GnRH Agonist Triggering of Ovulation Replacing hCG: A 30-Year-Old Revolution in IVF Practice Led by Rambam Health Care Campus

Shahar Kol, M.D.* and Ofer Fainaru, M.D., Ph.D.

IVF Unit, Rambam Health Care Campus, Haifa, Israel; and The Ruth and Bruce Rappaport Faculty of Medicine, Technion–Israel Institution of Technology, Haifa, Israel

ABSTRACT

Final oocyte maturation is a crucial step in in vitro fertilization, traditionally achieved with a single bolus of human chorionic gonadotropin (hCG) given 36 hours before oocyte retrieval. This bolus exposes the patient to the risks of ovarian hyperstimulation syndrome (OHSS), particularly in the face of ovarian hyperresponse to gonadotropins. Although multiple measures were developed to prevent OHSS, gonadotropin-releasing hormone (GnRH) agonist triggering is now globally recognized as the best approach to achieve this goal. The first report on the use of GnRH agonist as ovulation trigger in the context of OHSS prevention came from Rambam Health Care Campus, Haifa, Israel and appeared in 1988. This review details the events...
that culminated in worldwide acceptance of this measure and describes its benefit in the field of assisted reproductive technology.

KEY WORDS: GnRH agonist, GnRH antagonist, hCG, *in vitro* fertilization, ovarian hyperstimulation syndrome, ovulation triggering

INTRODUCTION

The first successful human *in vitro* fertilization (IVF) treatment was reported in 1978.\(^1\) It was achieved by harvesting an oocyte by laparoscopy in a natural cycle. This approach was associated with very low chances of live birth and was soon replaced by strategies that are more efficient. A major advantage was to stimulate the ovaries with gonadotropins in order to harvest more oocytes. In addition, it became necessary to control the time of ovulation, so oocyte retrieval could be scheduled to acceptable working hours. In a natural ovulatory cycle, a sharp rise in luteinizing hormone (LH) (and follicle-stimulating hormone, FSH) serum level is the biochemical trigger of a cascade of events resulting in ovulation. Since LH was not available, a surrogate molecule, human chorionic gonadotropin (hCG), was used for this purpose. In addition, since spontaneous ovulation led to treatment cancellations, its hormonal inhibition was sought in order to prevent premature luteinization. Since gonadotropin-releasing hormone (GnRH) agonists were developed at that stage, their ability to downregulate pituitary LH and FSH secretion helped increase treatment efficiency.\(^2\) However, at the same time, the combination of ovarian stimulation by gonadotropins after GnRH agonist-induced pituitary downregulation and hCG as final oocyte maturation trigger led to a sharp increase in the risk of ovarian hyperstimulation syndrome (OHSS). Although multiple approaches were suggested to prevent OHSS, they all fell short of achieving this goal.

GnRH AGONIST TRIGGER IN THE CONTEXT OF OHSS PREVENTION

The first report on the use of a GnRH agonist as ovulation trigger in the context of OHSS prevention came from the Rambam Health Care Campus (Rambam), Haifa, Israel and appeared in 1988 as an abstract.\(^3\) Soon after, a full paper was published, underscoring the concept that a bolus of GnRH agonist is able to trigger an adequate mid-cycle LH/FSH surge, resulting in oocyte maturation and pregnancy. In addition, experience with eight patients with exaggerated response suggested that it might prevent the clinical manifestation of OHSS.\(^4\) A full review of the hormonal events after GnRH agonist trigger followed.\(^5\) As more experience was gained with GnRH agonist triggering, it became apparent that conducting a randomized controlled study, comparing hCG and GnRH agonist triggers in high-risk patients, would be unethical. Therefore, a case-control study was published in an effort to describe the unparalleled strength of this modality in comparison to other strategies used to prevent OHSS.\(^6\) The use of intravenous albumin around the time of oocyte retrieval was also suggested as a major intervention to prevent OHSS; however, our experience, as well as that of others, led to abandonment of this approach.\(^7\)

