Safety, Efficacy, and Bioavailability of Fixed-Dose Combinations in Type 2 Diabetes Mellitus: A Systematic Updated Review

Thangavel Mahalingam Vijayakumar, M.Pharm, PhD*, Jayasutha Jayram, M.Pharm, Vishnu Meghana Cheekireddy, Pharm.D, Dasari Himaja, Pharm.D, Yalamanchili Dharma Teja, Pharm.D, Damodharan Narayanasamy, M.Pharm, PhD

Department of Pharmacy Practice, SRM College of Pharmacy, SRM University, Kattankulathur, Tamil Nadu, India

Abstract

Purpose: Type 2 diabetes mellitus (T2DM) is a multifactorial disease characterized by insulin resistance. As time progresses, monotherapy often does not provide effective glycemic control, generating the need for an add-on therapy. Hence, multiple oral hypoglycemic agents formulated as a fixed-dose combination (FDC) play an essential role in glycemic control. The purpose of this systematic review is to appraise the recently published evidence on the safety, efficacy, and bioavailability of FDCs.

Methods: A comprehensive literature search of PUBMED, Scopus, ScienceDirect.com, ProQuest, SpringerLink, clinicaltrials.gov, Embase, and EBSCO using the key words FDCs, combination therapy, T2DM management, and add-on therapy was conducted. Studies on the safety profile/tolerability, efficacy, and bioavailability of various FDCs of oral hypoglycemic agents were preferred.

Findings: The systematic review of all the publications suggests that FDCs of oral hypoglycemic agents (OHAs) significantly reduce HbA1c, and fasting plasma glucose values, thereby efficiently reducing hyperglycemia in patients in whom monotherapy fails. FDCs are the bioequivalent of the concomitant drugs administered as individual components. Improved adherence to FDCs and the absence of serious adverse drug reactions compared with dual therapy play an important role in decreasing the incidence of hyperglycemia in patients with T2DM.

Implications: From this updated review, it was found that metformin was the most widely used component of FDCs with other OHAs. Studies on the safety and efficacy of newly approved OHAs such as sodium glucose cotransporter inhibitors were limited. An increasing number of randomized trials on the safety and efficacy of newly emerging FDCs suggests that they would be better treatment options for T2DM patients.

© 2017. The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Advantages of FDCs

- FDCs help in formulating 2 drugs into a single-dose form, thereby minimizing the medication burden to the patient.
- The relative adherence rates of T2DM patients can be improved.

Type 2 diabetes mellitus (T2DM) is a multifactorial disease affecting multiple organ systems. It is characterized by the resistance of cells to insulin, thereby causing hyperglycemia. It is associated with microvascular and macrovascular complications that in the long run can lead to morbidity and mortality.

Lifestyle modifications and monotherapy with oral hypoglycemic agents are generally considered first-line intervention for glycemic control. As the disease progresses, \(\beta \) cells continue to deteriorate in T2DM patients who require effective glycemic control. Most often, the efficacy of monotherapy decreases after a few years of treatment, resulting in ineffective glycemic control, and does not prevent the progression of disease, which requires an additional agent for effective glycemic control. For the successful management of both insulin resistance and \(\beta \)-cell dysfunction, there arises a need for combination therapy with agents having complementary mechanisms of action formulated in a single-dose form called fixed-dose combinations (FDCs).

Sulfonylurea with biguanide and biguanide with thiazolidinedione are the most commonly used fixed-dose combinations. A list of approved combination products available in the global market is presented in Table 1. The health care professionals should be aware of the role of these products, including their advantages and disadvantages.

*Address correspondence to: Thangavel Mahalingam Vijayakumar, M.Pharm, PhD, Department of Pharmacy Practice, SRM College of Pharmacy, SRM University, SRM Nagar, Kattankulathur 603 203, Tamil Nadu, India.
E-mail address: vijaypractice@yahoo.com (T. M. Vijayakumar).
Table 1
Available FDCs of various oral hypoglycemic agents.

