Nested Bethe Ansatz for RTT–Algebra A_n

Č. Burdík1, O. Navrátil2

1) Faculty of Nuclear Sciences and Physical Engineering, CTU,
 Trojanova 13, Prague, Czech Republic
 email: burdices@kmlinux.fjfi.cvut.cz

2) Faculty of Transportation Sciences, CTU,
 Na Florenci 25, Prague, Czech Republic
 email: navraond@fd.cvut.cz

Abstract

This paper continues our recent studies on the algebraic Bethe ansatz for the
RTT–algebras of sp$(2n)$ and $o(2n)$ types. In these studies, we encountered the
RTT–algebras which we called A_n. The next step in our construction of the Bethe
vectors for the RTT-algebras of type sp$(2n)$ and $o(2n)$ is to find the Bethe vectors
for the RTT–algebra A_n. This paper deals with the construction of the Bethe
vectors of the RTT–algebra A_n using the Bethe vectors of the RTT–algebra A_{n-1}.

1 Introduction

In studying the algebraic Bethe ansatz for the RTT–algebras of type sp$(2n)$ and $o(2n)$
[1 2], we discovered some the RTT–algebras which we called A_n. The main result of
these works is the assertion that for the construction of eigenvalues and eigenvectors of
the transfer–matrix of the RTT–algebras of type sp$(2n)$ and $o(2n)$ it is enough to find
eigenvalues and eigenvectors for the RTT–algebra A_n.

In this work, we deal with the nested Bethe ansatz for the RTT–algebra A_n. We show
how to construct eigenvectors for the RTT–algebra A_n by using eigenvectors of the RTT–
algebra A_{n-1}.

Note, that the RTT–algebra A_{n-1} is not the RTT–subalgebra A_n. However, A_n
contains two the RTT–subalgebras $A^{(+)}_n$ and $A^{(-)}_n$, which are of type gl(n). The RTT–algebras
$A^{(\pm)}_{n-1}$ are already the RTT–subalgebras of $A^{(\pm)}_n$. As we will see later, we can construct
some eigenvectors for the RTT–algebras A_n as Bethe vectors of the RTT–algebras $A^{(\pm)}_n$, i.e.
as the Bethe vectors for the RTT–algebras of the type gl(n). Our result for such
eigenvectors is the same as for the nested Bethe ansatz for the RTT–algebras of gl(n),
which can be found in [3]. In this sense, our construction is a certain generalization of
the nested Bethe ansatz for the RTT–algebras of type gl(n).

The proofs of many claims are only a suitable, but long adjustment of the Yang–Baxter
and the RTT–equations. We have included them in Appendix for better clarity of the
main text.

2 The RTT–algebra A_n

We denote E^i_k and E^{-i}_{-k}, where $i, k = 1, \ldots, n$, the matrices $(E^i_k)^r_s = (E^{-i}_{-k})^{r}_{-s} = \delta^i_k \delta^r_s$.

Then the relations $E^i_k E^r_s = \delta^i_s E^r_k$, $\sum_{i=1}^n E^i_i = I_+$ and $\sum_{i=1}^n E^{-i}_{-i} = I_-$ apply.
The RTT–algebra \mathcal{A}_n is an associative algebra with a unit that is generated by the elements $T^i_k(x)$ and $T^{-i}_k(x)$, where $i, k = 1, \ldots, n$. If we introduce the monodromy matrix $T(x) = T^{(+)}(x) + T^{(-)}(x)$, where

$$T^{(+)}(x) = \sum_{i,k=1}^{n} E^i_k \otimes T^i_k(x), \quad T^{(-)}(x) = \sum_{i,k=1}^{n} E^{-i}_k \otimes T^{-i}_k(x),$$

the commutation relations between generators are defined by the RTT–equation

$$R_{1,2}(x,y)T_1(x)T_2(y) = T_2(y)T_1(x)R_{1,2}(x,y), \quad (1)$$

where R–matrix is $R(x, y) = R^{(+,+)}(x, y) + R^{(+,-)}(x, y) + R^{(-,+)}(x, y) + R^{(-,-)}(x, y)$,

$$R^{(+,+)}(x, y) = \frac{1}{f(x, y)} \left(I_+ \otimes I_+ + g(x, y) \sum_{i,k=1}^{n} E^i_k \otimes E^k_i \right),$$

$$R^{(+,-)}(x, y) = I_+ \otimes I_- - k(x, y) \sum_{i,k=1}^{n} E^i_k \otimes E^{-i}_k,$$

$$R^{(-,+)}(x, y) = I_- \otimes I_+ - h(x, y) \sum_{i,k=1}^{n} E^{-i}_k \otimes E^i_k,$$

$$R^{(-,-)}(x, y) = \frac{1}{f(x, y)} \left(I_- \otimes I_- + g(x, y) \sum_{i,k=1}^{n} E^{-i}_k \otimes E^{-k}_i \right),$$

$$g(x, y) = \frac{1}{x - y}, \quad f(x, y) = \frac{x - y + 1}{x - y},$$

$$h(x, y) = \frac{1}{x - y + n - \eta}, \quad k(x, y) = \frac{1}{x - y + \eta}$$

and η is any number. For $\eta = -1$ we obtain the RTT–algebra connected with the RTT–algebra of $\text{sp}(2n)$ type and for $\eta = 1$ the RTT–algebra connected with the RTT–algebra of $\text{o}(2n)$ type.

By direct calculation, it can be verified that this R–matrix satisfies the Yang–Baxter equation

$$R_{1,2}(x,y)R_{1,3}(x,z)R_{2,3}(y,z) = R_{2,3}(y,z)R_{1,3}(x,z)R_{1,2}(x,y) \quad (2)$$

and has the inverse R–matrix

$$(R(x,y))^{-1} = (R^{(+,+)}(x,y))^{-1} + (R^{(+,-)}(x,y))^{-1} + (R^{(-,+)}(x,y))^{-1} + (R^{(-,-)}(x,y))^{-1}$$

where

$$(R^{(+,+)}(x,y))^{-1} = \frac{1}{f(x,y)} \left(I_+ \otimes I_+ + g(y, x) \sum_{i,k=1}^{n} E^i_k \otimes E^k_i \right),$$

$$(R^{(+,-)}(x,y))^{-1} = I_+ \otimes I_- - h(y, x) \sum_{i,k=1}^{n} E^i_k \otimes E^{-i}_k,$$

$$(R^{(-,+)}(x,y))^{-1} = I_- \otimes I_+ - k(y, x) \sum_{i,k=1}^{n} E^{-i}_k \otimes E^i_k,$$

$$(R^{(-,-)}(x,y))^{-1} = \frac{1}{f(x,y)} \left(I_- \otimes I_- + g(y, x) \sum_{i,k=1}^{n} E^{-i}_k \otimes E^{-k}_i \right).$$

Therefore, it defines the RTT–algebra that we denote by \mathcal{A}_n.

The explicit form of commutation relations between generators of the RTT–algebra \mathcal{A}_n is given in the Appendix.
It is easily seen that the RTT–equation (1) can be written as

\[R_{1,2}^{(e_1,e_2)}(x,y)T_1^{(e_1)}(x)T_2^{(e_2)}(y) = T_2^{(e_2)}(y)T_1^{(e_1)}(x)R_{1,2}^{(e_1,e_2)}(x,y), \]

(3)

where \(e_1, e_2 = \pm \). From this form of the RTT–equation it is clear that in the RTT–algebra \(\mathcal{A}_n \) there are two RTT-subalgebras \(\mathcal{A}_n^{(+)} \) and \(\mathcal{A}_n^{(-)} \), which are generated by the elements \(T_k^i(x) \) and \(T_{-k}^i(x) \), where \(i, k = 1, \ldots, n \).

Using the RTT–equation (3), it is possible to show that in the RTT–algebra \(\mathcal{A}_n \) the operators

\[H^{(+)}(x) = \text{Tr} T^{(+)}(x) = \sum_{i=1}^{n} T_i^r(x), \quad H^{(-)}(x) = \text{Tr} T^{(-)}(x) = \sum_{i=1}^{n} T_{-i}^r(x) \]

mutually commute.

We deal with the representations of the RTT–algebra \(\mathcal{A}_n \) on the vector space \(\mathcal{W} = \mathcal{A}_n \omega \), where \(\omega \) is a vacuum vector for which the relations

\[
T_k^i(x)\omega = 0 \quad \text{for} \quad 1 \leq i < k \leq n, \quad T_k^i(x)\omega = \lambda_i(x)\omega \\
T_{-k}^i(x)\omega = 0 \quad \text{for} \quad 1 \leq i < k \leq n, \quad T_{-k}^i(x)\omega = \lambda_{-i}(x)\omega
\]

hold. Our goal is to find in the vector space \(\mathcal{W} \) common eigenvectors of the operators \(H^{(\pm)}(x) \).

In the RTT–algebra \(\mathcal{A}_n \) there are two RTT–subalgebras \(\mathcal{A}^{(+)} = \mathcal{A}_{n-1}^{(+)} \) and \(\mathcal{A}^{(-)} = \mathcal{A}_{n-1}^{(-)} \) of \(\text{gl}(n-1) \) type, which are generated by the elements \(T_k^i(x) \) and \(T_{-k}^i(x) \), where \(i, k = 1, \ldots, n-1 \).

First, we will consider the subspace \(\mathcal{W} \) generated by the elements \(\mathcal{A}^{(+)} \mathcal{A}^{(-)} \omega \).

Proposition 1. The relations

\[T_n^i(x)w = T_{-n}^i(x)w = 0, \quad T_n^i(x)w = \lambda_n(x)w, \quad T_{-n}^i(x)w = \lambda_{-n}(x)w \]

(4)

hold for any \(w \in \mathcal{W} \) and \(i = 1, 2, \ldots, n-1 \).

Proof. First, we consider the space \(\mathcal{W}^{(-)} = \mathcal{A}^{(-)} \omega \subset \mathcal{W} \). To prove relation (4) for \(w = w^{(-)} \in \mathcal{W}^{(-)} \), it is sufficient to show that if (4) is valid for \(w^{(-)} \), it also applies to \(T_{-i}^s(y)w^{(-)} \), where \(r, s = 1, \ldots, n-1 \). From the commutation relations we get for \(i = 1, \ldots, n \) and \(r, s = 1, \ldots, n-1 \)

\[T_{-n}^i(x)T_{-s}^r(y) = T_{-s}^r(y)T_{-n}^i(x) + g(x,y)T_{-i}^r(y)T_{-n}^s(x) - g(x,y)T_{-i}^r(x)T_{-s}^n(y) \]

It follows that for any \(w^{(-)} \in \mathcal{W}^{(-)} \) we have

\[T_{-i}^s(x)w^{(-)} = 0 \quad \text{for} \quad i = 1, \ldots, n-1, \quad T_{-n}^i(x)w^{(-)} = \lambda_{-n}(x)w^{(-)}. \]

For any \(r, s = 1, \ldots, n-1 \), the commutation relations give

\[T_n^r(x)T_{-s}^r(y) = T_{-s}^r(y)T_n^r(x), \]

which proves that \(T_n^r(x)w^{(-)} = \lambda_n(x)w^{(-)} \) for any \(w^{(-)} \in \mathcal{W}^{(-)} \).
For any $i, r, s = 1, \ldots, n - 1$ the relations
\[
T^r_n(x)T^{-r}_s(y) = T^{-r}_s(y)T^r_n(x) - \delta^{i,r}h(y,x)\sum_{p=1}^{n-1} T^{-p}_s(y)T^p_n(x) - \delta^{i,r}h(y,x)T^{-n}_s(y)T^n_n(x).
\]
hold. Since for every $w \in \tilde{\mathcal{W}}$ we have
\[
T^{-n}_s(y)T^n_n(x)w = \lambda_n(x)T^{-n}_s(y)w = 0,
\]
we see that for every $w \in \tilde{\mathcal{W}}$ and $i = 1, \ldots, n - 1$ we have $T^i_i(x)w = 0$.

Since $\tilde{\mathcal{W}} = \tilde{A}^{(+)}\tilde{\mathcal{W}}^{(-)}$, it is sufficient to show that if $\tilde{\mathcal{W}}^{(-)}$ holds for w, it also holds for $T^r_s(y)w$, where $r, s = 1, \ldots, n - 1$.

For $i = 1, \ldots, n$ a $r, s = 1, \ldots, n - 1$ we have the commutation relation
\[
T^i_i(x)T^r_s(y) = T^r_s(y)T^i_i(x) + g(y,x)T^i_i(x)T^r_s(y) - g(y,x)T^r_s(y)T^i_i(x),
\]
from which we can easily see that for any $w \in \tilde{\mathcal{W}}$
\[
T^i_i(x)w = 0 \quad \text{for} \quad i = 1, \ldots, n - 1, \quad T^n_n(x)w = \lambda_n(x)w
\]
holds.

The relation $T^{-n}_n(x)w = \lambda_n(x)w$ results from the fact that for every $r, s = 1, \ldots, n - 1$ we have
\[
T^{-n}_n(x)T^r_s(y) = T^r_s(y)T^{-n}_n(x).
\]
For $i, r, s = 1, \ldots, n - 1$ we use
\[
T^{-i}_i(x)T^r_s(y) = T^r_s(y)T^{-i}_i(x) - \delta_{i,s}h(x,y)\sum_{p=1}^{n-1} T^p_s(y)T^{-n}_s(x) - \delta_{i,s}h(x,y)T^n_s(y)T^{-n}_s(x),
\]
which implies that $T^{-i}_i(x)w = 0$ for $i = 1, \ldots, n - 1$ and for any $w \in \tilde{\mathcal{W}}$. \hfill \Box

Proposition 2. The space $\tilde{\mathcal{W}}$ is invariant with respect to $\tilde{A}^{(+)}$ and $\tilde{A}^{(-)}$.

Proof: Obviously, the space $\tilde{\mathcal{W}}$ is invariant for the $\tilde{A}^{(+)}$ action.

To show that the space $\tilde{\mathcal{W}}$ is invariant to the action of the algebra $\tilde{A}^{(-)}$, we will use for $i, k, r, s = 1, \ldots, n - 1$ the commutation relations
\[
T^{-i}_k(x)T^r_s(y) - \delta_{k,s}k(y,x)\sum_{p=1}^{n-1} T^{-i}_p(x)T^p_s(y) - \delta_{k,s}k(y,x)T^{-i}_k(x)T^r_s(y) = T^r_s(y)T^{-i}_k(x) - \delta^{i,r}k(y,x)\sum_{p=1}^{n-1} T^p_s(y)T^{-p}_k(x) - \delta^{i,r}k(y,x)T^n_s(y)T^{-n}_k(x).
\]

From Proposition 1 it follows that if we restrict these relations to subspace $\tilde{\mathcal{W}}$, we get
\[
T^{-i}_k(x)T^r_s(y) - \delta_{k,s}k(y,x)\sum_{p=1}^{n-1} T^{-i}_p(x)T^p_s(y) = T^r_s(y)T^{-i}_k(x) - \delta^{i,r}k(y,x)\sum_{p=1}^{n-1} T^p_s(y)T^{-p}_k(x).
\]

If we multiply these equations by $\left(\delta^k_a\delta^s_b - \delta^{k,s}\delta_{a,b}\tilde{h}(x,y)\right)$, where
\[
\tilde{h}(x,y) = \frac{1}{x-y+(n-1)\eta},
\]

and sum them over k, s from 1 to $n - 1$ and rename the indices, we find that the relations

$$T_{-k}(x)T_s(y) = T_s(y)T_{-k}(x) - \delta_{i,r}k(y, x) \sum_{p=1}^{n-1} T_{p}(y)T^{-p}_{-k}(x) - \delta_{k,s}\tilde{h}(x, y)\sum_{p=1}^{n-1} T_{p}(y)T^{-p}_{-q}(x)$$

are true on the space \tilde{W}.

The invariance of the space \tilde{W} with respect to the action \tilde{A}^0 can be proven by induction according to numbers of the factors $T_k(x)$ in the vectors $w \in \tilde{W}$.

Proposition 3. If we define

$$\tilde{T}^{(+)}(x) = \sum_{i,k=1}^{n-1} E^k_i \otimes T^i_k(x), \quad \tilde{T}^{(-)}(x) = \sum_{i,k=1}^{n-1} E^{-k}_i \otimes T^{-i}_k(x)$$

the commutation relations for $T^k_i(x)$ and $T^{-k}_i(x)$, where $i, k = 1, \ldots, n - 1$, reduced to the space \tilde{W} can be written in the form of the RTT-equation

$$\tilde{R}^{(\epsilon_1, \epsilon_2)}_{1, 2}(x, y)\tilde{T}^{(\epsilon_1)}_{1}(x)\tilde{T}^{(\epsilon_2)}_{2}(y) = \tilde{T}^{(\epsilon_2)}_{2}(y)\tilde{T}^{(\epsilon_1)}_{1}(x)\tilde{R}^{(\epsilon_1, \epsilon_2)}_{1, 2}(x, y)$$

where $\epsilon_1, \epsilon_2 = \pm$ and

$$\tilde{R}^{(+, +)}_{1, 2}(x, y) = \frac{1}{f(x, y)} \left(\tilde{I}_+ \otimes \tilde{I}_+ + g(x, y) \sum_{i,k=1}^{n-1} E^k_i \otimes E^i_k \right),$$

$$\tilde{R}^{(-, -)}_{1, 2}(x, y) = \frac{1}{f(x, y)} \left(\tilde{I}_- \otimes \tilde{I}_- + g(x, y) \sum_{i,k=1}^{n-1} E^{-i}_k \otimes E^{-i}_k \right),$$

$$\tilde{R}^{(\epsilon_1, -)}_{1, 2}(x, y) = \tilde{I}_+ \otimes \tilde{I}_- - k(x, y) \sum_{i,k=1}^{n-1} E^i_k \otimes E^{-i}_k,$$

$$\tilde{R}^{(-, \epsilon_1)}_{1, 2}(x, y) = \tilde{I}_- \otimes \tilde{I}_+ - \tilde{h}(x, y) \sum_{i,k=1}^{n-1} E^{-i}_k \otimes E^i_k,$$

$$\tilde{I}_+ = \sum_{k=1}^{n-1} E^k_k, \quad \tilde{I}_- = \sum_{k=1}^{n-1} E^{-k}_k, \quad \tilde{h}(x, y) = \frac{1}{x - y + n - 1 - \eta}.$$
If we restrict them on the space $\tilde{\mathcal{W}}$, we obtain according to Proposition 1

$$T_k^i(x)T_{-s}^j(y) - \delta^{i,r}k(x,y)\sum_{p=1}^{n-1} T_k^p(x)T_{-p}^j(y) = T_{-s}^j(y)T_k^i(x) - \delta_{k,s}k(x,y)\sum_{p=1}^{n-1} T_{-p}^s(y)T_p^i(x)$$

$$T_{-k}^i(x)T_{-s}^j(y) - \delta_{k,s}k(y,x)\sum_{p=1}^{n-1} T_{-p}^i(x)T_{-p}^j(y) = T_{-s}^j(y)T_{-k}^i(x) - \delta^{i,r}k(y,x)\sum_{p=1}^{n-1} T_{-s}^p(y)T_{-p}^i(x).$$

The first of these commutation relations is

$$\tilde{R}_{1,2}^{(+,-)}(x,y)\tilde{T}_1^{(-)}(x)\tilde{T}_2^{(+)}(y) = \tilde{T}_2^{(-)}(y)\tilde{T}_1^{(+)}(x)\tilde{R}_{1,2}^{(+,-)}(x,y).$$

The second equality can be written using matrices in the form

$$\tilde{T}_1^{(-)}(x)\tilde{T}_2^{(+)}(y)\left[\tilde{1}_- \otimes \tilde{1}_+ - k(y,x)\sum_{i,k=1}^{n-1} E_{-k}^i \otimes E_{k}^i\right] =$$

$$= \left[\tilde{1}_- \otimes \tilde{1}_+ - k(y,x)\sum_{i,k=1}^{n-1} E_{-k}^i \otimes E_{k}^i\right]\tilde{T}_2^{(+)}(y)\tilde{T}_1^{(-)}(x).$$

And since

$$\tilde{R}_{1,2}^{(-,+)}(x,y)\left[\tilde{1}_- \otimes \tilde{1}_+ - k(y,x)\sum_{i,k=1}^{n-1} E_{-k}^i \otimes E_{k}^i\right] =$$

$$= \left[\tilde{1}_- \otimes \tilde{1}_+ - k(y,x)\sum_{i,k=1}^{n-1} E_{-k}^i \otimes E_{k}^i\right]\tilde{R}_{1,2}^{(-,+)}(x,y) = \tilde{1}_- \otimes \tilde{1}_+$$

this relation is equivalent to the RTT-equation

$$\tilde{R}_{1,2}^{(-,+)}(x,y)\tilde{T}_1^{(-)}(x)\tilde{T}_2^{(+)}(y) = \tilde{T}_2^{(-)}(y)\tilde{T}_1^{(+)}(x)\tilde{R}_{1,2}^{(-,+)}(x,y).$$

The following theorem immediately follows from Proposition 3.

