A mutually induced conformational fit underlies Ca2+-directed interactions between calmodulin and the proximal C terminus of KCNQ4 K+ channels

Crystal R. Archer1,3, Benjamin T. Enslow2, Alexander B. Taylor3, Victor De la Rosa1,8, Akash Bhattacharya3,8 and Mark S. Shapiro1,9

From the 1Departments of Cell and Integrative Physiology, 2Long School of Medicine, and 3Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas.

Running title: Mutually-induced fit of Ca2+/CaM action on KCNQ4 K+ channels

*To whom correspondence should be addressed:
Mark S. Shapiro, Ph.D.: Department of Cell and Integrative Physiology, University of Texas Health at San Antonio. STRF, MC 8253. 8403 Floyd Curl Drive, San Antonio, TX 78229 USA. Tel: (210) 562-4092. Fax: (210) 562-4060. Email: shapirom@uthscsa.edu

\# Present affiliation: CONACYT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, 78210, México
\#Present affiliation: Beckman Coulter Life Sciences, 5600 Lindbergh Drive, Loveland, CO 80538

Keywords: calmodulin, potassium channel, Nuclear Magnetic Resonance, X-ray crystallography, conformational change, potassium voltage-gated channel subfamily Q member (KCNQ), calcium-binding protein, microscale thermophoresis (MST), isothermal titration calorimetry

ABSTRACT
Calmodulin (CaM) conveys intracellular Ca2+ signals to KCNQ (Kv7, “M-type”) K+ channels and many other ion channels. Whether this “calmodulation” involves a dramatic structural rearrangement or only slight perturbations of the CaM-KCNQ complex is as yet unclear. A consensus structural model of conformational shifts occurring between low-nM to physiologically high intracellular [Ca2+] is still under debate. Here, we used various techniques of biophysical chemical analyses to investigate the interactions between CaM and synthetic peptides corresponding to the A and B domains of the KCNQ4 subtype. We found that in the absence of CaM, the peptides are disordered, whereas Ca2+/CaM imposed helical structure on both KCNQ A and B domains. Isothermal titration calorimetry revealed that Ca2+/CaM has higher affinity for the B domain than for the A domain of KCNQ2-4 and much higher affinity for the B domain when prebound with the A domain. X-ray crystallography confirmed these discrete peptides spontaneously bind Ca2+/CaM, similar to previous reports of CaM binding KCNQ-AB domains that are linked together. Microscale thermophoresis and HSQC-NMR indicated the C-lobe of Ca2+-free CaM to interact with the KCNQ4 B domain (K\textsubscript{d} ~10-20 \mu M), with increasing Ca2+ molar ratios shifting the CaM-B domain interactions via only the CaM C-lobe to also include the N-lobe. Our findings suggest that in response to increased Ca2+, CaM undergoes lobe-switching that imposes a dramatically induced conformational fit to both the proximal C-terminus of KCNQ4 channels and CaM, likely underlying Ca2+-dependent regulation of KCNQ gating.

Calmodulin (CaM) is a highly conserved Ca2+ sensor among vertebrates involved in a variety of physiological roles, with at least 300 known binding targets (1,2). The amino and carboxy termini of CaM form globular clusters called the N-lobe and C-lobe, respectively, which are connected by a flexible linker. Two Ca2+ binding sites localize to each lobe via “EF-hand” motifs with the N-lobe containing EF-I & II, and the C-lobe EF-III & IV (3). For free CaM protein (referring to CaM not bound to a target protein), the estimated affinity of Ca2+ for the N-lobe is K\textsubscript{d} ~10 \mu M and for the C-lobe is K\textsubscript{d} ~1 \mu M, affinities that can change when CaM is bound to target proteins (4-6). In neurons and other cells, in which global resting (tonic) [Ca2+], is estimated to be 30-150 nM (7,8), non-Ca2+-loaded CaM (apoCaM) is thought to exist in its “off state.” During physiological cytoplasmic increases of [Ca2+], up to ~5 \mu M globally and ~ 100 \mu M in localized nanodomains (9), CaM transitions to an “on-state” that modifies the function of bound target proteins. Solution NMR studies indicate that free apoCaM adopts a semi-closed conformation, in which the N- and C-lobes are usually folded toward each other (10). Upon Ca2+ loading, the lobes extend in an open conformation exposing distinct motifs that often direct CaM to wrap around its target proteins to initiate signaling cascades and regulate physiological function in response to Ca2+ signals (11). Since the unexpected revelation that the well-known Ca2+ sensitivity of voltage-gated Ca2+ channels (VGCCs)
and SK-type Ca\(^{2+}\)-activated K\(^{+}\) channels were due to direct interactions with CaM, without the need for any kinases (12-14), a number of other channels have been shown to be similarly regulated by Ca\(^{2+}\) ions (15). Particularly studied for CaM actions on VGCCs is the issue of apoCaM pre-association with the channels, and the complex dynamic changes of the configuration of CaM between metal-free and Ca\(^{2+}\)-loaded states. These changing configurations often involve “lobe-switching,” and have proved surprisingly distinct between the Cav1 (L-type) and Cav2 (N-, P/Q-type) channels (16-22). For SK channels, similar issues are being studied, stemming from the surprising early conclusion that the high-affinity C-lobe of CaM is involved in pre-association with the channels (with neither EF-hand in the C-lobe occupied by Ca\(^{2+}\)), and the lower-affinity N-lobe acting as the Ca\(^{2+}\) sensor, or “Ca\(^{2+}\) switch” for gating. Consistent with that earlier structural hypothesis (12,23-25) is a recent cryo-EM structure of a Ca\(^{2+}\)/CaM-bound SK4 channel (26).

In neurons, heart and smooth muscle, tetrameric voltage-gated KCNQ (Kv7, “M-type”) K\(^{+}\) channels play critical roles in regulating cellular excitability (27). CaM has been shown to regulate the trafficking and expression of KCNQ channels as well as their gating (28-31). CaM acts as the Ca\(^{2+}\)-sensor for KCNQ channels via direct interactions with the proximal C-terminus, thereby mediating the Ca\(^{2+}\)-dependent modulatory action of several types of receptors linked to phospholipase C (7,30,32,33). It has been presumed for KCNQ channels that Ca\(^{2+}\)-loading of certain EF-hands of CaM induces a conformational change that inhibits channel opening. For KCNQ1-containing channels, however, Ca\(^{2+}\)-loading of CaM augments opening (34), perhaps in accord with their role in cardiomyocytes, inner ear and epithelia in which KCNQ1 almost always is expressed together with KCNE subunits (35,36). In all cases, the extent and manner of pre-association of apoCaM with the channels, and the nature of that conformational change are vigorously under debate.

It has been argued that apoCaM is required for KCNQ channels to properly function (28,31,34,37-39), but it is still unclear whether truly metal-free CaM pre-associates with the channels. All studies have shown two highly conserved domains in the proximal C-terminus, the A & B domains, as the loci of CaM actions (Figs. 1A&B). This proximal half of the C-terminus, which we call the regulatory domain (RD), besides containing highly-conserved A & B domains involved in CaM interactions (39,40), also contains sites of regulation of opening by phosphatidylinositol 4,5-bisphosphate (PIP\(_2\)) (41) and protein kinase C (PKC), regulatory site of the latter being just after the B domain (42-44). Rich interplay between these molecules at the RD is proposed to exquisitely regulate KCNQ channels.

Recent structural investigations suggest either that Ca\(^{2+}\)/CaM embraces both the A and B domains of KCNQ1, 4, and 5, and KCNQ2/3 hybrids (45-47) or that Ca\(^{2+}\)-loading of CaM induces the A domain to be released from the trimeric complex, leaving Ca\(^{2+}\)-loaded CaM to wrap tightly around the B domain alone (48,49). In contrast, a recent solution NMR study of a similar complex of the A & B domains of KCNQ2 and CaM suggested only minor changes in the structure of the complex between low and high [Ca\(^{2+}\)], arguing against a dramatic structural change in KCNQ channels in response to intracellular rises in [Ca\(^{2+}\)] (50).

We investigated this issue for KCNQ4, as this isoform is expressed in cells and tissues mainly as homomeric channels, simplifying our interpretations. We used a gamut of biophysical chemical and structural analyses, such as heteronuclear single quantum coherence nuclear magnetic resonance spectroscopy (HSQC-NMR) and X-ray crystallography. In our investigations, we used separate synthetic peptides corresponding to the A & B domains of KCNQ 2-4 in order to gain better insight into CaM interactions with the domains independent from each other. We were scrupulously careful to know both the free [Ca\(^{2+}\)] and the stoichiometric ratios of [Ca\(^{2+}\)]. CaM and A and/or B domains in all of our experiments. The goal of this inquiry was to build a stepwise model of the mechanism of CaM binding to the KCNQ4 C-terminus from <10 nM to physiologically high [Ca\(^{2+}\)].

RESULTS

The A and B domains appear intrinsically disordered in the absence of CaM

The amino acid sequences of the A & B domains of KCNQ channels are conserved within the KCNQ family (Fig. 1B). The A domain, also known as the “A helix,” contains a highly conserved IQxxR amino acid sequence characteristic of IQ CaM-binding motifs found in a multitude of other CaM target proteins (51). The A domain also contains 1-12 and 1-16 motifs. The B domain, also called the “B helix,” contains multiple canonical and non-canonical CaM-binding motifs, including 1-5-10 and 1-14 hydrophobic anchoring residues (52). Having multiple CaM motifs within the RD suggests that CaM may adopt several different orientations when binding to KCNQ channels, as recently suggested (50).

The existing co-crystal and cryo-EM structures of CaM with purified full channel and purified fragments containing the A and/or B domains show the A & B domains adopting an α-helix secondary structure or assembled in coiled-coil arrangements when embraced by CaM (45-47,49). However, it is not known if the free A and B domains of KCNQ channels adopt helical structure in the absence of CaM, despite their common reference as the “A helix” or “B helix.” We used circular dichroism...
(CD) spectroscopy to analyze the secondary structure of synthesized peptides corresponding to the A or B domains of KCNQ2-4 subunits. Although peptides typically appear disordered in the absence of a binding partner, CD can indicate if they adopt secondary structure on their own, such as that corresponding to the NScate domain of the L-type Ca\(^{2+}\) channels, that has \(\alpha\)-helical structure in the absence of CaM (53). Each of the KCNQ peptides displayed single peaks at 205 or 220 nm (Fig. 1C), suggesting the A and B domains may be intrinsically disordered in the absence of CaM and require CaM to adopt their coiled-coil appearance in reported structures. In contrast, CaM displayed peaks at 208 and 222 nm, which is the signature for proteins with \(\alpha\)-helices. Since the CD buffer contained Ca\(^{2+}\) in equimolar ratio to protein, the CaM in this experiment is expected to only be partially Ca\(^{2+}\)-bound. This experiment also suggests that Ca\(^{2+}\) does not directly induce the secondary structure of the A and B domains. To highlight the malleable nature of these CaM-binding domains, we generally call these regions the “A and B domains” in this study. In the Discussion, we comment on the importance of these observations in the role of CaM in proper channel expression.

The independent Q4A and Q4B peptides adopt an antiparallel \(\alpha\)-helical conformation enveloped by CaM in the presence of Ca\(^{2+}\)

To determine with high resolution how CaM and the independent A & B domains of KCNQ4 spontaneously assemble under conditions of high [Ca\(^{2+}\)], compared to existing structures of CaM that have been co-expressed with proteins of the connected KCNQ-AB fragments, we obtained the X-ray crystal structure of Ca\(^{2+}\)/CaM in complex with KCNQ4 A domain (Q4A) and KCNQ4 B domain (Q4B) peptides. We refer to this structure as Ca\(^{2+}\)/CaM:Q4A:Q4B (PDB: 6N5W) (Fig. 2A). Elongated, hexameric crystals grew to full size after 8 days at room temperature in the presence of 2 mM free [Ca\(^{2+}\)]. No crystals were observed in Ca\(^{2+}\)-free conditions (in a formation buffer of HBS plus 2 mM EGTA) in our extensive array of crystallization screens. The X-ray structure of Ca\(^{2+}\)/CaM:Q4A:Q4B was determined by molecular replacement using the structure of Ca\(^{2+}\)/CaM:KCNQ1-AB (PDB: 4UMO) as a model, and refined to a resolution of 2.15 Å (crystallographic statistics found in Supplemental Table T1). The trimeric structure includes residues 4-147 of CaM, R338 – D356 of Q4A and D525 – F549 of Q4B. The schematic in Fig. 2B illustrates our understanding of this complex as it exists within the entire KCNQ4 subunit. A common observation of existing structures of Ca\(^{2+}\)/CaM with the A & B domains of KCNQ1 and KCNQ4, and of the frog oocyte KCNQXem channel, is that Ca\(^{2+}\) is shown coordinated by both EF-hands in the N-lobe, but is only occasionally present in EF hands of the C-lobe. This has been a surprising finding, since as mentioned above, for free CaM in isolation, the EF-hands in the C-lobe have a higher affinity for Ca\(^{2+}\) than the N-lobe, although this discrepancy was also seen previously for VGCCs and SK channels (54). Our Ca\(^{2+}\)/CaM:Q4A:Q4B crystal structure also shows EF-hands I & II of the CaM N-lobe to each coordinate a Ca\(^{2+}\) ion. EF-III & IV are empty, despite this complex being formed in a buffer containing an excess of Ca\(^{2+}\) (albeit modest) relative to the number of EF-hands (222 \(\mu\)M CaM and 2 mM Ca\(^{2+}\)). The crystallization buffer contained citrate, which also binds Ca\(^{2+}\) but with much lower affinity than CaM (K\(_s\) = 10\(^{3.5}\) M\(^{-1}\)) (55). Citrate has also been shown to directly interact with the C-lobe of CaM, but we do not observe such an interaction in this structure (56). We also point out that the Ca\(^{2+}\)/CaM:Q1AB structure was not obtained in a high-citrate buffer (48) but is very similar to this structure (RMSD = 0.98 Å), and was also found to lack Ca\(^{2+}\) ion density in the C-lobe EF hands, suggesting this to be more related to [Ca\(^{2+}\)] or that Ca\(^{2+}\) ions dissociate from the C-lobe upon complex formation. Contrary to these findings, the Ca\(^{2+}\)/CaM:Q3AQ2B structure (PDB: 5J03) found Ca\(^{2+}\) coordinated in all 4 EF-hands formed in a crystallization buffer containing a stoichiometric ratio of [Ca\(^{2+}\)] to [CaM] of 125:1. Thus, we must admit the likely possibility that a greater stoichiometric excess of Ca\(^{2+}\) to CaM than what we and others have used is required to fully load all “loadable” C-lobe EF-hands under crystallization conditions (45). A color plot of crystallographic B-factors on the crystal structure shows the relative level of disorder, and we observe that the EF-hands III & IV map the highest disorder (Supplemental Fig. S1). This higher potential for disorder in the C-lobe may arise from this trimeric configuration, a result of the C-lobe releasing previously bound Ca\(^{2+}\) ions and rendering EF-hands III & IV less important for stabilizing the structure. The preference of Ca\(^{2+}\) for the N-lobe in this and other CaM-ion channel co-crystal structures is consistent with the N-lobe, not the C-lobe, to be obligatory for CaM function as the Ca\(^{2+}\) sensor that regulates channel opening (57).

