Cadherin juxtamembrane region derived peptides inhibit TGFβ1 induced gene expression

Ilias Stavropoulos1,2,3, Kalyan Golla4, Niamh Moran4, Finian Martin1,5 and Denis C Shields1,2,3

1UCD Conway Institute of Biomolecular and Biomedical Research; University College Dublin; Dublin, Ireland; 2UCD Complex and Adaptive Systems Laboratory; University College Dublin; Dublin, Ireland; 3School of Medicine and Medical Science; University College Dublin; Dublin, Ireland; 4Molecular and Cellular Therapeutics; Royal College of Surgeons in Ireland; Dublin, Ireland; 5School of Biomolecular and Biomedical Sciences; University College Dublin; Dublin, Ireland

Keywords: TGFβ, Smad, BMP4, adherens junctions, E-cadherin, N-cadherin, Jagged, peptide, palmitic acid

Introduction

Proteins do not always interact through large ordered globular domains, but there is growing evidence of the involvement of short motifs in those interactions.1-3 Short linear motifs are regions of typically less than ten amino acids in length, usually with less than five defined positions, which function as recognition sites for protein modification, as cleavage sites or as targeting motifs for subcellular localization.1,4 Due to their short recognition sites for protein modification, as cleavage sites or as usually with less than five defined positions, which function as are regions of typically less than ten amino acids in length, junctions.

Bioactive peptides in the juxtamembrane regions of proteins are involved in many signaling events. The juxtamembrane regions of cadherins were examined for the identification of bioactive regions. Several peptides spanning the cytoplasmic juxtamembrane regions of E- and N-cadherin were synthesized and assessed for the ability to influence TGFβ responses in epithelial cells at the gene expression and protein levels. Peptides from regions closer to the membrane appeared more potent inhibitors of TGFβ signaling, blocking Smad3 phosphorylation. Thus inhibiting nuclear translocation of phosphorylated Smad complexes and subsequent transcriptional activation of TGFβ signal propagating genes. The peptides demonstrated a peptide-specific potential to inhibit other TGFβ superfamily members, such as BMP4.

In this study, we set off to predict bioactive peptides on the juxtamembrane regions of cadherins, and as loss of adherens junction is one of the consequences of TGFβ1 signaling, we wanted to investigate the role of these peptides on TGFβ1 signaling. Such functional peptides could give insights into potential new therapeutic approaches to targeting signaling in cancer. The TGFβ1 signaling pathway involves several protein motif-protein interactions,14-16 commencing extracellularly with binding of growth factor to the type I and type II kinase receptors on the cell surface. The assembly of type I and type II TGFβ1 receptors into a complex requires the recognition and the phosphorylation of the GS motif in the intracellular part of the type I receptor by the type II receptor, which activates the receptor I kinase.17 Another signaling step that requires the presence of a motif involves the phosphorylation of Smads in the C-terminal motif SSxS by the receptor complex.18 Phosphorylated Smad2 and Smad3 form complexes with Smad4 and translocate to the nucleus where they bind many transcriptional factors modulating the expression of genes that propagate the TGFβ1 signal.19,20

Genes whose expression is modulated through TGFβ1 signaling include those contributing to the development of epithelial to mesenchymal transition (EMT), such as E- and N-cadherin21 and to the generation of fibrosis, such as connective tissue growth factor (CTGF).22 TGFβ1 also induces the expression of elements of the Notch signaling pathway, such as Jagged.23 EMT is an evolutionary conserved process during embryogenesis that provides new embryonic tissue and specific cell lineages, like mesoderm, which later in development generate epithelial
organs, such as kidney through mesenchymal to epithelial transition.24,25 EMT activation in differentiated epithelial cells is linked with adult pathologies. There is emerging evidence of EMT’s role in the generation of cancer cells with stem cell-like characteristics26,27 and in the formation and accumulation of fibroblasts in kidney fibrosis.22,28 TGF\textsubscript{β} stimulation of CTGF expression results in the synthesis and the accumulation of extracellular matrix (ECM), leading to tissue fibrosis.29 Notch signaling pathway is involved in the development of many tissues and organs through the regulation of cell proliferation, survival, apoptosis and differentiation.30

In the present study we identified peptides in the juxtamembrane region of E and N-cadherin that inhibit TGF\textsubscript{β}1 responses at both the level of gene and protein expression. We identified shorter sub-peptides retaining the inhibitory function and mapped the active residues in those peptides.

