Fluid moment hierarchy equations derived from gauge invariant quantum kinetic theory

F Haas1,2, J Zamanian, M Marklund and G Brodin
Department of Physics, Umeå University, SE-901 87 Umeå, Sweden
E-mail: ferhaas@hotmail.com

\textit{New Journal of Physics} 12 (2010) 073027 (13pp)
Received 23 December 2009
Published 22 July 2010
Online at http://www.njp.org/
doi:10.1088/1367-2630/12/7/073027

\textbf{Abstract.} The gauge invariant electromagnetic Wigner equation is taken as the basis of a fluid-like system describing quantum plasmas, derived from the moments of the gauge invariant Wigner function. The use of the standard, gauge-dependent Wigner function is shown to produce inconsistencies if a direct correspondence principle is applied. The propagation of linear transverse waves is considered and it is shown to be in agreement with the kinetic theory in the long-wavelength approximation, provided that an adequate closure is chosen for the macroscopic equations. A general recipe to solve the closure problem is suggested.

\textbf{Contents}

1. Introduction \hspace{1cm} 2
2. The basic properties of the gauge invariant Wigner function \hspace{1cm} 2
3. The fluid moments hierarchy \hspace{1cm} 4
4. The transverse dispersion relation \hspace{1cm} 9
5. Conclusion \hspace{1cm} 11
Acknowledgments \hspace{1cm} 11
Appendix. The closure problem \hspace{1cm} 12
References \hspace{1cm} 13

\footnotemark[1] Also at Universidade do Vale do Rio dos Sinos, Brazil.
\footnotemark[2] Author to whom any correspondence should be addressed.
1. Introduction

The Wigner function is the quantum equivalent of the classical particle distribution function and can be used to calculate the average values of physical observables [1]. In most cases, the time evolution of the Wigner function is evaluated considering only scalar potentials, hence without the inclusion of magnetic fields. One reason for this is the considerable analytic complexity of the electromagnetic Wigner equation. Indeed, even the electrostatic Wigner equation is already a cumbersome integro-differential equation that can hardly be examined except in the linear limit. However, the emergence of new areas like spintronics [2], where magnetic effects are crucial, makes it desirable to have quantum kinetic models allowing for nonzero vector potentials. In this situation, the gauge invariance of the Wigner function should be ensured from the very beginning in order to avoid inconsistencies, a point somewhat neglected in previous studies. However, the essential qualities of the gauge invariant Wigner function (GIWF) have already been detailed in the literature [3]–[5]. In particular, Serimaa et al [4] provide a compact expression for the evolution equation satisfied by the GIWF; see equation (6) below. Further, gauge-independent Wigner functions have been applied in describing friction as a result of radiation reaction [6]. It is the purpose of the present work to stress the relevance and properties of the GIWF in connection with quantum plasma problems. In addition, we provide a macroscopic (moments) formulation starting from the electromagnetic Wigner–Maxwell system, substantially generalizing the recently introduced moments system derived from the Wigner–Poisson equations [7]. The resulting macroscopic equations are a step towards the inclusion of spin-dependent variables, postponed to future considerations. In this regard, we point out the work by Bialynicki-Birula et al [8], where the quantum phase-space equations have been applied and explicitly solved for spinning particles in a gauge invariant manner for the first time.

The advantages of macroscopic formulations lie in their relative simplicity, so that the nonlinear regimes are not necessarily inaccessible apart from numerical simulations. Note, however, that our fluid approach does not imply any fluid approximations in the sense that we are not supposing a large collision rate or a short mean free path, for instance. If we are interested only in basic quantities, such as particle, current or energy densities, nothing prevents us from computing moments of the Wigner function in order to derive fluid-like equations for the time evolution of these variables. The roots of the moments descriptions in plasma theory can be traced back to Grad [9]. The price of replacing the more detailed kinetic models with macroscopic models is the loss of information about kinetic phenomena like Landau damping, the plasma echo and many others.

This work is organized as follows. In section 2, we briefly review the definition and properties of the GIWF. Section 3 develops the corresponding fluid moment hierarchy equations. Section 4 considers the propagation of transverse waves and the closure problem in this case. Section 5 is devoted to the conclusions. In addition, we present an appendix where the closure of the fluid-like system is discussed.

2. The basic properties of the gauge invariant Wigner function

A sensible definition of the gauge invariant one-particle Wigner function \(f = f(r, v, t) \) was introduced by Stratonovich [3]. Since in this work we are not concerned with relativistic
phenomena, we write it in a non-covariant form,

\[
f(r, v, t) = \left(\frac{m}{2\pi \hbar} \right)^3 \int ds \exp \left[\frac{i}{\hbar} \left(mv + q \int_{-1/2}^{1/2} d\tau A(r + \tau s, t) \right) \right] \times \psi^* \left(r + \frac{s}{2} , t \right) \psi \left(r - \frac{s}{2} , t \right),
\]

where \(r \) and \(v \) are the position and velocity vectors and \(t \) the time. The wavefunction is assumed to be normalized to unity. In addition, \(\hbar \) is Planck’s constant divided by \(2\pi \), \(A(r, t) \) is the vector potential, and \(m \) and \(q \) are the mass and charge of a particle in a pure state described by a wavefunction \(\psi(r, t) \). The properties to be discussed in this section hold equally well in the case of mixed states. In contrast to the original definition of the Wigner function \([1]\) via the canonical momentum, the object \(f \) in equation (1) is written in terms of the kinetic momentum \(m v \). The extra integral in equation (1) containing the vector potential compensates for the change in the wavefunction in a local gauge transformation. The use of a non-covariant, one-time pseudo-distribution renders the interpretation issues of \(f \) less obscure than in a four-dimensional space–time version, as stressed in \([8]\).

