Biological Monitoring of Workers Exposed to Emissions from Petroleum Plants

Diana Anderson,¹ Jane Anne Hughes,¹ Antonina Cebulska-Wasilewska,² Anna Wierzewska,² and Eva Kasper²

¹BIBRA International, Carshalton, Surrey, United Kingdom; ²Environmental and Radiation Biology Department, Institute of Nuclear Physics, Kraków, Poland

This paper presents some of the results from the Commission of the European Communities collaborative research program (contract number EV5V-CT92-0221), whose aim is to investigate the relationship between exposure to petroleum emissions, benzene, and induction of genetic damage in human cells. Twenty-four workers from petroleum plants in Poland and 35 unexposed controls were examined for cytogenetic effects and ras oncogene levels and their relationship to confounding factors (e.g., smoking habit, sex, family cancer history, and seasonal influence). Preliminary data of chromosome aberrations (CA) and sister chromatid exchanges (SCE) showed differences among sampling subgroups. In this present study, the levels of ras p21 proteins were determined and further analyses of CA, SCE, high frequency cells (HFC), and proliferative rate index (PRI) have been undertaken. Results show that the exposed group has statistically significant increases in CA, and percent of aberrant cells. There were no differences between exposed and unexposed groups in SCE, HFC, PRI, or the levels of ras p21 proteins. Smoking was found to statistically significantly affect levels of CA, percent of aberrant cells, SCE, HFC, and ras proteins. Sister chromatid exchanges were also statistically significantly sex dependent (7.5 breaks/cell for females and 6.8 breaks/cell for males). There were no statistically significant differences for CA, percent aberrant cells, SCE, HFC, or ras p21 protein levels in subgroups characterized according to cancer cases reported in the immediate family. A seasonal variability was shown with statistically significant increases in various biomarkers in the winter. Unexposed groups also showed increases due to smoking and season. The nonsmoking group individuals also showed statistically significant increases in cytogenetic damage with exposure. — Environ Health Perspect 104(Suppl 3):609–613 (1996)

Key words: petroleum emissions, workers, chromosome aberrations, ras oncogenes

Introduction

Chemical carcinogens have the ability to initiate the carcinogenic process by mutagenic or genotoxic mechanisms (1). Benzene is considered to be a human carcinogen, it is clastogenic to rodents and humans, and it affects the immune response (2). Workers in various industrial plants, particularly those in petroleum plants, are exposed to benzene and benzene-related compounds as a result of various activities in which benzene is processed, generated, or used. A Commission of the European Communities collaborative research program (coordinated by Angelo Carere) has been set up to investigate different aspects of the toxicity of benzene. The goals of the program are to describe the exposure profile of human populations occupationally exposed to benzene and petroleum fuels, to analyze the frequency of early indicators of genetic damage in relation to the exposure to the petroleum products, to evaluate the role of benzene as a genotoxic component of petroleum and its derivatives, and to analyze the mortality of filling station attendants in relation to the adversity of exposure to petroleum fuels.

The present study was part of this collaborative program; the aim of this study was to examine cytogenetic effects and ras oncogene levels and their relationship to confounding factors (e.g., smoking habits, sex, family cancer history, and seasonal influences) in samples of peripheral blood lymphocytes and plasma of workers from petroleum plants in Poland by comparison with unexposed controls.

Materials and Methods

Sampling

Interviews were performed using a questionnaire recommended for this type of study (3). Blood samples were collected from several exposed and unexposed subgroups. To avoid a seasonal influence, sampling of exposed and unexposed subgroups was carried out during the same time period either in winter or in summer. Table 1 presents the characteristics of the exposed and unexposed subgroups.

Blood samples from the exposed groups were collected in 1993 and 1994 in two petroleum plants described elsewhere (4,5). The available information on the production and emission of these plants is shown in Table 2. Individual monitoring of workers was not undertaken at the time. Two subgroups of unexposed donors were chosen from administrative staff at the petroleum plant and from the region of southern Poland characterized by a low level of pollution (6) and a low level of total cancer cases (7). Blood samples were collected by venipuncture into heparinized tubes. Each sample was split into two parts. From the first part of the sample, blood plasma was extracted, frozen at −70°C, and transported in dry ice to BIBRA International laboratory for testing ras p21 protein levels by methods discussed.

