Inhibition of Cell Division Induced by External Guide Sequences (EGS Technology) Targeting $fts\text{Z}$

Carol Davies Sala1, Alfonso J. C. Soler-Bistué1,2*, Leann Korprapun1,2, Angeles Zorreguieta1, Marcelo E. Tolmasky2*

1 Fundación Instituto Leloir-Instituto de Investigaciones Bioquímicas Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas – Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina, 2 Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, California, United States of America

Abstract

EGS (external guide sequence) technology is a promising approach to designing new antibiotics. EGSs are short antisense oligoribonucleotides that induce RNase P-mediated cleavage of a target RNA by forming a precursor tRNA-like complex. The $fts\text{Z}$ mRNA secondary structure was modeled and EGSs complementary to two regions with high probability of being suitable targets were designed. In vitro reactions showed that EGSs targeting these regions bound $fts\text{Z}$ mRNA and elicited RNase P-mediated cleavage of $fts\text{Z}$ mRNA. A recombinant plasmid, pEGSb1, coding for an EGS that targets region “b” under the control of the T7 promoter was generated. Upon introduction of this plasmid into Escherichia coli BL21(DE3)(pLysS) the transformant strain formed filaments when expression of the EGS was induced. Concomitantly, E. coli harboring pEGSb1 showed a modest but significant inhibition of growth when synthesis of the EGSb1 was induced. Our results indicate that EGS technology could be a viable strategy to generate new antimicrobials targeting $fts\text{Z}$.

Introduction

Bacterial cell division is a complex process that occurs following the replication and segregation of chromosomal DNA to the two halves of the growing cell. In the case of Gram negative bacteria, the division process requires at least 14 cytoplasmic, membrane and periplasmic proteins, of which 10 are essential [1–5]. These proteins form a structure known as the divisome, a ring-like cell division complex located at midcell that constricts during division and disappears when the cells separate [1–5]. Assembly of the divisome starts with the formation of the proto-ring, a complex formed by FtsZ, FtsA, and ZipA, and continues with the assembly of other proteins and protein complexes [6,7]. The temporal events of the assembly of the divisome have recently been established with high resolution in Caulobacter crescentus [8]. The most conserved of all known bacterial cell division genes is the most conserved of all known bacterial cell division genes is the proto-ring protein FtsZ, which functions as scaffold for the divisome and generates the constrictive force to initiate division of the cell [6,9,10]. These properties, together with the fact that it does not share significant sequence similarity to the eukaryotic cytoskeletal protein tubulin made FtsZ an ideal choice as target for drug discovery [11]. Numerous reports have been published proposing novel cell division inhibitors that act by blocking FtsZ and hold high therapeutic potential but none of them have been fully developed and released to the market to date [11–18].

A promising approach to design new antimicrobial agents is based on the properties of the ribozyme RNase P, a ribonucleoprotein composed of an RNA component (M1) that is the catalytic subunit and a cofactor protein (C5). RNase P plays an essential role in the cell by directing maturation of RNA species by precise cleavage of molecules such as precursor t-RNAs or some polycistronic mRNAs [19]. The finding that RNase P can be induced to digest target RNA molecules that are not natural substrates by addition of an appropriate complementary oligoribonucleotide, known as “external guide sequence” (EGS), led to development of what is known as EGS technology [20]. For efficient degradation of the target RNA, the EGS must form a duplex that results in the appropriate stem-like structure required to serve as substrate of RNase P [21]. EGS technology has been used to inhibit expression of several genes coding for essential housekeeping functions, virulence factors, and antibiotic resistance enzymes [20,22–29]. In the first demonstration that EGSs could be used to turn off bacterial genes, oligoribonucleotides encoded by plasmids elicited about 50% reduction in expression levels of enzymes [20,22–29]. Examples of essential and virulence genes whose expression has been successfully reduced by using EGS technology are the E. coli gcvA and mptA genes [25], the Salmonella Typhimurium invB and invC genes, which...
resulted in diminished secretion of proteins that are exported using the type III secretion system and impairment of the ability to invade host cells [24], the Francisella tularensis mglB gene [22], and the Yersinia pestis yscN, yscS genes [23]. In the present study we designed an EGS complementary to the *Escherichia coli* ftsZ mRNA that interferes with cell division.

