ARTHROPODS ASSOCIATED WITH ABOVE-GROUND PORTIONS OF THE INVASIVE TREE, MELALEUCA QUINQUENERVIA, IN SOUTH FLORIDA, USA

Authors: Costello, Sheryl L., Pratt, Paul D., Rayamajhi, Min B., and Center, Ted D.

Source: Florida Entomologist, 86(3) : 300-322

Published By: Florida Entomological Society

URL: https://doi.org/10.1653/0015-4040(2003)086[0300:AAWAPO]2.0.CO;2
ARThropods associated with above-ground portions of the invasive tree, Melaleuca quinquenervia, in south Florida, USA

Sheryl L. Costello, Paul D. Pratt, Min B. Rayamajhi and Ted D. Center
USDA-ARS, Invasive Plant Research Laboratory, 3205 College Ave., Ft. Lauderdale, FL 33314

Abstract

Melaleuca quinquenervia (Cav.) S.T. Blake, the broad-leaved paperbark tree, has invaded ca. 202,000 ha in Florida, including portions of the Everglades National Park. We performed prerelease surveys in south Florida to determine if native or accidentally introduced arthropods exploit this invasive plant species and assess the potential for higher trophic levels to interfere with the establishment and success of future biological control agents. Herein we quantify the abundance of arthropods present on the above-ground portions of saplings and small M. quinquenervia trees at four sites. Only eight of the 328 arthropods collected were observed feeding on M. quinquenervia. Among the arthropods collected in the plants adventive range, 19 species are agricultural or horticultural pests. The high percentage of rare species (72.0%), presumed to be transient or merely resting on the foliage, and the paucity of species observed feeding on the weed, suggests that future biological control agents will face little if any competition from pre-existing plant-feeding arthropods.

Key Words: Paperbark tree, arthropod abundance, Oxyops vitiosa, weed biological control

Resumen

Melaleuca quinquenervia (Cav.) S.T. Blake ha invadido ca. 202,000 ha en la Florida, incluyendo unas porciones del Parque Nacional de los Everglades. Nosotros realizamos sondeos preliminares en el sur de la Florida para determinar si los arácnidos nativos o accidentalmente introducidos explotan esta especie de planta invasora y evaluar el potencial de los niveles tróficos superiores para interferir con el establecimiento y éxito de futuros agentes de control biológico. En cuatro sitios, nosotros cuantificamos la abundancia de arácnidos presentes en las porciones sobre el terreno de los renuevos y pequeños árboles de M. quinquenervia. Solamente ocho de los 328 arácnidos recolectados fueron observados alimentándose en la M. quinquenervia. Entre los arácnidos colectados en las áreas no nativas de la planta, 19 especies son plagas agrícolas ó de hortalizas. El alto porcentaje de especies raras (72.0%), presumidos de ser transeúntes o meramente descansando en el follaje, y la escasez de especies observadas alimentándose de la maleza, sugiere que los futuros agentes de control biológico enfrentarán poca o ninguna competencia de los arácnidos herbívoros ya presentes en la planta.

Melaleuca quinquenervia (Cav.) S.T. Blake, the broad-leaved paperbark tree, was introduced into south Florida during the late 1800s (Thayer & Bodle 1990). Although threatened in its native range along the east coast of Australia and a few nearby South Pacific islands, life history characteristics of M. quinquenervia (melaleuca) combine with favorable ecological characteristics of Everglades habitats to make this tree an explosive weed in south Florida (Meskimen 1962; Myers 1983; Balciunas & Center 1991; Hofstetter 1991). Currently, melaleuca occurs on about 202,000 ha of Florida wetlands (Bodle et al. 1994) and has historically spread at a rate of about 2,850 ha/yr (Center et al. 2000). The negative impacts of melaleuca on native flora and public health problems have been documented (Di Stefano & Fisher 1983; Myers 1983; Molnar et al. 1991; Bodle et al. 1994). Diamond et al. (1991), for instance, determined that if unchecked, potential losses to the Florida economy as a result of this invasive tree could reach $169 million annually.

Melaleuca infested areas can be restored through removal of existing trees, followed by measures to preempt reinvasion and subsequent recruitment. Conventional control tactics combine mechanical and chemical means to eliminate seedlings, saplings, entire stands of mature trees, or isolated plants in sensitive areas (Stocker & Sanders 1981; Bodle et al. 1994). However, biological attributes of this weed necessitate repeated mechanical and chemical treatments, which impose an accumulation of negative impacts on non-target organisms, including endangered plants. These adverse impacts limit the frequent use of such methods. In contrast, classical weed biological control has been described as the most ecologically benign tactic for controlling exotic pests (McEvoy & Coombs 1999) and has been considered a desirable addition to conventional methods (Browder & Schroeder 1981; Bodle et al. 1994).

Development of a weed biological control program typically proceeds in a stepwise fashion, including: selection of a natural enemy, risk
analysis, release, monitoring establishment, and finally assessing the effectiveness and ecological impact of the introduced biological control agent (Harris 1975; McEvoy & Coombs 1999). An often recommended initial phase in a classical weed biological control program includes surveys of herbivores associated with the invasive weed in the new (adventive) geographic range (Harris 1975; Olckers & Hulley 1995). Such surveys are intended to identify herbivores already exploiting the weed and to ascertain whether niche competition could influence agent establishment and impact (Harris 1971). Although surveys for natural enemies were performed in Australia during 1987 to 1991 (Balciunas et al. 1995), surveys of arthropods associated with melaleuca in its adventive range had never been done. Failure to perform such surveys could increase costs due to wasted effort associated with selecting, screening and releasing herbivores that may already be present, having accompanied the invasive weed upon introduction or thereafter. Therefore, specific objectives of this study were: 1) assess the current abundance of arthropods associated with melaleuca in its adventive range had never been done. Failure to perform such surveys could increase costs due to wasted effort associated with selecting, screening and releasing herbivores that may already be present, having accompanied the invasive weed upon introduction or thereafter. Therefore, specific objectives of this study were: 1) assess the current abundance of arthropods associated with melaleuca in south Florida, 2) determine if native herbivores are exploiting the invasive plant, 3) determine if co-evolved natural enemies from the native range inadvertently accompanied melaleuca into south Florida, and 4) inventory those higher trophic levels associated with the plant that could potentially interfere with the establishment or impact of introduced biological control agents.

MATERIALS AND METHODS

Arthropod surveys were performed at four locations in south Florida. Site 1 was located near Ft. Lauderdale, Broward Co., FL (N26.05606 and W80.25168). The site was a 0.5 ha field consisting of 2 to 5 m tall trees occurring at a density of 21,560 trees/hr. In general, melaleuca trees were growing in high organic soils typical of reclaimed ‘glades’ systems. Although melaleuca was the dominant species, other plants commonly occurring in the site included Blechnum serrulatum Rich., Blechnum penna-marie Crantz, and Centella asiatica (L.) Urb., and Ludwigia globularis (Chapm.) Small, Rhynchospora eximia (Nees) Boeck., and Rhynchospora filifolia Gray.

Site 4 consisted of a 1 ha area within historically mesic flatwoods in the Picayune Forest, Collier Co., FL (N26.10478 and W81.63392) (Anonymous 1990). A fire burned much of the melaleuca dominated areas during June 1998, resulting in recruitment of 129,393 trees/ha composed of primarily small 1-2 m tall saplings interspersed with an occasional large, mature tree. Pinus elliottii Engelm. and a parasitic (dodder-like) species growing on the melaleuca were the only other common vegetation.

Surveys were conducted monthly at each site from November 2000 through June 2001. Sites were surveyed between 10 a.m. and 2 p.m. on days without precipitation. To survey arthropods associated with melaleuca canopies, we swept foliage and occasionally trunks, with a 90-cm-diameter sweep net. One sample consisted of 100 sweeps in a 180° sweeping motion spaced ca. 1.0 m apart along a randomly selected 100 m transect. Four samples along separate transects were collected each month. The contents of the net after 100 sweeps were emptied into a 3.78 liter sealable plastic bag and frozen at -19 (±1) °C until processed. Arthropods were then separated from plant material, sorted by morphological types, and stored in 70% ethanol.

One limitation of our sweep sampling method included collecting arthropods that were not closely associated with melaleuca, but were transients, merely resting on the plant foliage or disturbed from understory vegetation while sampling. Additionally, this method was biased towards those species that are poor fliers or slow to disperse from a disturbance and, unlike previous Australian surveys, endophages were not included. Therefore, caution should be used when drawing inferences from these data due to the unknown relationships between some of these arthropods and melaleuca. For this reason, a minimum of two observers searched for direct herbivory on the above ground portions of melaleuca trees for 30 min./month at each site. Arthropods observed feeding on melaleuca are reported independently from those collected in sweep samples.

For each species collected, species abundance per site was calculated for the entire survey period by first averaging the number of specimens from the four monthly samples and then averag-
ing among all sample dates. Average species abundance among all sites was determined by total specimens collected throughout the entire survey (rare = 1-5 specimens, occasional = 6-10 specimens, common = >10 specimens). Occasionally, arthropods were collected by hand to facilitate identification. Where possible, arthropods were identified to species. Identifications that could not be confirmed are indicated by “poss.” (possibly) before the scientific name. Some Diptera were not sent for identification because specialists were not available or specimens were damaged and lacked key identifying features. Such specimens were combined into an “unidentified spp.” group and the number of morphological types is denoted in parentheses. All morphological types, except for immatures that could be associated with their adult forms, were included in the total species count.

