A SINGULAR INTEGRAL APPROACH TO THE MAXIMAL L^p REGULARITY OF PARABOLIC EQUATIONS

BUYANG LI

1 Introduction

Consider a parabolic problem
\begin{equation}
\partial_t u + Au = f
\end{equation}
on a Banach space X. The maximal L^p regularity of the parabolic problem \ref{1.1} refers to such estimates as
\begin{equation}
\|\partial_t u\|_{L^p(\mathbb{R}^+;X)} + \|Au\|_{L^p(\mathbb{R}^+;X)} \leq C\|f\|_{L^p(\mathbb{R}^+;X)}, \quad \text{for } 1 < p < \infty.
\end{equation}

Traditionally, this estimate was derived for parabolic equations by using parabolic singular integrals \cite{1, 6} for $X = L^p$. For example, when $Au = -\Delta u$, we have
\begin{equation}
\partial_t u(t, x) = \int_0^t \int_{\mathbb{R}^d} k(t - s, x - y)f(s, y) \, dy \, ds,
\end{equation}
where $k(t, x) = \left(\frac{|x|^2}{t^2} - \frac{d}{2}\right) e^{-|x|^2/(2t)}$ is a standard singular kernel of parabolic type:
\begin{equation}
|\partial_t^m \partial_x^\alpha k(t, x)| \leq C_{\alpha, m}/(t + |x|^2)^{m+|\alpha|/2}
\end{equation}
Therefore, by the theory of singular integrals, \ref{1.2} holds for $X = L^p$.

Unfortunately, this argument has not been extended to the settings of a general Banach space X, or more specifically, $X = L^r$ with $r \neq p$. Most existing methods in establishing \ref{1.2} for a general Banach space X rely on the concepts of analytic semigroups \cite{2, 5}, operator-valued Fourier multiplier theory and R-boundedness \cite{9, 10} or H^∞-functional calculus \cite{7}.

In this note, we present a simple and fundamental approach to the maximal L^p regularity of parabolic problems, which only uses the concept of singular integrals of Volterra type (which are straightforward modification of the standard singular integrals). Knowledge of analytic semigroups, R-boundedness or H^∞-functional calculus are not required.

2 Singular integrals of Volterra type

Frequently we meet the following type of operators
\begin{equation}
Tf(t) = \int_0^t K(t, s)f(s) \, ds,
\end{equation}
where \(f \in L^r(\mathbb{R}_+ \mapsto X) \), \(K(t, s) \) is a map from the Banach space \(X \) to the Banach space \(Y \) for any fixed \(0 < s < t < \infty \), and the kernel \(K(t, s) \) exhibits singularity such as

\[
\|K(t, s)\|_{\mathcal{L}(X,Y)} \leq \frac{M}{t - s},
\]

\[
\|K(t, s) - K(t, s_0)\|_{\mathcal{L}(X,Y)} \leq \frac{M|s - s_0|^\sigma}{(t - s_0)^{1+\sigma}} \quad \text{if } t - s_0 \geq 2|s - s_0|,
\]

\[
\|K(t, s) - K(t_0, s)\|_{\mathcal{L}(X,Y)} \leq \frac{M|t - t_0|^\sigma}{(t_0 - s)^{1+\sigma}} \quad \text{if } t_0 - s \geq 2|t - t_0|,
\]

for some \(\sigma \in (0, 1] \), where \(\| \cdot \|_{\mathcal{L}(X,Y)} \) denotes the operator norm. A kernel \(K(t, s) \) which satisfies the above conditions is called a standard singular kernel of Volterra type. The above properties imply Hörmander’s condition: \(K(t, s) \) is integrable in any bounded domain \(U \times V \) such that \(U \cap V = \emptyset \) and \((t, s) \in U \times V \) implies \(t > s > 0 \), and

\[
\sup_{s, s_0 \in \mathbb{R}_+} \int_{t - s_0 \geq 2|s - s_0|} \|K(t, s) - K(t, s_0)\|_{\mathcal{L}(X,Y)} \, dt \leq M,
\]

\[
\sup_{t, t_0 \in \mathbb{R}_+} \int_{t_0 - s \geq 2|t - t_0|} \|K(t, s) - K(t_0, s)\|_{\mathcal{L}(X,Y)} \, ds \leq M.
\]

A singular integral operator of Volterra type is a bounded linear operator from \(L^r(\mathbb{R}_+ \mapsto X) \) to \(L^r(\mathbb{R}_+ \mapsto Y) \) for some \(r \in (1, \infty] \), given by \((2.3) \) when \(f \) has compact support and \(t \) does not lie in the support of \(f \), where the kernel \(K(t, s) \) satisfies the conditions \((2.4)-(2.6) \). Of course, those conditions also imply Hörmander’s conditions \((2.7)-(2.8) \).

