Weighted L^2 Holomorphic Functions on Ball-Fiber Bundles Over Compact Kähler Manifolds

Seungjae Lee¹ · Aeryeong Seo²

Received: 4 February 2022 / Accepted: 10 April 2023
© Mathematica Josephina, Inc. 2023

Abstract
Let \tilde{M} be a complex manifold, Γ be a torsion-free cocompact lattice of $\text{Aut}(\tilde{M})$ and $\rho: \Gamma \to SU(N, 1)$ be a representation. Suppose that there exists a ρ-equivariant totally geodesic isometric holomorphic embedding $\iota: \tilde{M} \to B^N$. Let $M := \tilde{M} / \Gamma$ and $\Sigma := B^N / \rho(\Gamma)$. In this paper, we investigate a relation between weighted L^2 holomorphic functions on the fiber bundle $\Omega := M \times_{\rho} B^N$ and the holomorphic sections of the pull-back bundle $\iota^*(S^n T^*_\Sigma)$ over M. In particular, $A^2_\alpha(\Omega)$ has infinite dimension for any $\alpha > -1$ and if $n < N$, then $A^2_{-1}(\Omega)$ also has the same property. As an application, if Γ is a torsion-free cocompact lattice in $SU(n, 1)$, $n \geq 2$, and $\rho: \Gamma \to SU(N, 1)$ is a maximal representation, then for any $\alpha > -1$, $A^2_\alpha(B^n \times_{\rho} B^N)$ has infinite dimension. If $n < N$, then $A^2_{-1}(B^n \times_{\rho} B^N)$ also has the same property.

Keywords Compact submanifold in complex hyperbolic space forms · L^2 holomorphic functions · Holomorphic fiber bundles · $\bar{\partial}$-equations

Mathematics Subject Classification Primary 32A36 · Secondary 32A05 · 32W05 · 32Q05 · 32L10

1 Introduction

For a complex manifold X, denote by $\text{Aut}(X)$ the set of holomorphic diffeomorphisms of X onto itself and denote by $S^m T^*_X$ the m-th symmetric power of the holomorphic
and it satisfies the Milnor-Wood inequality.

Our primary result of this paper is

Theorem 1.1 Let \(\widetilde{M} \) be a complex manifold, \(\Gamma \) be a torsion-free cocompact lattice of \(\text{Aut}(\widetilde{M}) \) and \(\rho: \Gamma \to SU(N, 1) \) be a representation. Suppose that there exists a \(\rho \)-equivariant totally geodesic isometric holomorphic embedding \(\iota: \widetilde{M} \to \mathbb{B}^N \). Let \(M := \widetilde{M} / \Gamma \) and \(\Sigma := \mathbb{B}^N / \rho(\Gamma) \). Let \(\Omega := M \times_{\rho} \mathbb{B}^N \) be a holomorphic \(\mathbb{B}^N \)-fiber bundle over \(M \) where any \(\gamma \in \Gamma \) acts on \(\mathbb{B}^N \) by \((\xi, w) \mapsto (\gamma \xi, \rho(\gamma)w) \). Then there exists an injective linear map

\[
\Phi: \bigoplus_{m=0}^{\infty} H^0(M, i^*(S^m T^*_\Sigma)) \to \bigg\{ \bigwedge_{\alpha > -1} A_\alpha^2(\Omega) \subset \mathcal{O}(\Omega) \quad \text{if } n = N, \\
\bigwedge_{\alpha \geq -1} A_\alpha^2(\Omega) \subset \mathcal{O}(\Omega) \quad \text{if } n < N, \bigg\}
\]

which has a dense image in \(\mathcal{O}(\Omega) \) equipped with the compact open topology. In particular, \(\dim A_\alpha^2(\Omega) = \infty \) if \(\alpha > -1 \) and \(A_{-1}^2(\Omega) = \bigcap_{\alpha \geq -1} A_\alpha^2(\Omega) \) with \(\dim A_{-1}^2(\Omega) = \infty \) if \(n < N \).

We remark that under the condition of Theorem 1.1, \(\rho(\Gamma) \) acts on \(\mathbb{B}^N \) properly discontinuously and hence \(\Sigma \) is a complex manifold. Let \(\Gamma \subset SU(n, 1) \) be a cocompact lattice and \(\rho: \Gamma \to SU(N, 1) \) be a homomorphism. Denote by \(\omega_n \) and \(\omega_N \) the Kähler forms of the Bergman metrics of \(\mathbb{B}^n \) and \(\mathbb{B}^N \), respectively. Let \(f: \mathbb{B}^n \to \mathbb{B}^N \) be any smooth \(\rho \)-equivariant map and \([\rho^* \omega_N] := [f^* \omega_N] \subset H^2_{dR}(\mathbb{B}^N / \Gamma) \) be the de Rham class of \(f^* \omega_N \) which only depends on \(\rho \). The Toledo invariant \(\tau(\rho) \) of \(\rho \) is defined by

\[
\tau(\rho) := \frac{1}{n!} \int_{\mathbb{B}^n / \Gamma} \rho^* \omega_N \wedge \omega_{\mathbb{B}^n / \Gamma}^{n-1}
\]

and it satisfies the Milnor-Wood inequality

\[
|\tau(\rho)| \leq \text{Vol}(\mathbb{B}^n / \Gamma) \tag{1.1}
\]

under suitable normalizations of the metrics. One says that \(\rho \) is a maximal representation if the equality holds in (1.1). In [5], Corlette showed that if \(\rho \) is a maximal representation with \(n \geq 2 \), then there exists a totally geodesic holomorphic \(\rho \)-equivariant embedding of \(\mathbb{B}^n \) into \(\mathbb{B}^N \). By Theorem 1.1, we have

Corollary 1.2 Let \(\Gamma \subset SU(n, 1), n \geq 2 \), be a cocompact lattice and \(\rho: \Gamma \to SU(N, 1) \) be a maximal representation. Let \(\Omega := M \times_{\rho} \mathbb{B}^N \) be a holomorphic \(\mathbb{B}^N \)-fiber bundle over a complex hyperbolic space form \(M := \mathbb{B}^n / \Gamma \). Then for each \(\alpha > -1 \), the dimension of \(A_\alpha^2(\Omega) \) is infinite and \(\bigcap_{\alpha > -1} A_\alpha^2(\Omega) \) is dense in \(\mathcal{O}(\Omega) \) equipped with the compact open topology. Moreover if \(n < N \), then the dimension of \(A_\alpha^2(\Omega) \) is infinite for each \(\alpha \geq -1 \) and \(A_{-1}^2(\Omega) = \bigcap_{\alpha \geq -1} A_\alpha^2(\Omega) \) is dense in \(\mathcal{O}(\Omega) \) equipped with the compact open topology.
Theorem 1.1 is motivated by the following question.

Question 1.3 Does any unit ball fiber bundle over a compact Kähler manifold admit nonconstant weighted L^p ($1 \leq p \leq \infty$) holomorphic functions?

Remark that any B^N-fiber bundle over a compact Kähler manifold admits C^∞ plurisubharmonic exhaustion function if either $n = 1$ ([7]) or $n \geq 2$ and ρ is reductive ([10]).

Whether there exist holomorphic functions is a fundamental property of complex manifolds. If the complex manifold can be embedded holomorphically into a complex Euclidean space, then there exist a lot of holomorphic functions. A far deeper theorem is proved by Siu-Yau [11] and Greene-Wu [8] that a complete simply connected non-positively curved Kähler manifold of faster than quadratic sectional curvature decay is biholomorphic to \mathbb{C}^n by constructing n holomorphic functions. In [3], Bland presented two sufficient conditions given for a complete Kähler manifold of nonpositive sectional curvature to admit nonconstant bounded holomorphic functions.

On the other hand, if the manifold is compact, then there exist no nonconstant holomorphic functions. In [8], Greene-Wu showed that any complete simply connected Kähler manifold with nonpositive sectional curvature does not admit non-zero L^p ($1 \leq p < \infty$) holomorphic functions. Moreover, if the curvature tensor has certain stronger conditions, then it does not have any nonconstant bounded holomorphic function neither.

Let $\Delta := \{z \in \mathbb{C} : |z| < 1\}$ be the unit disk and $\Gamma \subset \text{Aut}(\Delta)$ be a cocompact torsion-free lattice. Then Ohsawa observed that there exists a holomorphic function induced from the Poincaré series given by

$$\sum_{\gamma \in \Gamma} (\gamma(z) - \gamma(w))^k$$

with any $k \geq 2$ on the disk bundle $\Delta \times \Delta / \Gamma$ over the Riemann surface Δ / Γ where Γ acts on $\Delta \times \Delta$ by $\gamma(z, w) = (\gamma z, \gamma w)$. In [2], Adachi gave a concrete description of $\mathcal{O}(\Delta \times \Delta / \Gamma)$ and proved that there exist weighted L^2 holomorphic functions on $\Delta \times \Delta / \Gamma$ out of holomorphic sections of K^ℓ with $\ell \in \mathbb{N}$ where K denotes the canonical line bundle over Δ / Γ. In [9], the authors generalized his method to the B^p-fiber bundle $\mathbb{B}^n \times \mathbb{B}^n / \Gamma$ over a complex hyperbolic space form \mathbb{B}^n / Γ.

Now let \widetilde{M} be a complex manifold and Γ be a torsion-free cocompact lattice of $\text{Aut}(\widetilde{M})$ and $\rho : \Gamma \rightarrow \text{Aut}(\mathbb{B}^N)$ be a homomorphism. Suppose that there exists a ρ-equivariant holomorphic embedding $i : \widetilde{M} \rightarrow \mathbb{B}^N$, i.e., for any $\gamma \in \Gamma$, $i(\gamma \xi) = \rho(\gamma) i(\xi)$. Then the \mathbb{B}^N-fiber bundle $M \times_{\rho} \mathbb{B}^N : = \widetilde{M} \times \mathbb{B}^N / \Gamma$ over $M : = \widetilde{M} / \Gamma$ where any $\gamma \in \Gamma$ acts on $\widetilde{M} \times \mathbb{B}^N$ by $(\xi, \eta) \mapsto (\gamma \xi, \rho(\gamma) \eta)$ has a holomorphic function which is induced from the following Poincaré series

$$\sum_{\gamma \in \Gamma} \left(\rho(\gamma) j(i(\xi)) - \rho(\gamma) j(i(\eta))\right)^k$$

with $(\xi, \eta) \in \widetilde{M} \times \mathbb{B}^N$ and $k \geq N + 1$ (cf. Corollary 4.10 in [9]). In this paper, we generalize the method given in [2, 9] under the conditions when $i : \widetilde{M} \rightarrow \mathbb{B}^N$ is a
totally geodesic isometric embedding. It is worth to emphasize that \(\mathbb{B}^N / \rho(\Gamma) \) does not need to be compact.

Recently Deng-Fornæss [6] constructed a hyperconvex disk fiber bundle over a Hopf manifold which does not admit any nonconstant holomorphic function. Here hyperconvex means that there exists a bounded plurisubharmonic exhaustion function. Since \(\mathbb{B}^N \times \mathbb{B}^N / \Gamma \) is hyperconvex ([1, 10]), \(M \times_\rho \mathbb{B}^N \) is also hyperconvex for any \(N \).

2 Raising Operators for Submanifolds

2.1 Raising Operators

Let \(X \) be a Kähler manifold of dimension \(N \), \(g \) be its Kähler metric and \(G \in C^\infty(X, \Lambda^{1,1} T_X^* \) be its Kähler form. Let \(S^m T_X^* \) be the \(m \)-th symmetric power of holomorphic cotangent bundle \(T_X^* \) of \(X \). Let \(Y \) be a Kähler manifold of dimension \(n \) and \(\iota : Y \to X \) be a holomorphic map. We will denote by \(\Lambda^{p,q} T_Y^* \) the vector bundle of complex-valued \((p,q)\)-forms over \(X \).

For any \(p = 0, 1 \) and \(\tau : C^\infty(Y, i^* (S^m T_X^*)) \to C^\infty(Y, i^* (S^m T_X^*) \otimes i^* (\Lambda^{p,0} T_X^*) \otimes \Lambda^{0,q} T_Y^*) \), define a map

\[
\mathcal{R}_\tau^m : C^\infty(Y, i^* (S^m T_X^*)) \to C^\infty(Y, i^* (S^m T_X^*) \otimes \Lambda^{0,q} T_Y^*)
\]

by

\[
\mathcal{R}_\tau^m(u) = \sum \tau_{p,q}(u) a^p \otimes \overline{b}^q
\]

where \(\tau(u) = \sum_{|p|=p, |q|=q} \tau_{p,q}(u) \otimes a^p \otimes \overline{b}^q \) for \(u \in C^\infty(Y, i^* (S^m T_X^*)) \). Here \(a = (a_1, \ldots, a_N) \) is a local frame of \(i^*(T_X^*) \) and \(b = (b_1, \ldots, b_n) \) is a local frame of \(T_Y^* \).

