Study of Rheological Property and Flow Behavior for Nanoparticles Enhanced VES System in Porous Media

Zhaoxia Liu*, Qiang Wang, Ming Gao, Wenli Luo and Hongyan Cai

State Key Laboratory of EOR, RIPED, Beijing, China

In this paper, a composite sample (VES and SiO₂ nanoparticle) was used to overcome the deficiencies of polymer. The rheological character of the VES/nanoparticles hybrid and flow behavior in porous media were examined. It was found that SiO₂ nanoparticles exhibited viscosifying action and improved the oil tolerance. In addition, the VES solution without nanoparticles showed a lower capacity to recover oil, which might be attributed to the fact that wormlike micelles would be destroyed in crude oil. On the contrary, an enhanced oil recovery of 9.68% was achieved in the composited experiment for the VES sample with nanoparticles which is relatively stable with oil.

Keywords: worm-like, nano-SiO₂, rheology, enhanced oil recovery, viscoelastic surfactant, worm

INTRODUCTION

Viscoelastic surfactant (VES) fluids, generally formed by wormlike micelles, have been utilized as completion or stimulation agents in the oil and gas industry (Jeffrey Giacomin et al., 2008). Durga P. Acharya discussed the formation of wormlike micelles and the evolution of rheological properties in different mixed surfactant systems (Zhang, et al., 2018; Chu, et al., 2010). Lstvan Lakatos evaluated the VES fluid as a mobility control agent. It shows that a slug-type injection protocol is more efficient than the continuous injection of any single displacement fluids (Lakatos, et al., 2007). Michael Golombok carried out experiments on inert glass cores in the range of 45–2,200mD. By analogy they considered their observations to correspond to permeability thickening, although it was understood that the permeability was fixed and the apparent viscosity increased. For the range of permeabilities that are applicable to oil reservoirs, the apparent viscosities observed at high permeabilities are around 10 times that of the low permeabilities (Golombok and van der Wijst, 2013).

Recent work has shown the advantageous use of nanoparticles in VES fluid systems, which included significantly increased thermal stability and fluid loss control properties in the fluid system (Huang and Crews, 2007; Qin, et al., 2017). It shows that when selected nanoparticles are added to a VES solution, they will associate or “pseudo-crosslink” the VES micelles together through charge attraction and surface adsorption (Huang, 2007). Ranjini Bandyopadhyay and A.K. Sood studied the effects of the addition of submicrometer-sized colloidal silica spheres on the linear and nonlinear rheology of semidilute solutions of a viscoelastic gel (Bandyopadhyay and Sood, 2005). The oscillatory rheological measurements for nanoparticles in viscoelastic surfactant fluids noted that the nanoparticles apparently strengthened the micelle-micelle interactions. Lab proppant settling tests demonstrated that the nanoparticle induced VES micelle network structures that dramatically increased the capacity of the surfactant fluid to suspend and transport proppant in well treatments.
shown to be significantly higher than in a low permeability core. They also investigated the pyroelectric behavior, thermal stability, and adsorption on sandstone. They suspected that WLMs could undergo breaking and recombination (Chu et al., 2010). Mikel Morvan studied the viscoelastic behavior, thermal stability, and adsorption on sandstone. They suspected that WLMs could undergo breaking and recombination (Chu et al., 2010).

Increasing the concentration of surfactant and co-solute led to an increase of 29% of oil recovery vs. water flooding. Micelles behave like polymer chains. In particular, at high concentrations, they form a network of topological entanglements and, as a result, the solution acquires viscoelastic properties. However, compared to polymers, the micellar chains of surfactants can reversibly break and recover. However, unlike polymers in solutions, wormlike micelles undergo breaking and recombination (Chu et al., 2010).

Rheology Test
Rheological experiments were performed using an Anton Paar MCR301 rotational rheometer. The sample temperature was adjusted using a Peltier thermostat (Chen, et al., 2012). The viscosity of the samples was measured at different temperatures and various shear rates. During the angular frequency scan, elastic and storage moduli were determined at 50°C with the same rheometer (Zhu et al., 2013).

Sandpack Flooding Experiment
Flooding experiments were performed at 50°C. A steel cylinder of 10 inches in height and 1 inch in inner diameter was filled with quartz sands of different sizes. The porosity of the porous sandpack was about 35.8%. The sandpack was initially saturated with synthetic brine, and then displaced by dehydrated crude oil. Water flooding was performed until the water proportion of the output fluid was higher than 98%. Afterward, the composite VES solution was injected. The difference between water flooding recovery and total recovery was calculated as the tertiary recovery increased by nanoparticle/surfactant composite flooding. The injection rate was maintained at 0.5ml/min (Zhu et al., 2013).

