Experimental Constraints on the Spin and Parity of the $\Lambda_c(2880)^+$

R. Mizuk,12 K. Abe,7 I. Adachi,7 H. Aihiara,45 D. Anipko,1 V. Aulchenko,1 T. Aushev,17,12 A. M. Bakich,40 V. Balagura,12 E. Barberio,20 A. Bay,17 I. Bedny,1 K. Belous,11 U. Bitenc,13 I. Bizjak,13 S. Blyth,23 A. Bondar,1 A. Bozek,26 M. Bračko,7,19,13 J. Brodzicka,26 T. E. Browder,5 M.-C. Chang,4 A. Chen,25 K.-F. Chen,25 W. T. Chen,23 B. G. Cheon,2 R. Chistov,12 Y. Choi,39 Y. K. Choi,39 S. Cole,40 J. Dalseno,20 M. Danilov,12 A. Drutskoy,3 S. Eidelman,1 D. Epifanov,1 S. Fratina,13 N. Gabyshev,1 A. Garmash,34 T. Gershon,7 G. Gokhroo,41 B. Golob,18,13 H. Ha,15 J. Haba,7 K. Hayasaka,21 H. Hayashi,22 M. Hazumi,7 D. Heffernan,31 T. Hokune,21 Y. Hoshi,43 S. Hou,23 W.-S. Hou,25 T. Iijima,21 K. Ikado,21 A. Imoto,22 K. Inami,21 A. Ishikawa,45 R. Itoh,7 M. Iwasaki,45 Y. Iwasaki,7 H. Kaji,21 J. H. Kang,49 P. Kapustan,26 N. Katayama,7 H. R. Khan,46 H. Kichimi,7 Y. J. Kim,18 K. Kinoshita,6 S. Korpar,19,13 P. Krizan,18,13 P. Krokovny,7 R. Kulasiri,3 R. Kumar,32 C. C. Kuo,23 A. Kuzmin,1 Y.-J. Kwon,49 G. Leder,25 T. O. Lefèvre,37 M. J. Lee,37 S. E. Lee,37 T. Lesiak,26 S.-W. Lin,25 D. Liventsev,12 G. Majumder,41 F. Mandl,10 T. Matsumoto,47 A. Matyja,26 S. McOnie,40 H. Miyake,31 H. Miyata,28 Y. Miyazaki,21 M. Nakao,7 Z. Natkaniec,26 S. Nishida,7 S. Ogawa,42 T. Ohshima,21 S. Okuno,14 Y. Onuki,35 H. Ozaki,7 P. Pakhlova,12 G. Pakhlova,12 H. Park,16 K. S. Park,40 L. S. Peak,40 R. Pestotnik,13 L. E. Pilonen,48 Y. Sakai,7 N. Satoyama,38 O. Schneider,17 J. Schümann,24 R. Seidl,8,35 K. Senyo,21 M. E. Sevior,20 M. Shapkin,11 H. Shibuya,42 J. B. Singh,32 A. Somov,3 N. Soni,32 S. Stanič,29 M. Starič,13 H. Stoeck,40 S. Y. Suzuki,7 F. Takasaki,7 K. Tamai,7 M. Tanaka,7 G. N. Taylor,20 Y. Teramoto,30 X. C. Tian,33 I. Tikhomirov,12 T. Tsukamoto,7 T. Tsukamoto,7 S. Uehara,7 T. Uglow,12 K. Ueno,25 S. Uno,7 P. Urquijo,20 Y. Usoskin,1 G. Varner,6 S. Villa,17 C. H. Wang,24 Y. Watanabe,25 Q. L. Xie,9 B. D. Yabsley,40 A. Yamaguchi,44 Y. Yamashita,27 M. Yamazaki,7 C. Z. Yuan,9 L. M. Zhang,36 Z. P. Zhang,26 V. Zhilich,1 and A. Zupanc13

(The Belle Collaboration)

