Lung Cancer: A Chronic Disease Epidemiology; Prevalence Study

Obubu Maxwell1*, Adeleke Akinrinade Kayode2, Yusuf Olufemi Olusola2, Adeleke Ireoluwa Joshua3, Onwuegbuokwu Virtus Chinedu1

1Department of Statistics, Nnamdi Azikiwe University, Awka, Nigeria.
2Department of Statistics, University of Ilorin, Ilorin, Nigeria.
3Department of Statistics, University of Ibadan, Ibadan, Nigeria.

Author’s contribution

This work was carried out in collaboration between all authors. Author OM designed the study, performed the statistical analysis and wrote the first draft of the manuscript. Authors AIJ and OVC wrote the protocol. Authors AAK and YOO managed the analysis of the study and the literature searches. All authors read and approved the final manuscript.

Article Information

DOI:10.9734/AJARR/2019/v3i430096

Received 12 November 2018
Accepted 25 February 2019
Published 13 March 2019

ABSTRACT

Chronic lung diseases (CLD) including asthma or chronic obstructive pulmonary disease (COPD) are a leading cause of morbidity and mortality worldwide and their occurrence in multiple sclerosis (MS) remains of interest. Increasing awareness of the possible adverse effect of CLD on outcomes in MS, such as disability progression and mortality, has heightened the need to understand the relationship between these chronic conditions. Prevalence of lung Cancer was discussed in this paper, with intend to; investigate the number of patients and deaths affected with lung cancer, test the effect of sex on lung cancer incidence, test the effect of environment and educational level on lung cancer incidence, examine the trend in lung cancer, and measure the relative risk associated with lung cancer. Secondary data sourced from the records units of five different hospitals was used. Cross tabulation, Chi-square test for independence, regression analysis, correlation analysis and odds ratio were applied on the three year study. From the study, it was found that lung cancer
cases are independent on environmental factor, educational level and sex. A strong linear relationship exists between lung cancer and death from such disease, implying that increase in the number of lung cancer cases has very high positive effect on the occurrence of death ($r = 0.783$), 61.4% of the variation in death occurrence is explained by lung cancer. The probability of dying from lung cancer is higher in patients 50 years and above than in younger patients (age < 50 yrs).

Keywords: Lung cancer; chronic disease epidemiology; prevalence study; odds ratio; relative risk.

1. INTRODUCTION

Lung cancer, also known as lung carcinoma [1-3], is a malignant lung tumor characterized by uncontrolled cell growth in tissues of the lung. If left untreated, this growth can spread beyond the lung by process of metastasis into nearby tissue or other parts of the body [4-5]. Most cancers that start in the lung, known as primary lung cancers, are carcinomas that derive from epithelial cells. The main primary types are small-cell lung carcinoma (SCLC) and non-small-cell lung carcinoma (NSCLC). The most common symptoms are coughing (including coughing up blood), weight loss, shortness of breath, and chest pains [6]. The vast majority (85%) of cases of lung cancer are due to long-term exposure to tobacco smoke [7]. About 10–15% of cases occur in people who have never smoked [8]. These cases are often caused by a combination of genetic factors [9] and exposure to radon gas [10], asbestos [11], or other forms of air pollution[12], including second-hand smoke [11]. Lung cancer may be seen on chest radiographs and computed tomography (CT) scans. The diagnosis is confirmed by biopsy [12] which is usually performed by bronchoscopy or CT-guidance. Treatment and long-term outcomes depend on the type of cancer, the stage (degree of spread), and the person's overall health, measured by performance status. Common treatments include surgery, chemotherapy, and radiotherapy. NSCLC is sometimes treated with surgery, whereas SCLC usually responds better to chemotherapy and radiotherapy [13]. Overall, 16.8% of people in the United States diagnosed with lung cancer survive five years after the diagnosis [14], while outcomes on average are worse in the developing world. Worldwide, lung cancer is the most common cause of cancer-related death in men and women, and was responsible for 1.56 million deaths annually, as of 2012 [14]. Signs and symptoms which may suggest lung cancer include:

1. **Respiratory symptoms** such as: coughing, coughing up blood, wheezing, or shortness of breath.
2. **Systemic symptoms:** weight loss, weakness, fever, or clubbing of the fingernails.
3. **Symptoms due to the cancer mass pressing on adjacent structures:** chest pain, bone pain, superior vena cava obstruction, or difficulty swallowing. If the cancer grows in the airways, it may obstruct airflow, causing breathing difficulties. The obstruction can lead to accumulation of secretions behind the blockage, and predispose to pneumonia [15].

Depending on the type of tumor, paraneoplastic phenomena—symptoms not due to the local presence of cancer—may initially attract attention to the disease [16]. In lung cancer, these phenomena may include hypercalcemia, syndrome of inappropriate antidiuretic hormone (SIADH, abnormally concentrated urine and diluted blood), ectopic ACTH production, or Lambert–Eaton myasthenic syndrome (muscle weakness due to autoantibodies). Tumors in the top of the lung, known as Pancoast tumors, may invade the local part of the sympathetic nervous system, leading to Horner’s syndrome (dropping of the eyelid and a small pupil on that side), as well as damage to the brachial plexus [17]. Many of the symptoms of lung cancer (poor appetite, weight loss, fever, fatigue) are not specific [18]. In many people, the cancer has already spread beyond the original site by the time they have symptoms and seek medical attention [19]. Symptoms that suggest the presence of metastatic disease include weight loss, bone pain and neurological symptoms (headaches, fainting, convulsions, or limb weakness) [20]. Common sites of spread include the brain, bone, adrenal glands, opposite lung, liver, pericardium, and kidneys [20]. About 10% of people with lung cancer do not have symptoms at diagnosis; these cancers are incidentally found on routine chest radiography [21-22]. Therefore in this paper, we intend to:

1. Investigate the number of patients and deaths affected with lung cancer.
ii. Test the effect of sex on lung cancer incidence
iii. Test the effect of environment and educational level on lung cancer incidence
iv. Examine the trend in lung cancer.
v. Measure the relative risk associated with lung cancer.

2. METHODOLOGY

To achieve the set objectives, data pertaining the subject matter was obtained from the records unit of five different hospitals.

2.1 Chi-Square Test for Independence

This test was applied to investigate the agreement between the observed and expected frequencies;

\[x^2 = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{(o_{ij} - e_{ij})^2}{e_{ij}} \]

And to test the hypothesis of independence

\[H_0: \text{The Classification is independent} \]
\[H_1: \text{The Classification is dependent} \]

2.2 Regression Model

Here, the relationship between the number of lung cancer patients and their death cases was determined using estimated model in the equation below:

\[\hat{y} = \hat{a} + \hat{b}x \]

Where,

\[\hat{b} = \frac{(n \sum xy - \sum x \sum y)}{n \sum x^2 - (\sum x)^2} \]
\[\hat{a} = \bar{y} - \hat{b}\bar{x} \]

2.3 Correlation Coefficient ‘R’ and Coefficient of Determination ‘R^2’

\[\hat{b} = \frac{(n \sum xy - \sum x \sum y)}{(n \sum x^2 - (\sum x)^2)(n \sum y^2 - (\sum y)^2)} \]
\[R^2 = \frac{SS_Y - SS_E}{SS_Y} = 1 - \frac{SS_E}{SS_Y} \quad \text{for} \quad 0 < R^2 < 1 \]

2.4 Odds Ratio

In other to measure the risk of experiencing the outcome under study when the antecedent factor is present, we make use of the odd ratio.