Remark 2.1 The above definition mimic the definition of the usual singular integral operators \(3, 4, 8 \). We should be cautious that a singular kernel of Volterra type does not define the singular integral operator directly. For example, the kernel \(K(t, s) = 1/(t - s) \) satisfies \((2.4)-(2.6) \) but the integral operator \(T f(t) = \int_0^t K(t, s)f(s) \, ds \) is not defined even in the Cauchy principal sense.

The following theorem indicates that singular integral operators of Volterra type preserve the essential properties of standard singular integral operators.

Theorem 2.1 Let \(X \) and \(Y \) be reflexive Banach spaces. Then a singular integral operator of Volterra type is of weak-type \((1, 1) \) and strong-type \((p, p) \) for \(1 < p < \infty \). In particular, if \(\|T\|_{L^r(\mathbb{R}_+ \mapsto X) \to L^r(\mathbb{R}_+ \mapsto Y)} = B \), then

\[
\|Tf\|_{L^{1,\infty}(\mathbb{R}_+ \mapsto Y)} \leq C(M + B)\|f\|_{L^1(\mathbb{R}_+ \mapsto X)},
\]

\[
\|Tf\|_{L^p(\mathbb{R}_+ \mapsto Y)} \leq C_p(M + B)\|f\|_{L^p(\mathbb{R}_+ \mapsto X)}, \quad 1 < p < \infty.
\]

Proof The theorem is proved based on the Calderón-Zygmund decomposition (see Appendix). We only prove the case \(1 < r < \infty \), as the case \(r = \infty \) can be proved similarly.

Without loss of generality, we can first consider \(f \) as a smooth function with compact support and then extend the result to \(L^p(\mathbb{R}_+ \mapsto X) \) for \(1 \leq p < \infty \). Let \(f = g + \sum_{Q_j \in \mathcal{Q}} b_j \) be the Calderón–Zygmund decomposition so that both \(g \) and \(b_j \) are in
$L^1(\mathbb{R}_+ \mapsto X) \cap L^\infty(\mathbb{R}_+ \mapsto X)$ and the sum $\sum_{Q_j \in \mathcal{Q}} b_j$ converges in $L^r(\mathbb{R}_+ \mapsto X)$. Since the operator T is bounded on $L^r(\mathbb{R}_+ \mapsto X)$, it follows that

$$Tf(t) = Tg(t) + \sum_{Q_j \in \mathcal{Q}} Tb_j(t)$$

for almost all $t \in \mathbb{R}_+$. The idea of such decomposition is that, if we let Q^*_j be the unique cube with the same center as Q_j (denoted by s_j), with sides parallel to the sides of Q_j and have side length $l(Q^*_j) = 2l(Q_j)$, then

$$Tb_j(t) = \int_0^t K(t, s)b_j(s) \, ds = \begin{cases} \int_{Q_j} (K(t, s) - K(t, s_j))b_j(s) \, ds & \text{for } t \in (Q^*_j)^c \cap \{t > s_j\}, \\ 0 & \text{for } t \in (Q^*_j)^c \cap \{t < s_j\}. \end{cases}$$

