Subspaces intersecting each element of a regulus in one point,
André-Bruck-Bose representation and clubs

Michel Lavrauw* and Corrado Zanella†

September 4, 2014

Abstract

In this paper results are proved with applications to the orbits of $(n - 1)$-dimensional subspaces disjoint from a regulus \mathcal{R} of $(n - 1)$-subspaces in $\text{PG}(2n - 1, q)$, with respect to the subgroup of $\text{PGL}(2n, q)$ fixing \mathcal{R}. Such results have consequences on several aspects of finite geometry. First of all, a necessary condition for an $(n - 1)$-subspace U and a regulus \mathcal{R} of $(n - 1)$-subspaces to be extendable to a Desarguesian spread is given. The description also allows to improve results in [4] on the André-Bruck-Bose representation of a q-subline in $\text{PG}(2, q^n)$. Furthermore, the results in this paper are applied to the classification of linear sets, in particular clubs.

A.M.S. CLASSIFICATION: 51E20
KEY WORDS: club; linear set; subplane; André-Bruck-Bose representation; Segre variety

1 Introduction

The $(n - 1)$-dimensional projective projective space over the field F is denoted by $\text{PG}(n - 1, F)$ or $\text{PG}(n - 1, q)$ if F is the finite field of order q (denoted by \mathbb{F}_q). If L is an extension field \mathbb{F}_q, then the projective space defined by the \mathbb{F}_q-vector space induced by L^d is denoted by $\text{PG}_q(L^d)$. For further notation and general definitions employed in this paper the reader is referred to [9, 11, 13]. For more information on Desarguesian spreads see [1].

This paper is structured as follows. In Section 2 subspaces which intersect each element of a regulus in one point are studied and a result from [6] is generalised. Section 3 contains one of the main results of this paper, determining the order of the normal rational curves obtained from n-dimensional subspaces on an external $(n - 1)$-dimensional subspace with respect to a regulus in $\text{PG}(2n - 1, q)$, obtained from a point and a subline after applying the field reduction map to $\text{PG}(1, q^n)$. This leads to a necessary condition on the existence of a Desarguesian spread containing a subspace and regulus (Corollary 3.4). The André-Bruck-Bose representation of...
sublines and subplanes of a finite projective plane is studied in Section 3 and improvements are obtained with respect to the known results \cite{5, 14, 15, 4}. The results from the first sections are then applied to the classification problem for clubs of rank three in PG(1, q^n) in Section 5. A study of the incidence structure of the clubs in PG(1, q^n) after field reduction yields to a partial classification, concluding that the orbits of clubs under PGL(2, q^n) are at least k − 1, where k stands for the number of divisors of n. The paper concludes with an appendix discussing a result motivated by Burau \cite{6} for the complex numbers: the result is extended to general algebraically closed fields; a new proof is provided; and counterexamples are given to some of the arguments used in the original proof.

2 Subspaces intersecting each element of a regulus in one point

Let \(\mathcal{R} \) be a regulus of subspaces in a projective space and let \(S \) be any subspace of \(\langle \mathcal{R} \rangle \). Questions about the properties of the set of intersection points, which for reasons of simplicity of notation we will denote by \(S \cap \mathcal{R} \), often turn up while investigating objects in finite geometry. If \(S \) intersects each element of the regulus \(\mathcal{R} \) in a point, then the intersection \(S \cap \mathcal{R} \) is a normal rational curve, see Lemma 2.1. This was already pointed out in \cite{6} p.173 with a proof originally intended for complex projective spaces, but actually holding in a more general setting. The notation of \cite{6} will be partly adopted.

The Segre variety representing the Cartesian product PG\((n, F) \times PG(m, F)\) in PG\(((n + 1)(m + 1) - 1, F)\) is denoted by \(S_{n,m,F} \). It is well known that \(S_{n,m,F} \) contains two families \(S^I_{n,m,F} \) and \(S^{II}_{n,m,F} \) of maximal subspaces of dimensions \(n \) and \(m \), respectively. When convenient, the notation \(S^I \) or \(S^{II} \) will be used for a subspace belonging to the first or second family. The points of \(S_{n,m,F} \) may be represented as one-dimensional subspaces spanned by rank one \((m + 1)\times(n + 1)\) matrices. This is the standard example of a regular embedding of product spaces, see \cite{16}. Note that in the finite case it is possible to embed product spaces in projective spaces of smaller dimension (see e.g. \cite{7}). A regulus \(\mathcal{R} \) of \((n − 1)\)-dimensional subspaces can also be defined as \(S^I_{n−1,1,F} \).

Lemma 2.1. Let \(n > 1 \) be an integer, and \(F \) a field. Let \(S_t \) be a \(t \)-subspace of PG\((2n − 1,F)\) intersecting each \(S^I \in S^I_{n−1,1,F} \) in precisely one point. Define \(\Phi = S_t \cap S_{n−1,1,F} \), and assume \(\langle \Phi \rangle = S_t \). Then \(|F| \geq t \) and the following properties hold.

