SCHUR-FINITENESS IN λ-RINGS

C. MAZZA AND C. WEIBEL

Abstract. We introduce the notion of a Schur-finite element in a λ-ring.

Since the beginning of algebraic K-theory in [G57], the splitting principle has proven invaluable for working with λ-operations. Unfortunately, this principle does not seem to hold in some recent applications, such as the K-theory of motives. The main goal of this paper is to introduce the subring of Schur-finite elements of any λ-ring, and study its main properties, especially in connection with the virtual splitting principle.

A rich source of examples comes from Heinloth’s theorem [H1], that the Grothendieck group $K_0(A)$ of an idempotent-complete \mathbb{Q}-linear tensor category A is a λ-ring. For the category \mathcal{M}^{eff} of effective Chow motives, we show that $K_0(\text{Var}) \to K_0(\mathcal{M}^{\text{eff}})$ is not an injection, answering a question of Grothendieck.

When A is the derived category of motives $\mathcal{D}m_{gm}$ over a field of characteristic 0, the notion of Schur-finiteness in $K_0(\mathcal{D}m_{gm})$ is compatible with the notion of a Schur-finite object in $\mathcal{D}m_{gm}$, introduced in [Mz].

We begin by briefly recalling the classical splitting principle in Section 1, and answering Grothendieck’s question in Section 2. In section 3 we recall the Schur polynomials, the Jacobi-Trudi identities and the Pieri rule from the theory of symmetric functions. Finally, in Section 4, we define Schur-finite elements and show that they form a subring of any λ-ring. We also state the conjecture that every Schur-finite element is a virtual sum of line elements.

Notation. We will use the term λ-ring in the sense of [Ber, 2.4]; we warn the reader that our λ-rings are called special λ-rings by Grothendieck, Atiyah and others; see [G57] [AT] [A].

A \mathbb{Q}-linear category A is a category in which each hom-set is uniquely divisible (i.e., a \mathbb{Q}-module). By a \mathbb{Q}-linear tensor category (or \mathbb{Q}TC) we mean a \mathbb{Q}-linear category which is also symmetric monoidal and such that the tensor product is \mathbb{Q}-linear. We will be interested in \mathbb{Q}TC’s which are idempotent-complete.
1. Finite-dimensional λ-rings

Almost all λ-rings of historical interest are finite-dimensional. This includes the complex representation rings $R(G)$ and topological K-theory of compact spaces [AT 1.5] as well as the algebraic K-theory of algebraic varieties [G57]. In this section we present this theory from the viewpoint we are adopting. Little in this section is new.

Recall that an element x in a λ-ring R is said to be even of finite degree n if $\lambda_t(x)$ is a polynomial of degree n, or equivalently that there is a λ-ring homomorphism from the ring Λ_n defined in [12] to R, sending a to x. We say that x is a line element if it is even of degree 1, i.e., if $\lambda^n(x) = 0$ for all $n > 1$.

We say that x is odd of degree n if $\sigma_t(x) = \lambda_{-t}(x)^{-1}$ is a polynomial of finite degree n. Since $\sigma_{-t}(x) = \lambda_t(-x)$, we see that x is odd just in case $-x$ is even. Therefore there is a λ-ring homomorphism from the ring Λ_{-n} defined in [12] to R sending b to x.

We say that an element x is finite-dimensional if it is the difference of two even elements, or equivalently if x is the sum of an even and an odd element. The subset of even elements in R is closed under addition and multiplication, and the subset of finite-dimensional elements forms a subring of R.

Example 1.1. If R is a binomial λ-ring, then r is even if and only if some $r(r - 1) \cdots (r - n) = 0$, and odd if and only if some $r(r + 1) \cdots (r + n) = 0$. The binomial rings $\prod_{k=1}^{n} \mathbb{Z}$ are finite dimensional. If R is connected then the subring of finite-dimensional elements is just \mathbb{Z}.

There is a well known family of universal finite-dimensional λ-rings $\{\Lambda_n\}$.

Definition 1.2. Following [AT], let Λ_n denote the free λ-ring generated by one element $a = a_1$ of finite degree n (i.e., subject to the relations that $\lambda^k(a) = 0$ for all $k > n$). By [Ber 4.9], Λ_n is just the polynomial ring $\mathbb{Z}[a_1, ..., a_n]$ with $a_i = \lambda^i(a_1)$.

Similarly, we write Λ_{-n} for the free λ-ring generated by one element $b = b_1$, subject to the relations that $\sigma^k(b) = 0$ for all $k > n$. Using the antipode S, we see that there is a λ-ring isomorphism $\Lambda_{-n} \cong \Lambda_n$ sending b to $-a$, and hence that $\Lambda_{-n} \cong \mathbb{Z}[b_1, ..., b_n]$ with $b_k = \sigma^k(b)$.

Consider finite-dimensional elements in λ-rings R which are the difference of an even element of degree m and an odd element of degree n. The maps $\Lambda_m \to R$ and $\Lambda_{-n} \to R$ induce a λ-ring map from $\Lambda_m \otimes \Lambda_{-n}$ to R.

Lemma 1.3. If an element x is both even and odd in a λ-ring, then x and all the $\lambda^i(x)$ are nilpotent. Thus $\lambda_t(x)$ is a unit of $R[\!\!\!\!t\!\!\!\!]$.

Proof. If x is even and odd then $\lambda_t(x)$ and $\sigma_{-t}(x)$ are polynomials in $R[\!\!\!\!t\!\!\!\!]$ which are inverse to each other. It follows that the coefficients $\lambda^i(x)$ of the t^i are nilpotent for all $i > 0$.

If R is a graded λ-ring, an element $\sum r_i$ is even (resp., odd, resp., finite-dimensional) if and only if each homogeneous term r_i is even (resp., odd, resp., finite-dimensional). This is because the operations λ^n multiply the degree of an element by n.

The forgetful functor from λ-rings to commutative rings has a right adjoint; see [Kr] pp. 20–21. It follows that the category of λ-rings has all colimits. In particular, if $B \leftarrow A \to C$ is a diagram of λ-rings, the tensor product $B \otimes_A C$ has the structure of a λ-ring. Here is a typical, classical application of this construction, originally proven in [AT 6.1].

Proposition 1.4 (Splitting Principle). If x is any even element of finite degree n in a λ-ring R, there exists an inclusion $R \subseteq R'$ of λ-rings and line elements $\ell_1, ..., \ell_n$ in R' so that $x = \sum \ell_i$.

Proof. Let Ω_n denote the tensor product of n copies of the λ-ring $\Lambda_1 = \mathbb{Z}[\ell]$; this is a λ-ring whose underlying ring is the polynomial ring $\mathbb{Z}[\ell_1, \ldots, \ell_n]$, and the λ-ring Λ_n of Definition 1.2 is the subring of symmetric polynomials in Ω_n; see [AT] §2.

