Correlation between C-reactive protein/albumin ratio and prognosis in patients with lung adenocarcinoma

Zheng Jia-min*, Dai Wei*, Lu Ye and Pan Xiang-tao

Abstract

Objective: This study was performed to examine the relationship between the C-reactive protein/albumin ratio (CAR) and the prognosis of patients with lung adenocarcinoma and thus provide a reference for evaluating the prognosis of lung adenocarcinoma.

Methods: The clinical data of 130 patients with lung adenocarcinoma were retrospectively collected and analyzed. The patients’ overall survival (OS) time was calculated, and the factors affecting OS were statistically analyzed.

Results: The CAR was correlated with sex, clinical stage, brain metastasis, S100 calcium-binding protein B (S100B), interleukin 17, myelin basic protein, squamous cell carcinoma antigen (SCC-Ag), and the lymphocyte count. The median OS was significantly shorter in the high-than low-CAR group (18 vs. 64 months, respectively). The CAR, clinical stage, brain metastasis, S100B, interleukin 17, SCC-Ag, C-reactive protein, albumin, and neutrophil count affected the OS of patients with lung adenocarcinoma. The CAR and clinical stage were independent risk factors for a poor prognosis in patients with lung adenocarcinoma.

Conclusions: The CAR and clinical stage are independent risk factors for OS in patients with lung adenocarcinoma.

Keywords

Lung adenocarcinoma, C-reactive protein/albumin ratio, diagnostic value, prognosis, clinical stage, risk factor
Introduction

According to the latest global cancer statistics in 2020, 4,568 million patients with newly diagnosed cancer were reported in China; among these patients, 815,000 (17.9%) had lung cancer. In total, 3,002 million of all these patients with newly diagnosed cancer died; among them, 715,000 (23.8%) died of lung cancer. The incidence and mortality of lung cancer still rank first in China and are showing an upward trend. Non-small cell lung cancer (NSCLC) is the most common pathologic type of lung cancer, accounting for 80% to 85% of primary lung cancers, and adenocarcinoma of the lung is the most common type of NSCLC. In recent years, the diagnostic rate of lung cancer has been increasing on an annual basis because of the continuous improvement and promotion of clinical diagnosis and treatment methods and technologies. However, despite the developments in surgery, radiotherapy and chemotherapy, targeting, immunization, and other methods of active treatment intervention, the overall prognosis of patients with lung cancer is still not ideal; the 5-year survival rate is <15%. Therefore, accurate evaluation of the prognosis of patients with lung cancer is of great significance for standardized clinical treatment. Lung cancer is usually accompanied by an inflammatory response and poor nutritional status, which is generally characterized by an elevated C-reactive protein (CRP) concentration and decreased albumin (ALB) concentration. The CRP/ALB ratio (CAR) is an indicator of the balance between systemic inflammation and the nutritional status. Therefore, this study was performed to analyze the relationship between the clinical characteristics and prognosis of 130 patients with lung adenocarcinoma and thus identify prognostic indicators in these patients.

Materials and methods

Patients

In this retrospective study, the clinical data of 130 patients with lung adenocarcinoma who were admitted to Taicang Affiliated Hospital of Soochow University from December 2018 to November 2020 (including 30 patients with and 100 without brain metastasis) were collected and analyzed. All cases of lung adenocarcinoma included in this study were confirmed by histopathology or cytology. No patients had brain injury, cerebral hemorrhage, cerebral infarction, myocardial infarction, heart failure, autoimmune disease, a concomitant second tumor, or concomitant infection at the time of either disease diagnosis or inclusion in the experimental study. All patient details have been de-identified.

Data collection

The clinical data of all 130 patients were collected from the medical record system and outpatient system of Taicang Affiliated Hospital of Soochow University. These data included the serum CRP and ALB concentrations, sex, age, TNM stage (8th edition of the UICC TNM Classification), routine blood indices (white blood cell count (WBC), neutrophil count (NE), lymphocyte count (LY), mononuclear cell count (MO), and platelet count (PLT)), and serum concentrations of S100 calcium-binding protein B (S100B), interleukin 17 (IL-17), myelin basic protein (MBP), and squamous cell carcinoma antigen (SCC-Ag).