1. The set \(\Phi \) is a normal rational curve of order \(t \).
2. Let \(\Xi^I \in S^I_{n−1,1,F} \). Then the set \(S(\Phi, \Xi^I) \) of the intersections of \(\Xi^I \) with all transversal lines \(l^{II} \) such that \(l^{II} \cap \Phi \neq \emptyset \) is a normal rational curve of order \(t \) or \(t − 1 \) if \(|F| = t \), and of order \(t − 1 \) if \(|F| > t \).
3. If \(\Phi \) is contained in a subvariety \(S_{t−1,1,F} \) of \(S_{n−1,1,F} \), then homogeneous coordinates can be chosen such that \(\Phi \) is represented parametrically by

\[
\begin{pmatrix}
y_0^{t−1} & y_0^{t−2}y_1 & \cdots & y_0y_1^{t−1}
y_0^{t−1} & y_0^{t−2}y_1 & \cdots & y_1^{t−1}\end{pmatrix}, \quad (y_0, y_1) \in (F^2)^*,
\]

and \(S(\Phi, \Xi^I) \), for \(z_0, z_1 \) depending only on \(\Xi^I \), by

\[
\begin{pmatrix}
y_0^{t−1}z_0 & y_0^{t−2}y_1z_0 & \cdots & y_1^{t−1}z_0
y_0^{t−1}z_1 & y_0^{t−2}y_1z_1 & \cdots & y_1^{t−1}z_1\end{pmatrix}, \quad (y_0, y_1) \in (F^2)^*.
\]
Proof. (i), (iii) The proof in [6] Sect.41 no.3], which is offered for \(F = \mathbb{C} \), works exactly the same provided that \(|F| > t \) or, more generally, that \(\Phi \) is contained in some subvariety \(S_{t-1,1,F} \) of \(S_{n-1,1,F} \). In case \(|F| \leq t \), the size of \(\Phi \) being \(|F| + 1 \) implies \(|F| = t \), so \(\Phi \) is just a set of \(t + 1 \) independent points in a subspace isomorphic to \(PG(t,t) \), hence \(\Phi \) is a normal rational curve of order \(t \).

(ii) The case \(|F| > t \) is proved in [6] immediately after the corollary at p. 175. If \(|F| \leq t \), then \(|F| = t \) and two cases are possible. If \(\Phi \) is contained in some \(S_{t-1,1,F} \subseteq S_{n-1,1,F} \), Burau’s proof is still valid as was mentioned in case (ii); so, \(S(\Phi, \Xi^I) \) is a normal rational curve of order \(t - 1 = |F| - 1 \). Otherwise \(S(\Phi, \Xi^I) \) is an independent \((t+1) \)-set, hence a normal rational curve of order \(|F| \).

\[\square \]

Remark 2.2. If \(|F| = t \) both cases in Lemma 2.1 (ii) can occur. The following two examples use the Segre embedding \(\sigma' = \sigma_{t-1,1,F} \) of the product space \(PG(t-1,1) \times PG(1,1) \) in \(PG(2t-1,1) \). Let \(\{ s_0, s_1, \ldots, s_t \} \) be the set of points on \(PG(1,1) \) and suppose \(\{ r_0, r_1, \ldots, r_t \} \) is a set of \(t + 1 \) points in \(PG(t-1,1) \). Put \(\Xi^I = \sigma(PG(1,1) \times s_0) \) and \(\Phi := \{ \sigma(r_i \times s_i) : i = 0, 1, \ldots, t \} \). Then \(\Phi \) consists of \(t + 1 \) points on the Segre variety \(S_{t-1,1,F} \). Depending on the set \(\{ r_0, r_1, \ldots, r_t \} \) one obtains the two cases described in Lemma 2.1 (ii).

a. If \(\{ r_0, r_1, \ldots, r_t \} \) is a frame of a hyperplane of \(PG(t-1,1) \) then \(\Phi \) generates a \(t \)-dimensional subspace of \(PG(2t-1,1) \) intersecting \(S_{t-1,1,F} \) in \(\Phi \) and \(S(\Phi, \Xi^I) \) is a normal rational curve of order \(t - 1 \).

b. If \(\{ r_0, r_1, \ldots, r_t \} \) generates \(PG(t-1,1) \) then \(\Phi \) generates a \(t \)-dimensional subspace of \(PG(2t-1,1) \) intersecting \(S_{t-1,1,F} \) in \(\Phi \) and \(S(\Phi, \Xi^I) \) is a normal rational curve of order \(t \).

Remark 2.3. By [11] and [2], the map \(\alpha : \Phi \rightarrow S(\Phi, \Xi^I) \) defined by the condition that \(X \) and \(X^\alpha \) are on a common line in \(S_{n-1,1,F}^I \) is related to a projectivity between the parametrizing projective lines. Such an \(\alpha \) is also called a projectivity.

3 The order of normal rational curves contained in \(S_{n-1,1,q} \)

Here \(n \geq 2 \) is an integer. The field reduction map \(F_{m,n,q} \) from \(PG(m-1, q^n) \) to \(PG(mn-1, q) \) will also be denoted by \(F \). If \(S \) is a set of points, in \(PG(m-1, q^n) \), then \(F(S) \) is a set of subspaces, whose union, as a set of points will be denoted by \(F(S) \). The \(F_{q^h} \)-span of a subset \(b \) of \(PG(d, q^n) \) is denoted by \((b)_{q^h} \).

Proposition 3.1. Let \(b \) be a \(q \)-subline of \(PG(1,q^n) \), and let \(\Theta \not\in b \) be a point of \(PG(1,q^n) \). Let \(1, \zeta \) and \(1, \zeta' \) be homogeneous coordinates of \(\Theta \) with respect to two reference frames for \((b)_{q^n} \), each of which consists of three points of \(b \). Then \(F_q(\zeta) = F_q(\zeta') \).

