Eigenvalue ratios for vibrating String equations with concave densities

Jihed Hedhly *

Abstract

In this paper, we prove the optimal lower bound $\frac{\lambda_n}{\lambda_m} \geq \left(\frac{n}{m}\right)^2$ of vibrating string

$$-y'' = \lambda\rho(x)y,$$

with Dirichlet boundary conditions for concave densities. Our approach is based on the method of Huang [Proc. AMS., 1999]. The main argument is to restrict the two consecutive eigenfunction y_{n-1} and y_n between two successive zeros of y_{n-1}. We also prove the same result for the Dirichlet Sturm-Liouville problems.

2000 Mathematics Subject Classification. Primary 34L15, 34B24.
Key words and phrases. Sturm-Liouville Problems, eigenvalue ratio, single-barrier, single-well, Prüfer substitution.

1 Introduction

We consider the Sturm-Liouville equation acting on $[0, 1]$

$$-(p(x)y')' + q(x)y = \lambda\rho(x)y,$$ \hspace{1cm} (1.1)

with Dirichlet boundary conditions

$$y(0) = y(1) = 0,$$ \hspace{1cm} (1.2)

where $p > 0$, $\rho > 0$ and q (may change sign) are continuous coefficients on $[0, 1]$. Here we limit ourselves to the case $\rho > 0$. The case $\rho < 0$ has been considered for related problems providing different results, we refer to pioneering works [6,7] and some refer therein.

*Faculté des Sciences de Tunis, Université El-Manar, Laboratoire Equations aux Dérivées Partielles, , jihed.hedhly@fst.utm.tn
As is well-known (see [16]), there exist two countable sequences of eigenvalues
\[\lambda_1 < \lambda_2 < \cdots < \lambda_n \ldots \infty. \]
The issues of optimal estimates for the eigenvalue ratios \(\frac{\lambda_n}{\lambda_m} \) have attracted a lot of attention (cf. [1, 3, 4, 5, 8, 9, 10, 11, 12, 14]) and references therein. Ashbaugh and Benguria proved in [3] that if \(q \geq 0 \) and \(0 < k \leq p\rho(x) \leq K \), then the eigenvalues of (1.1) satisfy
\[\frac{\lambda_n}{\lambda_1} \leq K \frac{n^2}{k}. \]
They also established the following ratio estimate (of two arbitrary eigenvalues)
\[\frac{\lambda_n}{\lambda_m} \leq K \frac{n^2}{km^2}, \quad n > m \geq 1, \]
with \(q \equiv 0 \) and \(0 < k \leq p\rho(x) \leq K \). Later, Huang and Law [10] extended the results in [3] to more general boundary conditions. Recently, J. Hedhly [5], showed that
\[\frac{\lambda_n}{\lambda_m} \leq \frac{n^2}{m^2}, \quad n > m \geq 1, \]
for single-barrier potential \(q \) and single-well \(p\rho \). He also established that the eigenvalues for the string equation
\[-y'' = \lambda\rho(x)y, \quad (1.3) \]
with Dirichlet boundary conditions (1.2) satisfy
\[\frac{\lambda_n}{\lambda_m} \leq \frac{n^2}{m^2}, \quad n > m \geq 1, \]
with single-well density \(\rho \).
Recall that \(f \) is a single-barrier (resp. single-well) function on \([0, 1]\) if there is a point \(x_0 \in [0, 1] \) such that \(f \) is increasing (resp. decreasing) on \([0, x_0]\) and decreasing (resp. increasing) on \([x_0, 1]\) (see [2]).
In this paper, we prove the optimal lower bound \(\frac{\lambda_n}{\lambda_m} \geq \frac{(n^2)}{m^2} \) of (1.3)-(1.2) for concave density \(\rho \). Our approach is based on the method of Huang [Proc. AMS., 1999]. The main argument is to restrict the two consecutive eigenfunction \(y_{n-1} \) and \(y_n \) between two successive zeros of \(y_{n-1} \), say \(x_i \) and \(x_{i+1} \). We prove arguing as in \([x_i, x_{i+1}]\) that
\[\int_{x_i}^{x_{i+1}} x(y_{n-1}(x, \tau))^2 - y_n(x, \tau)^2 \geq 0. \]
We also prove an result for the Dirichlet Sturm-Liouville problems (1.1)-(1.2). More precisely, we show that \(\frac{\lambda_n}{\lambda_m} \geq \frac{(n^2)}{m^2} \) with \(q \equiv 0 \) and \(p\rho \) concave.
2 Eigenvalue ratio for the vibrating String equations

