IscR is essential for yersinia pseudotuberculosis type III secretion and virulence.

Permalink
https://escholarship.org/uc/item/317677fh

Journal
PLoS pathogens, 10(6)

ISSN
1553-7366

Authors
Miller, Halie K
Kwuan, Laura
Schwiesow, Leah
et al.

Publication Date
2014-06-12

DOI
10.1371/journal.ppat.1004194

Peer reviewed
IscR Is Essential for *Yersinia pseudotuberculosis* Type III Secretion and Virulence

Halie K. Miller¹, Laura Kwuan¹✉a, Leah Schwiesow¹, David L. Bernick², Erin Mettert³, Hector A. Ramirez¹✉b, James M. Ragle⁴, Patricia P. Chan²✉c, Patricia J. Kiley³, Todd M. Lowe², Victoria Auerbuch¹✉

¹ Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, California, United States of America. ² Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America. ³ Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America. ⁴ Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America

Abstract

Type III secretion systems (T3SS) are essential for virulence in dozens of pathogens, but are not required for growth outside the host. Therefore, the T3SS of many bacterial species are under tight regulatory control. To increase our understanding of the molecular mechanisms behind T3SS regulation, we performed a transposon screen to identify genes important for T3SS function in the food-borne pathogen *Yersinia pseudotuberculosis*. We identified two unique transposon insertions in YPTB2860, a gene that displays 79% identity with the *Escherichia coli* iron-sulfur cluster regulator, IscR. A *Y. pseudotuberculosis* iscr in-frame deletion mutant (ΔiscR) was deficient in secretion of Ysc T3SS effector proteins and in targeting macrophages through the T3SS. To determine the mechanism behind IscR control of the Ysc T3SS, we carried out transcriptome and bioinformatic analysis to identify *Y. pseudotuberculosis* genes regulated by IscR. We discovered a putative IscR binding motif upstream of the *Y. pseudotuberculosis* yscW-lcrF operon. As LcrF controls transcription of a number of critical T3SS genes in *Yersinia*, we hypothesized that *Yersinia* IscR may control the Ysc T3SS through LcrF. Indeed, purified IscR bound to the identified yscW-lcrF promoter motif and mRNA levels of lcrF and 24 other T3SS genes were reduced in *Y. pseudotuberculosis* in the absence of IscR. Importantly, mice orally infected with the *Y. pseudotuberculosis* ΔiscR mutant displayed decreased bacterial burden in Peyer’s patches, mesenteric lymph nodes, spleens, and livers, indicating an essential role for IscR in *Y. pseudotuberculosis* virulence. This study presents the first characterization of *Yersinia* IscR and provides evidence that IscR is critical for virulence and type III secretion through direct regulation of the T3SS master regulator, LcrF.

Introduction

Type III secretion systems (T3SS) are important components in the progression of disease for a number of clinically relevant human pathogens, including those in the genera *Shigella*, *Salmonella*, *Escherichia*, *Chlamydia*, *Vibrio*, *Pseudomonas*, and *Yersinia* [1,2]. The T3SS functions as an injectosome that delivers bacterial effector proteins directly into the host cell cytoplasm [2]. While the T3SS apparatus itself is structurally conserved, the repertoire of T3SS effector proteins used by each group of pathogens is distinct [2]. Thus, the effect of the T3SS on the host is unique to the needs of the pathogen [2]. While the T3SS is generally essential for a T3SS-expressing pathogen to cause disease, several aspects of the T3SS may be detrimental to bacterial growth [2]. For example, T3SS components are recognized by the host immune system [3,4]. In addition, expression of the T3SS is energetically costly and, in some organisms, T3SS induction correlates with growth arrest [5]. Therefore, regulation is essential for proper T3SS function in order to ensure that it occurs only during host cell contact in the appropriate host tissue [2,6].

Members of the genus *Yersinia* that utilize a T3SS are important human pathogens: *Y. pestis*, the causative agent of plague, and the enteropathogens *Y. enterocolitica* and *Y. pseudotuberculosis*. The *Y. pseudotuberculosis* Ysc T3SS is encoded on a 70-kb plasmid termed pYV [7–9] and is made up of approximately 25 known proteins comprising three main structures: the basal body, the needle apparatus, and the translocon [10,11]. The basal body, which displays a high degree of similarity to the flagellar basal body, is made up of rings that span the inner and outer membranes and a rod that traverses the periplasmic space [12]. Basal body associated proteins include YscN, an ATPase that aids in the secretion and translocation of effector proteins [13]. The needle complex, which is thought to act as a molecular channel for effector protein translocation, is a straight hollow appendage approximately 60 nm in length and is made up of helical
Author Summary

Bacterial pathogens use regulators that sense environmental cues to enhance their fitness. Here, we identify a transcriptional regulator in the human gut pathogen, Yersinia pseudotuberculosis, which controls a specialized secretion system essential for bacterial growth in mammalian tissues. This regulator was shown in other bacterial species to alter its activity in response to changes in iron concentration and oxidative stress, but has never been studied in Yersinia. Importantly, Y. pseudotuberculosis experiences large changes in iron bioavailability upon transit from the gut to deeper tissues and iron is a critical component in Yersinia virulence, as individuals with iron overload disorders have enhanced susceptibility to systemic Yersinia infections. Our work places this iron-modulated transcriptional regulator within the regulatory network that controls virulence gene expression in Y. pseudotuberculosis, identifying it as a potential new target for antimicrobial agents.

polimerized subunits of YscF [12]. The translocon is comprised of three proteins: YopD, YopB and LcrV, which are essential for pore formation in the target host membrane and proper translocation of effector proteins YopH/HemoJ/Tk to the host cytoplasm [12,14]. Also encoded on pYV are chaperones important for efficient translocation of a subset of effector proteins [15]. Lastly, several transcriptional and post-transcriptional regulators of the T3SS are found on pYV, including the AraC-like transcriptional regulator LcrF. LcrF is responsible for expression of a number of T3SS structural genes and Yop effectors, specifically the virC and lerGTH-yopBD operons as well as genes encoding effector Yops, the adhesin YadA, and the lipoprotein YlpA [16-22]. LcrF itself is thermoregulated at both the transcriptional and translational levels through the action of the histone-like protein YmoA and a cis-acting RNA thermosensor located on the lerF transcript, respectively [23,24]. This enables Yersinia to express T3SS genes at 37°C within the mammalian host, but not at lower temperatures [23,24]. Importantly, proper LcrF-mediated control of T3SS expression is important for Y. pseudotuberculosis virulence [24].

IscR belongs to the Rrf2 family of winged helix-turn-helix transcription factors [25,26] and has been studied extensively in E. coli, where its DNA-binding activity is dependent on coordination of an iron-sulfur [2Fe-2S] cluster through three conserved cysteines and a histidine [27-30]. E. coli IscR recognizes two distinct DNA motifs, type 1 and type 2, depending on the Fe-S status of the protein [31]. Holo-IscR coordinating an Fe-S cluster binds both type 1 and type 2 motifs, while clusterless apo-IscR recognizes only the type 2 DNA-binding motif [27,32,33]. As iron starvation, oxidative stress, and oxygen limitation affect the holo-IscR/apo-IscR ratio, these environmental cues are thought to have a direct effect on gene expression through IscR in E. coli [28-30]. For example, holo-IscR represses transcription of the housekeeping iscRSUA-hscBA-fdx Fe-S cluster biogenesis operon [32,34], while either holo- or apo-IscR promotes transcription of the inducible sugABCDSE Fe-S cluster biogenesis operon [33,35]. Both pathways function to insert Fe-S clusters onto proteins involved in a range of metabolic processes including electron transfer, substrate binding/activation, iron/sulfur storage, regulation, and enzyme activity [36]. In addition, E. coli IscR is also known to regulate transcription of other Fe-S cluster assembly genes such as ndkR (ndkR) as well as genes integral to oxidative stress resistance, biofilm formation, and anaerobic respiration [28-30,34]. IscR is widely conserved among bacteria [25] and its regulatory activity is integral to the infectious process of the plant pathogen Erwinia chrysanthemi [37]. Furthermore, IscR plays an important role in the virulence of the human pathogens Pseudomonas aeruginosa through modulation of the catalase katA [38], Burkholderia mallei through resistance to reactive nitrogen species [39], and Vibrio vulnificus through induction of several virulence-associated pathways [39,40]. While the iron-dependent transcriptional repressor Fur has been shown to control T3SS expression in Salmonella and Shigella [41,42], IscR has never been linked to regulation of the T3SS in any organism and has not been studied in Yersinia.

In this study, we isolated two independent IscR transposon insertion mutants in a novel screen for Y. pseudotuberculosis genes important for T3SS function. We assessed the impact of iscR deletion on Y. pseudotuberculosis in vitro and in vivo growth, type III secretion, and global gene expression. We found IscR to be essential for full T3SS function and virulence in a mouse model of infection. In addition, we provide evidence that IscR control of the T3SS stems from direct transcriptional regulation of the T3SS master regulator LcrF.

Results

IscR is required for Y. pseudotuberculosis Ysc T3SS function

To identify regulators of the Y. pseudotuberculosis T3SS, we utilized a novel screen to isolate transposon mutants with defects in T3SS function. We previously showed that Y. pseudotuberculosis expressing a functional T3SS induces NFκB activation in HEK293T cells [43], enabling us to use host cell NFκB activation as a readout for T3SS function in Y. pseudotuberculosis transposon mutants. As some T3SS effector proteins inhibit NFκB signaling [44], we performed the screen using a Y. pseudotuberculosis transposon mutant library in a genetic background that lacked the known T3SS effector proteins YopH/HemoJ (Δyop6; [43]). We identified several transposon mutants with defects in triggering activation of NFκB in HEK293T cells (L. Kwuan, N. Herrera, H. Ramirez, V. Auerbuch, data not shown), suggesting defective T3SS function. Among these were two strains with unique transposon insertions in YPTB2860 (Figure 1A), encoding a protein with 79% identity to the E. coli iron-sulfur cluster regulator IscR, part of the iscRSUA-hscBA-fdx operon involved in Fe-S cluster biogenesis (Figure 1B). Importantly, the helix-turn-helix DNA binding domain as well as the three cysteines and histidine known to coordinate an iron-sulfur (Fe-S) cluster in E. coli IscR are conserved in all three Yersinia species (Figure 1B). These data indicate that Yersinia IscR may coordinate an Fe-S cluster and, as in E. coli, may regulate gene transcription.

To validate that loss of IscR in Y. pseudotuberculosis leads to T3SS defects, we isolated the two iscR transposon mutants (iscR:Tn1 and iscR:Tn2) from our library and again measured their ability to trigger NFκB activation in HEK293T cells compared to the Δyop6 parental strain and a ΔiscN/Y T3SS-null mutant [43]. In addition, we constructed an in-frame iscR deletion mutant in the Δyop6 genetic background (Δyop6/ΔiscR) and tested it in this assay. We found that disruption of iscR led to ~2-fold less NFκB activation relative to the Δyop6 T3SS+ parental strain, although NFκB activation levels were still ~5-fold higher than a strain with complete lack of T3SS function (ΔiscN/Y; Figure 2A), suggesting that loss of iscR leads to partial T3SS loss.

