Perchlorate Formation on Mars Through Surface Radiolysis-Initiated Atmospheric Chemistry: A Potential Mechanism

Eric H. Wilson and Sushil K. Atreya, Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, Michigan, USA

Ralf I. Kaiser, Department of Chemistry, University of Hawai‘i at Manoa, Honolulu, Hawai‘i, USA

Paul R. Mahaffy, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA

Corresponding author: E. H. Wilson, Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI 48109, USA. (wilson@umich.edu)

KEY POINTS

- Mechanism initiated by radiolysis in the surface can potentially account for observed Martian perchlorate concentrations
- Injection of oxides of chlorine from the surface into the atmosphere is potentially an effective way of forming perchloric acid

This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/2016JE005078

This article is protected by copyright. All rights reserved.
• Martian perchlorate is an important oxidant but poorly characterized
ABSTRACT

Recent observations of the Martian surface by the Phoenix lander and the Sample Analysis at Mars (SAM) indicate the presence of perchlorate (ClO$_4^-$). The abundance and isotopic composition of these perchlorates suggest that the mechanisms responsible for their formation in the Martian environment may be unique in our solar system. With this in mind, we propose a potential mechanism for the production of Martian perchlorate: the radiolysis of the Martian surface by galactic cosmic rays, followed by the sublimation of chlorine oxides into the atmosphere and their subsequent synthesis to form perchloric acid (HClO$_4$) in the atmosphere, and the surface deposition and subsequent mineralization of HClO$_4$ in the regolith to form surface perchlorates. To evaluate the viability of this mechanism, we employ a one-dimensional chemical model, examining chlorine chemistry in the context of Martian atmospheric chemistry. Considering the chlorine oxide, OClO, we find that an OClO flux as low as 3.2×107 molecules cm$^{-2}$ s$^{-1}$ sublimated into the atmosphere from the surface could produce sufficient HClO$_4$ to explain the perchlorate concentration on Mars, assuming an accumulation depth of 30 cm and integrated over the Amazonian period. Radiolysis provides an efficient pathway for the oxidation of chlorine, bypassing the efficient Cl/HCl recycling mechanism that characterizes HClO$_4$ formation mechanisms proposed for the Earth but not Mars.
1. Introduction

The naturally-occurring perchlorate anion (ClO$_4^-$) is associated with salts found in several terrestrial dry regions such as the hyperarid Atacama Desert [Ericksen, 1983], the Antarctic Dry Valleys [Kounaves et al., 2010a], and the playa evaporite crusts in Bolivia [Ortis et al., 2003]. Significant evidence also exists for the presence of natural perchlorates in the rain and snow samples of the high plains regions of Texas and New Mexico [Rajagopalan et al., 2006] and in the rain samples from Florida [Dasgupta et al., 2005]. The largest concentration of perchlorate on Earth was detected in the barren Atacama Desert with concentrations as high as 0.6 wt% in the nitrate ore deposits [Ericksen, 1983], whereas the soil concentration is 0.03 wt% [Parker, 2009]. On Earth, chlorine is found primarily in the form of chloride (Cl$^-$). The Atacama Desert, with its high perchlorate concentration, is unique on Earth in exhibiting a perchlorate to chloride ratio average of 1:500 [Catling et al., 2010], whereas most other terrestrial chlorine deposits demonstrate ClO$_4^-$/Cl$^-$ ratios one to three orders of magnitude smaller [Jackson et al., 2015a].

However, the presence of perchlorate is not limited to the hydrogeochemical systems on Earth. Evidence of Martian perchlorate has been found in the Mars meteorite EETA79001 [Kounaves et al., 2014a]. In addition, the discovery of perchlorate on
chondrite meteorites and lunar samples [Jackson et al., 2015b] suggests that perchlorate may be quite common in our solar system.

Nevertheless, the greatest focus of extraterrestrial perchlorate has been observations on the surface of Mars. The Phoenix Mars lander detected perchlorates in the Martian regolith in the North polar region at concentrations of 0.4 to 0.6 wt.%. Chemical and spectral analysis of the soil from the Phoenix site indicate that the probable parent is either Ca(ClO₄)₂ or Mg(ClO₄)₂ [Hecht et al., 2009; Cull et al., 2010], the identification of which would have significant implications in our understanding of the evolution of the site. Kounaves et al. [2010] presented evidence pointing to Ca²⁺ as the dominant parent cation, which would likely indicate a continuously dry region over the 600 Myr age of the site, while the Toner et al. [2015] model suggests a wetter history for the region where Mg(ClO₄)₂ would be the primary precipitate.

The evolved gas analysis (EGA) and gas chromatograph mass spectrometer (GCMS) experiments on the Sample Analysis at Mars (SAM) instrument in the Mars Science Laboratory (MSL) rover has also revealed the presence of hydrated perchlorates at the Rocknest deposit in Gale Crater in the equatorial region of Mars [Glavin et al., 2013; Ming et al., 2014; Archer et al., 2014; Sutter et al., 2016]. Observations from the Mars Odyssey Gamma Ray Spectrometer (GRS) demonstrate widespread distribution of chlorine throughout the planet [Keller et al., 2006], and in-situ analysis suggests a much larger role played by oxidation in the evolution of chlorine in the Martian environment.
On Earth, perchlorates are widely distributed in both natural and industrial forms, due to their ease of solubility in water [Hecht et al., 2009]. The lack of organics on the Martian surface, first indicated by the Viking landers [Biemann et al., 1977], argues that oxidants may have had a role in the destruction of Martian surface organics, although the evidence for surface organics has been debated [Navarro-González et al., 2010; Biemann and Bada, 2011]. In the laboratory, amino acids have been found to decompose from electron radiolysis at a faster rate in the presence of perchlorates [Góbi et al., 2016]. The presence of perchlorate and its effectiveness as an oxidant suggest that understanding the mechanisms responsible for the formation of perchlorates may reveal clues about the evolution of the Martian environment as a whole.

However, despite the possible role perchlorates may have played on the Martian surface, their formation mechanisms have not been resolved to date. UV irradiation of the Martian surface is a possible mechanism for the formation of perchlorate that has been considered. Shuttlefield et al. [2011] showed that perchlorate could be formed from the irradiation of halite (NaCl) on titanium dioxide (TiO2) by ultraviolet (UV) photons under aqueous conditions. A drawback to this study is that there is considerable debate as to whether the Martian sites where perchlorate has been detected has harbored aqueous conditions long enough to produce the concentration of perchlorate detected. Carrier and Kounaves [2015] bypass this inconvenience as they reproduce the large ClO4⁻/Cl⁻ ratio observed by the Phoenix lander by oxidizing chloride through UV
radiation on grains containing halite and silica (SiO$_2$), with varying amounts of iron, aluminum, and titanium oxides. On the surface, the thin atmosphere of Mars exposes these grains to UV radiation longward of 200 nm. Additional laboratory work and modeling will be necessary to determine the viability of UV-induced oxidation of chlorine through the different epochs of Martian history, but this process may contribute to the perchlorate observed today.

Notwithstanding the apparent pervasiveness of perchlorate in our solar system [Jackson et al., 2015b], the formation mechanisms responsible for its existence may very well differ among the varying environments, as demonstrated by the differing characteristics that these perchlorate samples exhibit. Although chloride deposits do exist on Mars [Osterloo et al., 2008], the measurements at the Phoenix site exhibit much larger perchlorate/chloride ratios (4:1–9:1) [Hecht et al., 2009; Kounaves et al., 2010] than observed on the Earth, including the Atacama Desert. In addition, SAM and the Alpha-Particle X-Ray Spectrometer (APXS) at Gale Crater find that much of total chlorine is in the form of oxychlorine (10–40 %) [Archer et al., 2015], indicating the importance of oxidation in Martian chlorine chemistry. Perchlorate is also greatly enhanced relative to nitrates on Mars (perchlorate/nitrate > 1) in comparison with Earth (perchlorate/nitrate < 10$^{-10}$) or Martian meteorites [Jackson et al., 2015a; Stern et al., 2016]. Furthermore, at the Gale Crater site, SAM has measured the 37Cl/35Cl isotopic ratio to be much lighter and variable than what is typically found on Earth, pointing to a possible atmospheric
origin [Farley et al., 2016]. All of these factors suggest that the mechanisms responsible for the formation of perchlorate on Mars might be different than the processes that govern perchlorate production on the Earth or other extraterrestrial environments.

The formation of perchlorate can occur not only on the surface but also through atmospheric processes, or a combination of both. Considering the larger perchlorate concentration and the higher perchlorate/chloride ratio in the Atacama Desert than other terrestrial sites, Catling et al. [2010] investigated the possibility of atmospheric production of perchlorate in the Atacama. The chemical scheme is based on the formation of perchloric acid (HClO₄) through atmospheric chemistry. HClO₄ is proposed to form through the reaction of hydroxyl radicals (OH) and chlorine trioxide (ClO₃),

$$\text{ClO}_3 + \text{OH} + \text{M} \rightarrow \text{HClO}_4 + \text{M}, \quad (\text{R}1)$$

which has been positively identified in the laboratory [Kopitzky et al., 2002]. M represents the buffer (background) gas, primarily CO₂, in the Martian atmosphere. As HClO₄ is an end product in atmospheric chlorine chemistry, Catling et al. assume that it is deposited onto the Martian surface and incorporated into the surface as perchlorate. With this mechanism, Catling et al. are able to explain the perchlorate abundance in the Atacama Desert. Smith et al. [2014] applied this model to the Martian environment, using volcanism since the Amazonian period as the source of chlorine. Through their model, they calculate a perchlorate production rate of 7.6×10^{-25} g cm$^{-2}$ s$^{-1}$, which falls seven orders of magnitude short of what is required to explain the perchlorate
observations on Mars. As the Catling et al. and Smith et al. models are identical with regards to chlorine chemistry, we hereafter refer to them as the CS model.

In our study, we considered an alternative for the production of Martian perchlorate. A mechanism for the release of atmospheric chlorine that has not yet been explored from an atmospheric modeling standpoint is the interaction between the chlorine-rich surface and energetic electrons that arise from the deposition of energy from galactic cosmic rays (GCRs). Due to the lack of a thick atmosphere or intrinsic magnetic field, the surface of Mars is exposed to significant levels of energetic GCRs globally. GCR energy deposition is isotropic, having no geographic bias, and thus can impact all regions of the Martian surface. Furthermore, the energies that GCRs deposit are enough to penetrate up to several meters below the surface, and would be less sensitive to the opacity provided by an earlier denser atmosphere than ultraviolet radiation. In this vein, we propose an alternative mechanism for producing perchloric acid in the Martian atmosphere via interaction of energetic galactic cosmic rays with the Martian surface. The process begins in the surface, proceeds efficiently in the atmosphere, and ends with perchlorate production in the surface.

2. Radiolysis Mechanism and Model
Radiolysis begins with the engagement of GCRs with the surface causing a cascade of energetic secondary electrons that would be available to interact with the Martian soil. Pavlov et al. [2012] demonstrate that Mars receives a dosage of 0.05 J kg\(^{-1}\) yr\(^{-1}\) of GCRs at the surface that can penetrate to a depth of about 2 meters in the Martian surface, producing energetic secondary electrons that interact with the surrounding matter.

This radiolysis process produces chemical compounds that can be released into the atmosphere through sublimation. Kim et al. [2013] found a variety of chlorine oxides that are produced from the irradiation of chlorine-doped carbon dioxide ices, using energetic electrons (5 keV) as a proxy for the secondary electrons generated from the interaction of GCRs and the Martian surface. In this study, the radiolysis of the Martian surface by GCRs was simulated by irradiating chlorine-bearing carbon dioxide (CO\(_2\)) ices under high vacuum conditions. The irradiation resulted in the formation of dichlorine monoxide (ClOCl), chloryl chloride (ClClO\(_2\)) and chlorine dioxide (OClO), irrespective of the CO\(_2\)/Cl\(_2\) ratios (2:1 – 10:1) or the substrate used (silver and NaCl). Additional absorption features of chlorine oxide functional groups (-ClO\(_3\), -ClO\(_2\)) were revealed at higher radiation doses along with the synthesis of dichloromonoxide (ClOCl). Chlorine monoxide (ClO), which plays a prominent role in the CS scheme, was not produced in the high-energy irradiation. That these products were formed independent of the CO\(_2\)
mole fraction demonstrates that chlorine oxides can be formed in Martian ices that are not heavily enriched with CO₂.

