Light neutral meson production in the era of precision physics at the LHC

Mike Sas
ALICE Collaboration

Utrecht University & NIKHEF

July 11, 2019
Big questions in heavy-ion physics

- What are the different particle production mechanisms across different system sizes?
- Can we find the onset of the QGP?
- Is a QGP droplet formed in small systems?

$N_{\text{particles}} \sim 10^1$

$N_{\text{particles}} \sim 10^2$

$N_{\text{particles}} \sim 10^4$
Why measure neutral mesons?

\[\pi^0 \rightarrow \gamma\gamma, \quad \eta \rightarrow \gamma\gamma, \quad \omega \rightarrow \pi^0\gamma, \quad \ldots \]

- Straightforward identification \((M_{\text{inv}})\) → study the particle production mechanisms
- Main background for direct photons → precise neutral mesons lead to precise direct photons

pp	p–Pb	Pb–Pb
Jet production	Cold nuclear matter effects	QGP effects
Underlying event studies	Multiplicity dependence	Centrality dependence

Photons in ALICE

Photon Conversion Method (PCM)

- ITS and TPC
- \(|\eta| < 0.9 \text{ and } 0^\circ < \varphi < 360^\circ\)
- \(E_{\gamma} > 100 \text{ MeV}, E_{\pi^0} > 300 \text{ MeV}\)
- Conversion probability \(\sim 8\%

PHOS calorimeter

- \(\text{PbWO}_4\) crystals (2.2 cm x 2.2 cm, at 4.6 m)
- \(|\eta| < 0.12 \text{ and } 260^\circ < \varphi < 320^\circ\)
- \(E_{\gamma} > 200 \text{ MeV}, E_{\pi^0} > 400 \text{ MeV}\)

EMCal calorimeter

- Pb-scintillator towers (6 cm x 6 cm, at 4.28 m)
- \(|\eta| < 0.7 \text{ and } 80^\circ < \varphi < 180^\circ\)
- \(E_{\gamma} > 700 \text{ MeV}, E_{\pi^0} > 1.4 \text{ GeV}\)

Centrality estimators

- V0M (V0A & V0C), measures forward multiplicity in central barrel
- ZDC (ZNA & ZNC), measures forward neutrons at large distance
Analysis strategy:

- Reconstruct the photons
- Obtain the meson raw yield: integrate M_{inv} distributions
- Correct raw yield for efficiency, acceptance, feed-down from secondaries
- Combine the different reconstruction methods
Analysis strategy:

- Reconstruct the photons
- Obtain the meson raw yield: integrate M_{inv} distributions
- Correct raw yield for efficiency, acceptance, feed-down from secondaries
- Combine the different reconstruction methods
Neutral meson reconstruction in ALICE

Analysis strategy:

- Reconstruct the photons
- Obtain the meson raw yield: integrate M_{inv} distributions
- Correct raw yield for efficiency, acceptance, feed-down from secondaries
- Combine the different reconstruction methods

\[
\begin{align*}
\pi^0 & \Rightarrow \gamma\gamma \\
\eta & \Rightarrow \gamma\gamma
\end{align*}
\]
Neutral meson reconstruction in ALICE

Analysis strategy:

- Reconstruct the photons
- Obtain the meson raw yield: integrate M_{inv} distributions
- Correct raw yield for efficiency, acceptance, feed-down from secondaries
- Combine the different reconstruction methods

![Graphs showing the analysis strategy for reconstructing neutral mesons in ALICE.](image)

arXiv:1708.08745, Eur. Phys. J. C 78 (2018) 263
Neutral mesons in pp collisions

Main reasons for study:
- Fragmentation & in-jet production
- Contribution underlying event
- Main background for γ_{direct}

arXiv:1708.08745, Eur. Phys. J. C 78 (2018) 263
Neutral mesons in pp collisions

Main reasons for study:
- Fragmentation & in-jet production
- Contribution underlying event
- Main background for γ_{direct}

π^0 model comparisons:
- PYTHIA and NLO overpredict the production
- More differential studies can disentangle the jet and UE components
Neutral mesons in p–Pb collisions

π⁰ & η

Ratio to theory

η/π⁰

Minimum Bias production

- Model comparisons show only consistency for limited p_T ranges
- Full Run 1 + Run 2 result promises to provide very detailed studies

arXiv:1801.07051, Eur. Phys. J. C (2018) 78: 624
Neutral mesons in p–Pb collisions