FDCs	Available Doses	Mechanism of Action
Acarbose + metformin⁴	50 mg/500 mg	Acarbose: intestinal carbohydrate digestion is slowed down
Rosiglitazone + metformin¹⁰,¹¹	4 mg/2 g	Metformin: reduces hepatic gluconeogenesis
Sitagliptin + metformin¹²,¹³	100 mg/1000 mg 100 mg/2000 mg	Rosiglitazone: increases insulin sensitivity
Glyburide + metformin¹⁶,¹⁷	1 mg/500 mg 2 mg/500 mg	Sitagliptin: stimulates postprandial insulin and suppresses glucagon secretion
Glyburide + metformin¹⁶,¹⁷	5 mg/500 mg 2.5 mg/500 mg	Glyburide: increases insulin secretion from pancreatic β cells
Vildagliptin + metformin¹⁶,¹⁸	50 mg/500 mg 50 mg/850 mg 50 mg/1000 mg	Vildagliptin: stimulates postprandial insulin and suppresses glucagon secretion
Pioglitazone + metformin⁵,¹⁹	30 mg/50 mg	Pioglitazone: increases insulin sensitivity
Pioglitazone + metformin⁵,¹⁹	1 mg/500 mg	Repaglinide: increases insulin secretion
Mitiglinide + metformin²²	10 mg/500 mg	Mitiglinide: increases insulin secretion
Empagliflozin + linagliptin²³	10 mg/5 mg	Empagliflozin: reduces renal glucose reabsorption
Glipizide + metformin²⁴	25 mg/5 mg 2.5 mg/250 mg 2.5 mg/500 mg	Linagliptin: stimulates postprandial insulin and suppresses glucagon secretion
	5 mg/500 mg	Glipizide: increases insulin secretion from pancreatic β cells
Rosiglitazone + glimepiride²⁵	4 mg/1 mg 4 mg/2 mg 8 mg/2 mg	Rosiglitazone: increases insulin sensitivity
	4 mg/4 mg	Glimepiride: increases insulin secretion from pancreatic β cells
Pioglitazone + glimepiride²⁶	30 mg/2 mg 30 mg/4 mg	Pioglitazone: increases insulin sensitivity
Saxagliptin + metformin²⁷	5 mg/500 mg 2.5 mg/1000 mg 5 mg/1000 mg	Glimepiride: increases insulin secretion from pancreatic β cells

FDCs = fixed-dose combinations.

- FDCs improve glycemic control, showing better efficacy.⁵
- Medical expenditures due to hospitalization can be reduced.²⁸
- It decreases the frequency of drug administration in patients with T2DM.²¹
- It prevents polypharmacy.¹⁸

Disadvantages of FDCs

- Dose titration will be difficult.
- A patient who is satisfied taking separate medications may not switch to FDCs.
- There may be an increase in the number of adverse drug reactions (ADRs).²⁸
- The combination may affect the bioavailability of agents.²²

The objective of this review was to analyze the use of FDCs in glycemic control and their efficacy, safety, and bioavailability in patients with T2DM.

Material and Methods

A comprehensive literature search of PUBMED, Scopus, ScienceDirect.com, ProQuest, SpringerLink, clintrials.gov, Embase, and EBSCO using the key words FDCs, combination therapy, T2DM management, and add-on therapy was conducted. The search resulted in the collection of 128 articles. The search was narrowed down to original research articles on FDCs in T2DM. Editorial letters, reviews, case report studies that included < 30 patients in the study, and articles related to studies in the special population (patients with comorbidities, pregnancy, and lactation) were excluded. The search was restricted to the articles published in English. The search on FDC therapies was concentrated on their efficacy, safety, tolerability, bioequivalence, adherence, and compliance. Of the 58 appropriate articles collected, 36 were included based on the criteria that the studies were conducted in patients with newly diagnosed T2DM and known cases of T2DM with increased fasting plasma glucose (FPG) levels, increased glycosylated hemoglobin (HbA₁c) levels, and increased post-prandial blood sugar levels in the age group of 18 to 80 years. The articles were included irrespective of the sex and race in which the studies were conducted. The various methods used in the studies include open-label, prospective, retrospective, randomized, nonrandomized, double-blind, parallel, placebo-controlled, noninterventional, and crossover studies.

