Physiological screening of ruderal weed biomonitors of atmospheric nitrogen deposition

Evaluación fisiológica de malezas ruderales como biomonitores de depósito de nitrógeno atmosférico

D. Nayeli Martínez1,2 and Erick de la Barrera2*

1Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, México.
2Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Michoacán, México.

*Author for correspondence: delabarrera@unam.mx

Abstract

Background: Plants take up various species of reactive nitrogen and their different physiological responses to the increase of nitrogen availability can be useful in biomonitoring.

Questions: Does atmospheric nitrogen deposition affect the physiology of ruderal weeds? Which species are most responsive to nitrogen deposition?

Studied species: Eleven ruderal weeds.

Study site and dates: Morelia, Michoacán, Mexico. 2019.

Methods: Under scenarios of 10, 20, 40 and 80 kg N ha⁻¹ year⁻¹, we quantified plant responses of biomass production, nitrate reductase activity, chlorophyll content, photosynthetic efficiency, δ¹⁵N, nitrogen and carbon content.

Results: Total biomass production increased with the rate of nitrogen deposition for Bidens pilosa, Chloris gayana, Lepidium virginicum, and Pennisetum setaceum, as chlorophyll content in B. pilosa, C. gayana, and L. virginicum. In turn, the below- to above-ground biomass ratio decreased for B. pilosa and C. gayana, as photosynthetic efficiency in C. gayana, L. virginicum, and Chloris pycnothrix. Nitrate reductase activity was only affected in L. virginicum, C. gayana, and T. officinale.

With the exception of C. pycnothrix, the nitrogen content increased, while the carbon augmented in C. gayana, C. pycnothrix, and P. setaceum. The C/N ratio was reduced in B. pilosa, C. gayana, and P. setaceum, whereas the δ¹⁵N was increased in B. pilosa, C. gayana, C. virgata and P. setaceum.

Conclusions: Bidens pilosa, C. gayana, L. virginicum, and P. setaceum were the species with more affected variables to nitrogen deposition, which could be useful in the biomonitoring.

Keywords: Atmospheric pollution, biomass, chlorophyll, nitrate reductase, plant nutrition, stable isotopes

Resumen

Antecedentes: Las plantas asimilan formas reactivas de nitrógeno y sus respuestas fisiológicas al incremento en la disponibilidad de nitrógeno pueden ser útil en el biomonitoraje.

Preguntas: ¿Cómo responde la fisiología de malezas ruderales al depósito de nitrógeno atmosférico? ¿Cuáles especies son sensibles al depósito de nitrógeno?

Especies de estudio: Once malezas ruderales

Sito y años de estudio: Morelia, Michoacán, México. 2019.

Métodos: Se cuantificó la producción de biomasa, actividad de la enzima nitrato reductasa, contenido de clorofila, eficiencia fotosintética, δ¹⁵N, contenidos de N y C bajo escenarios de 10, 20, 40 y 80 kg N ha⁻¹ año⁻¹.

Resultados: La biomasa total incrementó con el depósito de nitrógeno en Bidens pilosa, Chloris gayana, Lepidium virginicum y Pennisetum setaceum, al igual que la clorofila en B. pilosa, C. gayana y L. virginicum. La relación biomasa subterránea/aérea se redujo en B. pilosa y C. gayana, así como la eficiencia fotosintética en C. gayana, L. virginicum y Chloris pycnothrix. La actividad de la enzima nitrato reductasa se afectó en L. virginicum, C. gayana y Taraxacum officinale.

A excepción de C. pycnothrix, el contenido de nitrógeno aumentó, mientras el carbono incrementó en C. gayana, C. pycnothrix y P. setaceum. La relación C/N se redujo en B. pilosa, C. gayana, Chloris virgata, P. setaceum y T. officinale. El δ¹⁵N se incrementó en B. pilosa, C. gayana, C. virgata y P. setaceum.

Conclusiones: Bidens pilosa, C. gayana, L. virginicum y P. setaceum, las especies con más variables afectadas por el depósito de nitrógeno, podrían ser útiles en el biomonitoraje.

Palabras clave: Biomasa, clorofila, contaminación atmosférica, isótopos estables, nitrato reductasa, nutrición vegetal.

This is an open access article distributed under the terms of the Creative Commons Attribution License CCBY-NC (4.0) international. https://creativecommons.org/licenses/by-nc/4.0/
The amount of reactive nitrogen (Nr) species available on the planet has increased as a result of human activities, such as fossil fuel combustion and the utilization of nitrogenous fertilizers (Galloway et al. 2003, 2004). Indeed, the release of Nr to the environment increased from 33 Tg N year\(^{-1}\) in 1860 to 156 Tg N year\(^{-1}\) in 1990, and it is anticipated that this rate will double by 2050 (Galloway et al. 2004). Such alterations to the nitrogen biogeochemical cycle are a major component of global environmental change and a principal threat to the planet’s biodiversity (Sala et al. 2000, Rockström et al. 2009). In particular, given that many plants evolved in environments with limited nitrogen availability (Lee & Caporn 1998), the increase of this macronutrient has enabled those species capable of attaining rapid growth rates and of tolerating the ensuing toxic ion buildup to become better ecological competitors (Bobbink et al. 1998, 2010, Stevens et al. 2004, Farrer et al. 2013). In addition, the deposition of reactive nitrogen species is related to eutrophization, soil acidity, and cation leaching (DeHayes et al. 1999, Kronzucker et al. 2001, Britto & Kronzucker 2002, Galloway et al. 2003, Conklin 2005, Gruber & Galloway 2008, Bobbink et al. 2010, Persson et al. 2010, Tian et al. 2016). However, nitrogen deposition is not only linked with ecosystem and environmental problems, as it also has noxious effects on human health, such as intoxication by a high concentration of NO\(_3\)\(^-\) and NO\(_2\) in drinking water that affects the early developmental stages of our development (Carpenter et al. 1998, WHO 2003). Reactive nitrogen is thus an important component of pollution, which leads to 16 % of premature deaths worldwide (Landrigan et al. 2018, Yeo et al. 2019).

Given the multiple noxious effects of environmental pollution, it becomes necessary, and in some instances required by law, to monitor and control the levels of pollutants that are released to the environment. However, for the case of atmospheric pollution, the deployment, operation, and maintenance of monitoring systems is complicated and can be cost-prohibitive for local governments (SEMARNAT 2012, Díaz-Álvarez et al. 2018). In this respect, the utilization of naturally occurring biomonitor systems has been proposed as an alternative for localities where air quality monitoring systems are lacking (Arróniz-Crespo et al. 2012, Felix et al. 2016, Díaz-Álvarez et al. 2018). Indeed, various ecophysiological traits can be utilized to characterize nitrogen deposition in regions of interest, including an increase in tissue nitrogen content and a subsequent imbalance in the C/N ratio, as well as changes in the activity of enzymes related to the nitrogen metabolism, such as nitrate reductase, and the rate of \(^{15}\)N isotopic discrimination (Sutton et al. 2004, Arróniz-Crespo et al. 2008, Felix et al. 2016, Díaz-Álvarez & de la Barrera 2018, Díaz-Álvarez et al. 2015, 2019, 2020). In general, an increase in nitrogen availability from atmospheric deposition can improve biomass accumulation and reduce the allocation to below-ground tissues relative to aerial tissues (Li et al. 2015). Additional nitrogen can be stored in the inorganic form within organelles or as Rubisco, leading to an increase of chlorophyll content and the plant’s photosynthetic capacity (Arróniz-Crespo et al. 2008, Jin et al. 2015, Tegeder & Masclaux-Daubresse 2018). However, when nitrogen reaches a species-specific threshold, plants manifest symptoms of stress, such as changes in pH, membrane function and integrity, and energy deficiencies, which can be reflected in the maximum quantum yield of photosystem II (F\(_{v}/F_{m}\)) and the chlorophyll a/b ratio (Kronzucker et al. 2001, Britto & Kronzucker 2002, Arróniz-Crespo et al. 2008).

Plant species that rely exclusively or predominantly on atmospheric sources of mineral nutrition are particularly suited for biomonitoring. Such is the case for the bromeliad Tillandsia recurvata L. that can track dry nitrogen deposition, especially NO\(_x\) and particulate matter (Díaz-Álvarez & de la Barrera 2018), and various bryophytes that, in turn, are useful biomonitor of wet nitrogen deposition (Arróniz-Crespo et al. 2008, Díaz-Álvarez & de la Barrera 2018, Díaz-Álvarez et al. 2019, 2020). However, these so called “atmospheric biomonitor” cannot be utilized in all localities for various reasons, including that the abundance of epiphytes decreases away from the humid tropics (Zotz & Bader 2009), that mosses require high humidity environments to maintain physiological function (Glime 2017a), and that the prevalent pollution can be too high for certain species, as it occurs for T. recurvata in certain regions of Mexico City (Díaz-Álvarez & de la Barrera 2018).

