Metabolic syndrome is directly associated with gamma glutamyl transpeptidase elevation in Japanese women

Hiroshi Sakugawa, Tomofumi Nakayoshi, Kasen Kobashigawa, Hiroki Nakasone, Yuko Kawakami, Tsuyoshi Yamashiro, Tatsuji Maeshiro, Ko Tomimori, Satoru Miyagi, Fukunori Kinjo, Atsushi Saito

INTRODUCTION

The prevalence of overweight persons is increasing in developed and developing countries[1-3]. Obesity is strongly associated with insulin resistance[4-6], which is known to be associated with an elevated gamma-glutamyl transpeptidase (GGT) level[7,8]. Moreover, these studies have been performed on the association between raised GGT level and metabolic syndrome[7,8]. Hence, the following question emerged: is insulin resistant status directly or indirectly, through fatty liver, associated with GGT elevation? Few population-based studies have been performed on the association between raised GGT level and metabolic syndrome[7,8]. Moreover, these studies usually dealt with men[18, 11]. It is well known that GGT elevation is frequently induced by habitual alcohol intake and drinkers are more frequently included among men than women. Most raised GGT levels seen in ordinary women are not caused by alcohol, because women with a history of regular alcohol intake in Japan are rare[12]. However, nonalcoholic steatohepatitis (NASH), a severe form of nonalcoholic fatty liver disease, is known to be associated with female gender, metabolic syndrome, and raised GGT level[19]. Hence, a general population study on the association of raised GGT level with risk factors of metabolic syndrome among women is urgently needed.

The aim of this study was to determine whether metabolic syndrome is directly or indirectly, through fatty liver, associated with GGT elevation in Japanese women.

MATERIALS AND METHODS

Subjects

From January 2000 to December 2000, 4 366 women received their annual health check-up at the Okinawa General Health Service Association. They were all Japanese aged between 21 and 88 years: 87% were 40 years of age or older.

Methods

For all women, the body mass index (BMI; kg/m²) was calculated. Obesity was defined as BMI ≥ 25 kg/m² as recommended by the Japan Society for Obesity[13]. Laboratory tests included peripheral blood cell counts, liver function tests (aspartate aminotransferase (AST), alanine aminotransferase (ALT), GGT, alkaline phosphatase (ALP), fasting glucose, cholesterol and triglyceride levels, uric acid, glycosylated hemoglobin Alc (HbAlc), hepatitis B surface antigen (HBsAg), and antibody to hepatitis C virus (anti-HCV).

Blood samples were obtained in the morning after an overnight fast. Standard liver tests were performed on a multichannel autoanalyzer (Hitachi 7250). HBsAg was measured by a commercially available enzyme immunoassay (Enzygnost, Berling, Germany). Anti-HCV was tested by a
second generation enzyme immunoassay (Ortho Diagnostics, Raritan, NJ).

Diagnosis of fatty liver was made using ultrasound according to Saverymuttu et al[14] . The criterion for fatty liver was hyperechoic liver tissue with fine, tightly packed echoes. The degree of fatty change was assessed by the fall in echo amplitude with depth, increasing discrepancy of echo amplitude between liver and kidney, and loss of echoes from the wall of the portal veins.

The presence of diabetes mellitus was defined as fasting blood glucose \(\geq 126 \) mg/dL and/or HbA1c \(\geq 6.1 \)[15,16] . The presence of high blood pressure was defined as systolic blood pressure \(\geq 140 \) mmHg and/or diastolic blood pressure \(\geq 90 \) mmHg.

The main endpoint was the identification of the presence or absence of an elevated GGT level combined with clinically associated variables: age, BMI, hypertension, hemoglobin, total cholesterol, triglyceride, uric acid, diabetes mellitus, and fatty liver. All variables were included in a multivariable forward stepwise logistic regression analysis to find the independent predictors of the presence of an elevated GGT level.

