Marmots and Yersinia pestis Strains in Two Plague Endemic Areas of Tien Shan Mountains
Gulmira Sariyeva, Gulnara Bazarkanova, Ravshambek Maimulov, Sabirzhan Abdikarimov, Berzhan Kurmanov, Aigul Abdirassilova, Anton Shabunin, Zaurbek Sagiyev, Aigul Dzhaparova, Ziyat Abdel, et al.

To cite this version:
Gulmira Sariyeva, Gulnara Bazarkanova, Ravshambek Maimulov, Sabirzhan Abdikarimov, Berzhan Kurmanov, et al.. Marmots and Yersinia pestis Strains in Two Plague Endemic Areas of Tien Shan Mountains. Frontiers in Veterinary Science, Frontiers Media, 2019, 6, 10.3389/fvets.2019.00207 . hal-02394757

HAL Id: hal-02394757
https://hal.archives-ouvertes.fr/hal-02394757
Submitted on 5 Dec 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Marmots and *Yersinia pestis* Strains in Two Plague Endemic Areas of Tien Shan Mountains

Gulmira Sariyeva 1*, Gulnara Bazarkanova 2, Ravshambek Maimulov 2, Sabirzhan Abdikarimov 1, Berzhan Kurmanov 4, Aigul Abdissalova 4, Anton Shabunin 1, Zaurbek Sagiyev 4, Aigul Dzhaparova 3, Ziyat Abdel 4, Raikhan Mussagaliyeva 4, Serge Morand 5, Vladimír Motin 6 and Michael Kosoy 7

1 Department of Natural Sciences, Issyk-Kul State University, Karakol, Kyrgyzstan, 2 Karakol Anti-plague Department, Republic Center of Quarantine and Dangerous Infections, Karakol, Kyrgyzstan, 3 Republic Center of Quarantine and Dangerous Infections, Bishkek, Kyrgyzstan, 4 Reference-Laboratory, Kazakh Scientific Center of Quarantine and Zoonotic Diseases, Almaty, Kazakhstan, 5 Institute of Evolutionary Sciences, University of Montpellier, Montpellier, France, 6 Department of Microbiology and Immunology, Medical Branch, University of Texas, Galveston, TX, United States, 7 Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States

The main purpose of this study was to clarify the role of gray marmots (*Marmota baibacina*) in the long-term maintenance of highly virulent strains of *Yersinia pestis* in two plague endemic foci of the Tien Shan Mountains in Kyrgyzstan. We present data from regular observations of populations of *M. baibacina* and small rodents cohabiting with marmots in the mountainous grasslands of the Sari-Dzhas (east of Issyk-Kul Lake) and the Upper-Naryn (south of Issyk-Kul Lake) natural foci. During 2012–2017, an abundance of marmots and their ectoparasites (fleas and ticks) was significantly higher in Upper-Naryn comparing to Sari-Dzhas, although there were no differences in a number and diversity of small rodents cohabiting with marmots. The plague bacterium was detected either in marmots or in their ectoparasites collected during 4 of 6 years of observation in Sari-Dzhas and during 2 of 4 years of observation in Upper-Naryn. Plague was found in three sectors situated closely to each other in Sari-Dzhas and in 1 of 8 repeatedly surveyed sectors in Upper-Naryn. During 6 years, we isolated 9 strains of *Y. pestis* from marmots, two from their fleas *Oropsylla silantiewi*, one from an unidentified tick, and one from the gray hamster (*Cricetulus migratorius*). All plague strains isolated from the rodents and their ectoparasites in this study were similar to *Antiqua* biovar specific for marmots. The results indicate that plague can circulate continuously in the Tien Shan Mountains in populations of gray marmots and their ectoparasites with a facultative involvement of other rodent species after significant changes in rodent communities that happened in Kyrgyzstan during the previous two decades. The simultaneous field survey of two natural foci of plague, Sari-Dzhas and Upper-Naryn, would be important for further analysis of circulation of *Y. pestis* strains belonging to *Antiqua* biovar in the Tien Shan Mountains.

Keywords: grey marmot, ectoparasites, plague, rodent, Kyrgyzstan, *Yersinia pestis*
INTRODUCTION

One of the most active plague endemic areas in the world is located in Kyrgyzstan, Central Asia. There are two independent foci of plague in the Issyk-Kul province: the Sari-Dzhas (east of Issyk-Kul Lake) and the Upper-Naryn (south of Issyk-Kul Lake) region. The Sari-Dzhas natural plague focus is located in Kyrgyzstan (4,250 km²), with a part extending to Kazakhstan (750 km²). The first plague outbreak with high human mortality was recorded in the Kyrgyzstan part of Tien Shan focus in 1907, and the last big outbreak of plague occurred in 1928 in the Bash-Kaindi settlement of Atbashi district resulting in 54 deaths. The Upper-Naryn area is located in the Naryn and Issyk-Kul regions of Kyrgyzstan.

The first plague outbreak with high human mortality was recorded in the Kyrgyzstan part of Tien Shan focus in 1907, and the last big outbreak of plague occurred in 1928 in the Bash-Kaindi settlement of Atbashi district resulting in 54 deaths (Upper-Naryn mezeofocus) (4). The last major plague outbreak in Kyrgyzstan was seen in 1965 and 1982. In 2013, a 15-year-old boy who ate marmot meat died from plague in Kyrgyzstan. The Kyrgyz Ministry of Health established a temporal quarantine in parts of the country's mountainous northeast (5), where the risk of plague is well-known for a century. The endemic areas were investigated previously starting from 1942, and the last activity of plague was reported there in 1983 (4, 6, 7).

Gray marmots (M. baibacina) are well-known hosts of multiple zoonotic diseases, out of which plague presents the greatest danger to people (8–10). The gray marmots prefer grasslands and shrubs and avoid woodlands, including even the forest edges and forest-steppe areas with a tree cover <10% (11). Marmot fleas are actively involved in transmission of plague pathogen between animals (12–14). Marmots can host the following species of fleas: Oropsylla silantiewi, Rhadinopsylla li ventricosa, Ceratophyllum lebedewi, and Pulicx irritans; the first two flea species are host-specific for marmots (15, 16).

Human activities, such as agriculture, hunting, recreation, and degradation of natural habitats, may dramatically influence plague manifestations (17). Changes in landscape potentially can lead to altering the rodent and flea communities that in turn affect plague transmission cycle (18). Plague in Asian natural systems is commonly spatially stable and corresponds with distribution of primary rodent hosts that can support a strong association of specific strains of Yersinia pestis in mammalian communities (19). Marmots in mountainous plague foci of Central Asia carry a specific strain of Y. pestis (20). Disturbance of evolutionary relations between plague pathogen and their rodent hosts, such as marmots, may result in unpredictable dynamics of the infection.

