The safety of early discharge following transfemoral transcatheter aortic valve replacement under general anesthesia

Ofir Koren1,2†, Vivek Patel1‡, Siamak Kohan3†, Robert Naami4†, Edmund Naami5†, Zev Allison11†, Sharon Shalom Natanzon1†, Alon Shechter1,4†, Takashi Nagasaka1,7†, Ahmed Al Badri1,11†, Arvind Reddy Devanabanda3†, Mamoo Nakamura1†, Wen Cheng3, Hasan Jilaihawi8† and Raj R. Makkar1,2†

1Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA, United States, 2Bruce Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel, 3Internal Medicine, Kaiser Permanente Los Angeles Medical Center, Los Angeles, CA, United States, 4Internal Medicine, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, United States, 5School of Medicine, University of Illinois Chicago, Chicago, IL, United States, 6Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel, 7Department of Cardiology, Gunma University Hospital, Gunma, Japan, 8Heart Valve Center, NYU Langone Health, New York City, NY, United States

Background: There is growing evidence of the safety of same-day discharge for low-risk conscious sedated TAVR patients. However, the evidence supporting the safety of early discharge following GA-TAVR with routine transesophageal echocardiography (TEE) is limited.

Aims: To assess the safety of early discharge following transcatheter aortic valve replacement (TAVR) using General Anesthesia (GA-TAVR) and identify predictors for patient selection.

Materials and methods: We used data from 2,447 TEE-guided GA-TAVR patients performed at Cedars-Sinai between 2016 and 2021. Patients were categorized into three groups based on the discharge time from admission: 24 h, 24–48 h, and >48 h. Predictors for 30-day outcomes (cumulative adverse events and death) were validated on a matched cohort of 24 h vs. >24 h using the bootstrap model.

Results: The >48 h group had significantly worse baseline cardiovascular profile, higher surgical risk, low functional status, and higher procedural complications than the 24 h and the 24–48 h groups. The rate of 30-day outcomes was significantly lower in the 24 h than the >48 h but did not differ from the 24–48 h (11.3 vs. 15.5 vs. 11.7%, p = 0.003 and p = 0.71, respectively). Independent poor prognostic factors of 30-day outcomes had a high STS risk of >8 (OR 1.90, 95% CI 1.30–2.77, E-value = 3.2, P < 0.001), low left ventricle ejection fraction of <30% (OR 6.0, 95% CI 3.96–9.10, E-value = 11.5,
Koren et al. 10.3389/fcvm.2022.1022018

Conclusion: Discharge within 24 h following GA-TAVR using TEE is safe for selected patients using our proposed validated predictors.

KEYWORDS
transcatheter aortic valve replacement, general anesthesia, conscious sedation, length of stay, early discharge, safety discharge, mortality, predictors

Introduction

Transcatheter aortic valve replacement (TAVR) has become the most common procedure in the United States for symptomatic aortic stenosis (AS) patients across all risk profiles (1–3). Technological advancements and utilization of pre-procedural imaging for planning continues to improve TAVR outcomes. The operator’s familiarity aids in minimizing procedural complications and improves patient care (4, 5).

Despite the maturity of TAVR, only minimal changes in the length of hospitalization (LOS) have been noted over the years, with a wide variation among national and international centers (6–8). Unplanned 30-day hospital readmissions were directly associated with longer LOS and adversely impacted patient outcomes and health care costs (9, 10). However, these studies were not randomized or used propensity matched comparisons and may be subject to bias.

Numerous clinical and multimodal pathways were designed over the years to identify true low-risk patients for earlier and safe discharge, addressing known late complications such as bleeding, conduction disturbance, and acute kidney injury (7, 11, 12). In recent times, studies have shown that same-day discharge following TAVR, with conscious sedation, can be safe in select patient populations (13).

We hypothesized that discharging transfemoral-TAVR (TF-TAVR) patients performed under general anesthesia (GA-TAVR) using transesophageal echocardiography within 24 h of admission is safe and feasible and doesn’t pose a higher risk for major adverse events.

The study aims to assess the safety of early discharge following GA-TAVR and proposes risk-assessment predictors that would optimize patient selection for GA-TAVR.

Materials and methods

Study cohort and patients’ selection

We conducted a single-center retrospective study of 2,736 consecutive patients, with severe symptomatic AS, who underwent TAVR at Cedars-Sinai Medical Center between January 2016 and December 2021. A consensus decision of the multidisciplinary cardiac team determined the indication of TAVR for all patients and the interventional team and attending physicians determined the time of discharge.

Exclusion criteria included death during hospitalization, canceled or aborted procedure, utilization of non-transfemoral access sites, incomplete medical records, and if lost to follow up. Patients discharged to a rehabilitation center, skilled nurse facilities, and hospice were not excluded from the study to ensure real-life data. We used the data of 2,447 eligible patients to formulate a predictors equation and validated it on the entire cohort (Figure 1).

The study was approved by the Cedars-Sinai medical center institutional review board (IRB), which also waived the requirement to obtain informed consent due to the study’s retrospective nature.

Definitions

Acute kidney injury, bleeding, vascular complications, and procedure-related complications were defined according to the updated Valve Academic Research Consortium-3 consensus document (VARC-3) (14). We defined procedure-related life-threatening complications to include any of the following adverse events: aortic valve annulus rupture, aortic dissection, cardiac arrest, cardiac tamponade, coronary obstruction, valve migration, conversion to open-heart surgery, major bleeding, and major vascular complications. We followed the valve academic research consortium-3 for the clinical outcome to include composite events of all-cause non-cardiac readmission, heart failure readmission, valve re-intervention, THV thrombosis, myocardial infarction, and unplanned
percutaneous coronary intervention (PCI), cerebrovascular accident (CVA)/transient ischemic attack (TIA), new-onset atrioventricular block and atrial arrhythmias, pacemaker implantation, major bleeding, and vascular complications, acute renal failure, infective endocarditis, and death (14).

Data collection

Demographic, procedural, and follow-up data were entered retrospectively by a dedicated team and extracted using the Cedars-Sinai electronic records systems (CS-link).

Statistical analysis

The data is presented as a number of patients and percentage (%) for categorical variables and a median (IQR, interquartile range) for continuous variables. Patient characteristics were compared among discharge times (<24 h, 24–48 h and >48 h) using a Kruskal-Wallis test, chi-square test or Fisher’s exact test as appropriate. Pairwise comparisons were further carried out to compare discharge <24 h with 24–48 h and >48 h, and family-wise error rate was adjusted for inflation due to multiple comparisons using the Bonferroni correction method.

Outcomes were reported as those occurring during the index hospitalization (“in-hospital”) and 30 days post discharge (“30-day”) as a means to prevent data analysis bias and emphasize each component of the outcome.