Starting from the time of diagnosis, the study endpoint was death due to primary disease or follow-up to 30 November 2020. The overall survival (OS) time was defined as the duration of time from the beginning to the endpoint of the study and was expressed in months. The reporting
Sample collection

Fasting peripheral blood (5 mL) was collected from all patients in biochemical tubes. The specimens were allowed to rest at room temperature for about 2 hours and then separated at 1065.6 × g for 10 minutes. The upper serum layer was stored in anticoagulant tubes for subsequent measurement of the study indicators and stored at −80°C in a cryogenic refrigerator.

Statistical analysis

The clinical data of all 130 patients with lung adenocarcinoma were recorded in Excel data files (Microsoft Corp., Redmond, WA, USA) and statistically analyzed using IBM SPSS Statistics for Windows, Version 23.0 (IBM Corp., Armonk, NY, USA) and X-tile 3.5.0 software (Yale School of Medicine, New Haven, CT, USA). The results of the data analysis are expressed as mean ± standard deviation. The chi-square test was performed to assess the association between the CAR and clinical features. The Kaplan–Meier method was used to plot the survival curves of all 130 patients with lung adenocarcinoma, and the differences between the survival curves were analyzed using the log-rank method. A Cox proportional risk regression model was used to analyze the age, sex, CAR, and other clinical characteristics of patients with lung adenocarcinoma to determine the factors affecting OS. A P value of <0.05 was considered statistically significant.

Ethics approval and consent to participate

This study was conducted with approval from the Ethics Committee of Taicang Affiliated Hospital of Soochow University (No. 2021-KY-156) and in accordance with the Declaration of Helsinki. All patients provided written informed consent.

Results

Cutoff values of CAR and clinical indicators

The CRP and ALB concentrations were collected from all 130 patients at the time of initial diagnosis, and the CAR was calculated. The WBC, NE, LY, MO, PLT, S100B, IL-17, MBP, SCC-Ag, and other indicators were recorded, and X-tile software was used to calculate the cutoff value of each indicator (Table 1).

Correlation between CAR and clinical characteristics

The 130 patients were divided into two groups according to the CAR cutoff value: the high-CAR group (CAR of >1.1) and low-CAR group (CAR of ≤1.1). They were also divided into two groups according to their median age of 65 years (>65 and ≤65 years). Moreover, the patients were divided into a stage I/II group and stage III/IV group according to the 8th edition of the AJCC TNM Staging Manual. Anemia was defined as a hemoglobin (Hb) concentration of <120.0 g/L in men and <110.0 g/L in women according to the Hematology Society of the Chinese Medical Association, and the patients were divided into two groups according to these cutoff values. Similarly, they were divided into two groups according to the cutoff values of WBC, NE, LY, MO, PLT, S100B, IL-17, MBP, and SCC-Ag (Table 2). The results showed that the CAR was correlated with sex, clinical stage, brain metastasis, S100B, IL-17, MBP, SCC-Ag, and LY (all P < 0.05). However, there was no significant correlation of the CAR with Hb, WBC, NE, MO, or PLT, as shown in Table 2.
Relationship between CAR and OS

The Kaplan–Meier method was used to plot OS curves of the high- and low-CAR groups, and the log-rank method was used to analyze the difference in OS between the two groups. The results showed that the median OS in the low-CAR group was 64 months (95% confidence interval (CI), 49.262–78.738), whereas the median OS in the high-CAR group was only 18 months (95% CI, 2.752–33.248). The difference in OS between the two groups was statistically significant (P < 0.001), as shown in Figure 1.

Survival analysis

Cox univariate analysis showed that the CAR, clinical stage, brain metastasis, S100B, IL-17, MBP, SCC-Ag, and LY significantly influenced the OS of patients with lung adenocarcinoma (P < 0.001, P = 0.020, P = 0.0010, P = 0.002, P = 0.010, P = 0.025, P < 0.001, P = 0.025, and P = 0.027, respectively). However, sex, age, MBP, WBC, LY, MO, Hb, and PLT had no significant correlation with OS in patients with lung adenocarcinoma, as shown in Table 3.

Cox multivariate analysis showed that the CAR and clinical stage were independent risk factors for OS in patients with lung adenocarcinoma (P = 0.001 and 0.045, respectively), as shown in Table 3.

