MEETING REPORT

Regulation of immune-related diseases by multiple factors: A meeting report of 2017 International Workshop of the Chinese Academy of Medical Sciences (CAMS) Initiative for Innovative Medicine on Tumor Immunology

Bing Cui, Xuetao Cao, Weiping Zou, Yonghong Wan, Ning Wang, Yaohe Wang, Pingping Li, Fang Hua, Yuying Liu, Xiaowei Zhang, Ke Li, Xiaoxi Lv, Bo Huang, Zhuowei Hu

*State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
1National Key Laboratory of Medical Molecular Biology, Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100050, China
2Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
3The University of Michigan Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
4Graduate Programs in Immunology and Tumor Biology, University of Michigan, Ann Arbor, MI 48109, USA
5Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
6Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
7Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
8Center for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
9School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
10Sino-British Research Centre for Molecular Oncology, National Center for International Research in Cell and Gene Therapy, Zhengzhou University, Zhengzhou 450001, China
11Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing 100050, China
12Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
13Clinical Immunology Center, Chinese Academy of Medical Sciences, Beijing 100050, China
14Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430003, China

Received 13 June 2017; accepted 14 June 2017

*Corresponding authors: Tel.: +86 10 83165034 (Zhuowei Hu).
E-mail addresses: huzhuowei@imm.ac.cn (Zhuowei Hu), tjhuangbo@hotmail.com (Bo Huang).

Peer review under responsibility of Institute of Materia Medica, Chinese Academy of Medical Sciences and Chinese Pharmaceutical Association.

http://dx.doi.org/10.1016/j.apsb.2017.06.007
2211-3835 © 2017 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The immune system protects the body against illness and infection. However, an atypical immune response can cause the development of chronic inflammatory diseases including cancer. Understanding the crosstalk between immune cells and disease initiation provides better opportunities for identification of drug targets in the future. This report summarizes the major points presented at the 2017 international workshop on the regulation of immune-related diseases. The International Workshop on Tumor Immunology is sponsored by the Chinese Academy of Medical Sciences (CAMS) Innovation Fund for Medical Sciences (CIFMS) to provide a unique opportunity for investigators and scientists to interact with each other. The 2017 International Workshop was held in Beijing, China, on May 12, 2017 and consisted of 7 keynote lectures and 6 short talks. With a focus on the most recent advances in the fields of immune-related diseases, including cancer, fibrotic diseases and obesity, the programs covered a wide range of important topics, including cancer immunotherapy, tumor immunity, cancer metabolism, tumor dormancy, microparticles, and protein-quality control. Some emerging fields, such as oncolytic vaccines and personalized prophylactic cancer vaccines were also included.

2. Session on “cancer immunity” chaired by Dr. Bo Huang

2.1. Plenary lecture on “hot topics and trends in cancer immunotherapy” by Dr. Xuetao Cao

The Scientific Innovation Program for Medical Sciences and Health (SIPMSH) already has been incorporated in the ‘Plan of Health China 2030’ from the state council. Dr. Xuetao Cao, the current President of the CAMS, elaborated on “hot topics and trends in cancer immunotherapy” by five categories, including personalized tumor vaccines, antigen-specific immunotherapy, predictive immunotherapy biomarkers, blockade of immune checkpoints, and metastasis prevention.

Dr. Cao first discussed the design and application of immunotherapy by individual oncogenomics. With the high efficacy and low cost of deep sequencing, personalized tumor vaccines have been possible for cancer immunotherapy. The mutational spectrum obtained by next-generation sequencing provided valuable information for the design of vaccination peptides, tumor neoantigen identification, etc. With the necessary adjuvants, modified synthetic peptides targeting a tumor antigen are used as therapeutic vaccines for cancer. Moreover, autologous antigen-presenting cells (APCs) have been introduced with tandem minigenes or synthetic peptides of all mutations. This technology has led to the discovery of some mutations in APC in the context of the autologous major histocompatibility complex (MHC). Adoptive cell therapy by expansion and training of autologous lymphocytes in vitro is promising for cancer patients. Cao mentioned that the future of “omics-driven” oncology may have a multiphase approach that will allow comprehensive characterization of a tumor at multiple levels. He then moved on to antigen-specific immunotherapies, such as chimeric antigen receptor (CAR)-T therapy and dendritic cell vaccines. Improvements in CAR-T cell delivery to tumor cells will further expand the T cell gene therapies. He pointed out the current focus on efficiency enhancement of dendritic cell vaccines. In the latest issue of Cancer Cell, Spranger et al. found that effector T cell migration depends on the presence of CD103+ DCs producing CXCL10, and a lack of CD103+ DC-mediated effector T cell recruitment contributes to immune escape. Dr. Cao pointed out that dendritic cells play a critical role in tumor-infiltration by T cells. He initiated the phase I clinical trial in 2001 with the Chinese Food and Drug Administration (CFDA) approval, and spent ten years in the phase II trial from 2002 to investigate the synergistic effects of DC vaccines with chemotherapy for advanced colon cancer patients. Eradication of inhibitory immune factors by chemotherapy enhances the efficiency of DC vaccines. The therapeutic response rate increased from 23% with chemotherapy alone to 45% with chemotherapy plus DC vaccines. He concluded that the repertoire of tumor-infiltrated T cells and their cytokine profiles tightly link with the efficiency of immunotherapy.

