Estimating the Copula of a class of Time-Changed Brownian Motions: A non-parametric Approach

Orimar Sauri* and Toke C. Zinn†

Department of Mathematical Sciences, Aalborg University
Skjernvej 4A, 9220, Aalborg, Denmark

This Version: November 16, 2020

Abstract
Within a high-frequency framework, we propose a non-parametric approach to estimate a family of copulas associated to a time-changed Brownian motion. We show that our estimator is consistent and asymptotically mixed-Gaussian. Furthermore, we test its finite-sample accuracy via Monte Carlo.

1 Introduction
One of the most fundamental results in probability theory is the so-called Sklar’s Theorem. It states that for every random vector \(\mathbf{X} = (X_1, \ldots, X_n) \) there exists a copula \(C \) (see Section 2) such that
\[
H(x) = C(F(x)), \quad \forall x \in \mathbb{R}^n,
\]
where \(H : \mathbb{R}^n \to [0, 1] \) is the cumulative distribution function (cdf for short) of \(\mathbf{X} \) and
\[
F(x) := (F_1(x_1), F_2(x_2), \ldots, F_n(x_n)), \quad x \in \mathbb{R}^n, \tag{1.1}
\]
and \(F_i \) is the cdf of \(X_i \), for \(i \) in \(\{1, 2, \ldots, n\} \).

Since then, copulas have been applied in a large number of sciences, for instance in hydrology \((11)\), engineering \((15)\), and, perhaps most noticeably, in finance. In finance, their primary use is in risk management and portfolio

*osauri@math.aau.dk
†tokecz@math.aau.dk
allocation. Specifically, copulas are used to model the joint distribution of financial assets. For a detailed account see [3] and [5]. Note that this way of using copulas can be considered as a spatial way of modeling dependence, i.e. describing the dependence between two or several stochastic processes at distinct times. Copulas have also found their use in temporal modelling as well. [4] characterized Markov processes by means of their copulas. [14] also define so-called copula processes. Furthermore, [4] derived the copula of the bivariate distributions of a Brownian motion. In addition, [13], argued that the copula of a Brownian motion could be used to construct similar processes with arbitrary marginal distributions.

In the spatial set-up, parametrical and non-parametrical inference for copulas is well documented. See for instance [12] and [6]. However, in the temporal case very little statistical analysis has been done, see for instance [2]. This paper aims at developing some results in that direction.

In the present work, we concentrate on the statistical inference for a family of copulas associated with the finite-dimensional distributions of a class of time-changed Brownian motions. More precisely, we propose a non-parametric estimator for a family of conditional copulas linked to a time-changed Brownian motion. We show consistency and asymptotic (mixed) normality under the assumption that the process is observed in a high-frequency set-up.

The paper is structured as follows. Section 2 introduces the notations used through the paper and discusses some essential preliminaries. In Section 3 we present our results and we show the performance of the estimator in finite-samples. In the last section the proofs of our main results are presented.

2 Background

In this section we recall several definitions and properties required to present our main results. Throughout this paper \((\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in [0, \infty)}, \mathbb{P})\) will denote a filtered probability space satisfying the usual assumptions of right-continuity and completeness. If \(\mathcal{X}\) is a set, then we will denote the \(n\)-fold cartesian product of \(\mathcal{X}\) with itself as \(\mathcal{X}^n\). Similarly, if \((\mathcal{X}, d)\) is a metric space, then the product metric defined on \(\mathcal{X}^n\) is denoted \(d^n\).

