A Computational Approach to Essential and Nonessential Objective Functions in Linear Multicriteria Optimization

A. B. Malinowska and D. F. M. Torres

Abstract. The question of obtaining well-defined criteria for multiple criteria decision making problems is well-known. One of the approaches dealing with this question is the concept of nonessential objective function. A certain objective function is called nonessential if the set of efficient solutions is the same both with or without that objective function. In this paper we put together two methods for determining nonessential objective functions. A computational implementation is done using a computer algebra system.

Key Words. Multiobjective optimization problems. Efficient (Pareto optimal) solutions. Essential/nonessential objective functions.

1 Introduction

Multiple criteria decision making (MCDM) arise in connection with the solution of problems in the areas of economy, environment, business and engineering (see e.g. Refs. 1-4). Multiobjective programming is concerned with

1To be partially presented at the 23rd IFIP TC 7 International Conference on System Modelling and Optimization, Cracow, Poland, July 23-27, 2007. Work supported by KBN under Bialystok Technical University grant W/WI/17/07; and the R&D unit CEOC of the University of Aveiro through FCT and FEDER/POCI 2010.

2Assistant Professor, Faculty of Computer Science, Technical University of Bialystok, Bialystok, Poland

3Associate Professor, Department of Mathematics, University of Aveiro, Aveiro, Portugal.
the generation of solution sets for multiobjective problems that usually include a large or an infinite number of points, known as efficient solutions. Those efficient points are then the candidates for an optimal solution of the MCDM problem.

The question of obtaining well-defined criteria for MCDM problems is well-known. Often mathematical models done by inexperienced practitioners lead to redundant formulations, which are not only deceptive but also computationally cumbersome (see Refs. 5-7 and therein). Sometimes the decision-maker ends up without any decision support, while a simple reformulation of the problem would achieve the desired result. One of the approaches dealing with the question of obtaining well-defined criteria for MCDM is based on the concept of nonessential objective function. A certain objective function is called nonessential if the set of efficient solutions is the same both with or without that objective function. Information about nonessential objectives helps a decision maker to get insights and better understand a problem, and this might be a good starting point for further investigations or revision of the model. Dropping out nonessential functions leads to a problem with a smaller number of objectives, which can be solved more easily. For this reason, the identification of nonessential objectives is an important feature in the analysis of multiple criteria programs.

The seminal papers by Gal and Leberling (Refs. 8, 9) define and investigate nonessential objectives in linear multiobjective optimization problems; Gal and Hanne (Refs. 6, 7) study the consequences of dropping nonessential objectives functions in the application of MCDM methods. Recently, the concept of nonessential objective has been generalized by Malinowska to convex multiobjective optimization problems, and new definitions of weakly nonessential and properly nonessential objective functions were introduced and investigated (Refs. 10, 11); a new method to determine if a given objective function of a certain linear problem is essential or not has been proved (Ref. 12).

Here we put together, in a constructive and algorithmic way, the two available methods (Refs. 8, 12) for determining nonessential objective functions. A computational implementation is done using the computer algebra system Maple. The plan of the paper is as follows. Section 2 gives the necessary preliminaries and provides the notation used in the text. In Section 3 we develop the theory of nonessential objectives. Main result of the paper appears in Section 4: the algorithm to determine if a given objective function of a linear multiobjective problem is essential or not. Finally, in Section 5 we
provide some examples that show the applicability of our methodology and the convenience of the developed computer software. The paper ends with some conclusions, the references, and an appendix with all the Maple code that implements the proposed algorithm.

2 Preliminaries and Notation

In this section we present some general concepts and notations. We use superscripts for vectors (for example x^1, or simply x when no confusion can arise), and subscripts for components of vectors (for example x_1). All the vectors are assumed to be column vectors. The symbol 1 stands for the vector $[1, \ldots, 1]^T$. For two vectors $x, x^' \in \mathbb{R}^k$ we define the relations (Ref. [13]):

\[x \geq x^' \iff \forall i \in \{1, \ldots, k\} : x_i \geq x_i^', \]
\[x \geq x^' \iff \forall i \in \{1, \ldots, k\} : x_i \geq x_i^' \land \exists i \in \{1, \ldots, k\} : x_i > x_i^', \]
\[x > x^' \iff \forall i \in \{1, \ldots, k\} : x_i > x_i^'. \]

Throughout this paper we study the following linear multiobjective optimization problem:

\[\max \{ F^{n+1}(x) : x \in X \}, \quad (1) \]

where

\[X = \{ x \in \mathbb{R}^k : Ax \leq b, x \geq 0 \}, \quad A \in \mathbb{R}^{m \times k}, \quad b \in \mathbb{R}^m \]

is the feasible set, and

\[F^{n+1}(x) = Cx = [(c^1)^T x, \ldots, (c^{n+1})^T x]^T, \quad c^i \in \mathbb{R}^k (i = 1, \ldots, n+1), \quad n \geq 1 \]

is the vector of objective functions: $f_i : \mathbb{R}^k \to \mathbb{R} (i = 1, \ldots, n + 1)$. We are using “max” to mean that we want to maximize all the objective functions simultaneously. This involves no loss of generality. In general it does not exist a solution that is optimal with respect to every objective function, and one is lead to the concept of Pareto optimality.

Definition 2.1 A vector $x^0 \in X$ is said to be an efficient (Pareto optimal) solution of problem (1) if there exists no $x \in X$ such that $F^{n+1}(x) \geq F^{n+1}(x^0)$. The set of efficient solutions of problem (1) is denoted by X^{n+1}_E.

3
3 Nonessential Objectives

Let X^n_E denote the set of efficient solutions of problem (1) without one objective function f_k, $k \in \{1, \ldots, n+1\}$. Without loss of generality we assume $k = n + 1$.

Definition 3.1 The objective function f_{n+1} is said to be nonessential in problem (1) if $X^n_E = X^{n+1}_E$. An objective function which is not nonessential is called essential.

We now recall two theorems that characterize a nonessential objective function, and which will be used in the proposed algorithm to determine if a given objective function is essential or not.