Dr. Cao then talked about predictive signature biomarkers in cancer immunotherapy. Currently there are extensive investigations to find biomarkers from tumor surface proteins, the tumor microenvironment, tumor-adjacent tissues and peripheral blood of cancer patients. Mleenik et al. recently reported that the tumor microenvironment and immunoscore are critical determinants of the likelihood of metastasis. Dr. Cao’s laboratory also identified a prognosis predictor for the transformation of normal liver to hepatocellular carcinoma (HCC), and an interferon-α (IFN-α) therapeutic predictor for HCC patients. High-level HCC cell expression of micro-RNA 199 (miR-199) is associated with less aggressive disease in patients with HCC. miR-199 delivered by AAV8-based gene therapy inhibited HCC growth by blocking PAK4-Raf-MEK-ERK pathway. Although IFN-α therapy is
effective for HCC, the response rate is only about 15% to 20%. Regarding biomarkers for prediction of prognosis and response to interferon-α (IFN-α) therapy in HCC, Dr. Cao’s laboratory has discovered that low retinoic acid-inducible gene-I (RIG-I) expression had shorter survival and poorer response to IFN-α therapy. RIG-I deficiency promotes HCC carcinogenesis in mice with gender disparity. RIG-I enhances IFN-α response by amplifying IFN-α effector signaling via strengthening STAT1 activation.

Dr. Cao then discussed the blockade of immune checkpoints. He encouraged the scientists to have an open mind to discover new checkpoints but not to simply act as a follower in PD1 tides. CTLA-4, PD-1 and PD-L1 are under an extensive investigation with approval applications using monoclonal antibodies. Researchers should pay attention to some new immune checkpoints targets, such as KIR (killer cell Ig-like receptor), LAG-3 (lymphocyte activation gene 3), GITR (glucocorticoid-induced tumor necrosis factor receptor), OX40 (tumor necrosis factor receptor superfamily, member 4) and CD47 (cluster of differentiation 47, integrin associated protein). He noted that PD-1 monotherapy might induce a compensatory inhibitory pathway based on the latest finding from Gao et al. They evaluated untreated and ipilimumab-treated tumors from patients in a presurgical clinical trial, and identified VISTA as another compensatory inhibitory immune checkpoint in prostate tumors after ipilimumab therapy. Dr. Cao discussed some clinical studies with anti-PD-1 monoclonal antibody therapy. Sustained tumor regression with PD-1/PD-L1 blockade varies with many different cancers. The effective rate for Hodgkin’s cancer is about 69% to 87%, but the maximum effective rates varied from 19% to 50% for other cancers, including melanoma, lung cancer and liver cancer. This raised the question of resistance to PD-1/PD-L1 blockade for some patients. Indeed, Zaresky et al. analyzed biopsy samples from paired baseline and relapsing lesions in patients with metastatic melanoma who had an initial objective tumor regression followed by disease progression. They found that JAK2 mutation promotes acquired resistance to PD-1 blockade immunotherapy in patients with melanoma. The resistance was associated with defects in the pathways involved in interferon–receptor signaling and in antigen presentation. IFN-γ released by T cells plays critical roles in the PD-1/PD-L1 blockade therapy. However, there are still some questions about the major roles of IFN-γ on the tumor itself or vessel normalization. Dr. Cao introduced the concept that prolonged interferon signaling activation increases resistance to immune checkpoint blockade by a study from Benci et al. and presented some novel findings from his laboratory to address how interferon acts against tumor by post-translational and epigenetic modification.

In his last topic on metastasis prevention, Dr. Cao began with a review of the four new hallmarks of cancer including genome instability and mutation, avoiding immune destruction, deregulating cellular energetics, and tumor-promoting inflammation. The interaction between tumor cells and host cells includes lymph vessels, cellular matrix, blood vessels, immune cells and fibroblasts, and is one of the leading questions in metastasis prevention. Monotherapy is almost never able to block metastasis. In the future, combined and targeted conventional therapy coupled with immunotherapy might increase the efficacy and sustainable clinical response in cancer patients. As an example, Dr. Depinho’s group showed the effectiveness of combinatorial immunotherapy, eradicating myeloid-derived suppressor cells, for castration-resistance prostate cancer. He emphasized the key role of neutrophils in metastasis. Dr. Cao ended his lecture by presenting latest study from his laboratory about lung pre-metastatic niche formation by activating alveolar epithelial TLR3 to recruit neutrophils, but not TLR4- or TLR9-deficient mice show reduced lung metastasis in spontaneous metastatic models. Primary tumor-derived exosomal RNAs activate TLR3 in lung epithelial cells, consequently inducing a pre-metastatic niche by chemokine secretion and neutrophil recruitment. Inflammation, angiogenesis and vascular permeability, lymphangiogenesis, immunosuppression, organotropism, and reprogramming play important roles in the formation of the pre-metastatic niche.
proliferation, vascular angiogenesis, and an inhibitory immune microenvironment. T-MPs can also train distant immune cells to form a pre-metastatic niche, and promote tumor metastasis. However, T-MPs can change from ‘devil’ to ‘angels’. He showed T-MPs containing anti-tumor drugs such as an oncolytic virus are a novel approach that reverses drug resistance of tumor-repopulating cells (TRCs). T-MPs are great candidates for tumor vaccines and targeted therapy delivery systems. In his last topic, Dr. Huang indicated that it is important to understand tumor cells from atypical metabolism. Carbohydrate/glucose metabolism is the most important pathway to provide ATP in human body. Liver cancer cells have atypical glycolysis but active gluconeogenesis. The key gluconeogenic enzyme phosphoenolpyruvate carboxykinase (PEPCK, PCK1) is highly expressed in liver, which plays a critical role in gluconeogenesis in both normal and tumor cells. Recent studies also suggest that the mitochondrial isoform of PEPCK (PEPCK-M, PCK2) may be another key regulator of metabolism and survival in cancer cells.