Let R' be the pushout of the diagram $\Omega_n \in\Lambda_n \to R$. Since the image of x is $1 \otimes x = a \otimes 1 = (\sum \ell_i) \otimes 1$, it suffices to show that $R \to R'$ is an injection. This follows from the fact that Ω_n is free as a Λ_n-module.

Corollary 1.5. If x is any finite-dimensional element of a λ-ring R, there is an inclusion $R \subseteq R'$ of λ-rings and line elements ℓ_i, ℓ'_i in R' so that

$$x = (\sum \ell_i) - (\sum \ell'_i).$$

Scholium 1.6. For later use, we record an observation, whose proof is implicit in the proof of Proposition 4.2 of [AT]: $\lambda^m(\lambda^n x) = P_{m,n}(\lambda^1 x, \ldots, \lambda^m x)$ is a sum of monomials, each containing a term $\lambda^i x$ for $i \geq n$. For example, $\lambda^2(\lambda^3 x) = \lambda^6 x - x \lambda^5 x + \lambda^4 x^2 \lambda^2 x^2$ (see [Kn] p. 11).

2. K_0 of tensor categories

The Grothendieck group of a \mathbb{Q}-linear tensor category provides numerous examples of λ-rings, and forms the original motivation for introducing the notion of Schur-finite elements in a λ-ring.

A \mathbb{Q}-linear tensor category is exact if it has a distinguished family of sequences, called short exact sequences and satisfying the axioms of \mathbb{Q}, and such that each $A \otimes -$ is an exact functor. In many applications A is split exact: the only short exact sequences are those which split. By $K_0(A)$ we mean the Grothendieck group of an exact category, i.e., the quotient of the free abelian group on the objects $[A]$ by the relation that $[B] = [A] + [C]$ for every short exact sequence $0 \to A \to B \to C \to 0$.

Let A be an idempotent-complete exact category which is a \mathbb{Q}TC for \otimes. For any object A in \mathcal{A}, the symmetric group Σ_n (and hence the group ring $\mathbb{Q}[\Sigma_n]$) acts on the n-fold tensor product $A^\otimes n$. If A is idempotent-complete, we define $\Lambda^n A$ to be the direct summand of $A^\otimes n$ corresponding to the alternating idempotent $\sum (-1)^{\sigma(n)!}$ of $\mathbb{Q}[\Sigma_n]$. Similarly, we can define the symmetric powers $\text{Sym}^n(A)$. It turns out that $\lambda^n(A)$ only depends upon the element $[A]$ in $K_0(A)$, and that λ^n extends to a well defined operation on $K_0(A)$.

The following result was proven by F. Heinloth in [Hl, Lemma 4.1], but the result seems to have been in the air; see [May] p. 486, [LLO] 5.1 and [B1, B2]. A special case of this result was proven long ago by Swan in [Sw].

Theorem 2.1. If \mathcal{A} is any idempotent-complete exact \mathbb{Q}TC, $K_0(\mathcal{A})$ has the structure of a λ-ring. If A is any object of \mathcal{A} then $\lambda^n([A]) = [\Lambda^n A]$.

Kimura [Kim] and O’Sullivan have introduced the notion of an object C being finite-dimensional in any \mathbb{Q}TC \mathcal{A}: C is the direct sum of an even object A (one for which some $\Lambda^n A \cong 0$) and an odd object B (one for which some $\text{Sym}^n(B) \cong 0$). It is immediate that $[C]$ is a finite-dimensional element in the λ-ring $K_0(\mathcal{A})$. Thus the two notions of finite dimensionality are related.

Example 2.2. Let \mathcal{M}^{eff} denote the category of \mathbb{Q}-linear pure effective Chow motives with respect to rational equivalence over a field k. Its objects are summands of smooth projective varieties over a field k and morphisms are given by Chow groups. Thus $K_0(\mathcal{M}^{\text{eff}})$ is the group generated by the classes of objects, modulo the relation $[M_1 \oplus M_2] = [M_1] + [M_2]$. Since \mathcal{M}^{eff} is a \mathbb{Q}TC, $K_0(\mathcal{M}^{\text{eff}})$ is a λ-ring.

By adjoining an inverse to the Lefschetz motive to \mathcal{M}^{eff}, we obtain the category \mathcal{M} of Chow motives (with respect to rational equivalence). This is also a \mathbb{Q}TC, so $K_0(\mathcal{M})$ is a λ-ring.
The category \mathcal{M}^{eff} embeds into the triangulated category $\text{DM}_{\text{gm}}^{\text{eff}}$ of effective geometric motives; see [MVW 20.1]. Similarly, the category \mathcal{M} embeds in the triangulated category DM_{gm} of geometric motives [MVW 20.2]. Bondarko proved in [Bo] 6.4.3 that $K_0(\text{DM}_{\text{gm}}^{\text{eff}}) \cong K_0(\mathcal{M}^{\text{eff}})$ and $K_0(\text{DM}_{\text{gm}}) \cong K_0(\mathcal{M})$. Thus we may investigate λ-ring questions in these triangulated settings. As far as we know, it is possible that every element of $K_0(\text{DM}_{\text{gm}})$ is finite-dimensional.

Recall that a motive M in \mathcal{M}^{eff} is a phantom motive if $H^*(M) = 0$ for every Weil cohomology H.

Proposition 2.3. Let M be an object of \mathcal{M}^{eff}. Then if $[M] = 0$ in $K_0(\mathcal{M}^{\text{eff}})$, then M is a phantom motive.

Proof. Since \mathcal{M}^{eff} is an additive category, $[M] = 0$ implies that there is another object N of \mathcal{M}^{eff} such that $M \oplus N \cong N$. But every effective motive is a summand of the motive of a scheme, hence we may assume $N = M(X)$. If M is not a phantom motive, there is a Weil cohomology and an i such that $H^i(M) \neq 0$. But then $H^i(M) \oplus H^i(X) \cong H^i(X)$; since these are finite-dimensional vector spaces, this implies $H^i(M) = 0$, a contradiction. □

Here is an application of these ideas. Recall that any quasi-projective scheme X has a motive with compact supports in DM^{eff}, $M^c(X)$. If k has characteristic 0, this is an effective geometric motive, and if U is open in X with complement Z there is a triangle $M^c(Z) \to M^c(X) \to M^c(U)$; see [MVW] 16.15. It follows that $[M^c(X)] = [M^c(U)] + [M^c(Z)]$ in $K_0(\mathcal{M}^{\text{eff}})$. (This was originally proven by Gillet and Soulé in [GS, Thm. 4] before the introduction of DM, but see [GS] 3.2.4).

Definition 2.4. Let $K_0(\text{Var})$ be the Grothendieck ring of varieties obtained by imposing the relation $[U] + [X \setminus U] = [X]$ for any open U in a variety X. By the above remarks, there is a well defined ring homomorphism $K_0(\text{Var}) \to K_0(\mathcal{M}^{\text{eff}})$. Grothendieck asked in [G53, p.174] if this morphism was far from being an isomorphism. We can now answer his question.

