Fatores associados à contaminação e internação hospitalar por COVID-19 em profissionais de enfermagem: estudo transversal

Vilanice Alves de Araújo Püschel
https://orcid.org/0000-0001-6375-3876
Jack Roberto Silva Fhon
https://orcid.org/0000-0002-1880-4379
Lilia de Souza Nogueira
https://orcid.org/0000-0001-5387-3807
Vanessa de Brito Poveda
https://orcid.org/0000-0002-5839-7253
Larissa Bertacchini de Oliveira
https://orcid.org/0000-0001-9509-4422
Marina de Góes Salvetti
https://orcid.org/0000-0002-4274-8709
Cassiane de Santana Lemos
https://orcid.org/0000-0003-0497-2272
Camila Quartim de Moraes Bruna
https://orcid.org/0000-0002-7161-6035
Fernanda Rodrigues Lima
https://orcid.org/0000-0002-9442-8045
Ana Beatriz Pandolfo da Silva
https://orcid.org/0000-0002-3065-5470
Fábio da Costa Carbogim
https://orcid.org/0000-0003-2065-5998

Destaques: (1) Contaminação associada ao número de pessoas no domicílio com COVID-19. (2) Profissionais de enfermagem contaminados utilizavam mais transporte público. (3) Pertencer ao grupo de risco e presença de sintomas graves relacionaram-se com a internação.

Objetivo: identificar fatores associados à contaminação e internação hospitalar por COVID-19 em profissionais de enfermagem. Método: estudo transversal, realizado em hospital especializado em cardiologia, com 415 profissionais de enfermagem. Foram avaliadas as variáveis sociodemográficas, comorbidades, condições de trabalho e questões relacionadas ao adoecimento pela COVID-19. Na análise dos dados, utilizaram-se os testes Qui-Quadrado, Fisher, Wilcoxon, Mann-Whitney e Brunner Munzel, a razão de chances para internação hospitalar, além de regressão logística binária. Resultados: a taxa de profissionais de enfermagem acometidos pela COVID-19 foi de 44,3% e os fatores associados à contaminação foram o número de pessoas no mesmo domicílio com COVID-19 (OR 36,18; p<0,001) e o uso de transporte público (OR 2,70; p=0,044). Ter sintomas graves (OR 29,75), pertencer ao grupo de risco (OR 3,00), apresentar taquipneia (OR 6,48), falta de ar (OR 5,83), cansaço (OR 4,64), febre (OR 4,41) e/ou mialgia (OR 3,00) aumentou as chances de internação hospitalar dos profissionais com COVID-19. Conclusão: habitar o mesmo domicílio que outras pessoas com a doença e usar transporte público aumentou o risco de contaminação pelo novo coronavírus. Os fatores associados à internação hospitalar dos profissionais contaminados foram a presença de fatores de risco para doença, a gravidade e o tipo dos sintomas apresentados.

Descritores: Enfermagem; Infecções por Coronavírus; Profissionais de Enfermagem; Hospitalização; Saúde do Trabalhador; Vigilância em Saúde do Trabalhador.

Como citar este artigo
Püschel VAA, Fhon JRS, Nogueira LS, Poveda VB, Oliveira LB, Salvetti MG, et al. Factors associated with infection and hospitalization due to COVID-19 in Nursing professionals: a cross-sectional study. Rev. Latino-Am. Enfermagem. 2022;30:e3524. [Access day month year]; Available in: URL. https://doi.org/10.1590/1518-8345.5593.3524
Introdução

A síndrome respiratória aguda de 2019 (COVID-19) é causada por um novo coronavírus, o SARS-CoV-2, da família dos coronavírus (CoV), responsáveis por manifestações infecciosas que variam do resfriado comum à síndrome respiratória aguda grave (SARS)(1-2). A doença teve seus primeiros casos identificados na China no final do ano de 2019 e, em poucos meses, espalhou-se pelo mundo(3).

Pesquisa apontou que, no início da pandemia, cerca de 14% dos casos infectados eram graves e necessitavam de hospitalização; além disso, 1,7% receberam tratamento por ventilação mecânica invasiva e 2,6% morreram(3).

Dados da Organização Mundial da Saúde (OMS) de 13 de novembro de 2021 indicam 252.728.611 casos confirmados de COVID-19 no mundo, com o maior número de casos nos Estados Unidos (47.013.894 casos), seguido pela Índia (34.426.036 casos) e pelo Brasil (21.939.196 casos). Em relação à mortalidade, do ponto de vista global, a COVID-19 já provocou 5.092.908 mortes, sendo 762.614 nos Estados Unidos, 610.491 no Brasil e 463.245 na Índia(4).

A prevenção da transmissão durante o cuidado e tratamento dos doentes depende do uso eficaz dos equipamentos de proteção individual (EPI), que devem incluir máscara, óculos de proteção ou protetor facial, luvas e avental, exclusivos para o ambiente de cuidado(5-6). A complexidade da paramentação, associada ao medo de contaminação e, muitas vezes, à escassez dos EPI, aumenta a tensão e o estresse dos profissionais de saúde que atuam no combate ao coronavírus(5-6).

Em 2020, a escassez de recursos para testes, a incerteza sobre os fatores prognósticos, a indisponibilidade de vacinas, a imposição de medidas desconhecidas de saúde pública, as significativas perdas financeiras e as mensagens conflitantes das autoridades foram motivos de angústia e estresse para os profissionais de saúde(7-8). Enfermeiras e parteiras representam quase 50% da força de trabalho em saúde. Dos 43,5 milhões de trabalhadores da saúde no mundo, estima-se que 20,7 milhões sejam enfermeiros e parteiras(7). No Brasil, dados obtidos no site do Conselho Federal de Enfermagem indicam que há 2.305.946 profissionais de enfermagem inscritos e ativos, dos quais 565.458 são enfermeiros, 1.320.239 técnicos de enfermagem, 419.959 auxiliares de enfermagem e 290 obstetritas(8).