Statistical analysis

The continuous variables were compared between the women with and without an elevated GGT level using the 2-tailed Student’s \(t \) test. Correlation among these variables was analyzed by Pearson’s correlation coefficient. Categorical variables were compared with Fisher’s exact test. Multivariate analysis was tested using forward stepwise logistic regression analysis. The SPSS statistical software was used for statistical analysis. A \(P \) value less than 0.05 was considered statistically significant.

RESULTS

Among 4 366 women who received a health check-up, 141 were positive for HBsAg and 14 were positive for anti-HCV (None was positive for both HBsAg and anti-HCV). Persons with either HBsAg or anti-HCV were excluded from this study; the data of the remaining 4 211 women was used for the analysis.

Factors correlated with GGT elevation

Univariate analysis

Of the 4 211 women without hepatitis virus markers, 258(6.1\%) showed an elevated GGT level (>68 IU/L, reference range: 10-68 IU/L). In comparison, the frequency of raised GGT level in 6 620 male health check-up participants (all were negative for both HBsAg and anti-HCV) was 30.2\%. When classified into two categories (normal or abnormal, present or absent, above or below), several variables were associated with GGT elevation (Table 1).

Fatty liver was detected in 391(9.3\%) of the 4 211 women by using ultrasound. Among the 391 women with fatty liver and 3 820 women without fatty liver, correlations of the GGT level with several quantitative variables were assessed. Among the women with fatty liver, age and BMI were not correlated with the GGT level, whereas all variables examined were correlated well with the GGT level in the women without fatty liver. The GGT level was strongly correlated with both AST and ALT, and the correlations were both stronger than that between GGT and ALP (Table 2).

When the women were divided into 2 groups according to the presence or absence of an elevated triglyceride level, the frequency of GGT elevation did not differ between the women with and without fatty liver. However, the mean GGT level in the women with fatty liver was significantly higher than that in the women without fatty liver (Table 3).

Multivariate analysis

In multiple regression analysis, all independent variables but age were correlated with the GGT level. Although fatty liver was associated with GGT level, the association was weaker than those between the GGT level and the other independent variables (Table 4).

Table 1 Univariate analysis of the association between GGT elevation and different variables

Variable	Women with fatty liver \((n=391) \)	Women without fatty liver \((n=3 820) \)	\(P \) value
Age			
\(\geq 50 \)	2 342	181 (7.7)	<0.0001
<50	1 869	77 (4.1)	
BMI			<0.0001
\(\geq 25 \)	1 206	105 (8.7)	
<25	3 005	153 (5.3)	
Blood pressure			
High	563	45 (8.0)	0.047
Normal	3 648	213 (5.8)	
Hemoglobin			
\(\geq 14 \)	1 153	110 (9.5)	<0.0001
<14	3 058	148 (4.8)	
Cholesterol			<0.0001
\(\geq 220 \)	1 408	122 (8.7)	
<220	2 803	136 (4.9)	
Triglyceride			<0.0001
\(\geq 150 \)	667	89 (13.3)	
<150	3 544	169 (4.8)	
Uric acid			0.025
\(\geq 7.0 \)	154	16 (10.4)	
<7.0	4 057	242 (6.0)	
Diabetes			<0.0001
Present	186	32 (17.2)	
Absent	4 025	226 (5.6)	
Fatty liver			0.008
Present	391	36 (9.2)	
Absent	3 820	222 (5.8)	

Table 2 Coefficients between GGT and several variables in women with and without fatty Liver (Pearson’s correlation analysis)

