Research Article

Infinitely Many High Energy Solutions for the Generalized Chern-Simons-Schrödinger System

Hua Su, Yongqing Wang, and Jiafa Xu

1School of Mathematics and Quantitative Economics, Shandong University of Finance and Economics, Jinan, Shandong 250014, China
2School of Mathematical Sciences, Qufu Normal University, Qufu, Shandong 273165, China

Correspondence should be addressed to Yongqing Wang; wyqing9801@163.com

Received 7 September 2020; Revised 28 September 2020; Accepted 3 October 2020; Published 11 November 2020

Academic Editor: Jiabin Zuo

Copyright © 2020 Hua Su et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, by virtue of the critical point theory, we are pleased to investigate the existence of infinitely many high energy solutions for the generalized Chern-Simons-Schrödinger system with a perturbation.

1. Introduction

In this work, we are concerned with the following generalized Chern-Simons-Schrödinger system with a perturbation:

\[
\begin{align*}
\Delta u + \lambda V(x)u + A_0(u(x))u + \sum_{j=1}^{2} A_j^2(u(x))u &= f(u) + \mu g(x)|u|^{q-2}u, \\
\partial_1 A_2(u(x)) - \partial_2 A_1(u(x)) &= -\frac{1}{2} u, \\
\partial_1 A_1(u(x)) + \partial_2 A_2(u(x)) &= 0, \\
\Delta A_0(u(x)) &= \delta (A_2(u(x))|u|^2) - \partial_2 (A_1(u(x))|u|^2),
\end{align*}
\]

where \(\lambda, \mu\) are positive parameters and \(V, f, g\) satisfy the following conditions:

(V1) \(V(x) \in C(\mathbb{R}^2), V(x) = V(|x|)\), and \(V(x) \geq 0\) on \(\mathbb{R}^2\);

(V2) There exists \(b > 0\) such that \(V_b = \{x \in \mathbb{R}^2 : V(x) < b\}\) is nonempty and has finite measure;

(V3) There exists \(R > 0\) such that \(B(0, R) = \text{int } V^{-1}(0)\) and \(B(0, R) = V^{-1}(0)\), where \(B(0, R)\) denotes the ball of radius \(R\) centered at \(0\);

(H1) \(f \in C(\mathbb{R}, \mathbb{R})\), and \(f(u) = o(|u|)\) as \(|u| \to 0\);

(H2) There exists \(R_0 > 0\) such that \(F(u) = \int_0^u f(t) \, dt \geq 0\) and \(\mathcal{F}(u) = (1/6)f(u)u - F(u) \geq 0\) for \(|u| \geq R_0\);

(H3) \(f(u)u/|u|^6 \to +\infty\) as \(|u| \to +\infty\);

(H4) There exist \(a_0, R_1 > 0\) and \(\tau \in (1, +\infty)\) such that \(|f(u)|^\tau \leq a_0 \mathcal{F}(u)|u|^\tau\), for \(|u| \geq R_1\);

(H5) \(f(-u) = -f(u)\) for \(u \in \mathbb{R}\);

(g) \(g \in L^{q'}(\mathbb{R}^2)\), and \((x) \geq 0(\equiv 0)\), for \(x \in \mathbb{R}^2\), where \(q' \in (1, 2/(2 - q))\), \(q \in (1, 2)\).

Recently, the Chern-Simons-Schrödinger system

\[
\begin{align*}
iD_0 u + (D_1D_1 + D_2D_2)u &= -f(u), \\
\partial_0 A_1 - \partial_1 A_0 &= -\operatorname{Im}(\bar{u}D_2 u), \\
\partial_0 A_2 - \partial_2 A_0 &= -\operatorname{Im}(\bar{u}D_1 u), \\
\partial_1 A_2 - \partial_2 A_1 &= -\frac{1}{2} |u|^2
\end{align*}
\]

has been paid more attention by many researchers (for example, see [1–10]), where \(i\) denotes the imaginary unit, \(\partial_0 = \partial/\partial t, \partial_1 = \partial/\partial x_1, \text{ and } \partial_2 = \partial/\partial x_2\) for \((t, x_1, x_2) \in \mathbb{R}^{1+2}, u : \mathbb{R}^{1+2} \to \mathbb{C}\) is the complex scalar field, \(A_\mu\)
$\mathbb{R}^{1+2} \rightarrow \mathbb{R}$ is the gauge field, and $D_\mu = \partial_\mu + iA_\mu$ is the covariant derivative for $\mu = 0, 1, 2$.

