Photonic Versus Electronic Quantum Anomalous Hall Effect

O. Bleu, D. D. Solnyshkov, G. Malpuech
Institut Pascal, PHOTON-N2, Clermont Auvergne University, CNRS, 4 avenue Blaise Pascal, 63178 Aubière Cedex, France.

We derive the diagram of the topological phases accessible within a generic Hamiltonian describing quantum anomalous Hall effect for photons and electrons in honeycomb lattices in presence of a Zeeman field and Spin-Orbit Coupling (SOC). The two cases differ crucially by the winding number of their SOC, which is 1 for the Rashba SOC of electrons, and 2 for the photon SOC induced by the energy splitting between the TE and TM modes. As a consequence, the two models exhibit opposite Chern numbers ±2 at low field. Moreover, the photonic system shows a topological transition absent in the electronic case. If the photonic states are mixed with excitonic resonances to form interacting exciton-polaritons, the effective Zeeman field can be induced and controlled by a circularly polarized pump. This new feature allows an all-optical control of the topological phase transitions.

PACS numbers:
logical inversion can be achieved at non-zero values of the TR-symmetry breaking term, allowing chirality control by weak modulation of the pump intensity.

Phase diagram of the photonic and electronic QAH. We recall the linear tight-binding Hamiltonian of a honeycomb lattice in presence of Zeeman splitting and SOC of Rashba [57] and photonic type respectively [58]. It is a 4 by 4 matrix written on the basis \((\Psi^+_A, \Psi^-_A, \Psi^+_B, \Psi^-_B)^T\), where A and B stand for the lattice atom type and ± for the particle spin:

\[
H_{k,i} = \begin{pmatrix}
\Delta \sigma_z & F_{k,i} \\
F_{k,i}^T & \Delta \sigma_z
\end{pmatrix}, \quad F_{k,i} = -\left(f_k J f_k^\pm \lambda_i \right) .
\]

(1)

\(J\) is the tunnelling coefficient between nearest neighbour micropillars (A/B). \(\Delta\) is the Zeeman splitting. \(\lambda_i (i = e, p)\) are the magnitude for the Rashba (electronic) and TE-TM (photonic) induced SOC respectively [59]. The complex coefficients \(f_k\) and \(f_k^\pm\) are defined by:

\[
f_k = \sum_{j=1}^{3} e^{-i k d_{\phi_j}}, \quad f_k^\pm = \pm \sum_{j=1}^{3} e^{-i (k d_{\phi_j} \mp \phi_j)} \quad (2)
\]

where \(d_{\phi_j}\) are the links between nearest neighbour pillars (atoms) and \(\phi_j = 2\pi (j - 1)/3\) their angle with respect to the horizontal axis. Qualitatively, the crucially different \(\phi\) dependencies of the tunneling \(f_k^\pm\) are due to the different winding numbers of the Rashba and TE-TM effective fields in the bare 2D systems.

Without Zeeman field \((\Delta = 0)\), the diagonalization of these two Hamiltonians gives 4 branches of dispersion. Near \(K\) and \(K'\) points, two branches split, and two others intersect, giving rise to a so-called trigonal warping effect, namely the appearance of three extra crossing points (see (Fig. 1(c,d)) and (Fig. 3(a))). The differences between the two Hamiltonians are clearly visible on the panels of Fig. 1 which show a 2D view of the 2nd branch spin polarizations (a,b) and energies (c,d). On the panels (a,b), we see the difference of the in-plane winding number around \(\Gamma\) \((w_{\Gamma,e} = 1\) for Rashba and \(w_{\Gamma,p} = 2\) for TE-TM SOC). Around \(K\) points, the TE-TM SOC texture becomes Dresselhaus-like with a winding \(w_{K,p} = -1\) whereas Rashba remains Rashba with \(w_{K,e} = 1\). In each case, the winding numbers around the \(K\) and \(K'\) points have the same sign and add to give \(\pm 2\) \(C_n\) for the electronic and photonic case respectively when TR is broken. On the panels (c,d), one can clearly observe the formation of small triangles near the Dirac points, the vertices of these triangles corresponding to the crossing points with the third energy bands. We can observe that the vertices are oriented along the \(K - K'\) direction for TE-TM SOC and rotated by 60° \((K - \Gamma\) direction) for the Rashba SOC case, a small detail, which has crucial consequences for the topological phase diagram. The topological character of these Hamiltonians with the appearance of the QAH effect has already been discussed by deriving an effective Hamiltonian close to the \(K\) point in different limits for both the electronic [9] [14] and photonic cases [29] [50].

