Níveis de enzima conversora da angiotensina 1 e 2 no soro e na urina de crianças com Doença Falciforme

Levels of angiotensin-converting enzyme 1 and 2 in serum and urine of children with Sickle Cell Disease

Autores
Ho Chi Hsien
Dulce Elena Casarini
João Tomas de Abreu Carvalhaes
Fernanda Aparecida Ronchi
Lilian Caroline Gonçalves de Oliveira
Josefina Aparecida Pellegrini Braga

1Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Pediatría, Disciplina de Nefrologia, São Paulo, SP, Brasil.
2Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Medicina, Disciplina de Nefrologia, São Paulo, SP, Brasil.
3Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Pediatría, Disciplina de Hematologia, São Paulo, SP, Brasil.

Resumo

Introdução: A nefropatia falciforme começa na infância e apresenta aumentos precoces na filtração glomerular, que, em longo prazo, podem levar à insuficiência renal crônica. Várias doenças têm aumentado a atividade da enzima conversora da angiotensina (ECA) urinária e circulante, mas há pouca informação sobre alterações na atividade das ECAs em crianças com doença falciforme (DF).

Objetivo: Examinamos a atividade da ECA-1 circulante e urinária em crianças com DF.

Métodos: Este estudo transversal comparou crianças que eram portadoras de DF com crianças que compunham um Grupo Controle (GC). As atividades séricas e urinárias da ECA foram avaliadas, assim como os fatores bioquímicos, a relação albumina/creatinina urinária e a taxa de filtração glomerular estimada.

Resultados: A atividade urinária da ECA foi significativamente maior em pacientes com DF do que em crianças sadias (mediana 0,01; intervalo 0,00–0,07 vs mediana 0,00; intervalo 0,00–0,01 mU/mL · creatinina, p < 0,001. Não foi observada diferença significativa nas atividades séricas da ECA entre os grupos DF e GC (mediana 32,25; intervalo 16,2–59,3 vs mediana 40,9; intervalo 18,0–53,4) mU/mL · creatinina, p < 0,05.

Conclusão: Nossos dados revelaram uma alta atividade urinária da ECA-1, diferente do nível plasmático, em pacientes com DF, sugerindo uma dissociação entre o Sistema Renina Angiotensina Aldosterona (SRAA) intra-renal e sistémico. O aumento da atividade urinária da ECA-1 em pacientes com DF sugere níveis mais elevados de Ang II com predominância do eixo clássico do SRAA, que pode induzir lesão renal.

Descritores: Anemia; Peptidil Dipeptidase A; Rim; Taxa de Filtração Glomerular.
Introdução

A doença falciforme (DF) é caracterizada por crise vaso-oclusiva (CVO) e dano endotelia que determinam dano crônico e progressivo aos órgãos, incluindo os rins¹. As complicações renais mais comuns incluem hematuria macroscópica assintomática, hipostenúria, necrose da papila renal, maio hiperfiltração glomerular e proteinúria². O diagnóstico precoce na infância é muito importante para que medidas preventivas e o monitoramento possam ser praticados, evitando assim a insuficiência renal na vida adulta³. O dano glomerular, embora menos frequente, leva à perda progressiva da função renal, culminando na insuficiência renal crônica em aproximadamente 20% dos pacientes⁴.

Em um estudo multicêntrico, constatou-se que a taxa de filtração glomerular aumentou em bebês que experimentaram o início da DF aos nove meses de idade⁵. A hiperfiltração é um fator de risco para o desenvolvimento de proteinúria e doença renal crônica na DF⁶. Essas alterações renais podem ser acompanhadas por alterações no Sistema Renina-Angiotensina-Aldosterona (SRAA), e estudos descreveram como os pacientes com DF experimentam diminuições na microalbuminúria e na proteinúria com o uso de inibidores da enzima conversora da angiotensina I (ECA-1)⁷. Recentemente, Thrower et al. (2019) demonstraram que pacientes com proteinúria que receberam bloqueio do SRAA apresentaram perda tardia da função renal em pacientes com DF⁸.

