Long-term specific IgG response to SARS-CoV-2 nucleocapsid protein in recovered COVID-19 patients

Jira Chansaenroj¹, Ritthideach Yorsaeng¹, Nawarat Posuwan¹, Jiratchaya Puenpa¹, Nasamon Wanlapakorn¹,², Natthinee Sudhinaraset¹, Manit Sripramote³, Piti Chalongviriyalert³, Supunee Jirajariyavej⁴, Phatharaporn Kiatpanabhiruk⁵, Jatuporn Saiyarin⁶, Chulikorn Soudon⁷, Orawan Thienfaidee⁸, Thitisan Palakawong Na Ayuthaya⁹, Chantapat Brukesawan¹⁰, Chintana Chirathaworn¹¹,¹², Duangnapa Intharasongkroh¹³, Dootchai Chaivarnichsiri¹¹,¹², Milla Issarasonkhram¹³, Rungrueng Khitphati¹¹,¹³, Anek Mungaomklang¹³, Pijaya Nagavajara¹⁴ & Yong Poovorawan¹

This study monitored the long-term immune response to severe acute respiratory syndrome coronavirus (SARS-CoV)-2 infection in patients who had recovered from coronavirus disease (COVID-19). Anti-nucleocapsid immunoglobulin G (anti-N IgG) titer in serum samples collected at a single (N = 302) or multiple time points (N = 229) 3–12 months after COVID-19 symptom onset or SARS-CoV-2 detection in respiratory specimens was measured by semiquantitative chemiluminescent microparticle immunoassay. The 531 patients (966 specimens) were classified according to the presence or absence of pneumonia symptoms. Anti N IgG was detected in 87.5% of patients (328/375) at 3 months, 38.6% (93/241) at 6 months, 23.7% (49/207) at 9 months, and 26.6% (38/143) at 12 months. The anti-N IgG seropositivity rate was significantly lower at 6, 9, and 12 months than at 3 months (P < 0.01) and was higher in the pneumonia group than in the non-pneumonia/asymptomatic group at 6 months (P < 0.01), 9 months (P = 0.04), and 12 months (P = 0.04). The rate started to decline 6–12 months after symptom onset. Anti-N IgG sample/cutoff index was positively correlated with age (r = 0.192, P < 0.01) but negatively correlated with interval between symptom onset and blood sampling (r = −0.567, P < 0.01). These findings can guide vaccine strategies in recovered COVID-19 patients.

Coronavirus disease 2019 (COVID-19) has a broad spectrum clinical manifestations including asymptomatic, mild, severe, critical, and even fatal¹². A large proportion of infected individuals are asymptomatic or have mild symptoms but are still contagious¹. The elderly and individuals with chronic medical conditions are more likely to become severely ill from COVID-19. The severe cases eventually develop acute respiratory distress syndrome,
detectable within 1–3 weeks after infection. SARS-CoV-2 immunoglobulin (Ig)M antibodies can be detected in single time point donors (n = 302) and multiple time point donors (n = 229) are shown in Table 1. The mean (± standard deviation) age of the participants was 37.1 ± 12.3 years (range 2–82 years) and the median age was 36 years. The male-to-female ratio was 1.03:1 (269:262). Participants were divided into two groups according to disease severity: those without pneumonia symptoms (n = 420) and those with pneumonia symptoms (n = 111). The seropositivity rate did not differ significantly between groups at 3 months after symptom onset or first SARS-CoV-2 detection (Table S1). However, at 6, 9, and 12 months the rate was significantly higher in the pneumonia group (P = 0.02).

The seropositivity rate of anti-N IgG stratified by pneumonia status is shown in Fig. 1. The early antibody response at 0–3 months after infection was previously reported. We also examined factors associated with the persistence of anti-N IgG responses such as age, interval between symptom onset and blood sampling, and disease severity.

### Results

#### General characteristics of the study population.

Demographic data of 531 individual participants (single time point donors, n = 302; multiple time point donors, n = 229) are shown in Table 1. The mean (± standard deviation) age of the participants was 37.1 ± 12.3 years (range 2–82 years) and the median age was 36 years. The male-to-female ratio was 1.03:1 (269:262). Participants were divided into two groups according to disease severity: those without pneumonia symptoms (n = 420) and those with pneumonia symptoms (n = 111). Individuals in the pneumonia group were older than those in the non-pneumonia/asymptomatic group (P = 0.02). The seropositivity rate did not differ significantly between groups at 3 months after symptom onset or first SARS-CoV-2 detection (Table S1). However, at 6, 9, and 12 months the rate was significantly higher in the pneumonia group (P < 0.05).

