q-deformed Virasoro-Witt n-algebra

Lu Dinga, Xiao-Yu Jiab, Ke Wub,c, Zhao-Wen Yand, Wei-Zhong Zhaob,c,e\footnote{Corresponding author: zhaowz@cnu.edu.cn}

aInstitute of Applied Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
bSchool of Mathematical Sciences, Capital Normal University, Beijing 100048, China
cBeijing Center for Mathematics and Information Interdisciplinary Sciences, Beijing 100048, China
dSchool of Mathematical Sciences, Inner Mongolia University, Hohhot 010021, China
eInstitute of Mathematics and Interdisciplinary Science, Capital Normal University, Beijing 100048, China

Abstract

The q-deformation of the null Virasoro-Witt n-algebra is investigated. We construct a nontrivial q-deformed Virasoro-Witt n-algebra which satisfies the sh-Jacobi’s identity. This q-deformed infinite-dimensional n-algebra is nothing but a sh-n-Lie algebra. For the q-deformed Virasoro-Witt 3-algebra, we find that there exists a nontrivial finite-dimensional sub-3-algebra, i.e., $su_q(1,1)$ 3-algebra.
1 Introduction

Quantum algebras or more precisely quantized universal enveloping algebras first appeared in connection with the study of the inverse scattering problem. It is one parameter q deformation of Lie algebras which preserves the structure of a Hopf algebra and reduces to standard Lie algebra in the classical limit. The Virasoro algebra is an infinite dimensional Lie algebra and plays important roles in physics. Its q-deformation has been widely studied in the literature [1]-[9].

A q-deformation of the centerless Virasoro or Virasoro-Witt (V-W) algebra was first obtained by Curtright and Zachos [1]. Its central extension was later furnished by Aizawa and Sato [2]. Chaichian and Prešnajder [3] proposed a different version of the q-deformed Virasoro algebra by carrying out a Sugawara construction on a q-analogue of an infinite dimensional Heisenberg algebra. It is well-known that there is a remarkable connection between the Virasoro algebra and the Korteweg-de Vries (KdV) equation [10, 11]. For the q-deformed Virasoro algebra, Chaichian et al. [12] showed that it generates the sympletic structure which can be used for a description of the discretization of the KdV equation.

The Nambu 3-algebra was introduced in [13, 14] as a natural generalization of a Lie algebra for higher-order algebraic operations. Recently Bagger and Lambert [15], and Gustavsson [16] (BLG) found that 3-algebras play an important role in world-volume description of multiple M2-branes. Due to BLG theory, there has been considerable interest in the 3-algebra and its application. More recently there has been the progress in constructing the infinite-dimensional 3-algebras, such as V-W [17, 18], Kac-Moody [19] and w_∞ 3-algebras [20, 21]. Moreover the relation between the infinite-dimensional 3-algebras and the integrable systems has also been paid attention [22, 23].

The structure and property of q-deformed algebra are now very well understood. But for the q-deformed 3-algebra, it has not been dealt with in such detail. Much less is known about its structure and property. Recently Curtright et al. [17], constructed a V-W algebra through the use of $su(1,1)$ enveloping algebra techniques. It is worthwhile to mention that this ternary algebra depends on a parameter z and is only a Nambu-Lie algebra when $z = \pm 2i$. Ammar et al. [24] presented a q-deformation of this 3-algebra and noted it carrying the structure of ternary Hom-Nambu-Lie algebra.

In order to achieve a better understanding of the q-deformed n-algebra, in this Letter we focus on the q-deformation of the null V-W n-algebra. Based on the well-known structure of the q-deformed V-W algebra, we construct the nontrivial q-deformed V-W n-algebra and explore its intriguing features.
2 n-Lie algebra and sh-n-Lie algebra

To avoid too many technicalities, we will give here only the definitions of n-Lie algebra [25] and sh-n-Lie algebra [26].

