Two Estrogen Response Element Sequences Near the PCNA Gene Are Not Responsible for Its Estrogen-Enhanced Expression in MCF7 Cells

Cheng Wang, Jie Yu, Caleb B. Kallen*
Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, Georgia, United States of America

Abstract

Background: The proliferating cell nuclear antigen (PCNA) is an essential component of DNA replication, cell cycle regulation, and epigenetic inheritance. High expression of PCNA is associated with poor prognosis in patients with breast cancer. The 5'-region of the PCNA gene contains two computationally-detected estrogen response element (ERE) sequences, one of which is evolutionarily conserved. Both of these sequences are of undocumented cis-regulatory function. We recently demonstrated that estradiol (E2) enhances PCNA mRNA expression in MCF7 breast cancer cells. MCF7 cells proliferate in response to E2.

Methodology/Principal Findings: Here, we demonstrate that E2 rapidly enhanced PCNA mRNA and protein expression in a process that requires ERα as well as de novo protein synthesis. One of the two upstream ERE sequences was specifically bound by ERα-containing protein complexes, in vitro, in gel shift analysis. Yet, each ERE sequence, when cloned as a single copy, or when engineered as two tandem copies of the ERE-containing sequence, was not capable of activating a luciferase reporter construct in response to E2. In MCF7 cells, neither ERE-containing genomic region demonstrated E2-dependent recruitment of ERα by sensitive ChIP-PCR assays.

Conclusion/Significance: We conclude that E2 enhances PCNA gene expression by an indirect process and that computational detection of EREs, even when evolutionarily conserved and when near E2-responsive genes, requires biochemical validation.

Introduction

The proliferating cell nuclear antigen (PCNA) gene product is a nuclear protein that acts as a cofactor for DNA polymerase-δ and participates in DNA synthesis [1] and repair [2] (for reviews see [3,4]). In addition, by interacting with a wide array of proteins, PCNA serves essential functions in cell cycle progression [5], epigenetic inheritance [6,7], and gene transcription [8,9]. PCNA gene expression is generally low in quiescent cells, increases with cell proliferation [10], and is tightly controlled within the cell cycle. In response to proliferative stimuli, PCNA mRNA and protein levels both increase during the G1/S transition, commensurate the protein’s role in DNA replication [11–14].

PCNA synthesis is induced by diverse stimuli in a cell-type specific fashion, including: EGF, PDGF, and serum in 3T3 cells [15,16], interleukin 2 (IL-2) in T-lymphocytes [17], and p53 [18] and adenovirus infection in HeLa cells [19]. There appear to be transcriptional and post-transcriptional mechanisms for regulating PCNA mRNA levels in 3T3 cells by processes that are not fully characterized [10,17,20,21]. No formal study of PCNA gene regulation has been demonstrated in breast cancer cells. Most studies have observed that high PCNA gene expression correlates with increased metastatic potential and decreased survival in patients with breast carcinoma [22–28]. Many breast and uterine cancers depend upon E2 for neoplastic initiation, development, or metastasis, and antiestrogen therapies remain the mainstay of treatment and prevention for ERα-expressing breast cancers. The E2 response in breast cancer cells is predominantly mediated by ERα, a ligand-activated transcription factor [29]. We confirmed that PCNA gene expression is enhanced by E2 exposure in MCF7 breast cancer cells which express ERα and proliferate in response to E2 [30,31]. We, and others, have detected two putative estrogen response elements (EREs) in the 5'-region of the PCNA gene, one of which is conserved between murine and human species, and both of which may serve as cis-regulatory elements for ERα-mediated gene regulation [32]. Recently, PCNA was shown to physically interact with ERα [33] and RARα [34] and to modulate gene transcription regulated by these transcription factors. These observations raise the possibility that E2-stimulated ERα activates PCNA gene expression, leading to feedback regulation of ERα transcriptional functions by ERα-bound PCNA. The process of PCNA gene

* E-mail: caleb.kallen@emory.edu

Competing Interests: The authors have declared that no competing interests exist.

Funding: CBK is supported by a grant from the Research Scientist Development Program (NIH-5K12HD00849) and by the Society for Gynecologic Investigation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2008 Wang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Received July 15, 2008; Accepted October 6, 2008; Published October 24, 2008

Citation: Wang C, Yu J, Kallen CB (2008) Two Estrogen Response Element Sequences Near the PCNA Gene Are Not Responsible for Its Estrogen-Enhanced Expression in MCF7 Cells. PLoS ONE 3(10): e3523. doi:10.1371/journal.pone.0003523
induction is likely to be essential to the mitogenic effects of E2 in some ERα-expressing cancers.

The PCNA promoter is regulated at the transcriptional level by many transcription factors including E1A [35,36], ATF1 [37], RFX1 [38], CBP [39], p107 [40], p53 [18,19,41], and E2F [11,12]. In some systems, basal transcription is augmented at G1/S by inducible regulatory elements [12]. No role for ERα has been demonstrated in the regulation of PCNA gene expression although estrogens act as potent mitogens in both normal and neoplastic breast and uterine tissues. Because eukaryotic cis-regulatory elements may reside great genomic distances from target genes [31,42–45], and because the putative EREs that we identified are located 1,200–10,000 bp from either transcription start site (TSS) demonstrated for PCNA, we thought it important to test these elements for functional significance. Our goals were to understand the predictive value of computational ERE detection for an E2-responsive gene and to better define the mechanisms by which estrogen stimulates PCNA gene expression in breast cancer cells. Our data indicate that E2 enhances PCNA gene expression by an indirect process and that computational detection of EREs, even when evolutionarily conserved and when near E2-responsive genes, requires biochemical validation.

