SOLVABILITY OF THE MATRIX EQUATION $AX^2 = B$
WITH SEMI-Tensor PRODUCT

JIN WANG*
School of Mathematics, Shandong University
Jinan 250100, China

JUN-E FENG and HUA-LIN HUANG
School of Mathematics, Shandong University
Jinan 250100, China
School of Mathematical Sciences, Huaqiao University
Quanzhou 362021, China

Abstract. We investigate the solvability of the matrix equation $AX^2 = B$
in which the multiplication is the semi-tensor product. Then compatible conditions
on the matrices A and B are established in each case and necessary and sufficient
condition for the solvability is discussed. In addition, concrete methods of solving the equation are provided.

1. Introduction. Matrix theory plays an important role in many fields such as system and control theory [10, 3, 1, 2], automation and information sciences [15], economic theory [23], physics [16, 14] and computing sciences [19, 11]. On the other hand, matrix theory is the basis of numerical calculation and is effective to deal with the one-dimensional array (linear function) and two dimensional array (double linear function or secondary). However, matrix multiplication of A and B requires that the number of columns of A and the number of rows of B are equal. Therefore, it is difficult to solve multiple linear problems and nonlinear problems directly by traditional matrix method. Cheng [5] proposed the semi-tensor product of matrices to settle this dilemma. As a convenient and powerful new mathematical tool, it keeps the main properties of original matrix multiplication and has nice features. It has been quickly applied to fields such as mathematics, physics in nonlinear systems, and Boolean networks. Recently, the solutions of the matrix equation $AX = B$ in which the multiplication is semi-tensor product was discussed by Yao and Feng [21, 7] in optimization and control analysis problems. The higher-order equation $XX = R$ was also mentioned by Fan [6] in the investigation of fuzzy relation decomposition problems. In fact, high-order algebraic equations have important applications in file encryption and file transmission [17, 18]. Furthermore, the equation solution of high order logical matrix is very useful in the decoupling of

2020 Mathematics Subject Classification. Primary: 15A06; Secondary: 15A03, 15A04.
Key words and phrases. Matrix equation, matrix-vector equation, semi-tensor product, high ordered matrix equation, Toeplitz matrix.
The first author is supported by ZR2019MF002, NSFC 11971181, NNSF 61773371 and 61877036.
* Corresponding author: Jin Wang.
logical networks [22]. Based on this, the solvability of the matrix equation \(AX^2 = B \) in which the multiplications are semi-tensor product is studied in this paper.

To achieve the goal, we will study the matrix equation \(AX^2 = B \) with semi-tensor product by the following steps. The solvability of \(AX^2 = B \) will be discussed in two cases. In each case we give the compatible conditions on \(A \) and \(B \) firstly and then discuss necessary and sufficient condition for the solvability. Then concrete methods are provided. At the end, we give examples to verify the effectiveness of the results.

There are five sections in this paper. We introduce notations and definitions in Section 2 and study in Section 3 the solvability of the matrix equation \(AX^2 = B \) through investigating matrix equations \(AY = B \) and \(X^2 = Y \) simultaneously in both cases. The first case is a matrix-vector equation and the other is a general matrix equation. We provide some examples to illustrate the results in Section 4 and draw our conclusion on Section 5.

2. Preliminaries

Throughout this paper, \(\mathbb{C}^n \) denotes the set of complex column vectors of dimension \(n \), \(\mathbb{C}_{m \times n} \) denotes the vector space of \(m \times n \) complex matrices and \(A^T \) denotes the transpose of \(A \in \mathbb{C}_{m \times n} \). Let \(\text{lcm}(m,n) \) and \(\text{gcd}(m,n) \) be the least common multiple and the greatest common divisor of two positive integers \(m \) and \(n \), respectively. Let \(A = [a_{ij}] \in \mathbb{C}_{m \times n} \) and \(B = [b_{ij}] \in \mathbb{C}_{p \times q} \). The Kronecker product \(A \otimes B \) of \(A \) and \(B \) is [9]:

\[
A \otimes B = \begin{bmatrix}
a_{11}B & a_{21}B & \ldots & a_{1n}B \\
a_{21}B & a_{22}B & \ldots & a_{2n}B \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1}B & a_{m2}B & \ldots & a_{mn}B
\end{bmatrix} \in \mathbb{C}_{mp \times nq}.
\]

The semi-tensor product \(A \ltimes B \) of \(A \in \mathbb{C}_{m \times n} \) and \(B \in \mathbb{C}_{p \times q} \) is [3]:

\[
A \ltimes B = (A \otimes I_{t/n})(B \otimes I_{t/p}) \in \mathbb{C}_{(mt/n) \times (qt/p)},
\]

where \(t = \text{lcm}(n,p) \).

Remark 1. \(A \ltimes B = (A \otimes I_a) \ltimes B \) if and only if \(\text{lcm}(na,p) = \text{lcm}(n,p) \). Similarly, \(A \ltimes B = A \ltimes (B \otimes I_b) \) if and only if \(\text{lcm}(n, pb) = \text{lcm}(n,p) \).

Noting that when \(n = p \), we have \(t = n \) and the semi-tensor product coincides with the conventional matrix product. Thus, in this paper, we always consider \(AB \) as \(A \ltimes B \). The vectorization of \(A \in \mathbb{C}_{m \times n} \), denoted by \(\text{vec} \,(A) \in \mathbb{C}^{mn} \) is defined as [9]:

\[
\text{vec} \,(A) = (a_{11}, \ldots, a_{1n}, a_{21}, \ldots a_{2n}, \ldots a_{m1}, \ldots, a_{mn})^T.
\]

The vectorization is often used together with the Kronecker product to express matrix multiplication as a linear transformation on matrices. For \(A \in \mathbb{C}_{k \times t}, B \in \mathbb{C}_{t \times m} \) and \(C \in \mathbb{C}_{m \times n} \),

\[
\text{vec}(ABC) = (C^T \otimes A)\text{vec} \,(B)\text{vec} \,(ABC), \quad (2)
\]

\[
\text{vec}(ABC) = (I_n \otimes AB)\text{vec} \,(C) = (C^T B^T \otimes I_k)\text{vec} \,(A), \quad (3)
\]

\[
\text{vec}(AB) = (I_m \otimes A)\text{vec} \,(B) = (B^T \otimes I_k)\text{vec} \,(A). \quad (4)
\]
3. Solvability of the matrix equation $AX^2 = B$. With respect to the semi-tensor product, if X is a solution of $AX^2 = B$, then X satisfies the matrix equations $AY = B$ and $X^2 = Y$ simultaneously. Note that $AX^2 = B$ means that $A \ltimes (X \ltimes X) = B$. We will decompose the equation $AX^2 = B$ into two equations $AY = B$ and $X^2 = Y$.

