Factors Associated With Child Stunting, Wasting, and Underweight in 35 Low- and Middle-Income Countries

Zhihui Li, ScD; Rockli Kim, ScD; Sebastian Vollmer, PhD; S. V. Subramanian, PhD

Abstract

IMPORTANCE Evidence on the relative importance of various factors associated with child anthropometric failures (ie, stunting, underweight, and wasting) and their heterogeneity across countries can inform global and national health agendas.

OBJECTIVE To assess the relative significance of factors associated with child anthropometric failures in 35 low- and middle-income countries (LMICs).

DESIGN, SETTING, AND PARTICIPANTS This cross-sectional study of 299,353 children who were born singleton and aged 12 to 59 months with nonpregnant mothers and valid anthropometric measures assessed the strengths of associations of 26 factors with child stunting, underweight, and wasting, using Demographic and Health Surveys (2007-2018) from 35 LMICs. Data analysis was conducted from July 2019 to February 2020.

EXPOSURES A total of 9 direct factors (ie, dietary diversity score; breastfeeding initiation; vitamin A supplements; use of iodized salt; infectious disease in past 2 weeks; oral rehydration therapy for children with diarrhea; care seeking for suspected pneumonia; full vaccination; and indoor pollution) and 17 indirect factors (household wealth; maternal and paternal education; maternal and paternal height and body mass index; maternal autonomy for health care, movement, and money; water source; sanitation facility; stool disposal; antenatal care; skilled birth attendant at delivery; family planning needs; and maternal marriage age) were assessed.

MAIN OUTCOMES AND MEASURES Three anthropometric failure outcomes were constructed based on the 2006 World Health Organization child growth standards: stunting (height-for-age z score less than −2 standard deviations [SDs]), underweight (weight-for-age z score less than −2 SDs), and wasting (weight-for-height z score less than −2 SDs).

RESULTS Among the 299,353 children aged 12 to 59 months included in the analysis, 38.8% (95% CI, 38.6%-38.9%) had stunting, 27.5% (95% CI, 27.3%-27.6%) had underweight, and 12.9% (95% CI, 12.8%-13.0%) had wasting. In the pooled sample, short maternal height was the strongest factor associated with child stunting (odds ratio [OR], 4.7; 95% CI, 4.5-5.0; P < .001), followed by lack of maternal education (OR, 1.9; 95% CI, 1.8-2.0; P < .001), poorest household wealth (OR, 1.7; 95% CI, 1.6-1.7; P < .001), and low maternal body mass index (OR, 1.6; 95% CI, 1.6-1.7; P < .001). Short paternal height was also significantly associated with higher odds of stunting (OR, 1.9; 95% CI, 1.8-2.0; P < .001), poorest household wealth (OR, 1.7; 95% CI, 1.6-1.7; P < .001), and low maternal body mass index (OR, 1.6; 95% CI, 1.6-1.7; P < .001). Short paternal height was also significantly associated with higher odds of stunting (OR, 1.9; 95% CI, 1.7-2.2; P < .001). Consistent results were found for underweight (eg, short maternal height: OR, 3.5; 95% CI, 3.3-3.7; P < .001; lack of maternal education: OR, 1.8; 95% CI, 1.7-2.0; P < .001) and wasting (eg, low maternal body mass index: OR, 2.3; 95% CI, 2.1-2.4; P < .001; poorest household wealth: OR, 1.2; 95% CI, 1.1-1.3; P < .001). Parental nutritional status and household socioeconomic conditions ranked the strongest (1st to 4th) for most countries, with a few exceptions (eg, lack of maternal education ranked 18th-20th in 8 countries for child wasting). Other factors were not associated with

Key Points

Question What are the most important factors associated with child undernutrition, and how do they vary across countries?

Findings In this cross-sectional study of 299,353 children aged 12 to 59 months in 35 low- and middle-income countries, household socioeconomic status and parental nutritional status were the leading factors associated with child undernutrition in pooled analyses and in most country-specific analyses. Environmental conditions, health behaviors, disease prevalence, and maternal reproductive care were less frequently associated with child undernutrition, with substantial heterogeneity among countries.

Meaning The findings of this study suggest that interventions to improve socioeconomic status and parental nutritional status (eg, education for women and poverty reduction) should accompany food and nutrition programs, but the potential benefits of investing in specific conditions are highly dependent on the context.

Supplemental content

Author affiliations and article information are listed at the end of this article.
anthropometric failures in pooled analysis and had large country-level heterogeneity; for example, unsafe water was not associated with child underweight in the pooled analysis (OR, 0.97; 95% CI, 0.95-1.00; \(P < .001 \)), and it ranked from 4th to 20th across countries.

CONCLUSIONS AND RELEVANCE
In this study, socioeconomic conditions and parental nutritional status were the strongest factors associated with child anthropometric failures. Poverty reduction, women's education, and nutrition programs for households could be important strategies for reducing child undernutrition; however, country-specific contexts should be considered in national policy discussions.

Introduction
The global burden of child undernutrition remains high by all measures of child anthropometric failures (including stunting, underweight, and wasting).\(^1\)\(^,\)\(^2\) In 2018, 21.9% of children (ie, 149 million children) were estimated to have stunting.\(^1\) Immediate actions are needed to meet Sustainable Development Goal 2, ie, to end all forms of malnutrition by 2030,\(^3\) which in turn can contribute to other targets associated with child survival, educational achievements, and overall well-being. Several conceptual models have been developed to understand the causes of child undernutrition, most of which adopt multifactorial framework.\(^4\)\(^,\)\(^5\) The United Nations Children's Fund (UNICEF) framework outlines socioeconomic conditions and national and global contexts as the fundamental factors affecting food security, care for children, and healthy household environment, all of which in turn further shape dietary intake, disease occurrence and, consequently, children's nutritional status and growth.\(^5\) However, the UNICEF framework does not explicitly account for the role of parental nutritional status (eg, height and body mass index [BMI], calculated as weight in kilograms divided by height in meters squared), which may have intergenerational associations via biologic (eg, genetic disposition) and psychosocial (eg, poor living conditions) channels.\(^6\)

Randomized clinical trials on child undernutrition tend to focus on a single factor or a small subset of them, making it difficult to infer their importance relative to other known factors.\(^7\)\(^,\)\(^8\) Some observational studies have attempted to simultaneously assess the association of multiple factors with child anthropometric failures in India,\(^9\)\(^,\)\(^10\) Rwanda,\(^11\) Bhutan,\(^12\) Bangladesh,\(^13\) and Nigeria,\(^14\) but the results are not directly comparable across countries given the different sets of factors considered in each study. There are only 2 multicountry studies, both focused on South Asia,\(^15\)\(^,\)\(^16\) which means the cross-country heterogeneity of the relative significance of factors associated with child undernutrition has been underexplored in other regions. While a 2017 multicountry meta-analysis\(^17\) identified fetal growth restriction and unimproved sanitation as the leading risk factors for child stunting, this study did not fully account for socioeconomic factors, such as household wealth and parental education.