Theorem 3.1 (Ref. 8) The objective function f_{n+1} is nonessential in (1) if the following holds:

$$c^{n+1} = \sum_{i=1}^{n} \alpha_i c^i, \quad \alpha_i \geq 0 \ (i = 1, \ldots, n).$$ \hspace{1cm} (2)

Theorem 3.1 is very useful because condition (2) is easy to check. Unfortunately, it is only a sufficient condition. Theorem 3.2 below gives a necessary and sufficient condition for an objective function to be nonessential.

Let X_{n+1} denote the set of solutions of the single objective optimization problem

$$\max \{f_{n+1}(x) : x \in X\}. \hspace{1cm} (3)$$

In other words,

$$X_{n+1} = \{x^0 \in X : \forall x \in X \ f_{n+1}(x^0) \geq f_{n+1}(x)\}. \hspace{1cm} (4)$$

Theorem 3.2 (Refs. 10, 11) If the set X is nonempty and bounded (in other words, if X is a convex polyhedron), then the objective function f_{n+1} is nonessential in (1) if and only if the following three conditions hold:

(i) $\forall x \in X \setminus X^n_E \ \exists x' \in \mathbb{R}^k : F^{n+1}(x') \geq F^{n+1}(x)$;

(ii) $X^n_E \cap X_{n+1} \neq \emptyset$;

(iii) $X^n_E \subset X^{n+1}_E$.
4 Main Results

The theory described in the previous section enable us to work out on a computational algorithm to test if an objective function \(f_{n+1} \) in problem (1) is essential or not. The proposed algorithm consists of eight steps and each one has been implemented in the computer algebra system Maple (see Appendix on page 19).

Step 0. Does \(c^{n+1} = \sum_{i=1}^{n} \alpha_i c^i \), \(\alpha_i \geq 0 \) \((i = 1, \ldots, n)\)?

If the answer is “TRUE”, then the objective function \(f_{n+1} \) is nonessential by Theorem 3.1. Otherwise, we go to Step 1.

We implement Step 0 as a Maple command \texttt{glm} (Gal-Leberling method), which receives in its first argument a list with the objective functions, and in its second argument the number of variables of the problem.

Example 4.1 Consider the multiobjective optimization problem

\[
\max \{ F^4(x) : x \in X \},
\]

where

\[
\begin{align*}
 f_1(x) &= x_1 + 3x_2, \\
 f_2(x) &= 3x_1, \\
 f_3(x) &= 2x_1 + x_2, \\
 f_4(x) &= -3x_1 - x_2,
\end{align*}
\]

and \(X \subset \mathbb{R}^2 \). With our Maple package we do:

\[
> \texttt{glm}([x1+3*x2,3*x1,2*x1+x2,-3*x1-x2],2);
\]

\[
\text{false}
\]

We conclude that the answer to Step 0 is "FALSE", so we go to Step 1. Now, let us change the order of objective functions as follows:

\[
\begin{align*}
 f_1(x) &= x_1 + 3x_2, \\
 f_2(x) &= 3x_1, \\
 f_3(x) &= -3x_1 - x_2, \\
 f_4(x) &= 2x_1 + x_2.
\end{align*}
\]

This time our \texttt{glm} procedure gives
meaning that the answer to Step 0 is "TRUE". Thus, one can conclude that the objective function $f_4(x) = 2x_1 + x_2$ is nonessential.

Example 4.2 Consider the problem:

$$\max \{ F^3(x) : x \in X \} ,$$

where

$$f_1(x) = x_1 + x_2 + x_3,$$
$$f_2(x) = -x_1 + x_2 + x_3,$$
$$f_3(x) = x_1 + x_2,$$

and $X \subset \mathbb{R}^3$. We have:

> glm([x1+x2+x3,-x1+x2+x3,x1+x2],3);
false

Answer to Step 0 is "FALSE", and we go to Step 1.

Step 1. We test condition (i) of Theorem 3.2.

Our method is based on the following observations. Let

$$U = \{ x \in \mathbb{R}^k : Cx \geq 0 \} .$$

Remark 4.1 (Ref. 12) If $U \neq \emptyset$, then condition (i) of Theorem 3.2 holds.

Theorem 4.1 (Ref. 14) A sufficient condition for $X_{E}^{n+1} = X$ is $U = \emptyset$. If $\text{int}X \neq \emptyset$ (where int stands for the interior of a set), then this condition is also necessary.

In Step 1 we solve the problem: does $U \neq \emptyset$? If the answer is "FALSE", then $X_{E}^{n+1} = X$ and we go to Step 2. Otherwise, we know that condition (i) of Theorem 3.2 holds and we go to Step 5. In order to verify equality of sets $U = \emptyset$ we solve the problem:

$$\max \left\{ \sum_{i=1}^{n+1} v_i : (x,v) \in V \right\} ,$$

where

$$V = \{ (x,v) \in \mathbb{R}^{k+n+1} : -Cx + v = 0 , v \geq 0 \} .$$
Remark 4.2 (Ref. [4]) One has $U = \emptyset$ if and only if problem (5) has zero as the optimal objective function value.

Example 4.3 Consider the problem from Example 4.1:

$$\max \{ F^4(x) : x \in X \},$$

where

$$f_1(x) = x_1 + 3x_2,$$
$$f_2(x) = 3x_1,$$
$$f_3(x) = 2x_1 + x_2,$$
$$f_4(x) = -3x_1 - x_2,$$

and $X \subset \mathbb{R}^2$. Using our Maple command step1 we obtain:

```
> step1(2,[x1+3*x2, 3*x1, 2*x1+x2, -3*x1-x2]);
false
```

We conclude that Step 1 has answer "FALSE". Thus, $X^4_E = X$ and we go to Step 2.