However, the presence of other topological phase transitions due to additional degeneracies appearing in other points of the first Brillouin zone was not checked.

Figure 2: (Color online) Phase diagrams (a) for the TE-TM SOC and (b) for the Rashba SOC with an applied field \(\Delta\). Each phase is marked by the \(C_n\) of the bands.
0 (with inverted signs of C_n for the negative part). At low Δ, both models are characterized by $C_n = \pm 2$. However, their C_n signs are opposite due to the opposite winding of their SOC around K.

Figure 3(b) shows the corresponding band structure for the photonic case, where the double peak structure around K and K', arising from the trigonal warping effect and responsible for the C_n value, is clearly visible. Increasing either the SOC or the Zeeman field shifts these band extrema. In the photonic case, the band extrema finally meet at the M point, which makes the gap close, as shown on the figure 3(c). The critical Zeeman field value at which this transition takes place can be found analytically: $\Delta_1 = \sqrt{J^2 - 4\lambda_p^2}$. Increasing the fields further leads to an immediate re-opening of the gap with the C_n passing from $+2$ to -1 for the valence band. This case is shown on the figure 3(d), where the number of band extrema is twice smaller than on 3(b). This phase transition is entirely absent in the electronic case because $\Delta_1 = \sqrt{J^2 - \lambda_p^2}$, which makes the gap close, whereas the two other bandgaps are still topological.

All-optical control of topological phase transitions. In what follows, we propose a practical way to implement the photonic topological phases analyzed above. We concentrate on the experimentally realistic configuration of a resonantly driven photonic (polaritonic) lattice [39, 40], including finite particle lifetime, without any applied magnetic field, and demonstrate the all-optical control of the band topology. We show that the topologically trivial band structure becomes non-trivial under resonant circularly polarized pumping at the Γ point of the dispersion.

A self-induced topological gap opens in the dispersion of the elementary excitations. The tuning of the pump intensity allows to go through several topological transitions demonstrating the chirality inversion.

A coherent macro-occupied state of exciton-polaritons is usually created by resonant optical excitation. This regime is well described in the mean-field approximation [11, 61]. We can derive the driven tight-binding Gross-Pitaevskii equation in this honeycomb lattice for a homogeneous laser pump F ($h = 1$).

$$
\frac{i}{\hbar} \frac{\partial}{\partial t} \Psi_i = \sum_j H_{ij}(k) \Psi_j + F_i e^{i((k_p - \omega_p)t)} + (\alpha_1 |\Psi_i|)^2 + \alpha_2 |\Psi_{i+(-1)(i+1) \mod 2}|^2 \Psi_i
$$

where $i, j = 1, 4$ correspond to the four WF components ($\Psi_{A^+}, \Psi_{A^-}, \Psi_{B^+}, \Psi_{B^-}$). H_{ij} are the matrix elements of the tight-binding Hamiltonian defined above (eq. 1) without the Zeeman term on the diagonal ($\Delta = 0$). α_1 and α_2 are the interaction constants between particles with the same and opposite spins, respectively. For polaritons, the latter is suppressed [62] because it involves intermediate dark (bichxiton) states, which are energetically far from the polariton states. Thus $|\alpha_2| \ll |\alpha_1|$ [63, 64] and we neglect it. F_i is the pump amplitude. In the following, we consider a homogeneous pump at $k = 0$ (pumping beam perpendicular to the cavity plane), which implies that its amplitude on A and B pillars is the same. However, the spin projections F^{σ}_p and $F^{\sigma'}$, determining the spin polarization of the pump, can be different (σ - sublattice, σ' - spin). The quasi-stationary driven solution has the same frequency and wavevector as the pump ($\Psi_{s} = e^{i(k_p - \omega_p t)} \Psi_{p,s}$) and satisfies the equations:

