Generic initial ideals of some monomial complete intersections in four variables

Tadahito Harima, Sho Sakaki and Akihito Wachi

Abstract. Let $\mathbb{K}[x_1, x_2, x_3, x_4]$ be the polynomial ring over a field of characteristic zero. For the ideal $(x_1^{a}, x_2^{b}, x_3^{c}, x_4^{d}) \subset \mathbb{K}$, where at least one of a, b, c and d is equal to two, we prove that its generic initial ideal with respect to the reverse lexicographic order is the almost revlex ideal corresponding to the same Hilbert function.

Mathematics Subject Classification (2000). Primary 13A02; Secondary 13C40, 13F20, 13D40.

Keywords. generic initial ideal, monomial complete intersection, strong Lefschetz property, almost revlex ideal.

1. Introduction

Generic initial ideals play an important role in commutative ring theory. But it is very difficult to determine them, and there are only a few results which determine generic initial ideals. Even in the case of monomial complete intersections, their generic initial ideals are not determined in general. Our result is a starting point of this problem. In the polynomial rings with one or two variables, generic initial ideals are trivially determined, since Borel-fixed ideals are unique for Hilbert functions. In the case of three variables, due to the result of Ahn-Cho-Park [ACP07] or Cimpoea¸s [Cim07], the generic initial ideals of Artinian monomial complete intersections are determined. In this note we focus on the case of four variables. For the monomial complete intersections $(x_1^{a}, x_2^{b}, x_3^{c}, x_4^{d})$, where at least one of a, b, c and d is equal to two, we prove that their generic initial ideals are the almost revlex ideals (Theorem 9).

Throughout this note, \mathbb{K} denotes a field of characteristic zero, and \mathbb{K} the polynomial ring over \mathbb{K}. The only term order on \mathbb{K} used in this note is the reverse lexicographic order with $x_1 > x_2 > \cdots$, and $\text{gin}(I)$ (resp. $\text{in}(I)$) denotes the generic initial ideal (resp. initial ideal) with respect to the reverse lexicographic order.
2. The k-strong Lefschetz property

In this section we review the definition of k-strong Lefschetz property and results needed for our main theorem.

Definition 1 (the SLP and the k-SLP). Let A be a graded Artinian algebra over a field K, and $A = \bigoplus_{i=0}^{\infty} A_i$ its decomposition into graded components.

1. The algebra A is said to have the *strong Lefschetz property* (SLP for short), if there exists an element $\ell \in A_1$ such that the multiplication map $x \mapsto \ell x : A_i \to A_{i+s}$ is full-rank for every $i \geq 0$ and $s > 0$. In this case, ℓ is called a *Lefschetz element*, and we also say that (A, ℓ) has the SLP.

2. Let k be a positive integer. The algebra A is said to have the *k-strong Lefschetz property* (k-SLP for short), if there exist linear elements $g_1, g_2, \ldots, g_k \in A_1$ satisfying the following two conditions.

 (i) (A, g_1) has the SLP,
 (ii) $(A/(g_1, \ldots, g_{i-1}), g_i)$ has the SLP for all $i = 2, 3, \ldots, k$.

In this case, we say that (A, g_1, \ldots, g_k) has the k-SLP. In other words, A is said to have the k-SLP, if A has the SLP with a Lefschetz element g_1, and $A/(g_1)$ has the $(k-1)$-SLP.

Note that the 1-SLP is nothing but the SLP, and that if a graded algebra has the k-SLP, then it has the $(k-1)$-SLP. Note also that the n-SLP is equivalent to the $(n-2)$-SLP for the quotient rings $K[x_1, x_2, \ldots, x_n]/I$, since all graded K-algebras $K[x_1]/J$ and $K[x_1, x_2]/J$ have the SLP [HMNW03 Theorem 4.4].

Definition 2 (almost revlex ideals). A monomial ideal I is called an *almost revlex ideal*, if the following condition holds: for each monomial u in the minimal generating set of I, every monomial v with $\deg v = \deg u$ and $v >_{\text{revlex}} u$ belongs to I.

It is clear that if two almost revlex ideals have the same Hilbert function, then they are equal. In addition, it is easy to see that almost revlex ideals are Borel-fixed [HW08 Remark 11].