Theorem 2.5. The homomorphism $K_0(\text{Var}) \to K_0(\mathcal{M}^{\text{eff}})$ is not an injection.

Remark 2.5.1. After this paper was posted in 2010, we were informed by J. Sebag that Grothendieck’s question had also been answered in [LS, Remark 14].

For the proof, we need to introduce Kapranov’s zeta-function. If X is any quasi-projective variety, its symmetric power S^nX is the quotient of X^n by the action of the symmetric group. We define $\zeta_t(X) = \sum [S^nX]t^n$ as a power series with coefficients in $K_0(\text{Var})$.

Lemma 2.6. ([Gul]) The following diagram is commutative:

\[
\begin{array}{ccc}
K_0(\text{Var}) & \xrightarrow{\zeta_t} & 1 + K_0(\text{Var})[[t]] \\
M^c & \downarrow & M^c \\
K_0(\mathcal{M}^{\text{eff}}) & \xrightarrow{\sigma_t} & 1 + K_0(\mathcal{M}^{\text{eff}})[[t]].
\end{array}
\]

Proof. It suffices to show that $[M^c(S^nX)] = \text{Sym}^n[M^c(X)]$ in $K_0(\mathcal{M}^{\text{eff}})$ for any X. This is proven by del Baño and Navarro in [BN] 5.3. □

Definition 2.7. Following [LL04, 2.2], we say that a power series $f(t) = \sum r_nt^n \in R[[t]]$ is determinantly rational over a ring R if there exists an $m, n_0 > 0$ such that the $m \times m$ Hankel matrices $(r_{n+i+j})_{i,j=1}^m$ have determinant 0 for all $n > n_0$.

The name comes from the classical fact (Émile Borel [1894]) that when R is a field (or a domain) a power series is determinantly rational if and only if it is a rational function $p(t)/q(t)$. For later use, we observe that $\deg(q) < m$ and $\deg(p) < n_0$. (This is relation (a) in [1894].)

Clearly, if $f(t)$ is not determinantly rational over R and $R \subset R'$ then $f(t)$ cannot be determinantly rational over R'.

As observed in [LL04 2.4], if f is a rational function in the sense that $gf = h$ for polynomials $g(t), h(t)$ with $g(0) = 1$ then f is determinantly rational. For example, if $x = a_i$ is a finite-dimensional element of a λ-ring R, with a even and b odd, then $\lambda(x)$ and $\lambda_i(-b) = \lambda_i(b)^{-1}$ are polynomials so $\lambda(x) = \lambda_i(a)\lambda_i(b)$ and $\sigma_i(x) = \lambda_i(x)^{-1}$ are rational functions. This was observed by André in [A05].

Proof of Theorem 2.5. Let X be the product $C \times D$ of two smooth projective curves of genus > 0, so that $p_0(X) > 0$. Larsen and Lunts showed in [LL04 2.4, 3.9] that $\zeta_1(X)$ is not determinantly rational over $R = K_0(\text{Var})$. On the other hand, Kimura proved in [Kim] that X is a finite-dimensional object in \mathcal{M}_eff, so $\sigma_1(X) = \lambda_i(X)^{-1}$ is a determinantly rational function in $R' = K_0(\mathcal{M}_\text{eff})$. It follows that $R \to R'$ cannot be an injection. \hfill \Box

3. Symmetric functions

We devote this section to a quick study of the ring Λ of symmetric functions, and especially the Schur polynomials s_π, referring the reader to [Macd] for more information. In the next section, we will use these polynomials to define the notion of Schur-finite elements in a λ-ring.

The ring Λ is defined as the ring of symmetric “polynomials” in variables ξ_i. More precisely, it is the subring of the power series ring in $\{\xi_n\}$ generated by $e_1 = \sum \xi_n$ and the other elementary symmetric power sums $e_i \in \Lambda$; if we put $\xi_r = 0$ for $r > n$ then e_i is the i^{th} elementary symmetric polynomial in ξ_1, \ldots, ξ_n; see [AT]. A major role is also played by the homogeneous power sums $h_n = \sum \xi_1 \cdots \xi_n$ (where the sum being taken over $i_1 \leq \cdots \leq i_n$). Their generating functions $E(t) = \sum e_n t^n$ and $H(t) = \sum h_n t^n$ are $\prod(1 + \xi_i t)$ and $\prod(1 - \xi_i t)^{-1}$, so that $H(t)E(-t) = 1$. In fact, Λ is a graded polynomial ring in two relevant ways (with e_n and h_n in degree n):

$$\Lambda = \mathbb{Z}[e_1, \ldots, e_n, \ldots] = \mathbb{Z}[h_1, \ldots, h_n, \ldots].$$

Given a partition $\pi = (n_1, \ldots, n_r)$ of n (so that $\sum n_i = n$), we let $s_\pi \in \Lambda_n$ denote the Schur polynomial of π. The elements e_n and h_n of Λ are identified with $s_{(1, \ldots, 1)}$ and $s_{(n)}$, respectively. The Schur polynomials also form a \mathbb{Z}-basis of Λ by [Macd 3.3].

Here is another description of Λ, taken from [Kn]: Λ is isomorphic to the direct sum R_{eff} of the representation rings $R(\Sigma_n)$, made into a ring via the outer product $R(\Sigma_m) \otimes R(\Sigma_n) \to R(\Sigma_{m+n})$. Under this identification, $e_n \in \Lambda_n$ is identified with the class of the trivial simple representation V^*_{n} of Σ_n. More generally, s_π corresponds to the class $[V_{\pi}]$ in $R(\Sigma_n)$ of the irreducible representation corresponding to π. (See [Kn III.3].)

Proposition 3.1. Λ is a graded Hopf algebra, with coproduct Δ and antipode S determined by the formulas

$$\Delta(e_n) = \sum_{i+j=n} e_i \otimes e_j, \quad S(e_n) = h_n \quad \text{and} \quad S(h_n) = e_n.$$
We prove the assertions about \(\pi \) at most \(p \) plying the antipode \(\Pi \).

The fact that there is a ring involution \(\lambda \) is an ideal.

Remark 3.2. Atiyah shows in [A, 1.2] that \(\Lambda \) is isomorphic to the graded dual \(R^* = \oplus \text{Hom}(R(\Sigma_n), \mathbb{Z}) \). That is, if \(\{v_\pi\} \) is the dual basis in \(R^n \) to the basis \(\{[V_\pi]\} \) of simple representations in \(R^n \), and the restriction of \(V_\pi \) to the basis \(\{V_\mu\} \) then \(v_\pi v_\mu = \sum e^{\mu\nu}_e v_\nu \) in \(R^* \). Thus the product studied by Atiyah on the graded dual \(R^* \) is exactly the algebra structure dual to the coproduct \(\Delta \).

Let \(\pi' \) denote the conjugate partition to \(\pi \). The Jacobi-Trudi identities \(s_\pi = \det |h_{\pi_i+j-1}| = \det |e_{\pi_i+j-1}| \) show that the antipode \(S \) interchanges \(s_\pi \) and \(s_{\pi'} \). (Jacobi conjectured the identities, and his student Nicolò Trudi verified them in 1864; they were rediscovered by Giovanni Giambelli in 1903 and are sometimes called the Giambelli identities).