O desequilíbrio do eixo clássico ECA-1/Angiotensina II (Ang II) /receptor AT1 e do eixo contra-regulatório ECA-2/Ang 1-7/receptor MAS foi estudado por Belisario et al. (2018) destacando que a ECA-2 e a Ang 1-7 foram reduzidas na DF pediátrica com aumento da e Ang II, induzindo lesão renal⁹.

A ECA-2 é uma proteína de membrana integral tipo I que compartilha 42% de homologia com a ECA-1 e contém um único sítio catalítico dependente de zinco capaz de clivar a Ang II vasoconstritora para a Ang 1-7 vasodilatadora¹⁰,¹¹. Esta enzima é encontrada em muitos tecidos e é expressa no rim, especialmente em células mesangiais, proximais e do ducto coletor. Os inibidores da ECA-1 não são capazes de bloquear a ECA-2¹²,¹³.

As alterações nos níveis de enzimas e peptídeos do SRAA usando modelos animais de DF foram descritas por Roy et al. (2018). Seus achados sugerem que o bloqueio do receptor AT1, juntamente com o processo agonista de sinalização do AT2R, previnem a glomerulopatia falciforme¹⁴. Vários autores descreveram um aumento estatisticamente significativo da atividade da ECA-1 em pacientes com doença renal crônica¹⁵,¹⁶, diabetes tipo 1, e doença inflamatória sistêmica envolvendo comprometimento renal antes de iniciar tratamentos enzimáticos, conforme descrito por nosso grupo de trabalho¹⁷.

Estudos das atividades séricas e urinárias da ECA-1 na DF, especialmente em crianças, são limitados. O presente estudo teve como objetivo avaliar a modulação das atividades séricas e urinárias da ECA-1 e ECA-2 na DF pediátrica, importante para compreender o papel dessas enzimas na nefropatia das células falciformes.

Métodos

Conformidade com as normas éticas

Este estudo foi aprovado pelo Comitê de Ética em Pesquisa da Universidade Federal de São Paulo (UNIFESP) sob o número 0557/02. Todos os pais ou tutores dos participantes receberam informações sobre o estudo. Após esclarecer dúvidas sobre o trabalho, esses pais ou tutores foram solicitados a assinar um termo de consentimento livre e esclarecido antes do início do estudo.

Assuntos e coleta de amostras

Este estudo de centro único, descritivo e transversal incluiu pacientes com DF que foram monitorados na clínica pediátrica de um hospital de referência. Também recrutamos voluntários saudáveis de idade semelhante de uma escola particular de ensino fundamental no sudeste de São Paulo (Brasil), sem histórico recente de doenças ou uso de medicamentos, que serviram como Grupo Controle.

Um formulário padronizado foi usado para registrar dados dos participantes, como peso, altura, pressão arterial (PA), números de CVO/ano de idade, calculados usando o número total de ocorrências de CVOs por paciente por ano dividido pela idade do paciente em anos (número de eventos/idade do paciente em anos). Os escores z para as relações antropométricas peso/idade, altura/idade e peso/altura foram usados para avaliar o estado nutricional. Usando os gráficos de crescimento da Organização Mundial da Saúde, o estado nutricional foi classificado usando o índice de massa corporal¹⁸. Três medições de PA foram feitas pelo próprio pesquisador...
e classificadas de acordo com o Quarto Relatório sobre o Diagnóstico, Avaliação e Tratamento da Hipertensão Arterial em Crianças e Adolescentes19.

CRIERÍOS DE EXCLUSÃO

Foram excluídos pacientes ou controles que faziam uso de corticosteroides, medicamentos anti-inflamatórios não esteroidais, anticonvulsivos, anti-histamínicos, broncodilatadores, digitálicos ou drogas hipotensivas. Também foram excluídos os indivíduos com uma CVO nos três meses anteriores ou febre durante a coleta de amostra ou transfusão de sangue no mês anterior ao recrutamento. Nenhum participante era usuário atual de hidroxiureia, quelação de ferro ou terapia renal substitutiva.

