Supplemental data

Semiexperimental equilibrium structure of 1-methylisatin from gas-phase electron diffraction data and structural changes in isatin due to 1-methyl and 5-fluoro substituents as predicted by coupled cluster computations

Alexander V. Belyakova, Kirill O. Nikolaenkoa, Alexander A. Oskorbina, Natalja Vogtb,c, Anatolii N. Rykovb, and Igor F. Shishkovb

1 Saint-Petersburg State Technological Institute, 190013, Saint Petersburg, Russia
2 Department of Chemistry, Moscow State University, 119992 Moscow, Russia
3 Section of Chemical Information Systems, University of Ulm, 89081 Ulm, Germany

Alexander Belyakov, e-mail: belyakov@technolog.edu.ru
Natalja Vogt, e-mail: natalja.vogt@uni-ulm.de
Figure S1. Molecular model of 1-methylisatin with atom numbering (according to the used Z-matrix)
Table S1. Optimized Cartesian coordinates of 1-methylisatin, Å.

At	x	y	z	x	y	z
C1	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
C2	0.000000	1.397658	0.000000	0.000000	1.400595	0.000000
N3	1.302421	1.901167	0.000000	1.304786	1.905205	0.000000
C4	2.229662	0.885488	0.000000	2.234161	0.888100	0.000000
C5	1.403368	−0.430636	0.000000	1.406401	−0.431301	0.000000
C6	−1.184596	2.108796	0.000000	−1.186892	2.113555	0.000000
C7	−2.373781	1.379456	0.000000	−2.378544	1.382725	0.000000
C8	−2.378388	−0.011950	0.000000	−2.383298	−0.011570	0.000000
C9	−1.179380	−0.718048	0.000000	−1.181976	−0.719412	0.000000
O10	3.433634	0.999449	0.000000	3.439961	1.003051	0.000000
O11	1.878046	−1.541952	0.000000	1.882232	−1.544214	0.000000
C12	1.641610	3.297845	0.000000	1.644056	3.304782	0.000000
H13	−1.198035	3.188156	0.000000	−1.200279	3.194236	0.000000
H14	−3.313320	1.912255	0.000000	−3.319176	1.916293	0.000000
H15	−3.318444	−0.541731	0.000000	−3.324619	−0.541815	0.000000
H16	−1.155114	−1.798077	0.000000	−1.157985	−1.800740	0.000000
H17	2.724121	3.365931	0.000000	2.727917	3.372714	0.000000
H18	1.248747	3.790964	0.886628	1.250049	3.797757	0.887895
H19	1.248747	3.790964	−0.886628	1.250049	3.797757	−0.887895

(to be continued)
At	x	y	z		x	y	z
C1	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
C2	0.00000	1.406272	0.00000	0.00000	1.401000	0.00000	0.00000
N3	1.309976	1.909579	0.00000	1.307013	1.902715	0.00000	0.00000
C4	2.241551	0.886773	0.00000	2.234424	0.883503	0.00000	0.00000
C5	1.410397	-0.437382	0.00000	1.405973	-0.437160	0.00000	0.00000
C6	-1.189117	2.125310	0.00000	-1.183824	2.117949	0.00000	0.00000
C7	-2.385453	1.390654	0.00000	-2.375390	1.384893	0.00000	0.00000
C8	-2.395630	-0.008964	0.00000	-2.385122	-0.009073	0.00000	0.00000
C9	-1.188763	-0.718674	0.00000	-1.183149	-0.717089	0.00000	0.00000
O10	3.445755	1.002448	0.00000	3.434076	0.996904	0.00000	0.00000
O11	1.886016	-1.548811	0.00000	1.880280	-1.543799	0.00000	0.00000
C12	1.656790	3.314545	0.00000	1.650978	3.303091	0.00000	0.00000
H13	-1.200711	3.207420	0.00000	-1.195134	3.197890	0.00000	0.00000
H14	-3.326879	1.926542	0.00000	-3.315314	1.918844	0.00000	0.00000
H15	-3.338938	-0.538842	0.00000	-3.326957	-0.537606	0.00000	0.00000
H16	-1.166731	-1.801485	0.00000	-1.160144	-1.797844	0.00000	0.00000
H17	2.743637	3.377604	0.00000	2.734952	3.369389	0.00000	0.00000
H18	1.262995	3.810019	0.890445	1.256788	3.796653	0.888319	0.00000
H19	1.262995	3.810019	-0.890445	1.256788	3.796653	-0.888319	0.00000