In [1], the authors studied the nonlocal semilinear Schrödinger equation with the gauge field

$$\Delta u + \lambda V(|x|)u + \left(\frac{k^2(|x|)}{|x|^2} + \int_0^{|s|} \frac{m(s)}{s} \, du(s) \, ds\right) u = f(|x|, u), \quad u \in \mathbb{R}^2,$$

(3)

where the potential V satisfies (V1)-(V3) (this potential can also be found in [11, 12]). When f satisfies more general 6 superlinear conditions at infinity, they obtained some existence theorems of nontrivial solutions for (3). Some similar results can also be found in [2, 5] with a constant external potential. In [4], the authors improved the results in [1, 2, 5] and used the concentration-compactness principle to obtain two bound state solutions for the generalized Chern-Simons-Schrödinger system

$$-\Delta u + A_0 u + \sum_{j=1}^{2} A_j^2 u = |u|^{p-2} u + \lambda u,$$

(4)

$$\partial_t A_2 - D_2 A_1 = -\frac{1}{2}u^2,$$

$$\partial_t A_1 + D_2 A_2 = 0,$$

$$\Delta A_0 = \delta_1 (A_2 u^2) - D_2 (A_1 u^2),$$

where $p > 4$. In [3], the authors used some new techniques joined with the manifold of Pohožaev-Nehari type to study the existence of a semiclassical ground state solution for the generalized Chern-Simons-Schrödinger system

$$\varepsilon^2 \Delta u + V(x)u + A_0(u(x))u + \sum_{j=1}^{2} A_j^2 (u(x))u = f(u),$$

$$\varepsilon (D_1 A_2 (u(x)) - D_2 A_1 (u(x))) = -\frac{1}{2}u^2,$$

$$\partial_t A_1 (u(x)) + D_2 A_2 (u(x)) = 0,$$

$$\varepsilon \Delta A_0 (u) = \delta_1 (A_2 (u(x)) |u|^2) - \delta_2 (A_1 (u(x)) |u|^2),$$

(5)

where their results are available to the nonlinearity $f(u) \sim |u|^{p-2} u$ for $s \in (4, 6]$.

There also are some papers in the literature which consider perturbation terms (see [12–21]) and the references therein (also refer to [22–27]). For example, in [13, 14], the authors used the famous Ambrosetti-Rabinowitz condition (see also [12, 15]) to study the existence of solutions for the following Schrödinger equations:

$$\left\{ \begin{array}{c}
-\Delta u + V(x)u + \phi u = f(x, u) + g(x), \quad x \in \mathbb{R}^3, \\
-\Delta \phi = u^2, \quad x \in \mathbb{R}^3,
\end{array} \right.$$

$$-\Delta \phi + V(x)|u|^{p-2} u - \lambda |u|^{p-2} u = f(x, u) + g(x)|u|^p u, \quad x \in \mathbb{R}^3,$$

(6)

where $(-\Delta)^n_p$ is the fractional p-Laplace operator. It is generally known that our conditions (H2) and (H4) are weaker than the corresponding (AR) condition: there exists $\mu > 6$ such that

$$0 < \mu F(u) \leq f(u)u \quad \text{for } u \in \mathbb{R} \setminus \{0\}. \quad (7)$$

So, our results here can be viewed as an extension to the ones in [12–15].

In [16], the authors studied the following nonhomogeneous Schrödinger-Kirchhoff-type fourth-order Elliptic equations in \mathbb{R}^N:

$$\left\{ \begin{array}{c}
\Delta^2 u + \left(a + h \varepsilon^p \right) \Delta u + V(x)u = f(x, u) + h(x)u \quad \text{in } \mathbb{R}^N, \\
\Delta u \in H^2(\mathbb{R}^N).
\end{array} \right.$$

(8)

They obtained the existence of infinitely many solutions for this system by means of the symmetry mountain pass theorem and the fountain theorem.

Now, we state the main result:

Theorem 1. Suppose that (V1)-(V3), (H1)-(H5), and (g) hold. Then, for arbitrarily small $\mu > 0$, there exists $\mu_0 > 0$ such that system (1) possesses infinitely many high energy solutions when $\lambda \geq \lambda_{\mu_0}$.

Remark 2. From (H1), (H2), and (H4), we can get a growth condition for f. Using (H2) and (H4), for $|u| \geq R_1 := \max \{ R_0, R_1 \}$, we have $|f(u)| \leq \alpha_0 \phi(u)|u|^r = \alpha_0 \phi(u) |u|^{r+1} |u|^{r+1}$

$$|u|^2 \leq \alpha_0 \phi(u) |u|^{r+1} \quad \text{and} \quad |f(u)| \leq \sqrt{\alpha_0 \phi(u)} |u|^{r+1}. \quad \text{2

Let $p = \frac{r+1}{r-1}$, then $f(u) \leq \sqrt{\alpha_0 \phi(u)} |u|^{r+1}$, for $|u| \geq R_2$. Therefore, we obtain

$$|f(u)| \leq \frac{e}{2} |u|^2 + c_r |u|^p, \quad u \in \mathbb{R}, \quad c_r = \sqrt{\frac{\alpha_0}{6}} \quad (9)$$

and thus

$$|F(u)| \leq \frac{e}{2} |u|^2 + \frac{c_r}{p} |u|^p, \quad u \in \mathbb{R}. \quad (10)$$