We write Hilbert functions of graded algebras as h-vectors $h = (h_0, h_1, \ldots, h_s)$. A Hilbert function h is said to be *unimodal*, if there exist an integer a such that $h_0 \leq h_1 \leq \cdots \leq h_a \geq h_{a+1} \geq \cdots \geq h_s$. A Hilbert function $h = (h_0, h_1, \ldots, h_s)$ ($h_s \neq 0$) is said to be *symmetric*, if $h_i = h_{s-i}$ for every $i \geq 0$. The *difference* Δh of h is defined by

$$\Delta h_i = \max\{h_i - h_{i-1}, 0\} \quad (i = 0, 1, 2, \ldots),$$

where h_{-1} is defined as zero. We define the kth difference $\Delta^k h$ by applying Δ to h k-times. The following is a direct consequence of [HW08 Corollary 27]

Proposition 3. Let $I \subset K[x_1, x_2, x_3, x_4]$ be a graded Artinian ideal whose quotient ring has the 2-SLP. Suppose that the Hilbert function h of $K[x_1, x_2, x_3, x_4]/I$ is symmetric. Then the generic initial ideal $\text{gin}(I)$ is the unique almost revlex ideal for the Hilbert function h. \hspace{1cm} \square
We conclude this section by an analogue of Wiebe’s result [Wie04, Proposition 2.9].

Proposition 4. Let I be a graded Artinian ideal of $R = K[x_1, x_2, \ldots, x_n]$, and let $1 \leq k \leq n$. If $R/\text{in}(I)$ has the k-SLP, then R/I has the k-SLP.

Proof. Let $H_A(t)$ denotes the Hilbert function of a graded algebra A. From the proof of [Wie04, Proposition 2.9], we have

$$H_{R/(I+(g_1, \ldots, g_{i-1}, g_i'))}(t) \leq H_{R/(\text{in}(I)+(g_1, \ldots, g_{i-1}, g_i'))}(t)$$

for generic linear forms g_1, \ldots, g_i, $s \geq 1$ and all $t \geq 0$. In order to prove our claim, it is enough to show that the Hilbert function of $R/(I+(g_1, \ldots, g_{i-1}, g_i'))$ coincides with that of $R/(\text{in}(I)+(g_1, \ldots, g_{i-1}, g_i'))$ for every $i = 1, 2, \ldots, k$ under the assumption that the Hilbert function of $R/(I+(g_1, \ldots, g_{i-1}))$ is equal to that of $R/(\text{in}(I)+(g_1, \ldots, g_{i-1}))$. Set $h = H_{R/(I+(g_1, \ldots, g_{i-1}))}$. By our assumption, $R/(\text{in}(I)+(g_1, \ldots, g_{i-1}))$ has the SLP. Hence, it follows that the Hilbert function of $R/(\text{in}(I)+(g_1, \ldots, g_{i-1}, g_i'))$ is equal to the sequence $(b_t)_{t \geq 0}$:

$$b_t = \max\{h_t - h_{t-s}, 0\},$$

where $h_t = 0$ for $t < 0$. Furthermore one can easily check that

$$b_t \leq H_{R/(I+(g_1, \ldots, g_i'))}(t)$$

for all $t \geq 0$. Hence it follows from (1) that

$$H_{R/(I+(g_1, \ldots, g_i'))}(t) = H_{R/(\text{in}(I)+(g_1, \ldots, g_i'))}(t)$$

for all $t \geq 0$. □

3. Main theorem

In this section we prove the main theorem (Theorem 9). For two graded Artinian K-algebras A and B having the SLP, $A \otimes_K B$ also has the SLP if their Hilbert functions are symmetric [Wat87]. But this is not the case unless both Hilbert functions are symmetric (see [HW03, Example 5], e.g.). The following lemma gives a necessary and sufficient condition for $A \otimes_K K[y]/(y^2)$ to have the SLP, when the Hilbert function of A is not necessarily symmetric.