Let $b = \sum_{Q_j \in \mathcal{Q}} b_j$ and we note that

$$|\{t \in \mathbb{R}_+ : \|Tf(t)\|_Y > 1\}| \leq |\{t \in \mathbb{R}_+ : \|Tg(t)\|_Y > 1\}| + |\{t \in \mathbb{R}_+ : \|Tb(t)\|_Y > 1/2\}| \leq 2^r B'^r\|g\|_{L^r(\mathbb{R}_+ \mapsto X)} + \{t \notin \cup_j Q^*_j : \|Tb(t)\|_Y > 1/2\}| + \cup_j Q^*_j\]

$$\leq (2^{r-1}B'^r\alpha^{r-1} + C\alpha^{-1})\|f\|_{L^1(\mathbb{R}_+ \mapsto X)} + 2\sum_j \int_{(Q^*_j)^c} \|Tb_j(t)\|_Y \, dt,$$

where α is the parameter in the Calderón–Zygmund decomposition. We choose α to satisfy $2^{r-1}B'^r\alpha^{r-1} = 2B$ so that

$$|\{t \in \mathbb{R}_+ : \|Tf(t)\|_Y > 1\}| \leq CB\|f\|_{L^1(\mathbb{R}_+ \mapsto X)} + 2\sum_j \int_{(Q^*_j)^c} \|Tb_j(t)\|_Y \, dt.$$

For the second term, we have

$$\sum_j \int_{(Q^*_j)^c} \|Tb_j(t)\|_Y \, dt$$

$$= \sum_j \int_{(Q^*_j)^c \cap \{t > s_j\}} \|Tb_j(t)\|_Y \, dt$$

$$\leq \sum_j \int_{(Q^*_j)^c \cap \{t > s_j\}} \int_{Q_j} \|K(t, s) - K(t, s_j)\|_{L(X,Y)} \|b_j(s)\|_X \, ds \, dt$$

$$\leq \sum_j \sup_{s \in Q_j} \int_{t-s_j \geq 2|s-s_j|} \|K(t, s) - K(t, s_j)\|_{L(X,Y)} \, dt \int_{Q_j} \|b_j(s)\|_X \, ds$$

$$\leq \sum_j M \int_{Q_j} \|b_j(s)\|_X \, ds \leq CM\|f\|_{L^1(\mathbb{R}_+ \mapsto X)}.$$

Therefore, we have proved the weak-type $(1, 1)$ estimate. The strong-type (p, p) estimates for $1 < p < r$ follows from real interpolation.

