Complex positive selection pressures drive the evolution of HIV-1 with different co-receptor tropisms

ZHANG ChiYu1*, DING Na1, CHEN KePing1 & YANG RongGe2*

1Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China;
2HIV Molecular Epidemiology and Virology Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China

Received March 17, 2010; accepted August 1, 2010

HIV-1 co-receptor tropism is central for understanding the transmission and pathogenesis of HIV-1 infection. We performed a genome-wide comparison between the adaptive evolution of R5 and X4 variants from HIV-1 subtypes B and C. The results showed that R5 and X4 variants experienced differential evolutionary patterns and different HIV-1 genes encountered various positive selection pressures, suggesting that complex selection pressures are driving HIV-1 evolution. Compared with other hypervariable regions of Gp120, significantly more positively selected sites were detected in the V3 region of subtype B X4 variants, V2 region of subtype B R5 variants, and V1 and V4 regions of subtype C X4 variants, indicating an association of positive selection with co-receptor recognition/binding. Intriguingly, a significantly higher proportion (33.3% and 55.6%, P<0.05) of positively selected sites were identified in the C3 region than other conserved regions of Gp120 in all the analyzed HIV-1 variants, indicating that the C3 region might be more important to HIV-1 adaptation than previously thought. Approximately half of the positively selected sites identified in the env gene were identical between R5 and X4 variants. There were three common positively selected sites (96, 113 and 281) identified in Gp41 of all X4 and R5 variants from subtypes B and C. These sites might not only suggest a functional importance in viral survival and adaptation, but also imply a potential cross-immunogenicity between HIV-1 R5 and X4 variants, which has important implications for AIDS vaccine development.

Citation: Zhang C Y, Ding N, Chen K P, et al. Complex positive selection pressures drive the evolution of HIV-1 with different co-receptor tropisms. Sci China Life Sci, 2010, 53: 1204–1214, doi: 10.1007/s11427-010-4066-5
switch.

HIV-1 has high mutation rates and is often subject to strong selective pressures from human immune responses [7]. Positive (diversifying) selection has been widely detected in whole genomes, but especially in the env gene of HIV-1 group M, HIV-1 group O, HIV-2 and SIV [8–14]. Furthermore, an association between positive selection and AIDS disease progression was observed in pediatric and adult HIV-1 infections [15,16]. Although only the C2V3C3 region of the env gene of R5 variants was used in these studies, increasing evidence showed that positive selection was more prevalent in individuals with slow HIV-1 disease progression than those with rapid disease progression [7,17]. The reason for this was likely due, in part, to a stronger immune response in slow progressors and a destroyed immune system in rapid progressors. However, the reverse was observed in one study based on HIV-1 subtype B V3 sequences, in which syncytium-inducing (SI) variants appeared to evolve faster than the non-syncytium-inducing (NSI) variants [18], implying that SI variants were subject to stronger positive selection than NSI variants. The disagreement was likely due to the usage of only part of the env gene in these studies. To reveal the intricate nature of selection pressures driving the evolution of HIV-1 R5 and X4 variants, adaptive evolutionary analyses based on whole env genes, or even whole genomic sequences are required. Therefore, a genome-wide comparison between the adaptive evolution of R5 and X4 variants from HIV-1 subtypes B and C was performed in the present study. We found that R5 and X4 variants underwent obviously different evolutionary patterns and different HIV-1 genes were subject to various selection pressures. We found that a significantly higher proportion of positively selected sites were identified in the C3 region than in other conserved regions of Gp120 in all analyzed HIV-1 variants, indicating that the C3 region might be more important to HIV-1 adaptation than previously believed. In addition, approximately half of the positively selected sites identified in env genes were identical between R5 and X4 variants. These common positively selected sites might not only imply functional importance in viral survival and adaptation, but also have important implications for AIDS vaccine development.

1 Materials and methods

1.1 Sequences and alignment

All of the sequences used in this study were collected from the Los Alamos National Laboratory (LANL) HIV Sequence Database (http://www.hiv.lanl.gov/content/sequence/HIV/mainpage.html). Because the full-length HIV-1 sequences with known co-receptor tropism are very limited, we primarily downloaded all 624 subtype B and 466 subtype C full-length sequences from this database. To determine the co-receptor tropism of each full-length sequence, three robust online prediction tools WebPSSM (http://indra.mullins.microbiol.washington.edu/webpssm) [19], Geno2pheno (http://coreceptor.bioinf.mpi-inf.mpg.de/index.php) [20], and HIV-1PhenoPred (http://jxxy.ujs.edu.cn/R5-X4%20pred.rar) [21] were used based on hypervariable region 3 (V3) of Gp120. Only sequences that yielded consistent prediction results by the three tools were selected and divided into CCR5 and CXCR4 datasets. Because a very short evolutionary distance is able to reduce the discriminatory power [22], sequences with closer evolutionary distances were deleted. As a consequence, 37 R5 and 33 X4 sequences from subtype B, and 28 R5 and 13 X4 sequences from subtype C were kept. These sequences were divided into four HIV-1 sub-populations for adaptive evolutionary analyses and their GenBank accession numbers are provided in Appendix Table 1.

To compare the different HIV-1 genes that play various functions in the HIV-1 life cycle, each complete genome was divided into five genes: gag, reverse transcriptase (RT), integrase (IN), gpl20 and gpl41. For X4 variants of subtype C, only the C2V3C3 region was used to reconstruct phylogenetic trees. For R5 variants of subtype B, gpl20 was used in these studies. To reveal the intricate nature of selection pressures driving the evolution of HIV-1 R5 and X4 variants, adaptive evolutionary analyses based on whole env genes, or even whole genomic sequences are required. Therefore, a genome-wide comparison between the adaptive evolution of R5 and X4 variants from HIV-1 subtypes B and C was performed in the present study. We found that R5 and X4 variants underwent obviously different evolutionary patterns and different HIV-1 genes were subject to various selection pressures. We found that a significantly higher proportion of positively selected sites were identified in the C3 region than in other conserved regions of Gp120 in all analyzed HIV-1 variants, indicating that the C3 region might be more important to HIV-1 adaptation than previously believed. In addition, approximately half of the positively selected sites identified in env genes were identical between R5 and X4 variants. These common positively selected sites might not only imply functional importance in viral survival and adaptation, but also have important implications for AIDS vaccine development.

