Self-Calibration and Bilinear Inverse Problems via Linear Least Squares

Shuyang Ling and Thomas Strohmer
Department of Mathematics
University of California at Davis
Davis CA 95616
{syling,strohmer}@math.ucdavis.edu

June 1, 2017

Abstract

Whenever we use devices to take measurements, calibration is indispensable. While the purpose of calibration is to reduce bias and uncertainty in the measurements, it can be quite difficult, expensive, and sometimes even impossible to implement. We study a challenging problem called self-calibration, i.e., the task of designing an algorithm for devices so that the algorithm is able to perform calibration automatically. More precisely, we consider the setup $y = A(d)x + \epsilon$ where only partial information about the sensing matrix $A(d)$ is known and where $A(d)$ linearly depends on d. The goal is to estimate the calibration parameter d (resolve the uncertainty in the sensing process) and the signal/object of interests x simultaneously. For three different models of practical relevance, we show how such a bilinear inverse problem, including blind deconvolution as an important example, can be solved via a simple linear least squares approach. As a consequence, the proposed algorithms are numerically extremely efficient, thus potentially allowing for real-time deployment. We also present a variation of the least squares approach, which leads to a spectral method, where the solution to the bilinear inverse problem can be found by computing the singular vector associated with the smallest singular value of a certain matrix derived from the bilinear system. Explicit theoretical guarantees and stability theory are derived for both techniques; and the number of sampling complexity is nearly optimal (up to a poly-log factor). Applications in imaging sciences and signal processing are discussed and numerical simulations are presented to demonstrate the effectiveness and efficiency of our approach.

1 Introduction

Calibration is ubiquitous in all fields of science and engineering. It is an essential step to guarantee that the devices measure accurately what scientists and engineers want. If sensor devices are not properly calibrated, their measurements are likely of little use to the application. While calibration is mostly done by specialists, it often can be expensive, time-consuming and sometimes even impossible to do in practice. Hence, one may wonder whether it is possible to enable machines to calibrate themselves automatically with a smart algorithm and give the desired measurements. This leads

*This research was supported by the NSF via Award Nr. dtra-dms 1322393 and Award Nr. DMS 1620455.
to the challenging field of self-calibration (or blind calibration). It has a long history in imaging sciences, such as camera self-calibration [33, 22], blind image deconvolution [12], self-calibration in medical imaging [35], and the well-known phase retrieval problem (phase calibration) [16]. It also plays an important role in signal processing [18] and wireless communications [38, 32].

Self-calibration is not only a challenging problem for engineers, but also for mathematicians. It means that one needs to estimate the calibration parameter of the devices to adjust the measurements as well as recover the signal of interests. More precisely, many self-calibration problems are expressed in the following mathematical form,

$$y = A(d)x + \varepsilon,$$

where y is the observation, $A(d)$ is a partially unknown sensing matrix, which depends on an unknown parameter d and x is the desired signal. An uncalibrated sensor/device directly corresponds to “imperfect sensing”, i.e., uncertainty exists within the sensing procedure and we do not know everything about $A(d)$ due to the lack of calibration. The purpose of self-calibration is to resolve the uncertainty i.e., to estimate d in $A(d)$ and to recover the signal x at the same time.

The general model (1.1) is too hard to get meaningful solutions without any further assumption since there are many variants of the general model under different settings. In (1.1), $A(d)$ may depend on d in a nonlinear way, e.g., d can be the unknown orientation of a protein molecule and x is the desired object [14]; in phase retrieval, d is the unknown phase information of the Fourier transform of the object [16]; in direction-of-arrival estimation d represents unknown offset, gain, and phase of the sensors [46]. Hence, it is impossible to resolve every issue in this field, but we want to understand several scenarios of self-calibration which have great potential in real world applications. Among all the cases of interest, we assume that $A(d)$ linearly depends on the unknown d and will explore three different types of self-calibration models that are of considerable practical relevance. However, even for linear dependence, the problem is already quite challenging, since in fact we are dealing with bilinear (nonlinear) inverse problems. All those three models have wide applications in imaging sciences, signal processing, wireless communications, etc., which will be addressed later. Common to these applications is the desire or need for fast algorithms, which ideally should be accompanied by theoretical performance guarantees. We will show under certain cases, these bilinear problems can be solved by linear least squares exactly and efficiently if no noise exists, which is guaranteed by rigorous mathematical proofs. Moreover, we prove that the solution is also robust to noise with tools from random matrix theory. Furthermore, we show that a variation of our approach leads to a spectral method, where the solution to the bilinear problem can be found by computing the singular vector associated with the smallest singular matrix of a certain matrix derived from the bilinear system.

1.1 State of the art

By assuming that $A(d)$ linearly depends on d, (1.1) becomes a bilinear inverse problem, i.e., we want to estimate d and x from y, where y is the output of a bilinear map from (d, x). Bilinear inverse problems, due to its importance, are getting more and more attentions over the last few years. On the other hand, they are also notoriously difficult to solve in general. Bilinear inverse problems are closely related to low-rank matrix recovery, see [15] for a comprehensive review. There exists extensive literature on this topic and it is not possible do justice to all these contributions. Instead we will only highlight some of the works which have inspired us.
Blind deconvolution might be one of the most important examples of bilinear inverse problems \cite{12}, i.e., recovering f and g from $y = f * g$, where “*” stands for convolution. If both f and g are inside known low-dimensional subspaces, the blind deconvolution can be rewritten as $\mathcal{F}(y) = \text{diag}(Bd)Ax$, where $\mathcal{F}(f) = Bd$, $\mathcal{F}(g) = Az$ and “\mathcal{F}” denotes the Fourier transform. In the inspiring work \cite{4}, Ahmed, Romberg and Recht apply the “lifting” techniques \cite{13} and convert the problem into estimation of rank-1 matrix dx^*. It is shown that solving a convex relaxation enables recovery of dx^* under certain choices of B and A. Following a similar spirit, \cite{30} uses “lifting” combined with a convex approach to solve the scenarios with sparse x and \cite{29} studies the so-called “blind deconvolution and blind demixing” problem. The other line of blind deconvolution follows a nonconvex optimization approach \cite{3, 20, 25}. In \cite{3}, Ahmed, Romberg and Krahmer, using tools from generic chaining, obtain local convergence of a sparse power factorization algorithm to solve this blind deconvolution problem when h and x are sparse and B and A are Gaussian random matrices. Under the same setting as \cite{3}, Lee et al. \cite{25} propose a projected gradient descent algorithm based on matrix factorizations and provide a convergence analysis to recover sparse signals from subsampled convolution. However, this projection step can be hard to implement. As an alternative, the expensive projection step is replaced by a heuristic approximate projection, but then the global convergence is not fully guaranteed. Both \cite{3, 25} achieve nearly optimal sampling complexity. \cite{24} proves global convergence of a gradient descent type algorithm when B is a deterministic Fourier type matrix and A is Gaussian. Results about identifiability issue of bilinear inverse problems can be found in \cite{27, 23, 28}.

Another example of self-calibration focuses on the setup $y_l = DA_l x$, where $D = \text{diag}(d)$. The difference from the previous model consists in replacing the subspace assumption by multiple measurements. There are two main applications of this model. One application deals with blind deconvolution in an imaging system which uses randomly coded masks \cite{5, 37}. The measurements are obtained by (subsampled) convolution of an unknown blurring function D with several random binary modulations of one image. Both \cite{5} and \cite{2} developed convex relaxing approaches (nuclear norm minimization) to achieve exact recovery of the signals and the blurring function. The other application is concerned with calibration of the unknown gains and phases D and recovery of the signal x, see e.g. \cite{10, 9}. Cambareri and Jacques propose a gradient descent type algorithm in \cite{10, 11} and show convergence of the iterates by first constructing a proper initial guess. An empirical study is given in \cite{9} when x is sparse by applying an alternating hard thresholding algorithm. Recently, \cite{11, 2} study the blind deconvolution when inputs are changing. More precisely, the authors consider $y_l = f * g_l$ where each g_l belongs to a different known subspace, i.e., $g_l = C_l x_l$. They employ a similar convex approach as in \cite{4} to achieve exact recovery with number of measurements close to the information theoretic limit.

An even more difficult, and from a practical viewpoint highly relevant, scenario focuses on self-calibration from multiple snapshots \cite{16}. Here, one wishes to recover the unknown gains/phases $D = \text{diag}(d)$ and a signal matrix $X = [x_1, \ldots, x_p]$ from $Y = DAX$. For this model, the sensing matrix A is fixed throughout the sensing process and one measures output under different snapshots $\{x_l\}_{l=1}^p$. One wants to understand under what conditions we can identify D and $\{x_l\}_{l=1}^p$ jointly. If A is a Fourier type matrix, this model has applications in both image restoration from multiple filters \cite{21} and also network calibration \cite{6, 31}. We especially benefitted from work by Gribonval and coauthors \cite{20, 8}, as well as by Balzano and Nowak \cite{6, 7}. The papers \cite{6, 7} study the noiseless version of the problem by solving a linear system and \cite{31} takes a total least squares approach in order to obtain empirically robust recovery in the presence of noise. If each x_l is
sparse, this model becomes more difficult and Gribonval et al. [8, 20] give a thorough numerical study. Very recently, [43] gave a theoretic result under certain conditions. This calibration problem is viewed as a special case of the dictionary learning problem where the underlying dictionary DA possesses some additional structure. The idea of transforming a blind deconvolution problem into a linear problem can also be found in [32], where the authors analyze a certain non-coherent wireless communication scenario.

1.2 Our contributions

In our work, we consider three different models of self-calibration, namely, $y_t = DA_i x$, $y_t = DA_i x_t$ and $y_t = DA x_t$. Detailed descriptions of these models are given in the next Section. We do not impose any sparsity constraints on x or x_t. We want to find out x_i (or x) and D when y_i (or y) and A_i (or A) are given. Roughly, they correspond to the models in $[5, 1, 8]$ respectively. Though all of the three models belong to the class of bilinear inverse problems, we will prove that simply solving linear least squares will give solutions to all those models exactly and robustly for invertible linear least squares.

As mentioned before, our approach is largely inspired by [8] and [6, 7]; there the authors convert a bilinear inverse problem into a linear problem via a proper transformation. We follow a similar approach in our paper. The paper [8] provides an extensive empirical study, but no theoretical analysis. Nowak and Balzano, in [6, 7] provide numerical simulations as well as theoretical conditions on the number of measurements required to solve the noiseless case.

Our paper goes an important step further: On the one hand we consider more general self-calibration settings. And on the other hand we provide a rigorous theoretical analysis for recoverability and, perhaps most importantly, stability theory in the presence of measurement errors. Owing to the simplicity of our approach and the structural properties of the underlying matrices, our framework yields self-calibration algorithms that are numerically extremely efficient, thus potentially allowing for deployment in applications where real-time self-calibration is needed.

1.3 Notation and Outline

We introduce notation which will be used throughout the paper. Matrices are denoted in boldface or a calligraphic font such as Z and Z; vectors are denoted by boldface lower case letters, e.g. z. The individual entries of a matrix or a vector are denoted in normal font such as Z_{ij} or z_i. For any matrix Z, $\|Z\|$ denotes its operator norm, i.e., the largest singular value, and $\|Z\|_F$ denotes its the Frobenius norm, i.e., $\|Z\|_F = \sqrt{\sum_{ij} |Z_{ij}|^2}$. For any vector z, $\|z\|$ denotes its Euclidean norm. For both matrices and vectors, Z^T and z^T stand for the transpose of Z and z respectively while Z^* and z^* denote their complex conjugate transpose. For any real number z, we let $z_+ = \frac{1}{2}(z + |z|)$. We equip the matrix space $\mathbb{C}^{K \times N}$ with the inner product defined by $\langle U, V \rangle := \text{Tr}(U^* V)$. A special case is the inner product of two vectors, i.e., $\langle u, v \rangle = \text{Tr}(u^* v) = u^* v$. We define the correlation between two vectors u and v as $\text{Corr}(u, v) = \frac{u^* v}{\|u\|\|v\|}$. For a given vector v, $\text{diag}(v)$ represents the diagonal matrix whose diagonal entries are given by the vector v.

C is an absolute constant and C_γ is a constant which depends linearly on γ, but on no other parameters. I_n and 1_n always denote the $n \times n$ identity matrix and a column vector of “1” in \mathbb{R}^n respectively. And $\{e_i\}_{i=1}^m$ and $\{e_i\}_{i=1}^p$ stand for the standard orthonormal basis in \mathbb{R}^m and \mathbb{R}^p respectively. “*$” is the circular convolution and “\otimes” is the Kronecker product.
The paper is organized as follows. The more detailed discussion of the models under consideration and the proposed method will be given in Section 2. Section 3 presents the main results of our paper and we will give numerical simulations in Section 4. Section 5 contains the proof for each scenario. We collect some useful auxiliary results in the Appendix.

2 Problem setup: Three self-calibration models

This section is devoted to describing three different models for self-calibration in detail. We will also explain how those bilinear inverse problems are reformulated and solved via linear least squares.

2.1 Three special models of self-calibration

Self-calibration via repeated measurements Suppose we are seeking for information with respect to an unknown signal \(x_0 \) with several randomized linear sensing designs. Throughout this procedure, the calibration parameter \(D \) remains the same for each sensing procedure. How can we recover the signal \(x_0 \) and \(D \) simultaneously? Let us make it more concrete by introducing the following model,

\[
y_l = D A_l x_0 + \varepsilon_l, \quad 1 \leq l \leq p
\]

(2.1)

where \(D = \text{diag}(d) \in \mathbb{C}^{m \times m} \) is a diagonal matrix and each \(A_l \in \mathbb{C}^{m \times n} \) is a measurement matrix. Here \(y_l \) and \(A_l \) are given while \(D \) and \(x_0 \) are unknown. For simplicity, we refer to the setup (2.1) as “self-calibration from repeated measurements”. This model has various applications in self-calibration for imaging systems \([10, 11]\), networks \([6]\), as well as in blind deconvolution from random masks \([5, 37]\).

Blind deconvolution via diverse inputs Suppose that one sends several different signals through the same unknown channel, and each signal is encoded differently. Namely, we are considering

\[
y_l = f \ast C_l x_l + \varepsilon_l, \quad 1 \leq l \leq p.
\]

How can one estimate the channel and each signal jointly? In the frequency domain, this “blind deconvolution via diverse inputs” \([1, 2]\) problem can be written as (with a bit abuse of notation),

\[
y_l = D A_l x_l + \varepsilon_l, \quad 1 \leq l \leq p
\]

(2.2)

where \(D = \text{diag}(d) \in \mathbb{C}^{m \times m} \) and \(A_l \in \mathbb{C}^{m \times n} \) are the Fourier transform of \(f \) and \(C_l \) respectively. We aim to recover \(\{x_l\}_{l=1}^p \) and \(D \) from \(\{y_l, A_l\}_{l=1}^p \).

Self-calibration from multiple snapshots Suppose we take measurements of several signals \(\{x_l\}_{l=1}^p \) with the same set of design matrix \(DA \) (i.e., each sensor corresponds one row of \(A \) and has an unknown complex-valued calibration term \(d_i \)). When and how can we recover \(D \) and \(\{x_l\}_{l=1}^p \) simultaneously? More precisely, we consider the following model of self-calibration model from multiple snapshots:

\[
y_l = D A x_l + \varepsilon_l, \quad 1 \leq l \leq p.
\]

(2.3)

Here \(D = \text{diag}(d) \) is an unknown diagonal matrix, \(A \in \mathbb{C}^{m \times n} \) is a sensing matrix, \(\{x_l\}_{l=1}^p \) are \(n \times 1 \) unknown signals and \(\{y_l\}_{l=1}^p \) are their corresponding observations. This multiple snapshots model has been used in image restoration from multiple filters \([21]\) and self-calibration model for sensors \([10, 6, 31, 20, 8]\).
2.2 Linear least squares approach

Throughout our discussion, we assume that \(D \) is invertible, and we let \(S := \text{diag}(s) = D^{-1} \). Here, \(D = \text{diag}(d) \) stands for the calibration factors of the sensor(s) \([6, 8]\) and hence it is reasonable to assume invertibility of \(D \). For, if a sensor’s gain were equal to zero, then it would not contribute any measurements to the observable \(y \), in which case the associated entry of \(y \) would be zero. But then we could simply discard that entry and consider the correspondingly reduced system of equations, for which the associated \(D \) is now invertible.

One simple solution is to minimize a nonlinear least squares objective function. Let us take \((2.1)\) as an example (the others \((2.2)\) and \((2.3)\) have quite similar formulations),

\[
\min_{D, x} \sum_{l=1}^{p} \|DA_l x - y_l\|^2.
\]

The obvious difficulty lies in the biconvexity of \((2.4)\), i.e., if either \(D \) or \(x \) is fixed, minimizing over the other variable is a convex program. In general, there is no way to guarantee that any gradient descent algorithm/alternating minimization will give the global minimum. However, for the three models described above, there is one shortcut towards the exact and robust recovery of the solution via linear least squares if \(D \) is invertible.

We continue with \((2.1)\) when \(\varepsilon_l = 0 \), i.e.,

\[
\text{diag}(y_l)s = A_l x, \quad 1 \leq l \leq p
\]

where \(Sy_l = \text{diag}(y_l)s \) with \(s_i = d_i^{-1} \) and \(S \) is defined as \(\text{diag}(s) \). The original measurement equation turns out to be a linear system with unknown \(s \) and \(x \). The same idea of linearization can be also found in \([20, 8, 43, 6]\). In this way, the ground truth \(z_0 := (s_0, x_0) \) lies actually inside the null space of this linear system.

