THE TRIANGULATED CATEGORY OF K-MOTIVES $DK_{\text{eff}}(k)$

GRIGORY GARKUSHA AND IVAN PANIN

ABSTRACT. For any perfect field k a triangulated category of K-motives $DK_{\text{eff}}(k)$ is constructed in the style of Voevodsky’s construction of the category $DM_{\text{eff}}(k)$. To each smooth k-variety X the K-motive $M_K(X)$ is associated in the category $DK_{\text{eff}}(k)$ and

$$K_n(X) = \text{Hom}_{DK_{\text{eff}}(k)}(M_K(X)[n], M_K(pt)), \quad n \in \mathbb{Z},$$

where $pt = \text{Spec}(k)$ and $K(X)$ is Quillen’s K-theory of X.

1. INTRODUCTION

The Voevodsky triangulated category of motives $DM_{\text{eff}}(k)$ [15] provides a natural framework to study motivic cohomology. In [1] the authors constructed a triangulated category of K-motives providing a natural framework for such a fundamental object as the motivic spectral sequence. The main idea was to use a kind of motivic algebra of spectral categories and modules over them.

In this paper an alternative approach to constructing a triangulated category of K-motives is presented. We work in the framework of strict V-spectral categories introduced in the paper (Definition 2.5). The main feature of such a spectral category \mathcal{O} is that it is connective and Nisnevich excisive in the sense of [1] and $\pi_0\mathcal{O}$-presheaves, where $\pi_0\mathcal{O}$ is a ringoid associated to \mathcal{O}, share lots of common properties with (pre)sheaves with transfers (or Cor-presheaves) in the sense of Voevodsky [14].

To any strict V-spectral category over k-smooth varieties we associate a triangulated category $D\mathcal{O}_{\text{eff}}(k)$, which in spirit is constructed similar to $DM_{\text{eff}}(k)$ (Section 3). For instance, the ringoid of correspondences Cor gives rise to a strict V-spectral category $\mathcal{O} = \mathcal{O}_{\text{cor}}$ whenever the base field k is perfect. In this case the Voevodsky category $DM_{\text{eff}}(k)$ is recovered as the category $D\mathcal{O}_{\text{eff}}(k)$ (Corollary 3.6).

The main V-spectral category \mathbb{K} is constructed in Section 4. It is strict over perfect fields. The associated triangulated category $D\mathbb{K}_{\text{eff}}(k)$ is denoted by $DK_{\text{eff}}(k)$. The spectral category \mathbb{K} is a priori different from spectral categories constructed by the authors in [1] and has some advantages over spectral categories of [1].

To each smooth k-variety X we associate its K-motive $M_K(X)$. By definition, it is an object of the category $DK_{\text{eff}}(k)$. We prove in Theorem 5.11 that

$$K_n(X) = \text{Hom}_{DK_{\text{eff}}(k)}(M_K(X)[n], M_K(pt)), \quad n \in \mathbb{Z},$$

where $pt = \text{Spec}(k)$ and $K(X)$ is Quillen’s K-theory of X. Thus Quillen’s K-theory is represented by the K-motive of the point.

2010 Mathematics Subject Classification. 14F42, 19E08, 55U35.

Key words and phrases. Motivic homotopy theory, algebraic K-theory, spectral categories.

Supported by EPSRC grant EP/J013064/1.
The spectral category \mathbb{K} is of great utility in authors’ paper [2], in which they solve some problems related to the motivic spectral sequence. In fact, the problems were the main motivation for constructing the spectral category \mathbb{K} and developing the machinery of K-motives.

Throughout the paper we denote by Sm/k the category of smooth separated schemes of finite type over the base field k.

2. Preliminaries

We work in the framework of spectral categories and modules over them in the sense of Schwede–Shipley [11]. We start with preparations.

Recall that symmetric spectra have two sorts of homotopy groups which we shall refer to as naive and true homotopy groups respectively following terminology of [10]. Precisely, the kth naive homotopy group of a symmetric spectrum X is defined as the colimit

$$\hat{\pi}_k(X) = \colim_n \pi_{k+n}X_n.$$

Denote by γX a stably fibrant model of X in Sp^Σ. The k-th true homotopy group of X is given by

$$\pi_k X = \hat{\pi}_k(\gamma X),$$

the naive homotopy groups of the symmetric spectrum γX.

Naive and true homotopy groups of X can considerably be different in general (see, e.g., [5, 10]). The true homotopy groups detect stable equivalences, and are thus more important than the naive homotopy groups. There is an important class of semistable symmetric spectra within which π_n-isomorphisms coincide with π_n-isomorphisms. Recall that a symmetric spectrum is semistable if some (hence any) stably fibrant replacement is a π_n-isomorphism. Suspension spectra, Eilenberg–Mac Lane spectra, Ω-spectra or Ω-spectra from some point X_n on are examples of semistable symmetric spectra (see [10]). So Waldhausen’s algebraic K-theory symmetric spectrum we shall use later is semistable. Semistability is preserved under suspension, loop, wedges and shift.

A symmetric spectrum X is n-connected if the true homotopy groups of X are trivial for $k \geq n$. The spectrum X is connective if it is (-1)-connected, i.e., its true homotopy groups vanish in negative dimensions. X is bounded below if $\pi_iX = 0$ for $i \leq 0$.

Definition 2.1. (1) Following [11] a spectral category is a category \mathcal{O} which is enriched over the category Sp^Σ of symmetric spectra (with respect to smash product, i.e., the monoidal closed structure of [5] 2.2.10)). In other words, for every pair of objects $o, o' \in \mathcal{O}$ there is a morphism symmetric spectrum $\mathcal{O}(o, o')$, for every object o of \mathcal{O} there is a map from the sphere spectrum S to $\mathcal{O}(o, o)$ (the “identity element” of o), and for each triple of objects there is an associative and unital composition map of symmetric spectra $\mathcal{O}(o', o'') \wedge \mathcal{O}(o, o') \to \mathcal{O}(o, o'')$. An \mathcal{O}-module M is a contravariant spectral functor to the category Sp^Σ of symmetric spectra, i.e., a symmetric spectrum $M(o)$ for each object of \mathcal{O} together with coherently associative and unital maps of symmetric spectra $M(o) \wedge \mathcal{O}(o', o) \to M(o')$ for pairs of objects $o, o' \in \mathcal{O}$. A morphism of \mathcal{O}-modules $M \to N$ consists of maps of symmetric spectra $M(o) \to N(o)$ strictly compatible with the action of \mathcal{O}. The category of \mathcal{O}-modules will be denoted by $\text{Mod } \mathcal{O}$.

(2) A spectral functor or a spectral homomorphism F from a spectral category \mathcal{O} to a spectral category \mathcal{O}' is an assignment from $\text{Ob } \mathcal{O}$ to $\text{Ob } \mathcal{O}'$ together with morphisms $\mathcal{O}(a, b) \to \mathcal{O}'(F(a), F(b))$ in Sp^Σ which preserve composition and identities.

(3) The monoidal product $\mathcal{O} \wedge \mathcal{O}'$ of two spectral categories \mathcal{O} and \mathcal{O}' is the spectral category where $\text{Ob}(\mathcal{O} \wedge \mathcal{O}') := \text{Ob } \mathcal{O} \times \text{Ob } \mathcal{O}'$ and $\mathcal{O} \wedge \mathcal{O}'((a, x), (b, y)) := \mathcal{O}(a, b) \wedge \mathcal{O}'(x, y)$.

2
(4) A spectral category \mathcal{O} is said to be connective if for any objects a, b of \mathcal{O} the spectrum $\mathcal{O}(a, b)$ is connective.

(5) By a ringoid over Sm/k we mean a preadditive category \mathbb{R} whose objects are those of Sm/k together with a functor
$$\rho : \text{Sm}/k \to \mathbb{R},$$
which is identity on objects. Every such ringoid gives rise to a spectral category $\mathcal{O}_\mathbb{R}$ whose objects are those of Sm/k and the morphisms spectrum $\mathcal{O}_\mathbb{R}(X, Y), X, Y \in \text{Sm}/k$, is the Eilenberg–Mac Lane spectrum $H\mathbb{R}(X, Y)$ associated with the abelian group $\mathbb{R}(X, Y)$. Given a map of schemes α, its image $\rho(\alpha)$ will also be denoted by α, dropping ρ from notation.

(6) By a spectral category over Sm/k we mean a spectral category \mathcal{O} whose objects are those of Sm/k together with a spectral functor $\sigma : \mathcal{O}_{\text{naive}} \to \mathcal{O}$, which is identity on objects. Here $\mathcal{O}_{\text{naive}}$ stands for the spectral category whose morphism spectra are defined as
$$\mathcal{O}_{\text{naive}}(X, Y)_p = \text{Hom}_{\text{Sm}/k}(X, Y)_+ \wedge S^p$$
for all $p \geq 0$ and $X, Y \in \text{Sm}/k$.

It is straightforward to verify that the category of $\mathcal{O}_{\text{naive}}$-modules can be regarded as the category of presheaves $\text{Pre}^{\Sigma}(\text{Sm}/k)$ of symmetric spectra on Sm/k. This is used in the sequel without further comment.

Let \mathcal{O} be a spectral category and let $\text{Mod} \mathcal{O}$ be the category of \mathcal{O}-modules. Recall that the projective stable model structure on $\text{Mod} \mathcal{O}$ is defined as follows (see [11]). The weak equivalences are the objectwise stable weak equivalences and fibrations are the objectwise stable projective fibrations. The stable projective cofibrations are defined by the left lifting property with respect to all stable projective acyclic fibrations.

Recall that the Nisnevich topology is generated by elementary distinguished squares, i.e. pullback squares

$$
\begin{array}{ccc}
U' & \longrightarrow & X' \\
\downarrow \Phi & & \downarrow \Psi \\
U & \longrightarrow & X
\end{array}
$$

where Φ is etale, ψ is an open embedding and $\Phi^{-1}(X \setminus U) \to (X \setminus U)$ is an isomorphism of schemes (with the reduced structure). Let \mathcal{Q} denote the set of elementary distinguished squares in Sm/k and let \mathcal{O} be a spectral category over Sm/k. By $\mathcal{Q}_\mathcal{O}$ denote the set of squares

$$
\begin{array}{ccc}
\mathcal{O}(-, U') & \longrightarrow & \mathcal{O}(-, X') \\
\downarrow \sigma Q & & \downarrow \Phi \\
\mathcal{O}(-, U) & \longrightarrow & \mathcal{O}(-, X)
\end{array}
$$

which are obtained from the squares in \mathcal{Q} by taking $X \in \text{Sm}/k$ to $\mathcal{O}(-, X)$. The arrow $\mathcal{O}(-, U') \to \mathcal{O}(-, X')$ can be factored as a cofibration $\mathcal{O}(-, U') \to \text{Cyl}$ followed by a simplicial homotopy equivalence $\text{Cyl} \to \mathcal{O}(-, X')$. There is a canonical morphism $A_{\mathcal{Q}} := \mathcal{O}(-, U) \sqcup_{\mathcal{Q}(-, U')} \text{Cyl} \to \mathcal{O}(-, X)$.

3
Definition 2.2 (see [1]). I. The Nisnevich local model structure on $\text{Mod} \mathcal{O}$ is the Bousfield localization of the stable projective model structure with respect to the family of projective cofibrations

$$\mathcal{N}_\mathcal{O} = \{ \text{cyl}(A \mathcal{O} \to \mathcal{O}(-,X)) \}_{\mathcal{O} \mathcal{O}}.$$

The homotopy category for the Nisnevich local model structure will be denoted by $\mathcal{SH}^{\text{nis}}_{\mathcal{O}}$. In particular, if $\mathcal{O} = \mathcal{O}_{\text{naive}}$ then we have the Nisnevich local model structure on $\text{Pre}^\Sigma(\text{Sm}/k) = \text{Mod} \mathcal{O}_{\text{naive}}$. We shall write $\mathcal{SH}^{\text{nis}}_{\mathcal{O}}(k)$ to denote $\mathcal{SH}^{\text{nis}}_{\mathcal{O}_{\text{naive}}}.$

II. The motivic model structure on $\text{Mod} \mathcal{O}$ is the Bousfield localization of the Nisnevich local model structure with respect to the family of projective cofibrations

$$\mathcal{A}_\mathcal{O} = \{ \text{cyl}(\mathcal{O}(-,X \times \mathbb{A}^1) \to \mathcal{O}(-,X)) \}_{X \in \text{Sm}/k}.$$

The homotopy category for the motivic model structure will be denoted by $\mathcal{SH}^{\text{mot}}_{\mathcal{O}}$. In particular, if $\mathcal{O} = \mathcal{O}_{\text{naive}}$ then we have the motivic model structure on $\text{Pre}^\Sigma(\text{Sm}/k) = \text{Mod} \mathcal{O}_{\text{naive}}$ and we shall write $\mathcal{SH}^{\text{mot}}_{\mathcal{O}}(k)$ to denote $\mathcal{SH}^{\text{mot}}_{\mathcal{O}_{\text{naive}}}.$

Definition 2.3 (see [1]). I. We say that \mathcal{O} is Nisnevich excisive if for every elementary distinguished square Q

$$
\begin{array}{ccc}
U' & \longrightarrow & X' \\
\downarrow & & \downarrow \varphi \\
U & \longrightarrow & X
\end{array}
$$

the square $\mathcal{O}Q$ is homotopy pushout in the Nisnevich local model structure on $\text{Pre}^\Sigma(\text{Sm}/k)$.

II. \mathcal{O} is motivically excisive if:

(A) for every elementary distinguished square Q the square $\mathcal{O}Q$ is homotopy pushout in the motivic model structure on $\text{Pre}^\Sigma(\text{Sm}/k)$ and

(B) for every $X \in \text{Sm}/k$ the natural map

$$\mathcal{O}(-,X \times \mathbb{A}^1) \to \mathcal{O}(-,X)$$

is a weak equivalence in the motivic model structure on $\text{Pre}^\Sigma(\text{Sm}/k)$.

Let $\text{Aff}\text{Sm}/k$ be the full subcategory of Sm/k whose objects are the smooth affine varieties. $\text{Aff}\text{Sm}/k$ gives rise to a spectral \mathcal{O}_{Aff} whose objects are those of $\text{Aff}\text{Sm}/k$ and morphisms spectra are defined as

$$\mathcal{O}_{\text{Aff}}(X,Y) := \text{Hom}_{\text{AffSm}/k}(X,Y_+) \wedge \mathbb{S},$$

where \mathbb{S} is the sphere spectrum and $X,Y \in \text{AffSm}/k$.

