Efficient Dense Modules of Asymmetric Convolution for Real-Time Semantic Segmentation

Shao-Yuan Lo, Hsueh-Ming Hang, Sheng-Wei Chan, Jing-Jhih Lin
National Chiao Tung University

MMAsia 2019 Oral
December 17, 2019
Introduction

Input: RGB image

Output: Semantic segmentation

CNN
Introduction

Self-driving applications

Efficiency

Accuracy
as high as possible

Inference Time
real-time

Model Size
low memory consumption
EDANet
EDANet

- Efficient Dense modules of Asymmetric convolution, the second proposed network.
EDA Module

• Point-wise convolution layer

• Dilated convolution

• Asymmetric convolution

• Dense connectivity
Asymmetric Convolution

• Factorize a standard 2D convolution kernel into two 1D convolution kernels.

• \(n \times n \rightarrow (n \times 1) \& (1 \times n) \)

\[
\sum_{i=-M}^{M} \sum_{j=-N}^{N} W(i,j)I(x - i, y - j) = \sum_{i=-M}^{M} W_x(i) \left[\sum_{j=-N}^{N} W_y(j)I(x - i, y - j) \right]
\]
Dense Connectivity

• Each module concatenates its input and new learned features together to form final output. [Gao et al.]

• $y_m = [H_m(y_{m-1}), y_{m-1}]$

• Gather multi-scale information together.
Downsampling Block

- Two modes.
- \(\text{Win} > \text{Wout} \) \((W_{\text{conv}} = \text{Wout}) \)
- \(\text{Win} < \text{Wout} \) \((W_{\text{conv}} = \text{Wout} - \text{Win}) \)
Downsampling Block

- Pros: Enable network to have larger receptive fields.
- Cons: Lose spatial information.
Decoder

• No decoder.

• Use bilinear interpolation to recover resolution.
Ablation Study

• Core module

• Extra context module

• Decoder

• Downsampling Block
Cityscapes Dataset

• Class: 19

• Training data: 2975
• Validation data: 500
• Test data: 1525

• Resolution: 1024 x 2048

[Cordts et al.]
Core Module

EDA module

Non-asym variant

Non-dense variant
Core Module

Network	mIoU (%)	# Param.	# Multi-Adds
EDANet	65.10	0.68M	8.97B
EDA-non-asym	65.11	0.81M	11.41B
EDA-non-dense	63.92	0.73M	8.87B
Extra Context Module

EDA-shallow

EDA-ASPP

[Chen et al.]
Extra Context Module

Network	mIoU (%)	# Param.	# Multi-Adds
EDANet	65.10	0.68M	8.97B
EDA-shallow	58.09	0.55M	7.77B
EDA-ASPP	60.64	3.41M	41.42B
Decoder

EDA-ERFdec

(ERFNet decoder)

[Romera et al.]
Decoder

Network	mIoU (%)	# Param.	# Multi-Adds
EDANet	65.10	0.68M	8.97B
EDA-ERFdec	65.56	0.78M	12.95B
Downsampling Block

EDA-DenseDown [Gao et al.]

Layers	Output Size	DenseNet-121	DenseNet-169	DenseNet-201
Convolution	112 x 112			
Pooling	56 x 56			
Dense Block (1)	56 x 56	1 x 1 conv	1 x 1 conv	1 x 1 conv
		x 6	x 6	x 6
Transition Layer	56 x 56	1 x 1 conv		
(1)	28 x 28			
			2 x 2 average pool, stride 2	
Dense Block (2)	28 x 28	1 x 1 conv	1 x 1 conv	1 x 1 conv
		x 12	x 12	x 12
Transition Layer	28 x 28	1 x 1 conv		
(2)	14 x 14			
			2 x 2 average pool, stride 2	
Dense Block (3)	14 x 14	1 x 1 conv	1 x 1 conv	1 x 1 conv
		x 24	x 32	x 48
Transition Layer	14 x 14	1 x 1 conv		
(3)	7 x 7			
			2 x 2 average pool, stride 2	
Dense Block (4)	7 x 7	1 x 1 conv	1 x 1 conv	1 x 1 conv
		x 16	x 32	x 32
Classification	1 x 1	7 x 7 global average pool	1000D fully-connected, softmax	
Layer				
Downsampling Block

Network	mIoU (%)	# Param.	# Multi-Adds
EDANet	65.10	0.68M	8.97B
EDA-DenseDown	61.63	0.42M	8.51B
Comparison on Cityscapes

Method	Pretrained	mIoU (%)	Speed (FPS)	# Param.	
			Titan X	Other GPUs	
SegNet [1]	ImageNet	56.1	16.7	-	29.5M
ENet [40]	No	58.3	76.9	-	0.36M
SQ [56]	ImageNet	59.8	16.7	-	-
ESPNet [37]	No	60.3	-	112.9+++	0.36M
SkipNet-MobileNet [51]	ImageNet	61.5	45.0	-	-
ContextNet [42]	No	66.1	18.3	-	0.85M
ERFNet [45]	No	68.0	41.7	-	2.1M
BiSeNet [58]	ImageNet	68.4	-	105.8++	5.8M
ICNet [61]	ImageNet	69.5	30.3	-	-
EDANet (ours)	No	67.3	81.3	108.7†	0.68M
Comparison on CamVid

Method	mIoU (%)	Class acc. (%)	Global acc. (%)	# Param.
ENet [40]	51.3	68.3	-	0.36M
ESPNet [37]	55.6	68.3	-	0.36M
SegNet [1]	55.6	65.2	88.5	29.5M
FCN-8s [36]	57.0	-	88.0	134.5M
FC-DenseNet56 [27]	58.9	-	88.9	1.5M
DeepLab-LFOV [6]	61.6	-	-	37.3M
Dilation8 [59]	65.3	-	79.0	140.8M
BiSeNet [58]	65.6	-	-	5.8M
ICNet [61]	67.1	-	-	-
EDANet (ours)	66.4	76.7	90.8	0.68M
Video Demo

(a) RGB (b) Ground truth (c) EDANet

Input

Ground truth

EDANet
Conclusion

• We develop a novel network named EDANet, which incorporates asymmetric convolution with dilated convolution and dense connectivity. It can run on high-resolution images at 108 FPS on a single GPU and achieve 67.3% mIoU on the Cityscapes dataset.

• EDANet is nearly 3 times faster than ICNet and attains comparable performance; it achieves this without any extra decoder structure, context module, post-processing scheme, and pretrained model.

• We design various types of EDANet variants to analyze the performance of different network architectures and analyze the reasons behind the results.
Thanks for your attention