A new genus of proteocephalid tapeworm (Cestoda) from the marbled swamp eel *Synbranchus marmoratus* Bloch (Synbranchiformes: Synbranchidae) in the River Paraná basin, Argentina

Nathalia J. Arredondo¹, Philippe Vieira Alves²,³ and Alicia A. Gil de Pertierra⁴

¹Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA, CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina;
²Programa de Pós-Graduação em Biologia Animal, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil;
³Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic;
⁴Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina

Abstract: *Synbranchiella* gen. n. is proposed to accommodate *Synbranchiella mabelae* sp. n. (Proteocephalidae: Monticellinae) from the intestine of the marbled swamp eel *Synbranchus marmoratus* Bloch, in the River Colastiné, a tributary of the middle River Paraná in Argentina. The new genus is placed in the Monticellinae because of the cortical position of the genital organs. It differs from all known monticelline genera by the following combination of characters: (i) scolex robust, with a conical apex, without metascolex; (ii) bilocular suckers with a conspicuous septum separating unequally-sized loculi and a robust non-adherent area, lacking free posterior margin; (iii) vitelline follicles in two narrow lateral bands, extended throughout the nearly entire proglottid length; (iv) vagina always anterior to the cirrus-sac, with an inconspicuous vaginal sphincter; (v) a genital pore pre-equatorial. Scanning electron microscopy revealed three types of microtriches on the tegument surface: acicular and capiliform filitriches and gladiate spinitriches. A phylogenetic analysis of the large subunit nuclear ribosomal RNA gene (*lsr*DNA, D1–D3 domains) confirms that *S. mabelae* represents an independent lineage within a large clade comprised mainly from Neotropical taxa parasitising catfishes. This is the second proteocephalidean cestode described from a Neotropical synbranchiform fish host.

Keywords: Proteocephalidae, Monticellinae, taxonomy, morphology, phylogenetic analysis, freshwater, Neotropical Region

In the Neotropical Region, the number of species of cestodes of the order Proteocephalidea Mola, 1928 (currently part of the Onchoproteocephalidea Cairu, Jensen, Waeschenbach, Olson et Littlewood, 2014) is about one hundred but only 16 species of them occur in non-siluriform fishes of the orders Atheriniformes (1 sp.), Characiformes (7 sp.), Gymnotiformes (3 sp.), Perciformes (4 sp.) and Synbranchiformes (1 sp.) (Alves et al. 2017a).

During a survey of the helminth fauna of fishes from the River Paraná basin, specimens of a hitherto undescribed proteocephalidean species were collected from the intestine of *Synbranchus marmoratus* Bloch (Synbranchiformes: Synbranchidae) and subjected to morphological and molecular analyses (*lsr*DNA, D1–D3 domains). These tapeworms were assigned to the Monticellinae Mola, 1929, but could not be allocated to any of the known monticelline genera. Therefore, a new genus is proposed to accommodate the new species described herein.

MATERIALS AND METHODS

Seventy-three specimens of *Synbranchus marmoratus* were caught by local fishermen in December 2009 and 2011 from the River Colastiné, Santa Fe Province, and in January, February and April 2010 and December 2011 from the River Paraná-Guazú, Entre Ríos Province, Argentina. Worms found in the intestine were removed, cleaned in saline, fixed in hot 4% formaldehyde solution and subsequently stored in 70% ethanol. Before this fixation for morphological observations, posteriormost proglottids of two specimens were excised and placed in molecular-grade 96–99% ethanol for sequencing; hologenophore was preserved as a voucher (see Pleijel et al. 2008 for terminology).
Entire tapeworms were stained with Langeron’s alcoholic hydrochloric carmine (Langeron 1949), differentiated in acid ethanol, dehydrated through a graded ethanol series, cleared in beechwood creosote and mounted in Canada balsam. Details of the internal anatomy were determined from thick, hand-cut cross serial sections of proglottids stained with Langeron’s alcoholic hydrochloric carmine. Spontaneously laid eggs were fixed in 4% formaldehyde solution and measured and illustrated in distilled water.

Pieces of two specimens of the new species were prepared for scanning electron microscopy (SEM) as follows: worms were postfixed in 1% osmium tetroxide, dried with hexamethyldisilazane (Riedel-De Haën®, Hannover, Germany), mounted on stubs with adhesive tape, sputter coated with gold in a Thermo VG Scientific Polaron SC 7630 and examined with a Philips XL 30 scanning electron microscope. The types and distribution of microtriches were studied on the scolex, proliferation zone (neck) and immature proglottids. Measurements of the microtriches were taken from photomicrographs. Microtrich terminology follows Cheryv (2009). Unless otherwise stated, all measurements are given in micrometres, with the range followed by mean and total number of measurements (n) in parentheses. For two-dimensional measurements, length is given before width. The relative size of the ovary was calculated according to de Chambrier et al. (2012). Illustrations were made with the aid of a camera lucida attached to a Zeiss Axioscope microscope equipped with differential interference contrast optics.

Total genomic DNA was extracted using a QIAamp DNA Blood kit (QIAGEN, Hilden, Germany) following manufacturer’s instructions. The protocol for PCR amplification of the large subunit nuclear ribosomal RNA gene (lsrDNA, D1–D3 domains) and sequencing were done as described in Brabec et al. (2012). Contiguous sequences were assembled using Geneious version R8 (http://www.geneious.com/; Kearse et al. 2012) and submitted to GenBank. The newly generated sequence of lsrDNA was aligned with related sequences retrieved from the GenBank database (see Table 1), using the E-INS-i algorithm of the program MAFFT (Katoh and Standley 2013) implemented in Geneious. The number of parsimony-informative characters was determined using PAUP* version 4a147 (Swofford 2002). The alignment was trimmed to match the shortest sequence and ambiguously aligned positions were manually excluded from subsequent analyses.

