Research Article

Invalidity of SUV Measurements of Lesions in Close Proximity to Hot Sources due to “Shine-Through” Effect on FDG PET-CT Interpretation

Yiyan Liu

Nuclear Medicine Service, Department of Radiology, New Jersey Medical School, 150 Bergen Street, H-141, Newark, NJ 07103, USA

Correspondence should be addressed to Yiyan Liu, liuyl@umdnj.edu

Received 12 April 2012; Accepted 19 September 2012

Academic Editor: Sotirios Bisdas

Copyright © 2012 Yiyan Liu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

It is well known that many technical and physiologic factors can affect the reliability of the standardized uptake value (SUV) on FDG PET-CT. Another potential problem of which we may be aware but has not been previously discussed is significant SUV overestimation of lesions in the direct neighborhood of large hot sources, namely, areas with high FDG uptake or activity such as a tumor, myocardium, urinary bladder, kidney, or gastrointestinal tract. The magnitude of SUV overestimation of the lesions directly neighboring the large hot sources is varied among the different cases, and it is possibly secondary to “shine-through” effect of the hot sources, which would warrant further systematic investigation such as phantom simulation experiment. If the lesion is in the close territory of the hot source, measured SUV is often overestimated and invalid. Visual interpretation should be used for evaluation of FDG avidity of the lesion.

1. Introduction

Positron emission tomography (PET)/computed tomography (CT) with fluorine-18 fluorodeoxyglucose (FDG) has become an established imaging tool in oncology and is now of growing interest in inflammatory/infectious, cardiac, and neurological diseases. FDG PET data are normally assessed visually or by using simple indices such as the standardized uptake value (SUV) for quantification. An SUV is a semiquantitative number that normalizes lesion uptake to injected dose per unit of body mass. More generally, SUV may be normalized to other measure of body habitus such as lean body mass or body surface area. While many alternatives have been proposed, the SUV is generally evaluated at its maximum value as SUV\textsubscript{max}. In practice, lesion SUV is determined by placing the region of interest (ROI) over the lesion and using computer program to automatically calculate the value [1]. SUVs are widely used to measure metabolic activity in lesions. Today, SUV measurements are increasingly being recognized as providing an objective, more accurate, and less observer-dependent measure for prognosis and response monitoring purpose than visual inspection alone [2, 3].

However, many technical and physiologic factors can affect the reliability of SUV, which include the blood glucose level, the time interval between FDG injection and image acquisition, patient’s body composition and habitus, reconstruction technique, selection of region of interest, size of lesion, and the use of contrast agents during CT-attenuation correction. All these are well known to nuclear radiologists and have been discussed extensively in the literature [4–9]. Except for these, another potential problem of which we may be aware but has not been previously discussed is significant SUV overestimation of lesions in the direct neighborhood of large hot sources, namely, areas with high FDG uptake or activity such as a tumor, myocardium, urinary bladder, kidney, or gastrointestinal tract. If the lesion is close enough to a hot source, the SUV measurement may be invalid and misleading, and visual interpretation is much more reliable than the SUV number.
2. Materials and Methods

All image examples were from the PET-CT database in the Advanced Imaging Center, The University of Medicine and Dentistry of New Jersey. The review of PET-CT database was approved from the Institutional Review Board. Combined PET-CT was performed using a PET-CT scanner (Discovery LS, GE Healthcare) and standard techniques. The patients fasted for a minimum 6 hours before PET acquisition. After confirmation of a blood glucose level < 200 mg/dL, 555 MBq (15 mCi) of sterile FDG was administered intravenously followed by a radiotracer uptake phase of approximately 60 minutes. Positron emission data sets were acquired from the base of the skull to the mid thigh, for 5 minutes at each bed position. PET images were reconstructed using the OSEM (ordered subset expectation maximization) algorithm. Low-dose CT was acquired and used for attenuation correction and was fused onto the PET images for anatomic correlation. To measure SUV, a 3D ROI is positioned centrally within a lesion or target using the interactive workstation. SUVmax is recorded since it represents the highest voxel value and is independent of ROI definition [10].