All specimens, except formicids, were submitted to and deposited at the Florida State Collection of Arthropods (FSCA, Division of Plant Industry (DPI), Gainesville, FL) for identification and incorporated into their taxonomic database. Most formicids were identified and retained by L. Davis at the Fire Ant Unit, Agricultural Research Service, USDA, Gainesville, FL. A few formicids were identified by M. Deyrup at the Formicid Research Service, USDA, Beltsville, MD. Several dipteran specimens were identified at the Fire Ant Unit, Agricultural Research Service, USDA, Gainesville, FL. A few formicids were identified by M. Deyrup at the Formicid Research Service, USDA, Beltsville, MD. Several formicids were identified by M. Deyrup at the Formicid Research Service, USDA, Beltsville, MD.

RESULTS AND DISCUSSION

Surveys of herbivores associated with an invasive plant in its adventive range are often recommended as a prelude to a weed biological control project (Harris 1975). Historically, scientists have ignored this recommendation, possibly due to the supposition that native herbivores are already suppressing the weed to the greatest level possible. In contrast, native arthropods can cause considerable damage to non-indigenous weeds (Newman et al. 1998). The native weevil, Euhrychiopsis lecontei Deitz, for instance, shows promise for control of Eurasian watermilfoil, Myriophyllum spicata (L.) (Newman & Beisner 2000). In addition, native arthropods and diseases may also be accidentally introduced from the plant’s native range. The biological control agents Megastigmus aculeatus (chalcid wasp) and Phyllocoptes fructiphilus (an eriophyid mite), for example, were collected in West Virginia during surveys of arthropods associated with the exotic weed Rosa multiflora (Thunb.). The eriophyid mite, and the virus it transmits, is considered the most effective agent for the suppression of R. multiflora (Amrine 1996).

In its adventive range, however, it appears that melaleuca has not acquired native herbivores at sufficient densities to cause appreciable damage to trees in south Florida. For instance, of the 18 orders, 117 families, and 328 species collected in this study, only 54 species were classified as common and 33 species were classified as occasional (Tables 1 and 2). Of the most commonly occurring species, 33 (66.7%) were predators or detritivores (Table 2), and 11 (20.4%) were herbivores (Table 1). Both adult and immature stages of H. coagulata, the glassy-winged sharpshooter, were observed on melaleuca, suggesting that melaleuca may serve as an alternative host for this insect. However, during the sampling period none of these arthropods were directly observed feeding on melaleuca. Furthermore, out of 409 herbivorous arthropods found attacking melaleuca in Australia, none were found on melaleuca in south Florida indicating that no co-evolved natural enemies accompanied melaleuca into south Florida upon introduction or thereafter (Balciunas et al. 1995). The most intuitive explanation for these findings is probably due to the fact that all known importations of the invasive tree were in the form of seed (F. A. Dray, pers. comm.).

In contrast, we have observed several arthropod species feeding on melaleuca that were never recovered in the sweep samples. Both early and late instars of the polyphagous saddleback caterpillar, Stibile stimulea (Clem.), were observed feeding on mature melaleuca leaves at Site 3. Larvae of the caterpillar were concentrated on a single sapling, defoliated much of the tree, and were only present during late winter. After inspection of a single damaged sapling (5 cm diam), larvae of the generalist cerambycid Neoclytus cordifer (Klug) were also collected, allowed to pupate and successfully emerged as adults (2 males and 1 female). Two phytophagous mites, Oligonychus coffeae (Nietner) and Brevipalpus obovatus Donnadieu, were observed feeding and developing large (>100 individuals), although isolated populations. Populations of these generalist mites occurred on mature leaves and were only observed once. The Florida red scale, Chysomphalus anidiun L., the stellate scale, Vinsonis stellarifera, and an unidentified Coccus sp. often co-occurred on mature Melaleuca leaves. Although the scale occurred in surprisingly high densities (>10 per leaf), no apparent foliar damage was visible. Two polyphagous aphids, Aphis gossypii Glover and Toxoptera aurantii (Boyer de Fonscolombe), were observed feeding on stems of developing branches. Infestations of both polyphagous aphids were slight (<50 individuals per plant). Although these arthropod species were observed feeding on melaleuca, no damage was visible. These observational findings suggest that, unlike some invasive plants that can be stressed by native arthropods in the adventive range, the arthropod community currently associated with melaleuca provides little if any suppressive effect on the exotic tree. The pau-
Species	Abundance per site	Months collected	Trophic level	Native	Pest status						
Coleoptera											
Aderidae											
Ganascus ventricosus	0.03 (0.09)	R 5	12	H	N						
Anthicidae											
Vacusus vicinus	0.03 (0.09)	R 5	—	H	N						
Anthribidae											
Trignorohinus sp.	0.03 (0.09)	R 11	—	H	N						
Bruchidae											
Sennius falax	—	R 3	—	H	N						
Buprestidae											
Taphrocerus puncticollis	0.19 (0.26)	O 3-6	—	H	N						
Cantharidae											
Chauliognathus marginatus	0.03 (0.09)	R 6	—	H	N						
Chrysomelidae											
Altica sp. A	—	R —	4, 6	H	N						
Altica sp. B	0.03 (0.09)	R —	11	H	N						
Bassareus brunnipes	0.44 (0.90)	C 5,6	—	H	N						
Chrysomela scripta	—	R —	3	H	N						
Graphopus curtipennis	—	R —	—	H	N						
Lexiphanes saponatus	—	R —	—	H	N						
Ophraella notulata	0.09 (0.19)	R 4, 6	—	H	N						
Poria sp.	—	R —	6	H	N						
Curculionidae											
Auleutes sp.	—	R —	6	H	N						
Diaprepes abbreviatus	0.03 (0.09)	R 4	—	H	E						
Listrinotus cryptops	0.03 (0.09)	R 5	—	H	N						
Pheloconus hispidus	—	R 11	11, 12	H	N						
Trichodirabius longulus	—	R 4, 11	—	H	N						
Elaterida											
Drapetes rubricollis	—	R —	3	H	N						
Languridae											
Loberus sp.	— 0.06 (0.12)	R 4, 12	—	H	N						
Lycidae											
Plateros sp.	— 0.03 (0.09)	R —	2	D/H	N						
Species	Abundance per site¹	Months collected²	Trophic³ level	Native⁴/Exotic Pest⁵ status							
------------------------	---------------------	------------------	----------------	---------------------------							
	A⁶	B⁷	C⁸	D⁹	Ave.¹⁰	A	B	C	D		
Scarabaeidae											
Trigonopeltastes delta (Forster)	0.09 (0.27)	—	—	—	R	5	—	—	—	D/H	N
Collembola											
Sminturidae											
Smintthurus sp.	0.03 (0.09)	—	—	—	R	11	—	—	—	H	
Smintthurinus sp.	0.03 (0.09)	—	—	—	R	11	—	—	—	H	
Dermaptera											
Forficulidae											
poss.¹¹ Doro taeniatum Dohrn	—	0.03 (0.09)	—	—	R	—	11	—	—	H	
Diptera											
Agromyzidae											
Melangromyza sp.	0.09 (0.27)	0.09 (0.19)	—	—	O	11	4, 11	—	—	H/H	
Unidentified sp.	0.03 (0.09)	0.03 (0.09)	—	—	R	12	11	—	—	H/H	
Bibionidae											
Unidentified sp.	—	—	0.03 (0.09)	—	R	—	—	3	—	H/H	
Otitidae											
Chaetopsis massyla (Walker)	0.03 (0.09)	0.03 (0.09)	—	—	R	12	12	—	—	H/H	
Euxesta juncta Coquiller	0.03 (0.09)	—	—	—	R	3	—	—	—	H/H	
Sarcophagidae											
Ravinia derelicta Walker	0.03 (0.09)	0.03 (0.09)	0.38 (1.06)	0.03 (0.09)	C	4	5	5	12	D/H	
Sciaridae											
Unidentified sp.	0.03 (0.09)	—	0.16 (0.30)	—	O	5	—	11, 12	—	D/H	
Syrphidae											
Toxomerus boscii (Macquart)	—	0.13 (0.13)	—	—	R	—	3, 6	11, 12	—	P/H	
Toxomerus politus (Say)	—	0.09 (0.19)	0.03 (0.09)	—	R	—	11, 12	1	—	P/H	
Tephritidae											
Acinia pictura (Snow)	0.06 (0.12)	0.28 (0.53)	—	—	C	5, 11	1, 3, 12	—	—	H/U	
Dioxyna piccola (Bigot)	0.69 (0.86)	0.22 (0.43)	0.22 (0.41)	0.06 (0.18)	C	1-5, 11, 12	4, 11, 12	11, 12	11, 12	H/U	
Euaresta bella (Loew)	—	0.03 (0.09)	—	—	R	—	11	—	—	H/U	
Trupanea actinobola (Loew)	0.03 (0.09)	—	0.13 (0.35)	—	O	12	—	11	—	H/U	
Xanthaciura insecta (Loew)	0.50 (0.97)	—	—	—	C	1, 11, 12	—	—	H/U		
Species	Abundance per site	Months collected	Trophic level	Native status	Pest status						
-----------------------------	--------------------	------------------	---------------	---------------	-------------						
Therevidae											
Cyclotelus picitipennis	0.03 (0.09)	6 - 11	R	H	N						
Tipulidae											
Unidentified spp. (2 morphotypes)	0.06 (0.18)	11	R	D/H							
Hemiptera											
Alydidae											
Hyalymenus sp. A	0.03 (0.09)	0.38 (0.35)	C	4, 1, 2, 4-6	H						
Hyalymenus sp. B	0.06 (0.12)	0.03 (0.09)	R	5, 11, 12	H						
Imm. sp.		0.03 (0.09)	R	5, 11, 12	H						
Coreidae											
Leptoglossus phyllopus (L.)	0.03 (0.09)	0.09 (0.13)	R	11, 1, 4, 12	H						
Issidae											
Acanalonia servillet Spinola	0.03 (0.09)	-	R	6	H						
Largidae											
Largus davisi Barber											
Lygaeidae											
Neortholomus koesheanus	0.03 (0.09)	0.06 (0.12)	R	2	1, 2, 12 H						
Neopamera bilobata (Say)	0.03 (0.09)	0.09 (0.12)	R	5	1, 12 H						
poss. Nysius sp.		0.13 (0.27)	R	6, 12	H						
Oedancala crassimana (Fabricius)	0.41 (0.60)	0.25 (0.52)	C	5, 6, 11, 3, 11, 1, 12	H						
Oncopeltus fasciatus (Dallas)	0.03 (0.09)	-	R	1	H						
Paromius longulus (Dallas)	0.22 (0.41)	0.03 (0.09)	C	11, 12, 12	H						
Imm. spp.	0.25 (0.44)	0.41 (0.65)	C	1, 11, 12, 2, 1, 12	H						
Miridae											
Creontiades sp.		0.03 (0.09)	R	2	1, 4, 2, H						
Dagbertus semipictus (Blatchley)	-	0.03 (0.09)	R	-	2, - H						
Reuteroscopus ornatus (Reuter)	-	0.03 (0.09)	R	-	6, - H						
Tayloriygus pallidulus (Blanchard)	0.06 (0.12)	0.13 (0.27)	O	1, 2, 4, 11, 6, 11	H						
Unidentified sp. A	0.03 (0.09)	-	R	12	-						
Unidentified sp. B	0.03 (0.09)	-	R	12	-						
Pentatomidae											
Loxa sp.		0.03 (0.09)	R	2	H						
Thyanta custator (Fabricius)		0.06 (0.18)	R	2	H						
Thyanta perditor (Fabricius)		0.03 (0.09)	R	12	H						