For example, for an orthonormal frame \((e_1, \ldots, e_N)\), the Kähler form \(G = \sum e_\ell \otimes \overline{e_\ell} \) defines a map, which will be also denoted by \(G \),

\[
G : C^\infty(Y, i^* (S^m T_X^*)) \to C^\infty(Y, i^* (S^m T_X^*) \otimes \Lambda^{1,0} T_Y^* \otimes \Lambda^{0,1} T_Y^*)
\]

by \(u \mapsto \sum_{\ell=1}^N u \otimes e_\ell \circ \iota \otimes i^* \overline{e_\ell} \). We remark that we use the notation \(e_\ell \circ \iota \) or \(e_{|\iota(\zeta)} \), \(\zeta \in Y \), for the pull-back section and \(i^* e_\ell \) for the pull-back form. The corresponding raising operator \(\mathcal{R}_G \) is defined by

\[
\mathcal{R}_G : C^\infty(Y, i^* (S^m T_X^*)) \to C^\infty(Y, i^* (S^{m+1} T_X^*) \otimes \Lambda^{0,1} T_Y^*),
\]

\[
u = \sum_j u_j (e \circ \iota)^j \mapsto \sum_{\ell=1}^N \sum_j u_j (e \circ \iota)^j (e_\ell \circ \iota) \otimes i^* \overline{e_\ell}.
\]

(2.1)

Since this definition does not depend on the choice of orthonormal frame, it is well defined. By a similar way, for the Chern connection of \(i^* (S^m T_X^*) \) and its Chern curvature form, we can define the corresponding raising operators (cf. [9]).
2.2 Hodge Type Identities Over \(M \)

Let \(M \) be a compact Kähler manifold of dimension \(n \). Let \(\tilde{M} \) be its covering and \(\Gamma \) be a subgroup in \(\text{Aut}(\tilde{M}) \) so that \(M \) is biholomorphic to \(\tilde{M} / \Gamma \). Let \(\rho : \Gamma \rightarrow \text{Aut}(\mathbb{B}^N) \) be a homomorphism and \(i : \tilde{M} \rightarrow \mathbb{B}^N \) be a \(\rho \)-equivariant holomorphic embedding, i.e., for any \(\gamma \in \Gamma \) and \(\zeta \in \tilde{M} \), \(\rho(\gamma)(i(\zeta)) = i(\gamma(\zeta)) \). We will assume that \(\Sigma := \mathbb{B}^N / \rho(\Gamma) \) is a complex manifold and the map \(i \) induces a holomorphic embedding from \(M \) to \(\Sigma \). For simplicity, we also denote this map by \(i \).

Let

\[
g_{\mathbb{B}^N}(z) = \sum_{j,k=1}^N \frac{(1 - |z|^2)\delta_{kj} + z_j\overline{z}_k}{(1 - |z|^2)^2} \, dz_k \otimes d\overline{z}_j \quad (2.2)
\]

be the normalized Bergman metric of \(\mathbb{B}^N \). We assume that the normal bundle \(N = N_i := i^*T\Sigma / TM \) is holomorphically isomorphic to the orthogonal complement of \(TM \) in \(i^*T\Sigma \) with respect to the induced metric \(g \) from \(g_{\mathbb{B}^N} \). We emphasize that \(\Sigma \) does not need to be compact. Let \(h := i^*g \) be the pull-back metric of \(g \) on \(M \).

For any measurable section \(\phi \) of \(i^*(S^m T^*_{\Sigma}) \otimes \Lambda^{p,q} TM^* \), we define an \(L^2 \)-norm by

\[
\|\phi\|^2 = \int_M \langle \phi, \phi \rangle dV_M \quad (2.3)
\]

where \(\langle , \rangle \) and \(dV_M \) are induced by \(g \) and \(h = i^*g \) on \(M \). In particular, if we express any measurable section \(\phi \) of \(i^*(S^m T^*_{\Sigma}) \) with respect to a local orthonormal frame \(\{e_1, \ldots, e_N\} \) of \(T^*_{\Sigma} \) by \(\phi = \sum_I f_I(\zeta)e_I|_{i(\zeta)} \), we have

\[
\langle \phi, \phi \rangle = \sum_{|I|=m} \frac{1}{m!} |f_I|^2.
\]

The formal adjoint of \(\overline{\partial} \) on \(L^2(M, i^*(S^m T^*_{\Sigma}) \otimes \Lambda^{p,q} TM^*) \) with respect to the induced metric (2.3) will be denoted by \(\overline{\partial}^*_{(p,q),M} \). For simplicity, we will write \(\overline{\partial}^*_M \) instead of \(\overline{\partial}^*_{(p,q),M} \), if no confusion is likely to arise.

For the Kähler metric \(g \) on \(\Sigma \), let \(g^m \) denote the Hermitian metric on \(S^m T^*_{\Sigma} \) induced from \(g \) and let \(\Box^k_{m,M} \) be the complex Laplace operator

\[
\Box^k_{m,M} : C^\infty(M, i^*(S^m T^*_{\Sigma}) \otimes \Lambda^{0,k} TM^*) \rightarrow C^\infty(M, i^*(S^m T^*_{\Sigma}) \otimes \Lambda^{0,k} TM^*)
\]

given by

\[
\Box^k_{m,M} = \overline{\partial}_M \overline{\partial}^*_M + \overline{\partial}^*_M \overline{\partial}_M
\]

with respect to the metric \(g^m \) where \(k = 0, 1 \). We will omit \(k, m \) in the notation if there is no ambiguity. Especially we simply write \(\Box_M \) instead of \(\Box^0_M \). Let \(G^1 \) be the Green operator of \(\Box^1_M \).
Since the short exact sequence \(0 \rightarrow TM \rightarrow i^*T_{\Sigma} \rightarrow N \rightarrow 0 \) holomorphically splits, we have

\[
\begin{align*}
\text{holomorphically} \\
\text{splits, we have}
\end{align*}
\]

\[
(2.4)
\]

\[i^*(S^m T^*_\Sigma) \cong \bigoplus_{\ell=0}^m S^\ell T^*_M \otimes S^{m-\ell} N^*, \]

and as a consequence

\[
C^\infty(M, i^*(S^m T^*_\Sigma)) \cong \bigoplus_{\ell=0}^m C^\infty(M, S^\ell T^*_M \otimes S^{m-\ell} N*),
\]

\[
H^0(M, i^*(S^m T^*_\Sigma)) \cong \bigoplus_{\ell=0}^m H^0(M, S^\ell T^*_M \otimes S^{m-\ell} N*). \tag{2.4}
\]

Lemma 2.1 Let \(m, \ell \) be non-negative integers with \(\ell \leq m \). The raising operator \(R_G \) is a linear injective map and for any \(u \in C^\infty(M, S^\ell T^*_M \otimes S^{m-\ell} N*) \),

\[
\|R_G(u)\|^2 = \frac{\ell + n}{m + 1} \|u\|^2 \tag{2.5}
\]

and

\[
\{\Box_M, R_G\}(u) := \Box_M R_G u - R_G \Box_M u = (m + \ell) R_G(u). \tag{2.6}
\]

Proof Let \(\{e_1, \ldots, e_N\} \) be a local orthonormal frame of \(T^*_\Sigma \) on a small open set \(U \) of \(\Sigma \) so that \(g = \sum_{\tau=1}^N e_\tau \otimes \bar{e}_\tau \) and \(h = \sum_{\tau=1}^n i^* e_\tau \otimes i^* \bar{e}_\tau \). Let \(u = \sum_{|I|=m} u_I e_I \) be a smooth section of \(i^*(S^m T^*_\Sigma) \). Since \(i^* e_\tau = 0 \) for any \(n + 1 \leq \tau \leq N \), we obtain

\[
R_G u = \sum_{\tau=1}^n \sum_{|I|=m} u_I e_\tau \otimes i^* e_\tau.
\]

If \(u \in C^\infty(M, S^\ell T^*_M \otimes S^{m-\ell} N*) \), then one has

\[
\langle R_G u, R_G u \rangle = \sum_{\tau, m=1}^n \langle u e_\tau \otimes i^* e_\tau, u e_m \otimes i^* e_m \rangle = \sum_{\tau=1}^n \langle u e_\tau, u e_\tau \rangle
\]

\[
= \sum_{|I|=m} \sum_{\tau=1}^n \frac{i_1! \cdots (i_\tau + 1)! \cdots i_N!}{(m + 1)!} |u_I|^2
\]

\[
= \sum_{|I|=m} \frac{\left(\sum_{j=1}^n i_j + n\right)}{m + 1} \frac{I!}{m!} |u_I|^2
\]

\[\Box \ Springer \]
\[\sum_{|I|=m} \frac{\ell+n}{m+1} \frac{I!}{m!} |u_I|^2 = \frac{\ell+n}{m+1} \|u\|^2. \]

which implies (2.5).

To prove (2.6), let \(q \in M \) and \((\zeta_1, \ldots, \zeta_n)\) be a holomorphic normal coordinate system on a small open set \(q \in U \subset M \) such that \(U \cong \iota(U) \subset \Sigma \). Let \(p := \iota(q) \in \iota(U) \) and take a holomorphic normal coordinate system \((z_1, \ldots, z_N)\) at \(p \) such that for \(t_k := z_k \circ \iota, k = 1, \ldots, N \) we have

\[\left. \frac{\partial u_m}{\partial \zeta_{\nu}} \right|_{q} = \begin{cases} \delta_{m\nu} (m = 1, \ldots, n), \\ 0 (m = n + 1, \ldots, N). \end{cases} \tag{2.7} \]

Let \(\{h_\gamma\} \) be a holomorphic normal frame of \(\iota^* (S^m T^*_\Sigma) \). For any smooth section \(u = \sum_\gamma u_\gamma h_\gamma \) of \(\iota^* (S^m T^*_\Sigma) \), we have

\[
\bar{\partial}_M^* R_G(u) = \sum_\gamma u_\gamma (g_{\alpha\beta} \circ \iota) h_\gamma (dz_\alpha \circ \iota) \otimes \iota^* dz_\beta
\]

By (2.7), we obtain

\[
\bar{\partial}_M^* R_G(u) = - \sum_{k=1}^n \sum_\gamma \frac{\partial u_\gamma}{\partial \zeta_k} h_\gamma (dz_k \circ \iota)
\]

at the point \(q \). Let \(\tilde{D}_m \) be the \((1, 0)\) part of the Chern connection of \(\iota^* (S^m T^*_\Sigma) \) induced from \((S^m T^*_\Sigma, g^m)\). Then

\[
\tilde{D}_m(u) = \tilde{D}_m \left(\sum_\gamma u_\gamma h_\gamma \right) = \sum_\gamma \sum_{k=1}^n \frac{\partial u_\gamma}{\partial \zeta_k} h_\gamma \otimes d\zeta_k + \sum_{k=1}^n \sum_{\gamma, \mu} u_\gamma \theta^\mu_{\gamma k} h_\mu \otimes d\zeta_k
\]
where θ_{γ}^{μ} is the connection one form of \tilde{D}_m. Then it follows that

$$
\mathcal{R}_{\tilde{D}_m} \left(\sum_{\gamma} u_{\gamma} h_{\gamma} \right) = \sum_{k=1}^{n} \sum_{\gamma} \frac{\partial u_{\gamma}}{\partial \xi_k} h_{\gamma} (dz_k \circ \iota)
$$

$$
+ \sum_{k=1}^{n} \sum_{\gamma, \mu} u_{\gamma} \theta_{\gamma k}^{\mu} h_{\mu} (dz_k \circ \iota).
$$

Hence

$$
\tilde{\partial}_{M}^{*} \mathcal{R}_{G} u = - \mathcal{R}_{\tilde{D}_m} u
$$

at q.