Univariate and multivariable analyses of discharge times (<24 h vs. 24–48 h, and <24 h vs. >48) and 30-day outcomes were performed using a logistic regression model. Covariates considered in multivariable analyses were chosen a priori including age, sex, body mass index (BMI), Society of Thoracic Surgeons (STS) risk score, Kansas City Cardiomyopathy Questionnaire (KCCQ), left ventricle ejection fraction (LVEF), severe mitral and tricuspid regurgitation, urgent procedure, bicuspid aortic valve, use of intra-aortic balloon pump (IABP), in-hospital complications, procedure-related life-threatening complications, the use of contrast volume, and hours of stay in the intensive cardiac care unit.

Variable selection was performed using a stepwise variable selection procedure based on Akaike Information Criterion (AIC) (15). The model with the minimum AIC was chosen for analysis in order to minimize the loss of information. A forward stepwise analysis was used and a probability entry threshold value of $p < 0.001$ was set for all variables. In multivariable analyses, multicollinearity was assessed by the variance inflation factor. The performance of the formulated predictors of 30-day outcomes was assessed with measures...

---

**FIGURE 1**

Central illustration.
Transcatheter Aortic valve replacement performed general anesthesia at Cedars-Sinai between 2016 to 2020

N=2736

Exclusion; n=289
Incomplete data records; N=32
Cancelled or aborted procedure; N=4
Lost to follow-up; N=24
In-hospital death; N=35 (1.2%)
Alternative access than transfemoral; N=194

N=2447

Discharge < 24 hours
N=837

< 24 vs. 24 – 48 h

Discharge within 24 – 48 hours
N=713

< 24 vs. > 48 h

Discharge > 48 hours
N=897

Inverse propensity treatment weighting using full matching and a ratio of one-to-one for ≤ 24h vs. > 24h

Unmatched population, n=1005
Discarded population, n=12

Included variables; Age, Sex, STS score, KCCQ and LVEF
Excluded variable; procedural complication

Discharged ≤24h (matched)
N=714

Discharged >24h (matched)
N=714

FIGURE 2
Study design.
### TABLE 1  Patient characteristics stratified by discharge time.

|                           | All patients (N = 2,447) | <24 h (A) (N = 837) | 24–48 h (B) (N = 713) | >48 h (C) (N = 897) | p-value  |
|---------------------------|--------------------------|---------------------|----------------------|---------------------|----------|
| **Overall**               |                          |                     |                      |                     |          |
| Age (years), median (IQR) | 81 (73–87)               | 79 (72–85)          | 82 (76–87)          | 82 (74–88)         | < 0.001  |
| Female Sex                | 928 (37.9)               | 284 (33.9)          | 281 (39.4)          | 363 (40.5)         | 0.01     |
| ADL index score, median (IQR) | 3.0 (2)                | 4.0 (2)             | 3.0 (3)             | 2.0 (2)            | < 0.001  |
| KCCQ score, median (IQR)  | 54 (34–73)               | 58 (40–77)          | 55 (36–75)          | 47 (29–66)         | < 0.001  |
| 5-min walk test (min), median (IQR) | 7.0 (6–8)            | 6.0 (6–8)           | 7.0 (6–8)           | 7.0 (6–9)          | < 0.001  |
| Albumin level (prior) g/dL, median (IQR) | 4.3 (3.7–4.3) | 4.1 (3.8–4.3)       | 4.1 (3.9–4.3)       | 3.8 (3.4–4.1)      | < 0.001  |
| BMI, median (IQR)         | 26 (23–30)               | 27 (24–31)          | 26 (24–30)          | 26 (23–30)         | < 0.001  |
| Hypertension              | 2,070 (84.6)             | 656 (78.4)          | 644 (90.3)          | 770 (85.8)         | < 0.001  |
| Hyperlipidemia            | 1,285 (52.5)             | 370 (44.2)          | 468 (65.6)          | 447 (49.8)         | < 0.001  |
| Diabetes Mellitus         | 545 (22.3)               | 149 (17.8)          | 162 (22.7)          | 234 (26.1)         | < 0.001  |
| Anemia                    | 143 (5.8)                | 23 (2.7)            | 21 (2.9)            | 99 (11.0)          | < 0.001  |
| Peripheral artery disease | 261 (10.7)               | 76 (9.1)            | 92 (12.9)           | 93 (10.4)          | 0.04     |
| CKD stage III or higher  | 312 (12.7)               | 61 (7.3)            | 93 (13.0)           | 158 (17.6)         | < 0.001  |
| Current dialysis          | 109 (4.4)                | 13 (1.5)            | 25 (3.5)            | 71 (7.9)           | < 0.001  |
| Chronic lung disease      | 321 (13.1)               | 91 (10.9)           | 96 (13.5)           | 134 (14.9)         | 0.03     |
| Coronary artery disease   | 1011 (41.3)              | 272 (32.5)          | 312 (43.8)          | 427 (47.6)         | < 0.001  |
| Myocardial infarction (prior) | 263 (10.7)             | 67 (8.0)            | 64 (9.0)            | 132 (14.7)         | < 0.001  |
| CABG (prior)              | 331 (13.5)               | 77 (9.2)            | 107 (15.0)          | 147 (16.4)         | < 0.001  |
| CVA/TIA (prior)           | 160 (6.5)                | 41 (4.9)            | 50 (7.0)            | 69 (7.7)           | 0.08     |
| Atrial fibrillation       | 570 (23.3)               | 143 (17.1)          | 189 (26.5)          | 238 (26.5)         | < 0.001  |
| RBBB or LBBB             | 307 (12.5)               | 72 (8.6)            | 100 (14.0)          | 135 (15.0)         | < 0.001  |
| Pacemaker implantation (prior) | 271 (11.1)            | 87 (10.4)           | 80 (11.2)           | 104 (11.6)         | 0.61     |
| HF Exacerbation in last two weeks | 1,845 (75.4)   | 563 (67.3)          | 540 (75.7)          | 742 (82.7)         | < 0.001  |
| NYHA class                |                          |                     |                      |                     | < 0.001  |
| 1                         | 21 (0.9)                 | 14 (1.7)            | 6 (0.9)             | 1 (0.1)            |          |
| 2                         | 309 (12.6)               | 161 (19.2)          | 71 (10.0)           | 77 (8.6)           |          |
| 3                         | 1,491 (60.9)             | 474 (56.6)          | 502 (70.4)          | 515 (57.4)         |          |
| 4                         | 626 (25.6)               | 188 (22.5)          | 134 (18.8)          | 304 (33.9)         |          |
| Balloon-expandable THV    | 1,985 (81.1)             | 748 (89.4)          | 560 (78.5)          | 677 (75.5)         | < 0.001  |
| Use of large THV          | 585 (23.9)               | 200 (23.9)          | 176 (24)            | 209 (23.3)         | 0.81     |
| Bicuspid aortic valve     | 214 (8.7)                | 132 (15.8)          | 32 (4.5)            | 50 (5.6)           | < 0.001  |
| Concomitant severe MR     | 109 (4.4)                | 17 (2.0)            | 16 (2.2)            | 76 (8.5)           | < 0.001  |
| Concomitant severe TR     | 122 (5.0)                | 23 (2.7)            | 21 (2.9)            | 78 (8.7)           | < 0.001  |
| High level (prior), g/dL, median (IQR) | 12.3 (10.9–13.6) | 12.9 (11.5–13.1)   | 12.7 (11.3–13.8)   | 11.5 (10.0–12.8)  | < 0.001  |
| STS score, median (IQR)   | 4 (2–6)                  | 3 (2–5)             | 4 (2–6)             | 5 (3–10)           | < 0.001  |
| LV EF (%), median (IQR)   | 60 (51–65)               | 62 (56–66)          | 60 (55–66)          | 57 (40–64)         | < 0.001  |
| AV area (mm²), median (IQR) | 0.7 (0.6–0.8)         | 0.7 (0.6–0.9)       | 0.7 (0.6–0.9)       | 0.7 (0.6–0.8)      | 0.01     |
| AV peak gradient, median (IQR) | 70 (63–81)          | 70 (64–80)          | 71 (64–81)          | 71 (61–82)         | 0.781    |
| Coronary calcium score, median (IQR) | 531 (289–1,424) | 503 (255.5)        | 568 (307–1,710)    | 0.001              |
| AV calcium score, median (IQR) | 1,725 (660–2,892)      | 1,597 (553–2,664)  | 1,847 (782–3,180)  | 1,721 (702–2,990)  | 0.01     |
| Urgent TAVR               | 339 (13.8)               | 97 (11.6)           | 99 (13.9)           | 143 (15.9)         | 0.03     |
| Use of IABP device during the procedure | 17 (0.7)                | 11 (1.31)           | 3 (0.42)            | 3 (0.33)           | 0.03     |
| Percutaneous suture closure device | 2,379 (97.2) | 811 (96.9)        | 697 (97.7)          | 871 (97.1)         | 0.46     |