Recall that a sheaf \mathcal{F} of abelian groups in the Nisnevich topology on Sm/k is strictly \mathbb{A}^1-invariant if for any $X \in \text{Sm}/k$, the canonical morphism

$$H^*_\text{nis}(X,\mathcal{F}) \to H^*_\text{nis}(X \times \mathbb{A}^1,\mathcal{F})$$

is an isomorphism.

Definition 2.4. Let \mathcal{R} be a ringoid over Sm/k together with the structure functor $\rho : \text{Sm}/k \to \mathcal{R}$. We say that \mathcal{R} is a V-ringoid ("V" for Voevodsky) if

1. for any elementary distinguished square Q the sequence of Nisnevich sheaves associated to representable presheaves

$$0 \to \mathcal{R}_{\text{nis}}(-,U') \to \mathcal{R}_{\text{nis}}(-,U) \oplus \mathcal{R}_{\text{nis}}(-,X') \to \mathcal{R}_{\text{nis}}(-,X) \to 0$$

is exact;
(2) there is a functor
\[\otimes : \mathcal{R} \times \text{AffSm}/k \to \mathcal{R} \]
sending \((X, U) \in \text{Sm}/k \times \text{AffSm}/k\) to \(X \times U \in \text{Sm}/k\) and such that \(1_X \otimes \alpha = \rho(1_X \times \alpha)\), \((u + v) \otimes \alpha = u \otimes \alpha + v \otimes \alpha\) for all \(\alpha \in \text{Mor}(\text{AffSm}/k)\) and \(u, v \in \text{Mor}(\mathcal{R})\).

(3) for any \(\mathcal{R}\)-presheaf of abelian groups \(\mathcal{F}\), i.e. \(\mathcal{F}\) is a contravariant functor from \(\mathcal{R}\) to abelian groups, the associated Nisnevich sheaf \(\mathcal{F}_{\text{nis}}\) has a unique structure of a \(\mathcal{R}\)-presheaf for which the canonical homomorphism \(\mathcal{F} \to \mathcal{F}_{\text{nis}}\) is a homomorphism of \(\mathcal{R}\)-presheaves. Moreover, if \(\mathcal{F}\) is homotopy invariant then so is \(\mathcal{F}_{\text{nis}}\).

We refer to \(\mathcal{R}\) as a strict \(V\)-ringoid if every \(\mathcal{H}_{\text{nis}}\)-invariant Nisnevich \(\mathcal{R}\)-sheaf is strictly \(\mathcal{H}_{\text{nis}}\)-invariant.

We want to make several remarks for the definition. Condition (1) implies the spectral category \(\mathcal{O}_{\mathcal{R}, \mathcal{A}}\) associated to the ringoid \(\mathcal{R}\) is Nisnevich excisive. Condition (2) implies that for any \(\mathcal{R}\)-presheaf \(\mathcal{F}\) and any affine scheme \(U \in \text{AffSm}/k\) the presheaf
\[\text{Hom}(U, \mathcal{F}) := \mathcal{F}(- \times U) \]
is an \(\mathcal{R}\)-presheaf. Moreover, it is functorial in \(U\).

Definition 2.5. Let \(\mathcal{O}\) be a spectral category over \(\text{Sm}/k\) together with the structure spectral functor \(\sigma : \mathcal{O}_{\text{naive}} \to \mathcal{O}\). We say that \(\mathcal{O}\) is a \(V\)-spectral category if

1. \(\mathcal{O}\) is connective and Nisnevich excisive;
2. there is a spectral functor
 \[\square : \mathcal{O} \wedge \mathcal{O}_{\mathcal{A}} \to \mathcal{O} \]
 sending \((X, U) \in \text{Sm}/k \times \text{AffSm}/k\) to \(X \times U \in \text{Sm}/k\) and such that \(1_X \square \alpha = \sigma(1_X \times \alpha)\) for all \(\alpha \in \text{Mor}(\text{AffSm}/k)\);
3. \(\pi_0 \mathcal{O}\) is a \(V\)-ringoid such that the structure map \(\rho : \text{Sm}/k \to \pi_0 \mathcal{O}\) equals the composite map
 \[\text{Sm}/k \to \pi_0 \mathcal{O}_{\text{naive}} \xrightarrow{\pi_0(\sigma)} \pi_0 \mathcal{O}. \]

We also require the structure pairing \(\otimes : \pi_0 \mathcal{O} \times \text{AffSm}/k \to \pi_0 \mathcal{O}\) to be the composite functor
\[\pi_0 \mathcal{O} \times \text{AffSm}/k \to \pi_0 \mathcal{O} \times \pi_0 \mathcal{O}_{\mathcal{A}} \to \pi_0(\mathcal{O} \wedge \mathcal{O}_{\mathcal{A}}) \xrightarrow{\pi_0(\square)} \pi_0 \mathcal{O}. \]

We refer to \(\mathcal{O}\) as a strict \(V\)-spectral category if the \(V\)-ringoid \(\pi_0 \mathcal{O}\) is strict.

We note that if \(\mathcal{O}\) is a \(V\)-spectral category, then for every \(\mathcal{O}\)-module \(M\) and any affine smooth scheme \(U\), the presheaf of symmetric spectra
\[\text{Hom}(U, M) := M(- \times U) \]
is an \(\mathcal{O}\)-module. Moreover, \(M(- \times U)\) is functorial in \(U\).

Lemma 2.6. Every \(V\)-spectral category \(\mathcal{O}\) is motivically excisive.

Proof. Every \(V\)-spectral category is, by definition, Nisnevich excisive. Since there is an action of affine smooth schemes on \(\mathcal{O}\), the fact that \(\mathcal{O}\) is motivically excisive is proved similar to [1] 5.8. \(\square\)

Let \(\mathcal{O}\) be a \(V\)-spectral category. Since it is both Nisnevich and motivically excisive, it follows from [1] 5.13 that the pair of natural adjoint functors
\[\Psi_* : \text{Pre}^\mathcal{E}(\text{Sm}/k) \rightleftarrows \text{Mod} \mathcal{O} : \Psi^* \]
induces a Quillen pair for the Nisnevich local projective (respectively motivic) model structures on \(\text{Pre}^\mathcal{E}(\text{Sm}/k)\) and \(\text{Mod} \mathcal{O}\). In particular, one has adjoint functors between triangulated categories
\[\Psi_* : \text{SH}_{\text{Nil}}^\text{nis}(k) \rightleftarrows \text{SH}_{\text{Nil}}^\text{nis} \mathcal{O} : \Psi^* \quad \text{and} \quad \Psi_* : \text{SH}_{\text{Nil}}^\text{mot}(k) \rightleftarrows \text{SH}_{\text{Nil}}^\text{mot} \mathcal{O} : \Psi^*. \]
3. The triangulated category $D\Theta^{eff}(k)$

Throughout this section we work with a strict V-spectral category Θ. We shall often work with simplicial Θ-modules $M[\bullet]$. The realization of $M[\bullet]$ is the Θ-module $|M|$ defined as the coend

$$|M| = \Delta[\bullet]_+ \wedge M[\bullet]$$

of the functor $\Delta[\bullet]_+ \wedge M[\bullet] : \Delta \times \Delta^{op} \to \text{Mod} \Theta$. Here $\Delta[n]$ is the standard simplicial n-simplex.

Recall that the simplicial ring $k[\Delta]$ is defined as

$$k[\Delta] = k[x_0, \ldots, x_n]/(x_0 + \cdots + x_n - 1).$$

By Δ we denote the cosimplicial affine scheme $\text{Spec}(k[\Delta])$. Let $M \in \text{Mod} \Theta \mapsto M_f \in \text{Mod} \Theta$

be a fibrant replacement functor in the Nisnevich local model structure on $\text{Mod} \Theta$. Given an Θ-module M, we set

$$C_*(M) := |\text{Hom}(\Delta, M_f)|.$$

Note that $C_*(M)$ is an Θ-module and is functorial in M. If we regard M_f as a constant simplicial Θ-module, the map of cosimplicial schemes $\Delta \to pt$ induces a map of Θ-modules

$$M \to C_*(M).$$

Lemma 3.1. The functor C_* respects Nisnevich local weak equivalences. In particular, it induces a triangulated endofunctor

$$C_* : \text{SH}^{\text{nis}}_S \Theta \to \text{SH}^{\text{nis}}_S \Theta.$$

Proof. Let $\alpha : L \to M$ be a Nisnevich local weak equivalence of Θ-modules. By [1, 5.12] the forgetful functor $\Psi^\prime : \text{Mod} \Theta \to \text{Pre}^V(\text{Sm}/k)$ respects Nisnevich local weak equivalences and Nisnevich local fibrant objects. It follows that the fibrant replacement

$$\alpha_f : L_f \to M_f$$

of α is a level equivalence of presheaves of ordinary symmetric spectra, and hence so is each map

$$\text{Hom}(\Delta^n, \alpha_f) : \text{Hom}(\Delta^n, L_f) \to \text{Hom}(\Delta^n, M_f), \quad n \geq 0.$$

Since the realization functor respects level equivalences, our assertion follows. \qed

One of advantages of strict V-spectral categories is that we can construct an \mathbb{A}^1-local replacement of an Θ-module M in two steps. We first take $C_*(M)$ and then its Nisnevich local replacement $C_*(M)_f$.

Theorem 3.2. The natural map $M \to C_*(M)_f$ is an \mathbb{A}^1-local replacement of M in the motivic model structure of Θ-modules.

Proof. The presheaves $\pi_i(C_*(M))$, $i \in \mathbb{Z}$, are homotopy invariant and have $\pi_0 \Theta$-transfers. Since Θ is a strict V-spectral category then each Nisnevich sheaf $\pi_i^{\text{nis}}(C_*(M)_f)$ is strictly homotopy invariant and has $\pi_0 \Theta$-transfers. By [8, 6.2.7] $C_*(M)_f$ is \mathbb{A}^1-local in the motivic model category structure on $\text{Pre}^V(\text{Sm}/k)$. By Lemma 2.6 Θ is motivically excisive, hence [1, 5.12] implies $C_*(M)_f$ is \mathbb{A}^1-local in the motivic model category structure on $\text{Mod} \Theta$.

The map $M \to C_*(M)_f$ is the composite

$$M \to M_f \to C_*(M) \to C_*(M)_f.$$

The left and right arrows are Nisnevich local trivial cofibrations. The middle arrow is a level \mathbb{A}^1-weak equivalence in $\text{Pre}^X(Sm/k)$ by [9, 3.8]. By Lemma 2.6 \mathcal{O} is motivically excisive, hence [11, 5.12] implies the middle arrow is an \mathbb{A}^1-weak equivalence in $\text{Mod} \mathcal{O}$.

Definition 3.3. The \mathcal{O}-motive $M_{\mathcal{O}}(X)$ of a smooth algebraic variety $X \in Sm/k$ is the \mathcal{O}-module $C_*(\mathcal{O}(-X))$. We say that an \mathcal{O}-module M is bounded below if for $i \ll 0$ the Nisnevich sheaf $\pi^\text{nis}_i(M)$ is zero. M is n-connected if $\pi^\text{nis}_i(M)$ are trivial for $i \leq n$. M is connective is it is $(−1)$-connected, i.e., $\pi^\text{nis}_i(M)$ vanish in negative dimensions.

Corollary 3.4. If an \mathcal{O}-module M is bounded below (respectively n-connected) then so is $C_*(M)$. In particular, the \mathcal{O}-motive $M_{\mathcal{O}}(X)$ of any smooth algebraic variety $X \in Sm/k$ is connective.

Proof. This follows from the preceding theorem and Morel’s Connectivity Theorem [8].

Denote by $D\mathcal{O}_-(k)$ the full triangulated subcategory of $SH^\text{nis}_S \mathcal{O}$ of bounded below \mathcal{O}-modules. We also denote by $D\mathcal{O}^{eff}_-(k)$ the full triangulated subcategory of $D\mathcal{O}_-(k)$ of those \mathcal{O}-modules M such that each Nisnevich sheaf $\pi^\text{nis}_i(M)$ is homotopy invariant. $D\mathcal{O}^{eff}_-(k)$ is an analog of Voevodsky’s triangulated category $DM^{eff}_-(k)$ [15]. We shall show below that $DM^{eff}_-(k)$ is equivalent to $D\mathcal{O}^{eff}_-(k)$ if $\mathcal{O} = \mathcal{O}_\text{cor}$.

Theorem 3.5. Let \mathcal{O} be a strict \mathbb{V}-spectral category. Then the following statements are true:

1. The kernel of C_* is the full triangulated subcategory \mathcal{T} of $SH^\text{nis}_S \mathcal{O}$ generated by the compact objects $$\text{cone}(\mathcal{O}(-X \times \mathbb{A}^1) \to \mathcal{O}(-X), \quad X \in Sm/k.$$ Moreover, C_* induces a triangle equivalence of triangulated categories $$SH^\text{nis}_S \mathcal{O}/\mathcal{T} \cong SH^\text{mot} \mathcal{O}.$$ 2. The functor $$C_* : D\mathcal{O}_-(k) \to D\mathcal{O}_-(k)$$ lands in $D\mathcal{O}^{eff}_-(k)$. The kernel of C_* is $\mathcal{I}_- := \mathcal{T} \cap D\mathcal{O}_-(k)$. Moreover, C_* is left adjoint to the inclusion functor $$i : D\mathcal{O}^{eff}_-(k) \to D\mathcal{O}_-(k)$$ and $D\mathcal{O}^{eff}_-(k)$ is triangle equivalent to the quotient category $D\mathcal{O}_-(k)/\mathcal{I}_-$.