Results

In silico identification of conserved motifs in juxtamembrane region of cadherins

The cadherin cytoplasmic juxtamembrane region influences function by supporting the accumulation of cadherins in clusters, a prerequisite for proper adherens junction formation.31 Experimentally verified functional short linear motifs tend to reside inside locally disordered regions.32,33 We sought to identify sites in human E- and N-cadherin protein sequences that are characterized simultaneously by high disorder and an increased relative local conservation in orthologous proteins. In general, short motifs are less conserved than structured domains. They are, however, relatively conserved compared with their adjacent residues.34 The conservation of a few residues in an otherwise non-conserved environment may sometimes be an indication of a functional role. The Relative Local Conservation (RLC) of a disordered residue was calculated,2 by comparing its conservation to the background distribution of adjacent disordered residues within the sequence. The in silico analysis identified groups of residues in the intracellular juxtamembrane region of E- and N-cadherin as relatively conserved and disordered (Figs. S1 and 2). Multiple sequence alignment of various human cadherins (Fig. 1) showed that cadherins are fairly conserved in their juxtamembrane region especially within the p120 catenin binding site (Fig. 1). The association of p120 catenin with the juxtamembrane region of the cadherin cytoplasmic tail is crucial for the surface stability of the cell-cell adhesion complexes.35 However, there are other conserved residues closer to the membrane, whose functional roles have not been as clearly elucidated. We designed and synthesized overlapping peptides based on the E- and N-cadherin sequence (Fig. 1). The peptides were palmitoylated at the N-terminus to facilitate tethering of the peptides to the plasma membrane.36-39 A Ttds (1-amino-4,7,10-trioxa-13-tridecanamine succinimic acid) linker between the palmitic acid and the peptide sequence was used in Ecad-3 and Ecad-4 peptides to mimic partially the distance of the parent sequence from the plasma membrane. The peptide naming convention we adopted here was to number the peptide closest to the membrane as peptide 1 (e.g., Ecad-1), with increasing peptide numbers corresponding to further distance from the membrane. Subsequent sub-peptides of the initially investigated peptides were then labeled with the suffix a or b.
Peptides from juxtamembrane region of cadherins inhibit TGFβ1 induced gene expression in human kidney epithelial cells.

We evaluated the effect of TGFβ1 on kidney cell gene expression by treating human tubular epithelial cells (HK-2) with TGFβ1 for 24 and 48 h and using various TGFβ1 doses to stimulate characteristic responses (Figs. S3 and 4). Induction of the TGFβ1 pathway was indicated by increased Jagged (Jagged 1), N-cadherin and CTGF expression, and decreased E-cadherin expression. Real-time TaqMan PCR was performed using probes specific for each marker. An increase in expression of all three genes, Jagged, N-cadherin and CTGF, and a decrease in E-cadherin expression were evident 24 h after TGFβ1 stimulation of the cells (Fig. S3). A dose of 5 ng/ml of TGFβ1 was sufficient to induce the response (Fig. S4). Thus, we justified using 24 h as a time point and 5 ng/ml as a dose for TGFβ1 treatment in all the experiments in the present study.

In order to investigate whether the synthesized cadherin palmitoylated peptides were able to influence the TGFβ1 response, HK-2 cells were pre-incubated with the relevant peptides prior to TGFβ1 stimulation. Interestingly, cells that were pre-incubated with Ecad-1, Ncad-1 and Ncad-2 peptides suppressed the expected upregulation of both Jagged and N-cadherin upon TGFβ1 stimulation (Fig. 2). The expression of both markers was reduced to normal untreated levels. Ecad-3 and Ecad-4 peptides did not show any noteworthy inhibitory effect on TGFβ1 response. Palmitic acid had no effect on TGFβ1 response (Fig. 2), nor did palmitic acid connected to a Ttds linker (data not shown).

