Phylogeographic Pattern and Extensive Mitochondrial DNA Divergence Disclose a Species Complex within the Chagas Disease Vector *Triatoma dimidiata*

Fernando A. Monteiro1*, Tatiana Perel cholchina2, Cristiano Lazoski3, Kecia Harris4, Ellen M. Dotson4, Fernando Abad-Franch5, Elsa Tamayo6, Pamela M. Pennington7, Carlota Monroy8, Celia Cordon-Rosales7, Paz María Salazar-Schettino9, Andrés Gómez-Palacio10, Mario J. Grijalva11, Charles B. Beard12, Paula L. Mar cet4

1 Laboratório de Epidemiologia e Sistemática Molecular, Instituto Oswaldo Cruz – Fiocruz, Rio de Janeiro, Brazil, 2 Laboratory of Molecular Systematics, Limnological Institute of the Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia, 3 Instituto de Biología, Universidad Federal do Rio de Janeiro, Rio de Janeiro, Brazil, 4 Entomology Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America, 5 Instituto Le onidas e Maria Deane – Fiocruz Amazônica, Manaus, Brazil, 6 Área de Entomología Médica, Centro Universitario del Sur, Universidad de Guadalajara, Ciudad Guzmán, México, 7 Center for Health Studies, Universidad del Valle de Guatemala, Guatemala City, Guatemala, 8 Laboratory of Applied Entomology and Parasitology, Facultad de Ciencias Químicas y Farmacia, Universidad de San Carlos de Guatemala, Ciudad de Guatemala, Guatemala, 9 Laboratorio de Biología de Parasitós, Departamento de Microbiología y Parasitología, Universidad Nacional Autónoma de México, Ciudad de México, México, 10 Grupo de Biología y Control de Enfermedades Infecciosas, Instituto de Biología, Universidad de Antioquia, Medellín, Colombia, 11 Tropical Disease Institute, Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, United States of America, 12 Division of Vector-Borne Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America

Abstract

Background: *Triatoma dimidiata* is among the main vectors of Chagas disease in Latin America. However, and despite important advances, there is no consensus about the taxonomic status of phenotypically divergent *T. dimidiata* populations, which in most recent papers are regarded as subspecies.

Methodology and Findings: A total of 126 cyt b sequences (621 bp long) were produced for specimens from across the species range. Forty-seven selected specimens representing the main cyt b clades observed (after a preliminary phylogenetic analysis) were also sequenced for an ND4 fragment (554 bp long) and concatenated with their respective cyt b sequences to produce a combined data set totalling 1175 bp/individual. Bayesian and Maximum-Likelihood phylogenetic analyses of both data sets (cyt b, and cyt b+ND4) disclosed four strongly divergent (all pairwise Kimura 2-parameter distances >0.08), monophyletic groups: Group I occurs from Southern Mexico through Central America into Colombia, with Ecuadorian specimens resembling Nicaraguan material; Group II includes samples from Western-Southwestern Mexico; Group III comprises specimens from the Yucatán peninsula; and Group IV consists of sylvatic samples from Belize. The closely-related, yet formally recognized species *T. hegneri* from the island of Cozumel falls within the divergence range of the *T. dimidiata* populations studied.

Conclusions: We propose that Groups I–IV, as well as *T. hegneri*, should be regarded as separate species. In the Petén of Guatemala, representatives of Groups I, II, and III occur in sympatry; the absence of haplotypes with intermediate genetic distances, as shown by multimodal mismatch distribution plots, clearly indicates that reproductive barriers actively promote within-group cohesion. Some sylvatic specimens from Belize belong to a different species – likely the basal lineage of the *T. dimidiata* complex, originated ~8.25 Mya. The evidence presented here strongly supports the proposition that *T. dimidiata* is a complex of five cryptic species (Groups I–IV plus *T. hegneri*) that play different roles as vectors of Chagas disease in the region.

Citation: Monteiro FA, Peretolchina T, Lazoski C, Harris K, Dotson EM, et al. (2013) Phylogeographic Pattern and Extensive Mitochondrial DNA Divergence Disclose a Species Complex within the Chagas Disease Vector *Triatoma dimidiata*. PLoS ONE 8(8): e70974. doi:10.1371/journal.pone.0070974

Editor: Pedro Lagerblad Oliveira, Universidade Federal do Rio de Janeiro, Brazil

Received January 17, 2013; Accepted June 26, 2013; Published August 5, 2013

Copyright: © 2013 Monteiro et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: AGP received support from CODI-Universidad de Antioquia (project CPT-0812), and COLCIENCIAS (project #111545921460). This work received support from the Brazilian National Research Council, CNPq. The findings and conclusions in this manuscript are those of the authors and do not necessarily represent the views of the Centers for Disease Control and Prevention. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: fermonte@globo.com
Introduction

Chagas disease (American Trypanosomiasis) is one of the most important parasitic diseases in Latin America with about 8–10 million people infected, 10–12 thousand deaths per year and ~25 million at risk of infection [1,2]. Humans acquire the disease when they come into contact with Trypanosoma cruzi-infected faeces of blood-sucking bugs of the subfamily Triatominae (Hemiptera: Reduviidae). As the most effective mechanism to prevent Chagas disease transmission relies on vector control strategies, substantial effort has been devoted to the study of the ecology, population structure and evolution of triatomine bugs (for review see [3]). Triatoma dimidiata, T. infestans, and Rhodnius prolixus are the main vectors of Chagas disease. Vector control programs have achieved remarkable success towards the elimination of R. prolixus and T. infestans in several regions of Central and South America, respectively [4]; T. dimidiata is currently the primary target of control efforts across its range [5], which spans from southern Mexico through Central America into Colombia, Peru, and Ecuador [6].

T. dimidiata occupies a wide variety of domestic and peridomestic environments, in both rural areas [7,8] and urban settings [9,10]. In the wild, it is also very versatile, and colonies have been found in a wide variety of ecotopes (e.g., rocky outcrops, trees, caves, and palm trees [11,12,13]). Throughout its geographic distribution, *T. dimidiata* exhibits high phenotypic variability, which has caused considerable taxonomic controversy since the species description in 1811. A number of chromatic, morphometric, and antennal phenotype variants have been recognized; while some of them were regarded as geographic populations, others were formally described as subspecies or species (reviewed by [14]).