Table 1. (Continued) Herbivorous Arthropods collected in the above-ground portions of the invasive tree, *Melaleuca quinquenervia* in South Florida, USA.
TABLE 1. (CONTINUED) HERBIVOROUS ARTHROPODS COLLECTED IN THE ABOVE-GROUND PORTIONS OF THE INVASIVE TREE, *MELALEUCA QUINQUENERVIA* IN SOUTH FLORIDA, USA.

Species	Abundance per site\(^1\)	Months collected\(^2\)	Trophic level	Native/\(^4\) Exotic Pest\(^5\) status	
Rhopalidae					
Liorrhysus hydlinus (Fabricius)	—	0.03 (0.09)	R	11	H *
Homoptera					
Aphididae					
Aphis spiraeola Patch	0.13 (0.27)	0.03 (0.09)	O	1, 2, 3	11 — H E *
Aphis sp.	—	0.03 (0.09)	R	11	H
Eulachnus rileyi (Williams)	—	0.03 (0.09)	R	1	H E
Hysteroneura setariae (Thomas)	0.03 (0.09)	0.03 (0.09)	R	5	11 — H N *
Schizaphis sp.	—	0.03 (0.09)	R	11	H
Tetranura nigriabdominalis (Sasaki)	—	0.03 (0.09)	R	11	H E
Toxoptera aurantii (Boyer de Fonscolombe)	0.06 (0.18)	0.03 (0.09)	R	11	2 — — H E *
Cercopidae					
Clastoptera xantocephala Germar	—	0.03 (0.09)	R	11	4 — — H *
Lepyrinia sp.	0.06 (0.12)	—	R	2, 12	— — H
Cicadellidae					
Balclutha sp.	—	0.03 (0.09)	R	4, 11	H
Cerone costalis (Fabricius)	—	0.13 (0.19)	R	4, 6, 12	— — H N
Draeculacephala sp. A	0.13 (0.19)	—	R	1, 11, 12	— — — H
Draeculacephala sp. B	—	0.59 (0.80)	R	2, 4, 12	12 H
poss. *Empoasca* sp.	0.06 (0.12)	0.13 (0.13)	O	1, 4, 12	1, 2, 4, 12
Grauminella nigrifrons (Forbes)	—	0.16 (0.27)	O	4, 6, 12	— — H N
Graphocephala versuta (Say)	—	0.19 (0.22)	O	1, 4, 6, 11	— — H N
Gypona sp.	0.19 (0.22)	0.06 (0.18)	C	2, 4, 11, 12	11, 12 H
Homalodisca coagulata (Say)	0.94 (0.74)	0.41 (0.33)	C	1-6, 1, 4-6, 11, 12, 11	11 H N *
Hortensia similis (Walker)	—	0.03 (0.09)	R	12	— — H N
Oncometopia nigricans (Walker)	0.03 (0.09)	—	R	12	— — H N
Paraulacizes irrigata (Fabricius)	—	0.03 (0.09)	R	12	— — H N
Stragania sp.	0.03 (0.09)	0.09 (0.19)	C	1	11, 11, 11, 11, 12 — — — H
Tropicanus costamacularis (Van Duzee)	0.06 (0.12)	—	R	3, 12	— — — H
Imm. spp.	2.19 (1.47)	1.94 (1.84)	C	1-6, 11, 12	1, 12 H

\(^1\) Abundance per site: \(^2\) Months collected: \(^3\) Trophic level: \(^4\) Native/Exotic status: \(^5\) Pest status.
Species	Abundance per site	Months collected	Trophic level	Native/Exotic status	
Cixiidae					
Bothriocera sp.	—	0.19 (0.40)	O	5, 6	H N
Myndus crudus Van Duzee	0.03 (0.09)	0.06 (0.12)	R	11, 4, 5	H N
Delphacidae					
Delphacodes puella (Van Duzee)	—	0.06 (0.12)	R	1, 11	H
Delphacodes sp. A	—	0.03 (0.09)	R	12	H
Delphacodes sp. B	0.03 (0.09)	—	R	3	H
Imm. sp.	—	0.03 (0.09)	R	12	H
Flatidae					
Imm. spp.	0.47 (0.59)	0.03 (0.09)	C	3-6, 11, 3	H
Membracidae					
Spissistius festinus (Say)	—	0.22 (0.53)	O	1, 12	H N
Stictocephala lutea (Walker)	—	0.16 (0.19)	O	3, 4, 11	H N
Lepidoptera					
Heliconiiida					
Heliconius charitonius Tuckeri	0.03 (0.09)	—	R	12	H
Geometridae					
Unidentified sp. A	0.03 (0.09)	—	R	11	H
Unidentified sp. B	—	—	R	0.03 (0.09)	11
Unidentified sp. C	—	0.03 (0.09)	R	11	H
Phyllocnistis sp.	0.03 (0.09)	—	R	4	H
TABLE 1. (CONTINUED) HERBIVOROUS ARTHROPODS COLLECTED IN THE ABOVE-GROUND PORTIONS OF THE INVASIVE TREE, *MELALEUCA QUINQUENERVIA* IN SOUTH FLORIDA, USA.

Species	Abundance per site	Months collected	Trophic level	Native/Exotic status									
Noctuidae													
Unidentified sp.	—	0.03 (0.09)	R	12	H								
Pyralidae													
Unidentified sp. A	—	0.13 (0.19)	R	6, 11, 12	H								
Unidentified sp. B	—	0.03 (0.09)	R	11	H								
Unidentified sp. C	—	0.03 (0.09)	R	11	H								
Unidentified sp. D	—	0.03 (0.09)	R	11	H								
Unidentified sp. E	—	0.06 (0.12)	R	12	H								
Unidentified sp. F	—	0.06 (0.12)	R	3, 4	H								
Unidentified sp. G	—	0.16 (0.44)	O	4	H								
Unidentified sp. H	0.09 (0.27)	—	R	4	H								
Unidentified sp. I	—	0.03 (0.09)	R	6	H								
Orthoptera													
Acrididae													
Leptysma marginicollis (Serville)	0.06 (0.18)	—	0.03 (0.09)	R	1	—	—	11	H	N			
Schistocerca damnifica (Saussure)	0.06 (0.12)	—	0.03 (0.09)	R	5, 12	—	—	4	H	N			
Orphulella pelidna (Burmeister)	—	0.03 (0.09)	R	—	—	6	—	—	H	N			
Paxoxya atlantica Scudder	0.03 (0.09)	—	0.03 (0.09)	R	5	—	—	6	H	N			
Imm. spp.	0.31 (0.48)	—	0.25 (0.40)	0.50 (0.64)	C	4, 5, 6	3, 4, 6	2-6	H				
Gryllidae													
Cyroxipha poss. columbiana Caudell	0.03 (0.09)	—	0.06 (0.12)	R	1	—	—	11, 12	H	N			
Oecanthus quadripunctatus Beutenmuller	—	0.09 (0.19)	—	R	—	—	3, 12	—	H	N			
Tetrigidae													
Tettrigidea lateralis (Say)	—	0.03 (0.09)	—	0.03 (0.09)	R	—	12	—	11	H	N		
Tettrigidea sp.	—	0.09 (0.19)	—	R	—	—	2, 3	—	H	N			
Tettigoniidae													
Conocephalus sp.	—	0.53 (0.59)	0.72 (0.86)	0.03 (0.09)	C	—	1, 2, 6, 11, 12	3, 4, 6, 11, 12	12	H	N		
Imm. sp.	—	—	0.03 (0.09)	—	R	—	—	1	—	H			
Phasmatodea													
Psocoptera													
Peripisocidae													
Peripisocus madescens (Walsh)	—	—	—	1.84 (2.15)	C	—	—	—	1, 3-6	H	N		
Species	Abundance per site	Months collected	Trophic level	Native	Exotic	Pest status							
---------	--------------------	-----------------	---------------	--------	--------	-------------							
	A	B	C	D	Ave	A	B	C	D				
Psocidae													
Indiopsocus ceterus Mockford	—	—	—	0.03 (0.09)	R	—	—	—	4	H	N		
gen. sp.	—	—	—	0.03 (0.09)	R	—	—	—	5	H			
Thysanoptera													
Phlaothripidae													
Haplothrips gowdeyi (Franklin)	—	—	0.03 (0.09)	—	R	—	—	11	—	H	N		

