Acquired Platelet Dysfunction as a Cause of Bleeding Diathesis: Two Case Studies

Abstract

The aims are to highlight the importance of recognizing that clinically significant platelet dysfunction can develop in the background of known causes of bleeding disorders. In this paper, we discuss two patients who developed acquired platelet dysfunction due to eosinophilia with underlying mild Hemophilia A and IgA paraproteinemia that complicated a clinical picture of acquired von Willebrand disease.

Case 1: An 8-yr-old boy with known mild haemophilia A presented with abdominal pain and gross haematuria which only partially response to Factor VIII concentrate and cryoprecipitate. Tests revealed significant peripheral eosinophilia (AEC 3200/mm3), prolonged bleeding time >15 seconds, FVIIIc 31%, normal vWF: Ag and RICOF assays. Functional platelet studies were abnormal and a diagnosis of Acquired Platelet Dysfunction with Eosinophilia (APDE) was made. His symptoms resolved with standard treatment of eosinophilia with anti-histamines, diethylcarbamazine and albendazole.

Case 2: A 57-year-old lady was admitted with melena following commencement of oral prednisolone for recently diagnosed Sjogrens syndrome. UGI showed multiple gastric erosions with no response to standard treatment. She was a known diabetic and treated for carcinoma breast 4 years ago. A year before this admission, she had her first bleeding episode with epistaxis following septoplasty (APTT prolonged at 40s, not investigated). She finally responded to fresh frozen plasma and cryoprecipitate. Investigations showed APTT 55sec, protein electrophoresis/immune fixation-small spike with IgA lambda and normal SFLC ratio. The mucosal bleeds with partial response to cryoprecipitate and FFP was suggestive of aVWD. Functional platelet studies were abnormal and a diagnosis of paraprotein associated acquired platelet dysfunction was made. She responded to rituximab with reduction in IgA levels and no further bleeds and remains on bortezomib.

Keywords: Bleeding disorders; Acquired platelet dysfunction; Eosinophilia; Paraprotein

Introduction

Haemorrhagic diathesis is usually caused due to a defect in coagulation or hypocoagulability due to deficiency in coagulation factors. The overall hemostatic process, however, is a complex phenomenon and not only involves coagulation factors, fibrinolysis including optimum platelet number and function. The diagnostic approach to patients with bleeding tendencies usually involves a detailed history taking, clinical examination and standard laboratory tests before considering highly specialized tests that is not available to most routine laboratories. Clinicians generally would not consider an alternative explanation to bleeding diathesis in a patient who already has a condition known to cause hypocoagulability. We present two cases each of whom had an underlying bleeding disorder but did not respond to standard treatment and an alternative explanation was required to be made to prevent serious complications and unwarranted treatment.

Case Presentation

Case 1: A previously well 8-yr-old boy was diagnosed with mild haemophilia A after he presented with haemorrhagic itchy lesions on the scalp and ecchymosed forearm. A few weeks later, he presented with abdominal pain and gross haematuria which only
Acquired Platelet Dysfunction as a Cause of Bleeding Diathesis: Two Case Studies

Discussion

The two cases described aims to convey the message that acquired platelet dysfunction (APD) should be suspected when the nature of the bleed is out of proportion to the coagulation defect identified [1]. It is not that the two causes of acquired platelet dysfunction described in the text and in the background of bleeding disorders in both patients is highlighted, such as in Case 1 where the bleeding did not respond to therapy directed against the disorder (FVIII infusion for hemophilia A) and in Case 2 where infusion of Haemate P (vWF rich and FVIII concentrate) did not control mucosal bleeds as it is expected to be seen in acquired vWD. The syndrome of Acquired Platelet Dysfunction with Eosinophilia (APDE) was described in detail by Suvatte V et al. [2] in 62 cases, with the very first description by Mitrakul C [3]. Since then this syndrome has been described in children in the Asian subcontinent and appears to be the commonest cause of purpura in Thai children [4], but also recognized that APD can affect anyone who resides or visits the tropics [5]. In a study of 168 children aged 13 months to 12.6 years with APDE, while parasitic infection was proven in only 56% of children eosinophilia was seen in 86%, raised IgE >100 IU/ml in 83% of children and prolonged bleeding time in half of them (53%), but there was no correlation between eosinophil count, serum total IgE and the severity of bleeding symptoms [6]. Abnormal platelet adhesiveness was found in 33% of cases. Abnormal platelet aggregation induced by collagen was the most sensitive test in these patients, while Ristocetin-induced platelet aggregation was normal in all children. Decreased or absence of platelet dense granules was detected in some patients that led to the hypothesis of acquired storage pool deficiency of platelets as the cause of APDE.

