Radiogenomics correlation between MR imaging features and mRNA-based subtypes in lower-grade glioma

Zhenyin Liu and Jing Zhang*

Abstract

Background: To investigate associations between lower-grade glioma (LGG) mRNA-based subtypes (R1-R4) and MR features.

Methods: mRNA-based subtyping was obtained from the LGG dataset in The Cancer Genome Atlas (TCGA). We identified matching patients (n = 145) in The Cancer Imaging Archive (TCIA) who underwent MR imaging. The associations between mRNA-based subtypes and MR features were assessed.

Results: In the TCGA-LGG dataset, patients with the R2 subtype had the shortest median OS months (P < 0.05). The time-dependent ROC for the R2 subtype was 0.78 for survival at 12 months, 0.76 for survival at 24 months, and 0.76 for survival at 36 months. In the TCIA-LGG dataset, 41 (23.7%) R1 subtype, 40 (23.1%) R2 subtype, 19 (11.0%) R3 subtype and 45 (26.0%) R4 subtype cases were identified. Multivariate analysis revealed that enhancing margin (ill-defined, OR: 9.985; P = 0.003) and T1 + C/T2 mismatch (yes, OR: 0.091; P = 0.023) were associated with the R1 subtype (AUC: 0.708). The average accuracy of the ten-fold cross validation was 71%. Proportion of contrast-enhanced (CE) tumour (> 5%, OR: 14.733; P < 0.001) and necrosis/cystic changes (yes, OR: 0.252; P = 0.009) were associated with the R2 subtype (AUC: 0.832). The average accuracy of the ten-fold cross validation was 82%. Haemorrhage (yes, OR: 8.55; P < 0.001) was positively associated with the R3 subtype (AUC: 0.689). The average accuracy of the ten-fold cross validation was 87%. For the prediction of the R2 subtype, the nomogram showed good discrimination and calibration. Decision curve analysis demonstrated that prediction with the R2 model was clinically useful.

Conclusions: Patients with the R2 subtype had the worst prognosis. We demonstrated that MRI features can identify distinct LGG mRNA-based molecular subtypes.

Keywords: Logistic regression, Lower-grade gliomas, mRNA-based subtypes, MR biomarker, Time-dependent ROC
Background
Primary brain tumours are one of the top ten causes of cancer-related deaths in the United States [1]. They are characterized by biological heterogeneity and can be classified into a variety of histological subtypes [2–4]. LGGs are currently classified by morphological criteria. However, this classification suffers from high interobserver and intraobserver variability [5, 6]. Therefore, clinicians increasingly rely on genetic classification to guide clinical decision making. The treatment of LGG could benefit from the incorporation of precision medicine. The majority of patients with high-risk LGG are treated with single-agent temozolomide (TMZ) and radiotherapy. Next-generation sequencing has definitively revealed that different LGG mRNA-based subtypes fundamentally differ in their underlying molecular pathways, despite being histologically similar [7–9].

A new direction in cancer research has emerged that focuses on the relationship between genomic data and imaging features [10–12]. Radiogenomic studies have indicated key imaging differences between certain LGG genetic groups and may aid in the diagnosis of LGG as well as the longitudinal assessment of treatment response and evaluation of tumour recurrence in patients with LGG [13–16]. The TCGA Research Network identifies four mRNA-based (R1–R4) subtypes [17] (N Engl J Med 2015). Core members in the four well-defined subtypes were identified and found to be distinctly enriched for the previously defined astrocytoma subtype and neural ontology signatures and correlated with specific genomic events.

Survival analysis revealed that the R2 subtype was significantly correlated with shorter overall survival. Both the R1 subtype and R3 subtype highly expressed an early progenitor-like astrocytoma gene signature. The R4 subtype highly expressed a neuroblastic astrocytoma signature and a neuron-specific signature [17]. This study aims to explore associations between LGG mRNA-based subtypes (R1–R4) and MR features. Our preliminary radiogenomics analysis may serve as a reference in the development of precision medicine for LGG patients.

