Insight into DNA protection ability of medicinal herbs and potential mechanisms in hydrogen peroxide damages model

Zahra Sabahi1, Fatemeh Soltani2, Mahmoodreza Moein1,∗

1Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
2Biotechnology Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
3Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran

ARTICLE INFO

Article history:
Received 19 November 2017
Revision 5 January 2018
Accepted 30 January 2018
Available online 16 February 2018

Keywords:
Herbal medicine
DNA damage
Comet assay
Hydrogen peroxide
Single cell gel electrophoresis

ABSTRACT

DNA damage is one of the most important consequences of oxidative stress in the cells. If DNA repair is unable to modify these inducible DNA damages, genomic instability may lead to mutation, cancer, aging and many other diseases. Single cell gel electrophoresis or comet assay is a common and versatile method to quantify these types of DNA damages. DNA damages induced by hydrogen peroxide (H2O2) are one of the proper models for measurement of protective ability of different compounds. So the main aim of this review is to provide an overview about protection ability of medicinal plants and their potential mechanism against H2O2 induced DNA damages. In this review, relevant researches on the effect of medicinal plants on DNA damages induced by H2O2 and possible molecular mechanisms are discussed. It seems that, medicinal plants are considered as therapeutic key factors to protect DNA from consequences caused by oxidative stress. Sufficient in vitro evidences introduce them as DNA protective agents through different mechanisms including antioxidant activity and some other cellular mechanisms. Moreover, in order to correlate the antigenotoxicity effects with their potential antioxidant property, most of medicinal plants were evaluated in term of antioxidant activity using standard methods. This review highlights the preventive effects of herbal medicine against oxidative DNA damages as well as provides rational possibility to engage them in animal studies and future clinical investigations.

1. Introduction

Throughout the lifespan of the cells, they expose to reactive oxygen species (ROS) generated by both endogenous metabolisms and exogenous resources. The overproduction of ROS which is defined as oxidative stress has serious pathological impacts on important biomacromolecules such as DNA and proteins[1]. Although the cells adopt compensatory mechanisms to overcome the deleterious effects of oxidative stress, but in some circumstances, DNA damages cannot be prevented and eventually correlate with etiology, resulting in different diseases such as cancer[2–4].

DNA damages can be measured by various methods such as high-performance liquid chromatography, gas chromatography, mass spectrometry, immunoassays and comet assay (single cell gel electrophoresis)[5]. Among these methods, comet assay is most popular for DNA damage detection. It is a simple and useful
method to evaluate the DNA damage and repair as well as DNA-protective effects of different compounds[6].

According to the previous researches, two-thirds of the world’s plant species have therapeutic value and many plants can protect cells against oxidative stress[7]. Although, significant role of bioactive natural products was clear, their application in modern drug discovery has been considerable since the 19th century. About 50% of the available drugs, directly or indirectly, are originated from natural products[8]. Additionally, natural products have been suggested as adjunct therapy for free radicals associated diseases, because of successful preclinical investigations which confirmed the antioxidant and cellular protective effects of natural compounds[9].

This review aimed to document the value of herbal medicines as protective agents against hydrogen peroxide (H$_2$O$_2$) induced DNA damages which were investigated by comet assay.

2. ROS

ROS are reactive chemical molecules containing oxygen and are products of different cellular pathways[10]. Endogenously, they are natural byproducts of oxidative metabolism and mitochondrial aerobic respiration. Approximately 5% of oxygen is converted to endogenous ROS[11-15]. Bacterial phagocytosis, virus infected cells and degradation of fatty acids by peroxisome are other cellular sources of ROS[13]. In addition, they can be produced through the activity of several cellular enzymes including nicotinamide adenine dinucleotide phosphate-oxidases, xanthine oxidase, and uncoupled endothelial nitric oxide synthase[15]. However, various stress such as ionizing and ultraviolet radiation[11,12,16] as well as environmental and some of therapeutic agents can dramatically increase the level of ROS[11]. Although, the important role of ROS in cell signaling and homeostasis is well documented but they are considered as potential cause of several biomacromolecules (lipids, proteins and DNA) damage[11,17,18]. Accordingly, in normal situation the cells adopt various enzymatic and non-enzymatic protection mechanisms in order to protect themselves against such harmful effects. In this concept, the excessive amount of ROS is defined as oxidative stress which is the result of an imbalance between the production and the scavenging of free radicals[4,19,20].

Oxidative stress has contributed to etiology of ageing and several diseases such as cancer, atherosclerosis, rheumatoid arthritis, Alzheimer and Parkinson[3,16,18,21-24]. In spite of different issues related to ROS overproduction, one may assume that complete ROS elimination is useful, however this strategy is not recommended due to their critical role in different cellular pathways such as activation of guanylate cyclase and cGMP formation, interleukin-2 and transcription nuclear factor κB[15] and induction of apoptosis[25]. Another strategy that can be adopted is using antioxidants, either natural or synthetic ones, to boost the defense system against oxidative stress[26-28].

Most ROS include superoxide, hydroxyl radical, H$_2$O$_2$, nitric oxide, and hydroxyl ion. The most important ROS among these molecules is H$_2$O$_2$, regarding to the mitogenic effect, cell cycle regulation and DNA damage. Based on this, in this review we only focus on chemistry and biological effects of H$_2$O$_2$ and hydroxyl radical.

Mitochondria synthesize adenosine triphosphate through electron transport chain and it is related to reduction-oxidation (redox) reactions. This chain is made up of a series of compounds that transfer electrons from electron donors to electron acceptors. Molecular oxygen is the last electron acceptor in this transport chain[19]. Throughout these (and other) electron transfer reactions, high reactive metabolites of oxygen, namely superoxide anion (O$_2^-$), H$_2$O$_2$, and hydroxyl radical (OH$^-$) are produced[19,29,30]. Peroxosomes are the other natural sources of H$_2$O$_2$ in cytosol[31].

These species have single and unpaired electron, which makes them highly chemically reactive and capable to donate another electron[32,33]. Half-life of ROS is affected by environmental factors such as pH and other radical species[32]. Among oxygen derivatives, H$_2$O$_2$ is a non-radical compound but highly reactive, and is produced in high concentration in the living cells[32].