Proof. Homogeneous coordinates of a point in both reference frames, say \((x_0, x_1) \) and \((x'_0, x'_1) \), are related by an equation of the form \(\rho(x'_0, x'_1)^T = A(x_0, x_1)^T \), \(\rho \in F_{q^n}, A \in GL(2,q) \). Hence \((\rho \cdot \rho')^T = A(1, \zeta)^T \) and this implies \(\zeta' \in F_q(\zeta) \). The proof of \(\zeta \in F_q(\zeta') \) is similar. \[\square \]

By Proposition 3.1, the degree of a point over a \(q \)-subline \(b \) in a finite projective space \(PG(d, q^n) \), \([\Theta : b] = [F_q(\zeta) : F_q] \) for \(\Theta \in (b)_{q^n} \setminus b, [\Theta : b] = 1 \) for \(\Theta \in b \), is well-defined. This \([\Theta : b] \) also equals the minimum integer \(m \) such that a subgeometry \(\Sigma \cong PG(d, q^m) \) exists containing both \(b \) and \(\Theta \).
Proposition 3.2. Any n-subspace of $\PG(2n - 1, q)$ containing an $(n - 1)$-subspace $S^I \in S_{n-1,1,q}$ intersects $S_{n-1,1,q}$ in the union of S^I and a line in $S_{n-1,1,q}^{II}$.

Theorem 3.3. Let b be a q-subline of $\PG(1, q^n)$, and $\Theta \not\in b$ a point of $\PG(1, q^n)$. Then in $\PG(2n - 1, q)$ any n-subspace \mathcal{H} containing $\mathcal{F}(\Theta)$ intersects the Segre variety $S_{n-1,1,q} = \tilde{\mathcal{F}}(b)$, in a normal rational curve whose order is $\min\{q, [\Theta : b]\}$.

Proof. Set $L = \mathbb{F}_q^n$, $F = \mathbb{F}_q$. Without loss of generality, $\PG(2n - 1, q) = \PG_q(L^2)$, $\mathcal{F}(b) = \{L(x, y) \mid (x, y) \in (F^2)^*\}$ and $\Theta = L(1, \xi)$ with $[F(\xi) : F] = [\Theta : b]$. The n-subspace \mathcal{H} intersects $L(1, 0)$ in one point Y of the form $Y = F(\theta, 0)$, $\theta \in L^*$. For any $x \in F$, seeking for the intersection $\langle \mathcal{F}(\Theta), Y \rangle_q \cap L(x, 1)$, or

$$\langle L(1, \xi), F(\theta, 0) \rangle_q \cap L(x, 1)$$

gives two equations in $\alpha, \beta \in L$:

$$\alpha + \theta = \beta x, \quad \alpha \xi = \beta,$$

whence $\beta = \theta(x - \xi^{-1})^{-1}$. The intersection point is then $F(x\theta(x - \xi^{-1})^{-1}, \theta(x - \xi^{-1})^{-1})$. So, for $\Xi = L(0, 1)$, the set of the intersections of Ξ with all lines in $S_{n-1,1,q}^{II}$ which meet \mathcal{H} is

$$S(\mathcal{H} \cap S_{n-1,1,q}, \Xi) = \{F(0, \theta(x - \xi^{-1})^{-1}) \mid x \in F_q \} \cup \{F(0, \theta)\}.$$

This $S(\mathcal{H} \cap S_{n-1,1,q}, \Xi)$ is obtained by inversion from the line joining the points $F(0, \theta^{-1})$ and $F(0, \theta^{-1} \xi^{-1})$. By [10] Theorem 5, C_γ is a normal rational curve of order $\delta' = \min\{q, [F(\xi^{-1}) : F] - 1\} = \min\{q, [\Theta : b] - 1\}$. Now apply lemma [2.1] for $\mathcal{H} = \mathcal{H} \cap S_{n-1,1,q}$ if $t \geq q$, then $t = q$ and $\delta' = q$ or $\delta' = q - 1$, so $[\Theta : b] \geq q$ and $t = \min\{q, [\Theta : b]\}$. If on the contrary $t < q$, then $t - 1 = \delta' = [\Theta : b] - 1$, so $t = [\Theta : b]$ and $t = \min\{q, [\Theta : b]\}$ again.

An important consequence of the above result answers the question of the existence of a Desarguesian spread containing a given regulus \mathcal{R} and a subspace disjoint from \mathcal{R}.

Corollary 3.4. If a regulus $\mathcal{R} = S_{n-1,1,q}$ and an $(n - 1)$-dimensional subspace U, disjoint from \mathcal{R}, in $\PG(2n - 1, q)$ are contained in a Desarguesian spread then there is an integer c such that any n-subspace \mathcal{H} containing U intersects \mathcal{R} in a normal rational curve of order c.

The following remark illustrates that this necessary condition is not always satisfied.

Remark 3.5. For $n > 2$ by using the package FinInG [2] of GAP [3] examples can be given of $(n - 1)$-subspaces disjoint from $S_{n-1,1,q}$ contained in n-subspaces intersecting the Segre variety in normal rational curves of distinct orders. We include one explicit example. Let $q = 4$, $\mathbb{F}_q = \mathbb{F}_2(\omega)$, with $\omega^2 + \omega + 1 = 0$. Let \mathcal{R} be the regulus of 3-dimensional subspaces of $\PG(7, 4)$ obtained from the standard subline $\PG(1, q)$ in $\PG(1, q^4)$, and put

$$S_3 := \langle (1, 0, 0, 0, \omega^2, 1, 0, 1), (0, 1, 0, 0, 1, \omega^2, 0, \omega^2), (0, 0, 1, 0, 0, \omega, 1, \omega), (0, 0, 0, 1, \omega^2, \omega^2, \omega, 1) \rangle.$$

Then S_3 is a three-dimensional subspace disjoint from the regulus \mathcal{R}. Moreover, the 4-dimensional subspace $\langle S_3, (1, 0, 0, 0, 0, 0, 0, 0) \rangle$ intersects the regulus \mathcal{R} in a normal rational curve of degree 4, while the 4-dimensional subspace $\langle S_3, (0, 1, 0, \omega^2, 0, 0, 0, 0) \rangle$ intersects \mathcal{R} in a conic.

