Targeted Antitubercular Peptide Nanocarriers Prepared by Flash NanoPrecipitation with Hydrophobic Ion Pairing

Kurt D. Ristroph,* Simon A. McManus, Gauri Shetye, Sang Hyun Cho, Dennis Lee, Zoltan Szekely, Patrick J. Sinko, Scott G. Franzblau, and Robert K. Prud’homme*

1. Introduction

Tuberculosis remains a major threat to human health worldwide, and the field of nanomedicine is increasingly looked to for solutions to the complex set of challenges posed by such diseases. The goal of this work was to demonstrate the encapsulation of ecumicin, a novel antitubercular peptide, into nanocarriers surface-decorated with hexamannose-terminated polymer chains for enhanced targeting to macrophages. Mycobacterium tuberculosis uses alveolar macrophages as a host in the human body, and macrophage surface mannose receptors have been studied as a means of promoting specific uptake. Encapsulating peptide and protein therapeutics into nanocarriers for this type of targeting and controlled delivery remains a challenge, with typical formulations exhibiting low drug loadings (mass drug/mass nanocarrier) and poor encapsulation efficiencies. We here employ a combination of Flash NanoPrecipitation (FNP) and hydrophobic ion pairing to encapsulate ecumicin, a natural cyclic tridecapptide, targeting to macrophages for improved PK and targeted macrophage uptake in the body.
2. Experimental Section

2.1. Materials

Ecumicin free base (FB) was purified from the fermentation broth of *Nonomurea* sp. MJM5123 as previously described. Sodium oleate (≥99%), α-tocopherol succinate (VitE succinate), and N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC-HCl) were purchased from Sigma-Aldrich. Invitrogen Alexafluor 488 succinimidyl ester (Alexafluor NHS) dye and triethylamine (TEA) were purchased from Thermo Fisher Scientific. 5 kDa poly(caprolactone)-block-5 kDa poly(ethylene glycol) (PCL–b–PEG5k) was purchased from PolymerSource. PCL–b–PEG–NH₂ polymers (PDI 1.09) were purchased from Nanosoft Polymers. PCL–b–PEG was chosen for its biocompatibility and commercial availability of PCL–b–PEG–NH₂ for conjugating with hexamannose. Other hydrophobic blocks appropriate for use in block copolymers for FNP include poly(lactic acid), poly(styrene), and poly(lactic-co-glycolic acid).[9,16] The molecular weights of the PCL and PEG blocks were consistent with previous nanocarrier formulation by FNP with hydrophobic ion pairing.[17,18] A discussion of the effect of molecular weight on nanocarriers formulated by FNP can be found in D’Addio et al.,[19] Saad and Prud’homme,[20] and Zhu.[21] Hexamannose was a gift from GlaxoSmithKline. Tetrahydrofuran (THF), dimethyl sulfoxide (DMSO), and methanol (MeOH) were obtained from Sigma-Aldrich and of HPLC grade. MilliQ (MQ) ultrapure water was used throughout the study. Corning 96 well, clear, circular flat bottom, half-area microplates were used for the bicinchoninic acid (BCA) assay. Materials used in the study are shown in Figure 1.

2.2. Block Copolymer Conjugation

Conjugation of PCL–b–PEG5k–NH₂ to Hexamannose: Conjugation was carried out using 1 eq. of PCL–b–PEG5k–NH₂, 2 eq. of hexamannose, 3 eq. of TEA and 2 eq. of EDC-HCl. Conjugation
was carried out for 24 h in anhydrous DMF under argon. After conjugation, 3 reaction volumes of water were slowly added. Dialysis was carried out 4× in distilled deionized water using 5 kDa MWCO dialysis tubing. Purified product was lyophilized.

Conjugation of PCL\textsubscript{5k}-b-PEG\textsubscript{5k}-NH\textsubscript{2} to Alexafluor488: Conjugation was carried out using 1 eq. of PCL\textsubscript{5k}-b-PEG\textsubscript{2k}-amine, 2 eq. of Alexafluor488-NHS, and 1.5 eq. of TEA. Conjugation was carried out for 8 h in anhydrous DMF under argon. After conjugation, 3 reaction volumes of water were slowly added. Dialysis was carried out 4× in distilled deionized water using 5 kDa MWCO dialysis tubing. Purified product was lyophilized, and conjugation was found to be quantitative by Alexafluor488 fluorescence.

