2019

Effects of Interseeding Ladino Clover into Tall Fescue Pastures of Varying Endophyte Status on Grazing and Subsequent Finishing Performance of Stocker Steers

L. W. Lomas
Kansas State University, llomas@ksu.edu

J. L. Moyer
Kansas State University, jmoyer@ksu.edu

Follow this and additional works at: https://newprairiepress.org/kaesrr

Part of the Agronomy and Crop Sciences Commons, and the Beef Science Commons

Recommended Citation

Lomas, L. W. and Moyer, J. L. (2019) "Effects of Interseeding Ladino Clover into Tall Fescue Pastures of Varying Endophyte Status on Grazing and Subsequent Finishing Performance of Stocker Steers," Kansas Agricultural Experiment Station Research Reports: Vol. 5: Iss. 2. https://doi.org/10.4148/2378-5977.7727

This report is brought to you for free and open access by New Prairie Press. It has been accepted for inclusion in Kansas Agricultural Experiment Station Research Reports by an authorized administrator of New Prairie Press. Copyright 2019 the Author(s). Contents of this publication may be freely reproduced for educational purposes. All other rights reserved. Brand names appearing in this publication are for product identification purposes only. No endorsement is intended, nor is criticism implied of similar products not mentioned. K-State Research and Extension is an equal opportunity provider and employer.
Effects of Interseeding Ladino Clover into Tall Fescue Pastures of Varying Endophyte Status on Grazing and Subsequent Finishing Performance of Stocker Steers

L.W. Lomas and J.L. Moyer

Summary
One hundred ninety-two yearling steers grazing tall fescue pastures were used to evaluate the effects of fescue cultivar and interseeding ladino clover on available forage, grazing gains, and subsequent finishing performance in 2016, 2017, and 2018. Fescue cultivars evaluated were high-endophyte ‘Kentucky 31,’ low-endophyte Kentucky 31, ‘HM4,’ and ‘MaxQ.’ In 2016 and 2018, steers that grazed pastures of low-endophyte Kentucky 31, HM4, or MaxQ gained significantly more ($P < 0.05$) and produced more ($P < 0.05$) gain/acre than those that grazed high-endophyte Kentucky 31 pastures. Gains of cattle that grazed low-endophyte Kentucky 31, HM4, or MaxQ were similar ($P > 0.05$). In 2017, steer gains were similar ($P > 0.05$) among all cultivars. High-endophyte Kentucky 31 pastures had more ($P < 0.05$) available forage than low-endophyte Kentucky 31, HM4, or MaxQ pastures during both 2016 and 2017. Steer gains and gain/acre were similar ($P > 0.05$) between pastures fertilized with nitrogen (N) in the spring and those interseeded with ladino clover during all three years. Fescue cultivar or legume treatment had little effect on finishing performance or carcass characteristics of steers grazed in 2016 or 2017. Steers that grazed high-endophyte Kentucky 31 in 2016 had lower ($P < 0.05$) final finishing weight and lower ($P < 0.05$) carcass weight than those that grazed low-endophyte Kentucky 31, HM4, or MaxQ. In 2017, steers that grazed pastures interseeded with ladino clover had lower ($P < 0.05$) finishing gains and greater ($P < 0.05$) feed:gain than those that grazed pastures with no legume.

Introduction
Tall fescue, the most widely adapted cool-season perennial grass in the United States, is grown on approximately 66 million acres. Although tall fescue is well adapted in the eastern half of the country between the temperate north and mild south, presence of a fungal endophyte results in poor performance of grazing livestock, especially during the summer. Until recently, producers with high-endophyte tall fescue pastures had two primary options for improving grazing livestock performance. One option was to destroy existing stands and replace them with endophyte-free fescue or other forages. Although it supports greater animal performance than endophyte-infected fescue, endophyte-free fescue has been shown to be less persistent under grazing pressure and
more susceptible to stand loss from drought stress. In locations where high-endophyte tall fescue must be grown, the other option was for producers to adopt management strategies that reduce the negative effects of the endophyte on grazing animals, such as diluting the effects of the endophyte by incorporating legumes into existing pastures or providing supplemental feed. In recent years, new tall fescue cultivars have been developed with a non-toxic endophyte that provides vigor to the fescue plant without negatively affecting performance of grazing livestock. Interseeding legumes into endophyte-free tall fescue cultivars and those with the non-toxic endophyte should be an effective way of increasing gains of cattle grazing tall fescue. However, these cultivars lack the vigor of high-endophyte Kentucky 31 and their competitiveness with legumes could be a potential problem. Objectives of this study were to evaluate forage availability, stand persistence, and performance of stocker steers grazing tall fescue cultivars with non-toxic endophyte and high- and low-endophyte Kentucky 31 with and without ladino clover.

