Quantitative Autoradiographic Localization of Prostaglandin E₂ Binding Sites in Monkey Diencephalon

Yumiko Watanabe,1 Yasuyoshi Watanabe,1,2 and Osamu Hayaishi1

1Hayaishi Bioinformation Transfer Project, Research Development Corporation of Japan, Kyoto 601, and 2Department of Medical Chemistry, Osaka Medical College, Osaka 569, Japan

Quantitative autoradiography was performed to investigate the mapping of prostaglandin E₂ binding sites in the Macaca fuscata fuscata diencephalon. Autoradiographs were prepared by incubation of 10-μm-thick serial frozen sections with [3H]-prostaglandin E₂ and were processed by using a rotating drum-scanner and a computer-assisted image-processing system with [3H]-microscales as standards. The localization of prostaglandin E₂ binding sites was remarkably discrete in the diencephalon. The highest concentrations were found in the median and medial preoptic areas, suprachiasmatic nucleus of the thalamus. High density was observed in the mammillary nucleus of the hypothalamus, and centromedian discrete in the diencephalon. The highest concentrations of prostaglandin E₂ binding sites was remarkably anterior, dorsomedial, and infundibular nuclei of the hypothalamus; and in the anteroventral, periventricular, paraventricular, laterodorsal, and habenular nuclei of the thalamus. The distribution correlates well with the known effects of prostaglandin E₂ and may also give us useful clues in unveiling the novel role of prostaglandin E₂ in a variety of brain functions.

Prostaglandin (PG) E series has various neurophysiological functions, such as in the central mediation of fever (Milton and Wendlandt, 1970; Potts and East, 1972; Milton, 1976), as one of the major regulators of food intake (Scaraduzzi et al., 1970) and luteinizing hormone release (Ojeda et al., 1977; Potts and East, 1976; Rosenkrantz, 1978). The high-affinity and specific binding protein of [3H]-PGF₁α was found in membrane preparations from bovine pineal gland (Cardinali et al., 1979) and from rat (Malet et al., 1982) and human (Watanabe et al., 1985a) brains. From a regional study of dissected brain areas, PGF₁α binding was found to be high in the hypothalamus, pituitary, and amygdala of rat brain (Malet et al., 1982) and in the amygdala, hypothalamus, and hippocampus of postmortem human brain (Watanabe et al., 1985a). The PGF₁α receptor protein was solubilized in our laboratory in an active form from porcine brain using 3-[(3-cholamidopropyl) dimethylammonio]-1-propane sulfonate (Yumoto et al., 1986b). Furthermore, PGF₁α binding to the receptor is sensitive to guanine nucleotide (GTP), and, after solubilization, the receptor and GTP-regulatory protein were separated by gel filtration using high-performance liquid chromatography (HPLC) and were reconstituted (Yumoto et al., 1986b). These results provide evidence that PGF₁α in the brain exerts various neurophysiological functions via specific receptor binding, and that GTP is involved in its regulation. Recently, we demonstrated the localization of PGD₂ binding by using in vitro autoradiography coupled with a computerized image-analyses system (Watanabe et al., 1983; Yamashita et al., 1983). The specific PGD₂ binding was predominantly localized in the gray matter in the rat brain (Yamashita et al., 1983) and, more precisely, in specific neuronal cells, such as the Purkinje cell layer in the swine cerebellum (Watanabe et al., 1983). Preliminarily, we obtained the distinct localizations of PGD₂, PGE₂, and PGF₂α bindings in the monkey brain (Watanabe et al., 1983b, 1986). In this study, we developed a digital subtraction method for the quantitation of autoradiographs and demonstrated by detailed mapping the concentration of PGE₂ binding sites in the monkey diencephalon.

Materials and Methods

Tissue preparation. Macaca fuscata fuscata (female, 6.5-8.0 kg) was anaesthetized with Ketalar (ketamine-HCl) and perfused via the left ventricle with cold 10 mM sodium phosphate-buffered saline (pH 7.4) containing 5% sucrose. The brain was rapidly removed, dissected into 3-4 mm-thick blocks (ca. 2.0 × 2.5 cm), and frozen on dry ice. Frozen serial sections of 10 μm thickness were cut in a cryostat at -14°C and mounted on gelatin-coated glass slides.

