Including $\beta-$ and $\gamma-$ Vibrations in Evaluating the Ground State Rotational Band of Deformed Even-Even Nuclei

Mohamed E. Kelabi*
A. Y. Ahmed*
Vikram Singh†

Abstract
From the semi-empirical formalisms of Bohr-Mottelson, a new model, based on the effect of β- and γ- head energies and the variable moment of inertia, was developed to calculate the ground state rotational band of almost all deformed $e-e$ nuclei. The model can be tuned for nuclei with experimentally available β- and γ-vibrational energies as well as for those with unmeasured β- and γ-vibrations.

Introduction
The Rotational-Vibrational model RVM of Bohr-Mottelson\cite{1}

$$E(J) = AJ(J+1) - BJ^2(J+1)^2$$

has been modified to take the effect of nuclear rotations via the variable moment of inertia\cite{2}, and introducing a correction term due to β- and γ- vibrations\cite{3}

$$\hbar \omega_\beta = \left[\frac{\frac{1}{2} A^3}{B - \frac{1}{2} A^3 / (\hbar \omega_\gamma)^2} \right]^{1/2}$$

$$\hbar \omega_\gamma = \left[\frac{\frac{1}{2} A^3}{B - \frac{1}{2} A^3 / (\hbar \omega_\beta)^2} \right]^{1/2}$$

where, $\hbar \omega_\beta$ and $\hbar \omega_\gamma$ are the head energies of β- and γ- vibrations, respectively; and A and B are defined by Eq. (1). Sood\cite{2} used molecular spectra theory\cite{4} to expressed the nuclear moment of inertia dependence on the angular momentum as

$$E(J) = A(J) J(J+1)$$

where

$$A(J) = A \left[\frac{1 + (a + b J - 1)(B / A) J(J+1)}{1 + (a + b) J(B / A) J(J+1)} \right] .$$

The parameter (B / A) was calculated from the observed energy ratio $E(4) / E(2)$, and the experimental energy of the 2^+ state was then used to determine A, while a and b were adjusted from nucleus to another to give the best fit\cite{2}.

* Physics Department, Al-Fateh University, Tripoli, LIBYA
† B-1/1051, Vasant Kunj, New Delhi 110070.
Eq. (3) seems to work well in describing the energies of the ground state bands in rare earth region and the actinides 232Th and $^{232-238}$U. On the other hand, it does not assume the effect of β- and γ- vibrational bands, which are experimentally observed\cite{3} in some nuclei. This fact was encouraging to deduce a new more systematic model by incorporating the Softness parameter\cite{5}

$$\sigma_n = \frac{1}{n!} \left[\frac{\partial^n J(J)}{\partial J^n} \right]_{J=0}$$ \hspace{1cm} (4)

where J_0 is the unperturbed nuclear moment of inertia\cite{6}. Leaving aside few “very rigid nuclei”, the inclusion of the β- and γ- vibrations along with the variable moment of inertia, has led to the form\cite{7}

$$E(J) = A(J)J(J+1) - B(J)J^2(J+1)^2$$ \hspace{1cm} (5)

here the rotational parameter $A(J) = \frac{\hbar^2}{2J(J)}$ is connected with to the nuclear variable moment of inertia J, and $B(J) = \frac{4A(J)^3}{(\hbar\omega_0)^2} + \frac{12A(J)^3}{(\hbar\omega_0)^2}$ expresses the correction due to β- and γ- vibrations dependence on the nuclear moment of inertia.

Formalism

For readability purpose we rewrite Eq. (5) of the form

$$E(J) = A_0 \frac{1}{1 + \sigma_1 J} J(J+1) - B_0 \frac{(1-2\sigma_1 J)}{1+\sigma_1 J} J^2(J+1)^2$$ \hspace{1cm} (6)

where $A_0 = \frac{\hbar^2}{2J_0}$, σ_1 is defined by Eq. (4), and B_0 is related to A_0 by Eq. (2).

This non-linear Eq. (6) contains three free parameters A_0, σ_1, and B_0 which need to be solved by fit to the experimental data. The equation can be applied to calculate the energy levels of the ground state band of deformed $e-e$ nuclei in two major cases:

a) **Three parameters expression**

When the energies of β- and γ- vibrations are not experimentally available, then they can be treated as unknown, contained in c, and Eq. (6) takes the form

$$E(J) = A_0 \frac{1}{1 + \sigma_1 J} J(J+1) - c A_0 \frac{(1-2\sigma_1 J)}{1+\sigma_1 J} J^2(J+1)^2.$$ \hspace{1cm} (7)

The three free parameters A_0, σ_1, and c can be determined by fitting the first three energy levels 2^+, 4^+, and 6^+ with experimental data.