Similar to the other published Ca\(^{2+}\)/CaM:KCNQ structures, our crystal structure shows the A and B domains adopting helical conformations in the presence of Ca\(^{2+}\)-loaded CaM. Taking the CD spectra into account, we suggest that CaM imposes \(\alpha\)-helical structure on the A and B domains of KCNQ channels. The structure shows CaM wrapped around the A and B domains, assembled into a coiled-coil configuration in antiparallel orientation, with the N-lobe bending around the B domain and the C-lobe folded around the A domain (Figs. 2A-E). Comparison of the CaM backbone alignment between this structure (PDB: 6N5W) and the Ca\(^{2+}\)/CaM:KCNQ-AB structures published to date (PDB: 4UMO, 4VOC, 5J03, 6FEG,
6FEH, 6B8M, 6B8N, and 6B8P) yields a RMSD range of 0.98-1.3 Å overall, with 1196-1226 atoms included in the calculation using PyMol. An interaction plot summarizes multiple van der Waals (nonbonded contacts) in addition to several hydrogen bonds and salt bridges that hold CaM together with the A and B domains (Supplemental Fig. S2). The residues involved in these interactions are indicated by circles above the residues in the conserved-alignments panel shown in Fig. 1B. This interaction profile is almost identical as shown with that previously reported (48), and suggests a high degree of similarity with most of the other structures focused on Ca²⁺/CaM interacting with KCNQ1-5. A notable exception is the reported structure of Ca²⁺/CaM interacting only with the KCNQ4 B domain (48,49). Expanded representations of the interior of the Ca²⁺/CaM-Q4A:Q4B co-crystal structure obtained here reveal that these interactions of the A and B domains occur with the two loops within the N- and C-lobes, and the N-lobe-C-lobe linker region of CaM (Figs. 2C & D). We also observed that the more highly conserved residues of A and B domains (pink & orange residues, colored according to the scale in Fig. 1B) tend to face the interior of CaM rather than face toward each other.

An overlay of this structure with the KCNQ1-AB domain-swapped complex (4UMO) (Fig. 2E) (RMSD 1.3 Å), indicates the only noticeable difference in these interactions localize to the N-lobe-C-lobe linker of CaM. The expanded view reveals that I539 of Q4B allows the CaM linker to have closer contact with the B domain (Fig. 2F). The bulker side chain of the KCNQ1 homolog, R519, appears to push the linker further away from the B domain. Whether this small structural difference translates to explaining the functional differences between CaM actions on KCNQ1 and KCNQ4 channels remains to be seen. Overall, these data, featuring the assembly of independent proteins, confirm that the peptides interact with Ca²⁺/CaM as does the co-expressed pre-assembled AB proteins with CaM.

Ca²⁺/CaM binds the B domain with higher affinity than the A domain

We wondered whether there might be an obligate “stepwise” mechanism of complex formation between CaM and the A & B domains. The direct biochemical binding affinity of full-length CaM for each KCNQ domain individually has not been reported, although indirect measurements of apparent affinities indicate that Ca²⁺/CaM binds the A domain of KCNQ2 in the mM range (39,58). We used isothermal titration calorimetry (ITC) to assess the thermodynamic parameters of Ca²⁺/CaM interactions with the A and B domains of KCNQ2-4. Peptides corresponding to the A domains each displayed a moderate binding affinity for Ca²⁺/CaM, with Ka values of ~0.44 – 1.2 μM (Fig. 3, top panel & Table 1). The B domain peptide of KCNQ2 also displayed a moderate affinity for Ca²⁺/CaM (Kₐ ~ 0.24 μM). The B domains of KCNQ3 and KCNQ4, however, bound to Ca²⁺/CaM very tightly, with Ka values between 4-13 nM (Fig. 3, lower panel). The stoichiometry for Ca²⁺/CaM binding to each peptide was near 1:1, with any differences explainable by remaining uncertainty in the precise peptide concentrations. Although we find here that fully Ca²⁺-loaded CaM has far greater affinity for the B domain, vs. the A domain when present alone; when together, Ca²⁺-loaded CaM must strongly interact with both the A & B domains. Since the crystal structures show that a single CaM embraces the A & B domains together, the very different affinities of the two domains is consistent with there being a specific order to how CaM induces formation of this trimeric complex. This is one of the central advances of this work.

Formation of the Ca²⁺/CaM:Q4A:Q4B complex necessitates a highly-ordered mechanism

Additional ITC experiments were performed to further characterize the interactions between Ca²⁺/CaM and peptides of the KCNQ4 A and B domains (Q4A and Q4B peptides) simultaneously. First, we tested whether the A and B domains have the ability to interact in the absence of CaM. We did not observe any evidence of binding between the A & B domains using ITC (Fig. 4A) and we also did not observe any crystals formed of only A&B peptides. This suggests that CaM is necessary to bring these two domains together. Next, we tested whether Ca²⁺/CaM must bind the A domain or the B domain first in order to form a stable trimeric complex. We found that Q4A did not display a measurable interaction with a preformed complex of Ca²⁺/CaM+Q4B (Fig. 4B). Reversing this order, however, revealed that Q4B binds to the preformed complex of Ca²⁺/CaM+Q4A with very high affinity (Kₐ = 0.5 ± 0.2 nM) (Figs. 4C), even higher than of Q4B binding to Ca²⁺/CaM alone. This is congruent with the data in Xu et al. (2013), who suggested that CaM may be required to interact with the A domain first in order to form the trimeric complex with the B domain, and who reported a putative structure of Ca²⁺/CaM wrapped around the B-domain only (49). Although we conclude that the ultimate configuration of Ca²⁺-loaded CaM is wrapped around both domains, we cannot rule out Ca²⁺/CaM to be wrapped around solely the B domain, under certain conditions which we do not yet know. In combination of these data with our above ITC experiments, we suggest that an “energy barrier” must be overcome to form the trimeric complex: Ca²⁺/CaM first binds the “lower affinity” A domain before binding the “higher affinity” B domain in order to form the trimeric complex. This would imply that for Ca²⁺/CaM to form a
fully-functional complex with both the A & B domains of KCNQ4 channels, a mechanism must be in place to ensure the proper order of binding.

ApoCaM binds the B domain, but not the A domain of KCNQ4

We were not able to obtain a crystal of apoCaM with the separate KCNQ4 A and B domains in our screens, as mentioned above. Additionally, our ITC data showed the Q4A to display negligible interaction with apoCaM or a preformed complex of apoCaM+Q4B in buffer containing 1 mM EGTA (Supplemental Fig. S3A-B). However, we noticed weak interactions between Q4B and apoCaM, characterized by an increase in endothermic heat exchange followed by a decrease in the endothermic profile (Supplemental Fig. S3C). A similar isotherm was observed for Q4B binding to apoCaM+Q4A (Supplemental Fig. S3D), indicating that apoCaM might weakly interact only with the B domain and not the A domain. Since we were unable to accurately determine a binding constant from these ITC data due to limited amounts of these proteins, we turned to microscale thermophoresis (MST), which requires a much smaller quantity of protein. We examined the interaction of fluorescently labeled apoCaM (200 nM) with Q4A or Q4B in chelased buffer (ChHBS) supplemented with 0.5 mM EGTA, ensuring that this low concentration of CaM was wholly free of Ca\(^{2+}\). These experiments revealed that apoCaM interacts with the B domain of KCNQ4 with a Kd ~10 μM (CI, 6-17 μM, Fig. 5A), which is within the range of free [CaM] in cytoplasm under very low [Ca\(^{2+}\)] conditions. Similar to our ITC results, the MST experiments suggest the A domain to not interact with apoCaM (Fig. 5B).

The C-lobe of the apoCaM is loosely associated with the KCNQ4 B domain

We used solution HSQC-NMR to track interactions of apoCaM with Q4A and Q4B. Spectroscopy was performed using \(^{15}\)N-apoCaM and Q4A and Q4B in 1 mM EGTA. Peptides were added to a slight excess of 150 μM CaM based on the 1:1 stoichiometry we had observed by ITC under high [Ca\(^{2+}\)] conditions. Fig. 6A shows the NMR spectrum of isolated apoCaM, with expanded regions (Figs. 6B-D) comparing critical spectral peaks of apoCaM before and after addition of Q4A and Q4B. This apoCaM spectrum closely matches the assignments of vertebrate apoCaM spectrum shared by John Putkey (UT Health, Houston TX), further confirming that the starting CaM was indeed in the Ca\(^{2+}\)-free state. Addition of Q4A did not cause any chemical shifts or peak alterations to those of isolated apoCaM (Fig. 6B). In contrast, addition of Q4B induced obvious changes to the apoCaM spectrum, revealing the apoCaM residues affected by interaction with the B domain. We observed significant changes in peaks corresponding to residues A88, N97, I100, S101, and between D131-E139, as shown in the expanded region in Fig. 6C and the full spectrum in Supplemental Fig S4. Addition of Q4B to the solution containing apoCaM+Q4A (Fig. 6D) caused nearly identical chemical shifts or alterations to the spectral peaks of apoCaM+Q4B, further suggesting that the B domain alone is responsible for interactions with apoCaM. To determine the loci of apoCaM interactions with the B domain, we mapped the residues displaying significant chemical peak alterations observed from the above experiment onto an existing solution NMR structure of apoCaM (PDB: 1DMO) (5). That analysis unequivocally revealed the C-lobe of apoCaM to interact with the B domain of KCNQ4 (Fig. 6E). Specifically, the residues that were most affected by the Q4B titrations localized to EF-hands III & IV. We plotted those significant changes in peak height, or line broadening, to Q4B titrated over a range of concentrations, which yielded Kd = 16 ± 5 μM (Supplemental Fig. S5). Although peak height is not a widely accepted method to determine equilibrium constants, as line broadening is not a direct report of binding, this result is very similar to that obtained using our MST experiments in Fig. 5, thus confirming by two distinct approaches that apoCaM binds the KCNQ4 B domain with a moderate affinity consistent with known cellular physiology. Based on these results, the schematic in Fig. 6F represents our interpretation of the structural interaction between apoCaM and a single KCNQ4 subunit at resting cytoplasmic [Ca\(^{2+}\)]. It suggests a conformation of the apoCaM:KCNQ4 complex quite distinct from our Ca\(^{2+}\)-loaded crystal structure (Fig. 2), and others (45,46,50), of Ca\(^{2+}\)/CaM in complex with the A & B domains of KCNQ1-4, and the cryo-EM structure of Ca\(^{2+}\)/CaM:KCNQXem (47), which all show the B domain interacting with the N-lobe of CaM and the A domain embraced by the C-lobe. These results challenge our initial supposition that the apoCaM would be constitutively bound to the A domain, and suggest a much more dynamic mechanism of Ca\(^{2+}\) directing CaM interactions with KCNQ4 channels. The implications of these results are discussed below.

Lobe switching of CaM occurs with half loaded EF-hands

The above findings imply that a rise in [Ca\(^{2+}\)] causes a dramatic “lobe-switching” between CaM and the KCNQ4 A & B domains. To test this hypothesis, we performed HSQC-TROSY experiments over a range of [Ca\(^{2+}\)] designed to cover <1% loading of the four EF-hands of CaM to that maximal. To avoid competition between EGTA and CaM for Ca\(^{2+}\), we carefully controlled for [Ca\(^{2+}\)], using ChHBS in the absence of EGTA as our starting “zero-Ca\(^{2+}\)” buffer. This allows a molar
Mutually-induced fit of Ca\(^{2+}/\)CaM action on KCNQ4 K\(^{+}\) channels

stoichiometry of [Ca\(^{2+}]/[\text{CaM}] \) of no more than 1:100, resulting in an apoCaM spectrum almost identical to the spectrum of apoCaM in HBS buffer + 1 mM EGTA (Supplemental Fig. S6). We monitored changes of the emission spectrum of double-labeled, deuterated CaM (\(^{\text{H}-15\text{N}}\)-apoCaM) (50 µM), which allows better resolution of the spectrum, requiring lower protein concentration than the single-labeled \(^{15}\text{N}\)-apoCaM used in the earlier experiments. The better resolution was necessary to track changes in the CaM and CaM+Q4B spectra with increasing Ca\(^{2+}\) titrations.