COLETA DE AMOSTRAS E MÉTODOS ANALÍTICOS

Amostras urinárias foram coletadas de voluntários na presença de coquetel inibidor, livre de EDTA, e preservadas a -20°C até o processamento.

A urina usada para a medição da atividade da ECA-1 foi concentrada a 1 mL utilizando um filtro centrífugo centricron de 30 kDa de corte (Millipore, Billerica, MA) e dialisada no mesmo filtro contra 50 mmol/L Tris-HCl, pH 8,0, com 150 mmol/L NaCl.

A atividade catalítica da ECA-1 foi determinada fluorimetricamente, conforme descrito por Friedland e Silverstein20. Uma alíquota de soro (10 μL) e urina preparada como descrito acima (50 μL) foi incubada com um tampão de ensaio de 200 μL (solução tampão contendo 1 mmol/L de Z-Phe-His-Leu (Z-FHL) em 100 mmol/L de borohidreto de sódio, pH 8,3, 300 mmol/L de NaCl, e 0,1 mmol/L de ZnSO4) por 10 min a 37°C. A reação enzimática foi interrompida pela adição de NaOH (0,28 N; 1,5 mL) e incubada com o-ftaldialdeído (20 mg/mL de metanol; 100 μL; 10 min). A reação de fluorescência foi interrompida pela adição de HCl (3 N; 200 μL). O dipeptídeo His-Leu então liberado foi medido fluorometricamente (λex: 360 nm; λem: 465 nm) usando o fluorímetro F-200 (Modelo Infinito; Tecan; Grödig, Áustria). O cálculo foi baseado em uma curva padrão. Em seguida, os valores foram normalizados pela concentração de creatinina para amostras urinárias.

A atividade da ECA-2 também foi determinada por fluorimetria, utilizando o substrato MCA-APK-Dnp (30 mM, λex: 320 nm; λem: 420 nm). A amostra de tampão (Tris-HCl 50 mM, NaCl 1 M, ZnCl2 10 mM, captopril 10 mM, pH 6,5) e soro (10 μL) foram pré-incubadas por 30 min na presença ou ausência do inibidor da ECA-2 (DX600, 20 mM). O substrato foi adicionado e as reações foram medidas durante 60 minutos pelo fluorímetro F-200 (Modelo Infinito; Tecan; Grödig, Áustria). Foram registradas unidades arbitrárias de fluorescência, os cálculos foram baseados em um curva padrão de fluorescência (OMNIMMP), e o ponto de tempo 0 foi usado como branco interno.

A excreção urinária de albumina foi medida usando um imunoensaio turbidimétrico e foi expressa como a relação de concentração de albumina/creatinina (RAC). A albuminúria elevada foi definida como RAC > 30 mg/g21. A creatinina urinária foi medida usando uma reação de Jaffé modificada e um analisador automático da Hitachi 912 - Roche22.

Para obter a taxa de filtração glomerular estimada (TFGe), foi utilizada a equação de Schwartz à beira do leito atualizada. A hiperfiltração foi definida como TFGe ≥150 mL/min/1,73 m223.

ANÁLISE ESTATÍSTICA

Com base em nossos estudos pré-clínicos da atividade de ECAs em 30 crianças com células falciformes, foi calculado um tamanho amostral de 28 para obter um poder de 0,8 e um α<0,05.

Variáveis contínuas e com distribuição normal (peso, índice de massa corporal (IMC) e escores Z de altura, e PAS) foram analisadas quantitativamente e expressas como valores médios ± desvio padrão (DP), e o teste Anova de três amostras foi usado para determinar a significância estatística dos valores médios e dos dados categóricos.

Os dados não com distribuição não paramétrica são expressos como valores medianos e intervalo interquartil (IIQ) e foram realizados os testes não paramétricos específicos. Os parâmetros basais no grupo DF versus o Grupo Controle foram comparados usando o teste U de Mann-Whitney e o teste de Kruskal-Wallis.

