Review

Recent progress of the effect of environmental factors on Aspergillus flavus growth and aflatoxins production on foods

Bowen Tai,*,**** Jinghua Chang,***,** Yang Liu* and Fuguo Xing*,

*Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing. **College of Science, Liaoning Technical University, Fuxin, P. R. China

***These authors contributed equally to this work.

Correspondence to: Fuguo Xing, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, P. R. China. E-mail: xingfuguo@caas.cn

Received 2 September 2019; Revised 18 November 2019; Editorial decision 2 December 2019.

Abstract

The contamination of Aspergillus flavus and subsequent aflatoxins (AFs) has been considered as one of the most serious food safety problems due to their acute and chronic adverse effects on humans and animals. This review collects the available information from recent years on the effect of the major environmental factors such as water activity (a_w), temperature, CO_2, and pH on the fungal growth, the expression of AFs-related genes, and AFs production by A. flavus on foods. In particular, the relationship between the relative expression of key regulatory (aflR and aflS) and structural genes (aflD, aflO, aflQ, etc.) and AFs production under different environmental conditions are collected and discussed. The information collected in this review can be used to design control strategies of A. flavus and AFs contamination in practical applications, primarily during storage and processing. These data suggest that integrating various post-harvest methods with synergistic functions may be more efficient for the control of A. flavus growth and AFs production, although the individual environmental factors alone have an impact.

Key words: Aspergillus flavus; aflatoxin; water activity; temperature; CO_2.

Introduction

The moldy contamination of staple foods such as cereals has been regarded as one of the most serious food safety problems due to their acute and chronic negative effects on humans and animals (Medina et al., 2014). Certain molds such as Aspergillus flavus and Aspergillus parasiticus grown in corn, peanuts, and nuts produce aflatoxins (AFs). AFs have been classified as carcinogens in Group 1 by the International Agency for Research on Cancer (IARC, 1993, 2002). They are estimated to induce up to 25% of the total worldwide cases of hepatocellular carcinoma (HCC), the most common form of liver cancer (Liu et al., 2012; Wu, 2014). Moreover, AFs also inevitably cause acute intoxication, immune suppression, and growth retardation in children (Groopman et al., 2008). Among AFs, aflatoxin B_1 (AFB_1) was the most toxic one. The main source of exposure to AFs is the ingestion of contaminated food and feed. Therefore, the high threat of AFs to the health of humans and animals has resulted in strict legislative limits in most countries and regions of the world for AFs and AFB_1, in a wide range of foodstuffs and feeds (Commission of the European Communities, 2010; US Food and Drug Administration, 2010).

Aspergillus flavus is the predominant fungal species contaminating foodstuffs and feeds and producing AFs worldwide. It is also the main contaminant during the food storage since its ability to produce AFs and its potential to persist as a pathogen and saprophyte...
in the food supply before and after harvest (Laboura et al., 2015). Aspergillus flavus is a xerophilic fungus that has developed physiological mechanisms that adapt to environmental stress factors like low water activity (\(a_w\)), allowing them to compete and often dominate other fungal communities (Nierman, 2008; Medina et al., 2015). The competitive advantage is because its metabolic plasticity allows it to produce a range of extracellular hydrolases, secondary metabolites, and volatiles (Magan and Aldred, 2007). Therefore, preventing and controlling the fungal growth and AFs production by \(A.\ flavus\) are essential and urgent to ensure the food safety and security in the world.

To eliminate AFs contamination in food chain, the most useful and cost-effective strategy is to create an adverse environment for \(A.\ flavus\) growth and AFs production. The growth of \(A.\ flavus\) at the phenotypic level and the AFs production were observed to be associated with several environmental factors such as \(a_w\), temperature, storage time, composition of the substrate, carbon and nitrogen source, pH, light, content of oxygen (\(O_2\)) and carbon dioxide (\(CO_2\)), loss of grains’ integrity caused by insects or mechanical/thermal damage, and the interaction between fungal species that share the same ecological environment (Dantigny et al., 2005; Vaamonde et al., 2006; Astoreca et al., 2014; Medina et al., 2015). Regarding abiotic factors, \(a_w\) and temperature and their interactions have been demonstrated to be the most aetiological determinants in regulating fungal growth and secondary metabolites production (Manna and Kim, 2017; Medina et al., 2017). As an aerobic fungus, \(A.\ flavus\) growth and subsequent AFs production are highly influenced by \(CO_2\) with certain levels (Peleg et al., 1988; Mousa et al., 2016). AFs are biosynthesized by 29 genes located in a 75 Kb gene cluster in \(A.\ flavus\), including the two regulatory genes (\(aflR\) and \(aflS\)) and the structural genes such as \(aflD\), \(aflM\), and \(aflO\) (Liu et al., 2017). The biosynthesis of AFs is also regulated by genes encoding the velvet proteins such as \(svA\) and \(laeA\), as well as developmental genes modulating morphology, conidiation, or sclerotia formation like \(brlA\) and \(abaA\) (Caceres et al., 2016). Some oxidative stress-related genes and cellular signal mediator genes such as \(rasA\), \(msnA\), mtfA, and oxylipin’s biosynthetic genes (Tzitsigiannis and Keller, 2007); G-protein receptor genes (Affeldt et al., 2014); and osmotic-adaptation response gene \(sakA\) (Tumukunde et al., 2019) can also influence AFs biosynthesis (Caceres et al., 2016).