With the first addition of Ca\(^{2+}\) at 1:4 stoichiometry (1 Ca\(^{2+}\) ion: 4 EF-hands), we observed obvious changes in the peaks of isolated CaM as the spectra displayed little overlap (Figs. 7A-C, green & purple peaks). At higher ratios of Ca\(^{2+}/\)EF-hands, more peaks began to overlap due to fewer peak shifts or changes, indicating less response to increased [Ca\(^{2+}\)] as the EF-hands became more loaded (Figs. 7A-C, purple & orange peaks). This suggests that CaM on its own is very responsive to low levels of [Ca\(^{2+}\)]. In contrast, CaM+Q4B displayed much spectral overlap at a 1:4 ratio of Ca\(^{2+}/\)EF-hands, observed as very few changes in the peaks (Figs. 7D-F, green & purple peaks). At the point of half-loading of Ca\(^{2+}\) to the EF-hands (2:4 stoichiometry) the CaM+Q4B spectrum displayed a sudden shift, observed by the separation of orange peaks from the purple peaks. A graphical plot is shown summarizing the significant peak changes of CaM and CaM+Q4B with each addition of Ca\(^{2+}\) (Fig. 7G). Overall, we suggest that Q4B changes the relationship between CaM and [Ca\(^{2+}\)]. When apoCaM is bound to Q4B, more Ca\(^{2+}\) is needed in order to cause a change in the configuration of the protein.

We were able to track many of the amino acid residues from “zero” Ca\(^{2+}\) (0:4) up to a ratio of 2:4 or 3:4 Ca\(^{2+}/\)CaM EF-hands. Although more shifts were observed in the spectra, as previously noted in Fig. 7, only those residues that changed in position > 55% from the previous titration, and that we could track from the initial zero [Ca\(^{2+}\)] spectrum, are plotted. Fig. 8A shows that those residues localize to both lobes of apoCaM changed over the range of 0:4 to 1:4 Ca\(^{2+}/\)CaM EF-hands, and even more residues localized throughout the protein changed at a 2:4 stoichiometry (Fig. 8B).

Interestingly, in the presence of Q4B, only the C-lobe residues of CaM+Q4B displayed peak alterations over a range from 0:4 to 1:4 Ca\(^{2+}/\)CaM EF-hands (Fig. 8C). This suggests that Ca\(^{2+}\) binds CaM first to the C-lobe of Q4B-bound CaM. As shown in Fig. 6, the C-lobe interacts with Q4B in the absence of Ca\(^{2+}\), so this finding also suggests that Ca\(^{2+}\) may displace Q4B from the C-lobe. At a 2:4 stoichiometry, residue emissions shifted throughout the CaM protein (Fig. 8D), followed by changes mostly within the N-lobe upon further increases of Ca\(^{2+}\) molar ratio (Fig. 8E). Fig. 8 illustrates our interpretation of the changes of CaM structure in relation to the B domain, based on these NMR data. The coordinated response to Ca\(^{2+}\) in which responding residues shift from the C-lobe to the N-lobe when Q4B is pre-bound to apoCaM, again contrasts with the behavior of isolated CaM in response to [Ca\(^{2+}\)]. These findings suggest that Ca\(^{2+}\) induces CaM to dissociate completely (although probably extremely briefly) from the KCNQ4 B domain to allow the C-lobe to bind to the KCNQ4 A domain. If true, then this dissociation explains the intermediate step involving the C-lobe of CaM translocating from the B domain under “zero” [Ca\(^{2+}\)] to the A domain of KCNQ4 under higher [Ca\(^{2+}\)]. We conclude that 1) Ca\(^{2+}\) ions interfere with Q4B interactions with apoCaM, 2) Ca\(^{2+}\) ions initially load the C-lobe of the apoCaM:Q4B complex, instead of the N-lobe, and 3) a highly coordinated sequence of binding-unbinding-rebinding steps occurs over a physiological range of very low to high [Ca\(^{2+}\)], that we here refer to as a “lobe switching mechanism.” We elaborate on this in Fig. 10.

Ca\(^{2+}/\)CaM-mediated inhibition of KCNQ4 channels is not associated with shifts in voltage dependence

Regarding the CaM-mediated inhibition of KCNQ channel gating by rises in [Ca\(^{2+}\)], there have been conflicting reports of this action involving shifts of the voltage dependence of activation, or changes in gating kinetics. Studying endogenous M current in sympathetic neurons, or cloned KCNQ2/3 heteromers or KCNQ2-5 homomers, our group has not ever observed any changes in activation or deactivation kinetics induced by any form of CaM over the full range of physiological [Ca\(^{2+}\)], (7,57). There are two alternatively-spliced isoforms of human KCNQ4, called KCNQ4a and KCNQ4b, displaying very distinct activation kinetics. Most labs, including ours, have use KCNQ4a, which we and others call “KCNQ4.” Sihn et al. (2016) found over-expression with KCNQ4a of a “dominant-negative” (DN) CaM, in which all four EF-hands have been mutated to be incapable of loading Ca\(^{2+}\) ions, shifted the voltage dependence of activation by ~ 36 mV (59). Other labs have reported much more modest changes of voltage dependence of ~10 mV for KCNQ2 or KCNQ3 homomers, or KCNQ2/3 heteromers, with only minor changes in kinetics (30,60-62). The case of KCNQ1-containing channels is unique in that 1) Ca\(^{2+}\)-loaded CaM augments currents from those channels, instead of depressing them (34), and 2) the S2-S3 linker of KCNQ1 is wholly non-conserved with that of KCNQ2-5. Indeed, a cysteine triplet conserved among the latter is the site of reactive oxygen species, whose action dramatically increases the opening of KCNQ2, KCNQ4 and KCNQ2/3, but not KCNQ1-containing channels (63-65), whereas the S2-S3 linker of KCNQ1 has been
recently suggested to gently engage bound CaM, resulting in shifts in voltage dependence of those channels also by ∼10 mV (47). A recent group that reported crystalizing apoCaM with the joined A & B domains of KCNQ4 suggested a very large lobe-specific action of CaM on the voltage dependence of activation of KCNQ4, by >35 mV, and a very profound effect on activation and deactivation kinetics approaching 10-fold in magnitude (48). Since that group coupled such dramatic effects on voltage dependence and kinetics with their suggested structural model, and were so divergent from our previous studies (7,57), we decided to re-visit this issue.

Chinese hamster ovary (CHO) cells were co-transfected with KCNQ4 and either a) WT CaM, CaM (1,2), CaM (3,4), or CaM (1,2,3,4), where CaM (1,2) and CaM (3,4) refers to N- or C-lobe mutants that cannot bind Ca\(^{2+}\) ions in that lobe, respectively, and CaM (1,2,3,4); i.e., D20A/D56A/D93A/D129A, cannot bind Ca\(^{2+}\) in either lobe. All the constructs, which were the same cDNA as used previously by us (57), were re-sequenced in their entirety, and found to be correct. As before, we performed experiments in the perforated-patch variant of whole-cell voltage clamp, and moreover, ensured that the resulting currents were not so large as to either induce series resistance errors, or might “soak-up” all the PIP\(_2\) molecules in the plasma membrane, both of which might cause artifacts in our data. Cell lysates from each group were also immunoblotted with anti-KCNQ4 or anti-CaM antibodies to ensure a reasonable balance of expression of the two proteins. We found that such cells expressed very similar currents from each group, with very similar properties (Fig. 9). For cells co-transfected with KCNQ4 and WT CaM, CaM (1,2), CaM (3,4), or CaM (1,2,3,4), the mid-point voltage of activation (V\(_{1/2}\)) values were -20.3 ± 0.7, -18.1 ± 5.0, -18.2 ± 5.3 and -19.1 ± 1.1 mV, respectively (n = 6, 5, 4, 5). The activation kinetics at 10 mV were likewise not significantly divergent for cells in each group, having the weighted time constants (see Methods) of 420 ± 145, 395 ± 96, 355 ± 68 and 291 ± 37 ms, respectively. Likewise, there were no significant differences in the deactivation kinetics at -60 mV, which were 70 ± 5, 50 ± 6, 90 ± 15 and 85 ± 6 ms, respectively. Whereas the modest number of cells studied does not rule out minor changes in activation kinetics in the presence of different forms of CaM, any such differences could only be small.

DISCUSSION

The results from this study highlight several key elements of the dynamics of CaM interaction with the A and B domains of KCNQ2-4. First, we showed that the A and B domains of the channels are likely to be intrinsically disordered in the absence of CaM, and that interactions with CaM Ca\(^{2+}\)-loaded in at least its N-lobe imposes α-helical secondary structure on those domains. Next, we demonstrated that apoCaM does indeed bind KCNQ4 subunits with moderate affinity with only the C-lobe of apoCaM interacting with the B domain of KCNQ4. Finally, the major advancement of this work is our finding that a dramatic lobe-switching of CaM interaction with the KCNQ4 A and B domain occurs from low to high [Ca\(^{2+}\)].

Despite our findings that the A and B domains are likely to be disordered in the absence of CaM, the above experiments above do not allow us to conclude whether apoCaM induces the helical structure on the B domain, a question planned for future studies. However, the co-crystal structures of KCNQ A-B with CaM all clearly show the A&B domains helical, whether in the presence of divalent cations, such as Mg\(^{2+}\) or Ca\(^{2+}\) or after removal of either divalent from the pre-formed structure (48). This induced conformational change in CaM target proteins has been widely observed, such as for Ca\(^{2+}\)/CaM-dependent kinases (66) and other ion channels (53,66-68). Our finding that apoCaM binds the B domain might account for the obligatory need for the presence of CaM reported by several labs either for functional expression of KCNQ channels, or their assembly, in the plasma membrane of either tissue-culture cells or neurons (28,34,37,39,60). The reason likely has to do with the obligatory interactions of all KCNQ channels for interactions with PIP\(_2\) in the plasma membrane for function (69,70). Given that the two most important domains of the channels for PIP\(_2\) interactions are in the proximal C-terminus (Fig. 10) (41,46,71), such a change in structure may prevent the RD from stable interactions with PIP\(_2\) (30), thus hindering opening. Another group has also shown an intricate relationship between channel interactions with PIP\(_2\) and CaM (44). However, as opposed to test-tube experiments, all cells, especially excitable cells, express CaM at high levels in cytoplasm. As CaM is increasingly Ca\(^{2+}\)-loaded in response to increasing [Ca\(^{2+}\)], we propose that the tight embrace of the A & B domains (now certainly helices) condenses the RD to a spring-like structure, pulling it away from the plasma membrane and interfering with those KCNQ-PIP\(_2\) interactions, thus causing suppression of M current. We present our model in more detail in Fig. 10 below.

To properly interpret our data, we must consider the physiology of CaM molecules and Ca\(^{2+}\) ions in the cytoplasm. Since the affinity of CaM for almost all of its cellular targets greatly increases upon Ca\(^{2+}\) loading (neurogranin being a notable converse example (6,72-74)), free CaM, either Ca\(^{2+}\)-bound or not, is exquisitely dependent upon [Ca\(^{2+}\)], with available CaM ranging as high as perhaps 40 μM at the lowest conceivable values of free [Ca\(^{2+}\)] in the cytoplasm, down to <10 nM upon high elevations in global [Ca\(^{2+}\)] (75-77), such as in response to neuronal stimulation and rapid firing. It is important to
note that unlike the case of CaM actions on VGCCs, for which highly-local free [Ca\(^{2+}\)] at the inner mouth of the pore may approach mM concentrations (16, 78, 79), no Ca\(^{2+}\) ions are flowing through open K\(^{+}\) channels, and so it is likely that, as for the analysis of CaM actions on SK K\(^{+}\) channels, it is global [Ca\(^{2+}\)] that should be most relevant for our thinking. This supposition is tempered, however, by the discovery of KCNQ channels and Ca\(^{2+}\)-permeable channels clustered together in microdomains in sensory neurons (80), and similar multi-channel complexes likely exist in brain as well (81-83). Thus, we cannot say with certainty the precise [Ca\(^{2+}\)] in the local micro-environment of KCNQ channels in nerve, heart and muscle that corresponds to CaM being maximally “switched on.”

Studied in isolation via ITC, we found Ca\(^{2+}\)/CaM to have a much higher affinity for the B domains than for the A domains of KCNQ2-4, with KCNQ3 & KCNQ4 most notably so. However, the affinity increased by an order of magnitude when the A domain was present as well. Consistent with those measurements is the high-resolution crystal structure we obtained of Ca\(^{2+}\)-loaded CaM wrapped around the A & B domains, very similar to that reported earlier for a variety of KCNQ subtypes (45-47, 50). None of that work suggests a role of CaM in cross-linking the carboxy-termini of the subunits in the tetramer, but rather that CaM interacts within individual subunits.

A caveat to our conclusions is our ITC results in which addition of the A domain to a pre-formed Ca\(^{2+}\)/CaM-B helix complex did not induce a thermodynamic signal; thus, we cannot rule out a configuration of Ca\(^{2+}\)/CaM wrapped around the B domain alone under certain cytoplasmic conditions, as suggested by another group (48, 49). It is important to remember that absolute affinities assayed in test-tube experiments with isolated A & B domains and CaM molecules are likely much different than those when the RD is attached to the rest of the channel, namely, coupled to the gating machinery, as well as the changes in affinities of the EF-hands of CaM for Ca\(^{2+}\) when pre-associated to the relevant domains of the channels (18, 22, 54). However, we assert that the relative affinities and thermodynamic parameters are likely to parallel our findings in intact cell experiments, giving us insight into conformational changes over a range of physiological [Ca\(^{2+}\)] and [CaM].

