Abstract

The *Licania macrophylla* Benth species, popularly known as “anauerá”, “anuera”, “anoerá”, “ana-wyra” and “wayãpi”, is widely found in the Amazon. Here, riverine communities use different parts of the plant for the treatment of amoebiasis, dysenteric disorders, wound healing and anti-inflammatory actions. The present study aims to investigate the gastroprotective activity of ethanolic extract of *L. macrophylla* stem bark in experimental animals. For this purpose, different experimental models for gastric ulcer induction were performed, such as absolute ethanol (99.5%), acidified ethanol (60%\(0.3M\) HCl), and the non-steroidal anti-inflammatory drug model (indomethacin). In this study, 25-30g female Swiss mice were used for the absolute and acidified ethanol experimental models, and 200-300g female Wistar rats were used for the non-steroidal anti-inflammatory drug model. Each experimental model was divided into groups of five (5) animals for each tested dose of *L. macrophylla* extract (100, 250 and 625 mg/kg), as well as for the negative (vehicle) and positive (carbenoxolone) control groups. All administrations were performed orally, with a volume ratio of a maximum of 10 ml/kg body weight for mice and 100 ml/kg for rats. After each experiment, stomachs were evaluated to determine the following parameters: total lesion area, ulcer percentage, ulcerative lesion index, cure percentage. Statistical analysis was performed by one-way ANOVA followed by Dunnett post-test, considering significant values when \(p<0.05\). The ethanolic extract of *L. macrophylla* showed gastroprotective effect against gastric lesions induced by absolute ethanol, significantly reducing the established parameters (250 and 625 mg/kg), promoting a cure rate of 53.76\(\pm\)5.71% and 84.15\(\pm\)1.89%, respectively. For the experimental protocol performed with acidified ethanol the results showed that the animals treated with the *L. macrophylla* ethanolic extract at the doses of 250 and 625 mg/kg, lesions decreased significantly when analyzing the established parameters, obtaining as a cure percentage of 52.34\(\pm\)4.83% and 83.86\(\pm\)2.46%, respectively. The ethanolic extract of *L. macrophylla* in the non-steroidal anti-inflammatory gastric lesion induction model was able to significantly reduce lesions for all doses tested (100, 250 and 625 mg/kg) in the established parameters, with a cure percentage (%) of 84.46\(\pm\)1.33%, 75.00\(\pm\)3.71% and 72.27\(\pm\)2.06%, respectively. In conclusion, *L. macrophylla* extract demonstrates antiulcerogenic activity in the acid and absolute ethanol induction models, as well as in the ulcer model induced by non-steroidal anti-inflammatory drugs with significant gastroprotective activity.

Keywords: Medicinal plants. Crude extract. Anauerá. Gastric ulcer.

INTRODUCTION

Gastric ulcers are lesions that occur in the stomach wall, characterized by bleeding and perforation¹, and are progressive disorders that have a great impact on the patient's quality of life².

The emergence of gastric ulcers is considered a multifactorial process that results from the imbalance between the aggressing factors and the mucosal protectors. Among the aggressive factors is the secretion of acid, pepsin and free radicals that originate from stimuli related to living conditions such as stress, smoking, alcohol, continuous use of non-steroidal anti-inflammatory drugs - NSAIDs, ingestion of

DOI: 10.15343/0104-7809.20194304814833

¹Universidade Federal do Amapá - PPGCS/UNIFAP. Macapá/AP, Brasil.
²Universidade Federal do Amapá/UNIFAP. Macapá- AP, Brasil.
***Faculdade Estácio de Macapá. Macapá- AP, Brasil.
E-mail: pfaimann@gmail.com
certain foods and the presence of *Helicobacter pylori*. Protective factors include the mucus barrier, bicarbonate, nitric oxide (NO), blood flow, prostaglandins and antioxidant defense. Treatment of ulcers is based on restoring the balance of protective and aggressive factors to eliminate pain, promoting healing and preventing recurrent ulcers. With the understanding of the pathogenesis of peptic ulcers, several classes of drugs have emerged such as proton pump inhibitors (omeprazole, lansoprazole, pantoprazole), H2 receptor antagonists (cimetidine, ranitidine, famotidine and nizatidine) and antibiotics in cases of *H. pylori* infection (amoxicillin). Other drugs have emerged to protect the mucosa as a cytoprotective agent (carbenoxolone, sucralfate, colloidal bismuth) and a prostaglandin analog (misoprostol).

Drug therapy for the treatment of gastric ulcer confirms a high recurrence rate of the pathology, besides presenting significant side effects. However, the search for new substances derived from natural products has been one of the main sources of discovery of new drugs with potentially more effective and safer therapeutic effects. Medicinal plants are sources of bioactive compounds such as flavonoids, alkaloids, terpenes, tannins, carotenoids and phenolic compounds. Such compounds contain various biological activities, especially compounds such as flavonoids, terpenoids and tannins, which are attributed to antiulcerogenic activity.

The species *Licania macrophylla* Benth, belonging to the family Chrysobalanaceae, popularly known as “anauerá”, “anuera”, “anoerá”, “ana-wyra” and “wayápi”, is a large tree that can reach up to 30 m in height. In the Amazon, it is popularly used for various purposes, such as being a potent antidiysentery factor, wound healing, an amoebiasis treatment and having anti-inflammatory activity. According to the literature, no reports of its antiulcerogenic activity were reported.

The species *L. macrophylla* possesses, in its chemical composition, compounds such as flavonoids, chalcones and aurones, quinones, free steroids and tannins. In a study of methanolic extract of *L. macrophylla* stem bark and leaves, activity against bacterial strains tested with *Staphylococcus aureus*, *Pseudomonas aeruginosa* and *Escherichia coli* were demonstrated. Due to the potential therapeutic potential of this species, this study raises the following question: does the ethanolic extract of this species possess gastroprotective activity?

Materials and Methods

The stem bark of the *L. macrophylla* species was collected via waterway in a floodplain in the Maracá community, located on the Urubuzinho River, at the following coordinates (Lat. 0°24'46.83 S Long. 51°27'5.36 W), 32 km away from Mazagão Velho, AP. The study material was sent to the Animal Experimentation Laboratory (LEA) of the Federal University of Amapá (UNIFAP). An exsiccate was prepared for the identification of the species and was then deposited in the Amapan Herbarium (HAMAB) of the Amapá State Institute of Scientific and Technological Research (IEPA), Macapá, AP.

To obtain the ethanolic extract of *L. macrophylla*, the bark of the stem was dried at 40°C for 72 h. The material was fragmented and ground in a knife mill and turned powder, which underwent a cold maceration process using 1 kg of powder for every 5 L of ethanol (1:5, weight/volume) as an ethanol solvent, agitating every 24 hours for 7 days. The extractive solution obtained was filtered and concentrated by evaporation at a temperature around 50°C. A viscous extract was obtained and was stored in a container for residual evaporation of the solvent until obtaining the dry/crude ethanol extract of *L. macrophylla* (EELM). The extract obtained a yield of 10.6%. For the experiments, the extract was weighed and solubilized in a solution of 5% DMSO to obtain different concentrations.

Drugs and Reagents Used

To determine antiulcerogenic activity and mechanism of action, hydrochloric acid p.a. (Alphatec), sodium bicarbonate (Alphatec), sodium chloride (Alphatec), ketoprofen (Sanoﬁ), indomethacin (Sigma Aldrich), carbenoxolone...
(Sigma Aldrich), xylazine (Vetbrands), ketamine (Ceva), ethanolic alcohol (Alphatec), ethyl alcohol p.a. (Alphatec), dimethylsulfoxide-DMSO (Prolab). All drugs were prepared immediately before use.