[3H]-PGE₂ binding. All procedures of [3H]-PGE₂ binding assay were performed at 4°C as described by Yamashita et al. (1983) and Watanabe et al. (1983), with a slight modification. After preincubation in four 150 ml changes of 50 mM Tris-HCl (pH 7.4) containing 0.1 M NaCl (buffer A) for a total of 1 hr, the tissue sections were incubated with 150-200 μl (the volume varied depending on the size of section) of 20 nM [3H]-PGE₂ in buffer A for 30 min with gentle shaking (60 times/min, 4 cm reciprocal). The sections were then rinsed in 4 sequential short (15 sec each) dips in 50 ml of buffer A, quickly splashed with distilled water, and air-dried. Nonspecific binding was obtained with the consecutive sections by the addition of 100 μM unlabeled PGE₂, to the incubation mixture.

The incubation and the concentration of [3H]-PGE₂ for the incubation of sections were determined according to the results of the [3H]-PGE₂ binding to the P fraction of porcine cerebral cortex (Yumoto et al., 1986a). The Kᵦ value of the [3H]-PGE₂ binding to that fraction was a few nanomolar at 37°C. Since the PGE₂ binding sites showed a temperature-dependent rise in affinity (Kᵦ for PGE₂ binding to the P fraction of monkey diencephalon and amygdala, 1.1 nM at 37°C and...
Tissue tritium content (nCi/mg) vs. Relative optical density.

Figure 1. Typical standard curve for the tissue equivalent tritium content versus relative optical density of each layer of \(\text{H} \)-microscales. ■, High-level microscale; ○, low-level microscale. Calibration curve (dotted line) was generated from the log-log relationship of the tritium content (relative O.D. value). The digitized data were arranged in parallel with the optical density between 0 and 1.5. Sampling pitches were 50 pm.

Results

A typical standard curve for transformation of the O.D. value to the BD value in shown in Figure 1. Both high and low microscales consisted of 8 layers. Eight points of high microscale were described as a power function, while 8 points of low microscale were fitted for a linear function. The boundary points between low and high microscales were fitted for both functions. Therefore, we employed a straight line for the standard curve that was between 0 and 1.3 nCi/mg tissue of the BD value and used a power function for the curve above 1.3 nCi/mg. In all cases in this study, the goodness of fit of the standard curve with high microscale was ascertained; the relative coefficients \(r^2 \) were greater than 0.998.

According to the above-mentioned standard curve, the \(\text{H} \)-PGE\(_2\) content bound in each pixel was calculated for the total and nonspecific binding. An example of this quantitation procedure is shown in Figures 2 and 3. Figure 2, A, B, represents the original autoradiograms of total and nonspecific binding of \(\text{H} \)-PGE\(_2\) in coronal sections of monkey brain containing the preoptic area. Figure 3, A, B, represents the corresponding pseudocolor-coded images. While the nonspecific binding (Fig. 3B) was low and rather homogeneously distributed, the total binding (Fig. 3A) was remarkably concentrated in the medial preoptic area. The image of the specific binding (Fig. 3C) was then processed by subtracting the binding values of the image of nonspecific binding from those of total binding. The image of the specific binding exhibited a pattern very similar to that of the total binding. The proportion of specific binding to the total binding was calculated to be more than 80% in the medial preoptic area. A similar presentation of the percentage of specific binding in the specific binding image is also possible; a typical result is shown in Figure 4. The BD value of each pixel in the image of the specific binding was divided by that of the corresponding pixel in the image of the total binding to produce the image of the percentage of specific \(\text{H} \)-PGE\(_2\) binding (Fig. 4A).
Figure 2. Original autoradiograms of 3H-PGE₂ binding in coronal sections of monkey brain containing the preoptic area. The tissue section (10 μm thick) was incubated with 20 nM 3H-PGE₂ in 50 mM Tris-HCl (pH 7.4) containing 0.1 mM NaCl, as described in Materials and Methods. A, Total binding. B, Nonspecific binding, obtained with the consecutive section by adding 100 μM unlabeled PGE₂ to the incubation mixture.

Figure 4B shows the percentage of the specific binding value of each pixel along the horizontal straight line in Figure 4A. The highest specific binding in the centromedian nucleus reached 80% of the total binding.