Methods
Patient population
The clinical files of LGG patients were obtained from TCGA. MR data were provided by TCIA [18–20]. TCGA and TCIA are publicly available databases. The TCGA Research Network [17] classifies LGG into four categories (R1, R2, R3 and R4) according to mRNA expression patterns. The inclusion criteria of the study were as follows: (I) mRNA-based subtyping (R1–R4) was obtained from the LGG dataset in TCGA; and (II) MR data were available from TCIA (T1WI, T2WI, contrast enhancement). Uneuitable examinations and postsurgical patients were excluded. Finally, 145 patients met the inclusion criteria.

Assessment of MR features
MR image analysis was performed as previously published by recent studies and our group [21–23]. The following lesion features were evaluated [21–23]: (A) volume (<median or ≥median); (B) width (<median or ≥median); (C) length (<median or ≥median); (D) depth (<median or ≥median); (E) proportion of CE tumour (no ≤5% or yes >5%); (F) enhancing margin (well-defined or poorly defined); (G) T1+C/T2
Table 1 Clinical Characteristics of the LGG Sample Set According to RNA subtypes
Total (N = 145)
Histological type — no. (%)
Oligodendroglioma
Astrocytoma
Oligoastrocytoma
Neoplasm histologic grade — no. (%)
G2
G3
Age at diagnosis — yr
Mean
Range
Gender — no. (%)
Female
Male
Race — no. (%)
American Indian or Alaska Native
Black or African American
White
Family history of cancer — no. (%)
No
Yes
Method of sample procurement — no. (%)
Open biopsy
Subtotal resection
Gross total resection
First presenting symptom — no. (%)
Headaches
Mental status change
Motor or movement change
Seizure
Sensory or visual change
Laterality — no. (%)
Left
Midline
Right
IDH1p19q Subtype
IDHmut-non-codel
IDHmut-codel
IDHwt
or obvious); and (O) necrosis/cystic change (negative or positive). Both neuroradiologists were blinded to LGG mRNA-based subtypes (R1-R4) as well as the clinical data.

Statistical analysis

We focused on the association of mRNA-based subtypes (R1-R4) and MR features. A colour heat map was drawn to show the correlation patterns between MR features and mRNA expression (R1-R4). Fisher's exact test, the chi-square test and binary logistic regression analysis were used (version 23.0; SPSS Company) for each mRNA-based subtype. We use tenfold cross-validation test. Odds ratios (ORs) as well as their corresponding 95% confidence intervals (CIs) are reported. In the present study, binary logistic regression was repeated for the four LGG mRNA-based subtypes: R1, R2, R3 and R4. The area under the receiver operating characteristic curve (AUC) of each mRNA-based subtype (R1-R4) is reported. Survival analysis was conducted by using Kaplan-Meier analysis and the time-dependent ROC method (the worst prognostic subgroup; R package). A P-value of less than 0.05 (two-sided) was considered to indicate statistical significance.

Results

In the TCGA-LGG dataset, patients with the R2 subtype had the shortest median OS months \((P < 0.05)\) (Fig. 1a). The time-dependent ROC for the R2 subtype was 0.78 for survival at 12 months, 0.76 for survival at 24 months, and 0.76 for survival at 36 months (Fig. 1b).

In the TCIA-LGG dataset, a total of 145 LGG (grade II: 61 cases, grade III 68 cases) patients (IDHmut-non-codeletion: 70 cases; IDHmut-codeletion: 35 cases; IDHwt: 38 cases) were screened (female: 70 patients; male: 75 patients). The demographic and tumour characteristics of all 145 patients (astrocytoma: 49 cases; oligoastrocytoma: 31 cases; oligodendrogloma: 65 cases) are summarized in Table 1. The identified subtypes were as follows: 41 (23.7%) R1 subtype, 40 (23.1%) R2 subtype, 19 (11.0%) R3 subtype and 45 (26.0%) R4 subtype.
R4 subtype. The frequencies (heat map) of lesion features per mRNA-based subtype (R1-R4) are pictured in Fig. 2.

In univariate analysis (Tables 2 and 3), enhancing margin, extranodular growth and T1 + C/T2 mismatch were associated with the R1 subtype (all \(P < 0.05 \)).