To further verify that deletion of iscR leads to alterations in T3SS function, we assessed the ability of the Δyop6/ΔiscR mutant to insert YopBD pores in target host cell membranes by measuring
entry of ethidium bromide (EtBr) inside Y. pseudotuberculosis-infected bone marrow derived macrophages [45,46]. Pore formation by the \(\text{Dyop6/DiscR} \) mutant was decreased by 7-fold (\(p < 0.05 \)) relative to the \(\text{Dyop6 parental strain} \), which could be restored upon complementation with plasmid-encoded \(\text{iscR} \) (Figure 2B). To determine whether loss of \(\text{iscR} \) affects T3SS function in a wild type genetic background, we constructed an in-frame \(\text{iscR} \) deletion (\(\text{DiscR} \)) in the wild type \(\text{Y. pseudotuberculosis} \) IP2666 strain expressing six of the seven known T3SS effector proteins YopHEMOJK [47]. We then visualized the secretome of the \(\text{DiscR} \) mutant relative to wild type. Deletion of \(\text{iscR} \) led to a dramatic decrease in secretion of T3SS cargo relative to the wild type background, which can be restored upon complementation with plasmid-encoded \(\text{iscR} \) (Figure 2C). Importantly, this lack of type III secretion did not result from a defect in growth of the mutant, as the \(\text{DiscR} \) mutant actually grew better than wild type bacteria under T3SS-inducing conditions (Figure S1A). This is consistent with a T3SS defect in this strain, as wild type \(\text{Yersinia} \) display a characteristic growth arrest upon T3SS expression [5,48,49]. Collectively, these data demonstrate that \(\text{Y. pseudotuberculosis} \) \(\text{IscR} \) is required for proper T3SS function.

\(\text{IscR} \) is required for full virulence of \(\text{Y. pseudotuberculosis} \)

Based on the knowledge that the T3SS plays an important role in the virulence of human pathogenic \(\text{Yersinia} \), we sought to investigate whether the diminished type III secretion observed in the \(\text{Y. pseudotuberculosis} \) \(\text{DiscR} \) strain would lead to a reduction in the infectious capacity of this mutant. Mice were orogastrically infected with \(2 \times 10^8 \) CFU of either the \(\text{Y. pseudotuberculosis} \) wild type or isogenic \(\text{DiscR} \) mutant strains.

\section*{Results}

\subsection*{Y. pseudotuberculosis DNA sequence}

The \(\text{Y. pseudotuberculosis} \) DNA sequence, which displays the unique insertions sites for the two transposon mutants generated from our genetic screen. A space in the DNA sequence and a solid black line indicate the site of insertion for either \(\text{iscR}::\text{Tn1} \) or \(\text{iscR}::\text{Tn2} \).
infected with Y. pseudotuberculosis displaying significantly decreased colonization of Peyer’s patches and mesenteric lymph nodes (MLN) as well as diminished systemic colonization (Figure 3). Specifically, we noted 10- and 130-fold reductions in CFU recovered from the Peyer’s patches and MLNs, respectively, in mice infected with the ΔiscR mutant strain relative to wild type. Notably, we observed a 1000- to 10,000-fold decrease in bacterial burden in the spleen and liver respectively. The diminished ability of the ΔiscR mutant strain to colonize deep tissue sites is underscored by the fact that bacteria were not detected in seven of the nine livers analyzed. These findings suggest that IscR is essential for Y. pseudotuberculosis virulence in an oral infection model.

IscR deletion leads to global misregulation of gene expression in Y. pseudotuberculosis

To begin to understand the mechanistic contribution of IscR to Y. pseudotuberculosis pathogenesis, we performed high throughput transcriptome sequencing (RNAseq) analysis to determine the T. pseudobrusellosis genes directly and indirectly controlled by IscR under iron replete, T3SS-inducing conditions. Total RNA was collected from wild type Y. pseudotuberculosis as well as the ΔiscR mutant strain grown in M9 at 37°C for 3 h, a point at which the ΔiscR and wild type strains display comparable growth rates (Figure S1A).

For the ΔiscR mutant relative to the wild type, a total of 226 genes demonstrated a statistically significant fold change of ≥2 (Table S1). Of these, 134 genes were up-regulated in the ΔiscR mutant relative to the wild type (Table 1 & Figure 4A), while 92 were down-regulated (Table 2 & Figure 4B). Genes found to be up-regulated in the ΔiscR mutant include key elements of Fe-S cluster biosynthesis, cellular detoxification, metabolism, and protein fate (Figure 4A). The most notable increases in transcription were observed for genes encoding Fe-S cluster biosynthesis proteins including those encoded in the isc operon, iscN (18.7-fold), iscU (21.7-fold) and isiA (13-fold) (Table 1 & Figure S2A). Additional genes encoding proteins involved in Fe-S cluster assembly and their respective fold increases include isiX/yfhJ (10.9), hscB (10.9), hscC (10), hspD (9.3), yadR/erpA (6.8), petB (10.1) and yfjA (7.0). To validate these findings, we performed qRT-PCR analysis on the second gene encoded in the iscRSUA-hscBA-fdx operon, isiS, as well as on the gene encoding the Fe-S biosynthesis protein ErpA. Transcription of isiS was increased by 30-fold, while erpA expression was increased 5-fold (p<0.05; Figure 5A). Bioinformatic analysis identified two IscR type 1 motifs upstream of the isiRSUA operon, as well as on the gene encoding the Fe-S biosynthesis protein ErpA. Transcription of isiS was increased by 30-fold, while erpA expression was increased 5-fold (p<0.05; Figure 5A). Bioinformatic analysis identified two IscR type 1 motifs upstream of the isiRSUA operon, as well as on the gene encoding the Fe-S biosynthesis protein ErpA. Transcription of isiS was increased by 30-fold, while erpA expression was increased 5-fold (p<0.05; Figure 5A). Bioinformatic analysis identified two IscR type 1 motifs upstream of the isiRSUA operon, as well as on the gene encoding the Fe-S biosynthesis protein ErpA. Transcription of isiS was increased by 30-fold, while erpA expression was increased 5-fold (p<0.05; Figure 5A). Bioinformatic analysis identified two IscR type 1 motifs upstream of the isiRSUA operon, as well as on the gene encoding the Fe-S biosynthesis protein ErpA. Transcription of isiS was increased by 30-fold, while erpA expression was increased 5-fold (p<0.05; Figure 5A). Bioinformatic analysis identified two IscR type 1 motifs upstream of the isiRSUA operon, as well as on the gene encoding the Fe-S biosynthesis protein ErpA. Transcription of isiS was increased by 30-fold, while erpA expression was increased 5-fold (p<0.05; Figure 5A). Bioinformatic analysis identified two IscR type 1 motifs upstream of the isiRSUA operon, as well as on the gene encoding the Fe-S biosynthesis protein ErpA. Transcription of isiS was increased by 30-fold, while erpA expression was increased 5-fold (p<0.05; Figure 5A). Bioinformatic analysis identified two IscR type 1 motifs upstream of the isiRSUA operon, as well as on the gene encoding the Fe-S biosynthesis protein ErpA. Transcription of isiS was increased by 30-fold, while erpA expression was increased 5-fold (p<0.05; Figure 5A). Bioinformatic analysis identified two IscR type 1 motifs upstream of the isiRSUA operon, as well as on the gene encoding the Fe-S biosynthesis protein ErpA. Transcription of isiS was increased by 30-fold, while erpA expression was increased 5-fold (p<0.05; Figure 5A). Bioinformatic analysis identified two IscR type 1 motifs upstream of the isiRSUA operon, as well as on the gene encoding the Fe-S biosynthesis protein ErpA. Transcription of isiS was increased by 30-fold, while erpA expression was increased 5-fold (p<0.05; Figure 5A). Bioinformatic analysis identified two IscR type 1 motifs upstream of the isiRSUA operon, as well as on the gene encoding the Fe-S biosynthesis protein ErpA. Transcription of isiS was increased by 30-fold, while erpA expression was increased 5-fold (p<0.05; Figure 5A). Bioinformatic analysis identified two IscR type 1 motifs upstream of the isiRSUA operon, as well as on the gene encoding the Fe-S biosynthesis protein ErpA. Transcription of isiS was increased by 30-fold, while erpA expression was increased 5-fold (p<0.05; Figure 5A). Bioinformatic analysis identified two IscR type 1 motifs upstream of the isiRSUA operon, as well as on the gene encoding the Fe-S biosynthesis protein ErpA. Transcription of isiS was increased by 30-fold, while erpA expression was increased 5-fold (p<0.05; Figure 5A). Bioinformatic analysis identified two IscR type 1 motifs upstream of the isiRSUA operon, as well as on the gene encoding the Fe-S biosynthesis protein ErpA. Transcription of isiS was increased by 30-fold, while erpA expression was increased 5-fold (p<0.05; Figure 5A). Bioinformatic analysis identified two IscR type 1 motifs upstream of the isiRSUA operon, as well as on the gene encoding the Fe-S biosynthesis protein ErpA. Transcription of isiS was increased by 30-fold, while erpA expression was increased 5-fold (p<0.05; Figure 5A). Bioinformatic analysis identified two IscR type 1 motifs upstream of the isiRSUA operon, as well as on the gene encoding the Fe-S biosynthesis protein ErpA. Transcription of isiS was increased by 30-fold, while erpA expression was increased 5-fold (p<0.05; Figure 5A). Bioinformatic analysis identified two IscR type 1 motifs upstream of the isiRSUA operon, as well as on the gene encoding the Fe-S biosynthesis protein ErpA. Transcription of isiS was increased by 30-fold, while erpA expression was increased 5-fold (p<0.05; Figure 5A). Bioinformatic analysis identified two IscR type 1 motifs upstream of the isiRSUA operon, as well as on the gene encoding the Fe-S biosynthesis protein ErpA. Transcription of isiS was increased by 30-fold, while erpA expression was increased 5-fold (p<0.05; Figure 5A). Bioinformatic analysis identified two IscR type 1 motifs upstream of the isiRSUA operon, as well as on the gene encoding the Fe-S biosynthesis protein ErpA. Transcription of isiS was increased by 30-fold, while erpA expression was increased 5-fold (p<0.05; Figure 5A). Bioinformatic analysis identified two IscR type 1 motifs upstream of the isiRSUA operon, as well as on the gene encoding the Fe-S biosynthesis protein ErpA. Transcription of isiS was increased by 30-fold, while erpA expression was increased 5-fold (p<0.05; Figure 5A). Bioinformatic analysis identified two IscR type 1 motifs upstream of the isiRSUA operon, as well as on the gene encoding the Fe-S biosynthesis protein ErpA. Transcription of isiS was increased by 30-fold, while erpA expression was increased 5-fold (p<0.05; Figure 5A). Bioinformatic analysis identified two IscR type 1 motifs upstream of the isiRSUA operon, as well as on the gene encoding the Fe-S biosynthesis protein ErpA. Transcription of isiS was increased by 30-fold, while erpA expression was increased 5-fold (p<0.05; Figure 5A). Bioinformatic analysis identified two IscR type 1 motifs upstream of the isiRSUA operon, as well as on the gene encoding the Fe-S biosynthesis protein ErpA. Transcription of isiS was increased by 30-fold, while erpA expression was increased 5-fold (p<0.05; Figure 5A). Bioinformatic analysis identified two IscR type 1 motifs upstream of the isiRSUA operon, as well as on the gene encoding the Fe-S biosynthesis protein ErpA. Transcription of isiS was increased by 30-fold, while erpA expression was increased 5-fold (p<0.05; Figure 5A). Bioinformatic analysis identified two IscR type 1 motifs upstream of the isiRSUA operon, as well as on the gene encoding the Fe-S biosynthesis protein ErpA. Transcription of isiS was increased by 30-fold, while erpA expression was increased 5-fold (p<0.05; Figure 5A). Bioinformatic analysis identified two IscR type 1 motifs upstream of the isiRSUA operon, as well as on the gene encoding the Fe-S biosynthesis protein ErpA. Transcription of isiS was increased by 30-fold, while erpA expression was increased 5-fold (p<0.05; Figure 5A). Bioinformatic analysis identified two IscR type 1 motifs upstream of the isiRSUA operon, as well as on the gene encoding the Fe-S biosynthesis protein ErpA. Transcription of isiS was increased by 30-fold, while erpA expression was increased 5-fold (p<0.05; Figure 5A).
IscR is required for transcription of T3SS genes

