Izergin-Korepin approach to symmetric functions

Kohei Motegi1 and Kazumitsu Sakai2

1 Faculty of Marine Technology, Tokyo University of Marine Science and Technology, Etchujima 2-1-6, Koto-Ku, Tokyo, 135-8533, Japan
2 Department of Physics, Tokyo University of Science, Kagurazaka 1-3, Shinjuku-ku, Tokyo, 162-8601, Japan

E-mail: 1 kmoteg0@kaiyodai.ac.jp 2 k.sakai@rs.tus.ac.jp

Abstract. Recently, the Izergin-Korepin technique, which was originally a method to analyze the domain wall boundary partition functions initiated by Korepin and Izergin, was extended to the wavefunctions of integrable six-vertex models. We illustrate for the case of the rational integrable models.

1. Introduction

Quantum inverse scattering method [1, 2, 3] is one of the traditional methods to study quantum integrable models. In the early days of the birth of the quantum inverse scattering method, Korepin [4] introduced the domain wall boundary partition functions of the six-vertex model, and at the same time he introduced a method to extract the properties which uniquely define the polynomials representing the partition functions. Later, Izergin [5] found the explicit determinant form (Izergin-Korepin determinant) satisfying the properties. The Izergin-Korepin determinant has found applications to the problem of the enumeration of the alternating sign matrices [6, 7]. Also, the Izergin-Korepin technique has been extended to the variations of the domain wall boundary partition functions [7, 8], scalar products [9], and to the Andrews-Baxter-Forrester elliptic integrable model [10] in [11, 12, 13]. The domain wall boundary partition functions for other class of integrable models such as the Perk-Schultz model, the Felderhof model and their elliptic analogues (Okado-Deguchi-Fujii-Martin model, Foda-Wheeler-Zuparic model) [14, 15, 16, 17, 18, 19, 20, 24] have also been investigated [21, 22, 23, 24]. And we recently found a way to extend to the wavefunctions [25, 26, 27, 28, 56]. Today, the wavefunctions are getting paid attention due to their connections with mathematics, in particular with combinatorics and representation theory. This is because the explicit representations of the wavefunctions are expressed as symmetric functions, and the symmetric functions which appear are not only the celebrated ones such as the Schur, Hall-Littlewood, Grothendieck polynomials but also their quantum group deformations and elliptic analogues, and one can study the symmetric functions by using this correspondence. We gave a detailed study for the Izergin-Korepin approach to the wavefunctions for several trigonometric and elliptic models and boundary conditions in [25]. In this article, we illustrate the case for the rational integrable models which were not treated in the paper. Note that there are several other types of techniques of the quantum inverse scattering method developed to analyze the wavefunctions. Today there are extensive studies on this subject. See [29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51], and references therein for example.
2. Rational \(L \)-operator

Let us first introduce two types of two-dimensional vector spaces \(W_a \) and \(F_j \), and denote the orthonormal basis of \(W_a \) and its dual as \(\{ 0 \}_{a}, \{ 1 \}_{a} \) and \(\{ 0 \}_{a}, \{ 1 \}_{a} \), the orthonormal basis of \(F_j \) and its dual as \(\{ 0 \}_{j}, \{ 1 \}_{j} \) and \(\{ 0 \}_{j}, \{ 1 \}_{j} \).

We also introduce the following Pauli spin operators \(\sigma^+ \) and \(\sigma^- \) as operators acting on the (dual) orthonormal basis as

\[
\sigma^+|0\rangle = |1\rangle, \quad \sigma^+|1\rangle = 0, \quad \langle 0|\sigma^+ = \langle 1|, \quad \langle 1|\sigma^- = \langle 0|, \quad \langle 0|\sigma^- = 0.
\]

We now introduce the following rational \(L \)-operator

\[
L_{a_{j}}(z, w_{j}, a_{j}, b_{j}, c_{j}, d_{j}, e_{j}, f_{j}) = \begin{pmatrix}
\frac{a_{j}(z-w_{j})+b_{j}}{h-1} + a_{j} & 0 & 0 & 0 \\
0 & \frac{a_{j}(z-w_{j})+b_{j}}{h-1} & c_{j} & 0 \\
0 & d_{j} & e_{j}(z-w_{j}) + f_{j} - e_{j} & 0 \\
0 & 0 & 0 & e_{j}(z-w_{j}) + f_{j} \frac{h}{h-1}
\end{pmatrix},
\]

which acts on the tensor product space \(W_a \otimes F_j \), and \(a_{j}, b_{j}, c_{j}, d_{j}, e_{j}, f_{j} \) and \(h \) are constant parameters satisfying the following relations

\[
a_{j}e_{j} - c_{j}d_{j}h = 0, \quad b_{j}e_{j} - a_{j}f_{j} + h(h-1)c_{j}d_{j} = 0.
\]