V0A centrality estimation
- Significant change of slope at low p_T
- No significant centrality dependence in the η/π^0 ratio
Neutral mesons in p–Pb collisions

V0A centrality estimation

- Significant change of slope at low p_T
- No significant centrality dependence in the η/π^0 ratio

Nuclear modification factor:

$$Q_{pA} = \frac{dN_{pA}^{dA}}{<T_{pA}> d\sigma^{pp}/dp_T}$$

Mike Sas (Utrecht University & NIKHEF)
Neutral mesons in p–Pb collisions

\[Q_{PA} = \frac{dN_{PA}^{A}}{dp_{T}} / \langle \frac{d\sigma_{PP}}{dp_{T}} \rangle \]

V0A centrality estimation
- Significant change of slope at low \(p_{T} \)
- No significant centrality dependence in the \(\eta/\pi^{0} \) ratio

ZNA centrality estimation
- Zero-degree calorimeter on A (Pb) side
- Measures energy of spectator nucleons, 114 m from interaction point
- Less centrality dependence observed wrt. V0A centrality estimation

Nuclear modification factor:
Neutral mesons in Pb–Pb collisions

Neutral mesons in Pb–Pb collisions

\[\pi^0 \]

ALICE Preliminary

\[\frac{1}{2\pi N_p} \frac{d^3N}{dp_T^2 dy} \]

Pb–Pb at \(\sqrt{s_{NN}} = 5.02 \) TeV

- 0-10% × 2^2
- 20-40% × 2^2
- 60-80% × 2^2

--- TCM fits to Pb–Pb

\[(\text{GeV}/c)^2 \]

\[\text{SHM (V. Begun et al.)} \]

- NEQ : 0-10% × 2^2
- EQ : 0-10% × 2^2
- NEQ : 20-40% × 2^2
- EQ : 20-40% × 2^2
- NEQ : 60-80% × 2^2
- EQ : 60-80% × 2^2

Ratio to theory

ALICE Preliminary

Fit

Theory, Data

\[: 0-10\% \]

\[\pi \]

NEQ SHM (V. Begun et al.)

EQ SHM (V. Begun et al.)

V0A centrality estimation

- Model comparisons show consistency for limited \(p_T \) ranges
- Basis for direct photon background subtraction

Mike Sas (Utrecht University & NIKHEF)

Neutral mesons in ALICE, EPS-HEP 2019

July 11, 2019 9 / 10
Neutral mesons in Pb–Pb collisions

Model comparisons show consistency for limited p_T ranges

Basis for direct photon background subtraction

Nuclear modification

$$R_{AA} = \frac{dN^{AA}/dp_T}{\langle T_{AA} \rangle d\sigma^{pp}/dp_T}$$

Strong suppression for central collisions

Full Run 2 result promises to provide detailed studies
Summary and outlook

Neutral mesons spectra measurements provide us with information on:

- Particle production mechanisms, by comparing to model calculations
- Decay photon background for direct photon measurements
Summary and outlook

Neutral mesons spectra measurements provide us with information on:
- Particle production mechanisms, by comparing to model calculations
- Decay photon background for direct photon measurements

Where do the next opportunities lie?
1. Overall reducing the uncertainties in the measurements, by:
 - Using full Run 1+2 statistics \rightarrow factor $\sim 2 - 6$ increase
 - Combine all neutral meson reconstruction methods

2. additional differential studies:
 - Vs. multiplicity
 - Vs. event shapes (S_T, S_O)
 - In-jet production

3. Direct photons \rightarrow under which conditions do we measure an excess of low p_T direct photons?
Summary and outlook

Neutral mesons spectra measurements provide us with information on:

- Particle production mechanisms, by comparing to model calculations
- Decay photon background for direct photon measurements

Where do the next opportunities lie?

1. Overall reducing the uncertainties in the measurements, by:
 - Using full Run 1+2 statistics \rightarrow factor $\sim 2 - 6$ increase
 - Combine all neutral meson reconstruction methods

2. Additional differential studies:
 - Vs. multiplicity
 - Vs. event shapes (S_T, S_O)
 - In-jet production

3. Direct photons \rightarrow under which conditions do we measure an excess of low p_T direct photons?

Thanks for your attention.
The ALICE detector

- ITS
- TPC
- EMCal
- PHOS