Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Vaccine Hesitancy in Rural Pediatric Primary Care

Robyn Mical, DNP, APRN, CPNP, Julia Martin-Velez, DNP, APRN, FNP-BC, Thomas Blackstone, MD, & Anne Derouin, DNP, APRN, CPNP, FAANP

Vaccine hesitancy (VH) is a pervasive issue resulting in the delay or refusal of vaccines, which are known to protect against life-threatening diseases. The purpose of this quality improvement project was to determine if early identification of VH using the Parent Attitudes about Childhood Vaccines survey and targeted interventions would decrease VH scores. Of the 70 total participants, 11 participants were VH in the preintervention survey group; of those, nine (81.8%) were not VH in the postintervention survey group, and two (18.2%) remained VH ($p = .004$) after the intervention. Routine screening for VH using the Parent Attitudes about Childhood Vaccines survey and implementing interventions successfully decreased VH scores and improved vaccine compliance. J Pediatr Health Care. (2021) 35, 16–22

KEY WORDS
Vaccines, immunizations, vaccine hesitancy, pediatric, primary care

INTRODUCTION
Statement of the Problem
Vaccine-preventable diseases in the pediatric population are increasing because of caregivers’ decisions not to vaccinate their children. The concerning rise in caregiver vaccine hesitancy (VH) has spurred investigational research into the underlying determinants of hesitancy as the 2017 Centers for Disease Control and Prevention immunization survey reported a rise in underimmunized children from 0.3% in 2001 to 1.3% in 2015 (Centers for Disease Control and Prevention [CDC], 2018). This concerning statistic demonstrates a substantial threat to public health and safety as approximately 100,000 children under the age of 4 years are unvaccinated against 14 potentially deadly diseases. Furthermore, the rise in VH and underimmunized children is directly linked to increased health care provider burnout, an increase in emergency department use, and morbidity and mortality rates (CDC, 2018; McClure, Cataldi, & O’Leary, 2017). Research shows that a significant reason for these devastating statistics is caregiver VH, defined as the refusal or delay in acceptance of vaccines despite readily available services owing to a range of factors (World Health Organization, 2020). The 2019 U.S. measles outbreak—which occurred in over 31 states and affected primarily unvaccinated children—along with the escalating threat of coronavirus disease 2019, validates the urgency of understanding, addressing, and eliminating VH. The need to identify and evaluate VH using evidence-based tools and implement interventions is paramount as this pervasive and potentially disastrous issue surges globally.

Evidence-Based Literature Review
Recent studies have demonstrated a rapidly increasing number of vaccine-hesitant caregivers (VHC) and declining childhood vaccine rates across the United States. As high as...
77% of caregivers reported concerns about routine immunizations and nearly 12% of caregivers refused at least one recommended vaccine—posing a significant public health threat to children who are unable to be vaccinated (Opel et al., 2011; Salmon, Dudley, Glanz, & Omer, 2015). The use of evidence-based screening tools to positively identify VHC is trending in the literature as an effective and efficient way to address declining vaccine rates in the pediatric population proactively. The Parent Attitudes about Childhood Vaccines (PACV) survey, developed by Dr. Douglas J. Opel of Seattle Children’s Hospital, is a standardized tool that identifies, measures, and classifies the unique concerns and needs of VHC and identifies the underlying determinants of hesitancy (Oladejo et al., 2016; Opel & Bahta, 2014; Boxes 1 and 2). Evidence-based screening tools, such as the PACV, markedly improve the health care provider ability to identify and appreciate VHC concerns and, more importantly, provide tailored interventions to prevent the devastating complications of not vaccinating our pediatric population.

The literature discusses several interventions that aimed to increase vaccine compliance, each with varying success rates. The most commonly cited interventions identified in the literature include presumptive language models, motivational interviewing, and educational dialogue-based interventions (Ames, Glenton, & Lewin, 2017; Eller, Henrikson, & Opel, 2019; Harvey, Reissland, & Mason, 2015; Jacobson, St. Sauver, Griffin, MacLaughlin, & Finney Rutten, 2020; McClure et al., 2017; Salmon et al., 2015). Interventions based on information deficit models that assume misconceptions are due to a lack of knowledge—indicating that the solution is to provide more information—have been disproven to change the minds of VHC effectively and have even shown an increase in VH rates (Gagneur, 2020; McClure et al., 2017; Salmon et al., 2015).