Let $\theta_{\gamma}^{\mu} = \sum_{k} \theta_{\gamma k}^{\mu} \, d\xi_k$. Since the Chern curvature form $\Theta(i^* (S^m T^*_\Sigma))$ of $i^* (S^m T^*_\Sigma)$ satisfies $\Theta(i^* (S^m T^*_\Sigma)) = \tilde{\partial} \theta$ for $\theta := (\theta_{\gamma}^{\mu})$, it follows that

$$
\frac{\partial \theta_{\gamma k}^{\mu}}{\partial \xi_{\lambda}} = - R_{\gamma k \lambda}^{\mu}
$$

where $R_{\gamma k \lambda}^{\mu}$ is given by

$$
\Theta \left(i^* \left(S^m T^*_\Sigma \right) \right) = \sum_{\alpha, \beta, s, t=1}^{n} R_{\alpha s t}^{\beta} h_{s}^{\alpha} \otimes h_{t}^{\beta} d\xi_{s} \wedge d\bar{\xi}_{t}.
$$

Therefore by using (2.7), it follows that

$$
\tilde{\partial}_{M}^{*} \tilde{\partial}_{M} \mathcal{R}_{G} u = - \tilde{\partial}_{M} \mathcal{R}_{\tilde{D}_m} u
$$

$$
= - \sum_{k, \lambda=1}^{n} \sum_{\gamma} \frac{\partial^2 u_{\gamma}}{\partial \xi_k \partial \xi_{\lambda}} h_{\gamma} (dz_k \circ \iota) \otimes d\bar{\xi}_{\lambda}
$$

$$
+ \sum_{k, m=1}^{n} \sum_{\gamma, \mu} u_{\gamma} R_{\gamma k m}^{\mu} h_{\mu} (dz_k \circ \iota) \otimes d\bar{\xi}_{m} + O(|\xi|).
$$

Therefore by using (2.7), it follows that

$$
\tilde{\partial}_{M}^{*} \tilde{\partial}_{M} \mathcal{R}_{G} u
$$

$$
= \sum_{\alpha, \beta=1}^{N} \sum_{\gamma} \tilde{\partial}_{M}^{*} \tilde{\partial}_{M} \left(u_{\gamma} (g_{a \beta} \circ \iota) h_{\gamma} (dz_{\alpha} \circ \iota) \otimes i^* dz_{\beta} \right)
$$

$$
= \sum_{\alpha, \beta=1}^{N} \sum_{\gamma} \sum_{\lambda=1}^{n} \tilde{\partial}_{M}^{*} \tilde{\partial}_{M} \left(u_{\gamma} (g_{a \beta} \circ \iota) h_{\gamma} (dz_{\alpha} \circ \iota) \otimes \frac{\partial g_{a \beta}}{\partial \xi_{\lambda}} d\bar{\xi}_{\lambda} \right)
$$

$$
= \tilde{\partial}_{M}^{*} \left(\sum_{\alpha, \beta=1}^{N} \sum_{\gamma} \sum_{\lambda=1}^{n} \frac{\partial (u_{\gamma} (g_{a \beta} \circ \iota) \frac{\partial g_{a \beta}}{\partial \xi_{\lambda}})}{\partial \xi_{\lambda}} h_{\gamma} (dz_{\alpha} \circ \iota) \otimes d\bar{\xi}_{k} \wedge d\bar{\xi}_{\lambda} \right)
$$

\(\circ\) Springer
\[
\begin{align*}
&= - \sum_{\alpha, \beta = 1}^{N} \sum_{\lambda, k = 1}^{n} \sum_{\gamma} \left(\frac{\partial^2(u_Y(\gamma_{A\beta} \circ \iota))}{\partial \xi_k \partial \bar{\xi}_\lambda} - \frac{\partial^2(u_Y(\gamma_{A\beta} \circ \iota))}{\partial \xi_\beta \partial \bar{\xi}_k} \right) \alpha, \beta \cdot h_Y(dz_\alpha \circ \iota) + O(|\xi|) \\
&= - \sum_{\alpha, \beta = 1}^{N} \sum_{\lambda, k = 1}^{n} \sum_{\gamma} \left(\frac{\partial(u_Y(\gamma_{A\beta} \circ \iota))}{\partial \xi_k} - \frac{\partial(u_Y(\gamma_{A\beta} \circ \iota))}{\partial \xi_\lambda} \right) d\bar{\xi}_\lambda - \frac{\partial(u_Y(\gamma_{A\beta} \circ \iota))}{\partial \xi_\lambda} \right) d\bar{\xi}_k \right) h_Y(dz_\alpha \circ \iota) + O(|\xi|) \\
&= - \sum_{\alpha, \beta = 1}^{N} \sum_{\lambda, k = 1}^{n} \sum_{\gamma} \left(\frac{\partial(u_Y(\gamma_{A\beta} \circ \iota))}{\partial \xi_k} - \frac{\partial(u_Y(\gamma_{A\beta} \circ \iota))}{\partial \xi_\beta} \right) d\bar{\xi}_\lambda - \frac{\partial(u_Y(\gamma_{A\beta} \circ \iota))}{\partial \xi_\beta} \right) d\bar{\xi}_k \right) h_Y(dz_\alpha \circ \iota) + O(|\xi|). \\
\end{align*}
\]

Note that the last equality of (2.9) follows by

\[
\begin{align*}
&- \sum_{\alpha, \beta = 1}^{N} \sum_{\lambda, k = 1}^{n} \sum_{\gamma} \left(\frac{\partial(u_Y(\gamma_{A\beta} \circ \iota))}{\partial \xi_k} - \frac{\partial(u_Y(\gamma_{A\beta} \circ \iota))}{\partial \xi_\lambda} \right) d\bar{\xi}_\lambda - \frac{\partial(u_Y(\gamma_{A\beta} \circ \iota))}{\partial \xi_\lambda} \right) d\bar{\xi}_k \right) h_Y(dz_\alpha \circ \iota) + O(|\xi|) \\
&= - \sum_{\alpha, \beta = 1}^{N} \sum_{\lambda, k = 1}^{n} \sum_{\gamma} \left(\frac{\partial(u_Y(\gamma_{A\beta} \circ \iota))}{\partial \xi_k} - \frac{\partial(u_Y(\gamma_{A\beta} \circ \iota))}{\partial \xi_\lambda} \right) d\bar{\xi}_\lambda - \frac{\partial(u_Y(\gamma_{A\beta} \circ \iota))}{\partial \xi_\lambda} \right) d\bar{\xi}_k \right) h_Y(dz_\alpha \circ \iota) + O(|\xi|) \\
&= 0.
\end{align*}
\]

Moreover,

\[
\begin{align*}
\frac{\partial^2(u_Y(\gamma_{A\beta} \circ \iota))}{\partial \xi_k \partial \bar{\xi}_\lambda} - \frac{\partial^2(u_Y(\gamma_{A\beta} \circ \iota))}{\partial \xi_\beta \partial \bar{\xi}_k} &= \left(\frac{\partial^2(\gamma_{A\beta} \circ \iota)}{\partial \xi_k \partial \bar{\xi}_\lambda} - \frac{\partial^2(\gamma_{A\beta} \circ \iota)}{\partial \xi_\beta \partial \bar{\xi}_k} \right) u_Y \\
&+ (\gamma_{A\beta} \circ \iota) \left(\frac{\partial^2 u_Y}{\partial \xi_k \partial \bar{\xi}_\lambda} - \frac{\partial^2 u_Y}{\partial \xi_\beta \partial \bar{\xi}_k} \right) + O(|\xi|).
\end{align*}
\]

Since \(g \) is Kähler, it follows that

\[
\begin{align*}
\tilde{\partial}_M^* \tilde{\partial}_M R_{GU} &= - \sum_{\alpha = 1}^{N} \sum_{\beta, k = 1}^{n} \sum_{\gamma} (\gamma_{A\beta} \circ \iota) h_Y(dz_\alpha \circ \iota) \\
&\otimes \left(\frac{\partial^2 u_Y}{\partial \xi_k \partial \bar{\xi}_\lambda} - \frac{\partial^2 u_Y}{\partial \xi_\beta \partial \bar{\xi}_k} \right) + O(|\xi|).
\end{align*}
\]
Since
\[
\mathcal{R}_G \tilde{\partial}_M \partial M u = - \sum_{\alpha, \beta = 1}^{N} \sum_{\mu = 1}^{n} \sum_{\gamma} \frac{\partial^2 u_{\gamma \mu}}{\partial \zeta_{\mu} \partial \zeta_{\mu}} h_{\gamma} (g_{\alpha \beta} \circ \iota) (\partial z_{\alpha} \circ \iota) \otimes \tilde{r}^* dz_{\beta} + O(\vert \zeta \vert),
\]
by adding (2.8), (2.10), (2.11), and using (2.7) we have
\[
\begin{align*}
\{ \square, \mathcal{R}_G \} u &= \tilde{\partial}_M \partial M R_G u + \tilde{\partial}_M \partial M \mathcal{R}_G u - \mathcal{R}_G \tilde{\partial}_M \partial M u \\
&= \sum_{k, j = 1}^{n} \sum_{\gamma, \mu} u_{\gamma \mu} R_{\gamma k j}^\mu d \zeta_k h_\mu \otimes d \bar{\zeta}_j.
\end{align*}
\]
Moreover at \(q \), we have
\[
\sum_{k, m = 1}^{n} \sum_{\gamma, \mu} u_{\gamma \mu} R_{\gamma k m}^\mu d \zeta_k h_\mu \otimes d \bar{\zeta}_m = \sum_{\vert I \vert = m, j = 1}^{N} \sum_{i_j \in I} e_{i_j} \cdots e_{i_2} \cdots e_{i_1} \otimes \mathcal{R}_{\Theta^{(i^* T^*_\Sigma)}}(e_j)
\]
where \(\mathcal{R}_{\Theta^{(i^* T^*_\Sigma)}} \) is defined by
\[
\mathcal{R}_{\Theta^{(i^* T^*_\Sigma)}}(e_j) = \sum_{a = 1}^{N} \sum_{k, m = 1}^{n} e_a \otimes \Theta^{(T^*_\Sigma)}_{jkm} e_k \wedge \bar{e}_m.
\]
From
\[
\Theta^{(T^*_\Sigma)}_{jkm} = -(\delta_{ak} \delta_{jm} + \delta_{aj} \delta_{km}),
\]
one has
\[
\Theta^{(T^*_\Sigma)}_{jkm} = -\Theta^{(T^*_\Sigma)}^* = \delta_{jk} \delta_{am} + \delta_{ja} \delta_{mk}
\]
and hence
\[
\mathcal{R}_{\Theta^{(i^* T^*_\Sigma)}}(e_j) = \sum_{a = 1}^{N} \sum_{k, m = 1}^{n} e_a \otimes \Theta^{(T^*_\Sigma)}_{jkm} e_k \wedge \bar{e}_m
\]
\[
= \sum_{a = 1}^{n} e_a e_j \wedge e_a + e_j \otimes \sum_{r = 1}^{n} e_r \wedge \bar{e}_r
\]
where
\[
\epsilon_{\mu} = \begin{cases}
1 & \text{if } \mu \in \{1, \cdots, n\}, \\
0 & \text{otherwise.}
\end{cases}
\]
\(\square \) Springer
Therefore, we have
\[
\sum_{|I|=m}^{N} \sum_{j=1}^{i_{j}} u_{I} e_{1}^{i_{1}} \cdots e_{j-1}^{i_{j-1}} \cdots e_{N}^{i_{N}} \cdot R_{G}(\iota^{*}T^{*}_{\Sigma}) (e_{j})
\]
\[
= \sum_{|I|=m}^{N} \sum_{j=1}^{N} i_{j} u_{I} e_{1}^{i_{1}} \cdots e_{j-1}^{i_{j-1}} \cdots e_{N}^{i_{N}} \cdot \left(\sum_{a=1}^{n} e_{a} \otimes e_{j} \wedge \bar{e}_{a} + e_{j} \otimes \sum_{r=1}^{n} e_{r} \wedge \bar{e}_{r} \right)
\]
\[
= \sum_{|I|=m}^{n} \sum_{j=1}^{n} \left(m + \sum_{j=1}^{n} i_{j} \right) u_{I} e_{1}^{i_{1}} \cdots e_{n}^{i_{n}} \cdots e_{N}^{i_{N}} \cdot e_{r} \otimes \bar{e}_{r}
\]
\[
= \sum_{|I|=m}^{n} \left(m + \sum_{j=1}^{n} i_{j} \right) R_{G}(u_{I} e^{I}).
\]

and it implies (2.6) if \(u \in C^\infty(M, S^{\ell}T^{*}_{M} \otimes S^{m-\ell}N^{*}) \).

\[\square\]

Remark 2.2

(1) If \(\iota \) is totally geodesic, since up to the composition with an automorphism of \(\mathbb{B}^{N} \), we have
\[
\iota(\tilde{M}) = \mathbb{B}^{N} \cap \{ (z_{1}, \ldots, z_{N}, 0, \cdots, 0) \in \mathbb{C}^{N} : z_{j} \in \mathbb{C}, \forall j \}
\]
and the normalized Bergman metric of \(\mathbb{B}^{N} \) is given by (2.2), it follows that the normal bundle \(\iota^{*}T_{\mathbb{B}^{N}}/T_{\tilde{M}} \) is holomorphically isomorphic to the orthogonal complement of \(T_{\tilde{M}} \) in \(\iota^{*}T_{\mathbb{B}^{N}} \). This implies that under the condition given in Theorem 1.1, the normal bundle \(\iota^{*}T_{\Sigma}/T_{M} \) is holomorphically isomorphic to the orthogonal complement of \(T_{M} \) in \(\iota^{*}T_{\Sigma} \) with respect to the induced metric \(g \) from the Bergman metric of \(\mathbb{B}^{N} \).

