Solvability of a class of mean-field BSDEs with quadratic growth

Tao Hao*, Jiaqiang Wen†, Jie Xiong‡

Abstract: In this paper, we study the multi-dimensional mean-field backward stochastic differential equations (BSDEs, for short) with quadratic growth. Under small terminal value, the existence and uniqueness are proved for the multi-dimensional situation when the generator \(f(t, Y, \mathbb{E}[Y], Z, \mathbb{E}[Z]) \) is of quadratic growth with respect to the last four items, using some new methods. Besides, a kind of comparison theorem is obtained.

Key words: mean-field backward stochastic differential equation, backward stochastic differential equation, quadratic growth.

AMS subject classifications. 60H10, 60H30

1 Introduction

Mean-field stochastic differential equations (SDEs, for short), also called McKean-Vlasov equations, can be traced back to the works of Kac [19] in the 1950s. Recently, mean-field backward stochastic differential equations (BSDEs, for short) were introduced by Buckdahn, Djehiche, Li and Peng [6] and Buckdahn, Li and Peng [7], owing to that mathematical mean-field approaches play an important role in many fields, such as economics, physics, and game theory (see Lasry and Lions [21]). Since then, mean-field BSDEs have received intensive attention. In order to present the work more clearly, we describe the problem in detail.

Assume that \(\{W_t; 0 \leq t < \infty\} \) is a \(d \)-dimensional standard Brownian motion defined on a complete filtered probability space \((\Omega, \mathcal{F}, \mathbb{F}, \mathbb{P}) \), where \(\mathbb{F} = \{\mathcal{F}_t; 0 \leq t < \infty\} \) is the filtration...
generated by W and augmented by all the \mathbb{P}-null sets in \mathcal{F}. Consider the following mean-field backward stochastic differential equations over a finite horizon $[0, T]$:

$$
\begin{align*}
& -dY_t = f(t, Y_t, E[Y_t], Z_t, E[Z_t])dt - Z_tdW_t, \quad t \in [0, T]; \\
& Y_T = \xi,
\end{align*}
$$

(1.1)

where the random variable ξ is called the terminal value and the mapping $f(\cdot)$ is called the generator. The pair of unknown processes (Y, Z), called an adapted solution of (1.1), are \mathbb{F}-adapted with values in $\mathbb{R}^m \times \mathbb{R}^{m \times d}$. For convenience, hereafter, by quadratic mean-field BSDEs, or mean-field BSDEs with quadratic growth, we mean that in (1.1), the generator $f(\cdot)$ grows in Z quadratically. Meanwhile, we call ξ the bounded terminal value if it is bounded. In addition, we call ξ the small terminal value, if there exists a small positive constant ε such that $\|\xi\|_{\infty} \leq \varepsilon$.

As a natural extension of BSDEs (see below for precise description), the mean-field BSDEs (1.1) were introduced by Buckdahn et al. [6, 7], where they established the existence and uniqueness of adapted solutions under the condition that $f(\cdot)$ is uniformly Lipschitz in the last four arguments. From then on, the theory and applications of mean-field BSDEs have been developed significantly. For example, Carmona and Delarue provided a detailed probabilistic analysis of the optimal control of nonlinear stochastic dynamical systems of the McKean-Vlasov type in [10], and studied some special class of quadratic forward-backward stochastic differential equations (FBSDEs, for short) of mean-field type in [11]. Buckdahn et al. [8] studied the general mean-field stochastic differential equations and their relation with the associated PDEs. Zhang, Sun and Xiong [30] obtained a general stochastic maximum principle for a Markov regime switching jump-diffusion model of mean-field type. Briand, Elie and Hu [3] introduced and studied the BSDEs with mean reflection. Li, Sun and Xiong [22] established the results for linear quadratic optimal control problems for mean-field backward stochastic differential equations. Douissi, Wen and Shi [13] and Shi, Wen and Xiong [26] studied the optimal control problem of mean-field forward-backward stochastic systems driven by fractional Brownian motion.

Now, we recall the following nonlinear BSDEs:

$$
\begin{align*}
& -dY_t = f(t, Y_t, Z_t)dt - Z_tdW_t, \quad t \in [0, T]; \\
& Y_T = \xi,
\end{align*}
$$

(1.2)

When the generator $f(\cdot)$ is of linear growth with respect to (Y, Z), the existence and uniqueness of (1.2) were firstly proved by Pardoux and Peng [24]. Since then, a lot of researchers have found that BSDEs have important applications in mathematical finance, stochastic optimal control and partial differential equation (see [14, 23, 29], to mention a few). Meanwhile, owing to many important applications, a lot of efforts have been made to relax the conditions on the generator $f(\cdot)$ of (1.2) with respect to Z. For example, Kobylianski [20] proved the existence and uniqueness of one-dimensional BSDE with bounded terminal condition and with $f(\cdot)$ growing quadratically in Z. The well-posedness of one-dimensional quadratic BSDE with unbounded terminal value was obtained by Briand and Hu [4, 5]. Hibon et al. [15] studied a class of quadratic BSDEs with mean reflection. Hu, Li and Wen [18] obtained the existence and uniqueness of anticipated BSDEs with quadratic
growth. Some other recent developments of quadratic BSDEs can be found in Bahlali, Eddahbi and Ouknine [1], Barrieu and El Karoui [2], Cheridito and Nam [9], Hibon, Hu and Tang [16], Hu and Tang [17], Tevzadze [27], Xing and Zitkovic [28], and references cited therein.

Let us introduce a motivation to study (1.1) at the particles level. Consider the following particle system with N particles:

$$Y_i^t = \xi_i + \int_t^T f^i(s, Y_s^i, \frac{1}{N} \sum_{i=1}^N Y_s^i, \frac{1}{N} \sum_{i=1}^N Z_s^{ii}) ds - \sum_{j=1}^N \int_t^T Z_s^{ij} dW_s^j, \quad t \in [0, T],$$

where for each $i, j = 1, \ldots, N$, Z_s^{ij} is an $m \times d$ matrix; $\{W_s^j; 1 \leq j \leq N\}$ are N independent d-dimensional Brownian motions; ξ_i and f^i are N independent copies of ξ and f, respectively. Following Lions’s idea and the law of large numbers, we conjecture that when N tends to ∞, the mean-field limit of solutions of the above particle system corresponds to that of the mean-field BSDE (1.1).

