唑来膦酸对髋部骨折后不同亚组骨密度的影响

Subgroup Variations in Bone Mineral Density Response to Zoledronic Acid After Hip Fracture

Jay S Magaziner,1 Denise L Orwig,1 Kenneth W Lyles,2 Lars Nordsletten,3 Steven Boonen,4 Jonathan D Adachi,5 Chris Recknor,6 Cathleen S Colón-Emeric,2 Peter Mesenbrink,7 Christina Bucci-Rechtweg,7 Guoqin Su,7 Rasheeda Johnson,1 and Carl F Pieper2

1University of Maryland, Baltimore, MD, USA
2Duke University Medical Center and the Geriatrics Research Education and Clinical Center, Veterans Affairs Medical Center, Durham, NC, USA
3Oslo University Hospital, University of Oslo, Oslo, Norway
4University of Leuven, Leuven, Belgium
5St. Joseph's Healthcare, McMaster University, Hamilton, ON, Canada
6United Osteoporosis Centers, Gainesville, GA, USA
7Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA

摘要
减少骨折后骨量丢失是髋部骨折恢复的一个重大因素，因此检测治疗髋部骨折时影响骨密度的因素有助于靶向治疗的发展。在HORIZON的再发骨折研究中，使用析因分析来分析低能量髋部骨折患者中，唑来膦酸对全髋及股骨颈骨密度的影响。2,127名患者被随机分成两组：唑来膦酸组(n=1,065)和安慰剂组(n=1,062)，在术后90天内给予5 mg的唑来膦酸(一年一次)或安慰剂。1,486例患者有基础骨密度以及至少一次术后骨密度(唑来膦酸组745例，安慰剂组741例)，被纳入分析。在12个月和24个月时对全髋和股骨颈骨密度基线的改变进行评估，同时对髋部骨折患者亚组进行横向比较。唑来膦酸组骨密度百分比变化情况和安慰剂组具有统计学差异(P<0.05)。比较唑来膦酸不同亚组之间治疗效果发现，在12个月时测量全髋骨密度发现，女性、低体重指数(<22.6kg/m²)、股骨颈骨密度T值<-2.5的患者骨密度改善效果更好。且对于术后6周以后接受唑来膦酸治疗的患者的股骨颈骨密度改善和有过既往骨折史的患者均有更大的作用。所有的效果局限在最初12个月内，差异在24个月时不显著。

关键词：临床研究；骨质疏松；损伤/骨折愈合；骨折预防；骨转化抑制剂

引言
髋部骨折具有较高的死亡率和发病率，医疗费用较高和康复时间较长[1,2]。在既往的研究中，髋部骨折的再发生率是10.4/100人-年，比之前无骨折的同龄人高2.5倍[3]。较高的再骨折率与骨折后最初的几年里骨密度快速丢失和肌容积的减少有密切关系[4-8]。另外一项前瞻性研究结果表明，在骨折后的最初1年中，健侧股骨颈的骨密度下降5.4%，腰椎的骨密度下降2.9%[9]。另外的类似研究同样表明，与同龄人相比，股骨颈骨折患者在骨折后骨密度快速下降[8-14]。因此，减少骨折后骨量的丢失是髋部骨折治疗的重要内容，对于高危患者，影响骨量丢失和增加骨密度的因素是治疗骨折的研究热点。

临床指南推荐对低能量创伤导致髋部骨折的成人进行骨密度检测和治疗，以阻止再发骨折；然而调查发现这类成年髋部骨折患者很少接受到预防治疗[15,16]。双膦酸盐能限制破骨细胞的活性，被广泛用于治疗骨质疏松[17,18]。唑来膦酸是双膦酸盐的一种注射液，每年输注一次，每次15分钟，被证明能抑制骨转化，与口服双膦酸盐绝经妇女相比能增加骨密度[19]。美国食品及药品安全委员会及欧洲药品管理局批准唑来膦酸用于治疗骨质疏松症。欧盟基于HORIZON再发骨折项目的研究成果推荐男性使用唑来膦酸，该项目涉及到2100多名年龄在50岁及以上髋部骨折的患者，他们均接受过手术治疗[20]。与安慰剂组相比，每年注射5 mg的唑来膦酸可使临床骨折发生率下降35% (P=0.001)，同时能够增加全髋和股骨颈的骨密度[20]。

