November 11, 2020

A p-ADIC SHIMURA-MAASS OPERATOR ON MUMFORD CURVES

MATTEO LONGO

Abstract. We study a p-adic Shimura-Maass operator in the context of Mumford curves defined by C. Franc in [Fra11]. We prove that this operator arises from a splitting of the Hodge filtration, thus answering a question in [Fra11]. We also study the relation of this operator with generalized Heegner cycles, in the spirit of [BDP13], [HB15], [Kri18] and [AI19].

Contents
1. Introduction 1
2. Algebraic de Rham cohomology of Shimura curves 5
3. Special values of L-series 8
4. The Shimura-Maass operator on the p-adic upper half plane 11
5. The p-adic Shimura-Maass operator on Shimura curves 24
6. The Coleman primitive 28
7. The generalised Kuga-Sato motive 30
8. The Abel-Jacobi map 31
9. Generalized Heegner cycles 32
References 38

1. INTRODUCTION

The main purpose of this paper is to study in the context of Mumford curves a p-adic variant of the Shimura-Maass operator, and relate it to generalized Heegner cycles.

The real analytic Shimura-Maass operator is defined by the formula

$$\delta_k(f(z)) = \frac{1}{2\pi i} \left(\frac{\partial}{\partial z} + \frac{k}{z - \bar{z}} \right) f(z)$$

where z is a variable in the complex upper half plane \mathcal{H}, $f(z)$ is a real analytic modular form of weight k, and $z \mapsto \bar{z}$ denotes the complex conjugation; here $\delta_k(f(z))$ is a real analytic modular form of weight $k + 2$. The relevance of this operator arises in studying algebraicity properties of Eisenstein series and L-functions: see Shimura [Shi75], Hida [Hid93, Chapter 10]. One of the main results in [Shi75] is the following. Let

$$\delta_k = \delta_{k+2(r-1)} \circ \delta_{k+2(r-2)} \circ \cdots \circ \delta_k$$

for any $r \geq 1$, and let K be an imaginary quadratic field. Then there exists $\Omega_K \in \mathbb{C}^\times$ such that for every CM point $z \in K \cap \mathcal{H}$, every congruence subgroup $\Gamma \subseteq \text{SL}_2(\mathbb{Z})$, every integer $k \geq 0$, $r \geq 1$, and every modular form of weight k and level Γ with algebraic Fourier coefficients we have

$$\frac{\delta_k^r(f(z))}{\Omega_{K}^{k+2r}} \in \bar{\mathbb{Q}}.$$

Katz described in [Kat68] the Shimura-Maass operator in more abstract terms by means of the Gauss-Manin connection (see also [KO68]). More precisely, let $N \geq 1$ be an integer,
X_1(N) the modular form of level Γ_1(N) over Q, and let π : E → X_1(N) be the universal elliptic curve. Consider the relative de Rham cohomology sheaf

\[\mathcal{L}_1 = \mathbb{R}^1\pi_* \left(0 \to \mathcal{O}_E \to \Omega^1_{E/X_1(N)} \right) \]

on X_1(N), and define \(\mathcal{L}_r = \text{Sym}^r(\mathcal{L}_1) \). Let \(\omega = \pi_* \left(\Omega^1_{E/X_1(N)} \right) \). The sheaf \(\omega \) is invertible and we have the Hodge filtration

\[0 \to \omega \to \mathcal{L}_1 \to \omega^{-1} \to 0. \]

Once we are given a splitting \(\Psi \) of the Hodge filtration \(\mathfrak{h} \), one may define by means of the Gauss-Manin connection and the Kodaira-Spencer map an operator \(\Theta^{(r)}_\Psi : \omega^r \to \omega^{r+2} \), for any even integer \(r \geq 2 \). In particular, considering the associated real analytic sheaves, which we denote by a superscript \(\text{ra} \), the Hodge exact sequence admits a splitting

\[\Psi_\infty : \mathcal{L}_{1}^{\text{ra}} \cong \omega_{\text{ra}}^{\text{pr}} \oplus \omega_{\text{ra}}, \]

where \(\omega_{\text{ra}} \) is obtained from \(\omega \) by applying the complex conjugation. The Shimura-Maass operator can then be described as the map \(\Theta^{(r)}_\Psi \) on real analytic differentials by appealing to the general procedure alluded to above applied to the real analytic splitting \(\mathfrak{h} \). For details on this construction, the reader is referred to [Kat78 §1.8] and [BDP13 §1.2]; for the case of Siegel modular forms, see [Har81 §4] while for the case of Shimura curves see [HB15 §3], [Mor11 §2].

As hinted from the above discussion, Katz description of the Shimura-Maass operator rests on the fact that the real analytic Hodge sequences \(\mathfrak{h} \) splits. In [Kat78 §1.11], Katz introduces a \(p \)-adic analogue of this splitting. Suppose that \(p \nmid N \) is a prime number, and let \(X^{\text{ord}}_1(N) \) denote the ordinary locus of the modular curve, viewed as a rigid analytic scheme over \(\mathbb{Q}_p \).

Let \(\mathcal{F}^{\text{rig}} \) be the rigid analytic sheaf associated with a sheaf \(\mathcal{F} \) on \(X_1(N) \). Then \(\mathcal{L}^{\text{rig}}_1 \) splits over \(X^{\text{ord}}_1(N) \) as the direct sum

\[\Psi_p : \mathcal{L}^{\text{rig}}_1 \cong \omega^{\text{rig}} \oplus \mathcal{L}^{\text{Frob}}_1 \]

(where \(\mathcal{L}^{\text{Frob}}_1 \) has the property that the Frobenius endomorphism acts on this sheaf invertibly).

This allows to define a differential operator \(\Theta^{(r)}_\Psi \), which can be seen as a \(p \)-adic analogue of the Shimura-Maass operator; this operator can be also described in terms of Atkin-Serre derivative. At CM points the splittings \(\Psi_\infty \) and \(\Psi_p \) coincide, and therefore one deduces by comparison rationality results for the values of \(\Theta^{(r)}_\Psi \) at CM points from intro rationality. For details, see [BDP13 Proposition 1.12]. The \(p \)-adic Shimura-Maass operator is then used in [Kat78] and [BDP13] to construct \(p \)-adic L-functions and study their properties.

We now fix an integer \(N \), a prime \(p \nmid N \), and a quadratic imaginary field in which \(p \) is inert. In this context, Kritz introduced in [Kri18] for modular forms of level \(N \) a new \(p \)-adic Shimura-Maass operator by using perfectoid techniques, and define \(p \)-adic L-functions by means of this operator, thus removing the crucial assumption that \(p \) is split in \(K \), but keeping the assumption that \(p \) is a prime of good reduction for the modular curve. Moreover, Andreatta-Iovita [AI19] introduced still an other \(p \)-adic Shimura-Maass operator in [AI19], and obtained results analogue to [BDP13], thus extending their work to the non-split case.

On the other hand, Franc in his thesis [Fra11] proposed still an other \(p \)-adic Shimura-Maass operator for primes \(p \) which are inert in \(K \), in the following context. Let \(N \geq 1 \) be an integer, \(K/\mathbb{Q} \) a quadratic imaginary field, \(p \nmid N \) a prime number which is inert in \(K \), and let \(Np = N^+ \cdot N^- p \) be a factorization of \(Np \) into coprime integers such that \(N^+ \) is divisible only by primes which are split in \(K \), and \(N^- p \) is a square-free product of an even number of primes factors which are inert in \(K \). Let \(\mathcal{B} \) be the indefinite quaternion of discriminant \(N^- \), \(\mathcal{R} \) an Eichler order of \(X \) of level \(N^+ \), and \(\mathcal{C} \) the Shimura curve attached to \((\mathcal{B}, \mathcal{R}) \). The rigid analytic curve \(X^{\text{rig}} \) over \(\mathbb{Q}_p \) is then a Mumford curve, namely \(X^{\text{ord}}(\mathbb{C}_p) \) is isomorphic to the
rigid analytic quotient of the p-adic upper half plane \(\mathcal{H}_p(\mathbb{Q}_p) = \mathbb{C}_p - \mathbb{Q}_p \) by an arithmetic subgroup \(\Gamma \subseteq \text{SL}_2(\mathbb{Q}_p) \). Franc defines in this context a p-adic Shimura-Maass operator \(\delta_{p,k} \) by mimicking the definition (1) and formally replacing the variable \(z \in \mathcal{H} \) with the p-adic variable \(z \in \mathcal{H}_p(\hat{\mathbb{Q}}_p^\text{unr}) = \hat{\mathbb{Q}}_p^\text{unr} - \mathbb{Q}_p \), and replacing the complex conjugation with the Frobenius map (here \(\hat{\mathbb{Q}}_p^\text{unr} \) is the completion of the maximal unramified extension of \(\mathbb{Q}_p \)). Following the arguments of [Shi75], Franc proves statement analogue to (2) (see [Fra11, Theorem 5.1.5]).

In [Fra11] [§6.1.3], Franc asks for a construction of his p-adic Shimura-Maass operator by means of (non-rigid analytic) splitting \(\Psi_p \) of the Hodge filtration, similar to what happens over \(X_1(N) \) (in the real analytic case [Shi75]) and \(X_1^{\text{ord}}(N) \) (in the p-adic rigid analytic case [Kat78]). The first result of this paper is to provide such a splitting \(\Psi_p \), and define the associated p-adic Shimura-Maass operator. In particular, we show that our splitting \(\Psi_p \) coincides at CM points with the Hodge splitting \(\Psi_\infty \), and therefore, as in [Kat78], we reprove the main results of [Fra11] by the comparison of the two Shimura-Maass operators. We also derive a relation between our p-adic Shimura-Maass operator and generalized Heegner cycles in the context of Mumford curves, which can be vied as an analogue of [BDP13, Proposition 3.24]. In the remaining part of the introduction we describe more precisely the results of this paper.

Instead of the curve \(X \) attached to the Eichler order \(\mathcal{R} \), we follow [HB15] and consider a covering \(C \to X \) where \(C \) is a geometrically connected curve defined over \(\mathbb{Q} \) corresponding to a \(\Gamma_1(N^{\tau}) \)-level structure subgroup of \(\mathcal{R}^\times \), where \(\mathcal{R} = \mathcal{R} \otimes \mathbb{Z} \hat{\mathbb{Z}} \) is the profinite completion of \(\mathcal{R} \). The advantage of using \(C \) is that \(C \) is the solution of a moduli problem, and we have a universal false elliptic curve \(\pi : \mathcal{A} \to C \) (see §2.2). Following [Has95], [Mor11], [HB15], we define a quaternionic projector \(e \), acting on the relative de Rham cohomology of \(\pi : \mathcal{A} \to C \), and define the sheaf

\[
\mathcal{L}_1 = e \cdot \mathcal{H}_p^1(\mathcal{A}/\mathcal{C})
\]

and the line bundle

\[
\omega = e \cdot \pi^*(\Omega^1_{\mathcal{A}/\mathcal{C}}).
\]

We have a corresponding Hodge filtration

\[
0 \to \omega \to \mathcal{L}_1 \to \omega^{-1} \to 0.
\]

The rigid analytic curve \(C^{\text{rig}} \) associated with \(C \) admits a p-adic uniformization

\[
C^{\text{rig}}(\mathbb{C}_p) \simeq \Gamma \backslash \mathcal{H}_p(\mathbb{C}_p)
\]

for a suitable subgroup \(\Gamma \subseteq \text{SL}_2(\mathbb{Q}_p) \). Modular forms on \(C^{\text{rig}} \) are then \(\Gamma \)-invariant sections of \(\mathcal{H}_p \), and therefore, to define a p-adic Shimura-Maass operator on \(C \) one is naturally led to consider the analogue problem for \(\mathcal{H}_p \).

Let \(C^0 \) denote the \(\mathbb{C}_p \)-vector space of continuous (for the standard p-adic topology on both spaces) \(\mathbb{C}_p \)-valued functions on \(\mathcal{H}_p(\hat{\mathbb{Q}}_p^\text{unr}) \), and let \(\mathcal{A} \) denote the \(\hat{\mathbb{Q}}_p^\text{unr} \)-vector space of rigid analytic global sections of \(\mathcal{H}_p(\hat{\mathbb{Q}}_p^\text{unr}) \). We have a map of \(\hat{\mathbb{Q}}_p^\text{unr} \)-vector spaces \(r : \mathcal{A} \to C^0 \) and, following [Fra11], we denote \(\mathcal{A}^r \) the image of the morphism of \(\mathcal{A} \)-algebras \(\mathcal{A}[X,Y] \to C^0 \) defined by sending \(X \) to the function \(z \mapsto 1/(z - \sigma(z)) \) and \(Y \) to the function \(z \mapsto \sigma(z) \), where \(\sigma : \hat{\mathbb{Q}}_p^\text{unr} \to \hat{\mathbb{Q}}_p^\text{unr} \) is the Frobenius automorphism (note that the function \(z \mapsto z - \sigma(z) \) is invertible on \(\mathcal{H}_p(\hat{\mathbb{Q}}_p^\text{unr}) \)). Denote \(\mathcal{H}_p \) the formal \(\mathbb{Z}_p \)-scheme whose generic fiber is \(\mathcal{H}_p \), let \(\mathcal{H}_p^\text{unr} \) be its base change to \(\hat{\mathbb{Q}}_p^\text{unr} \) and let \(\mathcal{G} \to \mathcal{H}_p^\text{unr} \) be the universal SFD-module. Denote \(\omega_{\mathcal{G}} = e^\vee (\Omega^1_{\mathcal{G}/\mathcal{H}_p^\text{unr}}) \), where \(e^\vee : \mathcal{H}_p^\text{unr} \to \mathcal{G} \) is the zero-section, and let \(\mathcal{L}ie_{\mathcal{G}^\vee} \) be the Lie algebra of the Cartier dual \(\mathcal{G}^\vee \) of \(\mathcal{G} \). Then \(\omega_{\mathcal{G}} \) and \(\mathcal{L}ie_{\mathcal{G}^\vee} \) are locally free \(\mathcal{O}_{\mathcal{H}_p^\text{unr}} \)-modules, dual to each
other and we have the Hodge-Tate exact sequence of $\mathcal{O}_{\tilde{H}^\text{unr}_p}$-modules

$$0 \rightarrow \omega_G \rightarrow \mathcal{H}^1_{\text{dR}}(G/\tilde{H}^\text{unr}_p) \rightarrow \mathcal{L}e_{G^\vee} \rightarrow 0.$$

Set $\mathcal{L}^0_G = e \cdot \mathcal{H}^1_{\text{dR}}(G/\tilde{H}^\text{unr}_p)$ and $\omega^0_G = e \cdot \omega_G$. Define $\Lambda^*_G = H^0(\mathcal{H}^\text{unr}_p, \mathcal{L}_G^0)$, $\Lambda^*_G = \Lambda^*_G \otimes_A A^*$, $w_G = H^0(\mathcal{H}^\text{unr}_p, \omega^0_G)$, $w_G^* = w_G \otimes_A A^*$. We have then an injective map of A^*-algebras

\begin{equation}
(5) \quad w_G^* \hookrightarrow \Lambda^*_G.
\end{equation}

Theorem 1.1. The injection (5) of A^*-algebras admits a canonical splitting $\Psi_p^* : \Lambda^*_G \rightarrow w_G^*$.

This is the main result of this paper, Theorem 4.7. We may then attach to Ψ_p^* a p-adic Shimura-Maass operator $\Theta^{(r)}_p$. We have the following two corollaries.

Corollary 1.2. The p-adic Shimura-Maass operator $\delta_{p,k}$ defined by Franc in [Fra11] coincides with the p-adic Shimura-Maass operator $\Theta^{(r)}_p$ defined by means of the splitting in Theorem 1.1.

The main tool which is used to prove Theorem 1.1 and Corollary 1.2 is Drinfel’d interpretation of \mathcal{H}^unr_p as moduli space of special formal modules with quaternionic multiplication; following [Tei89], we call these objects SFD-modules. We study the relative de Rham cohomology of the universal SFD-module $G \rightarrow \tilde{H}^\text{unr}_p$ by means of techniques from [Tei89], [Fal97] and [IS03]. The upshot of our analysis is an explicit description of the Gauss-Manin connection and the Kodaira-Spencer isomorphism for $G \rightarrow \tilde{H}^\text{unr}_p$, once we apply to the relevant sheaves the projector e. This detailed study is contained in Section 4 which we believe is of independent interest and is the technical heart of the paper.

For the next corollary, define as in the real analytic case

$$\delta_{p,k}^* = \delta_{p,k+2(r-1)} \circ \delta_{p,k+2(r-2)} \circ \cdots \circ \delta_{k}.$$

Moreover, we fix an embedding $\bar{Q} \hookrightarrow \bar{Q}_p$, and we say that $\xi \in \bar{Q}_p$ belongs to \bar{Q} if ξ belongs to the image of this embedding.

Corollary 1.3. Let f be a modular form on C. Then there exists $t_p \in \mathbb{C}_p^\times$, independent of f, such that for every CM point $z \in K \cap \mathcal{H}_p(\tilde{H}^\text{unr}_p)$ we have $\frac{\delta_{p,k}^*(f)(z)}{t_p} \in \bar{Q}$.

As remarked above, this is the main result of Franc thesis [Fra11], which he proves via an explicit approach following Shimura. Instead, we derive this result in Theorem 5.3 from a comparison between the values at CM points of our p-adic Shimura-Maass operator $\Theta^{(r)}_p$ and the real analytic Shimura-Maass operator $\Theta^{(r)}$.

We explain now the connection with generalized Heegner cycles. These cycles were introduced in [BDP13] with the aim of studying certain anticyclotomic p-adic L-functions. Generalized Heegner cycles have been also studied in the context of Shimura curves with good reduction at p by [HB15], and in the context of Mumford curves in [Mas12], [LP19]. In this paper we introduce still another variant of Generalized Heegner cycles. Fix a false elliptic curve A_0 with CM by \mathcal{O}_K. To any isogeny $\varphi : A_0 \rightarrow A$, where A is a false elliptic curve, we construct a cycle Υ_{φ} in the Chow group $\text{CH}^m(A \times A_0)$ of the Chow motive $A \times A_0$, where $m = n/2$ with $n = k - 2$. The work of Brooks [HB15] gives us a projector ϵ in the ring of correspondences of $X_m = A^m \times A_0^n$, which defines the motive $\mathcal{D} = (X^m, \epsilon)$. The generalised Heegner cycle Δ_{φ} in the image of Υ_{φ} in $\text{CH}^m(\mathcal{D})$ via this projector. Let $M_k(\Gamma)$ be the \mathbb{C}_p-vector space of rigid analytic quaternionic modular forms of weight k and level Γ; elements of $M_k(\Gamma)$ are functions from $\mathcal{H}_p(\mathbb{C}_p) = \mathbb{C}_p - \mathbb{Q}_p$ to \mathbb{C}_p which transform under the action of Γ by the automorphic factor of weight k. We construct a p-adic Abel-Jacobi map

$$\text{AJ}_p : \text{CH}^m(\mathcal{D}) \rightarrow (M_k(\Gamma) \otimes \text{Sym}^m eH^1_{\text{dR}}(A_0))^\vee$$
where $^\vee$ denotes \mathbb{C}_p-linear dual. If follows from our work that $L^0_\varphi = eH^1_{dR}(G/H^0_p)$ is equipped with two canonical sections ω_{can} and η_{can}, such that ω_{can} is a generator of the invertible sheaf ω^0_φ. Let $\omega_f \in H^0_\varphi$ be the Γ-invariant differential form associated with $f \in M_k(\Gamma)$, and let F_f its Coleman primitive satisfying $\nabla(F_f) = \omega_f$, where ∇ is the Gauss-Manin connection. Denote $\langle . , . \rangle$ is the Poincaré pairing on $\text{Sym}^n eH^1_{dR}(A_z)$, where A_z is the fiber of A at z. Define the function
\[H(z) = \langle F_f(z), \omega^\ell_{\text{can}}(z) \rangle. \]

Theorem 1.4. Let $\varphi : A_0 \to A$ be an isogeny and z_A the fiber of $A \to C$. Then for each integer $j = n/2, \ldots, n$ we have
\[\delta^{n-j}_{p,k}(H_n)(z_A) = AJ_p(\Delta_\varphi)(\omega_f \otimes \omega^j_{\text{can}} \eta^n_{\text{can}}). \]

Theorem [1.3] relates the Shimura-Maass operator with generalised Heegner cycles, and corresponds to Corollary [3.3.

We finally make a remark on p-adic L-functions. It would be interesting to use our p-adic Shimura-Maass operator to construct p-adic L-functions interpolating special values of the complex L-function of f twisted by Hecke characters as in [BDP13], [HB15], [Kri18], [AI19]. We would like to come back to this problem in a future work.

2. **Algebraic de Rham cohomology of Shimura curves**

Throughout this section, let $k \geq 2$ be an even integer and $N \geq 1$ an integer. Fix an imaginary quadratic field K/\mathbb{Q} of discriminant D_K prime to N and factor $N = N^+ \cdot N^-$ by requiring that all primes dividing N^+ (respectively N^-) split in K (respectively, are inert in K). Assume that N^- is a square-free of an odd number of primes, and let $p \nmid N$ be a prime number which is inert in K (thus N^-p is a square-free of an even number of primes). Let $f \in S_k(\Gamma_0(Np))$ be a weight k newform of level $\Gamma_0(Np)$. Fix also embeddings $\overline{Q} \hookrightarrow \mathbb{C}$ and $\mathbb{Q} \hookrightarrow \mathbb{Q}_p$ for each prime number p.

2.1. Quaternion algebras

Fix an indefinite quaternion algebra B/\mathbb{Q} of discriminant N^-p, a maximal order $\mathcal{R}_{\text{max}} \subseteq B$ and an Eichler order $\mathcal{R} \subseteq \mathcal{R}_{\text{max}}$ of level N^+. Fix isomorphisms $\iota_\ell : B_\ell = B \otimes \mathbb{Q}_\ell \simeq M_2(\mathbb{Z}_\ell)$ for each prime $\ell \nmid N^-p$ such that $\iota_\ell(\mathcal{R}_{\text{max}} \otimes \mathbb{Z}_\ell)$ is the subgroup $M_2(\mathbb{Z}_\ell)$ and moreover for each prime $\ell \mid N^+$ we require that $\iota_\ell(\mathcal{R} \otimes \mathbb{Z}_\ell)$ is the subgroup of $\mathcal{R}^\ell_{\text{max}}$ to consisting of elements x such that $\iota_\ell(x) \equiv \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \pmod{N^+}$ (as a general notation, for any \mathbb{Z}-algebra A, let $\tilde{A} = A \otimes \mathbb{Z}$, where \mathbb{Z} is the pro finite completion of \mathbb{Z}).

We need to fix a convenient basis for the \mathbb{Q}-algebra B, called Hashimoto model. Denote $M = \mathbb{Q}(\sqrt{p_0})$ the splitting field of the quadratic polynomial $X^2 - p_0$, where p_0 if an auxiliary prime number fixed as in [Mor11] §1.1 and [HB15] §2.1, such that:

1. for all primes ℓ we have $(p_0, pN^-)\ell = -1$ if and only if $\ell \mid pN^-$, where $(a, b)_\ell$ denotes the Hilbert symbol,
2. all primes $\ell \mid N^+$ are split in the real quadratic field $M = \mathbb{Q}(\sqrt{p_0})$, where $\sqrt{p_0}$ is a square root of p_0 in \mathbb{Q}.

The choice of p_0 fixes a \mathbb{Q}-basis of B as in [Has95] §2 given by $\{1, i, j, k\}$ with $i^2 = -pN^-$, $j^2 = p_0$, $k = ij = -ji$, and 1 the unit of B; of course, if $x \in \mathbb{Q}$ we will often just write x for $x \cdot 1$.

2.2. Moduli problem

A false elliptic curve A over a scheme S is an abelian scheme $A \to S$ of relative dimension 2 equipped with an embedding $\iota_A : \mathcal{R}_{\text{max}} \to \text{End}_S(A)$. An isogeny of false elliptic curves is an isogeny which commutes with the action of \mathcal{R}_{max}. A full level N^+-structure on A is an isomorphism of group schemes $\alpha_A : A[N^+] \simeq (\mathcal{R}_{\text{max}} \otimes \mathbb{Z}(\mathbb{Z}/N^+\mathbb{Z}))S$, where for any group G we denote G_S the constant group scheme G over S. Note that
The Gauss-Manin connection is then defined as the differential d from the Gauss-Manin connection as follows. Let in the long exact sequence of derived functors obtained from (6). It can also be reconstructed

$$E = \pi \text{ for each integer } i,$$

$$\text{relative differential forms for the morphism } \phi,$$}

We first recall some general notation. For any morphism of schemes $\phi : X \to S$, denote $(\Omega^*_{X/S}, d_X^*)$, or simply $\Omega^*_{X/S}$ understanding the differentials d^*_X, the complex of sheaves of relative differential forms for the morphism ϕ. For a sheaf \mathcal{F} of \mathcal{O}_X-modules over a scheme X, we denote \mathcal{F}^i its \mathcal{O}_X-linear dual and, for a positive integer k, we put $\mathcal{F}^{i\otimes k} = \mathcal{F} \otimes_{\mathcal{O}_X} \cdots \otimes_{\mathcal{O}_X} \mathcal{F}$ (k factors). If \mathcal{F} is invertible, we denote \mathcal{F}^{-1} its inverse, and in this case for k a negative integer, $\mathcal{F}^{i\otimes k}$ denotes $(\mathcal{F}^{-1})^{\otimes k}$ as usual.

