Less Expensive and Eco-Friendly Preparation of Activated Carbon Derived from Coffee Leaf as an Supercapacitors Electrode

E Taer1,*, E S Gulton1, Agustino1, R Taslim2 and W Febriani1
1Department of Physics, University of Riau, 28293 Simpang Baru, Riau, Indonesia
2Department of Industrial Engineering, State Islamic University of Sultan Syarif Kasim, 28293 Simpang Baru, Riau, Indonesia
*erma.tae@lecturer.unri.ac.id

Abstract. In this paper, less expensive and eco-friendly biomass-based activated carbon from coffee leaf (CL) was prepared as electrode materials for supercapacitor applications using KOH activation, carbonization, and physical activation in a CO2 atmosphere. Using cyclic voltammetry and galvanostatic charge/discharge techniques, the CL sample was tested in a two-electrode configuration operating in 1 M H2SO4. After physical activation, the percentage reduction of the mass, diameter, thickness, and diameter are 76.47%, 29.38%, 28.57%, and 38.04%, respectively. The CL sample exhibits specific capacitance, energy and power densities of 210 F/g, 29.17 Wh/kg, and 39.99 W/kg at constant current 1 A, respectively. Therefore, the CL sample obtained through KOH activation, carbonization, and physical activation using CO2 atmosphere has a promising future applied as an electrode material for supercapacitor applications.

1. Introduction
In human civilisation, there has been a race for decades to develop an effective energy storage device to meet the demand of existing technology. In terms of charge storage capacity and cycle life, electrochemical capacitors or supercapacitors are much superior to regular capacitors and existing batteries [1,2]. The supercapacitor’s excellent energy storage performance reserves its wide application for electronics, automobiles, medical devices and other industrial applications [3–5]. The electrode material and electrolyte are the two main components of a supercapacitor. High specific surface area, distributed pores, and high electrical conductivity are typical characteristics of electrode materials [6].

Carbon materials are used as both positive and negative electrodes for symmetrical supercapacitors. Due to their high specific surface area and electrical conductivity, carbonaceous materials such as activated carbon [7–9], graphene [10,11], carbon nanotubes [12,13], and others are commonly used in conventional. Activated carbon (AC) has been extensively developed and mainly used in commercial devices to date. Compared to other forms of carbon, the production of AC is significantly less expensive. The biomass materials or petroleum by-product is usually used to produce it. AC is primarily prepared by pyrolyzing and activating biomass precursors including fallen teak leaf [14], Tectona grandis leaf [15], pineapple leaf [16], and Ginkgo biloba leaves [17,18], acacia leaf [19], etc.
have been investigated as electrodes for supercapacitor, demonstrating that high-performance supercapacitors can be achieved using such natural sources.

Coffee plants are woody evergreens that can be grow up to 10 m in the wild. The majority of the world’s coffee is grown arround the equator. The region covers parts of Central and South America, Asia, Africa and the Middle East. It is one of the most valuable commodity crops in the world and is a major export product from several countries including Central and South America, the Caribbean and Africa.

Coffea arabica, also known as "Arabica" accounts for 60% to 80% of global production of coffee and *Coffea canephora*, known as the "robusta" represent approximately 20% to 40%, are the two most popular in the world [20].

Here, we report less expensive and eco-friendly preparation of activated carbon derived from coffee leaf in the development of electrode materials for supercapacitors. The preparation of activated carbon from coffee leaf by chemical activation, carbonization, and physical activation using CO$_2$ was investigated in this study. Coffee leaves are chemically activated with KOH, then carbonized at 600 °C in N$_2$ atmosphere and activated at a higher temperature with CO$_2$ atmosphere. The prepared activated carbon improved the electrochemical performance in a two-electrode configuration, displaying high specific capacitances with high energy and power densities.

2. Experimental method

In this study, coffee leaf (CL) was used as a raw material. The coffee leaf was sun-dried for two days before being oven-dried at 110 °C for 48 hours. The leaves were pre-carbonized for 2.5 hours at 250 °C after drying. The carbonized samples were mixed with KOH (concentration 0.5 M) in 150 ml destilled water before being heated in a hot plate stirrer for 2 hours at 80 °C. The activated sample was molded into a monolith using hydraulic press at 8 metric ton pressure, then carbonized at 600 °C under N$_2$ atmosphere and activated under CO$_2$ at 850 °C for 2.5 hours with a heating rate of 10 °C/min. The preparation process of the CL sample is shown in Figure 1.

