Weighted Average-convexity and Cooperative Games

Alexandre Skoda1 \quad Xavier Venel2

1Université de Paris I, Centre d’Économie de la Sorbonne

2Dipartimento di Economia e Finanza, LUISS
We generalize the notion of average-convexity to weighted average-convexity.

- We extend a result about the Shapley value and the core to the weighted Shapley value.

- We investigate inheritance of weighted average-convexity for communication TU-games.
 - Necessary conditions.
 - Extension of some known conditions for inheritance of average convexity.
1. Weighted average convexity and Shapley value

2. Inheritance of weighted average convexity
Set of players $N = \{1, 2, \ldots, n\}$.

Cooperative TU game (N, v):
$v : 2^N \to \mathbb{R}, \ v(\emptyset) = 0$. Coalition $S \subseteq N \to \text{worth } v(S)$.

An allocation is a vector $x \in \mathbb{R}^N$ representing the respective payoff of each player. It is efficient if
\[\sum_{i \in N} x_i = v(N). \]
and individually rational if
\[\forall i \in N, \ x_i \geq v(\{i\}). \]
The Shapley value of a cooperative game \((N, \nu)\) is an allocation vector \(\Phi \in \mathbb{R}^N\) assigning to each player \(i \in N\):

\[
\Phi_i(\nu) = \sum_{S \subseteq N \setminus \{i\}} \frac{s!(n - s - 1)!}{n!} (\nu(S \cup \{i\}) - \nu(S)).
\]
Decomposition into unanimity games

[Shapley, 1953b]: Every cooperative game \((N, v)\) can be written as a unique linear combination of unanimity games,

\[
v = \sum_{S \subseteq N} \lambda_S(v) u_S,
\]

where \(\lambda_\emptyset(v) = 0\), and \(\forall S \neq \emptyset\) the coefficients \(\lambda_S(v)\) are given by

\[
\lambda_S(v) = \sum_{T \subseteq S} (-1)^{s-t} v(T).
\]
The **Shapley value** is the unique function from the set of \(TU \)-games to payoff allocations such that

1. It is linear,
2. The allocation of the unanimity game \(u_S \) is for all \(i \in N \),

\[
x_i = \begin{cases}
\frac{1}{s}, & \text{if } i \in S, \\
0, & \text{otherwise.}
\end{cases}
\]

In terms of the unanimity coefficients the Shapley value is given by

\[
\Phi_i(v) = \sum_{S \subseteq N : i \in S} \frac{1}{s} \lambda_S(v),
\]

for all \(i \in N \).
Core

Definition

The core is the set of payoff allocations satisfying efficiency and coalitional rationality. Formally,

\[C(v) = \left\{ x \in \mathbb{R}^N, \sum_{i \in N} x_i = v(N), \sum_{i \in S} x_i \geq v(S), \forall S \subset N \right\}. \]

Condition ensuring that the Shapley value lies in the core?

- Convexity
Convexity

Definition

The game \((N, v)\) is convex if for every \(S, T \subseteq N\)

\[v(S) + v(T) \leq v(S \cup T) + v(S \cap T), \]

or equivalently if for all \(i \in N\) and for all \(S \subseteq T \subseteq N \setminus \{i\}\)

\[v(S \cup \{i\}) - v(S) \leq v(T \cup \{i\}) - v(T). \]

→ Tendency to join the largest coalitions.

Convexity ensures good properties, in particular

- Non-emptiness of the core.
- Shapley value belongs to the core.

A weaker sufficient condition?
Average convexity

Definition

The game \((N, \nu)\) is *average convex* if for every \(S \subset T \subseteq N\),

\[
\sum_{i \in S} (\nu(S) - \nu(S \setminus \{i\})) \leq \sum_{i \in S} (\nu(T) - \nu(T \setminus \{i\})).
\]

Proposition ([Iñarra and Usategui, 1993])

If the game is average convex then the Shapley value is in the core.
Weighted Shapley value

The Shapley value has been extended in [Shapley, 1953a] and in [Kalai and Samet, 1987] to weighted Shapley value.

Weights on the players: \(i \in N \rightarrow \text{weight} \ \omega_i \in \mathbb{R}_+^N \)

Priorities on the players: \(i \in N \rightarrow \text{priority} \ p(i) \in \{1, 2, \ldots, m\} \) with \(m \leq n \).

\(N \) can be partitionned into \(m \) subsets \((N_1, \ldots, N_m)\) corresponding to the \(m \) levels of priority.

Weight relative to a coalition \(S \subseteq N \): player \(i \in S \) gets weight \(\omega_i^S \) with

\[
\omega_i^S = \begin{cases}
\omega_i & \text{if } i \text{ has highest priority in } S \\
0 & \text{otherwise}
\end{cases}
\]
Weighted Shapley Value - Weight system

Definition

A **weight system** is a pair (ω, Σ) where $\omega \in \mathbb{R}^{N}_{++}$ and $\Sigma = (N_1, \ldots, N_m)$ is an ordered partition of N.

Players in N_k have priority k.

Given a set S, the priority $p(S)$ of S is the largest $k \in \{1, \ldots, m\}$ such that $N_k \cap S \neq \emptyset$.

$\overline{S} := \text{set of players in } S \text{ with highest priority, i.e., }$

$$\overline{S} = \{i \in S, p(i) = p(S)\}.$$

If $m = 1$ then $\Sigma = N$.
Weighted Shapley Value

Definition

The **weighted Shapley value** with weight system \((ω, Σ)\) is the unique function from the set of **TU**-games to allocation such that

1. it is linear,
2. the allocation of the unanimity game \(u_S\) is defined as follows: for all \(i \in N\),

\[
x_i = \frac{ω^S_i}{\sum_{i ∈ S} ω^S_i} = \begin{cases} \frac{ω_i}{\sum_{i ∈ S} ω_i}, & \text{if } i ∈ S, \\ 0, & \text{otherwise.} \end{cases}
\]

- agents in \(S - S\) are contributing to obtain a positive payoff but they have low priority, hence they obtain 0,
- agents in \(S\) are contributing to obtain a positive payoff and have highest priority in \(S\), hence they share the total value of 1.

Using the decomposition of a game into unanimity games, the \((\omega, \Sigma)\)-weighted Shapley value \(\Phi^\omega\) of a game \((N, \nu)\) is defined for all \(i \in N\) by

\[
\Phi^\omega_i(\nu) = \sum_{S \subseteq N: i \in \bar{S}} \frac{\omega_i}{\omega_S} \lambda_S(\nu).
\]

If \(\Sigma = \{N\}\) and if all weights are equal, then the \((\omega, \Sigma)\)-weighted Shapley value corresponds to the Shapley value.
Weighted average convexity

We introduce the notion of weighted average convexity.

Definition

Let \((\omega, \Sigma)\) be a weight system. The game \((N, v)\) is \((\omega, \Sigma)\)-convex if for every \(S \subset T \subseteq N\),

\[
\sum_{i \in S} \omega_i^T (v(S) - v(S \setminus \{i\})) \leq \sum_{i \in S} \omega_i^T (v(T) - v(T \setminus \{i\})).
\]

- It is sufficient to consider subsets such that \(p(S) = p(T)\).
- If \(\Sigma = \{N\}\) and if all weights are equal, then \((\omega, \Sigma)\)-convexity corresponds to average-convexity.
- If a game is convex then it is \((\omega, \Sigma)\)-convex for any weight system \((\omega, \Sigma)\).
We get the following result

Theorem

Let \((\omega, \Sigma)\) be a weight system. If the game is \((\omega, \Sigma)\)-convex then its \((\omega, \Sigma)\)-weighted Shapley value is in the core.

- We establish a recurrence formula for the weighted Shapley value. For any \(\emptyset \neq T \subseteq N\), let \(v^T\) be the subgame of \(v\) induced by \(T\). i.e., \(v^T(S) = v(S)\) for any \(S \subseteq T\). We have

\[
\Phi_{iT}^{\omega} = \frac{\omega_i^T}{\omega^T} (v(T) - v(T \setminus \{i\})) + \sum_{j \in T \setminus \{i\}} \frac{\omega_j^T}{\omega^T} \Phi_{iT \setminus \{j\}}^{\omega},
\]

for all \(i \in T\).

- Then we can prove the theorem by recurrence on the number of players.
1 Weighted average convexity and Shapley value

2 Inheritance of weighted average convexity
Inheritance of properties

Coalition \rightarrow partition into (sub)coalitions \rightarrow Restricted game

1. Conditions insuring inheritance of convexity
2. Conditions for inheritance of average convexity
3. Conditions for inheritance of weighted average convexity

Myerson’s restricted game

- Results for 1 and 2 have been established by [van den Nouweland and Borm, 1991] and [Slikker, 1998] respectively.
- We investigate 3: inheritance of weighted average convexity.
Myerson’s restricted game

Cooperative game \((N, v)\) and graph \(G = (N, E)\).

- nodes \(\leftrightarrow\) players
- edge \(e = \{i, j\} \leftrightarrow\) players \(i\) and \(j\) can communicate directly

For every coalition \(A \subseteq N\), let \(\mathcal{P}_c(A)\) be the set of connected components of \(G_A = (A, E(A))\).

Myerson defined the graph-restricted game \((N, v^G)\) by:

\[
v^G(A) = \sum_{F \in \mathcal{P}_c(A)} v(F), \quad \forall A \subseteq N.
\]

- Players have to be connected to cooperate.
- Connectedness is sufficient.
Myerson’s restricted game

If G_A is connected

$v^G(A) = v(A)$.
If G_A is non-connected, let $\{A_1, A_2, \ldots, A_k\}$ be the partition of A, then

$$\nu^G(A) = \sum_{j=1}^{k} \nu(A_j).$$

$$\nu^G(A) = \nu(A_1) + \nu(A_2).$$
Inheritance of convexity

- Conditions on the underlying graph

Definition

A cycle \(C = \{v_1, e_1, v_2, e_2, \ldots, v_m, e_m, v_1\} \) is **complete** (resp. non-complete) if the subset \(\{v_1, v_2, \ldots, v_m\} \subseteq N \) of vertices of \(C \) induces a complete (resp. non-complete) subgraph.

![Figure](image)

Figure – Non-complete cycle \(C, \{j, k\} \notin E \).

Definition

A graph \(G = (N, E) \) is **cycle-complete** if any cycle \(C \) in \(G \) is complete.
Inheritance of convexity

Forbidden subgraphs:

- Non-complete cycle

Theorem (van den Nouweland and Borm 1991)

Let $G = (N, E)$ be a connected graph. The following properties are equivalent.

1. G preserves convexity
2. G is cycle-complete.
Inheritance of average-convexity

Forbidden subgraphs:
- Non-complete cycle
- 4-path
- 3-pan

(a) 4-path.

(b) 3-pan.

Theorem (Slikker)

Let $G = (N, E)$ be a connected graph. The following properties are equivalent.

1. G preserves average-convexity.
2. G is cycle-complete.
 1. There is no restricted subgraph that is a 4-path or a 3-pan.
3. G is a complete graph or a star.
Inheritance of weighted average convexity

First Case: All players have the same priority, $\Sigma = \{N\}$.

- Players can have different weights.

We get the same characterization as Slikker with average convexity.

Theorem

Let $G = (N, E)$ be a connected graph and let (ω, Σ) be a weight system with $\Sigma = \{N\}$. The following properties are equivalent.

1. G preserves (ω, Σ)-convexity.
2. G is cycle-complete.
 - There is no restricted subgraph that is a 4-path or a 3-pan.
3. G is a complete graph or a star.
Similarly to Slikker we have to prove that G cannot contain any 4-path or 3-pan.

Counter-examples are more difficult as they have to be valid for arbitrary weights.
Counter-Example (Weighted Non-complete cycle)

Let j and k be neighbors of l^* in C with $\{j, k\} \notin E$. We consider the convex game defined by $\nu(S) = |S| - 1$, $\forall S \subseteq N$, $S \neq \emptyset$.

![Diagram of a non-complete cycle C with nodes j, k, l*, and edges between them.]

Figure – Non-complete cycle C, $\{j, k\} \notin E$.

Taking $S = \{j, l^*, k\}$ and $T = V(C)$, we get

$$\sum_{i \in S} \omega_i(\nu^G(S) - \nu^G(S \setminus \{i\})) = \omega_j + 2\omega_{l^*} + \omega_k > \omega_j + \omega_{l^*} + \omega_k = \sum_{i \in S} \omega_i(\nu^G(T) - \nu^G(T \setminus \{i\})).$$

This contradicts (ω, Σ)-convexity of (N, ν^G).
Counter-Example (3-pan)

\[X = 1 + \frac{\omega_3}{\omega_4}, \]
\[Y = 1 + \frac{\omega_1}{\omega_4}, \]
\[Z = X + Y + 1 + \frac{\omega_1}{\omega_2 + \omega_3 + \omega_4} X, \]
\[\Theta = Z + X - 1. \]

Figure

\[v(S) = \begin{cases}
0 \text{ if } |S| \in \{0,1,2\} \text{ and } S \neq \{1,4\}, \{3,4\}, \\
0 \text{ if } S = \{1,2,3\}, \\
X \text{ if } S = \{1,4\} \text{ or } \{1,2,4\}, \\
Y \text{ if } S = \{3,4\}, \\
X + Y - 1 \text{ if } S = \{1,3,4\}, \\
Z \text{ if } S = \{2,3,4\}, \\
\Theta \text{ if } S = N.
\end{cases} \]

\(v \) is weighted average convex. But \(v^G \) is not.
We get a contradiction with
\[S = \{2,3,4\} \subset T = \{1,2,3,4\}. \]
Counter-Example (3-pan)

\[v(S) = \begin{cases}
0 & \text{if } |S| \in \{0,1,2\} \text{ and } S \neq \{1,4\}, \{3,4\}, \\
0 & \text{if } S = \{1,2,3\}, \\
X & \text{if } S = \{1,4\} \text{ or } \{1,2,4\}, \\
Y & \text{if } S = \{3,4\}, \\
X+Y-1 & \text{if } S = \{1,3,4\}, \\
Z & \text{if } S = \{2,3,4\}, \\
\Theta & \text{if } S = N.
\end{cases} \]

\[v^G(S) = \begin{cases}
0 & \text{if } |S| \in \{0,1,2\} \text{ and } S \neq \{1,4\}, \{3,4\}, \\
0 & \text{if } S = \{1,2,3\}, \\
X & \text{if } S = \{1,4\} \text{ or } \{1,2,4\}, \\
X & \text{if } S = \{1,3,4\}, \\
Z & \text{if } S = \{2,3,4\}, \\
\Theta & \text{if } S = N.
\end{cases} \]
Remark

The previous counter-example is also valid for the 4-path.
Second Case: Players with different priorities, $\Sigma \neq \{N\}$.

- Using the preceding results, the situation for players in a given priority layer can be easily established.

Proposition

If a graph (N, E) preserves the (ω, Σ)-convexity, given a priority k, the set of players of priority k corresponds to a collection of disconnected star/complete subgraphs.
Inside priority layers
Inheritance of weighted average convexity

- Links between layers?

The previous counter-examples have to be refined and supplementary conditions are required.
We get a similar counterexample for non-complete cycles but only if \(p(l^*) = p(V(C)) \).

Taking \(S = \{j, l^*, k\} \) and \(T = V(C) \), we get
\[
\sum_{i \in S} \omega_i^T (v^G(S) - v^G(S \setminus \{i\})) = \omega_j^T + 2\omega_{l^*}^T + \omega_k^T
\]
\[
> \omega_j^T + \omega_{l^*}^T + \omega_k^T = \sum_{i \in S} \omega_i^T (v^G(T) - v^G(T \setminus \{i\})).
\]
Inheritance of weighted average convexity

The previous example on the 3-pan is now valid only if

\[p(2) = p(3) = p(4) \geq p(1), \]

or

\[p(2) > p(4) \geq \max(p(1), p(3)). \]

- We established 2 supplementary counter-examples for other priority distributions.
- We get a very precise outline if the communication graph is cycle-free.
Lemma

Let $G = (N, E)$ be a **cycle-free** graph preserving (ω, Σ)-convexity. Let $k \leq k' < k''$ be priority levels. Let C_1 (resp. C_2) be a component of G_k (resp. $G_{k'}$) linked to a component C of $G_{k''}$. Then the following statements are satisfied:

1. C and C_1 are stars (possibly of size 1 or 2).
2. C_2 is a singleton.
3. C_2 is linked to C only at its center c.
4. C_1 is linked to C only at its center c by a unique edge.
5. C_2 cannot be linked to connected components of a lower layer.

Moreover, if $k = k'$, then

1. C_1 is a singleton.
2. C_1 cannot be linked to connected components of a lower layer.
Inheritance of weighted average convexity

\((a) \) If \(k = k' \) then \(C_1 \) and \(C_2 \) are singletons.

\((b) \) \(k < k' \), \(C_2 \) is a singleton.
Iñarra, E. and Usategui, J. (1993). The shapley value and average convex games. *International Journal of Game Theory, 22*:13 – 29.

Kalai, E. and Samet, D. (1987). On weighted shapley values. *International Journal of Game Theory, 16*:205–222.

Shapley, L. S. (1953a). *Additive and Non-Additive Set Functions*. PhD thesis, Princeton.

Shapley, L. S. (1953b). A value for n-person games. In *Contributions to the Theory of Games (AM-28), Volume II*, pages 307–318. Princeton University Press.

Slikker, M. (1998). Average Convexity in Communication Situations. Discussion Paper 1998-12, Tilburg University, Center for Economic Research.
van den Nouweland, A. and Borm, P. (1991). On the convexity of communication games. *International Journal of Game Theory, 19*(4) :421–30.