Phylogenetic reconstructions were performed with the Maximum likelihood (ML) and the Bayesian inference (BI) criteria, based on GTR + 1 + I model, predicted as best estimator by the small sample size corrected Akaike InformationCriterion implemented in PartitionFinder v. 1.1.1 (Lanfear et al. 2012). The best ML estimate was obtained from 100 searches in the program GARLI ver. 2.01 (Zwickl 2006) using default settings and the nodal support was evaluated by running tree searches on each of the 100 bootstrap replicates in GARLI. A BI tree was constructed using MrBayes ver. 3.2 (Ronquist et al. 2012) running two independent MC3 runs of 4 chains (one cold, three heated) for 5 million generations (ngen = 5,000,000), sampling tree topologies every 1,000th generation (samplefreq = 1,000) and the first 500 samples were discarded as burn-in (burninfrac = 0.10). Tracer v.1.6 (Rambaut et al. 2014) was used to check the convergence and mixing of different parameters and to confirm that the effective sample size (ESS) of each parameter was adequate to provide reasonable estimates of the variance in model parameters (i.e. ESS values > 200).

Holotype was deposited in the Helminthological collection of the Institute of Parasitology of the Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic (IPCAS) and paratypes at the Parasitological Collection of the Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’, Buenos Aires, Argentina (MACN-Pa). For comparative purpose, the following monticelliinae tapeworms that possess bilocular suckers were studied: type and voucher specimens of Chambriella megacephala (Woodland, 1934), Riggenbachia amazonense Alves, de Chambrier, Luque et Scholz, 2017 and R. paranaense (Pavanelli et Rego, 1989) by one of the authors (PVA) (see Alves et al. 2017b for the complete list of host and localities).

RESULTS

Synbranchiella gen. n.

ZooBank number for genus: urn:lsid.zoobank.org:act:953C7E30-DCE7-4EC7-8313-6151134D0BDC

Diagnosis. Proteocephalidea, Proteocephalidae, Monticellinae. Testes, ovary, vitelline follicles and uterus cortical. Medium-sized worms, flattened dorsoventrally. Strobila with acraspode proglottids. Scolex subspherical to quadrangular, apex conical to slightly globose, without apical organ. Metascolex absent. Suckers bilocular, robust, with conspicuous septum separating loculi, lacking free posterior margin. Non-adherent area of suckers conspicuously developed. Internal longitudinal musculature formed by a few, small, sparsely distributed bundles of muscle fibres. Proliferation zone (neck) narrower than scolex. Testes cortical, arranged in one irregular field and one layer. Cirrus-sac thin-walled, elongated to pyriform. Genital pore pre-equatorial, irregularly alternating. Genital atrium present. Ovary cortical, butterfly-shaped, slightly lobulated. Vagina anterior to cirrus-sac, surrounded by small terminal vaginal sphincter near genital atrium. Vitelline follicles cortical, arranged in two narrow lateral bands. Uterine stem and uterine branches cortical. Uterine development of type 2 (*sensu* de Chambrier et al. 2004a). Parasites of Neotropical synbranchiform fish (*Synbranchiidae*). Type and only species: *Synbranchiella mabelae* sp. n.

Etymology: The new genus is named after the generic name of the host and should be treated as feminine.

Differential diagnosis. The new genus is placed in the Monticellinae based on the position of the internal organs in relation to the inner longitudinal musculature (Schmidt 1986, Rego 1994, de Chambrier et al. 2009). The subfamily currently includes ten genera parasitising freshwater fishes in the Neotropics, *Ageneiella* de Chambrier et Vaucher, 1999; *Chambriella* Rego, Chubb et Pavanelli, 1999; *Choanoscolex* La Rue, 1911; *Goezeella* Fuhrmann, 1916; *Manoaostia* Woodland, 1935; *Monticella* La Rue, 1911; *Regoeilla* Arredondo, de Chambrier et Gil de Pertierra, 2013; Riggenbachia Alves, de Chambrier, Luque et Scholz, 2017; *Spuskyellia* Freze, 1965 and *Spatulif-
Table 1. List of cestode specimens whose sequences of the large subunit nuclear ribosomal RNA gene (lsrDNA, D1–D3 domains) were included in the analyses. Genbank accession number in bold indicates the sequence generated as part of this study.

