Pathology of a mouse mutation in peripheral myelin protein P0 is characteristic of a severe and early onset form of human Charcot-Marie-Tooth type 1B disorder

Annette E. Rünker,1 Igor Kobsar,2 Torsten Fink,1 Gabriele Loers,1 Thomas Tilling,1 Peggy Putthoff,1 Carsten Wessig,2 Rudolf Martini,2 and Melitta Schachner1

1Center for Molecular Neurobiology, University of Hamburg, D-20246 Hamburg, Germany
2Department of Neurology, Section of Developmental Neurobiology, Bayerische Julius-Maximilians University, D-97080 Würzburg, Germany

Mutations in the gene of the peripheral myelin protein zero (P0) give rise to the peripheral neuropathies Charcot-Marie-Tooth type 1B disease (CMT1B), Déjérine-Sottas syndrome, and congenital hypomyelinating neuropathy. To investigate the pathomechanisms of a specific point mutation in the P0 gene, we generated two independent transgenic mouse lines expressing the pathogenic CMT1B missense mutation Ile106Leu (P0sub) under the control of the P0 promoter on a wild-type background. Both P0sub-transgenic mouse lines showed shivering and ultrastructural abnormalities including retarded myelination, onion bulb formation, and dysmyelination seen as aberrantly folded myelin sheaths and tomacula in all nerve fibers. Functionally, the mutation leads to dispersed compound muscle action potentials and severely reduced conduction velocities. Our observations support the view that the Ile106Leu mutation acts by a dominant-negative gain of function and that the P0sub-transgenic mouse represents an animal model for a severe, tomaculous form of CMT1B.

Introduction

The hereditary motor and sensory neuropathies are a clinically and genetically heterogeneous group of diseases of the peripheral nervous system of humans (Young and Suter, 2001, 2003). Among the different forms of these diseases is the Charcot-Marie-Tooth (CMT) type 1 neuropathy (Kamholz et al., 2000). CMT1 is characterized by distal muscle weakness and atrophy, reduced nerve conduction velocities, and de- and remyelination with onion bulb formation as observed in sural nerve biopsies (Dyck et al., 1993). Among the main forms of CMT1, CMT1B is caused by mutations in the major peripheral myelin protein zero (P0; Hayasaka et al., 1993a,c; Kulkens et al., 1993; Shy et al., 2002). Mutations in P0 also give rise to severe disorders such as Déjérine-Sottas syndrome (DSS) and congenital hypomyelinating neuropathy (Hayasaka et al., 1993b; for reviews see Warner et al., 1996; Martini et al., 1998; Kamholz et al., 2000; Bennett and Chance, 2001; Shy et al., 2002).

P0 is a transmembrane recognition molecule that belongs to the Ig superfamily. It acts as a homophilic adhesion molecule involved in the formation and maintenance of the intraperiod and major dense lines that are instrumental in the compaction of myelin lamellae (Schneider-Schaulies et al., 1990; Martini, 1994; Martini et al., 1995a). Crystallographic analysis supports the notion that the extracellular domain of the molecule is involved in interdigitation of P0 tetramers on opposing myelin lamellae (Shapiro et al., 1996; Inoue et al., 1999). Experiments on the P0-deficient mouse indicate a role for P0 not only in myelin formation, but also in maintenance of myelin integrity (Martini and Schachner, 1997).

P0 null mutant mice have been considered as a model of patients with DSS that are homozygous for functional null mutations (Giese et al., 1992; Martini et al., 1995b;
The heterozygous P0 null mutant mouse represents a late onset, milder neuropathy, and has been considered as a model for CMT1B patients carrying a loss of function mutation in one allele (Martini et al., 1995b; Martini, 1999). The majority of human P0 mutations is heterozygous and causes a more severe phenotype than that of heterozygous P0-deficient mice. It has been suggested that these mutations act through gain of function (Hayasaka et al., 1993b; Kirschner and Saavedra, 1994). The possibility that some mutations may act through gain of function and others through loss of function could explain, at least to some extent, the findings that patients carrying mutations in the P0 gene are either affected by the mild form of CMT1B or more severe forms of the disease (Martini et al., 1995b).

To develop a mouse model of a severe and early onset form of CMT1B, we have generated a transgenic mouse line with a substitution of isoleucine at residue 106 to leucine (P0sub; Gabriëls-Festen et al., 1996). This substitution in the human is characterized by the occurrence of many folded myelin profiles, termed tomacula, appearing as focally thickened myelin passing into thinner myelin sheaths within the same internode. Fibers outside tomacula are frequently devoid of myelin or are thinly (re)myelinated. Onion bulbs are included in Sciatic nerve total RNA of 6-wk-old transgenic (tg) P0sub1 and P0sub3 mice were analyzed for the relative proportions of transgenic and endogenous P0 mRNA. In both lines, an overexpression of transgenic mRNA was observed. Note that for cDNA from wild-type (wt) littermates used as a control, only the 245-nt band was detected, confirming the specificity of the 228-nt band for transgenic P0 cDNA. Aliquots of different PCR cycle numbers (22, 24, and 26) were analyzed in order to ensure that only the logarithmic phase of PCR was considered for quantification. The P0sub3-transgenic samples and the corresponding wild-type control were grouped from different parts of the same gel for reasons of space (film exposure was identical).