Two issues arise immediately: One the one hand, we need to make sure that \((s_0, x_0)\) spans the whole null space of this linear system. This is equivalent to the identifiability \([27, 23, 28]\) because if \(dx_0^\alpha \) or \((\alpha^{-1} d_0, \alpha x_0)\) for \(\alpha \neq 0 \) is the unique solution (up to a scalar) to \((2.1)\), then \((\alpha s_0, \alpha x_0)\) spans the null space of \((2.5)\). On the other hand, we also need to avoid the trivial scenario \((s_0, x_0) = 0\), which does not bear any physical meanings. To resolve the latter issue, we add the extra linear constraint (see also \([8, 4]\))

\[
\begin{bmatrix} w^* \end{bmatrix} = c,
\]

where the scalar \(c \) can be any nonzero number (i.e, \(w \) should of course not be orthogonal to the solution). Therefore, we hope that in the noiseless case it suffices to solve the following linear system to recover \((d, x_0)\) up to a scalar, i.e.,

\[
\begin{bmatrix}
\text{diag}(y_1) & -A_1 \\
\vdots & \vdots \\
\text{diag}(y_p) & -A_p \\
w^* \\
\end{bmatrix}

\begin{bmatrix}
\begin{bmatrix} s \\ x \end{bmatrix} \\
\end{bmatrix}

\begin{bmatrix}
\begin{bmatrix} 0 \\ c \end{bmatrix} \\
\end{bmatrix}

\begin{bmatrix}
(m+n) \times 1 \\
\end{bmatrix}

\begin{bmatrix}
(m+n) \times 1 \\
\end{bmatrix}

\begin{bmatrix}
(m+n) \times 1 \\
\end{bmatrix}

\end{bmatrix}
\]

\[
\begin{bmatrix}
A_w \\
\end{bmatrix}

\begin{bmatrix}
(m+1) \times (m+n) \\
\end{bmatrix}

\begin{bmatrix}
0 \\
\end{bmatrix}

\begin{bmatrix}
(mp+1) \times 1 \\
\end{bmatrix}

\begin{bmatrix}
(z) \\
\end{bmatrix}

\begin{bmatrix}
(mp+1) \times 1 \\
\end{bmatrix}

\end{bmatrix}
\]

\[
(2.7)
\]
In the presence of additive noise, we replace the linear system above by a linear least squares problem

\[
\minimize \sum_{l=1}^{p} \| \text{diag}(y_l)s - A_l x \|^2 + |w^*z - c|^2
\]

with respect to \(s \) and \(x \), or equivalently,

\[
\minimize_{z} \| A_w z - b \|^2
\]

(2.8)

where \(z = \begin{bmatrix} s \\ x \end{bmatrix} \), \(b = \begin{bmatrix} 0 \\ c \end{bmatrix} \), and \(A_w \) is the matrix on the left hand side of (2.7). Following the same idea, (2.2) and (2.3) can also be reformulated into linear systems and be solved via linear least squares. The matrix \(A_w \) and the vector \(z \) take a slightly different form for those cases, see (3.1) and (3.3), respectively.

Remark 2.1. Note that solving (2.8) may not be the optimal choice to recover the unknowns from the perspective of statistics since the noisy perturbation actually enters into \(A_w \) instead of \(b \). More precisely, the noisy perturbation \(\delta A \) to the left hand side of the corresponding linear system for (2.1), (2.2), and (2.3), is always in the form of

\[
\delta A := \begin{bmatrix}
\text{diag}(\varepsilon_1) & 0 \\
\vdots & \vdots \\
\text{diag}(\varepsilon_p) & 0 \\
0 & 0
\end{bmatrix}.
\]

(2.9)

The size of \(\delta A \) depends on the models. Hence total least squares [31] could be a better alternative while it is more difficult to analyze and significantly more costly to compute. Since computational efficiency is essential for many practical applications, a straightforward implementation of total least squares is of limited use. Instead one should keep in mind that the actual perturbation enters only into \(\text{diag}(y_l) \), while the other matrix blocks remain unperturbed. Constructing a total least squares solution that obeys these constraints, doing so in a numerically efficient manner and providing theoretical error bounds for it, is a rather challenging task, which we plan to address in our future work.

Remark 2.2. Numerical simulations imply that the performance under noisy measurements depends on the choice of \(w \), especially how much \(w \) and \(z_0 \) are correlated. One extreme case is that \(\langle w, z_0 \rangle = 0 \), in which case we cannot avoid the solution \(z = 0 \). It might be better to add a constraint like \(\| w \| = 1 \). However, this will lead to a nonlinear problem which may not be solved efficiently and not come with rigorous recovery guarantees. Therefore, we present an alternative approach in the next subsection.

2.3 Spectral method

In this subsection, we discuss a method for solving the self-calibration problem, whose performance does not depend on the choice of \(w \) as it avoids the need of \(w \) in the first place. Let \(A \) be the
matrix A_w excluding the last row (the one which contains w). We decompose A into $A = A_0 + \delta A$ where A_0 is the noiseless part of A and δA is the noisy part.

We start with the noise-free scenario: if $\delta A = 0$, there holds $A = A_0$ and the right singular vector of A corresponding to the smallest singular value is actually z_0. Therefore we can recover z_0 by solving the following optimization problem:

$$\min_{\|u\|=\|z\|=1} |\langle u, Az \rangle|.$$

(2.10)

Obviously, its solution is equivalent to the smallest singular value of A and its corresponding singular vector.

If noise exists, the performance will rely on how large the second smallest singular value of A_0 is and on the amount of noise, given by $\|\delta A\|$. We will discuss the corresponding theory and algorithms in Section 3.4 and the proof in Section 5.4.

3 Theoretical results

We present our theoretical findings for the three models (2.1), (2.2) and (2.3) respectively for different choices of A_l or A. In one of our choices the A_l are Gaussian random matrices. The rationale for this choice is that, while a Gaussian random matrix is not useful or feasible in most applications, it often provides a benchmark for theoretical guarantees and numerical performance. Our other choices for the sensing matrices are structured random matrices, such as e.g. the product of a deterministic partial (or a randomly subsampled) Fourier matrix or a Hadamard matrix with a diagonal binary random matrix. These matrices bring us closer to what we encounter in real world applications. Indeed, structured random matrices of this type have been deployed for instance in imaging and wireless communications, see e.g. [19, 41].

By solving simple variations (for different models) of (2.8), we can guarantee that the ground truth is recovered exactly up to a scalar if no noise exists and robustly if noise is present. The number of measurements required for exact and robust recovery is nearly optimal, i.e., close to the information-theoretic limit up to a poly-log factor. However, the error bound for robust recovery is not optimal.

It is worth mentioning that once the signals and calibration parameter D are identifiable, we are able to recover both of them exactly in absence of noise by simply solving a linear system. However, identifiability alone cannot guarantee robustness.

3.1 Self-calibration via repeated measurements

For model (2.1) we will focus on three cases:

(a) A_l is an $m \times n$ complex Gaussian random matrix, i.e., each entry in A_l is given by $\frac{1}{\sqrt{2}} N(0,1) + \frac{i}{\sqrt{2}} N(0,1)$.

1 This is a slight abuse of notation, since the δA defined in (2.9) has an additional row with zeros. However, it will be clear from the context which δA we refer to, and more importantly, in our estimates we mainly care about $\|\delta A\|$ which coincides for both choices of δA.

2 A randomly subsampled Fourier matrix is one, where we randomly choose a certain number of rows or columns of the Discrete Fourier Transform matrix, and analogously for a randomly subsampled Hadamard matrix.

3 At this point, we are not able to prove competitive results for fully deterministic sensing matrices.
(b) A_t is an $m \times n$ “tall” random DFT/Hadamard matrix with $m \geq n$, i.e., $A_t := HM_t$ where H consists of the first n columns of an $m \times m$ DFT/Hadamard matrix and each $M_t := \text{diag}(m_t)$ is a diagonal matrix with entries taking on the value ± 1 with equal probability. In particular, there holds,

$$A_t^* A_t = M_t^* H^* H M_t = m I_n.$$

(c) A_t is an $m \times n$ “fat” random partial DFT matrix with $m < n$, i.e., $A_t := HM_t$ where H consists of m columns of an $n \times n$ DFT/Hadamard matrix and each $M_t := \text{diag}(m_t)$ is a diagonal matrix, which is defined the same as case (b),

$$A_t A_t^* = HH^* = n I_m.$$

Our main findings are summarized as follows:

Theorem 3.1. Consider the self-calibration model given in (2.3) where A_w is as in (2.7). Then, for the solution \hat{z} of (2.8) and $\alpha = \frac{c}{w^2 z_0}$, there holds

$$\|\hat{z} - \alpha z_0\| \leq \kappa(A_{w,0}) \eta \left(1 + \frac{2}{1 - \kappa(A_{w,0}) \eta} \right)$$

if $\kappa(A_{w,0}) \eta < 1$ where $\eta = \frac{2\|d\|}{\sqrt{mp}}$. The condition number of A_w satisfies

$$\kappa(A_{w,0}) \leq \sqrt{\frac{6(mp + \|w\|^2)}{\min\{mp, \|w\|^2 \{(\|w\| z_0)^2\} \}} \max\{d_{\max}^2\|x\|^2, m\} \min\{d_{\min}^2\|x\|^2, m\}},$$

where $\text{Corr}(w, z_0) = \frac{w^* z_0}{\|w\| \|z_0\|}$, and for $\|w\| = \sqrt{mp}$

$$\kappa(A_{w,0}) \leq \frac{2\sqrt{3}}{\text{Corr}(w, z_0)} \sqrt{\frac{\max\{d_{\max}^2\|x\|^2, m\}}{\min\{d_{\min}^2\|x\|^2, m\}}}.$$

(a) with probability $1 - (m + n)^{-\gamma}$ if A_t is Gaussian and $p \geq c_0 \gamma \log(m + n)$;

(b) with probability $1 - (m + n)^{-\gamma} - 2(mp)^{-\gamma+1}$ if each A_t is a “tall” $(m \times n, m \geq n)$ random Hadamard/DFT matrix and $p \geq c_0 \gamma^2 \log(m + n) \log(mp)$;

(c) with probability $1 - (m + n)^{-\gamma} - 2(mp)^{-\gamma+1}$ if each A_t is a “fat” $(m \times n, m \leq n)$ random Hadamard/DFT matrix and $mp \geq c_0 \gamma^2 n \log(m + n) \log(mp)$.

Here $d_{\max} := \max_{1 \leq i \leq m} |d_{i,0}|$ and $d_{\min} := \min_{1 \leq i \leq m} |d_{i,0}|$.

Remark 3.2. Our result is nearly optimal in terms of required number of measurements, because the number of constraints mp is required to be slightly greater than $n + m$, the number of unknowns. Theorem 3.1 can be regarded as a generalized result of [10, 11] in which D is assumed to be positive and A_t is Gaussian. In our result, we only need D to be an invertible complex diagonal matrix and A_t can be a Gaussian or random Fourier type matrix. The approaches are quite different, i.e., [10] essentially uses nonconvex optimization by first constructing a good initial guess and then applying gradient descent to recover D and c. Our result also provides a provable fast alternative algorithm to “the blind deconvolution via random masks” in [3, 37] where a SDP-based approach is proposed.
3.2 Blind deconvolution via diverse inputs

We now analyze model (2.2). Following similar steps that led us from (2.1) to (2.7), it is easy to see that the linear system associated with (2.2) is given by

\[
\begin{bmatrix}
\text{diag}(y_1) & -A_1 & 0 & \cdots & 0 \\
\text{diag}(y_2) & 0 & -A_2 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\text{diag}(y_p) & 0 & 0 & \cdots & -A_p \\
w^* & & & & A_w
\end{bmatrix}
\begin{bmatrix}
s \\
x_1 \\
x_2 \\
\vdots \\
x_p \\
\hat{z}
\end{bmatrix}
= \begin{bmatrix} 0 \\ \cdots \\ \cdots \\ 0 \\ \hat{z} \end{bmatrix}. \tag{3.1}
\]

We consider two scenarios:

(a) \(A_l\) is an \(m \times n\) complex Gaussian random matrix, i.e., each entry in \(A_l\) yields \(\frac{1}{\sqrt{2}} \mathcal{N}(0,1) + \frac{1}{\sqrt{2}} \mathcal{N}(0,1)\).

(b) \(A_l\) is of the form

\[
A_l = H_l M_l, \tag{3.2}
\]

where \(H_l \in \mathbb{C}^{m \times n}\) is a random partial Hadamard/Fourier matrix, i.e., the columns of \(H_l\) are uniformly sampled without replacement from an \(m \times m\) DFT/Hadamard matrix; \(M_l := \text{diag}(m_l) = \text{diag}(m_{l,1}, \ldots, m_{l,n})\) is a diagonal matrix with \(\{m_{l,i}\}_{i=1}^n\) being i.i.d. Bernoulli random variables.

Theorem 3.3. Consider the self-calibration model given in (2.2), where \(A_w\) is as in (3.1). Let \(x_{\min} := \min_{1 \leq i \leq p} \|x_i\|\) and \(x_{\max} := \max_{1 \leq i \leq p} \|x_i\|\). Then, for the solution \(\hat{z}\) of (2.8) and \(\alpha = \frac{c}{w^*z_0}\), there holds

\[
\frac{\|\hat{z} - \alpha z_0\|}{\|\alpha z_0\|} \leq \kappa(A_{w,0}) \eta \left(1 + \frac{2}{1 - \kappa(A_{w,0}) \eta} \right)
\]

if \(\kappa(A_{w,0}) \eta < 1\) where \(\eta = \frac{2\|\Delta_A\|}{\sqrt{m}}\). The condition number of \(A_{w,0}\) obeys

\[
\kappa(A_{w,0}) \leq \sqrt{\frac{6x_{\max}^2 (m + \|w\|^2)}{x_{\min}^2 \min\{m, \|w\|^2 \text{Corr}(w, z_0)\}^2} \max\{pd_{\max}^2, \frac{m}{x_{\min}^2}\} \min\{pd_{\min}^2, \frac{m}{x_{\max}^2}\}},
\]

and for \(\|w\| = \sqrt{m}\), there holds

\[
\kappa(A_{w,0}) \leq \sqrt{\frac{2\sqrt{3}x_{\max}}{x_{\min} \text{Corr}(w, z_0)}} \min\{pd_{\min}^2, \frac{m}{x_{\max}^2}\} \max\{pd_{\max}^2, \frac{m}{x_{\min}^2}\},
\]

(a) with probability at least \(1 - (np + m)^{-c}\) if \(A_l\) is an \(m \times n\) \((m > n)\) complex Gaussian random matrix and

\[
C_0 \left(\frac{1}{p} + \frac{n}{m} \right) (\gamma + 1) \log^2(np + m) \leq \frac{1}{4}.
\]
For this scenario we only consider the case when \(x \approx \kappa \) if \(\|x\| \) and for
\[
\text{Remark 3.4. Note that if } \delta A = 0, \text{ i.e., in the noiseless case, we have } z = \alpha z_0 \text{ if } mp \geq (np + m)\text{poly}(\log(np + m)). \text{ Here } mp \text{ is the number of constraints and } np + m \text{ is the degree of freedom. Therefore, our result is nearly optimal in terms of information theoretic limit. Compared with a similar setup in [1], we have a more efficient algorithm since [1] uses nuclear norm minimization to achieve exact recovery. However, the assumptions are slightly different, i.e., we assume that } D \text{ is invertible and hence the result depends on } D \text{ while [1] imposes “incoherence” on } d \text{ by requiring } \frac{\|F(d)\|_\infty}{d} \text{ relatively small, where } F \text{ denotes Fourier transform.}
\]

3.3 Self-calibration from multiple snapshots

We again follow a by now familiar procedure to derive the linear system associated with (2.3), which turns out to be
\[
\begin{bmatrix}
 \text{diag}(y_1) & -A & 0 & \cdots & 0 \\
 \text{diag}(y_2) & 0 & -A & \cdots & 0 \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 \text{diag}(y_p) & 0 & 0 & \cdots & -A \\
\end{bmatrix}
\begin{bmatrix}
 w^* \\
 \cdots \\
 \cdots \\
 w^* \\
\end{bmatrix}
= \begin{bmatrix}
 s \\
 x_1 \\
 x_2 \\
 \vdots \\
 x_p \\
\end{bmatrix}_{(m+np) \times 1}.
\]

For this scenario we only consider the case when \(A \) is a complex Gaussian random matrix.

\textbf{Theorem 3.5.} Consider the self-calibration model given in (2.3), where \(A_w \) is as in (3.3). Let \(x_{\min} := \min_{1 \leq l \leq p} \|x_l\| \) and \(x_{\max} := \max_{1 \leq l \leq p} \|x_l\| \). Then, for the solution \(\hat{z} \) of (2.8) and \(\alpha = \frac{c}{w^* z_0} \), there holds
\[
\frac{\|\hat{z} - \alpha z_0\|}{\|\alpha z_0\|} \leq \kappa(A_{w,0}) \eta \left(1 + \frac{2}{1 - \kappa(A_{w,0}) \eta} \right)
\]
if \(\kappa(A_{w,0}) \eta < 1 \) where \(\eta = \frac{\|A\|}{\sqrt{m}} \). Here the upper bound of \(\kappa(A_{w,0}) \) obeys
\[
\kappa(A_{w,0}) \leq \sqrt{\frac{6x_{\max}^2 (m + \|w\|^2)}{x_{\min}^2 \min\{m, \|w\|^2 | \text{Corr}(w, z_0)|^2\}} \frac{\max\{p d_{\max}^2, \frac{m}{x_{\min}^2}\}}{\min\{p d_{\min}^2, \frac{m}{x_{\max}^2}\}}},
\]
and for \(\|w\| = \sqrt{m} \), there holds
\[
\kappa(A_{w,0}) \leq \frac{2\sqrt{3} x_{\max}}{x_{\min} |\text{Corr}(w, z_0)|} \sqrt{\frac{\max\{p d_{\max}^2, \frac{m}{x_{\min}^2}\}}{\min\{p d_{\min}^2, \frac{m}{x_{\max}^2}\}}},
\]
with probability at least \(1 - 2m(np + m)^{-\gamma} \) if \(A \) is a complex Gaussian random matrix and
\[
C_0 \left(\max \left\{ \frac{\|G\|}{p}, \frac{\|G\|}{p^2} \right\} + \frac{n}{m} \right) \log^2(np + m) \leq \frac{1}{16(\gamma + 1)}.
\]

(b) with probability at least \(1 - (np + m)^{-\gamma} \) if \(A_t \) yields (3.2) and
\[
C_0 \left(\frac{1}{p} + \frac{n - 1}{m - 1} \right) \gamma^3 \log^4(np + m) \leq \frac{1}{4}, \quad m \geq 2.
\]
where G is the Gram matrix of $\left\{ \frac{x_i}{\|x_i\|} \right\}_{i=1}^p$. In particular, if $G = I_p$ and $\|G\|_F = \sqrt{p}$, (3.4) becomes

$$C_0 \left(\frac{1}{p} + \frac{n}{m} \right) \log^2(np + m) \leq \frac{1}{16(\gamma + 1)}.$$

Remark 3.6. When $\|\delta A\| = 0$, Theorem 3.5 says that the solution to (2.3) is uniquely determined up to a scalar if $mp = O(\max\{np + m\|G\|, \sqrt{mnp^2 + m^2\|G\|_F^2}\})$, which involves the norm of Gram matrix G. This makes sense if we consider two extreme cases: if $\{v_{i}\}_{i=1}^p$ are exactly the same, then we have $\|G\| = p$ and $\|G\|_F = p$ and if $\{v_{i}\}_{i=1}^p$ are orthogonal to one another, $G = I_p$.

Remark 3.7. Balzano and Nowak [6] show exact recovery of this model when A is a deterministic DFT matrix (discrete Fourier matrix) and $\{x_i\}_{i=1}^p$ are generic signals drawn from a probability distribution, but their results do not include stability theory in the presence of noise.

Remark 3.8. For Theorem 3.5 and Theorem 3.9 it does not come as a surprise that the error bound depends on the norm of $\{x_i\}_{i=1}^p$ and D as well as on how much z_0 and w are correlated. We cannot expect a relatively good condition number for $\|A\|$ when $\|A\|_2$ varies greatly over $1 \leq l \leq p$.

Concerning the correlation between z_0 and w, one extreme case is $(z_0, w) = 0$, which does not rule out the possibility of $z = 0$. Hence, the quantity (z_0, w) affects the condition number.

