Title: Vestibular physical therapy improves turning not straight walking during the inertial sensor-instrumented Timed Up and Go test

Authors: Kyoung Jae Kim, PhD1,2, Yoav Gimmon, PT, PhD3,4, Jennifer Millar, MSPT4,5, Kelly Brewer6, Jorge Serrador, PhD7,8, Michael Schubert, PT, PhD4,5

Affiliations:
1 Human Physiology, Performance, Protection and Operation (H-3PO) laboratory, NASA Johnson Space Center/KBR, Houston, TX, United States
2 Department of Physical Therapy, University of Miami Miller School of Medicine, Coral Gables, Florida, United States
3 Department of Physical Therapy, Faculty of Social Welfare & Health Studies, University of Haifa, Haifa, Israel
4 Laboratory of Vestibular NeuroAdaptation, Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD, United States
5 Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD, United States
6 Department of Veteran Affairs, Veterans Biomedical Institute, War Related Illness and Injury Study Center, East Orange, NJ, United States
7 Department of Rehabilitation and Movement Sciences, Rutgers School of Health Professions, Newark, NJ, United States
8 Department of Pharmacology, Physiology and Neuroscience, Rutgers Biomedical Health Sciences, Newark, NJ, United States
Corresponding Authors:

Michael C. Schubert, Ph.D.
601 N. Caroline Street, 6th Floor, Baltimore, MD 21287-0910
Phone: 410 955 7381
Email: mschube1@jhmi.edu

Word count of the text: 3,263
The number of figures and tables in the article: 6
Abstract

Background: Deficits in vestibular function increase the risk for fall while turning. However, the clinical assessment of turning in patients with vestibular dysfunction is lacking, and evidence is limited that identifies how effective vestibular physical therapy (VPT) is for improving turning performance.

Objective: To quantify and compare walking and turning performance during the instrumented timed up and go (TUG) test using inertial measurement units (IMUs) for clinical settings. We investigate novel instrumented TUG parameters for ability to distinguish patients with unilateral vestibular deafferentation (UVD) from control groups, and discriminate the differences in turning parameters of UVD patients following a VPT program.

Methods: We recruited 38 patients following UVD surgery, 26 age-matched Veteran patient (VA) controls with reports of non-vestibular dizziness, and 12 age-matched healthy controls. Individuals were donned with body-worn IMUs and given verbal instructions to complete the TUG test as fast as safely possible. The IMU-instrumented and automated assessment of the TUG test provided component-based TUG parameters, including the novel walking:turning ratio. Among the UVD patients, 19 patients completed an additional instrumented TUG testing after VPT.

Results: The walking:turning time ratio showed that turning performance in pre VPT UVD patients are significantly more impaired than VA patients and healthy controls (p < 0.001). Vestibular rehabilitation significantly improved turning performance and “normalized” their walking:turning time ratio compared to healthy controls (p < 0.001).
However, the duration of the straight walking component in UVD patients before VPT was not significantly different as to that after VPT as well as healthy controls.

Conclusions: Our data showed that the IMU-instrumented TUG test can distinguish patients with vestibular deafferentation and objectively quantify the change in their turning performance after surgery. The IMU-based instrumented TUG parameters have potential to quantify the efficacy of VPT and be adopted in the clinic.

Key Words
vestibular hypofunction, rehabilitation, gait, turn, timed up and go (TUG), inertial measurement unit (IMU)
Introduction

Patients with vestibular hypofunction commonly present with dizziness, balance deficits, and gaze disturbance [1]. Such symptoms can cause changes in movement kinematics and compensatory alterations with respect to gait parameters [2]. For example, previous studies have reported significantly reduced head movement during both community ambulation (approximately ten minutes) [3] and during standardized gait testing of short duration [4]. Although such altered movement kinematics may also result in less efficient turning, the current clinical assessment of turning and its related outcome in patients with vestibular dysfunction are not validated. Meta-analysis level data have shown the effectiveness of vestibular physical therapy (VPT) using gaze and gait stability exercises in individuals with vestibular hypofunction [5, 6]. However, the change in turning performance related to the effectiveness of VPT has not been explored.

The Timed Up and Go (TUG) test is a reliable measure of functional gait performance that includes walking and turning 180° as well as transfers to and from a seated position [7]. The ease of administration of the TUG test makes it one of the most commonly utilized measures in VPT [8, 9], and recently, we demonstrated that five weeks of VPT using gaze and gait stability exercises improved the TUG performance despite both pre and post TUG scores being within the clinically accepted normal range [10]. The score from the TUG is simplistic and only considers duration of time and thus lacking an ability to critically evaluate turning performance. To address this limitation, investigators have developed the component-TUG test to individually analyze four unique mobility tasks of the TUG; sit-to-stand and stand-to-sit transitions, straight walking, and turning [11-13].
The component-TUG improves the sensitivity to identify pathokinematics, but its use is dependent on the expertise of a clinician to identify the abnormal kinematics.

