ROYDEN’S LEMMA IN INFINITE DIMENSIONS AND LOOP SPACES AS HILBERT-HARTOGS MANIFOLDS

M. ANAKKAR, S. IVASHKOVICH

ABSTRACT. We prove the Royden’s Lemma for complex Hilbert manifolds, i.e., that a holomorphic imbedding of the closure of a finite dimensional, strictly pseudoconvex domain into a complex Hilbert manifold extends to a holomorphic imbedding of the product of this domain with the unit ball in Hilbert space. This reduces several problems concerning complex Hilbert manifolds to open subsets of a Hilbert space. As an illustration we prove a version of Behnke’s Continuity Principle for complex Hilbert manifolds and give some results on generalized loop spaces of complex manifolds.

Contents

1. Introduction and statement of results
2. Royden’s Lemma and Continuity Principle
3. Loop spaces of Hartogs manifolds are Hilbert-Hartogs
References

1. Introduction and statement of results

1.1. Royden’s Lemma. Our main result in this paper is the following Royden’s Lemma for complex Hilbert manifolds.

Theorem 1. Let \(f : \overline{D} \to X \) be a holomorphic imbedding of a closure of a finite dimensional bounded strictly pseudoconvex domain \(D \subseteq \mathbb{C}^q \) to a complex Hilbert manifold \(X \). Then there exists an extension of \(f \) to a holomorphic imbedding \(\tilde{f} : \overline{D} \times \overline{B}^\infty \to X \).

Here \(B^\infty(r) \) stands for the ball of radius \(r \) in \(l^2 \), \(B^\infty := B^\infty(1) \) is the unit ball. Hilbert manifolds in this paper are modeled over \(l^2 \), and are assumed to be second countable. It is worth to mention at this point that all holomorphic Hilbert bundles over such \(D \) are trivial, see [Bu]. This statement allows to reduce some questions, such as the proof of the Continuity Principle for example, from Hilbert manifolds to open subsets in \(l^2 \).

1.2. Continuity Principle and Hilbert-Hartogs manifolds. Analogously to the finite dimensional case we say that a complex Hilbert manifold \(X \) is \(q \)-Hartogs (or, simply Hartogs when \(q = 1 \)) if every holomorphic mapping \(f : H^1_q(r) \to X \) of the \(q \)-concave Hartogs figure \(H^1_q(r) := (\Delta^q \times \Delta(r)) \cup (A^q_{r_1} \times \Delta) \subseteq \mathbb{C}^{q+1} \) with values in \(X \) extends to a holomorphic map \(\tilde{f} : \Delta^{q+1} \to X \) of the unit polydisk to \(X \). Here \(A^q_{r_1,r_2} = \Delta^q(r_2) \setminus \Delta^q(r_1) \) is a ring domain, \(r_2 > r_1 \). We say that \(X \) is Hilbert-Hartogs when \(q \) is irrelevant or, clear...
from the context. Our next goal is to show that Hilbert-Hartogs manifolds possess much stronger extension properties than it is postulated in their definition.

Definition 1. A q-concave Hartogs figure in l^2 is the following open set

$$H_q^\infty(r) := (\Delta^q \times B^\infty(r)) \cup (A_{q-1}^1 \times B^\infty),$$

where $0 < r < 1$.

Theorem 2. Let X be a q-Hartogs Hilbert manifold. Then for every $r > 0$ every holomorphic mapping $f : H_q^\infty(r) \to X$ extends to a holomorphic mapping $\tilde{f} : \Delta^q \times B^\infty \to X$.

As an immediate consequence we obtain the following statement.

Corollary 1. Let D be a domain in a complex Hilbert manifold X which is q-pseudoconcave at a boundary point p. Then every holomorphic map $f : D \to Y$ to a q-Hartogs Hilbert manifold Y extends holomorphically to a neighborhood of p.

The proof of this corollary follows from Theorem 2 by appropriately placing the Hartogs figure $H_q^\infty(r)$ near $p \in \partial D$. Our next goal is the following infinite dimensional version of the classical Continuity Principle in the form of Behnke, see [Bh].

Theorem 3. (Continuity Principle) Let D be an open subset in a complex Hilbert manifold X and let Y be a q-Hartogs Hilbert manifold. Suppose we are given a sequence of analytic q-disks $\{\varphi_n : \Delta^q \to X\}$ such that

i) φ_n converge uniformly on Δ^q to an imbedded analytic q-disk $\varphi_0 : \Delta^q \to X$;

ii) $\varphi_n(\partial \Delta^q) \subset D$ and $\varphi_n(\partial \Delta^q) \subset D$.

Then every holomorphic mapping $f : D \to Y$ holomorphically extends to a neighborhood of $\varphi_0(\Delta)$ which doesn’t depend on f.

The main ingredient in the proofs of Theorems 2 and 3 is the Royden’s Lemma of Theorem 1. The same for Corollary 1 because for placing the Hartogs figure “near p” one should place the discolor $\Delta^q \times B^\infty$ first.

1.3. Loop spaces as Hilbert-Hartogs manifolds. One finds Hilbert-Hartogs manifolds more often than one could expect. In order to provide such examples we concentrate our attention in section 3 on loop spaces of complex manifolds. Fix a compact (with boundary or not) manifold S and a finite dimensional complex manifold X. Then the manifold $W_{S,X}^{k,2} := W^{k,2}(S,X)$ of Sobolev $W^{k,2}$-maps carries a natural structure of a complex Hilbert manifold, see [L1] or, section 3. Here $k \geq n = \dim_{\mathbb{R}} S$ to ensure that mappings from this space are continuous. Manifold $W_{S,X}^{k,2}$ is usually called a generalized loop space of X. We prove the following statement.

Theorem 4. A generalized loop space of a q-Hartogs complex manifold is a q-Hartogs Hilbert manifold.