The expression of AF pathway genes is also influenced by some environmental factors. In particular, the \(a_w \times \) temperature interactions are related to the ratio of the two key regulatory genes (\(aflS/aflR\)). And the higher ratio of \(aflS/aflR\) would relate to the higher level of AFs production (Schmidt-Heidt et al., 2009, 2010; Abdel-Hadi et al., 2010, 2012; Medina et al., 2014). Tumukunde et al. (2019) indicated that low \(a_w\) was negatively related to the production of AFB1 on corn and peanut kernels. Low \(a_w\) reduced the expression of \(AfsakA\), which affected the conidiation and AFs biosynthesis. Moreover, the expression of 11 development-related genes increased under 0.99 \(a_w\) treatment (Zhang et al., 2014). As for high temperature, \(aflS\) and \(aflR\) were inhibited. The expression level of \(aflS/aflR\) seems to control the transcriptional activation of the AFs cluster (Yu et al., 2011). Compared with 37°C, the transcript abundance of 30 AFs biosynthesis genes was much higher at 30°C, and most genes were up-regulated at both protein and transcription levels at 28°C (Bai et al., 2015). Taken together, the environmental factors have significant effects on \(A.\ flavus\) growth, the expression of AF biosynthetic genes, and AFs production.

Therefore, controlling the environmental factors is the most useful, cost-effective, practical, and green environmental strategy to prevent and eliminate \(A.\ flavus\) and AF contaminations. This paper is aimed at reviewing the effects of the major environmental factors on fungal growth and AFs production by \(A.\ flavus\). Several studies have revealed the effect of environmental factors on fungal growth, genes expression, and AFs production. In order to avoid duplication with that presented by Medina et al. (2014), studies that displayed the effects of environmental factors in the above-mentioned review are not thoroughly discussed. The following subsections describe the studies published after 2014 and papers not presented in the aforementioned review. This review may provide the basic data for optimizing the environmental conditions to control AFs contamination on foodstuffs and feeds, especially during the storage.

Effect of \(a_w\) and temperature on \(A.\ flavus\) growth, gene expression, and AFs production on grains

Plenty of literatures have reported that the two key environmental parameters, \(a_w\) and temperature, play important roles in modulating the \(A.\ flavus\) growth and AFs production on foods (O’Brian et al., 2007; Schmidt-Heidt et al., 2009, 2010; Yu et al., 2011; Marroquin-Cardona et al., 2014; Bai et al., 2015). Among foods, grains are the most susceptible to the infection of \(A.\ flavus\) and the subsequent AFs contamination (Guo et al., 1998). Regarding AFs production, various grains have a different sensitivity to \(a_w\) and temperature. Moreover, on the same grain, the optimal conditions for AFs production were significantly influenced by the \(A.\ flavus\) strains, incubation time and status of grains, etc.

Manna and Kim (2018) investigated the effects of different relative humidities (RHs; 12, 44, 76, and 98%) and temperatures (10, 20, 30, and 40°C) on major grain fungal populations including \(A.\ flavus\) and some other fungi. They indicated that the populations of all tested fungi in inoculated rice grains were significantly enhanced by both increased RH and temperature. In addition, multiple linear regression analysis revealed that one unit increase of temperature resulted in greater effects than that of RH on fungal populations.

Mousa et al. (2013) conducted a study to model the radial growth rate and to assess AFs production by \(A.\ flavus\) as a function of \(a_w\) 0.82–0.92 and temperature 12–42°C on polished and brown rice. They found that the brown rice is more susceptible to fungal invasion and AFs production than polished rice. The optimum conditions for \(A.\ flavus\) growth and AFs production in brown rice were both at 0.92 \(a_w\) and 30°C. Fungal growth and AFs were undetectable at 0.82 \(a_w\) on polished rice while they were both detected at this \(a_w\) under 25–35°C on brown rice. At the temperature range of 25–30°C, the minimum \(a_w\) values for AFs production on polished rice and brown rice were 0.84 and 0.82, respectively. The highest levels of AFs were observed at the highest \(a_w\) 0.90–0.92 at 20°C after 21 days of incubation on both types of rice. However, at 7 and 14 days of incubation, the highest level of AFs was observed at \(a_w\) 0.92 and 30°C on polished rice. On brown rice, the optimal condition for AFs production at 7 and 14 days of incubation was \(a_w\) 0.92 × 25°C and \(a_w\) 0.92 × 30°C, respectively. When temperature reached to 40°C, only a small amount of AFs were detected during the 3 weeks of incubation, and both types of rice were only detectable at 0.92 \(a_w\).

Similarly, Choi et al. (2015) showed that brown Korean rice was sensitive to \(A.\ flavus\) growth and AF production compared with rough Korean rice and white Korean rice. Regardless of the degree of milling of Korean rice, the optimum growth rate during 120 day storage was at 85% RH/30°C and 97% RH/21°C. The highest population of \(A.\ flavus\) and highest amount of AFB, were observed at 97% RH/21°C and on inoculated brown rice. Trace amounts of AFB, were detected during 10 day storage at 85% RH/21°C and in all three non-inoculated types of rice.
Lv et al. (2019) investigated the effect of a_w (0.92–0.96) and temperature (28–37°C) on the fungal growth and AFB$_1$ production by *A. flavus* on polished rice and paddy. The results indicated that AFB$_1$ production on polished rice can occur over a wider range of temperature $\times a_w$ levels than that on paddy. *Aspergillus flavus* grew better at 0.92–0.96 a_w and 28–37°C on polished rice, and the highest level of AFB$_1$ was observed at 33°C and 0.96 a_w after 7 days of incubation. In comparison to the optimal temperature of 33°C, all tested genes of *A. flavus* on polished rice were significantly up-regulated at 25°C under 0.96 a_w. Compared with 0.96, most of structural genes of pathway were significantly down-regulated at 0.90 and 0.99 under 33°C, although two regulatory genes (*aflR* and *aflS*) were up-regulated at 0.90. For the *A. flavus* growth on paddy, the optimal temperature and a_w were 37°C and 0.94 within the tested range, respectively. Moreover, the highest concentration of AFB$_1$ on paddy was observed at 0.92 a_w and 37°C after 7 days of incubation.