Results

E2 stimulated PCNA mRNA and protein expression in a process that requires de novo protein synthesis

We recently reported the results of microarray-based gene expression profiling using the MCF7 breast cancer cell line, a model system for E2-dependent breast tumors [31]. MCF7 cells express ERα and proliferate in response to E2 exposure. We observed increased PCNA gene expression after 4, 12, and 24 hours of E2 exposure. Notably, two putative EREs were previously detected upstream of PCNA by Bourdeau et al, who applied large scale computational analyses to the human and mouse genomes for detection of conserved ERE sequences [32]. Our analysis revealed that the both ERE sequences are 100% conserved between Rhesus and human, whereas the 3′-ERE sequence also shares 79% identity with mouse, indicating that the 3′-ERE is more evolutionarily conserved. These ERE sequences were never tested for function.

Quantitative reverse transcription polymerase chain reaction (Q-RT-PCR) was applied to MCF7 cell lysates and confirmed greater than 2-fold induction of PCNA mRNA after six hours E2 exposure (Figure 1A). Known E2-responsive genes also tested include TFF1, MYC, STC2, and DCC1. Similar changes in PCNA protein levels were observed after E2 treatment of MCF7 cells (Figure 1B). The E2-stimulated expression of PCNA mRNA was sensitive to co-treatment with the protein synthesis inhibitor cycloheximide (CHX), suggesting a secondary, or indirect, transcriptional effect of E2 exposure (Figure 1A). Interestingly, DCC1, a component of the replication factor C (RFC) which loads PCNA onto DNA during DNA replication, demonstrated expression that was similarly E2 responsive and CHX sensitive. These data are consistent with a model in which DNA replication is regulated within the cell cycle, in part, by the regulated synthesis and degradation of the replicative machinery [46].

There exist direct transcriptional targets of ERα that require de novo protein synthesis in order to be transcriptionally regulated by the receptor. For example, the ERα gene target c-fos is rapidly

![Figure 1. Estrogen stimulates PCNA mRNA and protein expression in MCF7 cells.](image-url)
activated by E2 in uterine tissues [47,48] whereas de novo protein synthesis is required in order to produce a sustained c-fos transcriptional response to E2 in MCF7 cells [49]. Similarly, there exist gene targets that are repressed by ERα only after induction of the corepressor protein NRP1-1 [44]. Thus, the fact that the PCNA response to E2 was CHX-sensitive did not preclude the gene from being a direct responder to ERα.

E2-enhanced PCNA gene expression was blocked by inhibition of ERα function

Blocking an E2-mediated transcriptional response by cotreatment with ICI 182,780, a pure ERα antagonist, indicates that the observed effect is mediated by ERα [50,51]. In MCF7 cells, the E2-stimulated expression of PCNA was blocked by cotreatment with ICI 182,170 and by inhibition of gene transcription using actinomycin D (ActD) (Figure 2). Similar results were observed for MYC gene expression, which is also E2-responsive and a direct gene target of ERα [52]. These data support the hypothesis that E2-stimulated PCNA gene expression requires both the activity of ERα and de novo gene transcription.

We recently demonstrated that siRNA-mediated knockdown of PCNA gene expression greatly inhibited E2-stimulated cell proliferation in MCF7 cells [31]. These data supported the hypothesis that PCNA is an important mediator of E2-stimulated cell proliferation in MCF7 cells. Our analysis of the PCNA gene locus confirmed two imperfect ERE's within 10 Kb of the two TSSs described for the gene (Figure 3A) [12,17]. Each putative ERE (herein dubbed PCNA-ERE1 and PCNA-ERE2) demonstrates a single nucleotide mismatch from the core 13 bp consensus (or “canonical”) ERE sequence. Notably, the majority of EREs identified and validated in the human genome do not demonstrate perfect consensus sequences, indicating a high degree of heterogeneity for functional ERE sequences [53–57]. Similarly, the mere presence of an ERE-like sequence is not sufficient to ensure ERα binding or ERα-mediated transcriptional responses in the majority of chromatin contexts [31,58]. These observations indicate that ERE sequences must combine with additional factors in order to function. Such factors may include regional histone composition, distribution, and post-translational histone modifications, DNA methylation status, and regional DNA sequences (with associated trans-factors) that create a transcriptionally permissive environment for activated ERα [59].

A predicted ERE sequence near the PCNA gene was capable of binding to ERα in vitro

We performed electrophoretic mobility shift assays (EMSA) using the radiolabeled PCNA-ERE1 sequence with recombinant ERα protein. In order to promote receptor-DNA binding, and to control for the presence or absence of ERα protein, recombinant ERα was combined with cofactors present in nuclear extracts from an ERα-negative, immortalized human endometrial stromal cell (HESC) line [60]. ERα-containing protein complexes were shown to bind to PCNA-ERE1, in vitro, as evidenced by supershift with an antibody specific for ERα (Figure 3B). No estrogen receptor-containing complex was noted from HESC cell extracts alone (not shown). No supershift was noted using antibodies targeting the transcription factors Sp1, AP-1 or ARNTF2, although these factors have been demonstrated to bind with ERα at selected promoters (Figure 3C) [61–63]. Binding was weaker for PCNA-ERE1 than that observed for a consensus ERE sequence (Figure 3B) but stronger than that observed with PCNA-ERE2, for which binding was weakly detectable (not shown).