The notion of n-Lie algebra or Filippov n-algebra was introduced by Filippov [25]. It is a natural generalization of Lie algebra. For a linear space V, an n-Lie algebra structure is defined by a multilinear map called Nambu bracket $[,]_{\ldots[,]_{\ldots}}: V^\otimes n \to V$ satisfying the following properties:

(1). Skew-symmetry

$$[A_{\sigma(1)}, \ldots, A_{\sigma(n)}] = (-1)^{\epsilon(\sigma)}[A_1, \ldots, A_n].$$

(2). Fundamental identity (FI) or Filippov condition

$$[A_1, \ldots, A_{n-1}, [B_1, \ldots, B_n]] = \sum_{k=1}^{n} [B_1, \ldots, B_{k-1}, [A_1, \ldots, A_{n-1}, B_k], B_{k+1}, \ldots, B_n].$$

For the case of 3-algebra, the corresponding fundamental identity is

$$[A, B, [C, D, E]] = [[A, B, C], D, E] + [C, [A, B, D], E] + [C, D, [A, B, E]].$$

We have already seen that an n-Lie algebra A is a vector space A endowed with an n-ary skew-symmetric multiplication satisfying the FI condition. We now turn to the notion of sh-n-Lie algebra.

Let $[,]_{\ldots[,]_{\ldots}}$ be a n-ary skew-symmetric product on a vector space A. We say that $(A, [\ldots, \ldots])$ is a sh-n-Lie algebra if $[,]_{\ldots[,]_{\ldots}}$ satisfies the sh-Jacobi’s identity

$$\sum_{\sigma \in Sh(n, n-1)} (-1)^{\epsilon(\sigma)} [[x_{\sigma(1)}, \ldots, x_{\sigma(n)}], x_{\sigma(n+1)}, \ldots, x_{\sigma(2n-1)}] = 0,$$

for any $x_i \in A$, where $Sh(n, n-1)$ is the subset of Σ_{2n-1} defined by

$$Sh(n, n-1) = \{ \sigma \in \Sigma_{2n-1}, \sigma(1) < \cdots < \sigma(n), \sigma(n+1) < \cdots < \sigma(2n-1) \}.$$

In terms of the Lévi-Cività symbol, i.e.,

$$\epsilon_{i_1 \cdots i_p}^{j_1 \cdots j_p} = \det \begin{pmatrix} \delta_{j_1}^{i_1} & \cdots & \delta_{j_p}^{i_1} \\ \vdots & & \vdots \\ \delta_{j_1}^{i_p} & \cdots & \delta_{j_p}^{i_p} \end{pmatrix},$$

the sh-Jacobi’s identity (4) can also be expressed as

$$\epsilon_{i_1 \cdots i_{2n-1}}^{m_1 \cdots m_{2n-1}} [[x_{i_1}, \ldots, x_{i_n}], x_{i_{n+1}}, \ldots, x_{i_{2n-1}}] = 0.$$

When $n = 3$, the sh-Jacobi’s identity becomes

$$[[A, B, C], D, E] - [[A, B, D], C, E] - [[A, B, E], C, D] + [[A, C, D], B, E]$$

$$-[[A, C, E], B, D] + [[A, D, E], B, C] - [[B, C, D], A, E] + [[B, C, E], A, D]$$

$$-[[B, D, E], A, C] + [[C, D, E], A, B] = 0.$$
We have briefly introduced the n-Lie algebra and sh-n-Lie algebra. It should be noted that any n-Lie algebra is a sh-n-Lie algebra, but a sh-n-Lie algebra is a n-Lie algebra if and only if any adjoint operator is a derivation.

3 q-deformed V-W 3-algebra

3.1 q-deformed V-W algebra

As a start before investigating the q-deformed 3-algebra, let us recall the case of q-deformed algebra. The deformation of the commutator is defined by

\[[A, B]_{(p,q)} = pAB - qBA. \]

(8)

It possesses the following properties [4, 9]:

\[[A, B]_{(p,q)} = -[B, A]_{(q,p)}, \]
\[[A + B, C]_{(p,q)} = [A, C]_{(p,q)} + [B, C]_{(p,q)}, \]
\[[AB, C]_{(p,q)} = A[B, C]_{(p,r)} + [A, C]_{(r,q)}B, \]
\[[A, BC]_{(p,q)} = B[A, C]_{(r,q)} + [A, B]_{(p,r)}C, \]

(9)

and the q-Jacobi identity

\[[A, [B, C]]_{(q_1,q_1^{-1})} + [B, [C, A]]_{(q_2,q_2^{-1})} + [C, [A, B]]_{(q_3,q_3^{-1})} = 0. \]

(10)

The Virasoro algebra is an infinite dimensional Lie algebra and plays important roles in physics. The V-W algebra is indeed the centerless Virasoro algebra. It is given by

\[[L_m, L_n] = (m - n)L_{m+n}. \]

(11)