2. Preliminaries

Let $\| \cdot \|_{s}$ be the usual L^s-norm for $s \in [1, +\infty)$, and $\ell_i (i \in \mathbb{R}^n)$ stand for different positive constants. We use $H^s_0(\mathbb{R}^2)$ to denote a Sobolev space with the norm

$$\| u \|_{H^s_0(\mathbb{R}^2)}^2 = \left(\int_{\mathbb{R}^2} (|\nabla u|^2 + u^2) \, dx \right)^{1/2}. \quad (11)$$

Define the space

$$E := \left\{ u \in H^s_0(\mathbb{R}^2) \mid \int_{\mathbb{R}^2} (|\nabla u|^2 + V(x)u^2) \, dx < \infty \right\}. \quad (12)$$
with the inner product and norm

\[(u, v) = \int_{\mathbb{R}^2} (\nabla u \cdot \nabla v + V(x)uv)dx,\]

\[\|u\| = \sqrt{(u, u)}. \quad (13)\]

Note the large parameter \(\lambda\) in Theorem 1, so we need the following inner product and norm:

\[(u, v)_{\lambda} = \int_{\mathbb{R}^2} (\nabla u \cdot \nabla v + \lambda V(x)uv)dx,\]

\[\|u\|_{\lambda} = \sqrt{(u, u)_{\lambda}}, \quad u, v \in E. \quad (14)\]

Define \(E_1 = (E_2 \cdot \cdot \cdot)\); then, we have \(E_1\) which is a Hilbert space. Using (V1)-(V3), there exist positive constants \(\lambda_0, l_0\) (independent of \(\lambda\)) such that

\[\|u\|_{H_1^\infty} \leq l_0 \|u\|_{\lambda}, \quad \text{for all } u \in E_1, \lambda \geq \lambda_0. \quad (15)\]

Moreover, by [28], the embedding \(E_1^p \hookrightarrow L^p(\mathbb{R}^2)\) is continuous for \(p \in [2, +\infty)\), and \(E_1 \hookrightarrow L^p(\mathbb{R}^2)\) is compact for \(p \in (2, +\infty)\), i.e., there exists \(l_\infty > 0\) such that

\[\|u\| \leq l_\infty \|u\|_{H_1^\infty} \leq l_0 \|u\|_{\lambda}, \quad \text{for all } u \in E_1, \lambda \geq \lambda_0, 2 \leq p < +\infty. \quad (16)\]

For convenience, let \(l_0 = \tilde{l}_0\).

Now, on \(E_\lambda\), we define the following energy functional:

\[\mathcal{J}(u) = \frac{1}{2} \int_{\mathbb{R}^2} \left[|\nabla u|^2 + \lambda V(x)|u|^2 + A_1^2(u)|u|^2 + A_2^2(u)|u|^2 \right] dx - \int_{\mathbb{R}^2} F(u)dx - \mu \int_{\mathbb{R}^2} g(x)|u|^qdx. \quad (17)\]

By (V1)-(V3), (9), (10), and [8], \(\mathcal{J}\) is of class \(C^1(E_\lambda, \mathbb{R})\), and

\[\left\langle \mathcal{J}'(u), \phi \right\rangle = \int_{\mathbb{R}^2} [\nabla u \cdot \nabla \phi + \lambda V(x)u\phi + (A_1^2(u) + A_2^2(u))u\phi + A_0(u)\phi]dx - \int_{\mathbb{R}^2} f(u)\phi dx - \mu \int_{\mathbb{R}^2} g(x)|u|^{q-2}u\phi dx, \quad \text{for all } \phi \in E_\lambda. \quad (18)\]

Note that (16) in [3], we have

\[\int_{\mathbb{R}^2} A_0(u)|u|^2dx = 2 \int_{\mathbb{R}^2} \left(A_1^2(u) + A_2^2(u) \right) |u|^2dx, \quad \text{for all } u \in H_1^\infty(\mathbb{R}^2). \quad (19)\]

Consequently, we have

\[\left\langle \mathcal{J}'(u), u \right\rangle = \int_{\mathbb{R}^2} [\nabla u |u|^2 + \lambda V(x)|u|^2 + 3 (A_1^2(u) + A_2^2(u))|u|^2] \cdot dx - \int_{\mathbb{R}^2} f(u)udy - \mu \int_{\mathbb{R}^2} g(x)|u|^qdx. \quad (20)\]

Lemma 3 (see [4, 7, 8]). Suppose that \(u_n\) converges to \(u\) a.e. in \(\mathbb{R}^2\) and \(u_n\) converges weakly to \(u\) in \(H_1^\infty(\mathbb{R}^2)\). Let \(A_{\alpha,n} := A_\alpha(u_n(x)), \alpha = 0, 1, 2\). Then,
\[\int_{\mathbb{R}^2} A_{\alpha,n}^2u_nudy, \int_{\mathbb{R}^2} A_{\alpha,n}^2|u|^2dx, \quad \text{and} \quad \int_{\mathbb{R}^2} A_{\alpha,n}^2|u|^2dx \]
converge to \(\int_{\mathbb{R}^2} A_{\alpha}^2u|u|^2dx, \quad \text{for } i = 1, 2; \]
\[\int_{\mathbb{R}^2} A_{0,n}u_nudy \quad \text{and} \quad \int_{\mathbb{R}^2} A_{0,n}|u|^2dx \]
converge to \(\int_{\mathbb{R}^2} A_0u|u|^2dx\).