When the peptides were added in the absence of TGFβ1, they failed to influence significantly Jagged and N-cadherin expression (Fig. 2).

Identifying bioactive regions of the cadherin peptides

As shown above, Ecad-1 peptide acts as a potent inhibitor of TGFβ1 responses and Ecad-2 peptide has a minor inhibitory effect. Both of those peptides derive from the juxtamembrane region of E-cadherin and they share an overlapping sequence (KEPLLP) (Fig. 1). We hypothesized that there is a primary sequence present in one or both of the peptides that drives the observed inhibitory effect, and we synthesized palmitoylated and C-terminally amidated peptides for each half of each of the Ecad-1 and Ecad-2 peptides (Fig. 1). We examined the effect of those short peptides on Jagged and N-cadherin transcripts (Fig. 3). The two short peptides for Ecad-1 peptide (Ecad-1a and Ecad-1b), both effectively inhibited TGFβ1 response similarly to the full Ecad-1 peptide. Ecad-2b peptide did not show any inhibitory effect. As the Ecad-1 and Ecad-2 peptides are overlapping, Ecad-1b and Ecad-2a peptides correspond to the same sequence (KEPLLP), and they are only shown once, as Ecad-1b. The fact that both Ecad-1a and Ecad-1b peptides but not Ecad-2b peptide are capable of inhibiting the TGFβ1 response indicates that the observed effect derives from a sequence that is proximal to the membrane.

Similarly, for Ncad-1 peptide, Ncad-1a peptide that is closer to the membrane appeared to hinder TGFβ1 effect, whereas the more distant portion Ncad-1b was not effective (Fig. 4). Interestingly, Ecad-1b and Ncad-1b peptides derive from the same homologous region of cadherins and they both possess the dileucine endocytic motif (LL). The fact that those peptides have different effects suggests that the charge or other general properties of the flanking residues are crucial for function.

According to the dose-response experiments we conducted (Figs. S5–8) all peptides behave in a dose-dependent manner.

Mapping critical residues within the Ecad-1b peptide

Ecad-1b peptide is able to inhibit TGFβ1 responses and contains the dileucine endocytic motif (LL), which is involved in clathrin mediated E-cadherin internalization.40,41 We wished to examine if the presence of the dileucine motif is responsible for
The type II receptor phosphorylates type I and type II serine/threonine kinase receptors to the TGFβ sequence. The Ecad-2 and Ncad-1 peptides, at the protein level, are important. A presence of a neutral or a positive charge at the N-terminus is in part from at least one residue of the dileucine motif and that suggests that the effect of the Ecad-1b peptide is likely to derive replaced with a negatively charged glutamic acid. These data bioactivity. The peptide partially lost activity when lysine was positive lysine (K) with neutral alanine (A) did not reduce that the first leucine of the motif is important. Replacing the second leucine did not influence the peptide effect, indicating motif to alanine resulted in loss of inhibition. Mutation of the first leucine of the LL specific.

The TGFβ1 response inhibition and we synthesized palmitoylated peptides with several residues substituted to alanine (A) or glutamic acid (E) (Fig. 5). Replacing the first leucine of the LL motif to alanine resulted in loss of inhibition. Mutation of the second leucine did not influence the peptide effect, indicating that the first leucine of the motif is important. Replacing the positive lysine (K) with neutral alanine (A) did not reduce bioactivity. The peptide partially lost activity when lysine was replaced with a negatively charged glutamic acid. These data suggest that the effect of the Ecad-1b peptide is likely to derive in part from at least one residue of the dileucine motif and that a presence of a neutral or a positive charge at the N-terminus is important.

Caderhin peptides influence primary Smad dependent TGFβ1 signaling

We further corroborated the effect of the two peptides with the strongest inhibitory effect on TGFβ1 response, Ecad-1, Ecad-2 and Ncad-1 peptides, at the protein level.

