Deep-water agglutinated foraminifera from the Lower Cretaceous (Neocomian) ‘Complex à Aptychus’ Formation (Corridor de Boyar, Betic Cordillera, southern Spain)

WOLFGANG KUHNT
Geologisch-Paläontologisches Institut und Museum der Universität, Olshausenstr. 40, D-24118 Kiel, Germany.

ABSTRACT - The oldest deep-water sediments of the flysch units in the western part of the Betic Cordillera (southern Spain) are red and green pelagic claystones with intercalated siliceous and carbonate turbidities, ranging from Berriasian to Barremian in age. Autochthonous and redeposited benthic foraminiferal assemblages were studied in outcrops of this ‘Complex à Aptychus’ Formation in the ‘Corridor de Boyar’ near Grazalema. The assemblage of the autochthonous red and green claystones is wholly comprised of agglutinated forms, reflecting deposition beneath the calcium carbonate compensation depth (CCD). Compared to coeval abyssal and deep bathyal assemblages from the NW Australian Margin (Eastern Tethys), the Polish Outer Carpathians and the North Atlantic, the assemblage from the Betic Flysch Zone is more related to its Tethyan equivalents and may represent a truly abyssal Early Cretaceous sub-CCD environment. J. Micropalaeontol. 14(1): 37–52, April 1995.

INTRODUCTION
Lower Cretaceous litho- and biofacies which are typical of a sub-calcium carbonate compensation depth (CCD) environment are poorly represented in the North Atlantic and western Mediterranean orogenic belt due to a relatively deep CCD in the Western Tethys at the time (deeper than 4 km according to Tucholke & Vogt, 1979). Typical Lower Cretaceous sedimentary formations in this area are the Blake Bahama Formation (Jansa et al., 1979) in the North Atlantic and the rather similar Majolica Formation in the Western Mediterranean area, both ranging from late Tithonian to Barremian in age. Pelagic limestone deposition prevailed throughout this time interval. Oxygenated seafloor-conditions persisted throughout the Berriasian, but beginning in the Valanginian there is evidence for increasingly common episodes of poorly oxygenated bottom water (Tucholke & Vogt, 1979). Owing to the dominance of pelagic limestones in deep-water sequences and the often poorly oxygenated conditions in intercalated shaly intervals occurrences of rich benthic deep-water foraminiferal assemblages from this time interval are exceptional curiosities. Lower Cretaceous abyssal and deep bathyal foraminiferal assemblages have so far been described from the Argo Abyssal Plain off the NW Australian Margin in the Eastern Tethys (Kuznetsova, 1974; Bartenstein, 1974; Riegraf & Luterbacher, 1989; Kaminski et al., 1992), the Cieszyń Limestone Formation in the Polish Outer Carpathians (Geroch & Olszewska, 1990), and the Blake–Bahama Formation of the North Atlantic (Luterbacher, 1972; Maync, 1973; Kuznetsova & Seibold, 1977; Gradstein, 1978; Sigal, 1979; Sliter, 1980; Riegraf & Luterbacher, 1989).

During a re-examination of the oldest deep water sediments of the flysch units in the western termination of the Betic Chain and the Campo de Gibraltar, the so-called ‘Complex à aptychus’ Formation (Didon et al., 1973), the so far oldest well-preserved and diverse abyssal agglutinated foraminiferal assemblage of the Western Mediterranean was found in the Corridor de Boyar Unit near Grazalema. Eleven large bulk samples of 1–2 kg weight were removed from various lithologies in the ‘Complex à aptychus’ formation in the Corridor de Boyar (western part of the Betic Cordillera, Andalusia). Six of these samples, which were removed from greysish marlstones and greenish claystones were completely barren or contained only non identifiable fine-grained carbonate detritus, indicating that these sediments represent fine-grained parts of turbidites. Four samples from coarse grained laminated and graded turbidity sequences are mainly made up by fragments of aptychi and contain rich redeposited assemblages of benthic foraminifera. This study mainly focuses on autochthonous abyssal agglutinated foraminifera from two large bulk samples of the multicolored claystone in the lower part of the ‘Complex à aptychus’ formation. The bulk samples have been split in several subsamples, completely desintegrated in diluted buffered hydrogen peroxide and anionic tensides and washed over a 63 μm sieve. Four replicate samples were completely picked for foraminifera. The assemblages of 400–800 specimens were mounted in Plummer-slides, determined and counted.

The two main objectives of this taxonomic and palaeoenvironmental analysis of the autochthonous agglutinated foraminifera of the ‘Complex à aptychus’ Formation in the Corridor de Boyar are:

(1) using benthic foraminiferal assemblages as a tool for the reconstruction of the Early Cretaceous palaeoenvironment and palaeobathymetric evolution of the Alboran Margin;

(2) achieving a better understanding of the palaeogeographic position of the Corridor de Boyar deep-water basin by comparison of its benthic foraminiferal assemblages with coeval abyssal and deep bathyal assemblages from Argo Abyssal Plain (NW Australian Margin, Eastern Tethys), the Cieszyń Limestone Formation in the Polish Outer

41
Carpathians, and the Blake–Bahama Formation of the North Atlantic, and thereby evaluating the potential of Lower Cretaceous deep water agglutinated foraminiferal (DWAF) assemblages for studies of Tethyan palaeobiogeography and palaeoceanography.

SAMPLE LOCALITY
Objective of this study is to examine the age and palaeoenvironment of the stratigraphically oldest formation within the ‘Corridor de Boyar’ Unit near Grazalema. This unit is situated in the western part of the Betic Cordillera, where autochthonous pelagic sediments of the ‘Betic Seaway’ (Subbetic Zone, Fig. 1) interfinger with the flysch units of the Campo de Gibraltar (Fig. 1). Occurrences of this Berriasian-Barremian ‘Complex à aphtyctus’ formation are scarce in this area and generally covered by vegetation. However, outcrops in the surroundings of a small mountain pass, about 1 km NNW of the village of Grazalema (40°71.800 N, 28°8.300 E, sheet 14-44 Ubrique of the Mapa Militar de España 1:50 000) allow not only sampling of the turbiditic beds but also the intercalated hemipelagic and pelagic multicolored claystones (position of the locality is indicated as ‘Boyar’ on Figs 1 and 2).

GEOLOGICAL SETTING
The structural and palaeogeographical setting of the ‘Corridor de Boyar’ near the village of Grazalema has been a point of vigorous discussion since the classic works of Blumenthal (1927, 1935a, 1935b, 1936) and Fallot (1930, 1948). At the Puerto de Boyar, west of Grazalema a Lower Cretaceous flysch type sedimentary sequence is tectonically sandwiched between a Penibetic carbonate platform sequence to the south and an Upper Jurassic carbonate platform sequence to the North (Sierra del Pinar). The origin and palaeogeographical position of this northern unit has been interpreted in very different ways. Hoeppener et al. (1964a, b) preferred a reconstruction where the present arrangement of units corresponds to their former palaeogeographical position. Hoppe (1968) regarded the Sierra del Pinar as part of a large overthrust mass, the root of which may have been south of the Penibetic, but regarded the flysch-type sediments of the Corridor de Boyar as...
Deep-water agglutinated foraminifera

autochthonous. More recent reconstructions (Dubois, 1971; Bourgeois, 1978) suggested also for the Corridor de Boyar sequences a palaeogeographical origin south of the Penibetic and considered the Sierra de Pinar units as part of the stratigraphic basement of the Corridor de Boyar sequence. Thurow (1987) suggested a close palaeogeographical relationship between the Median Subbetic units and the Corridor de Boyar sequences from similarities in the composition of their clastic components. Consequently the palaeogeographical position of these units is regarded as north of the Penibetic zone. In all these reconstructions surprisingly little attention has been paid to the possible influence of lateral movements on the present-day palaeogeographical position of these units. Consequently the relationship between the Median Subbetic units and the Sierra de Pinar units is now widely regarded as part of the late Jurassic-Cretaceous continental margin of the Alboran block along its northern margin (the North Betic Fault). Important lateral displacements may also have affected the more northerly palaeogeographical zones and it is quite possible, that the present day N-S transect across the Corridor de Boyar includes units that were originally situated several hundred kilometres to the east.