#### Long-term anti-N IgG seropositivity rates.

The seropositivity rate of anti-N IgG stratified by pneumonia/non-pneumonia group was shown in Fig. 1. In participants without pneumonia, anti-N IgG was detected in 86.7% at 3 months (260/300), in 32.4% (61/188) at 6 months, in 19.6% (31/158) at 9 months, and in 21.5%
(23/107) at 12 months. In participants with pneumonia, anti-N IgG was detected in 90.7% at 3 months (68/75), in 62.3% (33/53) at 6 months, in 36.7% (18/49) at 9 months, and in 41.7% (15/36) at 12 months. The anti-N IgG seropositivity rate was significantly lower at 6, 9, and 12 months than at 3 months ($P<0.01$) and lower at 9 and 12 months than at 6 months ($P<0.01$) in both pneumonia and non-pneumonia group.

We compared the anti-N IgG sample/cutoff (S/C) index at 3, 6, 9, and 12 months after symptom onset or first SARS-CoV-2 infection (Fig. 2). The median IgG S/C index at 3 months was 4.8 (interquartile range [IQR]:
2.9–6.2) and decreased to 1.0 (IQR: 0.3–2.2) at 6 months, 0.6 (IQR: 0.2–1.3) at 9 months, and 0.6 (IQR: 0.2–1.5) at 12 months.

When classified by disease severity, the anti-N IgG S/C index decreased over time in all patients. The median IgG S/C index at 3 months tended to be higher in the pneumonia group than in the non-pneumonia/asymptomatic group (5.7 [IQR: 3.9–6.6] vs 4.5 [IQR: 2.7–6.1]), although the difference did not reach statistical significance (Fig. 3). When classified by sex, there was no difference in anti-N IgG S/C index between males and females at all time points tested (3 months, \( P = 0.45 \); 6 months, \( P = 0.83 \); 9 months, \( P = 0.90 \); 12 months, \( P = 0.91 \)) (Fig. 4).

**Correlation analysis for anti-N IgG seropositivity.** Pearson's correlation coefficient was computed to assess the relationship between the anti-N IgG S/C index and interval between symptom onset and blood sampling. The IgG S/C index was negatively correlated with interval between symptom onset and blood sampling (\( r = -0.567, P < 0.01 \)) but positively correlated with age (\( r = 0.192, P < 0.01 \)). The relationship between anti-N IgG S/C index and interval between symptom onset and blood sampling was plotted using the median and IQR. The regression analysis confirmed that IgG S/C index decreased over time. The patterns were similar in patients without (\( r^2 = 0.321, P < 0.01 \)) and with (\( r^2 = 0.321, P < 0.01 \)) pneumonia.

The anti-N IgG S/C index against SARS-CoV-2 in a longitudinal cohort of recovered COVID-19 patients who provided blood samples for at least three time points were plotted over time using median and IQR (Fig. 5). In total, there were 133 patients without pneumonia and 44 patients with pneumonia. The model predicted an anti-N IgG half-life of 75.4 days (95% confidence interval [95% CI] 51.7–112.0, \( R^2 = 0.37 \)) in the non-pneumonia group and 107.6 days (95% CI 39.4–974.5, \( R^2 = 0.24 \)) in the pneumonia group. No significant differences were observed in the decay kinetics between the two groups.

**Discussion**

Knowledge of the durability of the immune response against SARS-CoV-2 is essential for predicting protection and herd immunity and interpreting serology and epidemiology data. The present study evaluated the seropositivity rate of anti-N IgG against SARS-CoV-2 in patients 3–12 months after the onset of COVID-19 symptoms. The results showed that >60% of patients who had recovered from COVID-19 lost their detectable anti-N IgG at 6 months after symptom onset; at 9 and 12 months after natural infection, approximately one-quarter had detectable anti-N IgG.