Variable	Women with fatty liver \((n=391) \)	Women without fatty liver \((n=3 820) \)	\(P \) value
Age			
-0.035	0.485	0.091	<0.001
BMI	0.022	0.670	<0.001
SBP	0.078	0.122	<0.001
DBP	0.101	0.046	<0.001
Hemoglobin			
\(g/ \text{dL} \)	0.140	0.006	<0.001
Blood sugar			
0.129	0.011	0.195	<0.001
HbA1c \(\text{mg/ \text{dL}} \)	0.108	0.032	<0.001
Total cholesterol	0.187	<0.001	<0.001
\(\text{mg/ \text{dL}} \)	0.226	<0.001	<0.001
Triglyceride			
\(\text{mg/ \text{dL}} \)	0.411	<0.001	<0.001
AST \(\text{IU/ L} \)	0.464	<0.001	<0.001
ALT \(\text{IU/ L} \)	0.272	<0.001	<0.001
Uric acid \(\text{mg/ \text{dL}} \)	0.188	<0.001	<0.001

SBP, systolic blood pressure; DBP, diastolic blood pressure.

Table 3 Relationship between GGT and fatty liver in women with and without elevated triglyceride (TG) Level

Variables	GGT>68 IU/L (\%)	Mean of GGT (Geometric mean±SD)
Women with elevated TG level \(n=667 \)	89 (13.5)	32.4±1.9
With fatty liver \(n=137 \)	22 (16.1)	38.9±1.8
Without fatty liver \(n=530 \)	67 (12.6)	30.9±1.9
Women with normal TG level \(n=3 544 \)	169 (4.8)	22.4±1.7
With fatty liver \(n=254 \)	14 (5.5)	28.2±1.7
Without fatty liver \(n=3 290 \)	155 (4.7)	22.4±1.7

\(P <0.001 \) when compared between with and without fatty liver.
levels, which are associated with liver cell necrosis, as compared with ALP.

Recently, an association between GGT and metabolic syndrome: hypertension, diabetes mellitus, and dyslipidemia and risk factors for metabolic syndrome (age, BMI, blood glucose level, and uric acid concentration) in the univariate analysis, whereas, in the multivariate analysis, only four variables were independently associated with the raised GGT level: age ≥ 50 yr, hemoglobin ≥ 14 g/dL, triglyceride ≥ 150 mg/dL, and presence of diabetes mellitus. Age ≥ 50 yr was one of the factors independently associated with GGT elevation, but the association was not seen in the multiple regression analysis. The reason for this discrepancy may be the unique distribution of the age-related prevalence of GGT elevation. The abnormally raised GGT level was mostly frequently seen in the women of 50-59 years of age.

Table 4 Multiple regression analysis of association between logistically transformed GGT level and independent variables

Variable	Regression coefficient	T value	P value
Age	-0.0007	-1.77	0.076
BMI	0.0058	4.82	<0.001
SBP	0.0007	3.36	0.001
Hemoglobin	0.0112	3.64	<0.001
Total cholesterol	0.0004	3.20	0.001
Triglyceride	0.2160	11.38	<0.0001
Uric acid	0.0300	8.23	<0.0001
Diabetes	0.1140	6.45	<0.0001
Fatty liver	0.0390	2.60	0.009
R²	0.1630		

Table 5 Factors contributing to elevated GGT level in women (n=211)

Odds ratio	95% CI	P	
Age ≥ 50 years	1.4	1.1-1.9	0.016
Hemoglobin ≥ 14 g/dL	1.6	1.3-2.1	<0.0001
Triglyceride ≥ 150 mg/dL	2.3	1.7-3.1	<0.0001
Diabetes	2.2	1.5-3.4	<0.0001

Table 6 Factors contributing to fatty liver in women (n=4211)

Odds ratio	95% CI	P	
BMI ≥ 25 kg/m²	3.3	2.8-3.9	<0.0001
Hemoglobin ≥ 14 g/dL	1.6	1.2-2.0	<0.0001
Triglyceride ≥ 150 mg/dL	2.3	1.8-2.9	<0.0001
Uric acid ≥ 7.0 mg/dL	1.9	1.2-2.8	0.003

Although all variables were associated with GGT elevation in univariate analysis (Table 1), the stepwise logistic regression analysis indicated that four variables (age ≥ 50 years, hemoglobin ≥ 14 g/dL, triglyceride ≥ 150 mg/dL, and presence of diabetes) were significantly and independently associated with GGT elevation (Table 4). The presence of fatty liver was not independently associated with GGT elevation. In the women with fatty liver (n=391), only two variables, triglyceride ≥ 150 mg/dL and presence of diabetes, were significantly and independently associated with elevated GGT level (P=0.003 and P=0.023, respectively).

