Tocilizumab for patients with COVID-19 pneumonia. The single-arm TOCIVID-19 prospective trial

Francesco Perrone1†, Maria Carmela Piccirillo1†, Paolo Antonio Ascierto2, Carlo Salvareni3, Roberto Parrella4, Anna Maria Marata5, Patrizia Popoli6, Laurens Ferraris7, Massimiliano M. Marrocco-Trischitta7, Diego Ripamonti8, Francesca Binda8, Paolo Bonfanti9, Nicola Squillace8, Francesco Castelli8, Maria Lorenza Muisen10, Miriam Lichtner11, Carlo Calzetti12, Nicola Duccio Salerno13, Luigi Atripaldi4, Diego Massari15, Vincenzo Montesarchio4, Cristina Mussini16, Emanuele Alberto Negri15, Gerardo Botti1, Claudia Cardone1, Piera Gargiulo1, Adriano Gravina1, Clorinda Schettino1, Laura Arenare1, Paolo Chiodini17†, Ciro Gallo17† and the TOCIVID-19 investigators, Italy

Abstract

Background: Tocilizumab blocks pro-inflammatory activity of interleukin-6 (IL-6), involved in pathogenesis of pneumonia the most frequent cause of death in COVID-19 patients.

Methods: A multicenter, single-arm, hypothesis-driven trial was planned, according to a phase 2 design, to study the effect of tocilizumab on lethality rates at 14 and 30 days (co-primary endpoints, a priori expected rates being 20 and 35%, respectively). A further prospective cohort of patients, consecutively enrolled after the first cohort was accomplished, was used as a secondary validation dataset. The two cohorts were evaluated jointly in an exploratory multivariable logistic regression model to assess prognostic variables on survival.

Results: In the primary intention-to-treat (ITT) phase 2 population, 180/301 (59.8%) subjects received tocilizumab, and 67 deaths were observed overall. Lethality rates were equal to 18.4% (97.5% CI: 13.6–24.0, \(P = 0.52 \)) and 22.4% (97.5% CI: 17.2–28.3, \(P < 0.001 \)) at 14 and 30 days, respectively. Lethality rates were lower in the validation dataset, that included 920 patients. No signal of specific drug toxicity was reported. In the exploratory multivariable logistic regression analysis, older age and lower PaO2/FiO2 ratio negatively affected survival, while the concurrent use of steroids was associated with greater survival. A statistically significant interaction was found between tocilizumab and...
Background

Pneumonia is the most frequent and serious complication of COVID-19, due to excessive host immune response causing an acute respiratory distress syndrome [1–5].

Interleukin 6 (IL-6) is a pro-inflammatory cytokine implicated in several rheumatic diseases and in the so-called cytokine release syndrome (CRS). Tocilizumab is a recombinant humanized monoclonal antibody, directed against the IL-6 receptor. It is indicated for treating severe rheumatoid arthritis, systemic juvenile idiopathic polyarthritis and severe cytokine release syndrome (CRS) induced by chimeric antigen receptor T-cells (CAR-T) [6, 7].

Chinese researchers treated 21 patients with severe or critical COVID-19 pneumonia with tocilizumab 400 mg iv with efficacy in terms of reduction of oxygen requirement (15/20), resolution of radiologic lung lesions (19/21), normalization of lymphocyte count (10/19), and reduction of C-reactive protein levels (16/19) [8]. These results prompted a randomised trial (tocilizumab vs control, ChiCTR2000029765).

On March 19th, 2020 during the ascending phase of the Italian breakout, we launched the TOCIVID-19 study, to describe the efficacy of tocilizumab while controlling the highly increasing off-label use of the drug.

Methods

TOCIVID-19, an academic multicenter clinical trial, was promoted by the National Cancer Institute of Naples and was approved for all Italian centers by the National Ethical Committee at the Lazzaro Spallanzani Institute on March 18th, 2020; two amendments followed on March 24th, 2020 and April 28th, 2020 [9]. The study is coordinated through the web-based platform managed by the Clinical Trial Unit of the promoting center.

Study design

330 patients were initially planned for the single-arm phase 2 study based on one-month lethality rate of 15% as null hypothesis, an alternative hypothesis for tocilizumab of 7.5% (i.e. halving the expected lethality rate), 99% power and 5% two-tailed alpha error. Taking into account about 20% of cases not eligible after registration 400 patients had to be enrolled. The initial calculation was based on March 10th daily report on Italian breakout, but data tumultuously accumulating between March 10th and April 15th clearly showed it was largely underestimated, and that adding an earlier outcome could be worthwhile. Thus, the April 24th amendment introduced 14-day lethality rate as co-primary endpoint, and the expected lethality rates (null-hypotheses) at 14 and 30 days were redefined at 2 and 35%, respectively, based on data received from the Italian National Institute of Health [10]. Nonetheless we decided to leave the planned sample size unchanged since it still allowed 99% and 95% power to recognize 10% absolute reduction at 14 and 30 days, respectively, with a significance level of 2.5% for each co-primary endpoint. It is worth emphasizing that any change in the protocol was introduced before extracting mortality data from the database, i.e. not being aware of the number and timing of recorded deaths.

Patients

Patients hospitalized due to clinical/instrumental signs of pneumonia, and with real-time PCR diagnosed SARS-CoV-2 infection, were eligible for the phase 2 study if they had oxygen saturation at rest in ambient air ≤ 93% or required oxygen support or mechanical ventilation either non-invasive or invasive (intubated less than 24 h before registration). There was no limitation based on age and gender.

Patients were not eligible in case of known hypersensitivity to tocilizumab, known active infections or other clinical conditions that could not be treated or solved according to the judgment of the clinician and contraindicated tocilizumab, ALT/AST > 5 times the upper limit of the normality, neutrophils count < 500/mm³, platelets < 50,000/mm³, bowel diverticulitis or perforation.

Informed consent for participation in the study could be oral if a written consent was unfeasible. However, if patients lack capacity to consent due to disease severity, and an authorized representative was not immediately available, treatment could be administered by the treating physician on her/his own responsibility.

Conclusions: Tocilizumab reduced lethality rate at 30 days compared with null hypothesis, without significant toxicity. Possibly, this effect could be limited to patients not requiring mechanical respiratory support at baseline.

Registration EudraCT (2020-001110-38); clinicaltrials.gov (NCT04317092).

Keywords: COVID-19, Pneumonia, Coronavirus, Tocilizumab, IL-6, Phase 2, Mortality, Safety
Treatment
Tocilizumab was administered at the dose of 8 mg/kg up to a maximum of 800 mg per dose. Such dose is the same approved by FDA for the treatment of CRS following CAR-T therapy [6]. A second administration of tocilizumab (same dose) was allowed 12 h after the first one if respiratory function had not recovered, at discretion of the Investigator. Tocilizumab was supplied at no cost by Roche Italy. Due to the rapidly increasing request, a variable delay between the date of patient registration and drug availability at the clinical centers occurred. There was no contraindication for concomitant treatment of respiratory impairment; also, concomitant experimental antiviral treatment was allowed.

Statistical analysis
Primary analysis was performed in the intention to treat population (ITT), defined as all patients enrolled; a secondary analysis was done in the modified ITT (mITT) population with patients who had received at least one dose of the study drug. All the subjects enrolled by uncooperative centers, i.e., centers providing information on baseline characteristics and treatment for less than 25% of their patients, were removed from any analyses. This amendment, in agreement with IDMC, was made blind to outcome data, i.e., before extracting mortality data.

Statistical analysis is detailed elsewhere [10]. Briefly, differences between groups of baseline characteristics, collected at the time of registration, are assessed for categorical variables using χ² test and for continuous variables using Wilcoxon rank-sum test. Patients discharged to home or low-intensity care setting are considered alive at the end-date of the follow-up period of 30 days. Exact 97.5% Clopper-Pearson confidence intervals (CI) are calculated for the proportions of death at 14 and 30 days. Pre-specified null hypotheses at days 14 and 30 are tested by a two-sided binomial test with alpha level equal to 0.025. Efficacy outcomes (with exact 95% CI) are calculated by means of Agresti-Caffo method [11]. Description of such differences must be considered as exploratory and hypothesis-generating only.

Exploratory multivariable analysis
An exploratory multivariable logistic regression model was also performed in the combined cohort to assess prognostic variables on survival, that involved treatment with tocilizumab and/or corticosteroids [11], age (≤60, 61–70, >70), gender, type of respiratory support (oxygen, non-invasive mechanical ventilation [NIMV], invasive mechanical ventilation [IMV], PaO2/FiO2 ratio (≤100, 101–200, >200, missing/not evaluated), population (phase 2 or validation) and geographical area (Lombardia, Veneto, Emilia-Romagna, other Northern regions, Center, South and Islands) as covariates. To reduce immortal time bias, patients who received tocilizumab four or more days after registration were excluded from the analysis. The interaction effects between treatment and the other covariates were tested in turn one at a time by Wald test and retained in the final model only if significant. Difference in the lethality rate between treated and untreated patients was calculated within specific subgroups and 95% CI was calculated by means of Agresti and Caffo method [11].

