Cooper, Rachel and Mishra, GD and Black, S and Stafford, M and Cooper, R and Kuh, D and Health, National Survey of and scientific, Development and team, data collection (2014) Childhood and maternal effects on physical health related quality of life five decades later: the british 1946 birth cohort. PLoS ONE, 9 (3). ISSN 1932-6203

Downloaded from: http://e-space.mmu.ac.uk/623322/
Version: Published Version
Publisher: Public Library of Science (PLoS)
DOI: https://doi.org/10.1371/journal.pone.0088524
Usage rights: Creative Commons: Attribution 4.0

Please cite the published version
Childhood and Maternal Effects on Physical Health Related Quality of Life Five Decades Later: The British 1946 Birth Cohort

Gita D. Mishra1,2*, Stephanie Black2, Mai Stafford2, Rachel Cooper2, Diana Kuh2, for the National Survey of Health and Development scientific and data collection team

1 School of Population Health, University of Queensland, Brisbane, Australia, 2 MRC Unit for Lifelong Health and Ageing, University College London, London, United Kingdom

Abstract

Limited research has been done on the relationships between childhood factors and adult physical health related quality of life, with the underlying pathways not fully elucidated. Data from 2292 participants of the British 1946 birth cohort were used to examine the relationship of childhood characteristics and family environment with principal component summary (PCS) scores and the physical functioning (PF) subscale of the SF-36 at age 60–64 years. Impaired physical functioning was defined as the lowest quartile scores in the PF subscale. Childhood factors (father in manual social class versus non-manual ($b = -2.34; 95\%CI: -3.39, -1.28$) and poor maternal health versus good/excellent maternal health ($b = -6.68; -8.78, -3.57$) were associated with lower PCS scores at 60–64 years. Adult health behaviours (increasing BMI, lifelong smoking, and lower physical activity) at 53 years were identified as strong risk factors for lower PCS scores. After adjusting for these factors and education level ($N = 1463$), only poor maternal health remained unattenuated ($b = -5.07; -7.62, -2.51$). Similarly poor maternal health doubled the risk of reporting impaired PF (Odds ratio = 2.45; 95\%CI: 1.39, 4.30); serious illness in childhood (OR = 1.44, 1.01, 2.06) and lower educational level attained were also risk factors for impaired PF ($N = 1526$). While findings suggest the influence of father’s social class on physical health related quality of life are mediated by modifiable adult social factors and health behaviours; health professionals should also be mindful of the inter-generational risk posed by poor maternal health on the physical health related quality of life of her offspring almost five decades later.

Introduction

With the ageing demographic profile of many nations, research has increasingly turned to understanding the factors that promote and sustain good health-related quality of life – a concept that has been framed as “ageing well” or “healthy ageing”. This shift reflects policy priorities to contain expenditure on health care and to invest in preventive health strategies that support the populace in living healthier for longer [1]. Prevention strategies may need to begin years or even decades before the onset of older age. The maturation of cohort studies that can now draw on data from their early years or even decades before the onset of older age. Investigators into the impact of SEP over the life course have used health-related quality of life as a reliable subjective measure of health, with the physical component summary (PCS) score of the Short-Form Health Survey (SF-36) providing a validated measure of physical health [7]. The PCS score comprises weighted contributions from all eight subscales, including those for physical functioning (PF), role limitations due to physical problems, bodily pain, and general health. Findings from the Whitehall II study on civil servants in the UK supported the cumulative effect of SEP on PCS scores among men and women, such that greater socioeconomic disadvantage over the life course was associated with increasingly poor physical health [8]. In another study of 9000 employees of the City of Helsinki, childhood circumstances were not directly associated with PCS scores, but were found to act indirectly through adult SEP, with lower education level, occupational class, and income all clearly linked with PCS score [9].

While the PCS score has been adopted as a measure of overall physical health-related quality of life the PF subscale provides a
more focused measure of the extent that a person perceives their daily function and activities are impeded by their physical health. Findings from the Helsinki Birth Cohort Study indicate that early life stress increased the risk of impaired PF in men, but not women [10]. Key limitations of these and other similar studies to elucidate pathways, however, has been lack of consideration of childhood factors beyond a few limited indicators of childhood SEP, usually taken at one time point in childhood, and their reliance on retrospective data. In order to investigate the causal pathways involved, further understanding is needed of the relationship of a range of factors in childhood (including family environment, parental health, physical health and personality) on physical health in later life after accounting for potential proximal mediating mechanisms, such as those due to health behaviours.

