Coal pit lakes in abandoned mining areas in León (NW Spain): characteristics and geoecological significance

José María Redondo-Vega
Universidad de León: Universidad de Leon

Adrián Melón-Nava
Universidad de León: Universidad de Leon

Sergio Alberto Peña-Pérez
Universidad de León: Universidad de Leon

Javier Santos-González (✉ jsango@unileon.es)
Universidad de León: Universidad de Leon

Amelia Gómez-Villar
Universidad de León: Universidad de Leon

Rosa Blanca González-Gutiérrez
Universidad de León: Universidad de Leon

Research Article

Keywords: coal pit lakes, morphometry, open pit mining, León province

DOI: https://doi.org/10.21203/rs.3.rs-714446/v1

License: ☑️ ☑️ This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Mining activity introduces severe changes in landscapes and, subsequently, in land uses. One of the most singular changes is the existence of pit lakes, which occur in active and, more frequently, abandoned mines. Pit lakes are produced by water table interception when open-pit mines deepen. Their characteristics are highly variable, depending on the type of mine, the environment or the climate.

In León province there is a long tradition of coal mining that dates back to the 19th century, and hundreds of open pits from the 1970s to 2018 have been opened, producing permanent landscape changes. This work analyses the main parameters, including morphological measurements, depth and pH values obtained from aerial photos and field work, of 76 coal pit lakes more than 30 m in length.

The vast majority of these pit lakes were unknown until now and were not included in inventories or maps. The data obtained provide baseline knowledge that will allow, in the future, potential uses (storage of water for various uses, recreational use, wildlife habitat, and geological heritage sites) for these pit lakes and establish their importance as a new geoenvironmental environment.

Introduction

One of the human activities that most transforms our environment is mining (Tandy 1975; Trigg and Dubourg 1993; Townsend et al. 2009; Palmer et al. 2010; Oyarzun et al. 2011; Mossa and James 2013; Tsoiaki-Fiaka et al. 2018; Kopec et al. 2020), especially if the mineral exploitation method is open-pit mining (Hüttl and Gerwin 2005; Sekhar and Mohan 2014). This method is at the origin of changes in the relief (Redondo Vega 1988; Townsend et al. 2009) and of the land uses of the areas affected by this activity (Duncan et al. 2009; Tarolli and Sofia 2016; Jiaxing et al. 2017; Redondo-Vega et al. 2017; Redondo Vega 2000, 1994; Qian et al. 2017; Werner et al. 2019). While these changes only occupy 0.4% of the Earth's surface (Hooke et al. 2012), the intensity and speed with which they occur make them a particularly aggressive, persistent (Chen et al. 2015) and almost always irreversible phenomenon (Larondelle and Haase 2012; Mossa and James 2013; Tarolli and Sofia 2016; Tarolli et al. 2018; Redondo Vega et al. 2017; Song et al. 2020) since the massive use of machinery and blasting manages to break apart entire mountains (Reece 2006; Bernhardt and Palmer 2011), transforming their landscape and changing their function and use.

In recent decades, the affected surfaces have increased exponentially (Townsend et al. 2009; Palmer et al. 2010; Bernhardt and Palmer 2011; Reece 2006; Wickham et al. 2013; Qian et al. 2017), and many are the studies analyse the subsequent land use changes (Lafkovic et al. 2005; Bloodworth et al. 2009; Wu et al. 2008; Wang et al. 2011; Prakash and Gupta 1998; Sekhar and Mohan 2014; Yang 2008; Duncan et al. 2009; Bian and Lu 2013; Redondo-Vega et al. 2017; Jiaxing et al. 2017; Xu et al. 2017; Dwiyanto et al. 2021) or present methodological (Chen et al. 2015) and management proposals for these spaces after mine closure (Nixdorf et al. 2005; Schultzze et al. 2010; Larondelle and Haase 2012; Soni et al. 2014; Castendyk et al. 2016; Blanchet and Lund 2017; Marescotti et al. 2018; Kivinen et al. 2017; Kivinen et al. 2018; Gulpinar Sebkan and Acar 2021).

Pit lakes (Castro and Moore 2000; Gammons et al. 2009), also called strip mine lakes (Hildmann and Wünsche 1996) and post-mining lakes (Hangen-Brodersen et al. 2005; Baeten et al. 2018), are one of the most unique elements that open-pit mining generates since they always involve a radical modification of the landscape with respect to the pre-operational situation (Redondo Vega et al. 2018). They are found at the bottom of abandoned open-air operations due to the inflow of waters of different origins, such as groundwater (Siegel 1997; Soni et al. 2014), direct precipitation and surface runoff from the watershed to the lake, or both origins in conjunction (Zhao et al. 2009). Their location characterizes these basins as endorheic unless they have an outflow channel (Redondo Vega 1988; Redondo-Vega et al. 2017) to release excess water.

Pit lakes can have a large surface area and could be hundreds of metres in depth, as in the lignite mines of Germany (Hildmann and Wünsche 1996; Antwi et al. 2014) or Spain (Aríchaga et al. 2011; Mijares Coto 2013) generated by forced flooding from a nearby river system (mine rehabilitation by flooding, Fitzgerald and Watkins 1997). They can also be small mining pit lakes with shallow water (Redondo-Vega et al. 2017; 2018), with depths between 0.70 and 15 m. These pit lakes are abandoned without any type of subsequent management after the mining ends and are the object of our study.