(Continued)
of discrimination and calibration (16). Discrimination was assessed with a receiver operating characteristic (ROC) curve along with the area under the ROC curve (AUC, c-statistic). The calibration of the formulated predictors was evaluated with calibration-in-the-large, and the calibration slope proposed by Harrell (17). Internal validation was performed by estimating and correcting possible overfitting and optimism in the predictors performance estimates (e.g., optimism-corrected c-statistic) using the bootstrap method with 1,000 replicates (18–20).

To address confounding caused by differing baseline patient characteristics, we adopted the inverse propensity treatment weighting (IPTW) using propensity score–based matching (PSM) and a greedy matching strategy with full matching in a one-to-one ratio including statistically significant variables from the logistic regression model and non-significant variables that might be related to unrecorded selection factors adopted from a parsimonious model (21, 22). The covariates included in the IPTW were age, sex, STS score, KCCQ performance and LVEF.

All statistical analyses were performed using SAS 9.4 (SAS Institute, Inc., Cary, North Carolina) and R package version 4.0.5 (23) with two-sided tests at a significance level of 0.05.

Results

Study population

We used the data of 2,736 TAVR patients at Cedars-Sinai medical center from 2016 to December 2021. Patients were eligible for the study if they were 18 years of age and older, had TAVR using general anesthesia, and used a new generation of commercial balloon-expanding and self-expandable valves.

We excluded 32 patients due to incomplete records, 4 patients due to procedure cancelation or abortion, and 24 patients who were lost to follow-up at their 30-day postoperative visit. We also excluded 35 (1.2%) patients who died during hospitalization and 194 patients who underwent non-transfemoral TAVR. TAVR was guided by transesophageal echocardiography (TEE) under general anesthesia in all patients.

Among 2,447 eligible patients, 837 patients were discharged within 24 h of admission (“24 h” group), 713 patients were discharged within 24–48 h (“24–48 h” group), and 897 patients were discharged after 48 h (“>48 h” group). Data from eligible patients was used to formulate predictors for patients selection and further validated using the bootstrap technique (Figures 1, 2).