The theory of Bourgeois (1978), that the sedimentation within the Corridor de Boyar is the stratigraphic continuation of the Sierra del Pinar sequence is now widely accepted (Durand Delga, 1980; Thurow, 1987). The Sierra del Pinar is formed by a thick Liassic carbonate platform, which was drowned during the late Dogger and early Malm (Bathonian?-Kimmeridgian), approximately coeval with the formation of the Mauretanian basin, the Betic seaway and the deep central North Atlantic. Durand Delga (1980) compared the palaeogeographical position of the Corridor de Boyar series with the Djebel Moussa in Northern Morocco, which can be regarded as a deep part of the Alboran Margin (Predorsalien Unit in the sense of Olivier, 1984). Its strange present day position north of the Penibetic Unit can be explained by a northward transport of the unit by large-scale overthrusting or within gigantic olistostromes (Bourgeois, 1978) or, more likely, by dextral strike-slip and/or rotational movements parallel to the major dextral strike-slip zone which separates the internal and external Betic Zones (Durand Delga, 1980). In both cases, the Sierra del Pinar–Corridor de Boyar sedimentary sequence can be regarded as part of the late Jurassic–Cretaceous continental margin of the Alboran macrocontinent (Fig. 2).

THE ‘COMPLEX À APTYCHUS’ NORTH OF GRAZALEMA

The sedimentary succession within the Corridor de Boyar Unit was initially described by Bourgeois (1978). A recent re-examination of the sequence (Thurow, 1987) added more detailed sedimentologic descriptions and a precision of the biostratigraphy using radiolarian assemblages but did not substantially change the initial stratigraphic subdivisions (Fig. 3). This study concentrates on the stratigraphically deepest units (subunits A1–A3 according to Bourgeois, 1978), which can be observed NNW of Grazalema in a tectonically disturbed but generally continuous succession from W–E. The oldest subunit (A1) is the only sequence where autochthonous deep-water foraminiferal assemblages have been obtained. A typical sedimentary sequence within this subunit comprises fine-grained carbonate turbidites with a maximum thickness of 20–30 cm, and hemipelagic and pelagic claystones with a thickness of a few tens of centimetres (Fig. 3). The whole sequence is intensely tectonically folded, and synsedimentary folding can also not be excluded. The overlying unit (A2) contains siliciclastic turbidites of up to 50 cm in thickness and intercalated calcareous–marly sediments (‘prefylschi’ of the French authors). Micropalaeontologic samples from the marly hemipelagic layers in this unit were barren, but samples from the bases of turbidites yielded rich redeposited assemblages of typical Tethyan outer shelf and slope benthic foraminifers of Berriasian to Barremian age. The following age-diagnostic species have been identified: Lenticulina eichenbergi Bartenstein & Brand, 1951; Dorothia praehauteriviana Dieni & Massari, 1966.

Occasionally redeposited macro-invertebrates have been found, which allow a tentative dating of this subunit as Berriasian to Valanginian. Characteristic forms are (Bourgeois, 1978 and sample E30/20): Lamellaptychus gr. beyrichi (Oppel); Lamellaptychus cf. aplanatus (Gill); Lamellaptychus gr. seranonis (Coquand); Lamellaptychus cf. mortilleti (Pietet & Loriol); Lamellaptychus submortilleti Trauth; Punctaptychus ex gr. punctatus (Voltz).

FAUNAL CHARACTERISTICS AND PALAEOENVIRONMENT

Autochthonous benthic foraminiferal assemblages are exclusively made up of agglutinated foraminifera with organic, diagenetically silicified cement. Calcareous benthic foraminifera and agglutinated foraminifera with carbonate cement occur only in redeposited assemblages.

A striking characteristic of the Early Cretaceous abyssal agglutinated foraminiferal assemblage is a small test size. Tests with a maximum length of more than 200 μm make up less than 1% of the total assemblage and forms larger than about 400 μm are virtually absent. This unusual size distribution can be either explained by slow growth rates due to limited resources, or by high reproduction rates which may have been triggered by short seasonal spikes in phytodetritus supply, as it can be observed in Recent oligotrophic deep-sea areas.

Tubular morphotypes with epifaunal habitat (e.g. Rhizammina indivisa) are generally rare. However, the fossilization potential of these forms is low and is probably dependent on sedimentation rates. Since sedimentation rates in the early Cretaceous of the Corridor de Boyar were undoubtedly low, a lack of epifaunal soft-walled agglutinated foraminifera such as rhizamminids is not surprising.

Significant differences are observed between assemblages from red claystones (referred here as type A assemblages), indicating oxic bottom water conditions and from green claystones (type B assemblages, mildly dysoxic bottom waters, see Fig. 3). Infaunal morphotypes such as
Verneuilinoides, Pseudoholivina, Pseudoreophax and Bulbобаcurices dominate in the red claystones (Table 1, Fig. 4). These four genera make up about 60% of the assemblage. Ammodiscids are mainly represented by the species Glomospira gordialis and Glomospira charoides, which occur as infauna in Recent deep sea sediments (Gooday, 1990; Kuhnt, Collins & Scott, unpublished observations). Planispiral ammodiscids also occur, but there is an unusual dominance of the genus Glomospirella, whereas true Ammodiscus have only been observed in single specimens. All these aspects of the ‘red’ assemblages point to a deep-water environment, which is largely sheltered from terrigenous detritic flux, oxic (cool?) bottom water masses, generally low surface productivity, and possibly a pronounced seasonality in phytodetritus supply from primary production.

Assemblages from green claystones differ from the ‘red’ assemblages mainly in the distribution pattern of the genera Pseudoreophax, Bulbобаcurices, Haplogrhagmoides, Glomospirella and Glomospira (Fig. 4). Pseudoreophax and Bulbобаcurices are almost absent in the ‘green’ assemblage. Both these forms can be regarded as infaunal morphotypes which may be sensitive to a Redox-line close to the sediment surface. A similar occurrence restricted to red, oxic claystones has been observed for the Cenomanian–Turonian species Bulbобаcurices problematicus in the Carpathians and the North Atlantic (Kuhnt & Kaminski, 1990). The genera Haplogrhagmoides, Glomospira and Glomospirella are significantly more abundant in ‘green’ assemblages (Fig. 4). These forms are characteristic representatives of Biofacies B assemblages (Kuhnt et al., 1989), which characterize environments under mildly oxygen-deficient conditions at the sea-floor and probably increased surface water productivity. Their life habitat has been interpreted as epifaunal detritus-feeders which can take advantage of enhanced food supply from phytodetritus and are less sensitive to oxygen deficiency.

PALAEOBIOGEOGRAPHICAL ASPECTS

The new observations on earliest Cretaceous deep-water agglutinated foraminifera in the Corridor de Boyar of the Betic Cordillera confirm the cosmopolitan distribution of these forms. Most of the 18 genera and 26 species observed in the Berriasian–Valanginian of the ‘Complex à aptychus’
Table 1. Species distribution of autochthonous deep-water agglutinated foraminifers in the ‘Complex à aptychus’ unit.