The collapse of the Soviet Union and subsequent separation of anti-plague station in Kyrgyzstan from the federal anti-plague system led to dramatic reduction of plague investigations and plague control measures. During the last couple of decades, the density of marmots was significantly reduced as a result of chemical suppression in the 1960s, increased hunting of marmots, habitat destruction, and climate changes (6–8, 21). This raises the question whether the changes in rodent communities in these areas affected marmots playing a leading role in circulation of plague pathogen. Thus, the present study aimed to clarify the role of gray marmots in the long-term maintenance of the highly virulent strains of Y. pestis in two plague foci of the Tien Shan Mountains in Kyrgyzstan. The human case in 2013 attracted attention to the situation that plague is endemic to the territory of Kyrgyzstan and the urgent need to obtain new information about the status of the epidemiological situation in these plague foci.

MATERIALS AND METHODS

Fieldwork

In June–August 2012–2017, the Karakol Anti-Plague Department (KAPD) of the Republic Center for Quarantine and Dangerous Infections (RCQDI) organized field surveys within the Sari-Dzhas and Upper-Naryn foci. The fieldwork was organized as described by Weaver et al. (22) and Sariyeva et al. (6, 7). All work with wild and laboratory animals and plague strains was conducted in accordance with the regulations and protocols approved by the Ministry of Health of Kyrgyzstan (23) in 2015. The procedures were similar to those described by Aytkuluyev (24) and Ezhlova et al. (25). The animal work in the field was performed according to the Regulations approved by the State Agency for Environmental and Forest Protection of the Kyrgyz Republic (details of permits are presented in Table 1). Each permit was issued for collecting a certain number of animals (400 marmots, 300–400 rodents of other species, and excavating 10 nests of marmots and rodents to look for nest parasites) and used during a fixed period of time (from June 1 to August 30) in specific areas within plague foci.

TABLE 1	Numbers and dates of permits for trapping of animals for epizootological research in 2012–2017.					
Year	Number of license	Data of issue	Permitted number of animals	Number of license	Data of issue	Permitted number of animals
----------	--------------------	---------------	-----------------------------	--------------------	---------------	-----------------------------
2012	000078-KC	26.04.2012	400 marmots, 400 small rodents	–	–	–
2013	000110-KC	06.05.2013	400 marmots, 300 s.r.	000111-KC	06.05.2013	300 marmots, 300 small rodents
2014	000144-KC	06.05.2014	400 marmots, 300 s.r.	000145-KC	06.05.2014	400 marmots, 300 s.r.
2015	000168-KC	22.05.2015	400 marmots, 300 s.r.	000169-KC	22.05.2015	400 marmots, 300 s.r.
2016	000173-KC	17.05.2016	400 marmots, 300 s.r.	000174-KC	17.05.2016	400 marmots, 300 s.r.
2017	000003-KC	05.03.2017	400 marmots, 300 s.r.	000004-KC	05.03.2017	400 marmots, 300 s.r.
TABLE 2 | Strains of Y. pestis isolated in the Sari-Dzhas and Upper-Naryn plague foci used for DNA analysis.

Strain code	Object, site, and period of strain isolation
KG-1	Human outbreak, the Sari-Dzhas, 2013
KG-2	Human outbreak, the Sari-Dzhas, 2013
KG-3	Gray marmot, the Sari-Dzhas, 2014
KG-4	Gray marmot, the Upper-Naryn natural plague focus, Ishyk-Akshiyrak site, 2015
KG-5	Gray marmot, the Upper-Naryn natural plague focus, Ishyk-Akshiyrak site, 1963
KG-6	Ectoparasites, there was a suspicion that this strain was Y. pseudotuberculosis, 1962
KG-7	Gray marmot carcass, the Sari-Dzhas natural plague focus, Erylchek-Kandy site, 2016
KG-8	Ectoparasites—ticks from the carcass of gray marmot, the Sari-Dzhas natural plague focus, Erylchek-Kandy site, 2016
KG-9	Ectoparasites—fleas from the carcass of gray marmot, the Sari-Dzhas natural plague focus, Erylchek-Kandy site, 2016
KG-10	Gray marmot, the Sari-Dzhas natural plague focus, Erylchek-Kandy site, 2016
KG-11	Gray marmot, the Upper-Naryn natural plague focus, Ishyk-Akshiyrak site, 1957
KG-12	Gray marmot, the Upper-Naryn natural plague area, Ishyk-Akshiyrak site, 1962
KG-13	Gray marmot, the Upper-Naryn natural plague area, Ishyk-Akshiyrak site, 1960
KG-14	Gray marmot, the Upper-Naryn natural plague area, Ishyk-Akshiyrak site, 1983

Trapping Rodents

At the beginning of the annual anti-plague field work, zoologists visually estimated a number of marmots within study sites and accordingly planned trapping efforts in each sector (10 km2). The number of installed traps depends on the average density of marmot population in each sector. Around 8–10 traps were set next to marmot burrows each day at early morning. As the weather in May–June in high-altitude areas of Tien Shan is highly variable with snow, rains, and cold weather, the trapping was conducted during each sunny day. The marmot traps were set at the entrance of burrows and removed by evening. One trap remained at each burrow for half a day. The burrows for trapping were chosen based on external signs such as presence of fresh litter at the entrance, presence of freshly excavated and well-rammed entrances, grass coverage, presence of marmot footprints, and paths around the burrow. The traps used for capturing marmots were 20 cm wide and 8 cm high (Figure 5). The traps were attached to 50-cm-long metal rods with a strong metal chain. The rods are driven into the rocky soil to their full depth to prevent marmots or their predators from dragging the traps away. The metal parts were masked by horse manure to reduce smell of metal.

A number of small rodents, such as mice, voles, and hamsters, were estimated by counting animals captured by handmade snap traps set in transects (1, 25). The snap traps were also sprinkled with soil and baited with dry bread soaked in vegetable oil.
vegetables, or fruit. We placed traps in the evening and checked them in the early morning. If there was a captured rodent, we transferred the trap to another spot. The predators were estimated by trapping and visual observations. Each trapped animal was morphologically identified by species. The captured marmots were euthanized by cervical dislocation (25). Then, the animal was wrapped in two linen sacs with label (date, place, number of sector, and name of catcher), the inlet was tightly wrapped so that the ectoparasites could not escape, and then the animal was placed in a plastic bag, in a canvas bag, and finally brought to camp.

Parasitological Analysis

Ectoparasites of marmots were collected by combing the captured animals (“body” ectoparasites) and by collecting “off-host” ectoparasites from rodent burrows and nests (25). Ectoparasites were then identified using entomological keys (26) and placed in labeled glass tubes with ether. Inside burrows, dry grass bedding from the nesting chamber was carefully removed with a wire and was searched for fleas and other ectoparasites. Fleas of one species from a single animal were pooled and triturated in saline solution.

