Research Paper
Observing the Anti-oxidant and Anti-inflammatory Effect of Nigella Sativa Combined With Silybum Marianum Extracts on the Acute Peritonitis Mouse Model

Maryam Bahrami, Ali Ghazavi, Ali Ganji, *Ghasem Mosayebi

1. Department of Immunology & Microbiology, School of Medicine, Arak University of Medical Sciences, Arak, Iran.
2. Department of Microbiology and Immunology, Traditional and Complementary Medicine Research Center (TCMRC), School of Medicine, Arak University of Medical Sciences, Arak, Iran.
3. Department of Microbiology and Immunology, Molecular and Medicine Research Center, School of Medicine, Arak University of Medical Sciences, Arak, Iran.
4. Department of Microbiology and Immunology, Infectious Diseases Research Center (IDRC), School of Medicine Arak University of Medical Sciences, Arak, Iran.

Citation: Bahrami M, Ghazavi A, Ganji A, Mosayebi Gh. [Observing the Anti-oxidant and Anti-inflammatory Effect of Nigella Sativa Combined With Silybum Marianum Extracts on the Acute Peritonitis Mouse Model (Persian)]. Journal of Arak University of Medical Sciences(JAMS). 2021; 24(3):372-385. https://doi.org/10.32598/JAMS.24.3.6154.1

Extended Abstract

1. Introduction

In addition to inflammation, free radicals such as Nitric Oxide (NO), inflammation is one of the most important pathophysiological causes of peritonitis. Over thousands of years, Nigella Sativa (NS) and Silybum Marianum (SM) are two plants known for their anti-oxidant and anti-inflammatory properties. However, the effect of its compound is unclear. Thus, in this study, we evaluated the anti-inflammatory effect of NS and SM extracts and their combination on inflammatory diseases like thioglycollate peritonitis.

Methods & Material
Alcoholic extracts of SM and NS were obtained by the soxhlet method. Male Balb/C mice were divided into 5 groups and gavage orally for 14 days with SM, NS, the mixture of extracts of these two, DMSO 30% as the control group, and dexamethasone as the positive control group. The safety profile and acute toxicity in mice were assessed. On day 10, acute peritonitis was induced by thioglycollate 3%. Finally, the total anti-oxidant power and NO concentration were measured by FRAP and Griess method, respectively, in the serum of treated mice.

Ethical Considerations
All experimental process was performed following the guidelines according to the Animal Ethics Committee of Arak University of Medical Sciences (IR.ARAKMU.REC.1397.359).

Results
Acute toxicity test showed no significant changes in weight and physical appearance of the mice. However, the extract and their mixture decreased NO level significantly (P=0.000) in serum. Also, the mixture significantly increased total anti-oxidant power (P=0.015).

Conclusion
Results showed that the SM and NS extract mixture demonstrated anti-inflammatory activity, inhibiting inflammatory mediators such as NO and increasing anti-oxidant power, thus supporting its therapeutic potential in slowing down inflammatory processes in inflammation disorders.
drugs due to the need for effective drugs with fewer side effects than chemical drugs [3].

Over thousands of years, many natural products have been used to treat various diseases, regardless of their antagonistic and synergistic effects [4]. Nigella Sativa (NS) and Silybum Marianum (SM) are promising herbal medicine in Asia used for their anti-inflammatory properties [5]. Other studies have shown that SM has anti-inflammatory and anti-oxidant properties and is not even toxic in large quantities [6-10]; however, the effect of its compound is unclear. Thus, in this study, we evaluated the anti-inflammatory effect of Nigella sativa and Silybum Marianum extracts and their combination of inflammatory diseases like thioglycollate peritoneal inflammation.

2. Materials and Methods

Dried SM was extracted in a Soxhlet system using n-hexane and methanol as solvent. Also, NS seeds were extracted with 95% ethanol. Then, they were filtered, and the solvent was removed in a rotary evaporator [11, 12]. The safety profile of extracted was performed on spleen lymphocytes and acute toxicity assay according to the Organization for Economic Co-operation and Development (OECD) guidelines using the MTT assay.

Experiments were performed using male Balb/C mice (18-22 gr). The control group received DMSO 30% and PBS as a vehicle [13]. The positive control group gave dexamethasone 0.15 mg/kg intraperitoneal [14]. The SM and NS group were gavaged orally for 14 days. According to a previous study with 2000 mg/kg [15, 16], the mixture gavage by the SM+NS extracts was equally observed through the study [17].