At	x	y	z		x	y	z
B2PLYP/VTZ							
C1	-0.388100	0.671634	0.000005	0.00000	0.00000	0.00000	
C2	-0.512531	-0.726691	0.000006	1.40260	0.00000	0.00000	
N3	0.744654	-1.342700	0.000006	1.91657	1.30374	0.00000	
C4	1.759716	-0.404663	0.000004	0.91321	2.25032	0.00000	
C5	1.045889	0.986137	0.000004	-0.40588	1.41712	0.00000	
C6	-1.758943	-1.330856	0.000006	2.12777	-1.17986	0.00000	
C7	-2.880414	-0.496204	0.000005	1.40959	-2.38232	0.00000	
C8	-2.766290	0.893353	0.000004	0.01509	-2.41951	0.00000	
C9	-1.506243	1.488657	0.000003	-0.67708	-1.20741	0.00000	
O10	2.947467	-0.624653	0.000002	1.06011	3.44692	0.00000	
O11	1.615679	2.049817	0.000003	-1.51849	1.87723	0.00000	
C12	0.970613	-2.769684	0.000007	3.32418	1.62273	0.00000	
H13	-1.870030	-2.404691	0.000007	3.21556	-1.18412	0.00000	
H14	-3.863419	-0.945549	0.000005	1.95926	-3.32102	0.00000	
H15	-3.656271	1.504374	0.000003	-0.49849	-3.37843	0.00000	
H16	-1.388172	2.562889	0.000002	-1.76423	-1.16999	0.00000	
H17	2.044875	-2.927290	0.000007	3.40997	2.70513	0.00000	
H18	0.538182	-3.231048	0.887568	3.81066	1.21964	0.88848	
H19	0.538182	-3.231050	-0.887553	3.81066	1.21964	-0.88848	

Note. Atom numbering is given in Fig. S1.
Table S2. Optimized Cartesian coordinates of isatin, Å.

At	MP2_AE/CVTZ	MP2_FC/CVTZ	MP2_FC/VQZ			
	x	y	x	y	x	y
C1	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
C2	0.000000	1.396784	0.000000	1.399707	0.000000	1.399126
N3	1.308217	1.886374	1.310597	1.890256	1.310277	1.889765
C4	2.239218	0.873184	2.243754	0.875703	2.242488	0.876765
C5	1.400749	-0.438919	1.403767	-0.439620	1.403222	-0.439195
C6	-1.185003	2.106009	-1.187231	2.110826	-1.185181	2.111149
C7	-2.373342	1.378547	-2.378058	1.381909	-2.376215	1.382697
C8	-2.378739	-0.013986	-2.383650	-0.013516	-2.382313	-0.012175
C9	-1.181045	-0.718663	-1.183668	-0.719984	-1.183646	-0.719508
O10	3.440962	0.977590	3.447315	0.981206	3.444948	0.981731
O11	1.868823	-1.552869	1.872957	-1.555189	1.873475	-1.552630
H12	1.561362	2.859100	1.563482	2.863991	1.563205	2.863194
H13	-1.197392	3.185902	-1.199458	3.192039	-1.197453	3.191896
H14	-3.312290	1.912216	-3.318084	1.916371	-3.315787	1.916952
H15	-3.318977	-0.543320	-3.325177	-0.543272	-3.323815	-0.541014
H16	-1.155500	-1.798589	-1.158441	-1.801209	-1.159707	-1.800828