Fix a field F of characteristic zero. The relative de Rham cohomology bundle for the morphism $A_F \to C_F$ is defined by

$$H^q_{dR}(A_F/C_F) = \mathbb{R}^q \pi^* \left(\Omega^*_{A_F/C_F} \right).$$

We first recall the construction of the Gauss-Manin connection. We have a canonical short exact sequence of locally free sheaves

$$(6) \quad 0 \to \pi^*_F \left(\Omega^1_{\mathcal{O}_F/F} \right) \to \Omega^1_{A_F/C_F} \to \Omega^1_{A_F/F} \to 0$$

(the exactness is because π^*_F is smooth). This exact sequence induces maps

$$\Omega^*_{A_F/F} \otimes_{\mathcal{O}_{A_F}} \pi^*_F \left(\Omega^i_{C_F/F} \right) \to \Omega^*_{A_F/F}$$

for each integer i, defining a filtration $F^i \Omega^*_{A_F/F} = \text{Im}(\psi^i_{A_F/F})$ on $\Omega^*_{A_F/F}$ with associated graded objects

$$\text{gr}^i \left(\Omega^*_{A_F/F} \right) = \Omega^*_{A_F/F} \otimes_{\mathcal{O}_A} \pi^*_F \left(\Omega^i_{C_F/F} \right).$$

Let $E^{i,q}_p$ denote the spectral sequence associated with this filtration. The $E^{i,q}_p$ terms are then given by $E^{i,q}_1 = \mathbb{R}^{p+q} \pi^*_{F*} \left(\text{gr}^p \left(\Omega^*_{A_F/F} \right) \right)$. Since $\Omega^p_{C_F/F}$ is locally free, and the differentials in the complex $\pi^*_F \left(\Omega^p_{C_F/F} \otimes_{\mathcal{O}_A} \Omega^*_{A_F/C_F} \right)$ are $\pi^{-1}(\mathcal{O}_{C_F})$-linear, one can show that

$$E^{i,q}_1 \simeq \Omega^p_{C_F/F} \otimes_{\mathcal{O}_{C_F}} H^q_{dR}(A_F/C_F)$$

([KO68 (7)]). The Gauss-Manin connection

$$\nabla : H^i_{dR}(A_F/C_F) \to \Omega^1_{C_F/F} \otimes_{\mathcal{O}_{C_F}} H^i_{dR}(A_F/C_F)$$

is then defined as the differential $d^{i,1}_{\nabla_1} : E^{i,1}_0 \to E^{i,1}_1$ in this spectral sequence.

We now recall various descriptions of the Kodaira-Spencer map. It is defined to be the boundary map

$$\text{KS}_{A_F/C_F} : \pi^*_F \left(\Omega^1_{A_F/C_F} \right) \to \mathbb{R}^1 \pi^*_F \left(\pi^*_F \left(\Omega^1_{C_F/F} \right) \right)$$

in the long exact sequence of derived functors obtained from [KO68]. It can also be reconstructed from the Gauss-Manin connection as follows. Let $\pi^*_F : A^1_F \to C_F$ denote the dual abelian
Kodaira-Spencer map can also be seen as a map of O in which the first and the last map come from the Hodge exact sequence (7). Therefore the same symbol, (2.4). Idempotents and line bundles.

Manin connection as the composition $(R → 0)$ then \bar{x} with the involution $x → x^t$ of R_{max}, defined by $x^t = i^{-1} x$ (as usual, if $x = a + bi + cj + dk$, then $\bar{x} = a - bi - cj - dk$). Using the principal polarization and the isomorphism between $R^1 \pi_{F*}(\Omega^1_{A_F/F})$ and the tangent bundle of A^\vee_F, the Hodge exact sequence can be written as

$$0 \to \pi_{F*}(\Omega^1_{A_F/F}) \to \mathcal{H}^1_{\text{dr}}(A_F/C_F) \to (\pi_{F*}(\Omega^1_{A_F/F}))^\vee \to 0 \tag{7}$$

(cf. [Mor11 (2.2)], [HB15 §2.6]). The Kodaira-Spencer map can be defined using the Gauss-Manin connection

$$\text{KS}_{A_F/C_F} : \pi_{F*}(\Omega^1_{A_F/F}) \to \mathcal{H}^1_{\text{dr}}(A_F/C_F) \to \mathcal{H}^1_{\text{dr}}(A_F/C_F) \otimes \mathcal{O}_{C_F} \Omega^1_{C_F/F} \to (\pi_{F*}(\Omega^1_{A_F/F}))^\vee \otimes \mathcal{O}_{C_F} \Omega^1_{C_F/F}$$

in which the first and the last map come from the Hodge exact sequence (7). Therefore the Kodaira-Spencer map can also be seen as a map of \mathcal{O}_{C_F}-modules, denoted again with the same symbol,

$$\text{KS}_{A_F/C_F} : \pi_{F*}(\Omega^1_{A_F/F}) \otimes^2 \to \Omega^1_{C_F/F}. \tag{2.4}$$

2.4. Idempotents and line bundles. Let $e = \frac{1}{2} \left(1 \otimes 1 + \frac{1}{p_0} j \otimes \sqrt{p_0} \right) \in R_M = R_{\text{max}} \otimes \mathbb{Z} \mathcal{O}_M[1/(2p_0)]$ be the idempotent in [Mor11 (1.10)], [HB15 §2.1], where \mathcal{O}_M is the ring of integers of M. We have an isomorphism $\iota_M : B \otimes \mathbb{Q} M \simeq M_2(M)$.

Suppose we have an embedding $M → F$, allowing us to identify M with a subfield of F; in the cases we are interested in, either $F \subseteq \mathbb{Q}$ (and then we require that F contains M), or $F = \mathbb{C}$ (and then we view $M \hookrightarrow \mathbb{C}$ via the fixed embedding $\mathbb{Q} \hookrightarrow \mathbb{C}$) or $F \subseteq \mathbb{Q}_p$ (and then we require that F contains the image of M via the fixed embedding $\mathbb{Q} \hookrightarrow \mathbb{Q}_p$).

Since M is contained in F, we have an action of R_M on the sheaves $\pi_{F*}(\Omega^1_{A_F/F})$ and $\mathcal{H}^1_{\text{dr}}(A_F/C_F)$, and we may therefore define the invertible sheaf of \mathcal{O}_{C_F}-modules

$$\omega_F = e \cdot \pi_{F*}(\Omega^1_{A_F/F}) \tag{8}$$

and the sheaf of \mathcal{O}_{C_F}-modules

$$\mathcal{L}_F = e \cdot \mathcal{H}^1_{\text{dr}}(A_F/C_F). \tag{9}$$

Using that e is fixed by the Rosati involution, the Hodge exact sequence (7) becomes

$$0 \to \omega_F \to \mathcal{L}_F \to \omega_F^{-1} \to 0 \tag{10}$$

(see [HB15 §2.6] for details). For any integer $n \geq 1$, define

$$\mathcal{L}_{F,n} = \text{Sym}^n(\mathcal{L}_F).$$

The Gauss-Manin connection is compatible with the quaternionic action ([Mor11 Proposition 2.2]). Therefore, restricting to $\mathcal{L}_{F,1}$ and using the Leibniz rule (see for example [HB15 §3.2]), the Gauss-Manin connection defines a connection

$$\nabla_n : \mathcal{L}_{F,n} → \mathcal{L}_{F,n} \otimes \Omega^1_{C_F/F}.$$
By [Mor11] Theorem 2.5, restricting the Kodaira-Spencer map to $\omega_{F}^{\otimes 2}$ gives an isomorphism

$$KS_F : \omega_{F}^{\otimes 2} \cong \Omega_{C_F/F}^1.$$

We may then define a map $\tilde{\nabla}_n : \mathcal{L}_{F,n} \to \mathcal{L}_{F,n+2}$ by the composition

$$(11)$$

$$\tilde{\nabla}_n : \mathcal{L}_{F,n} \xrightarrow{\nabla_n} \mathcal{L}_{F,n} \otimes \mathcal{O}_{\mathcal{C}_F/F} \xrightarrow{id \circ KS_F^{-1}} \mathcal{L}_{F,n} \otimes \mathcal{O}_{\mathcal{C}_F/F} \omega_{F}^{\otimes 2} \xrightarrow{\mathcal{C}_F/F \otimes \mathcal{O}_{\mathcal{C}_F/F}} \mathcal{L}_{F,n} \otimes \mathcal{O}_{\mathcal{C}_F/F} \mathcal{L}_{F,2} \xrightarrow{\mathcal{L}_{F,n} \otimes \mathcal{O}_{\mathcal{C}_F/F} \mathcal{L}_{F,n+2}}$$

where the last map is the product map in the symmetric algebras.

2.5. Algebraic modular forms. For any F-algebra R, we define the R-algebra

$$S_{k}^{\text{alg}}(V_1(N^+), R) = H^0(C_R, \omega_{R}^{\otimes k})$$

of algebraic modular forms of weight k and level $V_1(N^+)$ over R. One can show ([HB15] §3.1) that the R-algebra $S_{k}^{\text{alg}}(V_1(N^+), R)$ can be alternatively described in modular terms. Let R' be an R algebra. A test triple over R' is a triplet (A', t', ω') consisting of a false elliptic curve A'/R', a $V_1(N^+)$-level structure t' and a global section ω' of $\omega_{A'/R'}$. An isomorphism of test triples (A', t', ω') and (A'', t'', ω'') is an isomorphism of false elliptic curves $\phi : A' \to A''$ such that $\phi(t') = t''$ and $\phi^*(\omega'') = \omega'$. A test pair over R' is a pair (A', t') obtained from a test triple by forgetting the datum of the global section. Then one can identify global sections of $\omega_{R}^{\otimes k}$ with:

1. A rule F which assigns, to each R-algebra R' and each isomorphism class of test triplets (A', t', ω') over R', an element $F(A', t', \omega') \in R'$, subject to the base change axiom (for all maps of R-algebras $\phi : R' \to R''$, we have $F(A', t', \phi^*(\omega')) = F(A'', \phi(t'), \omega'')$, where A' is the base change of A'' via ϕ) and the weight k condition ($F(A', t', \lambda \omega') = \lambda^{-k} F(A', t', \omega')$ for any $\lambda \in (R')^\times$) ([HB15] Definition 3.2)).

2. A rule F which assigns to each R-algebra R' and each isomorphism class of test pairs (A', t') over R', a translation invariant section $F(A', t') \in \omega_{A'/R'}^{\otimes k}$ subject to the base change axiom (for all maps of R-algebras $\phi : R' \to R''$, we have $F(A', t') = \phi^*(F(A'', \phi(t'))$, where A' is the base change of A'' via ϕ) ([HB15] Definition 3.3)).

Let us make the relations between these definition more explicit ([HB15] page 4193]). Given a global section $f \in H^0(C_R, \omega_{R}^{\otimes k})$, we get a function as in (2) above associating to each test pair (A', t') over R' the point $x_{(A', t')} \in C_R(R')$, and taking the value of f at $x_{(A', t')}$. If F is as in (2), we get a function G on test triples (A', t', ω') over R' as in (1) by the formula $F(A', t') = G(A', t', \omega') \omega^{\otimes k}$ where $\omega \in \omega_{A'/R'}$ is the choice of any translation invariant global section.

3. Special values of L-series

In this section we review the work of Brooks [HB15] expressing special values of certain L-functions of modular forms in terms of CM-values of the Shimura-Maass operator applied to the modular form in question.

3.1. The real analytic Shimura-Maass operator. We denote $(X, O_X) \sim (X^{an}, O_X^{an})$ the analytification functor which takes a scheme of finite type over \mathbb{C} to its associated complex analytic space ([Ser56] §2). For each sheaf F of O_X-modules on X, we also denote F^{an} the analytification of F, and for each morphism $\varphi : F \to G$ of O_X-modules, we let $\varphi^{an} : F^{an} \to G^{an}$ the corresponding morphism of analytic sheaves ([Ser56] §3). If (X, O_X) is an analytic space, we denote O_X^{an} the ring of real analytic functions on X; this is a sheaf of O_X-modules, and for any sheaf F of O_X-modules, we let $F^{an} = F \otimes O_X^{an}$; when $F = F^{an}$, we simplify the notation by writing F^{an} instead of $(F^{an})^{an}$.
Since \(C_C \) is proper and smooth over \(\mathbb{C} \), the analytification functor \(F \sim F^{an} \) induces an equivalence of categories between the category of coherent sheaves \(C_C \) and the category of analytic coherent sheaves of \(O^{an}_{C_C} \)-modules ([Ser56 Th. 2, 3]). Also, the analytic sheaf obtained from the sheaf of algebraic de Rham cohomology \(H^1_{dR}(A_C/C_C) \) coincides with the derived functor \(\mathbb{R}^1\pi_{C,*}(\Omega^1_{A_C/C_C}) \) in the category of analytic sheaves over \(C_C^{an} \) ([Ser56 Theorem 1]).

Hodge theory gives a splitting
\[
H^1_{dR}(A_C/C_C)^{r-an} \rightarrow \left(\pi_{C,*}(\Omega^1_{A_C/C_C}) \right)^{r-an}
\]
of the corresponding Hodge exact sequence of real analytic sheaves obtained from [7]. Since this splitting is the identity on the image of \(\left(\pi_{C,*}(\Omega^1_{A_C/C_C}) \right)^{r-an} \) in \(H^1_{dR}(A_C/C_C)^{r-an} \), it gives rise to a map \(\Psi : \mathcal{L}_{C,1}^{r-an} \rightarrow \mathcal{L}_n^{r-an} \) (cf. [Mor11 Proposition 2.8]). We may then consider the induced maps \(\Psi_{\infty,n} : \mathcal{L}_{\infty,n}^{r-an} \rightarrow \mathcal{L}_{C,n+2}^{r-an} \) for any integer \(n \geq 1 \). Further, the map \(\nabla_n \) gives rise to a map \(\nabla_n^{\infty,n} : \mathcal{L}_{C,n}^{r-an} \rightarrow \mathcal{L}_{C,n+2}^{r-an} \) of real analytic sheaves. The composition
\[
\Theta_{\infty,n} : \left(\mathcal{L}_{C,n}^{r-an} \right)^{r-an} \xrightarrow{\nabla_n^{\infty,n}} \mathcal{L}_{C,n}^{r-an} \xrightarrow{\Psi_{\infty,n}} \left(\mathcal{L}_{C,n+2}^{r-an} \right)^{r-an}
\]
is the real-analytic Shimura-Maas operator.

The effect of \(\Theta_{\infty,n} \) on modular forms is described in [HB15 Proposition 3.4] and [Mor11 Proposition 2.9]. Denote \(\Gamma = \Gamma_1(N^+) \) the subgroup of \(B^\infty \cap V_1(N^+) \) consisting of elements of norm equal to 1. Fix an isomorphism \(B \otimes \mathbb{Q} \mathbb{R} \simeq M_2(\mathbb{R}) \) and denote \(\Gamma_\infty \) the image of \(\Gamma \) in \(\text{GL}_2(\mathbb{R}) \). Let \(S_k(\Gamma_\infty) \) denote the \(\mathbb{C} \)-vector space of \textit{holomorphic modular forms} of weight \(k \) and level \(\Gamma_\infty \) consisting of those holomorphic functions on \(\mathcal{H}_\infty \), the complex upper half plane, such that \(f(\gamma(z)) = j(\gamma, z)^k f(z) \) for all \(\gamma \in \Gamma_\infty \); here \(\Gamma_\infty \) acts on \(\mathcal{H}_\infty \) by fractional linear transformations via the map \(B \mapsto B \otimes \mathbb{Q} \mathbb{R} \simeq M_2(\mathbb{R}) \). We have (cf. [HB15 §2.7])
\[
S_k(\Gamma_\infty) \simeq H^0\left(C_C^{an}, (\mathcal{L}_C^{r-an})^{r-an} \right).
\]

Define the space \(S_{k}^{r-an}(\Gamma_\infty) \) of real analytic modular forms of level \(\Gamma_\infty \) and weight \(k \) to be the \(\mathbb{C} \)-vector space of real analytic functions \(f : \mathcal{H}_\infty \rightarrow \mathbb{C} \) such that \(f(\gamma(z)) = j(\gamma, z)^k f(z) \) for all \(\gamma \in \Gamma_\infty \). One then has
\[
S_{k}^{r-an}(\Gamma_\infty) \simeq H^0\left(C_C^{an}, (\mathcal{L}_C^{r-an})^{r-an} \right).
\]
The operator \(\Theta_{\infty,k} \) gives then rise to a map \(\delta_{\infty,k} : S_k(\Gamma_\infty) \rightarrow S_{k+2}(\Gamma_\infty) \) and we have
\[
\delta_{\infty,k}(f(z)) = \frac{1}{2\pi i} \left(\frac{d}{dz} + \frac{k}{z + \bar{z}} \right) f(z).
\]

3.2. CM points and triples

Fix an embedding \(\varphi : K \hookrightarrow \mathbb{B} \) there exists a unique \(\tau \in \mathcal{H} \) such that \(\iota_\infty(\varphi(K^\infty))(\tau) = \tau \). The additive map \(K \rightarrow \mathbb{C} \) defined by \(\alpha \mapsto j(\iota_\infty(\varphi(\alpha)), \tau) \) gives an embedding \(K \rightarrow \mathbb{C} \); we say that \(\varphi \) is \textit{normalized} if \(\alpha \mapsto j(\iota_\infty(\varphi(\alpha)), \tau) \) is the identity (with respect to our fixed embedding \(\mathbb{Q} \hookrightarrow \mathbb{C} \)).

We say that \(\tau \in \mathcal{H} \) is a \textit{CM point} if there exists an embedding \(\varphi : K \hookrightarrow \mathbb{B} \) which has \(\tau \) as fixed point as above, and that a CM point \(\tau \) is \textit{normalized} if \(\varphi \) is normalized. Finally, we say that a CM point \(\tau \in \mathcal{H} \) is a \textit{Heegner point} if \(\varphi(\mathcal{O}_K) \subseteq \mathcal{R} \) ([HB15 §2.4 and page 4188]).

Fix a CM point \(\tau \) corresponding to an embedding \(\varphi : K \hookrightarrow \mathbb{B} \). Let \(\alpha \) be an integral ideal of \(\mathcal{O}_K \), and define the \textit{Ramakrishnan-Ideal} \(\mathcal{R}_\alpha = \mathcal{R}_{\max} \cap \varphi(\alpha) \). This ideal is principal, generated by an element \(\alpha = \alpha_0 \in \mathcal{B} \). Right multiplication by \(\alpha \) gives an isogeny \(A_\tau \rightarrow A_0 \), whose kernel is \(A_\tau[a] \). Let \(\Gamma_{\max} \) be the subgroup of \(\tau^{\infty} \) consisting of elements of norm equal to 1. The image of \(\alpha \tau \) by the canonical projection map \(\rho_{\max} : \mathcal{H} \rightarrow \Gamma_{\max} \mathcal{H} \) does not depend on the choice of the representative \(\alpha \), and therefore one may write \(A_{\alpha \tau} \) for the corresponding abelian
surface. Shimura’s reciprocity law states that $\rho_{\text{max}}(\tau)$ is defined over the Hilbert class field H of K, and that $\rho_{\text{max}}(\tau)^{a^{-1}, H/K} = \rho_{\text{max}}(a \ast \tau)$, where $(a^{-1}, H/K)$ denotes the Artin symbol.

Fix a primitive N^+-root of unity ζ. Fix a normalized Heegner point τ, and fix a point $P_{\tau} \in A_v[N^+]$ of exact order N^+ such that $e \cdot P = P$. Let (A_{τ}, P_{τ}) denote the point on $\mathcal{C}(F)$ corresponding to the level structure $\mu_{N^+} \times \mu_{N^+} \simeq \mathbb{Z}/N^+\mathbb{Z} \times \mathbb{Z}/N^+\mathbb{Z} \to A_v[N^+]$ which takes $(1, 0) \in \mathbb{Z}/N^+\mathbb{Z} \times \mathbb{Z}/N^+\mathbb{Z}$ to P_{τ}. A CM triple is an isomorphism class of triples $(A_{\tau}, P_{\tau}, \omega_{\tau})$ with (A_{τ}, P_{τ}) as above and $\omega_{\tau} \in e \cdot \Omega_{A_{\tau}/F}$ non vanishing.

There is an action of $\text{Cl}(\mathcal{O}_K)$ on the set of CM triples, given by

$$a * (A_{\tau}, P_{\tau}, \pi^s(\omega)) = (A_{\tau}/A_{\tau}[a], \pi(P_{\tau}), \omega)$$

where $\pi : A_{\tau} \to A_{\tau}/A_{\tau}[a]$ is the canonical projection.

3.3. Special value formulas. Fix a CM triple $(A, P, \omega) = (A_{\tau}, P_{\tau}, \omega_{\tau})$ with ω defined over H, the Hilbert class field of K; recall that A is also defined over H, while in general P is only defined over a field L as in \[22\]

The complex structure J_{τ} on $M_2(\mathbb{R})$ defines a differential form $\omega_C = J_{\tau}^*(2\pi idz_1)$, and let $\Omega_{\infty} \in \mathbb{C}$ be define by $\omega = \Omega_{\infty} \cdot \omega_C$; clearly, different choices of ω correspond to changing Ω by a multiple in H.

We now let f be a modular form of weight k, level $\Gamma_1(N^+) \cap \Gamma_0(N^-)$, and character ε_f, and let f^{JL} be the modular form on the Shimura curve \mathcal{C}_C associated with f by the Jacquet-Langlands correspondence. We can normalise the choice of f^{JL} so that the ration $\langle f, f \rangle / \langle f^{\text{JL}}, f^{\text{JL}} \rangle$ belongs to K (\[[H\text{B}15, \S 2.7 \text{ and page 4232}]]).

Let $\Sigma^{(2)}$ be the set of Hecke characters χ of K of infinite type (ℓ_1, ℓ_2) with $\ell_1 \geq k$ and $\ell_2 \leq 0$. We say that $\chi \in \Sigma^{(2)}$ is central critical if $\ell_1 + \ell_2 = k$, so that the infinite type of χ is $(k + j, -j)$ for some integer $j \geq 0$. Denote $\Sigma^{(\text{cc})}$ the subset of $\Sigma^{(2)}$ consisting of central critical characters.

For each positive integer j, let $\delta_{\infty, j} : S_{k, \text{an}}(\Gamma_{\infty}) \to D_{k+2j}^{\text{an}}(\Gamma_{\infty})$ denote the j-th iterate of the Shimura-Mass operator defined by

$$\delta_{\infty, k} = \delta_{\infty, k+2(j-1)} \circ \cdots \circ \delta_{\infty, k+2} \circ \delta_{\infty, k}.$$

For any Hecke character, one may consider the L-function $L(f, \chi^{-1}, s)$, and for $\chi \in \Sigma^{(2)}$ central critical define the algebraic part $L_{\text{alg}}(f, \chi^{-1})$ of its special value at $s = 0$ as in \[[H\text{B}15, \text{Proposition 8.7}]]]. By \[[H\text{B}15, \text{Proposition 8.7}]]], if $\chi \in \Sigma^{(2)}_{\text{cc}}$ then $L_{\text{alg}}(f, \chi^{-1}) \in \mathbb{Q}$, and we have

$$L_{\text{alg}}(f, \chi^{-1}) = \left(\sum_{a \in \text{Cl}(\mathcal{O}_K)} \chi_j^{-1}(a) \cdot \delta_{\infty, j}^{(2)}(f^{\text{JL}})(a \ast (A, t, \omega)) \right)^2$$

where $\chi_j = \chi \cdot \text{nr}^{-j}$ and nr is the norm map on ideals of \mathcal{O}_K. In this formula we view the real analytic modular $\delta_{\infty, k}(f^{\text{JL}})$ as a function on test triplets, as in \[[H\text{B}15, \text{Proposition 8.5}]] via \[[12]] (see also the discussion in \[[B\text{D}P\text{T}13, \text{page 1094}]] in the GL$_2$ case).

For each ideal class a in $\text{Cl}(\mathcal{O}_K)$, let a_0 be the corresponding element in \mathcal{B}, as in \[32\]. Then using the dictionary between real analytic forms as functions on \mathcal{H} or functions on test triplets, and recalling that $A = A_{\tau}$ for a normalized Heegner point τ, we have

$$L_{\text{alg}}(f, \chi^{-1}) = \left(\Omega_{\infty}^{k+2j} \cdot \sum_{a \in \text{Cl}(\mathcal{O}_K)} \chi_j^{-1}(a) \cdot \delta_{\infty, j}^{(2)}(f^{\text{JL}})(a_0 \cdot \tau) \right)^2.$$
4. The Shimura-Maass operator on the p-adic upper half plane

In this Section we define a p-adic Shimura-Maass operator in the context of Drinfel’d upper half plane. These results will be used in the next section to define a p-adic Shimura-Maass operator on Shimura curves, whose values at CM points will be compared with their complex analogue. As in the complex case, we will see that this operator plays a special role in defining p-adic L-functions.

Let \mathcal{H}_p denote Drinfel’d p-adic upper half plane; this is a \mathbb{Z}_p-formal scheme, and we denote \mathcal{H}_p its generic fiber, which is a \mathbb{Q}_p-rigid space ([BC91 Chapitre I]).

4.1. Drinfel’d Theorem. Denote D the unique division quaternion algebra over \mathbb{Q}_p, and let \mathcal{O}_D be its maximal order. The field \mathbb{Q}_p can be embedded in D, and in the following we will see it as a maximal commutative subfield of D without explicitly mentioning it. Let σ denote the absolute Frobenius automorphism of $\text{Gal}(\mathbb{Q}_p^{ur}/\mathbb{Q}_p)$. If \mathcal{O}_D is a \mathbb{Z}_p-module over $\mathbb{Q}_p^{ur}/\mathbb{Q}_p$, then $D = \mathbb{Q}_p^{ur}/\mathbb{Q}_p$. We will denote $x \mapsto \bar{x}$ the restriction of σ to $\text{Gal}(\mathbb{Q}_p^{ur}/\mathbb{Q}_p)$.