Binding of TGFβ1 ligand induces the assembly of the type I and type II serine/threonine kinase receptors to the TGFβ1 receptor complex. The type II receptor phosphorylates type I in the juxtamembrane region, which is an essential step for TGFβ1 signaling. The activated receptor propagates the signal intracellularly through phosphorylation of Smad proteins. Phosphorylation of Smad3 is among the first phosphorylation steps in this signal propagation. Interestingly, the expected increase of Smad3 phosphorylation after TGFβ1 stimulation was inhibited by Ecad-1 and Ncad-1 peptides and to a lesser extent by Ecad-2 peptide, whereas total Smad3 levels remained unaffected (Fig. 6). These data suggest that the peptides may act at the very early stages of the pathway, likely proximal to the TGFβ receptor.

Figures 6 and S9 also shows that several markers of TGFβ1 responses were upregulated upon TGFβ1 stimulation. Smad3 levels were used as an internal loading control. This TGFβ1 induced protein overexpression was abolished after pre-incubation of the cells with the cadherin peptides. Ecad-1 and Ncad-1 were the most potent inhibitors, successfully suppressing Jagged, N-cadherin and fibronectin upregulation (Figs. 6 and S9). Ecad-2 peptide inhibitory effect was more prominent in fibronectin expression, having no significant effect on Jagged and N-cadherin expression. These results suggest that the cadherin peptides inhibit the expression of mesenchymal markers, keeping the cells in the epithelial state even after TGFβ1 stimulation.

TGFβ1 is part of a superfamily of transforming growth factors that include activins and bone morphogenetic proteins (BMPs). We investigated the effect of the peptides in BMP4 pathway using western blot analysis for the phosphorylation levels of Smad-1/5/8 (Fig. S9). We observed that Ecad-1 peptide inhibited BMP4 induced phosphorylation of Smad-1/5/8, similarly to Noggin, a BMP4 inhibitor. Noggin is a small glycoprotein (32 kDa), which binds to BMP4 and antagonizes BMP signaling by blocking BMP4 receptor interaction. Ncad-1 peptide showed less potency to inhibit BMP4 responses compared with its effect on TGFβ1. Therefore, we suggest that the peptides probably affect signaling by all TGFβ superfamily receptors but with an intensity that is peptide dependent or specific.

Discussion

In the present study we tried to identify functional motifs in the cytoplasmic regions of E-cadherin and N-cadherin. Cadherins are Ca²⁺-dependent molecules present on the cell surface that are involved in adherens junctions and intercellular recognition. The extracellular segments of E-cadherins are involved in intercellular homophilic binding with E-cadherins present on neighboring cells, whereas the intracellular parts interact with catenins, such as pl20 catenin, β-catenin and α-catenin. The latter interactions connect the intracellular segments of E-cadherins with actin, thus controlling cytoskeletal changes. The interactions that involve cadherin-catenin complexes constitute the adhesion dependent functions of cadherins. Other roles of cadherins do not require adhesion and they form the adhesion independent functions (reviewed in ref. 44). Cadherins may interact with other proteins through their extracellular domains, including growth factors, cytokines and other signaling molecules.

Figure 3. Effect of deletion peptides of Ecad-1 and Ecad-2 on the expression of Jagged and N-cadherin. A dose of 50 μM of peptide was used. Note that as Ecad-1 and Ecad-2 are peptides with overlapping sequence, deletion peptides Ecad-1b and Ecad-2a depict the same sequence (KEPLL) and thus only the Ecad-1b peptide is shown on the graph. (n = 4). The Ecad-2b peptide was reconstituted in 0.5% DMSO (Dimethyl sulfoxide). (Pal: Palmitic acid). *P < 0.05, Student’s unpaired t test compared with TGFβ treatment alone, n = 4 per group.
growth factor receptors, in a ligand-independent manner, regardless of the formation of adherens junction.45

