Seasonal Alterations in Oxidative Stress Biomarkers of Freshwater Snails: *Bellamya bengalensis* and *Lymnaea acuminata* from Malangaon Reservoir of Dhule District, Maharashtra, India

B. B. Waykar¹, R. K. Petare²* and S. M. Shinde³

¹, ²Department of Zoology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad − 431 004, Maharashtra, India; bbwaykar@gmail.com, rampetare@gmail.com
³Department of Zoology, S.S.V.P.S’s Dr. P.R. Ghogrey Science College, Dhule − 424 005, Maharashtra, India; satish.shinde02@gmail.com

Abstract

Objectives: Two freshwater snails *Bellamya bengalensis* and *Lymnaea acuminata* from Malangaon reservoir of Dhule district (Maharashtra, India) were examined to study biomarkers of oxidative stress with the investigation of antioxidant enzyme activities. **Methods:** The experimental snail species were collected seasonally and acclimatized in the laboratory. Their digestive glands were used to study the activities of oxidative biomarker enzymes like Lipid PerOxidation (LPO), Glutathione-S-Transferase (GST), reduced glutathione (GSH), Superoxide Dismutase (SOD), CATalase (CAT) and Glutathione Peroxidase (GPx). All investigations were carried out on double beam spectrophotometer (Elico BL 200). **Findings:** It was observed that, LPO level in *B. bengalensis* was 0.63, 0.55 and 0.60 (nmol of MDA formed/mg protein) while in *L. acuminata* 0.74, 0.67 and 0.70 respectively in summer, monsoon and winter seasons. GST activity was 23.41, 15.73 and 19.61 in *B. bengalensis* while 26.29, 18.34 and 22.29 in *L. acuminata*. Level of GSH was 0.083, 0.117 and 0.094 (µM/g wet tissue) in *B. bengalensis* while in *L. acuminata* it was 0.018, 0.056 and 0.026 (µM/g wet tissue) in three seasons. The level of SOD was 20.87, 24.83 and 23.33 (U/mg of protein) in *B. bengalensis* while in *L. acuminata* it was 18.32, 22.35 and 20.73 in three seasons. Level of CAT was 9.23, 13.20, and 11.56 (U/mg of protein) in *B. bengalensis* while in *L. acuminata* it was 7.02, 10.53 and 8.86 (U/mg of protein) respectively during three seasons. GPx movement was 6.57, 8.50 and 7.48 (mg of GSH utilized/min/mg protein) in *B. bengalensis*. It was 5.05, 8.07 and 7.04 (mg of GSH utilized/min/mg protein) in *L. acuminata* respectively in three seasons. The obtained data also showed the lowest levels of LPO and activities of GST and uppermost doings of SOD, CAT, and GPx and uppermost heights of GSH in two snail types in rainy period than summer and winter period. This designates that in summer, the snails were under more conservation stress than winter and rainy periods. **Application:** It was decided that changes in antioxidant enzymes and LPO and GST activity can be used as tool in ecological nursing packages.

Keywords: *Bellamya bengalensis*, Biomarkers, *Lymnaea acuminata*, Malangaon Reservoir, Oxidative Stress, Seasonal Alterations

1. Introduction

In water faunae, numerous ordinary and anthropogenic issues encourage unevenness among the ROS and their elimination. As a consequence of this oxidative stress occurs. Educations of the oxidative pressure response in water organisms have been projected as a basis of significant material that could be secondhand as gears to control
the excellence of the environment. Cellular antioxidant enzymes respond to augmented ROS stages with unalike planes of magnitude and their goings-on alteration below the inspiration of periodic rhythmicity, revision to low ecological temperatures and site-specific conservation impact. Modifications in antioxidant enzyme activities can afford valuable statistics for characteristic sandwiched between different groups of plants conferring to the indigenous fundamental conservational scene and biological factors. The oxidative stress may give a good indication of the atmosphere’s indigenous effluence position.