This provides us a lot of interesting examples of infinite dimensional Hilbert-Hartogs manifolds. For example let $S = \mathbb{S}^1$ be the circle and X a connected Riemann surface. Remark that X is Hartogs if and only if X is different from the Riemann sphere \mathbb{P}^1. Therefore all loop spaces $W_{S^1,X}^{k,2}$ for $X \neq \mathbb{P}^1$ are Hilbert-Hartogs. Or, let G be a complex Lie group. Then by [ASY] G is Hartogs. Therefore the loop space, which is classically denoted as LG, is also Hartogs (1-Hartogs to be precise). Moreover, some “a priori unknown” compact complex manifolds (like surfaces from the class VII_0^+ of \mathbb{S}^3) if they
Royden’s Lemma and Continuity Principle

2. ROYDEN’S LEMMA AND CONTINUITY PRINCIPLE

2.1. Proof of the Royden’s Lemma. Let \(\mathcal{X} \) be a complex Hilbert manifold modeled over \(\mathbb{P}^2 \). Let \(f : \bar{D} \to \mathcal{X} \) be a holomorphic imbedding and choose \(r > 0 \) such that \(f \) extends to a \(r \)-neighborhood of \(D \), i.e \(D^r = \{ z \in \mathbb{C}^4 : d(z, \partial D) < r \} \). Set \(f(\bar{D}) = M \) and \(f(D^r) = M^r \). Since \(M \) is compact there exists a finite covering \((\Omega_\alpha, \varphi_\alpha)_{\alpha \in A}\) of \(M \) by coordinate balls.

Step 1. One can choose this covering in such a way that:

- \(\forall \alpha \in A, U_\alpha := \varphi_\alpha(\Omega_\alpha) \subset D^r \times B^\infty(\delta) \), where \(B^\infty(\delta) \) is the ball of radius \(\delta > 0 \) centered at zero in \(\mathbb{P}^2 \). Moreover, \(\varphi_\alpha(\Omega_\alpha \cap M^r) \subset D^r \times \{ 0 \} \).
- \(\forall z \in f^{-1}(\Omega_\alpha \cap \Omega_\beta \cap M^r) \) one has \(\varphi_\alpha \circ \varphi_\beta^{-1}(z, 0) = (z, 0) \).
- \(\forall \alpha \) and \(\forall z \in f^{-1}(\Omega_\alpha \cap M^r) \) one has \(\varphi_\alpha(f(z)) = (z, 0) \).
- \(\forall \alpha, \beta \in A, \forall z \in f^{-1}(\Omega_\alpha \cap \Omega_\beta \cap M^r) \) one has \((d\varphi_\alpha^{-1})_{f(z)} = (d\varphi_\beta^{-1})_{f(z)} \) and, moreover, \((d^2\varphi_\alpha^{-1})_{f(z)} = (d^2\varphi_\beta^{-1})_{f(z)} \).

The first two items are proved in Lemma 2.1 of [AZ], the third and fourth in subsections 2.3 and 1.4 of [AZ]. This means that the normal bundle to \(M \) is trivialized to second order.

Set of \(\Omega = \bigcup_{\alpha \in A} \Omega_\alpha \). Assuming that \(\mathcal{X} \) is second countable we can refine our covering to get a (countable this time) covering by coordinate balls, still denoted as \(\{ \Omega_\alpha \}_{\alpha \in A} \), and construct a partition of unity \(\{ \eta_\alpha \}_{\alpha \in A} \) on \(\Omega \) subordinated to this refined \(\{ \Omega_\alpha \}_{\alpha \in A} \) such that \(\operatorname{supp} \eta_\alpha \subset \Omega_\alpha \) for \(\alpha \in A \). See [AZ] for details and remark that in notations of [AZ] \(\{(B_n, g_n)\} \) does the job. Consider functions \(\theta_\alpha : \Omega \to \mathbb{P}^2 \) defined as follows

\[
\theta_\alpha(m) = \begin{cases}
\eta_\alpha(m)\varphi_\alpha(m) & \text{if } m \in \Omega_\alpha, \\
0 & \text{otherwise.}
\end{cases} \tag{2.1}
\]

Function \(\theta_\alpha \) is of class \(C^\infty \) on \(\Omega \) supported in \(\Omega_\alpha \). Let \(< e_j > \) be the canonical base of \(\mathbb{P}^2 \), i.e., \(e_1 = (1, 0, ...) \) and so on. Decompose \(\varphi_\alpha(m) = (\varphi_\alpha^1(m), \varphi_\alpha^2(m)) \) with respect to this base, i.e., \(\varphi_\alpha^1(m) \leq e_1 \) and \(\varphi_\alpha^2(m) \leq e_1 > _1 = < e_2, e_3, ... > \). Remark that the following \(\mathbb{P}^2 \)-valued function

\[
u_\alpha(m) := \frac{1}{2\pi i} \int_{\xi \in \mathbb{C}} \frac{(\partial_\theta_\alpha)_{\varphi_\alpha^{-1}(\xi, \varphi_\alpha^2(m))} \circ (d\varphi_\alpha^{-1})_{(\xi, \varphi_\alpha^2(m))}(e_1)}{\xi - \varphi_\alpha^1(m)} d\xi d\bar{\xi} \tag{2.2}
\]

is well defined and smooth on \(\Omega_\alpha \). Indeed, if \((\xi, \varphi_\alpha^2(m)) \) leaves \(\varphi_\alpha(\operatorname{supp} \eta_\alpha) \) the form \(\partial_\theta_\alpha |_{\varphi_\alpha^{-1}(\xi, \varphi_\alpha^2(m))} \) vanishes.

Remark 2.1. Remark that \(u_\alpha \) vanishes near \(\partial \Omega_\alpha \cap \varphi_\alpha^{-1}(\{z_1 = 0\}) \). Indeed, \(\partial_\theta_\alpha |_{\varphi_\alpha^{-1}(\xi, \varphi_\alpha^2(m))} \) vanishes identically in \(\xi \) for such \(m \).

Step 2. Function \(u_\alpha \) satisfies

\[
\bar{\partial} u_\alpha = \partial \theta_\alpha \tag{2.3}
\]