H$_2$O$_2$ is product of O$_2^-$ dismutation and other reactions mediated by different enzymes including monoamine oxidase, xanthine oxidase, urate oxidase and D-amino acid oxidase. It is also detectable in expired breath, human urine, blood and some other body fluids. In general, H$_2$O$_2$ is cytotoxic in different cell types at concentration equal or higher than 50 μM; however this is affected by various factors such as cell type, cell iron content, length of exposure, H$_2$O$_2$ concentration and the media of cell culture. Side effects of H$_2$O$_2$ are reduced by the activity of catalases, glutathione peroxidases and thioredoxin-linked systems[34]. H$_2$O$_2$ participates in oxidation reaction through a non-radical pathway[35]. Furthermore, the interaction of the superoxide (O$_2^-$) radical and H$_2$O$_2$ results in the formation of highly reactive hydroxyl radicals[30,36], which can be a source of more harmful species, such as hydroxyl radicals (OH) or hypochlorous acid[32]. Peroxidases and catalases can scavenge H$_2$O$_2$ in most organisms[30,37].

It is accepted that decomposition of H$_2$O$_2$ depends on the presence of transition metal ions (especially Fe$^{2+}$) in Fenton reaction[35,36]. In this non-enzymatic reaction, Fe$^{2+}$ reacts with H$_2$O$_2$ and produces OH$^-$, and Fe$^{3+}$, then this ferric ion participates in Haber-Weiss reaction to form Fe$^{2+}$[38].

Hydroxyl radical is a small, highly portable, water-soluble and extremely reactive radical[38] which is able to react as soon as formation[39]. Hydroxyl radicals are produced under cell stress conditions such as inflammations, embryo teratogenesis, and pathogen-defense reactions[40].

The rate of hydroxyl radical formation is about 50 hydroxyl radical per second, so that means each cell may produce 4 million hydroxyl radicals every day, which can be deactivated or may attack different biomacromolecules[37]. Hydroxyl radicals are able to carry out three different types of reactions including hydrogen abstraction, addition, or electron transfer, leading to produce new radicals and propagating some chain reactions.

Its prefer to react with electron density molecule site is due to electrophilic nature of this radical[41]. This radical and hydroperoxyl are the most dominant ROS initiator in lipid peroxidation because of adequate energy to remove hydrogen atoms from unsaturated fatty acids. This attack can generate free radicals from polyunsaturated fatty acids[38]. Lipid peroxidation not only leads to loss of membrane property but also the resulting products can react with proteins, enzymes, and nucleic acids; which are associated with etiology of
different diseases[42]. Nucleic acids, DNA and/or RNA, are the other targets of OH. Hydroxyl radical preferentially attacks to guanine base to form a C-8 OH-adduct, as discussed in the next section.

Some of DNA damages are results of reaction between DNA and lipid peroxidation products such as malondialdehyde (MDA), 4-hydroxynonenal, acrolein and isoprostanotes. It seems that MDA is the most mutagenic product of lipid peroxidation[16,43]. 4-hydroxynonenal and MDA are powerful electrophile agents which are able to react with proteins and DNA and form protein carbonyls and etheno DNA adducts[16].

3. DNA damage measurement

During past decades, different methods and techniques have been engaged to assess DNA damage. These are comprised of comet assay[44], mass spectrometry in combination with gas chromatography[44–48] or liquid chromatography[44,46,48,49] immunoochemical techniques, post-labeling assays, and enzyme linked immunosorbent assay[48]. The principal way among these methods is screening of analysis and single product of DNA damages. For instance, in the HPLC-ECD technique the 2′-deoxyribonucleoside form of 8-hydroxyguanine (8-OH-Gua, also called 8-oxoGua) is detected. Several previous reviews have documented the advantages and limitations of these methods[44–46,48,50]. According to the aim of our paper, we focus on comet assay as a valuable method to detect DNA damages.

Over a period of past decade, single cell gel electrophoresis or comet assay[51] has become one of the standard, simple and reliable methods for examining the DNA damages and repair. It has been employed in a variety of genetic toxicology area including human biomonitoring, ecotoxicology, and fundamental genotoxicity studies[52–54]. In addition, it can be considered as a powerful tool for analyzing the effects of different nutrients, antioxidants, supplements and etc. on DNA damage and also pathologies such as cancer related to DNA damage[55–58].

Technically, in this assay the isolated cells are suspended in agarose and layered on a microscope slide. The embedded cells are then lysed by exposure to a high salt solution containing detergent which destroys the cell membrane and other components except the supercoiled DNA nucleoid. The prepared slides containing the embedded cells, so called “cell sandwich”, are submitted to electrophoresis which allows migration of DNA fragments (if there is any DNA strand breaks) toward the anode. In electric field, the velocity of DNA fragments varies based on their sizes. As there are DNA fragments with different sizes a typical comet shape having a head and a tail will be formed. In general, the amount of DNA damage is proportional to the percent of DNA in tail. The higher intensity of DNA in tail, the higher DNA break has occurred. Several comprehensive reviews are available in respect to come assay methodology[59]. Determining the specific type of DNA damage is likely by using protocol variants. The pH at which the immobilized nucleoids are electrophoresed can partly determine the type of strand breaks, namely single or double strand breaks. It was stated that by using alkaline (pH>13) version of comet assay, both single and double strand breaks are detected, and on the other hand in neutral conditions only double strand breaks can be detected[60]. However, this belief is not completely true because even at neutral comet assay, single strand breaks will be present in the tail. Alkaline labile sites, apurinic and apyrimidinic (AP) sites are also appeared as strand breaks in denaturation condition at pH>13. These sites are formed during base repair process and also in response to some chemical alterations. Accordingly, at neutral pH, AP sites cannot be revealed as a break. Beside these types of DNA damage, oxidized bases also occur in the cells after exposure to oxidative stress; however they cannot be detected by using common comet assay procedure. These forms of damage can be readily converted to strand breaks by incorporating lesion-specific enzymes such as formamidopyrimidine DNA glycosylase and endonuclease III after the cells are lyzed[58,61]. Therefore, in order to evaluate the mechanism and also the sort of DNA damage the procedure has to be adjusted. The common alkaline comet assay can represent basal DNA damage and strand breaks. It seems that the potential of antioxidants, either natural or chemical to prevent oxidized base formation, cannot be assessed unless specific enzymes such as EndoII are included in the designed experiment. Otherwise, the results might be misinterpreted because the tail of a comet would be a mixture of AP sites, double and single strand breaks not exactly the breaks resulting from oxidized bases.

