MMR Deficiency Does Not Sensitize or Compromise the Function of Hematopoietic Stem Cells to Low and High LET Radiation

Rutul Kumar Patel, a,*, Yulan Qing, b, Lucy Kennedy, c, Yan Yan, b, John Pink, b, Brittany Aguila, d, Amar Desai, c,*, Stanton L. Gerson, b, Scott M. Welford e

Key Words. Hematopoiesis • Hematopoietic stem cell • Stem cells • Ionizing radiation • DNA mismatch repair • Mlh1

ABSTRACT

One of the major health concerns on long-duration space missions will be radiation exposure to the astronauts. Outside the earth's magnetosphere, astronauts will be exposed to galactic cosmic rays (GCR) and solar particle events that are principally composed of protons and He, Ca, O, Ne, Si, Ca, and Fe nuclei. Protons are by far the most common species, but the higher atomic number particles are thought to be more damaging to biological systems. Evaluation and amelioration of risks from GCR exposure will be important for deep space travel. The hematopoietic system is one of the most radiation-sensitive organ systems, and is highly dependent on functional DNA repair pathways for survival. Recent results from our group have demonstrated an acquired deficiency in mismatch repair (MMR) in human hematopoietic stem cells (HSCs) with age due to functional loss of the MLH1 protein, suggesting an additional risk to astronauts who may have significant numbers of MMR-deficient HSCs at the time of space travel. In the present study, we investigated the effects of gamma radiation, proton radiation, and 56Fe radiation on HSC function in Mlh1+/− and Mlh1−/− marrow from mice in a variety of assays and have determined that while cosmic radiation is a major risk to the hematopoietic system, there is no dependence on MMR capacity.

SIGNIFICANCE STATEMENT

The hematopoietic system is essential for life, and normally has the capacity to sustain function for the duration of our lifetimes in spite of natural declination, which is associated with loss of DNA repair (including as DNA mismatch repair). Astronauts are exposed to ionizing radiation sources that are not commonly found on earth (such as HZE ions) and thus may display unforeseen risks that need accounting in NASA risk models.

INTRODUCTION

Exposure to ionizing radiation (IR) is considered to be one of the major risk factors during space activities, especially long-duration space missions [1, 2]. Astronauts on missions to the International Space Station, the moon, or Mars will be exposed to IR with effective total doses in the range of 5–200 cGy (centigray) based on projected mission scenarios [3, 4]. The primary components of space radiation are galactic cosmic rays (GCR) and radiation from solar energetic particles [5]. This space radiation consists of 85% protons, 14% helium nuclei, and 1% high-energy, high-charge (HZE) particles, including oxygen (16O), carbon (12C), silicon (28S i), iron (56Fe) ions [6]. HZE radiation is of particular concern because it causes high linear-energy transfer (high-LET) damage in biological targets and induces repair-refractory clustered DNA damage in cells [2, 7–10]. These types of damage directly affect cell survival and genomic integrity in surviving cells [11]. In addition, it is estimated that for every cell traversed by a potentially lethal HZE nucleus (e.g., 56Fe), another 32 cells are hit by 0.5–1.0 Ry decreases that could induce non-lethal mutations [12]. 56Fe has been thought to be the most biologically important HZE particles, since it may be the single largest naturally occurring particle [6].

The hematopoietic system is one of the most radiosensitive tissues of the body [13]. Hematopoietic stem cells (HSCs) reside in bone marrow (BM) and are responsible for generation and maintenance of multiple cell lineages in the blood supply [14]. It is well known that total body irradiation (TBI) affects both mature blood cells and hematopoietic stem/progenitor cells and causes both acute radiation hematopoietic syndrome
and long-term BM injury [15, 16]. HZE particles like 56Fe ions have been shown to be more toxic than γ rays with lethal doses (LD)50/30 (a radiation dose at which 50% lethality occurs at 30-day) of 5.8 Gy compared with 7.25 Gy for γ rays. Mice irradiated with a lethal dose of 56Fe showed significantly lower white blood cell (WBC) recovery at 4 weeks post-IR, compared to γ-IR mice [17]. 56Fe-IR caused loss of hematopoietic stem/progenitor cells immediately after IR, which was maintained for up to 8 weeks [18]. In addition, protons, 26Si ions and 56Fe ions are also known to induce hematopoietic malignancies such as acute myeloid leukemia (AML), although not necessarily with greater efficiency than γ irradiation [19, 20].