Naturally, there are other ways to obtain GIWFs, e.g. through certain path integrals involving the vector potential \([10]\). However, the phase factor in equation (1) can be justified \([5]\) in terms of the minimal coupling principle. Moreover, as discussed in more detail elsewhere, the function of the phase factor is to convert any gauge into the axial gauge \([5]\). For our purposes, the choice of form (1) is due to convenience, as it provides a non-ambiguous way to calculate averaged quantities. If instead one takes a GIWF in terms of a line integral \(\int_{r_1}^{r_2} A(s, t) \cdot ds \), one introduces the further difficulty of the choice of integration path from \(r_1 \) to \(r_2 \) (cf equation (2.157) of \([10]\)).

The properties of the GIWF have been detailed in \([4, 5]\). Nevertheless, for completeness we discuss some of them once again. From \(f \) we can compute the very basic zeroth- and first-order moments

\[
\int dv f = |\psi|^2,
\]

\[
\int dv v f = \frac{i\hbar}{2m} (\psi \nabla \psi^* - \psi^* \nabla \psi) - \frac{q}{m} |\psi|^2 A,
\]

with the interpretation of particle and current densities, respectively. By construction, these quantities are invariant under the local gauge transformation

\[
A \rightarrow A + \nabla \Lambda, \quad \psi \rightarrow \psi \exp \left(\frac{i q \Lambda \hbar}{\hbar} \right),
\]

where \(\Lambda = \Lambda(r, t) \) is an arbitrary differentiable function.

If the starting point is the usual (gauge-dependent) Wigner function

\[
f^{GD}(r, p, t) = \frac{1}{(2\pi \hbar)^3} \int ds \exp \left(\frac{i p \cdot s}{\hbar} \right) \psi^* \left(r + \frac{s}{2} , t \right) \psi \left(r - \frac{s}{2} , t \right),
\]

which is written in terms of the canonical momentum \(p = mv - qA \), one obtains gauge-independent results for the zeroth-, first- and second-order moments, but gauge-dependent quantities when considering higher order moments. Of course, implicitly we assume that all physical objects should be gauge independent. Serious discrepancies occur when calculating the
evolution equation for the second-order moment of the usual Wigner function and the GIWF, as will be shown in the next section. In all cases it is safer to work with \(f \) as given in equation (1).

The time evolution of the GIWF has already been considered by Stratonovich [3], but a particularly illuminating form to express it was provided by Serimaa et al [4] according to

\[
\frac{\partial}{\partial t} + (\mathbf{v} + \Delta \mathbf{\bar{v}}) \cdot \frac{\partial}{\partial \mathbf{r}} + \frac{q}{m} \left[\mathbf{\bar{E}} + (\mathbf{v} + \Delta \mathbf{\bar{v}}) \times \mathbf{\bar{B}} \right] \cdot \frac{\partial}{\partial \mathbf{v}} \right] f(r, \mathbf{v}, t) = 0.
\]

(6)

Here, we introduced the operators

\[
\Delta \mathbf{\bar{v}} = \frac{i \hbar q}{m^2} \frac{\partial}{\partial \mathbf{v}} \times \int_{-1/2}^{1/2} \mathrm{d} \tau \mathbf{r} \mathbf{B} \left(\mathbf{r} + \frac{i \hbar \tau}{m} \frac{\partial}{\partial \mathbf{v}}, t \right),
\]

(7)

\[
\bar{\mathbf{E}} = \int_{-1/2}^{1/2} \mathrm{d} \tau \mathbf{E} \left(\mathbf{r} + \frac{i \hbar \tau}{m} \frac{\partial}{\partial \mathbf{v}}, t \right),
\]

(8)

\[
\mathbf{\bar{B}} = \int_{-1/2}^{1/2} \mathrm{d} \tau \mathbf{B} \left(\mathbf{r} + \frac{i \hbar \tau}{m} \frac{\partial}{\partial \mathbf{v}}, t \right).
\]

(9)

where \(\mathbf{B} = \mathbf{B}(\mathbf{r}, t) \) and \(\mathbf{E} = \mathbf{E}(\mathbf{r}, t) \) are the magnetic and electric fields, respectively. The kinetic equation (6) follows from the Schrödinger equation for the wavefunction or, alternatively, from the von Neumann equation solved by the density matrix.

As is apparent from equation (6), the kinetic equation satisfied by \(f \) is formulated in terms of the physical fields, unlike the equation solved by \(f^{\text{GD}} \), which is written in terms of the scalar and vector potentials [11] and which can be shown to be not gauge invariant, a serious drawback. Moreover, equation (6) is almost in the form of a Vlasov equation, with two differences: the electromagnetic fields are replaced by \(\bar{\mathbf{E}} \) and \(\mathbf{\bar{B}} \) defined in equations (8) and (9); and the velocity vector is displaced by the intrinsically quantum mechanical perturbation \(\Delta \mathbf{\bar{v}} \) defined in equation (7). Note that this perturbation \(\Delta \mathbf{\bar{v}} \) vanishes in the electrostatic case. In calculating equations (7)–(9), it is assumed that the electromagnetic fields are analytic, so that the integrals are evaluated after Taylor expanding and then replacing \(\mathbf{r} \) with the indicated argument \(\mathbf{r} + i \hbar (\tau / m) \partial / \partial \mathbf{v} \). A further difference in comparison to the Vlasov equation is that no function \(f \) on phase space can be taken as a Wigner function. Too spiky functions violating the uncertainty principle should be ruled out. And, of course, the Wigner function is not strictly a probability distribution, since in general it is negative in certain regions of phase space.

