A multicenter prospective cohort study on the effect of smoking cessation on periodontal therapies in Japan

Yohei Nakayama1, Koji Mizutani2, Yuka Tsumanuma2, Hiroyuki Yoshino3, Norio Aoyama4, Koji Inagaki5, Manabu Morita6, Yuichi Izumi7, Shinya Murakami8, Hidenori Yoshimura9, Takahito Matsuura2,10, Takashi Murakami11, Matsuo Yamamoto12, Nobuo Yoshinari13, Masaru Mezawa13, Yorimasa Ogata13, Atsutoshi Yoshimura14, Kanji Kono15, Kosuke Maruyama16, Soh Sato16, Ryuji Sakagami17, Hiroshi Ito18, Yukihito Numabe19, Masahiko Nikaido20, Takashi Hanioka20, Kenichi Seto21, Jinichi Fukuda21, Saman Warnakulasuriya21, and Toru Nagao24

1 Department of Periodontology and Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Matsudo, Japan
2 Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
3 Private Practice, Kawasaki, Japan
4 Division of Periodontology, Department of Oral Interdisciplinary Medicine, Graduate School of Dentistry, Kanagawa Dental University, Yokosuka, Japan
5 Department of Dental Hygiene, Aichi Gakuin Junior College, Nagoya, Japan
6 Department of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
7 Oral care perio center, Southern Tohoku Research Institute for Neuroscience Southern Tohoku General Hospital, Koriyama, Japan
8 Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Japan
9 Private Practice, Yokohama, Japan
10 Private Practice, Nagoya, Japan
11 Private Practice, Koriyama, Japan
12 Department of Periodontology, Showa University School of Dentistry, Tokyo, Japan
13 Department of Operative Dentistry, Endodontology and Periodontology, School of Dentistry, Matsusato Dental University, Shiojiri, Japan
14 Department of Periodontology and Endodontology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
15 Private Practice, Koma, Japan
16 Department of Periodontology, The Niigata Dental University School of Life Dentistry at Niigata, Niigata, Japan
17 Section of Periodontology, Department of Odontology, Fukuoka Dental College, Fukuoka, Japan
18 Department of Periodontology, School of Life Dentistry at Tokyo, The Niigata Dental University, Tokyo, Japan
19 Private Practice, Tokyo, Japan
20 Department of Preventive and Public Health Dentistry, Fukuoka Dental College, Fukuoka, Japan
21 Department of Surgery, Southern Tohoku General Hospital, Koriyama, Japan
22 Institute for Oral and Maxillofacial Surgery, Shin-juyougaoka General Hospital, Kawasaki, Japan
23 Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, WHO Collaborating Centre for Oral Cancer, London, UK
24 Department of Maxillofacial Surgery, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan

Abstract: Few prospective studies have reported the effects of periodontal therapy on patients who attempted to quit smoking. This study aimed to assess how smoking cessation affects periodontal therapy. Twenty-five smokers with periodontitis were investigated by dividing them into two groups, a smoking cessation support group and a continued smoking group. Those in the support group received counseling and nicotine replacement therapy, followed by periodontal treatment conducted by dentists who had completed an e-learning course on smoking cessation. Clinical parameters were measured at baseline, 3, and 6 months. Most clinical parameters improved for those in the smoking cessation support group as compared with those in the continued smoking group. Pathogenic bacteria confounded by environmental factors such as smoking [1]. In 2017, the World Health Organization reported that the risk ratio of smoking for periodontal disease was (2.14; 95% confidence interval [CI], 1.44 to 3.17) [World Health Organization 2017. ISBN 978-92-4-151267-1]. Smoking >10 cigarettes/day is a significant risk factor for periodontal disease.

Several reports have shown the effects of smoking cessation on periodontitis with or without periodontal intervention. One prospective study demonstrated significantly less bone loss in patients who quit smoking than in current smokers. The effects of smoking cessation on gingival tissues are observed in the short term via the recovery of gingival microcirculation [2]. Among smokers, fewer improvements were noted in periodontal parameters on completion of periodontal therapy than nonsmokers [3]. Recently, prospective intervention studies that included smoking cessation during nonsurgical periodontal therapy showed significant improvements in periodontal health. They showed a greater reduction of probing pocket depth (PPD) in quitters compared with nonsmokers, despite high dropout rates at 3 and 6 months after scaling and root planing (SRP) [4,5].

In this study, the impact of smoking cessation on periodontal therapy was assessed by comparing data from patients who stopped smoking, or had a smoking relapse, or had no smoking cessation support.