Example 4.4 Consider again the problem from Example 4.2:

$$\max \{ F^3(x) : x \in X \},$$

where

$$f_1(x) = x_1 + x_2 + x_3,$$
$$f_2(x) = -x_1 + x_2 + x_3,$$
$$f_3(x) = x_1 + x_2,$$

and $X \subset \mathbb{R}^3$. We obtain

```
> step1(3,[x1+x2+x3, -x1+x2+x3, x1+x2]);
true
```

so the answer to Step 1 is "TRUE". Thus, condition (i) of Theorem 3.2 holds and we go to Step 5.
Step 2. Let \(\tilde{U} = \{ x \in \mathbb{R}^k : \tilde{C} x \geq 0 \} \), where \(\tilde{C} = [(c^1)^T, \ldots, (c^n)^T]^T \). In Step 2 we address the following question: does \(\tilde{U} \neq \emptyset \)?

The method we use is the same as the one described in Step 1. If the answer is ”FALSE”, then Theorem 4.1 implies \(X^n_E = X \) and the objective function \(f_{n+1} \) is nonessential. Otherwise, we go to Step 3.

Example 4.5 Let us consider again the problem from Example 4.3. Using our Maple command `step2` one has:

\[
> \text{step2}(2, [x1+3*x2, 3*x1, 2*x1+x2, -3*x1-x2]);
\]

true

Since the answer to Step 2 is ”TRUE” we go to Step 3.

Step 3. In this step we solve the problem: does \(\text{int}X \neq \emptyset \)?

Our method is based on the following remark.

Remark 4.3 If \(\text{int}X \neq \emptyset \), then problem \(\max \{a : (x, v, a) \in V\} \), where

\[
V = \{(x, v, a) \in \mathbb{R}^{k+m+1} : Ax + v + a1 = b, v \geq 0, x \geq \varepsilon 1, a \geq 0 \}
\]

with \(\varepsilon > 0 \) sufficiently small, has an optimal objective function value greater than zero.

If in Step 3 the answer is ”TRUE”, then Theorem 4.1 implies \(X^n_E \neq X \), and the objective function \(f_{n+1} \) is essential. Otherwise, we go to Step 4.

In order to use the simplex package already available from the Maple system, we put \(\varepsilon = 0.001 \). We note that by default we are assuming that all \(x \) variables are greater or equal than zero (the user does not need to mention this explicitly in the definition of the set \(X \) while using our Maple package).

Example 4.6 Let us continue the problem from Examples 4.3 and 4.5 with

\[X = \{ x \in \mathbb{R}^2 : x_1 \leq 1, x_2 \leq 1, x \geq 0 \}. \]

Using our Maple command `step3` we obtain

\[
> \text{step3}(3, \{x1 <= 1, x2 <= 1\});
\]

true
Since the answer to Step 3 is "TRUE", the objective function \(f_4(x) = -3x_1 - x_2 \) is essential.

Now, let us consider a different problem by changing the set \(X \) as follows:

\[
X = \{ x \in \mathbb{R}^2 : x_1 + x_2 \leq 1, -x_1 - x_2 \leq -1, x \geq 0 \}.
\]

Now we obtain

\[
> \text{step3}(2, \{ x_1+x_2 \leq 1, -x_1-x_2 \leq -1 \});
\]

false

Since Step 3 has the answer "FALSE", we go to Step 4.

Step 4. In this step we solve the problem: does \(X_E^n = X \)?

Our method is the following: we compute a vertex \(x^0 \) of \(X \) and test if \(x^0 \) is an element of \(X_E^n \).

Theorem 4.2 ([15]) Let \(x^0 \in X \) be given. Solve the problem

\[
\max \left\{ \sum_{i=1}^{n} \epsilon_i : (x, \epsilon) \in S \right\}
\]

with

\[
S = \{ (x, \epsilon) \in \mathbb{R}^{k+n} : x \in X, f_i(x) - \epsilon_i = f_i(x^0), \epsilon_i \geq 0, i = 1, \ldots, n \}.
\]

The vector \(x^0 \) is efficient if and only if problem (6) has zero as the optimal objective function value.

If \(x^0 \) is not efficient, then the answer from Step 4 is "FALSE" and the objective function \(f_{n+1} \) is essential. Otherwise, we compute the next vertex of \(X \) and check if it is efficient or not. Our procedure stops as soon as a non-efficient vertex is found.

Example 4.7 Consider the problem:

\[
\max \{ F^3(x) : x \in X \},
\]
where

\[f_1(x) = x_1 + x_2, \]
\[f_2(x) = x_1, \]
\[f_3(x) = -3x_1 - x_2, \]

and

\[X = \{ x \in \mathbb{R}^2 : x_1 + x_2 \leq 1, -x_1 - x_2 \leq -1, x \geq 0 \}. \]

Answers from Steps 1 to 4 are easily obtained from the respective commands of our Maple package:

\[
\begin{align*}
&> \text{step1}(2, [x1 + x2, x1, -3 x1 - x2]); \\
&\quad \text{false} \\
&> \text{step2}(2, [x1 + x2, x1, -3 x1 - x2]); \\
&\quad \text{true} \\
&> \text{step3}(2, \{x1+x2\leq=1,-x1-x2\leq=-1\}); \\
&\quad \text{false} \\
&> \text{step4}([x1+x2,x1,-3*x1-x2],\{x1+x2\leq=1,-x1-x2\leq=-1\},2); \\
&\quad \text{false}
\end{align*}
\]

We conclude that \(f_3(x) = -3x_1 - x_2 \) is essential and that \(X^{2}_E \subset X^{3}_E \).

In the case all vertices are efficient, two situations may appear: objective function \(f_{n+1} \) may be essential (answer "FALSE") or not (answer "TRUE"). To distinguish between these two cases we apply the following remark.

Remark 4.4 Let \(x^1, x^2, \ldots, x^p \) be all vertexes of \(X \) and \(\text{int}X = \emptyset \). Then, \(X^*_E = X \) if and only if there exists a vector \(w > 0 \) with \(\sum_{i=1}^{n} w_i = 1 \) such that \(w^TF^n(x^1) = w^TF^n(x^2) = \cdots = w^TF^n(x^p) \).