Discussion

In this study, we evaluated the relationship between the CAR and various clinical characteristics in 130 patients with lung adenocarcinoma. We found that the CAR was correlated with sex, clinical stage, brain metastasis, S100B, IL-17, MBP, SCC-Ag, and LY (all P < 0.05) but not with Hb, WBC, NE, MO, or PLT. The survival curve analysis showed that the median OS was significantly longer in the low- than high-CAR group (P < 0.001). The Cox univariate and multivariate analyses between clinical characteristics and OS showed that the CAR, clinical stage, brain metastases, S100B, IL-17, SCC-Ag, CRP, ALB, and NE significantly affected the OS of patients with lung adenocarcinoma (all P < 0.05). Among these factors, the CAR and clinical stage were independent risk factors for the prognosis of patients with lung adenocarcinoma and could be used as indicators for clinical evaluation of these patients’ prognosis.

Multiple studies have shown that the inflammatory response is the “seventh feature” of tumors and is closely associated with tumor development. The relationship between inflammation and tumors is two-fold: the continuous inflammatory state will produce various inflammatory factors, which on the one hand can induce tumor development by affecting the

Indicator	Cutoff	Indicator	Cutoff
CAR	1.10	SCC-Ag (ng/L)	9.51
CRP (mg/L)	43.8	WBC (×10⁹/L)	6.20
ALB (g/L)	37.9	NE (×10⁹/L)	5.30
S100B (ng/mL)	2.30	LY (×10⁹/L)	1.00
IL-17 (ng/L)	190.69	MO (×10⁹/L)	0.40
MBP (ng/mL)	871.05	PLT (×10⁹/L)	179.00

CAR, C-reactive protein/albumin ratio; CRP, C-reactive protein; ALB, albumin; S100B, S100 calcium-binding protein B; IL-17, interleukin 17; MBP, myelin basic protein; SCC-Ag, squamous cell carcinoma antigen; WBC, white blood cell count; NE, neutrophil count; LY, lymphocyte count; MO, mononuclear cell count; PLT, platelet count.

Journal of International Medical Research
structure of DNA and causing gene instability and on the other hand can promote the occurrence of tumors by affecting the function and state of tumor suppressor genes or proto-oncogenes. Tumor growth causes tissue inflammation, which leads to high levels of inflammatory cytokines, and secreted substances can further promote the development of tumors. CRP is a typical inflammatory factor. It is an acute-stage protein that, along with IL-6 and other proinflammatory factors, promotes liver production and reflects the body’s level of inflammation. The results of the present experimental study suggest that the CRP concentration is associated with the prognosis in patients with lung adenocarcinoma, which is consistent with the findings reported by Masago et al. Their results were similar to ours in that CRP was a

Table 2. Correlations between CAR and clinical characteristics of patients with lung adenocarcinoma.
Clinical characteristic

Sex
Age (years)
Clinical stage
Brain metastasis
S100B (ng/mL)
IL-17 (ng/L)
MBP (ng/L)
SCC-Ag (ng/mL)
Hb (g/L)
WBC ($\times 10^9$/L)
NE ($\times 10^9$/L)
LY ($\times 10^9$/L)
MO ($\times 10^9$/L)
PLT ($\times 10^9$/L)

CAR, C-reactive protein/albumin ratio; S100B, S100 calcium-binding protein B; IL-17, interleukin 17; MBP, myelin basic protein; SCC-Ag, squamous cell carcinoma antigen; Hb, hemoglobin; WBC, white blood cell count; NE, neutrophil count; LY, lymphocyte count; MO, mononuclear cell count; PLT, platelet count.
Figure 1. Overall survival curves of patients with high CAR (>1.1) and low CAR (≤1.1). CAR, C-reactive protein/albumin ratio.

Table 3. Cox univariate and multivariate analyses of overall survival in patients with lung adenocarcinoma.

Influencing factor	Univariate analysis	Multivariate analysis				
	HR	95% CI	P	HR	95% CI	P
Sex	0.948	0.358–2.508	0.915			
Age	1.042	0.424–2.563	0.928			
Clinical stage	10.850	1.444–81.503	0.020	7.976	1.046–60.843	0.045
Brain metastasis	0.175	0.069–0.444	0.000			
S100B	0.190	0.065–0.551	0.002			
IL-17	0.270	0.100–0.727	0.010			
MBP	0.594	0.244–1.447	0.251			
SCC-Ag	0.323	0.125–0.838	0.020			
Hb	1.598	0.590–4.326	0.356			
WBC	0.442	0.181–1.076	0.072			
NE	0.345	0.134–0.884	0.027			
LY	1.974	0.815–4.781	0.132			
MO	1.476	0.534–4.084	0.453			
PLT	1.007	0.401–2.534	0.987			
CRP	0.142	0.056–0.358	0.000			
ALB	2.828	1.138–7.023	0.025			
CAR	0.142	0.056–0.358	0.000	0.193	0.076–0.492	0.001

