Intrinsic sound of anti-de Sitter manifolds

Toshiyuki Kobayashi

Abstract As is well-known for compact Riemann surfaces, eigenvalues of the Laplacian are distributed discretely and most of eigenvalues vary viewed as functions on the Teichmüller space. We discuss a new feature in the Lorentzian geometry, or more generally, in pseudo-Riemannian geometry. One of the distinguished features is that L^2-eigenvalues of the Laplacian may be distributed densely in \mathbb{R} in pseudo-Riemannian geometry. For three-dimensional anti-de Sitter manifolds, we also explain another feature proved in joint with F. Kassel [Adv. Math. 2016] that there exist countably many L^2-eigenvalues of the Laplacian that are stable under any small deformation of anti-de Sitter structure. Partially supported by Grant-in-Aid for Scientific Research (A) (25247006), Japan Society for the Promotion of Science.

Keywords and phrases: Laplacian, locally symmetric space, Lorentzian manifold, spectral analysis, Clifford–Klein form, reductive group, discontinuous group

2010 MSC: Primary 22E40, 22E46, 58J50; Secondary 11F72, 53C35

1 Introduction

Our “common sense” for music instruments says:

“shorter strings produce a higher pitch than longer strings”,

“thinner strings produce a higher pitch than thicker strings”.

Let us try to “hear the sound of pseudo-Riemannian locally symmetric spaces”. Contrary to our “common sense” in the Riemannian world, we find a phenomenon that compact three-dimensional anti-de Sitter manifolds have “intrinsic sound”
which is stable under any small deformation. This is formulated in the framework of spectral analysis of anti-de Sitter manifolds, or more generally, of pseudo-Riemannian locally symmetric spaces X_Γ. In this article, we give a flavor of this new topic by comparing it with the flat case and the Riemannian case.

To explain briefly the subject, let X be a pseudo-Riemannian manifold, and Γ a discrete isometry group acting properly discontinuously and freely on X. Then the quotient space $X_\Gamma := \Gamma \backslash X$ carries a pseudo-Riemannian manifold structure such that the covering map $X \to X_\Gamma$ is isometric. We are particularly interested in the case where X_Γ is a pseudo-Riemannian locally symmetric space, see Section 3.2.

Problems we have in mind are symbolized in the following diagram:

Geometry	Geometric existence problem	deformed v.s. rigidity
Does cocompact Γ exist?	Higher Teichmüller theory v.s. rigidity theorem	
Analysis	Does L^2-spectrum exist?	Whether L^2-eigenvalues vary or not
(Problem A)	(Section 4.2)	(Problem B)

2 A program

In [5, 6, 12] we initiated the study of “spectral analysis on pseudo-Riemannian locally symmetric spaces” with focus on the following two problems:

Problem A Construct eigenfunctions of the Laplacian ΔX_Γ on X_Γ. Does there exist a nonzero L^2-eigenfunction?

Problem B Understand the behaviour of L^2-eigenvalues of the Laplacian ΔX_Γ on X_Γ under small deformation of Γ inside G.

Even when X_Γ is compact, the existence of countably many L^2-eigenvalues is already nontrivial because the Laplacian ΔX_Γ is not elliptic in our setting. We shall discuss in Section 2.2 for further difficulties concerning Problems A and B when X_Γ is non-Riemannian.

We may extend these problems by considering joint eigenfunctions for “invariant differential operators” on X_Γ rather than the single operator ΔX_Γ. Here by “invariant differential operators on X_Γ” we mean differential operators that are induced from G-invariant ones on $X = G/H$. In Section 7 we discuss Problems A and B in this general formulation based on the recent joint work [6, 7] with F. Kassel.
2.1 Known results

Spectral analysis on a pseudo-Riemannian locally symmetric space $X_\Gamma = \Gamma \backslash X = \Gamma \backslash G/H$ is already deep and difficult in the following special cases:

1) (noncommutative harmonic analysis on G/H) $\Gamma = \{e\}$.
 In this case, the group G acts unitarily on the Hilbert space $L^2(X_\Gamma) = L^2(X)$ by translation $f(\cdot) \mapsto f(g^{-1} \cdot)$, and the irreducible decomposition of $L^2(X)$ (Plancherel-type formula) is essentially equivalent to the spectral analysis of G-invariant differential operators when X is a semisimple symmetric space.
 Noncommutative harmonic analysis on semisimple symmetric spaces X has been developed extensively by the work of Helgason, Flensted-Jensen, Matsuki–Oshima–Sekiguchi, Delorme, van den Ban–Schlichtkrull among others as a generalization of Harish-Chandra’s earlier work on the regular representation $L^2(G)$ for group manifolds.

2) (automorphic forms) H is compact and Γ is arithmetic.
 If H is a maximal compact subgroup of G, then $X_\Gamma = \Gamma \backslash G/H$ is a Riemannian locally symmetric space and the Laplacian Δ_{X_Γ} is an elliptic differential operator.
 Then there exist infinitely many L^2-eigenvalues of Δ_{X_Γ} if X_Γ is compact by the general theory for compact Riemannian manifolds (see Fact 1). If furthermore Γ is irreducible, then Weil’s local rigidity theorem [18] states that nontrivial deformations exist only when X is the hyperbolic plane $SL(2, \mathbb{R})/SO(2)$, in which case compact quotients X_Γ have a classically-known deformation space modulo conjugation, i.e., their Teichmüller space. Viewed as a function on the Teichmüller space, L^2-eigenvalues vary analytically [1, 20], see Fact 11.
 Spectral analysis on X_Γ is closely related to the theory of automorphic forms in the Archimedian place if Γ is an arithmetic subgroup.

3) (abelian case) $G = \mathbb{R}^{p+q}$ with $H = \{0\}$ and $\Gamma = \mathbb{Z}^{p+q}$.
 We equip $X = G/H$ with the standard flat pseudo-Riemannian structure of signature (p, q) (see Example 1). In this case, G is abelian, but $X = G/H$ is non-Riemannian. This is seemingly easy, however, spectral analysis on the $(p+q)$-torus $\mathbb{R}^{p+q}/\mathbb{Z}^{p+q}$ is much involved, as we shall observe a connection with Oppenheim’s conjecture (see Section 5.2).

