High-Quality NMR Structure of Human Anti-Apoptotic Protein Domain Mcl-1(171-327) for Cancer Drug Design

Gaohua Liu1✉, Leszek Poppe2✉, Ken Aoki3, Harvey Yamane3, Jeffrey Lewis3, Thomas Szyperski1✉

1 Department of Chemistry, State University of New York at Buffalo, Buffalo, New York, United States of America, 2 Molecular Structure, Amgen, Thousand Oaks, California, United States of America, 3 Protein Science, Amgen, Thousand Oaks, California, United States of America

Abstract

A high-quality NMR solution structure is presented for protein hMcl-1(171–327) which comprises residues 171–327 of the human anti-apoptotic protein Mcl-1 (hMcl-1). Since this construct contains the three Bcl-2 homology (BH) sequence motifs which participate in forming a binding site for inhibitors of hMcl-1, it is deemed to be crucial for structure-based design of novel anti-cancer drugs blocking the Mcl1 related anti-apoptotic pathway. While the coordinates of an NMR solution structure for a corresponding construct of the mouse homologue (mMcl-1) are publicly available, our structure is the first atomic resolution structure reported for the ‘apo form’ of the human protein. Comparison of the two structures reveals that hMcl-1(171–327) exhibits a somewhat wider ligand/inhibitor binding groove as well as a different charge distribution within the BH3 binding groove. These findings strongly suggest that the availability of the human structure is of critical importance to support future design of cancer drugs.

Introduction

The malfunctioning of cellular apoptosis [1] is a major hallmark of cancer. The regulation of apoptosis depends on the family of Bcl-2 proteins which contain one or several Bcl-2 homology (BH) sequence motifs. Based on their function and the similarity of their respective BH sequence motifs, these proteins can be grouped into three classes [2],[3]: (i) multi-domain pro-apoptotic proteins such as Bax and Bak, (ii) anti-apoptotic (i.e., pro-survival) proteins such as Mcl-1, Bcl-1, Bcl-xL, Bcl-w and Bfl-1/A1, all of which exhibit a similar architecture as Bax and Bak, and (iii) several pro-apoptotic proteins comprising only a single BH3 sequence motif such as Bid, Bad, Bim, Puma, Noxa and Bak. Hence, Mcl-1 plays an early role in response to signals directing either cell survival or cell death [2] and has been shown to be up-regulated in numerous malignant tumors. Approaches abrogating the Mcl-1’s anti-apoptotic function either by reducing its abundance or by inactivating its functional BH3-binding groove show great promise for the cancer treatment [2],[4],[6],[7]. Here we present the high-quality NMR solution structure of polypeptide segment 171–327 of human Mcl-1 (hMcl-1) which comprises the three BH motifs deemed to be crucial for structure based drug design.

Results and Discussion

A high-quality NMR structure of hMcl-1(171–327) was obtained (Table 1) and the coordinates were deposited in the PDB [8] (accession code 2mhs). The structure comprises seven ß-helices ß1–ß7 (residues 173–191, 204–235, 240–253, 262–280, 284–301, 303–308 and 311–319) arranged to form a characteristic ‘Bcl-2 core’ structure [9] (Figure 1). The helices are locally clustered into two groups, ß1–ß3 and ß4–ß7, and the loops connecting, respectively, helices ß1 and ß2, helices ß3 and ß4, and helices ß4 and ß5 are flexibly disordered. The

Citation: Liu G, Poppe L, Aoki K, Yamane H, Lewis J, et al. (2014) High-Quality NMR Structure of Human Anti-Apoptotic Protein Domain Mcl-1(171-327) for Cancer Drug Design. PLoS ONE 9(5): e96521. doi:10.1371/journal.pone.0096521

Editor: Annalisa Pastore, National Institute for Medical Research, Medical Research Council, London, United Kingdom

Received December 17, 2013; Accepted April 8, 2014; Published May 2, 2014

Copyright: © 2014 Liu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was funded by Amgen Inc. (www.amgen.com). LP, KA, HY and JL are employees of Amgen Inc. and Amgen Inc. played a role in study design, data collection and analysis, decision to publish and preparation of the manuscript.

