Quadratic choreographies

P. Ryckelyncka, L. Smocha

ULCO, LMPA, F-62100 Calais, France
Univ Lille Nord de France, F-59000 Lille, France. CNRS, FR 2956, France.

Abstract

This paper addresses the classical and discrete Euler-Lagrange equations for systems of n particles interacting quadratically in \mathbb{R}^d. By highlighting the role played by the center of mass of the particles, we solve the previous systems via the classical quadratic eigenvalue problem (QEP) and its discrete transcendental generalization. The roots of classical and discrete QEP being given, we state some conditional convergence results. Next, we focus especially on periodic and choreographic solutions and we provide some numerical experiments which confirm the convergence.

Keywords: Calculus of variations, Functional equations, Discretization, Quadratic eigenvalue problems, Periodic and almost-periodic solutions

2000 MSC: 49K21, 49K15, 65L03, 65L12

1. Introduction

This paper seeks to continue the development of the theory for the discrete calculus of variations which was initiated by Cresson and al., see [2, 3]. It consists originally in replacing the derivative $\dot{x}(t)$ of the dynamic variable $x(t)$ defined on $[t_0, t_f]$ with a $2N + 1$ terms scale derivative

$$\Box_{\varepsilon}x(t) = \sum_{j=-N}^{N} \frac{\gamma_j}{\varepsilon} x(t + j\varepsilon) \chi_{-j}(t), \quad t \in [t_0, t_f], \quad \gamma_j \in \mathbb{C}$$

(1)

where $\chi_j(t)$ denotes the characteristic function of $[t_0, t_f] \cap [t_0 + j\varepsilon, t_f + j\varepsilon]$, for some time delay ε.

We consider a lagrangian \mathcal{L} of n particles in \mathbb{R}^d, where d denotes the "physical" dimension. The principle of least action may be extended to the case of non-differentiable dynamic variables. For conservative systems, the equations of motion may be returned as the following two dynamic sets of equations

$$\ddot{x}_j(t) = F_j(x_1, \ldots, x_n) \text{ and } -\Box_{\varepsilon}x_j(t) = \tilde{F}_j(x_1, \ldots, x_n)$$

(2)
where the functions F_j, \tilde{F}_j are built from the specific interaction between the particles. While the first system in (2) deals with ODE, the second one consists in a set of functional difference equations. We investigate for each system the existence of pseudo-periodic solutions of the shape

$$u(t) = u_0 + \sum_{\ell=1}^{K} e^{\lambda_\ell t} u_\ell,$$ \hspace{1cm} (3)$$

where u_0 and u_ℓ constitute a family of $K + 1$ vectors of \mathbb{C}^d and $(\lambda_\ell)_\ell \in (\mathbb{C}^*)^K$ is a sequence of K distinct complex numbers.

The rest of this paper is organized as follows. Section 2 is devoted to the derivation of the classical and discrete Euler-Lagrange equations (respectively abbreviated as C.E.L. and D.E.L.) and highlights the role played by the center of mass $x_s(t)$ where $x_s(t) = \sum_j x_j(t)$. In Section 3, we present a method for solving the equations of motion for generic lagrangians for C.E.L. as well as D.E.L. The first step of this method determines $x_s(t)$ from some generalized (quadratic or transcendental) eigenvalue problem. The second step seeks $x_j(t)$ from $x_s(t)$ by solving another eigenvalue problem. Section 4 is devoted to the convergence of the generalized eigenvalue problem linked to the D.E.L. as ε tends to 0. Section 5 deals with the existence and the features of periodic and choreographic solutions. Finally, Section 6 presents some numerical experiments illustrating the phenomenon of convergence as ε tends to 0, for some various operators \Box_{ε}.

2. Equations of motion for symmetric quadratic lagrangians of n particles systems in \mathbb{R}^d

The principle of least discrete action has been developed in [7, 8] to which we refer throughout the paper. We denote by C_{pw} the space of the functions $x : [t_0, t_f] \to \mathbb{R}^d$ continuous on each interval $[t_0 + j\varepsilon, t_0 + (j+1)\varepsilon] \cap [t_0, t_f]$ for all $j \geq 0$ and small enough, i.e. $j \leq \frac{t_f - t_0}{\varepsilon}$. If $X = (x_1, \ldots, x_n)$ denotes a system of n functions in C_{pw}, we may think of X as the set of dynamic variables describing the state of a system of n interacting particles in \mathbb{R}^d.

We consider actions $A_{cont}, A_{disc} : C_{pw}^n \to \mathbb{R}$ of the shape

$$A_{cont}(X) = \int_{t_0}^{t_f} \mathcal{L}(X(t), \dot{X}(t))dt, \quad A_{disc}(X) = \int_{t_0}^{t_f} \mathcal{L}(X(t), \Box_{\varepsilon} X(t))dt.$$ \hspace{1cm} (4)$$

From now on, we drop t from the formulas when it is clear enough.

We introduce a general quadratic lagrangian of n particles in \mathbb{R}^d, compatible with discrete symmetries of the system. Let $J_1, \ldots, J_5 \in C^0([t_0, t_f], \mathbb{R}^{d \times d})$, J_1, \ldots, J_4 be symmetric matrices and $J_6, J_7 \in C^0([t_0, t_f], \mathbb{R}^d)$. For an isolated particle with position x and velocity y we may set

$$\mathcal{L}_1(x, y) = \frac{1}{2} \gamma y J_1 y + \frac{1}{2} x J_2 x + x J_3 y + \gamma J_6 y + \gamma J_7 x.$$
Next, two particles with positions $\mathbf{x}_j, \mathbf{x}_k,$ and velocities $\mathbf{y}_j, \mathbf{y}_k$ are interacting for pairs in conformity with the following lagrangian

$$\mathcal{L}_2(\mathbf{x}_j, \mathbf{y}_j, \mathbf{x}_k, \mathbf{y}_k) = \mathbf{y}_j J_3 \mathbf{y}_k + \mathbf{y}_j J_4 \mathbf{x}_k.$$

Therefore, the lagrangian of the whole system is

$$\mathcal{L} = \sum_{j=1}^n \mathcal{L}_1(\mathbf{x}_j, \dot{\mathbf{x}}_j) + \sum_{j \neq k} \mathcal{L}_2(\mathbf{x}_j, \dot{\mathbf{x}}_j, \mathbf{x}_k, \dot{\mathbf{x}}_k). \tag{5}$$

Theorem 2.1. Let $\mathbf{X} = (\mathbf{x}_1, \ldots, \mathbf{x}_n)$ in C^n_{pw} and $\mathbf{x}_s = \sum_{j=1}^n \mathbf{x}_j.$

A necessary and sufficient condition for \mathbf{X} to be a critical point of A_{cont} in C^n_{pw} is that \mathbf{X} satisfies the dynamic system

$$(J_1 - 2J_3)\ddot{x}_j + (-2\dot{J}_3 + \dot{J}_5 + J_1 - J_5)\dot{x}_j + (\dot{J}_3 J_3 - J_2 + 2J_4)\mathbf{x}_j = -2J_3\dot{x}_s - 2\dot{J}_3\dot{x}_s + 2J_4\mathbf{x}_s + (J_7 - J_6), \forall j. \tag{6}$$