2.2 Difficulties in the new settings

If we try to attack a problem of spectral analysis on $\Gamma \backslash G/H$ in the more general case where H is noncompact and Γ is infinite, then new difficulties may arise from several points of view:

1) Geometry. The G-invariant pseudo-Riemannian structure on $X = G/H$ is not Riemannian anymore, and discrete groups of isometries of X do not always act properly discontinuously on such X.

(2) Analysis. The Laplacian Δ_X on X_Γ is not an elliptic differential operator. Furthermore, it is not clear if Δ_X has a self-adjoint extension on $L^2(X_\Gamma)$.

(3) Representation theory. If Γ acts properly discontinuously on $X = G/H$ with H noncompact, then the volume of $\Gamma \backslash G$ is infinite, and the regular representation $L^2(\Gamma \backslash G)$ may have infinite multiplicities. In turn, the group G may not have a good control of functions on $\Gamma \backslash G$. Moreover $L^2(X_\Gamma)$ is not a subspace of $L^2(\Gamma \backslash G)$ because H is noncompact. All these observations suggest that an application of the representation theory of $L^2(\Gamma \backslash G)$ to spectral analysis on X_Γ is rather limited when H is noncompact.

Point (1) creates some underlying difficulty to Problem B: we need to consider locally symmetric spaces X_Γ for which proper discontinuity of the action of Γ on X is preserved under small deformations of Γ in G. This is nontrivial. This question was first studied by the author [9, 11]. See [4] for further study. An interesting aspect of the case of noncompact H is that there are more examples where nontrivial deformations of compact quotients exist than for compact H (cf. Weil’s local rigidity theorem [18]). Perspectives from Point (1) will be discussed in Section 4.

Point (2) makes Problem A nontrivial. It is not clear if the following well-known properties in the Riemannian case holds in our setting in the pseudo-Riemannian case.

Fact 1 Suppose M is a compact Riemannian manifold.

1. The Laplacian Δ_M extends to a self-adjoint operator on $L^2(M)$.
2. There exist infinitely many L^2-eigenvalues of Δ_M.
3. An eigenfunction of Δ_M is infinitely differentiable.
4. Each eigenspace of Δ_M is finite-dimensional.
5. The set of L^2-eigenvalues is discrete in \mathbb{R}.

Remark 1. We shall see that the third to fifth properties of Fact 1 may fail in the pseudo-Riemannian case, e.g., Example 6 for (3) and (4), and $M = \mathbb{R}^{2,1}/\mathbb{Z}^3$ (Theorem 7) for (5).

In spite of these difficulties, we wish to reveal a mystery of spectral analysis of pseudo-Riemannian locally homogeneous spaces $X_\Gamma = \Gamma \backslash G/H$. We shall discuss self-adjoint extension of the Laplacian in the pseudo-Riemannian setting in Theorem 13 and the existence of countable many L^2-eigenvalues in Theorems 8 and 12.

3 Pseudo-Riemannian manifold

3.1 Laplacian on pseudo-Riemannian manifolds

A *pseudo-Riemannian manifold* M is a smooth manifold endowed with a smooth, nondegenerate, symmetric bilinear tensor g of signature (p, q) for some $p, q \in \mathbb{N}$.
(M, g) is a Riemannian manifold if q = 0, and is a Lorentzian manifold if q = 1. The metric tensor g induces a Radon measure dµ on X, and the divergence div. Then the Laplacian

\[\Delta_M := \text{div grad}, \]

is a differential operator of second order which is a symmetric operator on the Hilbert space \(L^2(X, d\mu) \).

Example 1. Let \((M, g)\) be the standard flat pseudo-Riemannian manifold:

\[R^{p,q} := (R^{p+q}, dx_1^2 + \ldots + dx_p^2 - dx_{p+1}^2 - \cdots - dx_{p+q}^2). \]

Then the Laplacian takes the form

\[\Delta_{R^{p,q}} = \frac{\partial^2}{\partial x_1^2} + \cdots + \frac{\partial^2}{\partial x_p^2} - \frac{\partial^2}{\partial x_{p+1}^2} - \cdots - \frac{\partial^2}{\partial x_{p+q}^2}. \]

In general, \(\Delta_M \) is an elliptic differential operator if \((M, g)\) is Riemannian, and is a hyperbolic operator if \((M, g)\) is Lorentzian.

3.2 Homogeneous pseudo-Riemannian manifolds

A typical example of pseudo-Riemannian manifolds \(X \) with “large” isometry groups is semisimple symmetric spaces, for which the infinitesimal classification was accomplished by M. Berger in 1950s. In this case, \(X \) is given as a homogeneous space \(G/H \) where \(G \) is a semisimple Lie group and \(H \) is an open subgroup of the fixed point group \(G^\sigma = \{ g \in G : \sigma g = g \} \) for some involutive automorphism \(\sigma \) of \(G \). In particular, \(G \supset H \) are a pair of reductive Lie groups.

More generally, we say \(G/H \) is a *reductive homogeneous space* if \(G \supset H \) are a pair of real reductive algebraic groups. Then we have the following:

Proposition 1. Any reductive homogeneous space \(X = G/H \) carries a pseudo-Riemannian structure such that \(G \) acts on \(X \) by isometries.

Proof. By a theorem of Mostow, we can take a Cartan involution \(\theta \) of \(G \) such that \(\theta H = H \). Then \(K := G^\theta \) is a maximal compact subgroup of \(G \), and \(H \cap K \) is that of \(H \). Let \(g = \mathfrak{k} + \mathfrak{p} \) be the corresponding Cartan decomposition of the Lie algebra \(g \) of \(G \). Take an \(\text{Ad}(G) \)-invariant nondegenerate symmetric bilinear form \(\langle , \rangle \) on \(g \) such that \(\langle , \rangle|_{\mathfrak{k} \times \mathfrak{k}} \) is negative definite, \(\langle , \rangle|_{\mathfrak{p} \times \mathfrak{p}} \) is positive definite, and \(\mathfrak{k} \) and \(\mathfrak{p} \) are orthogonal to each other. (If \(G \) is semisimple, then we may take \(\langle , \rangle \) to be the Killing form of \(g \).)