3.4 Theoretical results for the spectral method

Let A be the matrix A_w excluding the last row and consider $A = A_0 + \delta A$ where A_0 is the noiseless part of A and δA is the noise term. The performance under noise depends on the second smallest singular value of A_0 and the noise strength $\|\delta A\|$.

Theorem 3.9. Denote \hat{z} as the solution to (2.10), i.e., the right singular vector of A w.r.t. the smallest singular value and $\|\hat{z}\| = 1$. Then there holds,

$$\min_{\alpha_0 \in \mathbb{C}} \frac{\|\alpha_0 \hat{z} - z_0\|}{\|z_0\|} = \left\| \frac{(I - \hat{z}\hat{z}^*)z_0}{\|z_0\|} \right\| \leq \frac{\|\delta A\|}{\|\sigma_2(A_0) - \|\delta A\|\|}$$

where $\sigma_2(A_0)$ is the second smallest singular value of A_0, z_0 satisfies $A_0z_0 = 0$, and \hat{z} is the right singular vector with respect to the smallest singular value of A, i.e., the solution to (2.10).

Moreover, the lower bound of $\sigma_2(A_0)$ satisfies

(a) $\sigma_2(A_0) \geq \frac{1}{\sqrt{2}} \min \{\sqrt{m}, d_{\min} \|x\|\}$ for model (2.1) under the assumption of Theorem 3.7.

(b) $\sigma_2(A_0) \geq \frac{1}{\sqrt{2}} x_{\min} \left\{ \sqrt{pd_{\min}}, \sqrt{m} \right\}$ for model (2.2) under the assumption of Theorem 3.8.

(c) $\sigma_2(A_0) \geq \frac{1}{\sqrt{2}} x_{\min} \left\{ \sqrt{pd_{\min}}, \sqrt{m} \right\}$ for model (2.3) under the assumption of Theorem 3.9.

Remark 3.10. Note that finding z which minimizes (2.10) is equivalent to finding the eigenvector with respect to the smallest eigenvalue of A^*A. If we have a good approximate upper bound λ of $\|A^*A\|$, then it suffices to find the leading eigenvector of $\lambda I - A^*A$, which can be done efficiently by using power iteration.

How to choose λ properly in practice? We do not want to choose λ too large since this would imply slow convergence of the power iteration. For each case, it is easy to get a good upper bound of $\|A\|^2$ based on the measurements and sensing matrices,
(a) for (2.1), \(\lambda = \| \sum_{l=1}^{p} \text{diag}(y_l) \text{diag}(y_l^*) \| + \| \sum_{l=1}^{p} A_l^* A_l \| ;
\)

(b) for (2.2), \(\lambda = \| \text{diag}(y_l) \text{diag}(y_l^*) \| + \max_{1 \leq l \leq p} \| A_l \|^2 ;
\)

(c) for (2.3), \(\lambda = \| \text{diag}(y_l) \text{diag}(y_l^*) \| + \| A \|^2 .
\)

Those choices of \(\lambda \) are used in our numerical simulations.

4 Numerical simulations

This section is devoted to numerical simulations. Four experiments for both synthetic and real data will be presented to address the effectiveness, efficiency and robustness of the proposed approach.

For all three models presented (2.1), (2.2) and (2.3), the corresponding linear systems have simple block structures which allow for fast implementation via the conjugate gradient method for non-hermitian matrices \([34]\). In our simulations, we do not need to set up \(A_w \) explicitly to carry out the matrix-vector multiplications arising in the conjugate gradient method. Moreover, applying preconditioning via rescaling all the columns to be of similar norms can give rise to an even faster convergence rate. Therefore, we are able to deal with medium- or large-scale problems from image processing in a computationally efficient manner.

In our simulations the iteration stops if either the number of iterations reaches at most 2000 or the residual of the corresponding normal equation is smaller than \(10^{-8} \). Throughout our discussion, the SNR (signal-to-noise ratio) in the scale of dB is defined as

\[
\text{SNR} := 10 \log_{10} \left(\frac{\sum_{l=1}^{p} \| y_l \|^2}{\sum_{l=1}^{p} \| \varepsilon_l \|^2} \right).
\]

We measure the performance with RelError (in dB) := \(20 \log_{10} \) RelError where

\[
\text{RelError} = \max \left\{ \min_{\alpha_1 \in \mathbb{C}} \frac{\| \alpha_1 \hat{x} - x_0 \|}{\| x_0 \|}, \min_{\alpha_2 \in \mathbb{C}} \frac{\| \alpha_2 \hat{d} - d_0 \|}{\| d_0 \|} \right\}.
\]

Here \(d_0 \) and \(x_0 \) are the ground truth. In particular, for image examples, we only measure the relative error with respect to the recovered image \(\hat{x} \), i.e., \(\min_{\alpha_1 \in \mathbb{C}} \frac{\| \alpha_1 \hat{x} - x_0 \|}{\| x_0 \|} \).

4.1 Self-calibration from repeated measurements

Suppose we have a target image \(x \) and try to estimate \(x \) through multiple measurements. However, the sensing process is not perfect because of the missing calibration of the sensors. In order to estimate both the unknown gains and phases as well as the target signal, a randomized sensing procedure is used by employing several random binary masks.

We assume that \(y_l = DHM_l x_0 + \varepsilon_l \) where \(H \) is a “tall” low-frequency DFT matrix, \(M_l \) is a diagonal \pm 1-random matrix and \(x_0 \) is an image of size 512 \times 512. We set \(m = 1024^2, n = 512^2, p = 8 \) and \(D = \text{diag}(d) \in 1024^2 \times 1024^2 \) with \(d \in \mathbb{C}^{1024^2} \); the oversampling ratio is \(\frac{pm}{m+n} = 6.4 \). We compare two cases: (i) \(d \) is a sequence distributed uniformly over \([0.5, 1.5] \) with \(w = 1_{m+n} \), and (ii) \(d \) is a Steinhaus sequence (uniformly distributed over the complex unit circle) with \(w = \begin{bmatrix} 0_m \\ 1_n \end{bmatrix} \). We pick those choices of \(w \) because we know that the image we try to reconstruct has only non-negative
values. Thus, by choosing w to be non-negative, there are fewer cancellation in the expression w^*z_0, which in turn leads to a smaller condition number and better robustness. The corresponding results of our simulations are shown in Figure 1 and Figure 2 respectively. In both cases, we only measure the relative error of the recovered image.

Figure 1: Here $m = 1024^2$, $n = 512^2$, $p = 8$, SNR=5dB, $D = \text{diag}(d)$ where d_i is uniformly distributed over $[0.5, 1.5]$. Left: original image; Middle: uncalibrated image, RelError = -13.85dB; Right: calibrated image, RelError = -20.23dB

Figure 2: Here $m = 1024^2$, $n = 512^2$, $p = 8$, SNR=5dB, $D = \text{diag}(d)$ where d is a Steinhauss sequence. Left: original image; Middle: uncalibrated image; Right: calibrated image, RelError = -10.02dB

In Figure 1, we can see that both, the uncalibrated and the calibrated image are quite good. Here the uncalibrated image is obtained by first applying the inverse Fourier transform and the inverse of the mask to each y_i and then taking the average of p samples. We explain briefly why the uncalibrated image still looks good. Note that

$$\hat{x}_{\text{uncali}} = \frac{1}{p} \sum_{l=1}^{p} M_l^{-1} H^\dagger(DHM_l x_0) = x_0 + \frac{1}{p} \sum_{l=1}^{p} M_l^{-1} H^\dagger(D-I)HM_l x_0$$

where $H^\dagger = \frac{1}{m} H^*$ is the pseudo inverse of H. Here $D-I$ is actually a diagonal matrix with random entries $\pm \frac{1}{2}$. As a result, each $M_l^{-1} H^\dagger(D-I)HM_l x_0$ is the sum of m rank-1 matrices with random $\pm \frac{1}{2}$ coefficients and is relatively small due to many cancellations. Moreover, [14] showed that most 2-D signals can be reconstructed within a scale factor from only knowing the phase of its Fourier transform, which applies to the case when d is positive.

However, when the unknown calibration parameters are complex variables (i.e., we do not know much about the phase information), Figure 2 shows that the uncalibrated recovered image is totally meaningless. Our approach still gives a quite satisfactory results even at a relatively low SNR of 5dB.
4.2 Blind deconvolution in random mask imaging

The second experiment is about blind deconvolution in random mask imaging \[5, 37\]. Suppose we observe the convolution of two components,

\[y_l = h * M_l x_0 + \varepsilon_l, \quad 1 \leq l \leq p \]

where both, the filter \(h \) and the signal of interests \(x_0 \) are unknown. Each \(M_l \) is a random ±1-mask. The blind deconvolution problem is to recover \((h, x_0)\). Moreover, here we assume that the filter is actually a low-pass filter, i.e., \(\mathcal{F}(h) \) is compactly supported in an interval around the origin, where \(\mathcal{F} \) is the Fourier transform. After taking the Fourier transform on both sides, the model actually ends up being of the form \((2.1) \) with \(A_l = H M_l \) where \(H \) is a “fat” partial DFT matrix and \(d \) is the nonzero part of \(\mathcal{F}(h) \). In our experiment, we let \(x_0 \) be a 128 × 128 image and \(d = \mathcal{F}(h) \) be a 2-D Gaussian filter of size 45 × 45 as shown in Figure 3.

Figure 3: Left: Original image; Right: Gaussian filter in Fourier domain. The support of the filter is 45 × 45 and hence \(m = 45^2 = 2025, n = 128^2, p = 32 \).

Figure 4: Left: Blurred image without noise, Right: Recovered image, RelError = -45.47dB

Figure 5: Left: Blurred image with SNR = 5dB, Right: Recovered image, RelError = -5.84dB
In those experiments, we choose $w = 1_{m+n}$ since both d and x_0 are nonnegative. Figure 4 shows the recovered image from $p = 32$ sets of noiseless measurements and the performance is quite satisfactory. Here the oversampling ratio is $\frac{pm}{m+n} \approx 3.52$. We can see from Figure 5 that the blurring effect has been removed while the noise still exists. That is partially because we did not impose any denoising procedure after the deconvolution. A natural way to improve this reconstruction further would be to combine the blind deconvolution method with a total variation minimization denoising step.

4.3 Blind deconvolution via diverse inputs

We choose A_l to be random Hadamard matrices with $m = 256$ and $n = 64$ and $D = \text{diag}(d_0)$ with d_0 being a positive/Steinhaus sequence, as we did previously. Each x_l is sampled from standard Gaussian distribution. We choose $w = \begin{bmatrix} 1^m \\ 0_{np \times 1} \end{bmatrix}$ if d_0 is uniformly distributed over $[0, 1.5]$ and $w = \begin{bmatrix} \sqrt{m}e_1 \\ 0_{np \times 1} \end{bmatrix}$ for Steinhaus d_0. 10 simulations are performed for each level of SNR. The test is also given under different choices of p. The oversampling ratio $\frac{pm}{m+n}$ is 2, 2.67 and 3 for $p = 4, 8, 12$ respectively. From Figure 6 we can see that the error scales linearly with SNR in dB. The performance of Steinhaus d_0 is not as good as that of positive d_0 for SNR ≤ 10 when we use the least squares method. That is because w^*z_0 is quite small when d_0 is complex and $w = \begin{bmatrix} \sqrt{m}e_1 \\ 0_{np \times 1} \end{bmatrix}$. Note that the error between \hat{z} and z_0 is bounded by $\kappa(A_{w,0}) \eta \left(1 + \frac{2}{1 - \kappa(A_{w,0}) \eta} \right)$. Therefore, the error bound does not depend on $\|\delta A\|$ linearly if $\kappa(A_{w,0}) \eta$ is close to 1. This may explain the nonlinear behavior of the relative error in the low SNR regime.

We also apply spectral method to this model with complex gains d_0 and A_l chosen as either a random Hadamard matrix or a Gaussian matrix. Compared to the linear least squares approach, spectral method is much more robust to noise, as suggested in Figure 7 especially in the low SNR regime.

Figure 6: Performance of linear least squares approach: RelError (in dB) vs. SNR for $y_l = DA_l x_l + \varepsilon_l, 1 \leq l \leq p$ where $m = 256, n = 64, D = \text{diag}(d_0)$ and each A_l is a random Hadamard matrix. d_0 is a Steinhaus sequence.
Figure 7: Performance of spectral method: RelError (in dB) vs. SNR for $y_l = DA_lx_l + \epsilon_l$, $1 \leq l \leq p$ where $m = 256$, $n = 64$, $D = \text{diag}(d_0)$. Here A_l is either a random Hadamard matrix or a Gaussian matrix. d_0 is a Steinhaus sequence.

4.4 Multiple snapshots

We make a comparison of performances between linear least squares approach and spectral method when d_0 is a Steinhaus sequence and A is a Gaussian random matrix A. Each x_l is sampled from the standard Gaussian distribution and hence the underlying Gram matrix G is quite close to I_p (this closeness could be easily made more precise, but we refrain doing so here). The choice of w and oversampling ratio are the same as those in Section 4.3. From Figure 8, we see that the performance is not satisfactory for the Steinhaus case with linear least squares approach, especially in the lower SNR regime ($\text{SNR} \leq 10$). The reason is the low correlation between w and z_0 if d_0 is Steinhaus and $w = \begin{bmatrix} \sqrt{m}e_1 \\ 0_{(p-1)\times 1} \end{bmatrix}$. The difficulty of choosing w is avoided by the spectral method. As we can see in Figure 8, the relative error given by spectral method is approximately 7dB smaller than that given by linear least squares approach when d_0 is a complex vector and the SNR is smaller than 20dB.

5 Proofs

For each subsection, we will first give the result of noiseless measurements. We then prove the stability theory by using the result below. The proof of spectral method can be found in Section 5.4.

Proposition 5.1. \[\text{Suppose that } Au_0 = b \text{ is a consistent and overdetermined system. Denote } \hat{u} \text{ as the least squares solution to } \|(A + \delta A)u - b\|^2 \text{ with } \|\delta A\| \leq \eta \|A\|. \text{ If } \kappa(A)\eta < 1, \text{ there holds,} \]

$$\frac{\|\hat{u} - u_0\|}{\|u_0\|} \leq \kappa(A)\eta \left(1 + \frac{2}{1 - \kappa(A)\eta}\right).$$

To apply the proposition above, it suffices to bound $\kappa(A)$ and η.

17
Figure 8: Comparison between linear least squares approach and spectral method: RelError (in dB) vs. SNR for $y_l = D A x_l + \varepsilon_l, 1 \leq l \leq p$ where $m = 256, n = 64$, $D = \text{diag}(d_0)$ and A is a Gaussian random matrix. The gain d_0 is a random vector with each entry uniformly distributed over unit circle.

5.1 Self-calibration from repeated measurements

Let us start with (2.7) when $\varepsilon_l = 0$ and denote $\Lambda_l := \text{diag}(A_l v)$ and $v := \frac{x}{\|x\|} \in \mathbb{C}^n$,

\[A_0 := \begin{bmatrix} \text{diag}(y_1) & -A_1 \\ \vdots & \vdots \\ \text{diag}(y_p) & -A_p \end{bmatrix} = \begin{bmatrix} \Lambda_1^* & -\frac{1}{\sqrt{m}} A_1 \\ \vdots & \vdots \\ \Lambda_p^* & -\frac{1}{\sqrt{m}} A_p \end{bmatrix} \begin{bmatrix} D\|x\| & 0 \\ 0 & \sqrt{m} I_n \end{bmatrix}. \]

Then we rewrite $A_w^* A_w$ as

\[A_w^* A_w = A_0^* A_0 + w w^* = \sum_{l=1}^{p} P Z_l Z_l^* P^* + w w^* \]

where

\[Z_l := \begin{bmatrix} \Lambda_l & -\frac{1}{\sqrt{m}} A_l^* \\ -\frac{1}{\sqrt{m}} A_l & \Lambda_l \end{bmatrix} \in \mathbb{C}^{(m+n) \times m}, \quad P := \begin{bmatrix} D^* \|x\| & 0 \\ 0 & \sqrt{m} I_n \end{bmatrix} \in \mathbb{C}^{(m+n) \times (m+n)}. \tag{5.1} \]

By definition,

\[Z_l Z_l^* = \begin{bmatrix} \Lambda_l \Lambda_l^* & -\frac{1}{\sqrt{m}} \Lambda_l A_l^* \\ -\frac{1}{\sqrt{m}} A_l^* \Lambda_l & \frac{1}{m} A_l^* A_l \end{bmatrix} \in \mathbb{C}^{(m+n) \times (m+n)}. \]

Our goal is to find out the smallest and the largest eigenvalue of A_w. Actually it suffices to understand the spectrum of $\sum_{l=1}^{p} Z_l Z_l^*$. Obviously, its smallest eigenvalue is zero and the corresponding eigenvector is $u_1 := \frac{1}{\sqrt{2}} \begin{bmatrix} 1_m \\ v \end{bmatrix}$.

Let $a_{i,l}$ be the i-th column of A_l^* and we have $E(a_{i,l}, a_{i,l}^*) = I_n$ under all the three settings in Section 3.1. Hence, $C := E(Z_l Z_l^*) = \begin{bmatrix} I_m & -\frac{1}{\sqrt{m}} 1_m v^* \\ -\frac{1}{\sqrt{m}} v 1_m^* & I_n \end{bmatrix}$.

It is easy to see that $\text{rank}(C) = m + n - 1$ and the null space of C is spanned by u_1. C has an eigenvalue with value 1 of multiplicity $m + n - 2$ and an eigenvalue with value 2 of multiplicity 1.
More importantly, the following proposition holds and combined with Proposition 5.1, we are able to prove Theorem 5.1.

Proposition 5.2. There holds

\[
\left\| \sum_{i=1}^{p} Z_i Z_i^* - pC \right\| \leq \frac{p}{2}
\]

(a) with probability \(1 - (m + n)^{-\gamma}\) if \(A_0\) is Gaussian and \(p \geq c_0\gamma \max \{1, \frac{m}{n}\} \log^2(m + n)\);

(b) with probability \(1 - (m + n)^{-\gamma} - 2(mp)^{-\gamma+1}\) if each \(A_i\) is a “tall” \((m \times n, m \geq n)\) random Hadamard/DFT matrix and \(p \geq c_0\gamma^2 \log(m + n) \log(mp)\);

(c) with probability \(1 - (m + n)^{-\gamma} - 2(mp)^{-\gamma+1}\) if each \(A_i\) is a “fat” \((m \times n, m \leq n)\) random Hadamard/DFT matrix and \(mp \geq c_0\gamma^2 n \log(m + n) \log(mp)\).