虽然HORIZON-RFT数据的先验分析表明在各亚组之间，降低骨折发生的效果没有显著的区别，但是该研究并没有被预先设定去检验患者亚组之间骨折降低效果。基于其他的研究中观察到骨密度的增加预测到在不同的治疗亚组之间增加骨密度低效果会有巨大的不同；因此，对HORIZON-RFT进行析
因分析以评估唑来膦酸对不同亚组患者(年龄、性别、种族、地区、BMI、髋部骨折部位、T值、骨折史、髋部骨折术后第一次使用唑来膦酸时间、血钙浓度、之前骨折治疗情况、认知情况以及骨折前的活动情况)全髋及股骨颈骨密度的作用效果，以此来检验唑来膦酸对于髋部骨折2年后不同亚组的患者是否具有相同的作用。

资料与方法
在本多中心随机双盲安慰剂-对照试验中,所有患者均在50岁及至,低能量(自身高度及以下高度摔倒)导致的髋部骨折,且在术后90天内。纳入标准还包括骨折前双下肢能活动。患者来自包括北美洲、南美洲以及欧洲在内的不同文化、种族和人种的24个国家。排除标准包括:对双膦酸盐过敏者,肌酐清除率小于30 mL/min, 血清钙高于11.0 mg/dL(2.8 mmol/L),或在筛查时或任意时刻修正后的血钙浓度小于8 mg/dL(2 mmol/L),活动性肿瘤,除骨质疏松症外的代谢性骨病,以及预期寿命短于6个月者[20,22]。

纳入患者被随机(1:1)分成两组(唑来膦酸组和安慰剂组),在髋部骨折手术90天内分别给予唑来膦酸或安慰剂每次静脉滴注15分钟以上,每年一次,持续三年。患者在给予唑来膦酸或安慰剂14天前接受负荷剂量的维生素D3或D2(50,000‒125,000单位,口服或肌注),之后每日口服补充钙剂(1000‒1500 mg)以及维生素D(400‒800单位)。患者每3个月随访一次,连续3年。当211名研究对象随访达到36个月或出现新的骨折时,该研究结束。该研究通过赫尔辛基宣言(1989年)以及当地法律及条款,并得到伦理委员会的批准。在加入该项研究时所有的患者都签署了知情同意书。

骨密度测量
分别在12个月、24个月及36个月时使用双能X线骨密度仪(DXA)对患者健侧髋部进行骨密度测量。DXA测量在预定随访4周内进行测量。如果髋部骨密度在12个月时下降大于8%，在24个月时下降大于10%，则要进行额外测量。对每名患者骨密度的测量都是在同一个中心的同一台仪器上,测量者将骨密度写入临床报告。每12个月进行对骨密度仪进行校正。骨密度被调整以修正不同影像设备的品牌差异,分别使用男性和女性的参考值进一步调整T值[23,24]。亚组间的比较
比较不同亚组使用唑来膦酸后骨密度的变化情况,年龄(<65岁、65‒74岁、≥75岁),性别(男性、女性),种族(白人及其他),地区(北美/大洋洲、拉丁美洲、西欧以及东欧),体重指数BMI(≤22.6 kg/m²、22.6–26.3 kg/m²、>26.3 kg/m²),健侧股骨颈T值(≤-2.5、>-2.5~<-1.0以及>-1.0),髋部骨折的位置(转子间、股骨颈),骨折史(仅有髋部骨折、髋部骨折+非椎体骨折和椎体骨折),骨折后第一次接受药物治疗的时间(≤6周、>6周),血钙水平(<8.5 mg/dL、≥8.5 mg/dL),骨质疏松药物治疗情况(有/无),Charlson合并症指数(≤2、3、≥4),EQ-5D活动能力(无或者一些极端问题)[25,26],精神状态的SPMSQ评分(0–2，>2)[27]。统计分析
数据和安全监察委员会建议研究停止,因为需要的211例临床骨折终点在90天的终止时间框架内就能够实现。在研究结束的终点,有231例患者确诊临床骨折,研究总共持续了60个月,中位随访时间为1.9年。因为试验的事件驱动设计,只有约15%的患者有36个月的数据;因此,36个月的数据在亚组分析时被排除。分析仅限于有骨密度基础值和至少一次随访值的患者。在12个月和24个月时检测髋部和股骨颈标准化的骨密度相对于基线的变化,使用方差分析探讨唑来膦酸对不同亚组(治疗和地理区域作为变量)的作用效果。同样使用方差分析探讨唑来膦酸在不同亚组间的药效进行分析。另外,使用随机效果模型作为敏感分析,对唑来膦酸在亚组内及亚组间的作用进行分析,包含因素有:骨密度、年龄、性别、时间、24个月前骨密度的下降状态,治疗时间,中途退出治疗情况,退出时间,交互固定效果,非结 构方差自由时间分析。由于专门分析是在数据锁定之后进行的,所有的有效区间是95%，没有校正多级变量。