Since \(\theta H = H \), the Lie algebra \(\mathfrak{h} \) of \(H \) is decomposed into a direct sum \(\mathfrak{h} = (\mathfrak{h} \cap \mathfrak{k}) + (\mathfrak{h} \cap \mathfrak{p}) \), and therefore the bilinear form \(\langle , \rangle \) is non-degenerate when restricted to \(\mathfrak{h} \). Then \(\langle , \rangle \) induces an \(\text{Ad}(H) \)-invariant nondegenerate symmetric bilinear form \(\langle , \rangle|_{\mathfrak{g}/\mathfrak{h}} \) on the quotient space \(\mathfrak{g}/\mathfrak{h} \), with which we identify the tangent space \(T_o(G/H) \)
at the origin $o = eH \in G/H$. Since the bilinear form $(\cdot, \cdot)_{g/H}$ is $\text{Ad}(H)$-invariant, the left translation of this form is well-defined and gives a pseudo-Riemannian structure g on G/H of signature $(\dim p/h \cap p, \dim k/h \cap k)$. By the construction, the group G acts on the pseudo-Riemannian manifold $(G/H, g)$ by isometries. □

3.3 Pseudo-Riemannian manifolds with constant curvature, Anti-de Sitter manifolds

Let $Q_{p,q}(x) := x_1^2 + \cdots + x_p^2 - x_{p+1}^2 - \cdots - x_{p+q}^2$ be a quadratic form on \mathbb{R}^{p+q} of signature (p, q), and we denote by $O(p, q)$ the indefinite orthogonal group preserving the form $Q_{p,q}$. We define two hypersurfaces $M_{p,q}^\pm$ in \mathbb{R}^{p+q} by

$$M_{p,q}^\pm := \{ x \in \mathbb{R}^{p+q} : Q_{p,q}(x) = \pm 1 \}.$$

By switching p and q, we have an obvious diffeomorphism

$$M_{p,q}^\pm \simeq M_{q,p}^\mp.$$

The flat pseudo-Riemannian structure $\mathbb{R}^{p,q}$ (Example 1) induces a pseudo-Riemannian structure on the hypersurface $M_{p,q}^\pm$ of signature $(p - 1, q)$ with constant curvature 1, and that on $M_{p,q}^\pm$ of signature $(p, q - 1)$ with constant curvature -1.

The natural action of the group $O(p, q)$ on $\mathbb{R}^{p,q}$ induces an isometric and transitive action on the hypersurfaces $M_{p,q}^\pm$, and thus they are expressed as homogeneous spaces:

$$M_{p,q}^\pm \simeq O(p,q)/O(p-1,q), \quad M_{p,q}^\pm \simeq O(p,q)/O(p,q-1),$$

giving examples of pseudo-Riemannian homogeneous spaces as in Proposition 1.

The anti-de Sitter space $\text{AdS}^n = M_{n-1,2}^-$ is a model space for n-dimensional Lorentzian manifolds of constant negative sectional curvature, or anti-de Sitter n-manifolds. This is a Lorentzian analogue of the real hyperbolic space H^n. For the convenience of the reader, we list model spaces of Riemannian and Lorentzian manifolds with constant positive, zero, and negative curvatures.

Riemannian manifolds with constant curvature:

$$S^n = M_{n+1,0}^+ \simeq O(n+1)/O(n) : \text{standard sphere},$$

$$\mathbb{R}^n : \text{Euclidean space},$$

$$H^n = M_{n-1}^- \simeq O(1,n)/O(n) : \text{hyperbolic space},$$

Lorentzian manifolds with constant curvature:
Intrinsic sound of anti-de Sitter manifolds

\[\text{dS}^n = M_{+}^{n,1} \simeq O(n,1)/O(n-1,1) : \text{de Sitter space,} \]
\[\mathbb{R}^{n-1,1} : \text{Minkowski space,} \]
\[\text{AdS}^n = M_{-}^{n-1,2} \simeq O(2,n-1)/O(1,n-1) : \text{anti-de Sitter space,} \]

4 Discontinuous groups for pseudo-Riemannian manifolds

4.1 Existence problem of compact Clifford–Klein forms

Let \(H \) be a closed subgroup of a Lie group \(G \), and \(\Gamma \) a discrete subgroup of \(G \). If \(H \) is compact, then the double coset space \(\Gamma \backslash G/H \) becomes a \(C^\infty \)-manifold for any torsion-free discrete subgroup \(\Gamma \) of \(G \). However, we have to be careful for noncompact \(H \), because not all discrete subgroups acts properly discontinuously on \(G/H \), and \(\Gamma \backslash G/H \) may not be Hausdorff in the quotient topology. We illustrate this feature by two general results:

Fact 2

(1) (Moore’s ergodicity theorem [13]) Let \(G \) be a simple Lie group, and \(\Gamma \) a lattice. Then \(\Gamma \) acts ergodically on \(G/H \) for any noncompact closed subgroup \(H \). In particular, \(\Gamma \backslash G/H \) is non-Hausdorff.

(2) (Calabi–Markus phenomenon ([2, 8])) Let \(G \) be a reductive Lie group, and \(\Gamma \) an infinite discrete subgroup. Then \(\Gamma \backslash G/H \) is non-Hausdorff for any reductive subgroup \(H \) with \(\text{rank}_\mathbb{R} G = \text{rank}_\mathbb{R} H \).

In fact, determining which groups act properly discontinuously on reductive homogeneous spaces \(G/H \) is a delicate problem, which was first considered in full generality by the author; we refer to [13, Section 3.2] for a survey.

Suppose now a discrete subgroup \(\Gamma \) acts properly discontinuously and freely on \(X = G/H \). Then the quotient space

\[X_\Gamma := \Gamma \backslash X \simeq \Gamma \backslash G/H \]

carries a \(C^\infty \)-manifold structure such that the quotient map \(p : X \to X_\Gamma \) is a covering, through which \(X_\Gamma \) inherits any \(G \)-invariant local geometric structure on \(X \). We say \(\Gamma \) is a **discontinuous group** for \(X \) and \(X_\Gamma \) is a **Clifford–Klein form** of \(X = G/H \).

