Research Article

Identified a disintegrin and metalloproteinase with thrombospondin motifs 6 serve as a novel gastric cancer prognostic biomarker by bioinformatics analysis

Ya-zhen Zhu¹, Yi Liu¹, Xi-wen Liao² and Shan-shan Luo¹

¹Department of Gastrointestinal Surgery, Guangxi Medical University Affiliated Tumor Hospital, Guangxi Clinical Research Center for Colorectal Cancer, Nanning 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China; ²Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China

Correspondence: Shan-shan Luo (luoshanshan@gxmu.edu.cn)

Objective: We aimed to explore the prognostic value of a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) genes in gastric cancer (GC). Methods: The RNA-sequencing (RNA-seq) expression data for 351 GC patients and other relevant clinical data were acquired from The Cancer Genome Atlas (TCGA). Survival analysis and a genome-wide gene set enrichment analysis (GSEA) were performed to define the underlying molecular value of the ADAMTS genes in GC development. Besides, qRT-PCR and immunohistochemistry were all employed to validate the relationship between the expression of these genes and GC patient prognosis. Results: The Log rank test with both Cox regression and Kaplan–Meier survival analyses showed that ADAMTS6 expression profile correlated with the GC patients clinical outcome. Patients with a high expression of ADAMTS6 were associated with poor overall survival (OS). Comprehensive survival analysis of the ADAMTS genes suggests that ADAMTS6 might be an independent predictive factor for the OS in patients with GC. Besides, GSEA demonstrated that ADAMTS6 might be involved in multiple biological processes and pathways, such as the vascular endothelial growth factor A (VEGFA), kirsten rat sarcoma viral oncogene (KRAS), tumor protein P53, c-Jun N-terminal kinase (JNK), cadherin (CDH1) or tumor necrosis factor (TNF) pathways. It was also confirmed by immunohistochemistry and qRT-PCR that ADAMTS6 is highly expressed in GC, which may be related to the prognosis of GC patients. Conclusion: In summary, our study demonstrated that ADAMTS6 gene could be used as a potential molecular marker for GC prognosis.

Introduction

Gastric cancer (GC) is the fourth most common cancer and the second cause of mortality worldwide [1]. The median survival time of patients with GC recurrence and metastasis is less than 1 year [2,3]. According to the 2015 data at the National Cancer Center, there were ~679000 new stomach cancer cases and 498000 deaths [4]. China accounts for 430000 new GC cases and 300000 deaths every year [5]. The GC development may be a process of long-term synergistic action of multiple factors. GC might be triggered by pathogenic infections, such as Helicobacter pylori (HP) [6–9] or gastric ulcers [10], chronic atrophic gastritis [11], carcinogens such as nitrite in food [12], smoking [13,14], and long-term drinking [15]. Despite the immense progress made in the clinical management of GC, the prognosis and survival rates of patients remain poor. Low early diagnosis rate and high local recurrence cases coupled with distant...
metastasis rates for advanced GC results in the poor GC prognosis in China. It is, therefore, vital to further interrogate the carcinogenesis and development of GC in order to develop new prognostic molecular markers and targeted therapy.

A disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) genes are zinc-dependent metalloproteases. Previous research has demonstrated a close association between ADAMTS and tumor invasion and metastasis [16]. ADAMTS participate in multiple biological pathways, including histomorphogenesis, pathophysiological reconstruction, inflammation, angiogenesis, or tumorigenesis [17,18]. However, the diagnostic, prognostic, or therapeutic value of the ADAMTS genes in the development of GC is yet to be defined. Here, using The Cancer Genome Atlas (TCGA) and the Kaplan–Meier plotter (KM plotter) tools, we explored the diagnostic and underlying prognostic value of the ADAMTS family of genes in stomach cancer.

Methods

Public database source

The RNA-seq expression data for 383 patients and relevant clinical data were acquired from the TCGA database (https://portal.gdc.cancer.gov/; accessed 15 May 2019). The mined data comprised 351 GC tumors and 32 normal gastric samples. The raw data were normalized via the DESeq (https://www.bioconductor.org/packages/release/bioc/html/DESeq.html) [19].

Bioinformatics analysis

We used GraphPad Prism 8 to draw the scatter diagram and receiver operating characteristic (ROC) curves of the expression distribution for both the GC and the normal samples. The unpaired t test was used to compare the differences shown in the scatter diagram and the area under ROC curve. Using the Database for Annotation, Visualization and Integrated Discovery (DAVID, (https://david.ncifcrf.gov/home.jsp; accessed 1 December 2019; v.6.8), we then...
Table 1 Correlation between OS and clinicopathologic features of GC patients in TCGA cohort

Variables	Events/total	MST (months)	HR (95% CI)	P-value
Age (years)	144/348	29		0.022
<60	36/108	60	1	
≥60	108/240	26	1.55 (1.06–2.27)	
Missing	3			
Gender	144/351	29		0.178
Male	100/226	29	1	
Female	44/125	35	0.78 (0.55–1.12)	
Missing	0			
Anatomic neoplasm	138/337	29		0.919
Gastroesophageal junction	36/84	26	1	
Fundus gastric body	50/123	28	0.92 (0.60–1.41)	
Gastric antrum	52/130	35	0.94 (0.61–1.43)	
Missing	14			
HP infection	66/161	43		0.304
Positive	6/18	58	1	
Negative	60/143	43	1.55 (0.67–3.61)	
Missing	190			
Histologic type	144/350	29		0.057
Intestinal	64/160	38	1	
Diffuse type	24/61	60	1.00 (0.63–1.60)	
Signet ring type	8/11	13	2.52 (1.20–5.25)	
Other types	48/118	26	1.29 (0.88–1.88)	
Missing	1			
Histologic grade	140/342	29		0.169
G1	2/9	NA	1	
G2	48/127	43	1.67 (0.41–6.86)	
G3	90/206	26	2.22 (0.55–9.01)	
Missing	9			
MSS1	144/350	29		0.225
MSI-H	99/240	28	1	
MSI-L	22/51	29	1.26 (0.79–2.01)	
MMS	23/59	35	0.76 (0.48–1.19)	
Missing	1			
Pathological M	138/336	29		0.012
M1	13/23	12	1	
M0	125/313	35	0.49 (0.28–0.86)	
Missing	15			
Pathological N	139/341	29		0.004
N0	28/103	60	1	
N+	111/238	25	1.83 (1.21–2.76)	
Missing	10			
Pathological T	140/347	31		0.009
T1/T2	28/91	70	1	
T3/T4	112/256	26	1.73 (1.14–2.63)	
Missing	4			
TNM stage	136/338	29		<0.001
Stage I	11/47	73	1	
Stage II	34/109	56	1.61 (0.81–3.18)	
Stage III	69/147	26	2.44 (1.29–4.51)	
Stage IV	22/35	16	3.79 (1.84–7.82)	
Missing	13			
Cancer status	121/324	37		<0.001
Tumor free	35/206	NA	1	
With tumor	86/118	17	5.53 (3.70–8.26)	
Missing	27			

Continued over
investigated the Gene Ontology (GO) enrichment of ADAMTS genes [20]. We used the gene multiple association network integration algorithm (Gene MANIA; http://www.genemania.org/; accessed 1 December 2019) to construct the gene–gene networks [21,22] and the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING v.10.0; https://string-db.org/; accessed 1 December 2019) to define the protein–protein interaction (PPI) networks [23,24].

Comprehensive survival analysis of ADAMTS genes

Using the median values for the gene expression profile, GC patients were classified into two categories based on survival analysis. Both the ADAMTS expression and clinical data in GC tissues or adjacent tissues were analyzed using the log-rank test, while the clinical characteristics related to overall survival (OS) were selected and adjusted by the multivariate Cox regression survival analysis. Besides, the clinical pathological features were further analyzed in the subgroups. We then conducted full survival analysis using the prognosis-related ADAMTS genes, and assessed the survival ROC curves using the R package platform, as well as the total and subgroup survival analysis. Finally, the prognostic relationship between ADAMTS family of genes and GC was verified by the KM plotter database (www.kmplot.com).