3.1. **The case $X \in \mathbb{C}^{a \times 1}$ and $Y \in \mathbb{C}^{p \times 1}$**. We now study the solvability of the matrix-vector equation with semi-tensor product

$$AX^2 = B,$$

where $A \in \mathbb{C}^{m \times n}$, $B \in \mathbb{C}^{h \times k}$, $X \in \mathbb{C}^{a \times 1}$ is an unknown vector.

3.1.1. *The equation $X^2 = Y$*. In this subsection, we discuss the solvability of the equation with semi-tensor product

$$X^2 = X \ltimes X = Y,$$

where $X \in \mathbb{C}^{a \times 1}$ and $Y \in \mathbb{C}^{p \times 1}$.

By the definition of semi-tensor product, we have

$$X^2 = X \ltimes X = (X \otimes I_a)X = \begin{bmatrix} x_1 I_a \\ \vdots \\ x_a I_a \end{bmatrix}X = \begin{bmatrix} x_1 X \\ \vdots \\ x_a X \end{bmatrix}.$$

Thus, we establish the following lemma.

Lemma 3.1. The following is a necessary and sufficient condition on Y for the solvability of $X^2 = X \ltimes X = Y$

$$Y = \begin{bmatrix} x_1 X \\ \vdots \\ x_a X \end{bmatrix} = \begin{bmatrix} \text{Block}_1(Y) \\ \vdots \\ \text{Block}_a(Y) \end{bmatrix} \in \mathbb{C}^{a^2 \times 1},$$

where

$$\text{Block}_i(Y) = \begin{bmatrix} y_{(i-1)a+1} \\ \vdots \\ y_{ia} \end{bmatrix} \in \mathbb{C}^{a \times 1}, \quad i = 1, \ldots, a,$$

and $p = a^2$.

Theorem 3.2. If equation (6) has solution, then $x_i = \pm \sqrt{y_{(i-1)a+i}}$, $i = 1, \ldots, a$.

3.1.2. *The matrix-vector equation $AY = B$*. In this subsection, we discuss the solvability of the matrix-vector equation with semi-tensor product

$$AY = A \ltimes Y = B,$$

where $A \in \mathbb{C}^{m \times n}$, $B \in \mathbb{C}^{h \times k}$ and $Y \in \mathbb{C}^{p \times 1}$ is an unknown vector.

Lemma 3.3. If $AY = B$ has solution, then the following conditions must hold.

1. $\frac{h}{m}$ and $\frac{n}{k}$ must be positive integers, $\gcd(k, \frac{h}{m}) = 1$, and $(a^2)=p = \frac{nh}{mk}$ is a square integer;
2. $B = \begin{bmatrix} \text{Block}_1(B) \\ \vdots \\ \text{Block}_m(B) \end{bmatrix}$, where $\text{Block}_i(B) \in \mathbb{C}_{\frac{h}{m} \times k}$, $i = 1, \ldots, m$, are Toeplitz matrices.

Proof. (1) By investigating $B = A \ltimes Y = (A \otimes I_{\frac{n}{m}})(Y \otimes I_{\frac{t}{p}}) \in \mathbb{C}_{(mt/n) \times (t/p)}$, where $t = \text{lcm}(n, p)$, we obtain that $h = \frac{mt}{n}$, $k = \frac{t}{p}$. Because of $\frac{h}{m} = \frac{t}{n}$ and $t = \frac{nh}{m}$ is a positive integer. On the other hand $p = \frac{t}{k} = \frac{nh}{mk}$ and $t = \frac{nh}{mk} = \text{lcm}(n, p) = \text{lcm}(n, \frac{nh}{mk})$, so $\frac{n}{k}$ must be a positive integer. Furthermore, $\text{lcm}(n, \frac{nh}{mk}) = \frac{n}{k} \cdot \text{lcm}(k, \frac{h}{m})$; hence we have $\text{lcm}(k, \frac{h}{m}) = k \cdot \frac{h}{m}$ and $\gcd(k, \frac{h}{m}) = 1$.

(2) As $p = \frac{nh}{mk}$, let $k = l_1 \cdot \frac{h}{m} + l_2$, where l_1, l_2 are integers. For $s = 1, \ldots, m$, we have

$$\text{Row}_s(A) \ltimes Y = (\text{Row}_s(A) \otimes I_{\frac{h}{m}}) \otimes Y$$

$$= \begin{bmatrix} a_{s,1} \quad a_{s,2} \quad \cdots \quad a_{s,n} \\ a_{s,1} \quad a_{s,2} \quad \cdots \quad a_{s,n} \\ \vdots \quad \vdots \quad \ddots \quad \vdots \\ a_{s,1} \quad a_{s,2} \quad \cdots \quad a_{s,n} \end{bmatrix} Y$$

$$= y_1 \begin{bmatrix} a_{s,1} \quad \cdots \quad a_{s,l_1} \\ a_{s,1} \quad \cdots \quad a_{s,l_1} \\ \vdots \quad \ddots \quad \vdots \\ a_{s,1} \quad \cdots \quad a_{s,l_1} \end{bmatrix}$$

$$+ \begin{bmatrix} a_{s,l_1+1} \\ \vdots \\ a_{s,\left[\frac{nh}{mk}\right]+1} \end{bmatrix}$$

$$+ y_2 \begin{bmatrix} a_{s,l_1+1} \\ a_{s,l_1+1} \\ \vdots \quad \ddots \\ a_{s,l_1+1} \end{bmatrix}$$

$$+ \cdots$$

$$+ \begin{bmatrix} a_{s,k-l_1} \\ a_{s,k-l_1} \\ \vdots \quad \ddots \quad \vdots \\ a_{s,k-l_1} \end{bmatrix}$$

$$+ \begin{bmatrix} a_{s,k} \quad \cdots \quad a_{s,k} \end{bmatrix}$$

$$+ y_{\frac{h}{m}+1} \begin{bmatrix} a_{s,k+1} \quad \cdots \quad a_{s,k+1} \\ a_{s,k+1} \quad \cdots \quad a_{s,k+1} \\ \vdots \quad \ddots \quad \vdots \\ a_{s,k+1} \quad \cdots \quad a_{s,k+1} \end{bmatrix}$$

$$+ y_{\frac{h}{m}} \begin{bmatrix} a_{s,k+1} \quad \cdots \quad a_{s,k+1} \\ a_{s,k+1} \quad \cdots \quad a_{s,k+1} \\ \vdots \quad \ddots \quad \vdots \\ a_{s,k+1} \quad \cdots \quad a_{s,k+1} \end{bmatrix}$$
Thus Block \(s(B) \) is a Toeplitz matrix. \(\square \)

