Early Paleozoic jadeitites in Japan: An overview

Tatsuki TSUJIMORI*,**

*Center for Northeast Asian Studies, Tohoku University, Aoba, Sendai 980–8576, Japan
**Department of Earth Science, Tohoku University, Aoba, Sendai 980–8578, Japan

Paleozoic jadeitite–bearing serpentinite–matrix mélange represents the oldest mantle wedge record of a Pacific-type subduction zone of proto–Japan. Most jadeitites are fluid precipitates (P-type), but some jadeitites are metasomatic replacement (R-type) which preserve relict minerals and protolith textures. The beauty and preciousness of some gem–quality, semi–translucent varieties of jadeitites in the Itoigawa–Omi area led to the designation of jadeite as the national stone of Japan by the Japan Association of Mineralogical Sciences. Zircon geochronology indicates jadeitite formed prior to Late Paleozoic Renge metamorphism that formed blueschist and rare eclogite. For example, in the Itoigawa–Omi and Osayama localities, older jadeitites and younger high–pressure/low–temperature metamorphic rocks in a single mélange complex imply different histories for the subduction channel and jadeite–bearing serpentinite–matrix mélange. This suggests that the jadeite–hosted mélange (or serpentine–peridotite) can stay within the mantle wedge for a considerable time; thus recrystallization, resorption, and re–precipitation of jadeite can continue in the mantle wedge environment. Therefore, studies of Paleozoic jadeitites in Japan have great potential to elucidate the earliest stages of orogenic growth (oceanward accretion and landward erosion) associated with the subduction of the paleo–Pacific oceanic plates, and to test geophysical observations of modern analogues from a mixture of fossilized mantle wedges and subduction channels.

Keywords: Jadeitite, Paleozoic, Oeyama ophiolite, Renge metamorphic rocks, Forearc mantle wedge

INTRODUCTION

Jadeitite is a plate tectonic gemstone that records the interaction of high–pressure and low–temperature (HP–LT) fluids with forearc mantle wedge at relatively shallow depths (<100 km). The beauty and preciousness of some gem–quality jadeitites led a designation of ‘jadeite (and jadeitite)’ as the national stone of Japan by the Japan Association of Mineralogical Sciences in 2016. Since Kawano (1939) first identified monomineralic jadeitites as boulders in the Kotaki–gawa River in the Itoigawa–Omi area of the Hida Mountains (HDM, an eastern portion of Southwest Japan), numerous jadeitite boulders have also been confirmed in the area and the Happou ultramafic body in the HDM (Chihara, 1979), as well as in Sekinomiya (Oya), Wakasa, and Osayama ultramafic bodies of the Chugoku Mountains (CGM, a western portion of Southwest Japan) (e.g., Masutomi 1966; Tazaki and Ishiuchi, 1976; Kobayashi et al., 1987) (Fig. 1). These jadeitite localities, belonging to the Oeyama (or Renge) belt (e.g., Ishiwatari and Tsujimori, 2003), are characterized essentially by Alpine–type ultramafic rocks (or serpentinite–matrix mélange), are accompanied by Paleozoic (HP–LT) metamorphic rocks. Note that ultramafic bodies of the HDM have been distinguished as the most representative rock of so–called ‘Hida–Gaien (Hida marginal) belt’. Although outcrops of the jadeitite within serpentinites mélanges are extremely rare and poorly understood, the occurrence of jadeitites suggests an Early Paleozoic subduction along a relatively cold geothermal gradient that marked the margins of proto–Japan.

In this article, the author provides new insights regarding Japanese Paleozoic jadeitites in the Oeyama (or Renge) belt (Fig. 2) and addresses current perspectives on jadeitite. This review also includes recent knowledge of Paleozoic jadeite–bearing metamorphic/metamorphic rocks in the Kurosegawa belt in the Shikoku and Kyushu of Southwest Japan.

JADEITITE CLASSIFICATION

Jadeitite is a metasomatic rock that consists predominantly of jadeitic clinopyroxene (cf. Harlow et al., 2015).
A unique whole-rock composition precludes a simple metamorphic model for jadeite formation. Tsujimori and Harlow (2012) proposed two classifications of jadeite based on the processes of formation: (1) P-type jadeite is crystallized directly from a hydrous fluid as vein-fillings or overgrowths on other rocks, and (2) R-type jadeite is a metasomatic replacement of another rock, such as a sedimentary (e.g., greywacke) or igneous (e.g., trondhjemite or tonalite) rock. Another mineralogy-based classification scheme for jadeite was also proposed by Harlow et al. (2015); in a $P-T$ diagram, the stability fields of lawsonite, paragonite, Ca-Na amphibole (taramitic), two coexisting pyroxenes, and kyanite defined five mineralogical types; namely lawsonite jadeite, paragonite jadeite, taramite jadeite, two-pyroxene jadeite, and kyanite jadeite. Moreover, the rutile-bearing or rutile-bearig mineral assemblages further separate rutile-bearing jadeite from rutile-free jadeite.

