Connected edge Detour global domination number of a graph

A. Punitha Tharani¹ and A. Ferdina²*

Abstract
In this paper, we introduce the concept of connected edge detour global domination number of a graph. A subset D of the vertex set V(G) of a connected graph G is called a connected edge detour global dominating set if D is an edge detour global dominating set and the induced subgraph <D> is connected. The connected edge detour global domination number γcedg(G) of G is the minimum cardinality taken over all connected edge detour global dominating sets in G. A connected edge detour global dominating set of cardinality γcedg(G) is called a γcedg-set of G. We determine γcedg(G) for some standard and special graphs and its properties are studied.

Keywords
Edge detour global domination number, connected edge detour global domination number.

AMS Subject Classification
05C12.

1 Department of Mathematics, St. Mary’s College (Autonomous), Thoothukudi–628001, Tamil Nadu, India.
2 Research Scholar [Register Number: 19122212092006], Department of Mathematics, St. Mary’s College (Autonomous), Thoothukudi–628001, Tamil Nadu, India.
1,2 Affiliated to Manonmaniam Sundaranar University, Abishekapti, Tirunelveli–627012, Tamil Nadu, India.
*Corresponding author: 2 aferdinaido@gmail.com
Article History: Received 17 July 2020; Accepted 21 September 2020

©2020 MJM.

Contents
1 Introduction ... 1580
2 Connected Edge Detour Global Domination Number of a Graph ... 1580
References ... 1582

1. Introduction

By a graph G = (V, E), we consider a finite undirected connected graph without loops or multiple edges. The order and size of G are denoted by n, m respectively. Edge Detour Global Dominating graphs were introduced and studied by Punitha Tharani and Ferdina [12]. For underlying definition and results, see references [1-14].

Theorem 1.1. For any connected graph of order n ≥ 2. Then, 2 ≤ d(G) ≤ γd(G) ≤ n.

Theorem 1.2. Let G be a graph of order n. Then γd(G) = n if and only if G contains only end and full vertices.

Theorem 1.3. For the path graph Pn, γd(G) (Pn) = ⌈n+1n⌉ for 2, n ≥ 5.

Theorem 1.4. For the complete graph Kn, γcedg(G) = n, n ≥ 2.

2. Connected Edge Detour Global Domination Number of a Graph

Definition 2.1. A subset D of V of a connected graph G = (V, E) is called a connected edge detour global dominating set of G if D is an edge detour global dominating set and the induced subgraph <D> is connected. The Connected edge detour global domination number γcedg(G) of G is the minimum cardinality taken over all connected edge detour global dominating sets in G. A connected edge detour global dominating set of cardinality γcedg(G) is called a γcedg-set of G.

Example 2.2. Consider the graph G given in Figure 1.
Here, D1 = {v1, v4, v6}, D2 = {v1, v4, v5}, D3 = {v1, v3, v5} are γd-sets of G and so γd(G) = 3. Now D5 = {v1, v2, v3, v4}, D6 = {v1, v2, v3, v6}, D7 = {v1, v2, v5, v6} are γcedg-set of G. Then γcedg(G) = |D5| = |D6| = |D7| = 4.
Theorem 2.4. Let G be a connected graph of order n. Then $2 \leq \gamma_{edg}(G) \leq n$.

Proof. Let D be an edge detour global dominating set. Every set D needs at least two vertices so that $\gamma_{edg}(G) \geq 2$. Again, every connected edge detour global dominating set is an edge detour global dominating set, $\gamma_{edg}(G) \geq \gamma_{edg}(G)$ since the set of all vertices of G is always a connected edge detour global dominating set. Therefore $n \geq \gamma_{edg}(G)$. Hence $2 \leq \gamma_{edg}(G) \leq \gamma_{edg}(G) \leq n$.

Remark 2.5. For a connected graph G with $n \geq 2$.

(i) $\gamma(G) \leq \gamma_{edg}(G)$.

(ii) $\gamma_{edg}(G) \leq \gamma_{edg}(G)$.

(iii) Strict inequality is also true in the above relation.

(iv) From the above Example 2.2 $n = 6$, $\gamma_{edg}(G) = 3$, $\gamma_{edg}(G) = 4$, the bound (Theorem 2.4) is sharp.