This study draws on prospective data from the Medical Research Council National Survey of Health and Development (NSHD), a long-running population-based birth cohort study. It investigates the associations of early life factors with physical health and impaired physical functioning at ages 60–64 years and identifies adult risk factors, including adult social class, body mass and physical activity, that may mediate these effects.

Methods

The NSHD is a birth cohort study consisting of a socially stratified sample of 2,547 women and 2,815 men born during one week in March 1946. There have been 23 follow-ups of the whole cohort, with the most recent sweep at 60–64 years (2006–2011) including physical, cognitive performance assessments, measures of musculoskeletal and cardiovascular systems, and quality of life assessment via postal questionnaire. A total of 2661 responded to the latest sweep (1286 males, 1375 females) giving an overall response rate of 84% [11]. Ethical approval for the study was obtained from the Greater Manchester Local Research Ethics Committee and the Scotland A Research Ethics Committee. All study members provided written informed consent.

Outcome measures

Physical health-related quality of life and impaired physical functioning. At age 60–64 years, the study members completed the SF-36 survey, which is used to measure generic health concepts relevant across age, disease, and treatment groups [12,13]. For the analysis, higher PCS score denoted better physical health. The proportions of missing data from each subscale of the SF-36 ranged from 0.5% (for the item “How is your health now limit you in these activities: vigorous activities, such as running...”) to 4.5% (“Does your health now limit you in these activities: vigorous activities, such as running...?”). The standard procedure of imputing missing items within a subscale was used, as detailed in the SF-36 manual [18], that is if more than half the items were missing in any given subscale then the value for the entire subscale was set as missing.

The analyses were carried out in 3 steps. The first was to perform univariable regression analysis between the PCS score and the potential risk factors in the four areas: a) characteristics of the infant, b) family environment, c) childhood physical health and personality, and d) adult social factors and health behaviours. All factors that were significant at the 10% level with the PCS score were then subjected to multivariable regression analysis (2nd step) within each of these areas, to identify the factors that remained significant after mutual adjustment. These factors were then selected for the final step to reveal the extent that childhood factors were attenuated or mediated by factors in adult life. This involved:
univariable regression for each of the selected variables (Model A), a multivariable regression analysis that incorporated the childhood factors (Model B), and a further multivariable regression analysis (Model C) that included adult characteristics. This approach was repeated using logistic regression analysis to determine the relationships with limited PF. Multiple imputation was also conducted as part of the sensitivity analysis to examine the effects of missing covariate data on the results.

Results

On average, males recorded slightly higher SF-36 scores for the eight sub-scales (though not statistically different at the individual sub-scale level) than females (Table 1), with their mean PCS score also slightly higher than the UK population norm. Although the univariable regression analysis (Table 2) identified associations across a wide range of factors in childhood, including higher level of crowding at age 2 years and respiratory illness in early life, no evidence was found to relate early life nutrition (i.e. birth weight and breast feeding) with physical health at age 60–64 years. Similarly no association was found for parental divorce, paternal or maternal death by age 15, or extroversion at age 15. All of the social factors and health behaviours in adulthood considered here were associated with the PCS score. Further analysis allowing for mutual adjustment in each area (family environment, childhood physical health and personality, and adult social factors and health behaviours) resulted in selection of just four childhood factors for use in subsequent analysis: father’s social class at 4 years, ‘mother’s health summary at 15 years, serious illness (0–15 years), and neuroticism at 15 years. All adult social factors and health behaviours remained significant, except for head of house social class at 53 years (results not shown).

Compared with the univariable regression analysis (Table 3, Model A) for the selected factors and for those study members with complete covariate data, the results for childhood physical health and personality (Table 3, Model B) were attenuated after adjusting for family background. The full model (Table 3, Model C), which includes adult social factors and health behaviours, indicates that higher levels of BMI, lower physical activity, and lifetime smoking remained strongly associated with lower PCS scores in later life, whereas the positive association of level of education was completely attenuated in the full model. The influence of father’s social class was completely attenuated in the full model.