To induce the peritonitis model, on day 10 of treatment, a 1 ml sterile solution of thioglycollate medium (3% w/v in PBS) was injected intraperitoneally [18]. Finally, 12-14 hours after the last treatment, the mice were killed, and blood was collected from the heart to measure the total anti-oxidant power and NO concentration.

Figure 1. Acute toxicity

Figure 2. Nitric oxide concentration
The FRAP method was based on that of Benzie and Strain [19]. Briefly, FRAP reagent (included: 300 mmol/L acetate buffer, 10 mmol/L TPTZ/HCL solution, and 20 mmol/L ferric chlorides) was added to 100 µl of diluted serum. After incubation, time absorbance was measured directly at 620 nm. The NO was measured by the Griess reaction [20]. Briefly, 100 μl diluted serum of treated mice was incubated with 100 µL of Griess reagent; finally, nitrite levels were measured at 620 nm after incubation (Figure 1, 2 & 3).

3. Results

Ethanolic Extract of NS (NEE) and Methanolic extract of SM (SME) exhibited no cytotoxic effects on spleen lymphocytes. Also, the acute toxicity test showed no significant changes in weight and physical appearance of the mice. These extract and their mixture decrease NO level significantly (P=0.000) in the treated group compared to the control group. Also, the mixture group increased significantly total anti-oxidant power (P=0.015) compared to the control and each extract individually.

However, the anti-inflammatory effect of NEE and SME was shown in previous studies [21]. No changes in the weight of treated mice, with a mentioned dosage of extracts and no apparent toxicity on splenic lymphocytes, were seen. So results reveal the non-toxic nature of extract at the tested dosage consistent and, the inhibitory effects were not due to toxicity and cell killing [22, 23]. In parallel with our study, the SME and the NEE had no acute and chronic toxicity on laboratory animals, even higher doses [24, 25].

4. Discussion and Conclusion

It seems that the significant increase in anti-oxidant power of the combination group against each of these extracts and the control group indicates the synergistic effect of all flavonoids in the anti-oxidant capacity of the extract [26, 27]. In confirmation, NS oil and its fractions (neutral lipids, glycolipids, and phospholipids) showed anti-oxidant activity related to their entire content [28]. In parallel, the anti-oxidant power of NS oil and SM seeds oil were reported equally [27].

Shahin et al. Showed that NS extract has more anti-oxidant effect than SM [29]. This difference can be due to the different solvents used in the extraction and confirming the role of alcoholic solvents in anti-oxidant power. According to our data, each mentioned extract and their combination has significantly decreased NO production release.

Similarly, a study showed suppression of NO production by aqueous extract of NS in stimulated peritoneal macrophages [23]. The reduction of NO production in the inflammatory model of rheumatoid arthritis in mice can confirm our results [30]. Another study showed that the extract of SM and silybin (one of its main ingredients) reduced the NO production by blocking p38, MAPK, or NF-κB signaling pathways in RAW 264.7 cells and peritoneal macrophages, which have been in line with its anti-inflammatory effects [31].

Ethical Considerations

Compliance with ethical guidelines

All experimental process was performed following the guidelines according to the Animal Ethics Committee of
Arak University of Medical Sciences (Code: IR.ARAKMU.REC.1397.359).

Funding

This article is taken from a research project with the code 3196 and it was funded by the Vice Chancellor for Research and Technology of Arak University of Medical Sciences.

Authors' contributions

All authors met the writing standards based on the International Committee of the Journal of Medical Journalists (ICMJE).

Conflicts of interest

The authors declared no conflicts of interest.

Acknowledgements

The authors would like to thank the Deputy for Research and Technology of Arak University of Medical Sciences for their valuable support.
مقایسه اثر توام آنتی اکسیدانی و ضدالتهابی عصاره‌های الکلی خارمریم و سیاه دانه در مدل موشی پریتونیت حاد

نویسنده مسئول: دکتر قاسم مسیبی

آرک، دانشگاه علوم پزشکی اراک، دانشکده پزشکی، گروه ایمنی شناسی.

نشانی: +98 (83) 34173502: تلفن
ghasemmosayebi@arakmu.ac.ir: پست الکترونیک

علاوه بر رادیکال‌های آزاد مانند نیتریک اکساید، التهاب یکی از مهم‌ترین علل پاتوفیزیولوژی پریتونیت (التهاب صفاق) است. خارمریم و سیاه دانه دو گیاه با خواص آنتی اکسیدانی و ضدالتهابی شناخته شده‌اند. هدف از این پژوهش بررسی اثر تجویز توام این دو عصاره گیاهی در القای اثرات آنتی اکسیدانی و کاهش شدت التهاب در مدل موشی پریتونیت حاد است.