The analyzed Martian landing sites are not necessarily examples of environments where ices are in abundance at the surface today. However, Mars has undergone many climatic and obliquity changes throughout its history, whereby glaciation proceeded well into the mid-latitudes and possibly low-latitudes [Haberle et al., 2003; Wordsworth et al., 2013]. Furthermore, analysis of landforms at the Phoenix site indicates that the ice table is only a few cm below the surface [Mellon et al., 2008; Levy et al., 2009]. Given the global distribution of chlorine, it is plausible to assume that much of the Martian surface has been exposed to chlorine-bearing ices throughout much of its history. A pathway connecting this chlorine into perchlorate, given its high chemical stability, should result in a substantial global concentration of perchlorate without the need for an aqueous state.

Here, we employ a one-dimensional chemical model to investigate chlorine chemistry and the formation of perchloric acid on Mars from chlorine oxides generated as a result of bombardment of chlorine-doped ices by galactic cosmic rays. To conduct this study we add chlorine chemistry to our Mars chemical model, details of which can be found in Wong et al. [2003] and Atreya and Gu [1994], which solves the steady-state continuity-diffusion equation in spherical coordinates

\[P_i - L_i = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \Phi_i \right) \]

(1)
where $P_i = \text{the chemical production rate of species } i$, $L_i = \text{the chemical loss rate of species } i$, $r = \left(R_0 + z \right)$, where $R_0 = \text{the radius of Mars and } z = \text{the altitude}$, and $\Phi_i = \text{the vertical flux of species } i$, which can be expressed as

$$
\Phi_i = -D_i \left[\frac{\partial}{\partial z} \left(n f_i \right) + f_i \frac{\partial n}{\partial z} + \frac{n f_i}{T} \frac{\partial T}{\partial z} + \frac{n f_i}{H_i} \right] - Kn \frac{\partial}{\partial z} \left(n f_i \right)
$$

where $n = \text{the atmospheric number density}$, $f_i = \text{the mole fraction of species } i$, $D_i = \text{the molecular diffusion coefficient of species } i$, $K = \text{the eddy diffusion coefficient}$, $T = \text{the temperature}$, and $H_i = \text{the scale height of species } i$. These equations are solved for 51 species, considering CO$_2$-H$_2$O-NO$_x$ chemistry with charged particles, for 220 altitude levels, spaced 1 km apart. Table 1 includes the chemical reactions relevant to the present model. In our nominal model we assume that chlorine oxides from radiolysis are synthesized in the form of chlorine dioxide (OCIO) sublimated into the atmosphere, and thus apply an upward flux of OCIO molecules at the lower boundary to serve as the source of chlorine in the model. The OCIO lower boundary flux is taken as an input parameter. We adopt the CS model assumption that the perchloric acid produced in the atmosphere is deposited onto the surface and incorporated into the surface as perchlorate following mineralization.

3. Chlorine Chemistry
In our nominal model, the flux of OCIO from the surface provides a direct source to chlorine trioxide (ClO$_3$), the precursor to perchloric acid. This pathway proceeds through a three-body association mechanism with atomic oxygen

\[\text{OCIO} + \text{O} + \text{M} \rightarrow \text{ClO}_3 + \text{M}, \]

(R2)

[Colussi et al., 1992]. The CS model also includes OCIO as a possible pathway to perchloric acid [Catling et al., 2010; Smith et al., 2014]. Chlorine monoxide (ClO) formation provides an alternative reaction channel

\[\text{OCIO} + \text{O} \rightarrow \text{ClO} + \text{O}_2 \]

(R2a)

that dominates at low atmospheric pressures. However, at higher pressures near the surface, the association mechanism (R2) becomes significant, making it the most important non-photolytic destruction mechanism for OCIO below 10 km. Figure 1 shows the large dropoff in ClO$_3$ mole fraction away from the near-surface region as a result of the decreasing importance of (R2) at lower pressures. Chlorine trioxide is also formed through the reaction

\[\text{Cl} + \text{O}_3 + \text{M} \rightarrow \text{ClO}_3 + \text{M}, \]

(R3)

an important reaction in the proposed catalytic depletion of ozone in the Earth’s polar stratosphere, along with the dissociation mechanism

\[\text{Cl} + \text{O}_3 \rightarrow \text{ClO} + \text{O}_2. \]

(R3a)

(R3) is the primary mechanism for forming the perchloric acid precursor in the atmospheric perchlorate formation studies in the CS model. Free chlorine atoms,
generated by the photolysis of hydrogen chloride (HCl), are part of a very efficient recycling mechanism, illustrated in Figure 2, which we refer to as the Cl/HCl recycling mechanism. This mechanism acts to maintain the HCl abundance, impeding the association pathway to ClO₃. The Cl/HCl recycling mechanism is further intensified in the Martian context by the lower atmospheric pressures that undermine ClO₃ formation through the Cl channel as compared to the Earth, for instance. This mechanism is shepherded by the Cl + O₂ association reaction

\[
\text{Cl} + \text{O}_2 + \text{M} \rightarrow \text{ClOO} + \text{M}. \tag{R4}
\]

Considering that the mole fraction of O₂ is about five orders of magnitude larger than O₃ near the surface, and \(k(R3)/k(R2) \sim 0.1 \), the Cl/HCl recycling mechanism is about 10,000 times more efficient than the ClO₃-producing channel through (R3).

In contrast, chlorine dioxide provides an effective pathway for forming ClO₃. The association reaction (R2) bypasses the Cl/HCl recycling mechanism, directly forming the chlorine trioxide complex. Unlike the Cl + O₃ reaction, association is the preferred pathway for OCIO + O near the Martian surface. At 10 km, the ratio of the rate coefficients of the two OCIO + O pathways \(k(R1)/k(R1a) = 3.5 \), while for Cl + O₃, \(k(R2)/k(R2a) = 9.4 \times 10^{-4} \). Thus, the three-body association mechanism forming ClO₃ is favored over the two-body ClO-forming process in OCIO + O, while the mechanism yielding ClO and O₂ products dominates in the Cl + O₃ reaction.
ClO₃ is proposed to react with OH, yielding two pathways, an association reaction that produces perchloric acid

\[\text{OH} + \text{ClO}_3 + \text{M} \rightarrow \text{HClO}_4 + \text{M}, \quad \text{(R1)} \]

and an addition/decomposition mechanism that is proposed to yield HO₂ and OClO

\[\text{OH} + \text{ClO}_3 \rightarrow \text{HO}_2 + \text{OClO}. \quad \text{(R1a)} \]

The pathway to perchloric acid through direct injection of chlorine dioxide into the atmosphere proceeds as follows:

\[\text{H}_2\text{O} + h\nu \rightarrow \text{OH} + \text{H} \]
\[\text{O}_3 + h\nu \rightarrow \text{O}_2 + \text{O}(^1\text{D}) \]
\[\text{O}(^1\text{D}) + \text{CO}_2 \rightarrow \text{O} + \text{CO}_2 \]
\[\text{OClO} + \text{O} + \text{CO}_2 \rightarrow \text{ClO}_3 + \text{CO}_2 \]
\[\text{ClO}_3 + \text{OH} + \text{CO}_2 \rightarrow \text{HClO}_4 + \text{CO}_2 \]
\[\text{O}_3 + \text{H}_2\text{O} + \text{OClO} \rightarrow \text{HClO}_4 + \text{O}_2 + \text{H} \cdot \quad \text{(S1)} \]

Water vapor, in the atmosphere, provides the important hydroxyl radicals that support this oxidation process. As on Earth, ozone (O₃) also plays an important, albeit indirect, role in the formation of perchloric acid in supplying the necessary oxygen atoms. A secondary source of O atoms in the lower atmosphere is from CO₂ photolysis, so

\[\text{H}_2\text{O} + h\nu \rightarrow \text{OH} + \text{H} \]
\[\text{CO}_2 + h\nu \rightarrow \text{CO} + \text{O} \]
\[\text{OClO} + \text{O} + \text{CO}_2 \rightarrow \text{ClO}_3 + \text{CO}_2 \]
\[\text{ClO}_3 + \text{OH} + \text{CO}_2 \rightarrow \text{HClO}_4 + \text{CO}_2 \]
\[\text{CO}_2 + \text{H}_2\text{O} + \text{OClO} \rightarrow \text{HClO}_4 + \text{CO} + \text{H} \quad \text{(S2)} \]
also contributes to perchloric acid formation. The viability of these chemical schemes lies with the availability of OH radicals, which get consumed by carbon monoxide (CO) molecules. A reduction in CO abundance would coincide with an increase in HClO₄ production.

(R3) does serve as a minor source for ClO₃ under these assumptions, yielding a ClO₃ production rate of ~15% that of (R2) over most of the range of OClO fluxes considered. The path from OClO to perchloric acid through (R3) involves a larger variety of chlorine species, which includes part of the Cl/HCl efficient recycling mechanism:

\[
\begin{align*}
\text{OCIO} + h\nu & \rightarrow \text{ClO} + \text{O} \\
\text{ClO} + \text{HO}_2 & \rightarrow \text{HOCl} + \text{O}_2 \\
\text{HOCl} + h\nu & \rightarrow \text{Cl} + \text{OH} \\
\text{O}_2 + \text{O} + \text{CO}_2 & \rightarrow \text{O}_3 + \text{CO}_2 \\
\text{H}_2\text{O} + h\nu & \rightarrow \text{H} + \text{OH} \\
\text{H} + \text{O}_2 + \text{CO}_2 & \rightarrow \text{HO}_2 + \text{CO}_2 \\
\text{Cl} + \text{O}_3 + \text{CO}_2 & \rightarrow \text{ClO}_3 + \text{CO}_2 \\
\text{ClO}_3 + \text{OH} + \text{CO}_2 & \rightarrow \text{HClO}_4 + \text{CO}_2 \\
\text{OCIO} + \text{O}_2 + \text{H}_2\text{O} & \rightarrow \text{HClO}_4 + \text{OH}.
\end{align*}
\]

Many of the reactions involved in the above chemical schemes are pressure-dependent reactions, involving a third-body, CO₂. This illustrates that perchlorate production from these mechanisms can only significantly take place at low altitudes (< 10 km) and high pressure (> 2 mb).
4. Model Results and Comparison with Catling et al./Smith et al. Volcanic Mechanism

To analyze the effect of an influx of chlorine oxides on the formation of perchloric acid, the OCIO boundary flux from the surface was varied from 10^3 to 6×10^{11} molecules cm$^{-2}$ s$^{-1}$. The results are displayed in Table 2. As OCIO is injected into the atmosphere, ultraviolet radiation longward of 200 nm, transparent to CO$_2$ and most of Mars’ atmospheric constituents, efficiently destroys chlorine dioxide at a rate of ~500 times that of O addition. The result is the formation of ClO, a cog in the Cl/HCl recycling mechanism that acts as a tourniquet to ClO$_3$ formation. Thus, at low OCIO fluxes, the production of HClO$_4$ is limited. Perchloric acid production increases proportionally with OCIO flux up to about 10^8 cm$^{-2}$ s$^{-1}$. Above this flux level, the flux of OCIO produces enough ClO molecules to diminish the availability of ClO$_3$ to be converted to HClO$_4$, as ClO + ClO$_3$ competes with OH + ClO$_3$. As a result, perchloric acid production peaks at an OCIO flux of 2×10^{10} cm$^{-2}$ s$^{-1}$, decreasing thereafter with increasing OCIO flux, as shown in Figure 3.

