A concise review of irradiation sequelae on the cardiovascular system in pulmonary malignancies

Omer Sager*, Murat Beyzadeoglu, Ferrat Dincoglan, Selcuk Demiral, Bora Uysal, Hakan Gamsiz, Fatih Ozcan, Onurhan Colak and Bahar Dirican

Department of Radiation Oncology; University of Health Sciences, Gulhane Medical Faculty, Ankara, Turkey

Received: 09 June, 2020
Accepted: 13 June, 2020
Published: 15 June, 2020

*Corresponding author: Dr. Omer Sager, Department of Radiation Oncology, University of Health Sciences, Gulhane Medical Faculty, Gn.Tevfik Saglam Cad. 06018, Etilik, Kecioren, Ankara, Turkey, Tel: +90 312 304 4683; Fax: +90 312 304 4680; E-mail: omersager@gmail.com

Keywords: Lung cancer; Heart; Cardiotoxicity; Irradiation sequelae; Radiation therapy (RT); Cardiac sparing

ORCID: https://orcid.org/0000-0001-7866-2598

https://www.peertechz.com

Introduction

Pulmonary malignancies including Small Cell Lung Cancer (SCLC) and Non-Small Cell Lung Cancer (NSCLC) are frequent cancers and remain to be a leading cause of cancer related mortality worldwide [1-3]. Many lives are lost due to these cancers despite advances in diagnosis, staging, and management. Nevertheless, main modalities for management of pulmonary malignancies include surgery, Radiation Therapy (RT), and systemic therapies. There have been improvements in all treatment modalities and therapeutic strategies. Combined modality management has been adopted for achieving improved therapeutic outcomes, however, excessive toxicity has been a concern in particularly intensified therapeutic regimens with potential to cause treatment interruptions, morbidity, and even mortality in some patients.

RT has an integral role in management of both SCLC and NSCLC. It may be used as the single definitive modality, as part of curative combined modality management, and also for salvage treatment or recurrent disease settings in selected patients. Nevertheless, radiation induced toxicity constitutes an important concern in radiotherapeutic management of pulmonary malignancies. Among the adverse effects of pulmonary irradiation, radiation induced cardiotoxicity deserves utmost consideration. Several studies consistently underscore the importance of minimizing heart exposure as much as possible to avoid untowards cardiac morbidity and mortality.

There have been substantial advances which contributed to improved radiotherapeutic management of SCLC and NSCLC including improved staging and target definition by incorporation of molecular imaging, automatic segmentation procedures, Image Guided Radiation Therapy (IGRT), Breathing Adapted Radiation Therapy (BART), Adaptive Radiation Therapy (ART), Intensity Modulated Radiation Therapy (IMRT). Nevertheless, there is room for further achievements. Proton therapy for management of lung cancer has been suggested as a relatively newer treatment modality with promising results. Unique characteristics of proton therapy may allow for improved cardiac sparing along with reduced integral dose. Future trials are warranted to shed light on contemporary management of pulmonary malignancies with optimal cardiac sparing and reduced irradiation sequelae. Herein, we provide a concise review of irradiation sequelae on the cardiovascular system in pulmonary malignancies.
Radiation Therapy (BART), Adaptive Radiation Therapy (ART), Intensity Modulated Radiation Therapy (IMRT), and radiosurgical applications such as Stereotactic Radiosurgery (SRS) and Stereotactic Ablative Body Radiotherapy (SABR) [4-50]. These advances are aimed at improving treatment outcomes for patients suffering from pulmonary malignancies. While enhancing the efficacy of management is a desired endpoint, improving the toxicity profile of radiation delivery thereby improving morbidity outcomes and quality of life are also important. Radiation induced toxicity constitutes an important concern in radiotherapeutic management of pulmonary malignancies. Herein, we provide a concise review of irradiation sequelae on the cardiovascular system in pulmonary malignancies.

