Hierarchical agglomerative clustering (HAC) is a popular algorithm for clustering data, but despite its importance, no dynamic algorithms for HAC with good theoretical guarantees exist. In this paper, we study dynamic HAC on edge-weighted graphs. As single-linkage HAC reduces to computing a minimum spanning forest (MSF), our first result is a parallel batch-dynamic algorithm for maintaining MSFs. On a batch of k edge insertions or deletions, our batch-dynamic MSF algorithm runs in $O(k \log^b n)$ expected amortized work and $O(\log^c n)$ span with high probability. It is the first fully dynamic MSF algorithm handling batches of edge updates with polylogarithmic work per update and polylogarithmic span. Using our MSF algorithm, we obtain a parallel batch-dynamic algorithm that can answer queries about single-linkage graph HAC clusters.

Our second result is that dynamic graph HAC is significantly harder for other common linkage functions. For example, assuming the strong exponential time hypothesis, dynamic graph HAC requires $\Omega(n^{1-o(1)})$ work per update or query on a graph with n vertices for complete linkage, weighted average linkage, and average linkage. For complete linkage and weighted average linkage, the bound still holds even for incremental or decremental algorithms and even if we allow poly(n)-approximation. For average linkage, the bound weakens to $\Omega(n^{1/2-o(1)})$ for incremental and decremental algorithms, and the bounds still hold when allowing $n^{o(1)}$-approximation.

1 Introduction

Clustering is a fundamental technique in data mining and unsupervised learning that organizes data into meaningful groups. In this paper, we study hierarchical agglomerative clustering (HAC) algorithms. HAC constructs a hierarchy of clusters over a set of points by starting with each point in a separate cluster and merging the two most similar clusters until all points are merged. The similarity between clusters is specified by a linkage function. Popular linkage functions include single linkage, complete linkage, average linkage, and weighted average linkage, with weighted average linkage perhaps being the most widely used. Several popular clustering algorithms are based on single linkage as well [8, 30]. HAC on n points can be solved in cubic work in general, and several common linkage functions require only quadratic work [9]. Quadratic work is optimal in the sense that if the input is an $n \times n$ similarity matrix for the n points, then all matrix entries need to be read to compute HAC.

Because the similarity matrix has lots of negligible entries in many scenarios, Dhulipala et al. [20] recently studied graph-based HAC (graph HAC) as opposed to the traditional point-based HAC. In graph HAC, not all similarities between points need to be specified. Instead, the input is a graph with edges weighted by the similarity between their endpoints. Dhulipala et al. develop exact and approximate algorithms for graph HAC with subquadratic work on sparse graphs and empirically showed that the resulting clusters are of similar quality to those of point-based HAC.

Modern data sets are large and are often rapidly changing, and so a natural question is whether we can compute HAC over a dynamic data set. Even with subquadratic work, it is inefficient to statically re-compute HAC on every update of a large, dynamically changing graph. Little research has been done on dynamic HAC. Graph HAC seems more likely to yield fast dynamic algorithms than point-based HAC—a graph update can be as granular as updating a similarity between one pair of vertices, whereas updating points in point-based HAC incurs $\Omega(n)$ changes in the similarity matrix. As such, this paper aims to study whether graph HAC allows efficient dynamic algorithms under edge insertions and deletions.

The canonical output for HAC is a dendrogram showing the hierarchical clustering, but there are graphs for which one edge update can completely change the structure of the dendrogram. It therefore seems that a dynamic HAC algorithm that explicitly maintains a dendrogram will have poor worst-case update time. We hence examine dynamic graph HAC algorithms with more restricted query outputs, e.g., queries of the form “are query vertices s and t in the same cluster if we agglomeratively cluster until all similarities are below query threshold 0?”

With this form of query, single-linkage graph HAC indeed admits efficient dynamic algorithms. As single-linkage HAC reduces to computing a minimum spanning forest (MSF) [26], we can solve dynamic single-linkage HAC by first applying a dynamic MSF algorithm. The state-of-the-art dynamic sequential MSF algorithm achieves $O(\log^4 n/\log \log n)$ amortized work per edge update to maintain an MSF [34]. Then, storing the MSF in a dynamic trees data structure [50] allows us to answer the queries in logarithmic work. To support a high velocity of updates, however, we may want a batch-dynamic algorithm that can batch together updates and exploit parallelism across a batch. Though there are efficient parallel batch-dynamic algorithms for connectivity and incremental MSF [2, 7], no such algorithm has been developed for general dynamic MSF.

This discussion raises two questions: (1) Can we develop a parallel batch-dynamic MSF algorithm, hence giving an parallel batch-dynamic algorithm for single-linkage graph HAC? (2) Do other linkage functions also admit dynamic algorithms with polylogarithmic work per update?

*This is the full version of the paper appearing in the ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), 2022.
expected amortized work per edge where Δ is the average batch size across deletion operations (Section 4).

- We use batch-decremental MSF to solve parallel batch-dynamic MSF (and hence also parallel batch-dynamic single-linkage graph HAC) in $O(k \log^6 n)$ expected amortized work and $O(\log^3 n \log k)$ span w.h.p. on a batch of k edge insertions or edge deletions (Section 5). These are the first decremental and fully dynamic MSF algorithms achieving polylogarithmic work per update and polylogarithmic span per batch.

- We prove polynomial conditional work lower bounds for dynamic and partially dynamic graph HAC with complete linkage, weighted average linkage, and average linkage (Section 6). For example, assuming the SETH, dynamic HAC takes $\Omega(n^{1-o(1)})$ per update or query for all of these linkage functions, even with $n^{o(1)}$-approximation.

2 Related work

Graph HAC. We use the definition of graph HAC by Dhulipala et al., who give algorithms solving static graph HAC on m edges and n vertices in $O(m \log n)$ expected work for weighted-average-linkage HAC, $O(n \sqrt{m})$ work for average-linkage HAC, and $O(m \log^2 n)$ work for approximate average-linkage HAC [20]. Older papers have also studied graph HAC but with weaker theoretical guarantees [22, 37]. Another line of work has developed the theoretical foundations of HAC by studying the objective function that it optimizes [16, 18, 44].

Dynamic HAC. There is no prior work on dynamic HAC with good approximation or running time guarantees. Menon et al. give an online approximate algorithm for point-based dynamic HAC [41]. Their algorithm does not have rigorous bounds on approximation quality or worst-case running time. Other online clustering algorithms like Perch [38] and Grinch [43] neither compute the same output as HAC nor approximate HAC in a provably efficient way.

HAC lower bounds. Point-based HAC in Euclidean space is at least as hard as finding the closest pair of points. Karthik and Manurangsi show that, assuming the SETH, closest-pair in dimension $2^{\omega(\log(n))}$ requires $\Omega(n^{2-o(1)})$ work, and $(1+o(1))$-approximate closest-pair in dimension $\omega(\log(n))$ requires $\Omega(n^{1.5-o(1)})$ work. These lower bounds do not apply to graph HAC.

Dynamic MSF. In this paper, we focus on edge insertions and deletions. For sequential dynamic MSF, Holm et al. give an algorithm with $O(n \log^2 n)$ amortized work per edge update, which was later improved to $O(n \log^2 n / \log \log n)$ amortized work per update [33, 34]. The best worst-case bound is $O(n^{o(1)})$ work per update [15, 45].

For parallel batched edge updates, Anderson et al. give an incremental MSF algorithm that handles k edge insertions in $O(k \log(1 + n/k))$ expected work and $O(\log^2 n)$ span w.h.p. [7]. Other existing algorithms are deterministic but have much higher work bounds. Pawagi and Kaiser give an algorithm handling insertions in $O(n \log k)$ work and $O(\log^2 n \log k)$ span and deletions in $O(n^2 \log^2 k / \log n)$ work and $O(\log n + \log^2 k)$ span [47]. Shen and Liang give an algorithm handling insertions and deletions in $O(n^2)$ work and $O(\log n \log k)$ span [49]. Ferragina and Luccio give an algorithm handling insertions in $O(n \log \log n \log \log(m/n))$ work and $O(\log n)$ span and $k = O(n)$ deletions in $O(n \log \log n \log \log(m/n))$ work and $O(\log n \log(m/n))$ span [21].
For parallel single edge updates, Kopelowitz et al. give an algorithm running in $O(\sqrt{n}\log n)$ work and $O(\log n)$ span per update [39]. There are also many algorithms for the harder problem of dynamic vertex updates, all of which cost $\Omega(n)$ work per update. We refer the reader to Das and Ferragina’s survey for an overview of algorithms for vertex updates as well as for edge updates [17].

3 Preliminaries

Graph HAC. We denote a graph by $G = (V, E)$. Graphs are undirected and simple unless noted otherwise. For weighted graphs, we denote a weight or similarity of an edge $\{x, y\}$ either by writing $w(x, y)$ where $w : E \to \mathbb{R}$ is a weight function or by placing weight $w \in \mathbb{R}$ in a tuple $((u, v), w)$. We often denote $n = |V|$ and $m = |E|$.

In our asymptotic bounds, we assume $m = \Omega(n)$. We denote the neighbors of $v \in V$ as $N(v)$. We write $\text{Cut}(X, Y)$ to denote the set of edges between two sets of vertices X and Y.

In graph HAC, we are given a weighted undirected graph and a linkage function specifying the similarities between clusters. Each vertex starts in its own cluster, and we compute a hierarchical clustering by repeatedly merging the two most similar clusters, i.e., the clusters connected by the highest-weight edge.

In single linkage, the similarity $\mathcal{W}(X, Y)$ between two clusters X and Y is the maximum similarity between two vertices in X and Y, i.e., $\max_{(x, y) \in \text{Cut}(X, Y)} w(x, y)$, whereas complete linkage takes the minimum similarity. In average linkage (which still applies to weighted graphs), the similarity is $\sum_{(x, y) \in \text{Cut}(X, Y)} w(x, y)/(|X||Y|)$. In weighted average linkage, if a cluster Z is formed by merging clusters X and Y, then the similarity between Z and an adjacent cluster U is $\left(\mathcal{W}(X, Y) + \mathcal{W}(Y, U)/2\right)$ if edges (X, U) and (Y, U) both exist and is otherwise the weight of the existing edge.

Parallel model. We use the work-span model with arbitrary forking, a closely related model to the classic CREW PRAM model [10, 36]. Running time bounds are in terms of work and span (depth).

The work of an algorithm is the total number of instructions, and the span is the length of the longest chain of sequentially dependent instructions. We assume that concurrent reads and writes are supported in $O(1)$ work and span. Procedures can fork other procedure calls to run in parallel and can wait for forked calls to finish.

Parallel primitives. We use several existing parallel primitives in our algorithms. Unordered sets can be stored in parallel dictionaries using linear space and handling batch insertions or deletions of k elements in $O(k)$ work and $O(\log^* k)$ span w.h.p. [25]. Lookup costs $O(1)$ work w.h.p. Ordered sets can be stored in search trees called P-trees [12, 51]. Finding an element by rank or splitting a P-tree of n elements takes $O(\log n)$ work [52]. Inserting or deleting k elements takes $O(k \log(1+n/k))$ work and $O(\log n \log k)$ span [51]. A semisort, taking an array of n keyed elements and reordering them so that elements with equal keys are contiguous, can be computed in $O(n)$ expected work and $O(\log n)$ span w.h.p. [29]. A minimum spanning forest (MSF) is a spanning forest of minimum weight. An MSF on n vertices and m edges can be statically computed in $O(n)$ expected work and $O(\log n)$ span w.h.p. [48].

4 Parallel decremental MSF

This section will show how to perform parallel batch-decremental MSF (supporting batches of edge deletions), and Section 5 will show how to perform parallel batch-dynamic MSF. We accomplish this by parallelizing the sequential dynamic MSF algorithm by Holm, De Lichtenberg, and Thorup (HDT) that runs in $O(\log^4 n)$ amortized work per update [33]. Their MSF algorithm has three steps: first, they give an algorithm for dynamic connectivity; second, they modify that algorithm into an algorithm for decremental MSF (parallelized in this section); and third, they use decremental MSF to create a fully dynamic MSF algorithm (parallelized in Section 5).

Without loss of generality, when discussing MSF, we assume edge weights are unique by breaking ties using lexicographic ordering over edges’ endpoints.

The relevance of dynamic MSF to dynamic graph HAC is that single-linkage graph HAC can be solved with Kruskal’s algorithm for computing a MSF after negating all edge weights [26]. A complication is that although the canonical output for HAC is a dendrogram, explicitly representing the dendrogram is too expensive for dynamic HAC since an edge update can drastically change the dendrogram’s structure (see Appendix C.1 for examples). Instead, we implicitly represent the dendrogram by dynamically maintaining the MSF for the clustering. We can then extract information about the single-linkage clustering from the MSF. For instance, suppose that we want to answer the following “group-by-cluster” query, a generalization of the type of query discussed in Section 1: given a query set of k vertices $K \subseteq V$, we want to partition K by the cluster that each vertex would be in if agglomerative clustering were run until all similarities fell below a query similarity threshold θ. We can answer such queries in $O(k \log(1+n/k))$ expected work and $O(\log n)$ span w.h.p. by storing the MSF in a rake-compress (RC) tree, computing a compressed path tree P on the MSF relative to K (Section 5.1 describes RC trees and compressed path trees), removing all edges with similarities below θ from P, and computing connected components on P.

4.1 Background

We first discuss existing algorithms and data structures that our work builds upon.

Euler tour trees. Euler tour trees (ETTs) are a data structure for dynamic forests supporting edge insertion, edge deletion, and connectivity queries in $O(\log n)$ deterministic work [32, 42]. Taeng et al. introduce a parallel batch-dynamic ETT that internally represents each tree in the forest as a circular skip list containing the tree’s vertices and edges [53]. The ETT can be augmented by a combining function $f : D \times D \to D$, with D being an arbitrary domain. After assigning values from D to vertices and edges, we can maintain the sum of f over each tree (i.e., each connected component) in the forest by having each skip list node store the sum of f over a contiguous subsequence of the sequence represented by the node’s skip list. Given an augmentation function f that takes $O(W)$ work and $O(S)$ span to compute, a batch of k insertions, k deletions, or k updates to assigned values for the augmentation takes $O(Wk \log(1+n/k))$ expected work and $O(3(\log n) k)$ span w.h.p. on an n-vertex forest. The randomness in the bounds holds against oblivious adversaries who cannot see heights of skip list elements.