Results

Transgenic mice expressing the P0 substitution mutation show motor abnormalities

An A→T nucleotide exchange was introduced into exon 3 of the P0 gene to express the pathogenic P0 missense muta-

![Figure 1](image1.png)

Figure 1. Design of the P0sub-transgenic construct. Shown is the localization of the substitution mutation within the P0 transgene and the changes (underlined) in comparison to the wild-type (wt) sequence at the level of nucleotides (in lowercase letters) or amino acids (in capital letters). The position of important restriction sites and their corresponding enzymes are indicated above the construct. Black boxes, exons; gray box, 3’ untranslated region of exon 6; pA, polyadenylation signal.

![Figure 2](image2.png)

Figure 2. RT-PCR analysis demonstrates overexpression of the transgene in P0sub mice. (A) Total RNA prepared from sciatic nerve was reverse transcribed; the product was amplified by PCR using a primer pair that recognized identically both endogenous (endo) and transgenic (tg) P0 cDNAs. The tg cDNA could be distinguished from the endo cDNA by Ddel digestion, yielding a tg-specific fragment of 228 nt and an endo-specific fragment of 245 nt. (B) Reverse-transcribed products from sciatic nerve total RNA of 6-wk-old transgenic (tg) P0sub1 and P0sub3 mice were analyzed for the relative proportions of transgenic and endogenous P0 mRNA. In both lines, an overexpression of transgenic mRNA was observed. Note that for cDNA from wild-type (wt) littermates used as a control, only the 245-nt band was detected, confirming the specificity of the 228-nt band for transgenic P0 cDNA. Aliquots of different PCR cycle numbers (22, 24, and 26) were analyzed in order to ensure that only the logarithmic phase of PCR was considered for quantification. The P0sub3-transgenic samples and the corresponding wild-type control were grouped from different parts of the same gel for reasons of space (film exposure was identical).
The transgenic P0 mRNA is overexpressed compared with the endogenous P0 transcripts in P0sub mice

To determine the ratio between transgenic and endogenous P0 message in P0sub mice, we used an RT-PCR assay based on a method described by Feltri et al. (1999), exploiting a DdeI site present in the sub transgene, but not in the endogenous P0 (Fig. 2 A). After DdeI digestion of RT-PCR products from sciatic nerves, a 228-nt band, corresponding to the transgenic message, was observed in all samples from transgenic mice, and appeared more intense than a 245-nt band representing the endogenous P0 mRNA (Fig. 2 B). The 228-nt band was specific, as omission of reverse transcription product did not produce any bands (unpublished data), and DdeI digestion of RT-PCR product from wild-type animals only yielded the 245-nt band (Fig. 2 B). Densitometry revealed that in P0sub1 and P0sub3 mice, the transgenic P0 mRNA is approximately sixfold overexpressed relative to the endogenous P0 mRNA (Table I).

P0 protein is not overexpressed in myelin of P0sub mice

The content of P0 within peripheral nerves was estimated by immunoblot analysis of total nerve homogenates (Fig. 3, A and B). The P0-immunoreactive bands of transgenic mice in the founder lines P0sub1 (Fig. 3 A) and P0sub3 (Fig. 3 B) were decreased by ~10-fold when compared with equal protein amounts of wild-type mice (Table II). This finding might reflect the strong hypomyelination observed in peripheral nerves (see below), but does not relate to the amount of P0 protein incorporated into myelin.

To investigate if the abnormal phenotype of P0sub mice is the result of an overexpression of P0 protein in myelin, we characterized the myelin fraction of peripheral nerve homogenates by immunoblot analysis (Fig. 3, C and D). We obtained different results for the two founder lines: although the amount of P0 in the myelin fraction of P0sub1-transgenic mice (Fig. 3 C) was reduced by approximately fivefold compared with wild-type mice, the P0sub3-transgenic mice (Fig. 3 D) showed a P0 content in the range of that seen in wild-type mice (Table II). These data exclude the possibility that an over- or underexpression of P0 protein in peripheral

Table I. P0 transgenic mRNA is overexpressed relative to endogenous mRNA in P0sub mice

Mouse line	P0sub1	P0sub3
Fold overexpression of transgenic mRNA	6.0 ± 0.3	6.1 ± 0.7

Mice were 42 d old; n = 4 for both lines; values are given as mean ± SD.

Table II. P0 protein expression in P0sub-transgenic mice relative to wild-type littermates

Mouse line	P0sub1	P0sub3
Expression of P0 protein in sciatic nerve homogenate	1.00 ± 0.29	0.12 ± 0.05
Expression of P0 protein in myelin fraction	1.00 ± 0.48	0.21 ± 0.03

*Average P0 protein level in wild-type animals was set to 1; mice were 56 d old; n = 3 for both lines; values are given as mean ± SD.
The Journal of Cell Biology

Myelin may cause the abnormal phenotype of P0sub-transgenic mice.

Light microscopic and ultrastructural abnormalities in the peripheral nervous system of the P0sub-transgenic mice adult stage. To obtain quantitative histopathological data, we investigated the two major branches of the femoral nerve of P0sub1 and P0sub3 mice, comprising the motor quadriceps and cutaneous saphenous nerve, by EM. The quadriceps nerve contains ~550 myelinated axons that are predominantly of larger caliber, whereas the saphenous branch comprises ~650 myelinated axons of predominantly smaller caliber (Lindberg et al., 1999). In addition, and as opposed to the quadriceps nerves, unmyelinated nerve fibers are abundant in the saphenous branch.