The antioxidants structure comprises in the sanitization of xenobiotics. Antioxidant enzymes arrangements are regularly determined by the limitations like SuperOxide Dismutase (SOD), CATalase (CAT), concentrated glutathione (GSH) Glutathione Peroxidase (GPx), and Glutathione S-Transferase (GST). These limitations deliberate quantifiable of well-designed complaint of a bacterium are regularly previously owned in biomonitoring studies as biomarkers. They were described in a certain number of aquatic creatures such as snails, annelida, mussels, and fish. These antioxidant enzymes have been proposed to use as biomarkers for exposure to ROS-mediating contaminants, such as weighty metals.

The action of antioxidant defense enzymes other biomarkers variations significantly with admiration to the accessibility of nutrients, generative station, season-related evolution rate and other clothes, all over the year. Seasonal alterations have also been observed in the levels of contaminant and in natural exposure to oxidative stress. Particular features of cyclical vicissitudes in antioxidant protection have been observed in the tissues of many aquatic animals, such as thin-lip gray mullet, Liza ramada, mussel, Mytilus galloprovincialis and blue mussel, Mytilus edulis.

Ponder of cancer prevention agent safeguard in the view of biological danger is not totally caught on. Freshwater snails are found in streams, waterways, tidal ponds, and lakes, and are enter interfaces in the natural way of life chief from supplements in the water and buildup to trawl and ducks that are used by individuals. They are moderately simple to gather and identify. Also, snails fulfill every one of the states of a decent organic indicator. In this paper, we describe changes in antioxidant defense enzyme levels in whole soft body tissues of the freshwater snail, Bellamya bengalensis and Lymnaea acuminata summer, monsoon and winter dated from Malangaon reservoir.

2. Materials and Methods

2.1 Morphometry of Study Area
Malangaon artificial lake is positioned on Kan River. It is one of the tributary of Panzara river of North Maharashtra area of spaghett-we Western India. Geographically it is located at 21°05′16.72″N and 74°04′52.98″E. The storage volume of the tank is 11.32 million sq. meter. The Basin is stone type and its span is 1091 patterns. The decided height is 23 meter. The run of the mill territory of the tank is 1587 hectares. It has left trench of 25 kms in length which covers around 9 towns. The water of this store is held for drinking and water system purposes.

2.2 Experimental Setup
The freshwater snails Bellamya bengalensis and Lymnaea acuminata were collected seasonally from Malangaon reservoir of Dhule district. They were dissected discretely and the intestinal glands were uninvolved systematically and eroded by phosphate bumper (50 mM; pH 7.3). 1 gm of gastric gland was standardized with 50 mM phosphate buffer (pH 7.4) and centrifuged at 10000 rpm for 20 min at 4°C. The supernatant was recycled for enzyme activities. Numerous oxidative biomarker enzymes like Lipid peroxidation (LPO), Glutathione-S-transferase (GST), Reduced glutathione (GSH), Superoxide dismutase (SOD), Catalase (CAT) and Glutathione peroxidase (GPx) were estimated. All the enzyme events were unhurried by overwhelming second beam spectrophotometer (Elico BL 200).

3. Results

3.1 Water Quality
Infection and softened oxygen of water were projected seasonally and exposed in Table 1 and High temperature diverse from maximum 22.48°C in straw-hat and the lowest as 17.55°C in season. It was reasonable (19.51°C) in rainy season. The melted oxygen attentions were highest (12.24 mg/l) throughout taciturn weather of wintertime and lowest (7.36mg/l) during summertime. It was judicious (10.521 mg/l) in monsoon.

3.2 Biomarkers
The oxidative pressure pointer limitations like doings of antioxidant protection enzymes, the levels of antioxidant enzymes...
scavenger molecules and Lipid Peroxidation (LPO) were projected seasonally from peptic glands of pond snails, *B. bengalensis* and *L. acuminata* collected from Malangaon reservoir. The obtained results are summarized in the Table 2.

3.2.1 Lipid Peroxidation (LPO) (MDA Formation) Level

The LPO levels in *B. bengalensis* were found 0.63, 0.55 and 0.60 (nmol of MDA shaped/mg protein) while in *L. acuminata* 0.74, 0.67 and 0.70 (nmol of MDA formed/mg protein) correspondingly in summer, monsoon as well as winter seasons.