1Belker Institute of Nuclear Physics, Novosibirsk
2Chonnam National University, Kwangju
3University of Cincinnati, Cincinnati, Ohio 45221
4Department of Physics, Fu Jen Catholic University, Taipei
5The Graduate University for Advanced Studies, Hayama, Japan
6University of Hawaii, Honolulu, Hawaii 96822
7High Energy Accelerator Research Organization (KEK), Tsukuba
8University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
9Institute of High Energy Physics, Chinese Academy of Sciences, Beijing
10Institute of High Energy Physics, Vienna
11Institute of High Energy Physics,Protvino
12Institute for Theoretical and Experimental Physics, Moscow
13J. Stefan Institute, Ljubljana
14Kanazawa University, Yokohama
15Korea University, Seoul
16Kyungpook National University, Taegu
17Swiss Federal Institute of Technology of Lausanne, EPFL, Lausanne
18University of Ljubljana, Ljubljana
19University of Maribor, Maribor
20University of Melbourne, Victoria
21Nagoya University, Nagoya
22Nara Women’s University, Nara
23National Central University, Chung-li
24National United University, Miaoli
25Department of Physics, National Taiwan University, Taipei
26H. Niewodniczanski Institute of Nuclear Physics, Krakow
27Nippon Dental University, Niigata
28Niigata University, Niigata
29University of Nova Gorica, Nova Gorica
30Osaka City University, Osaka
31Osaka University, Osaka
32Panjab University, Chandigarh
33Peking University, Beijing
34Princeton University, Princeton, New Jersey 08544
35RIKEN BNL Research Center, Upton, New York 11973
36University of Science and Technology of China, Hefei
We report the results of several studies of the Λ_c^+ decay into $\pi^+\pi^-X$ final state in continuum e^+e^- annihilation data collected by the Belle detector. An analysis of angular distributions in $\Lambda_c(2880)^+\rightarrow\Sigma_c(2455)^{0++,\pi^+\pi^-}$ decays strongly favors a $\Lambda_c(2880)^+\rightarrow\Sigma_c(2455)^{0++,\pi^+\pi^-}$ decay and measure the ratio of $\Lambda_c(2880)^+$ partial widths $\Gamma(\Sigma_c(2520)^+)\rightarrow\Sigma_c(2455)^{0++,\pi^+\pi^-}$ decay and measure $\Lambda_c(2880)^+$ and $\Lambda_c(2940)^+$ parameters. These studies are based on a 553 fb$^{-1}$ data sample collected at or near the $\Upsilon(4S)$ resonance, at the KEKB collider.

PACS numbers: 13.30.Eg, 14.20.Lq
2450 MeV/c^2 < M < 2458 MeV/c^2. Whereas 35% of signal events pass this cut, only 12% of background events do so. From MC simulation we find that the mass resolution for the \(\Lambda_c(2880)^+ \to \Sigma_c(2455)^0 \pi^+ \pi^- \) decays depends strongly on the decay angle \(\theta \), defined as the angle between the pion momentum in the \(\Lambda_c(2880)^+ \) rest frame and the boost direction of the \(\Lambda_c(2880)^+ \). To assure good resolution for the \(\Lambda_c(2880)^+ \) mass and width measurement we require \(\cos \theta > 0 \). This requirement also helps to suppress combinatorial background. The resulting \(M(\Lambda_c^+ \pi^+ \pi^-) \) distribution is shown in Fig. [1] One can see clear peaks in the \(\Lambda_c(2765)^+ \) and \(\Lambda_c(2880)^+ \). A peak in the region \(M = 2940 \) MeV/c^2 is associated with the \(\Lambda_c(2940)^+ \) baryon recently observed in the \(D^0 \pi \) final state by BaBar [10]. Scattered \(\Sigma_c(2455) \) sidebands, which are also shown in Fig. [1] are featureless in the region of the \(\Lambda_c(2940)^+ \). The \(\Sigma_c(2455) \) sidebands are defined as \(2438 \) MeV/c^2 < \(M(\Lambda_c^+ \pi^-) < 2464 \) MeV/c^2 and \(2462 \) MeV/c^2 < \(M(\Lambda_c^+ \pi^-) < 2490 \) MeV/c^2.

We perform a binned likelihood fit to the \(\Lambda_c^+ \pi^+ \pi^- \) mass spectrum of Fig. [1] to extract the parameters and yields of the \(\Lambda_c(2880)^+ \) and \(\Lambda_c(2940)^+ \). The fitting function is a sum of three components: \(\Lambda_c(2880)^+ \) signal, \(\Lambda_c(2940)^+ \) signal and combinatorial background functions. As shown below, the favored spin-parity assignment for the \(\Lambda_c(2880)^+ \) is \(\frac{5}{2}^+ \), therefore the \(\Lambda_c(2880)^+ \) signal is parameterized by an F-wave Breit-Wigner function convolved with the detector resolution function, determined from MC (\(\sigma = 2.2 \) MeV/c^2). The \(\Lambda_c(2940)^+ \) signal is an S-wave Breit-Wigner function convolved with the detector resolution function (\(\sigma = 2.4 \) MeV/c^2). The background is parameterized by a third-order polynomial. The fit is shown in Fig. [1] and the results are summarized in Table [1]. The signal yield is defined as the integral of the Breit-Wigner function over a \(\pm 2.5 \Gamma \) interval.

The normalized \(\chi^2 \) of the fit is \(\chi^2/d.o.f. = 132.2/134 \). If the \(\Lambda_c(2940)^+ \) signal is removed from the fit, the double log likelihood changes by 59.8, which corresponds for 3 degrees of freedom to a signal significance of 7.2 standard deviations.

To estimate the systematic uncertainty on the results of the fit we vary the background parameterization, using a fourth-order polynomial and the inverse of a third-order polynomial. We include the \(\Lambda_c(2765)^+ \) signal region into the fit interval, parameterizing the \(\Lambda_c(2765)^+ \) signal by an S-wave Breit-Wigner function. The \(\Lambda_c(2765)^+ \) mass and width determined from the fit are \(M = (2761 \pm 1) \) MeV/c^2 and \(\Gamma = (73 \pm 5) \) MeV. We vary the selection requirements; we take into account the uncertainty in the \(\Lambda_c^+ \) mass of \(\pm 0.14 \) MeV/c^2 [14], the mass scale uncertainty of \(\pm 0.21 \) MeV/c^2 [15] and the uncertainty in the detector resolution of \(\pm 10\% \) as estimated by comparison of the inclusive \(\Lambda_c^+ \to pK^- \pi^- \) signal in data and MC. In the region between the \(\Lambda_c(2880)^+ \) and \(\Lambda_c(2940)^+ \) signals the fit is systematically below the data points, which might be due to a presence of an additional resonance or due to interference. We take into account these possibilities as a systematic uncertainty. In each case we consider the largest positive and negative variation in the \(\Lambda_c(2880)^+ \) and \(\Lambda_c(2940)^+ \) parameters to be the systematic uncertainty from this source; each term is then added in quadrature to give the total systematic uncertainty, quoted in Table [1]. The main sources of the systematic uncertainty are a possible contribution of the \(\Lambda_c(2765)^+ \) tail into the fit region (the shape of the tail is not well constrained) and the excess of events between the \(\Lambda_c(2880)^+ \) and \(\Lambda_c(2940)^+ \) signals. None of the variations in the analysis alters the \(\Lambda_c(2940)^+ \) signal significance to less than 6.2 standard deviations.

For further analysis, we remove the \(\cos \theta > 0 \) requirement. To study the resonant structure of the \(\Lambda_c(2880)^+ \to \Lambda_c^+ \pi^+ \pi^- \) decays we fit the \(\Lambda_c^+ \pi^+ \pi^- \) mass spectrum in \(M(\Lambda_c^+ \pi^+ \pi^-) \) bins. By isospin symmetry, we expect equally many decays to proceed via a doubly charged \(\Sigma_c(2455) \) (\(\Sigma_c(2520) \)) as via a neutral one. Since the corresponding doubly charged and neutral channels are kinematically separated in phase space, we combine the \(M(\Lambda_c^+ \pi^+ \pi^-) \) distributions for \(M(\Lambda_c^+ \pi^-) \) and \(M(\Lambda_c^+ \pi^-) \) bins. To fit the \(\Lambda_c^+ \pi^+ \pi^- \) mass spectra we use the same fit function as described above. The \(\Lambda_c(2880)^+ \) and \(\Lambda_c(2940)^+ \) parameters are fixed to the values in Table [1].

State	Yield	M, MeV/c^2	\(\Gamma \), MeV
\(\Lambda_c(2880)^+ \)	690 \pm 50	2881.2 \pm 0.2 \pm 0.4	5.8 \pm 0.7 \pm 1.1
\(\Lambda_c(2940)^+ \)	220^{+80}_{-60}	2938.0 \pm 1.3^{+1.20}_{-1.10}	13.5 \pm 5.7

TABLE I: Signal yield, mass and width for the \(\Lambda_c(2880)^+ \) and \(\Lambda_c(2940)^+ \). The first uncertainty is statistical, the second one systematic.
The $\Lambda_c(2880)^+$ yield as a function of $M(\Lambda^+_c\pi^\pm)$ is shown in Fig. 2. We find a clear signal for the $\Sigma_c(2455)$ and an excess of events in the region of the $\Sigma_c(2520)$. We perform a χ^2 fit to the $\Lambda^+_c\pi^\pm$ mass spectrum of Fig. 2 to extract the yields of the $\Sigma_c(2455)$ and $\Sigma_c(2520)$. The fitting function is a sum of three components: $\Sigma_c(2455)$ signal, $\Sigma_c(2520)$ signal and a non-resonant contribution. The $\Sigma_c(2455)$ and $\Sigma_c(2520)$ signals are parameterized by a P-wave Breit-Wigner function convolved with the detector resolution functions, determined from MC ($\sigma = 0.9\,\text{MeV}/c^2$ for the $\Sigma_c(2455)$ and $\sigma = 1.5\,\text{MeV}/c^2$ for the $\Sigma_c(2520)$). The mass and width of the $\Sigma_c(2455)$ are floated, while the mass and width of the $\Sigma_c(2520)$ are fixed to the world average values [5]. The shape of the non-resonant contribution is determined from MC assuming a uniform distribution of the signal over phase space. The fit is shown in Fig. 2. We find the ratios of $\Lambda_c(2880)^+$ partial widths $\frac{\Gamma(\Sigma_c(2455)\pi^\pm)}{\Gamma(\Lambda^+_c\pi^\pm\pi^-)} = 0.404 \pm 0.021 \pm 0.014$, $\frac{\Gamma(\Sigma_c(2520)\pi^\pm)}{\Gamma(\Lambda^+_c\pi^\pm\pi^-)} = 0.091 \pm 0.025 \pm 0.010$ and $\frac{\Gamma(\Sigma_c(2520)\pi^\pm)}{\Gamma(\Sigma_c(2455)\pi^\pm)} = 0.225 \pm 0.062 \pm 0.025$, where the uncertainties are statistical and systematic, respectively. The $\Sigma_c(2455)$ parameters determined from the fit $M = (2453.7 \pm 0.1)\,\text{MeV}/c^2$ and $\Gamma = (2.0 \pm 0.2)\,\text{MeV}$ are consistent with the world average values [6]. The normalized χ^2 of the fit is $\chi^2/d.o.f. = 106.6/75$. The significance of the $\Sigma_c(2520)$ signal is 3.7 standard deviations.

To estimate the systematic uncertainties on the ratios of $\Lambda_c(2880)^+$ partial widths we vary the $\Lambda_c(2880)^+$ parameters, fit interval and background parameterization in the fit to the $M(\Lambda^+_c\pi^\pm\pi^-)$ spectrum; we vary the $\Sigma_c(2520)$ parameters; we allow the shape of the non-resonant contribution to float in the fit, parameterizing it with a second-order polynomial multiplied by a threshold function or by a third-order polynomial; we take into account the uncertainty in the detector resolution and in the reconstruction efficiency. None of the variations reduces the significance of the $\Sigma_c(2520)$ signal below three standard deviations.

To perform angular analysis of $\Lambda_c(2880)^+ \rightarrow \Sigma_c(2455)^0\pi^+\pi^-\pi^+$ decays we fit the $\Lambda^+_c\pi^+\pi^-$ spectrum in $\cos\theta$ and ϕ bins for the $\Sigma_c(2520)$ signal region and sidebands. Here, ϕ is the angle between the $e^+e^- \rightarrow \Lambda_c(2880)^+X$ reaction plane and the plane defined by the pion momentum and the $\Lambda_c(2880)^+$ boost direction in the rest frame of the $\Lambda_c(2880)^+$. Figure 3 shows the yield of $\Lambda_c(2880)^+$ as a function of $\cos\theta$ and ϕ, after $\Sigma_c(2520)$ sideband subtraction (to account for nonresonant $\Lambda^+_c\pi^+\pi^-$ decays) and efficiency correction.

![Figure 2](image2.png)

FIG. 2: The $\Lambda_c(2880)^+$ yield as a function of $M(\Lambda^+_c\pi^\pm)$. The histogram represents the result of the fit.

![Figure 3](image3.png)

FIG. 3: The yield of $\Lambda_c(2880)^+ \rightarrow \Sigma_c(2455)^0\pi^+\pi^-\pi^+$ decays as a function of $\cos\theta$ and ϕ. The fits are described in the text.

The parameterization of $\Lambda_c(2880)^+ \rightarrow \Sigma_c(2455)\pi$ decay angular distributions depends on the spin of the $\Lambda_c(2880)^+$. For the spin $\frac{1}{2}$ hypothesis both $\cos\theta$ and ϕ distributions are expected to be uniform [10]. χ^2 fits to a constant are shown in Fig. 3 by a dotted line. The agreement is good for ϕ: $\chi^2/d.o.f. = 5.3/9$, but poor for $\cos\theta$: $\chi^2/d.o.f. = 46.7/9$.