As far as we are aware this is the first population based study to use prospective data to examine the influence of a wide range of childhood factors (including infant characteristics, parental health and family background, and childhood physical health and personality) and adult social factors and health behaviours on physical health and limited PF as measured by SF-36 five decades later. The findings clearly show the impact of established modifiable risk factors in adulthood (BMI, smoking, and physical activity) for physical health and limited PF. Some key early life factors, however, remained associated: maternal health when the participant was aged 15 continued to indicate additional risk for limited PF; those whose mother reported poor health were more than twice as likely (2.72, 1.52–4.85) to report limited PF in later life compared with the reference group whose mothers reported excellent health. After adjusting for all the other factors, those who had a serious illness in childhood were also at increased risk of reporting limited PF at 60–64 years.

Discussion

As far as we are aware this is the first population based study to use prospective data to examine the influence of a wide range of childhood factors (including infant characteristics, parental health and family background, and childhood physical health and personality) and adult social factors and health behaviours on physical health and limited PF as measured by SF-36 five decades later. The findings clearly show the impact of established modifiable risk factors in adulthood (BMI, smoking, and physical activity) for physical health and limited PF. Some key early life factors, however, remained associated: maternal health when the participant was aged 15 continued to indicate additional risk for physical health. Serious illness during childhood was also associated with an additional risk of limited PF in later life, while higher education level had some additional beneficial effects.

Table 1. Mean (SD) scores for the eight dimensions and the two summary measures of SF-36 for males and females aged 60–64 years.

	All	Males	Females
	N Mean (SD)	N Mean (SD)	N Mean (SD)
Dimensions			
Physical Functioning	2422 81.1 (23.8)	1164 83.9 (23.2)	1258 78.5 (24.1)
Role Physical	2400 81.0 (34.9)	1162 83.6 (33.1)	1238 78.5 (36.3)
Bodily Pain	2434 74.5 (25.4)	1170 76.9 (24.7)	1264 72.2 (25.8)
General Health	2384 71.5 (20.6)	1146 70.9 (20.6)	1238 72.0 (20.5)
Vitality	2438 64.6 (19.7)	1172 66.2 (19.1)	1266 63.2 (20.2)
Social Functioning	2453 87.4 (22.1)	1180 88.5 (21.6)	1273 86.4 (22.5)
Role Emotion	2383 89.7 (27.0)	1153 90.7 (25.9)	1230 88.9 (27.9)
Mental Health	2438 78.6 (16.3)	1172 79.8 (16.2)	1266 77.5 (16.3)
Summary scores			
Physical component summary score	2292 50.7 (10.4)	1110 51.1 (10.1)	1182 50.4 (10.7)

[doi:10.1371/journal.pone.0088524.t001]
Table 2. Factors across the life course and physical component summary scores from the Short Form-36 at age 60–64 years.

Characteristics of the infant	Birth weight sex-standardised	N (%)	Unadjusted beta coefficient (95% CI)	P*
Infant feeding				
Mixed or bottle fed	1479 (69%)			
Breast fed only	650 (31%)	−0.11 (−1.07, 0.85)		

Family background	Household crowding at 2 years	<0.0001
	< 2 persons per room	
	≥2 persons per room	

Number of home amenities lacking at 2 years	0.004	
0	1055 (50%)	Reference
1	375 (18%)	−0.88 (−2.10, 0.33)
2	576 (27%)	−1.96 (−3.01, −0.91)
3	93 (4%)	−0.71 (−2.90, 1.49)

Home ownership at 4 years	0.002	
Owner occupier	638 (29%)	Reference
Private landlord	837 (39%)	−1.04 (−2.11, 0.02)
Council	586 (27%)	−2.08 (−3.24, −0.92)
Other	105 (5%)	−2.64 (−4.78, −0.50)

Father's occupational social class at 4 years	<0.0001	
Non-manual	974 (46%)	Reference
Manual	1148 (54%)	−2.29 (−3.17, −1.41)