Animals

Female Wistar rats (*Rattus norvegicus*) weighing between 200-300 grams (n=25) and female Swiss mice (*Mus muscululus albinus*) aged 6-7 weeks and weighing 25-30 grams (n=50) were used. The animals came from the Multidisciplinary Center for Biological Investigations in the area of Laboratory Animal Science - CEMIB, University of Campinas - UNICAMP. The animals were kept in plastic boxes in an experimental room for 7-10 days under controlled conditions of temperature (23±2°C), humidity (50±10%), a 12-hour light-dark cycle, with access *ad libitum* to Presence® brand ration and filtered water for the experiments.

For euthanasia of the animals after the experiments, ketamine and xylazine 40 and 5 mg/kg respectively, as well as anesthesia were administered intraperitoneally, according to the National Council for Animal Experimentation Control, Resolution Norm No. 13 from September 2013. Carcass disposal proceeded according to item 1.6 of the FCF-IQ/USP Laboratory Animal Care and Procedures Manual 2013.

Experimental Design

For the evaluation of the antiulcerogenic activity of the extract, gastric ulcer induction experiments were performed based on etiological factors of the disease in man such as absolute ethanol, acidified ethanol and NSAIDs. Each experimental model contained its respective negative/vehicle control groups (5% dimethylsulfoxide - DMSO), positive control (carbenoxolone 200 mg/kg), and test groups of three EELM dose amounts (100, 250, 625 mg/kg). The fasted animals were kept in a special cage with a wire mesh at the bottom (to avoid coprophagia).

At the end of each experimental protocol the stomachs were removed, opened through the greater curvature, washed in physiological solution (0.9% NaCl) and scanned to obtain the images (HP G4050 scanner). After scanning, the obtained images were analyzed using the EARP software to measure the lesioned areas and to determine the following parameters: (a) total lesion area (TLA), (b) percentage of lesion area in relation to the area total stomach, (c) ulcerative lesion index (ULI); (d) inhibition or cure percent.

(a) \[\sum \text{Total Injury Area (mm}^2\text{)} \times 100 \] \[\text{Total area of the stomach} \]

(b) Percentage of Ulcers: Percentage of Injury Area in relation to Total Stomach Area

\[\% \times \sum \text{Lesion area} \times 100 \] \[\text{Total area of the stomach} \]

(c) Ulcerative Lesion Index (ULI)

Level 1: hemorrhaging points ≤ 1mm²
Level 2: 1 to 3mm² ulcerations
Level 3: Deep ulcerations ≥ 3mm²

\[\text{ULI} = (\sum \text{Nível 1}) + (2 \times \sum \text{Nível 2}) + (3 \times \sum \text{Nível 3}) \]

(c) Ulcerative Lesion Index (ULI)

Level 1: hemorrhaging points ≤ 1mm²
Level 2: 1 to 3mm² ulcerations
Level 3: Deep ulcerations ≥ 3mm²

\[\text{CI}% = \frac{100 - \text{ULI treated}}{\text{ULI control}} \times 100 \]

Absolute Ethanol-Induced Ulcer Model

The animals were randomly divided into 5 groups (n=5) of Swiss mice. Carbenoxolone 200 mg/kg (positive control), vehicle (negative control) and EELM extract (100, 250 and 625 mg/kg – test groups) were used for their respective treatments. Each treatment was administered orally at a rate of up to 10 ml/kg. After 60 minutes of treatment, 100 ml/kg of the injurious agent (99.5% ethanol) was administered to all animals orally. After 60 minutes of administering...
the injurious agent, all animals were euthanized, and their stomachs were opened for analysis and parameter determination.15

Acidified Ethanol-induced Ulcer Model

After 24 hours of fasting, Swiss mice were divided into 5 groups (n=5). One group received 200 mg/kg carbenoxolone (positive control), another group received vehicle (negative control) and the others the EELM extract at varying doses (100, 250 and 625 mg/kg – test group). All treatments were performed orally. After 50 minutes, 100 mL/kg weight of acidified ethanol (60% ethanol/ 0.3M HCl) was administered. After 60 minutes of administration of the injurious agent, the animals were euthanized to remove their stomachs and determine the parameters.16

Non-Steroidal Anti-Inflammatory Drug (NSAIDs)-Induced Gastric Ulcers

Regarding the model of gastric ulcer induction with non-steroidal anti-inflammatory agents (indomethacin 100mg / kg + ketoprofen 0.2mL), when assessing the Total Lesioned Area, Ulcerative Lesion Index (ULI), Percentage of Ulcers (%), all doses of the L. macrophylla ethanolic extract (EELM) tested (100, 250, 625 mg/kg) significantly reduced these parameters when compared to the negative control. For the Wound Healing Percentage (%) it was possible to measure 84.45% healing for the 100 mg/kg dose, 75.00% for the 250 mg/kg dose and 72.26% for the 625 mg/kg dose, as may be seen in Figure 3, Graph 3 and Table 3.17

RESULTS

Absolute Ethanol-Induced Gastric Ulcers

The results showed a significant reduction in the EELM doses of 250 and 625 mg/kg in the parameters evaluated as the Total Lesion Area (TLA), the Ulcerative Lesion Index (ULI) and Ulcer Percentage (%), compared to the vehicle controls. In calculating the Wound Healing Percentage (%), the 250 mg/kg dose healed 53.76% and the 625 mg/kg dose healed 84.15%, as can be seen in Figure 1, Graph 1 and Table 1.

Acidified Ethanol-Induced Gastric Ulcers

Animals treated with EELM at doses of 250 and 625mg/kg had a significant reduction in Total Lesioned Area (TLA), Ulcerative Injury Index (ULI) and Percentage of Ulcers (%) compared with the group of animals treated with the vehicle. The Wound Healing Percentages (%) obtained were 20.27% for the 100 mg/kg dose, 54.34% for the 250 mg/kg dose and 83.86% for the 625 mg/kg dose, as can be seen in Figure 2, Graph 2 and Table 2.

Non-Steroidal Anti-Inflammatory Drug (NSAIDs)-Induced Gastric Ulcers

The treatment protocols to be performed in this study were submitted to the Ethics Committee for Animal Use of the Federal University of Amapá CEUA/UNIFAP, approved under opinion no. 0019/2017.
Figure 1 – Stomach images after ulcer induction by absolute ethanol, (A) negative control; (B) positive control; (C) EELM 100 mg/kg; (D) EELM 250 mg/kg; (E) EELM 625 mg/kg.

Graph 1 – Result of the total lesioned area (mm²) parameter in the absolute ethanol-induced gastric ulcer model in mice.

Results were expressed as mean ± s.e.m. (n=5, per group). One-way Analysis of Variance (ANOVA) was used, followed by Dunnett’s test: ***p<0.001 comparing the negative control group (vehicle) vs. CARB (200mg/kg) positive control. *p<0.05 comparing the negative control group (vehicle) vs. EELM (250 mg/kg); ***p<0.001 comparing the negative control group (vehicle) vs. EELM (625 mg/kg).
Graph 2 – Effect of acidified ethanol-induced gastric ulcer model in mice in the total lesioned area (mm²) parameter.

Figure 2 – Stomach images after ulcer induction by acidified ethanol, (A) negative control, (B) positive control; (C) EELM 100 mg/kg; (D) EELM 250 mg/kg; (E) EELM 625 mg/kg.