Denote by \(u_n(x) \) be the \(n-th \) eigenfunction of (1.3) corresponding to \(\lambda_n \), normalized so that
\[
\int_0^1 \rho(x) u_n^2(x) dx = 1.
\]

It is well known that the \(u_n(x) \) has exactly \((n-1)\) zeros in the open interval \((0, 1)\). The zeros of the \(n-th \) and \((n+1)st\) eigenfunctions interlace, i.e. between any two successive zeros of the \(n-th \) eigenfunction lies a zero of the \((n+1)st\) eigenfunction. We denote by \((y_i)\), the zeros of \(u_n \) and \((z_i)\), the zeros of \(u_{n-1} \), then in view of the comparison theorem (see [16, Chap.1]), we have \(y_i < z_i \). We may assume that \(u_n(x) > 0 \) and \(u_{n-1}(x) > 0 \) on \((0, y_1)\), then we have \(\frac{u_n(x)}{u_{n-1}(x)} \) is strictly decreasing on \((0, 1)\). Indeed,
\[
\left(\frac{u_n(x)}{u_{n-1}(x)} \right)' = \frac{u''(x)u_{n-1}(x) - u'_n(x)u_n(x)}{u''_{n-1}(x)} = \frac{w(x)}{u''_{n-1}(x)}.
\]
We find
\[
w'(x) = u''_n(x)u_{n-1}(x) - u''_{n-1}(x)u_n(x) = (\lambda_{n-1} - \lambda_n)\rho(x)u_n(x)u_{n-1}(x),
\]
this implies that \(w(x) < 0 \) on \((0, 1)\). Hence \(\frac{u_n(x)}{u_{n-1}(x)} \) is strictly decreasing on \((0, 1)\).

From this, there are points \(x_i \in (y_i, z_i) \) such that
\[
\begin{cases}
 u^2_n(x) > u^2_{n-1}(x), & x \in (x_{2i}, x_{2i+1}), \\
 u^2_n(x) < u^2_{n-1}(x), & x \in (x_{2i+1}, x_{2i+2}).
\end{cases}
\]

Let \(\rho(\cdot, \tau) \) is a one-parameter family of piecewise continuous densities such that \(\frac{\partial \rho(\cdot, \tau)}{\partial \tau} \) exists, and let \(u_n(x, \tau) \) be the \(n-th \) eigenfunction of (1.3) corresponding to \(\lambda_n(\tau) \) of the corresponding String equation (1.3) with \(\rho = \rho(\cdot, \tau) \). From Keller in [13], we get
\[
\frac{d}{d\tau} \lambda_n(\tau) = -\lambda_n(\tau) \int_0^1 \frac{\partial \rho}{\partial \tau}(x, \tau) u^2_n(x, \tau) dx.
\]
By straightforward computation that, yields
\[
\frac{d}{d\tau} \left[\frac{\lambda_n(\tau)}{\lambda_m(\tau)} \right] = \frac{\lambda_n(\tau)}{\lambda_m(\tau)} \int_0^1 \frac{\partial \rho}{\partial \tau}(x, \tau) (u^2_m(x, \tau) - u^2_n(x, \tau)) dx.
\]

We are now in position to state our main result.