b) **Two parameters expression**

In some nuclei where the head energies of β- and γ- vibrations are experimentally available, then in this case, Eq. (6) can be rewritten as

2
\[E(J) = \frac{A_0}{1 + \sigma_1 J} J(J+1) - \left[\frac{4}{(\hbar \omega_r)^2} + \frac{12}{(\hbar \omega_i)^2} \right] A_0^2 \left(1 - 2\sigma_1 J \right) \frac{1}{1 + \sigma_1 J} J^2 \left(J + 1 \right)^2. \] (8)

This equation contains two free parameters \(A_0 \) and \(\sigma_1 \) which can be obtained by fitting only the first two energy levels \(2^+ \) and \(4^+ \) with experimental data.

Results

The results of our three parametric calculations Eq. (7), compared with experimental data and other existing models are presented in Table 1. The corresponding model parameters \(A_0, \sigma_1, \) and \(c \) determined by fitting are given in Table 2.

Keywords: EXP = Experimental data\(^{[8]}\)
VMI = Variable Moment of Inertia model\(^{[9]}\)
VAVM = Variable Anharmonic Vibrator Model\(^{[10],[11]}\)
GVMI = Generalized VMI\(^{[10],[11]}\)
PM = Present Model (our current work).

Table 1. Comparison of our results with Experiment and other models in [MeV].
\(E(2) \)
Ce-150
EXP
VMI
VAVM
GVMI
PM
Nd-154
EXP
VMI
VAVM
GVMI
PM
Sm-154
EXP
VMI
VAVM
GVMI
PM
Sm-156
EXP
VMI
VAVM
GVMI
PM
Sm-158
EXP
VMI
VAVM
GVMI
PM
	$E(2)$	$E(4)$	$E(6)$	$E(8)$	$E(10)$	$E(12)$	$E(14)$	$E(16)$	$E(18)$	
Gd-160										
EXP	0.07526	0.2482	0.514	0.868						
VMI										
VAVM										
GVMI										
PM										
Dy-158										
EXP	0.09894	0.31726	0.63787	1.0441	1.5199	2.0492	2.6126	3.1907	3.7817	
VMI										
VAVM										
GVMI										
PM										
Dy-160										
EXP	0.08679	0.28382	0.5812	0.9672	1.4286	1.9514	2.5152	3.0919	3.6724	
VMI										
VAVM										
GVMI										
PM										
Dy-164										
EXP	0.07339	0.2423	0.50132	0.84367	1.25876					
VMI										
VAVM										
GVMI										
PM										
Er-162										
EXP	0.10208	0.32963	0.66676	1.0968	1.6028	2.1651	2.7457	3.2923	3.8465	
VMI										
VAVM										
GVMI										
PM										
Yb-166										
EXP	0.10238	0.3305	0.668	1.09829	1.6059	2.1757	2.7795	3.274	3.7831	
VMI										
VAVM										
GVMI										
PM										
Yb-168										
EXP	0.08773	0.28655	0.5853	0.97006	1.424	(1.936)	(2.489)	(3.073)	(3.687)	
VMI										
VAVM										
GVMI										
PM										
Yb-170										
EXP	0.08426	0.27745	0.5736	0.9636	1.4379	1.9837	2.5808	3.1962	3.8081	
VMI										
VAVM										
GVMI										
PM										
	E(2)	E(4)	E(6)	E(8)	E(10)	E(12)	E(14)	E(16)	E(18)	
-------	------	------	------	------	-------	-------	-------	-------	-------	
Yb-176										
EXP	0.08213	0.27169	0.5648	0.9541	1.4312	1.9849	2.602	3.27	3.979	
VMI	-----	-----	-----	-----	------	------	------	-----	------	
VAVM	-----	-----	-----	-----	------	------	------	-----	------	
GVMI	-----	-----	-----	-----	------	------	------	-----	------	
PM	-----	-----	-----	-----	------	------	------	-----	------	
Hf-174										
EXP	0.09101	0.29745	0.60837	1.00943	1.487	2.022	2.599			
VMI	-----	-----	-----	-----	------	------	------	-----	------	
VAVM	-----	-----	-----	-----	------	------	------	-----	------	
GVMI	-----	-----	-----	-----	------	------	------	-----	------	
PM	-----	-----	-----	-----	------	------	------	-----	------	
W-174										
EXP	0.1119	0.355	0.704	1.137	1.635	2.186	2.78	3.392	3.973	
VMI	-----	-----	-----	0.7	1.14	1.65	2.22	2.84	3.51	
VAVM	-----	-----	-----	-----	------	------	------	-----	------	
GVMI	-----	-----	-----	-----	------	------	------	-----	------	
PM	-----	-----	-----	-----	------	------	------	-----	------	
W-178										
EXP	0.1061	0.3431	0.6947	1.1423	1.6661	2.2452	2.8593	3.4891	4.1016	
VMI	-----	-----	-----	0.693	1.14	1.669	2.27	2.936	3.659	
VAVM	-----	-----	-----	-----	------	------	------	-----	------	
GVMI	-----	-----	-----	-----	------	------	------	-----	------	
PM	-----	-----	-----	-----	------	------	------	-----	------	
W-180										
EXP	0.10357	0.33755	0.68845	1.13847	1.66418	2.2351	2.825	3.416	4.021	
VMI	-----	-----	-----	0.6879	1.1401	1.6812	2.301	2.9911		
VAVM	-----	-----	-----	-----	------	------	------	-----	------	
GVMI	-----	-----	-----	-----	------	------	------	-----	------	
PM	-----	-----	-----	-----	------	------	------	-----	------	
W-182										
EXP	0.10011	0.32942	0.6805	1.1445	1.712	2.237	(3.113)			
VMI	-----	-----	-----	0.6792	1.139	1.6985	2.3481	3.0797	3.8863	4.7619
VAVM	-----	-----	-----	-----	------	------	------	-----	------	
GVMI	-----	-----	-----	-----	------	------	------	-----	------	
PM	-----	-----	-----	-----	------	------	------	-----	------	
W-184										
EXP	0.11121	0.36406	0.74831	1.252	1.851					
VMI	-----	-----	-----	0.7458	1.2424	1.8408	2.5299	3.3006	4.1455	5.0581
VAVM	-----	-----	-----	-----	------	------	------	-----	------	
GVMI	-----	-----	-----	-----	------	------	------	-----	------	
PM	-----	-----	-----	-----	------	------	------	-----	------	
W-186										
EXP	0.1223	0.39647	0.80847	1.348	2.002					
VMI	-----	-----	-----	0.8032	1.3237	1.9424	2.6471	3.4283	4.2784	5.1913
VAVM	-----	-----	-----	-----	------	------	------	-----	------	
GVMI	-----	-----	-----	-----	------	------	------	-----	------	
PM	-----	-----	-----	-----	------	------	------	-----	------	
Table 2. Fitting parameters of Eq. (7).