PRE-GnRH ANTAGONIST ERA

Importantly, the IVF community was reluctant to adopt the GnRH agonist trigger in the context of OHSS prevention, since up to the year 2000 GnRH agonists were used solely to prevent premature LH rise and luteinization by pituitary downregulation in most IVF cycles. Naturally, under these protocols, a GnRH agonist could not be used as a trigger. In addition, the experience at Rambam of total elimination of OHSS was met with skepticism and disbelief. In order to allow a GnRH agonist trigger, a GnRH analog-free protocol must be used, with increased risk of cycle cancellation due to premature LH rise and luteinization. On the other hand, a GnRH agonist trigger was used in “hyper-responder” patients, in whom high serum concentrations of gonadotrophin surge-attenuating factor (GnSAF) are found. The GnSAF decreases the risk of premature luteinization by its action on endogenous GnRH secretion pattern.\(^8,9\) Therefore, in IVF patients at high risk of OHSS, the risk of premature luteinization and cycle cancellation is relatively low, even if GnRH agonists are not used for pituitary downregulation.
AT THE TURN OF THE CENTURY

During the last decade of the twentieth century, intensive pharmaceutical efforts reached the target of producing GnRH antagonists with proven clinical activity and few side effects.10 These products were used in conjunction with recombinant FSH preparations. The first pregnancy in the world with such a combination was achieved at Rambam.11 More importantly, GnRH antagonists allowed for the use of GnRH agonists as ovulation trigger. Since the last antagonist dose is given many hours before the GnRH agonist trigger dose, it seems plausible that the agonist trigger under these circumstances can elicit an adequate LH surge to secure final oocyte maturation. The first proof-of-concept study along these lines was performed at Rambam.12 The report described the use of 0.2 mg triptorelin (Decapeptyl, Ipsen Pharma Biotech, Signes, France) to trigger ovulation in eight patients who underwent controlled ovarian hyperstimulation with recombinant FSH and concomitant treatment with the GnRH antagonist ganirelix (Orgalutran, N.V. Organon, BH OSS, The Netherlands) for the prevention of premature LH surges. All patients were considered to have an increased risk for developing OHSS. After GnRH agonist injection, endogenous serum LH and FSH surges were observed with median peak values of 219 and 19 IU/L respectively, measured 4 h after injection. These values are comparable to those described for women that were not exposed to GnRH antagonist treatment before the GnRH agonist trigger. The mean number of oocytes obtained was 23.4±15.4, of which 83% were mature (metaphase II). None of the patients developed any signs or symptoms of OHSS. The ability of the GnRH agonist to trigger final oocyte maturation after co-treatment with the GnRH antagonist during ovarian hyperstimulation for \textit{in vitro} fertilization was subsequently confirmed.13

MECHANISM OF OHSS PREVENTION

Although the efficient capacity of GnRH agonist triggering to prevent OHSS was evident, the mechanism by which it works was not clear. To shed more light on this aspect, luteal activity post GnRH agonist trigger was examined. Specifically, corpus luteum function was assessed by measuring luteal phase levels of inhibin A and pro-\(\alpha\)-C, peptides that reflect luteal phase hormonal activity. These peptides were measured in a small prospective randomized trial, after controlled ovarian hyperstimulation with FSH and GnRH antagonist. Following trigger-

WORLDWIDE DISSEMINATION

The first (and probably last) randomized controlled study comparing outcome after GnRH agonist and hCG triggers in OHSS high-risk patients was published in 2008.14 None of the patients in the study group developed any form of OHSS, compared with 31% (10/32) of the patients in the control group. Such a big difference left any further similar studies unethical to conduct, and convinced the international fertility community that the GnRH agonist trigger is the most efficient means to prevent OHSS. Soon, a Cochrane review documented GnRH agonist triggering as a well-established mode of OHSS prevention.15 Similarly, professional organizations echoed the same message: “... strong evidence that the use of a GnRH agonist trigger results in a significant reduction in the development of OHSS.”16 Finally, as of 2013, more than one-third of IVF cycles in Europe were triggered with GnRH agonist.17

