Metabolomics driven analysis of *Erythrina lysistemon* cell suspension culture in response to methyl jasmonate elicitation

Mohamed A. Farag\(^a\)*, Hattem Mekky\(^b\), Sawsan El-Masry\(^b\)

\(^a\) Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Einy Street, 11562 Cairo, Egypt
\(^b\) Pharmacognosy Department, Faculty of Pharmacy, Alexandria University, El Khartoum Square, 21521 Alexandria, Egypt

ARTICLE INFO

Article history:
Received 29 April 2016
Received in revised form 6 July 2016
Accepted 6 July 2016
Available online 14 July 2016

ABSTRACT

An MS-based metabolomic approach was used to profile the secondary metabolite of the ornamental plant *Erythrina lysistemon* via ultra-performance liquid chromatography coupled to photodiode array detection and high resolution q-TOF mass spectrometry (UPLC-PDA-MS). Cultures maintained the capacity to produce *E. lysistemon* flavonoid subclasses with pterocarps amounting for the most abundant ones suggesting that it could provide a resource of such flavonoid subclass. In contrast, alkaloids, major constituents of *Erythrina* genus, were...
The genus *Erythrina* constitutes 115 species in the pea family “Fabaceae” which are distributed worldwide in tropical and subtropical regions growing as trees, often recognized in agriculture for their bright red flowers as coral or flame trees [1]. Alkaloids and phenolics are among the most widely distributed constituents in these flowering trees mostly localized in stem bark [2,3], roots [4] and seeds [5,6]. *Erythrina* alkaloids are tetracyclic spiroamines possessing an erythrinane skeleton. Over 90 *Erythrina* alkaloids have been isolated [7,8], often classified as dienoid or lactonic alkaloids. Interest in *Erythrina* alkaloids is mostly driven by its curare-like neuromuscular blocking effect. Moreover, *Erythrina* spp. possess a broad-spectrum of physiological activities such as anti-plasmodial activity due to the flavonoids and isoflavonoids [9], antioxidant and anti-inflammatory activities due to pterocarpans [10] and fungicidal activity associated with its alkaloidal content [11].

Erythrina genus has been extensively examined in terms of its taxonomy and chemical composition. However, very little information is available concerning biotechnological attempts for natural products production within that genus. Garcia-Mateos et al., showed that an unexpected profile of oxygenated alkaloids was observed in undifferentiated callus of *Erythrina Coralloides* and *Erythrina americana* [12]. Furthermore, San Miguel-Chavez et al., showed that jasmonic acid elicited *E. americana* cell culture has led to reduction in alkaloid accumulation [13]. Among the most common and effective elicitors used for stimulating secondary metabolites production in plant cell culture are the carbohydrate-like neuromuscular blocking effect. Moreover, *Erythrina* spp. possess a broad-spectrum of physiological activities such as anti-plasmodial activity due to the flavonoids and isoflavonoids [9], antioxidant and anti-inflammatory activities due to pterocarpans [10] and fungicidal activity associated with its alkaloidal content [11].

Erythrina genus has been extensively examined in terms of its taxonomy and chemical composition. However, very little information is available concerning biotechnological attempts for natural products production within that genus. Garcia-Mateos et al., showed that an unexpected profile of oxygenated alkaloids was observed in undifferentiated callus of *Erythrina Coralloides* and *Erythrina americana* [12]. Furthermore, San Miguel-Chavez et al., showed that jasmonic acid elicited *E. americana* cell culture has led to reduction in alkaloid accumulation [13]. Among the most common and effective elicitors used for stimulating secondary metabolites production in plant cell culture are the carbohydrate-like neuromuscular blocking effect. Moreover, *Erythrina* spp. possess a broad-spectrum of physiological activities such as anti-plasmodial activity due to the flavonoids and isoflavonoids [9], antioxidant and anti-inflammatory activities due to pterocarpans [10] and fungicidal activity associated with its alkaloidal content [11].
1 mM L\(^{-1}\) MeJA. The dose 1 mM L\(^{-1}\) MeJA was previously optimized to elicit secondary metabolic pathways in cell cultures [17,18]. Furthermore, an increase in the concentration of MeJA resulted in retarded callus growth. The remaining flask was used as control by the addition of the same volume of sterile water. Cultures were kept at 23 °C ± 1 °C, with a 12 h photoperiod and maintained on a rotary shaker at 100 rpm. Cell culture samples were harvested at 0, 6, 12, 24 and 48 h post elicitation and kept at −80 °C until being analyzed.