A necessary and sufficient condition for \mathbf{X} to be a critical point of A_{disc} in C^n_{pw} is that \mathbf{X} satisfies the linear functional recurrence system of equations

$$\square_{-\epsilon}((J_1 - 2J_3)\square_{\epsilon}\mathbf{x}_j) + \square_{-\epsilon}(J_5 \mathbf{x}_j) + J_5 \square_{\epsilon}\mathbf{x}_j + (J_2 - 2J_4)\mathbf{x}_j = -2\square_{-\epsilon}(J_3 \square_{\epsilon}\mathbf{x}_s) - 2J_4\mathbf{x}_s - (\square_{-\epsilon}J_6 + J_7), \forall j. \tag{7}$$

Proof. We first recall the classical and discrete Euler-Lagrange equations, which are respectively given by

$$-\frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \dot{\mathbf{x}}_j}(t, \mathbf{X}(t), \dot{\mathbf{X}}(t)) + \frac{\partial \mathcal{L}}{\partial \mathbf{x}_j}(t, \mathbf{X}(t), \dot{\mathbf{X}}(t)) = 0 \tag{8}$$

and

$$\square_{-\epsilon} \frac{\partial \mathcal{L}}{\partial \square_{\epsilon}\mathbf{x}_j}(t, \mathbf{X}(t), \square_{\epsilon}\mathbf{X}(t)) + \frac{\partial \mathcal{L}}{\partial \mathbf{x}_j}(t, \mathbf{X}(t), \square_{\epsilon}\mathbf{X}(t)) = 0, \tag{9}$$

for all $j \in \{1, \ldots, n\}$.

The computation of gradients of \mathcal{L} needs the following property : if $\mathbf{a}, \mathbf{b} \in \mathbb{R}^d$,

$$\nabla_x(\mathbf{a} + \mathbf{b}) = \mathbf{a} + \mathbf{b}.$$

Let us prove \(\square_{-\epsilon}\). Because of the symmetry of J_1, J_2, J_3, J_4, we get

$$\frac{\partial \mathcal{L}}{\partial \mathbf{x}_j} = J_1 \dot{x}_j + 2J_3 \sum_{k \neq j} \dot{x}_k + J_5 \mathbf{x}_j + J_6 \text{ and}$$

$$\frac{\partial \mathcal{L}}{\partial \mathbf{x}_j} = J_2 \dot{x}_j + 2J_4 \sum_{k \neq j} \mathbf{x}_k + J_5 \dot{x}_j + J_7.$$
Then, by setting $x_s = \sum_{j=1}^{n} x_j$, we get
\[
\frac{\partial \mathcal{L}}{\partial x_j} = (J_1 - 2J_3)x_j + 2J_3x_s + \frac{\partial}{\partial t} J_5x_j + J_6 \quad \text{and} \\
\frac{\partial \mathcal{L}}{\partial x_s} = (J_2 - 2J_4)x_j + 2J_4x_s + J_5x_j + J_7.
\]

The equation (8) gives for all j:
\[
(J_1 - 2J_3)x_j + (J_1 - 2J_3)x_j + \frac{\partial}{\partial t} J_5x_j + J_6 + 2J_3x_s + 2J_3x_s =
(J_2 - 2J_4)x_j + J_5x_j + J_7 + 2J_4x_s
\]
which is equivalent to (9).

The proof of (7) is quite similar since (10) gives for all j:
\[
\square_{\epsilon}(J_1 \square_{\epsilon} x_j - 2J_3 \square_{\epsilon} x_j) + \square_{\epsilon}(\frac{\partial}{\partial t} J_5x_j) + J_5 \square_{\epsilon} x_j + (J_2 - 2J_4)x_j =
-2\square_{\epsilon}(J_3 \square_{\epsilon} x_j) - 2J_4x_s - (\square_{\epsilon} J_6 + J_7).
\]
which implies (11).

We notice that the equations (9) and (7) are quite uncoupled since the coupling is realized only through the vector x_s. We mention two simple consequences of the previous result. The first one arises from summing all equations (6) or summing all equations in (7) over j, and the second one deals with time-independent lagrangians such that J_5 is skew-symmetric.

Corollary 2.1. If X is a solution to (6), then the sum x_s satisfies the dynamic system
\[
(J_1 + 2(n-1)J_3)x_s + (J_1 + 2(n-1)J_3 + \frac{\partial}{\partial t} J_5 - J_5)x_s -
(J_2 + 2(n-1)J_4 - \frac{\partial}{\partial t} J_5)x_s + n(J_6 - J_7) = 0.
\]

Similarly, if X is a solution to (7), then x_s satisfies the functional equation
\[
\square_{\epsilon}(J_1 \square_{\epsilon} x_s) + 2(n-1)\square_{\epsilon}(J_3 \square_{\epsilon} x_s) + \square_{\epsilon}(\frac{\partial}{\partial t} J_5x_s) +
J_5 \square_{\epsilon} x_s + (J_2 + 2(n-1)J_4)x_s + n\square_{\epsilon} J_6 + n J_7 = 0.
\]

Corollary 2.2. Suppose that the functions $J_k(t), k \in \{1, \ldots, 7\}$, are constant w.r.t. time and J_5 is skew-symmetric. The systems of equations (10) and (11) simplify respectively into
\[
(J_1 + 2(n-1)J_3)x_s - 2J_5x_s - (J_2 + 2(n-1)J_4)x_s = nJ_7
\]
and
\[
(J_1 - 2J_3)x_j - 2J_5x_j - (J_2 - 2J_4)x_j = -2J_3x_s + 2J_4x_s + J_7.
\]
Similarly, the systems of functional recurrence equations (14) and (15) simplify respectively into

\[
\begin{align*}
(J_1 + 2(n - 1)J_3)\square_\varepsilon x_s + J_5(\square_\varepsilon x_s - \square\varepsilon x_s) + (J_2 + 2(n - 1)J_4)x_s &= -n\square_\varepsilon (1)J_6 - nJ_7 \\
\end{align*}
\]

(14)

and

\[
\begin{align*}
(J_1 - 2J_3)\square_\varepsilon x_j + J_5(\square_\varepsilon x_j - \square\varepsilon x_j) + (J_2 - 2J_4)x_j &= -2J_3\square_\varepsilon x_s - 2J_4x_s + \square\varepsilon J_6 - J_7. \\
\end{align*}
\]

(15)

Remark 2.1. Let \(J_8, J_9, J_{10} \in C^0([t_0, t_f], \mathbb{R}^{nd \times nd})\) denote the matrices constructed by blocks as follows

\[
J_8 = \begin{pmatrix}
J_1 & 2J_3 & \ldots & 2J_3 \\
2J_3 & J_1 & \ddots & \vdots \\
\vdots & \ddots & \ddots & 2J_3 \\
2J_3 & \ldots & 2J_3 & J_1
\end{pmatrix},
\]

\[
J_9 = \begin{pmatrix}
J_2 & 2J_4 & \ldots & 2J_4 \\
2J_4 & J_2 & \ddots & \vdots \\
\vdots & \ddots & \ddots & 2J_4 \\
2J_4 & \ldots & 2J_4 & J_2
\end{pmatrix},
\]

and \(J_{10} = \text{diag}(J_5, \ldots, J_5)\). If \(X \in C^n_{pw}\) is a critical point of \(A_{cont}\), i.e. \(X\) satisfies (13) and if \(Y \in C^n_{pw}\) vanishes at \(t_0\) and \(t_f\), then we have

\[
A_{cont}(X + Y) - A_{cont}(X) = \frac{1}{2} \int_{t_0}^{t_f} (\dot{Y}J_8\dot{Y} + \dot{Y}J_9Y + \dot{Y}J_{10}\dot{Y})dt.
\]

As a consequence, if the integrand is a positive definite quadratic form w.r.t. \((Y, \dot{Y})\), then the equations (13) are necessary and sufficient conditions for a strict minimum of the action \(A_{cont}\) to occur. Especially, if \(J_5 = 0\) and the matrices \(J_8\) and \(J_9\) are definite positive, such an optimum occurs.