JADEITITES IN THE HIDA MOUNTAINS (HIDA–GAIEN BELT)

In the HDM, several ultramafic bodies of the Early Paleozoic Oeyama belt are exposed along the Hida–Gaien belt. The Itoigawa–Omi area is an important occurrence of Japanese jadeite and a minor occurrence was also reported from the Happou area (e.g., Chihara, 1989; Miyajima et al., 1999) (Fig. 1). Some Itoigawa–Omi jadeites are gem quality with high commercial values for ornaments (Fig. 3). All jadeite localities lie within serpentinite mélanges with tectonic blocks or slices of HP-LT rocks (e.g., Nakamizu et al., 1989; Tsujimori, 2002). However, the occurrences of jadeite are limited to boulders along several different branches of the Kotaki-gawa River and Omi-gawa River (Fig. 4). Most jadeites in the Itoigawa–Omi area are P-type and quartz-free, but rare R-type jadeites preserving relict hornblende and gabbroic textures also
occur (Kunugiza and Goto, 2010). Chihara (1989) proposed three lithologic types of jadeitites in the HDM; Kotaki–type (massive zoned white jadeitites with greenish jadeite rim and rare albite core), Omi–type (fine–to coarse–grained layered jadeitites), and Tsugaike–type (coarse–grained vein jadeitites). Details of phase relations and sequential changes of metasomatic mineral assemblages are still poorly understood. In particular, essential information reported in the late ’70s and early ’80s, such as identification of amphiboles based on optical appearance, should be reconfirmed.

In general, jadeitites in the area show various degrees of deformation, veining (fluid infiltration and mineral precipitation), and recrystallization in the jadeite stability field, fundamentally limited by the reaction jadeite + H2O = analcime (P = ~ 0.6 GPa at 200 °C and ~ 0.7 GPa at 400 °C). Although a variety of strontium minerals, such as itoigawaite [SrAl2Si2O7(OH)2·H2O], rengeite (Sr2ZrTiSi4O22), and matsumaraite [Sr4Ti5(Si2O7)2O8], have been discovered from the area, the key accessory minerals and mineral parageneses (e.g., lawsonite, zoisite, and paragonite) to define the mineralogical type of jadeitite are not well confirmed. Some jadeitites contain rutile as the stable Ti–bearing phase and enditic and/or paragasitic amphibole, whereas rutile in some jadeitites is replaced by titanite during retrogression. Some jadeitites coexist with natrolite (e.g., Miyajima et al., 1999; Kunugiza and Goto, 2010); this type of mineral equilibrium has been identified in the latest stage of mineral precipitation in some jadeitites (e.g., Coleman, 1961).

Metasomatic albitization of jadeitite is also a common feature. In–situ trace element abundances of jadeite from some jadeitites were determined by Sorensen et al. (2006) and Morishita et al. (2007). Oxygen isotope compositions of jadeites from the Itoigawa jadeitites display zoning, with δ18O values ranging from +4.5 to +7.1‰ (Sorensen et al., 2006). Notably the isotope values overlap with those of metamorphosed and serpentinized peridotites (e.g., Früh–Green et al., 2001; Barnes et al., 2009).

Veined jadeitites in the Happou area have not been well studied due to the limited occurrence and poor access. Coexisting of quartz was incorrectly reported by Komatsu and Yamazaki (1981). As similar to the Itoigawa–Omi area, the P–type jadeitite from the Haoou area also lacks quartz.

Zircons from Itoigawa jadeitites, interpreted as fluid precipitates on the basis of their rhythmic zoning and rare–earth elements (REE) patterns, yield ion–microprobe (Cameca ims–1270) U–Pb ages of 519 ± 17 (n = 2 from one grain) and 512 ± 7 Ma (n = 7 from two grains) (Kunugiza and Goto, 2010); note that those results were originally published in a conference abstract in Kunugiza et al. (2002). Tsutsumi et al. (2010) have also analysed one zircon grain from a jadeitite with a mean age of 497 ± 23 Ma (n = 10; ranging from 525 to 427 Ma). Jadeitite formation is likely to be coeval with or slightly older than the Early Paleozoic epidote–amphibolite facies metamorphism of the Oeyama belt (Fig. 4). Epidote–amphibolite facies rocks yield hornblende K–Ar ages of ~ 470–400
Ma (Nishimura and Shibata, 1989; Tsujimori et al., 2000) and a zircon U–Pb age of 494 ± 20 Ma (T. Tsujimori, unpublished data). In contrast, albite that may represent retrograded equivalents of jadeite yields phengite K–Ar and 40Ar/39Ar ages of approximately 340–320 Ma. These ages overlap with K–Ar, 40Ar/39Ar, and Rb–Sr ages of phengitic white micas from pelitic schists of either greenschist–epidote-amphibolite facies or epidote–blueschist–eclogite facies blocks, as well as a phlogopite 40Ar/39Ar age (339 ± 7 Ma) from a tremolite–rich rock (cf. Tsujimori, 2010).

Although jadeite-hosted ultramafic rocks in the HDM are highly serpentinized or recrystallized, the chemical compositions of relict chromian spinel (or chromite) and bulk–rock compositions of serpentinite suggest a mostly harzburgite and subordinate dunite protolith (e.g., Machi and Ishiwatari 2010; Khedr and Arai, 2010, 2011). In ultramafic rocks along the Omi-gawa River, the protolith of antigorite–dominant serpentinite is mainly dunite and harzburgite with rare chromitite; high Cr/(Cr + Al) atomic ratio (0.70 – 0.77) of chromian spinel in the chromitite contains abundant igneous paragonite, suggesting a mantle–wedge peridotite origin (Tsujimori, 2004). In contrast, those along the Kotaki-gawa River have both lherzolitic and harzburgitic protolith (Machi and Ishiwatari, 2010); relict chromian spinel exhibits vermicular intergrowth with clinopyroxene, which is the most common petrographic features in the residual peridotite of the Oeyama belt (e.g., Arai, 1980; Matsutomi et al., 1997). Ultramafic bodies have been partly overprinted by contact metamorphism during the intrusion of Cretaceous or Cenozoic granitic plutons (e.g., Machi and Ishiwatari, 2010), although some ultramafic bodies had undergone a regional metamorphism before contact metamorphism (Nakamizu et al., 1989; Nozaka 2005; Khedr and Arai, 2010). The metamorphosed peridotites in the HDM have been subjected to a regional metamorphism and deformation. In the Happo, highly deformed metamorphosed peridotites often show a penetrative schistosity defined by preferred orientation of antigorite and tremolite and with a trend similar to that of Late Paleozoic Renge HP–LT schists (Yamazaki, 1981; Nakamizu et al., 1989; Nozaka, 2005; Khedr and Arai, 2010). This implies that the Early Paleozoic ophiolite fragments of the Oeyama belt have undergone the Late Paleozoic subduction zone metamorphism.