Dr. Huang ended his presentation by showing the need for further investigation of metabolic cross-talk between immune cells and tumor cells.

3.2. Plenary lecture on “chromatin as a mechanosensor in gene expression and mechanobiomedicine” by Dr. Ning Wang

Mechanical forces play critical roles in the regulation of biological functions of living tissues and organisms in normal physiology and the diseased state. Almost all cells generate and sense mechanical forces. Most cells attach to extracellular matrix (ECM) proteins or other cells via specific mechanosensors (e.g., integrins and cadherins) on the cell surface. The forces are focused at focal adhesions, a macromolecular assembly of many proteins and molecules at the cell–ECM interface. These concentrated forces are propagated along the cytoskeleton to various parts of the cytoplasm. However, despite significant efforts for many years, it remains elusive how mechanical forces influence gene expression in living cells.

Dr. Wang pioneered a study in 1993 to show that integrin transfers forces from the cell membrane to the cytoskeleton. In the early 2000s, his laboratory demonstrated the first experimental evidence that the endogenous forces generated by living cells exert pre-stress (cell tension) to stabilize the cytoskeleton and determine cell stiffness, later his laboratory demonstrated that forces via integrins can directly activate cytoplasmic enzymes at long distances. In 2009, Dr. Wang introduced the concept of mechanobiomedicine and proposed that an extracellular matrix force applied via integrins could directly impact gene expression.

Dr. Wang's laboratory recently demonstrated that gene transcription can be upregulated via force-induced direct chromatin stretching. Using green fluorescent protein (GFP) to label multiple sites in a chromatin domain and inserting a gene of interest, DHFR, between GFP spots, they were able to quantify the degree of chromatin stretching and transcription in a living cell. They found that gene upregulation was dependent on force magnitude, force directionality, and the degree of chromatin stretching as well as tension in the cytoskeleton. Disrupting the force propagating pathway from the cytoplasm to the nuclear lamina abolished force-induced transcription. They discovered two nuclear proteins that transmitted force from nuclear lamins to the chromatin. They show that force-induced transcription does not depend on transport between the cytoplasm and the nucleus. Thus, they have discovered that chromatin is a bona fide direct mechanosensor. They highlighted their findings that forces and matrix mechanics regulate stem cell differentiation and early embryonic development. They provided evidence of low forces in facilitating growth and metastasis of the malignant, undifferentiated soft TRCs. Furthermore, they found that self-renewal gene Sox2 is a major player in promoting growth of TRCs and the matrix mechanics-dependent plasticity of TRCs. Dr. Wang revealed that cell deformability is a key factor in the control of extravasation dynamics during cancer metastasis. His findings demonstrate the critical roles of mechanotransduction and mechanobiology in stem cell biology and cancer cell biology.

3.3. Short talk on “targeting protein degradation of tumor-promoting factors as a therapeutic strategy of cancer” by Dr. Fang Hua

Diabetes is a worldwide health problem with severe complications. High insulin/IGF is a biologic link between diabetes and cancers, but the underlying molecular mechanism remains unclear. Dr. Hua started her presentation by introducing the proteostasis network as a drug target for chronic diseases. She previously found that the TRB3–Smad3 interaction promotes the epithelial-to-mesenchymal transition (EMT) and tumor invasion. She then reported a previously unrecognized tumor-promoting mechanism for stress protein TRIB3, which mediates a reciprocal antagonism between autophagic and proteasomal degradation systems and connects insulin/IGF to malignant promotion. High-level TRIB3 in cancer patients correlates with tumor progression and poor survival rate. Silencing TRIB3 protects against the tumor-promoting actions of insulin/IGF and attenuates tumor initiation, growth and metastasis in vivo. The interaction between TRIB3 and autophagic receptor p62 hinders p62 binding to LC3 and ubiquitinated substrates, causes p62 deposition and suppresses autophagic/proteasomal degradation of several tumor-promoting factors. Interrupting the TRB3/p62 interaction by chimeric peptide Pep2-A2 produces potent anti-tumor efficacies against tumor growth and metastasis. Their study opens the possibility of targeting this interaction as a potential novel strategy against cancers with diabetes.

3.4. Short talk on “blockade of IDO-kynurenine-AhR metabolic circuitry abrogates IFN-induced immunologic dormancy of tumor-repopulating cells” by Dr. Yuying Liu

Similar with chemotherapy and radiotherapy, immunotherapy can also cause resistance to form TRCs. Dr. Liu used a soft fibrin gels system to investigate interactions with the immune system that may lead TRCs into dormancy. They found that IFN-γ induces TRCs to enter dormancy through an indolamine 2,3-dioxygenase 1 (IDO1)-kynurenine (Kyn)-aryl hydrocarbon receptor (AhR)-p27-dependent pathway. IFN-γ normally triggers differentiated tumor cell apoptosis via STAT1. However, in TRCs that highly expressed IDO1 and AhR, IFN-γ activates IDO1/AhR-dependent p27 induction and activates the dormancy program. Targeting IDO/AhR not only abrogates IFN-γ-induced dormancy but also results in enhanced repression of tumor growth by IFN-γ-induced apoptosis of TRCs both in vitro and in vivo. Their data represent a
novel mechanism of inducing TRC dormancy by IFN-γ, suggesting a potential effective cancer immunotherapy through the combination of IFN-γ and IDO/Ar-R inhibitors.

