A Problem of Hsiang-Palais-Terng on Isoparametric Submanifolds

Haibao Duan
Institute of Mathematics,
Chinese Academy of Sciences,
Beijing 100080, dhb@math.ac.cn

Abstract
We solve the problem raised by Hsiang, Palais and Terng in [HPT]:
Is it possible to have an isoparametric foliation on \mathbb{R}^{52} whose marked
Dynkin diagram is of type D_4 and with all multiplicities uniformly
equal to 4?

2000 Mathematical Subject classification: 53C42 (14M15; 57R20)
Key words and phrases: Isoparametric submanifolds; Vector bundles;
Characteristic classes.

1 Introduction
We assume familiarity with the notations, terminology and results developed
by Hsiang, Palais and Terng in [HPT].

Associated to an isoparametric submanifold M in an Euclidean n-space
\mathbb{R}^n, there is a Weyl group with Dynkin diagram marked with multiplicities.
In this paper we show

Theorem. There is no isoparametric submanifold in \mathbb{R}^{52} whose marked
Dynkin diagram is of type D_4 and with all multiplicities uniformly equal to 4.

This result solves Problem 1 raised by Hsiang, Palais and Terng in [HPT].
As was pointed out by the authors of [HPT], it implies also that

Corollary. There is no isoparametric submanifolds whose marked Dynkin
diagrams with uniform multiplicity 4 of D_k-type, $k > 5$ or E_k-type, $k = 6, 7, 8$.

1
2 Isoparametric submanifolds of type D_4

Assume throughout this section that $M \subset \mathbb{R}^n$ is an irreducible isoparametric submanifold with uniform even multiplicity m of D_4-type. With this assumption we have

$$\dim M = 12m$$ and $n = 12m + 4$.

The inner product on \mathbb{R}^n will be denoted by (\cdot, \cdot).

Fix a base point $a \in M$ and let $P \subset \mathbb{R}^n$ be the normal plane to M at a. It is a subvector space with $\dim P = 4$.

Let Λ be the focal set of the embedding $M \subset \mathbb{R}^n$. P intersects Λ at 12 linear hyperplanes (through the origin in P)

$$\Lambda \cap P = L_1 \cup \cdots \cup L_{12}.$$

The reflection σ_i of P in the L_i, $1 \leq i \leq 12$, generate the Weyl group W of type D_4, considered as a subgroup of the isometries of P.

It follows that we can furnish P with an orthonormal basis $\{\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4\}$ so that the set $\Phi = \{\alpha_i \in P \mid 1 \leq i \leq 12\}$ of positive roots of W relative to $a \in P$ is given and ordered by (cf. [Hu, p.64])

$$\begin{align*}
\alpha_1 &= \varepsilon_1 - \varepsilon_2; & \alpha_2 &= \varepsilon_2 - \varepsilon_3; & \alpha_3 &= \varepsilon_3 - \varepsilon_4; \\
\alpha_4 &= \varepsilon_1 - \varepsilon_3; & \alpha_5 &= \varepsilon_2 - \varepsilon_4; & \alpha_6 &= \varepsilon_1 - \varepsilon_4; \\
\alpha_7 &= \varepsilon_2 + \varepsilon_1; & \alpha_8 &= \varepsilon_3 + \varepsilon_2; & \alpha_9 &= \varepsilon_4 + \varepsilon_3; \\
\alpha_{10} &= \varepsilon_3 + \varepsilon_1; & \alpha_{11} &= \varepsilon_4 + \varepsilon_2; & \alpha_{12} &= \varepsilon_4 + \varepsilon_1.
\end{align*}$$