Irradiation sequelae on the cardiovascular system in pulmonary malignancies

Given the considerable benefit of RT either as a single treatment modality or as part of combined modality management of both SCLC and NSCLC, irradiation has been traditionally incorporated in therapy of most patients with lung cancers. However, RT may cause a plethora of complications and adverse effects in treated patients including fatigue, sore throat and difficulties in swallowing with dysphagia, odynophagia, and esophagitis particularly in the setting of synchronous chemoradiotherapy administration, skin toxicity in the forms of dry, red, itching and peeling skin, pulmonary changes in the form of radiation induced lung injury which may manifest as radiation pneumonitis with dyspnea, fibrosis, radiation myelitis, and cardiovascular effects [51–54]. Cardiovascular effects of irradiation may include pericarditis, restrictive heart diseases, valvulopathies and coronary artery disease. Vigilant follow up is an indispensable part of management for RT of pulmonary malignancies given the risk of acute and late adverse effects including cardiotoxicity. Meticulous follow up is important taking into account the late manifestation of some cardiovascular side effects manifesting after long periods after RT. Among the adverse effects of pulmonary irradiation, radiation induced cardiotoxicity deserves utmost concern as addressed by several authors [54–66]. These studies consistently underscored the importance of minimizing cardiac exposure as much as possible to avoid untowards morbidity and mortality. Severity and incidence of radiation induced cardiovascular adverse effects may be affected by coexisting cardiovascular risk factors of the irradiated patients along with the RT dose and exposed cardiac volume [54]. A comprehensive review by Mrotzek et al. addressed cardiovascular damage associated with chest irradiation [54]. Even low dose cardiac exposure may adversely affect on cardiovascular structures, and dose to even small volumes of the left ventricle may be of particular concern. Combined modality management with RT and chemotherapy such as anthracyclines may add to the risk and severity of cardiotoxicity. Patients with smoking history may have a higher risk of cardiovascular complications. Advanced irradiation techniques with improved cardiac sparing capability may decrease cardiac exposure and relevant adverse effects. Breathing maneuvers, particle therapy, IGRT, IMRT, and focused irradiation techniques may offer an improved toxicity profile. The study by Wang et al. assessing cardiac toxicity after RT for stage III NSCLC reported that cardiac events were relatively frequent following high dose thoracic irradiation and adverse effects were independently related with cardiac dose and baseline cardiovascular risk profile [55]. A review on cardiac toxicity of lung cancer RT underscores the importance of limiting heart exposure since heart dose may be a predictor of worse survival as shown in dose escalation trials [56]. A practical recommendation may be keeping the whole heart volume receiving 25 Gy or more below 10% and cardiac exposure should be minimized as much as possible in view of the relatively limited data in the literature [56]. The study by Wong et al. reported that higher maximum doses to bilateral ventricles were associated with poorer survival for patients undergoing SABR, which suggests that adverse effects of irradiation on the cardiovascular system should be considered even when the contemporary and sophisticated technologies are utilized for radiation delivery [66]. Clearly, dose volume parameters should be individually assessed thoroughly for consideration of irradiation sequelae on a patient by patient basis. Other factors such as the use of concomitant systemic agents and preexisting cardiac diseases and comorbidities should also be taken into account. Utilization of contemporary techniques should be strongly considered to improve the toxicity profile of radiation delivery for radiotherapeutic management of pulmonary malignancies.

Conclusion and Future Perspectives

Pulmonary malignancies including SCLC and NSCLC remain to be a leading cause of cancer related deaths around the globe. While RT composes an integral treatment modality for both SCLC and NSCLC, toxicity of irradiation is an important concern. Recent years have witnessed significant improvements in the discipline of radiation oncology with adoption of state of the art techniques in clinical practice. IGRT, BART, ART, and IMRT allow for improved patient management with reduced risks of radiation induced morbidity and mortality. Nevertheless, there is room for further achievements. More recently, proton therapy for management of lung cancer has been suggested as a relatively newer treatment modality with promising results [67–70]. Unique characteristics of proton therapy may allow for improved cardiac sparing along with reduced integral dose [67–70]. Combinations of contemporary techniques with proton therapy may further improve the toxicity profile of radiation delivery despite the need for stepwise clinical adaptation in light of high level evidence. Future trials are warranted to shed light on contemporary management of pulmonary malignancies with optimal cardiac sparing and reduced irradiation sequelae.