(2) For a compact manifold \(M \) and a holomorphic embedding, not necessarily totally geodesic, \(\iota : M \to \Sigma := \mathbb{B}^{N}/\Gamma \), let \(\{ e_{1}, \cdots, e_{N} \} \) be a local orthonormal frame of \(T^{*}_{\Sigma} \) so that \(g = \sum_{\ell=1}^{N} e_{\ell} \otimes \bar{e}_{\ell} \) and \(h := \iota^{*}g = \sum_{\ell=1}^{n} i^{*}e_{\ell} \otimes i^{*}\bar{e}_{\ell} \). For any smooth section
\[
u = \sum_{i_{1}+\cdots+i_{N}=m} u_{i_{1} \cdots i_{N}} e_{1}^{i_{1}} \cdots e_{n}^{i_{n}} \cdots e_{N}^{i_{N}}
\]
of \(\iota^{*}(S^{m}T^{*}_{\Sigma}) \), we have
\[
\| R_{G}(u) \|^{2} = \sum_{|I|=m}^{i_{1} + \cdots + i_{n} + n} \frac{m+1}{m} \| u_{I} e^{I} \|^{2}
\]
and
\[
\{ \Box_{M}, R_{G} \}(u) := \Box_{M}R_{G}u - R_{G} \Box_{M}u = \sum_{|I|=m}^{(m+1)\cdots+i_{n}} (m+1) \cdots + i_{n}) R_{G}(u_{I} e^{I}).
\]
For each positive integer m, non-negative integer ℓ with $\ell \leq m$ and $k = 0, 1$, let $\Box_{m,M}^{k,\ell}$ denote the complex Laplace operator on

$$S^\ell T^*_M \otimes S^{m-\ell} N^* \otimes \Lambda^0, k T^*_M \subset i^* (S^m T^*_\Sigma) \otimes \Lambda^0, k T^*_M$$

over M.

Corollary 2.3 Let $\ker^\perp (\Box_{m,M}^{0,\ell} - \lambda I)$ be the orthogonal complement of $\ker (\Box_{m,M}^{0,\ell} - \lambda I)$ in $L^2(M, S^\ell T^*_M \otimes S^{m-\ell} N^*)$. Then one has

1. $\mathcal{R}_G (\ker (\Box_{m,M}^{0,\ell} - \lambda I)) \subset \ker (\Box_{m+1,M}^{1,\ell} - (\lambda + m + \ell) I)$,
2. $\mathcal{R}_G (\ker^\perp (\Box_{m,M}^{0,\ell} - \lambda I)) \subset \ker^\perp (\Box_{m+1,M}^{1,\ell} - (\lambda + m + \ell) I)$.

Proof (1) is a consequence of the equation (2.6). In view of [4, Corollary 3.16], $\ker^\perp (\Box_{m,M}^{0,\ell} - \lambda I)$ is the direct sum of $\ker (\Box_{m,M}^{0,\ell} - \lambda I)$ and eigenspaces of $\Box_{m,M}^{0,\ell}$ whose eigenvalues are different from λ. Therefore, (2) follows by Lemma 2.1 and self-adjointness of $\Box_{m+1,M}^{1,\ell}$.

3 Construction of Holomorphic Functions on $M \times \rho \mathbb{B}^N$

3.1 Preliminaries

Let z be a fixed point in the unit ball \mathbb{B}^N. For one-dimensional vector space $[z]$ spanned by z, we define an orthogonal projection P_z from \mathbb{C}^N onto $[z]$. Another orthogonal projection Q_z is defined by $P_z + Q_z = Id z$. Consider an automorphism T_z of \mathbb{B}^N given by

$$T_z(w) = \frac{z - P_z(w) - s_z Q_z(w)}{1 - w \cdot \bar{z}}$$

where $s_z = \sqrt{1 - |z|^2}$ with $|z|^2 = z \cdot \bar{z}$. We remark that T_z is an involution, i.e., $T_z \circ T_z = Id_{\mathbb{B}^N}$.

Let $A = (A_{jk}) := dT_z(z)$ and let

$$e_j := \sum_{k=1}^N A_{jk} dz_k. \quad (3.1)$$

Then $\{e_j\}_{j=1}^N$ is an orthonormal frame of $T^*_\mathbb{B}^N$ with respect to the Bergman metric on \mathbb{B}^N (see [9]). Let $\{X_j\}_{j=1}^N$ be the dual frame of $\{e_j\}_{j=1}^N$ on $T^*_\mathbb{B}^N$, i.e.,

$$X_j = \sum_{k=1}^N A_{kj} \frac{\partial}{\partial z_k}$$
where \((A^{kj})_{j,k=1}^{N}\) is the inverse matrix of \((A_{jk})_{j,k=1}^{N}\).

Let \(\tilde{e}_1, \ldots, \tilde{e}_n\) be a local orthonormal frame on \(T^*_M\). Then there exist locally defined smooth functions \(b_{kl}\) such that

\[
i^*e_k = \sum_{l=1}^{n} b_{kl} \tilde{e}_l.
\]

Let \(Y_1, \ldots, Y_n\) be the local dual frame of \(\tilde{e}_1, \ldots, \tilde{e}_n\) on \(T^*_M\). Then there exist locally defined smooth functions \(y_{lj}\) on \(M\) and \(a_{lk}\) on \(i(M)\) such that

\[
Y_j = \sum_{l=1}^{n} y_{lj}(\xi) \frac{\partial}{\partial \xi_l} \tag{3.2}
\]

and

\[
i_*Y_k = \sum_{l=1}^{N} (a_{lk} \circ i)(\xi) X_l. \tag{3.3}
\]

Lemma 3.1 \(b_{km} = a_{km} \circ i\)

Proof Since one has

\[
i^*e_k(Y_m) = \sum_{l} b_{kl} \tilde{e}_l(Y_m) = b_{km}
\]

and

\[
i^*e_k(Y_m) = e_k(i_*Y_m) = e_k \left(\sum a_{lm} \circ i X_l \right) = a_{km} \circ i,
\]

we obtain the lemma. \(\square\)

Lemma 3.2 For each \(\mu = 1, \ldots, N\),

\[
\sum_{l=1}^{N} (a_{lk} \circ i)(\xi) A^{\mu l} = \sum_{l=1}^{n} y_{lk}(\xi) \frac{\partial i_{\mu}}{\partial \xi_l}.
\]

Proof Since we have

\[
i_*Y_k = i_* \left(\sum_{l=1}^{n} y_{lk} \frac{\partial}{\partial \xi_l} \right) = \sum_{l=1}^{N} \sum_{\mu=1}^{N} y_{lk}(\xi) \frac{\partial i_{\mu}}{\partial \xi_l} \frac{\partial}{\partial z_{\mu}} \bigg|_{z = i(\xi)}
\]

and

\[
\sum_{l=1}^{N} (a_{lk} \circ i)(\xi) X_l = \sum_{l=1}^{N} \sum_{\mu=1}^{N} (a_{lk} \circ i)(\xi) A^{\mu l} \frac{\partial}{\partial z_{\mu}} \bigg|_{z = i(\xi)},
\]

by (3.3) the proof is completed. \(\square\)
3.2 Definition of Formal Series

First, we note that T^*_Σ is Griffiths positive. Since i is an embedding, $i^*T^*_\Sigma$ is also Griffiths positive and so it is ample. Since $i^*(S^mT^*_\Sigma) \cong S^m(i^*T^*_\Sigma)$, we know that $\bigoplus_{m=0}^{\infty} H^0(M, i^*(S^mT^*_\Sigma)) \cong \bigoplus_{m=0}^{\infty} H^0(M, S^m(i^*T^*_\Sigma))$ is infinite dimensional.

By the decomposition (2.4) any symmetric differential $\psi \in H^0(M, i^*(S^mT^*_\Sigma))$ is of the form

$$\psi = \sum_{\ell=0}^{m} \psi^\ell_m$$

where $\psi^\ell_m \in H^0(M, S^\ell T^*_M \otimes S^{m-\ell}N^*)$. Fix $\psi = \sum_{\ell=0}^{m_0} \psi^\ell_{m_0} \in H^0(M, i^*(S^{m_0}T^*_\Sigma))$. For each $\ell = 0, \ldots, m_0$, we define a sequence of vector bundles $\{F^\ell_k\}_{k=0}^{\infty}$ by

$$F^\ell_k = \begin{cases} i^*(S^k T^*_\Sigma) & \text{if } k < m_0, \\ S^{\ell+k-m_0} T^*_M \otimes S^{m_0-\ell}N^* & \text{if } k \geq m_0. \end{cases}$$

and consider the sequence

$$\{\varphi^\ell_k\}_{k=0}^{\infty} \in \bigoplus_{k=0}^{\infty} C^\infty(M, F^\ell_k)$$

such that

$$\varphi^\ell_k = \begin{cases} 0 & \text{if } k < m_0, \\ \psi^\ell_{m_0} & \text{if } k = m_0, \\ \text{the minimal solution of} \\ \bar{\partial}_M \varphi^\ell_k = -(k - 1) \mathcal{R}_G \varphi^\ell_{k-1} & \text{if } k > m_0. \end{cases} \quad (3.4)$$

The minimal solution of the equation

$$\bar{\partial}_M \varphi^\ell_k = -(k - 1) \mathcal{R}_G \varphi^\ell_{k-1} \quad (3.5)$$

exists by the following lemma for each k.

Lemma 3.3 For any symmetric differential $\psi = \sum_{\ell=0}^{m_0} \psi^\ell_{m_0} \in H^0(M, i^*(S^{m_0}T^*_\Sigma))$ and each $\ell = 0, \ldots, m_0$, the sequence $\{\varphi^\ell_k\}_{k=0}^{\infty}$ given by (3.4) is well defined and it satisfies

$$\|\varphi^\ell_{m_0+m}\|^2 = \left(\prod_{j=1}^{m} \left(\frac{(\ell + j) + (n - 1)}{m_0 + j} \right) \right) \left(\frac{(m_0 + \ell - 1)! \cdot ((m_0 + m - 1)!^2 \cdot 1)}{(m_0 - 1)!^2 \cdot (m_0 + \ell + m - 1)! \cdot m!} \right) \|\psi^\ell_{m_0}\|^2$$
for any \(m \geq 1 \). Moreover for any \(m \geq 0 \), \(\varphi^\ell_{m_0+m} \) satisfies
\[
\Box_{m_0+m,M}^0 (\varphi^\ell_{m_0+m}) = (m^2 + (m_0 + \ell - 1)m)\varphi^\ell_{m_0+m}.
\]

Proof We will use induction with respect to the index \(k \). If \(k \leq m_0 \), then (3.4) holds trivially. Suppose that there is the minimal solution of (3.5) for any \(p \leq m_0 + m - 1 \). First we will show that \(R_G(\varphi^\ell_{m_0+m-1}) \) is \(\bar{\delta}_M \)-closed. Take a point \(q \in M \) and small open set \(q \in U \subset M \) such that \(U \cong \iota(U) \subset \Sigma \). Let \((z_1, \cdots, z_N)\) be a local coordinate system at \(p := \iota(q) \in \iota(U) \) such that
\[
\iota(U) = \{(z_1, \cdots, z_N) : z_{n+1} = \cdots = z_N = 0 \} \quad \text{near} \quad p = (0, \cdots, 0).
\]

Then we obtain
\[
\text{If} \quad k \leq m_0 + m - 1, \quad \text{then} \quad (3.4) \text{ holds.}
\]

As a result, for each \(j \),
\[
\varphi^\ell_{m_0+m-1} = \sum_{|L| = \ell + m - 1, |J| = m_0 - \ell} \varphi^\ell_{LJ} dz^L \otimes dz^J.
\]

Then we obtain
\[
\bar{\delta}_M \varphi^\ell_{m_0+m-1} = \sum_{j=1}^n \sum_{|L| = \ell + m - 1, |J| = m_0 - \ell} Y_{\ell} \varphi^\ell_{LJ} dz^L \otimes dz^J \otimes \bar{e}_j
\]
and by (3.5)
\[
\bar{\delta}_M \varphi^\ell_{m_0+m-1} = -(m_0 + m - 2) \sum_{\mu=1}^n \varphi^\ell_{m_0+m-2} (e_\mu \circ \iota) \otimes i^* e_\mu
\]
\[
= -(m_0 + m - 2) \sum_{\mu,j=1}^n \varphi^\ell_{m_0+m-2} (e_\mu \circ \iota) B_{\mu j} \otimes \bar{e}_j.
\]

As a result, for each \(j = 1, \ldots, n \),
\[
\sum_{|L| = \ell + m - 1, |J| = m_0 - \ell} Y_{\ell} \varphi^\ell_{LJ} dz^L \otimes dz^J = -(m_0 + m - 2) \sum_{\mu=1}^n \varphi^\ell_{m_0+m-2} B_{\mu j} (e_\mu \circ \iota).
\]

