Anti-PCSK9 antibodies inhibit pro-atherogenic mechanisms in APOE*3Leiden.CETP mice

Susanne Schuster1, Sandra Rubi2, Matthias Endres3,4, Hans M. G. Princen5, Jens-Niels Boeckel1, Karsten Winter6, Christian Werner2 & Ulrich Laufs1

LDL-cholesterol (LDL-C) is a causal pathogenic factor in atherosclerosis. Monoclonal anti-proprotein convertase subtilisin/kexin type 9 (PCSK9) neutralizing antibodies are novel potent LDL-lowering drugs which reduce cardiovascular events. To characterize their effect on atherogenesis, APOE*3Leiden.CETP mice were fed a high cholesterol/high fat diet (WTD) or normal chow (NC) for 18 weeks. Mice on WTD were injected with the human anti-PCSK9 antibody mAb1 (PL-45134, 10 mg kg⁻¹ s.c.) or 0.9% saline every 10 days. PCSK9 inhibition decreased total cholesterol in serum of APOE*3Leiden.CETP mice and prevented the development of atherosclerosis. The plaque area in the aortic root was reduced by half and macrophage infiltration determined by Ly6c and Mac-3 staining was ameliorated. PCSK9 inhibition decreased markers of inflammation in mononuclear cells (Il-6, Tnfa mRNA), and in serum (CXCL-1,-10,-13; complement factor C5a) compared to control WTD fed animals. The number of circulating Sca-1/VEGF-R2 positive endothelial progenitor cells of the peripheral blood and spleen-derived dildLDL/lectin double positive circulating angiogenic cells was increased. To conclude, the PCSK9-mediated anti-atherosclerotic effect involves the upregulation of pro-regeneratory endothelial progenitor cells, a reduction of inflammation and change of plaque composition.

Low-density lipoprotein cholesterol (LDL-C) causally contributes to the pathogenesis of atherosclerosis. Circulating LDL-C is bound by the LDL-receptor (LDLR) which removes it from the circulation by mediating its endocytosis. In 2003, gain-of-function mutations in the gene that encodes serine protease proprotein convertase subtilisin/kexin type 9 (PCSK9) were identified as being associated with autosomal dominant familial hypercholesterolemia. Therefore, PCSK9 became a therapeutic target in lipid lowering therapy and the prevention of CVD1–4. PCSK9 gain-of-function mutations are associated with increased levels of LDL-C, while reduced PCSK9 function correlates with lower levels of LDL-C and CVD risk5,6. Mechanistically, PCSK9 binds to the LDLR directing it to lysosomal degradation7–9. By blocking PCSK9, LDLR remain on the cell surface and remove LDL particles from the circulation. In multiple clinical studies, the anti-PCSK9 antibodies alirocumab and evolocumab have been shown to decrease LDL-C level and improve the outcome of CVD10–15. While the lipid-lowering effects of PCSK9 inhibitors are well established, knowledge on vascular effects and on the cellular mechanisms that control atherogenesis is still incomplete.

Besides lipid accumulation, atherosclerosis is characterized by chronic inflammation of the arterial wall beginning with the retention of Apolipoprotein B–containing lipoproteins within the subendothelial intima of arteries. This leads to the activation of endothelial cells followed by leukocyte adhesion and migration; foam cell formation and activation of vascular smooth muscle cells leading to increased production of extracellular matrix16. Due to reduced effective efferocytosis of apoptotic foam cells, macrophages become necrotic and lead to a thrombogenic and pro-inflammatory environment. Increased cytokine release and proteolytic activity fuel lesion inflammation and plaque instability.

1Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Leipzig University, Leipzig, Germany. 2Klinik für Innere Medizin III, Kardiologie, Angiologie und Internistische Intensivmedizin, Universität/Universitätsklinikum des Saarlandes, Homburg, Germany. 3Department of Neurology with Experimental Neurology, Center for Stroke Research Berlin (CSB), and NeuroCure, Charité University Medicine Berlin, Berlin, Germany. 4German Center for Cardiovascular Research (DZHK) and German Center for Neurodegenerative Diseases (DZNE), partner site Berlin, Berlin, Germany. 5TNO-Metabolic Health Research, Gaubius Laboratory, Leiden, The Netherlands. 6Institute of Anatomy, Medical Faculty, University of Leipzig, Leipzig, Germany. Correspondence and requests for materials should be addressed to S.S. (email: susanne.schuster@medizin.uni-leipzig.de)
Circulating endothelial progenitor cells (EPC) derived from the bone marrow and are released into the blood to form new blood vessels or to aid in the repair of damaged vessels. After recruitment to sites of ischaemia and endothelial damage, EPC integrate into the endothelium and positively regulate endothelial cell growth and neovascularization. Inflammation, metabolic and vascular risk factors and type 2 diabetes have been shown to downregulate EPC numbers and impair their function. In contrast, statin-mediated lipid lowering or physical activity improve EPC numbers and cell function. In a large prospective clinical study, CD34+/KDR-positive cells were shown to predict cardiovascular events. Within the EPC population, circulating angiogenic cells (CAC) can be distinguished. CAC derive from myeloid haematopoietic cells and share features with monocytes and exert their angiogenic effects via paracrine and signaling mechanisms.

Here, we aimed to characterize the vascular effects of PCSK9 inhibition in APOE*3Leiden.cholesterol ester transfer protein (CETP) mice, a mouse model for familial dysbetalipoproteinemia with human-like lipoprotein metabolism, on atherosclerosis development, inflammation and EPC and CAC number.

**Results**

**Anti-PCSK9 treatment decreases the size of aortic atherosclerotic plaques and pro-inflammatory macrophage infiltration.** APOE*3Leiden CETP mice fed a Western-type diet (WTD) were injected with the anti-PCSK9 antibody mAb1 (PL-45134, PCSK9-mAb1) every 10 days for 18 weeks. Cholesterol levels were measured after 2, 4, 12 and 18 weeks and were compared to APOE*3Leiden CETP mice treated with 0.9% saline as control. PCSK9 inhibition decreased total cholesterol in the serum of APOE*3Leiden CETP mice (baseline: control + normal chow (NC) 166 ± 41 mg/dl, control + WTD 176 ± 48 mg/dl, PCSK9-mAb1 + WTD 168 ± 38 mg/dl; 18 weeks: control + NC 112 ± 32 mg/dl, control + WTD 463 ± 103 mg/dl, PCSK9-mAb1 + WTD 254 ± 108 mg/dl, p < 0.0001) (Fig. 1A). Histomorphometric analysis of atherosclerotic lesions in the aortic sinus showed that mice treated with the PCSK9 antibody have reduced atherogenesis. The plaque area was reduced by half compared to saline-treated mice (control + WTD 22 ± 3%, PCSK9-mAb1 + WTD 10 ± 3%, p = 0.01) (Fig. 1B,C). Collagen content was normalized to the total aortic sinus area (Fig. 1D) and to the total plaque area (Fig. 1E). PCSK9 inhibition reduced the amount of collagen in the total aortic sinus area by 34% from 14 ± 1.1% (total area) in control + WTD mice to 9 ± 2.5% (total area) in PCSK9-mAb1 + WTD mice (p = 0.05) (Fig. 1D). The amount of collagen in atherosclerotic plaques was not changed (control + WTD 60 ± 2% vs. 52 ± 5% in PCSK9-mAb1 + WTD, not significant) (Fig. 1E). Pro-inflammatory macrophages and chemotactic cytokines are involved in atherosclerotic disease progression. Macrophage accumulation in the intima promotes lesion development and fuel atherosclerosis progression. To analyze pro-inflammatory macrophage infiltration in the carotid arteries, immunostainings of Ly6c and Mac-3 were performed. Macrophage infiltration in the athero-sclerotic plaque. WTD-fed control mice showed pro-inflammatory macrophage infiltration, while mice injected with the anti-PCSK9 antibody exhibited markedly reduced infiltrated macrophages (Ly6C: control + WTD 10 ± 1.8% vs. 4 ± 0.6% in PCSK9-mAb1 + WTD, p < 0.01; Mac-3: control + WTD 14 ± 3.7% vs. 6 ± 1.3% in PCSK9-mAb1 + WTD, p < 0.05). To determine the effect of PCSK9 inhibition on pro-inflammatory gene expression, mRNA expression of Ifn-γ, Tnfα, Tgfb and Il-1α was analyzed in isolated mononuclear cells (MNCs). The pro-atherosclerotic cytokine genes Il-6 and Tnfα decreased by 41.0 ± 6.2% and by 27.2 ± 8.6% (p < 0.05), respectively, in PCSK9-mAb1 treated mice compared to control + WTD animals (Fig. 2C). The expression levels of Tgfb and Il-1α were not changed. Serum analysis revealed that chemokines, such as CXCL-1, -10, and -13 as well as the complement factor C5a were downregulated in PCSK9 antibody treated mice compared to WTD mice (Fig. 2D). Together, these data show a causal link of serum cholesterol and plaque size (RPearson = 0.45, p = 0.02) (Fig. 1F).