$$
(\omega_p + i\gamma_p - \alpha_1 |\Psi_{p,s}|^2 - \alpha_2 |\Psi_{p,-s}|^2)\Psi_{p,s}^\sigma
+ f_{k_p}^p \Psi_{p,s}^\sigma + f_{k_p}^s \lambda_p \Psi_{p,-s}^\sigma = F_{s}^\sigma
$$

where ω_p is the frequency of the pump mode. γ_p is the linewidth related to polariton lifetime (τ_p), which allows to take the dissipation into account. The tight-binding terms ($f_{k_p}^p, f_{k_p}^s$) of the polaritonic graphene induce a coupling between the sublattices and polarizations. Eq. 4 is written for an arbitrary pump wave vector k_p. In the following, we consider a pump resonant with the energy...
of the bare lower polariton dispersion branch in the Γ point ($\omega_p = -f_\Gamma J = -3J$ and $k_p = 0$), marked with an arrow in Fig. 3(a) which implies the stability of the elementary excitations. We compute the dispersion of the elementary excitations using the standard WF of a weak perturbation ($|\mathbf{u}|, |\mathbf{v}| \ll |\Phi_p|$):

$$\Phi = e^{i(k_p r - \omega_p t)} (\Phi_p + u e^{i(k, r - \omega t)} + v e^{-i(k, r - \omega t)})$$

where $\Phi_p = (\Psi_{p,A}, \Psi_{p,B}^+)^T$, u and v are vectors of the form $(u_A^+, u_A^-, u_B^+, u_B^-)^T$. Φ_p is a circular component of the k-dependent SIZ splitting between the two lower branches is obtained for $\lambda_p = 0$:

$$\Omega_{SI} = |\omega_p + |f_k| J - 2\alpha_1 n_{A/B}^+|^2 = (\alpha_1 n_{A/B}^+)^2$$

One of the key differences with respect to the magnetic field induced Zeeman field is the SIZ dependence on the vectorwaves and energies of the bare modes. This dependence has already been shown to lead to the inversion of the effective field sign (and thus the inversion of the topology) when both applied and SIZ fields are present in a Bose-Einstein condensate.

The figure 4(a) shows the diagram of topological phases under resonant pumping (versus the SIZ) which is quite similar to the one under magnetic field. A method to compute the C_n of the Bogoliubov modes has been developed. The procedure we use is detailed in the supplementary [59]. The only difference with respect to the linear case concerns the opening of the two additional gaps which does not take place at the same pumping values, because of the difference between the SIZ fields in the upper and lower bands. The figure 4(b) shows the magnitude of the different gaps multiplied by the sign of the C_n of the valence band ($C = \sum_{n=1}^N C_n$) for a given value of the SOC, a quantity highly relevant experimentally. In [39, 40] J is of the order or 0.3 meV, whereas the mode linewidth is of the order of 0.05 meV. Band gaps of the order of 0.2 J should be observable. The SIZ magnitude shown on the x-axis (below 1.5 meV) is compatible with the experimentally accessible values. So in practice the topological transition is observable together with the specific dispersion of the edge states in the different phases which are presented in [59]. We note that the emergence of topological effects driven by interactions in bosonic systems has already been reported, such as Berry curvature in a Lieb lattice for atomic condensates [67] and topological Bogoliubov edge modes in two different driven schemes based on Kagome lattices [23, 68] with scalar particles.

To confirm our analytical predictions and support the observability in a realistic pump-probe experiment (see sketch in [59]), we perform a full numerical simulation beyond the tight-binding or Bogoliubov approximations. We solve the spinor Gross-Pitaevskii equation for polaritons with quasi-resonant pumping:

$$i\hbar \frac{\partial \psi_{\pm}}{\partial \tau} = -\frac{\hbar^2}{2m} \Delta \psi_{\pm} + \alpha_1 |\psi_{\pm}|^2 \psi_{\pm} - \frac{\hbar}{2} \psi_{\pm} + P_{0}^+ e^{-i\omega t}$$

$$+ U \psi_{\pm} - \beta \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right)^2 \psi_{\pm} + \sum_j P_j^- e^{-i\omega t} - \frac{(r_{-j})^2}{\sigma^2} - i\omega t$$