Bacteriological Analysis

The triturated flea suspension was inoculated on Hottinger agar with pH 7.2 (27) (bacteriological approach). The inoculation pool consisted of 20 ectoparasites of one species, collected from the same sector during several days and stored before inoculation in glass tubes without ether. If the animal exhibited any pathological manifestation, the ectoparasites from the pool were inoculated individually. Identification of the isolated bacteria was carried out by standard microbiological microscopy of

Focus	Year	Month	Area and number of sectors	Number of caught marmots	Number of other mammals trapped	Number of collected ectoparasites	Y. pestis isolated from marmots	Y. pestis isolated from ectoparasites	Y. pestis isolated from other rodents		
Sari-Dzhas	2012	June–July	800 km², 8 sectors	218	Microtus gregalis—42, Apodemus uralensis—47, Cricetulus migratorius—12 + carcass, Lepus tolai—2 (total 103)	240 fleas, 459 ticks	5	–	1 (gray hamster)		
	2013	June	400, 4 sectors	70	Microtus gregalis—30, Apodemus uralensis—6, Cricetulus migratorius—10 (total 46)	10 fleas, 137 ticks	–	–	–		
	2014	July	400, 4 sectors	197	Microtus gregalis—42, Ochotona macrotis—1, Apodemus uralensis—1, Cricetulus migratorius—11 (total 55)	84 fleas, 155 ticks, 6 lice	–	1 from fleas	–		
	2015	July–August	600, 6 sectors	177	Microtus gregalis—129, Martes foina—5 (total 134)	175 fleas, 42 ticks, 16 lice	–	–	–		
	2016	June–July	800, 8 sectors	180	Microtus gregalis—124, Apodemus uralensis—5, Cricetulus migratorius—1 (total 128)	145 fleas, 344 ticks, 9 lice	2	1 from ticks	–		
	2017	June–July	700, 7 sectors	130	Microtus gregalis—75, Apodemus uralensis—4 (total 79)	124 fleas, 15 ticks, 125 lice	–	–	–		
Upper Naryn	2013	June–August	800, 8 sectors	154	Microtus gregalis—47, Cricetulus migratorius—13, Mustela eversmanni—4 (total 64)	268 fleas, 1045 ticks, 127 lice	–	–	–		
	2015	June–July	800, 8 sectors	280	Microtus gregalis—107, Lepus tolai—2, Cuon alpinus—1, Mustela eversmanni—2 (total 112)	489 fleas, 113 ticks, 52 lice	2	–	–		
	2016	June–August	700, 7 sectors	190	Microtus gregalis—150, Alticola argentatus—1, Vulpes vulpes—1 (total 152)	261 fleas, 233 ticks, 2 lice	–	1 from fleas	–		
	2017	June–July	600, 6 sectors	224	Microtus gregalis—38, Lepus tolai—2, Vulpes vulpes—2 (total 42)	311 fleas, 593 ticks, 38 lice	–	–	–		
Years of observation	#sector	Time period of observation	Marmota baibacina (trapped)	Marmota baibacina (carcass)	Microtus gregalis	Apodemus uralensis	Ochotona macrotis	Cricetulus migratorius	Lepus tolai	Martes foina	Isolated strain of Y. pestis
----------------------	---------	-----------------------------	-----------------------------	-----------------------------	----------------	----------------	----------------	----------------	-------------	-------------	---------------------------
2012	3224406334	29 May–3 June	28	1	1	1	1	1	–	–	–
	3224407512	29 May–2 June	18	1	3	1	1		3	–	–
	3124407521	6–11 June	43	–	14	3					–
	3124406343	6–11 June	26	1	–	6	4	+ carcass			5
	3124406344	13–15 June	18	–	6	3					–
	3124406433	14–15 June	7	–	–						–
	3124406342	18–29 June	53	2*	33	12	1	+ carcass	1		5
	3124406413	19–26 June	25	7	5						–
Average:			27.25 ± 10	Total 42	47	Total 12 + carcass	2				–
2013 (human case)	3124406222	22 August				1					–
2013	3124406342	4–11 June	28	21		4					–
	3124406413	8–10 June	13	9		6					–
	3124406344	11–18 June	14								–
	3124406343	10–17 June	15			6					–
Average:			17.5 ± 5	Total 30	6	Total 10					–
2014	3124406311	9–20 July	58	2*	23	1	1	6	–	3	–
	3124406312	16–21 July	88		19	–	–	5			–
	3124405133	19–21 July	29		–	–	–	–			–
	3124405143	19–21 July	22		–	–	–	–			–
Average:			49.25 ± 23	Total 42	1	1	Total 11				–
2015	3124405233	27 July–5 August	54		20	–	–	–	3		–
	3124405234	27 July–16 August	52		76	–	1	August			–
	3124405243	8–11 August	30		13	1	–	1			–
	3124405241	9–11 August	12		0	–	–	–			–
	3124405144	5–6 August	6		11	–	–	–			–
	3124406321	13–16 August	23		9	–	–	–			–
Average:			29.5 ± 15	Total 129	5						–
2016	3124406242	28 June–6 July	39		82	3	1				–
	3124406241	30 June–2 July	16		0	–	–	–			–
	3124406313	30 June–5 July	25		26	–	–	–			–
	3124406223	2–9 July	25		0	–	–	–			–
	3124406224	5–6 July	6		0	–	–	–			–
	3124406232	8–9 July	29	1*	16	–	–	–			3
	3124406311	15–19 July	31		–	–	–	–			–
	3124405043	18–22 July	9		–	–	–	–			–
Average:			22.5 ± 9	Total 124	3	–	1				–

(Continued)
Object of isolation of Y. pestis	Time period of observation	Number	Average
Sari-Dzhas	15-29 June	19	21.67 ± 5
Sari-Dzhas	16-19 June	18	
Sari-Dzhas	17-21 June	13	
Upper-Naryn	23-27 June	27	
Upper-Naryn	27 June-6 July	34	
Upper-Naryn	2-4 July	19	

*Object of isolation of Y. pestis. Bold values indicate average or total meanings.

Table 4 Continued

Object of isolation of Y. pestis	Time period of observation	Number	Average
Sari-Dzhas	31 May	2124003123	
Sari-Dzhas	31 May	2124003141	
Sari-Dzhas	31 May	3124003162	
Sari-Dzhas	31 May	31240031034	
Sari-Dzhas	31 May	3124003121	
Sari-Dzhas	31 May	3124003142	
Total		75	

*Object of isolation of Y. pestis. Bold values indicate average or total meanings.