For $r < p < \infty$, we consider the transpose operator T' defined by $(Tg, f) = (g, T'f)$ for any given $g \in L^r(\mathbb{R}_+ \mapsto X)$ and $f \in L^r(\mathbb{R}_+ \mapsto Y')$. Clearly, the operator T' is
given by
\[T' f(t) = \int_t^\infty K'(t, s) f(s) \, ds \]
with the kernel \(K'(t, s) = K(s, t)' \in \mathcal{L}(Y', X') \). Then \(T' \) is bounded from \(L^r(\mathbb{R}_+ \to Y') \) to \(L'^r(\mathbb{R}_+ \to X') \). For \(f \in L^\infty(\mathbb{R}_+ \to Y') \) with compact support, we let \(f = g + \sum_{Q_j \in Q} b_j \) be the Calderón–Zygmund decomposition so that both \(g \) and \(b_j \) are in \(L^1(\mathbb{R}_+ \to Y') \cap L^\infty(\mathbb{R}_+ \to Y') \) and the sum \(\sum_{Q_j \in Q} b_j \) converges in \(L^r(\mathbb{R}_+ \to Y') \), and
\[T' f(t) = T' g(t) + \sum_{Q_j \in Q} T' b_j(t) \]
for almost all \(t \in \mathbb{R}_+ \), and
\[T' b_j(t) = \int_t^\infty K(s, t)' b_j(s) \, ds = \begin{cases} 0 & \text{for } t \in (Q_j')^c \cap \{ t > s_j \}, \\ \int_{Q_j} (K(s, t)' - K(s_j, t)') b_j(s) \, ds & \text{for } t \in (Q_j')^c \cap \{ t < s_j \}. \end{cases} \]
Then
\[\left| \{ t \in \mathbb{R}_+ : \| T' f(t) \|_{X'} > 1 \} \right| \]
\[\leq \left| \{ t \in \mathbb{R}_+ : \| T' g(t) \|_{X'} > 1/2 \} \right| + \left| \{ t \in \mathbb{R}_+ : \| T' b(t) \|_{X'} > 1/2 \} \right| \]
\[\leq 2^r B \| g \|_{L^r(\mathbb{R}_+ \to Y')} + \left| \{ t \notin \cup_j Q_j' : \| T' b(t) \|_{X'} > 1/2 \} \right| + \left| \cup_j Q_j' \right| \]
\[\leq (2^{2r-1} B^r \alpha^{r-1} + C \alpha^{-1}) \| f \|_{L^1(\mathbb{R}_+ \to Y')} + 2 \sum_j \int_{(\cup Q_j')^c} \| T' b_j(t) \|_{X'} \, dt, \]
where \(\alpha \) is the parameter in the Calderón–Zygmund decomposition. We choose \(\alpha \) to satisfy \(2^{2r-1} B^r \alpha^{r-1} = 2B \) so that
\[\left| \{ t \in \mathbb{R}_+ : \| T' f(t) \|_{X'} > 1 \} \right| \leq C B \| f \|_{L^1(\mathbb{R}_+ \to Y')} + 2 \sum_j \int_{(Q_j')^c} \| T' b_j(t) \|_{X'} \, dt. \]
For the second term, we have
\[\sum_j \int_{(Q_j')^c} \| T' b_j(t) \|_{X'} \, dt \]
\[= \sum_j \int_{(Q_j')^c \cap \{ t > s_j \}} \| T' b_j(t) \|_{X'} \, dt \]
\[\leq \sum_j \int_{(Q_j')^c \cap \{ t > s_j \}} \int_{Q_j} \| K(s, t)' - K(s_j, t)' \|_{\mathcal{L}(Y', X')} \| b_j(s) \|_{Y'} \, ds \, dt \]
\[\leq \sum_j \sup_{s \in Q_j} \int_{s_j - t \geq 2|s - s_j|} \| K(s, t) - K(s_j, t) \|_{\mathcal{L}(X,Y)} \, dt \int_{Q_j} \| b_j(s) \|_{Y'} \, ds \]
\[\leq \sum_j M \int_{Q_j} \| b_j(s) \|_{Y'} \, ds \leq CM \| f \|_{L^1(\mathbb{R}_+ \to Y')} \]
Therefore, we have proved the weak-type \((1, 1)\) estimate. The strong-type \((p', p')\) estimates for \(1 < p' < r' \) follows from real interpolation. In other words, \(T' \) is bounded
from $L^{p'}(\mathbb{R}_+ \mapsto Y)$ to $L^{p''}(\mathbb{R}_+ \mapsto X')$ for $1 < p' < r'$. By a simple duality argument, this implies that T is bounded from $L^p(\mathbb{R}_+ \mapsto X)$ to $L^{p'}(\mathbb{R}_+ \mapsto Y)$ for $r < p < \infty$.

Overall, T is bounded from $L^p(\mathbb{R}_+ \mapsto X)$ to $L^{p'}(\mathbb{R}_+ \mapsto Y)$ for $1 < p < \infty$. □

3 Maximal L^p regularity of parabolic equations

Consider the parabolic problem

\[(3.1) \quad \partial_t u - \sum_{i,j=1}^{d} \partial_j (a_{ij}(x) \partial_i u) + \sum_{j=1}^{d} b_j(x) \partial_j u + c(x) u = f\]

with the initial condition $u(0, x) \equiv 0$, where the coefficients a_{ij}, b_j and c are bounded, measurable and satisfying the strongly ellipticity condition:

$$\Lambda^{-1} |\xi|^2 \leq \sum_{i,j=1}^{d} a_{ij}(x) \xi_i \xi_j \leq \Lambda |\xi|^2, \quad \forall \, x, \xi \in \mathbb{R}^d.$$

This corresponds to (3.1) with $Au = - \sum_{i,j=1}^{d} \partial_j (a_{ij}(x) \partial_i u) + \sum_{j=1}^{d} b_j(x) \partial_j u + c(x) u$.

