Non-vanishing of derivatives of L-functions of Hilbert modular forms in the critical strip

Alia Hamieh and Wissam Raji

Abstract

In this paper, we show that, on average, the derivatives of L-functions of cuspidal Hilbert modular forms with sufficiently large parallel weight k do not vanish on the line segments $\Im(s) = t_0, \Re(s) \in (\frac{k-1}{2}, \frac{k}{2} - \epsilon) \cup (\frac{k}{2} + \epsilon, \frac{k+1}{2})$. This is analogous to the case of classical modular forms.

Keywords: Hilbert modular forms, Derivatives of L-functions, Non-vanishing of L-functions

Mathematics Subject Classification: Primary 11F41, 11F67; Secondary 11F30, 11F11, 11F12, 11N75

1 Introduction

In [3], Kohnen proved that given any real number t_0 and $\epsilon > 0$, then for k large enough, the average of the normalized L-functions $L^*(f, s)$ with f varying over a basis of Hecke eigenforms of weight k on $\text{SL}_2(\mathbb{Z})$ does not vanish on the line segment $\Im(s) = t_0, (k-1)/2 < \Re(s) < k/2 - \epsilon, k/2 + \epsilon < \Re(s) < (k+1)/2$.

Recently in [4], Kohnen, Sengupta and Weigel extended their method and showed a non-vanishing result for the derivatives of L-functions associated to modular forms of integer weight on the full group. In particular, they show that for k large enough,

$$\sum_{j=1}^{d} \frac{1}{[k_{j},k_{j}]} \frac{d^n}{ds^n} [L^*(f_{k,j}, s)]$$

does not vanish on the line segment $\Im(s) = t_0, (k-1)/2 < \Re(s) < k/2 - \epsilon, k/2 + \epsilon < \Re(s) < (k+1)/2$.

In [2], we generalized the result of [3] to the context of cuspidal Hilbert modular forms of parallel weight k. In order to describe our work, we introduce the following notation. Let F be a totally real number field of degree n over \mathbb{Q}. Let \mathcal{O}_F be the ring of integers of F, and assume its narrow class number is equal to 1. For $k \in 2\mathbb{N}$, we denote by $\mathcal{S}_k(\text{SL}_2(\mathcal{O}_F))$ the space of Hilbert cusp forms of parallel weight k for $\text{SL}_2(\mathcal{O}_F)$. Our main result in [2] is the following theorem.

Theorem 1 Let $k \in 2\mathbb{N}$, and let $B_k(\mathcal{O}_F)$ be a basis of normalized Hecke eigenforms of $\mathcal{S}_k(\text{SL}_2(\mathcal{O}_F))$. Let $t_0 \in \mathbb{R}$ and $\epsilon > 0$. Then there exists a constant C depending only on t_0, ϵ...
and F such that for $k > C$ the average
\[\sum_{f \in B_k(O_F)} \frac{\Lambda(f,s)}{[f,f]} \]
is non-vanishing for any $s = \sigma + it_0$ with $\sigma \in \left(\frac{k-1}{2}, \frac{k}{2} - \epsilon\right) \cup \left(\frac{k}{2} + \epsilon, \frac{k+1}{2}\right)$.

Here, we extend the result in [2] by showing that the derivatives of L-functions of cuspidal Hilbert modular forms with sufficiently large parallel weight k do not vanish on the line segments
\[\Im(s) = t_0, \quad \Re(s) \in \left(\frac{k-1}{2}, \frac{k}{2} - \epsilon\right) \cup \left(\frac{k}{2} + \epsilon, \frac{k+1}{2}\right). \]

More precisely, we prove the following theorem.

Theorem 2 Let $B_k(O_F)$ be a basis of normalized Hecke eigenforms of $S_k(SL_2(O_F))$. Let $t_0 \in \mathbb{R}$, $\epsilon > 0$ and $\ell \in \mathbb{N}$. Then there exists a constant C depending only on t_0, ϵ and F such that for $k > C$ the average
\[\frac{1}{[f,f]} \frac{d^\ell}{ds^\ell} \left(\Lambda(f,s) \right) \]
is non-vanishing for any $s = \sigma + it_0$ with $\sigma \in \left(\frac{k-1}{2}, \frac{k}{2} - \epsilon\right) \cup \left(\frac{k}{2} + \epsilon, \frac{k+1}{2}\right)$.

We obtain the following corollary as a direct consequence.

Corollary 3 Let t_0, ϵ, ℓ and C be as in Theorem 2. Then for $k > C$ and any $s = \sigma + it_0$ with $\sigma \in \left(\frac{k-1}{2}, \frac{k}{2} - \epsilon\right) \cup \left(\frac{k}{2} + \epsilon, \frac{k+1}{2}\right)$, there exists a Hecke eigenform $f \in S_k(SL_2(O_F))$ such that $\frac{d^\ell}{ds^\ell} \left(\Lambda(f,s) \right) \neq 0$.