Regarding to the cells that researchers widely used, it should be noted that it depends on the goal of a study. For instances, if someone is looking for an antioxidant capable to protect normal cells against genotoxicity lymphocytes, normal cell lines such as fibroblasts are appropriate options[56,57,62–66]. In addition, some other cells such as PC12 or HepG2 can be utilized as neuronal or hepatic models respectively[67–69].

Although the comet assay is a simple and valuable technique, often there is large variability in the published results. This can be related to the presence of variations in different steps (cell isolation, treatment, lysis, electrophoresis), materials and also environmental conditions. In general, it seems that by standardization of different protocols these variations might be minimized. Furthermore, there are several parameters such as % DNA in tail, tail length and tail moment that can be used to report the final results of a comet assay. The lack of a unique appropriate parameter is another limitation of comet assay because it is almost unlikely to compare the results of different studies reporting various parameters. According to the literature, % DNA in tail, tail moment and also tail length were the most frequent parameters that were preferred for interpreting in a vast majority of toxicology studies.

4. Medicinal plants as protective agents

Due to the great importance of DNA damages in genome integrity, researchers have made great efforts to prevent or diminish DNA damage in particular oxidative damage. In this sense, numerous strategies have been engaged[70].

To prevent or delay ROS-driven oxidative damage the cells utilize different enzymatic and non-enzymatic antioxidant systems. Because of narrow endogenous antioxidant capacity, the cells have to protect themselves by exogenous antioxidants especially those from natural herbs[41,71]. Moreover, the side effects of synthetic
antioxidant, namely toxic and/or mutagenic effects, highlight the importance of natural antioxidant[26,30]. Medicinal plants are one of the most important protective agents in this issue, as they possess various natural substances having different pharmacological effects, and used as long ago as 3000 BC[72]. On the other hand, natural compatibility and less side effects of herbal medicine are reasons for consideration in health care[30,73]. Certainly, these therapeutic effects are related to the presence of different determined compounds[72,74].

One of the strategies that can be adopted to protect the cells against stress oxidative and nearly have no deleterious effects on cell components such as DNA is using natural-based antioxidants. With the aim to find efficient antigenotoxic agents, several studies have been conducted to assess the protective effects of different plant species and their secondary metabolites against oxidative DNA damage. H2O2, the most common genotoxic agent, was used as the oxidative damaging agent; however other genotoxic compounds such as methyl ethanesulfonate have been used in a few reports (in the current review we excluded the latter studies).

In order to find a relation between the type of plant or phytochemicals and their potential protective effects, herein we have focused on the most relevant studies that reported the antigenotoxic activity of various plants and/or metabolites against H2O2 induced DNA damages. Based on the emerging interest of using comet assay as a simple and reliable method to evaluate antigenotoxic/genotoxic effects, we considered only the reports that applied this method. The comet assay can be used in two versions, neutral and alkaline. In both protocols, the breakage in the DNA strands can be detected. However, in order to determine whether or not oxidative damage occurs, an extra step has to be carried out. It is likely to evaluate oxidative damage by adding specific enzymes, capable of converting oxidized base to a break. Accordingly, it is helpful to include these enzymes in studies that aimed to analyze the effects on anti-oxidants on H2O2-induced DNA damages.

Our literature review showed that about 80 different species belonging to 38 families were used as the subject of studies in which their protective effects against H2O2 induced DNA damage were evaluated (complete data were not shown). Interestingly, the most of plants possessing protective effects belong to Lamianae family (22%), and the two other families namely, Asteraceae and Apiaceae are in the second and third ranking (about 5%), respectively (Figure 1). The details of plants belong to these three families are explained in Table 1. Other plants which are introduced as protective in H2O2 models belong to families comprise Plantaginaceae (Plantago asiatica, Bacopa monniera)[75,76], Rosaceae (Plantago asiatica, Bacopa monniera)[77-79], Solanaceae (Lycium chinense, Withania somnifera)[80,81], Anacardiaceae (Mangifera indica, Rhus coriaria L.)[82,83], Apocynaceae (Hemidesmus indicus, Gymnema montanum)[76,84], Brassicaceae (Armoracia rusticana, Moringa arvensis)[85,86], Combretaceae (Terminalia arjuna, Terminalia bellerica Roxb.)[87], Fabaceae (Geranum silvica, Lupinus lutes L.)[88,89], Leguminosae (Acacia salicina, Glycyrhiza glabra)[90,91] and so on.

In case of the part of plant used as protective agents is very imperative factor. Based on our bibliography, the most common parts of plants used in such studies were the leaves (28%), roots (15%) and aerial parts (12 %) respectively (Figure 2).

![Figure 1. Frequency of use of the most plant families in protection assay against oxidative DNA damage induced by H2O2.](image1)

![Figure 2. Frequency of plant parts used in protection against oxidative DNA damages induced by H2O2.](image2)

Apparently, in the most studies, plant extracts were used to determine protection activity, however plant extracts may not be proper sources for biological assay. It seems that several factors during extraction process might result in variation. For examples, length of the extraction time, pH, solvent, temperature, the size of plant tissue and the solvent-to-sample ratio may affect the extraction efficiency[58]. Furthermore, the seasonal and geographical factors may be considered as other reasons of variations[59]. Accordingly, reproducibility of biological activities of herbal extracts can be influenced by both biochemical differences and variability of extraction methods.

