Streptolysin O derived from *Streptococcus pyogenes* inhibits RANKL-induced osteoclastogenesis through the NF-κB signaling pathway

JIN YI¹, RUOHUI TANG¹, JING YANG¹, YUEQI CHEN² and JUN FEI¹,³

¹Centre of Trauma of PLA, Daping Hospital, Third Military Medical University, Chongqing 400042; ²Department of Biomedical Materials Science, School of Biomedical Engineering; ³State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing 400038, P.R. China

Received May 23, 2018; Accepted October 17, 2018

DOI: 10.3892/mmr.2018.9662

Abstract. *Streptococcus pyogenes* (GAS) is a clinically significant bacterial strain that causes bacterial arthritis, osteomyelitis and implant infections. Infection complications can lead to serious bone destruction. Osteoclasts, the only type of cell with bone resorption function, participate in this process. Streptolysin O (SLO) is produced by almost all clinical *Streptococcus pyogenes* isolates. However, the role of SLO in bone infection caused by GAS had not been previously examined. The current study was performed to define the effects of SLO on receptor activator of NF-κB ligand-stimulated osteoclast differentiation in vitro. Results demonstrated that SLO decreased the phosphorylation of p65 and NF-κB inhibitor α, suppressed c-FOS and nuclear factor of activated T-cells cytoplasmic 1, and downregulated the expression of osteoclast marker genes. SLO also induced apoptosis of mature osteoclasts. The results suggested that SLO blocked osteoclast activation during GAS infection. These findings may prove useful in the development of novel strategies for treating GAS-associated bone infectious diseases.

Introduction

Bone is a dynamic organ undergoing continual remodeling to grow, repair damage, and regulate calcium and phosphate metabolism in the body. The bone remodeling process is tightly regulated, controlling bone resorption by osteoclasts and bone formation by osteoblasts (1). Osteoclasts are the sole cell-type with bone resorption function. Abnormal activation of osteoclasts during bone infections, including bacterial sepsis, osteomyelitis and implant infections, can cause pathological bone destruction, resulting in bone non-union and delayed fracture healing (2).

Bone infection is a serious complication in orthopedics, and the rate of infection associated with open fractures is 3-40% (3). *Streptococcus pyogenes* (GAS) is among the most important bacterial strains that cause bone infections, including septic arthritis and osteomyelitis, and is involved in the inflammatory destruction of joints and bones. GAS accounts for ~15% of all cases of nongonococcal bacterial arthritis, which causes serious morbidities (4). Antibiotics and debridements are a burden on medical resources as they are time-consuming and expensive. Although penicillin is effective against the majority of GAS strains, 20-40% of cases occur during treatment with antibiotics (5). GAS bone infections are likely to be a continuing and increasing problem, and an improved understanding of the interaction between GAS and bone is essential for the development of novel therapeutic strategies for treating antibiotic-resistant and persistent infections.

Streptolysin O (SLO) is well characterized and considered to be an important virulence factor produced by the majority of clinical GAS isolates, and overexpressed in invasive infections (6). SLO is a cholesterol-dependent cytolysin (CDC), a large family of toxins produced by the majority of ram-positive bacterial strains, of which many have been characterized as important virulence factors. CDCs bind to cholesterol-containing membranes where they oligomerize and insert into the lipid bilayer to form large pores (7-9). SLO can deliver exogenous molecules to the cytoplasm, including other toxins produced by GAS through the pores (10). Furthermore, SLO can interact with a number of cell types, including polymorphonuclear neutrophils, macrophages and keratinocytes. In keratinocytes, SLO is associated with enhanced intracellular survival of
GAS (11). GAS resistance to macrophages primarily depends on the pore-forming toxin, SLO (12). However, the exact role of SLO in bone destruction induced by GAS remains unknown.