Since we have
\[
\bar{\delta}_M R_G(\varphi^\ell_{m_0+m-1}) = \bar{\delta}_M \left(\sum_{\mu=1}^n \varphi^\ell_{m_0+m-1} (e_\mu \circ \iota) \otimes i^* e_\mu \right)
\]
\[
= \sum_{\mu,j,L,J} \left(Y_{\ell} \varphi^\ell_{LJ} dz^L (e_\mu \circ \iota) \otimes dz^J \otimes \bar{e}_j \otimes i^* e_\mu \right)
\]
+ \sum_{\tau, j, \mu, s} \varphi_{m_0 + m - 1}^\ell \, dz_\tau \otimes \tilde{\partial}_M \left((A_{\mu \tau} \circ t)(A_{\mu j} \circ t) \frac{\partial t_j}{\partial \zeta_s} \right) \wedge d\zeta_s,

\sum_{\mu, j | L|=\ell + m - 1 |J|=m_0 - \ell} \bar{Y}_j \varphi_{LJ}^\ell \, dz^L (e_\mu \circ t) \otimes dz^J \otimes \bar{e}_j \wedge i^* e_\mu

= -(m_0 + m - 2) \sum_{\mu, j, \eta} \bar{b}_{\eta j} \varphi_{m_0 + m - 2}^\ell (e_\mu \circ t)(e_\eta \circ t) \otimes \bar{e}_j \wedge i^* e_\mu

= -(m_0 + m - 2) \sum_{\mu, j} \varphi_{m_0 + m - 2}^\ell (e_\mu \circ t)(e_\eta \circ t) i^* e_\eta \wedge i^* e_\mu = 0

by (3.6), and

\begin{align*}
\sum_{j, \mu, s} \tilde{\partial}_M \left((A_{\mu \tau} \circ t)(A_{\mu j} \circ t) \frac{\partial t_j}{\partial \zeta_s} \right) \wedge d\zeta_s

= \sum_{j, \mu, s} \tilde{\partial}_M \left((A_{\mu \tau} \circ t)(A_{\mu j} \circ t) \right) \wedge \frac{\partial t_j}{\partial \zeta_s} d\zeta_s

+ \sum_{j, \mu, \eta, s} (A_{\mu \tau} \circ t)(A_{\mu j} \circ t) \frac{\partial^2 t_j}{\partial \zeta_\eta \partial \zeta_s} d\zeta_\eta \wedge d\zeta_s

= \sum_{j, \mu, \eta, \sigma, s} \left(\frac{\partial A_{\mu \tau}}{\partial \zeta_\eta} (A_{\mu j} \circ t) + (A_{\mu \tau} \circ t) \frac{\partial A_{\mu j}}{\partial \zeta_\eta} \right) \frac{\partial t_\eta}{\partial \zeta_\sigma} d\zeta_\sigma \wedge \frac{\partial t_j}{\partial \zeta_s} d\zeta_s

= \sum_{j, \mu, \eta} \left(\frac{\partial A_{\mu \tau}}{\partial \zeta_\eta} (A_{\mu j} \circ t) + (A_{\mu \tau} \circ t) \frac{\partial A_{\mu j}}{\partial \zeta_\eta} \right) d\zeta_\eta \wedge d\zeta_j = 0,
\end{align*}

(3.7)

one has $\tilde{\partial}_M R_G(\varphi_{m_0 + m - 1}^\ell) = 0$. Here the last equality in (3.7) holds by the same argument given in the proof of Lemma 4.12 in [9].

Now we claim that $\varphi_{m_0 + k}^\ell$, $k \leq m - 1$ is an eigenfunction of $\Box^0_{m_0 + k, M}$. Denote $E_{m_0, k}$ be its eigenvalue. Since $\varphi_{m_0}^\ell \in H^0(M, S^\ell T^*_M \otimes S^{m_0 - \ell} N^*)$, one has $E_{m_0, 0}^\ell = 0$. Assume that $\varphi_{m_0 + k}^\ell$ is an eigenvector of $\Box^1_{m_0 + k, M}$ for some $k \geq 0$. By (2.6) and self-adjointness of $\Box^1_{m_0 + k + 1, M}$, we know

$$R_G(\varphi_{m_0 + k}^\ell) \perp \ker \Box^1_{m_0 + k + 1, M}.$$

(3.8)

Moreover, by Corollary 2.3 and (3.8), we obtain

$$R_G(\varphi_{m_0 + k}^\ell) = \Box^1_{m_0 + k + 1, M} G^1 R_G(\varphi_{m_0 + k}^\ell) = G^1 R_G((E_{m_0, k}^\ell + (\ell + k) + (m_0 + k))\varphi_{m_0 + k}^\ell)$$

and by properties of the Green operator G^1, it follows that

$$\Box^0_{m_0 + k + 1, M} (\varphi_{m_0 + k + 1}^\ell) = (E_{m_0, k}^\ell + (\ell + k) + (m_0 + k))\varphi_{m_0 + k + 1}^\ell.$$
The eigenvalue of $\varphi_{m_0+k+1}^\ell$ for $\Box^0_{m_0+k+1,M}$ is

$$E_{m_0,k+1}^\ell = E_{m_0,k}^\ell + (\ell + k) + (m_0 + k).$$

Hence

$$E_{m_0,k}^\ell = (\ell + \ell + 1 + \cdots + (\ell + k - 1)) + (m_0 + (m_0 + 1) + \cdots + (m_0 + k - 1))$$
$$= \frac{k(2m_0 + k - 1)}{2} + \frac{k(\ell + k - 1)}{2}. \tag{3.9}$$

Now we will show that (3.5) has a solution when $k = m$. By the Hodge decomposition, the solvability of (3.5) follows by (3.8). By (2.5), (3.5), and Corollary 2.3, we have

$$\|\varphi_{m_0+m}^\ell\|^2 = (m_0 + m - 1)^2 \langle (\bar{\partial} G^1 R G \varphi_{m_0+m-1}^\ell, \bar{\partial} G^1 R G \varphi_{m_0+m-1}^\ell) \rangle$$
$$= \frac{(m_0 + m - 1)^2}{E_{m_0,m-1}^\ell + (\ell + m - 1) + (m_0 + m - 1)} \|R G \varphi_{m_0+m-1}^\ell\|^2$$
$$= \frac{(\ell + m - 1) + n}{(m_0 + m - 1) + 1} \frac{(m_0 + m - 1)^2}{E_{m_0,m}^\ell} \|R G \varphi_{m_0+m-1}^\ell\|^2.$$

Therefore,

$$\|\varphi_{m_0+m}^\ell\|^2 = \left(\prod_{j=1}^m \left(\frac{\ell + j - 1 + n}{m_0 + j - 1 + 1} \right) \right) \frac{2(m_0 + m - j)^2}{(m - j + 1)((2m_0 + m - j) + (2\ell + m - j))} \|\varphi_{m_0}^\ell\|^2$$
$$= \left(\prod_{j=1}^m \left(\frac{\ell + j + (n - 1)}{m_0 + j} \right) \right) \frac{(m_0 + \ell - 1)!((m_0 + m - 1)!)^2}{(m_0 - 1)!^2 m!(m_0 + \ell + m - 1)!} \|\varphi_{m_0}^\ell\|^2.$$

For non-negative integer k define $\varphi_k \in C^\infty(M, i^*(S^k T^*_\Sigma)) \cong \bigoplus_{\mu=0}^k C^\infty(M, S^\mu T^*_M \otimes S^{k-\mu} N^*)$ and $\varphi \in \bigoplus_{k=0}^\infty C^\infty(M, i^*(S^k T^*_\Sigma))$ by

$$\varphi_k := 0 \quad \text{for } k < m_0, \quad \varphi_k := \sum_{\ell=0}^{m_0} \varphi_{m_0+(k-m_0)}^\ell \quad \text{for } k \geq m_0,$$

and

$$\varphi := \sum_k \varphi_k \tag{3.10}$$

where $\varphi_{m_0+(k-m_0)}^\ell \in C^\infty(M, S^{\ell+(k-m_0)} T^*_M \otimes S^{m_0-k} N^*)$. Using the frame $e = (e_1, \ldots, e_N)$ given in (3.1), we write

$$\varphi_k(\xi) = \sum_{|I|=k} f_I(i(\xi)) e_{I,1}(\xi) \tag{3.11}$$

for $\xi \in M$.

Springer
Lemma 3.4 In the above setting, the following identity holds:

\[\| \varphi_k \|^2 = \sum_{\ell=0}^{m_0} \| \varphi_{m_0+(k-m_0)}^\ell \|^2 \] for \(k \geq m_0 \).

Proof Let \(\{ U_\alpha \} \) be a finite open cover of \(i(M) \) in \(\Sigma \) satisfying that \(T^*_\Sigma \) on \(U_\alpha \) has a local orthonormal frame \(\{ e_1, \ldots, e_N \} \) such that \(g = \sum_{\mu=1}^N e_\mu \otimes \bar{e}_\mu \) and \(h = \sum_{\mu=1}^n t^* e_\mu \otimes t^* \bar{e}_\mu \). Write \(L = (i_1, \ldots, i_n) \), \(J = (i_{n+1}, \ldots, i_N) \) and \(e^L = e_1^{i_1} \cdots e_n^{i_n} \), \(e^J = e^{i_{n+1}} \cdots e^{i_N} \) accordingly. Then \(\{ e^L \otimes e^J \}_{|L|=|\ell+(k-m_0), |J|=m_0-\ell} \) becomes a local orthonormal frame of \(S^{\ell+(k-m_0)} T^*_M \otimes S^{m_0-\ell} N^* \) on \(i^{-1}(U_\alpha) \), and locally

\[\varphi_k^\ell (\zeta) = \sum_{|L|=|\ell+(k-m_0), |J|=m_0-\ell} f_{LJ}(i(\zeta)) e^L \big|_{i(\zeta)} \otimes e^J \big|_{i(\zeta)} \]

by (3.10), where \(f_{LJ} \) is a smooth function on \(U_\alpha \). Since \(\iota \) is an embedding, \(\{ \iota^{-1}(U_\alpha) \} \) becomes a finite open cover of \(M \). Let \(\{ \chi_\alpha \} \) be a partition of unity subordinate to \(\{ \iota^{-1}(U_\alpha) \} \). Then

\[
\| \varphi_k \|^2 = \int_M \langle \varphi_k, \varphi_k \rangle dV_M
\]

\[
= \sum_{\alpha} \sum_{\ell=0}^{m_0} \sum_{|L|=|\ell+(k-m_0), |J|=m_0-\ell} \int_{\iota^{-1}(U_\alpha)} \chi_\alpha |(f_{LJ} \circ \iota)(\zeta)|^2 \langle e^L, e^L \rangle \langle e^J, e^J \rangle dV_M
\]\n
\[
= \sum_{\alpha} \sum_{\ell=0}^{m_0} \sum_{|L|=|\ell+(k-m_0), |J|=m_0-\ell} \frac{L! J!}{k!} \int_{\iota^{-1}(U_\alpha)} \chi_\alpha |(f_{LJ} \circ \iota)(\zeta)|^2 dV_M.
\]

Since

\[
\| \varphi_k^\ell \|^2 = \sum_{\alpha} \sum_{|L|=|\ell+(k-m_0), |J|=m_0-\ell} \frac{L! J!}{k!} \int_{\iota^{-1}(U_\alpha)} \chi_\alpha |(f_{LJ} \circ \iota)(\zeta)|^2 dV_M,
\]

the proof is completed. \(\square \)

By using (3.11), we define a formal sum \(f \) on \(\tilde{M} \times \mathbb{B}^N \) by

\[
f(\zeta, w) := \sum_{|J|=0}^{\infty} f_J(i(\zeta))(T_i(\zeta) w)^J.
\]

(3.12)

In view of Lemma 3.5 below, we may consider \(f \) as a function on \(\Omega := M \times_\rho \mathbb{B}^N \).