In total, 92 genes were significantly down-regulated in the ΔiscR mutant relative to wild type Y. pseudotuberculosis (Table 2). These data demonstrate that the majority of pYV-encoded genes are decreased in the ΔiscR mutant relative to the wild type strain, including genes essential for proper T3SS expression and function. The virC and lcrGVH-yopBD operons as well as genes encoding the T3SS cargo YopHEMOJTK were the most affected upon deletion of iscR: the effector proteins YopJ (~2.3-4-fold), YopM (~2.5-fold) and YopT (~3.5-fold), the effector protein and translocation regulator YopK (~2.9-fold), as well as a number of genes encoding T3SS structural proteins. Genes encoding regulators that control T3SS expression and function were decreased in the mutant including lerQ (~2.1-fold), lerF (~3.3-fold), lerG (~2.8-fold) and lerH (~3.9-fold). To verify that T3SS gene expression was indeed decreased in the ΔiscR mutant, we measured the transcript levels of the genes encoding T3SS structural proteins YscN, YscF, and the T3SS transcriptional regulator LcrF via qRT-PCR. As detailed in Figure 5B, we observed fold decreases of 2.8-fold (p<0.05), 6.9-fold (p<0.001), and 5.4-fold (p<0.0001) for yscN, yscF, and lerF, respectively. These data support our RNAseq analysis and confirm that IscR is required for robust transcription of Y. pseudotuberculosis T3SS genes.

In addition to T3SS genes, 25 other pYV-encoded genes were decreased in the mutant, but these are annotated as hypothetical proteins, transposases, and pseudogenes. Analysis of the relative abundance of pYV in the Y. pseudotuberculosis wild type and ΔiscR strains was performed in order to verify that the decreases in pYV-encoded genes were not a result of plasmid loss (Figure S3). The concentration of plasmid isolated from the wild type and ΔiscR mutant was comparable, suggesting that the decreased transcription of pYV-encoded genes, including those encoding the T3SS, are not a result of decreased stability of the pYV plasmid.

Figure 3. IscR is required for full virulence of Y. pseudotuberculosis. Mice were infected with 2×10^8 CFU of either WT Y. pseudotuberculosis or ΔiscR mutant via orogastric gavage. At 5 days post-inoculation, the Peyer’s patches (PP), mesenteric lymph nodes (MLN), spleens and livers were collected, homogenized and CFU determined. Each symbol represents one animal. Unfilled symbols indicate that CFU were below the limit of detection. The data presented are from three independent experiments. *p<0.05, ***p<0.001 as determined by an unpaired Wilcoxon-Mann-Whitney rank sum test. Dashes represent the geometric mean.

doi:10.1371/journal.ppat.1004194.g003
Table 1. Genes repressed by IscR, identified by RNAseq analysis.

Gene Ontology	ORF ID*	Description	Gene	Fold Up Regulationb
Fe-S Cluster Biogenesis (11)	YPTB0744	Fe-S insertion protein	yadR/erpA	6.8
	YPTB2851	enhanced serine sensitivity protein	sseB	6.6
	YPTB2852	peptidase B	pepB	10.1
	YPTB2853	Fe-S assembly protein	iscX/yfhJ	10.8
	YPTB2854	Isc system ferredoxin	fdx	10.9
	YPTB2855	Fe-S assembly chaperone	hscA	9.3
	YPTB2856	Fe-S assembly chaperone	hscB	10.0
	YPTB2857	Fe-S assembly protein	iscA	13.0
	YPTB2858	Fe-S assembly scaffold	iscU	21.7
	YPTB2859	cysteine desulfurase	iscS	18.7
Sulfur Metabolism (11)	YPTB0759	sulfite reductase, beta (flavoprotein) subunit	cysJ	3.7
	YPTB0760	sulfite reductase, alpha subunit	cysI	2.2
	YPTB0761	3-phosphoadenosine 5-phosphosulfate (PAPS) reductase	cysH	2.0
	YPTB0764	Siroheme synthase	cysG	2.4
	YPTB0765	ATP-sulfurylase, subunit 2	cysD	4.8
	YPTB0766	ATP-sulfurylase, subunit 1	cysN	4.0
	YPTB0767	adenosine 5-phosphosulfate kinase	cysC	2.7
	YPTB2714	cysteine synthase A	cysK	3.5
	YPTB2732	ABC sulfate transporter, ATP-binding subunit	cysA	2.1
	YPTB2735	ABC trans, periplasmic thiosulfate-binding protein	cysP	3.0
	YPTB2769	putative sulfatase	ydeN	2.5
Cellular Detox (4)	YPTB0756	superoxide dismutase precursor (Cu-Zn)	sodC	2.0
	YPTB0811	catalase hydroperoxidase HPI(I)	katY	8.6
	YPTB2261	thiol peroxidase	tpx	2.0
	YPTB2299	superoxide dismutase [Fe]	sodB	6.3
Protein Fate (33)	YPTB0017	secreted thiol/disulfide interchange protein	dsbA	2.0
	YPTB0097	ATP-binding heat shock protein	hslU	2.7
	YPTB0102	50S ribosomal protein L31	rpmE	2.4
	YPTB0276	elongation factor Tu	tuf	2.7
	YPTB0279	50S ribosomal protein L11	rplK	2.5
	YPTB0280	50S ribosomal protein L1	rplA	2.3
	YPTB0281	50S ribosomal protein L10	rplU	2.7
	YPTB0282	50S ribosomal protein L7/L12	rplL	3.0
	YPTB0404	10 kDa chaperonin	groES	5.2
	YPTB0405	60 kDa chaperonin	groEL	5.7
	YPTB0438	30S ribosomal protein S6	rpsF	2.2
	YPTB0440	30S ribosomal protein S18	rpsR	2.2
	YPTB0441	50S ribosomal protein L9	rplI	2.3
	YPTB0464	50S ribosomal protein L21	rplU	2.3
	YPTB0465	50S ribosomal protein L27	rpmA	2.6
	YPTB0611	chaperone Hsp70	dnaK	3.8
	YPTB0612	heat shock protein	dnaJ	3.6
	YPTB0749	periplasmic serine protease Do, heat shock protein	htrA	4.4
	YPTB0848	ATP-dependent, Hsp 100	clpB	4.1
	YPTB0958	trigger factor	tig	2.5
	YPTB0960	clpA-clpP ATP-dependent serine protease, chaperone	clpX	2.7
	YPTB0961	ATP-dependent protease	lon	2.9
	YPTB0995	chaperone Hsp90, heat shock protein C 62.5	htpG	3.3
	YPTB1090	sec-independent protein translocase protein	tatE	2.9
Gene Ontology	ORF ID*	Description	Gene	Fold Up Regulation
-------------------------------	---------	--	---------	--------------------
Table 1. Cont.				
YPTB1113		putative tRNA-thiotransferase	miaB	2.0
YPTB1141		heat shock protein GrpE	grpE	2.7
YPTB1417		30S ribosomal protein S1	rpsA	2.2
YPTB1448		putative ribosome modulation factor	rmf	3.8
YPTB2820		putative protease		2.1
YPTB3000		ribosome recycling factor	frr	2.1
YPTB3026		protease III precursor	ptrA	2.4
YPTB3511		Protease	degQ	3.4
YPTB3904		heat shock protein	ibpA	3.5
YPTB3905		heat shock protein	ibpB	4.5
Misc. Metabolism (33)				
YPTB0135		acetolactate synthase isozyme II small subunit	ilvM	2.6
YPTB0297		DNA-binding protein HU-alpha	hupA	2.1
YPTB0402		aspartate ammonia-lyase	aspA	3.1
YPTB0456		fructose-1, 6-bisphosphatase	fbp	2.1
YPTB0460		malate dehydrogenase	mdh	2.1
YPTB0546		putative glycoprotein/receptor		2.0
YPTB0755		enolase	eno	2.1
YPTB0809		probable cytochrome b(561)	cybB	4.0
YPTB0810		putative cytochrome b(562)	cybC	6.7
YPTB1117		putative N-acetylglucosamine regulatory protein	nagC	2.5
YPTB1118		N-acetylglucosamine-6-phosphate deacetylase	nagA	4.1
YPTB1119		putative glucosamine-6-phosphate isomerase	nagB	5.9
YPTB1120		N-acetylglucosamine-specific IIA/B component	nagE	5.2
YPTB1148		dihydrolipoamide succinyltransferase	sucB	2.1
YPTB1149		succinyl-CoA synthetase beta chain	succD	3.0
YPTB1150		succinyl-CoA synthetase alpha chain		3.1
YPTB1358		glutaredoxin 1	grxA	2.3
YPTB1418		integration host factor beta-subunit	ihbB	2.7
YPTB2047		pyruvate kinase II	pykA	2.3
YPTB2143		aconitate hydratase 1	acnA	2.2
YPTB2216		putative acetylactate synthase large subunit	ilvB	2.2
YPTB2217		putative acetylactate synthase small subunit	ilvN	2.3
YPTB2306		pyruvate kinase I	pykF	2.0
YPTB2845		nucleoside diphosphate kinase	ndk	2.3
YPTB2870		flavohemoprotein	hmp	2.1
YPTB2943		urease beta subunit	ureB	2.0
YPTB2944		urease gamma subunit	ureA	2.1
YPTB3202		Biosynthetic arginine decarboxylase	speA	2.1
YPTB3572		biotin carboxylase	accC	2.1
YPTB3966		ATP synthase epsilon subunit protein	atpE	2.5
YPTB3967		ATP synthase beta subunit protein	atpD	2.1
YPTB3968		ATP synthase gamma subunit protein	atpG	2.2
YPTB3969		ATP synthase alpha subunit protein	atpA	2.1
Regulatory Functions (6)				
YPTB0784		putative transcriptional regulatory protein		2.0
YPTB1955		putative phosphate starvation-inducible protein	phoH	2.2
YPTB3068		putative carbonic anhydrase		2.2
YPTB3418		RNA polymerase sigma factor RpoD	rpoD	2.3
YPTB3527		putative sigma N modulation factor	yhbH	2.1
Transport and Binding Proteins (9)	YPTB0306	putative sodium:phenylacetate symporter	actP	2.4
Table 1. Cont.