Evidence regarding the relative strengths of factors associated with child anthropometric failures and their variation across countries is critical for understanding the underlying mechanisms of child undernutrition and potential context-specific interactions. Using the most recent data from the Demographic and Health Survey (DHS), we selected a comprehensive set of factors associated with child anthropometric failures and conducted a systematic analysis to assess their relative significance in 35 low- and middle-income countries (LMICs). In addition to pooled analyses, we present country-specific findings to inform the core intervention components needed to reduce child undernutrition in each country.
Methods

Data Source

We drew the most recent data for LMICs from DHSs conducted between 2007 and 2018. Demographic and Household Surveys are nationally representative household surveys that collect detailed nutrition and health information on children, their parents, and households using a multistage, stratified sampling design. The first stage involves the division of each country in geographic areas. Within these subnational regions, populations are stratified by urban or rural area. These primary sampling units or clusters are selected with probability proportional to the contribution of that cluster’s population to the total population. In the second stage of sampling, all households within the cluster are listed, and an average of 25 houses are randomly selected for an interview by equal-probability systematic sampling. We excluded earlier survey rounds to avoid inconsistencies in the measurements, collection, and reporting of data required for this study. The study was reviewed by the Harvard T.H. Chan School of Public Health institutional review board and was considered exempt from full review because it was based on an anonymous, public-use data set with no identifiable information on study participants. Our study followed the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) reporting guideline.

Study Population and Sampling Size

A total of 35 LMICs had collected data on child anthropometric measures and the factors of interest. The eligibility criteria for our analytic sample were as follows: children (1) who born singleton, (2) who were aged 12 to 59 months and alive at the time of the survey, (3) with a mother who was not pregnant at the time of survey, and (4) with valid measures on child stunting, underweight, and wasting. We identified 299,353 children from 35 LMICs in the final analytic sample for our primary analysis (eFigure 1 in the Supplement).

Outcomes

The following 3 anthropometric failure outcomes were constructed based on the 2006 World Health Organization child growth standards: stunting, underweight, and wasting. Height-for-age z score, weight-for-age z score, and weight-for-height z score were calculated by comparing the child’s measurements with the median value in the reference population of the National Center for Health Statistics International Growth Reference. Stunting was defined as a height-for-age z score less than −2 standard deviations (SDs) of the median, underweight as weight-for-age z score of less than −2 SDs, and wasting as weight-for-height z score less than −2 SDs.

Exposures

Based on the UNICEF framework, its adaption in the Lancet Maternal and Child Nutrition Series, and previous practices, we selected 20 factors for our primary analysis and 6 additional factors on paternal characteristics and maternal autonomy for supplementary analyses. We classified these 26 factors associated with child anthropometric failures either directly or via intermediary causes. A total of 9 direct factors were identified, including child nutrition (dietary diversity score, breastfeeding initiation, vitamin A supplements, and use of iodized salt), disease occurrence (infectious disease in past 2 weeks), health behaviors (oral rehydration therapy for diarrhea, care seeking for suspected pneumonia, full vaccination), and living conditions (indoor pollution). The association between each of these direct factors and child anthropometric failures has been documented previously. The remaining 17 indirect factors included household socioeconomic status (household wealth, maternal and paternal education), parents’ nutritional status (maternal and paternal height and BMI), maternal autonomy (for health care, movement, and money), environmental conditions (water source, sanitation facility, and stool disposal), maternal reproductive care (antenatal care, skilled birth attendant at delivery, family planning needs), and maternal marriage age. Prior studies have indicated that household wealth, maternal characteristics,
and household environment are strongly associated with child anthropometric failures. Although only a few studies have investigated the role of paternal nutritional status, we included it in the supplementary analysis owing to potential biological and psychosocial channels between fathers and their offspring. We also included maternal reproductive care variables that represent the care mothers received during pregnancy, the risk the child faced during birth, and the families’ desired birth spacing and their capacity to reach it. A detailed list and definitions of these factors are presented in Table 1.

Statistical Analysis

We assessed the association of each factor with child anthropometric outcomes by first pooling data from all countries and then separately for each country. We included sampling weight, clustering, and stratification variables provided by DHS to ensure that the estimates were representative at the national level and in pooled analyses. We clustered the sample at the level of the primary sampling unit, which allows for interdependence of error terms within clusters and households. In pooled analyses, we reweighted observations by a country’s population size and included country fixed effects to account for the unobservable country-level factors. For both pooled and country-specific analyses, we developed 2 sets of logistic regression models for each outcome. First, we ran separate models (single-adjusted models) for each factor in which we adjusted for child’s age and sex, birth order, and maternal age at birth. Second, we performed mutually adjusted models (fully adjusted models) in which all factors, as well as child’s age and sex, birth order, maternal age at birth, and place of residence (urban vs rural), were considered simultaneously. Based on these models, we compared and ordered the factors according to their coefficient sizes (odds ratios [ORs]). For all factors, the best-off group was set as the reference category to ensure consistency in interpretation of ORs. For factors with multiple categories (ie, household wealth quintile), only the OR corresponding the worst-off group (ie, the poorest quintile) is presented in our results section.

We performed 6 sets of supplementary analyses. First, we included 3 additional paternal characteristics for a subset of 188 290 children from 12 countries that had collected data on fathers. Second, we stratified children by age (<2 years and 2 years) given their different dietary demands. Third, we performed stratified analyses by urban and rural areas. For the second and third analyses, we followed previous practice and used Bonferroni correction to deal with the type I error from multiple testing. Fourth, we reestimated the fully adjusted models after removing source of drinking water, sanitation facility, and household air quality because these indicators had been considered in the construction of household wealth index in DHS. Fifth, we reran the models, adding covariates on children’s birth weight and birth interval. As more than half of the children (170 451 of 299 353 [56.9%]) had missing or invalid birth weight or birth interval, only on a subset of 128 902 children was used for this supplementary analysis. Sixth, we added 3 indicators of maternal autonomy for a subset of 142 638 children (47.6%) with available data.

We used Stata version 14.2 (StataCorp) for all analyses. We adopted the MI command for multiple imputations for observations with missing value on 1 or more factors of interest. All statistical tests were 2-tailed, and \(P < .05 \) was considered statistically significant.

Results

Of 319 566 children who met the inclusion criteria, 20 213 (9.3%) were excluded because of missing (absent, refused, and missing for other reasons) or implausible anthropometric measures. A total of 299 353 children aged 12 to 59 months from 35 LMICs were included in the primary analysis (eFigure 1 in the Supplement). A total of 154 412 (51.6%) were boys, and 218 006 (72.8%) lived in rural areas. Overall, 38.8% (95% CI, 38.6%-38.9%) of children had stunting, 27.5% (95% CI, 27.3%-27.6%) had underweight, and 12.9% (95% CI, 12.8%-13.0%) had wasting (Table 2). The prevalence of anthropometric failures varied among countries, from 18.8% (95% CI, 17.9%-19.8%) in Peru to 61.1% (95% CI, 59.6%-62.6%) in Burundi for stunting, 2.9% (95% CI, 2.3%-3.5%) in Kyrgyzstan to 37.5%...
Factors Associated With Child Stunting, Wasting, and Underweight

