Caro, Miguel A.; Csanyi, Gabor; Laurila, Tomi; Deringer, Volker L.

Machine learning driven simulated deposition of carbon films

Published in:
Physical Review B

DOI:
10.1103/PhysRevB.102.174201

Published: 02/11/2020

Please cite the original version:
Caro, M. A., Csanyi, G., Laurila, T., & Deringer, V. L. (2020). Machine learning driven simulated deposition of carbon films: From low-density to diamondlike amorphous carbon. Physical Review B, 102(17), Article 174201. https://doi.org/10.1103/PhysRevB.102.174201

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by you for your research use or educational purposes in electronic or print form. You must obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not an authorised user.
Machine learning driven simulated deposition of carbon films: From low-density to diamondlike amorphous carbon

Miguel A. Caro,1,2,* Gábor Csányi,3 Tomi Laurila,1 and Volker L. Deringer4

1Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland
2Department of Applied Physics, Aalto University, Espoo, Finland
3Engineering Laboratory, University of Cambridge, Cambridge CB2 1PZ, United Kingdom
4Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom

(Received 24 June 2020; accepted 12 October 2020; published 2 November 2020)

Amorphous carbon (a-C) materials have diverse interesting and useful properties, but the understanding of their atomic-scale structures is still incomplete. Here, we report on extensive atomistic simulations of the deposition and growth of a-C films, describing interatomic interactions using a machine learning (ML) based Gaussian approximation potential model. We expand widely on our initial work [M. A. Caro et al., Phys. Rev. Lett. 120, 166101 (2018)] by now considering a broad range of incident ion energies, thus modeling samples that span the entire range from low-density (sp²-rich) to high-density (sp³-rich, “diamondlike”) amorphous forms of carbon. Two different mechanisms are observed in these simulations, depending on the impact energy: low-energy impacts induce sp²- and sp³-dominated growth directly around the impact site, whereas high-energy impacts induce peening. Furthermore, we propose and apply a scheme for computing the anisotropic elastic properties of the a-C films. Our work provides fundamental insight into this intriguing class of disordered solids, as well as a conceptual and methodological blueprint for simulating the atomic-scale deposition of other materials with ML driven molecular dynamics.

DOI: 10.1103/PhysRevB.102.174201

I. INTRODUCTION

Since the early days of molecular dynamics (MD) simulations and materials modeling, carbon has received intense attention, given its importance in organic compounds but also in elemental forms. Aside from the crystalline phases of pure carbon, some of which possess mechanical and electronic properties unmatched by any other compound, the complex and density-dependent structures and properties of amorphous carbon (a-C) have also been reported and exploited [1]. The ability of carbon to form diverse structural environments and chemical bonds has long been a challenge for simulations, requiring highly flexible and accurate interatomic potentials. Many efforts have been devoted to the development of potentials for the study of nanoscale allotropes of carbon, including “diamondlike” or tetrahedral amorphous carbon (ta-C) [2–8].

Molecular dynamics studies of materials have traditionally been done with empirically fitted interatomic potentials of relatively simple functional form [9], typically containing harmonic terms and two- and three-body interactions (distances and angles) only. MD simulation has now become a popular tool routinely used in physics, chemistry, materials science, and molecular biology to study complex systems at the atomic scale. Still, accuracy remains an issue, even for the best empirical potentials currently available. To reliably handle bond breaking and highly anharmonic potential energy surfaces, one must often rely on “ab initio” MD methods, typically based on density-functional theory (DFT). Unfortunately, DFT-MD simulations are several orders of magnitude more costly than classical MD, severely limiting the accessible system sizes and timescales. Carbon is a prime example: different routes to computationally generate ta-C structures have been explored in detail, the most popular being the “liquid quench” technique [10–16]. Explicit deposition of carbon atoms [17–26], mimicking ta-C film growth under experimental conditions, is too computationally costly to be practical at the DFT level. Alternative generation techniques, including quenching from the simulated melt, invariably fall short, each to a different extent, of predicting experimental sp³ values [27], which can be as high as 90% for “superhard” ta-C [28].

We have recently shown that this problem can be overcome by using a machine learning (ML) based interatomic potential [24], which provides close to DFT-level accuracy and flexibility at a small fraction of the cost. We showed that explicit deposition of ta-C, simulated within the Gaussian approximation potential (GAP) framework [29] using the 2017 GAP for carbon [30], provides a satisfactory description of the structural properties observed experimentally and also insight into the microscopic growth mechanism of ta-C [24]. We review the salient aspects of ML driven simulations below, and we mention in passing earlier studies of crystalline carbon with such potentials, which described the graphite–diamond coexistence [31] and a transformation mechanism between the two allotropes [32].

In this work, we use large-scale ML driven atomistic simulations to generate a-C films over the full range of mass densities. We thereby extend and complement our earlier work which focused on high-density ta-C films [24], and we obtain more general and systematic insight into the structures and properties of amorphous forms of carbon, including low-density films and their surface properties. This study covers
relevant structural and mechanical properties, an elucidation of the growth mechanism, and the dependence of all these properties on deposition energy and mass density. In addition to this fundamental insight, we provide a comprehensive data set of atomistic structures to enable future work in the field.

II. METHODOLOGY

A. Gaussian approximation potential (GAP) modeling of amorphous carbon

The Gaussian approximation potential (GAP) framework is an ML approach to generating interatomic potentials, performing a high-dimensional fit to reference quantum-mechanical data [29]. Such ML based potentials bring large system sizes and long MD trajectories within reach, while (largely) retaining the accuracy of the underlying reference data. Overviews of these emerging methods are found, e.g., in Refs. [33–35]. In the GAP framework, similarity functions or kernels are used to quantify how similar an atom in a candidate structure is to another atom in the reference database [36,37]. Here, we use a GAP model that was developed specifically with liquid and amorphous carbon in mind: most structures in the reference database, therefore, are snapshots from DFT-MD or GAP-MD simulations of those disordered phases. The resulting potential has been validated, initially, for structures from actual deposition simulations, is that the potential must be highly flexible. This is critical as structures from actual deposition simulations cannot serve for the iterative generation of reference data directly (they are out of reach even for single-point DFT evaluations). Recent evidence suggests that GAPs can be made flexible enough to provide a physically meaningful representation of potential-energy surfaces both in the low- and higher-energy regions. For example, they have been coupled to crystal-structure searching, in which structures “unknown” to the potential can be identified in an ML driven search, initially demonstrated for the carbon GAP [40]. Together with the previously evidenced high quality of the deposition simulations, i.e., the good agreement with experimental observables observed in initial work [24], this suggests that the carbon GAP is indeed able to capture the deposition process correctly. In this context, we mention the recently demonstrated usefulness of GAP simulations for radiation damage in elemental tungsten and silicon, where the impact of (very) highly energetic ions must be correctly described as well [41–43].

B. GAP-driven deposition simulations

1. Simulation protocol

The methodology used to generate high-density ta-C films was outlined in our initial work [24], and it is sketched in Fig. 1(a) in a simplified way. In this section, we expand significantly on prior work by discussing error estimates for the GAP prediction and the nature of overcoordinated carbon atoms. Moreover, the protocol to carry out the deposition simulations is described here in full detail for consistency.

Simulated deposition of a-C was carried out starting with a (111)-oriented diamond slab with 3240 C atoms in periodic boundary conditions (PBC) as substrate. The stable 2×1 surface reconstruction was used to avoid the presence of highly energetic dangling bonds at the top and bottom of the slab. The role of initial substrate size on growth is briefly discussed in the Supplemental Material (SM) [44]. We then generated an a-C template by depositing 2500 C atoms with kinetic energy of 60 eV onto the diamond substrate. Afterward, this template was used as substrate for all subsequent deposition simulations in the energy regimes that we explored, viz., between 1 and 100 eV. An additional 5500 C atoms were deposited at the chosen deposition energy. The initial position of each incident atom was randomly chosen within the xy plane of the simulation box; the initial z coordinate was chosen so that the incident atom was at least 3 Å away from the first atom that it found on top of the film in its downward trajectory within a cylinder of radius 1 Å (Fig. 1). After impact, most incident atoms were observed to predominantly deposit into the film by bonding to the substrate. Rarely, the incident atom bounced off (determined according to a connectivity criterion), in which cases the deposition event was repeated with different initial conditions. Occasionally, small portions of the growing films detached after the impact, resulting in groups of atoms “floating” in the simulation box. Those atoms were removed from the simulation box before the system was prepared for the following deposition event.

In all cases, the substrate temperature was kept fixed at ≈ 300 K using LAMMPS’s implementation of the Nosé-Hoover thermostat [45–50]. Each impact event itself, which consisted of the first few fs of dynamics, was run in the NVE ensemble; after that, the thermostat, with time constant of 0.1 ps, was switched on and the MD was run in the NVT ensemble until equilibration was reached. The required equilibration time depended strongly on the kinetic energy of the incident ion since this value determined the amount of excess kinetic energy which needs to be removed. To avoid excessive CPU costs, we optimized MD time steps and equilibration times for each deposition regime, following the general guideline that atomic positions should not change by more than 0.1 Å per time step. A representative example is given in Table I; more detailed information regarding the choice of time steps is provided in the SM [44].

The choice of thermostat for this kind of simulation is not straightforward. In this work we settle for applying the thermostat to all atoms, as opposed to applying a “wall” thermostat, as done, e.g., by Marks, in previous ta-C deposition simulations [21]. Under periodic boundary conditions, how the excess kinetic energy is removed from the supercell (to bring it back to its nominal temperature) is problematic. There is no simple solution to that problem since either (1) some kinetic energy will be recycled through the periodic boundaries (the present case) or (2) unrealistic dynamics will be enforced by introducing a wall thermostat that acts as a heat sink, where the inner atoms are not coupled to the thermostat. The best solution to the problem is indeed making the system so large that the role of the thermostat becomes secondary, at the expense of the associated increase in computational cost.
FIG. 1. Modeling amorphous carbon (a-C) film growth by deposition simulations. (a) Schematic of the computational protocol. A carbon atom is randomly placed above the surface and obtains an initial velocity corresponding to a given energy (between 1 and 100 eV). The atom impacts the surface after about 10 fs of simulation time, and the system is then thermostatted for several hundred fs (up to 1 ps), before the next deposition event takes place. Dashed lines indicate the periodic boundaries of the simulation cell. (b) A selected single 60-eV deposition event, characterized using properties of the impacting atom as described by the GAP. Top: distance of the impacting atom from its respective closest neighbor. The atom is initially placed at 3 Å above the surface and quickly approaches it (note the logarithmic scale of the horizontal axis); the shortest C-C contact formed by this atom (below 1 Å) is registered 10 fs after the event has started, and it then settles in at an interatomic distance of \(\approx 1.4 \) Å, in line with the values for diamond and graphite. Middle: GAP local energy of the impacting atom, showing a spike upon impact (consistent with the smallest nearest-neighbor spacing at around 10 fs of simulation time), and then a settling in of the energy slightly above that of ideal diamond (which is set as the energy zero) as the local environment of the atom relaxes. Bottom: predicted error of the Gaussian process (GP), used here to quantify the error of the prediction in the sense of how far the local environment of the incident atom is away from those described by the reference database.