Remark 2.2. Let \(A \in \mathbb{R}^{d \times d}\) a nonsingular matrix and \(b \in \mathbb{R}^d\) be given. Let us consider the transformation of the whole system

\[
\dot{x}_j(t) = Ax_j(t) + b.
\]

Then this transformation is covariance for quadratic lagrangians in the sense that \(\mathcal{L}(x_1, \ldots, x_n)\) is of the shape (13) iff \(\hat{\mathcal{L}}(\hat{x}_1, \ldots, \hat{x}_n)\) is of the shape (13). Moreover the properties of symmetry for \(J_1, \ldots, J_5\) are equivalent to those for \(J_1, \ldots, J_5\). At last, the equations of motion (2) are covariant altogether as can be shown from the formula for affine forces

\[
\dot{F}_j(\hat{X}) = AF_j(A^{-1}(\hat{x}_1 - b), \ldots, A^{-1}(\hat{x}_n - b)).
\]

where \(\hat{X} = (\hat{x}_1, \ldots, \hat{x}_n)\).
Remark 2.3. If $J_5 = 0$, the system has a lagrangian of the shape $T(\dot{X}) - U(X)$ and consequently, it is conservative, i.e. the energy

$$\sum_{j=1}^{n} \left(\frac{1}{2} \dot{x}_j J_1 \dot{x}_j - \frac{1}{2} \dot{x}_j J_2 x_j + \dot{x}_j J_3 x_j - \dot{x}_j J_4 x_j \right) + \sum_{j \neq k} \left(\dot{x}_j J_5 \dot{x}_k - \dot{x}_j J_6 x_k \right)$$

is a constant of motion.

3. Solutions of equations of motion in the general case

3.1. Preliminaries on Quadratic Eigenvalue Problems

We provide in this section the solutions to problems presented in Corollaries 2.1 and 2.2. From now on we suppose that the vectors and matrices J_k, $k = 1, \ldots, 7$, are time-independent and that J_5 is skew-symmetric. By general case, we mean that the set of coefficients $(J_k)_{k=1,\ldots,7}$ satisfying the conditions (19) and (23) below is everywhere dense in $(\mathbb{R}^{d \times d})^5 \times (\mathbb{R}^d)^2$.

According to [5, 6, 9] we define the Quadratic Eigenvalue Problem associated to (A, B, C) as the search of the complex roots of the discriminantal equation

$$\det(A\lambda^2 + B\lambda + C) = 0 \quad (17)$$

where the l.h.s. is a polynomial of λ of degree $2d$, together with the description of the various kernels $\ker(A\lambda^2 + B\lambda + C)$. The reader is referred to [9] for a survey of theory applications and algorithms of the QEP.

It is a classical old fact [5, 4, 9] that, if all the roots λ_ℓ, $\ell \in \{1, \ldots, 2d\}$, of $A\lambda^2 + B\lambda + C$ are distinct and C is invertible, the general solution to the dynamic system $A\ddot{x} + B\dot{x} + Cx = k_0$ has the shape [4], with $K = 2d$, $u_0 = C^{-1}k_0$ and $u_\ell \in \ker(\lambda_\ell^2 A + \lambda_\ell B + C)$. When the number of roots is less than $2d$, slight more complicated expressions for the solutions may be found in [5, 6, 9].

Because of equations (10) to (15) and the previous discussion, we may provide, under specific assumptions, the shape of the solutions to C.E.L. and D.E.L..

3.2. The case of C.E.L.

We introduce the matrix-valued function

$$P_\nu(\lambda) := (J_1 + 2(\nu - 1)J_3)\lambda^2 - 2J_5 \lambda - (J_2 + 2(\nu - 1)J_4) \quad (18)$$

and the following subsets of \mathbb{C}

$$Q_\nu := \{ \lambda \in \mathbb{C} / \det(P_\nu(\lambda)) = 0 \}, \forall \nu \in \mathbb{R}.$$

Proposition 3.1. We assume that

$$|Q_n| = |Q_0| = 2d, \ Q_n \cap Q_0 = \emptyset, \ \det(P_n(0)) \neq 0 \text{ and } \det(P_0(0)) \neq 0 \quad (19)$$

where n denotes the number of interacting particles. Then all the solutions x_s and x_j to (12) and (13) respectively are of the shape (3) with $K = 2d$.

6
Proof. Since $\det(J_2 + 2(n-1)J_4) \neq 0$, we may define
\[x_{s,0} = -n(J_2 + 2(n-1)J_4)^{-1}J_7 \]
and we have obviously $0 \notin Q_n$. The first condition $|Q_n| = 2d$ guarantees that the solution x_s to (12) is of the shape (3) with $K = 2d$, i.e.
\[x_s(t) = x_{s,0} + \sum_{\alpha \in Q_n} e^{\alpha t}x_{s,\alpha}, \]
for some convenient vectors $x_{s,\alpha} \in \ker(P_n(\alpha))$. Since $Q_n \cap Q_0 = \emptyset$, the matrix $P_0(\alpha)$ is invertible for each $\alpha \in Q_n$, so we may define for $j \in \{1, \ldots, n\}$
\[x_{j,\alpha} = 2P_0(\alpha)^{-1}(J_4 - \alpha^2 J_3)x_{s,\alpha}, \forall \alpha \in Q_n. \]
Let us set $x_{j,0} = -(J_2 - 2J_4)^{-1}(2J_4x_{s,0} + J_7)$. Straightforward computations show that $x_{j,0} = \frac{1}{n}x_{s,0}$ and $x_{j,\alpha} = \frac{1}{n}x_{s,\alpha}$, $\forall \alpha \in Q_n$. Therefore, we have proved that $x_{j,0} + \sum_{\alpha \in Q_n} e^{\alpha t}x_{j,\alpha} = \frac{1}{n}x_s(t)$ is a particular solution to (13). Hence, the general solution to (13) is given by the formula (3) with $K = 2d$, i.e.
\[x_j(t) = \frac{1}{n}x_s(t) + \sum_{\beta \in Q_0} e^{\beta t}x_{j,\beta} \]
for some convenient vectors $x_{j,\beta}' \in \ker(P_0(\beta))$.

Let us consider first the well-posedness of the Dirichlet problem for C.E.L., i.e. (12) and (14). We use some facts mentioned in [3, Section 3] which are consequences of the existence of the Smith form for regular QEP, see also [5]. Let $\nu = 0$ or $\nu = n$. Since $P_\nu(\lambda)$ admits exactly $2d$ distinct roots, then $\dim \ker(P_\nu(\lambda)) = 1$, $\forall \lambda \in Q_\nu$ and the union of the various $\ker(P_\nu(\lambda))$ spans \mathbb{C}^d. If $\nu = n$, we may decompose $x_s(t_0)$ and $x_s(t_f)$ on the family $\{x_{s,\alpha}\}_{\alpha \in Q_n}$ and we obtain a linear system of $2d$ equations w.r.t the $2d$ unknowns which are abscissas of $x_{s,\alpha}$ along the linear straight lines $\ker(P_n(\alpha))$, $\alpha \in Q_n$. We proceed in a similar way when $\nu = 0$ and $j \in \{1, \ldots, n\}$. We get a linear system of $2d$ equations by decomposing $x_j(t_0)$ and $x_j(t_f)$ w.r.t. the $2d$ unknowns which are the abscissas of $x_{j,\beta}'$, $\beta \in Q_0$. Hence, the Dirichlet problem amounts to solving $n + 1$ uncoupled square systems of size $2d$ (the very last one being useless due to the definition of x_s). Each of the previous system is Cramer for almost all couple (t_0, t_f). Indeed, the determinant of each system has the shape $P(e^{\lambda t_0}, e^{\lambda t_f})_{\lambda \in Q_n}$, $\nu = 0$ or $\nu = n$, P being a polynomial with coefficients depending on the coordinates of $x_{s,\lambda}$ and $x_{j,\lambda}$.

