Abstract

Let M_1 and M_2 be n-dimensional connected orientable finite-volume hyperbolic manifolds with geodesic boundary, and let $\varphi : \pi_1(M_1) \rightarrow \pi_1(M_2)$ be a given group isomorphism. We study the problem whether there exists an isometry $\psi : M_1 \rightarrow M_2$ such that $\psi_* = \varphi$. We show that this is always the case if $n \geq 4$, while in the 3-dimensional case the existence of ψ is proved under some (necessary) additional conditions on φ. Such conditions are trivially satisfied if ∂M_1 and ∂M_2 are both compact.

MSC (2000): 30F40 (primary), 57N16 (secondary).

Let M_1 and M_2 be connected orientable finite-volume hyperbolic n-manifolds with geodesic boundary. Suppose $n \geq 3$ and let $\varphi : \pi_1(M_1) \rightarrow \pi_1(M_2)$ be an isomorphism of abstract groups. We determine necessary and sufficient conditions for φ to be induced by an isometry $\psi : M_1 \rightarrow M_2$. When this is the case, we say that φ is geometric (see Section 1 for a more detailed definition). Mostow-Prasad’s rigidity theorem ensures geometricity of φ whenever the boundary of M_i is empty for $i = 1, 2$.

Building on a result of Floyd [1], we will extend Mostow-Prasad’s result to the non-empty boundary case, following slightly different strategies according to the dimension of the manifolds involved.

If M_1 and M_2 are 3-dimensional hyperbolic manifolds with non-empty geodesic boundary, applying Mostow-Prasad’s rigidity theorem to their doubles, i.e. to the manifolds obtained by mirroring M_1 and M_2 in their boundary, we will show that φ is geometric provided it is induced by a homeomorphism, rather than an isometry. A result of Marden and Maskit [7] will then be applied to relate the existence of a homeomorphism inducing φ to the behaviour of φ with respect to the peripheral subgroups of $\pi_1(M_1)$ and $\pi_1(M_2)$ (see below for a definition).

*This research was partially supported by the University of Melbourne.
If \(\dim(M_1) = \dim(M_2) \geq 4 \), the existence of an isometry \(\psi : M_1 \to M_2 \) such that \(\psi_* = \varphi \) will be proved by a more direct argument using results from [12].

1 Preliminaries and statement

In this section we list some preliminary facts about the topology and geometry of orientable finite-volume hyperbolic \(n \)-manifolds with geodesic boundary and we state our main theorem and its corollaries. From now on we will always suppose \(n \geq 3 \). Moreover, all manifolds will be connected and orientable. We omit all proofs about the basic material addressing the reader to [2, 5, 6].

Before going into the real matter, we devote the first paragraph to give a formal definition of the notion of geometric isomorphism between fundamental groups of hyperbolic manifolds. To this aim we will need to spell out in detail some well-known elementary results in the theory of fundamental groups.

Homomorphisms between fundamental groups If \(\varphi, \varphi' : G \to H \) are group homomorphisms, we say that \(\varphi' \) is conjugated to \(\varphi \) if there exists \(h \in H \) such that \(\varphi'(g) = h\varphi(g)h^{-1} \) for every \(g \in G \). Let \(X \) be a manifold and \(x_0, x_1 \) be points in \(X \). Then there exists an isomorphism \(\pi_1(X, x_0) \cong \pi_1(X, x_1) \) which is canonical up to conjugacy. It follows that an abstract group \(\pi_1(X) \) is well-defined and for any \(x_0 \in X \) there exists a preferred conjugacy class of isomorphisms between \(\pi_1(X) \) and \(\pi_1(X, x_0) \).

If \(f : X \to Y \) is a continuous map between manifolds, then \(f \) determines a well-defined conjugacy class of homomorphisms \(f_* \in \text{Hom}(\pi_1(X), \pi_1(Y))/\pi_1(Y) \). If a homomorphism \(\varphi : \pi_1(X) \to \pi_1(Y) \) is given, we say that \(\varphi \) is induced by \(f \) if \(\varphi \) belongs to \(f_* \); if so, with an abuse we will write \(\varphi = f_* \), rather than \([\varphi] = f_* \).

Definition 1.1. Let \(M_1 \) and \(M_2 \) by hyperbolic manifolds with geodesic boundary and \(\varphi : \pi_1(M_1) \to \pi_1(M_2) \) be a group isomorphism. Then \(\varphi \) is geometric if \(\varphi = \psi_* \) for some isometry \(\psi : M_1 \to M_2 \).

Natural compactification of hyperbolic manifolds Let \(N \) be a complete finite-volume hyperbolic \(n \)-manifold with (possibly empty) geodesic boundary (from now on we will summarize all this information saying just that \(N \) is hyperbolic). Then \(\partial N \), endowed with the Riemannian metric it inherits from \(N \), is a hyperbolic \((n-1) \)-manifold without boundary (completeness of \(\partial N \) is obvious, and the volume of \(\partial N \) is proved to be finite in [5]). It is well-known [5] that \(N \) consists of a compact portion together with some cusps based on Euclidean \((n-1) \)-manifolds. More precisely, the \(\varepsilon \)-thin part of \(N \) (see [10]) consists of cusps of the form \(T \times [0, \infty) \),...
where T is a compact Euclidean $(n-1)$-manifold with (possibly empty) geodesic boundary such that $(T \times [0, \infty)) \cap \partial N = \partial T \times [0, \infty)$. A cusp based on a closed Euclidean $(n-1)$-manifold is therefore disjoint from ∂N and is called *internal*, while a cusp based on a Euclidean $(n-1)$-manifold with non-empty boundary intersects ∂N in one or two internal cusps of ∂N, and is called a *boundary cusp*. This description of the ends of N easily implies that N admits a natural compactification \overline{N} obtained by adding a closed Euclidean $(n-1)$-manifold for each internal cusp and a compact Euclidean $(n-1)$-manifold with non-empty geodesic boundary for each boundary cusp. When $n = 3$, \overline{N} is obtained by adding to N some tori and some closed annuli. In this case we denote by A_N the family of added closed annuli, and we observe that no annulus in A_N lies on a torus in $\partial \overline{N}$. Note also that $A_N = \emptyset$ if ∂N is compact.

A loop $\gamma \in \pi_1(N)$ will be called an *annular cusp loop* if it is freely-homotopic to a loop in some annulus of A_N.

Main result We are now ready to state our main result.

Theorem 1.2. Let N_1 and N_2 be hyperbolic n-manifolds, and let $\varphi : \pi_1(N_1) \to \pi_1(N_2)$ be a group isomorphism. If $n = 3$, suppose also that the following condition holds:

- $\varphi(\gamma)$ is an annular cusp loop in $\pi_1(N_2)$ if and only if γ is an annular cusp loop in $\pi_1(N_1)$.

Then φ is geometric.

Theorem 1.2 readily implies the following corollaries:

Corollary 1.3. Let N_1 and N_2 be hyperbolic 3-manifolds with compact geodesic boundary and let $\varphi : \pi_1(N_1) \to \pi_1(N_2)$ be an isomorphism. Then φ is geometric.

Corollary 1.4. Let N be a hyperbolic n-manifold, let $\text{Iso}(N)$ be the group of isometries of N and let $\text{Out}(\pi_1(N)) := \text{Aut}(\pi_1(N))/\pi_1(N)$ be the group of the outer isomorphisms of $\pi_1(N)$. If $n = 3$, suppose also that the boundary of N is compact. Then there is a natural isomorphism $\text{Iso}(N) \cong \text{Out}(\pi_1(N))$.

Proof: Let $h : \text{Iso}(N) \to \text{Out}(\pi_1(N))$ be the map defined by $h(\psi) = \psi_*$. Then h is a well-defined homomorphism. Injectivity of h is a well-known fact, while surjectivity of h is an immediate consequence of Theorem 1.2 and Corollary 1.3. \qed

3
Universal covering and action at the infinity Let N be a n-dimensional hyperbolic manifold and let $\pi : \tilde{N} \to N$ be the universal covering of N. By developing \tilde{N} in \mathbb{H}^n we can identify \tilde{N} with a convex polyhedron of \mathbb{H}^n bounded by a countable number of disjoint geodesic hyperplanes S_i, $i \in \mathbb{N}$. For any $i \in \mathbb{N}$ let S_i^+ denote the closed half-space of \mathbb{H}^n bounded by S_i and containing \tilde{N}, let S_i^- be the closed half-space of \mathbb{H}^n opposite to S_i^+ and let Δ_i be the internal part of the closure at infinity of S_i^-. Of course we have $\tilde{N} = \bigcap_{i \in \mathbb{N}} S_i^+$, so denoting by \tilde{N}_∞ the closure at infinity of \tilde{N} we obtain $\tilde{N}_\infty = \partial \mathbb{H}^n \setminus \bigcup_{i \in \mathbb{N}} \Delta_i$.

The group of the automorphisms of the covering $\pi : \tilde{N} \to N$ can be identified in a natural way with a discrete torsion-free subgroup Γ of $\text{Iso}^+(\mathbb{H}^n)$ such that $\gamma(\tilde{N}) = \tilde{N}$ for any $\gamma \in \Gamma$ and $N \cong \tilde{N}/\Gamma$. Also recall that there exists an isomorphism $\pi_1(N) \cong \Gamma$, which is canonical up to conjugacy. Let $\Lambda(\Gamma)$ denote the limit set of Γ and let $\Omega(\Gamma) = \partial \mathbb{H}^n \setminus \Lambda(\Gamma)$. Kojima has shown in [5] that $\Lambda(\Gamma) = \tilde{N}_\infty$, so the round balls Δ_i, $i \in \mathbb{N}$ previously defined actually are the connected components of $\Omega(\Gamma)$. A subgroup of Γ is called peripheral if it is equal to the stabilizer of one of the Δ_i’s.

Since $\tilde{N}_\infty = \Lambda(\Gamma)$, we have that \tilde{N} is the intersection of \mathbb{H}^n with the convex hull of $\Lambda(\Gamma)$, so \tilde{N} is the convex core (see [10]) of the hyperbolic manifold \mathbb{H}^n/Γ. This implies that N uniquely determines Γ up to conjugation by elements in $\text{Iso}^+(\mathbb{H}^n)$, that Γ is geometrically finite and that N is homeomorphic to the manifold $(\mathbb{H}^3 \cup \Omega(\Gamma))/\Gamma$.

Parabolic subgroups of Γ Let Γ' be a subgroup of Γ. We say that Γ' is maximal parabolic if it is parabolic (i.e. all its non-trivial elements are parabolic) and it is maximal with respect to inclusion among parabolic subgroups of Γ. If Γ' is a maximal parabolic subgroup of Γ, then there exists a point $q \in \partial \mathbb{H}^n$ such that Γ' equals the stabilizer of q in Γ. Then Γ' can be naturally identified with a discrete subgroup of $\text{Iso}^+(\mathbb{E}^{n-1})$, so by Bieberbach’s Theorem [8] Γ' contains an Abelian subgroup H of finite index. If k is the rank of H, we say that Γ' is a rank-k parabolic subgroup of Γ. Now it is shown in [5] that if $i \neq j$, then $\overline{\Delta_i \cap \Delta_j}$ is either empty or consists of one point p whose stabilizer is a rank-$(n-2)$ parabolic subgroup of Γ. Moreover, any maximal rank-$(n-2)$ parabolic subgroup of Γ is the stabilizer of a point p which lies on the boundary of two different Δ_i’s. On the other hand, the intersection of \tilde{N} with a horoball centered at a point with rank-$(n-2)$ parabolic stabilizer projects onto a boundary cusp of N, and any boundary cusp of N lifts to the intersection of \tilde{N} with a horoball centered at a point with rank-$(n-2)$ parabolic stabilizer. It follows that there is a natural correspondence between the boundary cusps of N and the conjugacy classes of rank-$(n-2)$ maximal parabolic subgroups of Γ.

We shall see that rank-1 maximal parabolic subgroups of Γ play a special role in the proof of our main theorem. Since any parabolic subgroup of Γ corresponds to a cusp of N, we have that if $n \geq 4$ then Γ does not contain rank-1 maximal parabolic
subgroups, while when \(n = 3 \) the elements of rank-1 maximal parabolic subgroups of \(\Gamma \) correspond to the annular cusp loops previously defined. For later purpose we point out the following:

Remark 1.5. For any \(k \in \mathbb{N} \) let \(H_k \) be the stabilizer of \(\Delta_k \) in \(\Gamma \). If \(i \neq j \), then either \(\overline{\Delta_i} \cap \overline{\Delta_j} = \emptyset \) and \(H_i \cap H_j = \emptyset \), or \(\overline{\Delta_i} \cap \overline{\Delta_j} = \{ p \} \) and \(H_i \cap H_j \) is the rank-(\(n - 2 \)) parabolic stabilizer of \(p \) in \(\Gamma \).

2 Some preliminary lemmas

The following result is a slight generalization of Lemma 5.1 in [4], which is due to J.P. Otal. Notations are kept from the preceding section.

Lemma 2.1. Let \(j : S^{n-2} \to \Lambda(\Gamma) \) be a topological embedding. Then \(\Lambda(\Gamma) \setminus j(S^{n-2}) \) is path connected if and only if \(j(S^{n-2}) = \partial \Delta_l \) for some \(l \in \mathbb{N} \).

Proof: Suppose that \(j(S^{n-2}) = \partial \Delta_0 \). Using the upper half-space model of hyperbolic space, we identify \(\partial \mathbb{H}^n \) with \((\mathbb{R}^{n-1} \times \{ 0 \}) \cup \{ \infty \} \) in such a way that \(\Delta_0 \) corresponds to \(\mathbb{H} = \{(x,0) \in \mathbb{R}^{n-1} \times \{ 0 \} : \ x_{n-1} > 0 \} \). Now let \(p_1, p_2 \in \Lambda(\Gamma) \setminus \partial \Delta_0 \) and let \(\alpha : [0,1] \to (\mathbb{R}^{n-1} \times \{ 0 \}) \setminus \mathbb{H} \) be the straight Euclidean segment which joins \(p_1 \) to \(p_2 \). If \(\{a_i, b_i\} \subset [0,1], \ i \geq 1 \) is the set of the connected components of \(\alpha^{-1}(\Omega(\Gamma)) \), then, up to reordering the \(\Delta_i \)'s with \(i \geq 1 \), we have \(\alpha([a_i, b_i]) \subset \overline{\Delta_i} \). Let \(r_i \) be the Euclidean radius of \(\Delta_i \). Since \(\partial \Delta_i \) can touch \(\partial \Delta_0 \) at most in one point, for any \(i \geq 1 \) there exists a path \(\beta_i : [a_i, b_i] \to \partial \Delta_i \) with \(\beta_i(a_i) = \alpha(a_i) \), \(\beta_i(b_i) = \alpha(b_i) \) and \(\text{length}(\beta_i) \leq 2\pi r_i \). Now let \(\alpha_i \) be the path inductively defined as follows: \(\alpha_0 = \alpha, \alpha_{i+1}(t) = \beta_{i+1}(t) \) if \(t \in [a_{i+1}, b_{i+1}] \) and \(\alpha_{i+1}(t) = \alpha_i(t) \) if \(t \in [0, a_{i+1}] \cup [b_{i+1}, 1] \). The path \(\alpha_i \) is obviously continuous for any \(i \in \mathbb{N} \). Moreover, since \(\lim_{i \to \infty} r_i = 0 \), the sequence of paths \(\{\alpha_i, i \in \mathbb{N}\} \) uniformly converges to the desired continuous path \(\alpha_\infty : [0,1] \to \Lambda(\Gamma) \setminus \partial \Delta_0 \).

Suppose now that \(\Lambda(\Gamma) \setminus j(S^{n-2}) \) is path connected. The Jordan-Brouwer separation theorem implies that \(\partial \mathbb{H}^n \setminus j(S^{n-2}) = A_1 \cup A_2 \), where the \(A_i \)'s are disjoint open subset of \(\partial \mathbb{H}^n \) with \(\partial A_i = j(S^{n-2}) \) for \(i = 1, 2 \) (since we are not assuming that \(j \) is tame, at this stage we are not allowed to claim that the \(A_i \)'s are topological balls). Our hypothesis now forces \(A_k \cap \Lambda(\Gamma) = \emptyset \) for some \(k \in \{1, 2\} \), so \(A_k \subset \Delta_l \) for some \(l \in \mathbb{N} \). Moreover, since \(\partial A_k = j(S^{n-2}) \subset \Lambda(\Gamma) \), it is easily seen that \(j(S^{n-2}) = \partial \Delta_l \), and we are done. \(\square \)

Form now on let \(N_1 \) and \(N_2 \) be hyperbolic \(n \)-manifolds, let \(\pi_i : \mathbb{H}^n \supset \widetilde{N}_i \to N_i \) be the universal covering of \(N_i \) and let \(\Gamma_i \) be a discrete subgroup of \(\text{Iso}^+(\mathbb{H}^n) \) such that \(N_i \cong \widetilde{N}_i/\Gamma_i \). Let also \(\varphi : \Gamma_1 \to \Gamma_2 \) be a group isomorphism satisfying the condition of Theorem 1.3.2. If \(f : N_1 \to N_2 \) is a continuous map, it is easily seen that
\(\varphi \) is induced by \(f \) if and only if \(f \) admits a continuous lift \(\tilde{f} : \tilde{N}_1 \to \tilde{N}_2 \) such that \(f \circ \gamma = \varphi(\gamma) \circ \tilde{f} \) for every \(\gamma \in \Gamma_1 \).

Lemma 2.2. There exists a homeomorphism \(\hat{\varphi} : \Lambda(\Gamma_1) \to \Lambda(\Gamma_2) \) such that \(\hat{\varphi}(\gamma(x)) = \varphi(\gamma)(\hat{\varphi}(x)) \) for any \(x \in \Lambda(\Gamma_1), \gamma \in \Gamma_1 \).

Proof: For any group \(G \), let us denote by \(\overline{G} \) the completion of \(G \) (see [1] for a definition). Recall that \(G \) acts in a natural way on \(\overline{G} \) as a group of homeomorphisms. It is proved in [1] that any group isomorphism \(\psi : G_1 \to G_2 \) induces a homeomorphism \(\psi : \overline{G}_1 \to \overline{G}_2 \) such that \(\psi(g(x)) = \psi(g)(\psi(x)) \). Moreover, if \(G \) is a geometrically finite subgroup of \(\text{Iso}^+(\mathbb{H}^n) \) then there exists a natural continuous surjection \(p_G : \overline{G} \to \Lambda(G) \) which is 2-to-1 onto points with rank-1 parabolic stabilizer, and injective everywhere else (this was shown in [1] under the assumption \(n = 3 \), but as it was observed in [13] the proof in [1] actually works in any dimension).

Now \(\varphi \) induces by hypothesis a bijective correspondence between rank-1 maximal parabolic subgroups of \(\Gamma_1 \) and rank-1 maximal parabolic subgroups of \(\Gamma_2 \). Using this fact it is easily seen that there exists a unique bijective map \(\hat{\varphi} : \Lambda(\Gamma_1) \to \Lambda(\Gamma_2) \) such that \(\hat{\varphi}(\gamma(x)) = \varphi(\gamma)(\hat{\varphi}(x)) \). Since \(\overline{\Gamma_1} \) and \(\Lambda(\Gamma_i) \) are Haussdorff compact spaces for \(i = 1, 2 \), the map \(\hat{\varphi} \) is a homeomorphism, and we are done. \(\square \)

Corollary 2.3. \(\partial N_1 = \emptyset \) if and only if \(\partial N_2 = \emptyset \).

Proof: Since \(\Gamma_i \) is geometrically finite, the boundary of \(N_i \) is empty if and only if \(\Lambda(\Gamma_i) \) is homeomorphic to \(S^{n-1} \). Lemma 2.2 provides a homeomorphism between \(\Lambda(\Gamma_1) \) and \(\Lambda(\Gamma_2) \), and the conclusion follows at once. \(\square \)

If \(\partial N_1 = \partial N_2 = \emptyset \), Mostow-Prasad’s rigidity theorem applies ensuring geometricity of \(\varphi \). Then from now on we shall assume that both \(N_1 \) and \(N_2 \) have non-empty boundary.

Lemma 2.4. The isomorphism \(\varphi \) satisfies the following conditions:

1. \(\varphi(H) \) is a peripheral subgroup of \(\Gamma_2 \) if and only if \(H \) is a peripheral subgroup of \(\Gamma_1 \); if so we also have \(\hat{\varphi} \) is a peripheral subgroup of \(\Gamma_2 \);

2. \(\varphi(\gamma) \) is a parabolic element of \(\Gamma_2 \) if and only if \(\gamma \) is a parabolic element of \(\Gamma_1 \).

Proof: Let \(\hat{\varphi} : \Lambda(\Gamma_1) \to \Lambda(\Gamma_2) \) be the homeomorphism constructed in Lemma 2.2 and let \(H = \text{stab}(\Delta) \) be a peripheral subgroup of \(\Gamma_1 \), where \(\Delta \) is a component of \(\Omega(\Gamma_1) \). By Lemma 2.1, \(\Lambda(\Gamma_1) \setminus \Lambda(H) = \Lambda(\Gamma_1) \setminus \partial \Delta \) is path connected, so \(\Lambda(\Gamma_2) \setminus \hat{\varphi}(\Lambda(H)) = \hat{\varphi}(\Lambda(\Gamma_1) \setminus \Lambda(H)) \) is also path connected, and \(\hat{\varphi}(\Lambda(H)) \) is equal to \(\Lambda(K) \) for some peripheral subgroup \(K \) of \(\Gamma_2 \). Let \(K = \text{stab}(\Delta') \), where \(\Delta' \) is a component of \(\Omega(\Gamma_2) \). Now let \(h \) be a loxodromic element of \(H \) with fixed points \(p_1, p_2 \) in \(\Lambda(H) \). Since \(\hat{\varphi} \)
is φ-equivariant, we have that $\varphi(h)$ is a loxodromic element of Γ_2 with fixed points $\hat{\varphi}(p_1), \hat{\varphi}(p_2)$ which lie in $\Lambda(K)$. Since the boundaries of two different components of $\Omega(\Gamma_2)$ can intersect at most in one point, it easily follows that $\varphi(h) \in \text{stab}(\Delta^i) = K$. Now H is generated by its loxodromic elements, so $\varphi(H)$ is contained in K. On the other hand, the same argument applied to φ^{-1} shows that $\varphi^{-1}(K)$ is contained in a peripheral subgroup of Γ_1, say H', with $H \subset H'$. Now Remark 1.3 implies that $H = H'$, so $\varphi(H) = K$ and point (1) is proved.

To prove point (2), we observe that the φ-equivariance of $\hat{\varphi}$ implies that for any $\gamma \in \Gamma_1$ the fixed points of $\varphi(\gamma)$ are exactly the images under $\hat{\varphi}$ of the fixed points of γ. This implies that the number of fixed points of $\varphi(\gamma)$ on $\Lambda(\Gamma_2)$ equals the number of fixed points of γ on $\Lambda(\Gamma_1)$, so $\varphi(\gamma)$ is parabolic if and only if γ is. □

3 The n-dimensional case, $n \geq 4$

The next proposition easily implies Theorem 1.2 under the assumption that the dimension of N_1 and N_2 is at least 4.

Proposition 3.1. Let $n \geq 4$. Then there exists a conformal map $f : \partial \mathbb{H}^n \to \partial \mathbb{H}^n$ such that $f \circ \gamma = \varphi(\gamma) \circ f$ for any $\gamma \in \Gamma_1$.

Proof: Let Δ^1 be a connected component of $\Omega(\Gamma_1)$, and H_1 be the stabilizer of Δ^1 in Γ_1. By Lemma 2.3 the group $H_2 = \varphi(H_1)$ is a peripheral subgroup of Γ_2. Let now Δ^2 be the H_2-invariant component of $\Omega(\Gamma_2)$, i.e. the unique component of $\Omega(\Gamma_2)$ whose boundary is equal to $\Lambda(H_2)$. By Lemma 2.3 (1), the homeomorphism constructed in Lemma 2.2 restricts to a homeomorphism $\hat{\varphi}|_{\partial \Delta^1} : \partial \Delta^1 \to \partial \Delta^2$ such that $\hat{\varphi}|_{\partial \Delta^1} \circ \gamma = \varphi(\gamma) \circ \hat{\varphi}|_{\partial \Delta^1}$ for every $\gamma \in H_1$. Let now S^1, S^2 be the hyperplanes of \mathbb{H}^n bounded respectively by $\partial \Delta^1$ and $\partial \Delta^2$. Then S^k/H_k is isometric to a component of the geodesic boundary of N_k for $k = 1, 2$, so it is a finite-volume complete hyperbolic $(n-1)$-manifold without boundary. Since $n \geq 4$, Mostow-Prasad’s rigidity theorem applies providing an isometry $g : S^1 \to S^2$ whose continuous extension to $\partial \Delta^1$ is equal to $\hat{\varphi}|_{\partial \Delta^1}$. Let now $p_k, k = 1, 2$ be the orthogonal projection of S^k onto Δ^k, i.e. the function which maps a point $q \in S^k$ to the point $p \in \Delta^k$ such that the geodesic ray (q, p) is orthogonal to S^k. The map $g' : \Delta^1 \to \Delta^2$ defined by $g' = p_2 \circ g \circ p_1^{-1}$ is conformal, and its continuous extension to $\partial \Delta^1$ is equal to $\hat{\varphi}|_{\partial \Delta^1}$.

By repeating the construction described above for each component of $\Omega(\Gamma_1)$, we can construct a conformal map $t : \Omega(\Gamma_1) \to \Omega(\Gamma_2)$. This map is a homeomorphism, since it admits a continuous inverse which can be constructed from the isomorphism $\varphi^{-1} : \Gamma_2 \to \Gamma_1$. We want now to show that for any $\gamma \in \Gamma_1$, we have $t \circ \gamma = \varphi(\gamma) \circ t$. Let Δ be a component of $\Omega(\Gamma_1)$. By the very definition of t it follows that $t(\Delta)$ is
the unique component of $\Omega(\Gamma_2)$ which is bounded by $\tilde{\varphi}(\partial \Delta)$, so

$$\partial(\varphi(\gamma)(t(\Delta))) = \varphi(\gamma)(\partial(t(\Delta))) = \varphi(\gamma)(\tilde{\varphi}(\partial \Delta)) = \tilde{\varphi}(\partial(\gamma(\Delta))) = \partial(t(\gamma(\Delta))).$$

This shows that both $t \circ \gamma$ and $\varphi(\gamma) \circ t$ map Δ onto the same component Δ' of $\Omega(\Gamma_2)$. Moreover, the continuous extensions of $t \circ \gamma$ and $\varphi(\gamma) \circ t$ to $\partial \Delta$ are respectively equal to $\tilde{\varphi} \circ \gamma$ and $\varphi(\gamma) \circ \tilde{\varphi}$, which are in turn equal to each other because of the φ-equivariance of $\tilde{\varphi}$. Being conformal, the maps $t \circ \gamma$ and $\varphi(\gamma) \circ t$ must then be equal on Δ, and this proves the required φ-equivariance of t.

Now let $f : \partial \mathbb{H}^n \to \partial \mathbb{H}^n$ be defined by $f(x) = t(x)$ if $x \in \Omega(\Gamma_1)$, and $f(x) = \tilde{\varphi}(x)$ if $x \in \Lambda(\Gamma_1)$. To conclude the proof we only have to observe that since f is φ-equivariant and conformal on $\Omega(\Gamma_1)$, a result of Tukia [12] ensures that f is a coformal map.

We can now conclude the proof of Theorem 1.2 under the assumption that the dimension of N_1 and N_2 is greater than 3. Let $\tilde{\psi}$ be the unique isometry of \mathbb{H}^n whose continuous extension to $\partial \mathbb{H}^n$ is equal to f. The φ-equivariance of f readily implies that $\tilde{\psi}(\gamma(x)) = \varphi(\gamma)(\tilde{\psi}(x))$ for every $x \in \mathbb{H}^n, \gamma \in \Gamma_1$. If we identify N_i with the convex core of the manifold \mathbb{H}^n/Γ_i for $i = 1, 2$, then $\tilde{\psi}$ induces an isometry $\psi : N_1 \to N_2$ with $\psi_* = \varphi$.

4 The 3-dimensional case

As briefly explained in the introduction, the 3-dimensional case needs a different approach.

Lemma 4.1. There exists a homeomorphism $g : N_1 \to N_2$ such that $\varphi = g_*$.

Proof: Let $M_i = (\mathbb{H}^3 \cup \Omega(\Gamma_i))/\Gamma_i$ for $i = 1, 2$. By Lemma 2.4 and Remark 1.5 we can apply Theorem 1 of [7] to φ, obtaining a homeomorphism $g' : M_1 \to M_2$ inducing φ (note that our definition of geometric is stronger than the one in [7]). Now N_i is canonically embedded in M_i in such a way that $M_i \setminus N_i$ is an open collar of ∂M_i. This implies that g' can be isotoped to a $g'' : M_1 \to M_2$ such that $g''(N_1) = N_2$ and $g = g''|_{N_1}$ is the required homeomorphism.

Remark 4.2. If N_1 and N_2 have compact geodesic boundary, then Lemma 4.1 can also be deduced by the following result of Johannson [3, 9]: Any homotopy equivalence between compact orientable boundary-irreducible anannular Haken 3-manifolds can be homotoped to a homeomorphism.
We can now conclude the proof of Theorem 1.2 in the case when N_1 and N_2 are 3-dimensional manifolds. Let $g : N_1 \to N_2$ be the homeomorphism constructed in Lemma 4.1, let $D(N_i)$ be the double of N_i for $i = 1, 2$ and let $D(g) : D(N_1) \to D(N_2)$ be the homeomorphism obtained by doubling g. By Mostow-Prasad’s rigidity theorem, $D(g)$ is homotopic to an isometry $h : D(N_1) \to D(N_2)$. Since $\partial N_2 = g(\partial N_1)$ and $h(\partial N_1)$ are embedded totally geodesic homotopic surfaces in N_2, we get that $h(\partial N_1) = \partial N_2$, so $h(N_1) = N_2$. Moreover, $h_* = g_*$ on $\pi_1(D(N_1))$, and the inclusion of $\pi_1(N_i)$ in $\pi_1(D(N_i))$ is injective for $i = 1, 2$, so $h_* = g_* = \varphi$ on Γ_1. In conclusion, we have shown that $h|_{N_1} : N_1 \to N_2$ is an isometry inducing φ, so φ is geometric.

Counterexamples in the non-compact boundary case We now show that the conclusions of Corollaries 1.3 and 1.4 are no longer true if we consider hyperbolic 3-manifolds with non-compact geodesic boundary. More precisely, we will prove the following:

Proposition 4.3. There exist hyperbolic 3-manifolds with non-compact geodesic boundary N_1, N_2 such that:

1. $\pi_1(N_1) \cong \pi_1(N_2)$ but N_1 is not homeomorphic to N_2;

2. $\text{Out}(\pi_1(N_i)) \not\cong \text{Iso}(N_i)$ for $i = 1, 2$.

Proof: We will give an explicit construction of N_1 and N_2. Let $O \subset \mathbb{H}^3$ be the regular ideal octahedron and let v_1, \ldots, v_6 be the vertices of O as shown in Fig. 4. We denote by F_{ijk} the face of O with vertices v_i, v_j, v_k. Let $g : F_{134} \to F_{156}$ be the unique orientation-reversing isometry such that $g(v_1) = v_6$, and $h_1, h_2 : F_{542} \to F_{362}$ be the unique orientation-reversing isometries such that $h_1(v_5) = v_6$, $h_2(v_5) = v_3$. We now define N_1 to be the manifold obtained by gluing O along g and f_1, and N_2 to be the manifold obtained by gluing O along g and f_2. Since all the dihedral angles of O are right, it is easily seen that the metric on O induces a complete finite-volume hyperbolic structure on the N_i’s such that the shadowed faces in Fig. 4 are glued along their egdes to give a non-compact totally geodesic boundary.

Now the natural compactification of N_i is homeomorphic to the genus-2 handlebody for $i = 1, 2$, so $\pi_1(N_1) \cong \pi_1(N_2) \cong \mathbb{Z} \ast \mathbb{Z}$. Moreover, the boundary of N_1 is homeomorphic to the 2-punctured torus, while the boundary of N_2 is homeomorphic to the 4-punctured sphere, so N_1 is not homeomorphic to N_2. This proves point (1).

In order to prove point (2), we only have to observe that the group of the outer isomorphisms of $\mathbb{Z} \ast \mathbb{Z}$ is of infinite order, while the group of isometries of any complete finite-volume hyperbolic n-manifold with geodesic boundary has a finite number of elements. \qed
Figure 1: The manifolds N_1, N_2 and N_3 are obtained by gluing in pairs the non-shadowed faces of the regular ideal octahedron along suitable isometries.

Example 4.4. Let N_3 be the hyperbolic manifold with non-compact geodesic boundary obtained by gluing the faces of O along h_2 and g', where $g': F_{134} \to F_{156}$ is the unique orientation-reversing isometry such that $g'(v_1) = v_5$. As before, the natural compactification of N_3 is the genus-2 handlebody, so $\pi(N_3) \cong \pi(N_2) \cong \mathbb{Z} \ast \mathbb{Z}$. Moreover, with some effort one could show that ∂N_2 is homeomorphic but not isometric to ∂N_3, and N_2 and N_3 are not homeomorphic to each other.

A more general construction We now briefly describe a different method of constructing homotopically-equivalent non-homeomorphic hyperbolic 3-manifolds with non-compact geodesic boundary. To this aim we first recall that Thurston’s hyperbolization theorem for Haken manifolds [11] gives necessary and sufficient topological conditions on a manifold to be hyperbolic with geodesic boundary:

Theorem 4.5. Let \overline{M} be a compact orientable manifold with non-empty boundary, let \mathcal{T} be the set of boundary tori of \overline{M} and let \mathcal{A} be a family of disjoint closed annuli in $\partial \overline{M} \setminus \mathcal{T}$. Then $M = \overline{M} \setminus (\mathcal{T} \cup \mathcal{A})$ is hyperbolic if and only if the pair $(\overline{M}, \mathcal{A})$ satisfies the following conditions:
the components of ∂M have negative Euler characteristic;

- $\overline{M} \setminus \mathcal{A}$ is boundary-irreducible and geometrically atoroidal;

- the only proper essential annuli contained in M are parallel in \overline{M} to the annuli in \mathcal{A}.

Using Theorem 4.5 we will now prove the following:

Proposition 4.6. Let N be a hyperbolic 3-manifold with non-empty geodesic boundary, and suppose that at least one component of ∂N is not a 3-punctured sphere. Then there exists a hyperbolic 3-manifold with geodesic boundary which is homotopically equivalent but not homeomorphic to N.

Proof: Let \overline{N} be the natural compactification of N obtained by adding to N a family \mathcal{A}_N of closed annuli and a family \mathcal{T}_N of tori. Let also $\{\alpha_1, \ldots, \alpha_k\}$ be a non-empty family of disjoint essential non-parallel loops on ∂N (such a family always exists because of the assumption on ∂N). Let \mathcal{A}' be the family of annuli in $\partial \overline{N} \setminus \mathcal{T}_N$ obtained by adding to \mathcal{A}_N closed regular neighbourhoods in ∂N of the α_i’s. It is easily seen that the pair $(\overline{N}, \mathcal{A}')$ satisfies the conditions of Theorem 4.5, so $N' = N \setminus (\bigcup_{i=1}^{k} \alpha_i)$ is hyperbolic. Of course N' is homotopically equivalent to N, but $\partial N'$ is not homeomorphic to ∂N, so a fortiori N and N' are not homeomorphic to each other. \hfill \Box

References

[1] W.J. Floyd, *Group completions and limit sets of Kleinian groups*, Invent. Math. **57** (1980), 205-218.

[2] R. Frigerio, C. Petronio, *Construction and recognition of hyperbolic manifolds with geodesic boundary*, math.GT/0109012, to appear in Trans. Amer. Math. Soc.

[3] K. Johannson, *Homotopy equivalences of 3-manifolds with boundaries*, Lecture Notes in Mathematics, 761. Springer, Berlin, 1979.

[4] L. Keen, B. Maskit, C. Series, *Geometric finiteness and uniqueness for Kleinian groups with circle packing limit sets*, J. Reine Angew. Math. **436** (1993), 209-219.

[5] S. Kojima, *Polyhedral decomposition of hyperbolic 3-manifolds with totally geodesic boundary*, “Aspects of low-dimensional manifolds, Kinokuniya, Tokyo”, Adv. Stud. Pure Math. **20** (1992), 93-112.
[6] S. Kojima, *Geometry of hyperbolic 3-manifolds with boundary*, Kodai Math. J. 17 (1994), 530-537.

[7] A. Marden, B. Maskit, *On the isomorphism theorem for Kleinian groups*, Invent. Math. 51 (1979), 9-14.

[8] J. Ratcliffe, *Foundations of hyperbolic manifolds*, Graduate Texts in Mathematics, 149. Springer-Verlag, New York, 1994.

[9] G.A. Swarup, *On a theorem of Johannson*, J. London Math. Soc. (2) 18 (1978), 560-562.

[10] W.P. Thurston, “The geometry and topology of 3-manifolds”, mimeographed notes, Princeton, 1979.

[11] W.P. Thurston, *Three-dimensional manifolds, Kleinian groups and hyperbolic geometry*, Bull. Amer. Math. Soc. (N.S.) 6 (1982), 357-381.

[12] P. Tukia, *On isomorphisms of geometrically finite Moebius groups*, Inst. Hautes Études Sci. Publ. Math. 61 (1985), 171-214.

[13] P. Tukia, *A remark on a paper by Floyd*, in “Holomorphic functions and moduli, Vol. II” (Berkeley, CA, 1986), 165–172, Math. Sci. Res. Inst. Publ., 11, Springer, New York, 1988.

Scuola Normale Superiore
Piazza dei Cavalieri 7
56127 Pisa, Italy
frigerio@sns.it