In 6-mo-old wild-type mice, the two major branches of the femoral nerves were completely myelinated. However, in both lines of the transgenic mice, myelination was severely impaired in both branches of the femoral nerve, but axon numbers were not significantly reduced in these nerves (568 ± 14.8 in the mutants and 554 ± 16.7 in wild types; P > 0.3). The typical pathological profiles in the cross-sectioned femoral nerves were abnormally folded myelin profiles and myelin thickenings of normal compaction (~12 and 10% of all axonal profiles of lines P0sub1 and P0sub3, respectively; Fig. 4 and Fig. 5). In the following, we designate these abnormalities as tomacula. In addition, abnormally thin myelinated profiles (~9 and 10% in P0sub1 and P0sub3, respectively) or axons completely devoid of myelin (43 and 48% in P0sub1 and P0sub3, respectively) were abundant (Fig. 4 and Fig. 5 A). Furthermore, supernumerary Schwann cells in the form of onion bulbs were frequently seen (Fig. 5 A). These abnormal features were also seen in sciatic nerves (Fig. 5 C) and spinal roots (Fig. 5 D), and are highly reminiscent of those described for sural nerve biopsies from a CMT1B patient carrying the same P0 mutation as the transgenic mice (Gabreëls-Festen et al., 1996).

As a next step, we investigated single-fiber preparations from quadriceps nerves of both wild-type and mutant mice. In wild-type mice, myelin sheaths were regularly shaped with nodes of Ranvier forming the borders of apposing sheaths (Fig. 5 E). By contrast, in both transgenic lines, all fibers prepared were of abnormal appearance (50 fibers from 2 different mutant mice of each line). Each of the fibers showed tomacular swellings that were either internodal or at a paranodal position (Fig. 5 F). In addition, and in support of the electron microscopic analyses, the aspects not associated with tomacula showed much thinner myelinated profiles than those of wild-type mice, or lacked myelin completely.

Electrophysiological investigations of adult mice of the P0sub1 line revealed a robust reduction of amplitudes of compound muscle action potentials of plantar muscles from 12.8 mV (±2.9 mV) in wild-type mice to 1.1 mV (±0.19 mV) in the mutants. Mean nerve conduction velocity was reduced from 40.2 m/s (±2.9 m/s) to 2.0 m/s (±0.3 m/s, P < 0.001) with dispersed response. F-wave latency could not be recorded at this age (Fig. 6), but in 2-mo-old mutants, a dramatically prolonged F-wave (4.7 ± 0.4 ms in wild-type mice vs. 48 ± 5.5 ms in the mutants, P < 0.001) could be recorded. Similar values were obtained from line P0sub3 (unpublished data).

Developmental stages. To investigate whether the severe myelinopathy of the transgenic mice developed at onset of myelination or was the result of myelin degeneration, we investigated the quadriceps branch of the femoral nerve of wild-type and transgenic mice at 4 and 10 d, and at 1 and 4 mo of age.

In 4-d-old wild-type mice, ~50% of the fibers of the quadriceps nerve showed myelin sheaths that were all of thin appearance (Fig. 4). In 10-d-old mice, almost all fibers were myelinated, including myelin sheaths of normal and low thickness (Fig. 4). During the following stages, all myelinated fibers of the wild-type mice increased in diameter and achieved their final size at 4 mo.

In both mutant lines, there was no detectable myelin at postnatal d 4 and only very few fibers showed myelinated aspects at postnatal d 10 (Fig. 4). At 1 mo after birth, three groups of myelinated fibers were detectable comprising visually normal myelin, myelin tomacula, and abnormally thin myelin (Fig. 4). These myelin-like sheaths constantly increased in number up to 6 mo after birth, the oldest stage investigated. In spite of this increase, ~43 and 48% of the nerve fibers of P0sub1 and P0sub3, respectively, remained.

Figure 4. P0sub causes impaired myelin development, myelin arrest, and tomacular abnormalities. Left side: EM-based morphometric analysis of femoral quadriceps nerves of developing (4 d, 10 d, and 1 mo) and adult (4 and 6 mo) P0sub1 and P0 wt mice. The numbers of the distinct morphological profiles (e.g., the “number of axons with myelin of normal thickness”) are given as percentage values of the total axon number of the femoral nerve (~550). “n” indicates the number of mice used for a respective age. Right side: representative semi-thin sections of femoral quadriceps nerves of 6-mo-old P0sub1 mutants and wt mice, reflecting the strongly impaired myelin formation in the mutants. Arrows indicate tomacular profiles in the mutant, asterisks nonmyelinated axons of larger caliber. More pathological details are given in Fig. 5. Bar in the bottom micrograph (for both micrographs) is 20 μm.
unmyelinated (see above and Fig. 4). It is of note that the developing Schwann cells of the mutant showed an abnormal cytological appearance in that many of them contained abundant cytoplasmic myelin ovoids (unpublished data).