On the other hand, in the last two decades, stimulated by the broad applications and the open problem proposed by Peng [25], a lot of efforts have been made to relax the conditions on the generator f of the mean-field BSDEs. Hibon, Hu and Tang [16] considered quadratic mean-field BSDEs in one-dimensional situation when the generator f depends on the expectation of (Y, Z), and studied the existence and uniqueness of related equations. However, the mean-field BSDEs (1.1) with quadratic growth in the multi-dimensional situation is still open. In this paper, along with the work of [16], we study the solvability of mean-field BSDEs (1.1) with quadratic growth in the multi-dimensional situation. First, borrowing some ideas from Tevzadze [27], we construct an artful method to prove that, under small terminal value, the mean-field BSDE (1.1) admits a unique adapted solution in the multi-dimensional situation. It should be pointed out that, besides the multidimensional situation, our contribution also includes the generator $f(\cdot)$ is of quadratic growth with respect to all items of $(Y, \mathbb{E}[Y], Z, \mathbb{E}[Z])$. Then, a comparison theorem for such equations is obtained for the one-dimensional situation.

This article is organized as follows. Some preliminaries are presented in Section 2. The existence and uniqueness of multi-dimensional quadratic mean-field BSDEs (1.1) with small terminal value are proved by the fixed point argument in Section 3. A comparison theorem for such BSDEs is given in Section 4.

2 Preliminaries

Recall that $\{W_t; 0 \leq t < \infty\}$ is a d-dimensional standard Brownian motion defined on the complete filtered probability space $(\Omega, \mathcal{F}, \mathbb{F}, \mathbb{P})$, where $\mathbb{F} = \{\mathcal{F}_t\}_{t \geq 0}$ is the filtration generate generated by W and augmented by all the \mathbb{P}-null sets in \mathcal{F}. We denote by $\mathbb{R}^{m \times d}$ the space of the $m \times d$-matrix C with Euclidean norm $|C| = \sqrt{tr(CC^*)}$. In the following, for Euclidean space \mathbb{H} and $t \in [0, T]$, we denote

$$L_{\mathcal{F}_t}^\infty(\Omega; \mathbb{H}) = \left\{ \theta: \Omega \to \mathbb{H} \mid \theta \text{ is } \mathcal{F}_t\text{-measurable, } \|\theta\|_\infty \triangleq \operatorname{esssup}_{\omega \in \Omega} |\theta(\omega)| < \infty \right\},$$

3
\[L^2_F(t, T; \mathbb{H}) = \left\{ \varphi : [t, T] \times \Omega \to \mathbb{H} \mid \varphi \text{ is } \mathbb{F}-\text{progressively measurable,} \right\}, \]

\[\|\varphi\|_{L^2_F(t, T)} \triangleq \left(\mathbb{E} \int_t^T |\varphi_s|^2 ds \right)^{\frac{1}{2}} < \infty, \]

\[L^\infty_F(t, T; \mathbb{H}) = \left\{ \varphi : [t, T] \times \Omega \to \mathbb{H} \mid \varphi \text{ is } \mathbb{F}-\text{progressively measurable,} \right\}, \]

\[\|\varphi\|_{L^\infty_F(t, T)} \triangleq \sup_{(s, \omega) \in [t, T] \times \Omega} |\varphi_s(\omega)| < \infty, \]

\[S^2_F(t, T; \mathbb{H}) = \left\{ \varphi : [t, T] \times \Omega \to \mathbb{H} \mid \varphi \text{ is } \mathbb{F}-\text{adapted, continuous,} \right\}, \]

\[\|\varphi\|_{S^2_F(t, T)} \triangleq \left\{ \mathbb{E} \left(\sup_{s \in [t, T]} |\varphi_s|^2 \right)^{\frac{1}{2}} < \infty \right\}. \]

Let \(M = (M_t, \mathcal{F}_t) \) be a uniformly integrable martingale with \(M_0 = 0 \), and for \(p \in [1, \infty) \), we set

\[\|M\|_{BMO_p} \triangleq \sup_{\tau} \left\| \mathbb{E}_\tau \left[\left(\langle M \rangle_\tau \right)^{\frac{p}{2}} \right] \right\|_{\infty}, \]

where the supremum is taken over all \(\mathbb{F} \)-stopping times \(\tau \), and \(\mathbb{E}_\tau \) is the conditional expectation given \(\mathcal{F}_\tau \). The class \(\{ M : \| M \|_{BMO_p} < \infty \} \) is denoted by \(BMO_p(\mathbb{P}) \). Observe that \(\| \cdot \|_{BMO_p} \) is a norm on this space and \(BMO_p(\mathbb{P}) \) is a Banach space. In the sequel, we denote \(BMO(\mathbb{P}) \) the space of \(BMO_2(\mathbb{P}) \) for simplicity. Next, for any \(Z \in L^2_F(0, T; \mathbb{H}) \), by Burkholder-Davis-Gundy’s inequalities, one has

\[c_2 \mathbb{E}_\tau \left[\left(\int_\tau^T |Z_s|^2 ds \right) \right] \leq \mathbb{E}_\tau \left[\sup_{t \in [\tau, T]} \int_\tau^t Z_s dW_s \right]^2 \leq C_2 \mathbb{E}_\tau \left[\left(\int_\tau^T |Z_s|^2 ds \right) \right], \]

for some constants \(c_2, C_2 > 0 \). Thus,

\[c_2 \sup_{\tau \in \mathcal{F}[t, T]} \left\| \mathbb{E}_\tau \left[\left(\int_\tau^T |Z_s|^2 ds \right) \right] \right\|_{\infty} \leq \sup_{\tau \in \mathcal{F}[t, T]} \left\| \mathbb{E}_\tau \left[\sup_{t \in [\tau, T]} \int_\tau^t Z_s dW_s \right]^2 \right\|_{\infty} \]

\[\leq C_2 \sup_{\tau \in \mathcal{F}[t, T]} \left\| \mathbb{E}_\tau \left[\left(\int_\tau^T |Z_s|^2 ds \right) \right] \right\|_{\infty}, \]

where \(\mathcal{F}[t, T] \) denotes the set of all \(\mathbb{F} \)-stopping times \(\tau \) valued in \([t, T] \). Note that the above quantities could be infinite. Therefore, we introduce the following:

\[Z^2[t, T] = \left\{ Z \in L^2_F(t, T; \mathbb{H}) \mid \|Z\|_{Z^2[t, T]} \equiv \sup_{\tau \in \mathcal{F}[t, T]} \left\| \mathbb{E}_\tau \left[\int_\tau^T |Z_s|^2 ds \right] \right\|^{\frac{1}{2}} < \infty \right\}. \]

