Recent clonal reproduction of *Cryptomeria japonica* in a snowy region revealed by a survey of small-sized ramets

Megumi K. Kimura\(^1,6\)*, Takashi Nagashima\(^2\), Tomohiko Kamitani\(^2,3\), Hitoshi Sakio\(^4\) and Yoshihiko Tsumura\(^1,5\)

---

**Abstract**

Clonal reproduction may contribute to population maintenance in areas where disturbance caused by snow limits tree recruitment. To understand the importance of clonal reproduction in the population dynamics of canopy tree species, it is necessary to determine the frequency of clonal reproduction in the early stages of seedling establishment. We found 106 ramets, including "small-sized" ramets of less than 5 cm in diameter at breast height, aggregated within 4 patches in a 70 × 50 m plot and also identified 20 genets among these ramets with the use of nuclear microsatellite markers. The size structure of the ramets revealed an inverse J-shaped distribution, suggesting that continuous recruitment of new ramets occurs. However, the number of intermediate-sized ramets (around 10 cm DBH) at the present study site was small, suggesting that most new ramets die while they are still small by pressure from heavy snow. Of the 20 genets, 12 included one or more small-sized ramets, which indicated recent recruitment. Of the 12 genets, 3 included only a single small-sized ramet, which suggested seedling recruitment, whereas the other 9 included multiple ramets (39 small-sized ramets in total), which indicated clonal recruitment. The frequency (9/12) and number (39/9) of recent clonal recruits suggest that clonal reproduction effectively maintains the population of *Cryptomeria japonica* in snowy regions.

**Keywords:** Clonal diversity, microsatellite marker, layering, seedling recruitment, conifer

---

**Introduction**

Many forest tree species have the capacity to grow clonally via root suckers, rhizomes, and stolons and by sprouting and layering. The purposes of clonal reproduction are multifold, which include restoration following disturbances and population expansion (Silvertown and Charlesworth, 2001). Sprouting and layering are particularly common phenomena in tree species and are efficient means of recovering biomass and reducing mortality following a disturbance (Bond and Midgley, 2001; Nagamitsu et al., 2004; Nagashima et al., 2015). It is necessary to determine the frequency of clonal recruitment at a given time in order to elucidate the role of clonal reproduction in canopy tree species.

Investigations focusing on ramets of a small-sized class (e.g., those smaller than 5 cm in diameter at breast height [DBH]) are required to determine clonal recruitment at a given time point. However, clonal reproduction in small-sized ramets has not been well studied, especially in canopy tree species. Also, distinguishing seedlings from clonal shoots is difficult.
when conducting field observations. The rate of seedling recruitment is still unknown as there is no clear understanding of when genets are recruited. Highly polymorphic co-dominant markers, such as microsatellite markers (i.e., simple sequence repeats), are useful not only for the identification of genets but also for the estimation of genetic relationships among genets (Kimura et al., 2013a; Kimura et al., 2013b; Nagashima et al., 2015; Doğan et al., 2017).

Cryptomeria japonica D. Don (Cupressaceae sensu lato) is a coniferous species endemic to Japan. Natural forests of C. japonica are distributed in areas of diverse environmental conditions in the Japanese archipelago, from Aomori Prefecture (40°42′N) to Yakushima Island (30°15′N) (Hayashi, 1960). This species can regenerate either from seedlings or by layering. Several studies have revealed a higher frequency of layering in regions where snowfall is heavy (Moriguchi et al., 2001; Hirayama and Sakimoto, 2008; Kimura et al. 2013a); in such areas, environmental and genetic factors affect the frequency of clonal reproduction of C. japonica (Kimura et al., 2013a). In the present study, we assessed the frequency of recent clonal reproduction in C. japonica by investigating the clonal structures of all ramets, including small-sized ramets with DBH less than 5 cm.