Let \(I_{e,n} \) denote the ideal of \(\Lambda \) generated by the \(e_i \) with \(i \geq n \). The quotient \(\Lambda/I_{e,n} \) is the polynomial ring \(\Lambda_{n-1} = \mathbb{Z}[e_1, \ldots, e_{n-1}] \). Let \(I_{h,n} \) denote \(S(I_{e,n}) \), i.e., the ideal of \(\Lambda \) generated by the \(h_i \) with \(i \geq n \).

Proposition 3.3. The Schur polynomials \(s_\pi \) for partitions \(\pi \) containing \((1^n) \) (i.e., with at least \(n \) rows) form a \(\mathbb{Z} \)-basis for the ideal \(I_{e,n} \). The Schur polynomials with at most \(n \) rows form a \(\mathbb{Z} \)-basis of \(\Lambda_n \).

Similarly, the Schur polynomials \(s_\pi \) for partitions \(\pi \) containing \((n) \) (i.e., with \(\pi_1 \geq n \)) form a \(\mathbb{Z} \)-basis for the ideal \(I_{h,n} \).

Proof. We prove the assertions about \(I_{e,n} \); the assertion about \(I_{h,n} \) follows by applying the antipode \(S \). By [Macd I.3.2], the \(s_\pi \) which have fewer than \(n \) rows project onto a \(\mathbb{Z} \)-basis of \(\Lambda_{n-1} = \Lambda/I_{e,n} \). Since the \(s_\pi \) form a \(\mathbb{Z} \)-basis of \(\Lambda \), it suffices to show that every partition \(\pi = (\pi_1, \ldots, \pi_r) \) with \(r > n \) is in \(I_{e,n} \). Expansion along the first row of the Jacobi-Trudi identity \(s_\pi = \det |e_{\pi_i+j-1}| \) shows that \(s_\pi \) is in the ideal \(I_{e,r} \).

Corollary 3.4. The ideal \(I_{h,m} \cap I_{e,n} \) of \(\Lambda \) has a \(\mathbb{Z} \)-basis consisting of the Schur polynomials \(s_\pi \) for partitions \(\pi \) containing the hook \((m, 1^{n-1}) = (m, 1, \ldots, 1) \).

Definition 3.5. For any partition \(\lambda = (\lambda_1, \ldots, \lambda_r) \), let \(I_\lambda \) denote the subgroup of \(\Lambda \) generated by the Schur polynomials \(s_\pi \) for which \(\pi \) contains \(\lambda \), i.e., \(\pi_i \geq \lambda_i \) for \(i = 1, \ldots, r \). We have already encountered the special cases \(I_{e,n} = I_{(1_{1,1})} \) and \(I_{h,n} = I_{(n)} \) in Proposition 3.3 and \(I_{(m,1,\ldots,1)} = I_{h,m} \cap I_{e,n} \) in Corollary 3.4.

Example 3.6. Consider the partition \(\lambda = (2,1) \). Then \(I_\lambda = I_{h,2} \cap I_{e,2} \) by Corollary 3.3. \(\Lambda_\lambda \) is the pullback of \(\mathbb{Z}[a] \) and \(\mathbb{Z}[b] \) along the common quotient \(\mathbb{Z}[a]/(a^2) = \Lambda/(I_{(1,1)} + I_{(2)}) \). The universal element of \(\Lambda_\lambda \) is \(x = (a,b) \) and if we set \(y = (0,b^2) \) then \(\Lambda_{(2,1)} \cong \mathbb{Z}[x,y]/(y^2 - x^2) \). Since \(\lambda^0(b) = b^n \) for all \(n \), it is easy to check that \(\lambda^2(x) = y \) and \(\lambda^{2+1}(x) = xy^2 \).

Lemma 3.7. The \(I_\lambda \) are ideals of \(\Lambda \), and \(\{I_\lambda\} \) is closed under intersection.

Proof. The Pieri rule writes \(h_\mu s_\pi \) as a sum of \(s_\nu \), where \(\mu \) runs over partitions consisting of \(\pi \) and \(\mu \) other elements, no two in the same column. Thus \(I_\lambda \) is closed under multiplication by the \(h_\mu \). As every element of \(\Lambda \) is a polynomial in the \(h_\mu \), \(I_\lambda \) is an ideal.

If \(\mu = (\mu_1, \ldots, \mu_s) \) is another partition, then \(s_\mu \) is in \(I_\lambda \cap I_\mu \) if and only if \(\mu_i \geq \max(\lambda_i, \mu_i) \). Thus \(I_\lambda \cap I_\mu = I_{\lambda \cap \mu} \). \(\square \)
Consider the set Λ

Proof. Since Δ is a ring homomorphism, Λ corresponds to a natural operation on λ. The formula $f(x) = u_\lambda(f)$ defines a natural operation. The operation λ_\ast corresponds to e_λ. The operation σ^n, defined by $\sigma^n(x) = (-1)^n \lambda^n(-x)$, corresponds to h_n; this may be seen by comparing the generating functions $H(t) = E(-t)^{-1}$ and $\sigma_1(x) = \lambda^{-1}(x)^{-1}$.

Proposition 3.9. If ϕ is an element of Λ, and $\Delta(\phi) = \sum \phi'_i \otimes \phi''_i$ then the corresponding natural operation on λ-rings satisfies $\phi(x + y) = \sum \phi'_i(x) \phi''_i(y)$.

Proof. Consider the set Λ' of all operations in Λ satisfying the condition of the proposition. Since Δ is a ring homomorphism, Λ' is a subring of Λ. Since $\Delta(e_\lambda) = \sum c_i \otimes e_{n-i}$ and $\lambda^n(x + y) = \sum \lambda^i(x) \lambda^{n-i}(y)$, Λ' contains the generators e_λ of Λ, and hence $\Lambda' = \Lambda$.

The Littlewood-Richardson rule states that $\Delta([V_\pi])$ is a sum $\sum c_{\mu \nu}^\pi [V_\mu] \otimes [V_\nu]$, where $\mu \subseteq \pi$ and π is obtained from μ by concatenating ν in a certain way; see [Macd, §1.9]. By Proposition 3.9, we then have

Corollary 3.10. $s_\pi(x + y) = \sum c_{\mu \nu}^\pi s_\mu(x) s_\nu(y)$.

4. SCHUR-FINITENESS IN λ-RINGS

In this section we introduce the notion of a Schur-finite element in a λ-ring R, and show that these elements form a subring of R containing the subring of finite-dimensional elements. We conjecture that they are the elements for which the virtual splitting principle holds.

Definition 4.1. We say that an element x in a λ-ring R is Schur-finite if there exists a partition λ such that $s_\lambda(x) = 0$ for every partition μ containing λ. That is, I_λ annihilates x. We call such a λ a bound for x.