Gene Ontology	ORF ID*	Description	Gene	Fold Up Regulationb
YPTB1718	putative cystine-binding periplasmic protein	fltY	2.4	
YPTB2463	PTS system, glucose-specific IIBC component	ptsG	2.0	
YPTB2682	ABC transporter, periplasmic iron(III)-binding protein	sfuA	2.6	
YPTB2771	PTS system glucose-specific IIA component, permease	crr	2.3	
YPTB2770	probable ABC transporter, ATP-binding subunit		2.8	
YPTB2771	putative ABC iron transporter		2.7	
YPTB2772	ABC transporter, periplasmic iron binding protein		4.1	
YPTB3957	ABC transporter, periplasmic amino acid binding protein		4.6	
YPTB1334	pH 6 antigen precursor (antigen 4) (adhesin)	psaA	2.5	
YPTB2123	putative exported protein	ompW	3.3	
YPTB2287	putative lipoprotein	slyB	2.0	
YPTB2867	attachment invasion locus protein	all	4.3	
YPTB3584	outermembrane protein	pcp	2.5	
YPTB0439	primosomal replication protein n	prtB	2.2	
YPTB0693	tubulin-like GTP-binding protein and GTPase	ftZ	2.1	
YPTB0782	putative dihydroxyacetone kinase		2.7	
YPTB0830	quorum sensing protein	luxS	2.4	
YPTB1162	quinolinate synthetase A	nadA	2.1	
YPTB1182	biotin synthase	bioB	2.2	
YPTB1468	cytotoxic necrotizing factor (partial)		6.1	
YPTB1517	formaldehyde dehydrogenase		2.2	
YPTB2248	D-lactate dehydrogenase	ldhA	2.1	
YPTB2395	probable N-acetylmuramoyl-L-alanine amidase		2.4	
YPTB2791	putative arsenate reductase	ygfD	2.0	
YPTB2887	pyridoxal phosphate biosynthetic protein	pdxJ	2.2	
YPTB0391	putative exported protein		2.1	
YPTB0449	hypothetical protein		3.3	
YPTB0458	putative exported protein		2.2	
YPTB1093	hypothetical protein		3.6	
YPTB1571	hypothetical protein		2.1	
YPTB2255	putative exported protein		2.3	
YPTB2277	hypothetical protein		2.6	
YPTB2496	hypothetical protein		2.8	
YPTB3109	hypothetical protein		4.1	

*ORF IDs are derived from the *Y. pseudotuberculosis* IP 32593 genome unless otherwise stated.

bFold change is of the ΔiscR mutant relative to the wild type strain.

doi:10.1371/journal.ppat.1004194.t001

Y. pseudotuberculosis expressing only apo-locked IscR has a proton motive force defect and cannot secrete Yops

To assess the contribution of Fe-S cluster ligation to IscR control of the T3SS, we constructed an IscR mutant strain in which the three conserved cysteines were substituted with alanines (C92A, C98A, C104A; apo-locked IscR). Identical mutations in *E. coli* IscR render the protein unable to coordinate an iron-sulfur cluster, yet able to bind type 2 DNA binding motifs and to regulate target gene transcription [28–30]. We analyzed the secretome of the *Y. pseudotuberculosis* apo-locked IscR strain under T3SS-inducing conditions and found that the mutant was just as defective as the ΔiscR strain in Yop secretion (Figure 2C). This defect could be complemented with plasmid-encoded wild type IscR. As apo-locked IscR is insufficient to promote type III secretion, holo-IscR-mediated regulation of gene expression through one or more type 1 motifs may be specifically involved in regulating T3SS gene expression. Alternatively, forcing all IscR expression within the cell to the clusterless form, which leads to IscR overexpression, may lead to alterations of bacterial pathways that indirectly affect type III secretion.

Consistent with this latter explanation, the apo-locked IscR mutant exhibited decreased colony size on LB agar, slower growth in rich media (Figure S1), and decreased motility (Figure 6A). The flagellar basal body is a T3SS itself, indicating that the defect in the Ysc T3SS for this strain may be a result of gross abnormalities in secretion systems. Based on these findings, we set out to examine

PLOS Pathogens | www.plospathogens.org

June 2014 | Volume 10 | Issue 6 | e1004194
Dissertation of the (potential of the addition of wild type relative to the wild type strain, which can be complemented upon decrease in membrane potential in the apo-locked IscR mutant conditions. As demonstrated in Figure 6B, there is a notable apo-IscR in order maintain normal membrane potential. For mutant has a proton motive force defect, leading to decreased type type. Collectively, these data suggest that the apo-locked IscR operon were observed for the apo-locked IscR strain when compared to both the wild type and ΔiscR strains (Figure S4). As IscR is overexpressed by 30-fold (p<0.05) in the apo-locked iscR mutant compared to wild type (Figure S2A), we speculate that the suf operon is positively regulated by IscR in Yersinia as in E. coli. In contrast, the extensively studied E. coli IscR target, hycABCDEF, is not encoded in the Y. pseudotuberculosis genome.

Importantly, our RNAseq analysis demonstrated that transcription of genes within the visA, visB, visC, yscW-lcrF, and lcrGVH-yopBD operons was restored in the apo-locked IscR mutant compared to the ΔiscR mutant (Figure 7 and Table S2). However, we observed a decrease in transcription of genes encoding the T3SS effector proteins YopH (~4.4-fold), YopM (~3.0-fold), YopK (~7.1-fold), and YopE (~2.1-fold) in the apo-locked IscR mutant compared to wild type. Transcription of yopE has been shown to be regulated by Yop secretion through a positive feedback loop [51,52], suggesting that the defect in YopHEMK transcription observed in the apo-locked IscR mutant may be caused by the lack of Yop secretion we observed in this strain. Together, these data suggest that both hol- and apo-IscR can promote T3SS gene transcription, possibly through binding to one or more type 2 DNA motifs.

To determine whether IscR might directly regulate T3SS gene expression, we carried out bioinformatic analysis to search pYV for sequences resembling the E. coli IscR type 2 motif (xxWWWWCCxYAxxxxxxxTRxGGWWWWxx) [30,31,33], as the DNA-binding domain of Yersinia IscR is 100% identical to that of E. coli IscR (Figure 1A). We searched within the 150 nucleotides upstream of the 99 genes encoded on the pYV plasmid and obtained a ranked list of putative type 2 motifs (data not shown). Among these was a site located within the yscW-lcrF promoter region (Figure 8A) [24]. To test whether IscR bound specifically to this site, we performed equilibrium DNA competition assays utilizing purified E. coli IscR-C92A (apo-IscR) [33], with a fluorescein-labeled E. coli hyc type 2 site previously identified by Nesbit et al. [33]. Purified E. coli IscR was utilized in this assay, as complementation of the Y. pseudotuberculosis ΔiscR mutant strain with IscR of E. coli encoded on a plasmid fully restored secretion of T3SS cargo (Figure 8B). Competitor DNA included unlabeled E. coli hyc as a positive control, the identified site within the Yersinia yscW-lcrF promoter region, a mutated version of this sequence (mutF), where nucleotides previously demonstrated in E. coli to be important for type 2 motif binding were altered [33], as well as one of the Y. pseudotuberculosis isc type 1 motif sites we identified as a negative control (Figure S2B & Figure 8C). We found that unlabeled lcrF DNA competed as well as unlabeled hyc DNA (IC50 27 nm and 61 nm, respectively), suggesting that IscR can indeed bind to the identified type 2 motif upstream of lcrF (Figure 8D). Furthermore, mutation of key nucleotides in the lcrF promoter sequence led to alleviation of competition and increased the IC50 to greater than 1000 nM, a level comparable to that of the isc negative control type 1 motif site.
Gene Ontology	ORF ID	Description	Gene	Fold Up Regulation
pYV-encoded (50)	pYV0002	YpkA chaperone	sycO	4.6
	pYV0003	putative transposase remnant		2.2
	pYV0008	possible transposase remnant		2.6
	pYV0009	hypothetical protein		3.3
	pYV0010	hypothetical protein		3.3
	pYV0012	hypothetical protein		4.2
	pYV0014	possible transposase remnant		3.2
	pYV0015	possible transposase remnant		3.9
	pYV0016	trpA putative transposase protein		2.6
	pYV0021	putative transposase		2.4
	pYV0022	putative transposase		2.3
	pYV0023	possible transposase remnant		2.8
	pYV0034	putative transposase remnant		3.3
	pYV0035	hypothetical protein		3.0
	pYV0036	hypothetical protein		3.6
	pYV0037	C-term conjugative transfer: surface exclusion		4.2
	pYV0038	N-term fragment conjugative transfer: surface exclusion		8.3
	pYV0039	putative transposase		7.5
	pYV0040	yop targeting protein	yopK	9.3
	pYV0041	yop targeted effector	yopT	5.5
	pYV0044	hypothetical protein		4.1
	pYV0046	putative transposase remnant		2.9
	pYV0047	targeted effector protein	yopM	5.3
	pYV0049	hypothetical protein		2.4
	pYV0056	low calcium response protein H	lcrH	3.9
	pYV0057	V antigen, antihost protein/regulator	lcrV	3.5
	pYV0058	Yop regulator	lcrG	2.8
	pYV0061	type III secretion protein	yscY	2.2
	pYV0062	type III secretion protein	yscX	2.5
	pYV0063	type III secretion protein	yscN	2.5
	pYV0064	Yop secretion and targeting protein	yvaA	2.1
	pYV0068	type III secretion protein	yscO	2.0
	pYV0069	type III secretion protein	yscP	2.1
	pYV0075	Yop targeting lipoprotein	virG	2.5
	pYV0076	putative thermoregulatory protein	lcrF	3.3
	pYV0078	hypothetical protein	yscB	3.5
	pYV0079	type III secretion protein	yscC	2.0
	pYV0080	type III secretion protein	yscD	2.0
	pYV0082	type III secretion protein	yscF	2.8
	pYV0083	type III secretion protein	yscG	2.9
	pYV0084	type III secretion protein	yscH	2.1
	pYV0087	type III secretion protein	yscK	3.2
	pYV0088	type III secretion protein	yscL	2.2
	pYV0089	type III secretion regulatory	lcrQ	2.1
	pYV0090	putative transposase		2.7
	pYV0091	putative transposase		3.1
	pYV0092	putative transposase		3.2
	pYV0093	putative transposase		2.2
	pYV0098	targeted effector protein	yopJ	3.4
	pYV0099	hypothetical protein		4.8
Table 2. Cont.