Results
Single-arm phase 2 cohort
From March 19th (at 14:00) to March 20th (at 12:45), 2020, 51 centers prospectively registered 402 patients for the phase 2 study (Fig. 1, left side), of which 2 cases were duplicated and one case withdrew consent. Ninety-eight patients enrolled by 12 uncooperative centers were removed from the analysis. Therefore, the phase 2 ITT population include 301 patients. Out of these, 21 were found ineligible a posteriori (12 intubated more than 24 h before registration, 7 registered after being already treated, 2 with both violations) but remained in the additional cohort was limited to five days because of the emerging drug shortage due to the huge request of drug by centers. The analyses performed in phase 2 were repeated in the validation cohort. For the sake of efficiency, the results of the validation cohort are reported side by side those of phase 2.

Joint cohort for safety analysis
Analysis of safety was performed joining the two prospective cohorts and was limited to patients who received at least one dose of the study drug. Adverse events recorded from registration up to 30 days were graded according to CTCAE term (Version 5.0) and reported for each category and term as the worst grade suffered by patients through the whole period of observation after treatment administration.
Due to lagged drug availability, treatment was given to 59.8% of patients. Median time from registration to treatment administration was 2 days; 23.3% of treated patients received tocilizumab four or more days after registration. The most frequent reason for not giving the drug (once available) was clinical improvement (Additional file 1: Table S4, left side). Patients who were younger, and those with worse respiratory function were preferentially treated; also, the geographic location of the center played a role (Table 2, left side).

Overall, 67 (22.3%) deaths were reported in the ITT phase 2 cohort. Lethality rate was 18.4% (97.5% CI: 13.6–24.0) at 14 days and 22.4% (97.5% CI: 17.2–28.3) at 30 days. The null hypothesis was rejected at 30 days but not at 14 days ($P<0.001$ and $P=0.52$, respectively). At both time points, lethality rates were lower in the mITT population (15.6% and 20.0%—Table 3, left side). Due to typical immortal time bias, lethality rates at 14 days were lower for patients receiving treatment four or more days after registration. Risk of death was significantly higher in patients older and with worse PaO2/FiO2 ratio; in addition, lethality rates were lower for patients receiving concurrent corticosteroids, particularly at 14 days where the difference was statistically significant (Fig. 2 and Additional file 1: Table S5, left side).

Single-arm validation cohort

The validation cohort included 1273 patients enrolled by 211 centers from March 20th to March 24th, 2020 (Fig. 1, right side). Three hundred fifty-three patients enrolled from 65 uncooperative centers were removed, and 920 patients represented the ITT population. Baseline characteristics, shown in tables and figures side by side those of phase 2 patients, were more favorable in the validation than in the phase 2 cohort. Treatment compliance was similar (Additional file 1: Table S4, right side). Also in the validation cohort, available treatment was preferentially given to patients with worse respiratory function (Table 2, right side). Overall, 158 (17.2%) deaths were reported in the ITT validation cohort. Probability of death was lower in the validation than in the phase 2 cohort, particularly among untreated patients (Additional file 1: Figure S2). In the validation cohort, lethality rates were consistently lower than the predefined null hypothesis both at 14 and 30 days in the ITT (11.4 and 18.4%) and mITT (10.9% and 20.0%) populations (Table 3, right side). Subgroup analysis of lethality rates...
produced results similar to those seen in phase 2 (Additional file 1: Figure S3 and Table S5, right side).

Safety analysis
Safety analysis was done in 628/708 patients of the combined cohort who had received at least one dose of tocilizumab (Additional file 1: Table S6). At least one adverse event was reported in 40.8% of patients. Of note, 68 deaths (10.8%) were categorized within adverse events scale. Causality between such deaths and treatment was described as possible only in one of the 35 cases of respiratory failure. All the other fatal adverse events were reported as unlikely or not related to treatment administration. Seven out of 8 fatal infections were specified as COVID pneumonia. Adverse events that may represent specific side effects of tocilizumab are allergic reactions [3 cases] and ALT or AST increase (reported in 10.5 and 9.1%, respectively) that was severe (grade 3 or 4) in around 3% of cases.

Hypothesis-generating multivariable analysis
Results of the exploratory multivariable logistic regression analysis in the combined cohort are reported in Additional file 1: Table S7. Age and respiratory function measured by PaO2/FiO2 ratio were independently significant prognostic factors; the use of corticosteroids was associated with a lower OR of death both at 14 (OR 0.36, 95% CI: 0.21–0.62) and at 30 days (OR 0.62, 95% CI: 0.40–0.95). No significant interaction was found between the effect of tocilizumab and age, gender, PaO2/FiO2 ratio, geographic location and phase 2 vs validation cohorts; also, no interaction was found between the effect of tocilizumab and the use of corticosteroids. A significant interaction was found between treatment and required respiratory support, interaction test p-values being equal to 0.03 and 0.08 at 14 and 30 days, respectively. Specifically, treatment effect on lethality rates was larger among patients not requiring mechanical respiratory support within 24 h from registration with a OR equal to 0.37 (95% CI: 0.18–0.74) and 0.50 (95% CI: 0.27–0.92) and absolute reductions equal to 7.7 and 6.2%, at 14 and 30 days, respectively (Additional file 1: Figure S4).

Table 1 Baseline characteristics of patients in the ITT phase 2 and validation cohorts

	ITT Phase 2	ITT Validation					
	N = 301	N = 920					
Geographic area—no. (%)							
Lombardia	136 (45.2%)	346 (37.6%)					
Veneto	65 (21.6%)	41 (4.5%)					
Emilia Romagna	37 (12.3%)	142 (15.4%)					
Other Northern regions	–	91 (9.9%)					
Center	39 (13.0%)	186 (20.2%)					
South and Islands	24 (8.0%)	114 (12.4%)					
Age—no. (%)							
≤ 60	122 (40.5%)	375 (40.8%)					
61–70	107 (35.5%)	263 (28.6%)					
71+	72 (23.9%)	282 (30.7%)					
Female sex—no. (%)							
	59 (19.6%)	200 (21.7%)					
Ethnic group—no. (%)							
Caucasian	271 (97.1%)	853 (97.7%)					
Asiatic	3 (1.1%)	2 (0.2%)					
Other	5 (1.8%)	18 (2.1%)					
Unknown	22	47					
Body mass index—no. (%)							
Underweight/normal (< 25)	75 (28.8%)	192 (26.9%)					
Overweight/obese (25 +)	185 (71.2%)	521 (73.1%)					
Unknown	41	207					
Previous/actual smoker—No. (%)							
	51 (22.2%)	214 (29.2%)					
Unknown	71	188					
Antiflu 2019 vaccination—No. (%)							
	54 (25.0%)	121 (20.3%)					
Unknown	85	325					
Initial respiratory support—No. (%)							
Oxygen supplementation	146 (48.5%)	468 (50.9%)					
NIMV	106 (35.2%)	359 (39.0%)					
IMV	49 (16.3%)	93 (10.1%)					
PaO2/FiO2 ratio—median (IQR)	136 (93,198)	154 (103,218)					
PaO2/FiO2 ratio—No. (%)							
< 100	55 (32.4%)	129 (24.1%)					
101–200	76 (44.7%)	244 (45.5%)					
201–300	32 (18.8%)	116 (21.6%)					
> 300	7 (4.1%)	47 (8.8%)					
Missing or not tested	131	384					
Comorbidities (mild or worse)—No. (%)							
Heart disease	62 (21.6%)	150 (18.1%)					
Hypertension	147 (51.2%)	389 (47.0%)					
Diabetes	34 (11.8%)	138 (16.7%)					
Unknown	14	93					
Concurrent treatment, no. (%)							
Antiretroviral	180 (63.1%)	576 (67.6%)					
Hydroxy-chloroquine	207 (72.6%)	651 (76.4%)					
Antibiotics	118 (41.4%)	443 (52.0%)					
Steroids	62 (21.8%)	296 (34.7%)					
LMW heparin	66 (23.2%)	175 (20.5%)					
Geographic area	Treated (n = 180)	Not treated (n = 121)	P	Validation	Treated (n = 528)	Not treated (n = 360)	P
-----------------	------------------	-----------------------	----	------------	------------------	-----------------------	----
Lombardia	94 (52.2%)	42 (34.7%)	<0.001	195 (36.9%)	140 (38.9%)	0.30	
Veneto	14 (7.8%)	51 (42.1%)		28 (5.3%)	12 (3.3%)		
Emilia Romagna	29 (16.1%)	8 (6.6%)		76 (14.4%)	65 (18.1%)		
Other Northern regions	−	−		51 (9.7%)	40 (11.1%)		
Center	23 (12.8%)	16 (13.2%)		107 (20.3%)	61 (16.9%)		
South and Islands	20 (11.1%)	4 (3.3%)		71 (13.4%)	42 (11.7%)		
Age—no. (%)			0.04		0.22		
≤ 60	79 (43.9%)	43 (35.5%)		209 (39.6%)	156 (43.3%)		
61–70	67 (37.2%)	40 (33.1%)		148 (28.0%)	107 (29.7%)		
71+	34 (18.9%)	38 (31.4%)		171 (32.4%)	97 (26.9%)		
Female sex—no. (%)	31 (17.2%)	28 (23.1%)	0.20	108 (20.5%)	85 (23.6%)	0.26	
Ethnic group—no. (%)	4.2			0.1			
Caucasian	170 (97.1%)	101 (97.1%)		494 (97.4%)	333 (97.9%)		
Asiatic	1 (0.6%)	2 (1.9%)		2 (0.4%)	0 (0.0%)		
Other	4 (2.3%)	1 (1.0%)		11 (2.2%)	7 (2.1%)		
Unknown	5	17		21	20		
Body Mass Index—no. (%)	0.06			0.74			
Underweight/normal	40 (24.7%)	35 (35.7%)		112 (27.1%)	73 (26.0%)		
Overweight/Obese	122 (75.3%)	63 (64.3%)		301 (72.9%)	208 (74.0%)		
Unknown	18	23		115	79		
Previous/actual smoker—no. (%)	33 (22.4%)	18 (21.7%)	0.89	130 (30.2%)	79 (27.9%)	0.52	
Unknown	33	38		97	77		
Antiflu 2019 vaccination—no. (%)	31 (21.5%)	23 (31.9%)	0.10	75 (21.8%)	44 (18.5%)	0.33	
Unknown	36	49		184	122		
Initial respiratory support– no. (%)	0.003			<0.001			
Oxygen supplement	73 (40.6%)	73 (60.3%)		223 (42.2%)	223 (61.9%)		
NIMV	74 (41.1%)	32 (26.4%)		238 (45.1%)	112 (31.1%)		
IMV	33 (18.3%)	16 (13.2%)		67 (12.7%)	25 (6.9%)		
PaO2/FiO2 ratio— no. (%)	0.08			<0.001			
≤ 100	36 (33.6%)	19 (30.2%)		91 (25.9%)	30 (18.3%)		
101–200	53 (49.5%)	23 (36.5%)		170 (48.4%)	66 (40.2%)		
201–300	14 (13.1%)	18 (28.6%)		68 (19.4%)	44 (26.8%)		
> 300	4 (3.7%)	3 (4.8%)		22 (6.3%)	24 (14.6%)		
Unknown	73	58		177	196		
Heart disease—no. (%)	0.053			0.17			
Unknown	6	8		18	53		
Hypertension—no. (%)	92 (52.9%)	55 (48.7%)	0.49	242 (47.5%)	141 (45.9%)	0.67	
Unknown	6	8		18	53		
Diabetes—no. (%)	23 (13.2%)	11 (9.7%)	0.37	84 (16.5%)	51 (16.6%)	0.96	
Unknown	6	8		18	53		
Anti-retroviral—no. (%)	0.40			0.38			
Unknown	8	8		13	37		
Hydroxy-chloroquine—no. (%)	0.17			0.70			
Unknown	8	8		13	37		
Antibiotics—no. (%)	84 (48.8%)	34 (30.1%)	0.002	274 (53.2%)	163 (50.5%)	0.44	
Unknown	8	8		13	37		
Steroids—no. (%)	41 (23.9%)	21 (18.6%)	0.29	176 (34.2%)	115 (35.6%)	0.67	
The primary analysis of the single-arm phase 2 TOCIVID-19 cohort suggests that tocilizumab may reduce lethality at 30 days, although its impact at 14 days seems less relevant. The adverse event profile is consistent with other reports and did not generate clinically relevant warnings, possibly because of the severity of clinical symptoms related to the underlying pathologic condition. [12, 13] Interestingly, the exploratory multivariable analysis showed that the possible effect of tocilizumab might be greater among patients not requiring mechanical ventilation and might be independent of the effect of corticosteroids, that were associated with lower lethality rates, consistently with preliminary findings of the Recovery trial. [14] Further, we did not find an interaction between the effect of tocilizumab and the concurrent administration of corticosteroids, consistent with another recent report. [15].

In the light of the large percentage of untreated subjects (40%) and the selection bias of treating patients with worse prognosis, these results support using tocilizumab while waiting for the publication of results of the phase 3 clinical trials. To our knowledge, six ongoing randomised trials are comparing tocilizumab vs placebo (ChiCTR2000029765, NCT04320615, NCT04381936, EudraCT 2020-001408-41, NCT04330638, NCT2020-001767-86) and another one is comparing immediate vs delayed tocilizumab (NCT04346355). However, some trials have problems in reaching the planned sample size, and most of the trials on medical treatment of COVID-19 are using non validated surrogate outcomes rather than mortality as primary end-point [16].

TOCIVID-19 is the largest completed prospective study on the effect of tocilizumab using mortality as primary end-point, among published or pre-published reports. Mostly, retrospective or observational data have been reported so far, not based on prospective hypothesis testing, with prevalently positive results [17–32]. However, our study has several limitations that deserve discussion for a better interpretation of findings. The main limitation is the single-arm study design, which prevents definitive conclusions [33]. We did that because, in our opinion, a randomised controlled trial was unfeasible in the middle of March 2020 in Italy. Indeed, there was a tremendous pressure to have the drug available, due to a widespread media diffusion of positive expectations and the increasing number of patients hospitalized for the disease, as confirmed by the massive registration of centers when the study began. Physicians’ equipoise was poor, and obtaining a proper informed consent to randomization from patients was extremely difficult, because of clinical burden. Finally, developing a placebo was impossible, and, within a non-blinded study, the risk of cross-over from the control to the experimental arm would have been high, reducing the validity of the randomised trial. Within this context, the problem of “learning while doing” was increased, and we thought that the single-arm design was the best trade-off between do-something and learn-something [34].
Estimated lethality rates at 14 and 30 days by baseline characteristics of patients in the phase 2 ITT population.

Baseline Characteristic	14-day lethality rate	P	30-day lethality rate	P
All Patients				
Tocilizumab administration				
≤3 days after registration		0.23		0.47
>3 days after registration				
Not treated				
Geographic area				
Lombardia		0.91		0.93
Veneto				
Emilia Romagna				
Other northern				
Centre				
South and Island				
Age				
≤60		<0.001		<0.001
61-70				
71+				
Gender				
Female		0.99		0.73
Male				
Body Mass Index				
Underweight/normal		0.73		0.99
Overweight/Obese				
Smoking habit				
Never smoker		0.84		0.57
Previous/actual smoker				
Initial respiratory support				
Oxygen supplement		0.76		0.47
NIMV				
IMV				
PaO2/FiO2 ratio		0.006		0.001
≤100				
101-200				
>200				
Heart disease		0.06		0.06
None				
Mild or more				
Hypertension		0.06		0.11
None				
Mild or more				
Diabetes		0.33		0.12
None				
Mild or more				
C-reactive protein		0.48		0.41
≤37				
>37				
Concurrent steroids		0.004		0.162
No				
Yes				

Fig. 2 Estimated lethality rates at 14 and 30 days by baseline characteristics of patients in the phase 2 ITT population. Red dash lines represent lethality rates under null hypotheses.
A critical issue of the single-arm design was the definition of the null hypotheses to be tested. We amended them following the evolving information from the National Institute of Health when we were blind to outcome data and in agreement with IDMC [10]. Yet, we cannot be sure that our assumptions are unbiased. A study with data on about 43,000 patients coming from three Italian regions, reports higher lethality at 14 days (22.0%) and lower at 30 days (27.6%) compared to TOCIVID-19 null hypotheses; assuming these estimates as a benchmark, our results would be still clinically significant at both 14 and 30 days [35].

Difference of survival experience between the two cohorts was unexpected. However, due to the exceptional setting in which the study was conducted, the validation cohort allowed the appreciation of the heterogeneity of the study population. Thus, combining cohorts in the multivariable evaluation seemed the most reasonable approach to explore prognostic factors while adjusting for the many confounding factors.

An operational problem of our study was the discrepancy between timing of drug availability (notwithstanding the commitment of the pharma company) and the extremely high request due to the rapid recruitment rate. Two contrasting biases followed in our study: the indication (selection) bias, when physicians opted for treating patients with worse prognosis, and the immortal time bias, when delay of treatment administration favored subjects surviving longer enough to receive the drug. As expected, the latter bias was particularly evident at 14-day analysis. To be conservative, we excluded from multivariable analyses all patients receiving the drug later than three days from registration, and adjusted for all available confounding factors, although some residual bias may still exist. Thus, findings of the multivariable analyses are to be considered hypothesis-generating only.

Last, we had many missing data, for several reasons: massive involvement and stress of physicians in emergency care; paucity or absence of data-managers; questionnaire loading volume. In agreement with IDMC, we reduced the problem by removing un-cooperative centers that provided baseline information for less than 25% of patients; however, we cannot be confident that the remaining missing data are at random.

TOCIVID-19 also has some strengths. As mentioned above, it is the first academic trial promoted in Italy, the largest in terms of centers and patients (being available for the whole Italian territory), assessing a hard endpoint like mortality in a hypothesis-driven design, while off label use of the drug was increasing. [36] In addition, the internal validation, allowed by a companion prospective cohort, contributed to critical interpretation of the results. Further analyses will focus on secondary outcomes (e.g. respiratory outcomes, predictive and prognostic factors, epidemiology insights) and on a larger number of patients.

Conclusions
Although with limitations of a single-arm study, performed in an extremely challenging time and environment, the present study supports the use of tocilizumab, even when corticosteroids are used, while waiting for publication of phase 3 results.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.1186/s12967-020-02573-9.

Additional file 1. TOCIVID-19_Appendix.

Acknowledgments
List of participating centres and Co-Investigators
TOCIVID-19 Investigators
Istituto Nazionale Tumor, IRCCS, Fondazione G. Pascale, Napoli - Clinical Trials Unit: Francesco Perrone, Maria Carmela Riccitrillo, Clorinda Schettino, Adriano Gravina, Piera Gargiulo, Claudia Cardone, Laura Aremare; Melanoma And Cancer Immunotherapy And Developmental Therapeutics Unit: Paolo Antonio Asciento, Maria Grazia Vitale, Claudia Trojaniello, Marco Palla; Direction: Attilio Antonio Montano Bianchi, Gerardo Botti, Gianfranco De Feo, Leonardo Misco. Università degli Studi della Campania Luigi Vanvitelli, Dipartimento di Salute Mentale e Medicina Preventiva; Ciro Gallo, Paolo Chiodini. IRCCS Policlinico San Donato - Milano: Laurenzia Ferraris, Massimiliano M. Marrocco-Trischitta, Marco Froldi, Lorenzo Menicanti, Maria Teresa Cuppone, Giulia Gobbo, Chiara Baldessari, Vincenzo Valenti, Serenella Castelvecchio, Federica Poli, Francesca Giacomazzi, Rosangela Piccinni, Maria Laura Annunziata, Andrea Biondi, Cecilia Bussolari, Manuel Mazzoleni, Andrea Giachi, Annalisa Filtz, Arianna Manini, Enrico Poletti, Federico Masserini, Francesco Conforti, Gianfranco Gaudiano, Vittoria Favero, Alice Moroni, Tommaso Viva, Fabiana Fancoli, Davide Ferrari, Dario Niro, Marco Resta, Andrea Ballotta, Marco De Poli, Marco Ranucci. ASST Papa Giovanni XXIII – Bergamo: Diego Ripamonti, Francesca Binda, Alessandra Tebaldi, Giuseppe Gritti, Luisa Pasulo, Leonardo Gaglio, Roberto Del Fabbro, Leonardo Alberghetti. ASST Monza – Monza: Paolo Bonfanti, Nicola Squillace, Giulia Gustinetti, Paola Columpi, Marina Cazzaniga, Serena Capici, Luca Sala, Riccardo Di Sciacca, Giacomo Mosca, Maria Rosa Pirozzi. ASST degli Spedali Civili di Brescia e Università di Brescia - Brescia: Francesco Castelli, Maria Lorenzo Mulesian, Franco Franceschini, Aldo Roccaro, Massimo Salvetti, Anna Paini, Luciano Corda, Chiara Ricci, Lina Tomasoni, Paola Nasta, Silvia Lorenzotto, Silvia Odiolini, Emanuele Focà, Eugenia Quiros Roldan, Marco Metra, Stefano Magrini, Paolo Borgnetti, Nicola Latronico, Simone Piva, Matteo Filippini, Gabriele Tomasoni, Francesco Zuccalà, Sergio Cattaneo, Francesco Scolari, Nicola Bossini, Mario Gaggiotti, Martina Properzi. Ospedale Santa Maria Goretti – Latina: Miriam Lichtner, Emanuela Del Giudice, Raffaella Marocco, Anna Carraro, Cosimo Del Borgo, Raffaella Marocco, Valeria Belvì, Tiziana Tieghi, Margherita De Masi, Paola Zuccala, Paolo Fabietti, Angela Vetica, Vito Santé Mercurio, Anna Carraro, Laura Fondaco, Blerta Kertusha, Ambrogio Curtolio, Emanuela Del Giudice, Riccardo Lubrano, Maria Gioconda Zotti, Antonella Puorto, Marcello Ciuffreda, Antonella Sarni, Gabriella Monteforte, Domenico Romeo, Emanuela Viola, Carla Damiani, Antonietta Barone, Barbara Mantovani, Daniela Di Sanzo, Vincenzo Gentili, Massimo Carletti, Massimo Aiuti, Andrea Gallo, Piero Giuseppe Meliante, Salvatore Martellucci, Oliviero Riggio, Vincenzo Cardinale, Lorenzo Ridola, Maria Consiglia Bragazzi.
Stefania Giovia, Emiliano Valenz, Camilla Grazioso, Niccolò Bina, Martina Fasolo, Silvano Ricci, Maria Teresa Gioacchini, Antonella Lucci, Luisella Corso, Daniela Tomese, Parni Nhavhan, Francesco Equitani, Carmine Cosentino, Marcello Palladino, Frada Leonetti, Gaetano Leto, Camillo Gnesi, Giuseppe Campagna, Roberto Cesareo, Francesca Marrocchi, Giuseppe Stradano, Alessandra Mecozzi, Lidia Cerbo, Valentina Isgrò, Sergio Parrocchia, Giuseppe Visconti, Giorgio Casati
AOI di Parma - Parma: Carlo Calzetti, Alcario Arian, Lorenzo Donghi
AOI di Verona - Verona: Nicola Duccio Salerno, Evelina Tacconelli, Marco Bertoldi, Paolo Cattaneo, Lorenzo Lamberti, Leonardo Moita, Luca Ormea. Humanitas Gavazzoni – Bergamo: Giovanni Alibano.
AORN Dei Colli – Napoli: Roberto Parrella, Fiorenzo Fraghaza, Luigi Attrapild, Vincenzo Montesarchio, Francesco Scaroni, Annunziata de Rosa, Amalia Buglione, Sabrina Lavoretan, Gianfranco Gaglione, Mario de Marco, Vincenzio Sangiovanni, Francesca Maria Fusco, Rosaria Viglietti, Elia Manzoli, Carolina Rescigno, Raffaella Pisapia, Giulia Plamieri, Giuseppe di Leonardo, Mauro Mancini, Laura Bezzola, Elsbettta Allepi, Silvia Furiani, Chiara Capitano, Bernardino Mastroppaqua, Claudio Faro, Graziella Pultan, Jun Nardos Sebastiano, Francesca della Porta, Viola Dolfini, Nebiat Balei Beyene.
Azienda Ospedaliera San Salvatore – Pesaro: Silvia Gennarini, Umberto Grundi, Maria Anastasia Ricci, Giancarlo Titolo, Giulio Menzi, Pietro Quotato, Beatrice Gasperini, Mauro Mancini, Zeno Pasquini.
Ospedale Bassini – Cinisio Balsamo: Paolo Spano, Stefano Clementi, Simona Pierini, Daniela Bokor, Daniela Gori, Moreno Ciofetti, Marina Gaimin, Laura Bezzola, Elsbettta Allepi, Silvia Furiani, Chiara Capitano, Bernardino Mastroppaqua, Claudio Faro, Graziella Pultan, Jun Nardos Sebastiano, Francesca della Porta, Viola Dolfini, Nebiat Balei Beyene.
ASST Di Cremona - Cremona: Giuseppe Virzi, Caldorener Ornellia, Alfredo Molteni.
Azienda Ospedaliera San Salvatore – Pesaro: Silvia Gennarini, Umberto Grundi, Maria Anastasia Ricci, Giancarlo Titolo, Giulio Menzi, Pietro Quotato, Beatrice Gasperini, Mauro Mancini, Zeno Pasquini.
Ospedale Bassini – Cinisio Balsamo: Paolo Spano, Stefano Clementi, Simona Pierini, Daniela Bokor, Daniela Gori, Moreno Ciofetti, Marina Gaimin, Laura Bezzola, Elsbettta Allepi, Silvia Furiani, Chiara Capitano, Bernardino Mastroppaqua, Claudio Faro, Graziella Pultan, Jun Nardos Sebastiano, Francesca della Porta, Viola Dolfini, Nebiat Balei Beyene.
ASST Degli Spedali Civili Di Brescia - Brescia: Michela Bezz, Mauro Novali.
AOI di Bologna – Bologna: Perluigi Viale, Sara Tedeschi, Renato Pascale.
Policlinico S. Matteo - Pavia: Raffaele Bruno, Alessandro Di Filippo, Michele Sachs, Tiberio Gogione, Michele Di Stefano, Caterina Mengoli.
Ospedale di Conegliano - Conegliano: Cesarina Facchin, Di Nardos Daniele.
Azienda Ospedaliera San Salvatore – Pesaro: Gabryelle Fraschini, Luciano Mucci, Silvia Tedesco, Rita Girolimetti, Elena Manfredini, Anna Maria Di Carlo, Emma Espinosa, Donatella Dennetta.
ASST di Parma – Parma: Andrea Tosti, Tiziana Meschi, Antonio Naveunne.
Azienda Ospedaliera Ordine Mauriziano – Torino: Norbato Claudio, Francesco Vitale, Marta Saracco.
Ospedale Guglielmo Da Saliceto – Piacesera: Mauro Codeluppi, Elisa Fronti, Patrizia Ferrante.
Ospedale di Fermo – Fermo: Giorgio Amado Nespola.
AOI di Perugia – Perugia: Daniela Franceschi, Andrea Tosti.
Casa Sollievo Della Sofferenza – San Giovanni Rotondo: Cristiano Matteo.
AOUI di Verona – Verona: Andrea Tosti.
ASST Di Modena - Modena: Cristina Mussini, Mariannia Mieschiari, Giovanni Guaraldi.
Presidio Ospedaliero San Luca – Luca: Sara Modica, Sara Moneta, Daniela Boccalate, Clara Ricci, Valentina Marchetti.
ASST Desenzano Del Garda – Garda: Silvia Amadasi, Paolo Prandini, Silvia Cocchi.
Azienda ULSS 6 – Vicenza: Vinicio Manfrin, Veronica Del Punta.
PO Sant’Elia – Taltinassetta: Giovanni Mazzola, Giovanni Sportato.
Ospedale Cà Foscio – Treviso: Micaela Romagnoli.
ASST Infermi - Rimini: Francesco Cristini, Francesca Fandoni, Tiziana Perini, Andrea Becchi.
AO di Modena – Modena: Cristina Mussini, Mariannia Mieschiari, Giovanni Guaraldi.
Presidio Ospedaliero San Luca – Luca: Sara Modica, Sara Moneta, Daniela Boccalate, Clara Ricci, Valentina Marchetti.
ASST Desenzano Del Garda – Garda: Silvia Amadasi, Paolo Prandini, Silvia Cocchi.
Azienda ULSS 6 – Vicenza: Vinicio Manfrin, Veronica Del Punta.
PO Sant’Elia – Taltinassetta: Giovanni Mazzola, Giovanni Sportato.
Ospedale Cà Foscio – Treviso: Micaela Romagnoli.
ASST Infermi - Rimini: Francesco Cristini, Francesca Fandoni, Tiziana Perini, Andrea Becchi.
Presidio Ospedaliero S. Maria Del Carmine – Rovereto: Susanna Cozzi, Livia Delle Donne.

AO Policlinico Ospedale S. Martino – Genova: Matteo Bassetti, Mikulski Malgorzata, Laura Ambra Niccolini, Chiara Russo, Chiara Sepulcari, Sabrina Beltrami, Federica Mina.

ASST Grande Ospedale Metropolitano Niguarda – Milano: Massimo Puoti, Anna Gandino, Thomas Langer, Federico D’Amico.

ASST Spedali Civili Di Brescia – Brescia: Marialma Berlendis, Chiara Rocchetti, Francesca Cettolo.

Presidio Ospedaliero Aziendale, AUSL Parma – Parma: Frausini Gabriele, Pietro Bocchi.

Ospedale Pavullo nel Frignano – Modena: Giorgio Cioni, Cinzia Cappi.

AOU Città della Salute e della Scienza – Ospedale Le Molinette – Torino: Silvia Corcione, Francesco Giuseppe De Rosa, Silvia Scabini, Francesca Canta, Simone Mormese Pinna, Anna Penna.

Ospedale San Giuseppe – AUSL Toscana Centro – Empoli: Pierluigi Blanc, Lorenzo Roberto Suardi, Carlo Pallottino.

Azienda Ospedaliera Sant’Andrea – Roma: Monica Rocco, Maria Teresa Cirasa, Piero Bocchi.

AO Careggi – Firenze: Michele Spinicci, Jessica Mencarni, Lorenzo Zammarchi.

Presidio Ospedaliero Unificato – San Remo: Cenderello Giovanni, Katusia Sciolè.

Presidio Ospedaliero Santa Maria della Misericordia – Udine: Flavio Bassi.

Casa Dicura S. Rita – Milano: Michele Bianchi, Silvia Frigerio.

Ospedale F. Spaziani – Frosinone: Sandro Spaziani, Antonia Nucera.

AO Luigi Sacco – Milano: Giuliano Rizzardi, Maria Vittoria Cossu, Marco Antivalle.

AO Policlinico Vittorio Emanuele – Catania: Giuseppe Carpinteri.

Presidio Ospedaliero Riuniti – Reggio Calabria: Sebastiano Macheda, Demetrio Labate.

ASST Grande Ospedale Metropolitano Niguarda – Milano: Maurizio Bottiroli.

Ospedale V. Fazzi – Lecce: Anacleto Romano.

Ospedale Generale Regionale – Bolzano: Elke Maria Erne, Zocchetti Cristina.

ASST di Cremona – Cremona: Fabio Malberti, Alfredo Molteni.

ASST degli Spedali Civili di Brescia – Brescia: Giovanni Montani, Paolo Poisa, Daniela Bertini.

Policlinico Universitario A. Gemelli – Roma: Roberto Cauda, Arturo Cicullo.

Ospedale Sacro Cuore Don Calabria – Negrar (Verona): Niccolò Riccardi, Daniela Bettini.

ASST di Bergamo Ovest – Bergamo-Treviglio: Giuseppina Dognini.

ASST di Lecco – Lecco: Stefania Piconi, Chiara Molteni.

Ospedale San Giuseppe, AUSL Toscana Centro – Grassina: Francesca Covani, Gessica Infantino, Laura Camici.

Ospedale di Stato di San Marino: Massimo Arlotti, Giulio Guerrini.

Presidio Ospedaliero Unico AV4 – Fermo: Luisanna Cola, Michela Romanelli.

ASST di Crema – Crema: Ciro Canetta, Alessandro Scartabellati, Silvia Accordino.

PO Sant’Ottone Frangipane – Aviano: Arvano Ipino, Maurizio Ferrara, Livio Cocco.

Ferranda Cirillo, Erminio Pace, Monica De Caro, Mariella Alberico, Giovanni Benigni, Terenzio Damiano, Pierluigi Fusco, Angela Luorio, Giacomo Toretta.

Ospedale di Roma: Stefano Mutchi, Stefano Tamburini.

ASST della Valle Olona – Busto Arsizio: Girolamo Sala, Paolo Ghiringhelli.

PO M. SS. Addolorata – Eboli: Fernando Chiumiento, Laura Baccari.

Arcipresidio Santa Maria Nuova – Reggio Emilia: Enrica Minelli, Boracchia Luca, Federica Bocchi, Francesco Bertani, Jacopo Mottavelli.

Ospedale di Belluno – Belluno: Marina Coppola.

AO di Ferrara – Ferrara: Alberto Papi.

Ospedale di Conegliano – Conegliano: Enrico Bosco.

AO Universitaria Careggi – Firenze: Mario Bonizzi, Chiara Lazzeri.

Ospedale della Misericordia – Grosseto: Nencioni Cesare, Camilla Puttini, Tiziana Carli, Leonardo Croci, Marta Corredì.

Presidio di Stato di San Marino: Massimo Arlotti, Giulio Guerrini.

Presidio Ospedaliero Unico AV4 – Fermo: Luisanna Cola, Michela Romanelli.

ASST di Cremona – Cremona: Fabio Malberti, Alfredo Molteni.

ASST di Como – Como: Mauro Trunetti, Raffaella Clerici, Angelo Gardellini, Luigi Liparulo, Tiziana Rossini.

ASST di Crema – Crema: Ciro Canetta, Alessandro Scartabellati, Silvia Accordino.

PO Sant’Ottone Frangipane – Aviano: Arvano Ipino, Maurizio Ferrara, Livio Cocco.

Ferranda Cirillo, Erminio Pace, Monica De Caro, Mariella Alberico, Giovanni Benigni, Terenzio Damiano, Pierluigi Fusco, Angela Luorio, Giacomo Toretta.

Ospedale di Roma: Stefano Mutchi, Stefano Tamburini.

ASST della Valle Olona – Busto Arsizio: Girolamo Sala, Paolo Ghiringhelli.

PO M. SS. Addolorata – Eboli: Fernando Chiumiento, Laura Baccari.

ASST di Crema – Crema: Ciro Canetta, Alessandro Scartabellati, Silvia Accordino.

ASST di Crema – Crema: Fabio Malberti, Alfredo Molteni.

ASST di Crema – Crema: Fabio Malberti, Alfredo Molteni.

ASST di Crema – Crema: Fabio Malberti, Alfredo Molteni.

ASST di Crema – Crema: Fabio Malberti, Alfredo Molteni.
AO per l’Emergenza Cannizzaro – Catania: Carmelo Iacobello, Giuseppe Strano.
Ospedale Sant’Andrea – Vercelli: Lucio Boglione.
Ospedale Regionale Umberto Parini – Aosta: Alberto Catania, Paola Gipponi.
AO S. Maria – Termini: Luca Di Cato, Anna Panaccone.
Policlinico San Marco – Zingonia: Giovanni Vitale, Ilaria Alice Crippa, Matteo Giaconmini.
AO Niguarda Ca Granda – Milano: Adriano Basile, Bellione Andrea.
Ospedale di Galatina S. Caterina Novella – Galatina: Paolo Tundo.
Ospedale Versilia – Camaiore: Stefano Buzzigoli, Gerardo Palmiero.
Ospedale Guglielmo Da Saliceto – Piacenza: Andrea Magnacca, Matteo Silva.
ASST Lecco – Merate: Massimo Ricci, Stefano Crespi, Bernadetta Pasquino.
Nuovo Ospedale Di Prato S. Stefano – Prato: Guglielmo Consales.

Cas di Cura Privata – Peschiera Del Garda: Damiano Braqantini.
Ospedale Generale Regionale Muli, Covid Hospital, Acquaviva Delle Fonti – Bari: Franco Mastroianni, Giulia Righetti, Antonio Scarafino, Michele Bitetto.
ASST della Valle Olona - Busto Arsizio: Fabio Franzetti.
Ospedale Ss. Trinità – Cagliari: Sandro Piga.
Ospedale Generale Regionale Muli, Acquaviva Delle Fonti – Bari: Vito Delmonte.
Ospedale Bisceglie – Bisceglie: Sergio Carbonara, Ruggero Losappio.
Ospedale Aziendale Di Bruno – Bruno: Christian Dejac.
Policlinico Umberto I – Roma: Claudio Mastroianni, Gianluca Russo.
AO S. Croce e Carle – Cuneo: Valerio Del Bono.
Ospedale Santa Maria Bianca – Mirandola: Fabio Giloli.
Ospedale Di Mirano – Mirano: Daniele Barzan, Silvia De Struppi.
Ospedale Alto Vicentino – Santorso: Antonio Carlotto, Maria Lia Guadagnin.
AOU di Modena – Modena: Massimo Girardis, Elisabetta Bellertellini.
ASST dei Sette Laghi – Varese: Francesco Dentali.
PO Sant’Elia – Caltanissetta: Giancarlo Foresta.
Ospedale Apuane – Massa: Alberto Baratta, Rosangela Viviani.
ASST Grande Ospedale Metropolitano Niguarda – Milano: Antonio Maria Agrati.
Istituto Auxologico Italiano – I.S. S. Luca – Milano: Giovanni Battista Perego.
AO Policlinico – Vittorio Emanuele – Catania: Arturo Montinieri, Rosa Manuele.
AO Gravina e S. Pietro – Caltagirone: Salvatore Bonfante.

Ospedale Regionale Miulli, Covid Hospital, Acquaviva Delle Fonti – Bari: Vito Perrone, Antonella Sangiovanni.
ASST di Bergamo Ovest – Bergamo: Veronica Lonati.
AO Policlinico – Vittorio Emanuele – Catania: Arturo Montinieri, Rosa Manuele.
AO Gravina e S. Pietro – Caltagirone: Salvatore Bonfante.

TOCIVID-19 Study Coordinators
Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli - Clinical Trials Unit: Valentina Barbaro, Simona Bevilacqua, Gaetano Buonfanti, Giuliana Cianzana, Giovanni De Matteis, Manuela Florio, Marilena Martino, Maria Teresa Ribecce, Fiorella Romano, Alfonso Savio, Lucia Scarapavagna; Melanoma And Cancer Immunotherapy And Developmental Therapeutics Unit: Marcello Curvietto.
IRCCS Policlinico San Donato – Milano: Michele Citarrella.
ASST Papa Giovanni XXIII – Bergamo: Leonardo Alborgheiti.
Humanitas Gavazzeni – Bergamo: Valeria Nava, Paola Maggioni, Marta Magni.
AORN Dei Colli – Napoli: Chiara Iommielli, Antonella Bianco.
Arcispedale Santa Maria Nuova IRCCS Di Reggio Emilia: Romina Corsini, Linda Vali, Maria Paola Ruggieri.
ASST Infermi Rimini: Luca Santini.
AOU di Modena – Modena: Enrica Roncaglia, Pasquale Mighi.
Ospedale Aziendale Di Bressanone – Bressanone: Frederik Eisendle.
Ospedale San Jacopo – USL Toscana Centro: Giulia Cerino.
Ospedale Guglielmo Da Saliceto – Piacenza: Chiara Citterno, Camilla Di Nuzzo.
ASST di Cremona: Annalisa Mancini.
Policlinico Universitario a Gemelli – Roma: Silvia Lamonica.
Ospedale Sacro Cuore Don Calabria – Negar (Verona): Silvia Resimini.
ASST Sant’Andrea - La Spezia: Giovanni Sarteschi.
Ospedale Di Belluno: Chiara Pavei.
AOU di Ferrara – Ferrara: Nicholas Battistini.
Ospedale Generale Provinciale – Sarzana: Erika Gazzella.
ASST di Cremona – Cremona: Annalisa Mancini.
PO Jazzolino – Vibo Valente: Marco Micelli.
ASST di Lecco – Lecco: Silvia Pontiggia.
ASST di Bergamo Ovest - Bergamo-Treviglio: Veronica Lonati.
Ospedale Regionale Miulli, Covid Hospital, Acquaviva Delle Fonti – Bari: Giusy Giannandrea.
Ospedale Maggiore – Modica: Claudio Sortino.
AOU di Verona – Borgot Roma – Verona: Domenico Grelli, Ernesto Crisafulli, Alessio Marocca.
ASST Grande Ospedale Metropolitano Niguarda – Milano: Alessandra Maria Cernuschi.
Ospedale Gagliardi – Trecenta: Mara Bernasconi.
Ospedale Maggiore SS. Annunziata – Savigliano: Ugo Zummo.

TOCIVID-19 Research Nurses
IRCCS Policlinico San Donato – Milano: Irene Baroni, Daniele De Candia, Barbara Forini, Kattuscha Chiocchio, Francesca Tromea, Roberto Bottega, Laura Boccalis, Annamaria Corsaro.
Azienda Ospedaliera San Salvatore – Pesaro: Claudia Spadoni.
Ospedale Bassini – Cinisello Balsamo: Ria E Dipartimento Medico Ospedali Di Sesto San Giovanni E Cinisello Balsamo.
ASST Spedali Civili Di Brescia: Silvia Chiari.
Azienda Ospedaliera S. G. Moscati – Avezzano: Giovanna Licitra.
Ospedale San Filippo – Frosinone: Francesco Spadoni.
Azienda Ospedaliera S. Maria del Rosario – Sesto San Giovanni: Concetta Maria Gabriella Tropea, Daniela Emanuela Di Stefano.
Ospedale Privato Villalba Hospital: Paolo Guefl.
IRCCS S. Raffaele – Milano: Lorenzo Dagna.
PO Gravina e S. Pietro – Caltagirone: Gianfranco Morgana.
ASST Grande Ospedale Metropolitano Niguarda – Milano: Lidia Montemurro.
TOCIVID-19 Pharmacists
Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli - Clinical Trials Unit: Antonia Del Giudice.
IRCCS Policlinico San Donato – Milano: Maria Margherita Dragonetti, Susanna Bordignon.
ASST di Cremona – Cremona: Andrea Marco Machiavelli, Giulia Chiodelli, Annalisa Mancini.
AORN Dei Colli – Napoli: Micaela Spatarella.
Ospedale Bassini - Cisilino Balsamo: Davide Zenoni, Flavio Niccolò Beretta.
Ospedale Bellaria – Bologna: Giuseppina Santilli.
PO Sant’Elia – Caltanissetta: Rita Badagliacca.
AOU Careggi – Firenze: Manuela Angileri.
Azienda Ospedaliera S.G. Moscati – Avellino: Luciana Giannelli.
Ospedale Pagliano – Arezzo: Antonella Ciccone.
Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli - Clinical Trials Unit: Antonia Del Giudice.
AORN Dei Colli – Napoli: Micaela Spatarella.
ASST di Cremona – Cremona: Andrea Marco Machiavelli, Giulia Chiodelli, Annalisa Mancini.
PO Sant’Elia – Caltanissetta: Rita Badagliacca.
AOU Careggi – Firenze: Manuela Angileri.
Azienda Ospedaliera S.G. Moscati – Avellino: Luciana Giannelli.
Ospedale Pagliano – Arezzo: Antonella Ciccone.
ASST di Cremona – Cremona: Daniele Generali.

TOCIVID-19 Investigators (centres enrolling patients after March 24, 2020 only)
Nuovo Ospedale Garibaldi Nesima – Catania: Bruno Capocorda, Andrea Marino, Alessio Pampaloni, Benedetto Maurizio Cercaci.
AOU – Foggia: Gilda Cinnella, Daniela Labella, Rosa Roberta Caporosso.
Ospedale Magalini - Villafranca di Verona: Patrizia Maimone.
ASST di Cremona – Cremona: Andrea Marco Machiavelli, Giulia Chiodelli, Annalisa Mancini.
AORN Dei Colli – Napoli: Micaela Spatarella.
Azienda Ospedaliera S.G. Moscati – Avellino: Luciana Giannelli.
AOU – Foggia: Gilda Cinnella, Daniela Labella, Rosa Roberta Caporosso.
ASST di Cremona – Cremona: Patrizia Maimone.
Ospedale Bassini - Cisilino Balsamo: Davide Zenoni, Flavio Niccolò Beretta.
Ospedale Bellaria – Bologna: Giuseppina Santilli.
PO Sant’Elia – Caltanissetta: Rita Badagliacca.
AOU Careggi – Firenze: Manuela Angileri.
Azienda Ospedaliera S.G. Moscati – Avellino: Luciana Giannelli.
Ospedale Pagliano – Arezzo: Antonella Ciccone.
Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli - Clinical Trials Unit: Antonia Del Giudice.
AORN Dei Colli – Napoli: Micaela Spatarella.
ASST di Cremona – Cremona: Andrea Marco Machiavelli, Giulia Chiodelli, Annalisa Mancini.
PO Sant’Elia – Caltanissetta: Rita Badagliacca.
AOU Careggi – Firenze: Manuela Angileri.
Azienda Ospedaliera S.G. Moscati – Avellino: Luciana Giannelli.
Ospedale Pagliano – Arezzo: Antonella Ciccone.
AO Villa Scassi – Genova Sernipareusa: Maria Grazia Covesin, Annalisa Bruni, Claudio Francoese.
Ospedale Di Mondovi CN1 – Cuneo: Blangetti Iarla.
Ospedale Civico – Chiavassiss: Fiammetta Pagnozzi, Sabrina Mietta.
Ospedale Perniz Ferraro – Alzano: Alberto Ross.
Ospedale S. Antonio Barate – Gallarate: Lorenzo Maroni, Vittorio Bonori, Claudio Bellinanti.
Ospedale AULSS 15 Aida Padovana: Camilla Sgarabotto, Giada Bizzotto.
AO Sant’Anna E San Sebastiano – Caserta: Lepo Ducchi.
AO Loreto Mare – Napoli: Giovanni Spagnuolo.
Ospedale Di Montebelluna: Moreno Agostini, Federico Carlo Caria, Filippo Testa.
IRCCS AOU S. Martino – Genova: Raffaele De Palma, Giuseppe Murdaca.
Presidio Ospedaliero di Chiaro: Gabriele Zanolini, Nadia Sala.
Ospedale Del Delta – Saronico: Erminio Righini.
IRCCS AOU S. Martino – Genova: Roberto Ponzemol.
Ospedale Moriggia Paschini – Gramigna: Gianmarco Aondio.
AORN A. Cardarelli – Napoli: Ferdinando Riccardi, Ferdinando Riccardi, Maria Giovanna De Cristoforo, Fausto De Michele.
Azienda Ospedaliera S. G. Moscati – Avellino: Angelo Storti, Luciana Giannelli.
PO SS. Trinita – Cagliari: Marco Aurelio Pazzini.
Azienda Ospedaliera Villa Scassi – Genova Sernipareusa: Caviglia Enrica, Federic Valastro.
ASTT Di Cremona: Matteo Uspol Giorgi Pierfrancesco, Fabio De Gennari, Anna Laura Nardecchia, Alfredo Molteni.
ASTT Di Cremona; Manareta Castellini.
Ospedale San Pellegrino – Castiglione: Giovanni Buetto.
Casa Di Cura Policlinico – Monza: Giovannabattista Ippoliti.
Presidio Ospedaliero Di Arco: Domenico Sichi.
Presidio Ospedaliero Oglio Po – Casalmaggiore: Libya Grazia Bottoli.
Ospedale Di Vittorio Veneto: Blanca Martínez Lopez De Arroyabe, Alessandra Versaci.
Casa Di Cura Villa Pirsi San Mattaria: Giada Pallotti.
Ospedale Civile E. Agnelli – Pinerolo: Liliana Boni, Piero Alberti.
Ospedale Moriggia Pelascini – Gravedona: Gianmarco Aondio.
Atto S. Maria dell’Omo – Cava de’ Tirreni: Ornella Pizz.
IRCCS Multimedicus – Milan: Salvatore Guanin, Giorgio Aldegheri.
PO Paolo Boncellino – Marsala: Giovanni Napoli.
AOU Careggi – Firenze: Alessandro Morettini, Eleonora Calzino, Lorenzo Menicacci.
AOU Careggi – Firenze: Filippo Perall, Monica Torrini.
AOU – Careggi – Firenze: Loredana Poggesi.
Clinica Pinna Pinzor Srl – Turin: Enrico Maria Visetti.
Policlinico di Alessandria: Enrico Maria Visetti.
Presidio Ospedaliero Di Borgo Valsugana: Sandro Inchiostro.
Ospedale Moriggia Pelascini – Gravedona: Gianluigi Morzab.
Casa Di Cura Villa Bararano – Salo: Stefano Visconti.
ASTT Di Bergamo Est: Pasquale Maietta.
Ospedale SS. Capitolano e Gerossa – Loreve: Elisa Banfi, Stefania Cartella.
Ospedale F. Spaziani – Frosinone: Brun Venturi, Antonina Nucero.
Ospedale San Pellegrino – Castiglione: Gianluigi Morzab.
AO Villa Scassi – Genova Sernipareusa: Rossana Cavesin, Annalisa Bruni.
AO Villa Scassi – Genova Sernipareusa: Tosca Chiarello, Cristina Bianchi.
Ospedale degli Infermi – Biella: Elisa Perfetti.
Ospedale Di Montebelluna: Luca Canzanetti.
AORN A. Cardarelli – Napoli: Manuel Otero.
Casa Di Cura Villa Gemma – Gardone Riviera: Sabrina Vella, Greta Pannella, Francesco Bellucci.
Presidio Sanitario Ospedale Cottolengo – Torino: Giovanni Ferrero.
AOU Sant’Andrea – Roma: Carmen Vico.
Ospedale Civile Spirito Santo – Pescara: Maria Serafina Stillante.

Other TOCIVID-19 Research Nurses (centres enrolling patients after March 24, 2020 only)
Ospedale A.Cardarelli – Campobasso: Giovanna D’Andrea.
Ospedale S.Camillo Di Lellis Rieti: Filippo Amoroso, Antonino Arcidiacono, Anna Maria Bella, Agata Belisio, Eleonora Berté, Giulia Carubia, Maria Grazia Caruso, Orazio Casella, Francesco Chereleser, Chiara Costa, Daniela De Franco, Giuseppe Germanà, Antonio Messina, Diana Musumeci, Concetta Noto, Marco Valenti.
PO Mauro Scarlato – Scafati: Carlo Sorrentino, Rosanna Panci, Giuseppe Schettino, Jolanda Piccoli, Antonino Pepe, Francesco De Rosa, Mario Ottaviano, Gerardo Marruzzo.
Ospedale Sandro Pertini – Roma: Gianna Raponi, Stefania Diberardino.
AOU Careggi – Firenze: Simona Bausi.
Presidio Sanitario Ospedale Cottolengo – Torino: Alessandro Ferrari.

OtherTOCIVID-19 Pharmacist (centres enrolling patients after March 24, 2020 only)
Ospedale SS Antonio E Margherita, Covid Hospital – Tortona: Sara Francesca Marin.
Presidio Sanitario Gradudine: Elena Giubellino, Giorgio Innocenti.
AORN A. Cardarelli – Napoli: Gaspare Guglielmi.
Ospedale di Vittorio Veneto: Daniela Maccari, Izabela Baciu.
Ospedale Moriggia – Chieri: Tonia Celeste Paone.

