R-CLOSED HOMEOMORPHISMS ON SURFACES

TOMOO YOKOYAMA

ABSTRACT. Let \(f \) be an \(R \)-closed homeomorphism on a connected orientable closed surface \(M \). In this paper, we show that if \(M \) has genus more than one, then each minimal set is either a periodic orbit or an extension of a Cantor set. If \(M = \mathbb{T}^2 \) and \(f \) is neither minimal nor periodic, then either each minimal set is a periodic orbit or an extension of a Cantor set. If \(M = S^2 \) and \(f \) is not periodic but orientation-preserving (resp. reversing), then the minimal sets of \(f \) (resp. \(f^2 \)) are exactly two fixed points and other circloids and \(S^2/\tilde{f} \cong [0, 1] \).

1. INTRODUCTION

In \cite{Ma}, it has shown that if \(f \) is orientation-preserving \(R \)-closed and non-periodic homeomorphism on \(S^2 \), then \(f \) has exactly two fixed points and every non-degenerate orbit closure is a homology 1-sphere. In this paper, we consider minimal sets of \(R \)-closed homeomorphisms on closed surfaces. Precisely, let \(f \) be an \(R \)-closed homeomorphism on a connected orientable closed surface \(M \). Then we show that if \(M \) has genus more than one, then each minimal set is either a periodic orbit or an extension of a Cantor set. If \(M = \mathbb{T}^2 \) and \(f \) is neither minimal nor periodic, then either the orbit class space \(\mathbb{T}^2/\tilde{f} \) is a 1-manifold and each minimal set is a finite disjoint union of essential circloids, or there is a minimal set which is an extension of a Cantor set. If \(M = S^2 \) and \(f \) is not periodic but orientation-preserving (resp. reversing), then the minimal sets of \(f \) (resp. \(f^2 \)) are exactly two fixed points and other circloids and \(S^2/\tilde{f} \cong [0, 1] \). Finally we state the applications for codimension two foliations.

2. PRELIMINARIES

By a flow, we mean a continuous action of a topological group \(G \) on a topological space \(X \). We call that \(G \) is \(R \)-closed if \(R := \{(x, y) \mid y \in \overline{G(x)}\} \) is closed. Recall that a subset \(S \) of \(G \) is is said to be (left) syndetic if there is a compact set \(K \) of \(G \) with \(KS = G \). For a point \(x \in X \) and an open \(U \) of \(X \), let \(N(x, U) = \{g \in G \mid gx \in U\} \). We say that \(x \) is an almost periodic point if \(N(x, U) \) is syndetic for every neighborhood \(U \) of \(x \). A flow \(G \) is pointwise almost periodic if every point \(x \in X \) is almost periodic. When \(X \) is a compact metrizable (i.e. compact Hausdorff) space, they are known that if \(f \) is \(R \)-closed, then \(f \) is pointwise almost periodic, and that \(f \) is pointwise almost periodic if and only if \(\overline{G(x)} \mid x \in X \) \(\) is a decomposition of \(X \). When \(f \) is pointwise almost periodic, write \(\tilde{F} := \{\overline{G(x)} \mid x \in X \} \) the decomposition of \(X \). Note that \(X/\tilde{F} \) is called an orbit class space and is also denoted by \(X/G \).
pointwise almost periodic flow G is weakly almost periodic in the sense of Gottschalk \[\text{if the saturation of orbit closures for any closed subset of } X \text{ is closed (i.e. the quotient map } X \to X/G \text{ is closed). By Theorem 5 [Ma] and Proposition 1.2 [Y], the following are equivalent for a pointwise almost periodic flow } f \text{ on a compact metrizable space: } 1) \hat{F} \text{ is } R\text{-closed, } 2) \hat{F} \text{ is weakly almost periodic, } 3) \hat{F} \text{ is upper semi-continuous, } 4) X/\hat{F} \text{ is Hausdorff.}

By a continuum we mean a compact connected metrizable space which is not a singleton. A continuum $A \subset X$ is said to be annular if it has a neighbourhood $U \subset X$ homeomorphic to an open annulus such that $U - A$ has exactly two components each of which is homeomorphic to an annulus. We call any such U an annular neighbourhood of A. We say a subset $C \subset X$ is a cirlcoid if it is an annular continuum and does not contain any strictly smaller annular continuum as a subset. For a subset A of X and a decomposition \hat{F}, the saturation $\text{Sat}(A)$ of A is the union $\bigcup\{L \in \mathcal{F} \mid A \cap L \neq \emptyset\}$ of elements of \hat{F} intersecting A.

