Numerical entropy conservation without sacrificing Charney–Phillips grid optimal wave propagation

John Thuburn

Department of Mathematics, University of Exeter, Exeter, UK

Correspondence
John Thuburn, Department of Mathematics, University of Exeter, Exeter, EX4 4QF, UK.
Email: j.thuburn@exeter.ac.uk

Funding information
Natural Environment Research Council, Grant/Award Numbers: NE/N013123/1, NE/T003863/1

Abstract
Conservation of entropy or potential temperature and accurate representation of wave propagation without computational modes are both desirable properties for a numerical model of the atmosphere. However, they appear to require different model formulations, forcing model developers to choose between them. Here it is shown that, by a straightforward modification of the horizontal entropy fluxes, numerical entropy conservation can be achieved without sacrificing accurate wave propagation. The result is confirmed by a numerical linear normal mode analysis for a simple but suitably modified finite-volume scheme, and by buoyant bubble and gravity-wave test cases in a vertical slice model using a suitably modified conservative semi-Lagrangian transport scheme.

KEYWORDS
advection, energy conservation, Lorenz grid, potential temperature, SLICE, wave dispersion

1 INTRODUCTION

Conservative transport of entropy is a desirable property for the dynamical core of an atmospheric numerical model. So, too, is an accurate representation of wave propagation without computational modes. However, these two properties seem to require different model formulations, forcing model developers to choose between them. In this note, a scheme for obtaining numerical entropy conservation without sacrificing optimal wave propagation is proposed and tested.

On a global scale, numerical entropy conservation is important because the entropy budget constrains the behaviour of the climate system (Goody, 2000), and it has been suggested that spurious numerical entropy production could lead to systematic biases in numerical models (Johnson, 1997). The entropy budget is closely related to the budget of available potential energy (Lorenz, 1955; Peixoto and Oort, 1992), which controls the strength of midlatitude eddies and other aspects of the circulation. The entropy budget is also important for a variety of smaller scale phenomena such as the growth of the convective boundary layer (e.g., Stull, 1988), and in precipitating convection (Emanuel et al., 1994; Pauluis and Held, 2002; Raymond, 2013). Numerical difficulties in simulating the convective boundary layer in a single-column two-fluid model, associated with the use of a nonconservative transport scheme for entropy (Thuburn et al., 2019), were a key motivation for the work presented here.

It is relatively straightforward to achieve conservation of entropy (or some related quantity such as potential temperature) in a dynamical core by formulating and discretizing its prognostic equation as a flux-form conservation law. Moreover, the developer retains considerable flexibility in...
how the fluxes are chosen, allowing higher-order accuracy, upwinding, and monotonicity constraints, for example.

The vertical placement of variables on the model grid can significantly affect the properties of a numerical model, including conservation properties, the propagation of marginally resolved waves, and the ability to represent balanced flows. Two main alternatives are Charney–Phillips vertical staggering (Charney and Phillips, 1953), in which the entropy \(\eta \) is staggered vertically relative to the density \(\rho \) and horizontal velocity components \(u \) and \(v \), and Lorenz vertical staggering (Lorenz, 1960), in which the entropy is located at the same vertical levels as the density and horizontal velocity. The extensions of these two grids to the fully compressible nonhydrostatic case are shown in Figure 1.

By predicting \(\eta \) at the same grid location as \(\rho \), the Lorenz grid facilitates the development of schemes that conserve entropy and also energy. However, studies of the effects of grid staggering on wave propagation (e.g., Tokioka, 1978; Lesley and Purser, 1992; Fox-Rabinovitz, 1994; 1996; Thuburn and Woollings, 2005; Liu, 2008; Girard et al., 2014; Thuburn, 2017b) have shown that the Charney–Phillips grid gives more accurate wave propagation; provided the pressure-gradient term is evaluated appropriately (Thuburn, 2006; Toy and Randall, 2007), the wave propagation is “optimal” in the sense that it is as good as can be achieved by any scheme based on two-point second-order centred differences. Moreover, the Lorenz grid supports a computational mode, that is, a vertical pattern in the thermodynamic variables that spuriously satisfies hydrostatic balance and so is invisible to the dynamics. The existence of the computational mode can lead to the appearance of vertical grid-scale noise, an unphysical response to forcing (e.g., Schneider, 1987), and even spurious baroclinic instability (Arakawa and Moorthi, 1988). The reduced accuracy of wave propagation on the Lorenz grid is associated with impaired adjustment towards hydrostatic and geostrophic balance for disturbances with small vertical scale (e.g., Arakawa and Konor, 1996), and with a reduction in the effective Rossby deformation radius, implying an increased susceptibility to the so-called Hollingsworth instability (Hollingsworth et al., 1983; Bell et al., 2017) for models using the vector-invariant form of the momentum equation.