Example 2

(1) If \(X = G/H \) is a reductive homogeneous space, then any Clifford–Klein form \(X_\Gamma \) carries a pseudo-Riemannian structure by Proposition [1].

(2) If \(X = G/H \) is a semisimple symmetric space, then any Clifford–Klein form \(X_\Gamma = \Gamma \backslash G/H \) is a pseudo-Riemannian locally symmetric space, namely, the (local) geodesic symmetry at every \(p \in X_\Gamma \) with respect to the Levi-Civita connection is locally isometric.

By **space forms**, we mean pseudo-Riemannian manifolds of constant sectional curvature. They are examples of pseudo-Riemannian locally symmetric spaces. For simplicity, we shall assume that they are geodesically complete.
Example 3. Clifford–Klein forms of $M^{p+1,q}_+ = O(p+1,q)/O(p,q)$ (respectively, $M^{p,q+1}_- = O(p,q+1)/O(p,q)$) are pseudo-Riemannian space forms of signature (p,q) with positive (respectively, negative) curvature. Conversely, any (geodesically complete) pseudo-Riemannian space form of signature (p,q) is of this form as far as $p \neq 1$ for positive curvature or $q \neq 1$ for negative curvature.

A general question for reductive homogeneous spaces G/H is:

Question 1. Does compact Clifford–Klein forms of G/H exist?

or equivalently,

Question 2. Does there exist a discrete subgroup Γ of G acting cocompactly and properly discontinuously on G/H?

This question has an affirmative answer if H is compact by a theorem of Borel. In the general setting where H is noncompact, the question relates with a “global theory” of pseudo-Riemannian geometry: how local pseudo-Riemannian homogeneous structure affects the global nature of manifolds? A classic example is space form problem which asks the global properties (e.g. compactness, volume, fundamental groups, etc.) of a pseudo-Riemannian manifold of constant curvature (local property). The study of discontinuous groups for $M^{p+1,q}_+$ and $M^{p,q+1}_-$ shows the following results in pseudo-Riemannian space forms of signature (p,q):

Fact 3 Space forms of positive curvature are

1. always closed if $q = 0$, i.e., sphere geometry in the Riemannian case;
2. never closed if $p \geq q > 0$, in particular, if $q = 1$ (de Sitter geometry in the Lorentzian case [2]).

The phenomenon in the second statement is called the Calabi–Markus phenomenon (see Fact 2 in the general setting).

Fact 4 Compact space forms of negative curvature exist

1. for all dimensions if $q = 0$, i.e., hyperbolic geometry in the Riemannian case;
2. for odd dimensions if $q = 1$, i.e., anti-de Sitter geometry in the Lorentzian case;
3. for $(p,q) = (4m,3)$ ($m \in \mathbb{N}$) or $(8,7)$.

See [13] Section 4] for the survey of the space form problem in pseudo-Riemannian geometry and also of Question 1 for more general G/H.

A large and important class of Clifford–Klein forms X_Γ of a reductive homogeneous space $X = G/H$ is constructed as follows (see [8]).

Definition 1. A quotient $X_\Gamma = \Gamma\backslash X$ of X by a discrete subgroup Γ of G is called standard if Γ is contained in some reductive subgroup L of G acting properly on X.

If a subgroup L acts properly on G/H, then any discrete subgroup of Γ acts properly discontinuously on G/H. A handy criterion for the triple (G,H,L) of reductive groups such that L acts properly on G/H is proved in [8], as we shall recall below.
Let $G = K \exp \mathfrak{a}$ be a Cartan decomposition, where a is a maximal abelian subspace of p and \mathfrak{a} is the dominant Weyl chamber with respect to a fixed positive system $\Sigma^+(g,a)$. This defines a map $\mu : G \to \mathfrak{a}^+$ (Cartan projection) by

$$\mu(k_1 e^X k_2) = X \quad \text{for } k_1, k_2 \in K \text{ and } X \in a.$$

It is continuous, proper and surjective. If H is a reductive subgroup, then there exists $g \in G$ such that $\mu(gHg^{-1})$ is given by the intersection of \mathfrak{a}^+ with a subspace of dimension $\text{rank } R_H$. By an abuse of notation, we use the same H instead of gHg^{-1}.

With this convention, we have:

Properness Criterion 5 ([8])

L acts properly on G/H if and only if $\mu(L) \cap \mu(H) = \{0\}$.

By taking a lattice Γ of such L, we found a family of pseudo-Riemannian locally symmetric spaces X_Γ in [8, 13]. The list of symmetric spaces admitting standard Clifford–Klein forms of finite volume (or compact forms) include $M_{p,q+1} = O(p,q+1)/O(p,q)$ with (p,q) satisfying the conditions in Fact 4. Further, by applying Properness Criterion 5 Okuda [16] gave examples of pseudo-Riemannian locally symmetric spaces $\Gamma \backslash G/H$ of infinite volume where Γ is isomorphic to the fundamental group $\pi_1(\Sigma_g)$ of a compact Riemann surface Σ_g with $g \geq 2$.

For the construction of stable spectrum on X_Γ (see Theorem 10 and Theorem 12 (2) below), we introduced in [6, Section 1.6] the following concept:

Definition 2. A discrete subgroup Γ of G acts strongly properly discontinuously (or sharply) on $X = G/H$ if there exists $C, C' > 0$ such that for all $\gamma \in \Gamma$,

$$d(\mu(\gamma), \mu(H)) \geq C\| \mu(\gamma) \| - C'.$$

Here $d(\cdot, \cdot)$ is a distance in a given by a Euclidean norm $\| \cdot \|$ which is invariant under the Weyl group of the restricted root system $\Sigma(g,a)$. We say the positive number C is the first sharpness constant for Γ.

If a reductive subgroup L acts properly on a reductive homogeneous space G/H, then the action of a discrete subgroup Γ of L is strongly properly discontinuous ([6 Example 4.10]).

