FACTORIZATION IN $SL_n(R)$ WITH ELEMENTARY MATRICES WHEN R IS THE DISK ALGEBRA AND THE WIENER ALGEBRA

AMOL SASANE

Abstract. Let R be the polydisc algebra or the Wiener algebra. It is shown that the group $SL_n(R)$ is generated by the subgroup of elementary matrices with all diagonal entries 1 and at most one nonzero off-diagonal entry. The result an easy consequence of the deep result due to Ivarsson and Kutzschebauch [4].

1. Introduction

Let R be a commutative unital ring. Let I_n denote the $n \times n$ identity matrix, that is the square matrix with all diagonal entries equal to $1 \in R$ and off-diagonal entries equal to $0 \in R$. Recall that an elementary matrix $E_{ij}(\alpha)$ over R is a matrix of the form $I_n + \alpha e_{ij}$, where $i \neq j$, $\alpha \in R$, and e_{ij} is the $n \times n$ matrix whose entry in the ith row and jth column is 1 and all other entries are zeros. Let $SL_n(R)$ be the group of all $n \times n$ matrices whose entries are elements of R and whose determinant is 1. Let $E_n(R)$ be the subgroup of $SL_n(R)$ generated by the elementary matrices.

A classical question in commutative algebra is the following:

Question 1.1. Is $SL_n(R)$ equal to $E_n(R)$?

The answer to this question depends on the ring R, and here is a list of a few known results.

(1) If $R = \mathbb{C}$, then the answer is “Yes”, and this is standard exercise in linear algebra; see for example [1, Exercise 18.(c), page 71].

(2) Let R be the polynomial ring $\mathbb{C}[z_1, \cdots, z_n]$ in the indeterminates z_1, \cdots, z_n with complex coefficients.

If $n = 1$, then the answer is “Yes”, and this follows from the Euclidean Division Algorithm in $\mathbb{C}[z]$.

If $n = 2$, then the answer is “No”, and [2] gave the following counterexample:

$$
\begin{bmatrix}
1 + z_1 z_2 & z_1^2 \\
- \overline{z_2} & 1 - z_1 \overline{z_2}
\end{bmatrix} \in SL_2(\mathbb{C}[z_1, z_2]) \setminus E_2(\mathbb{C}[z_1, z_2]).
$$

1991 Mathematics Subject Classification. Primary 46J10; Secondary 15A23, 15A54.

Key words and phrases. Gromov’s Vasertein Problem, Banach algebras, polydisc algebra, Wiener algebra.
For $n \geq 3$, the answer is “Yes”, and this is the K_1-analogue of Serre’s Conjecture, which is the Suslin Stability Theorem [5].

(3) The case of R being a ring of continuous functions was considered in [6]. Let $C(X; \mathbb{C})$ be the ring of continuous complex-valued functions on the finite-dimensional normal topological space X with pointwise operations. $C_b(X; \mathbb{C})$ denotes the subring of $C(X; \mathbb{C})$ consisting of bounded functions. It was shown in [6] that for $R = C(X; \mathbb{C})$ or $C_b(X; \mathbb{C})$, the answer is “Yes” if there is no homotopy obstruction. Indeed, if E is an elementary matrix, then $x \mapsto E(x) \in \text{SL}_n(\mathbb{C})$ is null-homotopic (to the constant map $x \mapsto I_n : X \to \text{SL}_n(\mathbb{C})$). So it follows that if $\pi(F)$ denotes the homotopy class of the map $x \mapsto F(x) : X \to \text{SL}_n(\mathbb{C})$ corresponding to $F \in \text{E}_n(C(X; \mathbb{C}))$ is that $\pi(F) = 0$. It turns out that this condition is also sufficient, and this is the content of [6, Theorem 4].

(4) Based on the above result, it is natural to consider the question also for the ring $\mathcal{O}(X)$ of holomorphic functions on Stein spaces in \mathbb{C}^n. This was posed as an explicit open problem by Gromov in [3], and was recently solved by Ivarsson and Kutzschebauch [4]. The main result in [4] is the following:

Theorem 1.2 ([4]). If X is a finite-dimensional reduced Stein space and $F : X \to \text{SL}_n(\mathbb{C})$ is a holomorphic mapping that is null-homotopic, then there exists a natural number K and holomorphic mappings $G_1, \ldots, G_K : X \to \mathbb{C}^{m(m-1)/2}$ such that F can be written as a product of upper and lower diagonal unipotent matrices

$$F(x) = M_1(G_1(x)) \cdots M_K(G_K(x)), \quad x \in X,$$

where the matrices $M_j(G_j(x))$ are defined by

$$M_j(G_j(x)) := \begin{bmatrix}
1 & 0 \\
& \ddots \\
G_j(x) & 1
\end{bmatrix} \quad \text{if } j \text{ is odd},$$

while

$$M_j(G_j(x)) := \begin{bmatrix}
1 & G_j(x) \\
& \ddots \\
0 & 1
\end{bmatrix} \quad \text{if } j \text{ is even}.$$

In particular, the assumption of null-homotopy is always satisfied if X is contractible.