Exposure of mice to 1 Gy 56Fe results in highly complex chromosome aberrations, including dicentrics, as well as translocations, insertions andacentric fragments, which is unlike the damage from γ radiation. Cells exhibiting these aberrations disappear rapidly after exposure, probably as a result of death of heavily damaged cells. Cells with apparently simple exchanges as their only aberrations, appear to survive longer than heavily damaged cells. Eight weeks after exposure, the frequency of cells showing cytogenetic damage was reduced to less than 20% of the levels evident at 1 week. These results indicate that exposure to 1 Gy 56Fe produces heavily damaged cells, a small fraction of which appear to be capable of surviving for relatively long periods [21, 22]. In addition, exposure to low doses of 56Fe resulted in significant epigenetic alterations involving methylation of DNA, and expression of repetitive elements, which is also unique to high LET radiation [23]. Therefore, while damage from terrestrial γ radiation and x-rays forms the basis our understanding of cellular responses to DNA damage, GCR provides a unique cellular stress and highlights gaps in current models describing the response of biological systems to space radiation.

IR causes not only DNA strand breaks, but also nucleotide base and sugar damage [24]. Analyses of gamma ray and 56Fe induced murine AML samples have identified similar molecular changes, including biallelic loss and/or mutation of PU.1. Microsatellite instability (MSI), is a commonly observed marker of DNA mismatch repair (MMR) deficiency, has been observed in 42% of AML samples induced by gamma rays or 56Fe [25]. MMR is an essential DNA repair pathway responsible for maintaining genomic integrity primarily by removing base mismatches and small insertion/deletion loops introduced during replication or under genomic stress [26]. In humans, MMR gene defects (most notably in the MLH1, MSH2, MSH6, PMS2 genes) and MSI have been most closely associated with Lynch Syndrome [27–29], but are also found in an increasing number of tumor types [30]. MMR deficiency has also been identified in primary and secondary hematopoietic malignancies and in leukemia and lymphoma cell lines [31–33]. Exposure of MMR-deficient mice to gamma radiation results in hypermutability compared to wild-type mice, and much of this hypermutability can be attributed to induced instability of simple sequence repeats [34]. Interestingly, recent results from our laboratory have demonstrated that acquired MMR deficiency and increased MSI in human hematopoietic stem and progenitor cells is age-related, attributable to progressive loss of Mlh1 through promoter hypermethylation [35, 36]. The data show that as many as 30% of HSCs in healthy individuals have lost MLH1 by 45 years of age, which is well within the age range of current and former astronauts. Therefore, TBI may pose an unappreciated risk to astronauts on deep space missions if they have significant numbers of MMR defective HSCs.

Although the effects of protons and HZE ions on normal mouse hematopoietic systems have been characterized at the effector cell level [17, 37], the impacts on HSC function are not fully known. Importantly, in humans demonstrating diminished MMR capacity, the potential for loss of HSC function and/or malignant transformation may be greater [35]. Therefore, the role of MMR in response to γ and GCR radiation damage needs to be carefully examined. In this study, we used Mlh1-deficient mice to investigate the importance of the MMR system on the response of HSCs to protons and 56Fe, in comparison to γ radiation, with an aim to investigate the risk of hematopoietic failure in astronauts on deep space missions. In short, we find that while heavy ions are more damaging than gamma radiation to HSC functionality, no additional deficits in hematopoietic function were identified. The data suggest that the greater risk of MMR deficient HSCs likely lies in malignant transformation rather than hematopoietic failure.

Materials and Methods

Mice

B6.129-Mlh1m1Jراك/NCI heterozygous mice were obtained from NCI and then mated to produce Mlh1$^{+/+}$ and Mlh1$^{-/-}$ mice for the study. C57BL/6J mice were purchased from Jackson Laboratory, Harbor, ME, congenic strain B6.SJL-PtpcrcPepcc/BoyCrCrl (Boy), CD45.1) mice were obtained from Charles River Laboratory. All the mice were group-housed in ventilated microisolator cages in a specific pathogen-free facility. Mice had ad libitum access to food (Laboratory Rodent Diet 5LOD, Lab Diet, St. Louis, MO) and water. The animal housing room was maintained on a 12:12 hours light:dark cycle and constant temperature (72°F ± 2°F). Male and female mice between 8 and 16 weeks of age were used for the study. All mouse studies were approved by the Institutional Animal Care and Use Committee at Case Western Reserve University (Cleveland, OH), and Brookhaven National Laboratory (BNL) (Upton, NY).