Recall that for \(Z \in Z^2[0, T] \), the process \(s \mapsto \int_0^s Z_r dW_r \) (denoted by \(Z \cdot W \), \(s \in [0, T] \), is a \(BMO \)-martingale. Moreover, note that on \([0, T] \), \(Z \cdot W \) belongs to \(BMO(\mathbb{P}) \) if and only if \(Z \in Z^2[0, T] \), that is,

\[\|Z \cdot W\|_{BMO(\mathbb{P})}^2 = \|Z\|_{Z^2[0, T]}^2. \]

Definition 2.1. A pair of processes \((Y, Z) \in S^2_F(0, T; \mathbb{R}^m) \times L^2_F(0, T; \mathbb{R}^{m \times d})\) is called an adapted solution of BSDE (1.1), if \(\mathbb{P} \)-almost surely, it satisfies (1.1). Moreover, if \((Y, Z) \in L^2_F(0, T; \mathbb{R}^m) \times Z^2[0, T]\), it is called a bounded adapted solution.
3 Existence and Uniqueness

In this section, we study multi-dimensional mean-field BSDEs with quadratic growth and small terminal value. By the theory of ordinary differential equations, we see that if the generator \(f(\cdot) \) is super-linear with respect to \(Y \), then the equations may not have global solutions. However, we pointed out that, under small bounded value, the generator could be of quadratic growth with respect to \(Y \) and \(Z \) (see Hu, Li and Wen [18]). Now let us introduce the following hypothesis.

Assumption 3.1. Let \(C \) be a positive constant. For all \(s \in [0, T] \), \(y_i, \bar{y}_i \in \mathbb{R}^m \), \(z_i, \bar{z}_i \in \mathbb{R}^{m \times d} \) with \(i = 1, 2 \), \(f(s, 0, 0, 0, 0) \) is bounded and

\[
|f(s, y_1, \bar{y}_1, z_1, \bar{z}_1) - f(s, y_2, \bar{y}_2, z_2, \bar{z}_2)| \leq C \left(|y_1| + |\bar{y}_1| + |y_2| + |\bar{y}_2| + |z_1| + |\bar{z}_1| + |z_2| + |\bar{z}_2| \right).
\]

Example 3.2. Assumption 3.1 implies that the generator \(f(\cdot) \) could be of quadratic growth with respect to the last four arguments. The following generator

\[
f(s, y_1, y_2, z_1, z_2) = y^2 + \bar{y}^2 + z^2 + \bar{z}^2, \quad s \in [0, T], y, \bar{y} \in \mathbb{R}^m, z, \bar{z} \in \mathbb{R}^{m \times d}
\]
satisfies such an assumption.

In the following, we state and prove the main result of this section, which establishes the existence and uniqueness of multi-dimensional BSDE (1.1) with quadratic growth and small terminal value.

Theorem 3.3. Under the Assumption 3.1, for any bounded \(\xi \in L^\infty_{\mathcal{F}_T}(\Omega; \mathbb{R}^m) \) satisfying

\[
\|\xi\|_{\infty} + \left\| \int_0^T |f(t, 0, 0, 0, 0)| dt \right\|_{\infty} \leq \rho, \tag{3.1}
\]

where

\[
\rho^2 = \frac{1}{4097C^2(T^2 + 1)},
\]

we have that mean-field BSDE (1.1) admits a unique adapted solution \((Y, Z)\) in \(\mathcal{B}_\rho \), where

\[
\mathcal{B}_\rho \triangleq \left\{ (Y, Z) \in L^\infty_{\mathcal{F}_T}(0, T; \mathbb{R}^m) \times \mathcal{Z}\mathcal{Z}^2[0, T] \left| \|Y\|_{L^\infty_{\mathcal{F}_T}(0, T)} + \|Z\|_{\mathcal{Z}\mathcal{Z}^2[0, T]} \leq \rho^2 \right. \right\}.
\]

Proof. The proof is divided into two steps.

Step 1. We firstly consider the existence and uniqueness of the following BSDE

\[
Y_t = \xi + \int_t^T \left(f(s, Y_s, \mathbb{E}[Y_s], Z_s, \mathbb{E}[Z_s]) - f(s, 0, 0, 0, 0) \right) ds - \int_t^T Z_s dW_s, \quad 0 \leq t \leq T. \tag{3.2}
\]

In order to solve the above equation, for every \((y, z) \in L^\infty_{\mathcal{F}}(0, T; \mathbb{R}^m) \times \mathcal{Z}\mathcal{Z}^2[0, T]\), we define the mapping \((Y, Z) = \Gamma(y, z)\) by

\[
Y_t = \xi + \int_t^T \left(f(s, y_s, \mathbb{E}[y_s], z_s, \mathbb{E}[z_s]) - f(s, 0, 0, 0, 0) \right) ds - \int_t^T Z_s dW_s, \quad 0 \leq t \leq T. \tag{3.3}
\]
For (3.3), using Itô’s formula to $|Y|^2$ on $[t, T]$, we obtain

$$|Y_t|^2 + \int_t^T |Z_r|^2 \, dr = |\xi|^2 + \int_t^T 2Y_r \cdot \left(f(r, y_r, E[y_r], z_r, E[z_r]) - f(r, 0, 0, 0, 0) \right) \, dr - 2 \int_t^T Y_r \cdot Z_r \, dW_r.$$

Taking the conditional expectation and using the inequality $2ab \leq \frac{1}{4}a^2 + 2b^2$, we get

$$|Y_t|^2 + \mathbb{E}_t \int_t^T |Z_r|^2 \, dr \leq \|\xi\|_\infty^2 + 2\|Y\|_{L^\infty(0,T)} \left(\mathbb{E}_t \int_t^T |f(r, y_r, E[y_r], z_r, E[z_r]) - f(r, 0, 0, 0, 0)| \, dr \right)$$

$$\leq \|\xi\|_\infty^2 + 2\|Y\|_{L^\infty(0,T)}^2 \left(\mathbb{E}_t \int_t^T |f(r, y_r, E[y_r], z_r, E[z_r]) - f(r, 0, 0, 0, 0)| \, dr \right)^2 \tag{3.4}.$$

It follows from Jensen’s inequality that the last term of (3.4) naturally reduces to

$$\mathbb{E}_t \int_t^T |f(r, y_r, E[y_r], z_r, E[z_r]) - f(r, 0, 0, 0, 0)| \, dr \leq C \mathbb{E}_t \int_t^T \left(|y_r| + |E[y_r]| + |z_r| + |E[z_r]| \right)^2 \, dr$$

$$\leq 4C \mathbb{E}_t \int_t^T \left(|y_r|^2 + |E[y_r]|^2 + |z_r|^2 + |E[z_r]|^2 \right) \, dr$$

$$\leq 4C \left(\mathbb{E}_t \int_t^T (|y_r|^2 + |z_r|^2) \, dr + \mathbb{E} \int_t^T (|y_r|^2 + |z_r|^2) \, dr \right). \tag{3.5}$$