Sample	E30/10-1 %	E30/10-2 %	E30/10-3 %	E30/10 average %	E30/10 %	E30/11 %
Ammodiscus spp.	1 0,25	3 0,70	1 0,12	5 0,30	8 1,27	
Bulbobaculites sp. A	2 0,49	48 11,19	69 8,31	119 7,15	3 0,47	
Glomospira charoides	9 2,22	6 1,40	11 1,33	26 1,56	39 6,17	
Glomospira gordialis	24 5,91	57 13,29	32 3,86	113 6,79	31 4,91	
Glomospirella gaultina	3 0,74	0,00	0,00	3 0,18	2 0,32	
Haplophragmoides cf. concavus	4 0,99	0,00	5 0,60	9 0,54	0,00	
Haplophragmoides spp.	35 8,62	16 3,73	40 4,82	91 5,47	132 20,89	
Hippocrepina depressa	0,00	0,00	4 0,48	4 0,24	0,00	
Hyperammina spp.	1 0,25	0,00	2 0,24	3 0,18	0,00	
Thalmannammina cf. neocomiensis	0,00	3 0,70	3 0,36	6 0,36	7 1,11	
Pseudobolivina sp. A	6 1,48	0,00	7 0,84	13 0,78	0,00	
Pseudobolivina cf. munda	3 0,74	8 1,86	1 0,12	12 0,72	0,00	
Pseudobolivina spp.	49 12,07	72 16,78	100 12,05	221 13,27	47 7,44	
Pseudoreophax cisnovicensis (juvenile)	18 4,43	18 4,20	32 3,86	68 4,08	0,00	
Pseudoreophax cisnovicensis	66 16,26	34 7,93	73 8,80	173 10,39	0,00	
Pseudoreophax cisnovicensis (elongate)	3 0,74	4 0,93	0,00	7 0,42	0,00	
Reophax sp.	0,00	0,00	0,00	0 0,00	1 0,16	
Rhizammina indivisa and Rhabdammina cylindrica	14 3,45	7 1,63	50 6,02	71 4,26	19 3,01	
Saccammina grzybowskii	1 0,25	0,00	1 0,12	2 0,12	0,00	
Trochammina sp. A	5 1,23	7 1,63	31 3,73	43 2,58	0,00	
Trochammina quinqueloba	0,00	1 0,23	4 0,48	5 0,30	1 0,16	
Uvigerinammina sp. 1	12 2,96	9 2,10	14 1,69	35 2,10	0,00	
Verneuilinoides neocomiensis and Gaudryina oblonga	103 25,37	94 21,91	232 27,95	429 25,77	183 28,96	
indet. aggl.	12 2,96	15 3,50	80 9,64	107 6,43	61 9,65	
total	406	429	830	1665	632	
unit seem to occur within the entire Tethys ocean. Occurrences of similar assemblages are known from the West Australian Margin (Indian Ocean = Eastern Tethys), the Polish Carpathians and the Central North Atlantic (= western termination of the Tethys ocean). However, this type of 'Tethyan' abyssal and deep-bathyal assemblages is not known from high latitude areas. It may be speculated that most of the forms observed in these assemblages have their ecological niche in deep-sea environments with restricted resources, and are unable to compete with other forms in more favourable environments.

CONCLUSIONS

The Cretaceous turbiditic sequences of the Corridor de Boyar unit were deposited in a deep continental margin setting close to the western termination of the Alboran Block. Sediments and autochthonous benthic foraminiferal assemblages within the Corridor de Boyar basin represent a truly abyssal sub-CCD environment as early as in Berriasian–Valanginian times. The foraminiferal assemblage is composed of cosmopolitan forms, fairly diverse (26 species) and not dominated by single species. Red sediment colour and the presence of numerous infaunal benthic foraminiferal morphotypes indicate well-oxygenated bottom-water conditions within the basin. From these observations can be concluded that during Berriasian–Valanginian times the Corridor de Boyar flysch basin was connected to the belt of Lower Cretaceous flysch basins within the western Tethys (Durand Delga, 1980) and had deep-water connections to the Tethys ocean and the central North Atlantic abyssal basin. The main subsidence phase of this part of the western Alboran margin was already terminated in the Berriasian–Valanginian and probably took place within a short time interval in the latest Jurassic. This Late Jurassic subsidence phase coincides with the first formation of oceanic crust on the Tagus Abyssal Plain (Mauffret et al., 1989). Transform directions associated with this old spreading ridge are WSW–ENE (Malod, 1989) and thus in agreement with the general trend of the northern margin of the Alboran block at this time (compare Fig. 2). Kinematic reconstructions of the Iberian plate (Malod, 1989) predict a significant extension between Africa and Iberia during the Late Jurassic rifting. It may be speculated that the abyssal Corridor de Boyar basin was formed along a transform-margin of the Alboran block during a Late Jurassic extensional phase, which affected not only the
Deep-water agglutinated foraminifera
Tagus abyssal plain but also the southern Iberian margin and Alboran block.

TAXONOMIC NOTES (excluding redeposited species) Specimens figured are deposited in the micropalaeontology collection of the Geologisch-Paläontologisches Institut und Museum der Christian-Albrechts Universität zu Kiel.

Ammodiscus cretaceus Reuss, 1845
1845 *Oncoplius cretaceus* Reuss: 35, pl. 13, figs 64, 65 a–b. 1972 *Ammodiscus cretaceus* (Reuss); Hanzlikova: 34, pl. 3, fig. 9. 1974 *Ammodiscus incertus* (d’Orbigny); Bartenstein: 687, pl. 3, figs 14–17. 1978 *Ammodiscus cretaceus* (Reuss); Krasheninnikov & Pflaumann: 569, pl. 2, fig. 7. 1992 *Ammodiscus cretaceus* (Reuss); Kaminski, Gradstein & Geroch: 252, pl. 2, fig. 2.

Remarks. With relatively broad whorls in a regular planispiral coil. Whorls moderately overlap the previous one. Surface smooth, the wall is siliceous, homogenous or with very fine grains.

Ammodiscus tenuissimus (Guembel, 1862)
(Pl. 1, figs 6–7)
1862 *Spirillina tenuissima* Guembel: 214, pl. 13, fig. 2. 1967 *Ammodiscus tenuissimus* (Guembel); Michael: 22, pl. 1, fig. 13. 1969 *Ammodiscus tenuissimus* (Guembel); Grün: 312, pl. 1, fig. 13 (with synonymy). 1972 *Ammodiscus tenuissimus* (Guembel); Neagu: 191, pl. 1, figs 19–20. 1974 *Ammodiscus tenuissimus* (Guembel); Bartenstein: 687, pl. 3, figs 7–13. 1990 *Ammodiscus tenuissimus* (Guembel); Geroch & Olszewska: 529, pl. 2, figs 6–8. 1992 *Ammodiscus tenuissimus* (Guembel); Kaminski, Gradstein & Geroch: 252, pl. 2, fig. 3.

Bulboraculites sp. A
(Pl. 3, figs 7–11)
1992 *Bulboraculites inconstans* (Bartenstein & Brand); Kaminski, Gradstein & Geroch: 252–253, pl. 4, figs 9–10.

Remarks. Small stout forms with 1–3 chambers in the uniserial stage. Aperture terminal on a protruding neck. This form differs from the various subspecies of *Haplophragmoides inconstans* Bartenstein & Brand in its significantly smaller size, its shorter uniserial part and less elongated chambers in its uniserial part. These morphologic differences may be simply explained by environmental adaption to oligotrophic deep-sea conditions. However, since intermediate forms are not known so far, I prefer to keep the deep-sea forms in open nomenclature.