\[\begin{align*}
C(u) = 0, & \quad u \in [0, 1]^n : \exists i \in \{1, 2, \ldots, n\} : u_i = 0 \\
C(1, 1, \ldots, u, \ldots, 1) = u, & \quad u \in [0, 1] \\
\int_{[a,b]} dC \geq 0, & \quad \forall a, b \in [0, 1]^n : a \leq b.
\end{align*} \]
In this paper we focus on the time-changed Brownian motion

$$X_t = W_{T_t}, \quad t \geq 0,$$

where \((T_t)_{t \geq 0}\) is a continuous random time change independent of \(W\), that is, it is a non-decreasing process taking values in \([0, \infty)\) such that \(T_t\) is a \((\mathcal{F}_t)_{t \geq 0}\)-stopping time for all \(t \geq 0\). Within this framework, for all \(0 \leq t_0 < t_1 < t_2 < \cdots < t_n\), the copula associated to \((X_{t_0}, X_{t_1}, \ldots, X_{t_n})\), is completely determined by the law of \(T_n := (T_{t_0}, \ldots, T_{t_n})\) and the random fields

$$C(t_{k-1}, t_k; u, v) := \psi(T_{k-1}, T_k; u, v), \quad u, v \in [0, 1], \quad k = 1, \ldots, n,$$

where

$$\psi(s, t; u, v) := \begin{cases} \int_0^w \Phi \left(\sqrt{\frac{s \Phi^{-1}(u) - \sqrt{s \Phi^{-1}(w)}}{t - s}} \right) \, dw, & \text{if } |t - s| > 0; \\ u \wedge v & \text{if } t = s > 0; \\ uv & \text{otherwise}, \end{cases}$$

in which \(\Phi\) denotes the cdf of the standard normal distribution. For more details on the previous statements we refer the reader to [3] and [4]. It is not difficult to see that the mapping \((u, v) \mapsto C(t, s; u, v)\) satisfies (2.1) almost surely for all \(t \geq s\). Moreover, it holds that

$$C(s, t; F_s(x | T_t, T_s), F_t(y | T_t, T_s)) = \mathbb{P}(X_s \leq x, X_t \leq y | T_t, T_s),$$

where \(F_t(x | T_t, T_s)\) denotes the cdf of \(X_t\) given \((T_t, T_s)\). Motivated by (2.5) and the terminology used in [9], we will refer to \(C(t, s; \cdot, \cdot)\) as the conditional copula associated to \(X_t\).

2.2 Limit Theorems and Convergence

The notations \(\xrightarrow{P}\) and \(\xrightarrow{d}\) stand, respectively, for convergence in probability and in distribution of random vectors. As usual the space of càdlàg fields will be denoted by \(\mathbb{D}([0, \mathcal{T}]^n; \mathbb{R}^d)\). If \(X\) and \(X^n\) are two càdlàg processes we write \(X^n \xrightarrow{\mathcal{D}} P X\), whenever

$$\lim_{n \to \infty} \mathbb{P}(\sup_{0 \leq t \leq \mathcal{T}} \|X^n_t - X_t\| \geq \varepsilon) = 0, \quad \forall \mathcal{T}, \varepsilon > 0.$$

A sequence of random vectors \((\xi_n)_{n \geq 1}\) on \((\Omega, \mathcal{F}, \mathbb{P})\) is said to converge stably in law towards \(\xi\) (in symbols \(\xi_n \xrightarrow{s.d.} \xi\)), which is defined on an extension of \((\Omega, \mathcal{F}, \mathbb{P})\), say \((\overline{\Omega}, \overline{\mathcal{F}}, \overline{\mathbb{P}})\), if for every continuous and bounded function \(f\) and any bounded random variable \(\chi\) it holds that

$$\mathbb{E}(f(\xi_n)\chi) \to \overline{\mathbb{E}}(f(\xi)\chi),$$

where \(\overline{\mathbb{E}}\) denoted expectation w.r.t. \(\overline{\mathbb{P}}\). For a concise exposition of stable convergence see [7]. Given a stochastic process \(Z = (Z_t)_{t \geq 0}\), we will use the notation
\(\Delta_i^n Z := Z_{i/n} - Z_{(i-1)/n}, \) \(i \in \mathbb{N}. \) The \textit{realized variation} of a process \(Z = (Z_t)_{t \geq 0} \) is defined and denoted as the process

\[
[Z]_t^n = \frac{1}{n} \sum_{i=1}^{\lfloor nt \rfloor} (\Delta_i^n Z)^2, \quad t \geq 0.
\]

where \(\lfloor x \rfloor \) denotes the integer part of \(x \in \mathbb{R}. \) It is well known that if \(Z \) is a continuous semimartingale, then \([Z]_n \) u.c.p \(\Rightarrow [Z]. \)

