THE RENORMALIZED EULER CHARACTERISTIC AND L-SPACE SURGERIES

RAIF RUSTAMOV

ABSTRACT. Using the equivalence between the renormalized Euler characteristic of Ozsváth and Szabó, and the Turaev torsion normalized by the Casson-Walker invariant, we make calculations for \(S_p^3 \) \((K)\). An alternative proof of a theorem by Ozsváth and Szabó on L-space surgery obstructions is provided.

1. Introduction

In the beautiful paper [2], Ozsváth and Szabó consider the correction terms of \(Y = S_{2n-1/2}^3(K) \), where \(K \) is a knot in \(S^3 \), and prove that if \(Y \) is an L-space, then there is a symmetry among these correction terms. Given an L-space whose correction terms are known, one can check whether this symmetry is satisfied, and if not, it would follow that the manifold at hand cannot be obtained as a \(\frac{2n-1}{2} \) surgery on a knot in \(S^3 \). This obstruction is then used to calculate some new unknotting numbers. The symmetry was later generalized to the case of \(p/q \) surgery in [4].

We remind that for a rational homology sphere \(Y \) and a Spin\(^c\) structure \(t \) on it, the renormalized Euler characteristic \(\hat{\chi}(Y, t) \) is defined as

\[
\hat{\chi}(Y, t) = \chi(HF_{\text{red}}(Y, t)) - \frac{1}{2}d(Y, t),
\]

where \(d(Y, t) \) denotes the correction terms. By definition, \(Y \) is an L-spaces if and only if \(HF_{\text{red}}^{+}(Y, t) \cong 0 \). One immediately sees that for L-spaces any symmetry of correction terms is equivalent to the symmetry of \(\hat{\chi} \)'s. This points out that calculating the renormalized Euler characteristic for \(S^3_{p/q}(K) \) could be interesting.

Given a knot \(K \), let

\[
\Delta_K(T) = a_0 + \sum_{j > 0} a_j \left(T^j + T^{-j} \right)
\]

be the symmetrized Alexander polynomial of \(K \), and define

\[
t_i(K) = \sum_{j \geq 1} ja_{|i|+j}.
\]

Theorem 1.1. Let \(p \neq 0 \) and \(q \) be relatively prime integers. For each \(t \), the renormalized Euler characteristic \(\hat{\chi}(S^3_{p/q}(K), t) \) can be expressed in terms of the coefficients of the Alexander polynomial of \(K \).
This theorem follows from the identification \(\hat{\chi} = -\tau + \lambda \), where \(\tau \) is the Turaev torsion, and \(\lambda \) is the Casson-Walker invariant, see [5]. In fact, we give a precise formula for the renormalized Euler characteristic in Proposition 3.1. The next theorem is proved using this formula.

Theorem 1.2. Let \(p \) and \(q \) be relatively prime integers with \(p/q > 1 \). Suppose that the Alexander polynomial of knot \(K \) satisfies \(a_j = 0 \) for \(j > \frac{p}{2q} + 1 \). Let \(n \) be any integer, and denote \(r = \lceil \frac{np}{q} - 1 \rceil \in \mathbb{Z}/p\mathbb{Z} \), then for any \(|i| \leq p/2q \) we have

\[
\hat{\chi}(S^3_{p/q}(K), r + i) - \hat{\chi}(S^3_{p/q}(U), r + i) = t_i,
\]

where \(U \) is the unknot, and we have used the affine identification \(\text{Spin}^c(S^3_{p/q}(K)) \cong \mathbb{Z}/p\mathbb{Z} \) explained in Section 2; also see Remark 3.2.

Note that if \(p/q \leq 1 \), then the condition of the theorem will force \(a_j = 0 \) for \(j > 1 \). In this case, it follows from the calculations that

\[
\hat{\chi}(S^3_{p/q}(K), -1) - \hat{\chi}(S^3_{p/q}(U), -1) = \lceil q/p \rceil a_1,
\]

and the difference is zero for all remaining \(\text{Spin}^c \) structures.

As a corollary of this theorem we obtain an alternative proof for the Theorem 1.2 of [4].

Corollary 1.3. Let \(K \) be a knot which admits an L-space surgery for some \(\frac{p}{q} > 1 \). Then, for all integers \(i \) with \(|i| \leq \frac{p}{2q} \) we have that

\[
d(S^3_{p/q}(K), i - 1) - d(S^3_{p/q}(U), i - 1) = -2t_i,
\]

while for all \(|i| > \frac{p}{2q} \), we have \(t_i(K) = 0 \).

Proof. If \(S^3_{p/q}(K) \) is an L-space, then it is known that \(S^3_{|p/q|}(K) \) is also an L-space. However, then \(\lceil p/q \rceil \geq 2g(K) - 1 \), where \(g(K) \) is the degree of the Alexander polynomial of \(K \). Thus, \(a_j = 0 \) for \(j > \frac{|p/q| + 1}{2} \), i.e. also for \(j > \frac{p}{2q} + 1 \). The corollary follows by taking \(n = 0 \) in the previous theorem and observing that for L-spaces

\[
\hat{\chi}(Y, t) = -\frac{1}{2}d(Y, t).
\]

The organization of this paper is as follows: the required preliminaries are presented in Section 2. Calculations needed for Theorem 1.1 are made in Section 3. We finish with the proof of Theorem 1.2 in Section 4.

Acknowledgments I am pleased to thank my advisor Zoltán Szabó for very helpful conversations.
2. Preliminaries

Let \(Y \) be a rational homology sphere, \(t \) be a Spin\(^c\) structure on it. We can consider the Heegaard Floer homology group \(HF^+(Y, t) \). This is a \(\mathbb{Q} \) graded module over \(\mathbb{Z}[U] \). We can also consider a simpler version, \(HF^\infty(Y, t) \) for which one can prove

\[
HF^\infty(Y, t) \cong \mathbb{Z}[U, U^{-1}]
\]

for each \(t \). There is a natural \(\mathbb{Z}[U] \) equivariant map

\[
\pi : HF^\infty(Y, t) \to HF^+(Y, t)
\]

which is zero in sufficiently negative degrees and an isomorphism in all sufficiently positive degrees. \(HF^\text{red}^+(Y, t) \) is defined as \(HF^\text{red}^+(Y, t) = HF^+(Y, t) / \text{Im} \pi \).

Let \(d(Y, t) \) be the correction term, defined as the minimal degree of any non-torsion class of \(HF^+(Y, t) \) lying in the image of \(\pi \). As was mentioned, the renormalized Euler characteristic \(\hat{\chi}(Y, t) \) is defined by

\[
\hat{\chi}(Y, t) = \chi(HF^\text{red}(Y, t)) - \frac{1}{2} d(Y, t).
\]

The Casson-Walker invariant, \(\lambda : \{\text{rational homology spheres modulo homeomorphisms}\} \to \mathbb{Q} \), is an extension of Casson’s invariant to rational homology spheres, see [8]. It perhaps worth noting that in our normalization \(\lambda(\Sigma(2, 3, 5)) = -1 \), where \(\Sigma(2, 3, 5) \) is oriented as the boundary of the negative definite \(E_8 \) plumbing.

We will also consider the normalized Casson-Walker invariant given by \(\lambda'(Y) = |H_1(Y; \mathbb{Z})| \lambda(Y) \). Note that \(\lambda'(S^3) = 0 \). Let \(U \) be the unknot, and \(K \) be any knot in \(S^3 \). Walker’s surgery formula implies that

\[
\lambda'(S^3_{p/q}(K)) - \lambda'(S^3_{p/q}(U)) = q \cdot \sum_{j \geq 1} j^2 a_j,
\]

where \(a_j \) are the coefficients of the Alexander polynomial of \(K \).

The Turaev torsion function is another important invariant of three-manifolds. Turaev first defined it for combinatorial Euler structures, but later the connection with these and Spin\(^c\) structures emerged, providing us with a function

\[
\tau(Y, \cdot) : \text{Spin}^c(Y) \to \mathbb{Z},
\]

see [7].

The Turaev torsion can be also introduced in the case of three-manifolds with torus boundary. Indeed, consider the manifold \(M = S^3 - \text{nd}(K) \) with torus boundary. We denote the set of relative Spin\(^c\) structures on \(M \) by \(\text{Spin}^c(M) \). The Turaev torsion of this manifold is a function

\[
\tau(M, \cdot) : \text{Spin}^c(M) \to \mathbb{Z}.
\]
Actually, under a certain affine map $\text{Spin}^c(M) \cong \mathbb{Z}_{\text{odd}}$, one has
\[\tau(M, k) = \text{sign}(k) \cdot \sum_{j \geq |k|+1} a_j, \]
for any odd integer k, see 9.1.4 of [7]. Here a_i are again the coefficients of the Alexander polynomial of K. In what follows, we will use this particular identification of $\text{Spin}^c(M)$ with \mathbb{Z}_{odd}. Of course, given a relative Spin^c structure on $M = S^3 - \text{nd}(K)$ we can look at the Spin^c structure on $S^3_{p/q}(K)$ which extends it. Thus, we can get an affine identification $\text{Spin}^c(S^3_{p/q}(K)) \cong \mathbb{Z}/p\mathbb{Z}$ as follows: if $k \in \mathbb{Z}_{\text{odd}} \cong \text{Spin}^c(M)$ extends to $i \in \mathbb{Z}/p\mathbb{Z} \cong \text{Spin}^c(S^3_{p/q}(K))$, then
\[i \equiv \frac{k - 1}{2} \mod p. \]

Let x be any integer that satisfies $qx \equiv -1 \mod p$. Remember that $H_1(S^3_{p/q}(K); \mathbb{Z})$ is generated by the meridian of the knot K, and the homology class of K is x times this generator. The following formula is a consequence of 10.6.3.2 of [3]:
\[\tau(S^3_{p/q}(K), i) - \tau(S^3_{p/q}(K), i + x) = \tau(S^3_{p/q}(U), i) - \tau(S^3_{p/q}(U), i + x) + \sum_{\{k \mid i \equiv \frac{k - 1}{2} \mod p\}} \tau(M, k), \] (3)
where $i \in \mathbb{Z}/p\mathbb{Z}$. Note that, to get this formula we have replaced the purely homological data of the original formula by terms coming from the surgery on unknot.

Let Y be a rational homology sphere, t be Spin^c structure on it. We have the following formula for the renormalized Euler characteristic, see [5]:
\[\hat{\chi}(Y, t) = -\tau(Y, t) + \lambda(Y). \] (4)
Note that since Turaev torsions add up to zero, we have
\[\sum_{t \in \text{Spin}^c(Y)} \hat{\chi}(Y, t) = \chi(M). \] (5)

3. Calculations

From now on we fix the knot K, and two relatively prime integers p and q. Note that calculating the renormalized Euler characteristics $\hat{\chi}(S^3_{p/q}(K), i)$ is equivalent to computing
\[S_i = \hat{\chi}(S^3_{p/q}(K), i) - \hat{\chi}(S^3_{p/q}(U), i), \]
because the second term is already known. [3]. For $0 \leq i < p$ let
\[T_i = \sum_{\{k \mid i \equiv \frac{k - 1}{2} \mod p\}} \tau(M, k), \]
Thus, using (2) and (5), we get

\[S_{t+x} - S_t = T_i, \]

for any \(i \in \mathbb{Z}/p\mathbb{Z} \). Fix any \(l \in \mathbb{Z}/p\mathbb{Z} \). To get a formula for \(S_l \), we write the following equations

\[S_{t+(j+1)x} - S_{t+jx} = T_{l+jx}, \]

for \(j = 0, 1, \ldots, p-1 \). It follows that \(S_{t+x} = S_t + T_i \), \(S_{t+2x} = S_t + T_i + T_{i+x} \) and so on. Using (2) and (5), we get

\[pS_t + \sum_{j=0}^{p-1} (p - j - 1)T_{l+jx} = q \cdot \sum_{j \geq 1} j^2a_j. \]

Thus,

\[S_t = \frac{1}{p} \left(q \cdot \sum_{j \geq 1} j^2a_j - \sum_{j=0}^{p-1} (p - j - 1)T_{l+jx} \right), \tag{6} \]

which establishes the following proposition.

Proposition 3.1. Let \(K \) be a knot in \(S^3 \), \(p > 0 \) and \(q \) relatively prime integers, and \(x = -q^{-1} \mod p \), then

\[\hat{\chi}(S^3_{p/q}(K), l) = \hat{\chi}(S^3_{p/q}(U), l) + \frac{q}{p} \cdot \sum_{j \geq 1} j^2a_j - \frac{1}{p} \cdot \sum_{j=0}^{p-1} (p - j - 1)T_{l+jx}, \]

where \(\hat{\chi}(S^3_{p/q}(U), i) = \hat{\chi}(L(-p, q), i) = -d(L(-p, q), i)/2 \).

Remark 3.2. Let \(p \) be odd, so there is a unique Spin structure on \(S^3_{p/q}(K) \). In the canonical affine identification \(\text{Spin}^c(S^3_{p/q}(K)) \cong \mathbb{Z}/p\mathbb{Z} \) this Spin structure corresponds to 0, and conjugation is equivalent to multiplication by \(-1\). We denote the Spin\(^c\) structure corresponding to \(i \in \mathbb{Z}/p\mathbb{Z} \) in this identification by \(\bar{s}_i \) (thus, \(\bar{s}_0 \) is the Spin structure, \(\bar{s}_1 = s_{-i} \)), and in our identification by \(t_i \). Let us spell out the correspondence between these two identifications. Note that we always have \(T_{l+1} = 0 \), which means \(S_{l+1} = S_{l+1} \). This universal equality must be a consequence of the conjugation symmetry \(\hat{\chi}(Y, \bar{t}) = \hat{\chi}(Y, t) \). Thus, \(t_{l+1} \) and \(t_{l-1} \) are conjugate. If \(s_i = t_{l+1} \), then \(i + x = -i \mod p \), i.e. \(i = \frac{p-1}{2}x \mod p \). As a result, \(t_{(p-1)(1-x) \mod p} \) is the Spin structure of \(S^3_{p/q}(K) \).

4. **Proof of Theorem 1.2**

From now on we assume that \(q > 1 \). The case when \(q = 1 \) is only slightly different, and is left to the reader. Note that we can simplify the previous formula under certain
conditions on the Alexander polynomial. Let the knot K be such that $a_j = 0$ for $j \geq p/2$, which means that for $0 \leq i < p/2$,

$$T_i = \sum_{\{k \equiv \frac{i}{p} \mod p\}} \tau(M, k) = \tau(M, 2i + 1) = \sum_{j \geq i+1} a_j,$$

and similarly, for $p/2 \leq i \leq p - 1$,

$$T_i = -\sum_{j \geq p-i} a_j.$$

With l fixed, let $0 \leq u_j \leq p - 1$ satisfy

$$l + u_j x = j - 1 \mod p,$$

and $0 \leq v_j \leq p - 1$ satisfy

$$l + v_j x = -j \mod p.$$

Let

$$c_i = \sum_{j=1}^{i} (u_j - v_j),$$

and since $x = -q^{-1} \mod p$, one has

$$c_i = p \cdot \sum_{j=1}^{i} \left(\left\{ \frac{q(l + 1 - j)}{p} \right\} - \left\{ \frac{q(l + j)}{p} \right\} \right),$$

where $\{\alpha\} = \alpha - \lfloor \alpha \rfloor$ denotes the fractional value of the number α. Now we can rewrite (6) as

$$S_l = \frac{1}{p} \sum_{i \geq 1} (q^2 + c_i) a_i. \quad (7)$$

The proof of Theorem 1.2 now becomes an exercise in arithmetic. The assumption of the theorem is that $p/q > 1$ and $q > 1$, and that the Alexander polynomial of knot K satisfies $a_j = 0$ for $j > \frac{p}{q} + 1$. Given any $l \in \mathbb{Z}/p\mathbb{Z}$, let us find the coefficient of a_1 in S_l. We have find the value of

$$c_1 = p \left(\left\{ \frac{ql}{p} \right\} - \left\{ \frac{q(l+1)}{p} \right\} \right).$$

Obviously, $\frac{q(l+1)}{p} - \frac{ql}{p} = \frac{q}{p} < 1$, which means that $c_1 = -q$ unless there is an integer n so that

$$\frac{ql}{p} < n \leq \frac{q(l+1)}{p},$$

i.e. $l = \lfloor \frac{qn}{p} - 1 \rfloor$, in which case we have $c_1 = p - q$. As a result, the coefficient of a_1 in S_l is equal to 1 if $l = \lfloor \frac{qm}{p} - 1 \rfloor$, and equal to 0 otherwise.
Any a_j with $j < \frac{p}{2q} + \frac{1}{2}$ can be analyzed similarly, with the result that a_j’s coefficient in S_l is equal to zero unless $l = \left\lceil \frac{mn}{p} - 1 \right\rceil + i$, where $|i| \leq j - 1$, in which case the coefficient is equal to $j - i$.

The case of a_j with $\frac{p}{2q} + \frac{1}{2} \leq j \leq \frac{p}{2q} + 1$ is a bit different, because the difference $\frac{q(l+j)}{p} - \frac{q(l+1-j)}{p}$ is not necessarily less than 1, thus there is a chance that between these two fractions two integers may appear. However, since we are interested in S_l with $l = \left\lceil \frac{mn}{p} - 1 \right\rceil + i$, where $i \leq p/2q$, this does not happen. As a result, a_j’s coefficient in S_l for $l = \left\lceil \frac{mn}{p} - 1 \right\rceil + i$, where $|i| \leq j - 1$ is equal to $j - i$. Since $a_j = 0$ for $j > \frac{p}{2q} + 1$, we have proved that given any integer n, for every $|i| \leq p/2q$ we have

$$\hat{\chi}(S^3_{p/q}(K), r + i) - \hat{\chi}(S^3_{p/q}(U), r + i) = t_i,$$

where $r = \left\lceil \frac{mn}{q} - 1 \right\rceil \in \mathbb{Z}/p\mathbb{Z}$.

References

[1] P S Ozsváth, Z Szabó, Absolutely graded Floer homologies and intersection forms for four-manifolds with boundary, Advances in Mathematics 173 (2003) 179–261

[2] P S Ozsváth, Z Szabó, Knots with unknotting number one and Heegaard Floer homology (2004), arXiv:math.GT/0401426

[3] P S Ozsváth, Z Szabó, Holomorphic disks and genus bounds, Geom. Topol. 8 (2004) 311–334 (electronic)

[4] P S Ozsváth, Z Szabó, Knot Floer homology and rational surgeries, arXiv:math.GT/0504404

[5] R Rustamov, A surgery formula for renormalized Euler characteristic of Heegaard Floer homology, arXiv:math.GT/0409294

[6] V Turaev, Torsion invariants of Spinc structures on 3-manifolds, Math. Research Letters 4 (1997) 679–695

[7] V Turaev, Torsions of 3-dimensional manifolds, volume 208 of Progress in Mathematics, Birkhäuser Verlag, Basel (2002)

[8] K Walker, An extension of Casson’s invariant, volume 126 of Annals of Mathematics Studies, Princeton University Press, Princeton, NJ (1992)

THE PROGRAM IN APPLIED AND COMPUTATIONAL MATHEMATICS, PRINCETON UNIVERSITY, NEW JERSEY 08540, USA

E-mail address: rustamov@princeton.edu