1 Abundance per transect for each site averaged over 8 months. Each transect equals 100 sweeps with a 90-cm diameter sweep net. One sweep consists of an 180° sweeping motion.
2 Samples were taken from November (month 11) through June (month 6).
3 D = Detritivore (including scavengers), H = Herbivore (including pollen and nectar feeders), P = Predator, U = Undetermined.
4 N = Native, E = Exotic, Blank space = Undetermined.
5 An * indicates that the species is a known economic pest.
6 Weston, FL, Broward Co., N26.035483 and W80.43495, *M. quinquenervia* stand under a power line.
7 University Rd. and Griffin Rd., Fort Lauderdale, FL, Broward Co., N 26.05605 and W -80.25168, vacant lot occupied by *M. quinquenervia*.
8 Tamiami Tr. and Corkscrew Rd., Estero, FL, Collier Co., N 26.4255 and W -81.81033, Cow pasture occupied with small *M. quinquenervia* stumps.
9 Belle Meade, FL, Collier Co., N 26.10478 and W -81.63392, *M. quinquenervia* stand in the Picayune Forest.
10 Average abundance among all sites includes total number of specimens collected. R = Rare, 1-5 specimens; O = Occasional, 6-10 specimens; C = Common, >10 specimens.
11 / indicates a difference in trophic level of larvae stage and adult stage. Trophic level data include larval then adult trophic level.
12 poss. indicates a possible identification that could not be confirmed.
Species	Abundance per site1	Months collected2	Trophic3	Native4	Pest5 status								
	A6	B7	C8	D9	Ave.10	A	B	C	D				
Acari													
Anystidae													
Anystis agilis Banks	0.03 (0.09)	0.06 (0.12)	—	—	R	2	2.3	—	—	P	N		
Microtrombidiidae													
Trichotrombidus muscarum (Riley)	—	0.09 (0.27)	—	—	R	—	5	—	—	Pa/P11	N		
Araneae													
Anyphaenidae													
Hibana sp.	0.13 (0.27)	0.03 (0.09)	0.03 (0.09)	0.34 (0.52)	C	1	4	6	12	1, 3	11, 12	P	N
Lupettiana mordax (O. P.-Cambridge)	—	0.06 (0.12)	—	0.06 (0.12)	R	—	3	11	—	2, 5	P	N	
Wulfila alba (Hentz)	—	0.03 (0.09)	—	—	R	—	6	—	—	P	N		
Araneidae													
Acacesia hamata (Hentz)	0.47 (0.34)	0.44 (0.44)	0.06 (0.12)	0.06 (0.12)	C	2-6, 11	1, 3, 6	1	12	6, 11	2, 11	P	N
Cyclotis turbinata (Walckenaer)	0.03 (0.09)	0.13 (0.27)	—	—	O	4	5, 6	—	—	P	N		
Eriophora ravilla (C.L. Koch)	0.16 (0.23)	0.03 (0.09)	—	0.03 (0.09)	O	5, 6, 11	3	—	11	P	N		
Gasteracantha cancriformis (L.)	—	0.03 (0.09)	—	—	R	—	1	—	—	P	N		
Kaira alba (Hentz)	—	0.03 (0.09)	—	—	R	—	3	—	—	P	N		
Mangora spiculata (Hentz)	—	—	—	0.06 (0.18)	O	—	—	—	12	P	N		
Mangora imm. sp.	—	—	—	0.03 (0.09)	R	—	—	—	6	P	N		
Neoscona arabesca (Walckenaer)	0.19 (0.18)	—	—	—	O	1, 3-6	—	—	—	P	N		
Neoscona imm. sp.	0.97 (1.26)	0.47 (0.77)	0.09 (0.19)	—	C	1, 4, 11	1-3, 11	1, 4	—	P	N		
Wagneriana tauricornis (O. P.-Cambridge)	—	—	0.06 (0.18)	0.03 (0.09)	R	—	—	4	12	P	N		
Imm. spp.	0.66 (0.63)	0.06 (0.12)	0.03 (0.09)	0.13 (0.13)	C	1, 2, 4, 6, 11, 12	3, 6	4	1, 6, 11, 12	P	N		
Clubionidae													
Clubiona sp.	—	—	0.19 (0.44)	—	0.16 (0.35)	C	—	5, 11	11, 12	P	N		
Corinidae													
Castianeira sp.	0.03 (0.09)	—	—	—	R	5	—	—	—	P	N		
Trachelas volutus Gertsch	0.06 (0.12)	—	—	—	R	5, 12	—	—	—	P	N		
Linyphiidae													
Eperigone bryantae Ivie & Barrows	—	—	0.03 (0.09)	—	R	—	12	—	—	P	N		
Meioneta sp.	0.03 (0.09)	—	0.03 (0.09)	—	R	1	3	—	—	P	N		
Unidentified sp. A	0.13 (0.27)	—	—	—	R	1, 11	—	—	—	P	N		
TABLE 2. (CONTINUED) NON-HERBIVOROUS ARTHROPODS COLLECTED IN THE ABOVE-GROUND PORTIONS OF THE INVASIVE TREE, *MELALEUCA QUINQUENERVIA* IN SOUTH FLORIDA, USA.

Species	Abundance per site¹	Months collected²	Trophic level	Native³ Exotic	Pest⁴ status
Lysoceidae					
Lycosa littoralis Banks	— — 0.06 (0.18) — R	— — 12 — — P N			
Pardosa imm. sp.	0.03 (0.09) 0.50 (1.41) — C	11 3, 12 12 1, 11, 12 P N			
Pifera sp.	0.56 (1.12) 0.06 (0.12) 0.84 (2.39) 0.69 (1.56) C	11 1, 11, 12 12 1, 11, 12 P N			
Metridae					
Minetus sp.	0.03 (0.09) 0.06 (0.18) 0.50 (0.53) C	3 12 1-4, 11 P N			
Miturgidae					
Cheiracanthium inclusum (Hentz)	3.00 (2.10) 4.38 (4.89) 0.31 (0.35) 0.50 (0.44) C	1-6, 12 1-6, 12 1, 2, 4, 6, 12 3, 5, 6, 11, 12 P N			
Oxyopidae					
Pauetia viridans (Hentz)	4.28 (2.87) 0.28 (0.39) 0.34 (0.42) 0.13 (0.13) C	1-6, 12 1, 3, 5, 12 2-4, 6, 12 1, 2, 6, 12 P N			
Pisauridae					
Pisaurina mira (Walckenaer)	— — 0.03 (0.09) R	— — 6 P N			
Pisaurina undulata (Keyserling)	0.03 (0.09) — — — R	6 — — P N			
Pisaurina imm. spp.	0.41 (0.77) 0.16 (0.27) 0.06 (0.12) C	1, 2, 5, 11 1, 4, 11 — 1, 4 P N			
Imm. sp.	0.09 (0.19) 0.03 (0.09) — — R	1, 12 2 — — P N			
Salticidae					
Eris flava (Peckham & Peckham)	0.13 (0.23) 0.16 (0.30) 0.50 (0.92) 0.28 (0.42) C	2, 12 2, 12 1, 11, 12 1, 12 P N			
Eris imm. sp.	0.03 (0.09) 0.03 (0.09) — — R	11 12 — — P N			
Habronattus sp.	— 0.03 (0.09) 0.06 (0.12) — R	— 2 12, 4 — P N			
Hentzia palmarum (Hentz)	2.25 (0.90) 1.41 (0.57) 0.31 (0.42) 1.72 (1.86) C	1-6, 1-6, 11, 12 1, 3, 6, 12, 1, 2, 4-6, 11, 12 P N			
Lyssomanes viridis (Walckenaer)	— 0.13 (0.19) — — R	— 3-5 — — P N			
Pelegrina galathea (Walckenaer)	0.38 (0.48) 0.16 (0.19) 0.44 (0.37) — C	1-4, 12, 1, 1-4, 11, 12 P N			
Pelegrina sp.	— — 0.03 (0.09) R	— — 5 P N			
Phidippus clarus Keyserling	— — 0.06 (0.18) — R	— — 4 — P N			
Phidippus regius C.L. Koch	— — 0.03 (0.09) — R	— — 12 — P N			
Phidippus sp.	— 0.03 (0.09) 0.16 (0.35) O	— 5 — 12, 5 P N			
Thiodina peurpera (Hentz)	— 0.59 (1.68) — 0.16 (0.35) C	— 6 — P N			
Zygoballus sexpunctatus (Hentz)	— — 0.03 (0.09) — R	— — 4 — P N			
Zygoballus sp.	— — 0.03 (0.09) R	— — 2 P N			
Table 2. (CONTINUED) NON-HERBIVOROUS ARTHROPODS COLLECTED IN THE ABOVE-GROUND PORTIONS OF THE INVASIVE TREE, *MELALEUCA QUINQUENERVIA* IN SOUTH FLORIDA, USA.