For the generators \(L_0, L_1 \) and \(L_{-1} \), it can be easily seen that they satisfy the \(SU(1,1) \) algebra:

\[[L_0, L_1] = -L_1, \quad [L_0, L_{-1}] = L_{-1}, \quad [L_1, L_{-1}] = 2L_0. \]

(12)

To construct the deformed V-W algebra, let us take the q-deformed generators

\[L_m = -q^N (a^\dagger)^{m+1} a, \]

(13)

where the q-deformed oscillator is deformed by the following relations [27-29]:

\[aa^\dagger - qa^\dagger a = q^{-N}, \quad aa^\dagger = [N], \]
\[[N, a] = -a, \quad [N, a^\dagger] = a^\dagger. \]

(14)
Substituting the q-generators (13) into the commutator (8) and using the q-deformed oscillator (14), it leads to the so-called q-deformed V-W algebra [11]

\[[L_m, L_n]_{(q^{m-n}, q^{n-m})} = q^{m-n}L_m L_n - q^{n-m} L_n L_m = [m-n] L_{m+n}, \quad (15) \]

where \([k] = \frac{q^k - q^{-k}}{q - q^{-1}} \). In the limit \(q \to 1 \), (15) reduces to the V-W algebra [11]

From q-deformed V-W algebra (15), we note that the generators \(L_0, L_1 \) and \(L_{-1} \) of (13) comprise the \(SU_q(1,1) \) algebra,

\[[L_0, L_1]_{(q^{-1}, q)} = -L_1, \quad [L_0, L_{-1}]_{(q, q^{-1})} = L_{-1}, \quad [L_1, L_{-1}]_{(q^2, q^{-2})} = [2] L_0. \quad (16) \]

This q-deformed \(su(1,1) \) algebra has been well investigated in the literature [1, 30].

Let us define the star product by

\[L_n \ast [L_m, L_k]_{(q^{m-k}, q^{k-m})} = q^{2n+m-k}L_n[L_m, L_k]_{(q^{m-k}, q^{k-m})}, \]

\[[L_m, L_k]_{(q^{m-k}, q^{k-m})} \ast L_n = q^{m+k-2n}[L_m, L_k]_{(q^{m-k}, q^{k-m})}L_n. \quad (17) \]

Then we have

\[L_n \ast [L_m, L_k]_{(q^{m-k}, q^{k-m})} = [L_m, L_k]_{(q^{m-k}, q^{k-m})} \ast L_n \]

\[= [L_n, [L_m, L_k]_{(q^{m-k}, q^{k-m})}]_{(q^{2n-m-k}, q^{m+k-2n})}. \quad (18) \]

By means of (18), one can confirm the following q-Jacobi identity [4] satisfied by the q-deformed V-W algebra (15):

\[[L_n, [L_m, L_k]_{(q^{m-k}, q^{k-m})}]_{(q^{2n-m-k}, q^{m+k-2n})} + cycl. \text{perms.} = 0. \quad (19) \]

3.2 q-deformed V-W 3-algebra and \(su_q(1,1) \) 3-algebra

We have introduced the q-deformed algebra in the previous subsection. Let us now turn our attention to the case of 3-algebra. The operator Nambu 3-bracket is defined to be a sum of single operators multiplying commutators of the remaining two [13], i.e.,

\[[A, B, C] = A[B, C] + B[C, A] + C[A, B], \quad (20) \]

where \([A, B] = AB - BA\).

For the q-deformed V-W algebra (15), we have already seen that the q-Jacobi identity (19) is guaranteed to hold. It is worth to emphasize that the star product (17) plays a pivotal role in the q-Jacobi identity. In terms of the star product (17), let us define the q-3-bracket as follows:

\[[L_m, L_n, L_k] = L_m \ast [L_n, L_k]_{(q^{m-k}, q^{k-n})} + L_n \ast [L_k, L_m]_{(q^{k-m}, q^{m-k})} + L_k \ast [L_m, L_n]_{(q^{n-m}, q^{m-n})}. \quad (21) \]
By means of (15) and (17), we may derive the following q-deformed 3-algebra from (21):

\[
\llbracket L_m, L_n, L_k \rrbracket = \frac{1}{q - q^{-1}} \left([2m - 2k] + [2k - 2n] + [2n - 2m] \right) L_{m+n+k}
\]

\[
= \left(q - q^{-1} \right) \left([m - n][m - k][n - k] \right) L_{m+n+k}
\]

\[
= -\frac{1}{(q - q^{-1})^2} \det \begin{pmatrix} q^{-2m} & q^{-2n} & q^{-2k} \\ 1 & 1 & 1 \\ q^{2m} & q^{2n} & q^{2k} \end{pmatrix} L_{m+n+k}.
\]