2.3. Nanocarrier Formulation and Characterization

Nanocarriers (NCs) were formed via Flash NanoPrecipitation (FNP) with or without in situ hydrophobic ion pairing using a confined impinging jet (CIJ) mixer\cite{13,22,23} of the “CIJ-D” type described in Han et al.\cite{23} The micromixer used was the same as the 60 mL min−1 CIJ mixer denoted in Figure 1 of Feng et al., with a Reynolds number of ≈500–1000 during operation.\cite{24} In brief, ecumicin was dissolved along with PCL\textsubscript{5k}-PEG\textsubscript{5k}-hexamannose, and PCL\textsubscript{5k-}PEG\textsubscript{5k}-b-PEG\textsubscript{2k}-amine, 2 eq.

Table 1. Stream details for all formulations tested in this study.

Formulation name	Solvent stream	Antisolvent stream
Ecumicin FB, no HIP	5 mg mL−1 PCL\textsubscript{5k}-b-PEG\textsubscript{5k}	Water
Ecumicin FB 1:1 VitE succinate	5 mg mL−1 PCL\textsubscript{5k}-b-PEG\textsubscript{5k}	Water
Ecumicin FB 1:2 VitE succinate	5 mg mL−1 PCL\textsubscript{5k}-b-PEG\textsubscript{5k}	1.66 mg mL−1 VitE succinate
Ecumicin FB 1:4 VitE succinate	5 mg mL−1 PCL\textsubscript{5k}-b-PEG\textsubscript{5k}	Water
Ecumicin HCl 1:1 NaOL	5 mg mL−1 PCL\textsubscript{5k}-b-PEG\textsubscript{5k}	3.1 × 10−3 w HCl (1 eq.)
Ecumicin HCl 1:2 NaOL	5 mg mL−1 PCL\textsubscript{5k}-b-PEG\textsubscript{5k}	3.1 × 10−3 w HCl (1 eq.)
Ecumicin HCl 1:4 NaOL	5 mg mL−1 PCL\textsubscript{5k}-b-PEG\textsubscript{5k}	3.1 × 10−3 w HCl (1 eq.)
Ecumicin 1:4 VitE succinate no targeting	5.3 mg mL−1 PCL\textsubscript{5k}-b-PEG\textsubscript{5k}	Water
Ecumicin 1:4 VitE succinate low targeting	5.084 mg mL−1 PCL\textsubscript{5k}-b-PEG\textsubscript{5k}	0.186 mg mL−1 PCL\textsubscript{5k}-b-PEG\textsubscript{5k}AF
Ecumicin 1:4 VitE succinate optimal targeting	5.960 mg mL−1 PCL\textsubscript{5k}-b-PEG\textsubscript{5k}	5 mg mL−1 VitE succinate
VitE acetate control NPs no targeting	5.3 mg mL−1 PCL\textsubscript{5k}-b-PEG\textsubscript{5k}	Water
VitE acetate control NPs low targeting	5.084 mg mL−1 PCL\textsubscript{5k}-b-PEG\textsubscript{5k}	0.186 mg mL−1 PCL\textsubscript{5k}-b-PEG\textsubscript{5k}AF
VitE acetate control NPs optimal targeting	5.960 mg mL−1 PCL\textsubscript{5k}-b-PEG\textsubscript{5k}	5 mg mL−1 VitE succinate
VitE acetate control NPs	5.114 mg mL−1 PCL\textsubscript{5k}-b-PEG\textsubscript{5k}	Water
VitE acetate control NPs	0.213 mg mL−1 PCL\textsubscript{5k}-b-PEG\textsubscript{5k}	0.186 mg mL−1 PCL\textsubscript{5k}-b-PEG\textsubscript{5k}AF
VitE acetate control NPs	5.084 mg mL−1 PCL\textsubscript{5k}-b-PEG\textsubscript{5k}	0.186 mg mL−1 PCL\textsubscript{5k}-b-PEG\textsubscript{5k}AF
VitE acetate control NPs	5.960 mg mL−1 PCL\textsubscript{5k}-b-PEG\textsubscript{5k}	5 mg mL−1 VitE succinate

The organic solvent stream was then impinged against an equal volume of an antisolvent stream consisting of water (for all formulations using VitE succinate as the hydrophobic counterion), as well as for the formulation utilizing no counterion) or 3.1 × 10−3 M HCl (1 eq. to the amine group on ecumin; for the formulations using sodium oleate as the hydrophobic counterion) to drive precipitation of hydrophobic species present in the system: namely, the ionic complex formed from ecumin and hydrophobic counterion, and the PCL blocks of the PCL-b-PEG polymer. The mixer effluent was collected in a water reservoir to dilute the organic solvent content to 10% by volume. A series of targeted NCs containing α-tocopherol acetate (VitE acetate) instead of ecumin:VitE succinate was also prepared as a negative control. Stream details for all formulations tested are listed in Table 1.