Patients baseline characteristics

24 h group vs. >48 h group

Complete baseline characteristics are shown in Table 1. The 24 h group was significantly younger (79 vs. 82 years, \( p < 0.001 \)), compromised of fewer females (34 vs. 40%, \( p = 0.005 \)), more commonly demonstrated bicuspid aortic valve morphology (15.8 vs. 5.6%, \( p < 0.001 \)), and had a lower rate of comorbidities including hypertension, hyperlipidemia, diabetes mellitus, peripheral artery disease (PAD), anemia, chronic kidney disease, chronic lung disease, coronary artery disease, CVA, and TIA (significant \( p \)-value for all).
| In hospital complications                          | All patients (N = 2,447) | ≤24 h (A) (N = 837) | 24–48 h (B) (N = 713) | >48 h (C) (N = 897) | p-value |
|---------------------------------------------------|-------------------------|---------------------|----------------------|---------------------|---------|
| Procedure-related complications                   | 259 (10.6)              | 59 (7.0)            | 65 (9.2)             | 135 (15.0)          | < 0.001 |
| Procedure-related life-threatening complications  | 57 (2.3)                | 12 (1.4)            | 7 (1.0)              | 38 (4.2)            | 0.001   |
| AV rupture or Aortic dissection                   | 3 (0.1)                 | 0 (0)               | 3 (0.4)              | 0 (0)               | 0.025   |
| Valve migration                                   | 6 (0.2)                 | 1 (0.1)             | 1 (0.1)              | 4 (0.4)             | 0.391   |
| Conversion to open heart surgery                  | 5 (0.2)                 | 0 (0)               | 3 (0.4)              | 0 (0)               | 0.025   |
| Coronary occlusion                                | 9 (0.4)                 | 1 (0.1)             | 1 (0.1)              | 4 (0.4)             | 0.109   |
| Unplanned PCI                                     | 20 (0.8)                | 1 (0.1)             | 7 (1.0)              | 13 (1.4)            | 0.003   |
| CV A or TIA                                       | 33 (1.3)                | 1 (0.1)             | 2 (0.3)              | 30 (3.0)            | < 0.001 |
| Complete heart block                              | 40 (1.6)                | 2 (0.3)             | 8 (1.1)              | 30 (3.3)            | < 0.001 |
| Pacemaker or ICD implantation                     | 147 (6.0)               | 41 (4.9)            | 40 (5.6)             | 66 (7.3)            | 0.052   |
| Major bleeding                                    | 15 (0.6)                | 7 (0.8)             | 2 (0.3)              | 6 (0.7)             | 0.100   |
| Minor vascular complications                     | 54 (2.2)                | 12 (1.4)            | 10 (1.4)             | 32 (3.6)            | < 0.001 |
| Major vascular complications                      | 22 (0.9)                | 1 (0.1)             | 3 (0.4)              | 18 (2.0)            | < 0.001 |
| Aortic regurgitation ≥ 2                            | 5 (0.2)                 | 1 (0.1)             | 1 (0.1)              | 3 (0.3)             | 0.635   |
| Paravalvular leakage ≥ 2                           | 7 (0.3)                 | 0 (0)               | 2 (0.3)              | 5 (0.6)             | 0.100   |
| 30-day outcome                                    |                         |                     |                      |                     |         |
| All cause re-admission                            | 34 (1.4)                | 7 (0.8)             | 7 (1.0)              | 20 (2.2)            | 0.03    |
| Heart failure readmission                         | 9 (0.4)                 | 4 (0.5)             | 1 (0.1)              | 4 (0.4)             | 0.491   |
| Valve re-intervention                             | 4 (0.2)                 | 3 (0.4)             | 0 (0)                | 1 (0.1)             | 0.21    |
| Device thrombosis                                 | 15 (0.6)                | 3 (0.4)             | 7 (1.0)              | 5 (0.6)             | 0.23    |
| Myocardial infarction/unplanned PCI              | 6 (0.2)                 | 0 (0)               | 2 (0.3)              | 4 (0.4)             | 0.14    |
| CV A or TIA                                       | 7 (0.3)                 | 3 (0.4)             | 1 (0.1)              | 3 (0.3)             | 0.72    |
| Heart block or new onset atrial arrhythmia       | 8 (0.3)                 | 2 (0.2)             | 3 (0.4)              | 3 (0.3)             | 0.91    |
| Pacemaker implantation                            | 209 (8.5)               | 66 (7.9)            | 59 (8.3)             | 84 (9.4)            | 0.60    |
| Major bleeding                                    | 6 (0.2)                 | 0 (0)               | 1 (0.1)              | 5 (0.6)             | 0.04    |
| Acute renal failure                               | 15 (0.6)                | 5 (0.6)             | 1 (0.1)              | 9 (1)               | 0.09    |
| Major vascular complications                      | 3 (0.1)                 | 1 (0.1)             | 1 (0.1)              | 1 (0.1)             | 0.99    |
| Infective endocarditis                            | 2 (0.1)                 | 1 (0.1)             | 1 (0.1)              | 0 (0)               | 0.53    |
| Cumulative events                                 | 318 (13.0)              | 95 (11.3)           | 84 (11.7)            | 139 (15.5)          | 0.04    |
| Death                                             | 21 (0.9)                | 1 (0.1)             | 1 (0.1)              | 19 (2.1)            | < 0.001 |
| Outcome (cumulative event or death)               | 457 (18.7)              | 133 (15.9)          | 118 (16.5)           | 207 (23.1)          | < 0.001 |

*AV: aortic valve; PCI: percutaneous aortic valve implantation; CV A/TIA: cerebrovascular accident/Transient ischemic attack; ICD: implanted cardioverter defibrillator.

**Procedure-related life-threatening complications:** AV annulus rupture, aortic dissection, cardiac arrest, cardiac tamponade, coronary obstruction, valve migration, conversion to open heart surgery, major bleeding, major vascular complications.

ÖExcluding the below adverse events. *Bonferroni adjusted p-values.

The >48 h group comprised of more patients with high surgical risk (STS ≥ 8), low KCCQ (KCCQ < 50), low mean LVEF (57 vs. 62%, p < 0.001), and severe mitral and tricuspid regurgitation (p < 0.001 for both). Furthermore, the >48 h group more often required the use of an intra-aortic balloon pump (IABP) (1.3 vs. 0.3%, p = 0.04), exhibited longer procedure and fluoroscopy times, and used more contrast volume (p < 0.001, p = 0.08, p < 0.001, respectively).

The 24–48 h group shares baseline characteristics of both groups and includes older patients, including more females, higher rates of comorbidities, higher surgical risk, and lower KCCQ score than the 24 h group, however less pronounced when compared to >48 h group (Table 1).
TABLE 3  Univariate and multivariable analyses of discharge within 24 h (vs. 24–48 h).

| Variable                              | N     | Discharge within 24 h vs. 24–48 h Univariate | Discharge within 24 h vs. 24–48 h Multivariable |
|---------------------------------------|-------|---------------------------------------------|---------------------------------------------|
|                                       |       | Odds ratio (95% CI)                          | P-value                                    |
|                                       |       | Odds ratio (95% CI)                          | P-value                                    |
| Age (years)                           | 1,529 | 0.97 (0.96–0.98)                             | < 0.001                                    |
|                                       |       | 0.98 (0.97–0.99)                             | < 0.001                                    |
| Male sex                              | 974   | 1.29 (1.04–1.59)                             | 0.02                                       |
|                                       |       | 1.22 (0.98–1.52)                             | 0.07                                       |
| Body mass index                       | 1,529 | 1.00 (0.98–1.02)                             | 0.88                                       |
|                                       |       | 0.98 (0.97–0.99)                             | < 0.001                                    |
| STS score ≥ 8                         | 129   | 1.08 (0.75–1.55)                             | 0.69                                       |
|                                       |       | 0.69 (0.46–1.03)                             | < 0.001                                    |
| KCCQ score < 50                       | 593   | 0.82 (0.67–1.02)                             | 0.07                                       |
|                                       |       | 0.82 (0.67–1.02)                             | 0.07                                       |
| LVEF < 30%                            | 54    | 1.28 (0.74–2.23)                             | 0.38                                       |
|                                       |       | 1.30 (0.75–2.23)                             | < 0.001                                    |
| Severe mitral regurgitation           | 32    | 0.90 (0.45–1.80)                             | 0.77                                       |
|                                       |       | 0.90 (0.45–1.80)                             | < 0.001                                    |
| Severe tricuspid regurgitation        | 43    | 0.92 (0.50–1.68)                             | 0.77                                       |
|                                       |       | 0.92 (0.50–1.68)                             | < 0.001                                    |
| Urgent procedure                     | 191   | 0.79 (0.58–1.07)                             | 0.12                                       |
|                                       |       | 0.79 (0.58–1.07)                             | < 0.001                                    |
| Bicuspid aortic valve                | 160   | 3.98 (2.65–5.92)                             | < 0.001                                    |
|                                       |       | 3.60 (2.38–5.42)                             | < 0.001                                    |
| Use of intra-aortic balloon pump      | 11    | 2.34 (0.62–8.84)                             | 0.21                                       |
|                                       |       | 2.34 (0.62–8.84)                             | < 0.001                                    |
| Contrast volume (ml) used            | 1,527 | 0.97 (0.94–1.00)                             | 0.02                                       |
|                                       |       | 0.97 (0.94–1.00)                             | < 0.001                                    |
| ICU length-of-stay                    | 1,529 | 0.99 (0.95–1.02)                             | 0.49                                       |
|                                       |       | 0.99 (0.95–1.02)                             | < 0.001                                    |
| Procedure-related complications      | 48    | 0.28 (0.14–0.54)                             | 0.05                                       |
|                                       |       | 0.33 (0.16–0.65)                             | 0.001                                      |
| Procedure-related life-threatening complications  | 8     | 0.12 (0.02–1.01)                             | ψ                                          |
|                                       |       | 0.12 (0.02–1.01)                             | < 0.001                                    |
| STS, society of thoracic surgeon; KCCQ, Kansas city cardiomyopathy questionnaire; LVEF, left ventricular ejection fraction. 1,527 observations were used in the multivariable analysis.  
Dropped out of the analysis.