Lahbour et al. (2016) evaluated the impact of a_w (between 0.85 and 0.99), temperature (15, 25, and 37°C), and incubation time (7, 14, 21, and 28 days) on *A. flavus* growth and AFB$_1$ production by three *A. flavus* isolates (8, 10, and 14) inoculated on sorghum grains. Results showed that the optimal conditions for growth and AFB$_1$ production were at 0.99 a_w and 37°C. For mycelial growth, the needed minimum a_w was 0.91 at 25 and 37°C. AFB$_1$ accumulation could be avoided by storing sorghum at low a_w levels (\leq0.91 a_w) or at low temperature (15°C).

Astoreca et al. (2014) studied the interaction of a_w (0.80–0.98), temperature (10–40°C), and incubation time (7, 14, 21, and 28 days) on the co-production of AFB$_1$ and cyclopiazonic acid (CPA) by *A. flavus* isolated from corn, rice, and cotton. They found that the AFB$_1$ production occurred more favourably on sorghum than on maize, and the maximum levels of CPA were observed on CEM. The minimum level of a_w for both toxins production was 0.83 with the tested a_w. The maximum amount of AFB$_1$ was observed at 0.96 a_w and 30°C after 21 days of incubation, regardless of the isolates and media. Although they belong to three different chemotypes: chemotype I (AFB$_1$ and CPA), chemotype II (AFB$_1$, CPA, and CPA$^+$), and chemotype III (AFB$_1$, CPA$^+$, and CPA$^+$), respectively, the three isolates do not differ in the response to the environmental factors (a_w and temperature). Moreover, the limiting and optimum conditions for AFB$_1$ and CPA production were similar on both media.

Bernádez et al. (2017) investigated the impact that interactions between a_w and temperature may have on growth, the expression of *aflR*, and AFB$_1$ production by *A. flavus* on a maize-based medium. They found that there were some differences between lag phases and growth rates of *A. flavus*. The optimum condition for *A. flavus* growth on maize was 0.99 a_w and 30°C and the maximum AFB$_1$ production on maize was observed at 0.98 a_w and 30°C. *Aspergillus flavus* growth was completely inhibited at 0.90 a_w and 20°C. Both a_w and temperature significantly influenced the relative expression of *aflR* gene and AFB$_1$ production. However, the influences on AFB$_1$ production were not consistent with the effects on gene expression and growth. These results suggested that the *aflR* expression was not a good indicator of AFB$_1$ production alone. Therefore, further molecular studies of other AFs biosynthetic genes should be conducted.

Based on the research by Krulj et al. (2019), the optimal conditions for AFB$_1$ biosynthesis were observed at 30°C in the temperature ranges of 15–37°C and the a_w levels at (0.85–0.99) in the inoculated shell-less and shelled cereals. Moreover, the shell has a higher amount of AFB$_1$ in hull-less grain than the dehulled grains and the AFB$_1$ content in the hull was even 10–170 times higher than the grain, indicating the shell has a protective effect.

Effect of a_w and temperature on *A. flavus* growth, gene expression, and AFs production on peanuts

Peanut (*Arachis hypogaea* L.) is a globally important economic and oilseed crop worldwide. However, peanuts contamination with AFs and aflatoxicogenic *A. flavus* is regarded as the most serious problem in the world (Williams et al., 2004; Liu et al., 2017). Liu et al. (2017) investigated the effect of a_w (0.85–0.99) and temperature (15–42°C) on fungal growth, the expression of AF biosynthetic genes on un-autoclaved peanut kernels. The results indicated that AFB$_1$ production in peanut kernels can occur over a wider range of a_w and temperature compared with formula media and peanut media. *Aspergillus flavus* showed a lower growth rate at ≤0.85 a_w or ≤20°C. The optimal conditions for *A. flavus* growth on peanuts kernels were 0.98 a_w and 37°C. The highest amount of AFB$_1$ was observed at 0.96 a_w and 28°C.

Moreover, the expression of AF-related and growth-related genes was significantly modulated by a_w and temperature. At 0.92 a_w, 16 of the 25 genes had the highest expression levels at 28°C, whereas 9 genes had the highest expression levels at 37°C. In addition, all AF biosynthetathway genes were down-regulated at 42°C compared with 37°C. Compared with 0.99 a_w, all the pathway genes and *laeA* were up-expressed at a_w of 0.96 under 28°C. In particular, the ratio of *aflS*/*aflR* was positively correlated with the AFB$_1$ production. The expressions of *laeA* and *b1a* were positively associated with AFB$_1$ production and fungal growth, respectively.

Effect of a_w and temperature on *A. flavus* growth and AFs production on tree nuts

Tree nuts are commodities with moderate to high risk of AFs contamination because they are produced at environmental conditions favouring fungal growth and AFs production by aflatoxicogenic fungi especially *A. flavus* (Arrus et al., 2003; Gallo et al., 2016). The incidence of AFs contamination in nuts is low; however, their levels vary widely and can produce high levels in a small number of nuts (Campbell et al., 2003).

For the pistachio nuts, the highest amount of radial growth rate of *A. flavus* and AFB$_1$ production was obtained at 0.93 a_w and 30°C using a full factorial design with different moisture content levels (10, 15, 20, 25, and 30%) and incubation temperatures (10, 15, 20, 25, 30, 35, and 42°C) (Marín et al., 2012). They also found that the limited AFs levels in pistachio nuts by European Commission would be surpassed in a period as short as 1 month if pistachio nuts reach 25°C, unless moisture content is ≤10%. However, this conclusion is not accurate because it was drawn from a single *A. flavus* strain. As we all know, the level of mycotoxins produced is highly variable even if only considering mycotoxin-producing strains in a species (Hua et al., 2012).