on \(\Omega_\alpha \) and consequently \(u_\alpha \) extends by zero to the whole of \(\Omega \) still satisfying (2.3).
Note that due to the holomorphicity of \(\varphi_\alpha \) one obviously has
\[
(\bar{\partial} \varphi_\alpha \circ d\varphi_\alpha^{-1})(\xi, \varphi_\alpha(m)) = \bar{\partial}(\varphi_\alpha \circ \varphi_\alpha^{-1})(\xi, \varphi_\alpha(m)),
\]
and therefore
\[
u_\alpha(m) = \frac{1}{2\pi i} \int_{\xi \in \mathbb{C}} \frac{\partial(\varphi_\alpha \circ \varphi_\alpha^{-1})(\xi, \varphi_\alpha(m))}{\xi - \varphi_\alpha'(m)} \, d\xi \wedge d\overline{\xi} = \frac{1}{2\pi i} \int_{\xi \in \mathbb{C}} \frac{\partial(\varphi_\alpha \circ \varphi_\alpha^{-1})(\xi, \varphi_\alpha(m))}{\xi - \varphi_\alpha'(m)} \, d\xi \wedge d\overline{\xi}.
\]
(2.4)
Denote coordinates in the chart \((\Omega_\alpha, \varphi_\alpha)\) as \(z = (z_1, z')\). Setting \(m = \varphi_{\beta}^{-1}(z)\) in (2.4) we get after the coordinate change \(\xi - \varphi_\alpha'(m) \rightarrow \xi\) the following
\[
u_\alpha \circ \varphi_\alpha^{-1}(z) = \frac{1}{2\pi i} \int_{\xi \in \mathbb{C}} \frac{\partial(\varphi_\alpha \circ \varphi_\alpha^{-1})(\xi, z')}{\xi - z_1} \, d\xi \wedge d\overline{\xi} = \frac{1}{2\pi i} \int_{\xi \in \mathbb{C}} \frac{\partial(\varphi_\alpha \circ \varphi_\alpha^{-1})(\xi + z_1, z')}{\xi} \, d\xi \wedge d\overline{\xi}.
\]
Then for any \(j \in \mathbb{N}^*\) we have
\[
\frac{\partial(u_\alpha \circ \varphi_\alpha^{-1})}{\partial z_j}(z) = \frac{1}{2\pi i} \int_{\xi \in \mathbb{C}} \frac{\partial(\varphi_\alpha \circ \varphi_\alpha^{-1})(\xi, z')}{\xi} \, d\xi \wedge d\overline{\xi} = \frac{1}{2\pi i} \int_{\xi \in \mathbb{C}} \frac{\partial(\varphi_\alpha \circ \varphi_\alpha^{-1})(\xi + z_1, z')}{\xi} \, d\xi \wedge d\overline{\xi} = \frac{\partial(\varphi_\alpha \circ \varphi_\alpha^{-1})}{\partial z_j}(z),
\]
and this means that \(\partial u_\alpha = \bar{\partial} \varphi_\alpha\) on \(\Omega_\alpha\).

Since \(\theta_\alpha\) vanishes near \(\partial \Omega_\alpha\) we see that \(u_\alpha\) is holomorphic there. By the Remark 2.1 above and uniqueness theorem for holomorphic functions this implies that \(u_\alpha\) vanishes near \(\partial \Omega_\alpha\) and therefore extends by zero to the whole of \(\Omega\) still satisfying (2.3) there. **Step 3.** Set \(\theta := \sum_{\alpha \in A} \theta_\alpha\) and \(u := \sum_{\alpha \in A} u_\alpha\). We claim that \(\forall z \in \mathring{D}\) one has
\[
\theta(f(z)) - u(f(z)) = (z, 0).
\]
(2.5)
First remark that \(\forall z \in \mathring{D}\) we have
\[
\theta(f(z)) = \sum_{\alpha \in A} \eta_\alpha(f(z)) \varphi_\alpha(f(z)) = \sum_{\alpha \in A} \eta_\alpha(f(z))(z, 0) = (z, 0).
\]
(2.6)
Therefore all we need is to prove that
\[
u(f(z)) = 0.
\]
(2.7)
We have that
\[
(d\varphi_\alpha^{-1})(z, 0) = (d\varphi_\beta^{-1})(z, 0)
\]
for all \(\alpha, \beta\). Denote therefore this operator simply as \(d\varphi_\alpha^{-1}\). Write now
\[
u(f(z)) = \sum_{\alpha \in A} \frac{1}{2\pi i} \int_{\xi \in \mathbb{C}} \frac{\partial(\varphi_\alpha \circ \varphi_\alpha^{-1})(\xi, \varphi_\alpha(f(z)))}{\xi} \, d\xi \wedge d\overline{\xi} = \frac{1}{2\pi i} \int_{\xi \in \mathbb{C}} \frac{\sum_{\alpha \in A} \partial(\varphi_\alpha \circ \varphi_\alpha^{-1})(\xi, \varphi_\alpha(f(z)))}{\xi} \, d\xi \wedge d\overline{\xi}.
\]
Since
\[\sum_{\alpha \in A} (\tilde{\partial}_\alpha)_{\varphi^{-1}_\alpha}(\xi, z', 0) = \sum_{\alpha \in A} \tilde{\partial}(\eta_{\alpha} \varphi_{\alpha}) f(\xi, z') = \left(\sum_{\alpha \in A} (\tilde{\partial}_\alpha)_{f(\xi, z')} \right) (\xi, z', 0) = \]
\[= \tilde{\partial} \left(\sum_{\alpha \in A} \eta_{\alpha} \right)_{f(\xi, z')} (\xi, z', 0) = 0 \]
we get (2.7) and therefore (2.5).

Set \(\psi := \theta - u \). Remark that by step 2 \(\psi \) is holomorphic in \(\Omega \) and by step 3
\[\psi(f(z)) = (z, 0). \] (2.8)

Step 4. Differential \(d\psi f(z) \) is bijective \(\forall z \in \tilde{D} \). As above we write \(d\varphi f(z) \) for \((d\varphi_\alpha) f(z) \) since it does not depend on the chart. We have
\[(d\theta)_{f(z)} = \sum_{\alpha} \eta_{\alpha}(f(z)) (d\varphi_\alpha)_{f(z)} + \sum_{\alpha} (d\eta_{\alpha})_{f(z)} \varphi_{\alpha}(f(z)) = \sum_{\alpha} \eta_{\alpha}(f(z)) (d\varphi_\alpha)_{f(z)} + \]
\[+ \sum_{\alpha} (d\eta_{\alpha})_{f(z)}(z, 0) = 1 \cdot (d\varphi)_{f(z)} + d(1)_{f(z)}(z, 0) = (d\varphi)_{f(z)}. \]

Now we are going to prove that \(du f(z) = 0 \). Fix \(\alpha_0 \) such that \(\Omega_{\alpha_0} \ni f(z) \) and for any \(\alpha \in A \) write
\[u_{\alpha} \circ \varphi_{\alpha_0}^{-1}(z, w) = \frac{1}{2\pi i} \int_{\xi \in \mathbb{C}} (\tilde{\partial}_\alpha)_{\varphi^{-1}_\alpha(\xi_1 + \varphi_{\alpha_0} \varphi_{\alpha_0}^{-1}(z, w))} (d\varphi_{\alpha}^{-1})_{\varphi_{\alpha_0}^{-1}(\xi_1 + \varphi_{\alpha_0} \varphi_{\alpha_0}^{-1}(z, w))}(\xi_1) \frac{d\xi \wedge d\bar{\xi}}{\xi}, \] (2.9)
here \((z, w) \) are natural coordinates in \(D^r \times D^l \) and \(m = \varphi_{\alpha_0}^{-1}(z, w) \) as usual.