Extraction and UPLC-MS analysis of cell culture extracts

Metabolites extraction followed the protocol developed for similar metabolite classes [18,19]. Briefly, lyophilized *E. lysistemon* cultures (20 ± 0.06 mg) were extracted with 1.8 mL aq.80% MeOH for 10 h using an orbital shaker in the dark. Extracts were centrifuged at 10,000g for 15 min and 1.4 mL of the supernatant was aliquot and evaporated under nitrogen till complete dryness. The dried residue was resuspended in 300 μL 45% aq. MeOH. For comparative analysis, the extracts were spiked with 2 μg umbelliferone as an internal standard (IS) and quantifications were determined from peak areas normalized based on the amount of recovered IS peak. The residue was re-suspended in 300 μL methanol and used for UPLC-MS analysis following the exact chromatographic conditions described by Farag et al. [20].

Identification and quantification of metabolites and MS data multivariate analysis

File Converter tool in X-Calibur software was used to convert UPLC–MS files to NetCDF file format and then further processed by AMDIS software for background subtraction and peak deconvolution. Metabolite identification was done via UV-VIS spectra (220–600 nm), retention times relative to external standards, mass spectra, and comparison to both the reference literature and phytochemical dictionary of natural product database. Quantification of alkaloids was calculated from the calibration curve of erythraline, pterocarpans using medicarpic standard, and for oleic acid using that of oleic acid standard detected using MS detector. Standard calibration curves were constructed for each standard using 4 concentrations spanning from 0.1, 1, 10 and 200 μg/mL. Assays were carried out in triplicate.

MS data processing for multivariate analysis

Relative quantification and comparison of metabolites profiles after UPLC-MS were performed using XCMS data analysis software, which can be downloaded for free as an R package from the Metlin Metabolite Database (http://137.131.20.83/download/) [21].

Results and discussion

E. lysistemon cell culture metabolite profile

Callus was produced from cut ends of scored *E. lysistemon* explants after 3 weeks. Chemical constituents of callus extracts were analyzed via UPLC/PDA/(−)ESI-qTOF-MS that allowed for the elution of cinnamates, flavonoids, alkaloids and fatty acids within 13 min (ca. 800 s). The elution order of secondary metabolites followed a sequence of decreasing polarity, whereby cinnamates and alkaloids eluted first, followed by flavonoid glycosides, free aglycones, prenylated aglycones and finally triterpenes and fatty acids. Simultaneously acquired UPLC–PDA and UPLC–MS total ion chromatograms of *E. lysistemon* cell culture extracts in positive and negative ionization mode are presented in Fig. 1. The identities, retention times, UV and MS spectral data observed for secondary metabolites are presented in Table 1 with a total of 53 identified metabolites. It is worth noting that this is the first comprehensive metabolic profile of *E. lysistemon* plant. Identified metabolites belonged to various classes (Table 1, Suppl. Fig. 1) including phenolic acids (cinnamates) i.e. *N*-caffeoyl aspartic acid (2), alkaloids *i.e.* erysotrine (6), pterocarpans *i.e.* isoneorautenol (30), isoflavonoids *i.e.* lysisteisoflavone (44), triterpenes *i.e.* oleic acid (53) and fatty acid *i.e.* hydroxy-9,11-octadecadienoic acid (45), with isoflavones and pterocarpans as the most abundant classes in cell culture extract. The structures of major metabolites identified in *E. lysistemon* and discussed throughout the manuscript are shown in Suppl. Fig. 1.