References

1. Miller KD, Noguiera L, Mariotto AB, Rowland JH, Yabroff KR, et al. (2019) Cancer treatment and survivorship statistics. CA Cancer J Clin 69: 363-385. Link: https://bit.ly/2BBDd9A

2. Siegel RL, Miller KD, Jemal A (2019) Cancer statistics. CA Cancer J Clin 69: 7-34. Link: https://bit.ly/3d1Gk8C

3. Torre LA, Siegel RL, Jemal A (2016) Lung Cancer Statistics. Adv Exp Med Biol 893: 1-19. Link: https://bit.ly/3eeLSH6

Citation: Sager G, Beyzaedeoglu M, Dincoglan F, Demiral S, Uysal B, et al. (2020) A concise review of irradiation sequelae on the cardiovascular system in pulmonary malignancies. J Surg Surgical Res 6(1): 79-083.DOI: https://dx.doi.org/10.17352/2455-2968.000102
4. Saer Ö, Dinçolan F, Gamsız H, Demiral S, Uysal B, et al. (2012) Evaluation of the impact of integrated [18f]fluoro-2-deoxy-2-glucose positron emission tomography/computed tomography imaging on staging and radiotherapy treatment volume definition of non-small cell lung cancer. Juhane Med J 54: 220-227. Link: https://bit.ly/3hl5T1S

5. Sager O, Dinçolan F, Demiral S, Uysal B, Gamsız H, et al. (2019) Utility of Molecular Imaging with 2-deoxy-2-[Fluorine-18] Fluoro-DGlucose Positron Emission Tomography (18FDG PET) for Small Cell Lung Cancer (SCLC): A Radiation Oncology Perspective. Curr Radiopharm 12: 4-10. Link: https://bit.ly/3dYYvA

6. Özsava EE, Telatar Z, Dirican B, Saer Ö, Beyzadeoğlu M (2014) Automatic segmentation of anatomical structures from CT scans of thorax for RTP. Comput Math Methods Med 2014: 472890. Link: https://bit.ly/3e59kQc

7. Sager O, Dinçolan F, Demiral S, Uysal B, Gamsız H, et al. (2019) Breathing adaptive radiation therapy for leukemia relapse in the breast: A case report. World J Clin Oncol 10: 369-374. Link: https://bit.ly/3fFYTm

8. Sager O, Dinçolan F, Uysal B, Demiral S, Gamsız H, et al. (2018) Evaluation of adaptive radiotherapy (ART) by use of re-planning the tumor bed boost with repeated computed tomography (CT) simulation after whole breast irradiation (WBI) for breast cancer patients having clinically evident seroma. Jpn J Radiol 36: 401-406. Link: https://bit.ly/2XyUv6

9. Sager O, Dinçolan F, Uysal B, Demiral S, Gamsız H, et al. (2017) Splenic Irradiation: A Concise Review of the Literature. J App Hem Bl Tran 1: 101. Link: https://bit.ly/3ho0tas

10. Sager O, Dinçolan F, Demiral S, Uysal B, Gamsız H, et al. (2020) Adaptive radiation therapy of breast cancer by repeated imaging during irradiation. World J Radiol 12: 68-75. Link: https://bit.ly/3hS6Bli

11. Sager O, Beyzadeoğlu M, Dinçolan F, Demiral S, Uysal B, et al. (2015) Adaptive splenic radiotherapy for symptomatic splenomegaly management in myeloproliferative disorders. Tumori 101: 84-90. Link: https://bit.ly/37pxnS

12. Dinçolan F, Beyzadeoğlu M, Sager O, Oysal K, Kahya Y, et al. (2013) Dosimetric evaluation of critical organs at risk in mastectomized left-sided breast cancer radiotherapy using breath-hold technique. Tumori 99: 76-82. Link: https://bit.ly/3T0Fs5s

13. Sager O, Beyzadeoğlu M, Dinçolan F, Oysal K, Kahya YE, et al. (2012) Evaluation of active breathing control-moderate deep inspiration breath-hold in definitive non-small cell lung cancer radiotherapy. Neoplasma 59: 333-340. Link: https://bit.ly/3cVnNnH