Taxon	Host species	Voucher Acc. No. †	GenBank Acc. No.	Reference
Ageneiella brevifilis	Ageneiosus inermis (Linnaeus)	21841	AJ388600	Zehnder and Mariaux 1999
Amphoteromorphus ninoi	Brachyplatystoma filamentosum (Lichtenstein)	22239	AJ388624	de Chambrier et al. 2004a
Amphoteromorphus perciflorus Dissing, 1850	Brachyplatyystoma rousseauxii (Castelnau)	60052	KP729410	de Chambrier et al. 2015
Amphoteromorphus piracea Woodland, 1934	Brachyplatyystoma filamentosum	22227	KP729407	de Chambrier et al. 2015
Amphoteromorphus pinniformis	Brachyplatyystoma rousseauxii	22211	AJ275231	de Chambrier et al. 2004a
Brayela karatuyai (Woodland, 1934)	Platyneematichthys notatus (Jardine)	63128	KP729406	de Chambrier et al. 2015
Chameliella megacephala (Woodland, 1934)	Sorbinichthys planiceps (Spix et Agassiz)	91863–91865, 91867–91868, 69568, 72973	KY207449*	Alves et al. 2017b
Chonoscolex abicus (Riggenbach, 1895)	Pseudoplatyystoma corrucans (Agassiz)	17905	AJ388630	Zehnder and Mariaux 1999
Chonoscolex sp.	Pseudoplatyystoma fasciatum (Linnaeus)	25102	AJ275064	de Chambrier et al. 2004a
Endorchis piraeae Woodland, 1934	Brachyplatyystoma filamentosum	21738	AJ388603	Zehnder and Mariaux 1999
Gibsoniella mandabe (Woodland, 1935)	Ageneiosus sp.	63119	KP729412	de Chambrier et al. 2015
Gibsoniella meursaulti	Ageneiosus inermis	21839	AJ388631	Zehnder and Mariaux 1999
Goezeia siluri (Woodland, 1935)	Pinirampus pirinampu (Spix et Agassiz)	21877	AJ388612	Zehnder and Mariaux 1999
Harrissocotyla kaparari (Woodland, 1935)	Pseudoplatyystoma tigrinum (Valenciennes)	22018	AJ275227	Zehnder et al. 2000
Jaulia glandiceps Rego et Pavanelli, 1985	Zungara jahu (Thering)	31179	KP729399	de Chambrier et al. 2015
Megathylyacanthus jandia Woodland, 1934	Zungaro zungaro (Humboldt)	21874	AJ388596	Zehnder and Mariaux 1999
Monticellia coryphicephala (Monticelli, 1891)	Salminus brasiliensis (Cuvier)	17984	AJ238832	Zehnder and Mariaux 1999
Monticella ophisterni, de Chambrier et Salgado-Maldonado, 2001	Ophisternon aenigmaticum	-	-	Scholz et al. 2003
Nomimoscolex admonticellia (Woodland, 1934)	Pinirampus pirinampu	21870	AJ388628	Zehnder and Mariaux 1999
Nomimoscolex chubbi (Pavanelli et Takemoto, 1995)	Gymnotus carapo Linnaeus	20351	AJ388625	Zehnder and Mariaux 1999
Nomimoscolex dorad (Woodland, 1935)	Brachyplatyystoma rousseauxii	22269	AJ388613	Zehnder and Mariaux 1999
Nomimoscolex lenha (Woodland, 1933)	Sorbinichthys planiceps	21740	AJ388611	Zehnder and Mariaux 1999
Nomimoscolex lopesi Rego, 1989	Pseudoplatyystoma fasciatum	21963	AJ388618	Zehnder and Mariaux 1999
Nomimoscolex matognassens Rego et Pavanelli, 1990	Hoplias malabaricus (Bloch)	17913	AJ388614	Zehnder and Mariaux 1999
Nomimoscolex piracea Woodland, 1934	Brachyplatyystoma caparutepum Lundberg et Akama	22284	AJ388608	Zehnder and Mariaux 1999
Nomimoscolex sudohim Woodland, 1935	Pseudoplatyystoma fasciatum	21969	AJ388597	Zehnder and Mariaux 1999
Nomimoscolex suspectus Zehnder, de Chambrier, Vaucher et Mariaux, 2000	Brachyplatyystoma vaillantii (Valenciennes)	22298	AJ388602	de Chambrier et al. 2004a
Nupelia portoriquensis Pavanelli and Rego, 1991	Sorbinichthys linea (Bloch und Schneider)	34185	KP729401	de Chambrier et al. 2015
Ophiotaenia europea Oedemens, 1963	Natrix maua (Linnaeus)	18407	AJ388598	Zehnder and Mariaux 1999
Ophiotaenia filaroides (La Rue, 1909)	Ambystoma tigrinum (Green)	63372	KP729416	de Chambrier et al. 2015
Ophiotaenia paraguayensis (Rudin, 1917)	Hydrodynastes gigas (Duméril, Bibron et Duméril)	16927	AJ388629	Zehnder and Mariaux 1999
Ophiotaenia cl. perspicua La Rue, 1911	Nerodia rhombifer (Hallowell)	35370	KP729415	de Chambrier et al. 2015
Ophiotaenia sanbernardensis Rudin, 1917	Helicops lepidopus (Schlegel)	18251	AJ388637	Zehnder and Mariaux 1999
Ophiotaenia saepheri Osler, 1931	Lithobates pipiens (Schreber)	32851	KP729402	de Chambrier et al. 2015
Peliodoctyle lenha (Woodland, 1933)	Zungaro zungaro	22373	AJ238837	Zehnder and Mariaux 1999
Peliodoctyle rugosa Diesing, 1850		22374	AJ238835	Zehnder and Mariaux 1999
Proteocephalidae gen. sp.				
Proteocephalus perplexus La Rue, 1911	Amia calva Linnaeus	35548	FM956088	de Chambrier et al. 2009
Proteocephalus sp.	Ictalurus punctatus (Rafinesque)	36278	FM956085	de Chambrier et al. 2009
Regocilia brevis Arredondo, Gil de Pertietz et de Chambrier, 2013				
riggenbachella amazonezense Alves, de Chambrier, Luque et Scholz, 2017	Sorbinichthys planiceps	60046, 60048, 91866	KY207451*	Alves et al. 2017b
Spasskyella lenha (Woodland, 1933)	Sorbinichthys planiceps	69600	KP729413	de Chambrier et al. 2015
Spasskyella spinulifera (Woodland, 1935)	Pseudoplatyystoma corrucans	34216	KP729417	de Chambrier et al. 2015
Spatulifera maringaensis Pavanelli et Rego, 1989	Sorbinichthys linea	21986	AJ388634	de Chambrier et al. 2004a
Sybranchiella mabaeae gen. n. et sp. n.	Synbranchus maromatus Bloch	MACN-Pa 619/2	KY798870	Present study
Testudotaenia testudo (Magath, 1924)	Apalone spinifera (Le Sueur)	35320	FM956082	de Chambrier et al. 2009