Ruderal weeds are a group of plants that successfully establish in high-pollution environments, such as those found in cities, at least seasonally. These plants have also been utilized as pollution biomonitor, despite that their root system is anchored to the ground, having access to existing nutrients from sources different from atmospheric deposition (Norra et al. 2005, Wang & Pataki 2010).

Based on the hypothesis that plant physiological attributes will respond to an increase in the availability of reactive inorganic nitrogen species, we conducted a dose-response greenhouse experiment to screen some ruderal weeds as potential biomonitor of nitrogen deposition based on their physiological responses to nitrogen deposi-
tion. We expect that higher nitrogen availability will lead to increased biomass accumulation, tissue nitrogen and chlorophyll content, as well as higher rates of isotopic discrimination of $^{15}$N, due to the fertilization effect. Also, the BS/BA and C/N ratios, and the nitrate reductase enzyme activity are expected to decrease. In turn, as responses to stress due to an increase in the availability of N and its toxicity, the chlorophyll a/b ratio, and the $F_v/F_m$ are expected to decrease.

**Material and methods**

**Experimental setup.** Seeds of eleven ruderal weeds that are common in the city of Morelia, Michoacán, México (Table 1) were collected in October 2017 and 2018. The seeds were placed in paper envelopes (8.8 x 16.4 cm) and stored in the laboratory (in the dark, air temperature of 23 ºC, and relative humidity of 40 %) until they were utilized in February 2019.

The experiment was conducted in a greenhouse at the Escuela Nacional de Estudios Superiores, Unidad Morelia, Universidad Nacional Autónoma de México, Morelia, Michoacán, Mexico, where the plants were exposed to an air temperature averaging 17 ºC throughout the experiment (range of 2 to 36 ºC), a relative humidity of 59 % (5-97 %), and a daily photosynthetic photon flux (wavelengths of 400 to 700 nm) of 18.6 mol m$^{-2}$ day$^{-1}$. Plants were exposed to four treatments that simulated nitrogen deposition rates of 10, 20, 40, and 80 Kg N ha$^{-1}$ year$^{-1}$ over 120 days after sowing. Each treatment had six replicates per species. The experimental units of all species were randomly distributed on a greenhouse bench (dimensions of 15 x 1.5 m) to avoid blocking effects on individual species. For each experimental unit, at least three seeds were sown in plastic pots (volume of 1.5 liters) containing agroyte. Following germination, the most vigorous individual was kept for the experiment, while the remaining seedlings were removed. Two sets of each experimental unit were prepared, considering that part of the experiment involved destructive sampling of plant material.

**Nitrogen deposition.** Because ruderal weeds are predominantly active during the rainy season, the experiment evaluated responses to wet deposition simulated with aqueous solutions of NH$_4$NO$_3$. In particular, the total amount of nitrogen that would deposit under rates of 10, 20, 40, and 80 Kg N ha$^{-1}$ year$^{-1}$, were administered over four months, the typical duration of the rainy season in the study region (Morelia has a C(w) climate, i.e., temperate, subhumid, with summer rains, INEGI 2017). Taking into consideration an opening area of 9.5 x 10$^{-3}$ m$^2$, each pot was watered daily, during 120 days, with 140 ml of 0.0161, 0.032, 0.64, or 0.128 mM NH$_4$NO$_3$. Additionally, the plants received weekly irrigations with 140 ml of a modified 0.1 Hoagland solution lacking nitrogen, in order to avoid nutrient deficiencies (Nobel & de la Barrera 2002). At the end of the 120-days, the biological material was harvested and analyzed.

**Biomass.** The plants were harvested at the end of the experiment and dried at 45 ºC in a gravity convection oven until reaching constant weight. Below-ground (BS) and

| Species                   | Family          | Class       | Origin$^*$ |
|---------------------------|-----------------|-------------|------------|
| *Amaranthus hybridus* L.  | Amaranthaceae   | Magnoliopsida | Native    |
| *Bidens pilosa* L.       | Asteraceae      | Magnoliopsida | Native    |
| *Chloris gayana* Kunth    | Poaceae         | Liliopsida   | Exotic    |
| *Chloris pycnothrix* Trin.| Poaceae         | Liliopsida   | Exotic    |
| *Chloris virgata* Sw.     | Poaceae         | Liliopsida   | Exotic    |
| *Lepidium virginicum* L.  | Brassicaceae    | Magnoliopsida | Native    |
| *Melinis repens* L.      | Poaceae         | Liliopsida   | Exotic    |
| *Pennisetum ciliare* (L.) Link | Poaceae | Liliopsida   | Exotic    |
| *Pennisetum setaceum* (Forsk.) Chiov. | Poaceae | Liliopsida   | Exotic    |
| *Sporobolus indicus* (L.) R. Br. | Poaceae | Liliopsida   | Native    |
| *Taraxacum officinale* (L.) Weber ex F.H.Wigg. | Asteraceae | Magnoliopsida | Exotic    |

$^*$ Rzedowski & Rzedowski 2005, Vibrans 2021.
above-ground (BA) dry mass were determined separately, in order to calculate the BS/BA ratio, as well as the total biomass accumulation for each individual.

Elemental and isotopic analyses. Plant material was harvested, dried to constant weight in the gravity convection oven at 60 °C, and ground to a fine powder prior to submission to the Stable Isotope Facility, University of Wyoming for elemental and isotopic analyses that were conducted with a Costech 4010 elemental analyzer (Costech Analytical Inc., Valencia, California, USA) attached to a continuous flow isotope ratio mass spectrometer (Finnigan Delta Plus XP, Thermo Electron Corp, Waltham, Massachusetts, USA). The analytical precision was 0.4 ± 0.03 (SD) for the δ¹⁵N.

Chlorophyll. Chlorophyll content was determined colorimetrically (Lichtenthaler 1987). Freshly harvested leaf samples were macerated with cold acetone (80 % v/v in distilled water), and brought to a final volume of 3.0 ml. The absorbance of filtered aliquots was measured with an EZ 301 Spectrometer (Perkin Elmer, Waltham, Massachusetts, USA).

The maximum quantum yield of photosystem II (Fv/Fm; Maxwell & Johnson 2000), was measured with a FluorPen FP 100 hand-held fluorometer (Photon Systems Instruments, Drasov, Czech Republic), for plants that had been dark acclimated for 20 min by covering the entire pot with a brown paper bag that lined with aluminum foil (DeEll & Toivonen 2011).

Nitrate reductase activity (NR). The enzymatic activity of the nitrate reductase was quantified by colorimetry, based on the Greis-Ilosuay reaction (Diaz-Álvarez et al. 2019). Leaf samples were incubated in a 3 mM KNO₃ solution during 12 hr, followed by the addition of 5 ml of a potassium buffer solution (50 mM KH₂PO₄, 100 mM KNO₃, 100 mM potassium acetate, and 1.5 % v/v propanol-1-ol). After 1-2 min, the vials were emptied and incubated in an orbital shaker at 30 °C during 30 min, before reading absorbance at 540 nm with the EZ 301 Spectrometer.

Data analyses. Plant survival throughout the experiment was analyzed with Friedman repeated measures ANOVAs, followed by post hoc Tukey tests (P ≤ 0.05). For the rest of the parameters, i.e., biomass production, BS/BA, NR activity, chlorophyll content, chlorophyll a/b ratio, Fv/Fm, δ¹⁵N, C/N ratio, N, and C content, plant responses were analyzed one-way ANOVAs followed by post hoc Tukey or Student’s t tests (P ≤ 0.05). When the normality and variance homogeneity requirements were not fulfilled, data were analyzed with Kruskal-Wallis tests followed by Tukey or Dunn tests (P ≤ 0.05). Data are shown as mean ± 1 S.E. (n = 6). Statistical analyses were conducted with SigmaStat 3.5 (Systat Software Inc., San Jose, California).

Results

Survival for the weeds considered in the present work had different responses to the experimental treatments over 120 days after sowing (Figure 1; Supplementary material). In particular, the lowest dose of 10 kg N ha⁻¹ year⁻¹ led to the highest survival for Pennisetum ciliare (L.) Link (Figure 1C) but to the lowest survival for Chloris pycnothrix Trin. (Figure 1G), and Melinis repens (Willd.) Zizka (Figure 1B). In turn, the survival for Amaranthus hybridus L. (Figure 1A), Lepidium virginicum L. (Figure 1I), and Pennisetum setaceum (Forssk.) Chiov. (Figure 1J), was the highest under some of the intermediate scenarios of nitrogen deposition, and the lowest survival for Sporobolus indicus (L.) R. Br. (Figure 1D). The highest dose of 80 Kg N ha⁻¹ year⁻¹ led to the lowest survival for P. setaceum (Figure 1I), but to the highest survival for Chloris virgata Sw. (Figure 1H) and Taraxacum officinale (L.) Weber ex F.H.Wigg (Figure 1K). Finally, the survival for Bidens pilosa L. (Figure 1E; P = 0.029) and Chloris gayana Kunth (Figure 1F) did not respond to the experimental treatments and it was very low throughout the experiment.