By Remark 3.8, $x \in R$ may have no unique minimal bound λ. By Example 4.4 below, $s_\lambda(x) = 0$ does not imply that λ is a bound for x.

Proposition 4.2. Each I_λ is a radical λ-ideal, and $\Lambda_\lambda = \Lambda/I_\lambda$ is a reduced λ-ring. Thus every Schur-finite $x \in R$ with bound λ determines a λ-ring map $f : \Lambda_\lambda \rightarrow R$ with $f(a) = x$.

Moreover, if λ is a rectangular partition then I_λ is a prime ideal, and Λ_λ is a subring of a polynomial ring in which a becomes finite-dimensional.

In general, Λ_λ is a subring of $\prod \Lambda_{\beta_i}$ and hence of a product of polynomial rings in which a becomes finite-dimensional.

Proposition 4.2 verifies Conjecture 3.9 of [KKT].

Proof. Fix a rectangular partition $\beta = ((m + 1)^{n+1}) = (m + 1, ..., m + 1)$, and set $a = \sum a_i, b = \sum b_j$. Consider the universal λ-ring map $f : \Lambda \rightarrow \Lambda_m \otimes \Lambda_{-n} \cong Z[a_1, ..., a_m, b_1, ..., b_n]$
sending e_1 to the finite-dimensional element $a + b$ (see Definition 1.2). We claim that the kernel of f is I_3. Since $\text{Ker}(f)$ is a λ-ideal, this proves that I_3 is a λ-ideal and that Λ/I_3 embeds into the polynomial ring $\mathbb{Z}[a_1, \ldots, a_m, b_1, \ldots, b_n]$. Since any partition λ can be written as a union of rectangular partitions β_i, Lemma 3.7 implies that $I_3 = \cap I_{\beta_i}$ is also a λ-ideal.

By the Littlewood-Richardson rule 3.10, $f(s_{\pi}) = s_{\tau}(a + b) = \sum c_{\pi\nu}^\mu s_{\mu}(a)s_{\nu}(b)$, where μ and ν run over all partitions such that π is obtained from μ by concatenating ν in a certain way. We may additionally restrict the sum to μ with at most m rows and ν with $\nu_1 \leq n$, since otherwise $s_{\mu}(a) = 0$ or $s_{\nu}(b) = 0$. By Proposition 3.3, the $s_{\mu}(a)$ run over a basis of Λ_m and the $s_{\nu}(b)$ run over a basis of Λ_n.

If π contains β then $f(s_{\pi}) = s_{\tau}(a + b) = 0$, because in every term of the above expansion, either the length of μ is $> m$ or else $\nu_1 > n$. Thus $I_3 \subseteq \text{Ker}(f)$.

For the converse, we use the reverse lexicographical ordering of partitions [Macd. p. 5]. For each π not containing β, set $\mu_\pi = (\pi_1, \ldots, \pi_m)$; this is the maximal μ (for this ordering) such that $c_{\pi\nu}^\mu \neq 0$ (with $\nu_\pi = \pi - \mu_\pi$). Given $t = \sum_{\beta \subseteq \pi} d_\pi s_{\beta}$, choose μ maximal subject to $\mu = \mu_\pi$ for some π with $d_\pi \neq 0$; choose μ maximal with $\mu = \mu_\pi$ and $d_\pi \neq 0$, and set $\nu = \nu_\pi$. Then the coefficient of $s_\mu(a)s_\nu(b)$ in $f(t)$ is $d_\pi \neq 0$. Thus $\text{Ker}(f) \subseteq I_3$. □

Corollary 4.3. $\Lambda_{(2,2)}$ is the subring $\mathbb{Z} + x\mathbb{Z}[a, b]$ of $\mathbb{Z}[a, b]$, where $x = a + b$.

Proof. By Proposition 4.2, $\Lambda_{(2,2)}$ is the subring of $\mathbb{Z}[a, b]$ generated $x = a + b$ and the $\lambda^n(x)$.

\[\lambda^{n+1}(x) = a\lambda^n(b) + \lambda^n(a) = ab^n + b^{n+1} = xb^n,\]

we have $\Lambda_{(2,2)} = \mathbb{Z}[x, xb, xb^2, \ldots, xb^n, \ldots] = \mathbb{Z} + x\mathbb{Z}[a, b]$. □

Remark 4.3.1. The ring $\Lambda_{(2,2)}$ was studied in [KKT 3.8], where it was shown that $\Lambda_{(2,2)}$ embeds into $\mathbb{Z}[x, y]$ sending e_0 to xy^{n-1}. This is the same as the embedding in Corollary 4.3, up to the change of coordinates $(x, y) = (a + b, b)$.

Example 4.4. Let I be the ideal of $\Lambda_{(2,2)}$ generated by the $\lambda^2(i)$ ($i > 0$) and set $R = \Lambda_{(2,2)}/I$. Then R is a λ-ring and x is a non-nilpotent element such that $\lambda^2(x) = 0$ but $\lambda^{n+1}(x) \neq 0$. In particular, $\lambda^2(x) = 0$ yet $\lambda^3(x) \neq 0$.

To see this, we use the embedding of Corollary 4.3 to see that I contains $x(\lambda^2x-1)$ and $(xb)(\lambda^2b-1)$ and hence the ideal J of $\mathbb{Z}[a, b]$ generated by x^2b. In fact, I is additively generated by J and the $\{xb^2-1\}$. It follows that R has basis $\{1, x^n, xb^{2n} | n \geq 1\}$. Since $\lambda^n(\lambda^2(x))$ is equivalent to $\lambda^{2n}(x) = xb^{2n-1}$ modulo J by 1.6, it lies in I. Hence I is a λ-ideal of $\Lambda_{(2,2)}$.

There is no λ-ring extension $R \subseteq R'$ in which $x = \ell_1 - \ell_2$ for line elements ℓ_i, because we would have $\lambda^3(x) = \lambda^3(x + \ell_2) = 0$. On the other hand, there is a λ-ring extension $R \subseteq R'$ in which $x = \ell_1 + \ell_2 - \ell_3 - \ell_4$ for line elements ℓ_i.

Lemma 4.5. If x and y are Schur-finite, so is $x + y$.

Proof. Given a partition λ, there is a partition π_0 such that whenever π contains π_0, one of the partitions μ and ν appearing in the Littlewood-Richardson rule 3.10 must contain λ. If x and y are both killed by all Schur polynomials indexed by partitions containing λ, we must therefore have $s_{\tau}(x + y) = 0$. □

Corollary 4.6. Finite-dimensional elements are Schur-finite.