(22)

Performing lengthy but straightforward calculations, we find that (22) satisfies the sh-Jacobi’s identity (7), but the FI condition (3) does not hold. It is easy to verify that the skew-symmetry holds for this ternary algebra

\[
\llbracket L_m, L_n, L_k \rrbracket = -\llbracket L_n, L_k, L_m \rrbracket = -\llbracket L_k, L_m, L_m \rrbracket.
\]

(23)

Therefore the q-deformed V-W 3-algebra (22) is indeed a sh-3-Lie algebra. In the limit \(q \to 1 \), (22) reduces to the null 3-algebra derived in [18],

\[
[L_m, L_n, L_k] = 0.
\]

(24)

The FI condition (3) is trivially satisfied for this null 3-algebra.

It is known that the \(su(1,1) \) algebra is a subalgebra of V-W algebra. From (24), we have the null \(su(1,1) \) 3-algebra,

\[
[L_{-1}, L_0, L_1] = 0.
\]

(25)

Let us turn to discuss the q-deformation of (25). Taking the generators to be \(L_0, L_1 \) and \(L_{-1} \) in (22), it leads to the \(su_q(1,1) \) 3-algebra

\[
[L_{-1}, L_0, L_1] = -2(q - q^{-1})L_0 = \frac{1 - q^2}{q^2} L_0.
\]

(26)

An intriguing feature is that for the null \(su(1,1) \) 3-algebra, its q-deformed 3-algebra is nontrivial. Moreover it is worth to emphasize that this \(su_q(1,1) \) 3-algebra satisfies the FI condition (3).

4 q-deformed V-W n-algebra

Now encouraged by the possibility of constructing the nontrivial sh-3-Lie algebra (22), it would be interesting to study further and see whether one could construct the q-deformed V-W n-algebra with a genuine sh-n-Lie algebra structure. In this section we give affirmative answer to this question.

The \(n \)-bracket with \(n \geq 3 \) is defined by

\[
[L_{i_1}, L_{i_2}, \cdots, L_{i_n}] = \sum_{s=1}^{n} (-1)^{s+1} L_{i_s} [L_{i_1}, L_{i_2}, \cdots, \hat{L}_{i_s}, \cdots, L_{i_n}].
\]

(27)
Here we denote a notational convention used frequently in the rest of this paper. Namely for any arbitrary symbol \(Z \), the hat symbol \(\hat{Z} \) stands for the term that is omitted.

Let us define a q-n-bracket as follows:

\[
\{ L_{i_1}, L_{i_2}, \ldots, L_{i_n} \} = \frac{\text{sign} (n)}{(q - q^{-1})^{n-1}} \left(q^{-2 \left[\frac{n+1}{4} \right]}_{i_1} q^{-2 \left[\frac{n+1}{4} \right]}_{i_2} \ldots q^{-2 \left[\frac{n+1}{4} \right]}_{i_n} \right) \left(q^2(-\left[\frac{n+1}{2} \right] +1)_{i_1} q^2(-\left[\frac{n+1}{2} \right] +1)_{i_2} \ldots q^2(-\left[\frac{n+1}{2} \right] +1)_{i_n} \right) \left(\begin{array}{c} \vdots \\ \vdots \\ q^2(\left[\frac{n}{2} \right] -1)_{i_1} q^2(\left[\frac{n}{2} \right] -1)_{i_2} \ldots q^2(\left[\frac{n}{2} \right] -1)_{i_n} \\ q^2(\frac{n}{2})_{i_1} q^2(\frac{n}{2})_{i_2} \ldots q^2(\frac{n}{2})_{i_n} \end{array} \right) \right] L_{\Sigma_{i=1}^n i_i}, \tag{30}
\]

where \([n] = \text{Max} \{ m \in \mathbb{Z} | m \leq n \}\) is the floor function, \(\text{sign} (n)\) is the signature function, i.e.,

\[
\text{sign} (n) = \begin{cases} 1, & \text{for } n \text{ mod } 4 = 0, 1 \\ -1, & \text{for } n \text{ mod } 4 = 2, 3 \end{cases}.
\]

Let us confirm this by the mathematical induction for \(n \). Equation (22) indicates that (30) is satisfied for \(n = 3 \). We suppose (30) is satisfied for \(n \). By means of (27), we have

\[
\{ L_{i_1}, L_{i_2}, \ldots, L_{i_{n+1}} \} = \frac{\text{sign} (n)}{(q - q^{-1})^{n-1}} A \left(q^{-2 \left[\frac{n+1}{4} \right]}_{i_1} q^{-2 \left[\frac{n+1}{4} \right]}_{i_2} q^{-2 \left[\frac{n+1}{4} \right]}_{i_3} \ldots q^{-2 \left[\frac{n+1}{4} \right]}_{i_{n+1}} \right) \left(\begin{array}{c} \vdots \\ \vdots \\ q^2(-\left[\frac{n+1}{2} \right] +1)_{i_1} q^2(-\left[\frac{n+1}{2} \right] +1)_{i_2} \ldots q^2(-\left[\frac{n+1}{2} \right] +1)_{i_{n+1}} \\ q^2(\left[\frac{n}{2} \right] -1)_{i_1} q^2(\left[\frac{n}{2} \right] -1)_{i_2} \ldots q^2(\left[\frac{n}{2} \right] -1)_{i_{n+1}} \\ q^2(\frac{n}{2})_{i_1} q^2(\frac{n}{2})_{i_2} \ldots q^2(\frac{n}{2})_{i_{n+1}} \end{array} \right) \right] L_{\Sigma_{i=1}^{n+1} i_i}, \tag{31}
\]
A but the FI condition (3) does not hold. Let us consider the case of the q-n-bracket (30). Taking the second determinate in (31), we obtain the explicit form of (30).

Then let us use the expression (32) to calculate

\[
[L_{i_1}, L_{i_2}, \ldots, L_{i_{n+1}}] = \frac{\text{sign}(n+1)}{(q - q^{-1})^n}
\]

\[
\begin{pmatrix}
q^{x_{i_1}+(2+y)\Sigma_{j=1}^n i_j+2} & \cdots & q^{x_{i_1}+(2+y)\Sigma_{j=1}^n i_j+2} & \cdots & q^{x_{i_1}+(2+y)\Sigma_{j=1}^n i_j+2} \\
q^{-2}[\frac{n-1}{2}] i_1 & \cdots & q^{-2}[\frac{n-1}{2}] i_s & \cdots & q^{-2}[\frac{n-1}{2}] i_{n+1} \\
q^2(-[\frac{n-1}{2}]+1) i_1 & \cdots & q^2(-[\frac{n-1}{2}]+1) i_s & \cdots & q^2(-[\frac{n-1}{2}]+1) i_{n+1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
q^2[\frac{n}{2}] i_1 & \cdots & q^2[\frac{n}{2}] i_s & \cdots & q^2[\frac{n}{2}] i_{n+1}
\end{pmatrix}
\]

Substituting \((x = n - 1, y = -2)\) for odd \(n\) and \((x = n, y = 0)\) for even \(n\) into (31), respectively, we find that the determinate \(A\) is zero. After a straightforward calculation for the second determinate in (31), we obtain the explicit form of \((n + 1)\)-bracket (31)

\[
[L_{i_1}, L_{i_2}, \cdots, L_{i_{n+1}}] = \frac{\text{sign}(n+1)}{(q - q^{-1})^n}
\]

\[
\begin{pmatrix}
q^{-2}[\frac{n}{2}] i_1 & q^{-2}[\frac{n}{2}] i_2 & \cdots & q^{-2}[\frac{n}{2}] i_{n+1} \\
q^2(-[\frac{n}{2}] + 1) i_1 & q^2(-[\frac{n}{2}] + 1) i_2 & \cdots & q^2(-[\frac{n}{2}] + 1) i_{n+1} \\
\vdots & \vdots & \ddots & \vdots \\
q^2[\frac{n}{2}] i_1 & q^2[\frac{n}{2}] i_2 & \cdots & q^2[\frac{n}{2}] i_{n+1}
\end{pmatrix}
\]

which shows that (30) is satisfied for \(n + 1\). Now the proof is completed.

For the q-3-bracket (22), we already recognize that it satisfies the sh-Jacobi’s identity (7), but the FI condition (3) does not hold. Let us consider the case of the q-n-bracket (30). Taking \(A_i = L_{n+i}, i = 1, 2, \cdots, n-3, A_{n-2} = L_n, A_{n-1} = L_{n+2} \cdots \Sigma_{j=1}^n\) and \(B_j = L_j, j = 1, 2, \cdots, n\) in (2), straightforward calculation shows that the right-hand side of (2) equals zero, but its left-hand side does not. Therefore the FI condition (2) does not hold for (30).

Let us turn to the case of the sh-Jacobi’s identity with respect to the q-n-bracket (30). We first focus on (30) with odd \(n\). In terms of the Lévi-Civitá symbol (5), we can rewrite \((2n + 1)\)-bracket (30) as

\[
\llbracket L_{i_1}, \cdots, L_{i_{2n+1}} \rrbracket = \epsilon_{i_1 \cdots i_{2n+1}} q^{-2n j_1 + 2(-n+1)j_2 + \cdots + 2(n-1)j_{2n} + 2n j_{2n+1}} \epsilon_{i_1 \cdots i_{2n+1}} L_{\Sigma_{j=1}^{2n+1} i_j}.
\]

(32)

Then let us use the expression (32) to calculate \(\llbracket L_{i_1}, \cdots, L_{i_{2n+1}} \rrbracket, L_{i_{2n+2}}, \cdots, L_{i_{4n+1}} \rrbracket\). It leads to

\[
\llbracket L_{i_1}, \cdots, L_{i_{2n+1}} \rrbracket, L_{i_{2n+2}}, \cdots, L_{i_{4n+1}} \rrbracket = \sum_{k=2}^{2n+2} (-1)^k \epsilon_{i_1 \cdots i_{2n+1}} \epsilon_{i_2 \cdots i_{2n+2}} \cdots \epsilon_{i_{4n+1} i_{4n+2}} q^{-2n_k + 2(-n+k-1)j_2 + \cdots + (k-2)j_{2n+1}} q^{-n j_{2n+2} + \cdots + (-n+k-3)j_{2n+k-1} + (-n+k-2)j_{2n+k} + (-n+k-1)j_{2n+k+1} + \cdots + n j_{4n+2}} \epsilon_{i_1 \cdots i_{2n+1}} L_{\Sigma_{j=1}^{4n+1} i_j}.
\]

(33)
Substituting (33) into the left-hand side of (3), we obtain
\[\epsilon_{m_1 \cdots m_{4n+1}}^{1 \cdots 4n+1} \left[[L_{i_1}, \cdots, L_{i_{2n+1}}], L_{i_{2n+2}}, \cdots, L_{i_{4n+1}} \right] \]
\[= (2n+1)! \langle 2n \rangle \sum_{k=2}^{2n+2} (-1)^k j_1^{i_1} j_2^{i_2} \cdots j_{4n}^{i_{4n+1}} q^{\alpha L_{\sum_{i=1}^{4n+1} i_i}}, \]
(34)
where the power of q is given by
\[\alpha = (-2n + k - 2) j_1 + (-2n + k - 1) j_2 + \cdots + (k - 2) j_{2n+1} - nj_{2n+2} + \cdots + (-n + k - 2) j_{2n+k} + \cdots + nj_{4n+2}, \]
(35)
and the following formula is useful in simplifying expression:
\[\epsilon_{m_1 \cdots m_n}^{i_1 \cdots i_k} \epsilon_{n_1 \cdots n_k}^{j_1 \cdots j_k} = k! \epsilon_{m_1 \cdots m_n}^{i_1 \cdots i_k} \epsilon_{n_1 \cdots n_k}^{j_1 \cdots j_k}. \]
(36)
From the expression of \(\alpha \) (35), we observe that the coefficients of two different \(j_\mu \) should be equal. Since \(\epsilon_{1 \cdots 4n+1}^{j_1 \cdots j_{4n+2}} \) is completely antisymmetric, it is easy to see that (34) equals zero. It indicates that the sh-Jacobi’s identity is satisfied by (30) with odd \(n \). For the case of (30) with even \(n \), by the similar way, we can confirm the corresponding sh-Jacobi’s identity. Taking the above results, we may conclude that the sh-Jacobi’s identity (11) does hold for (30). Since the structure constants are determined by the the determinate, n-bracket (30) is anticommutative. Based on the above analysis, it is clear that the q-deformed V-W n-algebra is indeed a sh-n-Lie algebra.