Table 1. Odd ratio
B
\(\hat{A} \)
Total

Therefore,

\[O_A = \frac{P_{11}}{P_{12}} \]
\[O_{\hat{A}} = \frac{P_{21}}{P_{22}} \]
\[O = \frac{O_A}{O_{\hat{A}}} \]

\[S.E (O) = \frac{Q}{(n)^{\frac{1}{2}}} = \left(\frac{1}{P_{11}} + \frac{1}{P_{12}} + \frac{1}{P_{21}} + \frac{1}{P_{22}} \right)^{\frac{1}{2}} \]

Thus, the estimated odds ratio is given by;

\[RR = \frac{P(B/A)}{P(\hat{B}/A)} \]

3. RESULTS AND DISCUSSION

3.1 Chi-Square Test for Independence of Sex on Lung Cancer Cases

\[H_0: \text{Lung Cancer cases are independent on Sex} \]
\[H_1: \text{Lung Cancer cases are dependent on Sex} \]

Table 2. Data showing age and sex on lung cancer
Age
Male
< 50
≥ 50
Total

Table 3. Age * sex cross tabulation
Age
Male
< 50
Expected count
≥ 50
Expected count
Total
Expected count
Table 4. Chi-square test

Test	Value	df	Asymp. Sig. (2 sided)	Exact Sig. (2-sided)	Exact Sig. (1-sided)
Pearson Chi-Square	1.010*	1	.315		
Continuity Correction	.479	1	.489		
Likelihood Ratio	1.016	1	.313		
Fisher's Exact Test				.363	.245
Linear-by-Linear Association	.993	1	.319		
N of Valid Cases					61

From Table 4, we see that \(\chi^2_{cal} = 1.010 \) this \(\chi^2 \) value is less than the \(\chi^2_{0.05,1} = 3.841 \) hence we do not reject the null hypothesis and conclude that lung cancer cases are independent on Gender.

3.3 Chi-Square Test for Independence of Educational Level on Lung Cancer Cases

H\(_0 \): Lung Cancer cases are independent on Educational Level
H\(_1 \): Lung Cancer cases are dependent on Educational Level

From Table 7, we see that \(\chi^2_{cal} = 5.486 \), this \(\chi^2 \) value is less than \(\chi^2_{0.05,2} = 5.991 \) hence we do not reject the null hypothesis and conclude that lung cancer cases are independent on educational level.

Table 5. Data showing age and environment on lung cancer

Age	Environment	Total	
	Urban	Rural	
< 50	22	9	31
≥ 50	17	13	30
Total	39	22	61

Table 6. Age * environment cross tabulation

Age	Environment	Total		
	Urban	Rural		
< 50	Count	22	9	31
	Expected Count	19.8	11.2	31.0
≥ 50	Count	17	13	30
	Expected Count	19.2	10.8	30.0
Total	Count	39	22	61
	Expected Count	39.0	22.0	61.0

Table 7. Chi-square test

Test	Value	df	Asymp. Sig. (2-sided)	Exact Sig. (2-sided)	Exact Sig. (1-sided)
Pearson Chi-Square	1.352*	1	0.245		
Continuity Correction	.803	1	0.370		
Likelihood Ratio	1.358	1	0.244		
Fisher's Exact Test				0.293	0.185
Linear-by-Linear Association	1.330	1	0.249		
N of Valid Cases					61
Table 8. Data showing age and educational level on lung cancer

Age	Tertiary	Secondary	Primary	Total
< 50	12	13	6	31
≥ 50	5	12	13	30
Total	17	25	19	61

Table 9. Age * educational level cross tabulation

Age	Educational level	Total			
	Tertiary	Secondary	Primary		
< 50		12	13	6	31
Count		8.6	12.7	9.7	31.0
> 50		5	12	13	30
Count		8.4	12.3	9.3	30.0
Total	Count	17	25	19	61
	Expected Count	17.0	25.0	19.0	61.0

Table 10. Chi-square test

Test	Value	Df	Asymp. Sig. (2-sided)
Pearson Chi-Square	5.486*	2	.064
Likelihood Ratio	5.634	2	.060
Linear-by-Linear Association	5.392	1	.020
N of Valid Cases	61		