Given that only seven out of the eleven species that were evaluated had a final survival of at least 33 % after 120 days, i.e., Bidens pilosa (Figure 1E), Chloris gayana (Figure 1F), C. pycnothrix (Figure 1G), C. virgata (Figure 1H), Lepidium virginicum (Figure 1I), Pennisetum setaceum (Figure 1J) and Taraxacum officinale (Figure 1K), the remaining four species were excluded from further physiological screening.

Similar to the case for survival, the sensitivity of the various physiological parameters evaluated responded differently for each species under the different nitrogen doses (Figure 2; Supplementary material). Biomass accumulation tended to increase under the higher nitrogen doses for Bidens pilosa (Figure 2A), Chloris gayana (Figure 2B), Lepidium virginicum (Figure 2E), and Pennisetum setaceum (Figure 2F), with an ensuing decrease in the BS/BA ratio for the former two. In addition, the tissue carbon content increased with the nitrogen dose for C. gayana and P. setaceum, but it decreased for C. pycnothrix (Figure 2C).

In general, the nitrogen content of the seven weeds...
tended to increase with the nitrogen dose, except for *C. pycnothrix*, which did not respond to the experimental treatment, and for *L. virginicum*, for which the tissue nitrogen content was maximal under the intermediate dose of 40 kg ha⁻¹ year⁻¹. The higher tissue nitrogen content was followed by a decrease in the C/N ratio for *B. pilosa*, *C. gayana*, *C. virgata* (Figure 2D), *P. setaceum*, and *T. officinale* (Figure 2G). In turn, the δ¹⁵N values tended to become less negative under the higher nitrogen doses for *B. pilosa*, *C. gayana*, *C. virgata*, and *P. setaceum*, but remained unaffected for the other three species. The activity of the nitrate reductase tended to decrease with the nitrogen dose for *C. gayana* and *T. officinale*, it reached its maximum under 40 kg ha⁻¹ year⁻¹ for *L. virginicum* and remained unaffected for the other species.

The total chlorophyll content tended to increase with the nitrogen dose for *B. pilosa*, *C. gayana*, and *L. virginicum*. The chlorophyll a/b ratio decreased for *C. gayana* under the nitrogen doses above 10 kg N ha⁻¹ year⁻¹, and for *L. virginicum* growing under 80 kg N ha⁻¹ year⁻¹. Finally, $F_v/F_m$ for dark-adapted leaves did not respond to nitrogen deposition, except for *C. pycnothrix*, for which it decreased under 80 kg N ha⁻¹ year⁻¹.

**Discussion**

While most of the species screened here responded to the experimental nitrogen deposition, a generalized pattern was not observed, neither for the sensitivity of the physiological parameters that were measured nor by groups of species. For instance, one could have expected that exotic species, especially those reported as invasive would have fared better than the natives at higher nitrogen doses (van der Maarel 2005, Perry *et al.* 2010). However, this was not the case, as the survival of some of the weeds, i.e., *Bidens pilosa* and *Chloris gayana*, were insensitive to nitrogen addition, others, i.e., *Chloris pycnothrix* and *Taraxacum officinale*, had a decreased mortality with increasing fertilization, while *Pennisetum ciliare*, a very noxious invasive weed, succumbed under all the treatments. Even *C. pycnothrix*, an alien species, showed stress effects due high nitrogen deposition (a reduced $F_v/F_m$) than some of the na-

---

*Figure 1.* Survival over 120 days for 11 potential ruderal weed biomonitors under experimental nitrogen deposition. Data are shown as mean ± 1 standard error (n = 6). Please refer to the Supplementary material for data analyses.
Ruderal weed nitrogen deposition biomonitors

tive species. Such an idiosyncratic response to nitrogen deposition is prevalent in nature; while the survival of species such as the grass *Deschampsia flexuosa* (L.) Trin., the shrub *Calluna vulgaris* (L.) Hull, and the trees *Fraxinus americana* L., *Malus coronaria* L., and *Schima superba* Gardner & Champ. are insensitive to nitrogen addition (van den Berg et al. 2005, McWhirter & Henry 2014, Han et al. 2019), plant mortality decreases with nitrogen availability for *Elaeagnus umbellata* Thunb., *Erodium oxyrhinchum* M. Bieb., and *Robinia pseudocacia* L. (McWhirter & Henry 2014, Horn et al. 2018, Chen et al. 2019a), but it increases for species such as *Succisa pratensis* L., *Antennaria dioica* L., *Pinus massoniana* D. Don, *Pouteria torta* (Mart.) Radlk., and 39 species of trees (van den Berg et al. 2005, Cárates-Tandalla et al. 2015, Horn et al. 2018, Han et al. 2019). Such an increased mortality in nitrogen-rich environments has been attributed to a low tolerance to NH$_4$\(^+\), whose accumulation leads to acidification (Britto & Kronzucker 2002, van den Berg et al. 2005), as well as to energy deficits resulting from the cost of extruding excess NH$_4$\(^+\) out of the cell (Kronzucker et al. 2001, Britto & Kronzucker 2002, van den Berg et al. 2005). The responses of individual species lead to changes in their distribution, which combined alter the composition of plant communities (Gotelli & Ellison 2002, Horn et al. 2018).

Some of the responses observed here, however, could simply be attributed to each species’ habitat preference. For instance, *Melinis repens* and *Taraxacum officinale* have been found to establish successfully in urban environments, as long as the ground has sufficient amounts of litter or nurse plants are available (Cavieres et al. 2005, David & Menges 2011). Also, a high mortality is inherent of species that produce a large number of propagules with a low investment of maternal resources (Ricklefs 2009), especially considering the high vulnerability of plants during early developmental stages (de la Barrera et al. 2009). This could be the case, for example, of *Pennisetum ciliare*, whose mortality reached 100 % in the present study, but which becomes insensitive to nitrogen fertilization once it has become established (Lyons et al. 2013).

As expected, a higher nitrogen availability increased biomass accumulation for some of the weeds, i.e., *Bidens pilosa*, *Chloris gayana*, *Lepidium virginicum*, and *Pennisetum setaceum*, a response that has also been documented for *Agropyron cristatum* (L.) Gaertn., *Anthoxanthum odoratum* L., *Avena fatua* L., *Centaurea stoebe* L., *Hordeum murinum* L., *Lolium perenne* L., *Medicago lupulina* L., *Plantago lanceolata* L., *Poa annua* L., *Prunella vulgaris* L., *Stipa pulchra* Hitchc., and *Trifolium repens* L. (Jiang et al. 2005, Tian et al. 2012, Stevens & Gowing 2014, Peng et al. 2016, Tulloss & Cadenasso 2016, Shen et al. 2019). Such an improvement of primary productivity in response to fertilization is common when plants develop in nutrient-limited soils (Azcón-Bieto & Talón 2008, van der Valk 2009, Taiz et al. 2014). As additional nitrogen becomes available, biomass accumulation can increase linearly until a threshold is reached, either by a saturation of the response, an intrinsic limitation of the plant, the intracellular buildup of toxic ions, or by a co-limitation of other nutrients (Azcón-Bieto & Talón 2008, Taiz et al. 2014, J. Mao et al. 2018a). This was probably the case for *Chloris pycnothrix*, *C. virgata*, and *Taraxacum officinale*, whose dry mass accumulation did not respond to nitrogen fertilization. Insensitivity of growth to fertilization has also been documented for species such as *Amaranthus spinosus* L., *Elaeagnus umbellata*, *Elymus caput-medusae* L., *Eremopyrum orientale* (L.) Jaub. & Spach, *Fraxinus americana*, *Malus coronaria*, *Plantago virginica* L., *Rhus typhina* L., and *Schima superba* (Jiang et al. 2005, McWhirter & Henry 2014, Tulloss & Cadenasso 2016, Chen et al. 2019b, Han et al. 2019). Resource allocation to belowground biomass that increases the BS/BA ratio is also a response of plants that grow in nutrient-poor soils, as a higher root surface area improves the ability to take up nutrients (Litton et al. 2003, Taiz et al. 2014). In turn, a higher nitrogen availability usually leads to a reduction of BS/BA, a response that has been observed in species such as *Nepeta micrantha* Bunge, *Oriza sativa* L., and that is common in forest species (Li et al. 2015, Mao et al. 2018b, Chen et al. 2019b, Wang et al. 2019). Despite that a reduction in BS/BA was only significant for two of the weeds, the remaining five displayed an apparent trend in the same direction, similar to what occurs for *Amaranthus spinosus*, *Eremopyrum orientale*, *Lolium perenne*, *Medicago lupulina*, *Poa annua*, *Prunella vulgaris*, and *Trifolium repens* (Jiang et al. 2005, Stevens & Gowing 2014, Chen et al. 2019a). However, a lack of response of BS/BA can be attributed to limitation of other soil nutrients, such that an investment in root tissue still improves soil exploration, potentially conferring a better competitive capacity (Tulloss & Cadenasso 2016).