2 Setting and preliminaries

In this note, we work over a totally real number field F of degree n over \mathbb{Q} with ring of integers O_F. The group of units in O_F is denoted by O_F^\times. For simplicity of exposition, we assume that the narrow class number of F is 1.

The absolute norm of an ideal $a \subset O_F$ is given by $N(a) = [O_F : a]$. The trace and the norm over \mathbb{Q} of an element $x \in F$ are denoted by $\text{Tr}(x)$ and $N(x)$, respectively. We denote by \mathcal{D}_F the different ideal of F and by d_F its discriminant over \mathbb{Q}. We have the relation $\mathcal{D}_F = (d_F)$ and $N(\mathcal{D}_F) = |d_F|$.

The real embeddings of F are denoted by $\sigma_j : x \mapsto x_j := \sigma_j(x)$ for $j = 1, \ldots, n$. We say $x \in F$ is totally positive and write $x \gg 0$ if $x_j > 0$ for all j. Moreover, we use X^+ to denote the set of all totally positive elements in a subset X of F.

To simplify exposition, we will often make use of the following notation. For $c, d \in F$, $z = (z_1, \ldots, z_n) \in \mathbb{C}^n$ and $s \in \mathbb{C}$, we set
\[N(cz + d)^s = \prod_{j=1}^n (cz_j + d_j)^s. \]
Moreover, we set
\[\text{Tr}(cz) = \sum_{j=1}^n c_jz_j. \]
Let us now recall the following results which are crucial for establishing Theorem 2 (see the proof of Lemma 8 below).

Lemma 4 (Trotabas [7, Lemma 2.1]) There exist constants C_1 and C_2 depending only on F such that

$$\forall \xi \in F, \exists \epsilon \in \mathcal{O}_F^{\times +}, \forall j \in \{1, \ldots, n\} : \quad C_1 |N(\xi)|^{1/n} \leq |(\epsilon \xi_j)| \leq C_2 |N(\xi)|^{1/n}.$$

Lemma 5 (Luo [5]) For $\lambda > 0$, we have

$$\sum_{\eta \in \mathcal{O}_F^{\times +}} \prod_{j < 1} \eta_j^\lambda < \infty. \quad (2)$$

3 Fourier expansion of the Kernel function for Hilbert modular forms

Let us now define the kernel function for Hilbert modular forms over F. Let $z = (z_1, z_2, \ldots, z_n) \in \mathbb{H}^n$, $k \in \mathbb{Z}$ and let $s \in \mathbb{C}$ with $1 < \Re(s) < k - 1$. We have

$$R_s(z) = \gamma_k(s) \sum_{(a \ b) \in T} N(cz + d)^{-k} N(az + b)^{-s} N(cz + d)^{-s'}. \quad (3)$$

where $T = \left\{ \left(\begin{array}{cc} \epsilon & 0 \\ 0 & \epsilon^{-1} \end{array} \right) : \epsilon \in \mathcal{O}_F^{\times +} \right\}$ and $\gamma_k(s) = \frac{(i^s \Gamma(s) \Gamma(k-s))^n}{|\mathcal{O}_F^{\times} : \mathcal{O}_F^{\times +}|}$.

We have shown earlier in [2] that $R_s(z)$ is a cusp form of parallel weight k for the modular group $\text{SL}_2(\mathcal{O}_F)$, and its Fourier expansion at the infinite cusp is given as follows.

Proposition 6 The function $R_s(z)$ has the following Fourier expansion:

$$R_s(z) = \sum_{v \in \mathcal{O}_F^{\times^{-1}}} \sum_{v > 0} r_{s,k}(v) \exp\left(2\pi i \text{Tr}(vz)\right),$$

where

$$r_{s,k}(v) = \frac{(2\pi)^n \Gamma^n(k-s)}{\sqrt{|d_F|}} N(v)^{s-1} + (-1)^{nk} \frac{(2\pi)^n (k-s) \Gamma^n(s)}{\sqrt{|d_F|}} N(v)^{k-s-1}$$

$$+ \gamma_k(s) \left(\frac{2\pi i}{\Gamma^n(k)} N(v)^{k-1} \sum_{(a,c) \in \mathcal{O}_F \times \mathcal{O}_F} \prod_{(a,c) \neq 0} \frac{N(c)^{s-k} N(a)^{k-s}}{\Gamma^n(c) \sqrt{|d_F|}} \text{exp}\left(2\pi i \text{Tr}\left(\frac{v_0}{c}\right)\right) \right)$$

$$\times \prod_{j=1}^{n} F_1 \left(s, k, -\frac{2\pi i v_j}{a_j c_j} \right).$$

To clarify the notation in the above equation, we note that summation \sum^\times indicates that (a, c) runs over all non-associated pairs only (in our setting, the pairs (a_1, c_1) and (a_2, c_2) are called associated if $(a_1, c_1) = u(a_2, c_2)$ for some totally positive unit $u \in \mathcal{O}_F^{\times +}$.

Moreover, for every co-prime pair (a, c), we fix a choice of $(b_0, d_0) \in \mathcal{O}_F \times \mathcal{O}_F$ such that $ad_0 - bc_0 = 1$.

It was also shown in [2] that $R_s(z)$ can be expressed as:
Recall that \(\Lambda(s, f, s) \) satisfies the functional equation (see [6, page 654])

\[
\Lambda(k - s) = (-1)^{\nu} \Lambda(s).
\]

4 Proof of Theorem 2

In this section, we prove the main theorem of this paper following the recent work of Kohnen et al. [4]. In view of the functional equation (5), it suffices to consider the left hand side of the critical strip. Hence, we take \(s = \frac{k}{2} - \delta - it_0 \) where \(\epsilon < \delta < \frac{1}{2} \) and \(t_0 \in \mathbb{R} \).

Taking the first Fourier coefficients on both sides of (4) and using Proposition 6, we get

\[
(2\pi)^{|s|} \Gamma^n(k - s) + (-1)^{\nu} \left((2\pi)^n \Gamma^{n(k - s)} \right)
\]

\[
\times \sum_{\substack{(a, c) \in \mathcal{O}_F \times \mathcal{O}_F \\
\gcd(a, c) = 1}} (N(a)^{|s|}) \exp \left(\frac{\pi}{2} i \text{Tr} \left(\frac{d_0}{c} \right) \right) \prod_{j=1}^n \frac{\Gamma(k - s)}{\Gamma(k)} \frac{\Gamma(s, k)}{\Gamma(s)}
\]

which is a basis of normalized Hecke eigenforms of \(\mathcal{S}_k(\text{SL}_2(\mathcal{O}_F)) \), and

\[
\Lambda(f, s) = |d_F|^{|s|} \Gamma^n \Gamma^{|s|} L(f, s).
\]

Taking the \(\ell \)-th derivative of both sides with respect to \(s \) gives

\[
\frac{1}{\sqrt{|d_F|}} \frac{d^\ell}{ds^\ell} \left((2\pi)^{|s|} \Gamma^n(k - s) \right) + (-1)^{\nu} \frac{d^\ell}{ds^\ell} \left((2\pi)^n \Gamma^{n(k - s)} \right)
\]

\[
\times \sum_{\substack{(a, c) \in \mathcal{O}_F \times \mathcal{O}_F \\
\gcd(a, c) = 1}} (N(a)^{|s|}) \exp \left(\frac{\pi}{2} i \text{Tr} \left(\frac{d_0}{c} \right) \right) \prod_{j=1}^n \frac{\Gamma(k - s)}{\Gamma(k)} \frac{\Gamma(s, k)}{\Gamma(s)}
\]

\[
= (-1)^{\nu} \pi^2 \Gamma^n(k - 1) \sum_{f \in \mathcal{B}_k(O_F)} \frac{\Lambda(f, s)}{|f|},
\]

where

\[
\frac{\Gamma(k - s)}{\Gamma(k)} \frac{\Gamma(s, k)}{\Gamma(s)} = \Gamma(k - s) \Gamma(s) \frac{\Gamma(s, k)}{\Gamma(k)} = 1F_1 \left(s, k - \frac{2\pi i}{a_j c_j} \right).
\]

Let us consider first the expression

\[
I_1 = \frac{1}{\sqrt{|d_F|}} \frac{d^\ell}{ds^\ell} \left((2\pi)^{|s|} \Gamma^n(k - s) \right).
\]
We have

\[I_1 = \frac{1}{\sqrt{|d_F|}} \sum_{j=0}^{\ell-1} \binom{\ell}{j} \frac{d^j}{d\psi^j} \left[(2\pi)^{\psi} \right] \frac{d^{\ell-j}}{d\psi^{\ell-j}} \left[\Gamma^n(k - s) \right] \]

\[= \frac{1}{\sqrt{|d_F|}} \sum_{j=0}^{\ell-1} \binom{\ell}{j} (n \log (2\pi))^j (2\pi)^{\psi} \sum_{v_1+v_2+\ldots+v_n=\ell-j} \frac{(\ell-j)!}{v_1!v_2!\ldots v_n!} \prod_{1 \leq t \leq n} (-1)^{v_t} \Gamma^{(v_t)}(k - s) \]

\[= \frac{(2\pi)^{\psi}}{\sqrt{|d_F|}} \sum_{j=0}^{\ell-1} (-1)^{\ell-j} \binom{\ell}{j} (n \log (2\pi))^j \sum_{v_1+v_2+\ldots+v_n=\ell-j} \frac{(\ell-j)!}{v_1!v_2!\ldots v_n!} \prod_{1 \leq t \leq n} \Gamma^{(v_t)}(k - s) \]

\[+ \frac{(2\pi)^{\psi}}{\sqrt{|d_F|}} \sum_{j=0}^{\ell-1} (-1)^{\ell-j} \binom{\ell}{j} (n \log (2\pi))^j \sum_{v_1+v_2+\ldots+v_n=\ell-j} \frac{(\ell-j)!}{v_1!v_2!\ldots v_n!} \prod_{1 \leq t \leq n} \Gamma^{(v_t)}(k - s). \]

Hence,

\[\frac{\sqrt{|d_F|} I_1}{(2\pi)^{\psi} \Gamma^n(k - s)} = (n \log (2\pi))^\ell \]

\[+ \sum_{j=0}^{\ell-1} (-1)^{\ell-j} \binom{\ell}{j} (n \log (2\pi))^j \sum_{v_1+v_2+\ldots+v_n=\ell-j} \frac{(\ell-j)!}{v_1!v_2!\ldots v_n!} \prod_{1 \leq t \leq n} \frac{\Gamma^{(v_t)}(k - s)}{\Gamma(k - s)}. \]

(8)

In [4], it is observed that \(\frac{\Gamma^{(m)}(z)}{\Gamma(z)} \) can be expressed as a polynomial \(P \in \mathbb{Z}[\psi, \psi^{(1)}, \ldots, \psi^{(m)}] \), where \(\psi = \frac{1}{z} \) is the digamma function. It is important to note that the highest power of \(\psi \) appearing in the polynomial \(P \) is \(\psi^m \).

We also recall the following important estimates of the digamma function:

\[\psi(z) \sim \log(z) - \frac{1}{2z} - \sum_{k=1}^{\infty} \frac{B_{2k}}{2k z^{2k}} \]

\[\psi^{(m)}(z) \sim (-1)^{m-1} \left(\frac{(m-1)!}{2z^{m+1}} + \sum_{k=1}^{m} \frac{B_{2k} (2k + m - 1)!}{(2k)! 2k z^{2k+m}} \right), \]

for \(z \to \infty \) in \(|\arg(z)| < \pi \), where \(B_n \) is the \(n \)th Bernoulli number (see [1, 6.3.18 & 6.4.11]).

For \(s = \frac{k}{2} + \epsilon i 0 \) with \(\epsilon < \delta < \frac{1}{2} \), see that \(\frac{\Gamma^{(v_t)}(k-s)}{\Gamma(k-s)} = P_t (\log(k-s)) + o(1) \) where \(P_t \) is a polynomial with integer coefficients and degree \(v_t \). It follows that

\[\prod_{1 \leq t \leq n} \frac{\Gamma^{(v_t)}(k - s)}{\Gamma(k - s)} = \prod_{1 \leq t \leq n} P_t (\log(k-s)) + o(1). \]

\[\frac{\sqrt{|d_F|} I_1}{(2\pi)^{\psi} \Gamma^n(k - s)} = (n \log (2\pi))^\ell \]

\[+ \sum_{j=0}^{\ell-1} (-1)^{\ell-j} \binom{\ell}{j} (n \log (2\pi))^j \]
\[
\sum_{v_1 + v_2 + \cdots + v_n = \ell - j} \frac{(\ell - j)!}{v_1! v_2! \cdots v_n!} \prod_{1 \leq t \leq n} P_t (\log(k - s)) + o(1)
\]

\[
= \tilde{P} (\log(k - s)) + o(1),
\]

where \(\tilde{P} \) is a polynomial of degree \(\ell \) with integer coefficients and leading coefficient \((-1)^{\ell} \sum_{v_1 + \cdots + v_n = \ell - j} \frac{\ell!}{v_1! \cdots v_n!} \).

Next, we deal with the sum

\[
I_2 = \frac{(-1)^{\ell/2} (2\pi)^{\ell/2}}{\sqrt{|d_F|}} d^\ell \left[(2\pi)^n (k - s)^{\ell} \Gamma^n(s) \right].
\]

We have

\[
I_2 = \frac{(-1)^{\ell/2} (2\pi)^{\ell/2}}{\sqrt{|d_F|}} \sum_{j=0}^{\ell} \binom{\ell}{j} \frac{d^j}{ds^j} \left[(2\pi)^{n-j} \right] \frac{d^{\ell-j}}{d^{\ell-j}} \left[\Gamma^n(s) \right]
\]

\[
= \frac{(-1)^{\ell/2} (2\pi)^{\ell/2}}{\sqrt{|d_F|}} \sum_{j=0}^{\ell} \binom{\ell}{j} (-1)^j (\ln(2\pi))^j \sum_{v_1 + v_2 + \cdots + v_n = \ell - j} \frac{(\ell - j)!}{v_1! v_2! \cdots v_n!} \prod_{1 \leq t \leq n} \Gamma^{(v_t)}(s).
\]

It follows that

\[
\sqrt{|d_F|} I_2 = \frac{(-1)^{\ell/2} (2\pi)^{\ell/2}}{(2\pi)^n \Gamma^n(k - s)} \sum_{j=0}^{\ell} \binom{\ell}{j} \ln(2\pi)^j \sum_{v_1 + v_2 + \cdots + v_n = \ell - j} \frac{(\ell - j)!}{v_1! v_2! \cdots v_n!} \prod_{1 \leq t \leq n} \Gamma^{(v_t)}(s).
\]

If \(s = \frac{k}{2} - \delta + it_0 \) with \(\epsilon < \delta < \frac{1}{2} \), we have

\[
\sqrt{|d_F|} I_2 = \frac{(-1)^{\ell/2} (2\pi)^{\ell/2}}{(2\pi)^n \Gamma^n(k - s)} \left[\sum_{j=0}^{\ell} \binom{\ell}{j} \ln(2\pi)^j \right] \sum_{v_1 + v_2 + \cdots + v_n = \ell - j} \frac{(\ell - j)!}{v_1! v_2! \cdots v_n!} \prod_{1 \leq t \leq n} \Gamma^{(v_t)}(s)
\]

\[
= (-1)^{\ell/2} (2\pi)^{\ell/2} \frac{\Gamma^n(s)}{(2\pi)^n \Gamma^n(k - s)} \left[\sum_{j=0}^{\ell} \binom{\ell}{j} \ln(2\pi)^j \right] \sum_{v_1 + v_2 + \cdots + v_n = \ell - j} \frac{(\ell - j)!}{v_1! v_2! \cdots v_n!} \prod_{1 \leq t \leq n} \Gamma^{(v_t)}(s).
\]

where \(\tilde{Q} \) is a polynomial of degree \(\ell \) having integer coefficients and leading coefficient \((-1)^{\ell} \sum_{v_1 + \cdots + v_n = \ell - j} \frac{\ell!}{v_1! \cdots v_n!} \).

Observe that (see [1, 6.1.23 & 6.1.47])

\[
\left| \frac{\Gamma^n(s)}{\Gamma^n(k - s)} \right| = \left| \frac{k}{2} + it_0 \right|^{-2\Delta} \left| 1 + O \left(\frac{1}{\left| \frac{k}{2} + it_0 \right|^2} \right) \right|
\]

uniformly in \(\epsilon < \delta < \frac{1}{2} \). It follows that \(\frac{\sqrt{|d_F|} I_2}{(2\pi)^n \Gamma^n(k - s)} \) tends to 0 as \(k \to \infty \).
We still have to estimate the following sum:

\[I_3 = \frac{(-1)^{\ell} (2\pi)^{nk}}{\sqrt{|d_F| |O_F^\times : O_F^\times|}} \times \sum_{(a, c) \in O_F \times O_F} \frac{d^\ell}{ds^\ell} \left[\frac{N(c)^{s-k}}{N(a)^s} \exp \left(\frac{\pi i}{2} \text{ins} \right) \exp \left(2\pi i \text{Tr} \left(\frac{d_0}{c} \right) \right) \prod_{t=1}^{n} \nu_t \left(s, k_t - \frac{2\pi i}{a_t c_t} \right) \right]. \]

We have

\[I_3 = \frac{(-1)^{\ell} (2\pi)^{nk}}{\sqrt{|d_F| |O_F^\times : O_F^\times|}} \sum_{(a, c) \in O_F \times O_F} \frac{N(c)^{s-k}}{N(a)^s} \log \left(\frac{N(c)}{N(a)} \right) \times \frac{d^{\ell-j}}{ds^{\ell-j}} \left[\exp \left(\frac{\pi i}{2} \text{ins} \right) \exp \left(2\pi i \text{Tr} \left(\frac{d_0}{c} \right) \right) \prod_{t=1}^{n} \nu_t \left(s, k_t - \frac{2\pi i}{a_t c_t} \right) \right]. \]

For \(1 \leq j \leq \ell - 1 \), we have

\[
\frac{d^{\ell-j}}{ds^{\ell-j}} \left[\exp \left(\frac{\pi i}{2} \text{ins} \right) \exp \left(2\pi i \text{Tr} \left(\frac{d_0}{c} \right) \right) \prod_{t=1}^{n} \nu_t \left(s, k_t - \frac{2\pi i}{a_t c_t} \right) \right] \\
= \sum_{m=0}^{\ell-j} \binom{\ell-j}{m} \exp \left(2\pi i \text{Tr} \left(\frac{d_0}{c} \right) \right) \left(\frac{\pi i}{2} \text{ins} \right)^m \exp \left(\frac{\pi i}{2} \text{ins} \right) \frac{d^{\ell-j-m}}{ds^{\ell-j-m}} \left[\prod_{t=1}^{n} \nu_t \left(s, k_t - \frac{2\pi i}{a_t c_t} \right) \right] \\
= \sum_{m=0}^{\ell-j} \binom{\ell-j}{m} \exp \left(2\pi i \text{Tr} \left(\frac{d_0}{c} \right) \right) \left(\frac{\pi i}{2} \text{ins} \right)^m \exp \left(\frac{\pi i}{2} \text{ins} \right) \\
\times \sum_{v_1 + v_2 + \cdots + v_n = \ell - j} (-1)^{v_1} \frac{d^{v_1}}{ds^{v_1}} \nu_t \left(s, k_t - \frac{2\pi i}{a_t c_t} \right). \\
\]

Therefore,

\[
\frac{\sqrt{|d_F| I_3}}{(2\pi)^m \Gamma^m (k-s)} = \frac{(-1)^{\ell} (2\pi)^{nk(k-s)}}{\Gamma^m (k-s) |O_F^\times : O_F^\times|} \sum_{(a, c) \in O_F \times O_F} \frac{N(c)^{s-k}}{N(a)^s} \exp \left(\frac{\pi i}{2} \text{ins} \right) \exp \left(2\pi i \text{Tr} \left(\frac{d_0}{c} \right) \right) \\
\times \left[\log \left(\frac{N(c)}{N(a)} \right) \prod_{t=1}^{n} \nu_t \left(s, k_t - \frac{2\pi i}{a_t c_t} \right) \\
+ \sum_{j=0}^{\ell-1} \log \left(\frac{N(c)}{N(a)} \right) \sum_{m=0}^{\ell-j} \binom{\ell-j}{m} \left(\frac{\pi i}{2} \text{ins} \right)^m \\
\times \sum_{v_1 + v_2 + \cdots + v_n = \ell - j} (-1)^{v_1} \frac{d^{v_1}}{ds^{v_1}} \nu_t \left(s, k_t - \frac{2\pi i}{a_t c_t} \right) \right].
\]
Let us now consider the sums

\[E_{1,\ell}(s, k) = \sum_{(a, c) \in \mathcal{O}_F \times \mathcal{O}_F} \frac{N(c)^{s-k}}{N(a)^{s}} \exp \left(\frac{\pi i s}{2} \right) \exp \left(\frac{2\pi i Tr \left(d_0 \right)}{c} \right) \times \log \left(\frac{N(c)}{N(a)} \right) \prod_{t=1}^{n} \mathfrak{f}_1 \left(s, k_\ell - \frac{2\pi i}{a_1 c_\ell} \right) \]

and

\[E_{2,\ell}(s, k) = \sum_{(a, c) \in \mathcal{O}_F \times \mathcal{O}_F} \frac{N(c)^{s-k}}{N(a)^{s}} \exp \left(\frac{\pi i s}{2} \right) \exp \left(\frac{2\pi i Tr \left(d_0 \right)}{c} \right) \times \log \left(\frac{N(c)}{N(a)} \right) \prod_{t=1}^{n} \mathfrak{f}_1 \left(s, k_\ell - \frac{2\pi i}{a_1 c_\ell} \right) \]

We have

\[E_{1,\ell}(s, k) = \sum_{\eta \in \mathcal{O}_F^+} \sum_{c \in \mathcal{O}_F} \sum_{a \in \mathcal{O}_F} \frac{N(c)^{s-k}}{N(a)^{s}} \exp \left(\frac{\pi i s}{2} \right) \exp \left(\frac{2\pi i Tr \left(d_0 \right)}{c} \right) \times \log \left(\frac{N(c)}{N(a)} \right) \prod_{t=1}^{n} \mathfrak{f}_1 \left(s, k_\ell - \frac{2\pi i}{a_1 c_\ell} \right), \]

(10)

and

\[E_{2,\ell}(s, k) = \sum_{\eta \in \mathcal{O}_F^+} \sum_{c \in \mathcal{O}_F} \sum_{a \in \mathcal{O}_F} \frac{N(c)^{s-k}}{N(a)^{s}} \exp \left(\frac{\pi i s}{2} \right) \exp \left(\frac{2\pi i Tr \left(d_0 \right)}{c} \right) \times \log \left(\frac{N(c)}{N(a)} \right) \prod_{t=1}^{n} \mathfrak{f}_1 \left(s, k_\ell - \frac{2\pi i}{a_1 c_\ell} \right) \]

(11)

In (10) and (11), the notation \(\sum' \) indicates that the summation is restricted to non-associated elements only. In our setting, two non-zero elements \(x_1, x_2 \in \mathcal{O}_F \) are said to be associated if there exists \(u \in \mathcal{O}_F^\times \) such that \(x_1 = ux_2 \). To deal with \(E_{1,\ell}(s, k) \) and \(E_{2,\ell}(s, k) \), we need the following lemma.

Lemma 7 Let \(s = \frac{k}{2} - \delta + it_0 \) where \(\epsilon < \delta < \frac{1}{2} \) and \(t_0 \in \mathbb{R} \). Let \(\ell \) be a non-negative integer. For all \(x \in \mathbb{R} \) and all sufficiently large \(k \), we have

\[\frac{d^\ell}{ds^\ell} \left(\mathfrak{f}_1 (s, k, ix) \right) \ll_{\ell} \min \left\{ 1, |x|^{-1} (|s - 1| + |k - s - 1|) \right\}. \]

Proof By [1, 13.2.1], we have

\[\mathfrak{f}_1 (s, k, ix) = \int_0^1 \exp(ixu)u^{k-s-1} (1-u)^{k-s-1} du. \]
It follows that \(|f_1(s, k, ix)| \leq 1 \) whenever \(\Re(s) > 1 \) and \(\Re(k - s) > 1 \). Moreover, by differentiating both sides with respect to \(s \), we get

\[
\frac{d^\ell}{ds^\ell} (f_1(s, k, ix)) \ll_{\ell} 1
\]

(12)

for any non-negative integer \(\ell \) (see [4, page 326]). On the other hand, integration by parts yields

\[
f_1(s, k, ix) = \int_0^1 \exp(ixu)u^{s-1}(1-u)^{k-s-1} \, du
\]

\[
= -\frac{s-1}{ix} \int_0^1 \exp(ixu)u^{-2}(1-u)^{k-s-1} \, du
\]

\[
+ \frac{k-s-1}{ix} \int_0^1 \exp(ixu)u^{s-1}(1-u)^{k-s-2} \, du.
\]

Taking the \(\ell \)-th derivative of both sides with respect to \(s \) yields

\[
\frac{d^\ell}{ds^\ell} (f_1(s, k, ix)) = -\frac{1}{ix} \int_0^1 \exp(ixu)u^{-2}(1-u)^{k-s-2} \, du
\]

\[
- \frac{s-1}{ix} \int_0^1 \exp(ixu)
\]

\[
\sum_{j=0}^{\ell} (-1)^{\ell-j} \binom{\ell}{j} (\log u)^j u^{-2}(\log(1-u))^{\ell-j}(1-u)^{k-s-1} \, du
\]

\[
+ \frac{k-s-1}{ix} \int_0^1 \exp(ixu)
\]

\[
\sum_{j=0}^{\ell} (-1)^{\ell-j} \binom{\ell}{j} (\log u)^j u^{s-1}(\log(1-u))^{\ell-j}(1-u)^{k-s-2} \, du.
\]

Hence,

\[
\frac{d^\ell}{ds^\ell} (f_1(s, k, ix)) \ll_{\ell} |x|^{-1} (|s-1| + |k-s-1|)
\]

(13)

whenever \(\Re(s) > 2 \) and \(\Re(k-s) > 2 \). The desired result follows from (12) and (13). □

Lemma 8 Let \(s = \frac{k}{2} - \delta + it_0 \) where \(\epsilon < \delta < \frac{1}{2} \) and \(t_0 \in \mathbb{R} \). As \(k \to \infty \), we have \(E_{1,\ell}(s, k) = O(k^n) \) and \(E_{2,\ell}(s, k) = O(k^n) \) where the implied constant depends only on \(\ell, t_0, \delta \) and the field \(F \).

Proof Upon taking absolute values, we get

\[
|E_{2,\ell}(s, k)| \leq \sum_{\eta \in \mathcal{O}_F^*} \sum_{\eta \in \mathcal{O}_F} \sum_{c \neq \mathcal{O}_F \gcd(a, c) = 1} |N(c)|^{-\frac{1}{2} - \delta} |N(a)|^\delta \sum_{j=0}^{\ell-1} \left| \log \left(\frac{|N(c)|}{|N(a)|} \right)^j \right|
\]

\[
\times \sum_{m=0}^{\ell-j} \binom{\ell-j}{m} (\frac{\pi}{2})^m \exp \left(\frac{\pi}{2} t_0 \right)
\]

\[
\times \prod_{v_1 + v_2 + \ldots + v_n = \ell-j-m} \frac{(\ell-j-m)!}{v_1!v_2! \ldots v_n!} \prod_{i=1}^n \left| \frac{d^i v_i}{ds^i} f_1(s, k, -\frac{2\pi t}{a_i\eta_i\ell}) \right|.
\]
By Lemma 7, we know that
\[
\frac{d^{n/2}}{ds^{n/2}} (f_1(s, k, ix)) \ll_{n/2} (|s - 1| + |k - s - 1|)^n \left| \frac{2\pi j}{\eta_j a_j c_j} \right|^{-\omega_j},
\]
where \(\omega_j\) is either 0 or 1 depending on whether \(\eta_j \geq 1\) or \(\eta_j < 1\) respectively. Hence, we get
\[
\prod_{j=1}^n \left| \frac{d^{n/2}}{ds^{n/2}} (f_1(s, k, ix)) \right| \ll_{n/2} (|s - 1| + |k - s - 1|)^n \prod_{\eta_j < 1} \left| \frac{2\pi}{\eta_j a_j c_j} \right|^{-1}.
\]
It follows that \(E_{2,\ell}(s, k)\) is
\[
\ll (|s - 1| + |k - s - 1|)^n \sum_{\eta \in \mathcal{O}_F^+} \sum_{c \in \mathcal{O}_F} \sum_{\eta_j < 1} \prod_{\eta_j < 1} \left| \frac{2\pi}{\eta_j a_j c_j} \right|^{-1} \left| \frac{N(c)}{n} \right|^{1/2 - \delta - \varepsilon} |N(a)| \left| \frac{k}{2} + \delta - it_0 \right|.
\]
By Lemma 4, we may choose the elements \(a, c\) in (14) such that
\[
N(a)^{1/n} \ll_{\ell} a_j \ll N(a)^{1/n} \quad \text{and} \quad |\mathcal{N}(c)|^{1/n} \ll_{\ell} c_j \ll |\mathcal{N}(c)|^{1/n},
\]
for all \(j \in \{1, \ldots, n\}\) with implicit constants depending only on \(F\). Therefore, we have
\[
E_{2,\ell}(s, k) \ll k^n \sum_{\eta \in \mathcal{O}_F^+} \sum_{\eta_j < 1} \prod_{\eta_j < 1} |\mathcal{N}(c)|^{-1/2 + 1/2 - \delta - \varepsilon} |N(a)|^{-1/2 + 1 + \delta - \varepsilon}.
\]
Lemma 5 allows us to factor out the sum over all \(\eta \in \mathcal{O}_F^+\) since it is convergent and depends only on \(F\). Thus, we get \(E_{2,\ell}(s, k) = O(k^n)\) for sufficiently large \(k\) as desired. We also emphasize that the implied constant in this estimate depends only on \(\delta, t_0, \ell\) and the field \(F\). The sum \(E_{1,\ell}(s, k)\) is treated similarly, and so we will not include the details here.

\(\square\)

It follows from Lemma 8 that
\[
\frac{\sqrt{|d_F|}}{(2\pi)^n} \Gamma^n(k - s) \ll \left| \frac{k^n(2\pi)^n k}{\Gamma^n(k - s)} \right|,
\]
which tends to 0 as \(k \to \infty\). Moreover, we have already established that as \(k \to \infty\) we have
\[
\frac{\sqrt{|d_F|}}{(2\pi)^n} \Gamma^n(k - s) \to 0,
\]
where as
\[
\frac{\sqrt{|d_F|}}{(2\pi)^n} \sim \hat{P} \left(\log \left(\frac{k}{2} + \delta - it_0 \right) \right),
\]
for some polynomial \(\hat{P}\) of degree \(\ell\). Applying these estimates to (7), we conclude that
\[
\sum_{f \in T_s(O_F)} \frac{1}{|f|} \frac{d^\ell}{ds^\ell} \left(\Lambda(f, s) \right)
\]
is non-vanishing for any \(s = \frac{k}{2} - \delta + it_0\) with \(\varepsilon < \delta < \frac{1}{2}\) and \(t_0 \in \mathbb{R}\).

Authors’ contributions
The authors are grateful to the referee for a number of suggestions that improved the exposition of this manuscript.

Author details
1Department of Mathematics and Statistics, University of Northern British Columbia, Prince George, BC V2N4Z9, Canada,
2Department of Mathematics, American University of Beirut, P.O. Box 11-0236, Riad El Solh, Beirut 1107 2020, Lebanon.

Received: 10 June 2020 Accepted: 26 January 2021 Published online: 1 March 2021
References
1. Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables. Dover Publications Inc, New York (1964)
2. Hamieh, A., Raji, W.: Non-vanishing of L-functions of Hilbert modular forms inside the critical strip. Acta Arith. 185, 333–346 (2018)
3. Kohnen, W.: Nonvanishing of Hecke L-functions associated to cusp forms inside the critical strip. J. Number Theory 67, 182–189 (1997)
4. Kohnen, W., Sengupta, J., Weigel, M.: Nonvanishing of derivatives of Hecke L-functions associated to cusp forms inside the critical strip. Ramanujan J. 51, 319–327 (2020)
5. Luo, W.: Poincaré series and Hilbert modular forms. Ramanujan J. 7, 129–140 (2003). Rankin memorial issues
6. Shimura, G.: The special values of the zeta functions associated with Hilbert modular forms. Duke Math. J 45, 637–679 (1978)
7. Trotabas, D.: Non annulation des fonctions L des formes modulaires de Hilbert au point central. Ann. Inst. Fourier (Grenoble) 61, 187–259 (2011)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.