A Chinese Hamster Ovary Cell Mutant Defective in the Non-endocytic Uptake of Fluorescent Analogs of Phosphatidylserine: Isolation Using a Cytosol Acidification Protocol

Kentaro Hanada and Richard E. Pagano

Department of Embryology, Carnegie Institution of Washington, Baltimore, Maryland 21210

Abstract. Transmembrane movement of phosphatidylserine (PS) and various PS analogs at the plasma membrane is thought to occur by an ATP-dependent, protein-mediated process. To isolate mutant CHO cells defective in this activity, we first obtained conditions which inhibited the endocytic, but not the non-endocytic pathway of lipid internalization since PS may enter cells by a combination of these two pathways. We found that acidic treatment of cells, which blocks clathrin-dependent endocytosis, enhanced the energy-dependent uptake of 1-palmitoyl-2-[(6-[(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]caproyl-sn-glycero-3-phosphoserine (C6-NBD-PS) in CHO cells from donor vesicles (liposomes) by about twofold. Control experiments demonstrated that the enhanced uptake of C6-NBD-PS at acidic pH was not due to: (a) an increase in the capacity of the plasma membrane to incorporate C6-NBD-PS from the donor vesicles; (b) a decrease in the rate of loss of C6-NBD-PS from the cells; or (c) fusion or engulfment of the donor vesicles. When cytosolic acidification (to pH 6.3) was imposed without acidification of the extracellular medium, C6-NBD-PS uptake by intact cells was increased by about 50% compared to control values determined in the absence of acidification. These results suggested that a protein and energy dependent system(s) for transbilayer movement of the fluorescent PS was stimulated by cytosolic acidification.

A screening method for mutant cells defective in the non-endocytic uptake of fluorescent PS analogs with replica cell colonies at acidic pH was then devised. After selection of mutagenized CHO-K1 cells by in situ screening, we obtained a mutant cell line in which uptake of fluorescent PS analogs was reduced to about 25% of the wild type level at either pH 6.0 or 7.4. Control experiments demonstrated that the reduced uptake of fluorescent PS analogs in the mutant cells was unrelated to multidrug resistance, and that endocytosis of another plasma membrane lipid marker occurred normally in the mutant cells. These results suggested that a non-endocytic pathway responsible for uptake of fluorescent PS analogs was specifically affected in the mutant cells.

The membranes of all mammalian cells contain numerous classes of glycerolipids and sphingolipids. However, these molecules are not randomly distributed in all intracellular membranes, but rather, different organelles have different lipid compositions (reviewed in White, 1973; Voelker, 1991). Furthermore, an asymmetric distribution of lipid types across the membrane bilayer is sometimes observed, particularly in the plasma membrane where the choline-containing phospholipids, phosphatidylcholine, and sphingomyelin, are highly enriched on the exoplasmic leaflet of the membrane bilayer while the aminophospholipids such as phosphatidylserine (PS) and phosphatidylethanolamine are enriched on the cytoplasmic leaflet (reviewed in Schroit and Zwaal, 1991; Devaux, 1992; Zachowski, 1993). Although the physiological significance of lipid asymmetry is still unclear, a number of plausible roles for lipid asymmetry have been suggested. For example, in model membrane systems it has been shown that PS or phosphatidylethanolamine

1. Abbreviations used in this paper: ABS, acetate-buffered saline containing 20 mM Na acetate/acetic acid, 137 mM NaCl, 2.7 mM KCl, 0.32 mM Na2HPO4, 0.8 mM MgSO4 and 5.5 mM D-glucose; C6- or C12-NBD, 6- or 12-[(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]caproyl or dodecanoyl; C6-NBD-PS, 1-palmitoyl-2-C6-NBD-sn-glycero-3-phosphoserine; C6-C12-NBD-PS, 1-hexanoyl-2-C12-NBD-sn-glycero-3-phosphoserine; C6-NBD-SM, N-C6-NBD-sphingosylphosphorylcholine; DOPC, dioleoyl phosphatidylcholine; HBS, Hepes-buffered saline containing 20 mM Hepes/NaOH, 137 mM NaCl, 2.7 mM KCl, 0.32 mM Na2HPO4, 0.8 mM MgSO4 and 5.5 mM D-glucose; HMEM, Hepes-buffered MEM; PS, phosphatidylserine.
are fusogenic (reviewed in Düzgünes et al., 1987). Thus, the preferential distribution of these phospholipids at the cytoplasmic face of membranes may be important in promoting intracellular fusion events during transport of intracellular vesicles, and in preventing unnecessary fusion between cells. The asymmetric distribution of PS at the plasma membrane may also be relevant to activation of protein kinase C which plays a central role in signal transduction (Nishizuka, 1992). In addition, it is interesting to note that when certain cell types lose their asymmetric distribution of PS and that lipid is exposed on the cell surface, they are efficiently cleared by macrophages, suggesting that cell surface PS molecules may serve as one of the markers of dying cells (Savill et al., 1993). It has been demonstrated that PS exposure on membranes accelerates formation of tenase and prothrombinase complexes, thereby activating the coagulation cascade in blood clotting processes (Schroit and Zwaal, 1991; Esmon, 1993). These examples indicate that the regulation of lipid asymmetry may have significant physiological consequences and thus represents an important problem in cell and membrane biology.

In artificially generated lipid vesicles the transbilayer movement ("flip/flop") of charged phospholipids is very slow ($t_{1/2} \approx$ hours to days; reviewed in Dawidowicz, 1987), presumably because transport of the charged head group through the hydrophobic core of the membrane bilayer represents a high energy barrier. By contrast, in biological membranes, certain phospholipids can undergo rapid transbilayer movement, suggesting the existence of a facilitated transport mechanism for this process (reviewed in Voelker, 1995; Schroit and Zwaal, 1991; Devaux, 1992; Zachowski, 1993). Indeed, a protein-mediated transport for PS was originally proposed to explain the inward transbilayer movement of a spin-labeled PS analog in human erythrocytes which could be inhibited by ATP depletion (Seigneur et al. and Devaux, 1987). Subsequent reports documented the facilitated transbilayer movement of PS or other analogs, in various cell types (reviewed in Schroit and Zwaal, 1991; Devaux, 1992; Zachowski, 1993). The ATP-dependent PS transport system is unlikely to be a simple passive transporter facilitating an equal distribution of PS between both leaflets of the plasma membrane bilayer, but rather seems to mediate the active accumulation of PS from the exoplasmic leaflet to the cytoplasmic one. It is thought that this transport system is involved in the maintenance of PS asymmetry.