The first genetic evidence suggesting the existence of undescribed cryptic species within the *T. dimidiata* taxon was reported in 2001 [15]. Based on nucleotide sequence analyses of the ribosomal DNA second internal transcribed spacer (ITS-2), substantial differences were observed between one population from Yucatán (Mexico) and those from other localities in Mexico and Central America. Chromosome C-banding patterns, genome size [16], and mitochondrial cyt b sequence analyses [17] later corroborated these findings and extended the distribution of this new species into the forests of Petén, Guatemala. Bargues et al. [18] have proposed that all other *T. dimidiata* populations (including the closely related species *T. hegneri*) although also genetically distinct, but with distance values markedly lower than those for the particular population from Yucatán, should be regarded as subspecies. Genetic groups based on the subspecific criteria adopted by Usinger [19] were proposed: Group 1A (specimens from Chiapas in southern Mexico, Guatemala, Honduras, El Salvador, Nicaragua, Costa Rica, and Ecuador), which would correspond to *T. dimidiata dimidiata*; Group 1B (specimens from Panama and Colombia), corresponding to *T. dimidiata capitata*; and Group 2 (samples from central and northwestern Mexico, Guatemala and Belize), corresponding to *T. dimidiata maculipennis*. Results based on cuticular hydrocarbon patterns support the existence of these ‘three subspecies’ and suggest the existence of yet a fourth subspecies and a full species within the taxon *T. dimidiata* [20].

In summary, phenotypic and genetic studies have indicated that *T. dimidiata* is a complex of sibling or near-sibling taxa, although the precise number of species and subspecies and their relationship with each other remain uncertain. To further our knowledge on the taxonomy and population subdivision of this important Chagas disease vector, we present new data based on two mitochondrial gene fragments, cytochrome b (cyt b) and nicotinamide adenine dinucleotide dehydrogenase 4 (ND4).

Materials and Methods

Insect Sampling and DNA Isolation

A total of 126 *T. dimidiata* specimens were collected from 32 localities across the species geographic range (Table 1 and Figure 1). Ten additional specimens of five closely related *Triatoma* species (*T. hegneri*, *T. flavida*, *T. phyllosoma*, *T. pallidipennis*, and *T. nitida*) were also sampled (Table 1). Insects were collected between 1995 and 2004 from domestic, peridomestic, and sylvatic habitats and identified following the Lent and Wygodzinsky [6] taxonomic key. Whenever necessary home/property owners gave consent for traps to be placed. One leg of each individual was stored in 95% ethanol until the DNA purification step. Extractions were performed using the Wizard Genomic DNA extraction kit (Promega, Madison, Wisconsin) following the manufacturer recommendations.

PCR Amplification and DNA Sequencing

A fragment of the cyt b mitochondrial gene was amplified from each specimen using primers 7432F (5'-GGAGCGWGATT-TATTATGGATC-3'), and 7433R (5'-GCWWCAATTCGAR GTTARTAA'-3') [21]. The ND4 mitochondrial gene was also amplified and sequenced for a subset of specimens using primers ND4deg01F (5'-GGGCGYTCAACATGACCCYT-3'), and ND4b02R (5'-ATAATCCTGTTCCTATGTAATG-3') [22]. When the DNA of the sample was of poor quality, a nested PCR was performed with the primers ND4deg (5'-TCAACATGAGGCCCTTGAAG-3'), and NDHneR (5'-TAAATCTGACTCATGTTAATG-3') [22]. An average of 1–3 μL of purified DNA was amplified in a 50 μL reaction: 5 μL 10× buffer (Promega), 4 μL dNTPs (2.5 mM each), 2 μL MgCl2 (25 mM), 0.5 μL Taq DNA polymerase (Promega), and 2 μL of each primer (10 pmol/μL). Amplification conditions were: 94°C for 5 min, followed by 35 cycles of 94°C for 30 sec, 47°C for 30 sec, 72°C for 1 min, and a final elongation step at 72°C for 10 min. Purification of PCR products was performed with MultiScreen PCR purification plates (Millipore) following the manufacturer recommendations. Direct sequencing of both forward and reverse sequences was performed on an ABI 3130 (Applied Biosystems) automated sequencer.

Sequence Variation and Phylogenetic Analyses

Standard genetic diversity indices such as both nucleotide (π) and haplotype (h) diversities, and number of variable and parsimony informative sites were estimated using DNA SP 5.10 [23]. Tajima’s D [24], as implemented in ARLEQUIN 3.11 [25], were used to test for mutation-drift equilibrium deviation in the overall sample.

The strategy employed to infer the phylogenetic relationships among *T. dimidiata* populations was to first generate a tree based on all cyt b sequences available, identify the main clades present, and then select at least one representative specimen of each clade to be further sequenced for the ND4 gene fragment to be used in a cyt b+ND4 combined analysis. Other *Triatoma* species (*T. flavida*, *T. phyllosoma*, *T. pallidipennis*, and *T. nitida*) were used as outgroups in the phylogenetic analyses. Best-fitting substitution models for each dataset were determined with jModelTest 0.1 [26,27] based on Akaike’s information criterion (AIC) [28], which led to the selection of the Hasegawa-Kishino-Yano (HKY) model [29] with a proportion of invariable sites (+I), and gamma-distributed rate heterogeneity among the remaining sites (+G).
Phylogenies were inferred by Maximum Likelihood (ML) using PHYML 2.4.4 [30]. Bootstrap node support values were estimated from 1000 pseudoreplicates. ML trees were also submitted as user trees to MRBAYES 3.1.2 [31] for a Bayesian analysis. Posterior probabilities of phylogenetic trees were estimated by a 10,000,000-generation Metropolis-coupled Markov chain Monte Carlo (MCMC) simulation (four chains, chain temperature = 0.2) under the HKY+I+G model of substitution, with parameters estimated from the dataset. A majority-rule (50%) consensus tree was constructed following 200,000 burn-in generations to allow likelihood values to reach stationary equilibrium. Identical conditions were used for the cyt b and the combined (cyt b+ND4) datasets.