3 Estimating the conditional copula of \(X \)

As discussed in Section 2, the copula associated to \((X_{t_0}, X_{t_2}, \ldots, X_{t_m})\), for \(0 < t_1 < t_2 < \cdots < t_m \), is completely determined by the law of \((T_{t_0}, \ldots, T_{t_m})\) as well as the family of conditional copulas \(\{C(s, t; u, v) : 0 \leq s, t \leq T, u, v \in [0, 1]\} \), where \(C \) as in (2.3). For the rest of this section, we propose a non-parametric approach for estimating the later. Our sample scheme is as follows:

The process \(X \) is observed on a fixed interval \([0, T]\), \(T > 0 \), at times \(t_i = i/n, \) for \(i = 0, 1, \ldots, \lfloor nT \rfloor \). Thus, motivated by (2.3) and the fact that \([X]_n \) u.c.p \(\Rightarrow [X] = T, \) as \(n \to \infty \), we propose to estimate \(C \) via

\[
C^n(s, t; u, v) := \psi([X]_n^{s}, [X]_n^{t}; u, v), \quad u, v \in [0, 1], 0 \leq s, t.
\]

Our first result shows that \(C^n \) is indeed a consistent estimator for \(C \).

Theorem 1. Let \(t_0 \geq 0 \), such that \(\mathbb{P}(T_{t_0} > 0) = 1. \) Then for all \(u, v \in [0, 1], \) \(T > t_0, \) and \(\varepsilon > 0 \), it holds

\[
\mathbb{P} \left(\sup_{t_0 \leq s, t \leq T} |C(s, t; u, v) - C^n(s, t; u, v)| \geq \varepsilon \right) \to 0, \quad n \to \infty.
\]

Now we proceed to derive second-order asymptotics for \(C^n. \) In order to do this, we require stronger assumptions on the structure of \(X. \) Specifically, we are going to assume that there is a \((G_t)_{t \geq 0}\)-Brownian motion \(B \) such that

\[
X_t = \int_0^t \sigma_s dB_s, \quad t \geq 0,
\]

where \(\sigma \) is a cádlág process. Observe that by Knight’s Theorem, \(X \) admits the representation

\[
X_t = W_{T_t}, \quad t \geq 0,
\]

where \(T_t = \int_0^t \sigma_r^2 dr, \) \(t \geq 0. \) Thus, if \(\sigma \) is assumed to be independent of \(B, \) we can further choose \(W \) to be independent of \(\sigma. \) This can be seen easily in the case when \(\int_0^\infty \sigma_r^2 dr = \infty. \) Indeed, in that situation it is well known (see for instance [1]) that (3.2) holds with

\[
W_t = X_{A_t}, \quad t \geq 0,
\]
where \(A_t = \inf\{s \geq 0 : T_s > t\} \), which easily implies that \(W \) is independent of \(\sigma \). The general case can be analysed in a similar way. Assuming that \(X \) admits the representation (3.1) we obtain the following Central Limit Theorem for \(C^n \).

Theorem 2. Let \(X \) be given by (3.1) and assume that \(\mathbb{P}(\sigma^2_t > 0) = 1 \) for all \(t \geq 0 \). Fix \(u, v \in (0, 1) \) and denote by \(\nabla \psi(s, t; u, v) = (\partial_t \psi(s, t; u, v), \partial_s \psi(s, t; u, v)) \). Then for \(0 < s < t \), as \(n \to \infty \)

\[
\sqrt{n} \left[C^n(s, t; u, v) - C(s, t; u, v) \right] \xrightarrow{s.d.} \sqrt{V_{s,t}} N(0, 1),
\]

where \(N(0, 1) \) is a standard normal random variable independent of \(F \) and

\[
V_{s,t} = 2 \nabla \psi(T_s, T_t; u, v) \left[\frac{Q_t}{Q_s} \frac{Q_s}{Q_s} \right] \nabla \psi(T_s, T_t; u, v)' ,
\]

in which \(Q_t := \int_0^t \sigma^4_r dr, t \geq 0 \).