where $\psi_{\pm}(r,t)$ are the two circular components of the WF, $m = 5 \times 10^{-5} m_{el}$ is the polariton mass, $\tau = 30$ ps the lifetime, U is the lattice potential. The main pumping term P_{0}^+ is circular polarized (σ^+) and spatially homogeneous, while the 3 pulsed probes are σ^- and localized on 3 pillars (circles). The results (filtered by energy and polarization) are shown in Fig. 5. As compared with the previously analyzed [50, 51] $C = 2$ case (a), a larger gap of the $C = -1$ phase (b) demonstrates a better edge protection, a longer propagation distance, and an inverted direction, all achieved by modulating the pump intensity.
Conclusions. We bridge the gap between two classes of physical systems where the QAH effect takes place, showing the crucial role of the SOC winding. In the photonic case, we show that the phases achieved, their topological nature and topological transitions can be controlled by optically induced collective phenomena. Our results show that photonic implementations of topological systems are not only of practical interest, but also bring new physics directly observable in real-space optical emission.

[1] K. v. Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45, 494 (1980), URL http://link.aps.org/doi/10.1103/PhysRevLett.45.494
[2] D. Thouless, M. Kohmoto, M. Nightingale, and M. Den Nijs, Physical Review Letters 49, 405 (1982).
[3] B. Simon, Phys. Rev. Lett. 51, 2167 (1983), URL http://link.aps.org/doi/10.1103/PhysRevLett.51.2167
[4] X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011), URL http://link.aps.org/doi/10.1103/RevModPhys.83.1057
[5] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010), URL http://link.aps.org/doi/10.1103/RevModPhys.82.3045
[6] One should note that the QAH can also be called equivalently Z topological insulator or Chern insulator. In the present manuscript we have chosen the label QAH which is mostly used for the corresponding electronic systems. Actually, a similar twofold terminology exists for the Quantum spin Hall phase which can be called Z2 topological insulator.
[7] F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988), URL http://link.aps.org/doi/10.1103/PhysRevLett.61.2015
[8] C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang, Phys. Rev. Lett. 101, 146802 (2008), URL http://link.aps.org/doi/10.1103/PhysRevLett.101.146802
[9] Z. Qiao, S. A. Yang, W. Feng, W.-K. Tse, J. Ding, Y. Yao, J. Wang, and Q. Niu, Phys. Rev. B 82, 161414 (2010), URL http://link.aps.org/doi/10.1103/PhysRevB.82.161414
[10] B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Science 314, 1757 (2006).
[11] C. L. Kane and E. J. Mele, Physical review letters 95, 146802 (2005).
[12] M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W. Molenkamp, X.-L. Qi, and S.-C. Zhang, Science 318, 766 (2007).
[13] N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and N. P. Ong, Rev. Mod. Phys. 82, 1539 (2010), URL http://link.aps.org/doi/10.1103/RevModPhys.82.1539
[14] Z. Qiao, H. Jiang, X. Li, Y. Yao, and Q. Niu, Phys. Rev. B 85, 115439 (2012), URL http://link.aps.org/doi/10.1103/PhysRevB.85.115439
[15] Z.-Y. Zhang, Journal of Physics: Condensed Matter 23, 365501 (2011).
[16] Y. Ren, Z. Qiao, and Q. Niu, Reports on Progress in Physics 79, 066501 (2016).
[17] E. Kalesaki, C. Delerue, C. M. Smith, W. Beugeling, G. Allan, and D. Vannemaelbergh, Physical Review X 4, 011010 (2014).
[18] W. Beugeling, E. Kalesaki, C. Delerue, Y.-M. Niquet, D. Vannemaelbergh, and C. M. Smith, Nature communications 6, 6316 (2015).
