Automated replication optimization for protocellular information system

Ditlev Hartmann Bornebusch¹,³, Christina Colaluca Sørensen³, Peter Zingg², Gianluca Gazzola², Norman Packard², and Steen Rasmussen³,⁴

¹Sino-Danish Center, University of Chinese Academy of Sciences, Beijing, China; ²Daptics Inc., San Francisco, USA; ³FLinT Center, University of Southern Denmark, 5230 Denmark; ⁴Santa Fe Institute, New Mexico 87501, USA
deltaetabeta@gmail.com¹ & steen@sdu.dk³

Introduction

Due to the high cost of experiments, high dimensional complex systems with multiple parameters usually pose grand challenges not only in artificial life but in areas including manufacturing processes, supply chains as well as services in the healthcare sector. We present and verify a fully automated method of reducing the needed experiments to identify optimal operational conditions for complex systems, here tested in simulation on a protocellular information system. The method iteratively becomes better at locating system optima through an adaptive data analysis, which is an advantage over e.g. a Monte Carlo optimization method (2).

Autonomous Exploration and Optimization

We have developed and tested an autonomous system for exploration and optimization of complex systems: an Autonomous Exploration and Optimization Loop (AEOL). It is composed of three principal parts that are connected in a loop: (i) a simulation of the complex system under investigation, (ii) an Artificial Intelligence based Design of Experiment (AI-DoE) algorithm and (iii) a message handling system that sends output from the simulation to the AI-DoE systems that in turn sends new input parameters to the simulation system. The loop can be iterated a predefined number of times or until a desired result is obtained.

Loop component (i) is a Lesion Induced DNA Amplification (LIDA) process (see (1) and (3)), which could function as an informational building block with sufficient replication yield for the protocellular model developed in (6). It is a reaction kinetic equation system of the form \(\frac{dx}{dt} = f(x, \alpha) \), where \(x \) and \(\alpha \) denote the involved physicochemical species concentrations and reaction constants respectively. A DNA template and four shorter complementary DNA oligomers are replicated through template directed ligation. Different sequences and corresponding oligomers yield different hybridization energies and thus different reaction rates. Results from LIDA simulations and lab experiments are shown in Fig. 1.

Loop component (ii) is the AI-DoE prediction algorithm that is based on a neural network that leverages experimental data to predict better experiments (5). The AI-DoE traverses the loop by building predictive models from the inputs of the simulation experiments to their outputs \(\alpha_i \rightarrow x_i \), and proposes new experiments \(\alpha_{i+1} \) that are most likely to

Figure 1: Top Four routines (a-d) are executed for every generation in the AEOL: (a) After initial definition of parameter space and regimes a set of proposed experiments (parameter combinations) is collected by AEOP once generated by AI-DoE. (b) AEOP initiates language-specific system simulations of proposed experiments. (c) Simulation results from proposed parameter combinations are collected by AEOP and sent to AI-DoE in a single API call. Bottom Experimental LIDA data (m), see (1); (n) curve fitted to experimental data; (o) simulation with same parameters as experiment; (p) and (q) are AI-DoE discovered optimal replication yield curves with \(k_L \leq 10^{-2}/s \) and \(k_L \leq 10^{-1}/s \) respectively. However, \(k_L = 10^{-1}/s \) is only of theoretical interest as it is not realizable (too fast).
gives improved results. With each loop iteration, the model is increasingly refined with new accumulated data and its predictive performance improves discovering increasingly better experiments.

Loop component (iii) is the message handling software (AEOP), which is written in Python and currently capable of executing both Python and MATLAB based complex system experiments. AEOP transfers \(x_i, \alpha_i \) to AI-DoE and \(\alpha_{i+1} \) back to \(\frac{dx}{dt} = f(x, \alpha) \). The communication between AEOL and AI-DoE is through an Application Interface (API) provided by Daptics (4).

References

1. Alladin-Mustan, B. S., Mitran, C. J., and Gibbs-Davis, J. M. (2015). Achieving room temperature DNA amplification by dialling in destabilization. *Chem. Commun.*, 51:9101–9104.
2. Carothers, J., Goler, J., Juminaga, D., and Keasling, J. (2011). Model-driven engineering of RNA devices to quantitatively modulate gene expression. *Science*, 334:1716–1719.
3. Engelhardt, J., Andresen, B., and Rasmussen, S. (2020). Thermodynamic and kinetic investigations of lesion induced DNA amplification (lida). *Proceedings of the Artificial Life Conference* 2020.
4. Packard, N., Zingg, P., and Gazzola, G. *Daptics API*, github repository publicly available at https://github.com/protolife/daptics-api.
5. Packard, N. and Gazzola, G. Daptics. A white paper describing the fundamentals of daptics’ machine-learning methods for experimental discovery and optimization. Publicly available at https://daptics.ai/pdf/White.pdf.
6. Rasmussen, S., Constantinescu, A., and Svaneborg, C. (2016). Generating minimal living systems from nonliving materials and increasing their evolutionary abilities. *Phil. Trans. Royal Soc. B. Biological Sciences.*, 1701:371.