Theorem 1. The action of the operators $T_k^i(x)$ and $T_{-k}^i(x)$, where $i, k = 1, \ldots, n-1$, in the space \mathcal{W} forms the RTT–algebra \mathcal{A}_{n-1}.

3 General form of common eigenvectors of $H^{(+)}(x)$ and $H^{(-)}(x)$

Let $\vec{v} = (v_1, v_2, \ldots, v_p)$ and $\vec{w} = (w_1, w_2, \ldots, w_Q)$ be ordered sets of mutually different numbers. We will search for a general shape of the common eigenvectors $H^{(+)}(x)$ and $H^{(-)}(x)$ in the form

$$\mathcal{B}(\vec{v}, \vec{w}) = \sum_{\substack{k_1, \ldots, k_p = 1 \ r_1, \ldots, r_Q = 1 \ k_1, \ldots, k_p = 1}}^{n-1} T_k^m(v_1) \cdots T_k^m(v_p) T_{-r_1}^{m_1}(w_1) \cdots T_{-r_Q}^{m_Q}(w_Q) \Phi_{\vec{r}_1, \ldots, \vec{r}_Q}^{k_1, \ldots, k_p},$$

where $\Phi_{\vec{r}_1, \ldots, \vec{r}_Q}^{k_1, \ldots, k_p} \in \tilde{\mathcal{W}}$.

We will consider \((n - 1)\)-dimensional spaces \(\mathcal{V}_+\) and \(\mathcal{V}_-\) with the base \(e_k\) and \(e_r\) and denote \(f^k\) and \(f^{-r}\) their dual base in dual spaces \(\mathcal{V}^*_+\) and \(\mathcal{V}^*_-\).

Let us define
\[
\mathbf{b}^{(+)}(v) = \sum_{k=1}^{n-1} f^k \otimes T^m_k(v) \in \mathcal{V}^*_+ \otimes \mathcal{A}_n
\]
\[
\mathbf{b}^{(-)}(w) = \sum_{r=1}^{n-1} e_{-r} \otimes T^{-m}_r(w) \in \mathcal{V}_- \otimes \mathcal{A}_n
\]
and denote
\[
\mathbf{b}_{1^{*},...,p^{*}}^{(+)}(\vec{v}) = \mathbf{b}_1^{(+)}(v_1)\mathbf{b}_2^{(+)}(v_2)\ldots \mathbf{b}_p^{(+)}(v_p) \in \mathcal{V}_1^* \otimes \mathcal{V}_2^* \otimes \ldots \otimes \mathcal{V}_p^* \otimes \mathcal{A}_n
\]
\[
\mathbf{b}_{1,...,Q}^{(-)}(\vec{w}) = \mathbf{b}_1^{(-)}(w_1)\mathbf{b}_2^{(-)}(w_2)\ldots \mathbf{b}_Q^{(-)}(w_Q) \in \mathcal{V}_-^1 \otimes \mathcal{V}_-^2 \otimes \ldots \otimes \mathcal{V}_-^Q \otimes \mathcal{A}_n.
\]

Explicitly, we have
\[
\mathbf{b}_{1^{*},...,p^{*}}^{(+)}(\vec{v}) = \sum_{k_1,...,k_P=1}^{n-1} f^{k_1} \otimes f^{k_2} \otimes \ldots \otimes f^{k_P} \otimes T^m_{k_1}(v_1)T^m_{k_2}(v_2)\ldots T^m_{k_P}(v_P)
\]
\[
\mathbf{b}_{1,...,Q}^{(-)}(\vec{w}) = \sum_{r_1,...,r_Q=1}^{n-1} e_{-r_1} \otimes e_{-r_2} \otimes \ldots \otimes e_{-r_Q} \otimes T^{-m}_{r_1}(w_1)T^{-m}_{r_2}(w_2)\ldots T^{-m}_{r_Q}(w_Q).
\]

If we introduce \(\Phi \in \mathcal{V}_1 \otimes \ldots \otimes \mathcal{V}_P \otimes \mathcal{V}^*_1 \otimes \ldots \otimes \mathcal{V}^*_Q \otimes \tilde{\mathcal{W}}\)
\[
\Phi = \sum_{k_1,...,k_P=1}^{n-1} \sum_{r_1,...,r_Q=1}^{n-1} e_{k_1} \otimes \ldots \otimes e_{k_P} \otimes f^{-r_1} \otimes \ldots \otimes f^{-r_Q} \otimes \Phi_{k_1,k_2,...,k_P}^{r_1,r_2,...,r_Q} = \sum_{k,r} e_{k} \otimes f^{-r} \otimes \Phi_{k,r}^{r^{-}},
\]
where
\[
\Phi_{k_1,k_2,...,k_P}^{r_1,r_2,...,r_Q} = \Phi_{k,r}^{r^{-}}, \in \tilde{\mathcal{W}},
\]
\[
e_{k} = e_{k_1} \otimes e_{k_2} \otimes \ldots \otimes e_{k_P} \in (\mathcal{V}_+)^\otimes_P,
\]
\[
f^{-r} = f^{-r_1} \otimes f^{-r_2} \otimes \ldots \otimes f^{-r_Q} \in (\mathcal{V}_+)^\otimes_Q,
\]
the assumed shape of the eigenvectors can be written as
\[
\mathfrak{B}(\vec{v}, \vec{w}) = \left\langle \mathbf{b}_{1^{*},...,p^{*}}^{(+)}(\vec{v})\mathbf{b}_{1,...,Q}^{(-)}(\vec{w}), \Phi \right\rangle.
\]

4 Bethe vectors and Bethe condition

Our goal is to write the action of the operators \(T^+_n(x), T^-_n(x), \tilde{T}^{(+)}\) and \(\tilde{T}^{(-)}\) on the assumed form of the Bethe vectors using the operators that act only on \(\Phi\). These actions are explicitly given in Lemma 5 of Appendix. Here we list only their consequences.

For \(\vec{v} = (v_1, v_2, \ldots, v_P)\) we introduce a set \(\overline{\mathcal{V}} = \{v_1, v_2, \ldots, v_P\}\), denote
\[
\overline{v}_k = (v_1, \ldots, v_{k-1}, v_{k+1}, \ldots, v_P), \quad \nu_k = \overline{\mathcal{V}} \setminus \{v_k\},
\]
\[
F(x; \overline{v}) = \prod_{v_k \in \overline{\mathcal{V}}} f(x, v_k), \quad F(\overline{v}; x) = \prod_{v_k \in \overline{\mathcal{V}}} f(v_k, x).
\]
and define

\[\hat{T}_{0;1\ldots P;1\ldots Q}^{(+)}(x; \vec{v}; \vec{w}) = \hat{R}_{0;1\ldots P}^{(+\ldots +)}(x; \vec{v}; \vec{w}) \hat{T}_0^{(+)}(x) \hat{R}_{0;1\ldots P}^{(+\ldots +)}(x; \vec{v}; \vec{w}) = \sum_{i,k=1}^{n-1} E_k^i \bigotimes \hat{T}_k^{i}(x; \vec{v}; \vec{w}) \]

\[\hat{T}_{0;1\ldots P;1\ldots Q}^{(-)}(x; \vec{v}; \vec{w}) = \hat{R}_{0;1\ldots P}^{(-\ldots -)}(x; \vec{w}; \vec{v}) \hat{T}_0^{(-)}(x) \hat{R}_{0;1\ldots P}^{(-\ldots -)}(x; \vec{w}; \vec{v}) = \sum_{i,k=1}^{n-1} E_k^{-i} \bigotimes \hat{T}_k^{-i}(x; \vec{v}; \vec{w}) , \]

where

\[\hat{R}_{0;1\ldots P}^{(+\ldots +)}(x; \vec{v}) = \hat{R}_{0;1\ldots P}^{(+\ldots +)}(x, v_P) \ldots \hat{R}_{0;1\ldots P}^{(+\ldots +)}(x, v_2) \hat{R}_{0;1\ldots P}^{(+\ldots +)}(x, v_1) \]

\[\hat{R}_{0;1\ldots P}^{(-\ldots -)}(x; \vec{w}) = \hat{R}_{0;1\ldots P}^{(-\ldots -)}(x, w_P) \ldots \hat{R}_{0;1\ldots P}^{(-\ldots -)}(x, w_2) \hat{R}_{0;1\ldots P}^{(-\ldots -)}(x, w_1) \]

\[\hat{R}_{0;1\ldots P}^{(-\ldots -)}(x; \vec{w}) = \hat{R}_{0;1\ldots P}^{(-\ldots -)}(x, w_P) \ldots \hat{R}_{0;1\ldots P}^{(-\ldots -)}(x, w_2) \hat{R}_{0;1\ldots P}^{(-\ldots -)}(x, w_1) \]

\[\hat{R}_{0;1\ldots P}^{(-\ldots -)}(x; \vec{w}) = \hat{R}_{0;1\ldots P}^{(-\ldots -)}(x, w_P) \ldots \hat{R}_{0;1\ldots P}^{(-\ldots -)}(x, w_2) \hat{R}_{0;1\ldots P}^{(-\ldots -)}(x, w_1) \]

\[\hat{R}_{0;1\ldots P}^{(+\ldots +)}(x, v) = \frac{1}{f(x, v)} \left(\hat{I}_{+} \bigotimes \hat{I}_{+} + g(x, v) \sum_{i,k=1}^{n-1} \mathbf{E}_k^i \bigotimes \mathbf{E}_k^i \right) \]

\[\hat{R}_{0;1\ldots P}^{(-\ldots -)}(x, w) = \hat{I}_{+} \bigotimes \hat{I}_{-} - \hat{h}(w, x) \sum_{r,s=1}^{n-1} \mathbf{E}_r^s \bigotimes \mathbf{F}_-^r \]

\[\hat{R}_{0;1\ldots P}^{(-\ldots -)}(x, v) = \hat{I}_{-} \bigotimes \hat{I}_{+} - \hat{h}(x, v) \sum_{i,k=1}^{n-1} \mathbf{E}_k^{-i} \bigotimes \mathbf{E}_k^i \]

\[\hat{R}_{0;1\ldots P}^{(-\ldots -)}(x, w) = \frac{1}{f(w, x)} \left(\hat{I}_{0;1\ldots P} \bigotimes \hat{I}_{-} - \hat{h}(w, x) \sum_{r,s=1}^{n-1} \mathbf{E}_r^s \bigotimes \mathbf{F}_-^r \right) . \]

The main results of this paper are the following three Theorems.

Theorem 2. Let \(\Phi = \sum_{k,r} \mathbf{E}_k^r \bigotimes \mathbf{F}_r^{-k} \Phi_{k,r}^r \), where \(\Phi_{k,r}^r \in \mathcal{W} \) is an common eigenvector of the operators

\[\hat{H}^{(+)}(x; \vec{v}; \vec{w}) = \text{Tr}_0 \left(\hat{T}_{0;1\ldots P;1\ldots Q}^{(+)}(x; \vec{v}; \vec{w}) \right) = \sum_{i=1}^{n-1} \hat{T}_i^{(+)i}(x; \vec{v}; \vec{w}) \]

\[\hat{H}^{(-)}(x; \vec{v}; \vec{w}) = \text{Tr}_0 \left(\hat{T}_{0;1\ldots P;1\ldots Q}^{(-)}(x; \vec{v}; \vec{w}) \right) = \sum_{i=1}^{n-1} \hat{T}_i^{(-)i}(x; \vec{v}; \vec{w}) \]

with eigenvalues \(\mu^{(+)i}(x; \vec{v}; \vec{w}) \) and \(\mu^{(-)i}(x; \vec{v}; \vec{w}) \). If the Bethe conditions

\[\lambda_n(v_{\ell}) F(\vec{v}_{\ell}; \vec{v}_{\ell}) F(\vec{w}; v_{\ell} - n + 1 + \eta) = \mu^{(+)}(v_{\ell}; \vec{v}; \vec{w}) F(\vec{v}_{\ell}; \vec{v}_{\ell}) \]

\[\lambda_{-n}(w_{s}) F(w_{s}; \vec{w}_{s}) F(w_{s} + n - 1 - \eta; \vec{v}) = \mu^{(-)}(w_{s}; \vec{v}; \vec{w}) F(\vec{w}_{s}; w_{s}) \]

are fulfilled for any \(v_{\ell} \in \mathcal{V} \) and \(w_{s} \in \mathcal{W} \), the vector

\[\mathbf{B}(\vec{v}; \vec{w}) = \left\langle \mathbf{a}_{k,r}^{(+)}(\vec{v}) \mathbf{b}_{k,s}^{(-)}(\vec{w}), \Phi \right\rangle \]

is a common eigenvector of the operators \(H^{(+)}(x) \) and \(H^{(-)}(x) \) with eigenvalues

\[E^{(+)}(x; \vec{v}; \vec{w}) = \lambda_n(x) F(\vec{v}; x) F(\vec{w}; x - n + 1 + \eta) + \mu^{(+)}(x; \vec{v}, \vec{w}) F(x; \vec{v}) \]

\[E^{(-)}(x; \vec{v}; \vec{w}) = \lambda_{-n}(x) F(x; \vec{w}) F(x + n - 1 - \eta; \vec{v}) + \mu^{(-)}(x; \vec{v}, \vec{w}) F(\vec{w}; x) \].

Proof: According to Proposition 1, we have \(T_{n}^{+}(x) \Phi = \lambda_n(x) \Phi \) and \(T_{-n}^{-}(x) \Phi = \lambda_{-n}(x) \Phi \).
Using Lemma 5 and the relations $\text{Tr}_0 \hat{R}^{(\pm,-)}_{0*,s_+} = \hat{I}_{s_+}$ and $\text{Tr}_0 \hat{R}^{(-,+)}_{0*,\ell_+} = \hat{I}_{\ell_+}$ we obtain

\[
H^{(+)}(x) \langle b^{(+)}_{1,...,p, \ell}(\vec{v}) b^{(-)}_{1,...,Q_1(\vec{w}), \Phi} \rangle = \\
= \left(\lambda_n(x) F(\vec{v}; x) F(\vec{w}; x - n + 1 + \eta) + \mu^{(+)}(x; \vec{v}, \vec{w}) F(x, \vec{v}) \right) \\
\langle b^{(+)}_{1,...,p, \ell}(\vec{v}) b^{(-)}_{1,...,Q_1(\vec{w}), \Phi} \rangle - \\
- \sum_{v \in \mathcal{P}} g(v, x) (\lambda_n(v) F(\vec{v}; v) F(\vec{w}; v - n + 1 + \eta) - \mu^{(+)}(v; \vec{v}, \vec{w}) F(v, \vec{v})) \\
\langle b^{(+)}_{1,...,p, \ell}(\vec{v}) b^{(-)}_{1,...,Q_1(\vec{w}), \Phi} \rangle - \\
- \sum_{w \in \mathcal{W}} h(w, x) (\lambda_n(w) F(w; \vec{v}) F(w; \vec{w}) - \mu^{(-)}(w; \vec{v}, \vec{w}) F(\vec{w}, w)) \\
\langle b^{(+)}_{1,...,p, \ell}(\vec{v}) b^{(-)}_{1,...,Q_1(\vec{w}), \Phi} \rangle.
\]

This immediately proves the statement of Theorem 2.

\[\square\]

Theorem 3. The operators $\hat{T}_k^{(+)}(x; \vec{v}, \vec{w})$ and $\hat{T}_k^{-}(x; \vec{v}, \vec{w})$ are for any \vec{v} and \vec{w} generators of the RTT-algebra of A_{n-1} type.