Graph 3 – Parameter total lesioned area (mm²) in the NSAID-induced gastric ulcer model in rats.

Results were expressed as mean±s.e.m (n=5, per group). One-way analysis of variance (ANOVA) was used, followed by Dunnett’s test: ***p<0.001 (Vehicle vs. CARB 200mg/kg). *p<0.05 comparing the negative control group (vehicle) vs. extract (250 mg/kg); ***p<0.001 comparing the negative control group (vehicle) vs. extract (625 mg/kg).

Results were expressed as mean ± s.e.m. (n=5, per group). One-way analysis of variance (ANOVA) was used, followed by Dunnett’s test: ***p<0.001 Vehicle vs. CARB (200mg/kg). ***p<0.001 comparing the negative control group (vehicle) vs. EELM (at doses of 100, 250, 625mg/kg).
Table 1 – Absolute ethanol-induced gastric ulcer model in mice concerning the ULI, % of Ulcers and Healing % parameters.

Treatment (v.o)	U.L.I.	% of Ulcers	% of Healing
VEHICLE	586.38±19.11	62.64±11.53	0.0±0.00
CARBENOXOLONE	62.72±3.90+++	8.90±2.83***	21.42%±8.45
EELM 100	460.76±4.47	46.87±3.95	21.42%±8.45
EELM 250	271.17±5.64+	31.84±3.92*	53.76%±5.71
EELM 625	92.92±5.82+++	10.79±1.88***	84.15%±1.89

Table 2 – Model of acidified ethanol-induced gastric ulcers in mice concerning ULI, % of Ulcers and Wound Healing % parameters.

Treatment (v.o)	U.L.I.	% of Ulcers	% of Healing
VEHICLE	356.21±5.50	51.42±3.94	0.0±0.00
CARBENOXOLONE	62.72±3.90+++	8.90±2.83***	82.39%±1.53
EELM 100	284.01±5.09	31.90±5.74*	52.34%±4.83
EELM 250	169.77±5.14+	21.24±4.60***	83.86%±2.46
EELM 625	57.50±7.92+++	4.19±2.24***	83.86%±2.46

Results are presented as mean ± s.e.m. One-way analysis of variance (ANOVA) was used, followed by Dunnett’s test: +++p<0.001 comparing the negative control (Vehicle) vs. the positive control (CARB 200mg/kg), ULI. +p<0.05 EELM (250mg/kg) vs. Vehicle, ULI. +++p<0.001 EELM (625mg/kg) vs. Vehicle, % of ulcers. **p<0.01 EELM (250, 625mg/kg) vs. Vehicle, % of ulcers.

Table 3 – Model of non-steroidal anti-inflammatory gastric ulcers (NSAIDs) in rats, concerning ULI, % of Ulcers and Wound Healing % parameters.

Treatment (v.o)	U.L.I.	% of Ulcers	% of Healing
VEHICLE	20.21±3.08	2.39±0.31	0.0±0.00
CARBENOXOLONE	5.49±1.74++	0.71±0.19***	72.85%±2.42
EELM 100	4.54±0.37++	0.40±0.14***	84.46%±1.33
EELM 250	5.05±3.26++	0.63±0.26***	75.00%±3.71
EELM 625	5.61±1.49++	0.68±0.14***	72.27%±2.06

Results are presented as mean ± s.e.m. One-way analysis of variance (ANOVA) was used, followed by Dunnett’s test: ++p<0.01 Vehicle vs. CARB, ULI. ++p<0.01 EELM (at doses of 100, 250, 625mg/kg) vs. Vehicle, ULI.
DISCUSSION

Studies of medicinal plants with possible gastroprotective activities are based on demonstrating the efficacy of new therapeutic alternatives in the treatment or prevention of gastric lesions produced by different harmful agents.

The acute ethanol-induced ulcer model is a primary step in the search for substances with antiulcerogenic potential, as it determines the effectiveness of a test drug, which opens the way for investigating in other models, as well as the mechanisms of action involved in gastroprotective activity18. The deleterious effects of ethanol are caused by direct toxic contact to the gastric mucosa compromising its structure by various mechanisms, such as solubilizing the mucus and bicarbonate barrier. This ulcerogenic agent also triggers an inflammatory reaction promoting the release of inflammatory mediators, which induce the activation of granulocytes forming proteases and free radicals, decreasing blood flow thereby causing ischemia, cell death and damage to the gastric mucosa16. The acidified ethanol model acts through a local effect on the gastric mucosa. It disrupts its integrity by forming necrotizing lesions by decreasing mucus layer protection, which is caused by the solubilization of the barrier’s components releasing access to stomach lumen acid. This model is an appropriate protocol for assessing acute damage19,20.

Studies have disassembled that compounds such as flavonoids are able to protect the gastric mucosa from necrotizing substances and are effective in the treatment of acute and chronic gastric ulcers. Flavonoids have the ability to inhibit specific enzymes and stimulate some hormones and neurotransmitters and sequester free radicals21. The results obtained in this study in the treatments performed within the ulcer models induced by absolute ethanol and acidified ethanol showed that the groups of animals with the EELM in the respective doses of 100, 250 and 625mg/kg caused a considerable gastroprotective effect; similar to that shown by the standard drug, carbenoxolone. The protective response demonstrated by EELM in the absolute ethanol and acidified ethanol experimental protocols suggests that the extract acts as an antiulcerogenic agent, promoting a significant protection of the gastric mucosa with a dose-dependent response tendency.

In the presented model of gastric ulcer induction by NSAIDs, indomethacin was the first choice because of its high ulcerogenic potential compared to other drugs of the same class of drugs22. It is pointed out that the effects of NSAIDs are mediated by the inhibition of the type 1 isoform of the enzyme cycloxygenase (COX-1) and the type 2 isoform of the enzyme cycloxygenase (COX-2), thereby reducing prostaglandin E1 levels (PGE1) and E2 (PGE2). Thus, the prolonged use of this drug is directly associated with the appearance of gastric lesions23.

According to the literature, compounds such as tannins can play a role in gastric protection. Authors report that tannins from plant extracts can form a physical barrier in the gastric mucosa by binding to mucus proteins, thus, preventing the formation of ulcers and promote healing24,25. Another class of mucosal protective compounds are terpenes, which have been reported in studies concerning the antiulcerogenic activity of pentacyclic triterpenes. Terpenes are related to anti-inflammatory activity. This effect occurs through various mechanisms of action such as prostaglandin synthesis (PGs), which are responsible for controlling blood flow, mucus/bicarbonate production and acid secretion among other pathways26.

The results obtained in the NSAID-induced ulcer model showed that all doses tested (100, 250, 625mg/kg) were able to reduce gastric lesions caused by non-steroidal anti-inflammatory drugs, with the lowest dose showing a significant statistical significance when compared to
the negative control. In this experimental model, there was no dose-dependent activity pattern with the doses tested.

Thus, *L. macrophylla* ethanolic extract acts significantly against mucosal lesions, potentially exerting a gastroprotective effect as observed by different experimental models. There is a need for further studies to elucidate the mechanisms involved in the gastroprotective activity of the extract.

CONCLUSION

The results showed that the ethanolic extract of *L. macrophylla* in the analyzed doses produce a gastroprotective activity against ulcer models induced by absolute ethanol and acidified ethanol. The gastroprotective effect of the *L. macrophylla* ethanolic extract within the ulcer model induced by non-steroidal anti-inflammatory drugs showed a significant activity at all doses, especially at the lowest dose tested against the induced lesions. The plant species under study has gastroprotective activity regarding the appearance of gastric ulcers induced by different experimental models.

