Virtual-SAGE: A New Approach to EST Data Analysis

Valeriy Poroyko, Vladimir Calugaru, Mark Fredricksen, and Hans J. Bohnert*

Department of Plant Biology, and Department of Crop Sciences, University of Illinois at Urbana/Champaign, 1201 W. Gregory Drive, Urbana, IL 61821, USA

(Received 9 January 2004; revised 20 February 2004)

Abstract

We present a computer program, termed V-SAGE (Virtual-SAGE), designed to facilitate the analysis of gene expression profiles by combining elements of SAGE (Serial Analysis of Gene Expression) with high-throughput EST analysis. The program re-iteratively correlates sequence tags adjacent to poly(A) tail sequence strings with a second or several tags located within the cDNA adjacent to the recognition sequences of frequently-cutting endonucleases. By recording tags and their distance, the program generates an expression profile from large numbers of sequences, groups sequences according to tags, and identifies alternatively spliced transcripts as well as transcripts that are characterized by 3'-UTR sequences of different length. We discuss the application of V-SAGE to a collection of corn root segment transcripts.

Key words: Virtual-SAGE; alternative splicing; transcript 3'-end variation; high-throughput EST analysis; software

1. Introduction

Serial Analysis of Gene Expression (SAGE), described in 1995, is by now an established method of gene expression profiling.¹ The method is based on the principle that tags 10–14 nucleotides in length are sufficiently instructive for the identification of each transcript in a collection of cDNA clones. SAGE provides valid data about the structure of a gene expression profile, and can be used for gene discovery as well. In comparison with other methods of gene profiling, only in-depth EST analysis has the same capacity for providing comprehensive and quantitative expression profiles.

In contrast to SAGE, EST-data analysis necessitates not only substantial efforts devoted to high throughput cDNA sequencing, but requires equally extensive bioinformatics-type work for quality control, contig assembly, often to be followed by reiterative annotations. Also, the complex sequence of operational steps can lead to the misinterpretation of data, especially when low quality DNA sequence data are included into contig assemblies. SAGE has several advantages over EST-based profiling in that it does not require the same scrupulous attention to library construction, that it accelerates analyses, and that it is more cost efficient. One limitation may be identification of individual tags or transcripts with high reliability, mostly because of the possibility that population polymorphism might exist.²,³ Another compounding feature is that SAGE shows extreme sensitivity for identifying 3'-end transcript population heterogeneity,³–⁶ and it is this quality which we set out to exploit. SAGEmap,³ a public domain program facilitating the identification of tags in SAGE, does not completely solve the problem of tag-to-gene ambiguity, which is possibly one reason why SAGE is not more widely used. Presently, tag identification is available for 11 species only, including Arabidopsis thaliana, Bos taurus, Homo sapiens, Medicago truncatula, Meleagris gallopavo, Mus musculus, Rattus norvegicus, Sus scrofa, Triticum aestivum, Pinus taeda, and Vitis vinifera (http://www.ncbi.nlm.nih.gov/sage/). We describe a program that allows for the extraction of a combination of user-chosen tags and their clustering to obtain information about the complexity of sequences in a cDNA library, its application to identify 3'-end variation and, to some degree, the identification of alternatively spliced transcripts, in any population of cDNAs irrespective of the state of annotation. The program is exemplified by the analysis of ESTs from a project that determined unigene composition in a corn root collection of cDNA libraries that had been tagged according to their position in the root tip.

1.1. The V-SAGE objective

We have made use of the fact that 3'-end processing signals in plants show considerable irregularity, and cannot easily be predicted or explained by a simple pattern.⁸

* Communicated by Satoshi Tabata
To whom correspondence should be addressed. Tel. +1-217-265-5475, Fax. +1-217-333-5574, E-mail: bohnerth@life.uiuc.edu
Figure 1. The V-SAGE algorithm. The scheme identifies the process of tag and distance collection that can be applied to any EST population in which tags can be identified, e.g., adjacent to poly(A) extensions of the sequences.

We set out from an algorithm for tag-to-gene assignments that had originally been described by Lash et al.3, designed to search for polyadenylation signals downstream of the 3’-end of predicted ORFs in human genomic DNA. This algorithm cannot straightforwardly be applied to plant genomic DNA sequences, and it excludes much information derived from the generation of SAGE maps. The considerable unpredictability of plant 3’-ends delays SAGE tag mapping for plant species, and suggests that 3’-end ESTs could be used as a valid source for generating SAGE maps in plants. This recognition focused our attention on the advantages that might result from combining two transcript profiling methods, SAGE and EST analysis.