O coeficiente de correlação de Spearman (rho) foi usado para determinar associações entre desfechos. Um valor de p bicaudal inferior a 0,05 foi considerado estatisticamente significativo.

RESULTADOS

PARÂMETROS ANTROPOMÉTRICOS E DE PA

Os parâmetros antropométricos, cardiovasculares e bioquímicos dos participantes são mostrados na Tabela 1. O grupo DF incluiu 32 crianças sem CVO

Braz. J. Nephrol. (J. Bras. Nefrol.) 2021;43(3):303-310
nos momentos de coleta de amostras. Dez (31,2%) destes tinham CVO com uma média de 0,4 (0,11 - 0,76) episódio por ano de idade. O Grupo Controle tinha 22 crianças.

Os parâmetros peso, IMC, escore Z de IMC e altura, PAD (pressão arterial diastólica) e creatinina sérica no Grupo Controle foram significativamente mais altos do que os do grupo DF (p < 0,05). Observamos que a TFGe no grupo DF foi significativamente mais alta do que no Grupo Controle (p <0,001). Não houve diferenças significativas na RAC entre o grupo DF e o Grupo Controle (Tabela 1).

Observamos menor atividade urinária da ECA-1 no grupo DF versus Controle (p=0,005), e os grupos DF e Controle tinham atividades séricas semelhantes da ECA-1 e ECA-2 (p 0,066; 0,058) (Tabela 1 e Figura 1).

Para o grupo DF os valores da atividade urinária da ECA-1 exibiram uma correlação com a TFGe (rho=0,388; p=0,028) (regressão, R=0,339) e nenhuma correlação com a RAC (rho= -0,058; p=0,751) (figura 2). A PA sistólica (PAS) e a PA diastólica (PAD) não estavam correlacionadas com a ECA-1 sérica (rho= -0,57, p=0,680; rho=0,175, p=0,205) ou com a atividade urinária da ECA-1 (rho=0,148, p=0,418 e rho=0,152, p=0,406) respectivamente.

ECA-1, ECA-2 SÉRICAS, RELAÇÃO ECA-1 / ECA-2 E ATIVIDADES URINÁRIAS DA ECA-1 NA DF COM CVO

Não foram observadas diferenças significativas entre os tercis de atividade urinária da ECA-1 quando os grupos DF >0,4 CVO/ano e DF <0,4 CVO/ano foram comparados (p=0,535) (tabela 2).

Discussão

Atualmente, os métodos para identificar pacientes jovens com DF com maior risco de desenvolver complicações renais permanecem limitados à análise de microalbuminúria e creatinina. Portanto, é importante desenvolver biomarcadores prognósticos para essas complicações, para que esses pacientes possam ser identificados e, assim, orientados para terapias preventivas mais precoces. No entanto, os fatores fisiológicos que promovem estas alterações pré-clínicas precoces na excreção e hiperfiltração urinária de albumina permanecem pouco claros.

Nossa primeira observação inovadora nesta coorte de pacientes pediátricos com DF foi os níveis significativamente mais elevados de atividade urinária da ECA-1 em comparação com nosso Grupo Controle (Figura 1). A DF exibe um paradoxo de perfusão que se caracteriza pela hipoperfusão em leitos microcirculatórios ocluídos por eritrócitos contendo hemoglobina S durante a hiperperfusão na circulação sistêmica (macro) e uma série de circuitos vasculares regionais. A hiperperfusão cortical e a hipoperfusão medular ocorrem no rim, e a isquemia medular...
Atividades da Enzima Conversora da Angiotensina 1 e 2 em crianças com Doença Falciforme

Estimula a liberação de mediadores vasoativos, resultando na hiperfiltração glomerular. Encontramos uma maior atividade urinária da ECA-1 no grupo DF e uma correlação positiva significativa com a hiperfiltração glomerular. A evolução da nefropatia falciforme tem sido comparada à da diabetes tipo I com hiperfiltração renal. Demonstramos taxas de filtração aumentadas de 150,8 mL/min/1,73m² entre indivíduos com DF, semelhante ao que tem sido observado na nefropatia diabética.