For any \mathbb{Z}_p-algebra B, a formal \mathcal{O}_D-module over B is a commutative 2-dimensional formal group G over B equipped with an embedding $\iota_G: \mathcal{O}_D \rightarrow \text{End}(G)$. A formal \mathcal{O}_D-module is said to be special if for each geometric point P of $\text{Spec}(B/pB)$, the representation of $\mathcal{O}_D/\mathcal{O}_D$ over the tangent space $\text{Lie}(G_P)$ of $G_P = G \times k_P$ is one of the two distinct characters of $\mathcal{O}_D/\mathcal{O}_D$, where k_P is the residue field of P; see [Tei89, Definition 1] for more details on this definition. By an SFD-module over B, we mean a special formal \mathcal{O}_D-module over B. If G is a SFD-module over B, we denote $\mathcal{M}(G)$ the (covariant) Cartier-Dieudonné module of G ([BC91 Chapitre II, §1]); we also denote \mathcal{F}_G and \mathcal{V}_G (or simply \mathcal{F} and \mathcal{V} when there is no confusion) the Frobenius and Verschiebung endomorphisms of $\mathcal{M}(G)$. If B is a \mathbb{Z}_p-algebra, and G a formal \mathcal{O}_D-module, then we may define

$$\text{Lie}^0(G) = \{m \in \text{Lie}(G): \iota_G(a) = am, a \in \mathbb{Z}_p\},$$

and, since G is special, both $\text{Lie}^0(G)$ and $\text{Lie}^1(G)$ are free B-modules of rank 1, (recall that $\bar{x} = \sigma(x)$, so $x \mapsto \bar{x}$ is the non-trivial automorphism of $\text{Gal}(\mathbb{Q}_p^{ur}/\mathbb{Q}_p)$). Moreover, $\mathcal{M}(G)$ is also equipped with a graduation $\mathcal{M}(G) = M^0(G) \oplus M^1(G)$ where

$$M^0(G) = \{m \in \mathcal{M}(G): \iota_G(a) = am, a \in \mathbb{Z}_p\},$$

$$M^1(G) = \{m \in \mathcal{M}(G): \iota_G(a) = \bar{a}m, a \in \mathbb{Z}_p\}.$$

Fix a SFD-module $\Phi = G \times G$ over \mathbb{F}_p, where G is the reduction modulo p of a Lubin-Tate formal group \tilde{E} of height 2 over \mathbb{Z}_p^{ur}, the completion of the valuation ring of the maximal unramified extension \mathbb{Z}_p^{ur} of \mathbb{Z}_p; so \tilde{E} is the formal group of a supersingular elliptic curve E over \mathbb{Z}_p^{ur} (see [Tei89] Definition 9 and Remark 27]). The Dieudonné module $\mathcal{M}(\Phi)$ of Φ is the $\mathbb{Z}_p^{ur}[\mathcal{F}, \mathcal{V}]$-module with \mathcal{V}-basis g^0 and g^1, satisfying the relations $\mathcal{F}(g^0) = \mathcal{V}(g^0)$ and $\mathcal{F}(g^1) = \mathcal{V}(g^1)$. The quaternionic order \mathcal{O}_D acts via the rules $\mathcal{F}(g^0) = \mathcal{V}(g^1)$, $\mathcal{F}(g^1) = \mathcal{V}(g^0)$ and $a(g^0) = ag^0$, $a(g^1) = \bar{a}g^1$ for $a \in \mathbb{Z}_p$, (viewed inside \mathcal{O}_D by the fixed embedding $\mathbb{Q}_p^{ur} \hookrightarrow D$), where $a \mapsto \bar{a}$ is the non-trivial automorphism of $\text{Gal}(\mathbb{Q}_p^{ur}/\mathbb{Q}_p)$. By [Tei89 Corollary 30], $\eta^0(\Phi)$ is generated over \mathbb{Z}_p by $[g^0, 0]$ and $[\mathcal{V}(g^1), 0]$, and $\eta^1(\Phi)$ is generated over \mathbb{Z}_p by $[g^1, 0]$ and $[\mathcal{V}(g^0), 0]$.

Let Nilp denote the category of \mathbb{Z}_p-algebras in which p is nilpotent. Denote SFD the functor on Nilp which associates to each $B \in \text{Nilp}$ the set SFD(B) of isomorphism classes of triples (ψ, G, ρ) where

1. $\psi: \mathbb{F}_p \rightarrow B/pB$ is an homomorphism,
2. G is a SFD-module over B of height 4,
(3) \(\rho : \psi_* \Phi \to G_{B/pB} = G \otimes_B B/pB \) is a quasi-isogeny of height 0, called rigidification. See \cite{Tei89} page 663 or \cite{BC91} Chapitre II (8.3) for more details on the definition of the functor SFD.

Drinfel’d shows in \cite{Dri76} that the functor SFD is represented by the \(\mathbb{Z}_p \)-formal scheme

\[
\hat{H}_p^{\text{unr}} = \hat{H}_p \otimes_{\mathbb{Z}_p} \mathbb{Z}_p^{\text{unr}}
\]

(see \cite{Tei89} Theorem 28, \cite{BC91} Chapitre II (8.4)). Note that \(\hat{H}_p^{\text{unr}} \), considered as \(\mathbb{Z}_p^{\text{unr}} \)-formal scheme, represents the restriction \(\text{SFD} \) of SFD to the category \(\text{Nilp} \) of \(\mathbb{Z}_p^{\text{unr}} \)-algebras in which \(p \) is nilpotent (cf. \cite{BC91} Chapitre II, §8). Unless otherwise stated, we will see \(\hat{H}_p^{\text{unr}} \) as a \(\mathbb{Z}_p^{\text{unr}} \)-formal scheme.

For later use, we review some of the steps involved in the proof of Drinfel’d Theorem. The crucial step is the interpretation of the \(\mathbb{Z}_p \)-formal scheme \(\hat{H}_p \) as the solution of a moduli problem. For \(B \in \text{Nilp} \), a compatible data on \(S = \text{Spf}(B) \) consists of a quadruplet \((\eta, T, u, \rho)\) where

1. \(\eta = \eta^0 \oplus \eta^1 \) is a sheaf of flat \(\mathbb{Z}/2\mathbb{Z} \)-graded \(\mathbb{Z}_p[\Pi] \)-modules on \(S \),
2. \(T = T^0 \oplus T^1 \) is a \(\mathbb{Z}/2\mathbb{Z} \)-graded sheaf of \(\mathcal{O}_S[\Pi] \)-modules with \(T^1 \) invertible,
3. \(u : \eta \to T \) is a homogeneous degree zero map such that \(u \otimes 1 : \eta \otimes_{\mathbb{Z}_p} \mathcal{O}_S \to T \) is surjective,
4. \(\rho : (\mathbb{Q}_p^2)_S \to \eta_0 \otimes_{\mathbb{Z}_p} \mathbb{Q}_p \) is a \(\mathbb{Q}_p \)-linear isomorphism, which satisfy natural compatibilities, denoted \((C1), (C2), (C3)\) in \cite{Tei89} page 652, to which we refer for details. The first step in Drinfel’d work is to show that the \(\mathbb{Z}_p \)-formal scheme \(\hat{H}_p \) represents the functor which associates to each \(B \in \text{Nilp} \) the set of admissible quadruplets over \(B \). To each compatible data \(D = (\eta, T, u, \rho) \) on \(S \) one associates a \(S \)-valued point \(\Psi : S \to \hat{H}_p \) of \(\hat{H}_p \), as explained in \cite{Tei89} pages 652-655. The second step to prove the representability of \(\text{SFD} \) is to associate with any \(B \in \text{Nilp} \) and \(X = (\psi, G, \rho) \in \text{SFD}(B) \) a quadruplet \((\eta_X, T_X, u_X, \rho_X)\) which corresponds to an \(S \in \text{Spf}(B) \)-valued point on \(\hat{H}_p \otimes_{\mathbb{Z}_p} \mathbb{Z}_p^{\text{unr}} \).

We finally discuss rigid analytic parameters (\cite{Tei89}). With an abuse of notation, let SFD be the functor from the category pro-Nilp of projective limits of objects in Nilp associated with SFD. In \cite{Tei89} Def. 10, Teitelbaum introduces a function

\[
(13) \quad z_0 : \text{SFD}(\mathbb{Z}_p^{\text{unr}}) \to \hat{H}_p(\mathbb{Z}_p^{\text{unr}})
\]

such that the map \(X = (\psi, G, \rho) \mapsto (z_0(X), \psi) \) gives a bijection between \(\text{SFD}(\mathbb{Z}_p^{\text{unr}}) \) and \((\hat{H}_p \otimes_{\mathbb{Z}_p} \mathbb{Z}_p^{\text{unr}})(\mathbb{Z}_p^{\text{unr}}) \), which we identify with the set \(\hat{H}_p(\mathbb{Z}_p^{\text{unr}}) \times \text{Hom}(\mathbb{Z}_p^{\text{unr}}, \mathbb{Z}_p^{\text{unr}}) \). We call
the map $X \mapsto z_0(X)$ a rigid analytic parameter on SFD. If we let \(\text{pro-Nilp}\) the category of projective limits of objects in \(\text{Nilp}\), and we still denote \(\text{SFD}\) the restriction of \(\text{SFD}\) to \(\text{pro-Nilp}\), this implies that the map $X = (\psi, G, \rho) \mapsto z_0(X)$ gives a bijection between \(\text{SFD}(\mathbb{Z}^{unr}_p)\) and \(\mathcal{H}_p(\mathbb{Z}^{unr}_p)\). By [Tei89] Thm. 45, for each $z \in \mathcal{H}_p(\mathbb{Z}^{unr}_p)$, there exists triple $X = (\psi, G, \rho)$ in \(\text{SFD}(\mathbb{Z}^{unr}_p)\) such that $z_0(X) = z$.

4.2. Filtered ϕ-modules. Let F be an unramified field extension of \mathbb{Q}_p. For an integer a, a σ^a-isocrystal E over F is a pair $E = (V, \phi)$ consisting of a finite dimensional F-vector space V with a σ^a-linear isomorphism ϕ (i.e. the isomorphism $\phi : V \to V$ satisfies the relation $\phi(xv) = \sigma(x)^a \cdot v$ for $x \in F$ and $v \in V$; see [Zin84] Chapter VI, §1]. If $a = 1$, σ-isocrystals are also called F-isocrystals (here F stands for Frobenius, do not confuse with our fixed p-adic field F) of ϕ-modules, in which case the σ-linear isomorphism ϕ is called Frobenius (in the following we will use both terminologies of ϕ-modules and F-isocrystals).

A filtered F-isocrystal, or a filtered ϕ-module is a ϕ-module (V, ϕ) equipped with an exhaustive and separate filtration F^*V.

If G is a p-divisible formal group over \mathbb{F}_p, one can define its first crystalline cohomology cohomology group as in [Gro73], [HOT87], [BBMS2] Définition 2.5.7, in terms of the crystalline Dieudonné functor (among many other references, see for example [Ill76], [CL98], [dJ98] for self-contained expositions). In the following we will denote $H^1_{\text{cris}}(G)$ the global sections of the crystalline Dieudonné functor (defined as in [BBMS2] Théorème 4.2.8.1) tensored over \mathbb{Z}^{unr}_p with \mathbb{Q}^{unr}_p. By construction, $H^1_{\text{cris}}(G)$ is then an F-isocrystal. Moreover, the canonical isomorphism between $H^1_{\text{cris}}(G)$ and the first de Rham cohomology group $H^1_{\text{dR}}(G)$ of G equips $H^1_{\text{cris}}(G)$ with a canonical filtration (arising from the Hodge filtration in the de Rham cohomology), making $H^1_{\text{dR}}(G)$ a filtered F-isocrystal; see [Oda69].

Let G be a SFD-module over \mathbb{F}_p. Then the F-isocrystal $H^1_{\text{cris}}(G)$ is a four-dimensional \mathbb{Q}^{unr}_p-vector space, equipped with its σ-linear Frobenius $\phi_{\text{cris}}(G)$. It is also equipped with a D-module structure $j_G : D \hookrightarrow \text{End}_{\mathbb{Q}^{unr}_p}(H^1_{\text{cris}}(G))$ which commutes with $\phi_{\text{cris}}(G)$, and a \mathbb{Q}_p-algebra embedding $i_G : \mathbb{M}_2(\mathbb{Q}_p) \hookrightarrow \text{End}_{\mathbb{Q}^{unr}_p}(H^1_{\text{cris}}(G))$ induced by the isomorphism $\text{End}_{\mathbb{Q}_p}(G) \simeq \mathbb{M}_2(\mathbb{Q}_p)$, which commutes with the D-action. Define $\phi'_{\text{cris}}(G) = j_G(\Pi)^{-1} \phi_{\text{cris}}(G)$ and put

$$V_{\text{cris}}(G) = H^1_{\text{cris}}(G)^{\phi'_{\text{cris}}(G) = 1}.$$

Denote $\phi_{\text{cris}}(G) = j_G(\Pi)|_{V_{\text{cris}}(G)}$ the restriction of $j_G(\Pi)$ to $V_{\text{cris}}(G)$. Moreover, denote

$$(\eta'(G) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p)\vee = \text{Hom}_{\mathbb{Q}_p}(\eta'(G) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p, \mathbb{Q}_p)$$

the \mathbb{Q}_p-linear dual of $\eta'(G) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$.

The following lemma is crucial in what follows, and identifies $V_{\text{cris}}(G)$ with $(\eta'(G) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p)\vee$, from which one deduces a complete description of the filtered F-isocrystal $H^1_{\text{cris}}(G)$. It appears in a slightly different version in the proof of [IS03] Lemma 5.10]. Since we did not find an reference for this fact in the text we need it, we add a complete proof.

Lemma 4.1. There is a canonical isomorphism $V_{\text{cris}}(G) \simeq (\eta'(G) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p)\vee$ of \mathbb{Q}_p-vector spaces. Moreover, $H^1_{\text{cris}}(G) = V_{\text{cris}}(G) \otimes_{\mathbb{Q}_p} \mathbb{Q}^{unr}_p$, where the right hand side is equipped with the structure of \mathbb{Q}^{unr}_p-vector space given by $x \cdot (v \otimes \alpha) = v \otimes (\sigma(x) \alpha)$ for $v \in V_{\text{cris}}(G), x, \alpha \in \mathbb{Q}^{unr}_p$. Finally, under this isomorphism the Frobenius $\phi_{\text{cris}}(G)$ corresponds to $\phi_{\text{cris}}(G) \otimes \sigma$.

Proof. The F-isocrystal $H^1_{\text{cris}}(G)$ is canonically isomorphic to the contravariant Dieudonné module of G with p inverted, and with \mathbb{Q}^{unr}_p-action twisted by the Frobenius automorphism σ of \mathbb{Q}^{unr}_p, equipped with the canonical Frobenius of the contravariant Dieudonné module (see [BBMS2] 4.2.14). More precisely, denote $D(G) = \text{Hom}_{\mathbb{Q}^{unr}_p}((M(G)[1/p], \mathbb{Q}^{unr}_p)$ the
\(\hat{Q}_p^{\text{unr}} \)-linear dual of the covariant Dieudonné module \(M(G) \) of \(G \) with \(p \) inverted, and let \(D(G) = D(G) \otimes_{\hat{Q}_p^{\text{unr}}} \hat{Q}_p^{\text{unr}} \), where the tensor product is taken with respect to the Frobenius endomorphism \(\sigma \) of \(\hat{Q}_p^{\text{unr}} \). Then as \(\hat{Q}_p^{\text{unr}} \)-vector spaces, we have \(H^1_{\text{cris}}(G) \cong D(G)/\sigma \). Under this isomorphism the Frobenius \(\phi_{\text{cris}}(G) \) is given by the map \(\varphi \mapsto \sigma \circ \varphi \circ \eta(G) \) for \(\varphi \in D(G) \).

Now, by [BC91 Lemme (5.12)], we have an isomorphism of \(\sigma^{-1} \)-isocrystals
\[
(M^i(G)[1/p], V_G \Pi^{-1}) \cong \left(\eta^i(G) \otimes_{\hat{Q}_p^{\text{unr}}} \hat{Q}_p^{\text{unr}}, \sigma^{-1} \right)
\]
for each index \(i = 0, 1 \) (where the action of \(\sigma^{-1} \) on \(\eta^i(G) \otimes_{\hat{Q}_p^{\text{unr}}} \hat{Q}_p^{\text{unr}} \) is on the second factor only). We may therefore compute \(V_{\text{cris}}(G) \) in terms of the isocrystal \(\left(\eta^i(G) \otimes_{\hat{Q}_p^{\text{unr}}} \hat{Q}_p^{\text{unr}}, \sigma^{-1} \right) \).

As above, define \(D^i(G) = \text{Hom}_{\hat{Q}_p^{\text{unr}}} \left(M^i(G)[1/p], \hat{Q}_p^{\text{unr}} \right) \) (\(\hat{Q}_p^{\text{unr}} \)-linear dual) and let \(D^0(G) \) denote the base change \(D^0(G) \otimes_{\hat{Q}_p^{\text{unr}}} \hat{Q}_p^{\text{unr}} \) via \(\sigma \). Since \(M(G) = M^0(G) \oplus M^1(G) \), we have \(D^0(G) = D^0(G)^\sigma \oplus D^1(G)^\sigma \), and we may write any element \(\varphi \in D^0(G)^\sigma \) as a pair \((\varphi_0, \varphi_1)\) with \(\varphi_i \in D^i(G)^\sigma \), \(i = 0, 1 \). By definition, an element \(\varphi = (\varphi_0, \varphi_1) \in D(G)^\sigma \) belongs to \(V_{\text{cris}}(G) \) if and only if \(\varphi_i(V_G \Pi^{-1}(m_i)) = \sigma^{-1}(\varphi_i(m_i)) \) for all \(m_i \in M^i(G)[1/p] \), and for all \(i = 0, 1 \).

Using [13], identify \(\varphi_i \) with a \(\hat{Q}_p^{\text{unr}} \)-linear homomorphism \(\varphi_i : \eta^i(G) \otimes_{\hat{Q}_p^{\text{unr}}} \hat{Q}_p^{\text{unr}} \to \hat{Q}_p^{\text{unr}} \) denoted with a slight abuse of notation with the same symbol; then the above equation describing \(V_{\text{cris}}(G) \) becomes \(\varphi_i(n \otimes \sigma^{-1}(x)) = \sigma^{-1}(\varphi_i(n \otimes x)) \) for all \(n \in \eta^i(G) \) and all \(x \in \hat{Q}_p^{\text{unr}} \), or equivalently, since \(\varphi_i \) is \(\hat{Q}_p^{\text{unr}} \)-linear, \(\varphi_i(n \otimes 1) = \sigma^{-1}(\varphi_i(n \otimes 1)) \) for all \(n \in \eta^i(G) \), and we conclude that \(\varphi_i(n \otimes 1) \in \hat{Q}_p^{\text{unr}} \) for all \(n \in \eta^i(G) \). So \(\varphi_i \) is the \(\hat{Q}_p^{\text{unr}} \)-linear extension of a \(\hat{Q}_p^{\text{unr}} \)-linear homomorphism \(\eta^i(G) \otimes_{\hat{Q}_p^{\text{unr}}} \hat{Q}_p^{\text{unr}} \to \hat{Q}_p^{\text{unr}} \). Since \(\eta(G) = \eta^0(G) \oplus \eta^1(G) \), we then conclude that \(V_{\text{cris}}(G) \cong (\eta(G) \otimes_{\hat{Q}_p^{\text{unr}}} \hat{Q}_p^{\text{unr}})^\vee \) as \(\hat{Q}_p^{\text{unr}} \)-vector spaces. If \(n_1, \ldots, n_4 \) is a \(\hat{Q}_p^{\text{unr}} \)-basis of \(\eta(G) \otimes_{\hat{Q}_p^{\text{unr}}} \hat{Q}_p^{\text{unr}} \), then \(dn_1, \ldots, dn_4 \) defined by \(dn_i(n_j) = \delta_{i,j} \) (as usual, \(\delta_{i,j} = 1 \) if \(i = j \) and \(0 \) otherwise) is a basis of \((\eta(G) \otimes_{\hat{Q}_p^{\text{unr}}} \hat{Q}_p^{\text{unr}})^\vee \) and, by \(\hat{Q}_p^{\text{unr}} \)-linear extension, also of \((\eta(G) \otimes_{\hat{Q}_p^{\text{unr}}} \hat{Q}_p^{\text{unr}})^\vee \). If we now base change the \(\hat{Q}_p^{\text{unr}} \)-vector space \((\eta(G) \otimes_{\hat{Q}_p^{\text{unr}}} \hat{Q}_p^{\text{unr}})^\vee \) via \(\sigma \), we see that \(dn_1, \ldots, dn_4 \) is still a \(\hat{Q}_p^{\text{unr}} \)-basis, and we have \((x \cdot dn_i)(n_j) = \sigma(x) \delta_{i,j} \) for all \(x \in \hat{Q}_p^{\text{unr}} \). Using the above description of \(H^1_{\text{cris}}(G) \) in terms of \(D(G)^\sigma \), the description of \(V_{\text{cris}}(G) \) in terms of \(\eta(G) \), we have an isomorphism of \(\hat{Q}_p^{\text{unr}} \)-vector spaces,
\[
H^1_{\text{cris}}(G) \cong \left(V_{\text{cris}}(G) \otimes_{\hat{Q}_p^{\text{unr}}} \hat{Q}_p^{\text{unr}} \right)^\sigma,
\]
where the upper index \(\sigma \) on the right hand side means that the structure of \(\hat{Q}_p^{\text{unr}} \)-vector space is twisted by \(\sigma \) as explained above. Moreover, the \(\sigma^{-1} \)-linear isomorphism \(\Pi \otimes \sigma \) of \(M(G)[1/p] \) corresponds to the \(\sigma^{-1} \)-linear isomorphism \(\sigma^{-1} \) of \(\eta(G) \otimes_{\hat{Q}_p^{\text{unr}}} \hat{Q}_p^{\text{unr}} \) (acting on the second component only), and therefore the isomorphism \(\varphi \mapsto \sigma \circ \varphi \circ \eta(G) \) of \(M(G)[1/p] \) \(\hat{Q}_p^{\text{unr}} \)-linear dual) corresponds to the isomorphism \(\Pi \otimes \sigma \) of \((\eta(G) \otimes_{\hat{Q}_p^{\text{unr}}} \hat{Q}_p^{\text{unr}})^\vee \) \(\hat{Q}_p^{\text{unr}} \)-linear dual) given by \(\sigma \cdot \cdot \cdot \to (dn_i \otimes \Pi) \otimes \sigma(x) \) where \((dn_i \otimes \Pi)(n) = \eta_i(\Pi n) \), which corresponds to \(\phi_{\text{cris}}(G) \) \(\hat{Q}_p^{\text{unr}} \)-vector spaces.

4.3. Filtered convergent \(F \)-isocrystals on \(\hat{Q}_p^{\text{unr}} \). To describe the relative de Rham cohomology of the \(p \)-adic upper half plane, we first need some preliminaries on the notion of filtered convergent \(F \)-isocrystals introduced in [13].

We first recall some preliminaries. Let \(F \subseteq \hat{Q}_p^{\text{unr}} \) be an unramified extension of \(\hat{Q}_p^{\text{unr}} \), with valuation ring \(\mathcal{O}_F \). If \((X, \mathcal{O}_X) \) is a \(p \)-adic \(\mathcal{O}_F \)-formal scheme, we denote \((X^{\text{rig}}, \mathcal{O}_X^{\text{rig}}) \) the associated \(F \)-rigid analytic space (or its generic fiber), and if \(F \) is a sheaf of \(\mathcal{O}_X \)-modules, we denote \(F^{\text{rig}} \) its associated sheaf of \(\mathcal{O}_X^{\text{rig}} \)-modules ([13] §7.4, [13] §1]). We say that \(X \)
is a \(p \)-adic \(\mathcal{O}_F \)-formal scheme if \(X \) is a \(\mathcal{O}_F \)-formal scheme which is locally of finite type. We will always assume in the following that \(X \) is analytically smooth, so that \(X ^{\text{rig}} \) is smooth.

An enlargement of \(X \) is a pair \((T, z_T)\) consisting of a flat \(p \)-adic \(\mathcal{O}_F \)-formal scheme \(T \) and a morphism of \(\mathcal{O}_F \)-formal schemes \(z_T : T_0 \to X \) where for each \(\mathcal{O}_F \)-formal scheme \(T \) we denote \(T_0 \) the reduced closed subscheme of the closed subscheme \(T_1 \) of \(T \) defined by the PD ideal \(p \mathcal{O}_T \).

A convergent isocrystal on \(X \) (cf. \cite{ISO3} Definition 3.1) is a rule \(\mathcal{E} \) which assigns to each enlargement \((T, z_T)\) of \(X \) a coherent \(\mathcal{O}_T \otimes \mathcal{O}_F \)-module \(\mathcal{E}_T \) such that for any morpshism \(g : T' \to T \) of \(\mathcal{O}_F \)-formal schemes with \(g_0 : T'_0 \to T_0 \) satisfying \(z_{T'} = z_T \circ g_0 \) (where \(g_0 \) is induced from \(g \)), there is an isomorphism of \(\mathcal{O}_T \otimes \mathcal{O}_F \)-modules \(\theta_g : g^*(\mathcal{E}_T) \simeq \mathcal{E}_{T'} \), satisfying the cocycle condition. The \(\mathcal{O}_T \otimes \mathcal{O}_F \)-module \(\mathcal{E}_T \) also seen as rigid analytic \(\mathcal{O}_T^\text{rig} \)-module on the \(F \)-rigid analytic space \(T ^{\text{rig}} \) (\cite{Ogu84} Remark (1.5)); we distinguish the notation and write \(\mathcal{E}_{T}^{\text{rig}} \) to emphasise this viewpoint. If \(\mathcal{E} \) is a convergent isocrystal over \(X \), for each enlargement \((T, z_T)\) which is analytically smooth over \(\mathcal{O}_F \) we have an integrable connection

\[
\nabla_{T}^{\text{rig}} : \mathcal{E}_{T}^{\text{rig}} \longrightarrow \mathcal{E}_{T}^{\text{rig}} \otimes_{\mathcal{O}_T^{\text{rig}}} \Omega_1^{1} X^{\text{rig}}.
\]

A convergent \(F \)-isocrystal on \(X \) (cf. \cite{ISO3} Definition 3.2)) is a convergent isocrystal \(\mathcal{E} \) on \(X \) equipped with an isomorphism of convergent isoscystals \(\phi_\mathcal{E} : \mathcal{F}^* \mathcal{E} \simeq \mathcal{E} \), where \(\mathcal{F} \) is the absolute Frobenius of \(X_0 \).

A filtered convergent \(F \)-isocrystal on \(X \) (cf. \cite{ISO3} Definition 3.3)) is a \(F \)-isocrystal \((\mathcal{E}, \phi_\mathcal{E}) \) such that \(\mathcal{E}_{X}^{\text{rig}} \) is equipped with an exhaustive and separated decreasing filtration \(\mathcal{F}^{\text{rig}} \mathcal{E}_{X}^{\text{rig}} \) of coherent \(\mathcal{O}_{X}^{\text{rig}} \)-submodules such that \(\nabla_{X}^{\text{rig}}(\mathcal{F}^{i} \mathcal{E}_{X}^{\text{rig}}) \) is contained in \(\mathcal{F}^{i-1}\mathcal{E}_{X}^{\text{rig}} \otimes_{\mathcal{O}_F^{\text{rig}}} \Omega_1^{1} X^{\text{rig}} \) for all \(i \).

We present two explicit examples of filtered convergent \(F \)-isocrystals. A third example will be discussed in \S 4.4.