Despite the existence of thousands of pit lakes (Blanchet and Lund 2017; Baeten et al. 2018), there are few studies on this subject and those that exist focus on their ecological conditions and geochemical parameters (Castro and Moore 2000; Geller et al. 2013; McCullough and Lund 2006; Zhao et al. 2009; Boehrer et al. 2010; Schultzze et al. 2010; Mollema and Antonellini 2016; Castendyk et al. 2016; Marszelewski et al. 2017; Sánchez-España et al. 2008, 2014; Palit et al. 2016a). Therefore, the main objective of this study is to inventory and study their basic physical parameters, since today they are an unknown phenomenon—at least in the province of León—and it is not even known how many there are, where they are and what they are like. Only by knowing about them can they be integrated into the management of these degraded and abandoned mining spaces (Hüttl and Gerwin 2005; Kumar et al. 2009; McCullough et al. 2020; Castendyk et al. 2016; Kivinen et al. 2018).

In León, there are 2000-year-old mining lakes generated by Roman gold mining and considered cultural heritage (Redondo-Vega et al. 2018), such as those within the UNESCO World Heritage Site of Las Médulas. The coal pit lakes currently do not have such consideration. It is
necessary to recognize them as being part of the cultural heritage (Marescotti et al. 2018) since the adoption of more sustainable energy sources has made these mines disappear, constituting the pit lakes as a cultural and landscape legacy of that activity.

Figure 1. Location of the main coalfields and pit lakes

The study covers a large area of the province of León but focuses on the place occupied by pit lakes within the coalfields (Fig. 1). These zones extend from W to E inserted in the Palaeozoic structures and form with them the ancient massif generated after the Variscan Orogeny. They are materials of Westphalian or Stephanian age and almost always rest in angular unconformities with the rest of the Palaeozoic or Precambrian rocks. In addition, they are highly tectonized, which influences the discontinuity of the coal layers whose thickness, with few exceptions, is thin.

The thinness of the layers and the complexity of the mountainous territories where the deposits appear made initiating the work difficult, despite the quality of the coal and the abundant existing reserves. The Fabero, Toreno, Villablino and Valderrueda zones in which the pit lakes have been identified occupy an extensive territory in the northern part of the León province (Fig. 1).

Material And Methods

Monitoring land use and land cover and the state of the landscape using multitemporal remotely sensed data is fundamental for determining environmental impacts and ecological degradation caused by the exploitation of coal deposits and changes in land use (Wemer et al. 2019; Yu et al. 2018; Xu et al. 2017; Liu et al. 2017; Ma et al. 2019; Dwiyanto et al. 2021). Through the photointerpretation of panchromatic aerial photos (American Series A 1945–1946, American Series B 1956–1957, Interministerial 1973–1986 and National 1980–1986) and recent orthoimage (The National Plan for Aerial Orthophotography 2017), open-pit coal mining areas and existing pit lakes were identified.

The comparative analysis of images from several years (using the ortophoto comparator tool provided by The National Aerial Ortophoto Program in Spain, https://www.ign.es/web/comparator_pnoa/index.html) allowed to exclude temporary pit lakes from permanent ones (Redondo-Vega et al. 2018), establishing a threshold of 30 m from the major axis to include them in the study. Small pit lakes were excluded due to their temporary nature, since they only contained water in exceptionally wet years, and pit lakes that disappeared due to different geomorphological, biological, hydrological and anthropic processes of mining restoration were also excluded (Mijares Coto 2013).

Using the ArcMap 10.6 application of ArcGIS software, the pit lakes were delimited, and the following parameters were calculated: A, surface area delimited by the contour of the lake; P, perimeter or length of the coastline that was almost constant throughout the year; L, maximum length, line connecting the two points farthest from the shore of a lake (Hakanson 1981); W, maximum width defined as the maximum distance corresponding to a straight line perpendicular to the line of maximum length (Del Castillo Jurado 2003). These are morphometric dimensions commonly used in limnology studies (Hakanson 1981; Del Castillo Jurado 2003; Vega et al. 2005; Mijares Coto 2013; Fuentes-Pérez et al. 2015). The basic morphometric data were represented on an interactive map.

Figure 2. Example of using a drone to make current orthophotograms. On the left, a recent (2020) dron-derived image of a mining pit lake in the Fabero area. On the right, the same pit lake in the available orthophoto (2017) from the Spanish National Geographic Institute (IGN).

The field work consisted of recognizing and verifying the pit lakes identified through photointerpretation and measuring those basic parameters that we could not obtain in the office, such as the maximum depth Z and the mean depth (=V/A, Del Castillo Jurado 2003) using a depth gauge (DeeperPro+ Smart Sonar) with a range of 100 m and 80 m depth. A water sample was also collected from the surface of the pit lake to obtain the pH value. The Benchtop pH metre Basic 20 (CRISON, Spain) was used; pH is one of the key parameters for determining the geoecological conditions of these environments. Finally, zenithal images were taken using a drone (Phantom 4 Pro) to acquire the morphometrics of those pit lakes that had undergone recent changes (Fig.2) and that do not appear in the most recent orthophoto available of 2017. This is the case for mines that have been active until very recently and whose pit lakes are the last that have been formed: Otero de Naranguentes (Fabero), La Mora (Villablino) and Tremor de Arriba (Toreno).