The approach described here, termed ‘Virtual SAGE’ (V-SAGE), takes the efficiency, speed, and reliability of data mining from classical SAGE, and combines it with the expediency of gene identification that characterizes EST analysis. The concept is based on establishing a correlation between several tags extracted from EST sequence collections at different distances from the poly(A) region (Fig. 1). By extracting tags at the extreme 3’-end and internal tags from the EST sequences, complexity is reduced, clustering of similar transcripts into groups (populations of tags) is possible, and BLAST analysis marks the resulting contigs. Finally, 3’-terminal variants and alternatively spliced transcripts, mostly in the 3’-region of a contig population, within these groups are rapidly identified.

1.2. The V-SAGE software structure

The V-SAGE software that has been generated is an \textit{in silico} emulation of the established SAGE protocol. The input data consists of a FASTA file that contains a string or strings of EST sequences from the library of interest that have been determined from the 3’ end. Data processing includes the following steps (Fig. 1):

1. Program identifying the poly(A) region (with a minimum of eight A residues).2

2. Extracting the first 10-base tag immediately upstream of the poly(A)+ region. In libraries that have been tagged to trace the origin of the sequence from specific tissues (e.g., root segments, leaves, flowers) or experimental conditions (e.g., light, drought, cold, pathogen), V-SAGE can extract and collect the tag identity.

3. Collecting the set of 10-base tags, which are immediately 3’-adjacent to the site that is most 3’ of a selected restriction endonuclease cleavage site, e.g., for \textit{Nla} III (CATG), and records the distance from this site to the poly(A)+-adjacent tag in nucleotides.

4. Assigning a clone name identifier to each pair of tags.

The result of the data processing consists of a set of tags located upstream of the poly(A)+ region in each EST. This set is a unique identifier for any transcript, which can then be used for further analyses, such as a digital representation of cellular gene expression, studies of 3’-UTR variability, and also as a map for regular SAGE transcript profiling.

The principle of V-SAGE is applicable to any number of sequence collections and short oligonucleotide strings with certain precautions. The use of restriction endonucleases with 4-bp recognition sites, for example, is determined by the average length of the sequences targeted. In our example, the average length of approximately 500 nucleotides (theoretical optimum: 256 bp, with the experimental data presenting a range from 100 to 600 nu-
cleotides) provided a suitable frequency. This length does not, however, allow for the extraction of tags by restriction sites with 6-bp recognizing sites, which would require a sequence length of at least 1 kb, and preferably higher. When longer sequences are available, splice variants within the 5′-coding regions of transcripts may also be identified by V-SAGE.

The Perl code script representing the V-SAGE algorithm is freely available at http://www.life.uiuc.edu/bohnert/vsage/VSAGE.htm. The EST sequences analyzed here were derived from three root cDNA libraries from corn, which had tags added during cDNA library construction to identify transcripts in specific root segments, (http://rootgenomics.missouri.edu/Plantrootgenomics/current/index.htm). These sequences have been deposited in GenBank, and can also be retrieved from a local databank (http://www.life.uiuc.edu/Bohnert/). The contig assembly platform used here was CAP3.7

1.3. Digital representation of cellular gene expression

The output file that includes the tags was exported to Excel worksheets. The data for tags extracted from the EST sequence collection can then be used for the generation of a list of unique tags. By counting the frequency of appearance of any tag and combination of tags in a sequence collection, expression profiles can be established for the selected population. One advantage is that the clustering is not dependent on prior annotation. Ultimately, the score and structure of tags from different libraries can be compared, or the data may be used for further cluster analysis to reveal any underlying complexity. Data clustering and mining may be done by, for example, the Spotfire Decision Site software, which facilitates finding and categorizing genes and gene expression patterns (http://www.spotfire.com/).