1.2 Analysis of positive selection and identification of positively selected sites

Positive selection is measured by comparing the rate of nonsynonymous nucleotide substitutions per nonsynonymous site (dN/s) with that of synonymous substitutions per synonymous site (dS). The dN/dS ratio (ω) is traditionally used as an index to assess positive selection. The ω greater than 1 is taken as evidence of positive selection, ω equal to 1 indicates neutral selection, and ω less than 1 reflects strong negative (purifying) selection. The analyses of adaptive molecular evolution on all datasets were performed using six codon substitution models: M0 (one-ratio), M1a (nearly neutral), M2a (positive selection), M3 (discrete), M7 (beta), and M8 (beta and ω), as implemented in PAML 4.0 [25]. The details of these models were described in a previous study [26]. The likelihood ratio test (LRT) comparing three pairs of nested codon evolutionary models (M0 vs. M3, M1a vs. M2a, and M7 vs. M8) was used to test against the null hypothesis of no positive selection [27]. The null hypothesis of three pairs of nested models were rejected and positive selection was inferred when the LRT statistic was significant for a χ^2 distribution with the degrees of freedom equivalent to the difference in the number of parameters between nested models. Then the datasets were subjected to the identification of positively selected sites using three
positive selection models (M2a, M3 and M8). The sites that were detected with high posterior probabilities ($P > 0.95$) within the class with ω greater than 1 by selection models were admitted as positively selected [26].

Because of the overestimate of the number of actual positively selected sites [27, 28], the results under model M3 were not used to identify positively selected sites. To reduce or avoid possible false-positive results, positively selected sites identified simultaneously by models M2a and M8 in the Codeml program were defined as positively selected [28]. To confirm the results obtained using the codon substitution models in PAML, similar analyses were also performed using online DataMonkey package [29].

2 Results

2.1 Positive selection on three major genes gag, pol and env

HIV-1 R5 and X4 variants exhibit different phenotypic characteristics in cellular tropism and replication ability [5]. Two viral proteins Gp120 and RT are closely associated with HIV-1 phenotypes since the former determines cellular tropism by specifically recognizing co-receptors and the latter determines viral replication ability. Here, gp120, gp41, RT, IN and gag of R5 and X4 variants from subtypes B and C were subjected to adaptive evolutionary analyses. The results of the codon-based maximum likelihood analyses are shown in Tables 1 and 2 for HIV-1 subtype B gp120 and gp41 genes, and in Tables 3 and 4 for subtype C gp120 and gp41 genes, respectively. The results of other genes are shown in Appendix Tables 2–7.

Positive selection was detected in all analyzed genes by three positive selection models (M2a, M3 and M8), except for the IN gene of R5 variants of the B subtype. Comparison between different genes showed that stronger positive selection acted on env and gag genes than on RT and IN genes. The env genes appeared to be under the strongest positive selection pressure [8–11]. The numbers of positively selected sites identified in different genes further supported stronger positive selection acting on env and gag genes. These results suggested that differential HIV-1 genes suffered differential positive selection patterns.

2.2 Identification of positively selected sites in env genes

In HIV-1 subtype B datasets, the numbers of positively selected sites in gp120 were 29 and 31 for R5 and X4
sub-populations, respectively. In gp120 of HIV-1 subtype C datasets, the numbers of sites were 16 and 24 for R5 and X4 sub-populations, respectively (Table 5). The number of positively selected sites identified in X4 sub-populations was greater than in the R5 sub-populations, suggesting that gp120 gene of X4 variants was subject to a stronger positive selection pressure. An opposite pattern was observed in gp41 genes, where 27 and 17 positively selected sites were identified in R5 sub-populations of B and C subtypes, respectively, which was greater than the 24 and 11 sites in the X4 sub-population of B and C subtypes, respectively (Table 5). This implied that gp41 gene of R5 variants underwent a stronger positive selection than that of X4 variants. Therefore, although as a whole there was no obvious difference in

Table 2 Phylogenetic analysis by ML estimation for the gp11 gene of HIV-1 subtype B sequences with R5 and X4 tropismsa)

Tropism	Model code	lnL	Estimates of parameters	ΔA	Positively selected sites
R5	M0	−10580.74	α=0.57	1518.12	None
	M3	−9821.68	p=0.6478, p=0.2360 (p=0.1162), α=0.08, α=0.86, α=3.74	871.72	Not shown
	M1a	−10014.68	p=0.7306 (p=0.2694)	384.62	Not allowed
	M2a	−9822.37	p=0.6731, p=0.2198 (p=0.1072), α=3.96	418.48	7L 24M 2010 240L 2010
	M7	−10032.47	p=0.2010, q=0.3902	418.48	7L 24M 32Q
	M8	−9823.23	p=0.8789 (p=0.1213), p=0.3113, q=0.8201	418.48	7L 24M 32Q
X4	M0	−8388.95	α=0.63	1183.34	None
	M3	−7977.28	p=0.6907, p=0.2243 (p=0.0497), α=0.11, α=1.29, α=5.08	327.88	Not shown
	M1a	−7963.59	p=0.7054 (p=0.2946)	327.88	Not allowed
	M2a	−7799.65	p=0.6497, p=0.2545 (p=0.0959), α=4.57	327.88	24M 96A 108L 109E 110Q
	M7	−7980.27	p=0.1591, q=0.2925	352.78	24M 32Q 96A 101A
	M8	−7803.88	p=0.8908 (p=0.1092), p=0.2182, q=0.4835,	352.78	24M 32Q 96A

a) For details, see Table 1.