We say that \(\mathcal{J} \in C^1(\mathbb{X}, \mathbb{R})\) satisfies \((C)\)-condition if any sequence \(\{u_n\}\) such that

\[\mathcal{J}(u_n) \rightarrow c, \quad (1 + \|u_n\|_\lambda)\mathcal{J}'(u_n) \rightarrow 0, \quad \text{as } n \rightarrow \infty, \quad (21)\]

has a convergent subsequence.

Lemma 4 (see [29]). Suppose that \(X\) is an infinite dimensional Banach space, and \(Y, Z\) are two subspaces of \(X\) with \(X = Y \oplus Z\), where \(Y\) is finite dimensional. If \(\mathcal{J} \in C^1(X, \mathbb{R})\) satisfies the \((C)\)-condition for all \(c > 0\) and

(C1). \(\mathcal{J}(0) = 0\) and \(\mathcal{J}(-u) = \mathcal{J}(u)\) for all \(u \in X\);

(C2). there exist constants \(\rho, \alpha > 0\) such that \(\mathcal{J}|_{\mathbb{B} \cap X} \geq \alpha\);

(C3). for any finite dimensional subspaces \(X \subset X\), there exists \(R = R(\tilde{X}) > 0\) such that \(\mathcal{J}(u) \leq 0\) on \(\tilde{X} \backslash B_{R}\),

then \(\mathcal{J}\) possesses an unbounded sequence of critical values.

3. Main Results

In order to prove Theorem 1, we provide some lemmas.

Lemma 5. Under assumptions (V1)-(V3), (H1)-(H5), and (g), any sequence \(\{u_n\} \subset E_\lambda\) satisfying

\[\mathcal{J}(u_n) \rightarrow c > 0, \quad (22)\]

\[\left\langle \mathcal{J}'(u_n), u_n \right\rangle \rightarrow 0 \quad \text{as } n \rightarrow \infty \quad (23)\]

is bounded in \(E_\lambda\).

Proof. To prove the boundedness of \(\{u_n\}\), argument by contrary, assume that \(\|u_n\|_\lambda \rightarrow \infty\). Let \(v_n = u_n/\|u_n\|_\lambda\).

Then, \(\|v_n\|_{\lambda} = 1\), and \(\|v_n\|_p \leq l_p \|v_n\|_{\lambda} = l_p, p \geq 2\). Note that
\[q^q / (q^q - 1) > 2 \] by (g); for large \(n \), from (16), we have

\[c + 1 \geq \mathcal{F}(u_n) - \frac{1}{6} \int \mathcal{F}(u_n, u_n) \]

\[= \frac{1}{2} \| u_n \|_A^2 + \frac{1}{2} \int \left[A^2(u_n) |u_n|^2 + A^2(u_n) |u_n|^2 \right] \]

\[\cdot dx = \int \frac{1}{2} f(u_n) |u_n|^2 dx + \frac{1}{2} \int g(x) |u_n|^q \]

\[\cdot dx = \frac{1}{6} \| u_n \|_A^2 - \frac{1}{2} \int \left[A^2(u_n) |u_n|^2 + A^2(u_n) |u_n|^2 \right] \]

\[\cdot dx + \frac{1}{2} \int \frac{1}{2} f(u_n) |u_n|^2 dx + \frac{1}{6} \int g(x) |u_n|^q \]

\[\cdot dx \geq \frac{1}{6} \| u_n \|_A^2 + \int \mathcal{F}(u_n) \]

\[\cdot dx - \frac{1}{3} \int \mathcal{F}(u_n) dx, \]

(24)

for the fact that \(q \in (1, 2) \) and \(\mu > 0 \) is an arbitrarily small parameter.

In view of (20), we have

\[1 = \frac{\| u_n \|_A^2}{\| u_n \|_A^2} = \frac{3}{\| u_n \|_A^2} \int \mathcal{F}(u_n, u_n) \]

\[\cdot dx + \frac{1}{\| u_n \|_A^2} \int f(u_n) u_n dx + \frac{1}{\| u_n \|_A^2} \int g(x) |u_n|^q \]

\[\cdot dx \leq \limsup_{n \to \infty} \left[\frac{\| u_n \|_A^2}{\| u_n \|_A^2} \int f(u_n) u_n dx \right] \]

\[\cdot dx + \frac{\| g \|_{\mathcal{L}^q(\mathcal{O})}^q |u_n|^q}{\| u_n \|_A^2} \]

\[\leq \limsup_{n \to \infty} \int f(u_n) u_n dx. \]

(25)

Recall that \(\| u_n \|_A = 1 \), and there exists a function \(v \in E_\lambda \) such that \(v_n \to v \) weakly in \(E_\lambda \), \(v_n \to v \) strongly in \(L^r(\mathbb{R}^2) \) with \(r \in (2, \infty) \) and \(v_n(x) \to v(x) \) for a.e. \(x \in \mathbb{R}^2 \). Define a set \(\Omega \) by \(\{ x \in \mathbb{R}^2 : a \leq |x| < b \} \) with \(0 \leq a < b \), and we consider the following two possible cases.