JADEITITES IN THE CHUGOKU MOUNTAINS

Jadeitites have been known from the Sekinomiya (Oya)–Wakasa area (the eastern portion of the CGM) and OSAyama (central CGM) (Fig. 1). The jadeite–hosted Sekinomiya ultramafic body is the largest (~ 20 × 5 km) serpentinized peridotite body of the Oeyama belt. In the Sekinomiya (Oya) area, lawsonite blueschist (containing aegirine-augite with up to 29 mol% jadeite), pelitic schist, calcite marble, albite, and rare jadeite occur as tectonic blocks along the southern margin of the ultramafic body (Hashimoto and Igi, 1970; Tsujimori and Liou, 2007). An exposure of highly weathered albitized jadeite (not gem quality), locally called ‘Kaho no Hisui’ (Jadeite of Kaho), is still accessible. The jadeite contains radial aggregates of coarse-grained jadeite crystal; coarse-grained paragonite and rare corundum also occur (Tazaki and Ishiiichi, 1976). An ultramafic rock suite, mainly serpentinitized dunite with minor metatamorphosed clinopyroxenite and metabasaltic rocks, of the Wakasa area is a western extension of the Sekinomiya ultramafic body; the ultramafic rocks structurally overlie the Renge HP–LT schist of the Shitani Formation (Uemura et al., 1979). Jadeitites that have been mined as river float are likely derived from within the serpentinite (Masutomi, 1966; Chihara, 1989); rare fine-grained variety exhibits gem quality similar to some Itogawa–Omi jadeitites. Some jadeitite contain itoigawaite (Sr equivalent of lawsonite) and pumppellite (Shinobayashi, 2004). The Sekinomiya (Oya)–Wakasa jadeitites have not yet been dated, but on the basis of petrotectonic continuity, the jadeite formation is likely coeval with the Early Paleozoic metamorphism (e.g., Fuku Pass metacumulates: Tsujimori and Liou, 2004a) rather than the Late Paleozoic metamorphism (Renge blueschists: Nishimura, 1998; Tsujimori and Itaya, 1999).

In the central CGM, about 180 km to the west of the Sekinomiya (Oya)–Wakasa occurrence, exposures of ultramafic bodies of the Oeyama belt are more frequent (e.g., Tari–Misaka, Ashidachi, Osayama areas etc.). Arai (1980) suggested that these ultramafic bodies originally constituted the lowest part of an ophiolitic suite, which was subsequently emplaced as dismembered fragments. Gabbro associated with moderately depleted residual peridotite of the central CGM yield zircon ion-microprobe (SHRIMP II) U–Pb ages (weighted mean ages) of 545.4 ± 2.6 Ma and 532.4 ± 3.1 Ma (Kimura and Hayasaka, 2015). A jadeite–bearing serpentinite–matrix mélangé is developed in the Oyama area (Fig. 1). The serpentinite mélangé contains tectonic blocks of Late Paleozoic Renge HP–LT metamorphic rocks (Tsujimori and Itaya, 1999; Tsujimori and Liou, 2005a), and occurrences of jadeiteite, omphacite, omphacite-bearing tremolite rock, and albite have been described (e.g., Kobayashi et al., 1987; Tsujimori, 1997, 1998; Tsujimori and Liou, 2004b; Tsujimori et al., 2005b). Some albitites contain aegirine-augite, and may represent the retrograded equivalent of jadeiteite. Blocks of gabbro and dolerite derived from the Oeyama...
belt also underwent blueschist-facies metamorphism. The Osayama jadeitites are mostly P-type and quartz-free, and jadeite crystals show oscillatory zoning in cathodoluminescence (CL). Rutile and zircon are common accessory minerals (Fig. 6), whereas omphacite, pectolite, analcime, titanite and rare phlogopite are common secondary minerals. Some jadeitites are calcium-rich and contain grossular-rich garnet. Fluid inclusions of both primary and secondary origins are ubiquitous in jadeite, and the homogenization temperature of the fluid inclusions ranges from 135 to 345 °C (Shoji and Kobayashi, 1988).