Therefore, the present study aimed to determine whether SLO is involved in GAS-induced bone destruction. Herein, it was demonstrated that SLO was able to suppressing receptor activator of NF-κB ligand (RANKL)-induced osteoclast differentiation and promoting mature osteoclast apoptosis. These results may help discover novel strategies to be applied following failed treatment of bone infections caused by GAS.

Materials and methods

Reagents and chemicals. Dulbecco's modified Eagle's medium (DMEM) and fetal bovine serum (FBS) were obtained from Gibco (Thermo Fisher Scientific, Inc., Waltham, MA, USA). The Cell Counting kit-8 (CCK-8) was purchased from Dojindo Molecular Technologies, Inc. (Kumamoto, Japan). Recombinant mouse macrophage colony-stimulating factor (M-CSF) and recombinant mouse RANKL were purchased from R&D Systems, Inc. (Minneapolis, MN, USA). The Osteo assay surface 96-well plates were obtained from Corning Incorporated (Corning, NY, USA). SLO was obtained from Beijing Ambition Biotechnology, Co., Ltd. (Beijing, China). The tartrate-resistant acid phosphatase (TRAP) stain kit was obtained from Sigma-Aldrich (Merck KGaA). Actin cytoskeleton and focal adhesion staining kits were purchased from EMD Millipore (Billerica, MA, USA). Specific primary antibodies against NF-κB inhibitor α (IkBa; cat. no. BS3601), phosphor (p)-IkBa (cat. no. BS4105), p65 (cat. no. BS3648), p-p65 (cat. no. BS4140), BCL2 associated X, apoptosis regulator (Bax; cat. no. BS1030), BCL2, apoptosis regulator (Bcl-2; cat. no. BS70205), caspase-3 (cat. no. BS9872 M), Fos proto-oncogene (c-FOS; cat. no. BS6433), nuclear factor of activated T cells 1 (NFATc1; cat. no. BS6677), GAPDH (cat. no. AP0063) and secondary antibody (cat. no. BS13271) were obtained from Bioworld Technology, Inc. (St. Louis Park, MN, USA). Raw 264.7 cells were purchased from the American Type Culture Collection (Manassas, VA, USA).

Cell viability assays. Raw 264.7 cells were seeded in 96-well plates at a density of 3x10^4 cells/well. Following culture in DMEM containing 10% FBS for 10 h, the cells were incubated with different concentrations of SLO (0, 0.25, 0.5, 1, 2.5 µg/ml) for 24 or 72 h. The cell medium and SLO were removed and washed with sodium hypochlorite once, followed by three washes with PBS. Following drying of the plates, cell resorption pits were detected by a light microscope and analyzed with ImageJ software version 1.37V (National Institutes of Health, Bethesda, MD, USA; 3 fields/wells).

Bone resorption assay. To measure the bone resorption of osteoclasts, Raw 264.7 cells (3x10^3 cells/well) were seeded into Osteo assay surface 96-well plates (Corning Incorporated, Corning, NY, USA). The cells were cultured in 100 µl medium containing 50 ng/ml RANKL and 50 ng/ml M-CSF with different concentrations of SLO for 5 days. The medium was removed and washed with sodium hypochlorite once, followed by three washes with PBS. Following drying of the plates, bone resorption pits were detected by a light microscope and analyzed with ImageJ software version 1.37V (National Institutes of Health, Bethesda, MD, USA; 3 fields/wells).

