New Path to Unification of Gravity with Particle Physics

Alexander Burinskii
Laboratory of Theor. Phys. , NSI, Russian Academy of Sciences, B. Tulskaya 52 Moscow 115191 Russia, *

The principal new point is that ultra-high spin of the elementary particles makes Einstein’s gravity so strong, that its influence to metric is shifted from Planck to the Compton scale! Compatibility of the Kerr-Newman (KN) gravity with quantum theory is achieved by implementation of the supersymmetric Higgs model without modification of the Einstein-Maxwell gravity. We consider the nonperturbative bag-like solution to supersymmetric generalized LG field model, which creates a flat and supersymmetric vacuum state inside the bag, forming the Compton zone for consistent work of quantum theory. The bag is deformable, and its shape is controlled by BPS bound, providing compatibility of the bag boundary with external gravitational and electromagnetic (EM) field. In particular, for the spinning KN gravity bag takes the form of oblate disk with a circular string placed on the disk border. Excitations of the KN EM field create circular traveling waves. The super-bag solution is naturally upgraded to the Wess-Zumino supersymmetric QED model, indicating a bridge from the nonperturbative super-bag to perturbative formalism of the conventional QED.

PACS numbers: 11.27.+d, 04.20.Jb, 04.70.Bw

I. INTRODUCTION

Modern physics is based on Quantum theory and Gravity. The both theories are confirmed experimentally with great precision. Nevertheless, they are contradicting and cannot be combined in a unified theory. One of the principal points is the structure of elementary particles, which are considered as pointlike and even structureless (for example electron) in quantum theory, but should be presented as the extended field configurations for compatibility with the right hide side of the Einstein equations, $G_{\mu\nu} = 8\pi T_{\mu\nu}$.

Revolutionary step for unification was made in superstring theory, however, as mentioned John Schwarz, "...Since 1974 superstring theory stopped to be considered as particle physics..." and "... a realistic model of elementary particles still appears to be a distant dream ..." [1]. One of the reasons of this is that extra dimensions are compactified with extra tiny radii of order the Planck length 10^{-33} cm, which does not correlate with characteristic lengths of quantum physics and makes impossible to test extra dimensions with currently available energies. The idea to bring fundamental gravitational scale close to the weak scale was considered in different approaches, and in particular, in the brane world scenario, where the weakness of the localized 4d gravity is explained by its "leaks" into the higher-dimensional bulk, and the brane world mechanism allowed to realize ideas of the superstring theory for any numbers of the extra dimensions [2].

Alternative ideas were related with nonperturbative 4D solutions of the non-linear field models – solitons, in particular, solitonic solutions to low energy string theory [3-5]. This approach, being akin to the Higgs mechanism of symmetry breaking, is matched with nonperturbative approach to electroweak sector of the Standard Model. The most known is the Nielsen-Olesen model of dual string based on the Landau-Ginzburg (LG) field model for a phase transition in superconducting media, and also the famous MIT and SLAC bag models [6-8] which are similar to solitons, but being soft, deformable and oscillating, acquire many properties of the dual string models. Besides, being suggested for confinement of quarks, the bag models assume consistent implementation of the Dirac equation. The question on consistency with gravity is not discussed usually for the solitonic models, as it is conventionally assumed that gravity is very weak and is not essential on the scale of electroweak interactions. For example, in [3] we read "... quantum gravity effects are usually very small, due to the weakness of gravity relative to other forces. Because the effects of gravity are proportional to the mass, or the energy of the particle, they grow at high energies. At energies of the order of $E \sim 10^{19}$ GeV, gravity would have a strength comparable with that of the other Standard Model interactions."

Our principal point here is that the assumption on the weakness of gravity is not correct, since it is based on the underestimation of the role of spin in gravitational interactions. Indeed, nobody says that gravity is weak in Cosmology where physics is determined by giant masses. Similarly, the giant spin/mass ratio of spinning particles makes influence of gravity very strong in the particle physics.

For the great spin/mass ratio of the elementary particles, about $10^{20} - 10^{22}$ (in dimensionless units $G = c = \hbar = 1$), the commonly accepted view that gravity is weak and not essential in particle physics up to Planck scale, should be replaced by principally new point of view that GRAVITY IS NOT WEAK, and its influence becomes crucial for the structure of the spinning particles at the Compton scale of the electroweak interactions.