Discussion

The phenotype of P0sub mutants is caused by a P0 missense mutation

To develop an authentic mouse model for one severe and early onset form of CMT1B, we have generated two independent transgenic mouse lines expressing the pathogenic CMT1B missense mutation Ile106Leu (Gabreëls-Festen et al., 1996) under the control of the P0 promoter (Feltri et al., 1999) on a wild-type genetic background. Both P0sub mouse lines showed severe impairment of their motor abilities with remarkable muscle weakness. Morphological investigation of peripheral nerves of these mice revealed a severe myelinopathy that includes features of early onset dysmyelination, such as prominent hypomyelination and tomacula formation in all nerve fibers. These characteristics are very similar to the pathological phenotype of the severely affected
overexpressed in the adult Tg80.2 mutant by a factor of approximately sixfold overexpressed relative to the endogenous P0 message in P0sub mice and found that in the absence of myelin decompaction. Thus, our results strongly suggest that the pathological phenotype of tomacula in P0sub-transgenic mice is the result of a dominant-negative gain of function effect of P0 protein levels differed by a factor of ~5 in the myelin fractions from the two sublines and never exceeded those of wild-type littermates. Occurrence of tomacula cannot be explained by the overexpression of P0 transcripts because tomacula have never been observed in transgenic mice overexpressing P0 (Wrabetz et al., 2000; Yin et al., 2000). Another transgenic mutant developed in our laboratory in parallel with P0sub1 and P0sub3, which expresses a human P0 mutation causing a DSS, does not produce myelin tomacula either, but is characterized by reduced myelin thickness (unpublished data). Therefore, we conclude that tomacula formation and most probably also the observed arrested myelination is a unique feature of P0sub1 and P0sub3 mice reflecting the effects of the substitution mutation.

The P0sub mutation is consistent with a dominant-negative gain of function

The most common features of CMT1B are hypo- and demyelination, combined with onion bulb formation. However, based on additional neuropathological features, two divergent forms of the disorder have been described (Gabreëls-Festen et al., 1996). The first form is characterized by the frequent occurrence of uncompacted myelin (~20–70% of myelinated fibers), whereas tomacula are almost absent (<1%). These features are most similar to the phenotype of heterozygous P0-deficient mice (Martini et al., 1995b), which thus express the characteristic features of these forms of CMT1B. The pathology of the other type of CMT1B, including the phenotype associated with the Ile106Leu substitution, is dominated by the abundant occurrence of tomacula and a lack of uncompacted myelin (<1%; Gabreëls-Festen et al., 1996). To date, tomaculous forms of CMT1B are described for six further point mutations: Ile33Phe, Ser49Leu, Lys67Glu, Asn93Ser, Lys101Arg, and Asn102Lys (Thomas et al., 1995a; Gabreëls-Festen et al., 1996; Tachi et al., 1997; Nakagawa et al., 1999; Sindou et al., 1999; Fabrizi et al., 2000), of which the molecular pathology is unknown and which remain to be investigated in transgenic mouse models. We have shown that, in the presence of two P0 wild-type alleles, the P0sub-transgenic mice develop the same abnormal features and pathological characteristics as the human mutation Ile106Leu, which is a conservative amino acid substitution. It is worth mentioning in this context that this abnormal phenotype is not caused by a functional ablation of the mutant P0 allele in the sense that it causes a null mutation because heterozygous P0-deficient mice show normal development and maintenance of myelin until 4 mo of age, after which they display decompaction and degeneration of myelin. P0sub-transgenic mice, by contrast, show a severe and early onset dysmyelination, accompanied by the formation of tomacula in the absence of myelin decompaction. Thus, our results strongly suggest that the pathological phenotype of tomacula in P0sub-transgenic mice is the result of a dominant-negative gain of function effect of P0 protein that can impair the normal function of P0.

Figure 6. Representative traces of nerve conduction experiments with distal stimulation of the tibial nerve of 6-mo-old mice at the ankle and needle electrode recording from intrinsic foot muscles. (A) Normal amplitude of 11.0 mV and normal latency of 1.1 ms in the wild-type animal; normal F-wave response is depicted by arrowhead. (B) In the P0sub mutant (P0sub1), there is a disperse, polyphasic potential of only 1.0 mV; latency is prolonged to 5.2 ms (note different scales of time and amplitude axis). Arrows (in A and B) show stimulus artifact.
With regard to the developmental aspect of our work, we cannot rule out that the severe phenotype of the two P0sub-transgenic mouse lines is partially due to an overexpression of the mutant protein during development, possibly leading to an increased instability of the protein, as seen previously for P0 wild-type protein when transgenically overexpressed on a wild-type background (Wrabetz et al., 2000; Yin et al., 2000). However, we consider this possibility as sole cause for the impaired myelin development as unlikely. First, as mentioned above, the dysmyelinating phenotype in our mutants is different from and less severe than that of the Tg80.2 mutant studied by Wrabetz et al. (2000). Second, the frequent profiles of dysmyelinated fibers in the biopsies from the Ile106Leu patient are in line with the view that the mutation not only causes tomacula formation, but also impairs myelin formation as seen in the P0sub mice. Third, tomacula formation occurs in both P0sub lines independently of the amount of P0 protein expression in the myelin fraction. This argues that not the levels of the combined mutant and wild-type P0 proteins determine the characteristic features of the resultant mouse lines, but that the tomacula seen in the two independent founder P0sub-transgenic mice are the true consequence of this mutation. Thus, our P0sub-transgenic mice represent an animal model of the severe tomacular form of the human mutation, as originally described by Gabreëls-Festen et al. (1996).