Gallo et al. (2016) evaluated the effects of different combinations of a_w (0.90, 0.93, 0.96, and 0.99 a_w) and temperature (20, 28, and 37°C) on *A. flavus* growth, AFB$_1$ production, and expression of the two regulatory genes and two structural genes on an almond medium solidified with agar. The maximum amount of fungal biomass and AFB$_1$ production was observed at 0.96 a_w and 28°C. At the driest tested conditions (0.90 and 0.93 a_w), no fungal growth and AFB$_1$ production were observed at 20°C. At 20 and 37°C, the yield of AFB$_1$ was reduced by 70%–90% or completely suppressed, depending on a_w. Both regulatory genes (*aflR* and *aflS*) showed high
expression at maximum (28°C) and minimal (20 and 37°C) AFB₁ production. In contrast, the two structural genes (aflD and aflR) showed high expression only at the maximum AFB₁ production (28°C and 0.96–0.99 a_w). Based on this, temperature appears to be a key factor affecting AFs production, which was strictly correlated with the expression of the structural genes (aflD and aflR), but not to that of the two regulatory genes. This result suggests that some post-transcriptional regulatory processes are involved in modulating AFs biosynthesis.

Principe et al. (2018) evaluated the drying temperatures (from 30 to 50°C) on A. flavus growth and AFs production in chestnuts and indicated that the optimal temperature for fungal growth was 30°C, whereas the highest concentrations of AFB₁ and AFB₆ were obtained at 40°C. At this temperature, A. flavus was under suboptimal conditions for growth (0.78 a_w), but AFs biosynthesis was under the optimal conditions. When the drying temperatures reached 45–50°C, AFs production was completely inhibited. Drying at 45°C for 7 days (0.64 a_w) could be a promising strategy to effectively control both A. flavus growth and AFs production.

Effect of a_w and temperature on A. flavus growth, gene expression, and AFs production on other foods

Recently, there are some researches that reported the effect of a_w and temperature on the fungal growth and AFs production by A. flavus on other foods. In whole black peppercorns (Piper nigrum L.), the growth and AFs production of three A. flavus isolates and one A. parasiticus isolate were investigated using a full factorial design with seven a_w levels (0.826–0.984) and three temperatures (22, 30, and 37°C) (Yogendrarajah et al., 2016). Among secondary models, the extended Gibson model was the best model to describe the combined effect of a_w and temperature on the growth rate of both fungal species in peppercorns. The highest population of A. flavus occurred at 0.92 a_w and 30°C, and the maximum yield of AFs was also observed under this condition based on diverse secondary models. The estimated minimum a_w and temperature for the growth of A. flavus were 0.73–0.76 and 11–16°C, respectively. High variability in AFs production of different aflatoxinogenic species limited the modelling of AFs production. Based on the research of Yogendrarajah et al. (2016), the limiting a_w and temperature should be considered to prevent the aflatoxinogenic fungal species growth and AFs production in food during storage.

Peromingo et al. (2016) evaluated that the interaction between a_w (0.85, 0.90, and 0.95) and temperature (10, 15, 20, and 25°C) may occur on lag phases prior to growth, growth rates, and AFs production by two strains of each A. parasiticus and A. flavus on cured meat over 12 days. Aspergillus flavus CBS 573.65 had shorter lag phases than A. parasiticus CECT 2 688; however, the growth rates of the two strains were similar. The optimum growth and AFs production occurred at 0.95 a_w and 25°C. At 10°C and all tested a_w, no growth occurred for both species. Both species produced AFs when the a_w and temperature were a_w ≥ 0.90 and ≥15°C, respectively. Although similar AFB₁ production characteristics were found between the two species, the concentration of this toxin produced by A. flavus was much higher than that of A. parasiticus.

To elucidate the relationship between the relative expression of AFs-related genes and AFs production, Peromingo et al. (2017) evaluated the effect of different a_w and temperatures on the temporal relative expression of three genes in AFs biosynthesis cluster and their correlation with AFs production on dry-cured ham-based medium by A. flavus and A. parasiticus. In general, the expressions of the regulatory aflR and aflS genes were similar and much lower than the expression of the structural aflB gene. The expression of aflR and aflS genes in A. flavus increased over a decrease of a_w regardless of temperature. Regarding A. parasiticus, the highest and lowest expression values of both regulatory genes were observed at 0.95 a_w and 0.85 a_w, respectively. In contrast, the expression of aflB gene in both species was stimulated at low temperature and a_w.

Furthermore, a strong correlation between the relative expression of aflR and aflS gene and AFs production was obtained under environmental conditions which simulate dry-cured ham ripening.

Effect of other environmental factors on A. flavus growth and AFs production on food

In addition to a_w and temperature, there are more environmental parameters that have been investigated for the influences on the growth and AFs production by A. flavus in many studies. It has been reported that pH, CO₂ level, and light treatment also exhibit significant effects on fungal growth and AFs production (Schmidt-Heydt et al., 2008; Oms-Oliu et al., 2010; Castellari et al., 2015).

Regarding pH, Casquete et al. (2017) investigated the effect of pH (5.0, 5.5, and 6.0), a_w (0.90, 0.95, and 0.99), and temperature (15, 20, 25, and 30°C) on the lag phases, growth, and AFs production of three aflatoxicogenic A. flavus strains (CQ7, CQ8, and CQ103) on cheese-based medium. The results showed that the behaviour of A. flavus strains was affected by pH, a_w, and temperature; however, A. flavus growth was less affected by pH than the others. The CQ7 strain exhibited maximum growth at pH 5.5, 0.99 a_w, and 25°C. However, for the CQ8 and CQ103 strains, there was no difference between pH 5.5 and 6.0. The maximum AFs production on the cheese-based medium occurred at pH 5.0, 0.95 a_w, and 25 or 30°C, depending on the strain. Kosegarten et al. (2017) also indicated that an increase in pH value between 3.5 and 6.5 resulted in an increase in the growth of A. flavus.