Although several recent reports have suggested the identification of the PS transporter (Morrot et al., 1990; Schroit et al., 1990; Zimmerman and Daleke, 1993), the molecular characteristics of the PS translocating system are not yet understood, and, in particular, little is known about the physiological factors which regulate the transporter. In addition, although a genetic approach would be useful for investigating PS transport, to date there are no reports on mutant cells defective in PS transport. Since plasma membrane PS can enter cells in principle by a combination of endocytic and non-endocytic pathways, conditions in which the former is inhibited are required when one wants to select mutant cells defective in the non-endocytic pathway. In the present study, we examined the effects of pH on the uptake of l-palmityloxy-2-C$_6$-NBD-sn-glycero-3-phosphoserine (C$_6$-NBD-PS), a well-characterized probe for the PS-translocating system, because treatment of the cells at low pH blocks clathrin-dependent endocytosis (Davoust et al., 1987; Sandvig et al., 1987; Heuser, 1989). We found that acidification of the cytosol stimulated C$_6$-NBD-PS uptake in CHO-K1 fibroblasts and used this result as a basis for developing a screening method for isolation of CHO mutants defective in the non-endocytic uptake of fluorescent PS analogs.

Materials and Methods

Cell Culture

CHO-K1 fibroblasts (ATCC CCL 61; American Type Culture Collection, Rockville, MD) were cultured in Ham's F-12 medium (Biofluidics Inc., Rockville, MD) supplemented with 2 mM L-glutamine 5% fetal bovine serum, penicillin G (100 U/ml), and streptomycin sulfate (100 µg/ml). For biochemical studies, 8 × 106 cells in 5 ml of medium were seeded into each 60-mm-diam tissue culture dish and grown for 24 h. For fluorescence microscopy, cells were grown on 25-mm-diameter glass coverslips (No. 1 thickness), placed inside of 35-mm-diam tissue culture dishes. For microscopy, cells were grown to 50-75% confluency. For measurements of cytosolic pH, 5 × 104 cells in 2 ml of culture medium were seeded into each 35-mm-diam tissue culture dish containing a rectangular (4 × 9 mm) glass coverslip and cultured for 24 h. All cells were grown at 37°C in a water-saturated atmosphere of 5% CO$_2$ in air. However, when UPS-1 mutant cells were characterized, the mutant and the control cells were routinely maintained at 33°C. A multidrug-resistant CHO cell variant, AllN50 cell line (Sharma et al., 1992) was kindly provided by Dr. Robert Simoni (Department of Biological Sciences, Stanford University, Palo Alto, CA). The sensitivity of CHO cells to colchicine was examined as described previously (Rosenwald and Pagano, 1994).

Lipids and Miscellaneous Reagents

C$_6$-NBD-SM was from Molecular Probes, Inc. (Eugene, OR). Other NBD-phospholipids and dioleoyl phosphatidylcholine (DOPC) were from Avanti Polar Lipids, Inc. (Alabaster, AL). All lipids were stored in CHCl$_3$ at −20°C. NaN$_3$, 2-deoxy-o-glucose, NEM, amiloride, and colchicine were purchased from Sigma Chemical Co. (St. Louis, MO); nigericin was from Calbiochem-Novabiochem Corp. (La Jolla, CA).

Preparation of Fluorescent Phospholipid Donor Vesicles

Small unilamellar vesicles containing C$_6$-NBD-PS/DOPC (1:2, mol/mol), or C$_6$-NBD-PS/C$_6$-NBD-sphingomyelin/phosphocholine(SM)/DOPC (1:1:2, mol/mol/mol) were typically prepared by ethanol injection (Kremer et al., 1977) as follows. Aliquots of the appropriate lipid stock solutions were mixed in a glass tube and dried under N$_2$. The dried lipids (0.6 µmol total lipid (0.8 µmol for DOPC/C$_6$-NBD-PS/C$_6$-NBD-SM)) were then dissolved in 50 µl absolute ethanol, and this solution was injected into 5 ml of deionized water while vortex mixing. An equivalent volume of a twofold concentrated saline solution at the appropriate pH value was then added. The final concentration of C$_6$-NBD-PS in the uptake buffer was 20 µM.

Incubation of C$_6$-NBD-Phospholipids with Cells and Analysis of Fluorescent Lipids

Unless noted otherwise, all manipulations were performed at 37°C. Monolayer cultures were incubated twice with 2 ml of HBS (pH 7.4) or ABS (pH 6.0), and then further incubated in 2 ml of the same buffer for 5 min. The cells were then incubated with 1 ml of donor vesicles (20 µM C$_6$-NBD-PS/ml) in HBS (pH 7.4) or ABS (pH 6.0) for 10 min. The monolayer was then rinsed with 1 ml of ice-cold defatted 2% BSA/Heps-buffered MEM (HMEM) and then incubated (5 × 10 min) with 2 ml of defatted 2% BSA/HMEM at 4°C to remove C$_6$-NBD-PS from the cell surface (referred to as "back-exchange"); Mohandas et al., 1982; Martin and Pagano, 1987; van Meer et al., 1987). The cells were then rinsed three times with 4 ml of ice-cold PBS, and harvested in 2.5 ml of PBS by scraping. The cells were collected by centrifugation (300 g, 5 min at 4°C), washed with 3 ml of PBS, and resuspended in 900 µl of ice-cold PBS. Aliquots were removed for protein content determination (Lowry et al., 1951), using BSA as a standard and for lipid extraction (Bligh and Dyer, 1959), using 0.9% NaCl and 10 mM HCl in the aqueous phase. The relative fluorescence of the lipid extracts was measured using an SLM-8000C spectrophotofluorometer (SLM/
Aminco, Urbana, IL) and the absolute amounts of fluorescent lipid were determined from calibration curves generated from known amounts of C6-NBD-PS.

In experiments using lipid vesicles containing both C6-NBD-PS and -SM, lipid extracts were analyzed by TLC on silica gel 60 plates (E. Merck, Darmstadt, FRG) using CHCl3/CH3OH/CH3COOH/H2O (90:40:12:3, vol/vol/vol/vol) as the developing solvent. The chromatograms were observed under UV illumination and the individual fluorescent lipids were quantified by image processing (Koval and Pagano, 1989).