1.4. Large-scale screening for 3′-UTR variants

Another possible application of V-SAGE is described in detail below. This is the search for 3′-UTR variants. Many studies have suggested that the length of a 3′-UTR sequence could play an important role in determining both translational efficiency and the stability of mRNAs.9,10 For example, a 39-fold higher expression of luciferase has been observed based on the presence of a 19-bp 3′-UTR when comparing poly(A)+ RNA to the poly(A)− variant.11,12 Increasing the size of the 3′-UTR tail to 156 bp reduced this difference to sevenfold higher. In addition, mRNA half-life of the poly(A)-mRNA increased by a factor of 2.5 when a 156-bp 3′-UTR, compared to a 4-bp 3′-end structure, was present.11,12 Also, the presence of a long 3′-UTR sequence influenced the translatability of transcripts, possibly by stabilizing their recognition by initiation or elongation factors and/or stability of binding to ribosomes or polyribosomes.11 Finally, it has been documented that the structure of 3′-UTR sequences between the stop codon and the polyadenylated string influences the stability of mRNAs during stress situations, for example during heat shock.13 The output of the V-SAGE software provides necessary information for the identification of 3′-UTR variants and also allows massively parallel, rapid screening of large sets of data.

1.5. V-SAGE application examples

We have used V-SAGE for the analysis of corn root segments that show distinct growth characteristics during water deficit, compared to well-watered roots.14 For the analysis presented here, sequences were used that were derived from a normalized corn root cDNA library. The library was constructed by normalizing a combination of four primary cDNA libraries. Each of these four primary libraries represented cDNAs from a segment of the corn root tip: segment 1 contained the cDNAs from the tip 3 mm of the root, segment 2 (3–7 mm), segment 3 (7–12 mm), and segment 4 (12–20 mm). In each primary library (segments 1–4) an oligonucleotide identifier (bar code) was introduced, and the four primary libraries were then combined to generate a normalized cDNA library. In this way, three normalized libraries were generated for three different growth conditions: (i) segments from well-watered roots, (ii) 5-hr drought-stressed root segments, and 48 hr drought-stressed root segments, each containing four segment libraries. A collection of approximately 15,000 ESTs, representing approx. 7,000 unigenes from such root segments, has been deposited in GenBank (available at: http://rootgenomics.missouri.edu/Plantrootgenomics/current/index.htm).

One example, schematically depicted in Fig. 2, monitors 3′-UTR variability and provides a paradigm for the application of V-SAGE as an analytical tool. Different poly(A)+ tags that become associated with the same or a different Nla III-associated tag distinguish either different transcripts or copies of the same transcript with differing 3′-ends.

Another illustration of 3′-UTR variability is described in Fig. 3. In this scenario, the 3′-end of the sequence for one transcript is longer and contains an additional Nla III site. Such a situation would confuse a simple search algorithm and make recognition difficult, but a combination of V-SAGE and contig-assembly software will uncover such variants. While any contig assembly platform may be used, we have been using CAP3 (settings: 50 bp for sequence overlap and 95% identity for the overlapping region) with subsequent BLAST annotation of the obtained contigs. In the example chosen, a 3′-end difference is characterized by a divergence in the Nla III-tag structure for the same annotated contig.

V-SAGE is also suitable to detect splice variants,
for example in the region between a stop codon and the poly(A)\(^+\)-tail, which has, for some genes, been shown to regulate expression to an appropriate level in the adjustment of protein expression to external conditions.\(^{12}\) Splice variants are reliably recognized by V-SAGE through a comparison of the distance between the Nla III and poly(A)\(^+\)-tag for any pair of tags.