Nossos pacientes não tinham microalbuminúria e a atividade urinária da ECA-1 não estava correlacionada com a RAC. Estes resultados diferem daqueles descritos por Hallab et al. (1992) e Burns et al. (2017), nos quais a atividade urinária da ECA-1 mostrou uma correlação positiva com a TFGe.
ECA-1 era elevada em indivíduos com diabetes tipo 1, especialmente em pacientes com microalbuminúria, sugerindo uma indicação precoce de lesões em células endoteliais vasculares. Além disso, Belisario et al. (2019) descreveram que crianças com DF com albuminúria persistente também apresentaram níveis urinários aumentados de ECA-1. Casarini et al. (2001) descreveram uma correlação entre a ECA-1 urinária e a PA, sugerindo que a ECA-1 urinária e a N-domínio são produzidas localmente e liberadas pelas células tubulares em condições normais e em resposta a danos renais isquêmicos.

Em nossa segunda observação, as atividades séricas da ECA-1 e 2 foram consideradas similares no grupo DF e no Grupo Controle. Em relação à atividade da ECA-1, houve divergência nos achados. Bennion et al. (2016) descreveram que em pacientes com acidente vascular cerebral isquêmico, os níveis séricos de atividade da ECA-1 não foram inferiores aos do Grupo Controle. Imediatamente após o AVC, eles foram significativamente reduzidos em quase 15% em comparação com os níveis agudos aos três dias após o AVC. Em pacientes com doença renal crônica estágio 3-5, sem histórico prévio de doença cardiovascular, a atividade da ECA-1 circulante foi significativamente maior.

Estudos relataram aumento da atividade sérica da ECA-2 na doença vascular, por exemplo, em pacientes com doença arterial coronariana obstrutiva significativa, acidente vascular cerebral isquêmico ou diabético tipo 1, com doenças microvasculares ou macrovasculares. Em nosso estudo, os pacientes com DF apresentaram uma tendência para maior atividade sérica da ECA-2, embora não houvesse diferença estatística em relação ao Grupo Controle. Podemos atribuir o achado ao fato de que crianças não tiveram CVO ou complicações devido a este processo.

Descobrimos que a atividade sérica da ECA-1 foi menor em indivíduos com DF do que no Grupo Controle, mas não significativamente. Em nosso estudo, não foi observada nenhuma correlação entre a atividade sérica da ECA-1 e a PA. Este achado não está de acordo com os resultados descritos por Franco et al. e Landazuri et al. (2011, 2017). Estes estudos demonstraram correlações entre estes parâmetros em crianças saudáveis. Este achado pode ser atribuído ao fato de que crianças com DF apresentam lesão endotelial. Como relatado anteriormente em estudos de DF, observamos que os níveis de PA eram mais baixos no grupo DF do que no Grupo Controle.

Nossos resultados são semelhantes às conclusões de Febba et al. (2009) e Burns et al. (2017). Estes estudos também não encontraram uma correlação.
entre a atividade urinária da ECA-1 e os valores de PAS ou PAD. De acordo com uma revisão de estudos sobre a atividade renal da ECA-1 e PA conduzida por Bernstein et al. (2013) certos resultados experimentais relacionaram a atividade urinária da ECA-1 com a PA elevada; entretanto, estudos adicionais são necessários para melhorar nossa compreensão desta correlação.

Nossos resultados indicaram maior atividade urinária da ECA-1, o que pode refletir a ativação intrarrenal do SRAA, potencialmente levando a efeitos sobre a excreção de albumina. Não encontramos correlação entre a relação ECA-1/ECA-2 e os dados bioquímicos e clínicos no grupo DF. Podemos atribuir este achado à nossa coorte que teve um pequeno número de voluntários e ao fato de os pacientes não estarem em uma CVO na época.