Gene set enrichment analysis

We used gene set enrichment analysis (GSEA) (http://software.broadinstitute.org/gsea/index.jsp; accessed 15 December 2020) [25,26] to study the biological differences and pathways affected by the differential expression of the ADAMTS gene pool and their relationship with GC clinical outcome. The GSEA software applies the Molecular Signatures Database (MSigDB) c2 (c2.cp.kegg.v7.0.symbols.gmt) and c5 (c5.all.v7.0.symbols.gmt) [27] in gene set analysis. Then a probability value of <0.05 and a false discovery rate (FDR) < 0.25 for GSEA were considered statistically significant.

qRT-PCR

We collected 24 pairs of GC and adjacent normal tissue samples surgically from December 2020 to February 2021 at Guangxi Medical University Affiliated Tumor Hospital for RNA extraction. A cDNA reverse transcription kit (RR036A; TaKaRa, U.S.A.) and TB Green kit (RR820A; TaKaRa, U.S.A.) were used for reverse transcription into cDNA and qRT-PCR. Primers used were: ADAMTS6-F: 5’-CCTCCCAAGCGTGACTTTCT-3’; ADAMTS6-R: 476119-3’.
Figure 2. The ROC curve of ADAMTS mRNA expression in GC and adjacent tissues based on TCGA database.

5′-AGACACCAGAGCTCTTACACACTT-3′. GAPDH-F: 5′-CAGGAGGCGATTGCTGATGAT-3′, and GAPDH-R: 5′-GAAGGCTGGGGCTCATTT-3′.

Immunohistochemistry

We collected 18 pairs of GC tissues and paired paracancerous tissue samples in the Guangxi Medical University Affiliated Tumor Hospital from January 2018 to December 2018. The experiments were approved by the Ethical Committee of the Guangxi Medical University Affiliated Tumor Hospital and written informed consent was signed by each participant. The sections were placed in an oven at 65°C for 2 h, dewaxed with xylene, hydrated with a graded series of ethanol, and repaired with antigen repair buffer using the EDTA method. Endogenous antigens were blocked with 3% hydrogen peroxide. The sections were incubated with Rabbit Anti-ADAMTS6 antibody (bs-8009R) overnight at 4°C. The sections were heated for 30 min to bring them to room temperature and incubated with secondary antibody for 20 min. Staining was visualized using DAB color developing solution. The sections were stained with Hematoxylin, differentiated in 1% hydrochloric acid in alcohol, and dehydrated. Thereafter, the sections were dried naturally in a
Figure 3. GO enrichment analysis of ADAMTS genes

Figure 4. Gene and protein interaction networks of ADAMTS genes
(A) Gene multiple association network integration algorithm. (B) PPI networks.
Figure 5. Co-expression matrix of ADAMTS genes in GC tumor tissues, and demonstrated that ADAMTS1–8 were positively correlated and co-expressed with each other in GC tumor tissues.

Statistical analysis
We employed the Benjamini–Hochberg program to adjust FDRs in GSEA for multiple tests [29–31]. The statistical analysis was conducted via SPSS version 23.0 (IBM Corporation, Armonk, NY, U.S.A.). A probability value of $P < 0.05$ was considered statistically significant.

Results
In determining the potential diagnostic value of ADAMTS family in distinguishing between GC tumor tissue and adjacent normal tissue, the results of unpaired t test showed that ADAMTS1 and ADAMTS8 mRNA expression was down-regulated in GC tumor tissues as compared with the adjacent normal tissues ($P < 0.05$). On the other side, ADAMTS2, ADAMTS6, and ADAMTS7 genes mRNA expression were up-regulated in GC tissues ($P < 0.05$), as
Figure 6. Gene expression distribution of ADAMTS genes in different GC histologic grades and tumor stages.

(A) Gene expression distribution of ADAMTS genes in different GC histologic grades. (B) Gene expression distribution of ADAMTS genes in different GC tumor stages. *P<0.05.
Figure 7. Kaplan–Meier survival curves for ADAMTS genes in GC of TCGA cohort
OS stratified by ADAMTS1 (A), ADAMTS2 (B), ADAMTS3 (C), ADAMTS4 (D), ADAMTS5 (E), ADAMTS6 (F), ADAMTS7 (G), ADAMTS8 (H).

shown in Figure 1. The ROC curves for the GC and adjacent normal samples showed that the tumor tissues could be effectively identified based on the risk score (Figure 2).

Bioinformatics analysis
The GO analysis indicated that the ADAMTS genes were linked with extracellular matrix/structure organization, extracellular matrix disassembly, cell adhesion molecule binding, or collagen catabolic/metabolic processes, as shown in Figure 3. Our interaction network analysis showed that ADAMTS genes and other related genes formed an intricate network together. The gene–gene interaction network showed that the ADAMTS genes are strongly co-expressed (Figure 4A), while the PPI network analysis showed that the ADAMTS proteins directly interact with each other (Figure 4B). Furthermore, there was co-expression among the ADAMTS1–8 genes in the GC tumor tissues (Figure 5), demonstrating that the genes are positively correlated with GC development (Pearson correlation coefficient range: 0.11–0.69; \(P<0.05\)). Besides, our analysis of the ADAMTS genes expression in different tumor stages and histologic grades showed that the ADAMTS6 expression was significantly different in G1/G2 and G3 tumor tissues (Figure 6A). However, there was no significant difference in the expression of ADAMTS genes in stages I/II and III/IV tumor samples (Figure 6B). Together, these data show that ADAMTS6 overexpression is associated with G3 tumor tissues samples in GC patients, \(P=0.01\) (Figure 6A).

ADAMTS1–8 genes and OS in GC patients
The clinical characteristics of the 351 GC patients is shown in Table 1. The results from the univariate analysis found that the high ADAMTS1 and ADAMTS6 mRNA expression were associated with poor survival rates of GC patients (hazard ratio (HR) = 1.52, 95% confidence interval (CI) = 1.09–2.12, \(P=0.013\) and HR = 1.80, 95% CI = 1.29–2.51, \(P=0.001\), respectively) as shown in Table 2. Unlike the other ADAMTS genes, the survival analysis indicated that
Table 2 Prognostic values of ADAMTS genes expression in GC OS of TCGA cohort

Gene expression	Events/total (n=351)	MST (months)	Crude HR (95% CI)	Crude P-value	Adjusted HR (95% CI)	Adjusted P-value
ADAMTS1						
Low	61/176	56	1	1		
High	83/175	26	1.52 (1.09–2.12)	0.013	1.39 (0.91–2.11)	0.125
ADAMTS2						
Low	64/176	47	1	1		
High	80/175	26	1.38 (0.99–1.92)	0.055	1.30 (0.85–1.98)	0.226
ADAMTS3						
Low	63/176	37	1	1		
High	81/175	27	1.25 (0.90–1.73)	0.19	1.36 (0.88–2.09)	0.168
ADAMTS4						
Low	63/176	43	1	1		
High	81/175	28	1.21 (0.87–1.68)	0.266	1.34 (0.87–2.07)	0.189
ADAMTS5						
Low	70/176	27	1	1		
High	74/175	35	1.09 (0.79–1.52)	0.599	0.84 (0.54–1.31)	0.441
ADAMTS6						
Low	59/176	56	1	1		
High	85/175	21	1.80 (1.29–2.51)	0.001	1.89 (1.19–3.01)	0.007
ADAMTS7						
Low	64/176	43	1	1		
High	80/175	26	1.33 (0.95–1.85)	0.095	1.41 (0.91–2.18)	0.120
ADAMTS8						
Low	67/176	37	1	1		
High	77/175	28	1.15 (0.83–1.60)	0.401	1.52 (0.97–2.39)	0.067

Abbreviation: MST, median survival time.
1Adjusted for age, TNM stage, cancer status, primary therapy outcome, residual tumor, targeted molecular therapy, and radiation therapy.

the up-regulation of ADAMTS1, ADAMTS3, or ADAMTS6 increased risk of death in GC patients (P<0.05) (Figure 7A–H). Clinical parameters such as age, TNM stage, cancer status, primary therapy outcome, residual tumor, and therapy were remarkably correlated with OS in GC. What needs to be adjusted in multivariate Cox regression and indicated that ADAMTS6 overexpression was remarkably raised death rate in GC (adjusted HR = 1.89, 95% CI = 1.19–3.01, adjusted P=0.007, Table 2, Figure 7F) and accelerated a worse OS (high ADAMTS6 vs low ADAMTS6; 21 vs 56 months, Table 2, Figures 7F and 8A). There was, however, no correlation between other ADAMTS genes and the GC OS. In addition, as shown in Table 3, subgroup analysis indicated that overexpression of the ADAMTS6 genes increased the death rate in GC patients who are ≥60 years old; female patients; patients with gastric antrum cancer; intestinal type adenocarcinoma; G2, G3 histologic grade; microsatellite instability-altitude (MSI-H), MMS; lymph node metastasis; T3, T4 stage; tumor free status; pathologic stage III; R0 resection; those untreated with radiation therapy or targeted therapy, without distant metastasis and HP infection. Time-dependent ROC analysis proved that ADAMTS6 expression profile could reliably predict OS in GC patients. The area under the 1-, 2-, or 3-year curve (AUC) was 0.613, 0.607, or 0.759, respectively (Figure 8B). Besides, we demonstrate that ADAMTS6, together with the OS-related clinical characteristics give superior performance in the prediction OS in GC patients (Figure 9A–E and Table 4).

