I. INTRODUCTION
ADP-ribosylation is a unique class of posttranslational modifications of proteins using NAD as the donor of the modifying group. As compared with phosphorylation and other modifications, ADP-ribosylation is unique in that the modifying group, ADP-ribose, takes the form of not only monomer but also polymer, and that there are a large variety of enzymes and acceptors [1, 2]. In this presentation, we make a brief review of mono- and poly (ADP-ribosyl)ation, and then report results of our recent research focussed mainly on poly (ADP-ribosyl)ation.

II. MONO- AND POLY (ADP-RIBOSYL)ATION
ADP-ribosylation is classified into two types, mono (ADP-ribosyl)ation and poly (ADP-ribosyl)ation, according to the ultimate length of (ADP-ribose)ₙ chain. Poly (ADP-ribosyl)ation starts with mono (ADP-ribosyl)ation, followed by consecutive transfers of ADP-ribose units, leading to formation of a polymer, termed poly (ADP-ribose). In the cell, the two types of reactions are localized in different compartments, viz. mono (ADP-ribosyl)ation in cytoplasm and poly (ADP-ribosyl)ation in the nucleus. The two differ also in acceptor amino acids; diphthamide, arginine, cysteine, and asparagine are the sites for mono (ADP-ribosyl)ation, whereas glutamic acid, aspartic acid, and C-terminal amino acid (e.g., lysine of histone H1) are the sites for poly (ADP-ribosyl)ation.

Mono (ADP-ribosyl)ation is widely distributed among eukaryotes and prokaryotes (Table 1). Many of the prokaryotic enzymes are known as bacterial toxins. Recently, similar endogenous enzymes have been found in mammalian cells. Arginine-specific, cysteine-specific and asparagine-specific ADP-ribosylations affect functions of G-proteins, including Gₛ, transducin (Gₜ), G₁, Go, rho, and other small Mr GTP-binding proteins.

In contrast, poly (ADP-ribosyl)ation is found only in eukaryotes, and catalyzed almost exclusively by a single enzyme, poly (ADP-ribose) synthetase (also termed polymerase). Many nuclear proteins, including poly (ADP-ribose) synthetase itself, serve as acceptors in vivo and/or in vitro (Table 2). As indicated by this variety of acceptors, poly (ADP-ribosyl)ation has been implicated in various nuclear functions, such as DNA repair, oncogenesis, cell differentiation, and cell cycle events, particularly, chromatin condensation/decondensation [1, 2]. In order to elucidate molecular bases of these intricate functions of poly (ADP-ribosyl)ation, we investigated the primary structure and specific inhibitors of the synthetase [3].

III. STRUCTURE OF POLY (ADP-ROBOS) SYNTHETASE
We investigated the primary structure of the synthetase by cDNA cloning. The nucleotide sequence of cDNA and deduced amino acid sequence of calf thymus poly (ADP-ribose) synthetase [4] indicated that this enzyme consists of 1016 amino acid residues, and is composed of three functional domains, i.e., N-terminal DNA-binding, central automodification, and C-terminal NAD-binding domains.

A comparison of the amino acid sequence of bovine poly (ADP-ribose) synthetase with those of human and mouse enzymes reported by others showed that the whole sequence has been well conserved throughout evolution, the DNA-binding domain being the lowest and the NAD-binding domain the highest in homology. We identified many functional segments that are almost completely conserved among the three species [4]. They are; repeated zinc-binding finger motifs, repeated...
helix-turn-helix structures, and nuclear location signal in the DNA-binding domain, all glutamic acid and aspartic acid residues in the automodification domain, and A and B sites of nucleotide-binding fold in the NAD-binding domain. These conserved segments in the three domains appear to contribute to multiple DNA-enzyme interactions, ADP-ribose acceptance, and strict specificity for the substrate, NAD, respectively.

IV. INHIBITORS OF POLY(ADP-RIbose) SYNTHETASE

From the viewpoint that all known inhibitors currently used for the synthetase, including nicoti-

TABLE 1
Mono(ADP-ribosyl)ation reactions.