Besides, inconsistent reports about activity and efficacy of extracts might be related to different versatile compounds which may have synergistic or antagonistic activities. In addition, the observed results might be because of some unknown substances[60,61].
Family	Scientific name	Antioxidant assay	Part(s) used	Isolated compound	Cell line	Comet assay type	References
Lamiaceae	Mentha arvensis var.	Yes[92]	Whole plant/Acid hydrolysates	Morin	Human lymphocytes	Alkaline	[92]
	piperascens	No	Leaves/ Ethanolic Extract	NI	Human lymphocytes	Alkaline	[93]
	Melissa officinalis	No	Extract	Morin	Human lymphocytes	Alkaline	[94]
	Mesona procumbens Hemsal	Yes[94]	Whole plant/Aqueous extracts	NI	Human lymphocytes	Alkaline	[94]
	Origanum vulgare	Yes[95]	Extract	NI	Caco-2 cells	Alkaline/ endonuclease III	[95]
	Origanum Heracleoticum	No	Flower / Ethanol extraction	NI	Human lymphocytes	Alkaline/ endonuclease III	[96]
	Orthosiphon staminus	No	Leaves/ Methanol extract	NI	SH-SY5Y human neuroblastoma cell	Alkaline	[97]
	Rosmarinus officinalis Linn.	Yes[98]	Leaves/ Ethanol extract	NI	Caco-2 cells	Alkaline	[98]
Asteraceae	Salvia aurea L.	Yes[100]	Aerial parts/Essential oil	NI	Human melanoma cells	Alkaline	[99]
	Salvia judaica Boiss.	No	Aerial parts/Essential oil	NI	Human melanoma cells	Alkaline	[99]
	Salvia viscosa	Yes[101]	Aerial parts/Essential oil	NI	Human melanoma cells	Alkaline	[99]
	Salvia officinalis	Yes[102]	Extract	NI	Caco-2 cells	Alkaline	[95]
	Salvia officinalis	Yes[102]	Leaves/ Ethanol extract	NI	HepG2 cells	Alkaline	[102]
	Teucrium ramosissimum	Yes[103]	Leaf methanol extract and fractions	NI	Human lymphocytes	Alkaline/ endonuclease III	[96]
	Thymus piperella L.	No	Aerial parts/ Ethanol extraction	NI	Human lymphocytes	Alkaline/ endonuclease III	[96]
Asteraceae	Thymus vulgaris	Yes[102]	Leaves/Ethanol extract	NI	HepG2 cells	Alkaline	[102]
	Bidens alba L. var. minor	Yes[92]	Whole plant/Acid hydrolysates methanolic extract	NI	Human lymphocytes	Alkaline	[92]
	Crepis vesicaria L.	No	Leaves/Ethanol extract	NI	Human lymphocytes	Alkaline/ endonuclease III	[92]
	Echinacea purpurea	Yes[104]	Extract	NI	Caco-2 cells	Alkaline	[95]
Asteraceae	Lactuca sativa L.	Yes[105]	Leaves / Water fraction from the hydroalcoholic extract	NI	Mouse neuroblastoma cell line	Alkaline	[105]
	Scolymus hispanicus L	No	Raquis/ Ethanol extraction	NI	Human lymphocytes	Alkaline/ endonuclease III	[96]
	Rhaponticum carthamoides	Yes[106]	Root/ Aqueous methanol extract	NI	CHO Cells	Alkaline/ pretreatment and repair study	[106]
Apiaceae	Centella asiatica	Yes[107]	-Leaves /Methanol extract	- Castasterone	Human lymphocytes	Alkaline	[108]
	Daucus carota ssp. sativus var. atrorubens Al	Yes[109]	Whole plant/Acid methanol extract[90]	NI	Human cells of colonic mucosa	Alkaline	[109]
	Ferula persica	No	Root	Persicasulfide A	Rat lymphocytes	Alkaline	[110]
	Ferula-sowitasiana	No	Root	-Auraptene[111]	Human lymphocytes	Alkaline	[111]
	Scandix australis	No	Aerial parts/Ethanol extraction	NI	Human lymphocytes	Alkaline/ endonuclease III	[95]

NI: not isolated.
4.1. Bioactive compounds

According to our literature review (Table 1) about 90% of plants were examined for their potential antioxidant properties using different methods. It is well-documented that antioxidants can prevent the pro-oxidation process, or biological oxidative damage[12]. It seems that DNA protection against oxidative stress could be related to the antioxidant property of the aforementioned plants[112].

This consistency may be due to the presence of phenolic compounds as strong antioxidants, which are introduced in previous studies. It is assumed that there is a strong connection between the content of phenolic compounds and antioxidant activities[113-117].

These compounds are secondary metabolites and products of pentose phosphate, shikimate, and phenyl propanoid pathways in plants. They have a significant role in physiological and morphological characteristics[113]. In addition, they are involved in a variety of functions including reproduction, growth, defense and also plant color.

On the other hand, these phytochemicals possess chemopreventive activities[118].

The base of their structures is an aromatic ring having one or more hydroxyl group. Their structure varies from simple phenolic molecules to polymer compounds. In some cases, natural phenolic compounds conjugate with polysaccharides, or conjugate with one or more phenolic groups or functional groups such as esters and methyl esters. They can be classified as phenolic acids, flavonoids, tannins and the less common stilbenes and lignans[119,120]. The antioxidant activity of phenolic compounds is associated with several mechanisms: scavenging radical species, donating hydrogen atoms or electron, enzyme inhibition, chelating metal cations and upregulating or boosting antioxidant.

Their structure is a key cause of their antioxidant properties[113,114]. Two chemical parts of phenolic compounds play an important role in free radical scavenging: phenolic hydroxyl groups and dihydroxy groups. Phenolic hydroxyl groups are able to donate a hydrogen atom or an electron to radical species, hydrocarbon backbone which delocalizes an unpaired electron[114], while dihydroxy groups can conjugate to transition metals such as Cu²⁺ or Fe³⁺ to inhibit free radical formation by these metals in Fenton reaction. As mentioned previously, these metal ions interact with hydrogen peroxide in Fenton reaction to produce hydroxyl radicals[114]. Stoichiometry and kinetic of these reactions vary based on the different structures, for instances, hydroxyl groups, glycosylation and amount of steric hindrance of proton H abstraction[121].

4.2. Flavonoids

Flavonoids are of Latin originate "flaurus" which means yellow. They are secondary metabolites contributing different colors (red, blue and purple) to the different parts of plants. They are a large group of phenolic compounds in which three rings (A, B and C) form their basic structure (Figure 3). It seems that the hydroxyl groups attached to these rings are responsible for many biological activities[54,118]. Results of many in vitro and in vivo studies confirm their possible health benefits, mainly due to potential antioxidant and free radical scavenging activities[122]. More than 5,000 flavonoids and 13 subclasses are defined so far. Flavonoid structure possesses phenyl benzopyrone containing A and B aromatic rings, attached to 3 carbons of C ring which is usually pyran ring. Based on saturating level and opening of the central pyran ring, flavonoids are subdivided into several subgroups.

Occasionally, it was shown that glycosylation of flavonoids diminishes the free radical scavenging activities, however the water solubility is increased. 7-hydroxyl position is common position for sugar attachment in flavones and isoflavones. However, 3- and 7-hydroxyl positions are targets of glycosylation in flavonols. In addition, 3- and 5-hydroxy in anthocyanidins are attached to the sugars more commonly[41,118,119].

The ability of flavonoids to reduce harmful effects of free radicals might be through different mechanisms. One direct approach is by free radical scavenging activity. Free radicals oxidized flavonoids generate more stable and less-reactive flavonoid radicals. On the other hand, hydroxyl groups which are highly reactive react with free radicals and produce stable radicals[114,123]. This facts can be defined by thermodynamic rules which imply that low redox potential of hydroxyl in flavonoids would reduce free radicals such as superoxide, peroxy, alkoxyl, and hydroxyl radicals through hydrogen donation[123]. Some flavonoids are superoxide scavenger, while the others are recognized as peroxynitrite scavengers.

The other approach that flavonoids apply is via inhibition of xanthine oxidase and protein kinase C. Xanthine oxidase has an important role in oxidative injury particularly after ischemia-reperfusion. This enzyme participates in metabolism of xanthine to uric acid and superoxide as well as free radicals[123]. Oxidation of xanthin leads to produce H₂O₂ and superoxide anion, which are the causes of oxidative damages[124]. The other enzymes that are inhibited by flavonoids include cyclooxygenase, lipoxygenase, microsomal succinoxidase and nicotinamide adenine dinucleotide oxidase[123,125]. Further, more antioxidant activity of some phenolic compounds is related to dihydroxy groups in their structure. They are able to be conjugated with transition metals so that free radical formation is inhibited. Through Fenton reaction, hydrogen peroxide interacts with Cu²⁺ or Fe³⁺ to form OH, which is an initiator of free radical chain reactions such as lipid peroxidation[114,123]. The metal chelating activity of flavonoids is related to hydroxy-keto group (a 3-OH or 5-OH plus a 4-C = O) and large number of catechol/gallol groups in their structures[114].

The results of several studies implied the strong relationship between flavonoid consumption and antioxidant capacity of plasma. This increased capacity may be due to increased level of uric acid, although the exact mechanism is unclear[122,126]. Another mechanism[112,113].
of phenolic antioxidant is through cellular modulation. They improve the phase I detoxification activity of glutathion s-transferase and quinone reductase which possess a critical role in detoxification of chemical toxins[127].

Also, phenolics modulate various molecular targets in cellular signaling machinery systems. Mitogen-activated protein kinase, protein kinase C, and serine/threonine protein kinase Akt/PKB can be activated by phenolics. Pro-inflammatory enzymes (COX-2 and iNOS) genes can be down regulated and tyrosine kinases, NF-

\[\kappa \] B, c-JUN can be inhibited by phenolic compounds[128]. Phenolics are also able to reduce Bax and Bad protein production, which results in opening mitochondrial transition pore complex to inhibit oxidative stress[128,129]. So, it seems that phenolics can mainly inhibit or induce key factors of cell signaling cascades rather than being just radical scavengers[73].

5. Conclusion

ROS are products of endogenous and exogenous induction. In normal conditions, ROS play a role of signaling messenger in different cellular pathways but in higher concentrations will lead to reversible and nonreversible cellular damages. Oxidative stress resulting from increased ROS production has trace in etiology of different disease such as cancer.

Among various ROS, H\textsubscript{2}O\textsubscript{2} is more permeable and is known as an intercellular signaling molecule which can be converted to the other ROS. Reaction between O\textsubscript{2}- and H\textsubscript{2}O\textsubscript{2}, which are mediated by transition metal ions, generates OH which is able to attack DNA and trigger DNA damage. In many cases, unrepaird damages lead to genetic instability, which is responsible for many disease processes. This review has summarized some herbal medicines participate in DNA protection against H\textsubscript{2}O\textsubscript{2}-induced DNA damage detecting by comet assay.

Also, in this article, some of the natural compounds were described which have critical roles as radical scavengers and potent protective antioxidants. Distinct compounds or/and their combination were able to show these protective effects. Since several of these studies were conducted on plant extracts, it seems that this field of research needs more investigations to discover the defined substances and their distinct cellular mechanisms responsible for such antigenotoxicity effects. Certainly, in \textit{in vivo} studies should be carried out to confirm these effects and to introduce them in clinic as proper candidates to diminish DNA damages side effects. Furthermore, effectiveness, safety and possible adverse effects of herbal medicines should be considered for further developments. In addition, as several investigations in regard to the antigenotoxic effects were carried out as primary studies, further \textit{in vivo} and mechanistic studies will be required to clarify the real DNA protective activity.

Conflict of interest statement

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Acknowledgments

The study was done in the School of Pharmacy, Shiraz University of Medical Sciences.

References

[1] Piedrafita G, Keller MA, Ralser M. The impact of non-enzymatic reactions and enzyme promiscuity on cellular metabolism during (oxidative) stress conditions. \textit{Biomolecules} 2015; 5(3): 2101-2122.

[2] Kumari S, Rastogi RP, Singh KL, Singh SP, Sinha RP. DNA damage: Detection strategies. \textit{Excli J} 2008; 7: 44-62.

[3] Tafani M, Sansone L, Limana F, Arcangelì T, Santis ED, Polese M, et al. The interplay of reactive oxygen species, hypoxia, inflammation, and sirtuins in cancer initiation and progression. \textit{Oxid Med Cell Longev} 2016; 2016: 3907147.

[4] Hecht F, Pessoa CF, Gentile LB, Rosenthal D, Carvalho DP, Fortunato RS. The role of oxidative stress on breast cancer development and therapy. \textit{Tumor Biol} 2016; 37(4): 4281-4291.

[5] Cadet J, Wagner JR. DNA base damage by reactive oxygen species, oxidizing agents, and UV radiation. \textit{Cold Spring Harb Perspect Biol} 2013; 5(2): 1-18.

[6] Azqueta A, Collins AR. The essential comet assay: A comprehensive guide to measuring DNA damage and repair. \textit{Arch Toxicol} 2013; 87(6): 949-968.

[7] Krishnaiah D, Sarbatly R, Nithyanandam R. A review of the antioxidant potential of medicinal plant species. \textit{Food Bioprod Process} 2011; 89(3): 217-233.

[8] Veereesham C. Natural products derived from plants as a source of drugs. \textit{J Aca Pharm Tech Res} 2012; 3(4): 200-201.