Table 3 Phylogenetic analysis by ML estimation for the gp120 gene of HIV-1 subtype C sequences with R5 and X4 tropismsa)

Tropism	Model code	lnL	Estimates of parameters	ΔA	Positively selected sites
R5	M0	−10763.38	α=0.47	1581.90	None
	M3	−9972.43	p=0.7142, p=0.2445 (p=0.0413), α=0.10, α=1.29, α=5.76	305.00	Not shown
	M1a	−10127.16	p=0.7172 (p=0.2828)	305.00	Not allowed
	M2a	−9974.66	p=0.68058, p=0.2529 (p=0.0666), α=4.31	305.00	24M 101L 140T 141N
	M7	−10133.41	p=0.1878, q=0.4031	312.76	7Y 10L 140T
	M8	−9977.03	p=0.9223 (p=0.0777), p=0.2293, q=0.5610,	312.76	7Y 10L 140T
X4	M0	−8030.39	α=0.54	993.48	None
	M3	−7533.65	p=0.6346, p=0.2910 (p=0.0744), α=0.10, α=1.30, α=6.87	224.46	Not shown
	M1a	−7647.70	p=0.6544 (p=0.3456)	224.46	Not allowed
	M2a	−7535.47	p=0.5929, p=0.3111 (p=0.0959), α=5.31	224.46	7Y 137D
	M7	−7658.08	p=0.1654, q=0.2725	242.32	Not allowed
	M8	−7536.92	p=0.8857 (p=0.1144), p=0.2070, q=0.3918,	242.32	7Y 187G

a) For details, see Table 1.
suggest that sub-populations of subtype C, respectively. These results was greater than the 17 and 11 sites in R5 and X4 sub-populations of subtype B, respectively, which between R5 and X4 sub-populations, the number of positively selected sites on env genes between R5 and X4 sub-populations, the gp120 and gp41 genes underwent different evolutionary pathways in R5 and X4 variants.

When taking subtypes into account, the number of positively selected sites in the env genes of subtype B was greater than in subtype C. For the subtype B gp120 genes, 29 and 31 sites were identified in R5 and X4 sub-populations, respectively. There were 16 and 24 sites in the R5 and X4 sub-populations of subtype C, respectively. For the gp41 genes, 27 and 24 sites were identified in R5 and X4 sub-populations of subtype B, respectively, which was greater than the 17 and 11 sites in R5 and X4 sub-populations of subtype C, respectively. These results suggest that env genes of subtype B underwent stronger positive selection than that of subtype C.

2.3 Identification of positively selected sites in gag and pol genes

The HIV-1 gag gene encodes four structural proteins. The gag products are crucial targets, recognized by the human immune system. In gag genes, 9 and 10 positively selected sites were detected in R5 sub-populations of subtypes B and C, respectively, obviously greater than the six sites in the X4 sub-population of subtype B (Appendix Tables 2 and 3), however, four of these sites (91, 138, 280 and 374) were all detected in both the R5 and X4 sub-populations of subtype B. Two (91 and 138) of the four common sites were also identified in the R5 sub-population of subtype C, possibly

Table 4 Phylogenetic analysis by ML estimation for the gp120 gene of HIV-1 subtype C sequences with R5 and X4 tropisms

Tropism	Model code	lnL	Estimates of parameters	2Δl	Positively selected sites
R5	M0	764.17	0.53	811.42	None
	M3	755.46	0.6953, p=0.02258 (p=0.0789),	174.41	Not allowed
	M1a	762.79	0.01083, a=1.1385, a=3.39	141.38	Not allowed
	M2a	759.76	0.7019, p=0.02982	141.38	Not allowed
	M7	765.02	0.2013, q=0.3581	174.02	Not allowed
	M8	756.01	0.8674, p=0.1326, q=0.3539, q=0.9639, a=2.66	174.02	Not allowed
X4	M0	492.55	0.57	430.82	None
	M3	471.34	0.6766, p=0.0427, a=0.09, a=1.46, a=5.67	174.38	Not allowed
	M1a	475.49	0.6561, p=0.03484	86.78	Not allowed
	M2a	471.35	0.6277, p=0.2940 (p=0.0783), a=3.97	86.78	Not allowed
	M7	476.49	0.0970, q=0.1519	98.00	Not allowed
	M8	471.49	0.9026, p=0.0975, q=0.1526, q=0.3012, a=3.64	98.00	Not allowed

Table 5 Comparison of positively selected sites between different regions of Gp120 and Gp41

Subtype	Co-receptor	Amino acid sites under Variable regions	Gp120	Gp41
		V1 V2 V3 V4 V5 Total	C3 C1–C5 Total	HR1+HR2 Other regions Total
B	R5	Positive selection	0 5 1 0 0 6 10 23 29	6 21 27
	Non-negative selection	26 34 35 34 12 141 43 341 482	78 240 318	
X4	Positive selection	0 3 8 1 1 13 6 18 31	3 21 24	
	Non-negative selection	26 36 28 33 11 134 47 346 480	81 240 321	
C	R5	Positive selection	0 1 3 0 5 5 11 16	2 15 17
	Non-negative selection	26 38 35 31 12 143 48 353 485	82 246 328	
X4	Positive selection	4 2 2 6 1 15 5 9 24	1 10 11	
	Non-negative selection	22 37 34 28 11 132 48 355 487	83 251 334	

Notes

a) For details, see Table 1.

b) The numbers in boldface represent the statistically significant differences (P<0.05) between one variable region and all other variable regions or between variable (V1–V5) and conserved regions (C1–C5) using Fisher’s exact test. b) The numbers in boldface represent the statistically significant differences (P<0.05) between C3 and all other conserved regions (C1, C2, C4, and C5) using Fisher’s exact test.
implying importance of HIV-1 adaptation.