We wish to consider Question [11] for commutative, semisimple, unital complex Banach algebras R. A special case is when $R = C_b(X; \mathbb{R})$, where X is a compact Hausdorff topological space, and item (3) above describes the answer in this special case. Motivated by this, we formulate the following question/conjecture, but first we introduce some convenient notation.
Let R be a commutative, semisimple, unital complex Banach algebra with maximal ideal space denoted by X_R, equipped with the weak-* topology induced from the dual space $R^* := \mathcal{L}(R; \mathbb{C})$ of R.

Let $\hat{\varphi} : R \rightarrow C(X_R; \mathbb{C})$ denote the Gelfand transform. For $F \in SL_n(R)$, let \hat{F} be the matrix with elements in $C(X_R; \mathbb{C})$ obtained by taking the Gelfand transform of the entries of F, and $\pi(\hat{F})$ denotes the homotopy class of $\varphi \mapsto \hat{F}(\varphi) : X_R \rightarrow SL_n(\mathbb{C})$.

Conjecture 1.3. Let R be a commutative, semisimple, unital complex Banach algebra. $F \in SL_n(R)$ belongs to $E_n(R)$ if and only if $\pi(\hat{F}) = 0$.

We consider Question 1.1 for two important Banach algebras of holomorphic functions: the polydisc algebra $A(\mathbb{D}^d)$ and the Wiener algebra $W^+(\mathbb{D}^n)$.

Let $\mathbb{D} := \{ z \in \mathbb{C} : |z| < 1 \}$ and $\overline{\mathbb{D}} := \{ z \in \mathbb{C} : |z| \leq 1 \}$. Let $d \in \mathbb{N}$. The Wiener algebra $W^+(\mathbb{D}^n)$ is the Banach algebra defined by

$$W^+(\mathbb{D}^d) = \left\{ \sum_{k_1=0}^{\infty} \cdots \sum_{k_d=0}^{\infty} a_{(k_1, \ldots, k_d)} z_1^{k_1} \cdots z_d^{k_d} : \sum_{k_1=0}^{\infty} \cdots \sum_{k_d=0}^{\infty} |a_{(k_1, \ldots, k_d)}| < \infty \right\},$$

with pointwise addition and multiplication, and the $\| \cdot \|_1$-norm given by

$$\|f\|_1 = \sum_{k_1=0}^{\infty} \cdots \sum_{k_d=0}^{\infty} |a_{(k_1, \ldots, k_d)}|, \quad f = \sum_{k_1=0}^{\infty} \cdots \sum_{k_d=0}^{\infty} a_{(k_1, \ldots, k_d)} z_1^{k_1} \cdots z_d^{k_d}.$$

The polydisc algebra $A(\mathbb{D}^d)$ is the Banach algebra of all continuous functions $f : \mathbb{D}^d \rightarrow \mathbb{C}$ which are holomorphic in \mathbb{D}^d, with pointwise addition and multiplication, and the supremum norm $\| \cdot \|_\infty$ given by

$$\|f\|_\infty := \sup_{(z_1, \ldots, z_d) \in \mathbb{D}^d} |f(z_1, \ldots, z_d)|, \quad f \in A(\mathbb{D}^d).$$

The ball algebra $A(\overline{\mathbb{D}}_d)$ is defined similarly, with the polydisc \mathbb{D}^d replaced by the ball

$$\overline{\mathbb{D}}_d := \{ (z_1, \ldots, z_d) \in \mathbb{C}^d : |z_1|^2 + \cdots + |z_d|^2 \leq 1 \}.$$

For a $n \times n$ matrix F with entries in $A(\mathbb{D}^d)$, $A(\overline{\mathbb{D}}_d)$ or $W^+(\mathbb{D}^d)$, we define

$$\|F\| := \sum_{i,j=1}^n \|F_{ij}\|_\infty,$$

where F_{ij} denotes the entry in the ith row and jth column of F. Then $\|FG\| \leq \|F\| \|G\|$, for $n \times n$ matrices F, G with entries from any of the Banach algebras $A(\mathbb{D}^d)$, $A(\overline{\mathbb{D}}_d)$ or $W^+(\mathbb{D}^d)$.

Our main result is the following.

Theorem 1.4. If $R = A(\mathbb{D}^d)$, $A(\overline{\mathbb{D}}_d)$ or $W^+(\mathbb{D}^d)$, then $SL_n(R) = E_n(R)$.
If \(R = A(\mathbb{D}^d) \) or \(W^+(\mathbb{D}^d) \), then in both cases, the maximal ideal space \(X_R \) can be identified with \(\overline{\mathbb{D}}^d \) as a topological space. Similarly, \(X_{A(\overline{\mathbb{D}}^d)} = \overline{\mathbb{D}}^d \). If Conjecture 1.3 is true, then Theorem 1.4 follows from the observation that \(\overline{\mathbb{D}}^d, \overline{\mathbb{B}}^d \) are contractible (since then \(\pi(\widehat{F}) \) is always trivial).