Smith et al. [2014] derived a ClO$_4^-$ concentration of 2.8–4.8×10$^{-8}$ wt.% from a perchloric acid deposition rate of 4.6×10$^{-3}$ molecules cm$^{-2}$ s$^{-1}$, assuming a soil density of 1 g cm$^{-3}$, a deposition time of 3×109 yr, and a soil mixing depth of 1.5–2.6 m. Using these assumptions, an HClO$_4$ production rate of 3.8×104 molecules cm$^{-2}$ s$^{-1}$ is necessary.
to account for the observed Martian perchlorate concentration in the north polar region [Hecht et al., 2009]. Under our nominal scheme, a flux of 10^9 OClO molecules cm$^{-2}$ s$^{-1}$, generated by radiolysis, would provide the necessary yield of perchloric acid. As Table 1 shows, higher OClO fluxes would also produce the requisite amount of HClO$_4$.

However, the required amount of HClO$_4$ production depends on the assumptions used in the calculations. HClO$_4$ production is very dependent on the hydroxyl (OH) mole fraction. OH, supplied by H$_2$O (S1), is highly sensitive to the CO abundance, as CO is the major sink for hydroxyl radicals. The quadrupole mass spectrometer (QMS) on the SAM suite measured the CO mole fraction at $7.49 \pm 0.026 \times 10^{-4}$ at the Gale Crater low latitude site [Franz et al., 2015]. In contrast, the Compact Reconnaissance Imaging Spectrometer (CRISM) on the Mars Reconnaissance Orbiter (MRO), which measured a globally averaged CO mole fraction of 700 ppm, sampled the north pole CO mole fraction at 200 ppm and 400 ppm at the south pole, with uncertainties of about 40% [Smith et al., 2009]. Considering that periods of high obliquity would bring glaciation down to lower latitudes, it is not unreasonable to consider that the CO mixing ratio could be at these levels at low- and mid-latitudes during chlorine oxide sublimation. Reducing the CO mole fraction in our model from 8.0×10^{-4} to 2.0×10^{-4} decreases the required OClO surface flux to 1.6×10^8 molecules cm$^{-2}$ s$^{-1}$.

Mixing depth is another area of considerable uncertainty. Smith et al. assumed a mixing depth of 1.5–2.6 meters, taking 3 times the e-folding depth calculated by Zent...
[1998]. Zent [1998] calculated 1/e mixing depths for post-Noachian conditions of 0.51–0.85 m. However, the level of mixing in driving oxidants down from the surface through the regolith at the Phoenix site is still up to debate. Mellon et al. [2008] examined periglacial landforms at the Phoenix landing site and found small-scale polygons of about 3–6 cm in diameter and rock sorting that they argue is indicative of cryoturbation overturning of the surface on the order of a few meters in depth over the past few million years. Gallagher et al. [2011] found landforms 25 km east of the Phoenix landing site that they indicate are consistent with freeze-thaw cycles that accompany the overturning of the surface. However, Levy et al. [2009] did not find any evidence of rock sorting at the Phoenix landing site and concluded that landforms were consistent with a dry, quiescent history with only ice sublimation, as opposed to the dry cryoturbation or freeze-thaw scenarios. The Zent model demonstrates that only the top 30 cm is likely to undergo complete oxidation and that oxidation falls off considerably below the top tens of centimeters of crust. We consider this conservative scenario and use this depth to calculate a lower limit for OCIO flux. The HClO₄ production rate necessary to account for the observed concentration of perchlorate accumulated in the top 30 cm of the surface since the Amazonian period is 7.7×10^3 molecules cm$^{-2}$ s$^{-1}$, corresponding to a OCIO flux of 3.2×10^7 molecules cm$^{-2}$ s$^{-1}$. We take this value as our lower limit for OCIO flux under this mechanism (Figure 3).
The results of the nominal model can be directly compared with the CS model. Using the same background atmosphere the nominal model calculates an HClO$_4$ production rate of about seven orders of magnitude greater than the CS model. Part of the discrepancy is associated with a larger chlorine flux into the atmosphere. Smith et al. include a volcanic flux of 6.0×10^4 HCl molecules cm$^{-2}$ s$^{-1}$, while our nominal model calculates the requisite rate of HClO$_4$ production with a chlorine flux larger than Smith et al. by a factor of 1.7×10^4. The radiolysis method can potentially release significantly more chlorine into the atmosphere than volcanism, as the radiolysis mechanism is not bound by the energy budget of the planet but rather by the energy input into the atmosphere from external sources. Moreover, this energy input is available throughout the entire planet and throughout all of Martian history, as opposed to volcanism, which has geographic limitations and a more limited timeframe [Craddock and Greeley, 2009].

We add that this process may operate in parallel with other perchlorate forming processes, such as UV-induced oxidation as suggested by Carrier and Kounaves [2015].

Another difference between the nominal model and the CS model pertains to the OH + ClO$_3$ reaction. In their study on chlorine chemistry in the Atacama, CS reduced the rate coefficients for OH + ClO$_3$ (R1) and Cl + O$_3$ (R3) by a factor of 30 in order to match their HCl profile with observations. (R3) has not been measured in the laboratory, and Simonaitis and Heicklen [1975] used OH + NO as an analogy to estimate the (R3) reaction. (R3) is a less important reaction in our scheme as chlorine flows to ClO$_3$.
primarily through OClO, rather than through the Cl/HCl mechanism as in the CS model. So, the CS rate coefficient for (R3) has been adopted in the nominal model. However, for (R1) Zhu and Lin (2001) conducted a theoretical ab initio calculation of the OH + ClO3 reaction complex. Their calculations found that the association/decomposition pathway (R1a) lacks a reaction barrier and proceeds with a minimal temperature dependence from 300–3000 K. In addition, the HClO4-producing pathway at high pressures proceeds at rates comparable to the (R1a) channel in this temperature range. (CS) considered this rate coefficient in their Atacama study but dismissed it citing difficulty in matching the HCl profile. Considering the behavior of the OH + ClO3 complex, we find it difficult to believe that the rate coefficient would drop by a factor of 30 between 300 K and Martian temperatures, and given the lack of evidence to the contrary, we adopt the Zhu and Lin rate coefficient for (R1). This difference accounts for a factor of 30 difference in the HClO4 yield between the nominal model and the CS Mars model.

The remaining difference stems from the greater efficiency in chlorine- incorporation into HClO4 via OClO as opposed to the efficient recycling mechanism of Cl/HCl. It is more difficult to explain the larger perchlorate/chloride ratios found on Mars through an atmospheric mechanism involving HCl as the high efficiency of the Cl/HCl cycle prevents a large yield of HClO4 in relation to HCl. The CS mechanism appears to be a more viable way of forming perchlorate in the Atacama or Antarctic Dry
Valleys, where the ClO$_4$/Cl^- ratio are \sim1:500 [Catling et al., 2010] and 1:1500–3000 [Kounaves et al., 2010], respectively. However, in the nominal scheme the independence of perchlorate formation to the HCl abundance would permit perchlorate/chloride ratios near or greater than unity, more indicative of what is found on the surface of Mars [Hecht et al., 2009; Kounaves et al., 2010; Archer et al., 2015].

5. Other Possible Sources of Perchlorate

Our calculations are based on the assumption that chlorine oxides formed through radiolysis are injected via sublimation into the atmosphere in the form of OCIO. The study of Kim et al. [2013] shows that irradiation of chlorine-doped ice yields ClOOCl and ClOCl as well, along with evidence for higher-order chlorine oxides. ClOOCl and ClOCl form ClO through photolysis, which can lead to HClO$_4$ formation, albeit less efficiently than OCIO. Molecules that contain -ClO$_2$ and -ClO$_3$ functional groups can also be sources of HClO$_4$ through ClO$_3$ or OCIO. For instance, Cl$_2$O$_6$ rapidly decomposes into OCIO and O$_2$ in the gas phase [López and Sicre, 1990]. More investigation regarding the identification and kinetics of these compounds are needed.

ClO$_3$ chemistry itself could also provide additional mechanisms for perchloric acid formation. ClO$_3$ has been positively identified by Grothe and Willner [1994] and Kopitzky et al. [2002]. The photolysis of ClO$_3$ results in the formation of ClO and O$_2$.

This article is protected by copyright. All rights reserved.
However, there is evidence of a ClO•O₂ complex forming from the photolysis of ClO₃ at 255 nm [Kopitzky et al., 2002]. ClO•O₂ may potentially provide a rapid pathway to HClO₄ through

\[
\text{ClO} \cdot \text{O}_2 + \text{O}_3 \rightarrow \text{ClO} \cdot \text{O}_3 + \text{O}_2 \\
\text{ClO} \cdot \text{O}_3 + \text{O}_2 \rightarrow \text{HClO}_4 + \text{O}_2
\]

or to OClO through the photolysis of the ClO•O₃ complex

\[
\text{ClO} \cdot \text{O}_3 + h\nu \rightarrow \text{OClO} + \text{O}_2
\]

[Prasad and Lee, 1994], but much more work is necessary in understanding the stability and dynamics of ClO•O₂ and ClO•O₃ in order to evaluate the viability of these pathways.

In addition, a further source of OClO could be the irradiation of perchlorate salts themselves. Quinn et al. [2013] analyzed the effects of GCR irradiation on Ca(ClO₄)₂ and found that hypochlorite (ClO⁻) and OClO could be produced in the Martian soils. OClO would return to the atmosphere, creating a recycling mechanism for HClO₄ production, while unstable ClO⁻ would likely be converted into hypochlorous acid (HOCICl) under aqueous settings and participate in the Cl/HCl recycling, or chloride ion (Cl⁻), impacting the Cl⁻/ClO₄⁻ ratio. Recent experiments [Turner et al., 2016] demonstrate that the decomposition of hydrated perchlorate by energetic electrons from GCR irradiation would produce chlorate anions (ClO₃⁻), which could form perchloric acid from the mechanism in this study.

As mentioned above, the irradiation of the Martian surface by UV [Schuttlefield et al., 2011; Carrier and Kounaves, 2015] or by GCRs (this study) may produce the
requisite perchlorate on the Martian surface. However, they may not be the only radiation source of chlorine oxides in the Mars environment. Solar cosmic rays (SCRs) are a source of radiation whose dosage can exceed that of GCRs during periods of low obliquity on Mars [Pavlov et al., 2012], when the total atmospheric pressure would drop to 0.2–0.3 mbars [Armstrong et al., 2004]. Periods of low atmospheric pressure would likely make up about 10% of the Martian history. Furthermore, the SCR dosage in these periods of low pressure would drop off by two orders of magnitude below the top 2–3 cm of the Martian surface [Pavlov et al., 2012], making SCRs a likely minor radiation source. GCRs can also provide ionizing radiation on Martian dust, which contains comparable amounts of chlorine [Morris et al., 2006]. This dust can act as a potential additional source of chlorine oxides in the Martian atmosphere. In addition to GCRs, solar energetic particles (SEPs) provide significant ionizing radiation, which acts on the dust in the atmosphere [Norman et al., 2014]. Events producing SEPs are sporadic, and SEPs have little effect below the surface, but the energy provided by such an event can be a source of radiolysis on atmospheric dust particles over the course of Martian history.

6. Conclusions

In summary, we have investigated the formation of perchloric acid initiated by radiolysis of the Martian surface by galactic cosmic rays. The injection of chlorine
oxides into the atmosphere can proceed through the interaction of secondary electrons from the radiolysis process with the Martian surface, followed by the sublimation of the chlorine volatiles into the atmosphere. We conclude that the injection of one such chlorine oxide into the atmosphere, OCIO, with a flux as low as \(3.2 \times 10^7\) molecules cm\(^{-2}\) s\(^{-1}\) integrated over the Amazonian period and an accumulation depth of 30 cm, can produce the requisite amount of HClO\(_4\) to account for the observed perchlorate abundance in the Martian surface.