K–M plotter survival analysis
The expression profile for the ADAMTS genes in the K–M plotter database demonstrated that patients with high expression had poor clinical outcomes (Figure 10 and Table 5). The data from the Lauren classification of the ADAMTS mRNA expression of the GC patients showed that the patients with high expression of diffuse ADAMTS5 (Affymetrix ID: 235368_at) gene, intestinal ADAMTS1 (Affymetrix ID: 222486_s_at), ADAMTS2 (Affymetrix ID: 226311_at), ADAMTS3 (Affymetrix ID: 214913_at), ADAMTS4 (Affymetrix ID: 214913_at), ADAMTS6 (Affymetrix ID: 237411_at) or ADAMTS7 (Affymetrix ID: 228911_at) had shorter survival time compared with those with low expression (Figures 11 and 12 and Table 6). Tables 7-10 show the stratified results of the ADAMTS expression in TNM
Table 3 Stratified analysis of ADAMTS6 gene expression in clinicopathologic features of GC cases

Variables	Cases	HR (95% CI)	Log-rank P-value
Age (years)			
<60	108	1.01 (0.46–2.21)	0.102
≥60	240	1.94 (1.25–3.01)	0.048
Gender			
Male	226	1.66 (1.05–2.62)	0.021
Female	125	2.26 (1.14–4.50)	0.293
Anatomic neoplasm			
Gastroesophageal			
Junction	84	0.79 (0.29–2.15)	0.501
Fundus gastric body	123	0.70 (0.39–1.24)	0.001
Gastric antrum	130	1.97 (1.01–3.85)	0.001
HP infection			
Positive	18	3.61 (0.22–59.81)	0.180
Negative	143	1.20 (0.65–2.23)	0.005
Histologic type			
Intestinal	160	2.53 (1.43–4.46)	P<0.001
Diffuse type	61	0.67 (0.28–1.59)	0.156
Signet ring type	11	0.64 (0.02–26.22)	0.312
Other types	118	1.96 (1.01–3.82)	0.006
Histologic grade			
G1	9	NA	NA
G2	127	1.15 (0.59–2.26)	0.006
G3	206	2.38 (1.49–3.81)	P<0.001
MSS1	350		
MSI-H	240	1.67 (1.08–2.59)	P<0.001
MSI-L	51	2.15 (0.81–5.73)	0.099
MMS	59	2.62 (0.88–7.81)	0.005
Pathological M			
M1	23	1.19 (0.07–19.35)	0.870
M0	313	1.63 (1.12–2.38)	P<0.001
Pathological N			
N0	103	0.90 (0.35–2.30)	0.005
N+	111/238	2.20 (1.41–3.42)	P<0.001
Pathological T			
T1/T2	91	0.60 (0.24–1.51)	0.118
T3/T4	256	2.24 (1.44–3.50)	P<0.001
Pathologic stage			
Stage I	47	1.60 (0.48–5.29)	0.402
Stage II	109	1.55 (0.79–3.07)	0.478
Stage III	147	2.00 (1.16–3.44)	0.039
Stage IV	35	3.11 (0.70–13.86)	0.132
Cancer status			
Tumor free	206	2.26 (1.07–4.80)	P<0.001
With tumor	118	1.71 (1.06–2.76)	0.108
Radiation therapy			
Yes	62	2.26 (0.80–6.39)	0.287
No	266	1.75 (1.78–2.59)	P<0.001
Residual tumor			
R1	14	NA	NA
R2	14	0.78 (0.02–41.15)	0.531
R0	288	1.71 (1.13–2.58)	0.090
Targeted therapy			
Yes	151	1.36 (0.77–2.39)	0.388
No	175	1.92 (1.18–3.12)	P<0.001

Continued over
Table 3 Stratified analysis of ADAMTS6 gene expression in clinicopathologic features of GC cases (Continued)

Variables	Cases	HR (95% CI)	Log-rank P-value
Abbreviations: CR, complete response; G1, highly differentiated; G2, moderately differentiated; G3, poorly differentiated; MSI-L, microsatellite instability-low; MST, median survival time; M, metastasis; N, node; NA, not applicable; PD, progressive disease; PR, partial response; R0, no residual tumor; R1, microscopic residual tumor; R2, macroscopic residual tumor; SD, stable disease; T, tumor.			

Table 4 Joint effects survival analysis of clinical factors and the ADAMTS6 expression with OS

Group	ADAMTS6	Variables	Events/total	MST (months)	Crude HR (95% CI)	Crude P-value	Adjusted HR (95% CI)	Adjusted P-value
Histologic grade								
A	Low expression	G1 + G2	27/74	56	1.005 (0.602–1.680)	0.984	0.734 (0.394–1.371)	0.332
B	Low expression	G3 + G4	32/98	47	1.226 (0.701–2.142)	0.475	1.171 (0.600–2.286)	0.644
C	High expression	G1 + G2	23/62	31	2.045 (1.291–3.237)	0.002	1.815 (1.035–3.184)	0.038
D	High expression	G3 + G4	58/108	18				
Radiation therapy								
a	Low expression	Yes	6/31	47	3.104 (1.321–7.2940	0.009	3.265 (1.276–8.353)	0.014
b	Low expression	No	47/131	58	2.821 (1.071–7.432)	0.036	2.644 (0.954–7.324)	0.062
c	High expression	Yes	13/31	20	5.665 (2.434–13.188)	<0.001	5.917 (2.349–14.900)	<0.001
d	High expression	No	69/135	31				
Radical resection								
I	Low expression	R0	44/155	70	1.000 (1.204–7.707)	0.019	3.308 (0.931–11.751)	0.064
II	Low expression	R1+R2	5/9	8	1.829 (1.230–2.720)	0.003	2.055 (1.349–3.129)	0.001
IV	High expression	R0	56/133	27	5.009 (2.807–8.937)	<0.001	3.485 (1.719–7.067)	0.001
III	High expression	R1+R2	16/19	12				
Targeted molecular therapy								
i	Low expression	Yes	22/74	70	1.000 (0.810–2.420)	0.028	1.092 (0.470–2.512)	0.737
ii	Low expression	No	31/89	47	1.829 (1.068–3.133)	0.028	1.626 (0.891–2.966)	0.113
iii	High expression	Yes	34/77	29	3.002 (1.802–5.001)	<0.001	2.030 (1.087–3.793)	0.026
iv	High expression	No	47/86	18				
Stage								
E	Low expression	I + II	24/89	56	1.000 (0.829–2.358)	0.029	1.839 (0.975–3.469)	0.06
F	Low expression	III+IV	34/84	47	1.214 (0.675–2.181)	0.517	1.579 (0.794–3.142)	0.193
G	High expression	I + II	21/67	60	2.946 (1.807–4.704)	<0.001	3.897 (2.117–7.176)	<0.001
H	High expression	III+IV	57/98	17				

Abbreviation: MST, median survival time.

1 Adjusted for histologic grade, radiation therapy, radical resection, targeted molecular therapy, and stage.

stage, tumor differentiation degree, different treatment strategies, and HER2 status of the GC cases. The high expression of ADAMTS1 in tumor stage IV (adjusted P=0.036, adjusted HR = 1.52, 95% CI = 1.02–2.27), ADAMTS2 in stage III (adjusted P=0.02, adjusted HR = 1.56, 95% CI = 1.07–2.28), ADAMTS5 in stages III and IV (adjusted P=0.002, adjusted HR = 1.81, 95% CI = 1.24–2.64 and adjusted P=0.04, adjusted HR = 1.51, 95% CI =
Figure 8. Prognostic value evaluation of ADAMTS6 in patients with GC
(A) From top to bottom: are the expression values of ADAMTS6, patients’ survival status distribution, and the expression heat map of ADAMTS6 in the low- and high-expression groups. (B) ROC curve for predicting OS in GC patients by the ADAMTS6.

Figure 9. Joint effects analysis of OS stratified by ADAMTS6 and GC clinical parameters
Joint effects analysis stratified by ADAMTS6 and following clinical parameters: histologic grade (A), radiation therapy (B), radical resection (C), targeted molecular therapy (D), stage (E).