Proof. Proposition 5.3 shows that even and odd elements are Schur-finite. □

Example 4.7. If R is a binomial ring containing \mathbb{Q}, then every Schur-finite element is finite-dimensional. This follows from Example 1.4 and [Macd. Ex. 1.3.4], which says that $s_{\tau}(r)$ is a rational number times a product of terms $r - c(x)$, where the $c(x)$ are integers.
Example 4.8. The universal element x of the Schur-finite element $\Lambda_{(2,1)}$ is Schur-finite but not finite-dimensional. To see this, recall from Example 4.5 that $\Lambda_{(2,1)} \cong \mathbb{Z}[x,y]/(y^2 - x^3)$. Because $\Lambda_{(2,1)}$ is graded, if x were finite-dimensional it would be the sum of an even and odd element in the degree 1 part $\{nx\}$ of $\Lambda_{(2,1)}$. If $n \in \mathbb{N}$, nx cannot be even because the second coordinate of $\lambda^k(nx)$ is $\binom{n}{k} b^k$ by 4.2. And nx cannot be odd, because the first coordinate of $\sigma^k(nx)$ is $(-1)^k \binom{n}{k} a^k$.

Lemma 4.9. Let $R \subset R'$ be an inclusion of λ-rings. If $x \in R$ then x is Schur-finite in R', if and only if x is Schur-finite in R. In particular, if x is finite-dimensional in R', then x is Schur-finite in R.

Proof. Since $s_\pi(x)$ may be computed in either R or R', the set of partitions π for which $s_\pi(x) = 0$ is the same for R and R'. The final assertion follows from Lemma 4.6.

Lemma 4.10. If π is a partition of n, $s_{\pi'}(-x) = (-1)^n s_\pi(x)$.

Proof. Write s_π as the homogeneous polynomial $f(e_1, e_2, ...)$ of degree n. Applying the antipode S in Λ, we have $s_{\pi'} = f(h_1, h_2, ...)$. It follows that $s_{\pi'}(-x) = f(\sigma^1, \sigma^2, ...)(-x)$. Since $\sigma^3(-x) = (-1)^n \lambda^2(x)$, and f is homogeneous, we have $s_{\pi'}(-x) = (-1)^n f(\lambda^1, \lambda^2, ...)(x) = s_\pi(x)$. □

Remark 4.10.1. If a is a line element then $s_\pi(ax) = a^\pi s_\pi(x)$. From Lemma 4.9, we have $s_\pi(-ax) = (-a)^\pi s_\pi(x)$.

Theorem 4.11. The Schur-finite elements form a subring of any λ-ring, containing the subring of finite-dimensional elements.

Proof. The Schur-finite elements are closed under addition by Lemma 4.5. Since π contains λ just in case π' contains λ', Lemma 4.10 implies that $-x$ is Schur-finite whenever x is. Hence the Schur-finite elements form a subgroup of R. It suffices to show that if x and y are Schur-finite in R, then xy and all $\lambda^k(x)$ are Schur-finite.

Let x be Schur-finite with rectangular bound μ, so there is a map from the λ-ring Λ_μ to R sending the generator e to x. Embed Λ_μ in $R' = \mathbb{Z}[a_1, \ldots, b_1, \ldots]$ using Proposition 4.2. Since every element of R' is finite-dimensional, $\lambda^k(e)$ is finite-dimensional in R', and hence Schur-finite in Λ_μ by Lemma 4.9. It follows that the image $\lambda^k(x)$ of $\lambda^k(e)$ in R is also Schur-finite.

Let x and y be Schur-finite with rectangular bounds μ and ν, and let $\Lambda_\mu \to R$ and $\Lambda_\nu \to R$ be the λ-ring maps sending the generators e_μ and e_ν to x and y. Since the induced map $\Lambda_\mu \otimes \Lambda_\nu \to R$ sends $e_\mu \otimes e_\nu$ to xy, we only need to show that $e_\mu \otimes e_\nu$ is Schur-finite. But $\Lambda_\mu \otimes \Lambda_\nu \subset \mathbb{Z}[a_1, \ldots, b_1, \ldots] \otimes \mathbb{Z}[a_1, \ldots, b_1, \ldots]$, and in the larger ring every element is finite-dimensional, including the tensor product. By Lemma 4.9, $e_\mu \otimes e_\nu$ is Schur-finite in $\Lambda_\mu \otimes \Lambda_\nu$.

Conjecture 4.12 (Virtual Splitting principle). Let x be a Schur-finite element of a λ-ring R. Then R is contained in a larger λ-ring R' such that x is finite-dimensional in R', i.e., there are line elements ℓ_i, ℓ'_j in R' so that

$$x = \left(\sum \ell_i \right) - \left(\sum \ell'_j \right).$$

Example 4.13. The virtual splitting principle holds in the universal case, where $R_0 = \Lambda_\beta$. Indeed, we know that $x = \sum a_i + \sum b_j$ in $R'_0 = \mathbb{Z}[a_1, \ldots, b_1, \ldots]$. Since $\ell_j = -b_j$ is a line element, x is a difference of sums of line elements in R'_0.

Unfortunately, although the induced map $f : R \to R \otimes_{R_0} R'_0$ sends a Schur-finite element x to a difference of sums of line elements, the map f need not be an injection.
Proposition 4.14. If a λ-ring R is a domain, R is contained in a λ-ring R' such that every Schur-finite element of R is a a difference of sums of line elements in R'.

Proof. Let E denote the algebraic closure of the fraction field of R and set $R' = W'(E)$; R is contained in R' by $R \overset{\lambda}{\to} W(R) \subset W(E)$. If $x \in R$ is Schur-finite then $\lambda_t(x)$ is determinantly rational in $E[[t]]$ and hence a rational function p/q in $E(t)$ (see 24). Factoring p and q in $E[t]$, we have

$$\lambda_t(x) = \prod(1 - \alpha_i t)/\prod(1 - \beta_j t)$$

for suitable elements α_i, β_j of E. Since the underlying abelian group of $W(E)$ is $(1 + tE[[t]])$, x and the $\ell_i = (1 - \alpha_i t)$ and $\ell'_j = (1 - \beta_j t)$ are line elements in $W(E)$, we are done.

The proof shows that a bound π on x determines a bound on the degrees of $p(t)$ and $q(t)$ and hence on the number of line elements ℓ_i and ℓ'_j in the virtual sum.

Corollary 4.15. The virtual splitting principle holds for reduced λ-rings.

Proof. Let R be a reduced ring. If P is a minimal prime of R then the localization R_P is a domain and R embeds into the product $\prod E_P$ of the algebraic closures of the fields of fractions of the R_P. If in addition R is a λ-ring then R embeds into the λ-ring $R' = \prod W(E_P)$. If x is Schur-finite in R with bound π then $\lambda_t(R)$ is determinantly rational and each factor of $\lambda_t(x)$ is a rational function in $E_P(t)$; the bound π determines a bound N on the degrees of the numerator and denominator in each component. By Theorem 4.14 there are line elements $\ell_1, \ldots, \ell_N, \ell'_1, \ldots, \ell'_N$ in each component so that $x = (\sum \ell_i) - (\sum \ell'_j)$ in R'.

As more partial evidence for Conjecture 4.12 we show that the virtual splitting principle holds for elements bounded by the hook $(2,1)$.