Gaudryina oblonga Zaspelova, 1948
(Pl. 4, figs 17–18)
1948 *Gaudryina oblonga* Zaspelova: 200, pl. 1, fig. 7. 1981 *Gaudryina oblonga* Zaspelova; Morgiel & Olszewska: 18, pl. 5, figs 2–3. 1984 *Gaudryina oblonga* Zaspelova; Geroch & Nowak, pl. 2, figs 6–7; pl. 7, figs 16–17.

Remarks. Ranges in the Polish External Carpathians from the Hauterivian to the Albian.

Glomospira charoides (Jones & Parker, 1860)
(Pl. 1, figs 8–9)
1860 *Trophammina squamata* Jones & Parker, var. *charoides* Jones & Parker: 304. 1928 *Glomospira charoides* (Jones & Parker) var. *corona* Cushman & Jarvis: 89, pl. 12, figs. 9–11.

Remarks. This species has recently been assigned to the genus *Usbekistanina* Suleymanov (Charnock & Jones, 1990). For the sake of consistency *G. charoides* is kept here in *Glomospira*.

Glomospira gordialis (Jones & Parker, 1860)
(Pl. 1, fig. 10)
1860 *Trophammina squamata* Jones & Parker var. *gordialis* Jones & Parker: 304.

Remarks. Irregularly coiled tubes, last whorl in general lying in one plane, diameter of the tube is low, characteristic is the smooth, very finely agglutinated wall.

Glomospira irregularis (Grzybowski, 1897)
(Pl. 1, figs 12–13)
1898 *Ammodiscus irregularis* Grzybowski: 285, pl. 11, figs 2–3. 1966 *Glomospira irregularis* (Grzybowski); Geroch, pl. 8, figs 11–12.

Glomospirella gaultina (Berthelin, 1880)
(Pl. 1, fig. 11)
1880 *Ammodiscus gaultinus* Berthelin: 19, pl.1, fig. 3a–b. 1978 *Glomospirella gaultina* (Berthelin); Krasheninnikov & Pflaumann: 568, pl. 2, fig. 5.

Remarks. Differs from *G. gordialis* in possessing at least two planispiral coils.

Haplophragmoides cf. concavus (Chapman, 1892)
(Pl. 2, figs 15–16)
1892 cf. *Trophammina concava* Chapman: 327, pl. 6, fig. 14a–b. 1960 *Haplophragmoides cf. concava* (Chapman); Geroch: 127, pl. 5, fig. 2. 1988 *Haplophragmoides cf. concavus* (Chapman); Moullade et al.: 364, pl. 8, figs. 8–9.

Explanation of Plate 2

Figs 1–9. *Pseudoreophax cisouinicensis* Geroch 1961, sample E30/10, 1–3: ×240, 4–5: ×170, 6–7: ×200. **Figs 10–11.** *Haplophragmoides sp. A*, sample E30/10, ×170. **Figs 12–13.** *Haplophragmoides sp. B*, sample E30/10, ×170. **Fig. 14.** *Trophammina sp. A*, sample E30/10, ×200. **Figs 15–16.** *Haplophragmoides cf. concavus* (Chapman 1892), sample E30/11, ×240.
1990 Haplophragmoides cf. concaucus (Chapman); Kuhnt: 312, pl. 4, fig. 13.

Remarks. Differs from typical H. concaucus in its smaller size and in its sometimes roughly finished wall surface.

Haplophragmoides sp. A

(Pl. 2, figs 10–11)

Remark. Test small, smooth, with four to five chambers in the last whorl and a rounded periphery.

Haplophragmoides sp. B

(Pl. 2, figs 12–13)

1992 Haplophragmoides kirki Wickenden; Kaminski, Gradstein & Geroch: 253, pl. 4, figs 1a–b, 2.

Remarks. This form resembles Haplophragmoides kirki Wickenden, a shallow-water form from the Upper Cretaceous of Alberta, in its planispiral test with four or five globular chambers in the last whorl. Haplophragmoides sp. B is kept separate here because of its significantly smaller size, and its different stratigraphic and environmental distribution.

Hippocrepina depressa Vasicek, 1947

(Pl. 1, fig. 5)

1947 Hippocrepina depressa Vasicek: 243, pl. 1, figs 1–2.
1979 Hippocrepina depressa Vasicek; Sigal, pl. 1, fig. 5.
1980 Hippocrepina depressa Vasicek; Sliter, pl. 1, figs 2–3.
1981 Hippocrepina depressa Vasicek; Morgiel & Olszewksa: 7, pl. 1, figs 1, 2.
1982 Hippocrepina depressa Vasicek; Morgiel & Olszewksa, pl. 1, figs 1, 2.
1984 Hippocrepina depressa Vasicek; Geroch & Nowak: 228, pl. 1, fig. 7, pl. 5, fig. 4–5.
1986 Hippocrepina depressa Vasicek; Bartenstein & Bolli: 947-948, pl. 1, figs 9–10.
1989 Jaculella depressa (Vasicek); Riegraf & Luterbacher: 1085–1986, pl. 1, figs 4–6.

Remarks. H. depressa is a very characteristic species of the Lower- to Mid-Cretaceous ‘flysch’ and pelitic series of the Polish Carpathians and the Gibraltar Arch area. Specimens of Leg 50 DSDP in the eastern North Atlantic belong to a deep-sea foraminiferal assemblage of Berriasian(?)-Valanginian age with water depths of 2000 m and more (Sliter, 1980). It is not yet clear, whether this species can be included in the living Hippocrepina or is more related to the Paleozoic genus Hyperamminoides Cushman & Waters, 1928, which belongs to the Palaeozoic to Lower Cretaceous family Hyperamminoididae Loeblich & Tappan, 1984. The type species of Hyperamminoides (Hyperamminoides elegans Cushman & Waters, 1928 from the Upper Carboniferous of Texas) closely resembles H. depressa in having a very fine-grained arenaceous wall with polished surface that probably was somewhat flexible in life, as fossil specimens are generally compressed, whereas other foraminifers in the same assemblages are not compressed (Loeblich & Tappan, 1988).

Stratigraphic range: according to Geroch & Nowak (1984) this species ranges from Upper Hauterivian (D. hauteriviana Zone) to Upper Cenomanian (B. problematicus Zone). In the Gibraltar Arch area H. depressa is observed in Hauterivian to Cenomanian deep water sequences. Also recovered in DSDP-cores from the North Atlantic (e.g. Sigal (1979), Site 398 from the Hauterivian; Sliter (1980), Site 416 from the Valanginian). Characterizing deep-water assemblages.

Hyperammina gaultina Ten Dam, 1950

1950 Hyperammina gaultina Ten Dam: 5, pl. 1, fig. 2.
1974 Hyperammina gaultina Ten Dam: Bartenstein: 685, pl. 1, figs 5–30, 35, 36; pl. 2, figs 1–4 (with synonymy).
1990 Hyperammina gaultina Ten Dam: Geroch & Olszewksa: 529, pl. 1, figs 1–18, 25–27; pl. 4, figs 1–15 (with synonymy).

Hyperammina cf. dilatata Grzybowski, 1896

(Pl. 1, fig. 4)

1896 cf. Hyperammina dilatata Rzehak; Grzybowski: 274–275, pl. 8, fig. 17.
1988 cf. Hyperammina dilatata Grzybowski; Kaminski et al.: 184, pl. 2, figs 1–2.

Remarks. Differs from typical Hyperammina dilatata in possessing a more coarsely agglutinated wall with a rough surface.

Pseudobolivina cf. munda Krasheninnikov, 1973

(Pl. 4, figs 4–6)

1973 cf. Pseudobolivina munda Krasheninnikov: 210, pl. 2, figs 10–11.