Recently, inertial tracking technologies have begun to be incorporated into physical therapy clinics, which offers quantitative measurement that has the potential to improve clinical outcomes [14-16]. Body worn wireless inertial measurement units (IMUs) have made objective and quantitative measurements of TUG components possible [17-19]. An instrumented clinical assessment tool must be validated uniquely for its intended patient population, given the unique kinematic differences across pathologies. For example, sit-to-stand performance from a chair during the TUG test is significantly associated with fear of falling in the elderly and an important indicator of overall functioning or balance performance [20, 21]. In contrast, the measure of sit-to-stand in patients with Parkinson’s disease during the component-TUG test was the least reliable component [18]. Recently, it was reported that several outcomes related to both turning and straight-walking components in patients with Parkinson’s disease were significantly impaired relative to healthy controls [17-19]. To date, no comparison of turning and straight-walking components has been considered or reported in patients with vestibular hypofunction.

Individuals who suffer from vestibular hypofunction often have difficulty turning a corner [22]. During the TUG test, increased time to perform a turn and requiring more steps to complete a turn, are associated with difficulty turning [23]. Since one of the primary functions of the vestibular system is to stabilize the body, examining the motion profiles
of transitions from straight-path walking to turning while walking may provide clues as to
why people with vestibular hypofunction have difficulty during turning, particularly
relevant given the head velocities can be high [24]. Additionally, there may exist unique
relationships between the total time spent straight walking versus turning. In this study,
we quantified the walking and turning components via IMUs and introduce novel IMU-
based TUG parameters, including the walking:turning time ratio as well as number of
steps ratio. The aims of this study were: 1) to examine the IMU–instrumented TUG
parameters during straight walking and turning in patients following unilateral vestibular
deaferentation surgery and two control groups; and 2) to determine the differences
between the IMU–instrumented TUG parameters following a progressive five-week VPT
program in UVD patients. We hypothesized that reduced time and number of steps to
perform a turn might improve after VPT.

Methods

Subjects

We enrolled 38 (n = 22 female) patient participants after unilateral vestibular
deaferentation (UVD) surgery for resection of a vestibular schwannoma. The patients
with UVD were 53 ± 13 years old. We recruited 26 age-matched Veteran patient
controls (VA) (n = 0 female) with reports of dizziness not due to vestibular hypofunction
based on normal semicircular canal (video head impulse test) and/or otolith function
testing (ocular counter roll, vestibular evoked myogenic potential) [25], with a mean age
of 56 ± 12 years and an additional 12 age-matched healthy control individuals (n = 7
female) with a mean age of 52 ± 5 years. There was no significant difference in age
across the three groups (p = 0.606). With respect to age, no significant differences in
sex were found for UVD patients (p = 0.1323) and healthy controls (p = 0.4334). Among
the UVD patients, 19 patients (n = 11 female) completed an additional instrumented
TUG test after completing VPT, mean duration of 68 ± 45 days later. The study was
approved by the Johns Hopkins University and the East Orange VA Healthcare System
IRBs. Informed consent was obtained from each individual.

Test procedure and data acquisition
Participants completed questionnaires regarding demographic information. The body
worn sensor system that we currently use is comprised of five wireless MTw IMUs,
Xsens shirt, and Velcro straps (Xsens Technologies, Netherlands) [26-28]. In this study,
acceleration and angular velocities along three perpendicular axes data were analyzed
from three IMUs (chest and each ankle) during the TUG test. The IMU sampling
frequency was 100 Hz and data were transmitted to the Awinda Station (Xsens
Technologies Netherland) before being saved to a tablet PC via USB
interface. Specifically, the chest IMU was placed inside the pocket of an Xsens shirt on
the right border of the sternum. The ankle IMUs were attached to the ankle just above
the lateral malleolus using Velcro straps. Participants were asked to perform three trials
of the TUG. The participants were given verbal instructions to stand up from an initially
seated position, walk three meters as fast as safely possible, cross a line marked on the
floor, turn around a cone, walk back, and sit down. Once testing was completed,
participants were assisted with doffing the sensor system.
Data processing and instrumented TUG variables