结果
基本特点
50岁及以上的508例男性以及1619例女性入围主实验,最终347名男性(68%)以及1139名女性(70%)纳入研究对象。平均年龄为73岁,平均体重指数为25 kg/m²;约90%的患者是白人,45%患者的股骨颈骨密度的T值≤-2.5。40%的患者有骨折病史。72%患者的Charlson活动指数高于2，意味着他们除了髋部骨
表1. 研究对象人口学及基本特征

| 特征 | 治疗 |
	哚来膦酸	安慰剂
年龄(岁), 均值(标准差)	73.1 (9.19)	73.3 (9.63)
年龄组, n (%)		
<65岁	140 (18.8)	149 (20.1)
65-74岁	238 (31.9)	214 (28.9)
≥75岁	367 (49.3)	378 (51.0)
性别, n (%)		
男性	171 (23.0)	176 (23.8)
女性	574 (77.0)	565 (76.2)
种族, n (%)		
白人	679 (91.1)	670 (90.4)
西班牙	50 (6.7)	51 (6.9)
黑人	3 (0.4)	5 (0.7)
其他	13 (1.7)	15 (2.0)
地域, n (%)		
北美	154 (20.7)	179 (24.2)
拉丁美洲	98 (13.2)	93 (12.6)
西欧	287 (38.5)	265 (35.8)
东欧	206 (27.7)	204 (27.5)
基线BMI(kg/m²)	24.9 (4.19)	25.2 (4.22)
均值(标准差)		
(n=731)	(n=729)	
基线骨密度T值, n (%)		
<2.5	336 (45.1)	330 (44.5)
2.5~1.0	371 (49.8)	369 (49.8)
>1.0	36 (4.8)	36 (4.9)
缺失	2 (0.3)	6 (0.8)
入院时的骨折部位, n (%)		
股骨颈	428 (57.4)	439 (59.25)
转子间	232 (31.1)	211 (28.5)
转子下	32 (4.3)	401 (5.4)
其他	53 (7.1)	51 (6.9)
骨折史, n (%)		
腰痛骨折	425 (57.0)	471 (63.6)
腰部+其他非椎体骨折	261 (35.0)	228 (30.8)
腰部+椎体骨折	23 (3.1)	23 (3.1)
腰部+非椎体+椎体骨折	36 (4.8)	19 (2.6)
第一次治疗的时间, n (%)		
6周以内	307 (41.2)	328 (44.3)
6周以后	437 (58.7)	413 (55.7)
基础血清钙浓度, n (%)		
<8.5mg/dL	47 (6.3)	56 (7.6)
≥8.5mg/dL	693 (93.0)	682 (92.0)
骨质疏松治疗史, n (%)		
无	713 (95.7)	707 (95.4)
有	32 (4.3)	34 (4.6)
骨密度(g/cm²), 均值(标准差)		
全髋	0.7±0.15	0.7±0.15
(n=707)	(n=701)	
股骨颈	0.7±0.1	0.7±0.12
(n=743)	(n=729)	
EQ-5D活动指数, n (%)		
能走	156 (20.9)	178 (24.0)
走路有问题	559 (75.0)	532 (71.8)
精神状态(SPMSQ指数), n (%)		
0-2	611 (82.1)	600 (81.0)
>2	89 (11.9)	104 (14.0)
Charlson活动指数, n (%)		
≤2	209 (28.1)	202 (27.3)
3	263 (35.3)	242 (32.7)
≥4	272 (36.5)	297 (40.1)