The question of whether this mutation also leads to abnormal expression of other proteins involved in myelination, such as PMP22, MAG, and periaxin, which produce tomacula (Rebai et al., 1989; Adlkofer et al., 1995, 1997; Carenni et al., 1997; Suter and Nave, 1999) remains presently unanswerable. Tomacula are formed by homo- and heterozygous deletions of the PMP22 gene and the homozygous ablation of the myelin-associated glycoprotein MAG and periaxin. Because some of these molecules have been shown to interact with each other, such as P0 with PMP22 (D’Urso et al., 1999), and because dysregulations of a substantial set of myelin proteins in the peripheral nervous system of mutant mice deficient in a particular myelin protein have been repeatedly observed (Martini and Schachner, 1997; Menichella et al., 2001), it is possible that dysregulation in expression of the proteins so far recognized as causing tomacula may indicate a common mechanism of molecular pathology. The mechanism underlying the complex network of interdependent synthesis, degradation, and subcellular localization of the individual myelin proteins that may be affected by a mutation in one gene will remain to be investigated to allow a molecular interpretation of the abnormal phenotypes in patients affected by P0 mutations. The availability of the first mouse model carrying the human P0 mutation causing tomacula is an important step toward elucidating these mechanisms.

Materials and methods

Generation of P0sub-transgenic mice

To generate a mouse mutant expressing the pathogenic substitution P0 Ile106Leu (P0sub; Gabreëls-Festen et al., 1996; Fig. 1) under the control of the P0 promoter (Feltiri et al., 1999), the 2.68BrGlessi vector, containing a 2.6-kb BstGII fragment with exons 2–5 of the mouse P0 genomic DNA, was used for mutagenesis. The adenine at bp 1644 (ATG start codon in the genomic DNA as bp 1) was substituted to thymine using the Seamless PCR cloning kit (Stratagene) according to the manufacturer’s protocol. In brief, the whole vector was amplified with primers flanking and containing the mutation and was re-ligated. A Stul-EcoRI fragment encoding exon 2 and mutated exon 3 of the resulting 2.68BrGlessi-P0sub vector was cloned into the mP0.7blue vector (Lemke et al., 1988; Feltiri et al., 1999), containing exons 2–6. Finally, an EcoRI fragment of the vector mP0Evlblue (You et al., 1991; Feltiri et al., 1999) comprising the P0 promoter and exon 1 was inserted into the EcoRI-digested mP0.7blue-P0sub vector.

The resulting transgenic constructs were verified by sequence analysis, and 2.6-kb fragments were excised from the vectors using SpeI. The transgenes were microinjected into Friend virus B-type susceptibility (FVB) zygotes using standard techniques (Hogan et al., 1994). Three P0sub founder mice were identified by PCR and were crossed with wild-type FVB mice. Breeding lines of two P0sub founders (called P0sub1 and P0sub3) were crossed to FVB mice.

RT-PCR

Sciatic nerves were dissected from 6-wk-old P0sub1- and P0sub3-transgenic wild-type and from the respective P0sub wild-type littermates prepared using the RNaseq Lipid Tissue kit (Qiagen) according to the manufacturer’s instructions. To analyze transgene relative to endogenous P0 expression, we used a modified version of the protocol described by Feltiri et al. (1999). For this purpose, we exploited the A–T point mutation responsible for the Ile106Leu amino acid exchange. In brief, 200 ng total RNA was reverse transcribed using Moloney Murine Leukemia Virus Reverse Transcriptase (Promega) and random hexanucleotide primers (American Biosciences). Equal volumes of the reverse-transcribed product from sciatic nerves of transgenic and wild-type animals were amplified in the presence of 1(25)PdATP, using a single primer pair recognizing P0 exon 2 (5’-TCTCAGTGAATGGCTTCAG-3’) and exon 4 (5’-GCCTCAAACCACACCCCCATA-3’) that flanks a Ddel site present in the P0 subtransgene only. PCR conditions were: initial enzyme activation at 95°C for 15 min, followed by cycles consisting of 94°C for 30 s, 63°C for 60 s, and 72°C for 60 s; and a final extension step at 72°C for 10 min, in a standard PCR reaction mixture containing HotStar Taq DNA polymerase (Qiagen). To avoid the formation of heteroduplexes between the PCR products containing the additional Ddel site and those lacking this site, only cycles in the logarithmic range were chosen. Unincorporated nucleotides were removed from the RT-PCR products using Micro Bio-Spin P-30 columns (Bio-Rad Laboratories) according to the manufacturer’s instructions. 4 μl of the purified RT-PCR products was digested with Ddel (New England Biolabs) at 37°C for 90 min. DNA fragments were resolved by PAGE and visualized both by phosphorimaging and by autoradiography. Density of the bands was quantified by densitometry using AlphaEaseFC (Fuji) using TINA 2.09 software (Raytest), and the ratio between the transgenic-specific 228-bp fragment and the endogene-specific 245-bp fragment was calculated. To correct for the difference in incorporated dATPs, this intensity ratio was multiplied by a correction factor (1.063), yielding the transgenic P0 message/endogeneous P0 message ratio.