Let us compute differentials under the integral in (2.9). First
\[(\tilde{\partial}_\alpha)_{\varphi_{\alpha}^{-1}(\xi_1 + \varphi_{\alpha_0} \varphi_{\alpha_0}^{-1}(z, w))} = (\tilde{\partial}_\alpha)_{\varphi_{\alpha}^{-1}(\xi_1 + \varphi_{\alpha_0} \varphi_{\alpha_0}^{-1}(z, w))} = (\tilde{\partial}_\alpha)_{\varphi_{\alpha}^{-1}(\xi_1 + \varphi_{\alpha} \varphi_{\alpha_0}^{-1}(z, w))} = (\tilde{\partial}_\alpha)_{\varphi_{\alpha}^{-1}(\xi_1 + \varphi_{\alpha} \varphi_{\alpha_0}^{-1}(z, w))} = (\tilde{\partial}_\alpha)_{\varphi_{\alpha}^{-1}(\xi_1 + \varphi_{\alpha} \varphi_{\alpha_0}^{-1}(z, w))} \]
\[= (\tilde{\partial}_\alpha)_{\varphi_{\alpha}^{-1}(\xi_1 + \varphi_{\alpha} \varphi_{\alpha_0}^{-1}(z, w))} + d(\tilde{\partial}_\alpha)_{\varphi_{\alpha}^{-1}(\xi_1 + \varphi_{\alpha} \varphi_{\alpha_0}^{-1}(z, w))}(d\varphi_{\alpha}^{-1})_{\xi_1 + \varphi_{\alpha} \varphi_{\alpha_0}^{-1}(z, w)}(0, w) + o(||w||). \] (2.10)

Since \(\varphi_{\alpha}^{-1}(\xi_1 + \varphi_{\alpha} \varphi_{\alpha_0}^{-1}(z, w)) = f(\xi_1 + z) \) we have that
\[(\tilde{\partial}_\alpha)_{\varphi_{\alpha}^{-1}(\xi_1 + \varphi_{\alpha} \varphi_{\alpha_0}^{-1}(z, w))} = (\tilde{\partial}_\alpha)_{f(\xi_1 + z)} + d(\tilde{\partial}_\alpha)_{f(\xi_1 + z)}(d\varphi_{\alpha}^{-1})_{\xi_1 + \varphi_{\alpha} \varphi_{\alpha_0}^{-1}(z, w)}(0, w) + o(||w||) \]

Compute furthermore
\[(d\varphi_{\alpha}^{-1})_{\xi_1 + \varphi_{\alpha} \varphi_{\alpha_0}^{-1}(z, w)} = (d\varphi_{\alpha}^{-1})_{\xi_1 + \varphi_{\alpha} \varphi_{\alpha_0}^{-1}(z, w)} + d(\varphi_{\alpha} \varphi_{\alpha_0}^{-1}(z, w)) + o(||w||) = \]
\[= (d\varphi_{\alpha}^{-1})_{\xi_1 + \varphi_{\alpha} \varphi_{\alpha_0}^{-1}(z, w)} + d(\varphi_{\alpha} \varphi_{\alpha_0}^{-1}(z, w)) + o(||w||) \] (2.11)
then
\[(d\varphi_{\alpha}^{-1})_{\xi_1 + \varphi_{\alpha} \varphi_{\alpha_0}^{-1}(z, w)} = (d\varphi_{\alpha}^{-1})_{\xi_1 + \varphi_{\alpha} \varphi_{\alpha_0}^{-1}(z, w)} + (d^2 \varphi_{\alpha}^{-1})_{\xi_1 + \varphi_{\alpha} \varphi_{\alpha_0}^{-1}(z, w)}(0, w) + o(||w||) \]

Substituting (2.10) and (2.11) to (2.9) and taking a sum on \(\alpha \) we get
\[u \circ \varphi_{\alpha_0}^{-1}(z, w) = \sum_{\alpha} \frac{1}{2\pi i} \int_{\xi \in \mathbb{C}} (\tilde{\partial}_\alpha)_{\varphi_{\alpha_0}^{-1}(\xi_1 + \varphi_{\alpha_0} \varphi_{\alpha_0}^{-1}(z, w))} (d\varphi_{\alpha}^{-1})_{\varphi_{\alpha_0}^{-1}(\xi_1 + \varphi_{\alpha_0} \varphi_{\alpha_0}^{-1}(z, w))}(\xi_1) \frac{d\xi \wedge d\bar{\xi}}{\xi} \]
\[\frac{1}{2\pi i} \sum_{\alpha \in A} \int \left[(\bar{\partial} \theta_{\alpha})_{f(\xi_{1} + z)} + d(\bar{\partial} \theta_{\alpha})_{f(\xi_{1} + z)} (d\varphi^{-1})_{\xi_{1} + (z,0)} (0,w) + o(||w||) \right] \times \]
\[\times \left[(d\varphi^{-1})_{\xi_{1} + (z,0)} + (d^2 \varphi^{-1})_{\xi_{1} + (z,0)} (0,w) + o(||w||) \right] \frac{d\xi \wedge d\bar{\xi}}{\xi} = u \circ \varphi^{-1}_{\alpha}(z,0) + \]
\[+ \frac{1}{2\pi i} \sum_{\alpha \in A \in C} \int d(\bar{\partial} \theta_{\alpha})_{f(\xi_{1} + z)} \left[(d\varphi^{-1})_{\xi_{1} + (z,0)} (0,w), (d\varphi^{-1})_{\xi_{1} + (z,0)} (e_1) \right] \frac{d\xi \wedge d\bar{\xi}}{\xi} + \]
\[+ \frac{1}{2\pi i} \sum_{\alpha \in A} \int (\bar{\partial} \theta_{\alpha})_{f(\xi_{1} + z)} (d^2 \varphi^{-1})_{\xi_{1} + (z,0)} [(0,w), e_1] \frac{d\xi \wedge d\bar{\xi}}{\xi} + o(||w||) \]