Competing Interests: This study was funded by Amgen Inc. but there is no competing interest that can bias this work. This affiliation does not alter the authors’ adherence to PLOS ONE policies on sharing data and materials.

* E-mail: szyperski@buffalo.edu

† These authors contributed equally to this work.

✉ Current address: Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America

Abstract

A high-quality NMR solution structure is presented for protein hMcl-1(171–327) which comprises residues 171–327 of the human anti-apoptotic protein Mcl-1 (hMcl-1). Since this construct contains the three Bcl-2 homology (BH) sequence motifs which participate in forming a binding site for inhibitors of hMcl-1, it is deemed to be crucial for structure-based design of novel anti-cancer drugs blocking the Mcl1 related anti-apoptotic pathway. While the coordinates of an NMR solution structure for a corresponding construct of the mouse homologue (mMcl-1) are publicly available, our structure is the first atomic resolution structure reported for the ‘apo form’ of the human protein. Comparison of the two structures reveals that hMcl-1(171–327) exhibits a somewhat wider ligand/inhibitor binding groove as well as a different charge distribution within the BH3 binding groove. These findings strongly suggest that the availability of the human structure is of critical importance to support future design of cancer drugs.

Introduction

The malfunctioning of cellular apoptosis [1] is a major hallmark of cancer. The regulation of apoptosis depends on the family of Bcl-2 proteins which contain one or several Bcl-2 homology (BH) sequence motifs. Based on their function and the similarity of their respective BH sequence motifs, these proteins can be grouped into three classes [2],[3]: (i) multi-domain pro-apoptotic proteins such as Bax and Bak, (ii) anti-apoptotic (i.e., pro-survival) proteins such as Mcl-1, Bcl-1, Bcl-xL, Bcl-w and Bfl-1/A1, all of which exhibit a similar architecture as Bax and Bak, and (iii) several pro-apoptotic proteins comprising only a single BH3 sequence motif such as Bid, Bad, Bim, Puma, Noxa and Bak. Hence, Mcl-1 plays an early role in response to signals directing either cell survival or cell death [2] and has been shown to be up-regulated in numerous malignant tumors. Approaches abrogating the Mcl-1’s anti-apoptotic function either by reducing its abundance or by inactivating its functional BH3-binding groove show great promise for the cancer treatment [2],[4],[6],[7]. Here we present the high-quality NMR solution structure of polypeptide segment 171–327 of human Mcl-1 (hMcl-1) which comprises the three BH motifs deemed to be crucial for structure based drug design.

Results and Discussion

A high-quality NMR structure of hMcl-1(171–327) was obtained (Table 1) and the coordinates were deposited in the PDB [8] (accession code 2mhs). The structure comprises seven ß-helices ß1–ß7 (residues 173–191, 204–235, 240–253, 262–280, 284–301, 303–308 and 311–319) arranged to form a characteristic ‘Bcl-2 core’ structure [9] (Figure 1). The helices are locally clustered into two groups, ß1–ß3 and ß4–ß7, and the loops connecting, respectively, helices ß1 and ß2, helices ß3 and ß4, and helices ß4 and ß5 are flexibly disordered. The
Labeled and colored differently, and the N- and C-termini are labeled as of the lowest energy conformer of hMcl-1(171–327). A green (BH3), red (BH1) and blue (BH2), respectively. (B) Helices for minimal rmsd. The three BH sequence motifs are colored in MOLMOL [36] and PYMOL [37].