ERα-dependent binding to radiolabeled PCNA-ERE1 could be competed away using excess unlabeled (“cold”) PCNA-ERE1 probe (P-ERE1) whereas a similar probe with mutations in the two half-sites of the ERE (P-ERE1mut) did not efficiently compete for labeled PCNA-ERE1-bound receptor (Figure 3C). These data suggested that one or both of these putative EREs might represent ERα-responsive cis-regulatory elements that modulate PCNA gene expression in MCF7 cells. It is recognized that the affinity of receptor binding to an ERE, as measured in vitro, need not correlate with the potency of the enhancer function that is observed [53] and that multiple EREs can work cooperatively in order to enhance target gene transcription [64,65].

![Figure 2. Estrogen-stimulated PCNA gene expression requires ERα and de novo gene transcription. MCF7 cells were treated with or without E2 (100 nM) for 6 hours. Additional treatments included ActD (2 μg/ml), an inhibitor of gene transcription, and ICI 182,780 (1 μM), a pure estrogen receptor antagonist. RNA was collected and subjected to Q-RT-PCR. PCNA mRNA levels were compared with MYC mRNA levels from the same samples. Values are the average of three experiments, performed in triplicate, with SEM indicated. * P < 0.05 comparing control with E2-treated.](doi:10.1371/journal.pone.0003523.g002)
Two ERE sequences near the PCNA gene did not enhance reporter expression in response to E2 treatment

We cloned genomic fragments corresponding to each PCNA-ERE into luciferase reporter constructs and tested these for enhancer function, in vitro. Surprisingly, neither a 822 bp fragment containing PCNA-ERE1 nor a 551 bp fragment containing PCNA-ERE2 demonstrated E2-inducible enhancer function in MCF7 cells (Figure 4). Similar results were obtained when these constructs were tested with co-expressed ERα in HESC cells (which do not express endogenous ERα but respond to E2 when made to express ERα) (not shown). Thus, changing the cell type in which we tested the reporter constructs, and presumably the cohort of available transcription factor co-regulatory proteins within the cell nucleus [66], failed to indicate enhancer function for the putative ERE sequences being tested.

Luciferase reporter assays that use single copy response elements are sometimes weakly responsive to transcription factors. Further, the function of any cloned enhancer region may be subject to inhibition by neighboring cis- and trans-regulatory elements, depending upon the length of DNA that is cloned and the inclusion or exclusion of such regulatory elements in the reporter construct. This phenomenon could produce false-negative observations in luciferase reporter assays that would depend, in part, upon the size of the genomic fragment that is employed in the assay. It is, therefore, common to assay multiple tandem copies of cis-regulatory elements in order to demonstrate enhancer function, in vitro.

We engineered luciferase reporter constructs with two tandem copies of the 15 bp PCNA-ERE1 sequence or two copies of the PCNA-ERE2 sequence (2×PCNA-ERE1 and 2×PCNA-ERE2), to test these isolated sequences for enhancer activity. As seen with...
ERE sequences near **PCNA** gene were not bound by ERα in *vivo*

In light of the fact that the ERE-like sequences near **PCNA** are nearly consensus EREs, and that **PCNA** gene expression is E2-responsive, we wondered whether the *in vitro* assays that we employed to detect enhancer function could have produced spurious results. It remained possible that the chromatin context, *in vivo*, might dictate enhancer function in ways not observed using plasmid DNA in reporter assays. Imperfect (i.e. non-consensus) EREs have been demonstrated to produce optimal ERα recruitment to target enhancers [72]. We obtained identical results with E2 treatments extended for 3 and 6 hours prior to protein crosslinking (not shown).

Although we were unable to detect ERα binding to **PCNA-ERE1** or **PCNA-ERE2** using ChIP-on-chip in response to E2 [31], we reasoned that this result could reflect established limitations in the sensitivity of this microarray-based approach. When we compared our findings to other reports of genome-wide location analysis for ERα in MCF7 cells, we similarly found no evidence for recruitment of ERα to the **PCNA** gene locus using ChIP-on-chip or alternative genomic approaches such as ChIP-DSL and ChIP-PET [44,70,71]. Notably, the receptor location analysis work in these studies compared ERα target occupancy after chromatin immunoprecipitation using E2-treated cells relative to ERα occupancy of chromatin DNA prepared from cells not subjected to immunoprecipitation (i.e. sheared input). As such, the approaches were not optimally designed to detect changes in target occupancy that depend upon E2 exposure, which can be tested by comparing ChIP of untreated cells (vehicle-treated ChIP) with ChIP from E2-treated cells.

In order to test for E2-dependent binding of ERα to **PCNA-ERE1** or **PCNA-ERE2**, we performed ChIP-PCR using primers that span each putative ERE. Using ChIP-PCR, we were unable to demonstrate recruitment of ERα to either putative ERE in response to E2 (Figure 5). Similar results were obtained using multiple alternative PCR primer pairs targeting the same genomic regions (not shown). In *toto*, more than 3 primer pairs were used to evaluate ERα occupancy at each putative cis-element in response to E2; all demonstrated no evidence for receptor recruitment to the **ERE** sequences in response to hormone. The ChIP-PCR data shown in Figure 5 included a 45 min exposure to E2, a treatment that has been demonstrated to produce optimal ERα recruitment to target enhancers [72]. We obtained identical results with E2 treatments extended for 3 and 6 hours prior to protein crosslinking (not shown).

