A short note on Cuntz splice from a viewpoint of continuous orbit equivalence of topological Markov shifts

Kengo Matsumoto
Department of Mathematics
Joetsu University of Education
Joetsu, 943-8512, JAPAN

Abstract

Let A be an $N \times N$ irreducible matrix with entries in $\{0, 1\}$. We present an easy way to find an $(N+3) \times (N+3)$ irreducible matrix \overline{A} with entries in $\{0, 1\}$ such that their Cuntz–Krieger algebras \mathcal{O}_A and $\mathcal{O}_{\overline{A}}$ are isomorphic and $\det(1 - A) = -\det(1 - \overline{A})$. As a consequence, we know that two Cuntz–Krieger algebras \mathcal{O}_A and \mathcal{O}_B are isomorphic if and only if the one-sided topological Markov shift (X_A, σ_A) is continuously orbit equivalent to either (X_B, σ_B) or $(\overline{X}_B, \overline{\sigma}_B)$.

For an $N \times N$ irreducible matrix A with entries in $\{0, 1\}$, let us denote by $G(A)$ the abelian group $\mathbb{Z}^N/(1 - A^t)\mathbb{Z}^N$ and by u_A the position of the class $[(1, \ldots, 1)]$ of the vector $(1, \ldots, 1)$ in the group $G(A)$. Throughout this short note, matrices are all assumed to be irreducible and not any permutation matrices. J. Cuntz in [3] has shown that the pair $(K_0(\mathcal{O}_A), [1])$ of the K_0-group $K_0(\mathcal{O}_A)$ of the Cuntz–Krieger algebra \mathcal{O}_A and the class $[1]$ of the unit in $K_0(\mathcal{O}_A)$ is isomorphic to $(G(A), u_A)$. In [12], M. Rørdam has shown that $(G(A), u_A)$ is a complete invariant of the isomorphism class of \mathcal{O}_A (see [6] for $N \leq 3$). For an $N \times N$ irreducible matrix $A = [A(i, j)]_{i, j=1}^N$ with entries in $\{0, 1\}$, the $(N+2) \times (N+2)$ irreducible matrix A_- defined by

$$A_- = \begin{pmatrix}
A(1, 1) & \ldots & A(1, N-1) & A(1, N) & 0 & 0 \\
\vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
A(N-1, 1) & \ldots & A(N-1, N-1) & A(N-1, N) & 0 & 0 \\
A(N, 1) & \ldots & A(N, N-1) & A(N, N) & 1 & 0 \\
0 & \ldots & 0 & 1 & 1 & 1 \\
0 & \ldots & 0 & 0 & 1 & 1
\end{pmatrix}$$

is called the Cuntz splice for A, which has been first introduced in [4] by J. Cuntz, related to classification problem for Cuntz–Krieger algebras. In [4], he had used the notation A^- instead of the above A_-. The crucial property of the Cuntz splice is that $G(A_-)$ is isomorphic to $G(A)$ and $\det(1 - A_-) = -\det(1 - A)$. The Cuntz splice

$$\begin{pmatrix}
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1
\end{pmatrix}$$

is

1
for the matrix $[1\ 1]$ is denoted by 2_-. In the proof of the above Rørdam’s result [12, Theorem 6.5], J. Cuntz’s theorem [12, Theorem 7.2] is used which says that $O_2 \cong O_{2-}$ implies $O_A \otimes K \cong O_A \otimes K$ for all irreducible non-permutation matrices A. Since Rørdam has proved $O_2 \cong O_{2-}$ ([12, Lemma 6.4]), the result $O_A \otimes K \cong O_A \otimes K$ holds for all irreducible non-permutation matrices A. By using this result, Rørdam has also obtained that the group $G(A)$ is a complete invariant of the stable isomorphism class of O_A.

Let us denote by $BF(A)$ the abelian group $G(A^t) = \mathbb{Z}^N/(1-A)\mathbb{Z}^N$, which is called the Bowen–Franks group for $N \times N$ matrix A ([II]). Although $BF(A)$ is isomorphic to $G(A)$ as a group, there is no canonical isomorphism between them. Related to classification theory of symbolic dynamical systems, J. Franks has shown that the pair $(BF(A), sgn(det(1-A)))$ is a complete invariant of the flow equivalence class of the two-sided topological Markov shift $(\tilde{X}_A, \tilde{\sigma}_A)$ by using Bowen–Franks’s result [II] for the group $BF(A)$ and Parry–Sullivan’s result [III] for the determinant $det(1-A)$. Combining this with the Rørdam’s result for the stable isomorphism classes of the Cuntz–Krieger algebras, O_A is stably isomorphic to O_{2-} if and only if $(\tilde{X}_A, \tilde{\sigma}_A)$ is flow equivalent to either $(\tilde{X}_A, \tilde{\sigma}_A)$ or $(\tilde{X}_{2-}, \tilde{\sigma}_{2-})$.

In [II], the author has introduced a notion of continuous orbit equivalence in one-sided topological Markov shifts to classify Cuntz–Krieger algebras from a viewpoint of topological dynamical system. In [II], H. Matui and the author have shown that the triple $(G(A), u_A, sgn(det(1-A)))$ is a complete invariant of the continuous orbit equivalence class of the right one-sided topological Markov shift (X_A, σ_A). The C^*-algebra O_{A-} is not necessarily isomorphic to O_A, whereas they are stably isomorphic, because the position u_{A-} in $G(A-)$ generally is different from the position u_A in $G(A)$. We note that the group $G(A)$ determines the absolute value $|det(1-A)|$. If $G(A)$ is infinite, $\text{Ker}(1-A)$ is not trivial so that $det(1-A) = 0$. If $G(A)$ is finite, it forms a finite direct sum $\mathbb{Z}/m_1\mathbb{Z} \oplus \cdots \oplus \mathbb{Z}/m_r\mathbb{Z}$ for some $m_1, \ldots, m_r \in \mathbb{N}$ so that $|det(1-A)| = m_1 \cdots m_r$ (cf. [I], [II], [12]).

By [II, Lemma 3.7], we know that there is a matrix A' with entries in $\{0, 1\}$ such that the triple $(G(A), u_A, sgn(det(1-A)))$ is isomorphic to $(G(A'), u_{A'}, -sgn(det(1-A')))$, which means that there exists an isomorphism $\Phi : G(A) \rightarrow G(A')$ such that $\Phi(u_A) = u_{A'}$ and $sgn(det(1-A)) = -sgn(det(1-A'))$. Following the given proof of [II, Lemma 3.7], the construction of the matrix A' seems to be slightly complicated and the matrix size of A' becomes much bigger than that of A. It is not an easy task to present the matrix A' for the given matrix A in a concrete way.

In this short note, we directly present an $(N+3) \times (N+3)$ matrix \tilde{A} with entries in $\{0, 1\}$ such that $(G(A), u_A, sgn(det(1-A)))$ is isomorphic to $(G(\tilde{A}), u_{\tilde{A}}, -sgn(det(1-\tilde{A})))$. The matrix \tilde{A} is constructed such that if A is an irreducible non-permutation matrix, so is \tilde{A}.
We define

$$A^\circ = \begin{bmatrix}
A(1, 1) & \ldots & A(1, N-1) & A(1, N) & 0 \\
\vdots & & \vdots & \vdots & \\
A(N-1, 1) & \ldots & A(N-1, N-1) & A(N-1, N) & 0 \\
0 & \ldots & 0 & 0 & 1 \\
A(N, 1) & \ldots & A(N, N-1) & A(N, N) & 0
\end{bmatrix}$$

and

$$\bar{A} = (A^\circ)_- = \begin{bmatrix}
A(1, 1) & \ldots & A(1, N-1) & A(1, N) & 0 & 0 & 0 \\
\vdots & & \vdots & \vdots & \vdots & \vdots & \vdots \\
A(N-1, 1) & \ldots & A(N-1, N-1) & A(N-1, N) & 0 & 0 & 0 \\
0 & \ldots & 0 & 0 & 1 & 0 & 0 \\
A(N, 1) & \ldots & A(N, N-1) & A(N, N) & 0 & 1 & 0 \\
0 & \ldots & 0 & 0 & 1 & 1 & 1 \\
0 & \ldots & 0 & 0 & 1 & 1 & 1
\end{bmatrix} \tag{1}$$

The operation $A \to A^\circ$ is nothing but an expansion defined by Parry–Sullivan in [11], and preserves their determinant: $\det(1 - A) = \det(1 - A^\circ)$. The following figure is a graphical expression of the matrix \bar{A} from A.

![Graphical expression of \bar{A}](image)

Figure 1:

We provide two lemmas. The first one is seen in [1]. The second one is seen in [4] and [12] in a different form.

Lemma 1 ([1, Theorem 1.3]). *The map*

$$\eta_A : (x_1, \ldots, x_{N-1}, x_N, x_{N+1}) \in \mathbb{Z}^{N+1} \to (x_1, \ldots, x_{N-1}, x_N + x_{N+1}) \in \mathbb{Z}^N$$

induces an isomorphism $\bar{\eta}_A$ from $G(A^\circ)$ to $G(A)$ such that $\bar{\eta}_A([(1, \ldots, 1, 0)]) = u_A$.

Lemma 2 (cf. [4, Proposition 2], [12, Proposition 7.1]). *The map*

$$\xi_A : (x_1, \ldots, x_N) \in \mathbb{Z}^N \to (x_1, \ldots, x_N, 0, 0) \in \mathbb{Z}^{N+2}$$

induces an isomorphism $\bar{\xi}_A$ from $G(A)$ to $G(A_-)$ such that $\bar{\xi}_A([(1, \ldots, 1, 0)]) = u_{A_-}$.
Proof. For \(y = (y_1, \ldots, y_N) \in \mathbb{Z}^N \), put
\[
z = \begin{bmatrix}
z_1 \\
\vdots \\
z_N
\end{bmatrix} = (1 - A^t) \begin{bmatrix}
y_1 \\
\vdots \\
y_N
\end{bmatrix}.
\]
We then have
\[
\xi_A(z) = \begin{bmatrix}
z_1 \\
\vdots \\
z_N
\end{bmatrix} = (1 - A^t) \begin{bmatrix}
y_1 \\
\vdots \\
y_N
\end{bmatrix}.
\]
Hence we have \(\xi_A((1 - A^t) \mathbb{Z}^N) \subset (1 - A^t) \mathbb{Z}^{N+2} \) so that \(\xi_A : \mathbb{Z}^N \to \mathbb{Z}^{N+2} \) induces a homomorphism from \(G(A) \) to \(G(A_-) \) denoted by \(\xi_A \). Suppose that \([\xi(x_1, \ldots, x_N)] = 0 \) in \(G(A_-) \) so that
\[
\begin{bmatrix}
x_1 \\
\vdots \\
x_N
\end{bmatrix} = (1 - A^t) \begin{bmatrix}
z_1 \\
\vdots \\
z_N
\end{bmatrix}
\]
for some \((z_1, \ldots, z_{N+2}) \in \mathbb{Z}^{N+2} \). It then follows that \(z_{N+1} = 0, z_{N+2} = -z_N \) so that
\[
\begin{bmatrix}
x_1 \\
\vdots \\
x_N
\end{bmatrix} = (1 - A^t) \begin{bmatrix}
z_1 \\
\vdots \\
z_N
\end{bmatrix}.
\]
This implies \([x_1, \ldots, x_N] = 0 \) in \(G(A) \) and hence \(\xi_A \) is injective.

For \((x_1, \ldots, x_N, x_{N+1}, x_{N+2}) \in \mathbb{Z}^{N+2} \), we have
\[
\begin{bmatrix}
x_1 \\
\vdots \\
x_N \\
x_{N+1} \\
x_{N+2}
\end{bmatrix} = \begin{bmatrix}
x_1 \\
\vdots \\
x_N-1 \\
x_{N-1} \\
x_{N+2} \\
x_{N+1} \\
x_{N+2}
\end{bmatrix} + \begin{bmatrix}
0 \\
\vdots \\
0 \\
x_{N-1} \\
x_{N+2} \\
x_{N+1} \\
x_{N+2}
\end{bmatrix} + (1 - A^t) \begin{bmatrix}
0 \\
\vdots \\
0 \\
x_{N-1} \\
x_{N+2} \\
x_{N+1} \\
x_{N+2}
\end{bmatrix}.
\]
This implies that \([(x_1, \ldots, x_N, x_{N+1}, x_{N+2})] = \xi_A([(x_1, \ldots, x_{N-1}, x_{N-1} - x_{N-2})]) \) in \(G(A_-) \).
Therefore \(\xi_A : G(A) \to G(A_-) \) is surjective and hence an isomorphism. In particular, we see that \([(1, \ldots, 1, 1, 1)] = \xi_A([(1, \ldots, 1, 0)]) \) in \(G(A_-) \). \(\square \)

We have the following theorem by the preceding two lemmas.

Theorem 3. For an \(N \times N \) matrix \(A \) with entries in \(\{0, 1\} \), let \(\bar{A} \) be the \((N+3) \times (N+3) \) matrix with entries in \(\{0, 1\} \) defined in (11). Then there exists an isomorphism \(\Phi : G(A) \to G(A) \) such that \(\Phi(u_A) = u_A \) and the matrices \(A, \bar{A} \) satisfy \(\det(1 - A) = -\det(1 - \bar{A}) \). If \(A \) is an irreducible non-permutation matrix, so is \(\bar{A} \).
Proof. Define \(\Phi : G(A) \to G(\tilde{A}) \) by \(\Phi = \tilde{\xi}_A \circ \tilde{\eta}_A^{-1} \) so that \(\Phi(u_A) = \tilde{\xi}_A((1, \ldots, 1)) = u_{\tilde{A}}. \) Since \(\det(1 - \tilde{A}) = -\det(1 - A^0) = -\det(1 - A) \), we see the desired assertion.

Let \(P \) be an \(N \times N \) permutation matrix coming from a permutation of the set \(\{1, 2, \ldots, N\} \). Since there exists a natural isomorphism \(\Phi_P : G(A) \to G(PAP^{-1}) \) such that \(\Phi_P(u_A) = u_{PAP^{-1}} \) and \(\det(1-A) = \det(1-PAP^{-1}) \), the triplet \((G(A), u_A, \det(1-A)) \) does not depend on the choice of the vertex \(v_N \) in the directed graph of the matrix \(A \).

We have some corollaries.

Corollary 4. Let \(A \) be an irreducible non-permutation matrix with entries in \(\{0, 1\} \). Then \(O_A \) is isomorphic to \(O_{\tilde{A}} \) and \(\det(1 - A) = -\det(1 - \tilde{A}) \).

Let \(\bar{I} \) denote the matrix
\[
\begin{bmatrix}
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1
\end{bmatrix}
\]
which is the matrix \(\tilde{A} \) for the \(1 \times 1 \) matrix \(A = [1] \). By the above theorem, we have

Corollary 5. \((K_0(O_1), u_1) = (\mathbb{Z}, 1) \).

Hence the simple purely infinite \(C^* \)-algebra \(O_1 \) has the same K-theory as the \(C^* \)-algebra \(O_1 = C(S^1) \) of the continuous functions on the unit circle \(S^1 \) with the positions of their units, whereas \((K_0(O_{1_\pm}), u_{1_-}) = (\mathbb{Z}, 0) \) for the matrix \(1_- = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \) by [6] (cf. [4] p. 150).

The following corollary has been shown in [10]. Its proof is now easy by using [12].

Corollary 6 (10, Lemma 3.7). Let \(F \) be a finitely generated abelian group and \(u \) an element of \(F \). Let \(s = 0 \) when \(F \) is infinite and \(s = -1 \) or \(1 \) when \(F \) is finite. Then there exists an irreducible non-permutation matrix \(A \) such that

\[
(F, u, s) = (G(A), u_A, \text{sgn}(\det(1 - A))).
\]

Proof. By [12] Proposition 6.7 (i), we know that there exists an irreducible non-permutation matrix \(A \) such that \((F, u) = (G(A), u_A) \). If \(s = \text{sgn}(\det(1 - A)) \), the matrix \(A \) is the desired one, otherwise \(A \) is the desired one.

Let \(A \) and \(B \) be two irreducible non-permutation matrices with entries in \(\{0, 1\} \). The one-sided topological Markov shifts \((X_A, \sigma_A) \) and \((X_B, \sigma_B) \) are said to be flip continuously orbit equivalent if \((X_A, \sigma_A) \) is continuously orbit equivalent to either \((X_B, \sigma_B) \) or \((X_B, \sigma_B) \). Similarly two-sided topological Markov shifts \((\tilde{X}_A, \tilde{\sigma}_A) \) and \((\tilde{X}_B, \tilde{\sigma}_B) \) are said to be flip flow equivalent if \((\tilde{X}_A, \tilde{\sigma}_A) \) is flow equivalent to either \((\tilde{X}_B, \tilde{\sigma}_B) \), or \((\tilde{X}_B, \tilde{\sigma}_B) \). We thus have the following corollaries.

Corollary 7. Let \(A, B \) be irreducible and not any permutation matrices with entries in \(\{0, 1\} \).

(i) \(O_A \) is isomorphic to \(O_B \) if and only if the one-sided topological Markov shifts \((X_A, \sigma_A) \) and \((X_B, \sigma_B) \) are flip continuously orbit equivalent.
(ii) \(\mathcal{O}_A \) is stably isomorphic to \(\mathcal{O}_B \) if and only if the two-sided topological Markov shifts \((\bar{X}_A, \bar{\sigma}_A) \) and \((\bar{X}_B, \bar{\sigma}_B) \) are flip flow equivalent.

Let us denote by \([\mathcal{O}_A]\) the isomorphism class of the Cuntz–Krieger algebra \(\mathcal{O}_A \) as a \(C^* \)-algebra. Since \((G(A), u_A)\) is isomorphic to \((G(\bar{A}), u_{\bar{A}})\), we have \([\mathcal{O}_A] = [\mathcal{O}_{\bar{A}}]\). We regard the sign \(\text{sgn} (\det (1 - A)) \) of \(\det (1 - A) \) as the orientation of the class \([\mathcal{O}_A]\). Then we can say that the pair \(([\mathcal{O}_A], \text{sgn} (\det (1 - A)))\) is a complete invariant of the continuous orbit equivalence class of the one-sided topological Markov shift \((X_A, \sigma_A)\).

In the rest of this short note, we present another square matrix \(\tilde{A} \) of size \(N + 3 \) from a square matrix \(A = [A(i, j)]_{i,j=1}^{N} \) of size \(N \) such that \(\mathcal{O}_A \) is isomorphic to \(\mathcal{O}_{\tilde{A}} \) and \(\det (1 - A) = -\det (1 - \tilde{A}) \). Define \((N + 3) \times (N + 3) \) matrix \(\tilde{A} \) by setting

\[
\tilde{A} = \begin{bmatrix}
A(1,1) & \ldots & A(1, N-1) & A(1, N) & 0 & 0 & 0 \\
\vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\
A(N-1,1) & \ldots & A(N-1, N-1) & A(N-1, N) & 0 & 0 & 0 \\
0 & \ldots & 0 & 0 & 1 & 0 & 0 \\
A(N,1) & \ldots & A(N, N-1) & A(N, N) & 0 & 1 & 0 \\
0 & \ldots & 0 & 0 & 1 & 0 & 1 \\
0 & \ldots & 0 & 0 & 0 & 1 & 1
\end{bmatrix}.
\]

The difference between the previous matrix \(\bar{A} \) in (1) and the above matrix \(\tilde{A} \) is the only \(((N + 2), (N + 2))\)-component. Its graphical expression of the matrix \(\tilde{A} \) from \(A \) is the following figure.

By virtue of [6], we know the following proposition.

Proposition 8. The Cuntz–Krieger algebras \(\mathcal{O}_{\bar{A}} \) and \(\mathcal{O}_{\tilde{A}} \) are isomorphic, and \(\det (1 - \bar{A}) = \det (1 - \tilde{A}) \).

Proof. Let us denote by \(\bar{A}_i \) the \(i \)th row vector of the matrix \(\bar{A} \) of size \(N + 3 \). We put \(E_i \) the row vector of size \(N + 3 \) such that \(E_i = (0, \ldots, 0, 1, 0, \ldots, 0) \) where the \(i \)th component is one, and the other components are zero. Then we have \(\bar{A}_{N+2} = E_{N+1} + \bar{A}_{N+3} \). Since
the \((N + 2)\)th row \(\tilde{A}_{N+2}\) of \(\tilde{A}\) is \(\tilde{A}_{N+2} = E_{N+1} + E_{N+3}\), and the other rows of \(\tilde{A}\) are the same as those of \(\tilde{A}\), the matrix \(\tilde{A}\) is obtained from \(\bar{A}\) by the primitive transfer

\[
\tilde{A} \xrightarrow{E_{N+1} + \bar{A}_{N+3} \to \bar{A}_{N+2}} \bar{A}
\]

in the sense of [6, Definition 3.5]. We obtain that \(\mathcal{O}_{\tilde{A}}\) is isomorphic to \(\mathcal{O}_{\bar{A}}\) by [6, Theorem 3.7], and \(\det(1 - \tilde{A}) = \det(1 - \bar{A})\) by [6, Theorem 8.4]. □

Before ending this short note, we refer to differences among the three matrices \(A_-, \bar{A}, \tilde{A}\) from a viewpoint of dynamical system. As \((G(A_-), \det(1 - A_-)) = (G(\bar{A}), \det(1 - \bar{A})) = (G(\tilde{A}), \det(1 - \tilde{A}))\), there is a possibility that their two-sided topological Markov shifts \((\bar{X}_{A_-}, \bar{\sigma}_{A_-}), (\tilde{X}_{\tilde{A}}, \bar{\sigma}_{\tilde{A}})\) are topologically conjugate. We however know that they are not topologically conjugate to each other in general by the following example. Denote by \(p_n(\bar{\sigma}_A)\) the cardinal number of the \(n\)-periodic points \(\{x \in \bar{X}_A \mid \bar{\sigma}_A^n(x) = x\}\) of the topological Markov shift \((\bar{X}_A, \bar{\sigma}_A)\). The zeta function \(\zeta_A(z)\) for \((\bar{X}_A, \bar{\sigma}_A)\) is defined by

\[
\zeta_A(z) = \exp \left(\sum_{n=1}^{\infty} \frac{p_n(\bar{\sigma}_A)}{n} z^n \right) \quad (\text{c.f.}[8]).
\]

It is well-known that the formula \(\zeta_A(z) = \frac{1}{\det(1-z\bar{A})}\) holds ([2]). Let us denote by \(2_-, \bar{2}, \tilde{2}\) the matrices \(A_-, \bar{A}, \tilde{A}\) for \([1 \ 1] \ [1 \ 1]\) respectively. It is direct to see that

\[
\zeta_{2_-}(z) = \frac{1}{1 - 4z + 3z^2 + 2z^3 - z^4}, \quad \zeta_{\bar{2}}(z) = \frac{1}{1 - 3z + 4z^2 + 2z^3 - z^4}, \quad \zeta_{\tilde{2}}(z) = \frac{1}{1 - 3z + z^2 + 2z^3 + z^4}.
\]

The zeta function is invariant under topological conjugacy so that \((\bar{X}_{2_-}, \bar{\sigma}_{2_-}), (\tilde{X}_{\bar{2}}, \bar{\sigma}_{\bar{2}}), (\tilde{X}_{\tilde{2}}, \bar{\sigma}_{\tilde{2}})\) are not topologically conjugate to each other.

This paper is a revised version of the paper entitled “Continuous orbit equivalence of topological Markov shifts and Cuntz splice” [arXiv:1511.01193v2 [math.OA]].

Acknowledgment. This work was supported by JSPS KAKENHI Grant Number 15K04896.

References

[1] R. Bowen and J. Franks, Homology for zero-dimensional nonwandering sets, Ann. Math. 106(1977), pp. 73–92.

[2] R. Bowen and O. E. Lanford III, Zeta functions of the shift transformation, Trans. Amer. Math. Soc. 112(1964), pp. 55–66.

[3] J. Cuntz, A class of \(C^*\)-algebras and topological Markov chains II: reducible chains and the \(\text{Ext}\)-functor for \(C^*\)-algebras, Invent. Math. 63(1980), pp. 25–40.

[4] J. Cuntz, The classification problem for the \(C^*\)-algebra \(O_{\bar{A}}\), Geometric methods in operator algebras, Pitman Research Notes in Mathematics Series 123(1986), pp. 145–151.
[5] J. Cuntz and W. Krieger, *A class of C*-algebras and topological Markov chains*, Invent. Math. **56**(1980), pp. 251–268.

[6] M. Enomoto, M. Fujii and Y. Watatani, *K₀-groups and classifications of Cuntz–Krieger algebras*, Math. Japon. **26**(1981), pp. 443–460.

[7] J. Franks, *Flow equivalence of subshifts of finite type*, Ergodic Theory Dynam. Systems **4**(1984), pp. 53–66.

[8] D. Lind and B. Marcus, *An introduction to symbolic dynamics and coding*, Cambridge University Press, Cambridge, 1995.

[9] K. Matsumoto, *Orbit equivalence of topological Markov shifts and Cuntz–Krieger algebras*, Pacific J. Math. **246**(2010), pp. 199–225.

[10] K. Matsumoto and H. Matui, *Continuous orbit equivalence of topological Markov shifts and Cuntz–Krieger algebras*, Kyoto J. Math. **54**(2014), pp. 863–878.

[11] W. Parry and D. Sullivan, *A topological invariant for flows on one-dimensional spaces*, Topology **14**(1975), pp. 297–299.

[12] M. Rørdam, *Classification of Cuntz–Krieger algebras*, K-theory **9**(1995), pp. 31–58.