Our observations of the Ca\(^{2+}\)-titrations shifting from emission changes in C-lobe residues to those including the N-lobe of CaM pre-bound to Q4B lead us to propose a lobe-switching model. The issue of lobe dependence and/or specificity for CaM actions (both CDI and CDF) on VGCCs is represented by a vast literature that reveals surprisingly stark differences between L-type (Cav1) and N & P/Q-type (Cav2) Ca\(^{2+}\) channels. For the former, the C-lobe is recognized as the “Ca\(^{2+}\) sensor” provoking CDI, whereas for the latter, the N-lobe has been proposed to fulfill that role (16). Moreover, for both Cav1 and Cav2 channels, “lobe-switching” has been proposed as a key structural mechanism, involving an N-terminal region of the channels (84, 85), and it is tempting to think that this CaM-mediated regulatory mechanism is conserved among channel types (86). Notably, there have not been any structural analyses of CaM/KCNQ channel interactions that include the N-terminus of KCNQ channels, which have been suggested to play key roles in gating by interacting with the C-terminus, involving syntaxin and CaM (62, 87). Added to our thinking is our earlier work indicating Ca\(^{2+}\)-loading of the N-lobe of CaM to be critical for Ca\(^{2+}\)/CaM-mediated suppression of KCNQ2, KCNQ4 and KCNQ2/3 channels, with Ca\(^{2+}\) loading of the C-lobe unimportant, was performed on living cells expressing full-length, functional channels, studied under perforated-patch whole-cell recording (57), rather than only analyses of C-terminal fragments.

We were unable to obtain a crystal of this or any other “apo” state under metal-free conditions using our crystallization screen of 1,728 conditions by assembling the discrete proteins in the absence of Ca\(^{2+}\). Our apoCaM data contrasts with a recent report showing co-expressed (pre-assembled) apoCaM co-crystallized with the AB fragment of KCNQ4 (PDB: 6B8L) in which Ca\(^{2+}\) had been removed from the preformed complex (48), and another showing the solution NMR structure of apoCaM:KCNQ2-AB (PDB: 6FEG) that had been similarly co-expressed and purified (50). Aside from their absence of Ca\(^{2+}\) ions, these “apo” structures are still quite similar to that found for the Ca\(^{2+}\)/CaM:KCNQ-AB complexes (45-47). We note that the primary difference from these apo structures and the apo model we propose is in how the complex was assembled: in this study, we combined each Ca\(^{2+}\)-free protein/peptide separately to the crystallization buffer whereas all others had been co-expressed and preassembled in a divalent cation-rich media (LB/2YT) prior to removal of the Ca\(^{2+}\) ions with EGTA. We think this suggests the complex itself is more stable than the transient Ca\(^{2+}\) state of the CaM-EF hands.

Millet and colleagues called their structure “intermediate,” with regards to metal, consistent with this complex not being wholly Ca\(^{2+}\)-free, and reported that complete unloading of all Ca\(^{2+}\) from the pre-formed complexes to be difficult. Under those circumstances, any further loading of Ca\(^{2+}\) ions to the complex displayed a Kd value using FRET assays of ~1 μM (50), a value similar to that globally in cytoplasm of neurons in response to a stim ulus. Our solution NMR and MST experiments suggest the C-lobe of apoCaM to weakly interact with the KCNQ4 B domain under Ca\(^{2+}\) conditions at which at most 1% of the CaM EF-hands could be Ca\(^{2+}\)-loaded, and at extremely low [Ca\(^{2+}\)], free CaM may be within that range in cytoplasm (76, 77). It is unclear what physiological
condition would correspond to such a scarcity of Ca\(^{2+}\) ions relative to CaM molecules, but under those conditions, we found the C-lobe of CaM to interact solely with the B domain of KCNQ4. Titration of Ca\(^{2+}\) into the apoCaM+Q4B complex measured by NMR suggests that Ca\(^{2+}\) must reach a stoichiometry of 1:4 (EF-hands) to displace the B domain from the C-lobe. Taken together, our results can only be reconciled by a profound change in the configuration of the KCNQ4 RD when CaM is half-loaded by Ca\(^{2+}\) (2 of the 4 EF-hands bound by Ca\(^{2+}\)), under which the Ca\(^{2+}\)-loaded N-lobe now strongly interacts with the B domain. This configuration seems to be particularly stable, as consistently found by all investigators.

Like many studies, we here ignore the significant concentration of free Mg\(^{2+}\) ions, estimated to be ~0.5 -1 mM in neurons, and given that the known affinities of Mg\(^{2+}\) ions for the CaM EF-hands are within that range, predict significant occupancy of CaM EF-hands at tonic [Ca\(^{2+}\)], (88-90). Thus, it is likely that in resting cells at which free [Ca\(^{2+}\)] is low, some or all of the EF-hands of CaM are not empty, but rather occupied by Mg\(^{2+}\) ions. The high-resolution crystal structure of Mg\(^{2+}\)-loaded N-lobe of CaM reveals Mg\(^{2+}\) ions in both EF-hands, but in contrast with Ca\(^{2+}\) occupancy, 2-4 H\(_2\)O molecules are also included in each EF-hand (89), which could electrostatically shield much of the charge of divalent ions, and perhaps alter interactions of the RD with the membrane. The occupancy by CaM by Mg\(^{2+}\) ions when CaM is “off” was explicitly assumed for the solved CaM/Nav1.2/FGFHF complex (91), and recently examined for CaM/KCNQ4 RD interactions (48). This raises the likelihood of “alkali earth-metal exchange” as being part of the switching of CaM “on” or “off” in its functional interactions with the channels. This topic has also been explored for the case of synaptotagmin, whose structure when loaded with Mg\(^{2+}\) (under which exocytosis is inhibited) has also been determined (92,93). In all these cases, the structure of the CaM/target complex was suggested to be only subtly distinct between Mg\(^{2+}\)-loaded and Ca\(^{2+}\)-loaded forms. How these results can be in accord with the indisputable role of Ca\(^{2+}\) as the “switch” for CaM actions on these proteins remains to be elucidated.

Based on our results, we propose a “Lobe-Switching Model” in which Ca\(^{2+}\) ions compete with the B domain for binding the C-lobe under low [Ca\(^{2+}\)], causing the B domain to dissociate from CaM in a stepwise CaM action on KCNQ4 channels (Fig. 10). The true “Apo” Configuration (Fig. 10.1) can only occur during extremely low (<10 nM) [Ca\(^{2+}\)], and we do not know if and when such a low value occurs in the cytoplasm of living cells, which contain up to 1 mM free [Mg\(^{2+}\)]. Nonetheless, in this state the C-lobe of apoCaM binds the B domain with modest affinity, and the N-lobe of CaM and the A domain of the channel are not involved. Since the RD is in a flexible, “open” configuration, we suppose it could be anchored to the plasma membrane via the two PIP\(_2\) binding sites located on both ends of the A domain (the “S6Jx” or “pre-A helix” site and the linker between the A & B domain). In this state, both the A and B domains are likely still disordered and non-helical. It is unclear whether the channel can function in this fully “apoCaM” state. As local free [Ca\(^{2+}\)] that approaches resting levels in excitable cells (50-100 nM), the complex rapidly adopts a CaM Displacement Configuration, in which the B domain dissociates from the C-lobe and CaM is reconfigured to a “target-ready” state that can recognize the A domain (Fig. 10.2). This brief state then likely quickly transitions to the CaM Rebinding Configuration (Fig. 10.3), as a result of Ca\(^{2+}\)-loaded C-lobe (half-loaded CaM) binding to the A domain, imposing an a-helical structure on the A domain and condensing the proximal C-terminus. In the first three of these configurations, the RD is relatively relaxed, allowing the carboxy terminus to extend the two proposed PIP\(_2\) binding sites, the “S6Jx” or “pre-A helix”, and the “A-B linker,” to interact with PIP\(_2\) at the plasma membrane-cytoplasm interface.

We hypothesize that upon a physiological signal that causes a substantial rise in free [Ca\(^{2+}\)], in the vicinity of the “primed” CaM/RD complex, the Triplex Configuration occurs (Fig. 10.4), as Ca\(^{2+}\) binds the N-lobe of CaM, causing it to latch around the B domain. This induces a pulling/torsional Ca\(^{2+}\)-induced motion, as suggested recently (50), likely disrupting the critical interactions between the RD and PIP\(_2\), causing inhibition of channel gating for neuronal M channels. We note that this “condensed” tri-molecular configuration, as opposed to the “open” structure of free Ca\(^{2+}\)-loaded CaM, is due to its intimate interaction with the A & B helices, with which its many bonds and sites of interaction provide the energetics for the resultant tight configuration of CaM. Thus, we suggest here that both the A & B helices, and CaM, rearrange their secondary and tertiary structures in response to each other, similar to the “mutually-induced fit” already noted for CaM interactions with Ca\(^{2+}\)/CaM kinases (66). This insight we believe to represent another central advance of this paper.

Finally, with a rise in [Ca\(^{2+}\)] that is more than transient, this configuration is “locked,” and the double anti-parallel helical conformation of the complex is stabilized, creating a compact geometry that severely disrupts PIP\(_2\) interactions with KCNQ carboxy termini that likely takes quite some minutes to reverse, as seen physiologically. Although Ca\(^{2+}\) must bind the C-lobe first to displace CaM from the B domain, it is Ca\(^{2+}\) loading of the N-lobe that creates this highly stable trimeric complex, which allows freedom within EF-hands III & IV of the C-lobe, rendering their ligation of Ca\(^{2+}\) to be optional at this final step. Our “Lobe Switching Model” could provide the
explanation for the discrepancies reported in the literature of how Ca\(^{2+}\) directs CaM in its binding to, and regulation of, KCNQ channels, as it does incorporate some role of metal loading of the C-lobe as (an early) part of the mechanism (48), but retains Ca\(^{2+}\) binding to the N-lobe as the modulatory switch, in accord with our physiological experiments in cells (57). It also is in accord with the need for CaM for functional expression (28,39,58). However, we do not believe that CaM interacts with the VSD of KCNQ2-5 channels, and that as for PIP\(_2\) actions on those channels (94), effects on voltage dependence are minimal. Future studies to test the affinities of the peptides with inactive N- or C-lobe CaM mutants and these domains will further probe whether this “lobe switching” mechanism is indeed correct.

EXPERIMENTAL PROCEDURES

Buffers and protein preparation

Peptides corresponding to the A and B domains of KCNQ2-4 were synthesized to 95% purity (Peptide 2.0, Chantilly, VA). The lyophilized peptides were reconstituted in HBS buffer, which consists of 20 mM HEPES and 150 mM NaCl at pH 7.4, made with deionized water. We name each peptide according to the subunit isoform and the CaM binding domain: Q2A, Q2B, Q3A, Q3B, Q4A and Q4B, referring to the A or B domains, of KCNQ2-4, respectively. A plasmid containing wild-type, untagged vertebrate CaM (plasmid pETGQ, HCaM) was a gift from William N. Zagotta (University of Washington). Vertebrate CaM was expressed in BL21 competent cells at 37 °C for 6 hours in LB or minimal essential media containing \(^{15}\)N-ammonium chloride, depending on the experimental design, then purified using phenyl sepharose matrix (GE Healthcare, Pittsburgh, PA). For experiments requiring higher resolution of NMR spectra we expressed in \(D_2O\) (Millipore-Sigma, St. Louis, MO). The eluent was further purified through a Superdex 75 column on an AKTA FPLC system (GE Healthcare, Pittsburgh, PA). For divalent metal-free CaM (apoCaM) studies, the protein was exchanged to HBS buffer that had been soaked with Chelex reagent (Bio-Rad Laboratories, Hercules, CA. We refer to this chelaxed buffer as “ChHBS.” Glassware and other containers used for apoCaM measurements were pre-rinsed with 10 mM EGTA, followed by 2X ChHBS rinses, prior to the addition of proteins. The total \([Ca^{2+}]\) in the ChHBS buffer was determined by ICP-MS to be ~500 nM (Northwestern University, Evanston, IL). The peptides used for apoCaM interactions were reconstituted in ChHBS. The concentrations of the peptides and CaM were determined by amino acid analysis at the Texas A&M University Protein Chemistry Lab core (College Station, TX).

Circular dichroism (CD)

Proteins were diluted to ~30 µM in potassium phosphate buffer (KH\(_2\)PO\(_4\)), pH 7.4, containing 5 mM NaCl and ~5-30 µM Ca\(^{2+}\) (determined by ICP-MS and fluorescence spectroscopy using Ca\(^{2+}\) indicator dyes), and placed in a 0.5 cm path-length quartz cuvette. The molar ellipticity of each peptide was reported using a Jasco J-810 CD spectrometer at 4°C. CD spectra were recorded from 270 to 190 nm in 0.1 nm steps. The CD signals were corrected by subtracting the spectra from buffer only. The CD analysis plotting tool, CAPITO, was used to determine the predicted content of \(\alpha\)-helices, \(\beta\)-sheets and random coils of the indicated peptides and proteins (95).

Isothermal titration calorimetry (ITC)

ITC titrations were performed at 25°C or 37 °C using a VP-ITC microcalorimeter (MicroCal/Malvern Instruments, United Kingdom). Titrations were conducted in HBS buffer supplemented with 1 mM EGTA or 0.5 mM CaCl\(_2\). Samples were degassed for at least 15 minutes. 5-10 µM CaM was placed in the ITC cell and 50-200 µM peptide was added to the titration syringe. Each ITC experiment consisted of at least 24 injections of 10 µl titrant, preceded by one 2 µl injection, which is traditionally used to “prime” the system for ligand diffusion during the temperature equilibration between the syringe and cell contents (96). Data were analyzed with MicroCal Origin7.0, using the built-in curve fitting models.