Case 1. \(v = 0 \), and \(v_n \to 0 \) weakly in \(E_\lambda \), \(v_n(x) \to 0 \) for a.e. \(x \in \mathbb{R}^2 \). From (9), we have

\[\int_{\Omega_n(\mathbb{R})} \frac{f(u_n) u_n}{\| u_n \|_A^2} dx = \int_{\Omega_n(\mathbb{R})} \frac{f(u_n) u_n}{|u_n|^2} |v_n|^2 \]

\[\cdot dx \leq \left(\epsilon + c R_{n, R}^{r-2} \right) \int_{\Omega_n(\mathbb{R})} |v_n|^2 \]

\[\cdot dx \leq \left(\epsilon + c R_{n, R}^{r-2} \right) \int_{\mathbb{R}^2} |v_n|^2 dx \to 0. \]

(26)

On the other hand, by the Hölder inequality, (24), and (H4), we obtain

\[\int_{\Omega_n(\mathbb{R})} f(u_n) u_n dx = \int_{\Omega_n(\mathbb{R})} \frac{f(u_n) u_n}{|u_n|^2} |v_n|^2 \]

\[\cdot dx \leq \left(\int_{\Omega_n(\mathbb{R})} \frac{f(u_n) u_n}{|u_n|^2} \right)^{\tau} \]

\[\cdot \left(\int_{\Omega_n(\mathbb{R})} |v_n|^2 \right)^{(r-1)/\tau} \]

\[\leq \left(\int_{\Omega_n(\mathbb{R})} \frac{f(u_n)}{|u_n|^2} dx \right)^{1/\tau} \]

\[\cdot \left(\int_{\Omega_n(\mathbb{R})} |v_n|^2 dx \right)^{(r-1)/\tau} \]

\[\leq \left(\int_{\Omega_n(\mathbb{R})} \frac{f(u_n)}{|u_n|^2} dx \right)^{1/\tau} \]

\[\cdot \left(\int_{\Omega_n(\mathbb{R})} |v_n|^2 dx \right)^{(r-1)/\tau} \]

\[\leq \left[\alpha_0 \mathcal{F}(u_n) \right]^{1/\tau} \]

\[\leq [\alpha_0 (c + 1)]^{1/\tau} \| v_n \|_p \to 0. \]

(27)

Combining (26) and (27), we have

\[\int_{\mathbb{R}^2} f(u_n) u_n dx = \int_{\Omega_n(\mathbb{R})} f(u_n) u_n dx + \int_{\Omega_n(\mathbb{R})} f(u_n) u_n dx \to 0, \]

(28)

which contradicts (25).

Case 2. \(v(x) \neq 0, x \in \mathbb{R}^2 \). Hence, let \(A = \{ x \in \mathbb{R}^2 : v(x) \neq 0 \} \) and then, \(\text{meas}(A) > 0 \). For \(x \in A \), we have \(\lim_{n \to \infty} |u_n(x)| = \infty \) and hence, \(A \subset \Omega_n(\mathbb{R}) \) for large \(n \). Note that from Proposition 2.1 in [8] and (2.15) in [1], there exists a constant \(\mathcal{C}_0 > 0 \) such that

\[\int_{\mathbb{R}^2} (A^2(u) + A^2(u)) |u|^2 dx \leq \mathcal{C}_0 \| u \|^4_{\mathcal{H}_1}, \quad \text{for all } u \in \mathcal{H}_1(\mathbb{R}^2). \]

(29)

Therefore, by (H3), (29), and (9), note the nonnegativity of \(f(u) \) and \(q \in (1, 2) \), Fatou’s lemma enables us to obtain

\[0 = \lim_{n \to \infty} \frac{\mathcal{F}(u_n)}{\| u_n \|_A^2} \]

\[= \lim_{n \to \infty} \left[\| u_n \|_A^2 + \frac{3}{\| u_n \|_A^2} \int_{\mathbb{R}^2} (A^2(u_n) + A^2(u_n)) |u_n|^2 dx \right] \]

\[- \left(\int_{\mathbb{R}^2} f(u_n) u_n dx \right) \]

\[\cdot \left[\frac{\mu g(x) |u_n|^q dx}{\| u_n \|_A^2} \right] \leq \lim_{n \to \infty} \]
that any sequence \(f \in \text{sequence in } \mathbb{R}^n \).