Experimental Procedures

Sixty-four mixed black yearling steers were weighed on two consecutive days and allotted to sixteen 5-acre established pastures of high-endophyte Kentucky 31 or low-endophyte Kentucky 31, HM4, or MaxQ tall fescue (4 replications per cultivar) on March 30, 2016 (535 lb), March 28, 2017 (597 lb), and April 3, 2018 (581 lb). The HM4 and MaxQ are cultivars with a non-toxic endophyte. Two pastures of each cultivar had been interseeded with 5 lb/a of ‘Will’ ladino clover on February 22, 2016. Four steers were assigned to each pasture. Pastures without clover were fertilized with 80 lb/a N on February 10, 2016, February 16, 2017, and January 31, 2018. All pastures were fertilized with 40 lb/a N and P$_2$O$_5$ and K$_2$O as required by soil test on September 13, 2016, September 11, 2017, and September 25, 2018.

Pasture was the experimental unit and weight gain was the primary measurement. No implants or feed additives were used. Cattle were weighed and forage availability was measured every 28 days in 2016 and 2017 with a disk meter calibrated for tall fescue. Cattle were treated for internal and external parasites before being turned out to pasture and later vaccinated for protection from pinkeye. Steers had free access to commercial mineral blocks that contained 12% calcium, 12% phosphorus, and 12% salt. Four steers were removed from the study in 2016 for reasons unrelated to experimental treatment and replaced with grazers to maintain equal stocking rates. Pastures were grazed continuously until November 29, 2016 (244 days), December 6, 2017 (253 days), and November 7, 2018 (218 days) when steers were weighed on two consecutive days and grazing was terminated.

After the grazing period, cattle were moved to a finishing facility, implanted with Synovex-S (Zoetis, Madison, NJ), and fed a diet of 80% whole-shelled corn, 15% corn silage, and 5% supplement (dry matter basis) to determine the effect of grazing treatment on subsequent finishing performance. Cattle that grazed in 2016 and 2017 were fed a finishing diet for 98 days and were slaughtered in a commercial facility, and carcass data were collected on each steer. Cattle that were grazed during 2018 were being finished for slaughter at the time that this report was written.
Results and Discussion
Grazing and finishing performance is pooled across legume treatment and presented by tall fescue cultivar for 2016 and 2017 in Table 1 and Table 3, respectively; and pooled across fescue cultivar and presented by legume treatment for 2016 and 2017 in Table 2 and Table 4, respectively. There were significant interactions ($P < 0.05$) between fescue cultivar and legume treatment for average available forage DM in 2016 and average daily dry matter intake during the finishing phase in 2017. In 2016 and 2018, steers that grazed low-endophyte Kentucky 31, HM4, or MaxQ were heavier ($P < 0.05$) at the end of the grazing period, had greater ($P < 0.05$) grazing gain, greater ($P < 0.05$) daily gain, and produced greater ($P < 0.05$) gain/a than steers that grazed high-endophyte Kentucky 31. Average available forage DM of high-endophyte Kentucky 31 pasture was greater ($P < 0.05$) than that of low-endophyte Kentucky 31, HM4, or MaxQ. In 2016, MaxQ pasture had greater ($P < 0.05$) available forage DM than low-endophyte Kentucky 31. Average available forage DM of HM4 pasture was similar ($P > 0.05$) to that of low-endophyte Kentucky 31 and MaxQ pastures. In 2017, average available forage DM of low-endophyte Kentucky 31, HM4, or MaxQ pastures were similar ($P > 0.05$). Steer gains were similar ($P > 0.05$) between pastures fertilized with an additional 80 lb/a N and those interseeded with ladino clover in all three years. Pastures with clover had less ($P < 0.05$) available forage DM than those without clover for all cultivars except high-endophyte Kentucky 31 where available forage DM of pastures with and without clover were similar ($P > 0.05$).

In 2016, fescue cultivar had no effect ($P > 0.05$) on finishing gain, dry matter intake, or feed:gain ratio. However, steers that previously grazed high-endophyte Kentucky 31 had lower ($P < 0.05$) weight at the end of the finishing phase and lower ($P < 0.05$) hot carcass weight than those that previously grazed low-endophyte Kentucky 31, HM4, or MaxQ. The weight differential between cattle that grazed high-endophyte Kentucky 31 and those that grazed low-endophyte Kentucky 31, HM4, or MaxQ was similar at the end of the grazing phase (156 lb) and the end of the finishing phase (155 lb). Therefore, the weight advantage of cattle that grazed high-endophyte Kentucky 31, HM4, or MaxQ occurred during the grazing phase and was maintained during the finishing phase. Cattle that grazed high-endophyte Kentucky 31 did not exhibit any compensatory gain during the finishing phase. Backfat thickness of steers that grazed high-endophyte Kentucky 31 or HM4 were similar ($P > 0.05$) and lower ($P < 0.05$) than that of steers that grazed low-endophyte Kentucky 31 or MaxQ. Yield grade of steers that grazed high-endophyte Kentucky 31 was numerically lower ($P < 0.05$) than that of steers that grazed low-endophyte Kentucky 31 or MaxQ and similar ($P > 0.05$) to that of steers that grazed HM4. Fescue cultivar had no effect ($P > 0.05$) on ribeye area, marbling score, or percent of carcasses that graded USDA Choice. Overall gain of steers that grazed high-endophyte Kentucky 31 was lower ($P < 0.05$) than that of steers that grazed low-endophyte Kentucky 31, HM4, or MaxQ and overall gain of steers that grazed low-endophyte Kentucky 31, HM4, or MaxQ were similar ($P > 0.05$). Legume treatment had no effect ($P > 0.05$) on finishing performance or carcass traits.

In 2017, fescue cultivar had no effect ($P > 0.05$) on finishing performance or overall performance. Steers that grazed pastures interseeded with ladino clover had lower
(P < 0.05) finishing gains and greater (P < 0.05) feed:gain than those that grazed pastures with no legume.

Grazing performance for 2018 is pooled across legume treatment and presented by tall fescue cultivar in Table 5, and pooled across fescue cultivar and presented by legume treatment in Table 6. Steers that grazed low-endophyte Kentucky 31, HM4, or MaxQ were heavier (P < 0.05) at the end of the grazing period, had greater (P < 0.05) grazing gain, greater (P < 0.05) daily gain, and produced greater (P < 0.05) gain/a than steers that grazed high-endophyte Kentucky 31. Legume treatment had no effect (P > 0.05) on grazing performance.
Table 1. Effects of cultivar on grazing and subsequent finishing performance of steers grazing tall fescue pastures, Southeast Research and Extension Center, 2016

Item	High-endophyte Kentucky 31	Low-endophyte Kentucky 31	HM4	MaxQ
Grazing phase (244 days)				
Number of head	13	16	16	15
Initial weight, lb	533	535	535	537
Ending weight, lb	770a	920b	931b	924b
Gain, lb	238a	385b	396b	387b
Daily gain, lb	0.97a	1.58b	1.62b	1.59b
Gain/a, lb	190a	308b	310b	310b
Average available forage dry matter, lb/a*	7,365a	5,944b	6,139bc	6,300c
Finishing phase (98 days)				
Beginning weight, lb	770a	920b	931b	924b
Ending weight, lb	1219a	1374b	1366b	1386b
Gain, lb	449	454	435	462
Daily gain, lb	4.58	4.63	4.44	4.71
Daily dry matter intake, lb	26.2	27.4	28.3	28.3
Feed:gain	5.74	5.91	6.41	6.05
Hot carcass weight, lb	756a	852b	847b	859b
Backfat, in.	0.47a	0.60b	0.55a	0.60b
Ribeye area, sq. in.	12.7	12.8	12.7	12.9
Yield grade	2.3a	3.0b	2.9ab	3.0b
Marbling score¹	627	669	623	616
Percentage USDA grade Choice	100	100	100	100
Overall performance (grazing plus finishing; 342 days)				
Gain, lb	687a	839b	831b	849b
Daily gain, lb	2.01a	2.45b	2.43b	2.48b

¹600 = modest, 700 = moderate.

Means within a row followed by the same letter do not differ (P < 0.05).

*There was a significant (P < 0.05) fescue cultivar × legume interaction.
Table 2. Effects of interseeding ladino clover on grazing and subsequent finishing performance of steers grazing tall fescue pastures, Southeast Research and Extension Center, 2016

Item	Legume treatment		
	No legume	Ladino clover	
Grazing phase (244 days)			
Number of head	30	30	
Initial weight, lb	534	536	
Ending weight, lb	868	905	
Gain, lb	334	369	
Daily gain, lb	1.37	1.51	
Gain/a, lb	267	295	
Average available forage dry matter, lb/a*	6,888a	5,986b	
Finishing phase (98 days)			
Beginning weight, lb	868	905	
Ending weight, lb	1320	1353	
Gain, lb	453	448	
Daily gain, lb	4.62	4.57	
Daily dry matter intake, lb	27.4	27.6	
Feed:gain	5.97	6.09	
Hot carcass weight, lb	819	839	
Backfat, in.	0.55	0.56	
Ribeye area, sq. in.	12.8	12.8	
Yield grade	2.8	2.8	
Marbling score¹	619	649	
Percentage USDA grade Choice	100	100	
Overall performance (grazing plus finishing; 342 days)			
Gain, lb	786	817	
Daily gain, lb	2.30	2.39	

¹600 = modest, 700 = moderate.
Means within a row followed by the same letter do not differ (P < 0.05).
*There was a significant (P < 0.05) fescue cultivar × legume interaction.
Table 3. Effects of cultivar on grazing and subsequent finishing performance of steers grazing tall fescue pastures, Southeast Research and Extension Center, 2017

Tall fescue cultivar	High-endophyte Kentucky 31	Low-endophyte Kentucky 31	HM4	MaxQ
Grazing phase (253 days)				
Number of head	16	16	16	16
Initial weight, lb	597	597	597	597
Ending weight, lb	901	1029	986	1007
Gain, lb	304	432	389	411
Daily gain, lb	1.20	1.71	1.54	1.62
Gain/a, lb	244	346	311	328
Average available forage dry matter, lb/a	5,179a	4,728b	4,812b	4,808b
Finishing phase (98 days)				
Beginning weight, lb	901	1029	986	1007
Ending weight, lb	1311	1422	1374	1400
Gain, lb	410	393	389	393
Daily gain, lb	4.18	4.01	3.97	4.01
Daily dry matter intake, lb*	28.5	28.4	28.7	27.6
Feed:gain	6.82	7.13	7.25	7.01
Hot carcass weight, lb	813	882	852	868
Backfat, in.	0.46	0.58	0.58	0.52
Ribeye area, sq. in.	13.1	13.3	13.1	13.1
Yield grade	2.4	2.8	2.8	2.7
Marbling score¹	659	694	754	701
Percentage USDA grade Choice	94	100	100	100
Overall performance (grazing plus finishing; 351 days)				
Gain, lb	715	826	778	803
Daily gain, lb	2.04	2.35	2.22	2.29

¹600 = modest, 700 = moderate, 800 = slightly abundant.

Means within a row followed by the same letter do not differ (P < 0.05).

*There was a significant (P < 0.05) fescue cultivar × legume interaction.
Table 4. Effects of interseeding ladino clover on grazing and subsequent finishing performance of steers grazing tall fescue pastures, Southeast Research and Extension Center, 2017

Item	No legume	Ladino clover
Grazing phase (253 days)		
Number of head	32	32
Initial weight, lb	597	597
Ending weight, lb	951	1011
Gain, lb	354	414
Daily gain, lb	1.40	1.64
Gain/a, lb	283	331
Average available forage dry matter, lb/a	5,215a	4,548b
Finishing phase (98 days)		
Beginning weight, lb	951	1011
Ending weight, lb	1363	1391
Gain, lb	412a	380b
Daily gain, lb	4.20a	3.88b
Daily dry matter intake, lb*	28.0	28.6
Feed:gain	6.68a	7.42b
Hot carcass weight, lb	845	862
Backfat, in.	0.51	0.56
Ribeye area, sq. in.	13.0	13.3
Yield grade	2.7	2.7
Marbling score¹	693	711
Percentage USDA grade Choice	97	100
Overall performance (grazing plus finishing; 351 days)		
Gain, lb	766	794
Daily gain, lb	2.18	2.26

¹600 = modest, 700 = moderate, 800 = slightly abundant.

Means within a row followed by the same letter do not differ (P < 0.05).

*There was a significant (P < 0.05) fescue cultivar × legume interaction.
Table 5. Effects of cultivar on performance of steers grazing tall fescue pastures, Southeast Research and Extension Center, 2018

Item	High-endophyte Kentucky 31	Low-endophyte Kentucky 31	HM4	MaxQ
Grazing phase (218 days)				
Number of head	16	16	16	16
Initial weight, lb	581	581	581	581
Ending weight, lb	815a	954b	940b	953b
Gain, lb	234a	372b	359b	372b
Daily gain, lb	1.08a	1.71b	1.65b	1.70b
Gain/a, lb	187a	298b	287b	297b

Means within a row followed by the same letter do not differ ($P < 0.05$).

Table 6. Effects of interseeding ladino clover on performance of steers grazing tall fescue pastures, Southeast Research and Extension Center, 2018

Item	No legume	Ladino clover
Grazing phase (218 days)		
Number of head	32	32
Initial weight, lb	581	581
Ending weight, lb	914	917
Gain, lb	332	336
Daily gain, lb	1.52	1.54
Gain/a, lb	266	269

Means within a row followed by the same letter do not differ ($P < 0.05$).