[19] G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger, D. Greif, and T. Esslinger, Nature 515, 237 (2014).
[20] T. I. Vanhala, T. Siro, L. Liang, M. Troyer, A. Harju, and P. Törmä, Phys. Rev. Lett. 116, 225305 (2016), URL http://link.aps.org/doi/10.1103/PhysRevLett.116.225305
[21] V. Peano, C. Brendel, M. Schmidt, and F. Marquardt, Phys. Rev. X 5, 031011 (2015), URL http://link.aps.org/doi/10.1103/PhysRevX.5.031011
[22] J. Yuen-Zhou, S. K. Saikin, T. Zhu, M. C. Onbasli, C. A. Ross, V. Bulovic, and M. A. Baldo, Nature Communications 7 (2016).
[23] V. Peano, M. Houde, C. Brendel, F. Marquardt, and A. A. Clerk, Nature communications 7, 10779 (2016), URL http://dx.doi.org/10.1038/ncomms10779
[24] M. C. Roichman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, Nature 490, 196 (2013).
[25] M. Hafezi, E. A. Demler, M. D. Lukin, and J. M. Taylor, Nature Physics 7, 907 (2011).
[26] M. Hafezi, S. Mittal, J. Fan, A. Migdall, and J. Taylor, Nature Photonics 7, 1001 (2013).
[27] A. B. Khanikaev, S. H. Mousavi, W.-K. Tse, M. Kargarian, A. H. MacDonald, and G. Shvets, Nature materials 15, 542548 (2013).
[28] X. Cheng, C. Jouvaud, X. Ni, S. H. Mousavi, A. Z. Genack, and A. B. Khanikaev, Nature materials 12, 233 (2016).
[29] D. Solnyshkov and G. Malpuech, Comptes Rendus Physique 17, 920 (2016).
[30] M. Schmidt, V. Peano, and F. Marquardt, New Journal of Physics 17, 023025 (2015).
[31] Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljacic, Nature 461, 772775 (2009). ISSN 0028-0836.
[32] L. Lu, J. D. Joannopoulos, and M. Soljacic, Nature Photonics 8, 821 (2014).
[33] C.-Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo, K. Li, Y. Ou, P. Wei, L.-L. Wang et al., Science 340, 167 (2013).
[34] M. Aidselsburger, M. Lohse, C. Schweizer, M. Atala, J. T. Barreiro, S. Nascimbene, N. Cooper, I. Bloch, and N. Goldman, Nature Physics 11, 162 (2015).
[35] S. A. Skirlo, L. Lu, Y. Igarashi, Q.-Y. Yan, J. Joannopoulos, and M. Soljačić, Phys. Rev. Lett. 115, 253901 (2015), URL http://link.aps.org/doi/10.1103/PhysRevLett.115.253901
[36] R. O. Umucalılar and I. Carusotto, Phys. Rev. Lett. 108, 206809 (2012), URL http://link.aps.org/doi/10.1103/PhysRevLett.108.206809
[37] C. Wang, A. C. Potter, and T. Senthil, Science 343, 629 (2014).
[38] S. Peotta and P. Törmä, Nature communications 6, 8944 (2015).
[39] T. Jacqmin, I. Carusotto, I. Sagnes, M. Abbarchi, D. D. Solnyshkov, G. Malpuech, E. Galopin, A. Lemaître, J. Bloch, and A. Amo, Phys. Rev. Lett. 112, 116402 (2014), URL http://link.aps.org/doi/10.1103/PhysRevLett.112.116402
[40] M. Milicevic, T. Ozawa, F. Andreakou, I. Carusotto, et al., Nature Physics 11, 907 (2015).
In the main text, we introduce two kinds of SOC λ_e and λ_p for electrons and polaritons respectively. We choose this notation to make clearer the comparison between the two cases. Indeed, in our previous works on polariton honeycomb lattices, we used the notation $\lambda_{\text{polariton}} = 6J$ [50, 51, 58]. Taking into account the TE-TM splitting, the tunneling coefficients are defined in the circular-polarization basis as:

$$\langle A, \pm | H | B, \mp \rangle = -J \lambda_e e^{-2i\phi}$$ \hspace{1cm} (7)
J is the tunneling coefficient without spin inversion, like in conventional graphene. The SOC coefficient λ_p is defined by: $\lambda_p = \delta J = (J_L - J_T)/2$, where J_L and J_T are the tunneling coefficients for the longitudinally and transversally-polarized polaritons respectively. The difference of phase between Rashba ($e^{i\lambda p}$) and TE-TM ($e^{i\lambda_2 \phi}$) terms comes from the different winding number between the two in plane SOC.