Enzyme	Acceptors	Reporters
Diphtheria-specific ADP-ribosyltransferases	Elongation factor 2	Honjo et al. 1968
Pseudomonas toxin	Elongation factor 2	Iglewski & Kabat 1975
Mammalian cytoplasmic enzyme	Elongation factor 2	Lee & Iglewski 1984
Arginine-specific ADP-ribosyltransferases	RNA polymerase and other	Rohrer et al. 1975
Cholera toxin	G_α protein	Goff 1974
	Microtubule proteins	Cassel & Pfeuffer 1978
	Transducin	Gill & Meren 1978
	Myelin basic protein	Amir-Zaltsman et al. 1982
E. coli enterotoxin LT	G_α protein	Hawkins & Browning 1982
Avian erythrocyte enzyme	G_α protein	Abood et al. 1982
Mammalian cytosolic enzyme	Soluble proteins	Moss & Richardson 1978
Mammalian membrane enzyme	G_α protein and other membrane proteins	Moss & Vaughan 1978
Mammalian mitochondrial enzyme	Mitochondrial inner membrane protein	Beckner & Blecher 1981
Avian nuclear enzyme	Nuclear proteins	De Wolf et al. 1981
Botulinum C2 toxin	Actin	Walaas et al. 1981
Rhodospirillum rubrum enzyme	Dinitrogenase	Adamietz et al. 1981
Clostridium perfringens iota toxin	Actin	Richter et al. 1981
Clostridium sporiforme toxin	Actin	Shimoyama et al. 1982
Cysteine-specific ADP-ribosyltransferases		Simpson 1984
Islet-activating protein	G_α protein	Ohishi & Tsuyama 1986
(Pertussis toxin)	Transducin	Van der Kerkhove et al. 1987
Human erythrocyte enzyme	G_α protein	Katada & Uii 1982
Porcine skeletal muscle enzyme	G_α protein	Manning et al. 1984
Bovine brain cytosolic enzyme	Sarcomplasmic proteins	Katada et al. 1986
Asparagine-specific ADP-ribosyltransferases		Tanuma et al. 1987
Botulinum C1, C3 & D toxins	Membrane rho & rac proteins	Soman & Graves 1988
ADP-ribosyltransferases with unknown amino acid specificity		Maehama et al. 1991
Pseudomonas aeruginosa exoenzyme S	Elongation factor 1-associated proteins	Iglewski et al. 1987
N4 phage enzyme	$E. coli$ proteins	Pesce et al. 1976
E. coli (noninfected) enzyme	$E. coli$ proteins	Skórkó & Kurf 1981
namide and 3-aminobenzamide, are associated with strong side actions in vivo, we carried out a systematic survey of the synthetase inhibitors using an in vitro assay system. From among ca. 350 compounds, we found many strong inhibitors [5] (Table 3). In terms of IC50 values, the top several compounds were 2 or 3 orders of magnitude more potent than 3-aminobenzamide (IC50 = 33 μM) or nicotinamide (IC50 = 210 μM), respectively. All of them shared a common structure, i.e., a benzene ring with an attached carboxamide group, free or extended into a heterocyclic ring.

Among inhibitors were included a number of natural compounds, some of them belonging to the vitamin group [6]. The strongest inhibitors, as judged by IC50 values, were essential fatty acids, particularly, arachidonic and linoleic acids, followed by vitamin K derivatives. The potency of arachidonic acid was comparable to that of 3-aminobenzamide.

Most of strong inhibitors exhibited mixed-type inhibition with respect to NAD [5]. A rather small number of inhibitors, including xanthurenic acid and 5-nitrouracil, acted competitively with NAD.

V. INHIBITORS OF ADP-RIBOSYLTRANSFERASES AND THEIR APPLICATIONS

In parallel to studies of poly(ADP-ribose) synthetase inhibitors, we searched for inhibitors of mono(ADP-ribosyl)transferase [5]. We employed arginine-specific mono(ADP-ribosyl)transferase from hen heterophils, a kind gift from Dr. Shimoyama (Shimane Medical University). The strongest inhibitors we found for this enzyme were vitamin Ks and saturated long-chain fatty acids.

By comparing IC50 values on mono(ADP-ribosyl)transferase and poly(ADP-ribose) synthetase, we classified inhibitors into three groups, i.e., poly-specific, mono-specific, and effective to both (Table 3). It is clear that most of strong inhibitors of poly(ADP-ribose) synthetase are specific for