Materials and Methods

Study site

The study was conducted in Niigata University Forest (NUF), Niigata University, Sado Island, Niigata, Central Japan (38°12.2′N, 138°27.1′E, 880–895 m above sea level). The environmental data in the study area was estimated from the meteorological data in a 1-km grid for a 30-year period from 1971 to 2000 (Japan Meteorological Agency, 2002), and the mean annual temperature, precipitation and maximum snow depth were 9.7 °C, 2,700 mm and about 2 m, respectively. The area encompassed a well-developed cool-temperate mixed forest dominated by C. japonica, Fagus crenata, Acer spp., and Quercus spp. No record of either catastrophic or artificial disturbances in this area has been found for centuries. In May 2012, during the thawing season, a plot (about 70 m × 50 m) was established on flat ground within the study area, and the locations of all ramets in the plot as follows:

\[
D = \rho \frac{(N - 1)}{\sum (n_i)}
\]

where \(D\) denotes the total number of ramets in each sampling patch, \(N\) denotes the number of individual ramets of the same genet, and \(n_i\) denotes the number of individual ramets of genet \(i\). To elucidate the contribution of seedlings and clones to recruitment, these values were calculated for small-sized ramets (DBH < 5 cm).

Clonal diversity

Multilocus genotypes were detected using eight microsatellite markers developed by GenAlEx 6.41 (Peakall and Smouse, 2006). The clonal reproductive frequency, which was expressed as the G/N ratio, was calculated for each sampling patch; \(G\) is the number of observed distinct genotypes (genets), and \(N\) is the total number of individual trees (ramets). The genotypic evenness \((E; Fager, 1972)\) was also calculated for the sampling patch as follows:

\[
E = \left(1 - \frac{\sum (n_i)}{N(N-1)}\right) / \left(1 - \frac{1}{N(N-1)}\right)
\]

where \(E\) is the genotypic evenness and \(N\) denotes the total number of ramets in each sampling patch, and \(n_i\) denotes the number of individual ramets of genet \(i\). To elucidate the contribution of seedlings and clones to recruitment, these values were calculated for small-sized ramets (DBH < 5 cm).

The sibling relationships among the sampled genets were inferred by the likelihood method based on the genotype data of 20 sampled genets and allele frequency data from other natural populations using the COLONY 2.0.3.3 software (Wang, 2004; Wang and Santure, 2009; Jones and Wang, 2010). We calculated the allele frequencies of eight microsatellite markers in 1,239 individuals from 38 natural C. japonica populations and 20 sampled genets. Subsequently, we calculated the likelihood of a given categorization of genets into half- and full-sib families, and in each case, the family structure with the maximum likelihood was identified applying the Markov chain Monte Carlo method with a simulated annealing technique (Wang, 2004). Five independent runs with the same dataset were conducted to confirm that all runs converged to the same family structure with the same maximum likelihood. Each run had a 0.5 parameter score or a 0.5 maternity score, an allelic dropout rate of 0, a genetic error rate of 0.0001, and no selfing.

DNA analysis

Total DNA was extracted from the needle tissue of each ramet applying a modified cetyltrimethylammonium bromide (CTAB) method (Tsumura et al., 1995). We determined the genotypes of all ramets using eight nuclear microsatellite loci (Cjg0077, Cjso333, CS1219, CS1525, CS1364, CS1579, CS2169, Cjso520) (Moriguchi et al., 2003; Tani et al., 2004). The average non-exclusion probability for the identity of two unrelated individuals (Waits et al., 2001) was very low \((7.13 \times 10^{-12})\) using these eight microsatellite loci (Kimura et al., 2013a). Therefore, ramets that shared the same multilocus genotype were regarded as ramets of the same genet. If only one of the 16 alleles was different, it was considered a somatic mutation and determined to be the same genet (three of the 106 ramets). At least four of the eight loci differed between the different genets in this study. The PCR conditions and genotyping method were as described by Kimura et al. (2013a).
Results

The frequency distribution of ramets was inverse-J-shaped (Figure 1). In total, 46 ramets (43.4%) were “small-sized ramets (DBH < 5 cm)” and 20 multilocus genotypes (genets) were identified for all of the ramets (n = 106) in the 4 sampling patches analyzed using the eight microsatellite loci. The number of ramets per genet ranged from 1 to 23, with a mean of 5.3. Of the 20 genets, 6 had only one ramet (defined as solitary genets), whereas the rest had more than two ramets (defined as multiple genets). The total G/N ratio was 0.19, and the E value was 0.52.