With the data obtained, the volume (V) of water was estimated from the mean depth and surface (V=A x Del Castillo Jurado 2003). Then, the coastlinedevelopment index (D1) was calculated, which relates the lake perimeter (P) or length of the coastline, with the perimeter of the circumference whose circle is of equal area (A) as the lake. It is defined as $D_1 = P / 2 \sqrt{\pi \cdot A}$ (Del Castillo Jurado, 2003; Contreras and Paia, 2015) and indicates the shape of the pit lake contour: Circular (1 < D1 ≤ 1.25), Subcircular, 1.25 < D1 < 1.5; Subrectangular elongated, 1.5 < D1 < 3; Dendritic, D1 > 3, (Kalff 2002; Del Castillo Jurado 2003; Contreras and Paia 2015).

The morphometric data were stored in a database for treatment and statistical analysis. To synthesize the morphometric parameters of the dimensions of the pit lakes and the pH of the water, descriptive statics were calculated. These calculations were carried out based on three factors: the location of the pit lakes in four mining basins, the shape of the pit lakes and the age of the mining pit lakes. Likewise, graphs of the frequency distribution of the length, width, volume, surface, mean depth and pH of the water were made based on the location basin, age and plan view of the pit lakes.
Finally, Principal Component Analysis (PCA), executed in R, was applied to the set of 76 mining pit lakes to reduce the number of variables (10), both qualitative and quantitative, to a smaller number of factors or dimensions to determine the relationships between variables. This made it possible to distinguish the pit lakes belonging to a certain age group or of a certain shape to those of other groups.

Results

In total, 76 mining pit lakes of more than 30 m from the major axis have been located in four mining zones of the León province: Fabero (28), Toreno (18), Villablino (17) and Valderrueda (13). All the basic morphometric parameters and location of each of the pit lakes can be consulted on the interactive map at the following link: https://rawcdn.githack.com/amelon00/Coal_Pit_Lakes_Leon/54fdf2dbf04c9fff6c20e4ef8d1f89ffd2682ef7/CoalPitLakesMap_v08072021.html

Despite the diversity suggested by the morphometric data, can be grouped into three categories according to their topographic location of the cuts that originated them (Fig. 3): hillside (52), valley bottom (16) and hilltop (8). In all the basins, pit lakes on hillsides predominate (Fig. 4), while those located in valley bottoms are found mainly in the Valderrueda basin.

Figure 3. Examples of coal mining cuts and associated pit lakes. A) hilltop (Igüeña); B) hillside (San Justo Cabanillas); C) valley bottom (Cabrillanes)

Regarding the shape of the pit lakes according to the D1 index, the circular (39) and subcircular (30) shapes predominate, followed by the elongated subrectangular (7) shape, with none reaching the dendritic category. If we look at the distribution of frequencies (Fig. 4) in all basins, circular basins predominate except in Toreno, where subcircular basins are predominant.

Figure 4. Distribution of the qualitative characteristics (shape, type of cut, age and connectivity) of the pit lakes in the four coal mining zones where the open-pit mines are located.

Regarding the age of the pit lakes (Fig. 4), there are 19 prior to 1987, 28 between 1987–1997, which is the period in which 37% of the total are created, 12 between 1997–2007, and 17 after 2007. The results show an unequal distribution according to the zone considered: in Villablino, they do not exist before 1987, while in Valderrueda, there are none after 1997.

The endorheic nature of the pit lake depends on its connectivity with the drainage network of the zone in which it is located. In general, they have low connectivity because there is a high percentage of pit lakes (88% in Toreno and 78% in Fabero) with no outflow that are confined in their basins.

Regarding the morphometric parameters according to the cumulative frequency distribution for length and width, small-sized pit lakes with a major axis less than 100 m in length predominate in all mining zones, except in Villablino, where most are between 100–200 m (Fig. 5), and some less than 50 m wide.

Figure 5. Cumulative frequency histogram of the morphometric and pH parameters of the pit lakes according to their distribution by mining zone.

Overall, small- to medium-sized pit lakes predominate since most of their surfaces are less than 5000 m² (in Valderrueda and Toreno, almost 80% of the total; in Fabero, more than 60%), while in Villablino, they are slightly more than 50% and shallow (depths < 5 m). Consequently, the volume of most is less than 25000 m³ (Fig. 5).

The pH of the water in the pit lakes is predominantly between 6.5 and 7.5, almost always far from the normal or neutral value of approximately 7 (Ayala Carcedo and Vadillo Fernández 1989). However, pH values even further from neutral value were also obtained. The lowest values recorded (water with the highest acidity) are 3.59 (Fabero-05), 3.97 (Fabero-06) and 4.43 (Fabero-14). The most alkaline waters are 8.86 (Villablino-13), 8.42 (Villablino-01) and 8.45 (Valderrueda-04). On the other hand, the frequency distribution of alkalinity and acidity indicates differences according to the mining zone considered (Fig. 5). Thus, some zones are clearly above pH 7 with alkaline values (Valderrueda, Villablino and Toreno), while in Fabero, most values (over 60%) are below 7, that is, acidic waters.

PCA was applied using the 10 variables for each pit lake, differentiated into two categories (by shape and by age): eight variables referring to morphological and morphometric parameters (surface, perimeter, maximum length, maximum width, maximum and mean depth, volume, coastline development) and two environmental variables (open-pit lake orientation and water pH).