Let $G(t, x, y)$ denote the Green function of the parabolic equation so that the solution of (3.1) is given by

$$u(t, x) = \int_0^t \int_{\mathbb{R}^d} G(t - s, x, y) f(s, y) \, dy \, ds.$$

Thus

$$\partial_t u(t, x) = f(t, x) + \int_0^t \int_{\mathbb{R}^d} \partial_t G(t - s, x, y) f(s, y) \, dy \, ds.$$

Let $X = L^r$ and let the mapping from $f \in L^r(\mathbb{R}_+; X)$ to $\partial_t u - f \in L^r(\mathbb{R}_+; X)$ be denoted by T. Then $T f(t) = \int_0^t K(t - s) f(s) \, ds$ when f has compact support and t is not in the support of f, where the operator-valued kernel $K(t) : L^r \to L^r$ can be expressed as

$$[K(t)g](x) = \int_{\mathbb{R}^d} \partial_t G(t, x, y) g(y) \, dy.$$

The kernel $K(t)$ obeys the standard estimates:

\[(3.2) \quad ||K(t - s)||_{L^r(X; L^r)} \leq \frac{C}{t - s}, \quad \text{for } 0 < s < t < \infty,\]

\[(3.3) \quad ||\partial_t K(t - s)||_{L^r(X; L^r)} \leq \frac{C}{(t - s)^2}, \quad \text{for } 0 < s < t < \infty,\]

which indicate that $T : L^r(\mathbb{R}_+; X) \to L^r(\mathbb{R}_+; X)$ is a singular integral operator of Volterra type. By Theorem 2.1 this operator must be bounded on $L^p(\mathbb{R}_+; X)$ for all $1 < p < \infty$.

Remark 3.1 By this approach, the maximal regularity

$$||\partial_t u||_{L^p(\mathbb{R}_+; L^r')} + ||Au||_{L^p(\mathbb{R}_+; L^r')} \leq C ||f||_{L^p(\mathbb{R}_+; L^r')}, \quad \text{for } 1 < p, r < \infty.$$
reduces to the homogeneous estimate
\[\| \partial_t u \|_{L^r(\mathbb{R}^+; L^r)} + \| Au \|_{L^r(\mathbb{R}^+; L^r)} \leq C \| f \|_{L^r(\mathbb{R}^+; L^r)}, \quad 1 < r < \infty. \]
This approach can also be applied to problems defined on a finite time interval as well as problems defined on the bounded domain.

Appendix: Calderón–Zygmund decomposition on \(\mathbb{R}_+ \)

Let \(Z = \{0, \pm 1, \pm 2 \cdots \} \) denote the set of all integers and let \(N = \{0, 1, 2, \cdots \} \) denote the set of all natural numbers. For any integers \(n \in Z \) and \(k \in N \) we define \(Q_{n,k} = (2^n k, 2^n (k + 1)] \), called a dyadic cube. Then \(\mathcal{Q}_+ := \{Q_{n,k} : n \in Z \text{ and } k \in N\} \) is called the set of all dyadic cubes on the half-line \(\mathbb{R}_+ \). For any two dyadic cubes \(Q_1, Q_2 \in \mathcal{Q}_+ \), either \(Q_1 \subset Q_2 \) or \(Q_2 \subset Q_1 \) or \(Q_1 \cap Q_2 = \emptyset \). This is often referred to as the nesting property of dyadic cubes.

Proposition Let \(X \) be a Banach space, \(f \in L^1(\mathbb{R}_+ \mapsto X) \) and \(\alpha > 0 \). Then there is a decomposition
\[f = g + \sum_{j=1}^{\infty} b_j \]
which satisfies that
(1) \(\|g\|_{L^1(\mathbb{R}_+ \mapsto X)} \leq \|f\|_{L^1(\mathbb{R}_+ \mapsto X)} \) and \(\|g\|_{L^\infty(\mathbb{R}_+ \mapsto X)} \leq 2\alpha \),
(2) the functions \(b_j \) are supported in disjoint dyadic cubes \(Q_j \in \mathcal{Q}_+ \), respectively,
(3) \(\int_{Q_j} b_j(t) \, dt = 0, \quad \int_{Q_j} |b_j| \|x\| \, dt \leq 4\alpha |Q_j| \),
(4) \(\sum_j |Q_j| \leq \|f\|_{L^1(\mathbb{R}_+ \mapsto X)}/\alpha \),
(5) if \(f \in L^\infty(\mathbb{R}_+ \mapsto X) \) with compact support in \(\mathbb{R}_+ \), then \(g \in L^\infty(\mathbb{R}_+ \mapsto X) \) with compact support in \(\mathbb{R}_+ \), \(\int_{\mathbb{R}_+} \| \sum_{j=k}^{l} b_j \|_X \, dt \leq 2r \int_{Q_{j=k}} \|f\|_X \, dt \) and so the series \(\sum_{j=1}^{\infty} b_j \) converges in \(L^r(\mathbb{R}_+ \mapsto X) \) for any \(1 \leq r < \infty \).

