A Note on the Gessel Numbers

Jovan Mikić
University of Banja Luka
Faculty of Technology
Bosnia and Herzegovina
jovan.mikic@tf.unibl.org

Abstract

The Gessel number $P(n, r)$ represents the number of lattice paths in a plane with unit horizontal and vertical steps from $(0, 0)$ to $(n + r, n + r - 1)$ that never touch any of the points from the set $\{(x, x) \in \mathbb{Z}^2 : x \geq r\}$. In this paper, we use combinatorial arguments to derive a recurrence relation between $P(n, r)$ and $P(n - 1, r + 1)$. Also, we give a new proof for a well-known closed formula for $P(n, r)$. Moreover, a new combinatorial interpretation for the Gessel numbers is presented.

Keywords: Gessel numbers, Catalan numbers, central binomial coefficient, lattice paths.

2020 Mathematics Subject Classification: Primary 05A10; Secondary 11B65.

1 Introduction

Let n be a non-negative integer and let r be a positive integer. The Gessel number $P(n, r)$ counts all lattice paths [1, p. 191] in plane with $(1, 0)$ and $(0, 1)$ steps from $(0, 0)$ to $(n + r, n + r - 1)$ that never touch any of the points from the set $\{(x, x) \in \mathbb{Z}^2 : x \geq r\}$.

By using a combinatorial argument and an instance of the Pfaff-Saalschütz theorem, Gessel proved that (see [1, p. 191])

$$P(n, r) = \frac{r}{2(n + r)} \binom{2n}{n} \binom{2r}{r}.$$ (1)

Let $C_n = \frac{1}{n+1} \binom{2n}{n}$ denote the nth Catalan number. The Catalan numbers are well studied in the literature (e.g. see [3, 7]) and there are many counting problems in combinatorics whose solutions are given by the Catalan numbers. For example, the Catalan number C_n is the number of all paths in a plane from $(0, 0)$ to (n, n) with $(1, 0)$ and $(0, 1)$ steps such that they never rise above the line $y = x$ (see [3, Example 9.1], [6, Problem 158], and [4, Eq. (10.11)]).

By setting $r = 1$ in Equation (1), it follows that $P(n, 1) = C_n$. Recently, it is shown [5, Cor. 4] that the sum $\sum_{k=0}^{2n} (-1)^k \binom{2n}{k}^m C_k C_{2n-k}$ is divisible by $\binom{2n}{n}$ for all non-negative integers n and for all positive integers m. The Gessel numbers play an interesting role in this proof [5, Eq. (68)].
It is known [1, p. 191] that, for a fixed positive integer r, the smallest positive integer K, such that $\frac{K}{n+r} \binom{2n}{n}$ is an integer for every n is $\frac{r}{2} \binom{2r}{r}$. Guo gave a generalization of the Gessel numbers [2, Eq. (1.10)].

In this paper, we study the Gessel numbers by establishing a close relationship between the Gessel and the Catalan numbers. After we establish such a relationship, we present a new combinatorial interpretation for the Gessel Numbers. This combinatorial interpretation is contained in our main result, Theorem 6.

2 Main results

Our first result expresses $P(n, r)$ in terms of the Catalan numbers.

Proposition 1. Let n be a non-negative integer and let r be a positive integer. Then

$$P(n, r) = \sum_{k=0}^{r-1} \binom{2k}{k} C_{n+r-k-1}.$$ \hspace{1cm} (2)

Proof. Let k be a non-negative integer, and let p be a path from $(0, 0)$ to $(n+r, n+r-1)$, with $(1, 0)$ and $(0, 1)$ steps, that never touches any of the points from the set $\{(x, x) \in \mathbb{Z}^2 : x \geq r\}$. Assume that the last point point of intersection of p and the line $y = x$, when taking the path p from left to right, is the point (k, k), where $0 \leq k \leq r-1$.

The number of “permitted” paths from $(0, 0)$ to (k, k) is $\binom{2k}{k}$, since every such path does not contain “forbidden” points. Every such path passes through the point $(k+1, k)$, as (k, k) is the last intersection point between this path and the line $y = x$. Note that the segment that connects points $(k+1, k)$ and $(n+r, n+r-1)$ is parallel with the line $y = x$.

The number of “permitted” paths from $(k+1, k)$ to $(n+r, n+r-1)$ is the same as the number of all paths from $(k+1, k)$ to $(n+r, n+r-1)$ with $(1, 0)$ and $(0, 1)$ steps that never rise above the line $y = x - 1$. It follows that there are $C_{n+r-k-1}$ such paths.

Therefore, the number of all paths whose last intersection with the line $y = x$ is the point (k, k) is $\binom{2k}{k} C_{n+r-k-1}$. Since k takes values from 0 to $r-1$, we obtain Equation (2). \hfill \Box

We use the previous proposition to obtain a recurrence relation between $P(n-1, r+1)$ and $P(n, r)$.

Theorem 2. Let n and r be positive integers. Then

$$P(n-1, r+1) - P(n, r) = \binom{2r}{r} C_{n-1}.$$ \hspace{1cm} (3)

Proof. The number $P(n-1, r+1)$ counts all paths from $(0, 0)$ to $(n+r, n+r-1)$, with $(1, 0)$ and $(0, 1)$ steps, that never touch any of the points from the set $\{(x, x) \in \mathbb{Z}^2 : x \geq r+1\}$. 2
Therefore, the number $P(n-1, r+1) - P(n, r)$ counts all paths from $(0,0)$ to $(n+r, n+r-1)$, with $(1,0)$ and $(0,1)$ steps, whose last point of intersection with the line $y = x$ is the point (r, r).

The number of “permitted” paths from $(0,0)$ to (r, r) is $\binom{2r}{r}$, since every such path does not contain “forbidden” points.

After (r, r), every such path must pass through $(r+1, r)$. Note that the segment that connects points $(r+1, r)$ and $(n+r, n+r-1)$ is parallel with the line $y = x$. The number of “permitted” paths from $(r+1, r)$ to $(n+r, n+r-1)$ is the same as the number of all paths from $(r+1, r)$ to $(n+r, n+r-1)$, with $(1,0)$ and $(0,1)$ steps, that never rise above the line $y = x - 1$. By a well-known [4, Eq. (10.11)] property of the Catalan numbers, it follows that there are C_{n-1} such paths.

Therefore, the number of all paths whose last point of intersection with the line $y = x$ is the point (r, r) is $(\binom{2r}{r}) C_{n-1}$.

By using recurrence relation (3) and induction on n, we give a proof of Equation (1).

Let $S(n, r)$ denote $\frac{r}{2(n+r)} \binom{2n}{n} \binom{2r}{r}$. We will show that $P(n, r) = S(n, r)$ for all non-negative integers n and for all positive integers r. We use induction on n.

For $n = 0$, since the “final” point $(r, r - 1)$ is below the first “forbidden” point (r, r), the Gessel number $P(0, r)$ counts all paths in a plane from $(0,0)$ to $(r, r - 1)$ with $(1,0)$ and $(0,1)$ steps without any restrictions. Hence, $P(0, r) = \binom{2r-1}{r}$ or $P(0, r) = \frac{1}{2} \binom{2r}{r}$.

Therefore, it follows that $P(0, r) = S(0, r)$ for all positive integers r.

Let us assume that $P(n-1, r) = S(n-1, r)$ for some positive integer n and for all positive integers r.

We use a well-known [3, p. 26] recurrence relation for the central binomial coefficient:

$$\binom{2(r+1)}{r+1} = \frac{2(2r+1)}{r+1} \binom{2r}{r}.$$ (4)

Then we have that the following equalities hold:

$$P(n, r) = P(n-1, r+1) - \binom{2r}{r} C_{n-1} \quad \text{(by Equation (3))}$$

$$= S(n-1, r+1) - \binom{2r}{r} C_{n-1} \quad \text{(by the induction hypothesis)}$$

$$= \frac{r+1}{2(n+r)} \binom{2(n-1)}{n-1} \binom{2(r+1)}{r+1} - \binom{2r}{r} C_{n-1}$$

$$= \frac{r+1}{2(n+r)} \binom{2(n-1)}{n-1} 2(2r+1) \binom{2r}{r} - \binom{2r}{r} C_{n-1} \quad \text{(by Equation (4))}$$
This completes our proof by induction.

Definition 3. Let n be a non-negative integer and let r be a positive integer. The number $Q(n, r)$ counts all lattice paths in a plane with $(1, 0)$ and $(0, 1)$ steps from $(0, 0)$ to $(n+r, n+r-1)$ that never touch any of the points from the set $\{(x, x) \in \mathbb{Z}^2 : 1 \leq x \leq r\}$.

Proposition 4. Let n and r be positive integers. Then

$$Q(n, r) = \sum_{k=1}^{n} C_{r+k-1} \binom{2(n-k)}{n-k}. \quad (5)$$

Proof. Let k be a non-negative integer, and let p be a path from $(0, 0)$ to $(n+r, n+r-1)$, with $(1, 0)$ and $(0, 1)$ steps, that never touches any of the points from the set $\{(x, x) \in \mathbb{Z}^2 : 1 \leq x \leq r\}$. There are two cases to consider.

The first case: A path p intersects the line $y = x$ only at the point $(0, 0)$. In this case, a path p must begin with a $(1, 0)$ step. Note that the segment that connects the points $(1, 0)$ and $(n+r, n+r-1)$ is parallel with the line $y = x$. The number of “permitted” paths from $(1, 0)$ to $(n+r, n+r-1)$ is the same as the number of all paths from $(1, 0)$ to $(n+r, n+r-1)$, with $(1, 0)$ and $(0, 1)$ steps, that never rise above the line $y = x - 1$. It follows that there are C_{n+r-1} such paths.

The second case: A path p intersects the line $y = x$ in at least two points. Let $(r+k, r+k)$ be the first point of intersection between p and the line $y = x$ after the point $(0, 0)$. Here, $1 \leq k \leq n-1$. Note that, in this case, $n \geq 2$.

Let m be a positive integer. It is readily verified that the number of all paths in a plane from $(0, 0)$ to (m, m), with $(1, 0)$ and $(0, 1)$ steps, that intersect the line $y = x$ only at points $(0, 0)$ and (m, m) is $2C_{m-1}$. Therefore, the number of “permitted” paths from $(0, 0)$ to $(r+k, r+k)$ is $2C_{r+k-1}$.

4
The number of “permitted” paths from \((r+k, r+k)\) to \((n+r, n+r-1)\) is the same as the number of all paths from \((r+k, r+k)\) to \((n+r, n+r-1)\) with \((1,0)\) and \((0,1)\) steps, since every such path does not contain “forbidden” points. It follows that there are
\[
\frac{1}{2} \binom{2(n-k)}{n-k}
\] such paths (see [4, Equation (10.3)]).

Therefore, the number of all paths that intersect the line \(y = x\) at the point \((r+k, r+k)\) for the first time after the point \((0,0)\) is \(C_{r+k-1}(2(n-k))\). Since \(k\) can take values from 1 to \(n-1\), it follows that there are
\[
\sum_{k=1}^{n-1} C_{r+k-1}\left(\frac{2(n-k)}{n-k}\right)
\] such paths.

Putting ever together, it holds:
\[
Q(n,r) = C_{n+r-1} + \sum_{k=1}^{n-1} C_{r+k-1}\left(\frac{2(n-k)}{n-k}\right)
\]
\[
= \sum_{k=1}^{n} C_{r+k-1}\left(\frac{2(n-k)}{n-k}\right).
\]

\(\Box\)

Remark 5. Note that, for \(n = 0\), the number \(Q(0,r)\) is equal to \(C_{r-1}\).

We now use Proposition 1 and Proposition 4 to prove our main result that gives us a new combinatorial interpretation for the Gessel numbers.

Theorem 6. Let \(n\) and \(r\) be positive integers. Then
\[
P(n,r) = Q(r,n).
\] (6)

Proof. By setting \(n := r\) and \(r := n\) in Proposition 4, it follows that
\[
Q(r, n) = \sum_{k=1}^{r} C_{n+k-1}\left(\frac{2(r-k)}{r-k}\right).
\] (7)

By substituting \(t\) for \(r-k\), it follows that Equation (7) becomes
\[
Q(r, n) = \sum_{t=0}^{r-1} C_{n+r-t-1}\left(\frac{2t}{t}\right).
\] (8)

By using Proposition 1 and Equation (8), it follows that \(Q(r, n) = P(n,r)\). \(\Box\)

Theorem 6 gives a new combinatorial interpretation for Gessel numbers. By Theorem 6, the Gessel number \(P(n,r)\) is the number of all lattice paths in a plane with \((1,0)\) and \((0,1)\) steps from \((0,0)\) to \((n+r, n+r-1)\) that never touch any of the points from the set \(\{(x,x) \in \mathbb{Z}^2 : 1 \leq x \leq n\}\).
3 Concluding remarks

We end this paper with some formulas for the Gessel numbers. Let \(n \) be a non-negative integer, and let \(r \) be a positive integer. By Equation (1), Theorem 6, and Remark 5, it follows that

\[
Q(n, r) = \begin{cases}
C_{r-1}, & \text{if } n = 0 \\
\frac{n}{2(n+r)} \binom{2n}{n} \binom{2r}{r}, & \text{if } n > 0.
\end{cases}
\]

(9)

Let \(n \) and \(r \) be positive integers. Then the following formulas are true:

\[
\frac{1}{2} \binom{2n+2r}{n+r} - P(n, r) = \sum_{k=1}^{n} \binom{2(r+k-1)}{r+k-1} C_{n-k},
\]

(10)

\[
\frac{1}{2} \binom{2n+2r}{n+r} - Q(n, r) = \sum_{l=1}^{r} \binom{2(n+r-l)}{n+r-l} C_{l-1}.
\]

(11)

The left side of Equation (10) represents the number of all lattice paths in a plane with \((1,0)\) and \((0,1)\) steps from \((0,0)\) to \((n+r, n+r-1)\) whose intersection with the set \(\{(x,x) \in \mathbb{Z}^2 : r \leq x \leq n+r-1\}\) is non-empty. It is readily verified that there are \(\binom{2(r+k-1)}{r+k-1} C_{n-k}\) lattice paths in a plane with \((1,0)\) and \((0,1)\) steps from \((0,0)\) to \((n+r, n+r-1)\) whose last point of intersection with the set \(\{(x,x) \in \mathbb{Z}^2 : r \leq x \leq n+r-1\}\) is the point \((r+k-1, r+k-1)\). Here, \(1 \leq k \leq n\).

Similarly, the left side of Equation (11) represents the number of all lattice paths in a plane with \((1,0)\) and \((0,1)\) steps from \((0,0)\) to \((n+r, n+r-1)\) whose intersection with the set \(\{(x,x) \in \mathbb{Z}^2 : 1 \leq x \leq r\}\) is non-empty. It is readily verified that there are \(\binom{2(n+r-l)}{n+r-l} C_{l-1}\) lattice paths in a plane with \((1,0)\) and \((0,1)\) steps from \((0,0)\) to \((n+r, n+r-1)\) whose first point of intersection with the set \(\{(x,x) \in \mathbb{Z}^2 : 1 \leq x \leq r\}\), after the point \((0,0)\), is the point \((l,l)\). Here, \(1 \leq l \leq r\).

Note that, by using Equations (10) and (11), one can give another proof of Theorem 6.

Remark 7. By using a combinatorial argument, Gessel proved [1, Equation (39)] the following formula:

\[
\sum_{k=0}^{n} P(k, r) \binom{2n-2k}{n-k} = \frac{1}{2} \binom{2n+2r}{n+r},
\]

(12)

where \(n \) is a non-negative integer and \(r \) is a positive integer. It is known that Equation (12) uniquely determines the numbers \(P(n, r) \). Gessel used Equation (12) in order to prove Equation (1).

Let \(n \) and \(r \) be positive integers. By using Equation (12) and Theorem 6, it can be proved that

\[
\sum_{k=0}^{r-1} \binom{2k}{k} Q(n, r-k) = \frac{1}{2} \binom{2n+2r}{n+r} - \frac{1}{2} \binom{2n}{n} \binom{2r}{r}.
\]

(13)

Note that, for positive integers \(n \), Equation (13) uniquely determines the numbers \(Q(n, r) \).
Acknowledgments

I want to thank professor Duško Bogdanić for valuable comments which helped to improve the article.

References

[1] I. M. Gessel, Super ballot numbers, *J. Symbolic Comput.* 14 (1992), 179–194.

[2] V. J. W. Guo, Proof of two divisibility properties of binomial coefficients conjectured by Z. W. Sun, *Electron. J. Combin.* 21 (2014), # P54.

[3] T. Koshy, *Catalan numbers with applications*, Oxford University Press, 2009.

[4] C. Krattenthaler, Lattice Path Enumeration, arxiv.org/pdf/1503.05930.pdf.

[5] J. Mikić, On a certain sums divisible by the central binomial coefficient, *J. Integer Sequences* 23 (2020), Article 20.1.6.

[6] R. P. Stanley, Bijective proof problems, 2009.

[7] R. P. Stanley, *Catalan Numbers*, Cambridge University Press, Cambridge, 2015.