The correlations between numerical variables used in the PCA are shown in Fig. 6. The correlations are moderate and high, and positive, between the morphometric parameters indicating the morphology of the pit lakes, except when these are related to the coastline development index, which is an indicator of the irregularity of the pit lake contour. The variables of water pH and orientation also show low or no correlations with the rest, which indicates that these three variables do not depend on the morphometry of the pit lakes.
PCA allowed the extraction of two main components that explained 65.78% of the variance (Fig. 7). The first principal component explains 51.2% of the variance and is related to strictly morphometric variables (mean and maximum depth, width, perimeter, length and area). The second component has a lower weight on the variables, explaining ~ 14.6% of the variance. In the same way as in the correlation analysis, different relationships between groups of variables are observed: on the one hand, there are two groups of variables with relationships between them, such as the variables of depth and volume, and on the other, the variables related to the dimensions of the pit lakes (surface, length, width and perimeter). The variables of coastline development, pH and orientation are less related, both with each other and with the rest of the variables.

Figure 7. Variables factor map (PCA). Grey labelled variables are quantitative supplementary variables (age, shape, connectivity and location).

Figure 8 is a map of individuals (pit lakes) factor map, showing some of the pit lakes with higher contribution to the plane. Dashed lines indicate the mean values for each dimension. Individuals are distinguished according to shapes (8A) and ages (8B) (the position of the individuals does not change in both graphs). In Fig. 8, the pit-lakes with circular shapes are to the right of the first factorial plane (dimension 1). In the upper plane (Fig. 8A), the deepest pit-lakes stand out: Valderrueda-06 and 03, formed before 1987, of large dimensions, with alkaline pH, and those of Villablin-02 and Fabero-09, with similar morphometric values but more recently formed (1987-97), all located in the valley bottom. In the lower plane (Fig. 8B) are the largest pit lakes, Fabero-07 and Fabero-11, and more recently, after 2007 (also Fabero-04 and 05), with soft acid waters (Ayala Carcedo and Vadillo Fernández 1989) located on the hillside. All of them share, in addition, large width, perimeter and length values. The Fabero 11 pit is striking, the most extensive of all those analysed, which is subcircular in shape but shows characteristics that are more typical of circular pit lakes. It was created after 2007, and its waters show an alkaline pH.

Figure 8. Representation of individuals (pit lakes) in the first factorial plane differentiated by their A) Pit shape and B) Age. (Individuals factor map (PCA): A) Pit shape, and B) Age

To the left of the graph, with negative values are the subcircular pit lakes, formed between 1987 and 1997, and the elongated subrectangular pit lakes, mainly developed between 1998 and 2007. They have high coastline development values and low width, mean depth, perimeter, length, maximum depth, area and volume, respectively. The Fabero-20 and Fabero-27 pit lakes, which are circular, are morphometrically similar to the subcircular pit lakes. The Fabero-27 pit lake is smaller and shallower; its waters have an acidic pH compared to Fabero-20, which is more recent with an alkaline pH.

Discussion

The location of the pit lakes in the relief is related to the exploited deposit and the specific method used in open-pit mining (Redondo Vega 1987), that is, the type of mine that originated them. Their location reveals their accessibility for a possible use but also the influence they can exert on their immediate environment. The predominance of pit lakes on hillsides is due to the mining operation being controlled by the location of the deposits. As deposits are frequently located in mountainous areas, sometimes with steep slopes, this usually also the location of pit lakes. Whenever it was possible to mine deposits in valley bottoms or hilltops, it was preferred because the lower slope of these sites favour mining works when compared to the locations on hillsides.

The predominance of circular shapes (between 40 and 60%) and subcircular shapes (more than 30% of the total), would indicate an adaptation of the pit lakes to the abandoned bottoms of the open pit mines regardless of their dimensions (Fig. 4). Only in Toreno do the subrectangular pit lakes have a significant frequency of 20% (the predominant in this case are the subcircular type) which is consistent with the numerous small pit lakes that have been adapted to small hillside (Redondo Vega 1988) or contour mines. This type of open-pit mining was a way to extract coal early on in the process (more than 50% of the Toreno pits are prior to 1987, Fig. 4) and in many mining zones applied mainly because the coal deposits with thin steep layers and with unfavourable topography due to their inclination (Ayala Carcedo and Vadillo Fernández 1989) made it especially suitable. Therefore, many of the older pit lakes, generally small, now have a subrectangular shape, or are at least subrounded, which is more consistent with hillside and contour mining.

The low values of the D_1 index, with the predominance of circular and subcircular shapes, are due to the lack of foresight in the mining work regarding the appearance of the final cut of the mine pits that were abandoned. This differentiates them from many pits of natural origin that almost always show more irregular coastlines or from others of mining origin, such as those of the gravel pits, which are already designed with dendritic shapes to favour the recovery of the post-mining space.

One of the greatest difficulties encountered in the work has been the correct temporal sequencing of the mining work generating the pit lake because it is always a very uneven process in time and space. The time elapsed between the beginning of the extractive activity and the appearance of the pit lake is highly variable and depends on the extraction pace of the deposit and the depth reached. Therefore, in some cases it has been difficult to know precisely the age of the pit lake since mining is a rapid process and the photos available are sometimes ten years
which makes them closed basins with little possibility of water renewal and therefore of appreciable changes in the acidity or alkalinity because until 2017, the open-pit mine was active), are very old pit lakes, some more than forty years old. They do not have an outflow channel, the water pH of the León pit lakes and in the case of those mentioned above (except that of Fabero-05, which is one of the most recent pit lakes in many pit lakes studied in other countries, pH changes over time, usually correcting towards more neutral values. We do not have old data on the water pH of the León pit lakes and in the case of those mentioned above (except that of Fabero-05, which is one of the most recent pit lakes because until 2017, the open-pit mine was active), are very old pit lakes, some more than forty years old. They do not have an outflow channel, which makes them closed basins with little possibility of water renewal and therefore of appreciable changes in the acidity or alkalinity conditions of the water retained there.