Factor	Reference category	Self-reported	
Dietary diversity score⁹	Rich dietary diversity	Yes	
Breastfeeding initiation⁹	Breastfeeding initiation	<1 h of birth	Yes
Full vaccination²⁹	Fully vaccinated	Mother’s self-report and vaccination cards	
Vitamin A supplement³⁰	Received vitamin A supplementation	No	
Iodized salt³⁰	Used iodized salt	No	
Infectious disease in past 2 weeks⁹	No infectious disease	Yes	
Oral rehydration therapy for children diarrhea³⁰	No diarrhea	Yes	
Care seeking for suspected pneumonia³⁰	No suspected pneumonia	Yes	
Indoor pollution⁹	Low indoor pollution	Yes	
Household wealth³¹	Richest household wealth	No	
Maternal education³²	≥College	Yes	
Paternal education³²	≥College	Yes	
Maternal height³³	≥160 cm	No	
Maternal BMI³⁴	≥25	No	
Paternal height⁹	≥170 cm	No	
Paternal BMI³⁴	≥25	No	
Drinking water source³⁵	Safe water source	Yes	
Sanitary facility³⁵	Improved sanitary facility	Yes	
Stool disposal³⁶	Safe stool disposal	Yes	
Antenatal care³⁶	≥8 antenatal care visits	Yes	
Skilled birth attendant at delivery³⁶	Delivered the child with skilled birth attendant	Yes	
Family planning need³⁶	Family planning need satisfied	Yes	
Maternal marriage age³⁶	Married at <18 y	Yes	
Woman has health care autonomy³⁶	The decision was made by the husband or partner or someone else	Yes	
Woman has movement autonomy³⁶	The decision was made by the husband or partner or someone else	Yes	
Woman has money autonomy³⁶	The decision was made by the husband or partner or someone else	Yes	

Abbreviation: BMI, body mass index (calculated as weight in kilograms divided by height in meters squared).

Table 1. Definition of 26 Direct and Indirect Factors Associated With Child Anthropometric Failures Identified From a Comprehensive Review of Conceptual Framework and Prior Studies
Table 2. Distribution of Child Anthropometric Failures by Selected Factors Among Children Aged 12 to 59 Months, Using the Most Recent Demographic Health Surveys Pooled Across 35 or 12 LMICs

Factor	Children observed, No. (%)	Prevalence, % (95% CI)			
	Total sample for primary analysis across 35 LMICs	299 353 (100)	38.8 (38.6 to 38.9)	27.5 (27.3 to 27.6)	12.9 (12.8 to 13.0)
Child's age, mo					
12-23	76 862 (25.7)	38.0 (37.7 to 38.4)	25.7 (25.4 to 26.0)	15.4 (15.2 to 15.7)	
24-35	72 643 (24.3)	41.1 (40.7 to 41.4)	27.7 (27.4 to 28.0)	12.6 (12.4 to 12.9)	
36-47	76 226 (25.5)	40.0 (39.6 to 40.3)	28.0 (27.7 to 28.3)	11.6 (11.4 to 11.9)	
48-59	73 622 (24.6)	36.0 (35.6 to 36.3)	28.5 (28.2 to 28.8)	11.8 (11.6 to 12.0)	
Child's sex					
Male	154 412 (51.6)	37.6 (37.3 to 37.8)	26.8 (26.5 to 27.0)	12.0 (11.8 to 12.1)	
Female	144 941 (48.4)	39.9 (39.6 to 40.1)	28.1 (27.9 to 28.4)	13.8 (13.6 to 13.9)	
Type of residence					
Urban	81 347 (27.2)	29.5 (29.1 to 29.8)	20.9 (20.6 to 21.1)	11.7 (11.5 to 11.9)	
Rural	218 006 (72.8)	42.6 (42.4 to 42.8)	30.2 (30.0 to 30.4)	13.4 (13.2 to 13.5)	
Dietary diversity score, quintile					
1, worst	44 097 (14.7)	44.4 (43.9 to 44.9)	31.6 (31.2 to 32.0)	13.5 (13.1 to 13.8)	
2	28 368 (9.5)	42.1 (41.6 to 42.7)	31.3 (30.7 to 31.8)	15.7 (15.3 to 16.1)	
3	31 083 (10.4)	42.0 (41.4 to 42.5)	27.5 (27.0 to 28.0)	12.9 (12.5 to 13.3)	
4	23 264 (7.8)	38.7 (38.0 to 39.3)	23.4 (22.9 to 24.0)	11.5 (11.1 to 11.9)	
5, best	28 068 (9.4)	32.5 (32.0 to 33.1)	18.8 (18.4 to 19.3)	10.1 (9.8 to 10.5)	
Missing	144 473 (48.3)	36.9 (36.7 to 37.2)	27.8 (27.6 to 28.0)	12.9 (12.8 to 13.1)	
Breastfeeding initiation					
≥1 h of birth	135 569 (45.3)	37.8 (37.6 to 37.8)	26.4 (26.2 to 26.6)	13.4 (13.2 to 13.5)	
<1 h of birth	145 896 (48.7)	40.3 (40.0 to 40.6)	30.0 (29.8 to 30.3)	14.0 (13.9 to 14.2)	
Missing	17 888 (6.0)	34.2 (33.5 to 34.9)	22.0 (21.4 to 22.6)	10.1 (9.6 to 10.5)	
Full vaccination					
No	108 593 (36.3)	37.0 (36.8 to 37.3)	26.4 (26.2 to 26.6)	13.4 (13.2 to 13.5)	
Yes	163 836 (54.7)	42.5 (42.2 to 42.8)	31.9 (31.6 to 32.2)	14.5 (14.3 to 14.7)	
Missing	26 924 (9.0)	34.6 (34.0 to 35.2)	16.8 (16.3 to 17.2)	4.2 (4.0 to 4.4)	
Vitamin A supplement					
No	82 369 (27.5)	38.2 (38.0 to 38.4)	27.7 (27.5 to 27.9)	13.9 (13.7 to 14.0)	
Yes	189 228 (63.2)	42.5 (42.2 to 42.8)	31.9 (31.6 to 32.2)	14.5 (14.3 to 14.7)	
Missing	27 756 (9.3)	34.7 (34.2 to 35.3)	17.1 (16.7 to 17.6)	4.6 (4.4 to 4.8)	
Iodized salt					
Not used	30 308 (10.1)	38.5 (38.4 to 38.7)	27.9 (27.7 to 28.0)	13.2 (13.1 to 13.4)	
Used	261 381 (87.3)	40.3 (39.8 to 40.9)	26.2 (25.7 to 26.7)	11.5 (11.1 to 11.9)	
Missing	7664 (2.6)	39.7 (38.6 to 40.8)	19.1 (18.2 to 19.9)	7.1 (6.5 to 7.7)	
Infectious disease in past 2 wk					
No	210 648 (70.4)	38.7 (38.4 to 39.0)	25.0 (24.7 to 25.2)	11.0 (10.8 to 11.2)	
Yes	88 091 (29.4)	38.8 (38.6 to 39.0)	28.5 (28.3 to 28.7)	13.7 (13.6 to 13.9)	
Missing	614 (0.2)	41.0 (37.1 to 44.9)	25.6 (22.1 to 29.1)	8.9 (6.7 to 11.2)	
ORT for child's diarrhea					
No diarrhea	265 822 (88.8)	38.4 (38.2 to 38.5)	27.3 (27.2 to 27.5)	12.9 (12.8 to 13.0)	
Had diarrhea with ORT	18 486 (6.2)	41.1 (40.3 to 41.8)	27.7 (27.0 to 28.3)	13.4 (12.9 to 13.9)	
Had diarrhea without ORT	14 457 (4.8)	43.0 (42.2 to 43.8)	29.5 (28.8 to 30.3)	12.3 (11.8 to 12.9)	
Missing	588 (0.2)	40.2 (36.2 to 44.2)	23.2 (19.7 to 26.6)	7.8 (5.6 to 10.0)	
Care seeking for suspected pneumonia					
No suspected pneumonia	248 244 (82.9)	39.1 (39.0 to 39.3)	28.4 (28.3 to 28.6)	13.6 (13.4 to 13.7)	
Had suspected pneumonia and sought care	24 419 (8.2)	35.2 (34.6 to 35.8)	24.1 (23.6 to 24.7)	11.7 (11.3 to 12.1)	
Had suspected pneumonia and did not seek care	13 536 (4.5)	41.2 (40.4 to 42.1)	27.4 (26.6 to 28.1)	10.8 (10.3 to 11.3)	