Consequently, we order the planes L_i by the requirement that each α_i is normal to L_i, $1 \leq i \leq 12$. As results we have

$$(2-1) \quad \alpha_1, \alpha_2, \alpha_3 \text{ and } \alpha_9 \text{ form the set of simple roots relative to } a, \text{ and the corresponding Cartan matrix is}$$

$$\begin{pmatrix}
2 & -1 & 0 & 0 \\
-1 & 2 & -1 & -1 \\
0 & -1 & 2 & 0 \\
0 & -1 & 0 & 2
\end{pmatrix}; \quad \beta_{ij} = \frac{2\langle \alpha_i, \alpha_j \rangle}{\langle \alpha_j, \alpha_j \rangle}.$$

$$(2-2) \quad \text{The group } W \text{ is generated } \sigma_1, \sigma_2, \sigma_3 \text{ and } \sigma_9, \text{ whose actions on } P \text{ are given respectively by}$$

$$\begin{align*}
\sigma_1 : \{\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4\} &\rightarrow \{\varepsilon_2, \varepsilon_1, \varepsilon_3, \varepsilon_4\}, \\
\sigma_2 : \{\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4\} &\rightarrow \{\varepsilon_1, \varepsilon_3, \varepsilon_2, \varepsilon_4\}, \\
\sigma_3 : \{\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4\} &\rightarrow \{\varepsilon_1, \varepsilon_2, \varepsilon_4, \varepsilon_3\}, \\
\sigma_9 : \{\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4\} &\rightarrow \{\varepsilon_1, \varepsilon_2, -\varepsilon_4, -\varepsilon_3\};
\end{align*}$$

$$(2-3) \quad \text{Let } b = \varepsilon_1 + \varepsilon_2 + \varepsilon_3 + \varepsilon_4 \in P. \text{ The subgroup } W_b \text{ of } W \text{ that fixes } b \text{ is generated by } \sigma_1, \sigma_2 \text{ and } \sigma_3;$$

Using (2-2) one verifies directly that

$$(2-4) \quad \text{the set simple roots can be expressed in term of the } W\text{-action on } \alpha_1 \text{ as}$$

$$\alpha_2 = \sigma_1 \sigma_2 (\alpha_1); \quad \alpha_3 = \sigma_2 \sigma_1 \sigma_3 \sigma_2 (\alpha_1); \quad \alpha_4 = \sigma_2 (\alpha_1);$$
\[\alpha_5 = \sigma_1 \sigma_3 \sigma_2(\alpha_1); \quad \alpha_6 = \sigma_3 \sigma_2(\alpha_1); \]
\[\alpha_7 = \sigma_2 \sigma_3 \sigma_2(\alpha_1); \quad \alpha_8 = \sigma_1 \sigma_3 \sigma_2 \sigma_2(\alpha_1); \quad \alpha_9 = \sigma_2 \sigma_1 \sigma_2 \sigma_2(\alpha_1); \]
\[\alpha_{10} = \sigma_3 \sigma_2 \sigma_2(\alpha_1); \quad \alpha_{11} = \sigma_1 \sigma_2 \sigma_2(\alpha_1); \quad \alpha_{12} = \sigma_2 \sigma_2(\alpha_1). \]

Remark 1. (2-1) implies the following geometric facts. The planes \(L_i \) partition \(P \) into \(\left| W \right| = 2^3 \cdot 4! \) convex open hulls (called Weyl chambers), and the base point \(a \) is contained in the one \(\Omega \) bounded by the \(L_i, 1 \leq i \leq 3 \) and \(L_9 \). In (2-3) the point \(b \) lies on the edge \(L_1 \cap L_2 \cap L_3 \) of \(\Omega \). \(\Box \)

Let \(M_b \subset \mathbb{R}^n \) be the focal manifold parallel to \(M \) through \(b \) [HPT]. We have a smooth projection \(\pi : M \twoheadrightarrow M_b \) whose fiber over \(b \in M_b \) is denoted by \(F \).

Recall from [HPT] that the tangent bundle \(TM \) of \(M \) has a canonical splitting as the orthogonal direct sum of 12 subbundles
\[TM = E_{\alpha_1} \oplus \cdots \oplus E_{\alpha_{12}}, \dim \mathbb{R} E_{\alpha_i} = m, \]
in which \(E_i \) is the curvature distribution of \(M \) relative to the root \(\alpha_i, 1 \leq i \leq 12 \). From [HPT] we have

Lemma 1. Let \(TN \) be the tangent bundle of a smooth manifold \(N \). Then

1. the subbundle \(\oplus_{1 \leq i \leq 6} E_{\alpha_i} \) of \(TM \) restricts to \(TF \);
2. the induced bundle \(\pi^* TM_b \) agrees with \(\oplus_{7 \leq i \leq 12} E_{\alpha_i} \). \(\Box \)

3 The cohomology of the fibration \(\pi : M \to M_b \)

Let \(b_i \in H_m(M; \mathbb{Z}), 1 \leq i \leq 12, \) be the homology class of the leaf sphere \(S_i(a) \subset M \) of the intergrable bundle \(E_{\alpha_i} \) through \(a \in M \), and let \(d_i \in H^m(M; \mathbb{Z}) \) be the Euler class of \(E_{\alpha_i} \).

