Loops and legs master integrals for splitting functions from differential equations in QCD

Oleksandr Gituliar
oleksandr.gituliar@ifj.edu.pl

Institute of Nuclear Physics
Polish Academy of Sciences
Cracow, Poland

Loops and Legs in Quantum Field Theory
Leipzig (Germany)
26 April 2016
Splitting functions in perturbative QCD

- process independent quantities
- govern collinear evolution of hard scattering processes with hadrons
 - \textit{parton distribution functions} in the \textit{initial state}
 (a \textit{space-like} hard scale \(Q^2 = -q^2 > 0\))
 \[
 \frac{d}{d \ln q^2} f_a^h(x, q^2) = \int_x^1 \frac{dz}{z} P_{ab}^S (z, \alpha_s(q^2)) f_b^h \left(\frac{x}{z}, q^2 \right)
 \]
 - \textit{fragmentation functions} in the \textit{final state}
 (a \textit{time-like} hard scale \(Q^2 = q^2 > 0\))
 \[
 \frac{d}{d \ln q^2} D_a^h(x, q^2) = \int_x^1 \frac{dz}{z} P_{ba}^T (z, \alpha_s(q^2)) D_b^h \left(\frac{x}{z}, q^2 \right)
 \]
- expanded in perturbation theory, e.g.,
 \[
 P_{ab}^T (x, \alpha_s) = \frac{\alpha_s}{4\pi} P_{ab}^{T(0)}(x) + \left(\frac{\alpha_s}{4\pi} \right)^2 P_{ab}^{T(1)}(x) + \left(\frac{\alpha_s}{4\pi} \right)^3 P_{ab}^{T(2)}(x) + \ldots
 \]

Analytical expression for \(P_{qg}^{T(2)}\) is known with a \textit{small uncertainty}.
Space-like	Time-like
• Axial gauge	• Axial gauge
– Principal Value	– Principal Value
Curci Furmanski Petronzio '80	Furmanski Petronzio '80
Ellis Vogelsang '98	
– Mandelstam-Leibbrandt	• Feynman gauge
Bassetto Heinrich Kunszt Vogelsang '98	– x space
– New Principal Value	Floratos Kounnas Lacaze '81
OG Jadach Skrzypek Kusina '14	Rijken, van Neerven '96
• Feynman gauge	– Mellin space Mitov Moch '06
– x space	• analytic cont. $-q^2 \rightarrow +q^2$
Floratos Kounnas Lacaze '81	Stratmann Vogelsang '96
– Mellin space Moch Vermaseren '99	Blumlein, Ravindran, van Neerven '00
	Moch Vogt '07
	– Drell-Yan-Levy relation
	Drell Levy Yan '70
	– Gribov-Lipatov relation
	Gribov Lipatov '72
Splitting functions at NNLO

Space-like
- Axial gauge*
- Feynman gauge
 - Mellin space

 Moch Vermaseren Vogt '04

Time-like
- Axial gauge*
- analytic continuation
 \[P_{ab}^{S(2)} \rightarrow P_{ba}^{T(2)} \]
 - NNLO non-singlet

 Mitov Moch Vogt '06
 - NNLO singlet \(P_{qq}^{T(2)} \) and \(P_{gg}^{T(2)} \)

 Moch Vogt '07
 - NNLO singlet \(P_{gq}^{T(2)} \) and \(P_{qg}^{T(2)} \)

 Almasy Moch Vogt '11

* Spurious poles of axial gauge are too complex at NNLO.

— How can we find a missing contribution to \(P_{qg}^{T(2)} \) splitting function?
— Well, let us try to calculate it explicitly!
In this talk

• I will briefly discuss how to extract $P_{qg}^{T(NNLO)}$ from $e^+e^- \rightarrow 3$ jets at NNLO.
• We will see that to solve this (and many other problems in QFT) we need tools for automatic calculation of master integrals.
• I will introduce Fuchsia — program for reducing differential equations for master integrals to canonical form based on the Lee algorithm.
• We will consider $P_{gq}^{T(NLO)}$ as a demonstration example.
• At the very end I will discuss current status of the Fuchsia project.
\[\frac{d^2 \sigma}{dx \, d \cos \theta} = \frac{3}{8} (1 + \cos^2 \theta) F_T(x, \epsilon) + \frac{3}{4} \sin^2 \theta F_L(x, \epsilon) + \frac{3}{4} \cos \theta F_A(x, \epsilon) \]