3.2.2 Glutathione-S-Transferase (GST)

During seasonal study period summer, monsoon and winter seasons GST activity was 23.41, 15.73 and 19.61 (nmol CDNB conjugate formed/min/mg of protein) in *B. bengalensis* while 26.29, 18.34 and 22.29 (nmol CDNB conjugate formed/min/mg of protein) in *L. acuminata*.

3.2.3 Reduced Glutathione (GSH)

The level of GSH was 0.082, 0.117 and 0.094 (µM/g wet tissue) in *B. bengalensis* while in *L. acuminata* it was 0.018, 0.056 and 0.026 (µM/g wet tissue) respectively throughout summertime, rainy season and wintertime period.

3.2.4 Superoxide Dismutase (SOD)

The level of SOD was 20.87, 24.82 and 23.33 (U/mg of protein) in *B. bengalensis* while in *L. acuminata* it was 18.32, 22.35 and 20.73 (U/mg of protein) correspondingly throughout summertime, rainy season and wintertime.

3.2.5 Catalase (CAT)

The level of CAT was 9.23, 13.20, and 11.56 (U/mg of protein) in *B. bengalensis* while in *L. acuminata* it was 7.02, Table 2. Biomarker enzyme activities in freshwater snails from Malangaon reservoir.

Sl. No.	Snail species	Season	Glutathione-S-transferase (GST) nmol/min/mg protein	Superoxide dismutase (SOD) U/mg of protein	Glutathione Peroxidase (GPx) nmol/mg/min	Lipid Peroxidation (LPO) nmol/mg protein	Reduced Glutathione (GSH) µM/g wet tissue	Catalase (CAT) U/mg of protein
1	*Bellamya bengalensis*	Summer	23.41±0.76	20.87±0.56	6.57±0.20	0.63±0.026	0.083±0.003	9.23±0.44
		Monsoon	15.73±0.53	24.83±0.60	8.50±0.32	0.55±0.021	0.117±0.020	13.20±0.36
		Winter	19.61±0.56	23.33±0.47	7.48±0.30	0.60±0.018	0.094±0.005	11.56±0.46
2	*Lymnaea acuminata*	Summer	26.29±0.74	18.32±0.33	5.05±0.13	0.74±0.020	0.018±0.002	7.02±0.11
		Monsoon	18.34±0.42	22.35±0.41	8.07±0.15	0.67±0.021	0.056±0.004	10.53±0.41
		Winter	22.29±0.68	20.73±0.55	7.04±0.10	0.70±0.037	0.026±0.003	8.86±0.44

(±) values indicate standard deviations.

Values are significant at *p<0.05, **P<0.01, ***P<0.001, NS- Non significant.
10.53 and 8.86 (U/mg of protein) respectively during summer, monsoon and winter seasons.

3.2.6 Glutathione Peroxidase (GPx)

The GPx movement was 6.57, 8.50 and 7.48 (mg of GSH utilized/min/mg protein) in B. bengalensis. It was 5.05, 8.07 and 7.04 (mg of GSH utilized/min/mg protein) in L.acuminata respectively in summer, monsoon and winter seasons.

4. Discussion

Antioxidant shield classifi cation is greatly unspoiled biochemical instrument which preserves bacteria from unhelpful possessions of touchy oxygen classes. At low meditation, ROS standardizes abundant biological methods, while at elevated consciousness they are fatal to microorganisms by way of damaging cellular utilities by oxidizing biomolecules. Seasonal variations in antioxidant fortifi cations variety class talent to endure their suitable ROS titer to gross changed physical professions. Oversensitive oxygen sort like superoxide radicals, hydroxyl diehards, sideways through hydrogen peroxide are created because of unfinished diminishing of atomic oxygen in electron transport chain of mitochondria and as by-products of additional biological rejoinders of metabolism. There are a few insights in writing which have unmistakably shown changes in centers of a few contaminants in air and water with profound respect to seasons. Usually, such go-betweens enhance oxidative stress. Consequently, a change in season may affect ROS status and antioxidant defense organizations in faunae and, thus, their physiology.