**Administration of anti-PCSK9 antibody increases circulating endothelial progenitor cells and angiogenic cells.** Sca-1/VEGF-R2 positive EPC regulate endothelial homeostasis, function and new vessel formation. The EPC number in peripheral blood increased by 2.3-fold after 18 weeks (Sca-1+/VEGF-R2+ per 25.000 lymphocytes: control + WTD 827 ± 115, PCSK9-mAb1 + WTD 1856 ± 200, p < 0.0001) (Fig. 3A). Further, in vitro culture of spleen-derived MNC was used to differentiate circulating angiogenic cells (CAC). WTD fed mice treated with anti-PCSK9 antibody showed increased numbers of CAC compared to control mice (cells per microscopic field: control + WTD 23.2 ± 2.7, PCSK9-mAb1 + WTD 49.3 ± 5.1, p < 0.05) (Fig. 3B).

**Discussion**

The present study demonstrated that the treatment with the anti-PCSK9 antibody mAb1 reduced atherosclerosis development, macrophage infiltration and cardiovascular inflammation and increased the number of EPC and CAC in APOE*3Leiden.CETP mice fed a Western type diet.

In line with previous studies, we found that inhibition of PCSK9 reduces serum cholesterol levels and further attenuates atherogenesis and plaque inflammation. Studies in Pcsk9 knock-out mice showed increased hepatic LDLR levels that were linked to reduced circulating LDL cholesterol. The association between serum cholesterol level and atherosclerotic plaque size observed in the present study indicates a causal link of serum cholesterol and plaque formation. Furthermore, there is a strong association between the severity of coronary atherosclerosis and adverse cardiac events. The prevention of atherosclerosis in anti-PCSK9 antibody treated mice was accompanied by reduced collagen deposition. This is in accordance with findings of Nicholls et al. who found no alterations in fibrous components in atheroma after evolocumab therapy in coronary artery disease patients. However, an in vivo study with alirocumab has shown improved lesion composition in atherosclerotic mice by increasing collagen content.
In addition to the reduction in plaque lipid load, the present study demonstrated that PCSK9 inhibition also affects plaque composition by reducing the amount of activated monocyte-derived macrophages in the atheroma. This suggests that the LDL-C lowering effect by PCSK9 inhibition may also lead to reduction in monocyte transmigration through the arterial wall as well as to reduced differentiation into mononuclear phagocytes. Those phagocytes can transform into cholesterol-laden “foam cells” as they ingest the accumulated normal and modified lipoproteins. Alirocumab therapy was further shown to ameliorate monocyte adhesion and trafficking as well.
Figure 2. Anti-PCSK9 antibody treatment reduces pro-inflammatory macrophage infiltration and downregulates inflammation in APOE*3Leiden CETP mice. (A) Representative immunostaining for Ly6c in frozen aortic root sections and histomorphometric quantification of Ly6c positive cells in aortic plaques (shown as % of area in aortic plaque) (20 x magnification, bar 100 um) (WTD n = 5, PCSK9-mAb1 n = 12). (B) Representative immunofluorescent Mac-3 (red) and α-smooth muscle cell (α-SMA) (green) staining of frozen aortic root sections and quantification of positive cells in aortic plaques (depicted as % of area in atherosclerotic plaque). Nuclei were stained with DAPI (blue) (WTD n = 6, PCSK9-mAb1 n = 5) (20 x magnification, bar 100 um). (C) Real-time PCR analysis of Il-6, Tnfa, Tgfb and Il-1a mRNA expression in spleen-derived MNC of APOE*3Leiden.CETP mice on a WTD and treated with anti-PCSK9 antibody (PCSK9- mAb1, n = 9) or saline (n = 10) every 10 days for 18 weeks. (C) Representative membranes (3 min and 10 min exposure) of mouse serum cytokine array of WTD (n = 4) and PCSK9-mAb1 (n = 4) treated mice. Pixel density was quantitated by ImageJ and results are depicted as fold over WTD. Data are presented as mean ± SEM and fold over control WTD which was set 1. Unpaired Student’s t-test was performed. *p < 0.05, **p < 0.01, ***p < 0.001 versus control WTD (Western-type diet).
as lesion composition in APOE*3Leiden CETP mice. This is in line with our findings that PCSK9 inhibition downregulates chemokine levels, such as CXCL-1, -10, -13, which can be expressed by activated endothelial cells, smooth muscle cells as well as emigrated leukocytes. They are key players involved in the recruitment and infiltration of immune cells into the vessel wall and exacerbate atherosclerosis progression. Besides ameliorated chemokine levels, C5a is reduced in PCSK9 antibody treated mice. C5a is one of the most potent inflammatory chemoattractants. It activates endothelial cells and regulates the secretion of various cytokines and chemokines such as TNFα, IL-6 and CCL-2.