Osayama jadeitites are characterized by relatively heavy oxygen isotope values, δ¹⁸O = +7.77 to +9.15‰ (Fu et al., 2010), suggesting a possible fluid source from subducting slab materials (e.g., altered oceanic crust and sediments). Zircons from Osayama jadeitites also contain abundant fluid inclusions, with mainly two phases (H₂O + CH₄). Zircon contains inclusions of rutile, jadeite and rare grossular; note that grossular enclosed in zircon contains inclusions of jadeite (Fig. 6c). These fluid-precipitated zircons, Tsujimori et al. (2005b)'s type-I and Fu et al. (2010)'s h-type, yield ion-microrope (SHRIMP RG) U–Pb ages scattering from 531 ± 38 to 447 ± 18 Ma (Tsujimori et al., 2005b). Rare inherited cores of a zoned zircon [see Tsujimori et al. (2005b)'s Fig. 4B and Fu et al. (2010)'s Fig. 2a] suggest possible igneous protolith of an oceanic crustal origin (Fu et al., 2010); these yielded ages ranging from 527 ± 20 to 488 ± 20 Ma (Tsujimori et al., 2005b). As shown in Figures 6e and 6f, internal texture of zircon shows multiple events; obviously metasomatic (or overgrown) zircons with a brighter-CL formed during the latest event. Tsutsumi et al. (2010) reported ion-microprobe (SHRIMP II) U–Pb ages of grossular-bearing zircons yields 512 ± 3.4 Ma (n = 85, MSWD = 1.8). As shown in Figure 5, the age of jadeite formation is significantly older than the HP–LT metamorphism of the Renge schist in the same mélange. The wide range of zircon ages implies a long-sustained process of jadeite formation.

Oxygen isotope composition of zircon crystallized during jadeite formation is unusually higher (δ¹⁸O = +3.6 ± 0.6‰) than those of the inherited core, which likely formed in equilibrium with mantle (δ¹⁸O = +5.0 ± 0.4‰) (Fu et al., 2010). Oxygen isotope fractionation between jadeite (Jd) and zircon (Zrn), Δ¹⁸O₃d−Zrn (= δ¹⁸O₃d − δ¹⁸OZrn) value of +4.0 or +5.7‰, implies a very low apparent temperature ~ 250 °C, suggesting zircon is out of oxygen isotope equilibrium with jadeite. In contrast, Ti-in zircon thermometry results in relatively high-temperature of ~ 640–720 °C (Fu et al., 2010). It is noteworthy that Early Paleozoic high-pressure epidote-amphibolite facies metamorphism in tectonic blocks associated with the Oeyama belt has the similar temperature range (Tsujimori and Liu, 2004a).

Initial epsilon hafnium values of zircon, εHf(t), lie between the CHUR (chondritic uniform reservoir) and the DM (depleted mantle) evolution lines (Fu et al., 2010) (Fig. 7). The model age defined by metasomatic zircons would represent a timing of a zircon source differentiated from the mantle at ~ 570 Ma (Fig. 7); hafnium might have remobilized from protoliths (or source of fluids) of jadeite during jadeite formation.

Figure 5. Summary of geochronological data for jadeite and associated HP–LT metamorphic rocks from the Itoigawa-Omi and Osayama areas (modified after Tsujimori and Harlow, 2012). Data of gabbroic rocks of the Oeyama ophiolite are after Kimura and Hayasaka (2015). Abbreviations of minerals and metamorphic facies: Jd, jadeite; protolith, protolith age; Zrn, zircon; Phe, phengite; Hbl, hornblende; GS, greenschist facies; BS, blueschist facies; EC, eclogite facies; EA, epidote amphibolite facies; AM, amphibolite facies.

JADEITE-BEARING METAMORPHIC ROCKS IN THE KUROSEGAWA BELT

The Kurosegawa belt is a serpentinite-matrix mélangé belt, running parallel to the orogenic trend west from central Kyushu passing Shikoku to the Kanto Mountains, which has been interpreted as a tectonic klippe consisting of pre-Jurassic equivalents of the CGM and HDM (e.g., Isozaki and Itaya, 1991; Isozaki and Maruyama, 1991; Isozaki et al., 2010). In this context, ultramafic rocks and HP–LT metamorphic rocks of the Kurosegawa belt are correlated with those of the Oeyama and Renge belts (e.g., Tsujimori and Itaya, 1999). Jadeite-rich metasomatic rocks have been known from serpentinite-matrix mélanges of the Kurosegawa belt in Kyushu and Shikoku (Fig. 1). A jadeite-bearing lawsonite-blueschist-facies metagabbro occurs as a tectonic block in the Hakoishi serpentinite unit of the Yatsushiro area, central Kyushu; the metagabbro contains centimeter-scale cavities (or veins) filled by jadeite (Saito and Miyazaki, 2006). The unusual monomineralic nature suggests that the jadeite was precipitated in local cavities. Similar monomineralic jadeite veins have been known in some Franciscan blueschist (e.g., Banno et al., 2000). The jadeite-bearing...
metagabbro has not yet been dated, but the jadeite precipitation is likely correlated with Late Paleozoic blueschist–facies metamorphism of the Kurosegawa belt that is equivalent to the Renge HP–LT schist in the CGM and HDM. Another jadeite–rich metamorphic rock was reported as boulders from a serpentinite mélange of the Kochi area of Shikoku (Tsutsumi et al., 2010). The rock consists mainly of jadeite and quartz with glaucophane; relict igneous zircons with melt inclusions yield ion–microprobe U–Pb ages of 501 ± 5 Ma (n = 26). Similar detrital zircons (~500 Ma) were also confirmed from jadeite–bearing lawsonite blueschist in this area (Yang et al., 2016). Zircons extracted from rodingites and serpentinites in the Kochi area show major U–Pb age peaks at 485 Ma and 469 Ma as formation of the protoliths (Hu et al., 2017). These Cambro–Ordovician igneous events are consistent with previous thoughts that Oeyama belt and the proto–Japan formed during the Early Paleozoic.