Theorem 1 Let \(\rho \) a concave density on \([0, 1]\). Then the eigenvalues of the Dirichlet problem (1.3)-(1.2) satisfy
\[
\frac{\lambda_n}{\lambda_m} \geq \left(\frac{n}{m} \right)^2,
\]
with equality if and only if \(\rho \) is constant.
In order to prove Theorem 1 we need some preliminary results, in particular the following result by Huang [8].

Lemma 1 [8] If g is three times differentiable and u satisfies

$$-y'' = \lambda \rho(x) y, \quad 0 \leq x \leq 1, \quad y(0) = y(1) = 0,$$

where ρ is differentiable, then

$$g(1)y'(1)^2 - g(0)y'(0)^2 = \int_0^1 \left[2\lambda g'(x)\rho(x) + \lambda g(x)\rho'(x) + \frac{1}{2}g'''(x) \right] y^2(x) dx.$$

Lemma 2 Consider the one-parameter family of linear densities $\rho(x, \tau) = \tau x + b$, where $t > 0$ and b is a positive constant. Let $\lambda_n(\tau)$ be the nth eigenvalue of (1.3)–(1.2) with $\rho = \rho(x, \tau)$. Then the ratio $\frac{\lambda_n(\tau)}{\lambda_{n-1}(\tau)}$ is a strictly increasing function of t.

Proof From (2.1)

$$\frac{d}{d\tau} \left[\frac{\lambda_n(\tau)}{\lambda_{n-1}(\tau)} \right] = \frac{\lambda_n(\tau)}{\lambda_{n-1}(\tau)} \int_0^1 x(y_{n-1}^2(x, \tau) - y_n^2(x, \tau)) dx.$$

So, we have to show that

$$\ll x(\tau) \gg = \int_0^1 x(y_{n-1}^2(x, \tau) - y_n^2(x, \tau)) dx \geq 0, \quad (2.3)$$

for all $\tau > 0$.

Firstly notice that

$$\ll x(\tau) \gg = \int_0^1 x(y_{n-1}^2(x, \tau) - y_n^2(x, \tau)) dx$$

$$= \sum_{i=1}^{n-1} \int_{z_i}^{z_{i+1}} x(y_{n-1}^2(x, \tau) - y_n^2(x, \tau)) dx.$$

To show (2.3), it suffices to show that

$$\ll x(\tau) \gg_i = \int_{z_i}^{z_{i+1}} x(y_{n-1}^2(x, \tau) - y_n^2(x, \tau)) d\tau \geq 0$$

Taking $g(x) = x$ in Lemma 1 we get

$$y_n'(z_{i+1}, \tau)^2 = \lambda_n \int_{z_i}^{z_{i+1}} (3\tau x + 2b) + y_n^2(x, \tau) dx,$$