Antibodies specific to the nucleocapsid protein of SARS-CoV-2 do not neutralize the virus but may still contribute to the immune control of infection through viral clearance by antibody-dependent cellular cytotoxicity. The SARS nucleocapsid protein contains several T cell epitopes that stimulate the T cell response in a vaccine setting, inducing SARS-specific T cell proliferation and cytotoxic activity. A longitudinal study on the persistence of IgG to SARS-CoV-2 nucleocapsid protein detected using quantitative assays showed that anti-N IgG titer declined a few months after symptom onset, which occurred more rapidly in younger adults and asymptomatic individuals. However, a qualitative study that used optical density as a measure showed that 90% of patients still had detectable anti-N IgG 1 year after symptom onset. Although our study used a qualitative measure (IgG S/C index), our results are in agreement with those obtained with the quantitative assay.
In the present study, COVID-19 patients in the pneumonia group tended to generate a higher antibody response than those in the non-pneumonia/asymptomatic group; seropositivity rates also remained significantly higher in the former at 6, 9, and 12 months after infection. Our findings are in agreement with a previous study which demonstrated that anti-N IgG was significantly higher and persisted longer in patients with severe conditions\(^{23,24}\).

The anti-N IgG S/C index declined over time with an approximate half-life of 75.4 days in the non-pneumonia/asymptomatic group and 107.6 days in the pneumonia group. We calculated half-life from the anti-N IgG S/C index between days after symptom onset in a longitudinal cohort of recovered COVID-19 patients who provided blood samples for at least three time points. The half-life of anti-N IgG was previously estimated as 68 and 71 days\(^{25}\). The half-life of antibodies is longer when assessed after as compared to before 3 months post symptom onset\(^{25}\). This is likely due to the rapid decline of antibody titer during the first few months post infection, after which the levels stabilize.
It was reported that persons who have had COVID-19 retained immune memory for at least 6 months\textsuperscript{26}. Long-lived bone marrow plasma cells specific to SARS-CoV-2 have been detected in the bone marrow of recovered COVID-19 patients, serving as a persistent and essential source of antibodies\textsuperscript{27}. A clinical study showed that reinfection was rare 1 year after primary infection, likely due to the protective effect of natural infection\textsuperscript{28}. Nevertheless, there are limited data on whether protective immunity induced by natural infection with one strain of SARS-CoV-2 can confer cross-protection against variants. Because of the emergence of new variants and their circulation in the population, the Centers for Disease Control and Prevention recommends that the COVID-19 vaccine be given to recovered COVID-19 patients after 90 days post symptom onset. The World Health Organization has also stated that recovered COVID-19 patients can wait up to 6 months, during which time their natural immunity can protect them against reinfection.

This study had some limitations. Cross-sectional blood sampling may have prevented the detection of changes in immune response against SARS-CoV-2 compared to a longitudinal cohort. Additionally, analysis of other immune responses such as IgG against spike protein or spike receptor-binding domain, neutralizing antibodies, and memory B cells, can provide insight into the humoral response following natural infection, which can guide immunization strategies for patients who have recovered from COVID-19.

In summary, the results of this study demonstrate the generation of a persistent immunologic response to SARS-CoV-2 even after recovery from COVID-19; seropositivity was observed up to 12 months after symptom onset in one-quarter of previously infected patients. Additionally, the anti-N IgG S/C index was correlated with disease severity in patients. However, long-term monitoring is needed to determine whether this immunologic memory confers protection against reinfection with the same or a new variant of SARS-CoV-2.

### Methods

**Ethics statement.** The study protocol was approved by the Research Ethics Committee of the Faculty of Medicine, Chulalongkorn University (Institutional Review Board [IRB] no. 572/63). The blood was drawn from participants in a research setting as part of a pre-planned follow up. Written informed consent was obtained from all participants prior to enrollment (IRB No. M001h/63_Exp, approved by the Institutional Ethics Committee of the Bangkok Metropolitan Administration, Thailand and IRB No. 11/2563 approved by National Blood Center, Thailand). This study was conducted in accordance with the principle of the Declaration of Helsinki and Good Clinical Practice (GCP) Guideline. All methods were carried out according to relevant guidelines and regulations.