Finalmente, este foi um estudo transversal com amostras coletadas em uma ocasião. Não é possível prever alterações que ocorrem ao longo do tempo de maneira individual em pacientes, e são necessários mais estudos para investigar as implicações clínicas de nossas observações.

Em conclusão, nossos dados revelam uma alta atividade urinária da ECA-1, que difere do nível plasmático, no grupo DF, sugerindo uma dissociação entre o SRAA intra-renal e sistêmico. O aumento da atividade urinária da ECA-1 no grupo DF sugere níveis mais elevados de Ang II com uma predominância do eixo clássico do SRAA, que pode induzir lesão renal. A atividade urinária da ECA-1 não foi correlacionada com a RAC da urina, sugerindo dano tubular mesmo antes da lesão glomerular.

Estudos adicionais são necessários para analisar outros componentes do SRAA do eixo alternativo, como enzimas, tais quais a quimase, a catepsina D, a neprilisina, que são capazes de produzir Ang II e Ang 1-7, os peptídeos vasoconstritor e vasodilatador, respectivamente.

CONFLITO DE INTERESSE

Os autores não têm nenhum conflito de interesse relevante a este artigo a ser divulgado.

REFERÊNCIAS

1. Steinberg MH. Sickle cell anemia, the first molecular disease: overview of molecular etiology, pathophysiology, and therapeutic approaches. Sci World J. 2008 Dec;8:1295-324.
2. Ataga KI, Orringer EP. Renal abnormalities in sickle cell disease. Am J Hematol. 2000 Apr;63(4):205-11.
3. Scheinman JI. Sickle cell nephropathy. In: Avner ED, Harmon WE, Niaudet P, Yoshikawa N, Emma F, Goldstein SL, eds. Pediatric nephrology. 5th ed. Baltimore: Lippincott; 2004. p. 917-29.
4. Revuelta KL, Andrés MPR. Kidney abnormalities in sickle cell disease. Nefrologia. 2011;31(5):591-601.
5. Ware RE, Rees RC, Sarnaik SA, Iyer RV, Alvarez OA, Casella JF, et al. Renal function in infants with sickle cell anemia: baseline data from the BABY HUG trial. J Pediatr. 2010 Jan;156(1):66-70.e1.
6. Nanth KA, Katusic ZS. Vascularature and kidney complications in sickle cell disease. J Am Soc Nephrol. 2012 May;23(5):781-4.
7. Sasonko TH, Nagalla S, Ballas SK, Angiotensin-converting enzyme (ACE) inhibitors for proteinuria and microalbuminuria in people with sickle cell disease. Cochrane Database Syst Rev. 2015 Jun;2015(6):CD009191.
8. Thrower A, Ciccone EJ, Maitra P, Derebail VK, Cai J, Ataga KI. Effect of renin-angiotensin-aldosterone system blocking agents on progression of glomerulopathy in sickle cell disease. Br J Haematol. 2019 Jan;184(2):246-52.
9. Belisario AR, Vieira ELM, Almeida JA, Mendes FG, Miranda AS, Rezende PV, et al. Low urinary levels of angiotensin-converting enzyme 2 may contribute to albuminuria in children with sickle cell anemia. Br J Haematol. 2019 Apr;185(1):190-3.
10. Ye M, Wysocki J, Naaz P, Salabat MR, LaPointe MS, Battle D. Increased ACE 2 and decreased ACE protein in renal tubules from diabetic mice: a renoprotective combination?. Hypertension. 2004 May;43(5):1120-5.

Dulce Elena Casarini: Participou do conceito e desenho, análise e interpretação dos dados, e elaboração ou revisão do manuscrito, e aprovou o manuscrito conforme submetido.

João Tomas de Abreu Carvalhaes: Participou do conceito e desenho, análise e interpretação dos dados, e elaboração ou revisão do manuscrito, e aprovou o manuscrito conforme submetido.