Another consideration, applicable to a-C in particular, is that thermal transport is hindered compared to, say, graphene, due to the disordered atomic structure. In the SM we show that, even at 100 eV, the highest deposition energy studied here, the thermal spike upon impact is fairly localized in comparison to the dimensions of the supercell, removing the need for wall thermostats. We also show that the choice of coupling constant is sensible, within the context of how long it takes to relax the global temperature increase induced by the thermal spike. Videos characterizing the thermal spike following a 100-eV deposition event can be retrieved from Ref. [51].

To model the atomic interactions, we used a GAP optimized for a-C [30]. Detailed analyses of structural and elastic features of the deposited films were performed for all structures. We used LAMMPS for all deposition simulations [52,53]. For visualization, structure manipulation, etc., we used ASE [54], VMD [55–57], OVITO [58], and different in-house codes, some of which are publicly available [59].

2. Error estimates

During our deposition simulations, impinging atoms experience highly energetic, off-equilibrium configurations. Since the systems contain thousands of atoms, it is not feasible to compute DFT reference data for such systems and to feed them into the GAP fitting database; instead, the potential has to make predictions based on existing data for small systems. It is therefore important to determine how representative the reference data are. For this, we use the intrinsic uncertainty estimation of the underlying Gaussian process to determine the expected error of a prediction for any given atomic environment. The variance of the GP prediction (which has a dimension of energy squared) is taken to be the square of the prediction error, as discussed in Ref. [60]. We determine this quantity along a separate test trajectory in which we sampled all individual MD steps for a few impact events. At each step, the variance of the prediction is obtained for each individual atom, and we focus on the incident one for now. Our analysis [Fig. 1(b)] shows that even during the impact itself, when the atom comes closer than 1 Å to its nearest neighbor (corresponding to a bond compression of almost one-third compared to equilibrium), the error of the prediction is in the region of 10–20 meV/atom.

Time step	Number of steps	Time
0.1 fs	200	20 fs
0.25 fs	120	30 fs
0.5 fs	100	50 fs
1 fs	200	100 fs
2 fs	225	450 fs
Total	845	750 fs

Another consideration, applicable to a-C in particular, is that thermal transport is hindered compared to, say, graphene, due to the disordered atomic structure. In the SM we show that, even at 100 eV, the highest deposition energy studied here, the thermal spike upon impact is fairly localized in comparison to the dimensions of the supercell, removing the need for wall thermostats.
For a more comprehensive view, we color code all atoms in a given slab by the GP predicted error, as shown in Fig. 2. The overview Fig. 2(a) provides general insight into the slab: the bottom region is presumably well represented in the reference database, but so is the sp^2-rich surface region. This reflects the fact that the potential is explicitly fitted to small surface slabs including strongly disordered configurations. The region where the predicted error is higher, although not extremely high, is the center of the slab. Again, this can be understood because most reference data are from iterative GAP-MD quenches, and typically reach 60%–70% sp^3 count [30], but not the 90% that are characteristic of the dense regions in our as-deposited slabs [24]. The fact that, despite the residual GP error in this region, we are nonetheless observing a structure which is consistent with experiment [24] suggests that the GP variance in the present simulations is at an acceptable level, and that it does not yet correspond to a region of configuration space where there is strong extrapolation, at least for this specific system.

Figure 2(b) offers three closeups: at the start, at the point of highest GP variance for the impacting atom (the maximum in Fig. 2(b)), and then just 1.3 fs later when the atom is approaching the surface and becoming more similar to structures which the potential has previously “seen” (i.e., which were included as part of the training set [30]). Summarizing, the GP error analysis provides support for a reliable description by our GAP model of the physical processes involved in a-C growth, consistent with the observation of an sp^3 count in agreement with experiment [24].

3. Comparison with empirical interatomic potentials

In Fig. 3 we show a comparison of our ta-C (i.e., high-density) films reported in Ref. [24] with the outcome of five selected, empirical reactive potentials for carbon (including a-C). Specifically, we carried out deposition simulations using (1) the environment-dependent interaction potential for carbon (CEDIP) [4]; (2) the Tersoff potential [2] as parametrized by Erhart and Albe [6]; (3) the second-generation reactive empirical bond-order potential (REBO-II) of Brenner et al. [61]; (4) the reactive force field (ReaxFF) of van Duin as optimized and parametrized for hydrocarbons and carbohydrates [63]; and (5) a ReaxFF parametrized and optimized for pure carbon (ReaxFF-C) [8]. These classical potentials are commonly used for MD simulations of large systems, and have been recently reviewed by de Tomas et al. [65]. In this context, we may refer the reader to critical discussions of technical aspects of empirical potentials [66,67], and to a benchmark study of various such potentials specifically with a view to quantify their performance for amorphous forms of carbon [68]. We emphasize that a similar benchmark of many empirical potentials is outside the scope of this work.

To characterize atomic coordination environments, as is commonly done in the literature, we count the number of neighbor atoms within a sphere, whose radius is chosen at the first minimum of the radial distribution function [4,11,69] of a-C, corresponding to the boundary between first- and second-nearest-neighbor shells. We choose the cutoff distance as 1.9 Å [69], with values of 1.85 Å also common in the literature (this distance corresponds to the minimum of the radial distribution function, and therefore the coordination counts change very little between 1.85 and 1.9 Å). The assignments are of sp, sp^2, and sp^3 hybridizations for C atoms with 2, 3, and 4 neighbors, respectively.

The failure of a particular potential to simulate ta-C growth by deposition (defined as leading to an sp^3 count that strongly deviates from experiment, seen most notably for ReaxFF in Fig. 3) certainly points to an existing deficiency in the force field but does not necessarily mean that it will not perform well for a different problem (e.g., the graphitization simulations studied in Ref. [68]). In particular, the limitation of ReaxFF with respect to deposition simulations can be traced back to the lack of explicit inclusion of exchange repulsion. In Appendix A we show a more general comparison of these
FIG. 3. Mass density profiles and coordination fractions (based on a cutoff radius of 1.9 Å for nearest neighbors) for the high-density ta-C films in the range 20–100 eV, generated using the simulated deposition protocol described in the main text. We repeated the GAP depositions reported in our earlier work [24], from which data are plotted here, with five other popular interatomic potentials for carbon, namely, CEDIP [4], Tersoff’s potential as parametrized by Erhart and Albe [6], REBO-II [61], and two versions of ReaxFF [62]: one optimized for hydrocarbons and carbohydrates (ReaxFF) [63] and one optimized for pure carbon (ReaxFF-C) [8]. The GAP succeeds at reproducing experimental high densities and \(sp^3 \) fractions, and also the same evolution of surface morphology with deposition energy as observed experimentally [64]: in the ta-C regime, the bulk properties of the film remain constant (circa 90% \(sp^3 \) bonding) but the width of the \(sp^2 \)-rich surface region increases monotonically with energy. This subtle feature is not observed with the other potentials. The shaded areas indicate the portion of the films corresponding to the initial substrate (the same substrate is used for all deposition energies, see text).
force fields to predict energies for a database of a-C structures [30]. Even though ReaxFF-C shows very accurate predictions for most of the structures in the database, it fails to accurately predict the correct form of the PES for the dimer dissociation curve at close interatomic separations. Therefore, we refrain from making a general assessment of the quality of the different force fields compared here, especially given that deposition (and other high-energy events, e.g., pertaining to radiation damage) is a very specific type of atomistic simulation.

While the GAP manages to correctly reproduce the high-sp^3 fractions observed experimentally [24], together with the deposition energy dependence of the width of the sp^2-rich surface region [64], the other potentials are unable to achieve these numbers. In particular, the Tersoff potential and the similarly performing REBO-II severely underestimate the amount of sp^2-bonded carbon for the range of energies under study, while both versions of ReaxFF predict extremely low-sp^3 concentrations. In fact, for the higher deposition energies (60 and 100 eV), it was difficult to get the ReaxFF ta-C films to grow at all: portions of the surface routinely detached from the rest of the film. Another feature of Tersoff, REBO-II, and CEDIP simulations is the existence of significant amounts of sp carbon right at the surface, whereas for GAP the amount of observed sp carbon is much lower. ReaxFF exacerbates this artifact for the high-energy deposition simulations, where sp^2-bonded carbon is the predominant surface atomic motif. We reiterate that the issue with ReaxFF can be traced back to the lack of explicit repulsion interaction, which specifically affects deposition simulations (Appendix A).

A critical practical point to raise here is that the improved accuracy of GAP does not come “for free.” Indeed, a GAP MD simulation is significantly more CPU expensive to run than CEDIP/ReaxFF (which are both 1–2 orders of magnitude cheaper than GAP) or Tersoff/REBO-II (2–3 orders of magnitude cheaper) [68]. However, for accuracy-critical applications where the only previous option was to run DFT simulations, GAPs and other ML based interatomic potentials offer the capability to run simulations at similar accuracy but being orders of magnitude cheaper than DFT. In addition, current ongoing efforts are expected to deliver an order of magnitude speedup for GAP potentials in the near future [70].

To find the root of the discrepancy between Tersoff, REBO-II, ReaxFF, CEDIP, and GAP results, we give a brief description of these potentials. The Tersoff potential, the first bond-order potential to be introduced, consists of a combination of attractive and repulsive pairwise interactions, as in Lennard-Jones or Morse potentials, which are switched on or off based on a smooth cutoff function (the interactions are usually restricted to the first-neighbors shell). In Tersoff’s approach, the attractive potential is scaled by a bond-order (environment-dependent) parameter which, for carbon, favors threefold and fourfold coordinations in honeycomb and tetrahedral configurations, respectively. The REBO-II potential is almost identical to Tersoff, with modified analytical expressions for the pairwise interactions. CEDIP works similarly, but incorporates the knowledge about the atomic coordination explicitly into the form of the potential. This makes CEDIP more accurate and flexible than Tersoff and REBO-II [65], but also significantly more expensive to run. Finally, ReaxFF (see Ref. [71] for a recent review) introduces high flexibility and numerous terms, including terms for explicit treatment of dispersion and electrostatics. This means that each potential has its own range of applicability, with CEDIP and ReaxFF being used for medium-to-large systems where accurate characterization of structural transitions and the effect of temperature are required [72], whereas Tersoff and REBO-II (and similar potentials, such as that by Brenner [3]) are used to study very large systems with up to millions of atoms and long timescales [73].