PERSPECTIVES

Research interest in jadeite has not only included petro-tectonics, geochronology, and geochemistry (e.g., Harlow et al., 2004; Brueckner et al., 2009; Fu et al., 2010; Simons et al., 2010; Sorensen et al., 2010; Yui et al., 2012;
Flores et al., 2013; Harlow et al., 2016), but current attention also reflects their significance regarding geochemical components of arc magmas (e.g., Marschall and Schumacher, 2012). Studies over the last two decades have interpreted jadeite either as the direct aqueous fluid precipitate from a subduction channel into the overlying mantle wedge or as the metasomatic replacement by such fluids of oceanic plagiogranite, greywacke, or metabasite along the channel margin (cf. Harlow et al., 2015). Most jadeitites are principally fluid precipitates (P-type), but some jadeitites that preserve relict minerals and protolith textures also occur and are thus metasomatic replacements (R-type; Tsujimori and Harlow, 2012). This new jadeite classification (P- and R-types) based on formation process has been widely accepted in the geoscience community.

Jadeite is a petrotectonic indicator that found only in Neoproterozoic and younger orogenic belts (Stern et al., 2013, 2016). At least 19 jadeite localities demonstrate that jadeite-bearing serpentinite-matrix mélanges were exhumed to the Earth’s surface along major transform-type or thrust faults cutting paleo-forearcs or accretionary wedges (Harlow et al., 2015). The P-T conditions of jadeitites correlate to forearc mantle wedge and HP-LT metamorphism within a Pacific-type subduction zone at relatively shallow depths (<100 km). Ascending aqueous fluids in a mantle wedge are also supported by a vertical wall-like low-V zones in the forearc region visualized by a high-resolution seismic tomography of NE Japan (‘Water Wall’: Zhao et al., 2015). The jadeite-forming aqueous fluids transfer various elements from subduction slab into the transitional mélangé and overlying mantle wedge (e.g., Flores et al., 2013; Harlow et al., 2016); these fluids also promote mass circulation within a subduction channel and mantle wedge. Chemical differentiation and transportation of the fluids caused by jadeite formation are crucial topics requiring further research.

Finally, what can we learn from the Early Paleozoic jadeitites in Japan? Paleozoic jadeite-bearing serpentinite-matrix mélangé represents the oldest mantle wedge above the Pacific-type subduction zone of proto-Japan. The jadeitites provide a petrotectonic constraint on the earliest subduction event in proto-Japan. Geochronological data of both jadeitites worldwide and associated HP-LT metamorphic rocks have shown temporal discrepancies between jadeite formation and HP-LT metamorphism (e.g., blueschist- and eclogite-facies metamorphism) at some localities (Tsujimori and Harlow, 2012). As a representative case of the Itoigawa-Omi and Oyama localities (Fig. 5), the close association between older jadeitites and younger HP-LT rocks in a single mélangé complex implies different histories for the subduction channel and jadeite-bearing serpentinite-matrix mélangé. Notably, the jadeite-hosted mélangé (or serpentinitized peridotite) can stay within mantle wedge for a considerable time. Consequently, recrystallization, resorption, and re-precipitation of jadeite are continued in the mantle wedge environment. Characteristic features of the proto-Japan remnants are a less voluminous amount of tonalite-trondhjemite-granodiorite (TTG) or basaltic rocks and ubiquitous occurrence of ultramafic rocks (e.g., Oeyama/ Renge and Kurosegawa belts). Although, the crustal rocks of the proto-Japan might have been lost by tectonic erosion (e.g., Tsujimori, 1998; Isozaki et al., 2010; Yang et al., 2016). Serpentinite of the Kurosegawa belt contains zircon with U-Pb ages of 500 and 560 Ma; the zircon grains were likely contaminated with those from disrupted crustal rocks incorporated to a subduction channel (Yang et al., 2016). Such zircons or zircon-bearing igneous rocks in mantle wedge environment can be involved in formation of jadeite (e.g., Lei et al., 2016; Hertwig et al., 2016). However, there is still more studies to be done in order to better understand the proto-Japan’s mantle wedge environment (jadeite-formation and tectonic erosion). In any case, studies of Paleozoic jadeitites in Japan continue to provide opportunities to tie up fossilized mantle wedge and subduction channels to geophysical observations of modern analogues, and to constrain tectonic development during the earliest stages of orogenic growth associated with the subduction of the paleo-Pacific oceanic plates. For the next step, more advanced approach will be required than those documented in previous studies.

ACKNOWLEDGMENTS

This work is dedicated to Bob Coleman who has addressed the significance of recognition of the ophiolite-blueschist associations with jadeitites and eclogites in the early ‘70s. I always appreciate his encouragement, ‘Tatz, keep going!!’. This research was supported by Center for Northeast Asian Studies, Tohoku University in part by grants from the MEXT/JSPS KAKENHI (15H05212). Kennet E. Flores and anonymous reviewers provided helpful feedback. This manuscript was also improved by Daniel Pastor-Gulán and Jesse Walters. I thank these researchers for their help and ‘Jadero’ (George Harlow and his collaborators) for long-term collaboration.