Clinical variables predicting the presence of ultrasonographic evidence of fatty liver were also examined by stepwise logistic regression analysis. In all women, four variables were independently associated with the presence of fatty liver: BMI ≥ 25 (P<0.0001), hemoglobin ≥ 14 g/dL (P=0.002), triglyceride ≥ 150 mg/dL (P<0.0001), and uric acid ≥ 7.0 mg/dL (P<0.0001). The elevated GGT level was not independently correlated with fatty liver.

DISCUSSION

GGT is one of the biliary enzymes, and is synthesized in epithelial cells of the intrahepatic bile duct[17]. A raised GGT level is usually seen in association with cholestasis and liver cell necrosis[17]. Although GGT is a biliary enzyme, the levels in this study were more strongly associated with transaminase levels, which are associated with liver cell necrosis, as compared with ALP.

Recently, an association between GGT and metabolic syndrome: hypertension[8], dyslipidemia[7], diabetes mellitus[11], has been reported. The mechanism of the association was still unknown, but one of the likely mechanisms proposed is that GGT is associated with fatty liver, which is also related to hepatic insulin resistance leading to insulin resistance syndrome[11].

In this study, the serum GGT level was correlated with metabolic syndrome (hypertension, diabetes mellitus, and dyslipidemia) and risk factors for metabolic syndrome (age, BMI, blood glucose level, and uric acid concentration) in the univariate analysis, whereas, in the multivariate analysis, only four variables were independently associated with the raised GGT level: age ≥ 50 yr, hemoglobin ≥ 14 g/dL, triglyceride ≥ 150 mg/dL, and presence of diabetes mellitus. Age ≥ 50 yr was one of the factors independently associated with GGT elevation, but the association was not seen in the multiple regression analysis. The reason for this discrepancy may be the unique distribution of the age-related prevalence of GGT elevation. The abnormally raised GGT level was most frequently seen in the women of 50-59 years of age.

A relationship between the ultrasonographic evidence of fatty liver and raised GGT level was seen in the univariate analysis, but the relationship was not observed in the multivariate analysis. The triglyceride level was strongly correlated with GGT level and also well associated with fatty liver. The association between the elevated GGT level and fatty liver might be influenced by the strong association between triglyceride and GGT and fatty liver. When the women were divided into two groups according to presence or absence of raised triglyceride level, the frequency of GGT elevation did not differ between the women with and without fatty liver. However, the mean GGT level in the women with fatty liver was significantly higher than that in the women without fatty liver, indicating the positive correlation between GGT level and fatty liver within its normal range.

Both hypertriglyceridemia and diabetes mellitus were independently associated with GGT elevation. Triglyceride level and diabetes mellitus are known to be strongly associated with insulin level and are included in metabolic syndrome[8,18]. Moreover, hyperinsulinemia was reported to be associated with raised GGT level[9]. Raised GGT level is associated with insulin resistance, which is related to an increase in oxidative stress, which leads to liver cell necrosis by stimulating inflammatory cytokines[10]. Fatty liver may not always mediate between insulin resistance and raised GGT levels. For example, diabetes mellitus is the representative condition of the sequela of insulin resistance and independently associated with raised GGT level, but many diabetic persons do not have fatty liver.