Population-level Inferences and Divergence Times

Mean intra- and inter-group Kimura 2-parameters genetic distances [32] were estimated in MEGA5 [33], with standard errors estimated by bootstrapping (pseudoreplicates). A median-joining network analysis [34] was performed using NETWORK 4.5.1.6 (http://www.fluxus-engineering.com). The maximum number of mutations between haplotypes within the same network for cyt b was 61. The 95% connection limit was not used because of the high levels of sequence divergence, which would cause an undesired fragmentation of the network.

Principal component analysis (PCA) was used to classify all input sequences at once into one or more groups. Variable sites from the nucleotide sequence dataset were selected and nucleotide bases were coded (A = 1, C = 2, G = 3, T = 4) and combined in an alignment matrix, where each row represents a specimen’s DNA sequence. This alignment matrix was then converted into a genetic distance matrix as implemented in GENALEX 6.4 [35].

DNASP was used to generate distribution plots of pairwise sequence differences. No attempt was made to compare the observed distributions with expected distributions, because all models available in the software for producing expected distributions are suitable only for population-level analysis.

We used cyt b to estimate divergence times as we had more data for this particular gene fragment (both for specimens and haplotypes), and because reliable evolutionary rate estimates are available for this gene [36]. The time to the most recent common ancestor (tMRCA) was estimated for all major genetic groups revealed in the phylogenetic analyses using a Bayesian approach with BEAST 1.6.1 [37]. The analysis was performed using an HKY+I+G model of nucleotide substitution with gamma-distributed rate variation among sites and four rate categories – the substitution model selected using JMODELTEST. We used the suggested divergence rate of 1.1 to 1.8% per Myr [36]. The Yule process was chosen as speciation process for our data set. Results from two independent runs (20,000,000 generations, with the first 2,000,000 discarded as burn-in and parameter values sampled every 1000 generations) were analyzed with TRACER 1.5 [38] to assess convergence and confirm that the combined effective
Table 1. *Triatoma* samples used in the study.