To sum up, the pseudo-distribution in equation (1) provides a practical and non-ambiguous recipe for a GIWF, and equation (6) is the associated kinetic equation. In the next section, we derive a system of partial differential equations satisfied by macroscopic quantities obtained by taking moments of the GIWF.

3. The fluid moments hierarchy

In spite of the apparent simplicity, actually equation (6) becomes quite complicated after developing the operators \(\bar{\mathbf{E}} \) and \(\mathbf{\bar{B}} \). In practice, nonlinear problems are inaccessible in this formulation, especially remembering that the electromagnetic field should be self-consistently determined through Maxwell equations. Hence, apart from linear problems, this Wigner–Maxwell system can be helpful only by means of numerical simulations, which are
themselves not evident due to the complexity of the system. This motivates the creation of alternative models capturing the essentials of the quantum plasma dynamics.

In this context, recently [7], a fluid moments hierarchy was derived from the electrostatic Wigner equation. As is usual in moments theories [9], a set of macroscopic variables (particle density, current, etc) was defined in terms of integrals of the Wigner function. The time evolution of these quantities was then deduced from the Wigner equation. No assumptions were made about the particular local equilibrium Wigner function. In the linear limit, a quantum version of the Bohm–Gross dispersion relation was derived. Also, certain nonlinear traveling wave solutions were obtained.

The central purpose of this work is to extend the results of Haas et al [7] to the electromagnetic case. Hence, we define the moments

\[n = \int dv f, \]
\[n \mathbf{u} = \int dv f \mathbf{v}, \]
\[P_{ij} = m \left(\int dv f v_i v_j - n u_i u_j \right), \]
\[Q_{ijk} = m \int dv (v_i - u_i)(v_j - u_j)(v_k - u_k) f, \]
\[R_{ijkl} = m \int dv (v_i - u_i)(v_j - u_j)(v_k - u_k)(v_l - u_l) f \]

and so on, as if \(f \) were a classical distribution function. Since all quantities are postulated in a gauge invariant way, we can safely interpret \(n, \mathbf{u}, P_{ij}, \) etc, respectively, as a particle density, a velocity field, a second rank stress tensor and so on. In particular, a scalar pressure \(p = \left(\frac{1}{3} \right) P_{ii} \) and a heat flux vector \(q_i = \left(\frac{1}{2} \right) Q_{jji} \) can be deduced, where the summation convention is employed. Now the task is to obtain from the Wigner equation the equations of motion for the several moments, which will compose an infinite coupled hierarchy.

We also note that, for the case of an isotropic distribution function, i.e. dependence of \(f \) on the magnitude of the velocity only, all the odd moments must vanish from symmetry constraints, while the even moments are expressible in scalar quantities (by decomposition in terms of \(\delta_{ij} \)). Moreover, for the case of local rotational symmetry, i.e. the existence of one preferred direction (say, \(\mathbf{z} \)) due to an external magnetic field or an initial temperature anisotropy, we have the form

\[P_{ij} = P_{ij}^\perp + P_{ij}^\parallel \mathbf{z}_i \mathbf{z}_j \]
\[Q_{ijk} = Q_{ijk}^\perp \mathbf{z}_k + Q_{ijk}^\parallel \mathbf{z}_i \mathbf{z}_j \mathbf{z}_k, \]

and similarly for higher order moments. Here, we have introduced the projection tensor \(h_{ij} = \delta_{ij} - \mathbf{z}_i \mathbf{z}_j \). These algebraic forms also solve the constraint equations (see below) that occur when assuming a stationary and homogeneous (but possibly anisotropic) equilibrium distribution.\(^3\)

\(^3\) We note that we can always decompose a moment of any order into its irreducible parts by picking an arbitrary direction and forming the projection operator orthogonal to that direction.
For the sake of calculating the moments hierarchy equations, it is convenient to expand $\Delta \tilde{v}$, \tilde{B} and \tilde{E} according to

$$
\Delta \tilde{v}_i = -\frac{\hbar^2 \epsilon_{ijk}}{12m^3} \partial_{m} B_k \frac{\partial^2}{\partial v_j \partial v_m} + \frac{\hbar^4 \epsilon_{ijk} a_{ij}^3 B_k}{540m^5} \frac{\partial^4}{\partial v_j \partial v_m \partial v_n \partial v_l} + \cdots,
$$

(17)

$$
\tilde{E}_i = E_i - \frac{\hbar^2}{24m^2} \partial_{jk} E_i \frac{\partial^2}{\partial v_j \partial v_k} + \frac{\hbar^4}{1920m^4} \partial_{jkmn} E_i \frac{\partial^4}{\partial v_j \partial v_k \partial v_m \partial v_n} + \cdots.
$$

(18)

$$
\tilde{B}_i = B_i - \frac{\hbar^2}{24m^2} \partial_{jk} B_i \frac{\partial^2}{\partial v_j \partial v_k} + \frac{\hbar^4}{1920m^4} \partial_{jkmn} B_i \frac{\partial^4}{\partial v_j \partial v_k \partial v_m \partial v_n} + \cdots,
$$

(19)

disregarding higher order quantum corrections. The notation $\partial_i \equiv \partial/\partial r_i$ is used whenever there is no risk of confusion.