Noteworthy, monoclonal antibodies only target PCSK9 in the circulation, whereas the pathophysiological relevance of intracellular PCSK9, such as in intra-atheroma macrophages, requires better understanding. Furthermore, our study revealed the novel observation that LDL-C lowering with anti-PCSK9 antibody significantly increased the number of circulating EPC and CAC that are considered markers of endothelial and vascular health and are associated with positive clinical outcomes. Additionally, PCSK9 expression is positively associated with apoptosis in vascular endothelial cells, tumor cells, and neurons suggesting a detrimental role for PCSK9 on endothelial repair and vasculogenesis. Indeed, Chao et al. reported that PCSK9 serum levels correlated with apoptosis in circulating endothelial cells which may provide the explanation for our observation.

In conclusion, our data show that PCSK9 inhibition prevents the development of atherosclerotic plaques. This effect is mediated by several anti-atherogenic mechanisms that involve the up-regulation of pro-regenerative endothelial progenitor cells, reduction of inflammation in circulating cells, in the serum and in the plaque as well as changes of the plaque composition. These data provide important mechanistic explanations for the observed reduction of clinical outcomes with the human monoclonal antibodies against PCSK9 that have been reported in the meantime.

Methods

Animals and anti-PCSK9 antibody treatment. APOE*3Leiden.CETP transgenic mice were fed ad libitum a western type diet (WTD: 21% fat, 19.5% casein, 1.25% cholesterol) or normal chow (NC) for a period of 18 weeks. Mice on WTD were injected with the human anti-PCSK9 antibody mAb1 (PL-45134, 10 mg/kg subcutaneously (s.c.), n = 10) or 0.9% saline (control, n = 12) every 10 days for 18 weeks. The antibody was generated as described previously and provided by Amgen. Mice were euthanized with ketamine and xylazine. The experiments were approved by the Universität des Saarlandes and complied with national guidelines (directive 63/2010 of the European Parliament) as well as the ARRIVE guidelines for reporting experiments involving animals.

Serum cholesterol quantification. Venous blood was obtained before and after treatment with anti-PCSK9 antibody mAb1 or 0.9% saline. Cholesterol concentration was measured in serum using the standard curve based LabAssay™ Cholesterol Kit (Wako, Neuss, Germany) according to the manufacturer's instructions.

Staining of frozen aortic root sections. Atherosclerotic plaques and collagen deposition in the aortic root was quantified as described previously. Atherosclerotic plaque area is expressed as % of total aortic sinus area. Picric sirius red staining (0.1%) was used to analyze collagen deposition in total aortic sinus as well as in atherosclerotic plaque area. Pro-inflammatory macrophage infiltration into the arterial wall was determined.
by immunostaining of frozen cryosections of the aortic root with Ly6c antibody (1:100, Cat.ab15627) (Abcam, Cambridge, UK) and Mac-3 antibody (CD-107b, Clone M3/84, 1:50,Cat 550292, BD, Franklin Lakes, USA) and corresponding secondary ImmPRESS® anti-rat HRP antibody (Vector Laboratories, Burlingame, CA, USA) or anti-rat Alexa 594 antibody (Dianova, Hamburg, Germany), respectively. For immunofluorescent α-SMA staining, the primary antibody from Abcam (1:250, Cat.ab5694, Abcam, Cambridge, UK) and the corresponding anti-rabbit Alexa Fluor 647 conjugated secondary antibody (Invitrogen, Carlsbad, USA) were used. Stained sections were fully digitalized at 20 × magnification using a digital slide scanner (Pannoramic Scan II, 3D HISTECH Ltd., Budapest, Hungary). Images of stained tissue slices were captured from slide scanner data sets (Pannoramic Viewer, version 1.15.4., 3D HISTECH Ltd., Budapest, Hungary) in TIFF format at 10 × or 20 × magnification and were quantitated by ImageJ using the plugin color deconvolution as described in53. Percentage (%) of area was calculated from grey-scaled pictures.