Materials and Methods

Bacterial Strains and Plasmids

E. coli BL21(DE3)(pLysS) F− dem amT hsdS(λ− m−) gal λ(DE3) pLYSs [31] was used as host for the recombinant plasmids coding for the EGSs. *E. coli* DH5α was used for regular cloning experiments. Bacterial cultures were carried out in lennox Luria (L) broth [32]. Recombinant plasmids pEGSb1 and pEGSb1S were generated by inserting a DNA fragment including the T7 promoter (GGCGAATTCAATGACTCTAATATTGGG) followed by the EGS sequence (EGSb1) or EGSb1S (Table 1), the consensus ACCA sequence, a hammerhead core [30], and a T7 terminator sequence (TAGGATAACCCCTTGGGCGCTCTTAAACGGGTCTTGAGGGGTTTTTG) into the XhoI and BamHI sites of the cloning vehicle pUC57 (GenBank/EMBL accession no. Y14837).

General Procedures

Plasmid DNA preparations were carried out using the Wizard® Plus SV Miniprep DNA Purification System (Promega). Polymerase chain reactions (PCR) were carried out using the HotStar Taq master mix kit (QIAGEN). All endonuclease restriction and ligase treatments were performed according to the supplier's recommendations (New England Biolabs). *In vitro* synthesis of RNA molecules to generate the ftsZ mRNA was done using a MEGAscript high-yield transcription T7 kit (Life Technologies) according to the protocols provided by the supplier. RNase P was prepared by mixing *in vitro* synthesized M1 RNA and purified C5 as described previously [28]. Denaturing polyacrylamide gel electrophoresis (PAGE) was performed as described previously [33] on 6% polyacrylamide:16:1 (acrylamide-bis-acrylamide) gels using a glycerol-tolerant gel (GTG) buffer containing, 7 M urea, 89 mM Tris Base, 89 mM boric acid, 2 mM EDTA (USB Corp.). Electrophoretic mobility shift assays were carried out using 6% polyacrylamide native (non-denaturing) gels prepared with TBE buffer; then FM 5–95 was added to a final concentration of 2.5 pmol of M1 RNA, 70 pmol of C5 protein, 20 mM HEPES-KOH (pH 8.0), 400 mM ammonium acetate, 10 mM magnesium acetate, and 5% glycerol that had been precultured at 37°C for 15 min in a final volume of 7 μl [36]. After combining both solutions the mix was incubated at 37°C for 90 minutes, the reaction was stopped by the addition of 1 volume of gel loading buffer, and analyzed by 6% denaturing GTG-PAGE as described before [27].

Table 1. EGS sequences.

EGS name	Sequence	ftsZ region targeted
EGSa1	AUAGUGAUCAAGACACCA	697–709
EGSa2	GAUGUGAUCAAGACACCA	696–710
EGSb1	CCGUGUCACUACACCA	1041–1053
EGSb1S	GAGGUUCAGACACCA	Not applicable (control)
EG Sap	AGGGCATCTATACCA	Not applicable (control)

EGSAP targets the phoA gene. EGSb1S is the sequence complementary to EGSb1. doi:10.1371/journal.pone.0047690.t001

Results

In vitro EGS/*ftsZ* mRNA Binding and RNase P-mediated Cleavage of *ftsZ* mRNA

The *E. coli* ftsZ gene is located towards the distal end of the *dcw* cluster, a group of 16 genes involved in cell division and cell wall synthesis [37]. This cluster possesses a complex genetic organization and several promoters within the immediately upstream *ddlB*, *ftsQ* and *ftsA* genes as well as distant upstream promoters contribute to *ftsZ* expression (Figure 1) [38]. About one third of the *ftsZ* transcripts are originated at the promoters located closely upstream of this gene (Figure 1) [38–40]. Regardless of the promoter they are transcribed from, the bulk of the *ftsZ* encoding
mRNAs are precisely processed by RNase E at specific sites close to the location of translation initiation. Two species, originated at digestion sites E1 and E3, are required for appropriate cell division (Figure 1) [38,40–44]. Therefore, to identify EGSs that elicit RNase P-mediated cleavage of the \(ftsZ \) mRNA we synthesized a molecule that includes 221 nucleotides of the 5’-UTR for our analysis.