14. Sager O, Beyzadeoğlu M, Dinçolan F, Oysal K, Kahya YE, et al. (2012) The Role of Active Breathing Control-Moderate Deep Inspiration Breath-Hold (ABC-mDIBH) Usage in non-Mastectomized Left-sided Breast Cancer Radiotherapy: A Dosimetric Evaluation UHOD - Uluslararasi Hematoloji-Onkoloji Dergisi 22: 147-155. Link: https://bit.ly/3OEvKvH

15. Sager O, Dinçolan F, Demiral S, Beyzadeoğlu M (2020) Radiosurgery Treatment Volume Determination for Brain Lymphomas with and without Incorporation of Multimodality Imaging. Journal of Medical Pharmaceutical and Allied Sciences 9: 2398-2404. Link: https://bit.ly/3IfpauWN

16. Dinçolan F, Beyzadeoğlu M, Sager O, Demiral S, Uysal B, et al. (2020) A Concise Review of Irradiation for Temporal Bone Chondrometastoma (TBC). Arch Otolaryngol Rhinol 6: 016-020. Link: https://bit.ly/3d24WQA

17. Sager O, Demiral S, Dinçolan F, Beyzadeoğlu M (2020) Target Volume Definition for Stereotactic Radiosurgery (SRS) Of Cerebral Cavernous Malformations (CCMs). Canc Therapy Oncol Int J 15: 555917. Link: https://bit.ly/3eaCw02

18. Dinçolan F, Demiral S, Sager O, Beyzadeoğlu M (2020) Utility of Multimodality Imaging Based Target Volume Definition for Radiosurgery of Trigeminal Neuralgia: An Original Article. Biomed J Sci Tech Res 26: 19728-19732. Link: https://bit.ly/3fxhyn

19. Demiral S, Beyzadeoğlu M, Sager O, Dinçolan F, Gamsız H, et al. (2014) Evaluation of Linear Accelerator (Linac)-Based Stereotactic Radiosurgery (Srs) for the Treatment of Cerebral Cavernous Hemangioma. World Journal of Surgical Research 24: 123-129. Link: https://bit.ly/3hQ6Vzn

20. Demiral S, Beyzadeoğlu M, Dinçolan F, Sager O (2020) Assessment of Target Volume Definition for Radiosurgery of Atypical Meningiomas with Multimodality Imaging. Journal of Hematology and Oncology Research 3: 14-21. Link: https://bit.ly/3TvByPm

21. Sager O, Dinçolan F, Demiral S, Gamsız H, Uysal B, et al. (2019) Utility of Magnetic Resonance Imaging (MRI) Imaging in Volume Definition for Radiosurgery of Acoustic Neuromas. Int J Cancer Clin Res 6: 119. Link: https://bit.ly/2IVd8mB

22. Dinçolan F, Sager O, Uysal B, Demiral S, Gamsız H, et al. (2019) Evaluation of hypofractionated stereotactic radiotherapy (HFSRT) to the resection cavity after surgical resection of brain metastases: A single center experience. Indian J Cancer 56: 202-206. Link: https://bit.ly/3HqEYgt

23. Dinçolan F, Sager O, Demiral S, Gamsız H, Uysal B, et al. (2019) Fractionated stereotactic radiosurgery for locally recurrent brain metastases after failed stereotactic radiosurgery. Indian J Cancer 56: 151-156. Link: https://bit.ly/3fn3Ay

24. Dinçolan F, Sager O, Demiral S, Beyzadeoğlu M (2019) Incorporation of Multimodality Imaging in Radiosurgery Planning for Cerebral Cavernous Hemangioma: An Original Article. SAJ Cancer Sci 6: 103. Link: https://bit.ly/3d5Tnkp

25. Beyzadeoğlu M, Sager O, Dinçolan F, Demiral S (2019) Evaluation of Target Definition for Stereotactic Reirradiation of Recurrent Glioblastoma. Arch Can Res 7: 3. Link: https://bit.ly/3ULUc5P