The study characteristics such as author, year of publication, type of study, population size, baseline HbA₁c, FPG values, and outcomes such as efficacy and safety of FDCs were noted and checked. The systematic review protocol is represented in Figure 1.

Results and Discussion

The effect of FDCs in the treatment of T2DM was addressed by 9 studies, 2 of which were prospective, 1 was observational, and 7 were randomized, double-blind, parallel studies. The outcomes monitored were HbA₁c, FPG, and ADRs. An open-label, prospective, multicenter observational study conducted by Ved et al in 2012 on 300 patients with T2DM treated with vildagliptin and metformin FDC showed a highly significant decrease in FBG, postprandial glucose (PPG), and HbA₁c values from the baseline at the end of 3 months. The study results showed that FDC of vildagliptin and metformin was effective in reducing the daily dose of insulin in patients with T2DM and no data regarding the ADRs was reported.
A large prospective study comprising of 9364 people with T2DM was carried out by Saboo et al 30 between the years 2010 and 2012. This open, prospective, multicenter, single-arm, non-interventional study concentrated on the safety and efficacy of acarbose and metformin FDCs. Patients aged older than 18 years of age with T2DM were treated with acarbose (25/50 mg) and metformin (500 mg) FDC for 12 weeks and PPG, HbA 1c, fasting blood glucose, and body weight were measured. The study showed that there was a significant decrease in FBG, PPG, HbA 1c, and body weight from baseline. The most common ADR was atulence, and flatulence, and metformin FDC. Greater efficacy in lowering HbA 1c and FPG was observed in the glimepiride and metformin group compared with the glibenclamide and metformin group. Compared with the glibenclamide group, the glimepiride group showed a lower incidence of hypoglycemia.

A 24-week observational study performed by Rombopoulos et al 31 in 2014 reports about the treatment compliance with the vildagliptin and metformin FDC compared with metformin monotherapy. Of the 659 patients enrolled, medication adherence of 98.9% was found in the FDC group compared with 84.6% in the monotherapy group, but the reduction in HbA 1c values was not significant between the groups. A randomized, double-blind, parallel study conducted by Wang et al 32 in 2013 states that acarbose and metformin significantly reduce HbA 1c, FPG, and PPG from baseline (P<0.0001). Furthermore, this study emphasized the reduction in body weight without a significant risk of hypoglycemia. A 26-week, double-blind, parallel study by Rosenstock et al 33 comparing 655 patients with inadequately controlled T2DM treated with the alogliptin and pioglitazone FDC yielded similar reduction in values of HbA 1c, PPG, and PPG.

In another randomized, double-blind study carried out by González-Ortiz et al 34 comprising of 152 patients divided into 2 treatment arms, in which 1 group was treated with the glimepiride and metformin FDC and other with the glibenclamide and metformin FDC. Greater efficacy in lowering HbA 1c and FPG was observed in the glimepiride and metformin group compared with the glibenclamide and metformin group. Compared with the glibenclamide group, the glimepiride group showed a lower incidence of hypoglycemia.

A first randomized, double-blind, phase 3, parallel study was conducted by Lewin et al 35 in 2007 to evaluate the safety and efficacy of glyburide and metformin. The study reported a significant decrease in HbA 1c and FPG values (P<0.0001) in patients treated with FDCs when compared with monotherapy. Of patients in this study, 14.3% reported hypoglycemia. A higher incidence (15.4%) of nervous system side effects such as dizziness and confusion were reported in patients treated with FDCs compared with monotherapy, he study duration was too short to provide information regarding long-term safety. The article states that the combination was well tolerated with improved adherence by simplifying dosage regimen.