![Pre-carbonized](image1)
![KOH activation](image2)
![Furnace](image3)

Figure 1. The CL sample preparation process.

This study examined the physical parameter and electrochemical properties of CL sample. Before and after activation, physical parameters such as mass, diameter, thickness, and density were calculated. The electrochemical measurements of CL has been assessed by cyclic voltammetry (CV) and galvanostatic charge/discharge (CV). Two-electrode configuration in 1 M H$_2$SO$_4$ solution has been used for these measures.
3. Result and discussion

Figure 2 display the shrinkage of physical parameters of CL samples before and after physical activation. After the physical activation process, the physical parameters include mass, diameter, thickness, and density of the CL samples have been shrinkage. The shrinkage percentage of the mass, diameter, thickness, and density are 76.47%, 29.38%, 28.57%, and 38.04%, respectively. The release of non-carbon materials when the physical activation take a place, causing the shrinkage of the physical parameters [21,22].

![Figure 2. CV curve of CL sample at different scan rates](image)

The electrochemical performance of the CL sample were tested using CV and GCD measurements in a two-electrode system. The CV curves of a CL sample measured at scan rates of 1 and 2 mV/s are shown in Figure 2. Obviously, the CV curves retain their quasi-rectangular shape across all scan rates. Based on CV curve, the specific capacitance of CL was calculated with the Equations (1):

\[
C_{sp} = \frac{I_c - I_d}{s \times m} \quad (1)
\]

where \(C_{sp}\) is specific capacitance (F/g), \(I\) is current (A), \(s\) is scan rate, and \(m\) is average mass of electrode (g). The specific capacitances of CL sample are 119 F/g and 108 F/g, respectively. It outperforms carbon-based electrodes reported in our previous study, such as Terminalia cattapa leaf (54 F/g) [23], pandanus tectoricus leaf (56 F/g) [24], and banana peel (68 F/g) [25].
Figure 3. The specific capacitance versus scan rates.

Figure 3 depicts the specific capacitance of the CL sample at various scanning rates. The CL sample’s specific capacitance has decreased at higher scan rates, it can be attributed to the CL sample has pore structure and larger micropore, as well as the relatively short diffusion time ions from the mesopores to the micropores [26].

Figure 4. GCD curve of the CL sample at constant current

Figure 4 shows the GCD curve of the CL sample. Noticeably, the lower relative IR drop (0.943 V) suggests a low equivalent series resistance (ESR). The specific capacitance of CL from the GCD curve was calculated by the Equations (2):
where C_{sp} is specific capacitance (F/g), I is current (A), s is scan rate, m is average mass of electrode (g), Δt is discharge time (s), and ΔV is voltage (V). The calculated specific capacitance based on GCD curve was estimated to be 210 F/g at constant current 1 A. The energy and power densities of CL sample were calculated by the Equations (3) [27,28]:

\[E = \frac{1}{2} CV^2 \times \frac{1}{\Delta t} \quad (3) \]

\[P = \frac{E}{\Delta t} \times 3600 \quad (4) \]

where E is energy density (Wh/kg), P is power density (W/kg), C is specific capacitance (F/g), V is voltage (V), and Δt is discharge time (s). The energy and power densities of the CL sample were calculated by equations 3 and 4 are 29.17 Wh/kg and 39.99 W/kg. It is worth noting that the assembled CL sample exhibits a higher energy density of 29.17 Wh/kg, higher than previously reported biomass-based carbon electrode for supercapacitors, such as *Syzygium cumini* fruit shells and *Chrysopogon zizanioides* roots (27.22 Wh/kg and 16.72 Wh/kg) [5], *Tectona grandis* leaf (23.19 Wh/kg) [15], pineapple leaf waste (4.41 Wh/kg) [16], banana peel (0.75 Wh/kg) [25], pineapple leaf fibers (26.53 Wh/kg) [29], aloe vera (8.6 Wh/kg) [30], cassava green stem (22.86 Wh/kg) [31], argy wormwood (17.51 Wh/kg) [32] and lumpy backet (9.4 Wh/kg) [33].

4. Conclusion

KOH activation, carbonization, and physical activation in a CO$_2$ atmosphere were used to preparation of activated carbon with less expensive and eco-friendly made from coffee leaf. In two-electrode configuration operating in 1 M H$_2$SO$_4$ solution, cyclic voltammetry and galvanostatic charge/discharge techniques were used to measured the electrochemical performance of the CL sample. The physical parameters of the CL sample i.e mass, diameter, thickness, and density have been shrinkage after physical activation process. The CL sample has a promising future for applied as an electrode material for supercapacitor applications based on their electrochemical performance. Specific capacitance, energy, and power densities for the CL sample are 210 F/g, 29.17 Wh/kg, and 39.99 W/kg, respectively.