Proof. As far as \(\text{int}X = \emptyset \), we have \(X \subset H \), where \(H \) is a hyperplane. Therefore, \(X^*_E = X \) if and only if there exists \(w > 0 \) (\(\sum_{i=1}^{n} w_i = 1 \)) such that for all \(x \) in \(X \), \(x \) is a solution of the problem \(\max \{ w^TF^n(x) : x \in X \} \) (see for instance Ref. [16], p. 54). This completes the proof. \(\square \)

In order to use the simplex method as provided by Maple, we change condition from Remark 4.4 into the form

\[
\exists w \in \mathbb{R}^n : w^TF^n(x^1) = w^TF^n(x^2) = \cdots = w^TF^n(x^p), \sum_{i=1}^{n} w_i = 1, w^T1 \geq \varepsilon 1,
\]

where \(\varepsilon > 0 \) is sufficiently small. In our procedure we set \(\varepsilon = 0.00001 \).
Example 4.8 Let us continue the problem from Examples 4.3, 4.5 and 4.6 with

\[
X = \{x \in \mathbb{R}^2 : x_1 + x_2 \leq 1, -x_1 - x_2 \leq -1, x \geq 0\}.
\]

Our Maple command `step4` give us

\[
> \text{step4}([x_1+3*x_2,2*x_1+x_2,3*x_1,-3*x_1-x_2],[x_1+x_2=1,-x_1-x_2=-1],2);
\]
true

Thus, \(X_E^2 = X\) and it follows that \(f_4(x) = -3x_1 - x_2\) is nonessential.

Now we show an example where all vertices are efficient but \(X_E^n \neq X\).

Example 4.9 Let us consider the problem

\[
\max \{F^3(x) : x \in X\},
\]

where
\[
\begin{align*}
 f_1(x_1, x_2, x_3) &= -x_1 - 2x_2 + 2x_3, \\
 f_2(x_1, x_2, x_3) &= 2x_1 + 3x_2, \\
 f_3(x_1, x_2, x_3) &= -x_1 - x_2 - 2x_3,
\end{align*}
\]

and
\[
X = \left\{ x \in \mathbb{R}^3 : x_2 + x_3 \leq 2, -x_2 - x_3 \leq -2, x_1 + x_2 + x_3 \leq 3, \\
 -x_1 - x_2 - x_3 \leq -2, x_1 + x_2 \leq 2, x \geq 0 \right\}.
\]

Using our Maple commands we obtain:

\[
> \text{step1}([-x_1-2*x_2+2*x_3, 2*x_1+3*x_2,-x_1-x_2-2*x_3]);
\]
false

\[
> \text{step2}([-x_1-2*x_2+2*x_3, 2*x_1+3*x_2,-x_1-x_2-2*x_3]);
\]
true

\[
> \text{step3}(3,\{x_2+x_3<=2,-x_2-x_3<=-2,x_1+x_2+x_3<=3,-x_1-x_2-x_3<=-2,x_1+x_2<=2\});
\]
false

\[
> \text{step4}([-x_1-2*x_2+2*x_3,2*x_1+3*x_2,-x_1-x_2-2*x_3],
 \{x_2+x_3<=2,-x_2-x_3<=-2,x_1+x_2+x_3<=3,-x_1-x_2-x_3<=-2,x_1+x_2<=2\},3);
\]
false
We conclude that the objective function f_3 is essential and that $X^2_E \subset X^3_E$.

Step 5. In this step we calculate all vertexes of X_{n+1} (see (11)).

Let $X_{n+1}^W = \{x^1, x^2, \ldots, x^q\}$ be the set of all vertexes of X_{n+1}. We have:

$$X_{n+1} = \left\{ x \in \mathbb{R}^k : x = \sum_{j=1}^{q} \alpha_j x^j, \sum_{j=1}^{q} \alpha_j = 1, \alpha_j \geq 0, j = 1, \ldots, q \right\}.$$

Example 4.10 Consider again the problem from Example 4.4 with $X = \{x \in \mathbb{R}^3 : x_1 \leq 1, x_2 \leq 1, x_3 \leq 1, x \geq 0\}$.

Our procedure step5 give us

$$\text{> step5([x1+x2+x3,-x1+x2+x3,x1+x2],{x1<=1,x2<=1,x3<=1});}$$

$$\{\{x_1 = 1, x_2 = 1, x_3 = 1\}, \{x_1 = 1, x_2 = 1, x_3 = 0\}\}$$

Hence, $X_3^W = \{[1,1,0]^T, [1,1,1]^T\}$ and

$$X_3 = \{x : x = \alpha[1,1,0]^T + (1 - \alpha)[1,1,1]^T, 0 \leq \alpha \leq 1\}.$$

Step 6. In this step we solve the following problem (condition (ii) of Theorem 3.2): does $X_{n+1} \cap X^n_E \neq \emptyset$?

The basic idea of our method is to use Theorem 4.3.

Theorem 4.3 (Ref. 17) Let $Z = \{x^1, x^2, \ldots, x^q\} \subset X$. If $Z \subset X \setminus X^n_E$, then

$$\left\{ x \in \mathbb{R}^k : x = \sum_{j=1}^{q} \alpha_j x^j, \sum_{j=1}^{q} \alpha_j = 1, \alpha_j \geq 0, j = 1, \ldots, q \right\} \subset X \setminus X^n_E.$$

Having in mind Theorem 4.3, it is sufficient to consider only vertexes of X_{n+1}. Applying Theorem 4.2 we check if there exists a vertex of X_{n+1}^W which belongs to X^n_E. If the answer is "TRUE", then the condition (ii) of Theorem 3.2 holds and we go to Step 7. Otherwise, we conclude that the objective function f_{n+1} is essential.