No.	Country	Map No.	Capture Location	Ecotope	Sequence codes	Cytb GenBank No.	ND4 GenBank No.	
1	México	1	San Luis Potosí	Axtla de Terrazas, Temalacaco	D	MxSa1	JN585833	AF454685
2	San Antonio, Xolotl		D	MxSa2	JN585834			
3	D	MxSa3	AY062149					
4	Hidalgo	2	Acomul	D	MxHi3	AY062151	AF454686	
5	Canali	3	D	MxHi4	AY062151	JN620155		
6	D	MxHi5	AY062151	JN620155				
7	Veracruz	3	Mesa de Tlanchinol	D	MxVe1	AY062150	AF454685	
8	D	MxVe2	AY062149	JN620155				
9	D	MxVe3	AY062149					
10	La Luz	4	D	MxVe4	JN585835	JN620155		
11	Oaxaca	4	Cañada Atotonilco, Los Ríos Nopala	P	MxOx1	JN585836		
12	P	MxOx2	JN585836					
13	San Juan Comaltepec	5	P	MxOx3	JN585837	JN620156		
14	San Juan Juquila	5	P	MxOx4	AY062149			
15	San Juan Juquila	5	P	MxOx5	JN585838			
16	ND	MxOx6	JN585837					
17	P	MxOx7	JN585836					
18	Chiapas	5	Palenque	S	MxCh1	JN585839	JN620157	
19	Tapachula, Manacal	5	P	MxCh2	JN585840	JN620158		
20	P	MxCh3	JN585841	JN620159				
21	P	MxCh4	JN585842	JN620159				
22	Tuxtla Chico, Medio Monte	6	P	MxCh5	JN585840	JN620158		
23	Tabasco	6	El Rosario	D	MxTa	JN585843		
24	Yucatán	7	Yaxkukul, Rancho San Antonio	S	MxYu1	AY062162	AF454697	
25	S	MxYu2	AY062160	AF454695				
26	S	MxYu3	AY062163	AF454698				
27	S	MxYu4	JN585844					
28	S	MxYu5	AY062158	AF454693				
29	S	MxYu6	AY062159	AF454694				
30	S	MxYu7	AY062161	AF454696				
31	S	MxYu8	AY062164	AF454699				
32	Yucatán	7	Carretera Paraiso-Progreso	S	MxYu9	AY062158		
33	S	MxYu10	JN585845	JN620160				
34	Merida	8	S	GuPe1	JN585846			
35	D	F59MxY	FJ197158*					
36	8	Petén	S	GuPe2	JN585847			
37	S	GuPe3	JN585848					
38	S	GuPe4	JN585839					
39	S	GuPe5	JN585849					
40	S	GuPe6	JN585850					
41	S	GuPe7	JN585851					
42	S	GuPe8	JN585852					
No.	Country	Map No.	Capture Location	Ecotope	Sequence codes	Cytb GenBank No.	ND4 GenBank No.	
-----	-------------	---------	------------------	---------	----------------	-----------------	-----------------	
43	S GuPe8			S	GuPe8	JN585852		
44	S GuPe9			S	GuPe9	JN585853		
45	S (chultun)	GuPe10		S	GuPe10	JN585854		
46	S (palm)	GuPe11		S	GuPe11	JN585855		
47	S (palm)	GuPe12		S	GuPe12	JN585856	JN620161	
48	S	GuPe13		S	GuPe13	JN585857	JN620162	
49	S	GuPe14		S	GuPe14	JN585858		
50	Alta Verapaz	Cahabón	D	D	GuVe1	JN585859		
51	Lanquin			S (cave)	GuVe3	JN585861	JN620163	
52	S (cave)	GuVe4		S (cave)	GuVe4	JN585859		
53	S (cave)	GuVe5		S (cave)	GuVe5	JN585859		
54	S (cave)	GuVe6		S (cave)	GuVe6	JN585859	JN620164	
55	Tamahú	D		D	GuVe7	JN585862		
56	Tucurú	D		ND	GuVe8	JN585863		
57	ND	GuVe9		ND	GuVe10	JN585865	JN620166	
58	Tamahú	ND		ND	GuVe11	JN585866	JN620165	
59	San Marcos	Lachuá	P	P	Gua1	JN585867		
60	Chiquimula	Tuticopote	ND	P	Gua2	JN585868		
61	P	Gua3		P	Gua3	JN585869	JN620167	
62	Chiquimula	Tuticopote	ND	P	Gua4	JN585870	JN620168	
63	ND	Gua7		ND	Gua7	JN585871		
64	San Juan Ermita, Chanco		ND	ND	Gua8	JN585871		
65	Izabal	Gua7		ND	Gua7	JN585871		
66	S (palm)	Gua2		S (palm)	Gua2	JN585874		
67	ND	Gua5		ND	Gua5	JN585871		
68	ND	Gua6		ND	Gua6	JN585871		
69	ND	Gua7		ND	Gua7	JN585871		
70	Olopca	GUA18		ND	GUA18	JN585878	JN620169	
71	Tituque	GUA3B		ND	GUA3B	AY062157	AF454629	
72	Canillá	Gua7		D	GuQu1	JN585875		
73	San Andrés Sajcabajá, Xepalzac		D	D	GuQu2	JN585876		
74	ND	GuQu3		P	GuQu3	JN585877		
75	ND	GU3B		ND	GU3B	AY062157	AF454629	
76	ND	GuSa2		ND	GuSa2	JN585880		
77	Rio Hondo, El Cajón		D	D	GuSa2	JN585880		
78	S.Rosa de Lima	Laguna de Pereira		D	D	GuSa2	JN585880	
79	S.Rosa de Lima	Laguna de Pereira		D	D	GuSa2	JN585880	
80	Conguaco, Laguna Seca		ND	ND	GuJu1	JN585881		
81	Quesada, El Tule	D	GuJu2	D	GuJu2	JN585881		
82	D	GuJu3		D	GuJu3	JN585874		
83	D	GuJu4		D	GuJu4	JN585881		
84	D	GuJu5		D	GuJu5	JN585881		
No.	Country	Map No.	Capture Location	Ecotope	Sequence codes	Cytb GenBank No.	ND4 GenBank No.	
-----	--------------	---------	--------------------------	---------	----------------	-----------------	-----------------	
85	San José		Acatema, Tunillas	P	GuJu6	JN585882		
86	Belize	17	Cayo Río Frio	S (cave)	Bz1	JN585883	JN620170	
87	Belize		S (cave)	Bz2	JN585884			
88	Belize		Calla Creek	D	56BzCa	FJ197156*		
89	Belize	18	Toledo San Pedro	D	54BzTo	FJ197154*		
90	Belize							
91	Belize		Santa Teresa	D	55BzTo	FJ197155*		
92	Honduras	19	Carazalón	D	HoCa1	JN585885		
93	Honduras			D	HoCa2	JN585886	JN620171	
94	Honduras			D	HoCa3	JN585888		
95	Yoro	20	Yorito, Los Planes	ND	HoYo1	AY062153	AF45688	
96	Yoro			ND	HoYo2	AY062153	AF436860	
97	Tegucigalpa.	21	Colonia Nueva Suyapa	ND	HoTe1	AY062152	AF45687	
98	Tegucigalpa.			ND	HoTe2	AY062153	AF436860	
99	Barrio El Bosque	23		ND	HoTe3	AY062154	JN620172	
100	Barrio El Bosque			ND	HoTe4	AY062156	AF45691	
101	Barrio El Bosque	24		ND	HoTe5	AY062154	AF45689	
102	Barrio El Bosque	25		ND	HoTe6	AY062155	AF45690	
103	El Salvador	22	Santa Ana Monte Largo	D	SaSa1	JN585888		
104	El Salvador			D	SaSa2	JN585889		
105	El Salvador			D	SaSa3	JN585890		
106	La Unión	23	El Farito	D	SaLa1	JN585891		
107	La Unión			D	SaLa2	JN58589		
108	El Farito	24	Amapolita	D	SaLa3	JN585836	JN620173	
109	Nicaragua	24	Masaya Masatepe	D	Nic	JN585892		
110	Costa Rica	25	Heredia Santo Tomás de Santo Domingo	P	CR1	JN585893		
111	Costa Rica			P	CR2	JN585894		
112	Costa Rica			P	CR3	JN585894		
113	Costa Rica			P	CR4	JN585895		
114	Costa Rica			P	CR5	JN585895	JN620174	
115	Costa Rica			P	CR6	JN585894		
116	Panama	26	Veraguas Santa Fe, El Macho	D	Pan1	JN585896		
117	Panama			D	Pan2	JN585897		
118	Panama			D	Pan3	JN585898	JN620175	
119	Panama			El Pantano S (palm)	Pan4	JN585899		
120	Panama			El Pantano S (palm)	Pan5	JN585900		
121	Colombia	27	Sucre San Omofre	S	CoSu	JN585901		
122	Colombia	28	Bolivar San Fernando	S (palm)	CoBo1	JN585902		
123	Colombia			S (palm)	CoBo2	JN585903		
124	Colombia		Magdalena, Santa Marta	S (palm)	Cacahualito	JN585904		
125	Colombia		Las Tinajas	S (palm)		JN585905		
126	Colombia	30	Santander San Joaquin	S (rock pile)	CoSa1	JN585906		
127	Colombia			S (rock pile)	CoSa2	JN585907		
128	Colombia	31	Boyacá Boavita	D	CoBy1	JN585908	JN620176	
sample sizes for all parameters were >200, ensuring that the MCMC had run long enough to produce valid estimates for the parameters [39]. The dating process was based on all specimens per group to calculate the distance (time) to the nearest node that determines each group.

Results

Sequence Variation and Phylogenetic Analyses

A total of 126 cyt b (621 bp long) and 47 ND4 sequences (554 bp long) were produced for *T. dimidiata*. In addition, four 4 cyt b and one ND4 sequences were generated for *T. hegneri*, along with nine sequences (three cyt b and six ND4) for the outgroup species (Table 1). Five *T. dimidiata* cyt b sequences previously reported [17] were retrieved from GenBank and also included in the analyses. There was no indication of the presence of pseudogenes or numts among the sequences generated as no indels or stop codons were detected and all sequences appeared to be evolving (i.e. accumulating mutations) as expected for normal mtDNA protein coding genes. Inspection of the *T. dimidiata* mtDNA sequences revealed the existence of 97 and 36 unique haplotypes for the cyt b and ND4 gene fragments, respectively. Basic statistics are presented in Table 2. Neutrality tests failed to reject the null hypothesis that mtDNA sequences were evolving in a neutral manner in the studied species (Tajima’s D: *P* >0.70; Table 2).