† unless otherwise stated, all vouchers are deposited at the Natural History Museum, Geneva, Switzerland (acronym MHNG-PLAT); MACN-Pa – Parasitological Collection of the Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’, Buenos Aires, Argentina; *seven identical replicates; **three identical replicates

doi: 10.14411/fp.2017.015 Arredondo et al.: A new cestode genus (Proteocephalidea)
Ageneiella is cortical but some of the uterine diverticles penetrate Syn-de Chambrier et al. 2004b). In addition, the uterus of el) (see Fuhrmann 1916, de Chambrier and Vaucher 1999,], more concentrated Goezeella two wide lateral bands [follicles vs genera), and the arrangement of the vitelline follicles (two strongly developed in the two latter (weakly developed the development of the internal longitudinal musculature Chambriella,].

The new genus clearly differs from Chambriella and Riggenbachiella, the suckers are also biloculate, but the new genus can be distinguished, Ageneiella biloculate, instead of uniloculate suckers. In Lenhataenia as recently characterised by Alves et al. (2017b).

Table 2. Microthrix pattern of Synbranchiella mabelae gen. n. et sp. n. from Synbranchus marmoratus Bloch.

Surfaces	Microthrix type	Size (length × width)	Fig. 4
ASS	CF	0.64–0.92 (0.79) × 0.10–0.16 (0.12) (n = 9)	E
MSS	AF-CF/GS	0.53–0.90 (0.73) × 0.08–0.15 (0.11) (n = 9)	F
LSS	CF/GS	0.78–1.06 (0.92) × 0.12–0.16 (0.14) (n = 9)	G
N-ASS	CF/GS	0.62–0.83 (0.70) × 0.12–0.16 (0.14) (n = 6)	H
N-ASS	CF/GS	0.76–1.23 (0.95) × 0.10–0.17 (0.13) (n = 15)	I
N-ASS	AF/GS	0.81–1.67 (1.27) × 0.40–0.69 (0.58) (n = 9)	J
N-ASS	AF/GS	0.43–0.69 (0.55) × 0.11–0.13 (0.12) (n = 5)	K
N-ASS	AF/GS	1.14–1.29 (1.22) × 0.60–0.66 (0.63) (n = 4)	L
N-ASS	AF/GS	0.40–0.60 (0.47) × 0.11–0.14 (0.12) (n = 6)	M
N-ASS	AF/GS	0.32–0.36 (0.33) × 0.10–0.11 (0.10) (n = 6)	N
N-ASS	AF/GS	0.81–1.67 (1.27) × 0.40–0.69 (0.58) (n = 9)	O
N-ASS	AF/GS	0.43–0.69 (0.55) × 0.11–0.13 (0.12) (n = 5)	P
N-ASS	AF/GS	1.14–1.29 (1.22) × 0.60–0.66 (0.63) (n = 4)	Q
N-ASS	AF/GS	0.40–0.60 (0.47) × 0.11–0.14 (0.12) (n = 6)	R
N-ASS	AF/GS	0.32–0.36 (0.33) × 0.10–0.11 (0.10) (n = 6)	S
N-ASS	AF/GS	0.81–1.67 (1.27) × 0.40–0.69 (0.58) (n = 9)	T
N-ASS	AF/GS	0.43–0.69 (0.55) × 0.11–0.13 (0.12) (n = 5)	U
N-ASS	AF/GS	1.14–1.29 (1.22) × 0.60–0.66 (0.63) (n = 4)	V
N-ASS	AF/GS	0.40–0.60 (0.47) × 0.11–0.14 (0.12) (n = 6)	W
N-ASS	AF/GS	0.32–0.36 (0.33) × 0.10–0.11 (0.10) (n = 6)	X
N-ASS	AF/GS	0.81–1.67 (1.27) × 0.40–0.69 (0.58) (n = 9)	Y
N-ASS	AF/GS	0.43–0.69 (0.55) × 0.11–0.13 (0.12) (n = 5)	Z
N-ASS	AF/GS	1.14–1.29 (1.22) × 0.60–0.66 (0.63) (n = 4)	A
N-ASS	AF/GS	0.40–0.60 (0.47) × 0.11–0.14 (0.12) (n = 6)	B
N-ASS	AF/GS	0.32–0.36 (0.33) × 0.10–0.11 (0.10) (n = 6)	C

Abbreviations: ASS – apical surface of the scolex; MSS – marginal surface of the suckers; LSS – luminal surface of the suckers; SSS – septum sucker surface; N-ASS – non-adherent surface of the suckers; PVS – proliferation zone surface; IPS – immature proglottid surface; AF – acicular filitriches; CF – capilliform filitriches; GS – gladiate spinitriches; gs – small gladiate spinitriches.

Description (based on two mature and one gravid specimens, transverse sections and two scoleces studied using SEM from type locality). Proteocephalidae, Monticelliinae. Medium-sized worms, 28–88 mm (n = 3) in total length. Strobila acraspedote, flattened dorsoventrally, anapolytic, consisting of 37–67 (51; 3) immature proglottids (up to appearance of spermatozoa in vas deferens), 6–9 (8; 3) mature proglottids (up to appearance of eggs in uterus), 22 (1) gravid proglottids. Immature proglottids wider than long to longer than wide, 80–870 (465) × 400–690 (515; 17), length/width ratio 0.2–1.7 : 1. Mature proglottids longer than wide, 960–1,380 (1,150) × 400–870 (660; 12), length/width ratio 1.3–2.4 : 1. Gravid proglottids longer than wide, 1,582–2,522 mm (2.07 mm) × 500–960 (750; 5), length/width ratio 1.7–5.0 : 1 (Figs. 1, 2B,C).