Example 4.11 Let us continue the problem from Examples 4.4 and 4.10. Our procedure step6 give the answer "TRUE"
Example 4.12 Now we consider a problem borrowed from Ref. 4:

$$\max \{ F^3(x) : x \in X \},$$

where

$$f_1(x) = x_1 + 2x_2 - x_3 + 3x_4 + 2x_5 + x_7,$$
$$f_2(x) = x_2 + x_3 + 2x_4 + 3x_5 + x_6,$$
$$f_3(x) = x_1 + x_3 - x_4 - x_6 - x_7,$$

and

$$X = \{ x \in \mathbb{R}^7 : x_1 + 2x_2 + x_3 + x_4 + 2x_5 + x_6 + 2x_7 \leq 16,$$
$$-2x_1 - x_2 + x_4 + 2x_5 + x_7 \leq 16,$$
$$-x_1 + x_3 + 2x_5 - 2x_7 \leq 16, x_2 + 2x_3 - x_4 + x_5 - 2x_6 - x_7 \leq 16, x \geq 0 \}.$$

With our Maple command \texttt{step6} we obtain

\begin{verbatim}
> step6([x1+2*x2-x3+3*x4+2*x5+x7,x2+x3+2*x4+3*x5+x6,x1+x3-x4-x6-x7],
{x1+2*x2+x3+x4+2*x5+x6+2*x7<=16,-2*x1-x2+x4+2*x5+x7<=16,
-x1+x3+2*x5-2*x7<=16,x2+2*x3-x4+x5-2*x6-x7<=16,x1<x2<=1,x3<=1});
false
\end{verbatim}

and since the answer is "FALSE", we conclude that the objective function

$$f_3(x) = x_1 + x_3 - x_4 - x_6 - x_7$$

is essential.

Step 7. In this step we solve the following problem (condition (iii) of
Theorem 3.2): does $X^n_E \subset X^{n+1}_E$?

Our method is based on the following observations.

Proposition 4.1 (Refs. 10, 18) If the vector-valued function F^n is one-to-one
on the set X^n_E, then condition (iii) of Theorem 3.2 holds.

Let

$$\langle X^n_E \rangle = \{ x^i - x^j : x^i, x^j \in X^n_E \}.$$
Lemma 4.1 (Ref. [10]) The vector-valued function F_n is one-to-one on the set X^n_E if and only if $\ker F_n \cap \langle X^n_E \rangle = \emptyset$ (Ker stands for the kernel of a map).

In practice it is usually impossible to determine the set $\langle X^n_E \rangle$. For this reason, in our Maple procedure we use the following set:

$$\langle X^n_{WE} \rangle = \{x^i - x^0 : x^i, x^0 \in X^n_E\},$$

where x^i, x^0 are vertexes of X^n_E and x^0 is free but fixed. Obviously, $\langle X^n_E \rangle \subset \text{Lin}\{\langle X^n_{WE} \rangle\}$.

Remark 4.5 If $\ker F_n \cap \text{Lin}\{\langle X^n_{WE} \rangle\} = \emptyset$, then condition (iii) of Theorem 3.2 holds (that is, $X^n_E \subset X^{n+1}_E$).

If the answer from Step 7 is "TRUE", then the objective function f_{n+1} is nonessential. Otherwise, we know that $X^{n+1}_E \subset X^n_E$.

Example 4.13 Let us continue the problem from Examples 4.4, 4.10 and 4.11. We obtain:

```maple
> step7([x1+x2+x3,-x1+x2+x3,x1+x2],[x1<=1,x2<=1,x3<=1],3);
true
```

The answer from Step 7 is "TRUE", hence the objective function $f_3(x) = x_1 + x_2$ is nonessential.

5 Illustrative Examples

We have implemented all the steps described in Section 4 together in a single Maple command called `nonessential` (see Figure [1]). This main procedure receives a list with the definition of the objective functions, and the set X of constraints in the second argument. Below we give some examples of computer sessions with our Maple package. The interested reader may download it from http://www.mat.ua.pt/delfim/essential.html and find there more examples than the ones we are able to provide here. We invite and welcome the reader to experiment our Maple package with her/his own problems.
We begin with a simple example with three objective functions and three variables.

\[
\text{nonessential([x1+x2,x1+x2+x3,-3*x1-3*x2-x3],\{x1+x2+x3 <= 1\});}
\]

Objective function \(-3*x1-3*x2-x3\) is essential from Step 3

Next we consider a problem with four objective functions and five variables. It turns out that the problem may be reduced to a simpler one with the same set of efficient solutions.

\[
\text{> st:= time(): nonessential([x1+x2+x3+x4+x5,-x1+x2+x3+x4+x5,-x1-x2+x3+x4+x5,x1+x2],}
\]
\[
\quad \text{\{x1<=1,x2<=1,x3<=1,x4<=1,x5<=1\});}
\]
\[
\quad \text{printf("%a seconds\n",time() - st);}
\]

Objective function \(x1+x2\) is nonessential from step 7

2.072 seconds
The only situation where our Maple procedure \texttt{nonesessential} can not conclude that a given function is essential or not, is when one reaches Step 7 and the answer is not true.

\begin{verbatim}
> st:= time():
nonessential([-x3-x4,-x5-x6,-x4-x6],
{x1+3*x2<=24,3*x1+2x2<=24,x1+4*x2+x3-x4<=40,
-x1+4*x2-x3+x4<=-40,4*x1+x2+x5-x6<=40,-4*x1-x2-x5+x6<=-40});
printf("%a seconds
",time() - st);

X_E^3 C X_E^2 from step 7
7.251 seconds
\end{verbatim}

Our Maple package is useful to identify redundant objective functions. We finish with an example where the mathematical model can be simplified by elimination of two of the objective functions.

\begin{verbatim}
> nonessential([x1+3*x2,2*x1+x2,3*x1,-3*x1-x2],
{x1+x2<=1,-x1-x2<=-1});
Objective function -3*x1-x2 is nonessential from step 4
> nonessential([x1+3*x2,2*x1+x2,3*x1],{x1+x2<=1,-x1-x2<=-1});
Objective function 3*x1 is nonessential from step 7
> nonessential([x1+3*x2,2*x1+x2],{x1+x2<=1,-x1-x2<=-1});
Objective function 2*x1+x2 is essential from step 6
> nonessential([2*x1+x2,x1+3*x2],{x1+x2<=1,-x1-x2<=-1});
Objective function x1+3*x2 is essential from step 6
\end{verbatim}