TABLE 4  Univariate and multivariable analyses of discharge within 24 h (vs. >48 h).

| Variable                              | N     | Discharge within 24 h vs. >48 h Univariate | Discharge within 24 h vs. >48 h Multivariable |
|---------------------------------------|-------|---------------------------------------------|---------------------------------------------|
|                                       |       | Odds ratio (95% CI)                          | P-value                                    |
|                                       |       | Odds ratio (95% CI)                          | P-value                                    |
| Age (years)                           | 1,709 | 0.98 (0.97–0.99)                             | < 0.001                                    |
|                                       |       | 0.98 (0.97–0.99)                             | < 0.001                                    |
| Male sex                              | 1,072 | 1.35 (1.11–1.65)                             | 0.003                                       |
|                                       |       | 1.35 (1.11–1.65)                             | < 0.001                                    |
| Body mass index                       | 1,709 | 1.03 (1.01–1.04)                             | 0.003                                       |
|                                       |       | 1.03 (1.01–1.04)                             | < 0.001                                    |
| STS score ≥ 8                         | 359   | 0.20 (0.15–0.27)                             | < 0.001                                    |
|                                       |       | 0.20 (0.15–0.27)                             | < 0.001                                    |
| KCCQ score < 50                       | 709   | 0.50 (0.41–0.61)                             | < 0.001                                    |
|                                       |       | 0.50 (0.41–0.61)                             | < 0.001                                    |
| LVEF < 30%                            | 150   | 0.27 (0.18–0.40)                             | < 0.001                                    |
|                                       |       | 0.27 (0.18–0.40)                             | < 0.001                                    |
| Severe mitral regurgitation           | 92    | 0.22 (0.12–0.37)                             | < 0.001                                    |
|                                       |       | 0.22 (0.12–0.37)                             | < 0.001                                    |
| Severe tricuspid regurgitation        | 100   | 0.29 (0.18–0.47)                             | < 0.001                                    |
|                                       |       | 0.29 (0.18–0.47)                             | < 0.001                                    |
| Urgent procedure                     | 232   | 0.68 (0.52–0.91)                             | 0.01                                       |
|                                       |       | 0.68 (0.52–0.91)                             | < 0.001                                    |
| Bicuspid aortic valve                | 177   | 3.20 (2.27–4.52)                             | < 0.001                                    |
|                                       |       | 3.20 (2.27–4.52)                             | < 0.001                                    |
| Use of intra-aortic balloon pump      | 11    | 2.93 (0.78–11.08)                            | < 0.001                                    |
|                                       |       | 2.93 (0.78–11.08)                            | < 0.001                                    |
| Contrast volume (ml) used            | 1,705 | 0.93 (0.91–0.95)                             | < 0.001                                    |
|                                       |       | 0.93 (0.91–0.95)                             | < 0.001                                    |
| ICU length-of-stay                    | 1,709 | 0.98 (0.95–1.02)                             | 0.26                                       |
|                                       |       | 0.98 (0.95–1.02)                             | < 0.001                                    |
| Procedure-related complications      | 157   | 0.26 (0.17–0.38)                             | < 0.001                                    |
|                                       |       | 0.26 (0.17–0.38)                             | < 0.001                                    |
| Procedure-related life-threatening complications  | 50    | 0.33 (0.17–0.63)                             | < 0.001                                    |
|                                       |       | 0.33 (0.17–0.63)                             | < 0.001                                    |
| STS, society of thoracic surgeon; KCCQ, Kansas city cardiomyopathy questionnaire; LVEF, left ventricular ejection fraction. 1,553 observations were used in the multivariable analysis.  
Dropped out of the analysis.
TABLE 5 Univariate and multivariable analyses of 30-day outcome.

| Variable                        | N  | 30-day outcomeUnivariate | 30-day outcomeMultivariable |
|---------------------------------|----|--------------------------|----------------------------|
|                                 |    | Odds ratio (95% CI)      | P-value                    | Odds ratio (95% CI)      | P-value                    |
| Discharge                       |    |                          |                            |                            |
| ≤24 h                           | 816| 0.17 (0.10–0.27)         | < 0.001                    | 0.26 (0.16–0.43)          | < 0.001                    |
| 24–48 h                         | 713| 0.20 (0.13–0.32)         | < 0.001                    | 0.32 (0.19–0.52)          | < 0.001                    |
| >48 h                           | 893| 1 (Reference)            |                            | 1 (Reference)             |                            |
| Age (years)                     |    |                          |                            |                            |
| Male sex                        | 1504| 0.74 (0.54–1.02)         | 0.06                       | 0.72 (0.50–1.02)          | 0.06                       |
| Body mass index                 | 2422| 0.99 (0.96–1.02)         | 0.35                       |                            |                            |
| STS score ≥8                    | 417| 4.49 (3.24–6.22)         | < 0.001                    | 1.90 (1.30–2.77)          | < 0.001                    |
| KCCQ score < 50                 | 1002| 1.97 (1.41–2.75)         | < 0.001                    |                            |                            |
| LVEF < 30%                      | 172| 9.39                     | < 0.001                    | 6.00 (3.96–9.10)          | < 0.001                    |
|                                |    | (6.49–13.62)             |                            |                            |                            |
| Severe mitral regurgitation     | 108| 3.37                     | < 0.001                    |                            |                            |
| Severe tricuspid regurgitation  | 121| 3.76                     | < 0.001                    |                            |                            |
| Urgent procedure                | 331| 2.22                     | < 0.001                    |                            |                            |
| Bicuspid aortic valve           | 209| 0.45                     | 0.04                       |                            |                            |
| Use of intra-aortic balloon pump| 14 | 2.29                     | 0.28                       |                            |                            |
|                                |    | (0.51–10.34)             |                            |                            |                            |
| Contrast volume (ml) used       | 2,418| 1.07                     | 0.001                      |                            |                            |
| ICU length-of-stay              | 2,442| 1.02                     | 0.06                       |                            |                            |
| Procedure-related complications | 168| 2.48                     | 0.001                      |                            |                            |
| Procedure-related life-threatening complications | 44 | 3.64 (1.72–7.70) | < 0.001 | 2.65 (1.20–5.89) | 0.04 |

STS, society of thoracic surgeon; KCCQ, Kansas city cardiomyopathy questionnaire; LVEF, left ventricular ejection fraction. 2,447 observations were used in the multivariable analysis.