Lemma 3.5 \(f(\zeta, w) \) is \(\Gamma \)-invariant, i.e., \(f(\gamma \zeta, \rho(\gamma) w) = f(\zeta, w) \) for all \(\gamma \in \Gamma \), \(\zeta \in \tilde{M} \) and \(w \in \mathbb{B}^N \).
Proof} Fix $\gamma \in \Gamma$. There exists a unitary matrix U_ζ depending only on ζ satisfying
\[
T_{\rho(\gamma)(i(\zeta))}\rho(\gamma)w = U_\zeta T_i(\zeta)w. \tag{3.13}
\]
Since $\varphi \in \bigoplus_{k=0}^\infty H^0(M, i^*(S^k T_{\Sigma}^*)) \cong \bigoplus_{k=0}^\infty H^0(\tilde{M}, S^k T_{\Sigma}^*|\tilde{M})$ and $i(M) \cong \tilde{M}/\rho(\Gamma)$, we have $\rho(\gamma)^*\varphi_k = \varphi_k$. Note that
\[
\rho(\gamma)^*e_j = \sum_k A_{jk} \circ \rho(\gamma)d(\rho \circ \gamma)_k = \sum_{k,m,l} A_{jk} \circ \rho(\gamma)\frac{\partial(\rho \circ \gamma)_k}{\partial \zeta_l} A^{lm} e_m
\]
where (A^{lm}) denotes the inverse matrix of A, i.e., for $e = (e_1, \ldots, e_N)$
\[
\rho(\gamma)^*e |_{i(\zeta)} = \left(A \circ \rho(\gamma)d\rho(\gamma)A^{-1} \right)^* e |_{i(\zeta)} = U^*_\zeta e |_{i(\zeta)}.
\]
This implies
\[
\sum_{|I|=0}^\infty f_I(i(\zeta))e_I = \sum_{|I|=0}^\infty f_I(\rho(\gamma)i(\zeta))\rho(\gamma)^*(e_I)
\]
\[
= \sum_{|I|=0}^\infty f_I(\rho(\gamma)i(\zeta))U^*_\zeta(e_I) \tag{3.14}
\]
where $\rho(\gamma)^*$ and U^*_ζ are understood as the pull-back of symmetric differential forms. Hence by (3.13) and (3.14), we have
\[
f(\gamma \zeta, \rho(\gamma)w) = \sum_{|I|=0}^\infty f_I(i(\gamma \zeta))(T_{\rho(\gamma) i(\zeta)}\rho(\gamma)w)^I
\]
\[
= \sum_{|I|=0}^\infty f_I(\rho(\gamma)i(\zeta))(T_{\rho(\gamma) i(\zeta)}\rho(\gamma)w)^I
\]
\[
= \sum_{|I|=0}^\infty f_I(\rho(\gamma)i(\zeta))(U^*_\zeta T_i(\zeta)w)^I
\]
\[
= \sum_{|I|=0}^\infty f_I(i(\zeta))(T_i(\zeta)w)^I = f(\zeta, w).
\]

\[\square\]

3.3 L^2 Convergence of Formal Series

Let $\Omega := M \times_{\rho} \mathbb{B}^N$ and $K : \mathbb{B}^N \times \mathbb{B}^N \to \mathbb{C}$ be the (normalized) Bergman kernel on \mathbb{B}^N, i.e.,
\[
K(z, w) = \frac{1}{(1 - z \cdot \overline{w})^{N+1}}
\]
where \(z \cdot \overline{w} = \sum_{i=1}^{N} z_i \overline{w_i}\). We define a Kähler form \(\omega\) on \(\Omega\) by

\[
\omega|_{\{\zeta, w\}} = \tilde{H} + \frac{\sqrt{-1}}{N+1} \partial \overline{\partial} \log K(w, w)
\]

with the Kähler form \(\tilde{H}\) for \((\tilde{M}, i^* g_{B^N})\), where \(i^* g_{B^N}\) is the pull-back metric on \(\tilde{M}\) of the normalized Bergman metric \(g_{B^N}\) on \(B^N\). One can check that \(\omega\) is an \((1, 1)\) form on \(M \times \rho B^N\). We define the volume form on \(\Omega\) by

\[
dV_{\omega} = \sqrt{-1} N K(w, w) \tilde{H}^n \wedge dw \wedge \overline{dw},
\]

(3.15)

where \(d\omega := dw_1 \wedge \cdots \wedge dw_N\). Now for measurable sections \(f_1, f_2\) on \(\Lambda^{p,q} T^*_\Omega\) and \(\alpha > -1\), we set

\[
\langle\langle f_1, f_2 \rangle\rangle_\alpha := c_\alpha \int_{\Omega} \langle f_1, f_2 \rangle_\omega \delta^{\alpha+N+1} dV_{\omega}
\]

where \(c_\alpha = \frac{\Gamma(N+\alpha+1)}{\Gamma(\alpha+1) N!}\) and \(\delta = 1 - |T_i(\zeta)|^2\).

Lemma 3.6 If \(f_1, f_2\) are measurable sections on \(\Lambda^{p,q} T^*_\Omega\), then

\[
\langle\langle f_1, f_2 \rangle\rangle_\alpha = c_\alpha \int_{\Omega} \langle f_1, f_2 \rangle_\omega \delta^{\alpha} \left| \frac{K(w, t(\zeta))^2}{K(t(\zeta), t(\zeta))} \right| \tilde{H}^n \wedge dw \wedge \overline{dw}.
\]

Proof By (3.15) and

\[
1 - |T_z w|^2 = \frac{(1 - |z|^2)(1 - |w|^2)}{|1 - z \cdot \overline{w}|^2} = \left(\frac{K(z, z) K(w, w)}{|K(z, w)|^2} \right)^{-\frac{1}{N+1}},
\]

the lemma follows. \(\square\)

For \(\alpha > -1\), we define a weighted \(L^2\)-space by setting

\[
L^2_{(p,q),\alpha}(\Omega) := \{ f : f \text{ is a measurable section on } \Lambda^{p,q} T^*_\Omega, \|f\|^2_\alpha := \langle\langle f, f \rangle\rangle_\alpha < \infty \}
\]

and a weighted Bergman space by \(A^2_{\alpha}(\Omega) := L^2_{(0,0),\alpha}(\Omega) \cap O(\Omega)\). In this setting, we extend \(\tilde{\partial}\)-operator on \(\Omega\) as the maximal extension of \(\tilde{\partial}\) on \(\Omega\) which acts on smooth \((p, q)\) forms on \(\Omega\).

Lemma 3.7 For any partial sum

\[
F_{m_0+m}(\zeta, w) = \sum_{|I|=0}^{m_0+m} f_I(t(\zeta))(T_i(\zeta)w)^I
\]

\(\square\) Springer
of \(f \) in (3.12), the following identity holds:

\[
\|F_{m_0+m}\|_\alpha^2 = \frac{2^N \pi^N}{N!} \sum_{|I|=0}^{m_0+m} \|\varphi_I\|_\alpha^2 \frac{|I|! \Gamma(N + |I| + \alpha + 1)}{\Gamma(N + |I| + \alpha + 1)}.
\] (3.16)

\textbf{Proof} Let \(\hat{M} \) denote the fundamental domain of \(M \) in \(\tilde{M} \) and \(\tilde{\Omega} \) denote the corresponding domain of \(\Omega \). Note that \(\tilde{\Omega} = \hat{M} \times {\mathbb{B}}^N \subset \Omega = M \times {\mathbb{B}}^N \). By Lemma 3.6, \(\|F_{m_0+m}\|_\alpha^2 \) is equal to

\[
c_\alpha 2^N \int_{\tilde{\Omega}} \left| \sum_{|I|=0}^{m_0+m} f_I(t(\zeta))(T_{t(\zeta)}w)^I \right|^2 (1 - |T_{t(\zeta)}w|^2)^\alpha \tilde{H}^n \frac{|K(w, t(\zeta))|^2}{K(t(\zeta), t(\zeta))} d\lambda_w
\] (3.17)

where \(\lambda_w = \left(\sqrt{-1} \right)^N dw_1 \wedge dw_1 \wedge \cdots \wedge dw_N \wedge d\overline{w}_N \) denotes the Lebesgue measure of \(\mathbb{B}^N \).

Since \(t = T_{t(\zeta)}w, J_{\mathbb{R}} T_{t(\zeta)}(0) = (1 - |t(\zeta)|^2)^{N+1}, d\lambda_w = |J_{\mathbb{C}} T_{t(\zeta)}|2d\lambda_t, \)

\[
K(t(\zeta), w) = K(T_{t(\zeta)}0, T_{t(\zeta)}t) = \frac{K(0, t)}{J_{\mathbb{C}} T_{t(\zeta)}(0) J_{\mathbb{C}} T_{t(\zeta)}(t)} = \frac{1}{J_{\mathbb{C}} T_{t(\zeta)}(0) J_{\mathbb{C}} T_{t(\zeta)}(t)},
\]

and

\[
K(t(\zeta), t(\zeta)) = K(T_{t(\zeta)}0, T_{t(\zeta)}0) = \frac{K(0, 0)}{|J_{\mathbb{C}} T_{t(\zeta)}(0)|^2} = \frac{1}{|J_{\mathbb{C}} T_{t(\zeta)}(0)|^2},
\]

by (3.17), we obtain

\[
\|F_{m_0+m}\|_\alpha^2 = 2^N c_\alpha \int_{\tilde{M}} \tilde{H}^n \int_{\mathbb{B}^N} \left| \sum_{|I|=0}^{m_0+m} f_I(t(\zeta))(T_{t(\zeta)}w)^I \right|^2 (1 - |t|^2)^\alpha d\lambda_t
\] (3.18)

The second equality in (3.18) can be induced by the orthogonality of polynomials with respect to the inner product \(\int_{\mathbb{B}^n} f \overline{g}(1 - |t|^2)^\alpha d\lambda_t \) ([13]).

Since

\[
\|\varphi_\ell\|_\alpha^2 = \sum_{|I|=\ell} \frac{I!}{\ell!} \int_{\tilde{M}} |f_I \circ t|^2 \tilde{H}^n,
\]
by (3.18) one has
\[\| F_{m_0+m} \|^2_{L^2_\alpha} = \frac{2^N \pi N^{m_0+m}}{N!} \sum_{|I|=0} \| \varphi_{|I|} \|^2 |I|! \Gamma(N + \alpha + 1) \frac{\Gamma(N + |I| + \alpha + 1)}{\Gamma(N + |I| + \alpha + 1)}. \]

Lemma 3.8 For any \(\alpha > -1 \), the formal sum \(f \) converges in \(L^2_\alpha(\Omega) \). Moreover, if \(n \neq N \), then \(f \) converges in \(L^2_{-1}(\Omega) \).

Proof By (3.16) and Lemma 3.4, the partial sum
\[F_{m_0+m}(\zeta, w) = \sum_{|I|=0}^{m_0+m} f_I(\zeta) (T_{\ell_I}(\zeta)) w^I \]
satisfies
\[\| F_{m_0+m} \|^2_{L^2_\alpha} = \frac{2^N \pi N}{N!} \sum_{k=0}^{m} \| \varphi_{m_0+k} \|^2 \frac{(m_0 + k)! \Gamma(N + \alpha + 1)}{\Gamma(N + m_0 + k + \alpha + 1)} \]
\[= \frac{2^N \pi N}{N!} \sum_{k=0}^{m} \left(\sum_{\ell=0}^{m_0} \| \varphi_{m_0+k}^{\ell} \|^2 \right) \frac{(m_0 + k)! \Gamma(N + \alpha + 1)}{\Gamma(N + m_0 + k + \alpha + 1)} \]
\[= \frac{2^N \pi N \Gamma(N + \alpha + 1) (m_0 + 1)}{\Gamma(m_0 + N + \alpha + 1)} \sum_{\ell=0}^{m_0} \sum_{k=0}^{m} a_{k}^{\ell}, \]
where
\[a_{k}^{\ell} := \frac{(m_0 + 1)_k}{(N + m_0 + \alpha + 1)_k} \frac{m_0(m_0)_k}{(m_0 + \ell)_k} \frac{1}{k!} \left(\prod_{j=1}^{k} \frac{((\ell + j) + (n - 1))}{(m_0 + j)} \right) \| \varphi_{m_0+k}^{\ell} \|^2 \]
\[= \frac{(m_0 + 1)_k}{(N + m_0 + \alpha + 1)_k} \frac{m_0(m_0)_k}{(m_0 + \ell)_k} \frac{1}{k!} \left(\prod_{j=1}^{k} \frac{((\ell + j) + (n - 1))}{(m_0 + j)} \right) \| \varphi_{m_0+k}^{\ell} \|^2 \]
\[= \frac{(m_0 + 1)_k}{(N + m_0 + \alpha + 1)_k} \frac{m_0(m_0)_k}{(m_0 + \ell)_k} \frac{1}{k!} \left(\prod_{j=1}^{k} \frac{((\ell + j) + (n - 1))}{(m_0 + j)} \right) \| \varphi_{m_0+k}^{\ell} \|^2 \]

and \((m_0)_k := m_0(m_0 + 1) \cdots (m_0 + k - 1) \). Note that for each fixed \(\ell = 0, \cdots, m, \)
\[k \left(\frac{a_{k}^{\ell}}{a_{k+1}^{\ell}} - 1 \right) = k \left(\frac{(k+1)(m_0 + \ell + 1)(k + N + m_0 + \alpha + 1)}{(k + m_0)^2(k + n + \ell)} - 1 \right) \]
\[= k \left(\frac{(\ell - m_0 + 1)k - m_0^2}{(k + m_0)^2} \right) + (N + m_0 + \alpha + 1 - (n + \ell)) \frac{k(k+1)(m_0 + \ell + 1)}{(k + m_0)^2(k + n + \ell)} \]
\[\to (\ell - m_0 + 1) + (N + m_0 + \alpha + 1 - n - \ell) = 1 + (N - n + \alpha + 1) \]
as \(k \to \infty \). Hence the series \(\sum_{k=0}^{\infty} a_{k}^{\ell} \) converges when \(\alpha > n - (N+1) \) by the Raabe’s test. Since \(F_{m_0+m} \) is the partial sum of \(f \), the lemma is now proved. □
Remark 3.9 Set $\alpha < -1$. For any formal sum f given by (3.12) define L^2-norm for any partial sum of f by (3.16). Then Lemma 3.8 tells us that f converges in $L^2_\alpha(\Omega)$ if $\alpha > n - (N + 1)$ (cf. [12, Chapter 12]).