For \(s = 1, \ldots, \frac{k}{m} \), using the technique in the proof of Lemma 3.3(2), we obtain the following \(\frac{k}{m} \) equations:

\[
\begin{align*}
&y_s \left[a, \frac{(x-1)k}{y/m} + 1 \quad a, \frac{(x-1)k}{y/m} + 2 \quad \cdots \quad a, \frac{(x-1)k}{y/m} + s \right] \\
&+ \cdots + y_{s} \left[a, \frac{(x-1)k}{y/m} + 1 \quad a, \frac{(x-1)k}{y/m} + 2 \quad \cdots \quad a, \frac{(x-1)k}{y/m} + s \right] \\
&\quad \vdots \\
&+ y_{s} \left[a, \frac{(x-1)k}{y/m} + 1 \quad a, \frac{(x-1)k}{y/m} + 2 \quad \cdots \quad a, \frac{(x-1)k}{y/m} + s \right]
\end{align*}
\]

\[
= \begin{bmatrix}
\begin{array}{ccccc}
\frac{b}{m} & \frac{b}{m} & \frac{b}{m} & \cdots & \frac{b}{m} \\
\frac{b}{m} & \frac{b}{m} & \frac{b}{m} & \cdots & \frac{b}{m} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\frac{b}{m} & \frac{b}{m} & \frac{b}{m} & \cdots & \frac{b}{m} \\
\end{array}
\end{bmatrix}
\begin{bmatrix}
\frac{b}{m} \cdot \frac{(x-1)k}{y/m} + 1 \\
\frac{b}{m} + \frac{b}{m} \cdot \frac{(x-1)k}{y/m} + 1 \\
\vdots \\
\frac{b}{m} + \frac{b}{m} \cdot \frac{(x-1)k}{y/m} + 1 \\
\end{bmatrix}
\begin{bmatrix}
\frac{b}{m} \cdot \frac{(x-1)k}{y/m} + 1 \\
\frac{b}{m} + \frac{b}{m} \cdot \frac{(x-1)k}{y/m} + 1 \\
\vdots \\
\frac{b}{m} + \frac{b}{m} \cdot \frac{(x-1)k}{y/m} + 1 \\
\end{bmatrix}
\]

Let \(i \cdot k = l_1 \cdot \frac{k}{m} + l_2 \), \(i = 1, \ldots, \frac{k}{m} \), and \(\tilde{B}_j \) be the \(j \)-th column of \(\tilde{B} \) with

\[
\tilde{B} = \begin{bmatrix}
\begin{array}{ccccccc}
b_{11} & b_{12} & \cdots & b_{1k} & b_{21} & \cdots & b_{h,1} \\
b_{21} & \frac{b}{m} + 1 & \cdots & b_{2k} & b_{31} & \cdots & b_{h,1} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
b_{h-1,1} & b_{h-1,2} & \cdots & b_{h-1,k} & b_{h,1} & \cdots & b_{h,1} \\
b_{h,1} & \frac{b}{m} + 2 & \cdots & b_{h,1} & b_{h,1} & \cdots & b_{h,1} \\
\end{array}
\end{bmatrix}
\]

Remark 2. The Lemma 3.3 gives a necessary condition for matrix-vector equation (5) and we call them compatible conditions for matrix-vector equation (5). At this time, matrices \(A \) and \(B \) are said to be compatible.
Theorem 3.4. The solvability of matrix-vector equation (7) is equivalent to the solvability of the following matrix-vector equations:

1) \[y_1(A_1, A_2, \ldots, A_{n-1}'; A_{n-1} + 1), A_{k+1}, \ldots, A_{k+l+1}, A_{k+l+1} + 1) + \cdots + \frac{h}{m} y_{k+1}(A_{n-k+1}, A_{n-k+2}, \ldots, A_{n-k+l+1}) = (\bar{B}_1, \bar{B}_m, \ldots, \bar{B}_{(l+1)/m} + 1, \bar{B}_{(l+1)/m} + 1) \]

2) \[y_2(A_{n-1}'; A_{n-1} + 1, \ldots, A_{k-1}, A_k + \cdots + \frac{h}{m} y_{n/k}(A_{2k-l+1}, A_{2k-l+1}, \ldots, A_{2k-l+1}, A_{2k}) = (\bar{B}_k, \bar{B}_m, \ldots, \bar{B}_{(l+1)/m} + 1, \bar{B}_{(l+1)/m} + 1) \]

Let

\[A = (A_1, \ldots, A_{l+1}, A_{l+1}, \ldots, A_{l+1}, A_{l+1}, \ldots, A_{n-1}, \ldots, A_n), \]

and

\[B_1 = (B_1, B_m, \ldots, B_{(l+1)/m} + 1, B_{(l+1)/m} + 1) \]

\[B_2 = (B_{l+1}, B_{m-l+1}, \ldots, B_{(l+1)/m} - l+1, B_{(l+1)/m} - l+1) \]

\[\vdots \]

\[B_{l+1} = (B_{k+m-l+1}, B_{l+1}, \ldots, B_{(l+1)/m} + l+1, B_{(l+1)/m} + 1) \]

If the matrix-vector equations

\[\begin{align*}
B_1 &= (A_1, \bar{A}_{m+1}, \ldots, \bar{A}_{(n/k-1)/m+1})Z_1 \\
B_2 &= (A_2, \bar{A}_{m+2}, \ldots, \bar{A}_{(n/k-1)/m+2})Z_2 \\
\vdots \\
B_{l+1} &= (A_{l+1}, \bar{A}_{m+1}, \ldots, \bar{A}_{(n/k-1)/m+1})Z_{l+1}
\end{align*} \]

have solutions \(Z_s = (z_{s1}, z_{s2}, \ldots, z_{s2})^T \), \(s = 1, \ldots, \frac{h}{m} \), accordingly, then

\[Y = (z_{s1}, z_{s2}, \ldots, z_{s2})^T \]

is the solution of matrix-vector equation (7).

Hence, we obtain a necessary and sufficient condition for the solvability of matrix-vector equation (7).

Theorem 3.5. Matrix-vector equation (7) has solution if and only if \(\bar{A}_j, \bar{A}_{m+j}, \ldots, \bar{A}_{(n/k-1)/m+j} \) and \(\bar{B}_j \) are linearly dependent, \(j = 1, \ldots, \frac{h}{m} \). Moreover, if \(\bar{A}_j, \bar{A}_{m+j}, \ldots, \bar{A}_{(n/k-1)/m+j}, j = 1, \ldots, \frac{h}{m} \) are linearly independent, then the solution of \(AX^2 = B \) is unique.

In conclusion, the solvability of the matrix-vector equation with semi-tensor product \(AX^2 = B \) has been studied in this subsection. And we give an algorithm to solve the matrix-vector equation \(AX^2 = B \) as follow:
• Step 1: Check whether $AX^2 = B$ satisfies the compatible conditions or not, that is, inspect that if $\frac{nh}{km}$ is a square integer, $m|h, k|n, \gcd(k, \frac{h}{m}) = 1$, and if B has the form:

$$B = \begin{bmatrix}
\text{Block}_1(B) \\
\vdots \\
\text{Block}_a(B)
\end{bmatrix},$$

where $\text{Block}_i(B) \in \mathbb{C}_{\frac{n}{m} \times \frac{k}{m}}$ ($i = 1, \ldots, a$) are Toeplitz matrices. If the compatible conditions hold, then let’s go to the next step; otherwise the equation has no solution.