At	MP2_FC/VTZ	CCSD(T)_FC/VTZ	CCSD(T)_AE/CVQZ			
	x	y	x	y	x	y
C1	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
C2	0.000000	1.401361	0.000000	1.397628	0.000000	1.392470
N3	1.311685	1.891768	1.308517	1.884858	1.304727	1.887975
C4	2.245331	0.875889	2.249712	0.867268	2.237198	0.865639
C5	1.404909	-0.439675	1.397879	-0.443562	1.393182	-0.442372
C6	-1.188421	2.113626	-1.183273	2.112243	-1.187453	2.104929
C7	-2.380694	1.384030	-2.374338	1.383984	-2.365148	1.379271
C8	-2.386427	-0.013053	-2.385449	-0.011454	-2.376409	-0.011064
C9	-1.185176	-0.720520	-1.184660	-0.715083	-1.180289	-0.712777
O10	3.450469	0.981403	3.437953	0.972336	3.426088	0.969070
O11	1.874800	-1.556656	1.864788	-1.554999	1.859328	-1.548643
H12	1.565143	2.855864	1.562573	2.855739	1.558509	2.848180
H13	-1.200621	3.194947	-1.193218	3.189710	-1.188001	3.180496
H14	-3.320858	1.918585	-3.310444	1.918321	-3.299585	1.912512
H15	-3.328190	-0.542704	-3.324109	-0.538630	-3.313516	-0.537007
H16	-1.160343	-1.801823	-1.160048	-1.792630	-1.156437	-1.788493
Table S3. Optimized Cartesian coordinates of 5-fluoroisatin, Å.

At	MP2_AE/CVTZ	MP2_FC/CVTZ	MP2_FC/VQZ			
	x	y	x	y	x	y
C1	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
C2	0.000000	1.396108	0.000000	1.399022	0.000000	1.398480
N3	1.309373	1.886114	1.311774	1.889976	1.311388	1.889511
C4	2.239757	0.873205	2.244305	0.875720	2.243058	0.876830
C5	1.401715	-0.439461	1.404746	-0.440167	1.404259	-0.439713
C6	-1.187751	2.101792	-1.189969	2.106595	-1.188257	2.107604
C7	-2.377062	1.377467	-2.381879	1.380933	-2.380164	1.383099
C8	-2.354957	-0.009289	-2.359618	-0.008721	-2.357143	-0.005773
C9	-1.174718	-0.729797	-1.177262	-0.731306	-1.177391	-0.730863
O10	3.441472	0.974909	3.447843	0.978492	3.445447	0.979120
O11	1.866100	-1.554407	1.870226	-1.556747	1.870722	-1.554132
H12	1.562636	2.858716	1.564763	2.863588	1.564425	2.862824
H13	-1.207227	3.181299	-1.209319	3.187419	-1.206383	3.187954
H14	-3.331061	1.881757	-3.336934	1.886016	-3.334889	1.887801
F15	-3.521077	-0.665907	-3.527530	-0.665992	-3.526430	-0.662089
H16	-1.172079	-1.809250	-1.174923	-1.812027	-1.177025	-1.811135

At	MP2_FC/VQZ	CCSD(T)_FC/VTZ	CCSD(T)_AE/CVQZ			
	x	y	x	y	x	y
C1	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
C2	0.000000	0.000000	0.000000	1.403456	0.000000	1.398300
N3	1.328866	1.312866	1.317152	1.894424	1.313279	1.888547
C4	2.245888	2.245888	2.252471	0.875116	2.245082	0.873485
C5	1.405903	1.405903	1.410305	-0.445478	1.405635	-0.444249
C6	-1.191057	-1.191057	-1.191458	2.119002	-1.186484	2.112198
C7	-2.384523	-2.384523	-2.388562	1.390982	-2.379418	1.387131
C8	-2.362388	-2.362388	-2.369698	-0.003310	-2.359810	-0.001831
C9	-1.178858	-1.178858	-1.184519	-0.730136	-1.180551	-0.727793
O10	3.451001	3.451001	3.454476	0.980218	3.442513	0.977031
O11	1.872120	1.872120	1.874976	-1.560462	1.869448	-1.554026
H12	1.566407	1.566407	1.570864	2.867666	1.566763	2.860124
H13	-1.210145	-1.210145	-1.207232	3.201205	-1.201427	3.192495
H14	-3.339616	-3.339616	-3.343883	1.898898	-3.333316	1.893781
F15	-3.531512	-3.531512	-3.542365	-0.660416	-3.530825	-0.657132
H16	-1.177136	-1.177136	-1.185224	-1.812075	-1.182320	-1.807991
Table S4. Calculated harmonic and anharmonic wavenumbers (cm\(^{-1}\)) of 1-methylisatin in comparison with experimental vibrational spectra in the gas phase.