Scolex quadrangular, formed by four lobes separated by grooves in apical view, 710–800 (755) × 710–840 (775; 2), wider than proliferation zone, bearing 4 biloculate suckers. Apex conical, without apical organ, with numerous gland cells (Figs. 1, 2A, 4A–D). Suckers oriented anterolaterally, lacking free posterior margin, with loculi of unequal size, separating each other by a robust septum, anterior loculus 430–550 (490) × 230–320 (280), posterior loculus 300–340 (315; 7). Proliferation zone 460–560 (510) × 1.10–1.66 mm (1.33 mm; 2) (Figs. 1, 2A, 4A–D).

Apical surface of scolex (ASS) covered only with acicular filitriches (Fig. 4E). Marginal surface of suckers (MSS) covered with acicular and capilliform filitriches interspersed with gladiate spinitriches (Fig. 4F). Luminal surface of suckers (LSS) covered with capilliform filitriches interspersed with gladiate spinitriches (Fig. 4G). Surface of septum of suckers covered with few acicular filitriches interspersed with gladiate spinitriches of two.
sizes (Fig. 4H). Non-adherent surface of suckers (N-ASS) covered with capiliform filitriches interspersed with gladiate spinitriches on anterior and medial surfaces, filitriches diminishing in size from anterior to posterior surfaces (Fig. 4I,J). Proliferation zone surface and immature pro-glottid surface covered only with acicular filitriches (Fig. 4K,L). Tumuli observed in all surfaces, but more abundant on MSS, LSS and N-ASS (Fig. 4C,D) (see Table 2 for estimated size of microtriches).

Fig. 1. *Synbranchiella mabelae* gen. n. et sp. n. from *Synbranchus marmoratus* Bloch (holotype IPCAS C-758). Entire worm, ventral view; dash lines indicate portions of strobila that are not shown.
Internal longitudinal musculature weakly developed, represented by scarce bundles of isolated muscle fibres (Fig. 3D–F). Osmoregulatory canals situated between testes and vitelline follicles, often both canals overlapped by testes and ovary in dorsal view. Ventral canals 15–40 (30; 10) in diameter, dorsal canals 5–20 (15; 10) (Figs. 2B,C, 3D–F).

Testes cortical, oval to spherical 45–100 (75) × 40–80 (65; 25); 77–101 (88; 12) in total number per mature proglottid, arranged in one irregular field and one layer, usual-

Fig. 2. *Synbranchiella mabelae* gen. n. et sp. n. from *Synbranchus marmoratus* Bloch (holotype, IPCAS C-758). A – scolex, dorsoventral view; B – mature proglottid, dorsal view; C – gravid proglottid, ventral view. Abbreviations: doc – dorsal osmoregulatory canal; gc – gland cells; nc – nerve corde; ud – uteroduct; voc – ventral osmoregulatory canal.
ly not surpassing osmoregulatory canals, overlapping cirrus-sac and ovary (Figs. 2B, 3A,D). Cirrus-sac elongate to pyriform, with thin muscular wall, 140–225 (200) × 65–90 (80; 12), occupying 24–42% (31%; n = 12) of proglottid width in mature proglottids. Cirrus long, occupies 52–79% (69%; 12) of cirrus-sac length in mature proglottids (Figs. 2B,C, 3A,B,D). Evaginated cirrus 325–415 (380) × 40–50 (45; 5). Vas deferens coiled, 15–40 (30; 21) in diameter, usually not surpassing mid-line in mature and gravid proglottids. Genital pores irregularly alternating, markedly pre-equatorial, 8–16% (12%; 12) from anterior margin of proglottid in mature proglottids (Figs. 1, 2B,C, 3A).
Ovary cortical, butterfly-shaped, slightly lobulate, 225–315 (280) × 235–590 (400; 12), occupying 47–72% (60%; 12) of mature proglottid width (Figs. 1, 2B,C, 3F). Relative size of ovary surface to proglottid surface (sensu de Chambrier et al. 2012) 8–14% (11%; n = 11). Vagina thin-walled, always anterior to cirrus-sac, with small vaginal sphincter (difficult to observe), 10–15 (13; 10) in diameter (Figs. 2B,C, 3A,B). Vitelline follicles cortical, arranged in 2 narrow lateral bands of 1–2 rows of follicles, occupy 97–100% of proglottid length. Some follicles overlapping ovary ventrally and vagina and cirrus-sac dorsally (Figs. 1, 2B,C, 3A, D–F).

Fig. 4. Synbranchiella mabelae gen. n. et sp. n. from Synbranchus marmoratus Bloch, scanning electron micrographs. A – scolex, dorsoventral view; B – scolex, apical view; C – detail of sucker, arrow indicates septum; D – scolex, sublateral view; E–K letters indicate surfaces shown at high magnification in Fig. 4E–K; E – apical surface of scolex; F – marginal surface of suckers; G – luminal surface of suckers; H – surface of sucker septum; I – non-adherent surface of suckers, anterior and medial zone; J – non-adherent surface of suckers, posterior zone; K – proliferation zone surface; L – surface of immature proglottid.
Uterine stem cortical, uterine development of type 2 *(sensu de Chambrier et al. 2004a)*. Uterus entirely cortical, uterine branches situated in ventral cortex, occupying 43–58% (53%; 5) of width of gravid proglottids. Aporal uterine branches 33–50 (40; 5) in number, poral uterine branches 34–48 (40; 5) in number. Uteroduct 760–1,000 (880) × 45–55 (50), occupying 35–41% (38%; 3) of gravid proglottid length (Figs. 1, 2C, 3D–F).