Species	Abundance per site¹	Months collected²	Trophic level	Native/Exotic status							
	A²	B²	C²	D²	Ave.₃⁰	A	B	C	D		
Tetragnathidae											
Glenognatna foxi (McCook)	—	—	0.13 (0.35)	—	R	—	—	12	—	P N	
Glenognatha sp.	—	—	—	0.06 (0.18)	R	—	—	—	11	P N	
Leucauge argyra (Walckenaer)	—	0.03 (0.09)	—	—	R	—	12	—	—	P N	
Tetragnatha sp.	1.19 (0.61)	0.28 (0.28)	0.16 (0.35)	0.03 (0.09)	C	1-6, 11, 12, 11, 12	11	2-4, 6	P N		
Theridiidae											
Anelosimus studiosus (Hentz)	2.09 (1.41)	—	0.09 (0.27)	—	C	1-6, 11, 12				P N	
Chrysso pulcherrima (Mello-Leitao)	0.03 (0.09)	0.03 (0.09)	0.13 (0.35)	—	O	11	11	11	11	P N	
Dipoena nigra (Emerton)	—	—	—	0.03 (0.09)	R	—	—	5	11	P N	
Latrodectus geometricus C.L. Koch	—	—	—	0.03 (0.09)	R	—	—	4	11	P N	
Theridion flavonotatum Becker	0.75 (0.69)	—	0.06 (0.12)	—	C	11, 1-3, 3, 5, 6				P N	
Theridion glaucens Becker	0.38 (0.57)	—	—	0.03 (0.09)	C	11, 3, 4	—	11	P N		
Theridion imm. sp.	0.13 (0.27)	0.03 (0.09)	0.03 (0.09)	—	O 2, 5	5	2	—	P N		
Thyloides sp.	0.06 (0.18)	—	—	—	R	12	—	—	—	P N	
Thomisidae											
Misumenoides formosipes (Walckenaer)	—	0.03 (0.09)	—	—	R	—	11	—	—	P N	
Misumenops bellulus (Banks)	0.81 (0.53)	1.16 (1.14)	0.84 (0.67)	0.47 (0.39)	C	1-5, 1-6, 1-4, 6 11, 11, 11, 12, 11, 12	11, 12, 2-4, 6	11	P N		
Misumenops oblongus (Keyserling)	—	—	—	0.06 (0.18)	0.03 (0.09)	R	—	—	4	1	P N
Misumenops imm. spp.	0.50 (0.40)	0.13 (0.19)	1.09 (1.13)	0.19 (0.44)	C	1-4, 6, 2, 11, 12, 14, 11, 11, 11, 11	11, 12, 11	5, 11	P N		
Tmarus sp.	0.06 (0.12)	—	0.03 (0.09)	1.63 (0.86)	C	11, 6	—	1	1-6, 11, 12	P N	
Coleoptera											
Coccinellidae											
Brachiacantha decora Casey	—	0.06 (0.18)	—	—	R	—	6	—	—	P N	
Coelophora inaequalis (Fabricius)	—	0.03 (0.09)	—	—	R	—	12	—	—	P N	
Cyclonedida sanguinea (L.)	0.03 (0.09)	0.06 (0.12)	0.09 (0.13)	—	O	12, 1, 3	1, 3, 6, 11	—	P N		
Exochomus marginipennis (LeConte)	—	—	—	0.06 (0.12)	R	—	—	11, 12	—	P N	
Psyllobora parvinotata Casey	0.03 (0.09)	0.03 (0.09)	—	—	R	3	12	—	—	P N	
Scymnus securus J. Chapin	—	—	0.03 (0.09)	—	R	—	—	12	—	P N	
Scymnus sp.	0.03 (0.09)	0.09 (0.13)	—	—	R	4	2, 3, 5	—	—	P N	
TABLE 2. (CONTINUED) NON-HERBIVOROUS ARTHROPODS COLLECTED IN THE ABOVE-GROUND PORTIONS OF THE INVASIVE TREE, *MELALEUCA QUINQUENERVIA* IN SOUTH FLORIDA, USA.

Species	Abundance per site¹	Months collected²	Trophic³ level	Native⁴/ Exotic Pest⁵ status						
Lampyridae										
Pyropyga minuta LeConte	0.03 (0.09)	—	R	3	P	N				
Scirtidae										
Cyphon sp.	0.25 (0.53)	—	O	4, 6	D	N				
Diplopoda										
Spirobolidae										
Chicobolus spinigerus (Wood)	0.06 (0.18)	—	R	12	D	N				
Dictyoptera										
Blattellidae										
Chorisoneura parishi Rehn	0.19 (0.22)	0.28 (0.60)	C	1, 5, 11, 12	—	—	D	E		
Imm. sp.	—	0.03 (0.09)	R	—	11	6				
Mantidae										
Gonatista grisea (Fabricius)	0.06 (0.12)	—	R	11, 12	—	—	P	N		
Stagmomantis sp.	0.03 (0.09)	—	R	6	—	—	P	N		
Theesprota graminis (Scudder)	—	0.03 (0.09)	R	12	—	—	P	N		
Imm. spp.	—	0.09 (0.19)	0.16 (0.30)	O	5, 12	3, 4	P			
Diptera										
Ceratopogonidae										
Atrichopogon sp.	0.06 (0.12)	0.63 (1.13)	C	2, 11, 11, 12	12	D/Pa				
Unidentified sp. A	0.03 (0.09)	0.25 (0.48)	0.38 (1.06)	C	2	1, 11	11	—	D/Pa	
Unidentified sp. B	—	0.03 (0.09)	0.50 (1.41)	C	—	11	11	D/Pa		
Unidentified sp. C	—	—	0.03 (0.09)	R	—	—	1	D/Pa		
Chironomidae										
Unidentified spp. (11 morphotypes)	0.53 (0.36)	1.28 (2.07)	0.84 (1.08)	0.03 (0.09)	C	1, 2, 4-6, 11, 11, 12, 11	11	U/U		
Chloropidae										
Apollates dissidens Tucker	—	0.13 (0.19)	0.34 (0.97)	0.06 (0.18)	C	1, 11, 12	11	12	U/U	
Apollates neocoxendrix Sabrosky	0.03 (0.09)	0.06 (0.18)	—	0.19 (0.53)	O	5	1	11	U/U	
Coniscinella sp.	0.19 (0.29)	0.03 (0.09)	0.03 (0.09)	0.06 (0.08)	C	1, 2, 11	2	4	11	U/U
Chlorops sp.	—	0.22 (0.41)	—	—	O	—	—	4, 11	U/U	
Ectecephala unicolor (Loew)	—	0.03 (0.09)	—	R	—	1	—	—	U/U	
Hippelates plebejus Loew	—	—	0.06 (0.18)	—	R	—	6	D/Pa		
Liohippelates pusio Loew	—	0.03 (0.09)	0.59 (1.29)	C	—	3	1, 3, 6	11	U/U	
Table 2. (CONTINUED) Non-herbivorous arthropods collected in the above-ground portions of the invasive tree, *Melaleuca quinquenervia* in South Florida, USA.

Species	Abundance per site	Months collected	Trophic level	Native/Exotic status						
	A\(^a\)	B\(^a\)	C\(^a\)	D\(^a\)	Ave.\(^a\)	A	B	C	D	
Unidentified sp. A	0.03 (0.09)	—	—	—	R	12	—	—	—	U/U
Unidentified sp. B	0.06 (0.18)	—	—	—	R	12	—	—	—	U/U
Unidentified sp. C	0.03 (0.09)	0.03 (0.09)	—	—	R	12	1	—	—	U/U
Unidentified sp. D	—	0.06 (0.18)	—	—	R	—	1	—	—	U/U
Unidentified sp. E	—	0.03 (0.09)	—	—	R	—	6	—	—	U/U
Clusiidae										
Unidentified sp.	—	0.03 (0.09)	—	—	R	—	12	—	—	D/U
Culicidae										
Unidentified sp. (2 morphotypes)	—	—	0.13 (0.23)	R	—	—	—	6, 11	D/P	
Dolichopodidae										
Chrysotus sp.	1.34 (1.56)	1.69 (1.99)	0.72 (1.47)	0.06 (0.12)	C	1-6, 11	1-6, 11	4, 11, 12	4, 11	P/P
Chrysotus picticornis Loew	0.13 (0.35)	—	0.22 (0.62)	—	C	5	—	11	—	P/P
Condylostylus sp.	0.03 (0.09)	—	0.03 (0.09)	—	R	5	—	11	—	P/P
Condylostylus tensus Aldrich	—	0.38 (0.46)	0.16 (0.44)	—	C	—	2, 4, 12	4	—	P/P
Empididae										
Euhybus poss. *stramaticus* Melander	0.13 (0.27)	0.09 (0.19)	—	0.03 (0.09)	O	2, 5	2, 3	—	4	P/P
Euhybus sp.	0.03 (0.09)	—	—	—	R	6	—	—	—	P/P
Syneches simplex Walker	—	0.06 (0.12)	0.03 (0.09)	0.06 (0.18)	O	—	1, 12	12	—	12 P/P
Unidentified sp.	—	0.03 (0.09)	—	—	R	—	4	—	—	P/P
Ephydridae										
Unidentified sp. A	—	0.09 (0.19)	—	—	R	—	11, 12	—	—	U/U
Unidentified sp. B	—	0.03 (0.09)	0.09 (0.27)	0.03 (0.09)	O	—	11	11	12	U/U
Unidentified sp. C	—	—	0.06 (0.18)	—	R	—	—	3, 11	—	U/U
Unidentified sp. D	0.03 (0.09)	—	—	—	R	3	—	—	—	U/U
Unidentified sp. E	0.13 (0.27)	—	—	—	R	3, 5	—	—	—	U/U
Lauxaniidae										
Unidentified sp. A	0.03 (0.09)	0.16 (0.30)	—	—	O	2	1, 2	—	—	D/U
Unidentified sp. B	—	—	0.03 (0.09)	—	R	—	—	6	—	D/U
Milichiidae										
Desmometopa sp.	—	0.06 (0.18)	—	—	R	—	2	—	—	D/U
Muscidae										
Stomoxys calcitrans (L.)	—	—	0.03 (0.09)	—	R	—	—	6	—	Pa/D
Unidentified spp. (8 morphotypes)	0.13 (0.27)	0.28 (0.28)	0.59 (0.86)	0.19 (0.44)	C	4, 5	1, 2, 4	3, 4, 6	11, 12	U/U
Species	Abundance per site	Months collected	Trophic level	Native/Pest status						
-------------------------	-------------------	-----------------	---------------	--------------------						
Otitidae										
Herina narytia (Walker)	2.00 (1.57)	1-6, 11, 12	C	U/U						
Sciomyzidae										
Dictya sp.	0.03 (0.09)	4	R	U/U						
Sepsidae										
Palaeosepsis insularis (Williston)	0.03 (0.09)	4, 5	R	U/U						
Stratiomyidae										
Nemotelus glaber Loew	0.13 (0.23)	4, 5	R	U/U						
Tabanidae										
Chrysops sp.	0.06 (0.18)	4, 6	R	D/Pa						
Hemiptera										
Pentatomidae										
Euthyrhynchus floridanus (Pointer)	0.03 (0.09)	4	R	P N						
Podisus mucronatus Uhler	0.19 (0.18)	2, 3, 5, 11, 12	2, 3, 4, 11, 12, 12	P N						
Podisus sagitta (Fabricius)	0.06 (0.18)	11, 5	R	P N						
Sphyrocoris obliquus (Germar)	0.13 (0.27)	12, 11, 12	O	P N						
Stiretrus anchorago (Fabricius)	0.03 (0.09)	11	R	P						
Imm. spp.	—	4, 0.09 (0.27)	R	P						
Phymatidae										
Unidentified sp.	0.03 (0.09)	11	R	P						
Reduviidae										
Zelus longipes (L.)	0.78 (0.73)	1-3, 5, 6, 11, 12	C	P N						
Homoptera										
Derbidae										
Cedusa sp.	0.13 (0.19)	3, 11, 12	C	D						
Hymenoptera										
Aphididae										
Lysiphebus testaceipes (Cresson)	0.03 (0.09)	R	—	11						
Braconidae										
Apantales sp.	0.06 (0.18)	1, 3	R	Pa N						
Bassus sp.	—	0.03 (0.09)	R	Pa N						
TABLE 2. (CONTINUED) NON-HERBIVOROUS ARTHROPODS COLLECTED IN THE ABOVE-GROUND PORTIONS OF THE INVASIVE TREE, *MELALEUCA QUINQUENERVIA* IN SOUTH FLORIDA, USA.