NC size, polydispersity index (PDI), and zeta potential were measured using a Malvern Zetasizer Nano (Malvern Instruments). NCs were diluted tenfold in deionized (DI) water prior to dynamic light scattering (DLS) size measurement to reduce multiple scattering, and measurements were performed in triplicate. The PDI is obtained from the Taylor series expansion of the autocorrelation function, and is implemented into the Malvern Nanosizer data analysis software. A ratio of the second to the first moment is defined as the PDI, where values of 0.1–0.2 are generally obtained for monodisperse particles.\cite{25,26} Ecumin encapsulation efficiency of the formulation containing a 1:4 ecumin:VitE succinate was assessed. Following formulation, 1 mL of NC suspension was filtered over a 100 kDa MWCO Amicon filter by centrifuging at 5000 g for 5 min. The flow-through was collected, and the concentration of unencapsulated
ecumicin was quantified using the BCA assay. Encapsulation efficiency was calculated as EE = 1 − \(\frac{c_{\text{ecumicin in unseparated sample}}}{c_{\text{ecumicin in floothrough}}} \).

Lyophilization conditions were optimized to improve NC stability during storage and shipping. After formulation, trehalose and/or 2-hydroxypropyl-beta-cyclodextrin (HP/\(\beta \)CD) were added to the NC suspension, which was then rapidly frozen by immersion in a bath of dry ice and acetone. A VirTis Advantage freeze dryer was used to lyophilize the frozen NCs. Lyophilized/redispersed NCs were used for mouse PK studies, and frozen/thawed NCs were used for ecumicin activity tests in macrophage culture.

2.4. Nanocarrier Pharmacokinetics

The mice pharmacokinetics of ecumicin in the untargeted 1:4 ecumicin:VitE succinate NC formulation were assessed by BioDuro LLC (IACUC Protocol BD-201804135 and BD-202001004), accredited by AAALAC (Unit #001516). In brief, lyophilized ecumicin NCs were resuspended in 1:4 ethanolo10% betahydroxypropylcyclodextrin:PEG400 and dosed in female fed-state BALB/c mice, and the concentration of ecumicin in the plasma was measured over time using LC/MS (AB Sciex 650). Dosing routes and dosages were oral (120 mg kg\(^{-1}\); 10 mL kg\(^{-1}\)), intraperitoneal (50 mg kg\(^{-1}\); 4 mL kg\(^{-1}\)), and subcutaneous (40 mg kg\(^{-1}\); 4 mL kg\(^{-1}\)). Unencapsulated ecumicin in a solution of 5% N-Methyl-2-pyrrolidone (NMP)/20% PEG 400/10% Solutol 15 HS/65% H\(_2\)O was also dosed 1P (50 mg kg\(^{-1}\); 5 mL kg\(^{-1}\)) as a control. 18 mice were dosed per administration route.

2.5. Nanoformulated Ecumicin Activity in Macrophage Culture

Inhibition of growth of \(M. \) \(\text{tuberculosis} \) Erdman (ATCC 35801) in a macrophage cell culture was assessed as previously described.\(^{[12,27-29]} \) Briefly, J774A.1 cells were seeded on 13-mm coverslips in 24-well plates at the concentration of \(\approx 1\times10^5 \) cells mL\(^{-1}\) in Dulbecco’s modified Eagle’s medium (DMEM). After overnight incubation at 37°C, 5% CO\(_2\), J774 cells were infected with \(M. \) \(\text{tuberculosis} \) Erdman (1 \(\times \) 10\(^5\) cells mL\(^{-1}\)) for 3 h and extracellular bacilli were removed by washing with HBSS buffer. Cultures were incubated in DMEM media overnight at 37°C, 5% CO\(_2\). The next day, test nanocarriers were added to individual wells. All experimental conditions were set up in triplicate. Before treatment (T0) (for untreated controls) and after 7 days, the incubation medium was removed, and macrophages were lysed with 200 \(\mu \)L of 0.25% SDS. After 10 min of incubation at 37°C, 200 \(\mu \)L of fresh medium was added. The contents of the wells were transferred to a microtube and sonicated (model 1510; Branson Ultrasonics, Danbury, CT) for 15 s, and 1:1, 1:10, 1:100, and 1:1000 dilutions were plated on 7H11 (Difco) agar plates. Colonies were counted after incubation at 37°C for 2–3 weeks.

