Epidemiology and biology of cutaneous human papillomavirus

Emily M. Nunes,* Valéria Talpe-Nunes, Laura Sichero

Centro de Investigação Translacional em Oncologia, Instituto do Câncer do Estado de São Paulo (ICESP), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, BR.

Nunes EM, Talpe-Nunes V, Sichero L. Epidemiology and biology of cutaneous human papillomavirus. Clinics. 2018;73(suppl 1):e489s

*Corresponding author. E-mail: emontosa.biotec@gmail.com

Cutaneous human papillomaviruses (HPVs) include β- and γ-HPVs, in addition to a small fraction of α-HPVs. β-HPVs were first isolated from patients with the rare genetic disorder Epidermodysplasia verruciformis, and they are associated with the development of nonmelanoma skin cancer at sun-exposed skin sites in these individuals. Organ transplant recipients also have greater susceptibility to β-HPV infection of the skin and an increased risk of developing nonmelanoma skin cancer. In both immunosuppressed and immunocompromised individuals, cutaneous HPVs are ubiquitously disseminated throughout healthy skin and may be an intrinsic part of the commensal flora. Functional analysis of E6 and E7 proteins of specific cutaneous HPVs has provided a mechanistic comprehension of how these viruses may induce carcinogenesis. Nevertheless, additional research is crucial to better understand the pathological implications of the broad distribution of these HPVs.

KEYWORDS: Human Papillomavirus; Cutaneous; Prevalence; Nonmelanoma Skin Cancer.

INTRODUCTION

Human papillomavirus (HPV) represents a diverse group of viruses infecting mainly epithelial and mucosal tissues (1). Based on the identity of the L1 major capsid gene sequence, the majority of the over 200 viral types characterized to date cluster within the alpha (α), beta (β), or gamma (γ)-HPV genus (2, 3). While the great majority of α-HPVs are mucosal types isolated from the anogenital epithelia, some viral types in this genus (e.g., HPVs 2, 3 and 10) and β- and γ-HPVs were originally designated cutaneous types (Figure 1). To date, 54 β-HPVs (subdivided into 5 species, β1-5) and 98 γ-HPVs (subdivided into 27 species, γ1-27) have been fully sequenced and characterized (http://www.nordicehealth.se/hpv_center/reference_clones/), and it is expected that these numbers will further increase once partial sequences of putative novel types are described (4). Some cutaneous HPVs are closely associated with the development of various skin lesions, from warts to carcinomas, in restricted populations (1,5). Nevertheless, it has proven difficult to determine the role of particular β-HPVs in cutaneous malignancies because of the high viral diversity and ubiquity of multiple types throughout healthy skin, the oral cavity, the nasal mucosa and the anogenital region (6-11).

Prevalence and distribution of cutaneous HPVs among immunosuppressed individuals

The first record concerning the association of HPV with papillomatous skin lesions that harbored carcinogenic potential dates to the early 1920s, when Lewandowsky and Lutz (12) first described a hereditary condition named Epidermodysplasia verruciformis (EV) that is characterized by extensive warts throughout the body (Table 1). Later, Jablonska et al. (13) observed that EV individuals infected with β-HPV 5 and 8 had a higher risk of developing nonmelanoma skin cancer (NMSC), particularly in ultraviolet (UV)-exposed sites. Together, both viral types are detected in approximately 90% of skin squamous cell carcinomas (SCCs) in EV patients. In these cases, β-HPVs are actively transcribed and generally persistent at high copy number (14). Currently, β-HPV 5 and 8 are accepted as possible etiological agents (carcinogen group 2B) of cutaneous SCC (cSCC) in immunosuppressed EV individuals by the International Agency for Research on Cancer (IARC) (15).

In the following years, several studies focused on analyzing the oncogenic potential of cutaneous HPVs in other immunosuppressed individuals, among which organ transplant recipients (OTRs) were the most extensively investigated. OTRs slightly resemble EV patients in that they are often covered with wart-like skin lesions and actinic keratosis (AK). Furthermore, OTRs have up to a 100-fold increased risk of developing NMSC compared to the general population (16-17). Importantly, the increased risk of NMSC is mostly associated with a higher incidence of cSCC (18-20). Clinical and histological features of these lesions suggest that cSCCs occasionally develop from viral warts or other precursor lesions (21,22). NMSC in OTRs often presents as multiple lesions and is usually confined to UV-exposed anatomical sites, most likely associated with local immunosuppression (23,24). These tumors are also more aggressive...
Figure 1 - Distribution of cutaneous viral types within different HPV genera. The number of cutaneous viral types within each genus is indicated.

Table 1 - Select studies on the prevalence and distribution of cutaneous HPVs among immunosuppressed individuals.