For CO₂ level, Mousa et al. (2016) illustrated that the growth of A. flavus and AFs production was highly influenced by the CO₂ level (20%–80%) on paddy. In general, fungal growth rates and AFs production were negatively correlated with CO₂, whereas the lag phase durations were positively correlated with CO₂. However, the highest tested CO₂ level (80%) could not completely inhibit the fungal growth. Under 0.98 a_w, 20% and 80% CO₂ caused at least 59% and 88% reduction in growth and 47% and 97% reduction in AFs production, respectively. In addition, a significant inhibition of growth was observed at 75% CO₂ at both 0.95 and 0.92 a_w on agar medium. The population of A. flavus isolated from grains was inhibited at up to 75% CO₂ (Giorni et al., 2008). Giorni et al. (2008) also has reported that the moisture maize treated with 25% CO₂ was sufficient to effectively reduce the development of A. flavus, but at least 50% CO₂ was required to significantly reduce the synthesis of AFs. Therefore, controlling pH and CO₂ levels during manufacturing and storage is an effective control strategy to avoid the contamination of A. flavus and subsequent AFs (Chulze, 2010).

Discussion and Conclusions

These previous studies have indicated that several environmental factors play important roles in regulating fungal growth, the expression of AF biosynthetic genes, and AFs production by A. flavus and A. parasiticus. Especially, a_w and temperature are limiting factors during storage (Liu et al., 2017). Therefore, this review summarizes the different ranges of a_w and temperature and the optimal condition for A. flavus growth and AFs production on different food substrate
and formula media (Figures 1 and 2). As shown in the two figures, the optimal conditions of $a_w \times$ temperature for $A. flavus$ growth and AFs production vary on different foods or formula medium (Lv et al., 2019). On yeast extract sucrose (YES) medium, the suitable temperatures for AFB1 production were 25–30°C at 0.99 a_w, whereas the range changed to 30–35°C at 0.95 a_w (Abdel-Hadi et al., 2012). On un-autoclaved peanut kernels, the suitable temperatures for AFB1 production were 0.92–0.96 a_w and 25–33°C, and the highest level of AFB1 was observed at 0.96 a_w and 28°C (Liu et al., 2017). Similar findings were obtained on almond medium; the maximum fungal growth and AFB1 production were observed at 0.96 a_w and 28°C (Gallo et al., 2016). On un-autoclaved polished rice, high production of AFB1 was observed at 0.90–0.99 a_w, whereas the range changed to 30–35°C at 0.95 a_w (Abdel-Hadi et al., 2012). On un-autoclaved peanut kernels, the suitable temperatures for AFB1 production were 0.92–0.96 a_w and 25–33°C, and the highest level of AFB1 was observed at 0.96 a_w and 28°C (Liu et al., 2017). Similar findings were obtained on un-autoclaved peanut kernels (Lv et al., 2019). Moreover, these results suggest that the fungal growth and AFs production on foods can occur over a wider range of $a_w \times$ temperature than on formula medium. The diversity of optimal conditions may be due to the differences in media structure and nutrient availability (Ahmad et al., 2013; Mousa et al., 2013).

Compared with the investigations published before 2015, the recent publications pay more attention to the correlation between the expression of AFs biosynthetic genes and AFs production. The researchers attempt to get a good indicator of possible AFs contamination on foods by early detecting the expression of AFs-related genes. As the key regulatory genes in AFs biosynthesis gene cluster, $aflR$ and $aflS$ were highlighted. On YES medium, the down-regulation of $aflR$ and $aflS$ induced the inhibition of AFs production (Yu et al., 2011). And the decrease in the expression ratio of $aflS/aflR$ leads to transcription inactivation of AFs cluster. Similar findings were obtained on un-autoclaved peanut kernels (Lv et al., 2019). In contrast, some literatures have reported that the $aflR$ expression is not consistent with AFs production at several conditions. On a maize-based medium, the influences of a_w and temperature on AFB1 production were different with the expression of $aflR$ gene (Bernaldez et al., 2017). On polished rice, the down-regulation of all the tested AFs structural genes at a_w 0.96 resulted in a low level of AFB1 production compared with 28 and 37°C (Lv et al., 2019). Moreover, these results suggest that the fungal growth and AFs production on foods can occur over a wider range of $a_w \times$ temperature than on formula medium. The diversity of optimal conditions may be due to the differences in media structure and nutrient availability (Ahmad et al., 2013; Mousa et al., 2013).
Schmidt-Heydt et al. (2009) indicated that the transcription level of aflS was high at >37°C under almost all a_w ranges tested, but the amount of AFs production was low on YES medium. These results suggest that some other molecular mechanisms, such as post-transcriptional modulation, were involved in modulating the transcriptional level of AFs structural genes and the subsequent AFs production.

Compared with the two regulatory genes aflR and aflS, the transcriptional levels of some structural genes seem to have more strong correlation to AFs production. Gallo et al. (2016) indicated that the effect of environmental factors on AFs biosynthesis had a better correlation to the transcriptional activation/inactivation of structural genes (aflD and aflO) than the two regulatory genes. Similarly, Abdel-Hadi et al. (2010) also obtained a good correlation between aflD expression and AFs production by A. flavus in raw peanuts under different a_w levels. In addition, the significant differences between the relative expression of aflD at different temperatures (28, 37, and 42°C) were observed, resulting in the significant differences in AFs production on peanut kernels (Liu et al., 2017). On YES medium, the expression profile of aflD, aflO, and aflP was consistently correlated with the ability of AFs production (Scherm et al., 2005). On polished rice, the structural genes (aflM, aflN, aflO, aflP, aflQ, aflU, and nada) involved in the middle and late stages of AFs pathway from VERA (Versicolorin A) to AFB1 were down-regulated at 37°C compared with 33°C under a_w 0.96 (Lv et al., 2019). The lower expression of these structural genes led to the decrease of AFB1 production. On peanuts kernels, a good positive correlation between the expression of aflQ, being involved in the final step of the AFs biosynthetic pathway and encoding an oxidoreductase, and AFB1 level was observed under different a_w’s and temperatures (Liu et al., 2017). Taken together, these results suggest that an early detection of the expression of some key structural genes (aflD, aflO, aflP, or aflQ) can be a better indicator of possible AFs contamination on foods under different a_w’s and temperatures compared with aflS and aflR.