**Participants and blood sampling.** This cross-sectional and longitudinal cohort study enrolled patients diagnosed with COVID-19 by RT-PCR (The cobas SARS-CoV-2 Qualitative assay for use on the cobas 6800/8800 Systems) between March 2020 and May 2020. Participants in this study were not in the immunocompromised state or had immunodeficiency disorders. There were 111 patients with pneumonia symptoms and 420 without these symptoms (non-pneumonia/asymptomatic group). Sample collection was performed 3 ± 1, 6 ± 1, 9 ± 1, and 12 ± 1 months after symptom onset or first detection of SARS-CoV-2 by RT-PCR in asymptomatic individuals. Patients' age, sex, symptom severity (i.e., without or with pneumonia symptoms), and interval between symptom onset and date of blood sampling were recorded. A flow diagram of participant recruitment is shown in Fig. 6. A total of 302 participants provided blood samples at a single time point, while 229 provided multiple blood samples for 3–12 months. Presence or absence of pneumonia was determined retrospectively from the history taking at enrollment or patients' medical records if available.
Serologic testing. Blood samples were centrifuged for 10 min at 2000 rpm at room temperature. The supernatant (serum) was stored as aliquots in 2.0-ml tubes at −20 °C until use. The specimens were tested for SARS-CoV-2 anti-N IgG by chemiluminescent microparticle immunoassay using the commercially available automated ARCHITECT system (Abbott Diagnostics, Sligo, Ireland), which calculates the mean chemiluminescent signal of a calibrator; the sample result is then divided by the stored calibrator result. The default unit for the SARS-CoV-2 anti-N IgG assay is the S/C index; S/C values ≥ 1.4 and < 1.4 were defined as positive and negative, respectively, according to the manufacturer’s instructions.

Statistical analysis. The anti-N IgG S/C index of samples was plotted against interval between symptom onset and blood sampling using individual data and median with IQR. Graphs were generated using Prism v9.0 software (Graph Pad, San Diego, CA, USA). Statistical analyses were performed using SPSS Statistics for Windows v21 software (IBM, Armonk, NY, USA). The chi-squared test was used to compare the seropositivity rates between participants in different disease severity, interval between symptom onset and blood sampling, sex, and age groups. Pearson’s correlation coefficient was computed to assess the relationship between the anti-N IgG S/C index and interval between symptom onset and blood sampling. The regression/correlation between the anti-N IgG S/C index and interval between symptom onset and blood sampling was calculated by linear regression. A p value < 0.05 was considered significant in all tests.

Data availability
The authors confirm that the data supporting the findings of this study are available within the article.

Received: 10 June 2021; Accepted: 15 November 2021
Published online: 01 December 2021