Current studies have reported that presumptive language models and motivational interviewing techniques are consistently the most effective interventions to address VH and increase vaccination rates (Gagneur, 2020; Jacobson et al., 2020; McClure et al., 2017). When providers used the presumptive language model in vaccine discussions, it strengthened the recommendation by offering a matter-of-fact approach and shared confidence in the provider recommendation. One study demonstrated 73% vaccine compliance when presumptive language was used compared with 22% vaccine compliance without presumptive language, and another study showed that caregivers were 17.5 times more likely to accept recommended vaccines when presumptive language was used (Jacobson et al., 2020; Sturm et al., 2017).

Strong evidence has shown that the participatory language approach, which allows for shared decision-making and open-ended discussions, increased caregiver hesitations resulting in increased VH and lower vaccination rates. Presumptive language is a simple, nonconfrontation, and effective method for health care providers to employ in the clinical setting.

Motivational interviewing (MI) is the next appropriate intervention in changing behaviors when presumptive language is not sufficient. MI is a well-researched strategy that has consistently demonstrated effective results compared with interventions without MI techniques (Borrelli, Tooley, & Scott-Sheldon, 2015; Castro, 2016; Lindson-Hawley, Thompson, & Begh, 2015; McGrane, Galvin, Cusack, & Stokes, 2015). MI is more than replacing myth with facts, but rather assesses an individual’s readiness to change with the goal of drawing upon the person’s own willingness rather than the provider desire for them to change (McClure et al., 2017). Providers are encouraged to foster a nonthreatening space by avoiding argumentative discussions or lecturing formats. The provider main goal is to be an active listener and reflect the caregiver’s hesitations, demonstrating both respect and empathy to develop a trusting relationship further. MI requires the health care provider to cultivate a collaborative partnership through compassion, empathy, and understanding to strengthen a caregiver’s motivation to change their beliefs and behaviors regarding VH.

METHODS
Sample and Setting
A convenience sample was used for this quality improvement (QI) project. The sample included caregivers of pediatric patients aged 2 months to 5 years presenting for well-child checks at a privately owned pediatric primary care clinic. This clinic primarily provides outpatient pediatric primary care for Hispanic and Latino patients (~92%) with Medicaid coverage (~99%). Caregiver participation was voluntary. Inclusion criteria for the initial sampling were caregivers presenting with their child aged 2 months to 5 years for well-child visits. Exclusion criteria for initial sampling were caregivers presenting for sick visits or well-child checks with children aged < 2 months or ≥ 6 years. The goal sample size for this QI project was 70 participants (n = 70), which was successfully achieved in 3 months. Only one provider (RM) completed all interventions to ensure consistency.

Project Design
Participants who met inclusion criteria were given the preintervention PACV survey on paper at check-in. The pre-PACV survey was 23 items, written at a sixth-grade level, available in English and Spanish, and required approximately 5 min for caregivers to complete. Following the completion of the survey, clinical staff scored the survey and entered the results in a secured database. The provider reviewed the pre-survey results before the initiation of the visit to determine appropriate interventions. The presumptive language model was used for non-VHC participants, and any questions were addressed during the visit. VHC participants received the following interventions: presumptive language model, MI, and education-based dialogue aimed at identifying underlying determinants of VH. The goal of these interventions was to convey confidence in medical management and recommendations and to adequately ameliorate concerns and address questions related to VH using evidence-based techniques.

The Centers for Disease Control and Prevention and World Health Organization resources were used to develop
specify presumptive language scripts for VHC to ensure uniform and effective communication. All interactions began with the assumption that the caregiver would accept all recommended vaccines: “your child needs three shots today,” compared with participatory language such as, “what do you think about your child getting their shots today?”

Note. Adapted from Opel et al. (2011).