Besides modulating a_w and temperature, modified atmosphere packaging is regarded as a promising food preservation technique because it integrates the control microbial activity and insects, which tend to maintain the quality of the products and extend the shelf life with minimal application of chemicals (Taniwaki et al., 2009; Mousa et al., 2016). CO2 was proved to retard the fungal growth and inhibit AFs production by A. flavus. Taniwaki et al. (2009) indicated that no fungal growth of A. flavus was observed at 40% and 60% CO2 when O2 level was <0.5% while growth was observed on PDA and CYA at 20% CO2. However, even at the lowest CO2 level (20%) studied, the retarding effect of CO2 on the growth rate of A. flavus was significant on paddy (Mousa et al., 2016). Overall, 55–100% reduction in fungal growth was achieved with CO2 treatment. On moistened maize, modified atmospheres with 25%–30% CO2 only contributed to 30%–35% reduction in A. flavus growth while as the concentrations of CO2 increased up to 75%, the reduction of above 50% was obtained (Giorni et al., 2008). The more reduction of fungal growth on paddy than maize with CO2 treatment may be due to the more resistance of paddy’s physical structure to the invading fungi (Mousa et al., 2016).

Besides fungal growth, AFs production was also significantly inhibited by modified atmosphere with CO2. Mousa et al. (2016) found that the reduction in AFs production on paddy with CO2 treatment (20%–80%) was in the range of 65.8%–98.0%, 70.4%–94.6%, and 72.9%–96.8% at 0.98, 0.95, and 0.92 a_w, respectively. However, no significant reduction in AFs production on maize was observed with modified atmosphere enriched with 25% CO2 and balanced with N2 (Giorni et al., 2008). With the application of 50% and 75% CO2, 46% and 58% overall reduction in AFs production was observed, respectively. Additionally, on PDA or CYA enclosed with a modified atmosphere with 20% CO2 and <0.5% residual oxygen, no AFs production was observed for 30 days (Giorni et al., 2008). It is important to notice that the residual O2 may be a limiting factor for fungal growth and AFs production under modified atmosphere packaging (Taniwaki et al., 2009).

The pH is also an important factor in determining A. flavus growth and AFs production. Klch (2007) indicated that the increase in pH (4–6) was related to the increase of A. flavus growth, and the expression of the AFs pathway gene was also affected by the pH of the medium. In some foods such as fermented food, salted food, and canned food, fungal growth and AFs production can be controlled by adjusting pH values. However, there are some limitations on the practical application of adjusting pH in most foods, especially the grains and spices listed in this paper.

In conclusion, the low a_w and temperature or the increase in the CO2 level alone is not effective for complete control of A. flavus and AFs production. Integrating various post-harvest methods with synergistic functions may be more efficient for the complete inhibition of A. flavus growth and AFs production during storage and processing of foods. For example, reducing a_w is the prerequisite step to prevent A. flavus infection and AFs production, and controlling a_w and temperature and increasing the level of CO2 in the atmosphere are useful strategies during storage. Good Agricultural Practices (GAP) and Good Processing Practices (GPP) represent primary preventive measures against A. flavus and the subsequent AFs. Integrating the two principles with the Hazard Analysis and Critical Control Point (HACCP) can be used efficiently (Mousa et al., 2016). A better knowledge of the environmental factors governing fungal growth and AFs production provided in the above-mentioned recent researches would help in establishing optimal guidelines in GAP and GPP, preventive measures, and critical limits in HACCP plans.

Acknowledgements
We gratefully acknowledge the financial support of National Key R&D Program of China (2016YFD0401005). The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Conflict of Interest
None declared.

References
Abdel-Hadi, A., Carter, D., Magan, N. (2010). Temporal monitoring of the tox-1 (aflD) gene of Aspergillus flavus in relation to aflatoxin B1 production during storage of peanuts under different water activity levels. Journal of Applied Microbiology, 109: 1914–1922.
Abdel-Hadi, A., Schmidt-Heydt, M., Parra, R., Geisen, R., Magan, N. (2012). A systems approach to model the relationship between aflatoxin gene cluster expression, environmental factors, growth and toxin production by Aspergillus flavus. Journal of the Royal Society, Interface, 9: 757–767.
Affeldt, K. J., Carrig, J., Amare, M., Keller, N. P. (2014). Global survey of canonical Aspergillus flavus G protein-coupled receptors. Mbio, 5: e01151–e01154.
Ahmad, M., Ahmad, M. M., Hamid, R., Abdin, M. Z., Javed, S. (2013). Use of response surface methodology to study the effect of media composition on aflatoxin production by Aspergillus flavus. Mycotoxin Research, 29: 39–45.
Astoreca, A., Vaamonde, G., Dalcero, A., Marin, S., Ramos, A. (2014). Abiotic factors and their interactions influence on the co-production of aflatoxin B(1) and cyclopiazonic acid by Aspergillus flavus isolated from corn. *Food Microbiology*, 38: 276–283.

Bai, Y., et al. (2015). Integrative analyses reveal transcriptome-proteome correlation in biological pathways and secondary metabolism clusters in *A. flavus* in response to temperature. *Scientific Reports*, 5: 14382.

Bernaldez, V., Córdoba, J. J., Magan, N., Peromingo, B., Rodríguez, A. (2017). The influence of ecophysiological factors on growth, aflR, gene expression and aflatoxin B1 production by a type strain of *Aspergillus flavus*. *IWT - Food Science and Technology*, 83: 283–291.

Caceres, L., et al. (2016). Deciphering the anti-aflatoxigenic properties of eugenol using a large-scale q-PCR approach. *Toxins*, 8: 123.

Campbell, B. C., Molyneux, R. J., Scharzki, T. F. (2003). Current research on reducing pre- and post-harvest aflatoxin contamination of U.S. almond, pistachio, and walnut. *Toxin Reviews*, 22(2–3): 225–266.