RNA extraction and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). To measure specific gene expression during osteoclastogenesis, a total of 2.4x10^4 Raw 264.7 cells were seeded per well in 12-well plates and cultured with 800 µl DMEM containing 50 ng/ml RANKL and 50 ng/ml M-CSF. Cells were incubated with SLO (0, 0.25, 0.5, 1 and 2.5 µg/ml) for 3 days until mature osteoclasts were identifiable using a light microscope. Total mRNA was extracted using TRIzol reagent. Genomic DNA was removed at 42°C for 2 min. The cDNA was synthesized from 1 µg total RNA using reverse transcription with oligo-dT primers at 37°C for 15 min followed by 85°C for 5 sec, according to the manufacturer's instructions (Takara Biotechnology Co., Ltd., Dalian, China), then subjected to PCR amplification (BGI-Tech Solutions Co., Ltd., Shenzhen, China). The PCR product was quantified by qPCR using SYBR-Green Mix with the ΔΔCt method (13). qPCR was performed with the following thermocycling conditions: Pre-incubation at 95°C for 30 sec, followed by 40 cycles of amplification at 95°C for 5 sec and 60°C for 1 min, and then cooling at 65°C for 5 sec. The primers for TRAP, calcitonin receptor (CTR), integrinβ3, ATPase H^+ transporting V0 subunit d2 (ATP6v0d2), dendritic cell-specific transmembrane protein (DC-STAMP), matrix metalloproteinase-9 (MMP9) and GAPDH are presented in Table 1. GAPDH was used as an internal control.

Western blotting. A total of 3x10^4 Raw 264.7 cells were seeded per well in 6-well plates and cultured with 1 mM DMEM containing 50 ng/ml RANKL, 50 ng/ml M-CSF varying concentrations of SLO. Raw 264.7 cells were collected from 6-well plates and lysed with phenylmethane sulfonl fluoride buffer and phosphatase inhibitors 3 days after mature osteoclasts were identified. Following centrifugation at 4,024.8 x g for 10 min at 4°C to
The protein concentration was determined by bicinchoninic acid assay. Equal volumes of protein samples were mixed with 5X sample loading buffer and heated at 95°C for 10 min. Protein (40 µg) was loaded per lane. Following separation by 10% SDS-PAGE, protein was transferred to a polyvinylidene difluoride membrane. The membrane was blocked in 5% skimmed milk in TBS-Tween for 3 h at 24°C, and incubated overnight at 4°C with primary antibody (1:1,000) against IκBα, p-IκBα, p65, p-p65, Bax, Bcl-2, Caspase-3, c-FOS, NFATc1 and GAPDH. The blots were then washed in TBS-T three times, incubated for 1.5 h at room temperature with secondary antibody (1:1,000), and washed again prior to signal detection using BeyoECL Star (Beyotime Institute of Biotechnology). GAPDH was used as an internal control.

Cell apoptosis assay. Raw 264.7 cells (3x10⁴ cells/well) were collected from 6-well plates following culture 72 h. Following centrifugation at 1,006.2 x g for 4 min at 24°C, the supernatant was removed and the cells were stained with Annexin-V-fluorescein isothiocyanate and propidium iodide for 15 min at 4°C in the dark. The apoptotic rate was measured at 488 nm by flow cytometry and analyzed with FlowJo 10.0.7 (FlowJo LLC, Ashland, OR, USA).

Statistical analysis. SPSS 18.0 (SPSS, Inc., Chicago, IL, USA) was used for statistical analysis. The data are expressed as the mean ± standard deviation. Multiple groups were performed using one-way analysis of variance, with Bonferroni post hoc tests. P<0.05 was considered to indicate a statistically significant difference.

Results

SLO toxicity evaluation. The toxicity of SLO was measured in a CCK-8 assay. The results demonstrate that 10 µg/ml SLO had a toxic effect on cells at 24 h and 72 h (Fig. 1A and B). Therefore, non-cytotoxic SLO concentrations <10 µg/ml were used in subsequent experiments (0.25, 0.5, 1 and 2.5 µg/ml).

SLO inhibits RANKL-induced osteoclast differentiation in vitro. To evaluate the effect of SLO on osteoclast differentiation, TRAP staining was used to evaluate osteoclast differentiation. The RANKL-treated group exhibited more TRAP-positive multinucleated osteoclasts than the vehicle control group (Fig. 2A). SLO decreased the number of osteoclasts in a dose-dependent manner compared with the RANKL-treated group (Fig. 2B). This indicates that SLO inhibited osteoclast differentiation.