ATP Depletion and NEM Treatment of Cell Monolayers

To deplete intracellular ATP, glucose-free ABS (pH 6.0) and HBS (pH 7.4) containing 5 mM Na2S2O4 and 50 mM 2-deoxy-b-glucose), designated ABS-NaS2O4 and HBS-NaS2O4, respectively, were used. Monolayer cultures were preincubated in ABS-NaS2O4 or HBS-NaS2O4 for 5 min at 37°C, after which incubations were performed with 20 μM C6-NBD-PS donor vesicles in ABS-NaS2O4 or HBS-NaS2O4. To determine cellular ATP levels CHO monolayers incubated in various media for 10 min at 37°C were harvested in ice-cold PBS by scraping, and the ATP levels in aliquots of the cell suspension (~1 μg protein) were determined using a luciferin–luciferase assay kit (Technical Bulletin No. BSCA-1; Sigma Chemical Co., St. Louis, MO), except that a scintillation counter (Phillipp, 1994) was used in place of a bioluminometer.

To examine the effects of NEM treatment on C6-NBD-PS uptake, cells were incubated with 2 ml of HMEM containing 0.2 mM NEM for 30 min at 4°C, and subsequently incubated with 2 ml of HMEM containing 0.2 mM dithiothreitol for 5 min at 4°C to quench unreacted NEM. The NEM-treated cells were then rinsed twice with ABS (pH 6.0) or HBS (pH 7.4), incubated in the same medium for 5 min at 37°C, and the uptake of C6-NBD-PS was determined as described above.

Fluorescence Microscopy

Cells were incubated with fluorescent lipids as described above, except that the volume of the solutions used was reduced by one half. After back exchange, the cells were rinsed three times with 1 ml of ice-cold HMEM and observed and photographed under the fluorescence microscope. Microscopy was performed with a Zeiss IM-35 inverted microscope equipped with a Planapo 100x (1.3 NA) objective and a filter pack appropriate for NBD fluorescence. All exposures were 4 s using Kodak Tri-X film which was processed at ASA 1600 with Diafine developer.

Monitoring Cytosolic pH

Cytosolic pH was monitored with BCECF, a pH-sensitive fluorescent dye (Rink et al., 1982; Negulescu and Machen, 1990). All manipulations were performed at 37°C unless noted otherwise. Cell monolayers were rinsed with 1 ml of serum-free F-12 medium and then incubated in the dark for 15 min at room temperature. The cytosolic pH of cells was then measured after further incubation with 2 ml of serum-free F-12 medium containing 4 μM BCECF-acetoxyethyl ester (Molecular Probes Inc., Eugene, OR). The latter was prepared from 2 mM BCECF acetoxyethyl ester/dimethylsulfoxide solution. The cells were then rinsed twice with 1 ml of serum-free F-12 medium, and then further incubated with 2 ml of serum-free F-12 medium for 15 min at room temperature in the dark to generate intracellular BCECF from the BCECF acetoxyethyl ester.

When cytosol acidification was imposed by the NH4Cl load and release method (Boron, 1983) the BCECF-loaded monolayers were rinsed with 1 ml of HBS (pH 7.4) containing 30 mM NH4Cl and incubated in 1 ml of the same buffer for 5 min. Then, after attachment to a positioning device (Di Virgilio et al., 1988), the cover slip was transferred to a cuvette containing 2 ml of 30 mM NH4Cl in HBS (pH 7.4) and fluorescence intensity (λex = 490 nm; λem = 524 nm) of the monolayer was monitored with a spectrofluorometer. To impose an NH4 gradient, the coverslip with holder was transferred to another cuvette containing "exchange medium" (2.2 ml HBS, pH 7.4, in the presence or absence of 1 mM amiloride), and the monitoring was resumed. In some cases, 30 mM NH4Cl was also added to the exchange medium so as not to impose an NH4 gradient. For calibration of the cytosolic pH, the BCECF-loaded monolayer was incubated in 20 mM sodium phosphate buffer containing 50 mM KCl, 0.8 mM MgSO4, 0.1% glucose, and 10 μM nigericin at various pH values. Intracellular BCECF was normalized by measurement of fluorescence intensity at pH-insensitive wavelengths (λem = 439 nm; λex = 542 nm).

Isolation of CHO Mutant Cell Line, UPS-1

CHO-K1 cells were mutagenized with ethyl methanesulfonate and replica colonies of the cells on polyester dishes were formed at 33°C as described previously (Hanada et al., 1990; Rafter et al., 1982). After incubation of replica dishes at 39°C for 1 d in 5% fetal bovine serum, the disks were washed three times with 4 ml ABS and then incubated in 4 ml ABS containing 20 μM 1-C6-2-(12-[7-nitrobenz-2-oxa-1,3-diazol-4-yl]aminol)dodecanoyl-sn-glycero-3-phosphoserine (1-C6-2-(12-NBD)-PS)/40 μM DOPC for 1 h at 37°C. The disks were then transferred to dishes containing 10 ml of ice-cold PBS containing 50 mM Na2S2O4, 1.3 mM CaCl2, and 0.8 mM MgSO4 for 30 s and washed four times with 5 ml of ice-cold PBS containing 1.3 mM CaCl2 and 0.8 mM MgSO4. This procedure destroys extracellular and cell surface (but not intracellular) NBD-fluorescence (McIntyre and Sleight, 1991). After the disks were dried the fluorescent signal on the disks was photographed under UV illumination and subsequently colonies on the disks were visualized by Coomassie blue staining (Rafter et al., 1982). Candidates for mutant clones were identified as colonies showing faint fluorescent spots and retrieved from the master dish maintained at 33°C with cloning cylinders. A mutant clone, UPS-1, was isolated in this manner and purified by limited dilution. The phenotype of UPS-1 cells, described in this paper, has been stable for more than three months since the isolation of this clone.

Results

Effects of pH on C6-NBD-PS Uptake

We first wanted to find conditions which inhibited endocytic uptake but not the non-endocytic uptake of fluorescent PS analogs. Since acidic treatment of cells had been shown to block clathrin-dependent endocytosis (Davoust et al., 1987; Sandvig et al., 1987; Heuser, 1989), we examined the effect of pH on C6-NBD-PS uptake by CHO-K1 fibroblasts. CHO cell monolayers were incubated with C6-NBD-PS/DOPC vesicles for 10 min at 37°C at various pH values, and subsequently back exchanged at 4°C to remove fluorescent lipid from the outer leaflet of the plasma membrane bilayer. The amount of intracellular fluorescent lipid was then determined by lipid extraction and analysis. Interestingly, C6-NBD-PS uptake was enhanced at acidic pH (Fig. 1). The uptake approached a plateau value with decreasing pH, and at pH 6.0 was more than twice that at pH 7.4, the typical pH for cell culture (Fig. 1 A). More than 95% of the fluorescent lipid extracted from the cells following incubation at low pH was C6-NBD-PS as determined by TLC analysis (data not shown), demonstrating that the low pH incubation conditions did not produce large amounts of other fluorescent lipids which might be preferentially incorporated by the cells. The uptake of C6-NBD-PS was nearly linear during the first 10 min of incubation with 20 μM C6-NBD-PS at either pH 6.0 or 7.4, and was directly proportional (at 10 min) to C6-NBD-PS concentration, up to about 40 μM, at either pH (Fig. 1, B and C). Based on these data, we adopted standard incubation conditions in which 20 μM C6-NBD-PS was incubated with cells for 10 min at 37°C. Non-specific permeabilization of the plasma membrane did not occur under these conditions since more than 95% of the cells exposed to pH 6.0 (or 7.4) excluded trypan blue.