3. Results and Discussion

3.1. Block Copolymer Conjugation

Hexamannose conjugation to PCL\(_{5k}\)-b-PEG\(_{5k}\)-amine was quantified by IH NMR. PCL\(_{5k}\)-b-PEG\(_{5k}\)-hexamannose was dissolved in deuterated methanol which was then micellized in deuterated water, thereby exposing the PEG and hexamannose to deuterated solvent. Conjugation was quantified by integrating the 1H signal from the non-exchangeable protons in the hexamannose linker and the methylene groups in the PEG subunits. Comparing integrated with expected valued showed a conjugation efficiency of 96.3% (Figure S1, Supporting Information).

3.2. Nanocarrier Formulation and Characterization

The results of the nanoformulation screen are presented in Table 2. Ecumicin was successfully formulated in monodisperse nanocarriers smaller than 100 nm in diameter when complexed with 4 molar equivalents of VitE succinate to ecumicin. When no hydrophobic counterion was present in FNP, or when only 1 molar equivalent of VitE succinate was present, microm-scale aggregates were observed, indicating a failure of ecumicin to precipitate on the time scale required for FNP. Formulations containing 2 or 4 molar equivalents of sodium oleate initially formed nanocarriers around 150 nm in diameter but exhibited unacceptable Ostwald ripening when dialyzed against deionized water using 6–8k MWCO dialysis tubing (Thermo Fisher Scientific) to remove organic solvent prior to freezing and lyophilization. As a result, the formulation containing 1:4 ecumicin:VitE succinate was selected for further study and was the basis for the targeted formulations. Figure 2 shows DLS traces of this formulation immediately after FNP; following dialysis; following freeze-thaw in 5% trehalose and 5% HP/\(\beta \)CD; and following freezing (in HP/\(\beta \)CD solution at a 1:2 NC: HP/\(\beta \)CD mass ratio), lyophilization, and redispersion in deionized water. The ecumicin encapsulation efficiency of this formulation was measured to be 70%, meaning the drug loading is \(\approx \) 24 wt%.

Table 2. Ecumicin nanocarrier size and polydispersity, untargeted formulations.
Formulation
Ecumicin no HIP
Ecumicin FB 1:1 VitE succinate
Ecumicin FB 1:2 VitE succinate
Ecumicin FB 1:4 VitE succinate, after dialysis
Ecumicin FB 1:4 VitE succinate, after freeze-thaw (5 wt% trehalose 5 wt% HP/\(\beta \)CD)
Ecumicin FB 1:4 VitE succinate, after lyophilization (1:2 NCs:HP/\(\beta \)CD)
Ecumicin HCl 1:2 NaOL
Ecumicin HCl 1:2 NaOL after dialysis
Ecumicin HCl 1:2 NaOL after freeze-thaw (5 wt% trehalose 5 wt% HP/\(\beta \)CD)
Ecumicin HCl 1:4 NaOL after dialysis
Ecumicin HCl 1:4 NaOL after freeze-thaw (5 wt% trehalose 5 wt% HP/\(\beta \)CD)
The zeta potential of this formulation was measured to be −2.2 mV, indicating a neutral particle surface consistent with a dense PEG brush layer.\[30\]

Table 3 and Figure 3 give the sizes, polydispersities, and DLS traces of the targeted ecumicin formulations and targeted VitE acetate control formulations immediately following FNP. In all cases, monodisperse NCs 45–60 nm in diameter were formed. The size of NPs produced by FNP is largely a function of the mass ratio between core and stabilizer and the total solids concentration fed into the process, so with the same feed concentration of stabilizer, these formulations were expected to have similar sizes.\[30\]

3.3. Nanocarrier Pharmacokinetics

The single-dose mouse PK profiles for untargeted ecumicin NCs are shown in Figure 4. Plasma concentrations up to 10.6 µg mL\(^{-1}\) (6.6 × 10\(^{-6}\) M) were measured for ecumicin NCs dosed IP. This concentration exceeds the MIC of ecumicin against three strains of extremely drug resistant (XDR) tuberculosis, reported by Gao et al. at 0.31–0.62 µg mL\(^{-1}\), by more than an order of magnitude.\[3\] The dose-normalized AUC over 24 h for ecumicin NCs dosed IP was 3550 ± 0.2 ng kg\(^{-1}\) mg mL\(^{-1}\), which exceeded the dose-normalized AUC for unencapsulated ecumicin dosed IP (1440 ± 0.2 ng kg\(^{-1}\) mg mL\(^{-1}\)) by a factor of 2.5.