Assim, a enfermagem está na linha de frente dos cuidados aos pacientes com COVID-19 e tem papel central nos cuidados clínicos, educação, prevenção e controle da doença(9), enfrentando o medo de adoecer, morrer ou contagiar seus familiares.

Pesquisa que analisou casos e óbitos por COVID-19 em profissionais de enfermagem no Brasil mostrou maior número de casos na região Sudeste, com maior letalidade para a faixa etária entre 41-50 anos e para o sexo masculino(10).

Estudo transversal, realizado com profissionais de saúde iranianos, descreveu a maior taxa de infecção por COVID-19 entre enfermeiros (51,3%). Cerca de um terço dos profissionais eram assintomáticos e, para os sintomáticos, as características clínicas mais frequentes foram mialgia (46%) e tosse (45,5%)(11).

Devido ao surto repentinamente da doença, os enfermeiros tiveram apenas um breve treinamento para cuidar de pacientes com COVID-19 e muitos profissionais foram afastados do trabalho por sintomas gripais e suspeita de infecção ou mesmo pela infecção confirmada(9,11). O afastamento de profissionais de saúde gera sobrecarga nos serviços e esse fator, somado à escassez de EPI, eleva a tensão dos profissionais de saúde(6,12).

No contexto da crise provocada pelo novo coronavírus, das condições de trabalho e do adoecimento dos profissionais de enfermagem, conhecer os fatores associados à contaminação, ao adoecimento pela COVID-19 e à necessidade de internação hospitalar dos profissionais de enfermagem pode colaborar para a adoção de medidas protetivas para os profissionais de saúde nesta e em eventuais crises sanitárias futuras. Desta forma, os gestores dos serviços de saúde podem obter subsídios para fundamentar ações de saúde ocupacional, como controle de comorbidades dos profissionais; dimensionamento adequado de recursos humanos para gestão da exposição de profissionais mais vulneráveis e manejo da sobrecarga de trabalho das equipes atuantes e implementação de ações de educação permanente que orientem o uso adequado de EPIs pelos profissionais.

Este estudo teve como hipótese que a falta de EPI e a presença de comorbidades entre os profissionais de enfermagem podem estar associadas à contaminação pela COVID-19. Assim, a pesquisa teve como objetivo identificar fatores associados à contaminação e à internação hospitalar pela COVID-19 em profissionais de enfermagem.

Método

Tipo de estudo

Trata-se de um estudo observacional analítico, transversal, baseado nas diretrizes do Strengthening the Reporting of Observational Studies in Epidemiology (STROBE)(13). O estudo transversal é caracterizado como aquele que avalia o desfecho e a exposição de participantes ao mesmo tempo, com a seleção de indivíduos baseada apenas nos critérios de inclusão e exclusão do estudo(14).
Local, população e amostra do estudo

O estudo foi realizado em um hospital de ensino, especializado em cardiopneumologia na cidade de São Paulo-SP, Brasil. A instituição é um centro de referência para atendimento aos pacientes com afecções cardiológicas e pneumológicas complexas e desde junho de 2020 tornou-se referência para o atendimento de pacientes com COVID-19 na cidade de São Paulo, motivo pelo qual foi escolhida para o desenvolvimento da pesquisa.

O hospital é composto por 535 leitos distribuídos em sete unidades de internação e 157 leitos em Unidade de Terapia Intensiva (UTI) de alta complexidade, além de possuir 14 salas de cirurgia, sete salas de hemodinâmica e estudos eletrofisiológicos, 12 salas de diagnóstico de alta complexidade e 60 consultórios médicos. Para atendimento exclusivo aos pacientes com COVID-19, foram disponibilizados 50 leitos de UTI e 60 leitos de unidade de internação.

O hospital conta com 1283 profissionais de Enfermagem, sendo 125 auxiliares, 718 técnicos de enfermagem e 440 enfermeiros. No período de coleta de dados, 248 profissionais encontravam-se em férias ou licença médica/maternidade. A amostra foi, por conveniência, composta por enfermeiros e técnicos/auxiliares de enfermagem.

Critérios de inclusão e exclusão

Foram incluídos profissionais de enfermagem que atuassem na instituição por, no mínimo, um mês nas Unidades de Terapia Intensiva, de Internação, Centro Cirúrgico, Hemodinâmica, Pronto Socorro, Serviço de Diagnóstico por Imagem e Ambulatório. Foram excluídos os que estivessem em férias ou licença de saúde (não relacionada à COVID-19) no período de coleta de dados.

Variáveis de estudo

As variáveis dependentes foram: contaminação por COVID-19 e necessidade de internação hospitalar dos profissionais em decorrência da COVID-19. As independentes incluíram dados sociodemográficos (sexo, idade, raça, estado civil, religião, local de moradia, número de pessoas no domicílio), de formação (escolaridade e cursos na área de enfermagem), relacionados ao trabalho (categoría profissional, função, renda, meio de transporte para o trabalho, setor em que atua, tempo de trabalho na instituição, jornada de trabalho, treinamento específico para cuidado de pacientes com COVID-19, disponibilidade de equipamentos de proteção individual, se possuía outro vínculo empregatício assistencial, afastamento por causas emocionais relacionadas ao trabalho e fornecimento de suporte à saúde mental institucional), condições de saúde (comorbidades e/ou se possuía fatores de grupo de risco definidos pela OMS - idosos a partir de 60 anos, fumantes, pessoas com doença cardiovascular, respiratória, renal ou câncer, diabéticos, imunossuprimidos, gestantes e obesos com Índice de Massa Corporal superior a 40). Ademais, para aqueles que adoeceram pela COVID-19, foram incluídas informações sobre gravidade e tipo de sintomas apresentados e necessidade de cuidados intensivos.