REFERENCES

1. Kangwan N, Park JM, Kim EH, Hahn KB. Quality of healing of gastric ulcers: natural products beyond acid suppression. World J. Gastrointest. Pathophysiol. 2014; V. 5, p. 40-47.
2. Amorim MM, Pereira JO, Monteiro KM, Ruiz AL, Carvalho JE, Pinheiro H, et al. Antulcer and antiproliferative properties of spent brewer's yeast peptide extracts for incorporation into foods. Food Funct. 2016; v. 18 n.7 (5) p.2331-7.
3. Bansal VK, Goel RK. Gastroprotective effect of Acacia nilotica young seedless pod extract: role of polyphenolic constituents. Asian Pac. J. Trop. Med. 2012; p 523-528.
4. Najim WI. Peptic ulcer disease. Prim. Care Clin. Office Pract. 2011; v. 38, p. 383-394.
5. Fox RK, Muniraj T. Pharmacologic therapies in gastrointestinal diseases. Medical Clinics. 2016; v. 100, n. 4, p. 827-850.
6. Bolin D, Niv Y. Pharmacological and alimentary alteration of the gastric barrier. Best Practice & Research Clinical Gastroenterology. 2014; v. 28, p. 981-994.
7. Donatini RS, Ishikawa T, Barros S, Bacchi EM. Atividades antiulcera e antioxidante do extrato de folhas de Syzygium jambos (L.) Alston (Myrtaceae). Revista Brasileira de Farmacognosia.2009; v. 19, n. 1a, p. 89-94.
8. Fernandes J, Castilho RO, Costa MR, Wagner-Souza K, Kaplan MAC,Gattass CR. Pentacyclic triterpenes from Chrysobalanaceae species: Cytotoxicity on Multidrug Resistant and Sensitive Leukemia Cell Lines. Cancer Letters. 2003; V. 190, n. 2, p. 165-169.
9. Medeiros, FA. Estudo Fotoquímico e Biológico de Espécies Amazônicas: Pradõesi huberi (Ducke) (Sapotaceae) e Licania macrophylla Bent. (Chrysobalanaceae). Tese (Programa da Pós-Graduação em Produtos Naturais e Sintéticos Bioativos do Centro de Ciências da Saúde). João Pessoa: Universidade Federal da Paraíba; 2008.
10. Medeiros FAD, Medeiros AA, Tavares JF, Barbosa Filho JM, Lima EDO, Silva MSD. Licanol, a new flavanol, and other constituents from the Licania macrophylla Bent. Química Nova. 2012; v. 35, n. 6, p. 1179-1183.
11. Isacksson JGLA. Propágulos e plântulas de duas licania spp. (chrysobalanaceae) nativas da floresta de várzea estuarina. Monografia (curso de engenharia florestal). Amapá: Universidade do Estado do Amapá; 2015.
12. Braca A, Sortino C, Politi M, Morelli I, Mendez JA. Antioxidant activity of flavonoids from Licania licaniaeformula. Journal of Ethnopharmacology.2002; v.79, p.379-381.
13. Neves SMP, Mancini Filho J, Menezes EW. Manual de cuidados e procedimentos com animais de laboratório do Biotério de Produção e Experimentação da FCF-IQ/USP. São Paulo: FCF-IQ/USP, 2013.
14. Andrade SF, Comunello E, Noldin VF, Monache F, Cechinel Filho V, Niero R. Antilulcerogenic activity of fractions and 15-Dioxo-21α-hydroxy friedelin isolated from Maytenus robusta (Celastraceae). Archives of Pharmacal Research.2008; v. 1, n. 31, p. 41-46.
15. Morimoto Y, Shimohara K, Oshima S, Sukamoto K. Effects of the new antiulcer agent kp-5492 on experimental gastric mucosal lesions and gastric mucosal defensive factors, as compared to those of teprenone and cimetidine. Japanese J. Pharmacology.1991; 57, 495-505.
16. Mizui T, Doteuchi M. Effect of polyamines on acidified ethanol-induced gastric lesions in rats. The Japanese Journal of Pharmacology.1983; v. 33, n. 5, p. 939-945.
17. Rainsford, K. D. Inhibition by leukotriene inhibitors, and calcium and platelet-activating factor antagonists, of acute gastric and intestinal damage in arthritic rats and in cholinomimetic-treated mice. Journal of pharmacy and pharmacology.1999; v. 51, n. 3, p. 331-339.
18. Damasceno SRB, Rodrigues JC, Silva RO, Nicolau LA, Chaves LS, Freitas AL, et al. Role of the NO/KATP pathway in the protective effect of sulfated-polsacharide fraction from the algae Hypne musciformis against ethanol-induced gastric damage in mice. Revista Brasileira de Farmacognosia. 2013; v.23, n. 2, p. 320-328.
19. Tsukiyama K, Karolin K. Anti-ulcer activity of curcumin on experimental gastric ulcer in rats and its effect on oxidative stress/
Received in March 2019.
Accepted in September 2019.

20. Li W, Huang H, Niu X, Fan T, Mu Q, Li H. Protective effect of tetrahydrocoptisine against ethanol-induced gastric ulcer in mice. Toxicology and Applied Pharmacology. 2013; v.272, p. 21-29.

21. Zayachkivska OS, Konturek SJ, Drozdowicz D, Konturek PC, Brzozowski T, Ghegotsky MR. Gastroprotective effects of flavonoids in plant extracts. Journal Physiology Pharmacology. 2005; v.56, p. 219-231.

22. Suleyman H, Albayrak A, Bilici M, Cadirci E, Halici Z. Different mechanisms in formation and prevention of indomethacin-induced gastric ulcers. Inflammation. 2010, v. 33, n. 4, p. 224-234.

23. Halter F, Tarnawski AS, Schamassman A, Peskar BM. Cyclooxygenase-2 implications on maintenance of gastric mucosal integrity and ulcer healing: controversies and perspectives. Gut. 2001; v. 49, n. 3, p. 443-453.

24. Da Silva LM. Mecanismos de ação envolvidos no efeito gastroprotetor do extrato etanólico de Arctium lappa L. em úlceras gástricas crônicas induzidas por ácido acético em ratos. Dissertação (Mestrado em farmacologia). Curitiba-PR: Universidade Federal do Paraná, 2010.

25. Vasconcelos PCP, Andreo MA, Vilegas W, Hiruma-Lima CA, Pellizzon CH. Effect of Mouriri pus tannins and flavonoids on prevention and treatment against experimental gastric ulcer. Journal of ethnopharmacology. 2010; v. 131, n. 1, p. 146-153.

26. Szabo, S. Gastric cytoprotection is still relevant. Journal of Gastroenterology and Hepatology. 2014; V.29, n.9, p.124-132.
INTRODUÇÃO

As úlceras gástricas são lesões que ocorrem na parede do estômago tendo como características sangramentos e perfurações, são distúrbios progressivos que possuem grande impacto sobre a qualidade de vida do paciente. O surgimento das úlceras gástricas é considerado um processo multifatorial que decorre do desequilíbrio entre os fatores agressores e os protetores da mucosa. Em
meio aos fatores agressores há a secreção de ácido, pepsina e radicais livres que se originam a partir de estímulos relacionados a condições de vida como o estresse, fumo, álcool, uso contínuo de drogas anti-inflamatórias não esteroidais - DAINEs, ingestão de determinados alimentos e presença da Helicobacter pylori. Dentre os fatores protetores temos a barreira de muco, bicarbonato, óxido nítrico (NO), fluxo sanguíneo, prostaglandinas e defesa antioxidante²,³.