Figure 1. NMR structure of hMcl-1(171–327). (A) Backbone of the 20 CYANA conformers representing the solution structure of hMcl-1(171–327) after superposition of backbone N, C' and C atoms of the α-helices for minimal rmsd. The three BH sequence motifs are colored in green (BH3), red (BH1) and blue (BH2), respectively. (B) Ribbon drawing of the lowest energy conformer of hMcl-1(171–327). α-helices α1–α7 are labeled and colored differently, and the N- and C-termini are labeled as “N’” and “C’”. The figures were generated using the programs MOLMOL [36] and PYMOL [37]. doi:10.1371/journal.pone.0096521.g001

Central helix α4 is surrounded by the other six helices, with α1, α2, α3 and α5 packed around one side, and α6 and α7 packed against its N-terminus. Helices α2, α3, α4 and α7 participate in forming the BH3 binding groove. The electrostatic protein surface potential is positive at both ends of the BH3 binding groove (due to the presence of Arg 233, Lys 234, Arg 248 and Arg 263) and negative at the side of helix α3 side (due to Asp 256) (Figure 2). This shows that the charge distribution in the BH3 binding groove of hMcl-1(171–327) differs distinctly from other anti-apoptotic proteins [10].

Including our hMcl-1(171–327) structure, twenty atomic resolution structures containing different Mcl-1 constructs are currently deposited in the PDB. In addition to the two ‘apo’ proteins hMcl-1(171–327) and mouse mMcl-1(152–308) [10] [PDB accession code 1wxs, 89% sequence identity with the human protein], the structures for nineteen protein-ligand complexes were deposited (Table 2) [9], [11-18]. Clearly, the large number of available structures reflects the outstanding interest in Mcl-1 as a target for the development of new cancer drugs. Superposition of the α-helices reveals, as expected, close structural similarity for all Mcl-1 proteins structures (Figure 3); the root mean square deviation (rmsd) values range from 1.05 to 1.54 Å relative to hMcl1-1(171–327) (Table 2). However, comparison of the two apo protein structures of hMcl-1(171–327) and mMcl-1(152–308) with the complex structures shows that the binding pocket is widened upon complex formation (Table 2); the distances between the C’-atoms of residues His 224 in helix α2 (His 205 in mMcl-1) and His 252 (His 235 in mMcl-1) at the C-terminus of helix α3 are, respectively, \sim16 Å and \sim14 Å in hMcl-1(171–327) and mMcl-1(152–308), and \sim18–21 Å in the complexes.

The fact that the human apo protein exhibits a somewhat wider binding groove than the mouse homologue (Table 2) can be, at least partially, ascribed to the side chain of Leu 246 in the human protein which is not buried as deeply as the corresponding Phe side chain in the mouse protein. Furthermore, when comparing the human and the mouse protein, differences are observed for the charge distributions in the BH3-binding groove (Figure 2): the human protein is negatively charged on the side of helix α3, while the corresponding surface of mouse protein is positively charged. This difference arises from Ser 255 corresponding to Lys 236 in the mouse protein. Remarkably, hMcl-1(171–327) is structurally more similar to the hMcl1(171–327)-hBim BH3 complex (Figure 3) than to apo mMcl-1(152–308) (Table 2).

Taken together, structural comparisons show that, in spite of the 89% sequence identity between human and mouse protein, the availability of the human hMcl-1(171–327) structure can be expected to be of critical importance for supporting future design of cancer drugs.

Materials and Methods

NMR Sample Preparation

Preliminary studies showed that hMcl-1(171–327) (UniProtKB/Swiss-Prot ID Q07820/MCL1_HUMAN) is not stable in solution. However, the mutant Cys 286 → Ser is stable for several weeks at concentrations \sim0.7 mM, and both wild-type and mutant bind the Bim-BH3 peptide with the same affinity (K_{d} \sim 60 pM) in a Biacore assay. Hence, we solved the NMR structure of hMcl-1(171–327) Cys 286 → Ser referred to as hMcl-1(171–327) in this publication.

hMcl-1(171–327) was cloned, expressed, refolded and purified following standard protocols to produce a uniformly 13C, 15N-labeled protein sample [19]. Briefly, the gene was cloned into a pET21d (Novagen) derivative yielding plasmid pSR482-21.1. The resulting construct contains seven nonnative residues at the C-

Figure 2. Electrostatic surface potentials. (A) For human hMcl-1(171–327) in the orientation shown in Figure 1 (left) and after rotation by 180° about the vertical axis (right). Surface colors (blue for positively charged; red for negatively charged) indicated the electrostatic potential calculated by using PYMOL [37] and its default vacuum electrostatics protocol. (B) Same as in (A) but for mouse mMcl-1(152–308).

doi:10.1371/journal.pone.0096521.g002
Table 1. Statistics of hMcl-1(171–327) NMR Structure.