We show that spin of the Kerr-Newman (KN) rotating black hole (BH) with parameters of an electron deforms space-time in the Compton zone so strongly that...
in this regard, since, as it was obtained by Carter [20, 21], that gyromagnetic ratio of the KN solution is \(g = 2 \), and therefore corresponds to the external field of the electron. The spin/mass ratio of the electron is about \(10^{22} \), and structure of source of the KN solution for such a huge spin should shed the light on origin of the conflict between gravity and quantum theory. One can see that the KN field with parameters of electron becomes extremely strong on the Compton distances, so that the BH horizons disappear and the Kerr singular ring of the Compton radius \(a = \hbar/m \) becomes open, which breaks topology of space-time and creates two-sheeted metric. In the Kerr-Schild (KS) approach, metric of the KN solutions is [20]

\[
g_{\mu\nu} = \eta_{\mu\nu} + 2H k_{\mu}k_{\nu},
\]

where \(\eta_{\mu\nu} \) is metric of an auxiliary Minkowski space \(M^4 \), (signature \((-+++))\), and \(H \) is the scalar function which for the KN solution takes the form

\[
H_{\text{KN}} = \frac{mr - e^2/2}{r^2 + a^2 \cos^2 \theta},
\]

where \(r \) and \(\theta \) are oblate spheroidal coordinates, and \(k_{\mu} \) is a null vector field \(k_{\mu}k^{\mu} = 0 \), forming a Kerr congruence – the vortex of polarization of gravitational and electromagnetic field in the Kerr space-time. The Kerr singular ring corresponds to border of the disk \(r = 0 \), in the equatorial plane \(\cos \theta = 0 \).

Similarly, vector potential of KN solution is also collinear with the null direction \(k_{\mu} \),

\[
A_{\mu} = -\frac{er}{(r^2 + a^2 \cos^2 \theta)} k_{\mu}.
\]

![Vortex of the Kerr light-like (null) congruence](image)

FIG. 1: Vortex of the Kerr light-like (null) congruence \(k^\mu \) propagates analytically from negative sheet of Kerr metric, \(r < 0 \), to positive one, \(r > 0 \). In the equatorial plane, \(\cos \theta = 0 \), the Kerr congruence is focused on the Kerr singular ring, \(r = \cos \theta = 0 \).

The KN metric becomes two-sheeted, since the Kerr congruence

\[
k_{\mu}dx^{\mu} = dr - dt - a \sin^2 \theta d\phi,
\]
The bubble surface $r = R$ takes the oblate ellipsoidal form – the disk of the thickness R and radius $r_c = \sqrt{R^2 + a^2}$, where $a = J/m$.

For solution without rotation, $a = 0$, and bubble turns into a sphere of the classical radius r_c. Such spherical shape was suggested by Dirac in [30] as an "extensible electron model" – prototype of the bag models, displaying one of their basic features of the bags – their deformability.

We see that deformations of the KN Super-Bag appear as consequence of the requirement on sharp separation of the zones (I), (E), (R).

B. Spinning bag creates a string

Usually, it is assumed that bags are deformed by rotations taking the shape of a string-like flux-tube joining the quark-antiquark pair [6].

In the KN Super-Bag, the spinning gravitational field controls disk-like shape of the bag, and string-like structure is formed for $a/R > 0$, at edge rim of the disk, as shown in Fig.2. In the equatorial plane, this string approaches very close to the Kerr singular ring, see Fig.3A, so, it really just the singular ring regularized by the bag boundary.

Among diverse attempts to use nonperturbative models in the electroweak sector of the Standard Model (SM) [31, 33], the central place takes the Nielsen-Olesen (NO) model [32, 37] of the string, which is created as a vortex line in a superconductor.

The assumption, that Kerr singular ring is similar to NO model of dual string was done very long ago in [32, 59], where it was noted that excitations of the KN solution create traveling waves along the Kerr ring. Later, it was obtained in [3, 40] close connection of the Kerr singular ring with the Sen fundamental string solution to
low energy string theory. In the KN bag model this string is formed at the sharp boundary of the superconducting disk, as a dual analog of the NO vortex line in superconductor.