This paper was presented at the 2nd International Conference on Environmental Mutagens in Human Populations held 20–25 August 1996 in Prague, Czech Republic. Manuscript received 22 November 1996; manuscript accepted 28 November 1996.

We wish to thank A.T. Natarajan, Leiden University for allowing A. Cebulska-Wasilewska to work in his laboratory for 3 months. Research was partially supported by contract CIPDC 925100 of the Commission of the European Communities. The able assistance of B. Krzykwa, J. Witowska, J. Adamczyk, E. Bartel, D. Nowak, W. Niedzwiedz, I. Pawlik, and Z. Drag is greatly appreciated.

Address correspondence to Dr. Diana Anderson, BIBRA International, Woodmansterne Road, Carshalton, Surrey, SMS 4DS, U.K. Telephone: 0044 181 652 1000. Fax: 0044 181 661 7029. E-mail: help@bibra.co.uk

Abbreviations used: Abf, aberration frequencies excluding gaps; AbC, percent of aberrant cells; CA, chromosome aberrations; HFC, high frequency cells; PRI, proliferative rate index; ras, ras p21 protein; SCE, sister chromatid exchanges; TABF, total aberration frequencies including gaps.

Environmental Health Perspectives • Vol 104, Supplement 3 • May 1996

609
Table 1. Characteristics of exposed and unexposed subgroups.

Exposure	Sampling season	Number of individuals investigated	Age	Female, %	Male, %	Smoking individuals, %	Individuals reporting cancer in family, %	Number of first mitoses analyzed for CA	Number of second mitoses analyzed for SCE
Exposed	Winter	10	42	20	80	90	20	2445	590
Exposed	Summer	14	41	21	79	93	0	1845	697
Total		24	41	21	79	91	12	4290	1287
Unexposed	Winter	10	40	70	30	60	20	3232	742
Unexposed	Summer	25	39	39	61	67	17	4476	1390
Total		35	40	50	50	64	18	7729	2132

Abbreviations: CA, chromosome aberration; SCE, sister chromatid exchanges.

Table 2. The production and emission of the two Polish petroleum plants where blood samples from the exposed groups were collected (1992 figures).

Production and emission	Central Poland	Southern Poland
Oil transferred	10,000,000	135,434
Emission		
Sulphur dioxide	48,113	310
Carbon monoxide	7,354	31
Nitrous oxide	5,867	183
Hydrogen sulfide	65	53
Benzene	0.048	
Aromatic hydrocarbons	784	5.2
Aliphatic hydrocarbons	6,172	231.7
Benzo[a]pyrene	0.002	0.004
Gaseous in total	7	782
Dust in total	411	286

Mg, megagram = 1,000 kg or 1 metric ton; ?, unknown.

elsewhere (8,9). The second part of the heparinized whole blood was transported to the laboratory of the Environmental and Radiation Biology Department in Kraków where appropriate culturing of samples was performed as soon as possible.

Blood Culturing and Cytogenetic Screening

Samples of heparinized blood were incubated at 37°C using Eagle’s medium supplemented with 20% fetal calf serum and antibiotics. Lymphocytes were stimulated with LF-7, a Polish substitute for phytohemagglutinin (4,10), and then cultured, with the addition an appropriate amount of 5-bromo-2-deoxyuridine (BrdU) in chromosome aberration (CA) cultures for 48 hr and in sister chromatid exchange (SCE) cultures for 72 hr (11). Ninety minutes before the end of culture, colcemid was added (0.1 µl/ml) to each sample. Fixation and staining were performed by standard cytological procedures for both methods respectively (3,12,13). The number of cells analyzed in the first mitosis for CA and in the second mitosis for SCE are displayed in Table 1. Chromosome- and chromatid-type aberrations were scored and expressed as total aberration frequencies including gaps (TABF) and excluding gaps (AbF). SCEs were screened for each metaphase containing at least 44 chromosomes, and high frequency cells (HFC) were evaluated as reported elsewhere (14,15).