As an example, let us list first few q-deformed V-W n-algebras as follows:

- \([L_{i_1}, L_{i_2}, L_{i_3}, L_{i_4}]\)
\[= (q - q^{-1})^{-3} \det \begin{pmatrix} q^{-2i_1} & q^{-2i_2} & q^{-2i_3} & q^{-2i_4} \\ 1 & 1 & 1 & 1 \\ q^{2i_1} & q^{2i_2} & q^{2i_3} & q^{2i_4} \\ q^{4i_1} & q^{4i_2} & q^{4i_3} & q^{4i_4} \end{pmatrix} L_{\sum_{k=1}^{4} i_k} \]
\[= (q - q^{-1})^{-3} q^{\sum_{k=1}^{4} i_k} \prod_{1 \leq m < n \leq 4} [i_m - i_n] L_{\sum_{k=1}^{4} i_k}. \]
(37)

- \([L_{i_1}, L_{i_2}, L_{i_3}, L_{i_4}, L_{i_5}]\)
\[= (q - q^{-1})^{-4} \det \begin{pmatrix} q^{-4i_1} & q^{-4i_2} & q^{-4i_3} & q^{-4i_4} & q^{-4i_5} \\ q^{-2i_1} & q^{-2i_2} & q^{-2i_3} & q^{-2i_4} & q^{-2i_5} \\ 1 & 1 & 1 & 1 & 1 \\ q^{2i_1} & q^{2i_2} & q^{2i_3} & q^{2i_4} & q^{2i_5} \\ q^{4i_1} & q^{4i_2} & q^{4i_3} & q^{4i_4} & q^{4i_5} \end{pmatrix} L_{\sum_{k=1}^{5} i_k} \]
\[= (q - q^{-1})^{-6} q^{\sum_{k=1}^{5} i_k} \prod_{1 \leq m < n \leq 5} [i_m - i_n] L_{\sum_{k=1}^{5} i_k}. \]
(38)
• \[[L_{i_1}, L_{i_2}, L_{i_3}, L_{i_4}, L_{i_5}, L_{i_6}] \]

\[
= - (q - q^{-1})^{-5} \det \begin{pmatrix}
q^{-4i_1} & q^{-4i_2} & q^{-4i_3} & q^{-4i_4} & q^{-4i_5} & q^{-4i_6} \\
q^{-2i_1} & q^{-2i_2} & q^{-2i_3} & q^{-2i_4} & q^{-2i_5} & q^{-2i_6} \\
1 & 1 & 1 & 1 & 1 & 1 \\
q^{2i_1} & q^{2i_2} & q^{2i_3} & q^{2i_4} & q^{2i_5} & q^{2i_6} \\
q^{4i_1} & q^{4i_2} & q^{4i_3} & q^{4i_4} & q^{4i_5} & q^{4i_6} \\
q^{6i_1} & q^{6i_2} & q^{6i_3} & q^{6i_4} & q^{6i_5} & q^{6i_6}
\end{pmatrix}
L_{\sum_{k=1}^{6} i_k}
\]

\[
= - (q - q^{-1})^{10} q^{\sum_{k=1}^{6} i_k} \prod_{1 \leq m < n \leq 6} [i_m - i_n] L_{\sum_{k=1}^{6} i_k}. \tag{39}
\]

For the q-deformed V-W 3-algebra, we note that there exists a nontrivial sub-3-algebra, i.e., \(su_q(1, 1) \)-3-algebra. As to the case of the q-deformed V-W n-algebra \(\text{[30]} \), we can easily see that this sh-n-Lie algebra only admits the null \(su_q(1, 1) \)-n-algebra for \(n \geq 4 \).

5 Summary

The V-W algebra is the centerless Virasoro algebra. Its q-deformation has been well investigated in the literature. One has already known that in the usual way, the V-W n-algebra is null. In this paper, we investigated the q-deformation of the null V-W n-algebra and constructed the nontrivial q-deformed V-W n-algebra. It is of interest to note that it satisfies the sh-Jacobi’s identity, but the FI condition fails. Thus this q-deformed V-W n-algebra is indeed a sh-n-Lie algebra. Furthermore we pointed out that a special case is that of \(n = 3 \). For the q-deformed Virasoro-Witt 3-algebra, we found that there exists a nontrivial finite-dimensional sub-3-algebra, i.e., \(su_q(1, 1) \)-3-algebra.