Mother's health summary at 15 years	<0.0001	
Excellent	1394 (71%)	Reference
Average	493 (25%)	−2.77 (−3.83, −1.70)
Poor	78 (4%)	−5.61 (−7.97, −3.25)

Father's health summary at 15 years	<0.0001	
Excellent	1441 (74%)	Reference
Average	397 (21%)	−1.77 (−2.93, −0.61)
Poor	98 (5%)	−4.43 (−6.57, −2.29)

Mother's neuroticism at 15 years	0.02	
0 symptoms	668 (33.8)	Reference
1	449 (22.7)	0.21 (−1.04, 1.46)
2	389 (19.7)	−0.09 (−1.40, 1.21)
3	217 (11.0)	0.69 (−0.91, 2.29)
4–6	252 (12.8)	−2.26 (−3.78, −0.75)

Parental divorce by 15 years	0.5	
No	2292	Reference
Yes		−0.73 (−2.68, 1.23)

Father's death by 15 years	0.6	
No	2057	Reference
Yes		−0.52 (−2.58, 1.54)

Mother's death by 15 years	0.3	
No	2084	Reference
Yes		−1.61 (−4.62, 1.39)
Findings from this study highlight the mediating role of adult health behaviours and are consistent with a systematic review and meta-analysis of factors affecting objective measures of physical capability [6]. Specifically, adjustment for adult SEP and contemporaneous body size (height, weight, and BMI) greatly attenuated associations of lower childhood SEP with physical capability in later life. The findings are also consistent with previous analyses of the associations of indicators of SEP across life with objective measures of physical capability at age 53 years in the NSHD [19].

Table 2. Cont.

Physical Component Summary score	N (%)	Unadjusted beta coefficient (95% CI)	P*
Childhood physical health and personality	Lower respiratory infection (0–2 years)		
None	1621 (76%)	Reference	
At least one attack	518 (24%)	−1.51 (−2.52, −0.49)	
Serious illness (0–15 years)	None/Unknown	1957 (85%)	Reference
Yes	335 (15%)	−2.10 (−3.30, −0.90)	
Extroversion at 15 years	−6 to 0 (least extrovert)	620 (32%)	Reference
1 to 3	644 (34%)	−0.44 (−1.58, 0.71)	
4 to 6 (most extrovert)	654 (34%)	0.50 (−0.64, 1.64)	
Neuroticism at 15 years	−6 to −2 (least neurotic)	771 (40%)	Reference
−1 to 1	361 (19%)	−2.41 (−3.70, −1.12)	
2 to 6 (most neurotic)	806 (42%)	−1.48 (−2.49, −0.46)	
Adult social factors and health behaviours	Highest education qualification achieved by 26 years	<0.0001	
No qualifications	742 (34%)	Reference	
Ordinary level	573 (26%)	1.52 (0.38, 2.65)	
Advanced level	599 (28%)	2.40 (1.28, 3.52)	
Degree level or above	255 (12%)	4.46 (2.98, 5.94)	
Head of house social class at 53 years		<0.001	
Non-manual	1406 (67%)	Reference	
Manual	695 (33.1)	−1.92 (−2.83, −1.00)	
Body Mass Index at age 53 (kg/m²)		<0.0001	
< 20	39 (1.8%)	−2.59 (−5.86, 0.67)	
20 ≤ BMI < 25	669 (31%)	Reference	
25 ≤ BMI < 30	936 (44%)	−1.42 (−2.42, −0.42)	
BMI ≥ 30	485 (23%)	−5.71 (−6.89, −4.52)	
Physical activity per week at 53 years		<0.0001	
None	954 (45%)	Reference	
Less than once/week	415 (19%)	2.64 (1.47, 3.81)	
More than once/week	772 (36%)	3.81 (2.85, 4.78)	
Lifetime smoking trajectory to 53 years		<0.0001	
Never smoker	677 (32%)	Reference	
Predominantly non-smoker	758 (35%)	−0.11 (−1.18, 0.95)	
Predominantly smoker	437 (20%)	−2.62 (−3.86, −1.39)	
Lifelong smoker	276 (13%)	−4.91 (−6.35, −3.47)	

*P-values from ANOVA.
doi:10.1371/journal.pone.0088524.t002
Table 3. Factors across the life course and health related quality of life – physical component summary measure (PCS) (N = 1463).