A simple way to estimate \(V_{s,t} \) is by using power variations: If \(\sigma \) is càdlàg (see for instance [8]), then as \(n \to \infty \)

\[
Q^n_t := \frac{n}{3} \sum_{i=1}^{[n]} |\Delta^n_i Z|^4 \Rightarrow Q_t.
\]

Thus, a feasible estimator for \(V_{s,t} \) is

\[
V^n_{s,t} := 2 \nabla \psi([X]_s^n, [X]_t^n; u, v) \left[\frac{Q^n_t}{Q^n_s} \frac{Q^n_s}{Q^n_s} \right] \nabla \psi([X]_s^n, [X]_t^n; u, v)' \Rightarrow V_{s,t}.
\]

Thus, we have an easy consequence of the previous theorem:

Corollary 1. Under the assumptions of the previous theorem we have that

\[
\sqrt{n} \frac{V^n_{s,t}}{V_{s,t}} \left[C^n(s, t; u, v) - C(s, t; u, v) \right] \xrightarrow{s.d.} N(0, 1).
\]

3.1 Simulation study

In this part we study the finite-sample behavior of our proposed estimator. We use here Monte Carlo simulations to investigate the sensitivity of \(C^n \) to the variation of \(s, t, u, v \) as well as the sample size. Our set-up is as follows: The volatility term \(\sigma^2 \) is simulated according to the so-called Cox-Ingersoll-Ross process, i.e. \(\sigma^2 \) satisfies the stochastic differential equation

\[
d\sigma^2_t = \kappa(\theta - \sigma^2_t)dt + \nu \sqrt{\sigma^2_t} dW_t, \quad \sigma^2_0 = s_0.
\]

The parameters are set \((\kappa, \theta, \nu, s_0) = (0.5, 1.5, 1, 1.5)\) in such a way that the Feller condition \(2\kappa \theta > \nu^2 \) is satisfied. Based on this, we sample over the interval \([0, 1]\) equidistant discretizations \((X_{i/n})_{i=1}^n\), where \(X \) is given as in (3.2).
In Figure 1 we have plotted the level sets of $C^n(s, t; u, v)$ and $C(s, t; u, v)$ together with the 95% confidence contours provided by Theorem 2. The confidence contours behave as we would imagine; near the line $u = v$ we see that they allow for the largest deviations. As (u, v) approach the boundary of $[0, 1]^2$, the intervals diminish as expected: $C^n(s, t; u, v)$ and $C(s, t; u, v)$ coincide on the boundary. Furthermore, as n increases we see that the confidence contours become increasingly narrow as expected.

![Figure 1](image-url)

(a) Level curves with estimated confidence intervals for $n = 100$ points per path. (b) Level curves with estimated confidence intervals for $n = 10000$ points per path.

Figure 1: Level curves for the estimated copula with confidence intervals ($s = 0.3$ and $t = 0.7$).

In Figure 2 we report the finite-sample distribution of our standardized error against the standard normal distribution. We can see that the accuracy of our statistic is sensitive to the boundary points where s and t are close. Again, this behaviour is not unexpected; the temporal gradient $\nabla \psi$, as in Theorem 2, is given by

$$
\int_0^u \varphi \left(\frac{\sqrt{t} \Phi^{-1}(v) - \sqrt{s} \Phi^{-1}(w)}{\sqrt{t - s}} \right) \left(\frac{\Phi^{-1}(v) - \sqrt{t} \Phi^{-1}(v) - \sqrt{s} \Phi^{-1}(w)}{2 \sqrt{t - s}} \right) dw
$$

$$
\int_0^u \varphi \left(\frac{\sqrt{t} \Phi^{-1}(v) - \sqrt{s} \Phi^{-1}(w)}{\sqrt{t - s}} \right) \left(\frac{\sqrt{t} \Phi^{-1}(v) - \sqrt{s} \Phi^{-1}(w)}{2 \sqrt{t - s}} \right) dw
$$