The TUG test consists of five consecutive tasks: standing up from a chair, straight walking, 180° turning, straight walking, and turning to sitting down on the chair [7]. We analyzed the signal from the ankle IMUs and the chest IMU to segment in two components, i.e., straight walking and turning. The chest IMU gyroscope data for yaw rotation provided a turning direction (e.g. clockwise and counter-clockwise) and an easily distinguished trace for the initiation of turning from a straight-path. Since the time derivative of the turn-angle is the angular velocity, we calculated the trunk angular displacement in the horizontal (yaw) plane by integrating the yaw angular velocity. The mathematical model-based turning segmentation [18] provided the ability to automatically distinguish performance of the individual tasks of the TUG (e.g., straight walking and 180° turning around a cone). We applied the gait event detection algorithm to the pitch angular velocity waveform recorded from both ankle IMUs. The mid-swing event was selected to monitor step counts [29]. Figure 1 shows the segmented phases of straight walking (yellow) and turning (green) and the detected gait event (red circle: mid-swing). The end of trunk rotation was marked with a couple of steps after the second straight walking component (the second yellow shaded area) and denoted the end of the second turn component that occurs as participants return to seated position on the chair. Both the first standing up from a chair and the second turning (returning to sit on the chair) components were excluded from this below analysis.

[Figure 1 here]
This technique was used to determine the TUG variables, which included total time (sec), total number of steps, straight walking time (sec), number of steps straight walking, turning time (sec), and number of steps turn-walking. It is often observed in the clinical setting that a person can ambulate fairly well during the straight-path component, only to slow or modify their gait way while performing the turn. Although the clinician instructs the individual to walk as fast as safely possible during the TUG test, individuals walk with different speeds ranging from slow to fast. Therefore, we also determined the ratio of time period and the number of steps a participant required for individuals to walk straight compared to the time period and the number of steps needed to perform the 180° turn. The walking:turning ratios provides a method of normalizing across the unique and varied patterns of quality of turning motion.

Statistical Analysis

Statistical analysis was performed using SPSS (version 26, Chicago, IL, USA) software. All variables were normally distributed hence, parametric analysis was performed. A one-way ANOVA was performed to compare variables between groups (UVD patients vs VA patient controls vs healthy controls). Post hoc testing using the least significant difference (LSD) correction was applied to compare between groups differences. To evaluate the effect of VPT on the TUG parameters a paired t-test was performed to compare the UVD patients’ pre-test results vs. the post-test results. A second analysis between the UVD patients’ post-test results and the healthy controls was conducted by independent t-test. The level of statistical significance was set at $p \leq 0.05$. Mean and one standard deviation (1 SD) values of the dependent variables were calculated for
each of the test components (straight walking time and steps numbers; turning time and steps numbers; and total time and steps numbers). Descriptive statistics (mean and 1 SD) were used to summarize the results.

Results

Between Groups

Table 1 presents the comparison result of the TUG variables between groups. We found no difference in any of the kinematic variables for turns towards or away from the lesioned ear in the patients with UVD.

[Table 1 here]

Time period variables: The VA controls with dizziness walked significantly slower during the straight component of the TUG compared to UVD patients (25% slower, p < 0.001) and healthy controls (32% slower, p < 0.001). During the turning component of the TUG, healthy controls were significantly faster than both the VA controls (35% faster, p < 0.001) and UVD patients (30% faster, p < 0.001). The total time to complete the TUG test were significantly different from each other, with the control group completing it in the shortest duration, followed by the UVD patients (15% slower than healthy controls) then the VA controls (33% slower than healthy controls). In the UVD patients before VPT, the turning time was 61% of the straight walking while the turning time in both healthy and VA controls was 50% of the straight walking time.
Number of steps variables: The VA controls used 15% more steps during the straight component of the TUG compared to the healthy controls (p = 0.004), while the UVD patients trended to also use more steps (9%, p = 0.053) than the healthy controls. During the turning component of the TUG, however, the UVD patients used a 16% greater number of steps, than both the VA patient controls (p < 0.001) and the healthy controls (p = 0.005). The healthy control group used fewer steps during the entire TUG test compared with either UVD patients (12% less steps, p = 0.011) but not the VA controls (10% less steps, p = 0.055).

Walking:turning ratio variables: The VA controls had a significantly higher ratio of walking:turning steps (30% higher, p < 0.001) compared with both the UVD patients and healthy controls (22% higher, p < 0.001). Only the UVD patients had a significantly reduced ratio of time spent in walking:turning (p < 0.001, 19% reduction than both VA and healthy controls).