First eggs released through several circular uterine apertures, later through longitudinal slit-like aperture extending ventrally along almost entire length of proglottid. Eggs spherical, with thin hyaline outer envelope 115–175 (140; 16) in diameter; embryophore 36–45 (40; 16) in diameter; oncosphere 20–30 (24; 16) in diameter, with embryonic hooks 8–13 (10; 39) long (Fig. 3C).

Type and only known host: *Synbranchus marmoratus* Bloch (Synbranchiformes: Synbranchidae); vernacular name ‘anguila criolla’ in Argentina; marbled swamp eel in English.

Site of infection: Anterior intestine.

Infection rates: River Colastiné – prevalence, 17% (8/47), intensity 1–2 worms per host, mean intensity 1.3, abundance 0.2; River Paraná-Guazú – prevalence 19% (5/26), intensity 1–7 worms per host, mean intensity 2.4, abundance 0.5; total number of worms 22; 19 immature, 2 mature, 1 gravid.

Type material: Holotype IPCAS No. C-758/1 (entire worm with serial transverse sections, on three slides), paratypes: MACN-Pa 619/1A,B (entire worm with serial transverse sections on two slides), MACN-Pa 619/2 (hologenousphere; scolex used for SEM micrographs, strobila with serial transverse sections on one slide).

Molecular data: A fragment of 1,497 bp of the *lsr* DNA gene (D1–D3 domains) of one specimen of *Synbranchiella mabelae* gen. n. et sp. n. from *Synbranchus marmoratus* Bloch in bold and demarcated in grey.

Fig. 5. Phylogram based on Bayesian Inference analysis of the partial *lsr* DNA data. Nodal values indicate Bayesian posterior probabilities > 0.5 and Maximum Likelihood bootstrap supports > 50. Branch length scale bar indicates number of substitutions per site. *Synbranchiella mabelae* gen. n. et sp. n. from *Synbranchus marmoratus* Bloch in bold and demarcated in grey.

Phylogenetic analysis. Partial *lsr* DNA (D1–D3 domains) sequence was generated *de novo* for a single representative of *Synbranchiella mabelae* gen. n. et sp. n. The trimmed *lsr* DNA alignment that also included representatives of clade D of de Chambrier et al. (2015), *Monticellia ophiisterni* Scholz, de Chambrier et Salgado-Maldonado, 2001 (the only Neotropical proteocephalidean described from a synbranchid host), as well as representative se-
quences of most morphologically similar species, i.e. *C. megacephala* and *R. amazonense* (see Table 1), was 976 bp long and included 136 parsimony informative characters.

Bayesian inference and Maximum likelihood analyses produced phylogenograms with similar topologies (Fig. 5), even though weaker supported in the ML data (data not shown). The results showed a large polytomy with few well-supported internal nodes. Nevertheless, the molecular results revealed *S. mabelae* as an independent lineage, yet with uncertain phylogenetic position among the Neotropical proteocephalideans (Fig. 5). The morphologically similar taxa, *C. megacephala* and *R. amazonense*, clustered together with *Megathylicus jandia* Woodland, 1934 and *Nominoscolex lenha* (Woodland, 1933), respectively, whereas *M. ophisterni* fell within a weakly supported clade composed, among others, from several species of *Ophtoactenia* La Rue, 1911 from amphibians and reptiles in the Palearctic and Nearctic regions, also with unresolved position.

Pairwise comparison of the *lsr* DNA sequences of *S. mabelae* with those of *R. amazonense*, *C. megacephala* and *M. ophisterni* revealed divergence levels of 2.6% (39 nt difference), 2.7% (40 nt difference) and 4.8% (48 nt difference), respectively.

DISCUSSION

Synbranchiella mabelae gen. n. et sp. n. belongs to the Monticelliinae based on the cortical position of the testes, ovary, vitelline follicles and uterus, as defined by Schmidt (1986), Rego (1994) and de Chambrier et al. (2009). The new species is allocated in a new genus because it possesses a unique combination of characters not present in any other monticelline genera.

Recently, Caira et al. (2014) proposed the presence of gladiate spinitriches on the proliferation zone (or neck) of the Proteocephalidea and in the cephalic peduncle of the Onchobothriidae as a synapomorphy of the Onchoprotocephalidea. However, the type of microtriches that covers the proliferation zone has been scarcely included in the descriptions of proteocephalidean species and thus future studies should test validity of this putative synapomorphy of the Onchoprotocephalidea. For example, the new species described herein, *Spatulifer maringaensis* Pavanelle et Rego, 1989 and *Luciaella ivanovae* Gil de Perttierra, 2009 have not gladiate spinitriches covering the proliferation zone (Arredondo and Gil de Perttierra 2008, Gil de Perttierra 2009, present study).

Phylogenetic analysis of the partial *lsr* DNA sequence of *Synbranchiella mabelae* shows that this species does not cluster with any other Neotropical proteocephalidean, even though its relationship with the taxa remains unclear. It also indicates that the most morphologically similar taxa, i.e. *C. megacephala* and *R. amazonense*, are reciprocally monophyletic lineages, also with uncertain position within a large polytomy (see Fig. 5). It is argued that several events of colonisation of both hosts and zoogeographical regions, associated with rapid radiation in Neotropical teleosts, mainly pimelodid catfishes, largely contributed for the lack of genetic signal as estimated on the basis of the current ribosomal data (de Chambrier et al. 2004a, 2015). The results obtained in the present study support this assumption, as revealed by the low divergence levels of the *lsr* DNA sequences, at least among representatives of three genera, i.e. *Chambriella*, *Riggenbachiella* and *Synbranchiella*; divergence levels ranged between 2.6%–4.8% (39–48 nt difference).