3.3. The case of D.E.L.

Let us extend the Proposition 3.1 to the D.E.L. case. It should be emphasized here that D.E.L. do not admit in general a unique solution. Nevertheless, given a solution, there exists one and only one pseudo-periodic solution which agrees with the first one on a grid \mathcal{G}_c. As well as the study of autonomous dynamic differential systems leads to QEP, the study of autonomous difference
equations leads to transcendental eigenvalue problem associated to the following complicated matrix

\[\tilde{P}_\nu(\varepsilon, \lambda) := -(J_1 + 2(\nu - 1)J_3) \sum_{-2N \leq k \leq 2N} \frac{\gamma_{k+\ell} \varepsilon \gamma_k}{\varepsilon^2} e^{k\lambda \varepsilon} - J_5 \sum_{k = -N}^{N} \frac{1}{\varepsilon}(\gamma_k - \gamma_{-k})e^{k\lambda \varepsilon} - (J_2 + 2(\nu - 1)J_4). \]

(22)

Let us introduce the following subsets

\[\tilde{Q}_\nu := \left\{ \lambda \in \mathbb{C} / \det(\tilde{P}_\nu(\varepsilon, \lambda)) = 0 \right\}, \forall \nu \in \mathbb{R}. \]

Proposition 3.2. We assume that

\[|\tilde{Q}_n| = |\tilde{Q}_0| = 4Nd, \tilde{Q}_n \cap \tilde{Q}_0 = \emptyset \]

\[\det(\tilde{P}_n(\varepsilon, 0)) \neq 0 \text{ and } \det(\tilde{P}_0(\varepsilon, 0)) \neq 0. \]

(23)

Then there exists solutions \(\tilde{x}_s \) and \(\tilde{x}_j \) to (14) and (15) respectively of the shape [13] inside the interval \([t_0 + 2N\varepsilon, t_f - 2N\varepsilon]\).

Proof. The two last conditions (23) imply that \(0 \notin \tilde{Q}_n \). If we set \(\zeta = e^{\lambda \varepsilon} \), we see that the quantity \(\tilde{P}_n(\varepsilon, \lambda)\zeta^{2N} \) is a polynomial w.r.t. \(\zeta \) of degree \(4N \). So the equation \(\zeta^{2Nd} \det(\tilde{P}_n(\varepsilon, \lambda)) = 0 \) gives rise to a polynomial equation w.r.t. \(\zeta \) of degree \(4Nd \).

Computation of the l.h.s. of (14) is performed by using (1) and [8, Lemma 6.1]. We find

\[
\sum_{-2N \leq k \leq 2N} \frac{1}{\varepsilon^2} \gamma_{k+\ell} \varepsilon \gamma_k \chi(t) \chi_{-k}(t)(J_1 + 2(n-1)J_3)\tilde{x}_s(t+k\varepsilon) + (J_2 + 2(n-1)J_4)\tilde{x}_s(t) \]

\[
+ \sum_{k = -N}^{N} \chi_{-k}(t) \frac{1}{\varepsilon}(\gamma_k - \gamma_{-k})J_5\tilde{x}_s(t+k\varepsilon) + nR_{-1}J_0 + nJ_7 = 0. \]

(24)

When \(t \) lies in the interval \([t_0 + 2N\varepsilon, t_f - 2N\varepsilon]\), the various characteristic functions \(\chi_k(t) \) occurring in (24) are equal to 1. Next, we define for \(t_j \in [t_0, t_f] \) the grid \(G_{t_j, \varepsilon} = \{ t_j + m\varepsilon, m \in \mathbb{N} \} \cap [t_0, t_f] \). So, both restrictions of \(\tilde{x}_s(t) \) and \(\tilde{x}_j(t) \) to \(G_{t_j, \varepsilon} \) are vector-valued sequences satisfying linear constant matricial recurrences. The classical theory of those systems [5, 6, 9] shows that, provided the characteristic equation admits a number of roots equal to the order of the recurrence, \(\tilde{x}_s(t) \) has the shape \(\tilde{x}_s(t) = \tilde{x}_{s,0} + \sum_{\lambda} e^{\lambda t}\tilde{x}_{s,\lambda}, \forall t \in G_{t_j, \varepsilon} \), for some vectors \(\tilde{x}_{s,\lambda} \) and \(\tilde{x}_{s,0} \). Here, the order of recurrence is equal to \(4Nd \) and it is also equal to the number of roots of the characteristic equation which is \(|\tilde{Q}_n| \).

So we may plug the previous formula into (24) and we find

\[
\sum_{\lambda} e^{\lambda t}\tilde{P}_n(\varepsilon, \lambda)\tilde{x}_{s,\lambda} + \tilde{P}_n(\varepsilon, 0)\tilde{x}_{s,0} = nR_{-1}J_0 + nJ_7. \]

(25)

8
Since \(\tilde{e}^M \), on the grid \(G_{\ell_j, \epsilon} \), are the numbers \(e^{M \lambda} \zeta^m \) with \(m = \frac{t - 1}{2} \in \mathbb{N} \), all the functions \(e^{M t} \) on this grid are linearly independent. Indeed, a linear relationship between these functions would give rise to a Vandermonde determinant w.r.t. to the associated distinct numbers \(\zeta \). Therefore, every non-constant function of \(t \) must vanish in \((25) \), which means that the “phases” \(\lambda \) occurring in \(\tilde{x}_s(t) \) are exactly the roots \(\alpha \) of \(\tilde{Q}_n \). By assumption, \(\tilde{P}_n(\epsilon, 0) \) is invertible and \(\tilde{P}_n(\epsilon, \alpha) \) is singular. Thus, we may choose \(\tilde{x}_{s,0} = n\tilde{P}_n(\epsilon, 0)^{-1}(J_7 + \Box_{-\epsilon}1J_6) \) and \(\tilde{x}_{s, \lambda} \in \ker(\tilde{P}_n(\epsilon, \lambda)) \). Finally, we have determined the general solution \(\tilde{x}_s \) to (14) on the grid \(G_{\ell_j, \epsilon} \), namely

\[
\tilde{x}_s(t) = \tilde{x}_{s,0} + \sum_{\alpha \in \tilde{Q}_n} e^{\alpha t}\tilde{x}_{s, \alpha}.
\]

(26)

Now, let us deal with \(\tilde{x}_j(t) \). This function satisfies the following functional equation, which is similar to (24)

\[
- \sum_{-2N \leq k \leq 2N} \frac{1}{\epsilon^2 \gamma_k} e^{\gamma_t \epsilon(t)\chi_k(t)(J_1 - 2J_3)} \tilde{x}_j(t + k\epsilon) = -(J_2 - 2J_4)\tilde{x}_j(t) - J_5 \sum_{k=\pm N}^N \chi_{-k}(t) \frac{1}{\epsilon^2} (\gamma_k - \gamma_{-k}) \tilde{x}_j(t + k\epsilon) = 2J_3\Box_{-\epsilon}\Box_{\epsilon} \tilde{x}_s(t) + 2J_4 \tilde{x}_s(t) - \Box_{-\epsilon}1J_6 + J_7.
\]