Table 2 Summary of MR features per mRNA-based subgroup

Feature	R1	R2	R3	R4
Necrosis/cystic				
Negative	25 (24.04)	5 (12.2)	16 (15.24)	14 (35)
Positive	79 (75.96)	36 (87.8)	89 (84.76)	26 (65)
Multifocality				
Negative	97 (93.27)	41 (100)	104 (99.05)	34 (85)
Positive	7 (6.73)	0 (0)	1 (0.95)	6 (15)
Hemorrhage				
Negative	86 (82.69)	38 (92.68)	90 (85.71)	34 (85)
Positive	18 (17.31)	3 (7.32)	15 (14.29)	6 (15)
Degree of enhancement				
Negative	38 (39.18)	20 (50)	52 (52.53)	6 (15.79)
Positive	59 (60.82)	20 (50)	47 (47.47)	32 (84.21)
Proportion CE Tumor				
Negative	76 (78.35)	39 (97.5)	89 (89.9)	26 (68.42)
Positive	21 (21.65)	1 (2.5)	10 (10.1)	12 (31.58)
Extranodular Growth				
Negative	73 (75.26)	38 (92.68)	89 (89.9)	22 (57.89)
Positive	24 (24.74)	2 (5)	10 (10.1)	16 (42.11)
T1 + C/T2 Mismatch				
Negative	47 (46.53)	24 (58.54)	52 (50)	9 (22.5)
Positive	59 (60.82)	37 (95)	76 (77.7)	26 (68.42)
CS				
> 30 mm	47 (46.53)	24 (58.54)	52 (50)	9 (22.5)
<=30 mm	59 (60.82)	37 (95)	76 (77.7)	26 (68.42)
Location				
Other	65 (62.5)	24 (58.54)	60 (57.14)	29 (72.5)
Frontal lobe	39 (37.5)	17 (41.46)	45 (42.86)	11 (27.5)
SVZ				
Negative	40 (38.46)	16 (39.02)	41 (39.05)	15 (37.5)
Positive	64 (61.54)	25 (60.98)	64 (60.95)	25 (62.5)
Volume				
<60 cm³	38 (36.54)	8 (19.51)	28 (66.42)	18 (45)
>=60 cm³	66 (63.46)	33 (80.49)	77 (73.33)	22 (55)
Intratumoral vascular				
Negative	1 (1.03)	2 (5)	2 (2.00)	1 (2.63)
Positive	96 (98.97)	38 (95)	97 (97.98)	37 (97.37)
Length				
<median	57 (54.81)	19 (46.34)	54 (51.43)	22 (55)
>=median	47 (45.19)	22 (53.66)	51 (48.57)	18 (45)
Width				
<median	58 (55.77)	16 (39.02)	50 (47.62)	24 (60)
>=median	46 (44.23)	25 (60.98)	55 (52.38)	16 (40)
Depth				
<median	58 (55.77)	18 (43.9)	49 (46.67)	27 (67.5)
>=median	46 (44.23)	23 (56.1)	56 (53.33)	13 (32.5)
Length-Width Ratio				
<median	56 (53.85)	21 (51.22)	54 (51.43)	23 (57.5)
>=median	48 (46.15)	20 (48.78)	51 (48.57)	17 (42.5)
Length-Depth Ratio				
<median	53 (50.96)	22 (53.66)	54 (51.43)	21 (52.5)
>=median	51 (49.04)	19 (46.34)	51 (48.57)	19 (47.5)
L/CS Ratio				
<median	50 (49.5)	21 (51.22)	50 (48.08)	21 (55.26)
>=median	51 (50.5)	20 (48.78)	54 (51.92)	17 (44.74)
Volume				
<median	56 (53.85)	18 (43.9)	50 (47.62)	24 (60)
>=median	48 (46.15)	23 (56.1)	55 (52.38)	16 (40)
Necrosis/cystic change, multifocality, degree of enhancement, proportion of CE tumour, volume, depth, extranodular growth and T1 + C/T2 mismatch were associated with the R2 subtype. Haemorrhage was associated with the R3 subtype ($P < 0.05$). The degree of enhancement, enhancing margin, proportion of CE tumour and extranodular growth were associated with the R4 subtype (all $P < 0.05$).