Lemma 5. Let A be a graded Artinian K-algebra having the SLP, and $B = K[y]/(y^2)$. The tensor product $A \otimes_K B$ has the SLP, if and only if the Hilbert function $h = h_A$ of A satisfies the following two conditions:

(C1) For any $h_i < h_{i+1}$, there exist at most one j such that $h_i < h_j < h_{i+1}$.

(C2) For any $h_i > h_{i+1}$, there exist at most one j such that $h_i > h_j > h_{i+1}$.
Proof. First we recall that, given a graded Artinian K-algebra A and a linear form $g \in A$, we may consider A a $K[x]$-module via $x \ast a = ga$. Then, by the structure theorem of finitely generated module over PID, A decomposes uniquely as direct sum of $K[x]/(x^i)\{-b_i\}$ where the shift $[-b_i]$ indicates that the generators sits in degree b_i. So the Hilbert function of A is $\sum \lambda^b_i (1 - \lambda^{a_i})/(1 - \lambda)$. Which b_i actually occur is given by the Hilbert function of $A/(g)$ which is $\sum \lambda^b_i$. Call the pairs (b_i, a_i) the basic invariants of (A, g) and we can easily prove that y is a SL element for A if and only if the basic invariants have the following properties:

\[
\text{if } (b_i, a_i) \text{ and } (b_j, a_j) \text{ are basic invariants with } b_i < b_j \text{ then } b_i + a_i \geq b_j + a_j,
\]

(2)

Next we consider the tensor product $C = K[x]/(x^a) \otimes_K B \simeq K[x, y]/(x^a, y^2)$ as a $K[z]$-module, where the action of $K[z]$ induced on C is given by $z \ast f(x, y) = (x + y)f(x, y)$. Then, thanks to [HW03 Proposition 8], the tensor product $D = K[x]/(x^a)[[z]] \otimes_K B$ decomposes into two modules, $D = K[z]/(z^{|a|})\{-b_i\} \oplus K[z]/(z^{|b|})\{-b_i + 1\}$. If $a_i = 1$, then the second component does not appear in D.

Thus $A \otimes_K B$ has the SLP, if and only if every combination of two basic invariants of $A \otimes_K B$ satisfies Condition (2).

Furthermore we consider the following conditions:

(C1)$'$ If $b_i = b_j$ then $|a_i - a_j| \leq 1$.

(C2)$'$ If $b_i + a_i = b_j + a_j$ then $|b_i - b_j| \leq 1$.

Note that these conditions are equivalent to our conditions, that is, (C1) is equivalent to (C1)$'$, and (C2) is equivalent to (C2)$'$.

Suppose that $A \otimes_K B$ has the SLP. Hence the basic invariants $\{(b_i, a_i+1), (b_i+1, a_i-1)\}$ of $A \otimes_K B$ satisfy Condition (2). First assume that there exist i and j such that $b_i = b_j$ and $a_i \geq a_j + 2$. Then $b_i + 1 > b_j$ and $(b_i + 1) + (a_i - 1) > b_j + (a_j + 1)$. This means that two basic invariants $(b_i + 1, a_i - 1)$ and $(b_j, a_j + 1)$ do not satisfy Condition (2). Next assume that there exist i and j such that $b_i + a_i = b_j + a_j$ and $b_i + 2 \leq b_j$. Then $b_i + 1 < b_j$ and $(b_i + 1) + (a_i - 1) < b_j + (a_j + 1)$. This also means that two basic invariants $(b_i + 1, a_i - 1)$ and $(b_j, a_j + 1)$ do not satisfy Condition (2). Thus the Hilbert function of A satisfies Conditions (C1) and (C2).