(2.12)

Taking into account the fact that \(d\varphi^{-1}(z,0) \) and \(d^2 \varphi^{-1}(z,0) \) do not depend on \(\alpha \) and that
\[\bar{\partial} \theta_{f(z)} = \sum_{\alpha \in A} (\bar{\partial} \eta_{\alpha})_{f(z)} \cdot \varphi_{\alpha}(f(z)) = \sum_{\alpha \in A} \bar{\partial}_f(z) (0,0) = 0 \]
we conclude from (2.12) that \(d(u \circ \varphi^{-1}_{\alpha}(z,0)) = 0 \). So \(d\psi = d\varphi \) and \(d\psi \) is invertible on a neighborhood \(V \subset \Omega \) of \(M \). Then one can define the map \(F : \tilde{D} \times B^{\infty}(\epsilon) \rightarrow X \) by \(F(z,w) = \psi^{-1}(z,w) \) for \(\epsilon > 0 \) small enough. Theorem \(\square \) is proved.

\[\square \]

2.2. Infinite dimensional Hartogs figures. Now we shall prove Theorem 2 from Introduction. We identify \(\mathbb{C}^q \) with \(i^2_q := \text{span} \{ e_1, \ldots, e_q \} \subset i^2 \). For a unit vector \(v \in i^2 \) orthogonal to \(\mathbb{C}^q \) set \(L_v := \text{span} \{ e_1, \ldots, e_q, v \} \). Remark that \(L_v \cap H^{\infty}_q (r) = H^1_q (r) \) and therefore given a holomorphic mapping \(f : H^1_q (r) \rightarrow X \) its restriction to \(L_v \cap H^{\infty}_q (r) \) holomorphically extends to \(L_v \cap (\Delta^q \times B^{\infty}) \). We conclude that for every line \(< v > \subset \mathbb{C}^q \) the restriction \(f|_{L_v} \) holomorphically extends onto \(L_v \cap (\Delta^q \times B^{\infty}) \), giving us an extension \(\tilde{f} \) of \(f \) to \(\Delta^q \times B^{\infty} \). This extension is correctly defined because for unit vectors \(v \neq w \) orthogonal to \(\mathbb{C}^q \) the spaces \(L_v, L_w \) intersect only by \(\mathbb{C}^q \times \{ 0 \} \).

Let us prove the continuity of \(\tilde{f} \). Consider the sequence \((Z_n)_{n \geq 1} \) defined by \(Z_n = (z^n, w^n) \) such that \(Z_n \rightarrow Z_0 = (z^0, w^0) \). Here \(z \in \Delta^q \) and \(w \in B^{\infty} \). Take \(R \) such that \(1 - r < R < 1 \) with \(||z^n||, ||w^n|| < R \) for all \(n \in \mathbb{N} \). Let \(\varphi_n : \Delta^q (R) \times \Delta \rightarrow X \) be an analytic disk defined by \(\varphi_n (z, \eta) = \tilde{f} (z, \eta w^n) \). Theorem 1 gives a neighborhood \(V \cong \Delta^{q+1} \times B^{\infty} \) of the graph of \(\varphi_0 \). Let \(v_n \in \mathbb{C}^q \) be such that \(L_{v_n} \) contains \(Z_n \). For \(w^n \) close enough to \(w^0 \) the graph of \(\varphi_n \) over \((L_{v_n} \cap H^{\infty}_q (r) \subseteq V \), because \((L_{v_n} \cap H^{\infty}_q (r) \subseteq H^{\infty}_q (r) \) where \(\tilde{f} \) is holomorphic. By the classical Hartogs extension theorem for holomorphic functions the graph of \(\varphi_n \) over the whole set \(\Delta^q (R) \times \Delta \) is contained in the neighborhood \(V \). Then, by maximum principle \(\varphi_n \) converges uniformly to \(\varphi_0 \). Therefore \(\tilde{f} \) is continuous.

What is left to prove is that this extension is Gâteaux differentiable. Take some \(z^0 \in \Delta^q \times B^{\infty} \) and fix some direction \(v \) at \(z^0 \). Let \(l := \{ z^0 + tv : t \in \mathbb{C} \} \) be the line through \(z^0 \) in the direction \(v \). Find (at most) two vectors \(v_1, v_2 \) such that \(e_1, \ldots, e_q, v_1, v_2 \) is the orthonormal basis of the subspace \(L \) containing \(\mathbb{C}^q, z^0 \) and \(l \). Indeed, it is sufficient to prove this in a \(L \)-neighborhood of \(\{ z \} \times \subset \mathbb{R} \) for every \(z \in \Delta^q \) and every \(v \in \text{span} \{ v_1, v_2 \} \). But the graph of \(f|_{\{ z \} \times \subset \mathbb{R} \} \) admits a neighborhood \(V \cong \Delta \times B^{\infty} \) and by continuity of \(f \) the mapping to the graph \(F = (\text{Id}, f) \) sends a \(L \)-neighborhood \(W \) of \(\{ z \} \times \subset \mathbb{R} \) to \(V \). Therefore by the Hartogs separate analyticity theorem for holomorphic functions our extended map \(\tilde{F} \) is holomorphic on every such \(W \) and therefore on \(L \cap (\Delta^q \times B^{\infty}) = \)
Loop spaces of Hartogs manifolds are Hilbert-Hartogs

$\Delta^q \times B^2$. In particular it is differentiable in the direction of v at z^0, i.e., is Gâteaux differentiable. Every continuous Gâteaux differentiable map is holomorphic, see Theorem 8.7 in [Mu], therefore Theorem 2 is proved.

\[\square\]

Remark 2.2. One can also consider the following version of an infinite dimensional Hartogs figure:

\[H(\infty) = (B(\infty) \times B(\infty)) \cup (\overline{B(\infty)}(1-r)) \times B(\infty)\]

(2.13)

Analogously to the proof of theorem above one can prove the following.

Proposition 2.1. Holomorphic maps from $H(\infty)$ to q-Hartogs Hilbert manifolds extend onto $B(\infty) \times B(\infty)$ (whatever $q \geq 1$ is).