3.5. Short talk on “TRIB3 promotes APL progression through stabilization of the oncoprotein PML-RARα and inhibition of p53-mediated senescence” by Dr. Ke Li

Acute promyelocytic leukemia (APL), M3-type of acute myeloid leukemia (AML), is driven by the oncoprotein PML-RARα, which antagonizes myeloid differentiation and promotes APL-initiating cell self-renewal. Combined all-trans retinoic acid (ATRA) with arsenic trioxide (As2O3) or chemotherapy dramatically improves the prognosis of APL patients. However, ATRA/arsenic resistance still causes treatment failure in some APL patients. Dr. Li reported that expression of pseudokinase tribble 3 (TRIB3) associates positively with APL progression and therapeutic resistance. The elevated TRIB3 expression promotes APL by interacting with PML-RARα and suppressing its sumoylation, ubiquitylation, and degradation. This represses PML nuclear body assembly, p53-mediated senescence, and cell differentiation, and supports cellular self-renewal. Genetically inhibiting TRIB3 expression or combination of peptide Pep2-S160 disturbing TRIB3/PML-RARα interaction with ATRA/As2O3 eradicates APL by accelerating PML-RARα degradation. The study provides insight into APL pathogenesis and a potential therapeutic option against APL.

4. Session on “new immunotherapy for cancer” chaired by Dr. Zhuowei Hu

4.1. Plenary lecture on “enhancing anti-tumor immunity with oncolytic vaccines” by Dr. Yonghong Wan

Current immuno-oncological therapeutics includes checkpoint inhibitors, bispecific antibodies, cancer vaccines, oncolytic viruses (OV) and gene-engineered cytotoxic T cells. Although some of these immuno-oncology agents have already generated substantial benefit over the previous standards of care, the majority of patients are still in need of a beneficial next-generation treatment. To address this need, a growing trend in immuno-oncology drug development is the investigation of combination therapies. However, owing to the heterogeneity of solid tumors and their immunosuppressive microenvironment, it is not yet clear which combinations will be most effective. In Dr. Wan’s presentation, he discussed the rationale underlying the combination of oncolytic vaccines with other immuno-oncological therapeutics to optimize clinical outcomes. Dr. Wan emphasized the key role of T cells in successful immunotherapy. The quantity, tumor-specific trafficking, activity and specificity of T cells are four key components for immunotherapy. OV vaccine is a therapeutic approach in cancer treatment that utilizes genetically modified viruses that selectively replicate within tumor cells. Dr. Wan provided experimental and clinical evidence that OV vaccines can effectively expand antigen-specific T cells in the periphery and rapidly recruit them into the tumor. He concluded that OV vaccines might represent an ideal platform to combine with checkpoint inhibitors, conventional cancer vaccines, and adoptive T cell therapies including CAR T cells.

4.2. Plenary lecture on “a novel prophylactic cancer vaccine platform for non-viral malignancies” by Dr. Yaohe Wang

While prophylactic vaccination strategies have proven effective for cancers in which the etiological agents are characterized infectious pathogens, for most non-viral malignancies these strategies remain elusive. Strategies reliant on presentation of a limited number of known tumor-associated antigens (TAAAs) are largely ineffective due to inappropriate antigen choices from a wide repertoire of potential antigens, and failure to mitigate tumor-induced immunosuppression. Development of effective prophylaxis against non-viral cancers remains a significant challenge, largely due to the lack of appropriate tumor antigens and the difficulty in eliciting effective anti-tumor immunity. Induction of personalized tumor cells from healthy somatic cells creates an opportunity for provision of a range of immunogenic and relevant tumor antigens. Dr. Wang’s laboratory has developed a VIReST vaccine (virus-infected reprogrammed somatic cell-derived tumor cell) against pancreatic cancer, in which pancreatic tumor cells were derived from normal somatic cells with induced pluripotent stem cell (iPSC) and gene-editing technologies. These cells were infected with replicating oncolytic viruses to promote effective induction of tumor-specific immunity through virus-induced immunogenic cell death mechanisms. Application of VIReST resulted in enhanced anti-tumor immune responses and prolonged survival in a clinically relevant KPC transgenic mouse model, without inducing detectable autoimmunity. Their results provide exciting proof of the concept and a robust technology platform for the development of prophylactic cancer vaccines to prevent non-viral malignancies in at-risk individuals.