(continued)
Table 2. Distribution of Child Anthropometric Failures by Selected Factors Among Children Aged 12 to 59 Months, Using the Most Recent Demographic Health Surveys Pooled Across 35 or 12 LMICs (continued)

Factor	Children observed, No. (%)	Prevalence, % (95% CI)
Maternal height, cm		
<145	21 278 (7.1)	62.2 (61.6 to 62.9)
145-149.9	53 523 (17.9)	49.8 (49.3 to 50.2)
150-154.9	80 791 (27.0)	40.3 (40.0 to 40.6)
155-159.9	68 457 (22.9)	33.3 (32.9 to 33.6)
≥160	58 283 (19.5)	26.9 (26.6 to 27.3)
Missing	17 021 (5.7)	31.1 (30.4 to 31.8)
Maternal BMI		
<18.5	52 260 (17.5)	49.7 (49.3 to 50.1)
18.5-24.9	177 165 (59.2)	40.0 (39.8 to 40.2)
≥25.0	52 607 (17.6)	26.4 (26.1 to 26.8)
Missing	17 321 (5.8)	31.3 (30.6 to 32.0)
Indoor pollution		
Low	67 304 (22.5)	42.7 (42.5 to 42.9)
High	231 916 (77.5)	27.4 (27.0 to 27.7)
Missing	133 (0.0)	25.7 (18.1 to 33.2)
Household wealth quintile		
1, poorest	75 911 (25.4)	51.2 (50.8 to 51.5)
2	67 205 (22.5)	44.2 (43.8 to 44.5)
3	59 487 (19.9)	38.2 (37.8 to 38.6)
4	52 816 (17.6)	31.2 (30.8 to 31.6)
5, richest	43 934 (14.7)	22.3 (21.9 to 22.7)
Maternal education		
No schooling	100 154 (33.5)	47.9 (47.6 to 48.2)
Primary	71 447 (23.9)	41.1 (40.8 to 41.5)
Secondary	105 930 (35.4)	32.5 (32.2 to 32.8)
≥College	21 805 (7.3)	19.7 (19.2 to 20.2)
Missing	17 (0.0)	29.4 (5.3 to 53.6)
Drinking water source		
Unsafe	63 639 (21.3)	42.0 (41.6 to 42.4)
Safe	235 669 (78.7)	38.0 (37.8 to 38.2)
Missing	45 (0.0)	45.1 (30.0 to 60.2)
Sanitary facility		
Not improved	162 646 (54.3)	45.5 (45.2 to 45.7)
Improved	136 624 (45.6)	30.7 (30.5 to 31.0)
Missing	83 (0.0)	34.9 (24.5 to 45.4)
Stool disposal		
Unsafe	151 862 (50.7)	44.8 (44.5 to 45.0)
Safe	114 765 (38.3)	32.2 (31.9 to 32.5)
Missing	32 726 (10.9)	34.3 (33.8 to 34.9)
Antenatal care visits		
<4	98 791 (33.0)	44.5 (44.2 to 44.8)
4-7	70 531 (23.6)	32.6 (32.2 to 32.9)
≥8	26 923 (9.0)	27.5 (26.9 to 28.0)
Missing	103 108 (34.4)	41.3 (41.0 to 41.6)
Skilled birth attendant at delivery		48.4 (46.5 to 51.0)
No	105 140 (35.1)	46.3 (46.0 to 46.6)
Yes	193 196 (64.5)	35.0 (34.8 to 35.2)
(continued)		
(95% CI, 35.8%-39.2%) in Niger for underweight, and 0.6% (95% CI, 0.4%-0.8%) in Peru to 19.0% (95% CI, 18.8%-19.2%) in India for wasting (eTable 1 in the Supplement). Overall, the burden of child anthropometric failures was higher in poorer households (eg, stunting among children with lowest vs highest wealth quintile, 51.2% [95% CI, 50.8%-51.5%] vs 22.3% [95% CI, 21.9%-22.7%]), and those with mothers who were less educated (eg, underweight among children whose mothers had no schooling vs ≥ college education, 35.9% [95% CI, 35.6%-36.2%] vs 14.4% [95% CI, 13.9%-14.8%]), had shorter height (eg, wasting among children whose mothers were <145 cm vs ≥160 cm, 18.3% [95% CI, 17.8%-18.8%] vs 8.8% [95% CI, 8.5%-9.0%]), and had lower BMI (eg, stunting among children with mothers with BMI <18.5 vs ≥25.0, 49.7% [95% CI, 49.3%-50.1%] vs 26.4% [95% CI, 26.1%-26.8%]) (Table 2).

Pooled Analyses

Stunting

The full regression results from pooled analyses are presented in eTable 2 in the Supplement. In single-adjusted models, all factors except for lack of vitamin A supplement, history of infectious disease, and no iodized salt use were significantly associated with higher odds of stunting (eFigure 2A in the Supplement). Short maternal height showed the strongest association with child stunting (OR, 4.4; 95% CI, 4.2-4.6; P < .001), followed by lack of maternal education (OR, 3.5; 95% CI, 3.3-3.7;
P < .001) and poorest household wealth (OR, 3.4; 95% CI, 3.2-3.5; P < .001). The magnitude of associations substantially attenuated for most factors in the fully adjusted model; however, 15 remained statistically significant (Figure 1A). Conditional on all other factors, short maternal height had the strongest association with child stunting, with an OR of 4.7 (95% CI, 4.5-5.0; P < .001), followed by lack of maternal education (OR, 1.9; 95% CI, 1.8-2.0; P < .001), poorest household wealth (OR, 1.7; 95% CI, 1.6-1.8; P < .001), and low maternal BMI (OR, 1.6; 95% CI, 1.6-1.7; P < .001).