In the same year, a 24-week, randomized, double-blind, placebo-controlled study was conducted by Goldstein et al 36 to evaluate the effect of the combination therapy of sitagliptin and metformin in patients with T2DM. This study also showed a significant reduction in HbA 1c with a lower incidence of hypoglycemia. The patients experienced gastrointestinal ADRs such as abdominal pain, nausea, vomiting, and diarrhea, the incidence of which was similar to the monotherapy group. In conclusion, this combination reduced hyperglycemia significantly with a tolerability profile similar to that of monotherapy with metformin.
Another retrospective study conducted by Barner et al16 from 2004 to 2007 states that an FDC of pioglitazone and metformin improved the patient adherence compared with low-dose combination therapy.

A randomized, double-blind study conducted by Derosa et al17 found that patients treated with a rosiglitazone and metformin FDC for 12 months showed a significant reduction in blood pressure and blood sugar levels. Two randomized, open-label studies conducted by Chang et al15 and Migoya et al14 in the years 2012 and 2010 states that FDCs of dapagliflozin and metformin and of sitagliptin and metformin are bioequivalent to the concomitant doses administered as individual components.

A comprehensive systematic review of all the publications suggests that FDCs of oral hypoglycemic agents significantly reduce HbA1c, and FPG values, thereby efficiently reducing hyperglycemia in patients who fail to achieve glycemic control with monotherapy. However, there are some limitations for FDCs such as difficulty in dose titration and stability problems between the drugs leading to incompatibilities. Study design, intervention, outcomes, and safety of FDC use in T2DM was shown in Table II3,5,6 and bioavailability of FDCs is shown in Table III3,5,6.

Table II

Author	Type of study	Intervention	Outcomes	Safety
Ved et al3 (2016)	N = 400, open label, prospective, non-randomized, multicenter, observational study, 3 months	Vildagliptin (50 mg) + metformin (500, 850, 1000 mg) as FDC	Mean value for FBG, PPG, and HbA1c, were significantly reduced after treatment	Not reported in this study
Rombopoulos et al16 (2014)	N = 366, multicenter, observational study, 26 weeks	Vildagliptin (50 mg) + metformin (850 mg) as FDC	It resulted in a greater reduction in HbA1c, compared with free-dose combination; the patients with FDC were more compliant than with free dose	Not reported in this study
Lewin et al17 (2013)	N = 273, phase III, randomized, double-blind, parallel group, 52 weeks	Empagliflozin (25, 10 mg); + linagliptin (5 mg) as FDC	Reduction in HbA1c was significantly greater with FDC compared with individual components	The incidence of ADRs such as UTI, genital infection, were more with empagliflozin 25 mg + linagliptin 10 mg compared with the other compared with the other group but were tolerable with medication
Wang et al17 (2012)	N = 233, randomized, double-blind, parallel group, 16 weeks	Acarbose (50 mg) + metformin (500 mg) TDS as FDC	The combination significantly reduced FBG, HbA1c, and PPG with superior efficacy compared with monotherapy	No hypoglycemia was reported. Mild ADRs such as flatulence and diarrhea were reported in the FDC group
Saboo et al17 (2012)	N = 9364, open label, prospective, multicenter, single arm, 12 weeks	Acarbose (25, 50 mg) + metformin (500 mg) as FDC	Significant reductions in body weight, FBG, PPG, HbA1c, in the FDC group	Efficacy and tolerability were rated as good and excellent, with no significant risk of hypoglycemia
Rosenstock et al31 (2010)	N = 655, double-blind, parallel group, randomized, 26 weeks	Alogliptin (25 mg + pioglitazone (30 mg) QD as FDC	The combination produced greater reductions in HbA1c, and PPG than either component monotherapy	The incidence of adverse events was higher compared with monotherapy with alogliptin 25 mg; they were headache, back pain, and UTI. An incidence of mild hypoglycemia was recorded in the FDC group
González-Ortiz et al14 (2008)	N = 152, randomized, double-blind, multicenter, 12 months	Glimepiride (1 g) + metformin (500 mg), 2 tablets QD as FDC	Glimepiride and metformin group showed a greater reduction in FPG, PPRS, and HbA1c, compared with glimepiride and metformin	The incidence of hypoglycemia and gastrointestinal side effects was higher in the high-dose metformin group. Treatment was generally well tolerated.
Goldstein et al17 (2007)	N = 1091, randomized, double-blind, parallel group, 24 weeks	Sitagliptin (50 mg) + metformin (500, 1000 mg) as FDC	There was a significant reduction in HbA1c, and PPG	The combination was efficacious and well tolerated, and the incidence of gastrointestinal ADRs was lower compared with monotherapy
Chien et al17 (2007)	N = 100, multicenter, randomized, double-blind, parallel group, 16 weeks	Glyburide (2.5, 5 mg) + metformin (500 mg) as FDC	FDC had a greater reduction in FPG, HbA1c, compared with monotherapy. The FDC also improved adherence in patients.	It was well tolerated with a lower incidence of diarrhea, abdominal pain compared with the metformin group
Bailey et al18 (2005)	N = 568, 24 weeks, multicenter, randomized, double-blind, parallel group study	Rosiglitazone 4 and 8 mg; metformin 2 g increased to 3 g at the time of treatment	The FDC showed a significant improvement in HbA1c, PPG values compared with patients treated with a high dose of metformin, ie, 3 g/d	It was well tolerated with a lower incidence of diarrhea, abdominal pain compared with the metformin group