Conversely suppose that the basic invariants (b_i, a_i) satisfy Conditions (C1)$'$ and (C2)$'$. We can check that the basic invariants $\{(b_i, a_i+1), (b_i+1, a_i-1)\}$ of $A \otimes_K B$ satisfy Condition (2) as follows. Take two basic invariants $(b_i, a_i + 1)$ and $(b_i + 1, a_i - 1)$ for example. If $b_i < b_i + 1$, then there are two possibilities. (i) When $b_i = b_i$, we have $|a_i - a_j| \leq 1$ from (C1)$'$. Hence $b_i + (a_i + 1) = (b_i + 1) + (a_i - 1) + (a_i - a_j + 1) \geq (b_i + 1) + (a_j - 1)$. (ii) When $b_i < b_i$, we have $b_i + a_i \geq b_i + a_i$ from Condition (2) for A. Hence $b_i + (a_i + 1) > (b_i + 1) + (a_j - 1)$, and Condition (2) for $A \otimes_K B$ is satisfied. If $b_i > b_i + 1$, then we have $b_i + a_i \neq b_i + a_i$ from the contraposition of (C2)$'$ and $b_i + a_i \leq b_i + a_i$ from Condition (2) for A. Hence $b_i + (a_i + 1) \leq (b_i + 1) + (a_j - 1)$. Thus Condition (2) for $A \otimes_K B$ is satisfied.
Calculations are similar for other choices \((b_i, a_i + 1)\) and \((b_j, a_j + 1)\), or \((b_i + 1, a_i - 1)\) and \((b_j + 1, a_j - 1)\) of basic invariants, and thus \(A \otimes_K B\) has the SLP. \(\square\)

The following two lemmas give sufficient conditions for the tensor product \(A \otimes_K A[y]/(y^2)\) to have the \(k\)-SLP. In Lemma 6, \(A\) is a quotient ring by a Borel-fixed ideal having the \(k\)-SLP. In Lemma 7, \(A\) is any graded algebra having the \(k\)-SLP.

Lemma 6. Let \(A = R/I\) be a graded Artinian \(K\)-algebra having the \(k\)-SLP, where \(R = K[x_1, x_2, \ldots, x_n]\), and \(I\) is a Borel-fixed ideal of \(R\). Let \(h_A\) be the Hilbert function of \(A\). Let \(B = K[y]/(y^2)\).

Suppose that every \(s\)-th difference \(\Delta^s h_A\) \((0 \leq s \leq k - 1)\) satisfies Conditions (C1) and (C2) of Lemma 5. Suppose also that every \(s\)-th difference \(\Delta^s h_A\) \((0 \leq s \leq k - 2)\) satisfies the following condition:

(C3) For \(h = (h_0, h_1, \ldots, h_c)\), there are two or more \(i\) such that \(h_i = \max_j \{h_j\}\), or there is only one \(i\) such that \(h_i = \max_j \{h_j\}\), and \(h_{i-1} \geq h_{i+1}\). Then the tensor product \(A \otimes_K B\) has the \(k\)-SLP.

Proof. We prove the lemma by induction on \(k\). For \(k = 1\), the lemma follows from Lemma 5.

Let \(k > 1\), and assume that the lemma holds up to \(k - 1\). Since \(I\) is Borel-fixed, \(x_n\) is a Lefschetz element of \(A\) [Wie04, Lemma 2.7]. Hence by the assumption of induction, \(A \otimes_K B\) has the \(k\)-SLP, and \(x_n + y \in A \otimes_K B \cong A[y]/(y^2)\) is a Lefschetz element [Wat67]. Thus it suffices to show that \(A \otimes_K B/(x_n + y)\) has the \((k-1)\)-SLP.

We have

\[
A \otimes_K B/(x_n + y) \cong K[x_1, x_2, \ldots, x_n, y]/(I) + (x_n + y) + (y^2) \\
\cong K[x_1, x_2, \ldots, x_n]/I + (x_n^2) \\
\cong A/(x_n^2).
\]

[Case 1. There are two or more \(i\) such that \(h_i = \max_j \{h_j\}\)] In this case, if a monomial \(u \in R\) not divisible by \(x_n\) is a standard monomial (i.e., a monomial not belonging to \(I\)), then \(ux_n\) is also a standard monomial, since \(x_n\) is a Lefschetz element. Therefore we have an algebra isomorphism \(A/(x_n^2) \cong A/(x_n) \otimes_K K[z]/(z^2)\), since \(A\) is a quotient of a Borel-fixed ideal. Here \(A/(x_n)\) has the \((k-1)\)-SLP, and has the Hilbert function \(\Delta h_A\). Therefore it follows from the assumption of induction that \(A/(x_n^2) \cong A/(x_n) \otimes_K K[z]/(z^2)\) has the \((k-1)\)-SLP.