The number of small-sized ramets per genet ranged from 1 to 16, with a mean of 3.8. The total G/N ratio and E value were 0.26 and 0.53, respectively; these values are similar to those for large ramets (0.27 and 0.59, respectively). The size distributions of ramets varied among genets (Figure 2). Of the 14 multiple genets, 9 had several small-sized ramets produced by recent clonal reproduction. Clonal reproduction was detected in all four sampling patches (Figures 2 and 3). No multilocus genet was shared among the sampling patches; in fact, every genet was unique to a single sampling patch (Figures 2 and 3). We found solitary genets in three of the four sampling patches. The G/N ratio in each patch varied from 0.12 to 0.32, with an average of 0.18. The E value ranged from 0.13 to 0.56. Genet G09 had the largest number of ramets (at least 23). Multiple genets formed mutually exclusive patches (Figure 3). Genet G18 occupied the largest area, with a maximum diameter of about 10.6 m. We identified the largest ramet from each genet, which are considered to be putative founders; other ramets likely derive from layering.

![Figure 1](image1)

**Figure 1**
Frequency distribution of Cryptomeria japonica ramets of different sizes (diameter at breast height). Dark bars indicate the largest ramet of each genets, and shaded bars indicate the other ramets of various genets.

![Figure 2](image2)

**Figure 2**
Size distribution and number of ramets of each genet of Cryptomeria japonica in a study plot. Closed and open circles denote genets with a single ramet and multiple ramets, respectively. D0 indicates the diameter at the base of a small-sized ramet with a diameter at breast height (DBH) less than 5 cm. The number in parentheses of the number of ramets indicates the number of small-sized ramets.
The effective population size estimated using the COLONY 2.0.3.3 software was 23 (90% confidence interval, 13–45) under random mating versus 20 (90% confidence interval, 11–42) under nonrandom mating. The number of estimated parents was 17 from 20 genets. We estimated the family structure among genets with the use of combined data from five runs using the likelihood method. We found 3 full-sib relationships and 15 half-sib relationships (Figure 4). The full-sib genets were all found within the same sampling patch (patch B and patch D). Two parent–offspring relationships were identified in patch D (G15 and G18 and G15 and G20).

Discussion

The size structure of the ramets revealed an inverse J-shaped distribution for all of the ramets of the four sampling patches, suggesting that continuous recruitment of new ramets occurs in this species. However, potential seedling recruitment was limited at the study site (3/46) (Figure 2). Additionally, the total E, including small-sized ramets in the <5 cm DBH class, was low (0.52) compared with that of previous studies (e.g., 0.751–1.000; Kimura et al., 2013a). These results suggest that new ramets were recruited by clonal reproduction rather than as seedlings. Hirayama and Sakimoto (2005) reported that more than 70% of C. japonica seedlings died within 1 year. It is difficult for C. japonica seedlings to establish themselves in the understories of forests covered by C. japonica leaves. In addition, the number of intermediate-sized ramets (around 10 cm DBH) at the present study site was small (Figures 1 and 2), suggesting that most new ramets die while they are still small. Many understory C. japonica ramets die of pressure from heavy snow (Hirayama and Sakimoto, 2003).

Every genet was unique to a single sampling patch in the present study, and genets formed mutually exclusive patches (Figure 3), suggesting a phalanx strategy of clonal reproduction (Jonsson, 1995). We have identified similar genet structures in several other Cryptomeria populations (Taira et al., 1997; Moriguchi et al., 2001; Hirayama and Sakimoto, 2008; Kimura et al., 2013a; Doğan et al., 2017). Sprouting is an efficient means of regaining biomass and reducing genet mortality following a disturbance (Bond and Midgley, 2001). Our results suggest that clonal reproduction may be the most important strategy for establishing and maintaining a genet in areas where there is
frequent disturbance, such as in areas of heavy snowfall. Restriction of the establishment of seedlings of *C. japonica* to fallen logs and stumps was also reported in natural forests on Sado Island (Tomizawa and Maruyama, 1993) and in Akita Prefecture (Ota et al., 2002), both of which are snowy regions. Since these sites are not covered by understory vegetation, the light environment is relatively good. When covered with moss at these sites, seedlings do not dry out. At the present site, several seedlings (e.g., G16 and G10) had become established on the mossy butt swell of the canopy *C. japonica* trees. Simulation studies have revealed that a seedling recruitment rate of 3% is sufficient to maintain genetic variation and clonal diversity (Watkinson and Powell, 1993). Sibling relationships were also attributed to seedling establishment. It is thought that despite the limited light and water, the mossy butt swell of a tree is more suitable for seedling establishment than the understory. Such mossy habitats are probably cryptic safe sites for *C. japonica* in snowy regions. Temporal and spatial differences in safe site among sampling patches probably influenced the number of ramets per genet in the present study. For example, parent–offspring and full-sib genets were all found in the same sampling patches (patch B and patch D, respectively; Figure 4). This suggests that the timing of the establishment of each genet differed among sampling patches.