(This figure appears in color online at www.jpedhc.org.)
BOX 2. Parent Attitudes about Childhood Vaccine survey (in Spanish)

Actitudes de los Padres ante las Vacunas en los Niños
PRIMERO LEA LO SIGUIENTE:
No levemente vacuna su opinión sobre las vacunas en los niños. El médico o la enfermera de su hijo(a) aplican vacunas como la triple vírica (parotiditis, parotiditis y rubéola) o la antipoloizmética durante las visitas y, si el niño se enferma. Esta encuesta NO se refiere a ninguna vacuna antigripal (estacional, H1N1, AH1N1 u otra).
Al contestar la encuesta, responda cada pregunta teniendo en cuenta el niño(a) cuya cita se llevará a cabo el día de hoy. Las respuestas a estas preguntas nos ayudarán a mejorar la manera en que los médicos y los enfermeros hablan con los padres acerca de las vacunas en los niños.
Elija una sola respuesta para cada una de las siguientes preguntas.

1. ¿Este niño(a) es su primer hijo(a)?	Sí	No									
2. ¿Cuál es su parentesco con este hijo(a)?	Madre	Padre	Otro								
3. ¿Alguna vez ha retirado alguna vacuna para su hijo(a) (sin incluir la vacuna antigripal)? Por motivos distintos a una enfermedad o afección?	Sí	No	No lo sé								
4. ¿Alguna vez ha decidido no darle una vacuna a su hijo(a) (sin incluir la vacuna antigripal) por motivos distintos a una enfermedad o afección?	Sí	No	No lo sé								
5. ¿Cuál es el seguro que usted de que recibir las vacunas recomendadas es bueno para su hijo(a)?	No estoy para nada seguro	1	2	3	4	5	6	7	8	9	10
Estoy totalmente seguro	Ll										
6. Creo que los niños reciben más vacunas de las que son buenas para ellos.	De acuerdo	No estoy seguro	En desacuerdo	De acuerdo							
7. Creo que muchas de las enfermedades que son prevenidas por las vacunas son graves.	De acuerdo	No estoy seguro	En desacuerdo	De acuerdo							
8. Creo que es mejor que mi hijo(a) desarrolle inmunidad natural que a través de una vacuna.	De acuerdo	No estoy seguro	En desacuerdo	De acuerdo							
9. Creo que es mejor que el número de vacunas que los niños reciben a la vez sea menor.	De acuerdo	No estoy seguro	En desacuerdo	De acuerdo							
10. ¿Qué tan preocupado(a) está de que su hijo(a) pueda tener algún efecto secundario grave por una vacuna?	Nada	Poco	Medio	Mucho	Mucho						
11. ¿Qué tan preocupado(a) está usted de que algunas de las vacunas para los niños pueda no ser segura?	Nada	Poco	Medio	Mucho	Mucho						
12. ¿Qué tan preocupado(a) está usted de que la vacuna no pueda prevenir la enfermedad?	Nada	Poco	Medio	Mucho	Mucho						
13. Si tuviera otro bebé ahora. ¿Quién se enteraría de todas las vacunas recomendadas?	Sí	No	No lo sé								
14. En general. ¿Qué tan seguro(a) se siente con respecto a las vacunas para los niños?	Nada	Poco	Medio	Mucho	Mucho						
15. Confío en la información que recibo sobre las vacunas.	De acuerdo	No estoy seguro	En desacuerdo	De acuerdo							
16. Puedo hablar abiertamente con el médico de mi hijo(a) sobre mis inquietudes con respecto a las vacunas.	No conflicto para nada	Conflicto totalmente	Confiado(a)	De acuerdo							
17. Tomando todo en cuenta. ¿Qué tanto confía en el médico de su hijo(a)? Conteste en una escala de 0 a 10, donde 0 significa No estoy para nada seguro	0	1	2	3	4	5	6	7	8	9	10
Estoy totalmente seguro	Ll										
18. ¿Qué edad tiene usted?	Entre 18 y 29 años	30 años o más									
19. ¿Cuál es su estado civil actual?	Soltero(a)	Casado(a)	Viudo(a)	Separado(a)	Divorciado(a)						
20. ¿Cuál es su máximo nivel de estudios?	8º grado o menos	No terminó el 12º grado	Terminó el 12º grado o su equivalente (GED)	Titulo de 2 años o no terminó la universidad	Terminó la universidad (4 años)	Posgrado					
21. ¿Cuál es el ingreso aproximado de su hogar?	$30,000 o menos	De $30,001 a $50,000	De $50,001 a $75,000	$75,001 o más							

Nota. Adapted from Opel et al. (2011).

