A Network Pharmacology Approach to Investigating the Mechanism of Sophorae Flavescentis Radix for the Treatment of Lung Cancer

Le Yu
Sichuan international studies university

Kangyao Yuan
Chongqing University of Science and Technology - New Campus: Chongqing University of Science and Technology

Jian Zhang
Sichuan International Studies University

Jingya Zhao
Sichuan International Studies University

Shuchen Pei (✉ peishuchen928@163.com)
Chongqing University of Science and Technology - New Campus: Chongqing University of Science and Technology
https://orcid.org/0000-0002-5750-8169

Research

Keywords: Sophorae Flavescentis Radix, Network pharmacology, Lung cancer, Molecular mechanism, Target, Ingredients

DOI: https://doi.org/10.21203/rs.3.rs-127029/v1

License: ☕️ 📧 This work is licensed under a Creative Commons Attribution 4.0 International License.
[Read Full License]
Abstract

In this study, the bioactive components and predictive targets of Sophorae Flavescentis Radix were investigated by network pharmacology analysis, so as to further elucidate its potential biological mechanism in treating lung cancer. The targets corresponding to lung cancer were obtained by OMIM and Genecards. By intersecting with the targets of Sophorae Flavescentis Radix and lung cancer, the Sophorae Flavescentis Radix-lung cancer targets were obtained. Protein-protein interaction network was constructed by an online database STRING and hub genes were screened by Cytoscape 3.7.0 software. ClusterProfiler package was used to analyze Gene ontology (GO) and KEGG enrichment of the targets in R. A total of 45 bioactive components were screened from Sophorae Flavescentis Radix, corresponding to 482 Sophorae Flavescentis Radix targets and 25019 lung cancer targets. According to the GO and KEGG enrichment analysis, Sophorae Flavescentis Radix played a therapeutic role in treating lung cancer via proteoglycans lung cancer, human cytomegalovirus infection, microRNAs in cancer, PI3K-Akt signaling pathway, etc. Seven hub genes (IL6, CASP3, EGFR, VEGFA, MYC, CCND1 and ESR1) were screened by degree algorithm. In a word, the results of this study may provide novel insights into the mechanisms of Sophorae Flavescentis Radix in treatment of lung cancer.

1. Introduction

Lung cancer, as one of the most common malignancies, is a leading cause of cancer death. The overall survival rate of patients with advanced lung cancer is unsatisfactory [1-2]. Lung cancer can histologically be classified into small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). Nearly 85% of lung cancers are NSCLC. SCLC has following characteristics: aggressive metastasis and rapid cellular growth [3]. Despite advances in modern medical techniques, such as surgical resection, chemotherapy and radiotherapy, the results after treatment remain unsatisfactory [4-6]. Therefore, it is essential to develop more efficient therapies for lung cancer.

Typical traditional Chinese medicine (TCM) therapies, with a long history in treating diseases, mainly include acupuncture and Chinese herbal medicine [7]. TCM, with the advantages of remarkable curative effect and few adverse reactions, has been applied in clinic in China for thousands of years and has become an integral part of the health care system. Experimental studies of TCM on pulmonary fibrosis and lung cancer have confirmed its efficacy and unique advantages [8-11]. Herbal medicines are most frequently used because they may reduce side effects of conventional therapies and improve the effectiveness of treatments [12-13]. Sophorae Flavescentis Radix, known as Kushen in Chinese, has been used to treat lung diseases for hundreds, especially lung cancer. However, its mechanism in treating lung cancer remains unclear. TCM has a complex biological molecular mechanism because of its multiple components. [14]. It's difficult to further explore TCM's molecular mechanism through animal or cellular studies, because it requires considerable human and material resources [15]. Network pharmacology is proposed on the basis of systems biology and network analysis. As a result of the rapid development of various bio-informatics, systems pharmacology has been applied to discover active ingredients or
components of TCM and their molecular mechanisms\cite{16-21}. Therefore, the study of TCM based on network pharmacology is valuable, which provides an approach for further investigating the effect of Sophorae Flavescentis Radix in lung cancer alleviation and recovery.

In this study, systems pharmacology was used to investigate the targets and mechanisms of Sophorae Flavescentis Radix in preventing and treating lung cancer. Then, the results concluded from the network pharmacology prediction were validated and the mechanism of Sophorae Flavescentis Radix in treating lung cancer was explored. Fig. 1 is a flowchart of the whole study design. The study is the first to explore the mechanism of Sophorae Flavescentis Radix in treating lung cancer by network pharmacology.