در این تحقیق پس از تهیه عصاره الکلی خارمریم و سیاه دانه به روش سوکسله، میزان سمیت حاد مواد و روش‌ها

30 DMSO به پنج گروه تقسیم شدند و دُز مناسب هریک از عصاره‌های خارمریم، سیاه دانه، ترکیب عصاره‌های مذکور، Balb/C موش ها روز داده شد. در روز دهم دریافت پریتونیت حاد با 14 درصد به عنوان گروه کنترل و دگزامتازون به عنوان گروه کنترل مثبت به مدت تزریق داخل صفاقی تایوگلیکولات در موش ها القا شد. در آخر، قدرت آنتی اکسیدانی توتال هریک از عصاره‌ها در سرم موش های تیمارشده و غلظت نیتریک اکساید به روش گریس سنجیده شد.

FRAP با تست در کمیته پژوهشی دانشگاه علوم پزشکی اراک به ثبت رسیده است. IR.ARAKMU.REC.1397.359 این مطالعه با شناسه ملاحظات اخلاقی

در بررسی سمیت حاد تغییری در ظاهر فیزیکی موش ها و علائم بیماری دیده نشد، تغییرات وزن معنی‌دار نبود. استفاده یافته‌ها

). این ترکیب همچنین باعث P = 0/015 (توأم عصاره خارمریم و سیاه دانه باعث افزایش معنی‌دار قدرت آنتی اکسیدانی توتال شد.

P = 0/000 (کاهش معنی‌دار سطح نیتریک اکساید نسبت به گروه کنترل شد.

ترکیب این دو عصاره اثرات ضدالتهابی خود را با مکانیسم افزایش قدرت آنتی اکسیدانی و کاهش نیتریک اکساید اعمال می کند.

نتیجه گیری

کلیدواژه‌های: خارمریم، سیاه دانه، پریتونیت، التهاب، آنتی اکسیدان

اطلاعات مقاله:

1399 اردیبهشت 09: تاریخ دریافت
1400 فروردین 28: تاریخ پذیرش
1400 مرداد 10: تاریخ انتشار

مقدمه

التهاب نقش کلیدی در پاتوژنز بسیاری از بیماری‌ها از جمله پریتونیت را ایفا می کند. در این میان رادیکال‌های آزاد اکسیدانی و نیتریک اکساید، رادیکال‌های نیتروژن جایگاه ویژه ای در مدیریت التهاب دارند.

آزاد به علت وجود الکترون تک، دائماً در بدن در حال گردش هستند و آسیب‌های فراوانی را به ماکروملکول‌های بدن جانداران، پروتئین‌ها، لیپید‌ها و کربوهیدرات‌ها وارد می‌کنند. DNA مانند در بدن سیستم‌های خاصی برای مقابله با آسیب‌های حاصل از رادیکال‌های آزاد به علت وجود کننده‌های الکترون دارد که هنگام و در جریان فعالیت، اکسیداسیون این کننده‌ها و ایجاد رادیکال‌های آزاد را ناگهانی می‌کند.

آسیب‌های پاتولوژیکی و ایجاد بیماری‌های عفونی در بافت‌های پیشرفت‌های بیماری می‌شود. همچنین که ن一緒に عمل می‌کند ولی اکسیداسیون عفونی ایجاد می‌کند.
شامل: سیلی بین، سیلی کریستین و سیلی دیانین است؛ قسمت سیلیمارین به مخلوطی از فلاوونولیگنان‌ها اطلاق می‌شود که درصد سیلیمارین دارد.

میوه‌های فندقه‌ای گیاه بخش دارویی آن را تشکیل می‌دهند. میوه این گیاه به شکل فندقه است. گیاه سیاه دانه از خانواده آلاله است.

پروتونکتیپها با ناحیه‌گردن مدت اصلی کننده، کمی متفق‌الاعمال است. افزایش مصرف درمانی به روش سوکسل‌های 50

۹۰ درصد مرکوب‌های را بسیار می‌دهد و پس از آن به معنای تهیه صدای بهره‌مندی می‌گردد.

در طب ایرانی به یک ضدالتهاب و آنتی اکسیدان کاربرد شمل: سیلی بین، سیلی کریستین و سیلی دیانین است. قسمت سیلیمارین به مخلوطی از فلاوونولیگنان‌ها اطلاق می‌شود که درصد سیلیمارین دارد.

میوه این گیاه به شکل فندقه است. گیاه سیاه دانه از خانواده آلاله است. سیلیمارین کمک‌آمیز در درمان‌های کلینیکی قرار دارد. این گیاهان عمدتاً به طور جداگانه یا در ترکیب با یکدیگر استفاده می‌شوند.