Example 4.2. The first example (cf. \cite{ISO3} Example 3.4(a))) is the identity object of the additive tensor category of filtered isocrystals on \(X \). This is the convergent isocrystal \(\mathcal{E}(\mathcal{O}_X) \) on \(X \) given by the rule \((T, z_T) \mapsto \mathcal{O}_T \otimes \mathcal{O}_F \mathcal{F} \) equipped with the canonical Frobenius and the filtration given by \(\mathcal{F}^i \mathcal{O}_X^{\text{rig}} = \mathcal{O}_X^{\text{rig}} \) for \(i \leq 0 \) and \(\mathcal{F}^i \mathcal{O}_X^{\text{rig}} = 0 \) for \(i > 0 \) (in loc. cit. this filtered convergent \(F \)-isocrystal is simply denoted \(\mathcal{O}_X \)).

Example 4.3. Our second example (cf. \cite{ISO3} pages 345-346) is the filtered convergent \(F \)-isocrystal \(\mathcal{E}(V) \) attached to a representation \(\rho : GL_2 \times GL_2 \to GL(V) \), where \(V \) is a finite dimensional \(\mathbb{Q}_p \)-rational representation, and \(GL_2 \) is the algebraic group of invertible matrix over \(\mathbb{Q}_p \). First, for a given such representation \(\rho : GL_2 \times GL_2 \to GL(V) \), let \(\rho_1 \) and \(\rho_2 \) denote the restrictions of \(\rho \) to the first and second \(GL_2 \)-factor, respectively. As convergent isocrystal, \(\mathcal{E}(V) = V \otimes \mathbb{Q}_p \mathcal{E}(\mathcal{O}_{H_p^{\text{rig}}}) \). The Frobenius, making it a convergent \(F \)-isocrystal, is defined by \(\phi_V \otimes \phi_{\mathcal{E}(\mathcal{O}_{H_p^{\text{rig}}})} \), where \(\phi_V = \rho_2 \left(\left(\begin{array}{cc} 0 & \mathbb{I} \\ \mathbb{I} & 0 \end{array} \right) \right) \) (so, the Frobenius depends on \(\rho_2 \) only). To define the filtration, making it a filtered convergent \(F \)-isocrystal, we first recall some preliminaries. First, the filtration only depends on \(\rho_1 : GL_2 \to GL(V) \), and therefore it is enough to define the filtration attached to a given representation \(\rho : GL_2 \to GL(V) \). For this, let \(P_n \) be the \(\mathbb{Q}_p \)-vector space of polynomials in one variable \(X \) of degree at most \(n \), equipped with a right action of \(GL_2 \) by \(P(X) \cdot A = (cX + d)^n P \left(\frac{x + A_{11}}{cX + d} \right) \) for \(A = \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \) and \(P(X) \in P_n \). Then put \(V_n = P_n^* \) (\(\mathbb{Q}_p \)-linear dual), equipped with the left action of \(GL_2 \) by

\[
(A \cdot \varphi)(P(x)) = \varphi(P(X) \cdot A).
\]

Recall that any representation \(\rho : GL_2 \to GL(V) \) can be written as a direct sum of a sum of representations of the form \(V_1^\otimes m \otimes (V_1^\vee)^\otimes n \), where \(m, n \) are non-negative integers. To define the filtration on \(\mathcal{E}(V) \) it is then enough to defined it for \(V = V_1 \). We have a map

\[
\]
The de Rham cohomology sheaf \mathcal{H}^{unr} on the de Rham cohomology H^\cdot.

Moreover, the connection ∇ as follows. Denote ω be the Lie algebra of the Cartier dual G vectorial extension of $\rho : GL_2 \times GL_2 \rightarrow GL(V)$ we obtain a filtered convergent F-isocrystal $\mathcal{E}(V)$. We put $F^0\mathcal{E}(V_1) = \mathcal{E}(V_1)$. $F^1\mathcal{E}(V_1) = ker(ev_{X-z})$ and $F^2\mathcal{E}(V_1) = 0$. This defines the filtered convergent F-isocrystal $\mathcal{E}(V_1)$ attached to V_1, and therefore for any representation $\rho : GL_2 \times GL_2 \rightarrow GL(V)$ we obtain a filtered convergent F-isocrystal $\mathcal{E}(V)$.

4.4. The filtered convergent F-isocrystal of the universal SFD-module. The third example of filtered convergent F-isocrystal arises from relative de Rham cohomology of the universal SFD-module. Since it is more articulated that the previous ones, we prefer to keep it in a separate subsection. We follow [Fal97], [LS03].

Let $(\lambda_G, \mathcal{G}, \rho_G)$ be the universal triple, arising from the representability of the functor SFD by \mathcal{H}^{unr}_p; denote $\lambda : G \rightarrow \mathcal{H}^{unr}_p$ be universal map. Let G^\vee be the Cartier dual of G ([Pon77 Chapitre III, §5]), which is equipped with a canonical map $\lambda^\vee : G^\vee \rightarrow \mathcal{H}^{unr}_p$. In this setting one may define a convergent F-isocrystal

$$\mathcal{E}(\mathcal{G}) = R^1\lambda_*(O_{\mathcal{G}/\mathcal{Q}^{unr}_p})$$

interpolating crystalline cohomology sheaves (Ogu84, Theorems (3.1), (3.7)): for each enlargement (T, z_T), the value $E(G)_T$ of $E(G)$ at T is defined to be the crystalline cohomology sheaf of coherent $O_T \otimes_{O_F} F$-modules $R^qf_{T,z}O_{\mathcal{G}_{T/zT}} \otimes_{O_F} F$. The notation adopted here is standard, following Ogu84 §3: $f_{T,z} : G \times \mathcal{H}^{unr} \rightarrow T$ is the canonical projection where we use $z_T : T \rightarrow \mathcal{H}^{unr}_{p}$ to form the fiber product $G \times_Z T_1$, and $R^qf_{T,z}O_{\mathcal{G}_{T/zT}}$ is the crystalline cohomology sheaf on the formal scheme T (note that $T_1 \rightarrow T$ is defined by the PD ideal pO_T and $f_{T,z}$ is smooth and proper); see BOS3, BOS5. Since T is noetherian, these are coherent sheaves of $O_T \otimes_{O_F} F$-modules, and therefore $E(G)^{rig}_T$ are coherent O_T^{rig}-modules.

The coherent $O^{rig}_{\mathcal{H}^{unr}} = O^{rig}_{\mathcal{H}^{unr}_p}$-module $E(G)^{rig}_{\mathcal{H}^{unr}}$ is equipped as in [15] with a connection $\nabla^{rig}_{\mathcal{H}^{unr}}$. The coherent $O^{rig}_{\mathcal{H}^{unr},\mathcal{G}}$-module $E(G)^{rig}_{\mathcal{H}^{unr}}$ is canonically isomorphic to the relative rigid de Rham cohomology sheaf

$$\mathcal{H}^{1,rig}_{dr}(\mathcal{G}) = \mathcal{H}^{1}_{dr}(\mathcal{G}^{rig}/\mathcal{H}^{unr}_p) = R^1\lambda^{rig}_*(\Omega^r_{\mathcal{G}^{rig}/\mathcal{H}^{unr}_p})$$

Moreover, the connection $\nabla^{rig}_{\mathcal{H}^{unr}}$ corresponds to the Gauss-Manin connection

$$\nabla^{rig}_{\mathcal{G}} : \mathcal{H}^{1,rig}_{dr}(\mathcal{G}) \rightarrow \Omega^1_{\mathcal{H}^{unr}/\mathcal{Q}^{unr}_p} \otimes O^{rig}_{\mathcal{H}^{unr}} \mathcal{H}^{1,rig}_{dr}(\mathcal{G})$$

whose construction in this context follows [KO68], and is the analogue of the construction we outlined in [23, see LS03 Example 3.4(c)], Ogu84 Theorem (3.10)]. The Hodge filtration on the de Rham cohohology $\mathcal{H}^{1,rig}_{dr}(\mathcal{G})$ makes then $E(\mathcal{G})$ a filtered convergent F-isocrystal.

The filtration on $E(\mathcal{G})$ arising from the Hodge filtration on the de Rham cohomology can be described more explicitly. Denote $\mathcal{H}^{1}_{dr}(\mathcal{G}/\mathcal{H}^{unr}_p)$ the dual of the Lie algebra of the universal vectorial extension of \mathcal{G}, equipped with its structure of convergent F-isocrystal ([Mes72 Chapter IV, §2], [AM74, §§1,9,11])). By [BBM82 §3.3], we have an isomorphism of convergent F-isocrystals

$$E(\mathcal{G}) \simeq \mathcal{H}^{1}_{dr}(\mathcal{G}/\mathcal{H}^{unr}_p).$$

The Hodge-Tate filtration on $\mathcal{H}^{1}_{dr}(\mathcal{G}) \simeq \mathcal{H}^{1}_{dr}(\mathcal{G}/\mathcal{H}^{unr}_p)$ can be described in explicit terms as follows. Denote $\omega_G = c^*_{\mathcal{G}}(\Omega^1_{\mathcal{G}/\mathcal{H}^{unr}_p})$, where $c_{\mathcal{G}} : \mathcal{H}^{unr}_p \rightarrow \mathcal{G}$ is the zero-section, and let $L_{\mathcal{G}^\vee}$ be the Lie algebra of the Cartier dual \mathcal{G}^\vee of \mathcal{G}. Then ω_G and $L_{\mathcal{G}^\vee}$ are locally free $O_{\mathcal{H}^{unr}_p}$-modules, dual to each other ([BBM82 §3.3]). We have the Hodge-Tate exact sequence of
where the tensor product is again over ω. In which the first and the last map come from the Hodge exact sequence (16). Recalling the isomorphism of filtered convergent F-isocrystals (17) can be reformulated as follows (see also the discussion in [IS03, Chap. III, Lemma 4.4]), we obtain isomorphism (18) can be rewritten in a more compact way as

$${\mathcal{H}}^1_{\text{dR}}(G/\hat{H}_p^\text{unr}) \simeq V_{\text{cris}}(\Phi) \otimes_{\mathbb{Q}_p} \mathcal{E}(O_{\hat{H}_p^\text{unr}}).$$

The isomorphism of filtered convergent F-isocrystals (17) can be rewritten as follows (see also the discussion in [IS03, Lemmas 5.10]). Let $\rho : GL_2 \times GL_2 \rightarrow GL(M_2)$ be the representation defined by $\rho_1(A)(B) = AB$ and $\rho_2(A)B = B\tilde{A}$ where if $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ then $\tilde{A} = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$. Note that $\mathcal{E}(M_2)$ is pure of weight 1. The isomorphism (17) can be written in a more compact way as

$${\mathcal{H}}^1_{\text{dR}}(G/\hat{H}_p^\text{unr}) \simeq V_{\text{cris}}(\Phi) \otimes_{\mathbb{Q}_p} \mathcal{E}(O_{\hat{H}_p^\text{unr}}).$$
satisfying $\langle dx, y \rangle^\rig_{G} = \langle x, dy \rangle^\rig_{G}$ for all x, y sections in $\mathcal{H}_{\dR}^{1,\rig}(G)$ and all $d \in D$ (because $\iota_{G}(dy) = d^{1}i_{G}(y)$) which we call rigid polarization pairing. We may therefore construct a map

$$\rho : \mathcal{H}_{\dR}^{1,\rig}(G) \rightarrow \left(\mathcal{H}_{\dR}^{1,\rig}(G) \right)^{\vee} \rightarrow (\omega_{G}^{\rig})^{\vee}$$

where the first map takes a section s to the map defined for a section t by $t \mapsto \langle s, t \rangle^{\rig}$ and the second map is induced by duality from the inclusion $\omega_{G}^{\rig} \hookrightarrow \mathcal{H}_{\dR}^{1,\rig}(G)$. Fix now a section $s \in H^{0}(U, (\Omega_{H_{\overline{\text{univ}}/Q_{p}}^{\rig}/Q_{p})^{\vee})$ over some affinoid U. Then we may compose the maps to get

$$\rho_{s} : H^{0}(U, \omega_{G}^{\rig}) \rightarrow H^{0}(U, \mathcal{H}_{\dR}^{1,\rig}(G)) \stackrel{\gamma^{\rig}}{\rightarrow} H^{0}(U, \mathcal{H}_{\dR}^{1,\rig}(G) \otimes \Omega_{H_{\overline{\text{univ}}/Q_{p}}^{\rig}/Q_{p}}^{1}) \xrightarrow{1 \otimes s} \rightarrow H^{0}(U, \mathcal{H}_{\dR}^{1,\rig}(G)) \xrightarrow{\rho} H^{0}(U, (\omega_{G}^{\rig})^{\vee}).$$

The association $s \mapsto \rho_{s}$ defines then a map of sheaves

$$\left(K\Sigma_{G}^{\rig}/\right)^{\vee} : (\Omega_{H_{\overline{\text{univ}}/Q_{p}}^{\rig}/Q_{p}}^{\rig}/Q_{p})^{\vee} \rightarrow \text{Hom}_{\mathcal{O}_{H_{\overline{\text{univ}}}}} \left(\omega_{G}^{\rig}, (\omega_{G}^{\rig})^{\vee} \right).$$

By construction, the dual of this map is the Kodaira-Spencer map, under the canonical identification between $\text{Hom}(\omega_{G}^{\rig}, (\omega_{G}^{\rig})^{\vee})$ and $(\omega_{G}^{\rig})^{\otimes 2}$.

4.5. Universal rigid data. The aim of this subsection is to use the results of [Tei89] to better describe the Hodge filtration $\mathcal{H}_{\text{univ}}$. For this, we need to recall the universal rigid data introduced in [Tei89].

Let V_{0} and V_{1} be constant sheaves of one-dimensional \mathbb{Q}_{p}-vector spaces on the \mathbb{Q}_{p}-rigid analytic space \mathcal{H}_{p} with basis t_{0} and t_{1} respectively. Define two invertible sheaves T_{0}^{univ} and T_{1}^{univ} on \mathcal{H}_{p} by $T_{i}^{\text{univ}} = \mathcal{O}_{H_{p}} \otimes V_{i}$ for $i = 0, 1$, where $\mathcal{O}_{H_{p}}$ is the structural sheaf of rigid analytic functions on \mathcal{H}_{p}. Define $T^{\text{univ}} = T_{0}^{\text{univ}} \oplus T_{1}^{\text{univ}}$. For $i = 0, 1$, let η_{i}^{univ} be the constant sheaf of two-dimensional \mathbb{Q}_{p}-vector spaces on \mathcal{H}_{p} with basis $e_{i,0}$ and $e_{i,1}$. One fixes

$$\eta_{i}^{\text{univ}} = \eta_{i}^{\text{univ}}(\Phi) \otimes \mathbb{Z}_{p} \otimes \mathbb{Q}_{p}$$

as in [Tei89] page 664. Define $u_{0}^{\text{univ}} : \eta_{0}^{\text{univ}} \rightarrow T_{0}^{\text{univ}}$ by $u_{0}^{\text{univ}}(e_{0,0}) = zt_{0}$ and $u_{0}^{\text{univ}}(e_{1,0}) = t_{0}$, and $u_{1}^{\text{univ}} : \eta_{1}^{\text{univ}} \rightarrow T_{1}^{\text{univ}}$ by $u_{1}^{\text{univ}}(e_{0,1}) = (p/z)t_{1}$ and $u_{1}^{\text{univ}}(e_{1,1}) = t_{1}$, where z denotes the standard coordinate function on \mathcal{H}_{p}. Define $\eta_{i}^{\text{univ}} = \eta_{0}^{\text{univ}} \oplus \eta_{1}^{\text{univ}}$ and similarly define $u_{i}^{\text{univ}} = u_{0}^{\text{univ}} \oplus u_{1}^{\text{univ}}$. We write $\rho^{\text{univ}} : (\mathbb{Q}_{p}/\mathbb{Z}_{p} \otimes \mathbb{Q}_{p}) \simeq \eta_{i}^{\text{univ}}$ for the isomorphism determined by the choice of the basis $\{e_{0,0}, e_{0,1}\}$. For $\gamma = (a/b, c/d) \in \mathbb{M}_{2}(\mathbb{Q}_{p})$ and $i = 0, 1$, define endomorphisms $\phi_{i}(\gamma)$ in $\text{End}_{\mathcal{O}_{H_{p}}}(T_{i}^{\text{univ}})$ by

$$\phi_{0}^{\gamma}(f(z) \otimes t_{0}) = (cz + d)f(\gamma(z)) \otimes t_{0},$$

and $\phi_{1}^{\gamma}(f(z) \otimes t_{1}) = (a/b + c/d)f(\gamma(z)) \otimes t_{1}$

for any $f \in \mathcal{O}_{H_{p}}(U)$, and any affinoid $U \subseteq \mathcal{H}_{p}$. Define an action of $\text{SL}_{2}(\mathbb{Q}_{p})$ on η_{i}^{univ} for $i = 0, 1$ in such a way that u_{i}^{univ} is equivariant with respect to these actions, namely, for $\gamma = (a/b, c/d) \in \text{GL}_{2}(\mathbb{Q}_{p})$, put $\gamma^{\times}(x_{0,0}) = (a/b, c/d)(x_{0,0})$ and $\gamma^{\times}(x_{1,0}) = (a/b, c/d)(x_{1,0})$. Let $\mathbb{Z}_{p}[\Pi]$ act on T^{univ} by $\Pi t_{0} = (p/z)t_{1}$ and $\Pi t_{1} = zt_{0}$. We let $\mathbb{Z}_{p}[\Pi]$ act on η_{i}^{univ} in such a way that u_{i}^{univ} commutes with this action. We call the quadruplet

$$\mathcal{D}^{\text{univ}} = (\eta^{\text{univ}}, T^{\text{univ}}, u^{\text{univ}}, \rho^{\text{univ}})$$

the universal rigid data.

Passing to the associated normed sheaves ([Tei89] Definition 6), we obtain from $\mathcal{D}^{\text{univ}}$ a quadruplet $\hat{\mathcal{D}}^{\text{univ}} = (\hat{\eta}^{\text{univ}}, \hat{T}^{\text{univ}}, \hat{u}^{\text{univ}}, \hat{\rho}^{\text{univ}})$ on \mathcal{H}_{p}, corresponding to a \mathcal{H}_{p}-valued point,
which is universal in the following sense: for each $B \in \text{Nilp}$ and each $\Psi : S = \text{Spec}(B) \to \hat{H}_p$ corresponding to a quadruplet (η, T, u, ρ), we have

\[(\eta, T, u, \rho) = (\Psi^{-1} \eta^\text{univ}, \Psi^* \tilde{T}^\text{univ}, \Psi^{-1} u^\text{univ}, \Psi^{-1} \rho^\text{univ}).\]

See [Tei89] Cor. 18 and Thm. 19 for more precise and complete statements. We call \mathcal{D}^univ the \textit{universal formal data}, and we denote the quadruplet on the RHS of (22) by $\hat{\mathcal{D}}^\text{univ}$ to simplify the notation.

The universal SFD-module G over \hat{H}_p^unr can be recovered from a universal rigid data \mathcal{D}^univ. Pulling back via the projection $\pi_{\hat{H}_p} : \hat{H}_p^\text{unr} \to \hat{H}_p$, we obtain a quadruplet

\[\mathcal{D}^\text{unr} = (\eta^\text{unr}, \tilde{T}^\text{unr}, u^\text{unr}, \rho^\text{unr}) = (\pi_{\hat{H}_p}^{-1} \eta^\text{univ}, \pi_{\hat{H}_p}^* \tilde{T}^\text{univ}, \pi_{\hat{H}_p}^{-1} u^\text{univ}, \pi_{\hat{H}_p}^{-1} \rho^\text{univ})\]

on \hat{H}_p^unr. Comparing (22) with the universal property satisfied by G, we see that the quadruplet $(\eta_G, T_G, u_G, \rho_G)$ associated to G coincides with the quadruplet \mathcal{D}^unr. In particular, the associated quadruplet $(\eta^\text{rig}, T^\text{rig}, u^\text{rig}, \rho^\text{rig})$ on the rigid \mathbb{Q}_p^unr-rigid analytic space G^rig is the quadruplet

\[\mathcal{D}^\text{rig} = (\eta^\text{rig}, T^\text{rig}, u^\text{rig}, \rho^\text{rig}) = (\pi_{\hat{H}_p}^{-1} \eta^\text{univ}, \pi_{\hat{H}_p}^* T^\text{univ}, \pi_{\hat{H}_p}^{-1} u^\text{univ}, \pi_{\hat{H}_p}^{-1} \rho^\text{univ})\]

obtained from the quadruplet \mathcal{D}^univ, where $\pi_{\hat{H}_p} : \hat{H}_p^\text{unr} \to \hat{H}_p$ is the canonical projection.

Let $(T^\text{unr})^\vee$ denote the \mathcal{O}^unr-dual of T^unr, and, as above, denote $(\eta^\text{unr} \otimes \mathbb{Z}_p \mathbb{Q}_p)^\text{rig}$ the \mathbb{Q}_p-linear dual of $\eta^\text{unr} \otimes \mathbb{Z}_p \mathbb{Q}_p$. From the surjective map $u^\text{unr} : \eta^\text{unr} \otimes \mathbb{Z}_p \mathcal{O}^\text{unr} \to T^\text{unr}$ induced by u^univ we obtain an injective map

\[\tau : (T^\text{unr})^\vee \hookrightarrow (\eta^\text{unr} \otimes \mathbb{Z}_p \mathbb{Q}_p)^\text{rig} \otimes \mathbb{Q}_p \mathcal{O}^\text{unr}\]

Proposition 4.4. We have canonical isomorphisms

\[(T^\text{unr})^\vee \simeq \omega^\text{rigG}\]

\[(\eta^\text{unr} \otimes \mathbb{Z}_p \mathbb{Q}_p)^\vee \otimes \mathbb{Q}_p \mathcal{O}^\text{unr} \simeq \mathcal{H}^1_{\mathbb{Q}_p}^\text{rig}(G),\]

under which the map τ corresponds to the canonical map in (15).

Proof. The first statement follows from the canonical isomorphism between $T_G = \text{Lie}_G$ and T^unr, while the second follows from Proposition 4.4 combined with (17). For the statement about τ, note that for each SFD-module G over $\overline{\mathbb{F}}_p$, the map u_G corresponds under the identification between $\eta(G) \otimes \mathbb{Z}_p \mathbb{Q}_p$ and $\mathcal{M}(G) \otimes \mathbb{Z}_p^\text{unr} \mathbb{Q}_p$ to the canonical projection $\mathcal{M}(G) / \mathbb{V}_G \mathcal{M}(G) \to T_G$, where T_G is the tangent space of G at the origin. \[\square\]

4.6. The action of the idempotent e

Fix an isomorphism $\mathbb{Q}_p(\sqrt{a}) \simeq \mathbb{Q}_p^2$. By means of this isomorphism, and the fixed embedding $\mathbb{Q}_p^2 \hookrightarrow D$, we may identify elements $a + b \sqrt{a}$ in $\mathbb{Q}_p(\sqrt{a})$ (where $a, b \in \mathbb{Q}_p$) with elements of D in what follows without explicitly mentioning it.

Lemma 4.5. $e \cdot (\eta(\Phi) \otimes \mathbb{Z}_p^2 \mathbb{Q}_p^2) = \eta^0(\Phi) \otimes \mathbb{Z}_p \mathbb{Q}_p^2$ and $e \cdot (T(\Phi) \otimes \mathbb{Z}_p \mathbb{Q}_p^2) = T^0(\Phi) \otimes \mathbb{Z}_p \mathbb{Q}_p^2$.

Proof. The action of \mathcal{O}_D on $\eta(\Phi)$ is induced by duality from the action on $\mathcal{M}(\Phi)$, so any element $a \in \mathbb{Z}_p \hookrightarrow \mathcal{O}_D$ acts on $\eta^0(\Phi)$ by multiplication by a and on $\eta^1(\Phi)$ by multiplication by \bar{a}. On the other hand, the action of $1 \otimes a$ on $\eta(\Phi) \otimes \mathbb{Q}_p^2$ is given by multiplication by a. An immediate calculation shows then that the action of e is just the projection $\eta(\Phi) \to \eta^0(\Phi)$. The argument for $T(\Phi)$ is similar. \[\square\]

Write $\eta^0 = \pi_{\hat{H}_p}^{-1} \eta_0^\text{univ}$, $T_0^\text{unr} = \pi_{\hat{H}_p}^* T_0^\text{univ}$, $u_0^\text{unr} = \pi_{\hat{H}_p}^{-1} u_0^\text{univ}$.

Proposition 4.6. $e \cdot \eta^\text{unr} = \eta_0^\text{unr}$ and $e \cdot T^\text{unr} = T_0^\text{unr}$.

Proof. This is clear from Lemma 4.5 and (20).