Here, φ is the density function of a standard Gaussian. We see, that terms proportional to $1/\sqrt{t - s}$ appear. However, recall that as $(s, t) \to (t_0, 0)$ for $t_0 > 0$ the copula reduces to $C(t_0, 0; u, v) = u \wedge v$. Furthermore, it is also very likely that numerical errors influence the result here, due to terms such as $1/\sqrt{t - s}$.

We conclude this section by investigating whether the convergence in Theorem 1 can be extended to uniform convergence over (u, v). Specifically, we investigate, via Monte Carlo simulations, the asymptotic behavior of the statistic

$$
\rho(C^n, C) := \sup_{(u, v) \in [0, 1]^2} \sup_{\tau \leq s, t \leq \tau} \left| C^n(s, t; u, v) - C(s, t; u, v) \right|
$$

Figure 2: QQ plot for $\sqrt{n/V_{s,t}} \cdot (C^n(s, t; u, v) - C(s, t; u, v))$, $(n = 10000, (u, v) = (0.7, 0.3))$.

Figure 3: Density estimates for $\rho(C^n, C)$ on a logarithmic scale.
as the sample size increases.

Figure 3 shows the density estimates, obtained via a Gaussian kernel density estimate, for $\rho(C^n, C)$ on a logarithmic scale focusing on the peaks. Observe that the mean is located in the lower tail, due to a substantial number of simulations resulting in $\rho(C^n, C)$ being very close to 0. Similarly, $1/\sqrt{n}$ is also added to the plot, showing that the shift in the distribution is, relatively, proportional to $1/\sqrt{n}$ on a logarithmic scale. Based on Figure 3, these simulations indicate that Theorem 1 may be extended to include the supremum over $(u, v) \in [0, 1]^2$.

4 Proofs

The following lemmas are key for the proof of our main results.

Lemma 1. Let ψ be as in (2.4). For all $u, v \in [0, 1]$, the mapping $(s, t) \mapsto \psi(s, t; u, v)$ is continuous in $(0, \infty)^2$ and continuously differentiable in $\{ (s, t) | 0 < s < t \}$.

Proof. If (u, v) is in the boundary of $[0, 1]^2$ the result is trivial. Suppose that $u, v \in (0, 1)$ and put

$$g(t, s, w) := \Phi\left(\frac{\sqrt{t} \vee s \Phi^{-1}(v) - \sqrt{t \wedge s} \Phi^{-1}(w)}{\sqrt{|t - s|}}\right), \quad t, s > 0, w \neq v,$$

and $g(t, s, w) \equiv 0$ when $w = v$. From Example 5.32 in [13], it follows that for almost all $w \in [0, u]$

$$\lim_{(t, s) \to (t_0, s_0)} g(t, s, w) = \begin{cases} 1_{[0, v]}(w) & \text{if } t_0 = s_0; \\ g(t_0, s_0, w) & \text{if } t_0 \neq s_0. \end{cases} \quad (4.1)$$