In accordance with the condition , the KN gravity controls position of the bag boundary (R), and also more thin effects, such as excitations of the KN gravity define dynamics of the bag and appearance of the traveling waves.

In particular, it has been shown that the lowest EM excitation of the KN solution creates the traveling wave which has a circulating lightlike node. At this point, surface of the deformed bag touches the Kerr singular ring, as it is shown in Fig.3B, which breaks regularization at this point and creates the lightlike singular pole, which can be considered as emergence of the bare Dirac particle circulating inside the Compton zone of dressed electron. On the other hand, this pole breaks homogeneity of the closed circular string, creating the frontal and rear ends turning this string in the open. As usual, the end points of an open string are associated with quarks, and the KN super-bag model turns into a single “bag-string-quark” system, 4D analog of D2-D1-D0-brane system of the string–M-theory.

III. SUPERSYMMETRY ENSURES CONSISTENCY WITH GRAVITY

A. Generalized LG field model and domain wall (DW) phase transition

The LG field model of superconductivity is used in many solitonic models, in particular, in the NO dual string model, as a field model in the MIT and SLAC bag models, and really, it is also the the Higgs model of symmetry breaking, because the Higgs vacuum itself... is analog to a superconducting metal”. The LG Lagrangian used in the NO model (minimal LG model) is

\[\mathcal{L}_{NO} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{2} \left(D_\mu \Phi (D^\mu \Phi)^* \right) - V(|\Phi|), \]

where \(D_\mu = \nabla_\mu + i e A_\mu \) are the U(1) covariant derivatives, and \(F_{\mu\nu} = A_{\mu,\nu} - A_{\nu,\mu} \) is the corresponding field strength, and potential \(V \) has the quartic form

\[V = \lambda (\Phi^4 - \eta^2)^2, \]

where \(\eta \) is condensate of the Higgs field \(\Phi \), its vacuum expectation value (vev) \(\eta < |\Phi| > \).

The minimal LG model can be used to describe superconductivity inside the bag – interplay of the KN vector potential with the Higgs condensate. Since requirements (I),(E),(R) define inside the bag a flat space, the corresponding covariant derivatives can be taken as flat,

\[D_\mu = \nabla_\mu + i e A_\mu \rightarrow D_\mu = \partial_\mu + i e A_\mu. \]

However, the NO and KN models have opposite spatial configurations: the KN bag model should describe a superconducting disk surrounded by the long-range EM and gravitational field, while the NO model describes vortex of the EM field inside the superconducting Higgs condensate which breaks the external long-range EM and gravitational field. Note, that this is a typical drawback of the most of soliton models and, in particular, the usual bag models which are formed as a ”cavity in superconductor” . The reason of this disadvantage lies in the use of the potential .

The correct opposite configuration – condensation of the Higgs field inside the core – requires more complex scalar potential \(V \) formed from several complex fields \(\Phi_i, i = 1, 2, 3 \). Kinetic part of the corresponding generalized LG model differs from those of the minimal LG model only by summation over the fields \(\Phi_i \),

\[\mathcal{L}_{GLGkin} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{2} \sum_i (D_\mu \Phi_i)(D^\mu \Phi_i)^*, \]

while the potential \(V \) is changed very essentially, and has to be formed by analogy with machinery of the \(N = 1 \) supersymmetric field theory from a superpotential function \(W(\Phi_i) \).

The scalar potential is formed through derivatives of the function \(W(\Phi_i) \),

\[F_i = \partial_i W, \]

where

\[W(\Phi_i, \bar{\Phi}_i) = Z(\Sigma \bar{\Sigma} - \eta^2) + (Z + \mu)H \bar{H}, \]
\(\mu\) and \(\eta\) are real constants, and the special notations are introduced \((H, Z, \Sigma) \equiv (\Phi_1, \Phi_2, \Phi_3)\), to identify \(\Phi_1\) as the complex Higgs field

\[
H = |H|e^{i\chi},
\]

which interacts with the KN vector field \(A_{\mu}\) as \(D_{1\mu} = \nabla_{1\mu} + ieA_{\mu}\). The fields \(\Phi_2\) and \(\Phi_3\) are assumed uncharged, and \(D_{ij} = \nabla_{ij}\) for \(i = 2, 3\).