Fernanda Aparecida Ronchi: Participou do conceito e desenho, análise e interpretação dos dados, e elaboração ou revisão do manuscrito, e aprovou o manuscrito conforme submetido.

Joséfina Aparecida Pellegrini Braga: Participou do conceito e desenho, análise e interpretação dos dados, e elaboração ou revisão do manuscrito, e aprovou o manuscrito conforme submetido.

CONTRIBUIÇÃO DOS AUTORES

Todos os autores aprovaram o manuscrito final conforme submetido e concordaram em ser responsáveis por todos os aspectos do trabalho.

Ho Chi Hsien: Participou do conceito e desenho, análise e interpretação dos dados, e elaboração ou revisão do manuscrito, e aprovou o manuscrito conforme submetido.
11. Li N, Zimpelmann J, Cheng K, Wilkins JA, Burns KD. The role of angiotensin converting enzyme 2 in the generation of angiotensin 1-7 by rat proximal tubules. Am J Physiol Renal Physiol. 2005 Feb;288(2):F353-62.
12. Wang PHM, Andrade MC, Quinto BMR, Di Marco G, Mortara RA, Vio CP, et al. N-domain angiotensin-I converting enzyme is expressed in immortalized mesangial, proximal tubule and collecting duct cells. Int J Biol Macromol. 2015 Jan;72:380-90.
13. Quinto BMR, Andrade MCC, Ronchi FA, Santos EL, Correa SAA, Shimuta SI, et al. Expression of angiotensin I-converting enzymes and bradykinin B2 receptors in mouse inner medullary-collecting duct cells. Int Immunopharmacol. 2008 Feb;8(2):254-60.
14. Roy S, Rai P, Eiyro M, Chang KH, Rizvi T, Shanmukappa SK, et al. Angiotensin receptor signaling in sickle cell anemia has a reno-protective effect on urine concentrating ability but results in sickle glomerulopathy. Am J Hematol. 2018 Jul;93(7):E177-E81.
15. Vio CP, Jeanneret VA. Local induction of angiotensin-converting enzyme in the kidney as a mechanism of progressive renal diseases. Kidney Int Suppl. 2003 Oct;86(63):S57-63.
16. Soro-Paavonen A, Gordin D, Forsblom C, Rosengard-Barlund M, Waden J, Thorn L, et al. Circulating ACE2 activity is increased in patients with type 1 diabetes and vascular complications. J Hypertens. 2012 Feb;30(2):375-83.
17. Batista EC, Carvalho LR, Casarini DE, Carmona AK, Santos EL, Silva ED, et al. ACE activity is modulated by the enzyme alpha-galactosidase A. J Mol Med (Berl). 2011 Jan;89(1):65-74.
18. World Health Organization (WHO). WHO child growth standards: length/height-for-age, weight-for-age, weight-for-length, weight-for-height and body mass index-for-age: methods and development. Geneva: WHO; 2006.
19. National High Blood Pressure Education Program; Working Group on High Blood Pressure in Children and Adolescents. The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics. 2004 Aug;114(2 Suppl 4):S55-76.
20. Friedland J, Silverstein E. A sensitive fluorimetric assay for serum angiotensin-converting enzyme. Am J Clin Pathol. 1976;66(2):416-24.
21. Stevens PE, Levin A; Kidney Disease: Improving Global Outcomes; Chronic Kidney Disease Guideline Development Work Group Members. Evaluation and management of chronic kidney disease: synopsis of the kidney disease: improving global outcomes 2012 clinical practice guideline. Ann Intern Med. 2013 Jun;158(11):825-30.
22. Peake M, Whiting M. Measurement of serum creatinine -current status and future goals. Clin Biochem Rev. 2006 Nov;27(4):173-84.
23. Helal I, Fick-Brosnaham GM, Reed-Gitomer B, Schrier RW. Glomerular hyperfiltration: definitions, mechanisms and clinical implications. Nat Rev Nephrol. 2012 Feb;8(5):293-300.