Quantification of CAC. Mononuclear cells were isolated from spleen by Ficoll density gradient centrifugation as described previously21. CAC were identified by plating 4 × 10⁶ MNC on fibronectin-coated 24-well plates and by the uptake of DiDLDL (1,1'-dioctadecyl-3,3',3'- tetramethylindocarbocyanine-labellecd acetylated LDL, 2.4 μg·mL⁻¹, CellSystems, St. Katharinen, Germany) and binding to FITC-labelled Ulex europaeus agglutinin I (lectin, 10 μg·mL⁻¹, Sigma–Aldrich). DAPI was used for nuclei staining. To quantitate CAC, diDLDL-lectin-double positive CAC were counted in four random fields and normalized to total cell number using a Nikon Eclipse E600 fluorescence microscope and NIS 3.0 BR software (Nikon, Düsseldorf, Germany).

Quantification of EPC by flow cytometry. Mouse blood was used to characterize and quantitate EPC by flow cytometry as described previously21. Mouse equivalent surface markers Sca-1 (FITC conjugated), VEGFR2 (PE-conjugated)20,54 and appropriate isotype controls (IgG2a κ FITC and PE, BD Pharmingen) were used. FACS analysis was performed on a FACS Calibur instrument (BD) and Cell Quest software version 6.0 (BD Biosciences, Heidelberg, Germany).

Gene expression analysis. Quantitative PCR assays to detect IL-6, Tnfa, Tgfb and Il-1α mRNA expression were performed in MNC from mice after Ficoll isolation of spleen homogenates (IL-6 forward: 5'- ttc cca tag tgc agg aat gtc ca -3'; Tnfa forward: 5'- acc caa aca aga att gtc gca ca -3'; Tnfa reverse: 5'- cag aga caa atc gtc tca aag ac -3'; Tgfb reverse: 5'- cta tca caa tgg tgc cca cc -3'; Il-1α forward: 5'- ctc tag ggc cag cgg act -3'; Il-1α reverse: 5'- cta ctc tag ggc cag cgg act -3'). PCR data were calculated using the comparative CT Method (ΔΔCT Method) and were normalized on 18S (18S forward 5'- tca aca ggg gaa aca tgg-3'; 18S reverse 5'- tca acc ggg gaa aca tgg-3').

Cytokine array. To analyse serum cytokines and chemokines, we used the membrane-based Proteom Profiler Array™ (R&D, Minneapolis, USA) and followed manufacturer’s instruction. Multiple exposure times were applied (1–10 min) and pixel density was quantitated by ImageJ after background subtraction and normalization to positive control on the membrane. Data are expressed as fold over WTD fed mice which was set at 1.

Statistical analysis. Statistical analyses were performed with Graph Pad Prism (version 7; Graph Pad Software Inc., La Jolla, CA, USA). Unless otherwise stated, all data are presented as mean ± SEM. For analysis, Student’s two-tailed, unpaired t-test (for parametric data), Mann-Whitney test (for non-parametric data) and ANOVA for multiple comparisons were employed where applicable. Post-hoc comparisons were performed with the Neuman–Keuls test or Sidak’s multiple comparison test. P-values of p < 0.05 were considered significant.