RESULTS AND DISCUSSION

Rheological Properties of VES
The viscosity of injected solutions plays a significant role in displacing crude oil during oilfield development. Consequently, it is necessary to clarify the rheological behaviors of nanoparticle/surfactant solutions (Zhu et al., 2013).

Figure 1 shows the viscosities of VES at the shear rate of 7.34s^{-1} against the percentage of LAB in the LAB/SDS mixture. The viscosity increases with the increasing LAB percentage on composite surfactants until the mass ratio of LAB/SDS is 3:1, after which the viscosity begins to drop. Therefore, this proportion is used in the following experiments.

Figure 2 shows that the viscosity of VES is significantly affected by salinities. The VES viscosity increases with a...
salinity until 4%, before which the NaCl could compress the diffuse electric double-layer of the surfactants. And it causes more surfactant molecules to go into the micelle promoting the growth of entangled wormlike micelles. But if the salinity is more than 4%, the diffuse electric double layer would be over compressed. The surface charge of the micelle is too low, making the micelles coil and decreases the fluid dynamics radius.

The viscosity variation of the VES solution against surfactant concentration is shown in Figure 3. The solution viscosity increases as the concentration rises especially when the surfactant concentration is more than 0.4%. The viscosity increases from 13.79mPa·s to 185.49mPa·s as the concentration increases from 0.4% to 1%, at which concentration the micelles could form a large space structure with higher viscosity.

Rheological Behaviors of VES Samples With SiO$_2$ Nanoparticles

The curves of VES viscosity against the nanoparticle concentration at different salinities is shown in Figures 4–6. It shows that the viscosity of the VES solution at the same surfactant concentration could be apparently improved. These results can be interpreted in terms of the growth of entangled wormlike micelles, followed by the formation of bilayers due to the adsorption of the headgroups on SiO$_2$ surfaces (Bandyopadhyay and Sood, 2005). It also shows that the SiO$_2$ nanoparticles with a smaller diameter have a higher viscosifying
ability. This could be attributed to the fact that smaller nanoparticles have a higher specific surface area and higher amounts at a certain concentration, which may provide more crosslinking points. Therefore, 7nm SiO$_2$ nanoparticles were used in the following experiments.

The influence of silica particle concentration, salinity, surfactant concentration, and temperature on VES viscosity is shown in Figures 7–9. In Figure 7, the solution viscosity increases with the rise of SiO$_2$ concentration and salinity. Especially, the test sample containing 4% NaCl presents a wide range of viscosity increase with the nanoparticle addition compared with the low salinity solution, which means that nanoparticles enhanced the viscosity of VES solutions by increasing the entanglements of wormlike micelles. As expected, the viscosity of the VES solution continuously decreases at increasing temperatures, which is similar to that of the system without particles.

Rheological evaluation of the viscoelastic nature of the surfactant fluids with and without nanoparticles was carried out. Figure 10 shows the dependence of viscosity of the VES solution against the silica particle concentration on shear rate. At low shear rates, the viscosity of the VES solution without particles remains unchanged (Newtonian viscosity); then, its value...
decreases as the shear rate grows above 2s\(^{-1}\), which is associated with the orientation of micellar chains along the flow direction and possibly with their partial break. And adding particles has a significant effect on the viscosity of VES solutions especially at low shear rates. Note that 1% nanoparticles increased the viscosity of the VES fluid by more than 23 times at the shear rate of 0.1s\(^{-1}\), which may be caused by the influence of particles on the network structure of micelles. But at high shear rates, the effect of the nanoparticles is weakened.

The G' and G'' viscous-elastic behavior between the VES fluids with and without nanoparticles at different shear stress and frequency are shown in Figures 11, 12. Figure 11 shows that G' and G'' of the VES solution with or without particles were constant at low shear stress and significantly decreased at high shear stress above 0.8Pa. Within the plateau area, the system shows strong elastic properties. And in the range of high shear stress, the loss modulus exceeds the value of the storage modulus. Meanwhile, adding nanoparticles increases both G' and G'', which indicated that the addition of small amounts of nanoparticles to the VES solution resulted in the strengthening of the micelle-micelle associations and elongated micelle structures in the fluids. The intersection point of the G' and

FIGURE 9 | Effect of SiO\(_2\) concentration on solution viscosity at different temperatures (\(w (LBA + SDS) = 0.8\%, LBA:SDS = 3:1, w (NaCl) = 4\%, \gamma = 7.34s^{-1}\)).