Inhibition of C6-NBD-PS Uptake

Translocation of various PS analogs across the plasma membrane bilayer has been studied in various cell types and is thought to be a protein-mediated process which is ATP-dependent and sensitive to sulfhydryl reagents (reviewed in Hanada and Pagano Phosphatidylserine Uptake Defective Mutant 795
Figure 1. Effect of pH on C6-NBD-PS uptake in CHO-K1 cells. (A) Cells were incubated with 20 μM C6-NBD-PS for 10 min at 37°C in HBS (○) or ABS (●) at the indicated pH and the uptake quantified. (B) Time course for uptake of 20 μM C6-NBD-PS in HBS (pH 7.4) or ABS (pH 6.0) at 37°C. (C) Concentration dependence of C6-NBD-PS uptake. Cells were incubated in HBS (pH 7.4) or ABS (pH 6.0) with C6-NBD-PS/DOPC (1:2, mol/mol) donor vesicles to give the indicated concentration of C6-NBD-PS.

To learn whether C6-NBD-PS uptake at acidic pH was also protein mediated, we studied the effects of various inhibitors on C6-NBD-PS uptake. Cells were pretreated with deoxyglucose and NaN3 in glucose-free medium at pH 6.0 or 7.4, and then incubated with C6NBD-PS donor vesicles in the presence of the inhibitors. Under these conditions C6-NBD-PS uptake was about 20% of that seen in control cells at either pH (Fig. 2). The ATP level in cells incubated in ABS (pH 6.0) was 93 ± 12% (n = 4) of that in cells incubated in HBS (pH 7.4), while incubation of cells in ABS-dh or HBS-dh for 10 min at 37°C reduced cellular ATP levels to about 10% of control values. NEM-treatment also clearly inhibited C6-NBD-PS uptake (Fig. 2) although uptake in NEM-treated cells might be overestimated since fluorescence microscopy demonstrated that NEM treatment induced non-specific permeabilization in about 5% of the cells. C6-NBD-PS uptake was almost completely abolished at 4°C although transfer of the fluorescent lipid from donor vesicles to the plasma membrane readily occurred at 4°C (data not shown; see also Martin and Pagano, 1987). These results indicated that C6-NBD-PS uptake at pH 6.0, as well as pH 7.4, was mediated by an energy-dependent and NEM-sensitive system(s).

Effects of pH on the Capacity of the Plasma Membrane to Accept C6-NBD-PS and on the Loss of C6-NBD-PS from Cells

We next determined whether the capacity of the outer leaflet of the plasma membrane bilayer to accept C6-NBD-PS from donor vesicles was pH dependent, since alterations in the amount of C6-NBD-PS which could partition into the plasma membrane might affect the amount of fluorescent lipid incorporated into intracellular membranes. To estimate the amount of C6NBD-PS associated with the outer leaflet of the plasma membrane bilayer, cells were incubated with donor vesicles for 10 min at 37°C at either pH 7.4 or 6.0, and then the size of the "back-exchangeable" pool of C6-NBD-PS was determined (see Materials and Methods). As shown in Table I, C6-NBD-PS associated with the outer leaflet of the plasma membrane bilayer was pH dependent. At pH 7.4, the amount of C6-NBD-PS associated with the outer leaflet was significantly higher than at pH 6.0, while the back-exchangeable pool was lower at pH 7.4. These results suggest that the pH-dependent changes in C6-NBD-PS uptake and association are due to alterations in the capacity of the plasma membrane to accept C6-NBD-PS, rather than to changes in the rate of back-exchange.

Table I. Effect of pH on the Amount of C6-NBD-PS Associated with the Outer Leaflet of the Plasma Membrane Bilayer

pH	Back-exchangeable C6-NBD-PS (nmol/mg protein)
7.4	5.99 ± 0.79
6.0	7.56 ± 0.49

* CHO-K1 cells were incubated with 20 μM C6-NBD-PS donor vesicles at the indicated pH for 10 min at 37°C.
† (+ Back-exchange) After rinsing with DF-BSA, the cells were subjected to the back-exchange protocol (see Materials and Methods), washed with PBS, and the fluorescent lipids extracted, quantified, and normalized to cellular protein. (− Back-exchange) Values were obtained in the same manner, except the back-exchange procedure was omitted. Data represent the means ±SD (n = 3).
in Table I, the amount of C₆-NBD-PS available for back-exchange was nearly the same at both pH values. In addition, we measured the spontaneous transfer of C₆-NBD-PS from donor to acceptor vesicles (Nichols and Pagano, 1982), and found that the half-time for equilibration between vesicle populations at pH 6.0 \((t_{1/2} \approx 35 \text{ s})\) was nearly identical to that at pH 7.4 \((t_{1/2} \approx 37 \text{ s})\).

We also examined the effect of pH on the loss of NBD-lipid fluorescence from cells, which might occur through degradation and/or secretion of the lipid. Cells were labeled with C₆-NBD-PS for 10 min at 37°C (pH 7.4), back-exchanged at 4°C, and then chased at 37°C in the presence of defatted BSA at either pH 6.0 or 7.4. The time course for the disappearance of the fluorescent lipid from the cells at pH 6.0 was nearly identical to that obtained at pH 7.4 (data not shown).

Simultaneous Labeling with C₆-NBD-PS and C₆-NBD-SM

We examined the possibility that the enhanced uptake of C₆-NBD-PS under acidic conditions might result from the induction of fusion or engulfment of donor vesicles by the cells. In these experiments, donor vesicles containing both C₆-NBD-PS and C₆-NBD-SM were used. Previous studies using CHO-K1 cells and C₆-NBD-SM at neutral pH showed that the lipid could be internalized by the outer leaflet of the plasma membrane bilayer at low temperature and subsequently be internalized into the cells via endocytosis at 37°C (Koval and Pagano, 1989). Furthermore, acidic treatment of cells is known to block clathrin-dependent endocytosis (Davoust et al., 1987; Sandvig et al., 1987; Heuser, 1989).