Proof. From Lemma 5 and the compactness of \(\Omega \), we have
\[
\lim_{n \to \infty} \left(\int_{\Omega_n(0,R_1)} \left(\frac{f(u_n)}{u_n^0} \right) \left| \nabla u_n \right|^6 \right) dx = 0.
\]

Note that from Lemma 1 in [30], there exists \(C_q > 0 \) such that \(\left| u_n \right|^{q+2} u_n - \left| u \right|^{q+2} u \leq C_q \left| u_n - u \right|^{q+1} \). Therefore, from (g)

and the Hölder inequality, we have
\[
\int_{\mathbb{R}^2} g(x) \left(\left| u_n \right|^{q+2} u_n - \left| u \right|^{q+2} u \right) (u_n - u) \cdot dx \leq C_q \int_{\mathbb{R}^2} g(x)(u_n - u)^q \cdot dx.
\]

By a simple calculation, we have
\[
\langle \mathcal{F}'(u_n) - \mathcal{F}'(u), u_n - u \rangle = \left\| u_n - u \right\|_1^2.
\]

It is clear that \(\langle \mathcal{F}'(u_n) - \mathcal{F}'(u), u_n - u \rangle \to 0 \). As a result, from (32)-(34), we have
\[
\left\| u_n - u \right\|_1 \to 0 \quad \text{as } n \to \infty.
\]

Lemma 6. Under assumptions (V1)-(V3), (H1)-(H5), and (g), any sequence \(\{u_n\} \subset E_\lambda \) satisfying (22) has a convergent subsequence in \(E_\lambda \).

Proof. From Lemma 5 and the compactness of \(E_\lambda ' L'(\mathbb{R}^2) \) for \(r \in (2,\infty) \), we have
\[
\begin{align*}
& \begin{cases}
 u_n \to u \text{ weakly in } E_\lambda, \\
 u_n \to u \text{ strongly in } L^r(\mathbb{R}^2) \quad \text{for } r \in (2,\infty), \\
 u_n \to u \quad \text{for a.e. } x \in \mathbb{R}^2.
\end{cases}
\end{align*}
\]

Note that \(\{u_n\} \subset E_\lambda \) and from Lemma A.1 of [28], there exists \(\sigma(x) \in L^r(\mathbb{R}^2) \) such that
\[
|u_n(x)| \leq \sigma(x), \quad |u(x)| \leq \sigma(x), \quad \text{for } x \in \mathbb{R}^2, \quad n \in \mathbb{N}. \quad \text{(38)}
\]

From this and (2.12), for \(\sigma_1 \in L^2(\mathbb{R}^3) \) and \(\sigma_2 \in L^p(\mathbb{R}^3) \) with \(p \in (4,2^* \mathbb{A}) \), we have
\[
\left(F(x,u_n) - F(x,u) \right) \leq c_1 \frac{1}{2} \left(|u_n|^2 + |u|^2 \right) + c_2 \frac{2}{p} \left(|u_n|^p + |u|^p \right) \leq c_4 \sigma_1^2(x) + \frac{2c_2}{p} \sigma_2^p(x) \in L^1(\mathbb{R}^3).
\]
Recall $w_n = u_n - u$. From (2.11), (2.12), and (29), we have
\[
\int_{\mathbb{R}^2} \tilde{F}(x, w_n)\,dx = \int_{\mathbb{R}^2} \left(\frac{1}{4} f(x, w_n) w_n - \tilde{F}(x, w_n) \right) \cdot dx \leq \int_{\mathbb{R}^2} \left(\frac{3}{4} c_1 |w_n|^2 + \frac{p + 4}{4p} c_2 |w_n|^p \right) \cdot dx \leq \int_{\mathbb{R}^2} \left(3c_1 \sigma^2(x) + \frac{p + 4}{2p - 2} c_2 \sigma^p_2(x) \right) \,dM \leq \tilde{M},
\]
where $\tilde{M} > 0$.

\[
\lim_{n \to \infty} \int_{\mathbb{R}^2} \frac{F(u_n)}{||u_n||^6} \,dx = \lim_{n \to \infty} \frac{1/2 ||u_n||^2 + 1/2 \int_{\mathbb{R}^2} \left(A_1^2(u_n) + A_2^2(u_n) \right) |u_n|^2 \,dx - \mathcal{J}(u_n) - (\mu q) \int_{\Omega} g(x) |u_n|^q \,dx}{||u_n||^6} \leq \lim_{n \to \infty} \frac{(1/2 ||u_n||^2 + (C_0/2) ||u_n||^6 - \mathcal{J}(u_n) + (\mu q) g_{q}^{\prime \prime}(\eta \mathbb{1}_q - 1) ||u_n||^q}{||u_n||^6} = \frac{C_0}{2}.
\]

Note that from the L’Hospital rule and (H3), we have
\[
\lim_{|u| \to \infty} \frac{F(u)}{|u|^q} = +\text{couniformly in } x \in \mathbb{R}^2.
\]