Instrumento de coleta de dados

Para a coleta de dados, foi elaborado um instrumento, do tipo checklist, composto por duas partes. A primeira incluiu variáveis sociodemográficas, aspectos da moradia, comorbidades, condições de trabalho e informações sobre a atuação na instituição. A segunda parte foi composta por perguntas relacionadas à contaminação pela COVID-19 e à necessidade de internação hospitalar dos profissionais pela COVID-19. O instrumento foi construído, utilizando-se como referência diretrizes que orientam as boas práticas relacionadas aos estudos observacionais(13), aos fatores de risco(15) e à biossegurança dos profissionais(16-17), uma vez que ainda não existiam instrumentos válidos que pudessem ser utilizados.

Coleta de dados e período

O instrumento de coleta de dados foi elaborado em formato de survey no Research Eletronic Data Capture (RedCap), sistema que garante a segurança das informações capturadas e encaminhado a todos os profissionais de Enfermagem via aplicativos de mensagens, além da disponibilização do link do instrumento nos computadores de todas as unidades onde os dados foram coletados.

Os pesquisadores estiveram em todas as unidades e períodos, disponibilizando o link e orientando os profissionais. Além disso, foi criado um QR Code para facilitar o acesso dos profissionais ao instrumento.

Os dados foram coletados nos meses de novembro e dezembro de 2020.

Tratamento e análise dos dados

Os dados foram analisados no programa estatístico R versão 4.1.1 com o apoio de um profissional estatístico. Na comparação dos grupos (contaminação ou não pelo novo coronavírus e necessidade ou não de internação hospitalar) foram utilizados, para as variáveis nominais do estudo, os testes Qui-Quadrado de Pearson ou Exato de Fisher (nos casos em que a frequência esperada, em pelo menos uma das caselas da tabela de contingência, foi menor que 5). Quanto às variáveis quantitativas discretas e contínuas, a comparação dos grupos foi feita pelos testes Wilcoxon Mann-Whitney e Brunner Munzel. Para a identificação dos fatores associados ao adoecimento pela COVID-19, foi
aplicada a regressão logística múltipla binária, sendo que todas as variáveis independentes descritas anteriormente foram inseridas simultaneamente no modelo, cuja capacidade preditiva foi avaliada pela área sob a curva Receiver Operator Characteristic (AUC-ROC). O fator de inflação de variância (Variance Inflation Factor - VIF) foi aplicado para identificar a presença de multicolinearidade das variáveis deste modelo, sendo que valor de VIF inferior a 5 foi interpretado como ausência de colinearidade. Para a internação hospitalar, foi calculada a razão de chance para as variáveis que foram significativas nas análises bivariadas. O nível de significância adotado foi de 5%.

Aspectos éticos

A pesquisa foi aprovada pelo Comitê de Ética da instituição (parecer nº 4.072.114) e todos os participantes assinaram o Termo de Consentimento Livre e Esclarecido (TCLE).

Resultados

Um total de 415 profissionais de enfermagem participaram do estudo (86,7% sexo feminino; idade média 36,7 anos), com maior frequência de profissionais das raças branca (47,8%) e parda (33,2%) e com formação de nível médio, ou seja, técnico e auxiliares de enfermagem (53,7%). Os participantes coabitavam o domicílio, em média, com aproximadamente três pessoas, a maioria residia na capital de São Paulo (71,8%) e utilizava meio de transporte público (78,3%) ao deslocar-se para o trabalho (Tabela 1). Em relação à Tabela 1, como alguns itens não foram respondidos por todos os participantes do estudo, o n da variável que não resultou em 415 está explicitado após a descrição da própria variável.

Tabela 1 - Distribuição dos profissionais de enfermagem segundo dados demográficos, de formação, moradia e transporte. São Paulo, SP, Brasil, 2020

Variável	n (%)	Média (DP)
Sexo (n=407)		
Feminino	353 (86,7)	
Masculino	54 (13,3)	
Idade		36,7 (10,0)
Raça (n=404)		
Branca	193 (47,8)	
Parda	134 (33,2)	
Preta	57 (14,1)	
Amarela	18 (4,4)	
Indígena	2 (0,50)	

Entre os participantes do estudo, 110 (26,5%) enquadravam-se como grupo de risco para COVID-19. Além disso, as principais comorbididades identificadas foram doença respiratória (5,5%), doença cardiovascular (5,1%), obesidade (4,8%) e diabetes (3,1%). Quanto às doenças respiratória e cardiovascular, destacaram-se a asma (n=15) e a hipertensão arterial sistêmica (n=21) (Tabela 2).

Tabela 2 - Distribuição dos profissionais de enfermagem (n=110) segundo condições de risco para COVID-19. São Paulo, SP, Brasil, 2020

Condições de risco para COVID-19	n	%
Doença respiratória	21	5,1
Hipertensão arterial sistêmica	21	5,1
Insuficiência cardíaca	2	0,5
Cardiopatia congênita	2	0,5
Arritmia	1	0,2
Síndrome coronariana	1	0,2
Doença respiratória	23	5,54
Asma	15	3,6
Bronquite	7	1,7
DPOC	1	0,2
Diabetes	13	3,1
Neoplasia	3	0,7
Vinte e três profissionais (5,5%) trabalhavam em mais de uma instituição e o tempo de atuação no hospital de estudo foi, em média, de 7,5 (DP=8,6) anos. Foram identificados 15 setores de atuação, com destaque para a unidade de internação adulto (23,5%), UTI cirúrgica (17,1%) e Pronto Socorro (12,0%).