Thus, if the pathway of C₆-NBD-SM uptake by the cells under acidic conditions was limited to endocytosis, acidic treatment would inhibit C₆-NBD-SM uptake. Conversely, if fusion or engulfment of donor vesicles by the cells caused the enhanced uptake of C₆-NBD-PS, the acidic treatment would induce enhanced uptake of C₆-NBD-PS as well as C₆-NBD-PS from the doubly labeled donor vesicles. As shown in Fig. 3, acidic treatment inhibited C₆-NBD-SM uptake to 40% of control values at pH 7.4, while the uptake of C₆-NBD-PS was enhanced, as shown in Fig. 1A. These results demonstrate that acid-induced fusion or engulfment of the donor vesicles by the cells was negligible under the experimental conditions used in this study. The enhanced C₆-NBD-PS uptake at acidic pH was also not due to a secondary effect on the inhibition of endocytosis since a hypertonic treatment which blocks clathrin-dependent endocytosis (Sleigh and Pagano, 1985; Martin and Pagano, 1987; Kobayashi and Arakawa, 1991) once present at the cytosolic leaflet of the plasma membrane, C₆-NBD-PS can transfer into other intracellular membranes since it exhibits rapid spontaneous transfer between membranes in vitro (Tanaka and Schroit, 1986).

Effects of Cytosolic Acidification on C₆-NBD-PS Uptake

Incubation of cells with acidic medium is known to cause acidification of the cytosol (Lallemand et al., 1984; Davoust et al., 1987). Indeed, we observed that the cytosolic pH approached 6.0 after incubation of the CHO-K1 cells in ABS (pH 6.0). To learn if C₆-NBD-PS uptake could be enhanced by intracellular acidification in the absence of extracellular acidification, we next used a "NH₃ load and release" protocol (Boron 1983). When CHO-K1 cells preincubated in ABS (pH 7.4) containing 30 mM NH₄Cl were transferred to NH₃-free HBS (pH 7.4), the cytosol was rapidly acidified to about pH 6.6, however, this value returned to almost the original pH within 3 min (Fig. 4B). When the NH₄⁺-loaded cells were transferred to NH₄⁺-free medium containing 1 mM amiloride, an inhibitor of the Na⁺/H⁺ exchanger which is the main machinery for pH homeostasis (Grinstein et al., 1989), the cytosol was acidified to about pH 6.3, and the acidification remained stable for at least 10 min (Fig. 4C). As expected, when the NH₄⁺-loaded cells were transferred to 30 mM NH₄Cl-containing HBS (pH 7.4) to eliminate any NH₃ gradient, there was no significant acidification of the cytosol even in the presence of amiloride (Fig. 4D).

As shown in Fig. 5, when the cells were incubated with C₆-NBD-PS under conditions which induced a transient acidification of the cytosol, C₆-NBD-PS uptake increased by about 20%, compared with the control value determined.
without the NH₃-gradient or amiloride. Under the conditions inducing a stable acidification of the cytosol, C₆-NBD-PS uptake was further enhanced by about 50%. This enhancement was not due to "secondary" effects of amiloride, since addition of amiloride in the absence of a NH₃-gradient did not affect C₆-NBD-PS uptake (Fig. 5). These results demonstrate that the C₆-NBD-PS uptake was enhanced by acidification of the cytosol even when this occurred in the absence of acidification of the extracellular medium. These results also eliminate the possibility of a simple equilibrium mechanism for C₆-NBD-PS uptake at acidic pH in which protonated PS molecules more easily cross the plasma membrane and are subsequently trapped there once de-protonation occurs. Such a mechanism is very unlikely since acidification of the cytosol in the absence of acidification of the extracellular medium should result in an unfavorable transmembrane pH gradient to trap acidic molecules like C₆-NBD-PS in the interior of the cell (Eastman et al., 1991).

Selection of Mutant Cells Defective in Non-endocytic Uptake of Fluorescent PS Analogs under Acidic Conditions

Taking advantage of our findings that acidic conditions inhibited the endocytic membrane flow and enhanced C₆-NBD-PS uptake by a non-endocytic pathway in CHO-K1 cells, we developed a screening system to isolate mutant cells defective in the uptake of fluorescent PS analogs by the non-endocytic pathway. After formation of replica colonies of CHO-K1 cells on polyester disks, the replica disks were incubated with fluorescent PS analogs under acidic conditions. As shown in Fig. 6, fluorescence was associated with colonies visualized by Coomassie staining whereas there was no appreciable fluorescent signal when the incubation was carried out at 4°C (data not shown) indicating that these procedures were useful as an in situ assay of fluorescent PS analog uptake. 1-C₆-2-C₂₂-NBD-PS was routinely used as the standard probe in the screening since we found that 1-C₆-2-C₂₂-NBD-PS produced a stronger signal than other fluorescent PS analogs including C₆-NBD-PS.

Isolation of UPS-1, a CHO Mutant Cell Line Defective in Uptake of Fluorescent PS Analogs