Nucleus	$\sigma_1 \times 10^{-3}$	A_0 KeV	$c \times 10^{-6}$ KeV$^{-2}$
Ce-150	21.6541	17.14078	4.89
Nd-154	15.7048	12.52187	0.67
Sm-154	7.9415	13.93509	3.48
Sm-156	5.2863	12.81437	1.12
Sm-158	2.7119	12.22257	2.16
Gd-160	2.4274	12.63628	2.67
Dy-158	13.8062	17.04180	3.44
Dy-160	4.0815	14.65349	3.79
Er-162	9.9757	17.45010	3.18
Yb-166	9.7046	17.49824	3.36
Yb-168	3.5835	14.81119	4.41
Yb-170	3.0429	14.16695	2.26
Yb-176	1.5835	13.75813	1.70
Hf-174	3.8362	15.36536	3.76
W-174	15.4814	19.40646	4.35
W-178	8.9999	18.10533	3.02
W-180	5.0998	17.53311	3.01
W-182	3.2526	16.84082	1.67
W-184	5.8207	18.80577	1.41
W-186	12.0535	20.91881	0.84
Pu-238	-0.0313	7.366827	8.59
Pu-240	0.8512	7.168516	8.19
Pu-242	2.5625	7.472661	4.55
In Table 3, we also present a sample of our calculations in comparison with experimental data and Sood’s results\cite{2}. The corresponding parameters A_0, σ_1, and c obtained by fitting are given in Table 4.

Table 3. Comparison of our calculations with the experimental data\cite{2} and Sood’s results\cite{2} in [MeV].

	$E(2)$	$E(4)$	$E(6)$	$E(8)$	$E(10)$	$E(12)$	$E(14)$	$E(16)$	$E(18)$
Gd-158									
EXP	0.0796	0.2619	0.539	0.898					
PM	0.0796	0.2619	0.539	0.898					
Sood	0.0796	0.2617	0.539	0.901					
Er-166									
EXP	0.0806	0.2649	0.545	0.910	1.334				
PM	0.0806	0.2649	0.545	0.909	1.342				
Sood	0.0806	0.2647	0.544	0.908	1.344				
Yb-172									
EXP	0.0787	0.2603	0.540	0.910	1.352				
PM	0.0787	0.2603	0.540	0.910	1.361				
Sood	0.0787	0.2602	0.540	0.910	1.364				
Os-184									
EXP	0.1198	0.3836	0.774	1.274	1.871				
PM	0.1198	0.3836	0.774	1.275	1.875				
Sood	0.1180	0.3834	0.777	1.278	1.867				

Table 4. Fitting parameters of Eq. (7).