The hallmark of APDE are recurrent spontaneous bruising, eosinophilia, normal hematocrit, normal platelet counts, normal routine coagulation assays but prolonged bleeding time, abnormal platelet adhesiveness and associated parasitic infection. Platelet aggregometry with abnormal aggregation to collagen is seen in most of these patients that helps to differentiate with aspirin induced defects and vWD [3-6]. Antibodies to platelet factors are not detected. As intestinal parasitic infection is the most common cause of eosinophilia, anti-helminthic therapy is usually helpful as an adjunct treatment in the Asian subcontinent. Stool examination showed strong parasites, such as ascaris, hookworm, enterobius in 50-60% of cases. The bleeding tendency in APDE is transient and usually last for 3-6 months but may last longer. If bleeding is severe or patients require urgent surgery then platelet concentrate infusion is required. There is no role of FFP or cryoprecipitate in the management of this condition. No mortality related to bleeding has been observed in any of the 150+ cases described so far in the medical literature. Patients and their parents need to be reassured about the prognosis and transient nature of symptoms.

In paraprotein associated APD, nonspecific immunoglobulin adherence to the platelet surface results in platelet dysfunction [7,8]. Therefore, platelet transfusion has limited efficacy as the transfused platelets quickly become dysfunctional. Certain drugs [9,10] and procedures [11,12] that can affect platelet function need to be considered in these complicated patients.
Acquired Platelet Dysfunction as a Cause of Bleeding Diathesis: Two Case Studies

(Table 1), but removal of the paraprotein is generally effective in improving platelet function and helps in correcting the bleeding diathesis. Djunic I et al. [13] showed that paraproteins bind to specific platelet receptors such as the platelet vWF receptor GPIb and platelet collagen receptor GPVI (decreased CD42b and CD36 expression on flow cytometry, respectively). On addition of paraprotein to platelet-rich plasma from normal healthy donors, thereby affecting their function [13]. New generation instruments such as multiplate multiple electrode aggregrometry using whole blood impedancemetry allow multiple functional studies to be performed on platelets using agonists (such as ADP test, RISTO test, COL test among others) using the help of multiple channels on the analyzer [14]. In paraprotein associated aVWD, the laboratory reports will show a normal PT and prolonged APTT which corrects on mixing. The FVIII level may be low normal and vWF function analysis using RiCof assay clinches the diagnosis. While aspirin treatment causes abnormal platelet aggregation with ADP, collagen and arachidonic acid, in von Willebrand disease the platelet agglutination with ristocetin is absent. When there is life threatening bleeds or when the paraprotein cannot be completely eliminated, intravenous gamma globulin infusions can be tried as this prolongs vWF survival and increases vWF levels (for about 3 weeks) but is recommended to be tried in combination of VWF-containing factor concentrate and depending on the severity of bleeding and baseline vWF levels. Intravenous gamma globulin will possibly work best when the paraprotein is IgG and in the setting of IgG auto antibodies. However, it is important to realize that these treatment options are short-lived, therefore proper patient counseling is required in the management of this challenging disorder.

Table 1: Causes and abnormalities identified in acquired platelet dysfunction.

Cause	Description of cause	Abnormalities identified
Drugs	Aspirin, COX-1 inhibitors (Ibuprofen, Diclofenac), ADP receptor antagonists or thienopyridines (clopidogrel, prasugrel), GPIIb/IIIa inhibitors (Abciximab, Tirofiban, Eptifibatide), Dipyridamole, Cilostazol, Beta lactam antibiotics, Selective Serotonin Reuptake Inhibitors, Nitrates, Alcohol, Phenothiazines, Prednisolone (long-term)	Aspirin, COX-1 inhibitors: inhibit formation of thromboxane A2
SSRIs reduce platelet serotonin and aggregation on functional tests (effect enhanced with Aspirin/NSAIDs)		
Nitrates: inhibit platelet aggregation by increasing cGMP		
Procedure-related (temporary)	Cardiopulmonary bypass, extracorporeal membrane oxygenation (ECMO), splenectomy, left ventricular assist devices	Cardiopulmonary bypass: P-selectin expression decreases affecting platelet activation11
ECMO: platelet aggregation defective with ADP12		
Hematological and hematological malignancies	Acquired platelet dysfunction with eosinophilia (APDE)	APDE: Abnormal platelet storage pool with no aggregation with ADP, collagen, ristocetin
	Myeloproliferative disorders	Myeloproliferative disorders: loss of high molecular weight vWF multimers lead to bleeding
	Myelodysplasia	Myelodysplasia: abnormal thrombopoiesis lead to dysfunctional platelets
	Paraproteinemia-induced APD	Paraprotein-induced APD: Nonspecific immunoglobulin adherence to the platelet surface; paraprotein binding onto platelet receptors13
	Amyloidosis	Amyloidosis: acquired deficiencies of vitamin K-dependent factors, particularly factor X, through adsorption to the amyloid fibrils7
Renal disorder	Uremia	Impaired platelet-vessel wall interaction
Autoimmune	Immune thrombocytopenia with platelet dysfunction	Antibodies against gpllb/IIa or gplb-IX receptor