After screening about 20,000 colonies of mutagenized CHO-K1 cells, we obtained one clone partially defective in uptake of 1-C₆-2-C₂₂-NBD-PS and named it UPS-1 (uptake of fluorescent PS analogs). Uptake activity of 1-C₆-2-C₂₂-NBD-PS in UPS-1 cells at pH 6.0 was only 30% of that of the wild type (Table II). To compare energy-dependent uptake, we also determined the "ATP-dependent uptake activity" by subtracting the activity under ATP-depletion conditions from that under standard conditions. The ATP-dependent uptake of 1-C₆-2-C₂₂-NBD-PS in UPS-1 cells was less than...
25% of the wild type level (Table II). In addition, when C₆-
NBD-PS and 1-oleoyl-C₆-NBD-PS were used as probes,
UPS-1 cells showed similar deficiencies in ATP-dependent
uptake of these fluorescent PS analogs, while there was no
difference in uptake of 1-palmitoyl-2-C₆-NBD-sn-glycerol-
3-phosphocholine between UPS-1 and the wild type cells.
Although the PS transbilayer transport system is thought
to also transport phosphatidylethanolamine (reviewed in
Schroit and Zwaal, 1991; Devaux 1992; Zachowski, 1993), a
defect in uptake of 1-palmitoyl-2-C₆-NBD-sn-glycerol-
3-phosphoethanolamine in UPS-1 cells was not obvious (Ta-
ble II) apparently because this probe was not efficiently
recognized by the PS transbilayer transport system (Colleau et
al., 1991; Connor et al., 1992). When CHO-K1 cells were
labeled with 1-palmitoyl-2-C₆-NBD-sn-glycerol-3-phospho-
ethanolamine or 1-palmitoyl-2-C₆-NBD-sn-glycerol-3-phos-
phocholine at pH 7.4 at 37°C for 10 min, a punctate pattern
of intracellular fluorescence was observed by fluorescence
microscopy which was inhibited under acidic conditions
(data not shown), suggesting that these fluorescent phospha-
tidylethanolamine and phosphatidylethanolamine analogs were in-
ternalized in CHO-K1 cells mainly by the endocytic pathway
at pH 7.4 at 37°C. Moreover we found that 1-hexanoyl-2-
C₆-NBD-PS was not appreciably incorporated by the wild
type or UPS-1 cells, supporting the idea that the acyl chain
composition as well as the nature of polar head group are im-
portant in determining the transbilayer movement of PS. These
results suggest that a non-endocytic pathway for fluorescent
PS analogs was specifically impaired in UPS-1 cells. It
should also be noted that there was no difference in tempera-
ture sensitivity of either uptake activity of fluorescent PS
analogs or cell growth between UPS-1 cells and the wild type
cells when they were examined at 33°C, 37°C, and 39°C (data
not shown).

A Specific Defect in a Non-endocytic Pathway
Was Responsible for Uptake of Fluorescent PS
Analogs in UPS-1 Cells

To confirm that the deficiency in UPS-1 cells was restricted
to the non-endocytic pathway for uptake of fluorescent PS

Table II. Uptake of Various Fluorescent Analogs of Phospholipids in CHO-K1 and UPS-1 Cells under Acidic
Conditions

NBD-lipids	Cells	ABS	ABS+ ATP-dependent	
1-C₆-2-C₁₂-NBD-PS	CHO-K1	4.00	0.56 ± 0.07	3.44
	UPS-1	1.27	0.48 ± 0.05	0.79
1-Palmitoyl-2-C₆-NBD-PS	CHO-K1	2.95	0.29 ± 0.10	2.66
	UPS-1	1.19	0.40 ± 0.10	0.79
1-Oleoyl-2-C₆-NBD-PS	CHO-K1	1.28	0.29 ± 0.10	0.99
	UPS-1	0.51	0.26 ± 0.05	0.25
1-Hexanoyl-2-C₆-NBD-PS	CHO-K1	<0.02	not tested	
	UPS-1	<0.02	not tested	
1-Palmitoyl-2-C₆-NBD-PC₆	CHO-K1	0.36	0.10 ± 0.03	0.24
	UPS-1	0.35	0.10 ± 0.03	0.24
1-Palmitoyl-2-C₆-NBD-PE₆	CHO-K1	0.78	0.11 ± 0.05	0.67
	UPS-1	0.67	0.10 ± 0.05	0.57

* Monolayers of CHO-K1 and UPS-1 cells were incubated with 20 μM NBD-lipid donor vesicles at 37°C for 10 min in ABS (pH 6.0) for standard conditions
or in ABS+ ATP-depletion conditions. After back-exchange, NBD-lipid fluorescence in the cells was quantified, and is shown as the mean ± SD
(n = 3). ATP-dependent uptake activity was estimated by subtracting the uptake activity under ATP-depletion conditions from that under standard conditions.

† 1-palmitoyl-2-C₆-NBD-sn-glycerol-3-phosphocholine.
‡ 1-palmitoyl-2-C₆-NBD-sn-glycerol-3-phosphoethanolamine.
analogs, cells were labeled with three different types of NBD-phospholipid analogs at pH 7.4 and observed under the fluorescence microscope. When the cells were incubated with 1-C6-2-C12-NBD-PS, various intracellular organelles of the wild type cells were strongly labeled (Fig. 7 A) while the intracellular fluorescence of the UPS-1 cells was much fainter (Fig. 7 B), consistent with the results of the uptake assay at pH 6.0 (Table II). In contrast, when the cells were incubated with C6-NBD-SM to monitor endocytic membrane flow, UPS-1 cells showed no significant difference in the distribution of punctate, intracellular fluorescence, compared to the wild type cells (Fig. 7, C and D). This observation indicated that lipid internalization by the endocytic pathway in UPS-1 cells was normal. We also used 1-palmitoyl-2-C6-NBD-sn-glycero-3-phosphate, a fluorescent phosphatidic acid analog to make a qualitative comparison of other intracellular membranes in UPS-1 and the wild type cells. This lipid is dephosphorylated to fluorescent diacylglycerol at the cell surface, and after spontaneous transbilayer movement at the plasma membrane, labels various intracellular membranes such as the nuclear envelope and endoplasmic reticulum (Pagano and Longmuir, 1985). Incubation of cells with the fluorescent phosphatidic acid analog showed similar labeling patterns in both cell types (Fig. 7, E and F), indicating that there were no obvious differences in the amount or distribution of these intracellular membranes in the two cell types.

The UPS-1 Phenotype Was Unrelated to Multidrug Resistance

Overexpression of P-glycoprotein (mdr1 gene product) is known to give the host cells a multidrug-resistant phenotype, which results from accelerated efflux of various amphipathic drugs from the cells (reviewed in Gottesman and Pastan, 1993). To test whether the phenotype of UPS-1 cells was related to multidrug resistance, intracellular labeling with 1-C6-2-C12-NBD-PS at physiological pH was compared among the wild type CHO-K1, UPS-1, and ALLN° cells, a P-glycoprotein-overproducing CHO variant (Sharma et al., 1992). As shown in Fig. 8, the fluorescence intensity of labeled ALLN° cells was similar to that of the wild type CHO-K1 cells while intracellular labeling of UPS-1 cells was much fainter. Moreover, exposure of these cells to 0.1 mM verapamil, which competitively suppresses drug efflux via the P-glycoprotein (Yusa and Tsuruo, 1989), did not affect the labeling of these cells with 1-C6-2-C12-NBD-PS (Fig. 8). We further confirmed that the wild type CHO-K1 and UPS-1 cells showed similar sensitivity to colchicine, while ALLN° cells were much more resistant to colchicine (data not shown). These results indicated that the uptake deficiency of fluorescent PS analogs by UPS-1 cells was unrelated to the multidrug resistance conferred by overproduction of P-glycoprotein.