HR, hazard ratio; CI, confidence interval; S100B, S100 calcium-binding protein B; IL-17, interleukin 17; MBP, myelin basic protein; SCC-Ag, squamous cell carcinoma antigen; Hb, hemoglobin; WBC, white blood cell count; NE, neutrophil count; LY, lymphocyte count; MO, mononuclear cell count; PLT, platelet count; CRP, C-reactive protein; ALB, albumin; CAR, C-reactive protein/albumin ratio.
poor prognostic factor in patients with non-
squamous NSCLC. Therefore, an elevated
CRP concentration suggests a poor progno-
sis in patients with lung cancer.

Another indicator closely related to the
survival of patients with cancer is the nutri-
tional status.6 About one-third of patients
with cancer die of poor nutrition. In
patients with cancer, poor nutrition during
the disease course is due to psychological
factors, the consumption by the disease
itself, and cancer treatments such as sur-
gery, radiotherapy, and chemotherapy.
These factors result in insufficient nutrition
or energy intake, nutrient digestion or
absorption disorders, and excessive con-
sumption, thus causing a nutritional defi-
ciency of the body and even tumor cachexia12
and adversely affecting patients’
survival time. ALB is the main index reflect-
ing the body’s nutritional status. Ikeda
et al.13 analyzed the association between
the ALB concentration and survival of
patients with NSCLC and found that
higher ALB concentrations were associated
with better survival. The serum ALB con-
centration was also associated with the
prognosis in patients with lung adenocarci-
noma in the present study.

Although the serum CRP and ALB con-
centrations were both associated with the
survival and prognosis of patients with
lung adenocarcinoma in the present study,
neither was an independent risk factor for
the prognosis. The CAR is the ratio of CRP
to ALB in serum and is an indicator of sys-
temic inflammation. The CAR is reportedly
an independent poor prognostic factor in
patients with pancreatic tumours,14
nasopharyngeal carcinoma,15 and colon
cancer.16,17 In the present study, the Cox
multivariate and univariate analyses
showed that patients with a high CAR
had shorter OS than patients with a low
CAR, which was an independent risk
factor for a poor prognosis in patients
with lung adenocarcinoma, consistent with
the results of other studies.5,18–20

The prognosis of patients with tumors is
closely related to the clinical stage. Clinical
staging determines whether a patient can
undergo surgery, the type of surgery, and
whether additional adjuvant therapy is
needed. Single tumors and metastatic
lesions are relatively easy to control, but
the prognosis becomes poor once multiple
or distant metastases occur. In this study,
130 patients with lung adenocarcinoma
were divided into two groups (stage I/II
and stage III/IV) according to the TNM
staging of the 8th edition of the UICC
TNM Classification. The univariate and
multivariate analyses revealed that the
clinical stage was also an independent
prognostic factor in patients with lung
adenocarcinoma.

In conclusion, because of the poor prog-
nosis of patients with lung cancer, early
assessment of the prognosis of patients
with lung adenocarcinoma may help to
develop a more effective appropriate treat-
ment plan to improve these patients’ surviv-
al time. In this study, Cox univariate and
multivariate analyses showed that the CAR
and clinical stage were independent risk fac-
tors for a poor prognosis in patients with
lung adenocarcinoma. These findings may
serve as a reference for clinicians to evaluate
the prognosis of patients with lung adeno-
carcinoma in the clinical setting. However,
this was a single-center study with a rela-
tively small number of patients, potentially
introducing some bias. We will therefore
continue to expand the number of cases
and unify the standards in our further
research to clarify the significance of the
CAR in predicting the prognosis of patients
with lung adenocarcinoma.

Consent for publication
All participants provided written informed
consent for publication of their data.
Data availability statement
The data of this study are authentic, valid, and available from the corresponding author on reasonable request.

Declaration of conflicting interests
The authors declare that they have no competing interests.