• Step 2: Let $Y = X^2$, and solve the matrix-vector equation $AY = B$ by theorem 3.4.

• Step 3: Derived from the solution to matrix-vector equation $X^2 = Y$ by theorem 3.2, we can get the solution X to the matrix-vector equation $AX^2 = B$.

3.2. The case $X \in \mathbb{C}_{a \times b}$ and $Y \in \mathbb{C}_{p \times q}$. We now study the solvability of the matrix equation with semi-tensor product

$$AX^2 = B,$$

where $A \in \mathbb{C}_{m \times n}$, $B \in \mathbb{C}_{h \times k}$ and $X \in \mathbb{C}_{a \times b}$ is an unknown matrix.

3.2.1. The matrix equation $X^2 = Y$. In this subsection, we discuss the solvability of the matrix equation with semi-tensor product

$$X^2 = X \bowtie X = Y,$$

where $X \in \mathbb{C}_{a \times b}$ and $Y \in \mathbb{C}_{p \times q}$.

Lemma 3.6. $X^2 = Y$ has solution under the condition that pq is a square integer and $\frac{p}{q}$ is a square rational number. Furthermore,

$$p = \frac{at}{b} = \frac{a^2}{\gamma}, \quad q = \frac{bt}{a} = \frac{b^2}{\gamma}, \quad \gamma = \gcd(a, b), \quad t = \text{lcm}(a, b).$$

Proof. The conclusions can be obtained similar to the proof of Lemma 3.3(1). □

Let $X = (X_1 \ X_2 \ \ldots \ X_b) = \begin{bmatrix}
\alpha_1 \\
\alpha_2 \\
\vdots \\
\alpha_a
\end{bmatrix}$, where $X_i \in \mathbb{C}_{a \times 1}, \alpha_j \in \mathbb{C}_{1 \times b}$.

Lemma 3.7. If $X^2 = Y$ has solution, then

$$Y = \begin{bmatrix}
\text{Block}_{11}(Y) & \ldots & \text{Block}_{1b}(Y) \\
\vdots & & \vdots \\
\text{Block}_{a1}(Y) & \ldots & \text{Block}_{ab}(Y)
\end{bmatrix},$$
where
\[
\text{Block}_{ij}(Y) = \begin{bmatrix}
y(i-1)t/b+1, (j-1)t/a+1 & \cdots & y(i-1)t/b+1, jt/a \\
\vdots & \ddots & \vdots \\
y(it/b+1, (j-1)t/a+1) & \cdots & y(it/a, jt/a)
\end{bmatrix}
\]
is a Toeplitz matrix, \(i = 1, \ldots, a, \ j = 1, \ldots, b. \)

Proof. Let \(t = \text{lcm}(a, b), \ t/a = l_1(t/b) + l_2. \) For \(i = 1, 2, \ldots, a, \) we have
\[
\text{Row}_i(X) = \text{Row}_i(X) \uparrow X = (\text{Row}_i(X) \otimes I_{t/b})(X \otimes I_{t/a}) \in \mathbb{C}_{t/b \times t/a}
\]
SOLVABILITY OF THE $AX^2 = B$

Let

\[
\text{Block}_i(Y) = \begin{bmatrix}
y_{(i-1)tb+1,1} & \cdots & y_{(i-1)tb+bt/a} \\
\vdots & \ddots & \vdots \\
y_{itb+1,1} & \cdots & y_{itb/a, bt/a}
\end{bmatrix},
\]

\[
\text{Block}_{ij}(Y) = \begin{bmatrix}
y_{(i-1)tb+1,(j-1)ta+1} & \cdots & y_{(i-1)tb+1, ja+1} \\
\vdots & \ddots & \vdots \\
y_{itb+1,(j-1)ta+1} & \cdots & y_{itb/a, ja+1}
\end{bmatrix}.
\]

We have

\[
(x_{11}H_{i1}, x_{12}H_{i1}, \ldots, x_{1b}H_{i1}) + (x_{21}H_{i2}, x_{22}H_{i2}, \ldots, x_{2b}H_{i2}) \\
+ \cdots + (x_{a1}H_{ia}, x_{a2}H_{ia}, \ldots, x_{ab}H_{ia}) \\
= (x_{11}H_{i1} + x_{21}H_{i2} + \cdots + x_{a1}H_{ia}, x_{12}H_{i1} + x_{22}H_{i2} + \cdots + x_{a2}H_{ia}, \\
\ldots, x_{1b}H_{i1} + x_{2b}H_{i2} + \cdots + x_{ab}H_{ia}) \\
= (\text{Block}_{i1}(Y), \ldots, \text{Block}_{ia}(Y)) \\
= \text{Block}_i(Y),
\]

where $H_{ij}, j = 1, 2, a$, has been defined in the equation above.

Hence, $\text{Block}_{ij}(Y) = x_{1j}H_{i1} + x_{2j}H_{i2} + \cdots + x_{aj}H_{ia}, i = 1, \ldots, a; j = 1, \ldots, b$, are Toeplitz matrices and

\[
Y = \begin{bmatrix}
\text{Block}_{11}(Y) & \cdots & \text{Block}_{1b}(Y) \\
\vdots & \ddots & \vdots \\
\text{Block}_{a1}(Y) & \cdots & \text{Block}_{ab}(Y)
\end{bmatrix}.
\]
On the other hand, for $t = \text{lcm}(a, b)$, we have

$$X \otimes X = (X \otimes I_{t/b})(X \otimes I_{t/a})$$

$$= \begin{bmatrix}
\alpha_1 \otimes I_{t/b} \\
\alpha_2 \otimes I_{t/b} \\
\vdots \\
\alpha_a \otimes I_{t/b}
\end{bmatrix}
\begin{bmatrix}
X_1 \otimes I_{t/a} \\
X_2 \otimes I_{t/a} \\
\vdots \\
X_b \otimes I_{t/a}
\end{bmatrix} = \begin{bmatrix}
(\alpha_1 \otimes I_{t/b})(X_1 \otimes I_{t/a}) & \cdots & (\alpha_1 \otimes I_{t/b})(X_b \otimes I_{t/a}) \\
\vdots & \ddots & \vdots \\
(\alpha_a \otimes I_{t/b})(X_1 \otimes I_{t/a}) & \cdots & (\alpha_a \otimes I_{t/b})(X_b \otimes I_{t/a})
\end{bmatrix}
\in \mathbb{C}_{at/b \times bt/a} = \mathbb{C}_{p \times q}.$$

Denoting $\alpha_i \times X_j = (\alpha_i \otimes I_{t/b})(X_j \otimes I_{t/a}) = X_{ij}^* \in \mathbb{C}_{t/b \times t/a}$, we have $X_{ij}^* = \text{Block}_{ij}(Y)$, $i = 1, \ldots, a$, $j = 1, \ldots, b$. We can see that $\text{Block}_s(Y) = (X_{11}^* X_{12} \cdots X_{b1}^* X_{b2} \cdots X_{ba}^*)$, and X_{ij}^* are Toeplitz matrices.