Crystallization, structure determination and refinement

Wild-type CaM purified in-house (see above), was mixed with Q4A in an equimolar ratio at room temperature, in HBS buffer supplemented with 2 mM CaCl\(_2\) or 2 mM EGTA, and Q4B was added at an equimolar ratio 30 min later. The final concentration of each protein was 222 µM. Automated screening for crystallization was carried out using the sitting drop vapor-diffusion method with an Art Robbins Instruments Phoenix system in the X-ray Crystallography Core Laboratory at UT Health SA. Crystals of Ca\(^{2+}\)-loaded complexes were initially obtained from Microlytic MCSG-III screen condition #60, optimized in 1.3 M sodium citrate, 0.1 M HEPES pH 7.0 and flash-cooled in liquid nitrogen prior to data collection. Data for two crystals were collected at the Advanced Photon Source NE-CAT beamline 24-ID-E and integrated and scaled together using XDS (97). The structure of Ca\(^{2+}\)/CaM:Q4A:Q4B was determined by the molecular replacement method implemented in PHASER (98) using a truncated version of PDB entry 4UMO as the search model. Coordinates were refined using PHENIX (99), including simulated annealing with torsion angle dynamics and TLS refinement, alternated with manual rebuilding using COOT (100). The model was verified
using composite omit map analysis (101,102) to minimize model bias. Data collection and refinement statistics are shown in Supplemental Table T1. Renderings of the structures were performed using PyMOL software (PyMOL Molecular Graphics System, Version 2.0 Schrödinger, LLC).

Microscale Thermophoresis (MST)

apoCaM in ChHBS was conjugated with Alexa Fluor 594 (Alexa-CaM) using a protein labeling kit (Invitrogen). Q4B or Q4A peptides were serially diluted 1:2 in ChHBS containing an additional 0.5 mM EGTA. The final concentration of Alexa-CaM in each well of the dilution series was 200 nM and each sample centrifuged prior to loading to standard capillaries. After capturing the proteins in 16 different capillaries, fluorescence was measured in a Nanotemper Monolith 1.115, using an excitation power of 60 and MST power of 80. Microscale thermophoresis was recorded using the MO control software and the binding affinities were analyzed using PALMIST and GUSSI (Chad Brautigam, UT Southwestern, Dallas TX) (103,104).

HSQC-NMR

NMR titrations of 15N-CaM with unlabeled Q4A and Q4B peptides were performed using HSQC (non TROSY) experiments. All non TROSY experiments were conducted in HBS, 1 mM EGTA and 10% (v/v) D$_2$O at 298K on a Bruker Avance 700 NMR spectrometer. NMR titrations of deuterated, 2H-15N-CaM with Ca$^2+$ were performed in ChHBS using TROSY-HSQC to reduce line broadening by cancelling dipole-dipole coupling and chemical shift anisotropy, thus producing well resolved spectra. The methods were performed similarly to those described elsewhere (105,106).

The assignments for mammalian apoCaM were shared with us by John Putkey (UT Health, Houston, TX), and the assignments for Ca$^{2+}$/CaM kindly provided by Walter Chazin (Vanderbilt University, Nashville, TN) and Adriaan Bax (NIH, Bethesda, MD). The raw spectrometer format data were processed using nmrPipe and nmrDraw (107). The peaks were calculated and visualized using SPARKY 3.115 software (T. D. Goddard and D. G. Kneller, University of California, San Francisco) and in some cases, the overlays were formatted using Adobe Illustrator.

Estimation of equilibrium constants of apoCaM for the KCNQ4 B domain were evaluated by NMR titration data as follows: The peak heights of the titration spectra were normalized against the reference spectrum without titrant, followed by calculation of the mean and standard deviation (SD) of the normalized peak heights after titration. Only those residues showing normalized peak heights at least 2x SD above the mean were plotted. Using these peak data, the K_d values were determined using GraphPad Prism 7, by fitting that data by the binding equation $Y=B_{max}X/(K_d+X) + NS*X + background$ in the one site-total nonlinear model. Although plotting peak height (line broadening) is not a widely accepted or accurate method for determining affinities, we used this method as an approximation to guide us in further experimental approaches for testing binding affinities.

Perforated-patch clamp electrophysiology

Chinese hamster ovary (CHO) cells were grown in 100-mm tissue-culture dishes (Falcon, Franklin Lakes, NJ) in DMEM medium with 10% heat-inactivated fetal bovine serum plus 0.1% penicillin/streptomycin in a humidified incubator at 37°C (5% CO$_2$) and passaged every 4 days. Cells were discarded after ~30 passages. CHO cells were first passaged onto 35 mm plastic tissue culture dishes and transfected 24h later with FuGENE HD reagent (Promega), according to the manufacturer's instructions. The total amount of cDNA used was 0.55 μg, which is less than that typical, but required for such high-expressing channels like KCNQ4 (41), which otherwise might “soak-up” all the PIP$_2$ in the membrane, allowing artificial interactions between CaM and the channels that are unphysiological. The next day, cells were plated onto cover glass chips, and experiments were performed over the following 1-2 days. Pipettes were pulled from borosilicate glass capillaries (BF150-86-10HP; Sutter Instruments) using a Flaming/Brown micropipette puller P-97 (Sutter Instruments) and had resistances of 2-3 MΩ when filled with internal solution and measured in standard bath solution. The external Ringer’s solution contained (in mM): 160 NaCl, 5 KCl, 2 CaCl$_2$, 1 MgCl$_2$ and 10 HEPES, pH 7.4 with NaOH. The pipette solution contained (in mM): 160 KCl, 5 MgCl$_2$ and 10 HEPES, pH 7.4 with KOH with added amphotericin B.

Membrane current was measured with pipette and membrane capacitance cancellation, sampled at 5 ms and filtered at 1 kHz using an EPC10 amplifier and Patchmaster software (HEKA). In all experiments, the perforated-patch method of recording was used with amphotericin B (600 ng/ml) in the pipette solution (108). Amphotericin was prepared as a stock solution as 60 mg/ml in DMSO. In these experiments, the access resistance was typically 7-15 MΩ, 5-10 min after seal formation. Series resistance compensation was routinely compensated ~60% and liquid junction potential corrections (which is <2 mV in this case) were not applied. Cells were placed in a 500 μl perfusion chamber through which solution flowed at 1-2 ml/min. Infow to the chamber was by gravity from several reservoirs, selectable by activation of solenoid valves (Warner Scientific). Bath solution exchange was essentially complete by <30 s. Experiments were performed at room temperature. Cells
that displayed KCNQ4 currents over 1 nA at 0 mV were not studied, nor experiments accepted if the uncorrected series resistance was >5 MΩ due to undue sequestration of free [PIP2], or to residual series resistance voltage errors. Currents were studied by holding the membrane potential at -80 mV and applying 500 ms depolarizing pulses from -80 mV to 40 mV, followed by a 400 ms step to -60 mV, every 3 s. To estimate voltage dependence, tail current amplitudes at -60 mV were fit to a single exponential starting at a time ~5-10 ms after the repolarization (when the residual capacity transient has subsided), the amplitudes normalized, and plotted as a function of test potential. The data were fit with Boltzmann relations of the form: $I/I_{\text{max}} = I_{\text{max}}/[1+\exp((V_{1/2}-V)/k)]$, where I_{max} is the maximum tail current, $V_{1/2}$ is the voltage that produces half-maximal activation of the conductance and k is the slope factor. Values from cell populations were compared using a two-tailed t-test. In such group comparisons, the use of standard errors (S.E.) is most statistically correct. The activation kinetics were estimated using a weighted double-exponential fit $[A*\exp(-t/\tau_1) + B*\exp(-t/\tau_2)]$ of the first 400 ms of the currents, where τ_1 and τ_2 are the fast and slow time constants and A and B are the "weights." Thus, the weighted deactivation time constants reported are given by $(A*\tau_1+B*\tau_2)/(A+B)$. The deactivation time constants were measured by fitting the deactivating current to a single exponential at -60 mV, as described above.

Acknowledgements. We would like to thank Yinghua Chen for preparing the Alexa Fluor 594 proteins and providing expertise in MST analysis (Case Western Reserve University, Cleveland, OH) and Pamela Reed, MaryAnn Hobbs and Isamar Sanchez for expert technical support. We are indebted to the following core facilities of the Institutional Research Cores at UT Health SA in the Department of Biochemistry: The Center for Macromolecular Interactions, directed by Drs. Eileen Lafer and Bo Demeler; the X-ray Crystallography Core Laboratory, directed by Drs. P. John Hart and Alex Taylor, and the NMR spectroscopy core, directed by Dr. Dmitri Ivanov. We also gratefully thank Drs. Eileen Lafer, Bo Demeler and Dmitri Ivanov, Department of Biochemistry and Structural Biology, Robert Brenner, Department of Cell & Integrative Physiology, Brad Rothberg (Temple University), Chad Brautigam (UT Southwestern), Sudha Chakrapani (Case Western Reserve University) and William N. Zagotta (University of Washington) for many helpful discussions in this project. We are further indebted to James D. Stockand for providing the necessary time for C.R.A. to finish this manuscript.

Conflict of interest: The authors declare that they have no conflicts of interest with the contents of this article.

Author contributions: All authors designed the experiments. All the authors except M.S.S. performed them. All the authors wrote the manuscript and designed the figures. M.S.S. obtained the funding for this project and performed further editing of the manuscript.

REFERENCES
1. Faas, G. C., Raghavachari, S., Lisman, J. E., and Mody, I. (2011) Calmodulin as a direct detector of Ca$^{2+}$ signals. *Nat Neurosci* **14**, 301-304
2. Westerlund, A. M., and Dellemotte, L. (2018) Effect of Ca$^{2+}$ on the promiscuous target-protein binding of calmodulin. *PLoS Comput Biol* **14**, e1006072
3. Tjandra, N., Kuboniwa, H., Ren, H., and Bax, A. (1995) Rotational dynamics of calcium-free calmodulin studied by 15N-NMR relaxation measurements. *Eur J Biochem* **230**, 1014-1024
4. Linse, S., Helmersson, A., and Forsen, S. (1991) Calcium binding to calmodulin and its globular domains. *J Biol Chem* **266**, 8050-8054
5. Zhang, M., Tanaka, T., and Ikura, M. (1995) Calcium-induced conformational transition revealed by the solution structure of apo calmodulin. *Nat Struct Biol* **2**, 758-767
6. Zhang, P., Tripathi, S., Trinh, H., and Cheung, M. S. (2017) Opposing intermolecular tuning of Ca$^{2+}$ affinity for calmodulin by neurogranin and CaMKII peptides. *Biophys J* **112**, 1105-1119
7. Gamper, N., and Shapiro, M. S. (2003) Calmodulin mediates Ca$^{2+}$-dependent modulation of M-type K$^+$ channels. *J Gen Physiol* **122**, 17-31
8. Beech, D. J., Bernheim, L., Mathie, A., and Hille, B. (1991) Intracellular Ca$^{2+}$ buffers disrupt muscarinic suppression of Ca$^{2+}$ current and M current in rat sympathetic neurons. *Proc Natl Acad Sci U S A* **88**, 652-656
9. Neher, E. (1998) Vesicle pools and Ca$^{2+}$ microdomains: new tools for understanding their roles in neurotransmitter release. *Neuron* **20**, 389-399
10. Crivici, A., and Ikura, M. (1995) Molecular and structural basis of target recognition by calmodulin. *Annu Rev Biophys Biomol Struct* **24**, 85-116.

11. Geiser, J. R., van Tuinen, D., Brockerhoff, S. E., Neff, M. M., and Davis, T. N. (1991) Can calmodulin function without binding calcium? *Cell* **65**, 949-959.

12. Keen, J. E., Khawaled, R., Farrens, D. L., Neelands, T., Rivard, A., Bond, C. T., Janowsky, A., Fakler, B., Adelman, J. P., and Maylie, J. (1999) Domains responsible for constitutive and Ca\(^{2+}\)-dependent interactions between calmodulin and small conductance Ca\(^{2+}\)-activated potassium channels. *J Neurosci* **19**, 8830-8838.

13. Peterson, B. Z., DeMaria, C. D., Adelman, J. P., and Yue, D. T. (1999) Calmodulin is the Ca\(^{2+}\) sensor for Ca\(^{2+}\)-dependent inactivation of L-type calcium channels. *Neuron* **22**, 549-558.

14. Zuhlke, R. D., Pitt, G. S., Tsien, R. W., and Reuter, H. (2000) Ca\(^{2+}\)-sensitive inactivation and facilitation of L-type Ca\(^{2+}\) channels both depend on specific amino acid residues in a consensus calmodulin-binding motif in the α1C subunit. *J Biol Chem* **275**, 21121-21129.

15. Clapham, D. E. (2007) Calcium signaling. *Cell* **131**, 1047-1058.

16. Ben-Johny, M., and Yue, D. T. (2014) Calmodulin regulation (calmodulation) of voltage-gated calcium channels. *J Gen Physiol* **143**, 679-692.

17. DeMaria, C. D., Soong, T. W., Alseikhan, B. A., Alvania, R. S., and Yue, D. T. (2001) Calmodulin bifurcates the local Ca\(^{2+}\) signal that modulates P/Q-type Ca\(^{2+}\) channels. *Nature* **411**, 484-489.

18. Erickson, M. G., Alseikhan, B. A., Peterson, B. Z., and Yue, D. T. (2001) Preassociation of calmodulin with voltage-gated Ca\(^{2+}\) channels revealed by FRET in single living cells. *Neuron* **31**, 973-985.