Preparation of sciatic nerve homogenates and immunoblot analysis

The sciatic nerves of 2-mo-old wild-type and transgenic mice were homogenized in lysis buffer (20 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1% NP-40, and 1x Complete® protease inhibitor cocktail [Roche]) and incubated at 4°C for 30 min. The homogenates were cleared by centrifugation three times at 12,000 g at 4°C for 20 min. The protein concentrations of homogenates were determined using the BCA Protein Assay kit (Pierce Chemical Co.). The samples were denatured in 5x sample buffer (10% glycerc), 5% β-mercaptoethanol, 5% SDS, and 0.1% bromphenol blue at 95°C for 5 min and subjected to SDS-PAGE and immunoblot analysis using monoclonal (PO7; 1:1,000 diluted; a gift of Dr. Juan Archelos; Archelos et al., 1993) or polyclonal (1:750 diluted) P0 antibodies. Primary antibodies were detected with HRP-conjugated anti-rat or anti-rabbit IgG (Dianova), and were visualized with ECL chemiluminescement substrate (Amerham Biosciences). For the quantification of P0 expression (BioMax; Kodak), images were captured by high resolution (600 × 600 dpi) 8-bit (256 gray level) microdensitometry with a flat-bed scanner (Ar- cus II; Agfa). The images were analyzed for optical density of bands using image analysis software (GelWorks 1D; Ultra-Violet Products). To determine the ratio between P0 expression in transgenic animals and P0 expression in wild-type animals, intensities of the main P0-immunoreactivity band (25 kD) were measured in lanes loaded with different amounts of total protein (see Fig. 3) and were normalized to the total protein amount.
Myelin preparation

8-wk-old mice (5 wild-type and 15 transgenic animals for each mouse line) were anaesthetized using pentobarbital (Narcoren®) and subsequently perfused with PBS for 3–5 min in order to remove blood from peripheral nerves. Sciatric nerves, femoral nerves, and dorsal roots were prepared and frozen in liquid nitrogen. For homogenization, the nerves were mixed with ice-cold homogenization buffer (5 mM Tris-HCl, pH 7.4, 1 mM NaHCO₃, and 320 mM sucrose) and homogenized in a Potter homogenizer. The homogenate was centrifuged at 100 g for 4°C for 10 min. After this centrifugation step, the pellet and the supernatant were collected. The pellet was resuspended in homogenization buffer, and supernatant and homogenized pellet were applied on top of the first step sucrose gradient (320 mM – 650 mM – 1 M – 1.2 M). The gradients were centrifuged at 100,000 g for 4°C for 1 h. The interface between the 320-mM and 650-mM sucrose solution was collected, diluted with homogenization buffer, and centrifuged again for 20 min at 100,000 g. The resulting pellets were osmotically shocked and treated with 5 mM Tris-HCl, pH 8.3, for 45 min on ice. Afterwards, the samples were centrifuged at 100,000 g and 4°C for 20 min. The pellets were suspended in 5 mM Tris-HCl, pH 8.3, and applied to the top of a second sucrose step gradient (0 mM – 650 mM – 850 mM – 1 M – 1.2 M). The gradient was centrifuged at 100,000 g and 4°C for 1 h. The myelin fraction was collected at the 0 – 650 mM sucrose interface, washed in ice-cold PBS and centrifuged for 30 min at 100,000 g. The resulting pellet was suspended in PBS and frozen at –80°C. Protein content of the samples was determined and immunodot analyses were performed as described (see above).

Preservation of tissue for light and electron microscopy

Femoral and sciatric nerves were processed for light and electron microscopy as reported earlier (Carenini et al., 2001). The mice were transcardially perfused using 4% PFA and 2% glutaraldehyde in 0.1 M cacodylate buffer (pH 7.4). The nerves stayed in the same fixative overnight, followed by osmification and embedding in Spur's medium. For light microscopic analysis, 0.5-µm-thick semi-thin sections from femoral nerves were stained with alkaline methylene blue and were investigated with a light microscope (Axioskop; Carl Zeiss MicroImaging, Inc.) using a 40× objective. For EM, ultrathin sections of 70-nm thickness were counterstained with lead citrate and investigated using an electron microscope (model EM 10B; Carl Zeiss MicroImaging, Inc.). Primary magnification was between 2,500 and 25,000.

Morphometry

The quantitative analysis of pathological changes was performed on ultrathin sections using a BioVision slow scan camera attached to the Zeiss EM 10B microscope and using the corresponding software analySIS 3.0 Doku (Soft Imaging Systems). The following morphological parameters were assessed: axons with myelin of normal thickness, axons with thin myelin, axons with folded myelin/tomacula, and myelin-deficient axons (larger than 1 µm in diameter) devoid of myelin. For the determination of relative myelin thickness, the g-ratio (a reciprocal measure of myelin thickness; Friede, 1972), was determined as recently described (Kobsar et al., 2003).

Statistical analysis

Comparison of the pathological features of the different genotypes was done by use of a Mann-Whitney U-test and statistical significance was defined for P < 0.05. Statistical analysis of the data was performed by use of Excel (Microsoft) and SYSTAT (SPSS, Inc.). Graphs were made using SigmaPlot 2001 (SPSS, Inc.).

Single-fiber preparations

Preparation of single nerve fibers was performed according to Martini et al. (1995). In brief, sciatric nerves of transcardially perfused mice (see earlier in the Materials and methods) were removed and connective tissue around the nerves was stripped off, followed by gentle “pre-teasing” of fiber bundles. After osmification of bundle and dehydration with acetone, single fibers were transferred into a droplet of Spur’s medium on a slide, followed by cover-slipping and polymerization at 60°C. Light microscopy was performed with an Axioskop light microscope (Carl Zeiss MicroImaging, Inc.) using a 40× objective.