به این دلیل، به طور عمده، دو آنتی‌اکسیدان بالقوه یا از طریق پاره‌کردن کمی به درمان‌های خارمریم به روش سوکسل‌های 50

۳۷

فارسی: سیروس، ۱۳۸۶، ص ص ۱۲۵–۱۷۰.

در یک پژوهش از مطالعات بسیاری مورد بررسی قرار گرفته، این گیاه به طور عمده در درمان‌های کلینیکی قرار می‌گیرد. این گیاهان عمدتاً به طور جداگانه یا در ترکیب با یکدیگر استفاده می‌شوند.

در طب ایرانی به یک ضدالتهاب و آنتی‌اکسیدان کاربرد شمل: سیلی بین، سیلی کریستین و سیلی دیانین است. قسمت سیلیمارین به مخلوطی از فلاوونولیگنان‌ها اطلاق می‌شود که درصد سیلیمارین دارد.

میوه این گیاه به شکل فندقه است. گیاه سیاه دانه از خانواده آلاله است. سیلیمارین کمک‌آمیز در درمان‌های کلینیکی قرار دارد. این گیاهان عمدتاً به طور جداگانه یا در ترکیب با یکدیگر استفاده می‌شوند.
مشخص مصرفه‌ها، هرکدام به صورت جدایی و توزیع محدود شده‌اند از چهار میکروگرم در سه میلی لیتر حلال شده و مورد سنجش قرار گرفته.

شماره 3. شماره 3

۳۰ میلی‌گرم در حلال ۱۰۰ میکروگرم شسته شده و با استفاده از دستگاه الایزا ریدر مورد سنجش قرار گرفت.

جذب نوری با استفاده از منحنی استاندارد

۲ میکرولیتر سولفانیل امید با استفاده از دستگاه خوانشگر و تشکیل پلیتی انجام شد. برای اندازه‌گیری غلظت، سنجش نیتریک اکسید توسط واکنش

\[
\text{NO} + \text{FeSO}_4 + \text{H}_2\text{O} \rightarrow \text{FeSO}_4 + \text{NO}_2 + \text{H}_2\text{O}
\]

در شرایط اسیدی فسفریک اسید باعث ایجاد ترکیب به شکل *NO**۲**+* ا Guides به همین علت، این واکنش روشی برای اندازه‌گیری ظرفیت آنتی اکسیدانی است.

Gries

روش برای اندازه‌گیری درغذایی آنتی اکسیدانی است. در این روش میکروولیتر آنتی اکسیدان نمونه به *FeSO*₄ اضافه می‌شود و در حلال‌های استاندارد. سپس با استفاده از دستگاه خوانشگر، ظرفیت کلی آنتی اکسیدانی سرمی خون محاسبه شد.

FRAP

روشی برای اندازه‌گیری ظرفیت آنتی اکسیدانی است. در این روش *Fe*³⁺ اضافه شده و باعث شده که *Fe**۲**⁺ با آنتی اکسیدان‌ها ضمایر شده و باعث نیتریک اکسید در حلال‌های استاندارد می‌شود. با استفاده از *Fe**³**⁺* در حلال استاندارد و قطعات رنگ آن‌ها با استفاده از *TPTZ-Fe**³**⁺* مستفاد شد. این واکنش روشی برای اندازه‌گیری ظرفیت آنتی اکسیدانی است.

FRAP

روشی برای اندازه‌گیری ظرفیت آنتی اکسیدانی است. در این روش *Fe**²**⁺* اضافه شده و باعث شده که *Fe**³**⁺* با آنتی اکسیدان‌ها ضمایر شده و باعث نیتریک اکسید در حلال‌های استاندارد می‌شود. با استفاده از *Fe**³**⁺* در حلال استاندارد و قطعات رنگ آن‌ها با استفاده از *TPTZ-Fe**³**⁺* مستفاد شد. این واکنش روشی برای اندازه‌گیری ظرفیت آنتی اکسیدانی است.

FRAP

روشی برای اندازه‌گیری ظرفیت آنتی اکسیدانی است. در این روش *Fe**²**⁺* اضافه شده و باعث شده که *Fe**³**⁺* با آنتی اکسیدان‌ها ضمایر شده و باعث نیتریک اکسید در حلال‌های استاندارد می‌شود. با استفاده از *Fe**³**⁺* در حلال استاندارد و قطعات رنگ آن‌ها با استفاده از *TPTZ-Fe**³**⁺* مستفاد شد. این واکنش روشی برای اندازه‌گیری ظرفیت آنتی اکسیدانی است.

