Benefícios Metabólicos e Inflamatórios da Abreviação do Jejum Pré-operatório em Cirurgia Pediátrica

Metabolic and Inflammatory Benefits of Reducing Preoperative Fasting Time in Pediatric Surgery

CARLOS AUGUSTO LEITE DE BARROS CARVALHO; AUGUSTO AURELIO DE CARVALHO; ANTONIO D'Oliveira Gonçalves Preza; PAULO LUIZ BATISTA NOGUEIRA; KATIA BEZERRA VELOSO MENDES; DIANA BORGES DOCK-NAASCHMANN; JOSE EDUARDO AGUILAR-NAASCHMANN, TCBC-MT

RESUMO

Objetivo: Avaliar os efeitos metabólicos e inflamatórios da abreviação do jejum pré-operatório em crianças pré-escolares. Métodos: Quarenta crianças foram prospectivamente randomizadas em um grupo chamado jejum (jejum absoluto a partir de 00:00h) e outro chamado de carboidrato (CHO - em que as crianças eram autorizadas a ingirir uma bebida contendo carboidrato duas horas antes da operação). Foram colhidas amostras sanguíneas no pré e pós-operatório imediatos, para dosagens de albumina, interleucina 6, glicemia, insulina, proteína C reativa, e calculada resistência a insulina pelo índice de HOMA-IR. Resultados: O tempo de jejum pré-operatório foi significativamente menor no grupo submetido a abreviação do jejum (11:24h vs 2:49h, p<0,001). Os valores da PCR foram significativamente menores no grupo CHO, tanto no pré quanto no pós-operatório (p=0,05 e p=0,02, respectivamente). Os valores da razão PCR/Albumina foram significativamente menores no grupo CHO no período pré-operatório (p=0,03). Quatro pacientes (21%) do grupo jejum tornaram-se hiperiglicêmicos no pré-operatório, enquanto nenhum teve hiperiglicemia no grupo CHO (p=0,04). Não houveram diferenças estatisticamente significativas nos valores de albumina, interleucina-6, insulina e índice de HOMA entre os grupos. Não houve nenhum evento adverso no trabalho. Conclusão: A abreviação do jejum pré-operatório através do uso de bebidas contendo carboidratos melhora a resposta metabólica e inflamatória no período pré-operatório de crianças pré-escolares submetidas a cirurgia eleita de herniorrafia inguinal.

DESCRITORES: Jejum. Pediatria. Carboidratos. Cuidados Pré-Operatórios.

INTRODUÇÃO

O jejum foi instituído antes dos procedimentos cirúrgicos/anestésicos com o objetivo de reduzir o conteúdo gástrico no momento da indução anestésica, visando a diminuição do risco de vômitos e consequentemente de broncoaspiração deste conteúdo, o que pode ocasionar consequências graves. A Sociedade Americana de Anestesiologia (ASA) publicou seu primeiro guideline de jejum pré-operatório no final da década de 90, e desde então autoriza a utilização de líquidos claros ou sem resíduos em até duas horas antes de procedimentos que requerem anestesia geral, anestesia regional ou sedação1. Outras importantes Sociedades de Anestesiologia também autorizam a utilização destes líquidos como forma de abreviar o tempo de jejum pré-operatório2,3. Entretanto, trabalhos atuais vêm mostrando que esses guidelines não vem sendo seguidos rotineiramente em hospitais que operam crianças, e várias publicações evidenciam um tempo de jejum muito prolongado nos pacientes pediátricos4-6. Este longo tempo de jejum pré-operatório tem consequências clínicas e metabólicas para estes pacientes. As crianças submetidas a jejum prolongado têm maiores índices de fome e sede, irritabilidade, ansiedade, desconforto, mal estar, desidratação (podendo provocar dificuldades na realização de acesso venoso), cefaleia e atraso na recuperação cirúrgica7-9. Além disso, estes pacientes apresentam-se com depleção dos estoques de glicogênio e aumento da gliconeogênese, piora do catabolismo com maiores níveis plasmáticos de corpos cetônicos e ácidos graxos, piora da hiperiglicemia e resistência insulínica no período pós-operatório10,11.
O tradicional realizado pelos cirurgiões é a prescrição de jejum absoluto a partir de 00:00h na noite anterior ao procedimento. Esta é uma recomendação fácil de ser realizada, amplamente aceita, não necessita de cálculos e pode ser facilmente transmitida aos pacientes e seus familiares. Porém, esta prescrição não especifica o tempo de jejum necessário para cada qualidade de alimento, não considera o horário estabelecido para o procedimento cirúrgico no dia seguinte e não leva em consideração os constantes atrasos do centro cirúrgico. Ademais, tempos prolongados de jejum não promovem redução adicional do volume residual gástrico ou aumento da segurança do procedimento.