SLO inhibits RANKL-induced osteoclast fusion and bone resorption. To evaluate the effect of SLO on osteoclast fusion, focal adhesion staining was used to observe the cytoskeleton.

Primer	Forward (5'-3')	Reverse (5'-3')
TRAP	CACTCCCACCCCTGAGATTGT	CATCGTCTGCACGGTTCGT
CTR	CGATCCGCTGTGAATGTG	TCTGCTTTTCCCAAGGAATGA
Integrin β	TGTGTCCTGCTGCTCAGA	AGCAGGTTCTCTTCCAGGTATA
ATP6v60d2	CAGAGCTGTACTTCAATGTTGAC	AGGTCTCACTGACTGACTAGGT
DC-STAMP	CTAGCTGGTGCACTTCAATCC	TCTGTCTTTCCCAAGGAATGA
MMP9	CTGGACAGCCAGACACTAAG	CTCGCCGCAGATTCTTCCAGAG
GAPDH	AAATGGTGAGCTGGGCTTG	TGAAGGGTCTCTTGTGAAGG

TRAP, tartrate-resistant acid phosphatase; CTR, calcitonin receptor; DC-STAMP, dendritic cell-specific transmembrane protein; MMP, matrix metalloproteinase.
and average nuclei. Prior to focal adhesion staining, Raw 264.7 cells were incubated with different concentrations of SLO for 3 days. Consistent with the TRAP results, SLO decreased the size of the multinucleated osteoclasts. The average number of nuclei in multinucleated osteoclasts was decreased in the SLO-treated groups compared with RANKL treatment, particularly in the 2.5 µg/ml SLO group (Fig. 3A and B). This indicates that SLO inhibited osteoclast fusion in vitro.

To further examine the effect of SLO on osteoclast resorption, Raw 264.7 cells were seeded into Osteo assay surface 96-well plates, and treated with RANKL and different concentrations of SLO for 5 days. The absorbed area of SLO-treated mature osteoclasts was significantly decreased compared with RANKL treatment (Fig. 3C and D). The result indicated that SLO reduced osteoclast bone resorption activity.

SLO inhibits RANKL-induced gene expression. The effect of SLO on the expression levels of a number of specific genes, including TRAP, CTR, integrinβ3, ATP6v0d2, DC-STAMP and MMP9, which were upregulated during osteoclast differentiation, were analyzed by RT-qPCR. The expression of these genes was reduced in the SLO-treated groups compared with RANKL treatment, particularly in the 2.5 µg/ml SLO group. The result indicated that SLO inhibited osteoclastogenesis, which is consistent with the observed reduction in osteoclast differentiation and bone resorption (Fig. 4).

SLO inhibits RANKL-induced osteoclastogenesis by down-regulating c-FOS and NFATc1 via nuclear factor-κB (NF-κB). To analyze the signaling pathway underlying the effect of SLO on osteoclast differentiation, the expression of IkBα, p-IkBα, p65 and p-p6 were detected by western blotting. The cells were treated with or without 2.5 µg/ml SLO for 0, 5, 15 and 30 min. RANKL induced phosphorylation of IkBα at 5 min after activation (Fig. 5A). However, SLO pretreatment significantly inhibited RANKL-induced IkBα phosphorylation in Raw 264.7 cells. In addition, p65 phosphorylation was a significantly reduced by SLO. The effects of SLO on RANKL-induced NFATc1 and c-FOS expression were also investigated at the protein level. NFATc1 and c-FOS protein expression levels increased when the cells were stimulated with RANKL. However, SLO attenuated this increase, suggesting
that SLO suppressed RANKL-induced NFATc1 and SLO expression (Fig. 5B). Overall, this suggests that SLO inhibited RANKL-induced osteoclastogenesis via downregulation of the NF-κB/c-FOS/NFATc1 pathways.