Table 3	Results from risk analyses (univariate logistic regression, odds ratios, 95% confidence intervals in parentheses)					
	R1	R2	R3	R4		
Necrosis/cystic	Negative	Reference	0.334 (0.144–0.773)*	5.381 (0.689–42.052)	0.875 (0.371–2.061)	
Multifocality	Negative	Reference	18.353 (2.133–157.892)**	–	0.356 (0.042–3.048)	
Hemorrhage	Negative	Reference	9.695 (4.12–22.813)**	1.137 (0.416–3.114)	0.14 (0.046–0.423)**	
Degree of enhancement	Negative	Reference	6.473 (2.586–16.203)**	1.65 (0.536–5.08)	0.261 (0.074–0.925)*	
Proportion CE Tumor	Positive	0.451 (0.193–1.051)	9.695 (4.12–22.813)**	1.137 (0.416–3.114)	0.14 (0.046–0.423)**	
Enhancing Margin	Well-defined	Reference	9.797 (2.224–43.151)**	0.656 (0.287–2.026)	0.433 (0.193–0.97)*	
Extranodular Growth	Negative	Reference	0.16 (0.036–0.714)*	6.473 (2.586–16.203)**	1.65 (0.536–5.08)	0.261 (0.074–0.925)*
T1 + C/T2 Mismatch	Negative	Reference	0.093 (0.012–0.716)*	4.108 (1.595–10.58)**	2.942 (0.978–8.853)	0.333 (0.093–1.196)
CS	> 30 mm	Reference	1.181 (0.565–2.468)	2.475 (0.928–6.601)	0.95 (0.46–1.959)	
Location	Other	Reference	0.617 (0.296–1.285)	1.444 (0.544–3.835)	1.302 (0.638–2.658)	
SVZ	Positive	0.977 (0.465–2.05)	1.068 (0.504–2.262)	0.846 (0.318–2.253)	1.053 (0.51–2.173)	
Volume	<60 cm3	Reference	0.198 (0.017–2.247)	0.763 (0.067–8.667)	266,904,432.61 (0–0)	687,436,275.335 (0–0)
Intratumoral vascular	Negative	Reference	2.375 (0.996–5.666)	0.444 (0.208–0.949)**	1.351 (0.455–4.005)	0.899 (0.424–1.904)
Length	<median	Reference	1.404 (0.68–2.9)	0.866 (0.417–1.8)	0.99 (0.377–2.601)	0.833 (0.411–1.688)
Width	<median	Reference	1.97 (0.943–4.118)	0.606 (0.289–1.27)	0.929 (0.354–2.441)	0.875 (0.432–1.77)
Depth	<median	Reference	1.611 (0.778–3.337)	0.421 (0.196–0.905)*	1.612 (0.608–4.277)	1.079 (0.533–2.181)
Length-Width Ratio	<median	Reference	1.111 (0.539–2.291)	0.783 (0.375–1.631)	0.8 (0.302–2.122)	1.278 (0.631–2.586)
Length-Depth Ratio	<median	Reference	0.898 (0.435–1.852)	0.958 (0.462–1.986)	0.751 (0.283–1.991)	1.342 (0.663–2.716)
L/CS Ratio	<median	Reference	0.934 (0.452–1.93)	0.7 (0.355–1.581)	1.129 (0.429–2.971)	1.302 (0.638–2.658)
Volume	<median	Reference	1.491 (0.72–3.085)	0.606 (0.289–1.27)	1.512 (0.57–4.012)	0.875 (0.432–1.77)
Multivariate analysis (Table 4) revealed that enhancing margin (ill-defined, OR: 9.985; \(P = 0.003 \)) and T1 + C/T2 mismatch (yes, OR: 0.091; \(P = 0.023 \)) were associated with the R1 subtype (AUC: 0.708). The average accuracy of the ten-fold cross validation was 71%. Proportion of contrast-enhanced (CE) tumour (> 5%, OR: 14.733; \(P < 0.001 \)) and necrosis/cystic changes (yes, OR: 0.252; \(P = 0.009 \)) were associated with the R2 subtype (Fig. 3a AUC: 0.832). The average accuracy of the ten-fold cross validation was 82%. Decision curve analysis (Fig. 3b) demonstrated that prediction with the R2 model was clinically useful. For the prediction of the R2 subtype, the nomogram showed good discrimination and calibration (Fig. 4). Haemorrhage (yes, OR: 8.55; \(P < 0.001 \)) was positively associated with the R3 subtype (AUC: 0.689). The average accuracy of the ten-fold cross validation was 87%. Proportion of CE tumour (> 5%, OR: 0.14; \(P < 0.001 \)) was negatively associated with the R4 subtype (AUC: 0.672). The average accuracy of the ten-fold cross validation was 71%.