A genomic locus (chr7:72384008-72385027) that lacks an ERE and that failed to be detected using ChIP-on-chip (dubbed ERE-neg) also failed to be enriched for ERα using ChIP-PCR when comparing control and E2-treated cells (Figure 5). By contrast, ChIP-PCR confirmed E2-dependent recruitment of ERα to several known genomic targets including **TFF1**, **MYC**, **GREB1**, **CTSD**, and **CREB1**, and **C/EBPδ**. In addition, ChIP-PCR confirmed E2-dependent recruitment of ERα to four targets that we previously identified using ChIP-on-chip [31], dubbed I20, J23, D54, and F15 (see methods for genomic locations) (Figure 5). These data suggest that neither of the putative EREs detected near **PCNA** binds to ERα in an E2-dependent fashion, *in vivo*, in MCF7 cells. Further, the data demonstrate a good correlation between our ChIP-on-chip datasets and ChIP-PCR datasets.

Figure 4. Two EREs near **PCNA do not enhance expression of a reporter in response to estrogen.** The 822 bp genomic fragment containing **PCNA-ERE1** and the 551 bp genomic fragment containing **PCNA-ERE2** do not enhance luciferase reporter activity in response to E2. Two tandem copies of the isolated 15 bp ERE sequence found within **PCNA-ERE1** (2×PCNA-ERE1) or **PCNA-ERE2** (2×PCNA-ERE2) did not enhance reporter activity in response to E2. When these tandem ERE sequences were mutated to produce perfect 13 bp core consensus ERE sequences (Δ-2×PCNA-ERE1 and Δ-2×PCNA-ERE2) they produced E2-dependent enhancement of reporter activity in MCF7 cells. Values are the average of three experiments, performed in triplicate, with SEM indicated. * P < 0.002 comparing E2-treated with control. doi:10.1371/journal.pone.0003523.g004
Discussion

Our data show that PCNA, an essential participant in DNA replication, epigenetic programming, and a regulator of the cell cycle, is up-regulated by E2 exposure in MCF7 cells. Epigenetic alterations play critical roles in tumorigenesis and cancer progression [73,74] and we recently demonstrated that high protein expression of the E2-responsive histone variant H2A.Z in primary breast tumors correlates with decreased patient survival [31]. It is attractive to consider, and previously has been postulated [30,33], that the E2-dependent expression of PCNA is potentially important for the proliferation of a diversity of tissues and tumors. Nair and colleagues recently reported an ERα-dependent proliferative effect in which estrogen enhanced PCNA gene expression in cancers of the cervix but not in normal cervix [75]. E2 exposure is a well-recognized risk factor for cancer of the breast and endometrium, and E2 enhances PCNA gene expression in human myometrial and leiomyoma tissues as well [76]. Most recently, E2-responsive tumor progression has been suggested for epithelial ovarian cancer [77].

Our data indicate that, in MCF7 cells, the E2 effect depends upon new gene transcription and translation and is blocked by the pure ERα-antagonist ICI 182,780. Although excellent computational analysis [32], and preliminary in vivo data (EMSA), suggested that the mechanism of PCNA gene regulation might include the function of ERE sequences in the 5′ region of the gene, our testing of the most-likely sequence elements, using several approaches, failed to confirm cis-regulatory function in MCF7 cells.

That a subset of ERα target genes may require the synthesis of additional cofactor(s) prior to becoming subject to receptor-mediated transcriptional regulation remained a possibility consistent with our preliminary gene expression data. Such a model has been observed for ERα gene targets that are repressed by ERα only after the induction of corepressor protein NRIP-1 [44]. Similarly, some genes targeted by ERα require the function of a chromatin modifier, FOXA1, prior to becoming subject to ERα-mediated transactivation [59,78]. The observation that E2 engenders gene regulatory cascades that can be divided into temporal categories (i.e. immediate, early, and late responses) is well-demonstrated [30,31]. These data indicate that some genes are poised for immediate regulation, others may represent downstream/indirect targets of ERα function, and still other gene targets may require the synthesis of cofactors to modify chromatin targets in preparation for the arrival of activated ERα [78]. Neither the timing of a transcriptional response (early vs. late) nor the sensitivity of the response to CHX can be taken as formal proof that a given response is direct (i.e. ERα-mediated) or indirect.

This report describes two ERE-like sequences upstream of an E2-responsive gene. Both sequences failed to demonstrate transcriptional regulatory function in vitro and in vivo in MCF7 cells. PCNA-ERE1 resides within a repetitive element (Alu-Sc) while PCNA-ERE2 does not. A single report described a functional Alu-ERE for the BRCA1 gene [79] which, on further inspection, was determined to be non-functional in MCF7 cells [80]. The reported ERE sequence in those studies is not the same as noted for PCNA-ERE1. Our results indicate that PCNA is regulated in response to E2 either indirectly, or via a co-acting ERE not detected by several independent genome-wide location analyses for ERα [31,44,70,71], and only after the synthesis of newly translated protein(s). Importantly, in addition to ChIP-on-chip approaches, two genome-wide location analyses utilized ChIP-PET and the sensitive ChIP-DSL approaches; all demonstrated no evidence for ERα recruitment to PCNA.