Funding
This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

ORCID iD
Zheng Jia-min https://orcid.org/0000-0003-0767-9565

References
1. International Agency for Research on Cancer (IARC). Latest global cancer data: cancer burden rises to 19.3 million new cases and 10.0 million cancer deaths in 2020 [N]. 2020. https://www.iarc.fr/faq/latest-global-cancer-data-2020-QA/.
2. Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J]. CA Cancer J Clin 2018; 68: 394–424.
3. Tsakonas G, De Petris L and Ekman S. Management of brain metastasized non-small cell lung cancer (NSCLC)- From local treatment to new systemic therapies [J]. Cancer Treat Rev 2017; 54: 122–131.
4. Sato M, Tanaka I, Goto D, et al. The subunit eIF2 ss of translation-initiation factor EIF2 is a potential therapeutic target for non-small cell lung cancer [J]. Cancer Sci 2018; 109: 1181–1181.
5. Von Elm E, Altman DG, Egger M, et al. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. Ann Intern Med 2007; 147: 573–577.
6. Yang JR, Xu JY, Chen GC, et al. Post-diagnostic C-reactive protein and albumin predict survival in Chinese patients with non-small cell lung cancer: a prospective cohort study [J]. Sci Rep 2019; 9: 8143.
7. Koh YW and Lee HW. Prognostic impact of C-reactive protein/albumin ratio on the overall survival of patients with advanced non-small-cell lung cancers receiving palliative chemotherapy [J]. Medicine (Baltimore) 2017; 96: 6848–6853.
8. Lindenmann J, Fink-Neuboeck N, Taucher V, et al. Prediction of postoperative clinical outcomes in resected stage I non-small-cell lung cancer focusing on the preoperative Glasgow prognostic score [J].Cancers (Basel) 2020; 12: 1–13.
9. Weiss G, Ganz T and Goodnough LT. Anemia of inflammation [J]. Blood 2019; 133: 40–50.
10. Volanakis JE. Human C-reactive protein: expression, structure, and function [J]. Mol Immunol 2001; 38: 189–197.
11. Masago K, Fujita S, Togashi Y, et al. Clinical significance of pretreatment C-reactive protein in patients with advanced nonsquamous non-small-cell lung cancer who received gefitinib [J]. Oncology 2010; 79: 355–362.
12. Garcia-Luna PP, Campos JP and Cunill JLP. Causes and impact of hyponutrition and cachexia in the oncologic patient [J]. Nutr Hosp 2006; 21: 10–16.
13. Ikeda S, Yoshioka H, Ikeo S, et al. Serum albumin level as a potential marker for deciding chemotherapy or best supportive care in elderly, advanced non-small cell lung cancer patients with poor performance status [J]. BMC Cancer 2017; 17: 797.
14. Liu Z, Jin K, Guo M, et al. Prognostic value of the CRP/Alb ratio, a novel inflammation-based score in pancreatic cancer [J]. Ann Surg Oncol 2017; 24: 561–568.
15. Zhang Y, Zhou GQ, Liu X, et al. Exploration and validation of C-reactive protein/albumin ratio as a novel inflammation-based prognostic marker in nasopharyngeal carcinoma [J]. J Cancer 2016; 7: 1406–1412.
16. Shibutani M, Maeda K, Nagahara H, et al. Prognostic significance of the preoperative ratio of C-reactive protein to albumin in patients with colorectal cancer [J]. Anticancer Res 2016; 36: 995–1001.
17. Ide S, Toriyama Y, Okugawa Y, et al. Clinical significance of C-reactive protein-to-albumin ratio with rectal cancer patient undergoing chemoradiotherapy followed by surgery [J]. *Anticancer Res* 2017; 37: 5797–5804.

18. Lei Y, Wu J, Guo W, et al. C-reactive protein to albumin ratio as prognostic markers in patients with advanced non-small-cell lung cancers treated with tyrosine kinase inhibitors [J]. *Int J Clin Exp Med* 2018; 11: 3396–3404.

19. Deng TB, Zhang J, Zhou YZ, et al. The prognostic value of C-reactive protein to albumin ratio in patients with lung cancer [J]. *Medicine (Baltimore)* 2018; 97: 1–6.

20. Jin J, Liu D, Zhou YZ, et al. C-reactive protein to albumin ratio as prognostic factors in lung cancer [J]. *Int J Clin Exp Med* 2017; 10: 16780–16787.