No	Observed [1]	Calculated	Assignment (PED, %)		
	IR	Raman	harm	anharm	v, α, γ, τ
v₁	–	–	3223	3102	ν₁₃₅(45), ν₁₅₅(23), ν₁₁₇(17), ν₉₁₆(15)
v₂	–	–	3217	3062	ν₆₁₃(63), ν₈₁₅(20), ν₉₁₆(15)
v₃	–	–	3206	3051	ν₆₁₆(65), ν₉₁₇(17)
v₄	–	–	3194	3016	ν₇₁₄(66), ν₉₁₅(19)
v₅	–	–	3164	3002	ν₁₂₁₇(86)
v₆	2948 w	2950 m	3109	2938	ν₁₂₁₉(50), ν₁₂₁₆(50)
v₇	–	–	3049	2866	ν₁₂₁₆(43), ν₁₂₁₆(43)
v₈	1743 s	1740 vs	1800	1781	ν₁₄₁₀(66), ν₁₁₁(20)
v₉	1718 vs	1717 s	1789	1772	ν₅₁₅(68), ν₄₁₀(19)
v₁₀	1603 vs	1610 vs	1660	1619	ν₁₆₁₆(26), ν₁₆₁₆(16)
v₁₁	–	–	1641	1597	ν₂₁₂(22), ν₂₁₆(16), ν₁₁₂(15)
v₁₂	1486 sh	–	1533	1492	α₁₁₂₁₉(43)
v₁₃	1467 vs	–	1513	1470	α₁₁₂₁₉(15)
v₁₄	–	1488 w	1509	1450	α₁₇₁₂₁₉(46), α₁₇₁₂₁₉(46)
v₁₅	–	1456 w	1509	1450	α₆₇₁₄(14), α₈₆₁₄(12), ν₆₁₆(12), ν₉₁₆(12)
v₁₆	–	–	1461	1420	α₁₃₁₂₁₅(23), α₁₃₁₂₁₅(18), α₁₇₁₂₁₉(18)
v₁₇	1364 s	–	1406	1359	α₃₁₂(18)
v₁₈	1325 vs	1328 s	1371	1324	ν₃₁₄(11), ν₃₁₂₁₁₁₈, ν₉₁₆(11)
v₁₉	–	1308 w	1348	1311	ν₂₁₂(12), α₆₆₁₃(12)
v₂₀	1253 m	1253 vs	1273	1237	α₃₁₂₁₅(15), ν₃₁₄(15)
v₂₁	1192 m	1194 m	1214	1188	ν₁₂₁₆(26)
v₂₂	1161 m	1161 m	1187	1165	α₆₇₁₄(21), α₆₇₁₄(18)
v₂₃	–	–	1160	1122	α₁₃₁₂₁₆(46), α₃₁₂₁₆(46)
v₂₄	1111 s	1117 s	1138	1111	α₁₃₁₂₁₅(13), α₉₈₁₆(10)
v₂₅	1089 vs	1091 sh	1113	1085	ν₈₁₆(11), ν₈₁₆(9)
v₂₆	1035 m	–	1052	1022	ν₁₂₁₆(42)
v₂₇	–	1019 s	1042	1018	ν₁₂₁₆(30), ν₈₁₆(16), ν₈₁₆(15)
v₂₈	–	–	987	969	γ₁₄₁₁₆(30), γ₁₅₁₁₆(27)
v₂₉	993 sh	–	968	948	γ₁₆₁₆(43), γ₁₄₁₆(21)
v₃₀	955 m	956 w	962	941	ν₄₁₄(17)
v₃₁	880 m	865 w	881	855	γ₁₁₁₆(45)
v₃₂	863 s	879	864	α₃₄₁₀(10), α₉₈₁₆(9)	
v₃₃	816 m	817 w	832	801	γ₁₁₁₆(39), γ₁₀₁₄(30)
v₃₄	757 vs	–	771	747	γ₁₅₁₆(35), γ₁₄₁₆(17), γ₁₃₁₆(15)
v₃₅	–	–	732	711	γ₆₁₆(30), γ₁₀₁₄(15)
v₃₆	701 s	703 vs	714	702	α₂₆₁₇(13), α₉₈₁₆(11)
v₃₇	684 m	685 m	696	688	α₂₆₁₇(11), α₁₅₁₁₆(10)
v₃₈	543 m	–	561	541	α₁₅₁₆(16)
v₃₉	556 m	560 m–	558	553	γ₁₀₁₈(18), γ₁₀₁₈(16)
v₄₀	–	527 s	533	523	ν₁₂₁₆(22),
v₄₁	–	483 vs	487	471	ν₂₁₁(11), α₂₆₁₆(10)
v₄₂	473 vs	–	485	479	γ₁₀₁₈(31), γ₁₁₁₆(23), γ₁₀₁₄(15)
v₄₃	–	–	407	395	γ₆₁₄(20), γ₁₀₁₄(16), γ₁₁₁₆(15)
v₄₄	–	328 m	327	324	α₅₄₁₀(24), α₅₄₁₀(20), ν₅₁₆(16)
v₄₅	296 m	–	293	291	α₂₃₁₂₁₅(15)
v₄₆	–	252 w	273	260	γ₁₂₁₆(26), γ₉₁₆(19)
v₄₇	–	161 m	237	239	α₂₃₁₂₁₅(17), α₅₁₆(16), α₁₀₁₆(15)
v₄₈	–	–	157	31	γ₁₂₁₆(85)
v₄₉	–	171 m	140	243	γ₉₁₆(20), γ₁₁₁₆(18)
v₅₀	–	–	123	119	γ₁₂₁₆(39), τ₁₂₁₆(27), τ₁₄₁₆(21)
v₅₁	–	–	102	95	τ₄₁₆(29), τ₁₂₁₆(23), τ₁₂₁₆(20)