We first identified regions within the \(ftsZ \) mRNA that may be accessible for interaction with complementary oligoribonucleotides by m-fold analysis (Figure 2A and Figure S1, the regions are also indicated in Figure 1). We selected two \(ftsZ \) mRNA regions containing numerous nucleotides that are predicted to have high probability of existing as single stranded and their structures resemble those we found in the past to be good candidates as EGSs (Figure 2B) (27,28). We then designed EGSs to target these regions; their sequences as well as the sequences of control EGSs are shown in Table 1. Electrophoretic mobility shift assays using the EGSs and \(ftsZ \) mRNA showed that all three EGSs targeting regions “a” or “b” bound the \(ftsZ \) mRNA (Figure 3A). The efficiency of these EGSs to elicit RNase P-mediated cleavage of \(ftsZ \) mRNA was determined \textit{in vitro} incubating the oligoribonucleotides and labeled mRNA with the components of RNase P, M1 RNA and C5 protein. Figure 3B shows that both regions are efficient targets for RNase P in the presence of EGSa1, EGSa2, or EGSb1. All three EGSs induced significant cleavage of the \(ftsZ \) mRNA at the expected locations (Figure 3B). In the case of region “a” we tested two different sizes of the antisense portion of the EGSs: EGSa1, 13 nucleotides, and EGSa2, 15 nucleotides. No significant differences were observed in RNase P cleavage eliciting activity (Figure 3B). As expected, negative controls consisting of incubation in the absence of an EGS or RNase P, or in the presence of an EGS targeting the \(phoA \) gene showed no \(ftsZ \) mRNA-degradation activity (Figure 3B).

Figure 1. Genetic organization of the relevant region of the \(dcw \) cluster. The grey arrows represent genes, the black arrows represent mRNA molecules, and the white P inside a black circle represent locations of the promoters within \(ddlB, ftsQ \), and \(ftsA \). The long mRNAs originated at promoters upstream of \(ddlB \) are represented by a black arrow with arrowheads at the beginning. The diagram shows that about 1/3 of the transcription of \(ftsZ \) originates at the promoters located within \(ddlB, ftsQ \), and \(ftsA \) and about 2/3 of the transcription is initiated at the far upstream promoters [38–40]. The E1 and E3 RNase E cleavage sites are indicated by curved arrows. The asterisk shows the RNA molecule utilized in this work to identify EGSs that elicit RNase P-mediated cleavage of the \(ftsZ \) mRNA [40]. The regions (“a” and “b”) used to design EGSs are shown in the same colors used in Figure 2.

doi:10.1371/journal.pone.0047690.g001

Inhibition of Cell Division by EGS
EGS-induced Filamentation

We selected EGSb1 to test its ability to interfere with cell division. We generated a recombinant plasmid with an insert that includes a T7 promoter followed by the EGSb1 coding region, the ACCA sequence, which enhances RNase P-substrate recognition; and a sequence required to generate a hammerhead ribozyme to generate the correct 3′ terminus of the EGSb1 by cis cleavage as described before [26]. E. coli BL21(DE3)(pLysS) was transformed with pEGSb1 or the control plasmid pEGSb1S, which codes for EGSb1S, whose sequence is complementary to EGSb1. IPTG was added to cultures in exponential growth phase followed by incubation for 60 or 90 minutes and cell analysis by microscopy. We consistently observed filamentation in the cultures of cells harboring pEGSb1 (Figure 4A). However, the proportion of filaments varied in different cultures. Although we still do not know the reason behind these differences, our results show a clear effect mediated by EGSb1 (see Figure 4A). Staining the filaments with FM5-95 suggested that the filaments are individual cells as no evidence of septa was detected (Figure 4B). Further experiments will permit us to confirm if there is complete or partial lack of septa. The CFU/ml were determined for cultures of both E. coli BL21(DE3)(pLysS) harboring pEGSb1 or pEGSb1S. Figure 4C shows that there was a significant reduction in the CFU/ml in the cultures of cells producing EGSb1 confirming that this EGS has a detrimental effect, most probably due to the observed inhibition of cell division.

Discussion

Antimicrobial resistance has been identified as one of the greatest threats to human health [45]. The quick increase in resistant strains observed among a number of bacterial pathogens together with the low number of candidate compounds existing in the pipeline warrant the need to look for alternatives to design new antibiotics [45,46]. FtsZ has been proposed and used numerous times as target for developing new antimicrobials [12,13,15–17].