Radiation

Two to three month old, male and female, and Mlh1$^{+/+}$ and Mlh1$^{-/-}$ mice were used for the study. Proton and 56Fe irradiation were performed at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratories. After 7 days of acclimation, the mice were exposed to TBI with 1 Gy of protons (1,000 MeV) or 56Fe (600 MeV/n). Gamma irradiations were performed at BNL using a 137Cs source for Mlh1$^{+/+}$ and Mlh1$^{-/-}$ animals, and at Case Western Reserve University for recipient mice irradiated with 11 Gy. Sham irradiated animals that traveled to BNL were used as controls. One set of sham irradiated Mlh1$^{+/+}$ and Mlh1$^{-/-}$ mice was used to compare 1H ion and 56Fe ion irradiated mice while second set of sham irradiated Mlh1$^{+/+}$ and Mlh1$^{-/-}$ mice were used to compare γ-ray irradiated mice because they were exposed on different trips to Brookhaven National Laboratory.

Peripheral Blood and BM Collection

Peripheral blood (PB) was collected from the submandibular vein using a heparinized hematocrit capillary tube. Complete blood count was measured by a Hemavet 950 FS that gives 5-part differential with 21 and 27-

© 2018 The Authors STEM CELLS TRANSLATIONAL MEDICINE published by Wiley Periodicals, Inc. on behalf of AlphaMed Press
gauge needles and syringes to collect the BM. The number of BM cells was counted using a hemocytometer.

Colony-Forming Unit Assays

BM mononuclear cells were cultured in methylcellulose medium containing cytokines, including mouse interleukin 3, human interleukin 6, mouse stem cell factor, and human erythropoietin, MethoCult GF M3434 (Stem Cell Technologies, Vancouver, BC). Total numbers of colony-forming unit (CFU) colonies were scored on day 7, according to the manufacturer's protocol. Two separate experiments of three plates each per radiation exposure were performed, and combined results were shown in the results.

Flow Cytometry

Flow cytometry was performed on a BD LSRII (BD Biosciences, San Jose, CA), and data were analyzed using FlowJo software (TreeStar, Ashland, OR). Antibodies include CD45.2 (clone 104), CD45.1 (clone A20), Ly-6G (Gr-1, clone RB6-8C5), CD11b (Mac-1, clone M1/70), CD45R/B220 (clone RA3–6B2), CD3 (clone 500A2), and Ter119/Ly76 (clone Ter-119), Sca1 (Ly-6A/E, clone D7), c-Kit (CD117, clone 2B8), CD48 (clone HM48-1, BD Bioscience) and CD150 (clone TC15-12F12.2, Biolegend, San Diego, CA).

Competitive Repopulation Assay

All mice were sacrificed roughly 3 months post radiation exposure and BM cells were collected for competitive repopulation assay. 2 × 10⁶ BM cells from mice (CD45.2) of each genotype were mixed with the same number of wild type (CD45.1) competitor BM and transplanted into lethally irradiated (11 Gy) BoyJ recipients (CD45.1) through lateral tail veins. The recipients were monitored and analyzed for hematopoietic reconstitution. PB was collected 8 weeks and 16 weeks post BM transplant to measure percentage contribution of CD45.2 cells in circulation.

Statistical Analysis

Statistical analysis was performed using GraphPad 5.0. Student’s t tests were used to determine the significance of pairwise comparisons; ANOVA were used for dose response analyses, and log-rank tests were used to analyze survival curves. p < .05 was the measure of statistical significance.

RESULTS

High LET Radiation Induces Similar Long-Term Damage to the BM as γ Radiation

In order to begin to assess the effects of high LET radiation on MMR defective HSCs, we first sought to establish the effects of ⁵⁶Fe compared to γ radiation on stem cell function. Various studies in the literature have demonstrated that ⁵⁶Fe and other high LET sources can damage hematopoiesis with different relative biological effectiveness (RBE) [17, 38]. We thus assessed BM cellularity; enumerated Sca1+ c-Kit+ Lin- (SKL) cells; measured proliferation; and determined repopulation capacity all at a latent time point. As seen in Figure 1A, at 3 months after exposure to 1 Gy of γ or ⁵⁶Fe radiation, BM cellularity was unchanged in the animals compared to control animals. In contrast, the SKL populations in the animals dropped by greater than 50% in both the γ and ⁵⁶Fe groups. Notably, there was no significant difference between the two radiation sources. HSCs are known to rapidly reenter the cell cycle from quiescence in response to hematopoietic stresses in order to regain homeostasis. By 3 months, however, both the irradiated cohorts displayed HSC proliferation that was identical to the non-irradiated animals, as evidenced by BrdU incorporation (Fig. 1C). The behavior was similar with the broader SKL population as well as the more primitive CD48- SKL cells. Finally, we measured the functionality of the irradiated HSCs by performing a competitive transplantation assay using unirradiated marrow injected into lethally irradiated hosts. We observed that the irradiated marrow was functionally challenged and had grafting potential that was reduced nearly 50% in both γ and ⁵⁶Fe cohorts, indicating similar RBES at the 1 Gy dose (Fig. 1D). With these data in hand, we could now address the role of MMR function.