The continuity then follows by the Lebesgue’s Dominated Convergence Theorem. On the other hand, for $w \neq v$ we have that for $0 < s < t$

$$\begin{bmatrix} \frac{\partial g(s, t, w)}{\partial t} \\ \frac{\partial g(s, t, w)}{\partial s} \end{bmatrix} = \begin{bmatrix} \phi\left(\frac{\sqrt{t \vee s \Phi^{-1}(v)} - \sqrt{t \wedge s} \Phi^{-1}(w)}{2\sqrt{|t - s|}}\right) & \Phi^{-1}(v) - \frac{\Phi^{-1}(w)}{2\sqrt{|t - s|}} \\ \phi\left(\frac{\sqrt{t \vee s \Phi^{-1}(v)} - \sqrt{t \wedge s} \Phi^{-1}(w)}{2\sqrt{|t - s|}}\right) & \frac{\Phi^{-1}(v) - \sqrt{t \wedge s} \Phi^{-1}(w)}{2\sqrt{|t - s|}} \end{bmatrix},$$

where ϕ is density of a standard normal distribution. Since for any constants c, k such that $k \neq 0$, it holds that $\phi(c + kx)x \to 0$ as $|x| \to \infty$, we deduce that

$$\sup_{w \in [0, 1]} \left\| \left(\frac{\partial g(s, t, w)}{\partial t}, \frac{\partial g(s, t, w)}{\partial s}\right) \right\| < \infty, \quad 0 < s < t. \quad (4.2)$$

Interchanging roles between s and t allow us to conclude that (4.2) is fulfilled for all $(s, t) \in \{(s, t) | 0 < s < t\}$. Another application of the Dominated Convergence Theorem concludes the proof. ■
Lemma 2. Let $g \in C((0, \infty)^n; \mathbb{R}^m)$, $m, n \in \mathbb{N}$ and $\mathcal{T} > 0$. Then the mapping

$$
\Psi : (\mathbb{F}([0, \mathcal{T}]; \mathbb{R})^n, d_{\infty}^\prime) \to (\mathbb{D}([0, \mathcal{T}]; \mathbb{R}^m), d_{\infty})
$$

$$
x \mapsto g(x_1(t_1), x_2(t_2), \ldots, x_n(t_n)), \quad \forall t = (t_1, t_2, \ldots, t_n) \in [0, \mathcal{T}]^n,
$$

is continuous, where d_{∞} denotes the supremum metric.

Proof. We must show that for every $x = (x_1, \ldots, x_n) \in \mathbb{F}([0, \mathcal{T}]; \mathbb{R})^n$ and $\varepsilon > 0$ there exists a $\delta > 0$ such that

$$
d_{\infty}^\prime(x, y) < \delta \implies d_{\infty}(\Psi(x), \Psi(y)) < \varepsilon. \quad (4.3)
$$

To this end, note first that for all $i = 1, \ldots, n$, $\inf_{t \in [0, \mathcal{T}]} x_i(t) = x_i(0) > 0$. Now, let $i = 1, \ldots, n$ and consider the set $B_{x_i} = \{ z \in \mathbb{F}([0, \mathcal{T}]; \mathbb{R}) \mid d_{\infty}(x_i, y) \leq x_i(0)/2 \}$. For $z \in B_{x_i}$, we have

$$
\sup_{t \in [0, \mathcal{T}]} |x_i(t) - z(t)| = \sup_{t \in [0, \mathcal{T}]} |x_i(t) - z(t)| < \max x_i(0)/2 =: c_{x_i}
$$

This implies $\sup_{t \in [0, \mathcal{T}]} |z(t)| \leq \sup_{t \in [0, \mathcal{T}]} |x_i(t)| + c_{x_i} < \infty$. Now set $C_{x_i} = c_{x_i} + \sup_{t \in [0, \mathcal{T}]} x_i(t)$. Then, $z(t), x_i(t) \in [c_{x_i}, C_{x_i}]$ for every $t \in [0, \mathcal{T}]$. Let $K = \prod_{i=1}^n [c_{x_i}, C_{x_i}] \subset (0, \infty)^n$. By the Heine-Cantor Theorem, it follows that the restriction of g to K is uniformly continuous. This means that we can find $\delta_0 > 0$ such that for all $|t - s| < \delta_0 \implies |g(t) - g(s)| < \varepsilon$. Now, put $\delta = \min(\delta_0, c_{x_1}, \ldots, c_{x_n})$. We conclude from above that if $y = (y_1, \ldots, y_n) \in \mathbb{F}([0, \mathcal{T}]; \mathbb{R})^n$ and $d_{\infty}^\prime(x, y) < \delta$ then $x(t), y(t) \in K$ for all $0 \leq t \leq \mathcal{T}$, from which (4.3) follows.