Observation 2.6. (i) Path P_n of order $n(n \geq 2)$, $\gamma_{edg}(P_n) = |V(P_n)|$.

(ii) Cycle C_n of order $n(n \geq 3)$, $\gamma_{edg}(C_n) = |V(C_n)| - 2$.

(iii) Complete graph K_n of order $n(n \geq 2)$, $\gamma_{edg}(K_n) = |V(K_n)|$.

(iv) Complete bipartite graph $K_{m,n}$.

$$\gamma_{edg}(K_{m,n}) = \begin{cases} 2 & \text{if } m = n = 1 \\ |V(K_{m,n})| - m + 1 & \text{if } n \geq 2, m = 1 \\ 3 & \text{if } m, n \geq 2 \end{cases}$$

(v) Star graph $K_{1,n}$, $\gamma_{edg}(K_{1,n}) = |V(K_{1,n})|$.

(vi) Bistar graph $B_{n,n}$, $\gamma_{edg}(B_{n,n}) = 2n + 2$.

(vii) Wheel graph $W_n(n \geq 5)$, $\gamma_{edg}(W_n) = 3$.

Theorem 2.7. Every γ_{edg}-set of a connected graph G contains all the pendant vertices of G.

Proof. Let D be a connected edge detour global dominating set of G. Then every set D contains all the pendant vertices, since the pendant edges lie only in the detour joining the corresponding pendant vertex with some other vertex.

Theorem 2.8. Every γ_{edg}-set of a connected graph G contains all the vertices of G has degree $n - 1$.

Proof. Let w be a vertex of a connected graph G has degree $n - 1$. Then the vertex w belongs to every dominating set in the complement G of G. since w is dominate itself in G. Then all the full vertices of G belong to the global dominating set of G. Hence, every γ_{edg}-set contains all the vertices.

Theorem 2.9. Let G be a connected graph of order $n \geq 2$ and D be a γ_{edg}-set of G. Then for any cut vertex x of G, every component of $G - x$ contains an element of D.

Proof. Let x be a cut vertex of a connected graph G and D be a connected edge detour global dominating set. Let H be one of the components of $G - x$. Suppose no vertex of D belongs to H. Then any pendant vertex of G does not belong to H (by Theorem 2.7). Therefore, H has at least one edge, say u_1u_{i+1}. Since D is a γ_{edg}-set, there exists vertices $u_i, w \in D$ such that u_iu_{i+1} lies on some $u - w$ detour. $P: u = u_1, u_2, \ldots, u_i, u_{i+1}, \ldots, u_n = w$ in G or both the ends u_i and u_{i+1} of the edge u_iu_{i+1} are in D. Suppose that u_iu_{i+1} lies on the detour P. Let P_i be the subpath of P, say $u_i - u_i$ and P_b be the subpath of P, say $u_i - w$. Since x is a cut vertex of G, then x belongs to both P_a and P_b so that P is not a detour, which is a contradiction to the fact. Suppose that u_i and u_{i+1} are in D, then H contains vertices of D, which is again a contradiction.

Theorem 2.10. Every γ_{edg}-set of a connected graph G contains all the cut vertices of G.

Proof. Let x be a cut vertex of a connected graph G of order $n \geq 2$ and D be a connected edge detour global dominating set of G. Then $G - x$ has more than one component, say $G_1, G_2, \ldots, G_i(i \geq 2)$. Then γ_{edg}-set D contains at least one vertex from each component $G_i(1 \leq k \leq i)$ of $G - x$ (by Theorem 2.9). Since induced subgraph $<D>$ is connected it follows that $x \in D$.

Corollary 2.11. Every γ_{edg}-set of a connected graph G contains pendant vertices, full vertices and cut vertices of G.

Proof. The proof follows from Theorem 2.7, 2.8 and 2.10.

Corollary 2.12. For any tree T of n vertices, $\gamma(T) = |V(T)|, n \geq 2$.

Proof. The proof follows from Corollary 2.11.

Corollary 2.13. Let G be any connected graph with l pendant vertices, m full vertices and n cut vertices. Then $\gamma(G) \leq n$. $m + n \leq \gamma(G) \leq n$.