The nitrate reductase enzyme reduces the oxidation level of NO$_3^-$ to NO$_2^-$, catalyze one of the early steps in the nitrogen assimilation (Azcón-Bieto & Talón 2008, Tegeder & Masclaux-Daubresse 2018). This enzyme was affected by the nitrogen deposition in *Chloris gayana* and *Taraxacum officinale*, where the increase of nitrogen deposition rate reduced their activity, as also we can see in
Figure 2. Physiological effects of experimental nitrogen deposition on the ruderal weeds (A) *Bidens pilosa*, (B) *Chloris gayana*, (C) *C. pycnothrix*, (D) *C. virgata*, (E) *Lepidium virginicum*, (F) *Pennisetum setaceum*, and (G) *Taraxacum officinale*. For each species, the nitrogen dose increases outwards. Blue indicates that a given parameter had a direct response to the dose utilized, red indicates an inverse response, and grey indicates a lack of response to the different nitrogen doses. For each parameter, different color intensities indicate statistical differences in the magnitude of the response ($P < 0.05$). Please refer to the Supplementary material for the specific responses and data analysis of each parameter.
Acer saccharum Marshall and the bryophytes Braunia secunda (Hook.) Bruch & Schimp., Leptodontium pungens (Mitt.) Kindb., Racemitrium lanuginosum (Hedw.) Brid., and Rhytidiothecium squarrosum (Hedw.) Warnst. (Pearce & van der Wal 2002, Arróniz-Crespo et al. 2008, Diaz-Álvarez et al. 2019). This reduction in the NR activity, under ascending scenarios of nitrogen deposition, is due to the increase of reduced nitrogen compounds in the tissues that inhibit their synthesis and activity (Downs et al. 1993, Arróniz-Crespo et al. 2008, Coelho & Romão 2015, Glime 2017b). In bryophytes, the decrease in activity is attributed to the available NH$_4^+$ satisfying the nitrogen demand, while in vascular plants it is attributed to intrinsic properties of species as growth rate and state of development (Downs et al. 1993, Arróniz-Crespo et al. 2008, Tang et al. 2012, Glime 2017b). Species that kept their NR activity constant under the scenarios of nitrogen deposition as Bidens pilosa, Chloris pycnothrix, Chloris virgata and Pennisetum setaceum, perhaps the NH$_4^+$ amount, that contributed the NH$_4$NO$_3$ with the treatments of nitrogen deposition, plus the NO$_3^-$ reduced were enough to satisfy the nitrogen demand keeping the NR enzyme activity constant. The null effect of the nitrogen deposition in the NR enzyme has also been seen in Acer rubrum L., Ardisia quinquegona Blume, Betula alleghaniensis Britton, Blastus cochinchinensis Loure., Fagus grandifolia Ehrh., Pinus strobus L., P. rigida Mill., Tillandsia recurvata L., and the bryophytes Pleurochaete squarrosa (Brid.) Lindb. and Pseudoscleropodium purum (Hedw.) M. Fleisch. (Downs et al. 1993, Pearce & van der Wal 2002, Pearce et al. 2003, Arróniz-Crespo et al. 2008, Tang et al. 2012, Ochoa-Hueso & Manrique 2013, Liu et al. 2018b, Diaz-Álvarez et al. 2020).

The higher nitrogen content measured under higher doses for six of the weeds has also been reported for the mosses Pseudoscleropodium purum and Rhytidium rugosum (Hedw.) Kindb., and for the vascular plants Calluna vulgaris L., Eucalyptus urophylla S. T. Blake × E. grandis Hill ex Maiden, Laelia speciosa (Kunth) Schltr, Oxytropis kansuensis Bunge, and Pinus resinosa L. (Throop & Lerdau 2004, Arróniz-Crespo et al. 2008, Bobbink et al. 2010, Du et al. 2014, 2015, Diaz-Álvarez et al. 2015, Lü et al. 2016). The nitrogen level in plant tissues is driven by vacuolar accumulation of reduced nitrogen species and hydrosoluble proteins, such as Rubisco (Zhang et al. 2016, Tegeder & Masclaux-Daubresse 2018). Nitrogen fertilization can also increase the PEPcarboxilase activity for C$_4$ and CAM species, leading to a concurrent increase of tissue carbon content, as it was observed here for Chloris gayana, C. pycnothrix, and Pennisetum setaceum (Jin et al. 2015, Flexas et al. 2016, Tegeder & Masclaux-Daubresse 2018, Zhou et al. 2020).

The decrease in the C/N ratio in response to nitrogen fertilization that we found for Bidens pilosa, Chloris gayana, Chloris virgata, Taraxacum officinale, and Pennisetum setaceum, which also occurs for Schizolobium amazonicum Ducke, Zea mays L., as well as for various species in the Cleistogenes and Stipa genera, is a direct result of the nitrogen buildup described above (Chen et al. 2009, Luo et al. 2017, Vieira et al. 2018). In turn, the fact that the C/N ratio did not change for Lepidium virginicum and Chloris pycnothrix appears to be a consequence of the development of new plant tissue, which has also been documented for Betula pendula Roth, Agrostis capillaris L., and Galium saxatile L. (Stevens et al. 2011, Harmens et al. 2017).

The increased δ$^{15}$N values in response to higher nitrogen deposition rates such as those observed for Bidens pilosa, Chloris gayana, Chloris virgata, and Pennisetum setaceum, are opposite to those reported for species such as Laelia speciosa and Pinus massoniana Lamb., whose leaves become increasingly impoverished in $^{15}$N under higher nitrogen availability (Jiang & Zhang 2009, Diaz-Álvarez et al. 2015). An isotopic impoverishment of plant tissues indicates an enhanced discrimination of $^{15}$N under an abundance of nitrogen resulting from increased enzymemediated processes (Yoneyama et al. 1991, Santiago et al. 2005, Xiao et al. 2011). In the present work, however, the negative δ$^{15}$N values found under the lower nitrogen doses can be an indication of high enzymatic activity, as it was the case, for instance, for Chloris gayana whose lowest δ$^{15}$N values occurred concurrently with its highest nitrate reductase activity. Thus, our results could be an indicator of enzyme saturation that prevented further nitrogen uptake. In addition, the observed isotopic enrichment may also be reflecting an increased loss of excess nitrogen in the plant by NH$_4^+$ volatilization or NO$_3^-$ leaching (Högberg & Johannisson 1993, Dijkstra et al. 2003, Jiang & Zhang 2009, Ma et al. 2012).

The higher chlorophyll content found for Bidens pilosa, Lepidium virginicum, and Chloris gayana, in response to increasing nitrogen availability is common in nature, and has been observed for species such as Ardisia quinquegona, Camellia japonica L., Fraxinus mandshurica Rupr., Linderia aggregata (Sims) Kosterm., Pleurochaete squarrosa, and Populus cathayana Rehder. (Arróniz-Crespo et al. 2008, Wang et al. 2012, Yuan et al. 2017, C. Liu et al. 2018a). However, in other cases the chlorophyll...
content is insensitive to the prevalent nitrogen availability, as it occurs for species like Calamagrostis angustifolia Kom., Quercus acutissima Carruth., Blastos cochinichensis, Cryptocarya chinensis (Hance) Hemsl., C. concinna Hance, Randia canthioides Champ. ex Bentham, and Populus deltoides W. Bartram ex Marshall, or as found here for as found for Chloris pycnothrix, C. virgata, Pennisetum setaceum, and Taraxacum officinale (Dou et al. 2009, Li et al. 2018, Liu et al. 2018b, Liu et al. 2018c, Mao et al. 2018b, Xu et al. 2018). For these cases, chlorophyll content may be driven by other environmental factors, especially the prevalent photon flux density, which was relatively high in our experimental setup, or that the luxury nitrogen be allocated for chlorophyll production in new tissue (Azcón-Bieto & Talón 2008).

A decrease in the chlorophyll a/b ratio, such as what we observed for Lepidium virginicum and Chloris gayana, is an indication of an increased resource allocation to the light harvesting complex than to the photosystem reaction centers, leading to a reduced photosynthetic capacity, as it has been described for Pseudoscleropodium purum and Rhytidadelphus squarrosus (Arróniz-Crespo et al. 2008, Lambers et al. 2008, Ochoa-Hueso et al. 2014).

