The Lattice of Closure Relations on a Poset

Michael Hawrylycz
Department of Mathematics
Massachusetts Institute of Technology
Cambridge, MA 02139

and

Victor Reiner
Department of Mathematics
University of Minnesota
Minneapolis, MN 55455

Abstract

In this paper we show that the set of closure relations on a finite poset P forms a supersolvable lattice, as suggested by Rota. Furthermore this lattice is dually isomorphic to the lattice of closed sets in a convex geometry (in the sense of Edelman and Jamison [EJ]). We also characterize the modular elements of this lattice (when P has a greatest element) and compute its characteristic polynomial.

1 The lattice of closure relations

Let P be a poset. A closure relation on P is a map $H : P \to P$ such that for all $x, y \in P$:

1. $x \leq H(x)$
2. $x \leq y \Rightarrow H(x) \leq H(y)$ (monotone)
3. $H(H(x)) = H(x)$ (idempotent)

If $P = 2^S$, the set of all subsets of a set S, then we say H is a closure on the set S. The structure of all closures on a set has been extensively studied by Ore [Or1,Or2].

We may partially order the set of all closure relations on a poset P by setting $H \leq K$ if $H(x) \leq K(x)$ for all $x \in P$. A closure relation H on P may be regarded as a partition of the elements of P, by considering $x, y \in P$ to be in the same block of H if $H(x) = H(y)$. If $H(x) \leq K(x)$ for all $x \in P$, then since $x \leq H(x) \leq K(x)$ for all $x \in P$, $H(x)$ must be in the same block as x of K (regarding K as a partition of P.) Hence H is a refinement of K as partitions. The converse is evident, and so we have the useful observation that $H \leq K$ if and only if H is a refinement of K as partitions.

For the sake of simplifying the proofs, from now on, we will assume that the poset P is finite. However, many of our results are valid under other finiteness conditions on P (such as when P has no infinite chains or no infinite ascending chains).

Theorem 1. The partial order of all closure relations on any poset P forms a lattice, denoted $LC(P)$. It is a join-sublattice of the lattice $\Pi(P)$ of partitions of the elements of P, i.e the join in
$LC(P)$ is the same as the join in $\Pi(P)$.

Proof. Let $\{H_a\}$ be a set of closure relations on P. Then each H_a represents a partition of the elements of P. Let $\bigvee H_a$ denote the join of the $\{H_a\}$ in the partition lattice $\Pi(P)$. We will first show that each block of $\bigvee H_a$ has a unique greatest element. Then we can define a map $J : P \to P$ by sending every $x \in P$ to the greatest element in its block of $\bigvee H_a$. Finally we show that J obeys axiom 2 and so is a closure relation, and hence J must be the join of the set $\{H_a\}$ in $LC(P)$.

To show each block of $\bigvee H_a$ has a greatest element, suppose we have two elements a, b that are maximal in some block. By definition of join in $\Pi(P)$, this means that there exists a sequence B_1, B_2, \ldots, B_n of blocks from the various H_a’s, such that $a \in B_1, b \in B_n$, and $B_k \cap B_{k+1} \neq \emptyset$. Let z_k be the maximum element of B_k. We have $z_1 = a$ and $z_n = b$ by maximality, so if we prove that $z_k \leq a$ for all k, then we will have the contradiction $b \leq a$. Assume by induction that $z_k \leq a$ (true for $k = 1$), let $w \in B_k \cap B_{k+1}$, and assume B_{k+1} is a block of the closure relation H_i. Then

$$z_{k+1} = H_i(w) \leq H_i(z_k) \leq H_i(a) = a.$$

since if $H_i(a) > a$ then a would not be maximal.

Now we show J (as defined above) is a closure relation on P. Since J sends each element to the maximum element in its block in $\bigvee H_a, x \leq J(x)$ and $J(J(x)) = J(x)$. Suppose $x \leq y$ in P. Define a sequence $x_1, x_2, \ldots \in P$ as follows: Let $x_0 = x$, and define x_{k+1} by choosing a closure H_k among $\{H_a\}$ satisfying $H_k(x_k) \neq x_k$, and then setting $x_{k+1} = H_k(x_k)$. By finiteness, this process must stop at some x_n, and $x_n = J(x)$. Define the sequence $y_1, y_2, \ldots \in P$ by applying the same sequence of H_k’s to y, and note that $x_k \leq y_k$ for all k since each H_k is a closure. Thus we have $J(x) = x_n \leq y_n \leq J(y).$ Thus J is monotone, and hence defines a closure relation.