Remarks. Differs from the typical Late Cretaceous P. munda in possessing a slightly twisted initial portion. Differs from P. variabilis Vasicek 1947 in possessing an apertural neck. Morphologically similar forms of the genus Plectinella do not possess a terminal aperture produced on a short neck.

Pseudobolivina sp. A

(Pl. 4, figs 9–11)

Remarks. After an initial regular biserial stage with a tendency to becoming uniserial with the last 3 chambers. Differs from Pseudobolivina variabilis Vasicek 1947 in its tendency to a uniserial final stage and in a twisted chamber arrangement.

Pseudoreophax cisounicensis Geroch, 1961

(Pl. 2, figs 1–9; Pl. 3, fig. 12)

1961 Pseudoreophax cisounicensis Geroch, p. 159, pl. 17, figs 1–5.
Deep-water agglutinated foraminifera
1966 Pseudoreophax cisovnicensis Geroch; Geroch, pl. 11, fig. 5a–c.
1980 Ammobaculites irregularis (Guembel); Sliter, pl. 2, fig. 14.
1983 Bigenerina jurassica (Haeusler); Gradstein, pl. 1, fig. 1.
1984 Pseudoreophax cisovnicensis Geroch & Nowak, pl. 3, figs 14–18, pl. 7, figs 26–29.
1989 Pseudoreophax cisovnicensis Geroch; Riegraf & Luterbacher: 1093, pl. 2, fig. 22.
1990 Pseudoreophax cisovnicensis Geroch; Geroch & Olszewska: 531, pl. 3, figs 1–11, 17; pl. 4, figs 16–18, 23, 24, 28, 29, 33, 34.
1992 Pseudoreophax cisovnicensis Geroch; Kaminski, Gradstein & Geroch: 255, pl. 7, figs 5–6.
Remarks. Occurrences: Tithonian to Barremian of the Polish Carpathians (Geroch & Nowak, 1984).

Rhabdammina cylindrica Glæssner, 1937
1937 Rhabdammina cylindrica Glæssner: 354, pl. 1, fig. 1.
1990 Rhabdammina cylindrica Glæssner; Kaminski et al.: 364, pl. 1, figs 4a–b.
1992 Rhabdammina cylindrica Glæssner; Morlotti & Kuhnt: 223, pl. 2, fig. 1.
Remarks. Straight tubular fragments with a circular cross-section. The available material does not allow the identification of a central chamber. It can not be excluded, however, that these fragments may be radiating tubular arms of Rhabdammina abyssorum Carpenter, 1869.

Rhzammina cf. indivisa Brady, 1884
1884 Rhizammina indivisa Brady: 277, pl. 29, figs 5–7.
1981 Rhizammina indivisa Brady; Gradstein & Berggren: 240, pl. 1, figs 1–3.
Remarks. The assignment to the flexible, loosely agglutinated Recent species R. indivisa is doubtful (Charnock & Jones, 1990). However, the species differ from Nothia excelsa (Grzybowski) in its smaller size, a thin wall composed of small quartz grains with much cement, and a generally strongly compressed outline, indicating that the individuals originally may have been flexible.

Saccammina grzybowskii (Schubert, 1902)
(Pl. 1, fig. 14)
1898 Reophax diffugiformis Brady; Grzybowski: 255, pl. 10, figs 11–12.
1902 Reophax grzybowskii Schubert: 20, pl. 1, fig. 13.
1912 Pelosina complanata Franke: 107, pl. 3, fig. 1a–b.
1928 Pelosina complanata Franke: 10, pl. 1, fig. 6a–b.
1946 Pelosina complanata Franke; Cushman & Renz: 13, pl. 1, fig. 8.
1984 Saccammina grzybowskii (Schubert); Hemleben & Tröster: 522, pl. 1, fig. 14.
1988 Saccammina complanata (Franke); Kaminski et al.: 183, pl. 2, fig. 8.
1989 Pelosina complanata Franke; Riegraf & Luterbacher: 1085, pl. 1, fig. 1.
1990 Saccammina grzybowskii (Schubert); Kuhnt: 325, pl. 2, fig. 3.
Remarks. Pelosina complanata Franke 1928 is regarded as a junior synonym of Saccammina grzybowskii.

Thalmannammina cf. neocomiensis Geroch, 1962
(Pl. 3, figs 4–6)
1962 cf. Thalmannammina neocomiensis Geroch: 288, pl. 1, fig. 3(5–8).
1981 cf. Thalmannammina neocomiensis Geroch; Morgiel & Olszewska: 12, pl. 3, figs 12–13.
1984 cf. Thalmannammina neocomiensis Geroch & Nowak, pl. 3, fig. 19, pl. 6, figs 3, 4.
Remarks. The coarse agglutination of the specimens in the Complex à Aptychus fauna does not allow a certain assignment to this species. However, the ‘thalmannammine’ U-shaped type of coiling can be recognized in some specimens. Thalmannammina neocomiensis ranges in the Polish External Carpathians from the Berriasian-/Valanginian to Cenomanian (Morgiel & Olszewska, 1981; Geroch & Nowak 1984).

Trochammina quinqueloba Geroch, 1959
(Pl. 3, figs 1–3)
1959 Trochammina quinqueloba Geroch: 118, pl. 12, figs 1–3.
1962 Trochammina quinqueloba Geroch; Neagu: 63, pl. 2, figs 34–36.
1974 Trochammina quinqueloba Geroch; Kuznetsova, pl. 1, fig. 5.
1980 Trochammina quinqueloba Geroch; Sliter, pl. 3, figs 16–19.
1983 Trochammina quinqueloba Geroch; Gradstein, pl. 1, figs 10–11.
1989 Trochammina quinqueloba Geroch; Riegraf & Luterbacher: 1092–1093, pl. 2, figs 6–9.
1990 Trochammina quinqueloba Geroch; Geroch & Olszewska: 531, pl. 3, figs 19–21, 23–25; pl. 4, figs 25–27, 30–32.
1992 Trochammina quinqueloba Geroch; Kaminski, Gradstein & Geroch: 256, pl. 6, figs 3, 4a–b.

Trochammina sp.A
(Pl. 2, fig. 14)
Remarks. Test small, low trochospiral, with up to six globular chambers in the last whorl.

Explanation of Plate 4
Figs 1–3. Trochamminoides cf. variolarius (Grzybowski 1898), sample E30/10, ×170. Figs 4–6. Pseudobolivina cf. munda Krasheninnikov 1973, sample E30/10, 4: ×170, 5–6: ×240. Figs 7–8. Dorothia praehaptaeriwana Dieri & Massari 1966, sample E30/20 (redeposited assemblage), ×65. Figs 9–11. Pseudobolivina sp. A, sample E30/10, ×200. Figs 12–16. Verneullinoidea neocomiensis (Mjatliuk 1939), samples E30/10 and E30/11, ×170. Figs 17–18. Gaudryina oblonga Zaspelova, 1948, sample E30/10, 17: ×200, 18: ×125.
Deep-water agglutinated foraminifera
ACKNOWLEDGEMENTS

The study of the palaeoecology and biogeography of deep-water benthic foraminifera in various basins of the Western Mediterranean is part of the ALKAPECA-project at the University of Tübingen which is supported by the Deutsche Forschungsgemeinschaft. I am grateful to all members of the working group, especially Thomas Pletsch, Klaus Reicherter and Jost Wiedmann for their support and stimulating discussion. I also want to thank Jürgen Thurow (University of Bochum) for joint field-work in the ‘Corridor de Boyar’ and for providing additional sample material. Stanislaw Geroch (Jagiellonian University, Krakow) and Michael A. Kaminski (University College London) enabled taxonomic comparison with material from the Cieszyn Limestones in the Polish Carpathians and from the Indian Ocean. Michael A. Kaminski and Michel Moullade (University of Nice) reviewed an earlier draft of this paper and provided useful comments on the taxonomy of several species.