Species	Abundance per site¹	Months collected²	Trophic level	Native Exotic Pest status								
	A	B	C	D	Ave.¹⁰	A	B	C	D			
Cotesia sp.	—	0.06 (0.12)	—	—	R	—	3, 11	—	—	Pa	N	
Unidentified sp. A	—	—	0.06 (0.12)	—	R	—	—	3, 12	—	Pa		
Unidentified sp. B	0.03 (0.09)	—	—	—	R	12	—	—	Pa			
Unidentified sp. C	—	0.03 (0.09)	—	—	R	—	—	12	—	Pa		
Unidentified sp. D	—	0.03 (0.09)	—	—	R	—	3	—	—	Pa		
Unidentified sp. E	—	0.03 (0.09)	—	—	R	—	6	—	—	Pa		
Bethylidae	Unidentified sp. A	—	—	0.03 (0.09)	—	R	—	—	12	—	Pa	
Chrysididae	*Chrysis* sp.	0.03 (0.09)	0.13 (0.23)	—	—	O	2	5, 12	—	—	Pa	N
Encyrtidae	poss. *Aenasioides* sp.	0.03 (0.09)	—	—	—	R	3	—	—	—	Pa	
Anagyrus sp. A	0.03 (0.09)	0.03 (0.09)	—	—	R	4	3	—	—	Pa		
Anagyrus sp. B	0.03 (0.09)	—	—	—	R	11	—	—	Pa			
poss. *Cercobelus* sp.	0.03 (0.09)	—	—	—	R	1	—	—	—	Pa		
poss. *Syrophaghus* sp.	—	—	0.03 (0.09)	—	R	—	—	12	—	Pa		
Eucoilidae	*Eucoila* sp.	—	0.03 (0.09)	—	—	R	—	1	—	—	Pa	
Unidentified sp.	—	—	0.03 (0.09)	—	R	—	—	11	—	Pa		
Eulophidae	*Cirrospilus* poss. *pictus* (Nees)	—	0.03 (0.09)	—	—	R	—	1	—	—	Pa	E
Unidentified sp.	0.03 (0.09)	0.03 (0.09)	—	—	R	11	—	11	—	Pa		
Eumenidae	*Zethus* slossonae (Zethusculus)	0.03 (0.09)	—	—	—	R	12	—	—	—	P	N
Eupelmidae	*Anastatus* sp.	—	0.03 (0.09)	—	—	R	—	12	—	—	Pa	
Eupelmus sp.	—	0.03 (0.09)	—	—	R	—	1	—	—	Pa		
Eurytomidae	*Eurytoma* sp.	—	0.03 (0.09)	—	—	R	—	6	—	—	Pa	
Formicidae	*Brachymyrmex* obscurior Forel	0.09 (0.13)	0.03 (0.09)	—	—	R	1, 5, 11	5	—	—	P	
Camponotus floridanus (Buckley)	0.44 (0.55)	—	—	0.06 (0.12)	C	3, 5, 6	1, 11, 12	—	1, 5	P	N	
Camponotus planatus Roger	2.34 (1.08)	1.44 (1.23)	0.06 (0.12)	—	C	1-6, 11, 12	1-6, 11, 12	12, 3	—	P	E	
Species	Abundance per site\(^1\)	Months collected\(^2\)	Trophic\(^3\) level	Native/								
Exotic Pest\(^4\) status												
--	--------------------------	------------------------	---------------------	-----------------------------								
	A\(^5\)	B\(^5\)	C\(^5\)	D\(^5\) Ave.\(^6\)	A	B	C	D				
Camponotus sexguttatus (Fabricius)	0.03 (0.09)	—	—	—	R	5	—	—	—	P	E	
Cardiocondyla wroughtoni obscurior Wheeler	0.03 (0.09)	—	—	—	R	11	—	—	—	P	E	
Crema												
gaster ashmeadi Mayr	—	—	—	0.03 (0.09)	R	—	—	12	—	P	N	
Crema												
gaster atkinsoni Wheeler	0.06 (0.12)	—	—	—	R	1, 11	—	—	—	P	N	
Cyphomyrmex rimosus (Spinola)	—	—	0.03 (0.09)	—	R	—	—	4	—	P	E	
Dolichoderus postulatus Mayr	0.19 (0.44)	—	—	—	O	6, 12	—	—	—	P	N	
Dorymyrmex bureni (Trager)	—	0.03 (0.09)	—	—	R	—	2	—	—	P	N	
Gymnagnostus aculeaticoxae (Santschi)	0.03 (0.09)	—	—	—	R	5	—	—	—	P	E	
Odontomachus ruginodus Smith	0.03 (0.09)	—	—	—	R	11	—	—	—	P	E	
Paratrechina guatemalensis (Forel)	0.50 (0.94)	0.06 (0.18)	—	0.19 (0.53)	C	3, 4, 1, 11	12	—	P	E		
Paratrechina longicornis (Latreille)	2.66 (4.86)	3.19 (5.37)	—	0.13 (0.27)	C	1-4, 11, 12	3, 5, 6, 11, 12	2, 11	P	E		
Platthyreus punctatus (Smith)	0.03 (0.09)	—	—	—	R	12	—	—	—	P		
Pseudo												
ymyrmex ejectus (Smith)	0.03 (0.09)	0.03 (0.09)	—	—	R	5	6	—	—	P	N	
Pseudo												
ymyrmex gracilis (Fabricius)	0.06 (0.12)	0.03 (0.09)	—	0.19 (0.22)	O	4, 6, 4	3, 4, 6, 11	P	E			
Pseudo												
ymyrmex pallidus (Smith)	0.47 (0.49)	0.34 (0.68)	—	—	C	1, 2, 4, 6, 11, 12	1, 3, 4, 11	—	—	P	N	
Solenopsis invicta Buren	0.41 (0.58)	0.50 (0.33)	0.50 (0.61)	2.00 (4.55)	C	1, 2, 4, 11, 12	1-4, 6, 11, 12	2, 4, 6, 11, 12	2, 11	P	E	
Technomyrmex albipes (Smith)	—	—	0.03 (0.09)	—	R	—	—	12	—	P	E	
Ichneumenidae	—	—	0.03 (0.09)	—	R	—	—	1	—	Pa		
Diadegma sp.	—	—	—	—	—	—	—	—	—	Pa		
Megaspinilidae	—	—	0.03 (0.09)	—	R	—	—	1	—	Pa		
Dendrocerus sp.	0.03 (0.09)	—	—	—	R	2	—	—	—	Pa		
Mutillidae	0.03 (0.09)	—	—	—	R	11	—	—	—	Pa		
Dasymutilla sp.	0.03 (0.09)	—	—	—	R	11	—	—	—	Pa		
Mymaridae	—	0.06 (0.12)	—	—	R	1, 11	—	—	—	Pa		
Anaphes sp.	—	—	0.03 (0.09)	—	R	11	—	—	—	Pa		
Pteromalidae	—	—	0.03 (0.09)	—	R	3	—	—	—	Pa		
Species	Abundance per site	Months collected	Trophic level	Native/Exotic	Pest status						
	A²	B²	C²	D²	Ave.¹⁰	A	B	C	D		
Scelionidae											
Macroteleia sp.	—	—	0.03 (0.09)	—	R	—	—	—	—	12	Pa
Telenomus sp.	—	0.06 (0.12)	0.03 (0.09)	—	R	—	1, 11	12	—	Pa	
Trissolcus sp.	—	0.25 (0.33)	—	—	O	—	1, 12	—	—	Pa	
Sphecidae											
Tachytes sp.	—	—	0.03 (0.09)	—	R	—	—	11	—	Pa	
Torymidae											
Torymus sp.	—	0.09 (0.19)	—	—	R	—	3, 12	—	—	Pa	
Vespidae											
Mischocyttarus mexicanus (Saussure)	—	0.09 (0.13)	—	—	R	—	2, 4, 5	—	—	P N	
Polistes dorsalis (Fabricius)	—	0.09 (0.19)	—	—	R	—	11, 12	—	—	P N	
Polistes major Beauvios	—	0.03 (0.09)	—	—	R	—	1	—	—	P N	
Neuroptera											
Chrysopidae											
Ceraeochrysa sp.	—	—	0.13 (0.23)	O	—	1	—	11	12	P	
Chrysopa quadripunctatus Burmeister	—	—	—	0.03 (0.09)	R	—	—	11	—	P	
Chrysoperia sp.	0.06 (0.18)	0.06 (0.12)	—	—	R	1	1, 5	—	—	P	
Odonata											
Coenagrionidae											
Ischnura hastata (Say)	0.03 (0.09)	—	0.03 (0.09)	0.06 (0.12)	R	3	—	11	11, 12	P N	
Nehalennia pallidula Calvert	0.03 (0.09)	—	—	0.06 (0.12)	R	5	—	—	—	P N	
Libellulidae											
Erythrodiplax minusula (Rambus)	—	—	—	0.03 (0.09)	R	—	—	—	11	P N	
Thysanoptera											
Phlaeothripidae											
Nesothrips lativentris (Karny)	—	0.16 (0.44)	—	—	O	—	12	—	—	D N	