PET-CT image examples were from 3 patients. Patient 1 was a 68-year-old man and had prostatectomy for prostate cancer 5 years ago. The recent serum prostate-specific antigen was negative. A routine chest radiography and subsequent chest CT revealed a 2.0 cm nodule in the lingula of the left lung. The PET-CT was for characterization of the pulmonary nodule.

Patient 2 was a 62-year-old woman and had history of cervical cancer. She underwent chemoradiation two years ago. She was asymptomatic, and the PET-CT was for surveillance.

Patient 3 was a 48-year-old man who was newly diagnosed with follicular carcinoma of the thyroid. The PET-CT was for initial staging.

3. Results

Figures 1–3 represent selected axial images of the PET-CT from 3 case examples, which all demonstrate overestimations of SUVmax of the lesions directly neighboring large hot sources. In Figure 1, SUVmax of the myocardium is 7.0, and measured SUVmax of a 2.0 cm lingular nodule is 5.6 even though there is no visible uptake. Repeating FDG PET-CT six months later in the same patient shows the unchanged, non-FDG avid lingular nodule, but measured SUVmax is 2.2 due to less intense cardiac uptake (SUVmax 4.0) compared to the first scan (the images not shown). In Figure 2, there is no abnormal uptake in the endocervix in the patient with history of cervical cancer and after chemoradiation, but measured cervical SUVmax is 12. The bladder urine SUVmax is 20. The subsequent Pap smear was negative for recurrence of cervical cancer. In Figure 3, there is a large, highly FDG avid right-sided thyroid lesion with SUVmax 25. A 1.5 cm nodule in the left lobe of the thyroid demonstrates much less uptake than the right, but measured SUVmax is 18. In all of the three examples above, the SUVs of the lesions (lung nodule, endocervix, and left thyroid nodule) were unexpectedly overestimated due to their locations in close proximity to the large sources of high radioactivity in the myocardium, urinary bladder and right thyroid mass.

Figure 4 shows dynamic changes of series SUVs when the distances between the ROIs and hot source increase. The two curves in the plot indicate that SUVs in the normal left lung and normal anterior pelvis decrease when the ROIs are away from hot sources myocardium and urinary bladder, respectively. In both examples, the SUVs decline to normal points when the ROIs are about 4–5 cm away from the hot sources. Therefore, SUVs in these two cases are overestimated and invalid if the ROIs are within 4–5 cm distance from hot sources.

4. Discussion

The uptake value is represented by pixel or voxel intensity value in the ROI of the image, which is then converted into
The upper curve represents the SUV max of the ROIs in the anterior pelvis at the different distance from hot myocardium. The SUV max of the ROIs in the left lung at the different distance from hot myocardium. The upper curve represents the SUV max of the ROIs in the anterior pelvis at the different distance from the urinary bladder.

Figure 4: SUV changes with the distances between the ROIs and hot sources in two cases. The lower curve represents the SUV max of the ROIs in the left lung at the different distance from hot myocardium. The upper curve represents the SUV max of the ROIs in the anterior pelvis at the different distance from the urinary bladder.

5. Conclusion

Quantitative SUV measurement may be invalid due to the proximity of intense background sources to a lesion or region of interest, which is not a commonly discussed artifact in clinical interpretation but undoubtedly a potentially important one. If the lesion is close to a large hot source such as tumor, myocardium, or urinary bladder, measured SUV is often overestimated. Visual interpretation should be used for evaluation of FDG avidity of the lesion. The magnitude of SUV overestimation of the lesions directly neighboring the large hot sources is varied among different cases, and it is possibly secondary to “shine-through” effect of the hot sources, which would warrant further systematic investigation such as phantom simulation experiment.