O tempo de jejum pré-operatório pode ser reduzido através do uso de bebidas ricas em carboidratos, que podem ser utilizadas até duas horas antes do procedimento cirúrgico. Estudos em adultos vêm relatando os benefícios desta conduta, como melhor bem estar, melhor metabolismo glicêmico com diminuição da resistência insulínica em até 50% no pós-operatório e redução da perda de massa magra, resultando em melhor recuperação cirúrgica12-14. Alguns destes benefícios também já estão sendo publicados em crianças, como menores concentrações de insulina e menor resistência insulínica nos pacientes submetidos a abreviação do jejum15,16.

Entretanto, a abreviação do tempo de jejum pré-operatório em crianças, com uso de bebidas ricas em carboidratos é um tema pouco estudado e ainda carece de mais trabalhos. Não há na literatura uma investigação ampla sobre a reação inflamatória de fase aguda associada a essa conduta nos pacientes pediáticos. Nosso grupo estudou previamente a segurança da abreviação do jejum pré-operatório com uso de bebida contendo maltodextrina durante um mutirão nacional de cirurgias pediátricas, obtendo bons resultados17. Neste contexto, o Projeto ACERTO18 vem fomentando essas mudanças de paradigmas no Brasil, como a abreviação do jejum pré-operatório, porém ainda não há um estudo desse projeto em crianças. Dessa maneira, este trabalho tem como objetivo avaliar os efeitos metabólicos e inflamatórios da abreviação do jejum pré-operatório, através do uso de uma bebida rica em carboidratos, em crianças pré-escolares submetidas a herniorrafia inguinal.

MÉTODOS

Este é um estudo prospectivo, randomizado e controlado realizado no hospital Santa Casa de Misericórdia de Cuiabá, MT, onde foram incluídas crianças provenientes do ambulatório de Cirurgia Pediátrica, com idades entre 2 a 6 anos, e risco anestésico classificado como ASA I ou II, que foram operadas de herniorrafia inguinal uni ou bilateral em caráter eletivo. O tamanho da amostra foi determinado através da dosagem de PCR em um estudo piloto, com um poder de 80% e erro alfa de 5%, quando foi calculado que uma amostra de 17 pacientes em cada grupo seria suficiente (stoa.usp.br/edsonzm/files/2423/15156/Calculadora.xls). A randomização foi feita pelo software Graphpad® no momento da internação hospitalar, e os pacientes foram randomizados em dois grupos: um grupo chamado de jejum, em que foi prescrito jejum absoluto a partir de 00:00h, e grupo carboidrato - CHO, em que foi prescrito jejum para sólidos a partir de 00:00h e oferecido uma bebida contendo carboidrato (maltodextrina a 12,5% diluídos em 150 ml de água) aproximadamente duas horas antes da operação. A indução anestésica foi realizada com máscara e anestésico inalatório (Sevorane®) em todas as crianças, e após a sedação do paciente foi realizado acesso venoso em membro superior com Abocath® para coleta de amostra de sangue denominada como pré-operatório (este acesso foi mantido salinizado e exclusivo para amostras sanguíneas).
Também foi realizado outro acesso venoso em membro superior contra-lateral ao anterior para realização de hidratação venosa e medicações anestésicas. Imediatamente após o término da cirurgia, foi novamente coletada amostra sanguínea, denominada como pós-operatório (em acesso exclusivo para este fim), antes do paciente despertar da anestesia. As amostras de sangue foram enviadas ao laboratório para realização de dosagens de albumina, interleucina 6 (IL-6), glicemia, insulina e proteína C reativa (PCR). O cálculo da resistência insulínica foi realizado através do Índice de HOMA-IR, pela fórmula: [Glicemia jejum (mg/dL) x 0,0555 x Insulina (uU/mL)] /22,5.