Table 4

Genetic Analysis

The genetic analysis was performed using two types of material: whole-genome DNA samples and MLVA fragments (Table 2). The 14 studied Y. pestis strains were obtained from the RCQDI collection. The strains were isolated during the last several years in the territory of Sari-Dzhas and Upper-Naryn plague foci (Table 2). The suspension of Y. pestis cultures was heated at 100°C for 20 min and centrifuged at 12,000 rpm for 2 min. This allowed the inactivation of the pathogens and the release of the DNA in the cells. The DNA samples were further used for genotyping. The control MLVA amplification fragments of the reference strains CO92, Pestoides F, KIM10+, and Nepal 516 of Y. pestis were obtained from the University of Texas Medical Branch, Texas, USA. In addition, nucleotide sequences of nine Y. pestis species (GenBank accession numbers: CP010023, CP010247, CP006751, CP009935, AE017042, CP006806, CP00308, CP005794, and CP002356) and three Yersinia pseudotuberculosis strains (GenBank accession numbers: CP009712, CP008943, and CP001048) were used for phylogenetic analysis. The studied strains belonging to the Y. pestis species was confirmed using the “Pest-Quest” PCR assay (“Master-Gene” Limited Liability Partnership, Almaty, Kazakhstan). The genotyping of several Y. pestis strains was performed by the methods of Multi-Locus VNTR Analysis (MLVA) and Melt Analysis of Mismatch Amplification Mutation Assay (Melt-MAMA). For MLVA assay, seven VNTR (Variable Number Tandem Repeats) loci were studied using conventional PCR and agarose gel electrophoresis as described by Le Flèche et al. (28). For Melt-MAMA assay, three sets of PCR primers designed and produced by KSCQZD were used to identify three SNP loci, described by Morelli et al. (29). The selected SNP loci allowed differentiation of four branches of Y. pestis bv. Antiqua (0.ANT1, 0.ANT2, 0.ANT3, and 3.ANT). The

smears and by Pokrovsky’s test for Y. pestis using both pseudotuberculosis bacterial phage and bacteriophage for Y. pestis (L-413-C) produced by the Kazakh Scientific Center for Quarantine and Zoonotic Diseases (KSCQZD). Additional diagnostic methods included serological indirect hemaggulination assay with both erythrocyte–immunoglobulin and erythrocyte–antigen diagnostic reagents produced by KSCQZD. The tissues of internal organs of sampled marmots (liver, lung, spleen, lymph nodes, and blood from the heart) were steriley taken with forceps and immediately placed on an agar plate by directly touch. A Petri dish was divided into three segments to separately plate lungs, livers, and spleens. Each plate was marked and placed in an incubator at 37°C. We used individual and pool methods of inoculation. The individual method was used for ectoparasites collected from carcass of marmot or marmot with visual pathological abnormalities relevant to plague (pathology of inner organs, sick marmots). For inoculation of pooled tissue suspensions, we combined tissue pieces from five marmots collected on the same day from the same sector. Then, the organ suspension was inoculated on agar plate with a bacterial inoculating loop. After inoculation, tissue samples were placed in liquid nitrogen (Dewar flask) and transported to the laboratory in Karakol for further confirmation.
Melt-MAMA analysis was performed as described by Birdsell et al. (30). Each primer set consisted of two forward primers ("ancestral" and "derived") and a universal reverse primer. One of the forward primers was linked to the so-called GC-clamp, three to four repeats of a GGGGC motif, which increased the melting temperature of the corresponding amplicons and made it possible to differentiate the alleles. Phylogenetic analysis of the studied strains was carried out using the PAUP 4.0 software and the UPGMA (Unweighted Pair Group Method with Arithmetic Mean) algorithm.

Mapping
The map of Sari-Dzhas and Upper-Naryn areas of plague was prepared using GIS MapInfo Professional 7.8. For their construction, we used the geographic objects digitized from topographic maps of a scale of 1:100,000, as well as the Digital Elevation Model GDEM2. The maps are constructed in UTM—the Mercator projection (WGS 84). The boundaries of the foci are plotted along the boundaries of the sectors (21).

RESULTS

Sari-Dzhas Plague Focus
Rodents
Overall, in the Sari-Dzhas plague focus for the period 2012 to 2017, we surveyed a total of 3,700 km², out of which 500 km² were surveyed repeatedly in 2012, 2013, 2014, and 2016 (Figure 1; Table 4). In total, we trapped and analyzed 972 marmots (M. baibacina), 442 narrow-headed voles (Microtus gregalis), 61 wood mouse (Apodemus uralensis), 40 gray dwarf hamsters (Cricetulus migratorius), and a small number of other mammals: the large-eared pika (Ochotona macrotis), the hare-tolai (Lepus tolai), and the beech marten (Martes...
Additionally, we found carcasses of six dead rodents.

From all sampled marmots, we collected and tested 778 fleas, 1,152 ticks, and 156 lice (Table 3). The average number of sampled marmots ranged from 17 to 27 animals per sector in 2012 and 2013 (Table 4). The highest number of trapped marmots (49 ± 7.62) was recorded in 2014 in a forested area with preferable conditions such as vegetation and humidity.

In 2015–2017, the number of collected marmots was similar to 2012. Among small rodents, the most common species was *M. gregalis*, which is widely distributed across all observed territories (Tables 3, 4). The density of population of *M. gregalis* and *A. uralensis* varied significantly. A reverse correlation between abundance of these two species was observed.