Year	Author(s) (reference number)	Data
1922	Lewandowsky and Lutz (12)	First description of epidermodysplasia verruciformis (EV).
1972	Jablonska et al. (13)	β-HPVs 5 and 8 infected EV individuals had a higher risk of developing NMSC (after UV exposition).
1974	Koranda et al. (26)	Cutaneous warts were detected in 43% of ORT individuals after 3 months to 9 years following transplant.
1976	Mullen et al. (20)	Increased risk of NMSC is mostly associated to higher incidence of cSCC.
1980	Hardie et al. (18)	The incidence of skin cancer increases 5% per year after the first year of transplant, with a cumulative risk of 44% after 9 years.
1978	Sbano et al. (22)	cSCC occasionally develop from viral warts or other precursor lesions.
1989	Barr et al. (21)	Tumors are more aggressive in OTRs than in the general population.
1984	Boyle et al. (27)	OTRs have until 100 fold increased risk of developing NMSC as compared to the general population.
1989	Boxman et al. (35)	β-HPV is more prevalent in skin warts biopsies than in both the normal skin and plucked hairs among OTRs.
2000	Lindelöf et al. (17)	NMSCs among OTRs are often multiple and usually confined to UV-exposed anatomical sites.
2000	Lindelöf et al. (17)	Within 15 years of transplantation, up to 90% of OTRs develop warts and/or cSCC.
2003	Feltkamp et al. (40)	There is a significant association between β-HPV infection and cSCC among OTRs.
2004	Wissensborn et al. (46)	Data regarding the association between cutaneous HPV infection and cSCC is still inconclusive.
2008	Rollison et al. (45)	Older ages and history of sunburn are associated to an elevated risk of β-HPV persistent infection.
2011	Arron et al. (43)	OTRs have higher cutaneous HPV prevalence rate up to 90% in cSCC compared to the normal skin (11-32%).
2014	Harwood et al. (34)	Seroconversion to β-HPV increases with age.
2016	Chahoud et al. (44)	β-HPVs 5 and 8 are accepted as possible etiological agents (carcinogens group 2B) of cSCC in immunosuppressed EV individuals.
2011	Proby et al. (33)	Individuals with concordant β-HPV DNA in plucked eyebrow hairs and serologic tests had a significantly increased risk of developing SCC.
2013	Neale et al. (32)	There is a significant association between the number of β-HPVs detected at eyebrow hair follicles and the increased risk of cSCC among OTRs.
in OTRs than in the general population and form metastases more readily (18,25).

Among OTRs, cutaneous warts were detected in 43% of individuals at 3 months to 9 years following transplant (25,26). Additionally, within 15 years of transplantation, up to 90% of OTRs develop warts and/or cSCC (17). Upon analyzing skin smears from OTRs, dialysis patients and healthy controls, Antonsson et al. (6) observed that 11.5% of OTRs reported ever having skin cancer, whereas no cases of NMSC were observed in the other groups studied. NMSC incidence in OTRs varies depending on the duration of immunosuppression; Hardie et al. (18) demonstrated that the incidence of skin cancer increased 5% per year after the first year of transplant, with a cumulative risk of 44% after 9 years.

The incidence of NMSC is also related to long sun exposure. Boyle et al. (27) observed that 18% of renal transplant patients with high exposure levels to sunshine (>3 months in a tropical or subtropical climate or >5 years in an outdoor occupation) developed carcinogenic alterations in their skin: two patients were diagnosed with cSCC, and seven were diagnosed with AK, whereas neither lesion type was noted in the other patients or in the control group.

Although cumulative sun exposure is the major risk factor for NMSC, recent studies have revealed a role for HPV as a cofactor in association with UV radiation in cSCC in OTRs. OTRs have a higher cutaneous HPV prevalence rate in cSCC (up to 90%) than in normal skin (11-32%) (28). These infections frequently persist (29,30), and it has been observed that older age and a history of sunburn are associated with an elevated risk of persistent β-HPV infection (30,31).

Multiple cutaneous HPV infections is common (34), but high viral loads were shown to be associated with an increased risk of SCC development, with total load seemingly more important than the individual load of any specific type (32). It should be noted, however, that β-HPV is more highly prevalent in skin wart biopsies from OTRs than in either normal skin or plucked hairs from these patients (29,35-37). Serological studies have also demonstrated that seroconversion to β-HPV increases with age (38,39) and have revealed a positive epidemiological association between β-HPV seroreactivity and SCC development (40), even though not every infection is accompanied by a detectable or relevant seroresponse.

Nevertheless, given the high incidence of cSCCs in OTRs, identifying a clear link between β-HPV infection and cSCC would have important implications for therapy and prevention (41,42). Therefore, more recent case-control studies are ongoing, focusing on the association of cutaneous HPV in the early stages of NMSC carcinogenesis in immunosuppressed individuals. However, the data are inconclusive (42-46).

Prevalence and distribution of cutaneous HPVs among immunocompetent individuals

Cutaneous β- and γ-HPV DNA can be detected beginning in early infancy and may be detected in 70% of children by 4 years of age (47). Additionally, β-HPV types detected on parents are more commonly found on their babies (47,48). Viral transmission seems to occur inevitably through direct skin contact (10,49-51), and these viruses have been suggested to be commensal to humans (38,52,53) (Table 2).

Year	Author(s) (reference number)	Data
1997	Boxman et al. (35)	Cutaneous HPVs detection in eyebrow hairs seems to reflect infections in other parts of the body (useful in epidemiological studies).
2000	Antonsson et al. (6)	Sun exposure and history of skin cancer are risk factors associated to β-HPVs detection in IC individuals.
2000	Harwood et al. (36)	Cutaneous HPVs prevalence was higher among individuals who reported ever having skin lesions.
2000	Antonsson et al. (6) Struijk et al. (56)	β-HPV DNA detection and seroprevalence increases with age.
2000	Hazard et al. (30)	β-HPV DNA is observed since early infancy.
2009	Weissenborn et al. (48)	β-HPVs types detected on parents are also more commonly found in their babies.
2009	de Koning et al. (55)	β- and γ-HPVs may be commensal to humans.
2003	Antonsson et al. (47)	β-HPVs types detected on parents are also more commonly found in their babies.
2004	Stockfleth et al. (60)	Simultaneous oral-genital type-specific β-HPV infections are relatively rare.
2004	Nunes et al. (76)	HPVs 5 and 8 were the most frequently found in premalignant lesions, SCC and BCC.
β-HPVs are widespread in immunocompetent (IC) individuals within the general population: when plucked hairs from different body sites are tested, the prevalence is approximately 90% (54,55). It is believed that cutaneous HPVs target the hair follicle bulge, which is probably the reservoir of these viruses (32). Therefore, eyebrow hairs have served as an easily obtained material for marker analysis in several epidemiological studies and seem to reflect infection in other parts of the body (35).