Indeed, let $f : H(\infty) \rightarrow X$. Choose e_1, \ldots, e_{q-1} vectors of l^2. For any $v \in e_1, \ldots, e_{q-1}$, one has:

\[\langle e_1, \ldots, e_{q-1}, v \rangle \times l^2 \cap H(\infty) = H_q(\infty)\]

(2.14)

Then, by Theorem 2 f extends along L_v for all $v \in e_1, \ldots, e_{q-1}$ to $\tilde{f} : B(\infty) \times B(\infty) \rightarrow X$. The proof of continuity and Gateaux differentiability is the same as above.

2.3. Continuity Principle for Hilbert manifolds

Our goal now is to prove the Continuity Principle from the Introduction. In what follows convergence of analytic q-disks $\Phi_k = \varphi_k(\Delta_q^k)$ to an analytic q-disk $\Phi_0 = \varphi_0(\Delta_q)$ will be understood as uniform convergence of φ_k to φ_0 on some neighborhood of \overline{D}.

Remark 2.3. We shall apply our Lemma of Royden for Δ^q which is not strictly pseudoconvex. But, since we suppose that all our analytic disks are actually defined in a neighborhoods of corresponding closures, we can replace $D = \Delta^q$ by some strictly pseudoconvex $\tilde{D} \supset D$ close to D and get the statement of Theorem 1 for such D-s as Δ^q or $\Delta^q \times B^k$ and so on.

Proof of Theorem 3. Due to Royden’s Lemma of Theorem 1 there exists a biholomorphic mapping h between a neighborhood V of Φ_0 and $\Delta^q \times B^\infty$ sending Φ_0 to $\overline{\Delta^q} \times \{0\}$. For $k > 1$ we have that $\Phi_k \subset V$ and therefore $h(\Phi_k)$ is a graph of some holomorphic $\psi_k : \Delta^q \rightarrow B^\infty$ with ψ_k converging uniformly to zero as $k \rightarrow \infty$.

Take k_0 sufficiently big and make a coordinate change h_0 in (a neighborhood of) $\tilde{\Delta^q} \times B^\infty$ as follows: $h_0 : (z, w) \rightarrow (z, w - \psi_k(z))$. Mapping $f \circ h^{-1} \circ h_0^{-1}$ is defined and holomorphic on the Hartogs figure $H_q(\infty)$ for an appropriate $r > 0$. Theorem follows now from Theorem 2.

\[\square\]

3. Loop spaces of Hartogs manifolds are Hilbert-Hartogs

3.1. Loop spaces of complex manifolds

Fix a compact, connected, n-dimensional real manifold (with boundary or not) S and let us following [L1] describe the natural complex Hilbert structure on the Sobolev manifold $W^{k,2}(S, X)$ of $W^{k,2}$-maps of S to a complex manifold X. To speak about Sobolev spaces it is convenient to suppose that X is imbedded to some \mathbb{R}^N. If X is not compact, we suppose that this imbedding is proper. For the following basic facts about Sobolev spaces we refer to [L1].
i) \(f \in W^{k,2}(\mathbb{R}^n) \iff (1 + ||\xi||)^k \hat{f} \in L^2(\mathbb{R}^n) \), where \(\hat{f} \) is the Fourier transform of \(f \).

Moreover this correspondence is an isometry by the Plancherel identity. One defines then for any positive \(s \) the space \(W^s(\mathbb{R}^n) = \{ f : (1 + ||\xi||)^s \hat{f} \in L^2(\mathbb{R}^n) \} \).

ii) If \(s > \frac{n}{2} + \alpha \) with \(0 < \alpha < 1 \) then \(W^s(\mathbb{R}^n) \subset C^\alpha(\mathbb{R}^n) \) and this inclusion is a compact operator. In particular \(W^{n,2}(\mathbb{R}^n) \subset C^0(\mathbb{R}^n) \).

iii) If \(s > \frac{n}{2} + k \) for a positive integer \(k \), then \(W^s(\mathbb{R}^n) \subset C^k(\mathbb{R}^n) \).

iv) If \(0 < s < \frac{n}{2} \) then \(W^s(\mathbb{R}^n) \subset L^{\frac{n}{n-2s}}(\mathbb{R}^n) \).

From (ii) one easily derives that if \(f, g \in W^{n,2}(\mathbb{R}^n) \) then \(fg \in W^{n,2}(\mathbb{R}^n) \). This enables to define correctly a \(W^{k,2} \)-vector bundle over an \(n \)-dimensional real manifold provided \(k \geq n \). By that we mean that the transition functions of the bundle are in \(W^{k,2} \). Condition \(k \geq n \) will be always assumed from now on. Take now \(f \in W^{k,2}(S, X) \). Note that by (ii) such \(f \) is H"older continuous. Consider the pullback \(f^*TX \) as a complex Sobolev bundle over \(S \). A neighborhood \(V_f \) of the zero section of \(f^*TX \to S \) is an open set of the complex Hilbert space \(W^{k,2}(S, f^*TX) \) of Sobolev sections of the pullback bundle. This \(V_f \) can be naturally identified with a neighborhood of \(f \) in \(W^{k,2}(S, X) \) thus providing a structure of complex Hilbert manifold on \(W^{k,2}(S, X) \), see [L1] for more details on this construction.

Another way to understand this complex structure on \(W^{k,2}(S, X) \) is to describe what are analytic disks in \(W^{k,2}(S, X) \).

Lemma 3.1. Let \(D \) and \(X \) be finite dimensional complex manifolds and let \(S \) be an \(n \)-dimensional compact real manifold with boundary. A mapping \(F : D \times S \to X \) represents a holomorphic map from \(D \) to \(W^{k,2}(S, X) \) (denoted by the same letter \(F \)) if and only if the following holds:

i) for every \(s \in S \) the map \(F(\cdot, s) : D \to X \) is holomorphic;

ii) for every \(z \in D \) one has \(F(z, \cdot) \in W^{k,2}(S, X) \) and this correspondence \(D \ni z \to F(z, \cdot) \in W^{k,2}(S, X) \) is continuous with respect to the Sobolev topology on \(W^{k,2}(S, X) \) (and the standard topology on \(D \)).

For the proof we refer to [L1]. Now let us prove the Theorem 4 from the Introduction.