6 Conclusion

There are theoretical and practical reasons for developing a method to find nonessential objective functions. In this paper we present such a method and its implementation in Maple. Our algorithm is based on necessary and sufficient conditions for an objective function to be nonessential, and need only to solve a finite number of single objective linear optimization problems. Examples showing the usefulness of our Maple package are provided: identification of nonessential objective functions permits to simplify the correspondent mathematical model.
References

1. COHON, J. L., *Multiobjective programming and planning*, Academic Press, New York, 1978.

2. LEITMANN, G., Cooperative and non-cooperative differential games, in *The theory and application of differential games (Proc. NATO Advanced Study Inst., Univ. Warwick, Coventry, 1974)*, 85–96. NATO Adv. Study Inst. Ser., Ser. C: Math. and Phys. Sci., 13, Reidel, Dordrecht, 1975.

3. LEITMANN, G., and MARZOLLO, A., Multicriteria decision making. CISM. International Centre for Mechanical Sciences. Courses and Lectures. No. 211. Wien - New York: Springer-Verlag, 1975.

4. ZELENY, M., Multiple criteria decision making. McGraw-Hill Series in Quantitative Methods for Management. New York, McGraw-Hill Book Company (1982).

5. GAL, T., *Postoptimal analyses, parametric programming, and related topics: degeneracy, multicriteria decision making, redundancy*, Walter De Gruyter Inc, Berlin (1995).

6. GAL, T., and HANNE, T., Consequences of dropping nonessential objectives for the application of MCDM methods. *European Journal of Operational Research*, 119, 373-378, (1999)

7. GAL, T., and HANNE, T., Nonessential objectives within network approaches for MCDM, European J. Oper. Res. 168 (2006), no. 2, 584–592.

8. GAL, T., and LEBERLING, H., Redundant objective functions in linear vector maximum problems and their determination, European J. Oper. Res. 1 (1977), no. 3, 176–184.

9. GAL, T., A note on size reduction of the objective functions matrix in vector maximum problems, in *Multiple criteria decision making theory and application (Proc. Third Conf., Hagen/Königswinter, 1979)*, 74–84, Lecture Notes in Econom. and Math. Systems, 177, Springer, Berlin-New York, 1980.

10. MALINOWSKA, A. B., *Istotnosc skalarnych funkcji ocen w zadaniach wektorowej optymalizacji* (in Polish), Ph.D. thesis, SRI, Polish Academy of Sciences, Warsaw, 2002.
11. MALINOWSKA, A. B., Changes of the set of efficient solutions by extending the number of objectives and its evaluation. *Control and Cybernetics*, 31, 4, 964–974, (2002).

12. MALINOWSKA, A. B., Nonessential objective functions in linear multiobjective optimization problems, *Control and Cybernetics*, 35, 4, 873–880 (2006).

13. YU, P. L., Cone convexity, cone extreme points, and nondominated solutions in decision problems with multiobjectives, *J. Optimization Theory Appl.* 14 (1974), 319–377.

14. GALAS, Z., NYKOWSKI, I., and ZÓLKIEWSKI, Z., *Programowanie wielokryterialne* (in Polish) PWE, Warszawa, 1987.

15. BENSON, H. P., Existence of efficient solutions for vector maximization problems, *J. Optim. Theory Appl.* 26 (1978), no. 4, 569–580.

16. CHANKONG, V., HAIMES, Y. Y., THADATHIL, J., and ZIONTS, S., Multiple criteria optimization: a state of the art review, in *Decision making with multiple objectives (Cleveland, Ohio, 1984)*, 36–90, Lecture Notes in Econom. and Math. Systems, 242, Springer, Berlin, 1985.

17. YU, P. L., and ZELENY, M., The set of all nondominated solutions in linear cases and a multicriteria simplex method, *J. Math. Anal. Appl.* 49 (1975), 430–468.

18. GUTENBAUM, J., and INKIELMAN, M., Multicriterial decision-making by comparison of the Pareto-optimal sets for a reduced number of objectives. In: *Proceedings of the 25th Conference on Macromodels and Modelling Economies in Transition, Jurata 3-4 December*, vol. 2, 15–25, (1998).

19. MALINOWSKA, A. B., Wyznaczanie kryteriów nieistotnych w zada- niach liniowych (in Polish), In: Kacprzyk, J. and Budziński, R. (eds.), *Badania operacyjne i systemowe’2006. Metody i techniki*, Warsaw, 75–82 (2006).
Appendix – Maple Definitions

Our Maple definitions follow below. The reader can download the code from
\[http://www.mat.ua.pt/delfim/essential.html\] together with many more
examples than the ones we are able to provide in the paper.

We begin by implementing the Gal-Leberling method (see Examples 4.1
and 4.2), which is based on the results of Ref. 8.

> # GL method; returns true if F[-1] is nonessential;
> # returns false if one can not conclude nothing from GL method
> glm := proc(F,NumVar)
> local c, f, v, LV, lc, SolSet, SS, i;
> c := proc(var,exp)
> local v;
> v := select(has,exp+abm,var);
> if v = NULL then
> return(0);
> else
> return(v/var):
> fi:
> end proc;
> f := o -> if type(o,numeric) then o else 0 fi:
> v := (exp,n) -> Vector([seq(f(c(x||i,exp)),i=1..n)]);
> LV := [seq(LinearAlgebra[VectorScalarMultiply](v(F[i],NumVar),
> alpha||i),i=1..nops(F)-1)];
> lc := Vector(NumVar);
> for i in LV do
> lc := LinearAlgebra[VectorAdd](lc,i):
> od;
> SolSet := solve({seq(lc[i]=c(x||i,F[-1]),i=1..NumVar)});
> if SolSet = NULL then
> return(false);
> else
> SS := {seq(simplex[maximize](alpha||i,SolSet,
> NONNEGATIVE),i=1..nops(F)-1)};
> if SS = {} then
> return(false);
> else
> return(true);
> fi:
> end proc:
For illustrative examples on how to use the procedures `step1` and `step2` see Examples 4.3, 4.4 and 4.5.

```plaintext
> ###################
> # step 1
> ###################
> step1 := proc(F)
> local of, const, S;
> of := add(v||i,i=1..nops(F));
> const := seq(-F[i]+v||i=0,i=1..nops(F));
> const := [const,seq(v||i>=0,i=1..nops(F))];
> S := simplex[maximize](of,const);
> return(not(evalb(subs(S,of)=0))):
> end proc:
> ###################
> # step 2
> ###################
> step2 := F -> step1(F[1..-2]):
```