We will derive our main result as a consequence of the result from [4] quoted above, and [6, Lemma 9] reproduced below.

Lemma 1.5 ([6]). Let \(R \) be a commutative topological unital ring such that the set of invertible elements of \(R \) is open in \(R \). If \(F \in SL_n(R) \) is sufficiently close to \(I_n \), then \(F \) belongs to \(E_n(R) \).

2. **Proof of Theorem 1.4**

Proof. We will simply prove the result in the case of the disc algebra \(A(\mathbb{D}^d) \); the proofs in the cases of the ball algebra \(A(\overline{\mathbb{B}}^d) \) and the Wiener algebra being analogous.

Let \(F \in SL_n(A(\mathbb{D}^d)) \). Let \(r \in (0, 1) \) (to be determined later). Define

\[
F_r(z_1, \ldots, z_d) := F(rz_1, \ldots, rz_d), \quad (z_1, \ldots, z_d) \in \mathbb{D}^d.
\]

As \(F_r \in \mathcal{O}(\frac{1}{r}\mathbb{D}^d) \), and \(\det F_r \equiv 1 \), it follows from Theorem 1.2 (since \(\frac{1}{r}\mathbb{D}^d \) is a contractible Stein domain) that there are elementary matrices \(G_1, \ldots, G_K \) belonging to \(E_n(\mathcal{O}(\frac{1}{r}\mathbb{D}^d)) \), such that

\[
F_r = E_1 \cdots E_K \in E_n(\mathcal{O}(\frac{1}{r}\mathbb{D}^d)) \subset E_n(A(\mathbb{D}^d)).
\]

Thus \(F(I_n + F^{-1}(F_r - F)) = F_r \in E_n(A(\mathbb{D}^d)) \). As \(\det F = \det F_r = 1 \), it follows that also \(\det(I_n + F^{-1}(F_r - F)) = 1 \). We will be done if we manage to show that \(I_n + F^{-1}(F_r - F) \in E_n(A(\mathbb{D}^d)) \) too. But this is clear by Lemma 1.5 since

\[
\left\| \left(I_n + F^{-1}(F_r - F) \right) - I_n \right\| = \|F^{-1}(F_r - F)\| \leq \|F^{-1}\||F_r - F|,
\]

and we can make \(\|F_r - F\| \) as small as we like by choosing \(r \) close enough to 1. \(\square\)

Remark 2.1. The above proof also works for some other Banach algebras of smooth functions contained in the polydisc algebra, for example, if \(N \in \mathbb{N} \), the Banach algebra \(\partial^{-N}A(\mathbb{D}^d) \) of all functions \(f \in A(\mathbb{D}^d) \) whose complex partial derivatives of all orders up to \(N \) belong to \(A(\mathbb{D}^d) \), with the norm

\[
\|f\|_{\partial^{-N}A(\mathbb{D}^d)} := \sum_{\alpha_1 + \cdots + \alpha_d \leq N} \frac{1}{\alpha_1! \cdots \alpha_d!} \sup_{(z_1, \ldots, z_d) \in \mathbb{D}^d} \left| \frac{\partial^{\alpha_1 + \cdots + \alpha_d} f}{\partial z_1^{\alpha_1} \cdots \partial z_d^{\alpha_d}} (z_1, \ldots, z_d) \right|.
\]

In light of Theorem 1.4, it is natural to ask the analogous question also for the Hardy algebra. Recall that if \(U \) is an open set in \(\mathbb{C}^d \), then the Hardy algebra \(H^\infty(U) \) is the Banach algebra of all complex-valued functions on \(U \) that are bounded and holomorphic in \(U \).
Conjecture 2.2. $SL_n(H^\infty(U)) = E_n(H^\infty(U))$ if U is the polydisc \mathbb{D}^d or open unit ball $U = \mathbb{B}_d := \{(z_1, \cdots, z_d) \in \mathbb{C}^d : |z_1|^2 + \cdots + |z_d|^2 < 1\}$.

References

[1] Michael Artin. Algebra. Prentice Hall, Englewood Cliffs, NJ, 1991.
[2] Paul M. Cohn. On the structure of the GL_2 of a ring. Institut des Hautes Études Scientifiques. Publications Mathématiques, No. 30, 5-53, 1966.
[3] Michael Gromov. Oka’s principle for holomorphic sections of elliptic bundles. Journal of the American Mathematical Society, 2:851-897, no. 4, 1989.
[4] Björn Ivarsson and Frank Kutzschebauch. Holomorphic factorization of mappings into $SL_n(\mathbb{C})$. Annals of Mathematics (2), 175:45-69, no. 1, 2012.
[5] Andrei A. Suslin. The structure of the special linear group over rings of polynomials. Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya, 41:235-252, no. 2, 1977.
[6] Leonid N. Vaserstein. Reduction of a matrix depending on parameters to a diagonal form by addition operations. Proceedings of the American Mathematical Society, 103:741-746, no. 3, 1988.

Department of Mathematics, Faculty of Science, Lund University, Sweden.
E-mail address: amol.sasane@math.lu.se