Figure 2. Secondary structure of \(\text{ftsZ} \) mRNA and regions targeted by EGSs. A. Secondary structure of the \(\text{ftsZ} \) mRNA (nucleotides 105083–106456, accession number NC_000913.2) generated with m-fold software [34]. B. Zoom in the two regions selected as targets. Colors of the dots indicate the probability that they exist as single stranded. In decreasing order: red, orange, yellow, green, cyan, blue, violet and black. The sequences targeted by the EGSs are shown shadowed. EGSa2 includes an extra nucleotide at each end with respect to EGSa1, this is indicated by two short lines. doi:10.1371/journal.pone.0047690.g002
However, to our best knowledge EGS inhibition of expression had not been tried on this cell division gene. EGSs were designed to target two regions within the \textit{ftsZ} mRNA and tested to determine their mRNA binding properties, as well as their efficiency to induce RNase P-mediated degradation \textit{in vitro}. The EGSs that target regions “a” and “b” showed significant binding capabilities and ability to elicit RNase P-mediated degradation of the \textit{ftsZ} mRNA. EGSb1 showed activity \textit{in vivo} as the presence of pEGSb1 within \textit{E. coli} resulted in filamentation upon addition of IPTG to the culture, a phenotype that was observed when other strategies were used to target FtsZ \cite{12,13,47,48}. As expected, induction of expression of EGSb1 also resulted in growth impairment. Although EGS technology is still at an early stage, development of appropriate EGSs that can inhibit expression of resistance genes \cite{26–28} or act themselves as antibiotics \cite{23–25,29} could be a way to keep ahead of the race between availability of antibiotics and development of multiresistance. Here we show that EGSs could be developed to interfere with cell division. However, since recombinant clones coding for EGSs do not represent a realistic recourse for their practical application we are presently developing nuclease resistance alternatives with the EGSb1 sequence that will induce impairment of cell division through interference with proper FtsZ expression. We have recently shown that hybrid oligomers consisting on locked nucleic acids (LNA) and DNA residues (LNA/DNA) have activities comparable to those shown by isosequential oligoribonucleotides \cite{27}. Another hurdle for reducing to practice the utilization of LNA/DNA EGSs as antibacterial treatment is the lack of a viable methodology for their uptake by bacterial cells. Some encouraging results have recently been reported on gymnastic delivery of LNA containing oligomers and cell internalization of oligonucleotides and analogs using strategies such as liposome encapsulation or attachment of cell-permeabilizing peptides to peptide nucleic acids or phosphorodiamidine morpholino oligomers \cite{29,49–52}. Unfortunately, attempts to conjugate cell-permeabilizing peptides to LNA/DNA oligomers have so far been unsuccessful, most probably due to the negatively charged nature of these compounds. However, other solutions such as gymnastic delivery \cite{52–54} in appropriate conditions or co-administration with lipopeptide transfection agents remain to be explored \cite{55–60}.

In conclusion, the results shown in the present study indicate that, after overcoming existing stumbling blocks, the development

Figure 3. Analysis of the activity of EGSs. A. Binding of EGSs to \textit{ftsZ} mRNA. The oligoribonucleotides were 5’-end labeled, mixed with different amounts of \textit{ftsZ} mRNA (from left to right 0, 1, 10, 100, or 500 ng) and analyzed by electrophoresis in 6% native polyacrylamide gel. B. RNase P-mediated cleavage of \textit{32P}-labeled \textit{ftsZ} mRNA. The RNase P components, M1 RNA and C5 protein were preincubated at 37°C for 15 min, and a mix containing the radiolabeled \textit{ftsZ} mRNA and the indicated EGS was preincubated 25°C for 2 h. After preincubation both solutions were combined, incubated at 37°C for 90 minutes, and analyzed on 6% denaturing PAGE. The location and size of the expected products of cleavage are shown to the left.

\(\text{doi:10.1371/journal.pone.0047690.g003}\)
of RNase P-mediated \(f_{\text{ts}} \) mRNA degradation could contribute to the need for developing new antibiotics.

Supporting Information

Figure S1 ss count plot. The ss count plot is the propensity of a base to be single stranded as determined by the number of times it is single stranded in a group of predicted foldings, in this case 33, (http://mfold.rna.albany.edu/?q=mfold/documentation). To simplify the interpretation, the length of the untranslated region (black bar) and the coding region of \(f_{\text{ts}} \) (arrow) has been superimposed to the plot.

Acknowledgments

We thank S. Altman for the gift of plasmids coding for the C5 protein and for his helpful guidance at various stages of this project. We thank Susana Raffo and Marta Bravo for DNA sequencing and technical support. We also thank Maximiliano Neme for assistance with confocal microscopy. This paper is dedicated to the memory of J. H. Crosa.

