SMARCB1 Gene Mutation Predisposes to Earlier Development of Glioblastoma: A Case Report of Familial GBM

Sanjib Mukherjee, MD, PhD, Edana Stroberg, DO, Fengfei Wang, PhD, Linden Morales, MS, Yuan Shan, MD, PhD, Arundhati Rao, MD, PhD, Jason H. Huang, MD, Erxi Wu, PhD, and Ekokobe Fonkem, DO

Abstract

Glioblastoma (GBM) is the most aggressive adult brain tumor. While GBM typically occurs sporadically, familial GBM can be associated with certain hereditary disorders and isolated familial GBMs in the absence of syndrome are rare. Relevant hereditary factors have remained elusive in these cases. Understanding specific genetic abnormality may potentially lead to better treatment strategies in these patients. Here, we analyzed GBM tissue from our patient and 2 afflicted family members, with next generation sequencing to better understand the genetic alterations associated with this disease development. DNA was extracted and sequenced and the data were then analyzed. Results revealed 2 common mutations in afflicted family members: PDGFRα and HRAS. In addition, both siblings showed a mutation of the SMARCB1 gene. The sister of our patient exhibited a homozygous mutation, while our patient had heterozygous mutation of this gene in the tumor tissue. This result suggests that mutation of SMARCB1, either alone or in the presence of PDGFRα and HRAS mutations, is associated with earlier onset GBM.

Key Words: Familial GBM, NGS, SMARCB1.

INTRODUCTION

Glioblastoma (GBM) is one of the most aggressive brain tumors in humans. Approximately 12%–15% of all intracranial neoplasms, as well as 50%–60% of all astrocytic tumors are GBM (1). The incidence rate of GBM is 2–3 cases per 100 000 in Europe and North America (2). Despite multi-modality treatment with surgical resection, radiation and chemotherapy, the median survival of patients with GBM is only ~15 months. In spite of an increase in basic and clinical research over the last few decades, little improvement is noted with regards to the poor prognosis of patients with GBM.

It is estimated that ~5%–10% of gliomas are familial. Specifically, familial gliomas can be found in association with certain hereditary disorders, such as Turcot syndrome, tuberous sclerosis, neurofibromatosis, and Li-Fraumeni syndrome (4). Isolated familial GBMs, in the absence of a syndrome, do occur but are exceedingly rare. Understanding the genetic alterations of familial GBM may uncover some of the unknown mechanistic pathways and potentially lead to better understanding of familial GBM pathogenesis.

The current report presents the case of a 19-year-old, Hispanic male, who initially presented with recurrent bouts of severe headaches and a significant family history of GBM. His initial computed tomography and magnetic resonance imaging scans revealed a left frontal lobe mass, which was then resected and histopathologically confirmed as GBM, WHO grade IV, with unmethylated MGMT status. He was initially treated with the standard care of Stupp protocol (radiation co-administered with temozolomide followed by temozolomide maintenance for 6 months), but his tumor recurred after 2 years. He was then treated with Lomustine and Novo TTF (tumor treating fields) magnetic field scalp electrodes. Unfortunately, his tumor progressed rapidly and he died one month after recurrent disease treatment was initiated. Interestingly, both his father (38 years old) and his sister (6 years old) were diagnosed with GBM 7 years prior to his diagnosis and passed away within a year from their diagnosis (Fig. 1). His mother, however, is in good health without any significant medical conditions. Given his significant family history of GBM, we performed next generation sequencing of extracted GBM tumor tissues from our patient, his father and sister. We proposed that we could identify a familial gene that may link diagnosis among these family members with GBM.
MATERIALS AND METHODS

Resected GBM tissue was formalin-fixed and embedded in paraffin for hematoxylin and eosin (H&E) and MIB-1 staining. This staining allowed for identification of neoplastic from nonneoplastic tissue by our institutional neuropathologist. The neoplastic tissue was then carefully separated and isolated from the nonneoplastic tissue to avoid contamination. Tissue was digested and cells were isolated. Cell samples from neoplastic tissue and nonneoplastic tissue were submitted for next generation sequencing to determine if common hotspot mutations were present. Nonneoplastic tissue from the patient’s sister was not available for analysis.