Authors’ contributions
FP, MCPP, PAA, PA, PC, GG designed the study. FP, MCPP, GB, CC, PG, AG, CS managed study conduct. CS, PP, AA, MF, MMT, DR, FB, PB, NS, FC, MLM, ML, CC, ND, LS, LA, MCo, MCG, GD, NF, FF, MM, VM, CM, EAN enrolled patients and collected study data. LA, PC, CG performed statistical analysis. FP, MCPP, PC, GG wrote manuscript draft. All authors read and approved the final manuscript.

Funding
No specific funding was available for this study. Tocilizumab was provided by the pharmaceutical company (Roche) free of charge.

Availability of data and materials
The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Ethical approval and consent to participate
TOCIVID-19 was approved for all Italian centers by the National Ethical Committee at the Lazzaro Spallanzani Institute on March 18th, 2020 (registry number 22/2020). Informed consent for participation in the study could be oral if a written consent was unfeasible. However, if patients lack capacity to consent due to disease severity, and an authorized representative was not immediately available, treatment could be administered by the treating physician on her/his own responsibility.

Consent for publication
Not applicable.

Competing interests
FP reports grants, personal fees and non-financial support from Bayer, personal fees from Sandoz, grants and personal fees from Incyte, personal fees for Celgene, grants and personal fees from AstraZeneca, personal fees from Pierre Fabre, personal fees from Janssen, grants from Roche, grants from Pfizer, outside the submitted work. MCPP reports personal fees from Daichi Sankyo, personal fees from GSK, personal fees from MSD, grants from Roche, grants and personal fees from Roche-Gentech, personal fees and other from MSD, grants and personal fees from Array, personal fees from Novartis, personal fees from Merck Serono, personal fees from Pierre Fabre, personal fees from Incyte, personal fees from Genmaab, personal fees from NewLink Genetics, personal fees from Medimmune, personal fees from AstraZeneca, personal fees from Sydax, personal...
fees from Sun Pharma, personal fees from Sanofi, personal fees from Idera, personal fees from Ultimovacs, personal fees from Sandoz, personal fees from Immunocore, personal fees from 45C, personal fees from Alkermes, personal fees from Italfarmaco, personal fees from Nektar, personal fees from Boehringer-Ingelheim, outside the submitted work.

CS reports grants and personal fees from Roche, personal fees from Sanofi-Genzyme, personal fees from Abbvie, personal fees from Pfizer, personal fees from Lilly, personal fees from Novartis, outside the submitted work.

FC reports grants and personal fees from Roche, outside the submitted work.

ML reports grants from Gilead, personal fees from Abbvie, personal fees from Pfizer, personal fees from Merck, personal fees from Janssen, grants from Angelini, outside the submitted work.

The Authors declare that they have no competing interests.

Author details
1. Clinical Trial Unit, Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli, Italy.
2. Melanoma, Cancer Immunotherapy and Development Therapeutics Unit, Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli, Italy.
3. Rheumatology, Università degli Studi di Modena e Reggio Emilia, Modena, Italy.
4. Azienda USL-IRCCS di Reggio Emilia, Modena, Italy.
5. Azienda Ospedali dei Colli, Napoli, Italy.
6. Emilia Romagna Health Directorate, Bologna, Italy.
7. Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Roma, Italy.
8. Infectious Diseases Unit, Hospital Health Direction, IRCCS - Policlinico San Donato, Milano, Milano, Italy.
9. Infectious Diseases Unit - ASST Papa Giovanni XXIII, Bergamo, Italy.
10. Infectious Diseases Unit; ASST Monza and University Milano Bicocca, Milan, Italy.
11. University of Brescia and ASST Spedali Civili, Brescia, Italy.
12. Sapienza University of Rome, Santa Maria Greco Hospital, Latina, Italy.
13. Infectious Diseases and Hepatology Unit AOU, Parma, Italy.
14. UOC Malattie Infettive e Tropicali, AOUI, Verona, Italy.
15. University of Naples Federico II, Naples, Italy.
16. Università degli Studi di Modena e Reggio Emilia, Modena, Italy.
17. Department of Mental Health and Preventive Medicine, Università degli Studi della Campania Luigi Vanvitelli, Caserta, Italy.
18. Albertini L, Soletchnik M, Razurel A, Cohen J, Pauzy E, Fauvelle F, et al. Tocilizumab for treatment of severe COVID-19 patients: an individual patient data systematic review. J Med Virol. 2020. https://doi.org/10.1002/jmv.26038.
19. Biran N, Ip A, Ahn J, Go RC, Wang S, Mathura S, et al. Tocilizumab among patients with COVID-19 in the intensive care unit: a multicentre observational study. Lancet Rheumatol. 2020. https://doi.org/10.1016/S2665-2991(20)30277-0.
20. Capra R, De Rossi N, Mattioli F, Romagnoli C, Scarpa L, Sornani MP, et al. Impact of low dose tocilizumab on mortality rate in patients with COVID-19 related pneumonia. Eur J Intern Med. 2020;76:31–5.
21. Colaneri M, Bogliolo L, Valsecchi P, Sacchi P, Zuccaro V, Brandolin F, et al. Tocilizumab for treatment of severe COVID-19 patients: preliminary results from SMATteo COVID19 Registry (SMACORE). Microorganisms. 2020;8(5):695.
22. Guaraldi G, Meschiari M, Cozzi-Lepri A, Milic J, Tonelli R, Menozzi M, et al. Tocilizumab in patients with severe COVID-19: a retrospective cohort study. Lancet Rheumatol. 2020;2(8):e474–84.
23. Jordan SC, Zakowski P, Tran HP, Smith EA, Gaultier C, Marks G, et al. Compassionate use of tocilizumab for treatment of SARS-CoV-2 pneumonia. Clinical Infect Dis. 2020. https://doi.org/10.1093/cid/ciaa812.
24. Klopfenstein T, Zayet S, Loshe A, Balaband J, Badie J, Royer PY, et al. Tocilizumab therapy reduced intensive care unit admissions and/or mortality in COVID-19 patients. Med Mal Infect. 2020;50(5):397–400.
25. Okoh AK, Bishburg E, Grinberg S, Nagarakanti S, Chadha M, Tubbs T, et al. Tocilizumab use in COVID-19 associated pneumonia. J Med Virol. 2020. https://doi.org/10.1002/jmv.26471.
26. Petrak RM, Skorodin NC, Van Hise NW, Fliegelman RM, Pinsky J, Didwania V, et al. Tocilizumab as a therapeutic agent for critically ill patients infected with SARS-CoV-2. Clin Transl Sci. 2020. https://doi.org/10.1111/ctss.12647.
27. Joges-Marte G, Khalid M, Mukhtar O, Hashmi AT, Waheed MA, Ehrlich S, et al. Outcomes in patients with severe COVID-19 disease treated with tocilizumab: a case-controlled study. QJM. 2020;113(8):546–50.
28. Sciascia S, Apra F, Baffa A, Baldovino S, Boaro D, Boero R, et al. Pilot prospective open, single-arm multicentre study on off-label use of tocilizumab in patients with severe COVID-19. Clin Exp Rheumatol. 2020;38(3):529–32.
30. Toniati P, Piva S, Cattalini M, Garrafa E, Regola F, Castelli F, et al. Tocilizumab for the treatment of severe COVID-19 pneumonia with hyperinflammatory syndrome and acute respiratory failure: a single center study of 100 patients in Brescia, Italy. Autoimmun Rev. 2020;19(7):102568.

31. Zain Mushfaq M, BinZafarAhmad S, Jamil B, Azz A, Ali SA. Outcome of COVID-19 patients with use of Tocilizumab: a single center experience. Int Immunopharmacol. 2020;88:106926.

32. Zhao J, Cui W, Tian BP. Efficacy of tocilizumab treatment in severely ill COVID-19 patients. Crit Care. 2020;24(1):524.

33. Goodman JL, Borio L. Finding effective treatments for COVID-19: scientific integrity and public confidence in a time of crisis. JAMA. 2020;323(19):1899–900.

34. Angus DC. Optimizing the trade-off between learning and doing in a pandemic. JAMA. 2020;323(19):1895–6.

35. Giorgi Rossi P, Ferroni E, Spila Alegiani S, Leoni O, Pitter G, Cereda D, et al. Survival of hospitalized COVID-19 patients in Northern Italy: a population-based cohort study by the ITA-COVID19 Network. MedRxiv. 2020. https://doi.org/10.1101/2020.05.15.20103119.

36. Addis A, Genazzani A, Trotta MP, Magrini N. Promoting better clinical trials and drug information as public health interventions for the COVID-19 emergency in Italy. Ann Intern Med. 2020. https://doi.org/10.7326/M20-3775.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.