Author Contributions

Conceived and designed the experiments: CDS AJCSB AZ MET. Performed the experiments: CDS AJCSB LK. Analyzed the data: CDS AJCSB AZ MET. Contributed reagents/materials/analysis tools: AZ MET. Wrote the paper: CDS AZ MET.

References

1. Goehring NW, Beckwith J (2005) Diverse paths to midcell: assembly of the bacterial cell division machinery. Curr Biol 15: R514–526.

2. Vicente M, Rico Al (2006) The order of the ring: assembly of *Escherichia coli* cell division components. Mol Microbiol 61: 5–8.

3. Vicente M, Rico Al, Martinez-Arteaga R, Mingorance J (2006) Septum enlightenment: assembly of bacterial division proteins. J Bacteriol 188: 19–27.

4. Margolin W (2005) FtsZ and the division of prokaryotic cells and organelles. Nat Rev Mol Cell Biol 6: 862–871.

5. Corbin BD, Wang Y, Beuria TK, Margolin W (2007) Interaction between cell division proteins FtsE and FtsZ. J Bacteriol 189: 3026–3035.

6. Mingorance J, Rivas G, Velez M, Gomez-Puertas P, Vicente M (2010) Strong FtsZ is with the force: mechanisms to constrict bacteria. Trends Microbiol 18: 348–356.

7. de Boer PA (2010) Advances in understanding E. coli cell fission. Curr Opin Microbiol 13: 760–767.

8. Goley ED, Yeh YC, Hong SH, Fero MJ, Abeluk E, et al. (2011) Assembly of the *Causing bacteria* cell division machine. Mol Microbiol 80: 1690–1698.

9. Erickson HP, Anderson DE, Oasa M (2010) FtsZ in bacterial cytokinesis: cytoskeleton and force generator all in one. Microbiol Mol Biol Rev 74: 504–528.

10. Vivancos AP, Guell M, Dolin JC, Serrano I, Himmelbauer H (2010) Strand-specific deep sequencing of the transcriptome. Genome research 20: 989–999.

11. Wang J, Galgochi A, Kodali S, Herath KB, Jhaasuriya H, et al. (2003) Discovery of a small molecule that inhibits cell division by blocking FtsZ, a novel therapeutic target of antibiotics. J Biol Chem 278: 44424–44428.

12. Goh S, Boberek JM, Nakashima N, Stach J, Good I (2009) Concurrent growth rate and transcript analyses reveal essential gene stringency in *Escherichia coli*. PLoS One 4: e6061.

13. Haydon DJ, Stokes NR, Ure R, Galbraith G, Bennett JM, et al. (2008) An inhibitor of FtsZ with potent and selective anti-staphylococcal activity. Science 321: 1673–1675.

14. Huang Q, Tonge PJ, Shadren RA, Kirkae T, Ojima I (2007) FtsZ: a novel target for tuberculosis drug discovery. Curr Top Med Chem 7: 527–543.

15. Sass P, Josten M, Fumilla K, Schiller G, Sahlg HG, et al. (2011) Antibiotic acyclpentapeptides activate ClpP peptidease to degrade the cell division protein FtsZ. Proc Natl Acad Sci U S A 108: 17474–17479.

16. Jaiswal R, Beuria TK, Mohan R, Mahajan SK, Panda D (2007) Totarol inhibits bacterial cytokinesis by perturbing the assembly dynamics of FtsZ. Biochemistry 46: 4211–4220.

17. Schaffner-Barbero C, Martin-Fontera M, Chacon P, Andrea JM (2012) Targeting the assembly of bacterial cell division protein FtsZ with small molecules. ACS Chem Biol 7: 269–277.

18. Haydon DJ, Bennett JM, Brown D, Collins I, Galbraith G, et al. (2010) Creating an antibacterial with \(\text{in vivo} \) efficacy: synthesis and characterization of potent inhibitors of the bacterial cell division protein FtsZ with improved pharmaceutical properties. J Med Chem 53: 3927–3936.
39. Selinger DW, Saxena RM, Cheung KJ, Church GM, Rosenow C (2003) Global
expression of essential genes in *Escherichia coli* by external guide sequences and RNase P. RNA 9: 11115–11119.