Five members of the E2F family of transcription factors (of which humans have at least eight) are up-regulated by E2 in MCF7 cells although direct transcriptional regulation by ERα remains to be established for these genes [31]. Recent data suggests that E2F family members are capable of binding to identical sequences as homodimers or heterodimers (with DP family members) and may often subserve redundant functions [81]. Increasing data indicate...
that these factors play important roles in the E2-dependent cellular proliferation of breast cancer cells [62,63]. E2F1 regulates PCNA gene expression in some systems [84]. We tested E2F1 using ChIP-PCR and found no evidence for E2-dependent recruitment of E2F1 to the transcription start sites of the PCNA gene (data not shown). Similar negative results were obtained when performing ChIP-PCR using antibodies for Sp1 or AP-1 in order to interrogate both PCNA ERE-like sequences and the two TSSs of the PCNA gene (not shown). ATF1 [37] and CREB1 are also regulators of PCNA gene expression but were not enriched at the PCNA promoter in MCF7 cells in genome-wide ChIP-chip analyses (S. Hua and K. White, manuscript in preparation).

In order to identify alternative candidates that might mediate the estrogen response of PCNA in MCF7 cells, we undertook a computational analysis of predicted transcription factor binding sites in the two promoter regions for PCNA. These data were then correlated with gene expression data from our work, and from the work of others, cataloging estrogen-responsive transcription factors in MCF7 cells. The intersection of these datasets provides a list of estrogen-responsive transcription factors with high-confidence binding sites residing within two kilobases of each transcription start site for the PCNA gene (Table S2). In addition to E2F family members that warrant investigation (above), we have identified C/EBPβ, FOXG1, FOXJ2, GATA-3, POUS2F1/AP-2γ, RARA, TSPAP2G, and TFE3 as estrogen-responsive transcription factors with predicted binding sites in one or both promoter regions of the PCNA gene. Taken together, these data reveal good candidates for the mediator of the estrogenic cascade leading to enhanced PCNA gene expression in MCF7 cells. These candidates will be pursued in our future studies.

Notably, ~2310 perfect 15 bp consensus EREs (GGTCAannT-GACC) exist within the human genome. Permitting just one nucleotide mismatch from the consensus sequence reveals nearly 50,000 ERE-like sites throughout the human genome. Our ChIP-on-chip data, supported by biological plausibility, suggest that the overwhelming majority of these sites are not functional in any given cell type. Two groups have used MCF7 cells to perform whole genome ChIP-on-chip for ERα location analysis, revealing between ~1600–3700 receptor-bound loci in response to E2 (with considerable reproducibility) [31,44]. Analysis of the highest-confidence ChIP sites, the 1017 sites that are common to both datasets, indicates that more than 90% of the ERE-like sequences at these loci are not perfect consensus sequences. Further, these datasets indicate that, most likely, <5–10% of perfect consensus ERE sites in the genome are ERα-bound in response to E2 in MCF7 cells.

The chromatin and cellular determinants of ERα binding to enhancer elements remain to be fully established. This issue raises a cautionary note when drawing conclusions based upon computational analyses of genomic sequence which, even when evolutionarily conserved, will present hypotheses that must be validated by formal molecular biological testing. We conclude that computational detection of cis-regulatory elements in the human genome, even when accompanied by appropriate gene expression data, cannot be taken as proof of cis-regulatory element function in vivo [32,85–87]. Each element must be tested, preferably using in vivo assays such as ChIP-PCR and chromatin conformation capture, in order to confirm cis-element function in any given cell type and cell context.

Materials and Methods

Cell Culture

MCF7 cells (ATCC) were grown as described [78]. Cells were changed to estrogen-depleted, phenol-free media consisting of MEM alpha (Gibco) with 10% charcoal/dextran-stripped calf serum, insulin (4 µg/ml, Sigma), penicillin G, streptomycin, and L-glutamine (all Gibco), for 72 hours prior to treatments. Where indicated, treatments included vehicle control (100% EtOH), estradiol (10 nM or 100 nM, Sigma), actinomycin D (ActD, 2 µg/ml, Sigma), cycloheximide (CHX, 25 µg/ml, Sigma), and ICI 192,780 (1 µM, Toecis Biosciences). Telomerase-immortalized Human Endometrial Stromal Cells (HESC) cells, a generous gift from Dr. Graciela Kriuk, were grown in the same media used for the MCF7 cells. HESC cells have normal chromosome numbers and structures [60].

Preparation of Nuclear Extracts and EMSA

HESC nuclear extracts (NE) were purified using NE-PER Nuclear and Cytoplasmic Extraction Reagents (Pierce) according to the manufacturer’s instructions. HESC cells have no demonstrable ERα activity using sensitive luciferase reporter assays and no ERα protein detected by Western blot analysis (data not shown). However, HESC cell nuclei have cofactors that promote the binding of recombinant ERα to target DNA in EMSA and these factors enhance binding when compared to recombinant ERα alone (rERα, Affinity Bioreagents). EMSA experiments were therefore conducted using HESC nuclear extracts combined with rERα. Protein determinations were performed using the Micro BCA assay (Pierce) and 5 µg of nuclear extract (with protease inhibitors, Roche) plus rERα (170 nM) was used in each lane of a 5% acrylamide gel in TBE buffer. Oligonucleotide probes were 5’-labeled using T4 Polynucleotide Kinase 5’ End Label System (Promega) and purified using Mini Quick Spin Oligo Columns (Roche). Each radiolabeled probe was used at ~200,000 cpm/lane and binding reactions included Tris-HCl pH 8.0 (25mM), KCl (50 mM), MgCl2 (6.25 mM), Glyceral (10%), DTT (0.5 mM) plus relevant antibody where indicated (400 ng/reaction): anti-ERα Ab-10 (LabVision), anti-cJun(N) sc-45 (Santa Cruz), anti Sp1 H-107 (Santa Cruz) and anti-AP1/COUP-TFI (Santa Cruz). A complete list of oligonucleotide sequences used as probes for EMSA is presented in the supplementary materials (Table S1).

