DISCOVERING INFLUENTIAL VARIABLES:
A METHOD OF PARTITIONS

BY HERMAN CHERNOFF, SHAW-HWA LO AND TIAN zheng

Harvard University, Columbia University and Columbia University

A trend in all scientific disciplines, based on advances in technology, is the increasing availability of high dimensional data in which are buried important information. A current urgent challenge to statisticians is to develop effective methods of finding the useful information from the vast amounts of messy and noisy data available, most of which are noninformative. This paper presents a general computer intensive approach, based on a method pioneered by Lo and Zheng for detecting which, of many potential explanatory variables, have an influence on a dependent variable Y. This approach is suited to detect influential variables, where causal effects depend on the confluence of values of several variables. It has the advantage of avoiding a difficult direct analysis, involving possibly thousands of variables, by dealing with many randomly selected small subsets from which smaller subsets are selected, guided by a measure of influence I. The main objective is to discover the influential variables, rather than to measure their effects. Once they are detected, the problem of dealing with a much smaller group of influential variables should be vulnerable to appropriate analysis. In a sense, we are confining our attention to locating a few needles in a haystack.

1. Introduction. Lo and Zheng (2002, 2004) introduced the backward haplotype-transmission association (BHTA) algorithm, an efficient computationally intensive method of detecting important genes involved in complex disorders. This method, using haplotype information on multiple markers for affected subjects and their parents, was applied to Inflammatory Bowel Disease data [Lo and Zheng (2004)]. In that application, a total of 235 case-parent trios (each family contains an affected child and his/her parents) and 448 markers (variables) are included in the analysis. Because the proposed method efficiently draws information from both joint and marginal effects, interesting and novel scientific results were obtained, some of them intriguing.

In order to accommodate different types of genetic data (such as in case-control designs, e.g.), the method has been modified recently to other genetic approaches using multiple markers [Ionita and Lo (2005), Zheng, Wang and Lo (2006)]. A brief summary of these methods and their results appears in Supplement Section S1 [Chernoff, Lo and Zheng (2009)].
In brief outline, the methods consist of subjecting a small randomly selected group of markers to analysis to see which, if any of these, seem to be moderately associated with the disease. A measure I [defined later in equation (1)] that evaluates the amount of influence of this set of markers is used to quantify their associations with the disease. A stepwise elimination process reduces this set to a smaller set of possibly influential variables which are retained. By repeating this process many times on randomly selected groups of markers, a subset of markers is obtained which frequently appear to be associated with the disease, and this subset is regarded as potentially involved in the disorder.

An advantage of this method consists of avoiding a difficult direct analysis involving hundreds or thousands of markers in favor of a simple but effective analysis repeated many times. Another advantage is that, as opposed to other methods depending mainly on marginal information, this method can make use of both marginal and interactive effects to yield more effective detections.

The main idea applies much more generally than to special genetic problems. In this paper a general version, which we shall call Partition Retention, is proposed to deal with the problem of detecting which, of many potentially influential discrete variables $X_s, 1 \leq s \leq S$, have an effect on a dependent variable Y using a sample of n observations on $Z = (X, Y)$, where $X = (X_1, X_2, ..., X_S)$.

There exists a substantial literature, especially in engineering journals, on feature and variable selection [Breiman (2001), Dash and Liu (1997), Guyon and Elisseeff (2003), Koller and Sahami (1996), Ritchie et al. (2001)], but much of it is directed toward improving techniques in classification. A set of variables that are useful for classification purpose can be potentially very different from the set of influential variables that we seek to identify in this paper. In our text we will make comparisons with Random Forests [Breiman (2001)] and some comments on Multifactor Dimensionality Reduction (MDR) [Ritchie et al. (2001)]. In our discussion, we include some comments on the interesting technique of Koller and Sahami (1996).

In the background is the assumption that Y may be slightly or negligibly influenced by each of a few variables X_s, but may be profoundly influenced by the confluence of appropriate values within one or a few small groups of these variables.

At this stage the object is not to measure the overall effects of the influential variables, but to discover them efficiently. Once these variables have been detected, the problem of dealing with a much smaller group of influential variables should be vulnerable to appropriate analysis. In a sense we are confining our attention to locating a few needles in a haystack.

The object of this paper is to introduce the general approach, and to indicate that there are many important variations of strategies which may be worth exploring in order to increase the effectiveness for finding influential variables and discarding impostors.
Section 2 provides a preliminary illustration of the approach with an artificial example. This is followed by Section 3 which gives a formal presentation of terminology.

Sections 4 and 5 address the following major issues and the novel advantages of our method with simple artificial examples in Section 4 and four more substantial ones in Section 5, where two are based on real data:

1. As has been noted by Guyon and Elisseeff (2003), while one of a set of influential variables may have no causal effect by itself, it may have an observable marginal effect. That observable effect might be small or negligible. Many current methods rely heavily on the presence of strong observable marginal effects and are unlikely to succeed if marginal observable effects are weak. Under certain circumstances, some impostor variables with no causal influence may seem to have substantial marginal observable effects.

2. The method we present is sensitive to the combined effects of several influential variables when there are many potential influential candidates. When the number of candidates is very large, our original plan may not succeed in observing the combined effects of several influential variables, and it may be necessary to thin out the set of candidates with a preliminary stage where all variables are first considered one or two at a time. In a following stage our method may resuscitate influential variables that did not show up early.

3. Our method uses a measure of information related to the multiple correlation (or t test in the case of one explanatory variable). It is more sensitive to influence than the correlation when applied to several variables at a time.

Section 6 is a summary which also includes a discussion of the comparison with Random Forests, and describes some aspects of an interesting procedure by Koller and Sahami (1996). Finally, an appendix contains some derivations and related results. Except for Appendices A and B, the other parts (Supplement Sections S1–S3) are included in the online supplementary file [Chernoff, Lo and Zheng (2009)].

2. Preliminary illustration. We introduce the partition retention (PR) approach and related terminology and issues by considering a small artificial example.

Example 1. Suppose that an observed variable Y is normally distributed with mean X_1X_2 and variance 1, where X_1 and X_2 are two of $S = 6$ observed and potentially influential variables which can take on the values 0 and 1. Given the data on Y and $X = (X_1, \ldots, X_6)$, for $n = 200$ subjects, the statistician, who does not know this model, desires to infer which of the six explanatory variables are causally related to Y. In our computation the X_i were selected independently to be 1 with probabilities 0.7, 0.7, 0.5, 0.5, 0.5, 0.5.
The approach is to partition the 200 observations into $2^6 = 64$ partition elements, according to the values of $X = (X_1, X_2, \ldots, X_6)$ with n_i observations in the ith element. We introduce the measure

$$I = n^{-1} \sum_i n_i^2 (\bar{Y}_i - \bar{Y})^2,$$

where $\bar{Y} = \sum_i n_i \bar{Y}_i / n$ is the overall average of Y and \bar{Y}_i is the average of Y in the ith element. We consider I to be a measure of influence based on how well the partition separates the subjects into relatively homogeneous subsets.

To measure the influence of X_1 on I, we can repeat this process by using the coarser partition depending on the other 5 variables, in effect pretending that we do not have X_1 available. The difference, D_1, in the two values of I is regarded as a measure of the influence of X_1 on Y in the presence of the other 5 variables. A decrease in I would suggest that X_1 has a substantial influence. We could repeat this process for each of the other 5 variables. Our procedure consists of discarding from consideration the variable for which the D value is least. We repeat this procedure with the remaining 5 variables and continue discarding until we reach a step where all the D values are positive, at which time we retain the remaining variables.

We illustrate the method for a particular data set not presented here. First we standardize Y by subtracting the mean and dividing by the standard deviation, a procedure we find convenient but not essential. Then we obtain the value $I = 2.14$ when all 6 variables were considered. Taking turns, eliminating one of these variables at a time gives us, for the remaining five not eliminated, values of I of 1.46, 1.57, 3.25, 3.32, 3.24 and 3.38, with corresponding D values of 0.68, 0.57, -1.11, -1.18, -1.10 and -1.24. Then we discard variable X_6 which led to the smallest value of D, leaving us with a value of $I = 3.38$. Repeating this process on variables X_1 to X_5 leads to discarding variable X_4 with $I = 5.83$. An abbreviated history of this process is presented in the first two rows of Table 1 which give the successive values of I and the variables discarded at each stage.

The next two rows of Table 1 involve the same procedure applied to the set of five variables X_2, X_3, X_4, X_5, X_6. The following two rows treat the case where the variable X_2 is originally omitted from the six. Finally, the last two rows treat the case where only the last 4 noninfluential variables are considered in the subset analyzed.

When the influential variables X_1 and X_2 are in the subset subject to the process, they end up as the last items to be discarded. When both are present the initial value of I tends to be larger than when only one is present, and when none are present the initial value of I is still smaller. In the first case our plan retains both influential variables. In the next two cases I increases as we discard, and our retention strategy retains only the last variable kept, 2 and 1 respectively. For the case where the discarding process starts with only the “unimportant” $\{X_3, X_4, X_5, X_6\}$, I has the lowest initial value and does not grow much as variables are discarded.
Table 1

History of the discarding procedure for four cases

Initial set: {1, 2, 3, 4, 5, 6}	\(I\) before discarding	2.14	3.38	5.83	10.76	20.32	9.89
Variable discarded	6	4	3	5	1	2	
Initial set: {2, 3, 4, 5, 6}	\(I\) before discarding	1.46	2.12	3.34	5.49	9.89	
Variable discarded	5	6	3	4	2		
Initial set: {1, 3, 4, 5, 6}	\(I\) before discarding	1.57	2.29	3.36	5.49	8.70	
Variable discarded	6	3	4	5	1		
Initial set: {3, 4, 5, 6}	\(I\) before discarding	1.00	1.12	1.13	1.01		
Variable discarded	6	3	5	4			

The strategy of retaining all variables when all \(D\) values are positive, that is, when \(I\) starts to decrease, would lead to retaining variables \(X_4\) and \(X_5\) in the fourth case. With the relatively small initial value of \(I = 1.00\), it might be a good idea to retain none of the variables being studied. In other words, our strategy for retaining variables could be reconsidered. In fact, as we shall note later, values of \(I\) substantially greater than 1 signify possible influence, and the values of \(I\) at the stopping times were 20.32, 9.89, 8.70 and 1.13, in these four situations above. The relatively modest value of \(I\) at the stopping time in the fourth case could be regarded as a signal to not retain the remaining variables.

Because we will be dealing with many candidate variables in more realistic problems, our plan is to take small random subsets of the variables under consideration and subject these to a reduction scheme similar to the one described above. If the retention rate for influential variables will be greater than for noninfluential variables, the influential ones will show up more often in many repetitions of this process, and will be discovered by their high retention rates.

Although \(X_1\) has no marginal causal influence by itself, the third case shows that it has a marginal observable effect which may also be detected by a simple \(t\) test. As we shall see, applying the \(t\) test on each candidate variable is computationally cheap, and may locate influential variables with a strong marginal observable effect. But, in the case of many candidate variables, it will allow some noninfluential variables to behave as impostors. The \(t\) test may not be very efficient in detecting observable effects which depend on interactions, and may fail to discriminate against some of the impostors. However, for problems where \(S\), the number of potentially influential variables under consideration, is not very large, we may be able to calculate the value of \(I\) for all possible pairs or even all possible triples, as a way of increasing the sensitivity for detecting influential variables, for which
the causal effect depends largely on the interactions of groups of variables, while discriminating against impostors.