Let $t = \text{lcm}(a, b)$, for $s = 1, \ldots, \frac{t}{b}$. Similar to the proof of Lemma 3.3(2), we obtain the following $\frac{t}{b}$ equations:

$$X_{s,1} = \begin{bmatrix}
\frac{1}{a}, \frac{1}{b} + 1 \\
\frac{2}{a}, \frac{1}{b} + 1 \\
\vdots \\
\frac{a}{a}, \frac{1}{b} + 1
\end{bmatrix} + \begin{bmatrix}
\frac{1}{a}, \frac{1}{b} + 1 \\
\frac{2}{a}, \frac{1}{b} + 1 \\
\vdots \\
\frac{a}{a}, \frac{1}{b} + 1
\end{bmatrix}$$
\[
X_{a-\frac{\alpha}{b}+s,2} = \left[\begin{array}{cccc}
X_1, & X_1, & \ldots, & X_1,
\alpha x_1, & \alpha x_1, & \ldots, & \alpha x_1,
X_2, & X_2, & \ldots, & X_2,
\alpha x_2, & \alpha x_2, & \ldots, & \alpha x_2,
\vdots & \vdots & \ddots & \vdots
\end{array} \right]^{\frac{2}{c}} + \left[\begin{array}{cccc}
X_1, & X_1, & \ldots, & X_1,
\beta x_1, & \beta x_1, & \ldots, & \beta x_1,
X_2, & X_2, & \ldots, & X_2,
\beta x_2, & \beta x_2, & \ldots, & \beta x_2,
\vdots & \vdots & \ddots & \vdots
\end{array} \right]^{\frac{2}{c}} + \ldots
\]

\[
X_{a-\frac{\alpha}{b}+s,b} = \left[\begin{array}{cccc}
X_1, & X_1, & \ldots, & X_1,
\alpha x_1, & \alpha x_1, & \ldots, & \alpha x_1,
X_2, & X_2, & \ldots, & X_2,
\alpha x_2, & \alpha x_2, & \ldots, & \alpha x_2,
\vdots & \vdots & \ddots & \vdots
\end{array} \right]^{\frac{2}{c}} + \left[\begin{array}{cccc}
X_1, & X_1, & \ldots, & X_1,
\beta x_1, & \beta x_1, & \ldots, & \beta x_1,
X_2, & X_2, & \ldots, & X_2,
\beta x_2, & \beta x_2, & \ldots, & \beta x_2,
\vdots & \vdots & \ddots & \vdots
\end{array} \right]^{\frac{2}{c}} + \ldots
\]

\[
\left(X_{a-\frac{\alpha}{b}+s,1} - X_{a-\frac{\alpha}{b}+s,2} \right)
= \left[\begin{array}{cccc}
Y_{mod(x-1)/a} + 1, & Y_{mod(x-1)/a} + 1, & \ldots, & Y_{mod(x-1)/a} + 1,
\beta - mod(x-1)/a + 1, & \beta - mod(x-1)/a + 1, & \ldots, & \beta - mod(x-1)/a + 1,
\vdots & \vdots & \ddots & \vdots
\end{array} \right]
\]

\[
\left(X_{a-\frac{\alpha}{b}+s,b} - X_{a-\frac{\alpha}{b}+s,2} \right)
= \left[\begin{array}{cccc}
Y_{mod(x-1)/a} + 1, & Y_{mod(x-1)/a} + 1, & \ldots, & Y_{mod(x-1)/a} + 1,
\beta - mod(x-1)/a + 1, & \beta - mod(x-1)/a + 1, & \ldots, & \beta - mod(x-1)/a + 1,
\vdots & \vdots & \ddots & \vdots
\end{array} \right]
\]
We have the following equations:

\[
\begin{pmatrix}
Y_{\text{mod } \frac{(a-1)t}{a} \mod b + 1, (k-1) \frac{a}{b} + 1} & \cdots & Y_{\text{mod } \frac{(a-1)t}{a} \mod b + 1, (k-1) \frac{a}{b} + 1} \\
Y_{\frac{a}{b} + \text{mod } \frac{(a-1)t}{a} \mod b + 1, (k-1) \frac{a}{b} + 1} & \cdots & Y_{\frac{a}{b} + \text{mod } \frac{(a-1)t}{a} \mod b + 1, (k-1) \frac{a}{b} + 1} \\
\vdots & & \vdots \\
Y_{(a-1) \frac{b}{a} + \text{mod } \frac{(a-1)t}{a} \mod b + 1, (k-1) \frac{b}{a} + 1} & \cdots & Y_{(a-1) \frac{b}{a} + \text{mod } \frac{(a-1)t}{a} \mod b + 1, (k-1) \frac{b}{a} + 1}
\end{pmatrix}
\]

\[
\vdots
\]

\[
\begin{pmatrix}
Y_{\text{mod } \frac{(a-1)t}{a} \mod b + 1, (k-1) \frac{a}{b} + 1} & \cdots & Y_{\text{mod } \frac{(a-1)t}{a} \mod b + 1, (k-1) \frac{a}{b} + 1} \\
Y_{\frac{a}{b} + \text{mod } \frac{(a-1)t}{a} \mod b + 1, (k-1) \frac{a}{b} + 1} & \cdots & Y_{\frac{a}{b} + \text{mod } \frac{(a-1)t}{a} \mod b + 1, (k-1) \frac{a}{b} + 1} \\
\vdots & & \vdots \\
Y_{(a-1) \frac{b}{a} + \text{mod } \frac{(a-1)t}{a} \mod b + 1, (k-1) \frac{b}{a} + 1} & \cdots & Y_{(a-1) \frac{b}{a} + \text{mod } \frac{(a-1)t}{a} \mod b + 1, (k-1) \frac{b}{a} + 1}
\end{pmatrix}
\]