19. Halling, D. B., Aracena-Parks, P., and Hamilton, S. L. (2006) Regulation of voltage-gated Ca\(^{2+}\) channels by calmodulin. *Sci STKE* **2006**, er1.

20. Lee, A., Scheuer, T., and Catterall, W. A. (2000) Ca\(^{2+}\)/calmodulin-dependent facilitation and inactivation of P/Q-type Ca\(^{2+}\) channels. *J Neurosci* **20**, 6830-6838.

21. Liang, H., DeMaria, C. D., Erickson, M. G., Mori, M. X., Alseikhan, B. A., and Yue, D. T. (2003) Unified mechanisms of Ca\(^{2+}\) regulation across the Ca\(^{2+}\)-sensitive Ca\(^{2+}\) channel family. *Neuron* **39**, 951-960.

22. Zamponi, G. W. (2003) Calmodulin lobotomized: novel insights into calcium regulation of voltage-gated calcium channels. *Neuron* **39**, 879-881.

23. Xia, X. M., Fakler, B., Rivard, A., Wayman, G., Johnson-Pais, T., Keen, J. E., Ishii, T., Hirschberg, B., Bond, C. T., Lutsenko, S., Maylie, J., and Adelman, J. P. (1998) Mechanism of calcium gating in small-conductance calcium-activated potassium channels. *Nature* **395**, 503-507.

24. Schumacher, M. A., Rivard, A. F., Bachinger, H. P., and Adelman, J. P. (2001) Structure of the gating domain of a Ca\(^{2+}\)-activated K\(^{+}\) channel complexed with Ca\(^{2+}\)/calmodulin. *Nature* **410**, 1120-1124.

25. Maylie, J., Bond, C. T., Herson, P. S., Lee, W. S., and Adelman, J. P. (2004) Small conductance Ca\(^{2+}\)-activated K\(^{+}\) channels and calmodulin. *J Physiol* **554**, 255-261.

26. Lee, C. H., and MacKinnon, R. (2018) Activation mechanism of a human SK-calmodulin channel complex elucidated by cryo-EM structures. *Science* **360**, 508-513.

27. Gamper, N., and Shapiro, M. S. (2015) KCNQ Channels. In *Handbook of Ion Channels* (Zheng, J., and Trudeau, M. eds.), CRC press, Boca Raton, FL.

28. Etxeberria, A., Aivar, P., Rodriguez-Alfaro, J. A., Alaimo, A., Villace, P., Gomez-Posada, J. C., Areso, P., and Villarroel, A. (2008) Calmodulin regulates the trafficking of KCNQ2 potassium channels. *FASEB J* **22**, 1135-1143.

29. Gao, Y., Yechikov, S., Vazquez, A. E., Chen, D., and Nie, L. (2013) Impaired surface expression and conductance of the KCNQ4 channel lead to sensorineural hearing loss. *J Cell Mol Med* **17**, 889-900.

30. Kosenko, A., and Hoshi, N. (2013) A change in configuration of the calmodulin-KCNQ channel complex underlies Ca\(^{2+}\)-dependent modulation of KCNQ channel activity. *PLoS One* **8**, e82290.

31. Liu, W., and Devaux, J. J. (2014) Calmodulin orchestrates the heteromeric assembly and the trafficking of KCNQ2/3 (Kv7.2/3) channels in neurons. *Mol Cell Neurosci* **58**, 40-52.

32. Zaika, O., Zhang, J., and Shapiro, M. S. (2011) Combined phosphoinositide and Ca\(^{2+}\) signals mediating receptor specificity toward neuronal Ca\(^{2+}\) channels. *J Biol Chem* **286**, 830-41.

33. Tobelaim, W. S., Dvir, M., Lebel, G., Cui, M., Buki, T., Peretz, A., Marom, M., Haitin, Y., Logothetis, D. E., Hirsch, J. A., and Attali, B. (2017) Competition of calcified calmodulin N lobe and PIP\(_2\) to an LQT mutation site in Kv7.1 channel. *Proc Natl Acad Sci U S A* **114**, E869-E878.
34. Shamgar, L., Ma, L., Schmitt, N., Haitin, Y., Peretz, A., Wiener, R., Hirsch, J., Pongs, O., and Attali, B. (2006) Calmodulin is essential for cardiac IKS channel gating and assembly. Impaired function in long-QT mutations. Circ Res 286:830-41

35. Peroz, D., Rodriguez, N., Choveu, F., Baro, I., Merot, J., and Loussouarn, G. (2008) Kv7.1 (KCNQ1) properties and channelopathies. J Physiol 386, 1785-1789

36. Rocheleau, J. M., and Koberz, W. R. (2008) KCNE peptides differently affect voltage sensor equilibrium and equilibration rates in KCNQ1 K+ channels. J Gen Physiol 313, 59-68

37. Alaimo, A., Gómez-Posada, J. C., Aivar, P., Etcheberria, A., Rodríguez-Alfaro, J. A., Areso, P., and Villarroel, A. (2009) Calmodulin activation limits the rate of KCNQ2 K+ channel exit from the endoplasmic reticulum. J Biol Chem 284, 20668-20675

38. Haitin, Y., and Attali, B. (2008) The C-terminus of Kv7 channels: a multifunctional module. J Physiol 586:1803-10

39. Wen, H., and Levitan, I. B. (2002) Calmodulin Is an auxiliary subunit of KCNQ2/3 potassium channels. J Neurosci 22, 7991-8001

40. Yus-Najera, E., Santana-Castro, I., and Villarroel, A. (2002) The identification and characterization of a noncontinuous calmodulin-binding site in noninactivating voltage-dependent KCNQ potassium channels. J Biol Chem 277, 28545-28553

41. Hernandez, C. C., Zaika, O., and Shapiro, M. S. (2008) A carboxy-terminal inter-helix linker as the site of phosphatidylinositol 4,5-bisphosphate action on Kv7 (M-type) K+ channels. J Physiol 312, 361-381

42. Higashida, H., Hoshi, N., Zhang, J. S., Yokoyama, S., Hashii, M., Jin, D., Noda, M., and Robbins, J. (2005) Protein kinase C bound with A-kinase anchoring protein is involved in muscarinic receptor-activated modulation of M-type KCNQ potassium channels. Neurosci Res 51, 231-234

43. Hoshi, N., Zhang, J. S., Omaki, M., Takeuchi, T., Yokoyama, S., Wanavere, N., Langeberg, L. K., Yoneda, Y., Scott, J. D., Brown, D. A., and Higashida, H. (2003) AKap150 signaling complex promotes suppression of the M current by muscarinic agonists. Nat Neurosci 6, 564-571

44. Kosenko, A., Kang, S., Smith, I. M., Greene, D. L., Langeberg, L. K., Scott, J. D., and Hoshi, N. (2012) Coordinated signal integration at the M-type potassium channel upon muscarinic stimulation. Embo J 31, 3147-3156

45. Strulovich, R., Tobelaim, W. S., Attali, B., and Hirsch, J. A. (2016) Structural Insights into the M channel proximal C-terminus/calmodulin complex. Biochemistry 55, 5353-5365

46. Sachyani, D., Dvir, M., Strulovich, R., Tria, G., Tobelaim, W., Peretz, A., Pongs, O., Svergun, D., Attali, B., and Hirsch, J. A. (2014) Structural basis of a Kv7.1 potassium channel gating module: studies of the intracellular c-terminal domain in complex with calmodulin. Structure 22, 1582-1594

47. Sun, J., and MacKinnon, R. (2017) Cryo-EM Structure of a KCNQ1/CaM complex reveals insights into congenital long-QT syndrome. Cell 169, 1042-1050 e1049

48. Chang, A., Abdereman-Ale, F., Hura, G. L., Rossen, N. D., Gate, R. E., and Minor, D. L., Jr. (2018) A Calmodulin C-Lobe Ca2+-dependent switch governs Kv7 channel function. Neuron 97, 836-852 e836

49. Xu, Q., Chang, A., Tolia, A., and Minor, D. L., Jr. (2013) Structure of a Ca2+/CaM:Kv7.4 (KCNQ4) B-helix complex provides insight into M-current modulation. Journal of molecular biology 425, 378-394

50. Bernardo-Seisdedos, G., Nunez, E., Gomis, C., Malo, C., Villarroel, A., and Millet, O. (2018) Structural basis and energy landscape for the Ca2+ gating and calmodulation of the Kv7.2 K+ channel. Proc Natl Acad Sci USA 115, 2395-2400

51. Houdusse, A., Silver, M., and Cohen, C. (1996) A model of Ca2+-free calmodulin binding to unconventional myosins reveals how calmodulin acts as a regulatory switch. Structure 4, 1475-1490.

52. Mruk, K., Farley, B. M., Ritacco, A. W., and Koberz, W. R. (2014) Calmodulation meta-analysis: predicting calmodulin binding via canonical motif clustering. J Gen Physiol 144, 105-114

53. Liu, Z., and Vogel, H. J. (2012) Structural basis for the regulation of L-type voltage-gated calcium channels: interactions between the N-terminal cytoplasmic domain and Ca2+-calmodulin. Frontiers in molecular neuroscience 5, 38

54. Evans, T. I., Hell, J. W., and Shea, M. A. (2011) Thermodynamic linkage between calmodulin domains binding calcium and contiguous sites in the C-terminal tail of Cav1.2. Biophys Chem 159, 172-187

55. Keownameechai, E., and McClements, D. J. (2002) Influence of EDTA and citrate on physicochemical properties of whey protein-stabilized oil-in-water emulsions containing CaCl2. Journal of agricultural and food chemistry 50, 7145-7153
56. Neufeld, T., Eisenstein, M., Muszkat, K. A., and Fleminger, G. (1998) A citrate-binding site in calmodulin. *Journal of molecular recognition : JMR* **11**, 20-24

57. Gamper, N., Li, Y., and Shapiro, M. S. (2005) Structural requirements for differential sensitivity of KCNQ K\(^+\) channels to modulation by Ca\(^{2+}\)/calmodulin. *Mol Biol Cell* **16**, 3538-3551

58. Alaimo, A., Alberdi, A., Gomis-Perez, C., Fernandez-Orth, J., Gomez-Posada, J. C., Areso, P., and Villarroel, A. (2013) Cooperativity between calmodulin-binding sites in Kv7.2 channels. *J Cell Sci* **126**, 244-253

59. Xu, T., Nie, L., Zhang, Y., Mo, J., Feng, W., Wei, D., Petrov, E., Calisto, L. E., Kachar, B., Beisel, K. W., Vazquez, A. E., and Yanoah, E. N. (2007) Roles of alternative splicing in the functional properties of inner ear-specific KCNQ4 channels. *J Biol Chem* **282**, 23899-23909

60. Shahidullah, M., Santarelli, L. C., Wen, H., and Levitan, I. B. (2005) Expression of a calmodulin-binding KCNQ2 potassium channel fragment modulates neuronal M-current and membrane excitability. *Proc Natl Acad Sci USA* **102**, 16454-16459

61. Hernandez, C. C., Zaika, O., Tolskyh, G. P., and Shapiro, M. S. (2008) Regulation of neural KCNQ channels: signalling pathways, structural motifs and functional implications. *J Physiol* **586**, 1811-1821

62. Ezioni, A., Siloni, S., Chikhavshvili, D., Strulovich, R., Sachyani, D., Regev, N., Greitzer-Antes, D., Hirsch, J. A., and Lotan, I. (2011) Regulation of Neuronal M-channel gating in an isoform-specific manner: Functional interplay between calmodulin and syntaxin 1A. *J Neurosci* **31**, 14158-14171

63. Gamper, N., Zaika, O., Li, Y., Martin, P., Hernandez, C. C., Perez, M. R., Wang, A. Y., Jaffe, D. B., and Shapiro, M. S. (2006) Oxidative modification of M-type K\(^+\) channels as a mechanism of cytoprotective neuronal silencing. *EMBO J* **25**, 4996-5004

64. Linley, J. E., Ooi, L., Pettinger, L., Kirton, H., Boyle, J. P., Peers, C., and Gamper, N. (2012) Reactive oxygen species are second messengers of neurokinin signaling in peripheral sensory neurons. *Proc Natl Acad Sci USA* **109**, E1578-E1586

65. Ooi, L., Gigout, S., Pettinger, L., and Gamper, N. (2013) Triple cysteine module within M-type K\(^+\) channels mediates reciprocal channel modulation by nitric oxide and reactive oxygen species. *J Neurosci* **33**, 6041-6046

66. Wang, Q., Zhang, P., Hoffman, L., Tripathi, S., Homouz, D., Liu, Y., Waxham, M. N., and Cheung, M. S. (2013) Protein recognition and selection through conformational and mutually induced fit. *Proc Natl Acad Sci USA* **110**, 20545-20550

67. Wang, C., Chung, B. C., Yan, H., Wang, H. G., Lee, S. Y., and Pitt, G. S. (2014) Structural analyses of Ca\(^{2+}\)/CaM interaction with NaV channel C-termini reveal mechanisms of calcium-dependent regulation. *Nat Commun* **5**, 4896

68. Gabelli, S. B., Boto, A., Kuhns, V. H., Blanchet, M. A., Farinelli, F., Aripipala, S., Yoder, J., Jakoncic, J., Tomaselli, G. F., and Amzel, L. M. (2014) Regulation of the Na\(_{\text{v}}\).1.5 cytoplasmic domain by calmodulin. *Nat Commun* **5**, 5126

69. Falkenburger, B. H., Jensen, J. B., Dickson, E. J., Suh, B. C., and Hille, B. (2010) Phosphoinositides: lipid regulators of membrane proteins. *J Physiol* **588**:3179-85

70. Suh, B. C., and Hille, B. (2007) Regulation of KCNQ channels by manipulation of phosphoinositides. *J Physiol* **582**:911-6

71. Zaydman, M. A., Silva, J. R., Delaloye, K., Li, Y., Liang, H., Larsson, H. P., Shi, J., and Cui, J. (2013) Kv7.1 ion channels require a lipid to couple voltage sensing to pore opening. *Proc Natl Acad Sci USA* **110**, 13180-13185

72. Cui, Y., Wen, J., Hung Sze, K., Man, D., Lin, D., Liu, M., and Zhu, G. (2003) Interaction between calcium-free calmodulin and IQ motif of neurogranin studied by nuclear magnetic resonance spectroscopy. *Anal Biochem* **315**, 175-182

73. Kaleka, K. S., Petersen, A. N., Florence, M. A., and Gerges, N. Z. (2012) Pull-down of calmodulin-binding proteins. *J Vis Exp* Jan 23.