For \(i = 0, 1 \), the sheaf \(T_0^{\text{unr}} \) is a free \(\mathcal{O}_{\hat{H}_p^{\text{unr}}} \)-module of rank 1, so it is invertible; denote \((T_0^{\text{unr}})^\vee \) its \(\mathcal{O}_{\hat{H}_p^{\text{unr}}} \)-dual. Taking duals we get a map \(du_0 : (T_0^{\text{unr}})^\vee \to (\eta_0 \otimes_{\hat{Z}_p} \mathcal{Q}_p)^\vee \otimes \mathcal{Q}_p \mathcal{O}_{\hat{H}_p^{\text{unr}}} \) (where the RHS denotes \(\mathcal{Q}_p \)-duals as above). We set up the following notation:

- \(\omega_0^0_G = e \cdot \omega_G^0 \)
- \(\mathcal{L}_G^0 = e \cdot \mathcal{H}^1_{\text{dR}}(G) \)

Applying the idempotent \(e \) and using Propositions 4.4 and 4.6 we then obtain a diagram with exact rows in which the vertical arrows are isomorphisms:

\[
\begin{array}{ccc}
0 & \to & (T_0^{\text{unr}})^\vee \\
\downarrow{\cong} & & \downarrow{\cong} \\
0 & \to & \omega_0^0_G
\end{array}
\]

4.7. Differential calculus on the p-adic upper half plane. We now set up the following notation. Recall that the map \(u_0 \) takes \(x_0 \cdot e_0 + x_0,1 \cdot e_{0,1} \) to \((zx_0,0+1) \cdot t_0 \); dualizing, \(du_0 \) can be described in coordinates by the map which takes the canonical generator \(t_0 \) of the \(\mathcal{O}_{\hat{H}_p^{\text{unr}}} \)-module \((T_0^{\text{unr}})^\vee \) (satisfying the relation \(dt_0(t_0) = 1 \)) to the map \(x_0 \cdot e_0 + x_0,1 \cdot e_{0,1} \mapsto zx_0,0+1 \). If we denote \(de_{0,i} \) the dual basis of \(e_{0,i} \) (satisfying the condition \(de_{0,i}(e_{0,j}) = \delta_{i,j} \)), we may write this map as \(zde_{0,0} + de_{0,1} \). To simplify the notation, we put from now on \(\tau = t_0, d\tau = dt_0, x = e_0,0, y = e_0,1, dx = de_{0,0} \) and \(dy = de_{0,1} \), so that the above map reads simply as

\[d\tau = zdx + dy. \]

Let \(C = C^0(\mathcal{H}_p(\hat{Q}_p^{\text{unr}}), \mathcal{C}_p) \) denote the \(\mathcal{C}_p \)-vector space of continuous (for the standard \(p \)-adic topology on both spaces) \(\mathcal{C}_p \)-valued functions on \(\mathcal{H}_p(\hat{Q}_p^{\text{unr}}) \). Denote \(\mathcal{A} = H^0(\mathcal{H}_p^{\text{unr}}, \mathcal{O}_{\hat{H}_p^{\text{unr}}}) \) the \(\mathcal{O}_p^{\text{unr}} \)-vector space of global sections of \(\mathcal{O}_{\hat{H}_p^{\text{unr}}} \). Each \(f \in \mathcal{A} \) is, in particular, continuous on \(\mathcal{H}_p^{\text{unr}} \) for the standard \(p \)-adic topology of \(\hat{Q}_p^{\text{unr}} \), and therefore restriction induces a map of \(\mathcal{Q}_p^{\text{unr}} \)-vector spaces \(r : \mathcal{A} \to C \). Denote \(\mathcal{A}^* \) the image of the morphism of \(\mathcal{A} \)-algebras \(\mathcal{A}[X,Y] \to C \) defined by sending \(X \) to the function \(z \mapsto 1/(z - \sigma(z)) \) and \(Y \) to the function \(z \mapsto \sigma(z) \) (note that the function \(z \mapsto z - \sigma(z) \) is invertible on \(\mathcal{H}_p^{\text{unr}}(\hat{Q}_p^{\text{unr}}) \)). To simplify the notation, we put from now on

\[z^* = \sigma(z). \]

Set up the following notation (here \(n \geq 1 \) is an integer)

- \(\Lambda_G = H^0(\mathcal{H}_p^{\text{unr}}, \mathcal{L}_G^0) \) and \(\Lambda_{G,n} = \Lambda_G^0 \)
- \(\Lambda_G^* = \Lambda_G \otimes_{\mathcal{A}^*} \mathcal{A}^* \) and \(\Lambda_{G,n}^* = (\Lambda_{G,n}^0)^0 \)
- \(w_G = H^0(\mathcal{H}_p^{\text{unr}}, \omega_0^0_G) \) and \(w_{G,n} = w_G^0 \)
- \(w_G^* = \Lambda_G^* \otimes_{\mathcal{A}^*} \mathcal{A}^* \) and \(w_{G,n}^* = (w_{G,n}^0)^0 \)

The \(\hat{Q}_p^{\text{unr}} \)-algebra \(\mathcal{A} \) is equipped with the standard derivation \(\frac{d}{dz} \) on power series. The \(\mathcal{A} \)-module \(\Omega_{\mathcal{A}}^1 = H^0(\mathcal{H}_p^{\text{unr}}, \Omega_{\hat{H}_p^{\text{unr}}}^1) \) is then one dimensional and generated by \(dz \) satisfying \(dz \left(\frac{d}{dz} \right) = 1 \). We extend differential operator \(\frac{d}{dz} \) to a differential operator \(\frac{d}{dz} : \mathcal{A}^* \to \mathcal{A}^* \) by \(\hat{Q}_p^{\text{unr}} \)-linearity using the product formula and setting \(\frac{d}{dz}(z^*) = 0 \) and \(\frac{d}{dz}(\frac{1}{z-z^*}) = -\frac{1}{(z-z^*)^2} \).

Similarly, we define a differential operator \(\frac{d}{dz^*} : \mathcal{A}^* \to \mathcal{A}^* \) setting \(\frac{d}{dz^*}(z) = 0 \) and \(\frac{d}{dz^*}(z^*) = 1 \) and \(\frac{d}{dz^*}(\frac{1}{z-z^*}) = -\frac{1}{(z-z^*)^2} \). Define \(\Omega_{\mathcal{A}}^* \), to be the \(\mathcal{A}^* \)-subalgebra of the algebra of derivations generated by \(dz \) and \(dz^* \) satisfying the usual rules \(dz \left(\frac{d}{dz} \right) = 1, dz \left(\frac{d}{dz^*} \right) = 0, dz^* \left(\frac{d}{dz^*} \right) = 0, dz^* \left(\frac{d}{dz} \right) = 1 \).
4.8. **Splitting of the rigid analytic Hodge filtration.** Recall the notation fixed before for the differential form $d\tau = zdx + dy$. Define

$$d\tau^* = z^* dx + dy.$$

Then $d\tau^*$ belongs to w^*_G. Taking global sections, restricting to $\hat{\mathbb{Q}}^{unr}_p$, and extending linearly with \mathcal{A}^* we obtain a short exact sequence of \mathcal{A}^*-algebras

$$0 \rightarrow w^*_G \rightarrow \Lambda^*_G.$$

Theorem 4.7. The exact sequence (24) admits a canonical splitting $\Psi : \Lambda^*_G \rightarrow w^*_G$.

Proof. We have

$$dx = \frac{d\tau - d\tau^*}{z - z^*}, \quad dy = \frac{z d\tau^* - z^* d\tau}{z - z^*}.$$

We may therefore write any differential form $\omega = f(z) dx + g(z) dy$ with $f, g \in \mathcal{A}^*$ as

$$\omega = \left(\frac{f(z) - g(z) z^*}{z - z^*} \right) d\tau + dz \left(\frac{z g(z) - f(z)}{z - z^*} \right).$$

One then defines the sough-for splitting sending $\omega \mapsto \left(\frac{f(z) - g(z) z^*}{z - z^*} \right) d\tau$. \hfill \square

4.9. **The p-adic Shimura-Maass operator.** Taking global section, the Gauss-Manin connection gives rise to a map $\nabla^\text{rig}_G : \Lambda_G \rightarrow \Lambda_G \otimes \Omega^1_{\mathcal{A}}$. We extend ∇^rig_G to a map $\nabla^\text{rig}_G : \Lambda^*_G \rightarrow \Lambda^*_G \otimes \Omega^1_{\mathcal{A}}$, as follows. First define $\nabla^1_0^\text{rig}_G : \Lambda^*_G \rightarrow \Lambda^*_G \otimes \Omega^1_{\mathcal{A}}$ to be the derivation satisfying the rules

$$\nabla^1_0^\text{rig}_G(d\tau) = dx \otimes dz, \quad \nabla^1_0^\text{rig}_G(d\tau^*) = 0, \quad \nabla^1_0^\text{rig}_G(z^*) = 0.$$

Define similarly the derivation $\nabla^0_1^\text{rig}_G : \Lambda^*_G \rightarrow \Lambda^*_G \otimes \Omega^1_{\mathcal{A}}$, by the rules $\nabla^0_1^\text{rig}_G(d\tau) = 0, \quad \nabla^0_1^\text{rig}_G(d\tau^*) = dx \otimes dz^*, \quad \nabla^0_1^\text{rig}_G(z^*) = 0$. We finally define

$$\nabla^*_G = \nabla^1_0^\text{rig}_G + \nabla^0_1^\text{rig}_G : \Lambda^*_G \rightarrow \Lambda^*_G \otimes \Omega^1_{\mathcal{A}}.$$

Taking global sections, the Kodaira-Spencer map gives rise to a map $\text{KS}_G : w^*_G \otimes^2 \rightarrow \Omega^1_{\mathcal{A}}$, which we extend \mathcal{A}^*-linearly to a map

$$\text{KS}^*_G : (w^*_G)^{\otimes 2} \rightarrow \Omega^1_{\mathcal{A}}.$$

Note that

$$\nabla^\text{rig}_G(d\tau) = \nabla^*_G(d\tau) = \frac{d\tau - d\tau^*}{z - z^*} \otimes dz.$$

and, since $\nabla^*_G(z^*) = 0$, we have

$$\nabla^*_G(d\tau^*) = 0.$$

In particular, if $f(z) \otimes d\tau \in w^*_G$ we have

$$\nabla^\text{rig}_G(f(z) \otimes d\tau) = \left(\frac{\partial}{\partial z} f(z) \otimes d\tau + f(z) \otimes \frac{d\tau - d\tau^*}{z - z^*} \right) \otimes dz.$$

Taking global sections, we can form the pairing $\langle \cdot, \cdot \rangle^\text{rig}_G : \Lambda_G \otimes_{\mathcal{A}} \Lambda_G \rightarrow \mathcal{A}$. Extending linearly by \mathcal{A}^*, we obtain a new pairing

$$\langle \cdot, \cdot \rangle^*_G : \Lambda^*_G \otimes_{\mathcal{A}^*} \Lambda^*_G \rightarrow \mathcal{A}^*.$$

Using the description of the Kodaira-Spencer map in the end of §[4.4](#), we see that

$$\langle d\tau, \nabla^\text{rig}_G(d\tau) \rangle^*_G = \langle d\tau, \nabla^*_G(d\tau) \rangle^*_G = \frac{-\langle d\tau, d\tau^* \rangle^*_G}{z - z^*} dz = -(dx, dy)^*_G dz.$$
where for the second equality we use \(29\), while the last equality easily from the equality \(\langle zdx + dy, z^* dx + dy \rangle_{\hat G} = (z - z^*)(dx, dy)_{\hat G}\). Therefore

\[
KS^\text{rig}_{\hat G}(d\tau \otimes d\tau) = -\langle dx, dy \rangle_{\hat G}^\text{rig} dz.
\]

So, to compute \(KS^\text{rig}_{\hat G}(d\tau \otimes d\tau) = KS^\text{rig}_{\hat G}(d\tau \otimes d\tau)\) we are reduced to compute \(\langle dx, dy \rangle_{\hat G}^\text{rig}\). For this, we switch to de Rham homology and follow the computations in \([Mor11\), \([HB15\).

To begin with, let \(W\) denote the order \(O_D\) viewed as free left \(O_D\)-module of rank 1; then \(W \simeq \mathcal{R}_\text{max} \otimes_\mathbb{Z} \mathbb{Z}_p\). By \([BC91\), Ch. III, Lemma 1.9], the collection of bilinear skew-symmetric maps \(\psi : W \times W \to \mathbb{Z}_p\) which satisfy \(\psi(dx, y) = \psi(x, dy)\) (for all \(x, y \in W\) and \(d \in O_D\)) is a free \(\mathbb{Z}_p\)-module of rank 1, and every generator \(\psi_0\) of this \(\mathbb{Z}_p\)-module is a perfect duality on \(W\); the pairing

\[
\psi_0(x, y) = \frac{\text{tr}(iy^\dagger x)}{p}
\]

is such a generator, which we fix once and for all (recall the notation introduced in \(2.1\) and \(2.3\) for \(i\) and \(d^I\).

Recall that \(H^1_{\text{cris}}(\Phi)\) is a free \(D \otimes_{\mathbb{Q}_p} \hat{\mathbb{Q}}^\text{unr}_p\)-module of rank 1 (cf. \([IS03\) page 354]); the structure of \(D \otimes_{\mathbb{Q}_p} \hat{\mathbb{Q}}^\text{unr}_p\)-module is induced from the \(D\)-module structure of \((\eta(\Phi) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p)\langle\Phi\rangle\) via the isomorphisms \((\eta(\Phi) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p)\langle\Phi\rangle \simeq V_{\text{cris}}(\Phi)\) and \(H^1_{\text{cris}}(\Phi) \simeq V_{\text{cris}}(\Phi) \otimes_{\mathbb{Q}_p} \hat{\mathbb{Q}}^\text{unr}_p\) in Lemma \(4.1\). We have then from Lemma \(4.1\) then canonical isomorphisms of convergent \(F\)-isocrystals:

\[
H^1_{\text{dR}}(\mathcal{G}/\hat{\mathcal{H}}_p) \simeq H^1_{\text{cris}}(\Phi) \otimes_{\hat{\mathbb{Q}}^\text{unr}_p} \mathcal{E}(\mathcal{O}_{\hat{\mathcal{H}}_p})
\]

\[
\simeq (D \otimes_{\mathbb{Q}_p} \hat{\mathbb{Q}}^\text{unr}_p) \otimes_{\hat{\mathbb{Q}}^\text{unr}_p} \mathcal{E}(\mathcal{O}_{\hat{\mathcal{H}}_p})
\]

\[
\simeq (D \otimes_{\mathbb{Q}_p} \hat{\mathbb{Q}}^\text{unr}_p) \otimes_{\mathbb{Q}_p} \mathcal{E}(\mathcal{O}_{\hat{\mathcal{H}}_p})
\]

\[
\simeq D \otimes_{\mathbb{Q}_p} \hat{\mathbb{Q}}^\text{unr}_p \otimes_{\hat{\mathbb{Q}}^\text{unr}_p} \mathcal{E}(\mathcal{O}_{\hat{\mathcal{H}}_p})
\]

\[
\simeq M_2(\mathbb{Q}_p^2) \otimes_{\mathbb{Q}_p^2} \mathcal{E}(\mathcal{O}_{\hat{\mathcal{H}}_p}).
\]

Let \(\psi_0\) denote the \(\hat{\mathbb{Q}}^\text{unr}_p\)-linear extension of \(\psi_0\); under the isomorphism \(28\), \(\psi_0\) defines a pairing \(H^1_{\text{cris}}(\Phi) \times H^1_{\text{cris}}(\Phi) \to \hat{\mathbb{Q}}^\text{unr}_p\) still denoted by \(\psi_0\). If we still denote \(\langle \cdot, \cdot \rangle_{\hat{\mathcal{G}}}\) the restriction of \(\langle \cdot, \cdot \rangle_{\hat{\mathcal{H}}_p}\) to \(H^1_{\text{cris}}(\Phi)\), it follows from the nicety of \(\psi_0\) up to constant that there exists an element \(t_p \in \mathbb{C}_p^\times\) such that

\[
\langle \cdot, \cdot \rangle_{\hat{\mathcal{G}}, W} = \frac{1}{t_p} \cdot \langle \cdot, \cdot \rangle_{\hat{\mathcal{H}}, W} = \psi_0,
\]

Moreover, under the isomorphism \(28\), the element \(d\tau = zdx + dy\) of \(H^1_{\text{dR}}(\mathcal{G})\) corresponds to the element \(e_1 \otimes z + e_2 \otimes 1\), where \(e_1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\), \(e_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\), \(e_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}\), \(e_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}\) is the standard basis of \(M_2(\mathbb{Q}_p^2)\). We therefore obtain the sought-for recipe to compute the Kodaira-Spencer image of \(d\tau \otimes d\tau\) in terms of \(\psi_0\):

\[
KS^\text{rig}_{\hat{\mathcal{G}}}(d\tau \otimes d\tau) = \frac{1}{t_p} \cdot \psi_0(e_1 \otimes z, e_2 \otimes 1).
\]

Remark 4.8. The number \(t_p\) may be viewed as the \(p\)-adic analogue of the complex period \(2\pi i\), relating de Rham cohomology with homology \(([Mor11 (2.7)\), \([HB15\) p. 4197]). This explains why we prefer to keep \(t_p\) at the denominator in \(29\).

We now make more explicit the equations \(29\) and \(30\) using Hashimoto basis. For this part, we follow closely the nice calculations in \([Mor11\ Prop. 2.3\], to which the reader is referred to for details. Recall the Hashimoto basis \(\{1, i, j, k\}\) in \(\text{§2.1}\). As in \([Has95\ (2)\], define \(\epsilon_1 = 1, \epsilon_2 = (1 + j)/2, \epsilon_3 = (i + ij)/2, \epsilon_4 = (apN^2 j + ij)/p_0\) and use these elements to define
a symplectic basis of W with respect to the pairing ψ_0 as in [Has95 (5)] by $\eta_1 = e_3 - \frac{m-1}{2} e_4$, $\eta_2 = -a De_1 - e_4$, $\eta_3 = e_1$, $\eta_4 = e_2$ (note that ψ_0 we consider above is equal to the pairing $(x,y) \mapsto \text{tr}(x iy^\dagger)$ in [Has95 (3)]). Denote $\eta_1^\vee, \eta_2^\vee, \eta_3^\vee, \eta_4^\vee$ the dual basis of W^\vee, and let η_1^\vee be the column vector with entries $\eta_1^\vee, \eta_2^\vee, \eta_3^\vee, \eta_4^\vee$. The elements η_i^\vee give rise to elements of $\mathcal{H}^1_{dR}(G)$, denoted with the same symbol, which are horizontal with respect to ∇^rig_G, namely $\nabla^\text{rig}_G(\eta_i^\vee) = 0$. Write $d\tau = \Pi(z) \cdot \eta^\vee$. A simple calculation shows that

$$\Pi(z) = \left(\frac{\alpha}{2\sqrt{p_0}}(\alpha+a\Delta z + 1), \frac{-1}{\sqrt{p_0}}(\alpha+a\Delta z + 1), \frac{1}{2\alpha^+}z \right).$$

Since η_i^\vee are horizontal sections of ∇^rig_G, using (31) to calculate $d\Pi(z)/dz$ shows that (24) becomes

$$\nabla^\text{rig}_G(d\tau) = \left(\frac{\alpha-a\Delta}{2\sqrt{p_0}}, \frac{-a\Delta}{\sqrt{p_0}}, 1, \frac{1}{2\alpha^+} \right) \cdot \eta^\vee \otimes dz.$$

The recipe (19) to compute the Kodaira-Spencer map combined with (20) and (32) gives then

$$\text{KS}^\text{rig}_G(d\tau \otimes d\tau) = \frac{1}{t_p} d\Pi(z) \begin{pmatrix} 0 & I_2 \\ -I_2 & 0 \end{pmatrix} \Pi(z)^T dz = \frac{1}{t_p} d\tau.$$

In particular, (33) shows that KS^rig_G is an isomorphism, and therefore we may define the p-adic Shimura-Maass operator. We also need to consider iterates of this operator. Define

$$\tilde{\nabla}^*_n, \tilde{\nabla}^*_n : \Lambda^\ast_{G,n} \longrightarrow \Lambda^\ast_{G,n+2} \longrightarrow \Lambda^\ast_{G,n+2} \longrightarrow \Lambda^\ast_{G,n+2}$$

where $\tilde{\nabla}^*_n$ is obtained from ∇^*_n using the Leibniz rule (as before, see for example [HD15 §3.2]). The splitting in Theorem 4.7 induces a morphism of A^\ast-modules $\Psi^*_{p,n} : \Lambda^\ast_{G,n} \rightarrow \Lambda^\ast_{G,n}$. The composition

$$\Theta^*_{p,n} : w^\ast_{G,n} \longrightarrow \tilde{\nabla}^*_n \longrightarrow \tilde{\nabla}^*_n \longrightarrow \tilde{\nabla}^*_n$$

is the p-adic Shimura-Maass operator. We also need to consider iterates of this operator. Define

$$\tilde{\nabla}^*_{n+2j} = \tilde{\nabla}^*_{n+2j} \circ \cdots \circ \tilde{\nabla}^*_{n+2} \circ \tilde{\nabla}^*_{n}.$$

Define then

$$\Theta^*_{p,n} : w^\ast_{G,n} \longrightarrow \Lambda^\ast_{G,n} \longrightarrow \Lambda^\ast_{G,n+2j} \longrightarrow \Lambda^\ast_{G,n+2j}$$

where the morphism of A^\ast-modules $\Psi^*_{p,n+2j} : \Lambda^\ast_{G,n+2j} \rightarrow \Lambda^\ast_{G,n+2j}$ is induced as above by the splitting in Theorem 4.7. We call $\Theta^*_{p,n}$ the j-th iterate of the p-adic Shimura-Maass operator.

The work accomplished so far allows us to explicitly describe $\Theta^*_{p,k}$. We first introduce some differential operators, similar in shape to the Shimura-Maass operator in the real analytic setting. For each integer $k \geq 0$, we may then define the $\tilde{\nabla}^*_p$-linear function

$$\delta_{p,k} = \frac{\partial}{\partial z} + \frac{k}{z - z^*} : A^\ast \rightarrow A^\ast.$$

For each integer $j \geq 0$ we get a map $\delta^j_{p,k} : A^\ast \rightarrow A^\ast$ defined by

$$\delta^j_{p,k} = \delta_{p,k+2(j-1)} \circ \cdots \circ \delta_{p,k+2} \circ \delta_{p,k}.$$

We call $\delta_{p,k}$ the Shimura-Maass operator, and $\delta^j_{p,k}$ its j-th iteration. Applying (33) to compute the inverse of the Kodaira-Spencer map to (24), we obtain

$$\tilde{\nabla}^*_k \left(f(z) \otimes d\tau^{\otimes k} \right) = \frac{1}{t_p} \cdot \left(\frac{\partial}{\partial z} f(z) \otimes d\tau^{\otimes k+2} + kf(z) \otimes \frac{d\tau - d\sigma(\tau)}{z - \sigma(z)} \otimes d\tau^{\otimes k+1} \right).$$
Applying the splitting $\Psi_{p,k}^*$ of the Hodge filtration which annihilate dt^*, we finally obtain
\begin{equation}
\Theta_{p,k}^* \left(f(z) \otimes dt^k \right) = \frac{1}{t_p} \cdot \left(\frac{\partial}{\partial z} \frac{f(z)}{z - \sigma(z)} \right) \otimes dt^{k+2} = \frac{1}{t_p} \cdot \delta_{p,k}(f) \otimes dt^{k+2}.
\end{equation}

Iterating (36) we obtain
\begin{equation}
\Theta_{p,k}^{i,j} \left(f(z) \otimes dt^k \right) = \left(\frac{1}{t_p} \right)^j \delta_{p,k}^j(f(z)) \otimes dt^{k+2j}.
\end{equation}

5. The p-adic Shimura-Maass operator on Shimura curves

5.1. p-adic uniformization of Shimura curves. In this subsection we review the Cerednik-Drinfel’d Theorem. Let B/\mathbb{Q} be the quaternion algebra obtained from B by interchanging the invariants at ∞ and p; so B is the definite quaternion algebra over \mathbb{Q} of discriminant N^\pm. For a subgroup $U \subseteq B^\times$, let $U(p)$ the elements outside of the place p. Fix isomorphisms $B_\ell \simeq B_\ell$ for all primes $\ell \neq p$, so that we can view $V_1(N^+(p))$ as a subgroup of $(B^\times(p))$. Define $\tilde{\Gamma}_p = B^\times \cap V_1(N^+(p))$. We still denote $\tilde{\Gamma}_p$ the image of $\tilde{\Gamma}_p$ in $\text{GL}_2(\mathbb{Q}_p)$ via a fixed isomorphism $i_p : B \otimes \mathbb{Q}_p \simeq M_2(\mathbb{Q}_p)$, and we let Γ_p denote the subgroup of $\tilde{\Gamma}_p$ consisting of elements whose determinant has even p-power order.

Base changing from \mathbb{Z}_p to the valuation ring \mathbb{Z}_{p^2} of \mathbb{Q}_{p^2} gives a \mathbb{Z}_{p^2}-formal scheme \mathcal{H}_{p^2}, whose generic fiber \mathcal{H}_{p^2} is the base change of the \mathbb{Q}_p-rigid analytic space \mathcal{H}_p to \mathbb{Q}_{p^2}. The group $\text{GL}_2(\mathbb{Q}_p)$ acts on the \mathbb{Z}_{p^2}-formal scheme \mathcal{H}_p (BC91 Chapitre I, §6) and acts on $\text{Spf}(\mathbb{Z}_{p^2})$ via the inverse of the arithmetic Frobenius raised to the determinant map (BC91 Chapitre II, §9)). Therefore, the group $\text{GL}_2(\mathbb{Q}_p)$ also acts on the \mathbb{Z}_{p^2}-formal scheme \mathcal{H}_{p^2} and the \mathbb{Z}_{p^2}-rigorous scheme \mathcal{H}_{p^2}, and the associated rigid analytic spaces. We may then form the quotient $\Gamma_p \backslash \mathcal{H}_{p^2}$, in the category of \mathbb{Z}_{p^2}-formal schemes, and the quotient $\Gamma_p \backslash \mathcal{H}_{p^2}$, in the category of \mathbb{Z}_{p^2}-formal schemes, and similarly for the associated rigid analytic spaces. The formal completion $\hat{\mathcal{A}}_{p_2}$ of the universal abelian variety \mathcal{A}_{p_2} over \mathbb{Z}_{p^2} along its special fiber is a SFD-module over the formal completion $\hat{\mathcal{C}}_{p_2}$ of \mathcal{C}_{p_2}, along its special fiber. We may base change $\hat{\mathcal{A}}_{p_2}$, and $\hat{\mathcal{C}}_{p_2}$ to \mathbb{Z}_{p^2} obtaining a SFD-module $\hat{\mathcal{A}}_{p_2}$ over the formal scheme \mathcal{C}_{p_2}; of course, $\hat{\mathcal{A}}_{p_2}$ is the completion of \mathcal{C}_{p_2} along its special fiber. The Cerednik-Drinfel’d Theorem (DT76, BC91 Théorème 5.3)) states the existence of an isomorphism of \mathbb{Z}_{p^2}-formal schemes $\Gamma_p \backslash \mathcal{H}_{p^2} \simeq \mathcal{A}_{p_2}$ which induced an isomorphism of \mathbb{Z}_{p^2}-formal schemes $\Gamma_p \backslash \mathcal{G} \simeq \mathcal{A}_{p_2}$ on the universal objects.

Under our assumptions, there is an isomorphism of \mathbb{Z}_{p^2}-formal schemes $\Gamma_p \backslash \mathcal{H}_{p^2} \simeq \Gamma_p \backslash \mathcal{H}_{p^2}$ (BC91 §3.5.3, JL85 Theorem 4.3’) from which we deduce an isomorphism of \mathbb{Z}_{p^2}-formal schemes $\Gamma_p \backslash \mathcal{H}_{p^2} \simeq \mathcal{C}_{p_2}$ which induces an isomorphism of \mathbb{Z}_{p^2}-formal schemes, equivalent for the quaternionic actions on both sides, $\Gamma_p \backslash \mathcal{G} \simeq \mathcal{A}_{p_2}$.