Gene Ontology	ORF ID*	Description	Gene	Fold Up Regulationb
Hemin Transport (4)	YPTB0336	ABC hemin transporter, ATP-binding subunit	hmuV	2.4
	YPTB0337	ABC hemin transporter, permease subunit	hmuU	2.4
	YPTB0338	ABC transporter, periplasmic hemin-binding protein	hmuT	2.4
	YPTB0339	hemin degradation/transport protein	hmuS	2.2
Anaerobiosis Associated (5)	YPTB0209	anaerobic glycerol-3-phosphate dehydrogenase subunit A	glpA	2.3
	YPTB0518	anaerobic ribonucleotide reductase activating protein	nrdG	2.6
	YPTB0805	anaerobic dimethyl sulfoxide reductase, subunit A	dmsA	2.3
	YPTB0806	anaerobic dimethyl sulfoxide reductase, subunit B	dmsB	2.1
	YPTB2688	putative dimethyl sulfoxide reductase chain A protein	dmsA	2.1
Regulatory Functions (3)	YPTB0247	lysR-family transcriptional regulatory protein	metR	2.0
	YPTB0386	L-rhamnose operon regulatory protein	rhaS	2.4
	YPTB3808	putative hybrid two-component system regulatory protein	2.0	
Protein Fate (3)	YPTB0877	translation initiation factor EF-2B, GDP-GTP exchange factor (alpha subunit)	eif	2.2
	YPTB1266	putative outer membrane-associated protease	pla2	2.2
Transport and Binding Proteins (8)	YPTB0502	ABC type sugar transport system, permease	2.0	
	YPTB0868	putative amino acid ABC transporter, permease	2.5	
	YPTB1724	SSS family proline sympporter	putP	2.4
	YPTB1956	calcium/proton antiporter	chaA	2.7
	YPTB2011	SulP family sulfate permease	ychM	2.1
	YPTB2022	MFS multidrug efflux antiporter	yctE	2.1
	YPTB2491	proton dependent di-tripeptide transporter	ycdE	2.0
	YPTB2815	AcrB/AcrD/AcrF (HAE1) family drug efflux pump	yegO	2.2

*ORF IDs are derived from the Y. pseudotuberculosis IP 32593 genome unless otherwise stated.

bFold change is of the ∆iscR mutant relative to the wild type strain.

doi:10.1371/journal.ppat.1004194.t002

(Figure 8D). These findings suggest that IscR may regulate transcription of the T3SS through a type 2 motif within the yscW-lcrF promoter region.

Discussion

In this study, we present the first characterization of the iron-sulfur cluster regulator, IscR, of Yersinia. Initially identified through a genetic screen for modulators of Ysc T3SS function, iscR-deficient Y. pseudotuberculosis had a dramatic defect in secretion of T3SS effector proteins and in targeting macrophages through their T3SS, yet displayed normal growth in broth culture and wild type T3SS effector proteins and in targeting macrophages through their T3SS, yet displayed normal growth in broth culture and wild type flagellar motility. Bioinformatic and DNA binding analysis revealed an IscR binding site upstream of the operon encoding the T3SS master regulator LcrF, indicating that IscR controls expression of the Ysc T3SS. Collectively, these findings indicated that IscR is a central component of the Y. pseudotuberculosis T3SS regulatory cascade.

Both E. coli holO- and apo-IscR are active transcription factors with distinct DNA binding targets. Holo-IscR can bind both type 1 and 2 motifs whereas apo-IscR can only bind type 2 motifs. IscR of E. coli autoregulates the isc operon, iscRSUA-hscaA-fdx, through binding to type 1 motifs within the isc promoter region [34]. In addition, Giel et al. described increased transcription of the genes located immediately downstream of the isc operon, yfhJ-pepB-sseB, in an iscR mutant, suggesting a negative regulatory effect on these genes as well [30]. We observed derepression of the iscRSUA-hscaA-fdx operon and the yfhJ-pepB-sseB locus in the Y. pseudotuberculosis ∆iscR mutant as well as the mutant expressing apo-locked IscR. Furthermore, we identified two sites within the Y. pseudotuberculosis isc operon that closely match the E. coli IscR motif consensus sequence. These data indicate that the iscRSUA-hscaA-fdx operon, and possibly the yfhJ-pepB-sseB locus, are negatively regulated by holo-IscR in Yersinia as they are in E. coli (Figure 9A). IscR in E. coli is known to activate transcription of the sufABCDSE operon through binding to a type 2 motif [29]. Our analysis revealed that the Y. pseudotuberculosis apo-locked IscR mutant overexpresses the sufABCDSE operon compared to the wild type and ∆iscR strains, which we predict results from the overexpression of IscR observed in the apo-locked mutant as found in E. coli [32,33]. We identified a site within the Y. pseudotuberculosis suf promoter region that closely resembles an E. coli IscR type 2 motif (data not shown). Together, these data indicate that the suf operon is positively regulated by IscR in Yersinia as in E. coli. Thus, we propose that IscR of Y. pseudotuberculosis modulates transcription of both the isc and suf Fe-S cluster biosynthesis pathways via mechanisms established for its E. coli ortholog.

In addition to control of Fe-S cluster biogenesis pathway expression, we present evidence that IscR controls expression and function of the Y. pseudotuberculosis T3SS. Bioinformatic analysis revealed a type 2 motif within the promoter of the T3SS master regulator LcrF that contained all nine bases previously found to be important for IscR binding (Figure 8A) [33]. Indeed, DNA
binding assays demonstrated that IscR is able to specifically recognize this type 2 motif, suggesting that IscR may be acting directly to promote transcription of lcrF [Figure 9B]. In support of this, we observed a marked decrease in transcription of numerous T3SS genes in the ΔiscR mutant strain. These include the gene that encodes LcrF, as well as a number of LcrF-regulated genes including the wuc operon, yopK, yopT, yopM, yopH, and lcrGVH-yopBD [17,20,22,33,54]. The lcrF type 2 motif is further upstream of the -10/-35 region previously identified by Bohme et al. [24] as other IscR binding sites that promote transcription [33], as we propose this site does. However, there may be an alternative -10/-35 region closer to the identified motif 2 site that might be used under specific growth conditions. Together, these data suggest that IscR is required for full expression of lcrF and LcrF-regulated genes through binding to a type 2 motif in the yscW-lcrF promoter [Figure 9B].

Based on these findings, an IscR mutant unable to coordinate an Fe-S cluster (apo-locked IscR) should lead to restoration of T3SS expression. Indeed, transcription of the yscW-lcrF and virC operons, as well as the majority of genes in the lcrGVH-yopBD operon, were not significantly decreased in the apo-locked IscR mutant compared to the ΔiscR strain. However, decreased transcription of yopE, yopK, yopM, and yopH as well as a severe defect in secretion of Yops was still observed. This could be explained by a deficiency in the apo-locked mutant’s membrane potential, but not in the ΔiscR strain [Figure 9B]. Wilharm et al., demonstrated that Y. enterocolitica motility and type III secretion requires the proton motive force [50]. Indeed, the apo-locked Y. pseudotuberculosis strain displayed a significant motility defect while the ΔiscR mutant was fully motile. Therefore, the type III secretion defect of the Y. pseudotuberculosis apo-locked IscR mutant can be explained by a deficiency in the proton motive force. Furthermore, the defect in YopHEMK transcription in the apo-locked IscR mutant may be explained by the fact that Yop secretion has a positive regulatory effect on Yop transcription [51,52]. Together, these data suggest that apo-IscR can promote LcrF transcription, but that locking iscR is the apo form causes a proton motive force defect that prevents effector Yop transcription and secretion [Figure 9B].

It is unclear why locking IscR in the apo-locked form leads to a proton motive force defect. We observed ~9-fold more suf transcript in the apo-locked IscR mutant compared to the ΔiscR strain that does not have a proton motive force defect, whereas the isc operon was expressed to the same degree in both mutants. Ezraty et al. recently showed that expression of the suf, but not the isc, operon in E. coli leads to a proton motive force defect, possibly as a result of impaired loading of Fe-S clusters into aerobic respiratory complexes [55]. Although the isc operon is expressed in the apo-locked Y. pseudotuberculosis mutant, perhaps overexpression of the suf pathway leads to misassembly of the Fe-S complexes of the electron transport chain that drive the proton motive force.

Both holo- and apo-IscR are predicted to bind to the type 2 motif within the yscW-lcrF promoter [33]. Based on previous data on E. coli IscR [28–30,34,56], low iron, aerobic growth, or high oxidative stress conditions are predicted to result in high expression of IscR through derepression of the isc operon, which in turn should increase T3SS gene expression. Likewise, high iron, anaerobic, or low oxidative stress conditions should lead to decreased IscR levels and therefore lower T3SS expression. Under normal aerobic culture conditions, we do not observe a change in wild type Y. pseudotuberculosis type III secretion when iron levels are altered (data not shown). However, in vivo, bacteria may be present in microaerophilic or anaerobic niches, where changes in iron

Figure 5. Deletion of IscR leads to increased transcription of Fe-S cluster biogenesis genes and robust transcription of T3SS genes. Quantitative real-time PCR analysis of WT and ΔiscR Y. pseudotuberculosis was performed (A) for the Fe-S cluster biogenesis genes, iscS and erpA and (B) for the T3SS genes, yscF, yscN and lcrF. Experiments were carried out from cultures grown in M9 at 37°C for 3 h. Shown are the averages ± SEM from three independent experiments. *p<0.05, **p<0.001, ***p<0.0001 as determined by a Student t test.

doi:10.1371/journal.ppat.1004194.g005
bioavailability and reactive oxygen species production may impact
isR and T3SS gene expression. Upon ingestion by a host animal,
Y. pseudotuberculosis enters the lumen of the intestine, which receives
approximately 15 mg of iron per day [57,58]. In the small
intestine, Y. pseudotuberculosis can cross the gut barrier and enter the
bloodstream and deeper tissues, which have very low iron
bioavailability ([10^2] M free serum iron) [59–61]. Sequestration
of iron by iron carriers in mammalian tissues is an important host
defense mechanism to prevent growth of bacterial pathogens, the
majority of which require iron for growth [62]. The Ysc T3SS has
been shown to be required for Y. pseudotuberculosis pathogenesis in
these deep tissue sites that are low in iron bioavailability [44].
Perhaps Y. pseudotuberculosis uses IscR to sense iron, O_2, and/or
ROS concentration in order to optimally control T3SS expression
in vivo.