Correspondence to Dr. Toru Nagao, Department of Maxillofacial Surgery, School of Dentistry, Aichi-Gakuin University, 2-1 Suemori-Dori, Chikusa, Nagoya, Aichi 464-8651, Japan
Fax: +81-52-759-2160 E-mail: tnagao@dpc.agu.ac.jp

Color figures can be viewed in the online issue at J-STAGE.

Materials and Methods

This study was part of a prospective multicenter project to assess the effects of tobacco cessation in patients who had various oral health-related disorders; oral potentially malignant disorders (OPMD), patients receiving dental implants and those diagnosed with periodontitis in dental settings. The clinical effects of periodontal therapy in patients who received smoking cessation support were assessed. The study was approved by the Institutional Review Board of the Japanese Society of Oral and Maxillofacial Surgeons (No. 2015-004) and received ethical approval from each study center’s ethics committee. This study was registered at ClinicalTri-
als.gov identifier:NCT02737176 and UMIN-CTR:000021429, and the results are presented here.

This study sequentially recruited regular smokers with chronic periodontitis. All subjects received periodontal therapy as prescribed by periodontal specialists. All patients in this study were enrolled through 5 private dental clinics and 8 dental teaching hospitals between May 2016 and October 2018. The inclusion criteria were the presence of ≥30% teeth with a PPD of ≥4 mm and ≥3 sites with PPD ≥6 mm. The exclusion criteria are shown in Fig. 1. The status of nicotine dependence was evaluated using the Fagerstrom Test for Nicotine Dependence (FTND). A score of >3 indicated moderate or high tobacco dependence.

The tobacco cessation support program included an e-learning program for dentists, tobacco cessation counseling, and nicotine replacement therapy (NRT) - and nicotine transdermal (skin) patches supplied free of charge (Fig. 1). Self-reporting was used to confirm the patients’ smoking cessation status during reevaluation at 3 and 6 months. Occurrences of patient oscillation and dropout were considered as smoking relapse. Participants who did not intend to abstain from smoking were considered as subjects in the continued smoking group.

The study flowchart is shown in Fig. 1. Periodontal examinations were performed by trained periodontists and four clinical parameters, PPD, clinical attachment levels (CAL), bleeding on probing (BOP), and plaque index were measured. The periodontal inflamed surface area (PISA) and periodontal epithelial surface (PESA) were calculated [6]. All participants received a periodontal examination at the first visit and during initial treatment preparation. At baseline (BLsrp), two periodontal sites for SRP were selected, being the worst and second worse sites except for teeth indicated for extraction [7]. All sites with ≥4 mm of PPD were treated with SRP and reevaluated (RE post-SRP). REs were repeated at 3 and 6 months. Smoking status was confirmed at each RE. Periodontal surgery sites were excluded from reevaluation for SRP, as shown in Fig. 1.

Statistical normality and equal variance tests were confirmed to compare the differences in parameters between groups, to choose between parametric or nonparametric analyses. Mann-Whitney U-test was used, as appropriate.

Table 1 Baseline characteristics of the study population

Variable	Smoking cessation support group	Continued smoking group	P value
Sex	Male 8 (42.1) 5 (30.0)	Female 11 (57.9) 3 (50.0)	
Age	50 (33-61) 52 (46-67)	42.5 (30-60) 15 (10-30)	0.134
Number of cigarettes (day)	20 (10-30)	15 (10-30)	0.159
Years of smoking	28 (10-35)	35 (20-47)	0.060
Pack-years	455.0 (300-600)	630.0 (250-705)	0.484
FTND	5 (4-6)	2.7 (1-8)	0.796
Drinking habit	Regular 4 (21.0)	6 (10.0)	
Systemic diseases	Yes 3 (15.8)	2 (10.5)	0.484
Medication	Yes 3 (15.8)	2 (10.5)	0.484
Use of NRTs at cessation support	13/19 (68.4)	0/6 (0.0)	

* Mann-Whitney U-test was used to compare differences between groups. FTND, Fagerstrom Test for Nicotine Dependence. NRTs, nicotine replacement therapies. Data shown as median (1st row), interquartile range (IQR, 2nd row), minimum and maximum in parentheses (3rd row).
Table 2 Improvements in clinical parameters of full-mouth and at SRP sites between the smoking cessation support and continued smoking groups at BLsrp and 3 or 6 months after SRP