Sequential dynamic connectivity. The HDT connectivity algorithm maintains a graph G of n vertices and supports edge insertion, edge deletion, and connectivity queries. The algorithm maintains $\log n$ levels. Each edge is assigned a level, and the algorithm maintains subgraphs $G_1 \subseteq G_2 \subseteq \ldots \subseteq G_{\log n} = G$, where G_i contains all
edges of level at least \(i \) and has the invariant that each connected component has size at most \(2^i \). The algorithm also maintains spanning forests \(F_1 \subseteq F_2 \subseteq \cdots \subseteq F_{\log n} \), where \(F_i \) is a spanning forest of \(G_i \). Connectivity queries are answered in \(O(\log n) \) work by storing \(F_{\log n} \) in an ETT and querying the ETT. An edge insertion is handled by assigning the edge to level \(\log n \) and inserting it into \(F_{\log n} \) if the edge’s endpoints are not connected by a path.

A deletion of an edge \(e \) of level \(\ell \) is handled by deleting it from \(G_\ell \) for all \(i \geq \ell \). If \(e \) is not in \(F_{\log n} \), then we are done. Otherwise, the deletion of \(e \) splits a connected component in \(F_{\log n} \) in two, and we must search for a replacement edge reconnecting the two components. We delete \(e \) from \(F_i \) for \(i \geq \ell \) and conduct our search starting on level \(\ell \). We look at the smaller of the two connected components formed by \(F_i \) by the deletion of \(e \). This connected component has size at most \(2^{\ell-1} \), and so pushing this entire component to level \(i - 1 \) would not violate the size invariant. We push all level-\(i \) tree edges in the component to level \(i - 1 \). Then, we look at non-tree edges incident to the component one-by-one. If the non-tree edge reconnects the two components, then we have found a replacement edge—we change that edge into a tree edge, and we are done. Otherwise, we amortize the cost of looking at this non-replacement edge by pushing it to level \(i - 1 \). We repeatedly run this search on increasing values of \(i \) until a replacement edge is found.

If each \(F_i \) is stored in an appropriately augmented ETT, then insertions and deletions cost \(O(\log^2 n) \) amortized work since each inserted edge can be pushed down at most \(\log n \) levels and it costs \(O(\log n) \) work to find and push an edge one level using the ETTs.

Parallel batch-dynamic connectivity. Acar et al. developed a parallel batch-dynamic version of the HDT algorithm [2]. We describe the “non-interleaved” version of their algorithm because we will modify it into a decremental MSF algorithm in Section 4.3. (The interleaved version has a better span bound, but it seems harder to adapt for decremental MSF.)

The main difference from the original HDT algorithm to discuss is how the batch-parallel algorithm finds replacement edges after deleting a batch of edges. The replacement search begins on the minimum level among the deleted edges. When searching on a level \(i \), the algorithm proceeds in \(O(\log n) \) rounds. For every component of size at most \(2^{i-1} \), we search for a replacement edge out of that component. To achieve low span, each component performs a doubling search, looking at \(2^i \) incident level-\(i \) non-tree edges in parallel for increasing \(i \) until finding a replacement edge. We push non-replacement edges to the next level to amortize the cost of examining them. We then compute a spanning tree over the replacement edges, keeping only the replacement edges that are in the spanning tree. We proceed to the next round on each “active” component, i.e., each component that still has incident edges to search and that still has size at most \(2^{i-1} \). After all the rounds, we repeat at higher levels.

By storing each spanning forest in an ETT with appropriate augmentations, the algorithm can process a batch of \(k \) edge updates in \(O(k \log^2 n) \) expected amortized work and \(O(\log^4 n) \) span w.h.p. We note that the span bound can be tightened to \(O(\log^3 n \log k) \).

The bound has a \(\log n \) term from the \(O(\log n) \) rounds per level, but since \(k \) deletions creates \(O(k) \) active components and the active component count decreases geometrically each round, there are only \(O(\log k) \) rounds per level.

Sequential decremental MSF. The HDT decremental MSF algorithm is initialized with a graph \(G \) of \(n \) vertices and maintains the MSF of \(G \) while supporting edge deletions. There are only two changes to the algorithm compared to the sequential HDT connectivity algorithm: we initialize \(F_{\log n} \) to be the MSF over \(G \), and when we perform a replacement search out of a component, we find the lightest replacement edge by looking at incident non-tree edges in increasing weight. Deletions still cost \(O(\log^2 n) \) amortized work.

For correctness, the lightest replacement edge for a deleted edge must have the minimum level among all possible replacement edges. Holm et al. prove that the algorithm maintains a cycle invariant implying correctness: in every cycle of \(G \), the maximum-weight edge in the cycle is a non-tree edge and has maximum level in the cycle. This invariant holds so long as whenever we push an incident level-\(i \) non-tree edge \(e \) of a component to level \(i - 1 \), \(e \) is lighter than the lightest replacement edge out of the component and we have already pushed all lighter level-\(i \) edges incident to this component.

Relative quantile summaries. Consider a set \(S \) that is a subset of a totally ordered universe \(U \). For an element \(y \in U \), define the rank of \(y \) to be the number of elements in \(S \) no greater than \(y \):

\[
\text{rank}(y; S) = \left| \{ x \in S \mid x \leq y \} \right|.
\]

We omit the second argument of \(\text{rank}(\cdot; \cdot) \) when it is clear from context.

For \(\varepsilon \in (0,1) \) and a set \(S \), an \(\varepsilon \)-approximate relative quantile summary \(Q \) is a compressed form of the set that can compute queries of the following form: given a rank \(r \in \left[1, |S| \right] \) such that \(\lfloor r(1 - \varepsilon), r(1 + \varepsilon) \rfloor \) contains an integer, return an element \(y \) such that \(\text{rank}(y; S) \in \lfloor r(1 - \varepsilon), r(1 + \varepsilon) \rfloor \). For the remainder of this paper, we use the deterministic, mergeable relative quantile summaries described by Zhang and Wang [54]. Appendix A.1 re-derives the construction of the summaries since Zhang and Wang’s paper omits several proofs of correctness.

Additionally, we show in Appendix A.2 that we can parallelize operations on the quantile summaries, which may be of independent interest. The following lemmas give the relevant operations and bounds.

Lemma 4.1. Given a set \(S \), if we can look up elements of \(S \) by rank in \(O(W) \) work, we can construct an \(\varepsilon \)-approximate summary \(Q \) of size \(|Q| = O(\log(\varepsilon|S|)/\varepsilon) \) in \(O(W \log(\varepsilon|S|)/\varepsilon) \) work and \(O(W) \) span.

Lemma 4.2. Given an approximate summary \(Q \) on set \(S \), we can answer queries in \(O(\log(|Q|)) \) work and can obtain the minimum element of \(S \) in constant work.

Lemma 4.3. Given an integer \(b > 0 \) and two \(\varepsilon \)-approximate summaries \(Q_1 \) and \(Q_2 \) on non-overlapping sets \(S_1 \) and \(S_2 \), we can create an \((\varepsilon + 1/b) \)-approximate summary \(Q \) over \(S_1 \cup S_2 \) of size \(O(b \log(n/b)) \) in \(O(|Q_1| + |Q_2|) \) work and \(O(\log(|Q_1| + |Q_2|)) \) span.

We let \(\text{Combine}(Q_1, Q_2, b) \) denote the algorithm combining summaries \(Q_1 \) and \(Q_2 \) with parameter \(b \).

4.2 Finding light replacement edges

Like how the HDT decremental MSF algorithm comes from modifying the HDT dynamic connectivity algorithm, we will obtain a parallel batch-decremental MSF algorithm by modifying Acar et al.’s batch-dynamic connectivity algorithm to search for batches of light replacement edge candidates rather than arbitrary candidates.
The primary challenge is searching for the lightest non-tree edges incident on a component efficiently in parallel.

As in Acar et al’s connectivity algorithm, for each HDT level \(t \in [1, \log n] \), we store \(F_t \) in an augmented batch-dynamic ETT. Using quantile summaries, we add an additional augmentation, described in the proof of the following theorem, that allows fetching the lightest non-tree edges incident on a component at the cost of increasing the running time of edge insertions and deletions for the ETTs. Section 4.2.1 walks through an example of the additional augmentation.

Theorem 4.4. Let \(t \in [1, \log n] \), and for each vertex \(v \in V \), let \(N_{\alpha,t} \) represent the level-\(t \) non-tree edges incident to \(v \). Using \(O(n \log^2 n) \) space w.h.p., we can support the following operations over \(F_t \), with all work bounds being in expectation and all span bounds being w.h.p.:

- inserting or deleting \(k \) edges to \(F_t \) in \(O(k \log^2 n \log(1+n/k)) \) work and \(O(\log n \log \log n) \) span,
- inserting or deleting \(k \) edges to \(\{N_{\alpha,t}\}_{v \in V} \) in \(O(k \log^2 n \log(1+n/k)) \) work and \(O(\log n \log(\log n + \log k)) \) span,
- obtaining the \(k(1 \pm \epsilon) \) lightest edges in \(\bigcup_{v \in C} N_{\alpha,t} \) of a connected component \(C \) of \(F_t \) in \(O(\log n) \) work and \(O(\log n) \) span.

Proof. We store \(F_t \) in batch-dynamic ETTs. We will augment each ETT skip list node with a quantile summary \(Q \) and an integer \(t \geq 0 \), where \(Q \) summarizes the weights of non-tree edges incident on the vertices in the node’s subsequence and \(t \) indicates the error \(Q \) has accumulated from \(\text{COMBINE}(\cdot, \cdot, \cdot) \) operations.

The augmented value for a vertex \(v \) is given by constructing a 1/4-approximate quantile summary \(Q \) over \(N_{\alpha,t} \) and setting \(t = 0 \). Each vertex \(v \) stores \(N_{\alpha,t} \) in an ordered set. A weight-w edge in \(N_{\alpha,t} \) to a neighbor \(u \) is stored as a tuple \((w, u)\), and ordering is lexicographic. By Lemma 4.1, using a P-tree to represent the ordered set, we can construct \(Q \) in \(O(\log^2 n) \) work and \(O(\log n) \) span.

Define \(b(t) = 8(\log n + t^2/\log n) \) and define the ETT augmentation function \(f \) as

\[
f((Q_1, t_1), (Q_2, t_2)) = (\text{COMBINE}(Q_1, Q_2, b(t)), t)
\]

where \(t = \max(t_1, t_2) + 1 \).

For a skip list node in the ETT whose subsequence has vertices \(S \), its augmented value \(Q \) summarizes the weights of \(\bigcup_{v \in S} N_{\alpha,t} \), and its \(t \) is bounded by the longest search path length from that node to a node representing some \(v \in S \) at the bottom level of the skip list. Since the maximum path length in a skip list is \(O(\log n) \) w.h.p. [19], we have \(t = O(\log n) \) and \(b(t) = O(\log n) \) for every summary w.h.p. By Lemma 4.3, the augmentation takes \(O(\log^2 n) \) space per skip list node and runs in \(O(\log^2 n) \) work and \(O(\log n) \) span, all w.h.p.

Recall that given an augmentation function that costs \(O(W) \) work and \(O(S) \) span, a batch of \(k \) updates to an ETT takes \(O(W k \log(1+n/k)) \) expected work and \(O(S \log n) \) span w.h.p. Therefore, with our augmentation function, a batch of \(k \) edge insertions or deletions to \(F_t \) takes \(O(k \log^2 n \log(1+n/k)) \) expected work and \(O(\log n \log \log n) \) span w.h.p. The cost of insertions or deletions to \(\{N_{\alpha,t}\}_{v \in V} \) also incurs the same cost in updating augmented values, but there is the additional cost of having to actually update \(\{N_{\alpha,t}\}_{v \in V} \) and to rebuild the quantile summaries over \(\{N_{\alpha,t}\}_{v \in V} \).

To update \(\{N_{\alpha,t}\}_{v \in V} \) with \(k \) edges \(U \), apply a semisort to group the edges by endpoint: let \(r \) be the number of distinct endpoints in \(U \), and let \(K = \{(v_1, E_1), \ldots, (v_r, E_r)\} \) represent the semisorted updates, where \(N_{\alpha,t} \) should be updated with edges \(E_i \) for each integer \(i \in [1, r] \). Updating the ordered set for \(N_{\alpha,t} \) costs \(O(|E_i| \log(1+k(1+\log n)/|E_i|)) \) work and \(O(\log n \log k) \) span. The sum of this work over all \(E_i \) is \(O(k \log n) \). We then rebuild the quantile summary for each \(E_i \) from scratch via Lemma 4.1 in \(O(r \log^2 n) \) total work and \(O(\log n) \) span. Adding the cost of updating augmented values gives a total expected work is \(O(k \log^2 n \log(1+n/k)) \) and the total span is \(O(\log n (\log n + \log k)) \) w.h.p.

The approximation error of a summary \(Q \) in the ETT is bounded above by

\[
\frac{1}{4} + \sum_{t=1}^{\infty} \frac{1}{b(t)} = \frac{1}{4} + \sum_{t=1}^{\log n} \frac{1}{b(t)} + \sum_{t=\log n+1}^{\infty} \frac{1}{b(t)} < \frac{1}{4} + \sum_{t=1}^{\log n} \frac{1}{8 \log n} + \sum_{t=\log n+1}^{\infty} \frac{1}{16 t^2 \log n} = \frac{1}{4} + \frac{1}{8 \log n} + \sum_{t=\log n+1}^{\infty} \frac{3}{8 t} \leq \frac{1}{8 \log n} + \frac{3}{8} + \frac{\log n}{\log 2} \leq \frac{1}{8} \leq \frac{1}{2}.
\]

That is, \(Q \) is always a 1/2-approximate quantile summary. We can therefore fetch the \(k(1 \pm \epsilon) \) lightest edges of \(\bigcup_{v \in C} N_{\alpha,t} \) for a connected component \(C \) by querying the summary of component \(C \) for a weight \(w \) whose rank is \(k \). Then, by checking whether the summaries’ minimum element is less than \(w \), we traverse down the skip list to efficiently find all vertices \(v \) in \(C \) such that \(N_{\alpha,t} \) has edges lighter than \(w \) in \(O(k \log(1+n/k)) \) expected work and \(O(\log n) \) span w.h.p. We fetch those edges from each vertex \(v \) by splitting the ordered set for \(N_{\alpha,t} \) in \(O(\log n) \) work and \(O(\log n) \) span per vertex for \(O(k \log n) \) total work. \(\square \)

4.2.1 Example of augmentation. This subsection gives an example illustrating the ETT augmentation from Theorem 4.4. Figure 1 displays an example graph \(G = (V, E) \) with one connected component, a spanning tree for the graph, and a possible skip list internally held by an ETT representing the tree. For simplicity, every non-tree edge in the graph has the same HDT level \(t \), and we write \(N_0 \) instead of \(N_{\alpha,t} \) to denote the non-tree edges incident on a vertex \(v \).

The skip list contains a sequence given by taking an Euler tour on the spanning tree after duplicating each edge in both directions and after adding a self-loop edge on every vertex. At the bottom level of the skip list, each node representing some vertex \(v \in V \) (i.e., representing the self-loop edge for vertex \(v \)) constructs a quantile summary over \(v \)’s incident non-tree edges \(N_0 \). For instance, \(N_0 = \{(5, u, x), (6, u, y)\} \), and the skip list node for \(u \) is augmented with a 1/4-approximate quantile summary on \(N_0 \).