Saturation plots for both cyt b and ND4 gene fragments (third codon position transversion and transition substitutions against HKY+G+I distances), show no indication of saturation (results not shown).

ML and Bayesian phylogenetic methods yielded the same tree topologies for both datasets used (cyt b and cyt b+ND4). However, the analysis of the larger cyt b+ND4 combined dataset (1175 bp) led to the resolution of the Group I/Group II/*T. hegneri* polyphyly that was not discriminated in the cyt b tree (Figure 2a).

Both cyt b and cyt b+ND4 tree topologies indicate the existence of four well-defined monophyletic groups: Group I includes samples from Mexico (Chiapas), Guatemala, Honduras, El Salvador, Nicaragua, Costa Rica, Panama, Ecuador, and Colombia; Group II comprises the westernmost samples from Mexico but also includes specimens from Tabasco and Petén;
Group III includes specimens from Petén (Guatemala), Yucatán (Mexico), and Belize; and Group IV includes sylvatic samples from Belize. *T. hegneri*, from the island of Cozumel, Mexico, appears as yet another independent lineage within the range of between-group variability observed (Figures 2 and 3). Mean Kimura 2-parameters pairwise cyt b genetic distances among Groups I–IV plus *T. hegneri* were very high, ranging from 0.080 to 0.155 (Table 3).

Figure 2. ML phylogenetic trees for *Triatoma dimidiata* species complex based on cyt b (left) and cyt b+ND4 (right) gene fragments. Bootstrap support values (above 50) are given above branches; Posterior probabilities for the Bayesian analysis are given below branches. Branch color codes indicate each of the four different genetic groups (plus *T. hegneri*) that comprise the *T. dimidiata* species complex. The three haplotypes in blue (Nic, Ec3, and Ec5) call attention to the high genetic similarity between specimens from Manabi, in Ecuador, and those from Nicaragua, indicating that *T. dimidiata* populations from the latter most likely represent the source of insects that were recently introduced into Ecuador.

doi:10.1371/journal.pone.0070974.g002
Group I is the most widely distributed and genetically variable clade (Figure 4), with within-group divergence reaching values as high as 8.5% (when Colombian haplotypes are compared with Central American haplotypes). Thus, we can suppose that it might harbor more than one species. Observation of the cyt b tree (Figure 2a) towards the lower part of Group I reveals a striking similarity between haplotypes obtained from a specimen collected in Masaya, Nicaragua (Nic) with those obtained from specimens from Manabi, in Ecuador (Ec3 and Ec5), suggesting a very recent common origin.

Specimens collected from the Lanquin caves, in Alta Verapaz, Guatemala (GuVe3, GuVe4, GuVe5, and GuVe6), are genetically similar to other T. dimidiata Group I insects (Figure 2a).

Population-level Inferences and Divergence Times

With the observation of the magnitude of the inter-population divergence levels of the mtDNA sequences generated, and after unsuccessful attempts to extract meaningful population-level information from the data, we realized that it would be worthless (uninformative) to proceed with regular population-level inferences such as FST or AMOVA, and therefore decided to exclude such analyses from this paper.

The median-joining haplotype network shows that most specimens presented unique haplotypes (Figure 3). Moreover, highly divergent haplotypes were found in Petén, Guatemala, which segregated into different parts of the network. Conversely, certain haplotypes found in geographically distant (Ecuador and Nicaragua) were strikingly similar. Overall, the network displayed the same groups detected in the phylogenetic analyses. The median-joining haplotype network illustrates the intricate genetic structure that characterizes Group I.

PCA based on cyt b sequences alone revealed only three groups, with T. hegneri falling within Group I, while PCA of the combined cyt b+ND4 dataset resolved the same four groups (plus T. hegneri) recovered in the phylogenetic analyses (Figures 5a, 5b).

Results of within- and between-group comparative analysis of mismatch distributions are depicted in Figure 6. Mismatch distribution within Group III exhibits a unimodal distribution, with most pairwise comparisons revealing small genetic distances. Mismatch distributions within Groups I and II are multimodal and ragged, and contain a larger proportion of comparisons resulting in larger genetic distances. All inter-group mismatch distributions are clearly multimodal and have similar shapes, with most pairwise comparisons revealing large genetic distances; this same pattern is evident when including all T. dimidiata species complex members (Figure 6a).

Figure 6e represents the mismatch distribution for individuals from Petén, Guatemala, where representatives of Groups I, II, and III occur in sympatry. The mismatch frequency distribution is multimodal, with visibly separated peaks that reflect the absence of haplotypes with intermediate genetic distances. This clearly suggests the existence of reproductive barriers isolating these
Figure 4. Map showing the geographic distribution of the four genetically divergent monophyletic groups identified within
Triatoma dimidiata (plus *T. hegneri*) based upon Bayesian and ML phylogenetic analyses of cyt b and ND4 sequences. Group I occurs from Southern Mexico through Central America and into Colombia and Ecuador; Group II comprises samples from Western and Southwestern Mexico; Group III includes specimens from the Yucatán peninsula (excluding Belize and *T. hegneri*); Group IV includes sylvatic samples from Belize; and *T. hegneri*, from the island of Cozumel. The dotted blue outline around the Easternmost sites of Group I demarcates the geographic distribution of the *T. dimidiata* samples from Colombia. The dotted black line serves to indicate, based on haplotype similarity, Nicaragua as the most likely source of insects to have colonized Ecuador sometime in the recent past.
doi:10.1371/journal.pone.0070974.g004

Figure 5. Principal component plots constructed from genetic similarity matrix based on cyt b sequences (*a*) and on cyt b and ND4 (*b*) combined data. Color codes for different groups of the *Triatoma dimidiata* complex coincide with colors used in Fig. 2.
doi:10.1371/journal.pone.0070974.g005
groups from one another. These Petén specimens are therefore very likely to belong to different biological species; divergence time estimates suggest that they have been evolving independently for at least about five million years (Table 4).