Advanced age has been shown to be the most important factor influencing the presence of β-HPV DNA in IC individuals (56,57). Furthermore, sun exposure and a history of skin cancer are risk factors associated with β-HPV detection in these individuals (6). For OTRs, some studies have investigated the prevalence of cutaneous HPVs among IC individuals of different ethnicities and residing under different climate conditions (52). It was reported that the prevalence of HPV DNA was lower in samples from Zambia than in those

Table 2 - Continued.

Year	Author(s) (reference number)	Data
2005	Weissenborn et al. (46)	Higher viral loads are detected within pre-malignant skin lesions as compared to SCC.
2011	Arron et al. (43)	
2007	Forslund et al. (23)	Most viruses detected on the external skin surface may reflect HPV deposition.
2007	Köhler et al. (54)	The prevalence of β-HPVs DNA in plucked hairs from different body sites of IC individuals is approximately 90%.
2009	de Koning et al. (55)	
2008	Patel et al. (59)	β-HPVs may play a role in the pathogenicity of NMSC also in healthy individuals.
2008	Feltkamp et al. (49)	Viral transmission seems to occur through direct skin contact.
2017	Moscicki et al. (51)	
2017	Nunes et al. (10)	
2009	Bouvard et al. (15)	Epidemiological evidence concerning the association between specific β- and γ-HPVs and the development of skin cancer in IC is inconclusive.
2009	Weissenborn et al. (48)	UV radiation may be a putative viral detection-related risk factor.
2010	Antonsson et al. (38)	High overall seropositivity (> 90%) to at least one viral β-HPV is observed within healthy individuals.
2010	Iannacone et al. (62)	
2010	Michael et al. (63)	Low overall seropositivity to at least one viral β-HPV is observed within healthy individuals.
2011	Proby et al. (33)	β-HPV types most commonly detected in the skin also have the highest seroprevalence.
2011	Bottalico et al. (7)	Analysis of β- and γ-HPVs DNA and antibodies prevalence among series of samples (anogenital, oral, skin, nasal cavity from women and men).
2013	Forslund et al. (8)	
2013	Pierce Campbell et al. (68)	
2013	Sichero et al. (65)	
2013	Paolini et al. (70)	
2014	Hampras et al. (31)	
2014	Sichero et al. (66)	
2015	Sichero et al. (69)	
2015	Donà et al. (67)	
2016	Nunes et al. (9)	
2017	Moscicki et al. (51)	
2013	Neale et al. (32)	Cutaneous HPVs target the hair follicle bulge, which is probably the reservoir of these viruses.
2013	Sichero et al. (65)	The majority of male genital samples could not be classified using technologies widely used for typing of α-HPVs.
2013	Pierce Campbell et al. (68)	Male external genital lesions (EGL) are not associated to β-HPVs infections.
2016	Rahman et al. (71)	
2013	Sichero et al. (65)	
2014	Sichero et al. (66)	Most samples from the male genitals were positive for multiples cutaneous HPV DNA.
2013	Sichero et al. (65)	
2014	Sichero et al. (66)	The detection of β-HPVs in one anatomic site may also represent deposition of virions shed from other anatomic sites.
2015	Sichero et al. (69)	
2013	Sichero et al. (65)	The detection of cutaneous HPVs DNA is not associated to sexual risk factors. Other routes of transmission such as autoinoculation and non-penetrative sexual activities could be associated.
2014	Sichero et al. (66)	
2015	Donà et al. (67)	
2015	Torres et al. (72)	
2016	Nunes et al. (9)	
2016	Chahoud et al. (44)	Analyses of association between the detection of antibodies to β-HPVs with SCC risk development.
2017	Hampras et al. (74)	The occurrence of concordant β-HPV infections seem to be higher across keratinized tissues than across mucosal sites.
2017	Moscicki et al. (51)	The transmission rate of β-HPVs between anogenital sites from men-to-women and women-to-men was similar, suggesting these are sexually transmitted.
collected in Sweden (p<0.01) and Bangladesh (p<0.05) (52). β-HPV prevalence and distribution studies have shown that viral positivity was, on average, higher on the forehead (36%) and back of the hand (38%) than on the buttocks (26%), indicating that UV radiation may be a putative risk factor for viral infection, even though sun exposure data were not collected in this specific study (48). In fact, severe sunburns have been associated with the presence of β-HPV DNA (24). Second-degree burns and repetitive sunburns, with skin regeneration of the underlying capillary bulb, may result in the amplification of β-HPV DNA by activating the HPV life cycle (24). In fact, the risk for SCC development among Australian or Netherlander IC individuals is higher for those in which β-HPV DNA was detected at high loads in plucked eyebrow hairs (32,56,58).