All three monticelline genera possessing biloculate suckers are morphologically similar, but it is obvious from molecular analyses that this resemblance is a result of convergent evolution of morphological traits. Homoplasy of morphological characteristics, especially those of the scolex, has been observed in several groups of proteocephalideans [e.g. Scholz et al. 2013 – *Macrobothriotenia ficta* (Meggitt, 1931)]. In South America, there are two other proteocephalidean genera from fishes that do not possess a metacolex and that bear four biloculate suckers in the scolex, similar to the members of the three above-mentioned monticelline genera, i.e. *Endorchiis* Woodland, 1934 (*Endorchiinae*) and *Luciaella* Gil de Perttierra, 2009 (*Peltidocotylinae*). Preliminary analyses of molecular data (partial sequences of *lsr* DNA) support the assumption that biloculate suckers may have evolved independently in several lineages of proteocephalidean cestodes in the Neotropical Region (P.V.A. – unpubl. data).

Neotropical synbranchids are represented by two species of *Ophisternon McClelland*, namely *O. aestigmaticum* Rosen et Greenwood and *O. infernale* (Hubbs) distributed in Central America, and three species of *Synbranchus* Bloch, i.e. *S. marmoratus*, *S. lamprea* Favorito, Zanata et Assumpção and *S. madeirensis* Rosen et Runney, distributed in Central and South America (Froese and Pauly 2016). Only one proteocephalidean, *Monticellia ophisterni*, was previously found in synbranchids in the Neotropical Region (Scholz et al. 2001). *Synbranchiella mabelae* occurs in *S. marmoratus*, which has the most widespread distribution among the Neotropical synbranchids (Central and South America). *Monticellia ophisterni* differs from *S. mabelae* especially in the possession of uniloculate rather than biloculate suckers (see Scholz et al. 2001). Dis-similarity of these two monticelline cestodes from swamp eels (synbranchiform fishes) well corresponds to their low level of relatedness as revealed by the phylogenetic analyses (Fig. 5) and distant distribution areas (northern Argentina vs southeastern Mexico). It is thus plausible to assume that synbranchiform fishes in the Neotropical Region were colonised by proteocephalidean cestodes independently. Curiously, *M. ophisterni* and *S. mabelae* have a relatively high prevalence of infection but most specimens were not fully mature or gravid (see Scholz et al. 2001 and infection rates in this paper). According to Scholz et al. (2001), the occurrence of *M. ophisterni* in an eel could be a result of host-switching, since other species of *Monticellia* have mainly been reported from siluriform or characiform fishes. Thus, the presence of proteocephalidean species in synbranchid fishes could either reflect a recent acquisition or an accidental host. *Synbranchiella mabelae* is the second proteocephalidean cestode described from a Neotropical
synbranchiform fish host and the first one in South America.

Acknowledgements. Special thanks are due to Tomáš Scholz (České Budějovice, Czech Republic) for his fruitful comments during the preparation of this manuscript. This research was supported by the Universidad de Buenos Aires, Argentina (Grant UBACYT 20020130100617BA) and Agencia Nacional de Promoción Científica y Tecnológica, Argentina (PICT No. 2358). P.V.A. was supported by a postgraduate fellowship from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), the Institute of Parasitology (RVO: 60077344) and the Czech Science Foundation (P505/12/G112).

REFERENCES

Alves P.V., de Chambrier A., Luque J.L., Scholz T. 2017b: Untangling convoluted taxonomy of Chambriella Rego, Chubb & Pavanelli, 1999 (Cestoda: Proteocephalidea), with erection of Riggenbachiella n. g. and description of a new species from pimelodid catfishes in the Neotropical Region. Syst. Parasitol. 94: 367–389.

Alves P.V., de Chambrier A., Scholz T., Luque J.L. 2017a: Annotated checklist of fish cestodes from South America. ZooKeys 650: 1–205.

Arredondo N.J., Gil de Pertierra A.A. 2009: The taxonomic status of Spatalifier cf. maringaensis Pavanelli & Rego, 1989 (Eucestoda: Proteocephalidea) from Sorubim lima (Bloch & Schneider) (Pisces: Siluriformes), and the use of the microtrich pattern in the discrimination of Spatalifier spp. Syst. Parasitol. 70: 223–236.

Brabec J., Scholz T., Králová-Hromadová I., Bazsalová E., Olson P.D. 2012: Substitution saturation and nuclear paralogs of commonly employed phylogenetic markers in the Caryophyllidea, an unusual group of non-segmented tapeworms (Platyhelminthes). Int. J. Parasitol. 42: 259–267.

Caira J.N., Jensen K., Waeschbach A., Olson P.D., Littlewood D.T. 2014: Orders out of chaos – molecular phylogenetics reveals the complexity of shark and stingray tapeworm relationships. Int. J. Parasitol. 44: 55–73.

de Chambrier A., Binh T.T., Scholz T. 2012: Ophiotaenia hungari n. sp. (Cestoda), a parasite of Bungarus fasciatus (Schneider) (Ophidia: Elapidae) from Vietnam, with comments on relative ovarian size as a new and potentially useful diagnostic character for proteocephalidean tapeworms. Syst. Parasitol. 81: 39–50.

de Chambrier A., Coquelle S.C., Mariaux J., Tkach V. 2009: Redescription of Testudotaenia testudo (Magath, 1924) (Eucestoda: Proteocephalidea), a parasite of Apalone spinifera (Le Sueur) (Reptilia: Trionychidae) and Apalone spinifera (Eucestoda: Proteocephalidea), a parasite of Testudinae (Amidae). Int. J. Parasitol. 39: 73–94.