Effect of Vestibular Rehabilitation
The UVD patients significantly improved after five weeks of VPT in most of the measured TUG parameters. Figure 2 shows an example of the Pre and Post-rehab results in a patient with UVD. The number of steps during the straight walking component before VPT was the same as that after VPT (8 steps). During 180° turning around a cone, the UVD patient ‘total number of steps’ reduced from five to three, Figure 2. The duration of the straight walking component before and after VPT were 3.92 (s) and 3.65 (s), respectively (p = 0.06). However, after VPT, the turning time was
decreased from 2.35 (s) to 1.81 (s), (p < 0.001). The walking:turning step ratio after VPT was increased to 2.7 from 1.6 before VPT (p < 0.001). After VPT, the walking:turning time ratio was also increased to 2.1 from 1.7 before VPT (p < 0.001).

Table 2 shows walking and turning related variables to identity the effect of VPT.

Time period variables: During the straight walking component of the TUG, the UVD patients walked 9% faster (albeit insignificant improvement, p = 0.06) during post-test evaluation of the straight component of the TUG compared to baseline. However, during the turning component of the TUG, the UVD patients were significantly faster post-rehab (27% faster, p < 0.001). Additionally, the total time to complete the TUG test was significantly shorter after VPT than pre-rehab (13% faster, p < 0.001).

Number of steps variables: During the straight walking component of the TUG, the UVD patients used less steps after VPT, though as above, this was not significant (5% less steps, p = 0.145). However, during the turning component of the TUG, the UVD patients used significantly less steps after VPT (36% less steps, p < 0.001). The UVD patients also used significantly fewer steps completing the TUG after VPT compared to pre-rehab (15% less steps, p < 0.001).
Walking:turning ratio variables: The UVD patients increased significantly the ratio of walking:turning steps compared to pre-rehab (28% increased, p < 0.001). Similarly, the UVD patients significantly increased the ratio of time spent in walking:turning (18% increased, p < 0.001) post-rehab.

Comparing the UVD patients’ post-test results to healthy controls, the data suggests the UVD patients ‘normalized’ their timing strategies of movement during the TUG test given none of the timing variables were different than the healthy controls (0.1 < p < 0.361) (Figure 3). However, the spatial properties of the UVD patients were less altered given, the UVD patients used 10% more steps during the straight component of the TUG compared to healthy controls (p = 0.007). During the turning component of the TUG however, the UVD patients used 12% less steps than healthy controls (p = 0.011) after VPT. Thus, the UVD patients walking:turning steps ratio was 28% significantly higher than the healthy controls (Figure 3). Finally, after VPT, the UVD patients’ ratio of turning time was 50% of their straight walking time, similar with both healthy and VA controls (see the Between Groups section).

Discussion

A clinical assessment tool must be valid, accurate, and reliable within the intended patient group if it is going to be clinically useful. Poor sensitivity of a clinical tool leads to
problems with data analysis and interpretation and an unreliable assessment of the
efficacy of rehabilitation programs. The TUG is a well-known clinical test of mobility and
fall risk with the virtue of being a quick and simple assessment [7-9]. However, recent
studies have revealed the limitations of the TUG test and there is conflicting information
and opinion about interpreting TUG test results [30-33]. The clinical TUG test measures
time, not considering any change in kinematics during various transitions between
components. To overcome this limitation, the component-TUG and its
instrumented version using IMUs have been suggested and identified as having the
ability to classify fallers among the elderly [11, 12], amputee [13], and Parkinson’s
disease populations [17-19]. However, to the best of our knowledge, only one study has
incorporated IMUs to examine the test-retest reliability of the instrumented TUG in
patients with vestibular disorders and its association with fall risk [34]. The authors do
suggest that the instrumented TUG has potential to enable clinicians and therapists to
objectively assess the efficacy of their interventions in patients with vestibular disorders.
However, they did not use the instrumented TUG to examine the effectiveness of VPT
in patients with vestibular hypofunction; furthermore, no parameters have been derived
from IMUs to comparatively analyze the turning sub-component of the TUG in
association with straight walking.

Ours is the first study to distinguish patients with vestibular pathology from healthy
controls and non-vestibular dizzy patient controls based on the ratio between walking
and turning while completing the instrumented TUG. This is a critical result as it has
been reported that typical measures of gait, such as the 10-meter walking test, may not
provide consistent results in screening patients with vestibular impairments [10, 35-38].

Our data also support this observation given the UVD patients showed no differences in straight walking time before or after completing VPT. However, the UVD patients did demonstrate abnormally increased walking:turning ratios due to significantly slower turning, compared against two control groups. It is also interesting to note that, after VPT, the UVD patients also demonstrated reduced turning time which was half of the straight walking time—similar to the VA and healthy controls. Only the UVD patient group before showed that the turning time was 61% of the straight walking. Our finding suggests the percentage of time spent turning (50%) compared with straight-walking may be a clinically meaningful parameter for distinguishing patients with vestibular hypofunction as well as assessing the effectiveness of VPT in those patients.