Weak excitations dispersions in the resonant pump regime

In this section we present the derivation of the Bogoliubov excitation of a resonantly pumped interacting photon system. The weak perturbation of the pumped macro-occupied state reads:

$$\tilde{\Phi} = e^{i(k_p.r - \omega_p t)}(\tilde{\Psi}_{p} + u e^{i(k.r - \omega t)} + v^{*} e^{-i(k.r - \omega^{*} t)}) \quad (8)$$

where $\tilde{\Phi}_p = (\Psi_{p,A}^{+}, \Psi_{p,A}^{-}, \Psi_{p,B}^{+}, \Psi_{p,B}^{-})^T$, u and v are vectors of the form $(u^+_A, u^+_B, u^-_A, u^-_B)$ too. Indeed because of the non-linear term of the GP equation, the Bloch state characterized by a wave-vector k and frequency ω is coupled to its complex conjugated, namely the wave with a wave-vector $-k$ and frequency $-\omega$. Then, inserting this wave function in the driven dissipative Gross-Pitaevskii equation (main text) and linearizing for u and v, we obtain the following matrix:

$$M = \begin{pmatrix}
(d^+_p - \omega_p - i\gamma_p) & \alpha_2 \Psi_{p,A}^{+} \Psi_{p,A}^{-} & -f_{p,k + k_p} & f_{p,k + k_p - \lambda_p} & \alpha_1 \Psi_{p,A}^{+} & \alpha_2 \Psi_{p,A}^{-} & 0 & 0 \\
\alpha_2 \Psi_{p,A}^{+} \Psi_{p,A}^{-} & (d^+_p - \omega_p - i\gamma_p) & -f_{p,k + k_p} & f_{p,k + k_p - \lambda_p} & \alpha_1 \Psi_{p,A}^{+} & \alpha_2 \Psi_{p,A}^{-} & 0 & 0 \\
f_{p,k + k_p} & -f_{p,k + k_p} & (d^+_p - \omega_p - i\gamma_p) & \alpha_2 \Psi_{p,B}^{+} \Psi_{p,B}^{-} & 0 & 0 & \alpha_1 \Psi_{p,B}^{+} & \alpha_2 \Psi_{p,B}^{-} \\
f_{p,k + k_p} & -f_{p,k + k_p} & \alpha_2 \Psi_{p,B}^{+} \Psi_{p,B}^{-} & (d^+_p - \omega_p - i\gamma_p) & 0 & 0 & \alpha_1 \Psi_{p,B}^{+} & \alpha_2 \Psi_{p,B}^{-} \\
-\alpha_2 \Psi_{p,A}^{+} \Psi_{p,A}^{-} & -\alpha_2 \Psi_{p,A}^{+} \Psi_{p,A}^{-} & 0 & 0 & (\omega_p - i\gamma_p - d^+_p) & -\alpha_2 \Psi_{p,A}^{+} \Psi_{p,A}^{-} & f^{+}_{p,k - k_p} & f^{-}_{p,k - k_p} \\
0 & 0 & -\alpha_2 \Psi_{p,B}^{+} \Psi_{p,B}^{-} & -\alpha_2 \Psi_{p,B}^{+} \Psi_{p,B}^{-} & -\alpha_2 \Psi_{p,B}^{+} \Psi_{p,B}^{-} & (\omega_p - i\gamma_p - d^+_p) & f^{+}_{p,k - k_p} & f^{-}_{p,k - k_p} \\
0 & 0 & -\alpha_2 \Psi_{p,B}^{+} \Psi_{p,B}^{-} & -\alpha_2 \Psi_{p,B}^{+} \Psi_{p,B}^{-} & 0 & 0 & (\omega_p - i\gamma_p - d^+_p) & -\alpha_2 \Psi_{p,B}^{+} \Psi_{p,B}^{-} \\
0 & 0 & -\alpha_2 \Psi_{p,B}^{+} \Psi_{p,B}^{-} & -\alpha_2 \Psi_{p,B}^{+} \Psi_{p,B}^{-} & 0 & 0 & -\alpha_2 \Psi_{p,B}^{+} \Psi_{p,B}^{-} & (\omega_p - i\gamma_p - d^+_p)
\end{pmatrix}
$$

where i index labels the different $u_i(v_i)$ components of an eigenstate.