3.4. Nanoformulated Ecumicin Activity in Macrophage Culture

The activity of nanoformulated ecumicin in targeted nanoformulations against M. tuberculosis is shown in Figure 5. At both dosing levels and all three levels of targeting, no significant difference is observed between untreated samples after six days (T6) and NCs containing the inactive VitE acetate core. At 1 µg mL\(^{-1}\) ecumicin, the formulations prepared at no, low, and high hexamannose targeting produced 1.0-, 3.1-, and 3.8-log\(_{10}\) reductions in the number of colony-forming units measured at the end of the assay. At 0.2 µg mL\(^{-1}\) ecumicin, the formulation prepared with no targeting exhibited no reduction in CFU count, but the low and high targeting formulations produced 1.6- and 2.4-log\(_{10}\) reductions in CFU count. According to the student’s t test, significant differences in CFU reduction between no treatment (T6) and untargeted ecumicin NCs, and between untargeted ecumicin NCs and NCs with low targeting, were observed at the 1 µg mL\(^{-1}\) dosing level.

At 0.2 µg mL\(^{-1}\) ecumicin, the CFU reduction differences between no and low targeting, and between low and high targeting were significant (p < 0.01). Taken together, these results suggest that incorporating hexamannose-terminated block copolymers into FNP is an effective means of targeting to macrophages, and that the NCs with higher surface presentation of hexamannose (74% of chains terminated with hexamannose vs 4%) were more effective at doing so.

4. Conclusions

The results presented in this study demonstrate the utility of FNP with hydrophobic ion pairing to encapsulate therapeutic peptides into nanocarriers at higher encapsulation efficiency and drug loading than typically achievable in the literature. α-tocopherol succinate was found to be an effective hydrophobic counterion for forming an ionic complex with ecumicin.
of sufficient hydrophobicity to drive the precipitation required of a core material in FNP. It remains unclear why sodium oleate was a less effective hydrophobic counterion in this application, as it has been used effectively in other hydrophobic ion pairing studies in the literature.\[31–35\] A possible explanation is that an ionic complex formed from ecumicin and oleate does not assemble into an ordered liquid crystalline phase in the NC cores. We have reported previously that in a series of nanocarrier formulations prepared by FNP with hydrophobic ion pairing of another cationic peptide, polymyxin B, formulations with no internal liquid crystalline ordering experienced diminished colloidal stability and rapid ripening compared to formulations with internal ordering (akin to the ecumicin:oleate formulations versus the ecumicin:α-tocopherol succinate formulations).\[17\] The physical chemistry of the hydrophobic counterions used during formulation, as well as the peptide:counterion charge ratio, controlled internal phase formation. It is possible that a complex formed from ecumicin and α-tocopherol succinate exhibits more stable internal ordering than one formed from ecumicin and oleate, but this remains to be verified experimentally.

This work also demonstrates the ease of tuning the composition of surface polymer(s) afforded by FNP. The three targeted formulations were stabilized by a combination of PCL5k-b-PEG5k, PCL5k-b-PEG2k-Alexafluor488 (originally intended for visual tracking experiments; these tests were not carried out and the results could not be shown), and PCL5k-b-PEG3k-hexamannose, and depositing these blends of polymers was as straightforward as co-dissolving them in the organic feed stream of FNP.

Lastly, this work also demonstrates that ecumicin encapsulated in targeted nanocarriers significantly reduced in TB CFU counts compared to either ecumicin encapsulated in non-targeted nanocarriers or control nanocarriers targeted to macrophages but not containing ecumicin. Importantly, targeted NCs containing ecumicin were shown to significantly reduce TB CFUs at an ecumicin concentration below which non-targeted NCs were effective. These results, particularly those measured from NCs with the highest amount of surface hexamannose in the TB macrophage culture experiments demonstrates proof of concept for using nanocarriers with surface hexamannose decoration to target to macrophages for the treatment of tuberculosis or other diseases. Future work will continue to seek for an optimal mannose coverage amount and study the effects of other polymannose decorations on selective macrophage uptake.