RT-PCR

Total RNA was purified from cell lysates using Trizol reagent (Invitrogen), 2 µg of total RNA was used for reverse transcription using Anchored Oligo-(dT)23 (Sigma) as primer for 1st strand synthesis using the RT-AMV kit (Roche). 1:100 dilutions of cDNA were used as template for quantitative PCR using iQ-SYBR Green Master Mix (Bio-Rad) in a Bio-Rad Opticon 2 cycler. Q-RT-PCR values were normalized to ACTB mRNA levels for all samples. Primer pairs for RT-PCR of ACAT, PCNA, TFF1, MYC, STC2, and DCC1 are listed in the supplementary materials (Table S1).

Western Blotting

Cell lysates in 1% SDS lysis buffer were quantified using the Micro BCA Protein Assay Kit (Pierce), and 30 µg of total protein per well was separated by SDS-PAGE, transferred to PVDF membranes, and probed with antibodies against ACTIN (Sigma #A4700, used at 1:5000 dilution) or PCNA (Cell Signaling #2306, used at 1:1000 dilution). Secondary Goat anti-mouse IgG antibody (conjugated with horseradish peroxidase) was incubated at a dilution of 1:10,000 and blots were developed using Amersham ECL Plus Western Blotting Detection Reagents (GE Healthcare).

Chromatin Immunoprecipitation (ChIP)-PCR

ChIP was performed as previously described [31]. Briefly, MCF7 Cells were E2-deprived for 3 days (details above) and then
Luciferase Reporter Assays

Luciferase reporter assays were performed using the Luciferase Assay System (Promega) according to the manufacturer’s instructions. Potential regulatory elements were cloned into pGL2-Promoter (Promega) and transfected into MCF7 cells using the TransIT-LT1 Transfection Reagent (Mirus). Cotransfection with a β-galactosidase expressing plasmid (Promega) enabled normalization of transfection efficiency across samples using a β-galactosidase assay kit (Promega) according to the manufacturer’s instructions.

Cloning and Mutagenesis

PCR cloning was performed using PCR amplification of genomic loci from HESC cell genomic DNA which was prepared using the Genomic DNA Extraction kit (Qiagen) according to the manufacturer’s protocol. PCR products were ligated with the reporter construct pGL2-promoter (at 5’-KpnI+5’-XhoI sites) for use in Luciferase Reporter assays (Promega). Mutagenized reporter constructs were prepared using the Genetool Site-Directed Mutagenesis System (Invitrogen) according to the manufacturer’s instructions. All clones and subclones were confirmed by DNA sequencing. Primers used for genomic locus amplification and for subcloning are listed in the supplementary materials (Table S1).

References

1. Waga S, Stillman B (1994) Anatomy of a DNA replication fork revealed by reconstitution of SV40 DNA replication in vitro. Nature 369: 207–212.
2. Umar A, Boermeyer AB, Simon JA, Thomas DC, Clark AB, et al. (1996) Requirement for PCNA in DNA mismatch repair at a step preceding DNA resynthesis. Cell 87: 65–73.
3. Maja G, Habicher U (2003) Proliferating cell nuclear antigen (PCNA): a dancer with many partners. J Cell Sci 116: 3051–3060.
4. Waga S, Hanlon GJ, Beach D, Stillman B (1994) The p21 inhibitor of cyclin-dependent kinases controls DNA replication by interaction with PCNA. Nature 369: 574–578.
5. Chuang LS, Ian HI, Koh TW, Ng HH, Xu G, et al. (1997) Human DNA-(cytosine-5) methyltransferase-PCNA complex as a target for p21(WAF1). Nature 387: 997–1002.
6. Hong R, Chakravarti D (2003) The human proliferating Cell nuclear antigen regulates transcriptional coactivator p300 activity and promotes transcriptional repression. J Biol Chem 278: 1996–2000.
7. Iida T, Suetake T, Tajima S, Morisaka H, Ohtsuka S, et al. (2002) PCNA clamp facilitates action of DNA cytosine methyltransferase 1 on hemimethylated DNA. Genes Cells 7: 997–1002.
8. Moris GF, Mathews MB (1989) Regulation of proliferating cell nuclear antigen cyclin and thymidine kinase mRNA levels by growth factors. J Biol Chem 264: 13856–13864.
9. Prystowsky MB, Appasamy P, Baserga R (1995) Effect of the SV40 T antigen on the posttranscriptional regulation of the proliferating cell nuclear antigen mRNA in human mammary carcinoma cells. J Biol Chem 270: 15729–15737.
10. Aaltomaa S, Lipponen P, Syrjanen K (1993) Proliferating cell nuclear antigen (PCNA) immunolabeling as a prognostic factor in axillary lymph node negative breast cancer. Anticancer Res 13: 533–538.
11. Shipman-Appasamy P, Cohen KS, Prysztowski MB, Gatti C, Calabretta B, et al. (1996) Requirement for PCNA in DNA mismatch repair at a step preceding DNA resynthesis. Cell 87: 65–73.
12. Umar A, Buermeyer AB, Simon JA, Thomas DC, Clark AB, et al. (1996) Requirement for PCNA in DNA mismatch repair at a step preceding DNA resynthesis. Cell 87: 65–73.
13. Waga S, Hanlon GJ, Beach D, Stillman B (1994) The p21 inhibitor of cyclin-dependent kinases controls DNA replication by interaction with PCNA. Nature 369: 574–578.
with conventional histopathological factors in breast cancer. J Cancer Res Clin Oncol 121: 115–122.