References
1. Guan, W. J. et al. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med. 382, 1708–1720. https://doi.org/10.1056/NEJMoa2002032 (2020).
2. Wu, Z. & McGoogan, J. M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a report of 72314 cases from the Chinese Center for Disease Control and Prevention. JAMA 323, 1239–1242. https://doi.org/10.1001/jama.2020.2648 (2020).
3. Huang, C. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395, 497–506. https://doi.org/10.1016/S0140-6736(20)30183-5 (2020).
4. Long, Q. X. et al. Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nat. Med. 26, 1200–1204. https://doi.org/10.1038/s41591-020-0965-6 (2020).
5. Rogers, T. F. et al. Persistence of antibody and cellular immune responses in COVID-19 patients over nine months after infection. J. Med. Virol. 92, 1518–1524. https://doi.org/10.1002/jmv.25727 (2020).
6. Liu, Z. et al. Development and clinical application of a rapid IgM-IgG combined antibody test for SARS-CoV-2 infection diagnosis. J. Med. Virol. 92, 1518–1524. https://doi.org/10.1002/jmv.25727 (2020).
7. Luo, H. et al. The characterization of disease severity associated IgG subclasses response in COVID-19 patients. Front. Immunol. 12, 632814. https://doi.org/10.3389/fimmu.2021.632814 (2021).
8. Bradley, T. et al. Antibody responses after a single dose of SARS-CoV-2 mRNA vaccine. N. Engl. J. Med. 384, 1959–1961. https://doi.org/10.1056/NEJMmc2102051 (2021).
9. Flude, B. M. et al. Targeting the complement serine protease MASP-2 as a therapeutic strategy for coronavirus infections. Viruses 13, 206–213. https://doi.org/10.1128/science.abc7520 (2020).
10. Tilocca, B. et al. Comparative computational analysis of SARS-CoV-2 nucleocapsid protein epitopes in taxonomically related coronaviruses. Microbes Infect. 22, 188–194. https://doi.org/10.1016/j.microinf.2020.04.002 (2020).
11. Berlino, P. D. et al. Sensitivity in detection of antibodies to nucleocapsid and spike proteins of severe acute respiratory syndrome coronavirus 2 in patients with coronavirus disease 2019. J. Infect. Dis. 222, 206–213. https://doi.org/10.1093/infdis/jiaa273 (2020).
12. Caini, S. et al. Meta-analysis of diagnostic performance of serological tests for SARS-CoV-2 antibodies up to 25 April 2020 and public health implications. Euro Surveill. https://doi.org/10.2807/1560-7917.ES.2020.25.23.2000980 (2020).
13. Long, Q. X. et al. Antibody responses to SARS-CoV-2 in patients with COVID-19. Nat. Med. 26, 845–848. https://doi.org/10.1038/s41591-020-0897-1 (2020).
14. To, K. K. et al. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: An observational cohort study. Lancet Infect. Dis. 20, 565–574. https://doi.org/10.1016/S1473-3099(20)30196-1 (2020).
15. Li, Z. et al. Development and clinical application of a rapid IgM-IgG combined antibody test for SARS-CoV-2 infection diagnosis. J. Med. Virol. 92, 1518–1524. https://doi.org/10.1002/jmv.25727 (2020).
16. Luo, H. et al. The characterization of disease severity associated IgG subclasses response in COVID-19 patients. Front. Immunol. 12, 632814. https://doi.org/10.3389/fimmu.2021.632814 (2021).
17. Chansoneph, J. et al. Detection of SARS-CoV-2-specific antibodies via rapid diagnostic immunoassays in COVID-19 patients. Virol. J. 18, 52. https://doi.org/10.1186/s12985-021-01530-2 (2021).
18. Tso, F. Y. et al. Presence of antibody-dependent cellular cytotoxicity (ADCC) against SARS-CoV-2 in COVID-19 plasma. PLoS One 16, e0247640. https://doi.org/10.1371/journal.pone.0247640 (2021).
19. Gao, W. et al. Effects of a SARS-associated coronavirus vaccine in monkeys. Lancet 362, 1895–1896. https://doi.org/10.1016/ S0140-6736(03)14962-8 (2003).
20. Okada, M. et al. The development of vaccines against SARS corona virus in mice and SCID-PBL/hu mice. Vaccine 23, 2269–2272. https://doi.org/10.1016/j.vaccine.2005.01.036 (2005).
21. Yao, L. et al. Persistence of antibody and cellular immune responses in COVID-19 patients over nine months after infection. J. Infect. Dis. https://doi.org/10.1093/infdis/jiaa255 (2021).
22. Feng, X. et al. Longitudinal profiling of antibody response in patients with COVID-19 in a tertiary care hospital in Beijing, China. Front. Immunol. 12, 614436. https://doi.org/10.3389/fimmu.2021.614436 (2021).
23. Lin, L. et al. Long-term infection of SARS-CoV-2 changed the body’s immune status. Clin. Immunol. 218, 108524. https://doi.org/10.1016/j.clim.2020.108524 (2020).
24. Huang, C. et al. Development and clinical application of a rapid IgM-IgG combined antibody test for SARS-CoV-2 infection diagnosis. J. Med. Virol. 92, 1518–1524. https://doi.org/10.1002/jmv.25727 (2020).
25. Lu, H. et al. The characterization of disease severity associated IgG subclasses response in COVID-19 patients. Front. Immunol. 12, 632814. https://doi.org/10.3389/fimmu.2021.632814 (2021).
26. Chansoneph, J. et al. Detection of SARS-CoV-2-specific antibodies via rapid diagnostic immunoassays in COVID-19 patients. Virol. J. 18, 52. https://doi.org/10.1186/s12985-021-01530-2 (2021).
27. Tso, F. Y. et al. Presence of antibody-dependent cellular cytotoxicity (ADCC) against SARS-CoV-2 in COVID-19 plasma. PLoS One 16, e0247640. https://doi.org/10.1371/journal.pone.0247640 (2021).
Acknowledgements
We thank all staff from the Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University for their help with the testing.

Author contributions
J.C. drafted the manuscript; J.C., R.Y., N.P., and J.P. analyzed the data, prepared figures, and interpreted the results; M.S., P.C., S.J., P.K., J.S., C.S., O.T., T.P., C.B., D.I., D.C., M.I., R.K., A.M., and P.N. collected specimens; J.C., N.W., N.S., C.C., R.K., A.M., P.N., and Y.P. designed the study; N.W., N.S., C.C. and Y.P. revised the manuscript. All authors reviewed the manuscript, provided critical feedback, and approved the final draft.

Funding
This study was supported by a Research Chair Grant from the National Science and Technology Development Agency (P-15-50004), the Center of Excellence in Clinical Virology of Chulalongkorn University/King Chulalongkorn Memorial Hospital (GCE 59-009-30-005), and the Second Century Fund (C2F), Chulalongkorn University to Jira Chansaenroj.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-021-02659-4.

Correspondence and requests for materials should be addressed to Y.P.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021