Denote $(X, \mathcal{O}_X) \sim (X_{rig}, \mathcal{O}_{X_{rig}})$ the rigidification functor which takes a proper scheme over a complete extension F of \mathbb{Q}_p to its associated rigid analytic space over F (Bos14 §5.4). For each coherent sheaf \mathcal{F} of \mathcal{O}_X-modules on X, we also denote \mathcal{F}_{rig} the rigidification of \mathcal{F}, and for each morphism $\varphi : \mathcal{F} \to \mathcal{G}$ of \mathcal{O}_X-modules, we let $\varphi_{rig} : \mathcal{F}_{rig} \to \mathcal{G}_{rig}$ the corresponding morphism of rigid analytic sheaves (Bos14 §6). We have a rigid version of GAGA stating that $\mathcal{F} \sim \mathcal{F}_{rig}$ is an equivalence of categories between coherent \mathcal{O}_X-modules and coherent $\mathcal{O}_{X_{rig}}$-modules; we refer to Bos14 §6.3, Theorems 11, 12, 13), or [?] for details. Moreover, if X is a proper \mathcal{O}_F-scheme, where \mathcal{O}_F is the valuation ring of F, the generic fiber of the formal
completion \hat{X} of X along its special fiber coincides with X^rig_F, where $X_F = X \otimes_{\mathcal{O}_p} F$. Passing to the generic fiber, the Cerednik-Drinfel’d theorem then implies that there are isomorphisms of \mathbb{Q}_p-rigid analytic spaces

\[(38) \quad \Gamma_p \backslash \mathcal{H}_{p^2} \simeq \mathcal{C}_{\mathbb{Q}_p}^{\text{rig}}\]

and an isomorphism of \mathbb{Q}_p-rigid analytic spaces which is equivariant with respect to the quaternionic actions on both sides:

\[(39) \quad \Gamma_p \backslash \mathcal{G}^{\text{rig}} \simeq \mathcal{A}_{\mathbb{Q}_p}^{\text{rig}}.\]

5.2. Rigid analytic modular forms. A rigid analytic function $f : \mathcal{H}_p(\mathbb{C}_p) \to \mathbb{C}_p$ is said to be a rigid analytic modular form of weight k and level Γ_p if

\[f(\gamma z) = (cz + d)^k f(z)\]

for all $z \in \mathcal{H}_p(\mathbb{C}_p)$ and $\gamma \in \Gamma_p$, where $\gamma(z) = (az + b)/(cz + d)$. Denote $S_{k, \text{rig}}(\Gamma_p)$ the \mathbb{C}_p-vector space of rigid analytic modular forms of weight k and level Γ_p. See [Dar04, §5.2] for details.

Given a $\mathbb{Z}[\Gamma_p]$-module M, we denote M^{Γ_p} the submodule consisting of Γ_p-invariant elements of M. With notation as in [138], define \hat{Q}^unr-submodule $w_\mathcal{G}^{\Gamma_p}$ of $w_\mathcal{G}$ consisting of global sections which are invariant for the Γ_p-action. In particular, $w_\mathcal{G}^{\Gamma_p}$ is a A^{Γ_p}-module. Given $f \in S_2^{\text{rig}}(\Gamma_p)$, define $\omega_f = f(z) \otimes d\tau^{\otimes k}$ in $w_\mathcal{G}[\mathbb{C}_p] = w_\mathcal{G} \otimes_{\hat{Q}^\text{unr}} \mathbb{C}_p$.

Lemma 5.1. The correspondence $f \mapsto \omega_f = f(z) \otimes d\tau^{\otimes k}$ sets up a \mathbb{C}_p-linear isomorphism between $S_k^{\text{rig}}(\Gamma_p)$ and $w_\mathcal{G}^{\Gamma_p}[\mathbb{C}_p]$.

Proof. That ω_f belongs to $w_\mathcal{G}^{\Gamma_p}$ is because of [21]. The map $f \mapsto \omega_f$ has clearly an inverse because ω_f^0 is an invertible $\mathcal{O}_{\mathcal{H}_p^\text{unr}}$-module, and the result follows. \qed

For any sheaf \mathcal{F} on \mathcal{H}_p^unr, denote \mathcal{F}^{Γ_p} the sheaf on $\Gamma_p \backslash \mathcal{H}_p^\text{unr}$ defined by taking Γ_p-invariant sections. Also, recall the sheaves $\omega_{\hat{Q}^\text{unr}}$ and $\mathcal{L}_{\hat{Q}^\text{unr}}$ introduced in [38] and [39].

Lemma 5.2. The isomorphisms [38] and [39] induce isomorphisms $(\omega_{\hat{Q}^\text{unr}})^{\Gamma_p} \simeq \omega_{\hat{Q}^\text{unr}}^{\text{rig}}$ and $(\mathcal{L}_{\hat{Q}^\text{unr}})^{\Gamma_p} \simeq \mathcal{L}_{\hat{Q}^\text{unr}}^{\text{rig}}$ of sheaves.

Proof. Recall that a basis of affinoid subsets of $\Gamma_p \backslash \mathcal{H}_p^\text{unr}$ is given by $\text{Sp}(A^{\Gamma_p})$ where $\text{Sp}(A)$ ranges over the affinoid subsets of \mathcal{H}_p^unr such that Γ_p acts on A by a finite group ([?, §6]). It follows that the structural sheaf $\mathcal{O}_{\mathcal{H}_p^\text{unr}}^{\text{rig}} = \mathcal{C}_{\hat{Q}^\text{unr}}^{\text{rig}}$ of $\mathcal{C}_{\hat{Q}^\text{unr}}^{\text{rig}}$ is identified with the sheaf of Γ_p-invariant sections of \mathcal{H}_p^unr. The result follows from this, in light of [38], [39] and the construction of differentials and de Rham cohomology. \qed

Proposition 5.3. There are canonical isomorphisms of \mathbb{C}_p-vector spaces:

\[S_2^{\text{rig}}(\Gamma_p) \simeq w_\mathcal{G}^{\Gamma_p}[\mathbb{C}_p] = H^0(\mathcal{H}_p^\text{unr}, \omega_f^{\Gamma_p}) \mathcal{C}_p \simeq H^0(\mathcal{C}_{\hat{Q}^\text{unr}}^{\text{rig}}, \omega_{\hat{Q}^\text{unr}}^{\text{rig}}) \mathcal{C}_p.\]

Proof. Put together Lemmas [5.1] and [5.2]. \qed

5.3. The p-adic Shimura-Maass operator. Taking Γ_p-invariants defines a map, for integers $k \geq 0$ and $j \geq 0$ and understanding that $\mathcal{O}_p^{\text{rig}} = \mathcal{O}_p$, $\Theta_{p,k}^{\text{rig}} : (w_\mathcal{G}^{\Gamma_p})^p \to (w_\mathcal{G}^{\Gamma_p})^p$ where recall that $\Theta_{p,k}^{\text{rig}}$ was introduced in [34].
An alternative way to introduce $\Theta_{p,n}^{j,*}$ is the following. Recall the operator ∇_n in (11) and, for any integer $j \geq 0$, define $\nabla_n^j : \mathcal{L}_{Q_p^{unr},n}^{\rho} \rightarrow \mathcal{L}_{Q_p^{unr},n+2j}^{\rho}$ by the formula

$$
\nabla_n^j = \nabla_{n+2j} \circ \cdots \circ \nabla_{n+2} \circ \nabla_n.
$$

Considering the associated rigid analytic sheaves, and taking global sections, we obtain a map of \mathcal{A}-modules $\nabla_n^{j,\text{rig}} : \Gamma_{p,n}^{\rho} \rightarrow \Gamma_{p,n+2j}^{\rho}$. One may define the operator

$$
\Theta_{p,n}^{j} : w_{G,n}^{\rho} \xrightarrow{\text{ig.} \, \sigma} \Lambda_{G,n}^{\rho} \xrightarrow{\nabla_n^{j,\text{rig}}} \Lambda_{G,n+2j}^{\rho} \xrightarrow{\left(\Lambda_{G,n+2j}^{\rho} \ast \Psi_{\rho,n+2j} \ast \left(w_{G,n+2j}^{\rho}\right)\right)} \Gamma_{p,n+2j}^{\rho}.
$$

By (20), $d\tau^*$ is horizontal for ∇_n^ρ, and therefore $\Theta_{p,n}$ coincides with the restriction of $\Theta_{p,k}^{j,*}$ to $w_{G,n}^{\rho}$.

5.4. Comparison of Shimura-Maass operators at CM points. Identify the set of Q_p^i-points in the rigid space H_p with the set of Q_p^i-algebra homomorphisms $\text{Hom}(Q_p^i, M_2(Q_p^i))$ as follows: any $\Psi \in \text{Hom}(Q_p^i, M_2(Q_p^i))$ defines an action of Q_p^i on $H_p(Q_p^i) = Q_p^i - Q_p^i$ by fractional linear transformations, and the point $z \in H_p(Q_p^i)$ associated with Ψ is characterised by the property $\Psi(a)(\xi) = a(\xi)$, for all $a \in Q_p^i$.

Given a representation $\rho = (\rho_1, \rho_2) : GL_2 \times GL_2 \rightarrow GL(V)$, the stalk $\mathcal{E}(V)_{\Psi}$ of $\mathcal{E}(V)$ at a point $\Psi \in \text{Hom}(Q_p^i, M_2(Q_p^i))$ can be described explicitly. One first observes that the structure of filtered convergent F-isocrystal of $\mathcal{E}(V)$ induces a structure of filtered Frobenius module (IS03, §2) on the fiber $\mathcal{E}(V)_{\Psi}$. On the other hand, one attaches to such a pair (V, Ψ) a filtered Frobenius module V_{Ψ} in a natural way as follows. The underlying vector space V_{Ψ} is $V_{Q_p^{unr}} = V \otimes_{Q_p^i} Q_p^{unr}$. The Frobenius is given by $\phi_V \otimes \sigma$, where $\phi_V = \rho_2 \left(\begin{smallmatrix} 0 & \rho_1 \\ \rho_1 & 0 \end{smallmatrix}\right)$ as before (thus, only depending on ρ_2). The filtration, only depending on ρ_1, has a more involved definition. Recall that any representation V can be split into the direct sum of sub-representations $(V^{\rho_1}, \rho^{(\rho_1)})$ which are pure of weight n, and therefore it is enough to define the filtration for a representation $\rho : GL_2 \rightarrow GL(V)$ which is pure of weight n, since in the general case, the filtration $F^iV_{Q_p^{unr}}$ is by definition the direct sum of the filtrations $F^{i,n}V_{Q_p^{unr}}$ for all $n \in \mathbb{Z}$. If V is pure of weight n, define V_j to be the subspace of $V_{Q_p^{unr}}$ consisting of elements $v \in V$ satisfying the property $\rho(\Psi(a))(v) = a^j \sigma(a)^{n-j} v$ for all $a \in Q_p^i$. Define the filtration $F^iV_{Q_p^{unr}}$ of $V_{Q_p^{unr}}$ as the direct sum of V_j for $j \geq i$. This equips $V_{Q_p^{unr}}$ with a structure of filtered Frobenius module, denoted V_{Ψ}. By [IS03] Lemma 4.2, $V_{\Psi} \simeq \mathcal{E}(V)_{\Psi}$ as filtered Frobenius modules.

To stress the dependence on Ψ, we denote F^*V_{Ψ} the filtered of the Frobenius module V_{Ψ}; this is then a filtration on $V_{Q_p^{unr}}$ which depends on Ψ. Let $\text{gr}^i(F^*V_{\Psi}) = F^iV_{\Psi}/F^{i-1}V_{\Psi}$ be the graded pieces of the filtration. If V is pure of weight n, we have a canonical isomorphism $\text{gr}^i(F^*V_{\Psi}) \simeq V_i$ as well as a decomposition $V_{Q_p^{unr}} = \bigoplus_{i \in \mathbb{Z}} \text{gr}^i(F^*V_{\Psi})$.

For $\Psi \in \text{Hom}(Q_p^i, M_2(Q_p^i))$, denote $\bar{\Psi}$ the morphism of Q_p^i-algebras obtained by composition Ψ with the main involution of $M_2(Q_p^i)$; therefore, if $\Psi(x) = \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}\right)$ then $\bar{\Psi}(x) = \left(\begin{smallmatrix} d & -b \\ -c & a \end{smallmatrix}\right)$. If V is pure of weight n, then the graduate pieces $\text{gr}^i(F^*V_{\Psi})$ and $\text{gr}^{n-i}(F^*V_{\Psi})$ are equal, for all $i \in \mathbb{Z}$. In particular, for $V = M_2$ we have

$$
\text{gr}^1(F^*(M_2)) \simeq \text{gr}^2(F^*(M_2)).
$$

and therefore there is an exact sequence:

$$
0 \rightarrow \text{gr}^1(F^*(M_2)) \rightarrow (M_2)_{\Psi} \rightarrow \text{gr}^1(F^*(M_2)) \rightarrow 0
$$

and a canonical decomposition

$$
(M_2)_{\Psi} \simeq \text{gr}^1(F^*(M_2)) \bigoplus \text{gr}^1(F^*(M_2)).
$$
One can choose generators ω_1, ω_2 of the \hat{Q}_p^{unr}-vector space $\text{gr}^1(\mathbb{F}^*\mathbb{M}_2)_{\psi}$ so that ω_1 and ω_2 are defined over \mathbb{Q}_p. Then $\overline{\omega}_1$ and $\overline{\omega}_2$ are generators of the \hat{Q}_p^{unr}-vector space $\text{gr}^1(\mathbb{F}^*\mathbb{M}_2)_{\psi}$, where $\omega_i \mapsto \overline{\omega}_i$ for $i = 1, 2$ denotes the action of $\text{Gal}(\hat{\mathbb{Q}}_p/\mathbb{Q}_p)$ on ω_i. If therefore follows that the Hodge splitting coincides on quadratic points with the projection $(\mathbb{M}_2)_{\psi} \to \text{gr}^1(\mathbb{F}^*\mathbb{M}_2)_{\psi}$ to the first factor in the decomposition \((\hat{\mathbb{Q}}, \mathbb{Q}) \).

We now apply the above results to the situation of the previous sections. Recall that K is a imaginary quadratic field and $f \in H^0(\mathbb{C}_\mathbb{Q}, \mathcal{O}_\mathbb{Q}^k)$ is an algebraic modular form of weight k and level N^+N^- with $p \nmid N = N^+N^-$ and $(N^+, N^-) = 1$. We write $f_\infty : \mathcal{H}_p \to \mathbb{C}$ and $f_p : \mathcal{H}_p \to \mathbb{C}_p$ for the holomorphic and the rigid analytic modular forms corresponding to f, respectively. Assume N^p is a product of an even number of distinct primes, each of them inert in K, and that all primes dividing N^+ are split in K. Let $P \in \mathcal{C}_\mathbb{Q}(K)$ be a Heegner point, and assume that $P \in \mathcal{C}_\mathbb{C}(\mathbb{C})$ represented by the point $\tau_\infty \in \mathcal{H}_\infty$ modulo Γ_∞, and $P \in \mathcal{C}_\mathbb{C}_p(\mathbb{C}_p)$ is represented by the point $\tau_p \in \mathcal{H}_p$ modulo Γ_p. Fix embeddings $\mathbb{Q} \hookrightarrow \hat{\mathbb{Q}}_p$ and $\hat{\mathbb{Q}} \hookrightarrow \mathbb{C}_p$, which allows us to view algebraic numbers as complex and p-adic numbers.

Theorem 5.4. For any positive integer j we have the equality

$$\Theta^j_{\infty,k}(f_\infty)(\tau_\infty) = \Theta^j_{p,k}(f_p)(\tau_p).$$

Proof. We mimic a well known argument of Katz when p is split in K ([Kat78, Theorems 2.4.5, 2.4.7]; see also [BDP13, Proposition 1.12], [HLM, Theorem 3.5], [Mor11, Proposition 2.12]). Let A_P be the false elliptic curve corresponding to the Heegner point P. The algebraic CM splitting of A_P coincides both with the Hodge splitting and the p-adic setting, and therefore the values of $\Psi_{\infty,n}$ and $\Psi_{p,n}$ at CM points are the same. Since the construction of the Shimura-Maass operators is algebraic, we see that $\nabla^\text{an}_n(f_\infty)$ coincides with $\nabla^\text{rig}_n(f_p)$, and the same still holds for the iterates of the Shimura-Maass operator, which also admit an algebraic construction. The result follows. \(\square \)

5.5. Nearly rigid analytic modular forms.

In this subsection we make explicit the relation between the results of this paper and those of Franc’s thesis [Fra11]; it is independent from the rest of the paper.

We first introduce a \mathbb{C}_p-subspace of \mathcal{C}, which plays a role analogue to that of nearly holomorphic functions in the real analytic setting. For this part, we closely follow [Fra11]. The assignment $X \mapsto 1/(z - z^*)$ defines an injective homomorphism $\mathcal{A}[X] \hookrightarrow \mathbb{C}$ ([Fra11, Proposition 4.3.3]). Define the \mathcal{A}-algebra \mathcal{N} of nearly rigid analytic functions on to be the image of this map (cf. [Fra11, Definition 4.3.5]). By definition, \mathcal{N} is a sub-\mathcal{A}-algebra of \mathcal{A}^*. The \mathcal{A}-algebra \mathcal{N} is equipped with a canonical graduation $\mathcal{N} = \bigoplus_{j \geq 0} \mathcal{N}^{(j)}$ where for each integer $j \geq 0$, we denote $\mathcal{N}^{(j)}$ the sub-\mathcal{A}-algebra of \mathcal{N} consisting of functions f which can be written in the form

$$f(z) = \sum_{i=0}^{j} f_i(z) \frac{1}{(z - \sigma(z))^i}$$

with $f_i \in \mathcal{A}$. The Shimura-Maass operator $\delta_{p,k}$ restricts to an operator (denoted with the same symbol) $\delta_{p,k} : \mathcal{N} \to \mathcal{N}$ which takes $\mathcal{N}^{(j)}$ to $\mathcal{N}^{(j+2)}$.

Define now $\mathcal{N}_k(\Gamma_p) = \mathcal{N}^{(j)}_{k,\text{rig}}$ to be the \mathbb{C}_p-subalgebra of \mathcal{N} consisting of functions which are invariant under the weight k action of Γ_p on \mathcal{N}, namely, those functions satisfying the transformation property $f(\gamma z) = (cz + d)^k f(z)$ for all $z \in \hat{\mathbb{Q}}_p^{\text{unr}} - \mathbb{Q}_p$ and $\gamma \in \Gamma_p$. Note that $S_{k,\text{rig}}^{\text{rig}}(\Gamma_p) \subseteq \mathcal{N}_k(\Gamma_p)$. We call $\mathcal{N}_k(\Gamma_p)$ the \mathbb{C}_p-vector space of nearly rigid analytic modular forms of weight k and level Γ_p. Define also $\mathcal{N}_k^{(j)}(\Gamma_p) = \mathcal{N}_k(\Gamma_p) \cap \mathcal{N}^{(j)}$. The operator $\delta_{p,k}$ introduced in 4.7 restricts to a map $\delta_{p,k} : \mathcal{N}_k(\Gamma_p) \to \mathcal{N}_{k+2}(\Gamma_p)$ ([Fra11, Lemma 4.3.8]). By [Fra11]...
Theorem 4.3.11], for each integer \(r \geq 0 \) we have an isomorphism of \(\mathbb{C}_p \)-vector spaces
\[
\bigoplus_{j=0}^{r} S_{k+2(r-j)}^{\text{rig}}(\Gamma_p) \simeq \Lambda_{p,k+2r}^{(r)}(\Gamma_p)
\]
which maps \((h_j)_{j=0}^{k+2(r-j)}\) to \(\sum_{j=0}^{k+2(r-j)} \delta_{p,k}^j(h_j)\).

Corollary 5.5 (Franc). Let \(\tau_p \in \mathcal{H}_p \) corresponds to a Heegner point. The values \(\Theta_{\infty,k}^j(f)(\tau_p) \)
to \(\mathcal{H}_p\) are algebraic for each integer \(j \geq 0 \).

Proof. The result is clear from Theorem 5.4 since this is known for \(\Theta_{\infty,k}^j(f)(\tau_\infty) \).

Remark 5.6. Equation (37) answers affirmatively one of the questions left in [Fra11, §6.1] whether if it was possible to describe the \(p \)-adic Shimura-Maass operator \(\delta_{p,k}^j \), introduced in [Fra11] in a more conceptual way, similar to that in the complex case. Corollary 5.5 is the main result of [Fra11], which was obtained via a completely different method, following more closely the complex analytic approach of Shimura.

6. The Coleman primitive

Write \(\nabla = \nabla^*_G, n \), \(\nabla^{1,0} = \nabla^*_{G, 0} \), \(\nabla^{0,1} = \nabla^*_{G, 0} \) and \(\langle , \rangle = \langle , \rangle^*_{G, n} \) to simplify the notation. For any \(n \) and any \(j \), whenever there is not possible confusion, we write \(\Theta_p = \Theta_{\infty,n}^* \) and \(\Theta_{p,n}^j = \Theta_{p,k}^j \) for the \(p \)-adic Shimura-Maass operator, and \(\Psi_p = \Psi_{p,n}^* \) for the splitting of the Hodge filtration.

We set up the notation \(\omega_{\text{can}} = dz \) and \(\eta_{\text{can}} = dx^*_{z^* - z} \). Since \(\langle dx, dy \rangle = -1 \), we have \(\langle \omega_{\text{can}}, \eta_{\text{can}} \rangle = 1 \). We also write \(\omega_{\text{can}}^{n-j} = \omega_{\text{can}}^j \otimes \eta_{\text{can}}^{n-j} \).

The computation of the Gauss-Manin connection gives
\[
\nabla(\omega_{\text{can}}) = \left(\frac{\omega_{\text{can}}}{z^* - z} + \eta_{\text{can}} \right) \otimes dz,
\]
\[
\nabla(\eta_{\text{can}}) = \frac{\omega_{\text{can}} \otimes dz^*}{(z^* - z)^2} + \eta_{\text{can}} \otimes dz.
\]

Let \(f : \mathcal{H}_p \to \mathbb{C}_p \) be a rigid modular form giving rise to a section \(\omega_f = f(z) \otimes d\tau^* \). Put \(n = k - 2 \). Using the Kodaira-Spencer map, we identify this with \(\omega_f = f(z)dz \otimes d\tau^n \). Let \(F_j \) be the Coleman primitive of the differential form \(\omega_f \), satisfying the differential equation
\[
\nabla(F_j) = \omega_f.
\]

Define for \(j = n/2, \ldots, n \) an integer
\[
G_j(z) = \langle F_j(z), \omega_{\text{can}}^{n-j} \rangle \otimes \omega_{\text{can}}^{n-2j}.
\]

Theorem 6.1. \(\Theta_{p}^{j+1}(G_j) = j! \omega_f \).

Proof. This result, which is proved by means of a simple and explicit computation, is the analogue of [BDP13, Proposition 3.24] (and also of [HB15, Theorem 7.3]), but we provide a complete proof since our formalism is quite different from that in [BDP13], where one can use the Tate curve and the \(q \)-expansion principle. As in loc. cit. we show that \(\Theta_p G_0(z) = \omega_f \) and \(\Theta_p(G_j(z)) = j! G_{j-1}(z) \).