SLO induces osteoclast apoptosis via the Bax/Bcl-2/caspase-3 pathway. Flow cytometry was used to examine the apoptosis of osteoclasts treated with SLO. The proportion of cells in late apoptosis was increased in the SLO-treated groups compared with RANKL treatment (Fig. 6A and B). Bax/Bcl-2/caspase-3 is a classical pathway involved in apoptosis. The protein expression levels of Bax, Bcl-2 and caspase-3 were evaluated by immunoblotting. The results demonstrated that Bax and caspase-3 expression was increased in SLO-treated groups compared with the RANKL treatment, whereas Bcl-2 was decreased (Fig. 6C). This indicated that SLO may induce osteoclast apoptosis via the Bax/Bcl-2/caspase-3 pathway.

Discussion

The Gram-positive bacterium, GAS, is a human pathogen, and ranked among the top 10 causes of infection-associated mortality worldwide (14). It can cause a wide spectrum of infections, ranging from self-limiting pharyngitis and impetigo, to invasive and life-threatening diseases, including streptococcal toxic shock syndrome and necrotizing fasciitis (15,16). There are ~700 million GAS infections and 1.8 million severe infections with a mortality rate >25% worldwide (14). Treatment failure occurs in 20-40% of patients treated with sensitive antibiotics (5); this creates an economic burden, particularly in
developing countries. GAS is also one of the bacterial strains most responsible for bone infection, including septic arthritis and osteomyelitis (17), and accounts for ~15% of cases of nongonococcal bacterial arthritis (4). Biofilms may contribute to its infection efficacy (18). During septic arthritis and osteomyelitis caused by GAS, abnormal activation of osteoclasts results in bone destruction (19-21). Osteoclasts are the only type of cells that have the function of bone resorption. However, there are few reports regarding the direct association between GAS and osteoclasts. To the best of our knowledge, the present study is the first to report that SLO, a typical product of GAS, suppresses osteoclast differentiation.

In vitro studies demonstrated that osteoclast number, nuclei number and osteoclast resorption activity were significantly decreased by SLO, particularly in the 2.5 µg/ml SLO group. Consistent with these results, osteoclast differentiation marker genes, including TRAP, CTR, integrinβ3, ATP6v0d2, DC-STAMP and MMP9, were significantly decreased by SLO. It was further demonstrated that the NF-κB signaling pathway was involved in this process.

NF-κB signaling is one of the central pathways involved in differentiation and fusion of macrophage precursor cells (22). RANKL is a member of the tumor necrosis factor (TNF) family, and may act as a major regulator of bone loss. RANKL binding to the receptor activator of NF-κB (RANK) activates downstream signaling pathways resulting in osteoclast formation (23). Following activation by RANKL, RANK-recruited TNF receptor associated factor 6 activates IκB kinase α, which promotes phosphorylation and degradation of IκBα, resulting in the release of NF-κB (24). NF-κB dimers, containing p65 and c-Rel, are released into the cytosol via cascade reactions and translocated to the nucleus to enhance transcription of target genes, including c-FOS and NFATc1 (3,25). Thus, phosphorylation of IκBα and NF-κB (p65) are necessary for the activation of the NF-κB pathway. In the present study, SLO inhibited phosphorylation of IκBα and p65. c-FOS and NFATc1 are major transcription factors involved in osteoclastogenesis. Following activation by RANKL, the activator protein-1 transcription factor complex, which includes c-FOS, cooperates with NF-κB to induce NFATc1, has been reported to enable the transcription of osteoclast-specific
In the present study, SLO decreased the expression of c-FOS, and the translation of NFATc1, suggesting that SLO modulated the NF-κB/c-FOS/NFATc1 signaling pathway in RANKL-induced osteoclastogenesis. NFATc1 can regulate the expression of a number of genes associated with osteoclast differentiation and function. SLO inhibited the expression of osteoclastogenesis-associated marker genes, and decreased osteoclast number, the number of nuclei and osteoclast resorption activity. These results suggest that SLO exerted an inhibitory effect on RANKL-induced osteoclastogenesis via the NF-κB signaling pathway.