Variable	Smoking cessation support group (<i>n</i> = 15)	Smoking relapse group (<i>n</i> = 4)	Continued smoking group (<i>n</i> = 4)						
	Smoking cessation (SC')¹	Continued smoking (CS)	Continued smoking (CS)						
	(<i>n</i> = 11)								
Number of teeth	Baseline (BLsrp)	Reevaluation (6 months after SRP)	P value	Baseline (BLsrp)	Reevaluation (6 months after SRP)	P value	Baseline (BLsrp)	Reevaluation (6 months after SRP)	P value
	(28)	(28)	† 0.797	(28)	(28)	† 0.767	(28)	(28)	† 0.767
PPD (mm)	2.5	2.5	† 0.01	2.5	2.5	† 0.01	2.5	2.5	† 0.01
Rate of PPD (≥4 mm)	32.2	32.2	† 0.01	32.2	32.2	† 0.01	32.2	32.2	† 0.01
Rate of PPD (≥6 mm)	23.4	23.4	† 0.01	23.4	23.4	† 0.01	23.4	23.4	† 0.01
BOP (%)	36.2	36.2	† 0.01	36.2	36.2	† 0.01	36.2	36.2	† 0.01
o-PCR (%)	36.7	36.7	† 0.05	36.7	36.7	† 0.05	36.7	36.7	† 0.05
PISA (mm²)	1,941.9×10⁶	1,941.9×10⁶	† 0.01	1,941.9×10⁶	1,941.9×10⁶	† 0.01	1,941.9×10⁶	1,941.9×10⁶	† 0.01
PESA (mm²)	2,419.7	2,419.7	† 0.05	2,419.7	2,419.7	† 0.05	2,419.7	2,419.7	† 0.05

Note: Values in bold indicate statistically significant differences. No statistical analyses to compare parameters between BL and RE in the groups where sample size is less than 4 with non-normality and non-equal variance.
Table 3 Comparison of changes in clinical parameters of SRP sites between the smoking cessation support and continued smoking groups at 3 and 6 months after SRP

Variable	Smoking cessation support group	Continued smoking group	Difference between the three groups*	P value						
	Smoking cessation (SC)	Smoking relapse (SR)	SC VS. SR†	SC VS. CS‡						
	3 month after SRP		SC VS. CS‡							
Number of sites	17	6	8	0.584	0.278	0.816	0.561			
Improvement rate of PPD (%)	26.9 ± 17.2†	42.1	18.3-48.6	0.00-6.67	12.5-45.8	0.00-50.0				
Improvement rate of CAL (%)	25.0	16.7-33.3	26.2	6.25-29.3	20.8 ± 23.2†		0.729	1.00	0.398	0.699†
ABOP	0.00	0.00-1.00	0.50	0.00-1.00	0.13 ± 0.60†		0.602	0.753	0.432	0.333†
6 month after SRP		5	10	1	0.159†					
Number of sites		4								
Improvement rate of PPD (%)	42.9	33.5-50.0	41.7-43.3	48.6-51.1	(−40.0-55.6)	(44.4-54.6)				
Improvement rate of CAL (%)	37.5	33.5-37.5	22.0	13.0-50.0	20.6 ± 20.9†		0.076†			
ABOP	1.00	1.00-1.00	0.75	0.00-1.00	0.75 ± 0.40†	<0.05†				

SRP: scaling and root planning; PPD: probing pocket depth; CAL: clinical attachment level; BOP: bleeding on probing. Normality: equal variance. *By patient self-report. †Kruskal-Wallis test was used to compare differences among the three groups. ‡Dunn-Bonferroni test was used to compare differences between two groups. Data shown as median (1st row), interquartile range (IQR, 2nd row), minimum and maximum in parentheses (3rd row). Values in bold indicate statistically significant difference. No statistical analyses to compare parameters between BL and RE in the groups where sample size is less than 4 with non-normality and non-equal variance.

Results

Of the enrolled 74 patients in total, 49 were subjected to therapy for OPMD or implants, and 25 were eligible for periodontal therapy (Table 1), and 19 completed the study.

Clinical improvements following SRP were assessed at the third and sixth months (Table 2) from BLsrp. The mean values of PPD and the rate of PPD ≥4 mm at BLsrp were significantly reduced in the smoking cessation (SC) subgroup, and similar tendencies were found in the smoking relapse (SR) and continued smoking (CS) subgroups 3 months after SRP with no statistical analyses performed due to small sample size. Rates of PPD ≥6 mm and BOP at 3 months after SRP were significantly decreased in the SC subgroup. Similar tendencies were found in the SR subgroup but not in the CS subgroup with no statistical analyses performed due to small sample size.

A total of 31 SRP sites from 17 patients were evaluated at 3 and 6 months after SRP. Reduction of PPD and CAL gain was demonstrated in the three groups; however, improvements in BOP at the third month were found only in the smoking cessation subgroup. At 6 months after SRP, clinical improvement was similar to that at 3 months (Table 2).

Differences in the improvement rates of PPD, CAL, and BOP were compared in the three subgroups (Table 3). At 6 months, the SC subgroup showed significantly more improvement in BOP (ABOP) compared with the SR subgroup.