Let \(i \cdot k = \frac{p_1}{l_1} + \frac{p_2}{l_2}, i = 1, \ldots, \frac{b}{a} \) and \(\tilde{Y}_j \) be the \(j \)-th column of \(\tilde{Y} \) with

\[
\tilde{Y} = \begin{pmatrix}
Y_{t/1, (b-1)/t + 1} & \cdots & Y_{t/1, (b-1)/t + 1} \\
Y_{t/b+1, (b-1)/t + 1} & \cdots & Y_{t/b+1, (b-1)/t + 1} \\
\vdots & & \vdots \\
Y_{(a-1)/t, (b-1)/t + 1, (b-1)/t + 1} & \cdots & Y_{(a-1)/t, (b-1)/t + 1, (b-1)/t + 1}
\end{pmatrix}
\]

\[
\vdots
\]

\[
\begin{pmatrix}
Y_{t/1, (b-1)/t + 1} & \cdots & Y_{t/1, (b-1)/t + 1} \\
Y_{t/b+1, (b-1)/t + 1} & \cdots & Y_{t/b+1, (b-1)/t + 1} \\
\vdots & & \vdots \\
Y_{(a-1)/t, (b-1)/t + 1, (b-1)/t + 1} & \cdots & Y_{(a-1)/t, (b-1)/t + 1, (b-1)/t + 1}
\end{pmatrix}
\]

We have the following equations:
1)

\begin{align*}
(x_{11}[X_1, X_2, \ldots, X_{t_1}], x_{12}[X_1, X_2, \ldots, X_{t_1}, X_{t_1+1}], \ldots, x_{1b}[X_1, X_2, \ldots, X_{t_1}, X_{t_1+1}]) + (x_{21}[X_{b+1}, X_{b+2}, \ldots, X_{b+t_1}, X_{b+t_1+1}], x_{22}[X_{b+1}, X_{b+2}, \ldots, X_{b+t_1}, X_{b+t_1+1}], \ldots, x_{2b}[X_{b+1}, X_{b+2}, \ldots, X_{b+t_1}, X_{b+t_1+1}]) + \ldots +
\end{align*}

2)

\begin{align*}
(x_{a1}[X_{b+1}, X_{b+2}, \ldots, X_{b+t_1}], x_{a2}[X_{b+1}, X_{b+2}, \ldots, X_{b+t_1}, X_{b+t_1+1}], \ldots, x_{ab}[X_{b+1}, X_{b+2}, \ldots, X_{b+t_1}, X_{b+t_1+1}])
\end{align*}

Let

\[
\begin{pmatrix}
\frac{X_{a1}}{X_1}, \ldots, \frac{X_{a1}}{X_t}, \frac{X_{a2}}{X_{t+1}}; \ldots, \frac{X_{ab}}{X_{b-t}}, X_{b-t+1}, \ldots, X_{b-1}, X_b
\end{pmatrix}
\]

and label
Theorem 3.8. The solvability of matrix equation (9) is equivalent to the solvability of the following matrix equations:

\[
\begin{align*}
\tilde{Y}_1^{(1)} &= (\tilde{Y}_1 \tilde{Y}_{b+1}^1 \cdots \tilde{Y}_{(t_1-1)\frac{b}{t}+1}^1 \tilde{Y}_{(b+1)} \tilde{Y}_{b+1}^1) \\
\vdots & \\
\tilde{Y}_1^{(k)} &= (\tilde{Y}_{(k-1)\frac{b}{t}}^1 \tilde{Y}_{(k-1)\frac{b}{t}+1} \cdots \tilde{Y}_{(k-1)\frac{b}{t}+(t_1-1)\frac{b}{t}+1} \tilde{Y}_{(b)} \tilde{Y}_{b} \tilde{Y}_{b}^1) \\
\vdots & \\
\tilde{Y}_1^{(b)} &= (\tilde{Y}_{(b-1)\frac{b}{t}}^1 \tilde{Y}_{(b-1)\frac{b}{t}+1} \cdots \tilde{Y}_{(b-1)\frac{b}{t}+(t_1-1)\frac{b}{t}+1} \tilde{Y}_{b} \tilde{Y}_{b} \tilde{Y}_{b}^1) \\
\vdots & \\
\tilde{Y}_k^{(1)} &= (\tilde{Y}_{\frac{b}{t}} \tilde{Y}_{\frac{b}{t}+1} \cdots \tilde{Y}_{(t_1-2)\frac{b}{t}+1} \tilde{Y}_{\frac{b}{t}+1} \tilde{Y}_{\frac{b}{t}+1}) \\
\vdots & \\
\tilde{Y}_k^{(k)} &= (\tilde{Y}_{\frac{b}{t}} \tilde{Y}_{\frac{b}{t}+1} \cdots \tilde{Y}_{(t_1-2)\frac{b}{t}+1} \tilde{Y}_{\frac{b}{t}+1} \tilde{Y}_{\frac{b}{t}+1}) \\
\vdots & \\
\tilde{Y}_k^{(b)} &= (\tilde{Y}_{\frac{b}{t}} \tilde{Y}_{\frac{b}{t}+1} \cdots \tilde{Y}_{(t_1-2)\frac{b}{t}+1} \tilde{Y}_{\frac{b}{t}+1} \tilde{Y}_{\frac{b}{t}+1}) \\
\vdots & \\
\tilde{Y}_{t/b}^{(1)} &= (\tilde{X}_t \tilde{X}_{\frac{b}{t}+1} \cdots \tilde{X}_{\frac{b}{t}+(t_1-2)\frac{b}{t}+1} \tilde{X}_{\frac{b}{t}+(t_1-2)\frac{b}{t}+1}) \\
\vdots & \\
\tilde{Y}_{t/b}^{(b)} &= (\tilde{X}_t \tilde{X}_{\frac{b}{t}+1} \cdots \tilde{X}_{\frac{b}{t}+(t_1-2)\frac{b}{t}+1} \tilde{X}_{\frac{b}{t}+(t_1-2)\frac{b}{t}+1}).
\end{align*}
\]

Denote the matrices $W_1^{(1)}, W_2^{(1)}, \ldots, W_{t/b}^{(1)}, W_1^{(b)}, W_2^{(b)}, \ldots, W_{t/b}^{(b)}$ by

\[
W_s^{(k)} = (W_s^{(1)}, W_s^{(2)}, \ldots, W_s^{(t/b)})^T,
\]

$s = 1, 2, \ldots, t/b, k = 1, 2, \ldots, b$ is a solution of matrix equations (10), then
are positive integers and

Proof.

Remark 3.

Lemma 3.9.

is a solution of matrix equation (9).

3.2.2. The matrix equation $AY = B$. In this subsection, we discuss the solvability of the matrix equation with semi-tensor product

$$AY = A \times Y = B,$$

where $A \in \mathbb{C}_{m \times n}$, $B \in \mathbb{C}_{h \times k}$ and $Y \in \mathbb{C}_{p \times q}$ is an unknown matrix.

Lemma 3.9. $AY = B$ has solution when the following conditions hold:

1. $\frac{h}{m}, \frac{n}{k}$ are positive integers.