Several cDNAs encoding functionally unknown glycine-rich proteins in *Zea mays* can illustrate the theoretical scenarios of 3' UTR variability introduced before. Figure 4A shows alignment of two clones, ZMRWS48_0B20-006-C01.S1 and ZMRWS05_0A20-007-
Figure 4. Alignment of five EST clones for carboxy terminal portions of a glycine-rich, putative RNA-binding protein from *Zea mays* illustrating categories of 3′-end variation. Panel A. Clones ZMRWS48_0B20-006-C01.S1 (gi:37390782) and ZMRWS48_0B10-005-F03.S1 (gi:37376307) share the same 3′-end variation. Panel B. Clones ZMRWS48_0B10-016-H05.S3 (gi:37388008) and ZMRWS48_0B10-005-F03.S1 (gi:37387163) and ZMRWS48_0B10-005-F03.S1 (gi:37389764) show different 3′-ends. Panel C. Clones ZMRWS05_0A20-007-C07.S1 (gi:37376307) and ZMRWS48_0B10-005-F03.S1 (gi:37388008) and ZMRWS48_0B10-005-F03.S1 (gi:37387163) and ZMRWS48_0B10-005-F03.S1 (gi:37389764) show identical 3′-end variation. The sequences are deposited at http://genome.rnet.missouri.edu/Roots/FileProcess/index.html and are freely accessible.
C07.S1, by the same Nla III-adjacent tags followed by different poly(A) + -tails. These sequences represent clones with different 3′-UTR lengths. A third aligned sequence (Fig. 4A) identifies a sequence that is 108 bp shorter in ZMRWS48_B10-005-F03.S1 but otherwise identical, including the identical poly(A) + - and Nla III-adjacent tags found in ZMRWS48_B10-005-F03.S1 and ZMRWS05_B20-007-C07.S1. It represents an alternatively spliced version of the same gene (accession number: X12564; GI: 22312) in which the splice variation is compared to that by the common approach of EST data mining. The output by V-SAGE provides an example for the versatility of V-SAGE in comparison with CAP3. It compares the distribution of the most abundant transcripts identified by the two programs in the corn root segment EST collection. An O-methyltransferase was identified by CAP3 (49 copies), not through V-SAGE tags but due to low-quality 3′-end of these transcripts. V-SAGE depends on such additional information in the form of tags that are introduced during library construction or by relying on common features of transcripts. The case of a glycine-rich RNA-binding protein provides just one example of the power of the V-SAGE process. V-SAGE tags separate two variants of this gene (see Fig. 4) that are not recognized or distinguished by CAP3. A short form (tag: AACGGCAAGG) and a long transcript (tag: GACTGCGGAT) indicate different 3′-end formation and alternative splicing. Alternative splicing of proteins in this class has been observed before. 15,16

V-SAGE can be used for routine characterizations of EST collections, as it is documented here in the annotation of sequences from a cDNA library and in EST data mining. The output by V-SAGE is compared to that by the common approach of CAP3-based contig assembly. The example discussed here used 4749 sequences from the normalized (well-watered conditions) corn root cDNA libraries (http://rootgenomics.missouri.edu/Plantrootgenomics/current/index.htm). The CAP3 program assembled the sequences into a set of 3261 unique transcripts. Out of the 4749 sequences, V-SAGE extracted 4197 sequences that contained poly(A)-tails and produced a set of 3086 unique tag groups. While CAP3 does not depend on the presence of poly(A) tails, bar-coding and the presence of poly(A) tails provides additional information. Table 1 provides an example for the versatility of V-SAGE in comparison with CAP3. It compares the distribution of the most abundant transcripts identified by the two programs in the corn root segment EST collection. An O-methyltransferase was identified by CAP3 (49 copies), not through V-SAGE tags but due to low-quality 3′-end of these transcripts. V-SAGE depends on such additional information in the form of tags that are introduced during library construction or by relying on common features of transcripts. The case of a glycine-rich RNA-binding protein provides just one example of the power of the V-SAGE process. V-SAGE tags separate two variants of this gene (see Fig. 4) that are not recognized or distinguished by CAP3. A short form (tag: AACCGCAAGG) and a long transcript (tag: GACTGCGGAT) indicate different 3′-end formation. The long form was more abundant in corn root, and the segment tags indicated that the transcript with a longer 3′-end increased from S1 to S4. This difference highlights development, with the longer form transcript increasing as the root tissue matures.

V-SAGE tags provide the opportunity for clustering in the absence of complete annotations and can thus provide focus to analyses. Clustering of root segment contigs and EST abundance by either V-SAGE or CAP3, which requires prior analysis, exemplifies this statement. The number of transcripts representing each contig or tag group in each of the four segments was divided by the

Table 1. Most frequent CAP3 contigs and V-SAGE tags from a corn root tip cDNA library.