Assuming decaying boundary conditions, as far as the moment hierarchy is closed at the third-rank stress tensor, only the leading quantum corrections (the terms $\propto \hbar^2$ in equations (17)—(19)) are needed. This is due to the structure of the higher order corrections. Indeed, these terms always involve at least fourth-order velocity derivatives and, for instance,

$$
\int dv \, v_j \, v_k \, \frac{\partial^4 f}{\partial v_a \partial v_b \partial v_c \partial d} = 0.
$$

(20)

Therefore, only the semiclassical Wigner equation is needed, which does not mean that the quantum effects are necessarily small; it just happens that higher order quantum corrections would appear only for higher order moment evolution equations.

Following equation (6), the semiclassical electromagnetic Wigner equation then reads

$$
\left[\frac{\partial}{\partial t} + v \cdot \frac{\partial}{\partial r} + \frac{q}{m} (E + v \times B) \cdot \frac{\partial}{\partial v} \right] f(r, v, t)
$$

$$
= \frac{\hbar^2}{24m^3} \partial_{jk} E_i \frac{\partial^3 f}{\partial v_i \partial v_j \partial v_k} + \frac{\hbar^4 \epsilon_{ijk} a_{ij}^3 B_k}{12m^5} \frac{\partial^3 f}{\partial r_i \partial v_j \partial v_m} + \frac{\hbar^2 \epsilon_{ijk} A_{ijk}^{3} B_k}{24m^3} \frac{\partial^3 f}{\partial v_i \partial v_j \partial v_m} + \frac{\hbar^4}{1920m^4} \partial_{jkmn} \frac{\partial^4 f}{\partial v_j \partial v_k \partial v_m \partial v_n} + \frac{\hbar^2}{12m^4} \left(B_i \partial_j B_k \frac{\partial^3 f}{\partial v_i \partial v_j \partial v_k} - B_i \partial_j B_k \frac{\partial^3 f}{\partial v_i \partial v_j \partial v_k} \right).
$$

(21)

Note that apparently the semiclassical electromagnetic Wigner equation, which is of some interest in itself, has not been discussed previously in the literature.

Calculating the moments, the result is

$$
\frac{D n}{D t} + n \nabla \cdot u = 0,
$$

(22)

$$
\frac{D u_i}{D t} = - \frac{\partial_j P_{ij}}{mn} + \frac{q}{m} (E + u \times B)_i.
$$

(23)

$$
\frac{D P_{ij}}{D t} = - P_{ik} \partial_k u_j - P_{jk} \partial_k u_i - P_{ij} \nabla \cdot u + \frac{q}{m} \epsilon_{jmn} P_{jm} B_n + \frac{q}{m} \epsilon_{jmn} P_{im} B_n
$$

$$
+ \frac{\hbar^2}{12m^2} \epsilon_{ijkl} \partial_l (n \partial_j B_k) + \frac{\hbar^2}{12m^2} \epsilon_{ijkl} \partial_l (n \partial_j B_k) - \partial_k Q_{ijk},
$$

(24)

New Journal of Physics 12 (2010) 073027 (http://www.njp.org/)
\[
\frac{DQ_{ijk}}{Dt} = -Q_{ijr} \frac{\partial}{\partial x_k} \nabla \cdot \mathbf{u} - Q_{jkr} \frac{\partial}{\partial x_i} \nabla \cdot \mathbf{u} - Q_{kri} \frac{\partial}{\partial x_j} \nabla \cdot \mathbf{u} - Q_{ijk} \nabla \cdot \mathbf{u} - \partial_i R_{ijk} \\
+ \frac{1}{mn} (P_{ij} \partial_i P_{kr} + P_{ijk} \partial_i P_{jr} + P_{kri} \partial_i P_{jr}) + \frac{q}{m} (\varepsilon_{irs} Q_{rjk} + \varepsilon_{jrs} Q_{rki} + \varepsilon_{krs} Q_{rij}) B_s \\
- \frac{\hbar^2 n}{12m^2} (\partial_j^2 E_k + \partial_j^2 E_i + \partial_k^2 E_j) + \frac{q^2 \hbar^2 n}{12m^3} (\delta_{ij} \partial_k + \delta_{ij} \partial_i + \delta_{ij} \partial_j) B^2 \\
- \frac{\hbar^2 n}{12m^2} [(\mathbf{u} \times \partial_{jk}^2 \mathbf{B})_i + (\mathbf{u} \times \partial_{ki}^2 \mathbf{B})_j + (\mathbf{u} \times \partial_{ij}^2 \mathbf{B})_k] + \frac{q^2 \hbar^2 n}{12m^3} [\varepsilon_{jrs} (\partial_j B_r, \partial_s u_k + \partial_k B_s, \partial_i u_j) + \varepsilon_{jrs} (\partial_j B_r, \partial_k u_i + \partial_i B_k, \partial_s u_j) \\
+ \varepsilon_{krs} (\partial_i B_r, \partial_j u_i + \partial_j B_r, \partial_s u_j)] - \frac{q^2 \hbar^2 n}{12m^3} [\partial_i (B_j B_i) + \partial_j (B_i B_j) + \partial_k (B_i B_j)].
\]

When \(\mathbf{B} = 0 \), equations (22)–(25) recover the electrostatic equations [7]. In the limit \(\hbar \to 0 \), it reproduces the classical electromagnetic moment hierarchy equations [12]–[14]. Quantum effects are already explicit in the transport equation for the pressure dyad, through the magnetic field.