Fatou’s lemma implies that
\[
\lim_{n \to \infty} \int_{\Omega} \frac{F(u_n)}{||u_n||^6} \,dx \geq \lim_{n \to \infty} \int_{\Omega} \frac{F(u_n)}{||u_n||^6} \,dx \geq \lim_{n \to \infty} \int_{\Omega} \frac{F(u_n)}{||u_n||^6} \,dx \cdot \lim_{n \to \infty} \int_{\Omega} |\nabla u_n|^6 \,dx \geq \lim_{n \to \infty} \int_{\Omega} \frac{F(u_n)}{||u_n||^6} \,dx \cdot |\nabla \omega(X)| |\nabla u_n|^6 \,dx = +\infty.
\]

This contradicts ((43)), and thus, ((41)) holds.

Proof of Theorem 1. Note that E_λ is a Hilbert space, and let \{c_j\} be a total orthonormal basis of E_λ, and define $X_j = \text{Re}_j$, $Y_j = \sigma_j X_j$, $Z_k = \sigma_j \infty X_j$, $k \in \mathbb{Z}$. From the compact embedding $E_\lambda \subset L^{r}(\mathbb{R}^2)$ with $r \in (2, +\infty)$ and Lemma 3.8 in [28], we have
\[
\beta_k(r) = \sup_{u \in Z_k, ||u||_1 = 1} |u|_r = 0, \quad k \to \infty.
\]
satisfied. Thus, \mathcal{F} possesses an unbounded sequence of critical values $\{u_n\}$ and then (1) possesses infinitely many high energy solutions, i.e.,

$$
\mathcal{F}(u_n) = \frac{1}{2} \int_{\mathbb{R}^2} \left(|\nabla u_n|^2 + A V(x) u_n^2 + A_1^2(u_n)|u_n|^2 \right) dx + A_2^2(u_n)|u_n|^2 dx - \int_{\mathbb{R}^2} F(u_n) \cdot dx - \frac{\mu}{q} \int_{\mathbb{R}^2} g(x)|u_n|^q dx \to \infty.
$$

(49)

4. Conclusions

In this paper, we use a variational method and critical point theory to study the existence of infinitely many high energy solutions for the generalized Chern-Simons-Schrödinger system (1) with a perturbation. The conditions used in this paper are weaker than the famous Ambrosetti-Rabinowitz condition. Moreover, we consider the effect of the parameters λ, μ on the existence of solutions.

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Authors' Contributions

The study was carried out in collaboration with all authors. All authors read and approved the final manuscript.

Acknowledgments

This work is supported by Talent Project of Chongqing Normal University (Grant No. 02030307-0040), the China Postdoctoral Science Foundation (Grant No. 2019M652348), Natural Science Foundation of Chongqing (Grant No. cstc2020jcyj-msxmX0123), and Technology Research Foundation of Chongqing Educational Committee (Grant Nos. KJQN2019 00539 and KJQN202000528).

References

[1] X. Tang, J. Zhang, and W. Zhang, “Existence and concentration of solutions for the Chern-Simons-Schrödinger system with general nonlinearity,” *Results in Mathematics*, vol. 71, no. 3-4, pp. 643–655, 2017.

[2] J. Zhang, W. Zhang, and X. Xie, “Infinitely many solutions for a gauged nonlinear Schrödinger equation,” *Applied Mathematics Letters*, vol. 88, pp. 21–27, 2019.

[3] S. Chen, B. Zhang, and X. Tang, “Existence and concentration of semiclassical ground state solutions for the generalized Chern-Simons-Schrödinger system in $H^1(\mathbb{R}^2)$,” *Nonlinear Analysis*, vol. 185, pp. 68–96, 2019.

[4] W. Liang and C. Zhai, “Existence of bound state solutions for the generalized Chern-Simons-Schrödinger system in $H^1(\mathbb{R}^2)$,” *Applied Mathematics Letters*, vol. 100, article 106028, 2020.

[5] J. Byeon, H. Huh, and J. Seok, “Standing waves of nonlinear Schrödinger equations with the gauge field,” *Journal of Functional Analysis*, vol. 263, no. 6, pp. 1575–1608, 2012.

[6] J. Byeon, H. Huh, and J. Seok, “On standing waves with a vortex point of order N for the nonlinear Chern-Simons-Schrödinger equations,” *Journal of Differential Equations*, vol. 261, no. 2, pp. 1285–1316, 2016.

[7] Y. Wan and J. Tan, “Concentration of semi-classical solutions to the Chern-Simons-Schrödinger systems,” *NoDEA*, vol. 24, no. 3, p. 28, 2017.

[8] Y. Wang and J. Tan, “The existence of nontrivial solutions to Chern-Simons-Schrödinger systems,” *Discrete & Continuous Dynamical Systems - A*, vol. 37, no. 5, pp. 2765–2786, 2017.

[9] Y. Wang and J. Tan, “Standing waves for the Chern-Simons-Schrödinger systems without (AR) condition,” *Journal of Mathematical Analysis and Applications*, vol. 415, no. 1, pp. 422–434, 2014.