It was also palpable that, the difficult neck and neck of LPO and commotion of GST and lower activity of SOD, CAT, GPx, and GSH were observed in digestive glands of L.Pb in summer might be due to the fact that weighty metal gathering in water is dependent upon the physicochemical properties of water such as infection, pH, dissolved oxygen, conductivity and salinity. In reported seasonal variation in physicochemical strictures and heavy metals concentration in water of upper Lake of Bhopal.

In described seasonal differences in metal attentiveness lead (Pb), Copper (Cu), Chromium (Cr), Zinc (Zn), Nickel (Ni), Cadmium (Cd) and mercury (Hg) in surface water of southwest coast of India.

Hotness may mark oxidative tension rejoinders in snails either one in an unconventional mark by changeless the catalytic percentage of enzymes or incidentally via its result on duplicate or on other physical, chemical and natal individualities of the marine environment. The hotness may consolation the reactant capability and important capacity of proteins and also disturbs the flimsiness oxygen supply touching oxygen arranges in muscles, which control hamper with cancer prevention agent defenses. It was additionally watched that, broke up oxygen ingestions help to clarify why GST activities were start to finish through regular. The GST bustle was frequently minor in wintertime than summer.

It was also palpable that, the difficult neck and neck of LPO and commotion of GST and lower activity of SOD, CAT, GPx, and GSH were observed in digestive glands of L.acuminata than intestinal glands of B. bengalensis in all the three flavors.

Periodic fluctuations in GSH level has been described in snails conveyed spring variation of biotransformation enzymes counting GST in Perna perna. In testified vagaries in numerous biomarkers in the mangrove oyster, Crassostrea rhizophome collected from polluted and non-polluted sites in relation to seasonality and opportunity.

Recurrent discrepancy may be cherished since of interfaces sandwiched between exogenous explanations like temperature, pH, salinity and food supply and endogenous influences such as procreative cycle. Hence it is dense to enticement precise decision as to which limitation is furthermore nominal for deviations in the antioxidant enzymes. The above results indubitably point out the status of spring changes on biomarkers in B. bengalensis and L.acuminata and are helpful for elucida-
tion of recyclable tending numbers. It is branded that the activity of antioxidative enzymes and the satisfied of low molecular weightiness antioxidants in snails expression regularfluctuations. Gradual rises in the happenings of CAT, GSH, and GST in monsoon in snail *Viviparous acerous* from Velika Morava River Serbia.

In observed GST activity in land snail, *Helix aspersa* and found higher GST activity in the summer compared to winter.

The conclusions of the existing study point out an imperative stimulus of recurrent reasons on both enzymatic and non-enzymatic antioxidants. Nevertheless it is clear from the data the amendments of antioxidant limitations and triglyceride peroxidation in *B. bengalensis* and *L.acuminata* appears to be closely related with the seasonal changes.

The general fallouts exposed the utmost heights of LPO and happenings of GST and nethermost happenings of SOD, CAT, GPx, and GSH in intestinal glands of two snail kind in travelling than cloudburst and midwinter flavor. The gained data also signposted the nethermost ranks of LPO and accomplishments of GST and determined accomplishments of SOD, CAT, GPx and GSH in digestive glands of two snail types in monsoon than seasonal and winter season. It was also experimental that the difficult level of LPO and commotion of GST and lower activity of SOD, CAT, GPx, and GSH were experimental in digestive glands of *L.acuminata* than digestive glands of *B. bengalensis* in all the three seasons.

5. Conclusion

It was strong-minded that, in travelling, snails continued further under environmental stress than winter and monsoon season. It was also concluded that, *Limnaea acuminata* was under more ecological traumathan *Bellamya bengalensis*. In the existing study, we confirmed with the target of snails endures unalike equal of oxidative tension as a result of periodic dissimilarities, which proposes the stimulation of bodily apparatuses to rummage fashioned ROS.