(This figure appears in color online at www.jpedhc.org.)
Research has shown that strong and confident language from a trusted medical provider resulted in higher vaccination rates by VHC (Jacobson et al., 2020). If the caregiver consented without hesitation or questions, all recommended vaccines were administered by the nurse at the end of the visit. If the caregiver expressed concern to the presumptive language cue, the provider would proceed by giving confidence and caring recommendation as to their trusted medical provider: “I strongly recommend your child get these vaccines today as they are very important to protect them from serious disease.” If the caregiver continued to demonstrate hesitancy, the provider listened and responded to their questions with MI techniques and educational-based dialogue specific to their concerns. Demonstrating a willingness to listen to their concerns and answer their questions helped build trust in the provider recommendation.

For VHC who resisted presumptive language, scripted MI responses were used to strengthen the caregivers’ motivation to change their beliefs and behaviors through a shared sense of trust, partnership, and compassion. For this approach, the provider used the OARS (open-ended, affirming, reflective listening, summarizing) model for MI dialogue, which focused on open-ended questions, positive affirmations, reflective listening, and summary reflections (Miller & Rollnick, 2013). Open-ended questions focused on understanding the caregiver’s concerns in their own words and avoiding yes or no responses: “What can you tell me about your concerns regarding the vaccines your child will be receiving today?” This open-ended question aided in the provider understanding of the main determinants of hesitation to ensure the appropriate educational-based dialogue was provided.

Positive affirmation statements and gestures were given to promote confidence and trust, including gestures as small as a smile. Positive affirmations used in this project included, “I appreciate the consideration you’ve given to making sure your child is receiving the safest care” and “I appreciate that you’ve come with these questions today.” VHC appreciated the judgment-free acknowledgment, which aided in their willingness to learn and make changes in a positive direction. Reflective listening was a critical skill of MI as it showed active engagement with the VHC’s concerns and avoided assumptions and interpretations. The provider used reflective listening by responding to the VHC concern with statements such as “It sounds like your main concern is the ingredients in the vaccines, is this correct?” and “So you feel like 3 injections is too many for your child to receive in one visit?”

Summaries of reflective listening are how the provider concluded the MI intervention as the main transition point. The provider structured the summary with an opening statement such as “here is what I’ve heard, tell me if I’m missing anything.” The provider would then give a positive change statement made by the VHC to emphasize their willingness to change, such as “you believe the ingredients in the vaccines aren’t safe but, you aren’t sure if the information you read online is accurate.” The provider provided specific educational-based information to inform their concerns in an empathetic and concise manner as not to overwhelm or confuse the caregiver. Finally, MI ended with an invitation to follow up questions and an assessment of the VHC’s willingness to change: “Anything you’d like to add or correct? Did that address your concerns today? Would you like to move forward with the recommended vaccines today?” MI techniques were more time consuming, increasing the visit time by an average of 5–10 min, but resulted in decreased VH scores with increased vaccine compliance rates.

After the intervention, clinical staff provided the participating caregiver with the postintervention PACV survey after the visit to assess for a decrease in VH scores. The post-PACV survey consisted of the same questions, however, questions 1, 2, and 18–23 were omitted as these questions pertained to the caregiver’s socioeconomic status, education level, and ethnicity. The postsurvey responses were scored and entered into a secure database by the trained staff member or provider.

For this project, successful outcomes were achieved when preintervention PACV survey scores of ≥15 were decreased to ≤14 postintervention. This approach demonstrates that early identification of VH allowed targeted intervention to address determinants of vaccine hesitation. The data collected for analysis included pre- and postintervention PACV survey scores, which were coded as nominal scores for VH scores pre- and postintervention (yes or no). These data were inputted into a 2 × 2 contingency table for analysis (Table).

Data Analysis

The clinical data were evaluated and analyzed using IBM SPSS software 2019 (version 26; IBM, Corp., Armonk, NY). Given the sample size and project objectives, a McNemar test was used for data analysis to find proportion changes for paired nominal data.