and, with $g(x) = x^2$,

$$y_n'(z_{i+1}, \tau)^2 = \lambda_n \int_{z_i}^{z_{i+1}} (5\tau x^2 + 4bx) + y_n^2(x, \tau) dx.$$
Therefore,
\[5t \int_{z_i}^{z_{i+1}} x^2 y_n^2(x, \tau) \, dx = (3\tau - 4b) \int_{z_i}^{z_{i+1}} xy_n^2(x, \tau) \, dx + 2ab \int_{z_i}^{z_{i+1}} y_n^2(x, \tau) \, dx. \] (2.4)
By the normalization condition of \(y \), we obtain
\[\int_0^1 y_n^2(x, \tau) \, dx = \frac{1}{b} - \frac{\tau}{b} \int_0^1 xy_n^2(x, \tau) \, dx, \]
yields
\[\int_0^1 y_n^2(x, \tau) \, dx = \frac{1}{nb} - \frac{\tau}{b} \int_{z_i}^{z_{i+1}} xy_n^2(x, \tau) \, dx. \]
Then
\[\int_{z_i}^{z_{i+1}} y_n^2(x, \tau) \, dx = \frac{1}{nb} - \frac{\tau}{b} \int_{z_i}^{z_{i+1}} xy_n^2(x, \tau) \, dx. \]
Thus, from (2.4), we get
\[\int_{z_i}^{z_{i+1}} x^2 y_n^2(x, \tau) \, dx = \frac{2}{5\tau} + \frac{\tau - 4b}{b} \int_{z_i}^{z_{i+1}} xy_n^2(x, \tau) \, dx. \]
From this, it follows that
\[\int_{z_i}^{z_{i+1}} [y_{n-1}^2(x, \tau) - y_n^2(x, \tau)^2] \, dx = \frac{-\tau}{b} \ll x(\tau) \gg_i \] (2.5)
and
\[\int_{z_i}^{z_{i+1}} x^2 [y_{n-1}^2(x, \tau) - y_n^2(x, \tau)^2] \, dx = \frac{\tau - 4b}{5\tau} \ll x(\tau) \gg_i. \] (2.6)
First of all notice that \(\ll x(\tau) \gg_i \neq 0 \) for all \(\tau > 0 \). For, if for some \(t, \ll x(\tau) \gg_i = 0 \) then from (2.5) and (2.6), we obtain
\[\int_{z_i}^{z_{i+1}} (Ax^2 + Bx + C) [y_{n-1}^2(x, \tau) - y_n^2(x, \tau)^2] \, dx = 0, \]
where \(A, B \) and \(C \) are arbitrary constants, which is impossible because there are a points \(z_i(\tau) < x_{2i+1}(\tau) < x_{2i+2}(\tau) < z_{i+1}(\tau) \) such that
\[\begin{align*}
 & y_n^2(x, \tau) > y_{n-1}^2(x, \tau), \quad x \in (z_i(\tau), x_{2i+1}(\tau)) \cup (x_{2i+2}(\tau), z_{i+1}(\tau)), \\
 & y_n^2(x, \tau) < y_{n-1}^2(x, \tau), \quad x \in (x_{2i+1}(\tau), x_{2i+2}(\tau)).
\end{align*} \] (2.7)
therefore, \[x(\tau) \rightrightarrows_i \neq 0 \] for all \(\tau > 0 \). Then, according to the continuity of \(x(\tau) \rightrightarrows_i \), we either have \(x(\tau) \rightrightarrows_i < 0 \) or \(x(\tau) \rightrightarrows_i > 0 \). We assume the contrary that \(x(\tau) \rightrightarrows_i < 0 \). Then, from this together with \((2.5)\) and \((2.6)\), we obtain

\[
\int_{z_i}^{z_{i+1}} (A x^2 + B x + c) [y_{n-1}^2(x, \tau) - y_n^2(x, \tau)] < 0,
\]

(2.8) for all \(\tau < 4b \). But if we choose \(A < 0 \), \(B > 0 \) and \(C < 0 \) we get

\[
A x^2 + B x + c = -(x - x_{2i+1}(\tau))(x - x_{2i+2}(\tau)).
\]

by \((2.7)\), we find that \((2.8)\) is positive. It is a contradiction with the hypothesis \(x(\tau) \rightrightarrows_i > 0 \). □

Lemma 3 Let \(\hat{\rho} > 0 \) be function continuous on \([0, 1]\) such that \(\hat{\rho}(x) = a_i x + b \) for \(x \in [z_i, z_{i+1}] \). Then the eigenvalues of Problem \((1.3) - (1.2)\) with \(\rho = \hat{\rho} \), satisfy

\[
\frac{\lambda_n(\hat{\rho})}{\lambda_m(\hat{\rho})} \geq \left(\frac{n}{m} \right)^2.
\]

(2.9)

Equality holds iff \(\hat{\rho} \) is constant in \([0, 1]\).