Proof. (1). The localization theory of compactly generated triangulated categories implies the quotient category $SH^\text{nis}_S \mathcal{O}/\mathcal{T}$ is triangle equivalent to the full triangulated subcategory $$\mathcal{T}^\perp = \{M \in SH^\text{nis}_S \mathcal{O} \mid \text{Hom}_{SH^\text{mot}_S \mathcal{O}}(T,M) = 0 \text{ for all } T \in \mathcal{T}\}.$$ Moreover, $$\mathcal{T} = (\mathcal{T}^\perp)^\perp = \{X \in SH^\text{nis}_S \mathcal{O} \mid \text{Hom}_{SH^\text{mot}_S \mathcal{O}}(X,M) = 0 \text{ for all } M \in \mathcal{T}^\perp\}.$$ By construction, \mathcal{T}^\perp can be identified up to natural triangle equivalence with the full triangulated subcategory of \mathbb{A}^1-local \mathcal{O}-modules. The latter subcategory is naturally equivalent to $SH^\text{mot}_S \mathcal{O}$, because the motivic model structure on \mathcal{O}-modules is obtained from the Nisnevich local model structure by Bousfield localization with respect to the maps $$\mathcal{O}(-X \times \mathbb{A}^1) \to \mathcal{O}(-X), \quad X \in Sm/k.$$
Recall that a map $M \to N$ of \mathcal{O}-modules is a motivic equivalence if and only if for any \mathbb{A}^1-local \mathcal{O}-module L the induced map

$$\text{Hom}_{\text{SH}^{w}_{\mathcal{S}^0}}(N, L) \to \text{Hom}_{\text{SH}^{w}_{\mathcal{S}^0}}(M, L)$$

is an isomorphism. Given an \mathcal{O}-module M, the map $M \to C_\ast(M)$ is a motivic equivalence by Theorem 3.2. If we fit the arrow into a triangle in $\text{SH}^{w}_{\mathcal{S}^0}$

$$X_M \to M \to C_\ast(M) \to X_M[1],$$

it will follow that $\text{Hom}_{\text{SH}^{w}_{\mathcal{S}^0}}(X_M, L) = 0$ for all $L \in \mathcal{T}$. We see that for any \mathcal{O}-module M one has $X_M \in \perp (\mathcal{T}) = \mathcal{T}$.

If $C_\ast(M) \cong 0$ in $\text{SH}^{\text{Nis}}_{\mathcal{S}^0}$, then $M \cong X_M \in \mathcal{T}$. Thus, $M \in \mathcal{T}$ in this case. On the other hand, if $M \in \mathcal{T}$ then $C_\ast(M) \in \mathcal{T}$, since $X_M \in \mathcal{T}$ and \mathcal{T} is a thick triangulated subcategory in $\text{SH}^{\text{Nis}}_{\mathcal{S}^0}$. On the other hand, Theorem 3.2 implies $C_\ast(M) \in \mathcal{T}$, and therefore $C_\ast(M) \in \mathcal{T} \cap \mathcal{T}^\perp = 0$. We conclude that $\mathcal{T} = \text{Ker}C_\ast$.

(2). For any $M \in \text{Mod} \mathcal{O}$ the presheaves $\pi_i(C_\ast(M))$, $i \in \mathbb{Z}$, are homotopy invariant and have $\pi_0 \mathcal{O}$-transfers. Since \mathcal{O} is a strict V-spectral category then each Nisnevich sheaf $\pi^{\text{Nis}}_i(C_\ast(M))$ is homotopy invariant. Therefore the functor

$$C_\ast : \text{D} \mathcal{O}_{-}(k) \to \text{D} \mathcal{O}_{-}(k)$$

lands in $\text{D} \mathcal{O}_{\text{eff}}(k)$. It follows from the first part of the theorem that the kernel of C_\ast is $\mathcal{T} := \mathcal{T} \cap \text{D} \mathcal{O}_{-}(k)$.

Let us prove that $\text{D} \mathcal{O}_{\text{eff}}(k) = \mathcal{T} \cap \text{D} \mathcal{O}_{-}(k)$. Clearly, $\mathcal{T} \cap \text{D} \mathcal{O}_{-}(k) \subset \text{D} \mathcal{O}_{\text{eff}}(k)$. Suppose $M \in \text{D} \mathcal{O}_{\text{eff}}(k)$. Then $M_f \in \text{D} \mathcal{O}_{\text{eff}}(k)$. We have that M_f is a fibrant \mathcal{O}-module in the Nisnevich local model structure and each $\pi^{\text{Nis}}_i(M_f)$ is a strictly homotopy invariant sheaf, because \mathcal{O} is a strict V-spectral category. By [8] 6.2.7 M_f is \mathbb{A}^1-local in the motivic model category structure on $\text{Pre}^L_\mathbb{S}(\mathbb{S}^n/k)$. By Lemma 2.6 \mathcal{O} is motivically excisive, hence [11] 5.12 implies M_f is \mathbb{A}^1-local in the motivic model category structure on $\text{Mod} \mathcal{O}$. We see that $M \in \mathcal{T} \cap \text{D} \mathcal{O}_{-}(k)$.

Let $E \in \text{D} \mathcal{O}_{\text{eff}}(k)$ and $M \in \text{D} \mathcal{O}_{-}(k)$. Applying the functor $\text{Hom}_{\text{D} \mathcal{O}_{-}(k)}(-, E)$ to triangle (3), one gets

$$\text{Hom}_{\text{D} \mathcal{O}_{-}(k)}(M, E) \cong \text{Hom}_{\text{D} \mathcal{O}_{-}(k)}(C_\ast(M), E) = \text{Hom}_{\text{D} \mathcal{O}_{\text{eff}}(k)}(C_\ast(M), E).$$

Thus C_\ast is left adjoint to the inclusion functor $i : \text{D} \mathcal{O}_{\text{eff}}(k) \to \text{D} \mathcal{O}_{-}(k)$.

It remains to show that $\text{D} \mathcal{O}_{\text{eff}}(k)$ is triangle equivalent to the quotient category $\text{D} \mathcal{O}_{-}(k)/\mathcal{T}$. By the first part of the theorem it is enough to prove that the natural functor

$$\text{D} \mathcal{O}_{-}(k)/\mathcal{T} \to \text{SH}^{\text{Nis}}_{\mathcal{S}^0} \mathcal{O}/\mathcal{T}$$

is fully faithful. Consider an arrow $M \xrightarrow{s} N$ in $\text{SH}^{\text{Nis}}_{\mathcal{S}^0}$, where $M \in \text{D} \mathcal{O}_{-}(k)$ and s is such that $\text{cone}(s) \in \mathcal{T}$. There is a commutative diagram in $\text{SH}^{\text{Nis}}_{\mathcal{S}^0}$

$$
\begin{array}{ccc}
M & \xrightarrow{s} & N \\
\downarrow{u_M} & & \downarrow{u_N} \\
C_\ast(M) & \xrightarrow{C_\ast(s)} & C_\ast(N)
\end{array}
$$

in which cones of the vertical arrows are in \mathcal{T}. Since $\text{cone}(C_\ast(s)) \cong C_\ast(\text{cone}(s)) = 0$ in $\text{SH}^{\text{Nis}}_{\mathcal{S}^0}$, we see that $C_\ast(s)$ is an isomorphism in $\text{SH}^{\text{Nis}}_{\mathcal{S}^0}$. Therefore $C_\ast(N) \in \text{D} \mathcal{O}_{-}(k)$ and $\text{cone}(u_N \circ s) \in \mathcal{T}$. By [6] 9.1 $\text{D} \mathcal{O}_{-}(k)/\mathcal{T}$ is a full subcategory of $\text{SH}^{\text{Nis}}_{\mathcal{S}^0} \mathcal{O}/\mathcal{T}$.

\qed
Let \mathcal{O}_{cor} be the Eilenberg–Mac Lane spectral category associated with the ringoid \mathcal{O}. If the field k is perfect then [14] implies \mathcal{O}_{cor} is a strict V-spectral category. Recall that the Voevodsky triangulated category of motives $DM^{eff}(k)$ is the full triangulated subcategory of (cohomologically) bounded above complexes of the derived category $D(\text{ShTr})$ of Nisnevich sheaves with transfers (see [12, 15]). The next result says that $DM^{eff}(k)$ can be recovered from $D\mathcal{O}^{eff}(k)$ if $\mathcal{O} = \mathcal{O}_{\text{cor}}$.

Corollary 3.6. Let k be a perfect field and $\mathcal{O} = \mathcal{O}_{\text{cor}}$, then there is a natural triangle equivalence of triangulated categories

$$D\mathcal{O}^{eff}(k) \xrightarrow{\sim} DM^{eff}(k).$$

Proof. By [1] section 6] $SH^\text{nis}_0 \mathcal{O}$ is naturally triangle equivalent to $D(\text{ShTr})$. Moreover, this equivalence takes bounded below \mathcal{O}-modules to (cohomologically) bounded above complexes. Restriction of the equivalence to $D\mathcal{O}^{eff}(k)$ yields the desired triangle equivalence of $D\mathcal{O}^{eff}(k)$ and $DM^{eff}(k)$. \hfill \square

To conclude the section, it is also worth to mention another way of constructing a motivic fibrant replacement on \mathcal{O}-modules. Namely, for any $M \in \text{Mod} \mathcal{O}$ we set

$$\tilde{C}_s(M) := |d \mapsto (\text{Hom}(\Delta^d, M))_f|.$$

Clearly, $\tilde{C}_s(M)$ is functorial in M. Observe that if M is Nisnevich local then $C_s(M)$ is zigzag level equivalent to $\tilde{C}_s(M)$, because $\text{Hom}(\Delta^d, M)$ and $\text{Hom}(\Delta^d, M)_f$ are Nisnevich local and the arrows

$$\text{Hom}(\Delta^d, M)_f \leftarrow \text{Hom}(\Delta^d, M) \rightarrow (\text{Hom}(\Delta^d, M))_f$$

are level weak equivalences.

Proposition 3.7. The natural map $M \rightarrow \tilde{C}_s(M)_f$ is an A^1-local replacement of M in the motivic model structure of \mathcal{O}-modules.

Proof. The map $M \rightarrow \tilde{C}_s(M)_f$ is the composite

$$M \rightarrow |d \mapsto \text{Hom}(\Delta^d, M)| \rightarrow |d \mapsto (\text{Hom}(\Delta^d, M))_f| \rightarrow \tilde{C}_s(M)_f.$$

The left arrow is a level A^1-weak equivalence in $\text{Pre}^\mathbf{c}(\text{Sm}/k)$ by [9, 3.8]. The middle arrow is a Nisnevich local weak equivalence, because it is the realization of a simplicial Nisnevich local weak equivalence. The right arrow is plainly a Nisnevich local weak equivalence as well.

The presheaves $\pi_i(|d \mapsto \text{Hom}(\Delta^d, M))$, $i \in \mathbb{Z}$, are homotopy invariant and have $\pi_i\mathcal{O}$-transfers. Since \mathcal{O} is a strict V-spectral category then each Nisnevich sheaf $\pi_i^{\text{nis}}(\tilde{C}_s(M))$ is strictly homotopy invariant and has $\pi_i\mathcal{O}$-transfers. By [8, 6.2.7] $C_s(M)_f$ is A^1-local in the motivic model category structure on $\text{Pre}^\mathbf{c}(\text{Sm}/k)$. By Lemma 2.6 \mathcal{O} is motivically excisive, hence [11, 5.12] implies the arrow of the proposition is an A^1-weak equivalence in $\text{Mod} \mathcal{O}$. \hfill \square

4. **The spectral category \mathbb{K}**

In this section the definition of the V-spectral category \mathbb{K} is given. It is obtained by taking K-theory symmetric spectra $K(\mathcal{A}(U,X))$ of certain additive categories $\mathcal{A}(U,X)$, $U,X \in \text{Sm}/k$. To define these categories we need some preliminaries.

Notation 4.1. Let $U,X \in \text{Sm}/k$. Define $\text{Supp}(U \times X/X)$ as the set of all closed subsets in $U \times X$ of the form $A = \bigcup A_i$, where each A_i is a closed irreducible subset in $U \times X$ which is finite and surjective over U. The empty subset in $U \times X$ is also regarded as an element of $\text{Supp}(U \times X/X)$.
Notation 4.2. Given $U, X \in \text{Sm}/k$ and $A \in \text{Supp}(U \times X/X)$, let $I_A \subset \mathcal{O}_{U \times X}$ be the ideal sheaf of the closed set $A \subset U \times X$. Denote by A_m the closed subscheme in $U \times X$ of the form $(A, \mathcal{O}_{U \times X}/I_A^m)$. If $m = 0$, then A_m is the empty subscheme. Define $\text{SubSch}(U \times X/X)$ as the set of all closed subschemes in $U \times X$ of the form A_m.

For any $Z \in \text{SubSch}(U \times X/X)$ we write $p_U^Z : Z \to U$ to denote $p \circ i$, where $i : Z \hookrightarrow U \times X$ is the closed embedding and $p : U \times X \to U$ is the projection. If there is no likelihood of confusion we shall write p_U instead of p_U^Z, dropping Z from notation.

Clearly, for any $Z \in \text{SubSch}(U \times X/X)$ the reduced scheme Z^{red}, regarded as a closed subset of $U \times X$, belongs to $\text{Supp}(U \times X/X)$.

Notation 4.3. Let $V, U, X \in \text{Sm}/k$. Let $A \in \text{Supp}(V \times U/U)$, $B \in \text{Supp}(U \times X/X)$. Set

$$B \circ A = p_{VX}(V \times B \cap A \times X) \subset V \times X,$$

where $p_{VX} : V \times U \times X \to V \times X$ is the projection. One can check that

$$B \circ A \in \text{Supp}(V \times X/X).$$

Notation 4.4. Let $V, U, X \in \text{Sm}/k$. Let $S \in \text{SubSch}(V \times U/U)$, $Z \in \text{Subsch}(U \times X/X)$. By 4.2 one has $S^{\text{red}} \in \text{Supp}(V \times U/U)$, $Z^{\text{red}} \in \text{Supp}(U \times X/X)$. By 4.3 one has $Z^{\text{red}} \circ S^{\text{red}} \in \text{Supp}(V \times X/X)$. One can show that for some integer $k \gg 0$ there exists a scheme morphism $\pi_k : T = S \times X \cap V \times Z \to (Z^{\text{red}} \circ S^{\text{red}})_k$ such that $i_k \circ \pi_k = p_{VX} \circ i_T : T \to V \times X$, where $i_k : (Z^{\text{red}} \circ S^{\text{red}})_k \hookrightarrow V \times X$ and $i_T : T \hookrightarrow V \times U \times X$ are closed embeddings, $p_{VX} : V \times U \times X \to V \times X$ is the projection.

If there exists π_k satisfying the condition above then it is unique. Moreover, for any $m > k$ one has $\pi_m \circ \pi_k = \pi_m$, where $\pi_m : (Z^{\text{red}} \circ S^{\text{red}})_k \hookrightarrow (Z^{\text{red}} \circ S^{\text{red}})_m$ is the closed embedding.