¹Abundance per transect for each site averaged over 8 months. Each transect equals 100 sweeps with a 90cm diameter sweep net. One sweep consists of an 180° sweeping motion.
²Samples were taken from November (month 11) through June (month 6).
³D = Detritivore (including scavengers), Pa = Parasitoid (including secretion feeders and blood suckers), P = Predator, U = Undetermined.
⁴N = Native, E = Exotic, Blank space = Undetermined.
⁵An * indicates that the species is a known economic pest.
⁶Weston, FL, Broward Co., N 26.035483 and W -80.43495, *M. quinquenervia* stand under a power line.
⁷University Rd. and Griffin Rd., Fort Lauderdale, FL, Broward Co., N 26.056605 and W -80.25168, vacant lot occupied by *M. quinquenervia*.
⁸Tamiami Tr. and Corkscrew Rd., Estero, FL, Collier Co., N 26.4255 W -81.81033, Cow pasture occupied with small *M. quinquenervia* stumps.
⁹Belle Meade, FL, Collier Co., N 26.10478 W -81.63392, *M. quinquenervia* stand in the Picayune Forest.
¹⁰Average abundance among all sites includes total number of specimens collected. R = Rare, 1-5 specimens; O = Occasional, 6-10 specimens; C = Common, >10 specimens.
¹¹/ indicates a difference in trophic level of larvae stage and adult stage. Trophic level data include larval then adult trophic level.
city of herbivores indicates that direct competition between natives and introduced biological control agents will be minimal.

Habitats dominated by invasive plants are often assumed to be sterile environments with few wildlife species utilizing the ecosystem (Bodle et al. 1994). However, Mazzotti et al. (1981) determined that differences exist among invasive plants in their ability to support native fauna, indicating that habitats invaded and dominated by non-indigenous plants are not necessarily biological deserts. After eight months of surveying arthropods in melaleuca dominated ecosystems, rarefaction curves of both herbivorous and non-herbivorous arthropods suggests that continued surveying efforts would result in the collection of additional species (Figs. 1 and 2; Magurran 1988). The variety of arthropods, both collected (Tables 1 and 2) and predicted (Figs. 1 and 2), reported herein indicates that melaleuca dominated habitats do support an arthropod community. However, this does not necessarily imply that melaleuca is a superior habitat for such fauna as indicated by the paucity of basal trophic levels (i.e., herbivores). Without the ability to compare arthropod diversity in surrounding native habitats, the probability that many species are transient, and considering the dearth of commonly collected arthropods, caution should be exercised when making conclusions concerning the functional well being of melaleuca invaded ecosystems.

The role of invasive species as facilitators of other invasive species has received little attention in the literature (Simberloff & Von Holle 1999). One example of this interaction may include the ability of nonindigenous plants to modify the habitat in a way that favors exotics over natives. In this study, 20 exotic species were collected in the melaleuca habitat (Tables 1 and 2). Among the exotic species, Solenopsis invicta Buren, the red imported fire ant, was common (Table 2) and is included as one of the most ecologically destructive invasive species in the southeastern U.S. These ant colonies not only cause human disturbance, but also are known to cause 70% mortality of freshwater turtle hatchlings (Pseudemys nelsoni Carr), can negatively impact the endangered Schaus swallowtail (Papilio aristodemus porceanus), and can dramatically change arthropod communities (Porter et al. 1988; Allen et al. 2001; Forys et al. 2001). Although native to Florida, the glassy-winged sharpshooter is an invasive species in California, where it vectors Xylella fastidiosa Wells et al., the causal agent of Pierce’s disease in vineyards. Because the
glassy-winged sharpshooter is commonly associated with melaleuca in Florida, it may be predicted that the plant also provides a refuge for the invasive sharpshooter in California. In this manner, melaleuca may serve as a reservoir for these and other invasive species in Florida and beyond.

In addition to the facilitation of ecological impacts by exotic species, invasive weeds may also harbor agricultural pests. For instance, 1/3 of the phytophagous insects associated with Salsola kali L. var. tenuifolia (Russian thistle) and 1/2 of the insect species on Carduus pycnocephalus L. (Italian thistle) proved to be pests of agricultural importance (Goeden & Ricker 1968). In our study, 18 arthropods collected from melaleuca canopies are major or minor economic pests of agricultural crops. Three species, Aphis spiraeocola Patch (Aphididae), T. aurantii (Aphididae), and S. invicta (Formicidae), were commonly associated with melaleuca. Both aphid species are cosmopolitan, phytophagous pests of Citrus spp. and many other plants. An infestation of these aphid species can result in abortion of Citrus flower buds and both aphids produce honeydew, thus favoring the development of sooty molds.

Native predators, parasitoids, and pathogens have interfered with half of the published case histories involving insect introductions for weed control (Goeden & Louda 1976). Parasitoids and pathogens, for instance, caused 24% larval mortality of the introduced moth, Samea multiplicitalis Guenee (Semple & Forno 1987). Herein, we collected several generalist predators that may potentially impact current and future biological control agents, including Euthyrhynchus floridanus (Pointer) (Pentatomidae), Podisus micronotatus Uhler (Pentatomidae), Podisus saggita (Fabricius) (Pentatomidae), Stiretrus anchorago (Fabricius) (Pentatomidae), and Zelus longipes (L.) (Reduviidae), as well as various ant and spider species. Predation on populations of the recently released biological control agent Boreiglycaspis melaleucae Moore (melaleuca psyllid, Psyllidae) by various pentatomid and coccinellid species has been observed in the field and may be negatively affected by generalist predators. During host specificity testing and under mass rearing conditions prior to its introduction, B. melaleucae was attacked by multiple arachnid species. However, the level of predation observed in the field or under laboratory conditions does not appear to impact colonies in a significant way (P.D. Pratt, pers. obs.; S.A. Wineriter pers. comm.). Studies on other psyllids, Psylla pyricola (pear...
psyllid) and Diaphorina citri Kuwayama (Asian citrus psyllid), have shown that their populations are reduced by generalist predators such as: Chrysopa sp. (Chrysopidae), Anthocoris sp. (Anthicoridae), and Olla v-nigrum (Mulsant) (Coccinellidae) (Watson & Wilde 1963; Michaud 2001). Furthermore, Watson & Wilde (1963) and Santas (1987) demonstrated a reduction in psyllid populations by generalist predators. Nevertheless, in each study psyllid populations were suppressed by generalist predators at different levels, suggesting that predicting the acquisition and impact of these predators on introduced biological control agents is tenuous.

During our study, we also collected several parasitic hymenopteran species associated with melaleuca in south Florida (Table 2). Hymenopteran species in Australia parasitized ca. 40% of galls formed by the potential biological control agent Fergusonina spp. (gall fly) (Davies et al. 2001). Davies et al. (2001) suggested the impact by Fergusonina spp. as biological control agents of melaleuca will likely be reduced due to parasitism from local hymenopteran species in Florida. However, predicting which parasitoids may exploit this or other proposed biological control agents is difficult. Initial steps may include a taxonomic comparison among the co-evolved parasitoids in the agent’s native and adventive ranges. For instance, Cirrospilus sp. (Eulophidae), Eupelmus sp. (Eupelmidae) and Eurytoma sp. (Eurytomidae) were collected in Australia associated with Fergusonina spp. and during our survey we also collected parasitoids belonging to these genera in south Florida (Goolsby et al. 2001). Unfortunately, species determination was not possible for those reported herein. Due to the diversity of both genera, geographic separation over evolutionary time, and lack of Fergusoninidae in the New World, it is unlikely that the species occurring in Australia and Florida are the same. Other genera found during our survey do not correspond to those genera known to parasitize current and candidate biological control agents in their native range, including Fergusoninina spp., B. melaleucae, Poliopaschia litterochlora (Lower) (tube-dwelling moth) and Lophyrotonoma zonalis (Rohwer) (melaleuca sawfly) (Jensen 1957; Riek 1962; Burrows & Balcıunas 1997; Davies et al. 2001; J.A. Goolsby, USDA/ARS, Austin. Bio. Cont. Lab., pers. comm.). Predictions based solely on this survey may grossly underestimate parasitoid acquisition as additional species may be recruited to the system after introduction of the biological control agent. In the future a more accurate assessment may be obtained by surveying melaleuca for endophagic arthropods and comparing regional species databases or arthropod collections in the native and adventive ranges. Further studies may also include an evaluation of predator and parasitoid arthropod recruitment after the release of new biological control agents.