The \(L \)-operator satisfies the RLL relation

\[
R_{ab}(z_{1} - z_{2})L_{a_{j}}(z_{1}, w_{j})L_{b_{j}}(z_{2}, w_{j}) = L_{b_{j}}(z_{2}, w_{j})L_{a_{j}}(z_{1}, w_{j})R_{ab}(z_{1} - z_{2}),
\]

where \(R_{ab}(z) \) is the following rational \(R \)-matrix

\[
R_{ab}(z) = \begin{pmatrix}
\frac{z}{\bar{h}} + 1 - \frac{1}{\bar{h}} & 0 & 0 & 0 \\
0 & \frac{z}{\bar{h}} & 1 - \frac{1}{\bar{h}} & 0 \\
0 & 1 - \frac{1}{\bar{h}} & \bar{h} & 0 \\
0 & 0 & 0 & \frac{z}{\bar{h}} + 1 - \frac{1}{\bar{h}}
\end{pmatrix},
\]

acting on the tensor product space \(W_a \otimes W_b \).

Note that by setting \(a_{j} = c_{j} = d_{j} = 1 - 1/h, \ b_{j} = w_{j} = 0, \ e_{j} = h - 1, \ f_{j} = (h - 1)^2 \), the rational \(L \)-operator \(L_{a_{j}}(z, w_{j}, a_{j}, b_{j}, c_{j}, d_{j}, e_{j}, f_{j}) \) becomes the rational \(R \)-matrix \(R_{a_{j}}(z) \). Note also the following furthermore limit \(h \to \infty \) of the \(R \)-matrix from the six-vertex model to the five-vertex model

\[
R_{a_{j}}(z)_{h \to \infty} = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & z & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}.
\]

3. Wavefunctions

The wavefunctions are constructed from the \(L \)-operator as follows. First, we introduce the \(B \)-operator

\[
B(z|w_{1}, \ldots, w_{M}) = a \langle 0|L_{a_{M}}(z, w_{M}, a_{M}, b_{M}, c_{M}, d_{M}, e_{M}, f_{M}) \cdots L_{a_{1}}(z, w_{1}, a_{1}, b_{1}, c_{1}, d_{1}, e_{1}, f_{1})|1\rangle_{a}.
\]
The B-operators commute with each other

$$[B(z_1|w_1, \ldots, w_M), B(z_j|w_1, \ldots, w_M)] = 0,$$

which follows from the RLL relation (5). The wavefunctions are defined as the following matrix elements of the product of B-operators:

$$W_{M,N}(z_1, \ldots, z_N|w_1, \ldots, w_M|x_1, \ldots, x_N) = \langle x_1 \cdots x_N|B(z_1|w_1, \ldots, w_M) \cdots B(z_N|w_1, \ldots, w_M)|0^M \rangle.$$

Here, $|0^M \rangle := |0\rangle_1 \otimes \cdots \otimes |0\rangle_M \in F_1 \otimes \cdots \otimes F_M$, $|0^M \rangle := 1|0\rangle_1 \otimes \cdots \otimes |0\rangle_M \in F_1^* \otimes \cdots \otimes F_M^*$ are the vacuum vector and its dual, and $\langle x_1 \cdots x_N| (1 \leq x_1 < x_2 < \cdots < x_N \leq M)$ are simple states defined as

$$\langle x_1 \cdots x_N| = \langle 0^M | \prod_{j=1}^N \sigma_{x_j}^z \in F_1^* \otimes \cdots \otimes F_M^*.$$

One can show the following properties of the wavefunctions constructed from the rational L-operator.

Proposition 1. The wavefunctions $W_{M,N}(z_1, \ldots, z_N|w_1, \ldots, w_M|x_1, \ldots, x_N)$ satisfy the following properties.