Figure 1. Relative Ranking of 20 Factors Associated With Child Anthropometric Failures From Fully Adjusted Models

Stunting	Underweight	Wasting
Short maternal stature	Short maternal stature	Low maternal BMI
Lack of maternal education	Lack of maternal education	Poorest HH wealth
Poorest HH wealth	Poorest HH wealth	Low maternal BMI
Low maternal BMI	Low maternal BMI	Poorest dietary diversity
Poorest dietary diversity	Poorest dietary diversity	No SBA
No SBA	No SBA	<4 ANC visits
<4 ANC visits	<4 ANC visits	Unimproved sanitation
Unimproved sanitation	Unimproved sanitation	Unsafe stool disposal
Had diarrhea, but not used ORT	Had diarrhea, but not used ORT	High indoor pollution
Unsafe stool disposal	Unsafe stool disposal	Not fully vaccinated
High indoor pollution	High indoor pollution	Infectious disease
Not fully vaccinated	Not fully vaccinated	No vitamin A supplement
Infectious disease	Infectious disease	No SBA
Child marriage	Child marriage	<4 ANC visits
Delayed breastfeeding	Delayed breastfeeding	Unimproved sanitation
FP need unsatisfied	FP need unsatisfied	Unsafe water
No vitamin A supplement	No vitamin A supplement	No SBA
No SBA	No SBA	High indoor pollution
Not fully vaccinated	Not fully vaccinated	Child marriage
High indoor pollution	High indoor pollution	FP need unsatisfied
Child marriage	Child marriage	No SBA
Infectious disease	Infectious disease	<4 ANC visits
<4 ANC visits	<4 ANC visits	Unimproved sanitation
FP need unsatisfied	FP need unsatisfied	Unsafe stool disposal
No vitamin A supplement	No vitamin A supplement	High indoor pollution
No SBA	No SBA	Child marriage
Not fully vaccinated	Not fully vaccinated	FP need unsatisfied
High indoor pollution	High indoor pollution	<4 ANC visits
Child marriage	Child marriage	Unimproved sanitation
Infectious disease	Infectious disease	Unsafe stool disposal
<4 ANC visits	<4 ANC visits	High indoor pollution
FP need unsatisfied	FP need unsatisfied	Child marriage
No iodized salt	No iodized salt	FP need unsatisfied
Unsafe water	Unsafe water	No iodized salt
No care seeking for suspected pneumonia	No care seeking for suspected pneumonia	No care seeking for suspected pneumonia

Short maternal stature indicates maternal height of less than 145 cm; low maternal body mass index (BMI, calculated as weight in kilograms divided by height in meters squared), BMI less than 18.5; child marriage, mother younger than 18 years at marriage; delayed breastfeeding, child was not breastfed within 1 hour of birth; infectious disease, child had infectious disease within 2 weeks before survey. ANC indicates antenatal care; FP, family planning; HH, household; OR, odds ratio; ORT, oral rehydration therapy; SBA, skilled birth attendant.
Underweight
In single-adjusted models, all factors were significantly associated with higher odds of underweight, except for no care seeking for suspected pneumonia, no vitamin A supplement, infectious disease during past 2 weeks, and unsafe water (eFigure 2B in the Supplement). Short maternal height had the strongest association with child underweight (OR, 5.3; 95% CI, 5.0-5.6; \(P < .001 \)), followed by low maternal BMI (OR, 4.8; 95% CI, 4.6-5.0; \(P < .001 \)) and poorest household wealth (OR, 3.4; 95% CI, 3.2-3.6; \(P < .001 \)). In the fully adjusted model, we found 11 factors to be significantly associated with higher odds of underweight (Figure 1B), including short maternal height (OR, 3.5; 95% CI, 3.3-3.7; \(P < .001 \)), low maternal BMI (OR, 2.7; 95% CI, 2.6-2.9; \(P < .001 \)), lack of maternal education (OR, 1.8; 95% CI, 1.7-2.0; \(P < .001 \)), and poorest household wealth (OR, 1.6; 95% CI, 1.5-1.8; \(P < .001 \)).

Wasting
In single-adjusted models, there were 10 factors significantly associated with higher odds of wasting, with short maternal height (OR, 4.4; 95% CI, 4.2-4.6; \(P < .001 \)), lack of maternal education (OR, 3.5; 95% CI, 3.3-3.7; \(P < .001 \)), and poorest household wealth (OR, 3.4 95% CI, 3.2-3.5; \(P < .001 \)) having the largest magnitudes (eFigure 2C in the Supplement). The fully adjusted model showed consistent results in terms of the factors with the largest magnitudes, such as low maternal BMI (OR, 2.3; 95% CI, 2.1-2.4; \(P < .001 \)), no maternal education (OR, 1.2; 95% CI, 1.1-1.4; \(P < .001 \)), poor dietary diversity (OR, 1.2; 95% CI, 1.1-1.3), and poorest household wealth (OR, 1.2; 95% CI, 1.1-1.3; \(P < .001 \)) (Figure 1C).

Country-Specific Analyses
Stunting
Short maternal height had the strongest association with stunting for all 35 countries, with ORs being ranked first in 22 countries and between second and fifth in 11 countries (Figure 2). Lack of maternal education, low maternal BMI, and poorest household wealth were also strongly associated with stunting for most countries. However, there were several exceptions. For example, lack of maternal education ranked 19th in Gambia. The ranking of other factors, such as unsafe sanitation, no skilled birth attendant at birth, and poor household air quality, varied largely across countries. The magnitudes of ORs for all factors were also heterogeneous (Figure 3). For example, the magnitudes of ORs for short maternal height ranged from 0.8 (95% CI, 0.3-2.4) in Guinea to 15.5 (95% CI, 3.5-97.1) in Togo; the magnitudes of ORs for poor household air quality ranged from 0.4 (95% CI, 0.0-3.5) in Sierra Leone to 3.8 (95% CI, 1.3-11.5) in Democratic Republic of the Congo.

Underweight
Short maternal height was most strongly associated with higher odds of underweight (ranked 1st-4th) in 29 countries; however, it ranked 20th in Namibia. Low maternal BMI was also strongly associated with underweight across all 35 countries, ranking between 1st and 6th. The relative rankings for lack of maternal education and poorest household wealth varied largely across countries. For example, poorest household wealth ranked 1st to 4th in 13 of 35 countries, while it ranked 10th or lower for 10 countries (efigure 3 in the Supplement). All other factors showed great heterogeneity in their relative rankings across countries. We also observed substantial variations in the factors’ magnitudes across countries (Figure 4 in the Supplement). For example, the magnitudes of ORs for lack of maternal education ranged from 0.7 (95% CI, 0.4-1.3) in Myanmar to 33.3 (95% CI, 2.3-483.9) in Lesotho; the magnitudes of ORs for no care seeking for suspected pneumonia ranged from 0.7 (95% CI, 0.3-1.2) in Comoros to 5.1 (95% CI, 2.0-13.2) in Namibia.

Wasting
Low maternal BMI ranked within the top 5 factors associated with wasting in most countries, except Comoros, Namibia, São Tomé and Príncipe, and Zambia. Short maternal height, poorest household wealth, and lack of maternal education were strongly associated with higher odds of child wasting for some countries but were found to have weaker associations in many other countries. For example,
Figure 2. Country-Specific Ranking of 20 Factors Associated with Stunting

Short maternal stature indicates maternal height of less than 145 cm; low maternal body mass index (BMI, calculated as weight in kilograms divided by height in meters squared); BMI less than 18.5; child marriage, mother younger than 18 years at marriage; delayed breastfeeding, child was not breastfed within 1 hour of birth; infectious disease, child had infectious disease within 2 weeks before survey. ANC indicates antenatal care; FP, family planning; HH, household; ORT, oral rehydration therapy; SBA, skilled birth attendant.
Short maternal stature indicates maternal height of less than 145 cm; low maternal body mass index (BMI, calculated as weight in kilograms divided by height in meters squared), BMI less than 18.5; child marriage, mother younger than 18 years at marriage; delayed breastfeeding, child was not breastfed within 1 hour of birth; infectious disease, child had infectious disease within 2 weeks before survey. ANC indicates antenatal care; FP, family planning; HH, household; ORT, oral rehydration therapy; SBA, skilled birth attendant.
lack of maternal education ranked between 1st and 4th in 12 countries but ranked between 18th and 20th in 8 countries (eFigure 5 in the Supplement). The strength of association for each factor and child wasting also showed large variations across countries (eFigure 6 in the Supplement). For example, the magnitudes of ORs for low maternal BMI ranged from 1.2 (95% CI, 0.7-2.0) in Zambia to 40.0 (95% CI, 5.7-279.2) in Swaziland; the magnitudes of ORs for unimproved sanitation ranged from 0.6 (95% CI, 0.2-2.0) in Namibia to 16.8 (95% CI, 3.8-74.0) in Lesotho.