Proof. The proof follows from Theorem 2.4 and Corollary 2.11.

Theorem 2.14. For $3 \leq j \leq n$, there exists a connected graph G of order n with $\gamma(G) = j$.

\[\square \]
The graph G is shown in Figure 2.

If $j = n$, Let $G = P_n$. Then by Observation 2.6 (i), $\gamma_{ced}(G) = j$.

Case 2. If $3 < j < n$, Let $G = W_n$. Then by Observation 2.6 (vii), $\gamma_{ced}(G) = j$.

Case 3. $3 < j < n$, Let G be a connected graph obtained from W_{n-j+3}. Let $\gamma(G) = \{v_1, v_2, v_3, \ldots, v_{n-j+2}, w_1, w_2, \ldots, w_{j-3}\}$. The graph G is shown in Figure 2.

Let $V\{W_{n-j+3}\} = \{v_1, v_2, v_3, \ldots, v_{n-j+2}\}$ and $w_1, w_2, \ldots, w_{j-3}$ be the new vertices which are joining to v_2. Now we have to prove that $\gamma_{ced}(G) = j$. Then the set $D = \{w_1, w_2, \ldots, w_{j-3}\}$ together with a cut vertex v_2 is a subset of every γ_{ced}-set G. It is clear that D is a global dominating set but not an edge detour set of G. Let $D' = D \cup \{v, v_{j-3}\}$. Then every edge of G lies on a detour joining a pair of vertices of D'. Clearly, the set D' is γ_{ced}-set and D' is connected. Therefore, D' is a connected edge detour global dominating set of minimum cardinality,

\[
|D'| = |D \cup \{v, v_{j-3}\}| \\
= |D| + |\{v, v_{j-3}\}| \\
= |\{w_1, w_2, \ldots, w_{j-3}\}| + |v_2| + |\{v, v_{j-3}\}| \\
= j - 3 + 1 + 2 = j.
\]

Hence $\gamma_{ced}(G) = j$. \qed

References

[1] F. Buckley and F. Harary, *Distance in Graphs*, Addison-Wesley Publishing Company, Redwood City, San Francisco Peninsula, 1990.

[2] G. Chartrand, H. Escuadro and B. Zang, Distance in graph, Taking the long view, *AKCE J. Graphs and Combin.*, 1(1), (2014), 1–13.

[3] G. Chartrand, H. Escuadro and B. Zang, Detour distance in graph, *J. Combin. Math. Combin. Computer*, 53(2005), 75–94.

[4] G. Chartrand, L. Johns and P. Zang, Detour Number of a Graph, *Utilitas Mathematics*, 64(2003), 97–113.

[5] G. Chartrand, T. W. Haynes, M. A. Henning, and P. Zhang, Detour Domination in Graphs, *Ars Combinatoria*, (2004), 149–160.

[6] F. Harary, *Graph Theory*, Addison Wesley Publishing Company Reading Mass, 1972.

[7] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, *Fundamentals of Domination in Graphs*, Marcel Dekker, Inc., NY, 1998.

[8] John Adrian Bondy, Murty U.S.R. *Graph Theory*, Springer, 2009.

[9] V. R Kulli, *College Graph Theory*, Vishwa International Publications, Gulbarga, India, 2012.

[10] A. Mahalakshmi, K. Palani, S. Somasundaram, Edge Detour Domination Number of Graphs, *Proceedings of International Conference on Recent Trends in Mathematical Modeling*, 6(2016), 135–144.

[11] A. Punitha Tharani and A. Ferdina, Detour Global Domination Number of Some Standard And Special Graphs, *International Journal of Advanced Science and Technology*, 29, 185–189.

[12] A. Punitha Tharani and A. Ferdina, Edge Detour Global Domination Number of a Graph, *Mukt Shabd Journal*, 9(9)(2020), 137–143.

[13] E. Sampathkumar, The Global Domination Number of a Graph, *J. Math. Phys. Sci.*, 23(1989), 377–385.

[14] J. Vijaya Xavier parthipan, C. Caroline Selvaraj, Connected Detour Domination Number of Some Standard Graphs, *Journal of Applied Science and Computations*, 5(11), 486–489.