The lack of response of Fv/Fm to nitrogen that was observed for most of the weeds suggests that its increased availability did not have a fertilization effect on photosynthesis, but, conversely, it did not impose stress either, including at the higher doses (Maxwell & Johnson 2000, DeEll & Toivonen 2011). The lack of response to high rates of N deposition can be associated with a more competitive behavior and greater tolerance of plants, as it has been found for invasive alien species (Lyons et al. 2013). In contrast, for the case of C. pycnothrix, the significant decrease of Fv/Fm for plants under 80 kg ha⁻¹ year⁻¹ was concurrent with the lowest carbon content for this species. This indicates a decreased use of light energy and photosynthesis under high N deposition rates, a stress that can lead to the decline of plant populations (Arróniz-Crespo et al. 2008).

Three conditions are required for developing an adequate biomonitor of environmental pollution: that the species has an ample distribution, that it is tolerant to an ample range of concentrations of the pollutant of interest, and that at least one physiological trait is sufficiently sensitive to respond in a “predictable” fashion to different levels of said pollutant (Markert et al. 2003). Indeed, the eleven ruderal weeds that were screened in the present study were selected based on their ample geographic distribution, their abundance in the region of interest, and their apparent preference, or at least tolerance, for the elevated amounts of anthropogenic reactive nitrogen that are common in cities. In turn, the physiological parameters that were utilized have been shown to respond to nitrogen deposition both under experimental and field conditions. However, while most of the weeds displayed at least some biomonitoring potential, the mortality of four species was such that it precluded further physiological evaluation. This appeared to be more related to inherent characteristics of the plants, such as their ecological strategy of producing numerous seeds or low tolerance of the experimental handling, despite their successful proliferation in urban environments.

A field validation of the biomonitoring potential for Bidens pilosa, Chloris gayana, C. virgata, and Pennisetum setaceum is thus recommended, as 5-9 physiological traits of these species adequately responded to the experimental nitrogen deposition. All in all, the use of ruderal weed biomonitors, which are abundant in urban environments, appears to be promising for characterizing nitrogenous pollution for consideration in integrative biomonitoring efforts.

Acknowledgements

This work was funded by the Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México (Grant no. PAPIIT IN211519) and institutional funds of the Instituto de Investigaciones en Ecosistemas y Sustentabilidad, UNAM. DNM held a generous Master’s fellowship from the Consejo Nacional de Ciencia y Tecnología. We thank Dr. F. Mora-Ardila for his thorough advice on data analyses and Mr. R. Núñez González for assistance in the laboratory procedures.

Supplementary material

Supplemental data for this article can be accessed here: https://doi.org/10.17129/botsci.2789.

Literature cited

Arróniz-Crespo M, Leake JR, Horton P, Phoenix GK. 2008. Bryophyte physiological responses to, and recovery from, long-term nitrogen deposition and phosphorus fertilization in acidic grassland. New Phytologist 180: 864-874. DOI: https://doi.org/10.1111/j.1469-8137.2008.02617.x

Arróniz-Crespo M, Ochoa-Hueso R, Manrique E. 2012. Biomonitorización del depósito de nitrógeno atmos-
Ruderal weed nitrogen deposition biomonitors

férico en México: Detección y prevención de daños en ecosistemas naturales. In: Cerón-Bretón R, Cerón-Breton J, Guerra-Santos J, eds. Avances y Perspectivas de la Deposición ácida en México. Campeche, México: Universidad Autónoma del Carmen, pp. 81-98. ISBN: 978-607-7826-21-7

Azcón-Bieto J, Talón M. 2008. Fundamentos de Fisiología Vegetal. Madrid, España. McGraw-Hill Interamericana. ISBN: 978-84-481-9293-8

Bobbinck R, Hicks K, Galloway J, Spranger T, Alkemade R, Ashmore M, Bustamante M, Cinderby S, Davidson E, Dentener F, Emmett B, Erisman JW, Fenn M, Gilliam F, Nordin A, Pardo L, De Vries W. 2010. Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecological Applications 20: 30-59. DOI: https://doi.org/10.1890/08-1140.1

Bobbinck R, Hornung M, Roelofs JGM. 1998. The effects of air-borne nitrogen pollutants on species diversity in natural and semi-natural European vegetation. Journal of Ecology 86: 717-738. DOI: https://doi.org/10.1046/j.1365-2745.1998.8650717.x

Britto DT, Kronzucker HJ. 2002. NH$_4^+$ toxicity in higher plants: a critical review. Journal of Plant Physiology 159: 567-584. DOI: https://doi.org/10.1078/0176-1617-0774

Cárate-Tandalla D, Leuschner C, Homeier J. 2015. Performance of seedlings of a shade-tolerant tropical tree species after moderate addition of N and P. Frontiers in Earth Sciences 3: 1-10. DOI: https://doi.org/10.3389/feart.2015.00075

Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharpley AN, Smith VH. 1998. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications 8: 559-568. DOI: https://doi.org/10.1890/1051-0761(1998)008[0559:NPOSWW]2.0.CO;2

Cavieres LA, Quiroz CL, Molina-Montenegro MA, Muñoz AA, Pauchard A. 2005. Nurse effect of the native cushion plant Azorella monantha on the invasive non-native Taraxacum officinale in the high-Andes of central Chile. Perspectives in Plant Ecology, Evolution and Systematics 7: 217-226. DOI: https://doi.org/10.1016/j.ppees.2005.09.002

Chen XL, Zhou JB, Liu JL, Gao ZX, Yang XY. 2009. Effects of fertilization on carbon/nitrogen ratio of maize straw and its mineralization in soil. The Journal of Applied Ecology 20: 314-319.

Chen Y, Zhang L, Shi X, Ban Y, Liu H, Zhang D. 2019a. Life history responses of spring-and autumn-germinated ephemeral plants to increased nitrogen and precipitation in the Gurbantunggut Desert. Science of the Total Environment 659: 756-763. DOI: https://doi.org/10.1016/j.scitotenv.2018.12.368

Chen Y, Zhang L, Shi X, Liu H, Zhang D. 2019b. Life history responses of two ephemeral plant species to increased precipitation and nitrogen in the Gurbantunggut Desert. PeerJ 7: e6158 DOI: https://doi.org/10.7717/peerj.6158

Coelho C, Romão MJ. 2015. Structural and mechanistic insights on nitrate reductases. Protein Science 24: 1901-1911. DOI: https://doi.org/10.1002/pro.2801

Conklin AR. 2005. Introduction to Soil Chemistry. New Jersey, USA: John Wiley & Sons. ISBN: 9780471460565

David AS, Menges ES. 2011. Microhabitat preference constrains invasive spread of non-native natal grass (Melinis repens). Biological Invasions 13: 2309-2322. DOI: https://doi.org/10.1007/s10530-011-0044-5

De la Herrera E, Pimiento-Barrios E, Schondube JE. 2009. Reproductive ecophysiology. In: De la Herrera E, Smith WK, eds. Perspectives in Biophysical Plant Ecophysiology: a tribute to Park S. Nobel. Mexico City: Universidad Nacional Autónoma de México. pp. 301-335. ISBN: 9780578006765

DeEll J, Toivonen P. 2011. Practical Applications of Chlorophyll Fluorescence in Plant Biology. New York, US: Springer Science-Business Media. ISBN: 978-1-4613-5065-1

DeHayes DH, Schaberg PG, Hawley GJ, Strimbeck GR. 1999. Acid Rain Impacts on Calcium Nutrition and Forest Health. Bioscience 49: 789-800. DOI: https://doi.org/10.2307/1313570

Díaz-Álvarez EA, de la Barrera E. 2018. Mapping pollution in a megalopolis: the case for atmospheric biomonitors of nitrogen deposition. Scientific Reports 11: 11-14. DOI: https://doi.org/10.1038/s41598-018-32000-5

Díaz-Álvarez EA, de la Barrera E, Arciga-pedraza A, Arróniz-Crespo M. 2019. Bryophyte enzymatic responses to atmospheric nitrogen deposition: A field validation for potential biomonitors. The Bryologist 122: 396-403. DOI: https://doi.org/10.1639/0007-2745-122.3.396

Díaz-Álvarez EA, de la Barrera E, Barrios-Hernández EY, Arróniz-Crespo M. 2020. Morphophysiological screening of potential organisms for biomonitoring nitrogen deposition. Ecological Indicators 108: 105729. DOI: https://doi.org/10.1016/j.ecolind.2019.105729

Díaz-Álvarez EA, Lindig-Cisneros R, de la Barrera E. 2015. Responses to simulated nitrogen deposition by
the neotropical epiphytic orchid *Laelia speciosa*. *PeerJ* 3: e1021. DOI: https://doi.org/10.7717/peerj.1021

Díaz-Álvarez EA, Lindig-Cisneros R, de la Barrera E. 2018. Biomonitor of atmospheric nitrogen deposition: potential uses and limitations. *Conservation Physiology* 6: 1110-1093. DOI: https://doi.org/10.1093/con-phys/cov111

Dijkstra P, Williamson C, Menyailo O, Doucett R, Koch G, Hungate BA. 2003. Nitrogen stable isotope composition of leaves and roots of plants growing in a forest and a meadow. *Isotopes in Environmental and Health Studies* 39: 29-39. DOI: https://doi.org/10.1080/1025601031000102189

Du JX, Liu JS, Wang Y, Zhao GY. 2009. Ecophysiologic responses of *Calamagrostis angustifolia* to nitrogen deposition. *Wetland Science* 7: 40-46.