1. $W_{M,N}(z_1, \ldots, z_N|w_1, \ldots, w_M|x_1, \ldots, x_N)$ are polynomials of degree $N - 1$ in w_M if $x_N = M$.
2. $W_{M,N}(z_1, \ldots, z_N|w_1, \ldots, w_M|x_1, \ldots, x_N)$ are symmetric with respect to z_j, $j = 1, \ldots, N$.
3. The following recursive relations between the wavefunctions hold if $x_N = M$:

$$W_{M,N}(z_1, \ldots, z_N|w_1, \ldots, w_M|x_1, \ldots, x_N)|w_N = z_N + h - b_M/a_M = c_M \prod_{j=1}^{N-1} \frac{a_M(z_j - w_N + 1 - h)}{h(h - 1)} \prod_{j=1}^{M-1} \left(\frac{e_j(z_N - w_j) + f_j}{h - 1} - e_j \right) \times W_{M-1,N-1}(z_1, \ldots, z_{N-1}|w_1, \ldots, w_{M-1}|x_1, \ldots, x_{N-1}).$$

If $x_N \neq M$, the following factorizations hold for the wavefunctions:

$$W_{M,N}(z_1, \ldots, z_N|w_1, \ldots, w_M|x_1, \ldots, x_N) = \prod_{k=1}^{N} \left(\frac{a_M(z_k - w_M) + b_M}{h - 1} + a_M \right) W_{M-1,N}(z_1, \ldots, z_N|w_1, \ldots, w_{M-1}|x_1, \ldots, x_N).$$

4. The following expression holds for the case $N = 1$, $x_1 = M$

$$W_{M,1}(z|w_1, \ldots, w_M|M) = c_M \prod_{k=1}^{M-1} \left(\frac{e_k(z - w_k) + f_k}{h - 1} - e_k \right).$$

Proposition 1 is an extension of the celebrated Korepin’s Lemma for the domain wall boundary partition functions to the wavefunctions. The point is that when we deal with the wavefunctions, one has to deal with two cases $x_N = M$ and $x_N \neq M$, and the smaller wavefunctions which are connected with the wavefunctions of the original size are different between the two cases $x_N = M$ and $x_N \neq M$.

4. Symmetric functions

We introduce the following symmetric functions.

Definition 2. We define the following symmetric functions

\[S_{M,N}(z_1, \ldots, z_n | w_1, \ldots, w_M | x_1, \ldots, x_N) \]

depending on the symmetric variables \(z_1, \ldots, z_n \), complex parameters \(w_1, \ldots, w_M \), and integers \(x_1, \ldots, x_N \) satisfying \(1 \leq x_1 < \cdots < x_N \leq M \),

\[
S_{M,N}(z_1, \ldots, z_n | w_1, \ldots, w_M | x_1, \ldots, x_N) = \sum_{\sigma \in S_N} \prod_{j=1}^{N} \prod_{k=x_j+1}^{M} \left(\frac{a_k(z_{\sigma(j)} - w_k) + b_k}{h - 1} + a_k \right) \prod_{1 \leq j < k \leq N} \frac{z_{\sigma(j)} - z_{\sigma(k)} + 1 - h}{h(z_{\sigma(j)} - z_{\sigma(k)})} \\
\times \prod_{j=1}^{N} \prod_{k=1}^{x_j-1} \left(\frac{e_k(z_{\sigma(j)} - w_k) + f_k}{h - 1} - e_k \right) \prod_{j=1}^{N} c_{x_j}.
\]

We make some remarks. By setting \(a_j = c_j = d_j = 1 - 1/h, \) \(b_j = w_j = 0, \) \(e_j = h - 1, \) \(15 \) becomes

\[
S_{M,N}(z_1, \ldots, z_n | w_1, \ldots, w_M | x_1, \ldots, x_N) = \left(1 - \frac{1}{h} \right)^N \sum_{\sigma \in S_N} \prod_{1 \leq j < k \leq N} \frac{z_{\sigma(j)} - z_{\sigma(k)} + 1 - h}{h(z_{\sigma(j)} - z_{\sigma(k)})} \\
\times \prod_{j=1}^{N} \prod_{k=x_j+1}^{M} \left(\frac{z_{\sigma(j)} - w_k}{h} + 1 - \frac{1}{h} \right) \prod_{j=1}^{N} \prod_{k=1}^{x_j-1} (z_{\sigma(j)} - w_k).
\]

It is easy to take the limit \(h \to \infty \) of (16):

\[
S_{M,N}(z_1, \ldots, z_n | w_1, \ldots, w_M | x_1, \ldots, x_N)|_{h \to \infty} = \sum_{\sigma \in S_N} \prod_{1 \leq j < k \leq N} \frac{1}{z_{\sigma(k)} - z_{\sigma(j)}} \prod_{j=1}^{N} \prod_{k=1}^{x_j-1} (z_{\sigma(j)} - w_k) \\
= \left(-1 \right)^{\sigma} \sum_{\sigma \in S_N} \prod_{j=1}^{N} \prod_{k=1}^{x_j-1} (z_{\sigma(j)} - w_k).
\]