Remark 5.3. Proposition 5.2 actually addresses the identifiability issue of the model (2.1) in absence of noise. More precisely, the invertibility of \(P\) is guaranteed by that of \(D\). By Weyl’s theorem for singular value perturbation in [36], \(m + n - 1\) eigenvalues of \(\sum_{i=1}^{p} Z_i Z_i^*\) are greater than \(\frac{\eta}{2}\). Hence, the rank of \(A_0\) is equal to \(\text{rank}(\sum_{i=1}^{p} Z_i Z_i^*) = m + n - 1\) if \(p\) is close to the information theoretic limit under the conditions given above, i.e., \(p \geq O(n/m)\). In other words, the null space of \(A_0\) is completely spanned by \(z_0 := (s_0, x_0)\).

5.1.1 Proof of Theorem 5.1

Note that Proposition 5.2 gives the result if \(\varepsilon_l = 0\). The noisy counterpart is obtained by applying perturbation theory for linear least squares.

Proof: Let \(A_w := A_{w,0} + \delta A\) where \(A_{w,0}\) is the noiseless part and \(\delta A\) is defined in (2.9). According to Proposition 5.1, it suffices to estimate the condition number \(\kappa(A_{w,0})\) of \(A_{w,0}\) and \(\eta\) such that \(\|\delta A\| \leq \eta \|A_{w,0}\|\) holds. Note that

\[
A_{w,0}^* A_{w,0} = P \left(\sum_{i=1}^{p} Z_i Z_i^* \right) P^* + w w^*
\]

(5.2)

\[
= P \left(\sum_{i=1}^{p} Z_i Z_i^* + \tilde{w} \tilde{w}^* \right) P^* =: P \tilde{C} P^*
\]

(5.3)

where \(\tilde{w} := P^{-1} w\). From Proposition 5.2 and Theorem 1 in [36], we know that

\[
\lambda_2 \left(\sum_{i=1}^{p} Z_i Z_i^* \right) \geq \frac{p}{2}, \quad \lambda_{n+m} \left(\sum_{i=1}^{p} Z_i Z_i^* \right) \leq \frac{5p}{2}
\]

where \(\lambda_1 \leq \cdots \leq \lambda_{n+m}\) and \(\lambda_1(\sum_{i=1}^{p} Z_i Z_i^*) = 0\). Following from 5.2, we have

\[
\|A_{w,0}^* A_{w,0}\| \leq \|P\|^2 \left\| \sum_{i=1}^{p} Z_i Z_i^* \right\| + \|w\|^2 \leq 3p \max \{d^2_{\text{max}}, \|x\|, m\} + \|w\|^2
\]

(5.4)

\[
\leq 3 \left(p + \frac{\|w\|^2}{m} \right) \lambda_{\text{max}}^2 (P).
\]
On the other hand,
\[
\|A_{w,0}^*A_{w,0}\| \geq \left\| \sum_{i=1}^{p} A_i^* A_i \right\| \geq \frac{mp}{2}
\] (5.5)
follows from Proposition 5.2. In other words, we have found the lower and upper bounds for \(\|A_{w,0}\|\) or equivalently, \(\lambda_{\text{max}}(A_{w,0}^*A_{w,0})\). Now we proceed to the estimation of \(\lambda_{\text{min}}(A_{w,0}^*A_{w,0})\).

Let \(u := \sum_{j=1}^{m+n} a_j u_j\) be a unit vector, where \(u_1 = \frac{1}{\sqrt{v}} \left[\frac{1}{\sqrt{m}} v \right] \) with \(\sum_{j=1}^{m+n} |a_j|^2 = 1\) and \(\{u_j\}_{j=1}^{m+n}\) are the eigenvectors of \(\sum_{i=1}^{p} Z_i Z_i^*\). Then the smallest eigenvalue of \(\bar{C}\) defined in (5.3) has a lower bound as follows:

\[
u^* \bar{C} u = u^* \left(\sum_{l=1}^{p} Z_l Z_l^* \right) u + u^* \bar{w} \bar{w}^* u \\
\geq \sum_{j=2}^{m+n} \lambda_j |a_j|^2 + u^* u_1 u_1^* \bar{w} \bar{w}^* u_1 u_1^* u \\
\geq \sum_{j=2}^{m+n} \lambda_j |a_j|^2 + \frac{|w^* z_0|^2}{2m\|x\|^2} |\alpha|^2
\] (5.6)

which implies \(\lambda_{\text{min}}(\bar{C}) \geq \frac{1}{2} \min\{p, \frac{|w^* z_0|^2}{m\|x\|^2}\} \geq \frac{1}{2m} \min\{mp, \|w\|^2 \|\text{Corr}(w, z_0)\|^2\} \lambda_{\text{min}}(P)\).

Combined with \(A_{w,0}^*A_{w,0} = P\bar{C}P^*\),

\[
\lambda_{\text{min}}(A_{w,0}^*A_{w,0}) \geq \lambda_{\text{min}}(\bar{C}) \lambda_{\text{min}}^2(P) \geq \frac{1}{2m} \min\{mp, \|w\|^2 \|\text{Corr}(w, z_0)\|^2\} \lambda_{\text{min}}^2(P)
\]

Therefore, with (5.4), the condition number of \(A_{w,0}^*A_{w,0}\) is bounded by

\[
\kappa(A_{w,0}^*A_{w,0}) \leq \frac{6(mp + \|w\|^2)}{\min\{mp, \|w\|^2 \|\text{Corr}(w, z_0)\|^2\}} \kappa^2(P).
\]

From (5.5), we set \(\eta = \frac{2\|A\|}{\sqrt{mp}} \geq \frac{\|A\|}{\|A_{w,0}\|} \) and \(\gamma = \frac{\sqrt{mp}}{\|A_{w,0}\|} \eta \). Applying Proposition 5.1 gives the following upper bound of the estimation error

\[
\frac{\|z - a z_0\|}{\|\alpha z_0\|} \leq \kappa(A_{w,0}) \eta \left(1 + \frac{\sqrt{3}}{1 - \kappa(A_{w,0}) \eta} \right)
\]

where \(\alpha = \frac{e}{w^* z_0}\) and \(\kappa(A_{w,0}) \leq \frac{\sqrt{6(mp + \|w\|^2)}}{\min\{mp, \|w\|^2 \|\text{Corr}(w, z_0)\|^2\}} \kappa(P)\).

If \(\|w\| = \sqrt{mp}\), the upper bound of \(\kappa(A_{w,0})\) satisfies

\[
\kappa(A_{w,0}) \leq \sqrt{\frac{12}{\|\text{Corr}(w, z_0)\|^2}} \kappa(P) \leq \frac{2\sqrt{3}}{\|\text{Corr}(w, z_0)\|} \sqrt{\max\{d_{w,x}^2, m\}} \frac{\max\{d_{w,x}^2, m\}}{\min\{d_{w,x}^2, m\}}.
\]

\[\square\]

5.1.2 Proof of Proposition 5.2(a)

Proof: [Proof of Proposition 5.2(a)] From now on, we assume \(a_{i,j} \in \mathbb{C}^n\), i.e., the \(i\)-th column of \(A_i\), obeys a complex Gaussian distribution, \(\frac{1}{\sqrt{2}} \mathcal{N}(0, I_n) + \frac{1}{\sqrt{2}} \mathcal{N}(0, I_n)\). Let \(z_{i,j}\) be the \(i\)-th column
of Z_l; it can be written in explicit form as

$$z_{l,i} = \left[\frac{(a_{l,i}, v)}{\sqrt{m}a_{l,i}} e_i \right], \quad z_{l,i}^* = \left[|\langle a_{l,i}, v \rangle|^2 e_i e^*_i - \frac{1}{\sqrt{m}} e_i v^*(a_{l,i} a^*_l - I_n) \right]$$

Denoting $Z_{l,i} := z_{l,i} z_{l,i}^* - \mathbb{E}(z_{l,i} z_{l,i}^*)$, we obtain

$$Z_{l,i} := \left[\left(|\langle a_{l,i}, v \rangle|^2 - 1 \right) e_i e^*_i - \frac{1}{\sqrt{m}} e_i v^*(a_{l,i} a^*_l - I_n) \right].$$

Obviously each $Z_{l,i}$ is independent. In order to apply Theorem 5.14 to estimate $\|\sum_{l,i} Z_{l,i}\|$, we need to bound $\max_{l,i} \|Z_{l,i}\|_{\psi_1}$ and $\left\|\sum_{l=1}^p \sum_{i=1}^m \mathbb{E}(Z_{l,i} Z_{l,i}^*)\right\|$. Due to the semi-definite positivity of $z_{l,i} z_{l,i}^*$, we have $\|Z_{l,i}\| \leq \max\{\|z_{l,i}\|^2, \|\mathbb{E}(z_{l,i} z_{l,i}^*)\|\} \leq \max\{|\langle a_{l,i}, v \rangle|^2 + \frac{1}{m}\|a_{l,i}\|^2, 2\}$ and hence

$$\|Z_{l,i}\|_{\psi_1} \leq (|\langle a_{l,i}, v \rangle|^2)_{\psi_1} + \frac{1}{m}\|a_{l,i}\|^2_{\psi_1} \leq C \left(1 + \frac{n}{m}\right)$$

which follows from Lemma 5.14 and $\|\cdot\|_{\psi_1}$ is a norm. This implies $R := \max_{l,i} \|Z_{l,i}\|_{\psi_1} \leq C \left(1 + \frac{n}{m}\right)$.

Now we consider $\sigma^2_0 = \left\|\sum_{l=1}^p \sum_{i=1}^m \mathbb{E}(Z_{l,i} Z_{l,i}^*)\right\| = \left\|\sum_{l=1}^p \sum_{i=1}^m \mathbb{E}(Z_{l,i} Z_{l,i}^*)\right\|_{1,1}$. By computing $(Z_{l,i} Z_{l,i}^*)_{1,1}$ and $(Z_{l,i} Z_{l,i}^*)_{2,2}$, i.e., the (1, 1)-th and (2, 2)-th block of $Z_{l,i} Z_{l,i}^*$,

$$(Z_{l,i} Z_{l,i}^*)_{1,1} = \left[(|\langle a_{l,i}, v \rangle|^2 - 1)^2 + \frac{1}{m} v^*(a_{l,i} a^*_l - I_n)^2 v\right] e_i e^*_i,$$

$$(Z_{l,i} Z_{l,i}^*)_{2,2} = \frac{1}{m} (a_{l,i} a^*_l - I_n) v v^*(a_{l,i} a^*_l - I_n) + \frac{1}{m^2} (a_{l,i} a^*_l - I_n)^2.$$

Following from (5.36), (5.37), (5.38) and Lemma 5.10 there holds

$$\sigma^2_0 = 2\left\|\sum_{l=1}^p \sum_{i=1}^m \mathbb{E}(Z_{l,i} Z_{l,i}^*)\right\| = 2\left\|\sum_{l=1}^p \sum_{i=1}^m \mathbb{E}(Z_{l,i} Z_{l,i}^*)\right\|_{1,1} = 2 p \left(1 + \frac{n}{m}\right)^2 I_n \left(1 + \frac{n}{m}\right) I_n = 2 p \left(1 + \frac{n}{m}\right).$$

By applying the matrix Bernstein inequality (see Theorem 5.13) we obtain

$$\left\|\sum_{l=1}^p \sum_{i=1}^m Z_{l,i}\right\| \leq C_0 \max \left\{ \sqrt{p \left(1 + \frac{n}{m}\right)} \sqrt{t + \log(m+n)}, \right.\left(1 + \frac{n}{m}\right) (t + \log(m+n)) \log(m+n) \left\} \leq \frac{p}{2}$$

with probability $1 - e^{-t}$. In particular, by choosing $t = \gamma \log(m+n)$, i.e., $p \geq c_0 \gamma \max\{1, \frac{n}{m}\} \log^2(m+n)$, the inequality above holds with probability $1 - (m+n)^{-\gamma}$.
5.1.3 Proof of Proposition 5.2(b)

Proof: [Proof of Proposition 5.2(b)] Each Z_i is independent by its definition in (5.1) if $A_i := HM_i$ where H is an $m \times n$ partial DFT/Hadamard matrix with $m \geq n$ and $H^*H = m I_n$ and $M_i = \text{diag}(m_i)$ is a diagonal random binary ± 1 matrix. Let $Z_i := Z_i Z_i^* - C \in \mathbb{C}^{(m+n) \times (m+n)}$; in explicit form

$$Z_i = \begin{bmatrix} A_i A_i^* - I_m & -\frac{1}{\sqrt{m}}(A_i A_i^* - 1_m v^*) \\ -\frac{1}{\sqrt{m}}(A_i A_i^* - v 1_m^*) & 0 \end{bmatrix},$$

where $A_i A_i^* = m I_n$ follows from the assumption. First we take a look at the upper bound of $\|Z_i\|$. It suffices to bound $\|Z_i Z_i^*\|$ since $\|Z_i\| = \|Z_i Z_i^* - C\| \leq \max\{|Z_i Z_i^*|, |C|\}$ and C is positive semi-definite. On the other hand, due to Lemma 5.10 we have $\|Z_i Z_i^*\| \leq 2 \max\{|A_i A_i^*|, 1\}$ and hence we only need to bound $\|A_i\|$. For $\|A_i\|$, there holds

$$\max_{1 \leq i \leq p} \|A_i\| = \max_{1 \leq i \leq p} \|A_i v\|_{\infty} = \max_{1 \leq i \leq p, 1 \leq j \leq m} |\langle a_{i,j}, v \rangle|.$$

Also for any pair of (i, j), $\langle a_{i,j}, v \rangle$ can be rewritten as

$$|\langle a_{i,j}, v \rangle| = |\langle \text{diag}(m_i) h_i, v \rangle| = |\langle m_i, \text{diag}(\tilde{h}_i) v \rangle|,$$

where h_i is the i-th column of H^* and $\|\text{diag}(\tilde{h}_i)\| = \|v\| = 1$. Then there holds

$$\mathbb{P}\left(\max_{1 \leq i \leq p} \|A_i\| \geq \sqrt{2 \gamma \log(mp)} \right) \leq \sum_{i=1}^{p} \sum_{j=1}^{m} \mathbb{P}\left(|\langle a_{i,j}, v \rangle| \geq \sqrt{2 \gamma \log(mp)} \right) \leq mp \mathbb{P}\left(|\langle a_{i,j}, v \rangle| \geq \sqrt{2 \gamma \log(mp)} \right) \leq 2mp \cdot e^{-\gamma \log(mp)} \leq 2(mp)^{-\gamma+1},$$

where the third inequality follows from Lemma 5.11. Applying Lemma 5.10 to Z_i, we have

$$R := \max_{1 \leq i \leq p} \|Z_i\| \leq 2 \max_{1 \leq i \leq p} \{\|A_i A_i^*\|, 1\} \leq 4 \gamma \log(mp),$$

with probability at least $1 - 2(mp)^{-\gamma+1}$. Denote the event $\{\max_{1 \leq i \leq p} \|Z_i\| \leq 4 \gamma \log(mp)\}$ by E_1.

Now we try to understand $\sigma_0^2 = \|\sum_{i=1}^{p} \mathbb{E}(Z_i Z_i^*)\|$. The $(1,1)$-th and $(2,2)$-th block of $Z_i Z_i^*$ are given by

$$(Z_i Z_i^*)_1,1 = (A_i A_i^* - I_m)^2 + \frac{1}{m}(A_i A_i^* - 1_m v^*) (A_i A_i^* - 1_m v^*)^*,$$

$$(Z_i Z_i^*)_2,2 = \frac{1}{m}(A_i A_i^* - v 1_m^*) (A_i A_i^* - 1_m v^*).$$

By using (5.41), (5.42) and $A_i A_i^* = H H^* \preceq m I_m$, we have

$$\mathbb{E}(\langle A_i A_i^* - I_m \rangle^2) = \mathbb{E}(A_i A_i^*)^2 - I_m \leq 2 I_m, \quad (5.8)$$

$$\mathbb{E}(A_i A_i^* - 1_m v^*) (A_i A_i^* - 1_m v^*)^* = \mathbb{E}(A_i A_i^* A_i^* A_i^*) - 1_m 1_m^* \leq m I_m, \quad (5.9)$$

$$\mathbb{E}(A_i A_i^* - v 1_m^*) (AA_i - 1_m v^*) = \mathbb{E}(A_i A_i^* A_i^* A_i^*) - m v v^* \preceq 3 m I_n. \quad (5.10)$$

22
Combining (5.8), (5.9), (5.10) and Lemma 5.10

$$\sigma_0^2 \leq 2 \left\| \sum_{i=1}^{p} \begin{bmatrix} \text{E}(Z_i Z_i^*)_{1,1} & 0 \\ 0 & \text{E}(Z_i Z_i^*)_{2,2} \end{bmatrix} \right\| \leq 2p \left\| \begin{bmatrix} 2I_m + I_m & 0 \\ 0 & 3I_n \end{bmatrix} \right\| \leq 6p.$$

By applying (5.32) with $t = \gamma \log(m + n)$ and $R \leq 4\gamma \log(mp)$ over event E_1, we have

$$\left\| \sum_{i=1}^{p} (Z_i Z_i^* - C) \right\| \leq C_0 \max\{\sqrt{p}\sqrt{(\gamma + 1) \log(m + n)}, \gamma(\gamma + 1) \log(mp) \log(m + n)\} \leq \frac{p}{2}$$

with probability $1 - (m + n)^{-\gamma} - 2(mp)^{-\gamma + 1}$ if $p \geq c_0\gamma^2 \log(m + n) \log(mp)$.

5.1.4 Proof of Proposition 5.2(c)

Proof: [Proof of Proposition 5.2(c)] Each Z_l is independent due to (5.1). Let $Z_l := Z_l Z_l^* - C \in \mathbb{C}^{(m+n)\times (m+n)}$, in explicit form

$$Z_l = \begin{bmatrix} A_l A_l^* - I_m & -\frac{1}{\sqrt{m}}(A_l A_l^* - I_m v^*) \\ -\frac{1}{\sqrt{m}}(A_l^* A_l - v 1_m^*) & -\frac{1}{\sqrt{m}} A_l^* A_l - I_n \end{bmatrix}.$$

Here $A_l = HM_l$ where H is a “fat” $m \times n, (m \leq n)$ partial DFT/Hadamard matrix satisfying $HH^* = m I_m$ and M_l is a diagonal ± 1-random matrix. There holds $A_l^* A_l = M_l^* H^* H M_l \in \mathbb{C}^{n \times n}$ where $H \in \mathbb{C}^{n \times n}$ and $\text{E}(A_l^* A_l) = m I_n$. For each l, $\|A_l^* A_l\| = \|H^* H\| = \|HH^*\| = n$. Hence, there holds,

$$\|Z_l\| \leq \max\{\|Z_l Z_l^*\|, \|C\|\} \leq 2 \max\left\{\frac{1}{m}\|A_l^* A_l\|, \|A_l\|, 1\right\} \leq 2 \max\left\{\frac{n}{m}, \gamma \log(mp)\right\}$$

with probability at least $1 - 2(mp)^{-\gamma + 1}$, which follows exactly from (5.11) and Lemma 5.10.