Acknowledgements

The authors are grateful to *Kementerian Pendidikan, Kebudayaan, Riset, danTeknologi Republik Indonesia* for financial support through the first year world class research grant 2021 (contract no. 1393/UN.19.5.1.3/PT.01.03/2021).

References

[1] Helseth L E 2019 Modelling supercapacitors using a dynamic equivalent circuit with a distribution of relaxation times *J. Energy Storage* 25 100912

[2] Saha S, Maji P, Pethsangave D A, Roy A, Ray A, Some S and Das S 2019 Effect of morphological ordering on the electrochemical performance of MnO$_2$-Graphene oxide composite *Electrochim. Acta* 317 199–210

[3] Zhong C, Deng Y, Hu W, Sun D, Han X, Qiao J and Zhang J 2016 Electrolytes for electrochemical supercapacitors (CRC Press, Taylor & Francis Group)

[4] Wang H, Xu Z, Kohandehghan A, Li Z, Cui K, Tan X, James T, King C K, Holt C M B, Olsen B C, Tak J K, Harfield D, Anyia O and Mitlin D 2013 Interconnected Carbon Nanosheets Derived from Hemp for Ultrafast Supercapacitors with High Energy *ACS Nano* 7 5131–5141

[5] Vinayagam M, Suresh Babu R, Sivasamy A and Ferreira de Barros A L 2020 Biomass-derived
porous activated carbon from Syzygium cumini fruit shells and Chrysopogon zizanioides roots for high-energy density symmetric supercapacitors. Biomass and Bioenergy 143 105838

[6] Pandolfo A G and Hollenkamp A F 2006 Carbon properties and their role in supercapacitors. J. Power Sources 157 11–27

[7] Ricketts B W and Ton-That C 2000 Self-discharge of carbon-based supercapacitors with organic electrolytes. J. Power Sources 89 64–9

[8] Pognon G, Cougnon C, Mayilukila D and Bélanger D 2012 Catechol-modified activated carbon prepared by the diazonium chemistry for application as active electrode material in electrochemical capacitor. ACS Appl. Mater. Interfaces 4 3788–96

[9] Fang B, Bonakdarpour A, Kim M S, Kim J H, Wilkinson D P and Yu J S 2013 Multimodal porous carbon as a highly efficient electrode material in an electric double layer capacitor. Microporous Mesoporous Mater. 182 1–7

[10] Fan Z, Yan J, Wei T, Zhi L, Ning G, Li T and Wei F 2011 Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv. Funct. Mater. 21 2366–75

[11] Balli B, Şavk A and Şen F 2018 Graphene and polymer composites for supercapacitor applications. Nanocarbon its Compos. Prep. Prop. Appl. 123–51

[12] Wu C, Zhang S, Wu W, Xi Z, Zhou C, Wang X, Deng Y, Bai Y, Liu G, Zhang X, Li X, Luo Y and Chen D 2019 Carbon nanotubes grown on the inner wall of carbonized wood tracheids for high-performance supercapacitors. Carbon N. Y. 150 311–8

[13] Gao Z, Song N, Zhang Y, Schwab Y, He J and Li X 2018 Carbon Nanotubes Derived from Yeast-Fermented Wheat Flour and Their Energy Storage Application. ACS Sustain. Chem. Eng. 6 11386–96

[14] Taer E, Mardiah M A, Agustino A, Mustika W S, Apriwandi A and Taslim R 2021 A green and low-cost of mesoporous electrode based activated carbon monolith derived from fallen teak leaves for high electrochemical performance. J. Appl. Eng. Sci. 19 162–71

[15] Taer E, Melisa M, Agustino A, Taslim R, Sinta W and Apiwandi A 2021 Biomass-based activated carbon monolith from Tectona grandis leaf as supercapacitor electrode materials. Energy Sources, Part A Recover. Util. Environ. Ef. 00 1–12

[16] Agustino, Awitdrus, Amri A, Taslim R and Taer E 2020 The Physical and Electrochemical Properties of Activated Carbon Electrode Derived from Pineapple Leaf Waste for Supercapacitor Applications. J. Phys. Conf. Ser. 1655