Using the Young diagram \(\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_N) \) \((M - N \geq \lambda_1 \geq \cdots \geq \lambda_N \geq 0) \) in the right hand side of (17) instead of \(x_1, \ldots, x_N \) by the transformation rule \(\lambda_j = x_{N-j+1} - N + j - 1, \) \(j = 1, \ldots, N, \) we find limit of \(S_{M,N}(z_1, \ldots, z_n | w_1, \ldots, w_M | x_1, \ldots, x_N) \) is nothing but the factorial Schur functions

\[
S_{M,N}(z_1, \ldots, z_n | w_1, \ldots, w_M | x_1, \ldots, x_N)|_{h \to \infty} = \det_N \left(\frac{(z_k | w)^{j+N-j}}{(z_j - z_k)} \right)_{1 \leq j < k \leq N},
\]

where

\[
(z|w)^m = (z - w_1) \cdots (z - w_m).
\]

The following correspondence between the wavefunctions and the symmetric functions hold.
Theorem 3. The wavefunctions $W_{M,N}(z_1,\ldots,z_N|w_1,\ldots,w_N|x_1,\ldots,x_N)$ are explicitly expressed as the symmetric functions $S_{M,N}(z_1,\ldots,z_N|w_1,\ldots,w_N|x_1,\ldots,x_N)$

$$W_{M,N}(z_1,\ldots,z_N|w_1,\ldots,w_M|x_1,\ldots,x_N) = S_{M,N}(z_1,\ldots,z_N|w_1,\ldots,w_M|x_1,\ldots,x_N). \quad (20)$$

Theorem 3 can be proved by showing that the rational symmetric functions $S_{M,N}(z_1,\ldots,z_N|w_1,\ldots,w_N|x_1,\ldots,x_N)$ satisfy all the properties listed in Proposition 1.

By setting $a_j = c_j = d_j = 1 - 1/h$, $b_j = w_j = 0$, $e_j = h - 1$ and taking the limit $h \to \infty$, we get the correspondence between the wavefunctions of the five-vertex model and the factorial Schur functions

$$W_{M,N}(z_1,\ldots,z_N|w_1,\ldots,w_M|x_1,\ldots,x_N)|_{h \to \infty} = \frac{\det_N (z_k^j w_{j+N-j})}{\prod_{1 \leq j < k \leq N} (z_j - z_k)}, \quad (21)$$

5. Discussion

We illustrated the Izergin-Korepin analysis on the wavefunctions constructed from the rational L-operator. One can extend the analysis to the elliptic models by using the notion of elliptic polynomials [52, 12]. The notion of the elliptic polynomials was applied to compute the explicit form of the domain wall boundary partition functions of the Andrews-Baxter-Forrester model [10] in [11, 12], for example. The Izergin-Korepin analysis can be extended to the wavefunctions of the elliptic integrable models as well [25, 27, 28]. The Izergin-Korepin technique can also be applied to other boundary conditions such as the reflecting boundary conditions, and we find generalizations of symplectic Schur functions [53, 54] and Bump-Friedberg-Hoffstein Whittaker functions [55] appear. See [56] for example.

6. Acknowledgments

This work was partially supported by grant-in-Aid for and Scientific Research (C) No. 18K03205 and No. 16K05468.