Now we give an upper bound for $\sigma_0^2 := \|\sum_{i=1}^{p} \text{E}(Z_i Z_i^*)\|$. The $(1,1)$-th and $(2,2)$-th block of $Z_l Z_l^*$ are given by

$$(Z_l Z_l^*)_{1,1} = (\Lambda_l^* A_l^* - I_m)^2 + \frac{1}{m}(\Lambda_l^* A_l^* - I_m v^*)(\Lambda_l A_l - 1_m v^*),$$

$$(Z_l Z_l^*)_{2,2} = \frac{1}{m}(A_l^* A_l^* - v 1_m^*)(A_l A_l^* - 1_m v^*) + \left(\frac{1}{m} A_l^* A_l - I_n\right)^2.$$

By using (5.41), (5.42) and $A_l^* A_l^* = HH^* = m I_m$, we have

$$\text{E}((\Lambda_l^* A_l^* - I_m)^2) = \text{E}(\Lambda_l^* A_l^*)^2 - I_m \leq 2I_m, \quad (5.11)$$

$$\text{E}(\Lambda_l^* A_l^* - I_m v^*)(\Lambda_l A_l - 1_m v^*) = \text{E}(\Lambda_l^* A_l^* A_l^* A_l^* - 1_m 1_m^*) - 1_m 1_m^* \leq n I_m, \quad (5.12)$$

$$\text{E}(A_l^* A_l^* - v 1_m^*)(A_l A_l^* - 1_m v^*) = \text{E}(A_l^* A_l^* A_l^* A_l^* - m vv^*) = \sum_{i=1}^{m} |\langle a_{l,i}, v \rangle|^2 a_{l,i}^* a_{l,i}^* - m vv^* \leq 3m I_n. \quad (5.13)$$

For $\text{E} \left(\frac{1}{m} A_l^* A_l - I_n \right)^2$, we have

$$\left(\frac{1}{m} A_l^* A_l - I_n \right)^2 = \frac{1}{m^2} A_l^* A_l A_l^* A_l - \frac{2}{m} A_l^* A_l + I_n = \frac{n - 2m}{m^2} A_l^* A_l + I_n.$$
where \(A_t A_t^* = nI_m \). Note that \(\mathbb{E}(A_t^* A_t) = mI_n \), and there holds,

\[
\mathbb{E}\left(\frac{1}{m} A_t^* A_t - I_n \right)^2 = \frac{n - m}{m} I_n.
\] (5.14)

Combining (5.11), (5.12), (5.13), (5.14) and Lemma 5.10

\[
s^2 \leq 2p \left\| \begin{pmatrix} (2 + \frac{np}{m}) I_m & 0 \\ 0 & (2 + \frac{np}{m}) I_n \end{pmatrix} \right\| \leq \frac{4np}{m}.
\]

By applying (5.32) with \(t = \gamma \log (m + n) \), we have

\[
\left\| \sum_{l=1}^p (Z_l Z_l^* - C) \right\| \leq C_0 \max \left\{ \sqrt{\frac{np}{m}} \log (m + n), (\gamma + 1) (\gamma \log(mp) + \frac{n}{m}) \log (m + n) \right\} \leq \frac{p}{2}
\]

with probability \(1 - (m + n)^{-\gamma} - 2(mp)^{-\gamma} \) if \(mp \geq c_0 \gamma^2 n \log (m + n) \log (mp) \).

5.2 Blind deconvolution via diverse inputs

We start with (3.1) by setting \(\varepsilon_l = 0 \). In this way, we can factorize the matrix \(A_w \) (excluding the last row) into

\[
A_0 := \begin{bmatrix} {\|x_1\|} I_m & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & {\|x_p\|} I_m \end{bmatrix}
\]

\[
\begin{pmatrix}
\frac{1}{\sqrt{p}} \text{diag}(A_1 v_1) & -\frac{A_1}{\sqrt{m}} & 0 & \cdots & 0 \\
\vdots & 0 & \cdots & \cdots & 0 \\
\frac{1}{\sqrt{p}} \text{diag}(A_p v_p) & 0 & 0 & \cdots & -\frac{A_p}{\sqrt{m}} \\
\end{pmatrix}
\]

\[
\begin{pmatrix}
\sqrt{p} D & 0 & \cdots & 0 \\
0 & \sqrt{mp} I_n & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \sqrt{mp} I_p \\
\end{pmatrix}
\]

where \(v_l = \frac{x_l}{\|x_l\|} \) is the normalized \(x_l \), \(1 \leq l \leq p \). We will show that the matrix \(Z \) is of rank \(np + m - 1 \) to guarantee that the solution is unique (up to a scalar). Denote \(v := \begin{bmatrix} v_1 \\ \vdots \\ v_p \end{bmatrix} \in \mathbb{C}^{np \times 1} \)

and \(\sum_{l=1}^p \bar{e}_l \otimes v_l = v \) with \(\|v\| = \sqrt{p} \) where \(\{\bar{e}_l\}_{l=1}^p \) is a standard orthonormal basis in \(\mathbb{R}^p \).

5.2.1 Proof of Theorem 5.3

The proof of Theorem 5.3 relies on the following proposition. We defer the proof of Proposition 5.4 to the Sections 5.2.2 and 5.2.3.

Proposition 5.4. There holds,

\[
\|Z^* Z - C\| \leq \frac{1}{2} \quad C := \mathbb{E}(Z^* Z) = \begin{bmatrix} I_m & -\frac{1}{\sqrt{mp}} 1_m v^* \\
-\frac{1}{\sqrt{mp}} v^* 1_m & I_{mp} \end{bmatrix}.
\] (5.16)

(a) with probability at least \(1 - (np + m)^{-\gamma} \) with \(\gamma \geq 1 \) if \(A_t \) is an \(m \times n \) \((m > n)\) complex Gaussian random matrix and

\[
C_0 \left(\frac{1}{p} + \frac{n}{m} \right) (\gamma + 1) \log^2(np + m) \leq \frac{1}{4};
\]
(b) with probability at least \(1 - (np + m)^{-\gamma} - 2(mp)^{-\gamma + 1}\) with \(\gamma \geq 1\) if \(A_t\) yields \((3.2)\) and

\[
C_0 \left(\frac{1}{p} + \frac{n - 1}{m - 1}\right) \gamma^3 \log^4(np + m) \leq \frac{1}{4}.
\]

Remark 5.5. Note that \(C\) has one eigenvalue equal to 0 and all the other eigenvalues are at least 1. Hence the rank of \(C\) is \(np + m - 1\). Similar to Remark 5.3, Proposition 5.4 shows that the solution \((s_0, \{x_l\}_{l=1}^P)\) to \((3.1)\) is uniquely identifiable with high probability when \(mp \geq (np + m) \cdot \text{poly}(\log(np + m))\) and \(\|Z^* Z - C\| \leq \frac{1}{2}\).

Proof: [Proof of Theorem 3.3] From \((3.1)\), we let \(A_w = A_{w,0} + \delta A\) where \(A_{w,0}\) is the noiseless part of \(A_w\). Now, \((5.15)\) gives

\[
A_{w,0}^* A_{w,0} = A_w^* A_0 + w w^* = P^* Z^* Q^* Z P + w w^*.
\]

Define \(x_{\text{max}} := \max_{1 \leq l \leq p} \|x_l\|\) and \(x_{\text{min}} := \min_{1 \leq l \leq p} \|x_l\|\). From Proposition 5.4 and Theorem 1 in \([36]\), we know that the eigenvalues \(\{\lambda_j\}_{1 \leq j \leq np + m}\) of \(Z^* Z\) fulfill \(\lambda_1 = 0\) and \(\lambda_j \geq \frac{1}{2}\) for \(j \geq 2\) since \(\|Z^* Z - C\| \leq \frac{1}{2}\); and the eigenvalues of \(C\) are 0, 1 and 2 with multiplicities 1, \(np + m - 2, 1\) respectively.

The key is to obtain a bound for \(\kappa(A_{w,0})\). From \((5.15)\),

\[
\lambda_{\text{max}}(A_{w,0}^* A_{w,0}) \leq \|P\|^2 \|Q\|^2 \|Z^* Z\| + \|w\|^2 \leq 3 x_{\text{max}}^2 \lambda_{\text{max}}(P^* P) + \|w\|^2
\]

\[
\leq 3 x_{\text{max}}^2 \left(1 + \frac{\|w\|^2}{m}\right) \lambda_{\text{max}}(P^* P)
\]

\[(5.17)\]

where \(x_{\text{max}}^2 \lambda_{\text{max}}(P^* P) \geq x_{\text{max}}^2 \frac{m}{x_{\text{min}}^2} \geq m\). On the other hand, \((5.16)\) gives

\[
\lambda_{\text{min}}(A_{w,0}^* A_{w,0}) \geq \max_{1 \leq l \leq p} \{\|A_l^* A_l\|\} \geq \frac{m}{2}
\]

since \(\|\frac{1}{m} A_l^* A_l - I_n\| \leq \frac{1}{2}\). For \(\lambda_{\text{min}}(A_{w,0}^* A_{w,0})\),

\[
A_{w,0}^* A_{w,0} \geq \lambda_{\text{min}}(Q^* Q) P^* Z^* Z P + w w^* \geq x_{\text{min}}^2 P^* Z^* Z P + w w^* =: P^* C P.
\]

Denote \(u_1 := \frac{1}{\sqrt{2}} \begin{bmatrix} \frac{1}{\sqrt{np}} m \\ \frac{1}{\sqrt{p}} w \end{bmatrix} \) such that \(Z u_1 = 0\) and \(\bar{C} = x_{\text{min}}^2 Z^* Z + \bar{w} \bar{w}^*\) where \(\bar{w} = P^{-1} w\). By using the same procedure as \((5.6)\),

\[
u^* \bar{C} \geq x_{\text{min}}^2 \sum_{j=2}^{np + m} \lambda_j |\alpha_j|^2 + |\alpha_1|^2 |u_1^* P^{-1} w|^2
\]

where \(u := \sum_{j=1}^{np + m} \alpha_j u_j\) with \(\sum_j |\alpha_j|^2 = 1\). Since \(|u_1^* (P^{-1})^* w|^2 = \frac{1}{2mp} |w^* z_0|^2\), the smallest eigenvalue of \(\bar{C}\) satisfies

\[
\lambda_{\text{min}}(\bar{C}) \geq \frac{x_{\text{min}}^2}{2} \min \left\{1, \frac{|w^* z_0|^2}{mp x_{\text{min}}^2} \right\}
\]

\[
\geq \frac{x_{\text{min}}^2}{2} \min \left\{1, \frac{1}{m} \|w\|^2 \text{Corr}(w, z_0)\|^2 \right\}
\]

\[
25
\]
where \(\frac{|w^*z_0|^2}{px_{\min}} \geq \|w\|^2 \cdot \text{Corr}(w, z_0) \|^2 \) follows from \(\|z_0\|^2 \geq px_{\min}^2 \).

Therefore, the smallest eigenvalue of \(A_{w,0}^*A_{w,0} \) satisfies

\[
\lambda_{\min}(A_{w,0}^*A_{w,0}) \geq \lambda_{\min}(C) \lambda_{\min}(P^*P) \\
\geq \frac{x_{\min}^2}{2m} \min \{ m, \|w\|^2, \text{Corr}(w, z_0) \|^2 \} \lambda_{\min}(P^*P)
\]

(5.18)

Combining (5.17) and (5.18) leads to

\[
\kappa(A_{w,0}^*A_{w,0}) \leq \frac{6x_{\max}^2(m + \|w\|^2)}{x_{\min}^2 \min \{ m, \|w\|^2, \text{Corr}(w, z_0) \|^2 \} \lambda_{\min}(P^*P)} \kappa(P^*P).
\]

Applying Proposition 5.1 and \(\eta = \frac{2\|A\|}{\sqrt{m}} \), we have

\[
\frac{\|\hat{z} - \alpha z_0\|}{\|\alpha z_0\|} \leq \kappa(A_{w,0}) \eta \left(1 + \frac{2}{1 - \kappa(A_{w,0}) \eta}\right), \quad \alpha = \frac{c}{w^*z_0}
\]

if \(\kappa(A_{w,0}) \eta < 1 \) where \(\kappa(A_{w,0}) \) obeys

\[
\kappa(A_{w,0}) \leq \frac{6x_{\max}^2(m + \|w\|^2)}{x_{\min}^2 \min \{ m, \|w\|^2, \text{Corr}(w, z_0) \|^2 \} \lambda_{\min}(P^*P)} \max \{ pd_{\max}^2, \frac{m}{x_{\min}} \}.
\]

In particular, if \(\|w\| = \sqrt{m} \), then \(\kappa(A_{w,0}) \) has the following simpler upper bound:

\[
\kappa(A_{w,0}) \leq \frac{2\sqrt{3}x_{\max}}{-\text{Corr}(w, z_0)x_{\min}} \sqrt{\max \{ pd_{\max}^2, \frac{m}{x_{\min}} \} \min \{ pd_{\min}^2, \frac{m}{x_{\max}} \}}
\]

which finishes the proof of Theorem 5.3.

\[\square \]

5.2.2 Proof of Proposition 5.4(a)

In this section, we will prove that Proposition 5.4(a) if \(a_{l,i} \sim \frac{1}{\sqrt{2}} N(0, I_n) + \frac{1}{\sqrt{2}} N(0, I_n) \) where \(a_{l,i} \in \mathbb{C}^a \) is the \(i \)-th column of \(A_i^* \). Before moving to the proof, we compute a few quantities which will be used later. Define \(z_{l,i} \) as the \(((l-1)m+i) \)-th column of \(Z^* \),

\[
z_{l,i} := \left[\frac{1}{\sqrt{p}} (a_{l,i}, v_i) e_i \right]_{(mp+m) \times 1}, \quad 1 \leq l \leq p, \quad 1 \leq i \leq m
\]

where \(\{e_i\}_{i=1}^m \in \mathbb{R}^m \) and \(\{\bar{e}_l\}_{l=1}^p \in \mathbb{R}^p \) are standard orthonormal basis in \(\mathbb{R}^m \) and \(\mathbb{R}^p \) respectively; \(\otimes \) denotes Kronecker product. By definition, we have \(Z^*Z = \sum_{l=1}^p \sum_{i=1}^m z_{l,i} z_{l,i}^* \) and all \(z_{l,i} \) are independent from one another.

\[
z_{l,i} z_{l,i}^* = \left[\frac{1}{p} \langle a_{l,i}, v_i \rangle |e_i|^2 e_i^* - \frac{1}{\sqrt{mp}} (a_{l,i}, v_i) (\bar{e}_l \otimes a_{l,i}) e_i^* \right. \left. - \frac{1}{\sqrt{mp}} (a_{l,i}, v_i) (\bar{e}_l \otimes a_{l,i}) e_i^* - \frac{1}{m} \bar{e}_l \bar{e}_l^* \otimes a_{l,i} a_{l,i}^* \right]
\]

26
and its expectation is equal to
\[\mathbb{E}(z_{l,i}z_{l,i}^*) = \begin{bmatrix} \frac{1}{p}e_ie_i^* - \frac{1}{\sqrt{mp}}(\bar{e}_l \otimes v_i)e_i^* - \frac{1}{m}\bar{e}_l e_i^* \otimes I_n \end{bmatrix}. \]

It is easy to verify that \(C = \sum_{l=1}^p \sum_{i=1}^m \mathbb{E}(z_{l,i}z_{l,i}^*). \)

Proof: [Proof of Proposition 5.4(a)] The tool is to use apply matrix Bernstein inequality in Theorem 5.13. Note that \(Z^*Z = \sum_{l=1}^p \sum_{i=1}^m z_{l,i}z_{l,i}^* \). Let \(Z_{l,i} := z_{l,i}z_{l,i}^* - \mathbb{E}(z_{l,i}z_{l,i}^*) \) and we have
\[
\| Z_{l,i} \| \leq \| z_{l,i} \|^2 + \| \mathbb{E}(z_{l,i}z_{l,i}^*) \| \leq \frac{1}{p} |\langle a_{l,i}, v_i \rangle|^2 + \frac{1}{m} \| a_{l,i} \|^2 + 2 \max \left\{ \frac{1}{p}, \frac{1}{m} \right\}
\]
since \(\| \mathbb{E}(z_{l,i}z_{l,i}^*) \| \leq 2 \max \{ \frac{1}{p}, \frac{1}{m} \} \) follows from Lemma 5.10. Therefore, the exponential norm of \(\| Z_{l,i} \| \) is bounded by
\[
\| Z_{l,i} \|_{\psi_1} \leq 2 \left(\frac{1}{p} (|\langle a_{l,i}, v_i \rangle|^2)_{\psi_1} + \frac{1}{m} (|a_{l,i}|^2)_{\psi_1} \right) + 2 \max \left\{ \frac{1}{p}, \frac{1}{m} \right\} \leq C \left(\frac{1}{p} + \frac{n}{m} \right)
\]
which follows from Lemma 5.14 and as a result \(R := \max_{l,i} \| Z_{l,i} \|_{\psi_1} \leq C \left(\frac{1}{p} + \frac{n}{m} \right). \)

Now we proceed by estimating the variance \(\sigma_0^2 := \| \sum_{l=1}^p \sum_{i=1}^m Z_{l,i}Z_{l,i}^* \|. \) We express \(Z_{l,i} \) as follows:
\[
Z_{l,i} = \begin{bmatrix} \frac{1}{p} (|\langle a_{l,i}, v_i \rangle|^2 - 1)e_i e_i^* - \frac{1}{\sqrt{mp}}(\bar{e}_l \otimes (a_{l,i}a_{l,i}^* - I_n)) e_i^* - \frac{1}{m}\bar{e}_l e_i^* (a_{l,i}a_{l,i}^* - I_n) \end{bmatrix}.
\]
The (1,1)-th and the (2,2)-th block of \(Z_{l,i}Z_{l,i}^* \) are
\[
(Z_{l,i}Z_{l,i}^*)_{1,1} = \frac{1}{p^2} (|\langle a_{l,i}, v_i \rangle|^2 - 1)e_i e_i^* + \frac{1}{mp}v_i^*(a_{l,i}a_{l,i}^* - I_n)^2v_i e_i e_i^*,
\]
and
\[
(Z_{l,i}Z_{l,i}^*)_{2,2} = \bar{e}_l e_l^* \otimes \left[\frac{1}{mp} (a_{l,i}a_{l,i}^* - I_n) v_i v_i^*(a_{l,i}a_{l,i}^* - I_n) + \frac{1}{m^2}(a_{l,i}a_{l,i}^* - I_n)^2 \right].
\]
Following from (5.36), (5.37) and (5.38), we have
\[
\mathbb{E}(Z_{l,i}Z_{l,i}^*)_{1,1} = \frac{1}{p^2} + \frac{n}{mp} e_i e_i^*, \quad \mathbb{E}(Z_{l,i}Z_{l,i}^*)_{2,2} = \bar{e}_l e_l^* \otimes \left(\frac{1}{mp} I_n + \frac{n}{m^2} I_n \right).
\]
Due to Lemma 5.10, there holds,
\[
\sigma_0^2 := \left\| \sum_{l=1}^p \sum_{i=1}^m Z_{l,i}Z_{l,i}^* \right\| \leq 2 \left\| \mathbb{E}(Z_{l,i}Z_{l,i}^*)_{1,1} \right\| \geq 0 \mathbb{E}(Z_{l,i}Z_{l,i}^*)_{2,2} \right\| \right\| \leq 2 \left(\frac{1}{p} + \frac{n}{m} \right).}
\]

27
Note that $\sigma^2_0 \geq \|\sum_{l=1}^p \sum_{i=1}^m \mathbb{E}(Z_{l,i}Z_{l,i}^*)\|_1 = \frac{1}{p} + \frac{n}{m}$ since $\mathbb{E}(Z_{l,i}Z_{l,i}^*)$ is a positive semi-definite matrix. By applying (5.34),

$$\|Z^* Z - C\| = \left\| \sum_{l=1}^p \sum_{i=1}^m Z_{l,i} \right\| = \left\| \sum_{l=1}^p \sum_{i=1}^m \mathbb{E}(z_{l,i}z_{l,i}^*) - C \right\| \leq C_0 \max \left\{ \sqrt{\frac{1}{p} + \frac{n}{m}} \sqrt{t + \log(np + m)} \right\} \left(\frac{1}{p} + \frac{n}{m} \right) (t + \log(np + m)) \log(np + m) \leq \frac{1}{2}.$$

With $t = \gamma \log(mp + n)$, there holds $\|Z^* Z - C\| \leq \frac{1}{2}$ with probability at least $1 - (np + m)^{-\gamma}$ if $C_0 \left(\frac{1}{p} + \frac{n}{m} \right) (\gamma + 1) \log^2(np + m) \leq \frac{1}{4}$.