Table 5 Survival analysis of ADAMTS gene mRNA expression in GC cases in KM plotter database

Gene/Affymetrix ID	Low/high expression cases	HR (95% CI)	P-value
ADAMTS1/222486_s_at	317/314	1.68 (1.35–2.09)	2.9e-06
ADAMTS2/226311_s_at	316/315	1.49 (1.2–1.85)	3e-04
ADAMTS3/214913_s_at	448/428	1.33 (1.12–1.58)	0.00091
ADAMTS4/214913_s_at	448/428	1.33 (1.12–1.58)	0.00091
ADAMTS5/235668_at	317/314	1.4 (1.12–1.74)	0.0024
ADAMTS6/237411_at	319/312	1.7 (1.37–2.12)	1.5e-06
ADAMTS7/228911_at	344/287	1.63 (1.32–2.03)	7.2e-06
ADAMTS8/235649_at	316/315	1.72 (1.39–2.13)	9.9e-07
Table 6 Stratified analysis of ADAMTS gene mRNA in Lauren typing in K–M plotter

Gene	Lauren typing	Low/high expression cases	HR (95% CI)	P-value
ADAMTS1	Intestinal	136/133	1.79 (1.23–2.59)	0.0019
	Diffuse	120/120	1.3 (0.92–1.83)	0.13
	Mixed	14/15	1.96 (0.6–6.37)	0.26
ADAMTS2	Intestinal	136/133	1.55 (1.08–2.23)	0.017
	Diffuse	120/120	1.37 (0.97–1.94)	0.069
	Mixed	14/15	0.9 (0.3–2.68)	0.85
ADAMTS3	Intestinal	162/158	1.55 (1.13–2.13)	0.0063
	Diffuse	120/121	1.35 (0.96–1.9)	0.088
	Mixed	14/16	2.72 (0.92–8.06)	0.061
ADAMTS4	Intestinal	162/158	1.55 (1.13–2.13)	0.0063
	Diffuse	120/121	1.35 (0.96–1.9)	0.088
	Mixed	16/16	2.72 (0.92–8.06)	0.061
ADAMTS5	Intestinal	134/135	1.23 (0.85–1.77)	0.27
	Diffuse	120/120	1.54 (1.09–2.18)	0.013
	Mixed	14/15	0.9 (0.3–2.68)	0.85
ADAMTS6	Intestinal	139/130	1.81 (1.26–2.62)	0.0013
	Diffuse	121/119	1.3 (0.93–1.83)	0.13
	Mixed	14/15	0.74 (0.25–2.24)	0.6
ADAMTS7	Intestinal	147/122	2.33 (1.61–3.38)	4.3e-06
	Diffuse	133/107	1.4 (0.99–1.96)	0.054
	Mixed	16/13	1.54 (0.51–4.58)	0.44
ADAMTS8	Intestinal	134/135	1.42 (0.99–2.05)	0.057
	Diffuse	121/119	1.34 (0.95–1.89)	0.093
	Mixed	14/15	2.21 (0.68–7.21)	0.18

1.02–2.25), ADAMTS7 in stages III and IV (adjusted $P=0.0026$, adjusted HR = 1.77, 95% CI = 1.21–2.57 and adjusted $P=0.0047$, adjusted HR = 1.76, 95% CI = 1.18–2.63) increased the mortality rate, while a high expression of ADAMTS2 in tumor stage I (adjusted $P=0.03$, adjusted HR = 0.26, 95% CI = 0.07–0.96) increased the survival rate in GC patients. Similarly, the high expression in G2 degree of tumor differentiation of ADAMTS7 (adjusted $P=0.0074$, adjusted HR = 2.39, 95% CI = 1.24–4.59) increased the death rate in GC patients. In addition, the mortality rate in patients with high expression of ADAMTS genes after surgery was higher than those with low expression. The HER2 state subgroup analysis showed that the high expression of ADAMTS family of genes increased mortality in patients with HER2 positive and HER2 negative status, but not in ADAMTS5, ADAMTS7 HER2 positive patients.

GSEA

The GSEA data indicated that, in the c2 category, the high expression of ADAMTS6 may participate in extracellular matrix organization, development of advanced GC, metastasis, ECM receptor interaction, vascular endothelial growth factor A (VEGFA), Kirsten rat sarcoma viral oncogene (KRAS), c-Jun N-terminal kinase (JNK), and cadherin (CDH1) signaling pathways (Figure 13A–I). In the c5 category, down-regulation of the ADAMTS6 expression might be linked with DNA damage, cell cycle, apoptosis, glycolysis, fatty acid metabolism, mRNA catabolism, tumor protein p53, and tumor necrosis factor (TNF) signaling pathways (Figure 14A–I).

qRT-PCR and immunohistochemistry

Although the application of bioinformatics has given us directions, we still needed to combine sample verification to provide guidance for clinical research. We found that ADAMTS6 is mainly expressed in the cytoplasm of GC tissues. The positive expression of ADAMTS6 was observed in 10 (55.56%) and 4 (22.22%) cases of GC and adjacent normal tissues, respectively (Table 11, $P<0.05$), which proved that ADAMTS6 was up-regulated in GC compared with adjacent tissues (Figure 15A,B), consistent with TCGA findings (Figure 1, $P<0.05$).
Table 7 Stratified analysis of ADAMTS gene mRNA in stage in K–M plotter database

Gene	Stage	Low/high expression cases	HR (95% CI)	P-value
ADAMTS1	I	31/31	1.95 (0.6–6.4)	0.26
	II	69/66	1.57 (0.83–2.97)	0.16
	III	98/99	1.11 (0.77–1.62)	0.57
	IV	70/70	1.52 (1.02–2.27)	0.036
ADAMTS2	I	31/31	0.26 (0.07–0.96)	0.03
	II	68/67	0.62 (0.33–1.19)	0.15
	III	98/99	1.56 (1.07–2.28)	0.02
	IV	70/70	1.29 (0.87–1.91)	0.2
ADAMTS3	I	35/32	1.18 (0.43–3.23)	0.75
	II	70/70	1.52 (0.83–2.76)	0.17
	III	152/153	1.13 (0.85–1.5)	0.4
	IV	74/74	1.46 (1–2.15)	0.051
ADAMTS4	I	35/32	1.18 (0.43–3.23)	0.75
	II	70/70	1.52 (0.83–2.76)	0.17
	III	152/153	1.13 (0.85–1.5)	0.4
	IV	74/74	1.46 (1–2.15)	0.051
ADAMTS5	I	31/31	0.48 (0.16–1.49)	0.19
	II	68/67	1.66 (0.86–3.18)	0.13
	III	98/99	1.81 (1.24–2.64)	0.002
	IV	71/69	1.51 (1.02–2.25)	0.04
ADAMTS6	I	32/30	0.41 (0.12–1.33)	0.12
	II	68/67	1.4 (0.74–2.63)	0.29
	III	98/99	1.36 (0.93–1.98)	0.11
	IV	70/70	1.31 (0.88–1.95)	0.16
ADAMTS7	I	34/28	2.56 (0.77–8.56)	0.11
	II	82/83	1.35 (0.71–2.57)	0.35
	III	110/87	1.77 (1.21–2.57)	0.0026
	IV	74/66	1.76 (1.18–2.63)	0.0047
ADAMTS8	I	31/31	1.87 (0.56–6.23)	0.3
	II	68/67	1.52 (0.8–2.88)	0.19
	III	98/99	1.2 (0.82–1.74)	0.34
	IV	70/70	1.4 (0.94–2.09)	0.096

Discussions

Invasive growth and distant metastasis are the two key features that characterize malignancy, which are also the primary reason for high mortality. Rapid proliferation and metastasis of tumors is facilitated by emergence of new blood vessels in the stroma [32]. Thus, inhibiting angiogenesis may be an effective strategy to inhibit cancer growth. The most significant feature of the ADAMTS family of enzymes are their diversity in thrombospondin type 1 (TSP1) motifs at the C-terminus. The TSP1 motifs are highly conserved and are an endogenous inhibitor of angiogenesis. It inhibits endothelial cell proliferation, induce endothelial cell apoptosis and anti-angiogenesis through its interaction with CD36 receptor [33].