Conclusions

- The pit lakes, except for isolated cases, are small, shallow and, therefore, with modest volumes of water. However, the presence of permanent water in environments that almost always present summer aridity would make them attractive for the development of ecological enclaves of interest. This would favour their use as natural, recreational environments or as water reservoirs (unless the physicochemical characteristics of the water advise against it).
- There is a preponderance of rounded and subcircular shapes with a low coastline development index ($D_c < 1.5$), that is, their perimeter in relation to their surface is small and would indicate they remain strictly within the bottom of the open pit. The uniformity of the perimeters differentiate them from many pit lakes of natural origin and others of mining origin, such as the gravel pits that are designed with dendritic forms to facilitate their environmental recovery.
Coal pit lakes have low connectivity because only a small number of them are exorheic, with a functional output channel, and barely show low water marks. Most occupy endorheic basins with low water marks according to the time of year. They always assume an irreversible alteration of the natural runoff and the original landscape. On the other hand, this closed system can control the runoff waters when these do not have sufficient quality and are thus confined without producing unwanted discharges.

There is a predominance of pit lakes on hillsides which reflect the underlying coal deposits and the open-pit mining method used at the time. This location on hillsides, sometimes very steep, implies a low accessibility that, together with the remoteness of population centres, would favour its use as a natural enclave for recreational purposes, for example.

From a geoeccological point of view, the time elapsed since the creation of a pit lake is an important factor in how the initial characteristics of the pit lake transform and its conversion into something 'more natural'. Thus, the oldest areas show dense vegetation in their surroundings and shores that have practically erased any evidence of the mining landscape (tailings and stripped slopes, absence of vegetation, visible geological structure), and even the presence of ichthyofauna. However, there are also cases of old pit lakes that show very low biodiversity, usually in these cases with markedly acidic waters.

Declarations

Funding: This work was supported by the project LE080G19 (Paleo-environmental significance and relationship with the global change of the Cantabrian Mountains rock glaciers: relative age dating and analysis of the internal structure using electrical tomography), founded by the Junta de Castilla y León.

Conflict of interest: The authors confirmed no disagreement of interest concerning this research.

Availability of data and material: The basic morphometric parameters and location of coal pit lakes analysed in this work can be consulted on the interactive map at the following link: https://rawcdn.githack.com/amelon00/Coal_Pit_Lakes_Leon/54fdf2dbf04c9fff6c20e4ef8d1f89ffdd2682ef7/CoalPitLakesMap_v08072021.html

Acknowledgments: This work was supported by the project LE080G19 (Paleo-environmental significance and relationship with the global change of the Cantabrian Mountains rock glaciers: relative age dating and analysis of the internal structure using electrical tomography), founded by the Junta de Castilla y León.

References

1. Antwi EK, Boakye-Danquah J, Asabere SB, Takeuchi K, Wiegleb G (2014) Land cover transformation in two post-mining landscapes subjected to different ages of reclamation since dumping of spoils. SpringerPlus 3:702. http://doi.org/10.1186/2193-1801-3-702

2. Aréchaga F, Ferrero T, Gil A, Menéndez JA, Valle R (2011) Riqueza restaurada. Historia de la mina de As Pontes. Madrid, Endesa Generación. http://ingeominas.es/producto/as-pontes-a-cornia-riqueza-restaurada-historia-de-la-mina/

3. Ayala Carcedo FJ, Vadillo Fernández L (1989) Manual de restauración de terrenos y evaluación de impactos ambientales en minería. Instituto Tecnológico Geominero de España

4. Baeten J, Langston N, Lafreniere D (2018) A spatial evaluation of historic iron mining impacts on current impaired waters in Lake Superior’s Mesabi Range. Ambio 47:231–244. https://doi.org/10.1007/s13280-017-0948-0

5. Bernhardt ES, Palmer MA (2011) The environmental costs of mountaintop mining valley fill operations for aquatic ecosystems of the Central Appalachians. The Year in Ecology and Conservation Biology. Ann N Y Acad Sci 1223:39–57. http://dx.doi.org/10.1111/j.1749–6632.2011.05986.x

6. Blanchette ML, Lund MA (2017) Pit lakes are a global legacy of mining: an integrated approach to achieving sustainable ecosystems and value for communities. Current Opinion in Environmental Sustainability 23:28–34. http://dx.doi.org/10.1016/j.cosust.2016.11.012

7. Bloodworth AJ, Scott PW, McEvoy FM (2009) Digging the backyard: mining and quarrying in the UK and their impact on future land use. Land Use Policy 26(1):317–325. http://dx.doi.org/10.1016/j.landusepol.2009.08.022

8. Boehrer B, Kastner S, Ollesch G (2010) High accuracy measurements of water storage change in Mining Lake111, Germany. Limnologica 40:156–160. https://www.sciencedirect.com/science/article/pii/S00759511109000930

9. Bian ZF, Lu Q (2013) Ecological effect analysis of land use change in coal mining area based on ecosystem service valuation: a case study in Jiawang. Environmental Earth Sciences 68:1619–1630. https://link.springer.com/article/10.1007/s12665-012-1855-0

10. Castro JM, Moore JN (2000) Pit lakes: their characteristics and the potential for their remediation. Environ Geol 39(11):1254–1260. https://doi.org/10.1007/s002549900100