We first compute \(\nabla(G_0(z)) \). We have:
\[
\nabla(G_0(z)) = \nabla(\langle F_j(z), \eta_{\text{can}} \rangle) \otimes \omega_{\text{can}}^n
\]
\[
= \langle \nabla(F_j(z)), \eta_{\text{can}}^{n} \rangle \otimes \omega_{\text{can}}^{n} + \langle F_j(z), \nabla(\eta_{\text{can}}^{n}) \rangle \otimes \omega_{\text{can}}^{n} + \langle F_j(z), \eta_{\text{can}}^{n} \rangle \otimes \nabla(\omega_{\text{can}}^{n})
\]
\[
= \langle f(z)dz \otimes \omega_{\text{can}}^{n}, \eta_{\text{can}}^{n} \rangle \otimes \omega_{\text{can}}^{n} + \langle F_j(z), \nabla(\eta_{\text{can}}^{n}) \rangle \otimes \omega_{\text{can}}^{n} + \langle F_j(z), \eta_{\text{can}}^{n} \rangle \otimes \nabla(\omega_{\text{can}}^{n}).
\]
We now compute the last two pieces:
\[
\langle F_j(z), \nabla (\eta_{\text{can}}^n) \rangle \otimes \omega_{\text{can}}^n = \langle F_j(z), n\eta_{\text{can}}^{n-1} \nabla (\eta_{\text{can}}) \rangle \otimes \omega_{\text{can}}^n \\
= \left(\langle F_j(z), n\eta_{\text{can}}^{n-1} \frac{-\omega_{\text{can}} \otimes dz^*}{(z^* - z)^2} + \eta_{\text{can}} \otimes dz \rangle \right) \otimes \omega_{\text{can}}^n \\
= -\left(\langle F_j(z), n\eta_{\text{can}}^{n-1} \omega_{\text{can}} \otimes dz^* \rangle \otimes \omega_{\text{can}}^n + \langle F_j(z), \frac{n\eta_{\text{can}}^n \otimes dz}{z^* - z} \rangle \otimes \omega_{\text{can}}^n \right) \\
= -\langle F_j(z), \eta_{\text{can}}^{n-1} \omega_{\text{can}} \rangle \otimes \frac{n\omega_{\text{can}}^n \otimes dz^*}{(z^* - z)^2} + \langle F_j(z), \eta_{\text{can}}^n \rangle \otimes \frac{n\omega_{\text{can}}^n \otimes dz}{z^* - z}
\]
and
\[
\langle F_j(z), \eta_{\text{can}}^n \rangle \otimes \nabla (\omega_{\text{can}}^n) = \langle F_j(z), \eta_{\text{can}}^n \rangle \otimes \nabla (\omega_{\text{can}}^n) \\
= \langle F_j(z), \eta_{\text{can}}^n \rangle \otimes n\omega_{\text{can}}^{n-1} \nabla (\omega_{\text{can}}) \\
= \langle F_j(z), \eta_{\text{can}}^n \rangle \otimes n\omega_{\text{can}}^{n-1} \left(-\frac{\omega_{\text{can}}}{z^* - z} + \eta_{\text{can}} \right) \otimes dz \\
= -\langle F_j(z), \eta_{\text{can}}^n \rangle \otimes \frac{n\omega_{\text{can}}^n \otimes dz}{z^* - z} + \langle F_j(z), \eta_{\text{can}}^n \rangle \otimes n\omega_{\text{can}}^{n-1} \eta_{\text{can}} \otimes dz.
\]
Therefore the sum of these two pieces gives:
\[
-\langle F_j(z), \eta_{\text{can}}^{n-1} \omega_{\text{can}} \rangle \otimes \frac{n\omega_{\text{can}}^n \otimes dz^*}{(z - z^*)^2} + \langle F_j(z), \eta_{\text{can}}^n \rangle \otimes n\omega_{\text{can}}^{n-1} \eta_{\text{can}} \otimes dz.
\]
Recall now that \(\Psi(\eta_{\text{can}}) = 0 \) and \(\Psi(dz^*) = 0 \). Therefore, using the Kodaira-Spencer map to replace \(dz \) with \(\omega_{\text{can}}^2 \), and applying \(\Psi \) we have
\[
\Theta_p(G_0(z)) = \omega_f(\omega_{\text{can}}^n, \eta_{\text{can}}^n) = \omega_f.
\]
We now compute \(\nabla(G_j(z)) \) for \(j \geq 1 \). The Gauss-Manin connection
\[
\nabla(G_j(z)) = \nabla (\langle F_j(z), \omega_{\text{can}}^j \eta_{\text{can}}^{n-j} \rangle \otimes \omega_{\text{can}}^{n-2j})
\]
is the sum of three terms
(43)
\[
\langle \nabla(F_j(z)), \omega_{\text{can}}^j \eta_{\text{can}}^{n-j} \rangle \otimes \omega_{\text{can}}^{n-2j} + \langle F_j(z), \nabla(\omega_{\text{can}}^j \eta_{\text{can}}^{n-j}) \rangle \otimes \omega_{\text{can}}^{n-2j} + \langle F_j(z), \omega_{\text{can}}^j \eta_{\text{can}}^{n-j} \rangle \otimes \nabla(\omega_{\text{can}}^{n-2j})
\]
which we calculate separately as before. First, since \(j > 0 \), we have
\[
\langle \nabla(F_j(z)), \omega_{\text{can}}^j \eta_{\text{can}}^{n-j} \rangle \otimes \omega_{\text{can}}^{n-2j} = \langle f(z) dz \otimes \omega_{\text{can}}^n, \omega_{\text{can}}^j \eta_{\text{can}}^{n-j} \rangle = 0.
\]
Next, a simple computation shows that
\[
\nabla(\omega_{\text{can}}^j \eta_{\text{can}}^{n-j}) = (n - 2j) \omega_{\text{can}}^j \eta_{\text{can}}^{n-j} \otimes \frac{dz}{z^* - z} + j \omega_{\text{can}}^j \eta_{\text{can}}^{n-j} \otimes dz - (n - j) \omega_{\text{can}}^{j+1} \eta_{\text{can}}^{n-j-1} \otimes \frac{dz^*}{(z^* - z)^2}
\]
and therefore the second summand in (43) is
\[
\langle F_j(z), \nabla(\omega_{\text{can}}^j \eta_{\text{can}}^{n-j}) \rangle \otimes \omega_{\text{can}}^{n-2j} = (n - 2j) \langle F_j(z), \omega_{\text{can}}^j \eta_{\text{can}}^{n-j} \rangle \otimes \omega_{\text{can}}^{n-2j} \otimes \frac{dz}{z^* - z} - \\
\quad j \langle F_j(z), \omega_{\text{can}}^j \eta_{\text{can}}^{n-j} \rangle \otimes \omega_{\text{can}}^{n-2j} \otimes dz + \\
\quad - (n - j) \langle F_j(z), \omega_{\text{can}}^{j+1} \eta_{\text{can}}^{n-j-1} \rangle \otimes \omega_{\text{can}}^{n-2j} \otimes \frac{dz^*}{(z^* - z)^2}
\]
Thus the Hodge filtration of the de Rham cohomology is given by

\(\epsilon \)

We define \((46) \)

\(\epsilon \)

On the other hand, by \([HB15, Proposition 6.4]\), we can define a projector \((45) \)

\(\epsilon \)

As shown in \([HB15, Corollary 6.3]\), one can define a projector \(\Theta_p(G_j(z)) = j(F_j(z), \omega_{can}^{-1}(j-1)) \subset \omega_{can}^{-2(j-1)} = jG_{j-1}(z). \)

The result follows.

7. The generalised Kuga-Sato motive

Fix an even integer \(k \geq 2 \) and put \(n = k - 2, m = n/2 \). Let \(A_0 \) be a false elliptic curve with quaternionic multiplication and full level-\(M \) structure, defined over \(H \) (the Hilbert class field of \(K \)) and with complex multiplication by \(\mathcal{O}_K \); the action of \(\mathcal{O}_K \) is required to commute with the quaternionic action, and this implies that \(A_0 \) is isogenous to \(E \times E \) for an elliptic curve \(E \) with CM by \(\mathcal{O}_K \). Fix a field \(F \supset H \) and consider the \((2n+1) \)-dimensional variety \(X_m \) over \(F \) given by

\[X_m := A^m \times A_0^m. \]

Here and in the following we simplify the notation and simply write \(A, C \) and \(A_0 \) for \(A_F, C_F \) and \((A_0)_F \), unless we need to stress the field of definition in which case we keep the full notation. The variety \(X_m \) is equipped with a proper morphism \(\pi: X_m \rightarrow C \) with \(2n \)-dimensional fibers. The fibers above points of \(C \) are products of the form \(A^m \times A_0^m \).

The de Rham cohomology of \(C \) attached to \(\mathcal{L}_n \), denoted \(H^1_{\text{dR}}(C, \mathcal{L}_n, \nabla) \), is defined to be the 1-st hypercohomology of the complex

\[0 \rightarrow \mathcal{L}_n \rightarrow \mathcal{L}_n \otimes \Omega^1_C \rightarrow 0. \]

As shown in \([HB15, Corollary 6.3]\), one can define a projector \(\epsilon_A \) (denoted \(P \) in \textit{loc. cit.}) in the ring of correspondences \(\text{Corr}_C(A^m, A^m) \), such that

\[\epsilon_A H^*_{\text{dR}}(A_m/F) \subseteq H^{n+1}_{\text{dR}}(A_m/F), \]

\[\epsilon_A H^*_{\text{dR}}(A_m/F) \cong H^1_{\text{dR}}(C, \mathcal{L}_n, \nabla). \]

On the other hand, by \([HB15, Proposition 6.4]\), we can define a projector \(\epsilon_A \in \text{Corr}(A_0^m, A_0^m) \) (which is defined by means of \(\epsilon_A \)) such that

\[\epsilon_{A_0} H^*_{\text{dR}}(A_0^m/F) = \text{Sym}^n e H^1_{\text{dR}}(A_0/F). \]

The projectors \(\epsilon_A \) and \(\epsilon_A \) are commuting idempotents when viewed in the ring \(\text{Corr}_C(X_m, X_m) \). We define \(\epsilon = \epsilon_A \epsilon_{A_0} \) and denote \(D \) the motive \((X_m, \epsilon) \). By \([HB15, Proposition 6.5]\) and \([14] \), \([15] \), \([44] \) we see that

\[\epsilon H^i_{\text{dR}}(X_m/F) = \begin{cases} H^i_{\text{dR}}(C, \mathcal{L}_n, \nabla) \otimes \text{Sym}^n e H^1_{\text{dR}}(A_0^m/F), & \text{if } i = 2n + 1, \\ 0, & \text{if } i \neq 2n + 1. \end{cases} \]

Thus the Hodge filtration of the de Rham cohomology is given by

\[F^{n+1} \left(\epsilon H^i_{\text{dR}}(X_m/F) \right) = F^{n+1} \left(H^i_{\text{dR}}(C, \mathcal{L}_n, \nabla) \right) \otimes \text{Sym}^n e H^1_{\text{dR}}(A_0^m/F). \]
Finally we have a map ([HB15 page 4221])

\[H^0(\mathcal{C}, \omega_{\mathcal{O}}^{\otimes n+2}) \rightarrow F^n (H^1_{\text{dR}}(\mathcal{C}, \mathcal{L}_n, \nabla)). \]

8. The Abel-Jacobi Map

Let \(\Delta \) be the class a null-homologous codimension-(n+1) cycle \(\Delta \) in \(CH^{n+1}(D)(F) \), where \(F \) is as in Section [a field containing the Hilbert class field of \(K \). One may associate to \([\Delta] \) the isomorphism class of the extension

\[0 \rightarrow \epsilon H^{2n+1}_{\text{et}}(\overline{X}_m, \mathbb{Q}_p(n+1)) \rightarrow E \rightarrow \mathbb{Q}_p \rightarrow 0 \]

in

\[\text{Ext}^1_{G_F}(\mathbb{Q}_p, \epsilon H^{2n+1}_{\text{et}}(\overline{X}_m, \mathbb{Q}_p(n+1))) \]

(where \(\text{Ext}^1_{G_F} \) denotes the first Ext group in the category of \(G_F = \text{Gal}(\overline{F}/F) \)-modules) given by the pull-back of

\[0 \rightarrow \epsilon H^{2n+1}_{\text{et}}(\overline{X}_m, \mathbb{Q}_p(n+1)) \rightarrow \epsilon H^{2n+1}_{\text{et}}(\overline{X}_m - [\Delta], \mathbb{Q}_p(n+1)) \rightarrow \text{Ker} \left(\epsilon H^{2n+2}_{\text{et}}_{/\Delta}(\overline{X}_m, \mathbb{Q}_p(n+1)) \rightarrow \epsilon H^{2n+2}_{\text{et}}(\overline{X}_m, \mathbb{Q}_p(n+1)) \right) \rightarrow 0 \]

via the map \(\mathbb{Q}_p \rightarrow \epsilon H^{2n+2}_{\text{et}}(\overline{X}_m, \mathbb{Q}_p(n+1)) \) sending 1 to the cycle class \(c_{\overline{X}_m}([\Delta]) \) of \(\Delta \) in \(H^{2n+2}_{\text{et}}(\overline{X}_m, \mathbb{Q}_p(n+1)) \). This association defines a map, called \(p \)-adic étale Abel-Jacobi map

\[A\text{J}_p: CH^{n+1}(D)(F) \rightarrow \text{Ext}^1_{G_F}(\mathbb{Q}_p, \epsilon H^{2n+1}_{\text{et}}(\overline{X}_m, \mathbb{Q}_p(n+1))). \]

Let \(v \) be the place of \(F \) above \(p \) induced by the inclusion \(F \subseteq \overline{Q} \hookrightarrow \mathbb{C}_p \), which for simplicity we assume to be unramified over \(p \). We now describe the restriction of \(A\text{J}_p \) to \(CH^{n+1}(D)(F_v) \). Consider the base change of \(X_m \) and \(C \) to \(F_v \) that we still denote by \(X_m \) and \(C \) in this section. Since the motive \(X_m \) has semistable reduction at \(v \), the image of the Abel-Jacobi map is contained in the first Ext group in the category of semistable representations; using [IS03 Lemma 2.1], and following the argument in [IS03 page 362] (see also [LP19 §4.2]) the Abel-Jacobi map gives a map, denoted with the same symbol by a slight abuse of notation,

\[A\text{J}_p: CH^{n+1}(D)(F_v) \rightarrow \text{Ext}^1_{G_F}(\mathbb{Q}_p, \epsilon H^{2n+1}_{\text{et}}(\overline{X}_m, \mathbb{Q}_p(n+1))). \]

where \(D_{\text{st}, F_v} \) is the Fontaine’s semistable functor from the category of \(G_{F_v} = \text{Gal}((\overline{F}_v/F_v) \)-representations to the category \(M_{F_v}^{\text{st}} \) of filtered Frobenius monodromy modules over \(F_v \), and we denote as usual by \(F^i(D) \) the \(i \)-step filtration of a filtered Frobenius monodromy module \(D \).

By [Tsu98, Fal02] (see also [Tsu99]) we know that \(D_{\text{st}, F_v}(H^{2n+1}_{\text{et}}(X_m, \mathbb{Q}_p)) \) is isomorphic to the de Rham cohomology group \(H^{2n+1}_{\text{dR}}(X_m/F_v) \) as filtered Frobenius monodromy modules. Therefore, applying the idempotent \(\epsilon \), we obtain the isomorphism

\[\frac{D_{\text{st}, F_v}(\epsilon H^{2n+1}_{\text{et}}(\overline{X}_m, \mathbb{Q}_p(n+1)))}{F^{n+1}(D_{\text{st}, F_v}(\epsilon H^{2n+1}_{\text{et}}(\overline{X}_m, \mathbb{Q}_p(n+1))))} \simeq \frac{\epsilon H^{2n+1}_{\text{dR}}(X_m/F_v)(n+1)}{F^{n+1}(\epsilon H^{2n+1}_{\text{dR}}(X_m/F_v)(n+1))}. \]

By Poincaré duality,

\[\frac{\epsilon H^{2n+1}_{\text{dR}}(X_m/F_v)(n+1)}{F^{n+1}(\epsilon H^{2n+1}_{\text{dR}}(X_m/F_v)(n+1))} \simeq (F^{n+1}(\epsilon H^{2n+1}_{\text{dR}}(X_m/F_v)(n+1)))^\vee \]

where \(V^\vee \) denotes dual of \(F_v \)-vector spaces. Combining [HS] and dualizing (49) we obtain a map

\[(F^{n+1}(\epsilon H^{2n+1}_{\text{dR}}(X_m/F_v)(n+1)))^\vee \rightarrow (M_k(C, F_v) \otimes \text{Sym}^n \epsilon H^1_{\text{dR}}(A^m_0/F))^\vee. \]
The p-adic Abel-Jacobi map for the nullhomologous $(n + 1)$-th Chow cycles of the motive D can thus be viewed as a map, denoted with the same symbol by an abuse of notation:

$$AJ_p : CH^{n+1}_0(D)(F_v) \to (M_{k_0}(X, F_v) \otimes \text{Sym}^n H^1_{\text{dR}}(A/F_v))^\vee.$$

9. Generalized Heegner cycles

9.1. Definition. Let $\varphi : A_0 \to A$ be an isogeny (defined over K) of false elliptic curves, of degree prime to N^+, i.e. whose kernel intersects the level structures of A_0 trivially. Let P_A be the point on C corresponding to A with level structure given by composing φ with the level structure of A_0. We associate to any pair (φ, A) a codimension $n + 1$ cycle Υ_φ on X_m by defining

$$\Upsilon_\varphi := (\Gamma_\varphi)^m \subset (A \times A_0)^m$$

where $\Gamma_\varphi = \{(\varphi(x), x) : x \in A_0\} \subset A \times A_0$ is the graph of φ. We then set

$$\Delta_\varphi := \epsilon \Upsilon_\varphi.$$

The cycle Δ_φ of D is supported on the fiber above P_A and has codimension $n + 1$ in $A^m \times A_0^m$, thus $\Delta_\varphi \in CH^{n+1}_0(D)$. By (47), the cycle Δ_φ is homologous to zero.

We now compute the image of Δ_φ under the Abel-Jacobi map. The de Rham cohomology group $H^1_{\text{dR}}(A/F)$ of a false elliptic curve A defined over a field F is equipped with the Poincaré pairing $\langle ., . \rangle_{H^1_{\text{dR}}(A/F)}$, which we simply denote $\langle ., . \rangle_A$. Fix a nonvanishing differential ω_{A_0} in $\epsilon \Omega^1_{A_0/F}$. This fixed differential determines a class $\eta_{A_0} \in eH^1(A_0, O_{A_0})$ dual to ω_{A_0} under the Poincaré duality pairing $\langle ., . \rangle_{A_0}$, normalised so that $\langle \omega_{A_0}, \eta_{A_0} \rangle_{A_0} = 1$. We can view $\{\omega_{A_0}, \eta_{A_0}\}$ as a basis of $eH^1_{\text{dR}}(A_0/F)$ since the Hodge exact sequence

$$0 \to \Omega^1_{A_0/F} \to H^1_{\text{dR}}(A_0/F) \to H^1(A_0, O_{A_0}) \to 0$$

splits, because A_0 has CM. This yields a basis for $\text{Sym}^n eH^1_{\text{dR}}(A_0/F)$ given by the elements $\omega_{A_0}^j \otimes \eta_{A_0}^{n-j}$ for j an integer such that $0 \leq j \leq n$.

Let ω_f be the global section of the sheaf $\omega_n \otimes \Omega^1_G$ associated to the modular form over the Shimura curve C which corresponds to f under the Jacquet-Langlands correspondence. The aim of this section is to compute

$$AJ_p(\Delta_\varphi)(\omega_f \otimes \omega^j \eta^{n-j})$$

for $j = 0, \ldots, n$, following [BDP13], [HB15], and [IS03].

Define

$$L_{n,n} = L_n \otimes \text{Sym}^n eH^1_{\text{dR}}(A_0/F).$$

The Gauss-Manin connection on L_n combined with the trivial connection on $H^1_{\text{dR}}(A_0/F)$, gives rise to the connection

$$\nabla : L_{n,n} \to L_{n,n} \otimes \Omega^1_G.$$

The de Rham cohomology groups attached to $(L_{n,n}, \nabla)$ are defined to be the hypercohomology of the complex

$$0 \to L_{n,n} \xrightarrow{\nabla} L_{n,n} \otimes \Omega^1_G \to 0.$$

We have

$$H^1_{\text{dR}}(C, L_{n,n}, \nabla) = H^1_{\text{dR}}(C, L_n, \nabla) \otimes \text{Sym}^n eH^1_{\text{dR}}(A_0/F).$$

Let z_A be the point in C corresponding to A, and denote X_{m,z_A} the fiber of X_m over z_A. Recall the cycle class map

$$c_{z_A} : CH^n(X_{m,z_A})_Q(F) \to H^2_{\text{et}}(X_{m,z_A}, Q_p)(n).$$

Since $\Delta_\varphi = \epsilon \Upsilon_\varphi$, the image $c_{z_A}(\Delta_\varphi)$ of Δ_φ under the cycle class map c_{z_A} belongs to $\epsilon H^2_{\text{et}}(X_{m,z_A}, Q_p)(n)$. Since $D_{st,F_v}(H^2_{\text{et}}(X_m, Q_p))$ is isomorphic to the de Rham cohomology group $H^2_{\text{dR}}(X_m/F_v)$ as filtered Frobenius monodromy modules, we still denote $c_{z_A}(\Delta_\varphi)$,
with a slight abuse of notation, the image of $cl_{\Delta}(\Delta_{\varphi})$ under the functor D_{at,F_v} and the isomorphism with Rham cohomology group; so we finally end up with the element

$$\cl_{\Delta}(\Delta_{\varphi}) \in \epsilon H^1_{\text{dR}}(X_m/F_v) = H^1_{\text{dR}}(\mathcal{C}, \mathcal{L}_n, \nabla) \otimes \text{Sym}^n \epsilon H^1_{\text{dR}}(A_0^m/F).$$

9.2. Rigid analysis on Mumford curves. In this subsection we work over $\hat{\mathbb{Q}}_p^{unr}$. To simplify the notation, we suppress the symbol $\hat{\mathbb{Q}}_p^{unr}$; thus we write $\mathcal{C} = C_{\hat{\mathbb{Q}}_p^{unr}}$, $\mathcal{C}_{\text{rig}} = C_{\hat{\mathbb{Q}}_p^{unr}}^{\text{rig}}$, $\mathcal{L}_n = L_{n,\hat{\mathbb{Q}}_p^{unr}}$, $\mathcal{L}_n^{\text{rig}} = L_{n,\hat{\mathbb{Q}}_p^{unr}}^{\text{rig}}$, and $V_n = V_n \otimes_{\hat{\mathbb{Q}}_p} \hat{\mathbb{Q}}_p^{unr}$.

9.2.1. Structure of filtered Frobenius monodromy modules. We first derive a description of $H^1_{\text{dR}}(\mathcal{C}_{\text{rig}}, L_{n,n}^{\text{rig}}, \nabla)$ by means of V_n-valued differential forms on \mathcal{H}_p^{unr}.

Lemma 9.1. $\epsilon H^1_{\text{dR}}(\mathcal{G}/\hat{\mathcal{H}}) \simeq \mathcal{E}(V_1)$ as filtered convergent F-isocrystals on \mathcal{H}_p^{unr}.

Proof. The representation (M_2, ρ_1, ρ_2) is isomorphic to $V_1 \otimes V_1 = (V_1 \otimes V_1, \sigma_1, \sigma_2)$, where $\sigma_1(A)(R_1 \otimes R_2) = (A \cdot R_1) \otimes R_2$ and $\sigma_2(A)(R_1 \otimes R_2) = R_1 \otimes (A^t \cdot R_2)$. Recall that the isomorphism t_p satisfies $t_p(e) = \left(\begin{smallmatrix} 1 & 0 \\ 0 & 1 \end{smallmatrix} \right)$. The result then follows from [IS03].

Write $V_n = \mathcal{E}(V_n)$ to simplify the notation. It follows from Lemma 9.1 that

$$H^1_{\text{dR}}(\mathcal{C}_{\text{rig}}, L_{n,n}^{\text{rig}}, \nabla) \simeq H^1_{\text{dR}}(\mathcal{C}_{\text{rig}}, V_n)$$

as filtered Frobenius monodromy modules, and the right hand side is isomorphic to the $\hat{\mathbb{Q}}_p^{unr}$-vector space of V_n-valued, Γ_p-invariant differential forms of the second kind on \mathcal{H}_p^{unr} modulo forms ω such that $\nabla(\omega) = 0$. Define

$$V_{n,n} = V_n \otimes \text{Sym}^n \epsilon H^1_{\text{dR}}(A_0^m).$$

Then we have

$$H^1_{\text{dR}}(\mathcal{C}_{\text{rig}}, L_{n,n}^{\text{rig}}, \nabla) \simeq H^1_{\text{dR}}(\mathcal{C}_{\text{rig}}, V_{n,n})$$

as filtered Frobenius monodromy modules.

We now describe the monodromy operator. Let T denote the Bruhat-Tits tree of $\text{PGL}_2(\mathbb{Q}_p)$, and denote \mathcal{E} and \mathcal{V} the set of oriented edges and vertices of T, respectively. If $e = (v_1, v_2) \in \mathcal{E}$, we denote by τ the oriented edge (v_2, v_1). Let $C^0(V_n)$ be the set of maps $\mathcal{V} \to V_n$ and $C^1(V_n)$ the set of maps $\mathcal{E} \to V_n$ such that $f(\tau) = -f(e)$ for all $e \in \mathcal{E}$. The group Γ_p acts on $f \in C^1(V_n)$ by $\gamma(f) = \gamma \circ f \circ \gamma^{-1}$. Let

$$\epsilon : C^1(V_n) \Gamma \to H^1(\Gamma, M)$$

be the connecting homomorphism arising from the short exact sequence

$$0 \to V_n \to C^0(V_n) \xrightarrow{\delta} C^1(M) \to 0,$$

where δ is the homomorphism defined by $\delta(f)(e) = f(V_n) - f(v_2)$ for $e = (v_n, v_2)$. The map ϵ induces the following isomorphism that we also denote by ϵ

$$\epsilon : C^1(V_n)^{\Gamma} / C^0(V_n)^{\Gamma} \to H^1(V_n).$$

Let $A_e \subset \mathcal{H}_p^{unr}$ be the oriented annulus in \mathcal{H}_p corresponding to e and $U_e \subset \mathcal{H}_p^{unr}$ be the affinoid corresponding to $v \in \mathcal{V}$, which are obtained as inverse images of the reduction map (see [IS03 page 342]). Let ω be a V_n-valued Γ-invariant differential of the second kind on \mathcal{H}_p. We define $I(\omega)$ to be the map which assigns to an oriented edge $e \in \mathcal{E}$ the value $I(\omega)(e) = \text{Res}_e(\omega)$, where Res_e denotes the annular residue along A_e. If ω is exact, $I(\omega) = 0$. Thus I gives a well-defined map

$$I : H^1_{\text{dR}}(\mathcal{C}_{\text{rig}}, V_n) \to C^1(V_n)^{\Gamma}.$$
Since the set \(\{ U_v \}_{v \in \mathcal{V}} \) is an admissible covering of \(H_p \), the Mayer-Vietoris sequence yields an embedding

\[
C^1(V_n)^{\Gamma_p} / C^0(V_n)^{\Gamma_p} \hookrightarrow H^1_{dR}(C^{rig}, V_n).
\]

Precomposing with \(\epsilon \), we obtain an embedding

\[
(52) \quad \iota: H^1(\Gamma_p, V_n) \hookrightarrow H^1_{dR}(C^{rig}, V_n)
\]

This map admits a natural left inverse

\[
(53) \quad P: H^1_{dR}(C^{rig}, V_n) \rightarrow H^1(\Gamma_p, V_n),
\]

which takes \(\omega \) to the class of the cocycle \(\gamma \mapsto \gamma(F_\omega) - F_\omega \), where \(F_\omega \) is a Coleman primitive of \(\omega \) satisfying \(\nabla(F_\omega) = \omega \).

Define now the monodromy operator \(N_n \) on \(H^1_{dR}(C^{rig}, V_n) \) as the composite \(\iota \circ (-) \circ I \). The monodromy operator \(N_{S_n} \) on the filtered \((\phi, N)\)-module

\[
S_n = \text{Sym}^n eH^1_{dR}(A^m_0)
\]

is trivial. Therefore, the monodromy operator on \(D_{st, \mathcal{Q}_p}(H^{2n+1}_p(D)) \) is given by

\[
(54) \quad N = \text{id}_n \otimes N_{S_n} + N_n \otimes \text{id}_{S_n}.
\]

We now describe the Frobenius operator on \(D_{st, \mathcal{Q}_p}(H^{2n+1}_p(D)) \). First, \(H^1(\Gamma_p, V_n) \) has a Frobenius endomorphism induced by the map \(p \hat{\tau} \otimes \sigma \) on \(V_n \), where \(\sigma \) denotes the absolute Frobenius automorphism on \(\mathcal{Q}_p \). By [IS03] page 348, there exists a unique operator \(\Phi_n \) on \(H^1_{dR}(C^{rig}, V_n) \) satisfying \(N_n \Phi_n = p\Phi_n N_n \) and which is compatible, with respect to \(\iota \), with the Frobenius on \(H^1(\Gamma_p, V_n) \). On the other hand, the Frobenius on the filtered \((\phi, N)\)-module \(S_n \) is given by \(\Phi_{S_n} = p \hat{\tau} \otimes \sigma \) acting on the underlying vector space \(S_n \). The Frobenius operator on \(D_{st, \mathcal{Q}_p}(H^{2n+1}_p(D)) \) is then given by

\[
\Phi = \Phi_n \otimes \Phi_{S_n}.
\]

Note that \(N \) and \(\Phi \) satisfy the relation \(N\Phi = p\Phi N \).