The localization of 3H-PGE₂ binding was characteristic and discrete throughout the diencephalon (Fig. 5). The average 3H-PGE₂ concentrations in various nuclei were calculated and are summarized in Table 1. For example, the anteroventral nucleus of the thalamus is seen in Figure 5, C–G, and the centromedian nucleus of the thalamus in Figure 5, H–J. Their respective lengths were at least 1.5 and 1.9 mm in the sagittal direction, as judged from the section thickness (10 μm) and the number of sections. Since the mean value of 3H-PGE₂ binding in each nucleus varied anteriorly to posteriorly, we selected the highest values for presentation in Table 1.

The densities of 3H-PGE₂ binding sites were by far the highest (≥30 fmol/mg tissue) in the median and medial preoptic areas (Fig. 5, A, B), supramammillary nucleus of the hypothalamus (Fig. 5, M, N), and centromedian nucleus of the thalamus (Fig. 5, H–J, P).

In the limbic forebrain, a moderately high density (16 fmol/mg tissue) of PGE₂ binding sites was observed in the anterior commissural nucleus (Fig. 5, A, B), and a moderate concentration (11–13 fmol/mg tissue) was observed in the lateral septum and accumbens nucleus (Fig. 5, A, B).

In the hypothalamus, high densities (17–21 fmol/mg tissue) of PGE₂ binding sites were observed in the paraventricular nucleus, anterior nucleus, dorsal and medial hypothalamic areas, dorsomedial nucleus, and infundibular nucleus. Moderate densities (12–14 fmol/mg tissue) were found in the lateral hypothalamic area and mammillary nucleus (Fig. 5, C–G, M, N).

In the thalamus, PGE₂ binding sites were the most discretely located. In addition to a very high density of binding sites in the centromedian nucleus, the nuclei surrounding the third ventricle, such as the anteroventral (Fig. 5, C–G, O), periventricular (Fig. 5, D, E, O), paraventricular (Fig. 5, H–J), and laterodorsal (Fig. 5, H–J, P) nuclei showed high densities (16–22 fmol/mg tissue), and the reuniens nucleus (Fig. 5, E, N) showed moderate density (11 fmol/mg tissue). The habenular nucleus (Fig. 5, K, P) also possessed a high concentration of PGE₂ binding sites.

In the midbrain, the annular nucleus (Fig. 5L) and oculomotor nucleus (Fig. 5P) displayed high densities (16–17 fmol/mg tissue) of the binding sites.

We employed 2 monkey brains in the quantitative study and 4 other brains in the qualitative study. We observed little heterogeneity among the brain specimens in the pattern of localization of PGE₂ binding sites throughout the diencephalon.

Discussion

A number of reports have depicted the central action of PGE₂, mainly on the basis of pharmacological studies. However, there had been no reports concerning the precise localization of PGE₂ receptors in the CNS nor in the peripheral tissue before our recent studies. High-affinity PGE₂ binding was demonstrated by the glass filter assay using membrane preparations of bovine pineal gland (Cardinali et al., 1979) and that of rat (Malet et
Figure 3. Left, Pseudocolor-coded images of 3H-PGE$_2$ binding in coronal sections of monkey brain containing the preoptic area. The tissue section (10 µm thick) was incubated with 20 nM 3H-PGE$_2$ in 50 mM Tris-HCl (pH 7.4) containing 0.1 mM NaCl, as described in Materials and Methods. Nonspecific binding was obtained with the consecutive section by adding 100 nM unlabeled PGE$_2$ to the incubation mixture. The image of specific 3H-PGE$_2$ binding was processed by subtracting the values of the binding in the corresponding pixels of the superimposed image of nonspecific binding from those of the image of total binding. Scales relate colors to fmol 3H-PGE$_2$ bound/mg tissue. A, Image of total 3H-PGE$_2$ binding. B, Image of nonspecific 3H-PGE$_2$ binding. C, Image of specific 3H-PGE$_2$ binding calculated by image subtraction. Caud, Caudate nucleus; Put, putamen; Sept, septum; Med. preop, medial preoptic area; C.c., corpus callosum; Ant. com, anterior commissure. Original autoradiograms are shown in Figure 2, A, B.