In this study, GGT was correlated with an elevated hemoglobin level. Insulin resistance status increases delivery of free fatty acids to the liver[10], which leads to the formation of free radicals[10]. Formation of free radicals is also induced by iron overload[10], which is associated with insulin resistance[20,21]. Liver iron concentration is correlated with serum ferritin levels and peripheral hemoglobin concentration[21,22]. Obesity, which is linked with an elevated hemoglobin level, is associated with arterial hypoxemia, which may result from reduced pulmonary function[23,24]. Sleep apnea syndrome is frequently seen in obese persons[23,26], and is associated with hypoxemia and elevated levels of hemoglobin.

The serum GGT level is a well known indicator of excess alcohol intake. GGT is also raised in patients with various liver diseases: fatty liver, chronic viral hepatitis, drug-induced liver injury and primary biliary cirrhosis (PBC). These liver diseases are usually asymptomatic, and can be included in general-population studies[27]. Patients with chronic viral hepatitis were supposed to be excluded from this study because all women included in this study were negative for both HBsAg and anti-HCV. However, we did not take a history regarding past or current medication, nor did we examine anti-mitochondrial...
antibody. Hence, our study population might contain patients with subclinical drug-induced liver injury and those with asymptomatic PBC. Nevertheless, the influence of the presence of these liver diseases might be small because of the rarity of these liver diseases in a population-based study.

In this study, we enrolled only women, but the annual health check-ups include many men. General population studies from Japan showed that 73% of males having health check-ups drank alcohol and that 12.5% of them drank more than 453 mL/wk.[8,10] Obtaining information on alcohol intake from family members who are in close contact with each other is difficult in population-based studies. We therefore excluded male health check-up participants from this study to minimize the possibility of including alcohol-related liver disease. Most female health check-up participants had no regular alcohol intake. We previously interviewed 140 female health check-up participants who had an elevated GGT level and only two (1.4%) of them had a history of regular alcohol intake. The subjects of this study may have included some women with a history of regular alcohol intake, but the influence of alcohol might be quite small and might not affect the whole data.

In conclusion, GGT elevation was independently associated with hypertriglyceridemia and diabetes mellitus but not associated with the ultrasonographic evidence of fatty liver. Metabolic syndrome seemed to be directly, not indirectly through fatty liver, associated with the raised GGT level in Japanese women.

ACKNOWLEDGEMENT

We are grateful to Dr. Kozen Kinjo and other staff members in the Okinawa General Health Service Association for their kind cooperation.