So far we have shown that $LC(P)$ is a join-sub-semilattice of $\Pi(P)$. To show it is a lattice, it suffices to note that it has a minimum element, viz. the identity closure, $I(x) = x$ for all $x \in P$, which must be less than any closure on P. □

The following proposition characterizes when $LC(P)$ is a sublattice of $\Pi(P)$ for posets P with a greatest element.

Proposition 2. Let P have a greatest element $\hat{1}$. Then $LC(P)$ is a sublattice of $\Pi(P)$ if and only if $\hat{0} + P$ is a lattice, where $\hat{0} + P$ is the poset obtained by adjoining a new least element $\hat{0}$ to P.

Remark: A similar (but harder to state) proposition holds even if P has no greatest element.

Proof. (\Rightarrow): If $\hat{0} + P$ is not a lattice then there must exist four elements $a, b, c, d \in P$ with c, d both maximal lower bounds for a and b. Define the closure H_a by $H_a(x) = a$ if $x \leq a$ and $H_a(x) = \hat{1}$ otherwise. Define H_b similarly. If we form $H_a \land H_b$ in $\Pi(P)$ then both c and d will be maximal in the same block. Hence this partition does not correspond to a closure relation. Thus H_a and H_b cannot have the same meet in both $\Pi(P)$ and $LC(P)$.

(\Leftarrow) Suppose $\hat{0} + P$ is a lattice and let $\{H_a\}$ be a set of closure relations on P. Since the meet operation in $LC(P)$ is precisely intersection of the blocks of the individual closure relations, their meet in $\Pi(P)$ and $LC(P)$ coincide if and only if every block in their meet in $\Pi(P)$ has a
greatest element. So suppose this is not the case, i.e. let \(a, b \) be maximal in some block and \(H_\alpha(a) = H_\alpha(b) = c_\alpha, \forall \alpha \). Let \(d \) be the greatest lower bound of the \(c_\alpha \) in the lattice \(\emptyset + P \). Then \(c_\alpha \geq d \geq a, b \) for all \(\alpha \), which implies that \(H_\alpha(d) = c_\alpha \) for all \(\alpha \). Hence \(d \) is in the same block as \(a \) and \(b \), contradicting their maximality. \(\square \)

2 Convexity and mlb-closure

In this section we relate the lattice of closure relations to the notion of a convex geometry as studied by Edelman and Jamison [EJ]. The following proposition is the crucial observation necessary for what follows:

Proposition 3. Let \(H \) be a closure relation on \(P \), and \(A \) its set of closed elements, i.e.

\[
A = \{ x \in P : H(x) = x \}.
\]

Then for any subset \(B \subseteq A \), all maximal lower bounds of \(B \) are in \(A \) (we call such a set \(A \) mlb-closed). Conversely, any \(A \subseteq P \) which is mlb-closed defines the closed elements of a unique closure relation \(H \).

Remark: Note that taking \(B \) to be the empty set, we have that any mlb-closed set \(A \) must contain all of the maximal elements of \(P \).

Proof. Let \(H \) be a closure relation on \(P \), with closed elements \(A \). If \(B \subseteq A \) has some maximal lower bound \(x \), then

\[
x \leq H(x) \leq H(b) = b
\]

for all \(b \in B \). Hence \(H(x) \) is also a lower bound of \(B \), so by maximality, \(H(x) = x \) and \(x \in A \). Conversely, given a set \(A \) which is mlb-closed, we claim that for any \(x \) in \(P \) there exists a unique least element of \(A_{\geq x} \), where \(A_{\geq x} \) is defined to be \(\{ a \in A : a \geq x \} \). To prove this claim, note that since \(A \) contains the maximal elements of \(P \), \(A_{\geq x} \neq \emptyset \). If there were two such minimal elements \(y, z \in A_{\geq x} \), then they would have a maximal lower bound \(w \) above \(x \), contradicting their minimality. Thus, given any mlb-closed set \(A \), we define \(H(x) \) to be the minimum of \(A_{\geq x} \). It remains to show that \(H \) is the unique closure relation with closed elements \(A \). That \(H \) satisfies axioms 1 and 3 is evident. To show axiom 2: if \(x \leq y \), then we have \(A_{\geq x} \supseteq A_{\geq y} \) and hence

\[
H(x) = \min A_{\geq x} \leq \min A_{\geq y} = H(y).
\]

Finally, any closure relation is defined uniquely by specifying its closed elements so \(H \) is unique. \(\square \)

Denote by \(\overline{A} \) the mlb-closure of a set \(A \subseteq P \), i.e. \(\overline{A} \) is the intersection of all mlb-closed sets which contain \(A \). It can easily be shown that this defines a closure on the set \(P \) (i.e. a closure relation on the poset \(2^P \)). Let \(L_{mlb} \) denote the lattice of mlb-closed subsets of \(P \) ordered under inclusion, and let \(M \subseteq P \) be the set of maximal elements of \(P \). We then have

Theorem 4. The order-dual of \(LC(P) \) is isomorphic to the interval between \(\overline{M} \) and \(P \) in \(L_{mlb}(P) \).

Proof. Define a map \(f : LC(P) \to 2^P \) by

\[
f(H) = \{ x \in P : H(x) = x \}.
\]
Figure 1: A six-element poset P and its lattice $LC(P)$.

Proposition 3 shows that the image of f is exactly the interval from \overline{M} to P in $L_{mib}(P)$. It remains then to show that $H \leq K$ if and only if

$$\{x \in P : K(x) = x\} \subseteq \{x \in P : H(x) = x\}.$$

Clearly, if $H \leq K$ and $K(x) = x$ then

$$x = K(x) \geq H(x) \geq x$$

so $H(x) = x$. Conversely, if

$$\{x \in P : K(x) = x\} \subseteq \{x \in P : H(x) = x\},$$

then by the proof of Proposition 3, we have

$$H(y) = \min(\{x \in P : H(x) = x\}_{\geq y}) \leq \min(\{x \in P : K(x) = x\}_{\geq y}) = K(y).$$

Example. Consider the poset P shown in figure 1. Here $M = \{a, b\}$ and $\overline{M} = \{a, b, c\}$. The lattice $LC(P)$ is shown with the closure relations pictured as partitions of the set P.

In [EJ], Edelman and Jamison define a closure $\overline{\cdot}$ on a set S to be a *convex closure* if it satisfies the following *anti-exchange axiom*: Given distinct $x, y \in S$ and a closed set $A = \overline{A} \subseteq S$ with $x, y \notin A$, we have

$$x \in \overline{y \cup A} \Rightarrow y \notin \overline{x \cup A}.$$

Proposition 5 Mlb-closure is a convex closure on the set P.

Proof. As before let \overline{A} denote the mib-closure of A, and let x and y be distinct elements not in A, a closed set. If $x \in \overline{y \cup A}$ then x is a maximal lower bound of some set of maximal lower bounds of some set of maximal lower bounds, etc., of some subsets of $y \cup A$. In this expression for x, if y never appears then $x \in \overline{A} = A$, a contradiction. Since y does appear, $x \leq y$. Thus we cannot have $y \leq x$, and so $y \notin \overline{x \cup A}$. \square
Edelman and Jamison [EJ] show that convex closures enjoy a number of interesting properties. Corollary 6 states a few properties of $LC(P)$ which are consequences of mlb being a convex closure. The reader is referred to [EJ] for proofs.

Corollary 6

1. $LC(P)$ is a *join-distributive* lattice, i.e. every atomic interval in $LC(P)$ is a Boolean algebra.
2. $LC(P)$ is upper-semimodular, and consequently ranked.
3. If $K \in LC(P)$ is defined by the mlb-closed set $A \subseteq P$, then the rank function of $LC(P)$ is given by $r(K) = card(P) - card(A)$, where $card(A)$ is also the number of blocks in K when regarded as a partition of the elements in P.

We note one further consequence not given in [EJ]. Recall the definition of the *characteristic polynomial* of a ranked finite poset Q with $0, 1$ and rank function r:

$$
\chi(Q; \lambda) = \sum_{q \in Q} \mu(\hat{0}, q)\lambda^{r(\hat{1})-r(q)}
$$

where μ is the *Mobius function* of the poset Q (see Rota [Ro]).

Proposition 7 If L is a join-distributive lattice with a atoms, then

$$
\chi(L, \lambda) = (\lambda - 1)^a \lambda^{r(\hat{1})-a}.
$$

Proof. Since $\mu(\hat{0}, q) = 0$ unless q is a join of atoms ([4], Prop. 2), the only $q \in L$ that contribute to the sum are those in the Boolean algebra B generated by the atoms of L. Thus we have

$$
\chi(L, \lambda) = \sum_{q \in B} \mu(\hat{0}, q)\lambda^{a-r(q)}\lambda^{r(\hat{1})-a}
$$

$$
= \chi(B, \lambda)\lambda^{r(\hat{1})-a}
$$

$$
= (\lambda - 1)^a \lambda^{r(\hat{1})-a}
$$

using the well-known fact (see e.g. [Ro]) that $\chi(B, \lambda) = (\lambda - 1)^a$. □

Using proposition 7, we get the following form for $\chi(L, \lambda)$:

Corollary 8 Let s be the number of elements of P which are covered by a unique element, and let m be the cardinality of \overline{M} (= the mlb-closure of the maximal elements of P). Then

$$
\chi(LC(P), \lambda) = (\lambda - 1)^s \lambda^{\text{card}(P)-m-s}.
$$

Proof. By Corollary 6 and Theorem 4 we have $r(\hat{1}) = \text{card}(P) - m$ and so to apply Proposition 7 we only need to show that the atoms of $LC(P)$ correspond to elements of P covered by a unique element. Let H be an atom of $LC(P)$ with A the set of its mlb-closed elements. By Corollary 6, $\text{card}(P) - \text{card}(A) = r(H) = 1$ so there is exactly one non-closed element x for H. Hence $H(x)$ covers x, and if any other element y covers x, then $H(y) \geq H(x)$ implies $H(y) \neq y$, a contradiction.

Conversely, specifying x to be the only unclosed element does define a closure relation. □

Example. Figure 1 shows the atoms of $LC(P)$, the values of $\mu(\hat{0}, x)$ and $\chi(LC(P), \lambda)$. 5
3 Modular elements and supersolvability

Using Theorem 4, it is easy to characterize which closure relations correspond to various distinguished classes of elements of $LC(P)$, such as the atoms, coatoms, join-irreducibles, and meet-irreducibles. One interesting class for which this is non-trivial are the modular elements of $LC(P)$. Recall (see Stanley [St]) that an element H in a lattice L is modular if and only if for all $K \leq K' \in L$ we have

$$H \lor K = H \lor K', \text{ and } H \land K = H \land K' \implies K = K'.$$

Theorem 9. Assume P has a greatest element $\overline{1}$. Then a closure relation H on P is a modular element of $LC(P)$ if and only if H satisfies the following cover property:

For all $x, y \in P$, if y covers x and $H(x) \neq x$, then $H(y) = H(x)$.

Proof (\Rightarrow): Let H be a closure relation on P not having the cover property, i.e. there is some y covering x such that $H(x) \neq x$, but $H(y) \neq H(x)$. Let K' be the closure relation having closed elements $\{\overline{1}, y\} \cup P_{<x}$, and K the closure relation having closed elements $\{1, x, y\} \cup P_{<x}$ (note that both of these sets are mlb-closed). Then $K < K'$, and it is easily seen that $H \lor K = H \lor K'$ and $H \land K = H \land K'$, violating the modularity of H.

(\Leftarrow): We show in general that any closure relation with the cover property is modular. Suppose H satisfies the cover condition, and assume we have a pair of closure relations $K \leq K'$ such that $H \lor K = H \lor K'$ and $H \land K = H \land K'$. We must show that $K = K'$, so it would suffice to show $K \geq K'$. So assume $K(x) = x$ for a given x, and we will prove that $K'(x) = x$. From $H \lor K = H \lor K'$, we may assume that $H(x) \neq x$. Our strategy: We claim that any $y \geq x$ must be comparable to $H(x)$.

Next we use this claim to show $K'(x) < H(x)$ by contradiction. Finally, we show $K'(x) = x$.

To prove the claim, suppose $y \notin H(x)$. Then $H(y) \neq H(x)$, so considering a maximal chain from x to y, there must exist y' covering y such that $H(y') = H(x)$ but $H(y') \neq H(x)$. Now by the cover property, we must have $H(x) = H(y') = y'$. Therefore $y \geq y' = H(x)$ and the claim is proved.

Our next goal is to show that $K'(x) < H(x)$. By the claim we know that these two elements must be comparable. So suppose for contradiction that $K'(x) \geq H(x)$. Let K'_{H}, H_{c} denote the sets of closed elements of K', H respectively. Since $min((H_{c})_{\geq x} = H(x)$ and $min((K'_{H})_{\geq x} = K'(x) > H(x)$, any maximal lower bound $z \geq x$ of a subset $A \subseteq H_{c} \cup K'_{H}$ must be comparable to $H(x)$ (by the claim), and hence $z \geq H(x)$ by maximality. Thus

$$(H \land K')(x) = min((K'_{H})_{\geq x} \geq H(x) > x,$$

contradicting the fact that $(H \land K')(x) = (H \land K')(x) = x$. Hence $K'(x) < H(x)$.

Lastly, we show $K(x) = x$. Let $k' \in K'$ and $h \in H_{c}$ have a maximal lower bound $z \geq x$. By our claim either $k' \geq H(x)$, in which case $z \geq H(x)$, or $k' < H(x)$, in which case $z = k'$. This shows that

$$(K'_{H} \cup H_{c})_{< H(x)} = (K'_{H} < H(x)).$$

But

$$x = (H \land K)(x) = (H \land K')(x) \in (K'_{H} \cup H_{c})_{< H(x)},$$

so $x \in K'$, i.e. $K'(x) = x$. □

As a corollary, we have
Theorem 10 $LC(P)$ is supersolvable, i.e. it contains a maximal chain of modular elements. (See Stanley [St] for alternate definitions and consequences of supersolvability).

Proof. We first prove the theorem with the assumption that P has a greatest element $\hat{1}$, and then deduce the theorem in general.

Let p_1, p_2, \ldots, p_n be any linear extension of the partial order on P. Let H_0 be the greatest element of $LC(P)$, having $\hat{1}$ as its only closed element, and for $i = 1, 2, \ldots, n$ let H_i be the closure relation having closed elements $\{\hat{1}, p_1, p_2, \ldots, p_i\}$. One can check that this set is in fact mlb-closed, since any maximal lower bounds of subsets of $\{\hat{1}, p_1, p_2, \ldots, p_i\}$ must either be $\hat{1}$ or lie in the ideal $\{p_1, p_2, \ldots, p_i\}$. It is easy to see that each H_i satisfies the cover condition of Theorem 9, and hence is a modular element of $LC(P)$: if y covers x and $H_i(x) \neq x$, then $x \notin \{\hat{1}, p_1, p_2, \ldots, p_i\}$, so either $y = \hat{1}$ or else $y \notin \{\hat{1}, p_1, p_2, \ldots, p_i\}$. In either case, $H_i(x) = 1 = H_i(y)$.

To prove the theorem in general, let P be an arbitrary poset with maximal elements M. Adjoin a greatest element $\hat{1}$ to P to obtain the poset $P + 1$. Let H be the closure relation on $P + 1$ with closed elements $\{\hat{1}\} \cup M$ (an mlb-closed set). Then by Theorem 4, we have that $LC(P)$ is isomorphic to the interval between the identity closure and H in $LC(P + \hat{1})$. Since $LC(P + \hat{1})$ is supersolvable, this interval is also supersolvable ([St], Proposition 3.29(i)), and hence $LC(P)$ is supersolvable.\square

Acknowledgements. The authors would like to thank Mark Haiman and G.C.-Rota for several helpful discussions and the referee for numerous suggestions and corrections.

References

[EJ] Edelman, P., and Jamison, R., “The Theory of Convex Geometries”, *Geometriae Dedicata*, 19, (1985), pp.247-270.
[Or1] Ore, O., “Combinations of Closure Relations”, *Annals of Mathematics*, 44, (1943), pp. 514-533.

[Or2] Ore, O. “Some Studies on Closure Relations”, *Duke Mathematical Journal*, 10, (1943), pp. 761-785.

[Ro] Rota, G.-C., “On the Foundations of Combinatorial Theory I: Theory of Mobius Functions”, *Z. Warsch. Verw. Gebiet*, 2, (1964), pp. 340-368.

[St] Stanley, R. “Supersolvable Lattices”, *Algebra Universalis*, 2, (1972), pp. 197-217.