Vestibular disorders cause changes in gait behavior [39]; however, the explicit kinematic differences in turning by those with vestibular deficit remains unclear. Furthermore, while there are extensive studies showing how effective VPT is for reducing dizziness and falls in patients with vestibular dysfunction [5,6,10], the contributions of VPT as a treatment for reducing turning difficulties are less understood. In healthy controls, turning 180° around a cone during the TUG involves a smooth and continuous top-down rotation from the head to the trunk [40, 41] with resulting asymmetries in gait parameters between limbs (i.e. stride length and stance time) [42-43]. It is presumed that head movement and upper body coordination during transitions from straight-path walking to turns is critical to ensure a stable position and to aid in gaze stabilization [44-46]. In contrast, deficits in vestibular function cause various disturbances in spatial
orientation, gait, head movement, and upper body coordination. It was recently reported that patients with unilateral vestibular hypofunction reveal fewer, smaller, and slower head movements after surgery [3, 4]. Additionally, these authors suggested that early referral for vestibular rehabilitation may be beneficial to improve the recovery of gait, dynamic stability, head movement, and upper body coordination. Our results related to turning performance improvement demonstrated that completing five weeks of the VPT (gaze and gait stability exercises) might restore the normal coordination between the head and upper body.

Limitations

Our data revealed the short-term effects of completing VPT on turning in patients with vestibular deafferentation surgery, it is unknown whether this improvement persists. Patients with other causes for vestibular hypofunction may display different results. Additionally, we did not compare outcomes against multi-segmental coordination from the upper body which may reveal additional compensatory strategies. Future research is needed to fully understand the potential benefits of vestibular rehabilitation on head movement and upper body coordination during turning.

Conclusions

The findings of this study suggest the commonly used clinical version of the TUG test can be instrumented to distinguish patients with surgical vestibular deafferentation and identify improvement of turning ability after vestibular rehabilitation.
List of Abbreviations
IMU: inertial measurement unit, LSD: least significant difference, SD: standard deviation, TUG: timed up and go, UVD: unilateral vestibular deafferentation, VA: Veteran Affair, VPT: vestibular physical therapy.

Ethics approval and consent to participate
The study was approved by the Johns Hopkins University Ethics Committee (Reference Number: IRB00059430) and the VA New Jersey Health Care Systems and the Human Research Protection Office of the Department of Defense (Reference Number: 01386), titled “Sensorimotor Assessment and Treatment of Vestibular Dysfunction.” An informed consent was obtained from all the participants of the study.

Consent for publication
Not applicable.

Availability of data and materials
The datasets generated during and/or analyzed during the current study are not publicly available due to privacy laws and other restrictions but are available from the corresponding author on reasonable request.

Competing interests
All authors declare that there is no proprietary, financial, professional or other personal interest of any nature or kind in any product, service or company that could be construed as influencing the position presented in this study.

Funding
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported in part by the Department of Defense under the Neurosensory and Rehabilitation Research Award Program (Grant Award Number: W81XWH-15-1-0442).

Authors’ contributions
Kyoung Jae Kim: Conceptualization, Methodology, Software, Data curation, Writing - original draft, Writing - review & editing, Visualization. Yoav Gimmon: Validation, Formal analysis, Data collection, Writing - original draft, Writing - review & editing. Jennifer Millar: Data collection, Writing - review & editing. Kelly Brewer: Data collection, Writing - review & editing. Jorge Serrador: Data collection, Writing - review & editing. Michael Schubert: Investigation, Resources, Writing - review & editing, Supervision, Project administration, Funding acquisition. All authors read and approved the manuscript.

Acknowledgements
The authors wish to thank the volunteers for participating in this study.
References

1. Burzynski J, Sulway S, and Rutka J. Vestibular rehabilitation: review of indications, treatments, advances, and limitations. *Curr Otorhinolaryngol Rep*. 2017;5(3):160–166.

2. Herdman SJ. Advances in the treatment of vestibular disorders. *Phys Ther*. 1997; 77(6):602-618.

3. Paul SS, Dibble LE, Walther RG, Shelton C, Gurgel RK, Lester ME. Characterization of head-trunk coordination deficits after unilateral vestibular hypofunction using wearable sensors. *JAMA Otolaryngol Head Neck Surg*. 2017;143(10):1008-1014.