Supplementary Analyses
In the first supplementary analysis with paternal height, BMI, and education, we found that paternal factors had weaker associations with child anthropometric failures compared with maternal indicators (eFigure 7 in the Supplement). Short paternal height was associated with stunting with an OR of 1.9 (95% CI, 1.7-2.2; P < .001) compared with an OR of 4.5 (95% CI, 4.2-4.8; P < .001) for short maternal height. Paternal anthropometry had statistically significant associations with all types of child anthropometric failure, although their rankings and magnitudes varied across countries. For example, low paternal BMI was significantly associated with stunting (OR, 1.2; 95% CI, 1.1-1.4; P < .001), underweight (OR, 1.5; 95% CI, 1.3-1.7; P < .001), and wasting (OR, 1.2; 95% CI, 1.1-1.5; P < .001) in pooled analysis; however, the magnitudes of low paternal BMI ranged widely, from 4th in Namibia (OR, 2.5; 95% CI, 0.8-7.8) to 23rd in Swaziland (OR, 0.5; 95% CI, 0.1-2.1) for stunting, from 3rd in Zimbabwe (OR, 1.8; 95% CI, 0.8-4.0) to 20th in Sierra Leone (OR, 0.9; 95% CI, 0.5-1.8) for underweight, and from 1st in Nepal (OR, 2.9; 95% CI, 0.9-9.7) to 23rd in Lesotho (OR, 0.1; 95% CI, 0.0-4.9) for wasting. Lack of paternal education ranked low and had small effect sizes in most countries (eFigure 8 and eFigure 9 in the Supplement).

As second and third supplementary analyses, we stratified children by age and by urban and rural residence. We found consistent results for short maternal stature, lack of maternal education, poorest household wealth, and low maternal BMI, but moderate differences were observed for other factors across the stratified groups. For example, no oral rehydration therapy for diarrhea was not associated with child stunting among children younger than 2 years (OR, 1.04; 95% CI, 0.95-1.13), but it was associated with stunting among children aged 2 years and older (OR, 1.2; 95% CI, 1.1-1.3) (eFigure 10 in the Supplement). The results from country-specific stratified analyses are summarized in eFigure 11 to eFigure 15 in the Supplement.

In the fourth supplementary analysis, we excluded source of drinking water, sanitation facility, and household air quality from the fully adjusted models to avoid potential multicollinearity, and the rankings and magnitudes of all factors remained largely the same (eFigure 16, eFigure 17, and eFigure 18 in the Supplement). Moreover, we adopted variance inflation factor (VIF) to check for multicollinearity. For example, for the outcome of child stunting, the regression model including all factors had a VIF of less than 4 for all factors, except for the poorest quintile of household wealth index (VIF, 6.19) and no maternal education (VIF, 5.46). After removing source of drinking water, sanitation facility, and household air quality from the regression model, all VIFs reduced to less than 4, indicating relatively low multicollinearity.

The magnitude of the selected factors remained largely the same after additionally controlling for birth characteristics (ie, birth weight and preceding birth interval) in the fifth supplementary analysis (eTable 3 in the Supplement). Finally, indicators on women’s empowerment ranked low and had nonsignificant ORs for all 3 anthropometric failures (eFigure 19 in the Supplement).

Discussion
Maternal nutritional status (height and BMI) and poor household socioeconomic conditions (household wealth and maternal education) were the leading factors associated with child anthropometric failures in our pooled analyses. Fathers’ nutritional status also appeared to be associated with child anthropometric status, but paternal education was not. Despite some exceptions, parental nutritional status and poor household socioeconomic conditions were the...
strongest factors in most countries. The relative significance and absolute magnitude of other factors, such as care-seeking behaviors, reproductive care, and air quality, showed considerable heterogeneity among countries.

A rich volume of observational studies supports our findings regarding maternal height and BMI, but paternal anthropometry remains largely unexplored. The associations between short parental height and child anthropometric status may be attributed to both shared genetic background and common environmental determinants (eg, diet, culture, social class) that first affect parents during their early childhood and subsequently affect the growth of their offspring. The consistent association between maternal BMI and child anthropometric failures may be attributed to intrauterine intergenerational transmission of low maternal BMI during pregnancy, giving infants a high risk of low birth weight and being small for gestational age, which forms the fetal origins of subsequent childhood undernutrition. While we did not have data on maternal BMI during pregnancy, BMI at the time of the survey is likely to be associated with previous weight. The influence of maternal BMI on child anthropometric status attenuated only moderately after adding paternal BMI.

Our pooled estimates on household wealth and maternal education were comparable with previous multicountry studies. Across countries, household wealth had moderate heterogeneity in associations with child stunting and underweight. The relative importance of maternal education ranged from very high (eg, Côte d’Ivoire, Mali, Ghana) to low (eg, Gambia, Kyrgyzstan, Myanmar). Such heterogeneity may be partially explained by differences in macroeconomic status, health system, and the existence of national and local programs. For example, the relatively weaker association between socioeconomic conditions and child anthropometric failures in Kyrgyzstan may be explained by investments in primary care facilities and hospitals in disadvantaged areas.

Children’s dietary diversity, oral rehydration therapy for diarrhea, and sanitation facilities were associated with all outcomes in the pooled analyses, but the results varied among countries. Country-level heterogeneity in the association between dietary diversity and child anthropometric failures has been documented in previous observational studies and randomized clinical trials, with a protective effect found in Mali and Bangladesh but not in Niger or Kenya. Different levels of food security and the existence of nutritional supplement programs (eg, Foodlets, Sprinkles, and lipid-based nutrient supplements) in some countries may explain the observed heterogeneity. Inconsistent findings on the association of oral rehydration therapy for diarrhea with outcomes may be because of the differential prevalence of children very close to the anthropometric failure cutoffs given that only they would be substantially affected by the occurrence of diarrhea and oral rehydration treatment. The heterogeneous association between sanitation facility and child undernutrition may be attributed to differences in complementarity of toilet maintenance, including other water and hygiene practices.

Limitations
There are several limitations to this study. First, factors in the fully adjusted models may be associated with each other and serve as confounders or mediators. Multicollinearity can increase the standard errors of the coefficients and weaken the significance levels, but it does not result in biased estimates. Moreover, the low VIF for all factors presented in the supplementary analysis section indicated low multicollinearity. Second, the use of observational data and cross-sectional analysis limit our capacity to make any causal inferences. Third, some factors analyzed in this study, such as breastfeeding history, care-seeking behavior, and disease history, were self-reported and, therefore, are prone to potential measurement errors.