Table III

Author	Study Design	Intervention	Outcome
Chang et al3 (2015)	N = 72, open-label, randomized, 4-arm crossover study	Dapagliflozin + metformin (5 + 500 mg)	The FDC of dapagliflozin and metformin was bioequivalent to individual components both in fed and fasted states.
Migoya et al34 (2010)	N = 48, open-label, 2-period, crossover study	Sitagliptin + metformin (50 + 500 mg)	The FDC combination showed significant reduction in HbA1c, and was bioequivalent to individual tablets administered concomitantly in some doses.

ADR – adverse drug reactions; FBG – fasting blood glucose; FBS – fasting blood sugar; FDC – fixed-dose combination; PPRS – post-prandial blood sugar; PPG, post-prandial glucose; TDS – three times a day; UTI, urinary tract infection.
Summary

The present systematic review of FDCs of various oral hypoglycemic agents suggests that these are beneficial to patients with T2DM in order to achieve their target glycemic levels by effectively controlling hyperglycemia. The review also suggests that the most widely used component of FDCs is metformin with other OHAs such as gliptins, pioglitazone, rosiglitazone, acarbose, and sitagliptin. Studies on FDCs without metformin as one of the components were found to be fewer in number.

The pharmacokinetic studies on FDCs suggest that these drugs are bioequivalent to the individual components that are coadministered in the same doses, which in turn facilitates the formulation of a single-dose form, thereby reducing the economic burden on patients and increasing patient medication adherence. As FDCs help to reduce hyperglycemia efficiently, the long-term complications of diabetes can be minimized in these patients and thus improve the quality of life of these patients. A search restricted to English-language articles is a limitation of this review.

In conclusion, the favorable effects of FDCs and lack of increased incidence of adverse effects could play an important role in decreasing the increasing global incidence of hyperglycemia due to T2DM compared with dual therapy with individual components.

Conflicts Of Interest

The authors have indicated that they have no conflicts of interest regarding the content of this article.