Consistent with the severe T3SS expression defect displayed by
the Y. pseudotuberculosis ΔiscR strain, this mutant was deficient in
colonization of the Peyer’s patches, spleen, and liver. Interestingly,
the ΔiscR mutant was also defective in colonization of the mesenteric
lymph nodes (MLN), yet T3SS mutants were previously shown to
persist in the MLN and chromosomally-encoded factors were found
to be important for Y. pseudotuberculosis survival in this tissue
[24,63,64]. These results indicate that the virulence defect of the
Y. pseudotuberculosis ΔiscR strain may not be due solely to misregulation
of the T3SS, suggesting the existence of other IscR gene targets
important for virulence. IscR of Pseudomonas aeruginosa has been
shown to be important for full virulence through its ability to
upregulate KatA, encoding a catalase that protects against oxidative
stress [38,65–67]. In Vibrio vulnificus , IscR upregulates two genes
encoding the antioxidants peroxiredoxin and glutaredoxin 2, and is

Figure 6. The apo-IscR mutant strain displays decreased motility and disruption of electrical potential. (A) Motility was analyzed by spotting 1 µl aliquots of either a nonmotile strain (Δyop6/flhD_Y.pestis), WT, ΔiscR, or apo-locked IscR Y. pseudotuberculosis onto motility agar plates. The diameters of the colonies were determined one day later and used to calculate percent motility relative to WT, which was set at 100%. Shown is the average percent motility ± SEM and is representative of three independent experiments. ***p≤0.0001 as determined by one-way ANOVA followed by Bonferroni post hoc test where each indicated group was compared to the appropriate negative (Δyop6/flhD_Y.pestis) and positive (WT) controls. (B) Proton motive force (PMF) was measured using JC-1 dye for Y. pseudotuberculosis IP2666 wild type (WT), iscR deletion mutant (ΔiscR), iscR complemented (ΔiscR pIscR), apo-iscR, and apo-iscR complemented (apo-iscR pIscR) strains grown in M9 at 37°C for 3 hours. The protonophore CCCP was added to a WT sample as a negative control (CCCP). Decreases in PMF were measured as a decrease in red (590 nm) fluorescent cells relative to green (530 nm). The data is presented as total fluorescence intensities at 590 (red) relative to 530 (green) ± SEM and is representative of three independent experiments. *p≤0.05, as determined by one-way ANOVA followed by Bonferroni post hoc test where each indicated group was compared to the appropriate negative (CCCP) and positive (WT) controls.

doi:10.1371/journal.ppat.1004194.g006
essential for survival during exposure to reactive oxygen species [40]. Interestingly, our analysis suggests that *Y. pseudotuberculosis* IscR plays an opposite regulatory role, as IscR negatively affects expression of the genes encoding cellular detoxification proteins KatY, Tpx, SodC and SodB. Furthermore, hydrogen peroxide sensitivity assays showed comparable levels of survival between the *Y. pseudotuberculosis* wild type and *ΔiscR* strains (Figure S5). This suggests that the virulence defect observed for the *ΔiscR* *Y. pseudotuberculosis* mutant is not due to increased susceptibility to oxidative stresses encountered during infection. Pathways other than the T3SS, such as the *hmu* hemin uptake system, were found to be misregulated in the *Y. pseudotuberculosis* *ΔiscR* strain (Table 2 & Figure 4B). While the *hmu* operon was shown to not affect *Y. pestis* virulence, it is possible that IscR control of the *Y. pseudotuberculosis hmu* pathway is important for virulence.

In summary, we present the first characterization for the iron-sulfur cluster regulator, IscR, of *Yersinia*. We reveal that IscR regulates genes involved in Fe-S cluster assembly in a manner akin to that of *E. coli*. Most notably, we demonstrate that mutation of IscR leads to decreased function of the *Y. pseudotuberculosis* T3SS and that this is due to a decrease in transcription of genes encoding structural, regulatory, and effector proteins. Furthermore, we present evidence showing that IscR is essential for the virulence of *Y. pseudotuberculosis* and that this attenuation is likely due, in part, to direct regulation of the T3SS by IscR. Collectively, this study argues for the important and novel role of IscR in the virulence of *Y. pseudotuberculosis*.
Y. pseudotuberculosis as well as regulation of the Ysc T3SS, and identifies IscR as a potential target for novel antimicrobial agents.

Materials and Methods

All animal use procedures were in strict accordance with the NIH Guide for the Care and Use of Laboratory Animals and were approved by the UCSC Institutional Animal Care and Use Committee.

A	IscR type 2 site
-123	GCGATTTTTTACCATATATACGAGTGGTATGTTGCTATTTCCTGCTGATTTTAAATTACATATAAA -57
-56	CTAGACCAATTTAGGATATACACGTTGTGGTTGCTATTCCGATTATAACATCTTTCTTTTTAATGAAAGAAAGGA
12	ACTATTACATGTGTTTTGCTGATTCCGATTACAACATCTTTTTTTTTAATGAAAGAAAGGA
79	TGTHTGCTTATTATTCGAAAGTTGTTGATATGCTAGTCTGTAATTAAATGATGTTGTTGCC
146	GTGGAGATAATTGGAATGCTGGTGATATTTTTCAATAAATAAATTTACCACATATTGGCGGAACCTCG
213	GATTTCTACTTACCTACTGCTACTTTTTGGTTGGAACCTCAAGGGAGGGAGCTG

Y. pseudotuberculosis as well as regulation of the Ysc T3SS, and identifies IscR as a potential target for novel antimicrobial agents.

Bacterial strains, plasmids and growth conditions

All strains used in this study are listed in Table 3. Y. pseudotuberculosis strains were grown in 2xYT low calcium media at 37°C to induce type III secretion in the absence of host cells. Proteins in the bacterial culture supernatant were precipitated and visualized alongside a protein molecular weight marker (Ladder) on a polyacrylamide gel using commassie blue. Sample loading was normalized for OD600 of each culture. These results are representative of three independent experiments.
Construction of \textit{Y. pseudotuberculosis} mutant strains

The \textit{iscR} deletion mutant (\textit{ΔiscR}) was generated via splicing by overlap extension PCR [70]. Primer pairs F5'iscR/R5'iscR and F3'iscR/R3'iscR (Table S3), designed using MacVector and Primer 3 software (http://fokker.wi.mit.edu/primer3/input.htm), were used to amplify \(500\) bp \(5'\) and \(3'\) of the \textit{iscR} coding region, respectively. Amplified PCR fragments served as templates in an overlap extension PCR using the outside primers F5'iscR and R3'iscR. Nucleotide changes within the internal primers R5'apo-IscR and F3'apo-IscR allowed for amplification of \textit{iscR} target containing sequences coding for alanine substitutions of the three conserved cysteines that coordinate an Fe-S cluster.

The resulting \(1\) kb fragments were cloned into the TOPO TA cloning vector (Invitrogen) and further subcloned into a BamHI- and NotI-digested pSR47s suicide plasmid (\textit{lpir}-dependent replicon, kanamycin R (KanR), \textit{ sacB} gene conferring sucrose sensitivity) [71,72]. Recombinant plasmids were transformed into \textit{E. coli} S17-1 \textit{lpir} competent cells and later introduced into \textit{Y. pseudotuberculosis}.

Figure 9. Regulation of the \textit{isc} and \textit{lcrF} operons by IscR. (A) Model of \textit{isc} operon transcriptional control in the \textit{Y. pseudotuberculosis} wild type and apo-locked \textit{iscR} strains based on previous work on \textit{E. coli} IscR [32,34] and on data shown here. In wild type bacteria, the Isc Fe-S cluster biogenesis pathway loads a \([2Fe-2S]\) cluster onto IscR (holo-IscR) [32], which recognizes a type 1 DNA-binding motif in the \textit{isc} promoter to repress transcription in a negative feedback loop. Expression of the apo-locked IscR allele (***, \textit{IscR-C92A/C98A/C104A}) results in loss of holo-IscR-mediated repression, thereby increasing transcription of the \textit{isc} operon relative to wild type, resulting in a 30-fold increase in \textit{iscR}. (B) Model depicting the mechanism by which IscR controls the \textit{Y. pseudotuberculosis} Ysc T3SS. Holo- and apo-IscR are predicted to bind a newly identified type 2 DNA-binding site within the \textit{yscW-lcrF} operon encoding the LcrF T3SS master regulator. Subsequently, LcrF expression leads to transcription of the LcrF regulon, which includes the \textit{crGW-yopBD} and \textit{virC} operons and \textit{yop} genes [17,20,22,53,54]. These genes encode the majority of T3SS structural, regulatory, and effector proteins. However, through an as yet undefined mechanism, overexpression of apo-locked IscR leads to a decrease in the proton motive force, which is required for type III secretion [50]. As Yop secretion positively regulates \textit{yop} gene transcription [51,52], the secretion defect of the apo-locked \textit{iscR} mutant is predicted to lead to a decrease in effector \textit{yop} transcription.

doi:10.1371/journal.ppat.1004194.g009

Table 3. \textit{Y. pseudotuberculosis} strains used in this study.

Strain	Background	Mutation(s)	Reference
WT	IP2666		
Δyop6	IP2666	ΔyopHMOJ	[43]
Δy sucNU	IP2666	Δy sucNU	[63]
pYVR	IP2666	ΔyopBL pYVR cured	[43]
Δyop6/Δyop8	IP2666	ΔyopHMOJ Δyop8	[43]
Δyop6/Δyop8/FhD_\textit{ppestis}	IP2666	ΔyopHMOJ inactive, \textit{Y. pestis} allele of \textit{fhD}	[43]
Δyop6/Tn1	IP2666	ΔyopHMOJ iscR_\textit{R}_{\textit{Tn}}=Himar1	This work
Δyop6/Tn2	IP2666	ΔyopHMOJ ISC_\textit{R}_{\textit{Tn}}=Himar1	This work
Δyop6/ΔiscR	IP2666	ΔyopHMOJ ΔiscR	This work
ΔiscR	IP2666	ΔiscR	This work
ΔiscR plscR	IP2666	ΔiscR pACYC184::iscR*	This work
apo-iscR	IP2666	IscR-C92A/C98A/C104A	This work
apo-iscR plscR	IP2666	IscR-C92A/C98A/C104A pACYC184::iscR*	This work

doi:10.1371/journal.ppat.1004194.t003
Yersinia IscR

Yersinia pseudotuberculosis IP2666 via conjugation. The resulting Kan\(^R\), irgansan\(^R\) (*Yersinia* selective antibiotic) integrants were grown in the absence of antibiotics and plated on sucrose-containing media to select for clones that had lost sacB (and by inference, the linked plasmid DNA). Kan\(^R\), sucrose\(^R\), congo red-positive colonies were screened by PCR and subsequently sequenced to verify loss of the intended *iscR* coding region.