(27)

Let us construct a particular solution to (27) for \(t \in G_{\ell_j, \epsilon} \). By using the previous expression for \(\tilde{x}_s(t) \), the r.h.s. of (24) may be rewritten as

\[
\Box_{-\epsilon}1J_6 - J_7 - 2(\Box_{-\epsilon}\Box_{\epsilon}1J_3 + J_4)\tilde{x}_s(t) - 2 \sum_{\alpha \in \tilde{Q}_n} e^{\alpha t}(J_3 + \theta_\alpha J_4)\tilde{x}_{s, \alpha}
\]

where \(\theta_\alpha = e^{-\alpha t}\Box_{-\epsilon}\Box_{\epsilon} e^{\alpha t} = \frac{1}{\epsilon^2} \sum_{k,j} \gamma_k \gamma_j e^{k\alpha\epsilon} \). Now, if we substitute \(\tilde{x}_j(t) = \tilde{x}_{j,0} + \sum_{\alpha \in \tilde{Q}_n} e^{\alpha t}\tilde{x}_{j, \alpha} \) in (27), we note that the l.h.s. of (27) is equal to

\[
\tilde{P}_0(\epsilon, 0)\tilde{x}_{j,0} + \sum_{\alpha \in \tilde{Q}_n} e^{\alpha t}\tilde{P}_0(\epsilon, \alpha)\tilde{x}_{j, \alpha}.
\]

Because \(\det(\tilde{P}_0(\epsilon, 0)) \neq 0 \), we may define

\[
\tilde{x}_{j,0} = \tilde{P}_0(\epsilon, 0)^{-1}(2(\Box_{-\epsilon}\Box_{\epsilon}1J_3 + J_4)\tilde{x}_s(t) - \Box_{-\epsilon}1J_6 + J_7).
\]

Since \(\tilde{Q}_n \cap Q_0 = \emptyset \), the matrix \(\tilde{P}_0(\epsilon, \alpha) \) is invertible for each \(\alpha \in \tilde{Q}_n \) and we may set

\[
\tilde{x}_{j, \alpha} = 2\tilde{P}_0(\epsilon, \alpha)^{-1}(J_3 + \theta_\alpha J_4)\tilde{x}_{s, \alpha}.
\]
Similarly to the case of C.E.L., we readily prove that $\tilde{x}_{j,0} = \frac{1}{n} \tilde{x}_{\ast,0}$ and $\tilde{x}_{j,\alpha} = \frac{1}{n} \tilde{x}_{\ast,\alpha}, \forall \alpha \in \tilde{Q}_n$. At last, since $|\tilde{Q}_0| = 4Nd$, we conclude that the general solution to (27) on the grid $G_{t,\varepsilon}$ is given by

$$\tilde{x}_j(t) = \frac{1}{n} \tilde{x}(t) + \sum_{\beta \in \tilde{Q}_0} e^{\beta t} \tilde{x}'_{j,\beta}$$

for some convenient vectors $\tilde{x}'_{j,\beta} \in \ker(\tilde{P}_0(\varepsilon, \beta))$.

If we drop the requirement that t lies in $G_{t,\varepsilon}$, i.e. if we remove the condition $\frac{t-t_0}{\varepsilon} \in \mathbb{N}$, the functions $t \mapsto \tilde{x}_s(t)$ and $t \mapsto \tilde{x}_j(t)$ may be extended by the preceding formulas to pseudo-periodic functions $t \mapsto \tilde{x}_s(t)$ and $t \mapsto \tilde{x}_j(t)$ respectively. Since the equations of motion are autonomous (independent w.r.t. t), these $n+1$ functions are solutions to (14) and (15) respectively. Therefore, these functions are of the shape \tilde{x}_s with $K = 4Nd$ and $K = 8Nd$ respectively and the proof is complete. \qed

Remark 3.1. Solving D.E.L. with Dirichlet conditions leads to $n+1$ uncoupled linear systems, one of size $\sum_{\alpha \in \tilde{Q}_0} \dim \ker(\tilde{P}_\nu(\varepsilon, \alpha))$ and the n others of size $\sum_{\beta \in \tilde{Q}_0} \dim \ker(\tilde{P}_0(\varepsilon, \beta))$. If those systems are Cramer, then the pseudo-periodic solution to D.E.L. exists and is unique.

4. Convergence issues

Let us fix $\nu, \gamma_-, \ldots, \gamma_j, J_1, \ldots, J_5$. Motivated by studying the convergence of the solutions to D.E.L. to the respective solutions to C.E.L., it is natural at first sight to ask if the matrix-valued function $\tilde{P}_\nu(\varepsilon, \lambda)$ tends to $P_\nu(\lambda)$ locally uniformly w.r.t. $\lambda \in \mathbb{C}$ as ε tends to 0. Next, we recall the Hausdorff metric

$$d_H(F_1, F_2) := \max \left\{ \max_{x \in F_1} \min_{y \in F_2} |x - y|, \max_{x \in F_2} \min_{y \in F_1} |x - y| \right\},$$

defined for all nonempty finite subsets $F_1, F_2 \subset \mathbb{C}$. Thus, we naturally investigate the convergence, in this sense, of $\tilde{Q}_\nu = (\det(\tilde{P}_\nu(\varepsilon, .)))^{-1} \{0\}$ to $Q_\nu = (\det(P_\nu(\lambda)))^{-1} \{0\}$ as ε tends to 0. In order to prove this result, we shall need the following Theorem of Cucker and Corbalan \cite{Cucker}.3

Theorem 4.1. Let $P(X) = a_0 X^m + a_1 X^{m-1} + \ldots + a_m \in \mathbb{C}[X] \backslash \{0\}$. Let ξ_1, \ldots, ξ_r be its roots in \mathbb{C}, with multiplicities μ_1, \ldots, μ_r respectively, and let B_1, \ldots, B_r be disjoint disks centered at ξ_1, \ldots, ξ_r with radii ε_0 and contained in the open disk centered at 0 with radius $1/\varepsilon_0$. Then, there is a $\delta \in \mathbb{R}^+$, such that, if $|b_j - a_j| < \delta$ for every $0 \leq j \leq m$, then the polynomial $Q(X) = b_0 X^m + b_1 X^{m-1} + \ldots + b_m$ has μ_j roots (counted with multiplicity) in each B_j and $\deg(Q) - \deg(P)$ roots with absolute value greater than $1/\varepsilon_0$.3
It extends older results of Weber and Ostrowski to the case of perturbation of polynomials of distinct degrees. Hence, we must exclude the $4N\alpha - 2d$ divergent roots, as ε tends to 0, from the set Q_ν to prove the second result of convergence mentioned above.

Theorem 4.2. We keep the assumptions (12) and (23) of Propositions 3.1 and 3.2. We assume that \square_ε defined by (7) is such that $\gamma_{-N}^N \neq 0$ and

$$\begin{align*}
\square_\varepsilon 1 &= 0, \\
\square_\varepsilon t &= 1, \quad \forall t \in [t_0 + 2N\varepsilon, t_f - 2N\varepsilon].
\end{align*}$$

Let $\nu \in \mathbb{R}$ and K any compact neighbourhood of Q_ν. Then, when ε tends to 0, $P_{\nu}(\varepsilon, \lambda)$ tends to $P_\nu(\lambda)$ locally uniformly in C and $Q_\nu \cap K$ tends to Q_ν in the Hausdorff sense.