Lemma 2. The Kronecker pairing \(<, > : H^m(M; \mathbb{Z}) \otimes H_m(M; \mathbb{Z}) \to \mathbb{Z} \) can be expressed in term of the inner product \((,) \) on \(P \) as
\[< d_i, b_j > = 2 (\alpha_i, \alpha_j), 1 \leq i, j \leq 12. \Box \]

Remark 2. Let \(G \) be a compact connected semi-simple Lie group with a fixed maximal torus \(T \) and Weyl group \(W \). Fix a regular point \(a \) in the Cartan subalgebra \(L(T) \) of the Lie algebra \(L(G) \) corresponding to \(T \). The orbit of the adjoint action of \(G \) on \(L(G) \) through \(a \) yields an embedding \(G/T \to L(G) \) which defines the flag manifold \(G/T \) as an isoparametric submanifold in \(L(G) \) with associated Weyl group \(W \) and with equal multiplicities \(m = 2 \).

In this case Lemma 2 has its generality due to Bott and Samelson [BS], and the numbers \(2 (\alpha_i, \alpha_j) \) are the Cartan numbers of \(G \) (only 0, \(\pm 1, \pm 2, \pm 3 \) can occur). \(\Box \)
Since the roots $\alpha_1, \alpha_2, \alpha_3$ and α_9 form a set of simple roots, the classes b_1, b_2, b_3 and b_9 constitute an additive basis of $H_m(M; \mathbb{Z})$. Since the M is $m - 1$ connected, we specify a basis $\omega_1, \omega_2, \omega_3, \omega_9$ of $H^m(M; \mathbb{Z})$ (in term of Kronecker pairing) as

$$< b_i, \omega_j >= \delta_{ij}, i, j = 1, 2, 3, 9.$$

It follows from Lemma 2 that

Lemma 3.

$$\begin{pmatrix} d_1 \\ d_2 \\ d_3 \\ d_9 \end{pmatrix} = \begin{pmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & -1 \\ 0 & -1 & 2 & 0 \\ 0 & -1 & 0 & 2 \end{pmatrix} \begin{pmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \\ \omega_9 \end{pmatrix}. \square$$

In term of the ω_i we introduce in $H^m(M; \mathbb{Z})$ the classes $t_i, 1 \leq i \leq 4$, by the relation

$$\begin{pmatrix} t_1 \\ t_2 \\ t_3 \\ t_4 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 2 \end{pmatrix} \begin{pmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \\ \omega_9 \end{pmatrix}. \ (3-1)$$

Conversely,

$$\begin{pmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \\ \omega_9 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} t_1 \\ t_2 \\ t_3 \\ t_4 \end{pmatrix}. \ (3-2)$$

The Weyl group W (acting as isometries of P) has the effect to permute roots (cf. (2-3)). On the other hand, W acts also smoothly on M [HPT], hence acts as automorphisms of the cohomology (resp. homology) of M.

For an $w \in W$ we write w^* (resp. w_*) for the induced action on the cohomology (resp. homology).

Lemma 4. With respect to the \mathbb{Q} basis t_1, t_2, t_3, t_4 of $H^2(M; \mathbb{Q})$, the action of W on $H^2(M; \mathbb{Q})$ is given by

$$\sigma_i^1: \{t_1, t_2, t_3, t_4\} \rightarrow \{t_2, t_1, t_3, t_4\},$$

$$\sigma_i^2: \{t_1, t_2, t_3, t_4\} \rightarrow \{t_1, t_3, t_2, t_4\},$$

$$\sigma_3^2: \{t_1, t_2, t_3, t_4\} \rightarrow \{t_1, t_2, t_3, t_4\},$$

$$\sigma_3^3: \{t_1, t_2, t_3, t_4\} \rightarrow \{t_1, t_2, t_3, t_4\}.$$

Proof. Let $i, j, k = 1, 2, 3, 9$. In term of the Cartan matrix (2-1), the action of σ_i on the \mathbb{Z}-basis b_1, b_2, b_3, b_9 has been determined in [HPT] as