RESULTS

Of the 70 total participants, 41 were aged 0–1 year, 14 were aged 1–2 years, 2 were aged 3–4 years, and 13 were aged 4–5 years. Twenty-three identified as Caucasian, 41 identified as Hispanic, five identified as African American, and one identified as Asian American. Eleven were classified as VH and 59 as non-VH from the preintervention survey. All 70 participants received an intervention during the visit with

TABLE. Vaccine hesitancy pre-/postintervention contingency table
VH postintervention

No
Yes
Total

Note. VH, vaccine hesitancy.
the provider assessing if postintervention VH scores decreased after the intervention. The 11 participants that classified as VH from the preintervention survey received targeted, evidence-based interventions, including the presumptive language model, MI, and education-based dialogue, to address the underlying determinants of VH. After the intervention, postintervention PACV surveys were administered to all 70 participants. No participants scored higher on the postintervention PACV survey. Of the 11 VH participants, post-PACV survey scores showed nine (81.8%) were no longer classified as VH, and two (18.2%) remained VH ($p = .004$).

Of the 11 VH participants, six were primarily concerned about the ingredients in vaccines, two were concerned with the safety regarding the number of vaccines received at one time, one reported they did not believe vaccines were necessary, one had a self-reported family history of adverse reactions to an unknown vaccine, and one did not believe they had enough information at the time of the visit to make an informed decision. Of the 11 VH participants, four adhered to Dr. Robert Sears’s delayed vaccine schedules, whereas the other seven were not sure what, if any, vaccines should be received.

DISCUSSION

Childhood vaccines are proven to be effective in keeping the population safe from preventable diseases that can result in severe complications, including death. Vaccinations have been the subject of harsh critique and rigorous testing for the past 50 years and continue to demonstrate safety, efficacy, and value. As the childhood vaccine schedule has been enhanced in the past decade with the advent of new vaccines, caregivers have been concerned with the number of injections and the conflicting information in social media. Pediatric health care providers, infectious disease specialists, and scientists have demonstrated the life-saving benefits of vaccines and must actively advocate and educate caregivers and patients daily. In the face of the coronavirus disease 2019 pandemic and virulent flu season of 2020, now is the time to arm providers with tools that educate and empower VHC to understand and believe that vaccines work, vaccines are safe, and vaccines are necessary.

Routine monitoring with VH screening tools, such as the PACV survey, offers proactive measures of identifying VHC to decrease hesitations and increase pediatric vaccination rates. Presumptive language should be used when discussing the recommended pediatric vaccines to instill confidence and reassure caregivers of safe medical management. When necessary, MI and educational-based dialogue should be employed to advocate for caregiver acceptance of recommended vaccines. The significant findings of this project confirm the effectiveness of using VH screening tools to identify VHC and providing targeted interventions to decrease their hesitancy and increase vaccine compliance rates. Although most of the participants were not VH, most of those who were classified as VH from the preintervention survey benefited from the interventions. Given the increasing rate of VHC, it is imperative that health care providers are proactive, not reactive, in our efforts to avert the spread of vaccine-preventable diseases.

Next Steps

This QI project successfully showed the significant impact of early identification and intervention in addressing VH in the rural pediatric primary care setting. Making routine VH screening and intervention a standard of care is recommended for primary care providers. Furthermore, this project has shown the effectiveness of engaging in presumptive language when discussing vaccines with caregivers. Studies have reported that parents are 17.5 times more likely to accept the recommended vaccines by providers when presumptive language is used. However, < 15% of providers used presumptive language resulting in weak recommendations, surged hesitations, and decreased vaccine compliance rates (Jacobson et al., 2020; Opel et al., 2013). Given recent vaccine-preventable disease outbreaks, it is imperative for health care providers to implement current evidence-based practices to achieve vaccine compliance and promote the safety and efficacy of vaccines with confidence and compassion.

Moving forward, this project and current literature identify the critical need for further investigation and research for evidence-based tools and strategies to consistently and methodically provide interventions to address VH and improve compliance rates. Efforts to develop standardized, evidence-based guidelines and tools to improve and sustain vaccination rates are at the forefront of research and development with an emphasis on simplified, accessible tools for medical staff to use. Ideally, medical organizations and governing bodies would require the use of VH screening tools and intervention protocols into their patient-centered medical home requirements to improve vaccine rates. Research studies that identify the significance of early screening and interventions to promote vaccination rates, such as this project, serve to advocate and inform larger-scale research endeavors to identify, intervene, and improve VH.