FIGURE 10 | Effect of SiO\(_2\) concentration on solution viscosity at different shear rates. (\(w (LBA + SDS) = 0.8\%, LBA:SDS = 3:1, T = 50°C, w (NaCl) = 4\%\)).

FIGURE 11 | Effect of SiO\(_2\) concentration on the modulus with different shear stress. (\(w (LBA + SDS) = 0.8\%, LBA:SDS = 3:1, T = 50°C, w (NaCl) = 4\%, frequency = 1Hz\)).

FIGURE 12 | Effect of SiO\(_2\) concentration on the modulus at different frequencies. (\(w (LBA + SDS) = 0.8\%, LBA:SDS = 3:1, T = 50°C, w (NaCl) = 4\%, shear stress = 0.01Pa\)).
G'' right shifts with the increase of the nanoparticle concentration, which indicates that the SiO2 has a greater contribution to G'.

Figure 12 shows that at low frequency the loss modulus exceeds the value of storage modulus, and the elastic properties dominate at high frequency. Meanwhile, adding nanoparticles increases both G' and G'', and the intersection point of the G' and G'' left shift with the increases of the nanoparticles concentration indicates that the SiO2 has a greater contribution to G' which is similar to the results of Figure 11.

Interfacial Tension Between VES Solution and Oil

Figure 13 shows the interfacial tensions between Zhuangxi crude oil and surfactant/silica solutions of various concentrations at 50°C. The interfacial tension is about 0.38mN/m within a wide range of surfactant concentrations. And adding SiO2 has less effect on the IFT.

Oil Displacement Test

Variations of recovery factors, water contents, and displacement pressures with injected volumes are plotted in Figure 14 of the VES solutions with and without nanoparticles in different permeability media. Sandpack parameters, flooding processes, and the oil recovery results are summarized in Table 1.

Less than 5% oil recovery was achieved by the VES solution without particles (Figures 14A, 4B). As shown in Figures 14C, 4D, the oil recovery factor of the hybrid sample (VES solution with silica particles) was 9.68% in the high permeability zone, which was larger than that in low permeability media. In order to find the reason why VES has no effect on oil recovery, the apparent viscosity of VES with different oil ratios was measured, as shown in Figure 15.

It shows that oil has great influence on the apparent viscosity of the VES solution. Note that only 1% oil decreased the viscosity of the VES solution without nanoparticles by more than 97%.
which indicates the oil break of the structure of WLMs. But the presence of particles could weaken the influence of oil. The viscosity of the system with 0.8% SiO2 only decreased about 43% when mixed with 1% crude oil. The poor oil recovery efficiency of the VES solution without particles may be attributed to the destruction of the VES micelles upon contacting the residual oil. On the contrary, 9.68% of oil recovery was achieved from the VES and nanoparticle samples in the high permeability sandpack flooding test for the VES sample with nanoparticles which is relatively stable with oil in order to produce more oil. However, the nanoparticles bridging off the sandpack inlet restrict its use in a low permeability reservoir.

CONCLUSION

The rheological behaviors of the VES/SiO2 nanoparticle hybrid and sandpack flooding experiments were examined. It was found that the SiO2 nanoparticle exhibited viscosifying action and improved oil tolerance. In addition, the poor oil recovery efficiency of the solution without nanoparticles may be attributed to the destruction of the VES micelles upon contacting the residual oil. On the contrary, 9.68% of oil recovery was achieved from the VES and nanoparticle samples in the high permeability sandpack flooding test for the VES sample with nanoparticles which is relatively stable with oil in order to produce more oil. However, the nanoparticles bridging off the sandpack inlet restrict its use in a low permeability reservoir.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/Supplementary Material, further inquiries can be directed to the corresponding author.