We shall often write $Z \circ S$ to denote $(Z^{\text{red}} \circ S^{\text{red}})_k$, provided that there exists the required π_k. In this case we shall also write π to denote $\pi_k : T \to (Z \circ S)$.

Definition 4.5. For any $U, X \in \text{Sm}/k$ we define objects of $\mathcal{A}(U, X)$ as equivalence classes for the triples

$$(n, Z, \varphi) : p_{U, n}(\mathcal{O}_Z) \to M_n(\mathcal{O}_U),$$

where n is a nonnegative integer, $Z \in \text{SubSch}(U \times X/X)$ and φ is a non-unital homomorphism of sheaves of \mathcal{O}_U-algebras. Let $p(\varphi)$ be the idempotent $\varphi(1) \in M_n(\Gamma(U, \mathcal{O}_U))$, then $P(\varphi) = \text{Im}(p(\varphi))$ can be regarded as a $p_{U, n}(\mathcal{O}_Z)$-module by means of φ.

By definition, two triples $(n, Z, \varphi), (n', Z', \varphi')$ are equivalent if $n = n'$ and there is a triple (n'', Z'', φ'') such that $n = n'' = n', Z, Z' \subset Z''$ are closed subschemes in Z'', and the diagrams

$$\begin{array}{ccc}
p_{U, n}(\mathcal{O}_Z) & \xrightarrow{\varphi} & M_n(\mathcal{O}_U) \\
p_{U, n}(\mathcal{O}_{Z''}) & \xrightarrow{\varphi''} & M_n(\mathcal{O}_U)
\end{array}$$

are commutative. We shall often denote an equivalence class for the triples by Φ. Though Z is not uniquely defined by Φ, nevertheless we shall also refer to $Z \subset U \times X$ as the support of Φ.

Given $\Phi, \Phi' \in \mathcal{A}(U, X)$ we first equalize supports Z, Z' of the objects Φ, Φ' and then set

$$\text{Hom}_{\mathcal{A}(U, X)}(\Phi, \Phi') = \text{Hom}_{p_{U, n}(\mathcal{O}_Z)}(P(\varphi), P(\varphi')).$$

Given any three objects $\Phi, \Phi', \Phi'' \in \mathcal{A}(U, X)$ a composition law

$$\text{Hom}_{\mathcal{A}(U, X)}(\Phi, \Phi') \circ \text{Hom}_{\mathcal{A}(U, X)}(\Phi', \Phi'') \to \text{Hom}_{\mathcal{A}(U, X)}(\Phi, \Phi'')$$
is defined in the obvious way. This makes therefore $\mathcal{A}(U,X)$ an additive category. The zero object is the equivalence class of the triple $(0,\emptyset,0)$. By definition,

$$\Phi_1 \oplus \Phi_2 = (n_1 + n_2, Z_1 \cup Z_2, p_{U,*}(\theta_{Z_1 \cup Z_2}) \to p_{U,*}(\theta_{Z_1}) \times p_{U,*}(\theta_{Z_2}) \to M_{n_1}(\theta_U) \times M_{n_2}(\theta_U)) \to M_{n_1 + n_2}(\theta_U)).$$

Clearly, $P(\Phi_1 \oplus \Phi_2) \cong P(\Phi_1) \oplus P(\Phi_2)$.

We now want to construct a bilinear pairing

$$\mathcal{A}(V,U) \times \mathcal{A}(U,X) \xrightarrow{\circ} \mathcal{A}(V,X), \quad U,V,X \in Sm/k.$$

First, define it on objects. Namely,

$$((n_1, Z_1, \phi_1), (n_2, Z_2, \phi_2)) \mapsto (n_1 n_2, Z_2 \circ Z_1, \phi_2 \circ \phi_1),$$

where $Z_2 \circ Z_1 \in \text{SubSch}(V \times X/X)$ is a closed subscheme of $V \times X$ defined in Notation 4.4. The nonunital homomorphism $\phi_2 \circ \phi_1 : p_{V,*}(Z_2 \circ Z_1) \to M_{n_2 n_1}(\theta_V)$ is given by the composition

$$\begin{align*}
q_{V,*}(\theta_{Z_1 \times U Z_2}) = p_{V,*}(p_{Z_1,*}(\theta_{Z_1 \times U Z_2})) & \xrightarrow{\text{comp}} p_{V,*}(\theta_{Z_1}) \\
p_{V,*}(\phi_2 \circ \phi_1) & \xrightarrow{\text{comp}} M_{n_2}(p_{V,*}(\theta_{Z_1})) \\
p_{V,*}(\phi_2 \circ \phi_1) & \xrightarrow{\text{comp}} M_{n_2}(\phi_1) \\
n_m & \xrightarrow{\text{comp}} M_{n_2}(\phi_1)
\end{align*}$$

where L is a canonical isomorphism obtained by inserting (n_1, n_1)-matrices into entries of a (n_2, n_2)-matrix, the diagrams

$$\begin{array}{ccc}
Z_1 \times U & \xrightarrow{\phi_2} & Z_2 \\
\downarrow & & \downarrow \\
Z & \xrightarrow{\phi_1} & X
\end{array} \quad \begin{array}{ccc}
Z_1 \times U & \xrightarrow{\phi_2} & Z_2 \\
\downarrow & & \downarrow \\
Z & \xrightarrow{\phi_1} & X
\end{array}$$

are commutative, and $\pi^* : \theta_{Z_2 \circ Z_1} \to \phi_1^*(\theta_{Z_1 \times U Z_2})$ is induced by the scheme morphism $\pi : Z_1 \times U Z_2 \to Z_2 \circ Z_1$ from Notation 4.4. Finally, $\phi_{2,Z_1} : p_{Z_1,*}(\theta_{Z_1 \times U Z_2}) \to M_{n_2}(\theta_{Z_1})$ is defined as a unique non-unital homomorphism of sheaves of θ_{Z_1}-algebras such that for any open affine $U' \subset U$ and any open affine $Z'_1 \subset Z_1$, with $r(Z'_1) \subset U'$ and $Z'_2 = p_{U'}^{-1}(U')$ the value of ϕ_{2,Z_1} on Z'_1 coincides with the non-unital homomorphism of $k[Z'_1]$-algebras

$$k[Z'_1] \otimes_{k[U']} k[Z'_2] \xrightarrow{\Phi \otimes \phi_2} k[Z'_1] \otimes_{k[U']} M_{n_2}(k[U']) \xrightarrow{a \otimes \beta \circ r_1(\beta)} M_{n_2}(k[Z'_1]).$$

For a future use set $p(\phi_{2,Z_1}) = \phi_{2,Z_1}(1) \in M_{n_2}(\Gamma(Z_1, \theta_{Z_1}))$ and $P(\phi_{2,Z_1}) = \text{Im}[p(\phi_{2,Z_1}) : \theta_{Z_1}^{O_{Z_1}} \to \theta_{Z_1}^{O_{Z_1}}]$.

11
Lemma 4.10. For any $U \in \mathcal{A}(V, U)$ and $\Phi_1 \in \mathcal{A}(V, U)$, $\Phi_2 \in \mathcal{A}(U, X)$, consider the diagram

$$
p_{V, s}(\mathcal{O}^{n_2}_{Z_1}) \otimes_{p_{V, s}(\mathcal{O}_{Z_1})} p(\Phi_1) \xrightarrow{\text{can}} P(\Phi_1)^{n_2} \xrightarrow{\ell} (\mathcal{O}^{n_2}_{V})^{n_2} \xrightarrow{\rho(\mathcal{O}_{V})} \mathcal{O}_{V}^{n_2}, \quad \Phi \in \mathcal{O}{Z_1}
$$

where $\sigma_{12} = p(\Phi_2 \circ \Phi_1) \circ \ell \circ i_2 \circ \text{can} \circ (i_2 \otimes \mathcal{id})$ (here $\ell(e_{ij}) = e_{(i+j)n}$). It is worth to note that the isomorphism ℓ induces an \mathcal{O}_V-algebra isomorphism $M_{n_2}(M_{n_1}(\mathcal{O}_V)) \cong M_{n_2n_1}(\mathcal{O}_V)$ which coincides with the canonical isomorphism L obtained by inserting (n_1, n_1)-matrices into entries of a (n_2, n_2)-matrix.

Definition 4.6. An $p_{V, s}(\mathcal{O}^{n_2}_{Z_1})$-module structure on $p_{V, s}(P(\mathcal{O}_{Z_1})) \otimes_{p_{V, s}(\mathcal{O}_{Z_1})} P(\phi_1)$ is defined as follows. For any open $V^0 \subseteq V$, $f \in \Gamma(V^0, p_{V, s}(\mathcal{O}^{n_2}_{Z_1}))$, $m_1 \in \Gamma(V^0, P(\phi_1))$, and $m_2 \in \Gamma(V^0, p_{V, s}(P(\mathcal{O}_{Z_1})))$ set

$$f(m_2 \otimes m_1) = ((p_{V, s}(\phi_2) \circ \text{can}')(f)(m_2) \otimes m_1.
$$

An $p_{V, s}(\mathcal{O}^{n_2}_{Z_1})$-module structure on $P(\phi_2 \circ \phi_1)$ is defined as follows. For any open $V^0 \subseteq V$, $f \in \Gamma(V^0, p_{V, s}(\mathcal{O}^{n_2}_{Z_1}))$, and $m \in \Gamma(V^0, P(\phi_2 \circ \phi_1))$ set

$$f = (\phi_2 \circ \phi_1)(f)(m).$$

In particular,

$$1 \cdot m = ((\phi_2 \circ \phi_1)(1))(m) = p(\phi_2 \circ \phi_1)(m) = m,$$

because $m \in \text{Im}(p(\phi_2 \circ \phi_1))$.

Lemma 4.7. The map σ_{12} is an isomorphism of \mathcal{O}_V-modules and, moreover, an isomorphism of the $p_{V, s}(\mathcal{O}^{n_2}_{Z_1})$-modules.

Let $\alpha_1 : \Phi_1 \rightarrow \Phi'_1$ and $\alpha_2 : \Phi_2 \rightarrow \Phi'_2$ be morphism in $\mathcal{A}(V, U)$ and $\mathcal{A}(U, X)$ respectively. We set

$$\alpha_2 \circ \alpha_1 = \sigma_{12}^{-1} \circ (\alpha_2 \otimes \alpha_1) \circ \sigma_{12} : P(\phi_2 \circ \phi_1) \rightarrow P(\phi'_2 \circ \phi'_1).$$

The definition of pairing (5) is finished. It is defined on objects above and on morphisms by formula (7).

Lemma 4.8. The functor $\mathcal{A}(V, U) \times \mathcal{A}(U, X) \rightarrow \mathcal{A}(V, U)$ is bilinear for all $U, V, X \in Sm/k$.

For any $X \in Sm/k$ we define an object $\text{id}_X \in \text{Ob} \mathcal{A}(X, X)$ by

$$\text{id}_X = (1, \Delta_X, \text{id} : \mathcal{O}_X \rightarrow \mathcal{O}_X).$$

Lemma 4.9. For any $U, X \in Sm/k$ the functors $\{\text{id}_U\} \times \mathcal{A}(U, X) \rightarrow \mathcal{A}(U, X)$ and $\mathcal{A}(U, X) \times \{\text{id}_X\} \rightarrow \mathcal{A}(U, X)$ are identities on $\mathcal{A}(U, X)$.

Lemma 4.10. For any $U, V, W, X \in Sm/k$ and any $\Phi_1 \in \mathcal{A}(W, V), \Phi_2 \in \mathcal{A}(V, U), \Phi_3 \in \mathcal{A}(U, X)$ the following statements are true:

1. $\Phi_1 \circ (\Phi_2 \circ \Phi_1) = (\Phi_3 \circ \Phi_2) \circ \Phi_1 \in \text{Ob} \mathcal{A}(W, X)$;
2. $p(\phi_2 \circ (\phi_2 \circ \phi_1)) = p((\phi_2 \circ \phi_2) \circ \phi_1)$ and $P(\phi_2 \circ (\phi_2 \circ \phi_1)) = P((\phi_2 \circ \phi_2) \circ \phi_1)$;
3. suppose $\alpha_i : \Phi_i \rightarrow \Phi'_i$ are morphisms ($i = 1, 2, 3$), then $\alpha_3 \circ (\alpha_2 \circ \alpha_1) = (\alpha_3 \circ \alpha_2) \circ \alpha_1 \in \text{Hom}_{\mathcal{A}(W, X)}(P(\phi_3 \circ (\phi_2 \circ \phi_1)), P((\phi'_3 \circ \phi'_2) \circ \phi'_1))$.

Proposition 4.11. For any \(U, V, W, X \in \text{Sm}/k \) the diagram of functors

\[
\begin{array}{ccc}
\mathcal{A}(W, V) \times \mathcal{A}(V, U) \times \mathcal{A}(U, X) & \xrightarrow{\sigma \times \id} & \mathcal{A}(W, V) \\
\id \times \sigma & \downarrow & \\
\mathcal{A}(W, V) \times \mathcal{A}(V, X) & \xrightarrow{\sigma} & \mathcal{A}(W, X)
\end{array}
\]

is strictly commutative.

Lemma 4.12. Pairings (5) together with \(\{ \id_X \}_{X \in \text{Sm}/k} \) determine a category \(\mathcal{A} \) on \(\text{Sm}/k \) which is also enriched over additive categories. Moreover, the rules \(X \mapsto X \) and \(f \mapsto \Phi_f = (1, \Gamma_f, \id : \Theta_U \to \Theta_U) \) give a functor \(\sigma : \text{Sm}/k \to \mathcal{A} \).

The following notation will be useful later.

Notation 4.13. Let \(X, X', Y \in \text{Sm}/k \) and \(f : X' \to X \) be a morphism in \(\text{Sm}/k \). Define a functor \(f^* : \mathcal{A}(X, Y) \to \mathcal{A}(X', Y) \) as the additive functor

\[
\mathcal{A}(X, Y) \xrightarrow{\sigma(f)} \mathcal{A}(X', Y).
\]

More precisely, \(f^*(\Phi) = \Phi \circ \sigma(f) \) and \(f^*(\alpha) = \alpha \circ \id_{\sigma(f)} \).