A fundamental difference between these potentials and GAP is the introduction in the former of analytical constraints motivated by observed chemical trends. Namely, the analytical form of Tersoff, REBO-II, and CEDIP potentials gives preference to threefold- and fourfold-coordinated complexes in carbon materials because stable forms of carbon (e.g., graphite and diamond, respectively) are observed to display such trends. These constraints enable a more accurate description of the potential energy surface around equilibrium, but possibly at the cost of penalizing high-energy complexes with nonstandard coordinations, as we will see in the next section. This can manifest itself in the form of severely overestimated free-energy barriers along the paths connecting metastable states. Such an analysis could explain why CEDIP and, especially, the Tersoff and REBO-II potentials fail at transforming sp^2 carbon into sp^3 carbon, a process which is critical for the formation of ta-C and that will be discussed in detail in the remainder of this paper. In stark contrast, the GAP is designed to reproduce the data, with no physicochemical constraints other than the assumption of locality and smoothness for the potential energy surface. Therefore, there is no fundamental reason why a GAP could not predict the potential energy surface in the vicinity of highly unstable complexes as accurately as equilibrium structures, as long as the required data are available. This in turn leads to improved estimates of free-energy barriers connecting metastable states, in particular for the case at hand, viz., highly disordered sp^2 and sp^3 carbon environments.

4. Overcoordinated atoms

We observed that a small but non-negligible number of atoms acquired fivefold coordination during the deposition of the high-density samples (that is, five neighbors at distances shorter than 1.9 Å around a single atom). This issue has also been recently highlighted in Ref. [68]. Here we expand substantially on the initial discussion given in Ref. [24]. Fivefold-coordinated C atoms are considered to be coordination defects, therefore, they are highly energetic and one should expect them to not be present in significant numbers in the generated structures. The presence of such atoms must be further analyzed since it could be indicative of an artifact of the potential. When looking in detail at the statistics, we find that indeed the number of fivefold-coordinated C atoms is very small. For example, 1.2% of deposited C atoms (that is, excluding the substrate atoms) in the last snapshot of the 60-eV deposition are fivefold coordinated. Compare this to the 1.7% figure for fivefold-coordinated incident C atoms. This means that 29% of atoms which were deposited with fivefold
coordination moved away from that configuration into a more stable one as the simulation progressed.

To understand why the other 71% remain fivefold coordinated, one needs to note that coordination is conventionally computed based on a nearest-neighbor cutoff distance \([4,11,69]\); even in the context of DFT-based studies, \(sp^2\) vs \(sp^3\) character is sometimes based on a cutoff criterion. We choose the cutoff distance as 1.9 Å, the location of the minimum between the first and second peaks in the radial distribution function. A way to determine that fivefold-coordinated ("5-c") atoms are not an artifact of the potential is to look at the distance distribution of neighbors for those atoms; if there were four neighbors at distances close to that of diamond (around 1.5 Å) and another considerably further away (say, 1.8 Å), that would suggest that the first four atoms contribute much more strongly to the bonding than the fifth. For the 60-eV deposition \([24]\), the results for average distances from closest to furthest neighbors are \((1.462, 1.505, 1.546, 1.602, 1.756)\), in Å. As expected, the fifth neighbor is on average significantly further away than the other ones: only 0.05% of all atoms in our 60-eV film had five neighbors all closer than 1.6 Å.

To gain further insight into the nature of these 5-c environments, we carried out complementary analyses of geometry and electronic structure. On the one hand, we estimated the force acting on the 5-c atom, predicted by LDA-DFT (the reference in the a-C GAP), as a proxy for the stability of these 5-c complexes. On the other hand, we quantify the chemical bonding nature using crystal orbital overlap population (COOP) \([75]\) and crystal orbital Hamilton population (COHP) \([76]\) analyses, based on a local-orbital projection scheme as implemented in LOBSTER \([77–79]\). In brief, a self-consistent electronic-structure computation in the projector-augmented wave (PAW) framework \([80]\) is carried out, here using VASP \([81,82]\). The self-consistent electronic wave function is then projected onto an auxiliary, atom-centered basis of \(2s\) and \(2p\) orbitals (following ideas proposed in Ref. \([83]\)) and the availability of local information allows the reconstruction of energy- and orbital-resolved chemical-bonding indicators \([77–79]\). The energy integration of COOP\((E)\) up to the Fermi level yields a measure for the electron population associated with a given bond (positive values indicating stabilization), whereas the integration of COHP\((E)\) gives an energy value (negative values indicating stabilization) \([76]\). The projection onto a local basis makes it possible to analyze the output of large-scale PAW-based DFT simulations of structurally complex materials \([78]\), including studies of structure and bonding in the amorphous state \([84]\).

We obtained a GAP-quenched a-C structure containing 25 such 5-c environments, out of a total of 4096 C atoms (0.6%), from the authors of Ref. \([68]\), who brought the issue of fivefold-coordinated C atoms in GAP simulations to our attention. Since computing energy and forces for this structure at the DFT level is impractical, due to its large size, we used a carving technique which involves passivation with H atoms to heal artificially introduced dangling bonds \([69]\). The spherical clusters obtained in this way \([Fig. 4(a)]\), carved within a sphere of radius 7 Å centered at the fivefold atom, contained an average of 239 C atoms and 145 H atoms. Comparing the force acting on the fivefold atom from LDA DFT to the GAP prediction (which is zero, since the structure is predicted by GAP to be at equilibrium) gives an idea of the actual stability of the structure. As seen in Fig. 4(b), the errors range from 0 up to 7 eV/Å, with most errors of the order of 2 eV/Å. This analysis indicates that the structures predicted by GAP are not fully stable in reality, but are not totally unreasonable. In fact, a small fraction of these structures remained fivefold coordinated even after carrying out a structural relaxation at the DFT level of the innermost atoms in the carved structure (3 Å radius, with all other atoms between 3 and 7 Å fixed). The calculated root-mean-squared displacement (RMSD) for these atoms (from the GAP-predicted to the DFT-relaxed structures), averaged over the 25 5-c complexes, was only 0.10 Å.

We further computed these forces using the CEDIP and Tersoff force fields, observing much larger errors for those.
This is expected since by construction traditional force fields introduce explicit biases regarding coordination (e.g., that C should be twofold, threefold, or fourfold coordinated, but not fivefold coordinated), and disproportionately penalize structures which one does not expect according to classical chemical rules. Unsurprisingly, differences between force fields are much larger than between DFT functionals [Fig. 4(b)].

The final test to elucidate the nature of these fivefold complexes is the bond strength analysis shown in Figs. 4(c) and 4(d). The results follow the expected bond-length–bond-strength correlation (“shorter is stronger”), both for the overlap-based (ICOOP) and the Hamilton-matrix-based (ICOHP) indicators. The trends for the first four neighbor contacts resemble those observed in a comprehensive study of crystalline carbon allotropes [85], with seemingly slightly weaker bonds (smaller ICOHP magnitude) in the amorphous than in the crystalline phases, not unexpectedly so. In contrast, the analysis in Fig. 4(c) suggests than the fifth neighbor of a given carbon atom leads neither to substantial stabilizing nor to destabilizing orbital overlap (ICOOP ≈0), and concomitantly the associated contribution to the single-particle band-structure energy (a proxy for the “bond strength,” measured by ICOHP) is only a fraction of that of conventional carbon-carbon bonds [85]. These results might be taken to support the designation of the corresponding atoms as “4+1 coordinated,” i.e., with four strong bonds in a distorted sp^3 configuration, but a fifth, much more weakly bonded atom still coming closer than 1.9 Å. Additional, energy-resolved COHP results for the individual types of bonds are provided in the SM [44].

C. Computing the elastic properties

To compute the elastic properties of the films, we first carried out a quenching from 300 K to close to 0 K. After this, a geometry optimization followed. All elastic properties were computed for these quenched structures at zero temperature. Since our a-C samples are grown as films, computing the bulk elastic properties is not straightforward. This is because, under periodic boundary conditions, one needs to devise a strain transformation on the supercell which discards the contribution to the elastic constants arising from the surface and substrate. Carelessly taking the atoms in the central region of the film and calculating elastic properties with them results in problems associated with (i) the loss of periodicity along the growth direction and (ii) surface reconstruction effects. Here, instead, we introduce and take the following approach.

We select a group of atoms in the central part of the film where its properties are converged and bulklike (e.g., the sp^3 content does not change). The atoms within the center, in a region of thickness h, are allowed to fully relax. Atoms at the top and bottom of this group, within a thickness d, are frozen, except for a possible strain transformation (without further optimization, this is known as the “clamped-ion” approximation). All other atoms, even further away from the central layer, are removed from the simulation box. Figure 5 provides a schematic view. This procedure is repeated for different values of h and the evolution of the system’s energy is monitored. For large enough supercells (that is, large enough numbers of atoms), both the energy density and the surface energies should be conserved quantities. By fitting the computed energies to the following equation of state, we can compute the strain dependence of the energy:

$$E^{\text{slab}}(\epsilon) = \frac{\partial E^{\text{slab}}}{\partial h} h + E^{\text{buffer}}(\epsilon; d),$$

(1)

where ϵ denotes the full strain tensor or, rather, the vector containing the six independent Voigt components of the strain tensor ϵ, $E^{\text{buffer}}(\epsilon; d)$ is an energy term related to the top and bottom surfaces and interfaces (broken bonds, frozen atoms, etc.) which does not change with h.