Acknowledgments

The study was designed and interpretation was carried out by Dr. Thangavel Mahalingam Vijayakumar. Jayasutha Jayaram performed data collection and figure creation. Dr. Thangavel Mahalingam Vijayakumar and Jayasutha Jayaram initiated writing followed by Vishnu Meghana Cheekireddy, Dasari Himaja, and Yalamanchili Dharma Teja. Dr. Damodharan Narayanasamy conducted the literature search and framed the manuscript. We thank Dr. K.S. Lakshmi, Dean, SRM College of Pharmacy, SRM University, for providing facilities.

References

1. Jung SH, Chae JW, Song BJ, Kwon KL. Bioequivalence comparison of Two Formulations of Fixed-Dose Combination Glimipride/metformin (2/500 mg) Tablets in Healthy Volunteers. JPIR. 2014;13:365–71.
2. Park SI, Lee H, Oh J, Lim KS, Jung J, Kim JA, Jung JH, Yu KS. A fixed-dose combination tablet of gliclazide and metformin sustained release has comparable pharmacodynamic, pharmacokinetic, and tolerability profiles to separate tablets in healthy subjects. Drug Dev. Res. Ther. 2015;9:729–36.
3. Ved P, Shah S. Evaluation of vildagliptin and fixed dose combination of vildagliptin and metformin on glycemic control and insulin dose over 3 months in patients with type 2 diabetes mellitus. IJEM. 2012;16:S110–36.
4. Valensi P, de Pouvourville G, Bernard N, Chanut-Vogel C, Kempf C, Eymard E, Moisan C, Dallongeville J. Treatment maintenance duration of dual therapy with metformin and Sitagliptin in type 2 diabetes: The ODYSSEY observational study. Diabetes Metab. 2015;41:231–8.
5. Wang JS, Huang CN, Hung YJ, Kwok CT, Sun JH, Pei D, Yang CY, Chen CC, Lin CL, Sheu WH. Acarbose plus metformin fixed-dose combination outperforms monotherapy for type 2 diabetes. Diabetologia. 2013;52:16–24.
6. Banerjee JC. Adherence to Oral Antidiabetic Agents with Pioglitazone and metformin: Comparison of Fixed-Dose Combination Therapy with Monotherapy and Loose-Dose Combination Therapy. Clin Ther. 2011;33:1281–9.
7. Boulton DW, Chang M, Griffin SC, Kitaura C, Lubin S, Pollack A, LaCreta F. Fed and Fasted Single-dose Assessment of Bioequivalence of Dapagliflozin and Metformin Extended-release Fixed-dose Combination Tablets Relative to Single-component Dapagliflozin and Metformin Extended-release Tablets in Healthy Subjects. Clin. Ther. 2016;38:99–109.
8. Hiroi S, Matsuno K, Hirayama M, Hayakawa T, Yashioka N, Kawakami K. Evaluation of the bioequivalence of a fixed dose combination tablet of pioglitazone-metformin versus commercial tablets in healthy Japanese male volunteers. Diabetes Metab. 2012;2:13–20.
9. Vanderpoel DR, Hussein MA, Watson-Heidari T, Perry A. Adherence to a Fixed-Dose Combination of Rosiglitazone Maleate/Metformin Hydrochloride in Subjects with Type 2 Diabetes Mellitus: A Retrospective Database Analysis. Clin. Ther. 2004;26:2066–75.
10. Logsdon TL, Kalmus GS, Basu S, McDonnell MC, Donaldson J, Biswas N, Stewart MW. Rosiglitazone/Metformin Fixed-Dose Combination Compared with Uptripted Metformin Alone in Type 2 Diabetes Mellitus: A 24-week, Multicenter, Randomized, Double-Blind, Parallel-Group Study. Clin. Ther. 2005;27:5458–61.
11. Avandamet® (rosiglitazone maleate and metformin hydrochloride). Full prescribing information, GlaxoSmithKline, Research Triangle Park, NC.2008. Available at: https://www.gsksource.com/pharma/content/dam/ls/GlaxoSmithKline/US/en/Prescribing_Information/Avandamet/pdf/AVANDAMET-PI-MG.PDF. Accessed March 28, 2016.
12. Goldstein BJ, Johnson J, Feinglos MN, Williams-Herman DE, Luncefod JK. Effect of Initial Combination Therapy with Sitagliptin, a Dipeptidyl Peptidase-4 Inhibitor, and Metformin on Glycemic Control in Patients with Type 2 Diabetes. Diabetes Care. 2007;30:1979–87.