In summary, the difficulty of seedling establishment and the importance of early clonal reproduction in *C. japonica* were demonstrated in the present study by analyzing small-sized ramets. *C. japonica* is genetically divided into two groups (Takahashi et al., 2008; Tsumura et al., 2012), and a higher frequency of clonal reproduction was reported in the Japan Sea side group than in the Pacific Ocean side group (Kimura et al., 2013a). This trend may be the result of adaptation to environmental factors such as disturbance caused by snow pressure. The importance of clonal reproduction is likely to vary from region to region, as this species has a wide distribution range and diverse habitat. In the future, more information will be needed to clarify the role of clonal reproduction in canopy tree species.

**Acknowledgments**

We would like to thank Dr. Y. Moriguchi, Dr. K. Uchiyama, Dr. T. Ota, and Dr. T. Saito for their useful advice and help in collecting samples during the course of this study. We would also like to thank Y. Komatsu for his help with the DNA analyses.

**References**

Bond WJ, Midgley JJ (2001) Ecology of sprouting in woody plants: the persistence niche. Trends in Ecology and Evolution 16(1):45-51. https://dx.doi.org/10.1016/S0169-5347(00)02033-4

Doğan G, Tadama T, Kohama H, Matsumoto A, Moriguchi Y (2017) Evidence of clonal propagation in Cryptomeria japonica D. Don distributed on Pacific Ocean side in Japan. Silver Genetica 66(1):143-46. https://dx.doi.org/10.1515/sg-2017-0007

Hayashi Y (1960) Taxonomical and phytogeographical study of Japanese conifers. Tokyo, Japan: Norin-Shuppan, 202 p, ISBN None (in Japanese).

Hirayama K, Sakimoto M (2003) Regeneration of Cryptomeria japonica on a sloping topography in a cool-temperate mixed forest in the snowy region of Japan. Canadian Journal of Forest Research 33(4):543-551. https://dx.doi.org/10.1139/x02-190

Hirayama K, Sakimoto M (2008) Clonal structure and diversity of Cryptomeria japonica along a slope in a cool-temperate, old-growth mixed forest in the snowy region of Japan. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere 38(11):2804-2813. https://dx.doi.org/10.1139/x08-127

Jones OR, Wang J (2010) COLONY: program for parental and sibship inference from multilocus genotype data. Molecular Ecology Resource 10(3):551-555. https://dx.doi.org/10.1111/j.1755-099X.2009.02782.x

Jonsson BO (1995) Old populations of the rhizomatous sedge *Carex bigelowii* show little intermingling of clones (genets). Abstracta Botanica 19:105-113.

Kimura MK, Nakamura C, Hayashi N, Koyama Y, Tsumura Y (2013b) genetic diversity and genetic characteristics of *Cryptomeria japonica* in the Togakushi Okusha shrine forest. Journal of the Japanese Forest Society 95:173-181 (in Japanese with English summary). https://dx.doi.org/10.4065/jfs.95.173

Kimura MK, Kabeya D, Saito T, Moriguchi Y, Uchiyama K, Migita C, Chiba Y, Tsumura Y (2013a) Effects of genetic and environmental factors on clonal reproduction in old-growth natural populations of *Cryptomeria japonica*. Forest Ecology and Management 304:10-19. https://dx.doi.org/10.1016/j.foreco.2013.04.030.