AUTHOR CONTRIBUTIONS

ZL, QW, and HC contributed to the conception and design of the work; QW, MG, and WL contributed to the acquisition and analysis of data for the work; QW, MG, and WL drafted the work; ZL and HC revise the work critically; All the five authors made the final approval of the version to be published; All the five authors made the agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

ACKNOWLEDGMENTS

We acknowledge the Natural Science Foundation of China (51474234 and 51574266), the Natural Science Foundation of Shandong Province, China (ZR2014EZ002 and ZR2015EQ013), and the Fok Ying Tung Education Foundation (151049) for supporting this work.
REFERENCES

Bandopadhyay, R., and Sood, A. K. (2005). Effect of silica colloids on the rheology of viscoelastic gels formed by the surfactant cetyl trimethylammonium tosylate. *J. Colloid. Interface. Sci.* 283 (2), 585–591. doi:10.1016/j.jcis.2004.09.038

Chen, Q., Wang, Y., Lu, Z., and Feng, Y. (2012). Thermostabilizing polymer used for enhanced oil recovery: rheological behaviors and core flooding test. *Polymer Bulletin.* 70, 391–401. doi:10.1007/s00289-012-0798-7

Chu, Z., Feng, Y., Su, X., and Han, Y. (2010). Wormlike micelles and solution properties of a C22-tailed amidosulfobetaine surfactant. *Langmuir* 26, 7783–7791. doi:10.1021/la904582w

Crews, J. B., and Ahmed, M. G. (2012). “Nanoparticle-associated surfactant micellar fluids: an alternative to crosslinked polymer systems,” in SPE 157055 was prepared for presentation at the SPE international oilfield nanotechnology conference held in Noordwijk, Noordwijk, Netherlands, June 12–14, 2012.

Crews, J. B., and Huang, T. (2008). “Performance enhancements of Viscoelastic surfactant stimulation fluids with nanoparticles,” in SPE 113533 was prepared for presentation at the 2008 SPE Europec/EAGE annual conference and exhibition held in Rome, Rome, Italy, June 9–12, 2008.

Degre, G., Morvan, M., and Beaumount, J. (2012). “Viscosifying surfactant technology for chemical EOR: a reservoir case,” in SPE 154675 was prepared for presentation at the SPE EOR conference held in Muscat, Oman, April 16, 2012, 16–18.

Fakoya, M. F., and Shah, S. N. (2013). “Rheological properties of surfactant-based and polymeric nano-fluids,” in SPE 163921 was prepared for presentation at the SPE/CoTA coiled tubing & well intervention conference & exhibition held in the Woodlands, Woodlands, TX, United States, March 26–27, 2013.

Fakoya, M. F., and Shah, S. N. “Enhancement of filtration properties in surfactant-based and polymeric fluids by nanoparticles,” in SPE-171029-MS was prepared for presentation at the SPE Eastern Regional Meeting held Charleston, Charleston, WV, United States, October 21–23, 2014.

Fan, H., Luo, M., Jia, Z., and Hou, T. (2011). “Effect of Nano-SiO2 on the rheology of anionic viscoelastic solutions formed by the biodegradable surfactant fatty acid methyl ester sulfonate.” *Materials Sci. Forum.* 694, 64–67. doi:10.4028/www.scientific.net/msf.694.64

Golombok, M., and van der Wijst, R. (2013). Permeability thickening fluids for improved secondary oil recovery. *J. Petrol. Sci. Engineer.* 110, 22–26. doi:10.1016/j.petrol.2013.08.040

Gurluk, M. R., Nasr-El-Dina, H. A., and Crews, J. B. (2013). “Enhancing the performance of viscoelastic surfactant fluids using nanoparticles,” in SPE 164900 was prepared for presentation at the EAGE Annual Conference & Exhibition incorporation SPE Europe held in London, London, United Kingdom, June 10–13, 2013. doi:10.2118/164900-MS

Helgeson, M. E., Hodgdon, T. K., Kaler, E. W., Wagner, N. J., and Vethamuthu, K. P. A. (2010). Formation and rheology of viscoelastic “double networks” in wormlike micelle–nanoparticle mixtures. *Langmuir* 26 (11), 8049–8060. doi:10.1021/la100026d

Huang, T., and Crews, J. B. (2007). “Nanotechnology applications in viscoelastic surfactant stimulation fluids,” in SPE 107728 presented at the 2007 SPE European formation damage conference held in Scheveningen, Scheveningen, Netherlands, May 30, 2007.

Huang, T., and Crews, J. B. (2008). “Do viscoelastic-surfactant diverting fluids for acid treatments need internal breakers,” in SPE 112484 was prepared for presentation at the 2008 SPE International Symposium and Exhibition on Formation Damage Control held in Lafayette, Lafayette, LA, United States, February 13–15, 2008.