This condition physically signifies that the creation of one bogolon corresponds to the creation of a quanta of energy ω.

Chern numbers of Bogoliubov excitations

The standard formula for the computation of the Chern number can be applied, but taking into account that bogolons are constituted by two Bloch waves of opposite wave vectors:

The diagonal elements are defined by:

$$d^+_{\sigma} = 2\alpha_1 |\Psi^{\sigma}_{p\sigma}|^2 + \alpha_2 |\Psi^{\sigma}_{p\sigma}|^2 \quad (10)$$

The Bogoliubov eigenenergies and eigenvectors $(u_A^{\pm}, u_B^{\pm}, v_A^{\pm}, v_B^{\pm})$ are finally obtained by diagonalizing this 8 by 8 matrix.

In the expression for the self-induced field $\Omega_S(t) / 2 = \sqrt{3}\alpha_1 n / 2$ the factor 1/2 comes from the presence of two sublattices and the $\sqrt{3}$ appears from resonant pumping, as compared with a blue shift of an equilibrium condensate $\mu = \alpha n$.

The normalisation condition, requires for the Bogoliubov transformation to be canonical, namely to keep bogolons as bosons reads [60][70]:

$$\sum_{1 \leq i \leq 4} |u_i|^2 - |v_i|^2 = 1 \quad (11)$$
where \(dk = dk_x dk_y\) and we drop the band index \(n\) for simplicity. We can see that the integration of the \(v\) part makes appear a minus sign because the integration takes place over an inverted Brillouin zone (BZ). This fact has been noticed in ref [65], and is commonly used [23, 67, 71, 72]. It is typically formulated by introducing a matrix \(\tau_z = \sigma_z \otimes 14\) directly in the definition of the Berry connexion \(A = \langle \Phi(k) | \nabla_k \tau_z | \Phi(k) \rangle\).

Bogoliubov edge states

To demonstrate one-way edge states in tight-binding approach, we derive a 8Nx8N Bogoliubov matrix for a polariton graphene stripe, consisting of \(N\) coupled infinite zig-zag chains following the procedure of Ref.[51]. For this, we set a basis of Bogoliubov Bloch waves \((u_{A/B,n}^\pm, v_{A/B,n}^\pm)\) where \(n\) index numerates stripes, and \(k_y\) is the quasi-wavevector in the zigzag direction. The diagonal blocks describe coupling within one chain and are derived in the same fashion as the M matrix in the previous section (2), coupling between stripes is accounted for in subdiagonal blocks.

Figures 1(a,b) show the results of the band structure calculation for two different values of \(\alpha_1 n\). The degree of localization on edges is calculated from the wave function densities on the edge chains \(|\Psi_R|^2\) and \(|\Psi_L|^2\) (left/right, see inset), and is shown with colour, so that the edge states are blue and red.

In Fig. 1(a), there is only one topological gap characterized by a Chern number +2 and hence there are two edge modes on each side of the ribbon. In Fig. 1(b), we can observe three topological gaps with the Chern number of the top and bottom bands being ±1 respectively. Each of them is characterized by the presence of only one edge mode on a given edge of the ribbon, and the
group velocities of the modes are opposite to the previous phase: the chirality is controlled by the intensity of the pump. This inversion, associated with the change of the topological phase (|C| = 2 → 1), is fundamentally different from the one of Ref. [51], observed for the same phase (|C| = 2).

This optically-controlled transition allows to observe the inversion of chirality for weak modulations of a TR-symmetry breaking pump around a non-zero constant value, which can also possibly be used for amplification. The inversion of chirality of center gap edge states (Fig. 1(a,b)) should be observable in a pump-probe experiment as shown by the numerical simulation in the main text. A sketch of the experiment using a σ+ and a σ− polarized lasers (the homogeneous pump and the localized probe) is presented on Fig. 1(c). One should note that we can also obtain the inverted phases more conventionally by inverting the direction of the self-induced Zeeman field which is controlled by the circularity of the homogeneous pump.