β-HPV persistence was more commonly observed in adults (92%) than in children (66%), and although multiple β-HPVs can infect persistently, no specific type seems to predominate in such infections (48). Nevertheless, it must be highlighted that the prevalence of β-HPVs significantly decreases after tape stripping, indicating that only a small number of epithelial cells are in fact infected, and most of the detected viruses may reflect deposition throughout the external skin surface (23).

The IARC recognizes the need for further research on cutaneous HPVs to better understand the widespread distribution of these viruses. β-HPVs may also play a role in the pathogenicity of NMSCs in healthy individuals (59); however, to date, epidemiological evidence is inconclusive concerning the association between specific β- and γ-HPVs and the development of skin cancer in IC individuals (14,15).

Regarding the HPV status in NMSCs from immunosuppressed and IC individuals, viral prevalence was higher in the former group for all lesion types analyzed: premalignant lesions (88% among immunosuppressed vs 54% among IC), SCC (84% vs 27%) and basal cell carcinoma (BCC, 75% vs 36%) (36). Nevertheless, the prevalence and spectrum of HPV types detected within the two populations were equivalent among premalignant lesions, SCC and BCC, and HPVs 5 and 8 were the most frequently identified types (60). Interestingly, β-HPV prevalence was reported to be higher in premalignant AK than in cSCC, and real-time PCR analysis indicated higher viral loads in premalignant lesions (46) than in SCC, in which viral load rarely reaches the level of one viral copy per cell (43,46). This scenario is compatible with a carcinogenic role for HPV at the early stages of skin carcinogenesis. Because cSCC most commonly develops in sun-exposed anatomical sites, it is reasonable to suppose that UV radiation may impede HPV antigen presentation by suppressing local cell immunity (61). In addition, several studies have suggested the importance of β-HPVs as cofactors to UV radiation in the development of SCC by facilitating the accumulation of UV-induced mutations, which can ultimately lead to cell transformation.

In addition to HPV DNA detection, the detection of antibodies to β-HPVs and their association with SCC risk development have been evaluated in several studies (44). Nevertheless, overall, serological studies show considerable heterogeneity in the results: whereas high overall seropositivity (>90%) to at least one viral β-HPV has been described (38,62), a lower prevalence is observed in other studies (33,63). The divergence in the data obtained in these studies could be attributed not only to differences in serological methods but also to the range of cutaneous HPVs tested. With β-HPV DNA detection, the seroprevalence has been shown to increase with age (6,30,55). Notably, β-HPV types most commonly detected in the skin have the highest seroprevalence worldwide (33).

Due to the wide distribution of cutaneous HPVs in the skin, several groups, including ours, have recently focused on investigating the distribution of cutaneous HPVs in other anatomical sites, including the anogenital area. Within the HIM (HPV Infection in Men) cohort study (64), we initially observed that most of the ~15% of male genital samples that could not be classified with widely used α-HPV typing technologies harbored β- and γ-HPVs, as evidenced by using a PCR sequencing protocol (65). We further observed that most samples were positive for HPV DNA of multiple cutaneous types using a sensitive Luminex-based methodology, suggesting that the former protocol could underestimate the true prevalence of cutaneous β- and γ-HPVs in the male genital region (65,66). In order to better understand the prevalence and distribution of cutaneous HPVs, we and others further analyzed β- and γ-HPV DNA and antibodies by Luminex methodology in a series of samples obtained from the anogenital region of both men and women (9,51,65-69), the oral cavity (7,9,70), the skin (31), and the nasal cavity (8). Taken together, these studies corroborate that cutaneous HPVs are ubiquitously disseminated throughout healthy skin and may be an intrinsic part of the commensal flora.

We further observed that male external genital lesions (EGLs) are not associated with β-HPV infections (68,71) and that the detection of DNA from these viruses is not associated with sexual risk factors, indicating other routes of transmission, such as autoinoculation and nonpenetrative sexual activities (9,65-67,72). Alternatively, the detection of β-HPVs at one anatomic site may indicate the deposition of virions shed from other anatomic sites (50,65,66,69). Nevertheless, it was recently reported that among heterosexual couples, the transmission rate of β-HPVs between anogenital sites was 15.9 per 100 person-months from men-to-women, with a similar risk for women-to-men transmission, suggesting that β-HPVs can be sexually transmitted (51). Lastly, the few reports in which the oral and anogenital regions were analyzed concurrently indicated that simultaneous oral-genital type-specific β-HPV infections are relatively rare (10,73-77) but seem to be higher across keratinized tissues than across mucosal sites (74). Nevertheless, given the large number of samples and β-HPV types analyzed, it is unlikely that the same HPV type will be found at a distant skin site by chance.

Functional analysis of cutaneous HPVs

HPVs are small, nonenveloped viruses with circular double-stranded DNA of approximately 8000 bp. The viral genome is divided into three regions: the long control region (LCR) contains cis-responsive elements for viral and cellular proteins that regulate viral gene expression and replication; the early region (E), which encodes proteins crucial to viral transcription and replication; and the late region (L), which encodes the viral capsid structural proteins (78-80). Although the viral genome structure and organization are highly conserved among HPVs, the LCR of β-HPVs is shorter than that of α-HPVs, and the E5 gene is absent from the β-HPV genome (81-83).

The HPV life cycle is tightly associated with the differentiation of the stratified squamous epithelium. HPV infection begins with entrance of the virus into the basal layer of the epithelia due to microtrauma (79,84,85). At least for high-risk α-HPV-infected tissues, the differentiation process is altered...
by expression of the E6 and E7 viral oncoproteins, which interact principally with the TP53 and pRb suppressor proteins, respectively, but also interact with a broad spectrum of other cellular proteins, altering the biological properties of the host cell (79,83,86-89).

