The complete plastome sequence of the endangered orchid
Kuhlhasseltia nakaiana (Orchidaceae)

Young-Kee Kim*, Myoung Hai Kwak**, Ja-Ram Hong**, Hoe-Won Kim*, Sangjin Jo*, Jung-Yeon Sohn*, Se-Hwan Cheon* and Ki-Joong Kim**

*Division of Life Sciences, Korea University, Seoul, Korea; **Department of Plant Resources, National Institute of Biological Resources, Incheon, Korea*

ABSTRACT

In this study, we report the complete plastome sequence of *Kuhlhasseltia nakaiana* (F.Maek.) Ormerod (Orchidaceae) (NCBI acc. no. KY354041), an endangered plant species protected by the national law of Korea. The gene order and number in the *K. nakaiana* plastome were similar to a typical orchid plastome. The complete plastome was 147,614 bp in length and consisted of a large single copy region of 81,617 bp and a small single copy region of 13,673 bp, separated by two inverted repeats of 26,162 bp. The plastome contained 103 genes, of which 69 were protein-coding genes, 30 were tRNA genes, and four were rRNA genes. Fourteen genes contained one intron and two genes (*clpP* and *ycf3*) had two introns. The AT content of the plastome was 60.5%. A total of 74 simple sequence repeat regions were identified from the plastome. Phylogenetic analysis determined that *K. nakaiana* was a member of the tribe Cranichideae and revealed the sister group relationship between *K. nakaiana* and *Ludisia discolor* within the tribe Cranichidac.</p>
the development of genetic markers among \textit{K. nakaiana} populations.

Phylogenetic analyses were performed on a dataset that included 78 protein-coding genes (excluding \textit{ycf1}) and four rRNA genes extracted from 38 taxa in the NCBI database and \textit{Cymbidium macrorhizon} (KY354040) and \textit{K. nakaiana} (KY354041). \textit{Fritillaria hupehensis} and \textit{F. taipaiensis}, representing the sister order Liliales, were used as outgroups. The gaps for lost genes were treated as missing bases. The 82 gene sequences were aligned with MUSCLE in Geneious 6.1.8; the
aligned data matrix consisted of a total of 70,620 bp. This alignment is used for phylogenetic analysis using RAxML v. 7.7.1 (Stamatakis et al. 2008). An ML tree was obtained with an ML estimation value of \(-302818.486357\). The sister group relationship between \(K. \text{nakaiana}\) and \(Ludisia \text{discolor}\) was confirmed with 100% bootstrap value support (Figure 1). Both species occurred in the tribe Cranichideae within Orchidoideae.

Acknowledgements
The endangered plant material was collected under the proper permit from the environmental protection authority of the Korean government. The extracted DNA materials were deposited in the Plant DNA Bank of Korea (PDBK acc. no. 2016-0443).

Disclosure statement
The authors report no conflicts of interest, and are independently responsible for the content and writing of the paper.

Funding
This work was supported by a genome research grant for endangered species in Korea from the National Institute of Biological Resources [NIBR 201603203]. Additional funds were provided by the National Research Foundation of Korea [NRF-2015M3A9B8030588 and NRF-2015M3A9B8047398] to KJK.

References
APG IV. 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc. 181:1–20.

Chang CC, Lin HC, Lin IP, Chow TY, Chen HH, Chen WH, Cheng CH, Lin CY, Liu SM, Chang CC, et al. 2006. The chloroplast genome of \(Phalaenopsis \text{aphrodite}\) (Orchidaceae): comparative analysis of evolutionary rate with that of grasses and its phylogenetic implications. Mol Biol Evol. 23:279–291.

Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, et al. 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 28:1647–1649.

Kim K-J, Lee H-L. 2004. Complete chloroplast genome sequences from Korean ginseng (\(Panax \text{schinseng}\) Nees) and comparative analysis of sequence evolution among 17 vascular plants. DNA Res. 11:247–261.

Lee NS. 2011. Illustrated flora of Korean orchids. Seoul (South Korea): Ewha Womans University Press (in Korean).

Lin CS, Chen JJ, Huang YT, Chan MT, Daniell H, Chang WJ, Hsu CT, Liao DC, Wu FH, Lin SY, et al. 2015. The location and translocation of ndh genes of chloroplast origin in the Orchidaceae family. Sci Rep. 5:9040.

Lowe TM, Eddy SR. 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25:955–964.

Saeki I, Kitazawa A, Abe A, Minemoto K, Koike F. 2014. Phylogeography of a rare orchid, Vexillabium yakushimense: comparison of populations in central Honshu and the Nansei Island chain, Japan. Plant Syst Evol. 300:1–12.

Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K. 1986. The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J. 5:2043.

Stamatakis A, Hoover P, Rougemont J. 2008. A rapid bootstrap algorithm for the RAxML Web servers. Syst Biol. 57:758–771.

Wu FH, Chan MT, Liao DC, Hsu CT, Lee YW, Daniell H, Duvall MR, Lin CS. 2010. Complete chloroplast genome of \(Oncidium\) Gower Ramsey and evaluation of molecular markers for identification and breeding in Oncidiinae. BMC Plant Biol. 10:68.

Yi DK, Kim KJ. 2012. Complete chloroplast genome sequences of important oilseed crop \(Sesamum \text{indicum}\) L. PLoS One. 7:e35872.