Although there are many uncertainties regarding the details, this study demonstrates that the radiolysis mechanism presents a viable mechanism for the formation of the necessary chlorine oxides and a reasonable alternative to other hypotheses considered. GCRs act as an available energy source over the entire planet at all times throughout Martian history, and climatological changes brought on by obliquity evolution make radiolysis a feasible process globally. As a result, the proposed mechanism can inject more chlorine into the atmosphere than the volcanism mechanism proposed by Catling et al./Smith et al.

We also find that the injection of OCIO into the atmosphere presents chemical pathways that are more efficient in forming higher-order chlorine oxides than the volcanic mechanism, as the chemical mechanism of association, attaching O atoms and OH molecules to chlorine dioxide largely circumvents much of the efficient Cl/HCl recycling mechanism that inhibits the growth of chlorine compounds in the Martian
atmosphere. This mechanism may provide an explanation for the larger perchlorate/chloride ratio observed on Mars as compared to the Earth, which may be an indication of differing perchlorate formation mechanisms for those two examples.

Additional lab studies are required to determine the precise yields and nature of chlorine oxides from surface radiolysis and the possibility of production of perchloric acid, and eventually, perchlorates directly in the surface.

Acknowledgements. We thank R. Navarro-González, A.A. Pavlov, B. Sutter, and M.H. Wong for useful comments on the manuscript and the MSL team for successful operation of the mission. RIK acknowledges support from the National Aeronautics and Space Administration under Grant NNX14AG39G. This paper is a modeling paper that used model inputs that are referenced accordingly throughout. We note that there are no data sharing issues since all of the numerical information is provided in the figures and tables produced by solving the equations in the paper. This research was supported by the NASA Mars Science Laboratory Project.
References

Allison, T.C., G.C., D.G. Truhlar, and M.S. Gordon (1996), An improved potential energy surface for the H₂Cl system and its use for calculations of rate coefficients and kinetic isotope effects, *J. Phys. Chem.*, 100(32), 13575-13587, doi:10.1021/jp960781j.

Anicich, V.G. and W.T. Huntress (1986), A survey of bimolecular ion-molecule reactions for use in modeling the chemistry of planetary atmospheres, cometary comae, and interstellar clouds, *Astrophys. J. Suppl. Series*, 62(3), 553-672, doi:10.1086/191151.

Archer, P.D., et al. (2014), Abundances and implications of volatile-bearing species from evolved gas analysis of the Rocknest aeolian deposit, Gale Crater, Mars, *J. Geophys. Res.*, 119(1), 237-254, doi:10.1002/2013JE004493.

Archer, P.D., et al. (2015), Oxychlorine species on Mars: The Gale Crater Story, paper presented at 46th Lunar and Planetary Science Conference, Lunar Planet. Sci. Conf., The Woodlands, Texas, USA.

Armstrong, J.C., C.B. Leovy, and T. Quinn (2004), A 1 Gyr climate model for Mars: New orbital statistics and the importance of seasonally resolved polar processes, *Icarus*, 171(2), 255-271, doi:10.1016/j.icarus.2004.05.007.
Atkinson, R., D.L. Baulch, R.A. Cox, R.F. Hampson, J.A. Kerr, and J. Troe (1989),
Evaluated kinetic and photochemical data for atmospheric chemistry - supplement
III, *Int. J. Chem. Kin.*, 21(2), 115-150, doi:10.1002/kin.550210205.

Atkinson, R., D.L. Baulch, R.A. Cox, R.F. Hampson, J.A. Kerr, M.J. Rossi, and J. Troe
(1997), Evaluated kinetic, photochemical and heterogeneous data for atmospheric
chemistry: supplement V, IUPAC subcommittee on gas kinetic data evaluation for
atmospheric chemistry, *J. Phys. Chem. Ref. Data*, 26(3), 521-1011.

Atkinson, R., D.L. Baulch, R.A. Cox, J.N. Crowley, R.F. Hampson, R.G. Hynes, M.E.
Jenkin, M.J. Rossi, and J. Troe (2004), Evaluated kinetic and photochemical data
for atmospheric chemistry: Volume I – gas phase reaction of O₃, HOₓ, NOₓ and
SOₓ species, *Atm. Chem. Phys.*, 4, 1461-1738.

Atkinson, R., D.L. Baulch, R.A. Cox, J.N. Crowley, R.F. Hampson, R.G. Hynes, M.E.
Jenkin, M.J. Rossi, and J. Troe (2007), Evaluated kinetic and photochemical data
for atmospheric chemistry: Volume III – gas phase reactions of inorganic
halogens, *Atm. Chem. Phys.*, 7, 981-1191.

Atreya, S.K. and Z.G. Gu (1994), Stability of the martian atmosphere – is heterogeneous
catalysis essential? *J. Geophys. Res.*, 99(E6), 13133-13145,
doi:10.1029/94JE01085.

This article is protected by copyright. All rights reserved.
Barnett, A.J., G. Marston, and R.P. Wayne (1987), Kinetics and chemiluminescence in the reaction of N atoms with O₂ and O₃, *J. Chem. Soc. Faraday Trans.*, 2, 83, 1453-1463, doi:10.1039/f29878301453.

Baulch, D.L., C.J. Cobos, R.A. Cox, P. Frank, G. Hayman, Th. Just, J.A. Kerr, T. Murrells, M.J. Pilling, J. Troe, R.W. Walker, and J. Warnatz (1994), Evaluated kinetic data for combustion modeling. Supplement I., *J. Phys. Chem. Ref. Data*, 23(6), 847-1033.

Baulch, D.L., C.J. Cobos, R.A. Cox, C. Esser, P. Frank, Th. Just, J.A. Kerr, M.J. Pilling, J. Troe, R.W. Walker, and J. Warnatz (1992), Evaluated kinetic data for combustion modeling, *J. Phys. Chem. Ref. Data*, 21(6), 411-429.

Baulch, D.L., J. Duxbury, S.J. Grant, and D.C. Montague (1981), Evaluated kinetic data for high-temperature reactions. Vol.4 – homogeneous gas-phase reactions of halogen-containing and cyanide-containing species, *J. Phys. Chem. Ref. Data*, 10, 1-721.

Biemann, K., et al. (1977), The search for organic substances and inorganic volatile compounds in the surface of Mars, *J. Geophys. Res.*, 82, 4641-4658.

Biemann, K. and J.L. Bada (2011), Comment on “Reanalysis of the Viking results suggests perchlorate and organics at midlatitudes on Mars” by Rafael Navarro-González et al., *J. Geophys. Res.*, 116, E12001, doi:10.1029/2011JE003869.

This article is protected by copyright. All rights reserved.
Boodaghians, R.B., C.E. Canosa-Mas, P.J. Carpenter, R.P. Wayne (1988), The reactions of NO$_3$ with OH and H, *J. Chem. Soc. Faraday Trans. 2*, 84, 931-948, doi:10.1039/f29888400931.

Brune, W.H., J.J. Schwab, and J.G. Anderson (1983), Laser magnetic-resonance, resonance fluorescence, and resonance absorption studies of the reaction-kinetics of O + OH \rightarrow H + O$_2$, O + HO$_2$ \rightarrow OH + O$_2$, N + OH \rightarrow H + NO, and N + HO$_2$ \rightarrow Products at 300 K between 1 and 5 torr, *J. Phys. Chem.*, 87(22), 4503-4514, doi:10.1021/j100245a034.

Carrier, B.L. and S.P. Kounaves (2015), The origins of perchlorate in the Martian soil, *Geophys. Res. Lett.*, 42(10), doi:10.1002/2015GL064290.

Catling, D.C., M.W. Claire, K.J. Zahnle, R.C. Quinn, B.C. Clark, M.H. Hecht, and S. Kounaves (2010), Atmospheric origins of perchlorate on Mars and in the Atacama, *J. Geophys. Res.*, 115, E00E11, doi:10.1029/2009JE003425.

Chan, W.F., G. Cooper, R.N.S. Sodhi, and C.E. Brion (1993), Absolute optical oscillator strengths for discrete and continuum photoabsorption of molecular nitrogen (11-200 eV), *Chem. Phys.*, 170(1), 81-97, doi:10.1016/0301-0104(93)80095-Q.

Chichinin, A.I. (2000), Isotope effects in the deactivation of O(1D) atoms by XCl and XF (X=H,D), *Chem. Phys. Lett.*, 316(5-6), 425-432, doi:10.1016/S0009-6161(99)01325-1.
Christensen, L.E. M. Okumura, S.P. Sander, R.J. Salawitch, G.C. Toon, B. Sen., J.F. Blavier, and K.W. Jucks (2002), Kinetics of HO$_2$+HO$_2$ → H$_2$O$_2$ + O$_2$: Implications for stratospheric H$_2$O$_2$, Geophys. Res. Lett., 29(9), 1299, doi:10.1029/2001GL014525.

Cockell, C.S. and J.A. Raven (2004), Zones of photosynthetic potential on Mars and the early Earth, Icarus, 169, 300-310, doi:10.1016/j.icarus.2003.12.024.

Colussi, A.J., S.P. Sander, and R.R. Friedl (1992), Temperature dependence and mechanism of the reaction between O(3P) and chlorine dioxide, J. Phys. Chem, 96(11), 4442-4445, doi:10.1021/j100190a058.

Craddock, R.A. and R. Greeley (2009), Minimum estimates of the amount and timing of gases released into the martian atmosphere from volcanic eruptions, Icarus, 204(2), 512-526, doi:10.1016/j.icarus.2009.07.026.

Cull, S.C., R.E. Arvidson, J.G. Catalano, D.W. Ming, R.V. Morris, M.T. Mellon, and M. Lemmon (2010), Concentrated perchlorate at the Mars Phoenix landing site: Evidence for thin film liquid water on Mars, Geophys. Res. Lett., 37, L22203, doi:10.1029/2010GL045269.

Dasgupta, P.K., P.K. Martinelango, W.A. Jackson, T.A. Anderson, K. Tian, R.W. Tock, and S. Rajagopalan (2005), The origin of naturally occurring perchlorate: The role of atmospheric processes, Environ. Sci. Technol., 39(6), 1569-1575, doi:10.1021/es048612x.
DeMore, W.B., S.P. Sander, D.M. Golden, R.F. Hampson, M.J. Kurylo, C.J. Howard, A.R. Ravishankara, C.E. Kolb, and M.J. Molina (1997), *JPL Publication 97-4*.

Du, M.L. and A. Dalgarno (1990), The radiative association of N and O atoms, *J. Geophys. Res.*, 95(A8), 12265-12268, doi:10.1029/JA095iA08p12265.

Erickson, G.E. (1983), The Chilean nitrate deposits, *Am. Sci.*, 71(4), 366-374.

Farley, K.A. et al. (2016), Light and variable 37Cl/35Cl ratios in rocks from Gale Crater, Mars: possible signature of perchlorate, *Earth Planet. Sci. Lett.*, 438, 14-24, doi:10.1016/j.epsl.2015.12.013.

Fell, C., J.I. Steinfeld, and S. Miller (1990), Quenching of N(2D) by O(3P), *J. Chem. Phys.*, 92(8), 4768-4777, doi:10.1063/1.457694.

Fennelly, J.A. and D.G. Torr (1992), Photoionization and photoabsorption cross sections of O, N$_2$, O$_2$, and N for aeronomic calculations, *At. Data Nuc. Tables*, 51(2), 321-363, doi:10.1016/0092-640X(92)90004-2.

Fox, J.L. and A. Dalgarno (1979), Ionization, luminosity, and heating of the upper atmosphere of Mars, *J. Geophys. Res.*, 84(NA12), 7315-7333, doi:10.1029/JA084iA12p07315.