\(\nu \); stretching. \(\alpha \); bending. \(\gamma \); wagging. \(\tau \); torsion.

\(\nu \); very. s; strong. w; weak. m; medium. sh; shoulder. PED; potential energy distribution.
Table S5. Total corrections $\Delta(r_{ij,e} - r_{ij,a})$ to internuclear distances $r_{ij,a}$, theoretical $u_{ij,ht}$ and experimental $u_{ij,exp}$ rms vibrational amplitudes (in Å) for 1-methyolisatin, Å.

Parameter	$r_{ij,a}$	$r_{ij,e} - r_{ij,a}^a$	$u_{ij,ht}^b$	$u_{ij,exp}$
C1--C2	1.409	0.0066	0.0461	0.0486(21)c
C2--N3	1.411	0.0098	0.0467	0.0492(21)c
N3--C4	1.390	0.0108	0.0469	0.0494(21)c
C4--C5	1.568	0.0080	0.0563	0.0588(21)c
C1--C5	1.481	0.0071	0.0501	0.0526(21)c
C2--C6	1.392	0.0073	0.0451	0.0476(21)c
C6--C7	1.407	0.0066	0.0460	0.0485(21)c
C7--C8	1.402	0.0072	0.0458	0.0483(21)c
C8--C9	1.402	0.0064	0.0458	0.0483(21)c
C1--C9	1.391	0.0069	0.0450	0.0475(21)c
C4--O10	1.209	0.0036	0.0376	0.0401(21)c
C5--O11	1.208	0.0042	0.0375	0.0400(21)c
N3--C12	1.455	0.0119	0.0484	0.0509(21)c
CaPh--H	1.103	0.0151	0.0751	0.0751
C12--H17	1.102	0.0162	0.0759	0.0759
C12--H18	1.106	0.0158	0.0767	0.0767
O10...O11	3.032	0.0130	0.1030	0.1197(103)d
N3...O10	2.317	0.0088	0.0543	0.0601(58)c
N3...O11	3.494	0.0110	0.0596	0.0758d
C1...O11	2.422	0.0074	0.0595	0.0653(58)e
C4...O11	2.469	0.0091	0.0673	0.0731(58)e
C5...O10	2.513	0.0087	0.0674	0.0732(58)e
O10...C12	2.905	0.0029	0.1039	0.1206(103)d
C9...O11	3.202	0.0045	0.0975	0.1142(103)d
C2...O10	3.470	0.0057	0.0572	0.0734(112)f
C2...O11	3.479	0.0066	0.0572	0.0734(112)f
C1...O10	3.612	0.0055	0.0604	0.0766(112)f
C8...O11	4.566	0.0041	0.0956	0.1932(242)g
C6...O10	4.755	0.0061	0.0678	0.1654(242)g
C6...O11	4.763	0.0045	0.0652	0.1628(242)g
O11...C12	4.851	0.0018	0.0756	0.1732(242)g
C9...O10	4.971	0.0031	0.0701	0.1677(242)g
C7...O11	5.172	0.0032	0.0842	0.1818(242)g
C7...O10	5.843	0.0034	0.0678	0.1519(569)h
C8...O10	5.962	0.0028	0.0683	0.1524(569)h
C1...N3	2.331	0.0128	0.0532	0.0590(58)e
N3...C5	2.340	0.0143	0.0564	0.0622(58)e
N3...C6	2.506	0.0138	0.0607	0.0665(58)f
N3...C9	3.625	0.0151	0.0589	0.0751(112)f
N3...C7	3.736	0.0156	0.0637	0.0799(112)f
N3...C8	4.197	0.0167	0.0653	0.1629(242)g
C2...C4	2.312	0.0087	0.0542	0.0600(58)e
C2...C5	2.307	0.0098	0.0547	0.0605(58)e