24. Narth KA, Hebbel RP. Sickle cell disease: renal manifestations and mechanisms. Nat Rev Nephrol. 2015 Mar;11(3):161-71.
25. Haymann JP, Stankovic K, Levy P, Avellino V, Tharaux PL, Letavernier E, et al. Glomerular hyperfiltration in adult sickle cell anemia: a frequent hemolysis associated feature. Clin J Am Soc Nephrol. 2010 May;5(5):756-61.
26. Kalk WJ, Osler C, Taylor D, Panz VR, Esse JD, Reinach SG. The prevalence of micro-albuminuria and glomerular hyperfiltration in young patients with IDDM. Diabetes Res Clin Pract. 1990 Jan;8(2):145-53.
27. Hallam B, Merrick G, Bouhanick B, Bled F, Suraniti S, Girault A, et al. Increase of activity of angiotensin-converting enzyme in insulin-dependent diabetic patients with permanent microalbuminuria. Arch Mal Coeur Vaiss. 1992 Aug;85(8):1185-8.
28. Burns KD, Lyrtvyn Y, Mahmud FH, Daneman D, Deda L, Dunger DB, et al. The relationship between urinary renin-angiotensin system markers, renal function, and blood pressure in adolescents with type 1 diabetes. Am J Physiol Renal Physiol. 2017 Feb;312(2):F335-F42.
29. Casarini DE, Plavinik FL, Zanella MT, Marson O, Krieger JE, Hirata IY, et al. Angiotensin converting enzymes from human urine of mild hypertensive untreated patients resemble the N-terminal fragment of human angiotensin I-converting enzyme. Int J Biochem Cell Biol. 2001 Jan;33(1):75-85.
30. Bennion DM, Rosado CA, Haltigan EA, Regenhardt RW, Summers C, Waters MF. Serum activity of angiotensin converting enzyme 2 is decreased in patients with acute ischemic stroke. J Renin Angiotensin Aldosterone Syst. 2016 Aug;17(3):1470320316661060.
31. Anguiano L, Riera M, Pascual J, Valdivielso JM, Barrios C, Betriu A, et al. Circulating angiotensin-converting enzyme 2 activity in patients with chronic kidney disease without previous history of cardiovascular disease. Nephrol Dial Transplant. 2015 Jul;30(7):1176-85.
32. Ramchand J, Patel SK, Srivastava PM, Farouque O, Burrell LM. Elevated plasma angiotensin converting enzyme 2 activity is an independent predictor of major adverse cardiac events in patients with obstructive coronary artery disease. PLoS One. 2018 Jun;13(6):e0198144.
33. Franco MC, Casarini DE, Carneiro-Ramos MS, Sawaya AL, Barreto-Chaves ML, Sesso R. Circulating renin-angiotensin system and catecholamines in childhood: is there a role for birthweight? Clin Sci (Lond). 2008 Mar;114(5):375-80.
34. Landazuri P, Granobles C, Loango N. Gender differences in serum angiotensin-converting enzyme activity and blood pressure in children: an observational study. Arq Bras Cardiol. 2008 Dec;91(6):352-7.
35. Johnson CS. Arterial blood pressure and hyperviscosity in sickle cell disease. Hematol Oncol Clin North Am. 2005 Oct;19(5):827-37.
36. Hsien HC, Carvalhaes JTA, Braga JAP. Blood pressure in children with sickle cell disease. Rev Paul Pediatr. 2012 Mar;30(1):87-92.
37. Febba A, Sesso R, Barreto GP, Liboni CS, Franco MCP, Casarini DE. Stunting growth: association of the blood pressure levels and ACE activity in early childhood. Pediatr Nephrol. 2009 Feb;24(2):379-86.
38. Bernstein KE, Ong FS, Blackwell WLB, Shah KH, Giani JF, Gonzalez-Villalobos RA, et al. A modern understanding of the traditional and nontraditional biological functions of angiotensin-converting enzyme. Pharmacol Rev. 2013 Dec;65(1):1-46.