Theorem 4.16. Let x be a Schur-finite element in a λ-ring R. If x has bound $(2,1)$, then R is contained in a λ-ring R' in which x is a virtual sum $\ell_1 + \ell_2 - a$ of line elements.

Proof. The polynomial ring $R[a]$ becomes a λ-ring once we declare a to be a line element. Set $y = x + a$, and let I be the ideal of $R[a]$ generated by $\lambda^3(y)$.

For all $n \geq 2$, the equation $s_{n,1}(x) = 0$ yields $\lambda^{n+1}(x) = x\lambda^{n}(x) = x^{n-1}\lambda^2(x)$ in R, and therefore $\lambda^{n+1}(y) = (a + x)x^{n-1}\lambda^2(x) = x^{n-2}\lambda^3(y)$. It follows from Scholium 4.4 that $\lambda^m(\lambda^3y) \in I$ for all $m \geq 1$ and hence that

$$\lambda^n(f \cdot \lambda^3y) = P_n(\lambda^3(f); 2, \lambda^3y, \ldots, \lambda^n(\lambda^3y))$$

is in I for all $f \in R[a]$. Thus I is a λ-ideal of $R[a]$, $A \overset{\lambda}{\to} R[a]/I$ is a λ-ring, and the image of y in A is even of degree 2. By the Splitting Principle 4.4 the image of $x = y - a$ is a virtual sum $\ell_1 + \ell_2 - a$ of line elements in some λ-ring containing A.

To conclude, it suffices to show that R injects into $A = R[a]/I$. If $r \in R$ vanishes in A then $r = f\lambda^3(y)$ for some $f = f(a)$ in $R[a]$. We may take f to have minimal degree $d \geq 0$. Writing $f(a) = ca^d + g(a)$, with $c \in R$ and $\deg(g) < d$, the coefficient of a^{d+1} in $f\lambda^3(y)$, namely $c\lambda^2(x)$, must be zero. But then $c\lambda^3y = 0$, and $r = g\lambda^3y$, contradicting the minimality of f.

Remark 4.17. The rank of a Schur-finite object with bound π cannot be well defined unless π is a rectangular partition. This is because any rectangular partition $\mu = (m + 1)^{n+1}$ contained in π yields a map $R \to R'$ sending x to an element of rank $m-n$. If π is not rectangular there are different maximal rectangular sub-partitions with different values of $m - n$.
For example, let x be the element of Theorem 4.10. By Lemma 4.10, $-x$ also has bound $(2,1)$. Applying Theorem 4.10 to $-x$ shows that R is also contained in a λ-ring R'' in which x is a virtual sum $a - \ell_1 - \ell_2$ of line bundles. Therefore x has rank 1 in R', and has rank -1 in R''.

5. Rationality of $\lambda_t(x)$

Let R be a λ-ring and $x \in R$. One central question is to determine when the power series $\lambda_t(x)$ is a rational function. (See [A05], [LL04], [HI], [Gui], [BI] [B2], [KKT] for example.) Following [LL04, 2.1], we make this rigorous by restricting to power series in $R[[t]]$ congruent to 1 modulo t and define a (globally) rational function to be a power series $f(t)$ such that there exist polynomials $p, q \in R[t]$ with $p(0) = q(0) = 1$ such that $p(t) = f(t)q(t)$.

As noted in [2.7], it is well known that if x is a finite-dimensional element then $\lambda_t(x)$ is a rational function. Larsen and Lunts observed in [LL04] that the property of being a rational function is not preserved by passing to subrings and proposed replacing ‘rational function’ by ‘determinantally rational function’ (see [2.7]). We propose an even weaker condition, which we now define.

Given a power series $f(t) = \sum r_n t^n \in R[[t]]$ and a partition π, we form the the Jacobi-Trudi matrix (a_{ij}) with $a_{i,j} = r_{\pi'_{i+j-1}}$ and define $s_\pi(f) \in R$ to be its determinant. (If π has m columns, π' has n rows and (a_{ij}) is an $m \times n$ matrix over R.) The terminology comes from the fact that the commutative ring homomorphism $\rho : \Lambda \rightarrow R$, defined by $\rho(x_n) = r_n$, satisfies $\rho(s_\pi) = \det(a_{ij})$ by the Jacobi-Trudi identities.

Definition 5.1. Let R be a commutative ring. We say that a power series $f(t) = \sum r_n t^n \in R[[t]]$ is Schur-rational over R if there exists a partition μ such that $s_\mu(f) = 0$ for every partition π containing μ.

If μ is a rectangular partition then $(a_{i,j})$ is the matrix $(r_{\pi'_{i+j-1}})$ in Definition 2.7 up to row permutation. It follows that if $f(t)$ is Schur-rational then it is determinantally rational. The converse fails, as we show in Example 5.2.

It is easy to see that a (globally) rational function is Schur-rational. Thus being Schur-rational is a property of f intermediate between being rational and being determinantally rational.

Example 5.2. Let R_m be the quotient of Λ by the ideal generated by all m-fold products $x_{i_1} \cdots x_{i_m}$ where $|i_j - i_k| < 2m$ for all j, k. Then $f(t) = \sum x_n t^n$ is determinantally rational. On the other hand, $f(t)$ is not Schur-rational because for each λ with l rows there are lacunary partitions $\pi = (\pi_1, \pi_2, \ldots, \pi_l)$ (meaning that $\pi_1 \gg \pi_2 \gg \cdots \gg \pi_l \gg 0$) containing λ which are nonzero in R_m, because $s_{\pi}(f)$ is an alternating sum of monomials and the diagonal monomial $\prod r_{\pi_i}$ is nonzero and occurs exactly once.

The notion of Schur-rationality is connected to Schur-finiteness.

Proposition 5.3. An element x in a λ-ring is Schur-finite if and only if the power series $\lambda_t(x)$ is Schur-rational.

In particular, if x is Schur-finite then $\lambda_t(x)$ is determinantally rational.

The “if” part of this proposition was proven in [KKT, 3.10] for λ-rings of the form $K_0(A)$, using categorical methods.

Proof. By definition, the power series $\lambda_t(x)$ is Schur-rational if and only if there is a partition μ so that for every π containing μ, the determinant $\det(\lambda^{\pi'_{i+j-1}}(x))$ is zero. Since this determinant is $s_\pi(x)$ by the Jacobi-Trudi identity, this is equivalent to x being Schur-finite (definition 4.1). □
We conclude by connecting our notion of Schur-finiteness to the notion of a Schur-finite object in a \mathbb{Q}-linear tensor category \mathcal{A}, given in [Mz]. By definition, an object A is Schur-finite if some $S_{\lambda}(A) \cong 0$ in \mathcal{A}. By [Mz 1.4], this implies that $S_{\pi}(A) = 0$ for all π containing λ. It is evident that if A is a Schur-finite object of \mathcal{A} then $[A]$ is a Schur-finite element of $K_0(\mathcal{A})$. However, the converse need not hold. For example, if \mathcal{A} contains infinite direct sums then $K_0(\mathcal{A}) = 0$ by the Eilenberg swindle, so $[A]$ is always Schur-finite.