$$\sigma_i(b_j) = b_j + \beta_{ij}b_i \quad (3-3)$$

(ef. the proof of 6.11. Corollary in [HPT]). By the naturality of Kronecker pairing

$$< \sigma_i^1(\omega_k), b_i >= < \omega_k, \sigma_i^2(b_j) >= \delta_{kj} + \beta_{ij}\delta_{ki},$$

we get from (3-3) that

4
\((3-4) \quad \sigma_i^*(\omega_k) = \begin{cases} \omega_k & \text{if } i \neq k; \\ \omega_k - (\beta_{k1}\omega_1 + \beta_{k2}\omega_2 + \beta_{k3}\omega_3 + \beta_{k4}\omega_4) & \text{if } i = k. \end{cases} \)

With \((\beta_{ij})\) being given explicitly in (2-1), combining (3-1), (3-4) with (3-2) verifies Lemma 4. \(\square\)

Let the algebra \(Q[t_1, t_2, t_3, t_4]\) of polynomials in the variables \(t_1, t_2, t_3, t_4\) be graded by \(\deg(t_i) = m, 1 \leq i \leq 4\). Let \(e_i \in Q[t_1, t_2, t_3, t_4]\) (resp. \(\theta_i \in Q[t_1, t_2, t_3, t_4]\)) be the \(i^{th}\) elementary symmetric functions in \(t_1, t_2, t_3, t_4\) (resp. in \(t_1^2, t_2^2, t_3^2, t_4^2\)), \(1 \leq i \leq 4\). We note that the \(\theta_i\) can be written as a polynomial in the \(e_i\)

\[\theta_1 = e_1^2 - 2e_2; \quad \theta_2 = e_2^2 - 2e_1 e_3 + 2e_4; \quad \theta_3 = e_3^2 - 2e_2 e_4.\]

Lemma 5. In term of generator-relations the rational cohomology of \(M\) is given by

\[H^*(M; Q) = Q[t_1, t_2, t_3, t_4]/Q^+[\theta_1, \theta_2, \theta_3, e_4].\]

Further, the induced homomorphism \(\pi^*: H^*(M_b; Q) \to H^*(M; Q)\) maps the algebra \(H^*(M_b; Q)\) isomorphically onto the subalgebra \(Q[e_1, e_2, e_3]/Q^+[\theta_1, \theta_2, \theta_3]\).

Proof. It were essentially shown in [HPT, 6.12. Theorem; 6.14. Theorem] that for any \(Q\) basis \(y_1, y_2, y_3, y_4\) of \(H^m(M; Q)\) one has the grade preserving \(W\)-isomorphisms

\[H^*(M; Q) = Q[y_1, y_2, y_3, y_4]/Q^+[y_1, y_2, y_3, y_4]^W; \quad H^*(M_b; Q) = Q[y_1, y_2, y_3, y_4]^W_b/Q^+[y_1, y_2, y_3, y_4]^W_b,\]

where the \(W\)-action on the \(Q\)-algebra \(Q[y_1, y_2, y_3, y_4]\) is induced from the \(W\)-action on the \(Q\)-vector space \(H^m(M; Q) = \text{span}_Q\{y_1, y_2, y_3, y_4\}\) and where \(Q[y_1, y_2, y_3, y_4]^W_b\) (resp. \(Q^+[y_1, y_2, y_3, y_4]^W\)) is the subalgebra of \(W_b\)-invariant polynomials (resp. \(W\)-invariant polynomials in positive degrees).