Lemma 2.1. Let X be a sequentially compact space and (C_n) a sequence of connected subsets of X. Suppose that there are disjoint open subsets U, V of X and sequences (x_n) (resp. (y_n)) converging to $x \in U$ (resp. $y \in V$) with $x_n, y_n \in C_n$. Then there is an element $z \in (\bigcap_{n>0} \bigcup_{k>n} C_k) \setminus U \cup V$.

Proof. Let $F = X - U \cup V$ be a closed subset. Since C_n is connected, each C_n intersects F. Choose $z_n \in C_n \cap F$. Since X is sequentially compact, we have F is also sequentially compact. Hence there is a convergent subsequence of z_n and so the limit $z \in F$ is desired. \square

We show that connected closures for an R-closed flow must converge to a connected closure.

Lemma 2.2. Let G be an R-closed flow on a sequentially compact space X and let (w_n) be a convergent sequence to a point $w \in M$. If each $G(w_n)$ is connected, then the closure $\overline{G(w)}$ is connected.

Proof. Put $C_n := \overline{G(w_n)}$. Suppose that $\overline{G(w)}$ is disconnected. Then there are disjoint open subsets U, W of M such that $\overline{G(w)} \subseteq U \cup W$, $\overline{G(w)} \cap U \neq \emptyset$, and $\overline{G(w)} \cap W \neq \emptyset$. Then $G(w) \cap U \neq \emptyset$ and $G(w) \cap W \neq \emptyset$. Since w_n converges to w, the continuity of G implies that there are sequences (x_n) (resp. (y_n)) converging $x \in U$ (resp. $y \in W$) such that $x_n, y_n \in C_n$. By Lemma 2.1, there is an element $z \in (\bigcap_{n>0} \bigcup_{k>n} C_k) \setminus U \cup W$. Then there is a convergent sequence $(z_n \in C_n)$ to z. Since $z_n \in C_n = G(w_n)$ and $z \notin \overline{G(w)}$, we obtain $(w_n, z_n) \in R$ and $(w, z) \notin R$. This contradicts the R-closedness. Therefore C is connected. \square

Let f be a pointwise almost periodic homeomorphism on an orientable connected closed surface M. Recall $\hat{F} = \mathcal{F}_f = \overline{\{O_f(x) \mid x \in M\}}$. Write $V = V_f := \{x \in M - \text{Fix}(f) \mid O(x) \text{ is connected }\} = \cup\{L \in \mathcal{F} : \text{connected}\} - \text{Fix}(f)$.

Lemma 2.3. If f is not minimal, then V consists of cirlcoids.

Proof. Since f is pointwise almost periodic, we have that the non-wandering set of f is M. By Theorem 1.1.1 [K], each element C in V of \hat{F} is annular. Let U be a sufficiently small annular neighbourhood of C such that $U - C$ is a disjoint union of two open annuli A_1, A_2. Since C is f-invariant and minimal, we have that $C = \partial A_1 \cap \partial A_2$. Suppose that there is an annular continuum $C' \subseteq C$. Then there
is an annular neighbourhood U' of C' such that $U' \subset U$. Embedding U into S^2, we may assume that U is a subset of S^2. Then $S^2 - C$ is a disjoint union of two open disks D_1, D_2 and $S^2 - C'$ is a disjoint union of two open disks D'_1, D'_2. Since $S^2 - C' \supseteq S^2 - C$, we have $D_1 \cup D_2 \subseteq D'_1 \cup D'_2$. Since $D_1 \cup D_2 \cup \{x\}$ for any element $x \in C$ is connected, we obtain $D'_1 \cup D'_2$ is connected. This contradicts to disconnectivity. Thus C is a circloid. □

Note that a point x is almost periodic if and only if for every open neighborhood U of x, there is $K \in \mathbb{Z}_{\geq 0}$ such that $\mathbb{Z} = \{n, n + 1, \ldots, n + K \mid n \in N(x, U)\}$. The above lemmas implies the following statement.