Manuscript received June 1993

Manuscript accepted April 1994

References

Azéma, J., Foucault, A., Fourcade, E., Garcia-Hernandez, M., González-Donoso, J. M., Linajes, A., Linares, D., López-Gárrido, A. C., Rivas, P. & Vera, J. A. 1979. Las microfases del Jurásico y Cretácico de las Zonas externas de las Cordilleras Béticas. Ser. Publ. Univ. Granada, 1–83.

Bartentien, H. 1956. Zur Mikrofauna des englischen Hauterive. Senckenbergiana Lethaea, 37: 509–533.

Bartentien, H. 1974. Upper Jurassic–Lower Cretaceous primitive arenaceous foraminifera from DSDP Sites 259 and 261, Eastern Indian Ocean. In Vevers, J. J., Heirtzler, J. R. et al., Initial Reports of the Deep Sea Drilling Project, 27: Washington (U.S. Govt. Printing Office), 683–695.

Bartentien, H. & Bolli, H. M. 1986. The foraminifera in the Lower Cretaceous of Trinidad, W.I. Part 5: Maridale Formation. Upper Part: Heddbergella rohri zone. Eclogae geologicae Helvetiae, 79: 945–999.

Berthelin, G. 1880. Memoire sur les foraminifero fossile de l’etage Albien de Montelely (Doubs). Memoires de la Societe Geologique de France, serie 3, 1: 1–84.

Blumenthal, M. M. 1927. Zum Bauplan betischer und penibetischer Decken im Norden der Provinz Malaga. Geologische Rundschau, 17: 37–45.

Blumenthal, M. M. 1935a. Antibetische Faltungen im Gibraltar-bogen. Geologische Rundschau, 26: 424–429.

Blumenthal, M. M. 1935b. Allure de la tectonique et definition du ‘double pli Gaditan’ (Andalousie). Bulletin de la Societe Geologique de France, 5: 659–686.

Blumenthal, M. M. 1936. Le materiel stratigraphique du ‘double pli Gaditan’ (Andalousie). Bulletin de la Societe Geologique de France, 6: 511–537.

Bourgeois, J. 1978. La transversale de Ronda (Cordilleres bétiques, Espagne) – données géologiques pour un modèle d’évolution de l’Arc de Gibraltar. Annales scientifiques de l’Universite Franche-Comte, Besançon, 3me serie, 10: 1–445.

Brady, H. B. 1884. Report on the foraminifera dredged by HMS Challenger, during the years 1873–1876. Report of Scientific Results Exploration Voyage HMS Challenger, Zoology, 9: 1–814.

Chapman, F. 1892. The Foraminifera of the Gulf of Folkstone, Part II. Journal of the Royal Microscopical Society (1892), 318–330.

Charnock, M. A. & Jones, R. W. 1990. Agglutinated foraminifera from the Paleogene of the North Sea. In Hemleben, C., Kaminski, M. A., Kuhnt, W. & Scott, D. B. (Eds), Palaeoecology, Biotaxiography, Paleoceanography and Taxonomy of Agglutinated Foraminifera, NATO-ASI Series, Vol. C237, 139–244.

Cushman, J. A. & Jarvis, P. W. 1928. Cretaceous foraminifera from Trinidad. Contributions from the Cushman Laboratory for Foraminiferal Research, 4: 85–103.

Cushman, J. A. & Renz, H. H. 1946. The foraminiferal fauna of the Lizard Springs Formation of Trinidad, British West Indies. Cushman Laboratory for Foraminiferal Research Special Publications, 18: 1–48.

Cushman, J. A. & Waters, J. A. 1928. Hyperamminoides, a new name for Hyperamminella. Cushman & Waters, Contributions from the Cushman Laboratory for Foraminiferal Research, 4: 112.

Dercourt, J., Zonenshain L. P., Ricou, L. E., Kazmin, V. G., Le Bollier, M., Bolli, H. M. & Desprats, G. 1984. Les microfases du Jurásico y Cretácico de las Zonas externas de las Cordilleras Béticas. Ser. Publ. Univ. Granada, 1–83.

Dercourt, J., Zonenshain L. P., Ricou, L. E., Kazmin, V. G., Le Bollier, M., Bolli, H. M. & Desprats, G. 1984. Les microfases du Jurásico y Cretácico de las Zonas externas de las Cordilleras Béticas. Ser. Publ. Univ. Granada, 1–83.

Dercourt, J., Zonenshain L. P., Ricou, L. E., Kazmin, V. G., Le Bollier, M., Bolli, H. M. & Desprats, G. 1984. Les microfases du Jurásico y Cretácico de las Zonas externas de las Cordilleras Béticas. Ser. Publ. Univ. Granada, 1–83.

Dercourt, J., Zonenshain L. P., Ricou, L. E., Kazmin, V. G., Le Bollier, M., Bolli, H. M. & Desprats, G. 1984. Les microfases du Jurásico y Cretácico de las Zonas externas de las Cordilleras Béticas. Ser. Publ. Univ. Granada, 1–83.

Dercourt, J., Zonenshain L. P., Ricou, L. E., Kazmin, V. G., Le Bollier, M., Bolli, H. M. & Desprats, G. 1984. Les microfases du Jurásico y Cretácico de las Zonas externas de las Cordilleras Béticas. Ser. Publ. Univ. Granada, 1–83.

Dercourt, J., Zonenshain L. P., Ricou, L. E., Kazmin, V. G., Le Bollier, M., Bolli, H. M. & Desprats, G. 1984. Les microfases du Jurásico y Cretácico de las Zonas externas de las Cordilleras Béticas. Ser. Publ. Univ. Granada, 1–83.

Dercourt, J., Zonenshain L. P., Ricou, L. E., Kazmin, V. G., Le Bollier, M., Bolli, H. M. & Desprats, G. 1984. Les microfases du Jurásico y Cretácico de las Zonas externas de las Cordilleras Béticas. Ser. Publ. Univ. Granada, 1–83.
Deep-water agglutinated foraminifera

Didon, J. Durand-Dela, M. & Kornprobst, J. 1973. Homologies géologiques entre les deux rives du détroit de Gibraltar. Bulletin de la Société géologique de France, 18: 77–105.

Dubois, M. 1971. Etude géologique des environs d’Ubrique (Province de Cadix-Espagne). The 3ème cycle, Université de Besançon.

Durand Delga, M. 1980. Considérations sur les foraminifères de la carapace inférieur dans les chaînes alpines d’Europe. Bulletin de la Société Géologique de France, 22: 1–30.

Fallot, P. 1930. Etat de nos connaissances sur la structure des chaînes bétique et subbétique. Livre jubilatoire S. G. F., 279–305.

Fallot, P. 1948. Les Cordillères bétiques. Estudios geológicos, 4: 83–172.

Flandrin, J., Moullade, M. & Porthault, B. 1962. Micro fossiles caractéristiques du Cretace inférieur Vocontien. Revue de Micropaléontologie, 4: 211–228.

Franke, A. 1912. Die Foraminiferen des Unter-Eocäns der Ziegelei Schwarzenbeck. Jahrbuch der Preussischen Geologischen Laudesanstalt, 32: 106–111.

Franke, A. 1928. Die Foraminiferen der Oberen Kreide Nord- und Mitteldeutschlands. Jahrbuch der Preussischen Geologischen Laudesanstalt, 111: 1–207.

Geroch, S. 1959. Stratigraphische signifikance von arenaceous foraminifera in the Carpathian Flysch. Palaeontologische Zeitschrift, 33: 113–122.