Discussion

Cytosolic Acidification Stimulates Uptake of C6-NBD-PS by a Non-endocytic Pathway

In the present study, we showed that acidic treatment of CHO-K1 cells enhanced the uptake of C6-NBD-PS without inducing non-specific permeabilization of the cells or altering the rate of disappearance of C6-NBD-PS from cells. The major pathway for C6-NBD-PS uptake in CHO-K1 cells at 37°C under acidic (as well as neutral) conditions was most likely through the ATP-dependent PS transporter. This conclusion is supported by our observations of: (a) the intracellular distribution of C6-NBD-PS fluorescence; (b) the inhibition of C6-NBD-PS uptake by ATP depletion and NEM treatment; and (c) the differential uptake of C6-NBD-PS and C6-NBD-SM from doubly labeled lipid vesicles. Furthermore, we demonstrated that cytosolic acidification, without extracellular acidification, also enhanced C6-NBD-PS uptake. These results suggest that cytosolic acidification stimulates the PS translocase system at the plasma membrane of CHO-K1 cells.

The physiological significance of the stimulation of the PS translocase at acidic pH is not known. It has been suggested that this transporter may play a crucial role in maintaining an asymmetric distribution of PS at the plasma membrane (reviewed in Schroit and Zwaal, 1991; Devaux, 1992; Zachowski, 1993), and it is likely that plasma membrane lipid asymmetry may be perturbed during vesicle fusion and fission events which occur as normal consequences of endocytosis, secretion, and cell division. Various organelles including endosomes, secretory vesicles, and the trans-Golgi network are mildly acidic (pH 5.5-6.5) (reviewed in Anderson and Orci, 1988; Forgac, 1989). The perturbation of lipid asymmetry at the plasma membrane during secretion and endosome recycling events might be accompanied by leakage of protons from these acidic compartments into the cytosol, causing a "local acidification" which enhances PS translocase activity. It is unknown whether low cytosolic pH directly activates the PS translocase or indirectly affects other factor(s) which can stimulate its activity. If there is an interaction between the PS transporter and membrane cytoskeleton, such interaction might participate in regulation of the PS transport activity since cytosolic acidification is known to cause redistribution of fodrin in MDCK cells (Eskelinen et al., 1992).

A Mutant Cell Line Partially Defective in the Non-endocytic Uptake of Fluorescent PS Analogs

Although genetic approaches can be very useful for biological studies, no successful report of the isolation of mutant cells defective in the uptake of PS or its analogs has been reported. Furthermore, if one wants to select mutant cells defective in the non-endocytic pathway of PS uptake, it is important to use a screening method which minimizes unwanted background due to endocytosis of the PS probe. Although energy depletion or chemical modification of cells and low temperature conditions are known to block endocytosis, these treatments are difficult to employ in mutant screening since they also inhibit the non-endocytic uptake pathway (Fig. 2). Anucleated cells such as human erythrocytes, in which endocytosis does not occur, are advantageous to investigate the transbilayer movement of PS in the absence of endocytosis, however, these cells cannot serve as the parental cells for mutant selection. Our finding that acidic conditions inhibited internalization of membrane lipids by the endocytic pathway and enhanced uptake of C6-NBD-PS by the non-endocytic pathway in CHO-K1 cells allowed us to develop a convenient screening method for mutants in the...
non-endocytic pathway and led us to obtain one mutant clone, UPS-1, which is defective in the uptake of fluorescent PS analog by the non-endocytic pathway.

Several lines of evidence suggested that a non-endocytic pathway responsible for uptake of fluorescent analogs was specifically impaired in UPS-1 cells. First, substrate specificity of NBD-phospholipid uptake revealed that UPS-1 cells showed a deficiency in uptake of NBD-PS analogs which are known to be good probes for transbilayer PS movement, but no deficiency in uptake of other NBD-phospholipids (Table II and Fig. 7). Second, fluorescence microscopy demonstrated that UPS-1 cells internalized C6-
NBD-SM like the wild type cells (Fig. 7, C and D) indicating that UPS-1 cells sustained normal membrane flow by endocytosis. It is therefore unlikely that non-specific membrane perturbations resulted in the UPS-1 phenotype. Last, since UPS-1 cells showed an uptake deficiency of fluorescent PS analogs at both acidic and neutral pH (Table II and Fig. 7), the UPS-1 phenotype was not due to an impairment of acidic stimulation of PS uptake. While uptake of NBD-PS was substantially impaired in UPS-1 cells, some ATP-dependent uptake of fluorescent PS analogs by UPS-1 cells relative to the wild type cells was still observed (Table II). These observations might imply that there were at least two different types of PS transport systems in the wild type cells and only one of these putative isotypes was impaired in UPS-1 cells. Alternatively, only a partial inactivation of the responsible protein may have occurred in UPS-1 cells. It is also possible that one gene of a functional diploid of the same PS transport system might be disrupted in the UPS-1 cells. However, this possibility seems unlikely since ATP-dependent uptake activity of fluorescent PS analogs in UPS-1 was much less than half of the wild type levels (Table II). Since the net uptake of fluorescent PS represents a balance between the influx and efflux of the fluorescent lipid, another possible explanation for the UPS-1 phenotype is that it results from an enhanced efflux of fluorescent PS from the cells. We could not completely eliminate this possibility because no specific inhibitors of PS influx via transbilayer movement are currently available. However, we were able to demonstrate that mdr-1 overproduction did not confer the UPS-1 phenotype (Fig. 8).