\footnote{For $x, y \in L$, $F(x, y) = \langle (x, y) \rangle_q$, and $L(x, y) = \langle (x, y) \rangle_{q^n}$.}
4 André-Bruck-Bose representation

The André-Bruck-Bose representation of a Desarguesian affine plane of order q^n is related to the image of $\text{PG}(2, q^n)$, under the field reduction map \mathcal{F}, by means of the following straightforward result.

Proposition 4.1. Let D be the Desarguesian spread in $\text{PG}(3n - 1, q)$ obtained after applying the field reduction map \mathcal{F} to the set of points of $\text{PG}(2, q^n)$, l_∞ a line in $\text{PG}(2, q^n)$, and K a $(2n)$-subspace of $\text{PG}(3n - 1, q)$, containing the spread $\mathcal{F}(l_\infty)$. Take $\text{PG}(2, q^n) \setminus l_\infty$ and $K \setminus \langle \mathcal{F}(l_\infty) \rangle_q$ as representatives of $\text{AG}(2, q^n)$ and $\text{AG}(2n, q)$, respectively. Then the map $\varphi : \text{AG}(2, q^n) \to \text{AG}(2n, q)$ defined by $\varphi(X) = \mathcal{F}(X) \cap K$ for any $X \in \text{AG}(2, q^n)$ is a bijection, mapping lines of $\text{AG}(2, q^n)$ into n-subspaces of $\text{AG}(2n, q)$ whose $(n-1)$-subspaces at infinity belong to the spread $\mathcal{F}(l_\infty)$.

The notation in Proposition 4.1 is assumed to hold in the whole section. The following result improves [4] Theorems 3.3 and 3.5], by determining the order of the involved normal rational curves.

Theorem 4.2. Let b be a q-subline of $\text{PG}(2, q^n)$, not contained in l_∞. Set $\Theta = \langle b \rangle_q \cap l_\infty$. Then the André-Bruck-Bose representation $\varphi(b \setminus l_\infty)$ is the affine part of a normal rational curve whose order is $\delta = \min\{q, [\Theta : b]\}$. More precisely, if $\delta = 1$, then $\varphi(b \setminus l_\infty)$ is an affine line; if $\delta > 1$, then $b \cap l_\infty = \emptyset$, and $\varphi(b)$ is a normal rational curve with no points at infinity.

Proof. The intersection $\mathcal{H} = \langle \mathcal{F}(b) \rangle_q \cap K$ is an n-space containing $\mathcal{F}(\Theta)$, and contained in the span of the Segre variety $S_{n-1,1,q} = \mathcal{F}(b)$. The result follows from Proposition 4.2 and Theorem 3.3.

The results in [4] Theorems 3.3 and 3.5] also characterize the normal rational curves arising from q-sublines in $\text{AG}(2, q^n)$.

In [5,14,15] for $n = 2$ and [4] Theorem 3.6 (a)(b)] for any n the André-Bruck-Bose representation of a q-subplane tangent to a line at the infinity is described. Further properties are stated in the following theorem:

Theorem 4.3. Let B be a q-subplane of $\text{PG}(2, q^n)$ that is tangent to l_∞ at the point T. Let b be a line of B not through T, $\Theta = \langle b \rangle_q \cap l_\infty$, and $\delta = \min\{q, [\Theta : b]\}$. Then there are a normal rational curve C_0 of order δ in the n-subspace $\varphi(b \setminus l_\infty)$, a normal rational curve $C_1 \subset T \mathcal{F}(T)$ of order δ', with

$$
\delta' \begin{cases}
= [\Theta : b] - 1 & \text{for } q > [\Theta : b] \\
\in \{q - 1, q\} & \text{otherwise,}
\end{cases}
$$

and a projectivity $\kappa : C_0 \to C_1$ (in the sense of Remark 2.3), such that $\varphi(B \setminus l_\infty)$ is the ruled surface union of all lines XX^κ for $X \in C_0$.

Proof. By Theorem 4.2 $C_0 := \varphi(b)$ is a normal rational curve of order δ in the n-subspace $\varphi(b \setminus l_\infty)$, and for any $P = \varphi(X) \in C_0$, the subline TX of B corresponds to an affine line $P P^\kappa$ with $P^\kappa \in \mathcal{F}(T)$ at infinity. Define $C_1 = \{P^\kappa \mid P \in C_0\}$.