4.3. Short talk on “cirmtuzumab, a new tool for cancer-specific treatment” by Dr. Bing Cui

Cirmtuzumab is a first-in-class humanized monoclonal antibody that binds the extracellular domain of ROR1. ROR1 is an onco-embryonic antigen that is expressed on the neoplastic cells of patients with chronic lymphocytic leukemia (CLL), other B-cell lymphomas, acute leukemias, and many different solid-tumors, but not on non-neoplastic post-partum tissues. Dr. Cui presented studies that he carried out as postdoc in Dr. Thomas J. Kipps's laboratory. The expression of ROR1 associates with the epithelial–mesenchymal transition (EMT), and targeting ROR1 with the monoclonal antibody D10 can inhibit triple-negative breast cancer metastasis. Moreover, ROR1 could complex with T-cell leukemia 1 (TCL1) in chronic lymphocytic leukemia (CLL), and accelerate CD5+ B220+ TCL1-Tg (TCL1) transgenic mice. Anti-ROR1 antibody D10 caused TCL1 down-modulation, phosphor-AKT reduction and impaired engrafment of ROR1-positive leukemia cells. However, the affinity of mouse monoclonal antibody D10 is not ideal. During the same period that UC-961, a D10-like high-affinity anti-ROR1 antibody, was screened by phage-display technology, Dr. Kipps's laboratory found that human ovarian cancer stem cells (CSCs) expressed ROR1. UC-961, a humanized anti-ROR1 monoclonal antibody, could inhibit migration, spheroid formation, immune-deficient mouse engrafment, and CSCs self-renewal. Dr. Cui then presented the latest study to confirm the relationship between leukemia-cell expression of ROR1 and clinical progression. In this study, transcriptome analyses indicated that CLL cases with low-to-negligible ROR1 (designated as ROR1_{low}) could be distinguished from CLL cases that expressed normal levels of ROR1 (designated as ROR1_{high}) in an unsupervised gene-expression clustering.
analysis. High-level CLL-cell expression of ROR1 was associated with more aggressive disease in 1568 patients followed by clinical investigators in the CLL Research Consortium (CRC). Exogenous Wnt5a could enhance the proliferation of ROR1Pos CLL cells induced by CD154 in media supplemented with interleukin (IL)-4 and IL-10, an effect that could be inhibited by UC-961 (cirmtuzumab)69. An interaction between ROR1 and ROR2 that is required for WNT5A/GT-Pase signaling promotes leukemia chemotaxis and proliferation70. Cirmtuzumab inhibited engulfment of ROR1+ leukemia cells in immune-competent ROR1-transgenic mice and MEC1-ROR1 cells in immune-deficient mice71. Bruton's tyrosine kinase (BTK) inhibitoribrutinib cannot induce complete responses (CR) or durable remissions without continued therapy. This indicates that alternate pathways may contribute to CLL growth/survival, which are independent of BCR-signaling. Cirmtuzumab could inhibit WNT5A-induced RAC1 activation in CLL treated with ibrutinib. These preclinical observations provide a rationale for combination therapy of cirmtuzumab with BTK inhibitors for patients with CLL or other B-cell malignancies that express ROR172. Taken together, it took more than ten years from discovery of the cancer specific gene ROR1 to the first-in-class monoclonal antibody targeting ROR1 in conducting a phase 1 clinical trial (NCT02222688)71,72. Cirmtuzumab might provide new cancer-targeted therapies for patients with cancers such as leukemia, lymphoma and solid tumors.

5. Session on “inflammation & diseases” chaired by Dr. Zhuowei Hu

5.1. Plenary lecture on “inflammation and insulin resistance—galectin 3: new insight into inflammation induced insulin resistance” by Dr. Pingping Li

In obesity, macrophages and other immune cells accumulate in insulin target tissues, leading to a chronic inflammatory state and insulin resistance. Dr. Li's research is focused on the molecular interaction between chronic inflammation and insulin resistance. Dr. Li first gave a brief introduction about current trends of obesity and the multiple consequences of insulin resistance. CD11c+ macrophages play a key role in the promotion of a chronic inflammatory state and insulin resistance73. Furthermore, Dr. Li explained that transcriptional control by nuclear factors (NRs), including PPARγ and others, contributes to obesity-induced chronic inflammation. Adipocyte-specific nuclear receptor corepressor (NCoR) deletion decreases CDK5-mediated phosphorylation of PPARγ74, derepresses PPARγ function, and leads to insulin sensitivity and decreased inflammation75. Macrophage-specific NCoR deficiency enhances the expression of genes that direct the biosynthesis of palmitoleic acid and ω3 fatty acids, and inhibits enhancer/promoter histone dimethylation of inflammatory genes76. Evidence indicates that obesity associated with insulin resistance leads to increased levels of pro-inflammatory cytokines, such as TNF- and IL-1, which interfere with insulin signaling to induce insulin resistance. However, therapeutic efforts focusing on inhibition of these cytokines to ameliorate inflammation-induced insulin resistance have had limited success in clinical studies. Current treatment options for insulin resistance and type 2 diabetes are not perfect. Many focus on management of blood glucose levels or lifestyle changes, and few targets causal factors that render important metabolic tissues resistant to insulin. Therefore, there is a critical need for new therapies that prevent obesity-associated processes leading to insulin resistance. Dr. Li's previous research found that, after switching the diet of obese mice from a high fat diet (HFD) to normal chow (NC), adipose tissue CD11c+ macrophages expressed much lower levels of galectin-3 (Gal3) compared to mice maintained on a HFD77. Meanwhile, there was a reduction in inflammation and insulin resistance in these diet-switched mice, despite retaining the same number of adipose tissue CD11c+ macrophages. Therefore, Dr. Li hypothesized that Gal3 might promote obesity-induced insulin resistance, providing a link between inflammation and insulin resistance.