SD=标准差; BMI=体重指数; BMD=骨密度; SPMSQ=简明精神状态问卷

BMD CHANGES IN RESPONSE TO ZOL

与既往研究一样进行36个月的随访[20]，在超过两年时，唑来膦酸组全髋及股骨颈的骨密度增加量显著优于安慰剂组(图1)。唑来膦酸组骨密度在12个月及24个月的变化情况，全髋分别是增长3.6%和5.4%；而股骨颈分别增长2.5%和4.3%，优于安慰剂组。

亚组间分析

在析因分析中，在12个月及24个月时，唑来膦酸对各亚组髋部及股骨颈的骨密度的提高效果均优于安慰剂组(图2, 图3)。未校正前，唑来膦酸的效果具有统计学差异(通常以5%为界)。

图1. 全髋和股骨颈骨密度的变化百分比。随访2年时，基于骨密度基线值的改变百分比。全髋(A)和股骨颈(B)。数据表示唑来膦酸组和安慰剂组在12个月及24个月时骨密度均方(±SE)改变百分比。BMD=骨密度; ZOL=唑来膦酸。
度，在12个月时，不同性别、基础BMI、股骨颈基础T值、骨折史、第一次术后用唑来膦酸的亚组，治疗效果存在统计学差异($P<0.05$)。然而，在给予相应病因治疗后，各亚组间差异不高于2.7%。在24个月时，各亚组治疗的效果无法观察到<0.05的P值，没有统计学差异。

关于股骨颈骨密度，在12个月时在有骨折病史和第一次用药时间的亚组，药物治疗效果存在有统计学差异。有骨折史的亚组最大的差异仅为1.8%。对于第一次用药时间，髋部手术后6周(3.9%)用药的效果是术后6周内(0.6%)用药的6倍。在24个月时，没有观察到差异。

敏感性分析

用随机效应模型分析的结果总体上与图2和图3相一致，可用不同的统计学方法进行检验。

安全性结果

各亚组间不良事件没有单独分析。有研究比较过唑来膦酸组和安慰剂组的不良事件发生率，安慰剂的死亡率更高(唑来膦酸组9.6% vs. 安慰剂组13.3%)。

讨论

髋部骨折是一个严重的公共卫生问题，鉴于越来越多的老年人成为骨折的高危人群，预计接下来几十年里髋部骨折的绝对数量将增加[28,29]，虽然在过去10—20年许多国家骨折的发病率及骨折病例数在下降[30-33]。在骨折后1年内，患侧及健侧髋部的骨密度和肌肉量的下降很常见[4]。然而，髋部骨折后使用药物治疗提高骨密度能降低再次骨折的发生率[34]。HORIZON-RFT的析因分析显示，与安慰剂相比，在髋部骨折后90天内使用唑来膦酸能降低35%的继发骨折，死亡率下降28%，能显著提高全髋及股骨颈

附表1：全髋BMD自基线的百分比变化治疗间比较

亚组	12个月	亚组和治疗相互作用的P值	24个月	亚组和治疗相互作用的P值
Age Groups				
<65 years	0.196			
65–74 years				
≥75 years	0.100			

Sex
Male
Female

Race
Caucasian
Other

Region
North America
Latin America
Western Europe
Eastern Europe

BMI
≤22.6
>22.6–26.3
>26.3

T-Score at Femoral neck
≤-2.5
>-2.5 and ≤-1.0
>-1.0

Hip Fracture Location
Intertrochanteric Femoral Neck
Femoral Neck Only
Hip Fracture +1

Fracture History
Hip Fracture Only
Hip Fracture +1

Time-to-first infusion
≤6 weeks
>6 weeks

Calcium Level
<8.3 mg/dL
>8.3 mg/dL

Prior Medications
Yes
No

Charlson
≤2
>2

Mental Status
G=2
>2

EQ-5D Mobility
Walking
Some Walking

图2. 各亚组全髋骨密度变化百分比比较。图中的小方框代表治疗的变化情况，两端代表95%的可信区间值。每个亚组都有对应的P值。BMD=骨密度；BMI=体重指数
BMD CHANGES IN RESPONSE TO ZOL