The quantile summaries at higher levels of the skip list are computed by calling the augmentation function \(f \) to combine quantile summaries at the level below, ignoring skip list nodes that correspond to edges and hence have no quantile summaries. For instance, the node at the top level of the skip list computes its quantile summary over \(N_0 \cup N_9 \cup N_{0, y} \cup N_9 \) by calling \(f \) on the quantile summaries for \(N_0 \) and \(N_9 \) and then calling \(f \) on the result of the previous call along with the quantile summary for \(N_0 \cup N_9 \). Each
quantile summary has an associated t value such that the summary is $(1/4 + \sum_{i=1}^{t} 1/b(i))$-approximate, where $b(\cdot)$ is defined in the proof of Theorem 4.4. The $\sum_{i=1}^{t} 1/b(i)$ term is accumulated from CANCEL calls used to compute f. When taking a union of incident non-tree edges such as $N_x \cup N_y$, we may have an edge twice, once in each direction, e.g., $N_x \cup N_y = \{(4, x, y), (4, y, x), (5, x, u), (6, y, u)\}$ has the weight-4 edge (x, y) twice. For our use case of decremental MSF (Section 4.3), the edge duplication does not affect correctness or running time complexity.

If there were multiple nodes at the top level of the skip list, we would also call f to combine all of the quantitative summaries at the top level to obtain a quantitative summary for the entire connected component. At an arbitrary top-level node, we would store a pointer to that quantitative summary so that we can quickly fetch a quantitative summary for this connected component.

As an example of updating non-tree edges, suppose we wanted to delete an element from N_y. We perform the deletion on N_y, rebuild the quantitative summary for N_y entirely from scratch, and then apply f again to rebuild the quantitative summaries for the fourth node at the middle skip list level and for the node at the top level.

As an example of searching for light non-tree edges, suppose that we wanted to find the lightest $k(1 \pm 1/2)$ non-tree edges incident on this component for some k. Define the children of a skip list node with associated subsequence S to be the nodes at the level immediately below whose subsequences constitute S, e.g., the children of the fourth node at the middle level are the sixth through ninth (inclusive) nodes at the bottom level. We first query the quantitative summary at the top level of the skip list for a rank-k entry. Suppose that it returned $(4, y, x)$. Then, we traverse down to the middle level to inspect the quantitative summaries of the node’s children. At every quantitative summary whose minimum element is at most $(4, y, x)$ lexicographically, we traverse down to that node’s children. In this example, only the fourth node at the middle level satisfies this condition. We again check children’s quantitative summaries’ minimum elements, and in this case, the sixth and ninth nodes at the bottom level satisfy the condition. Since we have reached the bottom of the list, we directly access N_x and N_y and fetch all elements that are at most $(4, y, x)$.

4.3 Parallel batch-decremental MSF

As with the sequential HDT decremental MSF algorithm, two changes are needed to change Acar et al.’s batch-dynamic connectivity algorithm into a batch-decremental MSF algorithm. First, given an input graph G, we compute an MSF F over G and set $F_{\log n} = F$. The MSF for the graph will always be $F_{\log n}$.

Second, when performing a doubling search out of a component to find a replacement edge, instead of looking for 2^j arbitrary incident non-tree edges on phase j of a doubling search, we use the ET algorithm from Theorem 4.4 to search for the $2^j(1 \pm 1/2)$ lightest incident non-tree edges. To maintain the HDT cycle invariant, we do not push any edges on a doubling phase in which we find a replacement edge. In addition, to reduce span, we defer pushing edges to the end of the entire replacement search on a level rather than pushing non-tree edges after every doubling phase.

Theorem 4.5. We can initialize a batch-decremental MSF data structure in $O(\log^3 n)$ span w.h.p. The data structure supports batches of k edge deletions in $O(\log^3 n \log k)$ span w.h.p. and uses $O(m + n \log^3 n)$ space w.h.p. The total expected work across initialization and all deletions is $O(m \log^3 n \log(1 + n/\Delta))$, i.e., $O(\log^3 n \log(1 + n/\Delta)) \leq O(\log^3 n)$ amortized per edge, where Δ is the average batch size across all batch deletions.

Proof. For initialization, computing $F_{\log n}$ costs $O(m)$ expected work and $O(\log n)$ span w.h.p. Then, by Theorem 4.4, storing $F_{\log n}$ in an augmented ET and updating the ET with $O(n)$ incident non-tree edges costs $O(m \log^2 n)$ expected work and $O(\log^2 n)$ span w.h.p.

The span to delete a batch of k edges remains the same as Acar et al.’s algorithm. Despite the increase in span that our more complicated ET augmentation incurs for insertions and pushing edges, the span is still dominated by the doubling search, whose span remains the same.

On the other hand, the work increases by a factor of $O(\log^2 n)$ to a total of $O(\log^4 n)$ expected amortized work per edge due to the increased work for ET insertion and pushing. The $(1 \pm 1/2)$ uncertainty in searching for incident non-tree edges may increase the amount of amortized cost to charge to each edge by a constant factor, but this does not affect the asymptotic bounds. Not pushing edges found on the last phase of a doubling search also only affects...
amortized costs by a constant factor. Analysis in Appendix B gives the tighter $O(\log^2 n \log (1 + n/\Delta))$ work bound.

The maximum space usage is $O(n \log^2 n)$ w.h.p. for each of the $\log n$ ETTs plus $O(m)$ total space to store the non-tree edges. □

5 Parallel fully dynamic MSF
In this section, we describe a parallel batch-dynamic MSF algorithm supporting both batch insertions and batch deletions of edges (Section 5.2) and provide an example execution of the algorithm (Section 5.3).

5.1 Background
Compressed path trees. Like ETTs, rake-compress (RC) trees are a parallelizable data structure for dynamic forests [3, 4]. Inserting or deleting k edges from an RC tree takes $O(k \log(1 + n/k))$ expected work and $O(\log^2 n)$ span w.h.p.

Anderson et al. showed that if a dynamic forest F of n vertices is stored in an RC tree, then given k vertices in F ("marked" vertices), we can construct a compressed form of F called a compressed path tree relative to the vertices in $O(k \log(1 + n/k))$ expected work and $O(\log n)$ span w.h.p. [7]. The compressed path tree is a forest F' on $O(k)$ vertices (including all marked vertices) such that the heaviest edge on the path between any pair of marked vertices has the same weight in F' as in F. More specifically, the compressed path tree is the union of the paths between the marked vertices with all non-marked vertices of degree below three spliced out. Given k edges in F, we can also find which compressed edges in F' correspond to those edges in $O(k \log(1 + n/k))$ expected work and $O(\log n)$ span w.h.p. by traversing up the RC tree that generated F'.

Dynamic MSF. The fully dynamic HDT MSF algorithm supports both insertions and deletions with $O(\log^4 n)$ amortized work per update. In describing this algorithm, we follow the presentation of Holm, Rotenberg, and Wulff–Nielsen [34].

Along with maintaining the MSF F of the graph G (the global tree and graph), the algorithm maintains $2 \log n + 1$ subgraphs $A_0, A_1, \ldots, A_{2 \log n} \subseteq G$ and MSFs $F_0, \ldots, F_{2 \log n}$ of each subgraph (the local graphs and trees). Each A_i has at most 2^i non-tree edges $A_i \setminus F_i$ (the edge-count invariant), and each non-tree edge in G is a non-tree edge of some A_i (the non-tree-edge invariant). We maintain decremental MSF data structures over each local graph.

To insert an edge $e = \{u, v\}$, we query for the heaviest edge e' on the path between u and v in F by storing F in a top tree [6]. We replace e' with e in F if e is lighter. Either e or e' now becomes a new non-tree edge. To make the non-tree-edge invariant hold, we call Update, a subroutine that we describe shortly below, on the edge to insert it as a local non-tree edge.

To delete an edge e, we delete e from all local graphs and obtain a set of $O(\log n)$ local replacement edges R. If e is in F, we delete it from F and need a global replacement edge. Due to the non-tree-edge invariant, the lightest edge r in R reconnecting F is the global replacement edge. We insert that edge into the global tree. Since edges in R (besides r) are global non-tree edges that might now violate the non-tree-edge invariant, we call Update on R.

The Update subroutine with input U inserts the edges in U as local non-tree edges. It re-initializes A_i to be $F \cup U \cup \bigcup_{j \leq j} (A_i \setminus K_i)$ with j being the minimal value such that this reinitialization respects the edge-count invariant. The new local tree edges for A_i are the edges in F, and the other edges become local non-tree edges. The subroutine then clears A_i for all $i < j$.

The number of tree edges in each A_i may be large, and so we only store them in compressed form. When initializing A_i, we use a top tree to efficiently compute a structure similar to a compressed path tree. Initializing and storing A_i then takes only $O(2^i \log n)$ work and $O(2^i)$ space, and initializing a decremental MSF over A_i costs $O(2^i \log^2 2^i)$ amortized work.

To analyze the work, in Update, the choice of j means that there are at least 2^{j-1} non-tree local edges $U \cup \bigcup_{k < j} (A_i \setminus F_i)$ being pushed up to A_j. These edges pay for the initialization cost of A_j. A non-tree edge costs $O(\log^2 n)$ across its lifetime since it can be pushed up $2 \log n$ times and may pay $O(\log^2 n)$ amortized work on each push to pay for the cost per edge in the newly initialized decremental MSF data structure. Since each global deletion introduces $O(\log n)$ non-tree local edges, the amortized cost of a deletion in the dynamic MSF algorithm is $O(\log^4 n)$.

5.2 Parallel batch-dynamic MSF
Our parallel batch-dynamic MSF algorithm comes from parallelizing the fully dynamic HDT MSF algorithm. The main changes are to use our decremental MSF algorithm from Section 4.3 and to use RC trees instead of top trees for compressing local graphs and for efficient batch insertion.

Algorithm 1 The algorithm that sets global variables to initialize the batch-dynamic MSF data structure on an n-vertex graph.

1. procedure Initialize(n)
2. $F \leftarrow$ RC tree on an empty n-vertex graph \r
3. for $i = 0, 1, 2, \ldots, \log n$ do in parallel
4. $A_i \leftarrow \emptyset$ \r
5. $\mathcal{F}_i \leftarrow$ Decremental MSF data structure for the i-th local graph.
6. $T_i \leftarrow$ RC tree on an empty n-vertex graph \r
7. $(B_{D_i}, B_{A_i}) \leftarrow (\emptyset, \emptyset)$

Algorithm 1 initializes the data structure on an n-vertex graph. All variables (and only these variables) defined in this algorithm are globally visible. We assume the input graph begins with no edges since input edges can be added separately via batch insertion. The RC tree F maintains the MSF (global tree) (Line 2).

Each A_i is a batch-decremental MSF data structure over the i-th local graph, which is initially empty (Line 4). Whenever we initialize A_i, we will need to compress its tree edges by computing a compressed path tree on the tree edges relative to A_i's non-tree edges' endpoints. The RC tree used to compute the compressed path tree should remain unmodified until A_i's next initialization so that when deleting edges, we can use the RC tree to look up the compressed representations of the edges in A_i. The RC tree T_i serves this purpose for A_i (Line 5). Its value matches A_i's (uncompressed) tree edges at A_i's latest initialization, or equivalently, the value of F at A_i's latest initialization. To update T_i to match F at A_i's next initialization, we keep buffers B_{D_i} and B_{A_i} representing the difference between T_i and F (Line 6). In particular, $(T_i \setminus B_{D_i}) \cup B_{A_i} = F$. Section 5.3 illustrates an example of how A_i and T_i change over several edge updates.

Before discussing batch insertion, we describe the helper function Update (Algorithm 2) that takes non-tree edges U and inserts them in a local graph to satisfy the HDT non-tree-edge invariant. We iterate through each local graph A_i sequentially to find some A_j to re-initialize with U such that the HDT edge-count invariant still holds (Line 2). As we iterate through increasing i, we collapse
we can determine which edges we set.

Algorithm 2

A helper algorithm for restoring the HDT non-tree-edge invariant.

1: procedure Update(U = \{ (u_1, v_1), w_1, \ldots, (u_n, v_n), w_n \})
2: for i = 0, 1, 2, \ldots, 2 log n do
3: U ← U ∪ (NonTreeEdges(A_i) \ F)
4: A_i ← 2
5: if |U| ≤ 2^i then
6: T_i.Delete(B_i)
7: T_i.Insert(B_i)
8: (B_{D_i}, B_{J_i}) ← (\emptyset, \emptyset)

 Given an RC tree T representing a forest.
 T.CompressedPathTree(-) takes a list of vertices L and
 returns a compressed path tree for the forest relative to L.
9: P ← T_i.CompressedPathTree(∪_{i=0,w \in U} \{u, v\})
10: A_i ← Batch-decremental MSF on P ∪ U
11: break

Algorithm 3

The algorithm for inserting a batch of edges.

1: procedure BatchInsert(U = \{ (u_1, v_1), w_1, \ldots, (u_n, v_n), w_n \})
2: P ← F.CompressedPathTree(∪_{i=0,w \in U} \{u, v\})
3: M ← MSF(P ∪ U)
4: (D, I) ← (P \ M, U \ ∪ M)
5: F.Delete(D)
6: F.Insert(I)
7: for i = 0, 1, 2, \ldots, 2 log n do in parallel
8: (B_{D_i}, B_{J_i}) ← (B_{D_i} \cup (D \ \setminus B_{J_i}), B_{J_i} \setminus D \ \cup I)
9: Update(D ∪ (U \ \setminus M))

Algorithm 4

The algorithm for deleting a batch of edges.

1: procedure BatchDelete(U = \{ (u_1, v_1), \ldots, (u_n, v_n) \})
2: D ← F ∩ U
3: F.Delete(D)
4: for i = 0, 1, 2, \ldots, 2 log n do in parallel
5: (B_{D_i}, B_{J_i}) ← (B_{D_i} \cup (D \ \setminus B_{J_i}), B_{J_i} \setminus D)
6: U′ ← Representation of U in compressed A_i

 A_i.Delete(-) takes a list of edges, deletes them from A_i, and returns
 the replacement edges used to reconnect A_i.
7: R_i ← A_i.Delete(U′)
8: BatchInsert(2 log n \ R_i)

The non-tree edges of A_i into U (Lines 3 to 4) since pushing them up to level j will pay for the re-initialization cost of A_j. We discard the tree edges of A_i since they are irrelevant to the non-tree-edge invariant. Once we find the level j (Line 5), we update the RC tree T_j to match the global tree F using buffers B_{D_j} and B_{J_j} and clear the buffers (Lines 6 to 8). Then, we use T_j to compress F into a compressed path tree P relative to U so that O(|P|) = O(2^j), and we set A_j to be a newly initialized decremental MSF data structure over P ∪ U (Lines 9 to 10). (The compressed local graphs may be non-simple because between a pair of vertices, there can be both one compressed tree edge and one non-tree edge. The decremental MSF algorithm still works in this setting.)