de Chambrier A., Rego A.A., Mariaux J. 2004b: Redescription of Brooksiella praepatulis and Goezzeella siluri (Eucestoda: Proteocephalidea), parasites of Cetopsis coecutiens (Siluriformes) from the Amazon, and proposition of Goezzeella danbrooksi sp. n. Rev. Suisse Zool. 111: 111–120.

de Chambrier A., Scholz T. 2008: Tapeworms (Cestoda: Proteocephalidea) of firewood catfish Sorubimichthyus planiceps (Siluriformes: Pimelodidae) from the Amazon River. Folia Parasitol. 55: 17–28.

de Chambrier A., Vaucher C. 1999: Proteocephalidea et Monticellidae (Eucestoda: Proteocephalidea) parasites de poissons d'eau douce au Paraguay, avec descriptions d'un genre et de dix espèces nouvelles. Rev. Suisse Zool. 106: 165–240.

de Chambrier A., Waeschbach A., Fisseha M., Scholz T., Mariaux J. 2015: A large 28S rDNA-based phylogeny confirms the limitations of established morphological characters for classification of proteocephalideans tapeworms (Platyhelminthes, Cestoda). ZooKeys 500: 25–59.

de Chambrier A., Zehnder M.P., Vaucher C., Mariaux J. 2004a: The evolution of the Proteocephalidea (Platyhelminthes, Eucestoda) based on an enlarged molecular phylogeny, with comments on their uterine development. Syst. Parasitol. 57: 159–171.

Cherry L. 2009: Unified terminology for cestode microtriches: a proposal from the International Workshops on Cestode Systematics in 2002–2008. Folia Parasitol. 56: 199–230.

Froese R., Pauly D. (Eds.) 2016: FishBase. World Wide Web electronic publication. www.fishbase.org, 2016.

Fuhrmann O. 1916: Eigentümliche Fischecestoden. Zool. Anz. 46: 385–398.

Gil de Pertierra A.A. 2009: Luciabella ivanovae n. g., n. sp. (Eucestoda: Proteocephalidea: Peltidocotylinae), a parasite of Ageceius inermis (L.) (Siluriformes: Auchenipteridae) in Argentina. Syst. Parasitol. 73: 71–80.

Katoh K., Standley D.M. 2013: MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30: 772–780.

Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S., Buxton S., Cooper A., Markowitz S., Duran C., Thirier T., Ashton B., Meintjes P., Drummond A. 2012: Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28: 1647–1649.

Lanfear R., Calcott B., Ho S.Y.W., Guindon S. 2012: PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol. 29: 1695–1701.

Langeron M. 1949: Précis de Microscopie. Seventh Edition. Masson & Cie, Paris, 1429 pp.

Pleijel F., Jondelius U., Norlinder E., Nygren A., Oxelman B., Schander C., Sundberg P., Thollesson M. 2008: Phylogenies without roots? A plea for the use of vouchers in molecular phylogenetic studies. Mol. Phylogenet. Evol. 48: 369–371.

Rambaut A., Suchard M.A., Xie D., Drummond A.J. 2014: Tracer v1.6. World Wide Web electronic publication, http://beast.bio.ed.ac.uk/Tracer, 11/2016.

Rego A.A. 1994: Order Proteocephalidea Mola, 1928. In: L.F. Khalil, A. Jones and R.A. Bray (Eds.), Keys to the Cestode Parasites of Vertebrates. CAB Intenational, Wallingford, pp. 257–293.

Ronquist F., Teslenko M., van der Mark P., Ayres D.L., Darling A., Höhna S., Larget B., Liu L., Suchard M.A., Huelsenbeck J.P. 2012: MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61: 539–542.

Schmidt G.D. 1986: CRC Handbook of Tapeworm Identification. CRC Press, Inc., Boca Raton, Florida, 673 pp.

Scholz T., de Chambrier A., Kuchta R., Littlewood D.T.J., Waeschbach A. 2013: Macrobothriotenia ficta (Cestoda: Proteocephalidea), a parasite of sunbeam snake (Xenopeltis unicolor): example of convergent evolution. ZooTaxa 3670: 485–499.

Scholz T., de Chambrier A., Salgado-Maldonado G. 2001: Monticellia ophisterni n. sp. (Cestoda: Monticellidae) from the swamp-eel Ophiaster enigmaticus (Synchronichromes) from Mexico. J. Parasitol. 87: 1328–1333.

Scholz T., Rosas-Valdez R., Pérez-Ponce de León G., Choudhury A., de Chambrier A. 2003: Taxonomic status of Choanocephalus lamothei Garcia-Prieto, 1990 (Cestoda: Proteocephalidea) using morphological and molecular evidence. J. Parasitol. 89: 1212–1219.
Swofford D.L. 2002: PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods), version 4.0. Sinauer Assoc., Sunderland, Massachusetts.

Zehnder M.P., de Chambrier A., Vaucher C., Mariaux J. 2000: Nomimoscolex suspectus n. sp. (Eucestoda: Proteocephalidea, Zygobothriinae) with morphological and molecular phylogenetic analyses of the genus. Syst. Parasitol. 47: 157–172.

Zehnder M.P., Mariaux J. 1999: Molecular systematic analysis of the order Proteocephalidea (Eucestoda) based on mitochondrial and nuclear rDNA sequences. Int. J. Parasitol. 29: 1841–1852.

Zwickl D.J. 2006: Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. PhD thesis, University of Texas at Austin, 115 pp.

Cite this article as: Arredondo N.J., Alves P.V., Gil de Pertierra A.A. 2017: A new genus of proteocephalid tapeworm (Cestoda) from the marbled swamp eel Synbranchus marmoratus Bloch (Synbranchiformes: Synbranchidae) in the River Paraná basin, Argentina. Folia Parasitol. 64: 015.