We demonstrated (Fig. 5) that ill-defined margins and the absence of T1 + C/T2 mismatches were positively linked with the R1 subtype (AUC: 0.708). Proportion CE tumour (> 5%), volume < 60 cm\(^3\) and absence of necrosis/cystic change were positively associated with the R2 subtype (AUC: 0.832). Haemorrhage was positively associated with the R3 subtype (AUC: 0.689). Proportion of CE tumour > 5% was negatively associated with the R4 subtype (AUC: 0.672).

Discussion

Glioma is one of the most common primary central nervous system malignant tumours [24, 25]. Intratumoural genetic heterogeneity plays a pivotal role in driving disease progression and therapeutic resistance in LGG. Intratumoural heterogeneity has been linked to metastatic potential and is likely to be an important prognostic feature of human cancer [26, 27]. The TCGA Research Network [17] classifies LGG into four subgroups (R1–R4) based on mRNA expression. R1, R2, R3 and R4 tumours were found to be biologically and clinically distinct. Our previous published work has revealed that clinical and MR features may therefore be used to facilitate the preoperative prediction of LGG IDH/1p19q subtype. In this research, we revealed that MRI features can identify distinct LGG mRNA-based molecular subtypes.

Radiogenomic studies have revealed key imaging differences between certain LGG genetic groups and may aid in the diagnosis of patients with LGG as well as predict survival and guide treatment in patients with LGG [10, 28–31]. In this study, R2 tumours showed significantly worse overall survival than the other RNA subtypes (R1 subtype, R3 subtype and R4 subtype), which did not significantly differ from one another. The time-dependent ROC for the R2 subtype was 0.78 for survival at 12 months, 0.76 for survival at 24 months, and 0.76 for survival at 36 months.

The R2 subtype is mostly composed of GIII tumours (77%), tumours mostly of astrocytoma histology (68%), tumours enriched for the methylation subtype M2 (62%) and IDH wild type (67%) tumours. This subtype is correlated with GBM-related events such as PTEN mutation, chromosome 10 loss, and EGFR mutation and amplification. Our findings showed that the proportion of CE tumours (> 5%) and the absence of necrosis/cystic changes were positively associated with the R2 subtype (AUC: 0.832). This is the first article to show the connection

Table 4

Results from risk analyses (multivariate logistic regression, odds ratios, 95% confidence intervals in parentheses)

	R1	P	R2	P	R3	P	R4	P
Necrosis/cystic								
Negative	Reference	0.252 (0.090–0.709)	0.009					
Positive								
Hemorrhage								
Negative	Reference		8.55 (2.906–25.158)	< 0.001				
Positive								
Proportion CE Tumor								
Negative	Reference							
Positive								
Enhancing Margin								
Well-defined	Reference							
Poorly-defined			9.895 (2.218–44.134)	0.003				
T1 + C/T2 Mismatch								
Negative	Reference							
Positive			0.091 (0.012–0.720)	0.023				
Volume								
<60cm\(^3\)	Reference		0.006					
≥ 60 cm\(^3\)			0.248 (0.091–0.675)					

Liu and Zhang BMC Neurology (2020) 20:259 Page 7 of 10
between the R2 subtype and MR features. For the prediction of the R2 subtype, the nomogram showed good discrimination and calibration. Decision curve analysis demonstrated that prediction with the R2 model was clinically useful.

The other RNA subtypes (R1, R3, and R4) were populated with IDH-mutant gliomas. R1 lacked 1p/19q codeletion and was comprised of two methylation subtypes, M5 (70%) and M3 (30%), and the vast majority of R1 cases had TP53 and ATRX mutations. We demonstrated that well-defined margins and the absence of T1+C/T2 mismatches were positively associated with the R1 subtype (AUC: 0.708). The R3 subtype was entirely composed of IDHmut-codeletion gliomas and was equally distributed across the methylation subtypes M2 and M3. It was also enriched for oligodendroglialomas (85%), mutations in NOTCH1, FUBP1, and CIC, and oligodendrocyte progenitor-specific expression. Our findings showed that haemorrhage was positively associated with the R3 subtype (AUC: 0.689). The R4 subtype highly expressed a neuron-specific signature and a neuroblastic astrocytoma signature. The proportion of CE tumours (≤ 5%) was positively associated with the R4 subtype (AUC: 0.672). This is the first article to show that MRI features can identify distinct LGG mRNA-based molecular subtypes (R1, R3–4). Radiogenomics analysis allows researchers to explore the TCGA and
TCIA databases for correlations between mRNA-based molecular subtypes and radiological phenotypes.