Proof: We have to show that for any \vec{v}, \vec{w} and $\epsilon, \epsilon' = \pm$ the relation

\[
\hat{R}^{(\epsilon,\epsilon')}_{0,0'}(x, y) \hat{T}^{(\epsilon)}_{0;1,...,P;1',...,Q'}(x; \vec{v}, \vec{w}) \hat{T}^{(\epsilon')}_{0;1,...,P;1',...,Q'}(y; \vec{v}, \vec{w}) = \\
= \hat{T}^{(\epsilon)}_{0;1,...,P;1',...,Q'}(y; \vec{v}, \vec{w}) \hat{T}^{(\epsilon')}_{0;1,...,P;1',...,Q'}(x; \vec{v}, \vec{w}) \hat{R}^{(\epsilon,\epsilon')}_{0,0'}(x, y).
\]

is valid. Since

\[
\hat{T}^{(\epsilon)}_{0;1,...,P;1',...,Q'}(x; \vec{v}, \vec{w}) = \hat{R}^{(\epsilon,-)}_{0;1,...,Q'}(x; \vec{w}) \hat{T}^{(\epsilon)}_{0;1,...,P;1',...,Q'}(x; \vec{v}, \vec{w}) \hat{R}^{(\epsilon,+)}_{0,0'}(x, y)
\]

and $\hat{T}^{(\epsilon)}_0(x)$ satisfies the RTT-equation, it is enough to show that

\[
\hat{R}^{(\epsilon,\epsilon')}_{0,0'}(x, y) \hat{R}^{(\epsilon,-)}_{0;1,...,Q'}(x; \vec{w}) \hat{R}^{(\epsilon',-)}_{0;1,...,Q'}(y; \vec{w}) = \hat{R}^{(\epsilon',-)}_{0;1,...,Q'}(y; \vec{w}) \hat{R}^{(\epsilon,-)}_{0;1,...,Q'}(x; \vec{w}) \hat{R}^{(\epsilon,\epsilon')}_{0,0'}(x, y)
\]

\[
\hat{R}^{(\epsilon,\epsilon')}_{0,0'}(x, y) \hat{R}^{(\epsilon,+)}_{0;1,...,P;1',...,Q'}(x; \vec{v}) \hat{R}^{(\epsilon',+)}_{0;1,...,P;1',...,Q'}(y; \vec{v}) = \hat{R}^{(\epsilon',+)}_{0;1,...,P;1',...,Q'}(y; \vec{v}) \hat{R}^{(\epsilon,+)}_{0;1,...,P;1',...,Q'}(x; \vec{v}) \hat{R}^{(\epsilon,\epsilon')}_{0,0'}(x, y)
\]

hold. According to the definitions, we have

\[
\hat{R}^{(\epsilon,-)}_{0;1,...,Q'}(x; \vec{w}) = \hat{R}^{(\epsilon,-)}_{0;1,...,Q'}(x, w_1) \hat{R}^{(\epsilon,-)}_{0;2,...,Q'}(x, w_2) \ldots \hat{R}^{(\epsilon,-)}_{0;Q',...,Q'}(x, w_Q)
\]

\[
\hat{R}^{(\epsilon,+)}_{0;1,...,P;1',...,Q'}(x; \vec{v}) = \hat{R}^{(\epsilon,+)}_{0;1,...,P;1',...,Q'}(x, v_P) \ldots \hat{R}^{(\epsilon,+)}_{0;Q',...,Q'}(x, v_1) \hat{R}^{(\epsilon,+)}_{0;Q',...,Q'}(x, v_1).
\]
and a theorem then follows from the Yang–Baxter equations

\[
\hat{R}_{0,0}^{(\epsilon,\epsilon')} (x, y) \hat{R}_{0,1^-}^{(\epsilon,\epsilon^-)} (x, w) \hat{R}_{0,1^+}^{(\epsilon',\epsilon^-)} (y, w) = \hat{R}_{0,0}^{(\epsilon',\epsilon')} (x, y) \hat{R}_{0,1^-}^{(\epsilon',\epsilon^-)} (x, w) \hat{R}_{0,0}^{(\epsilon,\epsilon')} (x, y) ,
\]

\[
\hat{R}_{0,0}^{(\epsilon,\epsilon')} (x, y) \hat{R}_{0,1^+}^{(\epsilon,\epsilon^+)} (x, v) \hat{R}_{0',1^+}^{(\epsilon',\epsilon^+)} (y, v) = \hat{R}_{0,0}^{(\epsilon',\epsilon')} (x, y) \hat{R}_{0',1^+}^{(\epsilon',\epsilon^+)} (x, v) \hat{R}_{0,0}^{(\epsilon,\epsilon')} (x, y) .
\]

The following Theorem shows that

\[
\hat{\Omega} = e_{n-1} \otimes \ldots \otimes e_{n-1} \otimes f^{-n+1} \otimes \ldots \otimes f^{-n+1} \otimes \omega
\]

is a vacuum vector for the representation of the RTT–algebra \(A_{n-1}\), which is generated by \(\hat{T}_k^i(x; \bar{v}; \bar{w})\) and \(\hat{T}^{-i}_k(x; \bar{v}; \bar{w})\).

Theorem 4. For the vector \(\hat{\Omega}\) and \(i, k = 1, \ldots, n - 1\)

\[
\hat{T}_k^i(x; \bar{v}; \bar{w}) \hat{\Omega} = 0 \quad \text{for} \quad i < k ,
\]

\[
\hat{T}^{-i}_k(x; \bar{v}; \bar{w}) \hat{\Omega} = 0 \quad \text{for} \quad k < i
\]

\[
\hat{T}_i(x; \bar{v}; \bar{w}) \hat{\Omega} = \nu_i(x; \bar{v}; \bar{w}) \hat{\Omega}
\]

\[
\hat{T}^{-i}_i(x; \bar{v}; \bar{w}) \hat{\Omega} = \nu^{-i}_i(x; \bar{v}; \bar{w}) \hat{\Omega}
\]

where

\[
\nu_i(x; \bar{v}; \bar{w}) = \lambda_i(x) F(\nu; x + 1)
\]

\[
\nu_{n-1}(x; \bar{v}; \bar{w}) = \lambda_{n-1}(x) F(x - n + 1 + \eta; \bar{w})
\]

\[
\nu^{-i}_i(x; \bar{v}; \bar{w}) = \lambda^{-i}(x) F(x - 1; \bar{w})
\]

\[
\nu^{-n+1}_i(x; \bar{v}; \bar{w}) = \lambda^{-n+1}(x) F(\nu; x + n - 1 - \eta)
\]

are valid.

Proof: If we write

\[
\hat{R}_{0,1^+}^{(\epsilon,\epsilon^+)} (x, v) = \sum_{a,b,q=1}^{n-1} R_{b,q}^{a,p} (x, v) E_a^b \otimes E_p^q, \quad R_{b,q}^{a,p} (x, v) = \frac{\delta^a_b \delta^p_q + g(x, v) \delta^a_q \delta^p_b}{f(x, v)}
\]

\[
\hat{R}_{0,1^-}^{(\epsilon,\epsilon^-)} (x, w) = \sum_{c,d,r,s=1}^{n-1} R_{c,s}^{d,r} (x, w) E_c^d \otimes F_r^s, \quad R_{c,s}^{d,r} (x, w) = \delta^d_c \delta^r_s - \hat{h}(w, x) \delta^{cr} \delta_{d,s},
\]

\[
\hat{R}_{0,1^+}^{(-,\epsilon^+)} (x, v) = \sum_{a,b,q=1}^{n-1} R_{-b,q}^{a,p} (x, v) E_a^b \otimes E_p^q, \quad R_{-b,q}^{a,p} (x, v) = \delta^a_b \delta^p_q - \hat{h}(x, v) \delta^{ap} \delta_{b,q}
\]

\[
\hat{R}_{0,1^-}^{(-,\epsilon^-)} (x, w) = \sum_{c,d,r,s=1}^{n-1} R_{-d,s}^{c,r} (x, w) E_c^d \otimes F_r^s, \quad R_{-d,s}^{c,r} (x, w) = \frac{\delta^c_d \delta^r_s + g(w, x) \delta^c_s \delta^r_d}{f(w, x)},
\]
we obtain
\[\hat{T}_k(x; \vec{v}; \vec{w})\hat{\Omega} = \]
\[= R_{d_1, s_1}^{i, n+1}(x, w_1) R_{d_2, s_2}^{i, n+1}(x, w_2) \ldots R_{d_{Q_s-1}, s_{Q_s-1}}^{i, n+1}(x, w_{Q_s-1}) R_{d_{Q_s-1}}^{i, n+1}(x, w_{Q_s}) \]
\[\quad \quad \quad \quad \quad \quad \quad R_{a_p, p}^{i, n+1}(x, v_P) R_{a_{p-1}, p}^{i, n+1}(x, v_{P-1}) \ldots R_{a_1, n-1}^{i, n+1}(x, v_2) R_{a_1}^{i, n-1}(x, v_1) \]
\[e_{p_1} \otimes e_{p_2} \otimes \ldots \otimes e_{p_{n-1}} \otimes e_p \otimes \]
\[\otimes f^{-s_1} \otimes f^{-s_2} \otimes \ldots \otimes f^{-s_{Q_s-1}} \otimes f^{-s_Q} \otimes T_{a_p}^{d_Q}(x)\omega \]
\[\hat{T}_k(x; \vec{v}; \vec{w})\hat{\Omega} = \]
\[= R_{d_1, s_1}^{i, n+1}(x, w_1) R_{d_2, s_2}^{i, n+1}(x, w_2) \ldots R_{d_{Q_s-1}, s_{Q_s-1}}^{i, n+1}(x, w_{Q_s-1}) R_{d_{Q_s-1}}^{i, n+1}(x, w_{Q_s}) \]
\[\quad \quad \quad \quad \quad \quad \quad R_{a_p, p}^{i, n+1}(x, v_P) R_{a_{p-1}, p}^{i, n+1}(x, v_{P-1}) \ldots R_{a_1, n-1}^{i, n+1}(x, v_2) R_{a_1}^{i, n-1}(x, v_1) \]
\[e_{p_1} \otimes e_{p_2} \otimes \ldots \otimes e_{p_{n-1}} \otimes e_p \otimes \]
\[\otimes f^{-s_1} \otimes f^{-s_2} \otimes \ldots \otimes f^{-s_{Q_s-1}} \otimes f^{-s_Q} \otimes T_{a_p}^{d_Q}(x)\omega \]
Since \(R_{d_s, n-1}^{i, n+1}(x, w) = \delta_{d_s}^{i, n-1} \) for \(1 \leq i \leq n - 1 \), we have
\[\hat{T}_k(x; \vec{v}; \vec{w})\hat{\Omega} = F_{a_p, p}^{i, n+1}(x, v_P) R_{a_{p-1}, n-1}^{i, n+1}(x, v_{P-1}) \ldots R_{a_1, n-1}^{i, n+1}(x, v_2) R_{a_1}^{i, n-1}(x, v_1) \]
\[e_{p_1} \otimes e_{p_2} \otimes \ldots \otimes e_{p_{n-1}} \otimes e_p \otimes \]
\[\otimes f^{-n+1} \otimes f^{-n+1} \otimes \ldots \otimes f^{-n+1} \otimes f^{-n+1} \otimes T_{a_p}^{d_Q}(x)\omega \]
As \(T_{a_p}^{d_Q}(x)\omega = 0 \) for \(a_p > i \), this expression is nonzero only for \(a_p \leq i < n - 1 \). In this case \(R_{a_p, n-1}^{i, n+1}(x, v_P) = \frac{1}{F(x, v_P)} \delta_{a_p}^{i, n-1} \). Therefore, we have
\[\hat{T}_k(x; \vec{v}; \vec{w})\hat{\Omega} = \frac{1}{F(x, \vec{v})} e_{n-1} \otimes e_{n-1} \otimes \ldots \otimes e_{n-1} \otimes e_{n-1} \otimes \]
\[\otimes f^{-n+1} \otimes f^{-n+1} \otimes \ldots \otimes f^{-n+1} \otimes f^{-n+1} \otimes T_k(x)\omega \]
and so
\[\hat{T}_k(x; \vec{v}; \vec{w})\hat{\Omega} = 0 \quad \text{for} \quad k > i \]
\[\hat{T}_i(x; \vec{v}; \vec{w})\hat{\Omega} = \frac{\lambda_i(x)}{F(x, \vec{v})} \hat{\Omega} = \lambda_i(x) F(x, \vec{v}) \hat{\Omega} = \lambda_i(x) F(x, \vec{v}) \hat{\Omega} \]
If \(i = k = n - 1 \) we have
\[\hat{T}_{n-1}^{n-1}(x; \vec{v}; \vec{w})\hat{\Omega} = \]
\[= R_{d_1, s_1}^{n-1, n+1}(x, w_1) R_{d_2, s_2}^{n-1, n+1}(x, w_2) \ldots R_{d_{Q_s-1}, s_{Q_s-1}}^{n-1, n+1}(x, w_{Q_s-1}) R_{d_{Q_s-1}}^{n-1, n+1}(x, w_{Q_s}) \]
\[\quad \quad \quad \quad \quad \quad \quad R_{a_p, p}^{n-1, n+1}(x, v_P) R_{a_{p-1}, p}^{n-1, n+1}(x, v_{P-1}) \ldots R_{a_1, n-1}^{n-1, n+1}(x, v_2) R_{a_1}^{n-1, n-1}(x, v_1) \]
\[e_{n-1} \otimes e_{n-1} \otimes \ldots \otimes e_{n-1} \otimes e_{n-1} \otimes \]
\[\otimes f^{-s_1} \otimes f^{-s_2} \otimes \ldots \otimes f^{-s_{Q_s-1}} \otimes f^{-s_Q} \otimes T_{a_p}^{d_Q}(x)\omega \]
Since \(R_{n-1, n-1}^{n, p}(x, v) = \delta_{n-1}^{n, p} \) we obtain
\[\hat{T}_{n-1}^{n-1}(x; \vec{v}; \vec{w})\hat{\Omega} = \]
\[= R_{d_1, s_1}^{n-1, n+1}(x, w_1) R_{d_2, s_2}^{n-1, n+1}(x, w_2) \ldots R_{d_{Q_s-1}, s_{Q_s-1}}^{n-1, n+1}(x, w_{Q_s-1}) R_{d_{Q_s-1}}^{n-1, n+1}(x, w_{Q_s}) \]
\[e_{n-1} \otimes e_{n-1} \otimes \ldots \otimes e_{n-1} \otimes e_{n-1} \otimes \]
\[\otimes f^{-s_1} \otimes f^{-s_2} \otimes \ldots \otimes f^{-s_{Q_s-1}} \otimes f^{-s_Q} \otimes T_{n-1}^{d_Q}(x)\omega . \]
The conditions $T_{n-1}^{d_Q}(x) \omega = 0$ for $d_Q < n-1$ and $T_{n-1}^{-1}(x) \omega = \lambda_{n-1}(x) \omega$ lead to the equations

$$
\hat{T}_{n-1}^{-1}(x; \bar{v}; \bar{w})\hat{\Omega} = \lambda_{n-1}(x)R_{d_1,-s_1}^{d_1,-n+1}(x, w_1)R_{d_2,-s_2}^{d_2,-n+1}(x, w_2) \ldots R_{d_{Q-1}+1,-s_{Q-1}}^{d_{Q-1}+1,-n+1}(x, w_{Q-1})R_{d_{Q-1}+1,-s_{Q}}^{d_{Q-1}+1,-n+1}(x, w_{Q})
$$

$$
e_n \otimes e_n \otimes \ldots \otimes e_n \otimes e_n \otimes \otimes f^{-s_1} \otimes f^{-s_2} \otimes \ldots \otimes f^{-s_{Q-1}} \otimes f^{-s_{Q}} \otimes \omega
$$

However, $R_{n-1}^{d,Q,n}(x, w) = (1 - \hat{h}(w, x)) \delta_{n-1} \delta_{n-1}$ and so

$$
\hat{T}_{n-1}^{-1}(x; \bar{v}; \bar{w})\hat{\Omega} = \lambda_{n-1}(x)F(x - n + 1 + \eta; \omega) \delta_{n-1} \delta_{n-1}
$$

Since $R_{-a_p}^{-a_p}(x, v) = \delta_{n-1} \delta_{n-1}$ for $1 \leq k < n-1$ we have

$$
\hat{T}_{-k}^{-1}(x; \bar{v}; \bar{w})\hat{\Omega} = \frac{1}{F(\bar{w}; x)} e_n \otimes e_n \otimes \ldots \otimes e_n \otimes e_n \otimes \otimes f^{-n+1} \otimes f^{-n+1} \otimes \ldots \otimes f^{-n+1} \otimes f^{-n+1} \otimes \hat{T}_{-k}^{-1}(x) \omega
$$

For $k < d_Q$ the relation $T_{-k}^{-1}(x) \omega = 0$ holds. Therefore, this expression is nonzero for $1 \leq d_Q \leq k < n-1$ only. But in this case $R_{-d_{Q-1}+1,-s_{Q}}^{d_{Q-1}+1,-n+1}(x, w_{Q}) = \frac{1}{f(w_{Q}, x)} \delta_{d_{Q}-1} \delta_{s_{Q}}$. By repeatedly using this relationship, we get

$$
\hat{T}_{-k}^{-1}(x; \bar{v}; \bar{w})\hat{\Omega} = \frac{\lambda_{-i}(x)}{F(\bar{w}; x)} \hat{\Omega} = \lambda_{-i}(x)F(x - 1; \bar{w})\hat{\Omega}
$$

The relations $T_{-i}^{-1}(x) \omega = 0$ for $k < i$ and $T_{-i}^{-1}(x) \omega = \lambda_{-i}(x) \omega$ lead to the equations

$$
\hat{T}_{-i}^{-1}(x; \bar{v}; \bar{w})\hat{\Omega} = \frac{\lambda_{-i}(x)}{F(\bar{w}; x)} \hat{\Omega} = \lambda_{-i}(x)F(x - 1; \bar{w})\hat{\Omega}
$$

For $i = k = n-1$ we have

$$
\hat{T}_{-n+1}^{-1}(x; \bar{v}; \bar{w})\hat{\Omega} = \frac{1}{F(\bar{w}; x)} e_{p_1} \otimes e_{p_2} \otimes \ldots \otimes e_{p_{p-1}} \otimes e_{p_p} \otimes \otimes f^{-s_1} \otimes f^{-s_2} \otimes \ldots \otimes f^{-s_{Q-1}} \otimes f^{-s_{Q}} \otimes \hat{T}_{-a_p}^{-1}(x) \omega
$$

12
Since \(R_{-d,-s}^{n+1, n+1}(x, w) = \delta_d^{n-1} \delta_s^{n-1} \), we obtain

\[
\tilde{T}_{n+1}^{-1}(x; \tilde{v}; \tilde{w}) \tilde{\Omega} =
\]

\[
= R_{-a_p, p}^{-1, pp}(x, v_p) R_{-a_p-1, pp-1}(x, v_{p-1}) \ldots R_{-a_2, p_2}(x, v_2) R_{-a_1, p_1}(x, v_1)
\]

\[
e_p \otimes e_p \otimes \ldots \otimes e_{p_{p-1}} \otimes e_{p_p} \otimes
\]

\[
\otimes f^{-n+1} \otimes f^{-n+1} \otimes \ldots \otimes f^{-n+1} \otimes f^{-n+1} \otimes T_{-a_p}^{-1}(x) \omega
\]

The conditions \(T_{-a_p}^{-1}(x) \omega = 0 \) for \(a_P < n - 1 \) and \(T_{n+1}^{-1}(x) \omega = \lambda_{n+1}(x) \omega \) lead to

\[
\tilde{T}_{n+1}^{-1}(x; \tilde{v}; \tilde{w}) \tilde{\Omega} =
\]

\[
= \lambda_{n+1}(x) R_{-a_P, n-1, n-1}(x, v_p) R_{-a_P-1, n-1, n-1}(x, v_{p-1}) \ldots R_{-a_2, n-1, n-1}(x, v_2) R_{-a_1, n-1, n-1}(x, v_1)
\]

\[
e_p \otimes e_p \otimes \ldots \otimes e_{p_{p-1}} \otimes e_{p_p} \otimes
\]

\[
\otimes f^{-n+1} \otimes f^{-n+1} \otimes \ldots \otimes f^{-n+1} \otimes f^{-n+1} \otimes \omega
\]

However, \(R_{-a_1, n-1}^{-1}(x, v) = (1 - \tilde{h}(x, v)) \delta_a^{n-1} \delta_{n-1} = f(v, x + n - 1 - \eta) \delta_a^{n-1} \delta_{n-1} \), and so

\[
\tilde{T}_{n+1}^{-1}(x; \tilde{v}; \tilde{w}) \tilde{\Omega} = \lambda_{n+1}(x) F(\tilde{v}; x + n - 1 - \eta) \tilde{\Omega}
\]

\[\square\]

These three theorems show that to find the Bethe vectors \(\mathfrak{B}(\tilde{v}; \tilde{w}) \) for the RTT–algebra \(\mathcal{A}_n \), it is sufficient to find the Bethe vectors for the RTT–algebra \(\mathcal{A}_{n-1} \) that is generated by the operators \(\tilde{T}_k^{-1}(x; \tilde{v}; \tilde{w}) \), where \(i, k = 1, \ldots, n-1 \), and that has a vacuum vector \(\tilde{\Omega} \).