The condition \(F_i = \partial_iW = 0\) determines two vacuum states with \(V = 0\):

- (I) internal vacua: \(r < R - \delta\), where the Higgs field \(|H| = \eta\), and \(Z = -\mu, \Sigma = 0\);
- (E) external vacuum state: \(r > R + \delta\), where the Higgs field \(H = 0\), and \(Z = 0, \Sigma = \eta\).

separated by spike of the potential \(V > 0\) in zone

- (R) – a domain wall (DW), interpolating between zones (I) and (E), in the full correspondence with the requirements (I),(E),(R).

Reduction of the corresponding LG equations to Bogomolny form is performed by minimization of the energy density per unit area of the DW surface,

\[
\mu = \frac{1}{2} \sum_{i=1}^{3} \left[\sum_{\mu=0}^{3} |D_{i\mu}^{(i)}\Phi_i|^2 + |\partial_iW|^2 \right].
\]

The four dimensional DW solutions in supersymmetric LG model have paid attention in the works \([22, 23]\), where it was usually considered the static planar DWs positioned in \((x,y)\) plane, with the transverse to the wall \(z\)-direction. However, even in the simplest case of the one field \(\Phi(z)\) and one coordinate \(z\),

\[
\mu = \frac{1}{2} (|\partial_z\Phi|^2 + |\partial_zW|^2),
\]

reduction of the LG equation to Bogomolny form turns out to be nontrivial, since it requires the introduction of an arbitrary phase factor \(\alpha\), so that \(17\) can be equivalently presented in the form

\[
\mu = \frac{1}{2} \left(|\partial_z\Phi - e^{i\alpha}\partial_zW|^2 + Re e^{i\alpha}\partial_zW \right),
\]

which is saturated by the Bogomolny equation

\[
\partial_z\Phi = e^{i\alpha}\partial_zW.
\]

The DW forming the KN bag is much more complicated, since first of all it is not planar, but forms the spheroidal boundary profile of which is shown in Fig.3. Second, it is formed by three chiral fields \(\Phi_{\pm}\), and thirdly, the most important feature is that this DW is not static and has non-trivial dependence on the phases of the complex fields \(\Phi_{\pm}\). The corresponding BPS saturated solution was found in \([14, 16]\), where it was shown that the phases \(\alpha_{\pm}\) of the complex fields \(\Phi_{\pm}\) should acquire nontrivial dependence from time and angular coordinate

\[
\alpha_1 = 2\chi(t, \phi), \quad \alpha_2 = \alpha_3 = 0,
\]

and the Higgs field becomes oscillating, showing that just in the KN bag model the transformation to Bogomolny form \([18]\) begins to operate at full power.

\[\text{FIG. 4: The domain wall profile (axial section) defined by the oblate spheroidal coordinate } r = R.\]

B. Minimal LG model and quantization of the angular momentum

The non-trivial dependence \([20]\) is fixed in zone (I), where the generalized LG model is reduced to minimal LG model, and the NO Lagrangian \([8]\) leads to equations

\[
\Box A_{\mu} = J_{\mu} = e|H|^2(\chi_{\mu} + eA_{\mu}).
\]

One sees that vector potential \(A_{\mu}\) acquires from the Higgs field the mass term \(m_{\mu} = e|H|\), and the EM field becomes short-range, with the characteristic parameter \(\lambda = 1/(e|H|)\) corresponding to the penetration depth of the EM field in superconductivity. As a consequence, the currents vanish inside the core, \(J_{\mu} = 0\), leading to the equations

\[
\Box A_{\mu} = 0, \quad \chi_{\mu} + eA_{\mu} = 0,
\]

showing that besides of the massive component \(A_{\mu}^{m}\) which falls off receiving the mass \(m_{\mu}\) from the Higgs field, there are also the components of different behavior.