6. References

1. Halliwell B, Gutteridge JMC. Free Radicals in Biology and Medicine, 4th ed. London: Oxford University, Oxford: Oxford University Press; 2007.
2. Valavanidis A, Vlahogianni T, Dassenakis M. Molecular Biomarkers of Oxidative Stress in Aquatic Organisms in Relation to Toxic Environmental Pollutants, Ecotoxicol Environ Saf. 2006; 64(2):178−89. Crossref. PMID:16406578.
3. Zhu Y, Kalen AL, Li L. Polychlorinated-Biphenylinduced Oxidative Stress and Cytotoxicity can be Mitigated by Antioxidants After Exposure, Free Radic Biol Med. 2009; 47(12):1762−71. Crossref. PMID:19796678 PMCID:PMC2785439.
4. Borkovici SS, Sapnici SJ, Pavlovic ZS. The Activity of Antioxidant Defense Enzymes in Mussels (Mytilus galloprovincialis) from the Adriatic Sea, Comp. Biochem. Physiol. C. 2005; 141(4):366−74.
5. Blandojevic DP. Antioxidant Systems in Supporting Environmental and Programmed Adaptations to Low Temperatures, Cryo. Letters. 2007; 28(3):137−50.
6. Vidal-Linan L, Bellas J, Campillo JA. Integrated use of Antioxidant Enzymes In Mussels, Mytilus Galloprovincialis, for Monitoring Pollution in Highly Productive Coastal Areas of Galicia (NW Spain), Chemosphere. 2010; 78(3):265−72. Crossref. PMID:19954813.
7. Sapnici JS, Borkovici SS, Kovačević TB. Activity of Antioxidant Defense Enzymes in the Mediterranean Sea Shrimp (Parapenaeus Longirostris): Relation to the Presence of PCBs and PAHs in the South Adriatic Sea, Period Biol. 2006; 108(2):117−25.
8. Sheehan D, Power A. Effect of Seasonality on Xenobiotic and Antioxidant Defence Mechanisms of Bivalve Mollusks, Comp. Biochem. Physiol. C. 1999; 123(3):193−99. PMID:10530890.
9. Tsangaris C, Papathanasiou E, Cotou E. Assessment of the Impact of Heavy Metal Pollution from a ferro-Nickel Smelting Plant using Biomarkers, Ecotoxicology and Environmental Safety. 2007; 66(2):232−43. Crossref. PMID:16753214.
10. Banni M, Bouraoui Z, Ghedira J, Clearandeau C, Jebali J, Boussetta H. Seasonal Variation of Oxidative Stress Biomarkers in Clams Ruditapes Decussates Sampled from Tunisian Coastal Areas, Environmental Monitoring Assessment. 2008; 155(1-4):119−28. Crossref. PMID:18594996.
11. Li X, Lin L, Luan T, Yang L, Lan C. Effects of Landfill Leachate Effluent And Bisphenol A on Glutathione and Glutathione-Related Enzymes in the Gills and Digestive Glands of the Freshwater Snail Bellamyia Purificata, Chemosphere. 70(10); 2008:1903−09. Crossref. PMID:17881034.
12. Geracitano LA, Monserrat JM, Bianchini A. Oxidative Stress in Laonereis Acuta (Polychaeta, Nereididae): Environmental and Seasonal Effects, Mar. Environ. Res. 2004; 58(2-5):625−30. Crossref. PMID:15178090.
13. Vidal ML, Basseres A, Narbonne JF. Seasonal Variation of Pollution Biomarkers in Two Population of Corbicula Fluminea (Muller), Comp. Biochem. Physiol. Physiol. 2002; 131(2):133−51. Crossref.
14. Oliva M, Vicentem JJ, Gravato C, Guillermino L, Galindo-Riano MD. Oxidative Stress Biomarkers in Senegal Sole, Solea Senegalensis, to Assess the Impact of Heavy Metal Pollution in a Huelva Estuary (SW Spain): Seasonal and Spatial Variation, Ecotoxicol. Environ. Saf. 2012; 75(1):151–62. Crossref. PMid:21937114.

15. Chevre N, Gagne F, Gagnon P, Blaise C. Application of Rough Sets Analysis to Identify Polluted Aquatic Sites Based on a Battery of Biomarkers: A Comparison with Classical Methods, Chemosphere. 2003; 51(1):13–23. Crossref.

16. Pavlović SZ, Bešić D, Blagojević DP, Radojičić RM, Žikić RV, Saćić ZS, Grubor-Lajiš G, Spasić MB. Seasonal Variations of Cytosolic Antioxidant Enzyme Activities in the Liver and White Muscle of Thnílip Gray Mullet (Liza ramada Risso) from the Adriatic Sea, CryoLetters. 2004; 25(4):273–85.