Downs MR, Nadelhoffer KJ, Melillo JM, Aber JD. 1993. Foliar and fine root nitrate reductase activity in seedlings of four forest tree species in relation to nitrogen availability. *Trees* 7: 233-236. DOI: https://doi.org/10.1007/BF00202079

Du K, Gong Q, Lin Y, Wu C, Hong W, Li J. 2015. Responses of nitrogen and phosphorus contents in seedlings of *Eucalyptus urophylla × E. Grandis* and *Cunninghamia lanceolata* to simulated nitrogen-sulfur depositions. *Journal of Plant Resources and Environment* 4: 28-37.

Du E, Liu X, Fang J. 2014. Effects of nitrogen additions on biomass, stoichiometry and nutrient pools of moss *Rhytidium rugosum* in a boreal forest in Northeast China. *Environmental Pollution* 188: 166-171. DOI: https://doi.org/10.1016/j.envpol.2014.02.011.

Farrer EC, Herman DJ, Franzova E, Pham T, Suding KN. 2013. Nitrogen deposition, plant carbon allocation, and soil microbes: Changing interactions due to enrichment. *American Journal of Botany* 100: 1458-1470. DOI: https://doi.org/10.3732/ajb.1200513

Felix JD, Avery GB, Mead RN, Kieber RJ, Willey JD. 2016. Nitrogen content and isotopic composition of spanish moss (*Tillandsia usneoides* L.): Reactive nitrogen variations and source implications across an urban coastal air shed. *Environmental Processes* 3: 711-722. DOI: https://doi.org/10.1007/s40710-016-0195-6

Flexas J, Díaz-Espejo A, Conesa MA, Coopman RE, Douthe C, Gago J, Gallé A, Galmès J, Medrano H, Ribas-Carbo M, Tomás, Niinemets Ü. 2016. Mesophyll conductance to CO₂ and Rubisco as targets for improving intrinsic water use efficiency in C₃ plants. *Plant, Cell and Environment* 39: 965-982. DOI: https://doi.org/10.1111/pce.12622

Galloway JN, Aber JD, Erisman JW, Seitzinger SP, Howarth RW, Cowling EB, Cosby BJ. 2003. The Nitrogen Cascade. *BioScience* 53: 341. DOI: https://doi.org/10.1641/0006-3568(2003)053[0341:TNC]2.0.CO.2

Galloway JN, Dentener F, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Michaels AF, Porter JH, Townsend AR, Vorosmarty CJ. 2004. Nitrogen cycles: past, present, and future. *Biogeochemistry* 70: 153-226. DOI: https://doi.org/10.1016/s1053-3409(03)00010-2

Glime JM. 2017a. Water Relations: Plant Strategies. Chpt. 7-3. In: Glime JM. *Bryophyte Ecology*. Volume 1. Physiological Ecology. Michigan, USA: Michigan Technological University and the International Association of Bryologists. http://digitalcommons.mtu.edu/bryophyte-ecology/ (accessed September 23, 2020)

Glime JM. 2017b. Nutrient Relations: Nitrogen. Chpt. 8-3. In: Glime, J. M. *Bryophyte Ecology*. Volume 1. Physiological Ecology. Michigan, USA: Michigan Technological University and the International Association of Bryologists. http://digitalcommons.mtu.edu/bryophyte-ecology/ (accessed June 13, 2020)

Gotelli NJ, Ellison AM. 2002. Nitrogen deposition and extinction risk in the northern pitcher plant, *Sarracenia purpurea*. *Ecology* 83: 2758-2765. DOI: https://doi.org/10.1890/0012-9658(2002)083[2758:NDAERI]2.0.CO;2

Gruber N, Galloway JN. 2008. An Earth-system perspective of the global nitrogen cycle. *Nature* 451: 293-296. DOI: https://doi.org/10.1038/nature06592

Han W, Jiang J, He Q, Huang H, Hu J, Hu S, Ni J. 2019. Effects of nitrogen deposition and liming on the early regeneration of two dominant tree species in a subtropical forest of China. *Ecoscience* 26: 269-277. DOI: https://doi.org/10.1080/11956860.2019.1570714

Harmsen H, Hayes F, Sharps K, Mills G, Calatayud V. 2017. Leaf traits and photosynthetic responses of *Betula pendula* saplings to a range of ground-level ozone concentrations at a range of nitrogen loads. *Journal of Plant Physiology* 211: 42-52. DOI: https://doi.org/10.1016/j.jplph.2017.01.002

Högberg P, Johansson C. 1993. ¹⁵N abundance of forests is correlated with losses of nitrogen. *Plant and Soil* 157: 147-150. DOI: https://doi.org/10.1007/bf00038758

Horn KJ, Thomas RQ, Clark CM, Pardo LH, Fenn ME, Lawrence GB, Perakis SS, Smithwick EAH, Baldwin
Ruderal weed nitrogen deposition biomonitors

D, Braun S, Nordin A, Perry CH, Phelan JN, Schaberg PG, Clair SBS, Warby R, Watmough S. 2018. Growth and survival relationships of 71 tree species with nitrogen and sulfur deposition across the conterminous U.S. Plos One 13: e0205296. DOI: https://doi.org/10.1371/journal.pone.0205296

INEGI [Instituto Nacional de Estadística y Geografía]. 2017. Anuario estadístico y geográfico de Michoacán de Ocampo 2017. CdMx México: Instituto Nacional de Estadística y Geografía. https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=702825092092 (accessed May 28, 2018)

Jiang Q, Tang J, Chen X, Chen J, Yang R, Hu S. 2005. Effects of simulated nitrogen deposition on weeds growth and nitrogen uptake. Chinese Journal of Applied Ecology 16: 951-5.

Jiang CL, Zhang XS. 2009. N isotopes and N cycle in the TieShanPing subtropical forest ecosystem, Southwestern China. Environmental Monitoring and Assessment 154: 301-308. DOI: https://doi.org/10.1007/s10661-008-0398-9

Jin X, Yang G, Tan C, Zhao C. 2015. Effects of nitrogen stress on the photosynthetic CO₂ assimilation, chlorophyll fluorescence, and sugar-nitrogen ratio in corn. Scientific Reports 5: 9311. DOI: https://doi.org/10.1038/srep09311

Kronzucker HJ, Britto DT, Davenport RJ, Tester M. 2001. Ammonium toxicity and the real cost of transport. Trends in Plant Science 6: 335-337. DOI: https://doi.org/10.1016/S1360-1385(01)02022-2

Lambers H, Chapin III FS, Pons TL. 2008. Plant Physiological Ecology. New Jersey, USA. Springer. ISBN: 978-0-387-78340-6

Landrigan PJ, Fuller R, Acosta NJR, Adeyi O, Arnold R, Basu N, Baldé AB, Bertollini R, Bose-O’Reilly S, Bourford JJ, Breyssse PN, Chiles T, Mahidol C, Coll-Seck AM, Cropper ML, Fobil J, Fuster V, Greenstone M, Haines A, Hanrahan D, Hunter D, Khare M, Krupnick A, Lanphear B, Lohani B, Martin K, Mathiasen KV, McTeer MA, Murray CJL, Ndahimananjara JD, Perera F, Potočnik J, Preker AS, Ramesh J, Rockström J, Salinas C, Samson LD, Sandilya K, Sly PD, Smith KR, Steiner A, Stewart RB, Suk WA, Van Schayck OCP, Yadama GN, Yumkella K, Zhong M. 2018. The Lancet Commission on pollution and health. The Lancet 391: 462-512. DOI: https://doi.org/10.1016/S0140-6736(17)32345-0

Lee JA, Caporn SJMM. 1998. Ecological effects of atmospheric reactive nitrogen deposition on semi-natural terrestrial ecosystems. New Phytologist 139: 127-134. DOI: https://doi.org/10.1046/j.1469-8137.1998.00165.x

Li M, Guo W, Du N, Xu Z, Guo X. 2018. Nitrogen deposition does not affect the impact of shade on Quercus acutissima seedlings. Plos One 13: e0194261. DOI: https://doi.org/10.1371/journal.pone.0194261

Litton CM, Ryan MG, Tinker DB, Knight DH. 2003. Belowground and aboveground biomass in young postfire lodgepole pine forests of contrasting tree density. Canadian Journal of Forest Research 33: 351-363. DOI: https://doi.org/10.1139/x02-181

Liu C, Guo X, Wang K, Sun Y, Li W, Liu Q, Liu Q. 2018a. Nitrogen deposition does not alleviate the adverse effects of shade on Camellia japonica (Naidong) seedlings. Plos One 13: e0201896. DOI: https://doi.org/10.1371/journal.pone.0201896

Liu N, Wang J, Guo Q, Wu S, Rao X, Cai X, Lin Z. 2018b. Alterations in leaf nitrogen metabolism indicated the structural changes of subtropical forest by canopy addition of nitrogen. Ecotoxicology and Environmental Safety 160: 134-143. DOI: https://doi.org/10.1016/j.ecoenv.2018.05.037

Liu N, Wu S, Guo Q, Wang J, Cao C, Wang J. 2018c. Leaf nitrogen assimilation and partitioning differ among subtropical forest plants in response to canopy addition of nitrogen treatments. Science of The Total Environment 637-638: 1026-1034. DOI: https://doi.org/10.1016/j.scitotenv.2018.05.060

Lü L, Zhang L, Liu L, He H, Yan S, Fang H, Li Y. 2016. Effects of atmospheric nitrogen deposition on photosynthesis of dominant plant species in the Haibei alpine meadow ecosystem. Research of Environmental Sciences 29: 1617-1625.