2. Materials And Methods

2.1. Data preparation

2.1.1. Collection of Sophorae Flavescentis Radix bioactive compounds

All the bioactive components of Sophorae Flavescentis Radix were collected from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP, http://tcmspw.com/tcmsp.php)\cite{22}. Bioactive ingredients meeting criteria OB \geq 30% and DL \geq 0.18 were selected after screening was carried out based on adsorption, distribution, metabolism and excretion (ADME)\cite{23}. In addition, XLGB contained some bioactive compounds that were excluded because their OB and DL values were lower than the set criteria.

2.1.2. Collection predicted targets of bioactive compounds

The targets related to the selected bioactive compounds were collected from TCMSP (http://tcmspw.com/tcmsp.php). UniProt (https://www.uniprot.org/) was used to validate the information of predicted targets, including name and gene ID\cite{24}.

2.1.3. Collection targets of lung cancer

The “lung cancer” was a keyword for retrieving lung cancer-related genes from the Online Mendelian Inheritance in Man (OMIM) (http://www.omim.org/)\cite{25} and GeneCards (http://www.genecards.org)\cite{26}. The lung cancer-related target information was confirmed by UniProt with “Homo sapiens” setting.

2.2. Construction of component-target-pathway-disease network
A bioactive component-predicted target network was constructed based on active components and predicted targets by Cytoscape 3.7.0 (https://cytoscape.org/). In the network, nodes represent genes, targets, proteins or molecules, and connections between nodes are interactions between them. The “degree” value of a node is indicated by the number of connections between nodes[^27], and the larger the value, the more likely the target is to become the key target of a compound.

2.3. Protein-protein interaction network construction

A Venn analysis was conducted by a website at the following URL (http://bioinformatics.psb.ugent.be/webtools/Venn/) to overlap the selected targets of Sophorae Flavescentis Radix and lung cancer-related targets to elucidate the potential mechanism of Sophorae Flavescentis Radix on lung cancer. The Sophorae Flavescentis Radix potential targets and lung cancer-related common targets obtained were used for the construction of PPI network by STRING database (https://string-db.org/). Cytoscape 3.7.0 can be used to visualize and analyze the interconnection network, and plug-in network analysis was used for analyzing the network topology properties[^28].

2.4. Gene ontology and pathway enrichment analyses

The GO database (https://metascape.org/)[^29], including biological process (BP), cellular component (CC) and molecular function (MF), can analyze potential biological molecular mechanisms. The KEGG database (https://metascape.org/)[^29] was for identifying biological functions and selecting targets. In this study, Cluster Profiler package in R (https://bioconductor.org/)[^30] was used for GO functional annotation and KEGG pathway analysis, and the significance threshold of adjusted p-value was < 0.05.

3. Results

3.1. Identify potential targets of Sophorae Flavescentis Radix

The TCMSP database was used to select bioactive compounds of Sophorae Flavescentis Radix. 45 kinds of bioactive compounds with OB ≥ 30% and DL ≥ 0.18 were screened out. Details of bioactive compounds are shown in Table 1. Through TCMSP, 482 targets consistent with the bioactive compounds of Sophorae Flavescentis Radix were screened. 25019 targets associated with lung cancer were screened by GeneCards and OMIM databases and duplicate targets were excluded. The obtained bioactive compounds and targets laid a foundation for the construction of the subsequent network.

3.2. Compound-compound target network
To clarify the relationship between the bioactive components of Sophora flavescens and their predicted targets, a component-target-pathway-disease network was constructed (as shown in Fig. 2). The network has 138 targets (45 bioactive compounds and 93 predicted targets) and 309 interaction edges. Through multi-compounds and multi-targets, the bioactive compounds of Sophorae Flavescentis Radix act on the systematic biological network system. Among them, quercetin and luteolin have the most potential targets, indicating that these highly bioactive compounds are important for treating lung cancer.

3.3. PPI network for Sophorae Flavescentis Radix on lung cancer

To explain the potential mechanism of Sophorae Flavescentis Radix in lung cancer treatment, the lung cancer-related targets and compound predicted targets were intersected. The PPI network (Fig. 3), with 93 nodes and 757 interaction edges, was constructed by introducing the obtained targets into STRING (PPI combined score > 0.7). In the network, genes interacted through known (from curated databases and determined experiments), predicted (gene neighborhood, fusions, and co-occurrence), and other (textmining, co-expression, and protein homology) interactions. Based on the degree principle, seven targets with the largest degree value, interleukin-6 (IL6), caspase-3 (CASP3), epidermal growth factor receptor (EGFR), vascular endothelial growth factor A (VEGFA), Myc proto-oncogene protein (MYC), estrogen receptor (ESR1) and G1/S-specific cyclin-D1 (CCND1) were selected as hub genes, as shown in Table 2.