Hence, combining (3.4) and (3.5), we can obtain

$$\frac{1}{2} \|Y\|_{L^\infty(0,T)}^2 + \|Z\|_{L^2_{[0,T]}}^2 \leq \|\xi\|_\infty^2 + 32C^2 \limsup_{(t,\omega)\in[0,T] \times \Omega} \left[\mathbb{E}_t \int_t^T (|y_r|^2 + |z_r|^2) \, dr + \mathbb{E} \int_t^T (|y_r|^2 + |z_r|^2) \, dr \right]^2$$

$$\leq \|\xi\|_\infty^2 + 64C^2 \left(T^2 \|y\|_{L^\infty(0,T)}^4 + \|z\|_{L^2(0,T)}^4 \right).$$

Then, it follows from the elementary inequality $a^2 + b^2 \leq (|a| + |b|)^2$ that

$$\|Y\|_{L^\infty(0,T)}^2 + \|Z\|_{L^2_{[0,T]}}^2 \leq 4\|\xi\|_\infty^2 + \beta^2 \left(\|y\|_{L^\infty(0,T)}^2 + \|z\|_{L^2(0,T)}^2 \right)^2,$$

where $\beta \triangleq 16C \sqrt{T^2 + 1}$. Now, we would like to pick R such that

$$4\|\xi\|_\infty^2 + \beta^2 R^4 \leq R^2.$$
In fact, the above inequality is solvable if and only if
\[
\|\xi\|_\infty \leq \frac{1}{4\beta}.
\] (3.6)

For example, we can take
\[
R = 2\sqrt{2}\|\xi\|_\infty
\]
in order to satisfy this quadratic inequality. Then the ball
\[
\mathcal{B}_R \triangleq \left\{ (Y, Z) \in L^\infty_T (0, T; \mathbb{R}^m) \times Z^2_T | \| Y \|^2_{L^\infty_T (0, T)} + \| Z \|^2_{Z^2_T (0, T)} \leq R^2 \right\}
\]
is such that \(\Gamma (\mathcal{B}_R) \subset \mathcal{B}_R \).

Step 2. We prove that the mapping \(\Gamma \) is a contraction on \(\mathcal{B}_R \).

For every \((y, z)\), \((\bar{y}, \bar{z})\) \(\in\mathcal{B}_R\), let \((Y, Z) = \Gamma (y, z)\) and \((\bar{Y}, \bar{Z}) = \Gamma (\bar{y}, \bar{z})\). For simplicity of presentation, we denote
\[
\dot{y} = y - \bar{y}, \quad \dot{z} = z - \bar{z}, \quad \dot{Y} = Y - \bar{Y}, \quad \dot{Y} = Y - \bar{Y}.
\]

Similar to the above discussion, we deduce that
\[
\frac{1}{2} \| \dot{Y} \|^2_{L^\infty_T (0, T)} + \| \dot{Z} \|^2_{Z^2_T (0, T)}
\]
\[
\leq 2 \text{ esssup}_{(t, \omega) \in [0, T] \times \Omega} \left[\mathbb{E}_t \int_t^T \left(f(r, y, \mathbb{E}[y], z, \mathbb{E}[z]) - f(r, \bar{y}, \mathbb{E}[\bar{y}], \bar{z}, \mathbb{E}[\bar{z}]) \right) dr \right]^2
\]
\[
\leq 2C^2 \text{ esssup}_{(t, \omega) \in [0, T] \times \Omega} \left[\mathbb{E}_t \int_t^T \left(\| y \| + \| \bar{y} \| + \mathbb{E}[\| y \|] + \mathbb{E}[\| \bar{y} \|] + \| z \| + \| \bar{z} \| + \mathbb{E}[\| z \|] + \mathbb{E}[\| \bar{z} \|] \right) \right]^2 dr
\]
\[
\leq 2C^2 \text{ esssup}_{(t, \omega) \in [0, T] \times \Omega} \left[\mathbb{E}_t \int_t^T \left(\| y \| + \| \bar{y} \| + \mathbb{E}[\| y \|] + \mathbb{E}[\| \bar{y} \|] + \| z \| + \| \bar{z} \| + \mathbb{E}[\| z \|] + \mathbb{E}[\| \bar{z} \|] \right)^2 dr
\]
\[
\leq 64C^2 \text{ esssup}_{(t, \omega) \in [0, T] \times \Omega} \left[\mathbb{E}_t \int_t^T \left(\| y \|^2 + \| \bar{y} \|^2 + \mathbb{E}[\| y \|^2] + \mathbb{E}[\| \bar{y} \|^2] + \| z \|^2 + \| \bar{z} \|^2 + \mathbb{E}[\| z \|^2] + \mathbb{E}[\| \bar{z} \|^2] \right) dr
\]
\[
\times \left(\| y \|^2 + \| \bar{y} \|^2 + \mathbb{E}[\| y \|^2] + \mathbb{E}[\| \bar{y} \|^2] + \| z \|^2 + \| \bar{z} \|^2 + \mathbb{E}[\| z \|^2] + \mathbb{E}[\| \bar{z} \|^2] \right)
\]
\[
\leq 256C^2(T^2 + 1) \left[\| y \|^2_{L^\infty_T (0, T)} + \| z \|^2_{Z^2_T (0, T)} + \| y \|^2_{L^\infty_T (0, T)} + \| z \|^2_{Z^2_T (0, T)} \right]
\]
\[
\times \left(\| y \|^2_{L^\infty_T (0, T)} + \| z \|^2_{Z^2_T (0, T)} \right).
\]

Noting that
\[
\| y \|^2_{L^\infty_T (0, T)} + \| z \|^2_{Z^2_T (0, T)} \leq R^2, \quad \| y \|^2_{L^\infty_T (0, T)} + \| z \|^2_{Z^2_T (0, T)} \leq R^2,
\]
we obtain
\[\|\dot{Y}\|_{L^\infty_T(0,T)}^2 + \|\dot{Z}\|_{L^2_T(0,T)}^2 \leq MR^2 (\|\dot{Y}\|_{L^\infty_T(0,T)}^2 + \|\dot{Z}\|_{L^2_T(0,T)}^2), \]
where
\[M \triangleq 512C^2(T^2 + 1). \]
Now, note that \(R = 2\sqrt{3}\|\xi\|_{\infty} \), we have that if
\[\|\xi\|_{\infty} < \frac{1}{8M}, \quad (3.7) \]
then
\[MR^2 < 1, \]
which implies that \(\Gamma \) is a contraction on \(B_R \). By the contraction principle, under the condition (3.7), the mapping \(\Gamma \) admits a unique fixed point, which is the solution of (3.2).