CAP3 contig	total	S1	S2	S3	S4	no barcode	annotation					
Contig185	49	0	0	0	0	49	gi	277754	64	gb	AA023333.1	O-methyltransferase [Secale cereale]
Contig15	43	1	13	9	11	9	gi	252156	66	gb	AAM15999.1	glycine-rich RNA binding protein [Zea mays]
Contig1500	13	1	2	3	5	2	gi	554565	gb	AA72758.1	glutathione S-transferase	
Contig266	12	2	6	4	0	0	gi	73527230	ref	NP_920662.1	Profilin A [Oryza sativa]	
Contig1348	12	0	5	6	1	0	gi	38345848	emb	CAE01698.2	OSJNA0010H02.22 [Oryza sativa]	
Contig166	11	4	1	4	1	1	gi	249807	gp	P53554	NDK1_SACOF nucleoside diphosphate kinase I (NDK I)	
Contig328	10	0	6	3	0	0	gi	2226329	gp	A31615.1	physical impedance induced protein [Zea mays]	
Contig1606	9	2	4	2	0	1	gi	489428	pur	T06199	probable lipid transfer protein [Hordeum vulgare]	
Contig431	8	6	0	1	0	0	gi	440759	pur	T02039	acidic ribosomal protein P1a [Zea mays]	
Contig228	8	5	0	1	0	2	gi	55878	emb	CA403576.1	adenosine kinase [Zea mays]	
V-SAGE tag	S1	13	1	13	8	10	gi	277754	66	gb	AAM15999.1	glycine-rich RNA binding protein [Zea mays]
S2	13	1	1	2	7	2	gi	252156	66	gb	AAM15999.1	glycine-rich RNA binding protein [Zea mays]
S3	13	4	5	2	1	0	gi	38345848	emb	CAE01698.2	OSJNA0010H02.22 [Oryza sativa]	
S4	13	0	5	6	1	0	gi	249807	gp	P53554	NDK1_SACOF nucleoside diphosphate kinase I (NDK I)	
V-SAGE tag	S1	11	2	5	4	0	gi	249807	gp	P53554	NDK1_SACOF nucleoside diphosphate kinase I (NDK I)	
S2	11	4	1	3	1	1	gi	489428	pur	T06199	probable lipid transfer protein [Hordeum vulgare]	
S3	11	0	6	3	0	0	gi	2226329	gp	A31615.1	physical impedance induced protein [Zea mays]	
S4	11	0	0	0	1	0	gi	440759	pur	T02039	acidic ribosomal protein P1a [Zea mays]	

150 Virtual SAGE and EST Annotation [Vol. 11,
total number contigs/tag groups found in the segment. Clustering was done according to UPGMA (unweighted average). CAP3 and V-SAGE produced identical patterns. The similarity measure used Euclidian distance, and average values for the ordering function. Segments S1 and S2 appear to be most similar, S3 more similar to S1/S2, with segment S4 most dissimilar. This pattern reflects the maturation process in the root tip.

The V-SAGE program, which can be downloaded from (http://www.life.uiuc.edu/bohnert/vsage/VSAGE.htm), accommodates changes in the combination of tags that may be searched. V-SAGE provides further flexibility by the ability to incorporate, in high-throughput fashion, additional EST sequences into an existing species-specific collection even in the absence of annotations. Also, a comparison with the growing collection of certified full-length cDNAs with newly emerging transcript sequences can provide a global picture and information about the complexity underlying any transcript profile with respect to the frequency of alternatively spliced sequences in plant transcriptomes. Finally, V-SAGE allows a point in sequence analysis to be addressed that has not yet received much attention. The formation of transcript 3′-ends in plants shows high variability, and the selection of polyadenylation sites in transcript termination seems to be influenced by the environment or experimental conditions used. The possibility that this variability influences transcript utilization by ribosomes and/or transcript longevity has been pointed out before. V-SAGE provides a way to assess this variability. The program can be applied to analyze the growing number of transcript collections that have been generated with plant material grown under different conditions.

Acknowledgements: We thank Dr. Xiaoqiu Huang for providing the CAP3 program, Lihua Jiang for help with the Perl script, and Amber Kroeger for annotations. Work by Amber Kroeger has been supported by an NSF-REU program grant. Supported by UIUC institutional grants, and the U.S. National Science Foundation, plant genome program (DBI-0211842) is gratefully acknowledged.