Electrophysiological measurements

Nerve conduction experiments of sciatric nerves from 4- and 6-mo-old mice were performed by established electrophysiological methods as described previously (Zielasek et al., 1996). In brief, after anesthesia the compound muscle action potential was recorded with two needle electrodes in the foot muscles after distal stimulation of the tibial nerve, one main branch of the sciatric nerve at the ankle, and proximal stimulation of the sciatric nerve at the sciatic notch. In all experiments, the investigator was not aware of the genotype. Statistical analysis was performed using a one-tailed t-test for grouped data.

The authors are grateful to Dr. Michael Wüls for microinjection and transplantation of zygotes, to Dr. Martin Ador and Dr. Astrid Rollenhagen for help with preparation of nerves, to Dr. Laura Feltri for providing us with P0 vector constructs and for helpful suggestions and discussions, to Dr. Uwe Borgmeyer for help with the RT-PCR experiments and helpful comments on the manuscript, and to Dr. Juan Archelos for providing the P07 antibody. We thank Eva Kronberg for animal care and Heinrich Blazyczka for excellent technical assistance (issue processing for light and electron microscopy).

This work is supported by the Deutsche Forschungsgemeinschaft (SBF 581, Priority Program “Microglia” MA1053/3, to R. Martini) and by the Gemeinnützige Hertie-Stiftung (to M. Schachner and R. Martini).

Submitted: 17 February 2004
Accepted: 19 April 2004

References

Adkofler, K., R. Marrini, A. Agazzi, J. Zielasek, K.V. Toyka, and U. Suter. 1995. Hypermyelinization and demyelinating peripheral neuropathy in Pmp22-deficient mice. Nat. Genet. 11:274–280.

Adkofler, K., R. Frei, D.H. Neueberg, J. Zielasek, K.V. Toyka, and U. Suter. 1997. Heterozygous peripheral myelin protein 22-deficient mice are affected by a progressive demyelinating tomacular neuropathy. J. Neurosci. 17:4662–4671.

Archelos, J.J., K. Roggenbuck, J. Schneider-Schaullies, C. Linington, K.V. Toyka, and H.P. Hartung. 1993. Production and characterization of monoclonal antibodies to the extracellular domain of P0. J. Neurosci. Res. 35:46–53.

Bennett, C.L., and P.F. Chanse. 2001. Molecular pathogenesis of hereditary motor, sensory and autonomic neuropathies. Curr. Opin. Neurol. 14:621–627.

Boerkoel, C.F., H. Takashima, S. Kastwiek, C.A. Garcia, S.M. Leber, L. Rhee-Morris, and J.R. Lupski. 2001. Pertaxin mutations cause recessive Dejerine-Sottas neuropathy. Am. J. Hum. Genet. 68:325–333.

Cai, Z., K. Cash, J. Swift, P. Sutton-Smith, M. Robinson, P.D. Thompson, and P.C. Blumbergs. 2001. Focal myelin swellings and tomacula in anti-MAG IgM paraproteinaemic neuropathy: novel teased nerve fiber studies. J. Peripher. Nerv. Syst. 6:95–101.

Cai, Z., P. Sutton-Smith, J. Swift, K. Cash, J. Finnie, A. Tunley, P.D. Thompson, and P.C. Blumbergs. 2002. Tomacula in MAG-deficient mice. J. Peripher. Nerv. Syst. 7:181–189.

Carenini, S., D. Montag, H. Cremer, M. Schachner, and R. Martini. 1997. Absence of the myelin-associated glycoprotein (MAG) and the neural cell adhesion molecule (N-CAM) interferes with the maintenance, but not with the formation of peripheral myelin. Cell Tissue Res. 287:3–9.

Carenini, S., M. Maurer, A. Werner, H. Blazyczka, K.V. Toyka, C.D. Schmid, G. Rainich, and R. Martini. 2001. The role of macrophages in demyelinating peripheral nervous system mice of heterozygously deficient in P0. J. Cell Biol. 152:301–308.

D’Urso, D., P. Ehrhardt, and H.W. Muller. 1999. Peripheral myelin protein 22 and protein zero: a novel association in peripheral nervous system myelin. J. Neurosci. 19:3596–3403.

Dyck, P.J., P. Chance, R. Lebo, and J.A. Carney. 1993. Hereditary motor and sensory neuropathies. In Peripheral Neuropathy, 3rd ed. P.J. Dyck, P.K. Thomas, J.W. Griffin, P.A. Low, and J.F. Poduslo, editors. W.B. Saunders, Philadelphia. 1094–1136.

Fabrizi, G.M., F. Taisi, T. Cavallaro, F. Rigatelli, A. Simonati, G. Mariani, P. Perrone, and N. Rizzuto. 2000. Focally folded myelin in Charcot-Marie-Tooth neuropathy type 1B with Ser49Leu in the myelin protein zero. Acta Neuropathol. (Berl.) 100:299–304.

Feltri, M.L., M. D’Antonio, A. Quattrini, R. Numerato, M. Arona, S. Previtali, S.Y. Chiu, A. Messing, and L. Wiznitzer. 1999. A novel P0 glycoprotein transgene activates expression of IaC2 in myelin-forming Schwann cells. Eur. J. Neurosci. 11:1577–1586.

Friede, R.L. 1972. Control of myelin formation by axon caliber (with a model of the control mechanism). J. Comp. Neurol. 144:233–252.