BatchInsert gives pseudocode for batch insertion. We start by compressing the global tree F into a compressed path tree P relative to inserted edges U (Line 2). Each compressed edge e in the compressed path tree also stores a pointer to the heaviest edge in the path that e represents in F. In this way we can, for brevity, refer to edges from the compressed path tree and the corresponding heavy edges in the uncompressed tree F interchangeably in the pseudocode. We compute an MSF M over P ∪ U (Line 3). Using M, we can determine which edges I from U to insert into the global tree F and which edges D from F get replaced by I (Line 4). We delete D from F, insert I into F, and update the buffers for every local graph A_i (Lines 5 to 8). Finally, we call Update on edges D ∪ (U \ \setminus M) since they are new global non-tree edges that may violate the non-tree-edge invariant (Line 9).

Algorithm 4 describes batch deletion. First, we delete the input edges U from the global tree F and update the buffers for every local graph A_i accordingly (Lines 2 to 5). In parallel over every A_i, we want to delete U from A_i, though this requires some effort since A_i is in compressed form. To map each edge e in U to its representation in A_i (Line 6), there are three cases: e appears in compressed form in A_i (because it was a tree edge in A_i when A_i was last initialized), e appears in uncomputed form in A_i, or it does not exist in A_i. To handle the first case, we try looking up e in T_i to get a compressed edge and then try looking that up in A_i. Simultaneously, we try looking up e directly in A_i to handle the second case. If the two cases fail, then we are in the third case and ignore the edge.

Now we can delete U from A_i and extract the local replacement edges R_i that the decremental MSF data structure uses to replace U (Line 7). Finally, we insert the replacement edges into the global tree by calling BatchInsert (Line 8). Although these replacement edges are already global edges, calling BatchInsert has the correct behavior of reconnecting F and calling Update.

Theorem 5.1. Our dynamic MSF algorithm maintains an MSF in O(k log^6 n) expected amortized work for a batch of k edge insertions or k edge deletions. Insertions take O(log^2 n) span w.h.p., and deletions take O(k log^6 n log k) span w.h.p. The maximum amount of space the data structure uses is O(m + min(m, n log n) log^5 n) w.h.p., where m is the maximum number of edges in the graph.

Proof. Work: We first analyze the work for Update (Algorithm 2). We will give (2 log n - i) - O(log^4 n) amortization credits to non-tree edges in local graph A_i and get O(k log^5 n) expected amortized work for Update as a consequence.

Suppose we call Update (Algorithm 2) with k input edges. Let U be the original input to Update, and let U_i indicate the value of U after the i-th iteration of Line 3. We give O(log^5 n) credits to each edge in U_i. Let j be the value of i that satisfies the condition on Line 5. The work done by insertions to U (Line 3) across all iterations sums to O(|U_i| + 2^j). Updating T_j on Lines 6 to 7 costs O(|B_{D_j}| + |B_{J_j}|) log n expected work, which we charge to the BatchInsert and BatchDelete calls that inserted these elements into B_{D_j} and B_{J_j}. Computing the compressed path tree (Line 9) costs O(|U_j| log n) expected work, and initializing the decremental MSF data structure (Line 10) costs O(|U_j| log^6 n) expected amortized work. We know that |U_j| ≤ 2^j and |U_{j-1}| > 2^{j-1} due to the choice of j. We pay for the O(2^j + |U_j| log^4 n) = O(2^j log^4 n) work of Update by charging O(log^4 n) credits to the elements in |U_{j-1}| that we have pushed up to local graph A_j. The remaining expected amortized work is O(k log^5 n) from the credits we gave to U.

Batch insertion (Algorithm 3) also costs O(k log^5 n) amortized expected work due to its work being dominated by Update (Line 9). For instance, RC tree operations and computing an MSF takes only O(k log(1 + n/k)) expected work on Lines 2 to 6. Updating buffers B_{J_i} on Line 8 costs only O(k log^2 n) amortized total work, where one log n factor comes from summing over i and the other log n factor pays for the cost of updating T_j with B_{J_i} in Update.

Batch deletion (Algorithm 4) costs O(k log^5 n) amortized expected work. Like with batch insertions, the expected work of RC tree operations and dictionary operations is O(k log^2 n) on Lines 2
to 6. We charge the cost of deleting \(k \) edges from each \(A_i \) (Line 7) to the initialization of \(A_i \). Finally, we call \textsc{BatchInsert} on \(\cup_{i=0}^{2 \log n} R_i \) (Line 8) where \(|R_i| \leq k \) for \(O(k \log^6 n) \) expected amortized work.

\textbf{Span: } The span of \textit{Update} (Algorithm 2) is \(O(\log^2 n) \) w.h.p. Collapsing \(A_i \) into \(U \) on Line 3 summed over all \(O(\log n) \) iterations takes \(O(\log n \log^* n) \) span w.h.p. using a parallel dictionary. Then the operations on \(T_i \) and \(A_i \) in Lines 6 to 10 all take \(O(\log^2 n) \) span w.h.p. and are only performed on one value of \(i \).

The span of \textit{Insert} (Algorithm 3) is also \(O(\log^2 n) \) w.h.p. The span is dominated by the RC tree updates (Lines 5 to 6) and \textit{Update} (Line 9), each of which take \(O(\log^2 n) \) span w.h.p. The span of \textit{Delete} (Algorithm 4) is \(O(\log^3 n \log k) \) w.h.p. The span is dominated by deleting up to \(k \) edges from \(A_i \) for each \(i \) (Line 7) for a cost of \(O(\log^3 n \log k) \) span w.h.p. according to Theorem 4.5.

\textbf{Space: } The global tree \(F \) and each local RC tree \(T_i \) takes \(O(n) \) space w.h.p., and each pair of local buffers \((B_{D,i}, B_{I,i})\) takes \(O(n) \) space since they store the symmetric difference between the trees \(F \) and \(T_i \). Each \(A_i \) has \(O(\min\{2^i, n\}) \) vertices and \(O(2^i) \) edges, and the initialization strategy for the local graphs in \textit{Update} leaves \(A_i \) empty for \(i > \log m \). Applying Theorem 4.5 on each \(A_i \) gives a total space usage of \(\sum_{i=1}^{\log m} O(2^i + \min\{2^i, n\} \log^3 n) = O(m + \min\{m, n \log n \} \log^3 n) \). \hfill \Box

5.3 Example

Table 2 displays an example of how the local graphs change as the global graph \(G \) changes. Though the algorithm does not actually store the non-tree edges of \(G \) or the uncompressed forms of the local graphs \(A_0 \) and \(A_1 \), they are displayed in the table for clarity.

In the first row of the table, we initialize a graph with four vertices \(u, v, x, \) and \(y \).

In the second row of the table, we call \textsc{BatchInsert} on the five edges \((u, v), (u, x), (v, y), (u, y), \) and \((v, x)\). \textsc{BatchInsert} then invokes \textit{Update} on the two non-tree edges \((u, y)\) and \((u, x)\). Placing these edges in \(A_0 \) would violate the edge-count invariant that \(A_0 \) has at most \(2^2 = 4 \) local non-tree edges, but we can place them in \(A_1 \) because it can have \(2^2 = 2 \) non-tree edges. The \textit{Update} call hence initializes \(A_0 \) on the non-tree edges along with the current global tree. In this case, the compressed form of \(A_1 \) is the same as the uncompressed form—every vertex has an incident level-1 non-tree edge and cannot be compressed out.

In the third row of the table, we call \textsc{BatchInsert} on the edge \((x, y, 1)\). The edge \((x, y)\) becomes a non-tree edge, and \textit{Update} is invoked on it. This time, the edge can be placed in \(A_0 \) without violating the edge-count invariant. The \textit{Update} call initializes \(A_0 \) on the non-tree edge along with the current global tree. The compressed form of \(A_0 \) keeps the vertices \(u \) and \(v \) since they are non-tree edge endpoints and splits out vertices \(x \) and \(y \), replacing the path \(u \rightarrow x \rightarrow y \rightarrow v \) with a compressed edge \((u, v)\) that has the same weight as the heaviest weight in the path.

In the fourth row of the table, we call \textsc{BatchDelete} on edges \((u, x)\) and \((v, y)\). We first delete them from local graphs \(A_0 \) and \(A_1 \). Local graph \(A_0 \) returns local replacement edge \((u, v)\), and \(A_1 \) returns local replacement edges \((u, y)\) and \((u, x)\). (Deleting \((u, x)\) and \((u, y)\), or even just deleting either of these edges individually, in the compressed form of \(A_0 \) means deleting the entire compressed edge representing the path \(u \rightarrow x \rightarrow y \rightarrow v \). This triggers the correct behavior of searching for a local replacement edge that reconnects \(u \)'s connected component and \(v \)'s connected component.\)

Finally, \textsc{BatchDelete} invokes \textsc{BatchInsert} to re-insert all of the local replacement edges into the global graph. Edges \((u, v)\) and \((u, y)\) are global replacement edges that are inserted as tree edges, whereas edge \((u, x)\) remains a global non-tree edge. We invoke \textit{Update} on \((u, x)\), which re-initializes \(A_0 \) with the non-tree edge.

6 Dynamic graph HAC lower bounds

In this section, we show lower bounds on dynamic graph HAC under edge insertions and deletions. Queries take two vertices \(s \) and \(t \) and a similarity threshold \(\theta \), and answer whether \(s \) and \(t \) are in the same cluster if we run agglomerative clustering until all cluster similarities are strictly below \(\theta \). Such queries provide limited information, but we will show that answering such queries is still difficult for complete linkage, weighted average linkage, and average linkage. We also consider a different type of query that asks how many clusters there are if we run HAC until a threshold \(\theta \) we refer to this problem as \#HAC. All of our lower bounds hold for the special case where \(s, t, \) and \(\theta \) are fixed across all queries.

Our bounds hold even for an approximate form of graph HAC. We use the approximation notion given by Lattanzi et al. [40]. In \(\lambda \)-approximate graph HAC with \(\lambda \geq 1 \), at an agglomeration step where the maximum similarity is \(\max \), the clustering process may merge any clusters with similarity at least \(\frac{\max}{\lambda} \). We assume \(\lambda \leq \poly(n) \) so that \(\poly(\lambda) \) fits in a constant number of words.

6.1 Background: other dynamic lower bounds

Aboud and Vassilevska Williams as well as Henzinger et al. showed lower bounds on several dynamic problems conditional on well-known conjectures [1, 31]. The conjectures include the strong exponential time hypothesis (SETH) [13], triangle detection requiring greater than linear work, 3SUM requiring quadratic work [24, 46], and online Boolean matrix-vector multiplication (OMv) requiring cubic work [31].

The studied dynamic problems include Chan’s subset union problem (SubUnion) [14], subgraph connectivity (SubConn), and connected subgraph (ConnSub). In SubUnion, given a collection of sets \(X = \{X_1, \ldots, X_r\} \) and \(U = \bigcup_i X_i \), we maintain a subcollection \(S \subseteq X \) under insertions and deletions to \(S \) while answering whether \(\bigcup_{i \in S} X_i = U \). In SubConn, given an undirected graph, we maintain a subset of vertices \(S \) under insertions and deletions to \(S \) with queries answering whether query vertices \(s \) and \(t \) are connected in the subgraph induced by \(S \) [23]. ConnSub is SubConn with the query instead being whether the subgraph is connected.

Table 3 lists the lower bounds for these problems. The SubUnion bounds hold for the special case where \(|X| = O(\log(U)) \), and the SubConn bounds hold for the special case of \(st \)-SubConn where \(s \) and \(t \) are fixed across all queries.

6.2 Statement of HAC lower bounds

The following theorem reduces SubConn to HAC and ConnSub to \#HAC. It implies that the existing conditional lower bounds for \(st \)-SubConn apply directly to HAC under complete linkage or weighted average linkage. Similarly, the SETH gives the same lower bounds to \#HAC as it does to ConnSub. We note that existing constructions reducing from triangle detection [1] and OMv [31] to SubConn
Suppose for some constant \(c \) the global graph \(G \) has four vertices. We first insert five edges into it, then insert one edge, and finally delete two edges. The bolded edges in \(G \) form the MSF (the global tree) \(F \). The local graphs are \(A_0 \) and \(A_1 \), and the bolded edges within are the local tree edges. For \(i \in \{0, 1\} \), the tree \(T_i \) is the RC tree for \(A_i \). The buffers \(B_{D, 0} \) and \(B_{D, 1} \) represent the difference between \(T_0 \) and \(F \), i.e., \((T_0 \setminus B_{D, 0}) \cup B_{D, 1} = F \). For brevity, we omit listing the weights of edges in the buffers. The compressed form of \(A \) is the same as its uncompressed form throughout this example (except at initialization when the compressed form of \(A_1 \) is completely empty), and so we omit illustrating it. If a cell in the table is blank, that means it is the same as the cell in the row above.

![Image of table]

Table 2: This table walks through an example of the batch-dynamic MSF algorithm. The global graph \(G \) has four vertices. We first insert five edges into it, then insert one edge, and finally delete two edges. The bolded edges in \(G \) form the MSF (the global tree) \(F \). The local graphs are \(A_0 \) and \(A_1 \), and the bolded edges within are the local tree edges. For \(i \in \{0, 1\} \), the tree \(T_i \) is the RC tree for \(A_i \). The buffers \(B_{D, 0} \) and \(B_{D, 1} \) represent the difference between \(T_0 \) and \(F \), i.e., \((T_0 \setminus B_{D, 0}) \cup B_{D, 1} = F \). For brevity, we omit listing the weights of edges in the buffers. The compressed form of \(A \) is the same as its uncompressed form throughout this example (except at initialization when the compressed form of \(A_1 \) is completely empty), and so we omit illustrating it. If a cell in the table is blank, that means it is the same as the cell in the row above.

![Image of table]

Table 3: The table states conditional asymptotic work lower bounds for some dynamic problems [1, 31]. The values of \(\epsilon, \alpha, \sigma \), and \(c \) follow the definitions in Table 1. The bounds hold for partially dynamic algorithms as well. The bounds are amortized in the fully dynamic case and are worst-case in the partially dynamic case.