Huang, T., Crews, J. B., and Willeingham, J. R. (2008). “Nanoparticles for faomation fines fixation and improving performance of surfactant structure fluids,” in IPTC 12414 prepared for presentation at the international petroleum technology conference held in Kuala Lumpur, Kuala Lumpur, Malaysia, December 3–5, 2008. doi:10.2523/IPTC-12414-MS

Huang, T. (2007). “Nanotechnology applications in viscoelastic surfactant stimulation fluids,” in Proceedings of European formation damage conference EFDC, Scheveningen, Netherlands, May 30, 2007.

Jeffrey Giacomin, A., Albert, C., Gary, L. L., and Ralph, H. C. (2008). Nanoparticle associated surfactant micellar micelles. *AIP Conf. Proc.* 1027, 857. doi:10.1063/1.2964872

Jiang, P., Li, N., Ge, J., Zhang, G., Wang, Y., Chen, L., et al. (2014). Efficiency of a sulfobetaine-type surfactant on lowering IFT at crude oil–formation water interface. *Colloid. Surf. A: Physicochem. Engineer. Aspects.* 443, 141–148. doi:10.1016/j.colsurfa.2013.10.061

Joris van, S., and Golombok, M. (2015). Viscoelastic surfactants for diversion control in oil recovery. *J. Petrol. Sci. Engineer.* 135, 671–677. doi:10.1016/j.petrol.2015.10.030

Lakatos, L., Toth, J., Bodi, T., Lakatos-Szabó, J., Berger, P. D., and Lee, C. (2007). “Application of viscoelastic surfactants as mobility-control agents in low-tension surfactant floods” in SPE 106005 was prepared for presentation at the 2007 SPE international symposium on oilfield chemistry held in Houston, Texas, United States, February 28, 2007.

Luo, M., Jia, Z., Sun, H., Lejun, L., and Qingzhi, W. (2012). Rheological behavior and microstructure of an anionic surfactant micelle solution with pyroelectric nanoparticle. *Colloids and Surfaces A: Physicochem. Engineer. Aspects.* 395, 267–275. doi:10.1016/j.colsurfa.2011.12.052

Morvan, M., Degre, G., Leng, J., Masselon, J., Boullot, A. Z., and Moreau, P. (2009). “New viscoelastic fluid for chemical EOR,” in SPE 121675 was prepared for presentation at the 2009 SPE international symposium on oilfield chemistry held in the Woodlands, Woodlands, TX, United States, April 20–22, 2009.

Morvan, M., Degre, G., Beaumount, J., Dupuis, G., Zaitoun, A., and Al-Maamari, R. S. (2012a). “Optimization of viscosifying surfactant technology for chemical EOR,” in SPE 154053 was prepared for presentation at the eighteenth SPE improved oil recovery symposium held in Tulsa, Tulsa, OK, United States, April 14–18, 2012.

Morvan, M., Degre, G., Beaumount, J., Collin, A., Dupuis, G., Zaitoun, A., et al. (2012b). “Viscosifying surfactant technology for heavy oil reservoirs,” in SPE 157729 was prepared for presentation at the SPE Heavy Oil Conference Canada held in Calgary, Calgary, AB, Canada, June 12–14, 2012.

Qin, W., Yue, L., Liang, G., Jiang, G., Jiang, Y, and Liu, Y. (2017). Effect of multi-walled carbon nanotubes on linear viscoelastic behavior and microstructure of zwitterionic wormlike micelle at high temperature. *Chem. Engineer. Res. Design.* 123, 12–23. doi:10.1016/j.cherd.2017.04.027

Zhang, Y., Dai, C., Yao, Q., Xiuqin, F., Jianfeng, J., Yining, W., et al. (2018). Rheological properties and formation dynamic filtration damage evaluation of a novel nanoparticle-enhanced VES fracturing system constructed with wormlike micelles. *Colloids Surfaces A: Physicochem. Engineer. Aspects.* 553, 244–252. doi:10.1016/j.colsurfa.2018.05.065

Zhu, D., Zhang, J., Han, Y., Wang, H., and Feng, Y. (2013). Laboratory study on the potential EOR use of HPAM/VES hybrid in high-temperature and HighSalinity oil reservoirs. *J. Chem.* 2013, 927519. doi:10.1155/2013/927519

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.