Completeness of stereo-specific assignments [%]	55 (6/11)
10CH2 of Gly	38 (27/71)
Val and Leu methyl groups	100 (27/27)

Conformationally restricting distance constraints

Intra-residue [i = j]	1052		
Sequential [i−j = 1]	1062		
Medium range [1 <	i−j	< 5]	1197
Long range [i−j	≥ 5]	1058
Total	4369		

Dideiral angle constraints

| φ | 113 |
| ψ | 113 |

Number of constraints per residue (170–327) | 29.1 |
Number of long range constraints per residue (170–327) | 6.7 |

CYANA target function (Å²) | 0.88±0.12 |
Number of distance violations per CYANA conformer 0.2−0.5 Å | 0 |
> 0.5 Å | 0 |
Number of dihedral-angle constraint violations per CYANA conformer > 5 | 0 |

Average rmsd to the mean CNS coordinates (Å) | 0.42±0.05 |
A-helices, backbone heavy atoms N, C', C'' | 0.88±0.07 |
A-helices, all heavy atoms | 0.65±0.13 |
Residues 172–321, backbone heavy atoms N, C', C'' | 1.05±0.10 |

PROCHECK [38] G-factors raw score (φ and ψ/all dihedral angles)² | 0.34/0.22 |
PROCHECK [38] G-factor Z - score (φ and ψ/all dihedral angles)² | 1.65/1.30 |
MOLPROBITY [39] clash score (raw/Z - score)² | 20.86/2.06 |
AutoQF R/P/F/DP scores [40] (%) | 96/97/96/81 |
Ramachandran plot summary² | 92.7 |
most favorable regions | 92.7 |
additionally allowed regions | 7.3 |
generously allowed regions | 0.0 |
disallowed regions | 0.0 |

*Related to pairs with non-degenerate chemical shift.
*Regular secondary element: α-helical residues 173–191, 204–235, 240–253, 262–280, 284–301, 303–308 and 311–319.
*Ordered residues: 172–192,194–198, 204–235, 238–255, 262–321 with dihedral angle order parameters S(φ) and S(ψ) > 0.9. Z-scores were computed relative to corresponding structure quality measures for high resolution X-ray crystal structures [42].

NMR spectroscopy

NMR spectra were recorded at 25°C. Five G-matrix Fourier transform (GFT) NMR experiments [22],[23] and a simultaneous 3D 15N/13C-glycine/13C-carboxyl-resolved NOESY [24],[25] spectrum (mixing time 60 ms; measurement time: 48 hours) were acquired on a Varian INOVA 750 MHz spectrometer equipped with a conventional probe. 2D constant-time [15N, 1H]-HSQC spectra (18 hours) were recorded for the 5% biosynthetically directed fractionally 13C-labeled sample on a Varian INOVA 600 MHz spectrometer equipped with a cryogenic probe as was described [21],[26]. Spectra were processed and analyzed using the programs NMRPipe [27] and XEASY [28].

Sequence specific backbone (Hα, HN, N, Cα) and Hα/Cα resonance assignments were obtained by using (4,3)D HN(C)N/Cα/Cα/CαN (63 hours)/4,3)D CαCα/CαN/CαN (62 hours), and (4,3)D Hα/Cα/Cα/CαN (69 hours) [23] along with the program AUTOASSIGN [29]. More peripheral side chain chemical shifts were assigned with aliphatic (3,4)D HCCH (67 hours) [23] and 3D 15N/13C-glycine/13C-carboxyl-resolved [1H, 15N]-NOESY [24],[25].
Table 2. Rmsd values for comparison of the NMR structure of hMcl-1(171–327) with the structures of mouse mMcl-1(152–308) and Mcl-1 complexes.

