SUPPLEMENTARY MATERIAL

A new antibacterial lupane ester from the seeds of Acokanthera oppositifolia Lam.

Abeer M. El Sayed, Shahira M. Ezzat*, and Omar M. Sabry
Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El-Einy Street, 11562, Cairo, Egypt

Abstract
As a part of ongoing investigation of Acokanthera oppositifolia (Lam.) Codd., four compounds were isolated from its seeds, a new compound; lup-20(29)-en-3β-O-(3`-β-hydroxy) palmitate (1), three known compounds; lupeol (2), a cardiac glycoside; acovenoside A (3), and a sterol; β-sitosterol (4). Their structures were investigated using 1D&2D-^1^H and ^13^C NMR spectroscopy. Antimicrobial potential of the compounds was evaluated against ten microorganisms responsible for endocarditis. The minimum inhibitory concentration (MIC) of the compounds was determined using broth microdilution method. The new compound (1) evidenced significant antibacterial activity especially against Pseudomonas aeruginosa with (MIC 7.81 µg/ml). Lupeol (2) exhibited remarkable antimicrobial activity against Methicillin-resistant Staphylococcus aureus, Aspergillus fumigates and Candida albicans (MIC 3.9, 0.24 and 3.9 µg/ml, respectively). On the other hand, acovenoside A (3) inhibited the growth of Escherichia coli (MIC 0.98 µg/ml). We herein present the potential of A. oppositifolia as a cardioprotective agent against the microorganisms responsible for endocarditis.

Keywords: Cardenolide, lupeol ester, Acokanthera, antimicrobial, endocarditises.

* Corresponding author: Shahira M. Ezzat, Department of Pharmacognosy, College of Pharmacy, Cairo University, Kasr El-Ainy St., Cairo11562, Egypt. Tel.: +201222336716; fax: +2 25320005. Email: E-mail: shahira.ezzat@pharma.cu.edu.eg
1. Experimental

General Experimental procedures

Material for chromatographic studies included pre-coated silica plates 60 GF 254, (20×20 cm) from Fluka (Sigma-Aldrich chemicals-Germany) for thin layer chromatography (TLC), silica gel 60 for normal phase column chromatography (CC), silica gel H for vacuum liquid chromatography (VLC) (Merck Darmstadt, Germany). The following solvent systems were used for developing the chromatograms; S_1: n-hexane- ethyl acetate (9 : 1 v/v), S_2: n-hexane-ethyl acetate (8 : 2 v/v), S_3: chloroform: methanol (9.5:0.5 v/v) and S_4: chloroform: methanol (9 : 1 v/v). Spots were visualized by spraying with p-anisaldehyde-sulphuric acid.

HR-ESIMS was measured in the JEOL JMX-AX 505, HAD mass spectrophotometer at an ionization voltage of 70 eV. IR spectrawere observed as KBr discs usingJasco FT/IR-460 plus, Japan Infrared Spectrophotometer.1HNMR and 13CNMR spectra were recorded on a Bruker high performance digital FT-NMR spectrophotometer operating at 400 (1H) and 100 (13C) MHz in CDCl$_3$-d$_6$ as a solvent and chemical shifts were given in δ (ppm) relative to solvent as internal standard.Ultraviolet lamp (λ max =254 and 330 nm,Shimadzu), a product of Hanovia lamps for localization of spots on chromatograms. Discs of ampicillin, gentamycin,vancomycin and amphotericin B 5 µg/ disc, Oxoid Chemical Co., UK

1.1 Plant Material

The seeds of Akocanthera oppositifolia (Lam.) Codd. were obtained from the trees growing in Bn Ghazy- Libya collected in November 2012. The plant was authenticated by Dr. Reem Samir Hamdy, Lecturer of Plant Taxonomy, Botany Department, Faculty of Science, Cairo University, Giza, Egypt.Voucher sample of the plant (No. 23102015) is deposited at the Museum of the Pharmacognosy Department, Faculty of Pharmacy, Cairo University.

1.2 Extraction

The air-dried powdered seeds of A. oppositifolia (200 g) were extracted using cold method of extraction (percolation) in room temperature with 95% ethanol (4 x 500 mL) till exhaustion (for
The 95% ethanol extract was filtered, distilled and evaporated under reduced pressure to give 20 g of greenish brown semi-solid residue. The dried residue was chromatographed on a VLC column 210 g silica gel (100 cm x 4.5 cm). Gradient elution with n-hexane, n-hexane-methylene chloride mixtures and chloroform-ethyl acetate mixtures and methanol was applied. Fractions 200 ml each were collected and the progress of separation was noted by thin layer chromatography (TLC) using S₁ – S₄ solvent system and p-anisaldehyde as detecting agent. Similar fractions were pooled together to obtain five major fractions.