O tratamento das úlceras baseia-se no restabelecimento do equilíbrio dos fatores protetores e agressores visando a eliminação da dor, promovendo a cicatrização e prevenindo o aparecimento de úlceras reincidentes. Com o avanço do entendimento da patogênese das úlceras pépticas surgiram várias classes de medicamentos como os inibidores da bomba de prótons (omeprazol, lanzoprazol, pantoprazol) antagonistas do receptor H² (cimetidina, ranitidina, famotidina e nizatidina), antibióticos nos casos de infecção por H. pylori (amoxicilina). Outros fármacos surgiram para atuar na proteção da mucosa como agentes citoprotetores (carbenoxolona, sucralfato, bismuto coloidal) e o (misoprostol) análogo das prostaglandinas⁴,⁵.

A terapia medicamentosa para o tratamento da úlcera gástrica confirma alto índice de reincidentes da patologia, além de apresentar significativos efeitos colaterais⁶. Contudo, a procura por novas substância derivadas de produtos naturais tem sido uma das principais fontes de descoberta de novos fármacos com potencial efeito terapêutico mais eficaz e seguro. As plantas medicinais são fontes de compostos bioativos, como flavonoides, alcaloides, terpenos, taninos, carotenoides e compostos fenólicos. Tais compostos contêm diversas atividades biológicas, destacando-se especialmente compostos como flavonoides, terpenóides e taninos, aos quais é atribuída a atividade antiulcerogênica⁷.

A espécie Licania macrophylla Benth, pertencente à família Chrysobalanaceae, conhecida popularmente como “anauerá”, “anuerá”, “anoerá”, “ana-wyra” e “wayãpi”, é uma árvore de grande porte que pode atingir até 30 m de altura. Na Amazônia é utilizada popularmente para várias finalidades, como potente antidisentérico, na ação cicatrizante de ferimentos, para tratamento de amebíase e na atividade anti-inflamatória. Segundo a literatura não foram reportados relatos de sua atividade antiulcerogênica⁸,⁹,¹⁰,¹¹. Em estudo realizado com o extrato metânólico das cascas do caule e folhas de L. macrophylla apresentou atividade contra cepas bacterianas testadas com Staphylococcus aureus, Pseudomonas aeruginosa e Escherichia coli⁹. Devido o possível potencial terapêutico desta espécie, este estudo levanta o seguinte problema: o extrato etanólico da espécie possui atividade gastroprotetora?

MATERIAIS E MÉTODOS

As cascas do caule da espécie L. macrophylla foram coletadas em um terreno de várzea na comunidade do Maracá, localizada no rio Urubuzinho, nas seguintes coordenadas (Lat. 0°24’46.83 S Long. 51°27’5.36 O), 32 km de distância partindo do Município de Mazagão Velho-AP via fluvial. O material para estudo foi encaminhado para o Laboratório de Experimentação Animal (LEA), da Universidade Federal do Amapá (UNIFAP). Foi preparada exsicata para a identificação da espécie e depositada no Herbário Amapaense (HAMAB) do Instituto de Pesquisa Científicas e Tecnológicas do Estado do Amapá (IEPA), Macapá-AP.

Para a obtenção do extrato etanólico de L. macrophylla as cascas do caule sofreram secagem em estufa a 40º C, por 72 h. O material foi fragmentado e triturado em moinho de facas e transformado em pó, o qual passou por um processo de maceração a frio utilizando como solvente etanol na proporção 1 kg de pó para cada 5 L de etanol (1:5, peso/volume) com agitação a cada 24 h, durante 7 dias. A solução extrativa obtida foi filtrada e concentrada em rota evaporador a uma temperatura próxima a 50º C, obtendo-se um extrato viscoso que foi armazenado em recipiente para a evaporação...
residual do solvente até a obtenção do extrato seco/bruto de L. macrophylla (EELM). O extrato obteve um rendimento de 10,6%. Para a realização do experimento o extrato foi pesado e solubilizado em uma solução de (DMSO 5%) para a obtenção de diferentes concentrações.

Drogas e Reagentes Utilizados

Para determinação da atividade e mecanismo de ação antiulcerogênica foram utilizados: ácido clorídrico P.A (Alphatec), bicarbonato de sódio (Alphatec), cloreto de sódio (Alphatec), Cetoprofeno (Sanofi) indometacina (Sigma Aldrich), carbenoxolona (Sigma Aldrich), xilazina (Vetbrands), quetamina (Ceva), álcool etanólico (Alphatec), álcool etílico P.A (Alphatec), dimetilsulfóxido-DMSO (Prolab). Todas as drogas foram preparadas imediatamente antes do uso.

Animais

Foram utilizados ratos Wistar (Rattus norvegicus) fêmeas pesando entre 200-300 gramas (n=25) e Camundongos Swiss (Mus musculus albinus) fêmeas com 6-7 semanas de vida, pesando 25-30 gramas (n=50). Os animais foram provenientes do Centro Multidisciplinar para Investigações Biológicas na Área da ciência de Animais de Laboratório- CEMIB da Universidade de Campinas- UNICAMP. Os animais foram mantidos em caixas plásticas em uma sala experimental por um período de 7-10 dias, sob condições controladas de temperatura (23 ± 2 oC), umidade (50 ± 10%), 12 horas de ciclo claro-escuro, com acesso ad libitum a ração da marca Presence® e água filtrada, para a realização dos experimentos.

Para a eutanásia dos animais após os experimentos foi utilizado Ketamina e Xilasina 40 e 5 mg/kg respectivamente assim como para a anestesia, administrados via intraperitoneal, de acordo com o Conselho Nacional de Controle de Experimentação Animal, Resolução Normativa N° 13, de 20 de setembro de 2013. Os descartes das carcaças procederam conforme o item 1.6 do Manual de Cuidados e Procedimentos com Animais de Laboratório da FCF-IQ/USP de 2013.13

Delineamento Experimental

Na avaliação da atividade antiulcerogênica do extrato foram realizados experimentos de indução de úlcera gástrica com base em fatores etiológicos da doença no homem como etanol absoluto, etanol acidificado, AINEs. Cada modelo experimental conterá seus respectivos grupos controles negativo/veículo (Dimetilsulfóxido-DMSO 5%), controle positivo (carbenoxolona 200 mg/kg) e grupos testes com três níveis de dose (100, 250, 625 mg/kg) do EELM. Os animais submetidos a jejum foram mantidos em gaiola especial com tela de arame ao fundo (para evitar coprofagia).