Casquete, R., Benito, M. J., Córdoba, M. G., Ruiz-Moyano, S., Martín, A. (2017). The growth and aflatoxin production of *Aspergillus flavus* strains on a cheese model system are influenced by physicochemical factors. *Journal of Dairy Science*, 100: 6987–6996.

Castellari, C. C., Cendoya, M. G., Marcos Valle, F. J., Barrera, V., Pacin, A. M. (2015). Extrinsic and intrinsic factors associated with mycotoxigenic fungi populations of maize grains (*Zea mays L.*) stored in silos bags in Argentina. *Revista Argentina De Microbiologia*, 47: 350–359.

Choi, S., et al. (2015). Behaviour of *Aspergillus flavus* and *Fusarium graminearum* on rice as affected by degree of milling, temperature, and relative humidity during storage. *Food Microbiology*, 46: 307–313.

Chulze, S. N. (2010). Strategies to reduce mycotoxin levels in maize during storage: a review. *Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment*, 27: 651–657.

Commission of the European Communities. (2010). Commission regulation (EU) No 165/2010 of 26 February 2010 amending Regulation (EC) No 1881/2006 setting maximum levels for certain contaminants in foodstuffs as regards aflatoxins. *Official Journal of European Union*, 50: 8–12.

Dantigny, P., Guilmart, A., Radoi, F., Bensoussan, M., Zwietering, M. (2005). Modelling the effect of ethanol on growth rate of food spoilage moulds. *International Journal of Food Microbiology*, 98: 261–269.

Gallo, A., Solfrizzo, M., Epifani, F., Panzarini, G., Perrone, G. (2016). Effect of temperature and water activity on aflatoxin production of xerotolerant/xerophilic fungi. *Food Microbiology*, 62: 307–313.

Giorni, P., Battilani, P., Pietri, A., Magan, N. (2008). Effect of temperature and water activity on gene expression and aflatoxin biosynthesis in Aspergillus flavus on almond medium. *International Journal of Food Microbiology*, 217: 162–169.

Giorni, P., Ramlani, P., Pietri, A., Magan, N. (2008). Effect of α and CO2 level on *Aspergillus flavus* growth and aflatoxin production in high moisture maize post-harvest. *International Journal of Food Microbiology*, 122: 109–113.

Groopman, J. D., Kensler, T. W., Wild, C. P. (2008). Protective interventions to prevent aflatoxin-induced carcinogenesis in developing countries. *Annual Review of Public Health*, 29: 187–203.

Guo, B. Z., Brown, R. L., Lax, A. R., Cleveland, T. E., Russian, J. S., Widstrom, N. W. (1998). Protein profiles and antifungal activities of kernel extracts isolated from corn. *Mycoses*, 41(5): 513–527.

Klich, M. A. (2007). Environmental and developmental factors influencing aflatoxin production by *Aspergillus flavus* and *Aspergillus parasiticus*. *Mycoscience*, 48(2): 71–80.

Kosgegen, C. E., Ramirez-Corona, N., Mani-Lopez, E., Palou, E., Lopez-Malo, A. (2017). Description of *Aspergillus flavus* growth under the influence of different factors (water activity, incubation temperature, protein and fat concentration, pH, and cinnamon essential oil concentration) by kinetic, probability of growth, and time-to-detection models. *International Journal of Food Microbiology*, 240: 115–123.

Krulj, J., et al. (2019). The effect of storage temperature and water activity on aflatoxin B1 accumulation in hull-less and hulled spelt grains. *Journal of the Science of Food and Agriculture*, 99: 3703–3710.

Lahousa, A., Crespo-Sempere, A., Marín, S., Said, S., Sanchis, V. (2015). Toxi-genic molds in Tunisian and Egyptian sorghum for human consumption. *Journal of Stored Products Research*, 63: 57–62.

Lahousa, A., Marín, S., Crespo-Sempere, A., Said, S., Sanchis, V. (2016). Effects of temperature, water activity and incubation time on fungal growth and aflatoxin B1 production by toxigenic *Aspergillus flavus* isolates on sorghum seeds. *Revista Argentina De Microbiologia*, 48: 78–85.

Liu, Y., Chang, C. C., Marsh, G. M., Wu, F. (2012). Population attributable risk of aflatoxin-related liver cancer: systematic review and meta-analysis. *European Journal of Cancer (Oxford, England)*, 48: 2125–2136.

Liu, X., Guan, X., Xing, F., Lv, C., Dai, X., Liu, Y. (2017). Effect of water activity and temperature on the growth of *Aspergillus flavus*, the expression of aflatoxin biosynthetic genes and aflatoxin production in shelled peanuts. *Food Control*, 82: 325–332.

Lv, C., et al. (2019). Interaction of water activity and temperature on the growth, gene expression and aflatoxin production by *Aspergillus flavus* on paddy and polished rice. *Food Chemistry*, 293: 472–478.

Magan, N., Aldred, D. (2007). Post-harvest control strategies: minimizing mycotoxins in the food chain. *International Journal of Food Microbiology*, 119: 131–139.

Mannaa, M., Kim, K. D. (2017). Influence of temperature and water activity on deleterious fungi and mycotoxin production during grain storage. *Mycobiology*, 45: 240–254.

Mannaa, M., Kim, K. D. (2018). Effect of temperature and relative humidity on growth of *Aspergillus Penicilliun* spp. and biocontrol activity of *Pseudomonas* protegens AS15 against aflatoxigeneic *Aspergillus flavus* in stored rice grains. *Mycobiology*, 46: 287–295.

Marin, S., Ramos, A. J., Sanchis, V. (2012). Modelling *Aspergillus flavus* growth and aflatoxin production in pistachio nuts. *Food Microbiology*, 32: 378–388.

Marroquin-Cardona, A. G., Johnson, N. M., Phillips, T. D., Hayes, A. W. (2014). Mycotoxins in a changing global environment—a review. *Food and Chemical Toxicology*, 69: 220–230.