[Case 2. There is only one \(i\) such that \(h_i = \max_j \{h_j\}\), and \(h_{i-1} \geq h_{i+1}\)] In this case, for a standard monomial \(u \in R\) not divisible by \(x_n\), \(ux_n\) is also standard if \(\deg(u) < i\), and is not standard if \(\deg(u) = i\). Therefore we have an algebra isomorphism

\[
A/(x_n^2) \cong [A/(x_n) \otimes_K K[z]/(z^2)]/[m^{i+1}],
\]

where \(m\) is the graded maximal ideal of \(A/(x_n) \otimes_K K[z]/(z^2)\). Namely \(A/(x_n^2)\) is isomorphic to the algebra obtained by dropping the homogeneous component of
the socle degree of \(A/(x_n) \otimes_K K[z]/(z^2) \). In general, for an algebra having the k-SLP, the algebra obtained by dropping the homogeneous component of the socle degree again has the k-SLP. Hence \(A/(x_n^2) \) has the \((k - 1)-\text{SLP}\).

In both cases we have proved that \(A/(x_n^2) \) has the \((k - 1)-\text{SLP}\), and by induction we have proved the lemma.

\[\square \]

Lemma 7. Let \(A \) be a graded Artinian \(K \)-algebra having the \(k \)-SLP, and \(h_A \) its Hilbert function. Let \(B = K[y]/(y^2) \). Suppose that every \(s \)-th difference \(\Delta^s h_A \) \((0 \leq s \leq k - 1) \) satisfies Conditions \((C1) \) and \((C2) \) of Lemma 5, and suppose also that every \(s \)-th difference \(\Delta^s h_A \) \((0 \leq s \leq k - 2) \) satisfies Condition \((C3) \) of Lemma 6. Then the tensor product \(A \otimes_K B \) has the \(k \)-SLP.

Proof. Let \(A = R/I \), where \(R = K[x_1, x_2, \ldots, x_n] \), and \(I \) a graded ideal of \(R \). Let \(g \in GL_n(K) \) be an element for which \(\deg(g) = \deg(I) \), and let \(\tilde{g} \in GL_{n+1}(K) \) be the element given by embedding \(g \) into first \(n \) dimensions. Then we have

\[
R/\deg(g) \otimes_K B = R/\deg(I) \otimes_K B \\
\simeq R[y]/(\deg(gI) + (y^2)) \\
= R[y]/(\deg(I) + (y^2)) \\
\simeq K[x_1, x_2, \ldots, x_n, y]/\deg(I + (y^2)),
\]

by use of [Eis95, Proposition 15.15] for example. Here \(R/\deg(I) \) has the \(k \)-SLP, since \(R/I \) has the \(k \)-SLP if and only if \(R/\deg(I) \) has the \(k \)-SLP [HW08, Proposition 18]. It follows from Lemma 8 that \(R/\deg(g) \otimes_K B \) has the \(k \)-SLP. Hence \(K[x_1, x_2, \ldots, x_n, y]/\deg(I + (y^2)) \) has the \(k \)-SLP by Proposition 3. Thus \(A \otimes_K B \simeq K[x_1, x_2, \ldots, x_n, y]/\deg(I + (y^2)) \) has the \(k \)-SLP.

\[\square \]

We need the following property on Hilbert functions of monomial complete intersections of three variables for the proof of the main theorem.

Lemma 8. Let \(a, b \) and \(c \) be positive integers. Define the \(h \)-vector \(h = (h_0, h_1, \ldots) \) by

\[
\sum_{j=0}^{a+b+c-3} h_j t^j = (1 + t + \cdots + t^{a-1})(1 + t + \cdots + t^{b-1})(1 + t + \cdots + t^{c-1}).
\]

(4)

Then its difference \(h' = \Delta h = (h'_0, h'_1, \ldots, h'_j, \ldots) \) is a piecewise linear function in \(j \), and the coefficient of \(j \) is at least \(-2 \) in each linear piece.