Ao fim de cada protocolo experimental os estômagos foram retirados, abertos através da grande curvatura, lavados em solução fisiológica (NaCl a 0,9%) e escaneados para a obtenção das imagens (escâner HP G4050). Após o escaneamento as imagens obtidas foram analisadas utilizando o software específico “EARP” para medir as áreas de lesões e determinar os seguintes parâmetros: (a) área total da lesão (ATL), (b) porcentagem de área de lesão em relação à área do estômago total, (c) índice de lesões ulcerativas (ILU); (d) porcentagem inibição ou cura.

\[
\text{ATL} = \sum \text{Área Total da Lesão (mm}^2\text{)}
\]

\[
\% = \frac{\sum \text{Área da lesão X} 100}{\text{Área Total do estômago}}
\]

\[
\text{ILU}= (\sum \text{Nível 1}) + (2\times \sum \text{Nível 2}) + (3\times \sum \text{Nível 3})\]

(d) Percentagem Inibição ou Cura;

\[
\%IC= \frac{100 – \text{ILU tratado X} 100}{\text{ILU controle}}
\]
Modelo de Indução de Ulcera por Etanol Absoluto

Os animais foram divididos aleatoriamente em 5 grupos (n=5) de camundongos Swiss. Para seus respectivos tratamentos foi utilizado a carbênaxolona 200 mg/kg (controle positivo), veículo (controle negativo) e o extrato EELM nas doses de (100, 250 e 625 mg/kg - teste). Cada tratamento foi administrado por via oral obedecendo a uma relação de no máximo 10 ml/kg. Após 60 minutos do tratamento foi administrado 100 ml/kg do agente lesivo (etanol 99,5%) em todos os animais por via oral. Transcorrido 60 minutos da administração do agente lesivo, todos os animais foram eutanasiados e os estômagos abertos para a análise dos estômagos e determinação dos parâmetros.

Indução de Ulcera por Droga Anti-inflamatória Não Esteroidal (DAINE)

Para realização do experimento, após 24 horas de jejum os animais foram divididos em 5 grupos (n=5) de ratos Wistar. Os tratamentos foram realizados respectivamente com carbênaxolona 200 mg/kg (controle positivo) e veículo (controle negativo) e o EELM nas doses de (100, 250 e 625 mg/kg - teste), por via oral. Após 1h e 30 minutos foi administrado o agente indutor indometacina (100 mg/kg), por via oral e 0,2 mL de cetoprofeno (intramuscular). Os animais foram eutanasiados 12 horas após o estímulo lesivo para a retirada dos estômagos e determinação dos parâmetros.

Análise Estatística

Os resultados foram expressos como média ± e.p.m, o teste de normalidade e homogeneidade foram realizados, a distribuição dos dados foi normal para a utilização do teste paramétrico de Análise de Variância uma via (ANOVA one-way) seguida pelo pós-testes de Dunnett para comparações múltiplas. Os valores foram considerados significativos quando p<0,05. O programa utilizado para estas análises foi GraphPad Prism versão 5.01.

Considerações Éticas

Os protocolos de tratamentos a serem realizados neste estudo foram submetidos à Comissão de Ética no Uso de Animais da Universidade Federal do Amapá CEUA/UNIFAP, aprovado sob parecer 0019/2017.

RESULTADOS

Úlceras Gástricas Induzidas por Etanol Absoluto

Os resultados obtidos apresentaram uma redução significativa nas doses do EELM de (250 e 625 mg/kg) nos parâmetros avaliados como a Área Total Lesionada (ATL), Índice de Lesão Ulcerativa (ILU) e Percentagem de Úlcera (%), frente aos tratados com veículo. Ao calcular a Percentagem de Cura (%) obteve-se especialmente (53,76 %) para a dose de 250 mg/kg e (84,15%) para a dose de 625 mg/kg, conforme pode ser observado na Figura 1, Gráfico 1 e Tabela 1.

Úlceras Gástricas Induzidas por Etanol Acidificado

Os animais tratados com EELM nas doses de (250 e 625mg/kg) tiveram uma redução significativa da Área Total Lesionada (ATL), Índice de Lesão Ulcerativa (ILU) e Percentagem...
de Úlceras (%) ao comparar com o grupo de animais tratados com o veículo. Para a Percentagem de Cura (%) obteve-se (20,27%) para a dose de 100mg/kg, (54,34%) para a dose de 250 mg/kg e (83,86%) para a dose de 625 mg/kg, conforme pode ser observado na Figura 2, Gráfico 2 e Tabela 2.

Úlceras Gástricas Induzidas por Anti-inflamatórios não Esteroidais (AINES)

Quanto ao modelo de indução de úlceras gástricas com o agente lesivo anti-inflamatório não esteroidal (indometacina 100mg/kg + cetoprofeno 0,2mL), ao avaliar a Área Total lesionada, Índice de Lesão Ulcerativa (ILU), Percentagem de Úlceras (%) ou o extrato etânico de L. macrophylla (EELM) reduziu de forma significativa todas as doses testadas respectivamente (100, 250, 625 mg/kg) quando comparado ao controle negativo. Para a Porcentagem de Cura (%) foi possível aferir para a dose de 100 mg/kg com (84,45%), para a dose de 250 mg/kg com (75,00%) e para a dose de 625 mg/kg foi de (72,26%) conforme a Figura 3, Gráfico 3 e Tabela 3.

Figura 1 – Imagens dos estômagos após indução de úlcera por etanol absoluto, (A) controle negativo; (B) controle positivo; (C) EELM 100 mg/kg; (D) EELM 250 mg/kg; (E) EELM 625 mg/kg.

Gráfico 1 – Resultado do parâmetro área total lesionada (mm2) no modelo de úlceras gástricas induzidas por etanol absoluto em camundongos.

Os resultados foram expressos como média ± e.p.m (n=5, por grupo). Foi utilizada a Análise de Variância de uma Vía (ANOVA), seguido do teste de Dunnett: ***p<0,001 comparando o grupo controle negativo (Veículo) vs. (CARB 200mg/kg) controle positivo; *p<0,05 comparado o grupo controle negativo (veículo) vs. (EELM 250 mg/kg); ***p<0,001 comparado o grupo controle negativo (veículo) vs. (EELM 625 mg/kg).
Figura 2 – Imagens dos estômagos após indução de úlcera por etanol acidificado, (A) controle negativo; (B) controle positivo; (C) EELM 100 mg/kg; (D) EELM 250 mg/kg; (E) EELM 625 mg/kg.

Gráfico 2 – Efeito do modelo de úlceras gástricas induzida por etanol acidificado em camundongos, sobre o parâmetro área total lesionada (mm²).

Os resultados foram expressos como média ± e.p.m (n=5, por grupo). Foi utilizada a Análise de Variância de uma Via (ANOVA), seguido do teste de Dunnett: ***p<0,001 (Veículo vs. CARB 200mg/kg); **p<0,05 comparado o grupo controle negativo (veículo) vs. extrato (250 mg/kg); ***p<0,001 comparado o grupo controle negativo (veículo) vs. extrato (625 mg/kg).

Gráfico 3 – Parâmetro área total lesionada (mm²) no modelo de úlceras gástricas induzida por AINE’s em ratos.

Os resultados foram expressos como média ± e.p.m (n=5, por grupo). Foi utilizada a Análise de Variação de uma Via (ANOVA), seguido do teste de Dunnett: ***p<0,001 (Veículo) vs. (CARB 200mg/kg). ***p<0,001 comparado o grupo controle negativo (veículo) vs. (EELM nas doses de 100, 250, 625mg/kg).
Tabela 1 – Modelo de úlceras gástricas induzida por etanol absoluto em camundongos, sobre os parâmetros ILU, % de Úlceras e % de Cura.

Tratamento (v.o)	ILU	% de Úlceras	% de Cura
VEÍCULO	586,38±19,11	62,64±11,53	0,0±0,00
CARBENOXOLONA	62,72±3,90+++	8,90±2,83***	21,42%±8,45
EELM 100	460,76±4,47	46,87±3,95	21,42%±8,45
EELM 250	271,17±5,64+	31,84±3,92*	53,76%±5,71
EELM 625	92,92±5,82+++	10,79±1,88***	84,15%±1,89

Os resultados foram expressos como média ± e.p.m (n=5, por grupo). Foi utilizada a Análise de Variância de uma via (ANOVA), seguido do teste de Dunnett: +++p<0,001 comparação do controle negativo (Veículo) vs. (CARB 200mg/kg) controle positivo, ILU. +p<0,05 (EELM na dose 250mg/kg) vs. (Veículo), ILU. +++p<0,001 (EELM na dose 625mg/kg) vs. (Veículo). ***p<0,001 (Veículo) vs. (CARB 200mg/kg) % de Úlceras. *p<0,05 (EELM nas doses de 250 mg/kg) vs. (Veículo)% de úlcera. ***p<0,001(EELM nas doses de 625 mg/kg) vs. (Veículo) % de úlcera.