37. Shen-Chen SM, Eng HL, Chou FF, Chen WJ (1997) The prognostic significance of proliferating cell nuclear antigen in patients with lymph node-negative breast cancer. Arch Surg 132: 264–268.

38. Kato T, Kimura T, Miyakawa R, Fujii A, Yamamoto K, et al. (2000) Clinicopathologic study associated with long-term survival in Japanese patients with node-negative breast cancer. Br J Cancer 82: 404–411.

39. Yang JD, Davidson NE (2006) Estrogen carcinogenesis in breast cancer. N Engl J Med 354: 270–282.

40. Fraser J, Danes JM, Koomm B, Chang KC, Lytle CR, et al. (2003) Profiling of estrogen up- and down-regulated gene expression in human breast cancer cells: insights into gene networks and pathways underlying estrogenic control of proliferation and cell phenotype. Endocrinology 144: 4562–4574.

41. Hsu S, Kallen CB, Dhar R, Baquero MT, Mason CE, et al. (2000) Genomic analysis of estrogen cascade reveals histone variant H2AZ associated with breast cancer progression. Mol Syst Biol 4: 188.

42. Bourdeau V, Deschenes J, Metivier R, Nadyi G, Nguyen D, et al. (2004) Genome-wide identification of high-affinity estrogen response elements in human and mouse. Mol Endocrinol 18: 1141–1127.

43. Schulte-Norton JR, Ghaba VA, Ziegler YS, McLeod IX, Yates JR, et al. (2005) Interaction of estrogen receptor alpha with proliferating cell nuclear antigen. Nucleic Acids Res 33: 5028–5038.

44. Martin PJ, Lardeux V, Lefebvre P (2005) The proliferating cell nuclear antigen regulates retinoic acid receptor transactivation activity through direct protein-protein interaction. Nucleic Acids Res 33: 4311–4321.

45. Labrie C, Morris GF, Mathews MB (1993) A complex promoter element mediates transactivation of the human proliferating cell nuclear antigen promoter by the 245- residue estrogen E1A oncoprotein. Mol Cell Biol 13: 1697–1707.

46. Kannabiran C, Morris GF, Labrie C, Mathews MB (1993) The adenovirus E1A 12S product displays functional redundancy in activating the human proliferating cell nuclear antigen promoter. J Virol 67: 540–547.

47. Labrie C, Lee BH, Mathews MB (1995) Transcription factors RXF1/EF-C and ATF-1 associate with the adenovirus E1A-responsive element of the human proliferating cell nuclear antigen promoter. Nucleic Acids Res 23: 3752–3761.

48. Lee BH, Lee MD, Mathews MB (1999) In vitro analysis of RXRF1 protein in the regulation of the human proliferating cell nuclear antigen promoter. J Biol Chem 274: 15433–15439.

49. Lee BH, Mathews MB (1997) Transcriptional coactivator cAMP response element binding protein mediates induction of the human proliferating cell nuclear antigen promoter by the adenovirus E1A oncoprotein. Proc Natl Acad Sci U S A 94: 4481–4486.

50. Lee BH, Liu M, Mathews MB (1998) Regulation of the human proliferating cell nuclear antigen promoter by the adenovirus E1A-associated protein p107. J Virol 72: 1138–1145.

51. Krieg AJ, Hammond EM, Giaccia AJ (2006) Functional analysis of p53 binding under differential stresses. Mol Cell Biol 26: 7030–7045.

52. Spilianakis CG, Flavell RA (2004) Long-range intrachromosomal interactions in the T helper type 2 cytokine locus. Nat Immunol 5: 1017–1027.

53. Vavouri T, McEwen GK, Woolf A, Giles WR, Elgar G (2006) Defining a genome region for long-range enhancer action: duplicated conserved non-coding sequences define the key. Trends Genet 22: 5–10.

54. Carroll JS, Brown M (2006) Estrogen receptor target gene: an evolving concept. Endocrinology 147: 1697–1714.

55. Laganiere J, Deblois G, Bataille AR, Robert F, et al. (2005) Location analysis of estrogen receptor alpha target promoters reveals that FOXA1 defines a domain of the estrogen response. Proc Natl Acad Sci U S A 102: 11811–11816.

56. Kikun G, Mor G, Alvero A, Guller S, Schatz F, et al. (2004) A novel immunohumanized maternal endometrial stromal cell line with normal progesterational response. Endocrinology 145: 2291–2296.

57. Loen MA, Wood JR, Nardelli AM (2001) Interaction of estrogen receptors alpha and beta with estrogen response elements. Mol Cell Endocrinol 181: 151–163.

58. Carroll JS, Brown M (2006) Estrogen receptor target gene: an evolving concept. Endocrinology 147: 1697–1714.

59. Lagnaniere J, Deblois G, Bataille AR, Robert F, et al. (2005) Location analysis of estrogen receptor alpha target promoters reveals that FOXA1 defines a domain of the estrogen response. Proc Natl Acad Sci U S A 102: 11811–11816.

60. Huang DY, Prysowsky MB (1996) Identification of an essential cis-element near the transcription start site for transcriptional activation of the proliferating cell nuclear antigen promoter. Nucleic Acids Res 23: 3732–3741.