Discussion

Japanese dental professionals have shown interest in being involved in supporting and providing smoking cessation [8]. To address this, the current prospective, multicenter study was designed.

In evaluating full-mouth parameters, PPD of 6 mm and BOP did not improve in the CS subgroup. Clinical parameters at the third month in comparison with baseline significantly improved in quitters as well as in the SR subgroup. These results suggest that continuing to smoke negatively affected PPD at severe periodontal sites, and that recovery of gingival microcirculation was virtually identical among quitters and those who had temporarily stopped smoking. PISA contains the component of BOP attributed to inflamed areas; however, PISA did not significantly improve, even among quitters. These results imply that in ex-smokers, a much longer period is required to regain normal gingival texture after recovery of microcirculation.

At SRP sites, significant improvements in BOP in quitters and the SR subgroup were demonstrated, but not in smokers. This result suggests that successful or temporary smoking cessation activates the periodontal healing response. A few studies have reported differences in the microbiome in subgingival plaque between smokers and nonsmokers [9]. Generally, SRP leads to intensive qualitative changes in bacterial flora, which explains the benefits of SRP in the three groups in this study, even among nonquitters.

This study had one major limitation. The use of patient self-reporting of smoking status could lead to miscalculation of real quitters [10]. Although the required sample size was estimated from an intervention study [4], the used sample size (n = 19) in this study was insufficient, and the dropout rate was high. This study was based on short-term evaluations. Patients who had a smoking relapse tended to delay visiting the dentist, even when they needed periodontal therapy. This made it difficult to estimate clinical parameters at correct intervals.

This is the first report on tobacco cessation support in Japan, with the dentist giving advice on quitting while treating periodontitis. Successful or temporary smoking cessation was beneficial to periodontal therapy. A further randomized controlled trial on a larger scale is warranted to elucidate the effects of tobacco cessation support for periodontal therapy.

Acknowledgments

The authors would like to thank M Sugana and R Suda for clinical assistance and recording data. This study was supported in part by the Japan Society for the Promotion of Science KAKENHI grants, Grant-in-Aid for Scientific Research (C), 17K12033 to TN and a Grant-in-Aid for Project Research from Japanese Association for Dental Science, No.2015D-1 to TN. The authors had full control of the data and analyses and received no commercial input in the preparation of the manuscript. The authors would like to thank Enago (www.enago.jp) for editing the paper.

Conflict of interest

None declared.

References

1. Philestrom BL, Michalowicz BS, Johnson NW (2005) Periodontal diseases. Lancet 366, 1809-1820.
2. Morozumi T, Kubota T, Sato T, Okuda K, Yoshie H (2004) Smoking cessation increases gingival blood flow and gingival crevicular fluid. J Clin Periodontol 31, 267-272.
3. Apatzidou DA, Riggio MP, Kinane DF (2005) Impact of smoking on the clinical, microbiological and immunological parameters of adult patients with periodontitis. J Clin Periodontol 32, 973-983.
4. Preshaw PM, Heasman L, Stacey F, Steen N, McCracken GI, Heasman PA (2005) The effect of quitting smoking on chronic periodontitis. J Clin Periodontol 32, 869-879.
5. Rosa EF, Corrani P, Inoue G, Gomes EF, Guglielmetti MR, Sandra SR et al. (2014) Effect of smoking cessation on non-surgical periodontal therapy: results after 24 months. J Clin Periodontol 41, 1145-1153.
6. Nesse W, Abbas F, van der Ploeg L, Spjkerwer H, Djikstra PU, Vissink A (2008) Periodontal inflamed surface area: quantifying inflammatory burden. J Clin Periodontol. 35, 668-673.
7. Nakayama Y, Ogata Y, Hiromatsu Y, Imamura K, Suzuki E, Saito A et al. (2016) Clinical usefulness of novel immunochromatographic detection device for porphyromonas gingivalis in evaluating effects of scaling and root planing and local antimicrobial therapy. J Periodontol 87, 1236-1247.
8. Nagao T, Fukata J, Seto K, Saiyo K, Hanioka T, Kurita K et al. (2017) A national opinion study supports tobacco cessation by oral health professionals in Japan. Transl Res Oral Oncol 2, 1-8.
9. Hanioka T, Morita M, Yamamoto T, Inagaki K, Wang PL, Ito H et al. (2019) Smoking and periodontal microorganisms. Jpn Dent Sci Rev 55, 88-94.
10. Jarvis MJ, Tunstall-Pedoe H, Feyerabend C, Vesey C, Saloojee Y. (1987) Comparison of tests used to distinguish smokers from nonsmokers. Am J Public Health 77, 1435-1438.