Coexistence of d-wave superconductivity and antiferromagnetism induced by paramagnetic depairing

Yuhki Hatakeyama and Ryusuke Ikeda
Department of Physics, Kyoto University, Kyoto 606-8502, Japan
E-mail: ryusuke@scphys.kyoto-u.ac.jp

Abstract. It is shown theoretically that, in the superconducting state with $d_{x^2-y^2}$-pairing, a strong Pauli paramagnetic depairing (PD) induces not only the modulated Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) superconducting state but also an incommensurate antiferromagnetic (AFM) (or spin-density wave) ordering with Q-vector nearly parallel to a gap node. In this mechanism of field-induced coexistence of the d-wave superconducting and AFM orders, a pair-density wave does not have to be assumed. It is argued that this is the common origin of both the coexistent FFLO and AFM phases of CeCoIn$_5$ and the AFM quantum critical behavior around the superconducting $H_{c2}(0)$ seen in several unconventional superconductors.

1. Introduction
At present, we have two intriguing issues on a magnetic order or fluctuation occurring close to $H_{c2}(0)$ in d-wave paired superconducting states. One is the antiferromagnetic (AFM) quantum critical behavior reflected in transport measurements around $H_{c2}(0)$ of heavy fermion superconductors CeCoIn$_5$ [1-3], pressured CeRhIn$_5$ [4], NpPd$_3$Al$_2$ [5], and Tl-based cuprates [6]. The other is the AFM order [7] in the high field and low temperature (HFLT) phase [8] of CeCoIn$_5$ which has been identified, based on measurements [9,10] and theoretical explanations [11,12] of elastic properties and doping effects, with a Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state [8,13]. It is notable that the materials listed above have a couple of common features, such as the d-wave pairing and a strong Pauli paramagnetic depairing (PD).

In this report, we point out that, in nodal d-wave superconductors, a field-induced enhancement of PD tends to induce an AFM ordering in the superconducting phase just below $H_{c2}(0)$. Conventionally, the AFM ordering is suppressed by the superconducting ordering in zero field [14], and, even in nonzero fields, the quasiparticle damping effect brought by the AFM fluctuation usually suppresses a relatively weak PD effect, suggesting a competition between the two orderings. It is found, however, that a strong PD rather favors coexistence of a d-wave superconductivity and an incommensurate AFM order, leading to an enhancement of AFM ordering or fluctuation just below $H_{c2}(0)$.

2. Model and Calculation
We work in a BCS-like electronic Hamiltonian [14] with the superconducting energy gap Δ and the AFM moment \mathbf{m}. By treating Δ at the mean field level and $m \equiv |\mathbf{m}|$ as a fluctuation,
respectively, the free energy describing the two possible orderings in zero field is described by
\[
\mathcal{F}(\mathbf{H} = 0) = \int d^3r \, g^{-1}|\Delta(r)|^2 - T \ln \text{Tr}_{c,c',m} \exp[-(H_{\Delta,m} - \mu N)/T],
\]
\[
H_{\Delta,m} - \mu N = \sum_{\mathbf{q}} \frac{1}{U} |\mathbf{m}(\mathbf{q})|^2 + \sum_{\mathbf{k},\alpha,\beta} \frac{\hat{S}_\alpha^\beta}{2} \xi(\mathbf{k}) \delta_{\alpha,\beta} \hat{c}_{\mathbf{k}\alpha}
- \sum_{\mathbf{q},\alpha,\beta} \left(\Delta(\mathbf{q}) \hat{\Psi}(\mathbf{q}) + m_\nu(\mathbf{q}) \hat{S}_\nu(\mathbf{q}) + \text{h.c.} \right),
\]
where \(\hat{\Psi}(\mathbf{q}) = -i(\sigma_y)_{\alpha,\beta} \sum_{\mathbf{k}} w_{\mathbf{k}} \hat{c}_{-\mathbf{k} + \mathbf{q}/2,\alpha} \hat{c}_{\mathbf{k} + \mathbf{q}/2,\beta}/2, \hat{S}_\nu(\mathbf{q}) = (\sigma_\nu)_{\alpha,\beta} \sum_{\mathbf{k}} \hat{S}_\alpha^\beta \hat{c}_{\mathbf{k} - \mathbf{q}/2,\alpha} \hat{c}_{\mathbf{k} + \mathbf{q}/2,\beta}/2, \hat{S}_\alpha^\beta \) creates a quasiparticle with spin index \(\alpha \) and momentum \(\mathbf{k} \), \(\sigma_\nu \) are the Pauli matrices, \(\mu \) is the chemical potential, and the positive parameters \(g \) and \(U \) are the attractive and repulsive interaction strengths leading to the superconducting and AFM orderings, respectively.