74. Kubota, Y., Putkey, J. A., and Waxham, M. N. (2007) Neurogranin controls the spatiotemporal pattern of postsynaptic Ca\(^{2+}\)/CaM signaling. *Biophys J* **93**, 3848-3859

75. Black, D. J., and Persechini, A. (2011) In calmodulin-IQ domain complexes, the Ca\(^{2+}\)-free and Ca\(^{2+}\)-bound forms of the calmodulin C-lobe direct the N-lobe to different binding sites. *Biochemistry* **50**, 10061-10068

76. Black, D. J., Tran, Q. K., and Persechini, A. (2004) Monitoring the total available calmodulin concentration in intact cells over the physiological range in free Ca\(^{2+}\). *Cell Calcium* **35**, 415-425

77. Tran, Q. K., Black, D. J., and Persechini, A. (2003) Intracellular coupling via limiting calmodulin. *J Biol Chem* **278**, 24247-24250
Mutually-induced fit of Ca\(^{2+}\)/CaM action on KCNQ4 K\(^{+}\) channels

78. Klingauf, J., and Neher, E. (1997) Modeling buffered Ca\(^{2+}\) diffusion near the membrane: implications for secretion in neuroendocrine cells. *Biophys J* **72**, 674-690

79. Mori, M. X., Erickson, M. G., and Yue, D. T. (2004) Functional stoichiometry and local enrichment of calmodulin interacting with Ca\(^{2+}\) channels. *Science* **304**, 432-435

80. Zhang, J., Carver, C. M., Choveau, F. S., and Shapiro, M. S. (2016) Clustering and functional coupling of diverse ion channels and signaling proteins revealed by super-resolution STORM microscopy in neurons. *Neuron* **92**, 461-478

81. Li, B., Tadross, M. R., and Tsien, R. W. (2016) Sequential ionic and conformational signaling by calcium channels drives neuronal gene expression. *Science* **351**, 863-867

82. Dixon, R. E., Yuan, C., Cheng, E. P., Navedo, M. F., and Santana, L. F. (2012) Ca\(^{2+}\) signaling amplification by oligomerization of L-type Cav1.2 channels. *Proc Natl Acad Sci U S A* **109**, 1749-1754

83. Vivas, O., Moreno, C. M., Santana, L. F., and Hille, B. (2017) Proximal clustering between BK and Cav1.3 channels promotes functional coupling and BK channel activation at low voltage. *Elife* 6

84. Dick, I. E., Tadross, M. R., Liang, H., Tay, L. H., Yang, W., and Yue, D. T. (2008) A modular switch for spatial Ca\(^{2+}\) selectivity in the regulation of CaV channels. *Nature* **451**, 830-834

85. Ben Johny, M., Yang, P. S., Bazzazi, H., and Yue, D. T. (2013) Dynamic switching of calmodulin interactions underlies Ca\(^{2+}\) regulation of Cav1.3 channels. *Nat Commun* **4**, 1717

86. Ben-Johny, M., Yang, P. S., Niu, J., Yang, W., Joshi-Mukherjee, R., and Yue, D. T. (2014) Conservation of Ca\(^{2+}\)/calmodulin regulation across Na and Ca\(^{2+}\) channels. *Cell* **157**, 1657-1670

87. Siloni, S., Singer-Lahat, D., Esa, M., Tsemakhovich, V., Chikvashvili, D., and Lotan, I. (2015) Regulation of the neuronal KCNQ2 channel by Src—a dual rearrangement of the cytosolic termini underlies bidirectional regulation of gating. *J Cell Sci* **128**, 3489-3501

88. Grabarek, Z. (2011) Insights into modulation of calcium signaling by magnesium in calmodulin, troponin C and related EF-hand proteins. *Biochim Biophys Acta* **1813**, 913-921

89. Senguen, F. T., and Grabarek, Z. (2012) X-ray structures of magnesium and manganese complexes with the N-terminal domain of calmodulin: insights into the mechanism and specificity of metal ion binding to an EF-hand. *Biochemistry* **51**, 6182-6194

90. Malmendal, A., Linse, S., Evenas, J., Forsen, S., and Drakenberg, T. (1999) Battle for the EF-hands: magnesium-calcium interference in calmodulin. *Biochemistry* **38**, 11844-11850

91. Gabelli, S. B., Yoder, J. B., Tomaselli, G. F., and Amzel, L. M. (2016) Calmodulin and Ca\(^{2+}\) control of voltage gated Na\(^{+}\) channels. *Channels (Austin)* **10**, 45-54

92. Sutton, R. B., Ernst, J. A., and Brunger, A. T. (1999) Crystal structure of the cytosolic C2A-C2B domains of synaptotagmin III. Implications for Ca\(^{2+}\)-independent snare complex interaction. *J Cell Biol* **147**, 589-598

93. Zhou, Q., Lai, Y., Bacaj, T., Zhao, M., Lyubimov, A. Y., Uervirojngrokorn, M., Zeldin, O. B., Brewster, A. S., Sauter, N. K., Cohen, A. E., Solits, S. M., Alonso-Mori, R., Chollet, M., Lemke, H. T., Pfuetzner, R. A., Choi, U. B., Weis, W. I., Diao, J., Sudhof, T. C., and Brunger, A. T. (2015) Architecture of the synaptotagmin-SNARE machinery for neuronal exocytosis. *Nature* **525**, 62-67

94. Choveau, F., de la Rosa, V., Bierbeker, S. M., Hernandez, C. C., and Shapiro, M. S. (2018) Phosphatidylinositol 4,5-bisphosphate (PIP\(_2\)) regulates KCNQ3 K\(^{+}\) channels through multiple sites of action. *Journal of Biological Chemistry* **293**:19411-19428

95. Wiedemann, C., Bellstedt, P., and Gorlach, M. (2013) CAPITO—a web server-based analysis and plotting tool for circular dichroism data. *Bioinformatics* **29**, 1750-1757

96. Dutta, A. K., Rosgen, J., and Rajaratnam, K. (2015) Erratum: using isothermal titration calorimetry to determine thermodynamic parameters of protein-glycosaminoglycan interactions. *Methods Mol Biol* **1229**, E1

97. Kabsch, W. (2010) XDS. *Acta Crystallogr D Biol Crystallogr* **66**, 125-132

98. McCoy, A. J., Grosse-Kunstleve, R. W., Adams, P. D., Winn, M. D., Storoni, L. C., and Read, R. J. (2007) Phaser crystallographic software. *J Appl Crystallogr* **40**, 658-674

99. Adams, P. D., Afonine, P. V., Bunkoczi, G., Chen, V. B., Davis, I. W., Echols, N., Headd, J. J., Hung, L. W., Kapral, G. J., Grosse-Kunstleve, R. W., McCoy, A. J., Moriarty, N. W., Oeffner, R., Read, R. J., Richardson, D. C., Richardson, J. S., Terwilliger, T. C., and Zwart, P. H. (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. *Acta Crystallogr D Biol Crystallogr* **66**, 213-221

100. Emsley, P., Lohkamp, B., Scott, W. G., and Cowtan, K. (2010) Features and development of Coot. *Acta Crystallogr D Biol Crystallogr* **66**, 486-501
Mutually-induced fit of Ca2+/CaM action on KCNQ4 K+ channels

101. Afonine, P. V., Grosse-Kunstleve, R. W., Echols, N., Headd, J. J., Moriarty, N. W., Mustyakimov, M., Terwilliger, T. C., Urzhumtsev, A., Zwart, P. H., and Adams, P. D. (2012) Towards automated crystallographic structure refinement with phenix.refine. *Acta Crystallogr D Biol Crystallogr* 68, 352-367

102. Terwilliger, T. C., Grosse-Kunstleve, R. W., Afonine, P. V., Moriarty, N. W., Adams, P. D., Read, R. J., Zwart, P. H., and Hung, L. W. (2008) Iterative-build OMIT maps: map improvement by iterative model building and refinement without model bias. *Acta Crystallogr D Biol Crystallogr* 64, 515-524

103. Brautigam, C. A. (2015) Calculations and publication-quality illustrations for analytical ultracentrifugation data. *Methods Enzymol* 562, 109-133

104. Scheruermann, T. H., Padrick, S. B., Gardner, K. H., and Brautigam, C. A. (2016) On the acquisition and analysis of microscale thermophoresis data. *Anal Biochem* 496, 79-93

105. Pervushin, K., Riek, R., Wider, G., and Wuthrich, K. (1997) Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. *Proc Natl Acad Sci USA* 94, 12366-12371

106. Biris, N., Tomashevski, A., Bhattacharya, A., Diaz-Griffero, F., and Ivanov, D. N. (2013) Rhesus monkey TRIM5alpha SPRY domain recognizes multiple epitopes that span several capsid monomers on the surface of the HIV-1 mature viral core. *Journal of molecular biology* 425, 5032-5044

107. Delaglio, F., Grzesiek, S., Vuister, G. W., Zhu, G., Pfeifer, J., and Bax, A. (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. *J Biomol NMR* 6, 277-293

108. Rae, J., Cooper, K., Gates, P., and Watsky, M. (1991) Low access resistance perforated patch recordings using amphotericin B. *J Neurosci Methods* 37, 15-26

FOOTNOTES
This work was supported by NIH grants R01 NS 043394 and NS 094461 to M.S.S. a Faculty Scholar Award to M.S.S., a grant from the Morrison Trust Foundation to M.S.S., a NIH/NINDS F31 NS090887 NRSA pre-doctoral training fellowship to C.R.A., a NIH/NHLBI T32 HL007446 post-doctoral training grant to C.R.A. (directed by James D. Stockand) and a core usage support grant from the IIMS CTSA at UT Health SA (Department of Medicine). Institutional Research Cores at UT Health San Antonio are supported by the Office of the Vice President for Research and the Mays Cancer Center, the center home to the UT Health San Antonio MD Anderson Cancer Center (NIH P30 CA054174).
Table 1. Summary of ITC results of KCNQ A and B domain peptides binding Ca2+/CaM.

Peptide (# trials)	Keq (M-1)	Keq (µM)	Keq (stoichiometry)	ΔH (Kcal mol-1)	ΔS (cal mol-1 deg-1)
Q2A	9.4 ± 3.1 E+02	1.08 ± 0.17	1.08 ± 0.07	-6.65 ± 4.4	-6.5 ± 4.2
Q2B	4.3 ± 9.9 E+02	0.24 ± 0.05	1.06 ± 0.08	-9.69 ± 1.1	-4.1 ± 4.2
Q3A	8.3 ± 3.9 E+05	1.22 ± 0.18	1.04 ± 0.16	-9.17 ± 4.9	-14.0 ± 1.5
Q3B	7.7 ± 6.2 E+03	0.013 ± 0.003	0.94 ± 0.13	3.53 ± 0.53	47.9 ± 1.9
Q4A	2.3 ± 5.7 E+02	0.44 ± 0.07	1.04 ± 0.11	-5.57 ± 0.25	10.3 ± 0.9
Q4B	4.6 ± 1.8 E+04	0.004 ± 0.003	1.04 ± 0.03	2.12 ± 0.45	44.7 ± 0.4

Values are mean ± S.D.

FIGURE LEGENDS

Figure 1. KCNQ1-5 contain conserved A and B domains, which are disordered in the absence of CaM. A) Representative schematic of a KCNQ protein subunit depicting the S1-S6 transmembrane helices, the intracellular N- and C termini, and the A domain, teal, and B domain, gold, within the proximal half of the C terminus, referred to as the regulatory domain (RD). For reference, the PIP\textsubscript{2} interaction sites are shown as grey circles and the PKC phosphorylation site represented by a black circle. B) Shown are the sequence alignments of the A domain (left) and B domain (right) of human KCNQ1-5 subunits taken from Uniprot. All sequences represent “isofrom 1” of each subunit, with the exception of the KCNQ2 sequences that represent the universally-used isoform 4, and KCNQ4a. Alignments were performed using the PRALINE alignment tool and the colors adjusted using Photoshop Elements. The dots above the alignments indicate the interactions with Ca2+/CaM shown in Supplemental Fig. S3 and Fig 2. Black dots indicate the residues with strong interactions between the KCNQ4 peptides and CaM that are different from those of the KCNQ1 sequence, and grey dots indicate strong interactions for which the interacting residues are the same. Open circles indicate those KCNQ4 residues having non-bonded contacts with CaM, and the star indicates the residues of KCNQ1 that may cause changes with the CaM backbone compared to KCNQ4. C) Shown are CD spectra of the peptides used in this study. Two dashed vertical lines at 208 and 222 nm indicate the points of deflection typical of proteins such as CaM, black, with high helical content. All of the Q2-4 A & B peptides appear to lack helical content in the absence of CaM.