4.2 Deformation of Clifford–Klein forms

Let G be a Lie group and Γ a finitely generated group. We denote by $\text{Hom}(\Gamma, G)$ the set of all homomorphisms of Γ to G topologized by pointwise convergence. By taking a finite set $\{\gamma_1, \cdots, \gamma_k\}$ of generators of Γ, we can identify $\text{Hom}(\Gamma, G)$ as a subset of the direct product $G \times \cdots \times G$ by the inclusion:

$$\text{Hom}(\Gamma, G) \hookrightarrow G \times \cdots \times G, \quad \varphi \mapsto (\varphi(\gamma_1), \cdots, \varphi(\gamma_k)).$$

(1)
If \(\Gamma \) is finitely presentable, then \(\text{Hom}(\Gamma, G) \) is realized as a real analytic variety via (I).

Suppose \(G \) acts continuously on a manifold \(X \). We shall take \(X = G/H \) with noncompact closed subgroup \(H \) later. Then not all discrete subgroups act properly discontinuously on \(X \) in this general setting. The main difference of the following definition of the author [9] in the general case from that of Weil [18] is a requirement of proper discontinuity.

\[
R(\Gamma, G; X) := \{ \varphi \in \text{Hom}(\Gamma, G) : \varphi \text{ is injective}, \\
\quad \text{and } \varphi(\Gamma) \text{ acts properly discontinuously and freely on } G/H \}.
\]

Suppose now \(X = G/H \) for a closed subgroup \(H \). Then the double coset space \(\varphi(\Gamma) \backslash G/H \) forms a family of manifolds that are locally modelled on \(G/H \) with parameter \(\varphi \in R(\Gamma, G; X) \). To be more precise on “parameter”, we note that the conjugation by an element of \(G \) induces an automorphism of \(\text{Hom}(\Gamma, G) \) which leaves \(R(\Gamma, G; X) \) invariant. Taking these unessential deformations into account, we define the deformation space (generalized Teichmüller space) as the quotient set

\[
\mathcal{F}(\Gamma, G; X) := R(\Gamma, G; X)/G.
\]

Example 4.

1. Let \(\Gamma \) be the surface group \(\pi_1(\Sigma_g) \) of genus \(g \geq 2 \), \(G = \text{PSL}(2, \mathbb{R}) \), \(X = H^2 \) (two-dimensional hyperbolic space). Then \(\mathcal{F}(\Gamma, G; X) \) is the classical Teichmüller space, which is of dimension \(6g - 6 \).
2. \(G = \mathbb{R}^n \), \(X = \mathbb{R}^n \), \(\Gamma = \mathbb{Z}^n \). Then \(\mathcal{F}(\Gamma, G; X) \simeq \text{GL}(n, \mathbb{R}) \) (see (4) below).
3. \(G = \text{SO}(2, 2) \), \(X = \text{AdS}^3 \), and \(\Gamma = \pi_1(\Sigma_g) \). Then \(\mathcal{F}(\Gamma, G; X) \) is of dimension \(12g - 12 \) (see [6, Section 9.2] and references therein).

Remark 2. There is a natural isometry between \(X_{\varphi(\Gamma)} \) and \(X_{\varphi(\varphi(\Gamma)^{-1})} \). Hence, the set \(\text{Spec}_d(X_{\varphi(\Gamma)}) \) of \(L^2 \)-eigenvalues is independent of the conjugation of \(\varphi \in R(\Gamma, G; X) \) by an element of \(G \). By an abuse of notation we shall write \(\text{Spec}_d(X_{\varphi(\Gamma)}) \) for \(\varphi \in \mathcal{F}(\Gamma, G; X) \) when we deal with Problem \([3]\) of Section \([2]\).

5 Spectrum on \(\mathbb{R}^{p,q}/\mathbb{Z}^{p+q} \) and Oppenheim conjecture

This section gives an elementary but inspiring observation of spectrum on flat pseudo-Riemannian manifolds.

5.1 Spectrum of \(\mathbb{R}^{p,q}/\varphi(\mathbb{Z}^{p+q}) \)

Let \(G = \mathbb{R}^n \) and \(\Gamma = \mathbb{Z}^n \). Then the group homomorphism \(\varphi : \Gamma \to G \) is uniquely determined by the image \(\varphi(e_j) \) (\(1 \leq j \leq n \)) where \(e_1, \ldots, e_n \in \mathbb{Z}^n \) are the standard
Intrinsic sound of anti-de Sitter manifolds

basis, and thus we have a bijection

\[\text{Hom}(\Gamma, G) \xrightarrow{\sim} M(n, \mathbb{R}), \quad \varphi \mapsto g \]

(3)

by \(\varphi_g(m) := gm \) for \(m \in \mathbb{Z}^n \), or equivalently, by \(g = (\varphi_g(e_1), \ldots, \varphi_g(e_n)) \).

Let \(\sigma \in \text{Aut}(G) \) be defined by \(\sigma(x) := -x \). Then \(H := G^\sigma = \{0\} \) and \(X := G/H \cong \mathbb{R}^n \) is a symmetric space. The discrete group \(\Gamma \) acts properly discontinuously on \(X \) via \(\varphi_g \), if and only if \(g \in GL(n, \mathbb{R}) \). Moreover, since \(G \) is abelian, \(G \) acts trivially on \(\text{Hom}(\Gamma, G) \) by conjugation, and therefore the deformation space \(\mathcal{F}(\Gamma, G; X) \) identifies with \(R(\Gamma, G; X) \). Hence we have a natural bijection between the two subsets of \(\{3\} \):

\[\mathcal{F}(\Gamma, G; X) \xrightarrow{\sim} GL(n, \mathbb{R}). \]

(4)

Fix \(p, q \in \mathbb{N} \) such that \(p + q = n \), and we endow \(X \cong \mathbb{R}^n \) with the standard flat indefinite metric \(\mathbb{R}^{p,q} \) (see Example \(\{1\} \)). Let us determine \(\text{Spec}_d(X_{\varphi_g}(\Gamma)) \cong \text{Spec}_d(\mathbb{R}^{p,q} / \varphi_g(\mathbb{Z}^n)) \) for \(g \in GL(n, \mathbb{R}) \cong \mathcal{F}(\Gamma, G; X) \).