2. $(\frac{a_1^2}{b_1^2} = \frac{a_2^2}{b_2^2})\text{ is a square rational number and } p = \frac{nh}{vm} = \frac{a_1^2}{b_1^2}, q = \frac{tk}{m}\text{, where } t = lcm(a, b), v \text{ is a common divisor of } n, k, \text{ and satisfies } gcd(v, \frac{h}{m}) = 1.$

Proof. Similar to the proof at Lemma 3.3(1), we can get the conclusions that $\frac{h}{m}, \frac{n}{k}$ are positive integers and $h = \frac{a_1^2}{b_1^2}, k = \frac{a_2^2}{b_2^2}, t' = lcm(n, p).$ Thus $t' = \frac{nh}{vm}, k = \frac{a_2^2}{b_2^2},$ let $v = \frac{nh}{vm}, t = \frac{nh}{vm}, t' = \frac{nh}{vm}, q = \frac{tk}{m}, t = lcm(a, b), v \text{ is a common divisor of } n, k, \text{ and satisfies } gcd(v, \frac{h}{m}) = 1.$ On the other hand $\frac{p}{q} = \frac{nh}{km},$ and as $\frac{p}{q}$ is a square rational number, $\frac{nh}{km}$ is a square rational number automatically.

Remark 3. 1. The condition $m|n, k|n$ are necessary conditions for the solvability of matrix equation (11) (equation (8)).

2. The sizes, which satisfy the condition in Lemma 3.9, are called admissible sizes. If $gcd(n, k)\frac{h}{m}$, there is only one admissible size. In this case, $v = 1, p = \frac{nh}{m}, q = k$, and matrix equation (11) is reduced to $(A \otimes I_h)Y = B$ with conventional product.

Accordingly, matrix equation (8) is reduced to $(A \otimes I_h)X^2 = B$ with conventional product.

3. Supposing that $p_1 \times q_1, p_2 \times q_2$ are two admissible sizes and $1 < \frac{p_2}{p_1} = \frac{q_2}{q_1} \in \mathbb{Z}$, we consider the following two equations:

$$AY = A \times Y = B, \ Y \in \mathbb{C}_{p_1 \times q_1},$$

$$AY = A \times Y = B, \ Y \in \mathbb{C}_{p_2 \times q_2},$$

(12)
If Y is a solution of matrix equation (12), then $Y \otimes I_{\frac{p_2}{p_1}}$ is a solution of matrix equation (13); reversely, if equation (13) has unique solution, the solution of equation (12), if exists, would be unique.

Accordingly, consider the following two equations:

\[AX^2 = A(X \times X) = B, \quad X \in \mathbb{C}_{a_1 \times b_1}, \quad (14) \]

\[AX^2 = A(X \times X) = B, \quad X \in \mathbb{C}_{a_2 \times b_2}. \quad (15) \]

As $(X \otimes I_s)(X \otimes I_s) = (X^2) \otimes I_s$, if X is a solution of matrix equation (14), then $X \otimes I_{\frac{p_2}{p_1}}$ is a solution of matrix equation (15).

4. Denote $\varepsilon = \gcd(n, k)$, $\frac{nh}{m\varepsilon}$, $\frac{k}{\varepsilon}$. If matrix equation (11) has a solution for the minimum size $p \times q$, the equation has a solution for every admissible size.

5. Assuming $\text{rank}(A) = n$, the solution for every admissible size, if exists, would be unique.

Lemma 3.10. If equation (11) has solution, then

\[B = \begin{bmatrix} \text{Block}_{11}(B) & \ldots & \text{Block}_{1q}(B) \\ \vdots & \ddots & \vdots \\ \text{Block}_{m1}(B) & \ldots & \text{Block}_{mq}(B) \end{bmatrix}, \]

where $\text{Block}_{ij}(B) \in \mathbb{C}_{h/m \times k/q}$ are Toeplitz matrices, $i = 1, \ldots, m$, $j = 1, \ldots, q$.

Proof. The proof is similar to the proof of Lemma 3.3(2).

Remark 4. The Lemma 3.9 and 3.10 gives a necessary condition for matrix equation (11) and we call them compatible conditions for matrix equation (11). At this time, matrices A and B are said to be compatible.

How to solve the matrix equation (11)? Firstly, we should find out all the admissible sizes satisfying the condition by Lemma 3.9. Then, by solving q matrix-vector equations with semi-tensor product, we can get the solutions of matrix equation (11) of size $p \times q$. However, the matrix-vector equations with semi-tensor product can be solved in the same way as the last section.

In conclusion, the solvability of the matrix equation (8) with semi-tensor product has been studied in this subsection. And we give an algorithm to solve the matrix equation (8) as follow:

- **Step 1:** Check whether $AX^2 = B$ satisfies the compatible conditions or not, that is, inspect that if $\frac{nh}{k}m$ is a square rational number, $m|h, k|n$, and if B has the form:

\[B = \begin{bmatrix} \text{Block}_{11}(B) & \ldots & \text{Block}_{1q}(B) \\ \vdots & \ddots & \vdots \\ \text{Block}_{m1}(B) & \ldots & \text{Block}_{mq}(B) \end{bmatrix}, \]

where $\text{Block}_{ij}(B) \in \mathbb{C}_{h/m \times k/q}$ ($i = 1, \ldots, m$, $j = 1, \ldots, q$, $q = \frac{k}{\varepsilon} = \frac{nh}{m\varepsilon}$, $t = \text{lcm}(a, b)$) are Toeplitz matrices. If the compatible conditions hold, then let’s go to the next step; otherwise the equation has no solution.

- **Step 2:** Let $Y = X^2$, and solve the matrix equation $AY = B$.

• Step 3: Derived from the solution to matrix equation $X^2 = Y$, we can get the solution X to the matrix equation $AX^2 = B$.

4. Examples. In this section, two numerical examples are given. One is about matrix-vector equation, and the other is about ordinary matrix equation.

Example 1. For matrix-vector equation $AX^2 = B$, where X is unknown, take A and B as follow:

(1) \[A = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 1 & 0 & 3 \end{bmatrix}. \]

Noting that 3^2 is not a positive integer, so the given matrices are not compatible and the equation has no solution.

(2) \[A = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 1 & 1 & 3 \\ 1 & 1 & 0 \end{bmatrix}. \]

Despite $4^2 \cdot 6^3$ are positive integers and their product is 2^2, a square integer, B cannot be divided into a compatible form. So the equation has no solution.

(3) \[A = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 2 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 6 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 8 \\ 4 & 0 & 0 \end{bmatrix}. \]

Because of the given matrices are compatible, set $Y = X^2$. Solving the equation $AY = B$, we have

\[Y = [4 \ k \ 2 \ 1]^T, \]

where k is an arbitrary real number. Then we can just choose $Y = [4 \ 2 \ 2 \ 1]^T$ to make $Y = X^2$ meaningful. Solving

\[X^2 = [4 \ 2 \ 2 \ 1]^T, \]

we have

\[X = [\pm 2 \ \pm 1]^T. \]

Example 2. For matrix equation $AX^2 = B$, where X is unknown, take A and B as follow:

(1) \[A = \begin{bmatrix} 2 & 0 \\ 0 & 3 \\ 2 & 1 \\ 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 0 & 2 & 1 & 0 \\ 0 & 2 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 & 3 \end{bmatrix}. \]

As $\frac{3}{2}$ is not a positive integer, the given matrices are not compatible and the equation has no solution.
(2)
\[A = \begin{bmatrix} 1 & 0 & 0 & 2 & 0 & 1 \\ 0 & 2 & 1 & 0 & 1 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}. \]

Although \(\frac{6}{2} \cdot \frac{4}{2} \) are positive integers, their product is 6, not a square integer. Thus the equation has no solution.