As previously discussed in this review, β-HPVs most likely play a role in the initiation of cSCC rather than in the maintenance of the transformed phenotype (14). It is hypothesized that β-HPV infections destabilize the host genome, allowing tumors to further develop in the absence of the viral genome (90-92). Some studies have provided a mechanistic comprehension of how these viruses induce carcinogenesis and have indicated that the biology involved in β-HPV-mediated skin carcinogenesis differs from that induced by high-risk α-HPV types.

Studies have shown that β-HPVs 38 and 49 are able to immortalize primary human keratinocytes, whereas HPV5, 10, 14, 22, 23, 24 and 36 do not have this ability (95-97). It has also been reported that transgenic mice expressing the HPV 38 E6 and E7 proteins under control of a keratinocyte-specific promoter exhibit epidermal hyperplasia and are susceptible to the development of cutaneous tumors promoted by chemical carcinogens and UV radiation (98-101). Although the E6 protein from HPVs 8, 24 and 38 binds in vitro to E6-AP (E6-associated protein), p53 degradation was observed in the presence of only HPV 49 (95-97,102) (Figure 2). The E6 protein from β-HPVs 5, 8, and 38 attenuates p53 phosphorylation and ubiquitination in response to UV exposure, resulting in less efficient repair of damaged cellular DNA (90,96). Additionally, HPV 38 induces telomerase by a mechanism dependent on E6-AP (95). HPV 38 E6 also alters the capacity of p53 to activate proteins involved in apoptosis and suppress proliferation by inducing the accumulation of ΔNp73, a p53 isoform that antagonizes p53 (96). The E6 protein from HPV 5, 8 and 38 was shown to bind p300, preventing p53 acetylation and p53 -induced repair and transcriptional transactivation, thus contributing to the accumulation of mutations and chromosomal abnormalities (90). Furthermore, as with α-HPV, the E6 protein of some β-HPVs induces BAK degradation, thus preventing the release of pro-apoptotic mitochondrial factors (103). The interaction of E6 with E6-AP is required not only for BAK degradation but also for hTERT (human telomerase reverse transcriptase) induction (104,105).

The E7 proteins from the cutaneous HPVs 154, 22, 23, 24, 36, 38 and 49 bind in vitro to pRb but are unable to induce pRb degradation when expressed in human keratinocytes (97,106-108) (Figure 2). Nevertheless, in human keratinocytes transduced with HPV 38 and 39 E6 and E7 proteins, E2F-induced transcription is likely activated because these viral proteins induce pRb hyperphosphorylation (80,95,97).

Although most research on oncogenic potential and disease association has focused on α-HPVs, there is interest in identifying a role of non-α HPV types in the pathogenesis of benign and malignant lesions (Table 3). Challenges in finding relevant associations between cutaneous HPV infection and NMSC

Table 3 - Highlights regarding the epidemiology and biology of cutaneous human papillomavirus in immunosuppressed and immunocompetent individuals.

- β- and γ-HPVs, in addition to few α-HPVs are originally designated “cutaneous types”.
- The IARC classified β-HPVs 5 and 8 as possible etiological agents of skin SCC in EV individuals.
- OTRs not only have a higher susceptibility to β-HPVs but further attain an ~100 fold increased risk of developing NMSC as compared to the general population.
- Among OTRs and IC individuals cutaneous HPVs are ubiquitously spread throughout the body and may be an intrinsic part of the commensal flora.
- Although cumulative sun exposure is the major risk factor for NMSC, studies points towards β-HPV infections as co-factors in skin SCC in association with UV radiation.
- β-HPVs most probably play a role in the initiation of skin SCC rather than in the maintenance of the transformed phenotype.
- Function analysis of E6 and E7 proteins of specific cutaneous HPVs indicate that the biology involved in β-HPV mediated skin carcinogenesis differ from that induced by high-risk α-HPV types.

Figure 2 - Cellular targets of the E6 and E7 proteins from specific β-HPVs.
development include the multiplicity and ubiquity of these viruses throughout the human body, the high probability of viral transmission (including autoinoculation), and differences observed in the carcinogenic potential of individual β-HPVs (Table 4). The last IARC monograph (100B) was unable to identify consistent epidemiological evidence for mechanisms explaining the oncogenicity of these viruses have not been fully elucidated.

AUTHORS’ CONTRIBUTIONS

Nunes EM, Talpe-Nunes V and Sichero L critically discussed and wrote the manuscript.