HIV-1 RT and IN are key enzymes in the HIV life cycle. A comparison of the selection pressures for the two genes in the R5 and X4 sub-populations could help to distinguish the difference in replication rates between R5 and X4 variants. In HIV-1 subtype B datasets (Appendix Table 4), two (162 and 376) sites in the R5 sub-population and one (211) site in the X4 sub-population were detected under positive selection in RT genes. Two sites (118 and 123) were detected under positive selection for the IN gene in the X4 sub-population, whereas no positive selection was detected in the R5 sub-population (Appendix Table 6). In the R5 sub-population of subtype C dataset, three sites (123, 344, and 377) in RT and three sites (50, 72, and 125) in IN were identified under positive selection (Appendix Tables 5 and 7).

2.4 Comparison of the locations of positively selected sites in HIV-1 Env

Gp120 is the HIV-1 surface glycoprotein that not only determines viral tropism, but also is the most important target for the host immune response. Gp120 contains five conserved (C1–C5) and five hypervariable regions (V1–V5). Comparing the location of positively selected sites in both conserved and hypervariable regions showed that significantly more positively selected sites occurred in hypervariable regions in the X4 sub-populations of subtypes B (41.9%, \(P = 0.041 \)) and C (62.5%, \(P = 0.0002 \)) than in conserved regions relative to the proportion (28.8%) of hypervariable regions in whole Gp120 (Table 5). This result implied that Gp120 hypervariable regions of X4 variants were subject to stronger positive selection pressures. We further analyzed the distribution of positively selected sites in five hypervariable regions. In X4 sub-population of subtype B, significantly more sites (61.5%, \(P = 0.0011 \)) appeared in the V3 region that was a critical determinant of co-receptor tropism and the main epitope for eliciting neutralizing antibody [30,31] compared with other hypervariable regions relative to the proportion (24.5%) of V3 in whole hypervariable regions. This implied a stronger positive selection pressure on V3, consistent with previous observations [7,18]. In X4 sub-population of subtype C, however, higher proportions (66.7%, \(P = 0.0316 \)) of positively selected sites were located in the V1 and V4 regions, both of which account for 34% of hypervariable regions (Table 5). Additionally, in R5 sub-population of subtype B, significantly higher proportions (83.3%, \(P = 0.0013 \)) of positively selected sites were located in the V2 region that accounts for only 26.5% of the hypervariable region (Table 5).

When taking conserved regions into account, all four sub-populations exhibited significantly higher proportions of positively selected sites in the C3 region than in other conserved regions (R5 sub-population of subtype B: 43.5%, \(P < 0.0001 \); X4 sub-population of subtype B: 33.3%, \(P = 0.0206 \); R5 sub-population of subtype C: 45.5%, \(P = 0.0032 \); X4 sub-population of subtype C: 55.6%, \(P = 0.0004 \); Table 5). These results suggested that C3 might be more important in Gp120 evolution than previously thought. With regard to Gp41, we found that relatively few positively selected sites (9.1%–22.2%) occurred in the two heptad repeat (HR) regions when compared with the proportion (24.3%) of HR1 and HR2 in whole Gp41 (Table 5 and Figure 1).

Figure 1 Mapping of positively selected sites across env for different HIV-1 subtypes with different co-receptor tropisms. Positively selected sites are detected with high posterior probabilities greater than 95% within the class with \(\omega \) greater than 1 by at least two of three selection models (M2, M3 and M8). The positions of the five variable regions (V1–V5) in Gp120 and the two HR regions in Gp41 are indicated. Positively selected sites identified in various HIV-1 sub-populations with different subtypes and different co-receptor tropisms are highlighted by different symbols. The solid and blank circles represent R5 and X4 variants of subtype B, respectively. The shaded and unshaded squares represent R5 and X4 variants of subtype C, respectively. The positively selected sites shared between R5 and X4 variants are highlighted with yellow and green for subtypes B and C, respectively. The positively selected sites shared by all four sub-populations are highlighted in pink.
We observed that approximately half of the positively selected sites identified in the \textit{env} genes were the same between R5 and X4 sub-populations regardless of whether they were subtypes B or C. As an example, in subtype B, 30 of 56 positively selected sites identified in the R5 sub-population were also detected in X4. In subtype C, 16 positively selected sites were common between the R5 and X4 sub-populations (Table 5 and Figure 1). Of additional note were three positively selected sites (96, 113 and 281) in \textit{gp41} genes that were common among all four sub-populations (Figure 1).

3 Discussion

By comparing selection pressures acting on several key genes of HIV-1 from subtypes B and C and from R5 and X4 sub-populations, we found that \textit{env} (\textit{gp120} and \textit{gp41}) and \textit{gag} genes underwent higher selection pressures than other genes. These results suggested that certain HIV-1 genes were subject to different selection pressures [8]. Comparison of positively selected sites identified in \textit{env} of R5 and X4 sub-populations showed that both variants experienced obviously different evolutionary patterns. For the \textit{gp120} genes, more positively selected sites were identified in the X4 than in the R5 sub-population (Table 5), similar to previous observations of highly positive selection in the V3 region of SI compared with NSI variants [18]. However, this pattern was reversed for Gp41, which underwent stronger positive selection in R5 compared with X4 variants (Table 5). These results suggested R5 and X4 had different evolutionary patterns.

At least two kinds of potentially positive selection pressures, the host immune system and the target cell range, can drive HIV-1 evolution in treatment-naïve HIV-1-infected individuals [2]. The host immune responses including humoral and cellular immune responses were generally assumed to be the most important evolutionary pressures for adaptive evolution observed in the HIV-1 genome [7]. The \textit{gag} gene encodes viral structural proteins that are less involved in viral replication and co-receptor recognition/binding. A total of 19 positively selected sites were identified in \textit{gag} genes of three analyzed HIV-1 sub-populations (R5 and X4 sub-populations from subtype B and R5 sub-population from subtype C) (Appendix Tables 2 and 3). All these sites were found to be associated with at least one of three kinds of epitopes (Ab, CTL and T-helper). In particular, 83.3% and 66.7% of these sites were associated with CTL and T-helper epitopes, respectively. These results indicated that the positive selection pressures on \textit{gag} genes were primarily imposed by the host immune response. Among these positively selected sites, two sites at 91 and 138 were detected in all three sub-populations, possibly implying an additional importance for HIV-1 adaptation. A previous study demonstrated that a residue change in site 30 of Gag was able to confer a species specific replication advantage in HIV or SIV to adapt to their hosts [32]. The potential roles of sites 91 and 138 in HIV-1 adaptation need to be assessed by site-directed mutagenesis analyses.