REFERENCES

Arai, S. (1980) Dunite-harzburgite-chromitite complexes in refractory residue in the Sangun-Yamaguchi zone, western Japan.
Cornell, H.K., Avé Lallemant, H.G., Sisson, V .B., Harlow, G.E.,
Brueckner, H.K., Avé Lallemant, H.G., Sisson, V.B., Harlow, G.E.,
Sorensen, S.S. (2004) Two high temperature mélange along the Motagua fault, Guatemala: A record of Neocomian and Maastrichtian transpressional tectonics.
Earth and Planetary Science Letters, 284, 228-235.

Chihara, K. (1979) Mineralogy and paragenesis of jadeites from the Omi–Kotaki area, Central Japan. Mineralogical Society of Japan, Special Paper, 1, 147-156.

Chihara, K. (1989) Tectonic significance of jadeite in Hida marginal belt and Sangun metamorphic belt. Memoirs of the Geological Society of Japan, 33, 37-51.

Coleman, R.G. (1961) Jadeite deposits of the Clear Creek area, Colorado. Contributions to Mineralogy and Petrology, 43, 105

Fu, B., Valley, J.W., Kita, N.T., Spicuzza, M.J., Paton, C., Tsujimori, T., and Sorensen, S.S. (2009) Multiple origins of zircons in jadeite. Contributions to Mineralogy and Petrology, 159, 769-780.

Flores, K., Harlow, G.E., Martens, U., Brueckner, H.K. and Pearson, N. (2013) Jadeite formed during subduction: zircon geochronology constraints for two different tectonic events in the Guatemala suture zone. Earth and Planetary Science Letters, 371-372, 67-81.

Früh-Green, G.L., Scambelluri, M. and Vallis, F. (2001) Document O–H isotope ratios of high pressure ultramafic rocks: Implications for fluid sources and mobility in the subducted hydrous mantle. Contributions to Mineralogy and Petrology, 141, 145-159.

Harlow, G.E., Flores, K.E. and Marschall, H.R. (2016) Fluid-mediated mass transfer from a paleosubduction channel to its mantle wedge: Evidence from jadeite and related rocks from the Guatemala Suture Zone. Lithos, 258, 15–36.

Harlow, G.E., Hemming, S.R., Avé Lallemant, H.G., Sisson, V.B. and Sorensen, S.S. (2004) Two high pressure-low-temperature serpentinite-matrix mélangé belts, Motagua fault zone, Guatemala: A record of Aptian and Maastrichtian collisions. Geology, 32, 17–20.

Harlow, G.E., Tsujimori, T. and Sorensen, S.S. (2015) Jadeitites and plate tectonics. Annual Reviews of Earth and Planetary Sciences, 43, 105-138.

Hashimoto, M. and Igi, S. (1970) Finding of lawsonite–glauco-
phane schists from the Sangun metamorphic terrane of eastern Chugoku province. Journal of the Geological Society of Japan, 76, 159-160.

Hertwig, A., McClelland, W.C., Kitajima, K., Schertl, H.P., Morse, W.Y., Stanek, K., Valley, J.W. and Sergeev, S.A. (2016) Inherited igneous zircons in jadeite predate high pressure metamorphism and jadeite formation in the Jagua Clara serpentinite mélangé of the Rio San Juan Complex (Dominican Republic). Contributions to Mineralogy and Petrology, 171, 48, doi:10.1007/s00410-016-1256-6.

Hu, C.N., Santos, M., Yang, Q.Y., Kim, S.W., Nakagawa, M. and Maruyama, S. (2017) Magmatic and metasomatic imprints in a long-lasting subduction zone: Evidence from zircon in rodingite and serpentinite of Kochi, SW Japan. Lithos, 274-275, 349-362.

Isshizaki, A. and Tsujimori, T. (2003) Paleozoic ophiolites and blueschists in Japan and Russian Primorye in the tectonic framework of East Asia: a synthesis. Island Arc, 12, 190-206.

Isozaki, Y. and Itaya, T. (1991) Pre-Jurassic klippe in northern Chichibu belt in west-central Shikoku, southwest Japan: Kurosegawa terrane as a tectonic outlier of the pre-Jurassic rocks of the Inner Zone. Journal of the Geological Society of Japan, 97, 431-450.

Isozaki, Y. and Maruyama, S. (1991) Studies on orogeny based on plate tectonics in Japan and new geotectonic subdivision of the Japanese Island. Journal of Geography (Chigaku Zasshi), 100, 697-761.

Isozaki, Y., Aoki, K., Nakama, T. and Yanai, S. (2010) New insight into a subduction related orogen: a reappraisal of the geotectonic framework and evolution of the Japanese Islands. Gondwana Research, 18, 92-105.

Kawano, Y. (1939) A new occurrence of jade (jadeite) in Japan and its chemical properties. Journal of the Japanese Association of Mineralogists, Petrologists and Economic Geologists, 22, 195-201.

Khedr, M.Z. and Arai, S. (2010) Hydrous peridotites with Ti-rich chromian spinel as a low-temperature forearc mantle facies: Evidence from the Hoppo–O’ne metaperidotites (Japan). Contributions to Mineralogy and Petrology, 159, 137–157.

Khedr, M.Z. and Arai, S. (2011) Petrology and geochemistry of chromian spinel–bearing serpentinite in the Hida marginal belt (Ise area, Japan): Characteristics of their protoliths. Journal of Mineralogical and Petrological Sciences, 106, 255-260.

Kimura, K. and Hayasaka, Y. (2015) Zircon U–Pb age and origin of Oeyama ophiolite, Inner Zone of SW Japan. Abstracts of the 122nd Annual Meeting of the Geological Society of Japan, 207.