The advantage of this expression is that, to compute bulk elastic properties, only $\frac{\partial E}{\partial \epsilon}$ is required, because it fully characterizes the elastic response of the bulk. In other words, we have

$$\lim_{h \to \infty} \frac{\partial E^{\text{slab}}}{\partial h} = \lim_{h \to \infty} \frac{\partial E^{\text{bulk}}}{\partial \epsilon}.$$

(2)

Furthermore, since the GAP relies on cutoff distances to define atomic interactions, choosing d to be at least as large as the cutoff (here, 3.7 Å) means that the interactions within h are preserved in the carved slab, as compared to the original film structure. The elastic constants C_{ij} for the bulklike region in the film center can then be computed as

$$C_{ij} = \frac{1}{V_0} \frac{\partial^2 E^{\text{bulk}}}{\partial \epsilon_i \partial \epsilon_j} = \lim_{h \to \infty} \frac{1}{A_0} \left(\frac{\partial^2}{\partial \epsilon_i \partial \epsilon_j} \frac{\partial E^{\text{slab}}(\epsilon)}{\partial h} \right)_{\epsilon=0}.$$

(3)
where \(V_0 \) and \(A_0 \) are the volume and cross-sectional area at equilibrium. Here one should emphasize what equilibrium means since a-C films are under compressive biaxial stress. We define equilibrium as the geometry of the film as grown, that is, under compressive stress. At this geometry, the system is not at the minimum of the bulk energy-versus-strain curve (otherwise the stress would be zero). These elastic constants should be directly comparable with experiment. At some other strain \(\epsilon \), the effective elastic constants are given by

\[
C_{ij}(\epsilon) = \lim_{h \to \infty} \frac{1}{A(\epsilon)} \left(\frac{\partial^2 E}{\partial \epsilon_i \partial \epsilon_j} \right)_{\epsilon}.
\]

(4)

The stress is given by the first derivative of the energy at \(\epsilon \):

\[
\sigma_i(\epsilon) = \lim_{h \to \infty} \frac{1}{A(\epsilon)} \left(\frac{\partial}{\partial h} \frac{\partial E_{\text{slab}}(\epsilon)}{\partial \epsilon_i} \right)_{\epsilon}.
\]

(5)

At this point, we need to make a remark of practical importance. The energy changes much more quickly by adding more atoms at fixed strain (increasing \(h \)) than by applying strain at fixed number of atoms (fixed \(h \)); therefore, fitting the data to Eq. (1) directly turns out to be impractical. Instead, we choose to change the order of partial derivatives, so that the quantity (numerically) evaluated is the evolution of \(C_{ij} \) and \(\sigma_i \) with \(h \), which are much smoother than the evolution of \(E \) with \(h \):

\[
C_{ij}(\epsilon) = \lim_{h \to \infty} \frac{1}{A(\epsilon)} \frac{\partial}{\partial h} \left(\frac{\partial^2 E_{\text{slab}}(\epsilon)}{\partial \epsilon_i \partial \epsilon_j} \right)_{\epsilon},
\]

(6)

and

\[
\sigma_i(\epsilon) = \lim_{h \to \infty} \frac{1}{A(\epsilon)} \frac{\partial}{\partial h} \left(\frac{\partial E_{\text{slab}}(\epsilon)}{\partial \epsilon_i} \right)_{\epsilon},
\]

(7)

respectively, where the quantities in brackets are evaluated first. We have assumed that Eq. (1) holds; that is, we can write

\[
C_{ij}^{\text{bulk}}(\epsilon) = \lim_{h \to \infty} \frac{1}{A(\epsilon) h} \frac{\partial^2 E_{\text{bulk}}(\epsilon; h)}{\partial \epsilon_i \partial \epsilon_j}
\]

\[
= \lim_{h \to \infty} \frac{1}{A(\epsilon) h} \frac{\partial}{\partial h} \left(E_{\text{slab}+\text{buffer}}(\epsilon; h, d) - E_{\text{buffer}}(\epsilon; d) \right)
\]

\[
= \lim_{h \to \infty} \frac{1}{A(\epsilon) h} \left[a_{ij}(\epsilon; H) h + b_{ij}(\epsilon; d, H) \right.
\]

\[
- \left. b_{ij}(\epsilon; d, H) \right]
\]

\[
= \lim_{h \to \infty} \frac{1}{A(\epsilon)} a_{ij}(\epsilon; H).
\]

(8)

The \(a_{ij} \) and \(b_{ij} \) are simply the coefficients resulting from a linear fit of \(\partial^2 E_{\text{slab}+\text{buffer}}(\epsilon; d, H)/\partial \epsilon_i \partial \epsilon_j \) versus \(h \), for a fixed value of \(d \). The second derivatives of the energy, Eq. (6), are themselves obtained from a second-order polynomial fit of the energy on a 25-point (5 \(\times \) 5) 2D mesh of the strain components, at 0.2% strain increments (−0.4% to +0.4%). Given the symmetry of the films (further discussed in the Appendix B), we choose strain branches corresponding to \([\epsilon_1 = \epsilon_2 \neq \epsilon_3] \) and \([\epsilon_1 \neq \epsilon_2, \epsilon_3 = 0] \). Finally, note that \(a_{ij} \) depends on the fitting domain \(H \equiv [h_{\text{min}}, h_{\text{max}}] \). This dependence is weak if a suitable domain is chosen (i.e., \(h_{\text{min}} \) is large enough).

III. Results and Discussion

A. Simulated carbon films throughout the entire density range

Our simulations were performed over a wide range of deposition energies under otherwise similar conditions. This allows us to carry out a comprehensive characterization of all possible types of deposited a-C, from very low density a-C (1.5 g/cm\(^2\) at 1 eV, ~65% of the density of graphite) all the way up to ultrahigh density ta-C (3.4 g/cm\(^2\) at 20 eV and beyond, ~96% of the density of diamond); it also allows us to assess the effect of ion energy on the surface structure in a systematic fashion. The main object of study is a series of seven distinct slab models at deposition energies of 1, 2, 5, 10, 20, 60, and 100 eV (Fig. 6). These are the results thoroughly discussed throughout this paper; an additional four simulations at 3, 4, 6.5, and 8 eV were conducted, which are reported in the SM [44] in the interest of clarity. The impact energy is a quantity which can be directly controlled in experiment, and it therefore constitutes a possible avenue to “design” carbon materials.

In Fig. 6 we show cross-sectional slices (4 Å thick) through the films. We can clearly observe the morphological and coordination changes that take place in a-C as the deposition energy increases. At low energy/density (1 and 2 eV, 1.5 and 2 g/cm\(^2\), respectively), the a-C films are composed of loosely connected tubular (nanotubelike) \(sp^2 \) structures, qualitatively resembling existing models of “glassy” carbon (Ref. [86] and references therein), as well as the result of earlier graphitization simulations starting from bulk a-C [87–90]. As the deposition energy and density increase, the material takes the form of tightly embedded \(sp^2 \)-rich regions a few Å across in an \(sp^3 \)-rich matrix (5 eV, 2.6 g/cm\(^2\)). We note the conceptual similarity of such coexisting regions to the results of GAP-driven simulations reported by de Tomas et al. [68], and the experimental observation of nanoscale-ordered \(sp^2/sp^3 \) composite materials by transmission electron microscopy [91,92].

These results are presented more quantitatively in the mass density and atomic coordination profiles; they had been given in our earlier study [24] and in Fig. 3 for high densities, and we now show the equivalent plots for low-density structures in Fig. 7. We reiterate that the bottom region of the simulation systems is predetermined by the substrate, and these regions are therefore shaded in Fig. 7. The density change at (very) low impact energies is directly mirrored by a larger spatial extent of these slabs. It is noteworthy that at 1 and 2 eV, a non-negligible amount of \(sp \) atoms persists throughout the low-density part of the slab, whereas this coordination mode is only seen in the surface layer (\(z > 50 \) Å) for the 5-eV deposition, and almost not at all at 10 eV. Another noteworthy observation is that for the outcome of the simulation performed at 5 eV, \(sp^2 \) and \(sp^3 \) atoms coexist in similar amounts.

It is also interesting to quantify the similarity to the ideal diamond and graphite structures using SOAP [36], which we have previously demonstrated for small samples of ta-C [94] and amorphous silicon [93]. With much larger simulation systems now available, we may assess the “diamondlikeliness” and “graphitizedlikeliness” of our a-C systems in a systematic fashion, including realistic estimates of the effect of film thickness. Color-coded plots, akin to Fig. 6 but now with the additional structural information provided by SOAP, are shown in Fig. 8.
We note that this type of analysis yields a continuous scale for quantifying the short- and medium-ranged structural environments of individual atoms, which is expected to be more nuanced than the established convention of counting nearest neighbors and assigning “sp^2” and “sp^3” nature based on that (see also Ref. [94] in this context).

We recall that all simulations start from the same substrate, viz., a thin ta-C film (obtained by deposition on a diamond-type surface, which is fully disordered in the process, and forms graphite-like sheets at the bottom of the slab). Therefore, the substrate is clearly made up of a diamond-like region (yellow in Fig. 8(a)) and terminated by a thin graphite-like region at the bottom (yellow in Fig. 8(b)). It is above this surface that we observe very distinct structural properties and trends as the deposition energy is being varied.

The low-energy simulations (1–2 eV) lead to a low-density film (as already apparent from the density profiles in Fig. 7), which is very dissimilar to diamond but locally resembles graphite. The film at 5 eV is perhaps the most interesting because it shows clearly distinct regions of diamond-likeness or graphite-likeness that is, complementary regions are “lighting up” in Figs. 8(a) and 8(b), respectively. Between 10 and 60 eV, relatively uniformly diamond-like films are obtained, with concomitant very low similarity to graphite. At 100 eV, we observe the formation of a thicker surface layer (cf. density profiles in Fig. 3), and this one is again similar to graphite.

We provide more detailed closeups of the film structures in Fig. 9, which allows us to identify distinct qualitative types of a-C films as dependent on the incident ion energy. Movies showing the growth of these films are provided online [95] and in the SM of Ref. [24]. The atomic structures resulting from the deposition simulations are also provided online in extended XYZ format [96], in the hope that they may enable further work in the future. Indeed, libraries of (small-scale) GAP-generated carbon structures have begun to be successfully used as starting points for simulation studies by others [97,98].

B. Growth mechanisms at low and high densities

Amorphous carbons exist within a wide range of experimental densities, which correlate strongly with the fraction of sp^3-bonded carbon atoms, that is, carbon atoms with four neighbors. This is the same bonding configuration exhibited in crystalline diamond. Therefore, the densest a-C samples, referred to as ta-C or diamond-like carbon (DLC), also show the highest sp^3 fractions. Superhard ta-C can contain up to 90% of sp^3 atoms and reach densities and elastic properties very close to those of diamond. The growth mechanism leading to such high sp^3 contents was poorly understood until very recently. Using the same methodology as here, we were able to elucidate the ta-C growth mechanism in a previous study. Contrary to the assumption prevalent in parts of the literature, we showed [24] that ta-C grows predominantly by “peening” [21] [Fig. 14(b)], rather than “subplantation” [1]. In short, the subplantation mechanism assumes that the increased atomic coordination in high-density a-C (high sp^3 content) is due to atomic packing taking place locally at the site of impact of the deposited atoms. In contrast, our previous simulations showed that locally (at the impact site) the density of the film decreases after each deposition event, creating an increased likelihood of sp^2 formation within a “depletion region” about 5 Å wide, and local destruction of preexisting sp^3 sites in this region. The locally displaced atoms (incident and knock-on atoms) lead to a pressure wave outward from the impact site and the subsequent packing of C atoms laterally and away from this site. This pressure-packed packing is the predominant mechanism responsible for increased coordination in the subsurface region of the film. The peening mechanism was originally proposed by Marks based on CEDIP deposition results [21]. However, the limited quantitative agreement of CEDIP with experimental data for the high sp^3 fractions in these films prevented the widespread adoption of this model. Our results with the more flexible and arguably accurate (yet computationally more expensive) GAP potential suggest that, while not in full agreement in all quantitative (sp^3 fractions) and qualitative (surface characteristics) details, Marks’ CEDIP results were actually reproducing the correct deposition physics [21,24].