Let \(X, Y, Y' \in \text{Sm}/k \) and \(g : Y \to Y' \) be a morphism in \(\text{Sm}/k \). Define a functor \(g_* : \mathcal{A}(X, Y) \to \mathcal{A}(X, Y') \) as the additive functor

\[
\mathcal{A}(X, Y) \xrightarrow{\sigma(g)} \mathcal{A}(X, Y').
\]

Namely, \(g_*(\Phi) = \sigma(g) \circ \Phi \) and \(g_*(\alpha) = \id_{\sigma(g)} \circ \alpha \).

Using this notation and Proposition 4.11 one has the following

Corollary 4.14. Let \(f : X' \to X \) and \(g : Y \to Y' \) be morphisms in \(\text{Sm}/k \). Then \(f^* \circ g_* = g_* \circ f^* : \mathcal{A}(X, Y) \to \mathcal{A}(X', Y') \). If \(f' : X'' \to X' \) is a map in \(\text{Sm}/k \) then \((f \circ f')^* = (f')^* \circ f^* : \mathcal{A}(X, Y) \to \mathcal{A}(X'', Y) \). Also, for any map \(g' : Y' \to Y'' \) in \(\text{Sm}/k \) one has \((g' \circ g)^* = (g')^* \circ g_* : \mathcal{A}(X, Y) \to \mathcal{A}(X, Y'') \).

By [8] [6.1] for an additive category \(\mathcal{C} \), one can define the structure of a symmetric spectrum on the Waldhausen \(K \)-theory spectrum \(K(\mathcal{C}) \). By definition,

\[
K(\mathcal{C})_n = \{|\text{Ob } \mathcal{S}, Q \mathcal{C}|, \quad Q = \{1, \ldots, n\}\}.
\]

Moreover, strictly associative bilinear pairings of additive categories induce strictly associative pairings of their \(K \)-theory symmetric spectra (see [8] [6.1]).

Consider the category \(\mathcal{A} \) on \(\text{Sm}/k \). Given \(U, X \in \text{Sm}/k \), one sets

\[
\mathcal{K}(U, X) := K(\mathcal{A}(U, X)).
\]

Pairing (8) yields a pairing of symmetric spectra

\[
\mathcal{K}(V, U) \land \mathcal{K}(U, X) \to \mathcal{K}(V, X).
\]

Proposition 4.11 implies that (8) is a strictly associative pairing. Moreover, for any \(X \in \text{Sm}/k \) there is a map \(\bf{1} : S \to \mathcal{K}(X, X) \) which is subject to the unit coherence law (see [8] section 6.1). Note that \(\bf{1}_0 : S^0 \to \mathcal{K}(X, X)_0 \) is the map which sends the basepoint to the null object and the non-basepoint to the unit object \(\id_X \).

Thus we get the following
Theorem 4.15. The triple \((\mathbb{K}, \wedge, 1)\) determines a spectral category on \(\text{Sm}/k\). Moreover, the functor \(\sigma : \text{Sm}/k \to \mathcal{A}\) of Lemma 4.12 gives a spectral functor

\[
\sigma : \mathcal{O}_{\text{naive}} \to \mathbb{K}
\]

between spectral categories.

We now want to define a spectral functor

\[
\Box : \mathbb{K} \wedge \mathcal{O}_{\text{naive}} \to \mathbb{K}.
\]

It is in fact determined by additive functors

\[
f^* : \mathcal{A}(X, X') \to \mathcal{A}(X \times U, X' \times U'), \quad f : U \to U' \in \text{Mor}(\text{Sm}/k),
\]

satisfying certain reasonable properties mentioned below. If

\[
(n, Z, \varphi : p^n_X, (\theta_2) \to M_n(\mathcal{O}_X))
\]

is a representative for \(\Phi \in \mathcal{A}(X, X')\), then \(f^*(\Phi)\) is represented by the triple

\[
(n, Z \times \Gamma_f, \varphi \boxtimes \text{id}_U : (p^n_X \times \text{id}) \circ (\mathcal{O}_Z \times \Gamma_f) \to M_n(\mathcal{O}_{X \times U})).
\]

Here \(\varphi \boxtimes \text{id}_U\) is a unique non-unital homomorphism of \(\mathcal{O}_{X \times U}\)-algebras such that for any affine open subsets \(X_0 \subset X, U_0 \subset U\) and for \(Z_0 = (p^n_X)^{-1}(X_0) \subset Z\) the value of \(\varphi \boxtimes \text{id}_U\) on \(X_0 \times U_0\) is the following non-unital homomorphism of \(k[Z_0 \times U_0]\)-algebras:

\[
(q_{X,0} \times U_0)^{\ast} (\varphi(a)) \times (q_{U,0})^{\ast} (b) \in M_n(k[X_0 \times U_0]),
\]

where \(q_{X,0} : X^0 \times U_0 \to X^0\) and \(q_{U,0} : X^0 \times U_0 \to U^0\) are the projections.

To define \(f^*\) on morphisms, we note that the canonical morphism

\[
ad j : q^n_X(P(\varphi)) \xrightarrow{q^n_X(i_{P(\varphi)})} q^n_X(\mathcal{O}^n_{X_0}) \xrightarrow{\text{can}} M_n(\mathcal{O}_{X \times U}) \xrightarrow{p(f^*(\Phi))} P(f^*(\Phi))
\]

is an isomorphism. Given a morphism \(\alpha : \Phi \to \Phi'\) in \(\mathcal{A}(X, X')\), we set

\[
f^*(\alpha) = ad f \circ q^n_X(\alpha) \circ ad j^{-1} : P(f^*(\Phi)) \to P(f^*(\Phi')).
\]

Clearly, \(f^*\) is an additive functor.

Proposition 4.16. Let \(f_1 : U \to U', f_2 : U' \to U''\) be two maps in \(\text{Sm}/k\), \(\Phi_1, \Phi'_1 \in \text{Ob} \mathcal{A}(X, X')\), \(\Phi_2, \Phi'_2 \in \text{Ob} \mathcal{A}(X', X'')\), let \(\alpha_1 : \Phi_1 \to \Phi'_1\) be a morphism in \(\mathcal{A}(X, X')\) and let \(\alpha_2 : \Phi_2 \to \Phi'_2\) be a morphism in \(\mathcal{A}(X', X'')\). Then

1. \((f_2 \circ f_1)^* (\Phi_2 \circ \Phi_1) = f^*_2 (\Phi_2) \circ f^*_1 (\Phi_1);
2. \((f_2 \circ f_1)^* (\alpha_2 \circ \alpha_1) = f^*_2 (\alpha_2) \circ f^*_1 (\alpha_1).

Corollary 4.17. Under the assumptions of Proposition 4.16, the diagram of functors

\[
\begin{array}{ccc}
\mathcal{A}(X, X') \times \mathcal{A}(X', X'') & \xrightarrow{\circ} & \mathcal{A}(X, X'') \\
\mathcal{A}(X \times U, X' \times U') \times \mathcal{A}(X' \times U', X'' \times U'') & \xrightarrow{\circ} & \mathcal{A}(X \times U, X'' \times U'')
\end{array}
\]

is commutative.
Corollary 4.18. We have a spectral functor
\[\square : \mathbb{K} \wedge \mathcal{O}_{\text{naive}} \rightarrow \mathbb{K} \]
such that \((X,U) \in \text{Sm}/k \times \text{Sm}/k\) is mapped to \(X \times U \in \text{Sm}/k\). Moreover, for any morphism \(h : X \rightarrow X'\) in \(\text{Sm}/k\), regarded as the object \(\sigma(h)\) of \(\mathcal{A}(X,X')\), one has
\[f^* (\sigma(h)) = \sigma(f \times h) \in \text{Ob} \mathcal{A}(X \times U, X' \times U') \]
for every morphism of \(k\)-smooth schemes \(f : U \rightarrow U'\).

In what follows we shall denote by \(\mathbb{K}_0\) the ringoid \(\mathcal{O}_0(\mathbb{K})\).

Theorem 4.19 (Knizel [7]). For any \(\mathbb{K}_0\)-presheaf of abelian groups \(\mathcal{F}\), i.e. \(\mathcal{F}\) is a contravariant functor from \(\mathbb{K}_0\) to abelian groups, the associated Nisnevich sheaf \(\mathcal{F}_{\text{nis}}\) has a unique structure of a \(\mathbb{K}_0\)-presheaf for which the canonical homomorphism \(\mathcal{F} \rightarrow \mathcal{F}_{\text{nis}}\) is a homomorphism of \(\mathbb{K}_0\)-presheaves. If \(\mathcal{F}\) is homotopy invariant then so is \(\mathcal{F}_{\text{nis}}\). Moreover, if the field \(k\) is perfect then every \(\mathcal{A}\)-invariant Nisnevich \(\mathbb{K}_0\)-sheaf is strictly \(\mathcal{A}\)-invariant.

Remark 4.20. Although the category \(\mathcal{A}(X,Y)\) is different from the category of bimodules \(\mathcal{P}(X,Y)\) (see Appendix for the definition of \(\mathcal{P}(X,Y)\)), the proof of the preceding theorem is in spirit similar to the proof of the same fact for \(\mathbb{K}_0\)-presheaves obtained by Walker [17].

Proposition 4.21. \(\mathbb{K}_0\) is a \(V\)-ringoid. If the field \(k\) is perfect then it is also a strict \(V\)-ringoid.

Proof. The proof of [1] 5.9 shows that for any elementary distinguished square the sequence of Nisnevich sheaves associated to representable presheaves
\[0 \rightarrow \mathbb{K}_0,\text{nis}(-,U') \rightarrow \mathbb{K}_0,\text{nis}(-,U) \oplus \mathbb{K}_0,\text{nis}(-,X') \rightarrow \mathbb{K}_0,\text{nis}(-,X) \rightarrow 0 \]
is exact.

Let \(\rho : \text{Sm}/k \rightarrow \mathbb{K}_0\) be the composite functor
\[\text{Sm}/k \rightarrow \pi_0 \mathcal{O}_{\text{naive}} \xrightarrow{\pi_0(\sigma)} \pi_0(\mathbb{K}) = \mathbb{K}_0, \]
where \(\sigma : \mathcal{O}_{\text{naive}} \rightarrow \mathbb{K}\) is the spectral functor constructed in Theorem 4.15. Also, let a functor \(\square : \mathbb{K}_0 \times \text{Sm}/k \rightarrow \mathbb{K}_0\) be the composite functor
\[\mathbb{K}_0 \times \text{Sm}/k \rightarrow \mathbb{K}_0,\text{naive} \rightarrow \pi_0(\mathbb{K}) \xrightarrow{\pi_0(\square)} \mathbb{K}_0, \]
where \(\square : \mathbb{K} \wedge \mathcal{O}_{\text{naive}} \rightarrow \mathbb{K}\) is the spectral functor constructed in Corollary 4.18. Then we have that \(\text{id}_X \boxtimes f = \rho(\text{id}_X \times f), (u+v) \boxtimes f = u \boxtimes f + v \boxtimes f\) for all \(u,v \in \text{Mor}(\mathbb{K}_0)\) and \(f \in \text{Mor}(\text{Sm}/k)\).

Theorem 4.19 now implies \(\mathbb{K}_0\) is a \(V\)-ringoid. It also follows from Theorem 4.19 that it is a strict \(V\)-ringoid over perfect fields.

We are now in position to prove the main result of the section.

Theorem 4.22. The spectral category \(\mathbb{K}\) is a \(V\)-spectral category. If the field \(k\) is perfect then it is also a strict \(V\)-spectral category.

Proof. \(\mathbb{K}\) is connective by construction. It is proved similar to [1] 5.9 that \(\mathbb{K}\) is Nisnevich excisive. The structure spectral functor
\[\sigma : \mathcal{O}_{\text{naive}} \rightarrow \mathbb{K} \]
is constructed in Theorem 4.15.

It follows from Corollary 4.18 that there is a spectral functor
\[\square : \mathbb{K} \wedge \mathcal{O}_{\text{naive}} \rightarrow \mathbb{K} \]
sending \((X, U) \in Sm/k \times Sm/k\) to \(X \times U \in Sm/k\) and such that \(\text{id}_X \circ f = \sigma(\text{id}_X \times f)\) for all \(f \in \text{Mor}(Sm/k)\). Proposition 4.21 implies the ringoid \(K_0\) together with structure functors \(\Theta\) and \(\Theta'\) is a \(V\)-ringoid which is strict whenever the base field \(k\) is perfect. \(\square\)

We are now able to introduce the triangulated category of \(K\)-motives.

Definition 4.23. Suppose \(k\) is a perfect field. The **triangulated category of \(K\)-motives** \(DK^{ eff}(k)\) is the triangulated category \(D\Theta^{ eff}(k)\) constructed in Section 3 associated to the strict \(V\)-spectral category \(\Theta = \mathbb{K}\) of Theorem 4.22.

To conclude the section, we discuss further useful properties of categories \(\mathcal{A}(U,X)\)-s.

Proposition 4.24. Under Notation 4.12 and the notation of Lemma 4.12 and the notation which are just above Proposition 4.16 for any \(X, Y \in Sm/k\) and any morphism \(f : U \rightarrow V\) in \(Sm/k\) the following square of additive functors is strictly commutative

\[
\begin{array}{ccc}
\mathcal{A}(X \times V, Y \times V) & \xrightarrow{(1_X \times f)^*} & \mathcal{A}(X \times U, Y \times U) \\
\downarrow \text{id}_V & & \downarrow \text{id}_U \\
\mathcal{A}(X, Y) & \xrightarrow{\text{id}_X} & \mathcal{A}(X \times U, Y \times U).
\end{array}
\]

Notation 4.25. For every \(X \in Sm/k, Y \in Sm/k\) and \(n > 0\), denote by \(\mathcal{A}(X, Y)\left(\mathbb{G}_m^\times n\right)\) the category whose objects are the tuples \((\Phi, \theta_1, \ldots, \theta_n)\), where \(\Phi \in \mathcal{A}(X, Y)\) and \((\theta_1, \ldots, \theta_n)\) are commuting automorphisms of \(\Phi\). Morphisms from \((\Phi, \theta_1, \ldots, \theta_n)\) to \((\Phi', \theta'_1, \ldots, \theta'_n)\) are given by morphisms \(\alpha : \Phi \rightarrow \Phi'\) in \(\mathcal{A}(X, Y)\) such that \(\alpha \circ \theta_i = \theta'_i \circ \alpha\) for every \(i = 1, \ldots, n\).