Follows our implementation in Maple for Step 3 (see Example 4.6).

```plaintext
> step3 := proc(NumVar,X)
> local LHS, RHS, SC1, SC2, SC3, SC, SS3, i, a, epsilon, mylhs, myrhs;
> epsilon := 0.001;
> mylhs := E -> if type(lhs(E),numeric) then rhs(E) else lhs(E) fi:
> myrhs := E -> if type(rhs(E),numeric) then rhs(E) else lhs(E) fi:
> LHS := [seq(mylhs(i),i=X)];
> RHS := [seq(myrhs(i),i=X)];
> SC1 := {seq(LHS[i]+a+v||i = RHS[i],i=1..nops(LHS))};
> SC2 := {seq(v||i >= 0,i=1..nops(LHS)), a>=0};
> SC3 := {seq(x||i>=0.001,i=1..NumVar)};
> SC := SC1 union SC2 union SC3;
> SS3 := simplex[maximize](a,SC);
> assign(select(has,SS3,a));
> if a = 0 then return(false) else return(true) fi;
> end proc:
```

In Step 4 we use a rank method, computing the rank of a matrix A by the `Rank` command from the standard `LinearAlgebra` package of Maple system. We notice that the procedure `step4` does not use the last objective function (the last objective is given in Maple by $F[-1]$, and we exclude it from consideration by writing $F[1..-2]$). The auxiliary procedure `matrixA` is used both by Steps 4 and 7. The procedure `Proposition4dot12` is our Maple definition for Remark 4.4.
matrixA := proc(X, NumVar)
 local c, LHS, row, mylhs;
 mylhs := E -> if type(lhs(E), numeric) then rhs(E) else lhs(E) fi:
 c := (var, exp) -> if evalb({select(has, exp, var)} = {0}) then
 0
 else
 select(has, exp, var)/var
 fi:
 LHS := [seq(mylhs(i)+abm, i=X)];
 row := (exp, NumVar) -> map(c, [seq(x||i, i=1..NumVar)], exp):
 return(Matrix(map(row, LHS, NumVar))):
end proc:

Proposition4dot12 := proc(F, X, LE)
 local SE, v, ETS, solW, SS, SV;
 SE := NULL;
 for v in LE do
 SV := subs(v, F);
 SE := SE, add(SV[i]*w||i, i=1..nops(SV));
 od;
 ETS := seq(SE[1]=i, i=SE[2..-1]), add(w||i, i=1..nops(SV))=1;
 solW := solve({ETS, add(w||i, i=1..nops(SV))=1})
 union {seq(w||i>=0.00001, i=1..nops(SV))};
 SS := {seq(simplex[maximize](w||i, solW), i=1..nops(SV))};
 return(not(remove(i->i={}, SS) = {}));
end proc:

step4 := proc(F, X, NumVar)
 local NX, NNumVar, b, A, rnk, dif, LP, zero, efficient, v, admissible,
 vs, AM, sol, of, cstEps, sc, p, myrhs, mylhs, LE, tv, val;
 myrhs := E -> if type(rhs(E), numeric) then rhs(E) else lhs(E) fi:
 mylhs := E -> if type(lhs(E), numeric) then rhs(E) else lhs(E) fi:
 tv := (x, s) -> myrhs(op(select(has, s, x))):
 b := X -> Vector([seq(mylhs(X[i])+x||(NumVar+i)=myrhs(X[i]), i=1..nops(X))]);
 NNNumVar := NumVar+nops(X);
 A := matrixA(NX, NNNumVar);
 rnk := LinearAlgebra[Rank](A);
 dif := NNNumVar - rnk;
 LP := combinat[choose]([seq(x||i, i=1..NNNumVar)], dif);
 zero := L -> {seq(i=0, i=L)};
 efficient := true;
 v := Vector([seq(x||i, i=1..NNNumVar)]);
 admissible := sc -> not(member(false, {seq(eva
 l(myrhs(i)>0), i=sc)}));
 LE := NULL;
 for p in LP while efficient do