Statistics

A t-test and analysis of variance (ANOVA) were applied to determine whether there was a significant difference between one or more confounding factors and different variables. A significance level lower than 0.05 is reported as *, and a level lower than 0.005 is reported as ** (16).

Results

Table 3 and Figure 1 show yields of various biomarkers detected in blood samples of the entire population under study and their relationship to exposure. In the exposed group there was a statistically significant increase in CA (TABF, AbF, and AbC [percent of aberrant cells]). There was an increase in the level of observed cytogenetic damage that varied significantly with the duration of occupational exposure, but the relationship was

Figure 1. Influence of exposure to benzene-related compounds on biomarkers in the study population. Abbreviations: TABF, total aberration frequency; AbC, percent of aberrant cells; SCE, sister chromatid exchange; HFC, percent of cells containing high frequency SCE; RAS, p21 protein level. **Significance level <0.005.

Table 3. The effect of exposure on various biomarkers in the study population.

Exposure	Number of individuals in group	Age	TABF ± SE	AbF	AbC	SCE	PRI	HFC	RAS
Whole population under study	49	41	0.044 ± 0.014	0.30	4.1	7.1	2.35	6.3	0.84
Unexposed	25	40	0.032 ± 0.009**	0.017**	3.1**	6.8	2.34	6.7	0.92
Exposed	24	41	0.056 ± 0.018	0.043	5.3	7.2	2.28	7.0	0.74
Years of exposure									
0 years	25	40	0.032 ± 0.009**	0.017**	3.1**	6.9	2.34	6.7	0.82**
< 10 years	8	31	0.081 ± 0.026	0.069	7.3	7.0	2.36	6.3	0.96
< 20 years	14	41	0.043 ± 0.015	0.032	4.1	7.6	2.26	7.3	1.22
> 20 years	2	43	0.053 ± 0.016	0.039	5.1	6.5	2.22	2.0	0.39

Abbreviations: TABF ± SE, total aberration frequency (including gaps) ± standard error; AbF, aberration frequency (excluding gaps); AbC, percent of aberrant cells; SCE, sister chromatid exchange; HFC, percent of cells containing high frequency SCE, i.e., containing number of exchanges above 95% of total in control distribution; PRI, proliferative rate index ([MI + 2xMII + 3xMIII] / [MI + MII + MIII]); RAS, p21 protein level. **Significance level <0.005.
not linear (Figure 2). SCE levels were slightly higher in the exposed group but were not statistically significant by comparison with the unexposed group. There were also no significant differences between exposed and unexposed groups in HFC, proliferative rate index (PRI), or the levels of ras p21 proteins (Figure 1). The level of ras p21 showed significant variation with the duration of exposure, but there was no linear correlation between oncoprotein levels and years of occupational exposure (Figure 2).

Results of the analysis regarding confounding factors are presented in Table 4, where smoking was found to cause significant increases in TabF, AbF, AbC, SCE, HFC, and ras (Figure 3). SCE, HFC and ras protein levels showed significant variation with the different categories of smoking habits; however, there was no simple relationship observed between the length or extent of smoking and the level of damage observed (Figure 4). SCEs and HFC were found to be significantly sex (female) dependent (Figure 5). There were no significant differences for CA, SCE, HFC, or ras p21 protein levels in subgroups characterized according to cancer history, i.e., cancer cases reported in the immediate family (Table 4). There were large differences for all the biomarkers in the study in relation to the sampling season (Figure 6). There were statistically significant increases in TabF, AbF, AbC, SCE, and HFC and a decrease in ras p21 when the blood was collected in winter.

![Figure 2](image1.png)
Figure 2. Influence of years of exposure to benzene-related compounds on biomarkers in the study population. *Significance level < 0.05. **Significance level < 0.005.