In our study, GO enrichment analysis revealed that ADAMTS gene family is related to extracellular matrix/structure organization, extracellular matrix disassembly, and binding of cell adhesion molecules. Cell adhesion molecules mediate the interaction between cells or between the cells and matrix [34]. These adhesion molecules are synthesized and secreted by a variety of cells, and participate in the occurrence and metastasis of tumors [35]. In preventing tumor metastasis, extracellular matrix organization plays an important regulatory roles and its dissolution can promote tumor growth and metastasis. Previous data have suggested that the ADAMTS family of genes plays a vital role in the degradation of extracellular matrix [36]. Thus, the ADAMTS genes might be key anti-invasive molecules. The co-expression of the ADAMTS1–8 genes shows positive correlation with GC tumors. Nevertheless, data on the molecular expression and the role of ADAMTS set of genes in GC are still scant.

Several studies have revealed that ADAMTS1 is down-regulated in a variety of tumors [37–39], as well as in GC tumor tissue [40]. In our study, there was low expression of ADAMTS1 mRNA in GC tissues compared with those...
Table 8 Stratified analysis of ADAMTS gene mRNA in degree of tumor differentiation in K–M plotter

Gene	Differentiation	Low/high expression cases	HR (95% CI)	P-value
ADAMTS1	G1	2/3	1142066032.99 (0–Inf)	0.41
	G2	34/33	0.89 (0.46–1.7)	0.72
	G3	60/61	0.87 (0.53–1.4)	0.55
ADAMTS2	G1	2/3	1142066039.57 (0–Inf)	0.41
	G2	34/33	1.31 (0.69–2.52)	0.41
	G3	60/61	1.34 (0.82–2.18)	0.24
ADAMTS3	G1	16/16	1.52 (0.64–3.61)	0.34
	G2	34/33	1.35 (0.71–2.59)	0.36
	G3	82/83	1.23 (0.82–1.83)	0.32
ADAMTS4	G1	16/16	1.52 (0.64–3.61)	0.34
	G2	34/33	1.35 (0.71–2.59)	0.36
	G3	82/83	1.23 (0.82–1.83)	0.32
ADAMTS5	G1	2/3	1142066032.99 (0–Inf)	0.41
	G2	34/33	0.96 (0.5–1.84)	0.91
	G3	60/61	1.16 (0.72–1.88)	0.54
ADAMTS6	G1	2/3	1142066039.57 (0–Inf)	0.41
	G2	36/31	1.49 (0.78–2.84)	0.23
	G3	62/59	1.07 (0.66–1.73)	0.78
ADAMTS7	G1	2/3	1142066042.6 (0–Inf)	0.41
	G2	40/27	2.39 (1.24–4.59)	0.0074
	G3	60/61	0.77 (0.48–1.26)	0.3
ADAMTS8	G1	2/3	1142066039.57 (0–Inf)	0.41
	G2	34/33	1.43 (0.75–2.74)	0.28
	G3	60/61	1.1 (0.68–1.79)	0.69

Table 9 Stratified analysis of ADAMTS genes mRNA in treatment method in K–M plotter

Gene	Treatment method	Low/high expression cases	HR (95% CI)	P-value
ADAMTS1	Surgery	189/191	1.66 (1.24–2.22)	0.00065
	5-FU	17/17	0.99 (0.4–2.47)	0.98
ADAMTS2	Surgery	192/188	1.32 (0.99–1.76)	0.061
	5-FU	17/17	2.26 (0.89–5.76)	0.08
ADAMTS3	Surgery	194/186	1.54 (1.15–2.06)	0.0032
	5-FU	77/76	0.88 (0.63–1.24)	0.47
ADAMTS4	Surgery	194/186	1.54 (1.15–2.06)	0.0032
	5-FU	77/76	0.88 (0.63–1.24)	0.47
ADAMTS5	Surgery	190/190	1.28 (0.96–1.71)	0.096
	5-FU	17/17	0.68 (0.27–1.71)	0.42
ADAMTS6	Surgery	190/190	1.75 (1.31–2.34)	0.00014
	5-FU	17/17	2.04 (0.81–5.16)	0.12
ADAMTS7	Surgery	209/171	1.57 (1.17–2.09)	0.0021
	5-FU	17/17	1 (0.4–2.47)	1
ADAMTS8	Surgery	190/190	1.48 (1.11–1.98)	0.0075
	5-FU	17/17	2.25 (0.85–5.95)	0.094

in adjacent tissues, \(P < 0.001 \). Besides, the survival analysis also demonstrated that up-regulation of the ADAMTS1 is associated with poor survival time in GC patients \(P = 0.013 \), but not in multifactor analysis \(P > 0.05 \). Whereas the ADAMTS1 gene expression level correlates with OS in stomach cancer patients, it is not an independent prognostic biomarker for GC, thus more validation studies are required.

Compared with the normal tissues, ADAMTS2 expression in GC tumor cells and fibroblasts was significantly increased, and the up-regulation of the ADAMTS2 was associated with poor prognosis of GC patients [41]. Our data
Table 10 Stratified analysis of ADAMTS gene mRNA in HER2 state in K–M plotter database

Gene	HER2 state	Low/high expression cases	HR (95% CI)	P-value
ADAMTS1	Negative	214/215	1.6 (1.23–2.1)	0.00049
	Positive	101/101	1.94 (1.32–2.84)	0.00063
ADAMTS2	Negative	214/215	1.46 (1.12–1.91)	0.0049
	Positive	101/101	1.59 (1.09–2.32)	0.015
ADAMTS3	Negative	266/266	1.49 (1.19–1.87)	0.00053
	Positive	172/172	1.26 (0.97–1.63)	0.082
ADAMTS4	Negative	266/266	1.49 (1.19–1.87)	0.00053
	Positive	172/172	1.26 (0.97–1.63)	0.082
ADAMTS5	Negative	216/213	1.44 (1.1–1.87)	0.0077
	Positive	102/100	1.37 (0.94–1.99)	0.1
ADAMTS6	Negative	215/214	1.75 (1.33–2.29)	4.2e-05
	Positive	101/101	1.59 (1.09–2.31)	0.015
ADAMTS7	Negative	225/204	1.85 (1.42–2.43)	4.6e-06
	Positive	104/98	1.33 (0.92–1.93)	0.15
ADAMTS8	Negative	214/215	1.75 (1.34–2.29)	3.7e-05
	Positive	101/101	1.64 (1.12–2.38)	0.0096

Table 11 ADAMTS6 expression in GC and paracarcinoma tissues

ADAMTS6 expression	Positive, n (%)	Negative, n (%)	P-value
GC tissue (n=18)	10 (55.56)	8 (44.44)	0.04
Paracarcinoma tissues (n=18)	4 (22.22)	14 (77.78)	

demonstrated that the expression of ADAMTS2 increases in GC, P<0.001, but the high expression did not affect mortality in GC (P>0.05).

It has also been observed that the increased expression of ADAMTS3 gene takes a major part in the development of myocardial infarction, osteoarthritis, and breast cancer [42]. Our study found the expression level of ADAMTS3 gene is not associated with the GC OS. Whereas ADAMTS4 expression was significantly up-regulated in invasive breast cancer tissues [43] and human glioma [44], our study showed that the expression of ADAMTS4 gene does not affect the OS of GC patients. Similarly, unlike previous studies [45–48], our findings shows that the expression profile of ADAMTS5 gene does not correlate with survival of GC patients. In addition, ADAMTS7 is involved in the migration and proliferation of smooth muscle and the development of atherosclerosis and restenosis [49]. Our current findings indicates the expression level of the ADAMTS7 gene is not related to OS in GC patients. Previous studies have shown that the ADAMTS8 expression is down-regulated in breast cancer, brain cancer, and non-small cell lung cancer [50–52]. Whereas our data showed down-regulation of the ADAMTS8 mRNA expression in GC, P<0.001, the low expression was not correlated with the risk of GC-specific mortality (P>0.05).