3. Formulation outline. If we select a subset or group of \(m \) binary valued variables from \(X = (X_1, X_2, \ldots, X_S) \), this subset defines a partition \(\Pi^* \) of the sample of \(n \) observations into \(m_1 = 2^m \) subsets which we shall call partition elements, \(\{A_1, A_2, \ldots, A_{m_1}\} \), corresponding to the possible values of the collection of these \(m \) binary variables. For simplicity and without causing confusion, we shall use \(\{X_1, X_2, \ldots, X_m\} \) to denote the subset of selected variables. Each partition element \(A_j \) corresponds to a possibly empty subset of \(n_j \) \(Y \) values and \(\sum n_j = n \).

Each nonempty partition element \(A_j \) yields a mean value \(\bar{Y}_j \) and the overall mean is \(\bar{Y} = \sum n_j \bar{Y}_j/n \). Let

\[
I_{\Pi^*} = n^{-1} \sum n_j^2 (\bar{Y}_j - \bar{Y})^2.
\]

If \(I_{\Pi^*} \) is unduly large, an expression to be explained later, we suspect that some of the \(m \) variables may have an influence on \(Y \).

Suppose that we now introduce another binary variable from the original set of \(S \) potentially influential variables, which we shall call \(X_0 \) for notational convenience. This leads to a more refined partition \(\Pi = \{A_{jk} : 1 \leq j \leq 2^m, k = 0, 1\} \), where \(A_{j0} \) corresponds to that part of \(A_j \) with \(X_0 = 0 \) and \(A_{j1} \) corresponds to that part of \(A_j \) with \(X_0 = 1 \). Now let \(\bar{Y}_{jk} \) be the mean of the \(n_{jk} \) elements in \(A_{jk} \) and, hence, \(n_j = n_{j0} + n_{j1} \) and \(n_j \bar{Y}_j = n_{j0} \bar{Y}_{j0} + n_{j1} \bar{Y}_{j1} \). We refer to \(\Pi^* \) and \(\Pi \) as the coarse and refined partitions respectively. The measure \(I_{\Pi^*} \) is now replaced by

\[
I_{\Pi} = n^{-1} \sum n_{jk}^2 (\bar{Y}_{jk} - \bar{Y})^2
\]

and

\[
D_I = \frac{1}{2} (I_{\Pi} - I_{\Pi^*})
\]

can be regarded as a measure of how much \(X_0 \) contributes in influence on \(Y \) in the presence of \(X = (X_1, X_2, \ldots, X_m) \). It is easy to see that

\[
D_I = -n^{-1} \sum n_{j0}n_{j1}(\bar{Y}_{j1} - \bar{Y})(\bar{Y}_{j0} - \bar{Y}).
\]

Thus, \(D_I \) tends to be negative when both means in the refined partition elements tend to be on the same side of \(\bar{Y} \) as in the coarse partition element from which the refined elements came. We would expect that if the new variable contributes influence on \(Y \), then \(D_I \) would tend to be positive.

In Appendix A, we calculate the expectation of \(D_I \) conditional on the partition sample sizes, in a more general framework described at the end of this section. This expectation consists of the difference of two positive quantities plus one which is relatively small and can be estimated. Neglecting this small term, we see that if the new variable has no influence on \(Y \), other than random noise, the expectation of \(D_I \) will be nonpositive, and strictly negative if there are some influential variables
in the selected subset \(\{X_1, \ldots, X_m\} \). On the other hand, if the new variable \(X_0 \) contributes influence on \(Y \) and the old ones do not, then the expectation of \(D_I \) will be positive.

Our policy is not that of adding new variables to our group of \(m \) variables, but one of deleting variables from an initial group. Thus if we start with \(m + 1 \) variables, we consider the effect, that is, \(D_I \), of using the coarser partition obtained by eliminating one of the \(m + 1 \) variables. The one with the smallest \(D_I \) is then eliminated, and we repeat this procedure on the remaining \(m \) variables. We may continue eliminating until we are satisfied by some criterion (e.g., when all the remaining \(D_I \) are positive), that most of the remaining variables are good candidates for being influential and should be retained.

The set of \(m + 1 \) variables will be selected at random from the original set of \(S \) variables. The retention procedure is to be carried out many times. We can observe which of the original variables is retained with an unusually high frequency among those retained, and use these for further analysis.

Because we expect to repeat this procedure many times, the approach is computationally intensive. It may be possible sometimes to use the initial value of \(I \) to decide whether a randomly selected group of \(m \) variables is worth pursuing with the elimination scheme, thereby avoiding the calculations required for the successive eliminations. Sometimes, it may be sensible to stop after the first step in the elimination process and select the variables which lead to large values of \(D_I \).

While our discussion was confined to binary valued explanatory variables, there is no such essential limitation. In fact, the applications of Zheng, Wang and Lo (2006) used SNP genotypes, which assume three possible values, as explanatory variables. We could easily partition based on discrete valued explanatory variables. Then, if \(X_0 \) assumes a finite set of values, say, 1 to \(r \), the equation for \(D \) must be adjusted to give

\[
D_I = -n^{-1} \sum_i \sum_{j<k} n_{ij} n_{ik} (\bar{Y}_{ij} - \bar{Y})(\bar{Y}_{ik} - \bar{Y}),
\]

where the partition element \(A_{ij} \) is that subset of \(A_i \) where \(X_0 = j \) and has \(n_{ij} \) elements averaging \(\bar{Y}_{ij} \). If we define \(W_{ij} \) as the sum of all \(Y \) variables in the partition element \(A_{ij} \) and \(W \) as the sum of all the \(Y \) values, then we may write

\[
D_I = -n^{-1} \sum_i \sum_{j<k} (W_{ij} - (n_{ij}/n)W)(W_{ik} - (n_{ik}/n)W).
\]

In those cases where the explanatory variables are continuous, the investigator could select cutoff points to separate the possible values into a few discrete subgroups. This process might involve subjective decisions. Such subjective decisions could also be applied to a more complicated case where a pair of discrete or continuous variables may be assigned to a small number of discrete values depending on the expert opinions of the investigator.
In Appendix A, we deal with two models. In the first, the random Y model, we assume that the distribution of Y depends on X which may be random or may be selected in advance as part of an experimental design. In the second, the specified Y model, the values of Y are selected in advance. For example, in case-control experiments we select the number of cases and controls and examine the related values of X.

An alternative measure of influence, one more aligned with standard analysis of variance calculations, is given by

\[J_{\Pi} = n^{-1} \sum n_{jk} (\bar{Y}_{jk} - \bar{Y})^2. \]

The use of J to compare two sets of $m > 1$ variables for influence is the same as using the multiple correlation of Y on these variables. For $m = 1$ using J, the squared correlation coefficient and the absolute value of Student’s t will give almost the same comparisons when $m = 1$ and $r = 2$. The same could be said for the chi-square statistic and J when the variable X_i assumes more than 2 values or $m \geq 2$.

4. General comments. Our object is to locate influential variables. Whatever method we use there is always the possibility that, among the ones we characterize as influential, there will be some that are impostors. When S is large, it may be necessary to go through several stages of an elimination process, eliminating many of the candidate variables from consideration at each stage.

Our major method is most effective when the subgroup of variables randomly selected has a reasonable probability of containing more than one of the interacting influential variables. But for this to be the case, the size of the randomly selected group of variables m should be a substantial portion of S, the number of candidate variables. When the sample size n is not very large, m has to be modest for our approach to be effective, for otherwise, there will be many partition elements that are empty or have only one subject. For example, if n is 200, we would like to have no more than 50 to 100 partition elements. In the case of binary valued X values, that means that we should consider subgroups of 6 or 7 variables at a time. But if S is 1000, it is rarely the case that a randomly selected subgroup of 7 variables will contain more than one of a small number of interacting influential variables. In that case, we have to thin out the set of competitive variables before we can hope to have the advantage anticipated when our subgroup frequently has more than one of the interacting influential variables.

One way to thin out the candidates is to apply I or the t test to one explanatory variable at a time, and to concentrate energy on those which indicate strong marginal observable effects. If S is not too huge, we may even consider all possible pairs and concentrate on those variables which appear in many high ranking pairs.

In the examples of Section 5 we will show how the partition retention method applied after thinning can resuscitate influential variables with mediocre ranking by marginal considerations.
An issue of importance is the relative powers of using \(m = 1, 2 \) and 7. Another issue is whether a variable, which is an impostor using one of these methods, is likely to fail by some of the others. If that is the case, then we can hope to weed out impostors by combining the various techniques. Finally, when our analysis points to some likely candidates for being influential, we would like to have some way of deciding how plausible our results are. One way would be to add randomly selected additional variables which should have no relationship to the dependent variable, and see how their presence affects the various statistics used. This approach does not seem to be as reliable as simply permuting the values of the observed dependent variable \(Y \). This latter approach does not upset the relationships among the \(S \) explanatory variables, whereas the first proposal would require assuming independence or some arbitrarily selected correlations.

We have used the word impostor to suggest that some explanatory variables which are not causally related to the dependent variable tend to be easily confused with influential variables. The following simple artificial example provides some insight on the circumstances that can lead to impostors.

Example 2. There are three independent explanatory variables \(X_1, X_2, X_3 \) which take on the values 0 and 1. Let \(Y = X_1 X_2 \), and in a sample of \(n \) cases, \(n_{ijk} = np_{ijk} \) is the number of cases where \(X_1 = i, X_2 = j, X_3 = k \). We use the subscript \(d \) to replace the conventional dot to indicate summation over the corresponding index. For example, \(p_{11d} = \sum_k p_{11k} = p_{110} + p_{111} \). (In small print the symbol \(d \) is easier to read than a dot.) We also relate the \(p \) values with the probabilities they estimate and so we may write \(p_{11d} = p(X_1 = 1, X_2 = 1) = p(X_1 X_2 = 1) = p(Y = 1) \).

Using the partitions based on \(X_1 \), we obtain

\[
I_{X_1} = 2n(p_{11d}p_{0dd})^2
\]

and using the noninfluential \(X_3 \), we have

\[
I_{X_3} = 2n(p_{11d}(p_{111}/p_{11d} - p_{dd1}))^2.
\]

The ratio \(I_{X_3}/I_{X_1} \) depends on the ratio of \(p(X_3 = 1|X_1 X_2 = 1) - p(X_3 = 1) \) to \(p(X_1 = 0) \). In Supplement Section S2 [Chernoff, Lo and Zheng (2009)], we prove that, assuming independence of \(X_3 \) and \(X_1 X_2 \), the asymptotic distribution of the first term of this ratio has mean 0 and variance \(n^{-1} \) when \(S \) is very large and \(n \) is modest, there may be several impostors.

Note that in most real problems the dependent variable is typically not completely determined by the causal variables. There is usually some random variation and the signal to noise ratio is of consequence. In our example there was no noise,
and the signal to noise ratio is effectively infinite. Even so, it is possible to have impostors.

The following is an artificial example where two explanatory variables determine the dependent variable but neither one has a marginal observable effect.

Example 3. This is a variation of Example 2, where the data consist of \((Y, X_1, X_2)\) for \(n\) observations, and \(Y = X_1 X_2 + (1 - X_1)(1 - X_2)\). Then

\[
I_{X_1} = 2n(p_{11} p_{01} - p_{10} p_{00})^2. \tag{8}
\]

If \((X_1, X_2)\) takes on the values \((1, 1), (1, 0), (0, 1)\) and \((0, 0)\) with probabilities \(q_1, q_0, q_0, q_1\), then the expression \(p_{11} p_{01} - p_{10} p_{00}\) is asymptotically normal with mean 0 and variance \(2q_0 q_1/n\). In effect, the marginal observable effects of \(X_1\) and of \(X_2\) are negligible even though both variables are influential. This lack of marginal observable effect depends on a certain amount of symmetry in the causal mechanism and on the distribution of explanatory variables.