For this, we define a function on \(X = \mathbb{R}^n \) by

\[f_m(x) := \exp(2\pi \sqrt{-1} m g^{-1} x) \quad (x \in \mathbb{R}^n) \]

for each \(m \in \mathbb{Z}^n \) where \(x \) and \(m \) are regarded as column vectors. Clearly, \(f_m \) is \(\varphi_g(\Gamma) \)-periodic and defines a real analytic function on \(X_{\varphi_g}(\Gamma) \). Furthermore, \(f_m \) is an eigenfunction of the Laplacian \(\Delta_{\mathbb{R}^{p,q}} \):

\[\Delta_{\mathbb{R}^{p,q}} f_m = -4\pi^2 Q_{g^{-1} p q g}^{-1} f_m, \]

where, for a symmetric matrix \(S \in M(n, \mathbb{R}) \), \(Q_S \) denotes the quadratic form on \(\mathbb{R}^n \) given by

\[Q_S(y) := y^T S y \quad \text{for} \quad y \in \mathbb{R}^n. \]

Since \(\{f_m : m \in \mathbb{Z}^n\} \) spans a dense subspace of \(L^2(X_{\varphi_g}(\Gamma)) \), we have shown:

Proposition 2. For any \(g \in GL(n, \mathbb{R}) \cong \mathcal{F}(\Gamma, G; X) \),

\[\text{Spec}_d(X_{\varphi_g}(\Gamma)) = \{ -4\pi^2 Q_{g^{-1} p q g}^{-1}(m) : m \in \mathbb{Z}^n \}. \]

Here are some observation in the \(n = 1, 2 \) cases.

Example 5. Let \(n = 1 \) and \((p, q) = (1, 0) \). Then \(\text{Spec}_d(X_{\varphi_g}(\Gamma)) = \{ -4\pi^2 m^2 / g^2 : m \in \mathbb{Z} \} \) for \(g \in \mathbb{R} \cong GL(1, \mathbb{R}) \) by Proposition \(\{2\} \). Thus the smaller the period \(|g| \) is, the larger the absolute value of the eigenvalue \(-4\pi^2 m^2 / g^2 \) becomes for each fixed \(m \in \mathbb{Z} \setminus \{0\} \). This is thought of as a mathematical model of a music instrument for which shorter strings produce a higher pitch than longer strings (see Introduction).

Example 6. Let \(n = 2 \) and \((p, q) = (1, 1) \). Take \(g = I_2 \), so that \(\varphi_g(\Gamma) = \mathbb{Z}^2 \) is the standard lattice. Then the \(L^2 \)-eigenspace of the Laplacian \(\Delta_{\mathbb{R}^{1,1}/\mathbb{Z}^2} \) for zero eigenvalue contains \(W := \{ \psi(x - y) : \psi \in L^2(\mathbb{R}/\mathbb{Z}) \} \). Since \(W \) is infinite-dimensional and \(W \not\subset C^0(\mathbb{R}^2 / \mathbb{Z}^2) \), the third and fourth statements of Fact \(\{1\} \) fail in this pseudo-Riemannian setting.
By the explicit description of $\text{Spec}_d(X_{\varphi}(\Gamma))$ for all $\varphi \in \mathcal{T}(\Gamma, G; X)$ in Proposition2 we can also tell the behaviour of $\text{Spec}_d(X_{\varphi}(\Gamma))$ under deformation of Γ by φ. Obviously, any constant function on $X_{\varphi}(\Gamma)$ is an eigenfunction of the Laplacian $\Delta_{X_{\varphi}(\Gamma)} = \Delta_{\mathbb{R}^{p+q}}/\varphi(\mathbb{Z}^{p+q})$ with eigenvalue zero. We see that this is the unique stable L^2-eigenvalue in the flat compact manifold:

Corollary 1 (non-existence of stable eigenvalues). Let $n = p + q$ with $p, q \in \mathbb{N}$. For any open subset V of $\mathcal{T}(\Gamma, G; X)$,

$$ \bigcap_{\varphi \in V} \text{Spec}_d(X_{\varphi}(\Gamma)) = \{0\}. $$

5.2 Oppenheim’s conjecture and stability of spectrum

In 1929, Oppenheim [17] raised a question about the distribution of an indefinite quadratic forms at integral points. The following theorem, referred to as Oppenheim’s conjecture, was proved by Margulis (see [14] and references therein).

Fact 6 (Oppenheim’s conjecture) Suppose $n \geq 3$ and Q is a real nondegenerate indefinite quadratic form in n variables. Then either Q is proportional to a form with integer coefficients (and thus $Q(\mathbb{Z}^n)$ is discrete in \mathbb{R}), or $Q(\mathbb{Z}^n)$ is dense in \mathbb{R}.

Combining this with Proposition2 we get the following.

Theorem 7. Let $p + q = n$, $p \geq 2$, $q \geq 1$, $G = \mathbb{R}^n$, $X = \mathbb{R}^{p,q}$ and $\Gamma = \mathbb{Z}^n$. We define an open dense subset U of $\mathcal{T}(\Gamma, G; X) \simeq GL(n, \mathbb{R})$ by

$$ U := \{ g \in GL(n, \mathbb{R}) : g^{-1}f_{p,q}g^{-1} \text{ is not proportional to an element of } M(n, \mathbb{Z}) \}. $$

Then the set $\text{Spec}_d(X_{\varphi}(\Gamma))$ of L^2-eigenvalues of the Laplacian is dense in \mathbb{R} if and only if $\varphi \in U$.

Thus the fifth statement of Fact1 for compact Riemannian manifolds do fail in the pseudo-Riemannian case.

6 Main results—sound of anti-de Sitter manifolds

6.1 Intrinsic sound of anti-de Sitter manifolds

In general, it is not clear whether the Laplacian Δ_M admits infinitely many L^2-eigenvalues for compact pseudo-Riemannian manifolds. For anti-de Sitter 3-manifolds, we proved in [6, Theorem 1.1]:
Theorem 8. For any compact anti-de Sitter 3-manifold M, there exist infinitely many L^2-eigenvalues of the Laplacian Δ_M.