The up-regulation of ADAMTS6 is a molecular marker for poor prognosis in esophageal squamous cell carcinoma [53]. Besides, some researches have demonstrated that ADAMTS6 is dysregulated in breast cancer [54], prolactin tumors [55], and colorectal cancer [56]. In this study, we revealed that ADAMTS6 mRNA is overexpressed in GC tissues, P<0.001. ADAMTS6 expression is largely correlated with tumor stage, targeted molecular therapy, radical resection, radiation therapy, and histological grade of the GC. It was confirmed by immunohistochemistry and qRT-PCR that ADAMTS6 is up-regulated in GC, consistent with TCGA findings, which may be related to the prognosis of GC patients. Stratified analysis of the clinic pathological parameters such as age, gender, and TNM stage also showed that patients with the high expression of ADAMTS6 have reduced survival than those with low expression. Similarly, the multivariate survival and stratified analysis showed that the ADAMTS6 mRNA was up-regulated in GC patients and led to poor survival time. In addition, the ADAMTS6 gene was shown to promote the occurrence and development of stomach cancer. Our study revealed that ADAMTS6 is a tumor promoter, whose overexpression mediates occurrence, proliferation, invasion, or metastasis of stomach tumor, thus leading to a high mortality. Therefore, the ADAMTS6 gene may be a potential therapeutic target for GC.
Figure 10. Survival analysis of ADAMTS mRNA expression in GC based on K–M plotter database
Survival analysis of ADAMTS1 (A), ADAMTS2 (B), ADAMTS3 (C), ADAMTS4 (D), ADAMTS5 (E), ADAMTS6 (F), ADAMTS7 (G), ADAMTS8 (H).

The GSEA indicated that ADAMTS6 enriched cancer-related pathways, such as apoptosis, VEGF, KRAS, P53, JNK, CDH1, or TNF pathways, which may affect GC prognosis. Apoptosis plays a significant role in maintaining the stability of the internal environment. The balance between cell proliferation and apoptosis is pivotal to the stability of human internal environment, otherwise, any perturbation of this state might lead to tumorigenesis [57]. VEGF mediates angiogenesis, which has been considered as the strongest cytokine promoting tumor angiogenesis [58]. It has been shown that inhibition of the VEGF signaling pathway inhibits neovascularization, thus blocking the occurrence and metastasis of tumors [59]. KRAS is the most common mutation type in the RAS family of genes that affects the development of tumors [60,61]. Once KRAS mutates, it will lose the activity of GTP hydrolase, and thus continue to activate, promoting the uncontrolled cell proliferation and carcinogenesis. Besides, mutations in the p53 gene renders it ineffective in regulating cell growth, apoptosis, DNA repair and so on, causing cell transformation and cancer [62,63]. Deveci et al. demonstrated that the P53 gene is associated with the occurrence and development of GC [64]. JNK signaling pathway plays a significant part in regulation of cell cycle, reproduction, apoptosis, and cell stress. Moreover, Yan et al., emphasized that inhibition of JNK signaling pathway may lead to apoptosis and metastasis
Figure 11. Stratified analysis of ADAMTS1–4 gene mRNA in Lauren typing of GC cases in K-M plotter database
OS curves for (A) intestinal-type ADAMTS1, (B) diffuse-type ADAMTS1, (C) mixed-type ADAMTS1, (D) intestinal-type ADAMTS2, (E) diffuse-type ADAMTS2, (F) mixed-type ADAMTS2, (G) intestinal-type ADAMTS3, (H) diffuse-type ADAMTS3, (I) mixed-type ADAMTS3, (J) intestinal-type ADAMTS4, (K) diffuse-type ADAMTS4, (L) mixed-type ADAMTS4.
Figure 12. Stratified analysis of ADAMTS5-8 gene mRNA in Lauren typing of GC cases in K–M plotter database
OS curves for (A) intestinal-type ADAMTS5, (B) diffuse-type ADAMTS5, (C) mixed-type ADAMTS5, (D) intestinal-type ADAMTS6, (E) diffuse-type ADAMTS6, (F) mixed-type ADAMTS6, (G) intestinal-type ADAMTS7, (H) diffuse-type ADAMTS7, (I) mixed-type ADAMTS7, (J) intestinal-type ADAMTS8, (K) diffuse-type ADAMTS8, (L) mixed-type ADAMTS8.
Figure 13. GSEA of C2 gene sets for high ADAMTS6 expression groups
(A) ‘Extracellular matrix organization’, (B) ‘Gastric cancer advanced vs early up’, (C) ‘ECM receptor interaction’, (D) ‘Tavazoi metastasis’, (E) ‘Alonso metastasis EMT up’, (F) ‘KRAS targets up’ (G) ‘VEGFA targets 12HR’, (H) ‘JNK signaling up’ and (I) ‘CDH1 signaling pathway’ were enriched in the ADAMTS6 high-expression groups.

of GC [65,66]. CDH1 gene mutation is a marker for poor GC prognosis [67–70]. TNF is involved in the inflammation and cellular immune response as well as tumor regulatory mechanisms [71–73]. The findings infer that ADAMTS6 may be involved in cancer-related pathways, including VEGF, KRAS, P53, JNK, CDH1, or TNF pathways, which play a crucial role in GC prognosis.

Our study has several limitations. Our study is dependent on data from a public database, thus the ADAMTS and survival analysis findings require further validation. Therefore, further experiment verification of the expression and function of ADAMTS is very necessary to improve the credibility of our current study. Besides, the underlying molecular mechanisms by which ADAMTS6 affects the occurrence and prognosis of GC needs further interrogation. In addition, because the information on TCGA database is incomplete, we were unable to clearly evaluate the relationship between the mRNA expression of the ADAMTS family of genes and protein expression. Subsequent studies need to reveal the biological mechanism of ADAMTS6 in the development and metastasis of GC from various aspects.
Figure 14. GSEA of C5 gene sets for low ADAMTS6 expression groups

The GO terms (A) ‘Intrinsic apoptotic signaling pathway’, (B) ‘Regulation of apoptotic signaling pathway’, (C) ‘Intrinsic apoptotic signaling pathway by P53 class mediator’, (D) ‘G1 DNA damage checkpoint’, (E) ‘Glycolysis process’, (F) ‘Fatty acid metabolic process’, (G) ‘Regulation of mRNA catabolic process’, (H) ‘Signal transduction by P53 class mediator’ and (I) ‘Tumor necrosis factor-mediated signaling pathways’ were enriched in the ADAMTS6 low-expression groups.

Despite these limitations, the present study is the first to investigate the correlation between ADAMTS mRNA expression and survive time in patients with stomach cancer. Log-rank test with Cox regression survival analysis and K–M survival analysis method were performed and found that ADAMTS6 expression level was largely correlated to GC patient clinical prognosis outcome. Thus, the prognostic relationship between ADAMTS family and GC was verified in the KM plotter database. Finally, GSEA found the differences in biological processes and related tumor pathways. Once these consequences are confirmed, we anticipate that ADAMTS6-targeted therapy drugs will be used in GC patients.
Figure 15. ADAMTS6 expression in GC patients
(A) Representative images of immunostaining for ADAMTS6 in GC and adjacent normal tissues. (B) ADAMTS6 levels were detected in 24 pairs of GC tissues by qRT-PCR, revealing higher ADAMTS6 expression in GC tissues relative to paracancerous tissues. *P<0.05.

Conclusions
Our research reveals that the up-regulation of ADAMTS6 is significantly associated with poor prognosis, and might be used as an independent predictive factor for GC. The potential mechanism of ADAMTS6 in GC prognosis was involved in cancer-related biologic processes and pathways, including apoptosis, VEGF, KRAS, P53, JNK, CDH1, or TNF pathways. Nevertheless, the potential mechanism of ADAMTS6 still need further verification and investigation.

Data Availability
The data used to support the findings of the present study are available from the corresponding author.

Competing Interests
The authors declare that there are no competing interests associated with the manuscript.

Funding
This work was supported in part by the Self-Raised Scientific Research Fund of the Health and Family Planning Commission of Guangxi Zhuang Autonomous Region [grant number Z2014253]; and the Scientific Research Fund of the Health and Family Planning Commission of Guangxi Zhuang Autonomous Region [grant number S2017096].

Author Contribution
Ya-zhen Zhu wrote this manuscript and performed the relevant experiments. Yi Liu and Xi-wen Liao designed this manuscript, collected and analyzed the data. Shan-shan Luo guided the writing.

Acknowledgements
The authors thank the contributors of TCGA (https://cancergenome.nih.gov/) and UCSC Xena (http://xena.ucsc.edu/) for sharing the GC data on open access. The manuscript has been presented as Pre-print in researchsquare according to the following link: https://www.researchsquare.com/article/rs-41038/v1.

Abbreviations
ADAMTS, a disintegrin and metalloproteinase with thrombospondin motifs; CDH1, cadherin; CI, confidence interval; FDR, false discovery rate; GC, gastric cancer; GO, Gene Ontology; GSEA, Gene set enrichment analysis; HP, Helicobacter pylori; HR, hazard ratio; JNK, c-Jun N-terminal kinase; KM plotter, Kaplan–Meier plotter; KRAS, Kirsten rat sarcoma viral oncogene; MMS,
microsatellite stability; OS, overall survival; PPI, protein–protein interaction; ROC, receiver operating characteristic; TCGA, The Cancer Genome Atlas; TNF, tumor necrosis factor; TNM, T, tumour; N, node; M, metastasis; TSP1, thrombospondin type 1.