3.4 Holomorphicity of Formal Series

Lemma 3.10 The formal sum f given by (3.12) is holomorphic.

Proof Note that since f is holomorphic in w, we only need to show that f is holomorphic in ζ. Let

$$F_m(\zeta, w) := \sum_{|I|=0}^m \hat{f}_I(\iota(\zeta))(T_{\iota(\zeta)}w)^I$$

be the finite sum of f and let $\Gamma^j_{i\mu} := \sum_{k,s} A^k j \frac{\partial A_{ls}}{\partial \bar{z}_k} A^{s\mu}$. Since

$$\frac{\partial F_m(\zeta, w)}{\partial \xi_j} = \frac{\partial \tilde{F}_m(\zeta, T_{\iota(\zeta)}w)}{\partial \xi_j} + \sum_{k,v} \frac{\partial \tilde{F}_m(\zeta, T_{\iota(\zeta)}w)}{\partial t_k} \frac{\partial (T_{\iota(\zeta)}w)_k}{\partial \bar{z}_v} \bigg|_{z=\iota(\zeta)} \frac{\partial \bar{t}_v}{\partial \xi_j}$$

with $\tilde{F}_m(\zeta, t) := \sum_{|I|=0}^m \hat{f}_I(\iota(\zeta))t^I$, we obtain

$$\bar{\phi}_s F_m = \sum_{|I|=0}^m \bar{\phi}_s \tilde{F}_m(\zeta, T_{\iota(\zeta)}w) + \sum_{|I|=0}^m \bar{\phi}_s \tilde{F}_m(\zeta, T_{\iota(\zeta)}w) \sum_{k,v} \frac{\partial \tilde{F}_m(\zeta, T_{\iota(\zeta)}w)}{\partial t_k} \frac{\partial (T_{\iota(\zeta)}w)_k}{\partial \bar{z}_v} \bigg|_{z=\iota(\zeta)} \frac{\partial \bar{t}_v}{\partial \xi_j}$$

Here, the second equality holds by Lemma 3.2 and the third equality holds by the equation (4.8) and Lemma 4.8 in [9]. If we express $\phi_s = \sum_{|I|=s} \hat{f}_I(\iota(\zeta))e^I|_{\iota(\zeta)}$, then we have

$$\tilde{\phi}_s = \sum_{|I|=s} \sum_{\mu=1}^n \left(\bar{\phi}_s \tilde{F}_m(\zeta, T_{\iota(\zeta)}w) + \sum_{\tau=1}^N \left(\sum_{k} \iota_k (f_I \circ \iota)(\Gamma^k_{\tau}) + |I|(f_I \circ \iota)(T_{\iota(\zeta)}w)_\tau \right) \right) e^I|_{\iota(\zeta)} \otimes \bar{e}_\mu.$$ (3.20)
On the other hand, one has

\[
\bar{\partial}_s \varphi = -(s - 1) \mathcal{R}_G(\varphi_{s-1})
\]

\[
= -(s - 1) \sum_{\mu=1}^{N} \sum_{\tau=1}^{n} (a_{\tau \mu} \circ \iota) \sum_{|J|=s-1} (f_J \circ \iota)(e^J e_\tau)|_{t(\zeta)} \otimes \tilde{e}_\mu
\]

(3.21)

by (3.4), (3.10), and the definition of \(\mathcal{R}_G \) with Lemma 3.1. Hence by comparing (3.20) and (3.21), one obtains

\[
- (s - 1) \sum_{|J|=s-1} \sum_{\tau=1}^{n} (a_{\tau \mu} \circ \iota)(f_J \circ \iota)t^J t_\tau = \sum_{|J|=s} \left(\overline{Y}_\mu(f_J \circ \iota) \right.
\]

\[
+ \sum_{\tau=1}^{n} (a_{\tau \mu} \circ \iota) \left(\sum_{k} i_k (f_J \circ \iota) \Gamma_k^r \right. + \sum_{k} (i_k + 1) \sum_{q \neq k} \left(f_{i_1 \ldots i_k + 1 \ldots i_q - 1 \ldots i_N} \circ \iota \Gamma_k^r \right) \left. \right) t^J t_\tau.
\]

Therefore, we obtain

\[
\overline{Y}_\mu F_m = m \sum_{|I|=m} \sum_{\tau=1}^{n} (a_{\tau \mu} \circ \iota)(f_I \circ \iota)(T_I(\zeta)w)^J (T_I(\zeta)w)_\tau.
\]

If \(f_1 \) and \(f_2 \) are monomials in \(\iota \) with \(f_1 \neq c f_2 \) for any \(c \in \mathbb{R} \), we have \(\int_{\mathbb{B}^n} f_1 f_2 (1 - |t|^2)^{\alpha} d\lambda_t = 0 \). Hence, one obtains

\[
\|
\bar{\partial}_s F_m \|^2 \leq m^2 \sum_{\tau=1}^{n} \left\| \sum_{|I|=m} \sum_{\tau=1}^{n} (a_{\tau \mu} \circ \iota)(f_I \circ \iota)(\zeta)(T_I(\zeta)w)^J (T_I(\zeta)w)_\tau \right\|^2
\]

\[
\lesssim m^2 \sum_{|I|=m} \left(\sum_{\tau=1}^{n} |t|^J t_\tau|^2 (1 - |t|^2)^{\alpha} d\lambda_t \right)
\]

\[
\lesssim m^2 \sum_{|I|=m} \left\| \varphi_I \right\|^2 \frac{m! \Gamma(N + 2) \pi^N (i_1 + \cdots + i_n + n)}{N! \Gamma(N + m + 3)}
\]

\[
\lesssim m^2 \sum_{|I|=m} \left\| \varphi_I \right\|^2 \frac{m! \Gamma(N + 2) \pi^N (m + n)}{N! \Gamma(N + m + 3)}
\]

\[
\lesssim \sum_{\ell=0}^{m_0} \left(\frac{1}{(N/m + 1 + 2/m) \left(\frac{N}{m} + 1 + \frac{1}{m} \right) (m + N)!} \right) \left\| \varphi^\ell_m \right\|^2
\]

for \(m \geq m_0 \) by using Lemma 3.4.
Note that
\[
\frac{1}{(\frac{N}{m} + 1 + \frac{2}{m}) (\frac{N}{m} + 1 + \frac{1}{m})} \frac{m!(m+n)}{(m+N)!} = O(m^{-(N-1)}).
\]

Moreover,
\[
\frac{(m_0 + \ell - 1)![(m_0 + (m-m_0) - 1)]^2}{(m_0 - 1)!^2(m-m_0)!(m_0 + \ell + (m-m_0) - 1)!} = O(m^{(n-1)-(m_0-\ell)})
\]
and
\[
\prod_{j=1}^{m-m_0} \frac{(\ell+j)+(n-1)}{m_0+j} = \frac{m_0!(\ell + (m - m_0) + (n - 1))!}{(\ell + (n-1))(m_0 + (m-m_0))!} = O(m^{(n-1)-(m_0-\ell)})
\]
by Lemma 3.3 and Stirling’s formula. Hence \(\|\tilde{\partial}F_m\|_1^2 = O(m^{n-N-1}) \to 0\) as \(m \to \infty\). Therefore by the distribution theory, we conclude that \(f\) is holomorphic. \(\Box\)

Let \(f\) be a holomorphic function on \(\Omega = M \times_\rho B^N\). Using \(i\), we may regard \(M \times_\rho B^N\) as a quotient of \(i(\tilde{M}) \times B^N\) under the diagonal action of \(\rho(\Gamma)\) and it becomes a complex submanifold of \(B^N \times B^N \rho(\Gamma)\) which is a quotient of \(B^N \times B^N\) under the same action. So we may identify \(f \in \mathcal{O}(\Omega)\) with \(f \in \mathcal{O}(i(\tilde{M}) \times B^N)\) which satisfies \(\tilde{f}(i(\xi), w) = f((\rho \circ \gamma)i(\xi)), (\rho \circ \gamma)(w))\) for any \(\gamma \in \Gamma\).

Let \((z, w) \in i(\tilde{M}) \times B^N \subseteq B^N \times B^N\). Since \(\tilde{f}(z, t) := f(z, T_z t) = f(z, w)\) is holomorphic for \(t = Tzw\), we may express \(\tilde{f}\) by
\[
\tilde{f}(z, t) = \sum_{|I| = 0}^\infty f_I(z) t^I, \quad \text{where} \quad f_I(z) = \frac{1}{I!} \frac{\partial^{|I|}}{\partial t^{|I|}} \tilde{f}(z, 0) \in C^\infty(i(\tilde{M}))
\]
Hence
\[
f(i(\xi), w) = \sum_{|I| = 0}^\infty f_I(i(\xi))(T_{i(\xi)}w)^I
\]
on \(\tilde{M} \times B^N\). We associate \(\sum_{|I| = 0}^\infty f_I(i(\xi))(T_{i(\xi)}w)^I\) to a set of sections \(\{\varphi_m\}\) with \(\varphi_m \in C^\infty(M, i^*(S^m T^*_\Sigma))\) which is defined by
\[
\varphi_m := \sum_{|I| = m} f_I(i(\xi)) e^I|_{i(\xi)}
\]
where \(e^I = e_1^{i_1} \cdots e_N^{i_N}\) and \(i_1 + \cdots + i_N = m\). We call \(\{\varphi_m\}\) the associated differential of \(f\) on \(M\). Note that by a similar argument of Lemma 3.7, we obtain
\[
\|f\|^2 = \frac{2^{N} \pi^N}{N!} \sum_{|I| = 0}^\infty \|\varphi_I\|^2 \frac{|I|!\Gamma(N + \alpha + 1)}{\Gamma(N + |I| + \alpha + 1)}
\]
(3.22)
The Hardy space $A^2_{-1}(\Omega)$ is defined by

$$A^2_{-1}(\Omega) := \{ f \in \mathcal{O}(\Omega) : \| f \|_{-1}^2 < \infty \}$$

where the norm $\| f \|_{-1}^2$ is given by

$$\| f \|_{-1}^2 := \frac{2^N \pi^N}{N!} \sum_{|I|=0}^{\infty} \| \varphi_{|I|} \|_2^2 \frac{|I|! \Gamma(N)}{\Gamma(N + |I|)}.$$ \hspace{1cm} (3.23)

with the associated differential $\{ \varphi_{|I|} \}$ of f.

Lemma 3.11 If $N > n$, then for any $\alpha > -1$, $A^2_{-1}(\Omega) \subset A^2_\alpha(\Omega)$.

Proof For any $|I| \geq 1$ the inequality

$$\frac{|I|! \Gamma(N + \alpha + 1)}{\Gamma(N + |I| + \alpha + 1)} < \frac{|I|! \Gamma(N)}{\Gamma(N + m)}$$

is equivalent to

$$\frac{(\alpha + 1)_N}{(\alpha + 1)_{N+|I|}} < \frac{(N - 1)!}{(N + |I| - 1)!}$$ \hspace{1cm} (3.24)

and (3.24) holds whenever $\alpha > -1$. Therefore, the lemma follows from (3.22), (3.23) and the comparison test. \hfill \Box

Now we define a linear map

$$\Phi : \bigoplus_{m=0}^{\infty} H^0(M, \iota^*(S^m T_{\Sigma}^*)) \to \mathcal{O}(\Omega),$$

For a constant function $\psi \in H^0(M, \iota^*(S^0 T_{\Sigma}^*))$, identifying $S^0 T_{\Sigma}^*$ with the trivial line bundle $\Sigma \times \mathbb{C}$, we associate ψ to the constant function $\Phi(\psi)$ of the same constant value. For a non-zero $\psi \in H^0(M, \iota^*(S^m T_{\Sigma}^*)) \cong \bigoplus_{\ell=0}^{m} H^0(M, \iota^*(S^\ell T_{\Sigma}^* \otimes S^{m-\ell} N^*))$, we consider sequences $\{ \varphi_0^\ell \}, \ldots, \{ \varphi_m^\ell \}$ for ψ described in (3.4) and Lemma 3.3 and define $\Phi(\psi)$ by the formal sum f given by (3.10), (3.11), and (3.12). Then by (3.22) and Lemma 3.8, the image of Φ is contained in $A^2_\alpha(\Omega)$ for any $\alpha > -1$. If $n \neq N$, then $\Phi(\psi)$ belongs to $A^2_{-1}(\Omega)$.