Our study has several limitations. The major limitation of this article was that the sample size of the R3 subtype was only 19 patients (11.0%). The disadvantages of a small sample size might have limited the statistical power to explore additional correlations of the R3 subtype. Our findings should be further investigated and externally validated in larger cohorts of LGG patients. In addition, the MR data are heterogeneous, and in most cases, the images were acquired as part of routine care and not as part of a controlled research study or clinical trial. Our results should be validated using standardized MR imaging.

Conclusions

Our results revealed connections between LGG mRNA-based subtypes (R1-R4) and MR lesion features. Our findings revealed that ill-defined margins and the absence of T1 + C/T2 mismatches were positively associated with the R1 subtype. The proportion of CE tumour > 5%, volume < 60 cm³ and absence of necrosis/cystic changes were positively associated with the R2 subtype. Haemorrhage was positively associated with the R3 subtype. Proportion of CE tumour > 5% was negatively associated with the R4 subtype (AUC: 0.672).

Acknowledgements

None.

Authors’ contributions

ZYL performed the statistical analysis and drafted the manuscript, JZ and ZYL participated in the design of the study and helped to draft the manuscript. JZ and ZYL collected the data, JZ and ZYL helped to perform the statistical analysis. All authors read and approved the final manuscript.

Funding

Supported by a grant from the Medical and Health Science and Technology Project of Guangzhou (No. 20161A011022) and partially supported by the fund from Guangzhou Institute of Pediatrics/Guangzhou Women and Children’s Medical Center/INOIP-2016-002. The funding body did not play any role in design, in the collection, analysis, and interpretation of data; in the writing of the manuscript; and in the decision to submit the manuscript for publication.

Availability of data and materials

No administrative permissions were required to access the raw data from The Cancer Genome Atlas Low Grade Glioma (TCGA-LGG) project. Public access to the databases is open. All data generated or analysed in this study are included in this published article. TCIA: https://wiki.cancerimagingarchive.net/; TCGA: https://portal.gdc.cancer.gov/.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Received: 30 October 2019 Accepted: 22 June 2020
Published online: 29 June 2020

References

1. Mawson AR. Retinoids in the treatment of glioma: a new perspective. Cancer Manag Res. 2012;4:233–41.
2. Wang Y, Liu S, Fan X, Li S, Wang R, Wang L, Ma J, Jiang T, Ma W. Age-associated brain regions in gliomas: a volumetric analysis. J Neuro-Oncol. 2015;122:299–306.
3. Inano R, Oishi N, Kunieda T, Arakawa Y, Yamao Y, Shibata S, Shibata S, Shibata S, Kikuchi T, Fukuyama H, Miyamoto S. Voxel-based clustered imaging by multiparameter diffusion tensor images for glioma grading. Neuroimage Clin. 2014;3:396–407.
4. Raja R, Sinha N, Saini J, Mahadevan A, Rao KN, Swaminathan A. Assessment of tissue heterogeneity using diffusion tensor and diffusion kurtosis imaging for grading gliomas. Neuroradiology. 2016;58:1217–31.
5. Bai Y, Lin Y, Tian J, Shi D, Cheng J, Haacke EM, Hong X, Ma B, Zhou J, Wang M. Grading of Gliomas by using MonoeXponential, Biexponential, and stretched exponential diffusion-weighted MR imaging and diffusion kurtosis MR imaging. Radiology. 2016;278:496–504.
6. Ma L, Song ZJ. Differentiation between low-grade and high-grade glioma using combined diffusion tensor imaging metrics. Clin Neurol Neurosurg. 2013;115:2489–95.
7. Appin CL, Brat DJ. Biomarker-driven diagnosis of diffuse gliomas. Mol Asp Med. 2015;45:87–96.
8. Segal T. Clinical relevance of prognostic and predictive molecular markers in Gliomas. Adv Tech Stand Neurosurg. 2016;43:91–108.
9. Weller M, Stupp R, Hegi ME, van den Bent M, Tonn JC, Sanson M, Wick W, Reifenberger G. Personalized care in neuro-oncology coming of age: why we need MGMT and 1p/19q testing for malignant glioma patients in clinical practice. Neuro Oncol. 2012;14(Suppl 4):iv100–8.
10. Jansen RW, van Amstel P, Martens RM, Kooi IE, Wasseling P, de Langen AJ, Menke-Van der Houven van Oordt CW, BHE J, Moll AC, Dorsman JC,
Castellins JA, de Graaf P, de Jong MC. Non-invasive tumor genotyping using radiogenic biomarkers, a systematic review and oncology-wide pathway analysis. Oncotarget. 2018;9(53):2334–55.