5.2.3 Proof of Proposition 5.4(b)

We prove Proposition 5.4 based on assumption (3.2). Denote $a_{l,i}$ and $h_{l,i}$ as the i-th column of A^*_l and H^*_l and obviously we have $a_{l,i} = M_i h_{l,i}$. Denote $\Lambda_l = \text{diag}(A_l v_l)$ and let Z_l be the l-th block of Z^* in (5.15), i.e.,

$$Z_l = \left[-\frac{1}{\sqrt{p}} \Lambda_l \right] \in \mathbb{C}^{n \times m}.$$

With $A_l^* A_l = m I_n$, we have

$$Z_l Z_l^* = \left[-\frac{1}{\sqrt{p}} \Lambda_l \Lambda_l^* - \frac{\sqrt{mp}}{\sqrt{p}} (\Lambda_l A_l) \left(\frac{1}{\sqrt{m}} \Lambda_l^* \right) \right] \in \mathbb{C}^{(np+m) \times (np+m)}$$

where the expectation of i-th row of $\Lambda_l A_l$ yields $\mathbb{E}(\Lambda_l A_l) = \mathbb{E}(v_l^* a_{l,i} a_{l,i}^*) = v_l^*$. Hence $\mathbb{E}(\Lambda_l A_l) = 1_m v_l^* \in \mathbb{C}^{m \times n}$. Its expectation equals

$$\mathbb{E}(Z_l Z_l^*) = \left[-\frac{1}{\sqrt{p}} \Lambda_l \Lambda_l^* - \frac{\sqrt{mp}}{\sqrt{p}} (\Lambda_l A_l) \left(\frac{1}{\sqrt{m}} \Lambda_l^* \right) \right].$$

Proof: [Proof of Proposition 5.4(b)] Note that each block Z_l is independent and we want to apply Bernstein inequality to achieve the desired result. Let $Z_l := Z_l Z_l^* - \mathbb{E}(Z_l Z_l^*)$ and by definition, we have

$$\|Z_l\| = \left\| \left[-\frac{1}{\sqrt{p}} (\Lambda_l A_l^* - I_m) - \frac{\sqrt{mp}}{\sqrt{p}} (\Lambda_l A_l - 1_m v_l^*) \right] \right\| \leq \frac{1}{p} \|\Lambda_l A_l - 1_m v_l^*\| + \frac{1}{\sqrt{mp}} \|\Lambda_l A_l - 1_m v_l^*\|.$$

Note that

$$\|\Lambda_l A_l - 1_m v_l^*\| \leq \|\Lambda_l\| \|A_l\| + \|1_m v_l^*\| \leq \sqrt{m} \|\Lambda_l\| + \sqrt{m}.$$

Since (5.7) implies that $\mathbb{P} \left(\max_{1 \leq i \leq p} \|\Lambda_l\| \geq 2\gamma \log(mp) \right) \leq 2(mp)^{-\gamma+1}$, we have

$$R := \max_{1 \leq l \leq p} \|Z_l\| \leq \frac{\|\Lambda_l\|^2 + 1}{p} + \frac{\|\Lambda_l\| + 1}{\sqrt{p}} \leq \frac{2\gamma \log(mp) + 1}{p} + \frac{\sqrt{2\gamma \log(mp) + 1}}{\sqrt{p}}.$$
with probability at least $1 - 2(mp)^{-\gamma+1}$. We proceed with estimation of $\sigma_0^2 := \|\sum_{l=1}^p \mathbb{E}(Z_l Z_l^*)\|$ by looking at the $(1, 1)$-th and $(2, 2)$-th block of $Z_l Z_l^*$, i.e.,

$$
(Z_l Z_l^*)_{1,1} = \frac{1}{p^2} (\Lambda_l \Lambda_l^* - I_m)^2 + \frac{1}{mp} (\Lambda_l A_l - 1_m v_l^*) (\Lambda_l A_l - 1_m v_l^*)^*,
$$

$$
(Z_l Z_l^*)_{2,2} = \frac{1}{mp} (\bar{e}_l \bar{e}_l) \otimes ((\Lambda_l A_l - 1_m v_l^*)(\Lambda_l A_l - 1_m v_l^*)^*).
$$

Note that $\mathbb{E}(\Lambda_l \Lambda_l^* - I_m)^2 = \mathbb{E}((\Lambda_l \Lambda_l^*)^2) - I_m$. The i-th diagonal entry of $(\Lambda_l \Lambda_l^*)^2$ is $|\langle a_{l,i}, v_l \rangle|^4 = |\langle m_l, \text{diag}(h_{l,i}) v_l \rangle|^4$ where $a_{l,i} = M_l h_{l,i} = \text{diag}(h_{l,i}) m_l$ and (5.42) implies $\mathbb{E}(|\langle a_{l,i}, v_l \rangle|) \leq 3$ since $\text{diag}(h_{l,i}) v_l$ is still a unit vector (note that $\text{diag}(h_{l,i})$ is unitary since $h_{l,i}$ is a column of H_l^*). Therefore,

$$
\mathbb{E}(\Lambda_l \Lambda_l^* - I_m)^2 = \mathbb{E}((\Lambda_l \Lambda_l^*)^2) - I_m \preceq 3I_m - I_m \preceq 2I_m.
$$

(5.19)

By using Lemma 5.18 we have

$$
\mathbb{E}(\Lambda_l A_l - 1_m v_l^*)(\Lambda_l A_l - 1_m v_l^*)^* = \mathbb{E}(\Lambda_l A_l \Lambda_l^* A_l^*) - 1_m 1_m^* = \frac{(n-1)(mI_m - 1_m 1_m^*)}{m-1} \preceq \frac{m(n-1)I_m}{m-1}.
$$

(5.20)

With $a_{l,i} = M_l h_{l,i}$ and independence between $\{h_{l,i}\}_{i=1}^m$ and M_l, we have

$$
\mathbb{E}((\Lambda_l A_l - 1_m v_l^*)(\Lambda_l A_l - 1_m v_l^*)^*)
= \mathbb{E}(A_l^* \Lambda_l^* A_l) - m v_l v_l^*
= \mathbb{E} \left(\sum_{i=1}^m \langle a_{l,i}, v_l \rangle^2 a_{l,i} a_{l,i}^* \right) - m v_l v_l^*
= \mathbb{E} \left(\sum_{i=1}^m \text{diag}(h_{l,i}) (\| m_l, \text{diag}(h_{l,i}) v_l \|^2 m_l m_l^* \text{diag}(h_{l,i})) - m v_l v_l^* \right.
\preceq 3mI_n - m v_l v_l^* \preceq 3m I_n
$$

(5.21)

where $\mathbb{E} \| m_l, \text{diag}(h_{l,i}) v_l \|^2 m_l m_l^* \preceq 3I_n$ follows from (5.11) and $\text{diag}(h_{l,i}) \text{diag}(h_{l,i}) = I_n$. By using (5.19), (5.20), (5.21) and Lemma 5.10 σ_0^2 is bounded above by

$$
\sigma_0^2 := \|\sum_{l=1}^p \mathbb{E}(Z_l Z_l^*)\| \leq \|\sum_{l=1}^p \mathbb{E}(Z_l Z_l^*)_{1,1} \| \cdot \|\sum_{l=1}^p \mathbb{E}(Z_l Z_l^*)_{2,2} \|
\leq 2 \left\| \sum_{l=1}^p \frac{(2/p + n-1/m-1)}{I_m} \right\| \leq 6 \left(\frac{1}{p} + \frac{n-1}{m-1} \right).
$$
Conditioned on the event \(\{ \max_{1 \leq l \leq p} \| A_i \| \geq \sqrt{2\gamma \log(mp)} \} \), applying (5.32) with \(t = \gamma \log(np+m) \) gives
\[
\left\| \sum_{l=1}^{p} Z_l \right\| \leq C_0 \max \left\{ \sqrt{\frac{1}{p} \frac{n - 1}{m - 1}} (\gamma + 1) \log(np+m),
(\gamma + 1) \frac{2\gamma \log(mp)}{p} \log(mp) \log(np+m) \right\} \leq \frac{1}{2}
\]
with probability at least \(1-(np+m)^{-\gamma-2(mp)^{-\gamma+1}} \) and it suffices to require \(C_0 \left(\frac{1}{p} \frac{n - 1}{m - 1} \right)^{\gamma^3 \log^4(np+m)} \leq \frac{1}{2} \). \(\square \)

5.3 Blind Calibration from multiple snapshots

Recall that \(A_w \) in (3.3) and the only difference from (3.1) is that here all \(A_i \) are equal to \(A \). If \(\varepsilon_i = 0 \), \(A_w \) (excluding the last row) can be factorized into
\[
A_0 := \begin{bmatrix}
\| x_1 \| I_m & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \| x_p \| I_m
\end{bmatrix}
\begin{bmatrix}
\frac{1}{\sqrt{p}} \text{diag}(Av_1) & -\frac{A}{\sqrt{m}} & 0 & \cdots & 0 \\
\frac{1}{\sqrt{p}} \text{diag}(Av_2) & 0 & -\frac{A}{\sqrt{m}} & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
\frac{1}{\sqrt{p}} \text{diag}(Av_p) & 0 & 0 & \cdots & -\frac{A}{\sqrt{m}}
\end{bmatrix}
\begin{bmatrix}
\sqrt{pD} & 0 & \cdots & 0 \\
0 & \sqrt{m I_n} & \cdots & 0 \\
0 & 0 & \ddots & \cdots \\
0 & 0 & \cdots & \sqrt{m I_n}
\end{bmatrix}
\]

where \(v_i = \frac{x_i}{\| x_i \|} \in \mathbb{C}^n \) is the normalized \(x_i \).

Before we proceed to the main result in this section, we need to introduce some notation. Let \(a_i \) be the \(i \)-th column of \(A^* \), which is a complex Gaussian random matrix; define \(Z_i \in \mathbb{C}^{(np+m) \times p} \) to be a matrix whose columns consist of the \(i \)-th column of each block of \(Z^* \), i.e.,
\[
Z_i = \begin{bmatrix}
\frac{1}{\sqrt{p}} \langle a_i, v_i \rangle e_i & \cdots & \frac{1}{\sqrt{p}} \langle a_i, v_p \rangle e_i \\
-\frac{1}{\sqrt{m}} \bar{e}_1 \otimes a_i & \cdots & -\frac{1}{\sqrt{m}} \bar{e}_p \otimes a_i
\end{bmatrix}_{(np+m) \times p}
\]

where \(\otimes \) denotes Kronecker product and both \(\{ e_i \}_{i=1}^{m} \in \mathbb{R}^m \) and \(\{ \bar{e}_l \}_{i=1}^{p} \in \mathbb{R}^p \) are the standard orthonormal basis in \(\mathbb{R}^m \) and \(\mathbb{R}^p \), respectively. In this way, the \(Z_i \) are independent from one another. By definition,
\[
Z_i Z_i^* = \begin{bmatrix}
\frac{1}{p} \sum_{l=1}^{p} |\langle a_i, v_l \rangle|^2 e_i e_i^* & -\frac{1}{\sqrt{m p}} e_i v^* (I_p \otimes a_i a_i^*) \\
-\frac{1}{\sqrt{m p}} (I_p \otimes a_i a_i^*) v e_i^* & -\frac{1}{m} I_p \otimes (a_i a_i^*)
\end{bmatrix}
\]

where \(\sum_{l=1}^{p} \bar{e}_l \otimes v_l = v \in \mathbb{C}^{np \times 1} \) and \(v = \begin{bmatrix} v_1 \\ \vdots \\ v_p \end{bmatrix} \) with \(\| v \| = \sqrt{p} \). The expectation of \(Z_i Z_i^* \) is given by
\[
\mathbb{E}(Z_i Z_i^*) = \begin{bmatrix}
e_i e_i^* & -\frac{1}{\sqrt{m p}} e_i v^* \\
-\frac{1}{\sqrt{m p}} v e_i^* & \frac{1}{m} I_p
\end{bmatrix}, \quad C := \sum_{i=1}^{m} \mathbb{E}(Z_i Z_i^*) = \begin{bmatrix}
I_m & -\frac{1}{\sqrt{m p}} v 1_m^* \\
\frac{1}{\sqrt{m p}} v 1_m & I_{np}
\end{bmatrix}.
\]
Our analysis depends on the mutual coherence of \(\{v_l\}_{l=1}^p \). One cannot expect to recover all \(\{v_l\}_{l=1}^p \) and \(D \) if all \(\{v_l\}_{l=1}^p \) are parallel to each other. Let \(G \) be the Gram matrix of \(\{v_l\}_{l=1}^p \) with \(p \leq n \), i.e., \(G \in \mathbb{C}^{p \times p} \) and \(G_{k,l} = \langle v_k, v_l \rangle \), \(1 \leq k, l \leq p \) and in particular, \(G_{l,l} = 1, 1 \leq l \leq p \). Its eigenvalues are denoted by \(\{\lambda_l\}_{l=1}^p \) with \(\lambda_p \geq \cdots \geq \lambda_1 \geq 0 \). Basic linear algebra tells that

\[
\sum_{l=1}^p \lambda_l = p, \quad U G U^* = \Lambda,
\]

where \(U \in \mathbb{C}^{p \times p} \) is unitary and \(\Lambda = \text{diag}(\lambda_1, \ldots, \lambda_p) \). Let \(V = \begin{bmatrix} v_1^* \\ \vdots \\ v_p^* \end{bmatrix} \in \mathbb{C}^{p \times n} \), then there holds

\[
\Lambda = U G U^* = U V (U V)^* \quad \text{since} \quad G = V V^*. \]

Here \(1 \leq \|G\| \leq \sqrt{p} \) and \(\sqrt{p} \leq \|G\|_F \leq p \). In particular, if \(\langle v_k, v_l \rangle = \delta_{kl} \), then \(G = I_p \); if \(\|\langle v_k, v_l \rangle\| = 1 \) for all \(1 \leq k, l \leq p \), then \(\|G\| = \sqrt{p} \) and \(\|G\|_F = p \).

We are now ready to state and prove the main result in this subsection.

Proposition 5.6. There holds

\[
\|Z^*Z - C\| = \left\| \sum_{i=1}^m Z_i Z_i^* - C \right\| \leq \frac{1}{2}
\]

with probability at least \(1 - 2m(np + m)^{-\gamma} \) if

\[
C_0 \left(\max \left\{ \frac{\|G\|}{p}, \frac{\|G\|_F^2}{p^2} \right\} + \frac{n}{m} \right) \log^2(np + m) \leq \frac{1}{16(\gamma + 1) \gamma}
\]

and each \(a_i \) is i.i.d. complex Gaussian, i.e., \(a_i \sim \frac{1}{\sqrt{2}} N(0, I_n) + \frac{1}{\sqrt{2}} N(0, I_n) \). In particular, if \(G = I_p \) and \(\|G\|_F = \sqrt{p} \), (5.24) becomes

\[
C_0 \left(\frac{1}{p} + \frac{n}{m} \right) \log^2(np + m) \leq \frac{1}{16(\gamma + 1) \gamma}. \]

Remark 5.7. The proof of Theorem 3.3 follows exactly from that of Theorem 3.3 when Proposition 5.6 holds. Hence we just give a proof of Proposition 5.6.

Proof: [Proof of Proposition 5.6] Let \(Z_i Z_i^* - E(Z_i Z_i^*) =: Z_{i,1} + Z_{i,2} \), where \(Z_{i,1} \) and \(Z_{i,2} \) are defined as

\[
Z_{i,1} := \begin{bmatrix} \frac{1}{p} \sum_{l=1}^p (|\langle a_i, v_l \rangle|^2 - 1) e_i e_i^* \\ 0 \\ 0 \end{bmatrix},
\]

\[
Z_{i,2} := \begin{bmatrix} 0 \\ -\frac{1}{\sqrt{mp}} (I_p \otimes (a_i a_i^* - I_n)) v e_i^* \\ -\frac{1}{\sqrt{mp}} (I_p \otimes (a_i a_i^* - I_n)) v e_i^* \end{bmatrix}.
\]

Estimation of \(\|\sum_{i=1}^m Z_{i,1}\| \) Following from (5.23), we have

\[
\sum_{l=1}^p |\langle a_i, v_l \rangle|^2 = \|V a_i\|^2 = \|U V a_i\|^2 = \|A^{1/2} \Lambda^{-1/2} U V a_i\|^2 = \frac{1}{2} \sum_{l=1}^p \lambda_l \xi_{i,l}^2
\]

31
where $\mathbf{A}^{-1/2}\mathbf{UV}$ is a $p \times n$ matrix with orthonormal rows and hence each $\xi_{i,l}$ is Rayleigh distributed. (We say ξ is Rayleigh distributed if $\xi = \sqrt{X^2 + Y^2}$ where both X and Y are standard real Gaussian variables.)