High LET Radiation Is More Damaging to Clonogenic Capacity of Stem Cells than Low LET Radiation, but Independent of MMR Status

Exposure of HSCs to multiple forms of IR, including space radiation, is known to reduce clonogenic capacity [18]. To determine whether loss of MMR plays a role in BM vitality after exposure to γ, protons (1,000 MeV/n) or ⁵⁶Fe radiation (600 MeV/n), clonogenic assays were performed on isolated BM in a standard colony forming assay. As expected, high LET radiation effected a greater decrease in colony formation than γ or proton radiation across a range of doses from 0.1 to 2.5 Gy (Fig. 2A–2C). In addition, ⁵⁶Fe ion exposure clearly caused a greater decrease in the number of BFU-E and CFU-GM than low LET γ or proton radiation (Supporting Information Fig. S1A–S1I). We did not, however, observe significant differences between the wild type and Mlh1 knockout marrow, suggesting that MMR function does not contribute to acute effects of IR on clonogenicity in vitro.

Blood Counts Demonstrate Similar Acute Damage to the Hematopoietic System Across LET

To assess the acute effects of IR on MMR competent and deficient marrow in vivo, we performed TBI with γ, protons or ⁵⁶Fe at 1 Gy, and performed regular blood counts for up to 30 days. The
response of specific effector cells to IR has been well documented, with lymphocytes being the most sensitive cells. As seen in Figure 3A–3C, total WBCs displayed significantly more sensitivity to any form of IR compared with red blood cells and platelets (Fig. 3D–3I), which here did not decrease substantially during the 30-day follow up. There were no significant differences between the different radiation sources; however, all three effected similar transient decreases in lymphocytes (Supporting Information Fig. S2A–S2C). Again, no differences were observed between Mlh1 competent and deficient marrow.

Figure 2. Mismatch repair status does not contribute to clonogenic capacity of hematopoietic stem cells after radiation. γ (A), proton (B), and 56Fe (C) irradiated wild type and Mlh1 knockout bone marrow cells in colony-forming unit assays after exposure to 0.1, 0.5, 1, or 2.5 Gy of radiation (n = 6, number of plates used for each radiation exposure). Abbreviation: IR, ionizing radiation.

Figure 3. Blood counts of wild type and Mlh1 knockout animals demonstrate radiation induced changes, but no Mlh1 associated defects. Complete blood counts were performed at 10 days prior to, and 2, 10, 20, and 30 days after exposure to indicated doses of γ (A, D, G), proton (B, E, H) or 56Fe (C, F, I) sources. WBC, RBC, and platelets, are shown (n = 6, number of Mlh1+/+ or Mlh1-/- mice used for each radiation exposure). Abbreviations: IR, ionizing radiation; RBC, red blood cells; WBC, white blood cells.
Long-Term Effects on Hematopoiesis By IR Is Independent of MMR Status

In order to assess latent or long-term effects of high and low LET radiation on hematopoiesis, TBI was performed on cohorts of both wild type and Mlh1 deficient mice with 1 or 2.5 Gy of γ radiation, 1 Gy of proton radiation, or 1 Gy of 56Fe radiation. Three months after exposure, we planned to analyze the frequencies and numbers of different hematopoietic cell populations in BM by flow cytometry.

Figure 4. Mlh1 knockout mice display enhanced sensitivity to IR. Survival plots of cohorts of mice of wild type or Mlh1 knockout genotypes exposed to 1 Gy or 2.5 Gy of γ, 1 Gy of proton, or 1 Gy of 56Fe radiation (n = 9–12, number of Mlh1+/+ or Mlh1−/− mice used for each radiation exposure). Abbreviation: IR, ionizing radiation.