For any \(D \in MF_{\mathcal{Q}_p} \), write \(D = \oplus_{\lambda \in \mathbb{Q}} D_\lambda \) for its slope decomposition, where \(\lambda \in \mathbb{Q} \) (\[IS03\] (2))). We now note that \(N \) induces an isomorphism

\[
(55) \quad N : H^1_{dR}(C^{rig}, V_{n,n})_{n+1} \simeq H^1_{dR}(C^{rig}, V_{n,n})_{n}.
\]

To see this, note that since the monodromy operator \(N \) and the Frobenius \(\Phi \) on \(H^1_{dR}(C^{rig}, V_{n,n}) \) satisfy the relation \(N\Phi = p\Phi N \), we have \(N(H^1_{dR}(C^{rig}, V_{n,n})_{n+1}) \subseteq H^1_{dR}(C^{rig}, V_{n,n})_{n} \). Since \(S_n \) is isotypical of slope \(n/2 \), we have

\[
H^1_{dR}(C^{rig}, V_{n,n})_{n+1} = H^1_{dR}(C^{rig}, V_{n,n})_{n/2+1} \otimes S_n
\]

doing

\[
H^1_{dR}(C^{rig}, V_{n,n})_{n} = H^1_{dR}(C^{rig}, V_{n,n})_{n/2} \otimes S_n.
\]

By [IS03] Lemma 6.1], the operator \(N_n \) on \(H^1_{dR}(C^{rig}, V_{n,n})_{n+1} \) is an isomorphism, the therefore the same is true in \(S_n \) by the definition of the monodromy operator \(N \) given in \((54) \).

9.2.2. Calculation of Ext groups by the Gysin sequence. For \(f \in M_k(\Gamma) \) and \(v \in S_n \), \((55) \) allows us to use the description in [IS03] Lemma 2.1] to calculate some Ext groups.

Define \(U_{z_A} = C^{rig} - \{ z_A \} \), and put

\[
(56) \quad H^1_{dR}(U_{z_A}, V_{n,n}) = H^1_{dR}(U_{z_A}, V_n) \otimes S_n.
\]
Let $\text{Res}_{z_A}: H^1_{\text{dR}}(U_{z_A}, V_{n, \text{rig}}) \to (V_{n, \text{rig}})_{z_A}$ be the residue map at a point z_A. We have the Gysin sequence ([IS03] Theorem 5.13) in $\text{MF}_{\hat{\phi}, \text{unr}}$.

$$0 \to H^1_{\text{dR}}(\mathcal{V}^{\text{rig}}, V_{n, n})[-(n+1)] \to H^1_{\text{dR}}(U_{z_A}, V_{n, n})[-(n+1)] \xrightarrow{\text{Res}_{z_A}} (V_n \otimes S_n)[-n] \to 0$$

where we write V_n for the stalk $(V_n)_{z_A}$ of V_n at z_A.

We have the cycle class map

$$\text{cl}_A = \text{cl}^{(n)}_{(A^m \times A^m_0, \epsilon_{A \times A_0})} : \text{CH}^n((A^m \times A^m_0, \epsilon_{A \times A_0})) \to \Gamma((V_n \otimes S_n)[-n])$$

where for a filtered Frobenius monodromy module M with filtration $F^*(M)$, Frobenius ϕ and monodromy N, we put $\Gamma(M) = F^0(M) \cap M^{\phi = \text{id}, N = 0}$. Next, from ([57]) we obtain a connecting homomorphism in the sequence of Ext groups

$$\Gamma((V_n \otimes S_n)[-n]) \xrightarrow{\partial} \text{Ext}_{M^\phi, N}^1(\hat{\mathcal{Q}}_{\text{unr}}^n, H^1_{\text{dR}}(\mathcal{V}^{\text{rig}}, V_{n, n})[-(n+1)]) \cong \text{Ext}_{M^\phi, N}^1(\hat{\mathcal{Q}}_{\text{unr}}^{n+1}, H^1_{\text{dR}}(\mathcal{V}^{\text{rig}}, V_{n, n})) \cong (M_k(\Gamma) \otimes S_n)^{\vee}$$

where the last isomorphism comes from ([IS03] Lemma 2.1). On the other hand, we have a canonical map

$$i : \text{CH}^n((A^m \times A^m_0, \epsilon_{A \times A_0})) \to \text{CH}^{n+1}(\mathcal{D}).$$

The definition of the Abel-Jacobi map shows that the following diagram is commutative:

$$(58) \quad \begin{array}{ccc}
\text{CH}^{n+1}(\mathcal{D}) & \xrightarrow{i} & \Gamma((V_n \otimes S_n)[-n]) \\
\downarrow & & \downarrow \\
\text{AJ}_p(\Delta_{\mathcal{D}}) & \xrightarrow{\partial} & (M_k(\Gamma) \otimes S_n)^{\vee}
\end{array}$$

Then $\text{AJ}_p(\Delta_{\mathcal{D}})$ is the extension class determined by the following diagram (in which the right square is cartesian)

$$(59) \quad \begin{array}{ccc}
0 & \to & H^1_{\text{dR}}(\mathcal{V}^{\text{rig}}, V_{n, n}) \\
\downarrow & & \downarrow \\
0 & \to & H^1_{\text{dR}}(U_{z_A}, V_{n, n})
\end{array} \xrightarrow{\text{Res}_{z_A}} \begin{array}{c}
((V_n \otimes S_n)[1]) \to 0 \\
\uparrow \\
E \to \hat{\mathcal{Q}}_{\text{unr}}^{n+1}[n+1] \to 0
\end{array}$$

where the vertical left map sends $1 \mapsto \text{cl}_A(\Delta_{\mathcal{D}})[n+1]$.

9.2.3. Computation of the Abel-Jacobi map. Choose $\alpha \in H^1_{\text{dR}}(U_{z_A}, V_{n, n})_{n+1}$ such that

$$\text{Res}_{z_A}(\alpha) = \text{cl}_A(\Delta_{\mathcal{D}})$$

and $N(\alpha) = 0$. Choose β in $H^1_{\text{dR}}(\mathcal{V}^{\text{rig}}, V_{n, n})$ such that

$$j_*(\beta) \equiv \alpha \mod F^{n+1}(H^1_{\text{dR}}(U_{z_A}, V_{n, n})).$$

Then the image of the extension $\text{cl}_A(\Delta_{\mathcal{D}})$ in

$$H^1_{\text{dR}}(\mathcal{V}^{\text{rig}}, V_{n, n})/F^{n+1}(H^1_{\text{dR}}(\mathcal{V}^{\text{rig}}, V_{n, n})) \simeq (M_k(\Gamma) \otimes S_n)^{\vee}$$

is the class of β (which we denote by the same symbol β) in this quotient (for the isomorphism, see [IS03] Proposition 6.1]).
We have the Poincaré duality pairing \(\langle \cdot, \cdot \rangle_{n,n} : V_{n,n} \otimes \mathcal{O}_{\text{Crig}} \to \mathcal{O}_{\text{Crig}} \) arising from Poincaré duality on the fibers \(X \times A_0 \). We therefore obtain a Poincaré pairing, still denoted \(\langle \cdot, \cdot \rangle_{n,n} \),

\[
\langle \cdot, \cdot \rangle_{n,n} : H^1_{\text{dR}}(C^{\text{rig}}, V_{n,n}) \times H^1_{\text{dR}}(C^{\text{rig}}, V_{n,n}) \overset{\cup}{\longrightarrow} H^2_{\text{dR}}(C^{\text{rig}}, \mathcal{O}_{\text{Crig}}) \simeq \mathbb{Q}_p^{\text{unr}}.
\]

Let \(\omega_f \) be the class in \(F^{n+1} (H^1_{\text{dR}}(C^{\text{rig}}, V_n)) \) corresponding to \(f \in M_k(\Gamma) \). Then by definition

\[
\langle \omega_f \otimes v, \beta \rangle_{n,n} = (\omega_f \otimes v, \beta)_{n,n}.
\]

By [IS03 (39)] and the fact that \(S_n \) is isotypical of slope \(n/2 \), we obtain a decomposition

\[
H^1_{\text{dR}}(C^{\text{rig}}, V_{n,n}) \simeq H^1_{\text{dR}}(C^{\text{rig}}, V_{n,n})_n \oplus F^{n+1} (H^1_{\text{dR}}(C^{\text{rig}}, V_{n,n})).
\]

We may therefore assume that the element \(\beta \) considered above belongs to \(H^1_{\text{dR}}(C^{\text{rig}}, V_{n,n})_n \).

We now compute \(\langle \omega_f \otimes v, \beta \rangle_{n,n} \). By [IS03 Theorem 6.4],

\[
\ker(N_n) = \iota \left(H^1(\Gamma, V_n) \right) = H^1_{\text{dR}}(C^{\text{rig}}, V_{n,n})_{n/2}.
\]

To simplify the notation we put

\[
H^1(\Gamma, V_{n,n}) = H^1(\Gamma, V_n) \otimes S_n.
\]

We now extend \(\iota \) to a map, still denoted by the same symbol,

\[
\iota = \iota \otimes \text{id}_{(V_n)_{n,n}} : H^1(\Gamma, V_{n,n}) \hookrightarrow H^1_{\text{dR}}(C^{\text{rig}}, V_{n,n})
\]

and (62) shows that there exists an isomorphisms \(\ker(N) = \iota \left(H^1(\Gamma, V_{n,n}) \right) \), so we may also assume \(\beta = \iota(c) \) for some \(c \in H^1(\Gamma, V_{n,n}) \). Let \(C_{\text{har}}(V_n)^\Gamma \) denote the \(\mathbb{Q}_p \)-vector space of \(\Gamma \)-invariant \(V_n \)-valued harmonic cocycles and denote

\[
\langle \cdot, \cdot \rangle_\Gamma : C_{\text{har}}(V_n)^\Gamma \otimes H^1(\Gamma, V_n) \longrightarrow \mathbb{Q}_p
\]

the pairing introduced in [IS03 (75)]. To simplify the notation, we set

\[
C_{\text{har}}(V_n)^\Gamma = C_{\text{har}}(V_n) \otimes S_n.
\]

We then define the pairing

\[
\langle \cdot, \cdot \rangle_\Gamma : C_{\text{har}}(V_n)^\Gamma \otimes H^1(\Gamma, V_{n,n}) \longrightarrow \mathbb{Q}_p
\]

by \(\langle \cdot, \beta \rangle_\Gamma = \langle \cdot, \beta \rangle_{n,n} \), where \(\langle \cdot, \beta \rangle_{n,n} \) is the Poincaré pairing on \(A_0 \).

Lemma 9.2. \(\langle \omega_f \otimes v, \beta \rangle_{n,n} = -(\iota(\omega_f) \otimes v, c)_{\Gamma} \).

Proof. Write \(\beta = \sum_i \beta_i \otimes v_i \), and \(c = \sum_j c_j \otimes w_j \). Recall that \(\iota(c) = \beta \) with \(\iota \) injective, so that \(\iota(\beta_i) = c_i \) and \(v_i = w_i \) for all \(i \). By [IS03 Theorem 10.2] we know that for each \(i \) we have

\[
\langle \omega_f, \beta_i \rangle_{V_n} = -(\iota(\omega_f, c_i)_{\Gamma}).
\]

The definitions of \(\langle \cdot, \cdot \rangle_{n,n} \) and \(\langle \cdot, \cdot \rangle_{\Gamma} \) imply the result. \(\square \)

Write \(\alpha - j_*(\beta) = \sum_i \gamma_i \otimes v_i \). For each \(i \), let \(\chi_i \) be a \(\Gamma \)-invariant \(V_n \)-valued meromorphic differential form on \(H_p \) which is holomorphic outside \(\pi^{-1}(U_{z_A}) \), with a simple pole at \(z_A \), and whose class \([\chi_i] \in F_\mathbb{Z}^{n+1}(H^1_{\text{dR}}(U_{z_A}, V_n)) \) represents \(\gamma_i \). Then the class of \(\chi = \sum_i \chi_i \otimes v_i \) represents \(\alpha - j_*(\beta) \).

Having identified \(H^1_{\text{dR}}(C^{\text{rig}}, V_n) \) with the \(\mathbb{Q}_p^{\text{unr}} \)-vector space of \(\Gamma \)-invariant \(V_n \)-valued differential forms of the second kind on \(H_p \) modulo horizontal forms for \(\nabla \), denote \(F_{\omega_f} \in H^0_{\text{dR}}(C^{\text{rig}}, V_n) \) the Coleman primitive of \(\omega_f \) ([?], §3.2).

Lemma 9.3. \(-(\iota(\omega_f) \otimes v, c)_{\Gamma} = (F_{\omega_f}(z_A) \otimes v, \text{Res}_{z_A}(\chi))_{A \times A_0} \), where \(\langle \cdot, \cdot \rangle_{A \times A_0} \) is the Poincaré pairing on \(A \times A_0 \).
Proof. As in the proof of Lemma 9.2 write \(c = \sum_j c_j \otimes w_j \). By definition,
\[
\langle I(\omega_f) \otimes v, c \rangle = \sum_j \langle I(\omega_f), c_j \rangle \cdot \langle v, w_j \rangle_{A_0}.
\]
By [IS03 Corollary 10.7],
\[
\langle I(\omega_f), c_j \rangle_f = \langle F_{\omega_f}(z_A), \text{Res}_{z_A}(\chi_j) \rangle_A
\]
where in the last pairing is the Poincaré pairing on \(A \); note that we can apply [IS03 Corollary 10.7] because the proof of [IS03 Theorem 10.6] still holds in our setting because the analogues of [IS03 (87), (88)] are true. The result follows now from the definition of the pairing \(\langle \cdot \rangle_{n,n} \).

\[\square\]

Lemma 9.4. \(A\mathcal{J}_p(\Delta_\varphi)(\omega_f \otimes \omega_{A_0}^{n-j}) = \langle F_j(z_A), \omega_{A_0}^{n-j}, \text{cl}_{z_A}(\Delta_\varphi) \rangle_{A \times A_0} \).

Proof. Taking into account (63) and (64), this follows from combining Lemma 9.2 and Lemma 9.3.

\[\square\]

Lemma 9.5. \(\langle F_j(z_A), \omega_{A_0}^{n-j} \rangle = \langle \varphi^*(F_j(z_A)), \omega_{A_0}^{n-j} \rangle_{A_0} \).

Proof. This follows from (9.3) and the functoriality property of the Poincaré pairing, as in [BDP13 Proposition 3.21].

\[\square\]

Let \(\omega_A \in eH^1_{\text{dR}}(A/F) \) be such that \(\omega_A = \varphi^*\omega_A \) and let \(\eta_A \in eH^1(A, \mathcal{O}_A) \) be as before the dual class to \(\omega_A \) under the Poincaré duality pairing \(\langle \cdot, \cdot \rangle_A \), normalised so that \(\langle \omega_A, \eta_A \rangle_A = 1 \).

Proposition 9.6. \(A\mathcal{J}_p(\Delta_\varphi)(\omega_f \otimes \omega_{A_0}^{n-j}) = d_\varphi \langle F_j(z_A), \omega_{A_0}^{n-j} \rangle_{A_0} \), where \(d_\varphi \) is the degree of \(\varphi \).

Proof. Observe that \(\varphi^*\eta_A = d_\varphi\eta_{A_0} \). It follows that
\[
\langle \varphi^*(F_j(z_A)), \omega_{A_0}^{n-j} \rangle_{A_0} = d_\varphi^{-n} \langle \varphi^*(F_j(z_A)), \varphi^*(\omega_{A_0}^{n-j}) \rangle_{A_0}.
\]
The functoriality properties of Poincaré pairing show that \(\langle \varphi^*\omega, \varphi^*\eta \rangle_{A_0} = d_\varphi \langle \omega, \eta \rangle_A \) for \(\omega \) and \(\eta \) in \(H^1_{\text{dR}}(A/F) \). It follows that
\[
\langle \varphi^*(F_j(z_A)), \varphi^*(\omega_{A_0}^{n-j}) \rangle_{A_0} = d_\varphi \langle F_j(z_A), \omega_{A_0}^{n-j} \rangle_{A_0}.
\]
The result follows combining Lemma 9.4 and Lemma 9.5 with equations (63) and (64).

\[\square\]

Recall the canonical differentials \(\omega_{\text{can}}, \eta_{\text{can}} \) introduced in Section 6. Since \(A_0 \) and \(A \) have CM by \(\mathcal{O}_K \), \(\omega_{\text{can}} \) and \(\eta_{\text{can}} \) defined pair of differentials \(\omega_{A_0}, \eta_{A_0} \) and \(\omega_A, \eta_A \). Recall now the definition of the function \(G_j \) in (42), and for integers \(j = n/2, \ldots, n \) define the function
\[
H_j(z) = \langle F_j(z), \omega_{A_0}^{n-j}(z) \eta_{\text{can}}^{n-j}(z) \rangle.
\]

Theorem 9.7. Let \(\omega_{A_0}, \eta_{A_0}, \omega_A \) and \(\eta_A \) be defined by means of \(\omega_{\text{can}} \) and \(\eta_{\text{can}} \). Then for each \(j = n/2, \ldots, n \) we have
\[
H_j(z) = A\mathcal{J}(\Delta_\varphi)(\omega_f \otimes \omega_{A_0}^{n-j}).
\]

Proof. The differentials on \(A_0 \) and \(A \) thus defined satisfy the conditions \(\langle \omega_{A_0}, \eta_{A_0} \rangle_{A_0} = 1 \), \(\langle \omega_A, \eta_A \rangle_A = 1 \) and \(\varphi^*\omega_A = \omega_{A_0} \). Therefore we may apply Proposition 9.6 and the result follows.

\[\square\]

Corollary 9.8. Let \(\omega_{A_0}, \eta_{A_0}, \omega_A \) and \(\eta_A \) be defined by means of \(\omega_{\text{can}} \) and \(\eta_{\text{can}} \). Then for each \(j = n/2, \ldots, n \) we have
\[
\delta_p^{n-j}(H_n)(z_A) = \frac{n!}{j!} A\mathcal{J}(\Delta_\varphi)(\omega_f \otimes \omega_{A_0}^{n-j}).
\]

Proof. From the proof of Theorem 9.1 we see that \(\Theta_p(G_j(z)) = jG_{j-1}(z) \), and therefore we have \(\Theta_p^{n-j}(G_n(z)) = \frac{n!}{j!}G_j(z) \). Therefore, \(\delta_p^{n-j}(H_n(z)) = \frac{n!}{j!}H_j(z) \) The result follows from Theorem 9.7.

\[\square\]
References

[A19] Fabrizio Andreatta and Adrian Iovita, Katz type p-adic L-function for primes p non split in the cm field, preprint (2019).

[BBM82] Pierre Berthelot, Lawrence Breen, and William Messing, Théorie de Dieudonné cristalline. II, Lecture Notes in Mathematics, vol. 930, Springer-Verlag, Berlin, 1982. MR 667344

[BC91] J-F. Boutot and H. Carayol, Uniformisation p-adique des courbes de Shimura: les théorèmes de cérédnik et de Drinfel’d, Astérisque (1991), no. 196-197, 5, 45-158 (1992), Courbes modulaires et courbes de Shimura (Orsay, 1987/1988). MR 1141456

[BDP13] Massimo Bertolini, Henri Darmon, and Kartik Prasanna, Generalized Heegner cycles and p-adic Rankin L-series, Duke Math. J. 162 (2013), no. 6, 1033-1148. With an appendix by Brian Conrad. MR 3053566

[BG98] Siegfried Bosch and Ulrich Görtz, Coherent modules and their descent on relative rigid spaces, J. Reine Angew. Math. 495 (1998), 119-134. MR 1603849

[BO78] Pierre Berthelot and Arthur Ogus, Notes on crystalline cohomology, Princeton University Press, Princeton, N.J.; by the American Mathematical Society, Providence, RI, 1978. MR 0491705

[BO83] P. Berthelot and A. Ogus, F-isocrystals and de Rham cohomology. I, Invent. Math. 72 (1983), no. 2, 159-199. MR 700767

[Bos14] Siegfried Bosch, Lectures on formal and rigid geometry, Lecture Notes in Mathematics, vol. 2105, Springer, Cham, 2014. MR 339387

[Buz97] Kevin Buzzard, Integral models of certain Shimura curves, Duke Math. J. 87 (1997), no. 3, 591-612. MR 1446619

[CL98] Antoine Chambert-Loir, Cohomologie cristalline: un survol, Exposition. Math. 16 (1998), no. 4, 333-382. MR 1654786

[Dar04] Henri Darmon, Rational points on modular elliptic curves, CBMS Regional Conference Series in Mathematics, vol. 101, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2004. MR 2026772

[dJ98] A. J. de Jong, Barsotti-Tate groups and crystals, Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998), no. Extra Vol. II, 1998, pp. 259-265. MR 1648076

[Dri76] V. G. Drinfel’d, Coverings of p-adic symmetric domains, Funkcional. Anal. i Priložen. 10 (1976), no. 2, 29-40. MR 0422290

[Fal97] Gerd Faltings, Crystalline cohomology of semistable curve—the Qp-theory, J. Algebraic Geom. 6 (1997), no. 1, 1-18. MR 1486990

[Fal92] __________. Almost étale extensions, Astérisque (2002), no. 279, 185-270, Cohomologies p-adiques et applications arithmétiques, II. MR 1922831

[Fon77] Jean-Marc Fontaine, Groupes p-divisibles sur les corps locaux, Société Mathématique de France, Paris, 1977, Astérisque, No. 47-48. MR 0498610

[Fra11] Cameron Franc, Nearly rigid analytic modular forms and their values at CM points, ProQuest LLC, Ann Arbor, MI, 2011, Thesis (Ph.D.)–McGill University (Canada). MR 3055032

[Gro74] Alexander Grothendieck, Groupes de Barsotti-Tate et cristaux de Dieudonné, Les Presses de l’Université de Montréal, Montreal, Que., 1974, Séminaire de Mathématiques Supérieures, No. 45 (Été, 1970). MR 0417192

[Har81] Michael Harris, Special values of zeta functions attached to Siegel modular forms, Ann. Sci. École Norm. Sup. (4) 14 (1981), no. 1, 77-120. MR 618732

[Has95] Ki-ichiro Hashimoto, Explicit form of quaternion modular embeddings, Osaka J. Math. 32 (1995), no. 3, 533-546. MR 1367889

[HB15] Ernest Hunter Brooks, Shimura curves and special values of p-adic L-functions, Int. Math. Res. Not. IMRN (2015), no. 12, 4177-4241. MR 3356751

[Hid93] Haruzo Hida, Elementary theory of L-functions and Eisenstein series, London Mathematical Society Student Texts, vol. 26, Cambridge University Press, Cambridge, 1993. MR 1216135

[ILL76] Luc Illusie, Cohomologie cristalline (d’après P. Berthelot), 53-60. Lecture Notes in Math., Vol. 514. MR 0444668

[IS03] Adrian Iovita and Michael Spieß, Derivatives of p-adic L-functions, Heegner cycles and monodromy modules attached to modular forms, Invent. Math. 154 (2003), no. 2, 333-384. MR 2013784

[JL85] Bruce W. Jordan and Ron A. Livné, Local Diophantine properties of Shimura curves, Math. Ann. 270 (1985), no. 2, 235-248. MR 771981

[Kat68] Nicholas M. Katz, On the differential equations satisfied by period matrices, Inst. Hautes Études Sci. Publ. Math. (1968), no. 35, 223-258. MR 0242841

[Kat78] __________, p-adic L-functions for CM fields, Invent. Math. 49 (1978), no. 3, 199-297. MR 513095
[KO68] Nicholas M. Katz and Tadao Oda, *On the differentiation of de Rham cohomology classes with respect to parameters*, J. Math. Kyoto Univ. **8** (1968), 199–213. MR 0237510

[Kri18] Daniel Kritz, *A new p-adic Maass-Shimura operator and supersingular Rankin-Selberg p-adic L-functions*, preprint available https://arxiv.org/pdf/1805.03605.pdf (2018).

[LP19] Matteo Longo and Maria Rosaria Pati, *Generalized heegner cycles on mumford curves*, preprint (2019).

[Mas12] Marc Masdeu, *CM cycles on Shimura curves, and p-adic L-functions*, Compos. Math. **148** (2012), no. 4, 1003–1032. MR 2956034

[Mes72] William Messing, *The crystals associated to Barsotti-Tate groups: with applications to abelian schemes*, Lecture Notes in Mathematics, Vol. 264, Springer-Verlag, Berlin-New York, 1972. MR 0347836

[MM74] B. Mazur and William Messing, *Universal extensions and one dimensional crystalline cohomology*, Lecture Notes in Mathematics, Vol. 370, Springer-Verlag, Berlin-New York, 1974. MR 0374150

[Mor11] Andrea Mori, *Power series expansions of modular forms and their interpolation properties*, Int. J. Number Theory **7** (2011), no. 2, 529–577. MR 2782668

[Oda69] Tadao Oda, *The first de Rham cohomology group and Dieudonné modules*, Ann. Sci. École Norm. Sup. (4) **2** (1969), 63–135. MR 0241435

[Ogu84] Arthur Ogus, *F-isocrystals and de Rham cohomology. II. Convergent isocrystals*, Duke Math. J. **51** (1984), no. 4, 765–850. MR 771383

[Ser56] Jean-Pierre Serre, *Géométrie algébrique et géométrie analytique*, Ann. Inst. Fourier, Grenoble **6** (1955–1956), 1–42. MR 0082175

[Shi75] Goro Shimura, *On some arithmetic properties of modular forms of one and several variables*, Ann. of Math. (2) **102** (1975), no. 3, 491–515. MR 0491519

[Tei89] Jeremy Teitelbaum, *On Drinfel’d’s universal formal group over the p-adic upper half plane*, Math. Ann. **284** (1989), no. 4, 647–674. MR 1006378

[Tsu98] Takeshi Tsuji, *p-adic Hodge theory in the semi-stable reduction case*, Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998), no. Extra Vol. II, 1998, pp. 207–216. MR 1648071

[Tsu99] ____, *p-adic étale cohomology and crystalline cohomology in the semi-stable reduction case*, Invent. Math. **137** (1999), no. 2, 233–411. MR 1705837

[Zin84] Thomas Zink, *Cartiertheorie kommutativer formaler Gruppen*, Teubner-Texte zur Mathematik [Teubner Texts in Mathematics], vol. 68, BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1984, With English, French and Russian summaries. MR 767090

Dipartimento di Matematica, Università di Padova, Via Trieste 63, 35121 Padova, Italy

Email address: mlongo@math.unipd.it