17. Bocchetti R, Fattorini D, Pisanelli B, Macchia S, Oliviero L, Pilato F, Pellegrini D, Regoli F. Contaminant Accumulation and Biomarker Responses in Caged Mussels, Mytilus Galloprovincialis, to Evaluate Bioavailability and Toxicological Effects of Remobilized Chemicals During Dredging and Disposal Operations In Harbor Areas, Aquat Toxicol. 2008; 89(4):257–66. Crossref. PMid:18778859.

18. Manduzio H, Monsinjon T, Galap C, Leboulenger F, Rocher-Biabanacos. Seasonal Variations in Antioxidant Defenses in Blue Mussels Mytilus Edulis Collected from a Polluted Area: Major Contributions in Gills of an Inducible Isoform of Cu/Zn-Superoxide Dismutase and Glutathione-S-Transferase, Aquat. Toxicol. 2004; 70(1):83–93. Crossref. PMid:15451609.

19. Elder JF, Collins JJ. Freshwater Molluscs as Indicators of Bioavailability and Toxicity of Metals in Surface-Water Systems, Rev Environ. Contam. Toxicol. 1991; 122:37–79. Crossref. PMid:1771274.

20. Hopkin SP. In Situ Biological Monitoring of Pollution in Terrestrial and Aquatic Ecosystems. In: Calow P. ed. Handbook of Ecotoxicology. Blackwell Scientific Publications; 1993, p. 397–427.

21. Ohkawa H. Assay for Lipid Peroxides in Animal Tissues by Thiobarbituric Acid Reaction, Anal Biochem. 1979; 95(1):351–58. Crossref.

22. Habig WH, Papst MJ, Jacoby WB. Glutathione S-Transferase, the First Step in Mercapturic Acid Formation, J. Biol. Chem. 1974; 249(22):7130–39. PMid:4436300.

23. Boyne AF, Ellman GL. A Methodology for Analysis of Tissue Sulphydryl Components, Anal. Biochem. 1972; 46(2):639–53. Crossref.

24. Beauchamp C, Fridovich I. Isozymes of Superoxide Dismutase from Wheat Germ Biochemica et Biophysica Acta, 1973, p. 50–64. Crossref.

25. Aebi H. Catalase In: Bergmayer, HU (Ed), Methods in Enzymatic Analysis. Newyork, Academic Press. II, 1974, p. 673–78.

26. Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG HoekstraWG. Selenium: Biochemical Role as a Component of Glutathione Peroxidase, Science. 1973; 179(4073):588–90. Crossref. PMid:4686466.

27. Turrens JF. Mitochondrial Formation of Reactive Oxygen Species, Journal of Physiology. 2003; 552(2):335–44. Crossref. PMid:14561818 PMcid:PMC2343396.

28. Halliwell BC, Cross CE. Oxygen-Derived Species: Their Relation to Human Disease and Environmental Stress, Environmental Health Perspectives. 1993; 102(10):5–12.

29. Peng RD, Dominici F, Pastor-Barriuso R, Zeger SL, Samet JM. Seasonal Analyses of Air Pollution And Mortality in 100 US Cities, American Journal of Epidemiology. 2005; 161(6):585–94. Crossref. PMid:15746475.

30. Abele D, Vazquez-Medina JP, Zenteno-Savin T. Oxidative Stress in Aquatic Ecosystems, 1st Edition, Blackwell and Wiley, New York, NY: USA, 2011. Crossref.

31. Halliwell BC, Gutteridge JM. Free Radicals in Biology and Medicine, 3rd Edition, Oxford University Press, New York, NY: USA, 2008. PMcid:PMC4586257.

32. Wong CK, Cheung RYH, Wong MH. Heavy Metal Concentrations in Green-Lipped Mussels collected from Tolo Harbour and markets in Hong Kong and Shenzhen, Environmental Pollution. 2000; 109(1):165–71. Crossref.