5 Conclusion

The paper describes the construction of eigenvectors for the representations of the RTT–algebra \(\mathcal{A}_n \) by using the highest weight vectors for the representation of the RTT–algebra \(\mathcal{A}_{n-1} \). We meet these RTT–algebras \([1, 2]\) while studying the algebraic Bethe ansatz for the RTT–algebras of \(\text{sp}(2n) \) and \(\text{o}(2n) \) types.

In the special cases, when \(\tilde{v} \) or \(\tilde{w} \) is an empty set, our construction is known as the algebraic nested Bethe ansatz, which was formulated in \([3]\). So our construction of the Bethe vectors is a generalization of the algebraic nested Bethe ansatz to the RTT–algebra of \(\mathcal{A}_n \) type.

For the RTT–algebra of \(\mathcal{A}_2 \) type we get from theorems 2, 3 and 4 the Bethe vectors

\[\mathfrak{B}_2(\tilde{v}; \tilde{w}) = T_1^2(\tilde{v}) T_2^{-1}(\tilde{w}) \omega\]

and the Bethe conditions

\[\lambda_2(v_\ell) F(\tilde{v}_\ell; v_\ell) F(\tilde{w}; v_\ell - 1 + \eta) = \lambda_1(v_\ell) F(v_\ell - 1 + \eta; \tilde{w}) F(v_\ell; \tilde{v}_\ell)\]

\[\lambda_{-2}(w_s) F(w_s; \tilde{w}_s) F(w_s + 1 - \eta; \tilde{v}) = \lambda_{-1}(w_s) F(\tilde{v}; w_s + 1 - \eta) F(\tilde{w}_s; w_s),\]

which we found for this algebra and \(\nu = -1 \) in \([4]\).
For higher n it is possible by means of Theorems 2, 3 and 4 step-by-step to decrease value n and thus obtain an explicit form of the Bethe vectors. For the RTT–algebra of $\text{gl}(n)$ type this procedure leads to trace-formula [5]. We intend to publish a similar explicit form of the Bethe vectors for the RTT–algebras \mathcal{A}_n, of $\text{sp}(2n)$ and $\text{o}(2n)$ types in the near future.

References

[1] Burdík Č., Navrátil O.: Nested Bethe ansatz for RTT—algebra of $\text{sp}(2n)$ type. Phys. of Part. and Nucl. 69 No. 5 (2018) 936–942.

[2] Burdík Č., Navrátil O.: Nested Bethe ansatz for RTT—algebra of $\text{so}(2n)$ type. Phys. of Atom. Nucl. 81 No. 6 (2018) 810–814.

[3] Kulish P.P., Reshetikhin N.Yu.: Diagonalization of $\text{GL}(N)$ invariant transfer matrices and quantum N-wave system (Lee model) J. Phys. A. 16 (1983) L591–L596.

[4] Burdík Č., Navrátil O.: Nested Bethe ansatz for RTT—algebra of $\text{sp}(4)$ type. Theor. and Math. Phys. 198 No. 1 (2019) 1–16.

[5] Mukhin E., Tarasov V., Varchenko A.: Bethe eigenvectors of higher transfer matrices. J. Stat. Mech. 8 (2006) P08002; preprint: math.QA/0605015.

Appendix

A1 Commutation relations in the RTT–algebra \mathcal{A}_n

The RTT–equation for the RTT–algebra \mathcal{A}_n leads to the commutation relations

\[
T^i_k(x) T^r_s(y) + g(x, y) T^r_k(x) T^i_s(y) = T^r_s(y) T^i_k(x) + g(x, y) T^r_k(y) T^i_s(x)
\]

\[
T^{-i}_k(x) T^{-r}_s(y) + g(x, y) T^{-r}_k(x) T^{-i}_s(y) = T^{-r}_s(y) T^{-i}_k(x) + g(x, y) T^{-r}_k(y) T^{-i}_s(x)
\]

\[
T^i_k(x) T^{-r}_s(y) - \delta^{ir} k(x, y) \sum_{p=1}^n T^p_k(x) T^{-p}_s(y) = T^{-r}_s(y) T^i_k(x) - \delta_{k,s} T^i(x, y) \sum_{p=1}^n T^{-r}_p(y) T^i_p(x)
\]

\[
T^{-i}_k(x) T^r_s(y) - \delta^{ir} h(x, y) \sum_{p=1}^n T^p_k(x) T^r_p(s) = T^r_s(y) T^{-i}_k(x) - \delta_{k,s} T^r(x, y) \sum_{p=1}^n T^{-i}_p(y) T^r_p(x)
\]

\[
T^i_k(x) T^r_s(y) + g(x, y) T^i_s(x) T^r_k(y) = T^r_s(y) T^i_k(x) + g(x, y) T^i_s(y) T^r_k(x)
\]

\[
T^{-i}_k(x) T^{-r}_s(y) + g(x, y) T^{-i}_s(x) T^{-r}_k(y) = T^{-r}_s(y) T^{-i}_k(x) + g(x, y) T^{-i}_s(y) T^{-r}_k(x)
\]

\[
T^i_k(x) T^{-r}_s(y) - \delta_{k,s} h(x, y) \sum_{p=1}^n T^p_i(x) T^{-r}_p(y) = T^{-r}_s(y) T^i_k(x) - \delta^{ir} h(y, x) \sum_{p=1}^n T^{-r}_s(y) T^i_p(x)
\]

\[
T^{-i}_k(x) T^r_s(y) - \delta_{k,s} T^i(x, y) \sum_{p=1}^n T^{-r}_p(y) T^i_p(x) = T^r_s(y) T^{-i}_k(x) - \delta^{ir} k(y, x) \sum_{p=1}^n T^r_p(y) T^{-i}_p(x)
\]

A2 Action of the operators $T_{\pm n}^\pm(x)$ and $\tilde{T}(\pm)(x)$ on the Bethe vectors

First, we will rewrite the commutation relations using the operators action for $P = Q = 1$.
Lemma 1. In the RTT–algebra \mathcal{A}_n the following relations are true:

$$
T_n^n(x)\langle b_{1}^{+}(v), e_k \rangle = f(v, x)\langle b_{1}^{+}(v), e_k \rangle T_n^n(x) - g(v, x)\langle b_{1}^{+}(x), e_k \rangle T_n^n(v)
$$

$$
T_{-n}^{-n}(x)\langle b_{1}^{-}(w), f^{-r} \rangle = f(x, w)\langle b_{1}^{-}(w), f^{-r} \rangle T_{-n}^{-n}(x) - g(x, w)\langle b_{1}^{-}(x), f^{-r} \rangle T_{-n}^{-n}(w)
$$

$$
\hat{T}_0^{(+)}(x)\langle b_{1}^{+}(v), e_k \rangle = f(x, v)\langle b_{1}^{+}(v), \hat{T}_0^{(+)}(x)R_{0_{+, 1_{+}}}(x, v)(I_{0_{+}} \otimes e_k) \rangle -
- g(x, v)\langle b_{1}^{+}(x), \hat{T}_0^{(+)}(v)R_{0_{+, 1_{+}}}(I_{0_{+}} \otimes e_k) \rangle
$$

$$
\hat{T}_0^{(-)}(x)\langle b_{1}^{-}(w), f^{-r} \rangle = f(x, w)\langle b_{1}^{-}(w), \hat{T}_0^{(-)}(x)(I_{-} \otimes f^{-r}) \rangle -
- g(x, w)\langle b_{1}^{-}(x), \hat{T}_0^{(-)}(w)(I_{-} \otimes f^{-r}) \rangle
$$

$$
T_{-n}^{n}(x)\langle b_{1}^{+}(w), f^{-r} \rangle = \frac{\hat{h}(w, x)}{\hat{h}(x, v)}\langle b_{1}^{+}(w), f^{-r} \rangle T_{n}^{n}(x) +
+ \frac{\hat{h}(w, x)}{\hat{h}(x, v)} T_{0}(b_{1}^{+}(x), \hat{T}_{1_{+}}^{(-)}(x)R_{0_{+, 1_{+}}}(I_{+} \otimes e_k) \rangle
$$

$$
\hat{T}_0^{(-)}(x)\langle b_{1}^{+}(v), e_k \rangle = \langle b_{1}^{+}(v), \hat{T}_0^{(-)}(x)(I_{-} \otimes e_k) \rangle -
- \hat{h}(w, x)\langle b_{1}^{+}(x), \hat{T}_{1_{+}}^{(-)}(w)(I_{+} \otimes f^{-r}) \rangle T_{-n}^{-n}(w)
$$

where

$$
\hat{P}_{0_{+, 1_{+}}}^{(+, +)} = \hat{R}_{0_{+, 1_{+}}}^{(+, +)}(x, x) = \sum_{i,k=1}^{n_{-1}} E_i^{k} \otimes E_i^{k}, \quad \hat{P}_{0_{+, 1_{+}}}^{(+, -)} = \sum_{r,s=1}^{n_{-1}} E_r^{s} \otimes F_{-s}^{r},
$$

and

$$
\hat{P}_{0_{-, 1_{-}}}^{(-, +)} = \hat{R}_{0_{-, 1_{-}}}^{(-, -)}(w, w) = \sum_{i,k=1}^{n_{1}} E_i^{k} \otimes E_i^{k}, \quad \hat{P}_{0_{-, 1_{-}}}^{(-, -)} = \sum_{r,s=1}^{n_{1}} E_r^{s} \otimes F_{-s}^{r},
$$

and $\hat{P}_{1_{+, 1_{+}}}^{(+, +)}$ and $\hat{P}_{1_{-, 1_{-}}}^{(-, -)}$ are the linear mappings $\hat{P}_{1_{-, 1_{-}}}^{(+, +)} : \mathcal{V}_{1_{-}} \rightarrow \mathcal{V}_{1_{-}}, \hat{P}_{1_{-, 1_{-}}}^{(-, -)} : \mathcal{V}_{1_{+}} \rightarrow \mathcal{V}_{1_{+}}$, defined by

$$
\hat{P}_{1_{+, 1_{+}}}^{(+, +)}f^{-r} = e_r, \quad \hat{P}_{1_{+, 1_{+}}}^{(-, -)}e_k = f^{-k}.
$$

Proof: The first two equations are only otherwise written commutation relations

$$
T_n^n(x)T_k^n(v) = f(v, x)T_k^n(v)T_n^n(x) - g(v, x)T_k^n(x)T_n^n(v),
$$

and the third and fourth equations are the matrix notation of the commutation relations

$$
T^n_s(x)T^n_k(v) = T^n_k(v)T^n_s(x) + g(x, v)T^n_n(x)T^n_s(x) - g(x, v)T^n_s(x)T^n_n(v),
$$

and

$$
T^{-n}_s(w)T^{-n}_k(x) = T^{-n}_k(x)T^{-n}_s(w) + g(w, x)T^{-n}_n(x)T^{-n}_s(x) - g(w, x)T^{-n}_s(x)T^{-n}_n(w).
$$

15
To prove the fifth relation, we first use the commutation relation

\[T_n^a(x)T_n^{-r}(w) = T_n^{-r}(w)T_n^a(x) - k(x, w) \sum_{p=1}^{n} T_n^{-r}(w)T_p^n(x) = \]

\[= \left(1 - k(x, w)\right)T_n^{-r}(w)T_n^a(x) - k(x, w) \sum_{p=1}^{n-1} T_n^{-r}(w)T_p^n(x). \]

If we sum the commutation relations

\[T^{-r}_{-k}(w)T_k^n(x) = T_k^n(x)T^{-r}_{-k}(w) - h(w, x) \sum_{p=1}^{n} T_p^n(x)T^{-r}_{-p}(w) \]

over \(k = 1, \ldots, n - 1, \) we find that

\[\sum_{p=1}^{n-1} T^{-r}_{-p}(w)T_p^n(x) = \left(1 - (n - 1)h(w, x)\right)\sum_{p=1}^{n-1} T_p^n(x)T^{-r}_{-p}(w) - (n - 1)h(w, x)T_n^n(x)T^{-r}_{-n}(w) \]

When we substitute this equality into (6), we get

\[T_n^n(x)T^{-r}_{-n}(w) = \left(1 + \tilde{h}(w, x)\right)T^{-r}_{-n}(w)T_n^n(x) + \tilde{h}(w, x) \sum_{p=1}^{n-1} T_p^n(x)T^{-r}_{-p}(w) \]

which is another notation of the fifth relationship.

To prove the sixth relation, we use the commutation relations

\[T^{-n}_{-n}(x)T_k^n(v) = \left(1 - k(v, x)\right)T_k^n(v)T^{-n}_{-n}(x) - k(v, x) \sum_{p=1}^{n-1} T_k^n(v)T^{-p}_{-n}(x). \]

If we sum the commutation relations

\[T_i^n(v)T^{-i}_{-n}(x) = T^{-i}_{-n}(x)T_i^n(v) - h(x, v)T^{-n}_{-n}(x)T_i^n(v) - h(x, v) \sum_{p=1}^{n-1} T^{-n}_{-n}(x)T_k^p(v), \]

over \(i = 1, \ldots, n - 1, \) we obtain

\[\sum_{p=1}^{n-1} T_i^n(v)T^{-p}_{-n}(x) = \left(1 - (n - 1)h(x, v)\right)\sum_{p=1}^{n-1} T^{-p}_{-n}(x)T_k^p(v) - (n - 1)h(x, v)T^{-n}_{-n}(x)T_k^n(v). \]

When we substitute this relation into (8), we get

\[T^{-n}_{-n}(x)T_k^n(v) = \left(1 + \tilde{h}(x, v)\right)T_k^n(v)T^{-n}_{-n}(x) + \tilde{h}(x, v) \sum_{p=1}^{n-1} T^{-p}_{-n}(x)T_k^p(v) \]

which can be written in the form shown in Lemma.

To prove the seventh and eighth relationships, we first use the commutation relations

\[T_k^n(x)T^{-r}_{-n}(w) = T^{-r}_{-n}(w)T_k^n(x) - \delta^{i,r}h(w, x)T^{-n}_{-n}(w)T_k^n(x) - \delta^{i,r}h(w, x) \sum_{p=1}^{n-1} T^{-p}_{-n}(w)T_k^p(x) \]

\[T^{-s}_{-n}(x)T_k^n(v) = T_k^n(v)T^{-s}_{-n}(x) - \delta_{k,s}h(x, v)T^{-n}_{-n}(v)T_k^n(x) - \delta_{k,s}h(x, v) \sum_{p=1}^{n-1} T^{-n}_{-n}(v)T_k^p(v). \]
Using equations (9) and (7), we obtain

\[T^r_k(x)T^{-r}_{-n}(w) = T^{-r}_{-n}(w)T^r_k(x) - \delta^{i,r}\tilde{h}(w, x)\sum_{p=1}^{n-1} T^{-p}_{-n}(w)T^p_k(x) - \delta^{i,r}\tilde{h}(w, x)T^n_k(x)T^{-n}_{-n}(w) \]

\[T^{-r}_{-s}(v)T^n_k(v) = T^n_k(v)T^{-r}_{-s}(v) - \delta_{k,s}\tilde{h}(x, v)\sum_{p=1}^{n-1} T_p^n(v)T^{-r}_{-p}(x) - \delta_{k,s}\tilde{h}(x, v)T^{-r}_{-n}(x)T^n_k(v) \]

which are other notations of the last two equations of Lemma.

Using Lemma 1, it is relatively easy to find members in which \(x \) is exchanged with the first component of the vectors \(\vec{v} \) and \(\vec{w} \). The members, in which \(x \) is interchanged with other components of these vectors, can be found by switching the corresponding component to the first place of vectors.

The following Lemma gives a suitable notation of the commutation relations that we use.

Lemma 2. In the RTT–algebra \(\mathcal{A}_n \) the following relations apply:

\[
\begin{align*}
\left\langle b_1^{(+)}(x) b_2^{(+)}(y), e_i \otimes e_k \right\rangle & = \left\langle b_2^{(+)}(y) b_1^{(+)}(x), \hat{R}^{(+,+)}_{1^+_r,2^+_s}(x, y)(e_i \otimes e_k) \right\rangle \\
\left\langle b_1^{(-)}(x) b_2^{(-)}(y), f^r \otimes f^s \right\rangle & = \left\langle b_2^{(-)}(y) b_1^{(-)}(x), \hat{R}^{(-,-)}_{1^-_r,2^-_s}(y, x)(f^r \otimes f^s) \right\rangle \\
\left\langle b_1^{(+)}(x) b_2^{(-)}(y), e_i \otimes e_k \right\rangle & = \left\langle b_2^{(+)}(x) b_1^{(+)}(y), \hat{R}^{(+,-)}_{1^+_r,2^-_s}(e_i \otimes e_k) \right\rangle \\
\left\langle b_1^{(-)}(x) b_2^{(+)y}, 1^+_r \otimes f^r \right\rangle & = \left\langle b_2^{(-)}(x) b_1^{(-)}(y), \hat{R}^{(-,+)_{1^-_r,2^-_s}}_{1^+_r,2^-_s}(f^r \otimes e_k) \right\rangle
\end{align*}
\]

where

\[
\begin{align*}
\hat{R}^{(\cdot, \cdot)}_{1^+_r,2^-_s}(x, y) & = \frac{1}{f(y, x)} \left(\hat{I}^+ \otimes \hat{I}^- + g(y, x) \sum_{r,s=1}^{n-1} F^{-r}_{-s} \otimes F^{-s}_{-r} \right) \\
\hat{R}^{(\cdot, \cdot)}_{1^+_r,2^-_s} & = \hat{R}^{(\cdot, \cdot)}_{1^-_r,2^+_s}(x, x) = \sum_{r,s=1}^{n-1} F^{-r}_{-s} \otimes F^{-s}_{-r}
\end{align*}
\]