The gap function \(w_{\mathbf{k}} \) satisfies \(w_{\mathbf{k} + \mathbf{Q}} = -w_{\mathbf{k}} \) for the \(\Delta_{a_{x^2}} \) and \(\Delta_{2y} \)-pairing state, and the dispersion \(\xi(\mathbf{k}) \) satisfies \(\xi(\mathbf{k}) = -\xi(\mathbf{k} + \mathbf{Q}) + T_c \delta_{\mathbf{IC}} \), where \(\mathbf{Q} \) is the commensurate AFM modulation wavevector and is \((\pi, \pi) \) for the \(\Delta_{a_{x^2}} \)-pairing. A small deviation from the perfect nesting is measured by a small parameter \(\delta_{\mathbf{IC}} \) for a nearly-free electron model. If the tight-binding model with \(IC \) notation is used in examining an AFM ordering, the corresponding incommensurability is measured by the second term of the above \(\xi(\mathbf{k}) \). In a nonzero field \(\mathbf{H} \neq 0 \) of our interest, the Zeeman term \(\gamma_B \hat{H}(\sigma_z)_{\alpha,\beta} \) needs to be added to \(\xi(\mathbf{k}) \delta_{\alpha,\beta} \). At least in the case with a continuous \(H_{c2} \)-transition like Fig.2 (a) below, the orbital depairing needs to be incorporated through the familiar quasiclassical treatment on the quasiparticle Green’s function [13].

To see the position of the AFM ordering, it is convenient to examine the Gaussian AFM fluctuation term \(\mathcal{F}_m \) in the free energy \(\mathcal{F} \), \(\mathcal{F}_m = \sum_\Omega \ln \det[\mathbf{U}^{-1}_\alpha \mathbf{q}_\mathbf{\Omega} - \mathbf{\chi}_{\mathbf{q},\mathbf{q}_\mathbf{\Omega}}(\Omega)] \), where
\[
\mathbf{\chi}_{\mathbf{q},\mathbf{q}_\mathbf{\Omega}}(\Omega) = \int_0^{T-1} d\tau \left(T_\tau \mathbf{\hat{S}}_{\mathbf{q}}(\mathbf{\tau}) \mathbf{\hat{S}}_{\mathbf{q}}(\mathbf{\tau}; 0) \right) e^{i\Omega\tau},
\]
and \(\mathbf{\hat{S}}_{\mathbf{q}}(\mathbf{\tau}) \) denotes \(\mathbf{\hat{S}}_{\mathbf{q}}(\mathbf{\tau}) \) at imaginary time \(\tau \). For the moment, we focus on the Pauli limit with no orbital depairing and with uniform \(\Delta \) in which \(\mathbf{\chi}_{\mathbf{q},\mathbf{q}}(\Omega) = [\chi^{(n)}(\mathbf{q}, \Omega) + \chi^{(an)}(\mathbf{q}, \Omega)] \delta_{\mathbf{q},\mathbf{q}_\mathbf{\Omega}} \), and \(\mathcal{F}_m = -\sum_\Omega T \ln X(\mathbf{q}, \Omega), \) where \(X^{-1}(\mathbf{q}, \Omega) = U^{-1} - \chi^{(n)}(\mathbf{q}, \Omega) - \chi^{(an)}(\mathbf{q}, \Omega). \) A second order AFM ordering occurs when \(X^{-1} = X^{-1}(0,0) = 0 \). The \(O(|\Delta|^2) \) terms in \(\chi^{(n)} \) and \(\chi^{(an)} \) are expressed by Fig.1 (a) and (b), respectively. They have been studied previously [14] in \(H = 0 \) case, where \(\chi_s(\Delta) \equiv \chi^{(n)}(0,0) - \chi^{(an)}(0,0) \Delta = 0 + \chi^{(an)}(0,0) \) taking the form
\[
\chi_s(\Delta) = T \int \frac{d^3p}{(2\pi)^3} \sum_{\epsilon,\sigma} 2w^2 \hat{p}^2 (\mathbf{G}_{\epsilon,\sigma}(\mathbf{p}))^2 \Delta^* \mathbf{G}_{-\epsilon,-\sigma}(-\mathbf{p}) \Delta\mathbf{G}_{\epsilon,\sigma}(\mathbf{p} + \mathbf{Q})
\]