4. Paul SS, Dibble LE, Walther RG, Shelton C, Gurgel RK, Lester ME. Reduced purposeful head movements during community ambulation following unilateral vestibular Loss. *Neurorehabil Neural Repair*. 2018;32(4-5):309-316.

5. Hillier S, Mcdonnell M. Is vestibular rehabilitation effective in improving dizziness and function after unilateral peripheral vestibular hypofunction? *Eur J Phys Rehabil Med*. 2016;52(4):541-556.

6. McDonnell MN, Hillier SL. Vestibular rehabilitation for unilateral peripheral vestibular dysfunction. *Cochrane Database Syst Rev*. 2015;1(1):1465-1858.

7. Podsiadlo D, Richardson S. The timed “Up & Go”: a test of basic functional mobility for frail elderly persons. *J Am Geriatr Soc*. 1991;39(2):142-148.

8. Donoghue OA, Savva GM, Cronin H, Kenny RA, Horgan NF. Using timed up and go and usual gait speed to predict incident disability in daily activities among
community-dwelling adults aged 65 and older. Arch Phys Med Rehab. 2014;95(10):1954-1961.

9. Whitney SL, Marchetti GF, Schade A, Wrisley DM. The sensitivity and specificity of the Timed" Up & Go" and the Dynamic Gait Index for self-reported falls in persons with vestibular disorders. J Vestib Res. 2004;14(5):397-409.

10. Millar JL, Gimmon Y, Roberts D, Schubert MC. Improvement after vestibular rehabilitation not explained by improved passive VOR gain. Front Neurol. 2020;11(79):1-9.

11. Wall JC, Bell C, Campbell S, Davis J. The timed get-up-and-go test revisited: measurement of the component tasks. J Rehabil Res Dev, 2000;37(1):109-114.

12. Vernon S, Paterson K, Bower K, McGinley J, Miller K, Pua YH, Clark RA. Quantifying individual components of the timed up and go using the kinect in people living with stroke. Neurorehabil Neural Repair. 2015;29(1):48-53.

13. Clemens SM, Gailey RS, Bennett CL, Pasquina PF, Kirk-Sanchez NJ, Gaunaurd IA. The component timed-up-and-go test: the utility and psychometric properties of using a mobile application to determine prosthetic mobility in people with lower limb amputations. Clin Rehabil. 2018;32(3):388-397.

14. Cuesta-Vargas AI, Galán-Mercant A, Williams JM. The use of inertial sensors system for human motion analysis. Phys Ther Rev. 2010;15(6):462-473.

15. Horak F, King L, Mancini M. Role of body-worn movement monitor technology for balance and gait rehabilitation. Phys Ther. 2015;95(3):461-470.
16. Wang Q, Markopoulos P, Yu B, Chen W, Timmermans A. Interactive wearable systems for upper body rehabilitation: a systematic review. *J Neuroeng Rehabil*. 2017;14(1):1-21.

17. Zampieri C, Salarian A, Carlson-Kuhta P, Aminian K, Nutt JG, Horak FB. The instrumented timed up and go test: potential outcome measure for disease modifying therapies in Parkinson's disease. *J Neurol Neurosurg Psychiatry*. 2010;81(2):171-176.

18. Salarian A, Horak FB, Zampieri C, Carlson-Kuhta P, Nutt JG, Aminian K. iTUG, a sensitive and reliable measure of mobility. *IEEE Trans Neural Syst Rehabil Eng*. 2010;18(3):303-310.

19. Palmerini L, Mellone S, Avanzolini G, Valzania F, Chiari L. Quantification of motor impairment in Parkinson's disease using an instrumented timed up and go test. *IEEE Trans Neural Syst Rehabil Eng*. 2013;21(4):664-673.

20. Deshpande N, Metter EJ, Bandinelli S, Lauretani F, Windham BG, Ferrucci L. Psychological, physical, and sensory correlates of fear of falling and consequent activity restriction in the elderly. *Am J Phys Med Rehabil*. 2008;87(5):354-362.

21. Zijlstra W1, Bisseling RW, Schlumbohm S, Baldus H. A body-fixed-sensor-based analysis of power during sit-to-stand movements. *Gait Posture*. 2010;31(2):272-278.

22. Agrawal Y, Ward BK, Minor LB. Vestibular dysfunction: prevalence, impact and need for targeted treatment. *J Vestibul Res-Equil*. 2013;23(3):113-117.
23. Orendurff MS, Segal AD, Berge JS, Flick KC, Spanier D, Klute GK. The kinematics and kinetics of turning: limb asymmetries associated with walking a circular path. *Gait Posture*. 2006;23(1):106-111.