Proof of Theorem 1. Let $\mathcal{T} > t_0$. From Lemma 1 the mapping $(s, t) \mapsto \psi(s, t; u, v)$ is continuous in $(0, \infty)^2$. Thus, we deduce that ψ extends (as in Lemma 2) to a continuous function $\Psi : \mathbb{F}([0, \mathcal{T} - t_0]; (0, \infty)^2) \to \mathbb{D}([0, \mathcal{T}]^2; \mathbb{R})$. Moreover

$$
C^n(\cdot, \cdot; u, v) = \Psi((S_{t_0}[X]^n, S_{t_0}[X]^n)); \quad C(\cdot, \cdot; u, v) = \Psi(S_{t_0}T, S_{t_0}T),
$$

where $S_{t_0} : \mathbb{D}([0, \mathcal{T}]; \mathbb{R}) \to \mathbb{D}([0, \mathcal{T} - t_0]; \mathbb{R})$ denotes the shift operator, i.e.

$$
x \mapsto (S_{t_0}x)(t) = x(t + t_0), \quad \forall t \in [0, \mathcal{T} - t_0].
$$

In view that S_{t_0} is a continuous operator from $\mathbb{D}([0, \mathcal{T}]; \mathbb{R})$ to $\mathbb{D}([0, \mathcal{T} - t_0]; \mathbb{R})$ and $[X]^n \Rightarrow T$, as $n \to \infty$, we can now apply The Continuous Mapping Theorem (see for instance [3]) to conclude that

$$
d_{\infty}(\Psi(S_{t_0}[X]^n, S_{t_0}[X]^n), \Psi(S_{t_0}T, S_{t_0}T)) \to 0,
$$

which is exactly the conclusion of the theorem. □
Proof of Theorem 3. First note that thanks to Lemma 5.3.12 in [8] we may and do assume that \(|\sigma_t| \leq C\) for some deterministic constant \(C > 0\). Now, let
\[
Z_n := ([X]_t^n, [X]_s^n); \quad Z := (T_t, T_s).
\]
Since \(P(\sigma_t^2 > 0) = 1\) for all \(t \geq 0\), we can find \(n\) large enough such that \(Z_n \in \{(s, t) : 0 < s, t, t \neq s\}\). Moreover, by Taylor’s Theorem
\[
\sqrt{n} |C^n(s, t; u, v) - C(s, t; u, v), | = \int_0^1 \nabla \psi(Z + y(Z_n - Z), u, v)dy \cdot \sqrt{n}(Z_n - Z).
\]
From Theorem 5.4.2 in [8], it follows that for any \(s \neq t\)
\[
\sqrt{n}(Z_n - Z) \xrightarrow{s.d} \sqrt{2} \left(\int_0^t \sigma_t^2 dW_t, \int_0^s \sigma_t^2 dW_t' \right),
\]
where \(W^r\) is a Brownian motion independent of \(\mathcal{F}\). Therefore, it is enough to show that
\[
\int_0^1 \nabla \psi(Z + y(Z_n - Z), u, v)dy \xrightarrow{P} \nabla \psi(T_t, T_s, u, v). \quad (4.4)
\]
In view of \(Z_n \xrightarrow{P} Z\), every subsequence \(Z_n^k\) contains a further subsequence \(Z_{n(i)}^k\) such that \(Z_{n(i)}^k \xrightarrow{a.s.} Z\). Fix \(\omega \in \Omega_{t,s} := \{\omega \in \Omega : Z_{n(i)}^k(\omega) \rightarrow Z(\omega), Z(\omega) \in \{(s, t) \mid 0 < s < t\}\}\). By using that \(Z(\omega) \in V\), we can find an open ball with center \(Z(\omega)\) and radius \(\rho(\omega) > 0\) which is totally contained in \(\{(s, t) \mid 0 < s < t\}\). Moreover, for every \(\rho > \varepsilon > 0\) there is \(n_0 \equiv n_0(\omega) \in \mathbb{N}\) such that
\[
\|Z_{n(i)}^k(\omega) - Z(\omega)\| < \varepsilon, \quad \forall n_k(i) \geq n_0.
\]
This in particular implies that for all \(0 \leq y \leq 1\) and \(n_k(i) \geq n_0\), \(Z(\omega) + y(Z_n^k(\omega) - Z(\omega))\) is contained in an open ball with center \(Z(\omega)\) and radius \(\varepsilon > 0\). Therefore, we can find a compact set \(K_\omega \subseteq \{(s, t) \mid 0 < s < t\}\) such that \(Z(\omega) + y(Z_n^k(\omega) - Z(\omega)) \in K_\omega\) for all \(0 \leq y \leq 1\) and \(n_k(i) \geq n_0\). Hence, by the continuity of \(\nabla \psi\) on \(\{(s, t) \mid 0 < s < t\}\) (see Lemma [1]) and the Dominated Convergence Theorem, we deduce that as \(n_k(i) \rightarrow \infty\)
\[
\int_0^1 \nabla \psi(Z(\omega) + y(Z_n^k(\omega) - Z(\omega)), u, v)dy \rightarrow \nabla \psi(Z(\omega); u, v), \quad \forall \omega \in \Omega_{t,s}.
\]
(4.4) follows now by Theorem 6.3.1 in [10]. \(\blacksquare\)