Lemma 3.12 Let f be a holomorphic function on Ω. Then the associated differential $\{ \varphi_m \}$ of f on M satisfies

$$\bar{\partial}_M \varphi_{m} = -(m - 1) R_G \varphi_{m-1}.$$
Proof Take a point \(q \in \tilde{M} \) and small open set \(q \in U \subset \tilde{M} \) such that \(U \cong i(U) \subset i(\tilde{M}) \). Consider a local coordinate system \((z_1, \ldots, z_N)\) at \(p := i(q) \in i(U) \) such that

\[i(U) = \{(z_1, \ldots, z_N) : z_{n+1} = \cdots = z_N = 0\} \quad \text{near} \quad p = (0, \ldots, 0).\]

Since the holomorphicity of \(f \) on \(\Omega \) implies

\[0 = \frac{\partial}{\partial \xi_j} f(i(\xi), w) = \sum_{\mu=1}^n \frac{\partial f}{\partial \bar{z}_\mu} \frac{\partial \bar{t}_\mu}{\partial \xi_j} + \sum_{k=1}^N \sum_{\mu=1}^n \frac{\partial f}{\partial t_k} \frac{\partial (T_z w)_k}{\partial \bar{z}_\mu} \bigg|_{z=i(\xi)} \frac{\partial \bar{t}_\mu}{\partial \xi_j} \text{ for } j = 1, \ldots, n. \tag{3.25} \]

Therefore

\[0 = \frac{1}{I!} \frac{\partial^{|I|}}{\partial t^I} \bigg|_{t=0} \left(\sum_{\mu=1}^n \frac{\partial f}{\partial \bar{z}_\mu} \frac{\partial \bar{t}_\mu}{\partial \xi_j} + \sum_{k=1}^N \sum_{\mu=1}^n \frac{\partial f}{\partial t_k} \frac{\partial (T_z w)_k}{\partial \bar{z}_\mu} \bigg|_{z=i(\xi)} \frac{\partial \bar{t}_\mu}{\partial \xi_j} \right). \]

By a similar computation to Proposition 4.9 in [9] with Lemma 3.2,

\[0 = Y_q(f_{i_1 \cdots i_N} \circ i) + \sum_{l=1}^N (a_{i_l q} \circ i) \left(\sum_{k=1}^N \binom{N}{k} \Gamma_{k}^{l_k} + \sum_{\tau \neq k} (i_k + 1) (f_{i_1 \cdots i_k+1 \cdots i_{n-l-1} \cdots i_N} \circ i) \Gamma_{\tau}^{l_k} \right) + (|I|-1) (f_{i_1 \cdots i_{n-l-1} \cdots i_N} \circ i). \tag{3.26} \]

If we express \(\varphi_l = \sum_{|I|=l} f_l(i(\xi)) e^I |_{i(\xi)} \), we have

\[\bar{\partial} \varphi_{i_1 \cdots i_N} = \sum_{q=1}^n \left(Y_q(f_{i_1 \cdots i_N} \circ i) + \sum_{k,l=1}^N (a_{i_l q} \circ i) i_k (f_{i_1 \cdots i_N} \circ i) \Gamma_{k}^{l_k} \right) e_1^{i_1} \cdots e_N^{i_N} \otimes \bar{e}_q \]

\[+ \sum_{q=1}^n \left(\sum_{k,l=1}^N a_{i_l q} i_k (f_{i_1 \cdots i_N} \circ i) \Gamma_{k}^{l_k} \right) e_1^{i_1} \cdots e_{l_k-1}^{i_{l_k}} \cdots e_{l_{\tau}+1}^{i_{l_{\tau}}} \cdots e_N^{i_N} \otimes \bar{e}_q \]

Therefore, the lemma follows by (3.26). \(\square \)
Remark 3.13 By Lemma 3.12, for any \(f \in \mathcal{O}(\Omega) \) which vanishes up to \(m \)-th order with nonvanishing \((m+1)\)-th order on \(D := \{ ((\zeta, t(\zeta)) \} \in \Omega : \zeta \in \hat{M} \} \), there exists a non-zero holomorphic section \(\varphi_{m+1} \) of \(t^*(S^{m+1}T^*_{\Sigma}) \) associated to \(f \).

Proposition 3.14 The linear map

\[
\Phi : \bigoplus_{m=0}^{\infty} H^0(M, t^*(S^mT^*_{\Sigma})) \to \mathcal{O}(\Omega)
\]

has a dense image in \(\mathcal{O}(\Omega) \) equipped with the compact open topology.

Let

\[
\Omega_\epsilon := \{ ((\zeta, w)) \in \Omega : |T_{t(\zeta)}w| < \epsilon \}
\]

with \(0 < \epsilon < 1 \). These \(\Omega_\epsilon \) exhausts \(\Omega \). Define

\[
L^2(\Omega_\epsilon) := \{ f : f \text{ is measurable function on } \Omega_\epsilon \text{ such that } \| f \|^2_{0,\epsilon} := \langle \langle f, f \rangle \rangle^2_{0,\epsilon} < \infty \},
\]

where

\[
\langle \langle f, g \rangle \rangle^2_{0,\epsilon} := \int_{\Omega_\epsilon} f \overline{g} \delta^{N+1}dV_\omega.
\]

The Bergman space \(A^2(\Omega_\epsilon) \) is given by \(L^2(\Omega_\epsilon) \cap \mathcal{O}(\Omega_\epsilon) \).

Proof Since the proof of the proposition is similar to those in [2] and [9], we will only give a sketch of it. By the Cauchy estimate, it suffices to show that the image of \(\Phi \) is dense in \(A^2(\Omega_\epsilon) \) for any \(0 < \epsilon < 1 \). For a contradiction, suppose that there exists a non-zero holomorphic function \(f \in A^2(\Omega_\epsilon) \) which is orthogonal to the image of \(\Phi \) in \(A^2(\Omega_\epsilon) \). Then, for the associated differential \(\{ \varphi_k \} \) of \(f \) on \(M \), there exists \(m_0 \in \mathbb{N} \) such that \(\varphi_k = 0 \) for any \(k < m_0 \), but \(\varphi_{m_0} \neq 0 \). Since \(\varphi_{m_0} \neq 0 \), there exists an \(\ell \), \(0 \leq \ell \leq m_0 \) such that \(\varphi_{m_0}^\ell \neq 0 \) and \(H^0(M, S^{\ell\ell}T^*_M \otimes S^{m_0-\ell}N^*_\Sigma) \).

Now we define orthogonal projections:

\[
\Pi_{m_0+m, E_{m_0+m}}^{\ell, \ell} : L^2(M, S^{\ell\ell}T^*_M \otimes S^{m_0-\ell}N^*_\Sigma \otimes \Lambda^{0,\ell}T^*_M) \to \ker(\square_{m_0+m,M}^{\ell,\ell} - E_{m_0+m}^{\ell,\ell})
\]

for \(i = 0, 1 \) where \(E_{m_0,m} \) is given by (3.9). Let \(\{ \tilde{\varphi}_k^{\ell} \} \) be the sequence satisfying (3.4) with respect to the symmetric differential \(\varphi_{m_0}^{\ell} \). Since \(\langle \varphi_{m_0+m}, \tilde{\varphi}_{m_0+m}^{\ell} \rangle = \langle \varphi_{m_0}^{\ell}, \tilde{\varphi}_{m_0+m}^{\ell} \rangle \) holds for each \(m \) and \(\ell \), if we prove that the sequence \(\{ \tilde{\varphi}_k^{\ell} \} \) equals to \(\{ \Pi_{m_0+m, E_{m_0+m}}^{\ell,\ell} \varphi_{m_0+m} \}_{m=0}^{\infty} \), then it gives a contradiction. For this, we will use induction.

Suppose that this claim is true for any \(m \leq k - 1 \). Since \(f - \Phi(f) \) is also holomorphic, by Lemma 3.12 we have

\[
\overline{\partial}_M (\varphi_{m_0+k}^{\ell} - \tilde{\varphi}_{m_0+k}^{\ell}) = -(m_0 + k - 1) \nabla G (\varphi_{m_0+k-1}^{\ell} - \tilde{\varphi}_{m_0+k-1}^{\ell}).
\]
If we prove
\[
\Pi^{1,\ell}_{m_0+k,E_{m_0,k}} \partial (\varphi^{\ell}_{m_0+k} - \tilde{\varphi}^{\ell}_{m_0+k}) = \partial (\Pi^{0,\ell}_{m_0+k,E_{m_0,k}} (\varphi^{\ell}_{m_0+k} - \tilde{\varphi}^{\ell}_{m_0+k}))
\]
(3.27)
and
\[
\Pi^{1,\ell}_{m_0+k,E_{m_0,k}} \mathcal{R}_G (\varphi^{\ell}_{m_0+k-1} - \tilde{\varphi}^{\ell}_{m_0+k-1}) = \mathcal{R}_G (\Pi^{0,\ell}_{m_0+k-1,E_{m_0,k-1}} (\varphi^{\ell}_{m_0+k-1} - \tilde{\varphi}^{\ell}_{m_0+k-1})),
\]
(3.28)
then by \(\ker \partial \perp \ker (\Pi^{0,\ell}_{m_0+k,E_{m_0,k}} I) \), it follows that \(\tilde{\varphi}^{\ell}_{m_0+k} = \Pi^{0,\ell}_{m_0+k,E_{m_0,k}} (\varphi^{\ell}_{m_0+k}) \) and therefore the claim is proved. Since (3.27) follows by a straightforward computation and (3.28) follows by Corollary 2.3 and the assumption, the proof is completed.

\[\square\]

Proof of Theorem 1.1 To show that \(\Phi \) is injective, since \(\Phi(\mathcal{H}^0(M, S^{\ell} T^*_M \otimes S^{m-\ell} N^*)) \) are orthogonal to each other if \(m \) or \(\ell \) is different by Lemma 3.3, we only need to consider when \(\psi_1, \psi_2 \) belong to \(\mathcal{H}^0(M, i^*(S^m T^*_\Sigma)) \) such that \(\psi_1 \neq \psi_2 \). However, in this case, \(\Phi(\psi_1) \) and \(\Phi(\psi_2) \) are different by the construction (3.12). By Proposition 3.14 and Lemma 3.10, the proof is completed.

\[\square\]

Acknowledgements The authors would like to thank Adachi Masanori for giving useful comments. He observed that \(A^2_2(\Omega) = \bigcap_{\alpha > -1} A^2_\Omega(\Omega) \) if \(N > n \). The authors are grateful to the referee for careful reading of the paper and valuable suggestions and comments. The first author was supported by the Institute for Basic Science (IBS-R032-D1). The second author was partially supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2022R1F1A1063038).

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

References

1. Adachi, M.: On a hyperconvex manifold without non-constant bounded holomorphic functions. In: Byun, J., Cho, H. (eds.) Geometric Complex Analysis. Springer Proceedings in Mathematics & Statistics, vol. 246, pp. 1–10. Springer, Singapore (2018)
2. Adachi, M.: On weighted Bergman spaces of a domain with Levi-flat boundary. Trans. Am. Math. Soc. 374(10), 7499–7524 (2021)
3. Bland, J.S.: On the existence of bounded holomorphic functions on complete Kähler manifolds. Invent. Math. 81(3), 555–566 (1985)
4. Bertin, J., Demailly, J.-P ., Illusie, L., Peters, C.: Introduction to Hodge theory. Translated from the 1996 French original by James Lewis and Peters. SMF/AMS Texts and Monographs, vol. 8, p. 232. American Mathematical Society, Providence, RI; Société Mathématique de France, Paris (2002)
5. Corlette, K.: Flat G-bundles with canonical metrics. J. Differ. Geom. 28(3), 361–382 (1988)
6. Deng, F.: Fornæss, John Erik Flat bundles over some compact complex manifolds. J. Geom. Anal. 30(4), 3484–3497 (2020)
7. Diederich, K.: Ohsawa, Takeo Harmonic mappings and disc bundles over compact Kähler manifolds. Publ. Res. Inst. Math. Sci. 21(4), 819–833 (1985)
8. Greene, R.E., Wu, H.: Function Theory on Manifolds Which Possess a Pole. Lecture Notes in Mathematics, vol. 699. Springer, Berlin (1979)
9. Lee, S., Seo, A.: Symmetric differentials and Jets extension of L^2 holomorphic functions, to appear in Indiana University Mathematics Journal
10. Seo, A.: Weakly 1-completeness of holomorphic fiber bundles over compact Kähler manifolds. J. Lond. Math. Soc. (2) **106**(3), 2305–2341 (2022)
11. Siu, Y.T., Yau, S.T.: Complete Kähler manifolds with nonpositive curvature of faster than quadratic decay. Ann. Math. (2) **105**(2), 225–264 (1977)
12. Zhao, R., Zhu, K.: Theory of Bergman spaces in the unit ball of \mathbb{C}^n. Mém. Soc. Math. Fr. (N.S.) **115**(2008), 103 (2009)
13. Zhu, K.: Spaces of Holomorphic Functions in the Unit Ball. Graduate Texts in Mathematics, vol. 226, p. 271. Springer, New York (2005)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.