Medina, A., et al. (2017). Interactions between water activity and temperature on the *Aspergillus flavus* transcriptome and aflatoxin B1 production. *International Journal of Food Microbiology*, 256: 36–44.

Medina, A., Rodriguez, A., Magan, N. (2014). Effect of climate change on *Aspergillus flavus* and aflatoxin B1 production. *Frontiers in Microbiology*, 5: 348.

Medina, A., Schmidt-Heydt, M., Rodriguez, A., Parra, R., Geisen, R., Magan, N. (2015). Impacts of environmental stress on growth, secondary metabolite biosynthetic gene clusters and metabolite production of xerother/F xerophilic fungi. *Current Genetics*, 69: 325–334.

Mousa, W., Ghazali, F. M., Jinap, S., Ghazali, H. M., Radu, S., Salama, A. E. (2016). Temperature, water activity and gas composition effects on the growth and aflatoxin production by *Aspergillus flavus* on paddy. *Journal of Stored Products Research*, 67: 49–55.

Nierman, W. T. (2008). Mycotoxin production and prevention of aflatoxin contamination in food and feed. *Aspergillus Genomics Medical Aspects Biotechnology & Research Methods*, 8(8): 84–88.
O’Brien, G. R., et al. (2007). The effect of elevated temperature on gene transcription and aflatoxin biosynthesis. Mycologia, 99: 232–239.

Oms-Oliu, G., Martín-Belloso, O., Soliva-Fortuny, R. (2010). Pulsed light treatments for food preservation. A review. Food and Bioprocess Technology, 28(1): 69–75.

Peleg, Y., Stieglitz, B., Goldberg, I. (1988). Malic acid accumulation by Aspergillus flavus. Applied Microbiology and Biotechnology, 28(1): 69–75.

Peromingo, B., Rodríguez, A., Bernáldez, V., Delgado, J., Rodríguez, M. (2016). Effect of temperature and water activity on growth and aflatoxin production by Aspergillus flavus and Aspergillus parasiticus on cured meat model systems. Meat Science, 122: 76–83.

Peromingo, B., Rodríguez, M., Delgado, J., Andrade, M. J., Rodríguez, A. (2017). Gene expression as a good indicator of aflatoxin contamination in dry-cured ham. Food Microbiology, 67: 31–40.

Prencipe, S., Siciliano, I., Gatti, C., Gullino, M., Garibaldi, A., Spadaro, D. (2018). Chestnut drying is critical in determining Aspergillus flavus growth and aflatoxin contamination. Toxins, 10(12): 530.

Scherm, B., Palomba, M., Serra, D., Marcello, A., Migheli, Q. (2005). Detection of transcripts of the aflatoxin genes aflD, aflO, and aflP by reverse transcription-polymerase chain reaction allows differentiation of aflatoxin-producing and non-producing isolates of Aspergillus flavus and Aspergillus parasiticus. International Journal of Food Microbiology, 98: 201–210.

Schmidt-Heydt, M., Abdel-Hadi, A., Magan, N., Geisen, R. (2009). Complex regulation of the aflatoxin biosynthesis gene cluster of Aspergillus flavus in relation to various combinations of water activity and temperature. International Journal of Food Microbiology, 135: 231–237.

Schmidt-Heydt, M., Magan, N., Geisen, R. (2008). Stress induction of mycotoxin biosynthesis genes by abiotic factors. FEMS Microbiology Letters, 284: 142–149.

Schmidt-Heydt, M., Rüfer, C. E., Abdel-Hadi, A., Magan, N., Geisen, R. (2010). The production of aflatoxin B1 or G1 by Aspergillus parasiticus at various combinations of temperature and water activity is related to the ratio of aflS to aflR expression. Mycotoxin Research, 26: 241–246.

Taniwaki, M. H., Hocking, A. D., Pitt, J. I., Fleet, G. H. (2009). Growth and mycotoxin production by food spoilage fungi under high carbon dioxide and low oxygen atmospheres. International Journal of Food Microbiology, 132: 100–108.

Tsitsigiannis, D. I., Keller, N. P. (2007). Oxylipins as developmental and host-fungal communication signals. Trends in Microbiology, 15: 109–118.

Tumukunde, E., Li, D., Qin, L., Li, Y., Shen, J. J., Wang, S. H., Yuan, J. (2019). Osmotic-adaptation response of sakA/hogA gene to aflatoxin biosynthesis, morphology development and pathogenicity in Aspergillus flavus. Toxins, 11: 41.

US Food and Drug Administration (2010). Aflatoxin in Peanuts and Peanut Products: 2010; CPG Sec. 570.375. Compliance Manuals. http://www.fda.gov/ICECI/ComplianceManuals. Accessed 16 August 2019.

Vaamonde, G., Patrizarca, A., Fernández Pinto, V. E. (2006). Effect of water activity and temperature on production of aflatoxin and cyclopiazonic acid by Aspergillus flavus in peanuts. Advances in Experimental Medicine and Biology, 571: 225–235.

Williams, J. H., Phillips, T. D., Jolly, P. E., Stiles, J. K., Jolly, C. M., Aggarwal, D. (2004). Human aflatoxicosis in developing countries: a review of toxicology, exposure, potential health consequences, and interventions. The American Journal of Clinical Nutrition, 80: 1106–1122.

Wu, F. (2014). Perspective: time to face the fungal threat. Nature, 516: S7.

Yogendrarajah, P., et al. (2016). Mycotoxin production and predictive modelling kinetics on the growth of Aspergillus flavus and Aspergillus parasiticus isolates in whole black peppercorns (Piper nigrum L). International Journal of Food Microbiology, 228: 44–57.

Yu, J., et al. (2011). Tight control of mycotoxin biosynthesis gene expression in Aspergillus flavus by temperature as revealed by RNA-Seq. FEMS Microbiology Letters, 322: 145–149.

Zhang, F., et al. (2014). RNA-Seq-based transcriptome analysis of aflatoxigenic Aspergillus flavus in response to water activity. Toxins, 6: 3187–3207.