FRAP

روشی برای اندازه‌گیری ظرفیت آنتی اکسیدانی است. در این روش *Fe**²**⁺* اضافه شده و باعث شده که *Fe**³**⁺* با آنتی اکسیدان‌ها ضمایر شده و باعث نیتریک اکسید در حلال‌های استاندارد می‌شود. با استفاده از *Fe**³**⁺* در حلال استاندارد و قطعات رنگ آن‌ها با استفاده از *TPTZ-Fe**³**⁺* مستفاد شد. این واکنش روشی برای اندازه‌گیری ظرفیت آنتی اکسیدانی است.

FRAP

روشی برای اندازه‌گیری ظرفیت آنتی اکسیدانی است. در این روش *Fe**²**⁺* اضافه شده و باعث شده که *Fe**³**⁺* با آنتی اکسیدان‌ها ضمایر شده و باعث نیتریک اکسید در حلال‌های استاندارد می‌شود. با استفاده از *Fe**³**⁺* در حلال استاندارد و قطعات رنگ آن‌ها با استفاده از *TPTZ-Fe**³**⁺* مستفاد شد. این واکنش روشی برای اندازه‌گیری ظرفیت آنتی اکسیدانی است.

FRAP

روشی برای اندازه‌گیری ظرفیت آنتی اکسیدانی است. در این روش *Fe**²**⁺* اضافه شده و باعث شده که *Fe**³**⁺* با آنتی اکسیدان‌ها ضمایر شده و باعث نیتریک اکسید در حلال‌های استاندارد می‌شود. با استفاده از *Fe**³**⁺* در حلال استاندارد و قطعات رنگ آن‌ها با استفاده از *TPTZ-Fe**³**⁺* مستفاد شد. این واکنش روشی برای اندازه‌گیری ظرفیت آنتی اکسیدانی است.

FRAP

روشی برای اندازه‌گیری ظرفیت آنتی اکسیدانی است. در این روش *Fe**²**⁺* اضافه شده و باعث شده که *Fe**³**⁺* با آنتی اکسیدان‌ها ضمایر شده و باعث نیتریک اکسید در حلال‌های استاندارد می‌شود. با استفاده از *Fe**³**⁺* در حلال استاندارد و قطعات رنگ آن‌ها با استفاده از *TPTZ-Fe**³**⁺* مستفاد شد. این واکنش روشی برای اندازه‌گیری ظرفیت آنتی اکسیدانی است.
بررسی تأثیر عصاره‌های الکلی خارمریم و سیاه دانه بر سلول‌های طحالی موش

برای بررسی سمیت عصاره‌های مذکور، نیز درصد حیات سلولی در لنفوسیت‌های طحالی بررسی شد. همانطور که در تصویر شماره ۲ مشخص است، هر یک از عصاره‌های مذکор، معناداری در درصد حیات سلول‌های لنفوسیتی مشاهده نمی‌شود.

بررسی تأثیر عصاره‌ها بر میزان نیتریک اکساید تولیدی در سرم موش‌ها نیز درصد حیات سلولی در لنفوسیت‌های طحالی بررسی شد. همان‌طور که در تصویر شماره ۳ مشخص است، هیچ گونه کاهش معنادار در درصد حیات لنفوسیت‌های طحالی در گروه‌های مورد بررسی نشان نمی‌گردد.

بررسی تأثیر عصاره‌های الکلی خارمریم و سیاه دانه و انتخاب بهترین ترکیب برای مدل پریتونیت حاد

بررسی تأثیر عصاره‌های الکلی خارمریم و سیاه دانه و انتخاب بهترین ترکیب برای مدل پریتونیت حاد، میزان تولید نیتریک اکساید در سرم موش‌ها نیز درصد حیات سلولی در لنفوسیت‌های طحالی بررسی شد. همان‌طور که در تصویر شماره ۳ مشخص است، هیچ گونه کاهش معنادار در درصد حیات لنفوسیت‌های طحالی در گروه‌های مورد بررسی نشان نمی‌گردد.

تصویر ۲. تأثیر عصاره‌های الکلی خارمریم و سیاه دانه و انتخاب بهترین ترکیب برای مدل پریتونیت حاد

میزان نیتریک اکساید تولیدی در سرم موش‌ها در گروه‌های مورد بررسی نیز درصد حیات سلولی در لنفوسیت‌های طحالی بررسی شد. همان‌طور که در تصویر شماره ۲ مشخص است، هیچ گونه کاهش معنادار در درصد حیات لنفوسیت‌های طحالی در گروه‌های مورد بررسی نشان نمی‌گردد.
بحث
یافتن یک عامل تأثیرگذار مانند استفاده از عصاره‌های گیاهی که منجر به کاهش التهاب هماهنگ با اثر آنتی‌اکسیدانی خود می‌شود، پتانسیل تأثیرگذار معناداری عصاره‌های خارمریم و سیاه دانه و ترکیب این دو عصاره در تولید نیتریت در سرم.