References

[1] Faddeev L D, Sklyanin E K and Takhtajan E K 1979 Theor. Math. Phys. 40 194
[2] Baxter R J 1982 Exactly Solved Models in Statistical Mechanics, Academic Press, London
[3] Korepin V E, Bogoliubov N M and Izergin A G 1983 Quantum Inverse Scattering Method and Correlation functions, Cambridge University Press, Cambridge
[4] Korepin V E 1982 Commun. Math. Phys. 86 391
[5] Izergin A 1987 Sov. Phys. Dokl. 32 878
[6] Bressoud D 1999 Proofs and confirmations: The story of the alternating sign matrix conjecture, MAA Spectrum, Mathematical Association of America, Washington, DC
[7] Kuperberg G 1996 Int. Math. Res. Not. 3 139
[8] Tsuchiya O 1998 J. Math. Phys. 39 5946
[9] Wheeler M 2011 Nucl. Phys. B 852 469
[10] Andrews G E, Baxter R J and Forrester P J 1984 J. Stat. Phys. 35 193
[11] Rostegren H 2009 Adv. Appl. Math. 43 137
[12] Pakuliak S, Rubtsov V and Silantyev A 2008 J. Phys. A: Math. Theor. 41 295204
[13] Filali G 2011 J. Geom. Phys. 61 1789
[14] Felderhof B 1973 Physica 65 421
[15] Murakami J 1991 Infinite analysis, Adv. Ser. Math. Phys. 16B 765
[16] Deguchi T and Akutsu Y 1993 J. Phys. Soc. Jpn. 62 19
[17] Perk J-H-H and Schultz C.L 1981 Phys. Lett. A 84 407
[18] Okado M 1991 Lett. Math. Phys. 22 39
[19] Deguchi T and Fujii A 1991 *Mod. Phys. Lett. A* 6 3413
[20] Deguchi T and Martin P 1992 *Int. J. Mod. Phys. A* 7 Suppl 1A 165
[21] Zhao S-Y and Zhang Y-Z 2007 *J. Math. Phys.* 48 023504
[22] Caradoc A D, Foda O, Wheeler M and Zuparic M L 2007 *J. Stat. Mech.* 0703 P03010
[23] Brubaker B and Schultz A 2015 *J. Alg. Comb.* 42 917
[24] Foda O, Wheeler M and Zuparic M 2008 *J. Stat. Mech.* P02001
[25] Motegi K 2018 *J. Math. Phys.* 59 053505
[26] Motegi K 2017 *Adv. Math. Phys.* Article ID 7563781
[27] Motegi K 2017 *Prog. Theo. Exp. Phys.* 2017 123A01
[28] Motegi K 2018 *J. Geom. Phys.* 134 58
[29] Bogoliubov N M 2005 *J. Phys. A: Math. Gen.* 38 9415
[30] Brubaker B, Bump D and Friedberg S 2011 *Commun. Math. Phys.* 308 281
[31] Bump D, McNamara P and Nakasuji M 2014 *Comm. Math. Univ. St. Pauli* 63 23
[32] Lascoux A 2007 *SIGMA* 3 029
[33] Korff C and Stroppel C 2010 *Adv. Math.* 225 200
[34] Korff C 2014 *Lett. Math. Phys.* 104 771
[35] Gorbounov V and Korff C 2017 *Adv. Math.* 313 282
[36] Motegi K and Sakai K 2013 *J. Phys. A: Math. Theor.* 46 355201
[37] Motegi K and Sakai K 2014 *J. Phys. A: Math. Theor.* 47 445202
[38] Beta D and Wheeler M 2016 *J. Comb. Th. Ser. A* 137 126
[39] Beta D, Wheeler M and Zinn-Justin P 2015 *J. Alg. Comb.* 42 555
[40] Wheeler M and Zinn-Justin P 2016 *Adv. Math.* 299 543
[41] Borodin A 2017 *Adv. in Math.* 306 973
[42] Borodin A and Petrov L 2016 *Sel. Math. New Ser.* 1
[43] Takeyama Y 2014 *J. Phys. A* 47 465203
[44] Takeyama Y *On the eigenfunctions for the multi-species q-Boson system* [arXiv:1606.00578]
[45] van Diejen J.F and Emsiz E 2017 *Commun. Math. Phys.* 350 1017
[46] Hamel A and King R.C 2002 *J. Algebraic Comb.* 16 269
[47] Hamel A and King R.C 2005 *J. Algebraic Comb.* 21 395
[48] Ivanov D 2012 *Symplectic ice, in Multiple Dirichlet Series, L-Functions, and Automorphic Forms*, D. Bump, S. Friedberg and D. Goldfeld, eds., *Progress in Math.* 300 Birkhauser Boston, 205-222
[49] Ivanov D 2010 *Part I, Symplectic ice, Part II, Global and local Kubota symbols*, PhD. Thesis, Stanford University, USA
[50] Tabony S J 2011 *Deformations of characters, metaplectic Whittaker functions and the Yang-Baxter equation*, PhD. Thesis, Massachusetts Institute of Technology, USA
[51] Brubaker B, Bump D, Chinta G and Gunnells P E 2012 *Metaplectic functions and crystals of type B, in Multiple Dirichlet Series, L-Functions, and Automorphic Forms*, D. Bump, S. Friedberg and D. Goldfeld, eds., *Progress in Math.* 300 Birkhauser Boston, 93-118
[52] Felder G and Schorr A 1999 *J. Phys. A: Math. Gen.* 32 8001
[53] Morris A 1958 *J. London Math. Soc.* 33 326
[54] King R 1975 *J. Phys. A* 8 429
[55] Bump D, Friedberg S and Hoffstein J 1991 *Duke Math. J.* 63 379
[56] Motegi K, Sakai K and Watanabe S *Quantum inverse scattering method and generalizations of the symplectic Schur functions and the Whittaker functions* [arXiv:1809.03180]