Using Notation 4.13 for a morphism \(f : X' \rightarrow X\) in \(Sm/k\), define an additive functor

\[f^*_n : \mathcal{A}(X, Y)\left(\mathbb{G}_m^\times n\right) \rightarrow \mathcal{A}(X', Y)\left(\mathbb{G}_m^\times n\right)\]

as follows: \(f^*_n(\Phi, \theta_1, \ldots, \theta_n) = (f^*(\Phi), f^*(\theta_1), \ldots, f^*(\theta_n))\) on objects and \(f^*_n(\alpha) = f^*(\alpha)\) on morphisms.

Using Notation 4.13 for a morphism \(g : Y \rightarrow Y'\) in \(Sm/k\), define an additive functor

\[g_{*, n} : \mathcal{A}(X, Y)\left(\mathbb{G}_m^\times n\right) \rightarrow \mathcal{A}(X, Y')\left(\mathbb{G}_m^\times n\right)\]

as follows: \(g_{*, n}(\Phi, \theta_1, \ldots, \theta_n) = (g_*(\Phi), g_*(\theta_1), \ldots, g_*(\theta_n))\) on objects and \(g_{*, n}(\alpha) = g_*(\alpha)\) on morphisms.

Definition 4.26. Given \(X \in Sm/k, Y \in Sm/k\) and \(n > 0\), we define an additive functor

\[\rho_{X,Y,n} : \mathcal{A}(X, Y \times \mathbb{G}_m^\times n) \rightarrow \mathcal{A}(X, Y)\left(\mathbb{G}_m^\times n\right)\]

by using the functor \(\left(pr_Y\right)_* : \mathcal{A}(X, Y \times \mathbb{G}_m^\times n) \rightarrow A(X, Y)\) from Notation 4.13 and its representative

\[(n, Z, \varphi : p_X, (\theta_Z) \rightarrow M_n(\theta_X)),\]

we have \(n\) automorphisms \(n_t\)'s of \(\Phi\) of the form \(m \mapsto \varphi(n_t|Z)m\), where each \(n_t = p_t^*(t) \in \Gamma(X \times Y \times \mathbb{G}_m^\times n)\) and \(p_t : X \times Y \times \mathbb{G}_m^\times n \rightarrow \mathbb{G}_m\) is the projection. One sets

\[\rho_{X,Y,n}(\Phi) = (\left(pr_Y\right)_*(\Phi), (\left(pr_Y\right)_*([t_1]), \ldots, (\left(pr_Y\right)_*([t_n]))\]

on objects and \(\rho_{X,Y,n}(\alpha) = \left(pr_Y\right)_*(\alpha)\) on morphisms.

The following lemma is a straightforward consequence of Corollary 4.14.
Lemma 4.27. The bivariant additive category
\[\mathcal{A} : (\text{Sm}/k)^{op} \times \text{Sm}/k \to \text{AddCats}, \quad (X,Y) \mapsto \mathcal{A}(X,Y), \]
satisfies the following property:

(\text{Aut}) for every \(X \in \text{Sm}/k, Y \in \text{Sm}/k \) and \(n > 0 \), the functors \(\rho_{X,Y,n} \) meet the following two conditions:

(a) for any \(f : X' \to X \) in \(\text{Sm}/k \) and \(n > 0 \) one has \(f_n^* \circ \rho_{X,Y,n} = \rho_{X',Y,n} \circ f^* \), where \(f^* : \mathcal{A}(X,Y \times \mathbb{G}^\times_{m,n}) \to \mathcal{A}(X',Y \times \mathbb{G}^\times_{m,n}) \) is defined in Notation 4.13.

(b) using Notation 4.13 for any \(g : Y \to Y' \) in \(\text{Sm}/k \) and \(n > 0 \) one has
\[g_{*,n} \circ \rho_{X,Y,n} = \rho_{X,Y',n} \circ (g \times \text{id}_n)_*, \]
where \(\text{id}_n \) is the identity morphism of \(\mathbb{G}^\times_{m,n} \).

The following proposition is true as well.

Proposition 4.28. For every \(X \in \text{Sm}/k, Y \in \text{Sm}/k \) and \(n > 0 \) the additive functor
\[\rho_{X,Y,n} : \mathcal{A}(X,Y \times \mathbb{G}^\times_{m,n}) \to \mathcal{A}(X,Y)(\mathbb{G}^\times_{m,n}) \]
is a category isomorphism (it is not just an equivalence of categories).

5. Comparing \(\mathcal{A}(X,Y) \) with \(\mathcal{P}(X,Y) \)

Let \(X, Y \) be two \(k \)-schemes of finite type over the base field \(k \). We denote by \(\mathcal{P}(X,Y) \) the category of coherent \(\mathcal{O}_{X,Y} \)-modules \(P_{X,Y} \) such that \(\text{Supp}(P_{X,Y}) \) is finite over \(X \) and the coherent \(\mathcal{O}_X \)-module \((p_X),(P_{X,Y}) \) is locally free. A disadvantage of the category \(\mathcal{P}(X,Y) \) is that whenever we have two maps \(f : X \to X' \) and \(g : X' \to X'' \) then the functor \((g \circ f)^*\) agrees with \(f^* \circ g^* \) only up to a canonical isomorphism. To fix the problem, we replace \(\mathcal{P}(X,Y) \) by the equivalent additive category of big bimodules \(\mathcal{P}(X,Y) \) which is functorial in both arguments. This is done in Appendix.

In this section for any \(X \in \text{Sm}/k \) and \(Y \in \text{AffSm}/k \) a canonical functor
\[F_{X,Y} : \mathcal{A}(X,Y) \to \mathcal{P}(X,Y) \]
is constructed. Logically, one should now read Appendix about big bimodules, and then return to this section.

As an application, we obtain canonical isomorphisms over a perfect field \(k \)
\[K_i(X) \cong \text{DK}_{eff}^{+}(k)(M_k(X)[i],M_k(pt)), \quad X \in \text{Sm}/k, i \in \mathbb{Z}, pt = \text{Spec} k, \]
where \(K(X) \) is the algebraic \(K \)-theory spectrum defined as the Waldhausen symmetric \(K \)-theory spectrum \(K(\mathcal{P}(X,pt)) \) and \(\text{DK}_{eff}^{+}(k) \) is the triangulated category of \(K \)-motives (see Definition 4.13).

Let \(X, Y \in \text{Sm}/k \) and assume that \(Y \) is affine. Let \(\mathcal{A}(X,Y) \) be the additive category defined in Section 4 and let \(\mathcal{P}(X,Y) \) be the additive category of big bimodules defined in Appendix. If \(f : X' \to X \) is a morphism in \(\text{Sm}/k \), then there is an additive functor \(f^* : \mathcal{A}(X,Y) \to \mathcal{A}(X',Y) \)
defined in Notation 4.13. By Corollary 4.14 the assignments \(X \mapsto \mathcal{A}(X,Y) \) and \(f \mapsto f^* \) yield a presheaf of small additive categories on \(\text{Sm}/k \). By Lemma A.1 the assignments \(X \mapsto \mathcal{P}(X,Y) \) and \(f \mapsto (f^* : \mathcal{P}(X,Y) \to \mathcal{P}(X',Y)) \) yield another presheaf of small additive categories on \(\text{Sm}/k \).

The main goal of this section is to prove the following
Theorem 5.1. Let Y be an affine k-smooth variety. Then there is a morphism

$$F : \mathcal{A}(-, Y) \to \mathcal{P}(-, Y)$$

of presheaves of additive categories on Sm/k such that for any k-smooth affine X the functor $F_{X,Y} : \mathcal{A}(X,Y) \to \mathcal{P}(X,Y)$ is an equivalence of categories.

We postpone the proof but first construct a functor

$$F_{X,Y} : \mathcal{A}(X,Y) \to \mathcal{P}(X,Y)$$

which is a category equivalence whenever X is affine. We shall do this in several steps. Let $\Phi \in \mathcal{A}(X,Y)$ be an object. It is represented by a triple

$$(n,Z,\varphi : p_{X,*}(\mathcal{O}_Z) \to M_n(\mathcal{O}_X)),\tag{11}$$

where n is a nonnegative integer, $Z \in \text{SubSch}(X \times Y/k)$ and φ is a non-unital homomorphism of sheaves of \mathcal{O}_X-algebras. Thus one can consider the composite of non-unital k-algebra homomorphisms

$$\Phi_X : k[Y] \to k[X \times Y] \to k[Z] \xrightarrow{\varphi} M_n(k[X]).$$

Clearly, it does not depend on the choice of a triple representing the object Φ.

Let Sch/X be the category of X-schemes of finite type. For an X-scheme $f : U \to X$ in Sch/X set

$$\Phi_U := M_n(f^* \circ \Phi_X : k[Y] \to M_n(k[U])).$$

Note that Φ_U depends not only on U itself but rather on the X-scheme U. The assignment $U/X \mapsto \Phi_U$ defines a morphism of presheaves of non-unital k-algebras $(U/X \mapsto k[Y]) \to (U/X \mapsto M_n(k[U]))$.

One has a compatible family of projectors given by $U/X \mapsto p_U^\Phi = \Phi_U(1) \in M_n(k[U])$. Set $P_U^\Phi = \text{Im}(p_U^\Phi) \subset k[U]^n$. Then the assignment

$$U \mapsto P_U^\Phi$$

is a sheaf of $U/X \mapsto k[U]$-modules. The presheaf of $U/X \mapsto k[U]$-modules $U/X \mapsto P_U^\Phi$ has, moreover, a $k[Y]$-module structure. Namely, for each $U/X \in \text{Sch}/X$ the k-algebra $k[Y]$ acts on P_U^Φ by means of the non-unital k-algebra homomorphism $\Phi_U : k[Y] \to M_n(k[U])$. Thus the assignment $U \mapsto P_U^\Phi$ is a presheaf of $U/X \mapsto k[U] \otimes_k k[Y]$-modules.

For each $U/X \in \text{Sch}/X$ and each point $u \in U$ set

$$p_{U,u}^\Phi := \text{colim}_{v \in U} p_v^\Phi \in M_n(\mathcal{O}_{U,u}), \quad p_{U,u}^\Phi := \text{Im}(p_{U,u}^\Phi) \subset \mathcal{O}_{U,u}^n.$$

The stalk of the $U/X \mapsto k[U] \otimes_k k[Y]$-module P_U^Φ at $u \in U$ is $P_{U,u}^\Phi$. So $P_{U,u}^\Phi$ is an $\mathcal{O}_{U,u} \otimes k[Y]$-module.

Definition 5.2. Let $U/X \in \text{Sch}/X$ and $q \in U \times Y$ be a point. Let $u = pr_U(q) \in U$ be its image in U.

Set

$$\mathcal{O}_{U,q}^\Phi := \left\{ m \in p_{U,u}^\Phi, g \in \mathcal{O}_{U,u} \otimes_k k[Y] \text{ such that } g(q) \neq 0 \right\} / \sim,$$

where "\sim" is the standard equivalence relation for fractions. Clearly, $\mathcal{O}_{U,q}^\Phi$ is an $\mathcal{O}_{U \times Y,q}$-module.

Now define a Zariski sheaf $\mathcal{O}_{U,q}^\Phi$ of $\mathcal{O}_{U \times Y}$-modules on $U \times Y$ as follows. Its sections on an open set $W \subset U \times Y$ are a compatible family of elements $\{n_q \in \mathcal{O}_{U,q}^\Phi \}_{q \in W}$. More precisely, we give the following
Moreover, for a pair of morphisms $F : X \to Y$ and for any i there is an affine cover of the form $(W \cap U_i \times Y) = \cup (U_i \times Y)_{g_{ij}}$ with $g_{ij} \in k[U_i \times Y]$ and there are elements $n_{ij} \in (P_{U_i})_{g_{ij}}$ such that for any i and any i_j and any point $q \in (U_i \times Y)_{g_{ij}}$ one has $n_{ij} = n_q \in P_{U_i q}$. Here $(U_i \times Y)_{g_{ij}}$ stands for the principal open set associated with g_{ij}.

Clearly, the assignment $W \mapsto \mathcal{R}^s_U(W)$ is a Zarisky sheaf of $\mathcal{O}_{U \times Y}$-modules on $U \times Y$. The $\mathcal{O}_{U \times Y}$-module structure on this sheaf is given as follows: for $f \in k[W]$ and $(n_q) \in \mathcal{R}^s_U(W)$ set $f \cdot (n_q) = (f \cdot n_q)$.

Next, for any morphism $f : V \to U$ of objects in Sch/X construct a sheaf morphism

$$
\sigma_f : \mathcal{R}^s_U \to F_*(\mathcal{R}^s_V),
$$

where $F = f \times \text{id} : V \times Y \to U \times Y$. Given a point $v \in V$ and its image $u \in U$, set $F^*_v = P^s_{V,v} \circ f^* \circ P^s_{U,u}$, where $P^s_{U,u} : \mathcal{O}_{U,u} \to \mathcal{O}_{U,u}$ is the inclusion.

For any point $r \in V \times Y$ and its image $s = F(r) \in U \times Y$ set $v = pr_1(r)$ and $u = pr_0(s)$. Clearly, $f(v) = u$. The k-algebra homomorphism $\mathcal{O}_{U \times Y,s} \to \mathcal{O}_{V \times Y,s}$ makes \mathcal{R}^s_U an $\mathcal{O}_{U \times Y,s}$-module. There is a unique homomorphism $F^*_r : \mathcal{R}^s_{U,s} \to \mathcal{R}^s_{V,r}$ of $\mathcal{O}_{U \times Y,s}$-modules making the diagram commutative

$$
\begin{array}{ccc}
P^s_{U,u} & \to & P^s_{U,s} \\
f^*_v & \downarrow & \downarrow F^*_r \\
P^s_{V,v} & \to & P^s_{V,r}
\end{array}
$$

Let $W \subset U \times Y$ be an open subset. By definition,

$$
\mathcal{R}^s_U(W) = \{(n_s) \in \prod_{s \in W} \mathcal{R}^s_{U,s} \mid n_s \text{ are locally compatible}\}
$$

and

$$
F_* (\mathcal{R}^s_V(W)) = \mathcal{R}^s_V(F^{-1}(W)) = \{(n_t) \in \prod_{t \in F^{-1}(W)} \mathcal{R}^s_{V,t} \mid n_t \text{ are locally compatible}\}.
$$

Define $F^*_W : \mathcal{R}^s_U(W) \to F_*(\mathcal{R}^s_V(W))$ as follows. Given a section $(n_s) \in \mathcal{R}^s_{U,s}$ of \mathcal{R}^s_U over W, set

$$
F^*_W((n_s) \in \mathcal{R}^s_{U,s})_{s \in W} := ((F^*_s(n_s))_{s \in F^{-1}(W)})_{s \in W}.
$$

It is straightforward to check that the assignment $W \mapsto F^*_W$ defines an $\mathcal{O}_{U \times Y}$-sheaf morphism

$$
\sigma_f : \mathcal{R}^s_U \to F_*(\mathcal{R}^s_V).
$$

Moreover, for a pair of morphisms $g : U_3 \to U_2$ and $f : U_2 \to U_1$ in Sch/X one has

$$
\sigma_{fg} = (f \times \text{id})_*(\sigma_g) \circ \sigma_f : \mathcal{R}^s_{U_1} \to (F \circ G)_*(\mathcal{R}^s_{U_1}) = F_*(G_*(\mathcal{R}^s_{U_1})�
$$

Lemma 5.4. The data $U/X \mapsto \mathcal{R}^s_U$ and $(f : V \to U) \mapsto (\sigma_f : \mathcal{R}^s_U \to F_*(\mathcal{R}^s_V))$ defined above determine an object of the category $\mathcal{P}(X,Y)$. We shall denote this object by $F_{X,Y}(\Phi)$.