3.4 Regression Analysis on the Total Number of Lung Cancer Cases and Death from Such Cases

Table 11 clearly shows a strong linear relationship exists between lung cancer and death from such disease, implying that increase in the number of lung cancer cases has very high positive effect on the occurrence of death ($r = 0.783$). Also, 61.4% of the variation in death occurrence is explained by lung cancer cases while 38.6% of the variation is due to other factors other than lung cancer. From Table 12, we see that a unit increase in lung cancer cases results in an increase in the number of death occurrence ($b = 0.362$), implying that there is a direct relationship between the number of lung cancer cases and the number of death occurrence from the disease.

Table 11. Model summary

Model	R	R square	Adjusted R square	Std. error of the estimate
1	.783*	.614	.607	.968

Table 12. Coefficients

Model	Unstandardized coefficients	Standardized coefficients	t	Sig.
	B	Std. Error	Beta	
1	(Constant)	0.805	0.372	0.230 0.042
Lung Cancer Cases	0.362	0.037	0.783	9.679 0.000

3.5 Calculation of Odds Ratio for Lung Cancer Cases

Table 13. Age * state of patient

Age	State of patients	Total		
	Death	Alive		
A	< 50	9	22	31
A	≥ 50	14	16	30
Total	23	38	61	
Table 14. Proportions; age * state of patient

Age	State of patients	Total		
	Death	Alive		
A	< 50	0.15	0.36	0.51
A	≥ 50	0.23	0.26	0.49
Total	0.38	0.62	1	

\[
P(B/A) = 0.71
\]

\[
P(\bar{B}/A) = 0.55
\]

\[
O_A = 0.42
\]

\[
O_A = 0.88
\]

\[
O = 0.47
\]

\[
RR = \frac{P(B/A)}{P(\bar{B}/A)} = 0.62
\]

From the equations above, \(O_A \) is 5/12 implying that 5 out of every 12 lung cancer patients aged less than 50 years is expected to die. Similarly, \(O_A \) is 23/26 implying that 23 out of every 26 lung cancer patient aged more than 50 years is expected to die. Equation 5 revealed an odds ratio of 0.41 indicating that the odds of lung cancer patient aged less than 50 years dying is 51% lesser than those aged 50 years and above. Relative Risk of lung cancer patient dying is \(\frac{51}{50} \approx 0.62 \) times higher for patients aged 50 years and above when compared with those aged below 50 years of age.

4. CONCLUSION

Based on the findings so far, we hereby conclude that the prevalence of lung cancer is independent on sex, environment and educational level, this therefore implies that it depends on other factors not considered in the study, this may include; tobacco smoking, genetic factors and exposure to random gas, asbestos or other forms of air pollution. Also, lung cancer claims more life in older patients (age ≥ 50 yrs) than in younger patients (age < 50 yrs). Therefore, the government should try as much as possible to eliminate tobacco smoking and the smoking of cessation. Policy interventions decreasing passive smoking in public areas such as restaurants and workplaces should be put in place. Also, the government to adhere to the World Health Organizations instructions to institute a total ban on tobacco advertising to prevent young people from taking up smoking.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Lung Carcinoma. Tumors of the Lungs. Merck Manual Professional Edition, Online Edition; 2007.
2. Falk S, Williams C. Chapter 1. Lung Cancer—the facts (3rd Ed.). Oxford University Press. 2010;3–4:ISBN 978-0-19-956933-5.
3. Available:https://wikivisually.com/wiki/Lung_cancer
4. Thun MJ, Hannan LM, Adams-Campbell LL, et al. Lung cancer occurrence in never-smokers: An analysis of 13 cohorts and 22 cancer registry studies. PLoS Medicine. 2008;5(9):e185. DOI: 10.1371/journal.pmed.0050185 PMC 2531137. PMID 18788891
5. Obubu M. Nwokolo PC. Prevalence of breast cancer in Delta State, Nigeria. World Journal of Probability and Statistics. 2016;2(2):1-9.
6. Osuji GA, Obubu M, Obiora-Ilouno HO. An investigation on the causes of low birth weight in Delta State, Nigeria. European Journal of Statistics and Probability. 2016; 4(1):1-6.
7. Osuji GA, Obubu M, Obiora-Ilouno HO. Uterine fibroid on women's fertility and pregnancy outcome in Delta State, Nigeria. Journal of Natural Sciences Research. 2016;6(2):27-33
8. Alberg AJ, Samet JM. Chapter 46. Murray & Nadel's Textbook of Respiratory Medicine (5th Ed.). Saunders Elsevier. 2010;ISBN 978-1-4160-4710-0.
9. O'Reilly KM, Mclaughlin AM, Beckett WS, Sime PJ. Asbestos-related lung disease.
10. Carmona RH. The health consequences of involuntary exposure to tobacco smoke: A Report of the Surgeon General. U.S. Department of Health and Human Services. Secondhand smoke exposure causes disease and premature death in children and adults who do not smoke; 2006.