Proof. The assumptions (29) are equivalent to the algebraic equations

$$\sum_{k=-N}^{N} \gamma_k = 0 \quad \text{and} \quad \frac{1}{2} \sum_{k=-N}^{N} k(\gamma_k - \gamma_{-k}) = 1$$

since the characteristic functions are equal to 1 in $[t_0 + 2N\varepsilon, t_f - 2N\varepsilon]$. In Theorem 6.1 of [8], we have proved that these conditions are themselves equivalent to one or the other statements

- for all $x \in C^2([t_0, t_f])$, $\lim_{\varepsilon \to 0} \square_\varepsilon x(t) = \dot{x}(t)$ locally uniformly in $[t_0, t_f]$,
- for all $x \in C^2([t_0, t_f])$, $\lim_{\varepsilon \to 0} \square_\varepsilon x(t) = -\dot{x}(t)$ locally uniformly in $[t_0, t_f]$.

The mode of convergence means that for all $\delta > 0$, $\square_{\pm\varepsilon} x(t)$ tends uniformly to $\pm\dot{x}(t)$ in $[t_0 + \delta, t_f - \delta]$ when ε tends to 0. This convergence can not be improved since the functions $t \to \square_\varepsilon t$ and $t \to \square_\varepsilon t$ are equal to 0 and 1 respectively only in the interval $[t_0 + 2N\varepsilon, t_f - 2N\varepsilon]$. By composition of these properties we obtain

$$-\frac{1}{e^{\lambda t}} \square_\varepsilon \square_\varepsilon e^{\lambda t} = -\sum_{-2N \leq k \leq 2N} \frac{1}{\varepsilon^2} \gamma_k e^{\varepsilon \gamma_k \chi(t)\gamma_{-k}(t)} e^{k\lambda t} \xrightarrow{\varepsilon \to 0} \lambda^2$$

(30)

and

$$\frac{1}{e^{\lambda t}} (\square_\varepsilon e^{\lambda t} - \square_{-\varepsilon} e^{\lambda t}) = \sum_{k=-N}^{N} \chi_{-k}(t) \frac{1}{\varepsilon} (\gamma_k - \gamma_{-k}) e^{k\lambda t} \xrightarrow{\varepsilon \to 0} 2\lambda.$$

(31)

We see easily that the functions $e^{-\lambda t} \square_\varepsilon \square_\varepsilon e^{\lambda t}$ and $e^{-\lambda t} (\square_\varepsilon e^{\lambda t} - \square_{-\varepsilon} e^{\lambda t})$ defined at $\varepsilon = 0$ by the respective values $-\lambda^2$ and 2λ are continuous w.r.t. ε. The quantities in both sides in each equation are obviously the coefficients of $(J_1 + 2(\nu - 1)J_3)$ and J_3 in (18) and (24) when t lies in the interval $[t_0 + 2N\varepsilon, t_f - 2N\varepsilon]$. Hence, the mapping $\lambda \mapsto P_{\nu}(\varepsilon, \lambda)$ tends to $\lambda \mapsto P_\nu(\lambda)$ uniformly on any compact
subset of the preceding product, as ε tends to 0.

Let us deal with \tilde{Q}_ν. We compute first

$$
\tilde{P}_\nu(\varepsilon, \lambda) - P_\nu(\lambda) = (J_1 + 2(\nu - 1)J_2)(\lambda^2 + e^{-\lambda^2} - k^2 e^M) + J_5(-2\lambda + e^{-\lambda^2} - e^{-\lambda^2} e^M),
$$

(32)

for all $\varepsilon \neq 0$, $t \in [t_0, t_f]$ and $\lambda \in \mathbb{C}$. The l.h.s. of (32) is independent of t and the r.h.s. is constant w.r.t. t inside $[t_0 + 2N\varepsilon, t_f - 2N\varepsilon]$, as we see from (30) and (31). Expanding in Taylor series the exponentials e^{tK} from (30) and (31). Expanding in Taylor series the exponentials e^{ε^m} for all t and the r.h.s. is constant w.r.t. ε. Let us deal with \tilde{Q}_ν. We choose ε_0 so that $Q_\nu \subset \tilde{K} \subset K \subset \overline{\mathcal{B}(0, 1/\varepsilon_0)}$ and small enough to separate the elements of Q_ν. Let δ as in Theorem 4.1. We choose next ε so that, if $1 \leq m \leq 4Nd$, the coefficient of ε^m in $\tilde{P}_\nu(\varepsilon, \lambda)$ is a polynomial matrix w.r.t. λ, independent of t inside $[t_0 + 2N\varepsilon, t_f - 2N\varepsilon]$. Now, the determinant of such a convergent Taylor series is itself a convergent Taylor series.

At this point we have established that $\zeta^{2Nd} \det(\tilde{P}_\nu(\varepsilon, \lambda))$ is a polynomial of degree $4Nd$ w.r.t. $\zeta = e^{\lambda \varepsilon}$ and admits a Taylor expansion w.r.t. ε starting at $\zeta^{2Nd} \det(\tilde{P}_\nu(\lambda))$.

We choose ε_0 so that $Q_\nu \subset \tilde{K} \subset K \subset \overline{\mathcal{B}(0, 1/\varepsilon_0)}$ and small enough to separate the elements of Q_ν. Let δ as in Theorem 4.1. We choose next ε so that, if $1 \leq m \leq 4Nd$, the coefficient of ε^m in $\tilde{P}_\nu(\varepsilon, \lambda)$ is a polynomial matrix w.r.t. λ, independent of t inside $[t_0 + 2N\varepsilon, t_f - 2N\varepsilon]$. Now, the determinant of such a convergent Taylor series is itself a convergent Taylor series.

As a consequence, intersecting both sides with K we get $d_H(\tilde{Q}_\nu \cap K, Q_\nu) < \varepsilon_0$ for all ε small enough. This ends the proof. \hfill \square

Remark 4.1. The convergence of $\tilde{x}(t)$ to $x(t)$ as ε tends to 0 implies more complicated issues. Indeed, not only the phases \tilde{Q}_n and Q_0 have to tend to Q_n and Q_0 respectively but the amplitudes $\tilde{x}_{j, \alpha}$, \tilde{x}_j, and $\tilde{x}_{j, \beta}$, where $\alpha \in \tilde{Q}_n$ and $\beta \in Q_0$, have to tend also to the respective amplitudes $x_{j, \alpha}$, x_j, and $x_{j, \beta}$, where $\alpha \in Q_n$ and $\beta \in Q_0$. We refer to \cite{3} for an examination of the difficulties in the case $n = 1$.

5. Periodicity and choreographies

We focus in this section on periodic and choreographic solutions. Let us define a choreography of n particles (x_1, \ldots, x_n) in \mathbb{R}^d as a T-periodic solution to the equations of motion in which the trajectories differ one to the other by some delay of the shape kT/n, $k \in \{1, \ldots, n\}$. In other words, a choreographic solution is a C^2 mapping $u : \mathbb{R}/TZ \to \mathbb{R}^d$ such that $u(t + T) = u(t)$ and such that the family $\{x_j(t)\}_j$, defined by $x_j(t) = u(t + jT/n)$, satisfies for all j

\[
\begin{align*}
\dot{u}(t + \frac{jT}{n}) &= F_j(u(t + \frac{jT}{n}), \ldots, u(t + T)), \\
-\square_{-\varepsilon, \varepsilon} u(t + \frac{jT}{n}) &= \tilde{F}_j(u(t + \frac{jT}{n}), \ldots, u(t + T)),
\end{align*}
\]
i.e. the respective equations of motion C.E.L. and D.E.L. presented in \[2\].