Due to the simple form of $Z_{i,1}$, it is easy to see from Bernstein’s inequality for scalar random variables (See Proposition 5.16 in [42]) that

$$\left\| \sum_{i=1}^{m} Z_{i,1} \right\| \leq \max_{1 \leq l \leq m} \left\{ \frac{1}{p} \sum_{l=1}^{p} | \langle a_i, v_l \rangle |^2 - 1 \right\} \leq C_0 \max \left\{ \frac{t\|G\|}{p}, \frac{\sqrt{t\|G\|}}{p} \right\} \quad (5.26)$$

with probability $1 - me^{-t}$. Here $\frac{1}{p} \sum_{l=1}^{p} | \langle a_i, v_l \rangle |^2 - 1 = \frac{1}{p} \sum_{l=1}^{p} \lambda_l (\xi_{i,l}^2 - 1)$ where $\sum_{l=1}^{p} \lambda_l = p$. Therefore,

$$\Var \left(\sum_{i=1}^{p} \lambda_l (\xi_{i,l}^2 - 1) \right) \leq \Var(\xi_{i,1}^2 - 1) \sum_{i=1}^{p} \lambda_i^2 = c_0 \|G\|^2_F,$$

$$\max_{1 \leq l \leq p} (\lambda_l (\xi_{i,l}^2 - 1))_{\psi_1} \leq c_1 \max_{1 \leq \ell \leq p} \lambda_i = c_1 \|G\|.$$

Now we only need to find out $\|Z_{i,2}\|_{\psi_1}$ and $\sigma^2_0 = \sum_{i=1}^{m} E(\zeta_{i,2} Z_{i,2}^*)$ in order to bound $\|\sum_{i=1}^{m} Z_{i,2}\|$.

Estimation of $\|Z_{i,2}\|_{\psi_1}$ Denote $z_i := (I_p \otimes (a_i a_i^* - I))v$ and there holds,

$$\|Z_{i,2}\| \leq \frac{1}{m} \max \{ \|a_i\|^2, 1 \} + \frac{1}{\sqrt{mp}} \|\zeta_i e_i^*\| = \frac{1}{m} \max \{ \|a_i\|^2, 1 \} + \frac{1}{\sqrt{mp}} \|z_i\|.$$

For $\|a_i\|^2$, its ψ_1-norm is bounded by $C_0 n$ due to Lemma 5.14 and we only need to know $\|z_i\|_{\psi_1}$:

$$\|z_i\| = \|(I_p \otimes (a_i a_i^* - I_n))v\| \leq \|(I_p \otimes (a_i a_i^*)v\| + \|v\| = \sqrt{\sum_{i=1}^{p} |\langle a_i, v_l \rangle|^2} \|a_i\| + \sqrt{p}.$$

Let $u = \sum_{l=1}^{p} |\langle a_i, v_l \rangle|^2 = \sum_{l=1}^{p} \lambda_i \xi_{i,l}^2$ and $v = \|a_i\|^2$. The ψ_1-norm of $\|(I_p \otimes (a_i a_i^*)v\|$ satifies

$$\sqrt{uv}_{\psi_1} = \sup_{q \geq 1} q^{-1}(E(uq)^q)^{1/q} \leq \sup_{q \geq 1} q^{-1}(Euvq^{1/2q})^{1/2q} \leq C_1 \sqrt{np}$$

where the second inequality follows from the Cauchy-Schwarz inequality, $\|u\|_{\psi_1} \leq C_1 p$, and $\|v\|_{\psi_1} \leq C_1 n$. Therefore, $\|z_i\|_{\psi_1} \leq C_2 \sqrt{np}$ and there holds

$$\|Z_{i,2}\|_{\psi_1} \leq C_0 \left(\frac{n}{m} + \frac{\sqrt{mp}}{\sqrt{mp}} \right) \leq C_0 \left(\frac{n}{m} + \sqrt{\frac{n}{m}} \right). \quad (5.27)$$
Estimation of σ_0^2 Note that $\sigma_0^2 := \left\| \sum_{i=1}^m \mathbb{E}(Z_{i,2}Z_{i,2}^*) \right\|$.

Let $A_{i,1,1}$ and $A_{i,2,2}$ be the $(1,1)$-th and $(2,2)$-th block of $Z_{i,2}Z_{i,2}^*$ respectively, i.e.,

$$
A_{i,1,1} = \frac{1}{mp} \left\| (I_p \otimes (a_i a_i^* - I_n)) v \right\|^2 e_i^*,
$$

$$
A_{i,2,2} = \frac{1}{mp} \left((I_p \otimes (a_i a_i^* - I_n)) vv^* (I_p \otimes (a_i a_i^* - I_n)) \right) + \frac{1}{m^2} I_p \otimes (a_i a_i^* - I_n)^2
$$

$$
= \frac{1}{mp} \left((a_i a_i^* - I_n) v_k v_i^* (a_i a_i^* - I_n) \right)_{1 \leq k \leq t \leq p} + \frac{1}{m^2} I_p \otimes (a_i a_i^* - I_n)^2. \quad (5.28)
$$

Since $Z_{i,2}Z_{i,2}^*$ is a positive semi-definite matrix, Lemma 5.10 implies

$$
\sigma_0^2 \leq 2 \left\| \sum_{i=1}^m \mathbb{E} \left[\begin{bmatrix} A_{i,1,1} & 0 \\ 0 & A_{i,2,2} \end{bmatrix} \right] \right\|. \quad (5.29)
$$

So we only need to compute $\mathbb{E}(A_{i,1,1})$ and $\mathbb{E}(A_{i,2,2})$.

$$
\mathbb{E} \left\| (I_p \otimes (a_i a_i^* - I_n)) v \right\|^2 = \sum_{l=1}^p \mathbb{E} \left\| (a_i a_i^* - I_n) v_l \right\|^2 = n \sum_{l=1}^p \|v_l\|^2 = np
$$

where $\mathbb{E}(a_i a_i^* - I_n)^2 = n I_n$. Now we have $\mathbb{E} A_{i,1,1} = \frac{n}{m} e_i e_i^*$. For $\mathbb{E}(A_{i,2,2})$, note that

$$
\mathbb{E}((a_i a_i^* - I_n) v_k v_i^* (a_i a_i^* - I_n)) = \text{Tr}(v_k v_i^*) I_n = \langle v_l, v_k \rangle I_n = \overline{G}_{k,l} I_n
$$

which follows from (5.35). By (5.28), (5.29) and Lemma 5.10 there holds,

$$
\sigma_0^2 \leq 2 \left\| \sum_{i=1}^m \begin{bmatrix} \frac{n}{m} e_i e_i^* & 0 \\ 0 & \frac{1}{mp} G \otimes I_n + \frac{n}{m^2} I_{np} \end{bmatrix} \right\| \leq 2 \left\| \begin{bmatrix} \frac{n}{m} & 0 \\ 0 & \frac{1}{p} G \otimes I_n + \frac{n}{m} I_{np} \end{bmatrix} \right\| \leq 2 \left(\frac{\|G\|}{p} + \frac{n}{m} \right).
$$

One lower bound of σ_0^2 is $\sigma_0^2 \geq \left\| \sum_{i=1}^m \mathbb{E}(A_{i,1,1}) \right\| = \frac{n}{m}$ because each $\mathbb{E}(Z_{i,2}Z_{i,2}^*)$ is positive semi-definite. Therefore, we have

$$
\log \left(\frac{\sqrt{m R}}{\sigma_0} \right) \leq \log \left(2 C_0 \sqrt{\frac{m}{n/m}} \right) \leq \log(2C_0 \sqrt{m})
$$

where $R := \max_{1 \leq i \leq m} \|Z_{i,2}\| \psi_1 \leq C_0 \left(\frac{n}{m} + \sqrt{\frac{m}{n/m}} \right)$ and $m \geq n$.

Applying (5.34) to $\sum_{i=1}^m Z_{i,2}$ with (5.29) and (5.27), we have

$$
\left\| \sum_{i=1}^m Z_{i,2} \right\| \leq C_0 \max \left\{ \left(\frac{n}{m} + \sqrt{\frac{n}{m}} \right) \left(t + \log(np + m) \right) \log(np + m), \right. \left. \sqrt{\left(\frac{\|G\|}{p} + \frac{n}{m} \right) \left(\log(np + m) + t \right)} \right\}, \quad (5.30)
$$

with probability $1 - e^{-t}$. By combining (5.34) with (5.26) and letting $t = \gamma \log(np + m)$, we have

$$
C_0 \sqrt{\gamma \log(np + m) \|G\|_{p'}} \leq \frac{1}{4}, \quad C_0 (\gamma + 1) \left(\frac{\|G\|}{p} + \frac{n}{m} \right) \log^2(np + m) \leq \frac{1}{16}
$$

or equivalently, $C_0 \left(\max \left\{ \frac{\|G\|}{p}, \frac{\|G\|_{p'}}{p'} \right\} + \frac{n}{m} \right) \log^2(np + m) \leq \frac{1}{16}$. \qed
5.4 Proof of the spectral method

We provide the proof of the spectral method proposed in Section 2.3. The proof follows two steps: i) we provide an error bound for the recovery under noise by using singular value/vector perturbation. The error bound involves the second smallest singular value of A_0 and the noise strength $\|\delta A\|$; ii) we give a lower bound for $\sigma_2(A_0)$, which is achieved with the help of Proposition 5.2, 5.4 and 5.6 respectively for three different models.

The first result is a variant of perturbation theory for the singular vector corresponding to the smallest singular value.

Lemma 5.8. Suppose $A = A_0 + \delta A$ where A_0 is the noiseless part of A and δA is the noisy part. Then
\[
\min_{\alpha_0 \in \mathbb{C}} \frac{\|\alpha_0 \hat{z} - z_0\|}{\|z_0\|} = \frac{\| (I - \hat{z} \hat{z}^*) z_0\|}{\|z_0\|} \leq \frac{\|\delta A\|}{\sigma_2(A_0) - \|\delta A\| + \|\delta A\|},
\]
where $\sigma_2(A_0)$ is the second smallest singular value of A_0, z_0 satisfies $A_0 z_0 = 0$, and \hat{z} is the right singular vector with respect to the smallest singular value of A, i.e., the solution to (2.10).

Proof: By definition, there holds $A_0 z_0 = 0$ where $z_0 = \begin{bmatrix} s_0 \\ x_0 \end{bmatrix}$ is the ground truth and also the right singular vector corresponding to the smallest singular value. Without loss of generality, we assume $\|z_0\| = \|\hat{z}\| = 1$. For A, we denote its singular value decomposition as
\[
A := \underbrace{A - \sigma_1(A) \hat{u} \hat{z}^*}_{B_1} + \underbrace{\sigma_1(A) \hat{u} \hat{z}^*}_{B_0}
\]
where $\sigma_1(A)$, \hat{u} and \hat{z} are the smallest singular value/vectors of A. By definition, \hat{z} is also the solution to (2.10).

First note that $I - \hat{z} \hat{z}^* = B_1^\dagger (B_1^\dagger)^\dagger$ where $(B_1^\dagger)^\dagger$ is the pseudo-inverse of B_1. Therefore, we have
\[
\frac{\| (I - \hat{z} \hat{z}^*) z_0\|}{\|z_0\|} = \frac{\| z_0 z_0^* B_1^\dagger (B_1^\dagger)^\dagger \|}{\|z_0\|} = \| z_0 z_0^* (A_0^* + (\delta A)^* - (B_0)^*) (B_1^\dagger)^\dagger \|
\]
\[
= \| z_0 z_0^* (\delta A)^* (B_1^\dagger)^\dagger \| \leq \|\delta A\| \| (B_1^\dagger)^\dagger \| \leq \frac{\|\delta A\|}{\sigma_2(A)} \leq \frac{\|\delta A\|}{\sigma_2(A_0) - \|\delta A\| + \|\delta A\|},
\]
where $A_0 z_0 = 0$ and $(B_0)^* (B_1^\dagger)^\dagger = 0$. And the last inequality follows from $|\sigma_2(A_0) - \sigma_2(A)| \leq \|\delta A\|$ and $\sigma_2(A) \geq |\sigma_2(A_0) - \|\delta A\| + \|\delta A\||$. \hfill \Box

The second smallest singular value $\sigma_2(A_0)$ is estimated by using the proposition 5.2, 5.4 and 5.6 and the following fact:

Lemma 5.9. Suppose P is an invertible matrix, and A is a positive semi-definite matrix with the dimension of its null space equal to 1. Then the second smallest singular value of PAP^* is nonzero and satisfies
\[
\sigma_2(PAP^*) \geq \sigma_2(A) \sigma_1^2(P),
\]
where $\sigma_1(\cdot)$ and $\sigma_2(\cdot)$ denotes the smallest and second smallest singular values respectively.
Proof: The proof is very straightforward. Note that \(\| (PAP^*)^\dagger \| = \frac{1}{\sigma_2(PAP^*)} \) since \(A \) is rank-1 deficient. Also from the property of pseudo inverse, there holds
\[
\| (PAP^*)^\dagger \| = \| (P^{-1})^* A^\dagger P^{-1} \| \leq \| A^\dagger \| \| P^{-1} \|^2 = \frac{1}{\sigma_2(A)} \frac{1}{\sigma_1^2(P)}.
\]
Hence, \(\sigma_2(PAP^*) \geq \sigma_2(A) \sigma_1^2(P) \).

\[\square\]

Proof: [Proof of Theorem 3.9] Combined with Lemma 5.8, it suffices to estimate the lower bound of the second smallest singular value of \(A_0 \) for the proposed three models. We start with (a). From (5.1), we know that \(A_0^* A_0 = \sum_{l=1}^p P Z_l Z_l^* P^* \) where
\[
Z_l := \left[-\frac{\Lambda_l}{\sqrt{m}} A_l^* \right] \in \mathbb{C}^{(m+n) \times m}, \quad P := \left[\begin{array}{cc} D^* & 0 \\ 0 & \sqrt{m} I_n \end{array} \right] \in \mathbb{C}^{(m+n) \times (m+n)}.
\]
From Proposition 5.2, we know that the second smallest eigenvalue of \(\sum_{l=1}^p Z_l Z_l^* \) is at least \(\frac{1}{2} \) and it is also rank-1 deficient. Applying Lemma 5.9 gives
\[
\sigma_2(A_0^* A_0) \geq \sigma_2 \left(\sum_{l=1}^p Z_l Z_l^* \right) \sigma_1(P P^*) \geq \frac{p}{2} (\min \{ \sqrt{m}, d_{\min} \| x \| \})^2
\]
and hence \(\sigma_2(A_0) \geq \sqrt{\frac{p}{2}} \min \{ \sqrt{m}, d_{\min} \| x \| \} \).

Since (b) and (c) are exactly the same, it suffices to show (b). From (5.15), we know that \(A_0 \) can be factorized into \(A_0 := Q Z P \) and Proposition 5.4 implies
\[
\| Z^* Z - C \| \leq \frac{1}{2}, \quad C := \mathbb{E}(Z^* Z) = \left[\begin{array}{cc} \frac{1}{\sqrt{m}} I_m & -\frac{1}{\sqrt{m p}} \sqrt{m} v^* \\ -\frac{1}{\sqrt{m p}} \sqrt{m} v^* & \frac{1}{n p} I_{n p} \end{array} \right].
\]
Therefore, \(A_0^* A_0 = Q Z^* P P^* Z Q^* \) and \(\sigma_2(Z^* Z) \geq \frac{1}{2} \). Applying Lemma 5.9 leads to
\[
\sigma_2(A_0^* A_0) \geq \sigma_2(Z^* P P^* Z) \sigma_1^2(Q) \geq \sigma_2(Z^* Z) \sigma_1^2(Q) \sigma_1^2(Q)
\]
\[
\geq \frac{1}{2} \sigma_2^2 \min \left\{ \sqrt{p d_{\min}}, \frac{\sqrt{m}}{x_{\max}} \right\}^2
\]
where \(x_{\min} = \min \{ \| x_l \| \} \) and \(x_{\max} = \max \{ \| x_l \| \} \).

Appendix

Lemma 5.10. For any Hermitian positive semi-definite matrix \(S \) with \(S := \begin{bmatrix} S_{11} & S_{12} \\ S_{12}^* & S_{22} \end{bmatrix} \), there holds,
\[
\begin{bmatrix} S_{11} & S_{12} \\ S_{12}^* & S_{22} \end{bmatrix} \preceq 2 \begin{bmatrix} S_{11} & 0 \\ 0 & S_{22} \end{bmatrix}.
\]
In other words, \(\| S \| \leq 2 \max \{ \| S_{11} \|, \| S_{22} \| \} \).
Lemma 5.11. Corollary 7.21 in [17]. Let \(a \in \mathbb{C}^M \) and \(\varepsilon = (\varepsilon_1, \cdots, \varepsilon_M) \) be a Rademacher sequence, then for \(u > 0 \),
\[
P \left(\left| \sum_{j=1}^{M} \varepsilon_j a_j \right| \geq \|a\|_u \right) \leq 2 \exp(-u^2/2).
\]

For Gaussian and random Hadamard cases, the concentration inequalities are slightly different. The following theorem is mostly due to Theorem 6.1 in [39] as well as due to [42].

Theorem 5.12. Consider a finite sequence of \(Z_l \) of independent centered random matrices with dimension \(M_1 \times M_2 \). We assume that \(\|Z_l\| \leq R \) and introduce the random matrix \(S \) as \(\sum_{l=1}^{L} Z_l \).

Compute the variance parameter
\[
\sigma_0^2 = \max \left\{ \|\sum_{l=1}^{L} \mathbb{E}(Z_l Z_l^*)\|, \|\sum_{l=1}^{L} \mathbb{E}(Z_l^* Z_l)\| \right\}, \quad (5.31)
\]
then for all \(t \geq 0 \)
\[
\|S\| \leq C_0 \max \{ \sigma_0 \sqrt{t + \log(M_1 + M_2)}, R(t + \log(M_1 + M_2)) \} \quad (5.32)
\]
with probability at least \(1 - e^{-t} \) where \(C_0 \) is an absolute constant.

The concentration inequality is slightly different from Theorem 5.12 if \(\|Z_l\| \) is a sub-exponential random variable. Here we are using the form in [24]. Before presenting the inequality, we introduce the sub-exponential norm \(\| \cdot \|_{\psi_1} \) of a matrix, defined as
\[
\|Z\|_{\psi_1} := \inf_{u \geq 0} \{ u : \mathbb{E}[\exp(\|Z\|/u)] \leq 2 \}. \quad (5.33)
\]
One can find more details about this norm and norm on Orlicz spaces in [42] and [30].

Theorem 5.13. For a finite sequence of independent \(M_1 \times M_2 \) random matrices \(Z_l \) with \(R := \max_{1 \leq l \leq L} \|Z_l\|_{\psi_1} \) and \(\sigma_0^2 \) as defined in (5.31), we have the tail bound on the operator norm of \(S \),
\[
\|S\| \leq C_0 \max \{ \sigma_0 \sqrt{t + \log(M_1 + M_2)}, R \log \left(\frac{\sqrt{LR}}{\sigma_0} \right) (t + \log(M_1 + M_2)) \} \quad (5.34)
\]
with probability at least \(1 - e^{-t} \) where \(C_0 \) is an absolute constant.

The estimation of the \(\psi_1 \)-norm of a sub-exponential random variable easily follows from the following lemma.

Lemma 5.14 (Lemma 2.2.1 in [30]). Let \(z \) be a random variable which obeys \(\mathbb{P}\{|z| > u\} \leq ae^{-bu} \), then \(\|z\|_{\psi_1} \leq (1 + a)/b \).