In the abelian case, it is easy to see that compactness of X_Γ is necessary for the existence of L^2-eigenvalues:

Proposition 3. Let $G = \mathbb{R}^{p+q}, X = \mathbb{R}^{p,q}, \Gamma = \mathbb{Z}^k$, and $\varphi \in R(\Gamma, G; X)$. Then $\text{Spec}_d(X_{\varphi(\Gamma)}) \neq \emptyset$ if and only if $X_{\varphi(\Gamma)}$ is compact, or equivalently, $k = p + q$.

However, anti-de Sitter 3-manifolds M admit infinitely many L^2-eigenvalues even when M is of infinite-volume (see [6, Theorem 9.9]):

Theorem 9. For any finitely generated discrete subgroup Γ of $G = SO(2, 2)$ acting properly discontinuously and freely on $X = \text{AdS}^3$,

$$\text{Spec}_d(X_\Gamma) \supset \{l(l - 2) : l \in \mathbb{N}, l \geq 10C^{-3}\}$$

where $C \equiv C(\Gamma)$ is the first sharpness constant of Γ.

The above L^2-eigenvalues are stable in the following sense:

Theorem 10 (stable L^2-eigenvalues). Suppose that $\Gamma \subset G = SO(2, 2)$ and $M = \Gamma \setminus \text{AdS}^3$ is a compact standard anti-de Sitter 3-manifold. Then there exists a neighbourhood $U \subset \text{Hom}(\Gamma, G)$ of the natural inclusion with the following two properties:

$$U \subset R(\Gamma, G; \text{AdS}^3),$$

$$\#(\bigcap_{\varphi \in U} \text{Spec}_d(X_{\varphi})) = \infty.$$ (5)

The first geometric property (5) asserts that a small deformation of Γ keeps proper discontinuity, which was conjectured by Goldman [3] in the AdS3 setting, and proved affirmatively in [11]. Theorem 10 was proved in [6, Corollary 9.10] in a stronger form (e.g., without assuming “standard” condition).

Figuratively speaking, Theorem 10 says that compact anti-de Sitter manifolds have “intrinsic sound” which is stable under any small deformation of the anti-de Sitter structure. This is a new phenomenon which should be in sharp contrast to the abelian case (Corollary 11) and the Riemannian case below:

Fact 11 (see [20, Theorem 5.14]). For a compact hyperbolic surface, no eigenvalue of the Laplacian above $\frac{1}{4}$ is constant on the Teichmüller space.

We end this section by raising the following question in connection with the flat case (Theorem 7):

Question 3. Suppose M is a compact anti-de Sitter 3-manifold. Find a geometric condition on M such that $\text{Spec}_d(M)$ is discrete.

7 Perspectives and sketch of proof

The results in the previous section for anti-de Sitter 3-manifolds can be extended to more general pseudo-Riemannian locally symmetric spaces of higher dimension:

Theorem 12 ([6, Theorem 1.5]). Let \(X_\Gamma \) be a standard Clifford–Klein form of a semisimple symmetric space \(X = G/H \) satisfying the rank condition
\[
\text{rank} G/H = \text{rank} K/H \cap K.
\]

Then the following holds.

(1) There exists an explicit infinite subset \(I \) of joint \(L^2 \)-eigenvalues for all the differential operators on \(X_\Gamma \) that are induced from \(G \)-invariant differential operators on \(X \).

(2) (stable spectrum) If \(\Gamma \) is contained in a simple Lie group \(L \) of real rank one acting properly on \(X = G/H \), then there is a neighbourhood \(V \subset \text{Hom}(\Gamma, G) \) of the natural inclusion such that for any \(\phi \in V \), the action \(\phi(\Gamma) \) on \(X \) is properly discontinuous and the set of joint \(L^2 \)-eigenvalues on \(X_{\phi(\Gamma)} \) contains the infinite set \(I \).

Remark 3. We do not require \(X_\Gamma \) to be of finite volume in Theorem [12].

Remark 4. It is plausible that for a general locally symmetric space \(\Gamma \backslash G/H \) with \(G \) reductive, no nonzero \(L^2 \)-eigenvalue is stable under nontrivial small deformation unless the rank condition (7) is satisfied. For instance, suppose \(\Gamma = \pi_1(\Sigma_g) \) with \(g \geq 2 \) and \(R(\Gamma, G; X) \neq \emptyset \). (Such semisimple symmetric space \(X = G/H \) was recently classified in [16].) Then we expect the rank condition (7) is equivalent to the existence of an open subset \(U \) in \(R(\Gamma, G; X) \) such that
\[
\#(\bigcap_{\phi \in U} \text{Spec}_{\phi}(X_{\phi(\Gamma)})) = \infty.
\]

It should be noted that not all \(L^2 \)-eigenvalues of compact anti-de Sitter manifolds are stable under small deformation of anti-de Sitter structure. In fact, we proved in [7] that there exist also countably many negative \(L^2 \)-eigenvalues that are NOT stable under deformation, whereas the countably many stable \(L^2 \)-eigenvalues that we constructed in Theorem [9] are all positive. More generally, we prove in [7] the following theorem that include both stable and unstable \(L^2 \)-eigenvalues:

Theorem 13. Let \(G \) be a reductive homogeneous space and \(L \) a reductive subgroup of \(G \) such that \(H \cap L \) is compact. Assume that the complexification \(X_C \) is \(L_C \)-spherical. Then for any torsion-free discrete subgroup \(\Gamma \) of \(L \), we have:

(1) the Laplacian \(\Delta_{X_\Gamma} \) extends to a self-adjoint operator on \(L^2(X_\Gamma) \);

(2) \#\text{Spec}_{\phi}(X_{\Gamma}) = \infty \) if \(X_\Gamma \) is compact.
Intrinsic sound of anti-de Sitter manifolds

By “$L_{\mathbb{C}}$-spherical” we mean that a Borel subgroup $L_{\mathbb{C}}$ has an open orbit in $X_{\mathbb{C}}$. In this case, a reductive subgroup L acts transitively on X by \cite[Lemma 5.1]{10}.