Vector-potential of the external KN solution \([3]\) is

\[
A_{\mu}dx_{\mu} = -\frac{er}{r^2 + a^2 \cos^2 \theta} (dr - dt - a \sin^2 \theta d\phi).
\]

It grows near the core and takes maximal value at the boundary of the disk, at \(r = R = e^2/2m, \cos \theta = 0\),

\[
A_{\mu}^{\text{max}} dx_{\mu} = -Re \frac{2m}{e} (dr - dt - ad\phi).
\]

Note, that the component \(A_{\phi}\) is a perfect differential (as it is shown for example in \([20]\)) and can be ignored. At the boundary, \(A_{\phi}^{\text{max}}\) is dragged by the light-like direction of the Kerr singular ring (see Fig.2) and the component \(A_{\phi}^{\text{max}}\) forms the closed Wilson loop, so that

\[
e \oint A_{\phi}^{\text{max}} d\phi = 4\pi ma.
\]
The right equation in (22) shows that penetrating inside the disk vector potential determine oscillating phase of the Higgs field as $\chi = 2mt + 2am\phi$. The condition of multiplicity of the periods χ and ϕ gives $2am = n$, $n = i, 2, 3, ...$, which in view of $J = ma$, leads to quantization of angular momentum as

$$J = n/2, n = i, 2, 3, ...$$

(26)

On the other hand (22) shows that phase of Higgs field $H = \Phi_1 = |H|e^{i(2mt + 2am\phi)}$ oscillates with the frequency $\omega = 2m$ which supports extension of the components $A_1^{in} = \frac{2m}{e}$, $A_\phi^{in} = \frac{2ma}{e}$ inside the disk. At the disk boundary (22) is broken, and according (21) there appear the surface currents J_i. These relations are retained in the bosonic sector of the supersymmetric theory, where the fields Φ_1 and Φ_1^* turn into the complex conjugate scalar components of the superfields.

To get full correspondence with supersymmetric theory, the fields Φ_i and Φ_i^* in (13), should be considered as independent chiral fields Φ_i and Φ_i^*, and there should also be introduced an antichiral superpotential $W^+(\Phi_i^+, \Phi_i^*)$, which in the bosonic sector turns into complex conjugated superpotential, built of the complex conjugated fields $W(\Phi_i^*, \Phi_i^*)$. From the complex point of view, the transition from (14) to supersymmetric Higgs model may be considered as complexification of the moduli space – analytical extension from the real section, fixed by condition $\Phi_i = \Phi_i^*$, to its complex extension, the manifold with independent coordinates Φ_i and Φ_i^*, supplemented with complex conjugate coordinates Φ_i^*, Φ_i^*. Therefore, the transition to bosonic sector of the supersymmetric generalizad LG model requires doubling of the chiral field to eliminate their degeneracy on the real slice.

Returning to the original work by Morris [42], where the potential (14) was suggested for super-generalization of the Witten’s superconducting string model [13], we should double the charged chiral fields Σ and Φ, and consider five chiral superfields Σ_\pm, Φ_\pm, and Z, which in Witten’s interpretation of this model as the $U(1) \times U(1)$ Higgs field model, acquire the charges $(\pm 1, 0)$ for Φ_\pm, and charges for the Σ_\pm fields as $(0, \pm 1)$. The chiral superpotential (14) takes the form

$$W(\Phi_i, \Phi_i^*) = Z(\Sigma_+ \Sigma_- - \eta^2) + (Z + \mu)\Phi_+ \Phi_-,$$

(31)

with identification

$$\Phi_i = (\Phi_+, \Phi_-, \Sigma_+ \Sigma_-, Z).$$

(32)

The auxiliary fields

$$F_i^* = \partial W/\partial \Phi_i = (F_+^*, F_-^*, F_{\Sigma_+}^*, F_{\Sigma_-}^*, F_Z^*)$$

(33)

take the form

$$F_+^* = (Z + \mu)\Phi_+,$$

(34)

$$F_{\Sigma_\pm}^* = Z\Sigma_\mp,$$

(35)

$$F_Z^* = \Sigma_+ \Sigma_- + \Phi_+ \Phi_- - \eta^2.$$

(36)

Vacuum expectation values of fields Φ_i for which $F_i^* = 0$ give minima of the potential $V = 0$ corresponding to supersymmetric vacuum states. Just as in case (14), we obtain two isolated vacua

(I) $\Phi_+ \cdot \Phi_+ = \eta^2$, $Z = -\mu$, $\Sigma_+ = \Sigma_- = 0$;