Proof Let us say that a dyadic cube \(Q \) is bad if \(\frac{1}{|Q|} \int_Q \|f(t)\|_X \, dt > \alpha \), and good otherwise. A maximal bad dyadic cube is a bad dyadic cube such that any dyadic cube strictly containing it is good. Since \(f \in L^1(\mathbb{R}_+ \mapsto X) \), any bad dyadic cube is contained in a maximal bad dyadic cube. Let \(\mathcal{Q} \) be the collection of all maximal bad dyadic cubes. By the nesting property of dyadic cubes, cubes in \(\mathcal{Q} \) are disjoint. For any \(Q \in \mathcal{Q} \), \(\frac{1}{|Q|} \int_Q \|f(t)\|_X \, dt \geq \alpha \) and \(\frac{1}{|Q'|} \int_{Q'} \|f(t)\|_X \, dt \leq \alpha \) for any dyadic cube \(Q' \) strictly containing \(Q \). Therefore,
\[\alpha < \frac{1}{|Q|} \int_Q \|f(t)\|_X \, dt \leq 2\alpha. \]
For any dyadic cube \(Q \) outside \(\bigcup \mathcal{Q} \), \(\frac{1}{|Q|} \int_Q \|f(t)\|_X \, dt \leq \alpha \). By the Lebesgue differentiation theorem,
\[\|f(t)\|_X = \lim_{\text{diam}(Q) \to 0} \frac{1}{|Q|} \int_Q \|f(s)\|_X \, ds \leq 2\alpha \]
for almost all \(t \) outside \(\bigcup \mathcal{Q} \), where \(Q \) extends over all sequence of dyadic cubes disjoint from \(\bigcup \mathcal{Q} \) and containing \(t \).
Let
\[b_j(t) = \left(f(t) - \frac{1}{|Q_j|} \int_{Q_j} f(s) \, ds \right) 1_{Q_j}(t), \quad g(t) = \frac{1}{|Q_j|} \int_{Q_j} f(s) \, ds \]
for \(t \in Q_j \subset \mathcal{Q} \). Let \(g = f \) outside \(\cup \mathcal{Q} \). Then \(f = g + \sum_{Q_j \in \mathcal{Q}} b_j \) satisfies the requirements. \(\square \)

References

[1] Calderón, *Singular integrals*, Colloquium Lectures given in Aug 31–Sep 3, 1965 at the Seventieth Summer Meeting of the American Mathematical Society held in Ithaca, New York.

[2] P. Cannarsa and V. Vespri, *On maximal \(L^p \) regularity for the abstract Cauchy problem*, Boll. Un. Mat. Ital. B, 5 (1986), pp. 165-175.

[3] L. Grafakos, *Classical Fourier analysis*, Springer Science+Business Media, LLC, 2008.

[4] L. Grafakos, *Modern Fourier analysis*, Springer Science+Business Media, LLC, 2009.

[5] M. Hieber and J. Prüss, *Heat kernels and maximal \(L^p-L^q \) estimates for parabolic evolution equations*, Comm. Partial Differential Equations, 22 (1997), pp. 1647-1669.

[6] B.F. Jones, *A Class of Singular Integrals*, American J. Math., 86 (1964), pp. 441-462.

[7] C.L. Merdy, *\(H^\infty \)-functional calculus and applications to maximal regularity*, Publ. Math. UFR Sci. Tech. Besancon. 16 (1998), pp. 41-77.

[8] E.M. Stein, *Singular integrals and differentiability properties of functions*, Princeton University Press, 1970.

[9] L. Weis, *A new approach to maximal \(L^p \)-regularity*, Evolution equations and their applications in physical and life sciences (Bad Herrenalb, 1998), Dekker, New York, 2001, pp. 195-214.

[10] L. Weis, *Operator-valued Fourier multiplier theorems and maximal \(L^p \)-regularity*, Math.Ann., 319 (2001), pp.735-758.