REFERENCES

1. de Villiers EM, Fauquet C, Broker TR, Bernard HU, zur Hausen H. The papillomaviruses. J Virol Methods. 1996;56(2):371-88.
2. de Villiers EM, Fauquet C, Broker TR, Bernard HU, zur Hausen H. The papillomaviruses. J Virol Methods. 1996;56(2):371-88.
3. de Villiers EM. Cross-roads in the classification of papillomaviruses. J Virol Methods. 1997;60(1-2):11-20.
4. Chouhy D, Bolatti EM, Pérez GR, Giri AA. Analysis of the genetic diversity and phylogenetic relationships of putative human papillomaviruses type. J Gen Virol. 2019;100(11):2480-8.
5. IARC Working Group. IARC Monograph on the Evaluation of Carcinogenic Risks to Humans. Lyon: International Agency for Research on Cancer; 2007.
6. Antonsson A, Forslund O, Ekberg H, Sterner G, Hansson BG. The ubiquity and impressive genomic diversity of human skin papillomaviruses suggest a commensalistic nature of these viruses. J Virol. 2000;74(24):11636-41.
7. Battolico D, Chen Z, Dunne A, Ostoloza J, McKinney S, Sun C, et al. The oral cavity contains abundant known and novel human papillomaviruses from the Betapapillomavirus and Gammapapillomavirus genera. J Infect Dis. 2011;204(6):876-83.
8. Forslund O, Iftner T, Andersson K, Lindelof B, Hradil E, Nordin P, et al. Extension of the typing in a general-primer-PCR reverse-lineblotting system to detect all 25 cutaneous beta human papillomaviruses. J Virol Methods. 2007;146(1-2):1-4.
9. Nunes EM, Sudenga SL, Gheit T, Tommasino M, Baggio ML, Ferreira S, et al. Concordance of Beta-papillomavirus at anogenital and oral anatomic sites of men: The HIM Study. J Infect Dis. 2006;194:1395-1402.
10. Nunes EM, Lopez RV, Sudenga SL, Gheit T, Tommasino M, Baggio ML, et al. Concordance of Beta-papillomavirus at anogenital and oral anatomic sites of men: The HIM Study. J Infect Dis. 2006;194:1395-1402.
11. Chouhy D, Bolatti EM, Pérez GR, Giri AA. Analysis of the genetic diversity and phylogenetic relationships of putative human papillomaviruses type. J Gen Virol. 2019;100(11):2480-8.
12. Antonsson A, Forslund O, Ekberg H, Sterner G, Hansson BG. The ubiquity and impressive genomic diversity of human skin papillomaviruses suggest a commensalistic nature of these viruses. J Virol. 2000;74(24):11636-41.
13. Battolico D, Chen Z, Dunne A, Ostoloza J, McKinney S, Sun C, et al. The oral cavity contains abundant known and novel human papillomaviruses from the Betapapillomavirus and Gammapapillomavirus genera. J Infect Dis. 2011;204(6):876-83.
14. Chouhy D, Bolatti EM, Pérez GR, Giri AA. Analysis of the genetic diversity and phylogenetic relationships of putative human papillomaviruses type. J Gen Virol. 2019;100(11):2480-8.
15. IARC Working Group. IARC Monograph on the Evaluation of Carcinogenic Risks to Humans. Lyon: International Agency for Research on Cancer; 2007.
16. Antonsson A, Forslund O, Ekberg H, Sterner G, Hansson BG. The ubiquity and impressive genomic diversity of human skin papillomaviruses suggest a commensalistic nature of these viruses. J Virol. 2000;74(24):11636-41.
17. Battolico D, Chen Z, Dunne A, Ostoloza J, McKinney S, Sun C, et al. The oral cavity contains abundant known and novel human papillomaviruses from the Betapapillomavirus and Gammapapillomavirus genera. J Infect Dis. 2011;204(5):787-92.
18. Forslund O, Iftner T, Andersson K, Lindelof B, Hradil E, Nordin P, et al. Extension of the typing in a general-primer-PCR reverse-lineblotting system to detect all 25 cutaneous beta human papillomaviruses. J Virol Methods. 2007;146(1-2):1-4.
19. Nunes EM, Sudenga SL, Gheit T, Tommasino M, Baggio ML, Ferreira S, et al. Concordance of Beta-papillomavirus at anogenital and oral anatomic sites of men: The HIM Study. J Infect Dis. 2006;194:1395-1402.
20. Mullen DL, Silverberg SG, Penn I, Hammond WS. Squamous cell carcinoma of the skin and lip in renal homograft recipients. Cancer. 1976;37(2):729-34.
21. Barr BB, Benton EC, McLaren K, Bunney MH, Smith JW, Blessing K, et al. Human papilloma virus infection and skin cancer in renal allograft recipients. Lancet. 1989;1(8630):124-9.
22. Shino E, Andreassi L, Finiami M, Valentinio A, Basiochi R. DNA repair after UV-irradiation in skin fibroblasts from patients with actinic keratosis. Arch Dermatol Res. 1978;262(1):55-61.
23. Forslund O, Iftner T, Andersson K, Lindelof B, Hradil E, Nordin P, et al. Cutaneous human papillomaviruses found in sun-exposed skin: Beta-papillomavirus species 2 predominates in squamous cell carcinoma. J Infect Dis. 2007;196(6):578-83.
24. Birkeland SA, Storm HH, Lamm LU, Barlow L, Blohmé I, Forsberg B, et al. Cancer risk after renal transplantation in the Nordic countries, 1964-1986. Int J Cancer. 1995;60(2):183-9.
25. Birkeland SA, Storm HH, Lamm LU, Barlow L, Blohmé I, Forsberg B, et al. Cancer risk after renal transplantation in the Nordic countries, 1964-1986. Int J Cancer. 1995;60(2):183-9.
26. Koranda FC, Dehmel EM, Kahn G, Penn I. Cutaneous complications in immunosuppressed renal homograft recipients. JAMA. 1974;229(4):33-41.
27. Boyle J, MacKie RM, Briggs JD, Junor BJ, Aitchison TC. Cancer, warts, and sunshine in renal transplant patients. A case-control study. Lancet. 1989;1(8914):911-4.
28. Byrne B, Erskine J, Marshall D, Tait M, Healy M, McMillan P, et al. A case-control study of betapapillomavirus infection and cutaneous squamous cell carcinoma. J Invest Dermatol. 2007;127(1):116-9.
29. Loveren H. Sunlight exposure and (sero) prevalence of epidermodysplasia verruciformis-associated human papillomavirus. J Invest Dermatol. 2004;122(6):1456-62.
30. Pflister H. Human papillomavirus and skin cancer. In:elman MP, Howley PM, editors. The Papovaviridae. The Viruses. Boston: Springer; 1987. p. 1-38.
31. Horvath O, Iftner T, Andersson K, Lindelof B, Hradil E, Nordin P, et al. Cutaneous human papillomaviruses found in sun-exposed skin: Beta-papillomavirus species 2 predominates in squamous cell carcinoma. J Infect Dis. 2007;196(6):578-83.
32. Moynihan DE, Threlfall EJ, Sevigny JM, Gray JW, McKie RN, Smith IW, et al. Natural history of cutaneous human papillomavirus (HPV) infection in renal transplant recipients. J Clin Microbiol. 2003;41(6):2087-96.
33. Hazard K, Karlsson A, Andersson K, Ekberg H, Dillner J, Forslund O. Cutaneous human papillomaviruses persist on healthy skin. J Invest Dermatol. 2007;127(1):116-9.
34. Hämström SS, Giuliano AR, Lin HY, Fisher KJ, Abrahamsen ME, Strøk BA, et al. Natural history of cutaneous human papillomavirus (HPV) infection in men: The HIM study. PLoS One. 2014;9(9):e104843.
35. Neale RE, Weissenhorn S, Aabyen D, Bavinck JN, Euvrard S, Feltkamp MC, et al. Human papillomavirus load in eyebrow hair follicles and risk of cutaneous squamous cell carcinoma. Cancer Epidemiol Biomarkers Prev. 2013;22(4):719-27.
36. Birkeland SA, Storm HH, Lamm LU, Barlow L, Blohmé I, Forsberg B, et al. Cancer risk after renal transplantation in the Nordic countries, 1964-1986. Int J Cancer. 1995;60(2):183-9.
37. Birkeland SA, Storm HH, Lamm LU, Barlow L, Blohmé I, Forsberg B, et al. Cancer risk after renal transplantation in the Nordic countries, 1964-1986. Int J Cancer. 1995;60(2):183-9.
squamous cell carcinoma in organ transplant recipients. Am J Transplant. 2011;11(7):1498-508, http://dx.doi.org/10.1111/j.1600-6143.2011.03589.x.