Having solved the issue of understanding the growth mechanism of high-density samples, here we focus on gaining insight to the microscopic picture of a-C formation throughout the full spectrum of mass densities. This will allow us to establish the physical mechanism responsible for the
transition from the \(sp^2 \)-rich regime to the \(sp^3 \)-rich regime as the deposition energy is increased. In the future, this knowledge may prove key in optimizing the synthesis of nanoforms of carbon with targeted properties in mind.

Movies showing the growth of these films are given in Ref. [95]. In Fig. 6 we show the state of each of the simulated films at the end of the deposition. These cross-sectional figures show the general features of the films and depict the transition from highly graphitic-like films at low deposition energy to diamondlike films at high deposition energy. Having access to the full range of deposition energies and resulting mass densities grants us insight into the changes that drive the transition from \(sp^2 \)-rich to \(sp^3 \)-rich a-C. We proposed two basic analysis tools to study the growth mechanism in a-C [24]: (i) coordination distribution analysis for incident atoms after impact and (ii) \(sp^2 \) and \(sp^3 \)-resolved mass density maps highlighting local changes in atomic coordination before and after impact.

The first tool allows us to establish what happens to the incident atom after impact. There are essentially two main possibilities: either the atom is incorporated to the growing film or it bounces off the surface. In both cases, the final status of the incident atom can be characterized in a simple manner by its coordination after impact, where 0 coordination indicates that the atom bounced off. These numbers are summarized, for the different deposition regimes studied, in Fig. 10. As can be seen from the figure, there is a significant proportion of incident atoms that bounce off at low deposition energy. This is easy to understand in intuitive terms since low-energy incident atoms may (a) not have enough kinetic energy to climb over free-energy barriers required to become bonded to the substrate or (b) not be able to travel far enough into the film so as to become trapped inside until the conditions are favorable for them to become bonded to the a-C matrix. Hence, as many as 16% of all incident atoms bounce off at 1-eV deposition energies. This number goes below 1% at 20 eV and higher energies. For those atoms that get implanted in the growing film, Fig. 10 lets us visualize what happens to them. In particular, incident atoms are implanted predominantly with approximately twofold (\(sp \)) average coordination in the very-low energy regime (1 eV). As the deposition energy is increased, the proportion of atoms that are deposited with threefold (\(sp^2 \)) and fourfold (\(sp^3 \)) coordinations increases. However, it is important to note that, above 1 eV, threefold coordination always dominates over fourfold coordination as the state of the incident atom after deposition. In fact, the fraction of fourfold deposited atoms increases from 2% at 1 eV up to a maximum of 39% at 60 eV, but then decreases again at higher energies. In other words, if a-C grew by subplantation as postulated in the literature for the past 30 years [1], films with \(sp^3 \) fractions in excess of approximately 40% would not be possible. We know from experiment that the maximum \(sp^3 \) fractions attainable under optimal growth conditions are in excess of 80%, and up to 90% for superhard ta-C films [28]. This fact alone disproves subplantation as the main mechanism responsible for ta-C growth [24].

The average number of bonds broken and created upon each deposition event is shown in Fig. 11. Looking in more detail at the process of bond creation and annihilation affords us extended understanding of the delicate balance between the different chemical reactions taking place during a-C growth. From the figure we see how in the region relevant to ta-C growth up to circa 50 bonds are broken during each deposition event (i.e., between impact and the end of the subsequent equilibration), with an average net creation of approximately

![FIG. 7. Total mass density (top) and coordination profiles (bottom) for the films grown at low deposition energies, plotted in the same way as in Fig. 3 (that is, with the horizontal axis following a slice through the slab, and the substrate region indicated by shading). Very low-density a-C films, well below the density of graphite, are created at 1–2 eV. At 5 eV, a coexistence of \(sp^2 \) (purple line) and \(sp^3 \) (green line) environments is observed in the center of the slab; at 10 eV, the film is already very rich in \(sp^3 \)-bonded carbon atoms (albeit not having reached the \(\approx 90\% \) of ta-C), and a distinct \(sp^2 \)-rich top layer appears. Coordination is based on counting the number of neighbor atoms within a cutoff sphere of radius of 1.9 Å. The shaded areas indicate the portion of the films corresponding to the initial substrate (the same substrate is used for all deposition energies, see text).](image-url)
FIG. 8. Structural insight into the simulated carbon films by atom-resolved SOAP similarity analysis [38]. We compute the SOAP power-spectrum vector q_i for every ith atom in a given system, and evaluate the dot product of this vector with its equivalent for ideal diamond and graphite, respectively (raised to the power of 4 to enable a better distinction between environments). This yields a similarity value between 0 (entirely unlike the reference crystal) and 1 (identical within the cutoff radius), which is indicated by color coding. We use a SOAP cutoff radius of 3.7 Å, the same as in the fitting of the GAP model [30], and a highly converged number of basis functions ($n_{\text{max}} = l_{\text{max}} = 16$). Note that the amount of vacuum in some of the supercells has been increased to ease visualization.

Under experimental conditions, the rate of deposition is much lower than 1 atom per ps. Unfortunately, due to the current computational limitations, we cannot afford to run equilibration times comparable to experiment. To probe what would happen to the films under more realistic conditions, we have repeated a series of 10 deposition events at 1, 10, and 100 eV, and let the system equilibrate up to 10 ps (i.e., approximately one order of magnitude longer). The results, shown in Fig. 12, indicate that the films remain rather stable after the initial impact event followed by strong rearrangement of the local atomic environments. We take this as a sign that the employed equilibration times are sufficient to capture the leading processes determining the final atomic structure of the films.

The second tool at our disposal offers detailed insight into the actual growth mechanism in a-C, and allows us to put the results from Figs. 6 and 10 into context. This tool is based on the differences between pair correlation functions (PCF) (split into sp^2 and sp^3 components) computed before and after impact [24]. In essence, we compute a two-dimensional PCF where the first dimension is height from impact point h and the second dimension is radial distance from line of impact r. This PCF, $g(r, h)$, is thus given in cylindrical coordinates and is therefore adapted to the expected cylindrical symmetry of the film’s characteristics about the high-symmetry line corresponding to the incident trajectory of the impacting atom. The difference between this quantity before and after impact,

$$\Delta g(r, h) = 2\pi r [g_{\text{after}}(r, h) - g_{\text{before}}(r, h)],$$

allows us to monitor the areas of the film where creation and annihilation of sp^3 bonds take place. The results of this analysis for all the deposition energies studied are shown in Fig. 13.
FIG. 9. Details of the surface regions of our simulated a-C systems, indicating four distinctly different types of film obtained at various ion energies; color coding shows the SOAP similarity to graphite as in Fig. 8. The bottom 35 Å of each simulation cell (containing the substrate) has been removed to ease visualization.

The figure shows heat maps for $\Delta g(r, h)$ averaged over the last 4000 deposition events at each deposition energy. From this figure, we can infer how at low energies the rebonding processes take place in the immediate vicinity of the impact site. At these low energies, rebonding statistics in the bulk of the film (away from the impact site) are noisy due to regular thermal fluctuations. However, as the deposition energy enters the ta-C regime, at and beyond 20 eV, we see a clear pattern where sp^2 is formed around the impact site but sp^3 bonds are formed laterally and away from the impact site. In particular, Fig. 13 shows this as the transition from the noisy heat maps at low energies into solid net local sp^3 density increases at higher deposition energies. It is also interesting to see that at high deposition energies there is a clear local annihilation of sp^3-bonded atoms within an impact cylinder approximately 4 Å wide and 10 Å deep. This observation is incompatible with the subplantation model. Instead, at high energies sp^3 carbon is created over a wide film region surrounding this impact cylinder. At low energies, the incident carbon atoms simply become attached to the surface, where sp sites offer favorable conditions for adsorption [24]. Hence, we propose to call the low-energy process “direct attachment,” in contrast to the high-energy mechanism. Both growth processes are schematically depicted in Fig. 14.

We would like to highlight again that, in view of the large number of bond creation and annihilation events per impact (Fig. 11), it is remarkable that the GAP succeeds at correctly describing the extremely delicate balance between sp^2 and sp^3 creation (Fig. 13) that leads to the growth of diamondlike a-C at high deposition energies.

FIG. 10. Coordination numbers of incident atoms after impacting the surface. Statistics for 4000 events in each individual simulation are given. At the lowest energy, 1 eV, a substantial number of atoms ($\approx 16\%$) exhibit zero bonding partners after impact: these atoms dissipate from the surface and have therefore been removed from the simulation cell, repeating the simulation with a new impact event. Hence, it should be noted that the connectivity in the final films is different from the numbers collected here.
FIG. 11. The balance between the number of bonds that are broken and created per impact event (averaged over the last 4000 impacts at each given energy). The absolute numbers are plotted on the vertical axis, and they range from about 15 bonds at low energy to about 50 bonds per impact event at high energy, emphasizing the many complex structural transformations that take place throughout the cell, especially at high energy (where ta-C grows). It is then instructive to inspect the difference between the absolute numbers of bonds created and broken, and this difference is given by labels on the individual data points. These differences are roughly consistent with the average creation of 4\(\frac{1}{2}\) bonds (i.e., a new threefold-coordinated \(sp^3\) environment) at low energy, and of \(3\frac{1}{2}\) bonds (fourfold-coordinated \(sp^2\)) at high energy. A background number of rebonding events due to thermal fluctuations, which is proportional to the number of atoms in the film, has been subtracted (see text for details).

C. Elastic properties

Understanding the elastic properties of a-C is particularly important since the main industrial applications of ta-C coatings relate to friction and wear. Academically, the elastic properties of diamondlike materials are interesting too since diamond itself is (to date) the hardest known material. To understand how the elastic properties of a-C evolve with mass density, we applied the methodology discussed in Sec. II C to compute elastic moduli for our structures. The results for bulk modulus, Young’s modulus, and shear modulus, as a function of density, are shown in Fig. 15 and compared there to experiment and previous DFT results. Overall, very good agreement with the limited experimental data is observed. All elastic moduli of a-C increase rapidly as a function of density. Surprisingly, the highest-density samples show bulk moduli \(B\) in excess of the bulk modulus of pure diamond (442 GPa), suggesting that superhard ta-C should be less compressible than diamond. On the other hand, the Young’s modulus \(E\) and shear modulus of all the computational samples stay well below the values of diamond (1053 and 578 GPa, respectively).