Figure 5. Latent effects of radiation are independent of mismatch repair status. Quantification of SKL cells in wild type and Mlh1 deficient animals 3 months after exposure to γ, proton, and 56Fe radiation at indicated doses. Quantification of HPC cells in wild type and Mlh1 deficient animals 3 months after exposure to γ, proton, and 56Fe radiation at indicated doses. Quantification of colony formation of bone marrow preparations in wild type and Mlh1 deficient animals 3 months after exposure to γ, proton, and 56Fe radiation at indicated doses. Marrow was collected from between 4 and 12 animals. Abbreviations: BM, bone marrow; BMC, bone marrow cells; CFU, colony-forming unit; HPC, hematopoietic progenitor cell; IR, ionizing radiation; SKL, Sca1+, c-Kit+, Lin−.
and measure HSC functionality by transplantation assays. We first, however, noted survival statistics of the cohorts. As previously published, Mlh1−/− animals are tumor prone, with lymphomas and gastrointestinal tumors being the most prevalent malignancies [39] and γ irradiation of Mlh1 deficient mice is known to accelerate tumorigenesis [40]. With a 3-month follow-up, we found that 43% of the null animals developed malignancy while none of the control, wild-type mice developed any tumors. To break the numbers down by treatment group, 19% (4 of 21) unirradiated null mice, 64% (7 of 11) 1 Gy γ irradiated mice, 45% (5 of 11) 2.5 Gy γ irradiated mice, 33% (3 of 10) of 1 Gy proton irradiate mice, and 30% (3 of 9) 1 Gy 56Fe irradiated mice were euthanized for morbidity due to tumor formation within 3 months after exposure (Fig. 4A–4C). The only statistically significant increase in malignancy was in the 1 Gy γ group (p = .0155, Log-rank). Presumably, the animals had been given longer times to develop tumors, as has been done in other studies, our data would have shown increased tumorigenesis in the other radiation groups as well. Additionally, we found only lymphomas in our cohorts, also likely due to the short follow up, as found previously [40].

Our primary interest was in determining the function of the MMR-defective HSCs at extended times after radiation. Therefore, at 3 months after exposure, all surviving mice were euthanized, and marrow was harvested and assessed. We first quantified the SKL cells. As seen in Figure 5A–5C, γ, proton, and 56Fe irradiated animals demonstrated significant decreases in SKL cells compared to unirradiated control mice. The γ irradiated animals displayed dose dependent decreases in SKL cells of up to 56% of non-irradiated animals at 2.5 Gy (p < .0001 for Mlh1+/−, and p = .0002 for Mlh1−/−: one-way ANOVA). In pairwise comparisons, we noted that unlike the wild-type mice, the Mlh1−/− null mice did not show significantly reduced SKL cells in the marrow at the 1 Gy dose, potentially suggesting protection against IR (p < .0001 for wild type, p = .25 for Mlh1−/−; Student’s t tests); but any protection was lost at the higher dose where both genotypes were similar. Likewise, proton radiation led to a significant decrease in SKL cells in the wild type (p < .0001, Student’s t test), and Mlh1−/− animals (p < .0001, Student’s t test). 56Fe irradiation resulted in indistinguishable decreases of SKL cells in both genotypes (p < .05 for both, Student’s t tests). In addition, BM cellularity was unchanged between Mlh1+/− and Mlh1−/− mice (Supporting Information Fig. S3). In summary, 3 months after IR, significant decreases can be observed in SKL cell numbers in the BM of exposed mice, but Mlh1 function does not appear to play a role in this response.

We next looked at hematopoietic progenitor cells (HPCs) by gating for Sca1−, c-Kit+, Lin− cells. Here we observed that there were no detectable differences in any of the radiation source groups, at any dose, and for either genotype (Fig. 5D–5F). These data suggest that the SKL cells that remain functional 3 months after exposure, all surviving mice were euthanized, and marrow was harvested and assessed. We first quantified the SKL cells. As seen in Figure 5A–5C, γ, proton, and 56Fe irradiated animals demonstrated significant decreases in SKL cells compared to unirradiated control mice. The γ irradiated animals displayed dose dependent decreases in SKL cells of up to 56% of non-irradiated animals at 2.5 Gy (p < .0001 for Mlh1+/−, and p = .0002 for Mlh1−/−: one-way ANOVA). In pairwise comparisons, we noted that unlike the wild-type mice, the Mlh1−/− null mice did not show significantly reduced SKL cells in the marrow at the 1 Gy dose, potentially suggesting protection against IR (p < .0001 for wild type, p = .25 for Mlh1−/−; Student’s t tests); but any protection was lost at the higher dose where both genotypes were similar. Likewise, proton radiation led to a significant decrease in SKL cells in the wild type (p < .0001, Student’s t test), and Mlh1−/− animals (p < .0001, Student’s t test). 56Fe irradiation resulted in indistinguishable decreases of SKL cells in both genotypes (p < .05 for both, Student’s t tests). In addition, BM cellularity was unchanged between Mlh1+/− and Mlh1−/− mice (Supporting Information Fig. S3). In summary, 3 months after IR, significant decreases can be observed in SKL cell numbers in the BM of exposed mice, but Mlh1 function does not appear to play a role in this response.