11. Castendyk DN, Eary LE, Balistrieri LS (2016) Modeling and management of pit lake water chemistry 1: Theory. Appl Geochem 57:267–288. http://dx.doi.org/10.1016/j.apgeochem.2014.09.004
12. Chen J, Li K, Cnag KJ, Sofia G, Taroli P (2015) Open-pit mining geomorphic feature characterization. Int J Appl Earth Obs Geoinf 42:72–86. https://doi.org/10.1016/j.jag.2015.05.001

13. Contreras Fl, Paired AR (2015) Comparación morfométrica entre lagunas de la planicie aluvial del río Paraná Medio y La Lomada Norte (Corrientes, Argentina). Cuadernos de Geografía Revista Colombiana de Geografía 24(1):61–71. https://revistas.unal.edu.co/index.php/rcg/article/view/47774

14. Del Castillo Jurado M (2003) Morfometría de lagos Aplicación a los lagos del Pirineo. Tesis doctoral, Departament d’Ecologia, Universitat de Barcelona. https://www.tesisenred.net/handle/10803/1428

15. Duncan EE, Kuma JS, Primpong S (2009) Open pit mining and land use changes: an example from Bogoso–Prestea area, SouthWest Ghana. The Electronic Journal on Information Systems in Developing Countries 36(3):1–10. http://www.ejisdc.org/ojs2/index.php/ejisdc/article/view/531/269

16. Dwiyanto MR, Damayanti A, Indra TL, Dimyati M (2021) Land Use Changes Due to Mining Activities in Penajam Paser Utara Regency, East Kalimantan Province. IOP Conference Series: Earth and Environmental Science, 1811 (1). https://iopscience.iop.org/article/10.1088/1742-6596/1811/1/012088/pdf

17. Eary LE (1999) Geochemical and equilibrium trends in mine pit lakes. Applied Geochemistry 14:963–987. https://doi.org/10.1016/S0883-2927(99)00049-9

18. Fitzgerald VR, Watkins M (1997) Literature review on mine rehabilitation by flooding. HRL Technology Pty Ltd. State Electricity Commission of Victoria. http://hazelwoodinquiry.vic.gov.au/wp-content/uploads/2015/12/Parachute-158-EAY.001.003.0081.pdf

19. Fuentes-Pérez JF, Navarro Hevia J, Ruiz Legazpi J, García-Vega A (2015) Inventario y caracterización morfológica de lagos y lagunas de alta montaña en las provincias de Palencia y León (España). Pirineos 170. http://dx.doi.org/10.3989/Pirineos.2015.170006

20. Gammons CH, Harris LN, Castro JM, Cott PA, Hanna BW (2009) Creating lakes from open pit mines: processes and considerations, with emphasis on northern environments. Canadian Technical Report for Fisheries and Aquatic Sciences 2826. https://digitalcommons.mtech.edu/geol_engr/2

21. Geller W, Schulzme R, Wolkersdorfer Ch (eds) (2013) Acidic Pit Lakes: The Legacy of Coal and Metal Surface Mines. Springer, https://www.springer.com/us/book/9783642293832

22. Gulpinar Sebkan DU, Acar C (2021) Determining usages in post-mining sites according to landscape design approaches. Land Degrad Dev 32:2661–2676. https://doi.org/10.1002/ldr.3933

23. Hakanson L (1981) A Manual of Lake Morphometry. Springer-Verlag, Berlin-Heidelberg. https://www.springer.com/us/book/9783540104803

24. Hangen-Brodersen Ch, Strempel P, Grünewal U (2005) Characteristics of catchments disturbed by lignite mining-case study of Schlabendorf/Seese (Germany). Ecol Eng 24(1–2):37–48. https://doi.org/10.1016/j.ecoleng.2004.12.005

25. Hildmann E, Wünsche M (1996) Lignite mining and its after-effects on the Central German landscape. Water Air Soil Pollution 91(1–2):79–87. https://link.springer.com/article/10.1007/BF00280924

26. Hooke R, Martín-Duque JF, Pedraza J (2012) Land transformation by humans: a review. GSA Today 22(12):4–10. http://dx.doi.org/10.1130/GSAT151A.1

27. Hüttl RF, Gerwin W (2005) Landscape and ecosystem development after disturbance by mining. Ecol Eng 24(1–2):1–3. http://doi.org/10.1016/j.ecoleng.2004.12.002

28. Jiaxing X, Gang L, Jiaqi Y, Hua Z, Pengcheng Y, Wenmin H (2017) Effects of coal exploitation on land use and landscape pattern change in coal mining area. Transactions of the Chinese Society of Agricultural Engineering 33(23):252–258. http://www.tcsae.org/nygcxb/ch/reader/view_abstract.aspx?le_no=20172333&flag=1

29. Kalff J (2002) Limnology. Inland Water Ecosystems. New Jersey, Prentice Hall. https://livresbioapp.files.wordpress.com/2016/03/limnology-kalff.pdf

30. Kivinen S (2017) Sustainable post-mining land use: Are closed metal mines abandoned or re-used space? Sustainability 9(10):1705. https://doi.org/10.3390/su9101705

31. Kivinen S, Vartiainen K, Kumpula T (2018) People and Post-Mining Environments: PPGIS Mapping of Landscape Values, Knowledge Needs, and Future Perspectives in Northern Finland. Land 7(4):151. https://doi.org/10.3390/land7040151