On the Lorenz grid, the calculation of the buoyancy term in the vertical momentum equation requires \(\eta \) to be averaged vertically from its native levels to \(w \)-levels. Also, if the entropy equation is written in advective form, then the vertical velocity \(w \) must be averaged vertically to \(\rho \)-levels to calculate \(w \frac{\partial \eta}{\partial z} \). Less obviously, if the entropy equation is written in conservative form, there is still an implied averaging of \(w \) (Appendix A). This averaging is responsible for the less accurate wave propagation, reduced effective Rossby deformation radius, and computational mode of the Lorenz grid, and the avoidance of such averaging is critical for the good wave propagation behaviour of the Charney–Phillips grid.

Is it not therefore possible to obtain conservation of entropy together with accurate wave propagation by using a Charney–Phillips staggering of variables combined with a flux-form discretization of the entropy equation? At first glance, this does not seem to be possible. All of the studies showing accurate wave propagation on the Charney–Phillips grid assume the advective form for the entropy or potential temperature equation. If the entropy equation is written in flux form, then \(w \) must be averaged vertically to compute the vertical entropy fluxes (and there is a further implied vertical averaging from the discrete product rule, Appendix A). Thus it appears impossible to avoid unwanted vertical averaging if the entropy equation is solved in flux form, even on a Charney–Phillips grid.

The key to obtaining entropy conservation without losing the optimal Charney–Phillips grid wave propagation is to take a finite-volume perspective of the behaviour of a vertical-grid-scale disturbance, and recognise that the entropy tendency in an \(\eta \)-cell should arise primarily through horizontal rather than vertical fluxes (Section 2). This insight then suggests a straightforward modification to a finite-volume entropy-transport scheme that gives it the desired properties. A numerical normal mode analysis of the discrete linearized equations confirms that such a modified finite-volume scheme does indeed give optimal wave propagation (Section 2).

Once this key idea is recognized, it can be adapted and applied to other conservative advection schemes. In Section 3, it is applied to the conservative semi-Lagrangian SLICE scheme of Zerroukat et al. (2007; 2009). The procedure is not quite straightforward, because the key idea refers to the calculation of fluxes, whereas SLICE works in terms of remapping. This modified SLICE scheme is then

![Figure 1](image_url)
Figure 1 Schematic showing the vertical placement of prognostic variables (density \(\rho \), specific entropy \(\eta \), vertical velocity \(w \), and horizontal velocity components \(u \) and \(v \)) on (a) a Lorenz grid and (b) a Charney–Phillips grid in a height-based vertical coordinate system.
tested in a two-dimensional model (Section 4). The con-
servation properties are verified in an idealized satu-
rated buoyant bubble test and the accuracy of wave propagation
is tested by simulating gravity waves with small vertical scale.

2 | FINITE-VOLUME TRANSPORT

For the rest of this article, we restrict attention to a
Charney–Phillips grid in a height-based vertical coordi-
nate. For clarity, we will also restrict attention to the
two-dimensional (x,z)-plane and assume uniform hori-
Zontal and vertical grid spacing Δx and Δz respectively.
In this case, all vertical averages between ρ-levels and
w-levels (indicated by an overbar) can be taken to have
simple $\frac{1}{2} - \frac{1}{2}$ weights.

A spatially discrete conservation law for mass may be
written

$$
\frac{\partial}{\partial t} \bar{\rho}_{ij} + \frac{F_{i+1/2,j}^x - F_{i-1/2,j}^x}{\Delta x} + \frac{F_{i,j+1/2}^z - F_{i,j-1/2}^z}{\Delta z} = 0. \quad (1)
$$

Here, i and j are the horizontal and vertical grid indices of
the cell of interest. $F_{i+1/2,j}^x$ are the horizontal mass fluxes.