As a long-term, functional measure of hematopoiesis, we conducted competitive repopulation studies comparing irradiated marrow of each genotype to wild type, unirradiated marrow. The concept is that if long-term functional defects exist, the irradiated and/or Mlh1 deficient marrow will contribute less efficiently to repopulation of the marrow after lethal IR, and can be demonstrated by flow cytometry of PB [41, 42]. We therefore mixed competitor BM cells from CD45.1 mice at a 1:1 ratio with irradiated wild type, or Mlh1−/− marrow from each irradiation exposure, and transplanted the cells into lethally irradiated hosts. At 8 and 16 weeks after transplant, PB was analyzed and revealed marked decreases in competition of the irradiated marrow from all sources. Much like we observed with the SKL data, γ irradiation led to a dose dependent decrease in competition from 1 and 2.5 Gy (p < .0001, ANOVA) treated mice of both genotypes, at both 8 and 16 weeks (Fig. 6A, 6B). For proton irradiation, similar decreases were seen with 1 Gy in both genotypes, at both time points (Fig. 6C, 6D), and no differences were observed between the genotypes. Finally, we tested the 56Fe irradiated marrow and found reduced but consistent effects of IR on the marrow functionality (Fig. 6E). Together the data confirm that long-term
damage occurs after low and high LET radiation, but that Mlh1 status is inconsequential to the function of the marrow.

Discussion

In the current study, we investigated the effects of low and high LET IR on HSCs in vitro and in vivo with the goal of evaluating the significance of MMR defects that are characteristic of aging individuals who could be exposed during space travel. We found primarily that MMR, as a function of Mlh1 gene presence or absence, is not a relevant factor for hematopoietic functionality after radiation. We assessed clonogenic capacity of BM harvested immediately after irradiation, as well as clonogenic capacity in marrow harvested 3 months after irradiation with γ, proton or 56Fe sources and found almost identical responses, regardless of Mlh1 status. We assessed blood counts of the animals for up to 30 days post exposure and similarly found that Mlh1 wild type and knockout animals responded indistinguishably. Finally, we assessed SKL cells and HPCs in the BM at 3 months after exposure, and also measured transplantability of the BM at 3 months and found notable decreases in stem cell number and function due to radiation, but not due to Mlh1 status. Together the data support the conclusion that MMR status is not a relevant variable for function of the hematopoietic system after exposure to γ or space radiation, and thus does not contribute added risk to astronauts.

Effective DNA repair is an essential function for the fidelity of organisms. HSCs are no exception to this rule, and indeed it has been elegantly shown that HSCs that lack efficient repair as they age, through loss of Ligase IV or Ku70, and thus non-homologous end joining, display reduced HSC functions [43, 44]. Studies of animals engineered to harbor defective nucleotide excision repair or telomere maintenance show similar age-associated defects [43]. However, defects in these major repair pathways, unlike MMR defects, are relatively low in frequency [35, 45]. IR poses a greater threat to HSC biology due to the relative facility of exposure in modern society, and the exquisite sensitivity of the HSCs to DNA damaging stress [46]. Clearly, the combination of DNA repair defects, in the presence of IR stress would be predicted to compromise HSC functions even further.

Tissue kinetics contribute significantly to the time of manifestation of radiation induced damage. The hematopoietic system is extremely sensitive to IR, demonstrating depletion of functional cells within hours to days [47], and an associated proliferative response of progenitor cells in the same time frame [48]. Latent tissue damage, however, implies depletion of stem cells, or a continued source of cell stress that prolongs damage manifestation. In the current studies, both explanations are likely to contribute. We observed depletion of HSCs 3 months after exposure, as well as decreased repopulation capacity of the remaining stem cells in a competitive transplant assay. Previously, elevated levels of reactive oxygen species correlating with decreased HSCs have been observed at 22 weeks after exposure to proton radiation, in line with our observations here [49]. Added mutational load, which is known to occur with MMR defects and radiation exposure [34], however, did not exacerbate the latent phenotype, at least regarding HSC function. While we measured functional cells by complete blood counts and found no effect of Mlh1 status, it is possible that some lineage differences exist that were not detected. Most notably, although, decreased stem cell function at latent times could be due to stem cell exhaustion caused by excessive induced proliferation in the acute phase immediately after exposure, and remains a risk to hematopoiesis that is shown here to be independent of MMR function.