Figure 4. Mean ecumicin plasma concentrations in mice (n = 18) after a single dose of untargeted ecumicin NCs. Dosages and dosing routes are given in the figure legend. Abbreviations are: per os (PO, oral), subcutaneous (SC), and intraperitoneal (IP).

Figure 5. Activity of ecumicin in targeted nanoformulations at A) 1µg mL\(^{-1}\) and B) 0.2µg mL\(^{-1}\) against M. tuberculosis in macrophage culture. Bars represent CFU prior to treatment (T0), no treatment (T6), and treatment with targeted nanocarriers containing ecumicin or α-tocopherol acetate (negative control). Values are mean ± SD from three measurements.

Adv. Mater. Technol. 2022, 7, 2101748
Supporting Information
Supporting Information is available from the Wiley Online Library or from the author.

Acknowledgements
This work was supported by the National Science Foundation Graduate Research Fellowship under Grant No. #DGE-1656466 awarded to K.D.R and Bill and Melinda Gates Foundation (BMGF, OPP1150755). Nanocarrier pharmacokinetics were assessed by BioDuro in Beijing.

Conflict of Interest
The authors declare no conflict of interest.

Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.

Keywords
Flash NanoPrecipitation, macrophage targeting, nanocarrier, targeted delivery, tuberculosis

Received: January 5, 2022
Revised: April 4, 2022
Published online: July 28, 2022

[1] G. Churchyard, P. Kim, N. S. Shah, R. Rustomjee, N. Gandhi, B. Mathema, D. Dowdy, A. Kasmr, V. Cardenas, J. Infect. Dis. 2017, 216, S629.
[2] E. Hatami, Y. Mu, D. N. Shields, S. C. Chauhan, S. Kumar, T. J. Cory, M. M. Yallapu, Biochem. Biophys. Res. 2019, 17, 197.
[3] W. Gao, J.-Y. Kim, J. R. Anderson, T. Akopian, S. Hong, Y.-Y. Jin, O. Kandorj, J.-W. Kim, I.-A. Lee, S.-Y. Lee, J. B. McAlpine, S. Mullugut, S. Sunqorot, Y. Wang, S.-H. Yang, T.-M. Yoon, A. L. Goldberg, G. F. Pauli, J.-W. Suh, S. G. Franzblau, S. Cho, Antimicrob. Agents Chemother. 2015, 59, 880.
[4] E. Guirado, L. S. Schlesinger, G. Kaplan, Semin. Immunopathol. 2013, 35, 563.
[5] G. Hu, M. Guo, J. Xu, F. Wu, J. Fan, Q. Huang, G. Yang, Z. Lv, X. Wang, Y. Jin, Front. Immunol. 2019, 10, 1998.
[6] J. M. Irache, H. H. Salman, C. Gamazo, S. Espuelas, Expert Opin. Drug Delivery 2008, 5, 703.
[7] D.-B. Oh, BMB Rep. 2015, 48, 438.
[8] R. F. Pagels, R. K. Prud’homme, J. Controlled Release 2015, 219, 519.
[9] C. E. Markwalter, R. F. Pagels, B. K. Wilson, K. D. Ristroph, R. K. Prud’homme, J. Visualized Exp. 2019, 2019, e58757.
[10] K. D. Ristroph, R. K. Prud’homme, Nanoscale Adv. 2019, 1, 4207.
[11] W. Gao, J.-Y. Kim, S.-N. Chen, S.-H. Cho, J. Choi, B. U. Jaki, Y.-Y. Jin, D. C. Larkin, J.-E. Lee, S.-Y. Lee, J. B. McAlpine, J. C. Napolitano, S. G. Franzblau, J.-W. Suh, C. F. Pauli, Org. Lett. 2014, 16, 6044.
[12] E. A. Biessen, F. Noorman, M. E. van Teijlingen, J. Kuiper, M. Barrett-Bergsheff, M. K. Bijsterbosch, D. C. Rijken, T. J. van Berkel, J. Biol. Chem. 1996, 271, 28024.
[13] C. E. Markwalter, R. F. Pagels, B. K. Wilson, K. D. Ristroph, R. K. Prud’homme, J. Visualized Exp. 2019, 2019, e58757.
[14] M. E. Gindy, J. T., R. H. Aoye, A. Z. Panagiotopoulos, R. K. Prud’homme, Biomacromolecules 2008, 9, 2705.
[15] S. M. D’Addio, S. Baldassano, L. Shi, L. Cheung, D. H. Adamson, M. Brueck, J. E. Anthony, D. L. Laskin, P. J. Sinko, R. K. Prud’homme, J. Controlled Release 2013, 168, 41.
[16] K. M. Pustulka, A. R. Wohl, H. S. Lee, A. R. Michel, J. Han, T. R. Hoyer, A. V. McCormick, J. Panyam, C. W. Macosko, Mol. Pharmacutecetics 2013, 10, 4367.
[17] K. Ristroph, M. Salim, A. J. Clulow, B. J. Boyd, R. K. Prud’homme, Mol. Pharmacutecetics 2021, 18, 1666.
[18] K. Ristroph, M. Salim, B. Wilson, A. Clulow, B. Boyd, R. K. Prud’homme, J. Colloid Interface Sci. 2020, 582, 815.
[19] S. M. D’Addio, W. Saad, S. M. Ansell, J. J. Squiers, D. H. Adamson, M. Herrera-Alonso, A. R. Wohl, T. R. Hoyer, C. W. Macosko, L. D. Mayer, C. Vauthier, K. Robert, J. Controlled Release 2012, 162, 208.
[20] W. S. Saad, R. K. Prud’homme, Nano Today 2016, 11, 212.
[21] Z. Zhu, Biomaterials 2013, 34, 10238.
[22] B. K. Johnson, R. K. Prud’homme, Aust. J. Chem. 2003, 56, 1021.
[23] J. Han, Z. Zhu, H. Qian, A. R. Wohl, C. J. Beamor, T. R. Hoyer, C. W. Macosko, J. Pharm. Sci. 2012, 101, 4018.
[24] J. Feng, C. E. Markwalter, C. Tian, M. Armstrong, R. K. Prud’homme, J. Transl. Med. 2019, 17, 200.
[25] B. J. Friskens, Appl. Opt. 2001, 40, 408.
[26] B. B. Sauer, R. S. Stock, K. H. Lim, W. H. Ray, J. Appl. Polym. Sci. 1990, 39, 2419.
[27] M. P. Choules, N. M. Wolf, H. Lee, J. R. Anderson, E. M. Grzelak, Y. Wang, R. Ma, W. Gao, J. B. McAlpine, Y.-Y. Jin, J. Cheng, H. Lee, J.-W. Suh, N. M. Duc, S. Paik, J. H. Che, E.-K. Jo, C. L. Chang, J. S. Lee, B. U. Jaki, C. F. Pauli, S. G. Franzblau, S. Cho, Antimicrob. Agents Chemother. 2019, 63, e02024.
[28] B. Zhou, Y. He, X. Zhang, J. Xu, Y. Luo, Y. Wang, S. G. Franzblau, Z. Yang, R. J. Chan, Y. Liu, J. Zheng, Z.-Y. Zhang, Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 4573.
[29] K. Falzari, Z. Zhu, D. Pan, H. Liu, P. Hongmamee, S. G. Franzblau, Antimicrob. Agents Chemother. 2005, 49, 1447.
[30] R. F. Pagels, J. Edelstein, C. Tang, R. K. Prud’homme, Nano Lett. 2018, 18, 1139.
[31] Y. H. Song, E. Shin, H. Wang, J. Nolan, S. Low, D. Parsons, S. Zale, S. Ashton, M. Ashford, M. Ali, D. Thrasher, N. Boylan, G. Troiano, J. Controlled Release 2016, 229, 106.
[32] J. Fu, F. Sun, W. Liu, Y. Liu, M. Gedam, Q. Hu, C. Fridley, H. K. Quigley, J. Hennes, I. Pitha, Mol. Pharmacutecetics 2016, 13, 2987.
[33] J. Griesser, C. Hetényi, M. Moser, F. Demarre, V. Jannin, A. Bernkop-Schnürch, Int. J. Pharm. 2017, 520, 267.
[34] K. D. Ristroph, J. Feng, S. A. McManus, Y. Zhang, K. Gong, H. Ramachandruni, C. E. White, R. K. Prud’homme, J. Transl. Med. 2019, 17, 97.
[35] H. D. Lu, P. Rummanee, K. D. Ristroph, R. K. Prud’homme, Mol. Pharmacutecetics 2018, 15, 216.