Enzyme	Acceptor/Protein	Reporters
Nuclear enzyme		
[Poly(ADP-ribose) synthetase]	Histones	Nishizuka et al. 1968
	Ca++, Mg++-Endonuclease	Yoshihara 1974
	RNA polymerase I	Müller & Zahn 1976
	Poly(ADP-ribose) synthetase	Yoshihara et al. 1977
	HMG proteins	Kawauchi et al. 1978
	A24 protein	Okayama & Hayashi 1978
	Actin	Kun 1980
	RNAs	Leone et al. 1980
	SV40 T antigen	Goldman et al. 1981
	Adenovirus T antigen	Goding & Russel 1981
	Nucleolar proteins	Kawashima & Izawa 1981
	Nuclear matrix proteins	Ueda et al. 1981
	InRNA-associated proteins	Kostka & Schweiger 1982
	Polyoma virus minichromosome	Prieto-Soto et al. 1983
	Topoisomerase I	Jongstra-Vilen et al. 1983
	Stress-induced protein	Carlsson & Lazarides 1983
	DNA replicase	Yoshihara et al. 1984
	DNA polymerases α & β	Yoshihara et al. 1984
	DNA ligase II	Yoshihara et al. 1984
	RNA polymerase II	Taniguchi et al. 1985
	Terminal deoxynucleotidyl transferase	Yoshihara et al. 1985
Extranuclear enzymes		
Microsomal enzyme	Histones	Roberts et al. 1975
Mitochondrial enzyme	M-band proteins	Kun et al. 1975
Reovirus enzyme	Capsid proteins	Carter et al. 1980
mRNA-associated protein	mRNP proteins	Thomassin et al. 1985
TABLE 3
Inhibitory effects of various compounds on poly(ADP-ribose) synthetase and mono(ADP-ribosyl)transferase.

Compounds	IC₅₀ (µM)	Poly(ADP-ribose) synthetase (µM)	Mono(ADP-ribosyl)transferase (µM)
6(5H)-Phenanthridinone	0.30	<1000	<3333
1,5-Dihydroxyisoquinoline	0.39	890	2282
4-Amino-1,8-naphthalimide	0.18	<200	<1111
3-Hydroxybenzamide	9.1	9000	989
4-Hydroxyquinazoline	9.5	2600	274
2-Nitro-6(5H)-phenanthridinone	0.35	83	237
1-Hydroxyisoquinoline	7.0	1500	214
Benzamide	22	4500	205
2-Methyl-4(3H)-quinazolinone	5.6	1100	196
5-Iodouridine	43	7200	167
1(2H)-Phthalazinone	12	510	43
Benzoyleneurea	8.1	200	25
1,8-Naphthalimide	1.4	20	14
Oleic acid (C18:1, cis-9)	82	200	2.4
Linoleic acid (C18:2, cis-9,12)	48	90	1.9
Arachidonic acid (C20:4, cis-5,8,11,14)	44	66	1.5
Linolenic acid (C18:3, cis-9,12,15)	110	110	1.0
Vitamin K₃ (menadione)	420	120	0.29
Novobiocin	2200	280	0.13
Palmitic acid (C16:0)	>200	16	<0.08
Stearic acid (C18:0)	>500	6.1	<0.0122
Vitamin K₁ (phyllquinone)	520	1.9	0.0037

this enzyme, whereas vitamin K₅s, novobiocin, and saturated long-chain fatty acids are specific for mono(ADP-ribosyl)transferase. Unsaturated fatty acids act on both types of enzyme.

A preliminary experiment showed that one of our new inhibitors, 4-hydroxyquinazoline, was capable of inducing murine teratocarcinoma cell differentiation. It seems that new inhibitors are applicable to various biological studies of mono- as well as poly(ADP-ribosylation) reactions.

SUMMARY

Biological roles of mono- and poly(ADP-ribosylation) reactions are reviewed, along with analysis of functional sequences of poly(ADP-ribose) synthetase and inhibitors of the synthetase compared with mono(ADP-ribose)transferase.

REFERENCES
[1] Ueda, K., and Hayaishi, O. (1985): ADP-ribosylation. Annu. Rev. Biochem., 54, 73-100.
[2] Hayaishi, O., and Ueda, K., (eds.) (1982): ADP-Ribosylation Reactions: Biology and Medicine. Academic Press, New York, 598 pp.
[3] Ueda, K., Saito, I., Banasik, M., Kido, T., Das, B. R., and Komura, H. (1992): Molecular and cellular basis of poly(ADP-ribose) functions. Cell. Mol. Biol., in press.
[4] Saito I., Hatakeyama, K., Kido, T., Ohkubo, H., Nakanishi, S., and Ueda, K. (1990): Cloning of a full-length cDNA encoding bovine thymus poly(ADP-ribose) synthetase: Evolutionarily conserved segments and their potential functions. Gene, 90, 249-254.
[5] Banasik, M., Komura, H., Shimoyama, M., and Ueda, K. (1992): Specific inhibitors of poly(ADP-ribose) synthetase and mono(ADP-ribose)transferase. J. Biol. Chem., in press.
[6] Banasik, M., Komura, H., and Ueda, K. (1990): Inhibition of poly(ADP-ribose) synthetase activity by unsaturated fatty acids, vitamins and vitamin-like substances. FEBS Lett., 263, 222-224.