We provided data that our peptides inhibited TGFβ1 responses at the gene expression and at the protein level. Of the tested peptides those derived from sequences most proximal to the membrane were more potent inhibitors of the TGFβ1 responses. Ecad-1 and Ncad-1 peptides inhibited Smad3 phosphorylation, as well as other TGFβ1 responsive proteins, suggesting that the peptides inhibit the TGFβ1 signaling at the initial steps of the pathway. As expected, Jagged1 levels were also downregulated. Jagged1 increase upon TGFβ1 treatment is dependent on Smad3 phosphorylation.23 The transcription of Jagged1 requires crosstalk between TGFβ1 and Wnt/Notch signaling. Activation of Notch signaling has been shown to regulate EMT genes in mammary and kidney epithelial cells,46 propagating in this way the TGFβ1 response. Thus, the peptide induced decrease in Jagged1 expression could potentially influence the Notch pathway indirectly. Prevention of Smad3 phosphorylation leading to inhibition of TGFβ1 responses has been reported after direct interaction of Akt with Smad3.47,48

However, we were not able to identify if this inhibition was due to a direct interaction of the peptides with Smad3, or more likely as a result of indirect interaction through other proteins. It is well established that inhibition of TGFβ1 signaling is associated with a sustained epithelial phenotype, highlighted by the maintenance of a stable adherens junction mediated by E-cadherin.21,49 Therefore, we discuss below possible ways that the peptides could assist the cells to retain their epithelial phenotype.

The bioactive juxtamembrane cadherin-derived peptides may mimic the parent protein that they are derived from. The juxtamembrane region of E-cadherin has been previously shown to be crucial for the accumulation of E-cadherins in clusters and for the formation of tight adherens junctions, involving binding of p120-catenin and β-catenin to the cadherin cytoplasmic tail.35,50 Our membrane tethered peptides (via N-terminus palmitic acid) do not span the known binding region of either the p120-catenin or the β-catenin, but they derive from a region closer to the membrane that forms a dynamic interaction with p120-catenin.51 If this short region can independently interact with p120-catenin, it could provide a reason for the p120-catenin or the β-catenin, but they derive from a region closer to the membrane that forms a dynamic interaction with p120-catenin.51 If this short region can independently interact with p120-catenin, it could provide a reason for the p120-catenin or the β-catenin, but they derive from a region closer to the membrane that forms a dynamic interaction with p120-catenin.51 If this short region can independently interact with p120-catenin, it could provide a reason for the p120-catenin or the β-catenin, but they derive from a region closer to the membrane that forms a dynamic interaction with p120-catenin.51 If this short region can independently interact with p120-catenin, it could provide a reason for the p120-catenin or the β-catenin, but they derive from a region closer to the membrane that forms a dynamic interaction with p120-catenin.51 If this short region can independently interact with p120-catenin, it could provide a reason for the p120-catenin or the β-catenin, but they derive from a region closer to the membrane that forms a dynamic interaction with p120-catenin.51 If this short region can independently interact with p120-catenin, it could provide a reason for the p120-catenin or the β-catenin, but they derive from a region closer to the membrane that forms a dynamic interaction with p120-catenin.51 If this short region can independently interact with p120-catenin, it could provide a reason for the p120-catenin or the β-catenin, but they derive from a region closer to the membrane that forms a dynamic interaction with p120-catenin.51 If this short region can independently interact with p120-catenin, it could provide a reason for the p120-catenin or the β-catenin, but they derive from a region closer to the membrane that forms a dynamic interaction with p120-catenin.51

Figure 4. Effect of deletion peptides of Ncad-1 on the expression of Jagged and N-cadherin in the presence and in the absence of TGFβ. A dose of 50 μM of peptide was used. (n = 4). The Ncad-1b peptide was reconstituted in 0.5% DMSO. (Pal: Palmitic acid). *P < 0.05, Student’s unpaired t test compared with TGFβ treatment alone, n = 4 per group.
Since functionality does not require conservation of both of these hydrophobic amino acids typically required for AP2 binding, we suspect that the mechanism of action is therefore more likely to rely on another mechanism.