RT is a key enzyme responsible for HIV-1 replication. HIV-1 X4 viruses usually exhibit higher replication rates than R5 viruses [2]. A total of six positively selected sites were identified in RT of three sub-populations. All these sites were located in the DNA polymerase domain of RT [33], and the sites identified in R5 and X4 variants were different, implying that these positively selected sites might be associated with specific replication characteristics of R5 or X4 variants. All these sites were associated with CTL-specific epitopes. Therefore, cellular immune responses were also likely to drive the evolution of RT.

The envelope (Env) glycoprotein of HIV-1 is exposed on the surface of the virus particle and HIV-1-infected cells, playing an important role in viral survival. It not only determines the co-receptor tropism of HIV-1, but is also the major determinant of immunogenicity for humoral and cellular immune responses. Moreover, the highest mutation rate of the \textit{env} gene in HIV-1 genome confers a potential ability to escape host immune responses [34,35]. Therefore, the adaptive evolution of \textit{env} genes was thought to be complex and might involve multiple selection factors such as cell source, host immune responses and the virus itself [2,8].

The hypervariable rather than conserved regions were demonstrated to determine HIV-1 co-receptor tropism. The V3 region plays the most important role in the determination of HIV-1 co-receptor tropism [30,36,37] and other hypervariable regions, such as V1V2 and V4 regions, affect the co-receptor usage [38–44]. Comparing the location of positively selected sites in Gp120 showed that in X4 sub-populations significantly more sites were located in the hypervariable regions (\(P<0.05\)). However, a similar pattern was not observed in R5 sub-populations. Further analyses showed that significantly more positively selected sites were in the V3 region (61.5%, \(P=0.0011\)) of subtype B X4 variants, the V2 region (83.3%, \(P=0.0013\)) of subtype B R5 variants, and V1 and V4 regions (66.7%, \(P=0.0316\)) of subtype C X4 variants compared with other hypervariable regions of Gp120 (Table 5). These results distinctly indicated that positive selection acting on the Gp120 hypervariable regions was closely associated with the function of co-receptor recognition/binding. The V1V2, V4 and V5 regions have been demonstrated to contribute to autologous neutralization [45]. This implied that humoral immune response-imposed positive selection also contributed to the evolution of Gp120.

A higher proportion (33.3%–55.6%, \(P<0.05\)) of positively selected sites were located in the C3 region than in
other conserved regions of Gp120 in all four HIV-1 sub-populations (Table 5). This result indicated that the C3 region might be more important to the function of HIV-1 Gp120 than previously believed. Moreover, the C3 region of the subtype C virus was able to elicit early autologous neutralizing response to HIV-1 infection by forming an important structural motif together with the V4 region [45]. The results observed in the C3 region also supported that humoral immune response-imposed positive selection might play a role in the evolution of Gp120.

Like the S2 domain of SARS-CoV spike (S) protein, HIV-1 Gp41 contains two HR regions, which have been shown to be important in virus membrane fusion [46]. We found that low proportions (9.1%–22.2%) of positively selected sites occurred in two HR regions of Gp41 (Figure 1), possibly arguing against membrane fusion as a major selection factor for the evolution of HIV-1 Gp41 [47]. However, three sites (96, 113 and 281) were detected in Gp41 of all four HIV-1 sub-populations, and two of these sites (96 and 113) were located in the middle region between two HR regions. This finding suggested that the three mutual sites might play some role in the membrane fusion function of Gp41, supporting membrane fusion as a minor selection factor for the evolution of HIV-1 Gp41. Furthermore, we found that approximately half of the positively selected sites shared by all X4 and R5 variants might have important implications for AIDS vaccine development.

This work was supported by the National Natural Science Foundation of China (Grant No. 30600352), the “Top-notch Personnel” Project of Jiangsu University, the National Basic Research Program of China (Grant No. 2006CB504200), and the Open Research Fund Program of the State Key Laboratory of Virology of China (Grant No. 2009008).

References:

1. Berger E A, Murphy P M, Farber J M. Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Annu Rev Immunol, 1999, 17: 657–700
2. Regoes R R, Bonhoeffer S. The HIV coreceptor switch: a population dynamical perspective. Trends Microbiol, 2005, 13: 269–277
3. Moore J P, Kitchen S G, Pugach P, et al. The CCR5 and CXCR4 coreceptors—central to understanding the transmission and pathogenesis of human immunodeficiency virus type 1 infection. AIDS Res Hum Retroviruses, 2004, 20: 111–126
4. Berger E A, Doms R W, Fenyo E M, et al. A new classification for HIV-1. Nature, 1998, 391: 240
5. Bjørndal A, Deng H, Jansson M, et al. Coreceptor usage of primary human immunodeficiency virus type 1 isolates varies according to biological phenotype. J Virol, 1997, 71: 7478–7487
6. Connor R I, Sheridan K E, Ceradini D, et al. Change in coreceptor use correlates with disease progression in HIV-1-infected individuals. J Exp Med, 1997, 185: 621–628
7. Ross H A, Rodrigo A G. Immune-mediated positive selection drives human immunodeficiency virus type 1 molecular variation and predicts disease duration. J Virol, 2002, 76: 11715–11720
8. Choisy M, Woelk C H, Guegan J F, et al. Comparative study of adaptive molecular evolution in different human immunodeficiency virus groups and subtypes. J Virol, 2004, 78: 1962–1970
9. Nielsen R, Yang Z. Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene. Genetics, 1998, 148: 929–936
10. Yang W, Bielawski J P, Yang Z. Widespread adaptive evolution in the human immunodeficiency virus type 1 genome. J Mol Evol, 2003, 57: 212–221
11. Travers S A, O’Connell M J, McCormack G P, et al. Evidence for heterogeneous selective pressures in the evolution of the env gene in different human immunodeficiency virus type 1 subtypes. J Virol, 2005, 79: 1836–1841
12. Zanotto P M, Kalas E G, de Souza R F, et al. Genealogical evidence for positive selection in the nef gene of HIV-1. Genetics, 1999, 153: 1077–1089
13. de Oliveira T, Saleni M, Gordon M, et al. Mapping sites of positive selection and amino acid diversification in the HIV genome: an alternative approach to vaccine design? Genetics, 2004, 167: 1047–1058
14. Soares A E, Soares M A, Schrago C G. Positive selection on HIV accessory proteins and the analysis of molecular adaptation after interspecies transmission. J Mol Evol, 2008, 66: 598–604
15. Carvalhal-Rodriguez A, Posada D, Perez-Losada M, et al. Disease progression and evolution of the HIV-1 env gene in 24 infected infants. Infect Genet Evol, 2008, 8: 110–120
16. Leal E, Janini M, Diaz R S. Selective pressures of human immunodeficiency virus type 1 (HIV-1) during pediatric infection. Infect Genet Evol, 2007, 7: 694–707
17. Williamson S. Adaptation in the env gene of HIV-1 and evolutionary theories of disease progression. Mol Biol Evol, 2003, 20: 1318–1325
18. Yamaguchi Y, Gojobori T. Evolutionary mechanisms and population dynamics of the third variable envelope region of HIV within single hosts. Proc Natl Acad Sci USA, 1997, 94: 1264–1269
19. Jensen M A, Li F S, van’t Wout A B, et al. Improved coreceptor usage prediction and genotypic monitoring of R5-to-X4 transition by motif analysis of human immunodeficiency virus type 1 env V3 loop sequences. J Virol, 2003, 77: 13376–13388
20. Singh T, Low A J, Beerenwinkel N, et al. Predicting HIV coreceptor usage on the basis of genetic and clinical covariates. Antivir Ther, 2007, 12: 1097–1106
21. Xu S, Huang X, Xu H, et al. Improved prediction of coreceptor usage and phenotype of HIV-1 based on combined features of V3 loop sequence using random forest. J Microbiol, 2007, 45: 441–446
22. Nozawa M, Suzuki Y, Nei M. Reliability of identifying positive selection by the branch-site and the site-prediction methods. Proc Natl Acad Sci USA, 2009, 106: 6700–6705
23. Tamura K, Dudley J, Nei M, et al. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol, 2007, 24: 1596–1599
24. Guindon S, Lethiec F, Duroux P, et al. PHYML Online—a web server for fast maximum likelihood-based phylogenetic inference. Nucleic Acids Res, 2005, 33: W557–W559
25. Yang Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol, 2007, 24: 1586–1591
26. Yang Z, Nielsen R, Goldman N, et al. Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics, 2000, 155: 431–449
27. Anisimova M, Bielawski J P, Yang Z. Accuracy and power of the likelihood ratio test in detecting adaptive molecular evolution. Mol Biol Evol, 2001, 18: 1585–92
28. Anisimova M, Bielawski J P, Yang Z. Accuracy and power of bayes prediction of amino acid sites under positive selection. Mol Biol Evol,
29 Pond S L, Frost S D. Datamonkey: rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics, 2005, 21: 2531–2533
30 Hwang S S, Boyle T J, Lyerly H K, et al. Identification of the envelope V3 loop as the primary determinant of cell tropism in HIV-1. Science, 1991, 253: 71–74
31 Javaherian K, Langlois A J, LaRosa G J, et al. Broadly neutralizing antibodies elicited by the hypervariable neutralizing determinant of HIV-1. Science, 1990, 250: 1590–1593
32 Wain L V, Bailes E, Bibollet-Ruche F, et al. Adaptation of HIV-1 to its human host. Mol Biol Evol, 2007, 24: 1853–1860
33 Sarafianos S G, Das K, Tantillo C, et al. Crystal structure of HIV-1 reverse transcriptase in complex with a polypurine tract RNA:DNA. EMBO J, 2001, 20: 1449–1461
34 Parren P W, Moore J P, Burton D R, et al. The neutralizing antibody response to HIV-1: viral evasion and escape from humoral immunity. AIDS, 1999, 13 Suppl A: S137–S162
35 Klennerman P, Wu Y, Phillips R. HIV: current opinion in escapology. Curr Opin Microbiol, 2002, 5: 408–413
36 Fouchier R A, Groenink M, Kootstra N A, et al. Phenotype-associated sequence variation in the third variable domain of the human immunodeficiency virus type 1 gp120 molecule. J Virol, 1992, 66: 3183–3187
37 Xiao L, Owen S M, Goldman I, et al. CCR5 coreceptor usage of non-syncytium-inducing primary HIV-1 is independent of phylogenetically distinct global HIV-1 isolates: delineation of consensus motifs in the V3 domain that predicts CCR-5 usage. Virology, 1998, 240: 83–92
38 Boyd M T, Simpson G R, Cann A J, et al. A single amino acid substitution in the V1 loop of human immunodeficiency virus type 1 gp120 alters cellular tropism. J Virol, 1993, 67: 3649–3652
39 Smyth R J, Yi Y, Singh A, et al. Determinants of entry cofactor utilization and tropism in a dualtropic human immunodeficiency virus type 1 primary isolate. J Virol, 1998, 72: 4478–4484
40 Groenink M, Fouchier R A, Broersen S, et al. Relation of phenotype evolution of HIV-1 to envelope V2 configuration. Science, 1993, 260: 1513–1516
41 Pastore C, Nedellec R, Ramos A, et al. Human immunodeficiency virus type 1 coreceptor switching: V1/V2 gain-of-fitness mutations compensate for V3 loss-of-fitness mutations. J Virol, 2006, 80: 750–758
42 Sullivan N, Thali M, Furman C, et al. Effect of amino acid changes in the V1/V2 region of the human immunodeficiency virus type 1 gp120 glycoprotein on subunit association, syncytium formation, and recognition by a neutralizing antibody. J Virol, 1993, 67: 3674–3679
43 Ghaffari G, Tuttle D L, Briggs D, et al. Complex determinants in human immunodeficiency virus type 1 envelope gp120 mediate CXCR4-dependent infection of macrophages. J Virol, 2005, 79: 13250–13261
44 Chambers P, Pringle C R, Easton A J. Heptad repeat sequences are located adjacent to hydrophobic regions in several types of virus fusion proteins. J Virol, 1993, 67: 3674–3679
45 Bumke E M, Pisas L, van Nuenen A C, et al. Autologous neutralizing humoral immunity and evolution of the viral envelope in the course of subtype B human immunodeficiency virus type 1 infection. J Virol, 2008, 82: 7932–7941
46 Cho M W, Lee M K, Carney M C, et al. Identification of determinants on a dualtropic human immunodeficiency virus type 1 envelope glycoprotein that confer usage of CXCR4. J Virol, 1998, 72: 2509–2515
47 Zhang C Y, Wei J F, He S H. Adaptive evolution of the spike gene of SARS coronavirus: changes in positively selected sites in different epidemic groups. BMC Microbiol, 2006, 6: 88