The index $i+1/2$ indicates that they are evaluated at the
lateral faces of the cell, and they will typically be expressed
as $F_{i+1/2,j}^x = u_{i+1/2} \hat{\rho}_{i+1/2,j}$, where $\hat{\rho}$ is a cell face value of
ρ that must be reconstructed from the cell average values
ρ_{ij}. Similarly, $F_{i,j+1/2}^z$ are vertical mass fluxes evaluated at
the lower and upper cell faces and typically expressed as
$F_{i,j+1/2}^z = w_{ij+1/2} \hat{\rho}_{ij+1/2}$. There is considerable freedom in
how the $\hat{\rho}$ are chosen.

We also require a discrete conservation law for entropy,
but, since ρ and η are stored at different levels, this must
be a conservation law for the quantity $\bar{\rho} \eta$. In order that the
scheme should be able to preserve an initially uniform η,
this conservation law must reduce to a conservation law
for $\bar{\rho}$ that is consistent with Equation (1) when $\eta \equiv 1$. The
discrete conservation law for $\bar{\rho}$ is obtained simply by taking
a vertical average of Equation (1):

$$
\frac{\partial}{\partial t} \bar{\rho}_{i,j+1/2} + \frac{\bar{F}_{i+1/2,j+1/2}^x - \bar{F}_{i-1/2,j+1/2}^x}{\Delta x} + \frac{\bar{F}_{i,j+1/2}^z - \bar{F}_{i,j+1/2}^z}{\Delta z} = 0. \quad (2)
$$

(At the bottom boundary, level 1/2, the conservation law
applies in a layer of thickness $\Delta z/2$ and reduces to

$$
\frac{\partial}{\partial t} \bar{\rho}_{i,1/2} + \frac{\bar{F}_{i+1/2,1/2}^x - \bar{F}_{i-1/2,1/2}^x}{\Delta x} + \frac{\bar{F}_{i,1}^z - \bar{F}_{i,1/2}^z}{\Delta z/2} = 0, \quad (3)
$$

with $\bar{\rho}_{i,1/2} = \rho_i$, $\bar{F}_{i+1/2,1/2}^x = F_{i+1/2,1/2}^x$, $\bar{F}_{i,1}^z = \frac{1}{2} F_{i,1/2}^z$ and
$\bar{F}_{i+1/2,1/2}^z = 0$. A similar modification is made at the top boundary.)

We now seek a discrete flux-form conservation law for
η. Its general form must be

$$
\frac{\partial}{\partial t} \left(\bar{\eta}_{i,j+1/2} \hat{\eta}_{i,j+1/2} \right) + \frac{G_{i+1/2,j+1/2}^x - G_{i-1/2,j+1/2}^x}{\Delta x} + \frac{G_{i,j+1}^z - G_{i,j}^z}{\Delta z} = 0 \quad (4)
$$

(suitably modified at the lower and upper boundaries),
where G^x and G^z are the horizontal and vertical entropy
fluxes. Based on Equation (2), we might anticipate that G^x
and G^z must be related to \bar{F}^x and \bar{F}^z.

Let us first clarify why a naive choice for G^x and G^z does
not give optimal wave propagation. Consider the situation
shown in Figure 2a. Suppose that there is a background
stratification in which η increases with height, and that
the mass fluxes F^x and F^z have an oscillation with vertical
scale $2\Delta z$. In this situation, the $2\Delta z$ structure in the
fluxes should lead to a $2\Delta z$ structure in the η tendencies.
This behaviour is captured correctly by the advective-form
η equation via the $w \partial \eta / \partial z$ term, which involves no aver-
aging of w. However, we wish to use the flux-form η
Equation (4). Suppose the entropy fluxes are defined by

$$
G_{i+1/2,j+1/2}^x = \bar{F}_{i+1/2,j+1/2}^x \hat{\eta}_{i+1/2,j+1/2}, \quad (5)
$$

$$
G_{i,j}^z = \bar{F}_{i,j}^z \hat{\eta}_{i,j}, \quad (6)
$$

for some reconstructed η-cell face values $\hat{\eta}$. It is clear
that if the mass fluxes F^x and F^z have a vertical $2\Delta z$
oscillation, as in Figure 2a, then the vertically averaged
fluxes \bar{F}^x and \bar{F}^z will vanish and so, too, will the entropy
fluxes (Equations (5) and (6)). Consequently the η
tendencies must vanish, and the correct behaviour is not
captured.