References
1 Jemal, A., Center, M.M., DeSantis, C. and Ward, E.M. (2010) Global patterns of cancer incidence and mortality rates and trends. Cancer Epidemiol. Biomarkers Prev. 19, 1893–1907, https://doi.org/10.1158/1055-9965.EPI-10-0437
2 Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A. and Jemal, A. (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 38 cancers in 185 countries. CA Cancer J. Clin. 68, 394–424, https://doi.org/10.3322/caac.21492
3 Kim, Y., Byeon, S.J., Hur, J., Lee, K., Kim, D., Ahn, J.H. et al. (2019) High delta-like ligand 4 expression correlates with a poor clinical outcome in gastric cancer. J. Cancer 10, 3172–3178, https://doi.org/10.7150/jca.30257
4 Donaldson, P.T., Ho, S., Williams, R. and Johnson, P.J. (2001) HLA class II alleles in Chinese patients with hepatocellular carcinoma. Liver 21, 143–148, https://doi.org/10.1034/j.1600-0676.2001.021002143.x
5 Chen, W.Q., Li, H., Sun, K.X., Zheng, S.W., Zhang, H.M. et al. (2018) Report of Cancer Incidence and Mortality in China, 2014. Zhonghua Zhong Liu Za Zhi [Chin. J. Oncol.] 40, 5–13
6 Akgullu, E., Bilgin, R., Akkiz, H., Ulger, Y., Kaya, B.Y., Karaogullarindan, U. et al. (2017) Association between chronic hepatitis B virus infection and HLA-DP gene polymorphisms in the Turkish population. Virus Res. 232, 6–12, https://doi.org/10.1016/j.virusres.2017.01.017
7 Gonzalez, C.A., Megraud, F., Buissonniere, A., Lujan Barroso, L., Agudo, A., Dewel, E.J. et al. (2012) Helicobacter pylori infection assessed by ELISA and by immunoblot and noncardia gastric cancer risk in a prospective study: the Eurgast-EPIC project. Ann. Oncol. 23, 1320–1324, https://doi.org/10.1093/annonc/mdr384
8 Lochhead, P. and El-Omar, E.M. (2007) Helicobacter pylori infection and gastric cancer. Best Pract. Res. Clin. Gastroenterol. 21, 281–297, https://doi.org/10.1016/j.bpg.2007.02.002
9 Plummer, M., Franceschi, S., Vignat, J., Forman, D. and de Martel, C. (2015) Global burden of gastric cancer attributable to Helicobacter pylori. Int. J. Cancer 136, 487–490, https://doi.org/10.1002/ijc.28999
10 Sogaard, K.K., Barka, D.X., Pedersen, L., Lund, J.L., Thomsen, R.W. and Sorensen, H.T. (2016) Long-term risk of gastrointestinal cancers in persons with gastric or duodenal ulcers. Cancer Med. 5, 1341–1351, https://doi.org/10.1002/cam4.680
11 Yu, L., Cheng, Y.J., Cheng, M.L., Yao, Y.M., Zhang, Q., Zhao, X.K. et al. (2015) Quantitative assessment of common genetic variations in HLA-DP with hepatitis B virus infection, clearance and hepatocellular carcinoma development. Sci. Rep. 5, 14933, https://doi.org/10.1038/srep14933
12 Tricker, A.R. and Preussmann, R. (1991) Carcinogenic N-nitrosoamines in the diet: occurrence, formation, mechanisms and carcinogenic potential. Mutat. Res. 259, 277–289, https://doi.org/10.1016/0165-1218(91)90123-4
13 Freedman, N.D., Abnet, C.C., Leitzmann, M.F., Mouw, T., Subar, A.F., Hollenbeck, A.R. et al. (2007) A prospective study of tobacco, alcohol, and the risk of esophageal and gastric cancer subtypes. Am. J. Epidemiol. 165, 1424–1433, https://doi.org/10.1093/aje/kwm051
14 Steevens, J., Schouten, L.J., Goldbohm, R.A. and van den Brandt, P.A. (2010) Alcohol consumption, cigarette smoking and risk of subtypes of oesophageal and gastric cancer: a prospective cohort study. Gut 59, 39–48, https://doi.org/10.1136/gut.2009.191080
15 Dong, J. and Thrift, A.P. (2017) Alcohol, smoking and risk of oesophago-gastric cancer. Best Pract. Res. Clin. Gastroenterol. 31, 509–517, https://doi.org/10.1016/j.bpg.2017.09.002
16 Rocks, N., Paulissen, G., El Hour, M., Quesada, F., Crahay, C., Gueders, M. et al. (2008) Emerging roles of ADAM and ADAMTS metalloproteinases in cancer. Biochimie 90, 369–379, https://doi.org/10.1016/j.bioch.2007.08.008
17 Porter, S., Clark, I.M., Kevorkian, L. and Edwards, D.R. (2005) The ADAMTS metalloproteinases. Biochem. J. 386, 15–27, https://doi.org/10.1042/Bj0040424
18 Kelwick, R., Desanlis, I., Wheeler, G.N. and Edwards, D.R. (2015) The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) family. Genome Biol. 16, 113, https://doi.org/10.1186/s13059-015-0676-3
19 Anders, S. and Huber, W. (2010) Differential expression analysis for sequence count data. Genome Biol. 11, R106, https://doi.org/10.1186/gb-2010-11-10-r106
20 Dennis, Jr, G., Sherman, B.T., Hosack, D.A., Yang, J., Gao, W., Lane, H.C. et al. (2003) DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 4, P3, https://doi.org/10.1186/gb-2003-4-5-p3
21 Mostafavi, S., Ray, D., Warde-Farley, D., Grouios, C. and Morris, Q. (2008) GeneMANIA: a real-time multiple association network integration algorithm for predicting gene function. Genome Biol. 9, S4, http://www.biomedcentral.com/1471-2105/9/S4
22 Warde-Farley, D., Donaldson, S.L., Comes, O., Zuberi, K., Badrawi, R., Chao, P. et al. (2010) The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res. 38, W214–W220, https://doi.org/10.1093/nar/gkq337
23 von Mering, C., Huynen, M., Jaeggi, D., Schmidt, S., Bork, P. and Snel, B. (2003) STRING: a database of predicted functional associations between proteins. Nucleic Acids Res. 31, 258–261, https://doi.org/10.1093/nar/gkg034
24 von Mering, C., Jensen, L.J., Snel, B., Hooper, S.D., Krupp, M., Foglierini, M. et al. (2005) STRING: known and predicted protein–protein associations, integrated and transferred across organisms. Nucleic Acids Res. 33, D433–D437, https://doi.org/10.1093/nar/gki005
25 Motha, V.K., Lindgren, C.M., Eriksson, K.-F., Aravind Subramanian,1, S.S., Lehar, J., Puigserver, P. et al. (2003) PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34, 267–273, https://doi.org/10.1038/ng1180
26 Subramanian, A., Tamayo, P., Mothae, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A. et al. (2005) Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U.S.A. 102, 15545–15550, https://doi.org/10.1073/pnas.0506580102
27 Liberez, A., Birger, C., Thorvaldsdóttir, H., Ghandi, M., Mesirov, P. and Tamayo, P. (2015) The molecular signatures database hallmark gene set collection. Cell Syst. 1, 417–425, https://doi.org/10.1016/j.cels.2015.12.004

28 Xie, Y., Gou, Q., Xie, K., Wang, Z., Wang, Y. and Zheng, H. (2016) ADAMTS6 suppresses tumor progression via the ERK signaling pathway and serves as a prognostic marker in human breast cancer. Oncotarget 7, 61723–61733, https://doi.org/10.18632/oncotarget.11341

29 Benjamini, Y., Yrai, D., Elmer, G., Katkafi, N. and Golani, I. (2001) Controlling the false discovery rate in behavior genetics research. Behav. Brain Res. 125, 279–284, https://doi.org/10.1016/S0166-4328(01)00297-2

30 Reiner, A., Yekutieli, D. and Benjamini, Y. (2003) Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics 19, 38–39, https://doi.org/10.1093/bioinformatics/btf877

31 Benjamini, Y. and Hochberg, Y. (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Royal Stat. Soc. 57, 289–300

32 Hanahan, D. and Folkman, J. (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86, 353–364, https://doi.org/10.1016/S0092-8674(00)81087-7