The growing interest in GnRH agonist triggering also prompted the creation of a special interest group, “The Copenhagen GnRH Agonist Triggering Workshop Group,” that was instrumental in expediting the “change of practice” from hCG to GnRH agonist trigger.18

SIDE BENEFITS

During the follicular phase, the dominant follicle acquires the ingredients and maturation stage for ovulation. The pituitary, firing a biochemical trigger (LH and FSH surges), controls the cue for ovulation. Luteinizing hormone homology and a relatively easy manufacturing process makes hCG an excellent molecule to be used in triggering ovulation. Unlike the LH/FSH surge, which terminates 48 hours after its onset, hCG activity spans long into the luteal
phase. This supra-physiologic LH-like activity over-
stimulates the corpora lutea, leading to high serum
estradiol levels, which in turn decreases endogenous
LH secretion. Luteal phase defect follows, which
makes luteal phase support mandatory in order to
maintain a receptive endometrium. An effort to
introduce recombinant LH as a trigger was pub-
ished in 2001 by the European Recombinant LH
Study Group, but the project was terminated due
to high cost and low success rate.

Although the role of the FSH mid-cycle surge is
not fully explored, it is known to promote LH
receptor formation in luteinizing granulosa cells,
nuclear maturation (i.e. resumption of meiosis), and
cumulus expansion. Preceding, we have been
relying solely on LH activity-dependent (hCG)
triggering of final oocyte maturation, assuming that
the natural mid-cycle FSH surge is biologically
redundant. However, several authors have reported
an increase in oocyte yield following the GnRH
agonist trigger compared with the routine hCG
trigger. It cannot be ruled out that the added FSH
surge contributes to this difference. A simple way to
prompt FSH surge is to administer GnRH agonist.

MANIPULATING LUTEAL PHASE
SUPPORT

If OHSS is not a concern, GnRH agonist can be
followed by two boluses of hCG (1,500 IU each) for
luteal rescue, without any additional progesterone-
based luteal support. Thus, the triggering (high-
dose) property of hCG is dissected from its luteal
supportive properties (low-dose), which imitates
normal physiology more closely, and yields high
progesterone levels during the implantation
window. In OHSS high-risk patients high-dose
progesterone and estradiol may offer a good clinical
outcome with almost total elimination of OHSS.
Another option is to support the luteal phase with a
single bolus of low-dose hCG (1,500 IU instead of the
usual trigger dose of 6,500 IU).

Previously, follicular phase “coasting” in the
“long” GnRH agonist downregulation protocol has
been suggested as a strategy for OHSS prevention.
Coasting seeks to induce partial atresia of the
developing follicles by withholding gonadotropin
stimulation, while monitoring estradiol levels,
considered to reflect theca—and granulosa—cell
function. Using this strategy, hCG trigger is
administered when estradiol levels drop below a
certain cut-off level, reflecting partial demise of the
developing follicles, decreasing the burden of
multiple corpora lutea formation that follows. To
individualize luteal phase support in OHSS high-risk
patients, having a fresh transfer after GnRH agonist
trigger, the same principle that holds for follicular
phase coating might be valid during the luteal phase—in other words, monitoring progesterone
levels, and administering the hCG luteal phase
rescue bolus (1,500 IU) when progesterone levels
drop significantly. This approach was implemented
and published recently, taking progesterone level
of 30 nmol/L as a threshold level for hCG
administration.

As we gain more experience with GnRH agonist
trigger, we have documented rare cases in which
luteolysis does not occur, and intensive endogenous
luteal function is maintained, leaving any additional
exogenous support redundant and exposing the
patient to OHSS risk.

SUMMARY

This short review describes the events that were
initiated at Rambam and led to a profound change
in IVF practice. Over the last 30 years the research
and clinical experience led by Rambam IVF has
reached worldwide acceptance, as more and more
cycles are now triggered with GnRH agonists. The
primary advantage of this elegant triggering mode is
improvement in IVF safety, as it has led to almost
total elimination of OHSS, a potentially lethal
complication of ovarian stimulation.