To perform next generation sequencing, DNA was extracted from neoplastic and nonneoplastic formalin-fixed paraffin-embedded brain biopsy specimens, using Ambion Recover All Total Nucleic Acid Isolation Kit (Life Technologies, Carlsbad, CA). Extractions were sequenced using the Ampliseq Library Prep kit with the Comprehensive Cancer Hotspot Panel v2.0 (Life Technologies). Library preparation for each specimen was equalized to 100 pM using the Ion Library Equalizer kit then amplified and sequenced using the Ion Chef and Ion PGM systems, respectively (Life Technologies). Data were analyzed using Variant Caller v5.0.2.1 (Life Technologies).

RESULTS

The histopathologic slide of our patient is shown in Figure 2. We noted neoplastic cells of astrocytic phenotype with an atypical mitosis shown in circle (Fig. 2A) as well as prominent pleomorphism (Fig. 2B). Other characteristic features of GBM, such as microvascular hyperplasia (Fig. 2C) and geographic necrosis (Fig. 2D), were also noted in the sections of his tumor tissue. Both family members (father and sister) showed similar histopathology including a pleomorphic astrocytic phenotype, necrosis and microvascular hyperplasia. The common hotspot mutations identified in the tumors of these 3 patients are shown in Table 1. The tissue from the father’s brain tumor demonstrated hotspot mutations in 3 genes: Heterozygous mutations in PDGFRA (platelet derived growth factor receptor A) and TP53 (tumor protein p53) on chromosomes 4 and 17, respectively, and a homozygous mutation in HRAS (Harvey rat sarcoma viral oncogene homolog) on chromosome 11. The sibling’s tumor had homozygous mutations in PDGFRA, HRAS and SMARCB1 (SW1/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily B member 1) on chromosomes 4, 11, and 22, respectively. Interestingly, the 19-year-old patient’s tumor

FIGURE 2. Representative tumor sections from the patient are shown. Hematoxylin and eosin (H&E)-stained section demonstrates neoplastic cells of astrocytic phenotype with an atypical mitosis as shown in the circle (A). Neoplastic cells show prominent pleomorphism (B). There are areas of florid microvascular hyperplasia (C) and geographic necrosis (D), which confirm the diagnosis of glioblastoma.
showed heterozygous mutations in *PDGFRA*, *HRAS*, and *SMARCB1* on chromosomes 4, 11, and 22, respectively. Nonneoplastic brain tissues from the patient and his father were available and sequenced. The mutations that the 2 individuals shared in common are shown in Table 2. The patient and his father shared homozygous mutations in *FGFR3* (fibroblast growth factor receptor 3) and *RET* (rearranged during transfection) on chromosomes 4 and 10, respectively, as well as a heterozygous mutation in *HRAS* on chromosome 11. The father had homozygous mutations in *EGFR* (epidermal growth factor receptor) and *FLT3* (FMS-related tyrosine kinase 3) on chromosomes 7 and 13, respectively, while the son had heterozygous mutations in these genes. In addition, the father had homozygous multiple nucleotide polymorphisms in *CSF1R* (colony factor 1 receptor) on chromosome 5 while the son had a heterozygous single nucleotide polymorphism mutation in the same gene. In comparing mutations observed both in neoplastic and nonneoplastic tissues from the patient and his father, *HRAS* was the only mutation identified in both neoplastic as well as nonneoplastic tissues in these individuals.

DISCUSSION

In summary, all the family members demonstrated 2 common hotspot mutations of *PDGFRA* and *HRAS* genes within neoplastic tissues. Additionally, our patient and his sister had a *SMARCB1* mutation within their tumor tissue. Compared with his father (GBM diagnosed at 38 years), who had no mutation on the *SMARCB1* gene, the heterozygous mutation of *SMARCB1* gene in our patient can be associated with an earlier GBM diagnosis at the age of 19. Interestingly, the
BRM, its occurrence is rare (15). A study showed that GLI, and antagonizes polycomb complexes (16). In this re-
venting transcription of glioma-associated oncogene homolog 1 (11). The function of SMARCB1 acts
as tumor suppressor epigenetically by regulating gene tran-
scription (11). It was shown that SMARCB1 suppresses the ac-
tion of Cyclin D1 transcription and inhibits the action of CDK
4/6 by binding and recruiting HDAC activity in G1 of cell cy-

ducer Snf5 leads to aberrant activation of the Hedgehog-Gli pathway. Nat
cell D1 transcription by INI1/hSNF5. Mol Cell Biol 2002;22:5975–88

gene led to the tumor tissue. Unfortunately, we were unable to perform an immunostaining
possibility that she actually had ATRT cannot be ruled out. The result of this report may aid proper
counseling and work-up of familial GBM cases. These find-
ings may assist in evaluating glioma risk and may lead to the development of better treatment strategies for SMARCB1 mu-
tated GBM patients; akin to those being developed for SMARCB1 mutated rhabdoid tumors (17).

REFERENCES

1. Bondy ML, Scheurer ME, Malmer B, et al. Brain tumor epidemiology: From the Brain Tumor Epidemiology Consortium. Cancer 2008;113:
 1953–68
2. Barnard RO, Geddes JF. The incidence of multifocal cerebral gliomas. A histologic study of large hemisphere sections. Cancer 1987;60:1519–31
3. Malmer B, Henriksson R, Gronberg H. Familial brain tumours—Genet-
ics or environment? A nationwide cohort study of cancer risk in spouses and first-degree relatives of brain tumour patients. Int J Cancer 2003;
 106:260–3
4. Burger PC, Green SB. Patient age, histologic features, and length of sur-
vival in patients with glioblastoma multiforme. Cancer 1987;59:1617–25
5. Velge AI, Van Cauwenbergh S, Polyaansky AA, et al. PDGFRA alter-
ation in cancer: Characterization of a gain of function V326E transmem-
brane mutant as well as loss of function and passenger mutations. Oncogene 2014;33:2568–76
6. Verhaak RG, Hoadley KA, Purdom E, et al. Integrated genomic analysis
identifies clinically relevant subtypes if glioblastoma characterized by
abnormalities in PDGFRA, IDH1, EGFR and NFI. Cancer Cell 2010;17:
98–110
7. Malavaki CJ, Roussidis AE, Gialeli C, et al. Imatinib as a key inhibitor of the platelet-derived growth factor receptor mediated expression of cell
surface haparan sulfate proteoglycans and functional properties of breast
cancer cells. FEBS J 2013:280:2477–89
8. Lymbouridou R, Soufla G, Chatzinikola AM, et al. Down-regulation of
K-ras and H-ras in human brain gliomas. Eur J Cancer 2009;45:
1294–303
9. 190020 HRAS PROTOONCOGENE, GTPase; HRAS. Available at:
https://www.omim.org/entry/190020.
10. Suqita S, Enokida H, Yoshino H, et al. HRAS as potential therapeutic tar-
get of salirasib RAS inhibitor in bladder cancer. Int J Oncol 2018;53:
725–36
11. Kim KH, Roberts CW. Mechanism by which SMARCB1 loss drives
rhabdoid tumor growth. Cancer Genet 2010;206:260–3
12. Zhang Z, Davies KP, Allen J, et al. Cell cycle arrest and repression of cy-
clin D1 transcription by INI1/BSNF5. Mol Cell Biol 2002:22:5975–88
13. 601607 SWI/SNF-RELATED, MATRIX-ASSOCIATED, ACTIN-
DEPENDENT REGULATOR OF CHROMATIN, SUBFAMILY B, MEM-
BER 1; SMARCB1. Available at: https://www.omim.org/entry/601607.
14. Cheng XJ, Tretiakova M, Gong C, et al. Renal medullary carcinoma: Rhabdoid features and the absence of INH expression as markers of ag-
essive behavior. Mod Pathol 2008;21:647–52
15. Williams EA, Miller JJ, Tummalala SS, et al. TERT promoter wild-type
glioblastomas show distinct clinical features and frequent PI3K pathway
mutations. Acta Neuropathol Commun 2018;6:106
16. Jagani Z, Mora-Blanco EL, Sansam CG, et al. Loss of the tumor suppres-
or Snf5 leads to aberrant activation of the Hedgehog-Gli pathway. Nat
Med 2010;16:1429–33
17. Geller JI, Roth JJ, Biegel JA. Biology and treatment of rhabdoid tumor.
Crit Rev Oncog 2015;201:199–216