Luo W, Li MH, Sardans J, Lü XT, Wang C, Peñuelas J, Wang Z, Han XG, Jiang Y. 2017. Carbon and nitrogen allocation shifts in plants and soils along aridity and fertility gradients in grasslands of China. Ecology and Evolution 7: 6927-6934. DOI: https://doi.org/10.1002/ece3.3245
Lyons KG, Maldonado-Leal BG, Owen G. 2013. Community and ecosystem effects of buffelgrass (*Pennisetum ciliare*) and nitrogen deposition in the Sonoran Desert. *Invasive Plant Science and Management* **6**: 65-78. DOI: [https://doi.org/10.1614/ipsm-d-11-00071.1](https://doi.org/10.1614/ipsm-d-11-00071.1)

Ma JY, Sun W, Liu XN, Chen FH. 2012. Variation in the stable carbon and nitrogen isotope composition of plants and soil along a precipitation gradient in Northern China. *Plos ONE* **7**: e51894. DOI: [https://doi.org/10.1371/journal.pone.0051894](https://doi.org/10.1371/journal.pone.0051894)

Mao Q, Lu X, Mo H, Gundersen P, Mo J. 2018a. Effects of simulated N deposition on foliar nutrient status, N metabolism and photosynthetic capacity of three dominant understory plant species in a mature tropical forest. *Science of The Total Environment* **610-611**: 555-562. DOI: [https://doi.org/10.1016/j.scitotenv.2017.08.087](https://doi.org/10.1016/j.scitotenv.2017.08.087)

Mao J, Xing Y, Yan G, Wang Q. 2018b. A meta-analysis of the response of terrestrial plant biomass allocation to simulated N deposition. *Acta Ecologica Sinica* **38**: 3183-3194. DOI: [https://doi.org/10.5846/stxb201706281164](https://doi.org/10.5846/stxb201706281164)

Markert BA, Breure AM, Zechmeister HG. 2003. *Bioindicators & Biomonitors, Principles, Concepts and Applications*. Oxford, UK. Elsevier. ISBN: 0-08-044177-7

Maxwell K, Johnson GN. 2000. Chlorophyll fluorescence - a practical guide. *Journal of Experimental Botany* **51**: 659-668. DOI: [https://doi.org/10.1093/jexbot/51.345.659](https://doi.org/10.1093/jexbot/51.345.659)

McWhirter BD, Henry HAL. 2014. Successional processes and global change: tree seedling establishment in response to warming and N addition in a temperate old field. *Plant Ecology* **216**: 17-26. DOI: [https://doi.org/10.1007/s11258-014-0413-0](https://doi.org/10.1007/s11258-014-0413-0)

Nobel PS, de la Barrera E. 2002. Nitrogen relations for net CO₂ uptake by the cultivated hemiepiphytic cactus, *Hylocereus undatus*. * Scientia Horticulturae* **96**: 281-292. DOI: [https://doi.org/10.1016/S0304-4238(02)00060-2](https://doi.org/10.1016/S0304-4238(02)00060-2)

Norra S, Handley LL, Berner Z, Stüben D. 2005. ¹³C and ¹⁵N natural abundances of urban soils and herbaceous vegetation in Karlsruhe, Germany. *European Journal of Soil Science* **56**: 607-620. DOI: [https://doi.org/10.1111/j.1365-2389.2005.00701.x](https://doi.org/10.1111/j.1365-2389.2005.00701.x)

Ochoa-Hueso R, Manrique E. 2013. Effects of nitrogen deposition on growth and physiology of *Pleurocheta squarrosa* (Brid.) Lindb.; A terricolous moss from mediterranean ecosystems. *Water Air Soil Pollution* **224**: 1492. DOI: [https://doi.org/10.1007/s11270-013-1492-6](https://doi.org/10.1007/s11270-013-1492-6)

Ochoa-Hueso R, Paradela C, Pérez-Corona ME, Manrique E. 2014. Pigment ratios of the mediterranean Bryophyte *Pleurocheta squarrosa* respond to simulated nitrogen deposition. In: Sutton MA, Mason KE, Sheppard LJ, Sverdrup H, Haeuber R, Hicks WK, eds. *Nitrogen Deposition, Critical Loads and Biodiversity*. Dordrecht, Netherlands: Springer. pp. 207-216. ISBN: 978-94-007-7938-9

Pearce ISK, van der Wal R. 2002. Effects of nitrogen deposition on growth and survival of montane *Racomitrium lanuginosum* heath. *Biological Conservation* **104**: 83-89. DOI: [https://doi.org/10.1016/S0006-3207(01)00156-2](https://doi.org/10.1016/S0006-3207(01)00156-2)

Pearce ISK, Woodin SJ, van der Wal R. 2003. Physiological and growth responses of the montane bryophyte *Racomitrium lanuginosum* to atmospheric nitrogen deposition. *New Phytologist* **160**: 145-155. DOI: [https://doi.org/10.1046/j.1469-8137.2003.00875.x](https://doi.org/10.1046/j.1469-8137.2003.00875.x)

Peng Y, Peng PH, Li JJ. 2016. Simulated nitrogen deposition influences the growth and competitive ability of *Centaurea stoebe* populations. *Chinese Journal Plant Ecology* **40**: 679-685. DOI: [https://doi.org/10.17521/cjpe.2015.0481](https://doi.org/10.17521/cjpe.2015.0481)

Perry LG, Blumenthal DM, Monaco TA, Paschke MW, Redente EF. 2010. Immobilizing nitrogen to control plant invasion. *Oecologia* **163**: 13-24. DOI: [https://doi.org/10.1007/s00442-010-1580-x](https://doi.org/10.1007/s00442-010-1580-x)

Persson LM, Arvidson A, Lannerstad M, Lindskog H, Morrissey T, Nilsson L, Noel S, Senyagwa J. 2010. *Impacts of Pollution on Ecosystem Services for the Millennium Development Goals*. Stockholm, Sweden. Stockholm Environment Institute. ISBN: 978-91-86125-22-6

Ricklefs RE. 2009. *The Economy of Nature*. New York, USA. WH Freeman and Company. ISBN-13: 978-0-716-78697-9

Rockström J, Steffen W, Noone K, Persson Å, Chapin III FS, Lambin E, Lenton TM, Scheffer M, Folke C, Scheﬄnerhufer HJ, Nykvist B, de Wit CA, Hughes T, van der Leeuw S, Rodhe H, Sörlin S, Snyder PK, Costanza R, Svedin U, Falkenberg M, Karlberg L, Corell RW, Fabry VJ, Hansen J, Walker B, Liverman D, Richardson K, Crutzen P, Foley J. 2009. Planetary boundaries: Exploring the safe operating space for humanity. *Ecology and Society* **14**: 32. DOI: [https://doi.org/10.5751/ES-03180-140232](https://doi.org/10.5751/ES-03180-140232)

Rzedowski GC de, Rzedowski J. 2005. *Flora Fanerogámica del Valle de México*. Pátzcuaro, México. Instituto de Ecología, A.C. y Comisión Nacional para el...
Ruderal weed nitrogen deposition biomonitors

Conocimiento y Uso de la Biodiversidad. ISBN: 978-607-7607-36-6

Sala OE, Chapin III FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH. 2000. Global biodiversity scenarios for the year 2100. Science 287: 1770-1774. DOI: https://doi.org/10.1126/science.287.5459.1770

Santiago LS, Silvera K, Andrade JL, Dawson TE. 2005. El uso de isótopos estables en biología tropical. Inter ciencia 30: 536-542.

SEMARNAT [Secretaría del Medio Ambiente y Recursos Naturales]. 2012. Norma Oficial Mexicana NOM-156-SEMARNAT-2012. Establecimiento y operación de sistemas de monitoreo de la calidad del aire. Diario Oficial de la Federación. 16 de julio de 2012.