Conclusions
This systematic investigation of the comparative importance of direct and indirect factors associated with child anthropometric failures suggests the universal importance of improving maternal
nutritional status and household socioeconomic circumstances. The relative importance of other factors was weaker and more heterogeneous among countries, suggesting the need for context-specific understanding to inform national policies and programs.
9. Kim R, Rajpal S, Joe W, et al. Assessing associational strength of 23 correlates of child anthropometric failure: an econometric analysis of the 2015-2016 National Family Health Survey, India. Soc Sci Med. 2019;238:i12374. doi:10.1016/j.socscimed.2019.112374

10. Corsi DJ, Mejia-Guevara I, Subramanian SV. Risk factors for chronic undernutrition among children in India: estimating relative importance, population attributable risk and fractions. Soc Sci Med. 2016;157:165-185. doi:10.1016/j.socscimed.2015.11.014

11. Nshimiyona A, Hedt-Gauthier B, Mutaganzwa C, et al. Risk factors for stunting among children under five years: a cross-sectional population-based study in Rwanda using the 2015 Demographic and Health Survey. BMC Public Health. 2019;19(1):175. doi:10.1186/s12889-019-6504-z

12. Kang Y, Aguayo VM, Campbell RK, et al. Nutritional status and risk factors for stunting in preschool children in Bhutan. Matern Child Nutr. 2018;14(suppl 4):e2653. doi:10.1111/mcn.12653

13. Mistry SK, Hossain MB, Khanam F, et al. Individual-, maternal- and household-level factors associated with stunting among children aged 0-23 months in Bangladesh. Public Health Nutr. 2019;22(1):85-94. doi:10.1017/S1368946218002926

14. Akombi BJ, Agho KE, Hall JJ, Merom D, Astell-Burt T, Renzaho AMN. Stunting and severe stunting among children under-5 years in Nigeria: a multilevel analysis. Matern Child Nutr. 2016;12(suppl 1):210-218. doi:10.1111/mcn.12274

15. Headay D, Hodsdottir J, Park S. Drivers of nutritional change in four South Asian countries: a dynamic observational analysis. Matern Child Nutr. 2016;12(suppl 1):210-218. doi:10.1111/mcn.12274

16. Kim R, Mejia-Guevara I, Corsi DJ, Aguayo VM, Subramanian SV. Relative importance of 13 correlates of child stunting in South Asia: insights from nationally representative data from Afghanistan, Bangladesh, India, Nepal, and Pakistan. Soc Sci Med. 2017;187:144-154. doi:10.1016/j.socscimed.2017.06.017

17. Danaei G, Andrews KG, Sudfeld CR, et al. Risk factors for childhood stunting in 137 developing countries: a comparative risk assessment analysis at global, regional, and country levels. PLoS Med. 2016;13(11):e1002164. doi:10.1371/journal.pmed.1002164

18. USAID. The DHS program: available datasets. Accessed March 24, 2020. https://www.dhsprogram.com/data/available-datasets.cfm

19. World Health Organization. WHO child growth standards: methods and development. Accessed March 24, 2020. https://www.who.int/childgrowth/standards/technical_report/en/

20. Assaf S, Kothari MT, Pullum T. An assessment of the quality of DHS anthropometric data. Accessed March 24, 2020. https://www.dhsprogram.com/pubs/pdf/MR16/MR16.pdf

21. Nahar B, Ahmed T, Brown KH, Hossain MI. Risk factors associated with severe underweight among young children reporting to a diarrhea treatment facility in Bangladesh. J Health Popul Nutr. 2010;28(5):476-483.

22. Fenske N, Burns J, Hothorn T, Rehfuess EA. Understanding child stunting in India: a comprehensive analysis of socio-economic, nutritional and environmental determinants using additive quantile regression. PLoS One. 2013;8(1):e78692. doi:10.1371/journal.pone.0078692

23. Merchant AT, Jones C, Kiure A, et al. Water and sanitation associated with improved child growth. Eur J Clin Nutr. 2003;57(12):1562-1568. doi:10.1038/sj.ejcn.1601725

24. Vollmer S, Harttgen K, Kupka R, Subramanian SV. Levels and trends of childhood undernutrition by wealth and education according to a Composite Index of Anthropometric Failure: evidence from 146 demographic and health surveys from 39 countries. BMJ Global Health; 2017;2(2):e000206.

25. Head ML, Berry LK, Royle NJ, Moore AJ. Paternal care: direct and indirect genetic effects of fathers on offspring performance. Evolution. 2012;66(11):3570-3581. doi:10.1111/j.1558-5646.2012.01699.x

26. Siddiqi MNA, Haque MN, Goni MA. Malnutrition of under-five children: evidence from Bangladesh. Asian J Med Sci. 2011;2(2):113-119. doi:10.3126/ajms.v2i2.3662

27. Chirande L, Charwe D, Mbwana H, et al. Determinants of stunting and severe stunting among under-fives in Tanzania: evidence from the 2010 cross-sectional household survey. BMC Pediatr. 2015;15:165. doi:10.1186/s12887-015-0482-9

28. Fink G, Sudfeld CR, Danaei G, Ezzati M, Fawzi WW. Scaling-up access to family planning may improve linear growth and child development in low and middle income countries. PLoS One. 2014;9(7):e102391. doi:10.1371/journal.pone.0102391