32. Kopeć A, Trybala P, Głębkicki D, Buzynska A, Owczarz K, Bugajnska N, Kozinska P, Choja M, Gattner A (2020) Application of remote sensing, gis and machine learning with geographically weighted regression in assessing the impact of hard coal mining on the natural environment. Sustainability 12(22):1–26. https://www.mdpi.com/2071-1050/12/22/9338#

33. Kumar RN, McCullough ChD, Lund MA (2009) Water resources in Australian mine pit lakes. Mining Technology 118(3–4):205–211. https://doi.org/10.1179/174328610X12682159815028
34. Latifovic R, Fytas K, Chen J, Paraszczyk J (2005) Assessing land cover change resulting from large surface mining development. Int J Appl Earth Obs Geoinf 7:29–48. https://doi.org/10.1016/j.jag.2004.11.003

35. Larondelle N, Haase D (2012) Valuing post-mining landscapes using an ecosystem services approach - An example from Germany. Ecol Ind 18:567–574. https://doi.org/10.1016/j.ecolind.2012.01.008

36. Liu P, Li K, Han RM, Cheng QX, Ma C (2017) Landscape pattern taking Jiaozuo as an example. Land Reclamation in Ecological Fragile Areas - Proceedings of the 2nd International Symposium on Land Reclamation and Ecological Restoration, LRER. https://doi.org/10.1201/9781315166582

37. Ma S, Xie F, Ding C, Zhang H (2019) Spatio-temporal change of landscape ecological quality and influencing factors based on four-quadrant model in overlapped area of cropland and coal production. Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering 36(4):259–268. http://www.tcsae.cn/nygxb/ch/reader/view_abstract.aspx?file_no=20200431&st=alljournals

38. Marescotti P, Brancucci G, Sasso G, Solimano M, Marin V, Muzzo Ch, Salmona P (2018) Geoheritage Values and Environmental Issues of Derelict Mines: Examples from the Sulfide Mines of Gromolo and Petronio Valleys (Eastern Liguria, Italy). Minerals 8(6):229. http://dx.doi.org/10.3390/min8060229

39. Marszelewski W, Dembowska EA, Napiórkowski P, Solarczyk A (2017) Understanding Abiotic and Biotic Conditions in Post-Mining Pit Lakes for Efficient Management: A Case Study (Poland). Mine Water Environ 36:418–428. http://dx.doi.org/10.1007/s10230-017-0434-8

40. McCullough C, Lund MA (2006) Opportunities for Sustainable Mining Pit Lakes in Australia. Mine Water and the Environment 25(4):220–226. https://link.springer.com/article/10.1007/s10230-006-0136-0

41. McCullough CD, Schultz M, Vandenberg J (2020) Realizing Beneficial End Uses from Abandoned Pit Lakes. Minerals 10:133. https://www.mdpi.com/2075-163X/10/2/133/htm

42. Mijares Coto MJ (2013) Procedimiento de actuación para la aplicación de la Directiva Marco del Agua a los lagos artificiales creados por la rehabilitación de las explotaciones mineras a cielo abierto. Tesis Doctoral, Departamento de Métodos Matemáticos y de Representación, Universidad da Coruña. http://hdl.handle.net/2183/11702. Accessed 6 April 2018

43. Mollema PN, Antonellini M (2016) Water and (bio) chemical cycling in gravel pit lakes: A review. Earth Sci Rev 159:247–270. http://dx.doi.org/10.1016/j.earscirev.2016.05.006

44. Mossa J, James LA. In:, Geomorphology of Human Disturbances, Climate Change, and Hazards N (2013) Impacts of mining of geomorphic systems. In: Shroder J, James LA, Harden CP, Clague JJ (eds) Treatise on Geomorphology, vol 13. Academic Press, San Diego, 74–95. http://dx.doi.org/10.1016/B978-0-12-374739-6.00344-4

45. Nixdorf B, Lessmann D, Deneke R (2005) Mining lakes in a disturbed landscape: Application of the ECWater Framework Directive and future management strategies. Ecol Eng 24:67–73. https://doi.org/10.1016/j.ecoleng.2004.12.008

46. Oyarzun R, Higuera P, Lillo J (2011) Minería Ambiental. Una introducción a los impactos y a su remediación. Ediciones GEMM. https://eprints.ucm.es/14046/

47. Palit D, Mukherjee A, Kar D, Roychowdhury Sh, Garai B, Kar P, Gupta S (2016a) Determinants of Pitlake Usage in Raniganj Coalfield Region, West Bengal: Implications for Sustainable Use. International Journal of Innovative Research in Engineering Management 3(2):72–79. https://www.ijirem.org/IJIREM/ArchInfo.aspx?rep=116

48. Palit D, Kar D, RoyChowdhury S, Mukherjee A, Garay B, Kar P (2016b) Species Composition of Plant Communities in Pitlakes of Raniganj Coal Field, West Bengal, India. International Journal of Current Research in Biosciences Plant Biology 3(6):82–86. http://dx.doi.org/10.1126/science.1180543

49. Palit D, Kar P, Mukherjee A, Gupta S (2019) Pitlakes of Raniganj Coal Field, W.B, India. Inventory and Water Quality Status. Natural Science, Technical Report, GRIN

50. Palmer MA, Bernhardt ES, Schlesinger WH, Eshleman KN, Foufoula-Georgiou E, Hendryx MS, Lely AD, Likens GE, Loucks OL, Power ME, White PS, Wilcock PR (2010) Mountaintop Mining consequences. Science 327(5962):148–149. http://dx.doi.org/10.1007/s10661-017-6284-9