Exposure	Model A	Model B	Model C			
	Beta coefficient (95% CI) P	Beta coefficient (95% CI) P	Beta coefficient (95% CI) P			
Family background						
Father’s occupational social class at 4 years						
Non-manual	Reference	<0.0001	Reference	<0.0001	Reference	0.32
Manual	-2.34 (-3.39, -1.28)	-1.92 (-2.97, -0.86)	-0.58 (-1.71, 0.56)			
Mother’s health summary at 15 years						
Excellent	Reference	<0.0001	Reference	<0.0001	Reference	<0.0001
Average	-2.83 (-4.06, -1.61)	-2.37 (-3.61, -1.14)	-2.17 (-3.38, -0.97)			
Poor	-6.18 (-8.78, -3.57)	-5.70 (-8.30, -3.10)	-5.07 (-7.62, -2.51)			
Childhood physical health and personality						
Serious illness (0-15 years)						
None	Reference	0.05	Reference	0.098	Reference	0.12
Yes	-1.47 (-2.95, 0.01)	-1.23 (-2.69, 0.23)	-1.14 (-2.57, 0.28)			
Lower respiratory infection (0-2 years)						
None	Reference	0.08	Reference	0.49	Reference	0.70
At least one attack	-1.11 (-2.34, 0.13)	-0.43 (-1.66, 0.80)	0.24 (-0.96, 1.44)			
Neuroticism at 15 years						
-6 to -2 (least neurotic)	Reference	0.02	Reference	0.06	Reference	0.14
-1 to 1	-1.97 (-3.46, -0.49)	-1.60 (-3.07, -0.14)	-1.43 (-2.86, -0.008)			
2 to 6 (most neurotic)	-1.18 (-2.35, -0.02)	-1.06 (-2.21, 0.10)	-0.62 (-1.76, 0.52)			
Adult social factors and health behaviours						
Highest education qualification achieved by 26 years						
No qualifications	Reference	<0.0001	Reference	0.27		
Ordinary level	1.82 (0.47, 3.16)	0.42 (-0.94, 1.77)				
Advanced level	2.61 (1.26, 3.97)	0.64 (-0.79, 2.06)				
Degree level or above	5.14 (3.35, 6.93)	1.92 (0.004, 3.85)				
Body Mass Index (kg/m²) at age 53 years						
< 20	Reference	<0.0001	Reference	<0.0001		
≥20 to <25	-1.54 (-5.41, 2.34)	-0.51 (-4.30, 3.27)				
≥25 to <30	-1.54 (-2.8, -0.33)	-1.37 (-2.55, -0.19)				
≥30	-4.93 (-6.38, -3.49)	-4.31 (-5.73, -2.90)				
Physical activity per week at 53 years						
None	Reference	0.0001	Reference	0.005		
Less than once/week	2.09 (0.68, 3.49)	0.92 (-0.46, 2.30)				
More than once/week	3.27 (2.09, 4.44)	1.95 (0.78, 3.12)				
Lifetime smoking trajectory to 53 years						
Never smoker	Reference	<0.0001	Reference	<0.0001		
maternal education and father’s occupational class and poorer performance in chair-rising and standing-balance tests that were attenuated after adjustment for indicators of childhood growth, neurodevelopment, home environment, and indicators of adult SEP and health behaviours.

Proximal adult health behaviours (identified in this study by BMI, physical activity, and lifelong smoking) may nevertheless be initiated in childhood. A recent review has highlighted evidence from several life course studies on the influence of childhood socioeconomic position and the trajectory of BMI across the life course, with less advantaged childhood SEP linked with a more rapid gain in BMI at different life stages [2]. Smoking behavior provides another example, with lifelong smoking in this study based on reports spanning from age 20 to 53 years. Previous findings from the NSHD have shown that a third of the lifelong smokers initiated their smoking behavior before the age of 16 [16].