Fraction I (0.37g), eluted with 10% methylene chloride in n-hexane was purified on a silica gel column using n-hexane: ethyl acetate (90 : 10 v/v) as eluent to obtain compound 1 (60 mg).

Fraction II (5.4 g), eluted with 30% methylene chloride in n-hexane, was purified on silica gel column using n-hexane: ethyl acetate (80 : 20 v/v) as eluent to obtain compound 2 (200 mg).

Fraction III (2.54 g), eluted with 5 - 10% ethyl acetate in methylene chloride was purified on silica gel column using 0.5 % methanol in methylene chloride mixture as eluent to yield white microcrystalline powder of compound 3 (50 mg).

Fraction IV (2.62 g), eluted with 30% ethyl acetate in methylene chloride, was purified on silica gel column using n-hexane-ethyl acetate (60 : 40 v/v) mixtures as eluent and revealed two spots. Further rechromatography on successive silica gel columns using n-hexane-chloroform mixtures, this fraction yielded compound 4 (20 mg).

1H and 13C NMR data of the isolated compounds are presented in Tables (1 -3)

1.3 Testing the antimicrobial activity

The antimicrobial activity testing was performed against eight selected bacterial and four fungal strains of standard properties, this work was performed in the Regional Center for Mycology and Biotechnology Al Azhar University. The tested Gram positive bacteria were *Staphylococcus aureus* (RCMB 010028), *Enterococcus faecalis* (RCMB 010084), *Streptococcus mitis* (RCMB 010039), *Lactobacillus acidophilus* (RCMB 010094) and Methicillin-resistant *Staphylococcus aureus* [MRSA](RCMB 010028) (obtained as clinical isolate). The Gram negative bacteria included *Pseudomonas aeruginosa* (RCMB 010043), *Escherichia coli* (RCMB 010052), *Mycobacterium tuberculosis* (RCMB 010120) and fungi [Aspergillus fumigates (RCMB 02568),
Syncephalastrum racemosum (RCMB 05922), Geotricum candidum (RCMB 05097) and Candida albicans (RCMB 05036). Bacteria were sub cultured on nutrient agar medium (Oxoid laboratories, UK) and fungi on Sabouraud’s dextrose agar (Oxoid laboratories, UK). The isolates were separately tested against the selected strains at concentration of 1 mg/ml in DMSO (as the tested compounds are freely soluble in DMSO at this concentration) adopting agar well diffusion assay method as described by Holder and Boyce (1994). Ampicillin, gentamycin, and vancomycin were used as positive control for bacterial strain; amphotericin B was used as a positive control for fungi. The plates were done in triplicate. Bacterial cultures were incubated at 37°C for 24 h while the other fungal cultures were incubated at (25-30°C) for 3-7 days. Results are recorded as Mean zone of inhibition in mm ± standard deviation beyond well diameter (6 mm) produced on a range of environmental and clinically pathogenic microorganisms using (1 mg/ml) concentration of tested samples (Table S4) (Agwa et al., 2000).

1.4 Determination of the Minimum Inhibitory Concentration (MIC)

The minimum inhibitory concentration (MIC) of the samples was estimated for each of the tested organism in triplicates (Table S5). Varying concentrations of the samples (1000-0.007µg/ml), nutrient broth were added and then a loopful of the test organism previously diluted to 0.5 McFarland turbidity standard was introduced to the tubes. A tube containing broth media only was seeded with the test organisms to serve as control. Tubes containing tested organisms cultures were then incubated at 37°C for 24 h; while the other fungal cultures were incubated at (25-30°C) for 3-7 days. The tubes were then examined for growth by observing for turbidity (Doughari, 2006).

Statistical analysis

All data were expressed as mean ± SE and the statistical significance was evaluated using the ANOVA test followed by Duncan's multiple range tests. A probability value of less than 0.05 was considered statistically significant (P<0.05 was considered statistically significant).

References

Holder, I.A., Boyce, S.T. 1994. Agar well diffusion assay testing of bacterial susceptibility to various antimicrobials in concentrations non-toxic for human cells in culture. Burns. 20, 426–69.
Agwa, H., Aly, M.M., Bonaly, R. 2000. Isolation and characterization of two *Streptomyces* species produced non polyenic antifungal agents. *J. Union Arab Biol.* 7, 62-82.