Table 5

Years of observation	#sector	Number of analyzed animal (*M. baibacina*)	Number of fleas	*O. silantiewi*	*Rh. li ventricosa*	Number of ticks	Number of lice					
2012	3224406334	39	19	19	–	95	–					
	3224407512	18	43	43	–	60	–					
	3124406343	43	35	35	–	92	–					
	3124406344	26	44	44	–	62	–					
	3124406433	18	23	23	–	7	–					
	3124406432	7	22	22	–	1	–					
	3124406413	53	12	12	–	95	–					
	3124406412	25	21	19	2	36	–					
	Total:	229	219	217	2	459	–					
2013	3124406342	28	5	5	–	70	–					
	3124406413	13	4	4	–	10	–					
	3124406344	14	1	1	–	46	–					
	3124406343	15			–	11	–					
	Total:	70	10	10	–	137	–					
2014	3124406311	58	15	13	2	62	2					
	3124406312	88	18	16	2	81	4					
	3124405133	29	1	1	–	–	–					
	3124405143	22	8	8	–	12	–					
	Total:	197	42	38	4	155	6					
2015	3124405233	54	43	42	1	7	–					
	3124405234	52	36	35	1	6	–					
	3124405243	30	7	7	–	–	–					
	3124405241	12	11	11	–	–	–					
	3124405144	6	6	4	2	5	–					
	3124406321	23	28	28	–	24	–					
	Total:	177	131	127	4	42	–					
2016	3124406242	39	90	90	91	13	10					
	3124406241	16	1	1	–	13	–					
	3124406313	25	4	2	2	105	89					
	3124406223	25	5	5	–	89	–					
	3124406224	6	8	8	–	8	–					
	3124406232	29	5	5	–	37	–					
	3124406311	31			–	41	–					
	3124405043	9			–	8	–					
	Total:	180	113	103	10	343	–					
2017	3124205123	19	12	12	–	15	–					
	3124405141	18	6	6	–	6	–					
	3124405052	13	6	6	–	6	–					
	3124405034	27	7	7	–	7	–					
	3124405121	34	8	8	–	8	–					
	3124405142	19	45	35	10	15	–					
	Total:	130	84	74	10	15	–					
Years of observation	# sector	Time period of observation	Marmota baibacina	Microtus gregalis	Apodemus uralensis	Ochotona roylei	Cricetulus migratorius	Lepus tolai alpinus	Cuon alpinus eversmanni	Mustela alticola argentatus	Vulpes vulpes	Isolated strain of Y. pestis
----------------------	----------	----------------------------	-------------------	------------------	------------------	-----------------	---------------------	------------------	-----------------	-----------------------	-------------	----------------------
2013	3224308443	10–15 June	10	12								
	3224308434	12–17 June	28	11								
	3224308444	14–18 June	14									
	3224308621	19–24 June	16									
	3224309612	22–29 June	18									
	3224308433	28 June–2 July	16									
	3224309611	3–6 July	29									
	3224308431	7–12 July	23									
	Total:		154	42								13
2015	3224407343	15–21 June	38	75								2
	3224408513	22–28 June	62									1
	3224408512	29 June–4 July	49									1
	3224407344	5–9 July	88									2 from marmots
	3224407431	10–13 July	9									
	3224407342	11–13 July	9									
	3224407433	12–13 July	5									
	Total:		260	107								2
2016	3224407344	7–10 June	99	112								1
	3224407431	11–15 June	30									1 from fleas
	3224407432	12–17 June	10									
	3224407433	16–20 June	23									1 (carcass)
	3224407439	20–25 June	9									
	3224408513	26–30 June	11									
	3224408512	30 June–5 July	8									
	Total:		190	150								1
2017	3224408514	28 May–6 June	58									
	3224408522	30 May–6 June	52									1
	3224408512	2–7 June	36									1
	3224408523	3–10 June	51									1
	3224408522	10–15 June	16									1
	3224408524	16–25 June	11									
	Total:		224	38								2
high number of *M. gregalis* was associated with limited or no *A. uralensis* (Table 4).

Comparing the total number of collected marmots in Sari-Dzhas for 2013 and 2015–2017 with that in Upper-Naryn, the last one has much higher value on the whole area observed in this period (Figure 2). At the same time, there were no differences in the total number of trapped rodents and other mammals in these periods (2013, 2015–2017) between the two plague foci (Figure 2).

Ectoparasites

The number of ticks collected from marmots was three to five times higher than fleas collected within all sectors of both investigated plague foci (Tables 5, 7; Figure 2). In the Upper-Naryn natural plague area, the average number of fleas and ticks was significantly higher than in the Sari-Dzhas in all years, except ticks in 2016 (Figure 2).

Isolation of *Y. pestis*

In 2012 after the 29-year period between outbreaks, one observed an acute epizootic of plague in its primary (*M. baibacina*) and secondary carriers (*C. migratorius*). In total, five strains of *Y. pestis* were isolated during the current study: two strains were from found carcasses of marmots, two were from trapped marmots, and one strain was from *C. migratorius* (Tables 3, 4). All strains were isolated from marmots trapped or found in one sector from eight studied in 2012 within the southeast part of the Sari-Dzhas focus (Figure 4).

In 2013, the human case of plague was registered on the northwest part of the Sari-Dzhas focus, sector #3124406222 (Table 4; Figure 4). In 2014, the plague epizootic in marmots with involved host-specific fleas (*O. silantiewi*) was in the neighbor sector #3124406311. Three strains of *Y. pestis* were isolated from found carcasses of marmots and fleas, collected from them, and confirmed serologically.

TABLE 7 | The number of “body-ectoparasites” collected from trapped marmots in open stations of the Upper-Naryn natural plague focus in 2013–2017.

Years of observation	#sector	Number of analyzed animal	Number of fleas	*O. silantiewi*	*Rh. li ventricosa*	Number of ticks	Number of lice
2013	3224308443	10	8	4	4	45	40
	3224308434	28	8	8	–	238	43
	3224308444	14	–	–	–	76	–
	3224308621	16	4	4	–	161	44
	3224309612	18	50	39	11	159	–
	3224308433	16	–	5	–	95	–
	3224309611	29	39	35	4	167	–
	3224308431	23	42	19	23	99	–
Total:		154	151	114	42	1040	127
2015	3224407343	38	21	21	–	1	19
	3224408513	62	99	99	–	13	–
	3224408512	49	53	51	2	60	–
	3224407344	88	62	54	8	33	13
	3224407431	9	5	5	–	–	–
	3224407342	9	2	2	–	1	–
	3224407433	5	3	3	–	4	–
Total:		260	245	235	10	112	32
2016	3224407344	99	40	36	4	57	2
	3224407431	30	22	12	10	128	–
	3224407342	10	22	12	10	1	–
	3224407343	23	13	7	6	23	–
	3224407433	9	–	–	–	–	–
	3224408513	11	19	9	10	13	–
	3224408512	8	10	7	3	9	–
Total:		190	126	83	43	231	2
2017	3224408514	58	182	182	–	146	17
	3224408522	52	25	25	–	247	5
	3224408512	36	35	35	–	104	3
	3224408523	51	12	12	–	18	–
	3224408522	16	13	13	–	51	4
	3224408524	11	3	3	–	15	–
Total:		224	270	270	–	581	29
In 2016, the field study was conducted near the area observed in 2014–2015, with one sector overlapping between surveys (Figures 1, 4). As a result of this investigation, three strains of plague pathogen were isolated—two from *M. baibacina* (one strain from the pool inoculation of marmots captured in this area and second from a carcass of marmot found in another sector, Table 4). The third strain was isolated from pooled unidentified mites collected from a plague-positive carcass.

In 2013 and 2015, different areas of the Sari-Dzhas plague focus were surveyed with plague-negative result (Figure 1).

Three strains were isolated in the Upper-Naryn: two from marmots in 2015 and one from ectoparasites collected from marmots in 2016. All three strains were isolated in the same sector #322407344 (Figure 4; Table 6).