26. Sager O, Dinçolan F, Demiral S, Beyzadeoğlu M (2019) Evaluation of Radiosurgery Target Volume Determination for Meningiomas Based on Computed Tomography (CT) And Magnetic Resonance Imaging (MRI). Cancer Sci Res Open Access 5: 1-4. Link: https://bit.ly/30AiSw5

27. Demiral S, Sager O, Dinçolan F, Beyzadeoğlu M (2019) Assessment of Computed Tomography (CT) And Magnetic Resonance Imaging (MRI) Based Radiosurgery Treatment Planning for Plutitary Adenomas. Canc Therapy Oncol Int J 13: 555857. Link: https://bit.ly/37xBOZi

28. Dinçolan F, Sager O, Demiral S, Beyzadeoğlu M (2019) Multimodality Imaging for Radiosurgical Management of Arteriovenous Malformations. Asian Journal of Pharmacy, Nursing and Medical Sciences 7: 7-12. Link: https://bit.ly/2MU6fRQ

29. Demiral S, Sager O, Dinçolan F, Beyzadeoğlu M (2019) Assessment of target definition based on Multimodality imaging for radiosurgical Management of glomus jugulare tumors (GJTs). Canc Therapy Oncol Int J 15: 555909. Link: https://bit.ly/3hvPde7

30. Sager O, Dinçolan F, Demiral S, Gamsız H, Uysal B, et al. (2019) Evaluation of the Impact of Magnetic Resonance Imaging (MRI) on Gross Tumor Volume (GTV) Definition for Radiation Treatment Planning (RTP) of Inoperable High Grade Gliomas (HGGs). Concepts in Magnetic Resonance Part A 2019: 4282754. Link: https://bit.ly/3fLDRl

31. Demiral S, Sager O, Dinçolan F, Uysal B, Gamsız H, et al. (2018) Evaluation of Target Volume Determination for Single Session Stereotactic Radiosurgery (SRS) of Brain Metastases. Canc Therapy Oncol Int J 12: 555848. Link: https://bit.ly/2MKXRS1K

32. Demiral S, Dinçolan F, Sager O, Uysal B, Gamsız H, et al. (2018) Contemporary Management of Meningiomas with Radiosurgery. Int J Radiol Imaging Technol 80: 187-190. Link: https://bit.ly/3f929vY

33. Dinçolan F, Sager O, Demiral S, Uysal B, Gamsız H, et al. (2017) Radiosurgery for recurrent glioblastoma: a review article. Neurol Disord Therap 1: 1-5. Link: https://bit.ly/2UMBvoe
Citation: Sager O, Beyzadeoglu M, Dincoglan F, Demiral S, Uysal B, et al. (2020) A concise review of irradiation sequelae on the cardiovascular system in pulmonary malignancies. J Surg Surgical Res 6(1): 79-083.DOI: https://dx.doi.org/10.17352/2455-2968.000102

67. Ferris MJ, Martin KS, Switchenko JM, Kayode OA, Wolf J, et al. (2019) Sparing Cardiac Substructures With Optimized Volumetric Modulated Arc Therapy and Intensity Modulated Proton Therapy in Thoracic Radiation for Locally Advanced Non-small Cell Lung Cancer. Pract Radiat Oncol 9: e473-e481. Link: https://bit.ly/3d1HFwa

68. Liu C, Sio TT, Deng W, Shan J, Daniels TB, et al. (2018) Small-spot intensity-modulated proton therapy and volumetric-modulated arc therapies for patients with locally advanced non-small-cell lung cancer: A dosimetric comparative study. J Appl Clin Med Phys 19: 140-148. Link: https://bit.ly/2ADSjfb

69. Li X, Kaboli zadeh P, Yan D, Qin A, Zhou J, et al. (2018) Improve dosimetric outcome in stage III non-small-cell lung cancer treatment using spot-scanning proton arc (SPArc) therapy. Radiat Oncol 13: 35. Link: https://bit.ly/3ftVe9f

70. Gyoshi O, Liao Z (2020) Proton therapy for locally advanced non-small cell lung cancer. Br J Radiol 93: 20190378. Link: https://bit.ly/3hv9UXx