The important result that ta-C is predicted to be less compressible than pure diamond deserves further attention. While there are many experimental data points for Young’s modulus available from the literature, we could only find one experimental measurement for the bulk modulus, from Ferrari et al. [99]. Yet, a detailed analysis of that one experiment allows us to better understand the elastic properties of ta-C and put our results into context. We give this analysis, together with a discussion on the symmetry of the stiffness tensor of deposited a-C, in Appendix B.

Built-in stresses and detailed elastic properties are given in Table II. As has been discussed in the literature, we observe large built-in in-plane compressive stresses in the high-density films, whereas the out-of-plane stresses are smaller and can be compressive or tensile. Together with the large differences between \(C_{11}\) and \(C_{13}\), on the one hand, and \(C_{12}\) and \(C_{13}\), on the other, this is a clear indication of film anisotropy. The role of compressive stresses merits further discussion since it has been debated in the literature whether these large stresses are necessary for ta-C growth. In this context, built-in stress can have either of two natures: “primary” or “secondary.” We define primary stress as a necessary condition for high-\(sp^3\) ta-C growth to occur, whereas we define secondary stress as the consequence of how growth occurs. As can be seen from our data, all of the superhard ta-C samples (20 eV and above) show very large built-in stresses of around \(-10\) GPa. However, there is a ta-C sample with small built-in compressive stress, the 10-eV one, which shows a high \(sp^2\) fraction of \(-82\%\). Therefore, on this basis, but keeping in mind the
lack of a data set comprehensive enough to draw stronger conclusions, we speculate that high compressive stresses in ta-C are indeed secondary in nature. That is, we speculate that they are a consequence of how ta-C growth takes place but not a necessary condition for high-sp^3 fractions to occur.

IV. CONCLUSIONS

ML driven deposition simulations, mimicking the impact of individual atoms on a surface at close-to-DFT accuracy, have been shown to be a powerful method for describing and understanding the properties of amorphous carbon materials. While our initial contribution dealt with dense ta-C films [24], here we have outlined a more general methodology that also describes low-density forms. The growth mechanism is strongly dependent on the impacting atom’s energy (as is the resulting structure); at high energies, our simulations suggest peening to be the dominant mechanism [24], whereas at low energies, the simulated films grow by direct formation of sp and sp^2 motifs around the impact site (Fig. 14). We carried out a comprehensive study of structural and mechanical properties, which is in good agreement with existing experiments and could help with the planning and interpretation of new ones. The structural models presented here can enable further studies of amorphous carbon materials for diverse technological applications, including friction management [101–104], batteries [39,105], or biomedical sensing [27,106–108]. The predicted formation of sp^2-rich structures at low impact energies, and the suggestion of a finely tuned balance between competing coordination environments by varying the energy of the impacting ions, may in the future be tested by experiments. The computational approach, making use of fast and accurate ML potentials, appears to be promising for predictive studies of other amorphous functional materials.

ACKNOWLEDGMENTS

M.A.C. acknowledges personal funding from the Academy of Finland under Projects No. 310574 and No. 330488. V.L.D. acknowledges a Leverhulme Early Career Fellowship. Parts of

FIG. 13. Mass density change maps, as a function of deposition energy, computed using Eq. (9) (see discussion of the equation for further details). The mass density increase/decrease is also split into partial sp^2 and sp^3 mass densities. One can observe that the deposition mechanism changes as the energy increases. At low energy, incoming atoms are deposited near the impact site. At high energy, mass density is locally depleted around and below the impact site and sp^3 carbon is formed laterally and away from it. At high energy, this deposition mechanism is known as “peening” and is discussed in Refs. [1,21,24]. The line of impact ($r = 0$) corresponds to the incident atoms’s initial xy coordinates, whereas the height of impact ($h = 0$) corresponds to the z coordinate of the first atom it encounters within an impact cylinder of radius 1Å.

FIG. 14. Growth mechanism at low and high impact energies as deduced from the present simulations. (a) Proposed growth mechanism at low density. (b) Illustration of the “peening” mechanism (increased atomic coordination takes place laterally and away from the impact site due to pressure waves) which according to our simulations is consistent with the growth of high-density ta-C films. Adapted from Ref. [24].
TABLE II. Elastic properties of as-deposited a-C films, computed using GAP as described in Sec. II C. The diamond values are provided for comparison.

Energy (eV)	1 eV	2 eV	5 eV	10 eV	20 eV	60 eV	100 eV	Diamond (expt. [100])
In-plane stress (GPa)	−1.2	0.0	−5.2	−0.3	−9.1	−12.4	−6.5	
Out-of-plane stress (GPa)	−0.2	1.2	1.0	−0.1	−1.3	−0.3	2.5	
\(C_{11} \) (GPa)	52	203	415	922	1068	1050	989	1079
\(C_{12} \) (GPa)	−3	91	139	248	319	319	280	124
\(C_{13} \) (GPa)	16	56	156	280	297	290	279	124
\(C_{33} \) (GPa)	113	305	578	929	1032	1054	1008	1079
\(B \) (GPa)	24	123	250	488	555	550	518	442
\(E_z \) (GPa)	103	283	490	795	905	931	885	1053
\(G_{xy} \) (GPa)	27	72	127	324	363	361	356	578

this work were carried out during V.L.D.’s previous affiliation with the University of Cambridge with additional support from the Isaac Newton Trust. Parts of this work have been supported by the Project HPC-Europa3 (INFRAIA-2016-1-730897), with the support of the EC Research Innovation Action under the H2020 Programme. The authors acknowledge CSC–IT Center for Science, Finland, for computational resources. The authors thank N. A. Marks for bringing the issue of fivefold-coordinated atoms to their attention, as well as for stimulating discussions on interatomic potential simulation of carbon.

APPENDIX A: PERFORMANCE OF DIFFERENT EMPIRICAL FORCE FIELDS FOR a-C GEOMETRIES

To complement the discussion of Sec. II B 3 and Fig. 3 comparing different force fields for deposition simulations, in Fig. 16 we show the predictions of each of those for the reference database of the a-C GAP that we use [30]. The most important point to notice is that the main criterion determining the suitability of the different force fields for deposition simulations seems to be how accurately the exchange repulsion interaction is represented. Indeed, Fig. 16 shows that even though ReaxFF-C [8] outperforms the other force fields for crystal, surface, and bulk amorphous structures, the energetics of the dimer interaction at short interatomic distances is misrepresented. On the other hand, CEDIP, which performs best among these classical potentials for deposition (but still worse than GAP), does a very good job at reproducing the DFT prediction for the dimer interaction. An attempt to correct the unphysical behavior at small interatomic distances for ReaxFF-C has been made by Yoon et al. [109]. We also tested that force field, but unfortunately it did not improve upon the results of ReaxFF-C because the short-range repulsion (which we characterized using an isolated \(C_2 \) molecule as a proxy) is limited to extremely short interatomic distances. For instance, the ReaxFF-C dimer curve shown here and that computed with the revised version from Ref. [109] are almost identical up to 0.3 Å interatomic separation, beyond which the revised force field grows very steeply. As a consequence of this repulsive behavior (or partial lack thereof), a high-energy incident atom will be able to get very close to other atoms in the growing film without losing much of its energy, and will therefore penetrate extremely deep into the film.

APPENDIX B: EXPERIMENTAL BULK MODULUS OF ta-C

The experimental method used by Ferrari et al. [99] is a type of surface acoustic wave (SAW) technique known as “surface Brillouin scattering” (SBS). Within SBS, the Young’s modulus \(E \) and the shear modulus \(G \) are obtained simultaneously, with a certain degree of confidence. In particular, Ferrari et al. report a 95% confidence region in the \(E \) vs \(G \) plot, as shown in Fig. 17. From the most likely pair of values within this region, usually taken as the region’s centroid, one can estimate the corresponding bulk modulus of an equivalent isotropic material, since isotropic materials only have two
assuming isotropy (which their inability to carry out accurate deposition simulations can be traced back, as discussed in Sec. II B 3 (see also Fig. 3).

Both versions of ReaxFF lack exchange repulsion, to high-temperature liquid phases and thus contains structures with rather high overall energies. The predictions of each force field are compared to those of DFT. In the inset, we show the prediction for the C dimer binding curve. Both versions of ReaxFF lack exchange repulsion, to which their inability to carry out accurate deposition simulations can be traced back, as discussed in Sec. II B 3 (see also Fig. 3).

FIG. 16. Performance of different existing, empirically fitted, force fields for carbon on the database of atomic structures used to train the GAP used in this work [30]. Note that the main part of this database, labeled as “bulk amorphous” for simplicity, also includes (very) high-temperature liquid phases and thus contains structures with rather high overall energies. The predictions of each force field are compared to those of DFT. In the inset, we show the prediction for the C dimer binding curve. Both versions of ReaxFF lack exchange repulsion, to which their inability to carry out accurate deposition simulations can be traced back, as discussed in Sec. II B 3 (see also Fig. 3).

independent elastic moduli:

\[B = \frac{EG}{9G - 3E}. \]

Ferrari’s result, together with our values for 6.5, 8, 10, 20, 60, and 100 eV depositions, are shown in Fig. 17(a). The bulk modulus reported in Ref. [99], \(B = 334 \text{ GPa} \), was obtained by discarding (somewhat arbitrarily) the portion of the 95% confidence region that corresponds to bulk moduli larger than that of pure diamond (\(B = 445 \text{ GPa} \)). We also mark on the figure the position of the centroid of the full 95% confidence region (including the \(B > 445 \text{ GPa} \) region). This centroid’s coordinates \((E_c, G_c)\) were computed as

\[E_c = \frac{\int_{S_95} EdGdE}{\int_{S_95} dGdE} \quad \text{and} \quad G_c = \frac{\int_{S_95} GdGdE}{\int_{S_95} dGdE}, \]

where \(S_{95} \) denotes the region of 95% confidence over which the integrals extend. In this case, one obtains the centroid shown which gives the bulk modulus that best fits Ferrari’s data, \(B = 397 \text{ GPa} \), assuming elastic isotropy. As shown in Fig. 17(b), the assumption of isotropy for a-C films is particularly bad for low-density films, which are highly oriented along the growth axis.