Now define the functor $F_{X,Y} : \mathcal{A}(X,Y) \to \mathcal{P}(X,Y)$ on morphisms. Let $\alpha : \Phi \to \Psi$ be a morphism in $\mathcal{A}(X,Y)$. The morphism α is a Zarisky sheaf morphism

$$
(U/X \mapsto P^s_U) \to (U/X \mapsto P^s_U)
$$
on small Zarisky site X_{zar} respecting the $k[Y]$-module structure on both sides. We write $\alpha_U : P^\Phi_U \to P^\Psi_U$ for the value of α at U. For any point $x \in X$ the Zarisky sheaf morphism α induces a morphism of stalks

$$\alpha_x : P^\Phi_{X,x} \to P^\Psi_{X,x}.$$

Finally, for any point $q \in X \times Y$ and its image $x = p_X(q) \in X$ one has a homomorphism

$$\alpha_q : \mathcal{P}^\Phi_{X,q} \to \mathcal{P}^\Psi_{X,q}$$

given by $\alpha_q\left(\frac{m}{g}\right) = \frac{\alpha(m)}{g}$ for any $m \in P^\Phi_{X,x}$ and any $g \in \mathcal{O}_{X,x} \otimes_k k[Y]$ with $g(q) \neq 0$.

Definition 5.5. Define a morphism $F_{X,Y}(\alpha) : F_{X,Y}(\Phi) \to F_{X,Y}(\Psi)$ as follows. Given a Zarisky open subset $W \subset X \times Y$ and a section $s = (n_q) \in \mathcal{P}^\Phi_W(W)$, set $\alpha_W(s) = (\alpha_q(n_q))$. Clearly, the family $(\alpha_q(n_q))$ is an element of $\mathcal{P}^\Psi_W(W)$. Moreover, α_W is a homomorphism and the assignment $W \mapsto \alpha_W$ is a morphism in $\mathcal{D}(X,Y)$. We shall write $F_{X,Y}(\alpha)$ for this morphism in $\mathcal{D}(X,Y)$.

Lemma 5.6. The assignments $\Phi \mapsto F_{X,Y}(\Phi)$ and $\alpha \mapsto F_{X,Y}(\alpha)$ determine an additive functor $F_{X,Y} : \mathcal{A}(X,Y) \to \mathcal{D}(X,Y)$. Moreover, for a given affine k-smooth variety Y the assignment $X \mapsto F_{X,Y}$ determines a morphism of presheaves of additive categories.

Lemma 5.6 implies that in order to prove Theorem 5.1 it remains to check that for affine $X, Y \in \text{AffSm}/k$ the functor $F_{X,Y}$ is a category equivalence. Firstly describe a plan of the proof. Given $X,Y \in \text{AffSm}/k$ we shall construct a square of additive categories and additive functors

$$\begin{array}{ccc}
\mathcal{A}(X,Y) & \xrightarrow{F_{X,Y}} & \mathcal{D}(X,Y) \\
\Gamma \downarrow & & \downarrow R \\
\mathcal{A}(X,Y) & \xrightarrow{\alpha_{X,Y}} & \mathcal{D}(X,Y)
\end{array}$$

which commutes up to an isomorphism of additive functors. We shall prove that the functors $\Gamma, \alpha_{X,Y}$ and R are equivalences of categories. As a consequence, the functor $F_{X,Y}$ will be an equivalence of categories.

Definition 5.7. For affine schemes $X,Y \in \text{AffSm}/k$ define a category $A(X,Y)$ as follows. Objects of $A(X,Y)$ are the pairs (n,φ), where $n \geq 0$ and $\varphi : \mathcal{O}[X] \to M_n(\mathcal{O}[X])$ is a non-unital k-algebra homomorphism. The homomorphism φ defines a projective $\varphi(1) \in M_n(\mathcal{O}[X])$. The projector $\varphi(1)$ defines a projective $\mathcal{O}[X]$-module $\text{Im}(\varphi(1)) : \mathcal{O}[X]^n \to \mathcal{O}[X]^n$. This $\mathcal{O}[X]$-module has also a $\mathcal{O}[X]$-module structure which is given by the non-unital homomorphism φ. Namely, $mf := \varphi(f)(m)$. Thus $\text{Im}(\varphi(1))$ is a $\mathcal{O}[X \times Y]$-module. Set

$$\text{Mor}_{A(X,Y)}((n_1,\varphi_1),(n_1,\varphi_1)) = \text{Hom}_{\mathcal{O}[X \times Y]}(\text{Im}(\varphi_1(1)),\text{Im}(\varphi_2(1))).$$

Definition 5.8. Given affine schemes $X,Y \in \text{AffSm}/k$, define a functor

$$\Gamma : \mathcal{A}(X,Y) \to A(X,Y)$$
as follows. Given an object $\Psi \in \mathcal{A}(X,Y)$, choose its representative $(n,Z,\psi : p_{X,*}(\mathcal{O}[Z]) \to M_n(\mathcal{O}[Z]))$. This representative gives rise to a pair

$$\Gamma(\Psi) := (n,\varphi : \mathcal{O}[X] \to \mathcal{O}[X \times Y] \xrightarrow{\psi} M_n(\mathcal{O}[X])),$$

which is an object of $A(X,Y)$. Clearly, this pair does not depend on the choice of a representative. One has an equality $\Gamma(X,P(\psi)) = P^\Psi_X$, where $P(\psi)$ is defined in Definition 4.3 and P^Ψ_X is given
by [II]. If $\alpha : \Psi_1 \to \Psi_2$ is a morphism in $\mathcal{A}(X,Y)$, then equalizing the supports of Ψ_1 and Ψ_2 and taking the global sections on X, we get an isomorphism

$$\text{Mor}_{\mathcal{A}(X,Y)}(\Psi_1, \Psi_2) = \text{Hom}_{\text{pr}_X,(e_2)}(P(\psi_1), P(\psi_2)) \xrightarrow{\Gamma(\alpha)} \text{Hom}_{k[X \times Y]}(P_{X}^{\text{w}}, P_{X}^{\text{w}}) = \text{Hom}_{\mathcal{A}(X,Y)}(\Gamma(\Psi_1), \Gamma(\Psi_2)).$$

This completes the definition of the functor Γ.

Lemma 5.9. The functor $\Gamma : \mathcal{A}(X,Y) \to A(X,Y)$ is an equivalence of additive categories.

Proof. Define a functor $a : A(X,Y) \to \mathcal{A}(X,Y)$ on objects as follows. An object (n, φ) in $A(X,Y)$ defines a projector $\varphi(1) \in M_n(k[X])$. The image $\text{Im}(\varphi(1))$ in $k[X]^n$ has a $k[Y]$-module structure given by the non-unital homomorphism φ. In this way $\text{Im}(\varphi(1))$ is a $k[X \times Y]$-module. Let $A \subset X \times Y$ be the support of $\text{Im}(\varphi(1))$. Using Notation 4.1, it is easy to see that $A \in \text{Supp}(X \times Y)$. Thus there exists an integer $m \geq 0$ such that $I_A^m \cdot \text{Im}(\varphi(1)) = (0)$. The latter means that $\text{Im}(\varphi(1))$ is a $k[X \times Y]/I_A^m$-module, and therefore the non-unital k-algebra homomorphism φ can be presented in the form

$$k[X \times Y] \to k[X \times Y]/I_A^m \xrightarrow{\bar{\varphi}_A} M_n(k[X])$$

for a unique $\bar{\varphi}_A$. Let $Z = \text{Spec}(k[X \times Y]/I_A^m)$ and let $(\bar{\varphi}_A) : p_X \circ (\mathcal{O}_Z) \to M_n(\mathcal{O}_X)$ be the sheaf homomorphism associated to $\bar{\varphi}_A$. Define

$$a(n, \varphi) = \text{the equivalence class of the triple } (n, Z, (\bar{\varphi}_A)^\sim).$$

Clearly, this equivalence class remains unchanged when enlarging A in $\text{Supp}(X \times Y)$ and the integer m.

Define the functor $a : A(X,Y) \to \mathcal{A}(X,Y)$ on morphisms as follows. Let $\alpha : (n_1, \varphi_1) \to (n_2, \varphi_2)$ be a morphism in $A(X,Y)$. Let A_1 be the support of the $k[X \times Y]$-module $\text{Im}(\varphi_1(1))$ and let m_1 be an integer such that $I_A^{m_1} \cdot \text{Im}(\varphi_1(1)) = (0)$. Enlarging A_1 and A_2 in $\text{Supp}(X \times Y)$ if necessary, we may assume that $A_1 = A = A_2$. Enlarging m_1 and m_2, we may as well assume that $m_1 = m = m_2$. Therefore we may assume that $Z_1 = Z = Z_2$. Now applying the functor from $k[X]$-modules to \mathcal{O}_X-modules, we get a homomorphism

$$\text{Hom}_{A(X,Y)}((m_1, \varphi_1), (n_1, \varphi_1)) = \text{Hom}_{k[X \times Y]}(\text{Im}(\varphi_1(1)), \text{Im}(\varphi_2(1))) =$$

$$= \text{Hom}_{k[X \times Y]/I_A^{m_1}}(\text{Im}(\bar{\varphi}_A, m_1(1)), \text{Im}(\bar{\varphi}_A, m_1(1))) \to \text{Hom}_{\text{pr}_X,(e_2)}(\text{Im}(\bar{\varphi}_A(1))^\sim, \text{Im}(\bar{\varphi}_A(1))^\sim).$$

Set $a(\alpha)$ to be the image of α under this homomorphism. The definition of the functor a is completed.

It is straightforward to check that the functors Γ and a are mutually inverse equivalences of additive categories.

Definition 5.10. Define a functor $a_{X,Y} : A(X,Y) \to \mathcal{A}(X,Y)$ as follows. It takes an object (n, φ) to the $\mathcal{O}_{X \times Y}$-module sheaf $\text{Im}(\varphi(1))^\sim$ associated with the $k[X \times Y]$-module $\text{Im}(\varphi(1))$ described in Definition 5.7. On morphisms it is defined by the isomorphism

$$\text{Hom}_{A(X,Y)}((n_1, \varphi_1), (n_2, \varphi_2)) = \text{Hom}_{k[X \times Y]}(\text{Im}(\varphi_1(1)), \text{Im}(\varphi_2(1))) \cong$$

$$\cong \text{Hom}_{\mathcal{O}_{X \times Y}}(\text{Im}(\varphi_1(1))^\sim, \text{Im}(\varphi_2(1))^\sim) = \text{Hom}_{\mathcal{A}(X,Y)}(a_{X,Y}(n_1, \varphi_1), a_{X,Y}(n_2, \varphi_2)).$$
Proof of Theorem 5.7 Consider the following square of functors

\[
\begin{array}{ccc}
\mathcal{A}(X,Y) & \xrightarrow{F_{X,Y}} & \mathcal{P}(X,Y) \\
\mathcal{Y} & \downarrow & \\
A(X,Y) & \xrightarrow{a_{X,Y}} & \mathcal{P}(X,Y)
\end{array}
\]

where \(R \) takes a big bimodule \(P \in \mathcal{P}(X,Y) \) to the \(\mathcal{O}_{X,Y} \)-module \(P_{X,Y} \in \mathcal{P}(X,Y) \) and a morphism \(\alpha : P \to Q \) of big bimodules to the morphism \(\alpha_{X,Y} : P_{X,Y} \to Q_{X,Y} \) of \(\mathcal{O}_{X,Y} \)-modules. We claim that this diagram commutes up to an isomorphism of functors. Since the functors \(\mathcal{Y} \), \(a_{X,Y} \), \(R \) are equivalences of categories, the functor \(F_{X,Y} \) is a category equivalence, too. To complete the proof, it remains to construct a functor isomorphism \(a_{X,Y} \circ \mathcal{Y} \to R \circ F_{X,Y} \).