(E) $\Phi_- = \Phi_+ = 0$, $Z = 0$, $\Sigma_+ \Sigma_- = \eta^2$;

separated by the zone

(R) of the positive potential

$$V = |\Sigma_+ \Sigma_- + \Phi_+ \Phi_- - \eta^2|^2 + |(Z + \mu)\Phi_+|^2 + |(Z - \mu)\Phi_-|^2 + |Z|^2(|\Sigma_+|^2 + |\Sigma_-|^2).$$

(37)
B. Transition to SuperQED model

We note that two oppositely charged superfields Φ_+ and Φ_- give rise to correspondence of the supersymmetric LG model to kinetic part of the Wess-Zumino SuperQED model [13].

$$L_{SQEDkin} = -\frac{1}{4}W^a W_a + \Phi_+^e e^V \Phi_+ \big|_{\theta \bar{\theta} \theta \bar{\theta}} + \Phi_-^e e^{-V} \Phi_- \big|_{\theta \bar{\theta} \theta \bar{\theta}},$$

where V is vector superfield, and $W^a = -\frac{1}{4}D\bar{D}D_a V$. In the same time, the potential part [31] corresponds to the most general renormalizable supersymmetric Lagrangian with θ.

The nonperturbative super-bag solution generates in zone (I) is defined by [22] and yields

$$H_\pm = |H_\pm|e^{\pm i\chi}, \bar{H}_\pm = |H_\pm|e^{\mp i\chi}, \chi = 2mt + 2am\phi,$$

as functions of the chiral coordinates $y^\mu = x^\mu + i\theta \sigma^\mu \bar{\theta}$ and θ, and the scalar components H_\pm are independent Higgs fields, splitting of the complex conjugated Higgs field of the minimal LG model in [14] and [15].

The corresponding nonperturbative solution to generalized LG field model in the form of a super-bag – nonperturbative version of the SuperQED model. By conception, the 4d super-bag model has to be soft and oscillating, similar to the conception of the superstring models [7, 17, 18].

Due to extreme high spin/mass ratio, impact of the gravitational KN field on the structure of space-time becomes very strong, and the consistent supersymmetric nonperturbative solutions become very sensible to the external Einstein-Maxwell field. As a result,

- the super-bag model creates a free from gravity Compton core of spinning particle, where the supersymmetric vacuum state of the Higgs field provides the flat space, required for consistent work of quantum theory;
- the super-bag takes the shape of a strongly oblate disk forming a circular string along its border;
- gravitational and electromagnetic excitations of the KN solution create consistent stringy oscillations of the super-bag in the form of traveling waves.

Many problems remain to be solved. The closest is the so far unsolved problem of the exact nonstationary (oscillating or accelerating) generalization of the KN solution, the problem of the consistent solutions of the Dirac equation corresponding to confinement of quark inside the bag, and so on.

Nevertheless, the considered here features of the super-bag model are so intriguing that we risk to state that they really give the key to solution of the principal problem of unification of gravity with particle physics.

Finally, we should mention very important new aspect of this study, the direct link to the non-perturbative Wess-Zumino SuperQED model, which provides remarkable cancellations between component diagrams, presenting a link between the nonperturbative bag-like solution and the conventional technics of the perturbative QED.

V. Outlook

We have considered principal features of the Kerr-Schild geometry which specify the supersymmetric bag model as a new way to particle physics consistent with gravity and electroweak sector of the SM. Two of them are principally new relative to the widespread belief:

- the spinning KN gravity is not weak, and becomes very strong at the Compton scale of the particle physics,
- compatibility between Quantum and Gravity can be achieved by means of supersymmetric generalization of the matter sector, without modification of the Einstein-Maxwell theory.

We considered interplay of the KN gravity with the matter sector based on the supersymmetric generalized LG field model, which is equivalent to supersymmetric Higgs mechanism of symmetry breaking, and give a nonperturbative solution to generalized LG field model in the form of a super-bag – nonperturbative version of the SuperQED model. By conception, the 4d super-bag model has to be soft and oscillating, similar to the conception of the superstring models [7, 17, 18].

Acknowledgements

Author thanks Yu.N. Obukhov and O. Teryaev for discussion that stimulated appearance of this work, and
also V.A. Rubakov for support on the early stage of this work. Author is also grateful to D.V. Gal’tsov and A.A. Starobinsky for interest to this work and supporting remarks, and to K.V. Stepanyants for detailed discussion of the structure of SuperQCD model.