Gene name	Uniprot ID	Target	Degree
IL6	P05231	Interleukin-6	51
CASP3	P42574	Caspase-3	50
EGFR	P00533	Epidermal growth factor receptor	49
VEGFA	P15692	Vascular endothelial growth factor A	49
MYC	P01106	Nyc proto-oncogene protein	48
ESR1	P03372	Estrogen receptor	46
CCND1	P24385	G1/S-specific cyclin-D1	45

3.4. Gene ontology (GO) and pathway analyses

GO and KEGG enrichment analysis of the targets was conducted by ClusterProfiler in R. Fig. 4 is the bubble chart of GO enrichment analysis linked to Sophorae Flavescentis Radix against lung cancer, and top 10 terms in BP, CC and MF were selected. The BP results indicated that these targets respond to
steroid hormones, xenobiotic stimulus, radiation, metal ion, oxygen levels, ketone, antibiotic, hypoxia, decreased oxygen levels, etc. CC consisted of membrane raft, membrane microdomain, membrane region, transcription factor complex, nuclear chromatin, vesicle lumen, secretory granule lumen, cytoplasmic vesicle lumen, RNA polymerase II transcription factor complex and cyclin-dependent protein kinase holoenzyme complex. The MF results indicated that these targets were generally associated with binding, nuclear receptor activity, and RNA polymerase II-specific.

In Fig.5, KEGG enrichment analysis showed that targets were principally associated with proteoglycans in cancer, human cytomegalovirus infection, microRNAs in cancer, PI3K-Akt signalling pathway, hepatitis B, kaposi sarcoma-associated herpesvirus infection, prostate cancer, hepatocellular carcinoma, and Epstein-Barr virus infection.

4. Discussion

Lung cancer is a main cause of cancer death[31]. Although the treatment of lung cancer has shifted from cytotoxic drugs to precise individualized therapies, such as small molecule tyrosine kinase inhibitors and immune checkpoint blockades, the 5-year survival rate is still low (approximately 15%) in the past 20 years[32]. Most patients with advanced lung cancer continue to develop after receiving anticancer treatment and eventually fail to escape from death due to ineffective treatment[33]. Sophorae Flavescentis Radix, developed by TCM, has been used in the treatment of parasites, viruses, bacteria, cancer, arrhythmia, but its mechanism is unclear. Therefore, a comprehensive understanding of its molecular mechanism is significant for preventing and treating lung cancer with Sophorae Flavescentis Radix.

45 bioactive components of Sophorae Flavescentis Radix were screened out, such as flavonoids, coumarins, alkaline, saponins. Compared with other bioactive compounds in Sophorae Flavescentis Radix, quercetin (OB = 46.43, DL = 0.28) and luteolin (OB = 36.16, DL = 0.25) have higher value degrees. Quercetin is a flavonoid compound easily found in daily diet. Previous studies indicated that quercetin has such effects as anti-inflammatory, anti-oxidation and anti-cancer[34-35]. According to some in vivo and in vitro experiments, quercetin has an anti-tumor effect by altering cell cycle progression, inhibiting cell proliferation, promoting apoptosis, inhibiting angiogenesis and metastasis progression and affecting autophagy[36-41]. Kun-ChiehChen et al. have demonstrated the attenuation mechanism of luteolin on epithelial–mesenchymal transition of A549 lung cancer cells induced by TGF-\(\beta\)\textsubscript{1}[42]. As the PPI network showed, the related targets of Sophorae Flavescentis Radix against lung cancer were composed of 93 nodes and 757 interaction edges. According to the results of GO enrichment analysis, the targets in the PPI network were mainly responded to steroid hormones, xenobiotic stimulus, radiation, metal ion, oxygen levels, ketone, antibiotic, hypoxia, decreased oxygen levels, etc. Jill M. Siegfried et al. suggested that lungs contain receptors for estrogen and progesterone and these hormones play a role in lung development, inflammation and canceration[43]. The KEGG enrichment analysis suggested that proteoglycans in cancer, human cytomegalovirus infection, microRNAs in cancer, PI3K-Akt signaling...
pathway, hepatitis B, kaposi sarcoma-associated herpesvirus infection, prostate cancer, hepatocellular carcinoma, and Epstein-Barr virus infection were the key signaling pathways related to lung cancer. Sun Jia suggested that proteoglycan is a gene related to tumor metastasis. Proteoglycan may maintain or inhibit cell growth, affect cell adhesion and regulate the mutual interaction between cell and matrix [44]. Human cytomegalovirus components are often found in tumors, and they rely on the recognition and killing of cancer cells.

Through the PPI network analysis of Sophora flavescens for lung cancer, 7 genes with the highest degree values were selected as the hub genes, namely IL6, CASP3, EGFR, VEGFA, MYC, CCND1 and ESR1. Interleukin-6 (IL-6) gene polymorphism has been demonstrated to be related to an increased risk of lung cancer [45]. Shin YupLee et al. suggested that caspase-3 (CASP3) is an important regulator and executor in apoptosis pathway and plays an essential role in the development and progression of lung cancer [46]. Several studies have demonstrated that EGFR and VEGFA contribute to increased risk of lung cancer [47-48].

5. Conclusions

According to this study, Sophorae Flavescentis Radix can be used to treat lung cancer because of its mechanism involving such hub genes as IL6, CASP3, EGFR, VEGFA, MYC, CCND1 and ESR1. The mechanism of Sophorae Flavescentis Radix in treating lung cancer needs to be proved by further in vivo and in vitro studies.

6. Declarations

Consent for publication

Written informed consent for publication was obtained from all participants.

Availability of data and materials

The datasets used or analysed during the current study are available from the corresponding author on reasonable request.

Conflicts of Interest:

The authors declare no conflict of interest.

Funding:
This research was funded by the National Natural Science Foundation of Chongqing, NO. cstc2019jcyj-msxmX0083 and Scientific and Technological Research Program of Chongqing Municipal Education Commission, NO. KJQN201901501.

Authors' contributions

L.Y. and S.P. conceived of the project; L.Y., K.Y., and J.Z. conducted all experimental work and collected data; L.Y. and S.P. analysed and discussed the results; L.Y., J.Z. and K.L. drafted part of the manuscript; S.P. coordinated the study and drafted the manuscript in its present form.

References

1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019, 69(1), 7-34.
2. Ferlay J, Colombet M, Soerjomataram I, Dyba T, Randi G, Bettio M, et al. Cancer incidence and mortality patterns in Europe: Estimates for 40 countries and 25 major cancers in 2018. Eur J Cancer. 2018, 103, 356-387.
3. Mccloskey P, Balduyck B, Schil P E V, et al. Radical treatment of non-small cell lung cancer during the last 5 years. European journal of cancer, 2013, 49(7), 1555-1564.
4. F. Wiggins, L. Runo, K. Kelnar, et al. Development of a lung cancer therapeutic based on the tumor suppressor microRNA-34. Cancer Research, 2010, 70(14), 5923-5930.
5. Ramalingam S S, Owonikoko T K, Khuri F R. Lung cancer: New biological insights and recent therapeutic advances. CA: A Cancer Journal for Clinicians, 2011, 61(2), 91-112.
6. J.Y. Chang, S. Senan, M.A. Paul, et al. Stereotactic ablative radiotherapy versus lobectomy for operable stage I non-small-cell lung cancer: a pooled analysis of two randomised trials. The lancet oncology, 2015, 16(6), 630-637.
7. Li X, Yang G, Li X, Zhang Y, Yang J, Chang J, et al. Traditional Chinese medicine in cancer care: a review of controlled clinical studies published in chinese. PloS one. 2013, 8(4), e60338.
8. Honggang Zheng. A Prospective Cohort Study of TCM integrated Scheme in Treating Non-small Cell Lung Cancer Patients. Journal of Acupuncture and Meridian Studies, 2020, 13(2), 69.
9. Zhongliang Liu, Weirong Zhu, Wenchao Zhou, et al. Traditional Chinese medicinal herbs combined with epidermal growth factor receptor tyrosine kinase inhibitor for advanced non-small cell lung cancer: a systematic review and meta-analysis. Journal of Integrative Medicine, 2014, 12(4), 346-358.
10. Goulnar Kasymjanova, Anh-Thi Tran, Victor Cohen, et al. The use of a standardized Chinese herbal formula in patients with advanced lung cancer: a feasibility study. Journal of Integrative Medicine, 2018, 16(6), 390-395.
11. Varuni Colamba Pathiranage, Ira Thabrew, Sameera R. Samarakoon. Evaluation of anticancer effects of a pharmaceutically viable extract of a traditional polyherbal mixture against non-small-cell lung
12. Ernst E. Complementary and alternative medicine (CAM) and cancer: the kind face of complementary medicine. *International journal of surgery*. 2009, 7(6), 499-500.

13. Wang W, Cai Y, Zhang G, Liu Y, Sui H, Park K, et al. Sophoridine-loaded PLGA microspheres for lung targeting: preparation, in vitro, and in vivo evaluation. *Drug delivery*. 2016, 23(9), 3674-80.

14. Eisenhardt, S., Fleckenstein, J. Traditional Chinese medicine valuably augments therapeutic options in the treatment of climacteric syndrome. *Gynecol. Obstet*, 2016, 294, 193-200.

15. Liu, S.H., Chuang, W.C., Lam, W., Jiang, Z., Cheng, Y.C.,. Safety Surveillance of Traditional Chinese Medicine: Current and Future. Drug Safety. 2015, 38, 117–128.

16. Shi, Y., Liu, X.Y., Jiang, Y.P., Zhang, J.B., Zhang, Q.Y., Wang, N.N., Xin, H.L. Research progress on Traditional Chinese Medicine syndromes of diabetes mellitus. *Pharmacother*. 2020, 121, 109565.

17. Danqi Li, Da Liu, Dandan Yue, et al. Network pharmacology and RNA sequencing studies on triterpenoid saponins from Bupleurum chinense for the treatment of breast cancer. *RSC Adv.*, 2019, 9, 41088-41098. *Prod. Rep.*, 2015, 32, 1249-1266

18. Milla Kibble, Niina Saarinen, Jing Tang, et al. Network pharmacology applications to map the unexplored target space and therapeutic potential of natural products. Network pharmacology applications to map the unexplored target space and therapeutic potential of natural products. *Natural Product Reports*, 2015, 32(8), 1249-1266.

19. Aihua Zhang, Heng Fang, Yangyang Wang, et al. Discovery and verification of the potential targets from bioactive molecules by network pharmacology-based target prediction combined with high-throughput metabolomics. *RSC Adv.*, 2017, 7, 51069-51078.

20. Jing Tan, Junli Liu, Han Wang, Ying Zhang, et al. Identification of blood-activating components from Xueshuan Xinmaining Tablet based on the spectrum–effect relationship and network pharmacology analysis. *RSC Adv.*, 2020, 10, 9587-9600.

21. J. Xu, L. M. Chen, Z. Y. Wei, et al. Identifying the molecular targets of Salvia miltiorrhiza (SM) in ox-LDL induced macrophage-derived foam cells based on the integration of metabolomics and network pharmacology. *RSC Adv.*, 2018, 8, 3760-3767.

22. Jinlong Ru, Peng Li, Jinan Wang, et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. *J Cheminformatics*. 2014, 6(1), 13.

23. Bocci G, Carosati E, Vayer P, et al. ADME-Space: a new tool for medicinal chemists to explore ADME properties. *Scientific Reports*, 2017, 7(1),

24. The UniProt Consortium. UniProt: the universal protein knowledgebase. *Nucleic Acids Research*, 2017, 45, D158-D169.

25. Amberger, J.S., Bocchini, C.A., Schiettecatte, F., Scott, A.F., Hamosh, A., OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders. *Nucleic Acids Res*. 2015, 43, D789–D
26. Stelzer G, Rosen N, Plaschkes I, et al. The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses. *Current Protocols in Bioinformatics*, 2016, 54(1), 30.1-1.30.33.

27. Simin Tang Huan Jing Zhenxing Huang et al. Identification of key candidate genes in neuropathic pain by integrated bioinformatic analysis. *Journal of Cellular Biochemistry*, 2019, 121(2).

28. Munir, N., Cheng, C., Xia, C., Xu, X., Nawaz, M.A., Iftikhar, J., Chen, Y., Lin, Y., Lai, Z., RNA-Seq analysis reveals an essential role of tyrosine metabolism pathway in response to root-rot infection in Gerbera hybrid. *PLoS One*, 2019, 14, e0223519.

29. Yingyao Zhou, Bin Zhou, Lars Pache. Metascape Provides a Biologist-Oriented Resource for the Analysis of Systems-Level Datasets. *Nat Commun*, 2019, 10(1), 1523.

30. Yu G, Wang L G, Han Y, et al. clusterProfiler: an R Package for Comparing Biological Themes Among Gene Clusters. *Omics A Journal of Integrative Biology*, 2012, 16(5), 284-287.

31. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A., and Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. *CA Cancer J. Clin*. 2018, 68, 394–424.

32. Herbst, R.S., Morgensztern, D., and Boshoff, C. The biology and management of non-small cell lung cancer. *Nature*, 2018, 553, 446–454.

33. Ugo T, Germana C, Elvira P. Lung Cancers: Molecular Characterization, Clonal Heterogeneity and Evolution, and Cancer Stem Cells. *Cancers*, 2018, 10(8),

34. J. Vargas, R. Burd, Hormesis and synergy: pathways and mechanisms of quercetin in cancer prevention and management, *Nutr. Rev.* 2010, 68, 418–428.

35. Li, J. Yao, C. Han, J. Yang, M.T. Chaudhry, S. Wang, H. Liu, Y. Yin, Quercetin, inflammation and immunity, *Nutrients*, 2016, 8, 167.

36. Zhang, M. Dong, X. Guangyong, T. Yuan, H. Tang, Y. Wang, Metabolomics reveals that dietary ferulic acid and quercetin modulate metabolic homeostasis in rats, *J. Agric. Food Chem*., 2018, 66, 1723–1731.

37. Andres, S. Pevny, R. Ziegenhagen, N. Bakhiya, B. Schafer, K.I. Hirsch-Ernst, A. Lampen, Safety aspects of the use of quercetin as a dietary supplement, *Mol. Nutr. Food Res.* 2018, 62(1).

38. Kawabata, R. Mukai, A. Ishisaka, Quercetin and related polyphenols: new insights and implications for their bioactivity and bioavailability, *Food Funct.* 2015, 6, 1399–1417.

39. Santangelo, A. Silvestrini, C. Mancuso, Ginsenosides, catechins, quercetin and gut microbiota: current evidence of challenging interactions, *Food Chem. Toxical.* 2019, 123, 42–49.

40. Xu, H.B. Chen, S.L. Li, Understanding the molecular mechanisms of the interplay between herbal medicines and gut microbiota, *Med. Res. Rev.* 2017, 37, 1140–1185.

41. D’Andrea, Quercetin: A flavonol with multifaceted therapeutic applications? *Fitoterapia*, 2015, 106, 256–271.

42. Chen K C, Chen C Y, Lin C J, et al. Luteolin attenuates TGF-β1-induced epithelial–mesenchymal transition of lung cancer cells by interfering in the PI3K/Akt–NF-κB–Snail pathway. *Life Sciences*,
43. Siegfried J M, Stabile L P. Estrogenic Steroid Hormones in Lung Cancer. *Seminars in Oncology*, 2014, 41(1), 5-16.

44. Sun Jia, Jiang Xia-feng, Hui Fu-xin. Relationship between multifunctional proteglycan versican and metastasis of lung cancer. *Journal of International Oncology*, 2010, 11, 855-858.

45. Yanru Chen, Na Zhang, Xiaojun Wang. Association between rs1800796 polymorphism in the IL-6 gene and the risk of lung cancer: An updated meta-analysis. *Meta Gene*, 2020, 25, 100729.

46. Shin Yup Lee, Yi Young Choi, Jin Eun Choi, et al. Polymorphisms in the Caspase Genes and the Risk of Lung Cancer. *Journal of Thoracic Oncology*, 2010, 5(8), 1152-1158.

47. Won-Il Choi, Jihyeon Jeong, Choong Won Lee. Association between EGFR mutation and ageing, history of pneumonia and gastroesophageal reflux disease among patients with advanced lung cancer. *European Journal of Cancer*, 2019, 122, 101-108.

48. Calabuig Fariñas, E. Jantus-Lewintre, M. Usó, et al. 1189P: Prognostic Impact of Vegfa in Resectable Non-Small-Cell Lung Cancer. *Annals of Oncology*, 2014, 25(4), 414.

Tables

Due to technical limitations, table 1 is only available as a download in the Supplemental Files section.

Figures
Figure 1

Flow chart of the pharmacology-based study of Sophorae Flavescentis Radix on lung cancer.
Figure 4

Bubble charts of Gene ontology enrichment analyses linked to Sophorae Flavescentis Radix against lung cancer.
Figure 5

Bubble charts of KEGG enrichment analyses linked to Sophorae Flavescentis Radix against lung cancer.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- table1.docx