Proof: The first and second relations are the transcripts of the commutation relations

\[
\begin{align*}
f(x, y)T^n_k(x)T^n_k(y) & = T^n_k(y)T^n_k(x) + g(x, y)T^n_k(y)T^n_k(x) \\
f(y, x)T^{-r}_{-s}(x)T^{-s}_{-n}(y) & = T^{-s}_{-n}(y)T^{-r}_{-s}(x) + g(y, x)T^{-r}_{-n}(y)T^{-s}_{-n}(x),
\end{align*}
\]

the fifth relation is an otherwise written commutation relation

\[
T^n_k(x)T^{-r}_{-n}(y) = T^{-r}_{-n}(y)T^n_k(x)
\]

and the other equations are the identities.
To write the operators' action $T_{\pm n}^{\pm}(x)$ and $\tilde{T}(\pm)(x)$ on the Bethe vectors with the general \vec{v} and \vec{w}, we prefer to introduce

$$b_{k_1,\ldots,k_p}^{(+)}(x;\vec{v}_k) = b_{k_1}^{(+)}(x)b_{k_2,\ldots,k_p}^{(+)}$$

$$b_{r,\ldots,Q}^{(-)}(x;\vec{w}_r) = b_{r}^{(-)}(x)b_{r+1,\ldots,Q}^{(-)}$$

$$b_{k_1,\ldots,k_p}^{(+)}(\vec{v}_k) = b_{k_1}^{(+)}(v_1)\cdots b_{k_{p-1}}^{(+)}(v_{k-1})b_{k_p}^{(+)}(v_{k+1})\cdots b_{p}^{(+)}(v_{p})$$

$$b_{r,\ldots,Q}^{(-)}(w_r) = b_{r}^{(-)}(w_1)\cdots b_{r+1}^{(-)}(w_{r-1})b_{r+1}^{(-)}(w_{r+1})\cdots b_{Q}^{(-)}(w_Q)$$

$$\hat{R}_{1,\ldots,k}^{(+)}(\vec{v}) = \hat{R}_{1,\ldots,k}^{(+)}(v_1, v_2, \ldots, v_{k-1}, v_k)$$

$$\hat{R}_{1,\ldots,k}^{(-)}(w_r, w_{r+1}) = \hat{R}_{1,\ldots,k}^{(-)}(w_r, w_{r+1})$$

$$\bar{T}_{0,1,\ldots,n}^{(+)}(x;\vec{v}) = \bar{T}_{0,1,\ldots,n}^{(+)}(x;\vec{v})\hat{R}_{0,1,\ldots,n}^{(+)}(x;\vec{v})$$

$$\bar{T}_{0,1,\ldots,n}^{(-)}(w) = \bar{T}_{0,1,\ldots,n}^{(-)}(w)\hat{R}_{0,1,\ldots,n}^{(-)}(w)$$

Lemma 3. For any \vec{v} and \vec{w} the relations

$$T_{n}^{+}(x)\left\langle b_{1,\ldots,n}^{(+)}(\vec{v}), e_{\vec{k}}\right\rangle = F(\vec{v}; x)\left\langle b_{1,\ldots,n}^{(+)}(\vec{v}), e_{\vec{k}}\right\rangle T_{n}^{+}(x)$$

$$- \sum_{v_k \in \vec{v}} g(v_k, x) F(\vec{v}_k; v_k)\left\langle b_{k_1,\ldots,k_p}^{(+)}(\vec{v}_k), e_{\vec{k}}\right\rangle T_{n}^{+}(v_k)$$

$$T_{-n}^{+}(x)\left\langle b_{1,\ldots,n}^{(-)}(\vec{v}), f^{-\vec{k}}\right\rangle = F(x, \vec{v})\left\langle b_{1,\ldots,n}^{(-)}(\vec{v}), f^{-\vec{k}}\right\rangle T_{-n}^{+}(x)$$

$$- \sum_{w_r \in \vec{w}} g(w_r, x) F(w_r; \vec{w}_r)\left\langle b_{r_1,\ldots,r_p}^{(-)}(w_r), e_{\vec{k}}\right\rangle T_{-n}^{+}(w_r)$$

$$\tilde{T}_{0}^{+}(x)\left\langle b_{1,\ldots,p}^{(+)}(\vec{v}), e_{\vec{k}}\right\rangle = F(x, \vec{v})\left\langle b_{1,\ldots,p}^{(+)}(\vec{v}), e_{\vec{k}}\right\rangle$$

$$- \sum_{v_k \in \vec{v}} g(v_k, x) F(v_k; \vec{v}_k)\left\langle b_{k_1,\ldots,k_p}^{(+)}(v_k), e_{\vec{k}}\right\rangle$$

$$\tilde{T}_{0}^{(-)}(x)\left\langle b_{1,\ldots,q}^{(-)}(\vec{w}), f^{-\vec{k}}\right\rangle = F(\vec{v}; x)\left\langle b_{1,\ldots,q}^{(-)}(\vec{w}), f^{-\vec{k}}\right\rangle$$

$$- \sum_{w_r \in \vec{w}} g(w_r, x) F(w_r; \vec{w}_r)\left\langle b_{r_1,\ldots,r_p}^{(-)}(w_r), e_{\vec{k}}\right\rangle$$

hold in the RTT–algebra \mathcal{A}_n.

Proof: We can prove these statements by induction over the number of elements P and Q of the sets \(\vec{v}\) and \(\vec{w}\).

For $P = Q = 1$ these relations are proven in Lemma 1.

We will assume that the statement is valid for P and Q and denote $\vec{v} = (v_1, \ldots, v_P, v_{P+1})$, $\vec{w} = (w_1, \ldots, w_Q, w_{Q+1})$, $\vec{k} = (k_1, \ldots, k_P, k_{P+1})$ and $\vec{r} = (r_1, \ldots, r_Q, r_{Q+1})$. According to
the induction assumption and Lemma 1, we have

\[T_n(x) \left< b_{1^*,...,n}(\vec{v}), e_k \right> = T_n(x) \left< b_1(v_1), e_k \right> \left< b_{2^*,...,n}(\vec{v}), e_k \right> = \]
\[= f(v_1, x) \left< b_1(v_1), e_k \right> T_n(x) \left< b_{2^*,...,n}(\vec{v}), e_k \right> - g(v_1, x) \left< b_1(v_1), e_k \right> T_n(x) \left< b_{2^*,...,n}(\vec{v}), e_k \right> = \]
\[= F(\pi, x) \left< b_1(s, \vec{v}), e_k \right> T_n(x) - g(v_1, x) F(\pi, v_1) \left< b_1(v_1), e_k \right> T_n(x) - \]
\[- \sum_{v_k \in \pi_1} F(\pi_1; k, v_1) \left[g(v_k, x) f(v_1, x) \left< b_1(v_1) b_{k^*,...,n}(\vec{v}), e_k \right> - g(v_k, v_1) g(v_1, x) \left< b_1(v_1) b_{k^*,...,n}(\vec{v}), e_k \right> \right] T_n(v_k), \]
\[T_n(x) \left< b_{1^*,...,n}(\vec{v}), f^{-r} \right> = T_n(x) \left< b_{1^*,...,n}(w_1), f^{-r} \right> \left< b_{2^*,...,n}(\vec{v}), f^{-r} \right> = \]
\[= F(\pi, x) \left< b_{1^*,...,n}(\vec{v}), f^{-r} \right> T_n(x) - g(x, w_1) F(\pi, w_1) \left< b_{1^*,...,n}(\vec{v}), f^{-r} \right> T_n(w_1) - \]
\[- \sum_{w_r \in \pi_1} F(\pi_1; r, w_1) \left[g(x, r) f(x, w_1) \left< b_{1^*,...,n}(w_1) b_{r^*,...,n}(\vec{v}), e_k \right> - g(x, w_1) g(w_1, r) \left< b_{1^*,...,n}(w_1) b_{r^*,...,n}(\vec{v}), e_k \right> \right] T_n(w_r), \]
\[T_0(x) \left< b_{1^*,...,n}(\vec{v}), e_k \right> = T_0(x) \left< b_{1^*,...,n}(\vec{v}), e_k \right> = \]
\[= F(\pi, x) \left< b_{1^*,...,n}(\vec{v}), e_k \right> - g(x, v_1) F(\pi, v_1) \left< b_{1^*,...,n}(\vec{v}), e_k \right> - \]
\[- \sum_{v_k \in \pi_1} g(x, v_k) f(v_1, x) F(\pi; v_1, k, v_1) \left< b_{1^*,...,n}(v_1) b_{k^*,...,n}(\vec{v}), e_k \right> + \]
\[+ \sum_{v_k \in \pi_1} g(x, v_1) g(v_1, x) F(\pi; v_1, k, v_1) \left< b_{1^*,...,n}(v_1) b_{k^*,...,n}(\vec{v}), e_k \right> = \]
\[T_0(x) \left< b_{1^*,...,n}(\vec{v}), f^{-r} \right> = F(\pi, x) \left< b_{1^*,...,n}(\vec{v}), f^{-r} \right> = \]
\[\left< b_{1^*,...,n}(\vec{v}), f^{-r} \right> - g(x, v_1) F(\pi, v_1) \left< b_{1^*,...,n}(\vec{v}), f^{-r} \right> - \]
\[- \sum_{w_r \in \pi_1} g(x, r) f(x, w_1) F(\pi_1; r, w_1) \left< b_{1^*,...,n}(w_1) b_{r^*,...,n}(\vec{v}), f^{-r} \right> + \]
\[+ \sum_{w_r \in \pi_1} g(x, w_r) g(w_r, x) F(\pi_1; r, w_r) \left< b_{1^*,...,n}(w_r) b_{r^*,...,n}(\vec{v}), f^{-r} \right>. \]
If we use in the first two equations the relations

\[
\left\langle b_{1}^{(+)}(v_{1})b_{k,*,2,...,(p+1),*}^{(+)}(x; \vec{v}_{1,k}), \hat{R}_{2,...,k}^{(+,+)}(\vec{v}_{1})e_{k} \right\rangle =
\begin{align*}
&= \left\langle b_{k,*,1,...,(p+1),*}^{(+)}(x; \vec{v}_{k}), \hat{R}_{1_{+,k+}}^{(+,+)}(v_{1}, x)\hat{R}_{2,...,k}^{(+,+)}(\vec{v}_{1})e_{k} \right\rangle \\
&= \left\langle b_{k,*,1,...,(p+1),*}^{(+)}(x; \vec{v}_{k}), \hat{R}_{1_{+,k+}}^{(+,+)}\hat{R}_{2,...,k}^{(+,+)}(\vec{v}_{1})e_{k} \right\rangle \\
\end{align*}
\]

that result from Lemma 2, and compare the results with the first two relations of the proven Lemma, we can see that it is enough to show for any \(v_{k} \in \mathcal{V} \) and any \(w_{r} \in \mathcal{W} \) the equalities

\[
g(v_{k}, x) f(v_{1}, v_{k}) \hat{R}_{1_{+,k+}}^{(+,+)}(v_{1}, v_{k}) = g(v_{k}, x) f(v_{1}, x) \hat{R}_{1_{+,k+}}^{(+,+)}(v_{1}, x) - g(v_{k}, v_{1}) g(v_{1}, x) \hat{R}_{1_{+,k+}}^{(+,+)}; \]

\[
g(x, w_{r}) f(w_{r}, w_{1}) \hat{R}_{1_{+,r+}}^{(-,-)}(w_{r}, w_{1}) =
\begin{align*}
&= g(x, w_{r}) f(x, w_{1}) \hat{R}_{1_{+,r+}}^{(-,-)}(x, w_{1}) - g(x, w_{1}) g(w_{1}, w_{r}) \hat{R}_{1_{+,r+}}^{(-,-)}. \\
\end{align*}
\]

However, this is equivalent to the identities

\[
g(v_{k}, x) g(v_{1}, v_{k}) = g(v_{k}, x) g(v_{1}, x) - g(v_{k}, v_{1}) g(v_{1}, x)
\]

\[
g(x, w_{r}) g(w_{r}, w_{1}) = g(x, w_{r}) g(x, w_{1}) - g(x, w_{1}) g(w_{1}, w_{r}).
\]

To prove the third and fourth equality of Lemma, we use the relations

\[
\begin{align*}
\left\langle b_{1}^{(+)}(v_{1})b_{k,*,2,...,(p+1),*}^{(+)}(x; \vec{v}_{1,k}), \hat{R}_{2,...,k}^{(+,+)}(\vec{v}_{1}) \hat{P}_{k:0,2,...,p+1}(\vec{v}_{1}) \hat{R}_{0_{+,1}}^{(+,+)}(x, v_{1}) e_{k} \right\rangle &=
\begin{align*}
&= \left\langle b_{k,*,1,...,(p+1),*}^{(+)}(x; \vec{v}_{k}), \hat{R}_{1_{+,k+}}^{(+,+)}(v_{1}, x) \hat{R}_{2,...,k}^{(+,+)}(\vec{v}_{1}) \hat{P}_{k:0,2,...,p+1}(\vec{v}_{1}) \hat{R}_{0_{+,1}}^{(+,+)}(x, v_{1}) e_{k} \right\rangle \\
&= \left\langle b_{k,*,1,...,(p+1),*}^{(+)}(x; \vec{v}_{k}), \hat{R}_{1_{+,k+}}^{(+,+)} \hat{R}_{2,...,k}^{(+,+)}(\vec{v}_{1}) \hat{P}_{k:0,2,...,p+1}(\vec{v}_{1}) \hat{R}_{0_{+,1}}^{(+,+)} e_{k} \right\rangle,
\end{align*}
\]

\[
\begin{align*}
\left\langle b_{1}^{(-)}(w_{1})b_{r,2,...,Q+1,(x; \vec{w}_{1,r}), \hat{R}_{1_{+,r+}}^{(-,-)}(x, w_{1}) \hat{R}_{2,...,r+}^{(-,-)}(\vec{w}_{1}) \hat{P}_{r:0,2,...,Q+1}(x, w_{1}) \hat{R}_{r_{+,2}}^{(-,-)}(x, w_{1}) e_{r} \right\rangle &=
\begin{align*}
&= \left\langle b_{r,2,...,Q+1}(x; \vec{w}_{r}), \hat{R}_{1_{+,r+}}^{(-,-)}(x, w_{1}) \hat{R}_{1_{+,r+}}^{(-,-)}(\vec{w}_{1}) \hat{P}_{r:0,2,...,Q+1}(\vec{w}_{1}) \hat{R}_{r_{+,2}}^{(-,-)} e_{r} \right\rangle \\
&= \left\langle b_{r,2,...,Q+1}(x; \vec{w}_{r}), \hat{R}_{1_{+,r+}}^{(-,-)} \hat{R}_{r_{+,2}}^{(-,-)}(\vec{w}_{1}) \hat{P}_{r:0,2,...,Q+1}(\vec{w}_{1}) \hat{R}_{r_{+,2}}^{(-,-)} e_{r} \right\rangle,
\end{align*}
\]

\[
\begin{align*}
\left\langle b_{1}^{(-)}(x)b_{r,2,...,Q+1,(w; \vec{w}_{1,r}), \hat{R}_{1_{+,r+}}^{(-,-)}(w, x) \hat{R}_{2,...,r+}^{(-,-)}(\vec{w}_{1}) \hat{P}_{r:0,2,...,Q+1}(w, x) \hat{R}_{r_{+,2}}^{(-,-)}(w, x) e_{r} \right\rangle &=
\begin{align*}
&= \left\langle b_{r,2,...,Q+1}(w; \vec{w}_{r}), \hat{R}_{1_{+,r+}}^{(-,-)}(w, x) \hat{R}_{1_{+,r+}}^{(-,-)}(\vec{w}_{1}) \hat{P}_{r:0,2,...,Q+1}(\vec{w}_{1}) \hat{R}_{r_{+,2}}^{(-,-)} e_{r} \right\rangle \\
&= \left\langle b_{r,2,...,Q+1}(w; \vec{w}_{r}), \hat{R}_{1_{+,r+}}^{(-,-)} \hat{R}_{r_{+,2}}^{(-,-)}(\vec{w}_{1}) \hat{P}_{r:0,2,...,Q+1}(\vec{w}_{1}) \hat{R}_{r_{+,2}}^{(-,-)} e_{r} \right\rangle.
\end{align*}
\]

20
that follow from Lemma 2. Then we get the equalities

\[
\mathbf{T}_0^{(+)}(x) \langle b_{1,\ldots,(P+1)^*}(v), e_k \rangle = F(x, v) \langle b_{1,\ldots,(P+1)^*}(v), \hat{T}_{0;1,\ldots,P+1}^{(+)}(x; \tilde{v}_1) e_k \rangle - g(x, v_1) F(v_1, \tilde{v}_1) \langle b_{1,\ldots,(P+1)^*}(x; \tilde{v}_1), \hat{T}_{1;0,1,\ldots,P+1}^{(+)}(v) e_k \rangle
\]

\[- g(x, v_1) F(v_1, \tilde{v}_1) \langle b_{1,\ldots,(P+1)^*}(x; \tilde{v}_1), \hat{T}_{1;0,1,\ldots,P+1}^{(+)}(v) e_k \rangle - \sum_{v_k \in \tau_1} F(v_k, \tilde{v}_1) g(v_1, v_k) \langle b_{1,\ldots,(P+1)^*}(x; \tilde{v}_k), \hat{R}_{1,k}^{(+)}(v_1) \hat{R}_{2,k}^{(+)}(\tilde{v}_1) \hat{T}_{k;0,1,\ldots,P+1}^{(+)}(v) e_k \rangle - g(x, v_1) g(v_1, v_k) \langle b_{1,\ldots,(P+1)^*}(x; \tilde{v}_k), \hat{R}_{1,k}^{(+)}(v_1) \hat{R}_{2,k}^{(+)}(\tilde{v}_1) \hat{T}_{k;0,1,\ldots,P+1}^{(+)}(v) e_k \rangle \]

\[
\mathbf{T}_0^{(-)}(x) \langle b_{1,\ldots,Q+1}(\tilde{w}), f^{-r} \rangle = F(x, v) \langle b_{1,\ldots,Q+1}(\tilde{w}), \hat{T}_{0;1,\ldots,Q+1}^{(-)}(x; \tilde{w}) f^{-r} \rangle - g(w_1, 1) F(v_1, w_1) \langle b_{1,\ldots,Q+1}(x; \tilde{w}_1), \hat{T}_{1;0,1,\ldots,Q+1}^{(-)}(\tilde{w}) f^{-r} \rangle - \sum_{w_r \in \tau_1} F(\tau_{1,r}, w_1) g(w_r, v_1) \langle b_{r,1,\ldots,Q+1}(x; \tilde{w}_r), \hat{R}_{1,r}^{(-)}(w_1) \hat{R}_{2,r}^{(-)}(\tilde{w}_1) \hat{T}_{r;0,2,\ldots,(Q+1)^*}(\tilde{w}_1) f^{-r} \rangle - g(w_r, v_1) g(w_1, x) \langle b_{r,1,\ldots,Q+1}(x; \tilde{w}_r), \hat{R}_{1,r}^{(-)}(w_1) \hat{R}_{2,r}^{(-)}(\tilde{w}_1) \hat{T}_{r;0,2,\ldots,(Q+1)^*}(\tilde{w}_1) f^{-r} \rangle \]