[1] J. Schwarz, The Early History of String Theory and Supersymmetry. CALT-68-2858 [arXiv:1201.0981]
[2] N. Arkani-Hamed, S. Dimopoulos, G. Dvali4 and N. Kaloper, Infinitely Large New Dimensions, Phys.Rev.Lett. 84 586 (2000) DOI: 10.1103/PhysRevLett.84.586 [hep-th/9907209]
[3] A. Dabholkar, J. P. Gauntlett, J. A. Harvey, D. Waldram, Strings as Solitons & Black Holes as Strings, Nucl.Phys. B474, 85 (1996) [arXiv:hep-th/9511053]
[4] A. Sen, Macroscopic Charged Heterotic String, Nucl.Phys. B 388 457 (1992), [arXiv:hep-th/9206016]
[5] Burinskii A., Some properties of the Kerr solution to low-energy string theory. Phys. Rev. D 52 5826 (1995), [arXiv:hep-th/9504139]
[6] Chodos A. et al. New extended model of hadrons. Phys. Rev. D 9, 3471 (1974).
[7] Bardeen W. A. at al., Heavy quarks and strong binding: A field theory of hadron structure. Phys. Rev. D 11, 1094 (1974).
[8] R. Dashen, B. Hasslacher, and A. Neveu, Nonperturbative methods and extended-hadron models in field theory: I, II, III. Phys. Rev. D 10, 4114 (1974), ibid. 4130 (1974), ibid 4138 (1974).
[9] J.M. Maldacena, Int.J.Mod.Phys. A15S1 , 840 (2000)
[10] A. Burinskii, Gravitating lepton bag model, JETP (Zh. Eksp. Teor. Fiz.) 148(8) (2015) 228, [arXiv:1505.03439]
[11] A. Burinskii, Stability of the lepton bag model based on the Kerr-Newman solution, JETP (Zh. Eksp. Teor. Fiz.) 148 (2015) 937.
[12] A. Burinskii, Int. J. Mod. Phys. Source of the Kerr-Newman solution as a gravitational bag model: 50 years of the problem of the source of the Kerr solution, Int. J. Mod. Phys. A31, 1641002 (2016).
[13] Wess J., Bagger J., Supersymmetry and Supergravity, Princeton Univ. Press, New Jersey, 1983.
[14] Burinskii A., Regularized Kerr-Newman Solution as a Gravitating Soliton. J. Phys. A: Math. Theor. 43, 392001 (2010), [arXiv:1003.2928]
[15] Burinskii A., Kerr-Newman electron as spinning soliton, Int. J. of Mod. Phys. A 29, 1450133 (2014), [arXiv:1410.2888]
[16] A. Burinskii, Source of the Kerr-Newman solution as a supersymmetric domain-wall bubble: 50 years of the problem, Phys.Lett. B 754, 99 (2016), [arXiv:1602.04215]
[17] Giles R.C., Semiclassical dynamics of the "SLAC bag", Phys. Rev. D 70, 1670 (1976).
[18] K. Johnson and C. B. Thorn, Stringlike solutions of the bag model, Phys. Rev. D 13, 1934 (1976).
[19] S.-H. H. Tye, Quark-binding string, Phys. Rev. D 13, 3416 (1976).
[20] Debney G. C., Kerr R. P. and Schild A. Solutions of the Einstein and Einstein-Maxwell equations. J. Math. Phys. 10 1842 (1969).
[21] Carter B., “Global structure of the Kerr family of gravitational fields,” Phys. Rev. 174, 1559 (1968). Phys. Rev. 174, 1559 (1968).
[22] P. Fendley, S. Mathur, C. Vafa and N.P. Warner, Phys. Lett. B 243, 257 (1990).
[23] Xinrui Hou, A. Losev, M. Shifman, Phys. Rev. D 61,085005 (2000), [hep-th/9910071]
[24] E.R.C. Abraham and P.K. Townsend, Nucl. Phys. B551, 313 (1991).
[25] M. Cvetiè, F. Quevedo and S. J. Rey, Phys. Rev. Lett. 67, 1836, (1991).
[26] M. Cvetiè, S. Griffies and S. J. Rey, Nucl. Phys. B 381, 301 (1992).
[27] G.W. Gibbons and P.K. Townsend, Phys.Rev.Lett. 83 1727 (1999), [hep-th/9905196].