By the field reduction map $\mathcal{F} = \mathcal{F}_{3n,q}$, the subplane B is mapped to $\mathcal{F}(B)$ which is the set of all maximal subspaces of the first family in $S_{n-1,2,q} \subset \text{PG}(3n - 1, q)$. The vector homomorphism $(\lambda, v) \in \mathbb{F}_{q^n} \times \mathbb{F}_q$ maps $\lambda \otimes_{\mathbb{F}_q} v$
corresponds to a projective embedding \(g : \text{PG}(n-1,q) \times B \rightarrow S_{n-1,2,q} \) whose image is \(S_{n-1,2,q} \), and such that \(\mathcal{F}(X) = (\text{PG}(n-1,q) \times X)^g \) for any point \(X \) in \(B \). It holds \(\varphi(B \setminus l_\infty) = S_{n-1,2,q} \cap K \setminus \mathcal{F}(T) \). For any point \(U \) in \(B \) define

\[
\kappa_U : (X,Y)^g \in S_{n-1,2,q} \mapsto (X,U)^g \in \mathcal{F}(U).
\]

Note that for any \(Y \in B \), the restriction of \(\kappa_U \) to \(\mathcal{F}(Y) \) is a projectivity. For any \(U \in B \), using the notation from Lemma 2.1, it holds \(C_0^\kappa = S(C_0, \mathcal{F}(U)) \), and as a consequence, \(C_0^\kappa \) is a normal rational curve of order \(\delta' \) as in (3). Now, since for any \(P \in C_0 \), say \(P = (X_P,Y_P)^g \), the points \(P^\kappa \) and \(P^{\kappa_T} \) are on the plane \((X_P \times B)^g \in S_{n-1,2,q}^I \) and \(P^\kappa, P^{\kappa_T} \in \mathcal{F}(T) \), it follows that \(P^\kappa = P^{\kappa_T} \). It also follows that \(C_1 = C_0^{\kappa_U, \kappa_T} = S(C_0, \mathcal{F}(U))^{\kappa_T} \), and hence \(C_1 \) is a normal rational curve of order \(\delta' \) as in (3). Finally, \(\kappa_U : C_0 \rightarrow S(C_0, \mathcal{F}(U)) \) is a projectivity as defined in Remark 2.3 and hence so is \(\kappa \).

5 On the classification of clubs

An \(\mathbb{F}_q \)-club (or simply a club) in \(\text{PG}(1,q^n) \) is an \(\mathbb{F}_q \)-linear set of rank three, having a point of weight two, called the head of the club. An \(\mathbb{F}_q \)-club has \(q^2 + 1 \) points, and the non-head points have weight one. From now on it will be assumed that \(n > 2 \). The next proposition is a straightforward consequence of the representation of linear sets as projections of subgeometries [12, Theorem 2].

Proposition 5.1. Let \(L \) be an \(\mathbb{F}_q \)-club in \(\text{PG}(1,q^n) \subset \text{PG}(2,q^n) \). Then there are a \(q \)-subplane \(\Sigma \) of \(\text{PG}(2,q^n) \), a \(q \)-subline \(b \) in \(\Sigma \), and a point \(\Theta \in \langle b \rangle_{q^n} \setminus b \), such that \(L \) is the projection of \(\Sigma \) from the center \(\Theta \) onto the axis \(\text{PG}(1,q^n) \).

As before the notation \(\mathcal{F} \) and \(\tilde{\mathcal{F}} \) is used, where \(\mathcal{F} = \mathcal{F}_{2,n,q} \) denotes the field reduction map from \(\text{PG}(1,q^n) \) to \(\text{PG}(2n - 1, q) \).

Proposition 5.2. Let \(L \) be an \(\mathbb{F}_q \)-club of \(\text{PG}(1,q^n) \) with head \(\Upsilon \). Then \(\tilde{\mathcal{F}}(L) \) contains two collections of subspaces, say \(F_1 \) and \(F_2 \), satisfying the following properties.

(i) The subspaces in \(F_1 \) are \((n - 1)\)-dimensional, are pairwise disjoint, and any subspace in \(F_1 \) is disjoint from \(\mathcal{F}(\Upsilon) \).

(ii) Any subspace in \(F_2 \) is a plane and intersects \(\mathcal{F}(\Upsilon) \) in precisely a line.

(iii) Any point of \(\mathcal{F}(\Upsilon) \) belongs to exactly \(q + 1 \) planes in \(F_2 \).

(iv) If \(L \) is not isomorphic to \(\text{PG}(1,q^2) \), and \(l \) is any line of \(\text{PG}(2n - 1, q) \) contained in \(\tilde{\mathcal{F}}(L) \), then \(l \) is contained in \(\mathcal{F}(\Upsilon) \) or in a subspace in \(F_1 \cup F_2 \).

Proof. The assumptions imply the existence of \(\Sigma \) and a \(q \)-subline \(b \) in \(\Sigma \) as in Proposition 5.1. The assertions are a consequence of the fact that \(\tilde{\mathcal{F}}(\Sigma) \) is a Segre variety \(S_{n-1,2,q} \) in \(\text{PG}(3n-1,q) \). Let

\[
p_1 : \text{PG}(2,q^n) \setminus \Theta \rightarrow \text{PG}(1,q^n)
\]

be the projection with center \(\Theta \), associated with

\[
p_2 : \text{PG}(3n - 1,q) \setminus \mathcal{F}(\Theta) \rightarrow \text{PG}(2n - 1,q).
\]

6
The collections F_1 and F_2 are defined as follows:

$$F_1 = \{ \mathcal{F}(p_1(X)) \mid X \in \Sigma \setminus b \} = \mathcal{F}(L) \setminus \mathcal{F}(Y), \quad F_2 = \{ p_2(V^H) \mid V^H \in \tilde{\mathcal{F}}(\Sigma)^{II} \}.$$