REFERENCES

Ames, H. M., Glenton, C., & Lewin, S. (2017). Parents’ and informal caregivers’ views and experiences of communication about routine childhood vaccination: A synthesis of qualitative evidence. *Cochrane Database of Systematic Reviews, 2*, CD011787.

Borrelli, B., Tooley, E. M., & Scott-Sheldon, L. A. J. (2015). Motivational interviewing for parent-child health interventions: A systematic review and meta-analysis. *Pediatric Dentistry, 37*, 254–265.

Castro, K. M. G. (2016). Impact of prenatal motivational interviewing on health status and health behavior related with nutrition: A systematic review (Unpublished master’s thesis). Kent, OH: Kent State University.

Centers for Disease Control and Prevention [CDC]. (2018). Vaccination coverage for selected diseases among children aged 19–35 months, by race, Hispanic origin, poverty level, and location of residence in metropolitan statistical area: United States, selected years 1998–2017. Retrieved from https://www.cdc.gov/nchs/data/hus/2018/031.pdf

Eller, N. M., Henriksen, N. B., & Opel, D. J. (2019). Vaccine information sources and parental trust in their child’s health care provider. *Health Education and Behavior, 46*, 445–453.
Gagneur, A. (2020). Motivational Interviewing: A powerful tool to address vaccine hesitancy. *Canada Communicable Disease Report, 46*, 93–97.

Harvey, H., Reisland, N., & Mason, J. (2015). Parental reminder, recall and educational interventions to improve early childhood immunisation uptake: A systematic review and meta-analysis. *Vaccine, 33*, 2862–2880.

Jacobson, R. M., Sauver, St., L., J., Griffin, J. M., MacLaughlin, K. L., & Finney Rutten, L. J. (2020). How health care providers should address vaccine hesitancy in the clinical setting: Evidence for presumptive language in making a strong recommendation. *Human Vaccines and Immunotherapeutics, 1–5*.

Lindson-Hawley, N., Thompson, T. P., & Beigh, R. (2015). Motivational Interviewing for smoking cessation. *Cochrane Database of Systematic Reviews, (3) CD006936*.

McClure, C. C., Cataldi, J. R., & O’Leary, S. T. (2017). Vaccine hesitancy: Where we are and where we are going. *Clinical Therapeutics, 39*, 1550–1562.

McGrane, N., Galvin, R., Cusack, T., & Stokes, E. (2015). Addition of motivational interventions to exercise and traditional physiotherapy: A review and meta-analysis. *Physiotherapy, 101*, 1–12.

Miller, W. R., & Rollnick, S. (2013). *Motivational interviewing: Helping people change* (3rd ed.). New York, NY: The Guilford Press.

Oladejo, O., Alkon, K., Amin, A., Frew, P. M., Bednarczyk, R. A., & Omer, S. B. (2016). Comparative analysis of the Parent Attitudes about Childhood Vaccines (PACV) short scale and the five categories of vaccine acceptance identified by Gust et al. *Vaccine, 34*, 4964–4968.

Opel, D. J., & Bahta, L. (2014). How you start the conversation matters. *Minnesota Medicine, 97*, 50–51.

Opel, D. J., Mangione-Smith, R., Taylor, J. A., Korfiatis, C., Wiese, C., Catz, S., & Martin, D. P. (2011). Development of a survey to identify vaccine-hesitant parents: The parent attitudes about childhood vaccines survey. *Human Vaccines, 7*, 419–425.

Opel, D. J., Heritage, J., Taylor, J. A., Mangione-Smith, R., Salas, H. S., Devere, V., … Robinson, J. D. (2013). The architecture of provider-parent vaccine discussions at health supervision visits. *Pediatrics, 132*, 1037–1046.

Salmon, D. A., Dudley, M. Z., Glanz, J. M., & Omer, S. B. (2015). Vaccine hesitancy: Causes, consequences, and a call to action. *Vaccine, 33(Suppl. 4), D66-D71*.

Sturm, L., Donahue, K., Kesting, M., Kulkarni, A., Brewer, N. T., & Zimet, G. D. (2017). Pediatrician-parent conversations about human papillomavirus vaccination: An analysis of audio recordings. *Journal of Adolescent Health, 61*, 246–251.

World Health Organization. (2020). *Improving vaccination demand and addressing hesitancy*. Retrieved from https://www.who.int/immunization/programmes_systems/vaccine_hesitancy/en/