Proof According to Lemma 2

\[
\frac{d}{d\tau} \left[\frac{\lambda_n(\tau)}{\lambda_{n-1}(\tau)} \right] = \frac{\lambda_n(\tau)}{\lambda_{n-1}(\tau)} \int_0^1 x(y_{n-1}^2(x, \tau) - y_n^2(x, \tau)) dx \geq 0.
\]

Then,

\[
\frac{\lambda_n(\tau)}{\lambda_{n-1}(\tau)} \geq \frac{\lambda_n(0)}{\lambda_{n-1}(0)} = \left(\frac{n}{n-1} \right)^2.
\]

Then

\[
\frac{\lambda_n(\hat{\rho})}{\lambda_m(\hat{\rho})} \geq \left(\frac{n}{m} \right)^2.
\]

We are now ready to prove Theorem 1.

Proof We define \(\rho(x, \tau) = \tau \rho(x) + (1 - \tau)\hat{\rho}(x) \), then from \((2.1)\)

\[
\frac{d}{d\tau} \left[\frac{\lambda_n(\tau)}{\lambda_{n-1}(\tau)} \right] = \frac{\lambda_n(\tau)}{\lambda_{n-1}(\tau)} \int_0^1 [\rho(x) - \hat{\rho}(x)](y_{n-1}^2(x, \tau) - y_n^2(x, \tau)) dx \geq 0
\]

\[
= \frac{\lambda_n(\tau)}{\lambda_{n-1}(\tau)} \sum_{i=0}^{n} \int_{z_i}^{z_{i+1}} [\rho(x) - \hat{\rho}(x)](y_{n-1}^2(x, \tau) - y_n^2(x, \tau)) dx.
\]

We notice that

\[
\int_{z_i}^{z_{i+1}} [\rho(x) - \hat{\rho}(x)](y_{n-1}^2(x, \tau) - y_n^2(x, \tau)) dx \geq 0.
\]
It then follows that,

\[
\frac{d}{d\tau} \left[\frac{\lambda_n(\tau)}{\lambda_{n-1}(\tau)} \right] \geq 0.
\]

Thus, by the continuity of eigenvalues, we obtain

\[
\frac{\lambda_n(\rho)}{\lambda_{n-1}(\rho)} = \frac{\lambda_n(1)}{\lambda_{n-1}(1)} \geq \frac{\lambda_n(0)}{\lambda_{n-1}(0)} = \frac{\lambda_n(\hat{\rho})}{\lambda_{n-1}(\hat{\rho})}.
\]

And hence

\[
\frac{\lambda_n(\rho)}{\lambda_m(\rho)} \geq \left(\frac{n}{m} \right)^2.
\]

According to Lemma [2], equality holds, if \(\rho = \hat{\rho} = cte \).

\[\square\]

Corollary 1 Let \(\rho \) a concave density on \([0, 1]\). Then the eigenvalues of the Dirichlet problem (1.3)-(1.2) satisfy

\[
\lambda_n - \lambda_m \geq \left(\frac{n}{m} \right)^2 (m\pi)^2 \rho_M,
\]

where \((\rho)_M = \max_{x \in [0, 1]} \rho(x)\).

Equality if and only if \(\rho \) is constant.

3 Eigenvalue ratios for Sturm-Liouville problems with \(q \equiv 0 \).

In this section, we derive the more general bounds on eigenvalue ratios that can be obtained in the absence of the potential \(q \).

Theorem 2 Consider the regular Sturm-Liouville problem \(-(p(x)y')' = \lambda \rho(x)y\) with Dirichlet boundary conditions (1.2). If \(pp \) a concave function on \([0, 1]\) then

\[
\frac{\lambda_n}{\lambda_m} \geq \left(\frac{n}{m} \right)^2.
\]

Equality holds iff \(pp \) is constant in \([0, 1]\).