The Upper-Naryn Plague Focus

During 2013–2017, a total of 2,900 km2 were investigated in the Upper-Naryn focus, out of which we surveyed 700 km2 repeatedly in 2015, 2016, and 2017 (Figure 1; Table 3). In total, 828 marmots, 342 narrow-headed voles (*M. gregalis*), 13 gray dwarf hamsters (*C. migratorius*), and a small number of other mammals: six steppe polecats (*Mustela eversmanni*), four tolai hares (*L. tolai*), one red fox (*Vulpes vulpes*) were trapped and screened (Table 6). Additionally, we found the carcass of a dead fox.

From all sampled marmots, we collected and tested 1,329 fleas, 1,984 ticks, and 219 lice (Table 3). As a result, in 2015–2016, a plague epizootic was recorded in the same sector (Figure 4; Table 6). *Y. pestis* strains were isolated from *M. baibacina* and their specific fleas—*O. silantiewi*.

Results of the Genetic Analysis

The application of the “Pest-Quest” PCR assay confirmed that all the studied strains from Sari-Dzhas plague focus belonged to the *Y. pestis* species. Based on the results of the MLVA-7 genotyping, all the studied *Y. pestis* isolates were presented by nine genotypes differing in one or several VNTR loci. Five
strains (KG-1–KG-5) shared the same MLVA-7 profile (probably clones of the same strain). The software we used for phylogenetic analysis showed them not as one branch, but as a bunch of sub-branches (Table 8). All 14 strains were assigned to biovar *Antiqua* that was considered to be typical for marmot strains (Figure 3). According to the Melt-MAMA analysis, most of the strains belonged to the branch 0.ANT2, while one strain (KG-14) was apparently a member of the branch 0.ANT3 (Table 9). These two branches were among those reported by Eroshenko et al. (21). Actually, the high-altitude pastures for horses and sheep (so called “syrts”) are more distant from human settlements in the Upper-Naryn area than in Sari-Dzhas. A higher distance to humans may favor the increase in density of marmots in Upper-Naryn compared to Sari-Dzhas where most of the syrts are tightly used for summer seasonal pastures and for international tourism. The disturbance of the environment may affect the marmots leading to a decrease in their population sizes. The number of other small rodents and their variability and density are approximately equal in simultaneously studied years in both plague foci. Prevalence of *M. gregalis* confirms the role of this species as a potential secondary host of plague pathogen in mixed ecosystems of high-altitude Tien Shan focus. Isolation of one *Y. pestis* strain from *C. migratorius* in the Sari-Dzhas focus confirms the role of small mice-like rodents in the epidemiology of plague. Previously, plague strains were isolated in the neighboring Aksay focus from *M. gregalis* (1968) and *C. migratorius* (1983–1984) and in the Upper-Naryn focus from *Alticola argentatus* and *C. migratorius* (3). Similar observations were reported in the high altitude of Altay and Tuva plague foci of Russia (34) and the North Aral sandy plague focus of Kazakhstan (35). Increasing density of rodents co-inhabiting with the marmots altogether with an increased number of their specific ectoparasites as observed in the Upper-Naryn focus in 2013–2017 could be a sign of potential activity of plague epizootics in this area of Kyrgyzstan. The isolation of 9 of 13 strains from marmots in 2012–2017, 1 strain from other rodents, and 3 strains from their ectoparasites is in favor of this hypothesis. Both independent plague foci (Sari-Dzhas and Upper-Naryn), located on the border of Kyrgyzstan, Kazakhstan, and China, are among the most active natural high-altitude foci of Central Asia. This territory is characterized by special climatic conditions, different relief with many heavily rugged canyons, mountain river valleys, and patches with specific flora and fauna with a high degree of biological diversity (36). Apparently, these factors give optimal conditions for the long-term circulation of *Y. pestis* biovar *Antiqua* (0.ANT2, 0.ANT3) in the populations epizootic of plague was observed once, the area was repeatedly examined in the succeeding years. This allows us to compare two independent plague origin areas for its epizootological status during the same time period. In the Tien Shan mountain focus of plague, the gray marmot is known as the main carrier of plague pathogen, with other rodents serving as secondary hosts (2, 8, 32, 33). The spatial distribution of marmots within plague focus is related mainly to local landscape and climatic conditions, as well as to different human activity–animal grazing, hunting, and tourism that are intensively developing during the last decade, but unequally presented in different sectors (21).

DISCUSSION

The greater part of both Sari-Dzhas and Upper-Naryn plague foci were studied simultaneously in 2013 and 2015–2017. If an

TABLE 8 | Amplicon sizes of *Y. pestis* strains on 7 VNTR loci.

Strain of *Y. pestis*	MLVA-7	Genotypes	
KG_1	264	213 547 174 259 276 184	Genotype 1
KG_2	264	213 547 174 259 276 184	Genotype 1
KG_3	264	213 547 174 259 276 184	Genotype 1
KG_4	264	213 547 174 259 276 184	Genotype 1
KG_5	264	213 547 174 259 276 184	Genotype 1
KG_6	246	230 547 174 259 294 146	Genotype 2
KG_7	246	196 546 174 259 242 146	Genotype 3
KG_8	246	213 546 174 259 294 146	Genotype 4
KG_9	246	213 546 174 259 303 146	Genotype 5
KG_10	246	213 546 174 259 294 146	Genotype 6
KG_11	246	196 546 174 259 294 146	Genotype 7
KG_12	246	196 546 174 259 294 146	Genotype 8
KG_13	246	179 546 184 259 276 137	Genotype 9
KG_14	228	213 546 174 293 240 155	Genotype 10
YP_EV_76	210	230 606 184 252 222 155	Genotype 11
YP_3770	210	179 547 174 245 285 119	Genotype 12
YP_Angola	210	162 362 134 259 276 137	Genotype 13
YP_91001	210	196 303 184 252 258 128	Genotype 14
YP_Antiqua	192	179 487 164 238 211 209	Genotype 15
YP_1045	210	196 305 174 322 303 155	Genotype 16
YP_790	192	213 545 174 322 249 137	Genotype 17
YP_A1122	210	230 606 184 252 294 146	Genotype 18
YP_Pest_G	210	179 303 174 245 312 119	Genotype 19
YP_Pest_B	192	179 547 174 259 242 140	Genotype 20
YP_Kim10	192	196 305 164 378 276 146	Genotype 21
YP_Nepal316	192	196 185 174 259 222 137	Genotype 22
YP_Pest_F	210	179 487 194 245 294 119	Genotype 23
YP_CCO92	238	260 606 184 242 240 146	Genotype 24
Pt_IP29263	192	145 1088 144 266 330 155	Genotype 25
Pt_6904	192	145 786 144 0 285 155	Genotype 26
Pt_PB1	192	164 606 154 301 267 200	Genotype 27
Pt_2841	147	213 0 154 252 240 128	Genotype 28
Pt_433	147	213 0 154 259 231 137	Genotype 29
of its natural host (31, 37). In total, 462 strains of Y. pestis were registered in the Sari-Dzhas area from 1944 to 1976 (4, 6, 7). Ectoparasites are actively involved in the epizootic process, in particular O. silantiiewi and Rhi. li ventricosa fleas specific to M. baibacina, as well as ixodes mites. The Sari-Dzhas area was very active in the 1940s to 1980s, and then mass dissection of marmot populations with dichlorodiphenyltrichloroethane (DDT) insecticide and the decrease in the number of animals as a result of human activities (special extermination conducted in 1960s, hunting) led to a significant decrease in epizootic activity. Whereas, human activity (agriculture development, tourism, and hunting) changed environment during this period significantly, an obvious activation of epizootic plague activity within the area was observed after 30 years. Overall, the obtained results confirm ongoing epidemiological risk and vulnerability of the territory to plague. In such situation, it is necessary to strengthen ecological and epidemiological monitoring and control over the entire endemic area in order to preserve safety of local populations.