Franz, H.B., M.G. Trainer, M.H. Wong, P.R. Mahaffy, S.K. Atreya, H.L.K. Manning, and J.C. Stern (2015), Reevaluated martian atmospheric mixing ratios from the mass spectrometer on the Curiosity rover, *Planet. Space Sci.*, 109-110, 154-158, doi:10.1016/j.pss.2015.02.014.
Gallagher, C., M.R. Balme, S.J. Conway, and P.M. Grindrod (2011), Sorted clastic stripes, lobes and associated gullies in high-latitude craters on Mars: Landforms indicative of very recent, polycyclic ground-ice thaw and liquid flows, *Icarus*, 211, 458-471, 2011.

Gallagher, J.W., C.E. Brion, J.A.R. Samson, and P.W. Langhoff (1988), Absolute cross sections for molecular photoabsorption, partial photoionization, and ionic photofragmentation processes, *J. Phys. Chem. Ref. Data*, 17(1), 9-153.

Gentieu, E.P. and J.E. Mentall (1970), Formaldehyde absorption coefficients in vacuum ultraviolet (650 to 1850 angstroms), *Science*, 169(3946), 681, doi:10.1126/science.169.3946.681.

Gentieu, E.P., U. Linnebach, K. Kleinermanns, and J. Wolfrum (1987), H-atom photofragments from H$_2$O$_2$ dissociated at 193 nm, *Chem. Phys. Lett.*, 133(2), 113-115, doi:10.1016/0009-2614(87)87031-8.

Ghosh, B., D.K. Papnastasiou, R.K. Talukdar, J.M. Roberts, and J.B. Burkholder (2012), Nitryl chloride (ClNO$_2$): UV/Vis absorption spectrum between 210 and 296 K and O(3P) quantum yield at 193 and 248 nm, *J. Phys. Chem.*, 116(24), 5796-5805, doi:10.1021/jp207389y.

Giavin, D.P., et al. (2013), Evidence for perchlorates and the origin of chlorinated hydrocarbons detected by SAM at the Rocknest Aeolian deposit in Gale Crater, *J. Geophys. Res.*, 118(10), 1955-1973, doi:10.1002/jgre.20144.
Glicker, S. and L.J. Stief (1971), Photolysis of formaldehyde at 1470 and 1236 Å, *J. Chem. Phys.*, 54(7), 2852, doi:10.1063/1.1675264.

Góbi, S., M.J. Abplanalp, and R.I. Kaiser (2016), Effect of perchlorates on electron radiolysis of glycine with application to Mars, *Astrophys. J.*, 822(1), 8, doi:10.3847/0004-637X/822/1/8.

Grothe, H. and H. Willner (1994), Chlorine trioxide – spectroscopic properties, molecular structure, and photochemical behavior, *Angew. Chem. Eng.*, 33(14), 1482-1484, doi:10.1002/anie.199414821.

Haddad, G.N. and J.A.R. Samson (1986), Total absorption and photoionization cross sections of water vapor between 100 and 1000 Å, *J. Chem. Phys.*, 84(12), 6623-6626, doi:10.1063/1.450715.

Hecht, M.H., et al. (2009), Detection of perchlorate and the soluble chemistry of martian soil at the Phoenix Lander site, *Science*, 325(5936), 64-67, doi:10.1126/science.1172466.

Herron, J.T. (1999), Evaluated chemical kinetics data for reactions of N(2D), N(2P), and N2(A3Σu+), in the gas phase, *J. Phys. Chem. Ref. Data*, 28(5), 1453-1483, doi:10.1063/1.556043.

Hochanadel, C.J., T.J. Sworski, and P.J. Ogren (1980), Ultraviolet spectrum and reaction kinetics of the formyl radical, *J. Phys. Chem.*, 84(3), 231-235, doi:10.1021/j100440a001.
Ingham, T., S.P. Sander, and R.R. Friedl (2005), Kinetics and product studies of the reaction of Br, Cl, and NO with ClOOC1 using discharge-flow mass spectrometry, *Faraday Disc.*, 130, 89-110, doi:10.1039/b500179j.

Jackson, W.A., et al. (2015a), Global patterns and environmental controls of perchlorate and nitrate co-occurrence in arid and semi-arid environments, *Geochim. Cosmochim. Acta*, 164, 502-522, doi:10.1016/j.gca.2015.05.016.

Jackson, W.A., A.F. Davila, D.W.G. Sears, J.D. Coates, C.P. McKay, M. Brundrett, N. Estrada, and J.K. Böhlke (2015b), Widespread occurrence of (per)chlorate in the Solar System, *Earth Planet. Lett.*, 430, 470-476, doi:10.1016/j.epsl.2015.09.003.

Keller, J.M. et al. (2006), Equatorial and midlatitude distribution of chlorine measured by Mars Odyssey GRS, *J. Geophys. Res.*, 111(E3), E03S08, doi:10.1029/2006JE002679.

Kim, Y.S., K.P. Wo, S. Maity, S.K. Atreya, and R.I. Kaiser (2013), Radiation-induced formation of chlorine oxides and their potential role in the origin of martian perchlorates, *J. Am. Chem. Soc.*, 135(13), 4910-4913, doi:10.1021/ja3122922.

Koritsa, R., H. Grothe, and H. Willner (2002), Chlorine oxide radicals ClOx (x=1-4) studied by matrix isolation spectroscopy, *Chem. Eur. J.*, 8(24), 5601-5621.

Koumaves, S.P. et al. (2010a), Discovery of natural perchlorate in the Antarctic Dry Valleys and its global implications, *Environ. Sci. Technol.*, 44(7), 2360-2364, doi:10.1021/es9033606.
Kounaves, S.P. et al. (2010b), Soluble sulfate in the martian soil at the Phoenix landing site, *Geophys. Res., Lett.*, 37, L09201, doi:10.1029/2010GL042613.

Kounaves, S.P., B.L. Carrier, G.D. O’Neil, S.T. Stroble, and M.W. Claire (2014a), Evidence of martian perchlorate, chlorate, and nitrate in Mars meteorite MTA79001: Implications for oxidants and organics, *Icarus*, 229, 206-213, doi:10.1016/j.icarus.2013.11.012.

Kounaves, S.P., N.A. Chaniotakis, V.F. Chevrier, B.L. Carrier, K.E. Folds, V.M. Hansen, K.M. McElhoney, G.D. O’Neil, and A.W. Weber (2014b), Identification of the perchlorate parent salts at the Phoenix Mars landing sites and possible implications, *Icarus*, 232, 226-231, doi:10.1016/j.icarus.2014.01.016.

Leshin, L.A. et al. (2013), Volatile, isotope, and organic analysis of Martian fines with the Mars Curiosity Rover, *Science*, 341(6153), doi:10.1126/science.1238937.

Levy, J.S., J.W. Head, and D.R. Marchant (2009), Cold and dry processes in the Martian Arctic: Geomorphic observations at the Phoenix landing site and comparisons with terrestrial cold desert landforms, *Geophys. Res. Lett.*, 36, L21203, doi:10.1029/2009GL040634.

Lewis, B.R. and J.H. Carver (1983), Temperature dependence of the carbon dioxide photoabsorption cross section between 1200 Å and 1970 Å, *J. Quant. Spec. Radiat. Trans.*, 30(4), 297-309, doi:10.1016/0022-4073(83)90027-4.
Lindner, B.L. (1988), Ozone on Mars – the effects of clouds and airborne dust, *Planet. Space Sci.*, *36*(2), 125-144, doi:10.1016/0032-0633(88)90049-9.

López, M.I. and J.E. Sicre (1990), Physicochemical properties of chlorine oxides. 1. Composition, ultraviolet spectrum, and kinetics of the thermolysis of gaseous dichlorine hexoxide, *J. Phys. Chem.*, *94*(9), 3860-3863, doi:10.1021/j100372a094.

Lu, Z., Y.C. Chang, Q.Z. Yin, C.Y. Ng, and W.M. Jackson (2014), Evidence for direct molecular oxygen production in CO₂ photodissociation, *Science*, *346*(6205), 61-64, doi:10.1126/science.1257156.

McFarland, M., D.L. Albritton, F.C. Fehsenfeld, E.E. Ferguson, and A.L. Schmeltekopf (1974), Energy dependence and branching ratio of the N₂⁺ + O reaction, *J. Geophys. Res.*, *79*(19), 2925, doi:10.1029/JA079i019p02925.

Mellon, M.T., R.E. Arvidson, J.J. Marlow, R.J. Phillips, and E. Asphaug (2008), Periglacial landforms at the Phoenix landing site and the northern plains of Mars, *J. Geophys. Res.*, *113*, E00A23, doi:10.1029/2007JE003039.

Ming, D.W., et al. (2014), Volatile and organic compositions of sedimentary rocks in Yellowknife Bay, Gale Crater, Mars., *Science*, *343*(6169), doi:10.1126/science.1245267.

Moortgat, G.W., W. Seiler, and P. Warneck (1983), Photodissociation of HCHO in air – GO and H₂ quantum yields at 220 K and 300 K, *J. Chem. Phys.*, *78*(3), 1185-1190, doi:10.1063/1.444911.
Morris, R.V., et al. (2006), Mössbauer mineralogy of rock, soil, and dust at Meridiani Planum, Mars: Opportunity’s journey across sulfate-rich outcrop, basaltic sand and dust, and hematite lag deposits, *J. Geophys. Res.*, **111**(E12), E12S15, doi:10.1029/2006JE002791.

Nakata, R. S., K. Watanabe, and F.M. Matsunaga (1965), Absorption and photoionization coefficients of CO₂ in the region of 580 – 1670 Å, *Sci. Light, 14*, 54-71.

Navarro-González, R., E. Vargas, J. de la Rosa, A. Raga, and C.P. McKay (2010), Reanalysis of the Viking results suggests perchlorate and organics at mid-latitudes on Mars, *J. Geophys. Res.*, **115**, E12010, doi:10.1029/2010JE003599.

Nesbitt, F.L., J.F. Gleason, and L.J. Stief (1999), Temperature dependence of the rate constant for the reaction HCO + O₂ → HO₂ + CO at T = 200-398 K, *J. Phys. Chem., 103*(16), 3038-3043, doi:10.1021/jp984781q.

Norman, R.B., G. Gronoff, and C.J. Mertens (2014), Influence of dust loading on atmospheric ionizing radiation on Mars, *J. Geophys. Res.*, **119**(1), 452-461, doi:10.1002/2013JA019351.

Ogawa, M. (1971), Absorption cross sections of O₂ and CO₂ continua in the Schumann and far-UV regions, *J. Chem. Phys., 54*(6), 2550-2556, doi:10.1063/1.1675211.

Okabe, H. (1978), *Photochemistry of small molecules*, Wiley-Intersci., New York.
Orris, G.J., G.J. Harvey, D.T. Tsui, and J.E. Eldrige (2003), Preliminary analyses for perchlorate in selected natural materials and their derivative products, USGS Open-File Report 03-314.

Parker, D.R. (2009), Perchlorate in the environment: the emerging emphasis on natural occurrence, Environ. Chem., 6(1), 10-27.

Pavlov, A.A., G. Vasilyev, V.M. Ostryakov, A.K. Pavlov, and P. Mahaffy (2012), Degradation of the organic molecules in the shallow subsurface of Mars due to irradiation by cosmic rays, Geophys. Res. Lett., 39, L13202, doi:10.1029/2012GL052166.

Prasad, S.S. and W.T. Huntress (1980), A model for gas-phase chemistry in interstellar clouds. 1. The Basic model, library of chemical reactions, and chemistry among C-compounds, N-compounds, and O-compounds, Astrophys. J. Suppl. Series, 43 (1) 1-35.

Prasad, S.S. and T.J. Lee (1994), Atmospheric chemistry of the reaction ClO + O₂ \rightarrow ClO•O₂: Where it stands, what needs to be done, and why? J. Geophys. Res., 99(D4), 8225-8230, doi:10.1029/93JD01809.