Corollary 2.4. Suppose f is not minimal but R-closed. Each point of $\overline{V} - V$ is a fixed point.

Taking the iteration, we obtain the following corollary.

Corollary 2.5. Suppose f is not minimal. For any $x \in M$, if $\overline{O(x)}$ is not periodic but consists of finitely many connected components, then $\overline{O(x)}$ consists of circloids.

Proof. Let k be the number of the connected components of $\overline{O(x)}$. By Theorem 1 [ES], we have f^k is also pointwise almost periodic and so $\overline{O(x)}$ is connected. By Lemma 2.3 $O_{f^k}(x)$ is a circloid. Since each connected component of $\overline{O(x)}$ is homeomorphic to each other, the assertion holds. □

This corollary can sharpen Theorem 6 [Ma] into the following statement.

Corollary 2.6. Let f be a non-periodic R-closed orientation-preserving (resp. reversing) homeomorphism on S^2. Then S^2/f is a closed interval and \hat{F}_f (resp. \hat{F}_{f^2}) consists of two fixed points and other circloids.

Proof. Suppose that f is orientation-preserving. By Theorem 3 and 6 [Ma], there are exactly two fixed points and all other orbit closures of f are connected. By Lemma 2.3 they are circloids. We show that M/\hat{F} is a closed interval. Indeed, let A be the sphere minus two fixed points. Suppose that there is a circloid L which is null homotopic in A. Let D be a disk bounded by L in A. Since M consists of non-wandering points, the Brouwer’s non-wandering Theorem [B] to D implies that $f|_D$ has a fixed point. This contradicts to the non-existence of fixed points in A. On the orientation reversing case, since f^2 is orientation-preserving, the assertion holds. □

Note that if there is a dense orbit and \hat{F} is pointwise almost periodic, then \hat{F} is minimal and $V = T^2 = M$. Now we proof a key lemma.

Lemma 2.7. Suppose that f is an orientation-preserving (resp. reversing) R-closed homeomorphism on an orientable connected closed surface M. If there is a minimal set which is a circloid, then $M/\hat{F} = V/\hat{F}$ is a closed interval or a circle. Moreover either $M \cong S^2$ and \hat{F}_f (resp. \hat{F}_{f^2}) consists of exactly two fixed points and other circloids, or $M \cong \mathbb{T}^2$ and \hat{F}_f (resp. \hat{F}_{f^2}) consists of essential circloids.

Proof. Fix a metric compatible to the topology of M. First, suppose that f is orientation-preserving. First we show that V is open. Let L be a circloid of \hat{F} with a sufficiently small annular neighbourhood A. Since \hat{F} is R-closed, Lemma 1.6 [Y] implies that the quotient map $M \to M/\hat{F}$ is closed and so the saturation
Let \(f \) be a \(R \)-closed homeomorphism on a closed surface with genus more than one. Then each non-periodic minimal set of \(f \) has infinitely many connected components.

Proof. Suppose that there is a non-periodic minimal set \(M \) of \(f \) with at most finitely many connected components. Let \(k \) be the number of connected components of \(M \). Then each connected component \(M' \) of \(M \) is a minimal set of \(f^k \). By Lemma 2.3, we obtain that \(M' \) is a circloid. By Corollary 2.5, we have \(M \) is \(S^2 \) or \(T^2 \). This contradicts to the hypothesis. \(\square \)

3. Main Results and Their Proofs

We say that a minimal set \(M \) on a surface homeomorphism \(f : S \to S \) is an extension of a Cantor set (resp. a periodic orbit) if there are a surface homeomorphism \(\tilde{f} : S \to S \) and a surjective continuous map \(p : S^2 \to S^2 \) which is homotopic
to the identity such that $p \circ f = \tilde{f} \circ p$ and $p(M)$ is a Cantor set (resp. a periodic orbit) which is a minimal set of \tilde{f}. Now we state main results.

Theorem 3.1. Let M be a connected orientable closed surface with genus more than one. Each minimal set of an R-closed homeomorphism on M is either a periodic orbit or an extension of a Cantor set.