33 Gnant, M.A., Nasciuti, L.E., Cruz, C.M., Persechini, P.M. and Martinez, A.M. (2006) Modulation of extracellular matrix components by metalloproteinases and their tissue inhibitors during degeneration and regeneration of rat sural nerve. Brain Res. 1122, 36–46, https://doi.org/10.1016/j.brainres.2006.09.016

34 Freitas, V.M., do Amaral, J.B., Silva, T.A., Santos, E.S., Mangone, F.R., Pinheiro Jde, J. et al. (2013) Decreased expression of ADAMTS-1 in human breast tumors stimulates migration and invasion. Mol. Cancer 12, 2, https://doi.org/10.1186/1476-4598-12-2

35 Wagstaff, L., Kelwick, R., Decock, J. and Edwards, D.R. (2011) The roles of ADAMTS metalloproteinases in tumorigenesis and metastasis. Front. Biosci. 16, 1861–1872, https://doi.org/10.2741/3827

36 van Goor, H., Melenhorst, W.B., Turner, A.J. and Holgate, S.T. (2009) Adamalysins in biology and disease. J. Pathol. 219, 277–286, https://doi.org/10.1002/path.2594

37 Choi, J.E., Kim, D.S., Kim, E.J., Cha, M.H., Cha, S.I., Kim, C.H. et al. (2008) Aberrant methylation of ADAMTS1 in non-small cell lung cancer. Cancer Genet. Cytogenet. 187, 80–84, https://doi.org/10.1016/j.cancergeneto.2008.08.001

38 Gustavsson, H., Wang, W., Jennisbacken, K., Welén, K. and Damber, J.-E. (2009) ADAMTS1, a putative anti-angiogenic factor, is decreased in human prostate cancer. BJU Int. 104, 1786–1790, https://doi.org/10.1111/j.1464-410X.2009.08676.x

39 Masui, T., Hiji, S., Ida, J., Nakajima, S., Kawaguchi, M. and Koizumi, M. (2001) Expression of METH-1 and METH-2 in pancreatic cancer. J. Pathol. Res. 7, 3437–3443

40 Porter, S., Scott, S.D., Sassoon, E.M., Williams, M.R., Jones, J.L., Girling, A.C. et al. (2004) Dysregulated expression of adamsin-thrombospondin genes in human breast carcinoma. Clin. Cancer Res. 10, 2429–2440, https://doi.org/10.1158/1078-0432.CCR-0398-3
55 Wierinckx, A., Auger, C., Devauchelle, P., Reynaud, A., Chevallier, P., Jan, M. et al. (2007) A diagnostic marker set for invasion, proliferation, and aggressiveness of prostatic pituitary tumors. *Endocr. Relat. Cancer* **14**, 887–900, https://doi.org/10.1677/ERC-07-0062
56 Xiao, W.H., Qu, X.L., Li, X.M., Sun, Y.L., Zhao, H.X., Wang, S. et al. (2015) Identification of commonly dysregulated genes in colorectal cancer by integrating analysis of RNA-Seq data and qRT-PCR validation. *Cancer Gene Ther.* **22**, 278–284, https://doi.org/10.1038/cpt.2015.20
57 Espinosa, M., Cantu, D., Herrera, N., Lopez, C.M., De la Garza, J.G., Maldonado, V. et al. (2006) Inhibitors of apoptosis proteins in human cervical cancer. *BMC Cancer* **6**, 45, https://doi.org/10.1186/1471-2407-6-45
58 Fan, X., Krieg, S., Kuo, C.J., Wiegand, S.J., Rabionovitch, M., Druzin, M.L. et al. (2008) VEGF blockade inhibits angiogenesis and reepithelialization of endometrium. *FASEB J.* **22**, 3571–3580, https://doi.org/10.1096/fj.08-111401
59 Hui-Zhuo, X., Shuang-Zhen, L., Si-Qi, X. and Xiao-Bo, X. (2011) HIF-1α siRNA reduces retinal neovascularization in a mouse model of retinopathy of prematurity. *Chin. J. Contemp. Pediatr.* **13**, 680–683
60 Albertini, A.F., Raoux, D., Neumann, F., Rossat, S., Tabet, F., Pedeutour, F. et al. (2017) Detection of RAS genes mutation using the Cobas(R) method in a private laboratory of pathology: Medical and economical study in comparison to a public platform of molecular biology of cancer. *Bull. Cancer* **104**, 662–674, https://doi.org/10.1016/j.bulcan.2017.05.005
61 Liu, Z.M., Liu, L.N., Li, M., Zhang, Q.P., Cheng, S.H. and Lu, S. (2009) Mutation detection of KRAS by high-resolution melting analysis in Chinese with gastric cancer. *Oncol. Rep.* **22**, 515–520, https://doi.org/10.3892/or.00000465
62 Chari, N.S., Pinaire, N.L., Thorpe, L., Medeiros, L.J., Routbort, M.J. and McDonnell, T.J. (2009) The p53 tumor suppressor network in cancer and the therapeutic modulation of cell death. *Apoptosis* **14**, 336–347, https://doi.org/10.1007/s10495-009-0327-9
63 Machado-Silva, A., Perrier, S. and Bourdon, J.C. (2010) p53 family members in cancer diagnosis and treatment. *Semin. Cancer Biol.* **20**, 57–62, https://doi.org/10.1016/j.semcancer.2010.02.005
64 Deveci, M.S. and Deveci, G. (2007) Prognostic value of p53 protein and MK-1 (a tumor-associated antigen) expression in gastric carcinoma. *Gastric Cancer* **10**, 112–116, https://doi.org/10.1111/j.10120-007-0418-7
65 Choi, Y., Ko, Y.S., Park, J., Choi, Y., Kim, Y., Pyo, J.S. et al. (2016) HER2-induced metastasis is mediated by AKT/JNK/EMT signaling pathway in gastric cancer. *World J. Gastroenterol.* **22**, 9141–9153, https://doi.org/10.3748/wjg.v22.i41.9141
66 Yan, H., Xiao, F., Zou, J., Oiu, C., Sun, W., Gu, M. et al. (2018) NR4A1-induced increase in the sensitivity of a human gastric cancer line to TNFalpha-mediated apoptosis is associated with the inhibition of JNK/Parkin-dependent mitophagy. *Int. J. Oncol.* **52**, 367–378
67 Cho, J., Ahn, S., Son, D.S., Kim, N.K., Lee, K.W., Kim, S. et al. (2019) Bridging genomics and phenomics of gastric carcinoma. *Int. J. Cancer* **145**, 2407–2417, https://doi.org/10.1002/ijc.32228
68 Cho, S.Y., Park, J.W., Liu, Y., Park, Y.S., Kim, J.H., Yang, H. et al. (2017) Sporadic early-onset diffuse gastric cancers have high frequency of somatic cdh1 alterations, but low frequency of somatic RHOA mutations compared with late-onset cancers. *Gastroenterology* **153**, 536.e26–549.e26, https://doi.org/10.1053/j.gastro.2017.05.012
69 Guilford, P., Humar, B. and Blair, V. (2010) Hereditary diffuse gastric cancer: translation of CDH1 germline mutations into clinical practice. *Gastric Cancer* **13**, 1–10, https://doi.org/10.1007/s111290-009-0531-x
70 Li, X., Wu, W.K., Xing, R., Wong, S.H., Liu, Y., Fang, X. et al. (2016) Distinct subtypes of gastric cancer defined by molecular characterization include novel mutational signatures with prognostic capability. *Cancer Res.* **76**, 1724–1732, https://doi.org/10.1158/0008-5472.CAN-15-2443
71 Hoessel, B. and Schmid, J.A. (2013) The complexity of NF-κB signaling in inflammation and cancer. *Mol. Cancer* **12**, 86–100, https://doi.org/10.1186/1476-4598-12-86
72 Lebreric, H., Ponce, R., Preston, B.D., Iles, J., Born, T.L. and Hooper, M. (2015) Tumor necrosis factor, tumor necrosis factor inhibition, and cancer risk. *Curr. Med. Res. Opin.* **31**, 557–574, https://doi.org/10.1185/03007995.2015.1011778
73 Wang, L., Zhao, Y., Liu, Y., Akiyama, K., Chen, C., Qu, C. et al. (2013) IFN-gamma and TNF-alpha synergistically induce mesenchymal stem cell impairment and tumorigenesis via NFkappaB signaling. *Stem Cells* **31**, 1383–1395, https://doi.org/10.1002/stem.1388