[28] B. Chibisov and M. Shifman, BPS-saturated walls in supersymmetric theories, Phys. Rev. D 56, 7990 (1997).
[29] López C.A., An Extended Model Of The Electron In General Relativity, Phys. Rev. D 30, 313 (1984).
[30] P. A. M. Dirac, An Extensible Model of the Electron. Proc. R. Soc. Lond. A 268, 57 (1962).
[31] Coleman S., Q-Balls, Nuclear Physics B 262 (2) 263 (1985),
Rosen G., Particlelike Solutions to Nonlinear Complex Scalar Field Theories with Positive-Definite Energy Densities. J. of Math. Phys. 9 (7) 996 (1968),
doi:10.1063/1.1664693 .
[32] A. Achucarro and T. Vachaspati, Semilocal and Electroweak Strings,Phys.Rept. 327 347 (2000), [arXiv:hep-ph/9904229].
[33] Kusenko A., Solitons in the supersymmetric extensions of the standard model, Phys.Lett. B405 108 (1997).
[34] G. Dvali, A. Kusenko and M. Shaposhnikov, “New physics in a nutshell, or Q-ball as a power plant”, Phys.Lett. B417, 99 (1998).
[35] Volkov M. and W¨ ohnert E., Spinning Q-balls, Phys.Lett. B351, 457 (1992), [arXiv:hep-th/9206016].
[36] B. Chibisov and M. Shifman, BPS-saturated walls in supersymmetric theories, Phys. Rev. D 56, 7990 (1997).
[37] H. B. Nielsen and P. Olesen, Vortex-line models for dual strings, Nucl. Phys. B 61, 45, (1973).
[38] J. Ambjørn and P. Olesen, On electroweak magnetism, Nuclear Physics B315 606 (1989).
[39] Burinskii A.Ya., Microgeons with spin. Sov. Phys. JETP 39 193 (1974).
[40] Ivanenko D.D. and Burinskii A.Ya., Gravitational strings in the models of elementary particles, Izv. Vuz. Fiz., 5, 135 (1974).
[41] A. Sen, Rotating charged black hole soliton in heterotic string theory, Phys. Rev. Lett. 69, 1006. (1992).
[42] A. Burinskii, Twistorial analyticity and three stringy systems of the Kerr spinning particle, Phys. Rev. D 70, 086006 (2004) [arXiv:hep-th/0406063].
A. Burinskii, Orientifold D-String in the Source of the Kerr Spinning Particle, Phys. Rev. D 68 (2003) 105004 [arXiv:hep-th/0308096].
[43] A. Burinskii, Stringlike structures in the real and complex Kerr-Schild geometry, Journal of Physics: Conference Series 532 012004 (2014), [arXiv:1410.2462].
A. Burinskii, Kerr spinning particle, strings, and superparticle models, Phys. Rev. D 57, 2392 (1998).
[42] J. R. Morris, Phys. Rev. D 53 2078 (1996) arXiv:hep-ph/9511293.
[43] E. Witten, Superconducting strings. Nucl. Phys., B249, 557, (1985).
[44] Note also the complex N=2 critical string which was obtained in the complex Kerr geometry [41].
[45] It is really not only analogy, and as we shall see, only one step differs this model from the true supersymmetric Higgs model, which was obtained by Morris in [42] with the purpose to get supersymmetric generalization of the Witten superconducting string model [43]. This model was used in [14, 15] to describe superconducting core of the KN solution.
[46] The signs bar $\bar{}$ and star * both are used for complex conjugation.
[47] Note, that the left massless equation (22) is also satisfied, since $\Box A_{\ell}^{\mu} = 0$ is satisfied trivially. Also, $\Box A_{\phi}^{\mu} = 0$, because phase ϕ is analytic function of $(x + iy)$, leading to $\Box A_{\phi}^{\mu} = \partial \bar{\partial} A_{\phi}^{\mu} = 0$. These fields do not produce the field strength.