Kobayashi, S., Miyake, H. and Shoji, T. (1987) A jadeite rock from Oosa-cho, Okayama Prefecture, Southwest Japan. Mineralogical Journal, 13, 314-327.

Komatsu, M. and Yamazaki, K. (1981) Sedimentary serpentinite layers, eclogite amphibolite and jadeite–quartz rock in the Hoppo-one metamorphic belt. Report of Sogo Kenkyu, “Hida Gaien Belt”, 2, 1-11.

Kunugiza, K. and Goto, A. (2010) Juvenile Japan: hydrothermal activity of the Hida-Gaien belt indicating initiation of subduction of proto-pacific plate in ca. 520 Ma. Journal of Geography (Chigaku Zasshi), 119, 279-293.

Kunugiza, K., Nakamura, E., Miyajima, H., Goto, A. and Kobayashi, K. (2002) Formation of Jadeite-natrolite rocks in the Itoigawa-Omni area of the Hida marginal belt inferred from U-Pb zircon dating. Abstracts of Papers Presented at the Annual Meeting of The Japanese Association of Mineralogists, Petrologists and Economic Geologists 2002, 296.

Lei, W.Y., Shi, G.H., Santosh, M., Ng, Y., Wang, J., Xie, G. and Ju, Y. (2016) Trace element features of hydrothermal and inherited igneous zircon grains in mantle wedge environment: A case study from the Myanmar jadeitite. Lithos, 266-267, 16-27.

Machi, S. and Ishiwatari, A. (2010) Ultramafic rocks in the Kotaki area, Hida Marginal Belt, central Japan: Peridotites of the Oeyama ophiolite and their metamorphism. Journal of the Geological Society of Japan, 116, 293-308.
Paleozoic jadeitites in Japan

Masutomi, J. (1966) The discovery of jadeite from the Sangun metamorphic belt, Tottori. Chigaku-Kenkyu, 17, 83.

Marschall, H.R. and Schumacher, J.C. (2012) Arc magmas sourced from mélangé diapirs in subduction zones. Nature Geoscience, 5, 862-867.

Matsumoto, I., Arai, S. and Yamauchi, H. (1997) High-Al podiform chromitites in dunite-harzburgite complexes of the Sangun zone, central Chugoku district, Southwest Japan. Journal of Asian Earth Sciences, 15, 295-302.

Miyajima, H., Matsubara, S., Miyawaki, R. and Ito, K. (1999) Itoigawaite, a new mineral, the Sr analogue of lawsonite, in jadeite from the Itoigawa-Ohmi district, central Japan. Mineralogical Magazine, 63, 909-916.

Morishita, T., Arai, S. and Ishida, Y. (2007) Trace element compositions of jadeite (=omphacite) in jadeitites from the Itoigawa-Ohmi district, Japan: Implications for fluid processes in subduction zones. Island Arc, 16, 40-56.

Nakamizu, M., Okada, M., Yamazaki, T. and Komatsu, M. (1989) Metamorphic rocks in the Omi-RENge serpentinite melange, Hida Marginal Tectonic Belt, Central Japan. Memoirs of the Geological Society of Japan, 33, 21-35.

Nishimura, Y. (1998) Geotectonic subdivision and areal extent of the Sangun Belt, Inner Zone of Southwest Japan. Journal of Metamorphic Geology, 16, 129-140.

Nishimura, Y. and Shibata, K. (1989) Modes of occurrence and K-Ar ages of metagabbroic rocks in the ‘Sangun metamorphic belt’, Southwest Japan. Memoirs of Geological Society of Japan, 33, 343-357.

Nozaka, T. (2005) Metamorphic history of serpentinite mylonites from the Happo ultramafic complex, central Japan. Journal of Metamorphic Geology, 23, 711-723.

Saito, M. and Miyazaki, K. (2006) Jadeite-bearing metagabbro in serpentinite melange of the ‘Kurosogawa Belt’ in Izumi Town, Yatsushiro City, Kumamoto Prefecture, central Kyushu. Bulletin of the Geological Survey of Japan, 57, 169-176.

Simons, K.K., Harlow, G.E., Sorensen, S.S., Brueckner, H.K., Goldstein, S.L., Hemming, N.G. and Langmuir, C.H. (2010) Lithium isotopes in Guatemala and Franciscan HP-LT rocks: insights into the role of sediment-derived fluids in the mantle wedge. Geochemica et Cosmochimica Acta, 74, 3621-3641.

Sorensen, S., Harlow, G.E. and Rumble, D. (2006) The origin of jadeite-forming subduction-zone fluids: CL-guided SIMS oxygen-isotope and trace-element evidence. American Mineralogist, 91, 979-996.

Sorensen, S.S., Sisson, V.B., Harlow, G.E. and Avé Lallemant, H.G. (2010) Element transport and residence sites during subduction zone metamatism: evidence from a jadeite-serpentinite contact, Guatemala. International Geology Review, 52, 899-940.

Shimobayashi, N. (2004) Itoigawaite in new mode of occurrence from the Wakasa district, Tottori Prefecture, Japan. Abstract Volume of the 32nd International Geological Congress (August 20-28, 2004), 654.

Shoji, T. and Kobayashi, S. (1988) Fluid inclusions found in jadeite and staurolite, and a comment on the jadeite analcime boundary. Journal of Mineralogy, Petrology and Economic Geology, 83, 1-8.

Stern, R.J., Tsujimori, T., Harlow, G.E. and Groat, L.A. (2013) Plate tectonic gemstones. Geology, 41, 723-726.