ETHICS STATEMENT

All manipulations with wild and laboratory animals and handling plague strains were conducted according to the protocols approved by the Kyrgyz government regulations that are related to guidelines of Russia, Kazakhstan (1, 25). The animal work was performed according to the Regulation of the State Agency for Environmental and Forest Protection Facilities at the Government of the Kyrgyz Republic. Animal work in the field was conducted according to the following protocols: protocol 000144-KC for trapping marmots, other rodents, and analysis of their nests approved on May 6, 2014; protocol # 000168-KC approved on May 22, 2015; protocol #000173-KC approved on May 17, 2016; and protocol #000003-KC approved on March 5, 2017. Each permit to collecting a certain number of animals (400 marmots, 400 rodents of other species, and 10 nests of marmots and rodents) was issued and used during the fixed period of time (from June 1 to August 30).

AUTHOR CONTRIBUTIONS

GS initiated the study and wrote the first draft. GB organized and conducted the field studies and performed zoological and entomological analysis. RMu performed agreement with the state agencies for animal catching and analysis. SA provided strains for DNA analysis and genotyping. BK and AA performed molecular-genetic analysis of strains. AS performed GIS-mapping and database design. ZS performed bacteriological analysis and spatial epizootical analysis. AD performed the bacteriological analysis. ZA analyzed the environmental effect on population structure. RMa provided consultative assistance. VM provided collaborative efforts. VM edited the draft and provided reference strains. MK edited the draft and provided collaborative efforts. All authors read and approved the final manuscript.

FUNDING

This study was supported by the International Science and Technology Center (ISTC). The field epizootical surveys and other analyses were funded through regular projects #KR-1784 and #KR-2111 with financial support from the Government of Canada, EU, and USA. The authors are very grateful for the assistance given by both ISTC and international collaborators of the projects.

ACKNOWLEDGMENTS

We thank Kenneth Gage and Irina Goodrich for the careful reading of the manuscript and constructive comments.

REFERENCES

1. Aubakirov SA, Serzhanov OS, Fomushkin VM, Khotko II, Rudenchik UK, Pole SB, et al. Guidelines for the Landscape-Epizootic Zoning of Natural Foci of Plague in Central Asia and Kazakhstan. Kazakh Scientific Center of Quarantine and Zoonotic Diseases, Alma-Ata (1990).
2. Atshabar BB, Burdelov LA, Ageyev VS, Aubakirov SA, Dubyansky VM, Grazhdanov AK, et al. Atlas of the Spread of Bacterial and Viral Zoonotic Infections in Kazakhstan. Almaty: Reforma (2010).
3. Ibragimov Abdikarimov ST, Usenbaev NT, Akyeva VI. Some of the results of non-specific prevention of plague foci in the highland of the Kyrgyz Republic. Health Care Kyrgyzstan. (2017) 4:30–3. Available online at: https://elibrary.ru/item.asp?id=32741738
4. Abdikarimov S, Sariyeva G, Sagiyev Z, Bazarkanova G, Shabunin A, Maimulov R, et al. The Database "Epidemiology and Epizootology of the Plague in the Sari-Dzhas Natural Focus of Kyrgyzstan." Intellectual property—Official Bulletin of the State Service of Intellectual Property and Innovations under the Government of the Kyrgyz Republic (2017) 80–1.
5. Popov NV, Kedrova OV, Toporkov VP. Information Letter “On the Situation of the Plague in the Kyrgyz Republic in August 2013”. Available online at: http://www.microbe.ru/files/inletter_2013_1.pdf
6. Sariyeva G, Abdel Z, Shabunin A, Sagiyev Z, Abdikarimov S, Bazarkanova G, et al. Current status of the Sari-Dzhas natural focus of plague, Kyrgyzstan: epizootic activity and marmot population. Vector Borne Zoonotic Dis. (2018) 18:524–32. doi: 10.1089/vbz.2017.2200
7. Sariyeva GE, Bazarkanova GD, Sagiyev ZA, Shabunin AG, Abdikarimov ST, Maimulov RK, et al. Atlas of the Sari-Dzhas natural focus of plague in Kyrgyzstan: Spatial and temporal characteristics. Bishkek: Global Print (2018), p. 172.
8. Pole SB. Marmots and zoonotic infections in CIS. In: Ramousse R, Allainé D, Le Berre M, editors. Adaptive Strategies and Diversity in Marmots/Stratégies Adaptatives et Diversité chez les Marmottes 2003. Lyon: International Network on Marmots (2003), p. 13–8.
9. Armitage KB. Climate change and the conservation of marmots. Nat Sci. (2013) 5:36–43. doi: 10.4236/ns.2013.55A005
10. Dai R, Wei B, Xiong H, Yang X, Peng Y, He J, et al. Human plague associated with Tibetan sheep originates in marmots. PLoS Negl Trop Dis. (2018) 12:e0006635. doi: 10.1371/journal.pntd.0006635
11. Ricankova V, Riegert J, Semancikova E, Hais M, Cejkova A, Prach K. Habitat preferences in gray marmots (Marmota baibacina). Acta Theriol. (2014) 59:317–24. doi: 10.1007/s10581-013-0161-x
12. Reijniers J, Begon M, Ageyev VS, Leirs H. Plague epizootic cycles in Central Asia. Biol Lett. (2014) 10:20140302. doi: 10.1098/rsbl.2014.0302
13. Eisen RJ, Borchert JN, Mpanga JT, Atiku LA, MacMillan K, Boegler KA, et al. Flea diversity as an element for persistence of plague bacteria in an East African plague focus. PLoS ONE. (2012) 7:e35598. doi: 10.1371/journal.pone.0035598
14. Suleymenov BM. Enzootic and Epizootics of Plague. Almaty: Evero (2015). p. 514.