Tabela 2 – Modelo de úlceras gástricas induzida por etanol acidificado em camundongos, sobre os parâmetros ILU, % de Úlceras e % de Cura.

Tratamento (v.o)	ILU	% de Úlceras	% de Cura
VEÍCULO	356,21±5,50	51,42±3,94	0,0±0,00
CARBENOXOLONA	62,72±3,90+++	8,90±2,83***	82,39%±1,53
EELM 100	284,01±5,09	31,90±5,74*	20,27%±2,91
EELM 250	169,77±5,14+	21,24±4,60***	52,34%±4,83
EELM 625	57,50±7,92+++	4,19±2,24***	83,86%±2,46

Os resultados são apresentados como média ± e.p.m. Foi utilizada a análise de variância de uma via (ANOVA), seguido do teste de Dunnett: +++p<0,001 comparação controle negativo (Veículo) vs. (CARB 200mg/kg) controle positivo, ILU. +p<0,05 (EELM nas doses de 250 mg/kg) vs. (Veículo), ILU. +++p<0,001(EELM nas doses de 625 mg/kg) vs. (Veículo) ILU. ***p<0,001(Veículo) vs. (CARB 200mg/kg) % de úlcera. *p<0,05(EELM nas doses de 100 mg/kg) vs. (Veículo)% de úlcera. ***p<0,001(EELM nas doses de 250, 625mg/kg) vs. (Veículo) % de úlcera.

Tabela 3 – Modelo de úlceras gástricas induzida por anti-inflamatório não esteroidal (AINE’s) em ratos, sobre os parâmetros ILU, % de Úlceras e % de Cura.

Tratamento (v.o)	ILU	% de Úlceras	% de Cura
VEÍCULO	20,21±3,08	2,39±0,31	0,0±0,00
CARBENOXOLONA	5,49±1,74++	0,71±0,19***	72,85%±2,42
EELM 100	4,54±0,37++	0,40±0,14***	84,46%±1,13
EELM 250	5,05±1,26++	0,63±0,26***	75,00%±3,71
EELM 625	5,61±1,49++	0,68±0,14***	72,27%±2,06

Os resultados são apresentados como média ± e.p.m. Foi utilizada a análise de variância de uma via (ANOVA), seguido do teste de Dunnett: ++p<0,01 (Veículo) vs. (CARB), ILU. +++p<0,001(EELM nas doses de 100, 250, 625mg/kg) vs. (Veículo), ILU. **p<0,01(EELM nas doses de 100, 250, 625mg/kg) % de úlcera. ***p<0,001(EELM nas doses de 250, 625mg/kg) vs. (Veículo) % de úlcera.
DISCUSSÃO

Os estudos de plantas medicinais com possíveis atividades gastroprotetoras fundamentam-se em demonstrar a eficácia de novas alternativas terapêuticas no tratamento ou prevenção de lesões gástricas produzidas por diferentes agentes lesivos.

O modelo agudo de úlcera induzido por etanol é etapa primária na pesquisa de substâncias com potencial antiulcerogênico, pois indica a efetividade da droga teste possibilitando a investigação em outros modelos, bem como os mecanismos de ação envolvidos na atividade gastroprotetora.

Os efeitos deletérios do etanol são causados pelo contato tóxico direto à mucosa gástrica comprometendo sua estrutura por vários mecanismos, como solubilizar a barreira de muco e bicarbonato, este agente ulcerogênico desencadeia também reação inflamatória promovendo a liberação de mediadores inflamatórios, os quais induzem aativação de granulócitos formando proteases e radicais livres, diminuindo o fluxo sanguíneo provocando dessa forma isquemia, morte de células e danos a mucosa gástrica.

O modelo por etanol acidificado atua através de um efeito local na mucosa gástrica, causando transtorno a sua integridade formando-se lesões necrosantes pela diminuição da proteção a camada de muco, ocasionado pela solubilização dos componentes desta barreira o que dá acesso ao ácido do lúmen estomacal. Sendo um protocolo apropriado para avaliar danos agudos.

Estudos desmontaram que compostos como os flavonoides são capazes de proteger a mucosa gástrica de substâncias necrotizantes, sendo eficazes no tratamento de úlceras gástricas agudas e crônicas. A medida que, possuem a capacidade de inibir enzimas específicas e estimular alguns hormônios e neurotanismissores, além de sequestrar radicais livre.

Os resultados obtidos neste trabalho nos tratamentos realizados nos modelos de úlceras induzidas por etanol absoluto e etanol acidificado demonstraram que os grupos de animais com o EELM nas respectivas doses de (100, 250 e 625mg/kg) ocasionou um efeito gastroprotetor considerável, sendo este efeito semelhante ao demonstrado pela carbinoxolona uma droga padrão. A resposta protetora apresentada por EELM nos protocolos experimentais etanol absoluto e etanol acidificado sugere que o extrato atue como agente antiulcerogênico, promovendo uma proteção expressiva da mucosa gástrica com uma tendência de resposta dose-dependente.

No modelo apresentado de indução de úlcera gástrica por AINEs, a droga indometacina é a primeira escolha pelo seu alto potencial ulcerogênico em comparação a outros fármacos da mesma classe de medicamentos.

Aponta-se que os efeitos dos AINES são mediados pela a inibição da isoforma do tipo 1 da enzima ciclogenase (COX-1) como da isoforma tipo 2 da enzima ciclogenase (COX-2) promovendo dessa forma a redução dos níveis de prostaglandinas E1 (PGE1) e E2 (PGE2). Dessa maneira o uso prolongado desse fármaco está associado diretamente ao surgimento de lesões gástricas.

De acordo com a literatura, compostos como os taninos podem atuar na proteção gástrica, autores relatam que os taninos em extratos vegetais podem formar barreira física na mucosa gástrica ligando-se em proteínas do muco, podendo assim evitar a formação de úlceras e promover a cicatrização.

Outra classe de compostos que atuam na proteção da mucosa são os terpenos, como na atividade antiulcerogênica de triterpenos pentaciclícos relatada em estudos. Os terpenos estão relacionados a atividade anti-inflamatória, uma vez que este efeito ocorre por vários mecanismos de ação como a síntese de prostaglandinas (PGs) responsáveis por controlar o fluxo sanguíneo, a produção de muco/bicarbonato e a secreção ácida entre outras vias.

Os resultados obtidos no modelo de úlceras induzidas por AINES demonstraram que todas as doses testadas (100, 250, 625mg/kg) foram capazes de reduzir as lesões gástricas causadas pelos anti-inflamatórios não esteroidais, destacando-se a menor dose com expressiva
significância estatística quando comparada ao controle negativo. Neste modelo experimental não apresentou padrão de atividade dose dependente nas doses testadas. Dessa forma, o extrato etanólico de *L. macrophylla* atua de maneira significativa frente às lesões da mucosa, exercendo potencial gastroprotetor por diferentes modelos experimentais. Ressalta-se a necessidade de estudos complementares para a elucidação dos mecanismos envolvidos na ação gastroprotetora do extrato.