34. Harwood CA, Surentheran T, Sasieni P, Proby CM, Bordea C, Leigh IM, et al. Human papillomavirus infection and non-melanoma skin cancer in immunosuppressed and immunocompetent individuals. J Med Virol. 2000;61(3):289-97, http://dx.doi.org/10.1002/1096-9070(20000701)61:3<289::AID-JMV2>3.0.CO;2-Z.

35. Meyer T, Arndt R, Nindl I, Ulrich C, Christophers E, Stockleth E. Association of human papillomavirus infections with cutaneous tumors in immunosuppressed patients. Transplant Int. 2003;16(6):146-53, http://dx.doi.org/10.1046/j.1432-2277.2003.tb00278.x.

36. Antonsen A, Green AC, Gheit T, Giuliani JL, Messina JL, Fenske NA, et al. Case-control study of genital human papillomaviruses in plucked eyebrow hairs and cutaneous squamous cell carcinoma. J Infect Dis. 2008;198(12):1881-6, http://dx.doi.org/10.1086/585046.

37. Bzhalava D, Mühr LS, Lagheden C, Ekström J, Forslund O, Dillner J, et al. Seroreactivity of 38 human papillomavirus types in epidermodysplasia verruciformis-related human papillomaviruses types is associated with nonmelanoma skin cancer. Cancer Res. 2003;63(10):2955-60, http://dx.doi.org/10.1158/0008-5472.CAN-03-0446.

38. Weissben S, Nindl I, Purdie K, Harwood C, Proby CM, Breuer J, et al. Increased risk of skin cancer associated with the presence of human papillomavirus DNA in plucked hairs from renal transplant recipients and healthy volunteers. J Invest Dermatol. 1997;108(5):712-5, http://dx.doi.org/10.1111/1523-1747.1997.tb08747.x.

39. Weissenborn SJ, Bzhalava D, Bouwes Bavinck JN, Veermeir BJ, et al. Detection of human papillomavirus DNA in plucked hairs from renal transplant recipients and healthy volunteers. J Invest Dermatol. 2003;120(1):209-14, http://dx.doi.org/10.1046/j.1523-1747.2003.1200107.x.

40. Bouwes Bavinck J, Wanningen P, van der Meijden E, Westendorp RG, Ter Schegget J, et al. Human papillomavirus DNA in plucked eyebrow hairs is associated with a history of cutaneous squamous cell carcinoma. J Invest Dermatol. 2003;120(1):151-3, http://dx.doi.org/10.1046/j.1523-1747.2003.1200107.x.

41. Antonsson A, Karanfilovska S, Lindqvist PG, Hansson BG. General diversity of human papillomavirus in the oral cavity but Both mucosal and cutaneous papillomaviruses are in the oral cavity but only alpha genus seems to be associated with cancer. J Clin Microbiol. 2015;53(1):9-21, http://dx.doi.org/10.1128/JCM.03250-14.