Dr. Li then presented a recent study to validate this hypothesis. Dr. Li showed that Gal3 as a lectin mainly secreted by macrophages is elevated in people with obesity, as well as obese mice. Administration of Gal3 to lean mice causes insulin resistance and glucose intolerance, whereas inhibition of Gal3, through either genetic or pharmacologic loss-of-function, improved insulin resistance in obese mice. In vitro treatment with Gal3 directly increased macrophage chemotaxis, reduced insulin-stimulated glucose uptake in myocytes and adipocytes, and impaired insulin-mediated suppression of glucose output in primary mouse hepatocytes, indicating that Gal3 induces cellular insulin resistance in all 3 major insulin target cells. Importantly, Gal3 could bind directly to the insulin receptor (IR) and inhibit downstream IR signaling. These observations elucidated a novel role for Gal3 in hepatocyte, adipocyte, and myocyte insulin resistance, suggesting that Gal3 can link inflammation to decreased insulin sensitivity. Inhibition of Gal3 could be a new approach for the treatment of insulin resistance and type 2 diabetes. Dr. Li concluded that their study not only teases out the complex relationship between obesity-related inflammation and insulin resistance, but also identifies a promising drug target77.

5.2. Short talks on fibrotic diseases by Dr. Xiaowei Zhang and Dr. Xiaoli Lv

In this section, Dr. Zhang and Dr. Lv presented their latest findings on hepatic fibrosis and pulmonary fibrosis, respectively. In the short talk titled as “targeting the Trib3/p62 interaction ameliorates hepatic fibrosis by restoring the IL17A/STAT3-suppressed autophagy of hepatocytes”, Dr. Zhang gave a brief introduction on hepatic fibrosis as the major determinant of morbidity and mortality in patients with liver diseases. Although good progress has been made in the understanding of the pathogenesis of hepatic fibrosis in recent years, the effective antifibrotic agents to prevent or even reverse hepatic fibrosis are an unexplored area for drug development. Dr. Zhang is attempting to define whether hepatocytes directly respond to IL-17A stimulation, which is associated with the development of hepatic fibrosis. In their study, they found that fibrotic liver tissue expressed higher levels of IL-17A, IL-17R and its transcription factor RORγt than control liver tissue. Using the bile duct ligation (BDL)- or thioacetamide (TAA) injection-induced mouse models of hepatic fibrosis, they observed that neutralizing IL-17A promoted the resolution of cholestatic or hepatotoxic liver injury-induced inflammation, attenuated hepatic fibrosis, and increased animal survival. Antagonism of IL-17A inhibited the phosphorylation of signal transducer and activator of transcription 3 (STAT3) and restored autophagy activity in fibrotic liver tissues. Blocking STAT3 by a STAT3 inhibitor STATTIC or by STAT3 siRNA protected from the IL-17A-induced autophagy suppression in hepatocytes. Moreover, the transcription of pseudokinase tribbles 3 (TRIB3), a well-known stress sensor, could be activated by STAT3. The higher expression of TRIB3 was found
in human cirrhosis tissues in comparison with control liver tissues, which correlated positively with the expression of IL-17A and the phosphorylation of STAT3. IL-17A/STAT3-enhanced TRIB3 interacted with autophagic receptor SQSTM1 (p62) and caused p62 accumulation and suppressed autophagy flux. Silencing TRIB3 expression reversed the IL-17A-suppressed autophagy in hepatocytes, which were supported by the in vivo findings that interrupting the TRIB3/p62 interaction restored autophagy activity in hepatocytes and protected against BDL or TAA-induced hepatic fibrosis. In the end, Dr. Zhang concluded that the IL-17A-STAT3-TRIB3 signaling pathway contributes to the pathogenesis of hepatic fibrosis through suppressing autophagy and the TRIB3/p62 interaction is a potential therapeutic target for the treatment of fibroproliferative liver diseases. Dr. Xiaoxi Lv first gave a background introduction about pulmonary fibrosis (PF), and some common features between PF and lung cancer. Lung epithelial cell injury is commonly considered as an initiating factor for PF. Dr. Hu's laboratory is addressing whether the epithelial-mesenchymal communication of the injured lung epithelial cells play key role in the development of PF and numerous chronic lung diseases. Their current pilot results support the possibility of new therapeutic targets for the development of anti-PF drugs.

6. Summary

A number of talks presented at the 2017 International Workshop of CAMS Initiative for Innovative Medicine on Tumor Immunology have been reviewed with regard to recent important findings on the roles of immunotherapy and inflammation in cancer. These exceptional presentations, subsequent questions, and insightful discussions shall undoubtedly stimulate further studies on the regulatory mechanisms underlying the crosstalk between immune cells and tumor cells, which will ultimately advance the field of chronic inflammatory diseases and cancer treatment.