11. Tobacco Smoke and Involuntary Smoking (PDF). IARC Monographs on the Evaluation of Carcinogenic Risks to Humans (WHO International Agency for Research on Cancer). There is sufficient evidence that involuntary smoking (exposure to secondhand or ‘environmental’ tobacco smoke) causes lung cancer in humans.... Involuntary smoking (exposure to secondhand or ‘environmental’ tobacco smoke) is carcinogenic to humans (Group 1). 2004.83.

12. Lu C, Onn A, Vaporciyan AA, et al. Cancer of the Lung. Holland-Frei Cancer Medicine (8th Ed.). People’s Medical Publishing House. 2010;78:ISBN 978-1-60795-014-1.

13. Chapman S, Robinson G, Stradling J, West S. Chapter 31. Oxford Handbook of Respiratory Medicine (2nd Ed.). Oxford University Press. 2009;ISBN 978-0-19-954516-2.

14. Surveillance, Epidemiology and End Results Program. National Cancer Institute; 2014.

15. World Cancer Report. World Health Organization; 2014; Chapter 1.1: ISBN 9283204298.

16. Honnorat J, Antoine JC. Paraneoplastic neurological syndromes. Orphanet Journal of Rare Diseases (BioMed Central). 2007;2(1):22. DOI: 10.1186/1750-1172-2-22

17. Greene Frederick L. AJCC cancer staging manual. Berlin: Springer-Verlag. 2002;ISBN 0-387-95271-3.

18. Collins LG, Haines C, Perkel R, Enck RE. Lung cancer: Diagnosis and management. American Family Physician (American Academy of Family Physicians). 2007; 75(1):56–63. PMID 17225705.

19. Osuji GA, Obubu M, Obiora-Ilouno HO, Okoro CN. Post-partum hemorrhage in Delta State, Nigeria; A Logistic Approach. International Journal of Sciences: Basic and Applied Research (IJSBAR). 2015; 24(6):45-53.

20. Osuji GA, Obubu M, Obiora-Ilouno HO, Nwosu DF. Perinatal mortality and associated obstetric risk factors in urban Delta State, Nigeria; Rural-Urban Differences. International Journal of Mathematics and Statistics Studies. 2015; 3(3):32-46.

21. Obubu M, Okoye Valentine, Omoruyi Frederick, Ngonadi Lilian Oluebube. Infant Mortality; a continuing social problem in Northern Nigeria: Cox Regression Approach. American Journal of Innovative Research and Applied Sciences. 2017; 5(5):1-5.

22. Maxwell O, Friday AI, Chukwudike NC, et al. A theoretical analysis of the odd generalized exponentiated inverse Lomax distribution. Biom Biostat Int J. 2019;8(1):17-22. DOI: 10.15406/bbij.2019.08.00264

© 2019 Maxwell et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
http://www.sdiarticle3.com/review-history/47717