40. de la Fuente A, Palacios P, Vicente M (2001) Transcription of the *Escherichia coli*
duo cluster: evidence for distal upstream transcription being involved in the expression of the downstream *fchA* gene. Biochimie 83: 109–115.

41. Fadelblum K, Apirion D (1981) Inactivation of the ribonuclease acid-processing enzyme ribonuclease E blocks cell division. J Bacteriol 146: 128–132.

42. Cam K, Rome G, Krisch HM, Bouche JP (1996) RNase E maintenance of proper FtsZ/Pea ratio required for filamentous growth of *Escherichia coli* but not for colony-forming ability. J Bacteriol 178: 5145–5152.

43. Influenza Virus Society of America (2010) The 10x20 Initiative: pursuing a global commitment to develop 10 new antibacterial drugs by 2020. Clin Infect Dis 50: 1081–1083.

44. Rice LB (2010) Progress and challenges in implementing the research on ESKAPE pathogens. Infect Control Hospital Epidemiol 31 Suppl 1: S7–10.

45. Beberek JM, Stach J, Good L (2010) Genetic evidence for inhibition of bacterial division protein FtsZ by berberine. PLoS One 5: e13745.

46. Czaplewski LG, Collins I, Boyd EA, Brown D, East SP, et al. (2009) Antibacterial alkyladeninase inhibitors of the essential bacterial cell division protein FtsZ. Bioorg Med Chem Lett 19: 524–527.

47. Meng J, Wang H, Hou Z, Chen T, Ju J, et al. (2009) Novel anion liposome-encapsulated antisense oligonucleotides restores susceptibility of methicillin-resistant *Staphylococcus aureus* and rescues mice from lethal sepsis by targeting meca. Antimicrob Agents Chemother 53: 2871–2878.

48. McEvoy BL, Weller DD, Hassinger JN, Reeves MD, Leovey CE, et al. (2010) Cationic phosphorodiamidate morpholino oligomers efficiently prevent growth of *Escherichia coli* in vitro and in vivo. J Antimicrob Chemother 65: 98–106.

49. Eriksson M, Nielsen PE, Good L (2002) Cell permeabilization and uptake of antisense peptide-peptide nucleic acid (PNA) into *Escherichia coli*. J Biol Chem 277: 7144–7147.

50. Traglia G, Davies Sala C, Fuxman Bass J, Soler Bustard A, Zorreguieta A, et al. (2012) Internalization of locked nucleic acids/DNA hybrid oligomers into *Escherichia coli*. BioResearch Open Access, in press.

51. Stein CA, Hansen JB, Lai J, Wu S, Voskresensky A, et al. (2010) Efficient gene silencing by delivery of locked nucleic acid antisense oligonucleotides, unassisted by transfection reagents. Nucleic Acids Res 38: e5.

52. Torres AG, Threlfall RN, Gait MJ (2011) Potent and sustained cellular inhibition of miR-122 by lysine-derivatized peptide nucleic acids (PNA) and phosphorothioate locked nucleic acid (LNA)/2'-O-methyl (OMe) mixmer antisense oligonucleotides in the absence of transfection agents. Artif DNA PNA XNA 2: 71–76.

53. Lehto T, Abes R, Oskolkov N, Suohunoku J, Czepoleczi DM, et al. (2010) Delivery of nucleic acids with a stearylated (RsR) peptide using a non-covalent co-incubation strategy. J Control Release 141: 42–51.

54. Mac M, El Andaloussi S, Lamdin P, Oskolkov N, Johannson HJ, et al. (2009) A stearylated CPP for delivery of splice correcting oligonucleotides using a non-covalent co-incubation strategy. J Control Release 134: 221–227.

55. Takara K, Hatakeyama H, Ohga N, Hida K, Harashima H (2010) Design of a dual-ligand system using a specific ligand and cell penetrating peptide, resulting in synergistic effect on selectivity and cellular uptake. Int J Pharm 396: 143–148.

56. Anko M, Majhenc J, Kogoj K, Sillard R, Langel U, et al. (2012) Influence of stearyl and trifluoromethylethylamine modifications of the cell penetrating peptide TP10 on its interaction with a lipid membrane. Biochim Biophys Acta 1818: 915–924.

57. Said Hassane F, Saleh AF, Abes R, Gait MJ, Lebleu B (2010) Cell penetrating peptides: overview and applications to the delivery of oligonucleotides. Methods Mol Biol 683: 207–217.