42. Weissben S, De Koning MN, Wanningen P, van der Meijden E, Verlaan BP, et al. Seroreactivity to epidermodysplasia verruciformis-related human papillomaviruses is associated with nonmelanoma skin cancer. J Invest Dermatol. 2013;139(1 Pt 1):123-3, http://dx.doi.org/10.1038/jid.2012.4752.2012.02558.x.

43. Arron ST, Ruby JG, Dybbro E, Ganem D, Derisi JL. Transcriptome sequencing demonstrates that human papillomavirus is not active in cutaneous squamous cell carcinoma. J Invest Dermatol. 2011;131(6):1745-53, http://dx.doi.org/10.1038/jid.2011.91.

44. Chahoud J, Semaan A, Chen Y, Cao M, Rieber AG, Rady P, et al. Association Between J-Genus Human Papillomavirus and Cutaneous Squamous Cell Carcinoma in Immunocompetent Individuals: A Meta-analysis. JAMA Dermatol. 2016;152(12):1354-64, http://dx.doi.org/10.1001/jamadermatol.2015.4330.

45. Rollison DE, Pawlita M, Giuliano AR, Lazcano-Ponce E, Villa LL, et al. Diversity of human papillomavirus in the anal canal of men: the HIM Study. Clin Microbiol Infect. 2015;21(5):502-9, http://dx.doi.org/10.1016/j.cmi.2014.12.023.

46. Antonsson A, Bzhalava D, Bouwes Bavinck JN, Ter Schegget J, et al. Presence of human papillomavirus in hairs from different skin areas. Br J Dermatol. 2007;156(5):1078-80, http://dx.doi.org/10.1111/j.1365-2133.2007.08790.x.

47. Bzhalava D, Aboei D, Bouwes Bavinck JN, Euvrard S, Green AC, et al. Prevalence and associated factors of betapapillomavirus infections in individuals without cutaneous squamous cell carcinoma. J Gen Virol. 2009;90(Pt 7):1611-21, http://dx.doi.org/10.1099/jgv.0.13680-0.

48. Weissenborn SJ, Bzhalava D, Bouwes Bavinck JN, Veermeir BJ, et al. Human papillomavirus infection and non-melanoma skin cancer in immunosuppressed and immunocompetent individuals. J Med Virol. 2000;61(3):289-97, http://dx.doi.org/10.1002/1096-9070(20000701)61:3<289::AID-JMV2>3.0.CO;2-Z.

49. Antonsen A, Green AC, Mühr LS, Lagheden C, Ekström J, Forslund O, et al. Seroreactivity to epidermodysplasia verruciformis-related human papillomaviruses is associated with nonmelanoma skin cancer. J Invest Dermatol. 2013;139(1 Pt 1):123-3, http://dx.doi.org/10.1038/jid.2012.4752.2012.02558.x.

50. Liu Z, Rashid T, Nyitray AG. Penises not required: a systematic review and meta-analysis of the potential for human papillomavirus horizontal transmission that differs from the oral cavity but only alpha genus seems to be associated with cancer. J Clin Microbiol. 2013;51(6):2272-6, http://dx.doi.org/10.1128/JCM.02504-13.
Cutaneous HPV infections in human immunodeficiency virus-positive and negative women. J Clin Microbiol. 2006;44(12):4479-85, http://dx.doi.org/10.1128/JCM.01321-06.

84. Oriel JD. Natural history of genital warts. Br J Venere Dis. 1971;47(1):1-13.

85. Doorbar J. Host control of human papillomavirus infection and disease. J Infect Dis. 2017;215(12):1832-5, http://dx.doi.org/10.1093/infdis/jix232.

86. Smith EM, Ritchie JM, Yankowitz J, Wang D, Turek LP, Haugen TH. HPV prevalence and concordance in the cervix and oral cavity of pregnant women. Infect Dis Obstet Gynecol. 2004;12(4):45-56, http://dx.doi.org/10.1109/1508.400099869.

87. Termine N, Giavonelli L, Matranga D, Caleca MP, Bellavia C, Perino A, et al. Oral human papillomavirus infection in women with cervical HPV infection: new data from an Italian cohort and a metaanalysis of the literature. Oral Oncol. 2011;47(4):244-50, http://dx.doi.org/10.1016/j.joraloncology.2011.02.011.

88. Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM. The E6 and E7 oncoproteins of the low-risk human papillomavirus types 16 and 18 E7 oncoprotein is able to bind to the retinoblastoma gene product. J Virol. 1990;63(6):1129-36, http://dx.doi.org/10.1126/science.2157286.

89. Yim EK, Park JS. The role of HPV E6 and E7 oncoproteins in HPV-associated cervical carcinogenesis. Cancer Res Treat. 2005;37(6):319-24. http://dx.doi.org/10.1111/j.1525-7130.2005.00319.x.

90. Simmonds M, Storey A. Identification of the regions of the HPV -88. Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM. The E6 and E7 oncoproteins of the low-risk human papillomavirus types 16 and 18 E6 oncoprotein encoded by human papillomavirus types 16 and 18 pro-virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science. 1989;248(4951):76-9, http://dx.doi.org/10.1126/science.2489456.

91. Shterzer N, Heyman D, Shapiro B, Yaniv A, Jackman A, Serour F, et al. Prevalence and Concordance of Cutaneous Beta Human Papillomavirus Infection at Mucosal and Cutaneous Sites. J Infect Dis. 2015;212(suppl 1):e489-s.