Discussion

Since its description by Pierre André Latreille, in 1811 (as Reduvius dimidiatus), the taxonomy of T. dimidiata has been a topic of controversy (reviewed in [14]). Central to the debate was the issue of whether morphologically recognized subspecies should merit specific status. Tent and Wygodzinsky [6] put an end to the dispute by concluding, after the examination of 160 specimens from the species’ distribution range, that the differences observed were “clinal in nature”, and thus, all morphological types should be considered variations within the same species. Our results unmistakably reject this hypothesis.

We report the existence of very high levels of mitochondrial DNA (cyt b and ND4) sequence divergence among populations of T. dimidiata sampled throughout its geographic range. Bayesian and ML phylogenetic analyses indicate the existence of five well defined monophyletic groups, including the formally described species T. hegneri from the island of Cozumel. Group I stretches from Southern Mexico (Chiapas), all the way through Central America into Colombia, with Ecuadorian specimens resembling those from Southern Mexico (Chiapas), all the way through Central America into Colombia, with Ecuadorian specimens resembling those from Colombia, in sub-group 1B, and position T. hegneri specimens from within group 2 (sensu Bargues et al. 2008 [18]). The mtDNA markers used here seem to be more appropriate for this level of taxonomic investigation. Being less conserved, and thus more informative, they allow for the detection of readily recognizable, well supported monophyletic groups.

The level of sequence divergence between groups I to IV exceeds the value of 8% reported to separate several closely related Triatoma species [40]. The smallest distances observed here resulted from the comparison of Groups I and II (0.088); all other inter-group comparisons gave values that surpass 13%. T. hegneri and Group I cyt b sequences differ by an average of 8% (Table 3).

Three distinct chromatic forms of T. brasiliensis from northeast Brazil analyzed with the same marker (cyt b) showed large genetic distances (d>0.075), which led to their recognition as members of a species complex [40]. Two of these forms were subsequently formally raised to the specific level [41,42]. Divergence levels of the same magnitude (d>9%), again coupled with chromatic differences, led to the proposition that T. rubida cochinimensis should be considered a full species [34]. Other recent comparisons between valid Triatoma species based on the same marker are T. nitida vs. T. rubida sonoriana/sihleri (d=10–11%) and T. longipennis vs. T. recurva (d=11%; [34]). In addition to the very high mtDNA genetic distances among the T. dimidiata groups here described, high values of ITS-2 sequence divergence were also reported for haplotypes belonging to groups I and II (5.62%), which, according to the authors of the study, is suggestive of speciation [18]. These are very convincing arguments in favor of the hypothesis that T. dimidiata is a true species complex.

Group I is the most geographically widespread and genetically variable. Pairwise within-group genetic distances can be as high as 8.5%. The divergent samples from Colombia appear as a monophyletic sister clade with respect to all other specimens in the group (which are predominantly from Central America). Colombian specimens were once described as T. dimidiata capitata on morphological grounds [43], to be later synonymized [6]. Thus, it is fair to speculate that this group might conceal yet another biological species.

Table 4. Time of divergence within and among putative species of the Triatoma dimidiata complex (and 95% confidence intervals) calculated using the program Beast.

Taxa	tMRCA (95%CI)
Group I	2.81 (1.97–3.76)
Group II	1.91 (1.18–2.80)
Group III	0.87 (0.51–1.24)
Group IV	0.69 (0.27–1.13)
Triatoma hegneri	2.64 (1.60–3.89)
Group I+Triatoma hegneri	3.92 (2.72–5.34)
Group I+Triatoma hegneri+Group II	4.21 (2.93–5.66)
Group I+Triatoma hegneri+Group II+Group III	7.10 (4.86–9.64)
Triatoma dimidiata species complex	8.25 (5.75–11.22)

tMRCA, time to the most recent common ancestor in million years before the present.

doi:10.1371/journal.pone.0070974.t004

Sympatric Occurrence of Different Genetic Groups

Sympathy between Groups II and III is well documented in the Yucatán peninsula [17]. Although there seems to be extensive hybridization, reproductive isolating barriers (RIBs) do exist (such as reduced viability of female hybrids [44]) and appear to prevent the two species from merging into a single entity. This is a compelling argument in favor of the validation of Group III insects as a different species, as previously suggested [16,18].

Remarkably, in Petén, Guatemala, there is not only overlapping occurrence of Groups II and III as in Yucatán, but also of Group I insects (Figure 4). Mismatch distribution results reveal multi-modality caused by the absence of haplotypes with intermediate genetic distances among groups (Figure 6). This is a very
significant finding as it points to the probable existence of RIBs for all combinations among these three groups, lending further support to their recognition as different biological species.

Divergence Times and Biogeography

The Isthmus of Tehuantepec is known to represent an important recent geological barrier for a number of sister taxa of birds, mammals, and butterflies [45]. It has been shown to be a phylogeographical barrier to both highland [46] and lowland species [47]. Given the present distribution of the genetic groups revealed by the mtDNA fragments analyzed in this study, it is tempting to speculate that the Isthmus of Tehuantepec orogeny split the original population and caused the allopatric generation of Groups I and II.

Isolation that might have led to the origin of Group III insects from the Yucatán peninsula could be explained by changes in climate and vegetation that took place particularly during the Pleistocene period. Lee [48] suggests that a period of Pleistocene aridity, during which there was a continuous subhumid to xeric habitat, extended from the Pacific side of Mexico across the Isthmus of Tehuantepec to the Gulf coast and from there to the Yucatán Peninsula. The increase in humidity together with the introduction of mesophytic vegetation in the area resulted in an isolation of this subhumid environment from the west of Mexico, leading to speciation.