Methods

Bioinformatics analysis

Protein sequences of human E- and N-cadherin were analyzed using the Gopher algorithm (http://bioware.ucd.ie) for the identification of orthologous proteins in metazoan proteins contained in the EnsEMBL sequence database of sequenced genomes. Gopher used Muscle to generate multiple sequence alignment of each human protein with each orthologs. These alignments were then used for the calculation of Relative Local Conservation (RLC) score. The software used IUPred to estimate the disorder score for each residue in the human proteins. For the identification of conserved residues among cadherins a multiple protein sequence alignment was generated with Muscle.

Cell culture

Human kidney epithelial cells were cultured at 37 °C in a humidified atmosphere of 95% air/5% CO2. Culture
medium contained Dulbecco’s modified Eagle’s medium (DMEM-F12, Sigma) supplemented with 2 mM L-glutamine, 100 U/ml penicillin, 100 μg/ml streptomycin, 10 ng/ml EGF, 36 ng/ml hydrocortisone, 4 μg/ml tridihydroxyrate and 5 μg/ml insulin-transferin-selenium solution (ITS, Sigma).

For TGFβ1 treatments, HK-2 cells were cultured in 12-well plates and treated with 5 ng/ml recombinant human TGFβ1 (R&D Systems) or vehicle for 24 h. Palmitylated peptides were added 45 min prior to TGFβ1 addition at either 50 μM, 25 μM, 12.5 μM or 1 μM.

RNA extraction and Real-time PCR of HK-2 cells
RNA was extracted using the RNeasy mini kit (Qiagen) following the manufacturer's protocol. The concentration of RNA was estimated on a NanoDrop® ND-1000 spectrophotometer (Thermo Fisher Scientific) and cDNA was synthesized using Superscript III Reverse Transcriptase (Invitrogen). For real-time TaqMan PCR analysis, 18S rRNA levels were used. TaqMan Universal PCR Master Mix (Applied Biosystems) was used for the reactions and samples were analyzed on an ABI Prism 7700 sequence detection system at default thermal cycling conditions: 10 min at 95 °C, 15 min at 60 °C for annealing and extension. Results were analyzed using the ΔΔCt method and normalized to 18S rRNA levels.

Protein extraction and western blotting
For protein analysis, HK-2 cells were cultured in 10 cm petri dishes and they were harvested in RIPA buffer containing 1% Triton X-100, 150 mM NaCl, 1 mM Na₂VO₄, 1 mM NaF, 1 mM PMSE, and 1/100 dilution of protease inhibitor cocktail (Sigma). Samples were incubated on ice for 40 min, agitating regularly. Samples were then centrifuged at 14,000 rpm at 4 °C for 12 min to remove cell debris. The determination of protein concentration was performed using the method of Bradford with the protein assay concentrate (BioRad). The absorbance of the suspension at 595 nm was read in a Beckman UV/VIS spectrophotometer (DU530). Proteins were resolved using 10% SDS-PAGE for 1h at 20 mA constant current and then transferred to a polyvinylidene difluoride membrane (PVDF, Whatman) at 110 V for 60 min. Membranes were blocked with 5% (w/v) milk in TBS-T (20mM Tris-base, 137mM NaCl, 0.1% (v/v) Tween-20) for 60 min at room temperature. Membranes were incubated with primary antibodies for Jagged1, N-cadherin, fibronectin, phospho-Smad3, Smad3, phospho-Smad1/5/8 and GAPDH diluted in 5% milk in TBS-T overnight at 4 °C. The following day primary antibodies were removed by washing the membranes in TBS-T [3 × 15 min washes at room temperature (RT)] and then were incubated with HRP-coupled anti-rabbit or anti-mouse secondary antibodies at 1:2000 dilution in 5% milk for 1 h at RT. Secondary antibodies were removed by washing with TBS-T (3 × 15 min washes at RT) and membranes were developed by incubation with enhanced chemiluminescence ECL solution (Supersignal West Dura) and exposed to X-ray film to reveal the reactive bands. Membranes were stripped by incubation with Restore PLUS Western Blot Stripping buffer (Thermo Scientific) for 15 min at RT. The stripping buffer was removed by washing with TBS-T and membranes were then re-blocked with 5% milk and re-probed with appropriate primary antibodies.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Supplemental Material
Supplemental materials may be found here: http://www.landesbioscience.com/journals/BioArchitecture/article/32143/

References
1. Diella F, Haslam N, Chica C, Budd A, Michael S, Brown NP, Trave G, Gibson TJ. Understanding eukaryotic linear motifs and their role in cell signaling and regulation. Front Biosci 2008; 13:6580-60; PMID:18508681; http://dx.doi.org/10.2741/3175
2. Davey NE, Shields DC, Edwards RJ. Masking residues using context-specific evolutionary conservation significantly improves short linear motif discovery. Bioinformatics 2009; 25:443-50; PMID:19136552; http://dx.doi.org/10.1093/bioinformatics/btn064
3. Peralta E, Russell RB. Peptide-mediated interactions in biological systems: new discoveries and applications. Curr Opin Biotechnol 2008; 19:344-50; PMID:18662004; http://dx.doi.org/10.1016/j.copbio.2008.06.004
4. Stein A, Aloy P. Contextual specificity in peptide-mediated protein interactions. PLoS One 2008; 3:e2524; PMID:18596940; http://dx.doi.org/10.1371/journal.pone.0002524
5. Davey NE, Van Rovey K, Weatherit RJ, Toedt G, Uyar B, Altenberg B, Budd A, Diella F, Dunkel H, Gibson TJ. Attributes of short linear motifs. Mol Biosyst 2012; 8:268-81; PMID:21909575; http://dx.doi.org/10.1039/c1mb05231d
6. Balla S, Thapar V, Verma S, Luong T, Faghri T, Huang CH, Rajasekaran S, del Campo JJ, Shinohara M, Mohler WA, et al. Minimotif Miner: a tool for investigating protein function. Nat Methods 2006; 3:175-7; PMID:16489333; http://dx.doi.org/10.1038/nmeth856
7. Mishra GR, Suresh M, Kannabiran N, Suresh S, Bala P, Shivakumar K, Anuradha N, Reddy R, Ravghan TM, et al. Human protein reference database--2006 update. Nucleic Acids Res 2006; 34:D411-4; PMID:16381900; http://dx.doi.org/10.1093/nar/gkl414
8. Diella F, Gould CM, Chica C, Via A, Gibson TJ. Phospho.ELM: a database of phosphorylation sites--update 2008. Nucleic Acids Res 2008; 36:D240-4; PMID:17962309; http://dx.doi.org/10.1093/nar/gkm072
9. Nedeva V, Russell RB. DILIMOT: discovery of linear motifs in proteins. Nucleic Acids Res 2006; 34:W350-5; PMID:16845024; http://dx.doi.org/10.1093/nar/gkl459
10. Davey NE, Shields DC, Edwards RJ. SLiMDisc: short linear motif discovery, correcting for common evolutionary descent. Nucleic Acids Res 2006; 34:3546-54; PMID:16855291; http://dx.doi.org/10.1093/nar/gk486
11. Edwards RJ, Davey NE, Shields DC. SLiMFinder: a probabilistic method for identifying over-represented, convergently evolved, short linear motifs in proteins. PLoS One 2007; 2:e967; PMID:17912346; http://dx.doi.org/10.1371/journal.pone.0000967
12. Davey NE, Haslam NJ, Shields DC, Edwards RJ. SLiMFinder: a web server to find novel, significantly over-represented, short protein motifs. Nucleic Acids Res 2010; 38:W534-9; PMID:20497799; http://dx.doi.org/10.1093/nar/gkq440
13. Stavropoulos I, Kalfas N, Davey NE, O’Brien K, Martin F, Shields DC. Protein disorder and short conserved motifs in disordered regions are enriched near the cytoplasmic side of single-pass transmembrane proteins. PLoS One 2012; 7:e44389; PMID:22962613; http://dx.doi.org/10.1371/journal.pone.0044389
14. Shi Y, Massagué J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 2003; 113:685-700; PMID:12809600; http://dx.doi.org/10.1016/S0092-8674(03)00432-X
15. Wu JW, Hu M, Chai J, Seoane J, Huse M, Li C, Rigotti DJ, Kynsi S, Muir TFW, Fairman R, et al. Crystal structure of a phosphorylated Smad2. Recognition of phosphoserine by the MH2 domain and insights on Smad function in TGF-beta signaling. Mol Cell 2001; 8:1277-89; PMID:11779503; http://dx.doi.org/10.1016/S0092-8674(03)00432-X
26. Al-Hajj M, Wicha MS, Benito-Hernandez A,
25. Hay ED. An overview of epithelio-mesenchymal
24. Thiery JP. Epithelial-mesenchymal transitions in
21. Zavadil J, Bitzer M, Liang D, Yang YC, Massimi A,
20. Galliher AJ, Schiemann WP. Src phosphorylates
17. Huse M, Chen YG, Massagué J, Kuriyan J. Crystal
16. Neduva V, Russell RB. Peptides mediating interaction
15. Aylward K, Meade G, Ahrens I, Devocelle M, Moran
30. Miele L. Notch signaling. Clin Cancer Res 2006; 12:1074-9; PMID:16889390; http://dx.doi.org/10.1128/JCB.141.7.779
38. Aylward K, Meade G, Ahrens I, Devocelle M, Moran
37. Edwards RJ, Moran N, Devocelle M, Kiernan A,
36. Michael S, Travé G, Ramu C, Chica C, Gibson TJ.
35. Jain SM, Shih I, Lee S, Li GY, Smith MJ, Reichardt LF,
34. Michael S, Travé G, Ramu C, Chica C, Gibson TJ.
33. Fuxreiter M, Tompa P, Simon I. Local structural
32. Dyson HJ, Wright PE. Intrinsically unstructured
31. Miyashita Y, Ozawa M. Increased internalization
30. Kuliopulos A, Covic L. Blocking receptors on
29. Abou-Shady M, Fries H, Zimmermann A, d Mola
28. Edwards RJ, Moran N, Devocelle M, Kiernan A,
27. Capecci MR, et al. The epithelial-mesenchymal
26. Al-Hajj M, Wicha MS, Benito-Hernandez A,
25. Hay ED. An overview of epithelio-mesenchymal
24. Thiery JP. Epithelial-mesenchymal transitions in
23. Nyhan KC, Fathery N, Murray G, Coosy LR, Godson G,
22. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 2003; 100:3983-8; PMID:12629218; http://dx.doi.org/10.1073/pnas.0008030100
21. Zavadil J, Bitzer M, Liang D, Yang YC, Massimi A,
20. Galliher AJ, Schiemann WP. Src phosphorylates
17. Huse M, Chen YG, Massagué J, Kuriyan J. Crystal
16. Neduva V, Russell RB. Peptides mediating interaction
15. Aylward K, Meade G, Ahrens I, Devocelle M, Moran
14. Thiery JP. Epithelial-mesenchymal transitions in
13. Thiery JP, Verbeuren TJ, Bastiaensen V, Dejana E.
12. Abou-Shady M, Fries H, Zimmermann A, d Mola
11. TGF-beta stimulation of p38 MAPK during breast
10. Kuliopulos A, Covic L. Blocking receptors on
9. Edwards RJ, Moran N, Devocelle M, Kiernan A,
8. Edwards RJ, Moran N, Devocelle M, Kiernan A,
7. Capecci MR, et al. The epithelial-mesenchymal
6. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 2003; 100:3983-8; PMID:12629218; http://dx.doi.org/10.1073/pnas.0008030100
5. Taketo MM, et al. Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Invest 2002; 110:341-50; PMID:12163453; http://dx.doi.org/10.1172/JCI129518
4. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 2003; 100:3983-8; PMID:12629218; http://dx.doi.org/10.1073/pnas.0008030100
3. Kuliopulos A, Covic L. Blocking receptors on
2. Thiery JP, Verbeuren TJ, Bastiaensen V, Dejana E.
1. Thiery JP, Verbeuren TJ, Bastiaensen V, Dejana E.