Quinn, R.C., H.F.H. Martucci, S.R. Miller, C.E. Bryson, F.J. Grunthaner, and P. J. Grunthaner (2013), Perchlorate radiolysis on Mars and the origin of martian soil reactivity, Astrobiol., 13(6), 515-520, doi:10.1089/ast.2013.0999.
Rajagopalan, S., T.A. Anderson, L. Fahlquist, K.A. Rainwater, M. Ridley, and W.A. Jackson (2006), Widespread presence of naturally occurring perchlorate in high plains of Texas and New Mexico, *Environ. Sci. Technol.*, 40(10), 3156-3162, doi:10.1021/es052155i.

Samson, J.A.R. and R.B. Cairns (1964), Absorption and photoionization cross sections of O$_2$ and N$_2$ at intense solar emission lines, *J. Geophys. Res.*, 69(21), 4583-4590, doi:10.1029/JZ069i021p04583.

Sander, S.P., R.R. Friedl, J.P.D. Abbatt, J.R. Barker, J.B. Burkholder, D.M. Golden, C.E. Kolb, M.J. Kurylo, G.K. Moortgat, P.H. Wine, R.E. Huie, and V.L. Orkin (2011), *Eval. 17*, 684 pp. Jet Propul. Lab., Pasadena, Calif, USA.

Suttlefield, J.D., J.B. Sambur, M. Gelwicks, C.M. Eggleston, and B.A. Parkinson (2011), Photooxidation of chloride by oxide minerals: Implications for perchlorate on Mars, *J. Am. Chem. Soc.* 133(44), 17521-17523, doi:10.1021/ja2064878.

Shaw, D.A., D.M.P. Holland, M.A. MacDonald, A. Hopkirk, M.A. Hayes, and S.M. McSweeny (1992), A study of the absolute photoabsorption cross section and the photoionization quantum efficiency of nitrogen from the ionization threshold to 485 Å, *Chem. Phys.*, 166(3), 379-391, doi:10.1016/0301-0104(92)80097-F.

Shaw, D.A., D.M.P. Holland, M.A. Hayes, M.A. MacDonald, A. Hopkirk, and S.M. McSweeny (1995), A study of the absolute photoabsorption, photoionisation,
and photodissociation cross section and the photoionisation quantum efficiency of carbon dioxide from the ionization threshold to 345 Å, *Chem. Phys.*, 198(3), 381-396, doi:10.1016/0301-0104(95)00159-L.

Shemansky, D.E. (1972), CO₂ extinction coefficient 1700-3000 Å, *J. Chem. Phys.*, 56(4), 1582, doi:10.1063/1.1677408.

Simonaitis, R. and J. Heicklen (1975), Perchloric acid: a possible sink for stratospheric chlorine, *Planet. Space Sci.*, 23(11), 1567-1569, doi:10.1016/0032-0633(75)90010-0.

Smith, C.A., L.T. Molina, J.J. Lamb, and M.J. Molina (1984), Kinetics of the reaction of OH with pernitric and nitric acids, *Int. J. Chem. Kin.*, 16(1), 41-55, doi:10.1002/kin.550160107.

Smith, I.W.M and D.W.A. Stewart (1994), Low-temperature kinetics of reaction between neutral free radicals – rate constants for the reaction of OH radical with N atoms (103 ≤ T/K ≤ 294) and O atoms (158 ≤ T/K ≤ 294), *J. Chem. Soc. Faraday Trans.*, 90(21), 3221-3227, doi:10.1039/ft9949003221.

Smith, M.D., M.J. Wolff, R.T. Clancy, and S.L. Murchie (2009), Compact Reconnaissance Imaging Spectrometer observations of water vapor and carbon monoxide, *J. Geophys. Res.*, 114, E00D03, doi:10.1029/2008JE003288.
Smith, M.L., M.W. Claire, D.C. Catling, and K.J. Zahnle (2014), The formation of sulfate, nitrate, and perchlorate salts in the martian atmosphere, *Icarus, 231*, 51-64, doi:10.1016/j.icarus.2013.11.031.

Stern, J.C., B. Sutter, W.A. Jackson, R. Navarro-González, C.P. McKay, D.W. Ming, and P.R. Mahaffy (2016), The nitrate/perchlorate ratio from martian sedimentary rocks: Clues to the nitrogen cycle? *26th Goldschmidt Conference Abstract*.

Suto, M., X. Wang, and L.C. Lee (1986), Fluorescence from VUV excitation of formaldehyde, *J. Chem. Phys., 85*(8), 4228-4233, doi:10.1063/1.451793.

Sutter, B., et al. (2016), Oxychlorine detections on Mars: Implications for Cl cycling, *26th Goldschmidt Conference Abstract*.

Thompson, B.A., P. Hartreck, and R.R. Reeves, Jr. (1963), Ultraviolet absorption coefficients of CO₂, CO, O₂, H₂O, N₂O, NH₃, NO, SO₂, and CH₄, between 1850 and 4000 Å, *J. Geophys. Res., 68*(24), 6431-6436.

Toner, J.D., D.C. Catling, and B. Light (2015), Modeling salt precipitation from brines on Mars: Evaporation versus freezing origin for soil salts, *Icarus, 250*, 451-461, doi:10.1016/j.icarus.2014.12.013.

Tsang, W. and R.F. Hampson (1986), Chemical kinetic data base for combustion chemistry. Part I. Methane and related compounds, *J. Phys. Chem. Ref. Data, 15*(3), 1087-1279.
Turner, A.M., M.J. Abplanalp, and R.I. Kaiser (2016), Mechanistic studies on the radiolytic decomposition of perchlorates on the martian surface, *Astrophys. J.*, 820(2), 127, doi:10.3847/0004–637X/820/2/127.

Watanabe, K. and A.S. Jursa (1964), Absorption and photoionization cross sections of NeO and H2S, *J. Chem. Phys.*, 41(6), 1650, doi:10.1063/1.1726138.

Watanabe, K., F.M. Matsunaga, and H. Sakai (1967), Absorption coefficient and photoionization yield of NO in the region 580-1350 Å, *Appl. Opt.*, 6(3), 391-396, doi:10.1364/AO.6.000391.

Watanabe, K., M. Zelikoff, and E.C.Y. Inn (1953), Absorption coefficients of several atmospheric gases, *AFCRC Tech. Rept.*, 53, 23.

Wight, G.R., M.J. Van der Wiel, and C.E. Brion (1976), Dipole excitation, ionization and fragmentation of N2 and CO in the 10-60 eV region, *J. Phys. B.*, 9(4), 675-689, doi:10.1088/0022-3700/9/4/017.

Wong, A.S., S.K. Atreya, and T. Encrenaz (2003), Chemical markers of possible hot spots on Mars, *J. Geophys. Res.*, 108(E4), 5026, doi:10.1029/2002JE002003.

Wordsworth, R., F. Forget, E. Millour, J.W. Head, J.-B. Madeleine, and B. Charnay (2013), Global modeling of the early martian climate under a denser CO atmosphere: Water cycle and ice evolution, *Icarus*, 222(1), 1-19, doi:10.1016/j.icarus.2012.09.036.
Xu, Z.F. and M.C. Lin (2003), Ab initio studies of ClOx reactions. IX. Combination and disproportionation reactions of ClO and s-ClO₃ radicals, *J. Chem. Phys.*, 119(17), 8897-8904, doi:10.1063/1.1613632.

Yung, Y.L. and W.B. Demore (1999), *Photochemistry of planetary atmospheres*, Oxford University Press, New York.

Zelikoff, M., K. Watanabe, and E.C.Y. Inn (1953), Absorption coefficients of gases in the vacuum ultraviolet. Part II. Nitrous oxide, *J. Chem. Phys.*, 21(10), 1643-1647, doi:10.1063/1.1698636.

Zent, A.P. (1998), On the thickness of the oxidized layer of the Martian regolith, *J. Geophys. Res.*, 103(E13), 31491-31498, doi:10.1029/98JE01895.

Zhu, R.S. and M.C. Lin (2001), Ab initio study of ammonium perchlorate combustion initiation processes: unimolecule decomposition of perchloric acid and the related OH + ClO₃ reaction, *PhysChemComm*, 25, 1-6.

Zhu, R.S. and M.C. Lin (2003), Ab initio studies of ClOx reactions. VIII. Isomerization and decomposition of ClO₂ radicals and related bimolecular processes, *J. Chem. Phys.*, 119(4), 2075-2082, doi:10.1063/1.1585027.

Zipf, E.C. and R.W. McLaughlin (1978), On the dissociation of nitrogen by electron impact and by EUV photo-absorption, *Planet. Space Sci.*, 26(5), 449-462, doi:10.1016/0032-0633(78)90066-1.
Figure 1. Mole fraction profiles for important chlorine species for the 10^9 cm$^{-2}$ s$^{-1}$ OCIO flux level.
Figure 2. HCl, which is generated by volcanic activity in the Smith et al. [2014] model, is photolysed to form free Cl atoms that can combine with O₃ to form ClO₃ molecules. However, in the Martian atmosphere, most of these free atoms will participate in a Cl/HCl recycling mechanism, labeled in yellow. Our alternative for forming ClO₃, from the release of OCIO through radiolysis/sublimation, bypasses this recycling mechanism, paving the way for perchlorate mineralization.
Figure 3. Plot of the model-calculated deposition rate of perchloric acid vs. the input chlorine dioxide surface flux. The rectangular area represents values that could explain the observed perchlorate abundances on the Martian surface.
Table 1. Reactions and photodissociation processes included in the chemical model.

Reaction	Rate Coefficient	Reference
O + O + M → O₂ + M	5.2×10⁻³⁵ \(e^{-900/T} \)	Tsang and Hampson [1986]
O₂ + O + M → O₃ + M	1.2×10⁻²⁷T⁻².⁴	Krasnopolsky [2010]
O₂ + O + M → O₂ + O₂	8.0×10⁻¹² \(e^{-2000/T} \)	Atkinson et al. [1989]
H₂ + O(¹D) → OH + H	1.1×10⁻¹²	DeMore et al. [1997]
H + H + M → H₂ + M	2.7×10⁻³¹T⁻⁰.⁶	Baulch et al. [1992]
H + O₂ + M → HO₂ + M	1.5×10⁻¹⁰ \(e^{-160/T} \)	DeMore et al. [1997]
H + O₃ → O₂ + OH	2.2×10⁻¹⁰	DeMore et al. [1997]
H₂O + O(¹D) → OH + OH	2.2×10⁻¹² \(e^{-90/T} \)	DeMore et al. [1997]
OH + CO → CO₂ + H	4.9×10⁻¹⁵T⁻⁰.⁶	Sander et al. [2011]
OH + O → O₂ + H	2.2×10⁻¹¹ \(e^{-120/T} \)	DeMore et al. [1997]
CH₃ + O → O₂ + HO	1.6×10⁻¹² \(e^{-940/T} \)	DeMore et al. [1997]
H₂O₂ + O → O₂ + OH	2.9×10⁻¹¹ \(e^{-200/T} \)	Atkinson et al. [1989]
H₂O + O → O₂ + OH	1.1×10⁻¹⁴ \(e^{-500/T} \)	DeMore et al. [1997]
HO₂ + H → OH + OH	7.2×10⁻¹¹	Atkinson et al. [1989]
HO₂ + H → H₂ + O₂	5.6×10⁻¹²	Atkinson et al. [1989]
HO₂ + H → HO₂ + O	2.4×10⁻¹²	Atkinson et al. [1989]
H₂O₂ + HO₂ → H₂O₂ + O₂	1.5×10⁻¹² \(e^{-121/T} \)	Christensen et al. [2002]
HO₂ + OH → O₂ + H₂O	4.8×10⁻¹¹ \(e^{-250/T} \)	DeMore et al. [1997]
H₂O₂ + OH → HO₂ + H₂O	2.9×10⁻¹² \(e^{-161/T} \)	DeMore et al. [1997]
HO(¹D) + M → O + M	7.4×10⁻¹¹ \(e^{-120/T} \)	DeMore et al. [1997]
CO₂ + H₂ → HCO₂⁺ + H	4.7×10⁻¹⁰	Anicich and Huntress [1986]
HCO₂⁺ + e⁻ → CO₂ + H	8.7×10⁻⁶\(e^{-0.5/T} \)	Prasad and Huntress [1980]
O⁺ + CO₂ → O₂⁺ + CO	9.6×10⁻¹⁰	Anicich and Huntress [1986]
CO₂⁺ + O → O₂⁺ + CO	1.6×10⁻¹⁰	Anicich and Huntress [1986]
CO₂⁺ + O → O⁺ + CO⁺	1.0×10⁻¹⁰	Anicich and Huntress [1986]
O₂⁺ + CO₂ → O₂⁺ + CO⁺	5.3×10⁻¹¹	Anicich and Huntress [1986]
CO₂⁺ + e⁻ → CO + O	6.9×10⁻⁶\(e^{-0.5/T} \)	Prasad and Huntress [1980]
O₂⁺ + e⁻ → O + O	3.5×10⁻⁶\(e^{-0.5/T} \)	Prasad and Huntress [1980]
O₂⁺ + N → NO⁺ + O	1.2×10⁻¹⁰	Anicich and Huntress [1986]
O₂⁺ + NO → NO⁺ + O₂	4.4×10⁻¹⁰	Anicich and Huntress [1986]
N₂ + CO₂ → CO₂⁺ + N₂	8.0×10⁻¹⁰	McFarland et al. [1974]
N₂ + O → NO⁺ + N(²D)	1.7×10⁻⁹\(e^{-0.44/T} \)	Prasad and Huntress [1980]
N⁺ + e⁻ → N(²D) + N(²D)	1.8×10⁻⁶\(e^{-0.4/T} \)	Prasad and Huntress [1980]
N⁺ + e⁻ → N(²D) + O	1.2×10⁻⁴\(e^{-1.0/T} \)	Prasad and Huntress [1980]