Remark 5.15. A direct implication of Lemma 5.14 gives the \(\psi_1 \)-norm of \(\|a\|^2 \) where \(a \sim \mathcal{N}(0, \frac{1}{2} I_n) + i\mathcal{N}(0, \frac{1}{2} I_n) \) is a complex Gaussian random vector, i.e., \(\|a\|_{\psi_1} \leq C_0 n \) for the absolute constant \(C_0 \).
Lemma 5.16. For $a \sim \mathcal{N}(0, \frac{1}{2} I_n) + i \mathcal{N}(0, \frac{1}{2} I_n)$, there holds
\[
\begin{align*}
\mathbb{E}(|a|^2a^*) & = (n + 1)I_n, \\
\mathbb{E}(a^*Xa)a^* & = X + \text{Tr}(X)I_n,
\end{align*}
\]
for any fixed $x \in \mathbb{C}^n$ and $X \in \mathbb{C}^{n \times n}$. In particular, we have
\[
\begin{align*}
\mathbb{E}(|\langle a, x \rangle|^2a^*) & = |x|^2I_n + xx^*, \\
\mathbb{E}(|\langle a, x \rangle|^4) & = 2|x|^4, \\
\mathbb{E}(aa^* - I_n)^2 & = nI_n.
\end{align*}
\]

Lemma 5.17. Suppose that $a \in \mathbb{R}^n$ is a Rademacher sequence and for any fixed $x \in \mathbb{C}^n$ and $X \in \mathbb{C}^{n \times n}$, there holds
\[
\begin{align*}
\mathbb{E}(|\langle a, x \rangle|^2a^*) & = nI_n, \\
\mathbb{E}(a^*Xa)a^* & = \text{Tr}(X)I_n + X + X^T - 2 \sum_{k=1}^n X_{kk}E_{kk}
\end{align*}
\]
where E_{kk} is an $n \times n$ matrix with only one nonzero entry equal to 1 and at position (k, k). In particular, setting $X = xx^*$ gives
\[
\begin{align*}
\mathbb{E}(|\langle a, x \rangle|^2a^*) & = |x|^2I_n + xx^* + \overline{xx^*} - 2 \text{diag}(x) \text{diag}(\overline{x}) \leq 3|x|^2I_n, \\
\mathbb{E}(|\langle a, x \rangle|^4) & = 2|x|^4 + \left| \sum_{k=1}^n x_k^2 \right|^2 - 2 \sum_{k=1}^n |x_k|4 \leq 3|x|^4.
\end{align*}
\]

Proof: Since a is a Rademacher sequence, i.e., each a_i takes ± 1 independently with equal probability, this implies $a_i^2 = 1$ and $|a_i|^2 = n$. Therefore, $\mathbb{E}(|a|^2a^*) = n \mathbb{E}(aa^*) = nI_n$. The (k,l)-th entry of $(a^*Xa)a^*$ is $\sum_{i=1}^n \sum_{j=1}^n X_{ij}a_ia_ja_ka_l$.

1. If $k = l$,
\[
\mathbb{E} \left(\sum_{i=1}^n \sum_{j=1}^n X_{ij}a_ia_ja_k \right)^2 = \sum_{i=1}^n \mathbb{E}(X_{ii}|a_i|^2|a_k|^2) = \text{Tr}(X)
\]
where $\mathbb{E}(a_ia_ja_k) = 0$ if $i \neq j$.

2. If $k \neq l$,
\[
\mathbb{E} \left(\sum_{i=1}^n \sum_{j=1}^n X_{ij}a_ia_ja_k a_l \right) = X_{kl} \mathbb{E}(|a_k|^2|a_l|^2) + X_{lk} \mathbb{E}(|a_k|^2|a_l|^2) = X_{kl} + X_{lk}.
\]
Hence, we have $\mathbb{E}((a^*Xa)a^*) = \text{Tr}(X)I_n + X + X^T - 2 \sum_{k=1}^n X_{kk}E_{kk}$. \hfill \square

Lemma 5.18. There holds
\[
\mathbb{E}(\Lambda A(AA)^*) = \frac{(n-1)(mI_m - 1_m 1_m^*)}{m-1} + 1_m 1_m^*
\]

37
where $A = HM$, $Λ = \text{diag}(Av)$ and $v = (v_1, \ldots, v_n)^T \in \mathbb{C}^n$ is a deterministic unit vector. $H \in \mathbb{C}^{m \times n}$ is a random partial Fourier/Hadamard matrix with $H^*H = mI_n$ and $m \geq n$, i.e., the columns of H are uniformly sampled without replacement from an $m \times m$ DFT/Hadamard matrix; M is a diagonal matrix with entries random sampled from ± 1 with equal probability; moreover, we assume M and H are independent from each other. In particular, if $m = n = 1$, $\mathbb{E}(\Lambda AA^*\Lambda^*) = 1$.

Proof: We only prove the case when A is a random Fourier matrix since the Hadamard case is essentially the same modulo very minor differences. By definition,

$$\Lambda AA^*\Lambda^* = \Delta H^*H^* \text{diag}(HMv).$$

Let h_i be the i-th column of H^* and the (i, j)-th entry of $\text{diag}(HMv)H^* \text{diag}(HMv)$ is $\langle h_i, Mv \rangle \langle h_j, Mv \rangle \langle h_i, h_j \rangle$ where $\langle u, v \rangle = u^*v$. The randomness of $\Lambda AA^*\Lambda^*$ comes from both H and M and we first take the expectation with respect to M.

$$\mathbb{E}(\langle h_i, Mv \rangle \langle h_j, Mv \rangle \mid H) = h_i^* \mathbb{E}(Mvv^*M \mid H) h_j = h_i^* \mathbb{E}(\text{diag}(v) \text{diag}(v) h_j) = \langle H \text{diag}(v) \text{diag}(v) H^* \rangle_{i,j}$$

where $\mathbb{E}(Mvv^*M) = \text{diag}(v) \text{diag}(v)$ follows from each entry in M being a Bernoulli random variable. Hence, $\mathbb{E}((\Lambda AA^*\Lambda^*)_{i,j} \mid H) = \langle H \text{diag}(v) \text{diag}(v) H^* \rangle_{i,j} \cdot (HH^*)_{i,j}$.

Let u_k be the k-th column of H and $1 \leq k \leq n$ and “\odot” denotes the Hadamard (pointwise) product. So we have $HH^* = \sum_{k=1}^n u_k u_k^*$. There holds,

$$\mathbb{E}(\Lambda AA^*\Lambda^* \mid H) = \langle H \text{diag}(v) \text{diag}(v) H^* \rangle \odot HH^* = \left(\sum_{k=1}^n |v_k|^2 \bar{u}_k u_k^* \right) \odot HH^*$$

$$= \sum_{k=1}^n |v_k|^2 \text{diag}(\bar{u}_k) H^* \text{diag}(u_k) = \sum_{k=1}^n \sum_{l=1}^n |v_k|^2 \text{diag}(\bar{u}_k) u_l u_l^* \text{diag}(u_k)$$

$$= \sum_{1 \leq k \neq l \leq n} |v_k|^2 \text{diag}(\bar{u}_k) u_l u_l^* \text{diag}(u_k) + 1_m 1_m^* \quad (5.43)$$

where the third equation follows from linearity of the Hadamard product and from

$$u_k u_k^* \odot HH^* = \text{diag}(u_k) HH^* \text{diag}(u_k).$$

The last one uses the fact that $\text{diag}(\bar{u}_k) u_k = 1_m$ if u_k is a vector from the DFT matrix or Hadamard matrix. By the property of conditional expectation, we know that $\mathbb{E}(\Lambda AA^*\Lambda^*) = \mathbb{E}(\mathbb{E}(\Lambda AA^*\Lambda^*) \mid H)$ and due to the linearity of expectation, it suffices to find out for $k \neq l$, $\mathbb{E}(\text{diag}(\bar{u}_k) u_l u_l^* \text{diag}(u_k))$ where u_k and u_l, by definition, are the k-th and l-th columns of H which are sampled uniformly without replacement from an $m \times m$ DFT matrix F. Note that (u_k, u_l) is actually an ordered pair of random vectors sampled without replacement from columns of F. Hence there are in total $m(m-1)$ different choices of $\text{diag}(\bar{u}_k) u_l$ and

$$\mathbb{P}(u_k = \phi_i, u_l = \phi_j) = \frac{1}{m(m-1)}, \quad \forall 1 \leq i \neq j \leq m, \forall 1 \leq k \neq l \leq n$$
where ϕ_i is defined as the i-th column of an $m \times m$ DFT matrix F. Now we have, for any $k \neq l$,

$$
\begin{align*}
\mathbb{E}(\text{diag}(\bar{u}_k)u_l u_l^* \text{diag}(u_k)) &= \frac{1}{m(m-1)} \sum_{i \neq j} \text{diag}(\bar{\phi}_i)\phi_j\phi_j^* \text{diag}(\phi_i) \\
&= \frac{1}{m(m-1)} \left(\sum_{1 \leq i, j \leq m} \text{diag}(\bar{\phi}_i)\phi_j\phi_j^* \text{diag}(\phi_i) - mI_m1_m^* \right) \\
&= \frac{1}{m-1} \left(\sum_{i=1}^m \text{diag}(\bar{\phi}_i) \text{diag}(\phi_i) - 1_m1_m^* \right) \\
&= \frac{mI_m - 1_m1_m^*}{m-1},
\end{align*}
$$

(5.44)

where $\text{diag}(\bar{\phi}_i)\phi_i = 1_m$ and $\sum_{i=1}^m \phi_i\phi_i^* = mI_m$. Now we return to $\mathbb{E}(\Lambda A A^* \Lambda^*)$. By substituting (5.44) into (5.43), we end up with

$$
\begin{align*}
\mathbb{E}(\Lambda A A^* \Lambda^*) &= \mathbb{E}(\Lambda A A^* \Lambda^*|H) = \mathbb{E} \left(\sum_{1 \leq k \neq l \leq n} |v_k|^2 \text{diag}(u_k)u_l u_l^* \text{diag}(u_k) \right) + 1_m1_m^* \\
&= \frac{mI_m - 1_m1_m^*}{m-1} \sum_{1 \leq k \neq l \leq n} |v_k|^2 + 1_m1_m^* = \frac{(n-1)(mI_m - 1_m1_m^*)}{m-1} + 1_m1_m^*,
\end{align*}
$$

where $\sum_{1 \leq k \neq l \leq n} |v_k|^2 = n - \sum_{k=1}^n |v_k|^2 = n - 1$ follows from $\sum_{k=1}^m |v_k|^2 = 1$.

References

[1] A. Ahmed, A. Cosse, and L. Demanet. A convex approach to blind deconvolution with diverse inputs. In *2015 IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)*, pages 5–8. IEEE, 2015.

[2] A. Ahmed and L. Demanet. Leveraging diversity and sparsity in blind deconvolution. *arXiv preprint arXiv:1610.06098*, 2016.

[3] A. Ahmed, F. Krahmer, and J. Romberg. Empirical chaos processes and blind deconvolution. *arXiv preprint arXiv:1608.08370*, 2016.

[4] A. Ahmed, B. Recht, and J. Romberg. Blind deconvolution using convex programming. *IEEE Transactions on Information Theory*, 60(3):1711–1732, 2014.

[5] S. Bahmani and J. Romberg. Lifting for blind deconvolution in random mask imaging: Identifiability and convex relaxation. *SIAM Journal on Imaging Sciences*, 8(4):2203–2238, 2015.

[6] L. Balzano and R. Nowak. Blind calibration of sensor networks. In *Proceedings of the 6th International Conference on Information processing in sensor networks*, pages 79–88. ACM, 2007.

[7] L. Balzano and R. Nowak. Blind calibration of networks of sensors: Theory and algorithms. In *Networked Sensing Information and Control*, pages 9–37. Springer, 2008.
[8] C. Bilen, G. Puy, R. Gribonval, and L. Daudet. Convex optimization approaches for blind sensor calibration using sparsity. *IEEE Transactions on Signal Processing*, 62(18):4847–4856, 2014.

[9] V. Cambareri and L. Jacques. A greedy blind calibration method for compressed sensing with unknown sensor gains. *arXiv preprint [arXiv:1610.02851]*, 2016.

[10] V. Cambareri and L. Jacques. A non-convex blind calibration method for randomised sensing strategies. In *Compressed Sensing Theory and its Applications to Radar, Sonar and Remote Sensing (CoSeRa), 2016 4th International Workshop on*, pages 16–20. IEEE, 2016.

[11] V. Cambareri and L. Jacques. Through the haze: A non-convex approach to blind calibration for linear random sensing models. *arXiv preprint [arXiv:1610.09028]*, 2016.

[12] P. Campisi and K. Egiazarian. *Blind Image Deconvolution: Theory and Applications*. CRC press, 2007.

[13] E. J. Candes, Y. C. Eldar, T. Strohmer, and V. Voroninski. Phase retrieval via matrix completion. *SIAM Review*, 57(2):225–251, 2015.

[14] S. Curtis, J. Lim, and A. Oppenheim. Signal reconstruction from one bit of fourier transform phase. In *1984 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)*, volume 9, pages 487–490. IEEE, 1984.

[15] M. A. Davenport and J. Romberg. An overview of low-rank matrix recovery from incomplete observations. *IEEE Journal of Selected Topics in Signal Processing*, 10(4):608–622, 2016.

[16] J. R. Fienup. Reconstruction of an object from the modulus of its fourier transform. *Optics Letters*, 3(1):27–29, 1978.

[17] S. Foucart and H. Rauhut. *A Mathematical Introduction to Compressive Sensing*. Springer, 2013.

[18] B. Friedlander and T. Strohmer. Bilinear compressed sensing for array self-calibration. In *2014 48th Asilomar Conference on Signals, Systems and Computers*, Asilomar, 2014.

[19] L. Gan, T. T. Do, and T. D. Tran. Fast compressive imaging using scrambled block hadamard ensemble. In *2008 16th European Signal Processing Conference*, pages 1–5. IEEE, 2008.

[20] R. Gribonval, G. Chardon, and L. Daudet. Blind calibration for compressed sensing by convex optimization. In *2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pages 2713–2716. IEEE, 2012.

[21] G. Harikumar and Y. Bresler. Perfect blind restoration of images blurred by multiple filters: Theory and efficient algorithms. *IEEE Transactions on Image Processing*, 8(2):202–219, 1999.

[22] A. Ito, A. C. Sankaranarayanan, A. Veeraraghavan, and R. G. Baraniuk. Blurburst: Removing blur due to camera shake using multiple images. *ACM Trans. Graph.*, Submitted, 3(1), 2014.

[23] M. Kech and F. Krahmer. Optimal injectivity conditions for bilinear inverse problems with applications to identifiability of deconvolution problems. *SIAM Journal on Applied Algebra and Geometry*, 1(1):20–37, 2017.
[24] V. Koltchinskii et al. Von Neumann entropy penalization and low-rank matrix estimation. *The Annals of Statistics*, 39(6):2936–2973, 2011.

[25] K. Lee, Y. Li, M. Junge, and Y. Bresler. Blind recovery of sparse signals from subsampled convolution. *IEEE Transactions on Information Theory*, 63(2):802–821, 2017.

[26] X. Li, S. Ling, T. Strohmer, and K. Wei. Rapid, robust, and reliable blind deconvolution via nonconvex optimization. *arXiv preprint arXiv:1606.04933*, 2016.

[27] Y. Li, K. Lee, and Y. Bresler. Identifiability in blind deconvolution with subspace or sparsity constraints. *IEEE Transactions on Information Theory*, 62(7):4266–4275, 2016.

[28] Y. Li, K. Lee, and Y. Bresler. Optimal sample complexity for blind gain and phase calibration. *IEEE Transactions on Signal Processing*, 64(21):5549–5556, 2016.

[29] S. Ling and T. Strohmer. Blind deconvolution meets blind demixing: Algorithms and performance bounds. *arXiv preprint arXiv:1512.07730*, 2015.

[30] S. Ling and T. Strohmer. Self-calibration and biconvex compressive sensing. *Inverse Problems*, 31(11):115002, 2015.

[31] J. Lipor and L. Balzano. Robust blind calibration via total least squares. In *2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pages 4244–4248. IEEE, 2014.

[32] V. I. Morgenshtern, E. Riegler, W. Yang, G. Durisi, S. Lin, B. Sturmfels, and H. Bölcskei. Capacity pre-log of noncoherent SIMO channels via Hironaka’s Theorem. *IEEE Transactions on Information Theory*, 59(7):4213–4229, July 2013.

[33] M. Pollefeys, R. Koch, and L. Van Gool. Self-calibration and metric reconstruction inspite of varying and unknown intrinsic camera parameters. *International Journal of Computer Vision*, 32(1):7–25, 1999.

[34] Y. Saad. *Iterative Methods for Sparse Linear Systems*. SIAM, 2003.

[35] P. J. Shin, P. E. Larson, M. A. Ohliger, M. Elad, J. M. Pauly, D. B. Vigneron, and M. Lustig. Calibrationless parallel imaging reconstruction based on structured low-rank matrix completion. *Magnetic Resonance in Medicine*, 72(4):959–970, 2014.

[36] G. W. Stewart. Perturbation theory for the singular value decomposition. *technical report CS-TR 2539, university of Maryland*, September 1990.

[37] G. Tang and B. Recht. Convex blind deconvolution with random masks. In *Computational Optical Sensing and Imaging*, pages CW4C–1. Optical Society of America, 2014.

[38] L. Tong, G. Xu, B. Hassibi, and T. Kailath. Blind identification and equalization based on second-order statistics: A frequency domain approach. *IEEE Transactions on Information Theory*, 41(1):329–334, Jan. 1995.

[39] J. A. Tropp. User-friendly tail bounds for sums of random matrices. *Foundations of Computational Mathematics*, 12(4):389–434, 2012.
[40] A. Van der Vaart and J. Wellner. *Weak Convergence and Empirical Processes: with Applications to Statistics*. Springer Series in Statistics. Springer-Verlag, New York, 1996.

[41] S. Verdú and S. Shamai. Spectral efficiency of cdma with random spreading. *IEEE Transactions on Information theory*, 45(2):622–640, 1999.

[42] R. Vershynin. Introduction to the non-asymptotic analysis of random matrices. In Y. C. Eldar and G. Kutyniok, editors, *Compressed Sensing: Theory and Applications*, chapter 5. Cambridge University Press, 2012.

[43] L. Wang and Y. Chi. Blind deconvolution from multiple sparse inputs. *IEEE Signal Processing Letters*, 23(10):1384–1388, 2016.

[44] L. Wang, A. Singer, and Z. Wen. Orientation determination of cryo-em images using least unsquared deviations. *SIAM journal on imaging sciences*, 6(4):2450–2483, 2013.

[45] M. Wei. The perturbation of consistent least squares problems. *Linear Algebra and its Applications*, 112:231–245, 1989.

[46] A. J. Weiss and B. Friedlander. Eigenstructure methods for direction finding with sensor gain and phase uncertainties. *Circuits, Systems, and Signal Processing*, 9(3):271–300, 1990.