Proof. The right-hand side of Equation 4 is equal to

\[
\sum_{j=0}^{a+b+c-3} \sum_{0 \leq k \leq a-1, 0 \leq l \leq b-1, 0 \leq m \leq c-1} t^{k+l+m},
\]

and hence \(h_j \) is equal to the number of lattice points on the plane \(P_j = \{v = (k, l, m) \in \mathbb{Z}^3 : k + l + m = j \text{ and } k, l, m \geq 0 \} \) satisfying \(0 \leq k \leq a-1, 0 \leq l \leq b-1 \leq c-1 \).
and $0 \leq m \leq c - 1$. Thus we have

$$h_j = \#P_j - \# \{ v \in P_j : k \geq a \} - \# \{ v \in P_j : l \geq b \} - \# \{ v \in P_j : m \geq c \} + \# \{ v \in P_j : k \geq a, l \geq b \} + \# \{ v \in P_j : k \geq a, m \geq c \} + \# \{ v \in P_j : l \geq b, m \geq c \}
\[
= \binom{j + 2}{2} - \binom{j - a + 2}{2} - \binom{j - b + 2}{2} - \binom{j - c + 2}{2} + \binom{j - a - b + 2}{2} + \binom{j - b - c + 2}{2} + \binom{j - a - c + 2}{2}
\]$$

for $0 \leq j \leq a + b + c - 3$, where the binomial coefficients $\binom{n}{m}$ are defined as zero if $n < 0$. Note that the formula $(\binom{n-1}{m-1}) + (\binom{n-1}{m})$ still holds unless $(n, m) = (0, 0)$, and that $(\binom{n}{m}) = \max \{0, n\}$. Hence we have

$$h_j - h_{j-1} =
\begin{align*}
&j + 1 - \max \{0, j - a + 1\} - \max \{0, j - b + 1\} - \max \{0, j - c + 1\} \\
&+ \max \{0, j - a - b + 1\} + \max \{0, j - b - c + 1\} + \max \{0, j - a - c + 1\}.
\end{align*}
$$

Therefore $h_j' = \max \{0, h_j - h_{j-1}\}$ is a piecewise linear function in j, in which the coefficients of j are at least -2 (and at most 1).

Finally we have the main theorem.

Theorem 9. Let $R = K[x_1, x_2, x_3, x_4]$, and $I = (x_1^a, x_2^b, x_3^c, x_4^d)$, where at least one of a, b, c and d is equal to two. Then the generic initial ideal of I is equal to the almost revlex ideal corresponding to the same Hilbert function.

Proof. If one of a, b, c and d is equal to one, then the theorem is reduced to the case of three variables, and follows from [ACP07] or [Cim07]. We consider the case where $a, b, c, d \geq 2$. First we show that R/I has the 3-SLP for $a, b, c \geq 2$ and $d = 2$. Let $A = K[x_1, x_2, x_3]/(x_1^a, x_2^b, x_3^c)$, and h_A the Hilbert function of A. Then A has the 3-SLP, and h_A satisfies Conditions (C1), (C2) and (C3), since h_A is unimodal and symmetric. The difference Δh_A is of the form $(1, 2, \ldots, k, h'_k, h'_{k+1}, \ldots, h'_m)$, where $k \geq h'_k \geq h'_{k+1} \geq \cdots \geq h'_m \geq 0$. Hence Δh_A satisfies Condition (C1). Condition (C2) for Δh_A also holds, since $h'_j - h'_{j+1} \leq 2$ for $j = k - 1, k, \ldots, m$ ($h'_{k-1} = k$ and $h'_{m+1} = 0$) by Lemma 8. Therefore it follows from Lemma 7 that $R/I \simeq A \otimes_K K[x_4]/(x_4^2)$ has the 3-SLP.

Since the k-SLP is independent of the permutation of the variables, R/I has the 3-SLP, if at least one of a, b, c and d is equal to two. As noted in Definition 11 the 2-SLP, 3-SLP and 4-SLP are equivalent for quotient rings of R, it follows from Proposition 3 that $\text{gin}(I)$ is almost revlex. \qed
We conclude this note with the smallest example which does not fit into our theorem.

Remark 10. Let \(R = K[x_1, x_2, x_3, x_4] \) and \(I = (x_1^3, x_2^3, x_3^3, x_4^3) \). We can show that the quotient ring \(R/I \) does not have the 2-SLP as follows.