REFERENCES

1. Steptoe PC, Edwards RG. Birth after the reimplanta-
tion of a human embryo. Lancet 1978;2:366. Crossref
2. Porter RN, Smith W, Craft IL, Abdulwahid NA,
Jacobs HS. Induction of ovulation for in vitro fertiliza-
tion using buserelin and gonadotropins. Lancet
1984;2:1284–5. Crossref
3. Itskovitz J, Boldes R, Barlev A, Erlik Y, Kahana L,
Brandes JM. The introduction of LH surge and oocyte
maturation by GnRH analog (buserelin) in women
undergoing ovarian stimulation for in vitro fertiliza-
tion. Gynecol Endocrinol 1988;2(Suppl 2):165.
4. Itskovitz J, Boldes R, Levron J, Erlik Y, Kahana L,
Brandes JM. Induction of preovulatory luteinizing
hormone surge and prevention of ovarian hyperstim-
ulation syndrome by gonadotropin-releasing hor-
mone agonist. Fertil Steril 1991;56:213–20. Crossref
5. Itskovitz-Eldor J, Levron J, Kol S. Use of
gonadotropin-releasing hormone agonist to cause
ovulation and prevent the ovarian hyperstimulation syndrome. Clin Obstet Gynecol 1993;36:701–10. Crossref
6. Lewit N, Kol S, Manor D, Itskovitz-Eldor J. Comparison of gonadotropin-releasing hormone analogues and human choric gonadotropin for the induction of ovulation and prevention of ovarian hyperstimulation syndrome: a case-control study. Hum Reprod 1996;11:1399–402. Crossref
7. Lewit N, Kol S, Ronen N, Itskovitz-Eldor J. Does intravenous administration of human albumin prevent severe ovarian hyperstimulation syndrome? Fertil Steril 1996;66:654–6. Crossref
8. Fowler PA, Cunningham P, Fraser M, et al. Circulating gonadotrophin surge-attenuating factor from superovulated women suppresses in vitro gonadotrophin-releasing hormone self-priming. J Endocrinol 1994;143:45–54. Crossref
9. Messinis IE, Templeton A. Attenuation of gonadotrophin release and reserve in superovulated women by gonadotrophin surge attenuating factor (GnSAF). Clin Endocrinol (Oxf) 1991;34:259–63. Crossref
10. A double-blind, randomized, dose-finding study to assess the efficacy of the gonadotrophin-releasing hormone antagonist ganirelix (Org 37462) to prevent premature luteinizing hormone surges in women undergoing ovarian stimulation with recombinant follicle stimulating hormone (Puregon). The ganirelix dose-finding study group. Hum Reprod 1998;13:3023–31. Crossref
11. Itskovitz-Eldor J, Kol S, Mannaerts B, Coelingh Bennink H. First established pregnancy after controlled ovarian hyperstimulation with recombinant follicle stimulating hormone and the gonadotrophin-releasing hormone antagonist ganirelix (Org 37462). Hum Reprod 1998;13:294–5. Crossref
12. Itskovitz-Eldor J, Kol S, Mannaerts B. Use of a single bolus of GnRH agonist triptorelin to trigger ovulation after GnRH antagonist ganirelix treatment in women undergoing ovarian stimulation for assisted reproduction, with special reference to the prevention of ovarian hyperstimulation syndrome: preliminary report: short communication. Hum Reprod 2000;15:1965–8. Crossref
13. Fauser BC, de Jong D, Olivennes F, et al. Endocrine profiles after triggering of final oocyte maturation with GnRH agonist after cotreatment with the GnRH antagonist ganirelix during ovarian hyperstimulation for in vitro fertilization. J Clin Endocrinol Metab 2002;87:709–15. Crossref
14. Nevo O, Eldar-Geva T, Kol S, Itskovitz-Eldor J. Lower levels of inhibin A and pro-alpha C during the luteal phase after triggering oocyte maturation with a gonadotropin-releasing hormone agonist versus human choric gonadotropin. Fertil Steril 2003;79:1123–8. Crossref