The assertion (i) is straightforward, as well as $\dim(V) = 2$ for any $V \in F_2$. For any $V^H \in \tilde{\mathcal{F}}(\Sigma)^{II}$, the intersection $V^H \cap \langle \tilde{\mathcal{F}}(b) \rangle_q$ is a line, and this with $p_2^{-1}(\mathcal{F}(Y)) = \langle \tilde{\mathcal{F}}(b) \rangle_q \setminus \mathcal{F}(\Theta)$ implies the second assertion in (ii). Next, let P be a point in $\mathcal{F}(Y)$. A plane $V = p_2(V^H)$ contains P if, and only if, V^H intersects the n-subspace $\langle \mathcal{F}(\Theta), P \rangle_q$, that is, V^H intersects the normal rational curve $S_{n-1,2,q} \cap \langle \mathcal{F}(\Theta), P \rangle_q$; this implies (iii).

Assume that a line $l \subset \tilde{\mathcal{F}}(L)$ exists which is neither contained in $\mathcal{F}(\Theta)$, nor in a $T \in F_1 \cup F_2$. Let Q be a point in $l \setminus \mathcal{F}(\Theta)$, and let $V \in F_2$ such that $Q \in V$. It holds $L = B(V)$. Then $B(l)$ is a q-subline of L. Suppose that a line l' in V exists such that $B(l') = B(l)$. Since $B(Q) \neq B(Q')$ for any $Q' \in V$, $Q' \neq Q$, the line l' contains Q. Then l, l' are two distinct transversal lines in $B(l)^{II}$, a contradiction. Hence $B(l') \neq B(l)$ for any line l' in V, that is, $B(l)$ is a so-called *irregular subline* [5]. By [5], Corollary 13, no irregular subline exists in L, and this contradiction implies (iv).

Proposition 5.3. Let L be an \mathbb{F}_q-club with head Θ. Let Θ be the point and b be the subline as defined in Proposition 5.2. Then for any point $X \in \mathcal{F}(\Theta)$, the intersection lines of $\mathcal{F}(\Theta)$ with any q distinct planes in F_2 containing X span an s-dimensional subspace, where

(i) $s = \lfloor \Theta : b \rfloor - 1$ if $q > \lfloor \Theta : b \rfloor$;

(ii) $s \leq q - 1, q \}$ if $q \leq \lfloor \Theta : b \rfloor$.

Proof. Let p_2 be the projection map as defined in the proof of Proposition 5.2, $X = p_2(P)$, and $\mathcal{H} = \langle \mathcal{F}(\Theta), P \rangle_q$. For any plane $V = p_2(V^H)$, it holds $X \in V$ if, and only if $V^H \cap \mathcal{H} \neq \emptyset$. The intersection $\mathcal{H} \cap \tilde{\mathcal{F}}(b)$ is a normal rational curve of order $\min \{q, \lfloor \Theta : b \rfloor\}$ (cf. Theorem 5.3). Let $V_0 = p_2(V^H)$ be the unique plane of F_2 through X distinct from the q planes chosen in the assumptions (cf. Proposition 5.2). Let $Q = \tilde{\mathcal{F}}(b) \cap V_0^{II}$; $\mathcal{B}(Q)$ is an $(n-1)$-subspace of $\tilde{\mathcal{F}}(b)^I$. Such $\mathcal{B}(Q)$ is mapped onto $\mathcal{B}(X) = \mathcal{F}(\Theta)$ by p_2. Assume $V_i = p_2(V_i^{II})$, $i = 1, 2, \ldots, q$, are the q planes chosen in the assumptions. Any $V_i^{II} = i = 1, 2, \ldots, q$, intersects \mathcal{H}, hence $V_i^{II} \cap \mathcal{B}(Q)$ is the intersection of $\mathcal{B}(Q)$ with a transversal line of $\tilde{\mathcal{F}}(b)$ intersecting the normal rational curve $\mathcal{H} \cap \tilde{\mathcal{F}}(b)$. By Lemma 2.1 (ii), the set

$$S = \{ V_i^{II} \cap \mathcal{B}(Q) \mid i = 1, 2, \ldots, q \} \cup \{ Q \}$$

is a normal rational curve of order s where s takes the values as stated in (i) and (ii). Since $V_i \cap \mathcal{F}(\Theta)$ is the line through X and a point of $p_2(S)$, distinct from X, the span of the intersection lines is the same as the span of $p_2(S)$.

Theorem 5.4. Let $\mathcal{I}_{n,q}$ be the set of integers h dividing n and such that $1 < h < q$. For any $h \in \mathcal{I}_{n,q}$, let L_h be the linear set obtained by projecting a q-subplane Σ of $\text{PG}(2,q^n)$ from a point Θ_h collinear with a q-subline b in Σ and such that $[\Theta_h : b] = h$. Then the set $\Lambda = \{ L_h \mid h \in \mathcal{I}_{n,q} \}$ contains \mathbb{F}_q-clubs in $\text{PG}(1,q^n)$ all belonging to distinct orbits under $\text{PGL}(2,q^n)$.

Proof. If n is odd, then no club is isomorphic to $\text{PG}(1,q^2)$. So, by Proposition 5.2 (iv), the families F_1 and F_2 are uniquely determined. The thesis is a consequence of Proposition 5.3 taking into account that if L and L' are projectively equivalent, then $\tilde{\mathcal{F}}(L)$ and $\tilde{\mathcal{F}}(L')$ are projectively equivalent in $\text{PG}(2n - 1, q)$.