Grown a-C films are not isotropic since the growth direction is clearly singled out and therefore breaks the material’s symmetry. This is further supported by the fact that large in-plane stresses exist in as-grown a-C films. Therefore, instead of an isotropic stiffness tensor \(C_{iso} \),

\[
C_{iso} = \begin{pmatrix}
C_{11} & C_{12} & C_{12} & 0 & 0 & 0 \\
C_{12} & C_{11} & C_{12} & 0 & 0 & 0 \\
C_{12} & C_{12} & C_{11} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & C_{11} - C_{12} & 0 \\
0 & 0 & 0 & 0 & 0 & C_{11} - C_{12} \\
0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix},
\]

FIG. 17. (a) Elastic properties of ta-C films as visualized in the \(G-E \) plane, including an experimentally derived 95% confidence region from Ferrari et al. [99] and computed values obtained by GAP for our dense deposited films. The bulk modulus line for diamond is obtained by rearranging Eq. (B1) into \(G = 3BE/(9B - E) \) and plotting \(G(E) \) at a given constant \(B \); note that it assumes isotropy, which is a simplification (see text for discussion), and highly inaccurate for the lower density films, as shown in (b).
our calculated values are obtained allowing for a lower symmetry stiffness tensor \(C_{\text{hex}} \), corresponding to hexagonal symmetry

\[
C_{\text{hex}} = \begin{pmatrix}
C_{11} & C_{12} & C_{13} & 0 & 0 & 0 \\
C_{12} & C_{11} & C_{13} & 0 & 0 & 0 \\
C_{13} & C_{13} & C_{33} & 0 & 0 & 0 \\
0 & 0 & 0 & C_{44} & 0 & 0 \\
0 & 0 & 0 & 0 & C_{44} & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{C_{11}-C_{12}}{2}
\end{pmatrix}, \quad (B4)
\]

which preserves transverse isotropy. Note that while the symmetry of the stiffness tensor of these films is hexagonal in the limit of infinite system size, the actual simulation cells are themselves orthorhombic.

The condition of elastic isotropy is given by the relation between the shear elastic constants and the axial elastic constants \(C_{44} = C_{55} = C_{66} = \frac{1}{2}(C_{11} - C_{12}) \). Therefore, for our film the in-plane symmetry is preserved by the use of the hexagonal stiffness tensor, which presents in-plane isotropy \(C_{66} = \frac{1}{2}(C_{11} - C_{12}) \). Generalized expressions for bulk, Young’s, and shear moduli of these films, which explicitly incorporate the correct underlying symmetry of the films, are

\[
B \approx \frac{2C_{11} + C_{33} + 2C_{12} + 4C_{13}}{9} \quad \text{(hydrostatic strain)},
\]

\[
B = \frac{(C_{11} + C_{12})C_{33} - 2C_{13}^2}{C_{11} + C_{12} - 4C_{13} + 2C_{33}} \quad \text{(hydrostatic stress)},
\]

\[
E_z = C_{33} - \frac{2C_{13}^2}{C_{11} + C_{12}} \quad \text{(along growth axis \(z \)),}
\]

\[
G_{xy} = \frac{C_{11} - C_{12}}{2} \quad \text{(in growth plane \(xy \)),}
\]

where the bulk modulus can be computed assuming deformation under applied hydrostatic strain (approximately correct for quasi-isotropic materials) or deformation under applied hydrostatic stress (always correct).

\[1\text{Note that, numerically, } C_{11} \text{ is obtained by averaging } C_{11} \text{ and } C_{22}, \text{ which differ due to the finite size of our system.}\]
[21] N. A. Marks, Thin film deposition of tetrahedral amorphous carbon: a molecular dynamics study, Diam. Relat. Mater. 14, 1223 (2005).
[22] M. Moseler, P. Gumbsch, C. Casiraghi, A. C. Ferrari, and J. Robertson, The ultrasmoothness of diamond-like carbon surfaces, Science 309, 1545 (2005).
[23] X. Li, P. Ke, H. Zheng, and A. Wang, Structural properties and growth evolution of diamond-like carbon films with different incident energies: A molecular dynamics study, Appl. Surf. Sci. 273, 670 (2013).
[24] M. A. Caro, V. L. Deringer, J. Koskinen, T. Laurila, and G. Csányi, Growth Mechanism and Origin of High sp³ Content in Tetrahedral Amorphous Carbon, Phys. Rev. Lett. 120, 166101 (2018).
[25] J. Liu, H. Vázquez Muíños, K. Nordlund, and F. Djurabekova, Hybrid carbon based nanomaterials for electrochemical detection of biomolecules, Prog. Mater. Sci. 88, 499 (2017).
[26] B. Schultrich, H.-J. Scheibe, D. Drescher, and H. Ziegele, Deposition of superhard amorphous carbon films by pulsed vacuum arc deposition, Surf. Coat. Technol. 98, 1097 (1998).
[27] A. P. Bartók, M. C. Payne, R. Kondor, and G. Csányi, Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, Without the Electrons, Phys. Rev. Lett. 104, 136403 (2010).
[28] V. L. Deringer and G. Csányi, Machine learning based interatomic potential for amorphous carbon, Phys. Rev. B 95, 094203 (2017).
[29] R. Z. Khaliullin, H. Eshet, T. D. Kühne, J. Behler, and M. Parrinello, Graphite-diamond phase coexistence study employing a neural-network mapping of the \textit{ab initio} potential energy surface, Phys. Rev. B 81, 100103(R) (2010).
[30] R. Z. Khaliullin, H. Eshet, T. D. Kühne, J. Behler, and M. Parrinello, Nucleation mechanism for the direct graphite-to-diamond phase transition, Nat. Mater. 10, 693 (2011).
[31] J. Behler, First principles neural network potentials for reactive simulations of large molecular and condensed systems, Angew. Chem., Int. Ed. 56, 12828 (2017).
[32] V. L. Deringer, M. A. Caro, and G. Csányi, Machine learning interatomic potentials as emerging tools for materials science, Adv. Mater. 31, 1902765 (2019).
[33] F. Noć, A. Tkatchenko, K.-R. Müller, and C. Clementi, Machine learning for molecular simulation, Annu. Rev. Phys. Chem. 71, 361 (2020).
[34] A. P. Bartók, R. Kondor, and G. Csányi, On representing chemical environments, Phys. Rev. B 87, 184115 (2013).
[35] A.P. Bartók and G. Csányi, Gaussian approximation potentials: A brief tutorial introduction, Int. J. Quantum Chem. 115, 1051 (2015).
[36] V. L. Deringer, M. A. Caro, R. Jana, A. Aarva, S. R. Elliott, T. Laurila, G. Csányi, and L. Pastewka, Computational surface chemistry of tetrahedral amorphous carbon by combining machine learning and DFT, Chem. Mater. 30, 7438 (2018).
[37] F. J. Domínguez-Gutiérrez, J. Byggmäster, K. Nordlund, and F. Djurabekova, Machine-learning interatomic potential for radiation damage and defects in tungsten, Phys. Rev. B 100, 144105 (2019).
[38] F. J. Domínguez-Gutiérrez, J. Byggmäster, K. Nordlund, F. Djurabekova, and U. von Toussaint, On the classification and quantification of crystal defects after energetic bombardment by machine learned molecular dynamics simulations, Nucl. Mater. Energy 22, 100724 (2020).
[39] A. Hamedani, J. Byggmäster, F. Djurabekova, G. Alahyarizadeh, R. Ghaderi, A. Minuchehr, and K. Nordlund, Insights into the primary radiation damage of silicon by a machine learning interatomic potential, Mater. Res. Lett. 8, 364 (2020).
[40] See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevB.102.174201 for miscellaneous technical details about the simulations: role of substrate in initiating growth, time steps used, and thermostat effects, including visualization of the thermal spike upon impact. We also provide mass density profiles for all the films and more detail on the COHP and COOP bonding analysis of 5-c-complexes.
[41] S. Nosé, A unified formulation of the constant temperature molecular dynamics methods, J. Chem. Phys. 81, 511 (1984).
[42] W. G. Hoover, Canonical dynamics: equilibrium phase-space distributions, Phys. Rev. A 31, 1695 (1985).
[43] M. Parrinello and A. Rahman, Polymorphic transitions in single crystals: A new molecular dynamics method, J. Appl. Phys. 52, 7182 (1981).
[44] G. J. Martyna, D. J. Tobias, and M. L. Klein, Constant pressure molecular dynamics algorithms, J. Chem. Phys. 101, 4177 (1994).
[45] W. Shinoda, M. Shiga, and M. Mikami, Rapid estimation of elastic constants by molecular dynamics simulation under constant stress, Phys. Rev. B 69, 134103 (2004).
[46] M. E. Tuckerman, J. Alejandre, R. López-Rendón, A. L. Jochim, and J. Martyna, A Liouville-operator derived measure-preserving integrator for molecular dynamics simulations in the isothermal–isobaric ensemble, J. Phys. A: Math. Gen. 39, 5629 (2006).
[47] M. A. Caro, Thermal spike during simulated deposition of tetrahedral amorphous carbon films, Zenodo, doi: 10.5281/zenodo.4030350 (2020).
[48] S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117, 1 (1995).
[49] http://lammps.sandia.gov
[50] A. Larsen, J. Mortensen, J. Blomqvist, I. Castelli, R. Christensen, M. Dulak, J. Friis, M. Groves, B. Hammer, C. Hargus, E. Hermes, P. Jennings, F. Jensen, J. Kermode, J. Kittin, E. Kolsbjerg, J. Kubal, K. Kaasbjerg, S. Lysgaard, J. Maronsson et al., The Atomic Simulation Environment –
A Python library for working with atoms, J. Phys.: Condens. Matter 29, 273002 (2017).

[55] W. Humphrey, A. Dalke, and K. Schulten, VMD: visual molecular dynamics, J. Mol. Graphics 14, 33 (1996).

[56] http://www.ks.uiuc.edu/Research/vmd/.

[57] A. Kohlmeyer and J. Vermaas, Akohlmey/Topotools: Release 1.7, Zenodo, doi: 10.5281/zenodo.545655 (2017).

[58] A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO—the Open Visualization Tool, Modell. Simul. Mater. Sci. Eng. 18, 015012 (2010).

[59] https://github.com/mcaroba/deposition.

[60] A. P. Bartók, J. Kermode, N. Bernstein, and G. Csányi, Machine Learning a General-Purpose Interatomic Potential for Silicon, Phys. Rev. X 8, 041048 (2018).

[61] D. W. Brenner, O. A. Shenderova, J. A. Harrison, S. J. Stuart, B. Ni, and S. B. Sinnott, A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons, J. Phys.: Condens. Matter 14, 783 (2002).

[62] A. C. T. Van Duin, S. Dasgupta, F. Lorant, and W. A. Goddard, ReaxFF: a reactive force field for hydrocarbons, J. Phys. Chem. A 105, 9396 (2001).