Citation: Khan S, Bhartia S, Bhattacharya S (2017) Acquired Platelet Dysfunction as a Cause of Bleeding Diathesis: Two Case Studies. Hematol Transfus Int J 4(1): 00075. DOI: 10.15406/htij.2017.04.00075
Conclusion

Identification of acquired platelet dysfunction and isolating the cause with knowledge of how that may affect bleeding risk are important in optimizing patient care with existing complex autoimmune and hematological disorders. The presence of slightly low platelet count or abnormal coagulation does not exclude APD from the diagnostic conundrum particularly as other bleeding or coagulation disorders can coexist in the same patient as it occurred on both our patients.

Acknowledgement

We thank the patients for providing consent to publish the reports, Christian Medical College & Hospital Vellore for the platelet studies and Dr Mammen Chandy at Tata Memorial Center Kolkata for his helpful advice.

References

1. Kucukkaya RD, Lopez JA (2012) Acquired disorders of platelet function. In: Hoffman R, et al. (Eds.), Hematology: Basic Principles and Practice. (6th edn), Elsevier Saunders, Philadelphia, USA.
2. Suvatte V, Mahasandana C, Tamphaichitr V, Tuchinda S (1979) Acquired platelet dysfunction with eosinophilia: study of platelet function in 62 cases. Southeast Asian J Trop Med Public Health 10(3): 358-367.
3. Mitrakul C (1975) Transient, spontaneous bruising with long bleeding time and normal platelet count. Am J Clin Pathol 63(1): 81-86.
4. Laosombat V, Wongchanchailert M, Sattayasevana B, Kietthubthew S, Wiriyasateinkul A (2001) Acquired platelet dysfunction with eosinophilia in children in the south of Thailand. Platelets 12(1): 5-14.
5. Lee AC (2012) Unusual hematologic disease affecting Caucasian children traveling to Southeast Asia: acquired platelet dysfunction with eosinophilia. Hematol Rep 4(1): e5.
6. Ruíz Sáez A, Sifontes LN, Fajjoo R, Cerdá G, Pinto AA, et al. (2005) Platelet dysfunction-eosinophilia syndrome in parasitized Venezuelan children. Am J Trop Med Hyg 73(2): 381-385.
7. Zangari M, Elce SF, Pink L, Tricot G (2007) Hemostatic dysfunction in paraproteinemias and amyloidosis. Semin Thromb Hemost 33(4): 339-349.
8. Kumar S, Pruthi RK, Nichols WI (2002) Acquired von Willebrand disease. Mayo Clin Proc 77(2): 181-187.
9. Scharf RE (2012) Drugs that affect platelet function. Semin Thromb Hemost 38(8): 865-883.
10. Schafer AJ (1999) Effects of nonsteroidal anti-inflammatory therapy on platelets. Am J Med 106(5B): 25S-36S.
11. Varghese SJ, Unni MK, Mukundan N, Rai R (2005) Platelet functions in cardiopulmonary bypass surgery. Med J Armed Forces India 61(4): 316-321.
12. Saini A, Hartman ME, Gage BE, Said AZ, Gazit AZ, et al. (2016) Incidence of Platelet Dysfunction by Thromboelastography-Platelet Mapping in Children Supported with ECMO: A Pilot Retrospective Study. Front Pediatr 3: 116.
13. Djunic I, Elezovic I, Vucic M, Rajic TS, Ristic AK, et al. (2013) Specific binding of paraprotein to platelet receptors as a cause of platelet dysfunction in monoclonal gammopathies. Acta Haematol 130(2): 101-107.
14. Valarche V, Desconclois C, Routkedjet T, Dreyfus M, Proulle V (2011) Multiplate whole blood impedance aggregometry: a new tool for von Willebrand disease. J Thromb Haemost 9(8): 1645-1647.