![Image of table]

Theorem 6.2. Suppose that for some \(\epsilon > 0 \) we can solve one of the following problems with \(\text{poly}(n) \) preprocessing work:

- for some constant \(c \), fully dynamic \(O(n^c) \)-approximate HAC or \(O(n^c) \)-approximate \#HAC under complete linkage or weighted average linkage in \(O(1) \) worst-case update and query work,
- the above problem in an incremental or decremental setting with \(O(n^c) \) worst-case update and query work,
- for some \(c \in [0, 1/5) \), fully dynamic \(O(n^c) \)-approximate average-linkage HAC with \(O(n^{1-5c}) \) amortized update and query work,
- for some \(c \in [0, 1/8) \), incremental or decremental \(O(n^c) \)-approximate average-linkage HAC with \(O(n^{1-8c}) \) worst-case update and query work,
- for some \(c \in [0, 1) \), fully dynamic \(O(n^c) \)-approximate average-linkage \#HAC with \(O(n^{1-5c}) \) amortized update and query work,
- for some \(c \in [0, 1/2) \), incremental or decremental \(O(n^c) \)-approximate average-linkage \#HAC with \(O(n^{1-2c}) \) worst-case update and query work.

Then the SETH is false.

6.3 Proof of bounds

As examples, we will show two reductions that generate some of our lower bounds. We defer the remaining reductions to Appendix D.
Our first example reduces SubConn to weighted-average-linkage HAC. Lemma D.1 gives a similar reduction for complete linkage.

Lemma 6.3. [Part of Theorem 6.1] Let $\lambda \in [1, \text{poly}(n)]$. Suppose we can solve dynamic / incremental / decremental λ-approximate weighted-average-linkage HAC in $O(m,n)$ preprocessing work, $u(m,n)$ update work, and $q(m,n)$ query work. Then, letting $m' = m(1+\log \lambda)$ and $n' = n(1+\log \lambda)$, we can solve dynamic / incremental / decremental SubConn with $O(m') + p(O(m'), O(n'))$ processing work, $u(O(m'), O(n'))$ update work, and $q(O(m'), O(n'))$ query work. The same relationship is also true between $\#HAC$ and ConnSub.

Proof. Suppose we are given an unweighted graph $G = (V, E)$ and we want to solve SubConn or ConnSub, maintaining some dynamic subset of vertices S. Let $\theta = 2\lambda$. Define $\ell = \log (2\lambda) = O(1 + \log \lambda)$ and $\ell' = \lambda + 1$.

Preprocessing: Construct a new, weighted graph G' by copying G and giving every edge a weight of 2λ. For every $v \in V$, add a star graph to G' consisting of a center vertex v' and ℓ leaves v_1, \ldots, v_ℓ with weight 2λ edges. For each i, create weight-1 edges to each vertex in $N(v)$. Connect v to v' with weight 2λ if $v \notin S$. Figure 2 illustrates this construction. The graph G' has $O(n(1 + \log(\lambda)))$ vertices and $O(m(1 + \log(\lambda)))$ edges. Initialize dynamic HAC on G' with $\theta = 2\ell$.

Update: Simulate adding or removing a vertex v in S by removing or adding the weight-$2\lambda^{\ell/3}$ edge $\{v, v'\}$.

Query: If we are reducing SubConn to HAC, return whether s and t are in the same cluster given similarity threshold θ. If we are reducing ConnSub to $\#HAC$, then return whether the number of clusters in $\mid V \setminus S \mid + 1$.

Correctness: Consider running HAC until similarity threshold $\theta = 2\lambda$. Due to the preprocessing and the update strategy, every $v \in V \setminus S$ has a weight-$2\lambda^{\ell/3}$ edge to v'. These edges merge first, and then all of the weight-$2\lambda^{\ell/3}$ edges merge. This puts each $v \in V \setminus S$ in a cluster $\{v, v', v_1, v_2, \ldots, v_\ell\}$, where the incident edges connect to $N(v)$ with weight $1 + (2\lambda - 1)^{-\ell/3} < 2$. To see why the weight is $1 + (2\lambda - 1)^{-\ell/3}$, consider $v \in V \setminus S$ and suppose without loss of generality that the weight-$2\lambda^{\ell/3}$ edges for v' merge in the order v_1, v_2, \ldots, v_ℓ. Inductively, for $i = 0, 1, \ldots, \ell$, the incident edges on v''s cluster have weight $1 + (2\lambda - 1)^{-\ell/3}$ after v_i merges with v''s cluster, where $v_0 = v$. The base case is prior to merging, where the weight is $1 + (2\lambda - 1)^{2\ell/3} = 2\lambda$, which is correct by construction.

Therefore, the clusters for each $v \in V \setminus S$ do not participate in any more merges when clustering until threshold θ. The remaining vertices cluster into their connected components in the subgraph induced by S, and a HAC query answers SubConn correctly. A $\#HAC$ query will give the number of connected components in the subgraph $\mid V \setminus S \mid$ (one cluster for each $v \in V \setminus S$).
Query: Query whether \(s \) and \(t \) are in the same cluster when performing HAC until threshold \(\theta = 1 \). If yes, then return that \(S \) covers \(U \); otherwise, return that \(S \) does not cover \(U \).

Correctness: Consider running HAC until threshold \(\theta \). The weights \(w_x \) and \(w_y \) are so large that all weight-\(w_x \) and weight-\(w_y \) edges merge before any weight-L edges. Let \(C_x \) denote \(x \)'s cluster (containing \(X \setminus S \)) and \(C_y \) denote \(y \)'s cluster (containing \(S \)). From this point onwards, the similarity between \(C_x \) to another cluster \(C \) is bounded above by considering the worst case where every \(X_i \) in \(C_x \) has a weight-L edge to every \(u \in U \) contained in \(C \):

\[
\frac{|X \setminus S| \cap U |L|}{|C_x||C|} \leq \frac{|X \setminus S|L}{|C|} \leq \frac{|X||L|}{\ell y} = 1,
\]

where the first inequality used the fact that \(\lambda|C \cap U| \leq |C| \) due to each \(u \in U \) being in a star of size \(\lambda \). Hence, \(C_x \) does not participate in any more merges until near the end of the agglomeration process, at which point those merges will not affect correctness. On the other hand, consider \(C_y \), which has weight-L edges connecting it to every \(u \in U \) covered by \(S \). Each \(u \in U \), until it merges with \(C_y \), is in a size-\(\lambda \)-cluster consisting only of the star centered on \(u \). The similarity between \(C_y \) and some \(u \in U \) covered by \(S \) and not yet merged with \(C_y \) is always at least

\[
\frac{L}{(\ell y + 1 + |X| + |U||L|)} = (\lambda + 1)^2.
\]

In comparison, the similarity between \(t \) and another adjacent cluster \(C \) is 1 if \(C = \{s\} \) and is otherwise at most

\[
\frac{w_x(C \cap U)}{|C|} \leq \frac{w_x}{\lambda} = \lambda + 1
\]

(2)

where the first inequality again uses the inequality \(\lambda|C \cap U| \leq |C| \). Comparing Equation (1) to Equation (2) shows that \(C_y \) merges with all \(u \in U \) covered by \(S \) before \(t \) merges with anything.

Now consider what \(t \) merges with. In the case where \(S \) does not cover all of \(U \), inequality (2) is tight for every cluster \(C \) representing an uncovered \(u \in U \). In particular, the similarity between \(t \) and such a cluster is \(\lambda \) times greater than the similarity between \(t \) and \(s \) or between \(C_x \) and any cluster. Therefore, \(t \) merges with some uncovered \(u \)'s star rather than merging with \(s \) and is in a cluster of size \(\lambda + 1 \). The similarity between \(t \)'s cluster and \(s \) falls to \(1/(\lambda + 1) \), and \(t \) and \(s \) never merge. Hence a query returns the correct result in this case.

In the case where \(S \) covers all of \(U \), the only adjacent clusters to \(t \) are \(\{s\} \) and \(C_y \). The similarity between \(t \) and \(C_y \) is

\[
\frac{w_x[U]}{(\ell y + 1 + |S| + |U||L|)} < \frac{w_x[U]}{\ell y} = 1/\lambda,
\]

which is \(\lambda \) times less than the similarity between \(t \) and \(s \). Hence \(t \) and \(s \) merge, and a query returns the correct result in this case too.

To turn Lemma 6.4 (and Lemma D.9) into the lower bounds in Theorem 6.2, we need the following lemma.

Lemma 6.5. Let \(a \) and \(b \) be constants. Let \(\mathcal{P} \) be some dynamic problem. Suppose that given a dynamic / incremental / decremental SubUnion instance with \(|X| = O(\log |U|) \), for any value of \(\lambda \geq 1 \), we can solve the instance by efficiently converting it to an instance of \(\lambda \)-approximate \(\mathcal{P} \) of size \(n' = \tilde{O}(\lambda^a |U|^b) \). Assuming the SETH holds, for any \(c < 1/a \), the update or query work of an \(O(n'^c) \)-approximate \(\mathcal{P} \) algorithm with poly(\(n \)) preprocessing work is \(\Omega((n^{1-a}/\theta^{a-1})^{b-1} \lambda^{c-1/2}) \) amortized / worst-case / worst-case.

Proof. Set \(\lambda = \tilde{O}(n^{(1-a)/b-\Omega(1)}) = \tilde{O}(\lambda^{a/(b-\Omega(1))} |U|^{b}) = \tilde{O}(|U|^{a/(b-\Theta(1))} |U|^{b}) \).

In comparison, the similarity between \(\mathcal{P} \) and weight-\(1 \) edge \(\mathcal{P} \) is always at least

\[
\frac{L}{(\ell y + 1 + |X| + |U||L|)} = (\lambda + 1)^2.
\]

Comparing Equation (1) to Equation (2) shows that \(C_y \) merges with all \(u \in U \) covered by \(S \) before \(t \) merges with anything.

Now consider what \(t \) merges with. In the case where \(S \) does not cover all of \(U \), inequality (2) is tight for every cluster \(C \) representing an uncovered \(u \in U \). In particular, the similarity between \(t \) and such a cluster is \(\lambda \) times greater than the similarity between \(t \) and \(s \) or between \(C_x \) and any cluster. Therefore, \(t \) merges with some uncovered \(u \)'s star rather than merging with \(s \) and is in a cluster of size \(\lambda + 1 \). The similarity between \(t \)'s cluster and \(s \) falls to \(1/(\lambda + 1) \), and \(t \) and \(s \) never merge. Hence a query returns the correct result in this case.

In the case where \(S \) covers all of \(U \), the only adjacent clusters to \(t \) are \(\{s\} \) and \(C_y \). The similarity between \(t \) and \(C_y \) is

\[
\frac{w_x[U]}{(\ell y + 1 + |S| + |U||L|)} < \frac{w_x[U]}{\ell y} = 1/\lambda,
\]

which is \(\lambda \) times less than the similarity between \(t \) and \(s \). Hence \(t \) and \(s \) merge, and a query returns the correct result in this case too.

References

[1] Amir Abboud and Virginia Vassilevska Williams. 2014. Popular conjectures imply strong lower bounds for dynamic problems. In Proceedings of the 56th Annual Symposium on Foundations of Computer Science, 434–443.

[2] Umut A. Acar, Daniel Anderson, Guy E. Blelloch, and Laxman Dhulipala. 2019. Parallel Batch-Dynamic Graph Connectivity. In Proceedings of the 31st ACM Symposium on Parallelism in Algorithms and Architectures, 381–392.

[3] Umut A. Acar, Daniel Anderson, Guy E. Blelloch, Laxman Dhulipala, and Sam Westrick. 2020. Parallel Batch-Dynamic Trees via Change Propagation. In 28th Annual European Symposium on Algorithms, Vol. 173, 21–22.

[4] Umit A. Acar, Guy E Blelloch, Robert Harper, Jorge L Vittes, and Shan Leung Maverick Woo. 2004. Dynamicizing Static Algorithms, with Applications to Dynamic Trees and History Independence. In Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, Vol. 531, 540.
Parallel Batch-Dynamic Minimum Spanning Forest and the Efficiency of Dynamic Agglomerative Graph Clustering

A Relative Quantile Summaries

A.1 Description

In this section, we describe Zhang and Wang’s mergeable relative quantile summary and give proofs of correctness since Zhang and Wang’s paper omits several proofs [54]. Some details are changed in the quantile summaries to make our proofs work.

The quantile summaries discussed here are all of a particular form. Each summary $O = \{q_1, q_2, \ldots, q_l\}$ of a set S is a sorted
subset of S with $q_1 = \min(S)$ and $q_{|Q|} = \max(S)$. The subset is simply stored as a length-|Q| array. For each $q \in Q$, we maintain two integers $rmin(q; Q)$ and $rmax(q; Q)$ bounding the rank of q in S, i.e., $\text{rank}(q; S) \in [rmin(q; Q), rmax(q; Q)]$. (We omit the second argument of $\text{rmin}(\cdot; \cdot)$ and $\text{rmax}(\cdot; \cdot)$ when it is clear from context.)

We always maintain the minimum and maximum ranks exactly: rmin and rmax are 1 for q_1 and are $|S|$ for $q_{|Q|}$. We can assume that rmin and rmax are each strictly increasing with respect to their first arguments—it is easy to adjust them to be strictly increasing if not. The elements of Q, the values $\text{rmin}(\cdot; Q)$, and the values $\text{rmax}(\cdot; Q)$ are each stored in a length-|Q| array.

The following lemma shows that if consecutive elements in Q are close together, then Q can answer the approximate quantile queries described in Section 4.1.

Lemma A.1. Given a summary Q of the above form, suppose that for all $i \in \{1,2,\ldots,|Q| - 1\}$ that

$$rmax(q_{i+1}) - rmin(q_i) \leq \frac{2\epsilon}{1 - \epsilon} \cdot 1.$$

Then Q is a ϵ-approximate relative quantile summary where queries can be answered in $O(\log(|Q|))$ work.

We will refer to quantile summaries satisfying Equation (3) as ZW summaries. To prove that Lemma A.1 is true, we need to give an algorithm for answering queries on ZW summaries. The algorithm is given in Algorithm 5, and we discuss its correctness in the proof of Lemma A.1 that immediately follows.

Algorithm 5. The algorithm for answering query for rank r on an ϵ-approximate ZW summary Q.

1: procedure Query(Q, r)
2: return Largest $q \in Q$ such that $rmax(q; Q) \leq r(1 + \epsilon)$

Proof of Lemma A.1. The proof is similar to the proof for a similar lemma for uniform quantile summaries by Greenwald and Khanna [27].

Suppose we are given a query rank $r \in [1,|S|]$ where S is the set that Q represents. Assuming that $[r(1 - \epsilon), r(1 + \epsilon)]$ contains an integer, we want to return some element q such that $\text{rank}(q; S) \in [r(1 - \epsilon), r(1 + \epsilon)]$. The strategy will be to find some $q_i \in Q$ such that $[rmin(q_i), rmax(q_i)] \subseteq [r(1 - \epsilon), r(1 + \epsilon)]$. Then we will be able to return q_i as the answer since $\text{rank}(q_i) \in [rmin(q_i), rmax(q_i)]$.