29. Lakey Y, Bekele A, Biadgilign S. Factors influencing full immunization coverage among 12-23 months of age children in Ethiopia: evidence from the national demographic and health survey in 2011. BMC Public Health. 2015;15.728. doi:10.1186/s12889-015-2078-6
30. United Nations Children's Fund. Guide to DHS statistics DHS-7. Accessed March 24, 2020. https://dhsprogram.com/Data/Guide-to-DHS-Statistics
31. Demographic and Health Surveys. Wealth index construction. Accessed March 24, 2020. https://www.dhsprogram.com/topics/wealth-index/Wealth-Index-Construction.cfm
32. United Nations Children's Fund. DHS survey indicators: characteristics of households. Accessed March 24, 2020. https://dhsprogram.com/data/DHS-Survey-Indicators-Characteristics-of-Households.cfm
33. Subramanian SV, Ackerson LK, Davey Smith G, John NA. Association of maternal height with child mortality, anthropometric failure, and anemia in India. *JAMA*. 2009;301(16):1691-1701. doi:10.1001/jama.2009.548
34. Subramanian SV, Ackerson LK, Smith GD. Parental BMI and childhood undernutrition in India: an assessment of intrauterine influence. *Pediatrics*. 2010;126(3):e663-e671. doi:10.1542/peds.2010-0222
35. World Health Organization. Water sanitation hygiene. Accessed March 24, 2020. https://www.who.int/water_sanitation_health/monitoring/jmp2012/key_terms/en/
36. World Health Organization; United Nations Children's Fund. Core questions on drinking-water and sanitation for household surveys. Accessed March 24, 2020. https://www.who.int/water_sanitation_health/monitoring/household_surveys/en/
37. Murphy SP, Yakitle AL, Suitor CW, Moats S. *Child and Adult Care Food Program: Aligning Dietary Guidance for All*. Institute of Medicine; 2011.
38. Ladwig KH, Marten-Mittag B, Formanek B, Dammann G. Gender differences of symptom reporting and medical health care utilization in the German population. *Eur J Epidemiol*. 2000;16(6):511-518. doi:10.1023/A:1007629920752
39. Monden CWS, Smits J. Mortality among twins and singletons in sub-Saharan Africa between 1995 and 2014: a pooled analysis of data from 90 Demographic and Health Surveys in 30 countries. *Lancet Glob Health*. 2017;5(7):e673-e679. doi:10.1016/S2214-109X(17)30197-3
40. Kruk ME, Gage AD, Joseph NT, Danaei G, García-Saisó S, Salomon JA. Mortality due to low-quality health systems in the universal health coverage era: a systematic analysis of amenable deaths in 137 countries. *Lancet*. 2018;392(10160):2203-2212. doi:10.1016/S0140-6736(18)30168-4
41. Hernández-Díaz S, Peterson KE, Dixit S, et al. Association of maternal short stature with stunting in Mexican children: common genes vs common environment. *Eur J Clin Nutr*. 1999;53(12):938-945. doi:10.1038/sj.ejcn.1600876
42. Christian P, Lee SE, Donahue Angel M, et al. Risk of childhood undernutrition related to small-for-gestational age and preterm birth in low- and middle-income countries. *Int J Epidemiol*. 2013;42(5):1340-1355. doi:10.1093/ije/dyt109
43. Li Z, Li M, Subramanian SV, Lu C. Assessing levels and trends of child health inequality in 88 developing countries: from 2000 to 2014. *Glob Health Action*. 2017;10(1):1-10. doi:10.1080/16549716.2017.1408385
44. United Nations Children's Fund. Health and child survival. Accessed March 24, 2020. https://www.unicef.org/kyrgyzstan/health-and-child-survival
45. Hatløy A, Hallund J, Diarra MM, Oshaug A. Food variety, socioeconomic status and nutritional status in urban and rural areas in Koutiala (Mali). *Public Health Nutr*. 2000;3(1):57-65.
46. Rah JH, Akhter N, Sembra RD, et al. Low dietary diversity is a predictor of child stunting in rural Bangladesh. *Eur J Clin Nutr*. 2010;64(12):1393-1398. doi:10.1038/ejcn.2010.171
47. Tarini A, Bakari S, Delisle H. The overall nutritional quality of the diet is reflected in the growth of Nigerian children. *Sante*. 1999;9(1):23-31.
48. Bukania ZN, Mwangi M, Karanja RM, et al. Food insecurity and not dietary diversity is a predictor of nutrition status in children within semi-arid agro-ecological zones in Eastern Kenya. *J Nutr Metab*. 2014;2014:907153. doi:10.1155/2014/907153
49. Guandalini S, Pensabene L, Zikri MA, et al. Lactobacillus GG administered in oral rehydration solution to children with acute diarrhea: a multicenter European trial. *J Pediatr Gastroenterol Nutr*. 2000;30(1):54-60. doi:10.1097/00005176-200001000-00018
50. Pavlinac PB, Brander RL, Atlas HE, John-Stewart GC, Denno DM, Watson JL. Interventions to reduce post-acute consequences of diarrheal disease in children: a systematic review. *BMC Public Health*. 2018;18(1):208. doi:10.1186/s12889-018-5092-7
51. Dangour AD, Watson L, Cumming O, et al. Interventions to improve water quality and supply, sanitation and hygiene practices, and their effects on the nutritional status of children. *Cochrane Database Syst Rev*. 2013(8):CD009382.
SUPPLEMENT.

table 1. Percentage of Children Aged 12 to 59 Months Classified as Having Stunting, Underweight, or Wasting in 35 Countries
table 2. Full Regression Results From the Pooled, Fully Adjusted Model
table 3. Magnitudes of 20 Factors Associated With Child Anthropometric Failures From Fully Adjusted Models for the Pooled Sample
tfigure 1. Flow Diagram Showing Exclusions and Final Sample Sizes of the Study Population, Using the Most Recent Pooled Demographic Health Survey Data Since 2010
tfigure 2. Relative Ranking of 20 Factors Associated With Child Anthropometric Failures From Single Adjusted Models for the Pooled Sample
tfigure 3. Country-Specific Ranking of 20 Factors Associated With Child Anthropometric Failures From Fully Adjusted Models on Underweight
tfigure 4. Country-Specific Odds Ratios for 20 Factors Associated With Child Anthropometric Failures From Fully Adjusted Models on Underweight
tfigure 5. Country-Specific Ranking of 20 Factors Associated With Child Anthropometric Failures From Fully Adjusted Models on Wasting
tfigure 6. Country-Specific Odds Ratios for 20 Factors Associated With Child Anthropometric Failures From Fully Adjusted Models on Wasting
tfigure 7. Relative Ranking of 23 Factors Associated With Child Anthropometric Failures From Supplementary Analysis of Fully Adjusted Models for the Pooled Sample
tfigure 8. Country-Specific Ranking of 23 Factors Associated With Child Anthropometric Failures From Supplementary Analysis of Fully Adjusted Models on Stunting, Underweight, and Wasting in 12 Countries
tfigure 9. Country-Specific Odds Ratios for 23 Factors Associated With Child Anthropometric Failures From Supplementary Analysis of Fully Adjusted Models on Stunting, Underweight, and Wasting in 12 Countries
tfigure 10. Relative Ranking of 20 Factors Associated With Child Anthropometric Failures From Fully Adjusted Models for Pooled Sample, Stratified by Children's Age
tfigure 11. Country-Specific Ranking of 20 Factors Associated With Child Anthropometric Failures From Fully Adjusted Models, Stratified by Children's Age
tfigure 12. Country-Specific Odds Ratios for 20 Factors Associated With Child Anthropometric Failures From Fully Adjusted Models, Stratified by Children's Age
tfigure 13. Relative Ranking of 20 Factors Associated With Child Anthropometric Failures From Fully Adjusted Models for Pooled Sample, Stratified by Place of Residence
tfigure 14. Country-Specific Ranking of 20 Factors Associated With Child Anthropometric Failures From Fully Adjusted Models, Stratified by Place of Residence
tfigure 15. Country-Specific Odds Ratios for 20 Factors Associated With Child Anthropometric Failures From Fully Adjusted Models, Stratified by Place of Residence
tfigure 16. Relative Ranking of 17 Factors Associated With Child Anthropometric Failures From Fully Adjusted Models for the Pooled Sample, Excluding Source of Drinking Water, Sanitation Facility, and Household Air Quality
tfigure 17. Country-Specific Ranking of 17 Factors Associated With Child Anthropometric Failures From Fully Adjusted Models for the Pooled Sample, Excluding Source of Drinking Water, Sanitation Facility, and Household Air Quality
tfigure 18. Country-Specific Odds Ratios for 17 Factors Associated With Child Anthropometric Failures From Fully Adjusted Models for the Pooled Sample, Excluding Source of Drinking Water, Sanitation Facility, and Household Air Quality
tfigure 19. Relative Ranking of 23 Factors Associated With Child Anthropometric Failures From Fully Adjusted Models for the Pooled Sample, Adding Women's Empowerment Factors