[17] Hao E, Liu W, Liu S, Zhang Y, Wang H, Chen S, Cheng F, Zhao S and Yang H 2017 Rich sulfur doped porous carbon materials derived from ginkgo leaves for multiple electrochemical energy storage devices. J. Mater. Chem. A 5 2204–14

[18] Zhu X, Yu S, Xu K, Zhang Y, Zhang L, Lou G, Wu Y, Zhu E, Chen H, Shen Z, Bao B and Fu S 2018 Sustainable activated carbons from dead ginkgo leaves for supercapacitor electrode materials. Chem. Eng. Sci. 181 36–45

[19] Taer E, Natalia K, Apiwandi A, Taslim R, Agustino A and Farma R 2020 The synthesis of activated carbon nanofiber electrode made from acacia leaves (Acacia mangium wild) as supercapacitors. Adv. Nat. Sci. Nanosci. Nanotechnol. 11 25007–125007–7

[20] United States Department of Agriculture 2013 Coffee: World Markets and Trade.

[21] Farma R, Deraman M, Awitdrus, Talib I A, Omar R, Manjunatha J G, Ishak M M, Basri N H and Dolah B N M 2013 Physical and electrochemical properties of supercapacitor electrodes derived from carbon nanotube and biomass carbon. Int. J. Electrochem. Sci. 8 257–73

[22] Taslim R, Agustino A and Taer E 2018 Naturalcarbon-metal composite for supercapacitor application. J. Phys. Conf. Ser. 1120 012008-1-012008–10

[23] Taer E, Afrianda A, Taslim R, Krasman K, Minarni M, Agustino A, Apiwandi A and Malik U 2018 The physical and electrochemical properties of activated carbon electrode made from Terminalia Catappa leaf (TCL) for supercapacitor cell application. J. Phys. Conf. Ser. 1120 012007-1-012007–8
[24] Taer E, Apriwandi A, Krisman, Minarni, Taslim R, Agustino A and Afrianda A 2018 The physical and electrochemical properties of activated carbon electrode made from pandanus tectorius J. Phys. Conf. Ser. 1120 012006–1-012006–8

[25] Taer E, Taslim R, Aini Z, Hartati S D and Mustika W S 2017 Activated carbon electrode from banana-peel waste for supercapacitor applications AIP Conf. Proc. 1801 040004-1-040004-4

[26] Ma F, Ding S, Ren H and Liu Y 2019 Sakura-based activated carbon preparation and its performance in supercapacitor applications RSC Adv. 9 2474–83

[27] Hao E, Liu W, Liu S, Zhang Y, Wang H, Chen S, Cheng F, Zhao S and Yang H 2017 Rich sulfur doped porous carbon materials derived from ginkgo leaves for multiple electrochemical energy storage devices J. Mater. Chem. A 5 2204–14

[28] Zhao J, Lai H, Lyu Z, Jiang Y, Xie K, Wang X, Wu Q, Yang L, Jin Z, Ma Y, Liu J and Hu Z 2015 Hydrophilic hierarchical nitrogen-doped carbon nanocages for ultrahigh supercapacitive performance Adv. Mater. 27 3541–5

[29] Taer E, Agustino A, Awitdrus A, Farma R and Taslim R 2021 The synthesis of carbon nanofiber derived from pineapple leaf fibers as a carbon electrode for supercapacitor application J. Electrochem. Energy Convers. Storage 18 031004-1-031004–8

[30] Karnan M, Subramani K, Sudhan N, Ilayaraja N and Sathish M 2016 Aloe vera Derived Activated High-Surface-Area Carbon for Flexible and High-Energy Supercapacitors ACS Appl. Mater. Interfaces 8 35191–202

[31] Taer E, Yanti N, Mustika W S, Apriwandi A, Taslim R and Agustino A 2021 Porous activated carbon monolith with nanosheet/nanofiber structure derived from the green stem of cassava for supercapacitor application Int. J. Energy Res. 44 10192–205

[32] Dai C, Wan J, Yang J, Qu S, Jin T, Ma F and Shao J 2018 H 3 PO 4 solution hydrothermal carbonization combined with KOH activation to prepare argy wormwood-based porous carbon for high-performance supercapacitors Appl. Surf. Sci. 444 105–17

[33] Serafin J, Baca M, Biegun M, Mijowska E, Kaleńczuk R J, Sreńsczek-Nazzal J and Michalkiewicz B 2019 Direct conversion of biomass to nanoporous activated biocarbons for high CO2 adsorption and supercapacitor applications Appl. Surf. Sci. 497 143722