Previous approaches [15] derived quantum transport equations for charged particle systems assuming a local semiclassical Wigner function corresponding to a perturbed Maxwell–Boltzmann equilibrium. Here, however, the treatment includes magnetic fields and is not semiclassical. A further approach for the derivation of quantum effects in macroscopic equations is through the eikonal decomposition of the wavefunctions of the quantum statistical ensemble and adequate simplifying assumptions [16]. In both cases [15, 16], the pressure dyad \(P_{ij} \) would be expressed as the sum of a classical part and a quantum part, the latter associated with a Bohm potential term in the force equation (23).

If we have used the gauge-dependent Wigner function, it would not be possible to proceed exactly as in the classical case in the definition of the moments. Indeed, it would be natural to postulate them as

\[
n = \int d\mathbf{p} f^{GD},
\]

\[
nu = \int d\mathbf{p} \left(\frac{\mathbf{p} - qA}{m} \right) f^{GD},
\]

\[
P_{ij} = m \left(\int d\mathbf{p} \frac{(p_i - qA_i)(p_j - qA_j)}{m^2} f^{GD} - nu_i u_j \right),
\]

\[
Q_{ijk}^{GD} = \frac{1}{m^2} \int d\mathbf{p} (p_i - qA_i - nu_i)(p_j - qA_j - mu_j)(p_k - qA_k - mu_k) f^{GD}.
\]

The same symbols \(n, \mathbf{u} \) and \(P_{ij} \) are used on purpose since equations (26)–(28) produce the same expressions as from the GIWF, in spite of the fact that \(f^{GD} \) itself is a gauge-dependent object.
However, from the equation satisfied by the usual Wigner equation [11] one would obtain
\[
\frac{D P_{ij}}{Dt} = -P_{ik} \partial_k u_j - P_{jk} \partial_k u_i - P_{ij} \nabla \cdot \mathbf{u} + \frac{q}{m} \varepsilon_{imn} P_{jm} B_n + \frac{q}{m} \varepsilon_{imn} P_{mn} B_n
\]
\[
- \frac{q \hbar^2}{4m^2} \partial_{ij}^2 \mathbf{A} \cdot \nabla n - \partial_k Q_{ijk}^{GD},
\]
containing gauge-dependent quantum terms. The reason is that
\[
Q_{ijk}^{GD} = Q_{ij} - \frac{q \hbar^2 n}{12m^2} (\partial_{ij}^2 A_k + \partial_{jk}^2 A_i + \partial_{ki}^2 A_j)
\]
is not gauge invariant. If \(Q_{ijk}^{GD}\) from equation (31) is inserted into equation (30), one re-derives equation (24) for the pressure dyad on taking into account the Coulomb gauge that is assumed [11] in the evolution equation for \(f^{GD}\).

Similarly, the transport equations for the higher order moments are not gauge invariant. The conclusion is that, to derive consistent equations from the usual Wigner function, we would be obliged to modify the definition of moments. However, in this case there is the loss of one of the key advantages of using Wigner functions, namely the strict resemblance with the classical formalism. Also note that, if the heat flux triad is set to zero, the quantum term in equation (30) is nonlinear for unmagnetized homogeneous equilibria, unlike equation (24), where a quantum contribution survives in this situation.

In principle, one could use the gauge-dependent Wigner function to consistently calculate the higher order moments such as \(Q_{ijk}, R_{ijkl}\) and so on. However, due to the fact that operators in quantum mechanics in general are non-commuting, this cannot be done in practice. To see how this comes about, we consider calculating the second-order moment using the gauge-dependent Wigner function. Calculating the second-order moment \(P_{ij}(\mathbf{r}, t)\) involves finding the expectation value of the operator, given by\(^4\)
\[
\hat{P}_{ij} = \frac{1}{4m} \left[\hat{p}_i - q A_i(\hat{r}, t), \hat{p}_j - q A_j(\hat{r}, t), \delta(\hat{r} - \mathbf{r}) \right],
\]
where \([\hat{a}, \hat{b}]_s = \hat{a} \hat{b} + \hat{b} \hat{a}\) denotes the anti-commutator. In order to calculate the expectation value using the Wigner formalism, it is necessary to map the operator into a phase-space function using the Weyl correspondence [17]. This is done in practice by ordering the operators into a symmetric product of the position and momenta operators by using the commutation relations and then making the substitutions \(\hat{r} \rightarrow \mathbf{r}\) and \(\hat{p} \rightarrow \mathbf{p}\). It turns out that the correct phase-space function is obtained by just making the substitution in the operator above without first Weyl ordering it. Hence, we may calculate the pressure dyad using the gauge-dependent Wigner function as
\[
P_{ij}(\mathbf{r}, t) = \int \frac{d\mathbf{r}' d\mathbf{p}}{m} \left[p_i - q A_i(\mathbf{r}', t) \right] \left[p_j - q A_j(\mathbf{r}', t) \right] \delta(\mathbf{r}' - \mathbf{r}) f^{GD}(\mathbf{r}', \mathbf{p}, t) - mn u_i u_j.
\]
However, for the third-order moment \(Q_{ijk}\), the correct phase-space function is not obtained simply by making the substitution \(\hat{r} \rightarrow \mathbf{r}\) and \(\hat{p} \rightarrow \mathbf{p}\). Hence, calculating the correct third-order moment using the gauge-dependent Wigner function is complicated and involves Weyl ordering the corresponding operator so as to obtain the correct phase-space function.