![Figure 3](image2.png)
Figure 3. Influence of smoking on biomarkers in smokers and nonsmokers in the study population. PRI, proliferative rate index. *Significance level < 0.05. **Significance level < 0.005.

| Table 4. The effect of confounding factors on various biomarkers in the study population. |
|---|---|---|---|---|---|---|---|---|
| Factor | Number in group | Age | TabF ± SE | AbF | AbC | SCE | PRI | HFC | RAS |
| All | 49 | 41 | 0.044 ± 0.014 | 0.030 | 4.1 | 7.0 | 2.3 | 6.3 | 0.84 |
| Exposure | Unexposed | 25 | 40 | 0.032 ± 0.009** | 0.017** | 3.1** | 6.9 | 2.34 | 6.7 | 0.92 |
| Exposed | 24 | 41 | 0.058 ± 0.018 | 0.045 | 5.3 | 7.2 | 2.28 | 7.0 | 0.74 |
| Smoking | Nonsmokers | 11 | 39 | 0.032 ± 0.010** | 0.019** | 2.9* | 6.6* | 2.31 | 4.3* | 0.53* |
| Smokers | 38 | 41 | 0.047 ± 0.015 | 0.033 | 4.5 | 7.2 | 2.30 | 7.6 | 0.92 |
| Smoking history | Nonsmokers | 11 | 39 | 0.031 ± 0.010 | 0.019 | 2.9 | 6.6** | 2.32 | 4.3** | 0.53** |
| <15/day and <5 years | 6 | 36 | 0.051 ± 0.014 | 0.031 | 4.8 | 6.1 | 2.36 | 2.5 | 1.26 |
| <15/day and >5 years | 19 | 41 | 0.052 ± 0.015 | 0.034 | 4.9 | 7.6 | 2.30 | 8.9 | 1.01 |
| >15/day and <5 years | 2 | 33 | 0.046 ± 0.014 | 0.034 | 4.6 | 7.8 | 2.12 | 7.0 | 0.34 |
| >15/day and >5 years | 7 | 42 | 0.039 ± 0.013 | 0.033 | 3.6 | 7.1 | 2.30 | 9.3 | 0.38 |
| Significantly >15/day and | 4 | 50 | 0.040 ± 0.014 | 0.029 | 3.8 | 6.8 | 2.38 | 4.6 | 1.18 |
| significantly >5 years | | | | | | | | | |
| Sex | Female | 16 | 40 | 0.045 ± 0.013 | 0.025 | 4.3 | 7.5* | 2.32 | 8.5* | 0.77 |
| Male | 33 | 41 | 0.043 ± 0.014 | 0.032 | 4.1 | 6.8 | 2.31 | 6.1 | 0.87 |
| Cancer in immediate family | No | 43 | 40 | 0.042 ± 0.013 | 0.029 | 4.0 | 7.0 | 2.31 | 6.6 | 0.78 |
| Yes | 6 | 40 | 0.054 ± 0.017 | 0.038 | 5.2 | 7.2 | 2.28 | 8.8 | 1.01 |
| Sampling season | Summer | 24 | 40 | 0.033 ± 0.011** | 0.023** | 3.2** | 6.3** | 2.36** | 3.0** | 1.04** |
| Winter | 25 | 41 | 0.059 ± 0.018 | 0.040 | 5.6 | 8.0 | 2.24 | 11.1 | 0.47 |

Abbreviations: TabF ± SE, total aberration frequency (including gaps) ± SE; AbF, aberration frequency (including gaps); AbC, percent of aberrant cells; SCE, sister chromatid exchanges; HFC, percent of cells containing high frequency SCE, i.e., containing number of exchanges above 95% of total in control distribution; PRI, proliferative rate index; RAS, p21 protein levels. *Significance level < 0.05. **Significance level < 0.005.
Variability among the biomarkers in the unexposed subgroup caused by confounding factors is shown in Table 5. Again females showed an increase in levels of SCE and HFC and a decrease for PRI. There was also an influence of season; higher values of SCE and HFC were seen in winter. The various biomarkers for the non-smoking population in relation to exposure are shown in Table 6. There was a statistically significant effect on TAbF, AbF, and HFC due to exposure.

Discussion

There are other reports of increases in CA frequencies in lymphocytes of workers exposed to high levels of benzene (2). Our studies have examined the influence of occupational exposure on the various parameters measured in workers from petroleum plants from the central part of Poland. Our results have revealed a significant increase in cytogenetic aberrations in the work population under study and in nonsmoking individuals, but the increase was not correlated with the duration of exposure using recommended statistical procedures (16). Other studies performed in Hungary and Poland also showed significantly higher frequencies of chromosomal aberrations for exposed workers. Again,

Table 5. The effect of various confounding factors on biomarkers in the unexposed subgroup.