Procedure-related outcome

In-hospital complications and procedure-related life-threatening complications occurred more in the >48 h group (15.0 vs. 7.0%, and 4.2 vs. 1.4%, p < 0.001 and p = 0.001) than in the 24 h group mostly to a higher rate of unplanned percutaneous coronary intervention (PCI) (1.4 vs. 0%, p = 0.001), CVA or TIA (3.0 vs. 0.1%, p = 0.001), complete atrioventricular heart block (CAVB) (3.3 vs. 0.2%, p < 0.001), pacemaker implantation (7.3 vs. 4.9%, p = 0.04) and major vascular complications (2.0 vs. 0.1%, p < 0.001) (Table 2).

Thirty-day outcome (death and 30-day cumulative adverse events)

Despite the higher risk profile and in-hospital complication rates within the 24–48 h group, the 30-day outcomes did not differ significantly when compared to the 24 h group (11.7 vs. 11.3%, p = 0.9) (Table 2). Young males with bicuspid valves who had minimal use of contrast volume and no procedural-related complications were more likely to be discharged within 24 h than 24–48 h (Table 3). The >48 h had a significantly higher rate of 30-day death (2.1 vs. 0.1%, p < 0.001) and cumulative adverse events when compared to the 24 h (15.4 vs. 11.3%, p = 0.03). Non-bicuspid patients with low BMI, high surgical risk (STS ≥ 8), a low KCCQ score (<50), low LVEF, and severe mitral regurgitation that had procedure-related complications, were more likely to be discharged more than 48 h after the procedure (Table 4).

Predictors for outcome

Our study shows that independent poor prognostic factors of 30-day outcomes were discharge time (OR 0.26, 95% CI 0.16–0.43, E-value = 7.15, P = < 0.001 for discharge within 24 h), high surgical risk ≥8 (OR 1.90, 95% CI 1.30–2.77, E-value = 3.21, P = < 0.001), low LVEF < 30 (OR 6.00, 95% CI 3.96–9.10, E-value = 11.48, P = < 0.001), and procedure-related life-threatening complications (OR 2.65, 95% CI 1.20–5.89, E-value = 4.74, P = 0.04). Although the associations were not statistically significant, the female gender shows an association with a 30-day outcome (OR 0.72, 95% CI 0.50–1.02, P = 0.06) (Table 5 and Figure 3). A probability formula with a 30-day outcome using the significant predictors demonstrated a good ability to discriminate between those with and without a 30-day outcome (apparent area under the curve: 0.80; 95% CI: 0.77–0.83) (Figure 3). The internal validation by the bootstrapping method on entire cohort study showed an AUC (optimism-corrected AUC) of 0.78 (95% CI 0.75–0.81), which is slightly lower than the apparent AUC as expected and is well calibrated.
FIGURE 3
Significant predictors for 30-day outcomes.

| Variable                                      | Odds Ratio (95% CI) |
|-----------------------------------------------|---------------------|
| Discharge (versus >48 hours)                  | 0.26 (0.16-0.43)    |
| < 24 hours                                    | 0.32 (0.19-0.52)    |
| 24-48 hours                                   | 0.72 (0.50-1.02)    |
| Male (versus Female)                          | 1.90 (1.30-2.77)    |
| STS >=8 (versus <8)                           | 6.00 (3.96-9.10)    |
| LVEF < 30 (versus >=30)                       | 2.65 (1.20-5.89)    |
| In-hospital life threatening complications     |                     |

FIGURE 4
Receiver Operating Characteristic (ROC) curve along with the Area Under the ROC curve (AUC) for the model predicting 30-day outcome.

TABLE 6 Performance of the formulated predictors of 30-day outcome.

| Discrimination | Calibration |
|----------------|-------------|
| Apartment AUC (95 CI%) | Optimism-corrected AUC (95% CI) * | Optimism-corrected Calibration-in-the-large * | Optimism-corrected Calibration slope * |
| 0.80 (0.77, 0.87) | 0.80 (0.76, 0.84) | —0.06 | 0.97 |

*Internal validation by the bootstrap method.
### TABLE 7 Multivariable logistic regression of 30-day cumulative outcome after IPTW adjustment for patients discharge within 24 h and more than 24 h.

| Variable                        | N   | 30-day Cumulative Outcome of 24 h vs. > 24 h Multivariable analysis |
|---------------------------------|-----|---------------------------------------------------------------------|
|                                 |     | Odds Ratio (95% CI)                                                 | P-value |
| Age (years)                     | 1,428 | 1.08 (0.67–1.75)                                                 | 0.750    |
| Female sex                      | 513  | 1.157 (0.69–1.92)                                                | 0.054    |
| STS score ≥ 8                   | 134  | 2.18 (1.19–4.01)                                                 | 0.012    |
| KCCQ score < 50                 | 522  | 1.74 (1.07–2.85)                                                 | 0.026    |
| LVEF < 30%                      | 58   | 8.80 (4.67–16.61)                                                | < 0.0001 |
| Discharge group (24 h vs. > 24 h)| 1,428 | 0.97 (0.84–1.14)                                                 | 0.132    |

STS, society of thoracic surgeon; KCCQ, Kansas city cardiomyopathy questionnaire; LVEF, left ventricular ejection fraction. 1,428 observations were used in the multivariable analysis.

Hosmer and Lemeshow test p-value = 0.908.

---

**Inverse probability treatment weighting (IPTW)**

We balanced age, sex, STS score, KCCQ performance score and LVEF in a full inverse probability treatment weighting (IPTW) using propensity matching (Figure 4). The matched cohort included 1,428 patients, 714 patients discharged within 24 h, and 714 after 24 h. A total of 1,017 patients were unmatched or discarded from the analysis. We excluded procedural complications from the logistics regression analysis to address the possibility of selection bias for early discharge and to adhere as much as possible to a prospective methodology reflecting real-life.