11. Karp C, Uchiyama Y, Shiroya H, Yoshi G, Doki K. Computer-aided diagnosis with radiogenomics: analysis of the relationship between genotype and morphological changes in the brain magnetic resonance images. Radiol Phys Technol. 2018;11(3):625–73.

12. Hong EK, Choi SH, Shin DJ, Jo SW, Kang KM, Yun TJ, Kim JH, Sohn CS, Choueiri TK, Bajenaru P, Davatzikos C. Advancing the Cancer genome atlas glioma MRI collaborations with expert segmentation labels and radiomic features. Sci Data. 2017;4:170117.

13. Colen RR, Vangel M, Wang J, Gutman DA, Hwang SN, Wintermark M, Jain R, Jilvaim-Morbidini M, Chen JY, Raghavan P, Holder CA, Rubin D, Huang E, Kirby J, Freymann J, Jaffe CC, Flanders A, Group TGR, Zinn PO. Imaging genomic mapping of an invasive MRI phenotype predicts patient outcome and metabolic dysfunction: a TCGA glioma phenotype research project group. BMC Med Genet. 2014;7:30.

14. Gutman DA, Cooper LA, Hwang SN, Holder CA, Gao J, Aurora TD, Dunn WD Jr, Scarpalese L, Mikkelsen T, Jain R, Wintermark M, Jilvaim, Raghavan P, Huang E, Clifford RJ, Montgomery K, Kleper V, Freymann J, Kirby J, Zinn PO, Moreno CS, Jaffe C, Colen R, Rubin DL, saltz, J. Flanders, A, Brat DJ. MR imaging predictors of molecular profile and survival: multi-institutional study of the TCGA glioblastoma data set. Radiology. 2013;265:569–90.

15. Liu S, Wang Y, Fan X, Ma J, Ma W, Wang R, Jiang T. Anatomical involvement of the subventricular zone predicts survival outcome in low-grade gliotumours. PLoS One. 2016;11(1):0154539.

16. Liu S, Wang Y, Fan X, Ma J, Ma W, Wang R, Jiang T. Anatomical involvement of the subventricular zone predicts survival outcome in low-grade gliotumours. PLoS One. 2016;11(1):0154539.

17. Castelijns JA, de Graaf P, de Jong MC. Non-invasive tumor genotyping using radiogenic biomarkers, a systematic review and oncology-wide pathway analysis. Oncotarget. 2018;9(53):2334–55.

18. Bakas S, Akbari H, Sotiras A, Rozycki M, Kirby J, Freymann JB. Farahani K, Davatzikos C. Advancing the Cancer genome atlas glioma MRI collaborations with expert segmentation labels and radiomic features. Sci Data. 2017;4:170117.

19. Colen RR, Vangel M, Wang J, Gutman DA, Hwang SN, Wintermark M, Jain R, Jilvaim-Morbidini M, Chen JY, Raghavan P, Holder CA, Rubin D, Huang E, Kirby J, Freymann J, Jaffe CC, Flanders A, Group TGR, Zinn PO. Imaging genomic mapping of an invasive MRI phenotype predicts patient outcome and metabolic dysfunction: a TCGA glioma phenotype research project group. BMC Med Genet. 2014;7:30.

