annual rate of change. The EPR value is obtained by dividing the total distance of the coast change based on the time difference from each data. Tanjung Burung was the highest EPR which is 15-55 m in a year (Figure 6). The most stable area in Tanjung Pasir which is only less than 1 meter per year. Kramat and Lemo areas are areas with erosion levels reaching -15 – -30 meters per year. Kohot, Salembaran Jaya, and Kosambi are areas with the abrasion levels about 1 – 15 meters per year. Based on the ground check validation on the field, the accretion happens in this area because of the sedimentation process that happens in the Downstream of the Cisadane River.

![Figure 6. End Point Rate (EPR) of the Shorelines Changes](image)

4. Conclusions
The temporal use of Landsat satellite imagery data can help analyze spatial changes in the coastline. The overlay result from 1972-2019 coastline extraction can show that the coastline in the upstream coast of the Cisadane river experiences accretion due to high river sedimentation but in areas where there is no sedimentation accretion occurs. This sedimentation gives some positive impacts, for example, are the new land that can be used to be a habitat for an ecosystem and also some additional area for ponds. On the other side, the worst abrasion occurs in the villages of Lemo and Kramat that can reach 30 m per year. The abrasion generally occurs in some residents’ ponds areas, for example, Kramat Village and also the Lemo Village that causing community losses. The cause of the abrasion not yet calculated but from some identification, it could be happening because of the sea level rise, ocean waves, longshore current and also land-use change from mangrove areas into ponds.

Acknowledgments
This research fund supported by DIPA PNBP Universitas Negeri Jakarta. The authors express their gratitude to the anonymous reviewers for their insightful comments and advice, which helped to improve the quality of this manuscript considerably.

References
[1] Appeaning K, Addo P N, Jayson-Quashigah, Kufogbe K S 2012 Quantitative Analysis of Shoreline Change Using Medium Resolution Satellite Imagery in Keta, Ghana *Mar. Sci.* **1** 1–9
[2] Seker D Z, Kaya S, Alkan R M, Tanik A, Saroglu E 2008 3D Coastal Erosion Analysis of Kilyos - Karaburun Region Using Multi-Temporal Satellite Image Data *Fresenius Environ. Bull.*, **17** 1977–1982
[3] Ozturk D and Sesli F A 2015 Shoreline Change Analysis of the Kizilirmak Lagoon Series *Ocean Coast. Manag.* **118** 290–308
[4] Guariglia A, et al. A Multisource Approach for Coastline Mapping and Identification of Shoreline Changes Ann. Geophys. 49
[5] Van T T and Binh T T 2009 Application of Remote Sensing for Shoreline Change Detection in Cuu Long estuary VNU J. Sci. 25 217–222
[6] Alesheikh A A, Ghurbanali A, Nouri N 2007 Coastline Change Detection Using Remote Sensing Int. J. Environ. Sci. Technol. 4 61–66
[7] Ford M 2013 Shoreline Changes Interpreted from Multi-Temporal Aerial Photographs and High-Resolution Satellite Images: Wotje Atoll, Marshall Islands Remote Sens. Environ. 135 130–140
[8] Kabuth A K, Kroon A, Pedersen J B T, Kabuth A K, Kroon A, Pedersen B T 2017 Multidecadal Shoreline Changes in Denmark Stable URL: http://www.jstor.org/stable/43290101 Linked references are available on JSTOR for this article: Multidecadal Shoreline Changes in Denmark 3 714–728
[9] Davidson M A, Lewis R P, Turner I L 2010 Forecasting seasonal to multi-year shoreline change Coast. Eng. 57 620–629
[10] Fan Y, Chen S, Zhao B, Pan S, Jiang C, Ji H 2018 Shoreline Dynamics of the Active Yellow River Delta Since the Implementation of Water-Sediment Regulation Scheme: A Remote-Sensing and Statistics-Based Approach Estuar. Coast. Shelf Sci. 200 406–419
[11] Del Río L, Gracia F J, Benavente J 2013 Shoreline Change Patterns in Sandy Coasts. A Sase Study in SW Spain Geomorphology 196 252–266
[12] Verstappen H T 1988 Old and New Observations on Coastal Changes of Jakarta Bay: An Example of Trends in Urban Stress on Coastal Environments J. Coast. Res. 4 573–587
[13] Libriyono A, Kusratmoko E, Kertopermono A P 2018 Spatial Modeling of Shoreline Change to Coastal Disaster Management in Jakarta Bay AIP Conf. Proc. 1987
[14] Nugraha R B A, et al. 2019 The Impact of Land Used Changes on Mangrove Forest and Shoreline Dynamic in Muara Gembong, Bekasi, West Java IOP Conf. Ser. Earth Environ. Sci. 241
[15] Salghuna N N and Bharathvaj S A 2015 Shoreline Change Analysis for Northern Part of the Coromandel Coast Aquat. Procedia 4 317–324
[16] Zhang X, et al. Spatial and Temporal Shoreline Changes of the Southern Yellow River (Huanghe) Delta in 1976–2016 Mar. Geol. 395 188–197
[17] Qiao G, et al. 55-year (1960–2015) Spatiotemporal Shoreline Change Analysis Using Historical DISP and Landsat Time Series Data in Shanghai Int. J. Appl. Earth Obs. Geoinf. 68 238–251
[18] Marfai M A, Almohammad H, Dey S, Susanto B, King L Coastal Dynamic and Shoreline Mapping: Multi-Sources Spatial Data Analysis in Semarang Indonesia Environ. Monit. Assess. 142 297–308
[19] Almonacid-Caballer J, Sánchez-García E, Pardo-Pascual J E, Balaguer-Beser A A, Palomar-Vázquez J 2016 Evaluation of Annual Mean Shoreline Position Deduced from Landsat Imagery As A Mid-Term Coastal Evolution Indicator Mar. Geol. 372 79–88
[20] El-Asmar H M, Hereher M E, El Kafrawy S B 2013 Surface Area Change Detection of the Burullus Lagoon, North of the Nile Delta, Egypt, Using Water Indices: A Remote Sensing Approach Egypt. J. Remote Sens. Sp. Sci. 16 119–123
[21] Kusimi J M and Dika J L 2012 Sea Erosion At Ada Foah: Assessment of Impacts and Proposed Mitigation Measures Nat. Hazards 64 983–997
[22] Karsli F, Guneroglu A, Dihkan M 2011 Spatio-Temporal Shoreline Changes Along the Southern Black Sea Coastal Zone J. Appl. Remote Sens. 5 1–14
[23] Liu Y, Wang X, Ling F, Xu S, Wang C 2017 Analysis of Coastline Extraction from Landsat-8 Oli Imagery Water (Switzerland) 9
[24] Manca E, Pascucci V, Deluca M, Cossu A, Andreucci S 2013 Shoreline Evolution Related to Coastal Development of A Managed Beach in Alghero, Sardinia, Italy Ocean Coast. Manag. 85 65–76
[25] Thieler E R, Himmelstoss E A, Zichichi J L, Ergul A 2009 The Digital Shoreline Analysis System (DSAS) Version 4.0 - An ArcGIS Extension for Calculating Shoreline Change Reston, VA
[26] Thieler E R, Himmelstoss E A, Zichichi J L, Ergul A 2009 The Digital Shoreline Analysis System (DSAS) Version 4.0 - An ArcGIS Extension for Calculating Shoreline Change Reston, VA