Therefore, the predominant additional risk to the hematopoietic system of MMR defective individuals is likely to remain in the development of malignancies. The identification of MMR defective cancers outside of the gastrointestinal family in which they were first appreciated continues to rise, highlighting the importance of MMR to tumor suppression [30, 50]. Further studies will be required to assess the role of Mlh1 loss in the carcinogenic process in the hematopoietic lineages to most accurately assess risk for the purposes of deep space missions.

Acknowledgments

This study was supported by NASA NNX14AC95G, and the Cytometry & Microscopy and Radiation Resources Shared Resources of the Case Comprehensive Cancer Center (P30CA043703). We thank members of NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory for help and support of our studies. We further thank Thomas F. Peterson, Jr., for his generosity.

Author Contributions

R.P. and Y.Q.: conception and design, collection and/or assembly of data, data analysis and interpretation, manuscript writing; L.K., YY, and J.P.: conception and design; B.A.: collection and/or assembly of data; A.D.: conception and design, data analysis and interpretation; S.L.G. and S.M.W.: conception and design, financial support, data analysis and interpretation, manuscript writing, final approval of manuscript.

Disclosure of Potential Conflicts of Interest

The authors indicated no potential conflicts of interest.
authentic site-specific radiation-induced DNA double-strand break. Proc Natl Acad Sci USA 2005;102:10569–10574.

11 Brooks A, Bao S, Rithidech K et al. Induction and repair of HZE induced cytogenetic damage. Phys Med 2001;17(suppl 1): 183–184.

12 Brooks A, Bao S, Rithidech K et al. Relative effectiveness of HZE ion-56 particles for the induction of cytogenetic damage in vivo. Radiat Res 2001;155:353–359.

13 Waselenko JK, MacVitte T, Blakely WF et al. Medical management of the acute radiation syndrome: Recommendations of the Strategic National Stockpile Radiation Working Group. Ann Intern Med 2004;140:1037–1051.

14 Kondo M, Wagers AJ, Manz MG et al. Biology of hematopoietic stem cells and progenitors: Implications for clinical application. Annu Rev Immunol 2003;21:759–806.

15 Shao L, Luo Y, Zhou D. Hematopoietic stem cell injury induced by ionizing radiation. Antioxid Redox Signal 2014;20:1447–1462.

16 Mauch P, Constine L, Greenberger J et al. Hematopoietic stem cell compartment: Acute and late effects of radiation therapy and chemotherapy. Int J Radiat Oncol Biol Phys 1999;31:1319–1339.

17 Datta K, Suman S, Trani D et al. Accelerated hematopoietic toxicity by high energy (56)Fe ion irradiation. Int J Radiat Biol 2012;88: 213–222.

18 Muralidharan S, Sasi SP, Zuriaga MA et al. Ionizing particle radiation as a modulator of endogenous bone marrow cell repopulation: Implications for hematological cancers. Front Oncol 2015;5:231.

19 Weil MM, Bedford JS, Bielefeldt-Olmann H et al. Incidence of acute myeloid leukemia and hematopoietic carcinoma in mice irradiated with 1 GeV/nucleon (56)Fe ions. Radiat Res 2009;172:213–219.

20 Weil MM, Ray FA, Genik PC et al. Effects of 28Si ions, 56Fe ions, and protons on the induction of murine acute myeloid leukemia and hematopoietic carcinoma. PLoS One 2014;9:e104819.

21 Tucker JD, Marples B, Ramsey MJ et al. Persistence of chromosome aberrations in mice acutely exposed to 56Fe + 26 ions. Radiat Res 2004;161:648–655.

22 Rithidech KN, Honikel L, Whorton EB. microSH analysis of chromosomal damage in bone marrow cells collected from CBA/Caj mice following whole body exposure to heavy ions (56Fe ions). Radiat Environ Biophys 2007; 46:137–145.

23 Miousse IR, Shao L, Chang J et al. Exposure to low-dose (56)Fe-ion radiation induces long-term epigenetic alterations in mouse bone marrow hematopoietic progenitor and stem cells. Radiat Res 2014;182:92–101.

24 Grosvosky AJ, de Boer JG, de Jong PJ et al. Base substitutions, frameshifts, and small deletions constitute ionizing radiation-induced point mutations in mammalian cells. Proc Natl Acad Sci USA 1988;85:185–188.

25 Steffen LS, Balcer JW, Peng Y et al. Molecular characterization of murine acute myeloid leukemia induced by 56Fe and 137Cs gamma ray irradiation. Mutagenesis 2013;28:71–79.