Figure 1. Diagrams describing (a) \(\chi^{(n)} \) and (b) \(\chi^{(an)} \) up to \(O(|\Delta|^2) \), where the cross denotes the particle-hole vertex on the AFM fluctuation, while the filled circle implies the particle-particle vertex on \(\Delta \) or \(\Delta^* \).
behaves like T^{-2} in $T \to 0$ limit and is negative so that the AFM ordering is suppressed by superconductivity [14]. In eq.(3), $\mathcal{G}_{\varepsilon,\sigma}(p) \Delta^* \mathcal{G}_{-\varepsilon,-\sigma}(-p) \mathcal{G}_{\varepsilon,\pi}(p + Q) \Delta \mathcal{G}_{-\varepsilon,-\pi}(-p - Q)$

$$\left(\frac{T}{T_c(0)}\right)^2 \mathcal{G}_{\varepsilon,\sigma}(p) \Delta^* \mathcal{G}_{-\varepsilon,-\sigma}(-p) \mathcal{G}_{\varepsilon,\pi}(p + Q) \Delta \mathcal{G}_{-\varepsilon,-\pi}(-p - Q)$$

To explain effects of strong PD, let us first explain the $m \parallel H$ case in which $\sigma = \sigma$. In this case, the two terms in eq.(3) are found to take the same form as the coefficient of the $O(|\Delta|^4)$ term of the superconducting Ginzburg-Landau (GL) free energy and thus, change their sign upon cooling [13]. Hence, $\chi_s(\Delta)$ becomes positive for stronger PD, leading to a lower F_m, i.e., an enhancement of the AFM ordering in the superconducting phase. As well as the corresponding PD-induced sign-change of the $O(|\Delta|^4)$ term which leads to the first order H_{c2}-transition [13], the PD-induced positive χ_s is also unaffected by inclusion of the orbital depairing.

In $m \perp H$ where $\sigma = -\sigma$, a different type of PD-induced AFM ordering occurs in a d-wave pairing case with a gap node along Q where $w_{p+Q} = -w_p$: In this case, the first term of eq.(3) arising from $\chi^{(a)}(0,0)$ remains negative as in zero field case and becomes $-N(0)|\Delta|^2/\left[2(\gamma_B H)^2\right]$ in $T \to 0$ limit with no PD-induced sign change, where $N(0)$ is the normal density of states. Instead, the last term of eq.(3) implying $\chi^{(a)}(0,0)$ and thus, χ_s are divergent like $N(0)|\Delta|/(\gamma_B H)^2 \ln[\text{Max}(t, |\delta|)]$ in $T \to 0$ limit while keeping their positive signs owing to the relation $w_{p+Q} < w_p < 0$, where $t = T/T_c$. This divergence is unaffected by including the orbital depairing. That is, in the $d_x^2-y^2$-wave case with $Q = (\pi, \pi)$, the AFM order tends to occur upon cooling in $m \perp H$. In contrast, $\chi^{(a)}(0,0)$ is also negative in the $d_{x^2-y^2}$-wave case with the same Q satisfying $w_p > 0$ so that the AFM ordering is suppressed with increasing H.

3. Examples of Phase Diagrams

In this section, examples of the resulting low temperature phase diagram near $H_{c2}(0)$ will be presented. In the BCS-like model (1) and up to the $O(|\Delta|^2)$ terms (see Fig.1), the H_{c2}-transition, i.e., the mean field superconducting transition in $H \neq 0$, is of second order even at lower temperatures for $\alpha \equiv \gamma_B H_{c2}(0)/(2\pi T_c) \leq 0.3$ (see Fig.2(a)), where α is nothing but the Maki parameter except a difference in the numerical factor, while it becomes of first order for larger $\alpha \simeq 1.1$ [13]. It is reasonable to expect the former to correspond to the case of CeRhIn$_5$ under a pressure [4]. Figure 2(a) is one of the phase diagrams in such a case, where the Neel temperature T_N in the normal state with perfect nesting or U was assumed to be the only parameter measuring the pressure dependence. The actual AFM transition temperature in $H > H_{c2}(0)$ for $T_N/T_c = 0.02$ and 0.35 are zero and less than 0.35T_c, respectively, because of the finite $\delta_{IC} \simeq 0.6$ used in the calculation. Reflecting the AFM ordering enhanced by PD, the decrease of T_N, corresponding to an increase of pressure, results in the shrinkage of the AFM phase just below $H_{c2}(0)$, which reduces to an apparent AFM quantum critical point by a further increase of pressure.