7
In order to deal with the case n even, it is enough to show that in Λ at most one club is isomorphic to $\text{PG}(1,q^2)$. So assume $L_h \cong \text{PG}(1,q^2)$. Then $\tilde{\mathcal{F}}(L_h)$ has a partition \mathcal{P}_1 in $(n-1)$-subspaces, and a partition \mathcal{P}_2 in 3-subspaces. From [8 Lemma 11] it can be deduced that any line contained in $\tilde{\mathcal{F}}(L_h)$ is contained in an element of \mathcal{P}_1 or \mathcal{P}_2. The intersections of a subspace U of a family \mathcal{P}_i with the elements of the other family form a line spread of U. Hence all planes in \mathcal{F}_2 are contained in 3-subspaces of \mathcal{P}_2, and all planes of \mathcal{F}_2 through a point X in $\mathcal{F}(\Upsilon)$ meet $\mathcal{F}(\Upsilon)$ in the same line. By Proposition 5.3 this implies $h = 2$.

Acknowledgement. The authors thank Hans Havlicek for his helpful remarks in the preparation of this paper.

References

[1] L. Bader - G. Lunardon: Desarguesian spreads. Ric. Mat. 60 (2011), 15–37.

[2] J. Bamberg - A. Betten - P. Cara - J. De Beule - M. Lavrauw - M. Law - M. Neunhoeffer - M. Pauley - S. Reichard: GAP 4 Package FinInG. cage.ugent.be/geometry/fining/manual.pdf

[3] The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.7.5; 2014. http://www.gap-system.org

[4] S.G. Barwick - Wen-Ai Jackson: Sublines and subplanes of $\text{PG}(2,q^3)$ in the Bruck-Bose representation in $\text{PG}(6,q)$. Finite Fields App. 18 (2012), 93–107.

[5] R.C. Bose - J.W. Freeman - D.G. Glynn: On the intersection of two Baer subplanes in a finite projective plane. Utilitas Math. 17 (1980), 65–77.

[6] W. Burau: Mehrdimensionale projektive und höhere Geometrie. VEB Deutscher Verlag der Wissenschaften, Berlin, 1961.

[7] M. Lavrauw - J. Sheekey - C. Zanella: On embeddings of minimum dimension of $\text{PG}(n,q) \times \text{PG}(n,q)$. Des. Codes Cryptogr. doi: 10.1007/s10623-013-9866-8.

[8] M. Lavrauw - G. Van de Voorde: On linear sets on a projective line. Des. Codes Cryptogr. 56 (2010), 89–104.

[9] M. Lavrauw - G. Van de Voorde: Field reduction and linear sets in finite geometry. To appear in AMS Contemp. Math, American. Math Soc. arXiv:1310.8522

[10] M. Lavrauw - C. Zanella: Geometry of the inversion in a finite field and partitions of $\text{PG}(2^k - 1,q)$ in normal rational curves. J. Geom. 105 (2014), 103–110.

[11] M. Lavrauw - C. Zanella: Subgeometries and linear sets on a projective line. Preprint (2014), arXiv:1403.5754

[12] G. Lunardon - O. Polverino: Translation ovoids of orthogonal polar spaces. Forum Math. 16 (2004), 663–669.

[13] O. Polverino: Linear sets in finite projective spaces. Discrete Math. 310 (2010), 3096–3107.
claimed in the proof at page 174 that the assumption \(⟨ \) authors the proof in [6] is obtained using an erroneous argument. As a matter of fact, it is elements. However such a generalisation would contradict Theorem 3.3. In the opinion of the

In [6] the previous result is seemingly proved using methods valid in any field with enough elements. However such a generalisation would contradict Theorem 3.3. In the opinion of the authors the proof in [6] is obtained using an erroneous argument. As a matter of fact, it is claimed in the proof at page 174 that the assumption \(⟨ \Phi ⟩ = S_s \) is not used. However the contradiction \(S_s \subset (S_{s-2}, \mathbb{C}) \) is inferred from \(Φ \subset S_{s-2}, \mathbb{C} \).

A further counterexample, which exists whenever a hyperbolic quadric \(Q^+(3, F) \) in a three-dimensional projective space admits an external line (a condition which is not met when the field \(F \) is algebraically closed) is the following. If \(ℓ \) is the line corresponding to the two-dimensional vector space \(⟨ e_1⟩ \otimes ⟨ e'_1, e'_2⟩ \) and \(m \) is a line external to the hyperbolic quadric obtained by the intersection of the Segre variety \(S_{2,1}, F \) with the 3-space corresponding to the vector space \(⟨ e_2⟩ \otimes ⟨ e'_1, e'_2⟩ \), then the 3-dimensional subspace \(⟨ ℓ, m⟩ \) intersects \(S_{2,1}, F \) in the line \(ℓ \) belonging to \(S^3_{2,1}, F \).

For the sake of completeness, a proof for corollary A.1 is given.

Proof of corollary A.1. Define

\[
S_t = ⟨ S_s \cap S_{s-1}, F⟩, \quad t = \dim S_t
\]

and suppose \(t < s \). It is proved in [6] p.173 (6) that \(S_t \subset (S_{t-1}, F⟩ \) for some \(S_{t-1}, F \subset S_{s-1}, F \).