13. JAZENDMET® (sitagliptin/metformin hydrochloride). Full prescribing information, Merck and Co, Whitehouse Station, NJ.2010. Available at: http://www.merck.com/product/ua/pi_circulars/janumet/janumet_pi.pdf. Accessed March 28, 2016.
14. Gonzalez-Ortiz M, Guerrer-Romero JF, Violante-Ortiz R, Wacher-Rodarte N, Martinez-Abundis E, Aguilar-Salinas C, Islas-Andrade S, Arechavala-Granell R, Gonzalez-Canudas J, Rodriguez-Morán M, Zavala-Suárez E, Ramo-Zavala MG, Metha R, Revilla-Monsalve C, Beltrán-Jaramillo T. Efficiency of glimepiride/metformin combination versus glimepiride/metformin 2/500 mg Combination Tablet in Healthy Korean Male Volunteers: A Randomised, 2-Sequence, 2-Period, 2-Treatment Crossover Study. Clin. Ther. 2011;33:1809–18.
15. Chen HH, Chang CT, Chu NF, Hsich SH, Huang YY, Lee IT, Lee WJ, Tang YJ, Sheu WH. Effect of Glyburide-Metformin Combination Tablet in Patients with Type 2 Diabetes. Chin Med Assoc. 2007;70:473–80.
16. GLUCOVANCE® (glyburide and metformin hydrochloride). Full prescribing information, Bristol-Myers Squibb, Princeton, NJ.2010. Available at: http://www.accessdata.fda.gov/drugsatfda_docs/label/2010/021178s012lbl.pdf.
17. Kombiglyze XR® (pioglitazone hydrochloride and metformin hydrochloride) and ACTOPLUS MET XR® (pioglitazone hydrochloride and metformin hydrochloride extended-release). Full prescribing information, Takeda Pharmaceuticals America, Inc., Deerfield, IL.2010. Available at: http://www.takeda.com/content/file.aspx?filetypecode=actoplusmetpi&cacheRandomizer=287cd 19-1759-4901-a16e-4cb040db4e&http://www.gsksource.com/pharma/content/dam/ls/GlaxoSmithKline/US/en/Prescribing_Information/Avandamet/pdf/AVANDAMET-PI-MG.PDF. Accessed March 28, 2016.
18. Hoelscher D, Chu PL, Lyness W. Fixed Dose Combination Tablet of Repaglinide and Metformin is Bioequivalent to Concomitantly Administered Individual Tablets of Repaglinide and Metformin. Clin Drug Invest. 2008;28:573–82.
19. PRANDMET® (repaglinide and metformin hydrochloride). Full prescribing information, Novo Nordisk, Princeton, NJ.2010. Available at: http://www.novo-pi.com/prandmet.pdf. Accessed March 28, 2016.
20. Jung JA, Kim JR, Kim SR, Kim TE, Lee SY, Ko JW, Huh W. Pharmacokinetics of a Fixed-Dose Combination of Mitiglinide and Metformin versus Concurrent Administration of Individual Formulations in Healthy Subjects. Clin Drug Investig. 2012;32:799–804.
21. Lewin A, Defronzo RA, Patel S, Liu D, Kaste R, Woerle HJ, Broedi UC. Initial Combination of Empagliflozin and Metformin is Bioequivalent to the Single Component in Subjects with Type 2 Diabetes. Diabetes Care. 2015;38:394–402.
22. METAGLIP® (gliclazide and metformin hydrochloride). Full prescribing information, Merck and Co, Whitehouse Station, NJ.2010. Available at: http://www.accessdata.fda.gov/drugsatfda_docs/label/2008/081466s007lbl.pdf. Accessed March 28, 2016.
23. AVANDARYL® (rosiglitazone and glipizide). Full prescribing information, GlaxoSmithKline, Research Triangle Park, NC.2009. Available at: https://www.gsksource.com/pharma/content/dam/ls/GlaxoSmithKline/US/en/Prescribing_Information/Avandaryl/pdf/AVANDARYL-PI-MG.PDF. Accessed March 28, 2016.
24. DUETACT® (pioglitazone and glimepiride). Full prescribing information, Takeda Pharmaceuticals America, Deerfield, IL.2010. Available at: http://www.accessdata.fda.gov/drugsatfda_docs/label/2011/021925s010s011lbl.pdf. Accessed March 28, 2016.
25. KOMBIGLYZE XR® (saxagliptin and extended-release metformin hydrochloride). Full prescribing information, Bristol-Myers Squibb, Princeton, NJ.2010. Available at: http://www.accessdata.fda.gov/drugsatfda_docs/label/2011/021925s010s011lbl.pdf. Accessed March 28, 2016.
28. Balu S, Simko RJ, Quimbo RM, Cziraky MJ. Impact of fixed-dose and multi-pill combination dyslipidemia therapies on medication adherence and the economic burden of sub-optimal adherence. Curr Med Res Opin. 2009;25:2765–75.