References

1. Velculescu, V. E., Zhang, L., Vogelstein, B., and Kinzler, K. W. 1995, Serial analysis of gene expression, Science, 270, 484–487.
2. Kannbley, U., Kapinya, K., Dirmagl, U., and Trendelenburg, G. 2003, Improved protocol for SAGE tag-to-gene allocation, Biotechniques, 34, 1212–1219.
3. Lash, A. E., Tolstoshev, C. M., Wagner, L., et al. 2000, SAGEmap: a public gene expression resource. Genome Res., 10, 1051–1060.
4. Zhou, G., Chen, J., Lee, S., Clark, T., Rowley, J. D., and Wang, S. M. 2001, The pattern of gene expression in human CD34(+) stem/progenitor cells. Proc. Natl. Acad. Sci. U.S.A., 98, 13966–13971.
5. Lorenz, W. W. and Dean, J. F. D. 2002, SAGE profiling and demonstration of differential gene expression along the axial developmental gradient of lignifying xylem in loblolly pine (Pinus taeda). Tree Physiol., 22, 301–310.
6. Stanton, J. L., Bascand, M., Fisher, L., Quinn, M., Macgregor, A., and Green, D. P. 2002, Gene expression profiling of human GV oocytes: an analysis of a profile obtained by serial analysis of gene expression (SAGE). J. Reprod. Immunol., 53, 193–201.
7. Huang, X. and Madan, A. 1999, CAP3: A DNA sequence assembly program. Genome Res., 9, 868–877.
8. Graber, J. H., Cantor, C. R., Mohr, S. C., and Smith, T. F. 1999, In silico detection of control signals: mRNA 3′-end-processing sequences in diverse species. Proc. Natl. Acad. Sci. U.S.A., 96, 14055–14060.
9. Kawaguchi, R. and Bailey-Serres, J. 2002, Regulation of translational initiation in plants. Curr. Opin. Plant Biol., 5, 460–465.
10. Mazumder, B., Seshadri, V., and Fox, P. L. 2003, Translational control by the 3′-UTR: the ends specify the means. Trends Biochem. Sci., 28, 91–98.
11. Tanguay, R. L. and Gallie, D. R. 1996a, The effect of the length of the 3′-untranslated region on expression in plants. FEBS Lett., 394, 285–288.
12. Tanguay, R. L. and Gallie, D. R. 1996b, Translational efficiency is regulated by the length of the 3′ untranslatable region. Mol. Cell Biol., 16, 146–156.
13. Schwerin, M., Maak, S., Hagendorf, A., von Lengerken, G., and Seyfert, H. M. 2002, A 3′-UTR variant of the inducible porcine lps70.2 gene affects mRNA stability. Biochim. Biophys. Acta, 1578, 90–94.
14. Sharp, R. E. and LeNoble, M. E. 2002, ABA, ethylene and the control of shoot and root growth under water stress. J. Exp. Bot., 53, 33–37.
15. Hirose, T., Sugita, M., and Sugiuira, M. 1993, cDNA structure, expression and nucleic acid-binding properties of three RNA-binding proteins in tobacco: occurrence of tissue-specific alternative splicing. Nucleic Acids Res., 21, 3981–3987.
16. Staiger, D., Zecca, L., Wieczorek Kirk, D. A., Apel, K., and Eckstein, L. 2003, The circadian clock regulated RNA-binding protein AtGRP7 autoregulates its expression by influencing alternative splicing of its own pre-mRNA. Plant J., 33, 361–371.
17. Raz, R., Jose, M., Moya, A., Martinez-Izquierdo, J. A., and Puigdomenech, P. 1993, Different mechanisms generating sequence variability are revealed in distinct regions of the hydroxyproline-rich glycoprotein gene from maize and related species. Mol. Gen. Genet., 233, 252–259.
18. Breiteneder, H., Michalowski, C. B., and Bohnert, H. J. 1994, Environmental stress-mediated differential 3′ end formation of chloroplast RNA-binding protein transcripts. Plant Mol. Biol., 26, 833–849.
19. Rothnie, H. M., Reid, J., Hohn, T. 1994, The contribution of AAUAAA and the upstream element UUUGUA to the efficiency of mRNA 3′-end formation in plants. EMBO J., 13, 2200–2210.
20. Kopriva, S., Cossu, R., and Bauwe, H. 1995, Alternative splicing results in two different transcripts for H-protein of the glycine cleavage system in the C4 species Flaveria trinervia. Plant J., 8, 435–441.
21. Sunako, T., Sakuraba, W., Senda, M., Akada, S., Ishikawa, R., Niizeki, M., and Harada, T. 1999, An allele of the ripening-specific 1-aminocyclopropane-1-carboxylic acid synthase gene (ACS1) in apple fruit with a long storage life. *Plant Physiol.*, **119**, 1297–1304.

22. Rasori, A., Ruperti, B., Bonghi, C., Tonutti, P., and Ramina, A. 2002, Characterization of two putative ethylene receptor genes expressed during peach fruit development and abscission. *J. Exp. Bot.*, **53**, 2333–2339.

23. Magnotta, S. M, Gogarten, J. 2002, Multi-site polyadenylation and transcriptional response to stress of a vacuolar type H\(^+\)-ATPase subunit A gene in *Arabidopsis thaliana*. *BMC Plant Biol.*, **2**, 3.