The angular distribution for the spin $\frac{3}{2}$ hypothesis
is \[W_{3/2} = \frac{3}{4\pi}[\rho_{33} \sin^2 \theta + \rho_{11}(\frac{1}{3} + \cos^2 \theta) - \frac{2}{\sqrt{3}} \text{Re}\rho_{31}(\sin 2\theta - \frac{2}{\sqrt{3}} \text{Re}\rho_{31}\sin 2\theta\cos \phi)], \]

where \(\rho_{ij} \) are the elements of the production density matrix. The diagonal elements are real and satisfy \(2(\rho_{33} + \rho_{11}) = 1 \). Since the measured distribution in \(\phi \) is consistent with being uniform (this also holds separately for \(\cos \theta > 0 \) and \(\cos \theta < 0 \) samples), the non-diagonal elements are small. The result of the fit to the \(\cos \theta \) spectrum for the spin \(\frac{3}{2} \) hypothesis is shown in Fig. 3 with a solid curve. The agreement is poor: \(\chi^2 / d.o.f. = 35.1 / 8 \).

The angular distribution for the spin \(\frac{3}{2} \) hypothesis is \[W_{3/2} = \frac{3}{8}(\rho_{55}2(5\cos^4 \theta - 2\cos^2 \theta + 1) + \rho_{33}(15\cos^4 \theta + 14\cos^2 \theta + 1) + 5(1 - \cos^2 \theta)^2), \]

where non-diagonal elements are ignored. The result of the fit to the \(\cos \theta \) spectrum for the spin \(\frac{3}{2} \) hypothesis is shown in Fig. 3 with a solid curve. The agreement is good: \(\chi^2 / d.o.f. = 12.1 / 7 \). We find \(\rho_{55} = 0.09 \pm 0.02 \) and \(\rho_{33} = 0.00 \pm 0.03 \). Thus the \(\Lambda_c(2880)^+ \) populates mainly the helicity \(\frac{1}{2} \) states, \(2\rho_{11} - 2\rho_{33} - 2\rho_{55} = 0.82 \pm 0.05 \).

The \(\chi^2 \) difference of the spin \(\frac{1}{2} (\frac{3}{2}) \) and spin \(\frac{3}{2} \) fits is distributed as \(\chi^2 \) with two degrees (one degree) of freedom, therefore the exclusion level of the spin \(\frac{3}{2} \) (\(\frac{5}{2} \)) hypothesis is 5.5 (4.8) standard deviations.

To estimate the systematic uncertainty in the angular analysis of the \(\Lambda_c(2880)^+ \rightarrow \Sigma_c(2550)^{0,+,+,-} \) decay we vary the \(\Lambda_c(2880)^+ \) parameters, fit interval and background parameterization in the fit to the \(M(\Lambda^+_c \pi^+ \pi^-) \) spectrum. None of the variations alters the exclusion level of the spin \(\frac{3}{2} (\frac{5}{2}) \) hypothesis to less than 5.5 (4.5) standard deviations.

The Capstick-Isgur quark model predicts the lowest \(J^P = \frac{5}{2}^- \) \(\Lambda_c^+ \) state at 2900 MeV/c\(^2\) and the lowest \(J^P = \frac{3}{2}^+ \) \(\Lambda_c^+ \) state at 2910 MeV/c\(^2\). The typical accuracy of quark model predictions is 50 MeV/c\(^2\), therefore the agreement with the experimental value for the \(\Lambda_c(2880)^+ \) mass is quite good. The lowest spin \(\frac{5}{2} \) states are well separated from the next \(J = \frac{3}{2} \) levels (3130 MeV/c\(^2\) for negative and 3140 MeV/c\(^2\) for positive parities) and from \(J = \frac{1}{2} \) levels (3125 MeV/c\(^2\) for negative and 3175 MeV/c\(^2\) for positive parities).

Heavy Quark Symmetry predicts \(R \equiv \frac{\Gamma(\Sigma_c(2520)\pi^+)}{\Gamma(\Sigma_c(2455)\pi^+)} = 1.4 \) for the \(\frac{3}{2}^- \) state and \(R = 0.23 - 0.36 \) for the \(\frac{5}{2}^+ \) state [6, 17]. The measured value \(R = 0.225 \pm 0.062 \pm 0.025 \) favors the positive parity assignment for the \(\Lambda_c(2880)^+ \).