![Graph](image-url)
In a matched population, an STS score of $\geq 8$, LVEF of $<30\%$, and KCCQ of $>50$ remain statistically significant poor prognostic predictors for 30-day cumulative outcomes of adverse events and death regardless of the discharge time (OR 2.18, OR 8.80, OR 1.74, $p = 0.012$, $p < 0.001$, $p = 0.02$, respectively). While age was not correlated with 30-day outcomes, females showed a non-significant strong association (OR 1.15, 95% CI 0.69–1.92, $P = 0.05$) (Table 7).

### Discussion

Our study is the largest scale study known to address the safety and the feasibility of early discharge for TAVR patients under general anesthesia. We compared the outcomes of 837 patients discharged within 24 h of admission to 713 patients discharged within 24–48 h to 897 patients discharged after 48 h. The day of discharge is intuitive and involves numerous factors, both subjective, such as patient's frailty and social support, and objective. Our study offers a validated tool for patient selection in borderline cases and illustrates that select patients can be discharged within 24 h of GA-TAVR without increasing the risk of adverse events.

The length of hospitalization following TAVR has dramatically evolved over the years (Figure 5) primarily due to increased operator ability as well as technological improvements of valves and delivery systems (7). Efficient hospital turnover is critical in today's healthcare environment, especially in light of the healthcare burdens that have risen from the COVID-19 pandemic (24, 25).

### General anesthesia vs. conscious sedation

The majority of TAVR procedures were initially performed using general anesthesia to aid in intraprocedural TEE for accurate assessment of annular dimensions, valve deployment, and paravalvular leak (PVL), minimizing patient's movement and immediate response following life-threatening complications such as cardiac tamponade, annulus rupture, aortic dissection, and valve migrations (26–28). Recent data from TAVR registries indicate that CS shares a similar outcome of all-cause mortality, stroke, myocardial infarction, infection, and acute kidney injury at 30 days with an advantage of shorter procedure time, shorter hospital stay, and lower costs (29, 30). Despite the ongoing trend, the use of GA is still performed in 33–63% of all TAVRs, with a wide variation across North America and Europe (31). In a French registry study from 2011, GA was used in 41% of patients, and in a German registry, the use of CS was reported to vary from 26 to 68% of patients, depending on the center's experience (32–34).

Our medical center uses general anesthesia and TEE as routine practice for all TAVR patients. TAVR is primarily performed in a hybrid operating room with a dedicated team of anesthesiologists and echocardiologists. The patients are intubated close to the time of the procedure and sedated using short-acting medication. After an uncomplicated TAVR, the patients are transferred directly to the post-anesthesia cardiac unit (PACU) for early extubating and 4–6 h of
complete bed rest followed by mobilization 2–4 h later. Fully recovered and functioning patients with non-major complicated TAVR and no postprocedural adverse events such as atrioventricular block, atrial arrhythmias, hemodynamic instability, or chest pain, stay for overnight observation and are discharged early the following day after they undergo routine post-operative testing which includes transthoracic echocardiography study, resting ECG, renal function tests and complete blood count. The patients are monitored during their entire stay in the hospital.

### Thirty-day outcome predictors and general anesthesia

The use of general anesthesia may be associated with a higher rate of adverse events and mortality in patients with comorbidities such as sleep apnea, chronic lung disease, illicit drug abuse, the use of supplementary home oxygen, and low cardiac ejection fraction (35, 36), which is incorporated in the STS score. To overcome it, we analyzed each component separately and found no interaction with the use of general anesthesia. Our study’s incidence of procedural-related life-threatening complications was not higher than reported in conscious sedation cohorts. We believe that these complications will probably result in longer LOH regardless of general anesthesia (36).

### Same-day discharge

There is growing evidence that selected low-risk TAVR patients can be safely discharged as early as the same day (37–41). In a recent publication by Krishnaswamy et al., regarding the feasibility and safety of same-day discharge, the time of initiating the TAVR had the highest odds ratio for the outcome (40). GA-TAVR patients require a careful pre-anesthesia evaluation and a relative prolonged postprocedural care than CS patients (41).

### Study limitation

The study is retrospective and based on data collections of patients’ electronic records and the 30-day outcome measures. The decision on exact discharge time may be affected by subjective factors such as social support and the patients frailty, which could not be thoroughly assessed using our study methodology. However, this was addressed by accounting for objective variables such as baseline comorbidities, related procedural characteristics, lab results, and the KCCQ, which is a performance scale model that, which integrates subjective assessment and subjective Variables as the Katz index of independence in activities of daily living which was validated in TAVR patients (42, 43). Moreover, we used a large sample size, three different comparison groups, and a multivariable strong statistical analysis and matching methods to avoid major bias in patient selection.

TAVR has changed dramatically over the past decade. With multiple commercially available valves and improvement in the delivery systems profiles, which have reduced procedural length and complications rates, patient safety has been enhanced (44–48). Our study included patients who underwent TAVR with new generation valves and delivery systems to reflect current day practices. However, our medical center utilizes balloon-expandable valves at a higher rate than self-expanding devices, which may decrease the external validity of our study (44, 45).

Length of stay (LOH) was affected during the late 2019 COVID outbreak and therefore necessitated rapid turnover and early discharge. This may impact our results, as other studies have previously reported (24, 25). We addressed it by including data from patients who underwent TAVR before and after the pandemic, as well as by including, and an intermediate discharge group of 24–48 h. This help to avoiding overlapping results. Furthermore, we demonstrate that the trend of minimizing LOS was initiated much before the pandemic, as we demonstrate.

We used propensity-score matching to compare patient population discharged at time points < and >24 h. It should be noted, however, that there were differences, particularly with the cohort discharged >48 h, that may have affected of our data. This included the baseline characteristics and higher rate of peri-procedural complications during the index hospitalization of those discharged at later time points.

Nevertheless procedural complications was not included in the logistics regression analysis to address the possibility of selection bias for early discharge and to adhere as much as possible to a prospective methodology reflecting real-life.

Our medical records are exposed to patients hospitalized only at Cedar’s networks and may therefore underestimate the true rehospitalization rate. However, the vast majority of patients (98%) attended the 30-day clinical visit and were interviewed by dedicated physicians and nurses to minimize the risk of missing information.

### Conclusion

Our study shows that independent poor predictors for a 30-day outcome with correlation to discharge time were high surgical risk, low KCCQ score, low LVEF, and life-threatening in-hospital complications.
Our formulated predictors were tested and validated using the entire study population and they demonstrated an ability to identify patients at risk of 30-day adverse events.

The trend of an optimized length of stay should cover all treatment protocols using general anesthesia and balance the need for a proper and safe post-procedural care such as a complete echocardiography study, a blood test for renal function, an ECG, and a clinical follow-up following re-mobilization.

Data availability statement

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

Author contributions

OK, VP, HJ, and RM conceptual the hypothesis, validated the results, and supervised all processes of the manuscript. EN, RN, TN, AS, SN, SK, ZA, AB, and AD assist in data collection, statistical analysis, and the final writing. MN and WC provided a detailed review and helped in the last draft. All authors contributed to the article and approved the submitted version.