[9] Mancuso C. Key factors which concur to the correct therapeutic evaluation of herbal products in free radical-induced diseases. \textit{Front Pharmacol} 2015; 6(86): 1-8.

[10] Moller P, Loft S. Oxidative DNA damage in human white blood cells in dietary antioxidant intervention studies. \textit{Am J Clin Nutr} 2002; 76(2): 303-310.

[11] Cooke MS, Evans MD, Dizdaroglu M, Lane J. Oxidative DNA damage: Mechanisms, mutation, and disease. \textit{FASEB J} 2003; 17(10): 1195-1214.

[12] Klaunig JE, Kamendulis LM, Hocevar BA. Oxidative stress and oxidative damage in carcinogenesis. \textit{Toxicol Pathol} 2010; 38(1): 96-109.

[13] Blair IA. DNA adducts with lipid peroxidation products. \textit{J Biol Chem} 2008; 283(23): 15545-15549.

[14] Filomeni G, De Zio D, Cecconi F. Oxidative stress and autophagy: The clash between damage and metabolic needs. \textit{Cell Death Differ} 2015; 22(3): 377-388.

[15] Dröge W. Free radicals in the physiological control of cell function. \textit{Physiol Rev} 2002; 82(1): 47-95.

[16] Thanan R, Oikawa S, Hiraku Y, Ohnishi S, Ma N, Pinlaor S, et al. Oxidative stress and its significant roles in neurodegenerative diseases and cancer. \textit{Int J Mol Sci} 2014; 16(1): 193-217.

[17] McMurray R, Patten DA, Harper M-E. Reactive oxygen species and oxidative stress in obesity–recent findings and empirical App roaches. \textit{Obes Rev} 2016; 24(11): 2301-2310.

[18] Zhu L, Chen J, Tan J, Liu X, Wang B. Flavonoids from \textit{Agrimonia pilosa} Ledeb: Free radical scavenging and DNA oxidative damage protection activities and analysis of bioactivity-structure relationship based on molecular and electronic structures. \textit{Molecules} 2017; 22(3): 195.

[19] Thannickal VJ, Fanburg BL. Reactive oxygen species in cell signaling.
Sabahi Z, Zarshenas MM, Farmani F, Faridi P, Moein S, Moein M.

Ziech D, Franco R, Georgakilas AG, Georgakila S, Malamou-Mitsi V, Moein S, Moein MR. New usage of a fluorometric method to assay Caliskan-Can E, Miser-Salihoglu E, Atalay C, Yalcintas-Arsalan U, Marnett LJ. Oxyradicals and DNA damage.

Day BJ. Antioxidant therapeutics: Pandora’s box. Free Rad Biol Med 2014; 66: 58-64.

Marnett LJ. Oxyradicals and DNA damage. Carcinogen 2000; 21(3): 361-370.

Caliskan-Can E, Miser-Salihoglu E, Atalay C, Yalcintas-Arsalan U, Simsek B, Yardim-Akaydin S. DNA damage and lipid peroxidation in several types of cancer. F treadmill 2010; 35(3): 125-132.

Ziech D, Franco R, Georgakilas AG, Georgakila S, Malamou-Mitsi V, Schonevede O, et al. The role of reactive oxygen species and oxidative stress in environmental carcinogenesis and biomarker development. Chem Biol Inter 2010; 188(2): 334-339.

Sabahi Z, Zarshenas MM, Farmani F, Faridi P, Moein S, Moein M. Essential oil composition and in vitro antioxidant activity of ethanolic extract of Thymus daenensis Celak from Iran. Glob J Pharmacol 2013; 7(2): 153-158.

Murphy MP, Holmgren A, Larsson NG, Halliwell B, Chang CJ. Antioxidant therapeutics: Pandora's box. Free Rad Biol Med 2014; 66: 58-64.

Kozarski M, Klaus A, Jakovljevic D, Todorovic N, Vunduk J, Petrov P, et al. Antioxidants of edible mushrooms. Molecules 2015; 20(10): 19489-19525.

Rac M, upka MK, Binder S, kvov ZMS, ka MRS, et al. Oxidative damage of U937 human leukemic cells caused by hydroxyl radical results in singlet oxygen formation. Plos One 2015; 10(3): 1-19.

Nimse SB, Pal D. Free radicals, natural antioxidants, and their reaction mechanisms. Rsc Adv 2015; 5(21): 27986-28006.

Circu ML, Aw TY. Reactive oxygen species, cellular redox systems, and apoptosis. Free Rad Biol Med 2010, 48(6): 749-762.

Kohen R, Nyska A. Oxidation of biological systems: Oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol 2002; 30(6): 620-650.

Filomeni G, De ZD, Cecconi F. Oxidative stress and autophagy: The clash between damage and metabolic needs. Cell Death Differ 2015; 22(3): 377-388.

Halliwell B, Clement MV, Ramalingam J, Long LH. Hydrogen peroxide. ubiquitous in cell culture and in vivo? J Appl Biochem 2000; 50: 251-257.

Lipinski B. Hydroxyl radical and its scavengers in health and disease. Oxid Med Cell Longe 2011; DOI: 10.1155/2011/809696.

Linley E, Denyer SP, McDonnell G, Simons C, Maillard JY. Use of hydrogen peroxide as a biocide: New consideration of its mechanisms of biocidal action. J Antimicrob Chemother 2012; 67: 1589-1596.

Imlay JA. Cellular defenses against superoxide and hydrogen peroxide. Annu Rev Biochem 2008; 77: 755-776.

Ayala A, Muñoz MF, Argüelles S. Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-Hydroxy-2-nonenal. Oxid Med Cell Longe 2014; 2014: 360438.

Winterbourn CC. Reconciling the chemistry and biology of reactive oxygen species. Nat Chem Biochem 2008; 4(5): 278-286.

Chen SX, Schopfer P. Hydroxyl-radical production in physiological reactions. Eur J Biochem 1999; 260(3): 726-735.

Tremli J, Śmiejkal K. Flavonoids as potent scavengers of hydroxyl radicals. Comp Rev Food Sci Food Saf 2016; 15(4): 720-738.

Niki E, Yoshida Y, Saiyo Y, Noguchi N. Lipid peroxidation: Mechanisms, inhibition, and biological effects. Biochem Biophys Res Commun 2005; 338(1): 668-676.

Luzczaj W, Szkrydlewska E. DNA damage caused by lipid peroxidation products. Cell Mol Biol Let 2003; 8(2): 391-413.