 21
The procedure `step5` makes use of an auxiliary procedure `vert` that receives three arguments: one solution given by the simplex method (denoted by `Sol`); an objective function `of`; and a set of constraints `X`. We remark that in Step 5 only the last objective function is used (that is given in Maple by `F[-1]`, where `F` is the list of all the objectives under consideration).

```maple
> vs := subs({seq(i=0,i=p)},v);
> AM := LinearAlgebra[MatrixVectorMultiply](A,vs);
> sol := solve({seq(AM[i]=b(NX)[i],i=1..nops(NX))});
if not(sol = NULL) and admissible(sol) then
>    sol := sol union zero(p);
>    of := add(epsilon||i,i=1..nops(F)-1);
>    cstEps := seq(epsilon||i>=0,i=1..nops(F)-1);
>    cst := seq(F[i]-epsilon||i=subs(sol,F[i]),i=1..nops(F)-1);
>    SC := {cat} union {cstEps} union NX;
>    efficient := evalb(subs(simplex[maximize](of,SC,NONNEGATIVE),of)=0);
if efficient then
    val := [seq(tv(x||i, sol),i=1..NumVar)];
    if not(member(false,map(i->type(i,numeric),val))) then
        LE := LE, {seq(x||i=val[i],i=1..NumVar)};
    fi;
fi;
if not(efficient) then
    return(efficient);
else
    Proposition4dot12(F[1..-2],X,{LE});
fi:
end proc:
```
> LL := [seq([tv(x,Min(x,X)),tv(x,Max(x,X))],x=LFV)];
> LV := n -> [seq(i[j],j=1..n)]:
> gaa := (n,m,L) -> if m=n then
 seq(LV(m),i[m]=L[m])
else
 seq(gaa(n,m+1,L),i[m]=L[m])
fi:
> ga := L -> gaa(nops(L),1,L):
> VFV := {ga(LL)};
> Sub := (C1,C2) -> seq({seq(C2[j]=i[j],j=1..nops(i))},i=C1):
> LSub := Sub(VFV,LFV);
> delFreeVar := SS -> SS minus {seq(i,i=select(i->mylhs(i)=myrhs(i),SS))}:
> NX := X union {seq(i>=0,i=varSol(Sol))}:
> VerifySol := PS -> not(member(false,{seq(evalb(subs(PS,i)),i=NX)})):
> aux := {seq(subs(s,delFreeVar(S)) union s,s={LSub})}:
> return(select(VerifySol,aux));
> end proc:
>
> step5 := proc(F,X)
local SolSM;
SolSM := simplex[maximize](F[-1],X,NONNEGATIVE);
return(vert(SolSM,F[-1],X));
end proc:
>
> step6 := proc(F,X)
local STEP5, of, cstEps, notEfficient, sol, cst, SC;
STEP5 := step5(F,X);
of := add(epsilon||i,i=1..nops(F)-1);
cstEps := seq(epsilon||i>=0,i=1..nops(F)-1);
notEfficient := true;
for sol in STEP5 while notEfficient do
 cst := seq(F[i]-epsilon||i=subs(sol,F[i]),i=1..nops(F)-1):
 SC := {cst} union {cstEps} union X:
 subs(simplex[maximize](of,SC,NONNEGATIVE),of);
 notEfficient := evalb(subs(simplex[maximize](of,SC,NONNEGATIVE),of)<>0);
end do;
return(not(notEfficient));
end proc:
>
Examples 4.11 and 4.12 illustrate the use of our Maple command step6.

> step7a := proc(F,X,NumVar)
local b,A,rnk,dif,LP,zero,efficient,v,admissible,
 vs,AM,of,cstEps,cst,SC,p,LE,myrhs;
Follows our Maple definition for Step 7 (see Example 4.13).
myrhs := E -> if type(rhs(E),numeric) then rhs(E) else lhs(E) fi:
b := X -> Vector([seq(myrhs(i),i=X)]):
A := matrixA(X,NumVar);
rnk := LinearAlgebra[Rank](A);
dif := NumVar - rnk;
LP := combinat[choose]([seq(x||i,i=1..NumVar]),dif);
zero := L -> {seq(i=0,i=L)}:
LE := NULL;
v := Vector([seq(x||i,i=1..NumVar])];
admissible := sc -> not(member(false,{seq(evalb(myrhs(i)>=0),i=sc)})):
for p in LP do
 vs := subs({seq(i=0,i=p)},v);
 AM := LinearAlgebra[MatrixVectorMultiply](A,vs);
 sol := solve({seq(AM[i]=b(X)[i],i=1..nops(X))});
 if not(sol = NULL) and admissible(sol) then
 sol := sol union zero(p);
 of := add(epsilon||i,i=1..nops(F)-1);
 cstEps := seq(epsilon||i=0,i=1..nops(F)-1);
 cst := seq(F[i]-epsilon||i=subs(sol,F[i]),i=1..nops(F)-1);
 SC := {cst} union {cstEps} union X;
 efficient := evalb(subs(simplex[maximize](of,SC,NONNEGATIVE),of)=0);
 if efficient then LE := LE, sol; fi:
 fi;
end do;
return([LE]);
end proc:

In step7b we change X
Note: All inequalities must be given in the form Ax <= b
step7b := proc(F,X,NumVar)
 local TX, SEV, good, sel, mylhs, myrhs;
 mylhs := E -> if type(lhs(E),numeric) then rhs(E) else lhs(E) fi:
 myrhs := E -> if type(rhs(E),numeric) then rhs(E) else lhs(E) fi:
 TX := {seq(mylhs(X[i])+x||(NumVar+i)=myrhs(X[i]),i=1..nops(X))};
 SEV := step7a(F,TX,NumVar+nops(X));
 good := (v,nv) -> member(v,{seq(x||i,i=1..nv)}):
 sel := (es,NumVar) -> select(e->good(mylhs(e),NumVar),es):
 return(map(sel,SEV,NumVar));
end proc:

step7 := proc(F,X,NumVar)
 local C, kernel, S7, tv, five, SD, basis, IBK, myrhs;
 myrhs := E -> if type(rhs(E),numeric) then rhs(E) else lhs(E) fi:
 myrhs := E -> if type(rhs(E),numeric) then rhs(E) else lhs(E) fi:
 TX := {seq(mylhs(X[i])+x||(NumVar+i)=myrhs(X[i]),i=1..nops(X))};
 SEV := step7a(F,TX,NumVar+nops(X));
 good := (v,nv) -> member(v,{seq(x||i,i=1..nv)}):
 sel := (es,NumVar) -> select(e->good(mylhs(e),NumVar),es):
 return(map(sel,SEV,NumVar));
end proc:
Our Maple procedure `mm` is based on the theory introduced in Ref. [12] (mm stands for “Malinowska Method”).

Follows the main procedure of our Maple package (see Section 5).
> nonessential := proc(F,X)
> local NumVar, y, cs;
> cs := x -> [op(x)][-1]:
> y := sort(map(cs,remove(i->type(i,numeric),
> map(i->op(i),
> [seq(op(i),i=F),seq(op(i),i=X)])))[-1];
> for NumVar from 1 by 1 while not(evalb(x||NumVar = y)
> or evalb(-x||NumVar = y)) do od;
> if glm(F,NumVar) then
> printf("Objective function %a is nonessential from GL method\n",F[-1]);
> else
> mm(F,X,NumVar);
> fi:
> end proc: