Er-doped Si is a promising candidate for quantum information applications due to its telecom wavelength optical transition and its compatibility with Si nanofabrication technologies. Recent spectroscopic studies based on photoluminescence excitation have shown multiple well-defined lattice sites that Er occupies in Si. Here we report the first measurement of the Zeeman and hyperfine interactions of a single 167Er$^{3+}$ ion in Si. All the obtained tensors are highly anisotropic with the largest value principal axes aligning in nearly the same direction, and the trace of the lowest crystal field level g-tensor is 17.78 ± 0.40. The results indicate that this specific Er site is likely to be a distorted cubic site that exhibits monoclinic (C$_{1}$) symmetry. Finally, zero first-order-Zeeman (ZEFOZ) fields are identified for this site and could be used to reduce decoherence of hyperfine spin states in future experiments.

I. INTRODUCTION

Er$^{3+}$ ions have been widely used in optical devices and networks thanks to the $^{4}I_{15/2}$$-^{4}I_{13/2}$ optical transition at telecom wavelength. Recent studies on Er$^{3+}$ ions have demonstrated new prospects for quantum optics and quantum computing with direct optical access to telecom fibre networks and Si photonic cavities. Er$^{3+}$ is particularly attractive for quantum applications because of the long coherence time available on hyperfine states. For example, hyperfine coherence time can exceed 1 s for Er$^{3+}$ ions in Y$_{2}$SiO$_{5}$ [1]. Further enhancement can be achieved by utilising hyperfine transitions at a zero first-order-Zeeman (ZEFOZ) field that are protected from magnetic field fluctuations[2]. In addition, strong cavity coupling and coherent control of a single Er$^{3+}$ ion have been demonstrated by combining a Si cavity with an Er-doped Y$_{2}$SiO$_{5}$ crystal[3, 4].

Si would be an obvious choice of host materials for Er$^{3+}$ ions due to the well-established Si nanofabrication technologies. Also, the nuclear-spin free environment provided by isotopically purified 28Si can significantly suppress decoherence due to nuclear spins in the host crystal. One challenge is that Er$^{3+}$ ions can form a range of sites in Si in contrast to only two crystallographic sites that Er$^{3+}$ ions occupy in Y$_{2}$SiO$_{5}$ [5]. By choosing a suitable annealing condition and Er concentration, a cubic Er site can become the dominant site in float-zone (FZ) Si with low impurity levels[6]. The typical structure of its photoluminescence (PL) spectra includes an optical transition at 195.01 THz between its lowest levels of the $^{4}I_{15/2}$ and $^{4}I_{13/2}$ states. While complex spectra appear in Er-doped Si under different annealing conditions or in the presence of other dopants or implantation induced defects[7], the spectral structure of this cubic site is still observable. Analysis of the fine structure suggests the Er$^{3+}$ ion sees a tetrahedral crystal field[6, 8]. Also, existence of a tetrahedral interstitial Er site in Si was confirmed by emission channelling studies[9], although there was no direct experimental link between this result and the earlier measurements. These findings are in agreement with several theoretical studies that the tetrahedral interstitial site is the most stable site for Er in Si[10–13], but other studies found a tetrahedral substitutional site[14, 15] to be more stable or a hexagonal interstitial site when oxygen is involved[11, 14].

The most direct evidence of a cubic site would be an isotropic Zeeman g-tensor, but the g-tensor of the cubic Er site in Si has not been determined due to the complex spectra and limited resolution from PL or electron
paramagnetic resonance (EPR) measurements. Another characteristic property is the trace of the $Z_1 g$-tensor, where Z_1 represents the lowest crystal field level of the $^{4}I_{15/2}$ ground state. Crystal field levels of a cubic site can be either Γ_5 quartet states or doublet states of Γ_7, but only Γ_5 and $\Gamma_7 Z_1$ levels have been experimentally identified in Er-doped crystals[16]. The trace of the $Z_1 g$-tensor for Γ_5 and Γ_7 is calculated to be 20.4 and 18.0 based on crystal field theory, and the measured values in two cubic crystals are on average 20.27 ± 0.12 and 17.79 ± 0.03, respectively[16]. The small deviation from the calculated value is usually explained by interactions with higher-lying energy levels or the effects of covalency[17, 18]. Er$^{3+}$ ions can also occupy a slightly distorted cubic site where the crystal field distortion is small compared to the cubic crystal field. As a result, the distortion on the trace of the $Z_1 g$-tensor is expected to be smaller than 0.3[18] and the cubic crystal field approximation is still valid[19].

Recent high-resolution photoluminescence excitation (PLE) measurements on Si waveguides[21, 22] and bulk Si[23] have both shown multiple well-defined Er sites. The inhomogeneous linewidths are of the order of 1 GHz, which is comparable to that of Er:Y$_2$SiO$_5$ $^{3+}$, and some sites show homogeneous linewidths below 1 MHz. These studies reinforce the promise of Er in Si, but for applications where long coherence times are required, extensive studies of the Zeeman and hyperfine interactions of the Er sites in Si are also required. The Zeeman interaction defines the preferred magnetic field direction to suppress electron spin relaxation due to spin-lattice coupling. Further, hyperfine transitions at a ZEFOZ field are protected from magnetic field fluctuations and thus allow extended spin coherence times[24]. The Zeeman splitting can be observed for some Er sites using PLE, but the resolution is limited by the ~ 1 GHz inhomogeneous linewidth and may be further limited by multiple site orientations[23].

The inhomogeneous broadening can be avoided by looking at only one ion. The hybrid electrical/optical single ion detection enables the high spectral resolution study of the Zeeman and hyperfine interactions on a single ion level[25, 26]. Recently, a time-resolved single ion detection technique was demonstrated[20] by detecting the ionisation of a single trap, as opposed to multiple traps in the previously used time-averaged measurements[25, 27]. The time-resolved detection has the advantage of allowing a wider range of experimental conditions and faster repetition of the single ion detection than the time-averaged detection[20]. While the earlier studies with time-averaged detection revealed a large number of optical transitions from 193.5 THz to 197.0 THz[23], optical transitions at approximately 195.04 THz are frequently observed in devices showing single trap ionisation, as shown in Table I.

Here we investigate the Zeeman and hyperfine interactions of a single 167Er$^{3+}$ ion in Si. This Er site has a zero field optical transition frequency of 195.036.7 GHz (1537.107 nm) which closely matches the previously reported cubic site in Si[6]. A spin Hamiltonian model is used to fit the spectra from field rotation measurements. The fitting gives the Zeeman interaction g-tensors and the hyperfine interaction A-tensors for the lowest crystal field level in the $^{4}I_{15/2}$ manifold and a crystal field level in the $^{4}I_{13/2}$ manifold of the 167Er$^{3+}$ ion.

II. SPIN HAMILTONIAN MODEL

Er forms a trivalent state in most semiconductors with a $4d^{11}$ electronic configuration. The telecom wavelength optical transitions arise from the $^{4}I_{15/2}$ ground state manifold and the $^{4}I_{13/2}$ first optically excited state. Under the action of a crystal field, the $2J + 1$ degeneracy in these levels is partially or wholly lifted. For example, the $^{4}I_{15/2}$ state splits into five levels for the special case of the cubic site and eight levels for low symmetry sites.

Figure 1(a) shows a generic energy level diagram of the low symmetry Er site investigated in this work. The crystal field levels of $^{4}I_{15/2}$ ($^{4}I_{13/2}$) are labelled as Z_3 up to Z_6 (Y_1 up to Y_7) in order from the lowest energy to the highest. Each crystal field level has a two-fold electron spin degeneracy (Kramers doublet) which can be lifted by a magnetic field. For a 167Er$^{3+}$ ion with a nuclear spin of $I = 7/2$, each crystal field doublet splits into 16 hyperfine sublevels. The Zeeman and hyperfine splittings of a crystal field level can typically be described in low field by a spin Hamiltonian, [5, 8, 29]

$$H = \mu_e B \cdot g \cdot S + I \cdot A \cdot S + I \cdot Q \cdot I - \mu_n g_n B \cdot I \quad (1)$$

where B is the external magnetic field, S is an effective spin vector with $S = 1/2$, I is a nuclear spin vector with a value of $I = 7/2$, g, A and Q are the Zeeman, hyperfine and quadrupole tensors, μ_e and μ_n are the Bohr and nuclear magneton, respectively, and $g_n \sim -0.1618$ is the nuclear g factor.

At liquid helium temperatures, only the lowest crystal field level Z_1 is populated, and optical transitions between Z_1 and multiple crystal field levels Y_i can be observed. When the electronic Zeeman splitting is much larger than the hyperfine splitting, the transitions between Z_1 and Y_i can be split into four transition groups a,b,c,d as shown in Fig. 1(a). The four transition groups

Device	Transitions (THz)	Note
1	194.05, 195.03, 195.07, 196.02	
2	195.07	
3	195.12	
4	195.15	
5	195.35	Ref.[20]

Device	Transitions (THz)	Note
1	194.05, 195.03, 195.07, 196.02	
2	195.07	
3	195.12	
4	195.15	
5	195.35	Ref.[20]

TABLE I. List of devices in which Er$^{3+}$ transitions were observed by detecting the ionisation of a single trap.
are well separated in transition frequency, and each group contains eight hyperfine spin preserving peaks with ∆mI = 0. When the Zeeman splitting and hyperfine splitting become comparable, hyperfine sublevels from different Zeeman branches start to mix.

III. SETUP AND SPECTROSCOPY

The experimental setup and the device used in this work are illustrated in Fig. 1(b). The device was a Si finfield-effect transistor (FinFET) consisting of three terminals and a nanowire channel (35 nm width × 80 nm length × 60 nm height). ¹⁶⁷Er and O were implanted into the device followed by a 700 °C annealing to repair the implantation damage. The estimated concentration of Er and O in the channel is 1 × 10¹⁷ cm⁻³ and 1 × 10¹⁸ cm⁻³, respectively. Additionally, the p-type channel had a B doping concentration of 3 × 10¹⁸ cm⁻³. The device was installed on the cold stage of a liquid helium-free cryostat operating at a base temperature of 3.6 K. The cryostat is equipped with a 6-1-1 T superconducting vector magnet, which can provide a magnetic field up to 1 T in any direction. The device was placed at the centre of the magnet, and the field homogeneity is for the X and Y axes and 0.1% for the Z axis over a 1 cm diameter of spherical volume.

A fibre-coupled frequency-tunable laser (Pure Photonics PPLC550) was used to excite the optical transitions. The laser light was split into two beams. One beam was sent to a photodetector (PD) and a wavemeter (WM) for power and wavelength monitoring. The specified repeatability of the wavemeter (Bristol 621A-NIR) is ±6 MHz. The other beam went through a polarisation controller (PC) and optical fibres and reached the cold stage. The light was focused onto the device surface by a two-lens objective[30], and the spot size was approximately 2 μm.

Single Er³⁺ ion spectra were measured with an optical-electrical hybrid method[20, 25]. The FinFET was biased under a sub-threshold gate voltage[31] so that single quantum dots (QDs) form in the device channel. These QDs can work as sensitive charge sensors and detect the loss or gain of a single electron in its vicinity. After the Er³⁺ ion was excited into the ⁴I_{13/2} excited state by resonant light, it would relax back to the ⁴I_{15/2} ground state via either a radiative process by photon emission or non-radiative processes.

Our previous studies have demonstrated that a non-radiative relaxation of an Er³⁺ ion can cause a nearby trap to ionise[20], and afterwards, the trap resets by capturing an electron. These processes can be seen from a typical current-time trace (red) in Fig. 1(c) measured under resonant illumination. The current through the QD switches between two discrete levels due to ionisation and reset events. In contrast, the black current-time trace was measured with a non-resonant laser frequency, and the current stays at the background level. The spectra presented in this work were measured under continuous wave laser excitation, and the spectral signal was defined as the number of ionisation events per unit time per unit power in a long current-time trace. In principle, a longer current-time trace gives a more accurate spectral signal at each frequency, and a finer frequency step size leads to more data points for the peak fitting, but both will lead to longer measurement times. Therefore, a trade-off was made between these two parameters, and a frequency step size of 20 MHz and a trace length of 5 s were used in this study.

FIG. 1. Spectroscopic measurement of a ¹⁶⁷Er³⁺ ion. (a) A generic energy level diagram of a ¹⁶⁷Er³⁺ ion in a high magnetic field. m₅ and m_I represent the spin projection quantum numbers of the electronic and hyperfine spin states, respectively. (b) A schematic of the FinFET device and its electrical and optical connections. The laser beam is focused on the channel region of the device doped with ¹⁶⁷Er³⁺ ions. (c) Two typical current-time traces measured under resonant (red) and non-resonant (black) illumination.

A fibre-coupled frequency-tunable laser (Pure Photonics PPLC550) was used to excite the optical transitions. The laser light was split into two beams. One beam was sent to a photodetector (PD) and a wavemeter (WM) for power and wavelength monitoring. The specified repeatability of the wavemeter (Bristol 621A-NIR) is ±6 MHz. The other beam went through a polarisation controller (PC) and optical fibres and reached the cold stage. The light was focused onto the device surface by a two-lens objective[30], and the spot size was approximately 2 μm.

Single Er³⁺ ion spectra were measured with an optical-electrical hybrid method[20, 25]. The FinFET was biased under a sub-threshold gate voltage[31] so that single quantum dots (QDs) form in the device channel. These QDs can work as sensitive charge sensors and detect the loss or gain of a single electron in its vicinity. After the Er³⁺ ion was excited into the ⁴I_{13/2} excited state by resonant light, it would relax back to the ⁴I_{15/2} ground state via either a radiative process by photon emission or non-radiative processes.

Our previous studies have demonstrated that a non-radiative relaxation of an Er³⁺ ion can cause a nearby trap to ionise[20], and afterwards, the trap resets by capturing an electron. These processes can be seen from a typical current-time trace (red) in Fig. 1(c) measured under resonant illumination. The current through the QD switches between two discrete levels due to ionisation and reset events. In contrast, the black current-time trace was measured with a non-resonant laser frequency, and the current stays at the background level. The spectra presented in this work were measured under continuous wave laser excitation, and the spectral signal was defined as the number of ionisation events per unit time per unit power in a long current-time trace. In principle, a longer current-time trace gives a more accurate spectral signal at each frequency, and a finer frequency step size leads to more data points for the peak fitting, but both will lead to longer measurement times. Therefore, a trade-off was made between these two parameters, and a frequency step size of 20 MHz and a trace length of 5 s were used in this study.
FIG. 2. Field rotation Zeeman spectroscopy. (a) A subset of the selected magnetic field directions. The peanut shape contour shows the Zeeman splitting amplitudes of the Z1 level when the magnetic field points in different directions, and the coloured dots on the contour surface denote the selected field directions. Each dot indicates a magnetic field vector direction from the origin O to the dot, and its colour is used to highlight different groups of directions and its brightness comes from the 3D lighting effect. Three sets of spectra are shown as examples in (b)-(f), and the Roman numeral on the top right corner of each figure denotes the magnetic field direction in use and corresponds to the Roman numerals in (a). The coloured spectral peaks in (b)-(f) were used for the spin Hamiltonian fitting.

IV. FIELD ROTATION MEASUREMENT

In order to determine the anisotropic spin Hamiltonian tensors, we used the vector magnet to apply fields along different directions while holding the field magnitude fixed at 0.4 T. For a low symmetry site, high anisotropy is expected for the g-tensors, and resonant frequencies of the four transition groups vary considerably as the field rotates. Therefore, we started with a preliminary measurement to determine a simplified spin Hamiltonian with only the electronic Zeeman term, which can be used to identify a suitable laser frequency scanning range for each field direction. Firstly, the four transition groups were measured by rotating the field in a circle within the three orthogonal planes (XOY, YOZ, ZOX) of the laboratory frame. Secondly, spectral scans were performed in high magnetic fields along the Z axis to identify the ground electron spin level of Z_1 and to assign the a, b, c, d optical transition groups to the corresponding Z_1 and Y_1 electron spin levels. Finally, the fitting results gave the Z_1 and Y_1 g-tensors, and both turned out to be highly anisotropic with similar orientation.

The preliminary g-tensors were then used to select the directions for the field rotation measurement. The peanut shape contour in Fig. 2(a) shows the Zeeman splitting amplitudes of the Z_1 level when the magnetic field is along different directions, and the coloured dots on the contour surface denote a subset of the selected field directions while the full set can be found in the supplemental Figure 1. Each dot indicates a magnetic field vector direction from the origin O to the dot, and its colour is used to highlight different groups of directions and its brightness comes from the 3D lighting effect. To help the understanding of the field direction selection strategy, three sets of spectra are shown as examples in Figs. 2(b)-(f). Only the spectral peaks that can be properly assigned to energy levels and show good peak contrast were used for the final spin Hamiltonian fitting, such as the orange and red spectral peaks in Figs. 2(b)-(f). Multi-peak fitting with Lorentzian functions was used to determine the peak positions. The full width at half maximum (FWHM) of the isolated peaks was approximately 32 MHz[32]. Since the spectra were measured with a finite step size of 20 MHz, the apparent peak heights in Figs. 2(b)-(f) show arbitrary fluctuations and the highest points do not necessarily correspond to the fitted peak heights or centre frequencies.

The two ends of the peanut shape contour in Fig. 2a correspond to the principal axis of the g-tensor with the largest g value, defined as g_z. A typical set of spectra in this region is shown in Figs. 2(b),(c), and its field direction is denoted by the red square I in Fig. 2(a). Specifically, Fig. 2(b) shows the transition group b which comprises eight strong hyperfine peaks corresponding to $\Delta m_I=0$ in the central region and two sets of seven weaker hyperfine peaks corresponding to $|\Delta m_I|=1$ in the two side regions. Figure. 2(c) shows the transition group a with a lower overall signal than group b. Group a also consists of eight stronger $\Delta m_I=0$ peaks, but the weaker $|\Delta m_I|=1$ peaks distribute between the $\Delta m_I=0$ peaks. These features show up similarly when the magnetic field points in most directions except the waist region of the peanut shape contour, where the two transverse principal axes lie, with smaller g values, defined as g_y and g_x. In this “transverse” field region, the Zeeman splitting becomes comparable to the hyperfine splitting. Some
|Δm_f| = 1 and |Δm_f| = 0 hyperfine peaks start to overlap, and some |Δm_f| = 1 peaks become stronger due to the mixing of spin states. These phenomena can be seen from the spectra II and III in Fig. 2(d)-(f), and the field directions are denoted by the red squares II and III in Fig. 2(a), respectively.

In total, 181 different field directions were selected into two categories. One category covers the entire space as the magnetic field follows a three-dimensional (3D) spiral path. These field directions can be seen in the supplemental Figure 1, and three of them are denoted by the blue, green, and purple dots in Fig. 2(a). The spectral information in this region is critical for improving the fitting accuracy of the smaller values in the Zeeman and hyperfine tensors. Due to the level mixing and anti-crossing in this region, intensities of transitions become equivalent and hyperfine peaks are unevenly spaced, as can be seen in spectra II, III[28].

V. SPIN HAMILTONIAN FITTING

Using the method described above, 5788 hyperfine transition peaks were identified from the 181 spectral scans and were used for the spin Hamiltonian fitting. For a low symmetry Er site, the principal axes of the g- and A-tensors of different crystal field levels may deviate from each other. Therefore, each tensor has six independent variables, i.e., three principal values and three Euler angles. Euler rotations followed a $z - y' - z''$ sequence. A diagonal matrix M_p defined in the coordinate system of the principal axes (x, y, z) can be transformed to a matrix M defined in the laboratory frame (X, Y, Z) by the following relation:

$$M = R^T \cdot M_p \cdot R,$$

where $R = R_{z''}(\gamma) \cdot R_y(\beta) \cdot R_z(\alpha)$, and R_i represents a rotation matrix of an angle (α, β, γ) about the axis i. Here y', z'' are the new axes after the first and second rotations.

In principle, the quadrupole interaction term Q can be determined by the field rotation Zeeman experiment. However, its most significant impact on the identifiable spectral peaks was found to be smaller than 10 MHz. This impact could not be measured accurately due to the ±6 MHz repeatability of the wavemeter. Therefore, the quadrupole interaction term was not included in the fitting. The final spin Hamiltonian model includes 12 free parameters for each of the Z_i and Y_i levels and another free parameter for the optical transition frequency. The Hamiltonian fitting used a global optimisation technique, basin-hopping, to minimise the root-mean-square deviation (rmsd) calculated from the residuals as follows:

$$rmsd = \left(\frac{1}{N} \sum_{k=1}^{N} (f_{k}^{exp} - f_{k}^{sim})^2 \right)^{1/2},$$

where f_{k}^{sim} and f_{k}^{exp} are the simulated and measured centre frequency of spectral peak k, and N is the total number of peaks in the fitting. The fitting gives a $rmsd$ value of 83 MHz and the fitting parameters are listed in Table II. All four tensors are highly anisotropic, with one principal value (g_x) much larger than the other two (g_y and g_z), consistent with low site symmetry. The misalignment between the Z_i and Y_i g-tensors indicates that the Er site has monoclinic (C1) symmetry.

The previously reported cubic Er site in Si has an optical transition frequency of 195.01 THz[6], which closely matches the C1 Er site in the present work. Also, the trace of Z_i g-tensor is 17.78 ± 0.40, which matches the expected value for a C_4 Z_i state. This match reveals that the cubic crystal field approximation holds for this C1 Er site in Si[18, 19]. Overall, these properties suggest that this C1 Er site is likely to be a distorted cubic site.

Parameter uncertainties in Table II are calculated using the Markov chain Monte Carlo sampling method. The four tensors’ largest principal values (g_z, A_z) have smaller uncertainties than the transverse principal values (g_y, g_x, A_y, A_x) due to the challenges associated with the high anisotropy of the tensors. Firstly, the electron spin quantization axis $\hat{n} = B \cdot g/(|B \cdot g|)$ remains close to the z direction for a wide range of field directions as a result of the high anisotropy of the g-tensor, except in the transverse field region. This means that the transverse field region is critical for determining the transverse principal values, g_y and g_z; however, only a limited number of spectral peaks can be identified in this region due to spin mixing. Secondly, the hyperfine splitting is similarly impacted by the high anisotropy of both A and g-tensors, as it is primarily determined by $|A \cdot \hat{n}|$[5]. Overall, the uncertainties may be underestimated because of the large number of fitting parameters[5]. In addition, the final position of the device may change slightly during cool-down.

Principal values	Euler angles
$g_x = 14.846 \pm 0.028$	$\alpha = 137.50 \pm 0.13$
$g_y = 2.38 \pm 0.18$	$\beta = -66.036 \pm 0.099$
$g_z = 0.55 \pm 0.19$	$\gamma = -155.7 \pm 2.0$

TABLE II. Principal values and Euler angles for all tensors.

For $Z_i(4^{I15/2})$

Parameter	Value
A_x	1.558 ± 0.019
A_y	0.56 ± 0.21
A_z	0.30 ± 0.16

For $Y_i(4^{I13/2})$

Parameter	Value
A_x	1.773 ± 0.023
A_y	0.42 ± 0.14
A_z	0.07 ± 0.16
FIG. 3. Field rotation measurement results and fittings within the three orthogonal planes of the laboratory frame. Measured (coloured dot) and calculated (coloured line) spectral peak positions are plotted as a function of the field rotation angle as the magnetic field rotates within (a) XOY plane, (b) YOZ plane, and (c) ZOX plane. Red dots and lines correspond to the eight $\Delta m_I = 0$ transitions in group a. Orange dots and lines correspond to groups b and c. Since the spacing between adjacent hyperfine peaks in groups b and c is too small to be presented together with group a, only the fourth lowest energy transition among the eight $\Delta m_I = 0$ hyperfine transitions of group b (and c) is plotted. Due to state mixing in the anti-crossing regions, the calculated $\Delta m_I = 0$ transitions may become weaker than other transitions, e.g., $|\Delta m_I| = 1$, so dashed lines are used in these regions.

FIG. 4. Field strength vs the maximum curvature of the ZEFOZ fields found for the 167Er$^{3+}$ ion. The red and green points correspond to ZEFOZ fields in weakly and strongly mixed regimes, respectively.

due to thermal expansion and contraction, and consequently, the actual magnetic field at the Er$^{3+}$ ion might deviate from the set field especially for X and Y axes because of the field inhomogeneity.

To evaluate the fitting in the transverse field region, measured and calculated spectral peak positions of groups a, b, c from the three in-plane field rotation scans are presented in Fig. 3. The eight red spectral lines in the upper sections of Figs. 3(a)-(c) correspond to the eight calculated $\Delta m_I = 0$ hyperfine transitions of group a, and the red dots represent the measured peaks that can be identified and were used for fitting. The spacing between adjacent hyperfine peaks in groups b and c is much smaller than group a. For clarity, then, only the fourth
lowest energy transition among the eight $\Delta m_I = 0$ hyperfine transitions of group b (and c) is plotted in Fig. 3, and the orange dots and lines represent the measured and calculated peak positions, respectively.

In the region where electronic and hyperfine spins are highly mixed, spectral peaks are generated between sorted hyperfine levels in the Z_1 and Y_i states similar to hyperfine transitions outside this region. Due to state mixing, these calculated transitions may become weaker in the anti-crossing region, so dashed lines are used in this region.

The four tensors have very similar α and β Euler angles, which determine the direction of the z principal axes of the four tensors. The similarly orientated A- and g-tensors lead to nearly identical hyperfine spectra outside the transverse field region, similar to spectrum I in Fig. 2(b). This phenomenon can also be seen from the left parts of Figs. 3(a),(c), even though the three scans in Fig. 3 focus on the transverse field region.

In order to locate the ZEFOZ fields for the 167Er$^{3+}$ ion, we follow the calculation procedures described in Ref.[24] using the fitting results. The hyperfine spin transitions between any any two of the sixteen hyperfine sublevels of Z_1 are considered in the calculation. The curvatures at all ZEFOZ fields are calculated and plotted into two groups (red and green) in Fig. 4. The red group contains field directions close to the largest value principal axis of the Z_1 g-tensor. This is a weakly mixed regime, where the electronic Zeeman term dominates, and the electron spin is close to a good quantum number. ZEFOZ fields of the green group are either in the transverse field region of the peanut shape contour or so weak that the electronic Zeeman splitting is smaller than or comparable to the hyperfine splittings. Due to the state mixing, ZEFOZ transitions in this strongly mixed regime tend to have stronger transition strengths than those in the weakly mixed regime. Furthermore, these ZEFOZ fields cluster around particular directions, as shown in Fig. 5.

The decoherence rate induced by magnetic noise at ZEFOZ fields can be estimated as $S_2(\Delta B)^2$, where S_2 is the curvature of ZEFOZ transition and ΔB is the magnetic field fluctuation. To give an estimation on the decoherence, we consider an experimental condition of magnetic noise at sub-Kelvin temperatures and 1 T magnetic fields, which can be provided in commercial vector magnet cryogenic systems. The magnetic field fluctuations experienced by 167Er$^{3+}$ ions in natural Si are dominantly due to the flipping of nearby 29Si nuclear spins and other Er$^{3+}$ electron spins. From Monte Carlo simulations[33], ΔB for an Er doping concentration of 1×10^{17} cm$^{-3}$ in natural Si is dominated by the flipping of 29Si nuclear spins and is estimated to be 0.01 mT. The results suggest that 167Er$^{3+}$ spin coherence times in ZEFOZ fields of about 1 T in natural Si can potentially reach 1 s in the strongly mixed regime and 1 min in the weakly mixed regime. The estimation is indicative, and decoherence suppression is also expected from the frozen core effect[1, 34, 35], as the moderate field and low temperature considered here can freeze most electron spins in the crystal.

VI. CONCLUSION

We investigated the Zeeman and hyperfine interactions of the lowest crystal field level Z_1 in the 4I$_{15/2}$ manifold and a crystal field level Y_i in the 4I$_{13/2}$ manifold for a single 167Er$^{3+}$ ion in Si. The hyperfine spectra were measured in different magnetic field directions, and the identified peak frequencies were used to fit both the Z_1 and Y_i spin Hamiltonians. All four tensors in the spin Hamiltonians are highly anisotropic, with the largest value principal axes in nearly the same direction. The results suggest that the Er$^{3+}$ ion occupies a distorted cubic site with monoclinic (C_1) symmetry. The ZEFOZ fields calculations for this site suggests 167Er$^{3+}$ spin coherence times above 1 s could be achieved at ZEFOZ fields of about 1 T in natural Si.

The accuracy of the spin Hamiltonian parameters could be improved by introducing an on-chip magnetic field sensor. On the other hand, the high anisotropy of the specific Er site leads to larger uncertainties in the transverse properties of the tensors and, consequently, in the transverse ZEFOZ fields. Smaller fitting uncertainties are expected on cubic or other higher symmetry sites, which can be investigated using the field rotation Zeeman method presented in this work.

ACKNOWLEDGMENTS

The numerical calculations for locating the ZEFOZ fields were performed on the supercomputing system in the Supercomputing Center of University of Science and Technology of China. This work was supported by the National Key R&D Program of China (Grant No. 2018YFA0306600), Anhui Initiative in Quantum Information Technologies (Grant No. AHY050000), and Anhui Provincial Natural Science Foundation (Grant No. 2108085MA15). We acknowledge the AFAiiR node of the NCRIS Heavy Ion Capability for access to ion-implantation facilities.

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author upon reasonable request.
[1] M. Rančić, M. P. Hedges, R. L. Ahlefeldt, and M. J. Sellars, Coherence time of over a second in a telecom-compatible quantum memory storage material, Nature Physics 14, 50 (2018).

[2] M. Zhong, M. P. Hedges, R. L. Ahlefeldt, J. G. Bartholomew, S. E. Beavan, S. M. Wittig, J. J. Longdell, and M. J. Sellars, Optically addressable nuclear spins in a solid with a six-hour coherence time, Nature 517, 177 (2015).

[3] A. M. Dibos, M. Raha, C. M. Phenicie, and J. D. Thompson, Atomic Source of Single Photons in the Telecom Band, Physical Review Letters 120, 243601 (2018).

[4] S. Chen, M. Raha, C. M. Phenicie, S. Ourari, and J. D. Thompson, Parallel single-shot measurement and coherent control of solid-state spins below the diffusion limit, Science 370, 592 (2020).

[5] Y.-H. Chen, X. Fernandez-Gonzalvo, S. P. Horvath, J. V. Rakonjac, and J. J. Longdell, Hyperfine interactions of Er$^{3+}$ ions in Y$_2$SiO$_5$: Electron paramagnetic resonance in a tunable microwave cavity, Physical Review B 97, 024419 (2018).

[6] H. Przybyłinska, W. Jantsch, Y. Suprun-Belevitch, M. Stepihova, L. Palmetshofer, G. Hendorfer, A. Kozanecki, R. J. Wilson, and B. J. Sealy, Optically erbium centers in silicon, Physical Review B 54, 2532 (1996).

[7] H. Przybyłinska, G. Hendorfer, M. Bruckner, L. Palmetshofer, and W. Jantsch, On the local structure of optically active Er centers in Si, Applied Physics Letters 66, 490 (1995).

[8] Y. S. Tang, K. C. Heasman, W. P. Gillin, and B. J. Sealy, Characteristics of rare-earth element erbium implanted in silicon, Applied Physics Letters 55, 432 (1989).

[9] U. Wahl, A. Vantomme, J. De Wachter, R. Moons, G. Langouche, J. G. Marques, J. G. Correia, and ISOLDE collaboration, Direct evidence for tetrahedral interstitial Er in Si, Physical Review Letters 79, 2069 (1997).

[10] M. Needels, M. Schlüter, and M. Lannoo, Erbium point defects in silicon, Physical Review B 47, 15533 (1993).

[11] J. Wan, Y. Ling, Q. Sun, and X. Wang, Role of codopant oxygen in erbium-doped silicon, Physical Review B 58, 10415 (1998).

[12] M. Hashimoto, A. Yanase, H. Harima, and H. Katayama-Yoshida, Determination of the atomic configuration of Er-O complexes in silicon by the super-cell FLAPW method, Physica B: Condensed Matter 308-310, 378 (2001).

[13] D. Prezzi, T. A. G. Eberlein, R. Jones, J. S. Filhol, J. Coutinho, M. J. Shaw, and P. R. Briddon, Electrical activity of Er and Er-O centers in silicon, Physical Review B 71, 245203 (2005).

[14] A. G. Raffa and P. Ballone, Equilibrium structure of erbium-oxygen complexes in crystalline silicon, Physical Review B 65, 121309(R) (2002).

[15] C. Delerue and M. Lannoo, Description of the trends for rare-earth impurities in semiconductors, Physical Review Letters 67, 3006 (1991).

[16] C. A. J. Ammerlaan and I. de Maat-Gersdorf, Zeeman splitting factor of the Er$^{3+}$ ion in a crystal field, Applied Magnetic Resonance 21, 13 (2001).

[17] R. K. Watts and W. C. Holton, Paramagnetic-Resonance Studies of Rare-Earth Impurities in II-VI Compounds, Physical Review 173, 417 (1968).

[18] J. D. Carey, R. C. Barklie, J. F. Donegan, F. Priolo, G. Franzó, and S. Coffa, Electron paramagnetic resonance and photoluminescence study of Er-impurity complexes in Si, Phys. Rev. B 59, 2773 (1999).

[19] J. D. Carey, State mixing and the cubic crystal field approximation for rare earth ions: the case of the Er$^{3+}$ ion in axial crystal fields, Journal of Physics: Condensed Matter 21, 175601 (2009).

[20] G. Hu, G. G. de Boo, B. C. Johnson, J. C. McCallum, M. J. Sellars, C. Yin, and S. Rogge, Time-Resolved Photoionization Detection of a Single Er$^{3+}$ Ion in Silicon, Nano Lett. 22, 396 (2022).

[21] L. Weiss, A. Grötsch, B. Merkel, and A. Reiserer, Erbium dopants in nanophotonic silicon waveguides, Optica 8, 40 (2021).

[22] A. Grötsch, L. Weiss, J. Früh, S. Rinne, and A. Reiserer, Narrow optical transitions in erbium-implanted silicon waveguides, arXiv:2108.05120 (2021).

[23] I. Berkman, A. Lysasta, G. de Boo, J. Bartholomew, B. Johnson, J. McCallum, B.-B. Xu, S. Xie, M. Ahlefeldt, M. Sellars, C. Yin, and S. Rogge, Sub-megahertz homogeneous linewidth for er in si via in situ single photon detection, arXiv:2108.07090 (2021).

[24] D. L. McAuslan, J. G. Bartholomew, M. J. Sellars, and J. J. Longdell, Reducing decoherence in optical and spin transitions in rare-earth-metal-ion–doped materials, Phys. Rev. A 85, 032339 (2012).

[25] C. Yin, M. Rančić, G. G. de Boo, N. Stavrias, J. C. McCallum, M. J. Sellars, and S. Rogge, Optical addressing of an individual erbium ion in silicon, Nature 497, 91 (2013).

[26] G. G. de Boo, C. Yin, M. Rančić, B. C. Johnson, J. C. McCallum, M. J. Sellars, and S. Rogge, High-resolution spectroscopy of individual erbium ions in strong magnetic fields, Physical Review B 102, 155309 (2020).

[27] Q. Zhang, G. Hu, G. G. de Boo, M. Rančić, B. C. Johnson, J. C. McCallum, J. Du, M. J. Sellars, C. Yin, and S. Rogge, Single Rare-Earth Ions as Atomic-Scale Probes in Ultrascaled Transistors, Nano Letters 19, 5025 (2019).

[28] O. Guillot-Noël, P. Goldner, Y. L. Du, E. Baldit, P. Monnier, and K. Bencheikh, Hyperfine interaction of Er$^{3+}$ ions in Y$_2$SiO$_5$: An electron paramagnetic resonance spectroscopy study, Physical Review B 74, 214409 (2006).

[29] S. P. Horvath, J. V. Rakonjac, Y.-H. Chen, J. J. Longdell, P. Goldner, J.-P. R. Wells, and M. F. Reid, Extending phenomenological crystal-field methods to C$_1$ point-group symmetry: Characterization of the optically excited hyperfine structure of 169Er$^{3+}$: Y$_2$SiO$_5$, Phys. Rev. Lett. 123, 057401 (2019).

[30] A. Högele, S. Seidl, M. Kroner, K. Karrai, C. Schulhauser, O. Sqalli, J. Scrimgeour, and R. J. Warburton, Fiber-based confocal microscope for cryogenic spectroscopy, Review of Scientific Instruments 79, 023709 (2008).

[31] H. Sellier, G. P. Lamsbergen, J. Caro, S. Rogge, N. Collet, I. Ferain, M. Jurczak, and S. Biesemans, Sub-threshold channels at the edges of nanoscale triple-gate
silicon transistors, *Applied Physics Letters* **90**, 073502 (2007).

[32] J. Yang, J. Wang, W. Fan, Y. Zhang, C. Duan, G. Hu, G. G. de Boo, B. C. Johnson, J. C. McCallum, S. Rogge, C. Yin, and J. Du, Spectral broadening of a single Er$^{3+}$ ion in a Si nano-transistor, arXiv:2201.11472 (2022).

[33] E. Fraval, *Minimising the Decoherence of Rare Earth Ion Solid State Spin Qubits*, Ph.D. thesis, Research School of Physical Sciences and Engineering and The Australian National University (2005).

[34] T. Bottger, C. W. Thiel, Y. Sun, and R. L. Cone, Optical decoherence and spectral diffusion at $1.5\mu m$ in Er$^{3+}$:Y$_2$SiO$_5$ versus magnetic field, temperature, and Er$^{3+}$ concentration, *Phys. Rev. B* **73**, 075101 (2006).

[35] O. Guillot-Noël, H. Vezin, P. Goldner, F. Beaudoux, J. Vincent, J. Lejay, and I. Lorgeré, Direct observation of rare-earth-host interactions in Er : Y$_2$SiO$_5$, *Physical Review B* **76**, 180408(R) (2007).
FIG. 5. 3D view of the ZEFOZ fields with a field strength below 5 T. (a) ZEFOZ field vectors. Each coloured dot represents a ZEFOZ field vector, and the red and green points represent ZEFOZ fields in weakly and strongly mixed regimes, respectively. The coloured solid and dashed lines indicate the directions of the principal axes of the Z_1 level g-tensor and A-tensor, respectively. (b) Directions of the ZEFOZ fields. The peanut shape contour shows the Zeeman splitting amplitudes of the Z_1 level when the magnetic field points in different directions. The coloured dots on the contour surface denote the field directions, and each dot indicates a magnetic field vector direction from the origin O to the dot.