Mcl-1 structures	172–193, 203–321	α1–α7	209–321	α2–α4	α2–α7	dCA_{224,252}	
mMcl-1 Bx	1.60±0.09	1.52±0.06	1.61±0.10	1.21±0.07	1.53±0.06	13.2–14.6	
hMcl-1-hBim	1.76±0.10	1.41±0.10	1.87±0.11	1.52±0.09	1.53±0.09	19.9	
hMcl-1-hMcl-1-mNoxaB	1.46±0.12	1.05±0.08	1.53±0.14	1.00±0.10	1.08±0.09	19.9	
mMcl-1-mNoxa	1.52±0.11	1.16±0.07	1.59±0.13	1.11±0.11	1.18±0.08	18.8–20.2	
hMcl-1-Bim	1.57±0.09	1.30±0.08	1.59±0.11	1.24±0.11	1.30±0.09	18.3–19.9	
mMcl-1-mNoxaB	1.46±0.09	1.13±0.05	1.53±0.11	1.12±0.08	1.18±0.06	18.3–19.6	
rMcl-1-HMcl-1-hBim	1.75±0.09	1.44±0.06	1.86±0.11	1.58±0.09	1.56±0.07	19.9	
rMcl-1-HMcl-1-hBimL62A	1.80±0.09	1.44±0.06	1.90±0.11	1.53±0.08	1.55±0.07	19.8	
mMcl-1-mPuma	1.38±0.16	1.06±0.07	1.43±0.18	0.93±0.10	1.09±0.09	19.4	
mMcl-1-BimL12Y	1.75±0.13	1.50±0.08	1.85±0.15	1.48±0.12	1.59±0.09	20.2	
mMcl-1-BimBH3	2dA'	1.75±0.13	1.50±0.08	1.84±0.14	1.46±0.12	1.57±0.09	19.7
hMcl-1-BimBH3	1.73±0.14	1.46±0.08	1.83±0.11	1.42±0.11	1.54±0.08	19.6–19.9	
hMcl-1-BimBH3F4ae	1.47±0.16	1.21±0.09	1.48±0.18	1.08±0.15	1.24±0.11	20.3	
hMcl-1-BimBH3F7	1.69±0.12	1.46±0.08	1.79±0.13	1.43±0.12	1.54±0.09	19.4	
hMcl-1-Compound5	1.45±0.13	1.22±0.08	1.48±0.14	1.19±0.10	1.28±0.08	18.7	
hMcl-1-Compound6	1.45±0.13	1.22±0.08	1.47±0.12	1.12±0.09	1.25±0.08	17.9–19.6	
hMcl-1-BimBH3	1.51±0.16	1.22±0.09	1.57±0.18	1.06±0.12	1.27±0.10	20.3	

*Average pairwise rmsd values (Å) were calculated for backbone heavy atoms N, Cα, and Cα between the 20 conformers of Mcl-1(171–327) and corresponding polypeptide segments in the other structures. The distances dCA (in Å) between the Cα-atoms of residues His 224 in helix α2 (His 205 in mMcl-1) and His 252 (Hs 233 in mMcl-1) at the C-terminus of helix α3 are provided as a measure for the width of the BH3 binding groove.

1Residue numbers are for hMcl-1(171–327); residues 194–202 were excluded since one structure (2n9p) does not contain the corresponding residues; residues 172–193 and 203–321 correspond to residues 153–174 and 184–302 in mMcl-1, and residues 209–321 correspond to residues 190–302 in mMcl-1.

2Helices α1–α7 in hMcl-1 comprise residues 173–191, 204–235, 240–253, 262–280, 284–301, 303–308 and 311–319; the corresponding residues in mMcl-1 are: 155–172, 185–216, 221–234, 243–261, 265–282, 284–289 and 292–300.