ACKNOWLEDGMENTS

The authors thank the following specialists and associates for identification of most arthropod species: J. Brambilla, G. B. Edwards, G. A. Evans, S. E. Halbert, J. B. Heppner, J. M. Kingsolver, B. F. Mauffray, C. P. Porter, L. A. Stange, G. J. Steck, M. C. Thomas, W. C. Weldon, J. R. Wiley of the PSCA, Division of Plant Industry, Gainesville, FL. We also thank formicid specialists L. R. Davis of the Fire Ant Unit, Agricultural Research Service, USDA, Gainesville, FL, and M. A. Deyrup of the Archbold Biological Station, Lake Placid, FL; diptera specialists F. C. Thompson and N. E. Woodley of the Systematic Entomology Laboratory, Agricultural Research Service, USDA, Beltsville, Maryland; Collembola specialist R. J. Snider at Michigan State University; and Pscopotaera specialist E. L. Mockford at Illinois State University.

REFERENCES CITED

ALLEN, C. R., E. A. FORYS, K. G. RICE, AND D. P. WOJCIEK. 2001. Effects of fire ants (Hymenoptera: Formicidae) on hatching turtles and prevalence of fire ants on sea turtle nesting beaches in Florida. Florida Entomol. 84(2): 250-253.

AMRINE, J. W. 1996. Phyllocoptes fructiphilus and biological control of multiflora rose, pp. 741-749. In E. E. Lindquist, M. W. Sabelis and J. Bruin [eds.], Eriophyoid Mites: Their Biology, Natural Enemies and Control. Elsevier Science, 790 pp.

ANONYMOUS. 1990. Guide to the natural communities of Florida. Florida Natural Areas Inventory. Florida Department of Natural Resources, Tallahassee, 118 pp.

BALCIUNAS, J. K., AND T. D. CENTER. 1991. Biological control of Melaleuca quinquenervia: prospects and conflicts, pp. 1-22. In T. D. Center, R. F. Doren, R. L. Hofstetter, R. L. Myers and L. D. Whiteaker [eds] Proc. Symp. Exotic Pest Plants, Miami, Florida, 2-4 Nov. 1988, U.S. Dept. Interior, National Park Service, Denver, CO, 387 pp.

BALCIUNAS, J. K., M. F. BURROWS, AND M. F. PURCELL. 1995. Australian insects for the biological control of the paperbark tree, Melaleuca quinquenervia, a serious pest of Florida, USA, wetlands, pp. 247-267. In E. S. Delfosse, and R. R. Scott [eds.], Proc. Symp. on Biological Control of Weeds. 2-7 February 1992, Lincoln University, Canterbury, New Zealand, 735 pp.

BODEL, J. J., A. P. FERRITER, AND D. D. THAYER. 1994. The biology, distribution, and ecological consequences of Melaleuca quinquenervia in the Everglades, pp. 341-355. In S. M. Davis and J. C. Ogden [eds.], Everglades: The Ecosystem and Its Restoration. St. Lucie Press, Delray Beach, 826 pp.

BROWDER, J. A., AND P. B. SCHROEDER. 1981. Melaleuca seed dispersal and perspectives on control, pp. 17-21. In R. K. Geiger [ed.], Proceedings of a Melaleuca Symposium. Florida Dept. of Agriculture and Consumer Services, Division of Forestry, Tallahassee, Florida, 140 pp.

BURROWS, D. W., AND J. K. BALCIUNAS. 1997. Biology, distribution and host-range of the sawfly, Lophyrotonoma zonalis (Hym., Pergidae), a potential biological control agent for the paperbark tree, Melaleuca quinquenervia. Entomophaga 42(3): 299-313.

CENTER, T. D., T. K. VAN, M. RAYACHETRY, G. R. BUCKINGHAM, F. A. DRAY, S. WINERITER, M. F. PURCELL, AND P. D. PRATT. 2000. Field colonization of
the melaleuca snout beetle (Oxyops vitiosa) in south Florida. Bio. Cont. 19: 112-123.

DAVIS, K. A., J. MAKINSON, AND M. F. PURCELL. 2001. Observations on the development and parasitoids of Fergusonina/Fergusobia galls on Melaleuca quinquenervia (Myrtaceae) in Australia. Trans. Royal Soc. S. Aust. 125: 45-50.

DI STEFANO, J. F., AND R. F. FISHER. 1983. Invasion potential of Melaleuca quinquenervia in southern Florida, U.S.A. Forest Ecol. Manage. 7: 133-141.

DIAMOND, C., D. DAVIS, AND D. C. SCHMITZ. 1991. Ecological diversity and its potential for Melaleuca quinquenervia in southern Florida. U.S. Forest Service, General Technical Report SE-5, p. 16.

NEWMAN, R. M. 1998. Conservation strategies for the biological control of weeds, pp. 371-396. In P. Barbosa [ed.], Conservation Biological Control. Academic Press, San Diego, 387 pp.

NEWMAN, R. M., AND D. D. BIESOER. 2000. A decline of Eurasian milfoil in Minnesota associated with the milfoil weevil, Euhrychiopsis lecontei. J. Aqu. Plant Manag. 38: 105-111.

HARRIS, P. 1975. Biological control of weeds. Environ. Letters 2: 75-88.

JENSEN, D. D. 1957. Parasites of the Psyllidae. Hilgardia 27: 71-99.

MAZZOTTI, F. J., W. OSTRENKO, AND A. T. SMITH. 1981. Effects of the exotic plants Melaleuca quinquenervia and Casuarina equisetifolia on small mammal populations in the eastern Florida Everglades. Florida Sci. 44(2): 65-71.

MCCARTHY, J. 1986. The demonstrative role of the melaleuca snout beetle (Oxyops vitiosa) in the invasion of Melaleuca quinquenervia in Florida. University of Florida, Thesis, Gainesville, pp. 157.

MICHAUD, J. P. 2001. Numerical Response of Olla V-nigrum (Coleoptera: Coleoptera) to Infestations of Asian Citrus Psyllid (Hemiptera: Psyllidae) in Florida. Florida Entomol. 84(4): 608-612.

MOLNAR, G., R. H. HOFSTETTER, R. F. DOREN, L. D. WHITEAKER, AND M. T. BRENNAN. 1991. Management of Melaleuca quinquenervia within East Everglades wetlands, pp. 237-253. In T. D. Center, R. F. Doren, R. L. Hofstetter, R. L. Myers and L. D. Whiteaker [eds.] Proc. Symp. Exotic Pest Plants. Miami, Florida, 2-4 Nov. 1988, U.S. Dept. Interior, National Park Service, Denver, CO, 387 pp.

MURPHY, R. L. 1983. Site susceptibility to invasion by the exotic tree Melaleuca quinquenervia in southern Florida. J. Appl. Ecol. 20: 645-658.

NEWMAN, R. M., D. C. THOMPSON, AND D. B. RICHMAN. 1998. Conservation strategies for the biological control of weeds, pp. 371-396. In P. Barbosa [ed.], Conservation Biological Control. Academic Press, San Diego, 387 pp.

NEW, R. M., AND D. D. BIESOER. 2000. A decline of Eurasian milfoil in Minnesota associated with the milfoil weevil, Euhrychiopsis lecontei. J. Aqu. Plant Manag. 38: 105-111.

Ocklers, T., AND P. E. HULLEY. 1995. Importance of preintroduction surveys in the biological control of Solanum weeds in South Africa. Agric. Ecosys. Environ. 52: 179-185.

PORTER, S. D., B. VAN EIMEREN, AND L. E. GILBERT. 1998. Invasion of red imported fire ants (Hymenoptera: Formicidae): microgeography of competitive replacement. Ann. Entomol. Soc. Am. 81: 913-918.

RieK, E. F. 1962. The Australian species of Psyllaehopus (Hymenoptera: Encyrtidae), Parasites of Psyllids (Homoptera). Aust. J. Zool. 10: 682-757.

Santas, L. A. 1987. The predators' complex of pear feeding psyllids in unsprayed wild pear trees in Greece. Entomophaga 32: 291-297.

Semple, J. L. AND I. W. FORNO. 1987. Native parasitoids and pathogens attacking Samea multiplicaclus Guenee (Lepidoptera: Pyralidae) in Queensland. J. Aust. Ent. Soc. 26: 363-366.

Simberloff, D., AND B. Von Holle. 1999. Positive interactions of nonindigenous species: invasive meltdown. Bio. Invasions 1: 21-32.

STOCKER, R. K., AND D. R. SANDERS. 1981. Chemical Control of Melaleuca quinquenervia. In R. K. Geiger [ed.], Proceedings of Melaleuca Symposium, Sept. 23-24, 1980, pp. 129-134. Florida Department of Agriculture and Consumer Services, Division of Forestry, 140 pp.

Thayer, D. D., AND M. Bodle. 1990. Melaleuca quinquenervia: The paperbark tree in Florida or an Aussie out of control. Aquatcs 12(3): 4-9.

Watson, T. K., AND W. H. A. Wilde. 1963. Laboratory and field observations on two predators of the Pear Psylla in British Columbia. Can. Ent. 95: 435-438.