The *iscR* complement construct was generated by insertion of a fragment containing the *iscR* coding region as well as 530 bp of 5\' upstream sequence. This was PCR amplified using primer pair FiscRC and RiscRC, and cloned into the vector pACYC184 via BamHI/Sall restriction sites [73,74]. Recombinant plasmids were transformed into *E. coli* S17-1 λpir competent cells and later introduced into *Y. pseudotuberculosis* IP2666 ΔiscR via a modified transformation method [75]. Briefly, recipient *Yersinia* strains were grown overnight in LB containing 2% glucose at 26\(^\circ\)C. Cultures were centrifuged at 3,500 rpm for 3 min then washed with 750 μl of ice-cold sterile diH\(_2\)O and repeated for a total of three washes. Washed pellets were resuspended in 100 μl of sterile diH\(_2\)O, combined with 3 μl of plasmid and electroporated at 42. Cells were allowed to recover in 1 ml SOC media for 1 h at 26\(^\circ\)C followed by plating on LB containing carbenicillin to select for *Yersinia* bearing the plasmid of interest. Clones were confirmed by PCR analysis, using a combination of gene- and vector-specific primers, to construct both the ΔiscR complemented strain (ΔiscR pLsR) and the apo-iscR complemented strain (apo-iscR pLsR).

The nonmotile *Yop6p/flipDC::Tn1* mutant was generated by crossing in the *Y. pestis* flipDC gene into *Y. pseudotuberculosis*. *Y. pestis* flipD has a frameshift mutation, resulting in suppression of flagellin *flhD*.*Y. pestis* Y. *pestis* (*Y. pestis*) was mated with *Y. pestis* ΔiscR::Tn1 and *Y. pestis* ΔiscR complemented strain (*iscR*::Tn1) was grown on LB containing 2% glucose at 26\(^\circ\)C. Cultures were then used to infect the HEK293T cells containing the luciferase reporter plasmid at an MOI of 10. After 4 h incubation at 37\(^\circ\)C, 100 μl of 1:1 NeoLite:PBS solution was added to each well of the 96-well clear-bottom white plate (Corning), and luminescence was measured using a Victor\(^3\) plate reader (PerkinElmer). Data from three separate wells were averaged for each independent experiment.

Type III secretion assay

Visualization of T3SS cargo secreted in broth culture was performed as previously described [46]. Briefly, *Y. pseudotuberculosis* in M9 low calcium media (M9 plus 20 mM sodium oxalate and 20 mM MgCl\(_2\)) was grown for 1.5 h at 26\(^\circ\)C followed by growth at 37\(^\circ\)C for 2 h. Cultures were normalized by OD\(_{600}\) and pelleted at 13,200 rpm for 10 min at room temperature. Supernatants were removed and proteins precipitated by addition of trichloroacetic acid (TCA) at a final concentration of 10%. Samples were incubated on ice for 20 min and pelleted at 15,200 rpm for 15 min at 4\(^\circ\)C. Resulting pellets were washed twice with ice-cold 100% EtOH and subsequently resuspended in final sample buffer (FSB) containing 20% dithiothreitol (DTT). Samples were boiled for 5 min prior to running on a 12.5% SDS PAGE gel.

Ethidium bromide entry assay

Evaluation of pore formation was performed via the ethidium bromide (EtBr) entry assay as previously described [46]. Briefly, 2×10\(^4\) immortalized C57Bl/6 BMDMs were plated in a 96 well clear bottom black plate (Corning) in 100 μl DMEM +10% FBS. Infection was performed in triplicate at an MOI of 25. Plates were centrifuged at 750 xg at 4 °C for 3 min to facilitate contact. Infections were carried out at 37 °C with 5% CO\(_2\) for 2 h, at which point media was aspirated and replaced with 30 μl of PBS containing 25 μg ml\(^{-1}\) ethidium bromide (EtBr) and 12.3 μg ml\(^{-1}\) Hoechst dye. The cell monolayer was visualized using an ImageXpressMICRO automated microscope and MetaXpress analysis software (Molecular Devices). The percent of EtBr-positive cells was calculated by dividing the number of EtBr-stained cells by the number of Hoechst-stained cells. Data from three separate wells was averaged for each independent experiment.

Growth curves

Y. pseudotuberculosis strains were cultured overnight in 2xYT or M9 at 26 °C and sub-cultured to an OD\(_{600}\) of 0.2 in 25 μl of either 2xYT or M9. Cultures were incubated at either 26°C or 37°C with shaking at 250 rpm and optical density measured at 600 nm every hour for 9 h.

Mouse infections

All animal use procedures were in strict accordance with the NIH Guide for the Care and Use of Laboratory Animals and were approved by the UC Santa Cruz Institutional Animal Care and Use Committee. Eleven to twelve-week-old 129S6/SvEvTac...
mice from our breeding facilities were used for oral infections as previously described [79]. Briefly, mice were orogastrically inoculated with 2 × 10^6 CFU in a 200 μl volume using a feeding needle. Mice were given food and water ad libitum and were euthanized at 5 days post-inoculation. Peyer’s patches, mesenteric lymph nodes, spleens, and livers were isolated and homogenized for 30 s in PBS followed by serial dilution and plating on LB supplemented with 1 μg mL⁻¹ iganas for CFU determination.

RNAseq analysis

RNA was isolated from the IP2666 wild type and isogenic ΔiscR and apo-IscR strains grown for 3 h at 37°C in M9, using the RNaseasy Mini Kit (Qiagen) as per the manufacturer’s protocol. We chose M9 media for our RNAseq analysis because this condition enables expression of T3SS genes and secretion of T3SS cargo at 37°C [68]. Contaminating DNA was removed from the RNA samples using a DNA-free kit (Life Sciences). Samples were subjected to removal of contaminating rRNA via the Ribo-Zero Magnetic Kit for Gram-negative bacteria (Epicentre). The cDNA library was created using the NEBNext Ultra Directional RNA Library Prep Kit for Illumina (NEB). These studies were performed with three biological replicates per condition. Six indexed samples as described previously [82] were sequenced per single lane using the HiSeq2500 Illumina sequencing platform for 30 bp single reads (UC Davis Genome Center) and subsequently analyzed and visualized via the CLC Genomics Workbench version 5.5.1 (CLC bio). Samples were normalized for both sequence depth and gene size by determining RPKM (Reads Per Kilo base per Million reads) normalized for both sequence depth and gene size by
described previously [82]. Results were analyzed using the Bio-
systems) was used for qPCR reactions according to the manufactur-

ting a fold change with an absolute value of 2 or greater. Statistical significance was determined by baySeq test with a
g was used to make cDNA as previously described [81]. SYBR Green PCR master mix (Applied Biosys-
ted for qPCR reactions according to the manufacturer’s instructions and a 60°C annealing temperature. Primers used are listed in Table S4. Control primers were for the 16S rRNA as
correct FDR post hoc test where p

Real-time PCR

Total RNA generated from our RNAseq analysis at a concentration of 2 μg was used to make cDNA as previously described [81]. SYBR Green PCR master mix (Applied Biosys-
ted for qPCR reactions according to the manufacturer’s instructions and a 60°C annealing temperature. Primers used are listed in Table S4. Control primers were for the 16S rRNA as
correct FDR post hoc test where p

Virulence plasmid map generation

Average RPKM values generated from RNAseq analysis for the wild type, ΔiscR and apo-IscR mutants were converted to log-ratios \(\log_{2}(\text{RPKM}_{\text{mutant}}/\text{RPKM}_{\text{wt}}) \) for each gene encoded on the virulence plasmid, pYV. These values were converted to a Circos heatmap [83] and plotted against the respective pYV base coordinate positions from Y. pseudotuberculosis IP32953.

Motif identification and search

Position specific scoring matrix (PSSM) was generated by the alignment of the known E. coli IscR type 2 motifs (Table S4) (Maverix Biomics, Inc) [31]. PSSM of type 2 was used to scan against the 150-nt upstream of 99 genes encoded on the Y. pseudotuberculosis pYV plasmid and obtained a ranked list of putative type 2 motifs.

DNA binding fluorescence anisotropy assays

Fluorescence anisotropy was measured similar to Nesbit et al., [33]. E. coli apo-IscR lacking the [2Fe-2S] cluster (IscR

correct FDR post hoc test where p

Measurement of the membrane potential

The electrical potential was measured similar to the JC-1 red/
green dye assay previously described for E. coli [84]. JC-1 is a membrane-permeable dye that emits green fluorescence (~530 nm) upon excitation when the dye is in the monomeric form. Due to the membrane potential of the bacterial cell, JC-1 dye will form J aggregates which emit red fluorescence (~590 nm). If the membrane potential decreases, there will be a decrease in J aggregate formation and subsequently a decrease in red fluorescence. As such, membrane potential can be displayed as a ratio of red/green fluorescence. Briefly, Y. pseudotuberculosis isogenic ΔiscR, ΔiscR complemented (ΔiscR pIscR), WT, ΔisR, or apo-IscR strains onto motility agar plates (1% tryptone, 0.25% agar) from overnight cultures standardized to an OD_600 of 2.5. Plates were incubated at room temperature for 1 day, at which point the diameters of the colonies were determined and used to calculate percent motility relative to WT, which was set at 100%.
microscope (Zeiss) fitted with a Plan-Apochromat 63x/1.4 Oil DIC objective and analyzed using the LSM 510 software (Zeiss). Quantification of image intensities was performed using ImageJ [85].

Supporting Information

Figure S1 IscR does not affect \(Y. \) pseudotuberculosis growth under non-T3SS-inducing conditions, but partially alleviates T3SS-associated growth restriction. The \(\mu \) pseudotuberculosis WT, \(\Delta \)iscR, apo-IscR and, where applicable, \(\Delta \)iscR and apo-IscR complemented strains \(\Delta \)iscR plScR and apo-IscR plScR, respectively) and \(Y. \) pseudotuberculosis lacking the virulence plasmid pPYV (pPYV\(^{+-}\)), were grown (A) in M9 at 37°C, (B) in 2xYT at 37°C, (C) in M9 at 26°C or (D) in 2xYT at 37°C. Optical density of the cultures were monitored at 600 nm every hour for 9 h. The averages ± SEM from three independent experiments are shown. * \(p < 0.05 \), ** \(p < 0.01 \), *** \(p < 0.001 \) as determined by a Student \(t \) test relative to the type wild.

Figure S2 Deletion of IscR leads to increased transcription of Fe-S cluster biogenesis genes. A) RPKM expression levels generated from RNAseq analysis of \(Y. \) pseudotuberculosis \(\Delta \)iscR and apo-IscR mutants relative to WT for 12 genes involved in Fe-S cluster biogenesis are displayed. \(\Delta \)iscR vs WT, B) Displayed is the nucleotide sequence of a region 130 bp upstream of the putative IscR start codon in \(Y. \) pseudotuberculosis IP 92953 including the putative transcriptional start site (arrow; UCSC Microbial Genome Browser) and putative sigma70 promoter elements (−10) and (−35), as well as the two putative IscR type 1 binding sites (brackets).