3Helices α2–α7 in hMcl-1 and residues 204–208 (numbers in hMcl-1) were excluded

4Mouse mMcl-1(152–308), PDB accession code 1wsx (the mean NMR coordinates were used) [10].

5Human hMcl-1 complexed with human hBim BH3, 2pjk [11].

6Chimeric rat-human fMcl-1(171–208)/mMcl-1(209–327) complexed with mouse mMcl-1 BH3, 2nla [9].

7Mouse mMcl-1 complexed with mouse mMcl-1 BH3, 2moc [12].

8Mouse mMcl-1 complexed with mouse mBim BH3, 2roc [12].

9Mouse mMcl-1 complexed with mouse mMcl-1 BH3, 2jnm [6].

10Chimeric rat-human 1Mcl-1(171–208)/mMcl-1(209–327) complexed with mouse mMcl-1 BH3, 2nla [9].

11Mouse mMcl-1 complexed with mouse mMcl-1 BH3, 2rod [12].

12Human hMcl-1 complexed with human Bid BH3, 2kbu [15].

13Human hMcl-1 complexed with human Bid BH3, 2kbf [15].

14Human hMcl-1 complexed with human Bid BH3 mutant 12dA, 3k0j [11].

15Human hMcl-1 complexed with human L62A, F68A, 3d7v [13].

16Human hMcl-1 complexed with human L62A, 3k0j [11].

17Human hMcl-1 complexed with human L62A, F68A, 3d7v [13].

18Human hMcl-1 complexed with human L62A, F68A, 3k0j [11].

19Human hMcl-1 complexed with human L62A, F68A, 3d7v [13].

20Overall, assignments were obtained for 96% of backbone and 1H,13C,15N resonances and for 93% of the side chain resonances which are assignable with the NMR experiments listed above (excluding the N-terminal NH3+, Pro 13N, 13C, preceding prolyl residues, Lys NH3+, Arg NH2, OH, side chain 13C and aromatic 13C). Furthermore, 100%/100% of Val and Leu isopropyl moieties with non-degenerate proton chemical shifts were stereo-specifically assigned (Table 1). Chemical shifts were deposited in the BioMagResBank [30] (accession code 19654). 1H–1H upper distance limit constraints for structure calculations were obtained from NOESY (Table 1). In addition, backbone dihedral angle constraints were derived from chemical shifts using the program TALOS [31] for residues located in well-defined secondary structure elements (Table 1). The programs CYANA [32],[33] and AUTO_STRUCTURE [34] were used in parallel to assign long-range NOEs [24]. The final structure calculations were
performed using CYANA followed by explicit water bath refinement using the program CNS [35].

Acknowledgments

We thank Dr. Janet Cheetham for the valuable suggestion to consider the C286S mutant of hMcl-1(171–327) for NMR structure determination.

