Fuchs, Michael; Yu, Guan-Ru; Zhang, Louxin
On the asymptotic growth of the number of tree-child networks. (English) Zbl 1457.92126
Eur. J. Comb. 93, Article ID 103278, 21 p. (2021).

Summary: In a recent paper, C. McDiarmid et al. [Ann. Comb. 19, No. 1, 205–224 (2015; Zbl 1310.05120)] showed that the number of tree-child networks with \(n \) leaves has the factor \(n^{2n} \) in its main asymptotic growth term. In this paper, we improve this by completely identifying the main asymptotic growth term up to a constant. More precisely, we show that the number of tree-child networks with \(n \) leaves grows like

\[
\Theta\left(n^{-2/3} e^{a_1(3n)^{1/3}} \left(\frac{12}{e^2}\right)^n n^{2n}\right),
\]

where \(a_1 = -2.338107410 \cdots \) is the largest root of the Airy function of the first kind. For the proof, we bijectively map the underlying graph-theoretical problem onto a problem on words. For the latter, we can find a recurrence to which a recent powerful asymptotic method of A. Elvey Price et al. [J. Comb. Theory, Ser. A 177, Article ID 105306, 40 p. (2021; Zbl 1448.05034)] can be applied.

MSC:
92D15 Problems related to evolution
92D10 Genetics and epigenetics
92C42 Systems biology, networks

Keywords:
tree-child networks; asymptotic growth; phylogenetic networks

Full Text: DOI arXiv

References:
[1] M. Bouvel, P. Gambette, M. Mansouri, Counting phylogenetic networks of level 1 and level 2, arXiv:1909.10460.
[2] G. Cardona, L. Zhang, Counting tree-child networks and their subclasses, J. Comput. Syst. Sci. 114 84-104. http://dx.doi.org/10.1016/j.jcss.2020.06.
[3] A. Elvey Price, W. Fang, M. Wallner, Compacted binary trees admit a stretched exponential, J. Comb. Theory Ser. A, 117 105306. · Zbl 1448.05034
[4] M. Fuchs, B. Gittenberger, M. Mansouri, Counting phylogenetic networks with few reticulation vertices: exact enumeration and corrections, arXiv:2006.15784. · Zbl 1411.05240
[5] Fuchs, M.; Gittenberger, B.; Mansouri, M., Counting phylogenetic networks with few reticulation vertices: tree-child and normal networks, Australas. J. Combin., 73, 2, 385-423 (2019) · Zbl 1411.05240
[6] Graham, R. L.; Knuth, D. E.; Patashnik, O., Concrete Mathematics: A Foundation for Computer Science (1994), Addison-Wesley Publishing Company, Reading, Massachusetts · Zbl 0836.00001
[7] Gunawan, A. D.M.; Rathin, J.; Zhang, L., Counting and enumerating galled networks, Discrete Appl. Math., 283, 644-654 (2020) · Zbl 1442.05093
[8] McDiarmid, C.; Semple, C.; Welsh, D., Counting phylogenetic networks, Ann. Comb., 19, 1, 205-224 (2015) · Zbl 1310.05120
[9] Schröder, E., Vier kombinatorische probleme, Z. Math. Phys., 15, 361-376 (1870)
[10] Zhang, L., Generating normal networks via leaf insertion and nearest neighbor interchange, BMC Bioinformatics, 20, 642 (2019)

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.