Dizdaroglu M, Coskun E, Jaruga P. Measurement of oxidatively induced DNA damage and its repair, by mass spectrometric techniques. Free Rad Res 2015; 49(5): 525-558.

Cedet J, Douki T, Ravanat JL, Wagner JR. Measurement of oxidatively generated base damage to nucleic acids in cells: Facts and artifacts. Bioanal Chem 2012; 4(2): 55-74.

Dizdaroglu M, Coskun E, Jaruga P. Measurement of oxidatively induced DNA damage and its repair, by mass spectrometric techniques. Free Rad Res 2015; 49(5): 525-558.

Cedet J, Douki T, Ravanat JL. Oxidatively generated base damage to cellular DNA. Free Rad Biol Med 2010; 49(1): 9-21.

Liu S, Wang Y. Mass spectrometry for the assessment of the occurrence and biological consequences of DNA adducts. Chem Soc Rev 2015; 44(21): 7829-7854.

Samson-Thibault F, Madugundu GS, Gao S, Cedet J, Wagner JR. Profiling cytotoxic oxidation in DNA by LC-MS/MS. Chem Res Toxicol 2012; 25: 1902-1911.

Rangel-Zutah OA, Haro C, Tormos C, Perez-Martinez P, Delgado-Lista J, Marin C, et al. Frying oils with high natural or added antioxidants content, which protect against postprandial oxidative stress, also protect against DNA oxidation damage. Eur J Nutr 2017; 56(4): 1597-1607.

Ostling O, Johanson KJ. Microelectrophoretic study of radiation-induced DNA damages in individual mammalian cells. Biochem Biophys Res Commun 1984; 123(1): 291-298.

Collins AR. The comet assay for DNA damage and repair: Principles, applications, and limitations. Mol Biotechnol 2004; 26(3): 249-261.

Alija AJ, Collins AR, Dreshaj S, Asllani F, Bajrajtari ID, Bresgen N, et al. Differences in basal DNA damage in blood cells from men and women. Biomonitoring 2016; 3(1): 1-4.

Townsend TA, Parrish MC, Engelward BP, Manjanatha MG. The development and validation of epi Comet-chip, a modified high-throughput comet assay for the assessment of DNA methylation status. Environ Mol Mutagen 2017; 58(7): 508-521.

Cemeli E, Baumgartner A, Anderson D. Antioxidants and the comet assay. Mutat Rev 2009; 681(1): 51-67.

Jamialahmadi K, Soltani F, Nabavi FM, Behravan J, Mosaffa F. Assessment of protective effects of glucosamine and N-acetyl glucosamine against DNA damage induced by hydrogen peroxide in human lymphocytes. Drug Chem Toxicol 2014; 37(4): 427-432.

Rezaei R, Behravan E, Behravan J, Soltani F, Naderi Y, Emami B, et al. Antigenotoxic activities of the natural dietary coumarins umbellifone, herniarin and 7-isopentenyloxy coumarin on human lymphocytes exposed to oxidative stress. Drug Chem Toxicol 2014; 37(2): 144-148.

Wasson GR, McKelvey-Martin VJ, Downes CW. The use of the comet assay in the study of human nutrition and cancer. Mutagenesis 2008; 23(3): 153-162.

Collins AR. The comet assay: Principles, applications, and limitations. Methods Mol Biol 2002; 203: 163-177.

Olive PL, Wlodek D, Banath JP. DNA double-strand breaks measured in individual cells subjected to gel electrophoresis. Cancer Res 1991; 51(17): 4671-4676.

Moller P, Jantzen K, Lohr M, Andersen MH, Jensen DM, Roursgaard M, et al. Searching for assay controls for the Fpg- and hOGG1-modified comet assay. Mutagenesis 2017. Doi: 10.1093/mutage/gex015.

Ehtesham-Gharaee M, Eshaghii A, Shojaee S, Asili J, Emami SA,
Behravan J, et al. Protective effects of Scutellaria linđbergii root extract against oxidative-induced cell and DNA damage in mouse fibroblast-like cells. Drug Chem Toxicol 2015; 38(3): 293-299.

[31]Noroozi S, Mosaffa F, Soltani F, Iranshahi M, Karimi G, Malekaneh M, et al. Antigenotoxic effects of the disulfide compound persicarpid sulfide (PSA) on rat lymphocytes exposed to oxidative stress. Planta Med 2009; 75(1): 32-36.

[32]Soltani F, Mosaffa F, Iranshahi M, Karimi G, Malekaneh M, Haghghi F, et al. Evaluation of antigenotoxicity effects of umbelliferon on human peripheral lymphocytes exposed to oxidative stress. Cell Biol Toxicol 2009; 25(3): 291-296.

[33]Soltani F, Mosaffa F, Iranshahi M, Karimi G, Malekaneh M, Haghghi F, et al. Auraptene from Ferula sowsitissiana protects human peripheral lymphocytes against oxidative stress. Phytother Res 2010; 24(1): 85-89.

[34]Zarei H, Rezaee R, Behravan J, et al. Protective effects of Ferula szowitsiana extracts on hydrogen peroxide-induced DNA damage and cell death in PC12 cells. Ann NY Acad Sci 2009; 1171: 576-582.

[35]Jin X, Chen Q; Tang SS, Zou JJ, Chen KP, Zhang T, et al. Investigation of quinonecote-induced genotoxicity in HepG2 cells using the comet assay, cytokinesis-block micronucleus test and RAPD analysis. Toxicol In Vitro 2009; 23(7): 1209-1214.

[36]Ramos AA, Lima CF, Pereira ML, Fernandes-Ferreira M, Pereira-Wilson C. Antigenotoxic effects of queretin, rutin and ursolic acid on HepG2 cells: Evaluation by the comet assay. Toxicol Lett 2008; 177(1): 66-73.

[37]Polo SE, Jackson SP. Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications. Genes Dev 2011; 25(5): 409-433.

[38]Kumar KH, Khanum F. Hydroalcoholic extract of Cyperus rotundus ameliorates H2O2 induced human neuronal cell damage via its antioxidant and anti-apoptotic machinery. Cell Mol Neurobiol 2013; 33(1): 5-17.

[39]Kumar V, Lemos M, Sharma M, Shiriram V. Antioxidant and DNA damage protective activities of Euphorbia nuda Lindl. Free Rad Antiox 2013; 3(2): 55-60.