Proof. Let M be a minimal set. By Lemma 2.7, M is not a finite disjoint union of circloids. By Theorem [PX], we have that M is an extension of either a periodic orbit or a Cantor set. We may assume that M is an extension of a periodic orbit. By the proof of Addendum 3.17 [JKP] and Proposition 5.1 [PX], we obtain that M has at most finitely many connected components. By Corollary 2.8, this minimal set M is a periodic orbit.

In the toral case, we obtain the following statement.

Theorem 3.2. Each R-closed toral homeomorphism f satisfies one of the following:
1. f is minimal.
2. f is periodic.
3. Each minimal set is a finite disjoint union of essential circloids.
4. There is a minimal set which is an extension of a Cantor set.

Proof. Suppose that f is neither minimal nor periodic and there are no minimal sets which are extensions of Cantor sets. Since f is not periodic, by Theorem 4 [JKP], there is a minimal set M which is a finite disjoint union of circloids. Let k be the number of the connected components of M. By Theorem 1.1 [Y2], the iteration f^k is also R-closed. Applying Lemma 2.7 to f^k, we have that each minimal set of f is a finite disjoint union of essential circloids.

Recall that f is aperiodic if f has no periodic orbits. By Theorem D [J], we obtain the following corollary.

Corollary 3.3. Each orbits closure of a non-minimal aperiodic R-closed toral homeomorphism isotopic to identity is a circloid.

4. Applications to codimension two foliations

In [Y], it show that a foliated space on a compact metrizable space which is minimal or “compact and without infinite holonomy”, is R-closed. Since each compact codimension two foliation on a compact manifold has finite holonomy [Ep] [Y], we have that the set of minimal or compact codimension two foliations is contained in the set of codimension two R-closed foliations. The following examples are codimension two R-closed foliations which are neither minimal nor compact. Considering an axisymmetric embedding of T^2 (resp. S^2) into R^3, any irrational rotation on it around the axis is a non-periodic R-closed homeomorphism. Taking a suspension on T^2 (resp. S^2), we obtain the following statement by Theorem 3.2 (resp. Corollary 2.10).

Corollary 4.1. Each suspension of a R-closed homeomorphism on T^2 or S^2 which is neither minimal nor periodic induces a codimension two R-closed foliation which is neither minimal nor compact. Moreover there are such homeomorphisms on T^2 and S^2.
References

[B] L. Brouwer, Beweis des ebenen Translationssatzes Math. Ann. 72 (1912) 37–54.

[Ep] D.B.A. Epstein. Periodic flows on three-manifolds Ann. of Math., 95, 66–82, 1972.

[ES] Erdös, P., Stone, A. H., Some remarks on almost periodic transformations Bull. Amer. Math. Soc. 51, (1945). 126–130.

[G] Gottschalk, W. H., Almost period points with respect to transformation semi-groups Ann. of Math. (2) 47, (1946). 762–766.

[J] Jäger, T., Linearization of conservative toral homeomorphisms Invent. math. 176, 60–616 (2009).

[JKP] Jäger T., Kwakkel F., Passeggi A. A Classification of Minimal Sets of Torus Homeomorphisms Math. Z. (2012) to appear.

[K] Koropecki, A., Aperiodic invariant continua for surface homeomorphisms Math. Z. 266 (2010), no. 1, 229–236.

[Ma] Mason, W. K., Weakly almost periodic homeomorphisms of the two sphere Pacific J. Math. 48 (1973), 185–196.

[PX] A. Passeggi, J. Xavier, A classification of minimal sets for surface homeomorphisms [arXiv:1208.1650]

[S] Swanson, R., Periodic orbits and the continuity of rotation numbers Proc. Amer. Math. Soc. 117 (1993), no. 1, 269–273.

[V] Vogt, E., Foliations with few non-compact leaves Algebr. Geom. Topol. 2 (2002), 257–284.

[Y] Yokoyama, T., Recurrence, almost periodicity and orbit closure relation for topological dynamics preprint.

[Y2] Yokoyama, T., Toral or non locally connected minimal sets for R-closed surface homeomorphisms preprint.

E-mail address: yokoyama@math.sci.hokudai.ac.jp