References

[1] R. Boellaard, “Standards for PET image acquisition and quantitative data analysis,” Journal of Nuclear Medicine, vol. 50, pp. 115–208, 2009.
[2] G. Tomas, F. Turkheimer, and E. Aboagye, “Importance of quantification for the analysis of PET data in oncology: review of current methods and trends for the future,” Molecular Imaging and Biology, vol. 14, pp. 131–146, 2012.
[3] P. D. Acton, H. Zhuang, and A. Alavi, “Quantification in PET,” Radiologic Clinics of North America, vol. 42, no. 6, pp. 1053–1062, 2004.
[4] Y. Liu, N. V. Ghesani, and L. S. Zuckier, "Physiology and pathophysiology of incidental findings detected on FDG-PET scintigraphy," *Seminars in Nuclear Medicine*, vol. 40, no. 4, pp. 294–315, 2010.

[5] J. W. Keyes, “SUV: standard uptake or silly useless value?” *Journal of Nuclear Medicine*, vol. 36, no. 10, pp. 1836–1839, 1995.

[6] M. A. Lodge, M. A. Chaudhry, D. N. Udall, and R. L. Wahl, "Characterization of a perirectal artifact in 18F-FDG PET/CT," *Journal of Nuclear Medicine*, vol. 51, no. 10, pp. 1501–1506, 2010.

[7] S. C. Huang, “Anatomy of SUV,” *Nuclear Medicine and Biology*, vol. 27, no. 7, pp. 643–646, 2000.

[8] R. Boellaard, N. C. Krak, O. S. Hoekstra, and A. A. Lammerisma, "Effects of noise, image resolution, and ROI definition on the accuracy of standard uptake values: a simulation study," *Journal of Nuclear Medicine*, vol. 45, no. 9, pp. 1519–1527, 2004.

[9] J. A. Thie, “Understanding the standardized uptake value, its methods, and implications for usage,” *Journal of Nuclear Medicine*, vol. 45, no. 9, pp. 1431–1434, 2004.

[10] M. C. Adams, T. G. Turkington, J. M. Wilson, and T. Z. Wong, "A systematic review of the factors affecting accuracy of SUV measurement," *American Journal of Roentgenology*, vol. 195, no. 2, pp. 310–320, 2010.

[11] C. T. Wu, E. T. Morita, P. A. Treseler et al., “Failure to harvest sentinel lymph nodes identified by preoperative lymphoscintigraphy in breast cancer patients,” *Breast Journal*, vol. 9, no. 2, pp. 86–90, 2003.

[12] K. Motomura, A. Noguchi, T. Hashizume et al., “Usefulness of a solid-state gamma camera for sentinel node identification in patients with breast cancer,” *Journal of Surgical Oncology*, vol. 89, no. 1, pp. 12–17, 2005.

[13] C. E. Cox, F. Haddad, S. Bass et al., "Lymphatic mapping in the treatment of breast cancer," *Oncology*, vol. 12, no. 9, pp. 1283–1292, 1998.

[14] E. C. Hsueh and A. E. Giuliano, “Sentinel lymph node technique for staging of breast cancer,” *Oncologist*, vol. 3, no. 3, pp. 165–170, 1998.

[15] H. Tonouchi, Y. Mohri, K. Tanaka, M. Kobayashi, Y. Ohmori, and M. Kusunoki, "Laparoscopic lymphatic mapping and sentinel node biopsies for early-stage gastric cancer: the cause of false negativity," *World Journal of Surgery*, vol. 29, no. 4, pp. 418–421, 2005.

[16] K. Ueda, K. Suga, Y. Kaneda et al., "Radioisotope lymph node mapping in nonsmall cell lung cancer: can it be applicable for sentinel node biopsy?" *Annals of Thoracic Surgery*, vol. 77, no. 2, pp. 426–430, 2004.

[17] Y. Liu, K. J. Chun, and L. M. Freeman, “‘Shine through’ on dual tracer parathyroid scintigraphy: a potential pitfall in interpretation,” *Clinical Nuclear Medicine*, vol. 30, no. 3, pp. 145–149, 2005.