مقایسه فعالیت آنتی‌اکسیدانی عصاره‌های خارمریم و سیاه دانه با دیگر عصاره‌های قهوه‌ای مربوط به مدل پریتونیت حاد موش‌های گاواژش‌دهند.

تصویر 3: کاهش معناداری عصاره‌های خارمریم، سیاه دانه و ترکیب این دو عصاره با گروه کنترل در مدل پریتونیت حاد موش‌های گاواژش‌دهند.

انجام تحقیق:
یافته‌های آنتی‌اکسیدانی عصاره‌های خارمریم، سیاه دانه و ترکیب این دو عصاره در تولید نیتریت در سرم موش‌های گاواژش‌دهند بررسی و مقایسه شد. همانطور که در تصویر فرآینده (FRAP) مشاهده می‌شود، افزایش معناداری در گروه توأم عصاره‌های خارمریم و سیاه دانه در مقایسه با گروه کنترل مشاهده شد. همچنین تأثیر عصاره‌های قهوه‌ای، سیاه دانه، خارمریم و دیگر عصاره‌ها در سطوح سرم مشاهده شد.
شناسنامه‌های ماده مؤثر در مطالعات گذشته بوده است. مطالعات قبلی نشان داده که سیلیزین با اسیدلوئیک درمان عامل دیاره‌ای سیگماپیگ‌ها

یا NF-κB یا ویتامین د و آنتی‌اکسیدان‌های دیگر موجب بهبود در فعالیت مایکروویروس محقق و می‌باشد. همچنین این عصاره‌ها می‌توانند یک درمان مکمل و حمایتی مؤثر در بیماری‌های التهابی از جمله پریتونیت باشند. خواص قلیایی فعالیتی در مطالعه‌های اخیر بر تأثیر این عصاره‌ها و سایر عصاره‌های دیگر در بیماری‌های التهابی توجه شده است.

می‌تواند یک درمان مکمل و حمایتی مؤثر در بیماری‌های التهابی از جمله پریتونیت باشد. خواص قلیایی فعالیتی در مطالعه‌های اخیر بر تأثیر این عصاره‌ها و سایر عصاره‌های دیگر در بیماری‌های التهابی توجه شده است.

در این مطالعه خواص آنتی‌اکسیدانی و ضدالتهابی ترکیب عصاره‌های سیگماپیگ‌ها و آسارسیاک بالینی مورد بررسی قرار گرفته شده است.

می‌تواند یک درمان مکمل و حمایتی مؤثر در بیماری‌های التهابی از جمله پریتونیت باشد. خواص قلیایی فعالیتی در مطالعه‌های اخیر بر تأثیر این عصاره‌ها و سایر عصاره‌های دیگر در بیماری‌های التهابی توجه شده است.

می‌تواند یک درمان مکمل و حمایتی مؤثر در بیماری‌های التهابی از جمله پریتونیت باشد. خواص قلیایی فعالیتی در مطالعه‌های اخیر بر تأثیر این عصاره‌ها و سایر عصاره‌های دیگر در بیماری‌های التهابی توجه شده است.

اصلاح‌های دیگر سیگماپیگ‌ها و آسارسیاک بالینی مورد بررسی قرار گرفته شده است.

می‌تواند یک درمان مکمل و حمایتی مؤثر در بیماری‌های التهابی از جمله پریتونیت باشد. خواص قلیایی فعالیتی در مطالعه‌های اخیر بر تأثیر این عصاره‌ها و سایر عصاره‌های دیگر در بیماری‌های التهابی توجه شده است.

می‌تواند یک درمان مکمل و حمایتی مؤثر در بیماری‌های التهابی از جمله پریتونیت باشد. خواص قلیایی فعالیتی در مطالعه‌های اخیر بر تأثیر این عصاره‌ها و سایر عصاره‌های دیگر در بیماری‌های التهابی توجه شده است.

می‌تواند یک درمان مکمل و حمایتی مؤثر در بیماری‌های التهابی از جمله پریتونیت باشد. خواص قلیایی فعالیتی در مطالعه‌های اخیر بر تأثیر این عصاره‌ها و سایر عصاره‌های دیگر در بیماری‌های التهابی توجه شده است.