Factor	Number in group	Age	TAbF	SE	AbF	AbC	SCE	PRI	HFC	RAS
All unexposed	25	40	0.032	0.009	0.017	3.1	6.9	2.36	6.7	0.9
Age										
>30	12	35	0.034	0.008	0.016	3.3	6.7	2.37	4.7	0.16**
>40	13	44	0.031	0.010	0.018	2.9	7.0	2.35	8.3	1.3
Sex										
Female	11	39	0.040	0.011	0.019	3.8	7.5**	2.27**	8.7*	0.7
Male	14	40	0.026	0.008	0.016	2.5	6.4	2.40	4.9	1.2
Smoking										
Nonsmokers	9	37	0.025	0.009	0.014	2.3	6.5*	2.32	3.6**	0.6*
Smokers	16	41	0.036	0.010	0.019	3.5	7.1	2.36	8.5	1.1
Smoking history										
Nonsmokers	9	37	0.025	0.009	0.014	2.3	6.5**	2.32	3.6**	0.6**
<15/day and <5 years	4	38	0.050	0.012	0.025	4.8	6.6	2.34	3.8	1.1
<15/day and >5 years	8	42	0.039	0.011	0.020	3.8	7.7	2.30	9.9	1.0
>15/day and <5 years	2	42	0.026	0.012	0.015	2.5	7.9	2.26	12.0	1.5
>15/day and >5 years	2	44	0.007	0.005	0.007	0.7	6.6	2.57	10.8	0.3
Cancer in immediate family										
No	21	40	0.031	0.009	0.015	2.9	6.9	2.35	6.6	0.9
Yes	4	40	0.042	0.014	0.027	4.1	6.8	2.31	7.1	1.2
Sampling season										
Summer	15	39	0.025	0.007	0.014	2.4	6.4*	2.43**	4.9*	1.1**
Winter	10	41	0.043	0.014	0.023	4.1	7.6	2.21	9.2	0.4

*Significance level <0.05. **Significance level <0.005.
there was no correlation between aberration frequencies and the duration of exposure to petroleum emissions and benzene (17,18). Results of our studies also revealed an increase in other biological end points investigated in the petroleum-exposed groups. Smoking was also found to affect various biomarkers both in the whole population under study and in the unexposed group, as has previously been shown (19).

A seasonal influence on genotoxic biomarkers in a Polish population has been already observed by Perera et al. (20) and by Anderson et al. (15,21) in a United Kingdom control population. Our data also confirm that there is some seasonal effect on cytogenetic damage, both in the whole population and in the unexposed subgroup where responses are higher in winter. There are various possible reasons for such effects. Environmental pollution might be higher in the winter season due to the intensive combustion of coal for residential heating during the winter months (20), and there are less flora to help remove toxic environmental contaminants. Another reason could be a possible inadequacy in the diet of ordinary Polish people who, in the winter season may be unable to afford sufficient fruit and vegetables containing antioxidant vitamins, which might help protect them from environmental contaminants.