References

1. Vogler M, Dinsdale D, Dyer MJ, Cohen GM (2009) Bcl-2 inhibitors: small molecules with a big impact on cancer therapy. Cell Death Differ 16: 360–367.
2. Warr MR, Shore GC (2008) Unique biology of Mcl-1: therapeutic opportunities in cancer. Curr Mol Med 8: 138–147.
3. Gelinas C, White E (2005) BH-only proteins in control: specificity regulates MCL-1 and BAK-mediated apoptosis. Genes Dev 19: 1263–1286.
4. Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, et al. (2005) An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435: 677–681.
5. Tse C, Shoemaker AR, Adicke J, Anderson MG, Chen J, et al. (2008) ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res 68: 3421–3429.
6. Simmons MJ, Fan G, Zong WX, Degnherhardt K, White E, et al. (2008) Bcl-1/A1 functions, similar to Mcl-1, as a selective Bcl and Bak antagonist. Oncogene 27: 1421–1428.
7. Kang MH, Reynolds CP (2009) Stereospecific directed fractional 13C labeling. Biochemistry 28: 7510–7516.
8. Leef EF, Czabotar PE, Yang H, Sleebos BE, Lessene G, et al. (2009) Apoptotic regulation by MCL-1 through heterodimerization. J Biol Chem 284: 10487–10495.
9. Liu GH, Shen Y, Arella HS, Parish D, Shao Y, et al. (2005) NMR data collection and analysis protocol for high-throughput protein structure determination. Proc Natl Acad Sci U S A 102: 10487–10492.
10. Sheng Y, Arella HS, Liu GH, Syperker T (2005) G-matrix Fourier transform NOESY-based protocol for high-quality protein structure determination. J Am Chem Soc 127: 9085–9099.
11. Peinboch CH, Li Z, Arella HS, Kim S, Yee A, et al. (2005) NMR solution structure of Thermotoga maritima protein TM1509 reveals a Zn-metalloprotease-like tertiary structure. J Struct Funct Genomics 6: 51–62.
12. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, et al. (1995) NMRPipe - a NMR data processing System Based on Unix Pipes. J Biomol NMR 6: 279–295.
13. Bartels C, Xia TH, Billeter M, Guntert P, Wuthrich K (1995) The Program Xeasy for Computer-Supported Nmr Spectral-Analysis of Biological Macromolecules. J Biomol NMR 6: 1–10.
14. Moesley HNB, Monleon D, Montelione GT (2001) Automatic determination of protein backbone resonance assignments from triple resonance nuclear magnetic resonance data. Meth Enzymology 339: 91–108.
15. Ulrich EL, Akutsu H, Doreleijers JP, Hazano Y, Imaizumi YE, et al. (2006) BioMagResBank. Nucleic Acids Res 34: D492–492.
16. Costelee G, Delaglio F, Bax A (1999) Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J Biomol NMR 13: 289–302.
17. Gunter P, Mumenhader C, Wuthrich K (1997) Torsion angle dynamics for NMR structure calculation with the new program DYANA. J Mol Biol 263: 295–306.
18. Herrmann T, Guntert P, Wuthrich K (2002) Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. J Mol Biol 319: 209–227.
19. Huang YP, Moseley HNB, Baran MC, Arrossmith C, Powers R, et al. (2005) An integrated platform for automated analysis of protein NMR structures. Meth Enzymology 394: 209–243.
20. Brungen AT, Adams PD, Cole GM, DeLano WL, Gros P, et al. (1998) Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallographica Section D-Biological Crystallography 54: 905–921.
21. Kordash R, Billeter M, Wuthrich K (1996) MOLMOL: A program for display and analysis of macromolecular structures. J Mol Graph 14: 51–55.
22. Delano WL (2002) Pymol. Molecular graphics system. Available: http://www.pymol.org.
23. Laskowski RA, Macarthur MV, Moss DS, Thornton JM (1993) PROCHECK - A Program to Check the Stereochemical Quality of Protein Structures. J Appl Crystallogr 26: 283–291.
24. Word JM, Bateman RC, Presley BK, Lovell SC, Richardson DC (2000) Exploring steric constraints on protein mutations using MAGE/PROME. Pro Sci 9: 2251–2259.
25. Huang YJ, Powers R, Muntelione GT (2003) Protein NMR recall, precision, and F-measure scores (RPF scores): Structure quality assessment measures based on information retrieval statistics. J Am Chem Soc 125: 1665–1674.
26. Dunita S, Gulla S, Chen TS, Fire E, Grant RA, et al. (2016) Determinants of BH3 binding specificity for Mcl-1 versus Bcl-xL. J Mol Biol 369: 747–762.
27. Bhattacharya A, Tejerio R, Montelione GT (2007) Evaluating protein structures determined by structural genomics consortia. Protein 66, 778–795.

Author Contributions

Conceived and designed the experiments: GL LP TS. Performed the experiments: GL LP KA HY JL. Analyzed the data: GL LP KA HY JL TS. Contributed reagents/materials/analysis tools: GL LP KA HY JL TS. Wrote the paper: GL LP TS.