- Transverse fragmentation functions

\[F_T(x, \epsilon) \simeq (x^2 g^{\mu \nu} + 4 k_0^\mu k_0^\nu) W_{\mu \nu}(x, \epsilon), \quad x = 2q \cdot k_0 \]

- Hadronic tensor

\[W_{\mu \nu}(x, \epsilon) \simeq \int d^m \text{PS}^{(n)} M_{\mu}^{(n)} M_{\nu}^{(n)*} \]

where \(d^m \text{PS}^{(n)} \) is \(n \)-particle phase-space in \(m = 4 - 2\epsilon \) dimensions and \(M_{\mu}^{(n)} \) is amplitude of the process

Example: LO contribution

\[F_T^{(1)}(x, \epsilon) \equiv \quad \simeq \quad \left(x^2 g^{\mu \nu} + 4 k_0^\mu k_0^\nu \right) \int d^m \text{PS}^{(3)} \quad \left(\quad \frac{q}{k_0} + \frac{q}{k_0} \quad \right)^2 \]

\[d^m \text{PS}^{(3)} = d^m k_0 \delta^+(k_0^2) \quad d^m k_1 \delta^+(k_1^2) \quad d^m k_2 \delta^+(k_2^2) \delta (x - 2q \cdot k_0) \delta^m(q - k_0 - k_1 - k_2) \]
We can extract splitting functions on the rhs \((P_{gq}^{(0)}, P_{gq}^{(1)}, P_{gq}^{(2)}) \) when we know the lhs of the following expressions:

- \(\mathcal{F}_T^{(1)}(x, \epsilon) = \frac{1}{\epsilon} P_{gq}^{(0)}(x) + c_{T,g}^{(1)}(x) + \epsilon a_{T,g}^{(1)}(x) + \epsilon^2 b_{T,g}^{(1)}(x) \)

- \(\mathcal{F}_T^{(2)}(x, \epsilon) = \frac{1}{\epsilon^2} \left\{ \frac{1}{2} P_{gi}^{(0)} P_{iq}^{(0)} + \frac{1}{2} \beta_0 P_{gq}^{(0)} \right\} - \frac{1}{\epsilon} \left\{ \frac{1}{2} P_{gq}^{(1)} + P_{gi}^{(0)} c_i^{(1)} \right\} + \left\{ c_g^{(2)} - P_{gi}^{(0)} a_i^{(1)} \right\} + \epsilon \left\{ a_g^{(2)} - P_{gi}^{(0)} b_i^{(1)} \right\} \)

- \(\mathcal{F}_T^{(3)}(x, \epsilon) = \frac{1}{\epsilon^3} \left\{ \frac{1}{6} P_{gi}^{(0)} P_{ij}^{(0)} P_{jq}^{(0)} + \frac{1}{2} \beta_0 P_{gi}^{(0)} P_{ij}^{(0)} + \frac{1}{3} \beta_0^2 P_{gq}^{(0)} \right\} + \frac{1}{\epsilon^2} \left\{ \frac{1}{6} P_{gi}^{(1)} P_{iq}^{(1)} + \frac{1}{3} P_{gi}^{(0)} P_{ij}^{(0)} + \frac{1}{3} \beta_1 P_{gq}^{(0)} + \frac{1}{2} P_{gi}^{(0)} P_{ij}^{(0)} c_j^{(1)} + \beta_0 \left(\frac{1}{3} P_{gq}^{(0)} + \frac{1}{2} P_{gi}^{(0)} c_i^{(1)} \right) \right\} - \frac{1}{\epsilon} \left\{ \frac{1}{3} P_{gq}^{(2)} + \frac{1}{2} P_{gi}^{(1)} c_i^{(1)} + P_{gi}^{(0)} c_i^{(2)} - \frac{1}{2} P_{gi}^{(0)} P_{ij}^{(0)} a_j^{(1)} - \frac{1}{2} \beta_0 P_{gq}^{(0)} a_i^{(1)} \right\} + \left\{ c_g^{(3)} - P_{gi}^{(0)} a_i^{(2)} - \frac{1}{2} P_{gi}^{(1)} a_i^{(1)} + \frac{1}{2} P_{gi}^{(0)} P_{ij}^{(0)} b_j^{(1)} + \frac{1}{2} \beta_0 P_{gq}^{(0)} b_i^{(1)} \right\} \)
Feynman integrals for $\mathcal{F}_T(x, \epsilon)$