Since the transition matrix from \(t_1, t_2, t_3, t_4\) to the \(\mathbb{Z}\)-basis \(\omega_1, \omega_2, \omega_3, \omega_9\) of \(H^m(M; \mathbb{Z})\) is non-singular by (3-1), the \(t_i\) constitute a basis for \(H^m(M; Q)\). Moreover, it follows from Lemma 4 that

\[Q[t_1, t_2, t_3, t_4]^W_b = Q[e_1, e_2, e_3, e_4], \quad Q[t_1, t_2, t_3, t_4]^W = Q[\theta_1, \theta_2, \theta_3, e_4].\]

This completes the proof. \(\square\)

Remark 3. If \(G = SO(2n)\) (the special orthogonal group of rank \(2n\)), the embedding \(G/T \to L(G)\) considered in Remark 2 gives rise to an isoparametric submanifold \(M = SO(2n)/T\) in the Lie algebra \(L(SO(2n))\) which is of \(D_n\)-type with equal multiplicities \(m = 2\). The corresponding \(M_b\) is known as the Grassmannian of complex structures on \(\mathbb{R}^{2n}\) [D]. In this case Borel computed the algebras \(H^*(M; Q)\) and \(H^*(M_b; Q)\) in [B] which are compatible with Lemma 5. \(\square\)
4 Computation in the Pontrijagin classes

Turn to the case $m = 4$ concerned by our Theorem. Denote by $p_1(\xi) \in H^4(X;\mathbb{Z})$ for the first Pontrijagin class of a real vector bundle ξ over a topological space X.

Lemma 6. For an $w \in W$ and an $\alpha \in \Phi$ one has
$$w^*(p_1(E_\alpha)) = p_1(E_{w^{-1}(\alpha)}).$$
In particular, (2-3) implies that
$$H\mathbb{Z}(\alpha)\implies H\mathbb{Z}(\alpha).$$

Proof. In term of the W-action on the set of roots, the induced bundle
$$w^*(E_\alpha) \in E_{w^{-1}(\alpha)}$$
(cf. [HTP, 1.6]). Lemma 6 comes now from the naturality of Pontrijagin classes and from (2-4).□

Lemma 7. $p_1(E_{\alpha_1}) = k(t_1 + t_2 - t_3 - t_4)$ for some $k \in \mathbb{Q}$.

Proof. In view of Lemma 4 we can assume that
$p_1(E_{\alpha_1}) = k_1 t_1 + \cdots + k_4 t_4,$ $k_i \in \mathbb{Q}.$

Since the restricted bundle $E_{\alpha_1} | S_1(a)$ is the tangent bundle of the 4-sphere
$S_1(a)$ and therefore is stably trivial, we have
$$< p_1(E_{\alpha_1}), b_1 > = k_1 - k_2 = 0.$$

That is
$$p_1(E_{\alpha_1}) = k t_1 + k t_2 + k t_3 + k t_4.$$

Since the actions of the α_i^*, $i = 1, 2, 3, 9$, on the t_j are known by Lemma 4,
combining (4-1) with the relations in Lemma 6 yields
$$p_1(E_{\alpha_2}) = k_3 t_1 + k_3 t_2 + k_3 t_3 + k_4 t_4;$$
$$p_1(E_{\alpha_3}) = k_3 t_1 + k_4 t_2 + k_3 t_3 + k_4 t_4;$$
$$p_1(E_{\alpha_4}) = k t_1 + k t_2 + k t_3 + k t_4;$$
$$p_1(E_{\alpha_5}) = k_3 t_1 + k t_2 + k_4 t_3 + k t_4;$$
$$p_1(E_{\alpha_6}) = k t_1 + k t_2 + k t_3 + k t_4;$$
$$p_1(E_{\alpha_7}) = k t_1 - k t_2 + k t_3 - k t_4;$$
$$p_1(E_{\alpha_8}) = k_3 t_1 + k t_2 - k t_3 - k t_4;$$
$$p_1(E_{\alpha_9}) = k_3 t_1 - k t_2 + k t_3 - k t_4;$$
$$p_1(E_{\alpha_{10}}) = k t_1 + k t_2 - t_3 - k t_4;$$
$$p_1(E_{\alpha_{11}}) = k_3 t_1 + k t_2 - k t_3 - k t_4;$$
$$p_1(E_{\alpha_{12}}) = k t_1 + k t_2 - k t_3 - k t_4.$$