Figure 2. The X-ray crystal structure of the Ca2+/CaM:Q4A:Q4B complex involves antiparallel A&B helices enveloped by CaM with Ca2+ ions in the N-lobe. A) Front view left, and 90º side view, right, of the trimeric co-crystal X-ray structure of Ca2+/CaM with the Q4A and Q4B peptides. CaM is shown in pink, with the C-lobe facing the bottom, in apo form, and the N lobe on top, bound to two Ca2+ ions, colored dark grey. Q4B, gold, and Q4A, teal, are embraced together by CaM. B) A cartoon schematic is shown depicting how the crystal structure represents the overall conformation of Ca2+/CaM bound to a full KCNQ4 subunit. C, D) The expanded views of the CaM:Q4A:Q4B structure show the interior of CaM, grey, interacting with the side chains of the Q4A and Q4B peptides. The peptide residues are colored to match the conserved color plot shown in Fig 1. These interactions clarify those in the plot in Supplemental Fig. S3, and dashed circles in the inset highlight the loci of the interactions. CaM residues are labeled in maroon, Q4B labeled in black and Q4A are labeled in dark teal. E) The backbone C-alpha alignment of the Ca2+/CaM:Q4A:Q4B complex with the Ca2+/CaM:KCNQ1AB complex, light grey, from PDB: 4UMO, in which one of the 2 asymmetric units of the domain-swapped pair was truncated for clarity. F) The expanded view of the overlaid structures shows the difference in position of the CaM linker as it interacts with I539 (pink CaM) or R519 (grey CaM). The rendering of these structures was produced using PyMol.

Figure 3. The B domain of KCNQ2-4 has a very high affinity for Ca2+/CaM, whereas that of the A domain is modest. Isotherms are shown for the peptides (50-100 µM) titrated into 5 mM CaM in the presence of 5 mM Ca2+. The A domain peptides are represented in the top row and the B domain peptides are shown in the bottom row representing KCNQ2, KCNQ3 and KCNQ4 isoforms. Analysis was performed using the one-site binding model in Microcal Origin 7.

Figure 4. ITC reveals that the A domain must bind CaM first in order to form a stable Ca2+/CaM:Q4A:Q4B trimeric complex. A) The shown isotherm demonstrates no detectable binding between the A and B domains, in the
absence of CaM. B) The plot of Q4A to the preformed complex of Ca²⁺/CaM+Q4B indicates no detectable interaction. C) The isotherm showing the addition of Q4B to the preformed complex of Ca²⁺/CaM+Q4A revealed a Kd = 0.5 ± 0.2 nM (Mean of n=2, S.D.). Curve fitting was performed using the competitive model in Origin 7.

Figure 5. MST analysis of apoCaM affinity for Q4B and Q4A peptides. Titration plots are shown, bottom, for Alexa Fluor 594-tagged apoCaM (200 nM), titrated with A) Q4B, up to 220 μM, which displayed a Kd = 10 μM (C.I. = 6-17 μM, n=3), compared to B) Q4A, which was too weak to determine an accurate equilibrium constant (n=2). The normalized fluorograms are shown at the top, with the analyzed time points highlighted in light blue and light red including Tjump + thermophoresis activity in the analysis. Five traces exhibiting high levels of aggregation were excluded. Data were analyzed using PALMIST software and the figures were using GUSSI software.

Figure 6. HSQC-NMR analysis shows changes in the apoCaM spectrum when combined with Q4B, but not Q4A. The full spectrum representing 150 μM ¹⁵N-labeled apoCaM (in 1 mM EGTA) is shown in A. The spectra in B-D are expanded regions of the boxed-region of the full spectrum, comparing apoCaM before (orange spectrum) and after titration with Q4A, Q4B or both peptides (blue spectra) at a ratio of 1:1:2. E) Shown is the solution NMR structure of apoCaM (PDB: 1DMO, conformation #27) with an expanded view of the C lobe. The green, labeled regions represent residues with peak changes greater than 2 standard deviations above the mean peak height after adding Q4B to apoCaM. F) Shown is a cartoon depicting a possible model of the C lobe of apoCaM, orange, interacting with only the B domain, gold, of a single KCNQ4 subunit, with A and B domains in the non-helical state.

Figure 7. TROSY-HSQC-NMR analysis of the relationship between molar ratio of Ca²⁺:CaM or Ca²⁺:CaM+Q4B and alterations in apoCaM residues. Shown is the full NMR spectrum of A) 50 μM ¹H-¹⁵N-CaM, or D) 50 μM ¹H-¹⁵N-CaM + 62.5 μM Q4B, in which the green peaks are from residues of the metal-free protein in ChHBS, purple those upon the addition of 50 μM Ca²⁺, and orange peaks are from residues upon addition of 100 μM Ca²⁺. The labeled boxes in the full spectra images refer to the expanded regions in which B & C correspond to Ca²⁺ titrated to CaM only, and E & F are expanded regions of the Ca²⁺ titrations to CaM+Q4B. Those peaks showing overlapping residues are those that were unaffected by the added Ca²⁺, indicated in color. In contrast, peaks that do not overlap in color indicate a change in the spectral peak of the corresponding residue with the addition of Ca²⁺. G) Shown is a graphical representation of the total number of peak height changes of the single NMR titration >55% above the mean peak height after each titration of Ca²⁺. Because we could no longer track peaks from the previous titrations at 200 μM, we included all peak changes counted by visual inspection for 200 and 400 μM Ca²⁺. The box in lower right shows the expected molar ratios of Ca²⁺:CaM EF-hands in each case.

Figure 8. Graphical plot of CaM residues displaying changes in spectral peaks over the range [Ca²⁺] titration series of molar ratios of Ca²⁺. HSQC-NMR peak heights from that changed > 55% from the previous titration of Ca²⁺ to 50 μM ¹H-¹⁵N-CaM or 50 μM ¹H-¹⁵N-CaM + 62.5 μM Q4B starting in ChHBS, represented by the grey or black bars. Only peaks that were able to be tracked from the original apoCaM position are shown. Panels A & B shows the significant peak changes of peptide-free CaM in response to Ca²⁺ at a ratio of 1:4 EF hands; i.e., 50 μM Ca²⁺ to 50 μM total CaM in A, or 2:4 EF hands in B. The same analysis was performed for Ca²⁺ titration into CaM + Q4B ranging up to 150 μM Ca²⁺ (C-D). Cartoon schematics are shown with each plot, to show the estimated stoichiometry of Ca²⁺ ions (green ovals) with respect to the EF hands and our speculated movement of CaM (orange dumbbell) with respect to the Q4B peptide (thick gold line). The cartoons on the left side of the graph represent metal-free CaM and CaM + Q4B before the addition of Ca²⁺.

Figure 9. WT or mutant CaM-lobe mutants do not affect the voltage dependence of KCNQ4 currents. A) Representative perforated patch voltage-clamp recordings from CHO cells expressing KCNQ4 channels together with either WT, or the indicated CaM mutants. The kinetics of activation at 10 mV and deactivation (inset) at -60 mV after the prepulse were quantified by fits to a double and single exponential, respectively. Fits are shown in gray. B) Superimposed are the voltage-dependent activation curves for the KCNQ4 + CaM combinations shown in A, assayed as the amplitude of the tail current at -60 mV after the 500 ms prepulse to the indicated voltages. C) Comparison of the activation and deactivation time constant values. D) Table summarizes the data shown in panels A, B and C. Overexpression of CaM WT or the indicated CaM mutants did not induce significant changes in the voltage dependence of activation nor the kinetics of activation or deactivation. Error bars represent mean value ± S.E.M, as these are group data.
Figure 10. Proposed “Lobe-Switching Model” for CaM regulation of neuronal KCNQ channels. Shown schematically is our proposed model of how Ca\(^{2+}\) ions direct CaM in interactions with and regulating neuronal KCNQ channels. We here exclude the likely role of Mg\(^{2+}\) or other ions, as discussed in the text.

1) Under very low (<10 nM) cytosolic [Ca\(^{2+}\)] (a physiological state which we cannot determine), apoCaM is pre-bound to the B domain (gold section of KCNQ subunit), and the NMR and MST data derive a K\(_d\) of ~10-20 μM. During this state, the PIP\(_2\) interaction sites within the proximal C terminus at the S6Jx (pre-A helix) and the A-B domain linker are available to interact with PIP\(_2\). Under such conditions, the A & B domains are likely disordered, not in a helical conformation and it is still unclear whether this conformational state would represent a functional channel at the plasma membrane, where PIP\(_2\) is located.

2) When [Ca\(^{2+}\)]\(_i\) is in the range of that in cytoplasm in neurons at rest, Ca\(^{2+}\) first binds the EF hands of the C-lobe (indicated by the change in color from orange to pink), displacing CaM from the B domain. 3) Upon a rise in [Ca\(^{2+}\)] in the proximity of the channel, the Ca\(^{2+}\)-bound C-lobe binds to the A domain with a K\(_d\) ~ 400 nM, inducing an α-helical conformation to the A domain (cyan, now shown as a helix). This twisting motion may impose torque on the PIP\(_2\) interaction sites in the proximal C terminus, weakening their interactions with PIP\(_2\). 4) In the final step, under a strong [Ca\(^{2+}\)] signal (such as strong stimulation of certain G\(_{q/11}\)-coupled receptors), the EF hands of the N-lobe become occupied by Ca\(^{2+}\) ions, enhancing its affinity for the B domain, inducing it into a helical formation, retaining C-lobe binding to the A domain (still a helix). This final twisting motion may completely twist, or pull away, the PIP\(_2\) interaction sites from the inner leaflet of the membrane, severely hindering the ability of the C-terminus to bind PIP\(_2\), resulting in maximal Ca\(^{2+}\)/CaM-mediated inhibition of neuronal M channels. The sub-nanomolar affinity of the CaM:A&B trimeric complex may allow Ca\(^{2+}\) ions to rapidly move in and out of EF-III & IV, while maintaining a stable complex during such elevated [Ca\(^{2+}\)] conditions; thus, a crystal can be variably observed to contain Ca\(^{2+}\) ions in the C-lobe EF hands.
Mutually-induced fit of Ca2+/CaM action on KCNQ4 K+ channels

FIGURE 1.
Mutually-induced fit of Ca\(^{2+}\)/CaM action on KCNQ4 K\(^{+}\) channels

FIGURE 2.
Mutually-induced fit of Ca$^{2+}$/CaM action on KCNQ4 K$^+$ channels

FIGURE 3.
Mutually-induced fit of Ca2+/CaM action on KCNQ4 K+ channels

FIGURE 4.

A) B) C)

$K_d = 0.5 \pm 0.2 \text{ nM}$
Mutually-induced fit of Ca\(^{2+}\)/CaM action on KCNQ4 K\(^{+}\) channels

FIGURE 5.

A)
- **K\(_d\) \(\sim\) 10 \(\mu\)M
- Plot showing relative fluo. x 1000 against [Q4B] nM

B)
- **K\(_d\) \(\sim\) N/A
- Plot showing relative fluo. x 1000 against [Q4A] nM
Mutually-induced fit of Ca\(^{2+}\)/CaM action on KCNQ4 \(K^+\) channels

FIGURE 6.

A) apoCaM

B) apoCaM + Q4A

C) apoCaM + Q4B

D) apoCaM + Q4A + Q4B

E) N-lobe, C-lobe

F) Q4A domain, Q4B domain

apoCaM

C

N
Mutually-induced fit of Ca2+/CaM action on KCNQ4 K+ channels

FIGURE 7.
Mutually-induced fit of Ca2+/CaM action on KCNQ4 K+ channels

FIGURE 8.

A) apoCaM

50 μM Ca2+ to CaM (1/4)

1/4 EF bound

B) 100 μM Ca2+ to CaM (2/4)

2/4 EF bound

C) apoCaM + Q4B

50 μM Ca2+ to CaM+Q4B (1/4)

1/4 EF bound

D) 100 μM Ca2+ to CaM+Q4B (2/4)

2/4 EF bound

E) 150 μM Ca2+ to CaM+Q4B (3/4)

3/4 EF bound

[Diagram showing the changes in peak change for different concentrations of Ca2+ and CaM with and without Q4B]

N Lobe

C Lobe
Mutually-induced fit of Ca2+/CaM action on KCNQ4 K+ channels

FIGURE 9.

	$V_{1/2}$ (mV)	$\tau_{\text{activation}}$ (ms) fast	$\tau_{\text{activation}}$ (ms) slow	$\tau_{\text{activation}}$ (ms) weighted	$\tau_{\text{deactivation}}$ (ms)	n
CaM WT	20.3 ± 0.7	40 ± 14	500 ± 82	420 ± 145	70 ± 5	6
CaM DN	19.1 ± 1.1	22 ± 4	410 ± 40	291 ± 37	85 ± 6	5
CaM N-lobe mutated	18.1 ± 5.0	64 ± 28	488 ± 90	395 ± 96	50 ± 6	5
CaM C-lobe mutated	18.2 ± 5.3	42 ± 17	493 ± 75	355 ± 68	90 ± 15	4
Mutually-induced fit of Ca2+/CaM action on KCNQ4 K+ channels

FIGURE 10.

1. apoCaM:B domain
2. CaM displacement
3. CaM rebinding
4. Triplex formation
A mutually-induced conformational fit underlies Ca$^{2+}$-directed interactions between calmodulin and the proximal C terminus of KCNQ4 K$^+$ channels
Crystal R. Archer, Benjamin T. Enslow, Alexander B. Taylor, Victor De la Rosa, Akash Bhattacharya and Mark S. Shapiro

J. Biol. Chem. published online February 26, 2019

Access the most updated version of this article at doi: 10.1074/jbc.RA118.006857

Alerts:
• When this article is cited
• When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts