LIOUVILLE THEOREM
AND A PRIORI ESTIMATES OF RADIAL SOLUTIONS
FOR A NON-COOPERATIVE ELLIPTIC SYSTEM

PAVOL QUITTNER

Department of Applied Mathematics and Statistics, Comenius University
Mlynská dolina, 84248 Bratislava, Slovakia
email: quittner@fmph.uniba.sk

Abstract. Liouville theorems for scaling invariant nonlinear elliptic systems (saying that the system does not possess nontrivial entire solutions) guarantee a priori estimates of solutions of related, more general systems. Assume that $p = 2q + 3 > 1$ is Sobolev subcritical, $n \leq 3$ and $\beta \in \mathbb{R}$. We first prove a Liouville theorem for the system

$$
-\Delta u = |u|^{2q+2}u + \beta |v|^{q+2}|u|^q u
-\Delta v = |v|^{2q+2}v + \beta |u|^{q+2}|v|^q v,
$$

in the class of radial functions (u, v) such that the number of nodal domains of $u, v, u - v, u + v$ is finite. Then we use this theorem to obtain a priori estimates of solutions to related elliptic systems. In the cubic case $q = 0$, those solutions correspond to the solitary waves of a system of Schrödinger equations, and their existence and multiplicity have been intensively studied by various methods. One of those methods is based on a priori estimates of suitable global solutions of corresponding parabolic systems. Unlike the previous studies, our Liouville theorem yields those estimates for all $q \geq 0$ which are Sobolev subcritical.

Keywords. Liouville theorem, a priori estimate, elliptic system, Schrödinger equation

AMS Classification. 35J10, 35J47, 35J61, 35B08, 35B45, 35B53, 35K58

Supported in part by the Slovak Research and Development Agency under the contract No. APVV-18-0308 and by VEGA grant 1/0339/21.
1. Introduction and main results

We are mainly interested in a priori estimates of radial solutions of the problem
\begin{align*}
-\Delta u + \lambda u + \gamma v &= |u|^{2q+2}u + \beta|v|^{q+2}|u|^q u, \\
-\Delta v + \lambda v + \gamma u &= |v|^{2q+2}v + \beta|u|^{q+2}|v|^q v,
\end{align*}
\begin{equation}
\tag{1}
\end{equation}
\begin{align*}
u &= v = 0 \text{ on } \partial \Omega \text{ if } \partial \Omega \neq \emptyset,
\end{align*}
where either \(\Omega = B_R := \{ x \in \mathbb{R}^n : |x| < R \} \) or \(\Omega = \mathbb{R}^n, n \leq 3, \lambda, \gamma, \beta \in \mathbb{R}, p := 2q + 3 \in (1, p_S) \), and \(p_S \) denotes the critical Sobolev exponent:
\begin{equation*}
p_S := \begin{cases}
\frac{n+2}{n-2}, & \text{if } n \geq 3, \\
\infty, & \text{if } n \in \{1, 2\}.
\end{cases}
\end{equation*}
In the cubic case \(p = 3 \), solutions of (1) correspond to the solitary waves of a system of Schrödinger equations and their existence and multiplicity have been intensively studied by various (mainly variational) methods; see the references in [16] or [9] if \(\gamma = 0 \) or \(\gamma \neq 0 \), respectively. The case \(p \neq 3 \) has also been studied, see [8, 7] and the references therein.

Topological and global bifurcation arguments often require a priori estimates of solutions and such estimates have been obtained for \(n \leq 3, p = 3 \) and positive solutions in [3, 10, 9], for example, by proving and/or using suitable Liouville theorems for the related scaling invariant problem
\begin{align*}
-\Delta u &= |u|^{2q+2}u + \beta|v|^{q+2}|u|^q u, \\
-\Delta v &= |v|^{2q+2}v + \beta|u|^{q+2}|v|^q v,
\end{align*}
\begin{equation}
\tag{2}
\end{equation}
and the corresponding Dirichlet problem in a halfspace.

Another method of proving existence and multiplicity results for (1) is to consider the corresponding parabolic problem
\begin{align*}
\frac{\partial u}{\partial t} - \Delta u + \lambda u + \gamma v &= |u|^{2q+2}u + \beta|v|^{q+2}|u|^q u, \\
\frac{\partial v}{\partial t} - \Delta v + \lambda v + \gamma u &= |v|^{2q+2}v + \beta|u|^{q+2}|v|^q v,
\end{align*}
\begin{equation}
\tag{3}
\end{equation}
\begin{align*}
u &= v = 0 \text{ on } \partial \Omega \times (0, \infty) \text{ if } \partial \Omega \neq \emptyset,
\end{align*}
and use the fact that (if \(\gamma = 0 \), then) the number of zeroes and intersections of radial solutions of (3) is nonincreasing in time. Such arguments have been used in [30, 16] if \(n \leq 3, p = 3, \lambda > 0 = \gamma \), and they again require a priori estimates of suitable global solutions of (3).

The arguments in the proofs of a priori estimates in [3, 10, 9] or [30, 16] do not allow one to cover the full subcritical range \(p < p_S \) if \(n = 3 \) or \(2 \leq n \leq 3 \), respectively (see Remark 6 for more details). The main result of this paper is a Liouville theorem for radial solutions of (2), (possibly nonradial) solutions of (2) with \(n = 1 \), and solutions of the problem
\begin{align*}
-u_{xx} &= |u|^{2q+2}u + \beta|v|^{q+2}|u|^q u, \\
v_{xx} &= |v|^{2q+2}v + \beta|u|^{q+2}|v|^q v,
\end{align*}
\begin{equation}
\tag{4}
\end{equation}
\begin{align*}
u(0) &= v(0) = 0
\end{align*}
(see Theorem 1). Using that theorem we obtain the required a priori estimates (for both (1) and (3)) in the full subcritical range. In the case of (3) we will also assume \(p \geq 3 \).
(i.e. \(q \geq 0 \)) in order to avoid some technical problems with local existence and uniqueness of solutions (if \(q < 0 \), then the nonlinearity in (3) is not Lipschitz continuous).

To formulate our results more precisely, let us introduce some notation first. By a nontrivial solution we understand a solution \((u, v)\) such that \((u, v) \neq (0, 0)\).

If \(J \subset \mathbb{R} \) is an interval and \(v \in C(J, \mathbb{R}) \), then we define
\[
z(v) = z_f(v) := \sup \{ j : \exists x_1, \ldots, x_j+1 \in J, x_1 < x_2 < \cdots < x_{j+1}, \\]
\[
v(x_i) - v(x_{i+1}) < 0 \text{ for } i = 1, 2, \ldots, j,\]
where \(\sup(\emptyset) := 0. \) We usually refer to \(z_f(v) \) as the zero number of \(v \) in \(J \). Note that \(z_f(v) \) is actually the number of sign changes of \(v \); it coincides with the number of zeros of \(v \) if \(J \) is open, \(v \in C^1(J) \) and all its zeros are simple. If \(v : \mathbb{R}^n \rightarrow \mathbb{R} \) is a continuous, radially symmetric function, i.e. \(v(x) = \tilde{v}(|x|) \) for some \(\tilde{v} \in C([0, \infty), \mathbb{R}) \), then we define \(z(v) := z(\tilde{v}) \).

Given \(C_1, C_2, C_3, C_4 \geq 0 \), set
\[
\mathcal{K} = \mathcal{K}(C_1, C_2, C_3, C_4) := \{ (u, v) : z(u) \leq C_1, z(v) \leq C_2, z(u - v) \leq C_3, z(u + v) \leq C_4 \},
\]
\[
\mathcal{K}^+ = \mathcal{K}^+(C_4) := \{ (u, v) : u, v \geq 0, z(u - v) \leq C_3 \},
\]
\[
\mathcal{K}^* := \{ (u, v) \in \mathcal{K} : u \neq \pm v \},
\]
and notice that \(\mathcal{K}^+ \subset \mathcal{K}(0,0,C_3,0) \).

The following Liouville theorem has already been proved in [3] in the case of nonnegative solutions, \(\beta < 1 \) and \(p = 3 \). Notice also that if \(\beta \in (-1, \infty) \) or \(\beta > 0 \) and one considers nonnegative solutions, then the nonexistence of nontrivial (radial and nonradial) solutions to problems occurring in the following theorem has been studied in [26, 11] or [27], respectively.

Theorem 1. Assume \(n \leq 3 \) and \(p = 2q + 3 \in (1, p_S) \). Let \(C_1, C_2, C_3, C_4 \geq 0 \) be fixed. If \(\beta \neq -1 \), then system (2) does not possess nontrivial classical radial solutions satisfying \((u, v) \in \mathcal{K} \) and system (2) with \(n = 1 \) does not possess nontrivial classical solutions satisfying \((u, v) \in \mathcal{K} \). If \(\beta = -1 \), then all classical radial solutions of (2) satisfying \((u, v) \in \mathcal{K} \) and all classical solutions of system (2) with \(n = 1 \) satisfying \((u, v) \in \mathcal{K} \) are of the form \((c, \pm c)\), where \(c \in \mathbb{R} \). Problem (1) does not possess nontrivial classical solutions satisfying \((u, v) \in \mathcal{K} \) for any \(\beta \in \mathbb{R} \).

Theorem 1 combined with scaling and doubling arguments from [19], and an argument due to [2] (based on the Sturm comparison theorem) yield the following result:

Theorem 2. Assume \(\Omega = \mathbb{R}^n \) or \(\Omega = B_R, n \leq 3, \lambda, \gamma \in \mathbb{R} \) and \(p = 2q + 3 \in (1, p_S) \). Let \(C_1, C_2, C_3, C_4 \geq 0 \) be fixed. Let \(B \) be a compact set in \(\mathbb{R} \setminus \{-1\} \) and \(B^* \) be a compact set in \(\mathbb{R} \). Then there exists \(C \) such that any classical radial solution \((u, v) \in \mathcal{K} \) of (1) with \(\beta \in B \), and any classical radial solution \((u, v) \in \mathcal{K}^* \) of (1) with \(\beta \in B^* \) satisfies \(\|(u, v)\|_{\infty} \leq C \).

The proof of Theorem 2 shows that this theorem remains true for solutions of large classes of systems which are perturbations of the scaling invariant system (2). In particular, the estimate \(\|(u, v)\|_{\infty} \leq C \) in Theorem 2 is locally uniform with respect to \(\lambda \) and \(\gamma \).

A straightforward modification of the proof of Theorem 2 (cf. [19]) also guarantees universal singularity estimates. More precisely, if \(\Omega := B_R \setminus \{0\}, R > 2, \) and \(p, \lambda, \gamma, B, B^* \) are as in Theorem 2, then there exists \(C > 0 \) such that any classical radial solution \((u, v) \in \mathcal{K} \) of the system of PDEs in (1) with \(\beta \in B \), and any classical radial solution
(u, v) ∈ K* of the system of PDES in (1) with β ∈ B* satisfies the estimate

\[|u(x)| + |v(x)| ≤ C|x|^{-2/(p−1)}, \quad 0 < |x| < 1. \]

(The solution (u, v) need not satisfy the boundary condition in (1).)

Theorem 1 and 24 guarantee that the related scaling invariant parabolic problem

\[
\begin{align*}
 u_t - \Delta u &= |u|^{2q+2} u + \beta |v|^{q+2} |u|^q u, \\
 v_t - \Delta v &= |v|^{2q+2} v + \beta |u|^{q+2} |v|^q v,
\end{align*}
\]

in \(\mathbb{R}^n \times \mathbb{R} \),

(5)
do not possess nontrivial radial solutions satisfying \((u, v)(\cdot, t) ∈ K \) for all \(t ∈ \mathbb{R} \), and problems (5) with \(n = 1 \) and

\[
\begin{align*}
 u_t - u_{xx} &= |u|^{2q+2} u + \beta |v|^{q+2} |u|^q u, \\
 v_t - v_{xx} &= |v|^{2q+2} v + \beta |u|^{q+2} |v|^q v,
\end{align*}
\]

\(u = v = 0 \) on \(\{0\} × \mathbb{R} \),

(6)
do not possess nontrivial solutions satisfying \((u, v)(\cdot, t) ∈ K \) for all \(t ∈ \mathbb{R} \). These parabolic Liouville theorems together with scaling and doubling arguments in 20 immediately imply the following universal \(L^∞ \)-estimate for global solutions of (3) (see 20 Corollary 5) for a more general statement:

Corollary 3. Assume \(Ω = \mathbb{R}^n \) or \(Ω = B_R, n ≤ 3, \beta \neq -1 \) and \(p = 2q + 3 \in (1, p_S) \). Then there exists \(C > 0 \) such that any global radial classical solution of (3) with \((u, v)(\cdot, t) ∈ K \) for all \(t ∈ (0, ∞) \) satisfies the following estimate:

\[
\|(u, v)(\cdot, t)\|_∞ ≤ C(1 + t^{−1/(p−1)}), \quad t ∈ (0, ∞).
\]

The constant \(C = C(β, λ, γ) \) in Corollary 3 is locally uniform for \(β ∈ \mathbb{R} \setminus \{0\} \) and \(λ, γ ∈ \mathbb{R} \). Notice also that \(K \) or \(K^+ \) is invariant with respect to the semiflow generated by (3) if \(γ = 0 \) or \(γ ≤ 0 \), respectively.

Corollary 3 can be used to prove the following uniform \(H^1 \)-estimate for global radial solutions of (3) with bounded energy and initial data in \(H^1 \cap K \) or \(H^1 \cap K^+ \). By \(H^1 \) we denote the set of radial functions in \(H^1 \) and by \(\| \cdot \| \) the norm in \(H^1(Ω, \mathbb{R}^2) \). We also set

\[
\begin{align*}
 \mathcal{U} &:= (u, v), \\
 \mathcal{F}(\mathcal{U}) &:= (|u|^{2q+2} u + \beta |v|^{q+2} |u|^q u, |v|^{2q+2} v + \beta |u|^{q+2} |v|^q v), \\
 G(\mathcal{U}) &:= \frac{1}{p+1} \mathcal{F}(\mathcal{U}) \cdot \mathcal{U} \quad \text{(hence} \nabla G = \mathcal{F})..
\end{align*}
\]

(7)

Proposition 4. Assume \(Ω = \mathbb{R}^n \) or \(Ω = B_R, n ≤ 3, \beta \neq -1, \lambda > 0 ≥ γ, p = 2q + 3 \in [3, p_S) \). If \(Ω = \mathbb{R}^n \), then assume also \(λ + γ > 0 \). Let \(\mathcal{U}_0 ∈ H^1_0(Ω, \mathbb{R}^2) \). If \(γ = 0 \) or \(γ < 0 \), then assume also \(\mathcal{U}_0 ∈ K \) or \(\mathcal{U}_0 ∈ K^+ \), respectively. Assume that the solution of (3) with initial data \(\mathcal{U}(\cdot, 0) = \mathcal{U}_0 \) is global and satisfies \(|E(t)| ≤ C_E \) for \(t > 0 \), where

\[
E(t) := \frac{1}{2} \int_Ω (|\nabla \mathcal{U}(x, t)|^2 + λ|\mathcal{U}(x, t)|^2) \, dx + γ \int_Ω (uv)(x, t) \, dx - \int_Ω G(\mathcal{U}(x, t)) \, dx.
\]

Then

\[
\|\mathcal{U}(\cdot, t)\| ≤ C = C(\|\mathcal{U}_0\|, C_E).
\]

(8)
The H^1-estimate in Proposition 4 is based on the universal L^∞-estimates in Corollary 3, but the universality of those estimates is not needed: It would be sufficient to use L^∞-estimates which can depend on $\|U_0\|$ and C_E, and such estimates could likely be obtained directly from the elliptic Liouville theorem (Theorem 1) by using the approach in [13] (hence we would not need the parabolic Liouville theorems in [24]). On the other hand, universal L^∞-estimates as in Corollary 3 also enable one to prove the existence of periodic solutions of related problems with time-periodic coefficients, for example (see [4, Section 6]), and such results cannot be obtained by using the weaker estimates depending on $\|U_0\|$ and C_E.

As already mentioned, the authors of [16, 30] use the properties of the parabolic semiflow in order to prove the existence and multiplicity of nontrivial radial solutions of (1) with $n \leq 3$, $\lambda > 0$ and $q = \gamma = 0$. More precisely, paper [30] deals with positive radial solutions, $\Omega = B_R$ and $\beta \leq -1$, and paper [16] with nodal radial solutions of various generalizations of (1) and $\beta < 0$ (or $\beta < \beta_0$, where $\beta_0 > 0$ is small enough). In both papers, a priori estimates of suitable global solutions of (3) play an important role. If we consider initial data $U_0 \in A$, where A is the domain of attraction of the zero solution, then the solution of (3) is global and the corresponding energy function $E(t)$ is bounded, hence estimate (8) is true (provided the remaining assumptions in Proposition 4 are satisfied). Estimate (8) then also guarantees that the solutions of (3) with initial data $U_0 \in \partial A$ are global and satisfy (8), and these particular global solutions are used in [16, 30] in order to find solutions of (1) with prescribed number of nodal domains or intersections. The arguments in [30] also require some compactness of those particular global solutions, and such compactness is guaranteed by the next proposition.

Proposition 5. Let the assumptions of Proposition 4 be satisfied. If $\Omega = \mathbb{R}^n$, then assume also that U_0 is compactly supported and $n \geq 2$. Then the trajectory $t \in [0, \infty) \to H^1_r(\Omega, \mathbb{R}^2) : t \mapsto U(\cdot, t)$ is compact.

The proof in [30] guaranteeing the existence of positive solutions of (1) with prescribed number of intersections required $\Omega = B_R$, $p = 3$, and the authors of [30] also assume $\gamma = 0$. Propositions 4 and 5 enable one to prove analogous results also for $\Omega = \mathbb{R}^n$ and $p \in (3, p_S)$. In addition, one can also consider the case $\gamma < 0$: If $\Omega = B_R$, then in order to guarantee the stability of the zero solution, one has to assume $\lambda + \gamma > -\lambda_1$, where λ_1 is the first eigenvalue of the negative Dirichlet Laplacian in Ω.

Similarly, Proposition 4 indicates that many arguments from [16] guaranteeing the existence of solutions of (1) with prescribed number of nodal domains in the cubic case $p = 3$ can also be used if $p \in (3, p_S)$.

Remark 6. (i) The proofs of Liouville theorems used in [3, 10, 9] heavily depend on the choice $p = 3$: The arguments in those proofs cannot be used if $n = 3$ and $p > 3$, for example.

(ii) The bounds of global solutions of (3) in [30, 16] are proved by integral estimates (cf. [6]) which require $p := 2q + 3 < p_{CL} := (3n + 8)/(3n - 4)$. Condition $p < p_{CL}$ can likely be improved to $p < p_S$ by a bootstrap argument due to [21] (see also [22] or [14, 15] for applications of this argument to more general or rescaled problems), but only if $\beta > -1$. If $\beta \leq -1$, then a modification of that bootstrap argument could likely improve the condition $p < p_{CL}$ slightly if $n = 3$ (to $p < p_{CL} + 1/5$), but not for $n = 2$, cf. [1]. Our results guarantee that the required a priori estimates remain true for any $p \in [3, p_S)$ if $n \leq 3$ and $\beta \neq -1$.
On the other hand, if \(p = 3, n \leq 3, k \) is a fixed positive integer, \(\lambda > 0 \geq \gamma \) and \(\lambda + \gamma > 0 \), then the integral estimates in [30] of suitable global positive solutions \((u, v)\) of

\[
\text{Equation (1)}
\]

implies where \(G_\beta > 0 \) if arguments (see [4], for example) imply

\[
\text{Equation (2)}
\]

Assume that the \(\omega \)-limit set of such global solution \((u, v)\) contains a positive stationary solution of the form \((u^*, u^*)\). Since the norms of such positive stationary solutions tend to \(\infty \) as \(\beta \to -1 \), this would yield a contradiction if \(\beta \) is close to \(-1\). Consequently, the topological arguments in the proof of [30] Theorem 1.1] leading to the existence of stationary solutions satisfying \(z(u - v) = k \) can be used whenever \(\beta < -1 + \varepsilon_k \), where \(\varepsilon_k > 0 \) is small enough. Our bounds based on Liouville theorems are locally uniform with respect to \(\beta \) only for \(\beta \in \mathbb{R} \setminus \{-1\} \), hence such arguments cannot be used. The reason is that we are using the universal estimates in Corollary [3] which are true for all solutions in \(\mathcal{K} \) including solutions of the form \((u, u)\), hence they cannot be uniform as \(\beta \) approaches \(-1\).

2. Proofs

Proof of Theorem 1. Due to scaling and doubling arguments (see [19]), we only have to prove the nonexistence for bounded solutions. Assume that \((u, v) \in \mathcal{K}\) is a nontrivial bounded radial solution of (2) and \((u, v) \neq (c, \pm c)\) if \(\beta = -1 \). Consider \(u, v \) as functions of the radial variable \(r = |x|, \Delta u(r) = u''(r) + \frac{\lambda - 1}{r}u'(r) \). System (2) possesses nontrivial radial solutions of the form \(W_0 := (w, \pm w) \) or \(W_1 := (w, 0) \) or \(W_2 := (0, w) \), where \(z(w) < \infty \), only if \(\beta = -1 \), and such solutions are of the form \((c, \pm c)\) with \(c \neq 0 \) (see [18] Theorem 2.2) in the case of \(W_1, W_2 \) or \(W_0 \) and \(\beta > -1 \), and see [23 Proposition 4] in the case of \(W_0 \) and \(\beta < -1 \), hence we have \(u \neq v, u \neq -v, u \neq 0 \) and \(v \neq 0 \). Replacing \(u \) by \(-u\) and/or \(v \) by \(-v\) if necessary, we may assume that there exists \(R_0 \geq 0 \) such that

\[
u(r) > v(r) > 0 \text{ for } r > R_0. \tag{9}\]

Assume first \(n \leq 2 \) or \(n = 3 \) and \(p = 2q + 3 \leq 3 \). Set \(w := u - v \) if \(\beta \leq 0 \), and \(w := u \) otherwise. If \(r > R_0 \), then \(w(r) > 0 \) and \(-\Delta w \geq wp \), which contradicts the corresponding Liouville-type theorem for inequalities in exterior domains, see [7], for example. The same argument applies to (possibly nonradial) solutions of (2) in \(\mathbb{R}^3 \), and to solutions of (1). Consequently, we just have to prove the nonexistence of bounded radial solutions of (2) satisfying (5) in the case of \(n = 3 \) and \(p = 2q + 3 \in (3, 5) \).

Theorem 1 for \(n = 1 \) (which we have just proved) together with scaling and doubling arguments (see [1], for example) imply

\[
|u(r)| + |v(r)| + r(|u'(r)| + |v'(r)|) \leq C^x r^{-2/(p-1)}, \quad r > 0. \tag{10}\]

If \(\beta > -1 \), then

\[
C_1 |U|^{p+1} \leq G(U) \leq C_2 |U|^{p+1} \text{ for any } U = (u, v), \tag{11}\]

where \(G \) is defined in (7). In addition, the Rellich-Pohozaev identity [26, Lemma 3.6] (which is true also for nodal solutions) implies

\[
\int_0^R c_p G(U(r)) r^2 \, dr = R^3 (2G(U(R)) + |U'(R)|^2 + \frac{1}{R} U(R) \cdot U'(R)), \tag{12}\]

where \(c_p \) is a constant depending on \(|U(R)|, |U'(R)|, \) and \(p \).
where \(c_p := 5 - p > 0 \). Now (12), (11) and (10) imply
\[
\int_0^R |U(r)|^{p+1} r^2 \, dr \leq CR^{-\frac{2-p}{p-1}} \rightarrow 0 \quad \text{as} \quad R \rightarrow \infty,
\]
which yields a contradiction.

It remains to consider the case \(n = 3, \ p = 2q + 3 \in (3, 5) \) and \(\beta \leq -1 \). Our arguments in this case are inspired by the proof of [18, Theorem 2.5]. In the rest of the proof we denote \(U(r) := r^{2/(p-1)}u(r), \ V(r) := r^{2/(p-1)}v(r) \). Then (10) guarantees
\[
|U(r)| + |V(r)| \leq C^*, \quad r|U'(r)| + r|V'(r)| \leq 2C^*, \quad r > 0. \tag{13}
\]
If \(Z \in \{U, V\} \), then \(Z \) solves the equation
\[
r^2Z'' + arZ' - bZ + F(Z) = 0, \tag{14}
\]
where
\[
a = \frac{2(p - 3)}{p - 1} \in (0, 1), \quad b = \frac{2(p - 3)}{(p - 1)^2} \in (0, \frac{1}{4}),
\]
and
\[
F(Z) = \begin{cases} |U|^{p-1}U + \beta|V|^{q+2}|U|^qU & \text{if} \ Z = U, \\ |V|^{p-1}V + \beta|U|^{q+2}|V|^qV & \text{if} \ Z = V. \end{cases}
\]
Set also
\[
E := -\frac{b}{2}(U^2 + V^2) + \frac{1}{p+1}(|U|^{p+1} + |V|^{p+1}) + \frac{2\beta}{p+1}|UV|^{(p+1)/2},
\]
\[
\varphi := (U')^2 + (V')^2.
\]
Multiplying (14) with \(Z = U \) or \(Z = V \) by \(U' \) or \(V' \), respectively, and adding the resulting equations we obtain
\[
\frac{1}{2}r^2\varphi'(r) + ar\varphi(r) + E'(r) = 0, \tag{15}
\]
and integration by parts yields
\[
\frac{1}{2} \left(\rho^2\varphi(\rho) - r^2\varphi(r) \right) - (1-a) \int_r^\rho s\varphi(s) \, ds + E(\rho) - E(r) = 0, \quad \rho > r. \tag{16}
\]
If \(r > R_0 \), then (9) and \(\beta \leq -1 \) imply \(F(V(r)) \leq 0 \). Assume
\[
V'(r_0) \geq 0 \quad \text{for some} \quad r_0 > R_0. \tag{17}
\]
Then \(V' > 0 \) on \((r_0, \infty) \), since \(V'' > 0 \) whenever \(V' = 0 \). Fix \(r_1 > r_0 \) and set
\[
\varepsilon := \min(bV(r_1), ar_1V'(r_1)) > 0.
\]
If \(ar_2V'(r_2) < \varepsilon \) for some \(r_2 > r_1 \), then set \(r_3 := \inf \{ r < r_2 : a\rho V'(\rho) < \varepsilon \text{ on } [r, r_2] \} \) and notice that \(r_3 \in [r_1, r_2] \), \(ar_3V'(r_3) = \varepsilon \) and \(bV(r) > bV(r_1) \geq \varepsilon \) for \(r > r_1 \). These estimates, (14) and \(F(V) \leq 0 \) guarantee \(V'' > 0 \) on \((r_3, r_2) \), hence \(ar_2V'(r_2) > ar_3V'(r_3) = \varepsilon \) which yields a contradiction. Consequently, \(arV'(r) \geq \varepsilon \) for \(r > r_1 \), which contradicts the boundedness of \(V \). Thus (17) fails and we have \(V' < 0 \) on \((R_0, \infty) \).

If \(V_\infty := \lim_{r \to \infty} V(r) > 0 \), then (14) implies \(r^2V''(r) > bV_\infty/2 =: c_V \) for \(r > r_4 \), hence considering \(R \to \infty \) in the estimate
\[
-V'(r) > V'(R) - V'(r) = \int_r^R V''(\rho) \, d\rho > c_V \int_r^R \frac{1}{\rho^2} \, d\rho = c_V \left(\frac{1}{r} - \frac{1}{R} \right)
\]
we obtain $V'(r) \leq -c_V/r$ for $r > r_4$, which contradicts the boundedness of V. Thus $V_\infty = 0$ and $q > 0$ implies $F(V(r)) = o(V(r))$ as $r \to \infty$. Consequently, there exists a positive nonincreasing function f such that $f(r) \to 0$ as $r \to \infty$ and

$$r^2V''(r) + arV'(r) \in (0, f(r)) \quad \text{for } r \text{ large}.$$

Assume $(1 - a)rV'(r) < -f(r)$ for some r large. Then $r(rV'(r))' = r^2V''(r) + arV'(r) < r^2V''(r) + arV'(r) - f(r) < 0$, hence $(1 - a)rV'(r) < -f(r)$ for $r > r$. The inequality $|V'(r)| > \frac{f(r)}{1 - a - r}$ contradicts the boundedness of V. Hence

$$V(r) + r|V'(r)| = o(1) \quad \text{as } r \to \infty. \quad (18)$$

Fix $M := e^2, \varepsilon_k \searrow 0$ and choose $R_k \nearrow \infty$ such that $R_1 > R_0$ and

$$V(r) + r|V'(r)| < \varepsilon_k \quad \text{for } r \geq R_k. \quad (19)$$

We have two possibilities:

Case A: $(\forall k)(\exists r_k \geq R_k) 0 < U \leq \varepsilon_k$ on $[r_k, Mr_k]$.

Case B: $(\exists k_0)(\forall r \geq R_k_0)(\exists \tilde{r} \in [r, Mr]) U(\tilde{r}) > \varepsilon_{k_0}$.

Consider Case A first. If $r^2\varphi(r) \geq 2\varepsilon_k^2$ on $J_k := [r_k, Mr_k]$, then (19) implies $r|U'(r)| \geq \varepsilon_k$ on J_k, hence

$$\varepsilon_k \geq |U(Mr_k) - U(r_k)| = \left| \int_{J_k} U'(r) \, dr \right| \geq \int_{J_k} \frac{\varepsilon_k}{r} \, dr = 2\varepsilon_k,$$

which yields a contradiction. Consequently, there exists $\tilde{R}_k \in J_k$ such that $\tilde{R}_k^2\varphi(\tilde{R}_k) < 2\varepsilon_k^2$. Since $U(\tilde{R}_k), V(\tilde{R}_k) \to 0$, we have

$$E(\tilde{R}_k) \to 0, \quad \tilde{R}_k^2\varphi(\tilde{R}_k) \to 0, \quad \tilde{R}_k \to \infty. \quad (20)$$

Next consider Case B. Set $\varepsilon^* := \varepsilon_{k_0}, R^* := R_{k_0}, I_k := [M^{k-1}R^*, MR^*], k = 1, 2, \ldots$. For each k there exists $\tilde{r}_k \in I_k$ such that $U(\tilde{r}_k) \in [\varepsilon^*, C^*]$. Set

$$u_k(\rho) := \tilde{r}_k^{2/(p-1)}u(\tilde{r}_k\rho), \quad v_k(\rho) := \tilde{r}_k^{2/(p-1)}v(\tilde{r}_k\rho), \quad \rho > R_0/\tilde{r}_k.$$

Then $u_k, v_k > 0$ are locally bounded, $v_k \to 0$ locally uniformly, $u_k(1) = U(\tilde{r}_k) \in [\varepsilon^*, C^*]$ and

$$0 = \Delta u_k + u_k^p + \beta v_k^{q+2}u_k^{q+1}.$$

Consequently, a subsequence u_{kj} converges in C_{loc} to a positive solution \bar{u} of $\Delta u + u^p = 0$ in $(0, \infty)$. Fix $m \geq 1$ and set $\rho_{j,m} := \tilde{r}_{kj,m}/\tilde{r}_{kj} \in [M^{m-1}, M^{m+1}]$. Then

$$u_{kj}(\rho_{j,m}) = \tilde{r}_{kj}^{2/(p-1)}u(\tilde{r}_{kj,m}) = \rho_{j,m}^{-2/(p-1)}U(\tilde{r}_{kj,m}) \geq \rho_{j,m}^{-2/(p-1)}\varepsilon^*.$$

Since $u_{kj} \to \bar{u}$ on $[M^{m-1}, M^{m+1}]$, there exists $\rho_m \in [M^{m-1}, M^{m+1}]$ such that $\bar{u}(\rho_m) \geq \varepsilon^*\rho_m^{-2/(p-1)}$. Hence $\limsup_{\rho \to \infty} \bar{u}(\rho)\rho^{2/(p-1)} \geq \varepsilon^*$ and [25, Remark 9.5] (see also [12, 28]) shows that $\bar{u}(\rho) = b^{1/(p-1)}\rho^{-2/(p-1)}$. Consequently, $U(\tilde{r}_{kj}, \rho) \to b^{1/(p-1)}$, $V(\tilde{r}_{kj}, \rho) \to 0$ and $E(\tilde{r}_{kj}, \rho) \to \infty := -\frac{p-1}{2(p+1)}b^{1/(p-1)}$, locally uniformly with respect to $\rho > 0$. Fix $\varepsilon \in (0, -E_\infty)$ and $0 < \rho_1 < \rho_2$ such that $\log(\rho_2/\rho_1) > 2C^}*^{-1/2}$, and set $J_j := (\tilde{r}_{kj,\rho_1}, \tilde{r}_{kj,\rho_2})$. Assume that

$$\limsup_{j \to \infty} \inf_{r \in J_j} r^2\varphi(r) \geq \varepsilon. \quad (21)$$

Then (18) implies

$$\limsup_{j \to \infty} \inf_{r \in J_j} r|U'(r)| \geq \sqrt{\varepsilon/2},$$
hence for suitable \(j \) large we obtain \(r|U'(r)| \geq \sqrt{2}/2 \) on \(J_j \) and \(\int_{J_j} U'(r) \, dr \geq \int_{J_j} \frac{\sqrt{2}}{2r} \, dr > C^* \), which contradicts (13). Consequently, (21) fails, hence if \(j \) is large, then there exists \(\tilde{R}_j \in J_j \) such that

\[
\tilde{R}_j^2 \phi(\tilde{R}_j) < \varepsilon < -E_{\infty}, \quad E(\tilde{R}_j) \to E_{\infty}, \quad \tilde{R}_j \to \infty.
\]

(22)

Notice that \(E(0) = 0 \) and \(\lim_{r \to 0+} r^2 \phi(r) = 0 \). In both Case A and B, due to (20) and (22), respectively, we can pass to the limit in (16) with \(r := 0 \) and \(\rho := \tilde{R}_k \) (or \(\rho := \tilde{R}_j \)) to obtain \(\int_0^\infty s\phi(s) \, ds \leq 0 \), which yields a contradiction.

Proof of Theorem 2. If \(\Omega = \mathbb{R}^n \), then set \(R = \infty \). Radial solutions \((u, v)\) will be considered as functions of \(r := |x| \in [0, R) \).

Assume to the contrary that there exist \(\beta_k \in B \) and radial solutions \((u_k, v_k) \in \mathcal{K} \) (or \(\beta_k \in B^* \) and \((u_k, v_k) \in \mathcal{K}^* \)) such that \(\| (u_k, v_k) \|_{\infty} \to \infty \). Then there exist \(r_k \in [0, R) \) such that \(M_k := M(u_k, v_k)(r_k) \to \infty \), where

\[
M(u, v) := |u|^{(p-1)/2} + |v|^{(p-1)/2} + |u'|^{(p-1)/(p+1)} + |v'|^{(p-1)/(p+1)}.
\]

The Doubling Lemma in (19) guarantees that we may assume

\[
M(u_k, v_k) \leq 2M_k \quad \text{on} \quad \{ r \in [0, R) : |r - r_k| \leq \frac{k}{M_k} \}.
\]

Set \(\lambda_k := 1/M_k \). We may assume that \(\beta_k \to \beta \) and also that one of the following three cases occur:

Case A: \(r_k/\lambda_k \to c_0 \geq 0 \).

Case B: \(r_k/\lambda_k \to \infty \) and either \(R = \infty \) or \((R - r_k)/\lambda_k \to \infty \).

Case C: \(R < \infty \) and \((R - r_k)/\lambda_k \to c_R \geq 0 \).

We set

\[
\hat{u}_k(\rho) := \begin{cases} \lambda_k^{2/(p-1)}u_k(\lambda_k\rho) & \text{in Case A,} \\ \lambda_k^{2/(p-1)}u_k(r_k + \lambda_k\rho) & \text{in Case B,} \\ \lambda_k^{2/(p-1)}u_k(R - \lambda_k\rho) & \text{in Case C,} \end{cases}
\]

and we define \(\tilde{v}_k \) analogously. We also set

\[
\rho_k := \begin{cases} 0 & \text{in Case A,} \\ r_k/\lambda_k & \text{in Case B,} \\ -(R - r_k)/\lambda_k & \text{in Case C,} \end{cases} \quad \tilde{\rho}_k := \begin{cases} r_k/\lambda_k \to c_0 & \text{in Case A,} \\ 0 & \text{in Case B,} \\ (R - r_k)/\lambda_k \to c_R & \text{in Case C.} \end{cases}
\]

Then

\[
\hat{u}_k' + \frac{n-1}{\rho + \rho_k} \hat{u}_k' - \lambda_k^2(\lambda \hat{u}_k + \gamma \tilde{v}_k) + |\hat{u}_k|^{p-1}\hat{u}_k + \beta_k|\tilde{v}_k|^{q+2}|\tilde{u}_k|^q \tilde{u}_k = 0,
\]

\[
\tilde{v}_k' + \frac{n-1}{\rho + \rho_k} \tilde{v}_k' - \lambda_k^2(\lambda \tilde{v}_k + \gamma \hat{u}_k) + |\tilde{v}_k|^{p-1}\tilde{v}_k + \beta_k|\hat{u}_k|^{q+2}|\hat{u}_k|^q \hat{u}_k = 0,
\]

\[
M(\hat{u}_k, \tilde{v}_k)(\rho_k) = 1, \quad \text{and} \quad M(\hat{u}_k, \tilde{v}_k)(\rho) \leq 2 \quad \text{whenever}
\]

\[
\rho \in [0, R/\lambda_k), \quad |\rho - r_k/\lambda_k| \leq k \quad \text{in Case A,}
\]

\[
\rho \in [-(R - r_k)/\lambda_k, (R - r_k)/\lambda_k), \quad |\rho| \leq k \quad \text{in Case B,}
\]

\[
\rho \in [0, R/\lambda_k), \quad |(R - r_k)/\lambda_k - \rho| \leq k \quad \text{in Case C.}
\]
Consequently, a subsequence of \((\tilde{u}_k, \tilde{v}_k)\) (still denoted \((\tilde{u}_k, \tilde{v}_k)\)) converges locally uniformly to a nontrivial solution \((\tilde{u}, \tilde{v}) \in \mathcal{K}\) of problem (2) or (2) with \(n = 1\) or (3) in Case A or B or C, respectively (notice that \((\tilde{u}, \tilde{v})\) is radial in Case A).

In Case C or if \(\beta \neq -1\), then we obtain a contradiction with Theorem 1.

Assume \(\beta = -1\) and consider Case A or B. Then Theorem 1 and \(M(\tilde{u}_k, \tilde{v}_k)(\tilde{p}_k) = 1\) guarantee \((\tilde{u}, \tilde{v}) = (c, \pm c)\), where \(c = 2^{-2/(p-1)}\). Replacing \(v_k\) by \(-v_k\) (and \(C_3\) by \(C_4\)) if necessary, we may assume \((\tilde{u}, \tilde{v}) = (c, c)\). Since \((u_k, v_k) \in \mathcal{K}^*\), we have \(\tilde{w}_k := \tilde{u}_k - \tilde{v}_k \neq 0\) and we also have

\[
\tilde{w}_k'' + P_k \tilde{w}_k' + Q_k \tilde{w}_k = 0, \quad \text{where}
\]

\[
P_k := \frac{n - 1}{\rho + \rho_k}, \quad Q_k := \lambda_k^2 (\gamma - \lambda) + \frac{|u_k|^{p-1} u_k - |v_k|^{p-1} v_k}{u_k - v_k} - \beta_k |u_k v_k|^q u_k v_k.
\]

Notice also that \(\frac{1}{2} P_k' + \frac{1}{4} P_k^2 = \frac{(n-3)(n-1)}{4(\rho + \rho_k)^2}\). Fix \(R_1 > (p - 1)^{-1/2}\) and consider \(R_2 > R_1\) and \(\rho \in (R_1, R_2)\). Since \(\beta_k \to -1\) and \(\tilde{u}_k, \tilde{v}_k \to c\) locally uniformly, we see that

\[
q_k := Q_k - \frac{1}{2} P_k' - \frac{1}{4} P_k^2 = Q_k - \frac{1}{4 \rho^2}
\]

\[
\to e^{p-1}(p - \beta) - \frac{1}{4 \rho^2} = 1 (p + 1) - \frac{1}{4 \rho^2} > 0,
\]

where the convergence is uniform for \(\rho \in (R_1, R_2)\). Set \(W_k(\rho) = \tilde{w}_k(\rho) \exp(\frac{1}{2} \int_1^\rho P_k)\). Then \(W_k'' + q_k W_k = 0\) and \(q_k > 1/2\) on \((R_1, R_2)\) for \(k\) large enough. Since the solution \(W(r) = \sin(\frac{n}{2} r)\) of the equation \(W'' + \frac{1}{2} W = 0\) has at least \(C_3 + 2\) zeroes in \((R_1, R_2)\) for \(R_2\) large enough, the Sturm comparison theorem guarantees that \(z(\tilde{w}_k) = z(W_k) > C_3\) which contradicts \((u_k, v_k) \in \mathcal{K}^*\) and concludes the proof.

Proof of Proposition 4 By \(C\) we denote various constants which depend only on \(\|U_0\|\) and \(C_E\).

Problem (3) is well posed in \(H^1\), hence there exists \(\delta = \delta(\|U_0\|) \in (0, 1)\) such that

\[
\|U(t, t)\| \leq C \quad \text{for} \quad t \in (0, \delta].
\]

If \(\Omega = B_R\), then this estimate and Corollary 3 implies

\[
\int_\Omega |U|^2(x, t) dx \leq C, \quad t \geq 0.
\]

Multiplying the first and the second equation in (3) by \(u\) and \(v\), respectively, integrating by parts, summing the identities and using \(\gamma \leq 0\) we obtain

\[
\frac{1}{2} \int_\Omega |U(x, t)|^2 dx \geq -(p + 1) E(t) + \frac{p - 1}{2} \int_\Omega (|\nabla U(x, t)|^2 + (\lambda + \gamma)|U(x, t)|^2) dx.
\]

We also have

\[
C \geq E(t_1) - E(t_2) = \int_{t_1}^{t_2} \int_\Omega |U|^2 dx dt, \quad t_2 > t_1.
\]

Set

\[
\tilde{\lambda} := \begin{cases}
\lambda & \text{if } \Omega = B_R, \\
\lambda + \gamma & \text{if } \Omega = \mathbb{R}^n.
\end{cases}
\]
and notice that $\tilde{\lambda} > 0$. Now (25), (24) and the boundedness of E, and then the Cauchy inequality and (26) guarantee
\[
\int_t^{t+1} \int_\Omega (|\nabla U|^2 + \tilde{\lambda}|U|^2) \, dx \, dt \leq C \left(1 + \int_t^{t+1} \int_\Omega |U| \cdot |U_r| \, dx \, dt\right)
\[
\leq C \left(1 + \left(\int_t^{t+1} \int_\Omega |U|^2 \, dx \, dt\right)^{1/2}\right),
\]
which first shows $\int_t^{t+1} \int_\Omega |U|^2 \, dx \, dt \leq C$, and then
\[
\int_t^{t+1} \|U(\cdot, s)\|^2 \, ds \leq C.
\] (27)

Since U solves the linear equation $U_t = \Delta U - \lambda U + HU$, where the matrix $H = H(x, t)$ satisfies $\|H(\cdot, t)\|_\infty \leq C$ for any $t \geq \delta$ due to Corollary 3, we have
\[
\|U(\cdot, t_0 + \tau)\| \leq C(\|U(\cdot, t_0)\|) \quad \text{whenever} \quad t_0 \geq \delta, \quad \tau \in [0, 2].
\] (28)

Choosing $t_0 = \delta$ in (28) and using (29) we obtain $\|U(\cdot, t)\| \leq C$ for $t \in [0, 2]$. Next (27) guarantees that for each $k = 2, 3, \ldots$ we can find $t_k \in [k - 1, k]$ such that $\|U(\cdot, t_k)\| \leq C$ and (28) guarantees $\|U(\cdot, t)\| \leq C$ for $t \in [k, k + 1]$. This concludes the proof.

Proof of Proposition 6 If $\Omega = B_R$, then the statement follows from the continuity and boundedness of the trajectory, and the smoothing properties of the semiflow generated by H. In fact, standard estimates based on the variation of constant formula guarantee that $U(\cdot, t)$ is bounded in $H^2(B_R, \mathbb{R}^2)$ for $t \geq \delta$, hence the compactness follows from the compact embedding of $H^2(B_R, \mathbb{R}^2)$ into $H^1(B_R, \mathbb{R}^2)$.

Next let $\Omega = \mathbb{R}^n$, U_0 be compactly supported and $n \geq 2$. It is well known (see [29], [17], for example), that $H^1_{r_0}(\mathbb{R}^n, \mathbb{R}^2)$ is compactly embedded into L^s if $2 < s < p_s$. It is also easily seen that the function $M(r) := \delta e^{-\varepsilon(r-R)}$, $r > R$, is a supersolution to problem (3) for any $R > 0$ if $\varepsilon, \delta > 0$ are small enough (where the smallness depends only on λ and $\sup_{|U_t| = 1} |F(U)|$). More precisely, if $|U_0(r)| \leq M(r)$ for $r > R$ and $|U(R, t)| < M(R)$ for all $t \geq 0$, then $|U(r, t)| \leq M(r)$ for all $r \geq R$ and $t \geq 0$. Fix such ε, δ.

Since [29] Radial Lemma] guarantees $|U(x, t)| \leq C(n)|x|^{(1-n)/2}|U(\cdot, t)|$ and U_0 is compactly supported, we can find $R > 0$ such that the support of U_0 is contained in B_R and $|U(R, t)| < \delta$ for all t. Consequently, we obtain $|U(r, t)| \leq M(r)$ for all $r \geq R$ and $t \geq 0$, hence the trajectory of U is bounded in L^1. This fact and the compactness in L^s guarantee the compactness in L^2, and smoothing arguments also prove the compactness in H^1. In fact, due to Corollary 3 one can easily show that the mapping $L^2 \to H^1 : U(\cdot, t) \to U(\cdot, t + 1)$ is continuous.

Acknowledgements. The author thanks Zhi-Qiang Wang for his helpful comments on paper [16].

References

[1] N. Ackermann, T. Bartsch, P. Kaplický and P. Quittner: A priori bounds, nodal equilibria and connecting orbits in indefinite superlinear parabolic problems. Trans. Amer. Math. Soc. 360 (2008), 3493–3539

[2] T. Bartsch: Personal communication (2012)

[3] T. Bartsch, N. Dancer and Z.-Q. Wang: A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system. Calc. Var. 37 (2010), 345–361
[4] T. Bartsch, P. Poláčik and P. Quittner: Liouville-type theorems and asymptotic behavior of nodal radial solutions of semilinear heat equations. J. European Math. Soc. 13 (2011), 219–247
[5] M.-F. Bidaut-Véron and S. Pohozaev: Nonexistence results and estimates for some nonlinear elliptic problems. J. Anal. Math. 84 (2001), 1–49
[6] T. Cazenave and P.-L. Lions: Solutions globales d’équations de la chaleur semi linéaires. Commun. Partial Differ. Equations 9 (1984), 955–978
[7] M. Clapp and A. Pistoia: Fully nontrivial solutions to elliptic systems with mixed couplings. Preprint arXiv:2106.01637
[8] M. Clapp and A. Szulkin: A simple variational approach to weakly coupled competitive elliptic systems. NoDEA 26 (2019), Art. 26
[9] G. Dai, R. Tian and Z. Zhang: Global bifurcations and a priori bounds of positive solutions for coupled nonlinear Schrödinger systems. Discrete Contin. Dyn. Syst. S 12 (2019), 1905–1927
[10] E.N. Dancer, J. Wei and T. Weth: A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system. Ann. I. H. Poincaré - AN 27 (2010), 953–969
[11] E.N. Dancer and T. Weth: Liouville-type results for non-cooperative elliptic systems in a half-space. J. London Math. Soc. 86 (2012), 111–128
[12] B. Gidas and J. Spruck: Global and local behavior of positive solutions of nonlinear elliptic equations. Comm. Pure Appl. Math. 34 (1981), 525–598
[13] Y. Giga: A bound for global solutions of semilinear heat equations. Comm. Math. Phys. 103 (1986), 415–421
[14] Y. Giga, S. Matsui and S. Sasayama: Blow up rate for semilinear heat equation with subcritical nonlinearity. Indiana Univ. Math. J. 53 (2004), 483–514
[15] M.A. Hamza, H. Zaag: The blow-up rate for a non-scaling invariant semilinear heat equation. Preprint arXiv:2102.00768
[16] H. Li and Z.-Q. Wang: Multiple nodal solutions having shared componentwise nodal numbers for coupled Schrödinger equations. J. Funct. Anal. 280 (2021), Art. 108782
[17] P.-L. Lions: Symétrie et compacité dans les espaces de Sobolev. J. Functional Anal. 49 (1982), 315–334.
[18] W.-M. Ni: Uniqueness of solutions of nonlinear Dirichlet problems. J. Differ. Equations 50 (1983), 289–304
[19] P. Poláčik, P. Quittner and Ph. Souplet: Singularity and decay estimates in superlinear problems via Liouville-type theorems. Part I: elliptic equations and systems. Duke Math. J. 139 (2007), 555–579
[20] P. Poláčik, P. Quittner and Ph. Souplet: Singularity and decay estimates in superlinear problems via Liouville-type theorems. Part II: parabolic equations. Indiana Univ. Math. J. 56 (2007), 879–908
[21] P. Quittner: A priori bounds for global solutions of a semilinear parabolic problem. Acta Math. Univ. Comenianae 68 (1999), 195–203
[22] P. Quittner: Continuity of the blow-up time and a priori bounds for solutions in superlinear parabolic problems. Houston J. Math. 29 (2003), 757–799
[23] P. Quittner: Liouville theorems, universal estimates and periodic solutions for cooperative parabolic Lotka-Volterra systems. J. Differ. Equations 260 (2016), 3524–3537
[24] P. Quittner: Liouville theorems for parabolic systems with homogeneous nonlinearities and gradient structure. Preprint (2021)
[25] P. Quittner and Ph. Souplet: Superlinear parabolic problems. Blow-up, global existence and steady states. Birkhäuser Advanced Texts, Birkhäuser, Basel, 2nd edition (2019)
[26] P. Quittner and Ph. Souplet: Optimal Liouville-type theorems for noncooperative elliptic Schrödinger systems and applications. Comm. Math. Phys. 311 (2012), 1–19
[27] W. Reichel and H. Zou: Non-existence results for semilinear cooperative elliptic systems via moving spheres. J. Differ. Equations 161 (2000), 219–243
[28] J. Serrin and H. Zou: Classification of positive solutions of quasilinear elliptic equations. Topol. Methods Nonlinear Anal. 3 (1994), 1–26
[29] W.A. Strauss: Existence of solitary waves in higher dimensions. Commun. Math. Phys. 55 (1977), 149–162.
[30] J. Wei and T. Weth: Radial solutions and phase separation in a system of two coupled Schrödinger equations. Arch. Rational Mech. Anal. 190 (2008), 83–106
[31] L. Zhou, Z.-Q. Wang: Uniqueness of positive solutions to some Schrödinger systems. Nonlinear Anal. 195 (2020), Art. 111750