[10] W. Xie and C. Chen, “Sign-changing solutions for the nonlinear Chern-Simons-Schrödinger equations,” *Applicable Analysis*, vol. 99, no. 5, pp. 880–898, 2020.

[11] T. Bartsch and Z. Q. Wang, “Existence and multiplicity results for some superlinear elliptic problems on RN,” *Communications in Partial Differential Equations*, vol. 20, no. 9-10, pp. 1725–1741, 1995.

[12] S. Secchi, “Concave-convex nonlinearities for some nonlinear fractional equations involving the Bessel operator,” *Complex Variables and Elliptic Equations*, vol. 62, no. 5, pp. 654–669, 2016.

[13] S. Khoutir and H. Chen, “Multiple nontrivial solutions for a nonhomogeneous Schrödinger-Poisson system in \mathbb{R}^3,” *Electronic Journal of Qualitative Theory of Differential Equations*, vol. 2015, no. 1, 2015.

[14] J. Xu, Z. Wei, and W. Dong, “Weak solutions for a fractional p-Laplacian equation with sign-changing potential,” *Complex Variables and Elliptic Equations*, vol. 61, no. 2, pp. 284–296, 2015.

[15] P. Pucci, M. Xiang, and B. Zhang, “Multiple solutions for nonhomogeneous Schrödinger-Kirchhoff type equations involving the fractional p-Laplacian in \mathbb{R}^N,” *Calculus of Variations and Partial Differential Equations*, vol. 54, no. 3, pp. 2785–2806, 2015.

[16] J. Zuo, T. An, Y. Ru, and D. Zhao, “Existence and multiplicity of solutions for nonhomogeneous Schrödinger-Kirchhoff-type fourth-order elliptic equations in \mathbb{R}^N,” *Mediterranean Journal of Mathematics*, vol. 16, no. 5, p. 123, 2019.

[17] J. Zuo, T. An, G. Ye, and Z. Qiao, “Nonhomogeneous fractional p-Kirchhoff problems involving a critical nonlinearity,” *Electronic Journal of Qualitative Theory of Differential Equations*, vol. 2019, no. 41, pp. 1–15, 2019.

[18] J. Xu, Z. Wei, D. O’Regan, and Y. Cui, “Infinitely many solutions for fractional Schrödinger-Maxwell equations,” *Journal of Applied Analysis & Computation*, vol. 9, no. 3, pp. 1165–1182, 2019.

[19] L. Yang, “Multiplicity of solutions for fractional Schrödinger equations with perturbation,” *Boundary Value Problems*, vol. 2015, no. 1, 2015.

[20] L. Wang and S. Chen, “Two solutions for nonhomogeneous Klein-Gordon-Maxwell system with sign-changing potential,” *Electronic Journal of Differential Equations*, vol. 2018, no. 124, pp. 1–21, 2018.
[21] L. Wang, S. Ma, and N. Xu, “Multiple solutions for nonhomogeneous Schrödinger-Poisson equations with sign-changing potential,” Acta Mathematica Scientia, vol. 37, no. 2, pp. 555–572, 2017.

[22] J. Zuo, T. An, and M. Li, “Superlinear Kirchhoff-type problems of the fractional p-Laplacian without the (AR) condition,” Boundary Value Problems, vol. 180, no. 1, 2018.

[23] J. Zuo, T. An, L. Yang, and X. Ren, “The Nehari manifold for a fractional p-Kirchhoff system involving sign-changing weight function and concave-convex nonlinearities,” Journal of Function Spaces, vol. 2019, Article ID 7624373, 9 pages, 2019.

[24] Y. Wang, Y. Liu, and Y. Cui, “Multiple sign-changing solutions for nonlinear fractional Kirchhoff equations,” Boundary Value Problems, vol. 193, no. 1, 2018.

[25] Y. Wang, Y. Liu, and Y. Cui, “Infinitely many solutions for impulsive fractional boundary value problem with p-Laplacian,” Boundary Value Problems, vol. 94, no. 1, 2018.

[26] Y. Wang, Y. Liu, and Y. Cui, “Multiple solutions for a nonlinear fractional boundary value problem via critical point theory,” Journal of Function Spaces, vol. 2017, Article ID 8548975, 8 pages, 2017.

[27] D. Wang and B. Yan, “Existence and multiplicity of positive solutions for p-Kirchhoff type problem with singularity,” Boundary Value Problems, vol. 2017, no. 1, 2017.

[28] M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996.

[29] T. Bartolo, V. Benci, and D. Fortunato, “Abstract critical point theorems and applications to some nonlinear problems with strong resonance at infinity,” Nonlinear Analysis, vol. 7, pp. 241–273, 1983.

[30] S. Chow, “Finite element error estimates for nonlinear elliptic equations of monotone type,” Numerische Mathematik, vol. 54, no. 4, pp. 373–393, 1989.