24. Forsell C, Conradsson D, Paquette C, Franzén E. Reducing gait speed affects axial coordination of walking turns. *Gait Posture*. 2017;54(1):71-75.

25. Serrador JM, Lipsitz LA, Gopalakrishnan GS, Black FO, Wood SJ. Loss of otolith function with age is associated with increased postural sway measures. *Neurosci Lett*. 2009;465(1):10-15.

26. Kim KJ, Gimmon Y, Sorathia S, Beaton KH, Schubert MC. Exposure to an extreme environment comes at a sensorimotor cost. *npj Microgravity*. 2018;4(1):1-8.

27. Gimmon Y, Migliaccio AA, Kim KJ, Schubert MC. VOR adaptation training and retention in a patient with profound bilateral vestibular hypofunction. *Laryngoscope*. 2019;129(11):2568-2573.

28. Kim KJ, Gimmon Y, Millar J, Schubert MC. Using Inertial Sensors to Quantify Postural Sway and Gait Performance during the Tandem Walking Test. *Sensors*. 2019;19(4):751.

29. Allseits EK, Agrawal V, Prasad A, Bennett C, Kim KJ. Characterizing the impact of sampling rate and filter design on the morphology of lower limb angular velocities. *IEEE Sensors J*. 2019;19(11):4115-4122.

30. Barry E, Galvin R, Keogh C, Horgan F, Fahey T. Is the Timed Up and Go test a useful predictor of risk of falls in community dwelling older adults: a systematic review and meta-analysis. *BMC Geriatr*. 2014;14(1):1-14.
31. Beauchet O, Fantino B, Allali G, Muir SW, Montero-Odasso M, Annweiler C.
Timed Up and Go test and risk of falls in older adults: a systematic review. *J Nutr Health Aging*. 2011;15(10):933-938.

32. Boulgarides LK, McGinty SM, Willett JA, Barnes CW. Use of clinical and impairment-based tests to predict falls by community-dwelling older adults. *Phys Ther*. 2003;83(4):328-339.

33. Schoene D, Wu SM, Mikolaizak AS, Menant JC, Smith ST, Delbaere K, Lord SR. Discriminative ability and predictive validity of the timed up and go test in identifying older people who fall: systematic review and meta-analysis. *J Am Geriatr Soc*. 2013;61(2):202-208.

34. Sankarpandi SK, Baldwin AJ, Ray J, Mazzà C. Reliability of inertial sensors in the assessment of patients with vestibular disorders: a feasibility study. *BMC Ear Nose Throat Disord*. 2017;17(1):1-9.

35. Allum JH, Scheltinga A, Honegger F. The effect of peripheral vestibular recovery on improvements in vestibulo-ocular reflexes and balance control after acute unilateral peripheral vestibular loss. *Otol Neurotol*. 2017;38(10):531-538.

36. Cohen HS, Mulavara AP, Peters BT, Sangi-Haghpeykar H, Bloomberg JJ. Tests of walking balance for screening vestibular disorders. *J Vestib Res*. 2012;22(2):95-104.

37. Tramontano M, Bergamini E, Iosa M, Belluscio V, Vannozzi G, Morone G. Vestibular rehabilitation training in patients with subacute stroke: A preliminary randomized controlled trial. *NeuroRehabilitation*. 2018;43(2):247-254.
38. Rastoldo G, Marouane E, Mahmoudi NE, Péricat D, Bourdet A, Timon-David E, Olivier D, CHABBERT C, Tighilet B. Quantitative evaluation of a new posturo-locomotor phenotype in a rodent model of acute unilateral vestibulopathy. *Front Neurol.* 2020;11(505):1-19.

39. Bent LR, McFadyen BJ, Inglis JT. Vestibular contributions during human locomotor tasks. *Exerc Sport Sci Rev.* 2005;33(3):107-113.

40. Hollands MA, Ziavra NV, Bronstein AM. A new paradigm to investigate the roles of head and eye movements in the coordination of whole-body movements. *Exp Brain Res.* 2004;154(2):261-266.

41. Taylor MJD, Dabnichki P, Strike SC. A three-dimensional biomechanical comparison between turning strategies during the stance phase of walking. *Hum Mov Sci.* 2005;24(4):558-573.

42. Hase K, Stein RB. Turning strategies during human walking. *J Neurophysiol.* 1999;81(6):2914-2922.

43. Thigpen MT, Light KE, Creel GL, Flynn SM. Turning difficulty characteristics of adults aged 65 years or older. *Phys Ther.* 2000;80(1):1174-1187.