Note that \(S_s \cap (S_{t-1}, F⟩ = S_t \); otherwise, comparing dimensions, \(S_s \) would intersect each \(S^I \subset S_{t-1}, F \) in more than one point. Now choose

- a subspace \(S_{s-t-1} \subset S_s \) such that \(S_{s-t-1} \cap (S_{t-1}, F⟩ = \emptyset \);
- a Segre variety \(S_{s-t-1}, F \subset S_{s-1}, F \), such that \((S_{s-t-1}, F⟩ \cap (S_{t-1}, F⟩ = \emptyset \);
- two distinct \(A^I, B^I \subset S^I_{s-t-1}, F \).

Since \((S_{s-t-1}, F⟩ \) and \((S_{t-1}, F⟩ \) are complementary subspaces of \((S_{s-1}, F⟩ \), a projection map

\[
π : (S_{s-1}, F⟩ \setminus (S_{t-1}, F⟩ \to (S_{s-t-1}, F⟩
\]

is defined by \(π(P) = (P \cup S_{t-1}, F⟩ \cap (S_{s-t-1}, F⟩ \). Now suppose \(π(S_{s-t-1}) \cap S_{s-t-1}, F \) is a point. In \((S_{s-t-1}, F⟩ \) consider

[14] C.T. Quinn - L.R.A. Casse: Concerning a characterisation of Buekenhout-Metz units, J. Geom. 52 (1995), 159–167.

[15] R. Vincenti: Alcuni tipi di varietà \(V_2 \) di \(S_{4,q} \) e sottopiani di Baer. Boll. Un. Mat. Ital. Suppl. 1980, no. 2, 31–44.

[16] C. Zanella: Universal properties of the Corrado Segre embedding. Bull. Belg. Math. Soc. Simon Stevin 3 (1996), 65–79.

Appendix: On a result in [6]

In [6] p.175 the following result (Korollar) is stated for \(F = \mathbb{C} \).

Corollary A.1. Let \(F \) be an algebraically closed field. If an \(s \)-subspace \(S_s \) of \(PG(2s-1,F) \) meets all \(S^I \subset (S_{s-1}, F⟩ \) only in points, then such points span \(S_s \).

In [6] the previous result is seemingly proved using methods valid in any field with enough elements. However such a generalisation would contradict Theorem 3.3. In the opinion of the authors the proof in [6] is obtained using an erroneous argument. As a matter of fact, it is claimed in the proof at page 174 that the assumption \(⟨ \Phi ⟩ = S_s \) is not used. However the contradiction \(S_s \subset (S_{s-2}, \mathbb{C}) \) is inferred from \(Φ \subset (S_{s-2}, \mathbb{C} \).

A further counterexample, which exists whenever a hyperbolic quadric \(Q^+(3,F) \) in a three-dimensional projective space admits an external line (a condition which is not met when the field \(F \) is algebraically closed) is the following. If \(ℓ \) is the line corresponding to the two-dimensional vector space \(⟨ e_1⟩ \otimes ⟨ e'_1, e'_2⟩ \) and \(m \) is a line external to the hyperbolic quadric obtained by the intersection of the Segre variety \(S_{2,1}, F \) with the 3-space corresponding to the vector space \(⟨ e_2⟩ \otimes ⟨ e'_1, e'_2⟩ \), then the 3-dimensional subspace \(⟨ ℓ, m⟩ \) intersects \(S_{2,1}, F \) in the line \(ℓ \) belonging to \(S^3_{2,1}, F \).

For the sake of completeness, a proof for corollary A.1 is given.
the regulus \mathcal{R} corresponding to $S_{s-t-1,1,F}$, and the projectivity $\kappa : A^I \rightarrow B^I$ such that, for any $P \in A^I$, the line $\langle P, \kappa(P) \rangle$ belongs to $S_{s-t-1,1,F}^I$;

- the regulus \mathcal{R}' containing A^I, B^I and $\pi(S_{s-t-1})$, and the projectivity $\kappa' : A^I \rightarrow B^I$ such that, for any $P \in A^I$, the line $\langle P, \kappa'(P) \rangle$ is a transversal line of \mathcal{R}'.

Since F is an algebraically closed field, $\kappa'^{-1} \circ \kappa$ has a fixed point P. Therefore $\kappa(P) = \kappa'(P)$, so \mathcal{R} and \mathcal{R}' have a common transversal. This contradicts $\pi(S_{s-t-1}) \cap S_{s-t-1,1,F} = \emptyset$. So, a point $P \in S_{s-t-1}$ exists such that $\pi(P) \in S_{s-t-1,1,F}$.

Next, let $C^I \in S_{s-1,1,F}$ be such that $\pi(P) \in C^I$, and Q the point in $\langle S_{t-1,1,F} \rangle$ such that Q, P, and $\pi(P)$ are collinear. If $Q \in S_{t}$, then $\pi(P) \in S_{s}$, a contradiction; also $Q \in C^I$ leads to a contradiction (since it implies $P \in C^I$). So $Q \notin S_{t} \cup C^I$ and by a dimension argument two points $Q_1 \in C^I \setminus S_{t}$ and $Q_2 \in S_{t} \setminus C^I$ exist such that Q, Q_1 and Q_2 are collinear: they are on the unique line through Q meeting both $C^I \cap \langle S_{t-1,1,F} \rangle$ and a $(t-1)$subspace of S_{t} disjoint from C^I.

The plane $\langle P, Q_1, Q_2 \rangle$ contains the lines $PQ_2 \subset S_{t}$ and $\pi(P)Q_1 \subset S_{s-1,1,F}$ which meet outside $\langle S_{t-1,1,F} \rangle$. This is again a contradiction. \qed