Proof By use the Legendre substitution [15] pp. 227-228

\[
t(x) = \frac{1}{\sigma} \int_0^x \frac{1}{p(z)}dz, \quad \sigma = \int_0^1 \frac{1}{p(z)}dz,
\]

Equation (1.1) can be rewritten in the string equation

\[
-\ddot{y} = \lambda \sigma^2 \tilde{p}(t) \tilde{\rho}(t)y,
\]

where \(\tilde{p}(t) = p(x) \) and \(\tilde{\rho}(t) = \rho(x) \). Thus the estimate (3.1) is direct consequence of Theorem [1] \[\square\]
Corollary 2 Consider the regular Sturm-Liouville problem \(- (p(x)y')' = \lambda \rho(x)y\) with Dirichlet boundary conditions (1.2). If \(p\rho\) a concave function on \([0, 1]\) then

\[
\lambda_n - \lambda_m \geq \left(\frac{n}{m}\right)^2 - 1 \frac{(m\pi)^2}{(pp)_M},
\]

(3.3)

where \((pp)_M = \max_{x \in [0,1]} (p(x)\rho(x))\).

Equality holds iff \(pp\) is constant in \([0, 1]\).

Acknowledgement. Research supported by Partial differential equations laboratory (LR03ES04), at the Faculty of Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia

References

[1] M. S. Ashbaugh and R. D. Benguria, Optimal bounds for ratios of eigenvalues of one dimensional Schrödinger operators with Dirichlet boundary conditions and positive potentials, Comm. Math. Phys., 124, (1989), 403 – 415.

[2] M. Ashbaugh and R. Benguria, Optimal lower bound for the gap between the first two eigenvalues of one-dimensional Schrödinger operators with symmetric single-well potentials, Proc. Amer. Math. Soc., 105, (1989), 419 – 424.

[3] M. S. Ashbaugh and R. D. Benguria, Eigenvalue ratios for Sturm-Liouville operators, J. Differential Equations, 103, (1993), 205 – 219.

[4] J. Ben Amara and Jihed Hedhly, Eigenvalue ratios for Schrödinger operators with indefinite potentials, Applied Mathematics Letters, 76, (2018), 96 – 102.

[5] J. Hedhly, Eigenvalue Ratios for vibrating string equations with single-well densities, J. Differential Equations, 2021.

[6] A. Constantin, A general-weighted Sturm-Liouville problem, Annali della Scuola Normale Superiore di Pisa, Classe di Scienze, 24, (1997), 767 – 782.

[7] A. Constantin, On the Inverse Spectral Problem for the Camassa-Holm Equation, journal of functional analysis, 155, (1998), 352 – 363.

[8] M-J. Huang, On The Eigenvalue Ratio For Vibrating Strings, Proc. Amer. Math. Soc., 127, (2006), 1805 – 1813.

[9] M. J. Huang, The eigenvalue ratio for a class of densities, J. Math. Anal. Appl., 435, (2016), 944 – 954.

[10] Y. L. Huang and C. K. Law, Eigenvalue ratios for the regular Sturm-Liouville system, Proc. Amer. Math. Soc., 124, (1996), 1427 – 1436.
[11] M. Horváth, on the first two eigenvalues of Sturm-Liouville operators, Proc. Amer. Math. Soc., 131, (2002), 1215 – 1224.

[12] M. Horváth and M. Kiss, A bound for ratios of eigenvalues of Schrödinger operators with single-well potentials, Proc. Amer. Math. Soc., 134, (2005), 1425–1434.

[13] J. B. Keller, The minimum ratio of two eigenvalues, SIAM J. Appl. Math., 31, (1976), 485 – 491.

[14] M. Kiss, Eigenvalue ratios of vibrating strings, Acta Math. Hungar., 110, 2006, 253 – 259.

[15] W. Leighton, Ordinary Differential Equations. 3rd ed. Wadsworth, Belmont. CA., 1970.

[16] B.M. Levitan and I. S. Sargsyan, Introduction to spectral theory: Selfadjoint Ordinary Differential Operators, American Mathematical Society, Translation of Mathematical Monographs, 39, (1975).