The relationship of early child health and development with the developmental trajectory through adolescence and on subsequent adult outcomes, such as educational attainment, has been studied [15]. Apart from biologic and genetic effects, these are increasingly understood in terms of an interplay of factors that describe the nurturing qualities of the family and social environment where children grow up, such as the effect of maternal mental and physical health [15]. Previous research has also focused on the maternal influence with respect to very early life, especially the intrauterine environment. One of the few studies to examine physical health (as obtained from the quality of life instrument) of the child (at age 15 years) found associations with maternal health in pregnancy and maternal rating of overall child health at 5 years [20]. Findings from our study underscore the enduring impact of poor maternal health, after accounting for adult lifestyle and socioeconomic factors on both physical health related quality of life and physical functioning some five decades later. Even though this factor pertained to when the participant was aged 15, reporting of poor maternal health may reflect an on-going rather than transient condition that characterised the home environment. These findings are also consistent with previous research from the NSHD that has found both the experience of parental illness was strongly linked with unexplained symptoms in childhood, such as abdominal pain, and that unexplained symptoms in childhood were associated with symptoms in adulthood [21].

The lack of evidence for an association of birthweight, where this has previously been associated with grip strength in the NSHD, may reflect the difference between the objective measures used previously, and SF-36 scales that measure the perceived physical health-related quality of life and impact of poor physical health functioning in daily life.

For policymakers and health professionals, the findings underline not only the intergenerational and long-term effects when mothers and children have poor health, but also the link between childhood social factors and mediating health behaviours in adulthood. In no way do they lessen, however, the role that preventive health measures can have to modify poor adult health behaviour and improve physical health in older age.

Although the cohort in this study grew up in a period of social change of post-war Britain, it seems likely that the role of maternal health as an additional risk factor for adult physical health remains in subsequent generations. It may be the case, however, that changing family structures – such as single parent families – and changes in the women’s societal role may result in the influence of other factors, so that maternal SEP rather than just paternal SEP are needed to characterise childhood circumstances. Further research is needed to determine if the relationships found in this study are evident in different populations and subsequent cohorts.

Table 3. Cont.

Table 3: Childhood Factors and Adult Physical Health
Model A
Exposure
Predominantly non-smoker
Predominantly smoker
Lifelong smoker

Model A: univariable regression analysis for those with complete covariate data; Model B multivariable regression: includes childhood psychosocial factors; and personality; Model C: includes all factors in Model B and adult social factors and health behaviours. doi:10.1371/journal.pone.0088524.t003
Table 4. Factors across the life course and limited physical functioning (PF) from SF-36 (N = 1526).

Factor across the life course	Model A	Model B	Model C					
	Odds ratio (95% CI)	P	Odds ratio (95% CI)	P	Odds ratio (95% CI)	P		
Family background								
Father’s occupational social class at 4 years	Non-manual	Reference	<0.0001	Reference	<0.0001	Reference	0.12	
	Manual	2.05 (1.58, 2.66)	1.92 (1.48, 2.51)	1.27 (0.94, 1.71)				
Mother’s health summary at 15 years	Excellent	Reference	<0.0001	Reference	0.0001	Reference	0.003	
	Average	1.65 (1.26, 2.18)	1.44 (1.09, 1.91)	1.36 (1.00, 1.83)				
	Poor	3.19 (1.9, 5.34)	2.80 (1.65, 4.75)	2.45 (1.39, 4.30)				
Lower respiratory infection (0-2 years)	None	Reference	0.02	Reference	0.17	Reference	0.99	
	At least 1 attack	1.38 (1.05, 1.82)	1.22 (0.92, 1.62)	1.00 (0.74, 1.35)				
Childhood physical health and personality	Serious illness (0-15 years)	None	Reference	0.02	Reference	0.04	Reference	0.04
	Yes	1.46 (1.06, 2.02)	1.41 (1.01, 1.97)	1.44 (1.01, 2.06)				
	Neuroticism at 15 years	~6 to 2 (least neurotic)	Reference	0.02	Reference	0.07	Reference	0.1
	~1 to 1	1.62 (1.16, 2.26)	1.49 (1.06, 2.10)	1.45 (1.01, 2.08)				
	2 to 6 (most neurotic)	1.18 (0.89, 1.56)	1.15 (0.87, 1.53)	1.04 (0.77, 1.41)				
Adult social factors and health behaviours	Highest education qualification achieved by 26 years	No qualifications	Reference	<0.0001	Reference	0.02		
	Ordinary level	0.53 (0.39, 0.71)	0.75 (0.54, 1.05)					
	Advanced level	0.39 (0.28, 0.54)	0.63 (0.44, 0.91)					
	Degree level or above	0.19 (0.10, 0.33)	0.43 (0.23, 0.81)					
Body Mass Index (kg/m²)	< 20	Reference	<0.0001	Reference	0.0001			
	≥20 < 25	1.31 (0.48, 3.55)	0.98 (0.34, 2.79)					
	≥25 < 30	1.56 (1.13, 2.16)	1.49 (1.06, 2.09)					
	≥ 30	3.36 (2.39, 4.73)	3.04 (2.11, 4.38)					
Physical activity per week at 53 years	None	Reference	<0.0001	Reference	<0.0001			
	Less than once per week	0.46 (0.33, 0.65)	0.59 (0.41, 0.84)					
	At least once per week	0.34 (0.25, 0.46)	0.44 (0.32, 0.61)					
Lifetime smoking trajectory to 53 years	Never smoker	Reference	<0.0001	Reference	<0.0001			
	Predominantly non-smoker	0.88 (0.63, 1.23)	0.90 (0.63, 1.28)					
	Predominantly smoker	1.80 (1.28, 2.54)	1.68 (1.16, 2.43)					
	Lifelong smoker	3.10 (2.15, 4.46)	2.40 (1.61, 3.57)					