Since the tangent bundle of any isoparametric submanifold is stably trivial, we get from $TM = E_{\alpha_1} \oplus \cdots \oplus E_{\alpha_{12}}$ that
Comparing the coefficients of \(t_1 \) on both sides of the equation turns out \(k_3 = -k \). Substituting this in (4-2) gives rise to, in particular, that

\[
\begin{align*}
 p_1(E_{\alpha_7}) &= kt_1 - kt_2 - kt_3 - k_4t_4; \\
 p_1(E_{\alpha_8}) &= -kt_1 + kt_2 - kt_3 - k_4t_4; \\
 p_1(E_{\alpha_9}) &= -kt_1 - k_4t_2 + kt_3 - kt_4; \\
 p_1(E_{\alpha_{10}}) &= kt_1 - kt_2 - kt_3 - k_4t_4; \\
 p_1(E_{\alpha_{11}}) &= -kt_1 + kt_2 - k_4t_3 - kt_4; \\
 p_1(E_{\alpha_{12}}) &= kt_1 - kt_2 - k_4t_3 - kt_4.
\end{align*}
\]

Finally, since

\[
p_1(E_{\alpha_7}) + \cdots + p_1(E_{\alpha_{12}}) = \pi^* p_1(TM_b) \in \text{Im } [\pi^* : H^*(M_b; \mathbb{Q}) \to H^*(M; \mathbb{Q})]
\]

by (2) of Lemma 1, it must be symmetric in \(t_1, t_2, t_3, t_4 \) by (2) of Lemma 4. Consequently, \(k_4 = -k \). This completes the proof of Lemma 6. □

We emphasis what we actually need in the next result.

Lemma 8. If \(M \subset \mathbb{R}^{52} \) is an irreducible isoparametric submanifold with uniform multiplicity 4 of \(D_4 \)-type, there exists a 4-plane bundle \(\xi \) over \(M \) whose Euler and the first Pontrjagin classes are respectively

\[
\begin{align*}
e(\xi) &= 2\omega_1 - \omega_2; \\
p_1(\xi) &= 2k(\omega_2 - \omega_4)
\end{align*}
\]

for some \(k \in \mathbb{Z} \).

Proof. Take \(\xi = E_{\alpha_1} \). Then \(e(\xi) = d_1 = 2\omega_1 - \omega_2 \) by Lemma 3 and

\[
p_1(\xi) = k (t_1 + t_2 - t_3 - t_4) \text{ (by Lemma 7)} = 2k(\omega_2 - \omega_9) \text{ (by (3-1))}
\]

for some \(k \in \mathbb{Q} \). Moreover we must have \(k \in \mathbb{Z} \) since

1. \(M \) is 3 connected and the classes \(\omega_1, \omega_2, \omega_3, \omega_9 \) constitute an additive basis for \(H^4(M; \mathbb{Z}) \); and since
2. the first Pontrjagin class of any vector bundle over a 3 connected CW-complex is an integer class and is divisible by 2 [LD]. □

5 A topological constraint on isoparametric submanifolds with equal multiplicity 4

Let \(Vec^m(S^n) \) be the set of isomorphism classes of Euclidean \(m \)-vector bundles over the \(n \)-sphere \(S^n = \{(x_1, \cdots, x_{n+1}) \in \mathbb{R}^{n+1} | x_1^2 + \cdots + x_{n+1}^2 = 1 \} \).

If \(n = m = 4 \) we introduce the map \(f : Vec^4(S^4) \to \mathbb{Z} \oplus \mathbb{Z} \) by

\[
f(\xi) = (\langle e(\xi), [S^4] \rangle, \langle p_1(\xi), [S^4] \rangle),
\]

where

1. \([S^4] \in H_4(S^4; \mathbb{Z}) = \mathbb{Z}\) is a fixed orientation class;
2. \(\langle, \rangle\) is the Kronecker pairing between cohomology and homology;

and where
(3) \(e(\xi)\) and \(p_1(\xi)\) are respectively the Euler and the first Pontrijagin classes of \(\xi \in Vect^4(S^4)\).

Example (cf. [MS, p.246]). Let \(\tau \in Vect^4(S^4)\) be the tangent bundle of \(S^4\), and let \(\gamma \in Vect^4(S^4)\) be the real reduction of the quaternionic line bundle over \(HP^1 = S^4\) (1-dimensional quaternionic projective space). Then \(f(\tau) = (2,0)\); \(f(\gamma) = (1,-2)\).

Our theorem will follow directly from Lemma 8 and the next result that improves Lemma 20.10 in [MS].

Lemma 9. \(f\) fits in the short exact sequence
\[
0 \to Vect^4(S^4) \xrightarrow{f} \mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} \xrightarrow{g} \mathbb{Z}_4 \to 0,
\]
where \(g(a,b) \equiv (2a-b) \mod 4\).

Proof of the Theorem. Assume that there exists an irreducible isoparametric submanifold \(M \subset R^{52}\) with uniform multiplicity 4 of \(D_4\)-type. Let \(\xi\) be a 4-plane bundle over \(M\) whose Euler and the first Pontrijagin classes are given as that in (4-4).

Let \(\xi_1, \xi_2 \in Vect^4(S^4)\) be obtained respectively by restricting \(\xi\) to the leaf spheres \(S_2(a), S_9(a)\) (cf. section 3). By the naturality of characteristic classes we get from (4-4) that
\[
f(\xi_1) = (-1, 2k); \quad f(\xi_2) = (0, -2k),
\]
where the integer \(k\) must satisfy the congruences
\[
-2 \equiv 2k \mod 4; \quad 0 \equiv -2k \mod 4.
\]
by Lemma 9. The proof is done by the obvious contradiction. □

It suffices now to justify Lemma 9.

Let \(SO(m)\) be the special orthogonal group of rank \(m\) and denote by \(\pi_r(X)\) the \(r\)-homotopy group of a topological space \(X\). The Steenrod correspondence is the map \(s : Vect^m(S^n) \to \pi_{n-1}(SO(m))\) defined by
\[
s(\xi) = \text{the homotopy class of a clutching function } S^{n-1} \to SO(m) \text{ of } \xi.
\]
In [S, §18], Steenrod showed that

Lemma 10. \(s\) is a one-to-one correspondence. □

It follows that \(Vect^m(S^n)\) has a group structure so that \(s\) is a group isomorphism. We clarify this structure in Lemma 11.

Fix a base point \(s_0 = (1,0,\cdots,0) \in S^n\). For two \(\xi, \eta \in Vect^m(S^n)\) write \(\xi \lor \eta\) for the \(m\)-bundle over \(S^n \lor S^n\) (one point union of two \(S^n\) over \(s_0\)) whose restriction to the first (resp. the second) sphere agrees with \(\xi\) (resp. \(\eta\)). Define the addition \(+ : Vect^m(S^n) \times Vect^m(S^n) \to Vect^m(S^n)\) and the inverse \(- : Vect^m(S^n) \to Vect^m(S^n)\) operations by the rules
\[
\xi + \eta = \mu^*(\xi \lor \eta) \quad \text{and} \quad -\xi = \nu^*\xi,
\]

\[8\]
where \(\xi, \eta \in Vect^m(S^n) \), \(\mu : S^n \to S^n \vee S^n \) is the map that pinches the equator \(x \in S^n, x_{n+1} = 0 \) to the base point \(s_0 \) and where \(\nu : S^n \to S^n \) is the restriction of the reflection of \(\mathbb{R}^{n+1} \) in the hyperplane \(x_{n+1} = 0 \). It is straightforward to see that

Lemma 11. With respect to the operations \(+\) and \(−\)

1. \(Vect^m(S^n) \) is an abelian group with zero \(\varepsilon^m \), the trivial \(m \)-bundle over \(S^n \) and
2. the maps \(s \) and \(f \) are homomorphisms. \(\square \)

We are ready to show Lemma 9.

The proof of Lemma 9. It is essentially shown by Milnor [MS, p.245] that \(f \) is injective and satisfies \(\text{Im} \, f \supseteq \text{Ker} \, g \). It suffices to show that \(\text{Im} \, f \subseteq \text{Ker} \, g \).

Assume on the contrary that there is a \(\xi \in Vect^4(S^4) \) such that \(f(\xi) = (a, b) \) with \(2a - b = 4k + i, i = 1, 2, 3 \). Moreover, one must has \(i = 2 \) since the first Pontrijagin class of any vector bundle over \(S^4 \) is divisible by 2. That is

(5.1) \(f(\xi) = (a, 2a - 4k - 2) \)

Using the group operations in \(Vect^4(S^4) \) we form the class

\(\hat{\xi} = -\xi - (a - 2k - 1)\gamma + (a - k)\tau, \)

where \(\tau \) and \(\gamma \) were given in the Example. By the additivity of \(f \) we get from the Example and (5.1) that

(5.2) \(f(\hat{\xi}) = (1, 0). \)

Consider the following diagram

\[
\begin{array}{ccc}
0 & \to & \pi_4(S^4) \xrightarrow{\partial} \pi_3(SO(4)) = Vect^4(S^4) \xrightarrow{i_*} \pi_3(SO(5)) = Vect^5(S^4) \to 0 \\
& & \downarrow p_1 \swarrow \uparrow p_1 \\
& & H^4(S^4; \mathbb{Z})
\end{array}
\]

in which

1. the top row is a section in the homotopy exact sequence of the fibration \(SO(4) \hookrightarrow SO(5) \to S^4 \) (cf. [Wh, p.196]);
2. \(p_1 \) assigns a bundle with its first Pontrijagin class;
3. via the Steenrod isomorphism, the homomorphism \(i_* \) induced by the fibre inclusion corresponds to the operation \(\zeta \to \zeta \oplus \varepsilon^1 \), where \(\oplus \) means Whitney sum and where \(\varepsilon^1 \) is the trivial 1-bundle over \(S^4 \); and
4. the map triangle commutes by the stability of Pontrijagin classes.

From the Bott-periodicity we have \(\pi_3(SO(5)) = \mathbb{Z} \). It is also known that \(p_1 : Vect^5(S^4) \to H^4(S^4; \mathbb{Z}) \) is surjective onto the subgroup \(2H^4(S^4; \mathbb{Z}) \subset H^4(S^4; \mathbb{Z}) \). Summarizing we have

(5) \(p_1 : Vect^5(S^4) \to H^4(S^4; \mathbb{Z}) \) is injective.

From (5.2) we find that \(p_1(\hat{\xi}) = 0 \). As a result (4) and (5) imply that \(i_*(\hat{\xi}) = 0 \). From the exactness of the top sequence one concludes
\[\hat{\xi} = k \partial(\iota_4) \text{ for some } k \in \mathbb{Z}, \]
where \(\iota_4 \in \pi_4(S^4) = \mathbb{Z} \) is the class of identity map. Since \(\partial(\iota_4) = \tau \) (cf. [Wh, p.196]) we have \(f(\hat{\xi}) = (2k, 0) \) by the Example. This contradiction to (5-2) completes the proof. □

Remark 4. The proof of Lemma 9 indicates that the bundles \(\tau \) and \(\gamma \) in the Example generate the group \(Vect^4(S^4) \). These two bundles were used by Milnor in [MS, p.247] to illustrate his original construction of different differential structures on the 7-sphere in 1956 [M]. □

References

[B] A. Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Ann. of Math. (2) 57 (1953), 115-207.

[BS] R. Bott and H. Samelson, Application of the theory of Morse to symmetric spaces, Amer. J. Math., Vol. LXXX, no. 4 (1958), 964-1029.

[D] H. Duan, Self-maps of the Grassmannian of complex structures, Compositio Math. 132 (2002), 159-175.

[HPT] W. Y. Hsiang, R. Palais and C. L. Terng, The topology of isoparametric submanifolds, J. Diff. Geom., Vol. 27 (1988), 423-460.

[Hu] J. E. Humphreys, Introduction to Lie algebras and representation theory, Graduated text in Math. 9, Springer-Verlag New York, 1972.

[LD] B. Li and H. Duan, Spin characteristic classes and reduced Kspin Groups of low dimensional complex, Proc. Amer. Math. Soc., Vol. 113, No. 2 (1991), 479-491.

[M] J. Milnor, On manifolds homeomorphic to the 7-sphere. Ann. of Math. (2) 64 (1956), 399–405.

[MS] J. Milnor and J. D. Stasheff, Characteristic classes, Ann. Math. Studies 76, Princeton University Press, Princeton NJ, 1974.

[S] N. A. Steenrod, The topology of fiber bundles, Princeton University Press, 1951.

[Wh] G. W. Whitehead, Elements of Homotopy theory, Graduate texts in Math. 61, Springer-Verlag, New York Heidelberg Berlin, 1978.