Acknowledgments

Dr. Zhuowei Hu's work was supported by grants of 81530093 from the National Natural Science Foundation of China and 2016-I2M-1-008 from Chinese Academy of Medical Sciences (CAMS) Innovation Fund for Medical Sciences; Dr. Bo Huang's work was supported by grants of 2014CB542103 from National Basic Research Program of China, 81661128007, 81472653 and 81530080 from National Natural Science Foundation of China, 81502473 from National Natural Science Fund for Young Scholars of China and 016-I2M-1-007 from the CAMS Innovation Fund for Medical Sciences; Dr. Ying Liu's work was supported by grants of 2014CB542103 from National Basic Research Program of China, 81661128007, 81472653 and 81530080 from National Natural Science Foundation of China, 81502473 from National Natural Science Fund for Young Scholars of China and 016-I2M-1-007 from the CAMS Innovation Fund for Medical Sciences; Dr. Yonghong Wan's work was supported by grants of 123516 and 152954 from Ministry of Science and Technology of China, 2016-I2M-4-001 from CAMS Innovation Fund for Medical Sciences, 2016ZX310190 and 2016ZX320014 from Central Public-interest Scientific Institution Basel Research Fund; Dr. Pingping Li's work was supported by grants of 81622010 from the National Natural Science Foundation of China, 2017YFA0205400 from Ministry of Science and Technology of China, 2016-I2M-1-001 from CAMS Innovation Fund for Medical Sciences, 2016ZX310190 and 2016ZX320014 from Central Public-interest Scientific Institution Basel Research Fund; Dr. Fang Hua's work was supported by grants of 81472717 and 81673474 from the National Natural Science Foundation of China, 7162133 from Beijing Natural Science Foundation, and 2016-I2M-1-007 from the CAMS Innovation Fund for Medical Sciences; Dr. Yong Liu's work was supported by grants of 2014CB542103 from National Basic Research Program of China, 81661128007, 81472653 and 81530080 from National Natural Science Foundation of China, 81502473 from National Natural Science Fund for Young Scholars of China and 016-I2M-1-007 from the CAMS Innovation Fund for Medical Sciences; Dr. Xuetao Cao's work was supported by grants of 2016-I2M-3-008 from the CAMS Innovation Fund for Young Scholars of China and 016-I2M-1-007 from the CAMS Innovation Fund for Medical Sciences; Dr. Xiaowei Zhang's work was supported by grants of 81502473 from National Natural Science Fund for Young Scholars of China and 016-I2M-1-007 from the CAMS Innovation Fund for Medical Sciences; Dr. Xiaowei Zhang's work was supported by grants of 81502473 from National Natural Science Fund for Young Scholars of China and 016-I2M-1-007 from the CAMS Innovation Fund for Medical Sciences; Dr. Xiaowei Zhang's work was supported by grants of 81503093 from the National Natural Science Foundation of China, and 2016-I2M-1-010 from the CAMS Innovation Fund for Medical Sciences; Dr. Ke Li's work was supported by grants of 81400140 from the National Natural Science Foundation of China, and 2016-I2M-1-011 from the CAMS Innovation Fund for Medical Sciences; Dr. Xiaowei Zhang's work was supported by grants of 81503128 from the National Natural Science Foundation of China and 2016-I2M-1-008 from CAMS Innovation Fund for Medical Sciences. In addition, the Meeting Organizing Committee was greatly thankful to PerkinElmer and Innovent Biologics, and for their generous financial supports, as well as Dr. Huang Bo's laboratory members and Dr. Zhuowei Hu's laboratory members for their assistance in preparing and organizing the conference.

References

1. The State Council of the People's apostrophe Republic of China. Plan of health China 2030. Available from: (http://www.gov.cn/zhengce/2016-10/25/content_5124174.htm).
2. Holmes D, Xuetao Cao: reforming medical research in China. Lancet 1977;381:1977.
3. Hayes DN, Kim WY. The next steps in next-gen sequencing of cancer genomes. J Clin Invest 2015;125:462–8.
4. Meleto I, Gaudekens G, Gerritsen W, Huber C, Parmiani G, Scholl S, et al. Therapeutic vaccines for cancer: an overview of clinical trials. Nat Rev Clin Oncol 2014;11:509–24.
5. Spranger S, Dai D, Horton B, Gajewski TF. Tumor-residing Baf3 dendritic cells are required for effector T cell trafficking and adoptive T cell therapy. Cancer Cell 2017;31(711-23)e4.
6. Church SE, Galon J. Tumor microenvironment and immunotherapy: the whole picture is better than a glimpse. Immunity 2015;43:631–3.
7. Mlecnik B, Bindea G, Kirilovsky A, Angell HK, Obaena AC, Tosolini M, et al. The tumor microenvironment and immunoscore are critical determinants of dissemination to distant metastasis. Sci Transl Med 2016;8:327ra26.
8. Hou J, Lin L, Zhou W, Wang Z, Ding G, Dong Q, et al. Identification of miRNomes in human liver and hepatocellular carcinoma reveals miR-199a/b-3p as therapeutic target for hepatocellular carcinoma. Cancer Cell 2011;19:232–43.
9. Hou J, Zhou Y, Zheng Y, Fan J, Zhou W, Ng IO, et al. Hepatic RIG-I predicts survival and interferon-α therapeutic response in hepatocellular carcinoma. Cancer Cell 2014;25:49–63.
Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 2004;10:942–9.

Kryczek I, Zou L, Rodriguez P, Zhu G, Wei S, Mottram P, et al. B7-H4 expression identifies a novel suppressive macrophage population in human ovarian carcinoma. J Exp Med 2006;203:871–81.

Li K, Wang F, Cao WB, Lv XX, Hua F, Cui B, et al. TRIB3 promotes APL progression through stabilization of the oncoprotein PML-RARA and inhibition of p53-mediated senescence. Cancer Cell 2017;31(697–710)e7.