SLO can also trigger intracellular calcium concentration dysregulation during endoplasmic reticulum stress and mitochondrial depolarization, resulting in apoptosis of various cell types, including keratinocytes and macrophages (27,28). An increase in the Bax/Bcl-2 ratio can cause activation of caspase-3, which can induce apoptosis of mature osteoclasts (29). The protein expression pattern of Bax, Bcl-2 and cleaved caspase-3 was analyzed by western blotting in the current study. The protein expression of Bcl-2 was notably downregulated, while protein expression of Bax and cleaved caspase-3 were upregulated by SLO. These results indicated that SLO induced apoptosis of mature osteoclasts. Apoptosis is involved in the mechanism of a number of agents which inhibit osteoclast bone resorption, including zolendronic acid (30). Through inducing osteoclast apoptosis, SLO may decrease the number of osteoclasts, and then reduce the area of resorption. It was also reported that an increased number of osteoclasts may be due to a decrease in apoptosis as a result of lower caspase-3 levels (31). The NF-κB pathway is closely associated with cell apoptosis and involved in the transcriptional regulation of various apoptosis-associated genes, including Bcl-2, Bax and caspase-3 (32-34). A previous study reported that inactivation or inhibition of NF-p65 may downregulate Bcl-2 family proteins, which in turn activates the caspase cascade, leading to apoptosis of C6 glioma cells (35). In conclusion, the present study demonstrated that SLO inhibited osteoclast formation and function by suppressing NF-κB signaling, and inducing mature osteoclast apoptosis.
The effect of SLO on RANKL-induced osteoclastogenesis may provide novel insight regarding regulation of the imbalance in the bone matrix caused by excessive osteoclast activity. The present study provides a foundation for treating bone loss due to GAS and other bacterial infections.

Acknowledgements
Not applicable.

Funding
The present study was funded by the Medical Research Funding of PLA of China (grant no. AWS14C003), the Special Funds for Social Undertaking and Livelihood Security Projects of Chongqing (grant no. CSTC2016SHMSZX130068) and the Youth development program of medical technology of PLA (grant no. 16QNP103).

Availability of data and materials
The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

Authors' contributions
JYi, RT and JF designed the experiments. JYi, RT and JYa analyzed the data. JYi, RT and YC wrote the manuscript. JYi and YC revised the manuscript. All authors reviewed the manuscript.

Ethics approval and consent to participate
Not applicable.

