Supporting Information

Facile synthesis of ordered mesoporous zinc alumina catalysts and dehydrogenation behavior

Ming Cheng a,b, Huahua Zhao a, Jian Yang a, Jun Zhao a, Liang Yan a, Huanling Song a,* , Lingjun Chou a,c,*

a State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, PR China

b University of Chinese Academy of Sciences, Beijing 100049, PR China

c Suzhou Research Institute of LICP, Chinese Academy of Sciences, Suzhou 215123, PR China

*Corresponding author. E-mail address: lichou@licp.cas.cn (Lingjun Chou), Tel: +86 931 4968 066, Fax: +86 931 4968 129; songhl@licp.cas.cn (Huanling Song), Tel: +86 931 4968 066, Fax: +86 931 4968 129;
S1. NH$_3$-TPD analysis

Fig. S1. The NH$_3$-TPD profiles of the as-synthesized xZn/Al$_2$O$_3$ catalysts and Al$_2$O$_3$: (a) Al$_2$O$_3$; (b) 3\%Zn/Al$_2$O$_3$; (c) 5\%Zn/Al$_2$O$_3$; (d) 7\%Zn/Al$_2$O$_3$; (e) 10\%Zn/Al$_2$O$_3$; (f) 15\%Zn/Al$_2$O$_3$.

S2. NH$_3$-TPD profiles

Fig. S2. The NH$_3$-TPD profile of ZnO.

S3. The catalytic dehydrogenation of isobutane over the ordered mesoporous Al$_2$O$_3$ and commercial ZnO.

Fig. S3. The catalytic dehydrogenation of isobutane over the ordered mesoporous Al$_2$O$_3$ and commercial ZnO.

Reaction condition: T = 580 °C, GHSV = 300 h$^{-1}$.
S4. Nitrogen adsorption–desorption analysis

Fig. S4. The nitrogen adsorption–desorption analysis of the catalysts: (a) the spent 10%Zn/Al₂O₃; (b) the fifth regenerated 10%Zn/Al₂O₃; (c) the spent 15%Zn/Al₂O₃.