\(^4\) The definition of the pressure operator in quantum mechanics is motivated by considering the Heisenberg evolution equation for the probability current operator, which will be coupled to the divergence of the pressure operator.

New Journal of Physics 12 (2010) 073027 (http://www.njp.org/)
The GIWF has a modified Weyl ordering rule, discussed in [4], and calculating the moments is done in complete analogy with the classical case; see equations (10)–(14).

4. The transverse dispersion relation

As an application of the fluid equations (22)–(25), we now consider linear transverse waves. Considering a one-component plasma, where the ions act only as a homogeneous neutralizing background with number density \(n_0 \), the moment equations can be linearized around the equilibrium \(n = n_0, u = 0, P_{ij} = P_{ij}^{(0)}, Q_{ijk} = 0, R_{ijkl} = 0, \mathbf{E} = 0, \mathbf{B} = 0 \). To consider waves propagating in the \(z \)-direction with transverse polarization, we let all fluctuations have the space–time dependence \(e^{ikz - i\omega t} \) and set \(E_z = 0 \). Moreover, we decompose the zeroth-order pressure dyad as \(P_{ij}^{(0)} = P_{L}(\delta_{ij}, \lambda_j, \delta_{kj}) + P_{T}(\delta_{ij}, \delta_{kj}) \), where \(P_{L} \) and \(P_{T} \) are constants.

It turns out that, if we use the closure assumption \(R_{ijkl} = 0 \), the quantum corrections to the transverse modes will not be retained so that to display the lowest-order quantum corrections it is necessary to take into account also the contribution from the fourth-order moment. As a closure assumption, we use

\[
R_{ijkl} = -\frac{q^2 \hbar^2}{4m^3\omega_p^2} (P_{im}^{(0)} \delta_{jk} + P_{jm}^{(0)} \delta_{ik} + P_{km}^{(0)} \delta_{ij} + P_{lm}^{(0)} \delta_{ij}) \mathbf{E}_m,
\]

adapted to the transverse wave case. The closure (34) is deduced systematically from the linearized equations satisfied by the fourth- and fifth-order moments; see the appendix. Note that, in principle, the fourth-order moment \(R_{ijkl} \) can have a nonzero equilibrium contribution \(R_{ijkl}^{(0)} \sim v_T^4 \), where \(v_T = \sqrt{(2P_L + P_T)/(mn_0)} \) is the thermal velocity, but we will neglect this since we are looking only for the lowest-order correction. Likewise for the terms \(\sim \hbar^4 \). Finally, it is worth remarking that in the classical limit the fourth-order moment could be set to zero.

The linearized equations can then be solved by first writing the magnetic field in terms of the electric field and then eliminating all quantities except the velocity so that we obtain the velocity in terms of the electric field. Coupling the resulting equation with Faraday’s law via the current density \(\mathbf{J} = qn_0 \mathbf{u} \), the dispersion relation

\[
\omega^2 - k^2c^2 = \frac{\omega_p^2}{n_0} \left[1 + \frac{k^2 P_L}{n_0 m \omega^2} + \frac{\hbar^2 k^6 P_L}{4n_0 m^3 \omega_p^4} \right]
\]

is obtained. Here, \(\omega_p = \sqrt{n_0 q^2/(m \varepsilon_0)} \) is the plasma frequency. If, instead, the closure \(R_{ijkl} = 0 \) was used, the term proportional to \(\hbar^4 \) would be absent in the dispersion relation.

In the simultaneous long wavelength and semiclassical limits, equation (35) can be shown to admit an approximate solution:

\[
\omega^2 \approx \frac{\omega_p^2}{n_0} + c^2k^2 + \frac{P_L k^2}{m n_0} + \frac{\hbar^2 k^6 P_L}{4m^3 n_0 \omega_p^2}.
\]

To check the consistency, we need to compare it to the results from kinetic theory. Here we are not concerned with Landau damping issues so that all integrals can be interpreted in the principal value sense. Assume that

\[
\mathbf{E} = \mathbf{E}_1 \exp[i(kz - \omega t)],
\]

\[
\mathbf{B} = \mathbf{B}_1 \exp[i(kz - \omega t)],
\]

\[
f = f_0(v) + f_1(v) \exp[i(kz - \omega t)],
\]

New Journal of Physics 12 (2010) 073027 (http://www.njp.org/)
where \(\mathbf{k} \cdot \mathbf{E} = 0 \) as before and with the subscript 1 denoting first-order quantities. The equilibrium Wigner function satisfies
\[
\int \mathbf{v} f_0 = n_0, \quad \int \mathbf{v} \cdot \mathbf{v} f_0 = 0.
\]

Further, we assume an equilibrium Wigner function such that \(f_0 = f_0(v_{\bot}, v_z) \), where \(v_{\bot}^2 = v_x^2 + v_y^2 \). Note that, since there is no zeroth-order magnetic field, the perturbation velocity \(\Delta \mathbf{v} \) is also of first order. Hence \(\Delta \mathbf{v} \) does not contribute to the linearized Wigner equation (6). Using equations (8) and (9), we obtain
\[
\tilde{\mathbf{E}} = \mathbf{E} \mathbf{L}, \quad \tilde{\mathbf{B}} = \mathbf{B} \mathbf{L},
\]
defining the operator
\[
\mathbf{L} = \frac{\sinh \theta}{\theta}, \quad \theta = \frac{\hbar k}{2m} \frac{\partial}{\partial v_z}.
\]

We note that
\[
\mathbf{L} \left(\frac{\partial f_0}{\partial v_j} \right) = \frac{m}{\hbar k} \left[f_0 \left(\mathbf{v} + \frac{\hbar \mathbf{k}}{2m} \right) - f_0 \left(\mathbf{v} - \frac{\hbar \mathbf{k}}{2m} \right) \right],
\]
where \(\mathbf{k} = k \hat{\mathbf{z}} \). Moreover, \(L \to 1 \) in the classical limit, since
\[
L = \sum_{j=0}^{\infty} \frac{1}{(2j+1)!} \left(\frac{\hbar k}{2m} \frac{\partial}{\partial v_z} \right)^{2j} = 1 + \frac{1}{24} \left(\frac{\hbar k}{m} \right)^2 \frac{\partial^2}{\partial v_z^2} + \cdots.
\]

Then linearizing the Wigner equation (6) and from the Maxwell equations with charge and current densities \(q \int \mathbf{d} \mathbf{v} f - n_0 \) and \(q \int \mathbf{d} \mathbf{v} \mathbf{v} f \), respectively, the result is
\[
\omega^2 = \omega_p^2 + c^2 k^2 + \frac{k^2 m}{2n_0} \int \mathbf{v} \mathbf{v}^2 \mathbf{L} f_0 \frac{f_0}{(\omega - \mathbf{k} \cdot \mathbf{v})^2},
\]
where \(c \) is the speed of light and \(\omega_p \) is the plasma frequency. In comparison to the classical transverse dispersion relation, the only change is the replacement \(f_0 \to \tilde{f}_0 = \mathbf{L} f_0 \). In a classical picture, it is as if the particle velocities were reorganized through the diffusive operator \(\mathbf{L} \). Also note that still \(\tilde{f}_0 = \tilde{f}_0(v_{\bot}, v_z) \). Moreover, the quantum diffusion induced by the operator \(\mathbf{L} \) preserves the number of particles, since \(\tilde{\mathbf{d}} \mathbf{v} \tilde{f}_0 = \mathbf{d} \mathbf{v} f_0 \) due to equation (44) under decaying boundary conditions. Figure 1 shows the effect of \(\mathbf{L} \) on the equilibrium \(f_0 = f_1(v_{\bot}) \exp[-v_{\bot}^2/(2v_0^2)] \), for different values of the non-dimensional parameter \(H = \hbar k/(2m v_0) \). In the simultaneous long wavelength and semiclassical limits and retaining only the leading \(\sim v_0^2 \) thermal corrections, equations (36) and (45) give the same result via the natural identification \(P_{\bot} = (m/2) \int \mathbf{d} \mathbf{v} v_{\bot}^2 f_0 \). This concludes the equivalence between the moments and kinetic theories, in the fluid limit.

To compare, the transverse dispersion relation following from the gauge-dependent Wigner function [18, 19] can be expressed as
\[
\omega^2 = \omega_p^2 + c^2 k^2 - \frac{m \omega_p^2}{2n_0 \hbar} \int \mathbf{v} \mathbf{v}_{\bot}^2 \left[f_0 \left(\mathbf{v} + \frac{\hbar \mathbf{k}}{2m} \right) - f_0 \left(\mathbf{v} - \frac{\hbar \mathbf{k}}{2m} \right) \right]
\]
or, using equation (43), as
\[
\omega^2 = \omega_p^2 + c^2 k^2 - \frac{\omega_p^2 k}{2n_0} \int \mathbf{v} \mathbf{v}_{\bot}^2 \mathbf{L} \left(\frac{\partial f_0}{\partial v_z} \right).
\]
Figure 1. Quantum diffusion on the equilibrium Wigner function $f_0 = f_T(v_\perp) \exp[-v_z^2/(2v_0^2)]$. Here, $\tilde{f}_{||} = L(\exp[-v_z^2/(2v_0^2)])$. Values of the parameter $H = \hbar k/(2mv_0)$ are $H = 0$, 1 and 2, so that $\tilde{f}_{||}(0) = 1$, 0.86 and 0.60, respectively.

An integration by parts then shows the equivalence with the gauge invariant transverse dispersion relation equation (45). Therefore the gauge choice issues tend to be crucial only for the nonlinear regimes, as also manifest in the gauge-dependent nonlinear term in equation (30) for the pressure dyad. However, in the case of non-homogeneous equilibria, the use of a gauge-independent electromagnetic Wigner equation is advisable even for linear waves.

5. Conclusion

The moment hierarchy equations derived from the GIWF electromagnetic evolution equation are obtained. The advantages over the gauge-dependent Wigner formalism are stressed. Discrepancies tend to be prominent in the nonlinear regimes and for higher order moments of the Wigner function. The fluid-like equations (22)–(25), closed at the transport equation for the heat flux triad, are applied to the propagation of linear transverse waves. Good agreement is found when comparing with the results from kinetic theory, in the long wavelength approximation. A key ingredient of a successful macroscopic theory is an adequate closure of the moment equations and a recipe for solving this question is proposed; see the appendix. The approach is not restricted to particular local equilibrium GIWFs and is not based on a Madelung decomposition of the quantum statistical ensemble wavefunctions. The moment equations (22)–(25) are an adequate starting point for studying the nonlinear aspects of quantum plasma problems involving magnetic fields, e.g. via numerical simulations.