References

1. Smith CR, Leon MB, Mack MJ, Miller DC, Moses JW, Svensson LG, et al. PARTNER Trial Investigators. Transcatheter versus surgical aortic-valve replacement in high-risk patients. N Engl J Med. (2011) 364:2187–98. doi: 10.1056/NEJMoa1009766

2. Leon MB, Smith CR, Mack MJ, Makkar RR, Svensson LG, Kodali SK, et al. PARTNER 2 investigators. transcatheter or surgical aortic-valve replacement in intermediate-risk patients. N Engl J Med. (2016) 374: 1609–20.

3. Mack MJ, Leon MB, Thourani VH, Makkar R, Kodali SK, Russo M, et al. PARTNER 3 investigators. transcatheter aortic-valve replacement with a balloon-expandable valve in low-risk patients. N Engl J Med. (2019) 380:1695–705. doi: 10.1056/NEJMoa1814052

4. Holmes DR Jr, Brennan JM, Rumsfeld JS, Dai D, O’Brien SM, Vemulapalli S, et al. STS/ACC TVT Registry. Clinical outcomes at 1 year following transcatheter aortic valve replacement. JAMA. (2015) 313:1019–28. doi: 10.1001/jama.2015.1474

5. Makkar RR, Thourani VH, Mack MJ, Kodali SK, Kapadia S, Webb JG, et al. PARTNER 2 investigators. five-year outcomes of transcatheter or surgical aortic-valve replacement. N Engl J Med. (2020) 382:799–809. doi: 10.1056/NEJMoa1910555

6. Arozoo, S, Strassle PD, Kolte D, Ramm CJ, Falk K, Jack G, et al. Length of stay and discharge disposition after transcatheter versus surgical aortic valve replacement in the United States. Circ Cardiovasc Interv. (2018) 11 e006929. doi: 10.1161/CIRCINTERVENTIONS.118.006929

7. Wayangankar SA, Eligegy HJ, Xiang Q, Inetid H, Vemulapalli S, Khachatryan N, et al. Length of stay after transfemoral transcatheter aortic valve replacement: an analysis of the society of thoracic surgeons/American college of cardiology transcatheter valve therapy registry. JACC Cardiovasc Interv. (2019) 12:422–30. doi: 10.1016/j.jcin.2018.11.015

8. Kolte D, Kennedy K, Wasfy JH, Jena AB, Elmehsari S. Hospital variation in 30-day readmissions following transcatheter aortic valve replacement. J Am Heart Assoc. (2021) 10:e021350. doi: 10.1161/JAHA.120.021350

9. Kolte D, Khera S, Sardar MR, Gheewala N, Gupta T, Chatterjee S, et al. Thirty-day readmissions after transcatheter aortic valve replacement in the united states: insights from the nationwide readmissions database. Circ Cardiovasc Interv. (2017) 10:e004472. doi: 10.1161/CIRCINTERVENTIONS.116.004472

10. Goldswig A, Aronow H. Identifying patients likely to be readmitted after transcatheter aortic valve replacement. Heart. (2019) 106:256–60. doi: 10.1136/heartjnl-2019-315381

11. Szerlip M, Tabachnick D, Hamandi M, Caras L, Lanfear AT, Squiers JJ, et al. Safe implementation of enhanced recovery after surgery protocol in transfemoral transcatheter aortic valve replacement. Proceedings. (2020) 345–10. doi: 10.1080/08998286.2020.1810398

12. Lanuch SB, Wood DA, Baumbusch J, Kwon JY, Staub D, Achten L, et al. Vancouver transcatheter aortic valve replacement clinical pathway: minimalist approach, standardized care, and discharge criteria to reduce length of stay. Circ Cardiovasc Qual Outcomes. (2016) 9:312–21. doi: 10.1161/CIRCOUTCOMES.115.002541

13. Costa G, Barbanti M, Picco A, Todaro D, La Spina K, Di Simone E, et al. Predictors and safety of next-day discharge in patients undergoing transfemoral transcatheter aortic valve implantation. Eur J Heart Fail. (2020) 22:1649–501. doi: 10.1002/ejhf.1344

14. VARC-3 WRITING COMMITTEE, Généreux P, Piazza N, Alu MC, Nazif T, Hahn RT, et al. Valve Academic Research Consortium 3: updated endpoint definitions for aortic valve clinical research. Eur Heart J. (2021) 42:1825–57. doi: 10.1093/eurheartj/ehaa799

Funding

This study was supported in part by the California Chapter of the American College of Cardiology through the Save a Heart Foundation.

Conflict of interest

RM received grant support from Edwards Lifesciences Corporation; consulted for Abbott Vascular, Cordis, and Medtronic; and holds equity in Entourage Medical.

The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
and reducing errors.

Circulation. (2022) 15:590–8. doi: 10.1016/j.jcin.2022.01.013

43. Puls M, Sobisiak B, Bleckmann A, Jacobshagen C, Danner BC, Hünlich H, et al. Feasibility and safety of same-day discharge following transfemoral transcatheter aortic valve replacement: a meta-analysis. JACC Cardiovasc Interv. (2021) 15:575–89. doi: 10.1016/j.jcin.2022.01.013

44. Seeger J, Gonska B, Rotthauer W, Wohrle J. New generation devices for transfemoral transcatheter aortic valve replacement are superior compared with last generation devices with respect to VARC-2 outcome. EuroIntervention. (2018) 13:247–55. doi: 10.4244/EIJ14M08_03

45. Tschette D, Van Mieghem NM. New-generation TAVI devices: description and specifications. EuroIntervention. (2014) 10:U90–100. doi: 10.4244/EIJ14U90UAI3

46. Santangelo G, Iesla A, Pellicano M, Latib A, Tospili M, Donatelli F. An update on new generation transcatheter aortic valves and delivery systems. J Clin Med. (2022) 11:499. doi: 10.3390/jcm11030499

47. Pilgrim T, Lee JKT, O’Sullivan CJ, Stortecky S, Ariotti S, Franzone A, et al. Early versus newer generation devices for transcatheter aortic valve implantation in routine clinical practice: a propensity score matched analysis. Open Heart. (2018) 5:e000895. doi: 10.1136/openheart-2017-000895

48. Lerman BJ, Popat RA, Assimes TL, Heidenreich PA, Wren SM. Association of left ventricular ejection fraction and symptoms with mortality after elective noncardiac surgery among patients with heart failure. JAMA. (2019) 321:572–9. doi: 10.1001/jama.2019.0156

Koren et al. 10.3389/fcvm.c2022.1020208
Frontiers in Cardiovascular Medicine