15. Kol S. Luteolysis induced by a gonadotropin-releasing hormone agonist is the key to prevention of ovarian hyperstimulation syndrome. Fertil Steril 2004;81:1–5. Crossref
16. Devroey P, Polyzos NP, Blockeel C. An O.H.S.S.-free clinic by segmentation of IVF treatment. Hum Reprod 2011;26:2593–7. Crossref
17. Engmann L, DiLuigi A, Schmidt D, Nulsen J, Maier D, Benadiva C. The use of gonadotropin-releasing hormone (GnRH) agonist to induce oocyte maturation after cotreatment with GnRH antagonist in high-risk patients undergoing in vitro fertilization prevents the risk of ovarian hyperstimulation syndrome: a prospective randomized controlled study. Fertil Steril 2008;89:84–91. Crossref
18. Youssef MA, Van der Veen F, Al-Inany HG, et al. Gonadotropin-releasing hormone agonist versus HCG for oocyte triggering in antagonist-assisted reproductive technology. Cochrane Database Syst Rev 2014;3:10. Crossref
19. Practice Committee of the American Society for Reproductive Medicine. Prevention and treatment of moderate and severe ovarian hyperstimulation syndrome: a guideline. Fertil Steril 2016;106:1634–47. Crossref
20. IVF Worldwide. Survey on vitrification, GnRH trigger and differed embryo transfer. Available at: www.ivf-worldwide.com/survey/vitrification-gnhrtrigger-and-differed-et.html (accessed December 11, 2013).
21. Humaidan P, Kol S, Papanikolaou EG, Copenhagen GnRH Agonist Triggering Workshop Group. GnRH agonist for triggering of final oocyte maturation: time for a change of practice? Hum Reprod Update 2011;17:510–24. Crossref
22. The European Recombinant Human LH Study Group. Recombinant human luteinizing hormone (LH) to support recombinant human follicle-stimulating hormone (FSH)-induced follicular development in LH- and FSH-deficient anovulatory women: a dose-finding study. J Clin Endocrinol Metab 1998;83:1507–14.
23. Zelinski-Wooten MB, Hutchison JS, Hess DL, Wolf DP, Stouffer RL. Follicle stimulating hormone alone supports follicle growth and oocyte development in gonadotrophin-releasing hormone antagonist-treated monkeys. Hum Reprod 1995;10:1658–66. Crossref
24. Eppig J. FSH stimulates hyaluronic acid synthesis by oocyte-cumulus complexes from mouse preovulatory follicle. Nature 1979;281:483–6. Crossref
25. Humaidan P, Ejdrup Bredkjaer H, Westergaard LG, Yding Andersen C. 1,500 IU human chorionic gonadotropin administered at oocyte retrieval rescues the luteal phase when gonadotropin-releasing hormone agonist is used for ovulation induction: a prospective, randomized, controlled study. Fertil Steril 2010;93:847–54. CrossRef

26. Kol S, Humaidan P, Itskovitz-Eldor J. GnRH agonist ovulation trigger and hCG-based, progesterone-free luteal support: a proof of concept study. Hum Reprod 2011;26:2874–7. CrossRef

27. Kol S, Breyzman T, Segal L, Humaidan P. 'Luteal coasting' after GnRH agonist trigger - individualized, HCG-based, progesterone-free luteal support in 'high responders': a case series. Reprod Biomed Online 2015;31:747–51. CrossRef

28. Fatemi HM, Popovic-Todorovic B, Humaidan P, et al. Severe ovarian hyperstimulation syndrome after gonadotropin-releasing hormone (GnRH) agonist trigger and "freeze-all" approach in GnRH antagonist protocol. Fertil Steril 2014;101:1008–11. CrossRef

29. Kol S, Breyzman T. GnRH agonist trigger does not always cause luteolysis: a case report. Reprod Biomed Online 2016;32:132–4. CrossRef

30. Braat DD, Schutte JM, Bernardus RE, Mooij TM, van Leeuwen FE. Maternal death related to IVF in the Netherlands 1984-2008. Hum Reprod 2010;25:1782–6. CrossRef