Triatoma Dimidiata in Ecuador

Bargues et al. [18] proposed that Ecuadorian T. dimidiata populations may have derived from recently introduced specimens originally from the Guatemala-Honduras-Nicaragua region, as a result of human migrations. This view was further supported by subsequent molecular analyses [15,18] and by ecological and biogeographic observations, including the absence of records of wild populations in Ecuador (in contrast with abundant observations elsewhere) and the discontinuous distribution of the species, with Ecuadorian populations isolated from their Colombian relatives by the Central Colombian Massif and the humid Chocó eco-region [10]. The fact that T. dimidiata populations seem to have disappeared from some formerly infested rural areas of Ecuador [49,50] and appear to persist only in a few urban foci (Abad-Franch F, pers. obs.) also matches the predictions of the artificial introduction hypothesis. As shown in the cyt b tree (highlighted in blue on Figure 2a) and the haplotype network (Figure 3), there is a striking similarity between haplotypes obtained from a specimen collected in Masaya, Nicaragua (Nic) and from Ecuadorian material (Ec3 and Ec5). This genetically pinpoints T. dimidiata populations from Nicaragua as the most likely source of insects to have colonized Ecuador sometime in the recent past.

Lanquín Cave Specimens

Studies based on morphometry [51], RAPD [52], antennal sensilla [53] and cuticular hydrocarbons [20,54] of cave-dwelling specimens from Lanquín, Alta Verapaz, in Guatemala, revealed great phenotypic divergence from all other T. dimidiata populations analyzed. The differentiation was so remarkable that it was suggested that these insects could represent an incipient species [51,54]. A different interpretation was put forth by Bargues et al.

Figure 7. This figure shows how the topology recovered for the T. dimidiata species complex based on the phylogenetic analysis of ITS-2 sequence data of Bargues et al. [18] (a) compares to the one derived from the mtDNA sequence data (cyt b + ND4) presented in this paper (b). Examination of this new figure shows that ITS-2 groups 1, 2, and 3 of Bargues et al. are essentially the same as our mtDNA groups I, II, and III (i.e. they include specimens collected from the same geographic areas). Branch color codes in “b” indicate each of the four different genetic groups (plus T. hegneri) that comprise the T. dimidiata species complex. See Discussion section for more details on the few incongruities between the two topologies and on how these were interpreted and discussed. doi:10.1371/journal.pone.0070974.g007
Our results indicate that the Lanquín cave specimens are no
depicts Lanquín samples as a separate independent lineage [17].
Concluding Remarks
Samples from Belize
Sylvatic specimens from Belize (Cayo District) represent a
different species which constitutes the most basal lineage of the T.
dimidiata species complex, as previously suggested based on
icuticular hydrocarbon patterns [20]. Divergence time estimates
show that this lineage has been evolving independently for
approximately 8.25 My (Table 4). These insects are clearly
different from the domestic Belize specimens studied by Dorn
et al. [17], which belong in Groups I and III (Figure 2). A possible
explanation for this incongruence is that the specimens we studied
were collected in the Rio Frio Cave. Interestingly, unlike the
specimens collected from the Lanquín caves in Guatemala, these
insects are quite large and present lighter tegument coloration
being, although it is evident that in the three cases relatively long
cluster.

References
1. World Health Organization (2006) Report of the Scientific Working Group on
Chagas disease, Buenos Aires, Argentina. 2005. Geneva. p. 7.
2. World Health Organization (2012) Fact Sheet Nr 340. August 2012. Chagas
disease (American trypanosomiasis). http://www.who.int/mediacentre/
factsheets/fs340/en/index.html.
3. Telleria J, Táburez M (2010) American Trypanosomiasis: Chagas Disease One
Hundred Years of Research. Telleria JT, M., editor. Burlington, MA, USA,
Elsevier. 848 p.
4. Dias JC (2007) Southern Cone Initiative for the elimination of domestic
populations of Triatoma infestans and the interruption of transfusional Chagas
disease. Historical aspects, present situation, and perspectives. Mem Inst
Oswaldo Cruz 102 Suppl 1: 11–18.
5. World Health Organization (2002) Control of Chagas Disease: Second report of
the WHO Expert Comitee. Geneva: WHO.
6. Lent H, Wygodzinsky P (1979) Revision of the Triatomiinae (Hemiptera,
Reduviidae), and their significance as vectors of Chagas’ disease. Bull Am Mus
Nat Hist 163: 125–520.
7. Acvedo F, Godoy E, Schofield CJ (2000) Comparison of intervention strategies
for control of Triatoma dimidiata in Nicaragua. Mem Inst Oswaldo Cruz 95: 871–
875.
8. Monroy C, Mejia M, Rodas A, Rosales R, Horio M, et al. (1998) Comparison of
indoor searches with whole house demolition collections of the vectors of Chagas
disease and their indoor distribution. Med Entomol Zool 49: 195–200.
9. Añez LR, Neiva R, Silva JC, Alencar LS, Bastos MA, et al. (2009) Indoor
surveys in houses with high population density for the ecological study of
Triatoma dimidiata in the Sertão, Pernambuco state, Brazil. Rev Soc Bras Med
Trop 42: 176–183.
10. Abad-Franch F, Pascual A, Carpio C, Cuba CA, Agüalar HM, et al. (2001)
Biogeography of Triatomiinae (Hemiptera: Reduviidae) in Ecuador: implications
for the design of control strategies. Mem Inst Oswaldo Cruz 96: 611–620.
11. Zeledón R (1981) El Triatoma dimidiata (Lateolitor, 1811) y su relación con la
Enfermedad de Chagas. Editorial Universidad Estatal a Distancia (EUNED).
San José, Costa Rica. 146 p.
12. Dumas E, Gourbière S, Barrera-Pérez M, Rodríguez-Félix E, Ruiz-Pitá H,
et al. (2002) Geographic distribution of Triatoma dimidiata and transmission
dynamics of Trypanosoma cruzi in the Yucatan peninsula of Mexico. Am J Trop
Med Hyg 67: 176–183.
13. Monroy MC, Bustamante DM, Rodas AG, Equirrez ME, Rosales RG (2003)
Habitats, dispersion and invasion of sylvatic Triatoma dimidiata (Hemiptera:
Reduviidae: Triatominae) in Petén, Guatemala. J Med Entomol 40: 800–806.
14. Dorn PL, Monroy C, Curtis A (2007) Triatoma dimidiata (Lateolitor, 1811): A
review of its diversity across its geographic range and the relationship among
populations. Infect Genet Evol 7: 343–352.
15. Marcella A, Baggers MD, Ramsey JM, Magallón-Gastelum E, Salazar-Schettino
PM, et al. (2001) The ITS-2 of the nuclear rDNA as a molecular marker for
populations, species, and phylogenetic relationships in Triatominae (Hemiptera:
Reduviidae), vectors of Chagas disease. Mol Phylogenet Evol 18: 136–142.
16. Panzera F, Ferrandis I, Ramsey J, Ordonez R, Salazar-Schettino PM, et al.
(2006) Chromosomal variation and genome size support existence of cryptic
cpecies of Triatoma dimidiata with different epidemiological importance as Chagas
disease vectors. Trop Med Int Health 11: 1092–1103.
17. Dorn PL, Calderón C, Melgar S, Moguel B, Solorzano E, et al. (2009) Two
distinct Triatoma dimidiata (Lateolitor, 1811) taxa are found in sympathy in
Guatemala and Mexico. PLoS Negl Trop Dis 3: e393.
18. Baggers MD, Klisiewicz DR, González-Candelas F, Ramsey JM, Monroy C,
et al. (2008) Phylogeography and genetic variation of Triatoma dimidiata, the
main Chagas disease vector in Central America, and its position within the genus
Triatoma. PLoS Negl Trop Dis 2: e233.
19. Usinger RL (1944) The triatominae of North and Central America and the West
Indies and their public health significance. Pub Health Bull. 82.
20. Calderón-Fernández GM, Ginetto JR, Juaristi MP (2011) Cuticular hydrocarbons
of, Triatoma dimidiata (Hemiptera: Reduviidae): infraspecific variation and
chemotaxonomy. J Med Entomol 48: 262–271.
21. Monteiro FA, Barrett TV, Fitzpatrick S, Gordon-Rosas C, Feliciani D, et al.
(2003) Molecular phylogeny of the Amazonian Chagas disease vectors
Rhodnius prolixus and R. robustus. Mol Ecol 12: 997–1006.
22. Donson E, Beard CB (2001) Sequence and organization of the mitochondrial
genome of the Chagas disease vector, Triatoma dimidiata. Insect Mol Biol 10: 205–
215.
23. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451–1452.

24. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585–588.

25. Excoffier L, Laval G, Schneider S (2005) Arlequin version 3.0: An integrated software package for population genetics data analysis. Evol Bioinf Online 2005: 1.

26. Posada D (2000). MultidivTest: phylogenetic model averaging. Mol Biol Evol 25: 1253–1256.

27. Guindon S, Gascuel O (2003). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52: 696–704.

28. Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Kudo A, editor. Second International Symposium on Information Theory. Budapest, Hungary, 267–281.

29. Hasegawa M, Kishino H, Yano T (1985) Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22: 160–174.

30. Bandelt HJ, Forster P, Rohl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Phylogenet Evol 16: 754–755.

31. Kimura M (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16: 111–120.

32. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, et al. (2011) MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol Biol Evol 28: 2731–2739.

33. Bandelt HJ, Forster P, Rohl A (1999). Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16: 37–48.

34. Peakall R, Smouse P (2006). GENALEX 6: genetic analysis in Excel. Population Genetic Software for Teaching and Research. Mol Ecol Notes 6: 288–295.

35. Pfeifer E, Bitler BG, Ramsey JM, Palacios-Cardiel C, Markow TA (2006) Phylogeographic analyses of the Chagas disease vector Triatoma dimidiata in the Sonoran Desert, insect vectors of the Chagas’ disease parasite Trypanosoma cruzi. Mol Phylogenet Evol 41: 209–221.

36. Devitt T (2006). Phylogeography of the Western Lyresnake (Tropidophis hantkeninatus): testing aridland biogeographical hypotheses across the Nearctic–Neotropical transition Mol Evol 13: 4367–4407.

37. Lee JC (1996). The Amphibians and Reptiles of the Yucatan Peninsula: Cornell Univ. Press, Ithaca, NY.

38. Lee JC (1996). The Amphibians and Reptiles of the Yucatan Peninsula: Cornell Univ. Press, Ithaca, NY.

39. Lee JC (1996). The Amphibians and Reptiles of the Yucatan Peninsula: Cornell Univ. Press, Ithaca, NY.

40. Lee JC (1996). The Amphibians and Reptiles of the Yucatan Peninsula: Cornell Univ. Press, Ithaca, NY.

41. Lee JC (1996). The Amphibians and Reptiles of the Yucatan Peninsula: Cornell Univ. Press, Ithaca, NY.

42. Lee JC (1996). The Amphibians and Reptiles of the Yucatan Peninsula: Cornell Univ. Press, Ithaca, NY.

43. Lee JC (1996). The Amphibians and Reptiles of the Yucatan Peninsula: Cornell Univ. Press, Ithaca, NY.

44. Lee JC (1996). The Amphibians and Reptiles of the Yucatan Peninsula: Cornell Univ. Press, Ithaca, NY.

45. Lee JC (1996). The Amphibians and Reptiles of the Yucatan Peninsula: Cornell Univ. Press, Ithaca, NY.

46. Lee JC (1996). The Amphibians and Reptiles of the Yucatan Peninsula: Cornell Univ. Press, Ithaca, NY.

47. Lee JC (1996). The Amphibians and Reptiles of the Yucatan Peninsula: Cornell Univ. Press, Ithaca, NY.

48. Lee JC (1996). The Amphibians and Reptiles of the Yucatan Peninsula: Cornell Univ. Press, Ithaca, NY.

49. Lee JC (1996). The Amphibians and Reptiles of the Yucatan Peninsula: Cornell Univ. Press, Ithaca, NY.

50. Lee JC (1996). The Amphibians and Reptiles of the Yucatan Peninsula: Cornell Univ. Press, Ithaca, NY.

51. Lee JC (1996). The Amphibians and Reptiles of the Yucatan Peninsula: Cornell Univ. Press, Ithaca, NY.

52. Lee JC (1996). The Amphibians and Reptiles of the Yucatan Peninsula: Cornell Univ. Press, Ithaca, NY.

53. Lee JC (1996). The Amphibians and Reptiles of the Yucatan Peninsula: Cornell Univ. Press, Ithaca, NY.