Liu Y, Liang X, Yin X, Lv J, Tang K, Ma J, et al. Blockade of IDO-kynurenine-AhR metabolic circuitry abrogates IFN-γ-induced immunomodulatory dormancy of tumor-repopulating cells. Nat Commun 2017;8:15207.

Zhang WL, He H, Zang M, Wu Q, Zhao H, Lu LL, et al. Genetic features of aflatoxin-associated hepatocellular carcinomas. Gastroenterology 2017. Available from: http://dx.doi.org/10.1053/j.gastro.2017.03.024.

Ma R, Ji T, Chen D, Dong W, Zhang H, Yin X, et al. Tumor cell-derived microparticles polarize M2 tumor-associated macrophages for tumor progression. OncoImmunology 2016;5:e111859.

Ma J, Zhang Y, Tang K, Zhang H, Yin X, Li Y, et al. Reversing drug resistance of soft tumor-repopulating cells by tumor cell-derived chemotherapeutic microparticles. Cell Res 2016;26:713–27.

Zhang H, Huang B. Tumor cell-derived microparticles: a new form of cancer vaccine. OncoImmunology 2015;4:e1017704.

Tang K, Zhang Y, Zhang H, Xu P, Liu J, Ma JW, et al. Delivery of chemotherapeutic drugs in tumour cell-derived microparticles. Nat Commun 2012;3:1282.

Zhang P, Tu B, Wang H, Cao Z, Tang M, Zhang C, et al. Tumor suppressor p53 cooperates with SIRT6 to regulate gluconeogenesis by promoting FoxO1 nuclear exclusion. Proc Natl Acad Sci U S A 2014;111:10648–9.

Tanner K, Brzozowski A, Olschewski H. Glucagon-like peptide-1 receptor: a therapeutic target for obesity and type 2 diabetes. Diabetes Obes Metab 2014;16:613–21.

Wang N, Butler JP, Ingber DE. Mechanotransduction across the cell surface and through the cytoskeleton. Science 1993;260:1124–7.

Wang N, Naruse K, Stamenovic D, Feldberg JJ, Mijailovich SM, Tolic-Norrelykke IM, et al. Mechanical behavior in living cells consistent with the tensegrity model. Proc Natl Acad Sci U S A 2001;98:7765–70.

Wang N, Tolic-Norrelykke IM, Chen J, Mijailovich SM, Butler JP, Feldberg JJ, et al. Cell prestress. I. Softness and prestress are closely associated in adherent contractile cells. Am J Physiol Cell Physiol 2002;282:C606–16.

Na S, Collin O, Chowdhury F, Tay B, Ouyang M, Wang Y, et al. Rapid signal transduction in living cells is a unique feature of nanotransduction. Proc Natl Acad Sci U S A 2008;105:6626–31.

Wang N. Journal club theme of April 2009: mechanobiology and molecular mechanomedicine. Available from: (http://mechanobi.org/node/5102).

Wang N, Tytell JD, Ingber DE. Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat Rev Mol Cell Biol 2009;10:75–82.

Tajik A, Zhang Y, Wei F, Sun J, Jia Q, Zhou W, et al. Transcription upregulation via force-induced direct stretching of chromatin. Nat Mater 2015;14:1287–96.

Chowdhury F, Na S, Li D, Poh YC, Tanaka TS, Wang F, et al. Material properties of the cell dictate stress-induced spreading and differentiation in embryonic stem cells. Nat Mater 2010;9:82–8.

Chowdhury F, Li Y, Poh YC, Yokohama-Tamaki T, Wang N, Tanaka T. Soft substrates promote homogeneous self-renewal of embryonic stem cells via downregulating cell-matrix traction. PLoS One 2010;5:e15655.

Poh YC, Chen J, Hong Y, Yi H, Zhang S, Chen J, et al. Generation of organized germ layers from a single mouse embryonic stem cell. Nat Commun 2014;5:4000.

Liu J, Tan Y, Zhang H, Zhang Y, Xu P, Chen J, et al. Soft fibrin gels promote selection and growth of tumorigenic cells. Nat Commun 2012;3:734–41.
63. Zhang S, Chen L, Wang-Rodriguez J, Zhang L, Cui B, Frankel W, Al Yaghchi C, Zhang Z, Alusi G, Lemoine NR, Wang Y. Vaccinia virus, a promising new therapeutic agent for pancreatic cancer. *Proc Natl Acad Sci U S A* 2014;111:17266–71.
64. Fukuda T, Chen L, Endo T, Tang L, Lu D, Castro JE, et al. Antisera to the onco-embryonic antigen ROR1 is expressed by a variety of human cancers. *Am J Pathol* 2012;181:1903–10.
65. Fukuda T, Chen L, Endo T, Tang L, Lu D, Castro JE, et al. Antisera induced by infusions of autologous Ad-CD154-leukemia B cells identify ROR1 as an oncofetal antigen and receptor for Wnt5a. *Proc Natl Acad Sci U S A* 2008;105:3047–52.
66. Cui B, Zhang S, Chen L, Yu J, Widhopf II GF, Fecteau JF, et al. Targeting ROR1 inhibits epithelial-mesenchymal transition and metastasis. *Cancer Res* 2013;73:3649–60.
67. Widhopf II GF, Cui B, Ghia EM, Chen L, Messer K, Shen Z, et al. ROR1 can interact with TCL1 and enhance leukemogenesis in Epi-TCL1 transgenic mice. *Proc Natl Acad Sci U S A* 2014;111:793–8.