References
1. Abifadel, M. et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolaemia. Nature genetics 34, 154–156, https://doi.org/10.1038/ng1161 (2003).
2. Abifadel, M. et al. Mutations and polymorphisms in the proprotein convertase subtilisin kexin 9 (PCSK9) gene in cholesterol metabolism and disease. Human mutation 30, 520–529, https://doi.org/10.1002/humu.20882 (2009).
3. Cohen, J. et al. Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nature genetics 37, 161–165, https://doi.org/10.1038/ng1509 (2005).
4. Lopez, D. PCSK9: an enigmatic protease. Biochimica et biophysica acta 1781, 184–191, https://doi.org/10.1016/j.bbabip.2008.01.003 (2008).
5. Seidah, N. G., Awan, Z., Chretien, M. & Mbikay, M. PCSK9: a key modulator of cardiovascular health. Circulation research 114, 1022–1036, https://doi.org/10.1161/circresaha.114.301621 (2014).
6. Elbitar, S. et al. The New England journal of medicine 373, 161–165, https://doi.org/10.1056/NEJMoa1615664 (2017).
7. Benjannet, S. et al. Nature genetics 37, 161–165, https://doi.org/10.1038/ng1509 (2005).
8. Bohula, E. A. et al. Inflammatory and Cholesterol Risk in the FOURIER Trial. Circulation 138, 131–140, https://doi.org/10.1161/circulationaha.118.034052 (2018).
9. Cohen, J. et al. Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nature genetics 37, 161–165, https://doi.org/10.1038/ng1509 (2005).
10. McDonagh, M., Peterson, K., Holzhammer, B. & Fazio, S. A Systematic Review of PCSK9 Inhibitors Alirocumab and Evolocumab. Journal of managed care & specialty pharmacy 22, 641–653, https://doi.org/10.18553/jmcp.2016.22.6.641 (2016).
11. Lagace, T. A. et al. Secreted PCSK9 decreases the number of LDL receptors in hepatocytes and in livers of parabiotic mice. The Journal of clinical investigation 116, 2995–3005, https://doi.org/10.1172/jci29383 (2006).
12. Zang, D. W. et al. Binding of proprotein convertase subtilisin/kexin type 9 to epidermal growth factor-like receptor A of low density lipoprotein (LDL) receptor and LDL cholesterol. The Journal of biological chemistry 279, 48865–48875, https://doi.org/10.1074/jbc.M409699200 (2004).
13. Sabatine, M. S. et al. Evolocumab and Clinical Outcomes in Patients with Cardiovascular Disease. The New England journal of medicine 376, 1713–1722, https://doi.org/10.1056/NEJMoa1615664 (2017).
50. Chao, T. H., Chen, I. C., Li, Y. H., Lee, P. T. & Tseng, S. Y. Plasma Levels of Proprotein Convertase Subtilisin/Kexin Type 9 Are Elevated in Patients With Peripheral Artery Disease and Associated With Metabolic Disorders and Dysfunction in Circulating Progenitor Cells. *Journal of the American Heart Association* 5, https://doi.org/10.1161/jaha.116.003497 (2016).

51. Werner, C. M. *et al.* The dual PPAR α/γ agonist aleglitazar increases the number and function of endothelial progenitor cells: implications for vascular function and atherogenesis. *British journal of pharmacology* 171, 2685–2703, https://doi.org/10.1111/bph.12608 (2014).

52. Kilkenny, C., Browne, W. J., Cuthill, I. C., Emerson, M. & Altman, D. G. Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research. *Journal of pharmacology & pharmacotherapeutics* 1, 94–99, https://doi.org/10.4103/0976-500x.72351 (2010).

53. Wree, A. *et al.* NLRP3 inflammasome driven liver injury and fibrosis: Roles of IL-17 and TNF. *Hepatology* (Baltimore, Md.), https://doi.org/10.1002/hep.29523 (2017).

54. Werner, C., Bohm, M. & Friedrich, E. B. Role of integrin-linked kinase for functional capacity of endothelial progenitor cells in patients with stable coronary artery disease. *Biochemical and biophysical research communications* 377, 331–336, https://doi.org/10.1016/j.bbrc.2008.09.081 (2008).

**Acknowledgements**

The study was supported by a grant of Amgen to the Universität des Saarlandes (Grant ID BGAAF-1609). We also thank our technician Anja Barnikol-Oettler for her excellent work.

**Author Contributions**

U.L. and M.E. conceived and designed the study. S.S., S.R., K.W. and C.W. contributed data and performed analysis. HMGP provided mice. S.S. and U.L. wrote the manuscript. S.S., S.R., J.B., H.M.G.P., M.E., C.W., K.W. and U.L. revised the manuscript.

**Additional Information**

**Competing Interests:** U.L. has received fees for lectures from Amgen, Pfizer, Sanofi. M.E. reports a grant of Amgen for preclinical studies with anti-PCSK9 antibodies and fees paid to the Charité for lecture and advisory board participation by Amgen. S.S., S.R., H.M.G.P., J.B., K.W. and C.W. declare no potential conflict of interest.

**Publisher’s note:** Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s) 2019