(3)
\[A = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 6 & 0 \\ 0 & 0 & 10 \\ 6 & 4 & 2 \end{bmatrix}. \]

By Lemma 3.9 we have \(v = 1, p = 12, q = 3, a = 6, b = 3, \text{Block}_i(B) \in \mathbb{C}_{2 \times 1} \), and the given matrices are compatible. We denote \(Y = X^2 \) and solve equation \(AY = B \). By selecting the compatible \(Y \) as solution, we have

\[Y = \begin{bmatrix} 1 & 0 & 3 \\ 0 & 4 & 1 \\ 0 & 0 & 2 \\ 2 & 0 & 0 \\ 0 & 0 & 2 \\ 0 & 2 & 1 \\ 1 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 4 \\ 0 & 4 & 2 \\ 0 & 0 & 4 \\ 2 & 2 & 1 \end{bmatrix}, \quad X = \begin{bmatrix} \pm 1 & 0 & \pm 1 \\ 0 & \pm 2 & 0 \\ 0 & 0 & \pm 1 \\ \pm 1 & 0 & 0 \\ 0 & 0 & \pm 2 \\ 0 & \pm 2 & \pm 1 \end{bmatrix}. \]

5. **Conclusion.** In this paper, the solvability of the matrix equation \(AX^2 = B \) with semi-tensor product is studied. Conditions are given for two kinds: the matrix-vector equation one and the matrix equation one. For the matrix-vector equation case, we derive the compatible conditions first, and then find a necessary and sufficient condition for the solvability. Besides, concrete solving methods have been provided. Based on this, the solvability of the matrix equation \(AX^2 = B \) with semi-tensor product has been discussed in a similar way. The compatible conditions, solvability conditions, and concrete solving methods of the matrix equation have been developed as well. At last, we give several examples to illustrate the efficiency of the results.

Acknowledgments. The authors wish to thank the Editor and anonymous referees for providing very useful suggestions to improve this paper. The corresponding author would also like to thank Professor Tin-Yau Tam, who helped revise the paper during her visit to Auburn University.

REFERENCES

[1] G.-B. Cai and C.-H. Hu, Solving periodic Lyapunov matrix equations via finite steps iteration, *IET Control Theory Appl.*, 6 (2012), 2111–2119.

[2] D. Z. Cheng, *Matrix and Polynomial Approach to Dynamics Control Systems*, Science Press, Beijing, 2002.
SOLVABILITY OF THE $AX^2 = B$

[3] D. Cheng, H. Qi and Y. Zhao, *An Introduction to Semi-tensor Product of Matrices and its Application*, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2012.

[4] D. Z. Cheng, T. Xu and H. S. Qi, Evolutionarily stable strategy of networked evolutionary games, *IEEE Transactions on Neural Networks and Learning*, 25 (2014), 1335–1345.

[5] D. Cheng and Y. Zhao, Semi-tensor product of matrices: A new convenient tool, *Chinese Science Bulletin*, 56 (2011), 2664–2674.

[6] H. Fan, J.-E. Feng, M. Meng and B. Wang, General decomposition of fuzzy relations: Semi-tensor product approach, *Fuzzy Sets and Systems*, 384 (2020), 75–90.

[7] J.-E. Feng, J. Yao and P. Cui, Singular Boolean network: Semi-tensor product approach, *Sci. China Inf. Sci.*, 56 (2013), 112203, 14 pp.

[8] B. Gao, *Study on Several Kinds of Cryptographic Algorithm Based on the Semi-Tensor Product*, Beijing Jiaotong University Press, 2014.

[9] R. A. Horn and C. R. Johnson, *Topics in Matrix Analysis*, Cambridge University Press, Cambridge, 1991.

[10] L. Huang, *The Linear Algebra System and Control Science*, Science Press, Beijing, 2004.

[11] M. Jamshidi, An overview on the solutions of the algebraic matrix Riccati equation and related problems, *Large Scale Systems*, 1 (1980), 167–192.

[12] G. G. Jesus, *Block Toeplitz Matrices: Asymptotic Results and Applications*, Now Publishers, Hanover, 2012.

[13] P. Jiang, Y. Z. Wang and R. M. Xu, *Mobile Robot Odor Source Localization Via Semi-Tensor Product*, The Thirty-Fourth China Conference on Control, Hangzhou, 2015.

[14] B. M. Kolundzija, Electromagnetic modeling of composite metallic and dielectric structures, *Microwave Theory Tech.*, 47 (1999), 1021–1032.

[15] V. B. Larin, *On solution of the linear matrix equations*, *Journal of Automation and Information Sciences*, 47 (2015), 1–9.

[16] S. W. Mei, F. Liu and A. C. Xue, *A Tensor Product in Power System Transient Analysis Method*, Tsinghua University Press, Beijing, 2010.

[17] H. Nobuhara, K. Hirota, W. Pedrycz and S. Sessa, Two iterative methods of decomposition of a fuzzy relation for image compression/decompression processing, *Soft Comput.*, 8 (2004), 698–704.

[18] H. Nobuhara and W. Pedrycz, Fast solving method of fuzzy relational equation and its application to lossy image compression/reconstruction, *IEEE Trans. Fuzzy Syst.*, 18 (2000), 325–334.

[19] G. W. Stagg and A. H. El-Abiad, *Computer Methods in Power System Analysis*, McGraw-Hill, New York, 1968.

[20] M. Xu and Y. Wang and A. Wei, Robust graph coloring based on the matrix semi-tensor product with application to examination timetabling, *Control Theory Technol.*, 12 (2014), 187–197.

[21] J. Yao, J.-E. Feng and M. Meng, On solutions of the matrix equation $AX = B$ with respect to semi-tensor product, *J. Franklin Inst.*, 353 (2016), 1109–1131.

[22] Y. Yu, J.-E. Feng, J. Pan and D. Cheng, Block decoupling of Boolean control networks, *IEEE Trans. Automat. Control*, 64 (2019), 3129–3140.

[23] Y. Yuan, Solving the mixed Sylvester matrix equations by matrix decompositions, *C. R. Math. Acad. Sci. Paris*, 353 (2015), 1053–1059.

Received May 2020; revised August 2020.

E-mail address: wangjinxingfu@126.com
E-mail address: fengjune@sdu.edu.cn
E-mail address: hualin.huang@hqu.edu.cn