Moriguchi Y, Iwata H, Ujino-Ihara T, Yoshimura K, Taie H, Tsumura Y (2003) Development and characterization of microsatellite markers for *Cryptomeria japonica* D. Don. Theoretical and Applied Genetics 106(4):751-758. https://dx.doi.org/10.1007/s00122-002-1149-0

Moriguchi Y, Matsumoto A, Saito M, Tsumura Y, Taie H (2001) DNA analysis of clonal structure of an old growth, isolated forest of *Cryptomeria japonica* in a snowy region. Canadian Journal of Forest Research 31(3):377-383. https://dx.doi.org/10.1139/x00-127

Namagami T, Ogawa M, Ishida K, Tanouchi H (2004) Clonal diversity, genetic structure, and mode of recruitment in a *Prunus s mini* population established after volcanic eruptions. Plant Ecology 174(1):1-10. https://dx.doi.org/10.1023/B:VEGE.0000046054.87587.4b

Nakashima T, Kimura MK, Tsumura Y, Hamma K, Aobe H, Sakai H (2015) The Effect of Typhoon Disturbance and Snow Pressure Stress on Clonal Structure of *Cryptomeria japonica*. Journal of the Japanese Forest Society 97:19-24 (in Japanese with English summary). https://dx.doi.org/10.4065/jfs.97.19

Ota T, Sugita H, Kanazashi T, Seki T, Nakamura S (2002) Difference in regeneration microhabitats between *Cryptomeria japonica* and *Fagus crenata* in Sado Forest Reserve, Akita Prefecture, northeastern Japan. Journal of the Japanese Forest Society 84:33-36 (in Japanese with English summary).

Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Molecular Ecology Notes 6(1):288-295. https://dx.doi.org/10.1111/j.1471-8266.2005.01155.x

Shimizu Y, Ando M, Sakai F (2002) Clonal structure of natural populations of *Cryptomeria japonica* growing at different positions on slopes, detected using RAPD markers. Biochemical Systematics and Ecology 30(8):733-748. https://dx.doi.org/10.1016/S0305-0481(00)01009-0

Silverstone J, Charlesworth D (2001) Introduction to plant population biology fourth edition. Oxford, UK: Blackwell Science, 360p, ISBN 9780632049912

Taira H, Tsumura Y, Tomaru N, Ohba K (1997) Regeneration system and genetic diversity of *Cryptomeria japonica* growing at different altitudes. Canadian Journal of Forest Research 27(4):447-452. https://dx.doi.org/10.1139/x97-001

Takahashi T, Tani N, Niyama K, Yoshida S, Taira H, Tsumura Y (2008) Genetic succession and spatial genetic structure in a natural old growth *Cryptomeria japonica* forest revealed by nuclear and chloroplast microsatellite markers. Forest Ecology and Management 255(7):2820-2828. https://dx.doi.org/10.1016/j.foreco.2008.01.055

Tomizawa H, Maruyama K (1993) Distribution and survivorship of seedlings in *Cryptomeria japonica* natural forests on Sado Island. Journal of the Japanese Forest Society 75:460-462 (in Japanese).

Tsumura Y, K Uchiyama, Y Moriguchi, S Ueno and T Ibara-Ujino (2012) Genome scanning for detecting adaptive genes along environmental gradients in
the Japanese conifer, Cryptomeria japonica. Heredity 109(6):349-360.
https://dx.doi.org/10.1038/hdy.2012.50
Waits LP, Luikart G, Taberlet P (2001) Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Molecular Ecology 10(1):249-256.
https://dx.doi.org/10.1046/j.1365-294x.2001.01185.x
Wang J, Santure AW (2009) Parentage and sibship inference from multilocus genotype data under polygamy. Genetics 181(4):1579-1594.
https://dx.doi.org/10.1534/genetics.108.100214
Wang J (2004) Sibship reconstruction from genetic data with typing errors. Genetics 166(4):1963-1979. https://dx.doi.org/10.1534/genetics.166.4.1963
Watkinson AR, Powell JL (1993) Seedling recruitment and the maintenance of clonal diversity in plant populations. Journal of Ecology 81:707-717.
https://dx.doi.org/10.2307/2261668