Figure 2(b) is the corresponding result in the tight binding model in the Pauli limit with no orbital depairing (vortices). The H_{c2}-transition is of first order in the temperature range shown there. Due to the discontinuous nature of the H_{c2}-transition, an apparent AFM quantum critical point is estimated, in $h = H/H_{c2}(0) > 1$, to lie at a lower field than $H_{c2}(0)$ in spite of the PD-induced AFM ordering just below $H_{c2}(0)$. This is consistent with the observations in CeCoIn$_5$ [2,7]. We note that the anomalous doping effect in CeCoIn$_5$ [10] cannot be explained without a spatial modulation of $|\Delta|$ in the HFLT phase [12], implying that both the AFM and FFLO orders coexist in the HFLT phase of CeCoIn$_5$. Calculation results in the case including the FFLO structure will be reported elsewhere [15].

We note that, in the present theory explaining the AFM order just below $H_{c2}(0)$ in CeCoIn$_5$
Figure 2. Typical t ($=T/T_c$) v.s. $h = H/H_{c2}(0)$ phase diagrams (a) following from the use of $\alpha = 0.3$ leading to a second order H_{c2}-transition even in low t limit and (b) in the Pauli limit with a first order H_{c2}-transition in low t, respectively. In both figures, an AFM phase can occur below a solid curve on which $X_0^{-1} = 0$, and each nearly vertical dotted curve is the corresponding $H_{c2}(T)$-curve. Note that, in Fig.2(a), two AFM phase boundaries for $T_N/T_c = 0.35$ and 0.02 are shown in a single figure. Figure 2 (b) was obtained from the corresponding calculation in the tight binding model with the parameters $U = 33$, $t_1 = 100$, and $t_2 = 0.25$ in the unit of T_c and by taking account of the full Δ dependence with no limitation to the $O(\Delta^2)$ term. The dashed curve denotes the possible upper limit of the AFM transition temperatures at which $\chi_s = 0$. The lower panel of (b) is the h-dependence of X_0^{-1} at $t = 0.05$.

with strong PD, the assumption [16] of an additional pairing channel (pair-density wave) is unnecessary, and that both of the AFM order [7] and other observations, such as the anomalous doping effect [10], in the HFLT phase of CeCoIn$_5$ are explained consistently if the FFLO modulation in the HFLT phase is assumed.

This work was financially supported by Grant-in-Aid for Scientific Research [No. 20102008 and 21540360] from MEXT, Japan.

References
[1] Paglione J et al. 2003 Phys. Rev. Lett. 91 246405.
[2] Singh S et al., 2007 Phys. Rev. Lett. 98 057001.
[3] Kasahara Y et al., 2005 Phys. Rev. B 72 214515(R).
[4] Park T et al., 2006 Nature 440 65 and arXiv:0910.2287.
[5] Honda F et al., 2008 J. Phys. Soc. Jpn. Suppl. A 77 339.
[6] Shibauchi T et al., 2008 Proc. Natl. Acad. Sci. USA 105, 7120 (arXiv:0805.2215).
[7] Kenzelmann M et al., 2008 Science 321 1652.
[8] Bianchi A D et al., 2003 Phys. Rev. Lett. 91 187004.
[9] Watanabe T et al., 2004 Phys. Rev. B 70 020506(R).
[10] Tokiwa Y et al., Phys. Rev. Lett. 101 037001 (2008).
[11] Ikeda R, 2007 Phys. Rev. B 76 054517.
[12] Ikeda R, 2010 Phys. Rev. B 81 060510(R).
[13] Adachi H and Ikeda R, 2003 Phys. Rev. B 68 184510.
[14] Konno R and Ueda K, 1989 Phys. Rev. B 40 4329 ; Kato M and Machida K, 1988 Phys. Rev. B 37 1510.
[15] R. Ikeda, Y. Hatakeyama, and K. Aoyama, arXiv:1003.0309, v2 and in preparation.
[16] Aperis A et al., arXiv:0902.0553.