Theorem 5.1. 1. Under the assumptions of Proposition [3.1] all the solutions to C.E.L. are periodic if and only if

\[Q_n \cup Q_0 \subset i\mathbb{R}, \forall \lambda', \lambda'' \in Q_n \cup Q_0, \lambda'/\lambda'' \in \mathbb{Q}, \tag{33} \]

2. Under the assumptions of Proposition [3.2] all the pseudo-periodic solutions to D.E.L. are periodic if and only if

\[\tilde{Q}_n \cup \tilde{Q}_0 \subset i\mathbb{R}, \forall \lambda', \lambda'' \in \tilde{Q}_n \cup \tilde{Q}_0, \lambda'/\lambda'' \in \mathbb{Q}. \tag{34} \]

3. If \(\det(P_n(0)) \neq 0 \) and \(\det(P_n(\varepsilon, 0)) \neq 0 \) and

\[|Q_0| = 2d, Q_0 \subset i\mathbb{R}^*, \forall \lambda', \lambda'' \in Q_0, \lambda'/\lambda'' \in \mathbb{Q}, \tag{35} \]

\[|\tilde{Q}_0| = 4Nd, \tilde{Q}_0 \subset i\mathbb{R}^*, \forall \lambda', \lambda'' \in \tilde{Q}_0, \lambda'/\lambda'' \in \mathbb{Q}, \tag{36} \]

then there exists choreographic solutions \(x_j(t) \) and \(\tilde{x}_j(t) \) to C.E.L. and D.E.L..

Proof. 1. We first notice that if \(\{u_\ell\}_{\ell=1}^{K} \) is a family of nonzero vectors in \(\mathbb{C}^d \), then the various functions \(t \mapsto e^{\lambda_\ell t}u_\ell \) are linearly independent iff the \(\lambda_\ell \) are pairwise distinct. It relies on the nonsingularity of the Vandermonde matrix \(V(\lambda_1, \ldots, \lambda_K) \). As a consequence, the function \(u(t) = \sum_{\ell=1}^{K} e^{\lambda_\ell t}u_\ell \) is periodic iff for some \(T > 0 \) we have \(\forall \ell, \lambda_\ell T \in 2i\pi\mathbb{Z} \) and this is equivalent to the requirement \(\forall \ell, i\lambda_\ell \in \mathbb{R}^* \) and \(\forall j, k, \lambda_j/\lambda_k \in \mathbb{Q}^* \). Therefore, the period \(T \) of \(u(t) \) is \(\inf\{T > 0, \frac{\lambda_\ell}{2\pi} \in \mathbb{Z}, \forall \ell\} \). Taking in account that the vectors \(x_{j,\alpha} \) and \(x'_{j,\beta} \), occurring in the proof of Proposition [3.1], may be chosen arbitrarily in the respective appropriate null spaces \(\ker(P_n(\alpha)) \) and \(\ker(P_n(\beta)) \), the previous properties of periodicity apply to the set of solutions to C.E.L. and give formula [33].

2. Pseudo-periodic solutions to D.E.L. are of the shape [3] by using Proposition [3.2] and the previous arguments apply.

3. We first observe that for each choreographic solution of the shape [3], \(x_s(t) \) is necessarily constant. Indeed,

\[x_s(t) = \sum_{j=1}^{n} u \left(t + \frac{jT}{n} \right) = nu_0 + \sum_{\ell=1}^{K} u_\ell e^{\lambda_\ell t} \sum_{j=1}^{n} \left(e^{\frac{\lambda_\ell T}{n}} \right)^j. \tag{37} \]

By periodicity, we have \(\lambda_\ell T \in 2i\pi\mathbb{Z} \) for all \(\ell \) so that \(\sum_{j=1}^{n} \left(e^{\frac{\lambda_\ell T}{n}} \right)^j = 0 \). Having this fact in mind, we may solve [13]. Our assumptions imply that the solution \(x_j(t) \) to [13] may be written as [9] with \(K = 2d \), since the underlying Quadratic Eigenvalue Problem satisfies \(|Q_0| = 2d \) and \(\det(P_n(0)) \neq 0 \) (see Proposition [3.1]). Plugging \(x_j(t) = u(t + \frac{jT}{n}) \) into [13] and using the linear independence of the summands [3], we see that [13] is satisfied if and only if \(u_0 = \tilde{P}_n(0)^{-1}J_7 \) and for all \(\lambda \in Q_0 \),
choose definite negative. Let us deal now with D.E.L.. As seen in the proof of Proposition 5.2 each solution $\tilde{x}_j(t)$ to (15) has the shape $[3]$ with $K = 4Nd$ due to our assumptions on Q_0 and $P_n(\varepsilon,0)$. The remainder of the proof is entirely similar to C.E.L.. First, (15) is satisfied if and only if $u_0 = P_n(\varepsilon,0)^{-1}(J_7 - \square_{-\varepsilon}J_6)$ and for all $\lambda \in Q_0$, $u_\lambda \in \ker(P_0(\varepsilon,\lambda))$. Second, convenient choice of initial or boundary conditions guarantee the existence of choreographic solutions to D.E.L. with $x_s = cst$. □

Remark 5.1. We may convert the existence of choreographic solutions into a linear algebra problem. Indeed, we add to the systems described at the end of the Sections 3.1 and 3.2 the following equations

$$x_{s,\alpha} = 0, x_{j,\alpha} = e^{\alpha(j-1)^2/\pi}x_{1,\alpha} \text{ and } x'_{j,\beta} = e^{\beta(j-1)^2/\pi}x_{1,\beta},$$

for all $\alpha \in Q_0, \beta \in Q_0$ and $j = 1, \ldots, n$. Due to (20) and (21) we see that, provided Dirichlet problem is well-posed, we find a choreographic solution.

Remark 5.2. In the litterature (see for instance [9, Section 3.10]), the problem of the existence of choreographic solutions arises when one studies gyroscopic systems. The algebraic conditions P7 and P8 in [3, Table 1.1] amount to require that $J_1 = \bar{i}J_1 > 0$, $J_2 = \bar{i}J_2 > 0$, J_3 and J_4 symmetric and small enough compared to J_1 and J_2 respectively.

6. Numerical experiments on choreographies

Experimental and working algorithms performed in this last section are implemented in Maple and Matlab. We deal with real symmetric matrices J_1, \ldots, J_4, zero vectors J_6, J_7, small dimension systems ($d = 2,3$) since it displays already the main features, and arbitrary number of particles. Furthermore, existence of periodic or choreographic solutions requires that $J_5 = 0$. Let us give some details on the choice of the matrices J_i. Given J_1, J_2, J_3, we set, if $d = 2$, $J_4 = \frac{1}{2}J_2 + \frac{1}{2}(J_1 - 2J_3)\begin{pmatrix} j_1 & j_2 \\ j_3 & j_4 \end{pmatrix}$. Identifying the coefficients of the polynomial $\det(P_0(\lambda))$ with those of $(\lambda^2 + \beta_1^2)(\lambda^2 + \beta_2^2)$ and requiring that $J_4 = \bar{i}J_4$, we get three equations on j_1, j_2, j_3, the coefficient j_4 standing free. Thus, we may choose $J_1 + 2(n-1)J_3$ and $J_1 - 2J_3$ definite positive, $J_2 - 2J_4$ and $J_2 + 2(n-1)J_4$ definite negative.