Overproduction of mdr-1 P-glycoprotein confers resistance to various chemotherapeutic agents since the P-glycoprotein can function as an ATP-driven transmembrane efflux pump of these drugs (reviewed in Gottesman and Pastan, 1993). Based on observations that the P-glycoprotein recognizes various types of compounds without significant structural similarities but with a common amphipathic property, it has been hypothesized that the P-glycoprotein might be a transbilayer lipid flipase with no strict substrate specificity (Higgins and Gottesman, 1992). Although the phenotype of UPS-1 cells was clearly unrelated to multidrug resistance conferred by overproduction of mdr-1 P-glycoprotein (Fig. 8), the machinery for PS transbilayer movement could be a member of "ATP-binding cassette transporters (Higgins, 1992)." Indeed, the hypothesis of lipid transbilayer movement by ATP-binding cassette transporters was recently substantiated. The mouse mdr-2 gene had been initially isolated as a gene highly homologous to mdr-1 gene, however, overproduction of the mdr-2 protein in cells did not cause any appreciable drug resistance (Gros et al., 1988). A recent study with homozygous mutant mice demonstrated that disruption of the mdr-2 gene resulted in dysfunction of excretion of phosphatidylcholine from the apical membrane (bile canalicular membrane) of hepatocytes into bile ducts and strongly suggested that the mdr-2 protein functioned as an outward transporter of phosphatidylcholine at the apical membrane in hepatocytes (Smit et al., 1993). On the other hand, an inward transbilayer movement of phosphatidylcholine at the plasma membrane has also been suggested to occur in some cultured mammalian cells as seen with fluorescent analogs of phosphatidylcholine (Sleight and Abanto, 1989), and a similar uptake system for phosphatidylcholine at the plasma membrane in yeast cells was recently demonstrated (Kean et al., 1993). Hopefully, mutant cells like UPS-1 will be useful not only for investigation of the physiological meaning of these lipid transport systems but also for cloning the genes responsible for them by functional rescue methodology.

We thank Robert Simoni for the gift of ALLN50° cells. We thank also Ona Martin for expert technical assistance and for critical reading of the manuscript.

K. Hanada was supported by a long-term fellowship from the Human Frontier Science Program. Supported by U.S. Public Health Service grant R37 GM-22942 to R. E. Pagano.

Received for publication 9 May 1994 and in revised form 12 December 1994.

References

Anderson, R. G. W., and L. Orci. 1988. A view of acidic intracellular compartments. J. Cell Biol. 106:339-353.
Bligh, E. G., and W. J. Dyer. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37:911-917.
Boron, W. F. 1983. Transport of proton and of ionic weak acids and bases. J. Membr. Biol. 2:1-16.
Colleau, M., P. Hervé, P. Fellmann, and P. F. Devaux. 1991. Transmembrane diffusion of fluorescent phospholipids in human erythrocytes. Chem. Phys. Lipids. 57:29-37.
Conner, J., C. H. Pak, R. F. A. Zwaal, and A. L. Schroit. 1992. Bidirectional transbilayer movement of phospholipid analogs in human red blood cells: evidence for an ATP-dependent and protein-mediated process. J. Biol. Chem. 267:19412-19417.
Dauts, G., and S. H. Zigmund. 1985. Inhibition of receptor-mediated but not fluid-phase endocytosis in polymorphonuclear leukocytes. J. Cell Biol. 101:1673-1679.
Davoust, J., J. Grunberg, and K. E. Howell. 1987. Two threshold values of low pH block endocytosis at different stages. EMBO (Eur. Mol. Biol. Organ.) J. 6:3601-3609.
Dawidowicz, E. A. 1987. Lipid exchange: Transmembrane movement, spontaneous movement, and protein-mediated transfer of lipids and cholesterol. Curr. Topics Membr. Transp. 29:129-174.
Devaux, P. F. 1992. Protein involvement in transmembrane lipid asymmetry. Annu. Rev. Biophys. Biomol. Struct. 21:417-439.
Di Virgilio, F., B. C. Meyer, S. Greenberg, and S. C. Silverstein. 1988. Fc receptor-mediated phagocytosis occurs in macrophages at exceedingly low cytosolic Ca²⁺ levels. J. Cell Biol. 106:651-666.
Düögünes, N., H. Kong, P. A. Baldwin, J. Bentz, S. Nir, and D. Papahadjopoulos. 1987. Fusion of phospholipid vesicles induced by divalent cations and proteins: modulation by phase transitions free fatty acids monovalent cations, and polyamines. In Cell Fusion. A. E. Sowers, editor. Plenum Press, New York. 241-267.
Eastman, S. J., M. J. Hope, and P. R. Cullis. 1991. Transbilayer transport of phosphatidylcholine in response to transmembrane pH gradients. Biochemistry. 30:1740-1745.
Eskenl, S., V. Huotari, R. Sormunen, R. Palouvoori, J. W. Kok, and V.-P. Lehto. 1992. Low intracellular pH induces redistribution of fodrin and in-stabilization of lateral walls in MDCK cells. J. Cell Physiol. 150:122-153.
Esmon, C. T. 1993. Cell mediated events that control blood coagulation and vascular injury. Annu. Rev. Cell Biol. 9:1-26.
Forcag, M. 1989. Structure and function of vacuolar class of ATP-driven proton pumps. Physiol. Rev. 69:765-796.
Gottesman, M. M., and I. Pastan. 1993. Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu. Rev. Biochem. 62:385-427.
Grinstein, S., D. Rotin, and M. J. Mason. 1989. Na⁺H⁺ exchange and...
growth factor-induced cytosolic pH change: Role in cellular proliferation. *Biochim. Biophys. Acta.* 988:73–97.

Gros, P., M. Raymond, J. Bell, and D. Housman. 1988. Cloning and characterization of a second member of the mouse mdr gene family. *Mol. Cell. Biol.* 8:2770-2778.

Hanada, K., M. Nishijima, and Y. Akamatsu. 1990. A temperature-sensitive mammalian cell mutant with thermolabile serum palmitoyltransferase for the sphingolipid biosynthesis. *J. Biol. Chem.* 265:21372-21412.

Heuser, J. 1989. Effects of cytosolic acidification on clathrin lattice morphology. *J. Cell Biol.* 108:401 -411.

Heuser, J. E., and R. G. W. Anderson. 1989. Hypertonic media inhibit receptor-mediated endocytosis by blocking clathrin-coated pit formation. *J. Cell Biol.* 108:389 -400.

Higgins, C. F. 1992. ABC transporters: From microorganisms to man. *Trends Biochem. Sci.* 17:18-21.

Koval, M., and R. E. Pagano. 1990. Sorting of an internalized plasma membrane lipid between recycling and degradative pathways in normal and Niemann-Pick-A type fibroblasts. *J. Cell Biol.* 112:492-442.

Koval, M., and R. E. Pagano. 1990. Sorting of an internalized plasma membrane lipid between recycling and degradative pathways in normal and Niemann-Pick-A type fibroblasts. *J. Cell Biol.* 112:492-442.

Koval, M., and R. E. Pagano. 1990. Sorting of an internalized plasma membrane lipid between recycling and degradative pathways in normal and Niemann-Pick-A type fibroblasts. *J. Cell Biol.* 112:492-442.

Koval, M., and R. E. Pagano. 1990. Sorting of an internalized plasma membrane lipid between recycling and degradative pathways in normal and Niemann-Pick-A type fibroblasts. *J. Cell Biol.* 112:492-442.