REFERENCES

1. Sorsa M, Wilbourn J, Vainio H. Human cytogenetic damage as a product of cancer risk In: Mechanism of Carcinogenesis in Risk Identification (Vainio H, Magee PN, Miegrodr DB, McMichael AJ, eds.). Lyon:International Agency for Research on Cancer, 1992;543–545.
2. WHO/ICPS. Benzene, Environmental Health Criteria 150. Geneva:International Programme on Chemical Safety, World Health Organization, 1993.
3. Carrano ÁV, Natarajan AT. Consideration for population monitoring using cytogenetic technique. Mutat Res 204:379–406 (1988).
4. Cebulska-Wasilewska A, Wierzewska A, Kasper E, Krzywka B. Annual Report INP. Krakow:Institute of Nuclear Physics, 1992;311–313.
5. Cebulska-Wasilewska A, Wierzewska A, Kasper E, Palka B, Kozala L. Biomonitoring of a human population exposed to benzene related genotoxic components. In: Proceedings of the Workshop on Monitoring of Exposure to Genotoxic Substances, 27–28 October 1994, Sosnowiec, Poland, Institute of Occupational Medicine and Environmental Health, WHO Collaborating Centre for Environmental Pollution/Health Assessment and Trading in Environmental Protection, 1996.
6. Nowicki M, ed. Ambient Air Pollution in Poland in 1987 (in Polish). Warszawa:Institute for Environmental Protection, 1990.
7. Zatonowski W, Tyczynski J. The geography of cancer in Poland. Arch Environ Prot 3:4–17-30 (1990).
8. Brinkworth MH, Yardley-Jones A, Edwards AJ, Hughes JA, Anderson D. A comparison of smokers and non-smokers with respect to oncogene product and cytogenetic parameters. J Occup Med 34:1181–1188 (1992).
9. Anderson D, Hughes JA, Cebulska-Wasilewska A, Nizankowska E, Graca B. RAS oncogenes in human plasma from lung cancer patients and healthy controls. Mutat Res 349:121–126 (1996).
10. Cebulska-Wasilewska A, Płucienik H, Wierzewska A. Applications of chromosome aberrations and SCE in evaluation of agrochemicals genotoxicity [in Polish]. Report INP, 1511/B. Krakow:Institute of Nuclear Physics, 1990:81–92.
11. Wolff S, ed. Sister Chromatid Exchanges. New York: John Wiley, 1982.
12. IAEA. Biological Dosimetry—Chromosome Aberration Analysis for Dose Assessment. IAEA Technical Report Series No 260. Vienna:International Atomic Energy Agency, 1986.
13. Wolff S. Biological dosimetry with cytogenetic endpoints. In: New Horizons in Biological Dosimetry (Gledhill BL, Mauro F, eds.). New York:Wiley-Liss, 1991:351–363.
14. Tates AD, Grummt T, Törnvist M, Farmer PB, van Dam FJ, van Mosel H, Schoemaker HM, Osterman-Golkar S, Uebel C, Tang YS, Zwinderman AH, Natarajan AT, Ehrenberg L. Biological and chemical monitoring of occupational exposure to ethylene oxide. Mutat Res 250:483–497 (1991).
15. Anderson D, Jenkinson PC, Dewdney RS, Francis AJ, Godbert P, Butterworth KR. Chromosome aberrations, mitogen-induced blastogenesis and proliferative rate index in peripheral lymphocytes from 106 control individuals of the U.K. population. Mutat Res 204:407–420 (1988).
16. Munroe BH, Visntainer MA, Page EB. Statistical Methods for Health Care Research Philadelphia:J.B. Lippincott, 1986.
17. Hubner H, Strózynski, Dzwonokowa A, Kiedrowska M, Ferenc T, Bratkowska W, Barczyk A. Analysis of effects of work conditions in the petrochemical industry on genetic material of high-risk patients. Biuletyn Wojskowej Akademii Medycznej 34(1/2):15–26 (1991).
18. Tompa A, Major J, Jakab MG, Monitoring of benzene-exposed workers for genotoxic effects of benzene. Mutat Res 304:159–165 (1994).
19. Major J, Jakab MG, Kis G, Tompa A. Chromosome aberration, sister-chromatid exchange, proliferative rate index, and serum thiocyanate concentration in smokers exposed to low-dose benzene. Environ Mol Mutagen 23:137–142 (1994).
20. Perera F, Hennmink E, Gryzbowskai E, Motykwicz G, Michalska J, Santella RL, Young TL, Dickey C, Brandt-Rauf P, DeVivo I, Bluner W, Taijl Wei-Y, Chorazy M. Molecular and genetic damage in humans from environmental pollution in Poland, Nature 360:256–258 (1992).
21. Anderson D, Francis AJ, Godbert P, Jenkinson PC, Butterworth KR. Variability in chromosome aberrations, sister chromatid exchanges, and mitogen-induced blastogenesis in peripheral lymphocytes from control individuals. Environ Health Perspect 101(Suppl 3):83–88 (1993).