44. Crane BT, Demer JL. Human gaze stabilization during natural activities: translation, rotation, magnification, and target distance effects. *J Neurophysiol.* 1997;78(4):2129-2144.

45. Demer JL, Viirre ES. Visual-vestibular interaction during standing, walking, and running. *J Vestib Res.* 1996; 6(4):295-313.

46. Mulavara AP, Bloomberg JJ. Identifying head-trunk and lower limb contributions to gaze stabilization during locomotion. *J Vestib Res.* 2002;12(5):255-269.
Figure 1. An example of the segmented TUG phases (straight walking and turning) and the detected gait event (mid-swing).

Figure 2. Comparison between pre and post TUG performances. Top: pre VPT, Bottom: post VPT. See Figure 1 legend. Note that both Pre and Post VPT TUG total time scores would be considered as normal.

Figure 3. Comparison of walking:turning ratio parameters (error bar: 95% confidence interval). *

Significant difference between groups.
Table 1. Between groups results: mean ± SD (95% confidence interval).

Parameter	UVD (N=38)	VA Controls (N=26)	Healthy Controls (N=12)
Straight Walking Time (s)	3.6 ± 0.87 (3.48 - 3.81)	4.5 ± 1.16* (4.24 - 4.76)	3.4 ± 0.56‡ (3.19 - 3.61)
Turn Walking Time (s)	2.2 ± 0.53† (2.15 - 2.36)	2.3 ± 0.49 (2.23 - 2.45)	1.7 ± 0.31‡ (1.67 - 1.91)
Total TUG Time (s)	5.9 ± 1.27† (5.66 - 6.14)	6.8 ± 1.49* (6.51 - 7.18)	5.1 ± 0.82‡ (4.88 - 5.49)
Straight Walking # of Steps	7.4 ± 1.90† (7.10 - 7.82)	7.8 ± 1.41 (7.51 - 8.15)	6.8 ± 1.09‡ (6.39 - 7.21)
Turn Walking # of Steps	4.3 ± 1.21† (4.15 - 4.61)	3.7 ± 0.87* (3.53 - 3.93)	3.7 ± 0.62 (3.53 - 4.00)
Total TUG # of Steps	11.8 ± 2.83† (11.31 - 12.37)	11.5 ± 1.97 (11.12 - 12.01)	10.5 ± 1.50‡ (10.01 - 11.13)
Walking:Turning Time Ratio	1.6 ± 0.35† (1.57 - 1.71)	1.9 ± 0.43* (1.84 - 2.04)	1.9 ± 0.26 (1.82 - 2.02)
Walking:Turning Steps Ratio	1.7 ± 0.41 (1.67 - 1.82)	2.2 ± 0.52* (2.06 - 2.30)	1.8 ± 0.31‡ (1.71 - 1.94)

One-way ANOVA comparison is significant for all variables.
* Significant difference between UVD patients and VA controls.
† Significant difference between UVD patients and healthy controls.
‡ Significant difference between VA controls and healthy controls.
Based on a post hoc tests with LSD correction for between groups comparisons.
Table 2. Effect of VPT pre-post results in 19 UVD patients: mean ± SD (95% confidence interval).

Parameter	UVD Pre-Rehab	UVD Post-Rehab	P value
Straight Walking Time (s)	3.9 ± 0.95	3.6 ± 0.63	P=0.06
	(3.65 - 4.13)	(3.50 - 3.82)	
Turn Walking Time (s)	2.3 ± 0.51	1.8 ± 0.39	P<0.001
	(2.16 - 2.43)	(1.76 - 1.96)	
Total TUG Time (s)	6.2 ± 1.34	5.5 ± 0.93	P<0.001
	(5.85 - 6.54)	(5.28 - 5.74)	
Straight Walking # of Steps	7.9 ± 2.18	7.5 ± 1.16	P=0.145
	(7.40 - 8.54)	(7.28 - 7.86)	
Turn Walking # of Steps	4.5 ± 1.46	3.3 ± 0.62	P<0.001
	(4.19 - 4.96)	(3.23 - 3.54)	
Total TUG # of Steps	12.5 ± 3.45	10.9 ± 1.38	P<0.001
	(11.63 - 13.47)	(10.61 - 11.32)	
Walking:Turning Time Ratio	1.7 ± 0.33	2.01 ± 0.34	P<0.001
	(1.63 - 1.81)	(1.92 - 2.09)	
Walking:Turning Steps Ratio	1.8 ± 0.33	2.3 ± 0.52	P<0.001
	(1.70 - 1.88)	(2.17 - 2.44)	