O tipo de anestesia realizada, o manejo de fluidos no intra-operatório e a profilaxia para vômitos foram a critério do anestesiologista. Todos os pacientes foram submetidos a herniorrafia inguinal por inguinotomia, com ligadura do saco herniário com fio absorvível de ácido poliglicólico 3-0 ou 4-0. Os pacientes receberam alta hospitalar no mesmo dia da cirurgia.

Este estudo foi realizado conforme a Declaração de Helsinque pela Associação Médica Mundial, e foi aprovado pelo comitê de ética em pesquisa da instituição sob número 5193251540005541. Todos os pais e responsáveis assinaram um termo de consentimento livre e esclarecido (TCLE).

Os dados foram analisados pelo programa estatístico Statistical Package for the Social Sciences (SPSS) Version 22. Os resultados foram apresentados em medidas de mediana e intervalo interquartil (IIQ) ou média e desvio padrão (DP). Utilizou-se o teste de Fisher ou qui-quadrado para variáveis categóricas, e para os dados contínuos o teste de Mann-Whitney ou o teste t de Student. A evolução das dosagens laboratoriais foi analisada pelo teste ANOVA de medidas repetidas. Foi considerado um resultado estaticisticamente significativo quando o valor de p foi igual ou menor que 5% (p = ou <0,05).

RESULTADOS

Inicialmente foram elegíveis 54 crianças para participação no estudo entre fevereiro de 2016 a outubro de 2017. Posteriormente, 14 crianças foram excluídas por uma variedade de motivos: pais não aceitaram participação no estudo; cirurgia suspensa devido sintomas respiratórios; falha durante coleta laboratorial; outras patologias cirúrgicas concomitantes ou violação do protocolo perioperatorário (não ingestão da bebida rica em carboidrato), resultando em 21 pacientes no grupo intervenção e 19 no grupo jejum, como mostrado na figura 1. Todas as crianças foram operadas pelo mesmo cirurgião. Inicialmente os pacientes receberam anestesia inalatória e 20 (50%) foram submetidas a raquianestesia, 7 (17,5%) a peri-dural sacral e 13 (32,5%) a bloqueio íleo-inguinal, sem diferença entre os grupos (p=0,85). A hidratação utilizada durante o procedimento foi com solução fisiológica 0,9% (média: 0,43 variando de 0,05 a 1,44 mL/kg/min). A profilaxia para vômitos foi feita com ondansetrona (0,1 mg/kg), porém 15 crianças em cada grupo receberam também dexametasona na dose de 0,1 mg/kg durante a cirurgia (grupo jejum 15/19 vs CH 15/21, p=0,58). Não houve nenhum caso de complicação perioperatorária (incluindo vômitos ou broncoaspiração durante a indução anestésica) ou óbito. A distribuição dos pacientes conforme o sexo, idade, peso, diagnóstico, risco anestésico e hemoglobina pré-operatória mostrou semelhança entre os grupos. O tempo operatório variou entre 15 e 55 minutos, e foi semelhante entre os grupos (jejum: 32 min ± 11 x CHO: 30 min ± 7, p=0,65), conforme apresentado na tabela 1.
Figura 1. Diagrama de fluxo Consolidated Standards of Reporting Trials (Consort).
O tempo de jejum pré-operatório foi significativamente menor no grupo CHO em comparação ao grupo jejum (2:49h vs 11:24h, p<0,001), conforme mostrado na figura 2.

Na análise de evolução das dosagens laboratoriais do pré para o pós operatório, analisadas pelo teste de ANOVA de medidas repetidas, houve significante redução nos valores de PCR apenas no grupo CHO (p=0,01).