Doughari, J.H., 2006. Antimicrobial Activity of *Tamarindus indica* Linn. Trop. J. Pharm. Res. 5, 597-603.

Table 1S. 1H NMR (400MHz, CDCl$_3$) of compound 1, 2 and 4

Position	δH ppm	Compound 1	Compound 2	Compound 4
1	2.49 (m), 2.54 (d, J=12.8 Hz)	2.25 (m), 3.08 (d, J=13.4 Hz)	2.22 (m), 2.98 (d, J=12.8 Hz)	
2	1.90 (m), 2.00 (m)	1.81 (m), 2.15 (m)	1.78 (m), 2.14 (m)	
3	4.53 (1H,m)	3.23 (1H,m)	3.54 (1H,m)	
5	1.42 (m)	1.40 (m)	-	
6	-	-	5.37 (1H, br.s)	
18	-	-	0.70 (3H,s)	
19	2.36 (1H, t)	2.36 (1H,t)	1.03 (3H,s)	
21	-	-	0.84 (3H, d, J=6.3 Hz)	
23	0.80 (3H, s)	0.78 (3H, s)	-	
24	0.86 (3H, s)	0.81 (3H, s)	-	
25	0.87 (3H, s)	0.85 (3H, s)	-	
26	0.91 (3H, s)	0.96 (3H, s)	0.86 (3H, d, J=6.7 Hz)	
27	0.96 (3H, s)	0.99 (3H, s)	0.93 (3H, d, J=6.7 Hz)	
28	1.05 (3H, s)	1.05 (3H, s)	-	
29	4.58 (1H, br.s, H-29a) 4.70 (1H, br.s, H-29b)	4.59 (1H, br.s, H-29a) 4.70 (1H, br.s, H-29b)	0.81 (3H, t, J=6.7 Hz)	
30	1.70 (3H,s)	1.70 (3H,s)	-	
1"	-	-	-	
2"	2.4-2.5 (2H, m)	-	-	
3"	4.00 (1H, m)	-	-	
4"-15"	1.27 (12H, br s)	-	-	
Table 2S. 13C NMR (100MHz, CDCl$_3$) of compound 1, 2 and 4

Position	δC ppm	Compound 1	Compound 2	Compound 4
1	38.2	38.7	37.2	
2	23.6	27.4	31.6	
3	**81.4**	79.0	71.8	
4	37.7	38.8	42.3	
5	55.3	55.3	140.7	
6	18.2	18.3	121.6	
7	34.1	34.6	31.9	
8	40.8	40.8	31.9	
9	50.3	50.4	50.1	
10	37.8	37.1	36.5	
11	20.9	21.1	21.1	
12	25.4	25.1	39.8	
13	38.0	38.0	42.3	
14	42.8	42.8	56.7	
15	27.4	27.6	24.3	
16	35.5	35.5	28.2	
17	42.9	43.0	56.0	
18	48.2	47.9	11.9	
19	48.0	48.3	19.3	
20	150.9	150.9	36.1	
21	29.8	29.9	18.9	
22	39.6	40.0	33.9	
23	28.0	28.0	26.2	
24	16.6	15.3	45.2	
25	16.1	16.1	29.2	
26	15.9	15.9	19.0	
27	14.5	14.5	19.8	
28	18.0	18.0	23.1	
29	109.3	109.3	11.9	
30	19.3	19.3		
Position	δH ppm	δC ppm		
----------	--------	--------		
1	3.7 d (J=8.8 Hz)	72.4		
2	1.89, 1.95	31.7		
3	**4.26**	**72.3**		
4	1.83, 1.62	28.2		
5	1.9	30.4		
6	1.81, 1.36	25.9		
7	1.72, 1.25	20.9		
8	1.62	41.9		
9	1.49	37.6		
10	--	40.2		
11	1.35, 1.36	21.1		
12	1.30, 1.53	39.9		
13	--	49.4		
14	--	85.3		
15	2.1, 1.73	33.1		
16	2.14, 1.89	26.9		
17	2.79	50.8		
18	0.91	15.8		
19	1.12	18.8		
20	--	174.3		
21	4.80, 4.98 (d, J=17.8 Hz)	73.4		
22	5.9	117.8		
23	--	174.1		
1′	**5.0**	**97.6**		
2′	3.88	68.4		
3′	3.37	75		
4′	3.88	69.7		
5′	3.98	66.7		
6′	1.36 (d, J=6.4 Hz)	16.5		
3′-OCH₃	3.51	55.6		
Table 4S. Antimicrobial activity of the isolated compounds