Stern, R.J., Leybourne, M.I. and Tsujimori, T. (2016) Kimberlites and the start of plate tectonics. Geology, 44, 799-802.

Tazaki, K. and Ishiuichi, K. (1976) Coexisting jadeite and paragonite in albitite. Journal of the Mineralogical Society of Japan, 12, 184-194.

Tsujimori, T. (1997) Omphacite-diopside vein in an omphacite block from the Osayama serpentinite melange, Sangun-Renge metamorphic belt, southwestern Japan. Mineralogical Magazine, 61, 845-852.

Tsujimori, T. (1998) Geology of the Osayama serpentinite melange in the central Chugoku Mountains, Southwestern Japan: 320 Ma blueschist-bearing serpentinite melange beneath the Oeyama ophiolite. Journal of the Geological Society of Japan, 104, 213-231.

Tsujimori, T. (2002) Prograde and retrograde P-T paths of the late Paleozoic glaucophane eclogite from the Renge metamorphic belt, Hida Mountains, Southwest Japan. International Geology Review, 44, 797-818.

Tsujimori, T. (2004) Origin of serpentinites in the Omi serpentinite melange (Hida Mountains, Japan) deduced from zoned chromian spinel. Journal of the Geological Society of Japan, 110, 591-597.

Tsujimori, T. (2010) Paleozoic subduction-related metamorphism in Japan: New insights and perspectives. Journal of Geophysics (Chigaku Zasshi), 119, 294-312.

Tsujimori, T. and Itaya, T. (1999) Blueschist-facies metamorphism during Paleozoic orogeny in southwestern Japan: phengite K-Ar ages of blueschist-facies tectonic blocks in a serpentinite melange beneath early Paleozoic Oeyama ophiolite. Island Arc, 8, 190-205.

Tsujimori, T., Nishina, K., Ishiwatari, A. and Itaya, T. (2000) 403-443 Ma kyanite-bearing epidote amphibolite from the Fuku Pass metacumulate in Oeyama, the Inner Zone of southwestern Japan. Journal of the Geological Society of Japan, 106, 646-649.

Tsujimori, T. and Liou, J.G. (2004a) Metamorphic evolution of kyanite-staurolite-bearing epidote-amphibolite from the Early Paleozoic Oeyama belt, SW Japan. Journal of Metamorphic Geology, 22, 301-313.

Tsujimori, T. and Liou, J.G. (2004b) Coexisting chromian omphacite and diopside in tremolite schist from the Chugoku Mountains, SW Japan: The effect of Cr on the omphacite-diopside immiscibility gap. American Mineralogist, 89, 7-14.

Tsujimori, T. and Liou, J.G. (2005a) Eclogite-facies mineral inclusions in clinzoisite from Paleozoic blueschist, central Chugoku Mountains, southwest Japan: Evidence of regional eclogite-facies metamorphism. International Geology Review, 47, 215-232.

Tsujimori, T., Liou, J.G., Wooden, J. and Miyamoto, T. (2005b) U-Pb dating of large zircons in low-temperature jadeite from the Osayama serpentinite melange, Southwest Japan: insights into the timing of serpentinitization. International Geology Review, 47, 1048-1057.

Tsujimori, T. and Liou, J.G. (2007) Significance of the Ca-Na pyroxene-lawsonite-chlorite assemblage in blueschist-facies metabasalts: An example from the Renge metamorphic rocks, SW Japan. International Geology Review, 49, 415-430.

Tsujimori, T. and Harlow, G.E. (2012) Petrogenetic relationships between jadeite and associated high-pressure and low-temperature metamorphic rocks in worldwide jadeite localities: a review. European Journal of Mineralogy, 24, 371-390.

Tsutsumi, Y., Yokoyama, K., Miyawaki, R., Matsubara, S., Terada, K. and Hidaka, H. (2010) Ages of zircons in jadeite and jadeite-bearing rocks of Japanese Islands. Bulletin of the National Museum of Nature and Science, Series C, 36, 19-30.
Uemura, F., Sakamoto, T. and Yamada, N. (1979) Geology of the Wakasa district, Quadrangle series, scale 1:50,000, Geological Survey of Japan, pp.91.

Yamazaki, T. (1981) Metamorphism of metamorphic rocks and ultramafic rocks in the Happo-O’ne area. Report of Scientific Project, “Hida-Gaien Belt”, Grant-in-Aid for Scientific Research (A) X00050–434045, 1, 31–37.

Yang, Q.Y., Santosh, M., Maruyama, S. and Nakagawa, M. (2016) Proto–Japan and tectonic erosion: Evidence from zircon geochronology of blueschist and serpentinite. Lithosphere, 8, 386–395.

Yui, T.-F., Maki, K., Wang, K.L., Lan, C.Y., Usuki, T., Iizuka, Y., Wu, C.M., Wu, T.W., Nishiyama, T., Martens, U., Liou, J.G. and Grove, M. (2012) Hf isotope and REE composition of zircon from jadeite (tone, Japan and north of the Motagua fault, Guatemala): Implications on jadeite genesis and possible protoliths. European Journal of Mineralogy, 24, 263–275.

Zhao, D., Kitagawa, H. and Toyokuni, G. (2015) A water wall in the Tohoku forearc causing large crustal earthquakes. Geophysical Journal International, 200, 149–172.

Manuscript received April 6, 2017
Manuscript accepted July 20, 2017
Manuscript handled by Ritsuro Miyawaki Guest Editor