If we show that the relations

\[
g(x, v_k) f(v_k, v_1) \hat{R}_{1,k}^{(+)}(v) \hat{T}_{k;0,1,\ldots,P+1}^{(+)}(v) = g(x, v_k) f(v_k, v_1) \hat{R}_{1,k}^{(+)}(v) \hat{T}_{k;0,1,\ldots,P+1}^{(+)}(v) - g(x, v_1) g(v_1, v_k) \hat{R}_{1,k}^{(+)}(v) \hat{T}_{k;0,1,\ldots,P+1}^{(+)}(v) \hat{R}_{2,k}^{(+)}(\tilde{v}_1) \hat{T}_{k;0,1,\ldots,P+1}^{(+)}(v) \hat{R}_{0,1,\ldots,P+1}^{(+)}(v)
\]

\[
g(w_r, x) f(w_r, x) \hat{R}_{1,r}^{(-)}(w) \hat{T}_{r;0,1,\ldots,Q+1}^{(-)}(w) = g(w_r, x) f(w_r, x) \hat{R}_{1,r}^{(-)}(w) \hat{T}_{r;0,1,\ldots,Q+1}^{(-)}(w) - g(w_r, w_1) g(w_1, x) \hat{R}_{1,r}^{(-)}(w) \hat{T}_{r;0,2,\ldots,(Q+1)^*}(w_1) \hat{T}_{r;0,2,\ldots,(Q+1)^*}(w_1)
\]

are valid for any \(v_k \in \tau_1 \) and \(w_r \in \tau_1 \), the third and fourth equality in Lemma will hold. Since, by definition

\[
\hat{T}_{k;0,1,\ldots,P+1}^{(+)}(v) = \mathbf{T}_0^{(+)k}(v_1) \hat{R}_{0,1,\ldots,P+1}^{(+)}(v_1; \tilde{v})
\]

\[
\hat{T}_{k;0,2,\ldots,P+1}^{(+)}(v_1) = \mathbf{T}_0^{(+)k}(v_1) \hat{R}_{0,2,\ldots,P+1}^{(+)}(v_1; \tilde{v})
\]

\[
\hat{T}_{r;0,1,\ldots,Q+1}^{(-)}(w_1) = \mathbf{R}_0^{(-)}(w_r) \hat{R}_{0,1,\ldots,Q+1}^{(-)}(w_r; \tilde{w}) \hat{T}_0^{(-)}(w_r)
\]

\[
\hat{T}_{r;0,2,\ldots,(Q+1)^*}(w_1) = \mathbf{R}_0^{(-)}(w_r) \hat{R}_{0,2,\ldots,(Q+1)^*}(w_r; \tilde{w}) \hat{T}_0^{(-)}(w_r)
\]
it suffices to show that
\[
g(x, v_k) f(v_k, v_1) \hat{R}_{1, k}^{(+)(+)}(v_1; \bar{v}) \hat{R}_{0, 1, \ldots, P + 1}^{(+)(+)}(v_k; \bar{v}) =
\]
\[
= g(x, v_k) f(x, v_1) \hat{R}_{1, k}^{(+)(+)}(v_1, x) \hat{R}_{0, 2, \ldots, P + 1}^{(+)(+)}(v_1; \bar{v}) \hat{R}_{0, 1, \ldots, P + 1}^{(+)(+)}(x, v_k) -
\]
\[
- g(x, v_1) g(v_1, v_k) \hat{R}_{1, k}^{(+)(+)}(v_1; \bar{v}) \hat{R}_{0, 2, \ldots, P + 1}^{(+)(+)}(v_k; \bar{v}) \hat{R}_{0, 1, \ldots, P + 1}^{(+)(+)}(x, v_1) =
\]
\[
g(w_r, x) f(w_1, x) \hat{R}_{1, r}^{(-)(-)}(w_1, x) \hat{R}_{0, 1, \ldots, (Q + 1)}^{(-)(-)}(w_1; \bar{w_1}) \hat{R}_{0, 0, \ldots, (Q + 1)}^{(-)(-)}(w_r; \bar{w_1}) -
\]
\[
- g(w_r, w_1) g(w_1, x) \hat{R}_{1, r}^{(-)(-)}(w_1, x) \hat{R}_{0, 1, \ldots, (Q + 1)}^{(-)(-)}(w_1; \bar{w_1}) \hat{R}_{0, 0, \ldots, (Q + 1)}^{(-)(-)}(x, w_r)
\]
are true.

If we use the definitions of the products of R–matrices, we find that it is enough to show
\[
g(x, v_k) f(v_k, v_1) \hat{R}_{1, k}^{(+)(+)}(v_1, v_k) \ldots \hat{R}_{k - 1, k}^{(+)(+)}(v_{k - 1}, v_k) =
\]
\[
= g(x, v_k) f(x, v_1) \hat{R}_{1, k}^{(+)(+)}(v_1, x) \hat{R}_{2, k}^{(+)(+)}(v_2, v_k) \ldots \hat{R}_{k - 1, k}^{(+)(+)}(v_{k - 1}, v_k) =
\]
\[
- g(x, v_1) g(v_1, v_k) \hat{R}_{1, k}^{(+)(+)}(v_1, v_k) \hat{R}_{2, k}^{(+)(+)}(v_2, v_k) \ldots \hat{R}_{k - 1, k}^{(+)(+)}(v_{k - 1}, v_k) =
\]
\[
g(w_r, x) f(w_1, x) \hat{R}_{1, r}^{(-)(-)}(w_1, x) \hat{R}_{2, r}^{(-)(-)}(w_2, w_k) \ldots \hat{R}_{r - 1, r}^{(-)(-)}(w_{r - 1}, w_k) =
\]
\[
- g(w_r, w_1) g(w_1, x) \hat{R}_{1, r}^{(-)(-)}(w_1, x) \hat{R}_{2, r}^{(-)(-)}(w_2, w_k) \ldots \hat{R}_{r - 1, r}^{(-)(-)}(w_{r - 1}, w_k) =
\]

When we use the Yang–Baxter equations
\[
\hat{R}_{r + k}^{(+)(+)}(v_k, v_r) \hat{R}_{0, k}^{(+)(+)}(v_r, v_k) = \hat{R}_{0, r}^{(+)(+)}(v_r, v_k) \hat{R}_{r + k}^{(+)(+)}(v_k, v_r)
\]
\[
\hat{R}_{s + r}^{(-)(-)}(w, w_s) \hat{R}_{0, s}^{(-)(-)}(w_s, w) = \hat{R}_{0, s}^{(-)(-)}(w_s, w) \hat{R}_{s + r}^{(-)(-)}(w, w_s)
\]
sufficient to show that it is enough to prove the relations
\[
g(x, v_k) f(v_k, v_1) \hat{R}_{1, k}^{(+)(+)}(v_1, v_k) \hat{R}_{0, 1, \ldots, P + 1}^{(+)(+)}(v_k, v_1) =
\]
\[
= g(x, v_k) f(x, v_1) \hat{R}_{1, k}^{(+)(+)}(v_1, x) \hat{R}_{0, 2, \ldots, P + 1}^{(+)(+)}(v_1, x) =
\]
\[
- g(x, v_1) g(v_1, v_k) \hat{R}_{1, k}^{(+)(+)}(v_1; \bar{v}) \hat{R}_{0, 2, \ldots, P + 1}^{(+)(+)}(v_k; \bar{v}) \hat{R}_{0, 1, \ldots, P + 1}^{(+)(+)}(x, v_1) =
\]
\[
g(w_r, x) f(w_1, x) \hat{R}_{1, r}^{(-)(-)}(w_1, x) \hat{R}_{0, 2, \ldots, (Q + 1)}^{(-)(-)}(w_1, x) \hat{R}_{0, 1, \ldots, (Q + 1)}^{(-)(-)}(x, w_r) =
\]
\[
- g(w_r, w_1) g(w_1, x) \hat{R}_{1, r}^{(-)(-)}(w_1, x) \hat{R}_{0, 2, \ldots, (Q + 1)}^{(-)(-)}(w_1, x) \hat{R}_{0, 1, \ldots, (Q + 1)}^{(-)(-)}(x, w_r) =
\]
which can be verified by direct calculation.

Lemma 4. For any \(\vec{v}, \vec{w}\) and \(\vec{k}, \vec{r}\) the following relations are true:

\[
T_n^-(x) \langle b_{1,\ldots,v}^{(-)}(\vec{w}), f^{-\vec{r}} \rangle = F(x) + 1 + \eta \langle b_{1,\ldots,v}^{(-)}(\vec{w}), f^{-\vec{r}} \rangle T_n^-(x) + \\
\sum_{w_s \in \vec{w}} h(w_s, x) F(\vec{w}_s; w_s) T_0 \left(\langle b_{s_x}^{(-)}(x) b_{1,\ldots,v}^{(-)}(\vec{w}_s), \vec{w}_s \rangle \right) \\
T_n^-(x) \langle b_{1,\ldots,v}^{(+)}(\vec{v}), f^{\vec{k}} \rangle = F(x) - 1 - \eta \langle b_{1,\ldots,v}^{(+)}(\vec{v}), f^{\vec{k}} \rangle T_n^-(x) + \\
\sum_{v_x \in \vec{v}} \tilde{h}(x, v_x) F(\vec{v}_x; \vec{v}) T_0 \left(\langle b_{v_x}^{(+)}(x) b_{1,\ldots,v}^{(-)}(\vec{v}_x), \vec{v}_x \rangle \right) \\
T_n^+(x) \langle b_{1,\ldots,v}^{(\vec{k})}(\vec{w}), f^{-\vec{r}} \rangle = \langle b_{1,\ldots,v}^{(\vec{k})}(\vec{w}), T_n^+(x; \vec{w}) f^{-\vec{r}} \rangle - \\
\sum_{w_s \in \vec{w}} h(w_s, x) F(\vec{w}_s; w_s) \langle b_{s_x}^{(+)}(x) b_{1,\ldots,v}^{(-)}(\vec{w}_s), \vec{w}_s \rangle \\
T_n^+(x) \langle b_{1,\ldots,v}^{(-)}(\vec{v}), f^{\vec{k}} \rangle = \langle b_{1,\ldots,v}^{(-)}(\vec{v}), T_n^+(x; \vec{v}) f^{\vec{k}} \rangle - \\
\sum_{v_x \in \vec{v}} \tilde{h}(x, v_x) F(\vec{v}_x; \vec{v}) \langle b_{v_x}^{(-)}(x) b_{1,\ldots,v}^{(+)}(\vec{v}_x), \vec{v}_x \rangle \\
\text{where} \\
\hat{T}_{0;1,\ldots,Q^+}(x; \vec{w}) = \hat{R}_{0;1,\ldots,Q^+}(x; \vec{w}) \hat{T}_0^+(x), \\
\hat{T}_{0;1,\ldots,P^+}(x; \vec{v}) = \hat{T}_0^+(x) \hat{R}_{0;1,\ldots,P^+}(x; \vec{v}).

Proof: These statements can be proven by induction according to the number of elements \(P\) and \(Q\) of the sets \(\vec{v}\) and \(\vec{w}\). For \(P = 1\) and \(Q = 1\), these statements are proved in Lemma 3.

Assume that these statements hold for \(P\) and \(Q\) and denote \(\vec{v} = (v_1, \ldots, v_{P+1}), \vec{w} = (w_1, \ldots, w_{Q+1}), \vec{k} = (k_1, \ldots, k_{P+1})\) and \(\vec{r} = (r_1, \ldots, r_{Q+1})\).

To show the first statement, we use the equality

\[
T_n^+(x) \langle b_{1,\ldots,v}^{(-)}(\vec{w}), f^{-\vec{r}} \rangle = T_n^+(x) \langle b_{1,\ldots,v}^{(-)}(w_1), f^{-\vec{r}_1} \rangle \\
= \tilde{h}(w_1, x) \langle b_{1,\ldots,v}^{(-)}(w_1), f^{-\vec{r}_1} \rangle T_n^+(x) \langle b_{1,\ldots,v}^{(-)}(\vec{w}_1), f^{-\vec{r}_1} \rangle \\
+ \tilde{h}(w_1, x) T_0 \langle b_{1,\ldots,v}^{(+)}(x), \tilde{R}_{0;1,\ldots,Q^+}(\vec{w}_1) f^{-\vec{r}_1} \rangle T_0^-(w_1) \langle b_{1,\ldots,v}^{(-)}(\vec{w}_1), f^{-\vec{r}_1} \rangle.
\]
which results from Lemma 1. Using the induction assumption and Lemma 3, we will get

\[T_n(x) \langle b_{1,\ldots,Q+1}^{-}\tilde{w}, f^{-\tilde{r}} \rangle = F(\tilde{w}; x - n + 1 + \eta) \langle b_{1,\ldots,Q+1}^{-}\tilde{w}, f^{-\tilde{r}} \rangle T_n(x) + \]

\[+ h(w_1, x) F(\tilde{w}_1; w_1) T_0 \left(\langle b_{1,\ldots,Q+1}^{-}\tilde{w}, f^{-\tilde{r}} \rangle \right) \]

\[\sum_{w_s \in \mathcal{W}_1} \tilde{h}(w_1, x) \tilde{h}(w_s, x) F(\tilde{w}_1, w_s) T_0 \left(\langle b_{1,\ldots,Q+1}^{-}\tilde{w}, f^{-\tilde{r}} \rangle \right) \]

\[- \sum_{w_s \in \mathcal{W}_1} \tilde{h}(w_1, x) g(w_s, w_1) F(\tilde{w}_1; w_s) T_0 \left(\langle b_{1,\ldots,Q+1}^{-}\tilde{w}, f^{-\tilde{r}} \rangle \right) \]

When we use Lemma 2 and the relationship \(\hat{P}_{1,\ldots,Q+1}^{-} = \hat{I}_{1,\ldots,Q+1}^{+} \), we obtain the relation

\[\langle b_{0,\ldots,Q+1}^{-}\tilde{w}, f^{-\tilde{r}} \rangle = \]

\[\langle b_{0,\ldots,Q+1}^{-}\tilde{w}, f^{-\tilde{r}} \rangle \]

So it is enough to show that for any \(s = 2, \ldots, Q + 1 \) we have

\[\tilde{h}(w_s, x) f(w_1, w_s) \hat{R}_{1,\ldots,Q+1}^{-}\tilde{w}, f^{-\tilde{r}} \]

\[= \]

\[\sum_{w_s \in \mathcal{W}_1} \tilde{h}(w_1, x) \tilde{h}(w_s, x) \hat{R}_{1,\ldots,Q+1}^{-}\tilde{w}, f^{-\tilde{r}} \]

It follows from the definitions of the operators that in order to prove a statement, it is sufficient to prove the relation

\[\tilde{h}(w_s, x) f(w_1, w_s) \hat{R}_{1,\ldots,Q+1}^{-}\tilde{w}, f^{-\tilde{r}} \]

By direct calculation it is possible to show that the Yang–Baxter equation

\[\hat{R}_{1,\ldots,Q+1}^{-}\tilde{w}, f^{-\tilde{r}} \]
holds and by its repeated use we find that for the proof of the first statement it is sufficient to prove the relation
\[
\tilde{h}(w_s, x) f(w_1, w_s) \hat{R}^{(-, -)}_{1_s, s^*} (w_s, w_1) \hat{R}^{(-, -)}_{0_s, 1^*} (w_s, w_1) \hat{R}^{(-, -)}_{0_s, s^*} = \\
= \frac{\hat{h}(w_1, x)}{\tilde{h}(w_1, x)} \tilde{h}(w_s, x) \hat{R}^{(-, -)}_{0_s, s^*} - \tilde{h}(w_1, x) g(w_s, w_1) \hat{R}^{(-, -)}_{1_s, s^*} \hat{R}^{(-, -)}_{0_s, 1^*} \hat{R}^{(-, -)}_{0_s, s^*}.
\]

But this relationship is equivalent to the identity
\[
\tilde{h}(w_s, x) f(w_1, w_s) = \frac{\hat{h}(w_1, x)}{\tilde{h}(w_1, x)} \tilde{h}(w_s, x) - \tilde{h}(w_1, x) g(w_s, w_1).
\]

To prove the second relationship, we use Lemmas 1 and 3, from which it follows
\[
T^{-n}_n(x) \langle b^{(+)}_{1, \ldots, (P+1)^*}, (\tilde{v}), e_k \rangle = T^{-n}_n(x) \langle b^{(+)}_{1, \ldots, (P+1)^*}, (\tilde{v}), e_k \rangle = \\
= F(x + n - 1 - \eta; v) \langle b^{(+)}_{1, \ldots, (P+1)^*}, (\tilde{v}), e_k \rangle T^{-n}_n(x) + \\
+ \tilde{h}(x, v_1) F(v_1; \bar{v}) T_0 \left(\langle b^{(+)}_{1, \ldots, (P+1)^*}, (\tilde{v}), e_k \rangle \hat{R}^{(-, +)}_{0, 1, \ldots, (P+1)} (v_1) + \tilde{h}(x, v_1) F(v_1; \bar{v}) T_0 \left(\langle b^{(+)\ldots (P+1)^*}, (\tilde{v}), e_k \rangle \hat{R}^{(-, +)}_{0, 1, \ldots, (P+1)} (v_1) \right) - \\
- \sum_{v_1 \in \bar{v}} \tilde{h}(x, v_1) g(v_1, v_1) F(v_1; \bar{v}) T_0 \left(\langle b^{(+)\ldots (P+1)^*}, (v_1; \bar{v}), e_k \rangle \hat{R}^{(-, +)}_{0, 1, \ldots, (P+1)} (v_1) \right).
\]

According to Lemma 2,
\[
\langle b^{(+)\ldots (P+1)^*}, (v_1; \bar{v}), e_k \rangle = \langle b^{(+)\ldots (P+1)^*}, (v_1; \bar{v}), e_k \rangle T^{-n}_n(x) + \\
+ \tilde{h}(x, v_1) F(v_1; \bar{v}) T_0 \left(\langle b^{(+)\ldots (P+1)^*}, (v_1; \bar{v}), e_k \rangle \hat{R}^{(-, +)}_{0, 1, \ldots, (P+1)} (v_1) \right) - \\
- \sum_{v_1 \in \bar{v}} \tilde{h}(x, v_1) g(v_1, v_1) F(v_1; \bar{v}) T_0 \left(\langle b^{(+)\ldots (P+1)^*}, (v_1; \bar{v}), e_k \rangle \hat{R}^{(-, +)}_{0, 1, \ldots, (P+1)} (v_1) \right).
\]

and so
\[
T^{-n}_n(x) \langle b^{(+)\ldots (P+1)^*}, (\tilde{v}), e_k \rangle = F(x + n - 1 - \eta; v) \langle b^{(+)\ldots (P+1)^*}, (\tilde{v}), e_k \rangle T^{-n}_n(x) + \\
+ \tilde{h}(x, v_1) F(v_1; \bar{v}) T_0 \left(\langle b^{(+)\ldots (P+1)^*}, (\tilde{v}), e_k \rangle \hat{R}^{(-, +)}_{0, 1, \ldots, (P+1)} (v_1) \right) - \\
- \sum_{v_1 \in \bar{v}} \tilde{h}(x, v_1) g(v_1, v_1) F(v_1; \bar{v}) T_0 \left(\langle b^{(+)\ldots (P+1)^*}, (\tilde{v}), e_k \rangle \hat{R}^{(-, +)}_{0, 1, \ldots, (P+1)} (v_1) \right).
\]
Therefore, it is sufficient to show that the relation

\[\tilde{h}(x, v_\ell) f(v_\ell, v_1) \widehat{R}^{(+,+)}_{1,\ell}(v_1) \widehat{T}^{(+,+)}_{\ell;0,1,\ldots,p+1}(v_\ell) = \]

\[= \frac{\tilde{h}(x, v_1)\tilde{h}(x, v_\ell)}{h(x, v_1)} \tilde{h}(x, v_\ell) \widehat{R}^{(+,+)}_{2,\ell}(v_1) \widehat{T}^{(+,+)}_{\ell;0,2,\ldots,p+1}(v_\ell) - \]

\[-\tilde{h}(x, v_1) g(v_1, v_\ell) \widehat{R}^{(+,+)}_{1,\ell}(v_1) \widehat{T}^{(+,+)}_{\ell;0,1,\ldots,p+1}(v_\ell) \]

is valid for any \(\ell = 2, \ldots, P + 1 \).