\(R/I \) has the SLP, and we can fix a Lefschetz element \(x_1 + x_2 + x_3 + x_4 \) by changing the coordinate if needed, since Lefschetz elements of \(R/I \) are of the form \(ax_1 + bx_2 + cx_3 + dx_4 \) \((abcd \neq 0)\). Put

\[
A = K[x_1, x_2, x_3]/(x_1^3, x_2^3, x_3^3, (x_1 + x_2 + x_3)^3) \simeq R/I + (x_1 + x_2 + x_3 + x_4).
\]

The Hilbert function of \(A \) is \((1, 3, 6, 3)\). Let \(\ell = ax_1 + bx_2 + cx_3 \) be a general linear form of \(A \), and we look at the rank of the linear mapping \(\times \ell^3 : A_1 \rightarrow A_4 \). Using a computer we have

\[
\begin{align*}
x_1 \ell^3 &= 3a(b-c)^2x_1^2x_3^2 + 3b(2a-c)(b-c)x_1x_2x_3 + 3b^2(a-c)x_2^2x_3^2, \\
x_2 \ell^3 &= 3a^2(b-c)x_1^2x_3^2 + 3a(a-c)(2b-c)x_1x_2x_3^2 + 3b(a-c)^2x_2^2x_3^2, \\
x_3 \ell^3 &= -3a^2(b-c)x_1^2x_3^2 - 3ab(a+b-2c)x_1x_2x_3^2 - 3b^2(a-c)x_2^2x_3^2,
\end{align*}
\]

which are equations in \(A \), and \(\{x_1^2x_3^2, x_1x_2x_3^2, x_2^2x_3^2\} \) is a basis of \(A_4 \). We can show that the determinant of \(\times \ell^3 : A_1 \rightarrow A_4 \) is equal to zero independent of \(a, b \) and \(c \), and therefore \(A \) does not have the SLP. Hence \(R/I \) does not have the 2-SLP.

References

[ACP07] Jeaman Ahn, Young Hyun Cho, and Jung Pil Park. Generic initial ideals of Artinian ideals having Lefschetz properties or the strong Stanley property. *J. Algebra*, 318(2):589–606, 2007.

[Cim07] Mircea Cimpoeaș. Generic initial ideal for complete intersections of embedding dimension three with strong Lefschetz property. *Bull. Math. Soc. Sci. Math. Roumanie (N.S.),* 50(98)(1):33–66, 2007.

[Eis95] David Eisenbud. *Commutative algebra*, volume 150 of *Graduate Texts in Mathematics*. Springer-Verlag, New York, 1995. With a view toward algebraic geometry.

[HMNW03] Tadahito Harima, Juan C. Migliore, Uwe Nagel, and Junzo Watanabe. The weak and strong Lefschetz properties for Artinian \(K \)-algebras. *J. Algebra*, 262(1):99–126, 2003.

[HW03] Tadahito Harima and Junzo Watanabe. The finite free extension of Artinian \(K \)-algebras with the strong Lefschetz property. *Rend. Sem. Mat. Univ. Padova*, 110:119–146, 2003.

[HW08] Tadahito Harima and Akihito Wachi. Generic initial ideals, graded Betti numbers and \(k \)-Lefschetz properties. to appear in Comm. Algebra, 2008.

[Wat87] Junzo Watanabe. The Dilworth number of Artinian rings and finite posets with rank function. In *Commutative algebra and combinatorics (Kyoto, 1985)*, volume 11 of *Adv. Stud. Pure Math.*, pages 303–312. North-Holland, Amsterdam, 1987.
[Wie04] Attila Wiebe. The Lefschetz property for componentwise linear ideals and Gotzmann ideals. *Comm. Algebra*, 32(12):4601–4611, 2004.

Tadahito Harima
Faculty of Education,
Ehime University,
Ehime 790-8577, JAPAN

Sho Sakaki
Department of Mathematics,
Hokkaido University of Education,
Kushiro 085-8580, JAPAN

Akihito Wachi
Division of Comprehensive Education,
Hokkaido Institute of Technology,
Sapporo 006-8585, JAPAN