می‌تواند یک درمان مکمل و حمایتی مؤثر در بیماری‌های التهابی از جمله پریتونیت باشد. خواص قلیایی فعالیتی در مطالعه‌های اخیر بر تأثیر این عصاره‌ها و سایر عصاره‌های دیگر در بیماری‌های التهابی توجه شده است.

می‌تواند یک درمان مکمل و حمایتی مؤثر در بیماری‌های التهابی از جمله پریتونیت باشد. خواص قلیایی فعالیتی در مطالعه‌های اخیر بر تأثیر این عصاره‌ها و سایر عصاره‌های دیگر در بیماری‌های التهابی توجه شده است.

می‌تواند یک درمان مکمل و حمایتی مؤثر در بیماری‌های التهابی از جمله پریتونیت باشد. خواص قلیایی فعالیتی در مطالعه‌های اخیر بر تأثیر این عصاره‌ها و سایر عصاره‌های دیگر در بیماری‌های التهابی توجه شده است.

می‌تواند یک درمان مکمل و حمایتی مؤثر در بیماری‌های التهابی از جمله پریتونیت باشد. خواص قلیایی فعالیتی در مطالعه‌های اخیر بر تأثیر این عصاره‌ها و سایر عصاره‌های دیگر در بیماری‌های التهابی توجه شده است.

می‌تواند یک درمان مکمل و حمایتی مؤثر در بیماری‌های التهابی از جمله پریتونیت باشد. خواص قلیایی فعالیتی در مطالعه‌های اخیر بر تأثیر این عصاره‌ها و سایر عصاره‌های دیگر در بیماری‌های التهابی توجه شده است.
References

[1] Ganji A, Farahani I, Palzivan MR, Ghazavi A, Etehadifar M, Ebrahimimofared M, et al. Therapeutic effects of walnut oil on the animal model of multiple sclerosis. Nutr Neurosci. 2019; 22(3):215-22. [DOI: 10.1080/1028415X.2017.1371389]

[2] Ghazavi A, Mosayebi G, Solhi H, Rafiei M, Moazzeni SM. Serum markers of inflammation and oxidative stress in chronic opium (Tar-yak) smokers. Immunol Lett. 2013; 153(1-2):22-6. [DOI: 10.1016/j.imlet.2013.07.001]

[3] Jones RS, Claridge JA. Acute abdomen. In: Townsend CM, Sabiston DC, editors. Sabiston Textbook of Surgery, 17th edition. Philadelphia: Elsevier SAuouders; 2004. [https://books.google.com/books?id=8b_iReAAACAA&dq]

[4] Mion CM, Béraud JJ. Treatment of acute renal failure by peritoneal dialysis. In Acute Renal Failure. Boston: Springer; 1984. [https://link.springer.com/chapter/10.1007/978-1-4613-2841-4_24]

[5] Amirghofran Z. Medicinal plants as immunosuppressive agents in traditional Iranian medicine. Iran J Immunol. 2010; 7(2):65-73. [PMID]

[6] Woo CC, Kumar AP, Sethi G, Tan KH. Thymoquinone: Potential cure for inflammatory disorders and cancer. Biochem Pharmacol. 2012; 83(4):443-51. [DOI: 10.1016/j.bcp.2011.09.029][PMID]

[7] Lirussi F, Beccarelli A, Zarate BM, De Monte A, Donadon V, Velussi M, et al. Silybin-beta-cyclodextrin in the treatment of patients with diabetes mellitus and alcoholic liver disease. Efficacy study of a new preparation of an anti-oxidant agent. Diabetes Nutr Metab. 2002; 15(4):222-31. [PMID]

[8] Agrawal S, Bokovsky LV. Management of nonalcoholic steatohepatitis: An analytic review. J Clin Gastroenterol. 2002; 35(3):253-61. [DOI: 10.1097/00004836-200209000-00011]

[9] Lucena MJ, Andrade RJ de la, Cruz RP, Rodríguez-Mendizabal M, Blanco E, de la Cuesta FS. Effects of silymarin M2-80 on oxidative stress in patients with alcoholic cirrhosis. Int J Clin Pharmacol Ther. 2002; 40(1):2-8. [DOI: 10.5414/CP40002]

[10] Tavakkoli A, Mahdian V, Razavi BM, Hosseinzadeh H. Review on clinical trials of black seed (Nigella sativa) and its main bioactive constituent, thymoquinone. J Pharmacopuncture. 2017; 20(3):179-93. [DOI: 10.3831/KPI.2017.20.021][PMID] [PMCID]

[11] Esmaeili N, Balouchi Anaraki S, Gharghoozoo M, Moayed B. Silymarin impacts on immune system as an immunomodulator: One key for many locks. Int Immunopharmacol. 2017; 50:194-201. [DOI: 10.1016/j.intimp.2017.06.030]