References

[1] O. E Barndorff-Nielsen and A. Shiryaev. Change of Time and Change of Measure. WORLD SCIENTIFIC, 2nd edition, 2015.

[2] Xiaohong Chen and Yanqin Fan. Estimation of copula-based semiparametric time series models. Journal of Econometrics, 130(2):307–335, 2006.
[3] U. Cherubini, F. Gobbi, S. Mulinacci, and S. Romagnoli. *Introduction to empirical processes and semiparametric inference*. John Wiley & Sons Ltd, 2012.

[4] William F Darsow, Bao Nguyen, Elwood T Olsen, et al. Copulas and markov processes. *Illinois journal of mathematics*, 36(4):600–642, 1992.

[5] Christian Genest, Michel Gendron, and Michaël Bourdeau-Brien. The advent of copulas in finance. *The European Journal of Finance*, 15(7-8):609–618, 2009.

[6] Christian Genest, Kilani Ghoudi, and L-P Rivest. A semiparametric estimation procedure of dependence parameters in multivariate families of distributions. *Biometrika*, 82(3):543–552, 1995.

[7] Erich Häusler and Harald Luschgy. *Stable convergence and stable limit theorems*, volume 74. Springer, 2015.

[8] Jean Jacod and Philip Protter. *Discretization of processes*, volume 67. Springer Science & Business Media, 2011.

[9] Andrew J Patton. Modelling asymmetric exchange rate dependence. *International economic review*, 47(2):527–556, 2006.

[10] Sidney Resnick. *A probability path*. Springer, 2019.

[11] G Salvadori and Carlo De Michele. On the use of copulas in hydrology: theory and practice. *Journal of Hydrologic Engineering*, 12(4):369–380, 2007.

[12] Olivier Scaillet and Jean-David Fermanian. Nonparametric estimation of copulas for time series. *FAME Research paper*, (57), 2002.

[13] Volker Schmitz. *Copulas and stochastic processes*. PhD thesis, Bibliothek der RWTH Aachen, 2003.

[14] Andrew G Wilson and Zoubin Ghahramani. Copula processes. pages 2460–2468, 2010.

[15] SC Yang, TJ Liu, and HP Hong. Reliability of tower and tower-line systems under spatiotemporally varying wind or earthquake loads. *Journal of Structural Engineering*, 143(10):04017137, 2017.