Gabreëls-Festen, A.A., E.M. Joosten, F.J. Gabreëls, D.F. Stegeman, A.J. Vos, and
that both proteins contribute to the formation of the major dense line in peripheral nerve myelin. J. Neurosci. 15:4888–4905.

Martini, R., J. Zielasek, K.V. Toya, K.P. Giese, and M. Schachner. 1995b. Protein zero (P(0))-deficient mice show myelin degeneration in peripheral nerves characteristic of inherited human neuropathies. Nat. Genet. 11:281–286.

Martini, R., J. Zielasek, and K.V. Toya. 1998. Inherited demyelinating neuropathies: from gene to disease. Curr. Opin. Neurol. 11:545–556.

Menichella, D.M., E.J. Arroyo, R. Awatramani, T. Xu, P. Baron, J.M. Vallat, J. Baasamo, J. Lilien, G. Scarlato, J. Kamholz, et al. 2001. Protein zero is necessary for E-cadherin-mediated adhesions junction formation in Schwann cells. Mol. Cell. Neurosci. 18:606–618.

Nakagawa, M., M. Suetara, H. Takahashia, F. Umehara, M. Saito, N. Kanazato, T. Matsuzaki, S. Takenaga, S. Sakoda, et al. 1999. A novel MPZ gene mutation in dominantly inherited neuropathy with focally folded myelin sheaths. Neurology. 52:1271–1275.

Rebai, T., C. Mihi, P. Heine, H. Charfi, C. Meyrignac, and R. Gherardi. 1989. Focal myelin thickenings in a peripheral neuropathy associated with IgM monoclonal gammapathy. Acta Neuropathol. (Berl.) 79:226–232.

Schneider-Schaulies, J., A. von Brunn, and M. Schachner. 1990. Recombiant peripheral myelin protein P0 confers both adhesion and neurite outgrowth-promoting properties. J. Neurosci. Res. 27:286–297.

Shapiro, L.J., P.P. Doyle, P. Hensley, D.R. Colman, and W.A. Hendrickson. 1996. Crystal structure of the extracellular domain from P0, the major structural protein of peripheral nerve myelin. Neuron. 17:435–449.

Shy, M.E., J.Y. Garbern, and J. Kamholz. 2002. Hereditary motor and sensory neuropathies: a biological perspective. Lancet Neurol. 1:110–118.

Sindou, P., J.-M. Vallat, F. Chapon, J. Archelos, F. Tabaraud, T. Anani, K. Braund, T. Maisonneuve, J.-H. Hauze, and A. Vandenbergehe. 1999. Ultrastructural protein zero expression in Charcot-Marie-Tooth Type 1B disease. Muscle Nerve. 22:99–104.

Suter, U., and K.A. Nave. 1999. Transgenic mouse models of CMT1A and HNPP. Ann. NY Acad. Sci. 883:247–253.

Tachi, N., N. Kozuka, K. Ohyaa, S. Chiba, and K. Sasaki. 1997. Tomaculous neuropathy in Charcot-Marie-Tooth disease with myelin protein zero gene mutation. J. Neurol. Sci. 153:106–109.

Takashima, H., C.F. Boerkoel, P. De Jonghe, C. Ceuterick, J.J. Martin, T. Voit, J.M. Schroder, A. Williams, P.J. Brophy, V. Timmerman, and J.R. Lupski. 2002. Periaxin mutations cause a broad spectrum of demyelinating neuropathies. Ann. Neurol. 51:709–715.

Thomas, F.P., R.W. Lebo, G. Rosoklija, X.S. Ding, R.E. Lovelace, N. Latov, and A.P. Hays. 1994. Tomaculous neuropathy in chromosome 1 Charcot-Marie-Tooth syndrome. Acta Neuropathol. (Berl.) 87:91–97.

Warner, L.E., M.J. Hile, S.H. Appel, J.M. Killian, E.H. Kolody, G. Karpati, S. Carpenter, G.W. Watters, C. Wheeler, D. Witt, et al. 1996. Clinical phenotypes of different MPZ (P0) mutations may include Charcot-Marie-Tooth type 1B, Dejerine-Sottas, and congenital hypomyelination. Neuron. 17:451–460.

Wrabetz, L., M.L. Feltrin, A. Quattrini, D. Imperiale, S. Previtali, M. D’Antonio, R. Martinis, X. Yin, B.D. Trapp, L. Zhou, et al. 2000. P(0) glycoprotein overexpression causes a broad spectrum of demyelinating neuropathies. Ann. Neurol. 51:709–715.

You, K.H., C.L. Hsieh, C. Hayes, N. Stahl, U. Francke, and B. Popko. 1991. DNA sequence, genomic organization, and chromosomal localization of the mouse peripheral myelin protein zero gene: identification of polymorphic alleles. Genomics. 9:751–757.

Young, P., and U. Suter. 2001. Disease mechanisms and potential therapeutic strategies in Charcot-Marie-Tooth disease. Brain Res. Brain Res. Rev. 36:213–221.

Young, P., and U. Suter. 2003. The causes of Charcot-Marie-Tooth disease. Cell. Mol. Life Sci. 60:2547–2560.

Zielasek, J., M. Martini, and K.V. Toya. 1996. Functional abnormalities in P(0)-deficient mice resemble human hereditary neuropathies linked to P0 gene mutations. Muscle Nerve. 19:946–952.