Os valores da PCR foram significativamente menores no grupo CHO, tanto no pré-operatório (grupo jejum: 3,60 ± 7,60 mg/L vs grupo CHO: 0,53 ± 0,59 mg/L; p=0,05) quanto no pós-operatório (grupo jejum: 3,53 ± 7,75 mg/L vs grupo CHO: 0,49 ± 0,53 mg/L, p=0,02), conforme mostrado na figura 3. Os valores da razão PCR/Albumina também foram significativamente menores no grupo CHO no período pré-operatório (0,89 ± 1,86 vs 0,13 ± 0,15, p=0,03). No período pós-operatório, houve uma tendência a menores valores no grupo CHO (0,91 ± 1,97 vs 0,13 ± 0,15, p=0,08), conforme apresentado na figura 4. Em termos evolutivos, na análise de evolução das dosagens laboratoriais pelo teste de ANOVA a razão PCR/Albumina foi marginalmente menor no grupo CHO (p=0,07).

Tabela 1. Comparação clínica e demográfica dos pacientes estudados.

	Grupo jejum	CHO	p
Sexo (n, %)			
Masculino	15 (78,9)	14 (66,7)	0,38
Feminino	4(21,1)	7 (33,3)	
Idade (média em anos)	3,42 ± 1.01	4,10 ± 1.37	0,08
Peso (média em Kg)	16,7 ± 3.06	18,6 ± 5.28	0,17
Diagnóstico (n, %)			
Hérnia inguinal direita	12 (63,2)	10 (47,6)	0,58
Hérnia inguinal esquerda	2 (10,5)	4 (19)	
Hérnia inguinal bilateral	5 (26,3)	7 (33,3)	
Risco anestésico (n, %)			
ASA I	18 (94,7)	21 (100)	0,28
ASA II	1 (5,3)	0	
Hemoglobina pré-operatória (g/dl)	12,5 ± 1.28	12,7 ± 0,79	0,51
Tempo de atividade da protombina (%)	92,5 ± 9,15	91,4 ± 9,64	0,73
Tempo operatório (minutos)	32 ± 11	30 ± 7	0,65
DISCUSSÃO

Os resultados deste trabalho demonstram que a abreviação do jejum pré-operatório em crianças saudáveis com o uso de bebidas ricas em carboidratos reduz a reação inflamatória relacionada ao trauma cirúrgico nos períodos pré e pós-operatório. Isto foi evidenciado através de menores valores de PCR e da relação PCR/Albumina, em comparação a crianças submetidas a jejum habitual. PCR é uma proteína de fase aguda que tem seus níveis elevados em resposta à inflamação. Em contrapartida, albumina é uma proteína de fase aguda com resposta negativa, e inversamente associada com a magnitude da resposta inflamatória. Acrescente-se a isso outro potencial benefício metabólico evidenciado na pesquisa: o nível da glicemia no perioperatório. Neste aspecto, os resultados mostraram que a administração de uma bebida contendo carboidrato duas horas antes da operação não elevou a glicemia em nenhum dos 21 pacientes estudados, contrastando com a elevação da glicemia em 1/5 dos pacientes que permaneceram em jejum tradicional. Uma extrapolação simples e direta é que o jejum prolongado transforma crianças normais em pacientes semelhantes a portadores de *diabetes mellitus* tipo II, mesmo antes do trauma cirúrgico, o que pode predispor a complicações perioperatório. Além disso, uma associação entre morbidade e altos níveis de glicose intra-operatória (>150mg/dL) em pacientes pediátricos submetidos a cirurgias cardíacas já foram reportados.

Tabela 2. Resultados laboratoriais no pré e pós-operatório.

	Pré-operatório	Pós-operatório				
	Grupo Jejum	Grupo CHO	p	Grupo Jejum	Grupo CHO	p
Albumina	4,08 ± 0,39	4,12 ± 0,29	0,94	3,82 ± 0,48	3,77 ± 0,29	0,53
IL-6	1,5 ± 2,6	2,0 ± 1,3	0,98	2,0 ± 2,3	1,5 ± 2,0	0,41
Glicemia	88 ± 16	86 ± 9	0,32	91 ± 34	93 ± 24	0,60
Insulina	3,09 ± 6,34	2,53 ± 1,80	0,69	4,90 ± 4,52	4,55 ± 3,43	0,78
HOMA-IR	0,86 ± 2,05	0,54 ± 0,40	0,49	1,57 ± 1,86	1,13 ± 1,05	0,37
Os resultados deste trabalho, tanto metabólicos quanto inflamatórios são de extrema relevância e sugerem com propriedade a indicação da abreviação do jejum com bebidas contendo carboidratos duas horas antes da indução anestésica em cirurgias eletivas de crianças.