33. Virha R, Biswas AK, Kakaria VK, Qureshi TA, Borana K, Malik N. Seasonal Variation in Physicochemical and Heavy Metals in Water of Upper Lake of Bhopal, Bulletin of Environmental Contamination and Toxicology. 2011; 86(2):168–74. Crossref. PMid:21170704.

34. Udayakumar P, Chandran A, Jean, Jose J, Rajesh BR, Narendra Babu K, Ouseph PP. Seasonal dynamics of dissolved metals in surface coastal waters of southwest India. Bulletin of Environmental Contamination and Toxicology, 2011,87(6), pp.662-668. Crossref. PMId:21922283.

35. Luschak V, Bagryukova TV. Temperature Increase Results in Oxidative Stress in Goldfish Tissues Induced of Oxidative Stress, Comparative Biochemistry and Physiology. 2006; 143(1):30–35.

36. Power A, Sheehan D. Seasonal Variation in the Antioxidant Defense Systems of Gill and Digestive Gland of the Blue Mussel, Mytilus edulis, Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology. 1996; 114(2):99–103. Crossref.

37. Wilhelm Filho D, Tribess T, Gasperi C, Claudio FD, Torres MA, Magalhaes ARM. Seasonal Changes in Antioxidant Defenses of the Digestive Gland of the Brown Mussel (Perna perna), Aquaculture. 2001; 203(1-2):149–58. Crossref.

38. Zanette J, Monserrat JM, Bianchini A. Biochemical Biomarkers in Gill of Mangrove Oyster Crassostrea Rhizophorae from Three Brazilian Estuaries, Comp. Biochem. Physiol. 2006; 143(2):187–95. Crossref.
39. Verlecar X, Jena K, Chainy G. Seasonal Variation of Oxidative Biomarkers in the Gills and Digestive Gland of Green-Lipped Mussel Pema Viridis from Arabian Sea, Estuarine, Coastal and Shelf Science. 2007; 76(4):745–52. Crossref.

40. Lima I, Moreira SM, Osten JR, Soares VM, Guilhermino L. Biochemical Responses of the Marine Mussel Mytilus Galloprovincialis to Petrochemical Environmental Contamination along the North-Western Coast of Portugal, Chemos. 2007; 66(7):1230–42. Crossref. PMid:16959297.

41. Prevodnik A, Gardestrom J, Lilja K, Elfwing T, McDonagh, Petrovic N, Tedengren M, Sheehan D, Bollner T. Oxidative Stress in Response to Xenobiotics in the Blue Mussel Mytilus Edulis L: Evidence for Variation Along a Natural Salinity Gradient of the Baltic Sea, Aquatic Toxicology. 2007; 82(1):63–71. Crossref. PMid:17320983.

42. Khessiba A, Romeo M, Aissa P. Effects of some Environmental Parameters on Catalase Activity Measured in the Mussel (Mytilus Galloprovincialis) Exposed to Lindane, Environ Pollut. 2005; 133(2):275–81. Crossref. PMid:15519458.

43. Nowakowska AS, Widerska-Kolacz G, Rogalaska J, Caputa M. Antioxidants and Oxidative Stress in Helix Pomatia Snails during Estivation, Comparative Biochemistry and Physiology. 2009; 150(4):481–86. Crossref.

44. Salway KD, Tattersall GJ, Stuart JA. Rapid Regulation of Heart Antioxidant Enzymes during Arousal from Estivation on the Giant African Snail (Achatina Fulica), Comparative Biochemistry and Physiology. 2010; 157(3):229–36. Crossref. PMid:20621194.

45. Svetlana G, Despotovic, Branka R. Perendija, Jelena P, Gavric, Salvica S, Borkovic-Mitic MM, Paunovic SZ, Pavlovic, Zorica Saicic. Seasonal Changes in Oxidative Stress Biomarkers of the Snail Viviparous Acerosus from the Velika Morava River, Serbia. Arch. Boil. Sci., Belgrade. 2012; 64(3):953–62.

46. Larbaa R, Soltani N. Use of the Land Snail Helix Aspersa for Monitoring Heavy Metal Soil Contamination in Northeast Algeria, Environmental Monitoring and Assessment. 2014; 186(8):4987–95. Crossref. PMid:24687691.