Geroch, S. 1960. Microfaunale assemblages from the Cretaceous and Paleogene Silesian unit in the Beskid Säliki Mt. (Silesian Carpathians). Paläontologische Zeitschrift, 7-138.

Geroch, S. 1961. Pseudoroaphax a new genus of foraminifer from the Neocomian in the Flysch Carpathians. Annales de la Société Géologique de Pologne, 31: 159–165.

Geroch, S. 1962. Thalmanammina and Pleurocerurvoides (Foraminifera) in the Lower Cretaceous of the Flysch Carpathians. Annales de la Société Géologique de Pologne, 32: 281–300.

Geroch, S. 1966. Lower Cretaceous small foraminifera of the Silesian Series, Polish Carpathians. Annales de la Société Géologique de Pologne, 36: 431–480.

Geroch, S. & Nowak, W. 1984. Proposal of zonation for the late Tithonian–early Cenomanian based upon arenaceous foraminifer from the outer Carpathians, Poland. In Oertli, H. J. (Ed.), Benthos 83, 2nd International Symposium on Benthic Foraminifera (Pau, April 1983), 225–239.

Geroch, S. & Olszew ska, B. 1990. The oldest assemblage of agglutinated foraminifers of the Polish Carpathians. In Hemleben, C., Kaminski, M. A., Kuhnt, W. & Scott, D. B. (Eds), Paleocoecology, Biostratigraphy, Paleoenecography and Taxonomy of Agglutinated Foraminifera, NATO-ASI Series, Vol. 3, 123–159.

Glaessner, M. F. 1937. Studien über Foraminiferen aus der Kreide und dem Tertiär des Kaukasus, 1. Die Foraminiferen der ältesten Tertiärschichten des Nordwest-Kaukasus. Probleme Paläont., 2-3: 349–408.

Gooday, A. J. 1990. Recent deep-sea agglutinated foraminifera: a brief review. In Hemleben, C., Kaminski, M. A., Kuhnt, W. & Scott, D. B. (Eds), Paleocoecology, Biostratigraphy, Paleoenecography and Taxonomy of Agglutinated Foraminifera, NATO-ASI Series, Vol. 3, 259–538.

Grading, F. M. 1978. Biostratigraphy of Lower Cretaceous Blake Nose and Blake Bahama Basin foraminifera DSDP Leg 44, Western North Atlantic Ocean. Initial Reports of the Deep Sea Drilling Project, Washington (U.S. Govt. Printing Office), 48: 663–701.

Grading, F. M. 1983. Paleocoecology and stratigraphy of Jurassic abyssal foraminifera in the Blake Bahama Basin, Deep Sea Drilling Project Site 534. In Sheridan, R. E. & Grading, F. M. (Eds), Initial Reports of the Deep Sea Drilling Projects, 76: 537–559.

Grading, F. M. & Berggren, W. A. 1981. Flysch-type agglutinated foraminifera and the Maestrichtian to Paleocene history of the Labrador and North Seas. Marine Micropalaeontology, 6: 211–268.

Grön, W. 1969. Flysch microfacies of the Hagenbach-Bay (Northern Vienna Woods), Austria. Rocznik Polskiego Towarzystwa Geologicznego, 39: 305–334.

Grön, W., Lauer, G., Niedermayer, G. & Schnabel, W. 1964. Die Kreide-Tertiär-Grenze im Wienerwald (Niederösterreich). Verh. Geol. B.-A. Wien, 1964/2: 226–274.

Grzybowski, J. 1896. Otwornice pokładów naftowych okolicy Krosna. Rocznik Towarzystwa Geologicznego, 30: 261–308.

Grzybowski, J. 1898. Otwornice pokładów naftowych okolicy Krosna. Rocznik Towarzystwa Geologicznego, 30: 257–305.

Günbel, C. W. 1862. Die Strebriherr Schwammlage und ihre Foraminifereneinschläge. J. Ver. vaterl. Naturkde. Württ., 18: 192–238.

Hanzlikova, E. 1972. Carpathian Upper Cretaceous Foraminifera of Moravia (Turonian–Maestrichtian). Ustred. Ustred. Geol. Rozprav., 39: 5–159.

Hemleben, C. & Tröster, J. 1984. Campanian-Maestrichtian deep-water foraminifera from Hole 543A, Deep Sea Drilling Project. In Bij-Duval, B. & Moore, J. C. (Eds), Initial Reports of the Deep Sea Drilling Project, 78A: 509–532.

Hoppe, R., Hoppe, P., Dür, S. & Mollat, H. 1964a. Ein Querschnitt durch die Betischen Kordilleren bei Ronda (SW-Spanien). Geologische Rundschau, 43: 282–298.

Hoppe, R., Hoppe, P., Mollat, H., Muchow, S., Dür, S. & Remar, J. 1964b. Die Foraminiferen der Betischen Kordilleren und seine Beziehungen zum Gesamtorganismus. Geologische Rundschau, 53: 269–296.

Hoppe, P. 1968. Stratigraphie und Tektonik der Berge um Grazalena (SW-Spanien). Geologisches Jahrbuch, 86: 267–338.

Jansa, L. F., Enos, P., Tucholke, B. E., Gradstein, F. M. & Sheridan, R. E. 1979. Mesozoic-Cenozoic sedimentary formations of the North American basin, western North Atlantic. In Talbott, M., Hay, W. & Rye, W. B. (Eds), Deep Drilling Results in the Atlantic Ocean: Continental Margins and Paleo-Environment. American Geophysical Union, 3: 1–57.

Jones, T. R. & Parker, W. K. 1860. On the rhizopodal fauna of the Mediterranean compared with that of the Italian and some Tertiary deposits. Journal of Geological Society, London, 16: 292–307.

Kaminski, M. A., Gradstein, F. M., Berggren, W. A., Geroch, S. & Beckmann, J. P. 1988. Agglutinated foraminiferal assemblages from Trinidad: taxonomy, stratigraphy and palaeobathymetry. In Gradstein, F. M. & Rögl, F. (Eds), Second International Workshop on Agglutinated Foraminifera, Vienna 1986, Proceedings, Abh. geol. Bundesanst. (Wien), 41: 155–228.

Kaminski, M. A., Gradstein, F. M., & Geroch, S. 1992. Uppermost Jurassic to Lower Cretaceous deep-water benthic foraminiferal assemblages from Site 763 on the Argo Abyssal Plain. In Gradstein, F. M., Ludden, J. N. et al., Proc. ODP, Sci. Results, 123: 239–269.

Kaminski, M. A., Gradstein, F. M., Goll, R. M. & Greig, D. 1990. Biostratigraphy and Paleocoecology of deep-water agglutinated foraminifera at ODP Site 643, Norwegian-Greenland Sea. In Hemleben, C., Kaminski, M. A., Kuhnt, W. & Scott, D. B. (Eds), Paleocoecology, Biostratigraphy, Paleoenecography and Taxonomy of Agglutinated Foraminifera, NATO-ASI Series, Series C: Mathematical and Physical Sciences, 327: 345–86.

Kaminski, M. A., Naegu, T. & Platon, E., In press. A revision of Lower Cretaceous Falsogaudryinella from the North Sea and Romania and its relationship to the genus Uvigerinammina (Sarcodina, Foraminiferida). In Proceedings of the Fourth International Workshop on Agglutinated Foraminifera.

Kaminski, M. A., Grzybowski, V. A. 1973. Cretaceous benthonic foraminifera, Leg 20, Deep Sea Drilling Project. In Hooezcn, B. C., MacGregor, I. D., et al., Initial reports of the DSDP, 20: 205–219.