Model A: univariable regression analysis; Model B: includes childhood psychosocial factors and personality; Model C: includes all factors in Model B and adult social factors and health behaviours.
doi:10.1371/journal.pone.0088524.t004
and investigate the detailed pathways across life that provide optimal outcomes for healthy aging.

Strengths and limitations

This study draws on data gathered from a large representative birth cohort, with longitudinal data spanning 63 years with the last data collection achieving an 84% response rate [11]. The proportions of missing items were low and comparable to other UK based population studies [22]. Previous findings indicate that the social class and unemployment profiles of on-going NSHD participants is similar to the 2001 England Census reference population, though with higher rates of home ownership and lower prevalence of limiting illness [11]. The use of prospective data on childhood factors also avoids the issues associated with retrospective data collection commonplace in many studies, especially recall bias. Results from analysis of participants with complete covariate data were presented here, as the use of multiple imputation to account for the effects of missing covariate data showed no substantive difference in results.

PCS scores derived from SF-36 are also subject to on-going debate regarding the appropriate method of calculation (using orthogonal versus oblique factor analysis), though the issue of variation in summary scores due to the two methods mainly concerns the measurement of change in quality of life over time and mental health in older age groups (>70 years) [23]. Some caution is also needed in interpreting associations for factors in adulthood due to bi-directional effects, with poor physical health potentially leading to lower physical activity and/or higher BMI, however this issue is minimised in this study as data for these factors were collected at age 53 nearly a decade prior to the SF-36 survey and the analyses were also adjusted for the presence of serious childhood illness.

Conclusions

Poor maternal health poses risks for physical health related quality of life of the child much later in life. The influence of childhood SEP, as indicated by father’s occupational class, was mediated by adult health behaviors. Policymakers and health professionals need to consider these inter-generational and enduring effects as part of preventive health strategies for promoting healthy ageing over the long term.

Acknowledgments

The authors are grateful to NSHD study members who took part in this latest data collection for their continuing support.

Author Contributions

Conceived and designed the experiments: GM SB MS DK. Analyzed the data: GM SB. Wrote the paper: GM SB RS RC DK.