Our investigation revealed a deep connection between the q-deformed infinite-dimensional n-algebra and the sh-n-Lie algebra. It sheds new light on the sh-n-Lie algebra. It would be interesting to study further and see whether there exist the central extension terms for the sh-n-Lie algebra derived in this paper. Furthermore the application of this sh-n-Lie algebra in physics might be of interest.

Acknowledgements

The authors are grateful to Morningside Center of Chinese Academy of Sciences for providing excellent research environment and financial support to our seminar in mathematical physics. This work is partially supported by NSF projects (11375119, 11031005 and 11171329), KZ201210028032.

References

[1] T. Curtright, C. Zachos, Phys. Lett. B 243 (1990) 237.
[2] N. Aizawa, H. Sato, Phys. Lett. B 256 (1991) 185.

[3] M. Chaichian, P. Prešna ējder, Phys. Lett. B 277 (1992) 109.

[4] M. Chaichian, D. Ellinas, Z. Popowicz, Phys. Lett. B 248 (1990) 95.

[5] M. Chaichian, P. Kulish, J. Lukierski, Phys Lett B 237 (1990) 401.

[6] A.P. Polychronakos, Phys Lett B 256 (1991) 35.

[7] M. Chaichian, A.P. Isaev, J. Lukierski, Z. Popowicz, P. Prešna ējder, Phys. Lett. B 262 (1991) 32.

[8] C. Devchand, M.V. Saveliev, Phys. Lett. B 258 (1991) 364.

[9] H. Sato, Prog. Theor. Phys. 89 (1993) 531.

[10] J.L. Gervais, A. Neveu, Nucl. Phys. B 209 (1982) 125.

[11] J.L. Gervais, Phys. Lett. B 160 (1985) 277.

[12] M. Chaichian, Z. Popowicz, P. Prešna ējder, Phys. Lett. B 249 (1990) 63.

[13] Y. Nambu, Phys. Rev. D 7 (1973) 2405.

[14] L. Takhtaj an, Commun. Math. Phys. 160 (1994) 295.

[15] J. Bagger, N. Lambert, Phys. Rev. D 75 (2007) 045020, [hep-th/0611108];
 J. Bagger, N. Lambert, Phys. Rev. D 77 (2008) 065008, [arXiv:0711.0955 [hep-th]];
 J. Bagger, N. Lambert, JHEP 02 (2008) 105, [arXiv:0712.3738 [hep-th]].

[16] A. Gustavsson, Nucl. Phys. B 811 (2009) 66, [arXiv:0709.1260 [hep-th]].

[17] T.L. Curtright, D.B. Fairlie, C.K. Zachos, Phys. Lett. B 666 (2008) 386, [arXiv:0806.3515 [hep-th]].

[18] T. Curtright, D. Fairlie, X. Jin, L. Mezincescu, C. Zachos, Phys. Lett. B 675 (2009) 387, [arXiv:0903.4889 [hep-th]].

[19] H. Lin, JHEP 07 (2008) 136, [arXiv:0805.4003 [hep-th]].

[20] S. Chakrabortty, A. Kumar, S. Jain, JHEP 09 (2008) 091, [arXiv:0807.0284 [hep-th]].

[21] M.R. Chen, K. Wu, W.Z. Zhao, JHEP 09 (2011) 090, [arXiv:1107.3295 [hep-th]].

[22] M.R. Chen, S.K. Wang, K. Wu, W.Z. Zhao, JHEP 12 (2012) 030, [arXiv:1201.0417 [nlin.SI]].

[23] M.R. Chen, S.K. Wang, X.L. Wang, K. Wu, W.Z. Zhao, [arXiv:1309.4627 [nlin.SI]].
[24] F. Ammar, A. Makhlouf, S. Silvestrov, J. Phys. A: Math. Theor. 43 (2010) 265204.

[25] V.T. Filippov, Sib. Math. J. 26 (1985) 879.

[26] M. Goze, N. Goze, E. Remm, African J. Math. Phys. 8 (2010) 17, [arXiv:0909.1419] [math.RA].

[27] A.J. MacFarlane, J. Phys. A 22 (1989) 4581.

[28] L.C. Biederharn, J. Phys. A 22 (1989) L873.

[29] T. Hayashi, Commun. Math. Phys. 127 (1990) 129.

[30] E. Witten, Nucl. Phys. B330 (1990) 285.