Let \(\Psi \in \mathcal{A}(X,Y) \) be an object and let \((n,Z,\psi : p_{X,Y}(\mathcal{O}_Z) \to M_n(\mathcal{O}_X)) \) be a triple representing \(\Psi \) (see Definition 5.3). Then \(\Gamma(\Psi) = (n,\varphi : k[Y] \to k[X \times Y] \to \Gamma(Z,\mathcal{O}_Z) \xrightarrow{\psi} M_n(k[X])) \) as described in Definition 5.8. Let \(\text{Im}(\varphi(1)) \) be the \(k[X \times Y] \)-module described in Definition 5.7. Then \(a_{X,Y}(\Gamma(\Psi)) \) is the \(\mathcal{O}_{X,Y} \)-module sheaf \(\text{Im}(\varphi(1))^{\sim} \) associated with the \(k[X \times Y] \)-module \(\text{Im}(\varphi(1)) \). On the other hand, following Definition 5.3 and the description of \(R \), one has \(R(F_{X,Y}(\Psi)) = \mathcal{P}_Y^\Psi \). We need to construct an isomorphism \(\Theta_{\Psi} : \text{Im}(\varphi(1))^{\sim} \xrightarrow{\sim} \mathcal{P}_Y^\Psi \), natural in \(\Psi \), of \(\mathcal{O}_{X,Y} \)-modules. Giving such a morphism \(\Theta_{\Psi} \) is the same as giving a \(k[X \times Y] \)-homomorphism

\[
\Theta_{\Psi} : \text{Im}(\varphi(1)) \to \Gamma(X \times Y, \mathcal{P}_Y^\Psi).
\]

Moreover, \(\Theta_{\Psi} \) is an isomorphism whenever so is \(\Theta_{\Psi}. \) A section of \(\mathcal{P}_Y^\Psi \) on \(X \times Y \) is a compatible family of elements \((n_q \in \mathcal{P}_X^\Psi)_{q \in X \times Y} \) (see Definitions 5.3 and 5.2). For \(s \in \text{Im}(\varphi(1)) \), set

\[
\Theta_{\Psi}(s) = \left(\frac{s_{\xi(q)}}{1} \right) \in \prod_{q \in X \times Y} \mathcal{P}^\Psi_{X,Y_a,q},
\]

where \(s(q) = p_X(q) \in X \) and \(s_{\xi(q)} \in P_X^\Psi(q) \) is the image of \(s \) in \(P_X^\Psi(q) \) under the canonical map \(P_X^\Psi = \text{Im}(p_X^\Psi) \to \text{Im}(p_X^\Psi_{X,q}) = P_X^\Psi \). Clearly, \(\Theta_{\Psi}(s) \) belongs to \(\Gamma(X \times Y, \mathcal{P}_Y^\Psi) \). We claim that \(\Theta_{\Psi} \) is an isomorphism. In fact, if \(s(q) = 0 \) for all \(q \in X \times Y \) then \(s = 0 \). It follows that \(\Theta_{\Psi} \) is injective. If \(n(q) \in \Gamma(X \times Y, \mathcal{P}_Y^\Psi) \), then \((n_q) \in \prod_{q \in X \times Y} \mathcal{P}_X^\Psi \) is a compatible family of elements. It follows from Definition 5.3 that there is a global section \(s \) of the sheaf \(\text{Im}(\varphi(1))^{\sim} \) such that for each \(q \in X \times Y \) one has \(s_{\xi(q)} = n_q \). Since \(\Gamma(X \times Y, \text{Im}(\varphi(1))^{\sim}) = \text{Im}(\varphi(1)) \) the map \(\Theta_{\Psi} \) is surjective. The fact that the assignment \(\Psi \mapsto \Theta_{\Psi} \) is a functor transformation \(a_{X,Y} \circ \mathcal{Y} \to R \circ F_{X,Y} \) is obvious. Our theorem now follows.

Recall that the \(\mathbb{K} \)-motive \(M_\mathbb{K}(X) \) of a \(k \)-smooth scheme \(X \) is the \(\mathbb{K} \)-module \(C_*(\mathbb{K}(−,X)) \) (see Definition 5.3). To conclude the section, we give the following computational application of Theorem 5.11.

Theorem 5.11. Let \(k \) be a perfect field and let \(X \) be any scheme in \(Sm/k \). Then for every integer \(i \in \mathbb{Z} \) there is a natural isomorphism of abelian groups

\[
K_i(X) \cong \text{DK}^{\text{eff}}(k)(M_\mathbb{K}(X)[i],M_\mathbb{K}(pr)),
\]

where \(K(X) \) is algebraic \(K \)-theory of \(X \).
Proof. By Theorem 4.22, \mathcal{K} is a strict V-spectral category. By (3) one has a canonical isomorphism for every integer i

$$SH_{S^i}(k)(X[i], \mathbb{K}(-, pt)) \cong SH_{S^i}^{\text{nis}}(\mathbb{K}(-, X)[i], \mathbb{K}(-, pt)).$$

Let

$$K : Sm/k \to Sp^X, \quad X \mapsto K(X) = K(\mathcal{P}(X, pt))$$

be the algebraic K-theory presheaf of symmetric spectra. It follows from Theorem 5.1 that the natural map in $Pre^X(Sm/k)$

$$F : \mathbb{K}(-, pt) \to K,$$

induced by the additive functors $F_{X, pt} : \mathcal{A}(X, pt) \to \mathcal{P}(X, pt), X \in Sm/k,$ is a Nisnevich local weak equivalence.

Using Thomason’s theorem [13] stating that algebraic K-theory satisfies Nisnevich descent, we obtain isomorphisms

$$K_i(X) \cong SH_{S^i}^{\text{nis}}(X[i], K) \cong SH_{S^i}^{\text{nis}}(\mathbb{K}(-, X)[i], \mathbb{K}(-, pt)), \quad i \in \mathbb{Z}.$$

Consider a commutative diagram in $Pre^X(Sm/k)$

$$\begin{array}{ccc}
K(\mathcal{A}(\mathcal{N}(-, pt))) & \xrightarrow{\delta} & K(\mathcal{A}(\mathcal{N}(-, pt)))_f \\
\downarrow{\alpha} & & \downarrow{\beta} \\
K & = & K_f \\
\downarrow{f} & & \downarrow{\gamma} \\
\end{array}$$

Here the lower f-symbol refers to a fibrant replacement functor in the Nisnevich local model structure on $Pre^X(Sm/k).$ Theorem 5.1 implies F is a Nisnevich local weak equivalence. By [13] $K(-)$ is Nisnevich excisive, and hence α is a stable weak equivalence. Since $K(-)$ is homotopy invariant, then β is a stable weak equivalence. It follows that δ, γ are stable weak equivalences. Therefore the composition of the upper horizontal maps is a Nisnevich local weak equivalence. Thus the canonical map

$$\mathbb{K}(-, pt) \to M_{\mathbb{K}}(pt)$$

is a Nisnevich local weak equivalence. One has an isomorphism

$$K_i(X) \cong SH_{S^i}^{\text{nis}}(\mathbb{K}(-, X)[i], M_{\mathbb{K}}(pt)), \quad i \in \mathbb{Z}.$$

Since $\mathbb{K}(-, X)[i], M_{\mathbb{K}}(pt)$ are bounded below \mathbb{K}-modules, then our theorem follows from Theorem 5.32. \hfill \square

APPENDIX A. THE CATEGORY OF BIG BIMODULES $\mathcal{P}(X, Y)$

Let X, Y be two schemes of finite type over the base field $k.$ We denote by $\mathcal{P}(X, Y)$ the category of coherent $\mathcal{O}_{X,Y}$-modules $P_{X,Y}$ such that Supp$(P_{X,Y})$ is finite over X and the coherent \mathcal{O}_X-module $(p_X)_*(P_{X,Y})$ is locally free. A disadvantage of the category $\mathcal{P}(X, Y)$ is that whenever we have two maps $f : X \to X'$ and $g : X' \to X''$ then the functor $(g \circ f)^*$ agrees with $f^* \circ g^*$ only up to a canonical isomorphism. We want to replace $\mathcal{P}(X, Y)$ by an equivalent additive category $\mathcal{P}(X, Y)$ which is functorial in both arguments.

To this end, we use the construction which is in spirit the same with Grayson’s one for finitely generated projective modules [4]. Let X be a Noetherian scheme. Consider the big Zariski site Sch/X of all schemes of finite type over $X.$ We define the category of big bimodules $\mathcal{P}(X, Y)$ as follows.

An object of $\mathcal{P}(X, Y)$ consists of the following data:
(1) For any $U \in \text{Sch}/X$ one has a bimodule $P_{U,Y} \in \mathcal{P}(U,Y)$.

(2) For any morphism $f : U' \to U$ in Sch/X one has a morphism $\sigma_f : P_{U,Y} \to (f \times 1_Y)_*(P_{U',Y})$ in $\mathcal{P}(U,Y)$ satisfying:

(a) $\sigma_1 = 1$.

(b) The morphism $\tau_f : (f \times 1_Y)_*(P_{U,Y}) \to P_{U',Y}$ which is adjoint to σ_f must be an isomorphism in $\mathcal{P}(U,Y)$.

(c) Given a chain of maps $u'' \xrightarrow{f_1} u' \xrightarrow{f} u$ in Sch/X, the following relation is satisfied

$$\sigma_{f_0 f_1} = (f \times 1_Y)_*(\sigma_{f_1}) \circ \sigma_f.$$

A morphism of two big bimodules $\alpha : P \to Q$ is a morphism $\alpha_{X,Y} : P_{X,Y} \to Q_{X,Y}$ in $\mathcal{P}(X,Y)$. Clearly, $\mathcal{P}(X,Y)$ is an additive category.

Given a map $g : X' \to X$ of two Noetherian schemes, we define an additive functor

$$g^* : \mathcal{P}(X,Y) \to \mathcal{P}(X',Y)$$

as follows. For any $U \in \text{Sch}/X'$ and $P \in \mathcal{P}(X,Y)$ one sets $g^*(P)_{U,Y} = P_{U,Y}$, where U is regarded as an object of Sch/X by means of composition with g. In a similar way, if $h : U' \to U$ is a map in Sch/X' then $\sigma_h : g^*(P)_{U,Y} \to g^*(P)_{U',Y}$ equals σ_h. So we have defined g^* on objects. Let $\alpha : P \to Q$ be a morphism in $\mathcal{P}(X,Y)$. By definition, it is a morphism $\alpha_{X,Y} : P_{X,Y} \to Q_{X,Y}$ in $\mathcal{P}(X,Y)$. There is a commutative diagram

$$(g \times 1_Y)^*(P_{X,Y}) \xrightarrow{\tau_f} P_{X',Y}$$

where the horizontal maps are isomorphisms. Then $g^*(\alpha) := \alpha_{X,Y}$. The functor g^* is constructed.

Lemma A.1. Let $g_1 : X'' \to X'$ and $g : X' \to X$ be two maps of schemes. Then $(g \circ g_1)^* = g_1^* \circ g^*$.

Proof. This is straightforward. \qed}

Now let us discuss functoriality in Y. For this consider a map $h : Y \to Y'$. We construct an additive functor

$$h_* : \mathcal{P}(X,Y) \to \mathcal{P}(X,Y')$$

in the following way. We set $h_*(P)_{U,Y} = (1_U \times h)_* (P_{U,Y})$ for any $P \in \mathcal{P}(X,Y)$. If $f : U' \to U$ is a map in Sch/X then

$$(1_U \times h)_*(f \times 1_Y)_* = (f \times 1_Y)_* (1_{U'} \times h)_*.$$

We define σ_f for $h_*(P)$ as

$$(1_U \times h)_*(\sigma_f) : (1_U \times h)_* (P_{U,Y}) \to (1_U \times h)_* (f \times 1_Y)_* (P_{U',Y}) = (f \times 1_Y)_* (1_{U'} \times h)_*(P_{U',Y}).$$

By definition, h_* takes a morphism $\alpha_{X,Y}$ in $\mathcal{P}(X,Y)$ to $(1_X \times h)_* (\alpha_{X,Y})$. The construction of the functor h_* is completed.

Lemma A.2. Let $h_1 : Y' \to Y''$ and $h : Y \to Y'$ be two maps of schemes. Then $(h_1 \circ h)_* = (h_1)_* \circ h_*$. \qed

We leave the reader to verify the following
Proposition A.3. The natural functor
\[R : \mathcal{P}(X, Y) \to \mathcal{P}(X, Y), \quad P \mapsto P_{X,Y}, \]
is an equivalence of additive categories.

By Lemmas A.1-A.2, \(\mathcal{P}(X, Y) \) has the desired functoriality properties in both arguments.

REFERENCES

[1] G. Garkusha, I. Panin, K-motives of algebraic varieties, Homology Homotopy Appl. 14(2) (2012), 211-264.
[2] G. Garkusha, I. Panin, On the motivic spectral sequence, preprint [arXiv:1210.2242]
[3] T. Geisser, L. Hesselholt, Topological cyclic homology of schemes, in Algebraic K-theory (Seattle, WA, 1997), Proc. Sympos. Pure Math. 67, Amer. Math. Soc., Providence, RI, 1999, pp. 41-87.
[4] D. Grayson, Weight filtrations via commuting automorphisms, K-Theory 9 (1995), 139-172.
[5] M. Hovey, B. Shipley, J. Smith, Symmetric spectra, J. Amer. Math. Soc. 13 (2000), 149-208.
[6] B. Keller, Derived categories and their uses, In Handbook of Algebra, vol. 1, North-Holland, Amsterdam, 1996, pp. 671-701.
[7] A. Knizel, Homotopy invariant presheaves with K-transfers, MSc Diploma, St. Petersburg State University, 2012.
[8] F. Morel, The stable \(\mathbb{A}^1 \)-connectivity theorems, K-theory 35 (2006), 1-68.
[9] S. Schwede, An untitled book project about symmetric spectra, available at www.math.uni-bonn.de/~schwede (version v3.0/April 2012).
[10] S. Schwede, B. Shipley, Stable model categories are categories of modules, Topology 42(1) (2003), 103-153.
[11] S. Schwede, V. Voevodsky, \(\mathbb{A}^1 \)-homotopy theory of schemes, Publ. Math. IHES 90 (1999), 45-143.
[12] A. Suslin, V. Voevodsky, Bloch–Kato conjecture and motivic cohomology with finite coefficients, The Arithmetic and Geometry of Algebraic Cycles (Banff, AB, 1998), NATO Sci. Ser. C Math. Phys. Sci., Vol. 548, Kluwer Acad. Publ., Dordrecht (2000), pp. 117-189.
[13] R. W. Thomason, T. Trobaugh, Higher algebraic K-theory of schemes and of derived categories, The Grothendieck Festschrift III, Progress in Mathematics 88, Birkhäuser, 1990, pp. 247-435.
[14] V. Voevodsky, Cohomological theory of presheaves with transfers, in Cycles, Transfers and Motivic Homology Theories (V. Voevodsky, A. Suslin and E. Friedlander, eds.), Annals of Math. Studies, Princeton University Press, 2000.
[15] V. Voevodsky, Triangulated category of motives over a field, in Cycles, Transfers and Motivic Homology Theories (V. Voevodsky, A. Suslin and E. Friedlander, eds.), Annals of Math. Studies, Princeton University Press, 2000.
[16] F. Waldhausen, Algebraic K-theory of spaces, In Algebraic and geometric topology, Proc. Conf., New Brunswick/USA 1983, Lecture Notes in Mathematics, No. 1126, Springer-Verlag, 1985, pp. 318-419.
[17] M. E. Walker, Motivic cohomology and the K-theory of automorphisms, PhD Thesis, University of Illinois at Urbana-Champaign, 1996.