A Review on Design and Development of Free Piston Linear Generators in Hybrid Vehicles

SS Rathore1\ast, S Mishra2, M K Paswan1 and Sanjay1

1National Institute of Technology Jamshedpur-831014, Jharkhand, India
2G L Bajaj Institute of Technology and Management, Greater Noida, Uttar Pradesh, India

\astCorresponding author email – souviksinghrathore@gmail.com

Abstract. The rapid exploitation of fossil fuels due to their indiscriminate use has brought us to a situation when we cannot sustain the use of fuels like petrol and diesel for more than 30 years from now. Governments and energy companies around the world are looking for some alternative source of energy to power the vehicles. A lot of research is being carried out in this field and many researchers have concluded that hybrid vehicles can be a boon to eradicating the dependence on conventional fuels and move towards battery-aided power trains for running the vehicles. Today, there are a few electric vehicles on roads but in the near future the roads are going to be flooded by them. To propel them, we need batteries which should be charged at some intervals. In absence of battery charging stations, we would need range extending devices on the vehicles itself. A Free Piston Linear Generator (FPLG) is an electric generator which produces electricity by virtue of oscillation of a free piston in a cylinder and it can be used as a range extending device and alternative energy converter in a hybrid vehicle. Using an FPLG will be a new approach to optimize combustion process and thus it can not only help in low exhaust emissions but also in using new renewable fuels due to their capability of variable compression ratios. This paper is a review on the design and development of FPLG system for hybrid vehicles as an inevitable source of energy in near future.

Keywords: Control Systems; Free Piston; FPLG; Hybrid Vehicles; Range Extenders

1. Introduction

Fossil fuels like petroleum and coal fulfil about 66.67\% of the energy required by the world. Their limited reserves and unequal distribution have outcome in the cost of fuel to raise many folds in the last two decades [1]. To prevent the serious social and economic inferences of global decline in oil production the 2005 Hirsch report [2] suggested the need to discontinue the practice of using petroleum over the peak time i.e. ten to twenty years from then. Depletion of petroleum reserves has encouraged many researchers to work on alternative fuels [3] and therefore, various alternative fuels such as compressed natural gas, hydrogen gas, bio-diesels, bio-gas, alcohol etc. are being considered as alternatives for conventional fuels and to reduce exhaust emissions [4] while keeping other features
and behaviors of an engine within limits [5-11]. Besides renewable fuels, electric vehicles (EVs) [13–15] can also be a logical step towards sustainable, efficient and environment friendly transportation.

These EVs are broadly categorized as: pure electric types, hybrid electric types, and fuel cell types. Although pure electric vehicles create no emissions, the cost of battery, its management and maintenance create a hold-up in their use. The fuel cell vehicles have a lot of latent qualities for future vehicles [16] but the cost of their technology and refuelling system are still in early development stage [13]. In a few years from now, the pure electric vehicles could be accepted by a few niche markets, such as for community transportation and the place where electricity is cheap and accessible. The hybrid electric vehicles could have a niche market for the people wanting a long driving range [14] and this is where FPLGs can be a boon i.e. in the area of long extended ranges. They can also be used as an alternative energy converting devices for such hybrid vehicles.
2. An FPLG System

The system in which an electrical generator is linked with an internal combustion engine piston without any aid of a crank is called a free piston linear generator (FPLG) system. It converts the stored energy in the fuel into electricity by using combustion process. A lot of research and investigations are being done in the area of their practicability and feasibility. One such systems as shown in the figure 4 is being studied at the German aerospace center (DLR) [18].

The complete system consists of three main parts namely, the combustion unit, the return unit and the generator. The combustion takes place in one end of the cylinder can have arrangements for inlet and exhaust valves, the fuel injectors and ignitors. It forms the site for energizing the fuel. The opposite end of the cylinder creates an adjustable gas spring (rebounding device) which helps the piston to come back for the second cycle. The spring constant of the gas spring can be adjusted by adjusting the amount of air inside the chamber. A generator is positioned between the combustion chamber and gas spring and it produces electricity due to the relative motion between the magnets mounted on the connecting rod and the stationary coils arranged on the cylinder. A cooling system enclose the cylinder has a very important role to sustain the magnetic properties of the magnets. [18]. The amount of electromotive force (emf) generated at the end of the coil can be given by Faraday’s law as

\[
emf = -N \frac{d\Phi}{dz} \frac{dz}{dt}
\]

Where,
N = Number of turns in the coil
\(\Phi\) = Flux passing in each turn in real time \(t\)
\(dz/dt\) = Relative speed between magnet and coil
Z = Total movement of the magnet
3. Possible Engine Types

3.1 Based on Piston Arrangement

3.1.1 Single Piston
While comparing with the other free piston configurations, the main advantage of this configuration is its simple design with a good controllability. The gas spring gives an opportunity to accurately control the stroke length and compression ratio amount by controlling the energy input to compress the combustion gas.[19][20]

3.1.2 Dual Combustion Chamber
This configuration can eliminate the need for a gas spring which allows a more compact device with a higher power to weight ratio[19] and it is possible because the combustion process in one cylinder which drives the compression in the other. But the fact cannot be ignored that any small variation in the combustion in any one of the combustion chambers can subsequently distort the combustion process in the complete engine. The problem associated with this configuration is controlling the piston motion, in particular the stroke length and the compression ratio which have proved difficult due to the fact that Achten, [22] in his review calls it a challenge for the control system. A good control is required for optimizing its efficiency and emissions.

3.1.3 Opposed Piston
This design makes the engine completely balanced and free from vibration which saves space and reduces complexity [18]. In the absence of any cylinder head, heat transfer losses are highly reduced and this can also allow single-flow scavenging for a high scavenging efficiency but to achieve this, there is a need for a piston synchronization mechanism [19]. Scientists at the German Aerospace Center (DLR) working on this configuration have claimed that they have developed a control system to control piston movement accurately to within one tenth of a millimeter and at the same time to recognize fluctuations in the combustion process and it compensates for them [24].
3.2. Based on Shape of Generator

3.2.1. Tubular Type
The tubular type linear generators can give greater efficiency and because of their structural merits [25], when compared to the flat type generators [26]. The electrical characteristics remain unaltered with the rotation of the piston besides this, the amount of the leakage flux is very less [17]. But the challenges regarding the manufacturing and assembly of the magnetic ring, lamination stacked stator and the windings have to be conquered. Another constrain is the sectional area of the surrounding windings which are controlled by the diameter of the ring magnets.

3.2.2. Flat Type
Qing-feng et al [23] gave a contradicting result when compared to the tubular type generators to show that even if there are structural drawbacks in a flat type generator, they are more efficient with more specific power, output current and voltage and hence they are much suitable for the FPLGs.

4. Advantage of FLPG System

4.1. Low loss due to friction
There is no crank to translate the linear motion into a rotational motion and therefore, it eliminates the losses due to friction in the crankshaft bearing, and an entirely linear motion leads to a very low side-loads on the piston. A few moving parts in the free piston linear generators turn down the frictional losses and hence reduces the lubrication requirements of the system.

4.2. Low fuel Consumption
As shown in figure 8 obtained by Frank Rinderknecht [27], fuel consumption of a vehicle obtained in the simulation of an integrated free piston engine versus that of a conventional car of the same class can be compared and there is a possibility of reduction of about 28% in fuel consumption by using an FPLG integrated vehicle.
4.3. Higher Efficiency
Cosic et al. [17] when comparing the total efficiency of a truck HEV running on a conventional combustion engine and an FPLG found that when a conventional combustion engine is replaced with an FPLG, the total efficiency increased by 25%, this is shown in figure (9).

4.4. Ability to use alternate fuels
It is a well-known fact that the thermal efficiency of an engine depends on the compression ratios, therefore, many variable compression ratio mechanisms have been developed [28][29][30]. But the earlier attempts on this approach required making of entirely new engine design. An FPLG in not constrained by a crankshaft and therefore its compression ratio can be varied without any constructional changes in the engine design [20] and therefore an appropriate fuel supply system can allow us to use different fuels like conventional fuels such as petrol, diesel [31,32,33], and alternative fuels such as natural gas, benzene, alcohol, hydrogen gas, etc. [34].

4.5. Compactness
When compared to conventional engines, FPLGs are small in size and have low weights which can provide more compact power trains and hence overall lighter vehicles.
4.6. Reduced maintenance costs and increased life

Maintenance cost is highly reduced due to the presence of a few moving parts and by the virtue of low friction which in turn increases the life of these engines.

5. FPLG control system development

There are many requirements for the FPLG engines to be viable. Control systems are needed to meet these requirements and bring them in operation. Controlling of piston motion accurately represents one of the biggest challenges. The Top Dead Centre (TDC) position of the piston should be controlled within tight limits [35] and the reason is that, any overshoot may lead to some mechanical contact between the piston and the cylinder head and this can be fatal for any engine. Engine speed control is required because by synchronizing multiple engines, vibrations can be minimized [20]. Besides these, combustion, misfiring, frequency of oscillation, starting the engine, load on piston, power output, etc. need to be controlled. Many researchers have tried answer these issues through their research.

5.1. Piston motion control

Chi Zhang et al. [36] briefs us about three conventional control strategies which are the trajectory tracking control [37-42], specifying a reference current profile [43-46] and regulating the load factor and combustion parameters for balancing energy flow [47-52]. For achieving compression ratio control, Kigezi et. al. [53] developed a model-based procedure to control the two dead centers thus controlling the motion of the piston towards the required compression ratio.

A similar work, to predict TDC, ‘a predictive piston motion controller’ was proposed by R. Mikalsen et al [35]. Boru Jia et al [55] showed that the position of the piston and power output can be predicted from the parameters like stroke length, cross sectional area of the piston, mass of the piston and electrical load. To have better performance, ‘the cascade control’ was proposed [54] to be implemented in the FPEG control system. O Lim, et al [33] investigated the effects of parameters like input caloric value, equivalence ratio, spark timing delay, electrical resistance, and air-gap length on the piston dynamics and electric power output. C. M. Atkinson et al [56] in their numerical modelling of the engine carried out the dynamic analysis for evaluating frictional forces and the alternator load and the thermodynamic analysis for evaluation for process of scavenging, compression, combustion and expansion.

5.2. Load Control

Output power depends on many factors like the in-cylinder initial pressure, the dimensions of FPLG [57, 58,59] and the piston movement characteristic [36].

Table1. Potential parameters influential to TDC [54]
Input Parameters
TDC
Engine Operating Frequency
6. Other FPLG issues

6.1. Detent Force
The attraction between the magnets on the connecting rod and the stator results in detent force [47].
Ahmad M. Eid et al [61] studied the permanent magnet length for reducing detent force in the linear generator. They found that by introducing the slope in the permanent magnet, the detent force decreased and simultaneously, an increment in the voltage developed by the alternator was recorded. Sun-Ki Hong, et al [25] studied the effect of varying the pole pitch to reduce this force besides this achieving sinusoidal output waveform and high output voltage. The dependence of detent force on the pole pitch x and y as shown in figure 10. While modulating the pole pitch, a minimum value of detent force can be achieved.

![Figure 10. Pole pitch modulation for calculating detent force [25]](image)

6.2. Starting
An FPLG can be started either by giving an impulse to the piston sufficient enough for the piston to reach the TDC, or by oscillating the piston with either an electric machine or a hydraulic cylinder until it reaches sufficient compression. The requirement of the former strategy is that the engine should start on the first stroke itself and after that the control system should sustain the to and fro motion [19]. Saiful A. et al [62] investigated the viability of rectangular current commutation and mechanical resonating strategy to start a dual combustion chamber FPLG.

6.3. Combustion
The advantage of adjustable compression ratio in an FPLG can help us to optimize the combustion process which were not feasible in conventional engines [19] but researchers working in this field rouse many questions on combustion efficiency [63-69]. Adjusting the piston motion trajectory can be an answer to this problem [70].

6.4. Misfiring
The piston is capable of oscillating freely between its dead centres and this motion is controlled by the forces applied by the gas and other loads acting on it and any misfiring may cause a problem in the engine since it does not have energy storage machine element like the flywheels in conventional engines which are capable of driving the engine for several revolutions [19]. A good control system can help in overcoming this issue [36].

6.5. Lubrication
Roman Virsik et al. proposed solid lubrication as one possible solution for emission issues [18] in FPLGs with opposed combustion chamber configuration.

7. Fully Developed FPLG Systems-From Concept to Reality
Researchers at West Virginia University have demonstrated a controlled operation of a gasoline fueled, spark ignited, linear engine and a linear generator system [71]. When operating at full load, a maximum of 316 watt power was recorded at 79 volts and at no load, their system operated at a frequency of 25 hertz which generated an open circuit voltage of 132 volts. William R. Cavthorne in his research provided a method to choose a combination of engine and generator [72]. Researchers at UniversitiTeknologi Petronas in partnership with other two universities developed an FPLG to charge batteries for hybrid electric vehicles [62]. A team at Toyota Central R&D Labs have claimed to have been developing a prototype of FPLG[21]. Scientists at the German Aerospace Center have developed the concept of increasing the range of electrically powered vehicles and their researchers claim to have succeeded in operating this system in a stable manner [24].

8. Conclusions
Free Piston Linear Generators have a substantial potential as a range extending device in Hybrid Vehicles. These engines can be classified on the basis of piston configuration and generator shapes. FPLGs have many advantages but they are all futile unless we have a robust control system (for piston and load control). A number of issues like: detent force, starting, combustion, misfiring and lubrication were reviewed and over the past few years, these issues have been addressed by a number of different case studies and the days are not far away when we would see FPLG mounted hybrid vehicles with such control systems that would allow different fuels to be used in the same engine and these hybrid vehicles would move hundreds of kilometers with the aid of these range extenders.

9. References
[1] R K Reham A and Sarviva R M 2012 Impact of alternative fuel properties on fuel spray behavior and atomization Renewable and Sustainable Energy Reviews vol 16, 1762-17
[2] https://en.wikipedia.org/wiki/Hirsch_report
[3] Gomes AMJ, Mikalsen R and Foskilly AP 2008 An investigation of hydrogen fuelled HCCI engine Performance and operation International Journal of Hydrogen Energy 33,5823-5828
[4] Ciniviz M and Kose H 2012 Hydrogen use in internal combustion engine International Journal of Automotive Engineering and Technologies vol 1(1) pp 1-15.
[5] Kegl B, Kegl M, and Pehan S 2008 Optimization of a fuel injection system for diesel and biodiesel usage Energy and Fuels vol 22 (2) pp 1046-1054
[6] Kegl B2006Numerical analysis of injection characteristics using biodiesel fuel Fuel vol 85 pp 2377- 2387
[7] Nabi N, Akhter S and Shahadat MZ 2006 Improvement of engineemissions with conventional diesel fuel and diesel-biodiesel blendsBioresource Technology vol 97 pp 372-378.
[8] Durbin T D, Collins JR, Norbeck J M and Smith, M. R 2000 Effects of Biodiesel, Biodiesel Blends, and a Synthetic Diesel Diesel on Emissions from Light Heavy-Duty Diesel Vehicles EnViron. Sci. Technol vol 34pp 349–355.
[9] Canakci M 2007 Combustion characteristics of a turbocharged Dcstruction ignition engine fueled with petroleum diesel fuels and biodiesel Bioresour. Technol vol 98 pp 1167–1175
[10] Dorado M P, Ballesteros E, Arnal J M, Gomez J, and Lopez F J 2003 Exhaust emissions from a diesel engine fueled with transesterified waste olive oil. Fuel(2003) vol 82 pp 1311–1315.
[11] Boehner A L, Song J, and Alam M 2005 Impact of biodiesel blendingon diesel soot and the regeneration of particulate filters Energy Fuels vol 19 pp1857– 1864
[12] UNDP (United Nations Development Programme). World EnergyAssessment. Energy and the Challenge of Sustainability. 2000.
[13] C C Chan 2007 The state of the art of electric, hybrid, and fuel cell vehicles," Proceedings of
the IEEE vol 95 no 4, Article ID 4168013 pp 704–718

[14] C C Chan, A Bouscayrol and K Chen 2010 Electric, hybrid, and fuel-cell vehicles: architectures and modeling IEEE Transactions on Vehicular Technology vol59, no 2, Article ID 5276874 pp 589–598

[15] C. C. Chan and Y. S. Wong 2004 Electric vehicles charge forward IEEE Power and Energy Magazine vol 2 no 6 pp. 24–33, 2004.

[16] S Campanari, GManzolini and F Garcia de la Iglesia 2009 Energy analysis of electric vehicles using batteries or fuel cells through well-to-wheel driving cycle simulations Journal of Power Sources vol 186 no 2 pp 464–477

[17] Cosic, A., Lindback, J., Arshad, W.M., Lekell, M., Thelin, P., Nordlund, E 2003 Application of a FreePiston Generator in a SeriesHybrid Vehicle.” The 4th International Symposium on Linear Drives for Industry ApplicationsLDIA pp 541-544

[18] Roman Virsik, Frank Rinderknecht and Horst E. Friedrich 2016 Free-piston linear generator and the development of a solid lubrication system Proceedings of the ASME 2016 Internal Combustion Engine Full Technical Conference ICEF2016-9362, USA

[19] RMikalsen and AP Roskilly 2007 A review of free piston engine history and Applications ApplThermEng vol 27 pp 2339–52.

[20] Mikalsen R and Roskilly AP 2008 The design and simulation of a two-stroke free-piston compression ignition engine for electrical power generation Applied Thermal Engineering vol 28 pp 589-600

[21] http://www.greencarcongress.com/ 2016/05/2016 0506-toyotafpeg.html

[22] Achten PAJ 1994 A review of free piston engine concepts SAE Paper 941776

[23] Qing-feng, J XIAO and Z HUANG 2009 Flat-type permanent magnet linear alternator: suitable device for a free piston linear alternator Journal of Zhejiang University-SCIENCE A vol 10 pp 345-352

[24]http://www.dlr.de/dlr/en/desktopdefault.aspx/tabid-10176/372_read-6318/

[25] Sun-Ki Hong, Ho-Yong Choi, Jae-Won Lim, Hyun-Kyo Jung and Hyo-Jae Lim 2007 Analysis of Tubular-type Linear Generator for Free-Piston Engine

[26] Ho-Yong Choi, Jae-Won Lim, et al 2004 Design of Flat-type Linear Generator for Free-Piston Engine”, ICEMS.

[27] Frank Rinderknecht 2011 The linear generator as integral component of an energy converter for electric vehicles Conference: European All-Wheel Drive Congress Graz Institute of Vehicle Concepts, German Aerospace Center.

[28] Takashi Kondo and Makoto Hirano 2008 A study of a variable compression ratio engine with a double piston system Imece(2008)-66453

[29] AsthanaS, Bansal S, Jaggi S and Kumar N 2016 A Comparative Study of Recent Advancements in the Field of Variable Compression Ratio Engine Technology SAE Technical Paper 2016-01-0669

[30] Wos P, Balawender K, JakubowskiM, Kuszewski, H. et al 2012 Design of Affordable MultiCylinder Variable Compression Ratio (VCR) Engine for Advanced Combustion Research Purposes SAE Technical Paper 2012-01-0414, 2012

[31] T. A. Johansen, O. Egeland, E. A. Johannessen and R. Kvamsdal 2001 Free-Piston Diesel Engine Dynamics and Control,” Proceedings of the American Control Conference, pp. 4579-4584,

[32] Mikalsen R, Roskilly AP 2009 A computational study of free-piston diesel engine combustion Appl Energy (2009) vol 86 pp 1136–43

[33] O Lim, NB Hung, S Oh, G Kim, H Song and N Iida A study of operating parameters on the linear spark ignition engine”. Applied Energy (Elsevier) vol 160 pp 746-760

[34] R Mikalsen, E Jones and AP Roskilly 2010 Predictive piston motion control in a free-piston internal combustion engine.” Applied Energy vol 87 issue 5 pp 1722-1728

[35] C. Zhang, F. Chen, L. Li, Z. Xu, Liang Liu, Guilin Yang, H. Lian and Y. Tian 2018 A Free-Piston Linear Generator Control Strategy for Improving Output Power.” Energies vol 11(1) p 135;
[36] Dr. Markus Gräf, Dr. Peter Treffinger, Sven-Erik Pohl and Frank Rinderknecht 2007 Investigation of a high efficient Free Piston Linear Generator with variable Stroke and variable Compression Ratio (2007) WEVA Journal Volume 1

[37] Kosaka H, Akita T, Moriya K, Goto S, Hotta Y, Umeno T and Nakakita K 2014 Development of free piston engine linear generatorsystem Part 1 — Investigation of fundamental characteristics SAE Tech. Pap. (2014) vol 1 pp 882–888.

[38] N’emecˇek P and Vysoký O 2006 Control of two-stroke free-piston generator Proceedings of the 6th Asian Control Conference (Bali Indonesia).

[39] Zhang C, Li K and Sun Z 2015 Modeling of piston trajectory-based HCCI combustion enabled by a free piston engine.” Appl. Energy vol 139 pp 313–326.

[40] Li K, Zhang C and Sun Z 2015 Precise piston trajectory control for a free piston engine Control Eng. Pract. vol 34 pp 30–38

[41] Goto S, Moriya K, Kosaka H, Akita T, Hotta Y, Umeno T and Nakakita, K 2014 Development of free piston engine linear generator system Part 2 — Investigation of control system for generator SAE Tech. Pap. vol 1 pp 247–254

[42] Zhang C and Sun Z 2016 Using variable piston trajectory to reduce engine-out emissions.” Appl. Energy vol 170 pp 403–414

[43] Xu Z and Chang S 2009 Hierarchical hybrid control of a four-stroke free-piston engine for electrical power generation Proceedings of the International Conference on Mechatronics and Automation (Changchun, China) pp. 4045–4049

[44] Xu, Z and Chang, S 2010 Improved moving coil electric machine for internal combustion linear generator IEEE Trans. Energy Convers. Vol 25 pp 281–286

[45] Sun P, Zhang C, Chen J, Zhao F, Liao Y, Yang G and Chen C 2017 Hybrid system modeling and full cycle operation analysis of a two-stroke free-piston linear generator Energies vol 10 pp 213

[46] Feng H, Song Y, Zuo Z, Shang J, Wang Y and Roskilly 2015 Hybrid system modeling and full cycle operation analysis of a two-stroke free-piston linear generator: Simulation and experiments Energies vol 8 pp 765–785

[47] Mikalsen R and Roskilly AP 2010 The control of a free-piston engine generator. Part 2: Engine dynamics and piston motion control Appl. Energy vol 87 pp 1281–1287.

[48] Jia B, Zuo Z, Tian G, Feng H and Roskilly AP 2015 Development and validation of a free-piston engine generator numerical model Energy Convers. Manag. vol 91 pp 333–341.

[49] Feng H, Guo Y, Song Y, Guo C and Zuo Z 2016 Study of the injection control strategies of a compression ignition free piston engine linear generator in a one-stroke starting process Energies vol 9 pp 453

[50] Gong X, Zaseck K, Kolmanovsky I and Chen H 2015 Dual-loop control of free piston engine generator IFAC-PapersOnLine vol 48 pp 174–180

[51] Gong X, Zaseck K, Kolmanovsky I and Chen H 2015 Modeling and predictive control of free piston engine generator.” In Proceedings of the 2015 American Control Conference, Chicago, IL, USA pp. 4735–4740.

[52] Yang R, Gong X, Hu Y and Chen H 2015 Motion control of free piston engine generator based on LQR Proceedings of the 34th Chinese Control Conference pp. 8091–8096.

[53] TN Kigezi and J F Dunne 2017 A Model-Based Control Design Approach For Linear Free-Piston Engines Journal of Dynamic Systems, Measurement and Control Paper No: DS-16-1550

[54] Boru Jia, R Mikalsen, A Smallbone, Z Zuo, HFeng and A PRoskilly 2016 Piston motion control of a free-piston engine generator: A new approach using cascade control Applied Energy vol 179 pp 1166–1175
[55] Jia B, Zuo Z, Smallbone A, Feng H and Roskilly AP 2017 A Decoupled Design Parameter Analysis for Free-Piston Engine Generators

[56] C M Atkinson, S Petreanu, N Clark, R J Atkinson, T I McDaniel, S Nandkumar and P Famouri 1999 Numerical Simulation of a Two-Stroke Linear Engine-Alternator Combination SAE 199901-0921 International Congress and Exposition Detroit

[57] Xu Z and Chang S2010 Prototype testing and analysis of a novel internal combustion linear generator integrated power system.” Appl. Energy vol 87 pp 1342-1348

[58] Hammon J, Leksell M and Carlsson F2005 Minimizing power pulsations in a free piston energy converter In Proceedings of the European Conference on Power Electronics and Applications

[59] Xu Z and Chang S.2009 Hierarchical hybrid control of a four-stroke free-piston engine for electrical power generation Proceedings of the International Conference on Mechatronics and Automation pp 4045-4049.

[60] KC Lim, JP Hong and GT Kim 1999 The novel technique considering slot effect by equivalent magnetizing current”, IEEE Trans. Magn Vol 35 pp 3691-3693

[61] Ahmad M. Eid, Hyun Woo Lee and Mutsuo Nakaoka 2006 Detent Force Reduction of a Tubular Linear Generator Using an Axial Stepped Permanent Magnet Structure”. Journal of Power Electronics Vol 6 pp 290-296

[62] Saiful A Zulkifli, Mohd N Karshiti and A Rashid A Aziz 2008 Starting of a Free-Piston Linear Engine Generator by Mechanical Resonance and Rectangular Current Commutation IEEE Vehicle Power and Propulsion Conference (VPPC)

[63] Mao J, Zuo Z and Li W 2011 Multi-dimensional scavenging analysis of a free-piston linear alternator based on numerical simulation.” ApplEnerg vol 88 pp 1140–1152

[64] Goldsborough S and Blarigan P2003 Optimizing the scavenging system for a two-stroke cycle, free piston engine for high efficiency and low emissions: a computational approach SAE paper 2003-01-001.

[65] Yuan C, Feng H, He Y, et al2016 Combustion characteristics analysis of a free-piston engine generator coupling with dynamic and scavenging.” Energy vol 102 pp 637-649

[66] Feng H, Guo C, Yuan C, et al2016 Research on combustion process of a free piston diesel linear generator.” ApplEnerg; 161: 395–403.

[67] Miao Y, Zuo Z, Feng H, et al 2016 Research on the combustion characteristics of a free-piston gasoline engine linear generator during the stable generating process.” Energies vol 9 p 655

[68] Yuan C, Xu J and He Y. “Performance characteristics analysis of a hydrogen fueled free piston engine generator.” Int J Hydrogen Energy 016; 41: 3259-3271.

[69] Wu W, Hu J and Yuan S 2014 Semi-analytical modelling of a hydraulic free-piston engine Appl. Energ. 2014 vol 120 pp 75–84.

[70] J Xu, C Yuan, Y He and R Wang 2017 An optimization of free-piston engine generator combustion using variable piston motion.” Advances in Mechanical Engineering Vol9(9) pp 1–10

[71] Parviz Famouri, William R. Cawthorne, Nigel Clark, Subhash Nandkumar, Christopher Atkinson, Richard Atkinson, Thomas McDaniel and Sorin Petreanu 1999 Design And Testing Of A Novel Linear Alternator And Engine System For Remote Electrical Power Generation Proceedings of the IEEE Power Engineering Society Winter Meeting pp 108-112

[72] William R. Cawthorne 1999 Optimization of a Brushless Permanent Magnet Linear Alternator for Use with a Linear Internal Combustion Engine Morgantown W Va West Virginia

University Libraries (1999)