Finally, we come back to BSDE (1.1), which can be rewritten into the form of (3.2) as follows:
\[Y_t = \tilde{\xi} + \int_t^T \left(f(s, Y_s, E[Y_s], Z_s, E[Z_s]) - f(s, 0, 0, 0, 0) \right) ds - \int_t^T Z_s dW_s, \quad 0 \leq t \leq T, \quad (3.8) \]
where
\[\tilde{\xi} \triangleq \xi + \int_t^T f(s, 0, 0, 0, 0) ds. \]
Note that (3.7) is stronger than (3.6). So if we define \(\rho > 0 \) by letting
\[\rho^2 \triangleq \frac{1}{4097C^2(T^2 + 1)}, \]
then BSDE (1.1) admits a unique adapted solution \((Y, Z) \in B_\rho\) under the following condition
\[\|\xi\|_{\infty} + \left\| \int_0^T |f(t, 0, 0, 0, 0)| dt \right\|_{\infty} \leq \rho. \quad (3.9) \]
This completes the proof. \(\square \)

Remark 3.4. Comparing with the results of Carmona and Delarue [11], where they studied some kind of quadratic FBSDE of mean-field type, we would like to show two differences.

(i) The equations of mean-field type are different between this paper and [11]. In [11], motivated by the problem of the mean-field game, Carmona and Delarue proved the solvability of the following FBSDE with quadratic growth:
\[
\begin{cases}
 dX_t = b(t, X_t, \mathcal{L}(X_t), \alpha(t, X_t, \mathcal{L}(X_t), (\sigma(t, X_t, \mathcal{L}(X_t))^{-1})^T Z_t)) dt \\
 + \sigma(t, X_t, \mathcal{L}(X_t)) dW_t, \\
 dY_t = -f(t, X_t, \mathcal{L}(X_t), \alpha(t, X_t, \mathcal{L}(X_t), (\sigma(t, X_t, \mathcal{L}(X_t))^{-1})^T Z_t)) dt + Z_t dW_t, \\
 X_0 = \xi \in L^2(\Omega, \mathcal{F}_0, \mathbb{P}; \mathbb{R}^d), \quad Y_T = g(X_T, \mathcal{L}(X_T)),
\end{cases}
\]
where \(\mathcal{L}(X_t) \) denotes the law of the process \(X_t \). Comparing the backward equation of (3.10) with (1.1), it is easy to see that the generator \(f \) of (3.10) depends on the law of the process \(X \), however, the generator \(f(\cdot) \) of (1.1) depends on the expectations of \(Y \) and \(Z \). So the backward equation of (3.10) and (1.1) are two different equations of mean-field type.
The circumstances are different. The circumstance of Carmona and Delarue [11] is Markovian, however, our model is non-Markovian. Besides, the backward equation of (3.10) studied in [11] is a one-dimensional BSDE, however, (1.1) is a multi-dimensional BSDE.

4 Comparison Theorem

In this section, we study the comparison theorem of mean-field BSDEs with quadratic growth of the following form:

\[Y_t = \xi + \int_t^T f(s, Y_s, \mathbb{E}[Y_s], Z_s) ds - \int_t^T Z_s dW_s, \quad 0 \leq t \leq T. \]

(4.1)

We consider BSDE (4.1) in one-dimensional case only, i.e., \(m = 1 \). For simplicity of presentation, we let \(d = 1 \) too. For this situation, we have the following lemma.

Lemma 4.1. Let \(C \) be a positive constant, and suppose that there are two increasing functions \(\lambda : \mathbb{R}^+ \to \mathbb{R}^+ \) and \(\bar{\lambda} : \mathbb{R}^+ \to \mathbb{R}^+ \), bounded on all bounded subsets, and a predictable process \(k \in \mathbb{Z}^2[0, T] \) such that for all \(s \in [0, T] \), \(y, \bar{y}, z \in \mathbb{R} \),

\[|f(s, y, \bar{y}, z)| \leq k_s^2 [\lambda(|y|) + \bar{\lambda}(|\bar{y}|)] + Cz^2. \]

(4.2)

Then, for bounded terminal value \(\xi \in L^\infty(\Omega; \mathbb{R}) \), the martingale part of any bounded solution of BSDE (4.1) belongs to the space \(\text{BMO} \) (\(P \)), i.e., \(Z \in \mathbb{Z}^2[0, T] \).

Proof. Let \(Y \) be a solution of BSDE (4.1) and there be a positive constant \(M \) such that \(Y_t \leq M \), a.s. for all \(t \in [0, T] \).

So we have that \(\|\xi\|_\infty \leq M \). Applying Itô formula to \(\exp\{\beta Y_s\} \) on \([\tau, T] \), we have

\[\frac{\beta^2}{2} \int_\tau^T e^{\beta Y_s} Z_s^2 ds - \beta \int_\tau^T e^{\beta Y_s} f(s, Y_s, \mathbb{E}[Y_s], Z_s) ds + \beta \int_\tau^T e^{\beta Y_s} Z_s dW_s = e^{\beta \xi} - e^{\beta T \tau} \leq e^{\beta M}, \]

or

\[\frac{\beta^2}{2} \int_\tau^T e^{\beta Y_s} Z_s^2 ds + \beta \int_\tau^T e^{\beta Y_s} Z_s dW_s \leq e^{\beta M} + \beta \int_\tau^T e^{\beta Y_s} f(s, Y_s, \mathbb{E}[Y_s], Z_s) ds, \]

where \(\beta \) is a constant which will be determined later. Now, if \(Z \cdot W \) is square integrable martingale, then taking conditional expectations on the above inequality, we obtain that

\[\frac{\beta^2}{2} \mathbb{E}_\tau \int_\tau^T e^{\beta Y_s} Z_s^2 ds \leq e^{\beta M} + \beta \mathbb{E}_\tau \int_\tau^T e^{\beta Y_s} f(s, Y_s, \mathbb{E}[Y_s], Z_s) ds. \]

Using the estimate (4.2) we obtain that

\[\frac{\beta^2}{2} \mathbb{E}_\tau \int_\tau^T e^{\beta Y_s} Z_s^2 ds \leq e^{\beta M} + \beta (\lambda(M) + \bar{\lambda}(M)) \mathbb{E}_\tau \int_\tau^T e^{\beta Y_s} k_s^2 ds + \beta C \mathbb{E}_\tau \int_\tau^T e^{\beta Y_s} |Z_s|^2 ds. \]
Thus we have
\[
\| \hat{\beta}^2 - \beta C \mathbb{E}_\tau \int_\tau^T e^{\beta Y_s} Z_s^2 ds \| \leq e^{\beta M} + \beta [\lambda(M) + \bar{\lambda}(M)] \mathbb{E}_\tau \int_\tau^T e^{\beta Y_s} k_s^2 ds.
\]
Taking \(\beta = 4C\), we deduce that
\[
4C^2 \mathbb{E}_\tau \int_\tau^T e^{4CY_s} Z_s^2 ds \leq e^{4CM} + 4C[\lambda(M) + \bar{\lambda}(M)] \mathbb{E}_\tau \int_\tau^T e^{4CY_s} k_s^2 ds \leq e^{4CM} \left(1 + 4C[\lambda(M) + \bar{\lambda}(M)] \|k\|_{Z^2[0,T]} \right).
\]
Note that \(-M \leq Y \leq M\), from the latter inequality we deduce that for any stopping time \(\tau\),
\[
\mathbb{E}_\tau \int_\tau^T Z_s^2 ds \leq \frac{e^{8CM} \left(1 + 4C[\lambda(M) + \bar{\lambda}(M)] \|k\|_{Z^2[0,T]} \right)}{4C^2}.
\]
Hence \(Z \cdot W \in \text{BMO}\), i.e., \(Z \in \mathcal{Z}^2[0,T]\). This completes the proof.

For simplicity of presentation, in the following we introduce some more notations. Let \((Y, Z)\) and \((\tilde{Y}, \tilde{Z})\) be two pairs of processes, and the coefficients \((f, \xi)\) and \((\tilde{f}, \tilde{\xi})\) be two pairs of generators. We define
\[
\delta f = f - \tilde{f}, \quad \delta \xi = \xi - \tilde{\xi},
\]
\[
\delta_y f(t) \equiv \delta_y f(t, Y_t, \tilde{Y}_t, \mathbb{E}[Y_t], \tilde{Z}_t) = \frac{f(t, Y_t, \mathbb{E}[Y_t], Z_t) - f(t, \tilde{Y}_t, \mathbb{E}[Y_t], Z_t)}{Y_t - \tilde{Y}_t},
\]
\[
\delta_y f(t) \equiv \delta_y f(t, \tilde{Y}_t, \mathbb{E}[Y_t], \mathbb{E}[\tilde{Y}_t], Z_t) = \frac{f(t, \tilde{Y}_t, \mathbb{E}[Y_t], Z_t) - f(t, \tilde{Y}_t, \mathbb{E}[\tilde{Y}_t], Z_t)}{\mathbb{E}[Y_t] - \mathbb{E}[\tilde{Y}_t]},
\]
\[
\delta_z f(t) \equiv \delta_z f(t, \tilde{Y}_t, \mathbb{E}[\tilde{Y}_t], Z_t, \tilde{Z}_t) = \frac{f(t, \tilde{Y}_t, \mathbb{E}[\tilde{Y}_t], Z_t) - f(t, \tilde{Y}_t, \mathbb{E}[\tilde{Y}_t], \tilde{Z}_t)}{Z_t - \tilde{Z}_t},
\]
and \(\delta Y\) and \(\delta Z\) could be defined similarly. Then we have
\[
f(t, Y_t, \mathbb{E}[Y_t], Z_t) - f(t, \tilde{Y}_t, \mathbb{E}[\tilde{Y}_t], \tilde{Z}_t) = \delta_y f(t) \delta Y_t + \delta_y f(t) \mathbb{E}[\delta Y_t] + \delta_z f(t) \delta Z_t. \tag{4.3}
\]

For one dimensional BSDE (4.1), we have the following comparison theorem.

Theorem 4.2. Let \((Y, Z)\) and \((\tilde{Y}, \tilde{Z})\) be the bounded solutions of BSDE (4.1) with generators \((f, \xi)\) and \((\tilde{f}, \tilde{\xi})\) respectively, which satisfy the condition of Lemma 4.1. Moreover, if \(\xi \leq \tilde{\xi}\) a.e., \(f(t, y, \bar{y}, z) \leq \tilde{f}(t, y, \bar{y}, z)\) a.e., and the following conditions hold:

(A1) for every \(Y, \tilde{Y}, Z, \delta_y f(t), \delta_y f(t) \in L^\infty_T(0, T; \mathbb{R})\),

(A2) for every \(Z, \tilde{Z} \in \mathcal{Z}^2[0,T]\), and any bounded process \(Y, \delta_z f(t) \in \mathcal{Z}^2[0,T]\),

(A3) one of the two coefficients \(f\) and \(\tilde{f}\) is nondecreasing in \(\bar{y}\),

then we have \(Y_t \leq \tilde{Y}_t\) a.s. for every \(t \in [0,T]\).
Remark 4.3. The conditions (A1) and (A2) hold if there exists a positive constant C such that

$$|f(t, y_1, \bar{y}_1, z_1) - f(t, y_2, \bar{y}_2, z_2)| \leq C(|y_1 - y_2| + |\bar{y}_1 - \bar{y}_2|) + C(1 + |z_1| + |z_2|)|z_1 - z_2|$$

for all $t \in [0, T]$ and $y_1, \bar{y}_1, y_2, \bar{y}_2, z_1, z_2 \in \mathbb{R}$. Moreover, (A1) and (A2) hold too if $f(t, y, \bar{y}, z)$ satisfies the global Lipschitz condition.

Proof of Theorem 4.2. Without lose of generality, we would like to let that f is nondecreasing in \bar{y}. Taking the difference of BSDE (4.1) with coefficients (f, ξ) and $(\tilde{f}, \tilde{\xi})$ respectively, we obtain that

$$Y_t - \tilde{Y}_t = Y_0 - \tilde{Y}_0 - \int_0^t [f(s, Y_s, \mathbb{E}[Y_s], Z_s) - f(s, \tilde{Y}_s, \mathbb{E}[\tilde{Y}_s], \tilde{Z}_s)]ds$$

$$- \int_0^t [f(s, \tilde{Y}_s, \mathbb{E}[\tilde{Y}_s], \tilde{Z}_s) - \tilde{f}(s, \tilde{Y}_s, \mathbb{E}[\tilde{Y}_s], \tilde{Z}_s)]ds + \int_0^t (Z_s - \tilde{Z}_s)dW_s. \quad (4.4)$$

We define the measure Q by $dQ = \mathcal{E}_T(\Lambda)d\mathbb{P}$, where

$$\Lambda_t = \int_0^t \delta z(t)dW_s.$$

By Lemma 4.1, we have $Z, \tilde{Z} \in \mathbb{Z}^2[0, T]$. So the conditions (A1) and (A2) imply that $\Lambda \in \text{BMO}$ and hence Q is a probability measure equivalent to \mathbb{P}.

We denote by $\tilde{\Lambda}$ the martingale part of $\delta Y = Y - \tilde{Y}$, in other words,

$$\tilde{\Lambda}_t = \int_0^t (Z_s - \tilde{Z}_s)dW_s, \quad t \in [0, T].$$

Therefore, on the one hand, from (4.3), we have that the process

$$\delta Y_t + \int_0^t [f(s, Y_s, \mathbb{E}[Y_s], Z_s) - f(s, \tilde{Y}_s, \mathbb{E}[\tilde{Y}_s], \tilde{Z}_s)]ds$$

$$+ \int_0^t [f(s, \tilde{Y}_s, \mathbb{E}[\tilde{Y}_s], \tilde{Z}_s) - \tilde{f}(s, \tilde{Y}_s, \mathbb{E}[\tilde{Y}_s], \tilde{Z}_s)]ds$$

$$= \delta Y_t + \int_0^t \left(\delta_y f(s)\delta Y_s + \delta_y f(s)\mathbb{E}[\delta Y_s] + \delta_z f(s)\delta Z_s \right)ds + \int_0^t \delta f(s, \tilde{Y}_s, \mathbb{E}[\tilde{Y}_s], \tilde{Z}_s)ds$$

$$= \delta Y_t + \int_0^t \left(\delta_y f(s)\delta Y_s + \delta_y f(s)\mathbb{E}[\delta Y_s] + \delta f(s, \tilde{Y}_s, \mathbb{E}[\tilde{Y}_s], \tilde{Z}_s) \right)ds + \int_0^t \delta_z f(s)\delta Z_sds.$$

On the other hand, from (4.4), the process

$$\delta Y_t + \int_0^t [f(s, Y_s, \mathbb{E}[Y_s], Z_s) - f(s, \tilde{Y}_s, \mathbb{E}[\tilde{Y}_s], \tilde{Z}_s)]ds$$

$$+ \int_0^t [f(s, \tilde{Y}_s, \mathbb{E}[\tilde{Y}_s], \tilde{Z}_s) - \tilde{f}(s, \tilde{Y}_s, \mathbb{E}[\tilde{Y}_s], \tilde{Z}_s)]ds$$

$$= \delta Y_0 + \int_0^t (Z_s - \tilde{Z}_s)dW_s.$$
So, by Girsanov’s theorem, noting \(\delta Y_0 \in \mathbb{R} \), we obtain that the process
\[
\delta Y_t + \int_0^t \left(\delta_y f(s) \delta Y_s + \delta_{\tilde{y}} f(s) \mathbb{E}[\delta Y_s] + \delta f(s, \tilde{Y}_s, \mathbb{E}[\tilde{Y}_s], \tilde{Z}_s) \right) ds
\]
\[
= \delta Y_0 + \int_0^t (Z_s - \tilde{Z}_s) dW_s - \int_0^t \delta z f(s) \delta Z_s ds
\]
\[
= \delta Y_0 + \tilde{A}_t - \langle \Lambda, \tilde{A} \rangle_t
\]
is a local martingale under the measure \(\mathbb{Q} \). Moreover, Proposition 11 of [12] implies that
\[
\tilde{A}_t - \langle \Lambda, \tilde{A} \rangle_t \in \text{BMO}(\mathbb{Q}).
\]
Finally, using the martingale property, the duality principle between SDEs and BSDEs, and the boundary conditions \(Y_T = \xi, \tilde{Y}_t = \tilde{\xi} \), we have that
\[
Y_t - \tilde{Y}_t = \mathbb{E}_t^\mathbb{Q} \left(e^{\int_t^T \delta_y f(r) dr} (\xi - \tilde{\xi}) + \int_t^T e^{\int_r^T \delta_{\tilde{y}} f(s) ds} \delta y f(s) \mathbb{E}[Y_s - \tilde{Y}_s] ds \right)
\]
\[
+ \int_t^T e^{\int_r^T \delta_{\tilde{y}} f(r) dr} \delta y f(s) \mathbb{E}[Y_s - \tilde{Y}_s] ds
\]
which, noting \(\xi \leq \tilde{\xi} \) a.s. and \(f(t, y, z) \leq \tilde{f}(t, y, z) \) a.e., implies that
\[
Y_t - \tilde{Y}_t \leq \mathbb{E}_t^\mathbb{Q} \int_t^T e^{\int_r^T \delta_{\tilde{y}} f(r) dr} \delta y f(s) \mathbb{E}[Y_s - \tilde{Y}_s] ds
\]
\[
= \int_t^T \mathbb{E}_t^\mathbb{Q} \left(e^{\int_r^T \delta_{\tilde{y}} f(r) dr} \delta y f(s) \right) \mathbb{E}[Y_s - \tilde{Y}_s] ds.
\]
Since \(\delta y f(t) \) and \(\delta_{\tilde{y}} f(t) \) are bounded processes, there exists a positive constant \(K \) such that
\[
\left\| e^{\int_r^T \delta_{\tilde{y}} f(r) dr} \delta y f(s) \right\|_{L^\infty(0, T)} \leq K.
\]
Hence,
\[
Y_t - \tilde{Y}_t \leq K \int_t^T \mathbb{E}[Y_s - \tilde{Y}_s] ds.
\]
Notice that \(\mathbb{E}[Y_s - \tilde{Y}_s] \leq \mathbb{E}[(Y_s - \tilde{Y}_s)^+] \) and then
\[
\int_t^T \mathbb{E}[Y_s - \tilde{Y}_s] ds \leq \int_t^T \mathbb{E}[(Y_s - \tilde{Y}_s)^+] ds,
\]
which implies that
\[
\left(\int_t^T \mathbb{E}[Y_s - \tilde{Y}_s] ds \right)^+ \leq \left(\int_t^T \mathbb{E}[(Y_s - \tilde{Y}_s)^+] ds \right)^+ = \int_t^T \mathbb{E}[(Y_s - \tilde{Y}_s)^+] ds.
\]
Note the inequality \((ab)^+ \leq a \cdot b^+ \) when \(a \geq 0 \), it follows
\[
(Y_t - \tilde{Y}_t)^+ \leq K \left(\int_t^T \mathbb{E}[Y_s - \tilde{Y}_s] ds \right)^+ \leq K \int_t^T \mathbb{E}[(Y_s - \tilde{Y}_s)^+] ds, \quad t \in [0, T],
\]
from which we can conclude with the help of Gronwall’s lemma that \(Y_t \leq \tilde{Y}_t, \ t \in [0, T], \mathbb{P}\text{-a.s.} \) □
Remark 4.4. We point out that the generator f here is of quadratic growth with respect to z, which is weaker than that of [7] which is of linear growth with respect to z. On the other hand, the terminal value ξ is bounded in our paper, which is stronger than that of the terminal value ξ is in $L^2_F(t, T; \mathbb{R})$ used in Buckdahn, Li and Peng [7].