61. Klinge CM, Silver BF, Driscoll MD, Sahiya G, Bambara RA, et al. (1997) Cholesterol ovlbumin upstream promoter factor interacts with estrogen receptor, binds to estrogen response elements and half-sites, and inhibits estrogen-induced gene expression. J Biol Chem 272: 31461–31474.

62. Webb P, Nguyen P, Valentine C, Lopez GN, Kwok GR, et al. (1999) The estrogen receptor enhances AP-1 activity by two distinct mechanisms with different requirements for receptor transactivation functions. Mol Endocrinol 13: 1672–1685.

63. Lee BH, Chang EC, Komm B, Chang KC, Kraus WL, et al. (2007) Estrogen receptor binding-site occupancy of estrogen hormone-driven gene transcription. Proc Natl Acad Sci U S A 104: 4852–4857.

64. Lin CY, Vega VB, Thomsen JS, Zhang T, Kong SL, et al. (2007) Whole-genome cartography of estrogen receptor alpha binding sites. PLoS Genet 3: e87.

65. Shang Y, Han X, DiRenzo J, Lazar MA, Brown M (2000) Gadator dynamics and sufficiency in estrogen receptor-regulated transcription. Cell 103: 843–852.

66. Frasor J, Chang EC, Komm B, Chang KC, Kraus WL, et al. (2000) The estrogen receptor influences transcription activation of simplified promoters. Mol Cell Biol 18: 1927–1934.

67. Frasor J, Likhite VS, Loen MA, Nardelli AM (2001) AllostERIC modulation of estrogen receptor conformation by different estrogen response elements. Mol Endocrinol 15: 1114–1126.

68. Kwon YS, Garcia-Basset J, Hurt KR, Cheng CS, Jin M, et al. (2007) Sensitive ChIP-DSL technology reveals an extensive estrogen receptor alpha-binding program on human gene promoters. Proc Natl Acad Sci U S A 104: 4852–4857.

69. Lin CY, Vega VB, Thomsen JS, Zhang T, Kong SL, et al. (2007) Whole-genome cartography of estrogen receptor alpha binding sites. PLoS Genet 3: e87.

70. Beral V, Bull D, Green J, Reeves G (2007) Ovarian cancer and hormone replacement therapy in the Million Women Study. Lancet 369: 1701–1710.

71. Klinge CM, Silver BF, Driscoll MD, Sahiya G, Bambara RA, et al. (1997) Cholesterol ovlbumin upstream promoter factor interacts with estrogen receptor, binds to estrogen response elements and half-sites, and inhibits estrogen-induced gene expression. J Biol Chem 272: 31461–31474.

72. Webb P, Nguyen P, Valentine C, Lopez GN, Kwok GR, et al. (1999) The estrogen receptor enhances AP-1 activity by two distinct mechanisms with different requirements for receptor transactivation functions. Mol Endocrinol 13: 1672–1685.

73. Safe S, Kim K (2004) Nuclear receptor-mediated transcription through interaction with Sp proteins. Prog Nucleic Acid Res Mol Biol 77: 1–36.

74. Deschennes J, Bourdeau V, White JH, Mader S (2007) Regulation of GREB1 transcription by estrogen receptor alpha through a multipartite enhancer spread over 20 kb of upstream flanking sequences. J Biol Chem 282: 17335–17339.

75. Martineau E, Wahl W (1989) Cooperative binding of estrogen receptor to imperfect estrogen-responsive DNA elements correlates with their synergistic hormone-dependent enhancer activity. Endocrinology 125: 2455–2461.

76. Shang Y, Brown M (2002) Molecular determinants for the tissue specificity of SERMs. Science 295: 2463–2468.

77. Nardelli AM, Romieu LE, Williams C, Greene GL, Rainbath B (1996) Estrogen receptor affinity and location of consensus and imperfect estrogen response elements influence transcription activation of simplified promoters. Mol Endocrinol 10: 694–704.

78. Wood JR, Greene GL, Nardelli AM (1998) Estrogen response elements function as allostERIC modulators of estrogen receptor conformation. Mol Cell Biol 18: 1927–1934.

79. Frasor J, Likhite VS, Loen MA, Nardelli AM (2001) AllostERIC modulation of estrogen receptor conformation by different estrogen response elements. Mol Endocrinol 15: 1114–1126.

80. Kwon YS, Garcia-Basset J, Hurt KR, Cheng CS, Jin M, et al. (2007) Sensitive ChIP-DSL technology reveals an extensive estrogen receptor alpha-binding program on human gene promoters. Proc Natl Acad Sci U S A 104: 4852–4857.

81. Lin CY, Vega VB, Thomsen JS, Zhang T, Kong SL, et al. (2007) Whole-genome cartography of estrogen receptor alpha binding sites. PLoS Genet 3: e87.
85. Kamakarz S, Radhakrishnan SK, Beck WT (2005) Identification of estrogen-responsive genes using a genome-wide analysis of promoter elements for transcription factor binding sites. J Biol Chem 280: 21491–21497.
86. Jin VX, Leu YW, Liyanarachchi S, Sun H, Fan M, et al. (2004) Identifying estrogen receptor alpha target genes using integrated computational genomics and chromatin immunoprecipitation microarray. Nucleic Acids Res 32: 6627–6635.
87. Tang S, Tan SL, Ramadoss SK, Kumar AP, Tang MH, et al. (2004) Computational method for discovery of estrogen responsive genes. Nucleic Acids Res 32: 6212–6217.