Here are some examples of the setting of Theorem 13, taken from \cite[Corollary 3.3.7]{13}.

Table 1 [1]

	G	H	L
(i)	$SO(2n,2)$	$SO(2n,1)$	$U(n,1)$
(ii)	$SO(2n,2)$	$U(n,1)$	$SO(2n,1)$
(iii)	$SU(2n,2)$	$U(2n,1)$	$Sp(n,1)$
(iv)	$SU(2n,2)$	$Sp(n,1)$	$U(2n,1)$
(v)	$SO(4n,4)$	$SO(4n,3)$	$Sp(1) \times Sp(n,1)$
(vi)	$SO(8,8)$	$SO(8,7)$	$Spin(8,1)$
(vii)	$SO(8,\mathbb{C})$	$SO(7,\mathbb{C})$	$Spin(7,1)$
(viii)	$SO(4,4)$	$Spin(4,3)$	$SO(4,1) \times SO(3)$
(ix)	$SO(4,3)$	$G_2(\mathbb{R})$	$SO(4,1) \times SO(2)$

Examples for Theorem 13 include Table 1 (ii) for all $n \in \mathbb{N}$, whereas we need $n \in 2\mathbb{N}$ in Theorem 12 for the rank condition (7).

The idea of the proof for Theorem 12 is to take an average of a (nonperiodic) eigenfunction on X with rapid decay at infinity over Γ-orbits as a generalization of Poincaré series. Geometric ingredients of the convergence (respectively, nonzeroness) of the generalized Poincaré series include “counting Γ-orbits” stated in Lemma 1 below (respectively, the Kazhdan–Margulis theorem, cf. \cite[Proposition 8.14]{6}). Let $B(o, R)$ be a “pseudo-ball” of radius $R > 0$ centered at the origin $o = eH \in X = G/H$, and we set

$$N(x, R) := \# \{ \gamma \in \Gamma : \gamma \cdot x \in B(o, R) \}.$$

Lemma 1 (\cite[Corollary 4.7]{6}).

1. If Γ acts properly discontinuously on X, then $N(x, R) < \infty$ for all $x \in X$ and $R > 0$.
2. If Γ acts strongly properly discontinuously on X, then there exists $A_x > 0$ such that

$$N(x, R) \leq A_x \exp \left(\frac{R}{C} \right) \quad \text{for all } R > 0,$$

where C is the first sharpness constant of Γ.

The key idea of Theorem 13 is to bring branching laws to spectral analysis \cite[10]{12}, namely, we consider the restriction of irreducible representations of G that are realized in the space of functions on the homogeneous space $X = G/H$ and analyze the G-representations when restricted to the subgroup L. Details will be given in \cite{7}.
Acknowledgements This article is based on the talk that the author delivered at the eleventh International Workshop: Lie Theory and its Applications in Physics in Varna, Bulgaria, 15-21, June, 2015. The author is grateful to Professor Vladimir Dobrev for his warm hospitality.

References

1. P. Buser, G. Courtois, Finite parts of the spectrum of a Riemann surface, Math. Ann. 287 (1990), pp. 523–530.
2. E. Calabi, L. Markus, Relativistic space forms, Ann. of Math. 75, (1962), pp. 63–76.
3. W. M. Goldman, Nonstandard Lorentz space forms, J. Differential Geom. 21 (1985), pp. 301–308.
4. F. Kassel, Deformation of proper actions on reductive homogeneous spaces, Math. Ann. 353, (2012), pp. 599–632.
5. F. Kassel, T. Kobayashi, Stable spectrum for pseudo-Riemannian locally symmetric spaces, C. R. Acad. Sci. Paris 349, (2011), pp. 29–33.
6. F. Kassel, T. Kobayashi, Poincaré series for non-Riemannian locally symmetric spaces. Adv. Math. 287, (2016), pp. 123–236.
7. F. Kassel, T. Kobayashi, Spectral analysis on standard non-Riemannian locally symmetric spaces, in preparation.
8. T. Kobayashi, Proper action on a homogeneous space of reductive type, Math. Ann. 285, (1989), pp. 249–263.
9. T. Kobayashi, On discontinuous groups acting on homogeneous spaces with noncompact isotropy subgroups, J. Geom. Phys. 12, (1993), pp. 133–144.
10. T. Kobayashi, Discrete decomposability of the restriction of \(A_\lambda \) with respect to reductive subgroups and its applications. Invent. Math. 117, (1994), pp. 181–205.
11. T. Kobayashi, Deformation of compact Clifford–Klein forms of indefinite-Riemannian homogeneous manifolds, Math. Ann. 310, (1998), pp. 395–409.
12. T. Kobayashi, Hidden symmetries and spectrum of the Laplacian on an indefinite Riemannian manifold, In: Spectral analysis in geometry and number theory, pp. 73–87, Contemporary Mathematics 484, Amer. Math. Soc., 2009.
13. T. Kobayashi, T. Yoshino, Compact Clifford–Klein forms of symmetric spaces — revisited, Pure Appl. Math. Q. 1, (2005), pp. 591–653.
14. G. Margulis, Problems and conjectures in rigidity theory. In: Mathematics: Frontiers and Perspectives, pp. 161–174, Amer. Math. Soc., Providence, RI, 2000.
15. C. C. Moore, Ergodicity of flows on homogeneous spaces, Amer. J. Math. 88 (1966), 154–178.
16. T. Okuda, Classification of semisimple symmetric spaces with proper \(SL_2(\mathbb{R}) \)-actions, J. Differential Geom. 94 (2013), pp. 301–342.
17. A. Oppenheim, (1929). The minima of indefinite quaternary quadratic forms”. Proc. Nat. Acad. Sci. U.S.A. 15, (1929), pp. 724–727.
18. A. Weil, On discrete subgroups of Lie groups II. Ann. of Math. 75 (1962), pp. 578–602.
19. J. A. Wolf, Spaces of Constant Curvature, Sixth edition. AMS Chelsea Publishing, Providence, RI, 2011. xviii+424
20. S. A. Wolpert, Disappearance of cusp forms in special families, Ann. of Math. 139, (1994), 239–291.