The tested microorganisms	The tested samples			
Fungi	Compound 1	Compound 2	Compound 3	Amphotericin B

Table 4S. Antimicrobial activity of the isolated compounds
The test was done using the agar diffusion technique, Well diameter: 6.0 mm (100 µl was tested), RCMB: Regional Center for Mycology and Biotechnology Antimicrobial unit test organisms *NA: No activity, data are expressed in the form of mean ± SD.

Tested microorganisms	Compound 1	Compound 2	Compound 3	Amphotericin B
Fungi				
Aspergillus fumigatus (RCMB 02568)	20.2 ± 0.58	22.8 ± 0.44	16.3 ± 1.2	23.7 ± 0.10
	85.2%	96.2%	68.7%	100%
Candida albicans (RCMB 05031)	NA	18.8 ± 0.44	NA	19.8 ± 0.20
	0.0%	94.9%	0.0	100%
Gram + ve bacteria				
Staphylococcus aureus (RCMB 010028)	21.7 ± 0.22	23.4 ± 0.22	17.4 ± 0.72	27.4 ± 0.18
	79.1%	85.4%	63.5%	100%
Enterococcus faecalis [RCMB 010084(6)]	24.2 ± 0.58	21.2 ± 0.58	20.3 ± 1.2	26.4 ± 0.34
	91.6%	80.3%	76.8%	100%
Streptococcus mitis (RCMB 010039)	NA	17.3 ± 0.58	NA	24.3 ± 0.44
	0.0%	71.1%	0.0	100%
Lactobacillus acidophilus (RCMB 010094)	NA	24.2 ± 0.58	NA	25.2 ± 0.58
	0.0%	96%	0.0	100%
Gram - ve bacteria				
Pseudomonas aeruginosa (RCMB 010043)	NA	NA	18.3 ± 1.5	17.3 ± 0.15
	0.0%	0.0%	106%	100%
Escherichia coli (RCMB 010052)	20.6 ± 0.58	18.3 ± 0.58	19.8 ± 0.72	22.3 ± 0.18
	92.3%	82.0%	88.7%	100%
Mycobacterium tuberculosis (RCMB 010120)	15.4 ± 0.44	NA	NA	18.4 ± 0.58
	83.6%	0.0%	0.0	100%
Gram+ ve bacteria				
Methicillin-resistant Staphylococcus aureus	16.3 ± 0.63	18.9 ± 0.63	14.6 ± 1.5	19.6 ± 0.58
[MRSA](RCMB 010028(3)	83.1%	96.4%	74.4%	100%
Clinical isolate				

Table 5S. Antimicrobial Activity as MICS (µg / ml) of the isolated compounds against tested microorganisms:
Organism	MIC 1	MIC 2	MIC 3	MIC 4
Aspergillus fumigatus (RCMB 2568)	32.25	0.24	1.95	0.12
Candida albicans (RCMB 05031)	NA	3.9	NA	1.95
Gram + ve bacteria			Ampicillin	
Staphylococcus aureus (RCMB 010028)	15.63	0.49	0.49	0.06
Enterococcus faecalis (RCMB 010084(6))	3.9	0.12	0.12	0.03
Streptococcus mitis (RCMB 010039)	NA	15.63	NA	0.12
Lactobacillus cidophilus (RCMB 010094)	NA	0.12	NA	0.03
Gram - ve bacteria			Gentamicin	
Pseudomonas aeruginosa (RCMB 010043)	7.81	NA	NA	15.63
Escherichia coli (RCMB 010052)	3.9	7.81	0.98	0.49
Mycobacterium tuberculosis (RCMB 010120)	NA	NA	62.5	7.81
Gram + ve bacteria			Vancomycin	
Methicillin-resistant Staphylococcus aureus [MRSA] (RCMB 010028(3) (clinical isolate)	62.5	3.9	31.25	1.95
Fig. 1S. 1H-NMR spectrum of compound 1
Fig. 2S. 13C-NMR spectrum of compound 1
Fig. 3S. Selected HMBC correlations of compound 1
Fig. 4S. HMQC spectrum of compound 1
Fig. 5S. NOESY spectrum of compound 1
Fig. 6S. HSQC spectrum of compound 1