Figure 4. Right, Pseudocolor-coded image of 3H-PGE$_2$ binding in a coronal section of monkey diencephalon containing thalamus. Scales relate colors to the percentage of the specific binding to the total binding. A, Image of percentage of specific 3H-PGE$_2$ binding calculated by image division. B, Plot of line profile. Ordinate exhibits the percentage values calculated along the horizontal straight line drawn in A. The line crossed the centromedian nucleus, which showed the highest density of PGE$_2$ binding in the thalamus.

al., 1982), porcine (Yumoto et al., 1986a), and human brain (Watanabe et al., 1985a). In 1981, we started to investigate the binding sites of 3H-PGD$_2$ in the rat and porcine brain by using an in vitro autoradiography technique (Watanabe et al., 1983; Yamashita et al., 1983). Thereafter, preliminary studies using the monkey brain revealed the distinct localization of PGD$_2$, PGE$_2$, and PGF$_2$ binding sites in the diencephalon and limbic system (Watanabe et al., 1985b, 1986).

This paper presents the first detailed report of the quantitative localization of PGE$_2$ binding sites in the brain. Various sites of
for the calibration of the tissue tritium concentration were obtained from Amersham’s 3H-microscales. Since the standard curve in each film was strictly interpolated between 16 points of 3H-microscales, the reproducibility and reliability of the data were ascertained; further, comparisons between the independent experiments could be made in a quantitative manner. Rainbow et al. (1984) pointed out a serious problem of the autoradiography technique, that is, the difference in autoabsorption between gray and white matter due to the greater density of lipids in the white matter, especially in the case of tritium labeled ligands. Kuhar and Unnerstall (1985) and Geary et al. (1985) also reported such a difference, and Geary et al. (1985) demonstrated that the O.D. value of the gray matter paste containing a certain tritium concentration was ca. 2-fold higher than that of the white matter paste containing the equivalent amount of radioactivity. In the present case, i.e., the study of the total and nonspecific binding of 3H-PGE2, very little radioactivity was distributed in the white matter. Even if the radioactivity in the white matter were double the value obtained from the autoradiographic study, the pattern of localization of 3H-PGE2 would not be significantly altered. Especially, in this study, we focused on the localization of PGE2 binding sites in the gray matter regions (Table 1).

Since Milton and Wendlandt (1970) studied the febrile response following central administration of PGE2, and Vane (1971) observed the inhibition of prostaglandin biosynthesis by antipyretic drugs, a number of studies have been done; PGE2 was finally proposed to be an intermediary substance in the preoptic/anterior hypothalamic genesis of fever (Milton, 1976; Wolfe and Coceani, 1979). However, there were no reports as to whether PGE2 actually binds to the thermoregulatory neurons in the preoptic area. Recently, by use of the push–pull cannula technique, Coceani et al. (1987) assessed the enhancement of actual release of PGE2 at discrete preoptic/anterior hypothalamic sites by systemic injection of exogenous (endotoxin) or endogenous (interleukin-1) pyrogens. Our finding that the high density of PGE2 binding sites exists in the median and medial preoptic areas offers strong evidence for the central mediator role of PGE2 in the febrile response. Moreover, we ascertained that the localization of PGE2 binding is identical to that of PGE2 in the monkey brain (Y. Watanabe, unpublished observations).

PGE2 has been postulated as being involved in the modification of algesia (Poddubiuk, 1976; Horiguchi et al., 1986). Horiguchi et al. (1986) described the biphasic effect of PGE2 in regulating pain responses after its intracisternal administration to mice, and suggested that the site of PGE2 action might be located in the lower portion of the CNS, i.e., brain stem and spinal cord. On the other hand, a high concentration of opiate receptors was found not only in the lower part of the CNS, but also in the centromedian and parafascicular nuclei of the thalamus in the monkey brain (Wamsley et al., 1982). The thalamus is a relay point for the fibers carrying protopathic pain. The present results show that PGE2 binding is highly concentrated in the centromedian nucleus of the thalamus, although we could not distinguish the parafascicular nucleus from the centromedian nucleus. In addition, we observed the localization of PGE2 binding in the central gray (midbrain periaqueductal gray matter) of monkey brain. These observations suggest a role of PGE2 in the control of pain at multiple sites in the brain.