5 Conclusion

The multi-dimensional BSDEs with quadratic growth is a difficult yet important topic in the field of BSDEs. In this work, using an artful method to construct the contracting mapping principle, we proved the existence and uniqueness of multi-dimensional mean-field BSDEs with quadratic growth under a small terminal value. Moreover, a comparison theorem is obtained. For the general mean-field BSDEs (see Carmona and Delarue [10, 11]) with quadratic growth, the relevant results are under our investigation.

References

[1] K. Bahlali, M. Eddahbi, Y. Ouknine, Quadratic BSDE with L^2-terminal data: Krylov’s estimate, Itô-Krylov’s formula and existence results, Ann. Probab., 45 (2017), 2377–2397.
[2] P. Barrieu, N. El Karoui, Monotone stability of quadratic semimartingales with applications to unbounded general quadratic BSDEs, Ann. Probab., 41 (2013), 1831–1863.
[3] P. Briand, R. Elie, Y. Hu, BSDEs with mean reflection, Ann. Appl. Probab., 28 (2018), 482–510.
[4] P. Briand, Y. Hu, BSDE with quadratic growth and unbounded terminal value, Probab. Theory Relat. Fields, 136 (2006), 604–618.
[5] P. Briand, Y. Hu, Quadratic BSDEs with convex generators and unbounded terminal conditions, Probab. Theory Relat. Fields, 141 (2008), 543–567.
[6] R. Buckdahn, B. Djehiche, J. Li, S. Peng, Mean-field backward stochastic differential equations: A limit approach, Ann. Probab., 37 (2009), 1524–1565.
[7] R. Buckdahn, J. Li, S. Peng, Mean-field backward stochastic differential equations and related partial differential equations, Stochastic Process. Appl., 119 (2009), 3133–3154.
[8] R. Buckdahn, J. Li, S. Peng, C. Rainer, Mean-field stochastic differential equations and associated PDEs, Ann. Probab., 45 (2017), 824–878.
[9] P. Cheridito, K. Nam, BSDEs with terminal conditions that have bounded Malliavin derivative, J. Funct. Anal., 266 (2014), 1257–1285.
[10] R. Carmona, F. Delarue, Forward-backward stochastic differential equations and controlled McKean-Vlasov dynamics, Ann. Probab., 43 (2015), 2647–2700.
[11] R. Carmona, F. Delarue, Probabilistic theory of mean field games with applications. I. Mean field FBSDEs, control, and games, Probability Theory and Stochastic Modelling, Springer, Cham, 2018.
[12] K. Doleans-Dade, P. Meyer, *Inégalités de normes avec poids*, Séminaire de Probabilités XIII, in: Lect. Notes in Math., Springer, Berlin, 721 (1979), 204–215.

[13] S. Douissi, J. Wen, Y. Shi, *Mean-field anticipated BSDEs driven by fractional Brownian motion and related stochastic control problem*, Appl. Math. Comput., 355 (2019), 282–298.

[14] N. El Karoui, S. Peng, M.C. Quenez, *Backward stochastic differential equations in finance*, Math. Finance, 7 (1997), 1–71.

[15] H. Hibon, Y. Hu, Y. Lin, P. Luo, F. Wang, *Quadratic BSDEs with mean reflection*, Math. Control Relat. Fields, 8 (2018), 721–738.

[16] H. Hibon, Y. Hu, S. Tang, *Mean-field type Quadratic BSDEs*, Numer. Algebra Control Optim., doi:10.3934/naco.2022009, to appear, (2022).

[17] Y. Hu, S. Tang, *Multi-dimensional backward stochastic differential equations of diagonally quadratic generators*, Stochastic Process. Appl., 126 (2016), 1066–1086.

[18] Y. Hu, X. Li, J. Wen, *Anticipated backward stochastic differential equations with quadratic growth*, J. Differential Equations, 270 (2021), 1298–1331.

[19] M. Kac, *Foundations of kinetic theory*, in: Proceedings of the 3rd Berkeley Symposium on Mathematical Statistics and Probability, 3 (1956), 171–197.

[20] M. Kobylanski, *Backward stochastic differential equations and partial differential equations with quadratic growth*, Ann. Probab., 28 (2000), 558–602.

[21] J. Lasry, P. Lions, *Mean field games*, Japan. J. Math., 2 (2007), 229–260.

[22] X. Li, J. Sun, J. Xiong, *Linear quadratic optimal control problems for mean-field backward stochastic differential equations*, Appl. Math. Optim., 80 (2019), 223–250.

[23] E. Pardoux, S. Peng, *Backward stochastic differential equations and quasilinear parabolic partial differential equations*, In: B. L. Rozuuskii and R. B. Sowers (eds.) Stochastic partial differential equations and their applications, Lect. Notes Control Inf. Sci., vol. 176, 200–217, Berlin Heidelberg New York: Springer. 1992.

[24] E. Pardoux, S. Peng, *Adapted solution of a backward stochastic differential equation*, Systems Control Lett., 4 (1990), 55–61.

[25] S. Peng, *Open problems on backward stochastic differential equations*, In S. Chen, X. Li, J. Yong and X. Y. Zhou (Eds), Control of distributed parameter and stochastic systems, (1998), 265–273.

[26] Y. Shi, J. Wen, J. Xiong, *Mean-field backward stochastic differential equations driven by fractional Brownian Brownian motion*, Acta Math. Sin. (Engl. Ser.), 37 (2021), 1156–1170.

[27] R. Tevzadze, *Solvability of backward stochastic differential equations with quadratic growth*, Stochastic Process. Appl., 118 (2008), 503–515.

[28] H. Xing, G. Zitkovic, *A class of globally solvable Markovian quadratic BSDE systems and applications*, Ann. Probab., 46 (2018), 491–550.
[29] J. Yong, X. Zhou, *Stochastic Controls: Hamiltonian Systems and HJB Equations*, Springer, New York, 1999.

[30] X. Zhang, Z. Sun, J. Xiong, *A general stochastic maximum principle for a Markov regime switching jump-diffusion model of mean-field type*, SIAM J. Control Optim., 56 (2018), 2563–2592.