To make progress, let us examine the entropy bud-
get for the η-cell shown by the dotted line in Figure 2a.
Because of the descent at the cell centre, the cell-average
value of η should increase. However, this increase cannot
occur via vertical fluxes through the lower and upper
cell faces, because the mass fluxes \bar{F}^x vanish there. The
only possibility, then, is that the increase in cell-average
η occurs via horizontal fluxes. Now, the net mass flux at the
right face of the η-cell $\bar{F}_{i+1/2,j+1/2}^z$ is zero. However, it
is made up of two nonzero but cancelling contributions:
$\frac{1}{2} F_{i+1/2,j}^x$ on the lower part of the face and $\frac{1}{2} F_{i+1/2,j+1}^z$
on the upper part of the face. Because of the background strat-
ification, $F_{i+1/2,j+1}^z$ ought to carry a greater entropy flux into
Here, \(\frac{\partial \eta}{\partial z} \) is an estimate for the vertical derivative of \(\eta \) at the lateral cell faces, obtained, for example, using a finite-difference approximation.

One way to obtain the expression in Equation (7) is as follows. For the flux \(G_{i+1/2,j+1/2}^{vz} \), approximate the vertical profile of \(F_{i+1/2}^{vz}(z) \) by a piecewise constant subgrid reconstruction, constant between neighbouring pairs of \(w \)-levels, and the vertical profile of \(\hat{\eta}_{i+1/2}(z) \) by a piecewise constant subgrid reconstruction, constant across each half-interval:

\[
G_{i+1/2,j+1/2}^{vz} = F_{i+1/2,j+1/2}^{vz} \hat{\eta}_{i+1/2,j+1/2} + \frac{\Delta z}{4} \left(F_{i+1/2,j+1}^{vz} - F_{i+1/2,j}^{vz} \right) \left. \frac{\partial \eta}{\partial z} \right|_{i+1/2,j+1/2},
\]

\[
G_{ij}^{vz} = F_{ij}^{vz} \hat{\eta}_{ij}.
\]

Here, \(\frac{\partial \eta}{\partial z} \) is an estimate for the vertical derivative of \(\eta \) at the lateral cell faces, obtained, for example, using a finite-difference approximation.

One way to obtain the expression in Equation (7) is as follows. For the flux \(G_{i+1/2,j+1/2}^{vz} \), approximate the vertical profile of \(F_{i+1/2}^{vz}(z) \) by a piecewise constant subgrid reconstruction, constant between neighbouring pairs of \(w \)-levels, and the vertical profile of \(\hat{\eta}_{i+1/2}(z) \) by a piecewise constant subgrid reconstruction, constant across each half-interval:

\[
G_{i+1/2,j+1/2}^{vz} = F_{i+1/2,j+1/2}^{vz} \hat{\eta}_{i+1/2,j+1/2} + \frac{\Delta z}{4} \left(F_{i+1/2,j+1}^{vz} - F_{i+1/2,j}^{vz} \right) \left. \frac{\partial \eta}{\partial z} \right|_{i+1/2,j+1/2}.
\]

(Horizontal fluxes: straightforward modification of the horizontal entropy then the horizontal flux of entropy into the \(\eta \)-cell even though the net horizontal mass flux vanishes.

The situation just described can be captured by a straightforward modification of the horizontal entropy fluxes:

\[
G_{i+1/2,j+1/2}^{vz} = F_{i+1/2,j+1/2}^{vz} \hat{\eta}_{i+1/2,j+1/2} + \frac{\Delta z}{4} \left(F_{i+1/2,j+1}^{vz} - F_{i+1/2,j}^{vz} \right) \left. \frac{\partial \eta}{\partial z} \right|_{i+1/2,j+1/2}.
\]

(Eqn (7))

(Eqn (21))

(Figure 2b,c). The entropy flux is then given by

\[
G_{i+1/2,j+1/2}^{vz} = \frac{1}{\Delta z} \int_{z_j}^{z_{j+1/2}} F_{i+1/2}^{vz}(z) \hat{\eta}_{i+1/2}(z) \, dz.
\]

(Eqn (9))

(Eqn (10))

(Eqn (12))

(Eqn (21))