Appendix Table 1 List of GenBank accession numbers for HIV-1 genomic sequences analyzed in the text

Subtype	Co-receptor tropism	Sequence number	GenBank accession numbers
HIV-1 B	R5	37	AB286956, AB253432, AF003888, AF042301, AF224507, AY173952, AY037282, EU576191, AY586543, AY713412, AY385748, AY713411, EU574998, AY561236, AY970946, AY839827, AY857022, D10112, DQ854714, DQ837381, DQ886031, FJ469746, EF363124, EF637046, EF514699, EF637049, EU786675, FJ460501, FJ469770, FJ495937, FJ469731, M93258, U23487, U63652, FJ496085, FJ496150, KO2007
HIV-1 C	R5	28	AB254141, DQ369991, AY734550, DQ275642, EU786673, AY788054, AF266227, AY945738, FJ496185, U46016, AY713414, AY110978, AY110981, AF266224, AF266231, AY444800, AY463217, AY563170, AF268233, AF286234, AF299007, AY403176, AY391231, AY118165, AY253503, AY28855, AY253521
	X4	13	FJ846637, FJ846642, AY878064, DQ093600, AY529666, FJ846647, AY529678, DQ283262, DQ382372, DQ382378, AY529677, AY529673, AF411966
Appendix Table 2

Phylogenetic analysis by ML estimation for gag gene of HIV-1 subtype B variants with different coreceptor tropisms

Co-receptor tropism	Model code	lnL	Estimates of parameters	2Δl	Positively selected sites
R5	M0(one-ratio)	-10957.60	α=0.24	1329.12	None
	M3(discrete)	-10293.04			252N 280T 374A 375T 399I 425D 441Y 473P 478P 483L 487T
	M1a(Nearly neutral)	-10382.84	p=0.8769 (p=0.2131)	145.4	Not allowed
	M2a(Positive selection)	-10310.14	p=0.7719 (p=0.0381), α=3.82	P=0.0000	847 91R 1381 2231 280T 374A 389I 473P 483L
	M7(beta)	-10364.21	p=0.1217, q=0.4289	157.08	Not allowed
	M8(beta&α)	-10285.67	p=0.9509 (p=0.0491), p=0.1539, q=0.6937, α=3.06	P=0.0000	67S 847 91R 1381 146A 2231 280T 374A 37ST 389I 425D 473P 478P 483L
	M0(one-ratio)	-8991.79	α=0.25	850.6	None
	M3(discrete)	-8566.49	p=0.6919, p=0.2246 (p=0.08350), α=0.02, q=0.49, α=2.06	P=0.0000	12E 15R 30K 67S 79Y 84T 91R 93E 102D 119D
X4	M1a(Nearly neutral)	-8607.63	p=0.7827 (p=0.2173)	51.28	Not allowed
	M2a(Positive selection)	-8581.99	p=0.7777, p=0.0448 (p=0.1775), α=2.86	P=0.0000	67S 91R 1381 280T 374A 478P
	M7(beta)	-8603.18	p=0.1191, q=0.4075	73.92	Not allowed
	M8(beta&α)	-8566.22	p=0.9279 (p=0.0720), p=0.1844, q=0.9994, α=2.20	P=0.0000	67S 847 91R 125S 1381 2231 280T 374A 478P 473L

a) Positively selected sites were identified with posterior probability P>95%; in boldface, P>99%.

Appendix Table 3

Phylogenetic analysis by ML estimation for gag gene of HIV-1 subtype C variants with R5 tropism

Model code	lnL	Estimates of parameters	2Δl	Positively selected sites
M0 (one-ratio)	-9276.18	α=0.27	1131.26	None
M3 (discrete)	-8710.55	p=0.7768, p=0.1893 (p=0.0338), α=0.05, α=0.93, α=3.99	P=0.0000	28K 54S 79Y 90Q 91R 1381 146A 241S 371T 440S 458P
M1a (Nearly neutral)	-8778.63	p=0.7926 (p=0.2074)	135.54	Not allowed
M2a (Positive selection)	-8710.86	p=0.7825, p=0.1852 (p=0.0324), α=4.14	P=0.0000	28K 79Y 90Q 91R 1381 146A 241S 374T 440S 458P
M7 (beta)	-8782.96	p=0.1194, q=0.4021	147.9	Not allowed
M8 (beta&α)	-8709.01	p=0.9639 (p=0.0360), p=0.1426, q=0.5506, α=3.71	P=0.0000	28K 54S 79Y 90Q 91R 1381 146A 223V 241S 371T 440S 458P

a) Positively selected sites were identified with posterior probability P>95%; in boldface, P>99%.