When we use the definitions \(\widehat{R}^{(+,+)}_{1,\ell}(v_1), \widehat{R}^{(+,+)}_{2,\ell}(v_1), \widehat{T}^{(+,+)}_{\ell;0,1,\ldots,p+1}(v_\ell) \) and \(\widehat{T}^{(+,+)}_{\ell;0,2,\ldots,p+1}(v_\ell) \), we find that to prove the statement, it is enough to show the equality

\[\tilde{h}(x, v_\ell) f(v_\ell, v_1) \widehat{R}^{(+,+)}_{1,\ell}(v_1) \ldots \widehat{R}^{(+,+)}_{\ell-1,\ell}(v_\ell-1, v_\ell) \widehat{R}^{(+,+)}_{0,\ell}(v_\ell, v_1) = \]

\[= \frac{\tilde{h}(x, v_1)\tilde{h}(x, v_\ell)}{h(x, v_1)} \tilde{h}(x, v_\ell) \widehat{R}^{(+,+)}_{2,\ell}(v_1) \ldots \widehat{R}^{(+,+)}_{\ell-1,\ell}(v_\ell-1, v_\ell) \widehat{R}^{(+,+)}_{0,\ell}(v_\ell, v_1) - \]

\[-\tilde{h}(x, v_1) g(v_1, v_\ell) \widehat{R}^{(+,+)}_{1,\ell}(v_1) \ldots \widehat{R}^{(+,+)}_{\ell-1,\ell}(v_\ell-1, v_\ell) \widehat{R}^{(+,+)}_{0,\ell}(v_\ell, v_1) \]

By repeatedly using the Yang–Baxter equation

\[\widehat{R}^{(+,+)}_{k,\ell}(v_k, v_\ell) \widehat{R}^{(+,+)}_{0,\ell}(v_\ell, v_1) = \widehat{R}^{(+,+)}_{0,k}(v_\ell, v_k) \widehat{R}^{(+,+)}_{0,\ell}(v_\ell, v_1), \]

which can be verified by direct calculation, we find that to prove the statement it is enough to prove the relation

\[\tilde{h}(x, v_\ell) f(v_\ell, v_1) \widehat{R}^{(+,+)}_{1,\ell}(v_1) \ldots \widehat{R}^{(+,+)}_{\ell-1,\ell}(v_\ell-1, v_\ell) \widehat{R}^{(+,+)}_{0,\ell}(v_\ell, v_1) = \]

\[= \frac{\tilde{h}(x, v_1)\tilde{h}(x, v_\ell)}{h(x, v_1)} \tilde{h}(x, v_\ell) \widehat{R}^{(+,+)}_{0,\ell}(v_\ell, v_1) \]

which is equivalent to the identity

\[\tilde{h}(x, v_\ell) f(v_\ell, v_1) = \frac{\tilde{h}(x, v_1)\tilde{h}(x, v_\ell)}{h(x, v_1)} \tilde{h}(x, v_\ell) - \tilde{h}(x, v_1) g(v_1, v_\ell). \]

Assuming that the third statement holds for \(Q \), we get by Lemmas 1 and 3

\[\mathcal{T}^{(+)}_{0}(x) \left< b_{1,\ldots,Q+1}(\vec{w}), f^{-\vec{r}} \right> = \left< b_{1,\ldots,Q+1}(\vec{w}), T^{(+)}_{0,1,\ldots,Q+1}(x; \vec{w}) f^{-\vec{r}} \right> - \]

\[-\tilde{h}(w_1, x) F(w_1; \vec{w}_1) \left< b_{1,\ldots,Q+1}(\vec{w}_1), \tilde{R}^{(+,+)}_{1,\ldots,Q+1}(\vec{w}_1) f^{-\vec{r}} \right> T^{-n}(w_1) + \]

\[- \sum_{w_\ell \in \vec{w}_1} \tilde{h}(w_\ell, x) F(w_\ell; \vec{w}_1) \left< b_{\ldots,Q+1}(\vec{w}_1), \tilde{R}^{(+,+)}_{1,\ldots,Q+1}(\vec{w}_1) f^{-\vec{r}} \right> T^{-n}(w_\ell) + \]

\[+ \sum_{w_\ell \in \vec{w}_1} \tilde{h}(w_\ell, x) g(w_\ell, w_1) F(w_\ell, \vec{w}_1) \left< b_{1,\ldots,Q+1}(\vec{w}_1), \tilde{R}^{(+,+)}_{1,\ldots,Q+1}(\vec{w}_1) f^{-\vec{r}} \right> T^{-n}(w_\ell) \]
According to Lemma 2,

\[
\left\langle b_1^{(+)}(x)b_{s;2\ldots, Q+1}(w_1; \tilde{w}_1, s)\hat{R}_1^{(+,\ldots, -)}\hat{R}^{(+,\ldots, -)}_{0,\ldots, 1^*}(\tilde{w}_1) f^{-r}\right\rangle = \\
= \left\langle b_{s}^{(+)}(x) b_{1,\ldots, s; Q+1}(w_1; \tilde{w}_s)\hat{P}^{(+,\ldots, -)}\hat{R}^{(+,\ldots, -)}_{s; 0,\ldots, 1^*} \hat{R}^{(+,\ldots, -)}_{2,\ldots, s^*}(\tilde{w}_1) f^{-r}\right\rangle
\]

and so

\[
\tilde{T}_0^{(+)}(x)\left\langle b_{1,\ldots, Q+1}(\tilde{w}), f^{-r}\right\rangle = \left\langle b_{1,\ldots, Q+1}(\tilde{w}), \tilde{T}_0^{(+)}(x; \tilde{w}) f^{-r}\right\rangle - \\
- \tilde{h}(w_1, x) F(w_1; \tilde{w}_1) \left\langle b_{s}^{(+)}(x) b_{2,\ldots, Q+1}(\tilde{w}_1), \hat{P}^{(+,\ldots, -)}\hat{R}^{(+,\ldots, -)}_{0,\ldots, 1^*}(\tilde{w}_1) f^{-r}\right\rangle T^{-n}(w_1) - \\
- \sum_{w_s \in \tilde{w}_1} \tilde{h}(w_s, x) F(w_s; \tilde{w}_1) \left\langle b_{s}^{(+)}(x) b_{1,\ldots, Q+1}(w_1; \tilde{w}_s), \hat{P}^{(+,\ldots, -)}\hat{R}^{(+,\ldots, -)}_{0,\ldots, 1^*} \hat{R}^{(+,\ldots, -)}_{2,\ldots, s^*}(\tilde{w}_1) f^{-r}\right\rangle T^{-n}(w_s) + \\
+ \sum_{w_s \in \tilde{w}_1} \tilde{h}(w_1, x) g(w_1, w_s) F(w_s; \tilde{w}_1) \left\langle b_{s}^{(+)}(x) b_{1,\ldots, Q+1}(w_1; \tilde{w}_s), \hat{P}^{(+,\ldots, -)}\hat{R}^{(+,\ldots, -)}_{0,\ldots, 1^*} \hat{R}^{(+,\ldots, -)}_{2,\ldots, s^*}(\tilde{w}_1) f^{-r}\right\rangle T^{-n}(w_s)
\]

Therefore, it is enough to show that for any \(s = 2, \ldots, Q + 1 \) we have

\[
\tilde{h}(w_s, x) F(w_s, w_1)\hat{R}^{(+,\ldots, -)}_{0,\ldots, 1^*} \hat{R}^{(+,\ldots, -)}_{1^*,\ldots, s^*}(w_s, w_1) = \\
\tilde{h}(w_s, x) \hat{R}^{(+,\ldots, -)}_{0,\ldots, 1^*}(x, w_1) - \tilde{h}(w_1, x) g(w_1, w_s) \hat{R}^{(+,\ldots, -)}_{0,\ldots, 1^*} \hat{R}^{(+,\ldots, -)}_{2,\ldots, s^*}(w_1, \tilde{w}_s)
\]

If we use the definitions of these mappings, we find that these relations are equivalent to identity

\[
\tilde{h}(w_s, x) g(w_s, w_1) + \tilde{h}(w_s, x) \tilde{h}(w_1, x) + \tilde{h}(w_1, x) g(w_1, w_s) = 0.
\]

To prove the fourth statement, we use the relation

\[
\tilde{T}_0^{(-)}(x)\left\langle b_{1,\ldots, (P+1)^*}(\tilde{v}), e_{\ell} \right\rangle = \left\langle b_{1,\ldots, (P+1)^*}(\tilde{v}), \tilde{T}_0^{(-)}(x; \tilde{v}) e_{\ell} \right\rangle - \\
- \tilde{h}(x, v_1) F(\tilde{v}_1; v_1) \left\langle b_{2,\ldots, (P+1)^*}(\tilde{v}_1) b_{1}^{(-)}(x), \hat{P}^{(-,\ldots, -)}\hat{R}^{(-,\ldots, -)}_{0,\ldots, 1^*} e_{\ell}\right\rangle T^{-n}(v_1) - \\
- \sum_{v_\ell \in \tilde{v}_1} \tilde{h}(x, v_\ell) F(\tilde{v}_1, v_\ell) \left\langle b_{1,\ldots, e,\ldots, (P+1)^*}(\tilde{v}_\ell) b_{1}^{(-)}(x), \hat{P}^{(-,\ldots, -)}\hat{R}^{(-,\ldots, -)}_{0,\ldots, 1^*} e_{\ell}\right\rangle T^{-n}(v_\ell) + \\
+ \sum_{v_\ell \in \tilde{v}_1} \tilde{h}(x, v_1) g(v_\ell, v_1) F(\tilde{v}_1, v_\ell) \left\langle b_{e,\ldots, 2,\ldots, (P+1)^*}(v_1; \tilde{v}_1, \ell) b_{1}^{(-)}(x), \hat{P}^{(-,\ldots, -)}\hat{R}^{(-,\ldots, -)}_{0,\ldots, 1^*} e_{\ell}\right\rangle T^{-n}(v_\ell),
\]

which follows from Lemma 1 and the inductive assumption. According to Lemma 2, we have

\[
\left\langle b_{1,\ldots, (P+1)^*}(\tilde{v}_1, \ell) b_{1}^{(-)}(x), \hat{P}^{(-,\ldots, -)}\hat{R}^{(-,\ldots, -)}_{0,\ldots, 1^*} \hat{R}^{(-,\ldots, -)}_{2,\ldots, \ell}(\tilde{v}_1) e_{\ell}\right\rangle = \\
= \left\langle b_{1,\ldots, (P+1)^*}(\tilde{v}_\ell) b_{1}^{(-)}(x), \hat{P}^{(-,\ldots, -)}\hat{R}^{(-,\ldots, -)}_{0,\ldots, 1^*} \hat{R}^{(-,\ldots, -)}_{2,\ldots, \ell}(\tilde{v}_1) e_{\ell}\right\rangle
\]
and so
\[
\begin{align*}
\mathbf{T}_0^{(-)}(x)\langle b^{(+)}_{1^*};(P+1)^*,(\tilde{v}),(e_{\tilde{k}})\rangle &= \langle b^{(+)}_{1^*};(P+1)^*,(\tilde{v}),(\mathbf{T}_0^{(-)}_{0,1,...,P+1}(x;\tilde{v})e_{\tilde{k}})\rangle - \\
- \tilde{h}(x,v_1)F(\overline{\mathbf{v}},v_1)\langle b^{(+)}_{2^*};(P+1)^*,(\tilde{v}_1)b^{(-)}_{1}(x),\mathbf{T}_0^{(-)}_{1^*,1^*,0^*}(e_{\tilde{k}})T_n^a(v_1) - \\
- \sum_{v_\ell \in \mathbf{v}} \tilde{h}(x,v_\ell)F(\overline{\mathbf{v}},v_\ell)\langle b^{(+)}_{1^*};(P+1)^*,(\tilde{v}_\ell)b^{(-)}_{\ell}(x),
\begin{aligned}
\mathbf{\hat{R}}^{(-)}_{1^*,\ell^* + \mathbf{e}_+} &\mathbf{\hat{R}}^{(-)}_{0^*,\ell^* + \mathbf{e}_+} \mathbf{\hat{R}}^{(+)}_{1^*,\ell^* + \mathbf{e}_+} \mathbf{\hat{R}}^{(+)}_{0^*,\ell^* + \mathbf{e}_+} (x,v_\ell)e_{\tilde{k}}T_n^a(v_\ell) + \\
+ \sum_{v_\ell \in \mathbf{v}} \tilde{h}(x,v_\ell)g(v_\ell,v_1)F(\overline{\mathbf{v}},v_\ell)\langle b^{(+)}_{1^*};(P+1)^*,(\tilde{v}_\ell)b^{(-)}_{\ell}(x),
\begin{aligned}
\mathbf{\hat{R}}^{(-)}_{1^*,\ell^* + \mathbf{e}_+} &\mathbf{\hat{R}}^{(-)}_{0^*,\ell^* + \mathbf{e}_+} \mathbf{\hat{R}}^{(+)}_{1^*,\ell^* + \mathbf{e}_+} \mathbf{\hat{R}}^{(+)}_{0^*,\ell^* + \mathbf{e}_+} (x,v_\ell)e_{\tilde{k}}T_n^a(v_\ell)
\end{aligned}
\end{aligned}
\end{align*}
\]
Therefore, it is enough to show that equality
\[
\begin{align*}
\tilde{h}(x,v_\ell)g(v_\ell,\ell)\mathbf{\hat{R}}^{(-)}_{1^*,\ell^* + \mathbf{e}_+} (x,v_\ell) = \\
= \tilde{h}(x,v_\ell)\mathbf{\hat{R}}^{(-)}_{0^*,\ell^* + \mathbf{e}_+} (x,v_\ell) - \tilde{h}(x,v_1)g(v_\ell,v_1)\mathbf{\hat{R}}^{(+)}_{1^*,\ell^* + \mathbf{e}_+} (x,v_\ell)
\end{align*}
\]
holds for any \(\ell = 2, \ldots, P + 1\). And if we use the definitions of the involved operators, we find that this equality is equivalent to the relation
\[
\tilde{h}(x,v_\ell)g(v_\ell,\ell) + \tilde{h}(x,v_\ell)h(x,v_1) + \tilde{h}(x,v_1)g(v_\ell,v_1) = 0,
\]
which can be easily verified.

\textbf{Lemma 5.} For any \(\tilde{v}, \tilde{w}, \tilde{k}\) and \(\tilde{r}\) the relations
\[
\begin{align*}
T_n^a(x)\langle b^{(+)}_{1^*};(P+1)^*,(\tilde{v})b^{(-)}_{1}(\tilde{w}),e_{\tilde{k}} \otimes f^{-}\rangle &= \\
= F(\overline{\mathbf{v}},x)F(\overline{\mathbf{w}},x - n + 1 + \eta)\langle b^{(+)}_{1^*};(P+1)^*,(\tilde{v})b^{(-)}_{1}(\tilde{w}),e_{\tilde{k}} \otimes f^{-}\rangle T_n^a(x) - \\
- \sum_{v_\ell \in \mathbf{v}} g(v_\ell,\ell)F(\overline{\mathbf{v}},v_\ell)F(\overline{\mathbf{w}},v_\ell - n + 1 + \eta)\langle b^{(+)}_{1^*};(P+1)^*,(\tilde{v}_\ell)b^{(-)}_{1}(\tilde{w}),e_{\tilde{k}} \otimes f^{-}\rangle T_n^a(v_\ell) + \\
+ \sum_{w_s \in \mathbf{w}} \tilde{h}(w_s,x)F(\overline{\mathbf{w}},w_s)\mathbf{T}_0^{(+)}\langle b^{(+)}_{1^*};(P+1)^*,(\tilde{v})b^{(-)}_{1}(\tilde{w}),e_{\tilde{k}} \otimes f^{-}\rangle
\end{align*}
\]
\[
\begin{align*}
\mathbf{T}_0^{(+)}(x)\langle b^{(+)}_{1^*};(P+1)^*,(\tilde{v})b^{(-)}_{1}(\tilde{w}),e_{\tilde{k}} \otimes f^{-}\rangle &= \\
= F(x,\overline{\mathbf{v}})\langle b^{(+)}_{1^*};(P+1)^*,(\tilde{v})b^{(-)}_{1}(\tilde{w}),\mathbf{T}_0^{(+)}_{0,1,...,P+1,1^*};(P+1)^*,(\tilde{v})\overline{\mathbf{w}}e_{\tilde{k}} \otimes f^{-}\rangle - \\
- \sum_{v_\ell \in \mathbf{v}} g(x,v_\ell)F(v_\ell,\overline{\mathbf{v}})\langle b^{(+)}_{1^*};(P+1)^*,(\tilde{v}_\ell)b^{(-)}_{1}(\tilde{w}),e_{\tilde{k}} \otimes f^{-}\rangle - \\
- \sum_{w_s \in \mathbf{w}} \tilde{h}(w_s,x)F(\overline{\mathbf{w}},w_s)\mathbf{T}_0^{(-)}(x;\tilde{v},\overline{\mathbf{w}})e_{\tilde{k}} \otimes f^{-}\rangle T^-_{n}(w_s)
\end{align*}
\]
From Lemmas 3 and 4 we get

$$T_n(x)\langle b^{(+)}_{1,\ldots,p,\ldots} (\bar{v}) b^{(-)}_{1,\ldots,Q} (\bar{w}), e_k \otimes f^{-}\rangle =$$

$$= F(\pi; x) F(x - n + 1 + \eta; \bar{v}) \langle b^{(+)}_{1,\ldots,p,\ldots} (\bar{v}) b^{(-)}_{1,\ldots,Q} (\bar{w}), e_k \otimes f^{-}\rangle T_n(x) -$$

$$- \sum_{w_s \in \bar{w}} g(w_s, x) F(w_s; \bar{w}) F(x - n + 1 + \eta; \bar{v}) \langle b^{(+)}_{1,\ldots,p,\ldots} (\bar{v}) b^{(-)}_{1,\ldots,Q}(\bar{w}), e_k \otimes f^{-}\rangle T_n(x),$$

$$\widehat{R}_{1,\ldots,s,s}^{(-),s}(\bar{w}) e_k \otimes f^{-}\rangle T_n(w_s) +$$

$$+ \sum_{w_s \in \bar{w}} F(w_s; w_s) \widehat{T}_0 (x, \pi) F(w_s; \bar{v}) F(\bar{w}; \pi) T_n(x) -$$

$$- \sum_{w_s \in \bar{w}} g(w_s, x) F(\bar{w}; \bar{v}) F(x; \bar{w}) F(w_s; \bar{v}) F(\pi; x) \langle b^{(+)}_{1,\ldots,p,\ldots} (\bar{v}) b^{(-)}_{1,\ldots,Q}(\bar{w}), e_k \otimes f^{-}\rangle T_n(v)$$

hold.