3.2. Proof of Theorem 4. Let \(F : H_q^1(r) \to W^{k,2}(S, X) \) be a holomorphic map. We represent this map as a map \(F : H_q^1(r) \times S \to X \) possessing properties (i) and (ii) of Lemma 3.1 above. From the fact that \(X \) is \(q \)-Hartogs we get that for every fixed \(s \in S \) mapping \(F(\cdot, s) : H_q^1(r) \to X \) extends holomorphically to \(F(\cdot, s) : \Delta^{q+1} \to X \) and we get a mapping \(F : \Delta^{q+1} \times S \to X \). It remains to prove that for every fixed \(z \in \Delta^{q+1} \) one has that \(F(z, \cdot) \in W^{k,2}(S, X) \) and that this correspondence is continuous.

Fix some \(z_0 \in \Delta^{q+1} \) and some \(s_0 \in S \). Take \(R < 1 \) such that \((z_0, t_0) \in \Delta^{q+1}_R \). Let \(g_{s_0} \) be the map to the graph \(\Gamma_{F(s, s_0)} \) of \(F(\ast, s_0) \). I.e., \(g_{s_0} \) is defined by

\[
g_{s_0} : \Delta^{q+1} \ni z \mapsto (z, F(z, s_0)) \in \Delta^{q+1} \times X.
\]

(3.1)

By Royden’s Lemma for \(R < 1 \) there exists a holomorphic embedding \(G : \Delta^{q+1}_R \times \Delta^{m}_R \to \Delta^{q+1} \times X \) such that \(G(\ast, 0) = g_{s_0} \), here \(m = \text{dim}(X) \). Then \(V = G(\Delta^{q+1}_R \times \Delta^{m}_R) \) contains \(\Gamma_{F(s, s_0)} \) over \(\Delta^{q+1}_R \). Since on \(H_q^1(r) \) the map \(z \mapsto g_s(z) \in W^{k,2}(S, X) \) is continuous it exists \(\epsilon > 0 \) such that for \(s \in B(s_0, \epsilon) \) the graph \(\Gamma(\ast, s) \) over \(H_q^1(r) \) is contained in \(V \). Therefore by the Hartogs theorem for holomorphic functions the graph \(\Gamma(\ast, s) \) over \(\Delta^{q+1}_R \) is contained in \(V \) as well. By maximum principle one has for \(z \in \Delta^{q+1}_R \) and \(s \in B(s_0, \epsilon) \) that

\[
||G^{-1}(g_s(z, t))|| \leq \max_{z \in \partial \Delta^{q+1}_R} ||G^{-1}(g_s(z))|| \leq
\]
there exists a constant, namely
\[\psi \]
Set natural projection and consider its Fourier transform \(\hat{\psi} \) such that for all \(z \in \Delta_{q+1} \) one has
\[||(1 + ||*||)k\hat{\psi}(z)(*)||_{L^2(B(s_0,\epsilon),\mathbb{C}^m)} \leq M_{s_0}. \] (3.3)
Since \(S \) is compact one can cover it by a finite number of balls \(\{B(s_0,\epsilon)\}_{s_0 \in J} \) and by taking the maximum \(M = \max_{s_0 \in J} M_{s_0} \) one obtains the inequality
\[||(1 + ||*||)k\hat{\psi}(z)(*)||_{L^2(S,\mathbb{C}^m)} \leq M. \] (3.4)
Therefore for all \(z \in \Delta_{q+1} \) mapping \(\psi(z) \) is in \(W^{k,2}(S,\mathbb{C}^n) \) and consequently the map \(F(z,*) \) is in \(W^{k,2}(S,X) \). Now let us see that the correspondence \(z \mapsto F(z,*) \) is continuous on \(z \) in Sobolev topology. Indeed, the map \(z \mapsto (1 + ||*||)k\hat{\psi}(z)(*) \) is a holomorphic Hilbert space valued mapping that satisfies the maximum modulus principle, i.e., in particular it will continuously depend on \(z \). Lemma and theorem are proved.

The following statement gives us one more example of open sets \(U \subsetneq \hat{U} \) in Hilbert manifold such that holomorphic mappings extend from \(U \) to \(\hat{U} \), the previous one was \(H^\infty_q(r) \subsetneq \Delta^q \times B^\infty \) of Theorem 2. It shows that \(\hat{U} := W^{k,2}(S,\Delta^q \times \Delta^n) \) is the “envelope of holomorphy” of \(U := W^{k,2}(S,H^q_n(r)) \). Here \(H^q_n(r) := \Delta^q \times \Delta^n(r) \cup A^q_{r-1,1} \times \Delta^n \) stands for the \(q \)-concave Hartogs figure in \(\mathbb{C}^{g+n} \).

Theorem 3.1. Let \(X \) be a \(q \)-Hartogs Hilbert manifold. Then every holomorphic map \(F:W^{k,2}(S,H^q_n(r)) \rightarrow X \) extends to a holomorphic map \(\hat{F}:W^{k,2}(S,\Delta^q \times \Delta^n) \rightarrow X \).

Proof. Let \(f = (f^q,f^n):S \rightarrow \Delta^q \times \Delta^n \) be an element of \(W^{k,2}(S,\Delta^q \times \Delta^n) \). Consider the following analytic \(q \)-disk in \(W^{k,2}(S,\Delta^q \times \Delta^n) \)
\[\varphi:(z,s) \in \Delta^q \times S \rightarrow (h_{f^n(s)}(z),f^n(s)), \] (3.5)
where \(h_u \) is an automorphism of \(\Delta^q \) interchanging \(a \) and \(0 \). \(\Phi = \varphi(\Delta^q) \) is clearly an analytic disk in \(W^{k,2}(S,\Delta^q \times \Delta^n) \) possessing the following properties:
- \(\varphi(0,s) \) is our loop \(f \).
- For \(z \in \partial\Delta^q \) one has that \(\varphi(z,\cdot)(S) \subset A^q_{r-1,1+r} \times \Delta^n \), therefore \(\partial\Phi \subset W^{k,2}(S,H^q_n(r)) \).

Consider the following \((q+1)\)-disk in \(W^{k,2}(S,\Delta^q \times \Delta^n) \)
\[\varphi_t(z,s) := \varphi(z,t,s) = (h_{f^n(s)}(z),tf^n(s)), \quad |t| < 1. \]
Then
- \(\varphi_0 \subset \Delta^q \times \{0\} \).
- \(\varphi_1 = \varphi \).
- For all \(t \in \Delta \) one has that \(\partial\Phi_t \subset W^{k,2}(S,H^q_n(r)) \).
Therefore for $\varepsilon > 0$ small enough the Hartogs figure

$$H^q_\varepsilon := \{ ||z|| < 1, |t| < \varepsilon \text{ or } 1 - \varepsilon < ||z|| < 1 + \varepsilon, |t| < 1 \}$$

is mapped by $\tilde{\varphi}$ to $W^{k,2}(S, H^q_\varepsilon(r))$.