It is useful to observe that if a group of noninfluential variables are distributed independently of a dependent variable \(Y\) which is standardized to have sample variance 1, then \(I\) will be distributed roughly like a weighted sum of independent chi-squares with one degree of freedom. Also, the distribution of \(J\) conditional on \(m'\), the number of nonempty partition elements, will have the approximate distribution of a chi-square with \(m'\) degrees of freedom divided by \(n\). More precise statements and derivations are presented in Appendix B. These results provide a clue as to when a group of variables are likely to contain some influential ones.

Some experimental results, one listed in Supplement Section S3 [Chernoff, Lo and Zheng (2009)], suggest that both of these measures tend to have roughly the same ability to detect influential variables when the number of partition elements is small and of comparable sizes. However, for a special alternative to independence, the ratio of sensitivities of \(I\) and \(J\) depend heavily on \(m' \sum (n_i/n)^2\), which attains a minimum of 1 when all the partition elements have equal sample sizes, and a maximum close to \(m\) when most of the observations are concentrated in one partition element. The advantage of \(I\) over \(J\) depends on the variance of the frequencies \(n_i\) (see Supplement Section S3 [Chernoff, Lo and Zheng (2009)] for detail).

At this time, we hesitate to present a specific program to carry out our aim of detecting influential variables. Each applied problem has special needs which may call for variations on the procedures we described.

5. Examples. In this section we present four examples. One is an extension of Example 3 of the last section and involves 10 influential variables. Another is a more realistic one featuring two small groups of influential variables. Two are based on a real data set for Rheumatoid Arthritis. A major advantage of the artificial ones is that truth is known and the properties of the methods can be evaluated.
for those examples. By simulation we can see how our methods respond as parameters of the model in the example vary. We have the opportunity to compare the results with those of Random Forests (RF), a method pioneered by Breiman (2001). For examples based on real data, we have to rely on supplementary information to determine the reliability of our conclusions.

Our simulations give rise to a great deal of data. For the sake of this presentation, devoted to introducing the partition retention approach, we will occasionally omit some useful information in an attempt to avoid overwhelming the reader. In particular, we depend heavily on ranking the influential variables among all the candidates, and rarely present the measures used for the ranking. Thus, the reader will seldom see those situations where there is a precipitous drop in the measure as one goes from one variable to the one ranked next.

Our comparisons often will involve rankings of variables based on $|t|$, I_1, I_2, I_2f, I_7 and RF. Here t is the Student’s t test statistic and behaves very much like I_1, which is the marginal measure I based on $m = 1$. For I_2, we rank the $S(S-1)/2$ pairs of variables using I based on $m = 2$. There is no unique way to rank the importance or influence of the individual variables given this ranking of pairs. Two alternatives suggest themselves. The first, somewhat ambiguously labeled I_2, is measured by the number of variables that have appeared at least once in the ranking of the pairs before the candidate appears. The potential trouble with this method is the possibility that a very strong candidate in one group of influential variables will carry some noninfluential variables with it before we see indications from influential variables in another group. An alternative ranking, I_2f, depends on the number of times a candidate variable appears in the nr most highly ranked pairs where nr is a substantial portion of the number of pairs.

Given a data set, $|t|$, I_1, I_2 and I_2f are determined. The partition retention method with $m = 7$, yielding I_7, is random since it depends on the random sample of ns subsets of m variables. Good choices of ns would depend on how far apart are the frequencies of retention of influential and noninfluential variables. While real problems could use sequential methods to help select ns, we have generally settled almost arbitrarily on $ns = 30,000$ or $20,000$ for many of the experiments presented here. Similarly, in comparisons with random forests, we have taken the number of variables sampled at each node, m_t, to be 7 and the number of trees nt to be 20,000. Results for random forests seem to be insensitive to variations in these parameters. The rankings for random forests is given by RF.

Example 4 is an artificial example, representing an extension of Example 3 to deal with 10 well balanced influential variables in a set of 500 variables with 400 observations on each. We shall see that marginal methods give poor results.

EXAMPLE 4. The $S = 500$ variables X_t are binary valued with values 0 and 1. The first 10 are influential. The number of ones among these, R, is uniformly distributed from 1 to 9. The subset of R of these 10 variables to be equal to one is chosen at random with equal probability from among all such subsets. The remaining
490 variables are independent and each is chosen to have its probability of one to be uniformly distributed from 0.4 to 0.6. Given \(R \), the dependent variable, \(Y \) is normally distributed with mean and variance equal to \(4(R(R - 1) + (10 - R)(9 - R)) \). Here, the sample size \(n = 400 \).

The ranks of the influential variables are listed in Table 2 when the methods \(|t|, I_1, I_2, I_7\) and RF are applied.

In summary, \(|t|\) and \(I_1\) are in close agreement and the ranks they give are essentially those of a random sample of 1 to 500. There are no first order observable effects, which is to be expected given the construction. On the other hand, \(I_2\) is almost perfect in identifying the influential variables. Only the tenth is superseded by 8 impostors. The \(I_7\) and RF methods did not do as well as \(I_2\), but better than \(I_1\). Furthermore, in this example \(I_7\) seems to do considerably better than RF, suggesting that RF is more dependent than \(I_7\) on strong marginal observable effects.

The same calculations were done on the data sets consisting of the first 100 and the first 200 observations. The results for \(I_2\) deteriorate slightly as the sample size decreases, allowing 13 impostors. For \(I_7\) and RF we still seem to do better than chance, but not by very much.

One way of testing for influence is to introduce noisy variables and see what effect these have on \(I_1\). Another is to make comparisons with the methods applied after \(Y\) is randomly permuted a number of times. Since we know truth in this case, these methods are not required, but we demonstrate a couple of exercises. In Table 3 we apply \(I_1\) and \(I_2\) to the variables 11 to 500 and see how the noisy variables

Table 2

Vars	1	2	3	4	5	6	7	8	9	10		
\(r	t	\)	162	281	363	69	370	52	493	337	183	290
\(rI_1\)	159	279	361	65	369	50	493	335	183	288		
\(rI_2\)	8	9	3	1	6	5	4	7	2	18		
\(rI_7\)	39	123	144	35	130	33	154	161	67	45		
\(rRF\)	127	363	213	51	208	48	221	220	186	266		

Table 3

Vars	11	12	13	14	15	16	17	18	19	20
\(rI_1\)	207	290	345	88	190	374	466	251	158	321
\(rI_2\)	370	247	348	258	33	152	63	386	28	343
11 to 20 are ranked. In Table 4 we apply I_1 and I_2 to variables 1 to 500 and see how variables 1 to 10 are ranked after subjecting Y to a random permutation.

The comparison between the results in Tables 3 and 4 with those of I_2 in Table 2 is striking. The comparison with those of I_7 and RF are less striking but apparent. In a real data problem, a number of such randomized variations of the original data set can be used to estimate the false discovery rate when this method is applied to real data. Such an application appears later in Example 7.

We will now introduce Example 5 which has two small groups of 3 and 4 influential variables among 1000 candidate binary valued variables. We consider two major aspects. First we examine the average behavior of some of the methods, as sample size and signal strength change. Here we find that average ranks are not very informative, since one case with a large rank will hide the fact that most of the time the rank is small. Thus, we report both the average and median ranks and values of I. Second, on the assumption that a better understanding of the intrinsic variabilities due to the underlying model and due to the analysis would come from looking at a few examples in detail, we also study five data sets generated by one of the models. Here we explore the ability, by using I_2f or a variation of I_7, to resuscitate influential variables previously neglected.

EXAMPLE 5. The vector X has 1000 components which assume the values 0 and 1. The first 7 consist of two sets of influential variables which interact slightly. The dependent variable Y is normally distributed with mean μ and standard deviation σ, where

$$\mu = \max(\mu_1, \mu_2) + 0.1(\mu_1 + \mu_2)$$

and

$$\sigma = \max(\sigma_1, \sigma_2)$$

with $\mu_1 = \mu_0X_1X_2X_3$, $\mu_2 = 1.5\mu_0X_4X_5X_6X_7$, $\sigma_1 = 1 + X_1X_2X_3$ and $\sigma_2 = 1 + 2X_4X_5X_6X_7$. The binary valued explanatory variables are independent of each other and take on the value of 1 with probabilities 0.4, 0.5, 0.6, 0.35, 0.45, 0.55 and 0.65 for the seven influential variables. The probabilities for the remaining 993 variables are randomly uniformly selected in the range of 0.4 to 0.6. In this example, there is a slight interaction between the rare dual effects of the two groups of influential variables. After the data set is observed, Y is normalized to have sample mean 0 and variance 1.
First we will describe results based on 400 simulations of 4 conditions. Then we will explore in depth 5 cases for one of these conditions. The four conditions involve sample sizes 200 and 400, and the values 4 and 6 for μ_0. For the four conditions we had subsamples of $m = 7$. We start with the results using the marginal methods based on one or two variables.

Table 5 presents, for each influential variable, the rank it gets among the 1000 variables when each is subjected to the t test and when each is evaluated by I_1. This table is based on 400 data sets corresponding to each of 4 conditions.

Note that the first group of influential variables gets better average results than the second group, and within each group the variables with lower probabilities of 1 tend to do better. Given that the first group is influential about one eighth of the time, while the second is influential about half as often, it is natural to expect that elements of the first group will be easier to detect in spite of the somewhat weaker mean signal (mean 4 instead of 6 when $\mu_0 = 4$, and 6 instead of 9 when $\mu_0 = 6$). If we think of the other variables in a group as providing support to a designated variable being tested, the variables which show up less frequently are being more strongly supported by the more prominent members of its group. That is a heuristic explanation for the second phenomenon.

The two methods, using the t test and I_1, give comparable results. This partially supports our claim that the use of I is expected to be preferred to J when there are

Variable	1	2	3	4	5	6	7	n	μ_0	Statistic		
Mean	14.95	37.74	87.53	61.46	110.33	168.91	232.51	200	4	$	t	$
Median	2.00	5.00	22.50	8.00	24.00	62.00	134.50					
Mean	15.57	37.00	90.25	67.06	110.11	168.63	245.70			I_1		
Median	2.00	4.00	25.00	9.50	24.00	62.50	154.00					
Mean	5.61	18.95	55.76	43.21	81.55	130.26	200.07	6	4	$	t	$
Median	1.00	3.00	13.00	5.00	17.00	47.00	98.00					
Mean	5.88	18.37	57.92	47.88	81.33	129.88	212.23			I_1		
Median	1.00	3.00	14.00	7.00	17.00	47.00	109.00					
Mean	1.82	4.99	13.55	7.44	23.54	51.12	116.78	400	4	$	t	$
Median	1.00	3.00	4.00	3.00	6.00	15.00	37.50					
Mean	1.84	4.86	14.19	8.60	23.32	50.92	125.17			I_1		
Median	1.00	2.00	4.50	3.00	6.00	15.00	46.00					
Mean	1.64	3.97	8.40	4.86	12.93	28.37	89.84	6		$	t	$
Median	1.00	3.00	4.00	3.00	5.00	9.00	29.00					
Mean	1.66	3.83	8.78	5.52	12.73	28.15	97.81			I_1		
Median	1.00	2.00	4.00	3.00	5.00	9.00	33.00					
many unevenly occupied partition elements, but not otherwise. It seems that the increase of \(\mu_0 \) from 4 to 6 has less effect than the doubling of the sample size, \(n \). Even if the mean grows very large, there is a limited range of improvement for a fixed sample size. In a sense, the experiment where the dependent variable is a two-valued deterministic function of the influential variables corresponds to a problem of our type where the standard deviation of \(Y \) given \(X \) is zero or where the mean is effectively infinite. But even there we can not eliminate impostors with a finite sample size.

We present some of the results from calculating the value of \(I_2 \) for pairs of variables in Table 6. More precisely, we calculate \(I_2 \) for all 499,500 pairs, and rank them in descending order. The value of \(I_2 \) and the rank \(r \) for a given pair of influential variables, say, 4 and 7, are obtained. Finally, we determine the rank, by which all of the influential variables have shown up, and the corresponding value of \(I_2 \). We carry out these calculations, calculating means and medians for 400 simulated data sets for each of the four conditions, \(n = 200 \) and 400, and \(\mu_0 = 4 \).

Table 6

Means and medians, based on 400 data sets, of values of \(I_2 \) and the ranks, \(r \), for a few or the 21 pairs of influential variables

Pairs	(1, 2)	(1, 3)	(2, 3)	(1, 4)	(4, 5)	(5, 7)	(6, 7)	Final
\(n = 200, \mu_0 = 4 \)								
Mean \(I_2 \)	8.34	7.74	6.25	6.43	4.40	3.18	2.68	4.85
Med. \(I_2 \)	8.06	7.32	6.05	6.31	4.11	2.88	2.48	4.63
Mean \(r \)	758.45	921.87	4897.03	392.86	13178.51	42790.07	53546.21	1034.57
Med. \(r \)	3.00	6.00	50.00	46.50	1215.00	5697.50	11065.50	514.00
\(n = 200, \mu_0 = 6 \)								
Mean \(I_2 \)	9.79	8.91	7.46	7.57	5.39	3.87	3.15	5.60
Med. \(I_2 \)	9.51	8.57	7.09	7.60	5.22	3.49	3.01	5.44
Mean \(r \)	226.14	278.58	2074.82	170.89	7688.84	23337.26	37028.30	507.66
Med. \(r \)	2.00	3.00	25.00	16.00	460.00	2923.00	5688.00	274.00
\(n = 400, \mu_0 = 4 \)								
Mean \(I_2 \)	15.55	14.23	12.20	12.20	8.58	6.26	5.22	8.68
Med. \(I_2 \)	15.44	14.08	12.07	12.11	8.37	5.85	4.86	8.47
Mean \(r \)	16.84	48.54	212.85	22.03	1197.38	44268.99	9317.81	177.03
Med. \(r \)	2.00	2.00	4.00	4.00	101.00	1207.50	2167.00	70.50
\(n = 400, \mu_0 = 6 \)								
Mean \(I_2 \)	18.77	17.32	14.54	14.67	10.23	7.41	5.95	10.21
Med. \(I_2 \)	18.51	17.06	14.30	14.57	10.11	7.22	5.59	9.93
Mean \(r \)	14.01	27.80	87.34	7.61	841.75	3315.74	5092.48	141.41
Med. \(r \)	1.00	2.00	4.00	4.00	67.50	1096.50	2124.00	47.50

Note: The column “Final” refers to the rank at which all 7 influential variables have appeared at least once.
TABLE 7
Means and medians of the ranks of influential variables, using frequency of appearance in the n_r most high ranked pairs for 200 data sets. In this case $n = 400$ and $\mu_0 = 4$.

Variable	$n_r = 2000$	$n_r = 4000$		
	Mean	Median	Mean	Median
1	1.86	1.00	1.64	1.00
2	4.29	2.00	6.32	2.00
3	10.62	5.00	11.20	4.00
4	6.60	3.00	10.91	4.00
5	15.04	6.00	27.89	6.00
6	16.74	8.00	39.51	12.00
7	24.84	12.50	51.52	28.50

and 6. For simplicity and to save space, in Table 6 we show the results for only 7 of the 21 pairs of influential variables. For comparison purposes, keep in mind that the distribution of I for a set of noninfluential variables is approximately that of a weighted sum of independent chi-square variables with one d.f., and hence has mean about 1 and variance about $\sum 2(n_i/n)^2$.

Table 6 shows that sample size has a large effect on uncovering influence, and signal to noise ratio has a relatively small effect. For these conditions, many pairs have precedence over the ones where all the influential variables have finally shown up. This table indicating that we need a meaningful way of using pairs to rank single variables suggested our use of I_2. In Table 7 we apply I_{2f} to 200 data sets for the condition $n = 400$ and $\mu_0 = 4$ with the two values of $n_r = 2000$ and 4000. The results using I_{2f} are substantially better than those using I_1 and I_2, and a little better than for I_7. In other applications with 1000 variables, we tend to use $n_r = 5000$ more or less arbitrarily. Presumably there may be a rational way of selecting an appropriate value of n_r, but this question has not yet been examined.

Next, the partition retention method described in the early sections of this report was applied for the case where $n = 400$ and $\mu_0 = 4$. This was applied with 20,000 random subsets of 7, for each of 200 data sets. For each data set the influential variables were ranked according to how many times they were retained. The means and medians of these ranks are presented in Table 8.

These results seem to be worse than those using the t test for the first 3 variables but better for the latter 4. The reason for this is not clear, but the difference suggests that, used in tandem, the two approaches will have some effect in detecting and eliminating impostors.

A key question concerns how to take advantage of the partial information gained from the marginal observable effects. One way is to reduce the number of plausible candidate variables, so that our methods can apply higher order interactions to help
detect influential variables. Another way is to use likely candidates to resuscitate influential variables that have not yet shown up well. To investigate these possibilities, we will concentrate on a few data sets. For each of these we will apply various techniques to see how well these methods work.

First, Table 9 provides a list of the 30 most favored candidates by I_1, I_2, I_2^f, \(I_7 \) and RF, using \(m = 1, m = 2, m = 2 \) with \(n_r = 5000, m = 7 \) with \(n_s = 20,000 \) and \(m_t = 7 \) with \(n_t = 20,000 \). Note that 30 was selected mainly to facilitate presentation, and that in most comparable problems a larger number would usually be more appropriate at this thinning stage.

One of the methods of using a reduced list consists of applying the partition retention method to a sample of variables, 3 of which are selected from a reduced list of the top 10 candidates and 4 of which are selected from the variables not in the list. This method increases the probability of getting two influential variables in the sample, one of which may not yet be in the reduced list. We use the reduced list of the 10 top variables. These will show up in 3/10 of the samples, while the ones not in the list will only appear in about 4 out of 1000 times. While 20,000 seemed reasonably large for applying \(I_7 \) using \(m = 7 \), our candidates for resuscitation will only show up 80 times, and will be paired with a given variable of the reduced list only about 24 times. Of course, if the reduced list has two variables of a group, then a member of the group not in the reduced list may pair up with one of the two more often. However, 24 plus or minus about 5, is not a good basis for discriminating between influential variables and impostors. We have used 100,000 trials to get more opportunities for observing interactions, although both the 20,000 in the first application and 100,000 here seem a bit modest.

The 10 members of the reduced list are sampled frequently and are bound to be retained often. But some are retained so markedly less often than others that they deserve to be eliminated. For this presentation, we hesitate to do so in order to avoid unnecessary complications. Instead, we will simply adjoin the five next most frequently retained ones to the list of 10. These five appear in Table 10. Because they were at a disadvantage in the first resuscitation step, we eliminate that disadvantage in the next step by selecting 3 of the 15 in addition to 4 of the remaining 985 variables for each sample of 7. After this step there may be a rearrangement of the top 15, and a few new contenders may appear after these 15.

Table 8

Means and medians, based on 200 data sets, of the ranks of each of 7 influential variables, ranked according to the number of retentions in 20,000 samples of 7 by the Partition Retention Scheme when \(n = 400, \mu_0 = 4 \) and \(m = 7 \)

Variable	1	2	3	4	5	6	7
Mean	19.42	39.94	86.02	17.73	6.81	8.60	22.92
Median	5.00	8.00	16.50	7.00	3.00	3.50	6.00
Table 9
30 most highly ranked variables from five methods for each of 5 data sets

Data set 1	Data set 2	Data set 3	Data set 4	Data set 5																					
I₁	I₂	I₂ₚ	I₇	RF	I₁	I₂	I₂ₚ	I₇	RF	I₁	I₂	I₂ₚ	I₇	RF	I₁	I₂	I₂ₚ	I₇	RF	I₁	I₂	I₂ₚ	I₇	RF	
6	4	5	3	4	6	4	5	4	1	1	1	2	1	2	1	2	1	4	1	1	4	1			
5	6	4	5	4	5	6	4	7	4	4	1	2	2	2	5	4	2	2	6	2	3	3	1	5	
4	6	4	5	6	8	1	7	3	8	4	3	4	1	2	472	3	4	676	1	5	3	5	5	4	
7	3	870	1	7	5	8	5	3	5	4	5	4	1	5	218	472	472	472	2	593	2	163	3		
3	1	2	913	3	3	584	3	628	7	984	915	984	3	984	1	2	188	4	999	2					
2	1	2	870	288	2	628	8	628	8	628	3	676	3	314	314	677	472	677	462	677	593	5	593	3	593
1	182	1	809	106	2	6	2	469	2	874	7	314	759	207	207	6	462	6	4	3	163	4	163	2	163
106	673	346	2	623	674	3	542	794	5	314	97	874	984	358	6	767	2	676	668	814	462	7	462	593	48
660	3	106	6	870	469	2	674	2	690	759	609	358	874	874	5	676	3	676	668	814	462	7	462	593	48
789	106	660	106	660	690	614	690	542	6	358	790	759	358	175	6	767	2	676	668	814	462	7	462	593	48
346	341	623	251	789	542	269	469	7	611	730	984	730	376	702	668	853	668	5	676	4	143	999	4	240	462
623	251	789	623	403	233	628	6	674	63	427	42	929	427	957	100	612	100	956	100	48	941	48	873	79	
288	687	288	403	520	6	961	233	611	661	251	571	427	966	730	571	682	248	571	462	616	163	888	721	798	
800	2	520	673	195	611	818	5	813	542	376	5	717	657	759	713	362	956	713	178	888	306	661	893	143	
573	820	573	789	288	603	574	603	469	929	168	207	730	3	956	916	571	276	742	610	38	233	233	467		
520	243	800	962	346	5	562	152	233	794	717	909	251	499	337	248	540	703	703	224	233	976	287	499	610	
809	913	962	660	809	661	153	611	603	750	207	771	657	929	391	178	204	713	937	713	79	136	721	287	888	
962	454	809	7	573	262	469	63	614	233	175	592	775	308	987	937	629	853	100	248	941	869	79	34	941	
944	463	165	346	944	405	872	262	858	674	775	767	376	853	929	742	874	742	814	853	499	679	610	48	233	
913	563	403	944	800	63	690	794	690	603	957	522	175	280	775	703	677	606	866	909	346	79	6	143	661	
165	800	913	628	48	152	294	661	767	423	455	376	455	455	975	924	590	924	853	924	929	143	346	346	470	
403	288	944	4	407	813	418	750	6	143	660	864	957	207	280	596	5	596	18	178	956	128	312	893	732	137
182	870	182	800	905	794	913	143	262	262	657	856	592	649	717	853	124	178	596	937	240	315	929	79	929	
TABLE 9
Continued

Data set 1	Data set 2	Data set 3	Data set 4	Data set 5																				
I_1	I_2	I_{2f}	I_7	RF	I_1	I_2	I_{2f}	I_7	RF	I_1	I_2	I_{2f}	I_7	RF	I_1	I_2	I_{2f}	I_7	RF	I_1	I_2	I_{2f}	I_7	RF
195	287	7	520	82	143	405	858	152	858	68	649	14	957	251	551	571	737	571	276	287	605	941	919	308
251	369	195	799	962	353	143	351	760	119	280	726	975	175	376	814	862	814	28	703	893	800	128	128	476
827	702	673	573	165	717	93	405	693	601	975	874	34	661	524	662	741	937	51	422	470	721	470	758	302
7	140	827	165	893	858	323	717	750	405	928	401	660	767	447	737	34	224	741	571	136	75	283	929	55
673	216	251	82	827	601	252	767	63	813	499	459	308	775	502	224	889	227	256	92	283	817	312	983	893
628	573	144	195	976	802	687	693	351	534	702	581	380	126	455	456	956	869	498	728	137	815	137	137	283

TABLE 10
Five new candidates for each of 5 methods on five data sets derived from the use of I_7 on the top 10 candidates

Data set 1	Data set 2	Data set 3	Data set 4	Data set 5																				
I_1	I_2	I_{2f}	I_7	RF	I_1	I_2	I_{2f}	I_7	RF	I_1	I_2	I_{2f}	I_7	RF	I_1	I_2	I_{2f}	I_7	RF	I_1	I_2	I_{2f}	I_7	RF
7	2	7	7	7	5	690	5	7	413	7	5	7	7	7	7	676	7	703	462	128	535	128	869	128
881	520	944	1	513	985	674	985	985	782	369	314	369	369	3	703	677	703	100	7	299	177	558	7	299
332	623	623	660	789	915	628	915	674	56	154	874	154	326	759	294	956	100	853	676	7	999	869	505	505
520	972	789	520	853	405	639	603	590	690	308	984	918	126	154	100	853	853	294	853	869	505	299	299	7
543	288	968	623	322	687	794	405	6	628	326	812	126	154	369	853	5	294	834	956	38	55	7	977	869
In Table 11 we list the rankings of the influential variables for each of the five methods, I_1, I_2, I_{2f}, I_7 and RF, and for each of the five data sets. These rankings are followed by ud1 and ud2 which give the rankings after each of the two resuscitation steps. In these examples, the resuscitation methods almost always seem to improve the rankings of influential variables and often succeed in making prominent those influential variables that were poorly regarded in the first approach. Note that it is virtually impossible for variables with rank greater than 10 to achieve a rank less than 11 in the first resuscitation. Also, because we did not discard poor performers in that first step, it is unlikely that a variable with rank greater than 15 will achieve a rank less than 16 in the second step. Nevertheless, these resuscitations provide an opportunity to reorder the candidates.

An alternative approach to discarding impostors and resuscitating poorly ranked influential variables is to take a relatively large number of prospects and submit those to the I_{2f} approach. This alternative approach can not resuscitate a variable which fails to appear in the list of prospects, and so it would pay to use a relatively large number of such prospects for this reduction stage, which can then be repeated with a smaller list. This method, when applied to the modest list of 30 prospects, provided considerable improvement on the relative rankings of the influential variables in the list, but failed to resuscitate variables not on the list of 30 for the data sets 3, 4 and 5. The results appear in Table 12.

5.1. Applications to Rheumatoid Arthritis. This section describes an application of the methods of this paper to a real data set on Rheumatoid Arthritis in two examples. The first is a brief summary and expansion of work in which some of us participated [Ding et al. (2007)], and applies I_2 to thin the large set of available SNPs, I_8 on the reduced set, and random permutations of the dependent variable to estimate false discovery rates. In the second we apply the ideas of resuscitation to obtain some additional results.

Example 6. Rheumatoid Arthritis (RA, MIM 180300) is known as a common disorder with complex genetic etiology. In Ding et al. (2007) the Illumina genome scan on RA, originally studied by Amos et al. (2006), was analyzed as part of the Genetic Analysis Workshop 15 [Cordell et al. (2007)]. The Illumina genome scan consists of 5407 Single Nucleotide Polymorphism (SNPs) genotyped from 642 Caucasian families. For the analysis, 349 unaffected individuals were selected as “controls” and 474 RA patients as “cases.” The analysis was carried out in two stages. It should be noted that in dealing with SNPs, we have explanatory variables which can assume three possible values. Also, as pointed out in Supplement Section S1 [Chernoff, Lo and Zheng (2009)], the BGTA method used in Ding et al. (2007) is equivalent to that of the partition retention method using I_1.

Because there was a large number of three valued explanatory variables, and I_1 seemed to be nonproductive, the first stage consisted of using I_2 to select the
Table 11
Ranks of influential variables for five methods applied to 5 data sets. Initial ranks, rI and rRF, and ranks ud1 and ud2 after resuscitations

Var	Data set 1	Data set 2	Data set 3	Data set 4	Data set 5																		
	1	2	3	4	5	6	7	1	2	3	4	5	6	7	1	2	3	4	5	6	7		
rI1	7	4	5	6	2	3	1	28	7	4	2	1	6	3	4	5	1	2	6	3	4	5	1
ud1	4	2	6	3	1	11	2	4	2	1	5	3	4	5	1	2	1	4	3	10	6	11	
ud2	6	2	4	3	2	1	9	2	6	5	1	8	4	1	5	3	4	8	5	7	2		
rI2	5	14	9	1	2	3	4	2	6	5	1	8	1	4	7	2	1	2	3	4	14	7	
ud1	6	11	5	1	3	2	4	1	2	6	3	1	7	8	4	1	2	3	4	11	26		
ud2	6	11	5	1	3	2	1	5	2	6	4	1	7	11	3	1	2	5	3	4	10		
rI2	5	14	9	1	2	3	4	2	6	5	1	8	1	4	7	2	1	2	3	4	14	7	
ud1	6	11	5	1	3	2	4	1	2	6	3	1	7	8	4	1	2	3	4	11	26		
ud2	6	11	5	1	3	2	1	5	2	6	4	1	7	11	3	1	2	5	3	4	10		
rI3	22	8	1	2	3	9	18	1	9	3	2	4	22	11	3	1	2	5	4	2	842		
ud1	12	5	4	2	3	1	11	2	5	3	1	7	15	11	1	2	5	3	4	204			
ud2	7	6	4	3	2	1	5	2	6	4	1	7	10	3	1	2	5	3	4	40			
rRF	4	6	5	1	2	3	53	2	7	4	1	8	10	5	1	3	15	2	4	982			
ud1	2	1	4	3	8	6	12	2	6	3	1	7	8	4	1	2	12	3	4	320			
ud2	2	1	5	3	4	6	14	2	6	5	1	7	10	3	1	2	5	3	4	59			
Table 12
Ranks of influential variables for five methods applied to five data sets. Initial ranks \(r_{I1}, r_{I2}, r_{I2f}, r_{I7}, r_{RF} \) before and after resuscitation with \(l_{2f} \) based on the top 30 ranked variables.

Var	Data set 1	Data set 2	Data set 3	Data set 4	Data set 5	
	1 2 3 4 5 6 7	1 2 3 4 5 6 7	1 2 3 4 5 6 7	1 2 3 4 5 6 7	1 2 3 4 5 6 7	
\(r_{I1} \)	7 5 4 3 2 1 28	2 7 5 1 16 13	4 1 2 6 3 4 389	50 5 1 5 2 9 7	191 1 4 2 5 3 37 351	
ud	7 5 1 2 3 4 12	1 8 2 3 12 10	4 1 2 6 3 4	--	1 2 7 3 10 5	-- 1 2 3 4 5
\(r_{I2} \)	5 14 9 1 2 3 4	3 9 8 1 4 7 2	1 2 3 4 14 748	7 1 2 3 5 22 10	73 1 2 3 7 6 49 8	
ud	9 6 4 1 2 3 10	1 8 5 2 9 10 3	1 2 6 3 4	--	1 2 5 3 9 7	-- 1 2 3 5 4
\(r_{I2f} \)	7 5 4 3 1 2 24	1 7 5 2 14 12 3	1 2 6 3 4	42 163	1 2 5 3 9 7	44 1 4 2 5 3 20 199
ud	7 5 1 2 3 4 12	1 7 5 2 12 8 3	1 2 6 3 4	--	1 2 6 3 10 7	-- 1 2 3 4 5
\(r_{I7} \)	22 8 1 2 3 9 18	1 9 3 2 4 22 11	3 1 5 4 2 842	44 5 1 9 7 11	2 270 2 7 6 1 3 41 135	
ud	7 5 1 2 3 4 12	1 8 2 3 14 9 4	1 2 5 3 4	--	1 2 7 3 10 5	-- 1 2 3 4 5
\(r_{RF} \)	4 6 5 1 2 3 53	2 7 4 1 8 10 5	1 3 15 2 4 982	454 3 2 7 1 5	10 882 1 5 4 3 2 63 1000	
ud	7 5 1 2 3 4	1 7 5 2 12 11	3 1 2 7 3 4	--	1 2 6 3 10 7	-- 1 2 3 5 4

Note: “--” is used to represent ranks not observed.
707 SNPs which appeared in the 1000 top ranking pairs. Then the partition retention scheme I_8 was applied to these 707 SNPs using 70,000 randomly selected subsets of 8 SNPs. Each subgroup retained was assigned the value of I at the stopping time. This process yields a sample of 70,000 values of I. We plan to select the elements of those retained subgroups for which the value of I is above a certain threshold. To determine that threshold, we applied 50 permutations to the case-control labels, repeating the process described above for the original data each time. This yields 3,500,000 values of I. For each value of I, there are a number of selected subsets from the original data that have a larger stopping value I, say, M_1. At the same value of I, we also calculated, for each permutation b, the proportion of the 70,000 permuted I values that are greater than the given value of I, say, $p_0^{(b)}$. The false discovery rate (FDR) at this given value I is then estimated as

$$ \text{fdr}(I) = \frac{\text{median}(p_0^{(b)})}{M_1/70,000} $$

[Benjamini and Hochberg (1995), Yekutieli and Benjamini (1999)]. We used the value of I when the FDR estimate reaches 30% as the selection threshold. Elements of subsets with stopping I values which exceed this threshold were selected. These consisted of 50 SNPs which are located within 39 distinct genes. We shall call these SNPs qualified since one can not claim that they are truly related to RA and not impostors without additional evidence from biological or other studies.

In this paper an additional procedure was carried out to determine how well these qualified SNPs are ranked by I_7 in the presence of noise, and how well this ranking compares with that of using the marginal χ^2-test. As illustrated in Supplement Section S1 [Chernoff, Lo and Zheng (2009)], the I_7 approach is equivalent to the BGTA method studied in Zheng, Wang and Lo (2006). For this procedure the 50 qualified SNPs are augmented by 950 additional SNPs selected at random from the remaining 5357. For these additional SNPs the case-control designation was permuted, while it was not for the 50. For example, if the permutation moves the case row 16 to control row 35, our new row 35 will have the designation of case and the 50 SNPs will correspond to those of the original row 16, while the remaining 950 will correspond to those of row 35. In this way the structure of the values of the unqualified SNPs is maintained while their relation with the dependent variable is destroyed. This procedure was repeated 5 times with the SNPs ranked by retention frequency using I_7 or BGTA (500,000 screenings for each data set) and by the χ^2-test. In Figure 1 we plot the average proportion of SNP’s ranked above a given value against the average number of qualified SNPs ranked above that value, for both methods. For example, by the time we retained 40 or 80% of the qualified SNPs, we will have retained 100 by I_7 (BGTA) and 368 by the χ^2-test. Each of these methods does substantially better than pure chance in recognizing qualified SNPs. If the qualified SNPs represented true effects, this figure would provide an indication of an optimal cut off ranking, given the relative costs of false discovery and of missing true relations using these methods.
FIG. 1. Screening performance of BGTA and χ^2 tests. The black and blue curves are average (out of five simulated sets) number of top markers required to be selected in order to attain a specific proportion of important markers. Vertical bars on these curves indicate the maximum and minimum number of markers required for the five simulations, which reflect the variability of the retention method.

EXAMPLE 7. In this example we apply resuscitation analysis on the real data on Rheumatoid Arthritis (RA). We apply I_{2f} with $n_r = 50,000$ to almost 15 million of the pairs of the 5407 SNPs. In other words, we evaluated I for every pair, and ranked the individual SNPs according to how often they showed up in the top 50,000 pairs. The 25 SNPs with the top ranks were selected as the first reduced list.

To resuscitate influential SNPs not in this short list, the partition retention method I_7 was applied to 2 million subsets with 3 members from the 25 and 4 from the remaining SNPs. The top ranking 50 SNPs from this stage were then used for a second stage of I_7 with 2 million subsets with 3 from the 50 and 4 from the remaining 5357. Table 13 displays the top 75 SNPs in this final resuscitated list, 38 of which are within 10 Mb of previously identified RA susceptibility loci. In Table 13 the SNPs are arranged according to the position of the locus in the genome. Thirty eight of these 75 SNPs appear in 22 regions previously referenced in a publication. The remaining 37 SNPs have no reference in the literature. Eleven of them end up among the top 25, and 13 among the second 25. We find that the resuscitation has sent 9 from I_{2f} rankings ranging from 97 to 241 to ud2 rankings in the top 25.

To spare the reader from extensive tables, we have often presented ranks and neglected frequencies and values of I. A careful reading of such extended tables would have made some things now obscure more obvious. In particular, there is
Table 13
75 SNPs selected after two rounds of resuscitation. Ranks from I_{2f} and the two resuscitations ud1 and ud2

SNP	Locus	ud2	ud1	$r_{I_{2f}}$	Previously identified locus and reported significance (within 10 Mb)
rs7534363	1p36.3	19	31	213	Osorio y Fortéa et al. (2004): $p = 0.003$; Cornélis et al. (1998): $p = 0.0035$; Thompson et al. (2004): $p = 0.00585$;
rs2817594	1p36.2	33	32.5	236	—
rs235256	1p36.2	28	32.5	151.5	—
rs569668	1q42	2	2	3	Jawaheer et al. (2003): $p = 0.003$; Osorio y Fortéa et al. (2004): 0.04;
rs1389622	1q44	54	104	29	—
rs300739	2p25	51	52	32	Thompson et al. (2004): note 1;
rs2685263	2p25	20	16	12	—
rs6547142*	2p12	60	57	246	Cornélis et al. (1998): $p = 0.041$;
rs1473357*	2p12	58	61	151.5	—
rs921423	2q11	16	11	10	
rs7561232	2q21	10	27	205	
rs1402810	2q21-22	9	13	8	
rs970595	2q33	1	1	1	Osorio y Fortéa et al. (2004): $p = 0.03$; Cornélis et al. (1998): $p = 0.024$;
rs1921789	2q33	8	6	15	—
rs3821280*	2q37	55	58.5	100	Cornélis et al. (1998): $p = 0.0043$;
rs164466	3p26	11	9	9	
rs1385654	3p12	40	23	25	
rs4572747	3q27	63	55	273.5	Cornélis et al. (1998): $p = 0.046$;
rs2067078	3q27	45	39	258	—
rs881641	4p16	62	86	71	Osorio y Fortéa et al. (2004): $p = 0.01$;
rs1424903	5q11.2	46	19	17	
rs1004531	5q22-23	3	5	4	
rs1560657*	5q32-33	52	162	27	Cornélis et al. (1998): $p = 0.033$;
rs190129	6p25	25	45	125	
rs910516	6p21	31	14	13	Osorio y Fortéa et al. (2004): $p = 6e-5$; Thompson et al. (2004): 0.00127; John et al. (2004): $p = 4e-5$;
rs2277123	6p21	13	41	97	—
rs508557	6q13	72	67	252	Jawaheer et al. (2003): $p = 0.0028$;
rs6915493	6q13-14	21	29	213	Jawaheer et al. (2003): $p = 0.0028$; John et al. (2004): $p = 0.006$;
rs2296412	6q14-15	49	34	291	
rs6934871	6q15	73	80	265	
SNP	Locus	ud2	ud1	r_{T2}	Previously identified locus and reported significance (within 10 Mb)
-----------	-----------	-----	-----	----------	---
rs1873219	6q15-16	44	49	100	Jawaheer et al. (2003): $p = 0.01$;
rs4302647	6q16	14	28	241	—
rs3827786	6q16	36	40	230.5	—
rs2151913	6q24-25	12	8	11	Cornélis et al. (1998): $p = 0.036$;
rs1852210	7p13	50	20	24	—
rs691183	7q32	7	10	7	—
rs1531381	7q36	67	70	79	—
rs2442567	8p23	26	35	176.5	Cornélis et al. (1998): $p = 0.040$;
rs766811	8q24.2	41	22	19	—
rs751279	9q22	15	30	165	—
rs715846	9q22	59	64	187	—
rs2298033	10p13	56	51	176.5	—
rs224136	10q21	71	68	95.5	Jawaheer et al. (2003): $p = 0.0002$;
rs1649183	10q26	64	54	213	—
rs4077638	11q13	42	38	181.5	—
rs2276189	11q24	74	74	241	—
rs6590098	11q24	53	56	192.5	—
rs1558507	12p13	35	25	20	Cornélis et al. (1998): $p = 0.0077$;
rs1517815	12q21	37	21	23	Cornélis et al. (1998): $p = 0.0067$;
rs2070628	12q24.3	70	62	252	—
rs866781	12q24.3	38	46	213	—
rs4758930	12q24.3	39	36	291	John et al. (2004): $p = 0.05$;
rs1318725	13q22	17	17	22	Cornélis et al. (1998): $p = 0.039$;
					John et al. (2004): $p = 0.03$;
rs3811310	14q11.2	29	43	187	—
rs1570342	14q11.2	4	3	5	—
rs1889387	14q12-13	18	12	14	—
rs7149108	14q12-13	27	42	213	—
rs4904723	14q31-32	48	47	236	—
rs8005578	14q32	34	48	213	—
rs7159412	14q32	75	79	213	—
rs1365591	15q12	61	60	265	—
rs1565863*	15q14-15	32	15	18	Thompson et al. (2004): $p = 0.01634$;
rs3093291	16p12-11.2	5	4	2	Cornélis et al. (1998): $p = 0.0080$;
rs7190151	16q23	69	58.5	143.5	Cornélis et al. (1998): $p = 0.038$;
rs723919	16q23	22	18	16	—
rs116719	17q25	57	66	221.5	—
rs4479277	17q25	66	84	187	—
rs6416862	17q25	24	44	173	—
Table 13
Continued

SNP	Locus	ud2	ud1	$r I_{2f}$	Previously identified locus and reported significance (within 10 Mb)
rs879588	18p11.2	68	97	165	Bache et al. (2007): note 2; Osorio y Fortéa et al. (2004): $p = 0.05$;
rs1661965	19q13.3-.4	23	26	192.5	Kuroki et al. (2005): $p = 0.019$; note 3;
rs241605	20p13	43	24	21	Osorio y Fortéa et al. (2004): $p = 1e-4$; Cornélis et al. (1998): $p = 0.030$;
rs761319	20p12	6	7	6	—
rs1389157	21q21	47	50	265	Cornélis et al. (1998): $p = 0.030$; Queiroz et al. (2001): note 4.
rs6517799	21q21	30	37	199.5	
rs5994180	22q11.1-11.2	65	53	273.5	Bache et al. (2007): note 2; Osorio y Fortéa et al. (2004): $p = 4e-2$; Cornélis et al. (1998): $p = 0.019$; Queiroz et al. (2001): note 4.

Notes: 1. Juvenile RA, LOD 6.0, stratified based on HLA-DRB1 presence. 2. The mapping is based on chromosomal rearrangements in the Danish population on Juvenile RA. 3. Association to RA observed only for those that do not carry HLA-DRB1. 4. A southern blot experiment revealed a gene IGLV8 being absent in RA patients.

*Identified SNP is < 20 Mb from previously reported locus.

almost no chance that any of the first 25 SNPs would have a higher rank than 25 after the first resuscitation, even if one shows up very poorly compared to the others in the first 25. The second resuscitation gives a chance for those in the second 25 to push out some in the first 25. This happens for nine SNPs. There is a possibility of using the results from nearby SNPs to give support to a given locus, but we have not done so here.

In this paragraph we relate some of our results to the biological literature. We use the term locus to represent a region of the genome that has been identified as relevant to RA in the literature and may contain several genes. Table 13 has 26 such loci, about 12 of which were highly ranked by I_{2f}. These include lq44, 2p25, 2q33, 6p21, 6q24-25, 12p13, 12q21, 13q22, 15q14-15, 16p12-11.2, 16q23 and 20p13. Some of these contain genes that are considered important in the biological literature. For example, 6p21 contains HLA-DRB, which is considered the most important RA gene identified to date. Also, 2q33 contains the important genes CTLA4, CD28 and STAT4, while 12pter-12p12 (centered at 12p13) contains CD4. The locus lp36 harbors an important RA susceptibility gene PADI4. At this locus we identified 3 SNPs which required resuscitation to appear in the top 50 at ranks 19, 33 and 28. The gene LILR at 19q13.3-13.4 is known to be associated with RA susceptibility among patients who are not HLA-DRB carriers [Kuroki et al.
This may explain why this locus was discovered by resuscitation and not in the initial I_{2f} screening.

6. Summary. We address a problem, expected in medical cases of complex diseases, of a dependent variable influenced by one or a few small groups of explanatory variables, when data is available on many such variables. Our object is to detect these influential variables. Lo and Zheng pioneered a method generalized here under the name Partition Retention. This method samples m of the S variables many times and uses a reduction process to retain a few of the m variables. Those variables that are retained most frequently are considered to be good candidates for being influential. The reduction process uses a statistic I which is considered to be a measure of information or influence for the set of m variables and n is the sample size. On the null assumption that the subset has no influential variables, the distribution of I is approximately that of a weighted sum of independent chi-squares with one degree of freedom.

When S, the number of variables, is large, the method is unlikely, in its original form, to detect any variable that has a negligible marginal observable effect. The fact that an influential variable has no marginal causal effect does not prevent it from having a marginal observable effect. However, such effects can also be detected by other first order methods. For example, a simple t test will detect such an effect, as will I_1 based on $m = 1$. On the other hand, if S is not too huge, it is possible to consider second order interactions by considering I_2 based on all pairs of variables. An alternative to I_2 would be to evaluate the multiple correlations of the dependent variable Y on the pair of variables. There is some evidence that J or the multiple correlation are as effective as the use of I to rank influence when m is small. But when m is large, we are likely to have a large number of partition elements, many of which are empty or have few members, and in that case the use of I is more sensitive to detect marginal observable effects.

The rankings of pairs can be used to rank variables in several ways. One is to see how early influential variables are recognized when I_2 is used to rank all pairs. An alternative which we prefer is to rank all variables on how often they appear in the n_r most highly ranked pairs, where n_r is a substantial fraction of approximately $S^2/2$ pairs evaluated.

Assuming that S is too large to consider all possible third order interactions, we now have 4 methods. The methods we label I_1, I_2, I_{2f} and I_m, based on one variable, two based on two variables, and one based on m variables, plus a few others similar to these but using correlations. However, if S is large, each of these methods may pick out impostors among the plausible candidates for influential variables. Part of our task is to discriminate against as many of the impostors as possible. One approach may be to see how these various techniques agree. The assumption is that these methods provide tests to determine influential variables, and insofar as the methods are different, they will, in combination, provide a more difficult test for an impostor than for a truly influential variable.
Another approach is that of using higher order methods on the relatively few plausible candidates. We have used $I_2 f$, with the S variables replaced by 30 candidates from each of the four procedures on 5 distinct data sets with $S = 1000$. We have also used a variation of I_1 where 3 variables are selected from the top 10 candidates and 4 from the remaining $S - 10$ variables. The former method does not make it possible to resuscitate influential variables not among the 30 selected. The latter method does make it possible.

For these second stage methods it would be feasible and sensible to take a longer string of candidates to increase the probability of not omitting influential variables. In fact, we used much longer strings of plausible candidates in Example 7 on RA. It would also be feasible to apply I_3 to a list of candidates, relatively small compared with the original S. We have not done so here, nor have we carried out another stage of reductions.

Our application of the partition retention system has been relatively crude. The desire to keep the presentation simple, without making clever use of our knowledge of truth, led us to select numbers like 10 and 15 in our resuscitation scheme and other numbers almost arbitrarily, without an attempt to show off the methods to advantage. In the RA problem with real data, some necessary reasonable flexibility in the choices was applied. It is worthwhile investigating various strategies based on the use of I. It may save computing time if subsets with initially small values of I are ignored and not subjected to the retention scheme. One alternative is to retain all those variables which show a large positive value of D_I on the first step, and not bother with the rest of the reductions. Another is to stop eliminating only if all D_I values exceed a number depending on the number of reductions that have taken place. In fact, one of the weaknesses of the current method is that only one variable is retained when I increases with each stage of the reduction. This sometimes permits a variable with a very strong signal to overwhelm other influential variables that happen to be there.

Another valuable strategy adopted in our recent work [Lo et al. (2008)], which led to the discovery of interactions between various breast cancer genes, was the use of the ratio of I_2 for a pair of genes to the maximum of the values of I_1 for each of those genes compared to a function of the maximum derived from the data.

The Partition Retention (PR) method has some similarities with Multifactor Dimensionality Reduction (MDR) [Ritchie et al. (2001)] and Random Forests (RF) [Breiman (2001)]. MDR uses what we called partition elements, but requires the dependent variable to be two valued. It does such an intensive multifactor analysis on all possible partitions that it is limited to problems with few explanatory variables, about 20. It uses an error rate criterion, which we conjecture might be improved by using the weighting implicit in I.

RF uses random subsets and is not limited to discrete explanatory variables. Where PR is a backward recursion method which gets rid of the worst candidates first, RF generates trees in a forward system, that is vulnerable to confusion if the first choice is a poor one. In other words, if the decision on the best first choice
is not very good, it is likely that future splits will not be useful. In PR, if the first choice for deletion is not the least informative, the process is not likely to be ruined.

In our Example 5, we compared RF results with those of the other techniques for the five special data sets. In those data sets which exhibited strong first order observational effects, RF was comparable to the other methods. Where the first order effects were not too strong, RF seemed a little weaker. Resuscitation by I_7 and I_{2f} worked well on RF, but not quite as well as for the other methods. As far as we know, RF does not exploit the concept of resuscitating variables that previously looked poor, but interact strongly with some of those that looked good.

One of the referees brought the paper by Koller and Sahami (1996) to our attention. It has some interesting parallels to this manuscript. It uses Kullback–Leibler information, for which J is a first order approximation, as a measure of influence, which we consider sensible, but has two shortcomings. It requires that Y be discrete, and it lacks some of the advantages of I over J. The application of this information is designed to attack the problem of causal variables without marginal effect, by considering the effect of pairs. These pairs are employed in an interesting way using so-called “Markov blankets.” However, insofar as that method depends on those pairs, it is, like I_2 and I_{2f}, deterministic, and does not allow for the resuscitation of influential variables which require higher order interactions to be observed.

APPENDIX A: $E(D_I)$

We derive expressions for the conditional expectation of D_I given n for the random Y model and the expectation of D_I for the specified Y model.

Random-Y model. The partition element A_{ij} yields n_{ij} independent observations on Y, with mean μ_{ij} and variance σ_{ij}^2, summing to W_{ij}. Let $\tilde{\mu} = n^{-1}\sum n_{ij}\mu_{ij}$ and $\tilde{\sigma}^2 = n^{-1}\sum n_{ij}\sigma_{ij}^2$. We use the tildes over the Greek letters to remind ourselves that these depend on n and are not true parameters.

We calculate $E(W_{ij}W_{ik}|n) = n_{ij}n_{ik}\mu_{ij}\mu_{ik}$ for $j \neq k$, $E(W_{ij}W|n) = n_{ij}\sigma_{ij}^2 + n_{ij}\mu_{ij}n\tilde{\mu}$, and $E(W^2|n) = n\tilde{\sigma}^2 + n^2\tilde{\mu}^2$. Combining these expectations, we have

$$E(D_I|n) = -n^{-1}\sum_i \sum_{j<k} n_{ij}n_{ik}[\mu_{ij} - \tilde{\mu}]\tilde{\mu} + n^{-1}(\tilde{\sigma}^2 - \sigma_{ij}^2 - \sigma_{ik}^2).$$

The term involving the variances is relatively small and can be estimated. We will neglect it in this discussion. The main term can be rewritten. We replace the sum for $j < k$ by the sum for $j \neq k$ and introduce $\mu_{ij} = \tilde{\mu}_i + \varepsilon_{ij}$ where $\tilde{\mu}_i = n_i^{-1}\sum n_{ij}\mu_{ij}$. Then

$$-2E(D_I|n) = n^{-1}\sum_i \sum_{j \neq k} [n_{ij}(\tilde{\mu}_i + \varepsilon_{ij})n_{ik}(\tilde{\mu}_i + \varepsilon_{ik})]$$

$$= H_1 - H_2,$$
where $H_1 = n^{-1} \sum_i [n_i (\tilde{\mu}_i - \mu)^2]$ and $H_2 = n^{-1} \sum_i \sum_j [n_{ij} (\tilde{\mu}_i - \tilde{\mu} + \epsilon_{ij})^2]$

We may regard $\tilde{\mu}_i - \tilde{\mu}$ as representing the effect of (X_1, X_2, \ldots, X_m) and ϵ_{ij} as representing the effect of X_0 in the presence of (X_1, X_2, \ldots, X_m). Thus, if the m variables have no effect, H_1 will be zero, and $E(D_I|n)$ will be positive. If X_0 has no effect in the presence of the other variables, ϵ_{ij} will be zero and $E(D_I|n)$ reaches a minimal value which is nonpositive. The greater the effect of X_0 in the presence of (X_1, X_2, \ldots, X_m), the more positive D_I tends to be. The presence of influence in the m variables tends to diminish the effect of influence, if any, of X_0.

Specified-Y model. Given that Y assumes the values y_1, y_2, \ldots, y_R with frequencies given by $n^{(1)}, n^{(2)}, \ldots, n^{(R)}$, the partition elements A_{ij} have $n_{ij}^{(r)}$ members equal to y_r, where the $n^{(r)} = \{n_{ij}^{(r)}\}$ are independent for $1 \leq r \leq R$ with multinomial distributions $Mn(n^{(r)}, p^{(r)})$, and $p^{(r)} = \{p_{ij}^{(r)}\}$. The number and probability for the partition elements A_i are similarly labeled $n_i^{(r)}$ and $p_i^{(r)}$. After normalization, $W = \sum n^{(r)} y_r = 0$ and $I_\Pi = n^{-1} \sum W_{ij}^2$ and $I_{\Pi^*} = n^{-1} \sum W_i^2$.

We may write $W_i = \sum n_i^{(r)} y_r$ and $W_{ij} = \sum n_{ij}^{(r)} y_r$ and these have expectations $E(W_i) = \sum n^{(r)} p_i^{(r)} y_r$ and $E(W_{ij}) = \sum n^{(r)} p_{ij}^{(r)} y_r$. To calculate $E(D_I)$, we need $E(W_i^2)$ and $E(W_{ij}^2)$, which involve the variances. We have

$$E(W_i^2) = (E W_i)^2 + \sum n_i^{(r)} p_i^{(r)} (1 - p_i^{(r)}) y_r^2$$

and

$$E(W_{ij}^2) = (E W_{ij})^2 + \sum n_{ij}^{(r)} p_{ij}^{(r)} (1 - p_{ij}^{(r)}) y_r^2.$$

Since the sums in the two expressions above are of order n and those of the squared expectations are of order n^2, we may approximate $E(D_I) = E(I_\Pi) - E(I_{\Pi^*})$ by

$$E(D_I) \approx n^{-1} \sum_i \left(\sum_j (E W_{ij})^2 - (E W_i)^2 \right).$$

Let $p_{ij} = \sum n^{(r)} p_{ij}^{(r)} / \sum n^{(r)}$ and $p_i = \sum n^{(r)} p_i^{(r)} / \sum n^{(r)}$. Let $e_{ij}^{(r)} = p_{ij}^{(r)} - p_{ij}$ and $e_i^{(r)} = p_i^{(r)} - p_i$. Then

$$\sum_i (E W_i^2) = \sum_i \sum_{r,s} n^{(r)} y_r n^{(s)} y_s (p_i^2 + p_i e_i^{(s)} + p_i e_i^{(r)} + e_i^{(r)} e_i^{(s)})$$

$$= \sum_i \sum_{r,s} n^{(r)} y_r n^{(s)} y_s e_i^{(r)} e_i^{(s)}$$

$$= \sum_i \left(\sum_r n^{(r)} y_r e_i^{(r)} \right)^2.$$
Also,

\[\sum_{ij} (E^{W_{ij}})^2 = \sum_{i,j} \sum_{r,s} n^{(r)} y_r n^{(s)} y_s (p^{2}_{ij} + p_{ij} e^{(r)}_{ij} + p_{ij} e^{(r)}_{ij} + e^{(r)}_{ij} e^{(s)}_{ij}) \]

\[= \sum_{i,j} \sum_{r,s} n^{(r)} y_r n^{(s)} y_s e^{(r)}_{ij} e^{(s)}_{ij} \]

\[= \sum_{i,j} \left(\sum_{r} n^{(r)} y_r e^{(r)}_{ij} \right)^2. \]

We have expressed \(E(D) \) as approximately the difference of two positive expressions, one of which involves \(e^{(r)}_{ij} \) which relates to the influence of \(X_1, X_2, \ldots, X_m \) on \(Y \), and the other which involves \(e^{(r)}_{ij} \) which relates to the combined influence of \(X_0, X_1, \ldots, X_m \).

APPENDIX B: NULL DISTRIBUTION OF I AND J

Consider the null distribution of \(I \) for the random \(Y \) model. If the explanatory variables have no influence on \(Y \), we observe \(n \) independent identically distributed observations on \(Y \) with \(n_i = n p_i \) allocated to partition element \(A_i \). Then \(I = n^{-1} \sum \{ n_i (\bar{Y}_i - \bar{Y}) \}^2 \) and \(J = n^{-1} \sum n_i (\bar{Y}_i - \bar{Y})^2 \). Suppose \(Y \) has mean \(\mu \) and variance \(\sigma^2 \). The mean has no effect on the distribution of \(I \) or \(J \), and \(\sigma^2 \) has only a multiplicative effect. Thus, there is no loss of generality in assuming that \(\mu = 0 \) and \(\sigma = 1 \).

Naively assuming that \(\bar{Y} = 0 \), we have the approximations that \(I = \sum p_i (n_i \bar{Y}_i^2) \) is distributed like \(\sum p_i V_i \), where the \(V_i \) are independent with approximately the chi-square distribution with 1 d.f. as \(n \to \infty \). A similar argument would have the distribution of \(J \) approach that of chi-square with \(n' \) degrees of freedom where \(n' \) is the number of nonempty partition elements.

A more precise derivation takes \(\bar{Y} \) into account, but assumes that all the \(p_i \) are bounded away from 0 and 1 as \(n \) gets large. Let \(Z_i = n^{-1/2} n_i (\bar{Y}_i - \bar{Y}) \). Conditioning on \(n = \{ n_i \} \), the asymptotic distribution of \(Z \) is \(N(0, A) \), where \(A = D(p) - pp^T \) and \(D(p) \) is the diagonal matrix with elements \(p_i \).

Since \(I = Z^T Z \), the limiting distribution of \(I \) is that of \(\sum \lambda_i V_i \), where the \(\lambda_i \) are the eigenvalues of \(A \). This singular matrix has one zero eigenvalue, but the others are non-negative and add up to the trace of \(A \) which is \(1 - \sum p_i^2 \). In most of our ordinary applications \(\sum p_i^2 \) tends to be relatively small and the naive approximation is a good fit. The correction for \(J \) corresponds to the loss of one d.f.

In our applications we typically normalize \(Y \) so that it has sample mean 0 and \(n^{-1} \sum \bar{Y}_i^2 = 1 \). This normalization corresponds, asymptotically, to replacing \(\sigma \) by one. On the other hand, our implicit assumption that all the \(n_i \) are large is really inappropriate for many of our applications where the partition elements have a good number which are empty or singletons. Nevertheless, it is easy to see that
E(I|n) = 1 − Σ p_i^2, and it seems clear that a more sophisticated theorem will apply for these applications.

If we deal with the null distribution for the specified Y model, then the values of Y in a given partition element with n_i entries corresponds to a sample without replacement of n_i observations from a finite population of n elements with sum 0 and sum of squares equal to n after normalization. But then the sum W_i of the Y values in partition element i has E(W_i) = 0 and E(W_i^2) = n_i(1 − (n_i − 1)/(n − 1)) ≈ npi(1 − pi). Moreover, for i ≠ j, the covariance E(W_iW_j) = −n_i n_j/(n − 1). Since I = W^T W/n, the application of the Central Limit theorem for sampling from finite populations repeats the analysis for the random Y model. Once again, it is easy to see that E(I|n) = 1 − Σ p_i^2. We have proved the following:

THEOREM 1. Conditioned on n, the null distribution of I when Y is normalized is asymptotically that of a weighted sum of independent chi-square variables, with non-negative coefficients adding up to 1 − Σ p_i^2.

This applies to the null random Y and the null specified Y models, under the standard conditions for the applicability of the Central Limit theorem and the assumption that the elements of p are bounded away from 0.

Acknowledgment. We would like to dedicate this to T. W. Anderson, a pioneer in Multivariate Analysis, in honor of his 90th birthday. We wish to thank the editors and referees for useful comments and references.

SUPPLEMENTARY MATERIAL

Supplement: Sections S1–S3 (DOI: 10.1214/09-AOAS265SUPP; .zip). In the online supplements we detail several previously-published methods as special cases of the partition-retention approach (Section S1), the asymptotic distribution of p(X_3 = 1|X_1X_2 = 1) − p(X_3 = 1) discussed in Example 2 (Section S2) and some discussion on relative efficiency of I versus J (Section S3).

REFERENCES

AMOS, C. I., CHEN, W. V., LEE, A., LI, W., KERN, M., LUNDSTEN, R., BATLIWALLA, F., WENER, M., REMMERS, E., KASTNER, D. A., CRISWELL, L. A., SELDIN, M. F. and GREGERSEN, P. K. (2006). High-density SNP analysis of 642 caucasian families with rheumatoid arthritis identifies two new linkage regions on 11p12 and 2q33. Genes Immun. 7 277–286.

BACHE, I., NIELSEN, N. M., ROSTGAARD, K., TOMMERUP, N. and FRISCH, M. (2007). Autoimmune diseases in a danish cohort of 4,866 carriers of constitutional structural chromosomal rearrangements. Arthritis Rheum. 56 2402–2409.

BENJAMINI, Y. and HOCHBERG, Y. (1995). Controlling the false discovery rate—a practical and powerful approach to multiple testing. J. Roy. Statist. Soc. Ser. B 57 289–300. MR1325392

BREIMAN, L. (2001). Random forests. Machine Learning 45 5–32.

CHERNOFF, H., LO, S.-H. and ZHENG, T. (2009). Supplement to “Discovering influential variables: A method of partitions.” DOI: 10.1214/09-AOAS265SUPP.
Cordell, H., de Andrade, M., Babron, M.-C., Bartlett, C., Beyene, J., Bickeboller, H., Culverhouse, R., Cupples, A. L., Daw, W. E., Dupuis, J., Falk, C., Ghosh, S., Goddard, K., Goode, E., Hauser, E., Martin, L., Martinez, M., North, K., Sacccone, N., Schmidt, S., Tapper, W., Thomas, D., Tritchler, D., Vieland, V., Wijsman, E., Wilcox, M., Witte, J., Yang, Q., Ziegler, A., Almasy, L. and MacCluer, J. (2007). Genetic analysis workshop 15: Gene expression analysis and approaches to detecting multiple functional loci. *BMC Proceedings* **1** S1.

Cornélis, F., Faure, S., Martinez, M., Prud’homme, J. F., Fritz, P., Dib, C., Alves, H., Barrera, P., de Vries, N., Balza, A., Pascual-Salcedo, D., Maenaut, K., Westhovens, R., Migliorini, P., Tran, T. H., Delaye, A., Prince, N., Lefevre, C., Thomas, G., Poirier, M., Soubigou, S., Alibert, O., Lasbleiz, S., Fouix, S., Bouchier, C., Liote, F., Loste, M. N., Lepage, V., Charron, D., Gypay, G., Lopes-Vaz, A., Kuntz, D., Bardin, T. and Weissenbach, J. (1998). New susceptibility locus for rheumatoid arthritis suggested by a genome-wide linkage study. *Proc. Natl. Acad. Sci. USA* **95** 10746–10750.

Dash, M. and Liu, H. (1997). Feature selection for classification. *Intelligent Data Analysis* **1** 131–156.

Ding, Y., Cong, L., Ionita-Laza, I., Lo, S. H. and Zheng, T. (2007). Constructing gene association networks for rheumatoid arthritis using the backward genotype-trait association (BGTA) algorithm. *BMC Proceedings* **1** S13.

Guyon, I. and Elisseeff, A. (2003). An introduction to variable and feature selection. *J. Mach. Learn. Res.* **3** 1157–1182.

Ionita, I. and Lo, S. H. (2005). Multilocus linkage analysis of affected sib pairs. *Hum. Hered.* **60** 227–240.

Jawaher, D., Seldin, M. F., Amos, C. I., Chen, W. V., Shigeta, R., Etzel, C., Damle, A., Xiao, X., Chen, D., Lum, R. F., Monteiro, J., Kern, M., Criswell, L. A., Albani, S., Nelson, J. L., Clegg, D. O., Pope, R., Schroeder, H. W., Jr., Bridges, S. L., Jr., Pisetsky, D. S., Ward, R., Kastner, D. L., Wilder, R. L., Pincus, T., Callahan, L. F., Fleming, D., Wener, M. H. and Gregersen, P. K. (2003). Screening the genome for rheumatoid arthritis susceptibility genes: A replication study and combined analysis of 512 multiscase families. *Arthritis Rheum.* **48** 906–916.

John, S., Shephard, N., Liu, G., Zeggini, E., Cao, M., Chen, W., Vasavada, N., Mills, T., Barton, A., Hinks, A., Eyre, S., Jones, K. W., Ollier, W., Silman, A., Gibson, N., Worthington, J. and Kennedy, G. C. (2004). Whole-genome scan, in a complex disease, using 11,245 single-nucleotide polymorphisms: Comparison with microsatellites. *Am. J. Hum. Genet.* **75** 54–64.

Koller, D. and Sahami, M. (1996). Toward optimal feature selection. In *Proceedings of the International Conference on Machine Learning* 284–292. Morgan Kaufmann Publishers, Inc., San Francisco, CA.

Kuroki, K., Tsuchiya, N., Shiroishi, M., Rasubala, L., Yamashita, Y., Matsuta, K., Fukazawa, T., Kusaoi, M., Murakami, Y., Takiguchi, M., Juji, T., Hashimoto, H., Kohda, D., Maenaka, K. and Tokunaga, K. (2005). Extensive polymorphisms of LILRB1 (ILT2, LIR1) and their association with HLA-DRB1 shared epitope negative rheumatoid arthritis. *Hum. Mol. Genet.* **14** 2469–2480.

Lo, S. H. and Zheng, T. (2002). Backward haplotype transmission association (BHTA) algorithm—a fast multiple-marker screening method. *Hum. Hered.* **53** 197–215.

Lo, S. H. and Zheng, T. (2004). A demonstration and findings of a statistical approach through reanalysis of inflammatory bowel disease data. *Proc. Natl. Acad. Sci. USA* **101** 10386–10391.

Lo, S. H., Chernoff, H., Cong, L., Ding, Y. and Zheng, T. (2008). Discovering interactions among BRCA1 and other candidate genes associated with sporadic breast cancer. *Proc. Natl. Acad. Sci. USA* **105** 12387–12392.
OSORIO Y FORTÉA, J., BUKULMEZ, H., PETIT-TEIXEIRA, E., MICHOU, L., PIERLOT, C., CAILLEAU-MOINDRAULT, S., LEMAIRE, I., LASBLEIZ, S., ALIBERT, O., QUILLET, P., BARDIN, T., PRUM, B., OLSON, J. M. and CORNELIS, F. (2004). Dense genome-wide linkage analysis of rheumatoid arthritis, including covariates. Arthritis Rheum. 50 2757–2765.

QUEIROZ, R. G., TAMIA-FERREIRA, M. C., CARVALHO, I. F., PETEAN, F. C. and PASSOS, G. A. (2001). Association between ecori fragment-length polymorphism of the immunoglobulin lambda variable 8 (IGLV8) gene family with rheumatoid arthritis and systemic lupus erythematosus. Braz. J. Med. Biol. Res. 34 525–528.

RITCHIE, M. D., HAHN, L. W., ROODI, N., BAILEY, L. R., DUPONT, W. D., PARL, F. F. and MOORE, J. H. (2001). Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am. J. Hum. Genet. 69 138–147.

THOMPSON, S. D., MOROLDO, M. B., GUWER, L., RYAN, M., TOMBRAGEL, E. M., SHEAR, E. S., PRAHALAD, S., SUDMAN, M., KEDDACHE, M. A., BROWN, W. M., GIANNINI, E. H., LANGEFELD, C. D., RICH, S. S., NICHOLS, W. C. and GLASS, D. N. (2004). A genome-wide scan for juvenile rheumatoid arthritis in affected sibpair families provides evidence of linkage. Arthritis Rheum. 50 2920–2930.

YEKUTIELI, D. and BENJAMINI, Y. (1999). Resampling-based false discovery rate controlling multiple test procedures for correlated test statistics. J. Statist. Plann. Inference 82 171–196. MR1736442

ZHENG, T., WANG, H. and LO, S. H. (2006). Backward genotype-trait association (BGTA)-based dissection of complex traits in case-control designs. Hum. Hered. 62 196–212.

H. CHERNOFF
DEPARTMENT OF STATISTICS
HARVARD UNIVERSITY
SCIENCE CENTER
CAMBRIDGE, MASSACHUSETTS 02138
USA
E-MAIL: chernoff@stat.harvard.edu

S.-H. LO
DEPARTMENT OF STATISTICS
COLUMBIA UNIVERSITY
NEW YORK, NEW YORK 10027
USA
E-MAIL: slo@stat.columbia.edu
tzheng@stat.columbia.edu