29. Gu N, Kim BH, Rhim HY, Chung JY, Kim JR, Shin HS, Yoon SH, Cho JY, Shin SG, Jang JJ, Yu KS. Comparison of the Bioavailability and Tolerability of Fixed-Dose Combination Glimepiride/Metformin 2/500-mg Tablets Versus Separate Tablets: A Single-Dose, Randomized-Sequence, Open-Label, Two-Period Crossover Study in Healthy Korean Volunteers. Clin Ther. 2010;32:1408–18.

30. Saboo Banshi, Chandrasekhara Reddy Gundam, Juneja Subhashchander, Kumar Kedia Ashok, Manjrekar Pravin, Rathod Rahul. Effectiveness and safety of fixed dose combination of acarbose/metformin in Indian Type 2 diabetes patients: Results from observational GLOBE Study. IJEM. 2016;19:129–35.

31. Rosenstock J, Fleck PR, Inzucchi SE, Wilson CA, Seufert J, Mekki Q. Initial Combination Therapy with Alogliptin and Pioglitazone in Drug-NAïve Patients with Type 2 Diabetes. Diabetes Care. 2010;33:2406–8.

32. Derosa G, Cicero AF, Gaddi AV, Ciccarelli L, Piccinni MN, Salvadeo S, Pricolo F, Fogari E, Ghelfi M, Ferrari I, Fogari R. Long-term Effects of Glimepiride or Rosiglitazone in Combination with Metformin on Blood Pressure Control in Type 2 Diabetic Patients Affected by the Metabolic Syndrome: A 12-Month, Double-Blind, Randomized Clinical Trial. Clin Ther. 2005;27:1383–91.

33. Chang M, Liu X, Cui D, Liang D, LaCreta F, Griffen SC, Lubin S, Quamina-Edghill D, Boulton DW. Bioequivalence, Food Effect and Steady-State Assessment of Dapagliflozin/Metformin Extended-release Fixed-dose Combination Tablets Relative to Single-component Dapagliflozin and Metformin Extended-release Tablets in Healthy Subjects. Clin Ther. 2015;37:1517–28.

34. Migoya EM, Miller JL, Gutierrez M, Zheng W, Johnson-Leononas AO, Liu Q, Matthews CZ, Wagner JA, Gottesdiener KM. Bioequivalence of Sitagliptin/Metformin Fixed-Dose Combination Tablets and Concomitant Administration of Sitagliptin and Metformin in Healthy Adult Subjects. Clin Drug Investig. 2010;30:855–66.