As an alternative, we may use a (discontinuous) piecewise linear reconstruction for \(\hat{\eta} \):

\[
\hat{\eta}_{i+1/2}(z) = \hat{\eta}_{i+1/2,j+1/2} + (z - z_{j+1/2}) \left. \frac{\partial \eta}{\partial z} \right|_{i+1/2,j+1/2}.
\]

and approximate the integral using the trapezium rule, which again leads to Equation (7). If, however, we use this piecewise linear reconstruction and evaluate the integral exactly, then we obtain an expression similar to Equation (7) but with a factor of \(1/8 \) rather than \(1/4 \). However, only with a factor of \(1/8 \) does the implied advective form equation for \(\eta \) reduce to Equation (12) in the relevant case, and only with a factor of \(1/4 \) do we obtain optimal wave dispersion in the tests shown in Figure 3. Thus, the factor \(1/4 \), as in Equation (7), is indeed what is required.
In this argument, it has been assumed that a vertical mass flux divergence in any \(\rho \)-cell is accompanied by a compensating horizontal mass flux convergence, so that the net divergence of mass flux is small. This assumption is a good approximation for gravity waves and Rossby waves that are adversely affected by vertical averaging of \(\eta \) and \(w \). The assumption would not be a good approximation for acoustic waves, but acoustic waves are not significantly affected by vertical averaging of \(\eta \) or \(w \) in the \(\eta \) equation. The validity of the assumption is confirmed by the numerical normal mode analysis discussed below.

It is useful to examine the implied advective form equation for \(\eta \) obtained by taking Equation (4) minus \(\eta_{i,j+1/2} \times \) Equation (2):

\[
\bar{\rho}_{i,j+1/2} \frac{\partial}{\partial t} \eta_{i,j+1/2} + \frac{1}{2} \left\{ \begin{array}{l}
F_{i+1/2,j+1}^x \left(\frac{\hat{\eta} + \frac{\Delta z}{2} \frac{\partial \eta}{\partial z} \right)_{i+1/2,j+1/2} - \eta_{i+1/2,j+1/2}

F_{i-1/2,j+1}^x \left(\frac{\hat{\eta} + \frac{\Delta z}{2} \frac{\partial \eta}{\partial z} \right)_{i-1/2,j+1/2}

\end{array} \right\} \Delta x

\frac{\eta_{i+1/2,j+1/2} - \eta_{i,j+1/2}}{\Delta x} - \frac{\eta_{i,j+1/2} - \eta_{i-1/2,j+1/2}}{\Delta x}

\frac{\eta_{i,j+1/2} - \eta_{i+1/2,j+1/2}}{\Delta x}

\frac{\eta_{i,j+1/2} - \eta_{i,j+1/2}}{\Delta z}

\frac{\hat{\eta}_{i+1} - \hat{\eta}_{i,j+1/2}}{\Delta z} + \frac{\hat{\eta}_{i,j+1} - \hat{\eta}_{i,j}}{\Delta z} = 0.
\] (11)

This shows that if the fluxes have a \(2\Delta z \) vertical structure and \(\eta \) has a background stratification then, provided that stratification is captured by the estimates for \(\partial \eta/\partial z \), there will be a nonzero tendency of \(\eta \) arising through the horizontal flux terms rather than the vertical flux terms. Also, if \(\eta \) is independent of \(x \) and the mass fluxes are approximately nondivergent (i.e., the time derivative in Equation (1) is small) then Equation (11) reduces to the expected form:

\[
\bar{\rho}_{i,j+1/2} \frac{\partial}{\partial t} \eta_{i,j+1/2} + F_{i,j+1/2}^x \frac{\partial \eta}{\partial z} \bigg|_{j+1/2} \approx 0.
\] (12)

Finally, Equation (11) confirms that if \(\eta \) is uniform, and provided \(\hat{\eta} \) takes that same uniform value of \(\eta \) and the estimates for \(\partial \eta/\partial z \) vanish, then the \(\eta \) tendency vanishes and the uniform value of \(\eta \) is preserved.

To investigate whether this modified flux-form conservation equation for \(\eta \) based on Equations (7) and (8) gives the accurate wave propagation expected for the Charney–Phillips grid, a numerical linear normal mode analysis was carried out, following the methodology of Thuburn and Woolings (2005) and Thuburn (2006). The compressible Euler equations on a \(\beta \)-plane, with \(\rho, \eta, u, v, \) and \(w \) as prognostic variables, were linearized about an isothermal state of rest. The system was discretized in the...
vertical on a Charney–Phillips grid, and solutions proportional to \(\exp\{ i (kx + ly - \omega t) \} \) were sought. For given values of \(k \) and \(l \), the system comprises an eigenvalue problem for the normal-mode frequencies \(\omega \) and their vertical structures. In this linear calculation, the values of \(\eta \) are given by the reference profile about which we linearize; thus, the details of the advection scheme do not matter, except for the inclusion of the modification Equation (7).