The neuroendocrine role of PGs is most evident in the hypothalamohypophyseal pathway (Hedge, 1977; Behrman, 1979). Intraventricular injection of PGE2 and PGD2 caused stimulation

Brain region	Binding (fmol/mg tissue)
Limbic forebrain	
LS, lateral septum	13
Acc, accumbens nu.	11
NTS, nu. stria terminalis	8.0
NCA, anterior commissural nu.	16
Preoptic area	
PM, median preoptic area	30
APM, medial preoptic area	62
APL, lateral preoptic area	9.5
Hypothalamus	
SOH, supraoptic area	<3
SCH, suprachiasmatic nu.	not identified
PH, paraventricular nu.	17
AH, anterior hypothalamic nu.	18
ADH, dorsal hypothalamic area	19
AMH, medial hypothalamic area	21
AIH, lateral hypothalamic area	14
DMH, dorsomedial nu.	20
VMH, ventromedial nu.	6.6
SMH, supramammillary nu.	41
IH, infundibular nu.	19
MM, mammillary nu.	12
ME, median eminence	not identified
Thalamus	
AV, anteroventral nu.	16
Pv, periventricular nu.	22
Pa, paraventricular nu.	17
Reu, reuniens nu.	11
VA, ventroanterior nu.	<3
VL, ventrolateral nu.	<3
VP, ventroposterior nu.	<3
LD, laterodorsal nu.	22
LP, lateroposterior nu.	<3
MD, mediodorsal nu.	<3
CM, centromedian nu.	49
LG, lateral geniculate nu.	<3
MG, medial geniculate nu.	<3
Hb, habenular nu.	24
Pu, pulvinar	<3
Midbrain	
SN, substantia nigra	7.0
CG, central gray	5.6
RN, red nu.	<3
IP, interpeduncular nu.	8.6
Ann, annular nu.	16
Np, oculomotor nu.	17

Frozen 10-µm-thick sections were labeled with 20 nM 3H-PGE2, as described in Materials and Methods, and apposed against LKB Ulrofilm for 4 weeks to generate the demonstration of typical brain structures. The concentration of PGE2 binding was calculated by grid sampling of the specific 3H-PGE2 binding images, and the maximum values were taken from the concentrations in several sections of the same structure.

the central action of PGE2 were unveiled on the basis of the results of the nucleus-level localization. Some are closely related to the known functions of PGE2, as defined by pharmacological studies discussed below, and others may be useful clues in elucidating the novel physiological roles of PGE2 in a variety of brain functions.

In the present study, the density of binding sites was calculated quantitatively in terms of fmol/mg of tissue. The standard curves
and suppression, respectively, of pulsatile luteinizing hormone release (Kinoshita et al., 1982). These responses were due to the reduction or enhancement of the release of luteinizing hormone-releasing hormone (LHRH) from the hypothalamic nuclei. In the rat brain, a high level of 3H-PGD binding was observed in the arcuate nucleus (Yamashita et al., 1983), one of the major sites of LHRH production in the rat brain. Ojeda et al. (1982) reported that PGE reduces or enhances the release of luteinizing hormone-releasing (Kinoshita et al., 1982). These responses were due to the sites of LHRH production in the rat brain. Ojeda et al. (1982) incubated median eminence of rats and postulated that PGE acts as a presynaptic mediator of norepinephrine via the α-adrenergic receptor. In 1985, Dry et al. found episodic fluctuations of the hypothalamic PGE binding capacity during the rat estrus cycle, i.e., a biphasic rise of PGE binding activity just before and after the LH surge. In the present study, a high density of 3H-PGE binding sites was observed in the infundibular nucleus, which is adjacent to the median eminence, and is one of the sites of production of anterior pituitary hormone-regulating hormones in primates (Nieuwenhuys et al., 1981).

PGs may also be a potent regulator of autonomic function (Poddwubia, 1976). By the use of a microinjection technique, Feuerstein et al. (1982) determined the hypothalamic sites for cardiovascular stimulation by PGE to be in the dorsomedial and posterior hypothalamic nuclei of rats; this corresponds well with our finding that the PGE binding concentration was dense in the dorsomedial nucleus of the hypothalamus (Fig. 5, F, G).

Concerning food intake, the issues of the effect of intrahypothalamic injection of PGE and of effective sites are both controversial; both are seemingly species-specific (Wolfe and Cocceni, 1979). The present results indicate moderately high density of PGE binding sites in the lateral hypothalamic area, the feeding center. However, we observed a negligible amount of PGE binding in the ventromedial nucleus of the hypothalamus, the satiety center.