We present in Figures 1 and 2 the graphs of two solutions to gyroscopic C.E.L., sharing the same matrices J_1, J_2, J_3. On the left, a typical periodic curve obtained by considering $\beta_1 = 4i$ and $\beta_2 = 10i$ and on the right, a non-periodic curve. Incommensurability between $4i$ and $7i\sqrt{2}$ explains the non-choreographic behaviour of the curve, as mentioned in property [23].
Let us deal now with D.E.L.. For sake of clarity, we shall denote by $x_j(t)$ and $y_{j,M}(t), \forall j \in \{1, \ldots, n\}$, the unique solution to C.E.L. (13) and the unique pseudo-periodic extension to $[t_0, t_f]$ of the unique solution to D.E.L. (27) on the grid $G_{t_0,\varepsilon}$ with $\varepsilon = \frac{t_f-t_0}{N}$ respectively.

First, we give some hints to solve (27). When $t \in [t_0 + 2N\varepsilon, t_f - 2N\varepsilon]$, we may compute $y_j(t_0+2N\varepsilon)$ as a function of $y_j(t_0+k\varepsilon)$ with k varying from $-2N$ to $2N-1$. If $t \notin [t_0 + 2N\varepsilon, t_f - 2N\varepsilon]$, some of the characteristic functions occurring in (27) vanish and solving (27) must be slightly modified, see more details in [8]. We consider the matrices $J_1 = \begin{pmatrix} 7 & 2 \\ 2 & 7 \end{pmatrix}$, $J_2 = \begin{pmatrix} 5 & -1 \\ -1 & 5 \end{pmatrix}$, $J_3 = \begin{pmatrix} 8 & 1 \\ 1 & 8 \end{pmatrix}$ and $(\beta_1, \beta_2) = (2i, 5i)$. In a first experiment, we use an operator $\Box_{\varepsilon, k}$ such that $N = 1$ and $(\gamma_0, \gamma_1) = (-\frac{1}{2} + ik, -2ik, \frac{1}{2} + ik)$ where $k \in \mathbb{R}$. Because $x_{j+1}(t) = x_j(t + \frac{1}{n}T)$ and $y_{j+1,M}(t) = y_{j,M}(t + \frac{1}{n}T)$, all the particles have the same trajectory, either in both cases C.E.L. and D.E.L.. Figure 3 depicts the curves of $y_{j,35}$, $y_{j,42}$, $y_{j,75}$ and x_j.

Since our algorithms are suitable for each dimension, we provide also an example of quadratic choreography with $d = 3$ in Figure 4. We choose J_1, \ldots, J_4 such that $\det(\tilde{P}_0(\varepsilon, \lambda)) = (\lambda^2 + 1)(\lambda^2 + 4)(\lambda^2 + 9)$ and the same operator $\Box_{\varepsilon, k}$ than previously.

Figures 3 and 4 illustrate roughly the phenomenon of convergence, as M increases, of the pseudo-periodic solution $y_{j,M}(t)$ to D.E.L. to the solution $x_j(t)$ to C.E.L., for all j, for all operator $\Box_{\varepsilon, k}$. In order that the approximation becomes meaningful, the number $M = \#(G_{t_0,\varepsilon}) - 1$ must satisfy

$$M^2 \gg \frac{1}{|\gamma_1 - \gamma_1|} (t_f - t_0)^2 \rho((J_1 - 2J_3)^{-1}(J_2 - 2J_3))$$

as one sees from equation (27) (ρ denotes here the spectral radius). Let us remark that this lower bound is independent on d and still holds for general operators \Box_{ε}.

In the next experiment, we still work with the previous lagrangian, with $N = 1$ and with an operator \Box_{ε} such that $\gamma_0 = -(\gamma_1 + \gamma_1)$. We choose $M = 100$ in order to avoid some erratic behaviour observed, for example, in the first plot.
(M = 35) of Figure 3. We provide the plot of $-\log(\min(||x_j(t) - y_j(t)||_2, 3M))$ as a function of $(\gamma_{-1}, \gamma_1) \in \mathbb{R}^2$ in Figure 5. Two peaks occur at $(\gamma_{-1}, \gamma_1) = \pm(1/2, 1/2)$ and reveal a good approximation of $x_j(t)$ by $y_j(t)$. The two previous pairs are better understood if we have a look to the error $x_j(t) - y_j(t)$ with complex operators $\pm \Box_{\varepsilon, k}$. In Figure 6, we give the plot of the 2-norm of the error with $(\gamma_{-1}, \gamma_0, \gamma_1) = (-\frac{1}{2} + ik, -2ik, \frac{1}{2} + ik)$ for several values of M. The operator $\Box_{\varepsilon, 0} = 0$ seems to be in any case the better choice.

Let us conclude this paper with an additional remark on the convergence of solutions, completing Remark 4.1. Recall first that D.E.L. converges to C.E.L. iff \Box_ε if of the shape (1) and checks $\Box_\varepsilon t = 1$, provided $t \in [t_0 + 2N\varepsilon, tf - 2N\varepsilon]$, see [7, Definition 6.1, and Theorem 6.3]. In that case, the condition $(\gamma_{-1}, \gamma_0, \gamma_1) = (-\frac{1}{2} + 2ik, \frac{1}{2} + ik)$ is linked to the inclusion $\tilde{Q}_0 \subset i\mathbb{R}^*$ as mentioned in [8, Proposition 5.1]) for the special case $d = 1$. Based
on the preceding experiments, we conjecture that under mild condition of non-resonance of the lagrangian, the solution to D.E.L. converges to the solution to C.E.L., as ε tends to 0.

References

[1] F. Cucker and A. G. Corbalan, *An alternate proof of the continuity of the roots of a polynomial*, Amer. Math. Monthly, Vol. 96 (1989), pp. 342–345.

[2] J. Cresson, *Non-differentiable variational principles*, J. Math. Anal. Appl., Vol. 307 (2005), No. 1, pp. 48–64.

[3] J. Cresson, G. F. F. Frederico and D. F. M. Torres, *Constants of Motion for Non-Differentiable Quantum Variational Problems*, Topol. Methods Nonlinear Anal., Vol. 33 (2009), No. 2, pp. 217–232.

[4] I. Gohberg, P. Lancaster and L. Rodman, *Matrix Polynomials*, Academic Press, New-York, 1982.

[5] P. Lancaster, *Lambda-Matrices and Vibrating Systems*, Pergamon Press, Oxford, UK, 1966.

[6] P. Lancaster, *Quadratic eigenvalue problems*, Linear Algebra Appl., 150 (1991), pp. 499-506.

[7] P. Ryckelynck, L. Smoch, *Discrete calculus of Variations for Oscillatory Quadratic Lagrangians*, submitted to J. Math. Anal. Appl (March 2011).

[8] P. Ryckelynck, L. Smoch, *Discrete calculus of Variations for Oscillatory Quadratic Lagrangian. Convergence Issues*, submitted to SIAM J. Control Optim. (December 2010).

[9] F. Tisseur, K. Meerbergen, *The quadratic eigenvalue problem*, SIAM review, 43 (2), 235-286.