Here are two examples of Schur-finite objects whose class in $K_0(\mathcal{A})$ is finite-dimensional even though they are not finite-dimensional objects.

Example 5.4. Let \mathcal{A} denote the abelian category of positively graded modules over the graded ring $A = \mathbb{Q}[e]/(e^2 = 0)$. It is well known that \mathcal{A} is a tensor category under $\otimes_{\mathbb{Q}}$, with the λ-ring $K_0(\mathcal{A}) \cong \Lambda_{-1} = \mathbb{Z}[b]; 1 = [\mathbb{Q}]$ and $b = [\mathbb{Q}[1]]$. The graded object A is Schur-finite but not finite-dimensional in \mathcal{A} by [Mz 1.12]. However, $[A]$ is a finite-dimensional element in $K_0(\mathcal{A})$ because $[A] = [\mathbb{Q}] + [\mathbb{Q}[1]]$.

Example 5.5 (O’Sullivan). Let X be a Kummer surface; then there is an open subvariety U of X, whose complement Z is a finite set of points, such that $M(U)$ is Schur-finite but not finite-dimensional in the Kimura-O’Sullivan sense in the category \mathcal{M} of motives [Mz 3.3]. However, it follows from the distinguished triangle

$$M(Z)(2)[3] \rightarrow M(U) \rightarrow M(X) \rightarrow M(Z)(2)[4]$$

that $[M(U)] = [M(Z)(2)[3]] + [M(X)]$ in $K_0(DM_{gm})$ and hence in $K_0(\mathcal{M})$. Since both $M(X)$ and $M(Z)(2)[3]$ are finite-dimensional, $[M(U)]$ is a finite-dimensional element of $K_0(\mathcal{M})$.

Proposition 5.6. Let M be a classical motive. If M is Schur-finite in \mathcal{M}, then $\lambda_t([M])$ is determinantly rational. If $\lambda_t([M])$ is determinantly rational, then there exists a partition λ such that $S_\lambda(M)$ is a phantom motive.

Proof. If M is Schur-finite, then there is a λ such that $0 = [S_\pi M] = s_\pi([M])$ for all $\pi \supset \lambda$. Thus $[M]$ is Schur-finite in $K_0(\mathcal{M})$ or equivalently, by [Mz 5.3] $\lambda_t([M])$ is determinantly rational. If $\lambda_t([M])$ is Schur-finite, with bound λ, then $0 = s_\lambda([M]) = [S_\lambda M]$ in $K_0(DM_{eff})$. By Proposition 2.3, $S_\lambda(M)$ is a phantom motive.

Acknowledgments. The authors would like to thank Anders Buch, Alessio Del Padrone and Christophe Soulé for valuable discussions.

References

[1894] É. Borel, Sur une application d’un théorème de M. Hadamard, Bull. Sciences Math. 18 (1894), 22–25.

[A] M. Atiyah, Power operations in K-theory, Quart. J. Math. Oxford 17 (1966), 165–193.

[AT] M. Atiyah and D. Tall, Group representations, λ-rings and and the J-homomorphism, Topology 8 (1969), 253–267.

[A05] Y. André, Motifs de dimension finie (d’après S.-I. Kimura, P. O’Sullivan . . .), Astérisque 299 (2005), 115–145.

[Ber] P. Berthelot, Généralités sur les λ-anneaux, Exposé V (pages 297-364) in SGA6, Lecture Notes in Math. 225, Springer, 1971.

[B1] S. Biglari, On finite dimensionality of mixed Tate motives J. K-Theory 4 (2009), 145–161.

[B2] S. Biglari, Lambda ring structure on the Grothendieck ring of mixed motives, preliminary version, 2009. Available at http://www.math.uni-bielefeld.de/~biglari/manuscripts/llsm.pdf.

[B3] S. Biglari, On rings and categories of general representations, preprint, 2010. Available at http://arxiv.org/abs/1002.2801.

[Bo] M. Bondarko, Differential graded motives: weight complex, weight filtrations and spectral sequences for realizations; Voevodsky versus Hanamura. J. Inst. Math. Jussieu 8 (2009), no. 1, 39–97.
[Bu] J. Burroughs, Operations in Grothendieck rings and the symmetric group, Canad. J. Math XXVI (1974), 543–550.

[David] A. A. Davidov, Monoidal Categories, Journal of Mathematical Sciences 88(4) (1998), 457–519.

[dBN] S. del Baño Rollin and V. Navarro Aznar, On the motive of a quotient variety, Collectanea Math. 49 (1998), no. 2-3, 203–226.

[GS] H. Gillet and C. Soulé, Descent, motives and K-theory, J. Reine Angew. Math. 478 (1996), 127–176.

[GN] F. Guillén and V. Navarro Aznar, Un critère d’extension des foncteurs définis sur les schémas lisses, Publ. Math. Inst. Hautes Études Sci. 95 (2002), 1–91.

[Kap] M. Kapranov, The elliptic curve in the S-duality theory and Eisenstein series for Kac-Moody groups, preprint, 2000. Available at [math.AG/0001005]

[Kim] S. Kimura, Chow groups are finite dimensional, in some sense, Math. Annalen 331 (2005), 173–201.

[KKT] K. Kimura, S. Kimura and N. Takahashi, Motivic Zeta functions in additive monoidal categories, preprint, 2009, to appear in J. Pure Applied Algebra 216 (2012).

[Kn] D. Knutson, λ-rings and the Representation Theory of the Symmetric Group, Lecture Notes in Math. 308 (1973)

[LL03] M. Larsen and V. Lunts, Motivic measures and stable birational geometry, Mosc. Math. J. 3 (2003), 85–95, 259.

[LL04] M. Larsen and V. Lunts, Rationality criteria for motivic zeta functions, Compositio 140 (2004), 1537–1560.

[Mac] I. G. Macdonald, Symmetric Functions and Hall Polynomials, Clarendon Press, 1979

[Mz] C. Mazza, Schur functors and motives, K-Theory 33 (2004), 89–106.

[MVW] C. Mazza, V. Voevodsky, and C. Weibel, Lecture notes on motivic cohomology, Clay Math. Monographs, vol. 2, AMS, 2006.

[Quillen] D. Quillen, Higher algebraic K-theory I, pages 85–147 in Lecture Notes in Math. 341, Springer, 1973.

[Sw] R. G. Swan, A splitting principle in algebraic K-theory. Proc. Sympos. Pure Math., Vol. XXI, (1971), pp. 155–159.

[WHA] C. A. Weibel, An introduction to homological algebra, Cambridge Univ. Press, 1994.

DIMA – UNIVERSITÀ DI GENOVA, GENOVA, ITALY
E-mail address: mazza@dima.unige.it

DEPT. OF MATHEMATICS, RUTGERS UNIVERSITY, NEW BRUNSWICK, NJ 08901, USA
E-mail address: weibel@math.rutgers.edu