Although we can propose the above mentioned functions for some of the PGE binding sites localized by quantitative autoradiography, the significance of the binding sites in most other nuclei remains unknown. Especially the supramammillary nucleus of the hypothalamus and the habenular nucleus were rich in PGE binding (Table 1), but the precise functions of these nuclei have not yet been clarified. Using RIA and gas chromatography–mass spectrometry, Ogoroichi et al. (1984) investigated the occurrence of PGE in various regions of postmortem human brain. They found the PGE level to be high in the preoptic area, hypothalamus, amygdala, nucleus accumbens, pineal body, and pituitary, which were also rich in PGE binding (Watanabe et al., 1985a). However, because of the limitation of the methodology, the PGE contents at the nuclear level were not determined. If the hypothalamic PGE receptor fluctuates with an infradian rhythm, as does the menstrual cycle as described by Dry et al. (1985), the present quantitative autoradiography technique may be a useful tool for the analysis of the alteration of PGE receptor density and its functional role in a particular nucleus.

References

Behrman, H. R. (1979) Prostaglandins in hypothalamo-pituitary and ovarian function. Annu. Rev. Physiol. 41: 685–700.

Cardinali, D. P., M. N. Ritta, N. S. Speziale, and M. F. Gimeno (1979) Release and specific binding of prostaglandins in bovine pineal gland. Prostaglandins 18: 577–589.

Cocceni, F., J. Bishai, J. Lees, and S. Sirko (1987) Effects of pyrogens on prostaglandin E and thromboxane A synthesis in brain: Implications for the pathogenesis of fever. In Advances in Prostaglandin, Thromboxane, and Leukotriene Research, vol. 7, B. Samuelsson, R. Paoletti, and P. W. Ramwell, eds., pp. 499–592, Raven, New York.

Dry, F., A. Wisner, M. C. Bommelker, M. Heulalme, I. Vossat, K. Gerriez, and C. A. Renard (1985) Hypothalamic prostaglandin E receptors: Biochemical characteristics and episodic fluctuations during rat estrus cycle. In Advances in Prostaglandin, Thromboxane, and Leukotriene Research, vol. 15, O. Hayashi and S. Yamamoto, eds., pp. 555–557, Raven, New York.

Emmers, R., and K. Akert (1963) Stereotaxic Atlas of the Brain of the Squirrel Monkey. U. Wisconsin Press, Madison, WI.

Feuerstein, G., S. A. Adelberg, I. J. Kopin, and D. M. Jacobowice (1982) Hypothalamic sites for cardiovascular and sympathetic modulation by prostaglandin E, Brain Res. 231: 335–342.

Geary H. W., A. W. Toga, and G. F. Wooten (1985) Quantitative film autoradiography for tritium: Methodological considerations. Brain Res. 337: 99–108.

Hedge, G. A. (1977) Roles for the prostaglandins in the regulation of anterior pituitary secretion. Life Sci. 20: 17–34.

Horiguchi, S., R. Ueno, M. Hyodo, and O. Hayashi (1986) Alterations in nociception after intracranial administration of prostaglandin D, E, or F, to conscious mice. Eur. J. Pharmacol. 122: 173–179.

Kinoshita, F., Y. Nakai, H. Katakami, H. Imura, T. Shimizu, and O. Hayaishi (1982) Suppressive effect of prostaglandin (PG)D on pulsatile luteinizing hormone release in conscious castrated rats. Endocrinology 110: 2207–2209.

Kuhr, M. J., and J. R. Unnerstall (1985) Quantitative receptor mapping by autoradiography: Some current technical problems. Trends Neurosci. 8: 49–53.

Kusama, T., and M. Mabuchi (1970) Stereotaxic Atlas of the Brain of Macaca fuscata. U. Tokyo Press, Tokyo; University Park Press, Baltimore, MD.

Malet, C., H. Scherrer, J. M. Saavedra, and F. Dray (1982) Specific binding of [3H]prostaglandin E, to rat brain membranes and synaptosomes. Brain Res. 236: 227–233.

Milton, A. S. (1976) Modern views on the pathogenesis of fever and the mode of action of antipyretic drugs. J. Pharm. Pharmacol. 28: 393–399.

Milton, A. S., and S. Wendlandt (1970) A possible role for prostaglandin E as a modulator for temperature regulation in the central nervous system of the cat. J. Physiol. (Lond.) 207: 76–77.