Nossos resultados mostraram valores similares de resistência a insulina entre os grupos durante o perioperatório, medidas pelo índice de HOMA-IR. Este índice pode não corresponder ao valor exato da resistência a insulina, conforme relatado por vários autores que pontuam diversas críticas a este método. O "clamp" euglicêmico-hiperinsulinêmico é o método gold standart para esta avaliação conforme a literatura²¹, porém este teste seria muito difícil de ser executado neste estudo.

Diversos outros estudos corroboram os benefícios da abreviação do jejum através do uso de líquidos claros enriquecidos de carboidratos antes da operação em adultos. Dock-Nascimento et al. consistentemente mostraram benefícios da abreviação do jejum do ponto de vista metabólico e inflamatório, e até anti-oxidativo²². Pexe-Machado et al. também mostraram redução da razão PCR/Albumina em pacientes submetidos à ressecção gastrointestinal por câncer e que receberam abreviação do jejum com bebidas contendo carboidratos²³. Como a concentração sérica de PCR atinge um pico 24-72 horas após a injúria tecidual, provavelmente não foi observado um aumento nos valores desta variável no pós-operatório devido sua coleta ter sido realizada com menos de 1 hora após o início do trauma cirúrgico.

No entanto, entre os grupos os valores da PCR diferiram nos dois momentos, sugerindo um efeito da bebida com carboidratos que pode diminuir a inflamação da fase aguda induzida pelo jejum prolongado. Outrossim, a coleta de exames no período pós-operatório foi logo ao final do procedimento cirúrgico (por motivos éticos, antes da retirada do acesso venoso), e poderíamos encontrar uma diferença entre os grupos mais importante se a coleta fosse realizada algumas horas após o término da cirurgia, pois sabe-se que a citocina IL-6 atinge um pico sérico em torno de seis horas após o término do procedimento²⁴. Além disso, o procedimento cirúrgico escolhido para a realização do trabalho foi de hemiorrifa inguinal, que é uma cirurgia que demanda baixo trauma operatório e pequeno tempo cirúrgico, com rápida recuperação dos pacientes. Ademais nós não procuramos por diferenças em parâmetros clinicos entre os grupos, que consideramos uma área potencial para estudos futuros. O uso de dexametasona para prevenção de náuseas e vômitos pós-operatórios pode levar a implicações nas medidas laboratoriais, porém não houve diferenças estatísticas na frequência de uso desta medicação entre os grupos.

Observamos a necessidade de estudos complementares em cirurgias de maior porte, pois podemos inferir que a abreviação do jejum com uso de bebidas ricas em carboidrato tenha efeitos mais significativos em atenuar a resposta metabólica e inflamatória ao trauma em cirurgias com maior tempo operatório e que resultem em maior trauma cirúrgico.

No presente estudo, optou-se por estudar a abreviação do jejum, prescrição defendida pelo Projeto ACERTO há muitos anos, em crianças. Acreditamos que esta investigação tenha relevância no contexto mundial pela carência de trabalhos sobre este tópico em crianças. Este trabalho abre espaço para outros pesquisadores na Cirurgia Pediátrica poderem reproduzir o modelo utilizado e apresentarem seus resultados. A consistência de outros resultados nos futuros estudos servirão para alicerçar essa conduta dentro da Cirurgia Pediátrica. Inegável estímulo já foi dado pela Associação Brasileira de Cirurgia Pediátrica - CIPE, que em reunião realizada em 2015, aprovou o apoio das diretrizes do Projeto Acerto para a população pediátrica²⁵.
Neste trabalho o poder da amostra não foi calculado para avaliar o risco de broncoaspiração; porém não foi observado nenhum caso de complicação perioperatória que poderia ser associado a abreviação do jejum, como vômitos na indução anestésica ou mesmo broncoaspiração pulmonar. Apesar deste ensaio consistir em uma pequena amostra de pacientes, este é um importante desfecho, e mostrou que o uso desta bebida foi segura neste trabalho, corroborando com a literatura que vem relatando a segurança de se abreviar o tempo de jejun pré-operatório através do uso de líquidos sem resíduos, que possuem um esvaziamento gástrico rápido26-28.

Em suma, a análise global dos resultados permite pesquisadores a continuar estudando as modificações no jejun pré-operatório recomendadas para crianças. Uma visão geral dos resultados mostrou que o protocolo estudado é seguro e acrescenta benefícios para os pequenos pacientes. Para futuras pesquisas, seria interessante o estudo deste protocolo em cirurgias maiores, com novos marcadores e ainda possíveis efeitos clínicos de relevância para crianças nesta faixa etária, quais sejam irritabilidade, náuseas, vômitos e ansiedade dos pais.

CONCLUSÃO

A abreviação do jejun pré-operatório, através do uso de bebidas contendo carboidratos administradas duas horas antes da operação melhora a resposta metabólica e inflamatória no perioperatório em crianças pré-escolares submetidas à cirurgia eletiva de herniorrafia inguinal.

ABSTRACT

Objective: To investigate the metabolic/inflammatory impact of reducing the preoperative fasting time in preschool children. Methods: Forty children were randomly assigned to a fasting group (absolute fasting after 00:00) and a carbohydrate (CHO) group (allowed to ingest, two hours before surgery, a carbohydrate-rich beverage). Blood samples were collected right before and after surgery to quantify the levels of albumin, interleukin-6, glucose, insulin, C-reactive protein and to calculate insulin resistance by the HOMA-IR index. Results: Preoperative fasting time in the CHO group were shorter than in the fasting group (2.49h vs. 11.24h, p <0.001). Pre- and post-surgical CRP levels were significantly lower in the CHO group (p = 0.05 and p = 0.02, respectively). The preoperative CRP/albumin ratios in the CHO group were lower than in the fasting group (p = 0.03). Four patients (21%) in the fasting group but none in the CHO group were hyperglycemic before surgery (p = 0.04). The two groups had similar levels of albumin, interleukin-6, insulin and HOMA index. There were no adverse events. Conclusion: Reducing the preoperative fasting time with carbohydrate-rich beverages improves the perioperative metabolic and inflammatory responses of preschool children undergoing inguinal hernia surgery.

Keywords: Fasting. Carbohydrates. Preoperative Care. Pediatrics.
5. Brunet-Wood K, Simons M, Eviuk A, Mazurak V, Dicken B, Ridley D, et al. Surgical fasting guidelines in children: are we putting them into practice? J Pediatr Surg. 2016;51(8):1298-302.

6. Newton RJG, Stuart GM, Willridge DJ, Thomas M. Using quality improvement methods to reduce clear fluid fasting times in children on a preoperative ward. Pediatr Anesth. 2017;27(8):793-800.

7. Gebremedhin EG, Nagaratnam VB. Audit on preoperative fasting of elective surgical patients in an African Academic Medical Center. World J Surg. 2014;38(9):2200-4.

8. Dolgun E, Yavuz M, Eroglu B, Islamoglu A. Investigation of preoperative fasting times in children. J Perianesth Nurs. 2017;32(2):121-4.

9. Jiang W, Liu X, Liu F, Huang S, Yuan J, Shi Y, et al. Safety and benefit of pre-operative oral carbohydrate in infants: a multi-center study in China. Asia Pac J Clin Nutr. 2018;27(5):975-9.

10. Andersson H, Schmitz A, Frykholm P. Preoperative fasting guidelines in pediatric anesthesia: are we ready for a change? Curr Opin Anaesthesiol. 2018;31(3):342-8.

11. Nygren J, Thorell A, Ljungqvist O. Preoperative oral carbohydrate therapy. Curr Opin Anaesthesiol. 2015;28(3):364-9.

12. Aguilar-Nascimento JE, Dock-Nascimento DB. Reducing preoperative fasting time: A trend based on evidence. World J Gastrointest Surg. 2010;2(3):57-60.

13. Weimann A, Braga M, Carli F, Higashiguchi T, Hübner M, Klek S, et al. ESPEN guideline: Curr Nutr. 2017;36(3):623-50.

14. Aguilar-Nascimento JE, Salomão AB, Waitzberg DL, Dock-Nascimento D, Correa MITD, Campos ACL, et al. ACERTO guideline for perioperative nutritional interventions in elective general surgery. Rev Col Bras Cir. 2017;44(6):633-48.

15. Gawecka A, Mierzwiska-Schmidt M. Tolerance of, and metabolic effects of preoperative oral carbohydrate administration in children - a preliminary report. Anaesthesiol Intensive Ther. 2014;46(2):61-4.

16. Yurtcu M, Gunel E, Sahin TK, Sivrikaya A. Effects of fasting and preoperative feeding in children. World J Gastroenterol. 2009;15(39):4919-22.

17. Carvalho CALB, Carvalho AA, Nogueira PLB, Aguilar-Nascimento JE. Changing paradigms in preoperative fasting: results of a task force in Pediatric Surgery. ABCD Arq Bras Cir Dig. 2017;30(1):7-10.

18. Projeto Acerto [Internet]. Available from: http://projetoacerto.com.br/

19. Guidelines for the Brazilian Diabetes Society 2017-2018 [Internet]. São Paulo: Clannad; 2017 [cited 2018 Jan 1]. Available from: https://www.diabetes.org.br/profissionais/images/2017/diretrizes/diretrizes-sbd-2017-2018.pdf

20. Alves RL, Cerqueira MP, Kraychete NCC, Campos GO, Martins MJ, Módolo NSP. Perioperative blood glucose level and postoperative complications in pediatric cardiac surgery. Arq Bras Cardiol. 2011;97(5):372-9.

21. Baban B, Thorell A, Nygren J, Bratt A, Ljungqvist O. Determination of insulin resistance in surgery: the choice of method is crucial. Clin Nutr. 2015;34(1):123-8.

22. Dock-Nascimento DB, Aguilar-Nascimento JE, Faria MSM, Caparossi C, Shessarenko N, Waitzberg DL. Evaluation of the Effects of a Preoperative 2-Hour Fast With Maltodextrine and Glutamine on Insulin Resistance, Acute-Phase Response, Nitrogen Balance, and Serum Glutathione After Laparoscopic Cholecystectomy: A Controlled Randomized Trial. JPEN J Parenter Enteral Nutr. 2012;36(1):43-52.

23. Pexe-Machado PA, Oliveira BD, Dock-Nascimento DB, Aguilar-Nascimento JE. Shrinking preoperative fast time with maltodextrin and protein hydrolysate in gastrointestinal resections due to cancer. Nutrition. 2013;29(7-8):1054-9.

24. Yamashita Y, Shimada M, Hamatsu T, Rikimaru T, Tanaka S, Shirabe K, et al. Effects of preoperative steroid administration on surgical stress in hepatic resection. Arch Surg. 2001;136(3):328-33.

25. Brazilian Association of Pediatric Surgery [Internet]. New CIPE Board decisions [cited 2017 Nov 1]. Available from: http://www.cipe.org.br/novas-decisoes-da-diretoria-da-cipe/

26. Schmidt AR, Buehler P, Seglias L, Stark T, Brotschi B, Renner T, et al. Gastric pH and residual volume after 1 and 2 h fasting time for clear fluids in children. Br J Anaesth. 2015;114(3):477-82.
27. Song IK, Kim HJ, Lee JH, Kim EH, Kim JT, Kim HS. Ultrasound assessment of gastric volume in children after drinking carbohydrate-containing fluids. Br J Anaesth. 2016;116(4):513-7.

28. Andersson H, Zarén B, Frykholm P. Low incidence of pulmonary aspiration in children allowed intake of clear fluids until called to the operating suite. Paediatr Anaesth. 2015;25(8):770-7.

Endereço para correspondência:
Carlos Augusto Leite de Barros Carvalho
E-mail: cautocba@hotmail.com
stefhane_r@hotmail.com

Recebido em: 17/09/2019
Aceito para publicação em: 20/11/2019
Conflito de interesses: nenhum.
Fonte de financiamento: nenhuma.