We can now thicken it to an infinite dimensional Hartogs figure $H^\infty_q(\varepsilon)$ by multiplying it with $B^\infty(\varepsilon)$, where $B^\infty(\varepsilon)$ is a ball in $W^{k,2}(S, \mathbb{C}^{r+n})$. Taking $\varepsilon > 0$ smaller, if necessary, we can achieve that the map

$$\tilde{\varphi} : (z, s, f_2) \to \varphi(z, t, s) + f_2(s)$$

will send $H^\infty_q(\varepsilon)$ to $W^{k,2}(S, H^q_\varepsilon(r))$. Applying Theorem 2 we extend $\tilde{\varphi}$ to $\Delta^n \times B^\infty$ and therefore F is extended to a neighborhood of φ. Finally, since $H^q_\varepsilon(r)$ and $\Delta^q \times \Delta^n$ are contractible the manifold $W^{k,2}(S, \Delta^q \times \Delta^n)$ is simply connected for any S. This insures that our extensions give a single valued holomorphic extension of F.

\[\square\]

Corollary 3.1. If X is a q-Hartogs complex manifold then every holomorphic mapping $F : W^{k,2}(S, H^q_\varepsilon(r)) \to W^{k,2}(S, X)$ extends to a holomorphic mapping $\tilde{F} : W^{k,2}(S, \Delta^q \times \Delta^n) \to W^{k,2}(S, X)$.

This readily follows from Theorem 3.1 applied to q-Hartogs by Theorem 4 Hilbert manifold $X = W^{k,2}(S, X)$.

3.3. Loop spaces of compact complex manifolds are “almost Hartogs”. In \[Iv2\] we introduced the class G_q of q-disk convex complex manifolds possessing a strictly positive dd^c-closed (q, q)-form. Sequence $\{G_q\}_{q=1}^\infty$ is rather exhaustive: G_q contains all compact manifolds of dimension $q + 1$, see subsection 1.5 in \[Iv2\].

We think that the following statement should be true: Let X be a compact manifold from the class G_q. Then

i) either X contains a $(q + 1)$-dimensional spherical shell (remark that $X \in F_q$ implies that $\dim X \geq q + 1$);

ii) or, X contains an uniruled compact subvariety of dimension q;

iii) or, X is q-Hartogs.

Remark 3.1. a) This was proved in \[Iv2\] for $q = 1$ (in fact this particular statement was proved already in \[IV1\]), and in \[IS\] for $q = 2$. In the latter paper we proved almost the assertion stated above (for all q-s), but for holomorphic mappings with zero-dimensional fibers, see Proposition 12 there.

2. For $q = 1$ the item (ii) means just that X contains a rational curve. For $q = 2$ we need to add few explanations to \[IS\]. We proved there that a meromorphic map from $H^2_\varepsilon(r)$ to such X meromorphically extends to $\Delta^3 \setminus S$, where is a complete pluripolar set of Hausdorff dimension zero. If $S \neq \emptyset$ then X contains a spherical shell of dimension 3. Otherwise S is empty. If our map f was in addition holomorphic on $H^2_\varepsilon(r)$ then the set I_f of points of indeterminacy of the extension \tilde{f} can be only discrete and then it is clear that for every $a \in I_f$ its full image $\tilde{f}[a]$ contains an uniruled analytic set of dimension two.

From the discussion above we obtain the following statement.

Corollary 3.2. Let X be a compact complex manifold of dimension 2 (resp. of dimension 3). Then either X is one of (i) or (ii) as above or, every generalized loop space $W^{k,2}(S, X)$ is Hartogs (resp. 2-Hartogs).
It might be interesting to think about X from this Corollary as being (an unknown) surface of class VI_{0}^{+} or as S^{6}.

References

[ASY] Adachi K., Suzuki M., Yosida M.: Continuation of holomorphic mappings with values in a complex Lie group. Pacific J. Math. **47**, 1-4 (1973).

[AZ] Anakkar M., Zagorodnuk A.: Loop Spaces as Hilbert-Hartogs Manifolds. arXiv: 1112.2504 (2019), to appear in Compl. Var. & Ell. Eq.

[Bh] Behnke H.: Zur Theorie der analytischen Funktionen mehrerer komplexen Veränderlichen. Der Kontinuitätssats und die Regulärkonvexität. Math. Ann. **113**, 392-397 (1937).

[Bu] Bungart L.: On analytic fibre bundles I. Holomorphic fibre bundles with infinite dimensional fibers. Topology **7**, no: 1, 55-68, (1968).

[F] Forstneric F.: Manifolds of holomorphic mappings from strongly pseudoconvex domains. Asian. J. Math. **11**, no. 1, 113-126 (2007).

[Iv1] Ivashkovich S.: Spherical shells as obstructions for the extension of holomorphic mappings. J. Geom. Anal. **2**, 231-371 (1992).

[Iv2] Ivashkovich S.: Extension properties of meromorphic mappings with values in non-Kähler manifolds. Annals of Math. **160**, 795-837 (2004).

[IS] Ivashkovich S., Shiffman B.: Compact singularities of meromorphic mappings between complex 3-dimensional manifolds. Math. Res. Let. **7**, 695-708 (2000).

[L1] Lempert L.: Loop spaces as complex manifolds. J. Diff. Geom. **38**, 519-543 (1993).

[L2] Lempert L.: Analytic continuation in mapping spaces. Pure Appl. Math. Q. **6**, no: 4, 1051-1080 (2010).

[Mu] Mujica J.: Complex Analysis in Banach Spaces. Math. Studies **120**, North-Holland (1985).

[Ro] Royden H.: The extension of regular holomorphic maps. Proc. AMS **43**, no: 2, 306-310 (1974).

[T] Taylor M.: Partial differential equations I. Basic theory. Second edition. Applied Mathematical Sciences, **115**. Springer, New York, xxii+654 pp. ISBN: 978-1-4419-7054-1, 35-01 (2011).

Université de Lille-1, UFR de Mathématiques, 59655 Villeneuve d’Ascq, France. E-mail address: ivachkov@math.univ-lille1.fr, mohammed.anakkar@univ-lille.fr