PROOF: In proving this Lemma, we will often use the equation

$$\langle b^{(+)}_{1,\ldots,p,\ldots}(\bar{v}) b^{(-)}_{1,\ldots,Q}(\bar{w}), e_k \otimes f^{-}\rangle =$$

$$= \langle b^{(+)}_{1,\ldots,p,\ldots}(\bar{v}), e_k \rangle \langle b^{(-)}_{1,\ldots,Q}(\bar{w}), f^{-}\rangle = \langle b^{(-)}_{1,\ldots,Q}(\bar{w}), f^{-}\rangle \langle b^{(+)}_{1,\ldots,p,\ldots}(\bar{v}), e_k \rangle,$$

which follows from the relation $b^{(+)}_{1,\ldots,p,\ldots}(x) b^{(-)}_{1,\ldots}(y) = b^{(-)}_{1,\ldots}(y) b^{(+)}_{1,\ldots}(x)$. We calculate action of the operators $T_{\pm n}(x)$ and $T_0^{(\pm)} (x)$ on the element $\langle b^{(+)}_{1,\ldots,p,\ldots}(\bar{v}) b^{(-)}_{1,\ldots,Q}(\bar{w}), e_k \otimes f^{-}\rangle$ in both orders and then we get assertion of Lemma 5 by comparing these expressions.

From Lemmas 3 and 4 we get

$$T_n(x)\langle b^{(+)}_{1,\ldots,p,\ldots} (\bar{v}) b^{(-)}_{1,\ldots,Q} (\bar{w}), e_k \otimes f^{-}\rangle = T_n(x) \langle b^{(+)}_{1,\ldots,p,\ldots} (\bar{v}), e_k \rangle \langle b^{(-)}_{1,\ldots,Q} (\bar{w}), f^{-}\rangle =$$

$$= F(\pi; x) F(\bar{v}; x) - n + 1 + \eta) \langle b^{(+)}_{1,\ldots,p,\ldots} (\bar{v}) b^{(-)}_{1,\ldots,Q}(\bar{w}), e_k \otimes f^{-}\rangle T_n(x) -$$

$$- \sum_{v \in \bar{v}} g(v, x) F(v; \pi) F(\bar{v}; v) F(x - n + 1 + \eta; \bar{v}) \langle b^{(+)}_{1,\ldots,p,\ldots} (\bar{v}) b^{(-)}_{1,\ldots,Q}(\bar{w}), e_k \otimes f^{-}\rangle T_n(v) +$$

$$\widehat{R}_{1,\ldots,\ell}^{(+),\ell}(\bar{v}) e_k \otimes f^{-}\rangle T_n(v) +$$

$$+ \sum_{w_s \in \bar{w}} F(w_s; \bar{w}) \langle b^{(+)}_{1,\ldots,p,\ldots}(\bar{v}) b^{(-)}_{1,\ldots,Q}(\bar{w}), e_k \rangle \langle b^{(-)}_{1,\ldots,Q}(\bar{w}), f^{-}\rangle =$$

$$= \langle b^{(+)}_{1,\ldots,p,\ldots}(\bar{v}) b^{(-)}_{1,\ldots,Q}(\bar{w}), e_k \rangle \langle b^{(-)}_{1,\ldots,Q}(\bar{w}), f^{-}\rangle,$$
In the first term the vectors \(\vec{v} \) and \(\vec{w} \) do not change, in the second the components \(v_\ell \) and \(x \) are interchanged and the third contains expressions in which \(w_\ell \) and \(x \) are interchanged.

On the other hand, we also have

\[
T_n(x) \langle b_{1,\ldots,p,}^{(+)}(\vec{v}) b_{1,\ldots,Q}^{(-)}(\vec{w}), e_k \otimes f^{-r} \rangle = T_n(x) \langle b_{1,\ldots,Q}^{(-)}(\vec{w}), f^{-r} \rangle \langle b_{1,\ldots,p,}^{(+)}(\vec{v}), e_k \rangle =
\]

\[
= F(\vec{v}; x) F(\vec{w}; x - n + 1 + \eta) \langle b_{1,\ldots,p,}^{(+)}(\vec{v}) b_{1,\ldots,Q}^{(-)}(\vec{w}), e_k \otimes f^{-r} \rangle T_n(x) -
\]

\[
- \sum_{v_\ell \in \mathbb{W}} F(\vec{v}_\ell; v_\ell) \left(g(v_\ell, x) F(\vec{w}; x - n + 1 + \eta) \langle b_{1,\ldots,p,}^{(+)}(\vec{v}) b_{1,\ldots,Q}^{(-)}(\vec{w}), e_k \otimes f^{-r} \rangle \right) -
\]

\[
- \sum_{w_\ell \in \mathbb{W}} \tilde{h}(w_\ell, v_\ell) F(\vec{w}_\ell; w_\ell) T_0 \left(b_{1,\ldots,\tilde{\ell},\ldots,p,}^{(+)}(\vec{v}) b_{1,\ldots,\tilde{\ell},\ldots,Q}^{(-)}(w_\ell) b_{1,\ldots,\tilde{\ell},\ldots,Q}^{(-)}(w_\ell) b_{1,\ldots,\tilde{\ell},\ldots,Q}^{(-)}(w_\ell), \tilde{\Pi}_s^{(+,-)} \tilde{R}_s^{(+,-)}(\vec{w}), e_k \otimes f^{-r} \right) T_r(x) +
\]

\[
+ \sum_{w_\ell \in \mathbb{W}} \tilde{h}(w_\ell, x) F(\vec{w}_\ell; w_\ell) T_0 \left(b_{1,\ldots,\tilde{\ell},\ldots,p,}^{(+)}(\vec{v}) b_{1,\ldots,\tilde{\ell},\ldots,Q}^{(-)}(w_\ell), \tilde{\Pi}_s^{(+,-)} \tilde{R}_s^{(+,-)}(\vec{w}), e_k \otimes f^{-r} \right)
\]

In this expression the vectors \(\vec{v} \) and \(\vec{w} \) do not change in the first term, in the second \(x \) is changed by \(v_\ell \) and in the third \(x \) and \(w_\ell \) are interchanged. If we compare these two expressions, we get the first statement of Lemma 5.

We get the second relation when we compare the equalities

\[
\tilde{T}_0^{(+)}(x) \langle b_{1,\ldots,p,}^{(+)}(\vec{v}) b_{1,\ldots,Q}^{(-)}(\vec{w}), e_k \otimes f^{-r} \rangle = \tilde{T}_0^{(+)}(x) \langle b_{1,\ldots,p,}^{(+)}(\vec{v}), e_k \rangle \langle b_{1,\ldots,Q}^{(-)}(\vec{w}), f^{-r} \rangle =
\]

\[
= F(\vec{v}; \vec{v}) \langle b_{1,\ldots,p,}^{(+)}(\vec{v}) b_{1,\ldots,Q}^{(-)}(\vec{w}), \tilde{T}_0^{(+)}(x) \rangle \langle b_{1,\ldots,p,}^{(+)}(\vec{v}), e_k \otimes f^{-r} \rangle -
\]

\[
- \sum_{v_\ell \in \mathbb{W}} F(\vec{v}_\ell; v_\ell) \left(g(v_\ell, x) \tilde{T}_0^{(+)}(x) \langle b_{1,\ldots,p,}^{(+)}(\vec{v}) b_{1,\ldots,Q}^{(-)}(\vec{w}), e_k \otimes f^{-r} \rangle \right) -
\]

\[
- \sum_{w_\ell \in \mathbb{W}} \tilde{h}(w_\ell, v_\ell) F(\vec{w}_\ell; w_\ell) \left(\tilde{T}_0^{(+)}(x) \langle b_{1,\ldots,p,}^{(+)}(\vec{v}) b_{1,\ldots,Q}^{(-)}(\vec{w}), e_k \otimes f^{-r} \rangle \right) T_r(x) -
\]

\[
+ \sum_{w_\ell \in \mathbb{W}} \tilde{h}(w_\ell, x) F(\vec{w}_\ell; w_\ell) \left(\tilde{T}_0^{(+)}(x) \langle b_{1,\ldots,p,}^{(+)}(\vec{v}) b_{1,\ldots,Q}^{(-)}(\vec{w}), e_k \otimes f^{-r} \rangle \right)
\]

30
The third equality is obtained by comparing the equalities

\[T_{-n}^-(x) \langle b_{1^n,\ldots,p^n}^+(\vec{v}) b_{1^n,\ldots,Q}^-(\vec{w}), e_{\vec{k}} \otimes f^{-r} \rangle = T_{-n}^-(x) \langle b_{1^n,\ldots,p^n}^+(\vec{v}), e_{\vec{k}} \rangle \langle b_{1^n,\ldots,Q}^-(\vec{w}), f^{-r} \rangle = \]

\[= F(x; \vec{w}) F(x + n - 1 - \eta; \vec{v}) \langle b_{1^n,\ldots,p^n}^+(\vec{v}) b_{1^n,\ldots,Q}^-(\vec{w}), e_{\vec{k}} \otimes f^{-r} \rangle T_{-n}^-(w) + \]

\[+ \sum_{vL \in V} \hat{h}(x, vL) F(vL; \vec{v}) T_{-n}^-(x) \langle b_{1^n,\ldots,p^n}^+(\vec{v}) b_{1^n,\ldots,Q}^-(\vec{w}), e_{\vec{k}} \rangle \langle b_{1^n,\ldots,Q}^-(\vec{w}), f^{-r} \rangle \]

\[T_{-n}^-(x) \langle b_{1^n,\ldots,p^n}^+(\vec{v}) b_{1^n,\ldots,Q}^-(\vec{w}), e_{\vec{k}} \otimes f^{-r} \rangle = T_{-n}^-(x) \langle b_{1^n,\ldots,Q}^-(\vec{w}), e_{\vec{k}} \rangle \langle b_{1^n,\ldots,p^n}^+(\vec{v}), f^{-r} \rangle = \]

\[= F(x; \vec{w}) F(x + n - 1 - \eta; \vec{v}) \langle b_{1^n,\ldots,Q}^-(\vec{w}) b_{1^n,\ldots,p^n}^+(\vec{v}), e_{\vec{k}} \otimes f^{-r} \rangle T_{-n}^-(w) + \]

\[+ \sum_{vL \in V} \hat{h}(x, vL) F(vL; \vec{v}) F(x; \vec{w}) T_{-n}^-(x) \langle b_{1^n,\ldots,p^n}^+(\vec{v}) b_{1^n,\ldots,Q}^-(\vec{w}), e_{\vec{k}} \rangle \langle b_{1^n,\ldots,Q}^-(\vec{w}), f^{-r} \rangle \]

\[- \sum_{vL \in V} \sum_{vR \in V} g(x, w) \hat{h}(w, vR) F(vR; \vec{v}) F(w; \vec{w}) - \]

\[\sum_{w \in \vec{w}} \sum_{v \in \vec{v}} \hat{h}(w, v) F(w; \vec{w}) F(v; \vec{v}) - \]

\[\sum_{w \in \vec{w}} \sum_{v \in \vec{v}} \hat{h}(w, v) F(v; \vec{v}) F(w; \vec{w}) - \]

\[\sum_{w \in \vec{w}} \sum_{v \in \vec{v}} g(x, w) \hat{h}(w, v) F(v; \vec{v}) F(w; \vec{w}) \]
and the fourth relation is the result of equalities

\[
\tilde{T}^{-1}_0(x)\left\langle b^{(+)\ldots, p^{(*)}}_1(v), b^{(-)}_1, Q(w), e^{\gamma}_k \otimes f^{-\sigma}\right\rangle = \tilde{T}^{-1}_0(x)\left\langle b^{(+)\ldots, p^{(*)}}_1(v), e^{\gamma}_k \right\rangle b^{(-)}_1, Q(w), f^{-\sigma}\right\rangle = \\
= F(\bar{w}; x)\left\langle b^{(+)\ldots, p^{(*)}}_1(v), b^{(-)}_1, Q(w), e^{\gamma}_k \otimes f^{-\sigma}\right\rangle - \\
- \sum_{u_s \in \mathcal{M}} g(w_s, x) F(\bar{w}; w_s)\left\langle b^{(+)\ldots, p^{(*)}}_1(v), b^{(-)}_1, Q(w_i; w_s), e^{\gamma}_k \otimes f^{-\sigma}\right\rangle - \\
- \sum_{u_s \in \mathcal{M}} \sum_{u_t \in \mathcal{M}} \tilde{h}(x, v_t)\tilde{h}(w_s, v_t)F(\bar{w}; w_s)F(\bar{w}_t; v_t) \\
\text{Tr}_0\left\langle b^{(+)\ldots, p^{(*)}}_1(v), b^{(-)}_1, Q(w), e^{\gamma}_k \otimes f^{-\sigma}\right\rangle \\
- \sum_{u_t \in \mathcal{M}} \tilde{h}(x, v_t)F(\bar{w}; v_t)F(\bar{w}_t; v_t) - n + 1 + \eta)\left\langle b^{(+)\ldots, p^{(*)}}_1(v), b^{(-)}_1, Q(w), e^{\gamma}_k \otimes f^{-\sigma}\right\rangle - \\
- \sum_{u_s \in \mathcal{M}} \sum_{u_t \in \mathcal{M}} \tilde{h}(x, v_t) F(\bar{w}_t; v_t)F(\bar{w}; w_s)F(\bar{w}_t; v_t) - \\
+ \sum_{u_t \in \mathcal{M}} \sum_{u_s \in \mathcal{M}} g(w_s, x)\tilde{h}(w_s, v_t)F(\bar{w}_t; v_t)F(\bar{w}; w_s) \\
b^{(+)\ldots, p^{(*)}}_1(v), b^{(-)}_1, Q(x; w_s), e^{\gamma}_k \otimes f^{-\sigma}\right\rangle T^n(v_t) + \\
- \sum_{u_s \in \mathcal{M}} \sum_{u_t \in \mathcal{M}} \tilde{h}(x, v_t) F(\bar{w}_t; v_t)F(\bar{w}; w_s)F(\bar{w}_t; v_t) \\
b^{(+)\ldots, p^{(*)}}_1(v), b^{(-)}_1, Q(x; w_s), e^{\gamma}_k \otimes f^{-\sigma}\right\rangle T^n(v_t) \\
\tilde{T}^{-1}_0(x)\left\langle b^{(+)\ldots, p^{(*)}}_1(v), b^{(-)}_1, Q(w), e^{\gamma}_k \otimes f^{-\sigma}\right\rangle = \tilde{T}^{-1}_0(x)\left\langle b^{(-)}_1, Q(w), e^{\gamma}_k \otimes f^{-\sigma}\right\rangle = \\
= F(\bar{w}; x)\left\langle b^{(+)\ldots, p^{(*)}}_1(v), b^{(-)}_1, Q(w), e^{\gamma}_k \otimes f^{-\sigma}\right\rangle - \\
- \sum_{u_s \in \mathcal{M}} g(w_s, x) F(\bar{w}; w_s)\left\langle b^{(+)\ldots, p^{(*)}}_1(v), b^{(-)}_1, Q(w_i; w_s), e^{\gamma}_k \otimes f^{-\sigma}\right\rangle - \\
- \sum_{u_t \in \mathcal{M}} \tilde{h}(x, v_t)F(\bar{w}; v_t)F(\bar{w}_t; v_t) - n + 1 + \eta)\left\langle b^{(+)\ldots, p^{(*)}}_1(v), b^{(-)}_1, Q(w), e^{\gamma}_k \otimes f^{-\sigma}\right\rangle - \\
- \sum_{u_s \in \mathcal{M}} \sum_{u_t \in \mathcal{M}} \tilde{h}(x, v_t) F(\bar{w}_t; v_t)F(\bar{w}; w_s)F(\bar{w}_t; v_t) - \\
+ \sum_{u_t \in \mathcal{M}} \sum_{u_s \in \mathcal{M}} g(w_s, x)\tilde{h}(w_s, v_t)F(\bar{w}_t; v_t)F(\bar{w}; w_s) \\
b^{(+)\ldots, p^{(*)}}_1(v), b^{(-)}_1, Q(x; w_s), e^{\gamma}_k \otimes f^{-\sigma}\right\rangle T^n(v_t) + \\
- \sum_{u_s \in \mathcal{M}} \sum_{u_t \in \mathcal{M}} \tilde{h}(x, v_t) F(\bar{w}_t; v_t)F(\bar{w}; w_s)F(\bar{w}_t; v_t) \\
b^{(+)\ldots, p^{(*)}}_1(v), b^{(-)}_1, Q(x; w_s), e^{\gamma}_k \otimes f^{-\sigma}\right\rangle T^n(v_t) \\
\tilde{T}^{-1}_0(x)\left\langle b^{(+)\ldots, p^{(*)}}_1(v), b^{(-)}_1, Q(w), e^{\gamma}_k \otimes f^{-\sigma}\right\rangle = \tilde{T}^{-1}_0(x)\left\langle b^{(-)}_1, Q(w), e^{\gamma}_k \otimes f^{-\sigma}\right\rangle = \\
= F(\bar{w}; x)\left\langle b^{(+)\ldots, p^{(*)}}_1(v), b^{(-)}_1, Q(w), e^{\gamma}_k \otimes f^{-\sigma}\right\rangle - \\
- \sum_{u_s \in \mathcal{M}} g(w_s, x) F(\bar{w}; w_s)\left\langle b^{(+)\ldots, p^{(*)}}_1(v), b^{(-)}_1, Q(w_i; w_s), e^{\gamma}_k \otimes f^{-\sigma}\right\rangle - \\
- \sum_{u_t \in \mathcal{M}} \tilde{h}(x, v_t)F(\bar{w}; v_t)F(\bar{w}_t; v_t) - n + 1 + \eta)\left\langle b^{(+)\ldots, p^{(*)}}_1(v), b^{(-)}_1, Q(w), e^{\gamma}_k \otimes f^{-\sigma}\right\rangle - \\
- \sum_{u_s \in \mathcal{M}} \sum_{u_t \in \mathcal{M}} \tilde{h}(x, v_t) F(\bar{w}_t; v_t)F(\bar{w}; w_s)F(\bar{w}_t; v_t) - \\
+ \sum_{u_t \in \mathcal{M}} \sum_{u_s \in \mathcal{M}} g(w_s, x)\tilde{h}(w_s, v_t)F(\bar{w}_t; v_t)F(\bar{w}; w_s) \\
b^{(+)\ldots, p^{(*)}}_1(v), b^{(-)}_1, Q(x; w_s), e^{\gamma}_k \otimes f^{-\sigma}\right\rangle T^n(v_t) + \\
- \sum_{u_s \in \mathcal{M}} \sum_{u_t \in \mathcal{M}} \tilde{h}(x, v_t) F(\bar{w}_t; v_t)F(\bar{w}; w_s)F(\bar{w}_t; v_t) \\
b^{(+)\ldots, p^{(*)}}_1(v), b^{(-)}_1, Q(x; w_s), e^{\gamma}_k \otimes f^{-\sigma}\right\rangle T^n(v_t)