The \(\frac{5}{2}^- \) assignment for the \(\Lambda_c(2880)^+ \) makes it a special state that lies on the leading \(\Lambda_c^+ \) Regge trajectory, whose lower \(J^P \) members are the \(\frac{1}{2}^+ \Lambda_c^+ \) and \(\frac{3}{2}^- \Lambda_c(2625)^+ \). The \(\frac{5}{2}^- \) assignment for the \(\Lambda_c(2880)^+ \) based on a string model for baryons was proposed in Ref. [18].

In summary, from angular analysis of \(\Lambda_c(2880)^+ \rightarrow \Sigma_c(2455)^{0,+,+,-} \) decays we find that a \(\Lambda_c(2880)^+ \) spin hypothesis of \(\frac{5}{2}^- \) is strongly favored over \(\frac{3}{2}^- \) and \(\frac{3}{2}^+ \). We find first evidence for \(\Sigma_c(2520)\pi \) intermediate states in the \(\Lambda_c(2880)^+ \rightarrow \Lambda_c^+ \pi^+ \pi^- \) decays and measure \(\Gamma(\Sigma_c(2520)\pi^+) = 0.225 \pm 0.062 \pm 0.025 \). This value is in agreement with Heavy Quark Symmetry predictions and favors the \(\frac{5}{2}^- \) over the \(\frac{3}{2}^- \) hypothesis for the spin-parity of the \(\Lambda_c(2880)^+ \). We also report the first observation of \(\Lambda_c(2940)^+ \rightarrow \Sigma_c(2455)\pi \) decays, and measure the \(\Lambda_c(2880)^+ \) and \(\Lambda_c(2940)^+ \) parameters.

We are grateful to A. Kaidalov, I. Klebanov and Yu. Simonov for valuable discussions. We thank the KEKB group for excellent operation of the accelerator, the KEK cryogenics group for efficient solenoid operations, and the KEK computer group and the NII for valuable computing and Super-SINET network support. We acknowledge support from MEXT and JSPS (Japan); ARC and DEST (Australia); NSFC and KIP of CAS (China); DST (India); MOEHRD, KOSEF and KRF (Korea); KBN (Poland); MIST (Russia); ARRS (Slovenia); SNSF (Switzerland); NSC and MOE (Taiwan); and DOE (USA).

[1] S. Capstick and N. Isgur, Phys. Rev. D 34, 2809 (1986).
[2] N. Isgur and M. B. Wise, Phys. Rev. Lett. 66, 1130 (1991).
[3] Y. Oh and B. Y. Park, Phys. Rev. D 53, 1605 (1996).
[4] S. Migura, D. Merten, B. Metsch and H. R. Petry, Eur. Phys. J. A 28, 41 (2006).
[5] W.-M. Yao el al. (Particle Data Group), J. Phys. G 33, 1 (2006).
[6] B. Aubert el al. (BaBar Collaboration), Phys. Rev. Lett. 97, 232001 (2006).
[7] M. Artuso et al. (CLEO Collaboration), Phys. Rev. Lett. 86, 4479 (2001).
[8] R. Mizuk et al. (Belle Collaboration), Phys. Rev. Lett. 94, 122002 (2005).
[9] Chistov et al. (Belle Collaboration), Phys. Rev. Lett. 97, 162001 (2006).
[10] B. Aubert et al. (BaBar Collaboration), Phys. Rev. Lett. 98, 012001 (2007).
[11] S. Kurokawa and E. Kikutani, Nucl. Instr. Meth. A 499, 1 (2003), and other papers included in this Volume.
[12] A. Abashian et al. (Belle Collaboration), Nucl. Instr. Meth. A 479, 117 (2002).
[13] R. Brun et al., GEANT 3.21, CERN Report DD/EE/84-1, 1984.
[14] B. Aubert et al. (BaBar Collaboration), Phys. Rev. D 72, 052006 (2005).
[15] K. Abe et al. (Belle Collaboration), arXiv:hep-ex/0608012.

[16] H. M. Pilkuhn, *The interactions of hadrons*, Amsterdam: North-Holland Pub. Co. (1967). We assume the J^P of the well established $\Sigma_c(2455)$ to be $\frac{1}{2}^+$.

[17] H. Y. Cheng and C. K. Chua, arXiv:hep-ph/0610283.

[18] A. Selem and F. Wilczek, arXiv:hep-ph/0602128, published in “Ringberg 2005, New trends in HERA physics” 337-356; I. Klebanov, private communication.