20. Gutman DA, Cooper LA, Hwang SN, Holder CA, Gao J, Aurora TD, Dunn WD Jr, Scarpalese L, Mikkelsen T, Jain R, Wintermark M, Jilvaim, Raghavan P, Huang E, Clifford RJ, Montgomery K, Kleper V, Freymann J, Kirby J, Zinn PO, Moreno CS, Jaffe C, Colen R, Rubin DL, saltz, J. Flanders, A, Brat DJ. MR imaging predictors of molecular profile and survival: multi-institutional study of the TCGA glioblastoma data set. Radiology. 2013;265:569–90.

21. Liu S, Wang Y, Fan X, Ma J, Ma W, Wang R, Jiang T. Anatomical involvement of the subventricular zone predicts survival outcome in low-grade gliotumours. PLoS One. 2016;11(1):0154539.

22. Pope WB, Chen JH, Dong J, Carlson MR, Perlin A, Cloughesy TF, Lui LM, Michelson PS, Nghiemphu P, Lai A, Nelson SF. Relationship between gene expression and enhancement in glioblastoma multiforme: exploratory DNA microarray analysis. Radiology. 2008;249:268–77.

23. Inoue T, Ogasawara K, Beppu T, Ogawa A, Kabasawa H. Diffusion tensor imaging for preoperative evaluation of tumor grade in gliomas. Clin Neurol Neurosurg. 2005;107:174–80.

24. Inoue T, Ogasawara K, Beppu T, Ogawa A, Kabasawa H. Diffusion tensor imaging for preoperative evaluation of tumor grade in gliomas. Clin Neurol Neurosurg. 2005;107:174–80.

25. Pan et al. Glioblastoma. N Engl J Med. 2015;372:2481–98.

26. Liu S, Wang Y, Fan X, Ma J, Ma W, Wang R, Jiang T. Anatomical involvement of the subventricular zone predicts survival outcome in low-grade gliotumours. PLoS One. 2016;11(1):0154539.

27. Liu S, Wang Y, Fan X, Ma J, Ma W, Wang R, Jiang T. Anatomical involvement of the subventricular zone predicts survival outcome in low-grade gliotumours. PLoS One. 2016;11(1):0154539.

28. Bavik S, Akbari H, Sotiras A, Rozycki M, Kirby J, Freymann JB. Farahani K, Davatzikos C. Advancing the Cancer genome atlas glioma MRI collaborations with expert segmentation labels and radiomic features. Sci Data. 2017;4:170117.

29. Colen RR, Vangel M, Wang J, Gutman DA, Hwang SN, Wintermark M, Jain R, Jilvaim-Morbidini M, Chen JY, Raghavan P, Holder CA, Rubin D, Huang E, Kirby J, Freymann J, Jaffe CC, Flanders A, Group TGR, Zinn PO. Imaging genomic mapping of an invasive MRI phenotype predicts patient outcome and metabolic dysfunction: a TCGA glioma phenotype research project group. BMC Med Genet. 2014;7:30.

30. Gutman DA, Cooper LA, Hwang SN, Holder CA, Gao J, Aurora TD, Dunn WD Jr, Scarpalese L, Mikkelsen T, Jain R, Wintermark M, Jilvaim, Raghavan P, Huang E, Clifford RJ, Montgomery K, Kleper V, Freymann J, Kirby J, Zinn PO, Moreno CS, Jaffe C, Colen R, Rubin DL, saltz, J. Flanders, A, Brat DJ. MR imaging predictors of molecular profile and survival: multi-institutional study of the TCGA glioblastoma data set. Radiology. 2013;265:569–90.

31. Inoue T, Ogasawara K, Beppu T, Ogawa A, Kabasawa H. Diffusion tensor imaging for preoperative evaluation of tumor grade in gliomas. Clin Neurol Neurosurg. 2005;107:174–80.

32. Pan et al. Glioblastoma. N Engl J Med. 2015;372:2481–98.

33. Liu S, Wang Y, Fan X, Ma J, Ma W, Wang R, Jiang T. Anatomical involvement of the subventricular zone predicts survival outcome in low-grade gliotumours. PLoS One. 2016;11(1):0154539.

34. Pan et al. Glioblastoma. N Engl J Med. 2015;372:2481–98.

35. Liu S, Wang Y, Fan X, Ma J, Ma W, Wang R, Jiang T. Anatomical involvement of the subventricular zone predicts survival outcome in low-grade gliotumours. PLoS One. 2016;11(1):0154539.

36. Pan et al. Glioblastoma. N Engl J Med. 2015;372:2481–98.