51. Prakash A, Gupta RP (1998) Land-use mapping and change detection in a coal mining area a case study in the Jharia coalfield, India. Int J Remote Sens 19(3):391–410. http://dx.doi.org/10.1080/014311698013660

52. Qian D, Yan C, Xing Z, Xiu L (2017) Monitoring coal mine changes and their impact on landscape patterns in analpine region: a case study of the Muli coal mine in the Qinghai-Tibet Plateau. Environ Monit Assess 189(11):559. https://doi.org/10.1007/s10661-017-6284-9

53. Redondo Vega JM (1988) Las minas de carbón a cielo abierto en la provincia de León. Transformación del medio y explotación de recursos no renovables. Universidad de León, Secretariado de Publicaciones, León

54. Redondo Vega JM (1994) Ejemplos de la convergencia espacial entre el abandono de los aprovechamientos agrarios y la explotación minera en la montaña de León. In: Cabero Diéguez V, Llorente Pinto JM, Plaza Gutiérrez JI y Pol Méndez C (eds) El Medio Rural español. Cultura paisaje y naturaleza. Libro Homenaje a D. Ángel Cabo Alonso, pp 793–805. Universidad de Salamanca, Salamanca
55. Redondo Vega JM (2000) Minería y degradación del medio en la provincia de León. La incidencia de la legislación minero-ambiental. Medio Ambiente en Castilla y León 14:17–24

56. Redondo-Vega JM, Gómez-Villar A, Santos-González J, González-Gutiérrez RB, Álvarez-Martínez J (2017) Changes in land use due to mining in the north-western mountains of Spain during the previous 50 years. Catena 149:844–856. http://dx.doi.org/10.1016/j.catena.2016.03.017

57. Redondo-Vega JM, Gómez-Villar A, González-Gutiérrez RB, Santos-González J (2018) El origen de las lagunas de León. In: Blanco Chao R, Castillo Rodríguez F, Costa Casais M, Horacio García J, Valcárcel Díaz M (eds) Xeomorfología e paisaxes xeográficas. Catro décadas de investigacion e ensino. Homenaxe a Agusto Pérez Alberti, Universidade de Santiago de Compostela, pp 469–486

58. Reece E (2006) Lost Mountain. A Year in the Vanishing Wilderness Radical Strip Mining and the Devastation of Appalachia. Riverhead Books, New York

59. Sánchez España J, López Pamo E, Santofimia Pastor E, Diez Ercilla M (2008) The acidic mine pit lakes of the Iberian Pyrite Belt: An approach to their physical limnology and hydrogeochemistry. Appl Geochem 23:1260–1287. https://doi.org/10.1016/j.apgeochem.2007.12.036

60. Sánchez-España J, Diez Ercilla M, Pérez Cerdán F, Yusta I, Boyce AJ (2014) Hydrological investigation of a multi-stratified pit lake using radioactive and stable isotopes combined with hydrometric monitoring. J Hydrol 511:594–508. https://doi.org/10.1016/j.jhydrol.2014.02.003

61. Schultze M, Pokrandt K-H, Hille W (2010) Pit lakes of the Central German lignite mining district: Creation, morphometry and water quality aspects. Limnologica 40:148–155. https://www.sciencedirect.com/science/article/pii/S0075951110000826

62. Sekhar PH, Mohan SK (2014) Assessment of impact of opencast mining on surrounding forest: a case study from Keonjhar district Odisha, India. Journal of Environmental Research Development 9(1):249–254. http://www.jerad.org/archiveabstract.php?vol=9&issue=1

63. Siegel J (1997) Ground water quantity. In: Marcus JJ (ed) Mining Environmental Handbook, Effects of Mining on the Environment and American Controls on Mining. Imperial College Press, London, pp 164–168. https://inis.iaea.org/search/searchsinglerecord.aspx?recordsFor=SingleRecord&RN=30010475

64. Soni AK, Mishra B, Singh S (2014) Pit lakes as an end use of mining: A review. Journal of Mining Environment 5(2):99–111. http://jme.shahroodut.ac.ir/issue_47_59.html

Figures
Figure 1

Location of the main coalfields and pit lakes

Figure 2

Example of using a drone to make current orthophotograms. On the left, a recent (2020) dron-derived image of a mining pit lake in the Fabero area. On the right, the same pit lake in the available orthophoto (2017) from the Spanish National Geographic Institute (IGN).
Figure 3

Examples of coal mining cuts and associated pit lakes. A) hilltop (Igüeña); B) hillside (San Justo Cabanillas); C) valley bottom (Cabrillanes)
Figure 4

Distribution of the qualitative characteristics (shape, type of cut, age and connectivity) of the pit lakes in the four coal mining zones where the open-pit mines are located.
Figure 5
Cumulative frequency histogram of the morphometric and pH parameters of the pit lakes according to their distribution by mining zone.
Figure 6

Correlation matrix of the variables used in the PCA.

Figure 7

Variables factor map (PCA). Grey labelled variables are quantitative supplementary variables (age, shape, connectivity and location).
Figure 8

Representation of individuals (pit lakes) in the first factorial plane differentiated by their A) Pit shape and B) Age. (Individuals factor map (PCA): A) Pit shape, and B) Age

Figure 9
Example of a very old pit lake (Villablino-14) with abundant natural vegetation to the left. To the right is a very recent pit lake (Toreno-12, 2018) with no vegetation, very unstable rocky escarpments and abundant tailings.