Kaminski, V. A. & Pflaumann, U. 1978. Cretaceous agglutinated foraminifera of the Atlantic Ocean off west Africa (Leg 41, Deep Sea Drilling Project). In Lancelot, Y., Seibold, E., 51.
et al., Initial Reports of the Deep Sea Drilling Project, 41: 565–580.

Kuhnt, W. 1990. Agglutinated foraminifera of Western Mediterranean Upper Cretaceous pelagic limestones (Ombrian Apen- nines, Italy, and Betic Cordillera, Spain). Micropalaeontology, 36: 297–330.

Kuhnt, W. & Kaminski, M. A. 1990. Paleoeocology of Late Cretaceous to Paleocene deep-water agglutinated foraminifera from the North Atlantic and western Tethys. In Hemleben, C., Kaminski, M. A., Kuhnt, W. & Scott, D. B. (Eds) Paleoecology, Biostratigraphy, Paleoeceanography and Taxonomy of Agglutinated Foraminifera, NATO ASI Series, Series C: Mathematical and Physical Sciences, 327: 433–505.

Kuhnt, W., Kaminski, M. A. & Moullade, M. 1989. Late Cretaceous deep-water agglutinated foraminiferal assemblages from the North Atlantic and its marginal seas. Geologische Rundschau, 78: 1121–1140.

Kuznetsova, K. I. & Seibold, I. 1977. Foraminifera from the Upper Jurassic and Lower Cretaceous of the eastern DSDP (DSDP Leg 41, Sites 367 and 370). In Lancelot, Y., Seibold, E. et al., Initial Reports of the Deep Sea Drilling Project, 41: 515–537.

Kuznetsova, K. I. 1974. Distribution of benthonic foraminifera in Upper Jurassic and Lower Cretaceous deposits at Site 261, DSDP Leg 27, in the eastern Indian Ocean. In Veevers, J. J., Heirtzler, J. R., et al., Initial Reports of the Deep Sea Drilling Project, 27: 673–681.

Leblanc, D. & Olivier, P. 1984. Role of strike-slip faults in the Betic-Rifian orogeny. Tectonophysics, 101: 345–355.

Leoblich, A. R. & Tappan, H. 1984. Suprageneric classification of the Foraminiferida (Protozoa). Micropalaeontology, 30: 1–70.

Leoblich, A. R. & Tappan, H. 1988. Foraminiferal Genera and Their Classification. Van Nostrand Reinhold Company, Inc. New York.

Luterbacher, H. 1972. Foraminifera from the Lower Cretaceous and Upper Cretaceous of the northwestern Atlantic. In Hollister, C. D., Ewing, J. I., et al., Initial Reports of the Deep Sea Drilling Project, 13: 561–593.

Malod, J. A. 1989. Iberian kinematics during the Cretaceous–palaeogeographic consequences. In Viedmann, J. (Ed.), Cretaceous of the Western Tethys. Proceedings 3rd International Cretaceous Symposium, Tübingen 1987. E. Schweizerbartsche Verlagsbuchhandlung, Stuttgart, 3–16.

Mauffret, A., Mougenot, D., Miles, P. R., Malod, J. A., 1989. Cenozoic deformation and Mesozoic abandoned spreading center in the Tagus Abyssal Plain (west of Portugal): results of a multichannel seismic survey. Canadian Journal of Earth Sciences, 26: 1101–1123.

Maync, W. 1973. Lower Cretaceous foraminiferal fauna from Gorringe Bank, eastern North Atlantic. In Hollister, C.D., Ewing, J. I., et al., Initial Reports of the Deep Sea Drilling Project, 13: 1075–1111.

Michael, E. 1967. Die Mikrofauna der nordwestdeutschen Barreme. Teil I – Die Foraminiferen des NW-deutschen Barreme. Palaeontographica Supplements, 12: 1–176.

Mjaatliuk, E. V. 1939. Foraminiferen aus oberjurassischen und unterkretazischen Sedimenten zwischen Povolsky und Obschtschefj Syrt [In Russian]. Trudy Vsesoyuznogo Neftyanogo Nauchno-issledovatel'skogo Geologorazvedchichogo Instituta, (VNIIGRI), ser. A, 128: 1–69.

Morgiel, J. & Olszewska, B. 1981. Biostratigraphy of the Polish External Carpathians based on agglutinated foraminifera. Micropalaeontology, 27: 1–30.

Morgiel, J. & Olszewska, B. 1982. Uniformity of the Tethyan faunas from Cretaceous and Paleogene as shown by foraminifera from Morocco and Polish Flysch Carpathians. Cahiers de Micropaléontologie, 3: 45–53.

Moullade, M. & Kuhnt, W. 1992. Agglutinated deep-water foraminifera of the Eocene Monte Piano Formation (Northern Apennines, Italy). Journal of Foraminiferal Research, 22: 214–228.

Moullade, M., Kuhnt, W. & Thurow, J. 1988. Agglutinated benthic foraminifera from Upper Cretaceous variegated clays of the North Atlantic Ocean (DSDP Leg 93 and ODP Leg 103). In Boillot, G., Winterer, E. L., et al. (Eds) Proceedings of the Ocean Drilling Program, Scientific Results, 103: 349–377.

Neagu, T. 1962. Studiiul foraminiferselor aglutinate din argiilele Cretace superiores de pe Valea Sadovei (Cimpulung-Moldoveanu) si bazinul superior al vait Buzaului. Stud. Cerc. Geol. Geophys. Geogr., Ser. Geol., 7: 45–81.

Olivier, P. 1984. ExeHution de la limite entre Zones internes et Zones externes dans l’Arc de Gibraltar (Maroc-Espagne). Thèse, Universität Toulouse, 1–229.

Reuss, A. E., 1845. Die Versteinerungen der böhmischen Kreideformation. Schweizerbartsche Verlagsbuchhandlung, Stuttgart, 1–140.

Riegraf, W. & Luterbacher, H. 1989. Benthische Foraminiferen aus der Unterkreide des 'Deep Sea Drilling Project' (Leg 1–79). Geologische Rundschau, 78: 1063–1120.

Schubert, R. J. 1902. Neue und interessante Foraminiferen aus dem südtiroler Alttertiär. Beiträge zur Palaeontologie und Geologie Österreich-Ungarns und des Oriens, 14: 9–26.

Sigal, J. 1979. Chronostratigraphy and biostratigraphy of the Cretaceous formations recovered on DSDP Leg 47B, Site 398. In Sibuet, J. C., Ryan, W. B. F. et al. Initial Reports of the Deep Sea Drilling Project, 47/2: 287–326.

Sliter, W. V. 1980. Mesozoic foraminifers and deep-sea benthic environments from Deep Sea Drilling Project Sites 415 and 416, Eastern North Atlantic. In Lancelot, Y., Winterer, E. L., et al., Initial Reports of the Deep Sea Drilling Project, 50: 353–428.

Ten Dam, A. 1950. Les foraminifères de l’Albien des Pays-Bas. Beitrage zur Palaeontologie und Geologie Österreich-Ungarns und des ORiens, 31: 1–140.

Tucholke, B. E. & Vogt, P. R. 1979. Western North Atlantic: Sedimentary evolution and aspects of tectonic history. In Tucholke, B. E. & Vogt, P. R., et al., Initial Reports of the Deep Sea Drilling Project, 43: 791–825.

Vasicok, M. 1947. Remarks on the Microbiostratigraphy of the Magura Flysch in Moravia. Vestnik Stat. Geol. Ust. Rep. Cesk, 22: 235–256.

Zaspelova, V. S. 1948. Foraminifera from the Upper Jurassic and Cretaceous of the West Siberian lowland (in Russian). Trudy Neft. Nauchno-Issled. Geol.-Razved. Inst (VNIGRI), nov. ser, 31: 200.