Nieuwenhuys, R., J. Voogd, and C. van Huijzen (1981) The Human Central Nervous System — A Synopsis and Atlas, Springer-Verlag, Berlin.

Ogoroichi, T., S. Naramiya, N. Mizuno, K. Yamashita, H. Miyazaki, and O. Hayaishi (1984) Regional distribution of prostaglandins D, E, and F, and related enzymes in postmortem human brain. J. Neurochem. 43: 71–82.

Ojeda, S. R., H. E. Jameson, and S. M. McCann (1977) Hypothalamic areas involved in prostaglandin (PG)-induced gonadotropin release. I: Effects of PGE, and PGE, implants on luteinizing hormone-release Endocrinology 100: 1585–1594.

Ojeda, S. R., A. Negro-Vilar, and S. M. McCann (1982) Evidence for involvement of α-adrenergic receptors in norepinephrine-induced prostaglandin E and luteinizing hormone-releasing hormone release from the median eminence. Endocrinology 110: 409–412.

Poddwubia, Z. M. (1976) A comparison of the central actions of prostaglandins A, E, F, and E, in the rat. I. Behavioral, antinociceptive and anticonvulsant actions of intraventricular prostaglandins in the rat. Psychopharmacology 50: 89–94.

Potts, W. J., and P. F. East (1972) Effects of prostaglandin E on the body temperature of conscious rats and cats. Arch. Int. Pharmacodyn. 197: 31–36.

Rainbow, T. C., A. Biegon, and D. J. Berck (1984) Quantitative receptor autoradiography with tritium-labeled ligands. Comparison of biochemical and densitometric measurements. J. Neurosci. Methods 11: 231–241.

Rosenkrantz, R. P. (1978) Effects of intracerebroventricular administration of PGE, E, and F, on electrically induced convulsions in mice. Prostaglandins 15: 925–942.

Scaramuzza, O. E., C. A. Baile, and J. Mayer (1970) Prostaglandins and food intake of rats. Experientia 27: 256–257.

Vane, J. R. (1971) Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nature New Biol. 231: 232–235.
Wamsley, J. K., M. A. Zarbin, W. S. Young III, and M. J. Kuhar (1982) Distribution of opiate receptors in the monkey brain: An autoradiographic study. Neuroscience 7: 595–613.

Watanabe, Y., A. Yamashita, H. Tokumoto, and O. Hayaishi (1983) Localization of prostaglandin D binding protein and NADP-linked 15-hydroxyprostaglandin D dehydrogenase in the Purkinje cells of miniature pig cerebellum. Proc. Natl. Acad. Sci. USA 80: 4542–4543.

Watanabe, Y., H. Tokumoto, A. Yamashita, S. Narumiya, N. Mizuno, and O. Hayaishi (1983a) Specific bindings of prostaglandin D, E, and F in postmortem human brain. Brain Res. 342: 110–116.

Watanabe, Y., Y. Watanabe, T. Kaneko, and O. Hayaishi (1985b) Localization of prostaglandin bindings in the central nervous system. In Advances in Prostaglandin, Thromboxane, and Leukotriene Research, vol. 15, O. Hayaishi and S. Yamamoto, eds., pp. 553–554. Raven, New York.

Watanabe, Y., Y. Watanabe, and O. Hayaishi (1986) Prostaglandin bindings in the central nervous system. In Biomedical Imaging, O. Hayaishi and K. Torizuka, eds., pp. 227–238. Academic, Orlando, FL.

Wolfe, L. S., and F. Coceani (1979) The role of prostaglandins in the central nervous system. Annu. Rev. Physiol. 41: 669–684.

Yamashita, A., Y. Watanabe, and O. Hayaishi (1983) Autoradiographic localization of a binding protein(s) specific for prostaglandin D, in rat brain. Proc. Natl. Acad. Sci. USA 80: 6114–6118.

Yumoto, N., Y. Watanabe, K. Watanabe, Y. Watanabe, and O. Hayaishi (1986a) Solubilization and characterization of prostaglandin E binding protein from porcine cerebral cortex. J. Neurochem. 46: 125–132.

Yumoto, N., M. Hatanaka, Y. Watanabe, and O. Hayaishi (1986b) Involvement of GTP-regulatory protein in brain prostaglandin E receptor and separation of the two components. Biochem. Biophys. Res. Commun. 135: 282–289.