Acknowledgments

FH acknowledges the support provided by Umeå University and the Kempe Foundations. This work was supported by the European Research Council under contract no. 204059-QPQV and the Swedish Research Council under contract no. 2007-4422.
Appendix. The closure problem

The closure (34) can be deduced systematically from linearized higher order moment equations. Let S_{ijklm} be the fifth-order moment defined in analogy to the third- and fourth-order moments; see equations (13) and (14). The sixth-order moment will be set to zero. The evolution equations for the fourth- and fifth-order moments are derived following the same steps as those performed when equations (22)–(25) were derived starting from equation (21). Since they are quite complicated, we here include only the linear terms, which gives

$$
\partial_t R_{ijkl} = -\frac{q h^2}{12 m^3} [\epsilon_{inm} (P_{jmn}^{(0)} \partial_i^2 + P_{kmn}^{(0)} \partial_j^2 + P_{lnm}^{(0)} \partial_j^2 + P_{jkln}^{(0)} \partial_i^2 + P_{klm}^{(0)} \partial_i^2 + P_{lmn}^{(0)} \partial_i^2 + P_{kmn}^{(0)} \partial_i^2 + P_{kmn}^{(0)} \partial_i^2) + \epsilon_{jmn} (P_{kmn}^{(0)} \partial_i^2 + P_{lnm}^{(0)} \partial_j^2 + P_{kmn}^{(0)} \partial_j^2) + \epsilon_{kmn} (P_{lnm}^{(0)} \partial_j^2 + P_{knm}^{(0)} \partial_j^2 + P_{kmn}^{(0)} \partial_j^2)] B_m - \partial_m S_{ijklm},
$$

(A.1)

$$
\partial_t S_{ijklm} = -\frac{q h^2}{12 m^3} \{ (P_{jkn}^{(0)} \partial_i^2 + P_{knj}^{(0)} \partial_i^2 + P_{kmj}^{(0)} \partial_i^2) E_m + (P_{jkln}^{(0)} \partial_i^2 + P_{knj}^{(0)} \partial_i^2 + P_{kmj}^{(0)} \partial_i^2) E_l + (P_{knj}^{(0)} \partial_i^2 + P_{kmj}^{(0)} \partial_i^2) E_k + (P_{kmj}^{(0)} \partial_i^2 + P_{kmj}^{(0)} \partial_i^2) E_k \}.
$$

(A.2)

After Fourier transforming and inserting S_{ijklm} from equation (A.2) into equation (A.1), equation (34) is derived using Faraday’s law. The procedure is adapted to the present equilibrium (homogeneous, no streaming particles, no heat flux and negligible higher order thermal effects).

It turns out that, due to a cancellation arising from Faraday’s law in the transverse case, the result in equation (34) is correct even if equations (A.1) and (A.2) were extended to include $\sim h^4$ terms. To obtain the next order quantum effects dispersion relation using the fluid theory, it is therefore necessary to include higher order moments. In this example, the sixth-order moment is disregarded in equation (A.2).

From the above we can infer a general recipe for the closure of the fluid-like system up to the Nth moment: Fourier transform the linearized evolution equations for the $(N+1)$th and $(N+2)$th moments, setting the $(N+3)$th moment to zero. In this way we derive an expression for the $(N+1)$th moment, so as to close the system for the N moments. The form of the linearized equations depends on the particular equilibrium. Naïve closures like setting the $(N+1)$th moment directly to zero tend to produce fake results when compared to kinetic theory. This is in sharp contrast to the simplicity of the electrostatic case, where faithful equations are obtained already defining the fourth-order moment to be zero [7].
References

[1] Wigner E P 1932 Phys. Rev. 40 749
[2] Zutic I, Fabian J and Das Sarma S 2004 Rev. Mod. Phys. 76 323
[3] Stratonovich R L 1956 Dok. Akad. Nauk. SSSR 172
Stratonovich R L 1956 Sov. Phys.—Dokl. 1 414 (Engl. Transl.)
[4] Serimaa O T, Javanainen J and Varró S 1986 Phys. Rev. A 33 2913
[5] Levanda M and Fleurov V 2001 Ann. Phys., NY 292 199
[6] Javanainen J, Varró S and Serimaa O T 1987 Phys. Rev. A 35 2791
[7] Haas F, Marklund M, Brodin G and Zamanian J 2010 Phys. Lett. A 374 481
[8] Bialynicki-Birula I, Górnicki P and Rafelski J 1991 Phys. Rev. D 44 1825
[9] Grad H 1949 Commun. Pure Appl. Math. 2 331
[10] Carruthers P and Zachariasen F 1983 Rev. Mod. Phys. 55 245
[11] Haas F 2005 Phys. Plasmas 12 062117
[12] Goswami P, Passot T and Sulem P L 2005 Phys. Plasmas 12 102109
[13] Siregar E and Goldstein M L 1996 Phys. Plasmas 3 1437
[14] Ramos J J 2005 Phys. Plasmas 12 052102
[15] Gardner C L 1994 SIAM J. Appl. Math. 54 409
[16] Manfredi G and Haas F 2001 Phys. Rev. B 64 075316
[17] Weyl H 1927 Z. Phys. 46 1
[18] Klimontovich Yu L and Silin V P 1952 Zh. Eksp. Teor. Fiz. 23 151
[19] Kuzelov M V and Rukhadze A A 1999 Phys.-Usp. 42 603