[63] K. Chenoweth, A. C. T. Van Duin, and W. A. Goddard, ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation, J. Phys. Chem. A 112, 1040 (2008).

[64] C. A. Davis, G. A. J. Amaratunga, and K. M. Knowles, Growth Mechanism and Cross-Sectioinal Structure of Tetrahedral Amorphous Carbon thin Films, Phys. Rev. Lett. 80, 3280 (1998).

[65] C. de Tomas, I. Suarez-Martinez, and N. A. Marks, Graphitization of amorphous carbons: A comparative study of interatomic potentials, Carbon 109, 681 (2016).

[66] L. Pastewka, M. Mrovec, M. Moseler, and P. Gumbsch, Bond order potentials for fracture, wear, and plasticity, MRS Bull. 37, 493 (2012).

[67] E. Tangarife, R.I. Gonzalez, C. Cardenas, E.M. Bringa, and F. Munoz, Molecular simulations of carbon allotropes in processes with creation and destruction of chemical bonds, Carbon 144, 177 (2019).

[68] C. de Tomas, A. Aghajamali, J. L. Jones, D. J. Lim, M. J. López, I. Suarez-Martinez, and N. A. Marks, Transferability in interatomic potentials for carbon, Carbon 155, 624 (2019).

[69] M. A. Caro, R. Zoubkoff, O. Lopez-Acevedo, and T. Laurila, Atomic and electronic structure of tetrahedral amorphous carbon surfaces from density functional theory: Properties and simulation strategies, Carbon 77, 1168 (2014).

[70] M. A. Caro, Optimizing many-body atomic descriptors for enhanced computational performance of machine learning based interatomic potentials, Phys. Rev. B 100, 024112 (2019).

[71] T. P. Senfile, S. Hong, M. M. Islam, S. B. Kylasa, Y. Zheng, Y. K. Shih, C. Junkermeier, R. Engel-Herbert, M. J. Janik, H. M. Aktulga, T. Verstraelen, A. Grama, and A. C. T. van Duin, The ReaxFF reactive force-field: development, applications and future directions, npj Comput. Mater. 2, 15011 (2016).

[72] I. Suarez-Martinez and N. A. Marks, Amorphous carbon nanorods as a precursor for carbon nanotubes, Carbon 50, 5441 (2012).

[73] A. V. Krasheninnikov and K. Nordlund, Ion and electron irradiation-induced effects in nanocrystalline materials, J. Appl. Phys. 107, 071301 (2010).

[74] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77, 3865 (1996).

[75] T. Hughbanks and R. Hoffmann, Chains of trans-edge-sharing molebdenum octahedra: metal-metal bonding in extended systems, J. Am. Chem. Soc. 105, 3528 (1983).

[76] R. Dronskowski and P. E. Blöchl, Crystal orbital Hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations, J. Phys. Chem. 97, 8617 (1993).

[77] V. L. Deringer, A. L. Tchourgréeff, and R. Dronskowski, Crystal orbital Hamilton population (COHP) analysis as projected from plane-wave basis sets, J. Phys. Chem. A 115, 5461 (2011).

[78] S. Maintz, V. L. Deringer, A. L. Tchourgréeff, and R. Dronskowski, Analytic projection from plane-wave and PAW wavefunctions and application to chemical-bonding analysis in solids, J. Comput. Chem. 34, 2557 (2013).

[79] R. Nelson, C. Ertural, J. George, V. L. Deringer, G. Hautier, and R. Dronskowski, LOBSTER: Local orbital projections, atomic charges, and chemical-bonding analysis from projector-augmented-wave-based density-functional theory, J. Comput. Chem. 41, 1931 (2020).

[80] P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50, 17953 (1994).

[81] G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54, 11169 (1996).

[82] G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59, 1758 (1999).

[83] D. Sanchez-Portal, E. Artacho, and J. M. Soler, Projection of plane-wave calculations into atomic orbitals, Solid State Commun. 95, 685 (1995).

[84] V. L. Deringer, W. Zhang, M. Lumeij, S. Maintz, M. Wuttig, R. Mazzarello, and R. Dronskowski, Bonding nature of local structural motifs in amorphous GeTe, Angew. Chem., Int. Ed. 53, 10817 (2014).

[85] A. L. Görne and R. Dronskowski, Covalent bonding versus total energy: On the attainability of certain predicted low-energy carbon allotropes, Carbon 148, 151 (2019).

[86] P. J. F. Harris, New perspectives on the structure of graphitic carbons, Crit. Rev. Solid State Mater. Sci. 30, 235 (2005).

[87] R. C. Powles, N. A. Marks, and D. W. M. Lau, Self-assembly of sp2-bonded carbon nanostructures from amorphous precursors, Phys. Rev. B 79, 075430 (2009).

[88] J. C. Palmer, A. Llobet, S.-H. Yeon, J. E. Fischer, Y. Shi, Y. Gogotsi, and K. E. Gubbins, Modeling the structural evolution of carbide-derived carbons for dense and tunable 3D graphene networks, Carbon 48, 1116 (2010).

[89] C. de Tomas, I. Suarez-Martinez, F. Vallejos-Burgos, M. J. López, K. Kaneko, and N. A. Marks, Structural prediction of graphitization and porosity in carbide-derived carbons, Carbon 119, 1 (2017).

[90] C. de Tomas, I. Suarez-Martinez, and N. A. Marks, Carbine-derived carbons for dense and tunable 3D graphene networks, Appl. Phys. Lett. 112, 251907 (2018).
[91] M. Hu, J. He, Z. Zhao, T. A. Strobel, W. Hu, D. Yu, H. Sun, L. Liu, Z. Li, M. Ma, Y. Kono, J. Shu, H.-k. Mao, Y. Fei, G. Shen, Y. Wang, S. J. Juhl, J. Yu Huang, Z. Liu, B. Xu, and Y. Tian, Compressed glassy carbon: An ultrastrong and elastic interpenetrating graphene network, Sci. Adv. 3, e1603213 (2017).

[92] P. Németh, K. McColl, R. L. Smith, M. Murri, L. A. J. Garvie, M. Alvaro, B. Pécz, A. P. Jones, F. Corá, C. G. Salzmann, and P. F. McMillan, Diamond-graphene composite nanostructures, Nano Lett. 20, 3611 (2020).

[93] N. Bernstein, B. Bhattarai, G. Csányi, D. A. Drabold, S. R. Elliott, and V. L. Deringer, Quantifying chemical structure and machine-learned atomic energies in amorphous and liquid silicon, Angew. Chem., Int. Ed. 58, 7057 (2019).

[94] M. A. Caro, A. Aarva, V. L. Deringer, G. Csányi, and T. Laurila, Reactivity of amorphous carbon surfaces: rationalizing the role of structural motifs in functionalization using machine learning, Chem. Mater. 30, 7446 (2018).

[95] M. A. Caro, Deposition of amorphous carbon at different energies modeled with GAP, Zenodo, doi: 10.5281/zenodo.1133425 (2017).

[96] M. A. Caro, Amorphous carbon films generated through simulated deposition with GAP from 1 eV to 100 eV, Zenodo, doi: 10.5281/zenodo.3778153 (2020).

[97] E. H. Lahrar, A. Belhboub, P. Simon, and C. Merlet, Ionic liquids under confinement: From systematic variations of the ion and pore sizes toward an understanding of the structure and dynamics in complex porous carbons, ACS Appl. Mater. Interfaces 12, 1789 (2020).

[98] X. Wang, Z. Wang, F. P. García de Arquer, C.-T. Dinh, A. Ozden, Y. C. Li, D.-H. Nam, J. Li, Y.-S. Liu, J. Wicks, Z. Chen, M. Chi, B. Chen, Y. Wang, J. Tam, J. Y. Howe, A. Proppe, P. Todorović, F. Li, T.-T. Zhuang et al., Efficient electrically powered CO₂-to-ethanol via suppression of deoxygenation, Nat. Energy 5, 478 (2020).

[99] A. C. Ferrari, A. Libassi, B. K. Tanner, V. Stolojan, J. Yuan, L. M. Brown, S. E. Rodil, B. Kleinsorge, and J. Robertson, Density, sp³ fraction, and cross-sectional structure of amorphous carbon films determined by x-ray reflectivity and electron energy-loss spectroscopy, Phys. Rev. B 62, 11089 (2000).

[100] H. J. McSkimin and P. Andreatch Jr., Elastic moduli of diamond as a function of pressure and temperature, J. Appl. Phys. 43, 2944 (1972).

[101] A. Erdemir and C. Donnet, Tribology of diamond-like carbon films: recent progress and future prospects, J. Phys. D: Appl. Phys. 39, R311 (2006).

[102] T. Kunze, M. Posselt, S. Gemming, G. Seifert, A. R. Konicek, R. W. Carpick, L. Pastewka, and M. Moseler, Wear, plasticity, and rehybridization in tetrahedral amorphous carbon, Tribol. Lett. 53, 119 (2014).

[103] T.-B. Ma, L.-F. Wang, Y.-Z. Hu, X. Li, and H. Wang, A shear localization mechanism for lubricity of amorphous carbon materials, Sci. Rep. 4, 3662 (2014).

[104] A. Erdemir and J. M. Martin, Superior wear resistance of diamond and DLC coatings, Curr. Opin. Solid State Mater. Sci. 22, 243 (2018).

[105] Y. Yang, Q. Sun, Y.-S. Li, H. Li, and Z.-W. Fu, Nanostructured diamond like carbon thin film electrodes for lithium air batteries, J. Electrochem. Soc. 158, B1211 (2011).

[106] A. Zeng, V. F. Neto, J. J. Gracio, and Q. H. Fan, Diamond-like carbon (DLC) films as electrochemical electrodes, Diam. Relat. Mater. 43, 12 (2014).

[107] E. Mynttinen, N. Wester, T. Lilius, E. Kalso, J. Koskinen, and T. Laurila, Simultaneous electrochemical detection of tramadol and O-desmethyltramadol with nafion-coated tetrahedral amorphous carbon electrode, Electrochim. Acta 295, 347 (2019).

[108] N. Triroj, R. Saensak, S. Porntheeraphat, B. Paosawayanyong, and V. Amornkitbamrung, Diamond-like carbon thin film electrodes for microfluidic bioelectrochemical sensing platforms, Anal. Chem. 92, 3650 (2020).

[109] K. Yoon, A. Rahnamoun, J. L. Swett, V. Iberi, D. A. Cullen, I. V. Vlassiuk, A. Belianinov, S. Jesse, X. Sang, O. S. Ovchinnikova, A. J. Rondinone, R. R. Unocic, and A. C. T. van Duin, Atomistic-scale simulations of defect formation in graphene under noble gas ion irradiation, ACS Nano 10, 8376 (2016).