\[
\mathcal{F}_T^{(\text{NNLO})}(x, \epsilon) = \underbrace{\ldots}_{\text{RR}} + \underbrace{\ldots}_{\text{RV}} + \underbrace{\ldots}_{\text{VV}}
\]

\[
d^m\text{PS}^{VV} = d^m l_1 \quad d^m l_2 \quad d^m k_0 \delta(k_0^2) \quad d^m k_1 \delta(k_1^2) \quad d^m k_2 \delta(k_2^2)
\]

\[
\times \delta^m(q - k_0 - k_1 - k_2) \delta(x - 2q \cdot k_0)
\]

Perfectly suits for IBP reduction:

- Loops and Legs integrals are reduced simultaneously
- $\delta(x - 2q \cdot k_0)$ and $\delta(k_i^2)$ are replaced by cut propagators, i.e., according to Cutkosky’s rules
- LiteRed and Reduze2 have support for cut propagators
- define system of differential equations in x-space
Fuchsia is a program for reducing differential equations for master integrals to the canonical form Henn '13:

- based on the Lee algorithm Lee '14
- open-source and free (no proprietary software dependencies)
- implemented in SageMath (Python, Maxima, GiNaC)

The idea is to find a rational transformation in three reduction steps:

1. **Fuchsification** decrease Poincaré rank to 0 at all singular points (i.e. get rid of irregular singularities)
2. **Normalization**: balance eigenvalues to $n\epsilon$ form
3. **Factorization**: reduce to canonical form
Let us consider a system of ODEs

$$\frac{d\bar{f}}{dx} = \mathbb{A}(x, \epsilon) \bar{f},$$

where $\bar{f}(x, \epsilon)$ is a vector of n unknown functions (e.g., master integrals).

For any system we can define an integer number

$$m_{x=x_k}(\mathbb{A}) = p_k \geq 0$$

as a Poincaré rank of \mathbb{A} at $x = x_k$.

For $\mathbb{B} = \begin{pmatrix} \frac{\epsilon}{x} & 0 \\ \frac{\epsilon}{x^2} & \frac{\epsilon}{1+x} \end{pmatrix}$ we have $m_{x=0} = 1$ and $m_{x=-1} = 0$.
We say that such matrix has **Fuchsian form**\(^1\) if its Poincaré rank is 0 at every singular point (including \(\infty\)).

For example, we can transform
\[
\mathcal{B} = \begin{pmatrix}
\frac{\epsilon}{x} & 0 \\
-\frac{\epsilon}{x^2} & \frac{\epsilon}{1+x}
\end{pmatrix}
to \begin{pmatrix}
\frac{\epsilon}{x} & 0 \\
-\frac{1}{x} & \frac{\epsilon}{1+x} + \frac{1}{x}
\end{pmatrix}
\]
with \(m(\mathcal{B}) = 0\) at any point.

Not every system can be transformed to the Fuchsian form, however
- due to the analyticity of S-matrix; and
- structure of the Feynman integrals

every system for master integrals should, in principle, be reducible to Fuchsian form.

Fuchsia finds Fuchian form and transformation matrix of rational functions by analyzing Jordan form of the input matrix.

\(^1\)after German mathematician Lazarus Fuchs (1833–1902)
Example: differential equations for $P_{gq}^T(1)$ at NLO

\[
\begin{align*}
\text{Input} & \\
\begin{pmatrix}
\frac{(2\epsilon - 1)(2x - 1)}{x(1-x)} & -\frac{1-3\epsilon}{x} & 0 & 0 & 0 & 0 & 0 & 0 \\
\frac{x(1-x)}{3\epsilon - 2} & \frac{1-6\epsilon}{x+1} & 0 & 0 & 0 & 0 & 0 & 0 \\
\frac{x(1-x)}{(2\epsilon - 1)} & 0 & \frac{2}{x+1} & 0 & 0 & 0 & 0 & 0 \\
\frac{\epsilon^2 x(x+1)(1-x)}{(2\epsilon - 1)} & -\frac{2(\epsilon - 1)(3\epsilon - 1)}{x^2} & \frac{2(6\epsilon - 1)}{x(x+1)} & \frac{2\epsilon (x^2 + 3x - 2)}{(1-x)x(x+1)} & 0 & 0 & 0 & 0 \\
\frac{2(x^2 + 4x + 1)}{\epsilon^2 (1-x)^3 x^3 (x+1)^3} & \frac{2(2\epsilon - 1)(x-1)}{\epsilon^2 x^2 (x+1)^2} & \frac{2(6\epsilon - 1)(x-1)}{x^2 (x+1)^3} & \frac{4(x^2 + 1)}{x^2 (x+1)^3} & \frac{(2\epsilon + 1)(2x+1)}{x(x+1)} & 0 & 0 & 0 \\
-\frac{4}{\epsilon^2 (1-x)^3 x^3 (x+1)} & -\frac{2(2\epsilon - 1)(x-2)}{\epsilon(1-x)^2 x^3} & -\frac{2(6\epsilon - 1)}{x^2 (1-x)(x+1)} & \frac{4(x^2 + 1)}{(1-x)^2 x^2 (x+1)} & 0 & -\frac{4\epsilon}{(1-x)^2 x} & \frac{(2\epsilon + 1)(2x+1)}{(1-x)x} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(2\epsilon + 1)(2x+1)}{(1-x)x}
\end{pmatrix}
\end{align*}
\]

\[
\begin{align*}
\text{Output} & \\
\begin{pmatrix}
\frac{(2\epsilon - 1)(2x - 1)}{x(1-x)} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\frac{1}{x(1-x)} & \frac{1-3\epsilon}{x} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{1}{1-x} & \frac{1+(2\epsilon - 1)x}{x(1-x)} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{(1+2\epsilon)(2x-1)}{x(1-x)} & 0 & 0 & 0 & 0 \\
\frac{\epsilon}{x(1+x)} & \frac{\epsilon^2}{x} & 0 & 0 & 0 & 0 & 0 & 0 \\
\frac{2(6\epsilon - 1)}{(1-x)(1+x)} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\frac{14\epsilon - 3) x + 22\epsilon - 3}{2(1-x)(1+x)} & \frac{\epsilon x - 5\epsilon + 2}{x(1-x)} & \frac{4\epsilon^2}{x} & 0 & 0 & 0 & 0 & 0 \\
\frac{4}{x(1-x)(1+x)} & \frac{4\epsilon}{x} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\frac{\epsilon (1-x)(1+x)}{1-x} & \frac{\epsilon (1-x)(1+x)}{4(6\epsilon - 1) x^2 + 6\epsilon x - 4\epsilon + 1} & \frac{1+x}{x(1-x)(x+1)} & 0 & 0 & 0 & 0 & 0 \\
\frac{1-2(3\epsilon - 1)x}{x(1-x)(1+x)} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\frac{(2\epsilon - 3)x^2 - 18\epsilon + 8x + 11}{\epsilon x(1-x)(1+x)} & \frac{(4 \epsilon - 3)x^2 - 2(2\epsilon - 3)x + 9}{4\epsilon x(1-x)(1+x)} & \frac{(4 \epsilon - 1)x - 2\epsilon}{x(1-x)} & 0 & 0 & 0 & 0 & 0 \\
\frac{8(\epsilon^2 + 2x - 1)}{x(1-x)(1+x)} & \frac{x + 3}{x(1+x)} & 0 & 0 & 0 & \frac{4\epsilon x + 3}{2(1-x)(1+x)} & 0 & 0 \\
\frac{4}{2(1-x)(1+x)} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(2\epsilon + 1)(2x+1)}{(1-x)x}
\end{pmatrix}
\end{align*}
\]
Step II: Normalization

We say that matrix $A(x, \epsilon)$ is normalized if eigenvalues of all its residues have form $m\epsilon$, where m is some number.

We assume that initial eigenvalues have form $n + m\epsilon$, where n is integer.

A key idea for Lee’s normalization algorithm is a balance transformation between two points x_1 and x_2

$$T(x) = B(P, x_1, x_2; x) = 1 - P(\epsilon) + \frac{x - x_2}{x - x_1}P(\epsilon)$$

where $P(\epsilon)$ is some projector matrix, i.e. $P^2 = P$.

We choose

- points x_1 and x_2 by analyzing eigenvalues
- projector $P(\epsilon)$ by analyzing eigenvectors

Example: eigenvalues for x_1 and x_2:

$x_1 = 0$:

$[1 - 4\epsilon, 1 - 3\epsilon, -1 - 2\epsilon, -2\epsilon, 1 - 2\epsilon, 1 - 2\epsilon, 1, 1]$

$x_2 = 1$:

$[1 - 2\epsilon, -2\epsilon, -2\epsilon, 1 - 2\epsilon, 1 - 2\epsilon, 0, 0, 0]$
Input

\[
\begin{pmatrix}
\frac{(2\epsilon - 1)(2x - 1)}{x(1-x)} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\frac{1}{x(1-x)} & \frac{1 - 3\epsilon}{x} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{1}{1-x} & \frac{1 + (2\epsilon - 1)x}{x(1-x)} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & (1 + 2\epsilon)(2x - 1) & 0 & 0 & 0 & 0 \\
\frac{\epsilon}{x(1+x)} & \frac{\epsilon^2}{x} & 0 & 0 & \frac{(2\epsilon - 1)x^2 + 6\epsilon x - 4\epsilon + 1}{x(1-x)(x+1)} & 0 & 0 & 0 \\
\frac{2(6\epsilon - 1)}{(1-x)(1+x)} & 0 & 0 & 0 & \frac{1 - 2(3\epsilon - 1)x}{x(1+x)} & 0 & 0 & 0 \\
\frac{(14\epsilon - 3)x + 22\epsilon - 3}{2(1-x)x(1+x)} & \frac{\epsilon x - 5\epsilon + 2}{x(1-x)} & \frac{4\epsilon^2}{x} & 0 & \frac{(2\epsilon - 3)x^2 - 18\epsilon x + 81 + 11}{\epsilon x(1-x)(1+x)} & 0 & 0 & 0 \\
\frac{4}{x(1-x)(1+x)} & \frac{4\epsilon}{x} & 0 & 0 & \frac{8(x^2 + 2x - 1)}{x(1-x)(1+x)} & 0 & 0 & \frac{4\epsilon + x - 3}{2x(1-x)} \\
\end{pmatrix}
\]

Output

\[
\begin{pmatrix}
\frac{2\epsilon}{1-x} - \frac{2\epsilon}{x} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\frac{1}{x} - \frac{3\epsilon}{x} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{1}{1-x} & \frac{2\epsilon}{1-x} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{2\epsilon}{1-x} - \frac{2\epsilon}{x} & 0 & 0 & 0 & 0 & 0 \\
\frac{3}{x} & \frac{\epsilon}{x} & 0 & 0 & \frac{12\epsilon^2}{1-x} + \frac{12\epsilon^2}{1+x} + \frac{32\epsilon^2}{x} & \frac{-1}{x} & 0 & 0 \\
\frac{6\epsilon}{1+x} + \frac{6\epsilon}{1-x} + \frac{16\epsilon}{x} & \frac{8\epsilon^2}{x} - \frac{4\epsilon^2}{1+x} & 0 & 0 & \frac{16\epsilon}{x} - \frac{4\epsilon}{1-x} - \frac{16\epsilon}{x} & \frac{-3}{x} & \frac{2\epsilon}{1-x} - \frac{2\epsilon}{x} & 0 \\
\frac{4}{x} - \frac{2}{1-x} & \frac{4\epsilon}{1-x} - \frac{8\epsilon}{x} & \frac{4\epsilon^2}{1-x} - \frac{4\epsilon^2}{x} & 0 & \frac{8\epsilon}{1+x} - \frac{4\epsilon}{1-x} - \frac{16\epsilon}{x} & \frac{3}{x} + \frac{2}{1+x} & 0 & \frac{-2\epsilon}{1+x} - \frac{2\epsilon}{x} \\
\frac{6}{1+x} - \frac{8}{x} & \frac{4\epsilon}{1-x} - \frac{8\epsilon}{x} & \frac{4\epsilon^2}{1-x} - \frac{4\epsilon^2}{x} & 0 & 0 & 0 & 0 & 0 \\
\end{pmatrix}
\]
Eigenvalues before and after normalization:

x = 0:

\[
\begin{bmatrix}
1-4\epsilon, & 1-3\epsilon, & 1-2\epsilon, & 1-2\epsilon, & 1-2\epsilon, & 1, & 1
\end{bmatrix} \rightarrow
\begin{bmatrix}
-4\epsilon, & -3\epsilon, & -2\epsilon, & -2\epsilon, & -2\epsilon, & -2\epsilon, & 0, & 0
\end{bmatrix}
\]

x = 1:

\[
\begin{bmatrix}
1-2\epsilon, & -2\epsilon, & -2\epsilon, & 1-2\epsilon, & 1-2\epsilon, & 0, & 0, & 0
\end{bmatrix} \rightarrow
\begin{bmatrix}
-2\epsilon, & -2\epsilon, & -2\epsilon, & -2\epsilon, & -2\epsilon, & 0, & 0, & 0
\end{bmatrix}
\]

x = -1:

\[
\begin{bmatrix}
1-2\epsilon, & 1-2\epsilon, & 0, & 0, & 0, & 0, & 0, & 0
\end{bmatrix} \rightarrow
\begin{bmatrix}
-2\epsilon, & -2\epsilon, & 0, & 0, & 0, & 0, & 0, & 0
\end{bmatrix}
\]

x = \infty:

\[
\begin{bmatrix}
1+2\epsilon, & 1+2\epsilon, & 1+3\epsilon, & 2+4\epsilon, & -1+4\epsilon, & 1+4\epsilon, & -2+6\epsilon
\end{bmatrix} \rightarrow
\begin{bmatrix}
2\epsilon, & 2\epsilon, & 3\epsilon, & 4\epsilon, & 4\epsilon, & 4\epsilon, & 4\epsilon, & 6\epsilon
\end{bmatrix}
\]
Step III: Factorization

Now we can find an x-independent transformation $\mathbb{T}(\epsilon)$ for any point $x = x_k$ such that

$$\mathbb{T}^{-1}(\epsilon)A_k(\epsilon)\mathbb{T}(\epsilon) = \epsilon C_k$$

Since matrix C_k is constant, for every residue of A we write

$$\frac{\mathbb{T}^{-1}(\epsilon)A_k(\epsilon)\mathbb{T}(\epsilon)}{\epsilon} = C_k = \frac{\mathbb{T}^{-1}(\mu)A_k(\mu)\mathbb{T}(\mu)}{\mu}, \quad \mu = \text{any number}$$

We treat components of \mathbb{T} as unknown variables and solve linear system of equations for them. That gives unknown transformation $\mathbb{T}(\epsilon)$.
\[
\begin{pmatrix}
\frac{2\epsilon}{1-x} - \frac{2\epsilon}{x} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & -\frac{3\epsilon}{x} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{1}{1-x} & \frac{2\epsilon}{1-x} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{2\epsilon}{1-x} - \frac{2\epsilon}{x} & 0 & 0 & 0 & 0 & 0 \\
\frac{6\epsilon}{1+x} + \frac{6\epsilon}{1-x} + \frac{16\epsilon}{x} & \frac{8\epsilon^2}{x} - \frac{4\epsilon^2}{1+x} & 0 & 0 & \frac{12\epsilon^2}{1+x} + \frac{12\epsilon^2}{1-x} + \frac{32\epsilon^2}{x} & -\frac{1}{x} & 0 & 0 \\
\frac{4}{x} - \frac{2}{1-x} & \frac{16\epsilon}{1-x} - \frac{8\epsilon}{1+x} & \frac{4\epsilon^2}{1-x} - \frac{4\epsilon^2}{x} & 0 & 0 & \frac{3}{x} + \frac{2}{1+x} & 0 & -\frac{2\epsilon}{1+x} - \frac{2\epsilon}{x} \\
\frac{6}{1+x} - \frac{8}{x} & \frac{4\epsilon}{1-x} - \frac{4\epsilon}{x} & 0 & 0 & 0 & 0 & 0 & 0 \\
\frac{19\epsilon}{1-x} - \frac{4}{1-x} & \frac{4\epsilon}{1-x} + \frac{8}{x} & \frac{76}{x} - \frac{76}{1-x} & \frac{4}{19(1-x)} - \frac{16}{19x} & 0 & 0 & 0 & 0 \\
\frac{8}{19x} - \frac{6}{19(1+x)} & \frac{4}{1-x} - \frac{4}{x} & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{pmatrix}
\]
Summary

Fuchsia — a tool for reducing differential equations for master integrals to canonical form

- all main algorithms from Lee ’14
- open-source and free (SageMath: Python, Maxima, GiNaC)

A little bit of optimization and we are ready for release! Please, send us some examples of your systems.

Stay tuned we will release soon

Thank you!