This article is protected by copyright. All rights reserved.
\[
\begin{align*}
N^+ + CO_2 & \rightarrow CO_2^+ + N & 5.0 \times 10^{-10} & \text{Anicich and Huntress [1986]} \\
N^+ + CO_2 & \rightarrow CO^+ + NO & 5.0 \times 10^{-10} & \text{Anicich and Huntress [1986]} \\
CO^+ + CO_2 & \rightarrow CO_2^+ + CO & 1.1 \times 10^{-9} & \text{Anicich and Huntress [1986]} \\
N^+ + CO & \rightarrow CO^+ + N & 4.0 \times 10^{-10} & \text{Du and Dalgarno [1990]} \\
N + O & \rightarrow NO + h\nu & 4.8 \times 10^{-16}T^{-0.5} & \text{Sander et al. [2011]} \\
N + O + M & \rightarrow NO + M & 8.2 \times 10^{-31}T^{-0.65} & \text{Barnett et al. [1987]} \\
N + O_2 & \rightarrow NO + O & 1.5 \times 10^{-11}e^{-3600/T} & \text{Smith and Stewart [1994]} \\
N + O_3 & \rightarrow NO + O_2 & 1.0 \times 10^{-16} & \text{Brune et al. [1983]} \\
N + OH & \rightarrow NO + H & 3.1 \times 10^{-9}T^{-0.69}e^{-48/T} & \text{Herron [1999]} \\
N + HO_2 & \rightarrow NO + OH & 2.2 \times 10^{-11} & \text{Fell et al. [1990]} \\
N + O^3(D) & \rightarrow NO + CO & 3.5 \times 10^{-13} & \text{Herron [1999]} \\
N + O^3(D) & \rightarrow N + O & 6.9 \times 10^{-13} & \text{DeMore et al. [1997]} \\
N + O^3(D) & \rightarrow N + O_2 & 1.7 \times 10^{-14} & \text{DeMore et al. [1997]} \\
N + O^3(D) & \rightarrow NO + O & 1.8 \times 10^{-11}e^{110/T} & \text{DeMore et al. [1997]} \\
N + O & \rightarrow NO + O & 1.1 \times 10^{-35}T^{-0.6} & \text{DeMore et al. [1997]} \\
NO + O + M & \rightarrow NO_2 + M & 4.6 \times 10^{-28}T^{-1.5} & \text{DeMore et al. [1997]} \\
NO + O_3 & \rightarrow NO_2 + O_2 & 2.0 \times 10^{-12}e^{-1400/T} & \text{DeMore et al. [1997]} \\
NO + HO_2 & \rightarrow NO_2 + OH & 3.5 \times 10^{-12}e^{-250/T} & \text{DeMore et al. [1997]} \\
NO + OH & \rightarrow NO_2 + OH & 1.9 \times 10^{-24}T^{-2.6} & \text{DeMore et al. [1997]} \\
NO + OH & \rightarrow NO_2 + M & 2.1 \times 10^{-11}e^{100/T} & \text{Fell et al. [1990]} \\
CO + O & \rightarrow NO + O & 6.9 \times 10^{-11} & \text{DeMore et al. [1997]} \\
CO + O & \rightarrow NO + O_2 & 6.5 \times 10^{-12}e^{120/T} & \text{DeMore et al. [1997]} \\
CO + O & \rightarrow NO + O_2 & 8.0 \times 10^{-27}T^{-2.0} & \text{DeMore et al. [1997]} \\
NO_2 + O & \rightarrow NO_3 + M & 1.2 \times 10^{-13}e^{-2450/T} & \text{DeMore et al. [1997]} \\
NO + O_3 & \rightarrow NO_3 + O_2 & 1.9 \times 10^{-19}T^{-4.4} & \text{DeMore et al. [1997]} \\
NO + OH & \rightarrow NO_3 + M & 5.8 \times 10^{-12}e^{220/T} & \text{DeMore et al. [1997]} \\
NO + N & \rightarrow N_2 + O & 1.0 \times 10^{-11} & \text{Boodaghians et al. [1988]} \\
NO_2 + H & \rightarrow NO_2 + OH & 1.1 \times 10^{-10} & \text{Atkinson et al. [2004]} \\
NO_2 + OH & \rightarrow NO_2 + HO_2 & 2.0 \times 10^{-11} & \text{DeMore et al. [1997]} \\
NO_2 + NO & \rightarrow NO_2 + NO_2 & 1.5 \times 10^{-11}e^{170/T} & \text{DeMore et al. [1997]} \\
NO_2 + NO_2 & \rightarrow N_2O_5 + M & 9.8 \times 10^{-21}T^{-3.9} & \text{DeMore et al. [1997]} \\
N_2O + O & \rightarrow N_2 + O_2 & 4.9 \times 10^{-11} & \text{DeMore et al. [1997]} \\
N_2O + O & \rightarrow N_2 + NO & 6.7 \times 10^{-11} & \text{Atkinson et al. [2004]} \\
HNO_2 + OH & \rightarrow H_2O + NO_2 & 2.5 \times 10^{-12}e^{260/T} & \text{Smith et al. [1984]} \\
HNO_2 + OH & \rightarrow H_2O + NO_3 & 8.3 \times 10^{-15}e^{850/T} & \text{Baulch et al. [1994]} \\
H + O & \rightarrow NO + M & 5.3 \times 10^{-34}e^{-370/T} & \text{Baulch et al. [1992]} \\
HCO + O & \rightarrow OH + CO & 5.0 \times 10^{-11} & \text{Baulch et al. [1992]} \\
HCO + O & \rightarrow CO_2 + H & 5.0 \times 10^{-11} & \text{Baulch et al. [1992]}
\end{align*}
\]
Reaction	Rate Constant	Reference
HCO + O₂ → CO + HO₂	2.2 × 10⁻¹² e⁻¹⁷₀/T	Nesbitt et al. [1999]
HCO + H → CO + H₂	1.5 × 10⁻¹⁰	Baulch et al. [1992]
HCO + HO₂ → H₂CO + O₂	5.0 × 10⁻¹¹	Tsang and Hampson [1986]
HCO + HCO → H₂CO + CO	5.0 × 10⁻¹¹	Baulch et al. [1992]
H₂CO + O → HCO + OH	6.9 × 10⁻¹³ T⁻⁰.⁶ e⁻¹₃₉₀/T	Baulch et al. [1992]
H₂CO + H → HCO + H₂	2.1 × 10⁻¹⁰ T⁻¹.₆ e⁻¹₀₉₀/T	Baulch et al. [1994]
H₂CO + OH → HCO + H₂O	1.0 × 10⁻¹¹	DeMore et al. [1997]
HCl + O(¹D) → HCl + O	1.5 × 10⁻¹¹	Chichinin [2000]
HCl + O(¹D) → Cl + OH	9.8 × 10⁻¹¹	Chichinin [2000]
HCl + O → Cl + OH	3.7 × 10⁻¹¹	Chichinin [2000]
HCl + H → Cl + H₂	1.0 × 10⁻¹¹ e⁻³₃₀₀/T	DeMore et al. [1997]
HCl + OH → Cl + H₂O	2.4 × 10⁻¹¹ e⁻¹₇₃₀/T	Allison et al. [1996]
Cl + O₃ → ClO + O₂	2.6 × 10⁻¹₂ e⁻₃₅₀/T	DeMore et al. [1997]
Cl + O₃ + M → ClO₃ + M	2.3 × 10⁻¹¹ e⁻²₀₀/T	Sander et al. [2011]
ClO₂ + M → ClOO + M	1.1 × 10⁻₂⁵ T⁻³¹	Simonaitis and Heicklen [1975]
ClO + H₂ → HCl + H	3.1 × 10⁻¹¹ e⁻²₂₂₀/T	Sander et al. [2011]
Cl + HO₂ → HCl + O₂	1.8 × 10⁻¹¹ e⁻¹₇₀/T	DeMore et al. [1997]
Cl + HO₂ → ClO + OH	4.1 × 10⁻¹₁ e⁻₄₅₀/T	Atkinson et al. [2007]
Cl + H₂O₂ → HCl + HO₂	1.1 × 10⁻¹₁ e⁻₉₈₀/T	Baulch et al. [1981]
Cl + Cl + M → Cl₂ + M	3.5 × 10⁻³³ e⁻₈₂₀/T	DeMore et al. [1997]
ClO + CO → products	1.0 × 10⁻¹² e⁻₃₇₀₀/T	DeMore et al. [1997]
ClO + CO + M → CICO + M	3.4 × 10⁻²₄ T⁻³.₈	Yang and Demore [1999]
ClO + O → Cl + O₂	2.8 × 10⁻¹¹ e⁻₈₅/T	Sander et al. [2011]
ClO + O + M → OCIO + M	k₀ = 6.6 × 10⁻²₁ T⁻⁴.₁ e⁻₄₂₀/T	Zhu and Lin [2003]
ClO + OH → Cl + HO₂	kₓ = 4.3 × 10⁻¹¹ T⁻⁰.₀₃ e⁻₄₃/T	Sander et al. [2011]
ClO + OH → HCl + O₂	7.4 × 10⁻¹₂ e⁻²₇₀/T	Sander et al. [2011]
ClO + H₂CO → HCl + HCO	6.0 × 10⁻¹³ e⁻₂₃₀/T	DeMore et al. [1997]
ClO + NO → Cl + NO₂	8.1 × 10⁻¹₁ e⁻₃₀/T	DeMore et al. [1997]
ClO + NO₂ → ClONO₂ + M	6.4 × 10⁻₁₂ e⁻₂₉₀/T	DeMore et al. [1997]
ClO + NO₃ → ClO + NO₂	k₀ = 4.8 × 10⁻²₃ T⁻³.₄	DeMore et al. [1997]
HOCl + O → ClO + OH	kₓ = 7.6 × 10⁻₇ T⁻¹.₉	DeMore et al. [1997]
HOCl + OH → ClO + H₂O	2.4 × 10⁻¹¹	Atkinson et al. [2007]
ClO + HO₂ → HOCI + O₂	1.7 × 10⁻¹³	Atkinson et al. [2007]
Cl + HOCI → HCl + ClO	3.0 × 10⁻¹₂ e⁻₅₀₀/T	DeMore et al. [1997]
Cl + HOCl → Cl₂ + OH	2.7 × 10⁻¹₂ e⁻₂₂₀/T	Sander et al. [2011]
Cl + HOCl → Cl₂ + O₂	1.25 × 10⁻¹₂ e⁻₁₃₀/T	DeMore et al. [1997]
Cl + HOCl → Cl₂ + OH	1.25 × 10⁻¹₂ e⁻₁₃₀/T	DeMore et al. [1997]
OCIO + NO → ClO + NO₂
ClO + NO₂ → ClOO + NO₂
OCIO + O → ClO + O₂
OCIO + O + M → ClO₃ + M
OCIO + OH → HOCl + O₂
ClO₂ + M → Cl₂ + O₂ + M
ClO + O + M → OCIO + M
Cl + OCIO → ClO + ClO
Cl + ClO₂ → Cl₂ + O₂
Cl + ClOO → ClO + ClO
Cl + O₃ → ClOO + O₂
ClO + O₃ → OCIO + O₂
ClO + ClO → Cl₂ + O₂
ClO + ClO → ClO₂ + Cl
ClO + ClO → OCIO + Cl
ClO + ClO + M → Cl₂O₂ + M
ClO₂ + OH + M → HClO₄ + M
ClO₂ + OH → OCIO + HO₂
ClO + ClO₂ → OCIO + ClOO
ClO + ClO₃ → OCIO + OCIO
ClO + ClO₃ + M → Cl₂O₄ + M
OCIO + O₃ → ClO₃ + O₂
Cl + Cl₂O → Cl₂ + ClO
Cl + Cl₂O₂ → Cl₂ + ClOO
Cl₂O + NO → Cl₂O + NO₂
Cl + NO + M → CINO + M
Cl + ClNO → Cl₂ + NO
Cl₂O + O → ClO + ClO
Cl₂O₂ + M → ClO + ClO + M
Cl + O(¹D) → ClO + Cl
Cl₂ + O(¹D) → Cl₂ + O