Patient consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

References
1. Harada S and Rodan GA: Control of osteoblast function and regulation of bone mass. Nature 423: 349-355, 2003.
2. Kim J, Yang J, Park OJ, Kang SS, Kim WS, Kurokawa K, Yun CH, Kim HH, Lee BL and Han SH: Lipoproteins are an important bacterial component responsible for bone destruction through the induction of osteoclast differentiation and activation. J Bone Miner Res 28: 2381-2391, 2013.
3. Moriarty TF, Schlegel U, Perren S and Richards RG: Infection in fracture fixation: Can we influence infection rates through implant design? J Mater Sci Mater Med 21: 1031-1035, 2010.
4. Schattner A and Vosti KL: Bacterial arthritis due to beta-hemolytic streptococci of serogroups A, B, C, F and G: Analysis of 23 cases and a review of the literature. Medicine (Baltimore) 77: 122-139, 1998.
5. Pichichero ME and Casey JR: Systematic review of factors contributing toopinecinil treatment failure in Streptococcus pyogenes pharyngitis. Otolaryngol Head Neck Surg 137: 851-857, 2007.
6. Nilsson M, Srsrensen OE, Mrgelin M, Weineisen M, Sjbring U and Herwald H: Activation of human polymorhnonuclear eutrophils by streptolysin O from Streptococcus pyogenes leads to the decrease of proinflammatory mediators. Thromb Haemost 95: 982-990, 2006.
7. Anderluh G and Lakey J: Proteins: Membrane binding and pore formation. Preface. Adv Exp Med Biol 677: v-vii, 2010.
8. Hotze EM, Wilson-Kubalek E, Farrand AJ, Bentsen L, Parker MW, Johnson AE and Tweten RK: Monomer-dimer interactions propagate structural transitions necessary for pore formation by the cholesterol-dependent cytolysins. J Biol Chem 287: 24534-24543, 2012.
9. Bhakdi S, Bayley H, Valeva A, Walev I, Walker B, Kehoe M and Palmer M: Staphylococcal alpha-toxin, streptolysin-O, and Escherichia coli hemolysin: Prototypes of pore-forming bacterial cytolysins. Arch Microbiol 165: 73-79, 1996.
10. Bricker AL, Carey VJ and Wessels MR: Role of NADase in virulence in experimental invasive group A streptococcal infection. Infect Immun 73: 6562-6566, 2005.
11. O’Seaghdha M and Wessels MR: Streptolysin O and its co-toxin NAD-glycohydrolase protect group A Streptococcus from Xenophagic killing. PLoS Pathog 9: e1003394, 2013.
12. Bastiat-Sempe B, Love JF,لومس Ve Nand Wessels MR: Streptolysin O and NAD-glycohydrolase prevent plugholysin acidification and promote group A streptococcus survival in macrophages. MBio 5: e01690-14, 2014.
13. Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25: 402-408, 2001.
14. Carapetis JR, Steer AC, Mulholland EK and Weber M: The global burden of group A streptococcal diseases. Lancet Infect Dis 5: 685-694, 2005.
15. Walker MJ, Barnett TC, McArthur JD, Cole JN, Gillen CM, Henningham A, Sriraklash KS, Sanderson-Smith ML and Nizet V: Disease manifestations and pathogenic mechanisms of group A Streptococcus. Clin Microbiol Rev 27: 264-301, 2014.
16. Good MF, Batzloff M and Pandey M: Strategies in the development of vaccines to prevent infections with group A streptococcus. Hum Vaccin Immunother 10: 2293-2307, 2013.
17. Pichichero ME: Group A beta-hemolytic streptococcal infections. Pediatr Rev 19: 391-302, 1998.
18. Freireberg JA, Mciver KS and Shirtliff ME: In vivo expression of Streptococcus pyogenes immunogenic proteins during titil foreign body infection. Infect Immun 82: 3891-3899, 2014.
19. Sakurai A, Okahashi N, Nakagawa I, Kawabata S, Amano M, Ooshima T and Hamada S: Streptococcus pyogenes infection induces septic arthritis with increased production of the receptor activator of the NF-kappaB ligand. Infect Immun 71: 6019-6026, 2003.
20. Matsu H, Nakatani Y, Yoshida H, Takizawa A, Takeuchi O, Overby A, Takahashi T, Murayama SY and Matsu K: Flesh-eating Streptococcus pyogenes triggers the expression of receptor activator of nuclear factor-xB ligand. Cell Microbiol 18: 1390-1404, 2016.
21. Okahashi N, Sakurai A, Nakagawa I, Fujiwara T, Kawabata S, Amano A and Hamada S: Infection by Streptococcus pyogenes induces the receptor activator of NF-kappaB ligand expression in mouse osteoblastic cells. Infect Immun 71: 948-955, 2003.
22. Barnes PJ and Karin M: Nuclear factor-kappaB: A pivotal transcription factor in chronic inflammatory diseases. N Engl J Med 336: 1066-1071, 1997.
23. Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, Elliott R, Colomboero A, Elliott G, Scully S, et al: Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93: 165-176, 1998.
24. Ghosh S and Karin M: Missing pieces in the NF-kappaB puzzle. Cell 109 (Suppl): S81-S96, 2002.
25. Nepal M, Choi HJ, Choi BY, Yang MS, Chae JI, Li L and Soh Y: Hispidulin attenuates bone resorption and osteoclastogenesis via the RANKL-induced NF-kappaB and NFAcTc1 pathways. Eur J Pharmacol 715: 96-104, 2013.
26. Yamashita T, Yao Z, Li F, Zhang Q, Badell IR, Schwarz EM, Takeshita S, Wagner EF, Noda M, Matsuo K, et al: NF-kappaB p50 and p52 regulate receptor activator of NF-kappaB ligand (RANKL) and tumor necrosis factor-induced osteoclast precursor differentiation by activating c-Fos and NFAcTc1. J Biol Chem 282: 18245-18253, 2007.
27. Cywes Bentley C, Hakansson A, Christianson J and Wessels MR: Extracellular group A Streptococcus induces keratinocyte apoptosis by dysregulating calcium signaling. Cell Microbiol 7: 945-955, 2005.
28. Timmer AM, Timmer JC, Pence MA, Hsu LC, Ghochani M, Frey TG, Karin M, Salvesen GS and Nizet V: Streptolysin O promotes group A Streptococcus immune evasion by accelerated macrophage apoptosis. J Biol Chem 284: 862-871, 2009.