CONCLUSÃO

Os resultados obtidos evidenciaram que o extrato etanólico da *L. macrophylla* nas doses analisadas possui atividade gastroprotetora frente aos modelos de úlceras induzidos por etanol absoluto e etanol acidificado. Quanto ao efeito gastroprotetor do extrato etanólico de *L. macrophylla* frente ao modelo de úlcera induzido por drogas anti-inflamatórias não esteroidais demonstrou atividade significativa em todas as doses, especialmente na menor dose testada contra as lesões induzidas. A espécie em estudo apresenta atividade gastroprotetora quanto surgimento de úlceras gástricas induzidas por diferentes modelos experimentais.

REFERÊNCIAS

1. Kangwan N, Park JM, Kim EH, Hahm KB. Quality of healing of gastric ulcers: natural products beyond acid suppression. World J. Gastrointest. Pathophysiol. 2014; v. 5, p. 40-47.
2. Amorim MM, Pereira JO, Monteiro KM, Ruiz AL, Carvalho JE, Pinheiro H, et al. Antilucer and antiproliferative properties of spent brewer's yeast peptide extracts for incorporation into foods. Food Funct. 2016; v. 18 n.7 (5) p.2331-7.
3. Bansal VK, Goel RK. Gastroprotective effect of Acacia nilotica young seedless pod extract: role of polyphenolic constituents. Asian Pac. J. Trop. Med. 2012; p 523-528.
4. Najim WI. Peptic ulcer disease. Prim. Care Clin. Office Pract. 2011; v. 38, p. 383-394.
5. Fox RK, Muniraj T. Pharmacologic therapies in gastrointestinal diseases. Medical Clinics. 2016; v. 100, n. 4, p. 827-850.
6. Bolitin D, Niv Y. Pharmacological and alimentary alteration of the gastric barrier. Best Practice & Research Clinical Gastroenterology. 2014; v. 28, p. 981-994.
7. Donatini RS, Ishikawa T, Barros S, Bacchi EM. Atividades antiúlcera e antioxidante do extrato de folhas de Syzygium jambos (L.) Alston (Myrtaceae). Revista Brasileira de Farmacognosia.2009; v. 19, n. 1a, p. 89-94.
8. Fernandes J, Castilho RO, Costa MR, Wagner-Souza K, Kaplan MAC, Gattass CR. Pentacyclic triterpenes from Chrysobalanaceae species: Cytotoxicity on Multidrug Resistant and Sensitive Leukemia Cell Lines, Cancer Letters, 2003; V. 190, n. 2, p. 165-169.
9. Medeiros, FA. Estudo Fotoquímico e Biológico de Espécies Amazônicas: Pradosia huberi (Ducke) (Sapotaceae) e Licania macrophylla Bent. (Chrysobalanaceae). Tese (Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos do Centro de Ciências da Saúde). João Pessoa: Universidade Federal da Paraíba; 2008.
10. Medeiros FAD, Medeiros AA, Tavares JF, Barbosa Filho JM, Lima EDO, Silva MSD. Licanol, a new flavanol, and other constituents from the Licania macrophylla Benth. Química Nova. 2012; v. 35, n. 6, p. 1179-1183.
11. Isacksson JGLA. Propágulos e plântulas de duas licania spp. (chrysobalanaceae) nativas da floresta de várzea estuarina. Monografia (curso de engenharia florestal). Amapá: Universidade do Estado do Amapá; 2015.
12. Braca A, Sortino C, Polliti M, Morelli I, Mendez J. Antioxidant activity of flavonoids from Licania licaniaphora. Journal of Ethnopharmacology.2002; v.79, p.379-381.
13. Neves SMP, Mancini Filho J, Menezes EW. Manual de cuidados e procedimentos com animais de laboratório do Biotério de Produção e Experimentação da FCF-IQ/USP. São Paulo: FCF-IQ/USP, 2013.
14. Andrade SF, Comunello E, Noldin VF, Monache F, Cechinel Filho V, Niero R. Antiulcerogenic activity of fractions and 3, 15-Dioxo-21α-hydroxy friedelane isolated from Maytenus robusta (Celastraceae). Archives of Pharmacal Research.2008; v. 1, n. 31, p. 41-46.
15. Morimoto Y, Shimohara K, Oshima S, Sukamoto K. Effects of the new antiulcer agent kb-5492 on experimental gastric mucosal lesions and gastric mucosal defensive factors, as compared to those of terpenone and cimetidine. Japan J. Pharmacology.1991; 57, 495-505.
16. Mizui T, Doteuchi M. Effect of polyamines on acidified ethanol-induced gastric lesions in rats. The Japanese Journal of Pharmacology.1983; v. 33, n. 5, p. 939-945.
17. Rainsford, K. D. Inhibition by leukotriene inhibitors, and calcium and platelet-activating factor antagonists, of acute gastric and intestinal damage in arthritic rats and in cholinomimetic-treated mice. Journal of pharmacy and pharmacology.1999; v. 51, n. 3, p. 331-339.
18. Damasceno SRB, Rodrigues JC, Silva RO, Nicolau LA, Chaves LS, Freitas AL, et al. Role of the NO/KATP pathway in the protective effect of sulfated-polysaccharide fraction from the algae Hypnea musciformis against etanol-induced gastric damage in mice. Revista Brasileira de Farmacognosia. 2013; v.23, n. 2, p. 320-328.
19. Tumorkey M, Karolin K. Anti-ulcer activity of curcumin on experimental gastric ulcer in rats and its effect on oxidative stress/
antioxidante, IL-6 and enzyme activities. Biomedical and Environmental Sciences. 2009; v. 22, p. 488-485.

20. Li W, Huang H, Niu X, Fan T, Mu Q, Li H. Protective effect of tetrahydrocoptisine against ethanol-induced gastric ulcer in mice. Toxicology and Applied Pharmacology. 2013; v.272, p. 21-29.

21. Zayachkivska OS, Konturek SJ, Drozdowicz D, Konturek PC, Brzozowski T, Ghegotsky MR. Gastroprotective effects of flavonoids in plant extracts. Journal Physiology Pharmacology.2005; v.56, p. 219-231.

22. Suleyman H, Albayrak A, Bilici M, Cadirci E, Halici Z. Different mechanisms in formation and prevention of indomethacin-induced gastric ulcers. Inflammation. 2010, v. 33, n. 4, p. 224-234.

23. Halter F, Tarnawski AS, Schamassman A, Peskar BM. Cyclooxygenase-2 implications on maintenance of gastric mucosal integrity and ulcer healing: controversies and perspectives. Gut.2001; v. 49, n. 3, p. 443-453.

24. Da Silva LM. Mecanismos de ação envolvidos no efeito gastoprotetor do extrato etanólico de Arctium lappa L. em úlceras gástricas crônicas induzidas por ácido acético em ratos. Dissertação (Mestrado em farmacologia). Curitiba-PR: Universidade Federal do Paraná, 2010.

25. Vasconcelos PCP, Andreo MA, Vilegas W, Hiruma-Lima CA, Pellizzon CH. Effect of Mouriri pusina tannins and flavonoids on prevention and treatment against experimental gastric ulcer. Journal of ethnopharmacology.2010; v. 131, n. 1, p. 146-153.

26. Szabo, S. Gastric cytoprotection is still relevant. Journal of Gastroenterology and Hepatology. 2014; V.29, n.9, p.124-132.