Nucleus	$\sigma_1 \times 10^{-3}$	A_0 KeV	$c \times 10^{-6}$ KeV$^{-2}$
Gd-158	-0.14	13.33	5.08
Er-166	1.55	13.54	4.32
Yb-172	0.12	13.16	3.09
Os-184	19.63	20.78	0.64

Further application of our model is that, by employing Eq. (8) to calculate the energy levels of ground state bands of some deformed $e-e$ actinides where the energies of β- and γ-vibrations are experimentally available\cite{12}. The results of our calculations are listed in Table 5, and the corresponding values of A_0 and σ_1 determined by fitting are given in Table 6.
Table 5. Comparison of our results with the available experimental data\cite{12} in [MeV].

	$E(2)$	$E(4)$	$E(6)$	$E(8)$	$E(10)$	$E(12)$	$E(14)$	$E(16)$	$E(18)$
Pu-238									
(EXP $E_{\beta} = 0.942, E_{\gamma} = 1.029$)	0.044	0.146	0.303	0.513	0.773	1.079	1.427	1.816	2.241
PM	-------	-------	0.302	0.505	0.744	1.006	1.272	1.518	1.716
Pu-240									
(EXP $E_{\beta} = 0.860, E_{\gamma} = 0.900$)	0.043	0.142	0.294	0.498	(0.748)				
PM	-------	-------	0.292	0.487	0.713	0.954	1.189	1.389	1.521
U-238									
(EXP $E_{\beta} = 0.809, E_{\gamma} = 0.927$)	0.043	0.143	0.296	0.497	0.741	1.024	1.341	1.688	2.063
PM	-------	-------	0.294	0.487	0.708	0.937	1.153	1.325	1.417

Table 6. Fitting parameters of Eq. (8)

Nucleus	$\sigma_{\gamma} \times 10^{-3}$	A_0 [KeV]
Pu-238	-3.472	7.337
Pu-240	-4.170	7.125
U-238	-3.157	7.257

Conclusion

The present model Eq. (7) is practically fit to almost all deformed ε-ε nuclei. The results of 24 nuclei where the β- and γ-vibrational energies were treated as unknowns are reported in Table 1 and Table 3. A detailed comparison of our calculations with other proposed models, reveals the closest agreement to the experimental energies. At high spin states, as in the case of eg., 162Er, 178W, and 180W nuclei, a surprisingly excellent predictions which had not been satisfactorily described by any other model. Table 1 and Table 3 are direct support to the fact that the β- and γ-vibrational energies and the variation of the moment of inertia with spin J can not be ignored in evaluating the energies of the ground state rotational bands.

Our model was also applied to some nuclei where the energies of β- and γ-vibrations are experimentally available. With the known values of $\hbar \omega_{\beta}$ and $\hbar \omega_{\gamma}$, Eq. (7) reduces to two parametric expression Eq. (8). Keeping in view the inherent limitations of Eq. (2), we observe a small deviation at high spin states. Because no much data is available for β- and γ-vibrations, it is hoped that experiments may be planned to populate β- and γ-vibrational bands to test the validity of our two parametric model and also to verify Eq. (2).
References

[1] A. Bohr and B. R. Mottelson, Nucl.ear Structure Vol-11, Nuclear Deformation, Benjamin, New York (1984).
[2] P. C. Sood, Phys. Rev. 161 (1967) 1063.
[3] Raymod K. Sheline, Rev. Mod. Phys., 32-1 (1960) 1.
[4] J. L. Dunham, Phys. Rev. 41 (1932) 721.
[5] H. Morinaga, Nucl. Phys. 75 (1966) 385.
[6] J. S. Batra and R. K. Gupta, Phys. Rev. C43 (1991) 43.
[7] Mohamed E. Kelabi et al, Submitted to National Academy of Scientific Research, Journal. of Basic and applied Science, Tripoli, LIBYA, Jan (2005).
[8] Dennis Bonatsos and Abraham Klein, Atomic Data and Nuclear Data Tables 30 (1984) 27.
[9] N. A. J. Mariscotti, Gertrude Scharf-Goldhaber, and Brain Buck, Phys. Rev. 178 (1969) 1864.
[10] A. Klein, Nucl. Phys. A347 (1980) 3; ibid Phys. Lett. B93 (1960) 1.
[11] Dennis Bonatsos and A. Klein, Phys. Rev. C29 (1984) 1879.
[12] C. L. Dunford and T. W. Burrows, Report NNDC/ONL-95/10 (1995), Brookhoven National Laboratory.