Appendix Table 4

Phylogenetic analysis by ML estimation for RT gag gene of HIV-1 subtype B variants with different coreceptor tropisms

Co-receptor tropism	Model code	lnL	Estimates of parameters	2Δl	Positively selected sites
R5	M0(one-ratio)	-7803.46	α=0.14	602.52	None
	M3(discrete)	-7502.20	p=0.7218, p=0.2236 (p=0.0546), α=0.02, α=0.27, α=1.46	P=0.0000	Not shown
	M1a(Nearly neutral)	-7534.98	p=0.8974 (p=0.1026)	22.66	Not allowed
	M2a(Positive selection)	-7523.65	p=0.8971, p=0.0897 (p=0.0132), α=3.05	P=0.0000	162S 376T
	M7(beta)	-7525.67	p=0.1371, q=0.7393	49.5	Not allowed
	M8(beta&α)	-7500.92	p=0.9604 (p=0.0396), p=0.2362, q=2.1903, α=1.25	P=0.0000	162S 21R 245V 297E 332Q 360A 376T 386T
	M0(one-ratio)	-6749.04	α=0.17	448.77	None
	M3(discrete)	-6504.69	p=0.6640, p=0.2666 (p=0.0753), α=0.01, α=0.23, α=1.51	P=0.0000	Not shown
X4	M1a(Nearly neutral)	-6522.31	p=0.8821 (p=0.1179)	18.96	Not allowed
	M2a(Positive selection)	-6512.83	p=0.8834, p=0.0940 (p=0.0226), α=2.65	P=0.0001	21R
	M7(beta)	-6526.67	p=0.1286, q=0.6409	46.92	Not allowed
	M8(beta&α)	-6503.21	p=0.9479 (p=0.0521), p=0.2461, q=2.1554, α=1.86	P=0.0000	207Q 21R 215T 245V 357M 376T

a) Positively selected sites were identified with posterior probability P>95%; in boldface, P>99%.
Appendix Table 5 Phylogenetic analysis by ML estimation for RT gene of HIV-1 subtype C variants with R5 tropism

Co-receptor tropism	Model code	lnL	Estimates of parameters	2Δl	Positively selected sites
	M0(one-ratio)	−7159.79	α0=0.12, 100%	0.01	None
	M3(discrete)	−6873.07	p0=0.8749, p1=0.1176, 100%	573.44	123D 334Q 377T
	M1a(Nearly neutral)	−6900.15	p0=0.8841, p1=0.1159	0.02	Not allowed
	M2a(Positive selection)	−6873.63	p0=0.8817, p1=0.1109, 100%	53.04	123D 334Q 377T
	M7(beta)	−6909.81	p=0.1378, q=0.6736	0.01	Not allowed
	M8(beta&ω)	−6777.18	p0=0.0019, (p1=0.0011, 100%	65.26	123D 334Q 377T

a) Positively selected sites were identified with posterior probability \(P>95\% \) in boldface, \(P>99\% \).

Appendix Table 6 Phylogenetic analysis by ML estimation for IN gene of HIV-1 subtype B variants with different coreceptor tropisms

Co-receptor tropism	Model code	lnL	Estimates of parameters	2Δl	Positively selected sites
R5	M0(one-ratio)	−4567.46	α0=0.12, 100%	305.44	10E 16S 27L 38S 44L 71L 100L
	M3(discrete)	−4415.29	p0=0.82278, p1=0.1239, 100%	0.00	111T 121T 124T 1991
	M1a(Nearly neutral)	−4427.40	p0=0.8994, p1=0.1006	6.9	Not allowed
	M2a(Positive selection)	−4423.95	p0=0.9011, p1=0.0816, 100%	0.03	None
	M7(beta)	−4435.26	p=0.1511, q=0.8502	0.01	Not allowed
	M8(beta&ω)	−4416.53	p0=0.9444, (p1=0.0556, 100%	0.00	16S 71L 100L 124T
X4	M0(one-ratio)	−3994.45	α0=0.14, 100%	0.00	100L 118S 123A 124T
	M3(discrete)	−3895.27	p0=0.7992, p1=0.1833, 100%	0.00	None
	M1a(Nearly neutral)	−3909.48	p0=0.8738, p1=0.1262	0.12	Not allowed
	M2a(Positive selection)	−3903.47	p0=0.8744, p1=0.1123, 100%	0.00	118S 123A
	M7(beta)	−3910.05	p=0.1933, q=0.9867	0.00	Not allowed
	M8(beta&ω)	−3896.57	p0=0.9821, (p1=0.0179, 100%	0.00	100L 118S 123A 124T

a) Positively selected sites were identified with posterior probability \(P>95\% \) in boldface, \(P>99\% \).

Appendix Table 7 Phylogenetic analysis by ML estimation for IN gene of HIV-1 subtype C variants with R5 tropism

Model code	lnL	Estimates of parameters	2Δl	Positively selected sites
M0(one-ratio)	−4143.50	α0=0.16, 100%	0.00	None
M3(discrete)	−3997.12	p0=0.7776, p1=0.1910, 100%	0.00	11E 50M 72V 125T 269R
M1a(Nearly neutral)	−4016.89	p0=0.8952, p1=0.1048	0.00	Not allowed
M2a(Positive selection)	−4003.60	p0=0.8940, p1=0.0851, 100%	0.00	50M 72V 125T
M7(beta)	−4021.05	p=0.1546, q=0.7387	0.00	Not allowed
M8(beta&ω)	−3996.88	p0=0.9696, (p1=0.0304, 100%	0.00	11E 50M 72V 125T

a) Positively selected sites were identified with posterior probability \(P>95\% \) in boldface, \(P>99\% \).