29. Scorrano L and Korsmeyer SJ: Mechanisms of cytochrome c release by proapoptotic Bcl-2 family members. Biochem Biophys Res Commun 304: 437-444, 2003.

30. Tai TW, Chen CY, Su FC, Tu YK, Tsai TT, Lin CF and Jou IM: Reactive oxygen species are required for zoledronic acid-induced apoptosis in osteoclast precursors and mature osteoclast-like cells. Sci Rep 7: 44245, 2017.

31. Kinning E, McMillan M, Shepherd S, Helfrich M, Hof RV, Adams C, Read H, Wall DM and Ahmed SF: An unbalanced rearrangement of chromosomes 4: 20 is associated with childhood osteoporosis and reduced caspase-3 levels. J Pediatr Genet 5: 167-173, 2016.

32. Shan RF, Zhou YF, Peng AF and Jie ZG: Inhibition of Aurora-B suppresses HepG2 cell invasion and migration via the PI3K/Akt/NF-κB signaling pathway in vitro. Exp Ther Med 8: 1005-1009, 2014.

33. Nehra R, Riggins RB, Shajahan AN, Zwart A, Crawford AC and Clarke R: BCL2 and CASP8 regulation by NF-kappaB differentially affect mitochondrial function and cell fate in antiestrogen-sensitive and-resistant breast cancer cells. FASEB J 24: 2040-2055, 2010.

34. Henrotin Y, Clutterback AL, Allaway D, Lodwig EM, Harris P, Mathy-Hartert M, Shakibaei M and Mobasher A: Biological actions of curcumin on articular chondrocytes. Osteoarthritis Cartilage 18: 141-149, 2010.

35. Kiekow CJ, Figueiró F, Dietrich F, Vechia LD, Pires EN, Jandrey EH, Gnoatto SC, Salbego CG, Battastini AM and Gomsann G: Quercetin derivative induces cell death in glioma cells by modulating NF-κB nuclear translocation and Caspase-3 activation. Eur J Pharm Sci 84: 116-122, 2016.

36. Cortés G and Wessels MR: Inhibition of dendritic cell maturation by group A Streptococcus. J Infect Dis 200: 1152-1161, 2009.

37. Walev I, Hombach M, Bobkiewicz W, Fenske D, Bhakdi S and Husmann M: Resealing of large transmembrane pores produced by streptolysin O in nucleated cells is accompanied by NF-kappaB activation and downstream events. FASEB J 16: 237-239, 2002.

38. Lorenzo J: Interactions between immune and bone cells: New insights with many remaining questions. J Clin Invest 106: 749-752, 2000.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) License.