15. Vashchenok VS. The role of fleas (Siphonaptera) in the epizootiology of plague. Parasitologia. (1999) 33:198–209.

16. Suntsov VV, Suntsova NI. Plague. Origin and Evolution of the Epizootic System (Ecological, Geographical and Social Aspects). Moscow: KMK Publishing House (2006). p. 247.

17. Collinge SK, Johnson WC, Ray C, Matchett R, Grensten J, Cully JF, et al. Landscape structure and plague occurrence in black-tailed prairie dogs on grasslands of the Western USA. Landscape Ecol. (2005) 20:941–55. doi: 10.1007/s10980-005-4617-5

18. Gage KL, Kosoy MY. Natural history of plague: perspectives from more than a century of research. Annu Rev Entomol. (2005) 50:505–28. doi: 10.1146/annurev.ento.50.071803.130337

19. Biggs DE, Kosoy M. Influences of introduced plague on North American mammals: implications from ecology of plague in Asia. J Mamm. (2001) 82:906–16. doi: 10.1646/1545-1542(2001)082<906:IOIPM I>2.0.CO;2

20. Lowell JL, Zhansarina A, Meka-Mechenko T, Stybayeva G, Atrashbar, B, et al. Phenotypic and molecular characterizations of Yersinia pestis isolates from Kazakhstan and adjacent regions. Microbiology. (2007) 153:169–77. doi: 10.1099/mic.0.29059-0

21. Shabanin AG, Sariyeva GE, Abdikarimov ST, Maimulov RK, Bazarkanova GD, Dzhaparova AK, et al. Assessment of the vulnerability of the population on Sari-Dzhas autonomous focus of plague, Kyrgyzstan. Acta Biomed Scientifica. (2017) 2:107–14. doi: 10.12737/article_59fad5258950d0.72474236

22. Weaver ML, Sariyeva GE, Kendirbaev DU. Biosafety in the field: an account of a Kyrgyz anti-plague expedition. Appl Biosafety. (2014) 19:74–86. doi: 10.1177/153567601401900203

23. Order No. 207 of 04/27/2015. “On the Improvement of Epidemiological and Surveillance of the Plague in the Kyrgyz Republic”. p. 87–92.

24. Aytkuluyev NS. Instructions on the conducting of antimicrobial and preventive measures for plague, approved by the order of the ministry of health care of Kyrgyzstan 102 from 24.02.2010. (2010) 12–13.

25. Ezhlova EB, Pakkina ND, Popov VP, Krzyzova TR, Kuznetsov AA, Porshakov AM, et al. Collection, Recording and Preparation for Laboratory Investigation of Blood-Sucking Arthropods in Natural Foci of Dangerous Infectious Diseases: Methodological guidelines. MU 3.1.3012-12. Federal Center for Hygiene and Epidemiology of Russian Surveillance on Consumer Rights Protection and Human Wellbeing (2011) 55:14.

26. Ioff IG, Michelin MA, Skalon OL. Determinant of Fleas of Central Asia and Kazakhstan. Moscow: Medicine (1965). p. 11–21.

27. Suleymenov BM, Abdirassilova AA. The Basis of Individual Biosafety Under Work With Plague Pathogen. Almaty: Evero (2014). p. 200.

28. Le Flèche P, Hauck V, Onteniente L, Prieur A, Denouid F, Ramisse V, et al. A tandem repeats database for bacterial genomes: application to the genotyping of Yersinia pestis and Bacillus anthracis. BMC Microbiol. (2001) 1:2–11. doi: 10.1186/1471-2180-1-2

29. Morelli G, Song Y, Mazzoni CJ, Eppinger M, Roumagnac P, Wagner DM, et al. Phylogenetic diversity and historical patterns of pandemic spread of Yersinia pestis. Nat Genet. (2010) 42:1140–43. doi: 10.1038/ng.705

30. Birdsell DN, Pearson T, Price EP, Hornstra HM, Nera RD, Stone N, et al. Melt analysis of mismatch amplification mutation assays (Melt-MAMA): a functional study of a cost-effective SNP genotyping assay in bacterial models. PLoS ONE. (2012) 7:e32866. doi: 10.1371/journal.pone.0032866

31. Eroshenko GA, Nosov NY, Krasnov YM, Ogloedin YG, Kukleva LM, Guseva NP, et al. Yersinia pestis strains of ancient phylogenetic branch 0. ANT are widely spread in the high mountain plague foci of Kyrgyzstan. PLoS ONE. (2017) 12:e0187230. doi: 10.1371/journal.pone.0187230

32. Burdelov LA. Modern Ideas About State of the Art of Natural Plague Foci: An Overview. Problems of Quarantine and Zoonotic Infections in Kazakhstan, Alma-Ata: Kazakh Scientific Center of Quarantine and Zoonotic Diseases. (1999). p. 18–23.

33. Bibikov DI. Mountain Marmots of Central Asia and Kazakhstan. Moscow: Moscow University Press (1967). p. 202.

34. Popov NV, Bezsmertny VE, Matrosov AN, Kuznetsov AA, Krzyzova TV, Popov VP, et al. Epizootic activity of natural plague foci in the territory of the Russian Federation in 2011, and prognosis for 2012. Prob Danger Infect. (2012) 111:5–10. doi: 10.21055/0370-1069-2012-1(111)-5-10

35. Varshavskiy BS. Spatial and biocenotic structure of the plague focus on the northern edge of the area of the great gerbil (Northern Aral Sea). (Dissertation thesis): Astrakhan anti-plague station, Astrakhan, Russia (1985).

36. Mammatkanov DM, Bashanova LB, Kuzmichnenok VA, Romanovsky VV. Influence of Climate Changes on the Mountain Ecosystem of the Tian-Shan (on the Example of the Issyk-Kul-Chui basin). Bishkek: Nur-As Press (2014). p. 273.

37. Kurmanov BK, Atrashbar BB, Sariyeva GE, Abdirassilova AA, Abdel Z, Bakhtybekzhyz SH, et al. Genotyping of Yersinia pestis strains from the Central Asian deserts and Tian-Shan high mountain plague foci. Medicine. (2016) 12:80–7.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2019 Sariyeva, Bazarkanova, Maimulov, Abdikarimov, Kurmanov, Abdirassilova, Shabunin, Sagiyev, Dzhaparova, Abdel, Mussagaliyeva, Morand, Motin and Kosoy. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.