Shen H, Dong S, Li S, Xiao J, Han Y, Yang M, Zhang J, Gao X, Xu Y, Li Y, Zhi Y, Liu S, Dong Q, Zhou H, Yeomans JC. 2019. Effects of simulated N deposition on photosynthesis and productivity of key plants from different functional groups of alpine meadow on Qinghai-Tibetan plateau. Environmental Pollution 251: 731-737. DOI: https://doi.org/10.1016/j.envpol.2019.05.045

Stevens CJ, Dise NB, Mountford JO, Gowing DJ. 2004. Impact of nitrogen deposition on the species richness of grasslands. Science 303: 1876-1879. DOI: https://doi.org/10.1126/science.1094678

Stevens CJ, Dupr C, Dorland E, Gaudnik C, Gowing DJG, Bleecker A, Diekmann M, Alard D, Bobbink R, Fowler D, Corcket E, Mountford JO, Vandvik V, Aarrestad PA, Muller S, Dise NB. 2011. The impact of nitrogen deposition on acid grasslands in the Atlantic region of Europe. Environmental Pollution 159: 2243-2250. DOI: https://doi.org/10.1016/j.envpol.2010.11.026

Stevens CJ, Gowing DJG. 2014. Effect of nitrogen addition, form and clipping on competitive interactions between grassland species. Journal Plant Ecology 7: 222-230. DOI: https://doi.org/10.1093/jpe/rrt039

Sutton MA, Pitcairn CER, Whitfield CP. 2004. Bioindicators and biomonitoring methods for assessing the effects of atmospheric nitrogen on statutory nature conservation sites. JNCC Report No: 356. Countryside council for Wales, English Nature, joint Nature Conservation Committee and Centre for Ecology and Hydrology. http://jncc.defra.gov.uk/pdf/jncc356.pdf (accessed November 07, 2018)

Taiz L, Zeiger E, Moller IM, Murphy A. 2014. Plant Physiology and Development. Oxford, UK. Sinauer Associates. ISBN 13: 9781605352558

Tang MH, Porder S, Lovett GM. 2012. Species differences in nitrate reductase activity are unaffected by nitrogen enrichment in northeastern US forests. Forest Ecology and Management 275: 52-59. DOI: https://doi.org/10.1016/j.foreco.2012.03.006

Tegeder M, Masclaux-Daubresse C. 2018. Source and sink mechanisms of nitrogen transport and use. New Phytologist 217: 35-53. DOI: https://doi.org/10.1111/nph.14876

Throop HL, Lerdau MT. 2004. Effects of nitrogen deposition on insect herbivory: Implications for community and ecosystem processes. Ecosystems 7: 109-133. DOI: https://doi.org/10.1007/s10021-003-0225-x

Tian Q, Liu N, Bai W, Li L, Chen J, Reich PB, Yu Q, Guo D, Smith MD, Knapp AK, Cheng W, Lu P, Gao Y, Yang A, Wang T, Li X, Wang Z, Ma Y, Han X, Zhang WH. 2016. A novel soil manganese mechanism drives plant species loss with increased nitrogen deposition in a temperate steppe. Ecology 97: 65-74. DOI: https://doi.org/10.1890/15-0917.1

Tian D, Pan Q, Simmons M, Chaolu H, Du B, Bai Y, Wang H, Han X. 2012. Hierarchical reproductive allocation and allometry within a perennial bunchgrass after 11 Years of Nutrient Addition. Plos ONE 7: e42833. DOI: https://doi.org/10.1371/journal.pone.0042833

Tulloss EM, Cadenasso ML. 2016. The effect of nitrogen deposition on plant performance and community structure: Is it life stage specific. Plos One 11: e0156685. DOI: https://doi.org/10.1371/journal.pone.0156685

Van der Maarel E. 2005. Decline of acid-sensitive plant species in heathland can be attributed to ammonium toxicity in combination with low pH. New Phytologist 166: 551-564. DOI: https://doi.org/10.1111/j.1469-8137.2005.01338.x

Van der Valk AG. 2009. Herbaceous Plant Ecology. Ames, USA. Springer. ISBN: 978-90-481-2797-9

Van den Berg LJL, Dorland E, Vergeer P, Hart MAC, Bobbink R, Roelofs JGM. 2005. Decline of acid-sensitive plant species in heathland can be attributed to ammonium toxicity in combination with low pH. New Phytologist 166: 551-564. DOI: https://doi.org/10.1111/j.1469-8137.2005.01338.x

Vibrans H. 2021. Malezas de México. CONABIO. http://www.conabio.gob.mx/malezasdemexico/2inicio/home-malezas-mexico.htm (accessed January 15, 2021)

Vieira CR, Weber OLS, Scaramuzza JF. 2018. Ash content, carbon and C/N ratio in paricá in function of NPK fertilization. Anais da Academia Brasileira de Ciências 90: 333-341. DOI: https://doi.org/10.1590/0011-3765201820150519
Wang W, Pataki DE. 2010 Spatial patterns of plant isotope tracers in the Los Angeles urban region. Landscape Ecology 25: 35-52. DOI: https://doi.org/10.1007/s10980-009-9401-5

Wang M, Shi S, Lin F, Hao Z, Jiang P, Dai G. 2012. Effects of soil water and nitrogen on growth and photosynthetic response of Manchurian Ash (Fraxinus mandshurica) seedlings in Northeastern China. Plos One 7: e30754. DOI: https://doi.org/10.1371/journal.pone.0030754

Wang J, Yi X, Cui J, Chang Y, Yao D, Zhou D, Yang J, Zhou J, Chan A, Wang W, Yin X. 2019. Nonlinear effects of increasing nitrogen deposition on rice growth and heavy metal uptake in a red soil ecosystem of southeastern China. Science of the Total Environment 670: 1060-1067. DOI: https://doi.org/10.1016/j.scitotenv.2019.03.245

WHO [World Health Organization]. 2003. Health Aspects of Air Pollution with Particulate Matter, Ozone and Nitrogen Dioxide. EUR/03/504268. Bon, Germany. Health Documentation Services WHO, Regional Office for Europe, Copenhagen. https://apps.who.int/iris/handle/10665/107478 (accessed April 08, 2018)

Xiao HY, Wu LH, Zhu RG, Wang YL, Liu CQ. 2011. Nitrogen isotope variations in camphor (Cinnamomum Camphora) leaves of different ages in upper and lower canopies as an indicator of atmospheric nitrogen sources. Environmental Pollution 159: 363-367. DOI: https://doi.org/10.1016/j.envpol.2010.11.011

Xu W, Shang B, Xu Y, Yuan X, Dore AJ, Zhao Y, Massad RS, Feng Z. 2018. Effects of elevated ozone concentration and nitrogen addition on ammonia stomatal compensation point in a poplar clone. Environmental Pollution 238: 760-770. DOI: https://doi.org/10.1016/j.envpol.2018.03.089

Yeo S, Lee H, Choi S, Seol S, Jin H, Yoo C, Lim J, Kim J. 2019. Analysis of the national air pollutant emission inventory (CAPSS 2015) and the major cause of change in Republic of Korea. Asian Journal of Atmospheric and Environmental Science 13: 212-231. DOI: https://doi.org/10.5572/ajaes.2019.13.3.212

Yoneyama T, Omata T, Nakata S, Yazaki J. 1991. Fractionation of nitrogen isotopes during the uptake and assimilation of ammonia by Plants. Plant and Cell Physiology 32: 1211-1217. DOI: https://doi.org/10.1093/oxfordjournals.pcp.a078199

Yuan X, Shang B, Xu Y, Xin Y, Tian Y, Feng Z, Paolletti E. 2017. No significant interactions between nitrogen stimulation and ozone inhibition of isoprene emission in Cathay poplar. Science of the Total Environment 601-602: 222-229. DOI: https://doi.org/10.1016/j.scitotenv.2017.05.138

Zhang Y, Zhou X, Yin B, Downing A. 2016. Sensitivity of the xerophytic moss Syntrichia caninervis to prolonged simulated nitrogen deposition. Annals of Botany 117: 1153-1161. DOI: https://doi.org/10.1093/aob/mcw058

Zhou H, Kang S, Li F, Du T, Shukla MK, Li X. 2020. Nitrogen application modified the effect of deficit irrigation on tomato transpiration, and water use efficiency in different growth stages. Scientia Horticulturae 263: 32-41. DOI: https://doi.org/10.1016/j.scienta.2019.109112

Zotz G, Bader MY. 2009. Epiphytic plants in a changing world global: Change effects on vascular and non-vascular epiphytes. In: Lütge U, Beyerchlor W, Büdel B, Francis D, eds. Progress in Botany 70. Berlin, Germany: Springer, pp. 147-170. ISBN: 978-3-540-68420-6

Associate editor: Edilia de la Rosa

Author contributions:
Martinez DN. conceptualization, methodology, formal analysis, investigation, writing – original draft, visualization, project administration; De la Barrera E. conceptualization, resources, writing – review & editing supervision, funding acquisition.