26 Jiricny J. The multifaceted mismatch-repair system. Nat Rev Mol Cell Biol 2006;7: 335–346.

27 Fishel R, Lescoe MK, Rao MR et al. The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell 1993;75:1027–1038.

28 Bronner CE, Baker SM, Morrison PT et al. Mutation in the DNA mismatch repair gene homologue hMLH1 is associated with hereditary non-polyposis colon cancer. Nature 1994;368:258–261.

29 Liu B, Parsons R, Papadopoulos N et al. Analysis of mismatch repair genes in hereditary non-polyposis colorectal cancer patients. Nat Med 1996;2:169–174.

30 Hause RJ, Pritchard CC, Shendure J et al. Classification and characterization of microsatellite instability across 18 cancer types. Nat Med 2016;22:1342–1350.

31 Wada C, Shionoya S, Fujino Y et al. Genomic instability of microsatellite repeats and its association with the evolution of chronic myelogenous leukemia. Blood 1994;83:3449–3456.

32 Zhu YM, Das-Gupta EP, Russell NH. Microsatellite instability and p53 mutations are associated with abnormal expression of the MSH2 gene in adult acute leukemia. Blood 1999;94:733–740.

33 Robledo M, Martinez B, Arranz E et al. Genetic instability of microsatellites in hemato- neoplasm. Leukemia 1995;9:960–964.

34 Xu XS, Narayanay L, Dunklee B et al. Hypermutability to ionizing radiation in mismatch repair-deficient, Pms2 knockout mice. Cancer Res 2001;61:3775–3780.

35 Kenyon J, Fu P, Lingas K et al. Humans accumulate microsatellite instability with acquired loss of MLH1 protein in hematopoietic stem and progenitor cells as a function of age. Blood 2012;120:3229–3236.

36 Kenyon J, Nickel-Meester G, Qing Y et al. Epigenetic loss of MLH1 expression in normal human hematopoietic stem cell clones is defined by the promoter CpG methylation pattern observed by high-throughput methylation specific sequencing. Int J Stem Cell Res Ther 2016;3:031.

37 Gridley DS, Pecaut MJ, Nelson GA. Total-body irradiation with high-LET particles: Acute and chronic effects on the immune system. Am J Physiol Regul Integr Comp Physiol 2002;282:R677–R688.

38 Ainsworth EJ. Early and late mam- lliant responses to heavy charged particles. Adv Space Res 1986;6:153–165.

39 Edelmann W, Yang K, Kuraguchi M et al. Tumorigenesis in Mlh1 and Mlh1/Apc1638N mutant mice. Cancer Res 1999;59:1301–1307.

40 Tokalir V, Kakinuma S, Arai M et al. Accelerated growth of intestinal tumours after radiation exposure in Mlh1-knockout mice: Evaluation of the late effect of radiation on a mouse model of HNPPC. Int J Exp Pathol 2006; 87:899–909.

41 Szilvassy SJ, Humphries RK, Ldansdor PM et al. Quantitative assay for topotopic reconstituting hematopoietic stem cells by a competitive repopulation strategy. Proc Natl Acad Sci USA 1990;87:8736–8740.

42 Szilvassy SJ, Nicoli FE, Eaves CJ et al. Quantitation of murine and human hematopoietic stem cells by limiting-dilution analysis in competitively repopulated hosts. Methods Mol Med 2002;63:187–187.

43 Rossi DJ, Bryder D, Seita J et al. Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature 2007;447:725–729.

44 Nijink A, Woodbine L, Marchetti C et al. DNA repair is limiting for haematopoietic stem cells during ageing. Nature 2007;447:686–690.

45 Lynch HT, Lynch PM. Colorectal cancer: Update on the clinical management of Lynch syndrome. Nat Rev Gastroenterol Hepatol 2013;10:323–324.

46 Naka K, Hirao A. Maintenance of genomic integrity in hematopoietic stem cells. Int J Hematol 2011;93:434–439.

47 Hall EJ, Giaccia AJ. Radiobiology for the Radiologist. Philadelphia, PA: Wolters Kluwer Health/Lippincott Williams & Wilkins, 2012: 546.

48 Wang CJ, Lai C. Induction of cell- proliferation homeres and cell-survival adapt- ive response in mouse hematopoietic cells by whole-body low-dose radiation. Toxicol Sci 2000;53:369–376.

49 Chang J, Feng W, Wang Y et al. Whole-body proton irradiation causes long-term damage to hematopoietic stem cells in mice. Radiat Res 2015;183:240–248.

50 Davies H, Morgagnella S, Purdie CA et al. Whole-genome sequencing reveals breast can- cers with mismatch repair deficiency. Cancer Res 2017;77:4755–4762.