Flavonoids

Photodiode array detection provided an overview of the main flavonoid constituents (Fig. 1A). UV spectra (200–600 nm) were measured for flavonoid sub-classes including 12 isoflavones, 3 flavones, 4 isoflavonanes and 11 pterocarpans. Each sub-class exhibits a characteristic UV spectrum. For example, flavonones have a maximum absorbance near 265 nm with a second maximum between 320 and 340 nm (peak 9), whereas pterocarpans have λ max around 280–290 nm (42). Extracts were analyzed in positive and negative ion electrospray ionization (ESI) MS modes to provide a comprehensive overview of the metabolite composition. Compared to the positive-ion ESI mode (Fig. 1C), negative-ion MS spectra (Fig. 1B) revealed better sensitivity than in positive mode, especially in the elution range of flavonoids (200–500 s). In addition, negative-ion MS spectral characteristics showed strong [M − H\(^{+}\)]\(^{-}\) ions and lower chemical noise and consequently better sensitivity [22]. The positive ion ESI mass spectra were characterized by cations corresponding to [M + H\(^{+}\)]\(^{+}\), [M + Na\(^{+}\)]\(^{+}\) and fragment ions attributed to the sequential losses of isoprenyl (69 amu), malonyl (86 amu) and hexosyl (162 amu) groups. Few minor isoflavone peaks 13, 15, 18, 32 and 43 were only detected in positive ionization mode warranting the importance of acquiring data in both ionization modes. Two major flavone glycosides including dihydroxyflavone hexoside (m/z 415.102, [M − H\(^{+}\)]\(^{-}\) peak 9) and apiigenin hexosylmalonate (m/z 517.1702, [M − H\(^{+}\)]\(^{-}\) peak 11) were identified in cell culture. With regard to flavanone subclass, vogelin A (m/z 369.0999, [M − H\(^{+}\)]\(^{-}\) peak 25) and 5-deoxyglyasperin F/5-deoxylicoisoflavone (m/z 337.1085, [M − H\(^{+}\)]\(^{-}\) peak 27) exhibiting UV max around 310–320 nm typical for flavanones were measured.

Pterocarpans

Among flavonoid subclasses, pterocarpans amounted for the major forms in cell culture (11 peaks), exhibiting λ max around...
280–290 nm with isoneorautenol (m/z 321.1147, [M–H]– peak 30) as the most abundant (Table 1). Other identified pterocarpans include erythribyssin B (m/z 283.0598, [M – H]– peak 19), eryvarin D (m/z 335.1264, [M – H]– peak 20), dihydroisoneorautenol (m/z 323.1288, [M – H]– peak 31) and sandwicensin (m/z 337.1445, [M – H]– peak 42). The predominant loss of 69 amu (–C5H9, prenyl group) in the MSn spectrum of pterocarpans is diagnostic for the presence of the isoprenyl group; a total of 6 peaks showed this pattern. For example, erytragillin B (m/z 437.1993, [M – H]– peak 38) showed 2 mass fragments at m/z 368 and 299 indicative for 2 isoprenyl losses (–2 × 69 amu). The abundance of isoprenylated pterocarpan cell culture suggests for the presence of isoprenyl transferase enzyme with higher affinity toward pterocarpans. This is the first report for the accumulation of pterocarpans in *E. lysistemon* cell culture and suggests that it could provide a resource of that flavonoid subclass.

Alkaloids

With an increased sensitivity for detection of nitrogenous metabolites in positive mode, alkaloids could only be detected in that mode. Alkaloids that are known to predominate *E. lysistemon* plant extracts were almost absent in cell culture, except for few alkaloid peaks present at trace levels including erysotrine (m/z 314.1756 [M + H]+, peak 6), erythrartine/11-methoxyerysodine (m/z 330.1696, [M + H]+, peak 10) and erysotramidine (m/z 328.1534 [M + H]+, peak 12). In contrast, DOPA methyl ether (m/z 226.1073 [M + H]+, peak 8) was present as the major nitrogenous secondary metabolite identified in culture. No UV absorbance could be traced for alkaloid peaks, except for DOPA methyl ether showing distinct UV max at 270 nm. In tandem MS, alkaloids showed methyl losses from methoxy group (–15 Da).

Phenolic acid (cinnamates)

The most abundant nitrogenous compounds detected in cell culture were amino acyl hydroxycinnamic acid conjugates. A total of 5 peaks (2–5, 16) not previously reported in *E. lysistemon* plant tissue were identified in cell culture suggesting for an activation toward the production of acylcinnamates in cell culture. The predominant fragment of cinnamic acid derivatives in the MSn spectrum and characteristic UV max values at 298 and 325 nm are diagnostic for cinnamates; a total of 5 peaks showed similar UV (Table 1). MS/MS analysis confirmed the structure of N-p-coumaroylaspartic acid (3) m/z 278 and N-feruloylaspartic acid (5) m/z 308 from their respective product ions at m/z 163 and 193 indicative of a p-coumaroyl and feruloyl moieties, respectively, whereas N-cafeoylaspartic acid (2) gave a [M–H]– at m/z 294 with product ions m/z 132 for the aspartic acid moiety.

Differences in metabolites composition observed in *E. lysistemon* callus from its native plant are likely to be the result of genetic variation and/or lack of differentiation [22,23]. It is worth mentioning that there was no obvious qualitative or quantitative difference in the metabolite profile of the 2 different treatments of the calli (1 mg l−1 or 2 mg l−1 of Kinetin and 2,4D), results not shown.

PCA of *E. lysistemon* MeJA elicited and control suspension culture observed in negative ionization mode

Cell culture was further subjected to MeJA treatment to determine its impact on reprogramming of secondary metabolites as revealed via UPLC-MS analysis. To assess for changes in metabolite composition in response to elicitation as monitored via UPLC-MS traces of the different callus samples harvested at 0, 12 and 2 h post MeJA elicitation (Suppl. Fig. 2), principal
Table 1 Metabolites identified in *E. lysistemon* L. cell suspension methanol extract using UPLC–PDA–MS/MS in negative/positive ionization modes.

Peak	rt (s)	UV (nm)	Metabolite	Class	Molecular ion m/z (±)	Error ppm	Composition	MS/MS
1	122	285	Dihydroxybenzoic acid pentosylhexose	Phenolic acid	447.1139[M – H]⁻	1.2	C14H20O13	378, 304
2	161	294, 325	N-Caffeoylaspatic acid	Phenolic acid	294.0592[M – H]⁻	9.1	C13H17NO7	175, 132
3	198	294, 326	N-p-Coumaroylaspartic acid	Phenolic acid	278.0661[M + H]⁺	3.2	C13H16O7	163, 132
4	209	287, 312	N-(Hydroxycinnamoyl) tyraminehexose	Phenolic acid	476.1877[M + H]⁺	9.3	C24H24O8	314
5	220	294, 325	N-Feruloylaspatic acid	Phenolic acid	308.0758[M – H]⁻	5.9	C14H20O7	193, 132
6	237	282	Erysootrine	Alkaloid	314.1756[M + H]⁺	–1.6	C19H20N2O4	280
7	238	272, 340	Apigeninpentosyl hexose	Flavone	563.1423[M – H]⁻	–3	C20H20O14	269, 253
8	238	280	DOPA methyl ether	Alkaloid	226.1073[M + H]⁺	0.6	C11H15O4	178
9	245	270, 332	Dihydroxyflavone hexose	Flavone	415.1012[M – H]⁻	3.5	C17H16O4	253
10	252	325	Erypthrinol/11-Methoxyerysodine	Alkaloid	330.1696[M + H]⁺	1.3	C19H20N2O4	312, 280
11	262	nd	Apigeninhexosylmalonate	Flavone	517.1702[M – H]⁻	4.0	C24H24O8	269, 253
12	263	nd	Erysootramidine	Alkaloid	328.1534[M – H]⁻	2.9	C19H20O7	313
13	277	282, 286	Demethylmedicarpin hexosylmalonate	Pterocarpan	503.1158[M + H]⁺	5.1	C24H24O12	255
14	278	280, 308	Diacctoxy benzoic acid	–	237.0397[M – H]⁻	3.3	C11H14O4	215, 174
15	289	282, 286	Demethylmedicarpin hexosylmalonate	Pterocarpan	503.1162[M + H]⁺	5.1	C24H24O12	255
16	292	272, 319	N-Cinnamoyl-Asparatic acid	Isolavone	262.0717[M – H]⁻	1.5	C19H20N2O5	218, 146
17	310	262, 308	Dihydroxyisoflavone	Isolavone	253.0497[M – H]⁻	3.5	C13H16O5	194
18	310	282, 286	Dihydroxyisoflavone	Pterocarpan	255.0637[M + H]⁺	5.7	C13H16O5	174
19	337	232, 285	Erythribysin B	Pterocarpan	283.0598[M – H]⁻	4.9	C16H16O4	269, 253, 214
20	349	280, 335	Eryarin D	Pterocarpan	335.1264[M – H]⁻	7.3	C21H16O4	271, 266, 241
21	358	284	Unknown isoflavone	Isolavone	355.1173[M – H]⁻	4.0	C20H16O5	333, 267
22	395	280	Unknown isoflavone	Isolavone	369.1324[M – H]⁻	5.4	C21H16O6	321
23	408	280, 335	Apigenin	Flavone	269.0448[M – H]⁻	2.9	C17H16O4	178
24	485	280, 310	Unknown isoflavone	Isolavone	397.1288[M – H]⁻	1.3	C22H24O6	353
25	485	230, 287	Vogelin A	Isolavone	369.0999[M – H]⁻	5.2	C20H16O5	329, 269
26	507	nd	Oleamonic acid trihexose	Triterpene	943.5253[M + H]⁺	–5.4	C48H54O18	457
27	510	287, 307	5-Decoxyglycacerin	Isolavone	337.1085[M – H]⁻	–1	C20H20O6	
PCA of E. lysistemon MeJA elicited and control suspension culture observed in positive ionization mode

To provide more overview on the effects of elicitation on E. lysistemon cell culture metabolome, samples were also analyzed in positive ionization MS condition. PCA score plots derived from MS peaks in positive ionization mode were comparable to those in negative mode concerning segregation of samples at 0 h from 12 and 24 h. The PCA model (Fig. 3A) explained 93% of the total variance in the first component, PC1, whereas the second principal component, PC2 presented 6% of the variance. Although comparable score plots in PCA were derived from both data sets, loading plots revealed a slightly different set of metabolites contributing for sample clustering. As revealed in Fig. 3B, the major group that stood out in this plot corresponded to MS signals for dimethoxy-isoflavone (43), isoeorautenol (30) and an unknown pterocarp found more enriched in unelicited cell culture samples harvested at 0 h. In contrast, negative loading plot results along PC1 revealed that the triterpene glycoside “oleanolic acid tri-hexoside” (26) and an unknown sterol (49) (Fig. 3B) levels were higher in the MeJA treated samples and accounting for its segregation at 12 h and 24 h from 0 h time point. The enrichment of the major pterocarp “isoeorautenol” (30) in the untreated control cell culture samples (Fig. 3B) concurs results derived from negative ionization mode and highlighting the negative impact of MeJA on pterocarps biosynthetic branch. The decrease in pterocarpan levels in response to MeJA treatment is contrary to previous reports in Medicago truncatula cell culture [17] and lupines [26], suggesting that a differential response to MeJA exists in various legume species. This is the first report of MeJA differential effect on terpenoid accumulation versus pterocarps in E. lysistemon cell culture (Fig. 4). Studies focused on the genetic bases of MeJA
Fig. 3 UPLC-qTOF-positive ionization MS (m/z 100–1000) principal component analyses of *E. lysistemmon* unelicited cell culture samples (○), cell cultures treated with 1.0 mM MeJA at 0 h (○), 12 h (△) and 24 h (+) (*n* = 3). The metabolome clusters are located at the distinct positions in two-dimensional space prescribed by two vectors of principal component 1 (PC1 = 93%) and principal component 2 (PC2 = 6%). (A) Score Plot of PC1 versus PC2 scores. (B) Loading plot for PC1 and PC2 contributing to mass peaks and their assignments, with each metabolite denoted by its mass/rt (s) pair.

Fig. 4 Diagram showing major secondary metabolite pathways with represented major structures that are up regulated in *E. lysistemmon* plant, cell culture and in response to MeJA elicitation.
elicitation will help affirm induction hypothesis derived via metabolite profiling. It should be noted that oleanolic acid tri-hexoside conjugate was not detected by visual examination of unelicited cell culture chromatograms, suggesting that coupling of metabolomics for analysis of elicited samples presents a powerful methodology for identification of novel metabolites. Quantification of the major differential metabolites in elicited cell culture is presented in Table 2.

Conclusions

This study provides the first report on *E. lysistemon* cell suspension culture metabolite fingerprint via UPLC-MS. A metabolomic approach was used to investigate secondary metabolites viz. alkaloids, flavonoids and triterpenes and their reprogramming in response to MeJA elicitation. The results confirm MeJA elicitation effect on terpenoid accumulation and extend our knowledge base concerning secondary metabolism in other legume species [27]. Comparative metabolic profiling of *E. lysistemon* cell suspension culture and in response to elicitation using MeJA, revealed an activation in sterol/triterpenes formation, see model depicted in Fig. 4. The effect of other elicitors on secondary metabolites accumulation in *Erythrina* cell culture could also provide more holistic insight into elicitation effect within that genus and how it can reprogram its different secondary metabolite pathways.

Conflict of Interest

The authors declare that they have no conflict of interest.

Compliance with Ethics Requirements

This article does not contain any studies with human or animal subjects.

Acknowledgments

Dr. Mohamed A. Farag acknowledges the funding received by Science and Technology Development Fund STDF, Egypt (grant number 12594), and the support of the Alexander von Humboldt Foundation, Germany. We also thank Dr. Christoph Böttcher, Leibniz Institute of Plant Biochemistry, Germany, for assistance with the UPLC-MS. We are grateful to Dr. Tilo Lübcken, University of Dresden, Germany, for providing R scripts for UPLC-MS data analysis.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.jare.2016.07.002.

References

[1] Gledhill D. The names of plants. 4th ed. Cambridge, UK: Cambridge University Press; 2008. p. 157.
[2] El-Masry S, Amer ME, Abdel-Kader MS, Zaoutat HH. Prenylated flavonoids of *Erythrina lysistemon* grown in Egypt. Phytochemistry 2002;60(8):783–7.
[3] El-Masry S, Hamoda HM, Zaoutat HH, Abdel-Kader MS. Constituents of *Erythrina caffra* stem bark grown in Egypt. Natural Product Sciences 2010;16(4):211–6.
[4] El-Masry S, Amer ME, Dawood HM, Radwan MM, ElSohly MA, Abou-Karam M, et al. Bioassay-guided isolation of cytotoxic agents from *Erythrina caffra* root bark. Planta Med 2014;80(10):807–8.
[5] Amer ME, El-Masry S, Shamma M, Fryer AJ. Three novel glycodienoid alkaloids from *Erythrina lysistemon*. J Nat Prod 1990;54(1):161–6.
[6] Iranshahi M, Vu H, Pham N, Zencak D, Forster P, Quinn RJ. Cytotoxic evaluation of alkaloids and isoflavonoids from the Australian tree *Erythrina vespertilio*. Planta Med 2012;78(7):730–6.
[7] Wanjala CCW, Majinda CRT. Two novel glucodienoid alkaloids from *Erythrina latissima* seeds. J Nat Prod 2000;63:871–3.
[8] Tanaka H, Etoh H, Shimizu H, Oh-Uchil T, Terada Y, Tateishi Y. *Erythrina* alkaloids and isoflavonoids from *Erythrina poepigiana*. Planta Med 2001;67:871–2.
[9] Yenesew A, Derese S, Irungu B, Midiwo JO, Waters NC, Liyala P, et al. Flavonoids and isoflavonoids with antiplasmodial activities from the root bark of *Erythrina abyssinica*. Planta Med 2003;69:658–61.
[10] Njamen D, Talla E, Mbafor JT, Fomum ZT, Kamanyi A, Mbanya JC, Cerda, et al. Anti-inflammatory activity of erycristagallin, a pterocarpene from *Erythrina mildbraedii*. Eur J Pharmacol 2003;468:67–74.
[11] San Miguel-Chávez R, Soto-Hernández M. Antifungal activity of the alkaloid extract of *Erythrina americana* miller seedlings. In: Vincieri F, editor. Proceedings of the 53rd annual congress of medicinal plant research. Florence. p. 326.
[12] García-Mateos R, Soto-Hernández M, Martinez-Vázquez M, Villegas-Monter A. Isolation of alkaloids of *Erythrina* from tissue culture. Phytochem Anal 1999;10(1):12–6.
[13] San Miguel-Chávez R, Soto-Hernández M, Ramos-Valdivia AC, kite G. Alkaloid production in elicited cell suspension cultures of *Erythrina americana* miller. Phytochem Rev 2007;6:167–73.
[14] Baenas N, Garcia-Viguera C, Moreno DA. Elicitation: a tool for enriching the bioactive composition of foods. Molecules 2014;19:13541–63.
[15] Zhao J, Davis B, Verpoorte R. Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 2005;23:283–333.
[16] Mekky H, Mohamed M, Lazarus C, Power JB, Davey MR. Biosynthesis of very long chain polyunsaturated fatty acids in the leafy vegetable chicory. Agric Food Sci 2011;20:327–40.

Metabolites (µg g⁻¹)	*E. lysistemon* cell suspension		
	0 h	12 h	24 h
Erystronine	2.8 ± 0.9	3.4 ± 2.1	0.6 ± 0.5
Erystronamide	10.8 ± 3.8	8.9 ± 2.5	6.0 ± 1.4
ErylysinA	36.0 ± 8.2	22.2 ± 5.4	12.7 ± 2.6
Sandwicensin	10.7 ± 2.9	3.4 ± 0.5	2.2 ± 0.5
Oleanonic acid	406 ± 32.1	4907 ± 163	4838 ± 237
Erythrabissint	1268 ± 85	268 ± 59	243 ± 18
Isonoractenol	2217 ± 89	473 ± 16	564 ± 47
Farag MA, Huhman DV, Dixon RA, Sumner LW. Metabolomics reveals novel pathways and differential mechanistic and elicitor specific responses in phenylpropanoid and isoflavonoid biosynthesis in *Medicago truncatula* cell cultures. Plant Physiol 2008;146(2):387–402.

Farag MA, El Sayed AM, El Banna A. Metabolomics reveals distinct methylation reaction in MeJA elicited Nigella sativa callus via UPLC-MS and chemometrics. Plant Cell Tiss Org 2015;122:453–63.

El Senousy AS, Farag MA, Al-Mahdy DA, Wessjohann LA. Developmental changes in leaf phenolics composition from three artichoke cvs. (*Cynara scolymus*) as determined via UHPLC-MS and chemometrics. Phytochemistry 2014;108:67–76.

Farag MA, EL-Ahmady S, Alian F, Wessjohann LA. Metabolomics driven analysis of artichoke leaf and its commercial products via UHPLC-q-TOF-MS. Phytochemistry 2013;95:177–87.

Smith CA, Want EJ, O’Maille G, Ahagyan R, Siuzdak G. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem 2006;78:779–87.

Farag MA, Huhman DV, Lei Z, Sumner LW. Metabolic profiling and systematic identification of flavonoids and isoflavonoids in roots and cell suspension cultures of *Medicago truncatula* using HPLC-UV-ESIMS and GC-MS. Phytochemistry 2007;68:342–54.

Jalal MAF, Collin HA. Polyphenols of mature plant, seedling and tissue cultures of *Theobroma cacao*. Phytochemistry 1977;16:1377–80.

Scholz M, Lipinski M, Leupold M, Luftmann H, Harig L, Ofir R, et al. Methyl jasmonate induced accumulation of kalopanaxsaponin I in *Nigella sativa*. Phytochemistry 2009;70(4):517–22.

Liu Y, Cai Y, Zhao Z, Wang J, Li J, Xin W, et al. Cloning and functional analysis of a beta-amin synthase gene associated with oleanolic acid biosynthesis in *Gentiana straminea* MAXIM. Biol Pharm Bull 2009;32(5):818–24.

Katagiri Y, Hashidoko Y, Ibrahim RK, Tahara S. Activation of isoflavone biosynthesis in excised cotyledons of *Lupinus* seedlings by jasmonoids and excess light. Z Naturforsch C 2001;56(11–12):1038–46.

Dixon RA, Sumner LW. Legume natural products. Understanding and manipulating complex pathways for human and animal health. Plant Physiol 2003;131:378–85.