Age Groups	12 months	24 months
<65 years		
65–74 years		
≥75 years		

Sex		
Male		
Female		

Race		
Caucasian		
Other		

Region		
North America		
Latin America		
Western Europe		
Eastern Europe		

BMI		
≤22.6		
>22.6–26.3		
>26.3		

T-Score at Femoral neck		
< -2.5		
> -2.5 and ≤-1.0		
> -1.0		

Hip Fracture Location		
Intertrochanteric		
Femoral Neck		

Fracture History		
Hip Fracture Only		
Hip Fracture ≥1		

Time-to-first infusion		
≤6 weeks		
>6 weeks		

Calcium Level		
<8.5 mg/dL		
≥8.5 mg/dL		

Prior Medications		
Yes		
No		

Charlson		
≤2		
≥3		

Mental Status		
0–2		
>2		

EQ-5D Mobility		
Walking		
Some Walking		

| Treatment Difference in Percentage | | |
| Points with 95% CI | | |

| Treatment Difference in Percentage | | |
| Points with 95% CI | | |

图3. 各亚组股骨颈骨密度变化百分比比较。图中的小方框代表治疗的变化情况，两端代表95%可信区间。每个亚组都有对应的P值。BMD=骨密度；BMI=体重指数

的骨密度\[20\]。虽然药物治疗降低再发骨折风险的效果是已知的，但只有一小部分髋部骨折患者(其中45%在随机取样时发现T值<-2.5)使用过抗骨质疏松药物\[4-5\%\](表1)。对这些骨质疏松患者没有进行药物干预的原因有很多，了解患者、医疗工作者和健康机构所存在的问题并加以解决，是今后努力的方向\[35-38\]。

此项研究是首次使用析因分析来比较唑来膦酸和安慰剂对大范围内不同髋部骨折亚组患者的全髋骨密度和股骨颈骨密度的治疗效果。结果显示骨折后，唑来膦酸提高骨密度的效果在几乎所有的亚组都优于安慰剂。虽然在12个月时有的亚组唑来膦酸提高骨密度的效果比较微弱(女性，低体重指数者，T值<-2.5，1次以上髋部骨折史，唑来膦酸在6周以后才使用者)，但24个月时组间比较无统计学差异。除外6周内使用唑来膦酸对股骨颈骨密度影响的结果，此亚组中较早注射唑来膦酸并未证实有积极作用，亚组间的差异并不明显。因此，虽然在某些亚组中，由于起用时间和亚组组成的不同，首剂唑来膦酸对骨密度的影响存在少许差异，但在第二次给药后差异就不显著\[39\]。值得注意的是，既往的类似研究表明，与其他组相比，在骨折术后两周内使用唑来膦酸对骨密度的提高作用和治疗效果(相对应的是生存率和骨折再发率)相对较差。目前还没有研究来证实是否在6周内接受第二次治疗还是1年后接受，或者所有剂量都在6周后使用；然而，实际表明骨折后两周或更长时间后使用唑来膦酸能有效降低继发骨折\[39\]。

结论，与安慰剂相比，1年时给予唑来膦酸5 mg能有效提高髋部骨折患者2年后全髋和股骨颈的骨密度。我们的研究结果证明唑来膦酸对各老龄和亚健康亚组髋部骨折患者的骨密度有积极作用，与亚组的人口学特征和基本情况无关。
声明

JSM收集到Amgen, Ammonett, Merck, Eli Lilly, OrigaNext, Regeneron, GTx, Sanofi,和Novartis的咨询费，以及经马里兰大学获得Novartis, Eli Lilly,和Merck的资助。他获得Novartis的差旅资助以及Novartis, Pfizer,和Merck的讲课费用。他是美国骨科协会Ammonett, Glaxo SmithKline咨询委员。DLO收到Eli Lilly和Ammonett的咨询费用，以及Novartis的资金资助。KWL得到Novartis, Amgen,和Kirin pharmaceuticals的资助，以及加州大学伯克利分校的咨询费，他是专利(20050272707)的发明人，该发明能减少和预防髋部的二次骨折。LN接受了挪威东南部卫生局的资助，接受了Novartis的差旅费、咨询费和讲课费，Eli Lilly, Biomet和DePuy的委员咨询费。SB接受了Novartis的咨询费和研究资助。JDA接受了Amgen, Eli Lilly, Merck, Novartis,和Warner Chilcott的咨询费，以及Amgen, Eli Lilly, Merck,和Novartis的资助。CR接收到联邦骨科中心的差旅资助。CSC-E接受了Amgen和Novartis的咨询费，以及Novartis的研究津贴，她是美国两项应用专利的发明人，另外一个发明人是Biscardia, Inc,该专利是双膦酸盐心血管用药指征。PM, CB-R和GS是Novartis的员工。CFP和RJ表明他们没有利益冲突。

致谢

该研究得到瑞士巴塞尔诺华制药公司的资助。忠心感谢我们的友人——Steven Boonen, 他在骨质疏松性髋部骨折领域做出重要贡献，他是比利时佛兰德斯科协的资深研究专家，勒芬大学老年病学的教授。感谢诺华公司Lakshmi Kasthurirangan, UbhayabharathiGurunath和SrujanaTakkallapally协助论文的写作与编辑。

作者贡献：研究设计：JSM, KWL, PM。数据分析：PM, GS, CBR。文章初稿：JSM。论文修改：JSM, DLO, KWL, LN, SB, JDA, CR, CSC-E, PM, CR, GS, RJ, 和CFP。论文终审：JSM, DLO, KWL, LN, JDA, CR, CSC-E, PM, CB-R, GS, RJ, 和CFP。研究资料及患者资源的提供：JSM, DLO, KWL, LN, SB, JDA, CR, CSC-E, 和CF。资金获取：KWL。数据收集和分析：JSM, PM, CB-R, 和GS。

参考文献

1. Boonen S, Autier P, Barett M, Vanderschueren D, Lips P, HaentjensPF. Functional outcome and quality of life following hip fracture in elderly women: a prospective controlled study. Osteoporos Int.2004;15:87–94.
2. Oomes EK, Loftus CM, Meyer HE, et al. Consequences of hip fractureon activities of daily life and residential needs. Osteoporos Int.2004;15:567–74.
3. Colon-Emeric C, Kuchibhatla M, Pieper C, et al. The contribution of hip fracture to risk of subsequent fractures: data from two longitudinalstudies. Osteoporos Int.2003;14:879–83.
4. Fox KM, Magaziner J, Hawkes WG, et al. Loss of bone density and leanbody mass after hip fracture. Osteoporos Int.2000;11:31–5.
5. Dirschl DR, Henderson RC, Oakley WC. Accelerated bone mineral lossfollowing a hip fracture: a prospective longitudinal study. Bone.1997;21:79–82.
6. Cefalu CA. Is bone mineral density predictive of fracture riskreduction? Curr Med Res Opin.2004;20:341–9.
7. Miller PD, Siris ES, Barrett-Conner E, et al. Prediction of fracture risk in postmenopausal white women with peripheral bone densitometry: evidence from the National Osteoporosis Risk Assessment. J Bone Miner Res.2002;17:2222–30.
8. Marshall D, Johnell O, Wedel H. Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures.BMJ.1996;312:1254–9.
9. Aloia JF, Vazwani A, McGowan D, Ross P. Preferential osteopenia inwomen with osteoporotic fractures. Bone Miner.1992;18:51–63.
10. Chevalley T, Rizzoli R, Nydegger V, et al. Preferential low bone mineraldensity of the femoral neck in patients with a recent fracture of the proximal femur. Osteoporois Int.1991;1:147–54.
11. Dirschl DR, Henderson RC, Oakley WS Jr. Correlates of bone mineraldensity in elderly patients with hip fractures. J Orthop Trauma.1999;5:470–470.
12. Duboef F, Braillon P, Chapuy MC, et al. Bone mineral density ofthigh measured with dual-energy X-ray absorptiometry in normal elderly women and in patients with hip fracture. Osteoporos Int.1991;1:242–9.
13. Karlsson MK, Johnell O, Nilsson BE, Sernbo I, Obrant KJ. Bone mineralmass in hip fracture patients.Bone.1993;14:161–5.
14. Libanati CR, Schulze EE, Shook JE, Bock M, Baylink DJ. Hip mineraldensity in females with a recent hip fracture. J ClinEndocrinolMetab.1992;74:351–351.
15. Torgerson DJ, Dolan P. Prescribing by general practitioners after anosteoporotic fracture. Ann Rheum Dis.1998;57:378–9.
16. Colon-Emeric C, Yballe L, Sloane R, Pieper CF, Lyles KW. Expertphysician recommendations and current practice patterns for evaluating andtreatment men with osteoporotic hip fracture. J AmGeriatr Soc.2000;48:1261–3.
17. Bonnick SL, Shulman L. Monitoring osteoporosis therapy: bonemineral density, bone turnover markers, or both? Am J Med.2006;119:525–531.
18. Curtis JR, Westfall AO, Cheng H, Delzell E, Saag KG. Risk of hip fractureafter bisphosphonate discontinuation: implications for a drugholiday. Osteoporos Int.2008;19:1613–1620.
19. Reid IR, Brown JP, Burchhardt P, et al. Intravenous zoledronic acid inpostmenopausal women with low bone mineral density. N EnglJMed.2002;346:653–61.
20. Lyles KW, Colon-Emeric CS, Magaziner JS, et al. Zoledronic acid andclinical fractures and mortality after hip fracture. N Engl J Med.2007;357:1799–809.
21. Eastell R, Black DM, Boonen S, et al. Effect of once-yearly zoledronic acid on bone mineral density in elderly women with low bone mineral density:the results of the HOFRIST Trial: design of a clinical trial in the prevention of subsequentfractures after low trauma hip fracture repair. Curr Med Res Opin.2004;20:903–10.
22. Looker AC, Wahner HW, Dunn WL, et al. Updated data on proximal femur–bone mineral levels of US adults. Osteoporos Int.1998;8:468–89.
23. Lu Y, Fuerst T, Hui S, Genant HK. Standardization of bone mineral density atfemoral neck, trochanter and Ward’s triangle.Osteoporos Int.2003;14:879–83.
24. The EuroQol Group. EuroQol—a new facility for the measurementof health-related quality of life. Health Policy.1990;16:199–208.
25. Brooks R. EuroQol: the current state of play. Health Policy.1996;37:53–72.
26. Pfeiffer E. A short portable mental status questionnaire for theassessment of orientation, memory, and attention. J Am Geriatr Soc.1975;23:433–41.
27. Marshall D, Johnell O, Wedel H. Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures.BMJ.1996;312:1254–9.
29. Kinsella K, Wan H, Gelband H. editors. U. S. Census Bureau, International Population Reports: an aging world: 2008 [Internet]. Washington, DC: N S Government Printing Office; 2009 [cited 2009]. Available from: https://www.census.gov/prod/2009pubs/p95-09-1.pdf.

30. Jean S, O’Donnell S, Lagace C, et al. Trends in hip fracture rates in Canada: an age-period-cohort analysis. J Bone Miner Res. 2013;28:1283–9.

31. Chau PH, Wong M, Lee A, Ling M, Woo J. Trends in hip fracture incidence and mortality in Chinese population from Hong Kong 2001-09. Age Ageing. 2013;42:229–33.

32. Stoen RO, Nordsetten L, Meyer HE, Frihagen JF, Falch JA, Lofthus CM. Hip fracture incidence is decreasing in the high incidence area of Oslo, Norway. Osteoporos Int. 2012;23:2527–34.

33. Cooper C, Cole ZA, Holroyd CR, et al. Secular trends in the incidence of hip and other osteoporotic fractures. Osteoporos Int. 2011;22:1277–88.

34. Carey JJ. What is a ‘failure’ of bisphosphonate therapy for osteoporosis? Cleve Clin J Med. 2005;72:1033–9.

35. Rabenda V, Vanoverloop J, Fabri V, et al. Low incidence of antiosteoporosis-treatment after hip fracture. J Bone Joint Surg Am. 2008;90:2142–8.

36. Caro JJ, Ishak KJ, Haybrechts KF, Raggio G, Naujoks C. The impact of compliance with osteoporosis therapy on fracture rates in actual practice. Osteoporos Int. 2004;15:1003–8.

37. McCombs JS, Thiebaud P, McLaughlin-Miley C, Shi J. Compliance with drug therapies for the treatment and prevention of osteoporosis. Maturitas. 2004;48:271–87.

38. Feldstein A, Elmer PJ, Orwell E, Herson M, Hillier T. Bone mineral density measurement and treatment for osteoporosis in older individuals with fractures: a gap in evidence-based practice guideline implementation. Arch Intern Med. 2003;163:2165–72.

39. Eriksen EF, Lyles KW, Colon-Emeric CS, et al. Antifracture efficacy and reduction of mortality in relation to timing of the first dose of zoledronic acid after hip fracture. J Bone Miner Res. 2009;24:1308–13.