[40]Sen S, Chakraborty R, Sridhar C, Reddy Y, De B. Free radicals, antioxidants, diseases and phytomedicines: Current status and future prospect. Int J Pharm Sci Res Rev Res Notes 2015; 3(1): 91-100.

[41]Moein S, Moein M, Farmani F, Sabahi Z. Different methods evaluation of antioxidant properties of Myrtus communis extract and its fractions. Trend Pharm Sci 2015; 1(3): 153-158.

[42]Pandareesh M, Anand T, Bhat PV. Cytoprotective propensity of Bacopa monniera against hydrogen peroxide induced oxidative damage in neuronal and lung epithelial cells. Cyto technol 2016; 68(1): 157-172.

[43]Ramakrishna V, Guptap KB, Setty OH, Kondapi KA. Protective effect of Ficus bengalensis L. extract against H2O2 induced DNA damage and repair in neuroblastoma cells. Free Rad Antiox 2014; 4(1): 3-7.

[44]Mustapha N, Bouhlel I, Chaabane F, Bézouich M, Ghedira K, Hennebelle T, et al. Aqueous extract of Crocina zoarzolus protects against DNA damage in human lumphoblast cell K562 and enhances antioxidant activity. Appl Biochem Biotechnol 2014; 172(4): 2266-2275.

[45]Kang JS, Kim DJ, Kim KY, Cha HJ, Kim S, Kim HS, et al. Ethanol extract of Prunusmume fruit attenuates hydrogen peroxide-induced oxidative stress and apoptosis involving Nrf2/NO-1 activation in C2C12 myoblasts. Revista Brasileira de Farmacognosia 2016; 26(2): 184-190.

[46]Liu M, Xu Y, Han X, Liang C, Yin L, Xu L, et al. Potent effects of flavonoid-rich extract from Rosa laevigata Michx fruit against hydrogen peroxide-induced damage in PC12 cells via attenuation of oxidative stress, inflammation and apoptosis. Molecules 2014; 19(8): 11816-11832.

[47]Zhang R, Kang KA, Piao MJ, Kim KC, Kim AD, Chae S, et al. Cytoprotective effect of the fruits of Lycium chinense Miller against oxidative stress-induced hepatotoxicity. J Ethnopharmacol 2010; 130(2): 299-306.

[48]Kumar N, Yadav A, Gupta R, Aggarwal N. Antigenotoxic effect of Withania somnifera (Ashwagandha) extract against DNA damage induced by hydrogen peroxide in cultured human peripheral blood lymphocytes. Int J Curr Microbiol App Sci 2016; 5(4): 713-719.

[49]Kim H, Moon JY, Kim H, Lee DS, Cho M, Choi HK, et al. Antioxidant and antiproliferative activities of mango (Mangifera indica L.) flesh and peel. Food Chem 2010; 121(2): 429-436.

[50]Chakraborty A, Ferk F, Simi T, Brantner A, Dušinská M, Kundi M, et al. DNA-protective effects of sumach (Rhus coriaria L.), a common spice: Results of human and animal studies. Mut Res 2009; 661(1): 10-17.

[51]Ramakumar K, Sankar L, Manjula C, Krishnamurthi K, Devi SS, Chakrabarti T, et al. Antigenotoxic potential of Gymnema montanum leaves on DNA damage in human peripheral blood lymphocytes and HL-60 cell line. Environ Mol Mutagenesis 2010; 51(4): 285-293.

[52]Gafrikova M, Galova E, Sevcovicova A, Imreova P, Mucaj P, Miadokova M. Extract from Armoracia rusticana and its flavonoid components protect human lymphocytes against oxidative damage induced by hydrogen peroxide. Molecules 2014; 19(3): 3160-3172.

[53]Skandrani I, Boubaker J, Bouhlel I, Limem I, Ghedira K, Chekhir-Ghedira L. Leaf and root extracts of Morelicaarense protect against DNA damage in human lymphoblast cell K562 and enhance antioxidant activity. Environment Toxicol Pharmacol 2010; 30(1): 61-67.

[54]Ramakrishna V, Gupta KP, Setty HO, Kondapi KA. Neuroprotective effect of Emblica Officinalis extract against H2O2 induced DNA damage and repair in neuroblastoma cells. J Homoeop Ayurv Med 2014; 51: 2-5.

[55]Sassi A, Bouhlel I, Mustapha N, Mokdad-Bzeouich I, Chaabane F, Ghedira K, et al. Assessment in vitro of the genotoxicity, antigenotoxicity and antioxidant of Ceratonia silixa L. extracts in murine leukaemia cells L1210 by comet assay. Regul Toxicol Pharmacol 2016; 77: 117-124.

[56]Rucinska A, Gabryelak T. Effect of genistein-8-C-glucoside from Lupinus lateus on DNA damage assessed using the comet assay in vitro. Biol In Vitro 2009; 33(2): 247-252.

[57]Bouhlel I, Valenti K, Kilani S, Skandrani I, Sghaier MB, Mariotte AM, et al. Antioxidant activity, genotoxicity and cytotoxicity of Bacopa monniera and ASE treatment. Toxicol In Vitro 2008; 22(5): 1264-1272.

[58]Kaur P, Kaur S, Kumar N, Singh B, Kumar S. Evaluation of antigenotoxic activity of isoliquiritin apioside from Glycyrrhiza glabra L. Toxicol In Vitro 2009; 23(4): 680-688.

[59]Lin KH, Yang YY, Yang CM, Huang MY, Lo HF, Liu KC, et al. Antioxidant activity of Sauschana salicina extracts (ASE) and modulation of cell gene expression by H2O2 and ASE treatment. Toxicol In Vitro 2008; 22(5): 1264-1272.

[60]Kamdem JP, Adeniran A, Boligon AA, Klimaczewski CV, Elekofehinti AO, Hassan W, et al. Antioxidant activity, genotoxicity and cytotoxicity evaluation of lemon balm (Melissa officinalis L.) ethanolic extract. Its potential role in neuroprotection. Ind Crops Prod 2013; 51: 26-34.

[61]Yen GC, Hung YL, Hsieh CL. Protective effect of extracts of Mesona procumbens Hemsl. on DNA damage in human lymphocytes exposed to hydrogen peroxide and UV irradiation. Food Chem Toxicol 2000; 38(9):