REFERENCES

1. Kuczmaszki RJ, Carroll MD, Flegal KM, Troiano RP. Varying body mass index cutoff points to describe overweight prevalence among U.S. adults. N H A N E S III (1988-1994). Obes Res 1997; 5: 542-558
2. Hamaguchi K, Sakata T. Epidemiology of obesity. Kan Tan Sui 2001; 42: 9-18
3. Kopelman PG. Obesity as a medical problem. Nature 2000; 404: 635-643
4. De Fronzo RA, Ferrannini E. Insulin resistance. A multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and athrosclerotic cardiovascular disease. Diabetes Care 1993; 16: 173-194
5. Moller DE, Flier J S . Insulin resistance. Mechanism, syndromes, and implications. N Engl J Med 1991; 325: 938-948
6. Kisselbath AH, Krakover GR. Regional adiposity and morbidity. Physiol Rev 1994; 74: 761-811
7. Rantala AO, Lilja M, Kauma H, Savolainen MJ, Reunanen A, Kesaniemi YA. Gamma-glutamyl transpeptidase and the metabolic syndrome. J Intern Med 2000; 248: 230-238
8. Ikai E, Ishizaki M, Suzuki Y, Ishida M, Noborizaka Y, Yamada Y. Association between hepatic steatosis, insulin resistance and hyperinsulinaemia as related to hypertension in alcohol consumers and obese people. J Hum Hypertens 1995; 9: 101-105
9. Shen L, Fan JG, Shao Y, Zeng MD, Wang JR, Luo GH, Li JQ, Chen SY. Prevalence of nonalcoholic fatty liver among administrative officers in Shanghai: an epidemiological survey. World J Gastroenterol 2003; 9: 1106-1110
10. Harrison SA, Kadakia S, Lang KA, Schenker S. Nonalcoholic steatohepatitis: what we know in the new millennium. Am J Gastroenterol 2002; 97: 2714-2724
11. Perry IJ, Wannamethee SG, Shaper AG. Prospective study of serum γ-glutamyltransferase and risk of NIDDM. Diabetes Care 1998; 21: 732-737
12. Nomura H, Kashiwagi S, Hayashi J, Kajiyama W, Tani S, Goto M. Prevalence of fatty liver in a general population of Okinawa, Japan. Jpn J Med 1988; 27: 142-149
13. Yoshiike N, Matsunuma Y, Zaman MM, Yamaguchi M. Descriptive epidemiology of body mass index in Japanese adults in a representative sample from the National Nutrition Survey 1990-1994. Int J Obes Relat Metab Disord 1998; 22: 689-697
14. Saverymuttu SH, Joseph AEA, Maxwell JD. Ultrasound scanning in the diagnosis of hepatic fibrosis and steatosis. Br Med J 1986; 292: 13-15
15. The committee of Japan Diabetes Society for the Diagnostic Criteria of Diabetes Mellitus. Report of the committee of Japan Diabetes Society on the classification and Diagnostic Criteria of Diabetes Mellitus. J jpn Diabet Soc 1999; 42: 385-404
16. Takahashi Y, Noda M, Tsugane S, Kuzuya T, Ito C, Kadowaki T. Prevalence of diabetes estimated by plasma glucose criteria combined with standardized measurement of HbA1c among health checkup participants on Miyako island, Japan. Diabetes Care 2000; 23: 1092-1096
17. Nemesanszky E, Lott JA. Gamma-glutamyltransferase and its isoenzymes: progress and problems. Clin Chem 1985; 31: 797-803
18. Perry IJ, Wannamethee G, Whincup PH. Serum insulin and incident coronary heart disease in middle-aged British men. Am J Epidemiol 1996; 114: 224-234
19. Bacon B, O'Neill R, Britton R. Hepatic mitochondrial energy production in rats with chronic iron overload. Gastroenterology 1993; 105: 1134-1140
20. Endler MH, Turlin B, Moirand R, Jouanouille AM, Sapey T, Guodayer D, LeGall YJ, Brissot P, David V, Deugnier Y. Insulin resistance-associated hepatic iron overload. Gastroenterology 1999; 117: 1155-1163
21. Fargion S, Mattioli M, Fracanzani AL, Sampietro M, Tavazzi D, Fociani P, Taioi E, Valenti L, Fiorelli G. Hyperferritinemia, iron overload, and multiple metabolic alterations identify patients at risk for nonalcoholic steatohepatitis. Am J Gastroenterol 2003; 98: 2448-2455
22. Bonkovsky HL, Banner BF, Rothman AL. Iron and chronic viral hepatitis. Hepatology 1997; 25: 759-768
23. Luce JM. Respiratory complication of obesity. Chest 1980; 78: 626-631
24. Ray C, Sue DY, Bray G, Hansen JE, Wasserman K. Effects of obesity on respiratory function. Am J Respir Dis 1983; 128: 501-505
25. Messinezy M, Pearson TC. A retrospective study of apparent and relative polycythemia: associated factors and early outcome. Clin Lab Haemat 1990; 12: 121-129
26. Coughlin S, Calverley P, Wilding J. Sleep disordered breathing – a new component of syndrome X. Obes Rev 2001; 2: 267-274
27. Inoue K, Hirohata J, Nakano T, Seki T, Sasaki H, Higuchi K, Ohta Y, Onji M, Muto Y, Moriwaki H. Prediction of primary biliary cirrhosis in Japan. Liver 1995; 15: 70-77

Edited by Zhu LH and Xu FM