\[k_0 = 2.5 \times 10^{-12} e^{-600/T} \]
\[k_\infty = 4.7 \times 10^{-13} \]
\[k_0 = 2.4 \times 10^{-12} e^{-960/T} \]
\[k_\infty = 1.4 \times 10^{-23} e^{-31} \]
\[k_0 = 8.3 \times 10^{-12} \]
\[k_\infty = 4.5 \times 10^{-13} e^{800/T} \]
\[k_0 = 1.1 \times 10^{-29} e^{-1820/T} \]
\[k_\infty = 4.3 \times 10^{-11} e^{-103 e^{43/3}} \]
\[k_0 = 3.4 \times 10^{-11} e^{-160/T} \]
\[k_\infty = 2.3 \times 10^{-10} \]
\[k_0 = 1.2 \times 10^{-11} \]
\[k_\infty = 1.0 \times 10^{-12} e^{-3600/T} \]
\[k_0 = 1.0 \times 10^{-12} e^{-14000/T} \]
\[k_\infty = 1.0 \times 10^{-12} e^{-1590/T} \]
\[k_0 = 3.0 \times 10^{-11} e^{-2450/T} \]
\[k_\infty = 3.5 \times 10^{-13} e^{-1370/T} \]
\[k_0 = 2.2 \times 10^{-21} e^{-4.5} \]
\[k_\infty = 1.8 \times 10^{-6} e^{-2.4} \]
\[k_0 = 3.2 \times 10^{-10} e^{-0.07} e^{-25/T} \]
\[k_\infty = 2.1 \times 10^{-10} e^{-0.09} e^{-187/T} \]
\[k_0 = 1.9 \times 10^{-18} e^{-0.22} e^{-247/T} \]
\[k_\infty = 1.4 \times 10^{-18} e^{-0.211} e^{-2870/T} \]
\[k_0 = 1.4 \times 10^{-10} e^{-2.1597} \]
\[k_\infty = 1.4 \times 10^{-10} e^{-0.059} e^{-582/T} \]
\[k_0 = 2.1 \times 10^{-12} e^{-4700/T} \]
\[k_\infty = 6.2 \times 10^{-11} e^{-130/T} \]
\[k_0 = 1.0 \times 10^{-10} \]
\[k_\infty = 1.0 \times 10^{-15} \]
\[k_0 = 2.2 \times 10^{-17} e^{-1.8} \]
\[k_\infty = 5.8 \times 10^{-11} e^{-100/T} \]
\[k_0 = 2.7 \times 10^{-11} e^{-530/T} \]
\[k_\infty = 1.4 \times 10^{-26} e^{-7690/T} \]
\[k_0 = 7.9 \times 10^{-15} e^{-8800/T} \]
\[f_c = 0.45 \]
\[k_\infty = 2.0 \times 10^{-10} \]
\[k_\infty = 6.8 \times 10^{-11} \]
Cl₂ + OH → HOCl + Cl
Cl + NO₂ + M → ClONO + M
Cl + NO₂ + M → ClNO₂ + M
ClNO₂ + OH → HOCl + NO₂
ClONO₂ + O → ClONO + O₂
ClONO₂ + OH → HOCl + NO₃
ClONO₂ + H → HClO + NO₂
Cl + ClONO₂ → Cl₂ + NO₃
ClCO + O → Cl + CO₂
ClCO + H → HClO + CO
ClCO + Cl → Cl₂ + CO
CO₂ + hv → CO + O
 → CO + O(¹D)
 → C + O₂
 → CO₂⁺ + e⁻
 → CO + O⁺ + e⁻
 → O + CO⁺ + e⁻
O + hv → C + O
 → CO⁺ + e⁻
O + hv → O⁺ + e⁻
O₂ + hv → O + O
 → O(¹D) + O
 → O₂⁺ + e⁻
O₃ + hv → O₂ + O
 → O₂ + O(¹D)
H₂O + hv → OH + H
 → O(¹D) + H₂
 → O + 2H
HO₂ + hv → OH + O
H₂O₂ + hv → OH + OH
 → HO₂ + H
N₂ + hv → N + N(²D)
 → N₂⁺ + e⁻
 → N⁺ + N + e⁻
NO + hv → N + O

1.4 × 10⁻¹² e⁻³⁹⁰⁰/T
k₀ = 1.2 × 10⁻²⁵ T⁻²
kₓ = 3.0 × 10⁻⁸ T⁻¹

DeMore et al. [1997]
DeMore et al. [1997]
DeMore et al. [1997]

Atkinson et al. [2007]
DeMore et al. [1994]
DeMore et al. [2007]
DeMore et al. [2007]

Yang and Demore [1999]
Yang and Demore [1999]
Yang and Demore [1999]
Yang and Demore [1999]

Nakata et al. [1965]; Shemansky
[1972]; Okabe [1978]; Fox and
Dalgarno [1979]; Lewis and Carver
[1983]; Gallagher et al. [1988]; Shaw
[1995]; Lu et al. [2014]

Wight et al. [1976]; Okabe [1978];
Gallagher et al. [1988]
Fennelly and Torr [1992]
Watanabe [1953]; Samson and Cairns
[1964]; Ogawa [1971]; Sander et al.
[2011]

Lindner [1988]; Sander et al. [2011]
Thompson et al. [1963]; Watanabe
and Jursa [1964]; Haddad and
Samson [1986]
Okabe [1978]
Okabe [1978]; Gerlach-Meyer et al.
[1987]
Zipf and McLaughlin [1978]; Shaw et
al. [1992]; Chan et al. [1993]
Thompson et al. [1963]; Watanabe et
\[\text{NO}_2 + hv \rightarrow \text{NO} + \text{O} \]
\[\text{N}_2\text{O} + hv \rightarrow \text{N}_2 + \text{O}^{(1}\text{D}) \]
\[\text{N}_2\text{O}_5 + hv \rightarrow \text{NO}_2 + \text{NO}_3 \]
\[\text{HNO}_2 + hv \rightarrow \text{OH} + \text{NO} \]
\[\text{HNO}_3 + hv \rightarrow \text{OH} + \text{NO}_2 \]
\[\text{HCO} + hv \rightarrow \text{CO} + \text{H} \]
\[\text{H}_2\text{CO} + hv \rightarrow \text{HCO} + \text{H} \]
\[\rightarrow \text{CO} + \text{H}_2 \]
\[\rightarrow \text{CO} + 2\text{H} \]
\[\text{HCl} + hv \rightarrow \text{Cl} + \text{H} \]
\[\text{ClO} + hv \rightarrow \text{Cl} + \text{O} \]
\[\text{HOCI} + hv \rightarrow \text{Cl} + \text{OH} \]
\[\text{HO} + hv \rightarrow \text{ClO} + \text{O} \]
\[\text{OCIO} + hv \rightarrow \text{ClO} + \text{O} \]
\[\text{Cl}_2 + hv \rightarrow \text{Cl} + \text{Cl} \]
\[\text{Cl}_2\text{O} + hv \rightarrow \text{Cl} + \text{ClO} \]
\[\text{Cl}_2\text{O}_2 + hv \rightarrow \text{Cl} + \text{ClOO} \]
\[\rightarrow \text{ClO} + \text{ClO} \]
\[\text{ClNO} + hv \rightarrow \text{Cl} + \text{NO} \]
\[\text{ClNO}_2 + hv \rightarrow \text{Cl} + \text{NO}_2 \]
\[\text{ClONO} + hv \rightarrow \text{Cl} + \text{NO}_2 \]
\[\text{ClO}_3 + hv \rightarrow \text{ClO} + \text{O}_2 \]
\[\text{ClO}_4 + hv \rightarrow \text{ClOO} + \text{ClOO} \]
\[\text{al. [1967]} \]
\[\text{Atkinson et al. [2004]} \]
\[\text{Zelikoff et al. [1953]; Thompson et al. [1963]} \]
\[\text{Sander et al. [2011]} \]
\[\text{Sander et al. [2011]} \]
\[\text{Sander et al. [2011]} \]
\[\text{Hochanadel et al. [1980]} \]
\[\text{Gentieu and Mentall [1970]; Glicker and Stief [1971]; Moortgat et al. [1983]; Suto et al. [1986]} \]
\[\text{Sander et al. [2011]} \]
\[\text{Ghosh et al. [2011]} \]
\[\text{Sander et al. [2011]} \]
Table 2. Integrated production rates for important reactions as a function of OClO flux.

OClO Flux:	10^4	10^5	10^6	10^7	10^8	10^9	10^{10}	2×10^{10}	3×10^{10}	10^{11}
OCIO + O → ClO$_3$	2.0(2)	2.0(3)	2.0(4)	2.0(5)	2.1(6)	2.3(7)	5.8(8)	1.8(9)	2.0(9)	1.6(9)
Cl + O$_3$ → ClO$_3$	3.2(1)	3.2(2)	3.2(3)	3.2(4)	3.3(5)	3.6(6)	6.6(7)	2.6(8)	5.1(8)	3.3(8)
OH + ClO → HClO$_4$	4.6(−1)	4.6(0)	4.6(1)	4.6(2)	4.5(3)	3.7(4)	1.4(5)	1.6(5)	1.4(5)	8.0(4)
ClO + ClO$_3$	1.7(−4)	1.7(−2)	1.7(0)	1.7(2)	1.7(4)	1.4(6)	8.3(7)	3.7(8)	6.6(8)	4.0(8)

$2.0(2) = 2.0 \times 10^2$. All values in units cm$^{-2}$ s$^{-1}$.
Radiolysis of chlorine-doped ice

Cl/HCl Recycling 10,000x more efficient than Cl + O₃

Mineralization Perchlorate

GCR

This article is protected by copyright. All rights reserved.