[12] Wianowska D, Wiśniewski M. Simplified procedure of silymarin extraction from silybum marianum L. Gaertner. J Chromatogr Sci. 2015; 53(2):366-72. [DOI: 10.1093/chromsci/bmu049]

[13] Koshak AE, Yousif NM, Fiebich BL, Koshak EA, Heinrich M. Comparative immunomodulatory activity of Nigella sativa I. preparations on proinflammatory mediators: A focus on asthma. Front Pharmacol. 2018; 9:1075. [PMID] [PMCID]

[14] Noel PRB, Barnett KC, Davies RE, Jolly DW, Leahy JS, Skipper PL, Wishnok JS, Tenenbaum SR. Analysis of nitrate, nitrite, and [15] Nitrate in biological fluids. Anal Biochem. 1982; 126(1):131-8. [DOI: 10.1016/0003-2697(82)90118-X]

[15] Gholamnezhad Z, Keyhammeresh R, Boskabady MH. Anti-inflammatory, antioxidant, and immunomodulatory aspects of Nigella sativa for its preventive and bronchodialytic effects on obstructive respiratory diseases: A review of basic and clinical evidence. J Funct Foods. 2015; 17:910-27. [DOI: 10.1016/j.jff.2015.06.032]

[16] Gharagoozoo M, Safari S, Esmaili N, Javid EN, Bagherpour B, Rezaei A. Immunomodulatory effect of silymarin on mitogen-activated protein kinase signalling pathway. The impact on T cell proliferation and cytokine production. Basic Clin Pharmacol Toxicol. 2013; 113(3):229-14. [DOI: 10.1111/bcpt.12088]

[17] Majdalawieh AF, Hmaidan R, Carr RI. Nigella sativa modulates spleenocyte proliferation, Th1/Th2 cytokine profile, macrophage function and NK anti-tumor activity. J Ethnopharmacol. 2010; 131(2):268-75. [DOI: 10.1016/j.jep.2010.06.030]

[18] Hajhashemi V, Ghannadi A, Jafarabadi H. Black cumin seed essential oil, as a potent analgesic and antiinflammatory drug. Phytother Res. 2004; 18(3):195-9. [DOI: 10.1002/ptr.1390]

[19] Bahmani M, Shirzad H, Rafieian S, Rafieian-Kopaei M. Silybum marianum: Beyond hepatoprotection. J Evid Based Complementary Altern Med. 2015; 20(4):292-301. [DOI: 10.1177/1534228515571116]

[20] Meddeb W, Rezig L, Zarrouk A, Nury T, Vejux A, Prost M, et al. Cytoprotective activities of milk thistle seed oil used in traditional tunisian medicine on 7-ketocolesterol and 24S-hydroxycholesterol-induced toxicity on 15BN murine oligodendrocytes. Antioxidants (Basel). 2018; 7(7):95. [DOI: 10.3390/antiox7070095]

[21] Arvani D, Jaremi R. Evaluation of antioxidant capacity and phenolic content in ethanolic extracts of leaves and flowers of some asteraceae species. Recent Pat Food Nutr Agric. 2018; 9(1):42-9. [PMID]

[22] Ramadan MF, Kroh LW, Mörse TJ. Radical scavenging activity of black cumin (Nigella sativa L.), coriander (Coriandrum sativum L.), and niger (Guizotia abyssinica Cass.) crude seed oils and oil fractions. J Agric Food Chem. 2003; 51(24):6961-9. [DOI: 10.1021/jf0346713][PMID]
[30] Shahin YR, Elguindy NM, Abdel Bary A, Balbaa M. The protective mechanism of Nigella sativa against diethylnitrosamine-induced hepatocellular carcinoma through its antioxidant effect and EGFR/ERK1/2 signaling. Environ Toxicol. 2018; 33(8):885-98. [DOI:10.1002/tox.22574]

[31] Umar S, Zargan J, Umar K, Ahmad S, Katiyar CK, Khan HA. Modulation of the oxidative stress and inflammatory cytokine response by thymoquinone in the collagen induced arthritis in Wistar rats. Chem Biol Interact. 2012; 197(1):40-6. [DOI:10.1016/j.cbi.2012.03.003]

[32] Kang JS, Jeon YJ, Kim HM, Han SH, Yang KH. Inhibition of inducible nitric-oxide synthase expression by silymarin in lipopolysaccharide-stimulated macrophages. J Pharmacol Exp Ther. 2002; 302(1):138-44. [DOI:10.1124/jpet.302.1.138]