We run Algorithm 5, which binary searches in $\text{rmax}(\cdot; Q)$ for the largest index i such that $\text{rmax}(q_i) \leq r(1 + \epsilon)$ and returns q_i. Such an index always exists since $\text{rmax}(q_1) = 1 \leq r < r(1 + \epsilon)$.

To achieve $[rmin(q_i), rmax(q_i)] \subseteq [r(1 - \epsilon), r(1 + \epsilon)]$ as desired, it only remains to prove that $r(1 - \epsilon) \leq \text{rmin}(q_i)$.

If $i = |Q|$, then $\text{rmin}(q_i) = |S| \geq r > r(1 - \epsilon)$. Then we are done. If $i < |Q|$, by choice of i, we know that $\text{rmax}(q_{i+1}) > r(1 + \epsilon)$. Assume for contradiction that $r(1 - \epsilon) > \text{rmin}(q_i)$. Then

$$rmax(q_{i+1}) - rmin(q_i) > r(1 + \epsilon) - r(1 - \epsilon) = 2r > \frac{2\epsilon}{1 - \epsilon} \cdot 1$$

Comparing this against Equation (3), we must be in the case where $\text{rmax}(q_{i+1}) - \text{rmin}(q_i) \leq 1$.

Then

$$\text{rmin}(q_i) < r(1 - \epsilon) < r(1 + \epsilon) < \text{rmax}(q_{i+1}) \leq \text{rmin}(q_i) + 1.$$

This is impossible since it shows that there is no integer between $r(1 - \epsilon)$ and $r(1 + \epsilon)$. Hence we have a contradiction—we indeed have $[\text{rmin}(q_i), \text{rmax}(q_i)] \subseteq [r(1 - \epsilon), r(1 + \epsilon)]$ and can return q_i as our answer.

Proof of Lemma 4.2. Queries are answered by binary search (Algorithm 5) in $O(\log(|Q|))$ work. Fetching $\text{min}(S)$ takes $O(1)$ time because the first element of Q is always $\text{min}(S)$ by construction.

Lemma A.2. Given a set S of n elements, we can construct an ϵ-approximate ZW summary Q that summarizes S and consists of $O(\log(n)/\epsilon)$ elements from S.

Proof. For simplicity, assume $1/\epsilon$ is an integer. Put all elements from S of rank less than $1/\epsilon$ into Q. Then consider the intervals $[2^i/\epsilon, 2^{i+1}/\epsilon)$ for $i \in \{1,2,\ldots,\log(en)\}$. For interval $[2^i/\epsilon, 2^{i+1}/\epsilon)$, put the elements of rank $2^{i-1}/\epsilon + 2^{i-1}j$ into Q for each $j \in \{0, 1, 2,\ldots,1/\epsilon - 1\}$. Finally, put the maximum of S into Q. For each element q in Q, we maintain $\text{rmin}(q)$ and $\text{rmax}(q)$ to be the rank of q. The size of Q is $O(\log(en) + 1)/\epsilon$.

To see that this summary is indeed ϵ-approximate, we want to show that it satisfies Equation (3). Consider consecutive elements q_i and q_{i+1} in Q. If $\text{rank}(q_i) \leq 1/\epsilon$ then $\text{rank}(q_{i+1}) = \text{rank}(q_i) + 1$, so $\text{rmax}(q_{i+1}) - \text{rmin}(q_i) \leq 1$. Otherwise, the rank of q_k is in some interval $[2^{i-1}/\epsilon, 2^i/\epsilon)$, and the rank of q_{k+1} is $\text{rank}(q_k) + 2^{i-1}$. Then

$$\text{rmax}(q_{k+1}) - \text{rmin}(q_k) = \text{rank}(q_{k+1}) - \text{rank}(q_k) = 2^{i-1} \leq \epsilon \text{rank}(q_k) < \frac{2\epsilon}{1 - \epsilon} \cdot 1.$$

In either case we have satisfied Equation (3).

To combine two ZW summaries Q_1 and Q_2 over non-overlapping sets S_1 and S_2 into a new summary over $S_1 \cup S_2$, we can merge Q_1 and Q_2. Then, if we need to shrink the space usage of the resulting summary, we can prune it.

Lemma A.3 ([54]). Given ϵ-approximate ZW summaries Q_1 and Q_2 representing sets S_1 and S_2, we can merge the summaries into an ϵ-approximate ZW summary Q of size $|Q_1| + |Q_2|$ that represents set $S_1 \cup S_2$.

Proof. As described by Zhang and Wang, we construct Q by merging Q_1 and Q_2 in sorted order [54]. To set $\text{rmin}(q; Q)$ and $\text{rmax}(q; Q)$ for some $q \in Q$, suppose that $q \in Q_1$ (the other case is symmetric). Let s be the largest element of Q_2 smaller than q and let t be the smallest element of Q_2 larger than q. Then set

$$\text{rmin}(q; Q) = \begin{cases} \text{rmin}(q; Q_1) + \text{rmin}(s; Q_2) & \text{if } s < q, \\ \text{rmin}(q; Q_1) & \text{otherwise}. \end{cases}$$

$$\text{rmax}(q; Q) = \begin{cases} \text{rmax}(q; Q_1) + \text{rmax}(t; Q_2) - 1 & \text{if } t > q, \\ \text{rmax}(q; Q_1) + \text{rmax}(s; Q_2) & \text{otherwise}. \end{cases}$$

This algorithm is the same as the merge algorithm Greenwald and Khanna described for uniform approximate quantile summaries, and the analysis showing that this algorithm satisfies Equation (3) is essentially the same as Greenwald and Khanna’s proof of correctness [28].

Lemma A.4. Given a positive integer $B > 0$ and an ϵ-approximate ZW summary Q' over a set of n elements, we can prune it to construct a new $(\epsilon + 1/B)$-approximate ZW summary Q of size $O(B \log(n/B))$ over the same set.

Tom Tseng, Laxman Dhulipala, and Julian Shun
Given two ZW summaries with a total size of \(Q \) from \(Q \) output algorithm for merging sorted arrays to combine elements over the calls. Place each unique element in \(Q \), and place \(\max(Q') \) into \(Q \) as well if it has not already been inserted.

Now consider the result of querying for \(B \), giving the smallest element \(b \) in \(Q \) so far. Take all elements of \(Q' \) less than \(b \) and place them in the front of \(Q \). Since the rank of \(b \) is at most \(B(1+\epsilon) \), there are at most \(B(1+\epsilon) = O(B) \) such elements.

Finally, for each \(q \in Q \), set \(\min(q;Q) := \min(q;Q') \) and \(\max(q;Q) := \max(q;Q') \). This summary \(Q \) has size \(O(B \log(n/B)) \).

We want to show that \(Q \) satisfies Equation (3) with error \(\epsilon + 1/B \). The elements \(q \in Q \) such that \(q \) \(B \) are a prefix of \(Q' \) that satisfy Equation (3) with error \(\epsilon \), so they certainly also satisfy the constraint with error \(\epsilon + 1/B \). For elements greater than \(B \), consider a pair of consecutive elements \(x \) and \(y \) in \(Q \). There is some \(r \) and integer \(i \) such that \(r \in [2^{i-1}B, 2^iB) \), that querying \(r \) resulted in \(x \), and that querying \(r + 2^i-1 \) resulted in \(y \). The query implementation guarantees that \(\min(r), \max(x) \subseteq [r(1-\epsilon), r(1+\epsilon)] \) and \(\min(r), \max(y) \subseteq [(r + 2^i-1)(1-\epsilon), (r + 2^i-1)(1+\epsilon)] \). Then

\[
\begin{align*}
\max(y) - \min(x) &\leq (r + 2^i-1)(1+\epsilon) - r(1-\epsilon) \\
&= 2r + 2^i-1 + 1 + \epsilon - 2r + (r/B)(1+\epsilon) \leq 2\epsilon + 2r + 2r/B \\
&= 2(\epsilon + 1/B)r \leq (2\epsilon + 1/B)\min(x) < \frac{2(\epsilon + 1/B)\max(x)}{1 - (\epsilon + 1/B)},
\end{align*}
\]

satisfying the constraint with error \(\epsilon + 1/B \). Hence \(Q \) is a ZW summary with error \(\epsilon + 1/B \). \(\square \)

A.2 Parallel algorithms

This section describes parallel algorithms for ZW summaries. As subroutines, we use parallel algorithms for merging sorted arrays, computing prefix sums, and filtering, all of which can be done in \(O(m) \) work and \(O(\log m) \) span over length-\(m \) arrays [11].

Proof of Lemma 4.1. The proof of Lemma A.2 shows that constructing a ZW summary just consists of finding \(O(\log(mn)/\epsilon) \) elements by rank.

Lemma A.5. Given two ZW summaries with a total size of \(m \), merging them as described in Lemma A.3 can be done in \(O(m) \) work and \(O(\log m) \) span.

Proof. Let \(Q_1 \) and \(Q_2 \) be the summaries to be merged. Following the algorithm given in the proof of Lemma A.3, use a parallel algorithm for merging sorted arrays to combine \(Q_1 \) and \(Q_2 \) into an output \(Q \). When merging, keep track of whether each element is from \(Q_1 \) or \(Q_2 \).

To compute \(\min(\cdot;Q) \) values, each element in \(Q_1 \) must determine its predecessor in \(Q_2 \). Create an array \(A \) of size \([Q] \). For each index \(i \in [1, 2, \ldots, [Q]] \), set \(A[i] \) to \(1 \) if the \(i \)-th element of \(Q \) is from \(Q_2 \) and \(0 \) otherwise. Then compute a prefix sum over \(A \) to obtain a list of sums \(S \). Now for any \(i \), if the \(i \)-th element of \(Q \) is from \(Q_1 \), then the \(S[i] \)-th entry of \(Q_2 \) is the predecessor of \(q_i \). As a result, we can now compute \(\min(q_i;Q) \) for all \(q_i \in Q_1 \). Similar logic allows us to compute the rest of \(\min(\cdot;Q) \) and \(\max(\cdot;Q) \).

All of this takes \(O(|Q_1| + |Q_2|) \) work and \(O(\log(|Q_1| + |Q_2|)) \) span. \(\square \)

Lemma A.6. Given a ZW summary of size \(m \), pruning it as described in Lemma A.4 can be done in \(O(m) \) work and \(O(\log m) \) span.

Proof. Given an \(\epsilon \)-approximate summary \(Q \) of size \(m \) and a parameter \(B \), the core part of pruning is to compute \(k = O(B \log(n/B)) \) rank queries in parallel efficiently. If \(k > m \) we should just return \(Q \) as it is already small enough.

Otherwise, consider the set of rank queries \(\{r_1, \ldots, r_k\} \) that we want to compute. A query for rank \(r_i \) consists of binary searching for the location of \(r_i(1+\epsilon) \) in \(\max(\cdot;Q) \) to get the largest element \(q(i) \in Q \) such that \(\max(q(i)) \leq r_i(1+\epsilon) \) (Algorithm 5). We can batch all the searches together by creating a \(k \)-length array \(A \) containing query value \(r_i(1+\epsilon) \) for all \(i \) and performing a parallel merge of \(A \) with \(\max(\cdot;Q) \) to get an output array \(M \). Then for each \(r_i(1+\epsilon) \in M \), its predecessor in \(M \) will either be \(q(i) \) or be \(r_{i-1}(1+\epsilon) \). If it is \(q(i) \), then we can complete the corresponding query, and otherwise the query can be discarded since it will have the same result as the query on \(r_{i-1} \). The results of the queries can be written into a new array \(C \), and filtering all successful queries from \(C \) gives the output summary. Merging and filtering takes \(O(m) \) work and \(O(\log m) \) span. \(\square \)

Proof of Lemma 4.3. Merge \(Q_1 \) and \(Q_2 \) in parallel into a \(\epsilon \)-approximate summary using Lemma A.5. Then, apply Lemma A.6 to prune the result to size \(O(b \log(n/b)) \) at the cost of \(1/b \) additional error using Lemma A.6. \(\square \)

B Tighter batch-decremental MSF work bound

This section describes how to get the bound of \(O(\log^3 n \log(1 + n/\Delta)) \) expected amortized work per edge for the batch-decremental MSF algorithm in Theorem 4.5, where \(\Delta \) denotes the average deletion batch size.

We use two lemmas given by Acar et al. [2]:

Lemma B.1. For any non-negative integers \(n \) and \(r \),

\[
\sum_{w=0}^{r} 2^w \log \left(1 + \frac{n}{2^w} \right) = O\left(2^r \log \left(1 + \frac{n}{2^r} \right) \right)
\]

Lemma B.2. For any \(n \geq 1 \), the function \(x \log(1 + n/x) \) is strictly increasing with respect to \(x \) for \(x \geq 1 \).

Now we analyze the cost of searching for replacement edges in the batch-decremental MSF algorithm.

Lemma B.3. The expected work of searching for replacement edges on one HDT level for the batch-decremental MSF algorithm is

\[
O\left(k \log^2 n \log \left(1 + \frac{n}{k} \right) + p \log^2 n \log \left(1 + \frac{n}{p} \right) \right)
\]

where \(k \) is the batch size and \(p \) is the number of edges pushed down to the next HDT level during the search.

Proof. Let \(\ell \) be the HDT level that we are searching. The work of the replacement edge search process is dominated by inserting found replacement edges into the level-\(\ell \) ETT and by updating the level-(\(\ell - 1 \)) ETT when pushing edges. By deferring pushing edges to the end of the replacement search at level \(\ell \) when we have found all \(p \) edges that should be pushed, we update the level-(\(\ell - 1 \)) ETT with one operation that costs \(O(p \log^2 n(1 + n/p)) \) expected work.
Inserting edges into the level-\(\ell\) ETT, on the other hand, occurs on each round within the replacement search on this level. There are \(O(\log k)\) rounds, and in each round, we search for a replacement edge out of every "active" component, i.e., each component that still has incident edges to search and that has size at most \(2^\ell-1\). At most half as many components will be active on each subsequent round because the worst case is when the replacement edges discovered in a round pair the components off. The number of edges inserted in a round is bounded by the number of active components, and on the first round, there are at most \(2k\) active components. Therefore, on round \(i\), the number of edges \(k_i\) inserted into the ETT is at most \(k_i \leq 4k2^{-i}\). The work of insertions across all \(O(\log k)\) rounds is then proportional to

\[
O(\log k) \sum_{i=1}^{\log k} k_i \log^2 n \log \left(1 + \frac{n}{k_i}\right)
\leq O(\log k) \sum_{i=1}^{\log k} 4k2^{-i} \log^2 n \log \left(1 + \frac{n}{4k2^{-i}}\right)
= O(4k \log^2 n \log \left(1 + \frac{n}{4k}\right)) = O(k \log^2 n \log \left(1 + \frac{n}{k}\right)),
\]

where Lemma B.2 provides the inequality and Lemma B.1 provides the first equality.

The expected work from inserting replacement edges and pushing edges is then \(O(k \log^2 n \log(1+n/k)) + p \log^2 n \log(1+n/p))\). \(\square\)

Similar to the above lemma minus a multiplicative factor of \(O(\log^2 n)\), Acar et al. [2] prove in Lemma 4.5 of their paper that the expected work of searching for replacement edges on one HDT level for their "interleaved" connectivity algorithm is \(O(k \log(1+n/k) + p \log(1+n/p))\) where \(k\) is the batch size and \(p\) is the number of pushed edges. Acar et al. then use their lemma to show in Theorem 4.7 of their paper that their interleaved connectivity algorithm achieves \(O(\log n \log(1+n/\Delta))\) expected amortized work per edge by summing the work of replacement searches across all HDT levels and all batches of deletions. We can apply the same analysis as Acar et al.’s Theorem 4.7 to get the same work plus a multiplicative factor of \(O(\log^2 n)\) for our batch-decremental MSF algorithm, i.e., \(O(\log^2 n \log(1+n/\Delta))\) expected amortized work per edge, as desired.

C Dynamic HAC dendrogram counterexamples

The canonical output for HAC is a dendrogram representing the hierarchy of clusters. A natural question for dynamic graph HAC is whether we can maintain the dendrogram dynamically. In this section, we show examples where an edge update causes \(\Omega(n)\) changes in the dendrogram. Explicitly maintaining the dendrogram dynamically therefore seems inefficient in the worst case. Here we assume a dendrogram is represented a binary tree (for each connected component of the graph) with labeled leaves, and changes in a dendrogram mean changes in the parent or child pointers of a dendrogram node.

C.1 Single linkage

Let \(n \in \mathbb{N}\) be even. Consider a graph consisting of two star graphs of \(n/2\) vertices. In one star, the edge weights are \(1, 3, 5, \ldots, n-3\), and in the other star, the edge weights are \(2, 4, 6, \ldots, n-2\).

Adding an edge of weight \(n-1\) between the centers of the two stars causes \(\Theta(n)\) changes to the dendrogram. Figure 4 shows this graph with \(n = 6\) along with its dendrograms. Without the weight-\((n-1)\) edge, the dendrogram consists of two binary trees with long spines. In one of the stars, consider any vertex \(v\) whose incident edge’s weight is \(w < n-3\), and let \(u\) be the vertex whose incident edge’s weight is \(w + 2\), e.g., we could pick \(v = 0\) and \(u = 1\) in Figure 4. In the dendrogram, \(v\)’s parent’s child is the parent of \(u\). With the weight-\((n-1)\) edge added, however, the two binary trees “interleave”, and \(v\)’s parent’s other child is no longer the parent of \(u\). Therefore, either \(v\)’s parent changed, \(u\)’s parent changed, or \(v\)’s parent’s child changed. This is true for any of the \(\Theta(n)\) choices of \(v\). Moreover, no two vertices share parents, so changes to one vertex’s parent’s child do not overlap with changes to another vertex’s parent’s child. This shows that the number of changes in the dendrogram caused by the addition of the weight-\((n-1)\) edge is indeed \(\Theta(n)\).

C.2 Complete and weighted average linkage

Let \(k \in \mathbb{N}\). Create a graph on \(n = 2k+2\) vertices. For \(i \in \{1, 2, \ldots, k\}\), add edge \(\{0, i\}\) with weight \(3k+i\), edge \(\{i, k+i\}\) with weight \(2k+i\), and edge \(\{i, n-1\}\) with weight \(1\).
The corresponding HAC instance adds a vertex weighted average linkage in Appendix C.2. Let \(k \in S \). The construction is similar to the graph given for complete and through vertex \(v \) and we want to solve SubConn, maintaining some subset of vertices \(\{v, v'\} \) with weight \(\lambda^2 \).

Query: If we are reducing SubConn to HAC, return whether \(s \) and \(t \) are in the same cluster given similarity threshold \(\theta \). If we are reducing ConnSub to #HAC, then return whether the number of clusters is \(|V \setminus S| + 1 \).

Correctness: Consider running HAC until similarity threshold \(\theta \). First, all the weight-\(\lambda^2 \) edges merge, leaving each vertex \(v \in V \setminus S \) in a cluster \(\{v, v'\} \) that only has incident edges of weight 1. These clusters do not participate in any more merges. The remaining vertices \(v \in S \) cluster into their connected components in the subgraph induced by \(S \).

Adding an edge of weight \(4k + 1 \) between vertices 0 and \(n - 1 \) produces \(\Theta(n) \) changes in the dendrogram. With the weight-(\(4k + 1 \)) edge, for all \(i \in \{1, 2, \ldots, k\} \), vertices \(i \) and \(k + i \) directly merge with each other. Therefore, vertices \(i \) and \(k + i \) have the same parent in the dendrogram. Without the edge, each vertex successively merges as a singleton cluster with vertex \(0 \)'s cluster. Then no vertices have the same parent in the dendrogram besides vertices 0 and \(n - 1 \).

C.3 Average linkage

The construction is similar to the graph given for complete and weighted average linkage in Appendix C.2. Let \(k \in \mathbb{N} \). Create a graph on \(n = 4k + 1 \) vertices. For \(i \in \{1, 2, \ldots, k\} \), add edge \{0, \(i \)\} with weight \(2k^2 + i \) and edge \{\(i \), \(k+i \)\} with weight \(k + i \). For \(i \in \{2k+1, 2k+2, 2k+3, \ldots, 4k-1\} \), add edge \{\(i \), \(n-1 \)\} with weight \(8k^3 \).

Adding an edge of weight \(8\lambda^3 \) between vertices 0 and \(n - 1 \) produces \(\Theta(n) \) changes to the dendrogram. Figure 6 shows the graph with \(k = 2 \). As in Appendix C.2, with the extra edge, vertices 1 through 2k merge as pairs, whereas without the extra edge, those vertices merge as singleton clusters with vertex 0.

D HAC lower bounds

This section contains deferred proofs of the lower bounds stated in Section 6.3.

To complete the proof of Theorem 6.1, we give a reduction from SubConn to complete-linkage HAC.

Lemma D.1. [Part of Theorem 6.1] Let \(\lambda \in [1, \text{poly}(n)] \). Suppose we can solve dynamic / incremental / decremental \(\lambda \)-approximate complete-linkage HAC \(p(m, n) \) preprocessing work, \(u(m, n) \) update work, and \(q(m, n) \) query work. Then, we can solve dynamic / decremental / incremental SubConn with \(O(n^2) + p(O(m), O(n)) \) preprocessing work, \(u(O(m), O(n)) \) update work, and \(q(O(m), O(n)) \) query work. The same relationship is also true between #HAC and ConnSub.

Proof. Suppose we are given an unweighted graph \(G = (V, E) \) and we want to solve SubConn, maintaining some subset of vertices \(S \), using HAC. Define \(\lambda' = \lambda + 1 \) and set \(\theta = \lambda' \).

Preprocessing: Construct a new, weighted graph \(G' \) by copying \(G \) and giving every edge a weight of \(\lambda' \). For every \(v \in V \), create a vertex \(v' \) and add it to \(G' \). Create weight-1 edges by from \(v' \) to each neighbor in \(N(v) \), and then connect \(v \) to \(v' \) with weight \(\lambda'^2 \) if \(v \in V \setminus S \). Figure 7 illustrates this construction. The new graph \(G' \) has \(2n \) vertices and at most \(2m + n \) edges. Initialize dynamic HAC on graph \(G' \) with \(\theta = \lambda' \).

Update: Simulate inserting a vertex \(v \) into \(S \) by removing edge \{\(v, v' \)\}, and simulate deletion by adding edge \{\(v, v' \)\} with weight \(\lambda'^2 \).

Query: If we are reducing SubConn to HAC, return whether \(s \) and \(t \) are in the same cluster given similarity threshold \(\theta \). If we are reducing ConnSub to #HAC, then return whether the number of clusters is \(|V \setminus S| + 1 \).

We can similarly reduce SubConn to average-linkage HAC, albeit with worse bounds:

Lemma D.2. Let \(\lambda \in [1, \text{poly}(n)] \). Suppose we can solve dynamic / incremental / decremental \(\lambda \)-approximate average-linkage HAC \(p(m, n) \) preprocessing work, \(u(m, n) \) update work, and \(q(m, n) \) query work. Then, with \(m' \) and \(n' \) being \(O(\lambda^3) \), we can solve dynamic / decremental / incremental SubConn with \(O(m') + p(O(m'), O(n')) \) preprocessing work, \(u(O(m'), O(n')) \) update work, and \(q(O(m'), O(n')) \) query work. The same relationship is also true between #HAC and ConnSub.

Proof. Preprocessing: Construct a new, weighted graph \(G' \) by copying \(G \) and giving every edge a weight of \(1 \). Add a star graph to \(G' \) consisting of a new center vertex \(x \) and \(\lambda n^3 - 1 \) leaves with weight-\(2\lambda^2 n^3 \) edges. Add a weight-\(2\lambda^2 n^3 \) edge from \(x \) to each \(v \in V \setminus S \). Initialize dynamic HAC on \(G' \) with \(\theta = 4/n^2 \).

Update and query: Simulate inserting or removing a vertex \(x \) in \(S \) by removing or adding the weight-\(2\lambda^2 n^3 \) edge \((x, v) \). Querying is the same as Lemma D.1 with \(\theta = 4/n^2 \).

Correctness: The weight-\(2\lambda^2 n^3 \) edges have such high weight that they merge before any weight-1 edge. After that, \(x \)'s cluster \(C_x \) contains \(V \setminus S \) and has size \(|V \setminus S| + \lambda n^3 \). The similarity between \(x \)'s cluster \(C_x \) and another cluster \(C \) is at most

\[
\frac{|V \setminus S||C|}{(|V \setminus S| + \lambda n^3)|C|} < \frac{n}{2\lambda n^2} = \frac{1}{2\lambda n^2} < \frac{\theta}{\lambda}
\]

with the numerator on the left-hand side representing the worst case where every vertex of \(V \setminus S \) has an edge to every vertex of \(C \). Therefore, \(C_x \) experiences no more merges when clustering until threshold \(\theta \). The smallest similarity between any two adjacent clusters in the subgraph induced by \(S \), on the other hand, is at least \(4/n^2 = \theta \) (achieved by having two clusters of \(n/2 \) vertices each and only one edge \(e \in E \) crossing their cut), so adjacent clusters will merge. The subgraph induced by \(S \) hence merges into its connected components.

The cubic preprocessing work in Lemma D.2 is too high to achieve lower bounds conditional on triangle detection hardness or 3SUM hardness, but it does allow lower bounds conditional on online Boolean matrix-vector multiplication (OMv) hardness.
In the OMv problem, we are given an n-by-n Boolean matrix M and n columns $v_1, \ldots, v_n \in \{0, 1\}^n$ one-by-one. For each $i \in \{1, \ldots, n\}$, we must output v_M over the Boolean semiring, and we cannot see v_j for any $j > i$ until we output v_M. The OMv hardness conjecture is that solving OMv with an error probability of at most 1/3 requires $O(n^3 \omega(1))$ work [31].

Theorem D.3. Suppose for $\varepsilon > 0$ and $c \in [0, 1)$ that we can solve dynamic / partially dynamic $O(m^c)$-approximate average-linkage HAC with $\text{poly}(n)$ preprocessing work, $O(m^{1-c}/(1-c))$ amortized / worst-case update work, and $O(n^{1-c/3})$ query work. Then the OMv hardness conjecture is false.

Proof. Fix arbitrary $c \in [0, 1)$ and suppose we had an n^{c}-approximate (on inputs with n' vertices) HAC algorithm matching the work bounds described in the theorem. Then if we were given an st-SubConn instance with n vertices and m edges, we can apply the construction from Lemma D.2 with $\lambda = \Theta(n^{c'}(1-c'))$ to get a λ-approximate average-linkage HAC instance over a graph G' with m' and n' being $O(mn)$ and $O(n^{1-c'})$ and $\lambda \geq n^{c'}$. Then we can solve the instance with our $n^{c'}$-approximate HAC algorithm with $\text{poly}(n)$ preprocessing work, $O(n^{1/2-\Omega(1)})$ update work, and $O(n^{1-\Omega(1)})$ query work. Henzinger et al. show that such a fast algorithm for st-SubConn is impossible conditional on OMv hardness [31].

Lemma D.2 also implies a lower bound on average-linkage #HAC conditional on OMv hardness since Henzinger et al.'s [31] construction that reduces OMv to st-SubConn also works for ConnSub, but we can get a stronger lower bound by a different reduction. Henzinger et al. prove the hardness of st-SubConn conditional on OMv hardness by proving that it suffices to reduce a related problem called 1-uMv to st-SubConn. In the reduction, Henzinger et al. construct a bipartite graph G and use st-SubConn to solve the following problem: “activate” several vertices of G on demand and determine whether there is any edge connecting activated vertices. Instead of st-SubConn, we can use average-linkage #HAC to solve this bipartite graph problem and hence get a #HAC lower bound conditional on OMv.

Similarly, Abboud and Vassilevska Williams prove the hardness of st-SubConn conditional on triangle detection hardness by constructing a bipartite graph and solving the same problem of determining whether an edge in the bipartite graph connects activated vertices [1]. We can then also get an average-linkage #HAC lower bound conditional on triangle detection hardness.

The following theorem states the average-linkage #HAC lower bound conditional on OMv.

Theorem D.4. Suppose for $\varepsilon > 0$ and $c \in [0, 1)$ that we can solve dynamic / partially dynamic $O(m^c)$-approximate average-linkage #HAC with $\text{poly}(n)$ preprocessing work, $O(m^{1-c}/(1-c))$ amortized / worst-case update work, and $O(m^{1-c/3})$ query work. Then the OMv hardness conjecture is false.

Proof. As discussed in the text above, we construct a bipartite graph following Henzinger et al.'s reduction from 1-uMv to st-SubConn. Then we want to use #HAC determine whether there is any edge connecting activated vertices in the bipartite graph. We omit the remainder of this proof because it is similar to the proofs of Theorem D.5 and Lemma D.6 for reducing triangle detection to #HAC.

We state the average-linkage #HAC lower bound conditional on triangle detection hardness next. The triangle detection hardness conjecture is that there is a constant $\delta > 0$ such that any word-RAM algorithm detecting whether an m-edge graph has a triangle requires $O(m^{1+\delta-o(1)})$ expected work [1]. (The best existing triangle detection algorithms take $O(m \log (m/(\omega+1))$ work where $O((n^\omega)$ is the work to multiply $n \times n$ matrices [5, 35].)

Theorem D.5. Suppose for $\delta > 0$, $\varepsilon > 0$, and $c \in [0, 1)$ that we can solve one of the following problems with $O(m^{1+\delta-o(1)})$ preprocessing work, $O(m^{\delta(1-c)-\varepsilon})$ update work, and $O(m^{2\delta(1-c)-\varepsilon})$ query work:

- fully dynamic $O(m^c)$-approximate average-linkage #HAC with the work bounds being amortized,
- incremental (on dense graphs) or decremental $O(m^c)$-approximate average-linkage #HAC with the work bounds being worst-case.

Then the triangle detection hardness conjecture is false for this value of δ.

We prove the above theorem by directly reducing triangle detection to average-linkage #HAC in the following lemma.

Lemma D.6. Let $\lambda \in [1, \text{poly}(n)]$. Suppose that we can solve dynamic / partially dynamic λ-approximate average-linkage #HAC with $\text{poly}(n)$ preprocessing work $p(m, n)$, update work $u(m, n)$, and query work $g(m, n)$ amortized / worst-case. Let $m' = O(\lambda n + m)$ and $n' = O(\lambda n)$. Then triangle detection can be solved in $O(m' \cdot u(m', n') + n \cdot g(m', n') + p(m', n'))$ work. If we have an incremental algorithm instead with worst-case work bounds, then triangle detection can be solved in $O(n^2 \cdot u(m', n') + n \cdot g(m', n') + p(m', n'))$ work.

Proof. Suppose we are given an unweighted graph $G = (V, E)$ on which we want to detect a triangle. Following the construction in Abboud and Vassilevska Williams’ reduction from triangle detection to st-SubConn [1], we construct an (initially unweighted) bipartite graph $G' = (V' = A \cup B, E')$ with partitions A and B such that for each $v \in V$ we create $v_A \in A$ and $v_B \in B$. For every edge $(u, v) \in E$, create edges (v_A, v_B) and (v_A, v_B). Abboud and Vassilevska Williams remark that given an arbitrary vertex $v \in V$, if we “activate” v_A and v_B for every neighbor u of v, then v participates in a triangle if there is an edge connecting two activated vertices. Therefore, to detect whether the graph G has a triangle, we can iterate through each $v \in V$, activate v’s neighbors, check for an edge between activated vertices, and deactivate v’s neighbors.
We focus on the case of fully dynamic #HAC. To solve this bipartite graph problem using #HAC, we give every existing edge in \(E' \) a weight of 1. For each \(v \in A \cup B \), add a star graph to \(G' \) consisting of a center vertex \(v' \) and \(\lambda - 1 \) leaves with weight-\((\lambda + 1)^2\) edges. Add a weight-\((\lambda + 1)^2\) edge \((v, v')\) as well. Initialize #HAC on \(G' \) with threshold \(\theta = 1 \). We can "activate" a vertex \(v \) by deleting edge \((v, v')\) and "deactivate" it by re-inserting the edge. The graph \(G' \) has \(m' = O(\lambda n + m) \) edges and \(n' = O(\lambda n) \) vertices. Figure 8 illustrates this construction with \(G \) being Figure 8a and \(G' \) being Figure 8b.

To determine whether there is an edge between activated vertices, query for the number of clusters if we cluster until threshold \(\theta \). If the number of clusters is \(|A| + |B| \), then there is no such edge, otherwise there is such an edge. This is true because all deactivated vertices merge with their corresponding star, and then their incident edges fall below weight \(1/\lambda \) and hence are no longer considered when clustering until threshold \(\theta = 1 \). If there are no edges between two active vertices, then no more merges occur and we are left with \(|A| + |B| \) clusters. If there is an edge between two active vertices, at least one of them will merge and we will be left with fewer clusters.

The number of #HAC queries is \(O(n) \) (once for each vertex in \(V \)), and the number of #HAC updates is \(O(m) \) (once for each neighbor of each vertex in \(V \), i.e., twice for each edge of \(E \)). The total work is then \(O(m \cdot u(m', n') + n \cdot q(m', n') + p(m', n')) \).

As Abboud and Vassilevska Williams note for the partially dynamic case, we cannot deactivate vertices by inserting edges if we are considering decremental #HAC. Instead, we roll back the state of the #HAC algorithm until the vertices are no longer activated. This rolling back means that we can only analyze worst-case work and not amortized work. For incremental #HAC, we initialize the graph \(G' \) to not have the edges of the form \((v, v')\) (i.e., all vertices are activated). When we are iterating over \(V \) instead of activating \(v \)'s neighbors, we deactivate its non-neighbors. This increases the number of #HAC updates from \(O(m) \) to \(O(n^2) \).

Proof of Theorem D.5. Fix arbitrary \(c \in [0, 1) \) and suppose we had an \(m^{\kappa_c} \)-approximate (on inputs with \(m^{\kappa_c} \) edges) #HAC algorithm matching the work bounds described in the theorem. Then given a graph \(G \) on \(n \) vertices and \(m \geq n \) edges upon which we want to solve triangle detection, we can apply the construction from Lemma 6.6 with \(\lambda = \Theta(m^{\kappa_c/(1-c)}) \) to get a \(\lambda \)-approximate average-linkage #HAC instance over a graph \(G' \) with \(m' = O(m^{\kappa_c/(1-c)} n + m) \leq O(m^{\kappa_c/(1-c)} n) = O(m^{\kappa_c}) \) and \(\lambda = m^{\kappa_c} \). We apply a \(m^{\kappa_c} \)-approximate #HAC algorithm to solve triangle detection via Lemma 6.6 in \(O(m \cdot u(m', n') + n \cdot q(m', n') + p(m', n')) \) work (for fully dynamic and decremental #HAC; the analysis for incremental #HAC swaps the \(m \) factor with \(n^2 \) and hence only gives bounds on dense graphs). Substituting in the bounds of the #HAC algorithm and substituting \(m' = O(m^{\kappa_c/(1-c)}) \) shows that we’ve solved triangle detection in \(O(m^{1+3\delta-\Omega(1)} + nm^{2\delta-\Omega(1)}) \) work. Abboud and Vassilevska Williams provide a lemma showing that such a fast triangle detection algorithm gives an \(O(m^{1+3\delta-\Omega(1)}) \) work algorithm for triangle detection [1].

Next, we move on to reductions from SubUnion. We finish the proof of Lemma D.4 by reducing partially dynamic SubUnion to partially dynamic average-linkage #HAC.
whereas the other connected components consisting of a singleton.

Lemma D.8

Lemma D.8 (Part of Theorem 6.2).

Let $\lambda \in [1, \text{poly}(n)]$. Suppose we can solve dynamic / incremental / decremented λ-approximate weighted-average-linkage HAC with $p(m, n)$ preprocessing work, $u(m, n)$ update work, and $q(m, n)$ query work. Then we can solve dynamic / decremented / incremental SubUnion with $p(m', n')$ processing work, $u(m', n')$ update work, and $q(m', n')$ query work where $m' = O(|U| \log \lambda + \sum |X_i|)$ and $n' = O(|U| + |X| + \log \lambda)$.

Proof. Suppose we are given a SubUnion instance (X, U) with subset $S \subseteq X$. Define $\lambda' = \lambda + 1$ and set the clustering threshold to be $\theta = 2\lambda$.

Preprocessing: Figure 10 illustrates the graph we will construct.

Create a graph G with a vertex representing each $X_i \in X$, a vertex representing each $u \in U$, and a weight-$2\lambda^G$ edge (X_i, u) for each $u \in X_i$ for each $X_i \in X$. Add three extra vertices, x, s, and t. Add a weight-1 edge (x, u) for each $u \in U$. Add a vertex representing each $u \in U$. Add a weight-λ^G edge (x, X_i) for each $X_i \in X \setminus S$. Add a weight-λ^G edge (s, t). Add a weight-1 edge (s, u) and a weight-λ^G edge (t, u) for each $u \in U$. Add a weight-1 edge (t, X_i) for each $X_i \in X$. The resulting graph G has $n = O(|X| + |U|)$ vertices and $m = O(|X| + |U|)$ edges. Initialize dynamic HAC on G with $\theta = \lambda'$.

Update: To simulate adding X_i into S in the SubUnion instance, delete edge x, X_i in G. To remove X_i from S, insert the weight-λ^G edge (x, X_i).

Query: Query if vertices s and t are in the same cluster if we cluster up to similarity θ. If yes, return that S covers U, otherwise return that S does not cover U.

Correctness: All the weight-λG merge first, putting x and all $X_i \in X \setminus S$ in the same cluster. Then all edges incident on this cluster have weight-1, so they don’t participate in any more merges when clustering with threshold θ. Then the weight-λ^G edges incident on $X_i \in S$ merge, causing the subgraph induced by taking $X_i \in S$ and all $u \in U$ to merge into its connected components. Connected components containing some X_i will have a weight-1 edge to t, whereas the other connected components consisting of a singleton $u \in U$ will have a weight-λ^G edge with t.

Consider the case where S covers U. In this case, all edges from t to some $u \in U$ have weight 1, and the next edge to merge is the weight-λ^G between s and t. Hence s and t are in the same cluster, and a query will return the correct answer. In the case where S does not cover U, the next edge to merge is a weight-λ^G edge between t and some $u \in U$. After that, t’s cluster has a weight-1 edge with s, so t does not merge with s when clustering until threshold θ. Hence a query will return the correct answer in this case too.

Tom Tseng, Laxman Dhulipala, and Julian Shun
weight-2\lambda^4 edges, then merges with z via a weight-2\lambda^3 edge. The weight-2\lambda^2 edges merge the leaves of z’s star with z, decreasing the weight between t and s to below 2. Hence t and s do not merge, and a query again returns the correct answer.

\[\square\]

Lemma D.9 (Part of Theorem 6.2). Let \(\lambda \in [1, \text{poly}(n)]\). Suppose we can solve dynamic \(\lambda\)-approximate average-linkage #HAC in \(p(m, n)\) preprocessing work, \(u(m, n)\) update work, and \(q(m, n)\) query work. Then we can solve dynamic SubUnion with \(p(m', n')\) processing work, \(u(m', n')\) update work, and \(q(m', n')\) query work where \(m'\) and \(n'\) being \(O(\lambda^3(|X| + |U|)|X|)\).

If we can solve incremental / decremental \(\lambda\)-approximate average-linkage #HAC, then the bounds hold for solving decremental / incremental SubUnion with \(m'\) and \(n'\) being \(O(\lambda^5(|X| + |U|)|X|^3)\).

Proof. Suppose we are given a SubUnion instance \((X, U)\) with subset \(S \subseteq X\). We start by describing the case where we have a fully dynamic algorithm rather than a partially dynamic algorithm. Define the following constants:

\[
\theta = 1/(|X| + |U|),
\]

\[
w_y = \lambda |X| + 1 = O(\lambda |X|),
\]

\[
\ell_x = \lambda |X|/\theta = O(\lambda^2(|X| + |U|)|X|),
\]

\[
w_x = \lambda (\ell_x + |X|) + 1 = O(\lambda^2(|X| + |U|)|X|).
\]

Preprocessing: Figure 11 illustrates the graph we will construct. Create a graph \(G\) with a vertex representing each \(X_i \in X\), a vertex representing each \(u \in U\), and a weight-1 edge \(\{X_i, u\}\) for each \(u \in X_i\) for each \(X_i \in X\). Add an extra vertex \(y\), and add a weight-\(w_y\) edge from \(y\) to \(X_i\) for each \(X_i \in S\). Add a star graph with center \(x\) and \(\ell_x\) leaves connected to the center with weight \(w_x\). Add a weight-\(w_y\) edge from \(x\) to \(X_i\) for each \(X_i \in X \setminus S\). This graph has \(O(\ell_x)|X|\) edges and vertices. Initialize this HAC on the graph.

Update: Simulate adding \(X_i\) to \(S\) by adding a weight-\(w_y\) edge from \(X_i\) to \(y\) and removing the weight-\(w_x\) from \(X_i\) to \(x\). Similarly, simulate removing \(X_i\) from \(S\) by removing edge \(\{X_i, y\}\) and adding edge \(\{x, X_i\}\).

Query: Query whether there are exactly two clusters when performing HAC up to threshold \(\theta\). If yes, then return that \(S\) covers \(U\), otherwise return that \(S\) does not cover \(U\).

Correctness: The weights \(w_x\) and \(w_y\) are chosen to be large enough so that all the edges of weight \(w_x\) and \(w_y\) merge before any weight-1 edge. Let \(C_x\) denote \(x\)’s cluster (containing \(X \setminus S\) and \(C_y\) denote \(y\)’s cluster (containing \(S\)). From this point onwards, the similarity between \(C_x\) to another cluster \(C\) is always at most

\[
\frac{|X \setminus S| |C \cap U|}{|C_x||C|} < \frac{|X|}{\ell_x} = \frac{\theta}{\lambda},
\]

so \(C_x\) experiences no more merges. On the other hand, consider \(C_y\), which has edges connecting it to every \(u \in U\) covered by \(S\). Each \(u \in U\) is a singleton cluster until it merges with \(C_y\). The similarity between \(C_y\) and some \(u \in U\) covered by \(S\) and not yet merged with \(C_y\) is always at least

\[
\frac{1}{|X| + |U|} = \theta,
\]

so every \(u \in U\) covered by \(S\) merges with \(C_y\) when clustering until threshold \(\theta\).

After all the merges, in the case where \(S\) covers \(U\), we return the correct answer to a query since the only two clusters are \(C_x\) and \(C_y\). Otherwise, if \(S\) does not cover \(U\), then there will be more than two clusters since each uncovered \(u \in U\) will be in a singleton cluster. Hence we answer queries correctly in both cases.

Partially dynamic: The update strategy is invalid if we want to reduce incremental/decremental SubUnion to decremental/incremental #HAC. Instead, construct the graph so that \(y\) has edges to every \(X_i \in X\) rather than only \(X_i \in S\). When processing updates, we skip modifying edges incident on \(y\) and only add or remove the edges incident on \(x\). Then we need to increase \(\ell_x\) so that \(C_x\) and \(C_y\) do not merge with each other; we adjust the constants as follows:

\[
\ell_x = 2\lambda^3 |X| w_y/\theta = O(\lambda^4(|X| + |U|)|X|),
\]

\[
w_x = \lambda (\ell_x + |X|) w_y + 1 = O(\lambda^5(|X| + |U|)|X|^3).
\]

The weight \(w_x\) is chosen to be so large that all the weight-\(w_x\) edges merge before the weight-\(w_y\) edges. The last change in the correctness analysis to make sure that \(C_y\) and \(C_x\) never merge from this point onwards. The weight between \(C_x\) and \(C_y\) is bounded above by

\[
\frac{|X \setminus S| (w_y + |C_y \cap U|)}{|C_x||C_y|} < \frac{|X| w_y + |C_y \cap U|}{\ell_x |C_y|} < \frac{|X| w_y}{\ell_x} < \frac{2|X| w_y}{\ell_x} = \theta,\]

so indeed \(C_y\) and \(C_x\) do not merge.

\[\square\]