Figure S3 Mutation of iscR does not affect pPYV virulence plasmid yield. Relative amounts of the virulence plasmid, pPYV, were analyzed from standardized cultures of the wild type (WT), \(\Delta \)iscR mutant \(\Delta \)iscR and pPYV\(^{-}\) strains grown in M9 at 37°C for 3 hours through midiprep analysis (Promega) according to the manufacturer’s protocol. Plasmid yield was quantified via spectrophotometric analysis (Nanodrop). The data is displayed as \(\mu \)g of plasmid isolated per mL of culture ± SEM and is an average of 3 independent experiments. * \(p \leq 0.05 \), ** \(p < 0.01 \), as determined by Student \(t \) test.

Figure S4 Expression of the suf operon is increased in the apo-locked IscR mutant strain. RNAseq analysis was performed on WT, \(\Delta \)iscR and apo-IscR \(Y. \) pseudotuberculosis strains after growth in M9 at 37°C for 3 h (T3SS-inducing conditions). The data is presented as mean RPKM ± SEM and is an average of 3 independent experiments. *** \(p \leq 0.001 \), as determined by Bayseq followed by FDR post hoc test.

Figure S5 IscR is not required for survival post-exposure to hydrogen peroxide stress. Hydrogen peroxide assays were performed similar to Schiano et al. [87]. \(Y. \) pseudotuberculosis wild type (WT), \(\Delta \)iscR, and \(\Delta \)iscR complemented \(\Delta \)iscR plScR strains were grown overnight in 2xYT at 26°C. Cultures were standardized to an OD\(_{600}\) of 0.1 and grown at 26°C with shaking to mid-log phase, at which point they were diluted 1:10 into fresh 2xYT. Samples were supplemented with 50 \(\mu \)L of either sterile water (negative control) or hydrogen peroxide to a final concentration of 50 mM. Samples were incubated with shaking at 26°C and CFU determined via serial dilution and plating 10 min after the start of treatment. The data is displayed as percent survival (CFU \(H_2O_2 \)/CFU \(H_2O \))*100 ± SEM and is an average of 3 independent experiments.

Table S1 RNAseq RPKM values for wild type \(Y. \) pseudotuberculosis and the \(\Delta \)iscR mutant.

Table S2 Total pPYV-encoded genes differentially regulated by IscR, identified by RNAseq analysis.

Table S3 \(Y. \) pseudotuberculosis primers used in this study.

Table S4 Known type 2 DNA-binding sequences used for in silico search.

Acknowledgments

We thank Karen Ottmann for critical review of the manuscript and David States for help with the Author Summary. We thank Eric Rubin for psB319, Tessa Berghsaken and Brad Cookson for the psB890/8DE\(^{exo}\) plasmid, Walter Bray and the UCSC Chemical Screening Center for technical support with the fluorescence anisotropy assay, Greg Grimmins, Kimberly Walker, and Matthew Lawrenz for technical advice on transposon mutagenesis and plasmid rescue, Skip Price for the modified Termin transformation protocol, Benjamin Abrams and the UCSC Life Sciences Microscopy Center for technical support with confocal microscopy, and Finnst Yildiz for access to the CLC Genomics workbench application.

Author Contributions

Conceived and designed the experiments: HKM VA. Performed the experiments: HKM LS HAR JMR. Analyzed the data: HKM VA HK LS DDB PPC. Contributed reagents/materials/analysis tools: HKM LS JMR PPC TML EM PJK. Wrote the paper: HKM VA.

References

1. Trudolfinates P, Cornelis GR (2005) Type III secretion: more systems than you think. Physiology (Bethesda) 20: 326–339.
2. Coburn B, Seikio I, Finlay BB (2007) Type III secretion systems and disease.
3. Zhang Y, Mena P, Romanov G, Lin JS, Smiley ST, et al. (2012) A protective epitope in type III effector YopE is a major CD8 T cell antigen during primary infection with \(Y. \) enterocolitica. Cell Microbiol 15: 1622–1631.
4. Gemski P, Lazere JR, Casey T, Wohlhieter JA (1980) Presence of a virulence-associated plasmid in \(Y. \) pestis. Infect Immun 28: 1044–1047.
5. Ruckdeschel K, Roggenkamp A, Lafont V, Mageot P, Hesemann J, et al. (1997) Interaction of \(Y. \) enterolactis with macrophages leads to macrophage cell death through apoptosis. Infect Immun 65: 4813–4821.
6. Laroche Y, van Bouchaute M, Cornelis G (1984) A restriction map of virulence plasmid pVYE439-80 from a serogroup 9
7. Yip CK, Strynadka NC (2006) New structural insights into the bacterial type III secretion system. Trends Biochem Sci 31: 223–230.
8. Woodruff RS, Merritt PM, Markenton MM (2013) Regulation of the \(Y. \) enterolactis type III secretion system: traffic control. Front Cell Infect Microbiol 3: 4.
28. Wu Y, Outten FW (2009) IscR controls iron-dependent biofilm formation in P. aeruginosa. Mol Microbiol 69: 1157–1166.

23. Hoe NP, Goguen JD (1993) Temperature sensing in E. coli: Role of a putative transcriptional regulator. Proc Natl Acad Sci U S A 90: 11492–11496.

20. Cornelis G, Sluiters C, de Rouvroit CL, Michiels T (1989) Homology between the IscR cysteine regulator of Yersinia enterocolitica and AracG, the Escherichia coli arabinose operon regulator. J Bacteriol 171: 254–262.

27. Fleischhacker AS, Stubna A, Hsueh KL, Guo Y, Teter SJ, et al. (2012) Identification of MrtAB, an ABC transporter specifically required for intracellular growth and evasion of the endocytic pathway by the Yops of Yersinia pseudotuberculosis. J Bacteriol 194: 5837–5843.

20. Cornelis G, Vanoosthemge JC, Lambert de Rouvroit C, Shaters C, Cornelis GR (1992) Role of the transcriptional activator, VirF, and temperature in the expression of the pYV plasmid genes of Yersinia enterocolitica. Mol Microbiol 6: 395–409.

14. Mueller CA, Broz P, Cornelis GR (2008) The type III secretion system tip multipurpose structures. Science 277: 653–659.

13. Blaylock B, Riordan KE, Missiakas DM, Schneewind O (2006) Characterization of the V antigen lcrGVH-yopBD operon of Yersinia enterocolitica. J Bacteriol 188: 3525–3534.

12. Bliska JB, Guan KL, Dixon JE, Falkow S (1991) Tyrosine phosphate hydrolysis of the Yops of Yersinia enterocolitica. J Bacteriol 174: 241–249.

11. Jones-Carson J, Laughlin J, Hamad MA, Stewart AL, Voskuil MI, et al. (2008) Characterization of the [2Fe–2S] cluster of IscR. Biochemistry 51: 4453–4462.

10. Kim SH, Lee BY, Lau GW, Cho YH (2009) IscR modulates catalase A (KatA) activity, peroxide resistance and full virulence of Shigella dysenteriae. Infect Immun 77: 3479–3487.

9. Bliska JB, Guan KL, Dixon JE, Falkow S (1991) Tyrosine phosphate hydrolysis of the Yops of Yersinia enterocolitica. J Bacteriol 174: 241–249.

8. Krevvai P, Cornelis GR (2004) Identification of DNA sequences recognized by VirF, the transcriptional activator of the Yops of Yersinia enterocolitica. J Bacteriol 176: 96–104.

7. Wesselingh LF, Van der Laan MG, Pedersen J, Andersson G, et al. (2004) mRNA microarray-mediated transcriptional profiling of the Yersinia enterocolitica type III secretion response to hydrogen peroxide. J Bacteriol 186: 4562–4570.

6. McLean CA, Widdowson EM (1938) The absorption and excretion of iron following oral and intravenous administration. J Physiol 94: 148–154.

5. Surette MG, Campbell DD, Bergman MA, Isberg RR (2005) Targeting bacterial virulence: inhibitors of type III secretion in Shigella. Curr Biol 15: R770–R776.

4. Skurnik M, Toivanen P (1992) LcrF is the temperature-regulated activator of the yop regulon. J Bacteriol 174: 241–245.

3. Warner ME, Goldstein N, Brzuska O, Hart F, et al. (2007) Fe-S clusters: nature’s modular, multipurpose structures. Science 277: 653–659.

2. Xiao Y, Shi Q, Li J, Zhang T, Zhang F, et al. (2008) Identification of MrtAB, an ABC transporter specifically required for intracellular growth and evasion of the endocytic pathway by the Yops of Yersinia pseudotuberculosis. J Bacteriol 190: 1320–1327.

1. Aisen P, Leibman A, Zweier J (1978) Stoichiometric and site characteristics of the binding of iron to human transferrin. J Biol Chem 253: 1930–1937.
75. Walker KA, Miller VL (2004) Regulation of the Ysa type III secretion system of Yersinia enterocolitica by YsaE/SycB and YsrS/YsrR. J Bacteriol 186: 4056–4066.
76. Bergbaken T, Cookson BT (2007) Macrophage activation redirects Yersinia-infected host cell death from apoptosis to caspase-1-dependent pyroptosis. PLoS Pathog 3: e161.
77. Chiang SL, Rubin EJ (2002) Construction of a mariner-based transposon for epitope-tagging and genomic targeting. Gene 296: 179–185.
78. Lawrenz MB, Miller VL (2007) Comparative analysis of the regulation of rovA from the pathogenic yersiniae. J Bacteriol 189: 5963–5975.
79. Auerbuch V, Isberg RR (2007) Growth of Yersinia pseudotuberculosis in mice occurs independently of Toll-like receptor 2 expression and induction of interleukin-10. Infect Immun 75: 3561–3570.
80. Yao JQ, Yu F (2011) DEB: A web interface for RNA-seq digital gene expression analysis. Bioinformation 7: 44–45.
81. Auerbuch V, Brockstedt DG, Meyer-Morse N, O’Riordan M, Portnoy DA (2004) Mice lacking the type I interferon receptor are resistant to Listeria monocytogenes. J Exp Med 200: 527–533.
82. Arafah S, Rosso ML, Rehaume L, Hancock RE, Simonet M, et al. (2009) An iron-regulated LysR-type element mediates antimicrobial peptide resistance and virulence in Yersinia pseudotuberculosis. Microbiology 155: 2168–2181.
83. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, et al. (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19: 1639–1645.
84. Engl C, Beck AT, Bekker M, de Mattos JT, Jovanovic G, et al. (2011) Dissipation of proton motive force is not sufficient to induce the phage shock protein response in Escherichia coli. Curr Microbiol 62: 1374–1385.
85. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9: 671–675.
86. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, et al. (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947–2948.
87. Schiano CA, Bellowes LE, Latham WW (2010) The small RNA chaperone Hfq is required for the virulence of Yersinia pseudotuberculosis. Infect Immun 78: 2034–2044.