A maioria dos participantes (52,8%) prestava assistência exclusiva aos pacientes com COVID-19 e aproximadamente 78% dos profissionais da instituição receberam treinamento para atendimento a este tipo de clientela. Mais da metade dos profissionais referiu falta de algum tipo de EPI na instituição (50,1%), especialmente máscara N95/PFF2 (37,1%) ou cirúrgica (29,9%), avental impermeável (19,0%) e protetor facial/óculos (2,4%).

Um total de 184 (44,3%) profissionais de enfermagem foi infectado pela COVID-19 e a contaminação esteve associada ao número de pessoas em domicílio com a doença (p<0,001), uso de transporte público (p=0,04), atuação em outra instituição (p=0,012), setor de atuação (p<0,001), faixa de EPI (p=0,033) e falta de máscara N95/PFF2 (p=0,029).

Dentre as variáveis que apresentaram associação com a contaminação por COVID-19, habitar o mesmo domicílio com outras pessoas com a doença aumentou em 36,18 vezes a chance de contrair COVID-19 e o uso de transporte público aumentou 2,70 vezes o risco de contaminação, em comparação aos que não necessitavam deste tipo de transporte (Tabela 3).

Condições de risco para COVID-19*	n	%
Imunossupressão por medicamento	1	0,2
Doença autoimune	6	1,4
Gestante	7	1,7
Idade acima de 60 anos	14	3,4
Fumante	10	2,4
Obesidade	20	4,8
Outros	13	3,1

*Permitia mais de uma resposta; †DPOC = Doença Pulmonar Obstrutiva Crônica

	IC* para OR 95%					
	OR¹	SE	LI¹	LS¹	p-valor	VIF²
Sexo Masculino	1,87	1,66	0,69	5,08	0,216	1,149
Idade	0,98	1,03	0,93	1,03	0,400	2,439
Raça Branca	0,70	2,48	0,13	4,50	0,694	1,639
Raça Indígena	0,21	83,25	0,00	72,10	0,721	
Raça Parda	0,57	2,61	0,09	4,05	0,557	
Raça Preta	0,63	2,72	0,10	4,82	0,645	
Área de moradia – interior de São Paulo	0,58	1,48	0,27	1,25	0,174	1,192
Número de pessoas por domicílio	0,89	1,13	0,70	1,13	0,335	1,214
Número de pessoas no domicílio com COVID-19	36,18	1,43	18,70	76,38	<0,001	1,261
Tempo de trabalho no hospital	1,00	1,00	0,99	1,00	0,901	2,189
Atendimento exclusivo aos pacientes com COVID-19	1,06	1,43	0,53	2,15	0,860	1,172
Profissional de nível médio	0,97	1,48	0,45	2,09	0,937	1,404
Usa transporte público	2,70	1,64	1,05	7,28	0,044	1,403
Usa carro particular	1,78	1,51	0,79	4,05	0,166	1,402
Usa transporte por aplicativo	1,11	2,09	0,26	4,67	0,887	1,193
Caminha para o trabalho	1,84	2,57	0,28	11,34	0,518	1,151
Usa outro tipo de transporte	3,80	3,00	0,34	29,33	0,224	1,126

(continua na próxima página...)
Os valores de VIF indicaram ausência de colinearidade entre as variáveis do modelo relacionado aos fatores associados à contaminação dos profissionais pela COVID-19 (Tabela 3) que apresentou excelente capacidade preditiva segundo resultado da AUC-ROC: 0,958.

A Tabela 4 mostra os principais sinais e sintomas apresentados pelos profissionais que tiveram COVID-19, bem como a necessidade de internação hospitalar e em UTI. Observa-se que a maioria apresentou sintomas leves (68,7%), especialmente cefaleia (63,5%), cansaço (62,5%), anosmia (58,6%) e ageusia (55,9%). Entre os 184 profissionais que contraíram a doença, 16 (8,7%) precisaram de internação para tratamento e quatro (2,2%) necessitaram de cuidados intensivos.

Tabela 4 - Distribuição dos profissionais de enfermagem (n=184) segundo a gravidade e os principais sintomas da COVID-19, necessidade de internação hospitalar e admissão em UTI. São Paulo, SP, Brasil, 2020

Variáveis | n (%) | *IC = Intervalo de confiança; ^OR = Razão de chance; ^LI = Limite inferior; ^LS = Limite superior; VIF = Variance Inflation Factor
--- | --- | --- | --- | --- | --- | ---
Recebido treinamento para atendimento à COVID-19 | 1,08 | 1,50 | 0,49 | 2,43 | 0,842 | 1,151
Tem outro trabalho | 2,27 | 2,03 | 0,58 | 9,51 | 0,247 | 1,131
Máscara cirúrgica não disponível | 1,01 | 1,62 | 0,39 | 2,63 | 0,976 | 1,944
Máscara N95/PFF2 não disponível | 1,51 | 1,55 | 0,64 | 3,62 | 0,348 | 1,747
Protetor facial/óculo não disponível | 1,24 | 1,79 | 0,40 | 3,88 | 0,711 | 1,385
Gorro não disponível | 0,69 | 1,96 | 0,19 | 2,64 | 0,580 | 1,440
Avental impermeável não disponível | 0,77 | 1,70 | 0,27 | 2,18 | 0,630 | 1,712
Luvas não disponíveis | 2,54 | 2,18 | 0,55 | 11,65 | 0,230 | 1,292
Pertence ao grupo de risco para COVID-19 | 1,50 | 1,72 | 0,52 | 4,38 | 0,457 | 2,184
Diabetes | 0,84 | 3,51 | 0,07 | 9,18 | 0,889 | 1,255
Neoplasia | 2,58 | 8,06 | 0,04 | 197,70 | 0,650 | 1,236
Usa imunossupressor | 368 | 480 | Não estimável | 0,988 | 1,000
Tem doença autoimune | 0,73 | 5,20 | 0,02 | 12,67 | 0,848 | 1,125
Gestante | 0,16 | 4,55 | 0,01 | 3,08 | 0,235 | 1,225
Idade 60 ou mais | 0,73 | 3,32 | 0,07 | 7,65 | 0,789 | 1,584
Fumante | 0,36 | 3,01 | 0,03 | 2,73 | 0,350 | 1,278
Obesidade | 0,92 | 2,47 | 0,16 | 5,45 | 0,930 | 1,355
Outro risco | 0,36 | 2,79 | 0,04 | 2,56 | 0,321 | 1,320

*IC = Intervalo de confiança; ^OR = Razão de chance; ^LI = Limite inferior; ^LS = Limite superior; VIF = Variance Inflation Factor

Variáveis | n (%) | *IC = Intervalo de confiança; ^OR = Razão de chance; ^LI = Limite inferior; ^LS = Limite superior; VIF = Variance Inflation Factor
--- | --- | --- | --- | --- | --- | ---
Gravidade dos sintomas (n=179) | 24 (13,4) | *IC = Intervalo de confiança; ^OR = Razão de chance; ^LI = Limite inferior; ^LS = Limite superior; VIF = Variance Inflation Factor
--- | --- | --- | --- | --- | --- | ---
Assintomático | 32 (17,9) | *IC = Intervalo de confiança; ^OR = Razão de chance; ^LI = Limite inferior; ^LS = Limite superior; VIF = Variance Inflation Factor
Leve | 123 (68,7) | *IC = Intervalo de confiança; ^OR = Razão de chance; ^LI = Limite inferior; ^LS = Limite superior; VIF = Variance Inflation Factor

*Unidade de Terapia Intensiva; †Permitia mais de uma resposta
Na comparação dos 184 profissionais com COVID-19, segundo necessidade ou não de internação hospitalar, houve diferença significativa entre os grupos em relação a pertencer ao grupo de risco para COVID-19 (p=0,032), ter sintomas graves da doença (p<0,001), além de presença de febre (p=0,008), falta de ar (p<0,001), cansaço (p=0,031), taquipneia (p<0,001) e/ou mialgia (p=0,042).

Estas variáveis, que mostraram associação com internação hospitalar, foram testadas individualmente quanto à razão de chance para hospitalização. Verificou-se que a presença de sintomas graves, taquipneia ou falta de ar aumentou em 29,75, 6,48 e 5,83 vezes a chance de hospitalização, respectivamente. Cansaço, febre, mialgia e pertencer ao grupo de risco também contribuíram para a hospitalização, com razão de chance inferior a 5 (Tabela 5).

Tabela 5 - Razão de chance para hospitalização dos profissionais de enfermagem (n=415), a partir das variáveis que apresentaram associação na análise univariada. São Paulo, SP, Brasil, 2020

Variáveis	OR†	IC* 95%	p-value	
		Limit inferior	Limit superior	
Pertencer ao grupo de risco	3,00	1,06 a 8,49	0,032†	
Sintomas graves	29,75	8,26 a 106,77	<0,001†	
Febre	4,41	1,36 a 14,25	0,008†	
Falta de ar	5,83	1,92 a 17,70	<0,001†	
Cansaço	4,64	1,02 a 21,09	0,031†	
Taquipneia	6,48	2,15 a 19,51	<0,001†	
Mialgia	3,00	1,00 a 9,03	0,042†	

*IC = Intervalo de confiança; †OR = Razão de chance; ‡Teste Qui-Quadrado de Pearson; §Teste Exato de Fisher

Discussão

Ao longo da pandemia da COVID-19, centenas de profissionais contaminaram-se e muitos morreram em decorrência da doença. Embora nem sempre seja possível estabelecer a assistência prestada como fonte da contaminação, mesmo quando os profissionais cuidam diretamente de pacientes infectados com SARS-CoV-2, pesquisas apontam maior risco para trabalhadores de saúde quando comparado à população em geral[11-18].

Estima-se que antes da vacinação em massa, cerca de 14% dos casos mundiais eram de profissionais de saúde, de diferentes áreas de atuação[19]. Porém, mesmo com o surgimento das variantes do SARS-CoV-2, a vacinação mundial foi essencial para controlar a pandemia de COVID-19 na população em geral e entre os profissionais. Nesse sentido, uma coorte composta por 194.362 familiares de profissionais de saúde e 144.525 trabalhadores da saúde demonstrou que o risco de infecção pela COVID-19 foi menor após a segunda dose para membros da família [HR - Hazard Ratio - 0,46 (IC 95% 0,30 a 0,70)] e para profissionais de saúde [HR 0,08 (IC 95% 0,04 a 0,17)][20].

Durante a fase mais crítica da pandemia ou período pré-vacinação, houve diminuição da força de trabalho em saúde decorrente da contaminação e adoecimento, o que gerou grande impacto social e econômico para o sistema de saúde[19,21]. Nesse contexto, esta pesquisa explorou fatores associados ao adoecimento de profissionais de enfermagem pela COVID-19 no período que antecedeu a vacinação no país.

O presente estudo permitiu identificar que o uso de transporte público aumentou as chances dos profissionais contaminarem-se pelo SARS-CoV-2, à semelhança de outras pesquisas que investigaram a relação entre o transporte público e o risco de contaminação por COVID-19[22-23].

Um estudo chinês que avaliou o risco de transmissão do novo coronavírus em passageiros de trem concluiu que a transmissão nestas viagens é elevada, mas o risco é influenciado pelo tempo de exposição e localização do passageiro, podendo ser minimizado com aumento da distância entre os assentos, redução da densidade de passageiros e uso de medidas de higiene pessoal[23].

Revisão integrativa da literatura analisou os riscos de adoecimento ocupacional em profissionais de saúde que cuidam de pacientes com COVID-19. Os autores analisaram 19 estudos e destacaram a importância do uso adequado de EPI, higiene das mãos e do ambiente, distância entre os assentos, redução da densidade de passageiros e uso de medidas de higiene pessoal[23].

Em outras pesquisas que investigaram a relação entre muitos profissionais de saúde contaminarem-se pelo SARS-CoV-2, a vacinação mundial foi essencial para controlar a pandemia de COVID-19 na população em geral e entre os profissionais. Nesse sentido, uma coorte composta por 194.362 familiares de profissionais de saúde e 144.525 trabalhadores da saúde demonstrou que o risco de infecção pela COVID-19 foi menor após a segunda dose para membros da família [HR - Hazard Ratio - 0,46 (IC 95% 0,30 a 0,70)] e para profissionais de saúde [HR 0,08 (IC 95% 0,04 a 0,17)][20].

Outra variável que aumentou significativamente a chance de contrair a doença foi residir no mesmo domicílio que outras pessoas diagnosticadas com COVID-19. Ressalta-se que não foi possível identificar nesse estudo, assim como em outros, se a contaminação partiu dos...
profissionais para os residentes do mesmo ambiente ou o contrário.

Embora a identificação rápida dos casos, pela vigilância e pelos testes diagnósticos, tenha permitido isolar rapidamente esses profissionais, muitas vezes o isolamento preciso ser feito na própria residência, juntamente com familiares e outras pessoas próximas. Disponibilizar acomodações para a quarentena de profissionais da linha de frente infectados é um exemplo de medida que pode ajudar a dirimir a possível contaminação na comunidade(27).

A necessidade de internação hospitalar para os profissionais contaminados esteve associada a pertencer ao grupo de risco e à presença de sintomas graves da doença, fatores que também foram observados em outros estudos que indicaram a presença de comorbidades e sintomas respiratórios como preditivos para internação de pacientes acometidos por COVID-19(28-31).

A baixa incidência de profissionais que precisan ser internados em UTI (2,2%), neste estudo, corrobora dados já conhecidos que relatam taxas entre 10 e 20% que necessitam de cuidado intensivo, sendo que apenas entre 3 a 10% desses requerem intubação(32).

Estudo de coorte desenvolvido na Espanha comparou os desfechos de trabalhadores da saúde e da população geral hospitalizados por COVID-19. Os resultados mostraram que as comorbidades e os achados radiológicos graves foram mais frequentes na população geral e não se encontrou diferença significativa entre a necessidade de suporte ventilatório e internação em UTI entre os dois grupos. Contudo, a ocorrência de sepse e de mortalidade foram significativamente mais elevadas na população geral do que entre os profissionais de saúde(33).

Dada a característica do presente estudo, no qual os próprios profissionais respondiam sobre suas condições de saúde, o óbito não foi uma variável avaliada, embora se saiba que há alta mortalidade para pacientes que precisem de internação em UTI(34-35).

No presente estudo, foi estabelecida uma relação entre contaminação e falta de EPI. Acredita-se que o risco ocupacional imposto pela falta desses equipamentos deve ser evitado e a disponibilização de EPI adequado deve receber especial atenção no manejo local da pandemia(36).

O presente estudo apresenta pontos fortes e limitações que devem ser apontadas. O principal avanço do conhecimento foi a identificação de fatores associados à contaminação e ao adoecimento pela COVID-19, além das variáveis associadas à internação hospitalar dos profissionais de enfermagem. Os achados têm o potencial para serem utilizados como referência na avaliação e comparação de fatores de risco à saúde de profissionais de enfermagem da linha de frente, no contexto atual e em contextos pandêmicos futuros. Os resultados poderão contribuir com estudos futuros que analisem fatores associados à contaminação, ao adoecimento e à internação de profissionais de saúde pela COVID-19.

Dentre as limitações, destacam-se o tamanho da amostra estabelecido por conveniência e de forma não probabilística. Além disso, a coleta de dados ocorreu em apenas uma instituição, por autorrelato, o que pode incorrer em alguns graus de viés subjetivo.

Conclusão

O estudo permitiu identificar fatores associados à contaminação dos profissionais de enfermagem pela COVID-19. Habitar o mesmo domicílio que outras pessoas com a doença e usar transporte público aumentou o risco de contaminação dos profissionais. Além disso, a falta de EPI relacionou-se à contaminação da equipe de enfermagem, identificando a necessidades de gestão de recursos materiais nos serviços de saúde para a garantia da oferta de recursos humanos adequado durante a pandemia.

A necessidade de internação hospitalar entre os profissionais que se contaminaram com COVID-19 foi baixa e esteve associada a pertencer ao grupo de risco, ter sintomas graves da doença e apresentar febre, falta de ar, cansaço, taquipneia e/ou mialgia. Desta forma, a presença de comorbidades destaca-se como um fator significativo para contaminação dos profissionais de enfermagem e reflete a necessidade de ações de saúde ocupacional que auxiliem no manejo destes agravos de saúde.

Recomenda-se a realização de novos estudos que analisem comparativamente instituições de saúde e revisões sistemáticas que sintetizem os fatores associados à contaminação dos profissionais de enfermagem pela COVID-19 e as medidas adotadas.

Referências

1. World Health Organization. Coronavirus disease (COVID-19) pandemic. [Internet]. Geneva: WHO; 2020 [cited 2020 May 26]. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019
2. Yin Y, Wunderink RG. MERS, SARS and other coronaviruses as causes of pneumonia. Respirol. 2018;23(2):130-7. doi: http://doi.org/10.1111/resp.13196

www.eerp.usp.br/rlae
3. Telle KE, Grøslund M, Helgeland J, Håberg SE. Factors associated with hospitalization, invasive mechanical ventilation treatment and death among all confirmed COVID-19 cases in Norway: Prospective cohort study. Scand J Public Health. 2021;49(1):41-7. doi: http://doi.org/10.1177/1403494820985172

4. Johns Hopkins University & Medical. COVID-19 Dashboard. [Internet]. 2020 [cited 2020 May 25]. Available from: https://coronavirus.jhu.edu/map.html

5. Gambini G, Guinehenec J, Fouassin X, Castel O, Bousseau A, Ayraud-Thevenot S. Management of donations of personal protective equipment in response to the massive shortage during the COVID-19 health crisis: providing quality equipment to health care workers. Antimicrob Resist Infect Control. 2021;10(1):159. doi: http://doi.org/10.1186/s13756-021-01028-0

6. Haegdorens F, Franck E, Smith P, Bruynel A, Monsieurs KG, Van Bogaert P. Sufficient personal protective equipment training can reduce COVID-19 related symptoms in healthcare workers: a prospective cohort study. Int J Nurs Stud. 2021;10:104132. doi: http://doi.org/10.1016/j.ijnurstu.2021.104132

7. World Health Organization. Global strategic directions for strengthening nursing and midwifery 2016-2020. [Internet]. Geneva: WHO; 2016. [cited 2020 May 26]. Available from: https://www.who.int/hrh/nursing_midwifery/global-strategic-midwifery2016-2020.pdf?ua=1

8. Federal Nursing Council. Nursing in numbers. [Internet]. Brasília: COFEN; 2020 [cited 2020 May 26]. Available from: http://www.cofen.gov.br/enfermagem-em-numeros

9. Al Maskari Z, Al Blushi A, Khamis F, Al Tai A, Al Salmi I, Al Harthi H, et al. Characteristics of healthcare workers infected with COVID-19: a cross-sectional observational study. Int J Infect Dis. 2021;102:32-6. doi: http://doi.org/10.1016/j.ijid.2020.10.009

10. Duprat IP, Melo GCD. Análise de casos e óbitos pela COVID-19 em profissionais de enfermagem no Brasil. Rev Bras Saúde Ocupacional. 2020;45:e30. doi: http://doi.org/10.1590/2317-6369000018220

11. Sabetian G, Moghadami M, Hashemizadeh FHL, Shahririrad R, Fallahi MJ, Asmarian N, et al. COVID-19 infection among healthcare workers: a cross-sectional study in southwest Iran. Virol J. 2021;18(1):58. doi: http://doi.org/10.1186/s12985-021-01532-0

12. Feingold JH, Hurtado A, Feder A, Peccoralo L, Southwick SM, Ripp J, et al. Posttraumatic growth among health care workers on the frontlines of the COVID-19 pandemic. J Affect Disord. 2021;296:35-40. doi: http://doi.org/10.1016/j.jad.2021.09.032

13. Von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandebroucke JP; STROBE Initiative. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. J Clin Epidemiol. 2008;61(4):344-9. doi: http://doi.org/10.1016/j.jclinepi.2007.11.008

14. Wang X, Zhenshun Cheng Z. Cross-sectional studies: strengths, weaknesses, and recommendations. Chest. 2020;158(1S):S65-S71. doi: http://doi.org/10.1016/j.chest.2020.03.012

15. Gottlieb M, Sansom S, Frankenberger C, Ward E, Hota B. Clinical course and factors associated with hospitalization and critical illness among COVID-19 patients in Chicago, Illinois. Acad Emerg Med. 2020;27(10):963-73. doi: http://doi.org/10.1111/acem.14104

16. Sant’ana G, Imoto AM, Amorim FF, Taminato M, Peccin MS, Santana LA, et al. Infection and death in healthcare workers due to COVID-19: a systematic review. Acta Paul Enferm. 2020;33:eAPE20200107. doi: http://doi.org/10.37689/acta-ape/2020AO0107

17. Chou R, Dana T, Buckley DI, Selph S, Fu R, Totten AM. Epidemiology of and risk factors for Coronavirus infection in health care workers: a living rapid review. Ann Intern Med. 2020;173(2):120-36. doi: http://doi.org/10.7326/M20-1632

18. Sanchez-Taltavull D, Castelo-Szekely V, Murugan S, Hamley JID, Rollenske T, Ganal-Vonarburg SC, et al. Regular testing of asymptomatic healthcare workers identifies cost-efficient SARS-CoV-2 preventive measures. PLoS One. 2021;16(11):e0258700. doi: http://doi.org/10.1371/journal.pone.0258700

19. World Health Organization. Prevention, identification and management of health worker infection in the context of COVID-19 - Interim guidance. [Internet] Geneva: WHO;2020 [cited 2021 Jun 14]. Available from: https://www.who.int/publications/i/item/10665-336265

20. Shah ASV, Gribben C, Bishop J, Hanlon P, Caldwell D, Wood R, et al. Effect of vaccination on transmission of COVID-19: an observational study in healthcare workers and their households. medRxiv. 2021;385:1718-20. doi: http://doi.org/10.1101/2021.03.11.21253275

21. Coccia M. Preparedness of countries to face covid-19 pandemic crisis: Strategic positioning and underlying structural factors to support strategies of prevention of pandemic threats. Environ Res. 2022;203:111678. doi: http://doi.org/10.1016/j.envres.2021.111678

22. Aranaz-Andrés JM, McGee-Laso A, Galán JC, Cantón R, Mira J. Activities and Perceived Risk of Transmission and ventilation treatment and death among all confirmed COVID-19 cases in Norway: Prospective cohort study. Int J Linepi. 2020;158(1S):S65-S71. doi: http://doi.org/10.1016/j.ijclinepi.2007.11.008

23. Hu M, Lin H, Wang J, Xu C, Tatem AJ, Meng B, et al. Risk of coronavirus disease 2019 transmission in train passengers: an epidemiological and modeling study.
Clinical characteristics of coronavirus disease 2019 in survivors with and without in-hospital rehabilitation. Sci Nurs Res. 2021;58:151410. doi: http://doi.org/10.1016/j.apnr.2021.151410

27. Albaqawi HM, Pasay-An E, Mostoles R Jr, Villareal S. Risk assessment and management among frontline nurses in the context of the COVID-19 virus in the northern region of the Kingdom of Saudi Arabia. Appl Nurs Res. 2021;58:151410. doi: http://doi.org/10.1016/j.apnr.2021.151410

28. Norbert S, Birkenfeld AL, Schulze MB. Global pandemics interconnected - obesity, impaired metabolic health and COVID-19. Nat Rev Endocrinol. 2021;17:135-49. Available from: http://doi.org/10.1038/s41574-020-00462-1

29. Augustine RSA, Nayeem A, Salam SA, Augustine P, Dan P, Monteiro P, et al. Increased complications of COVID-19 in people with cardiovascular disease: Role of the renin-angiotensin-aldosterone system (RAAS) dysregulation. Chem Biol Interact [Preprint]. 2022 Jan [cited 2021 Jun 14]. doi: http://doi.org/10.1016/j.cbi.2021.109738

30. Musheev B, Janowicz R, Borg L, Matarlo M, Boyle H, Hou W, et al. Characterizing non-critically ill COVID-19 survivors with and without in-hospital rehabilitation. Sci Rep. 2021;11(1):21039. doi: http://doi.org/10.1038/s41598-021-00246-1

31. Murugan C, Ramamoorthy S, Kuppuswamy G, Murugan RK, Sivalingam Y, Sundaramurthy A. COVID-19: A review of newly formed viral clades, pathophysiology, therapeutic strategies and current vaccination tasks. Int J Biol Macromol. 2021;S0141-8130(21)02301-1. doi: http://doi.org/10.1016/j.jbiomac.2021.10.144

32. Guan W, Ni Z, Hu Y, Liang W, Ou C, He JX, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382(18):1708-20. doi: http://doi.org/10.1056/NEJMoa2002032

33. Diez-Manglano J, Solís-Marquinez MN, Álvarez García A, Alcalá-Rivera N, Maderuelo Riesco I, Gericó Aseguinolaza M, et al. Healthcare workers hospitalized due to COVID-19 have no higher risk of death than general population. Data from the Spanish SEMI-COVID-19 Registry. PloS One. 2021;16(2):e0247422. doi: http://doi.org/10.1371/journal.pone.0247422

34. Grasselli G, Greco M, Zanella A, Albano G, Antonelli M, Bellani G, et al. Risk factors associated with mortality among patients with COVID-19 in intensive care units in Lombardy, Italy. JAMA Intern Med. 2020;180(10):1345-55. doi: https://doi.org/10.1001/jamainternmed.2020.3539

35. Scott H, Zahra A, Fernandes R, Fries BC, Thode HC Jr, Singer AJ. Bacterial infections and death among patients with Covid-19 versus non Covid-19 patients with pneumonia. J Emerg Med. 2022;51:1-5. doi: http://doi.org/10.1016/j.ajem.2021.09.040

36. Rebmann T, Vassallo A, Holdsworth JE. Availability of personal protective equipment and infection prevention supplies during the first month of the COVID-19 pandemic: A national study by the APIC COVID-19 task force. Am J Infect Control. 2021;49(4):434-7. doi: https://doi.org/10.1016/j.ajic.2020.08.029

Contribuição dos autores

Concepção e desenho da pesquisa: Vilanice Alves de Araújo Püschel, Jack Roberto Silva Fhon, Lilia de Souza Nogueira, Vanessa de Brito Poveda, Marina de Góes Salvetti, Cassiane de Santana Lemos, Camila Quartim de Moraes Bruna, Fábio da Costa Carboigim.

Obtenção de dados: Larissa Bertacchini de Oliveira, Fernanda Rodrigues Lima, Ana Beatriz Pandolfo da Silva.

Análise e interpretação dos dados: Vilanice Alves de Araújo Püschel, Jack Roberto Silva Fhon, Lilia de Souza Nogueira, Vanessa de Brito Poveda, Larissa Bertacchini de Oliveira, Marina de Góes Salvetti, Cassiane de Santana Lemos, Camila Quartim de Moraes Bruna, Fernanda Rodrigues Lima, Ana Beatriz Pandolfo da Silva.

Análise estatística: Lilia de Souza Nogueira, Vanessa de Brito Poveda, Larissa Bertacchini de Oliveira, Cassiane de Santana Lemos, Fernanda Rodrigues Lima, Ana Beatriz Pandolfo da Silva.

Redação do manuscrito: Vilanice Alves de Araújo Püschel, Jack Roberto Silva Fhon, Lilia de Souza Nogueira, Vanessa de Brito Poveda, Marina de Góes Salvetti, Cassiane de Santana Lemos, Camila Quartim de Moraes Bruna, Fernanda Rodrigues Lima, Ana Beatriz Pandolfo da Silva.

Revisão crítica do manuscrito quanto ao conteúdo intelectual importante: Vilanice Alves de Araújo Püschel, Jack Roberto Silva Fhon, Lilia de Souza Nogueira, Vanessa de Brito Poveda, Larissa Bertacchini de Oliveira, Marina de Góes Salvetti, Cassiane de Santana Lemos, Camila Quartim de Moraes Bruna, Fernanda Rodrigues Lima, Ana Beatriz Pandolfo da Silva.
de Gôes Salvetti, Cassiane de Santana Lemos, Camila Quartim de Moraes Bruna, Fábio da Costa Carbogim.

Coordenação da pesquisa e dos pesquisadores:
Vilânice Alves de Araújo Püschel.

Todos os autores aprovaram a versão final do texto.

Conflito de interesse: os autores declararam que não há conflito de interesse.