References

1. Kuh D, Cooper R, Richards M, Gale C, von Zglinicki T, et al. (2012) A life course approach to healthy ageing: the HALCyon programme. Public Health 126: 193–195.
2. Power C, Kuh D, Morton S (2013) From developmental origins of adult disease to life course research on adult disease and aging: insights from birth cohort studies. Ann Rev Public Health 34: 7–28.
3. Cooper R, Kuh D, Hardy R (2010) Objectively measured physical capability levels and mortality: systematic review and meta-analysis. BMJ 341: c4467.
4. den Ouden ME, Schuurmans MJ, Arts JE, van der Schouw YT (2011) Physical performance characteristics related to disability in older persons: a systematic review. Maturitas 69: 208–219.
5. Vermeulen J, Neyen JC, van Rossum E, Spreenavenberg MD, de Witte LP (2011) Predicting ADL disability in community-dwelling elderly people using physical frailty indicators: a systematic review. BMC geriatrics 11: 33.
6. Birnie K, Cooper R, Martin RM, Kuh D, Sayer AA, et al. (2011) Childhood socioeconomic position and objectively measured physical capability levels in adulthood: a systematic review and meta-analysis. PLoS One 6: e15564.
7. Ware Jr JE, Gandek B, Kosinski M, Aaronson NK, Apolone G, et al. (1998) The equivalence of SF-36 summary health scores estimated using standard and country-specific algorithms in 10 countries: results from the IQOLA project. J Clin Epidemiol 51: 1167–1170.
8. Singh-Manoux A, Ferrie JE, Chandola T, Marmot M (2004) Socioeconomic trajectories across the life course and health outcomes in midlife: evidence for the accumulation hypothesis? Int J Epidemiol 33: 1072–1079.
9. Laaksonen M, Silventoinen K, Martikainen P, Rahkonen O, Pitkaniemi J, et al. (2007) The effects of childhood circumstances, adult socioeconomic status, and material circumstances on physical and mental functioning: a structural equation modelling approach. Ann Epidemiol 17: 431–439.
10. Alatalo H, von Bonsdorff MB, Raikkonen K, Pesonen A-K, Osmund C, et al. (2013) Early Life Stress and Physical and Psychosocial Functioning in Late Adulthood. PLoS One 8: e69011.
11. Stafford M, Black S, Shah J, Hardy R, Pierce M, et al. (2013) Using a birth cohort to study ageing: representativeness and response rates in the National Survey of Health and Development. Eur J Ageing 10: 145–157.
12. McHorney CA, Ware JE Jr, Lu JF, Sherbourne CD (1994) The MOS 36-item Short-Form Health Survey (SF-36): III. Tests of data quality, scaling assumptions, and reliability across diverse patient groups. Med Care 32: 40–66.
13. Ware JE Jr, Sherbourne CD (1992) The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med Care 30: 473–483.
14. Kuh D, Hardy R, Rodgers B, Wadsworth ME (2002) Lifetime risk factors for women’s psychological distress in midlife. Soc Sci Med 55: 1957–1973.
15. Maggi S, Irwin LJ, Sidkiew A, Hertzman C (2010) The social determinants of early child development: an overview. J Paediatr Child Health 46: 627–635.
16. Clennell S, Kuh D, Guralnik JM, Patel KV, Mishra GD (2008) Characterisation of smoking behaviour across the life course and its impact on decline in lung function and all-cause mortality: evidence from a British birth cohort. J Epidemiol Community Health 62: 1051–1056.
17. Jenkinson C (1999) Comparison of UK and US methods for weighting and scoring the SF-36 summary measures. J Public Health Med 21: 372–376.
18. Ware J, Snow K, Kosinski M, Gandek B (1993) SF-36 Health Survey Manual and Interpretation Guide. Boston New England Medical Centre: The Health Institute, New England Medical Center.
19. Strand BH, Cooper R, Hardy R, Kuh D, Guralnik J (2011) Life-long socioeconomic position and physical performance in midlife: results from the British 1946 birth cohort. Eur J Epidemiol 26: 475–483.
20. Wilkins AJ, O’Callaghan MJ, Najman JM, Bor W, Williams GM, et al. (2004) Early childhood factors influencing health-related quality of life in adolescents at 13 years. J Paediatr Child Health 40: 102–109.
21. Hotopf M (2002) Childhood experience of illness as a risk factor for medically unexplained symptoms. Scand J Psychol 43: 139–146.
22. Brazier JE, Harper R, Jones NM, O’Callahan A, Thomas KJ, et al. (1992) Validating the SF-36 health survey questionnaire: new outcome measure for primary care. BMJ 305: 160–164.
23. Mishra GD, Hockey R, Dobson A (In press) A comparison of SF-36 summary measures of physical and mental health for women across the life course. Qual Life Res.