(to be continued)
Parameter	\(r_{ij,a} \)	\(r_{ij,c} - r_{ij,a} \)	\(u_{ij,h1} \)	\(u_{ij,exp} \)
C2..C7	2.392	-0.0100	0.0556	0.0614(58)
C1..C8	2.429	-0.0092	0.0556	0.0614(58)
C1..C4	2.437	-0.0082	0.0568	0.0626(58)
C7..C9	2.403	-0.0083	0.0560	0.0618(58)
C2..C9	2.415	-0.0100	0.0561	0.0619(58)
C1..C6	2.441	-0.0078	0.0565	0.0623(58)
C6..C8	2.459	-0.0097	0.0562	0.0620(58)
C4..C12	2.496	-0.0049	0.0692	0.0750(58)
C2..C12	2.528	-0.0129	0.0704	0.0762(58)
C5..C9	2.645	-0.0063	0.0663	0.0721(58)
C1..C7	2.777	-0.0084	0.0637	0.0804(103)
C2..C8	2.801	-0.0117	0.0631	0.0798(103)
C6..C9	2.814	-0.0088	0.0631	0.0798(103)
C6..C12	3.068	-0.0210	0.1070	0.1237(103)
C4..C6	3.650	-0.0113	0.0624	0.0786(112)
C5..C6	3.639	-0.0106	0.0602	0.0764(112)
C1..C12	3.709	-0.0096	0.0669	0.0831(112)
C5..C12	3.744	-0.0081	0.0685	0.0847(112)
C4..C9	3.814	-0.0083	0.0644	0.0806(112)
C5..C8	3.869	-0.0088	0.0682	0.0844(112)
C5..C7	4.221	-0.0096	0.0689	0.1665(242)
C7..C12	4.458	-0.0188	0.1075	0.2051(242)
C4..C7	4.670	-0.0105	0.0650	0.1626(242)
C4..C8	4.765	-0.0100	0.0656	0.1632(242)
C9..C12	4.912	-0.0110	0.0766	0.1742(242)
C8..C12	5.239	-0.0153	0.0962	0.1938(242)

\(^a \) Calculated with the B2PLYP/cc-pVTZ cubic force constants (see text).

\(^b \) Calculated with the B2PLYP/cc-pVTZ quadratic force constants (see text).

\(^c,d,e,f,g,h \) Amplitudes with the same superscript were refined in one group. Differences between amplitudes in each group were fixed at the corresponding calculated values. Other amplitudes were assumed at the calculated values. 3\(\sigma \) Values for groups \(^c,d,e,f,g,h \) are 0.002, 0.010, 0.006, 0.011, 0.024 and 0.057, respectively.

Reference

[1] T. Polat, F. Bulut, I. Arıcan, F. Kandemirli, and G. Yıldırım, J. Mol. Struct. **1101**, 189 (2015).