Some example results are shown in Figure 3 for three versions of the discrete \(\eta \) equation: (a) advective form; (b) naive flux form (Equations (5) and (6)), and (c) modified flux form (Equations (7) and (8)). For the advective-form \(\eta \) equation, the numerical frequencies agree very well with the exact frequencies for the continuous linearized equations; this result is identical to that shown by Thuburn (2006) for the same system. For the naive flux-form \(\eta \) equation the higher internal Rossby modes are significantly retarded due to the explicit and implicit vertical averaging of \(w \). The modified flux form, however, captures all wave modes with the same optimal accuracy as the advective form \(\eta \) equation.

Although it is the higher internal Rossby modes that are adversely affected by the averaging in the discrete equations in this example, when the horizontal wavelength is much shorter it is the higher internal gravity modes that are affected, as discussed by Thuburn (2006). The testing in Section 4 below focuses on gravity waves.

3 CONSERVATIVE SEMI-LAGRANGIAN TRANSPORT

Section 2 discusses how the fluxes should be discretized in a flux-form conservation equation for entropy so as to avoid losing the optimal wave propagation characteristics of the Charney–Phillips grid. Conservation equations can also be discretized in terms of remapping operators.\(^2\) Such remapping-based schemes are attractive because they can be designed to be stable while remaining accurate even for large time steps. This section discusses how a such a remapping scheme can be modified so as to retain optimal wave propagation, using the SLICE transport scheme (Zerroukat et al., 2007; 2009) for illustration.

Given a set of a set of trajectory departure points for the velocity points at the faces of the \(\rho \)-cells, SLICE constructs the corresponding \(\rho \)-cell departure volumes. It then effectively carries out a multidimensional remapping, via a “cascade” of one-dimensional remappings, to determine the density in the departure volumes. The mass in each departure volume is then assumed to be transported during the model time step to the corresponding arrival \(\rho \)-cell.

Figure 4a,b illustrates the idea in two dimensions. Using information about the grid and the departure points, SLICE constructs the departure volume (bounded by dashed lines in Figure 4b) for each \(\rho \)-cell of the grid (bounded by solid lines in Figure 4b). Certain intermediate Eulerian control volumes are also constructed; their lateral boundaries are represented by vertical dashed lines in Figure 4a. In the first stage of SLICE, the density field is remapped in the \(x \)-direction, using \(x \) as the remapping coordinate, from the \(\rho \)-cells to the intermediate Eulerian control volumes.

The mass in each intermediate Eulerian control volume is assumed to equal the mass in the corresponding intermediate Lagrangian control volume; the intermediate Lagrangian control volumes are shown in Figure 4b, bounded laterally by dashed lines and above and below by solid lines. In the second stage of SLICE, the density field is remapped from intermediate Lagrangian control volumes to departure volumes. In this second stage, Zerroukat et al. (2009) use \(z \) as the remapping coordinate, with intermediate Lagrangian control volume upper and lower boundaries given by the \(z \)-coordinate of \(w \)-points and the departure volume upper and lower boundaries given by the \(z \)-coordinate of \(w \) departure points. However, Thuburn et al. (2010) showed that the effects of flow divergence could be captured more accurately by estimating the area of departure cells (or volume in three dimensions) using the trajectory average divergence, then using cumulative column area as the coordinate for the final remapping stage. This modification is used here too. (The freedom to choose different remapping coordinates in SLICE is discussed briefly in Appendix B.) Finally, the mass in each departure volume is assumed to be transported during the time step to the corresponding arrival \(\rho \)-cell.

An obvious way to obtain conservative transport of entropy on a Charney–Phillips grid using SLICE would be to construct the departure volumes, intermediate Eulerian control volumes, and intermediate Lagrangian control volumes corresponding to \(\eta \)-cells, and then to apply the above algorithm to the quantity \(\overline{\rho \eta} \) (Figure 4c,d). However, if we use \(x \) and column integrated area as the remapping coordinates in the first and second stages, as we do for density, then the result of transporting \(\overline{\rho \eta} \) with \(\eta \equiv 1 \) initially is different from the result of transporting \(\rho \) followed by averaging to \(w \)-levels. Thus \(\eta \) will no longer be identically equal to 1 at the end of the time step; the property of preserving a constant \(\eta \) is lost.

The property of preserving a constant \(\eta \) can be recovered by again taking advantage of the freedom to choose alternative remapping coordinates. In this case, we must

\(^2\)In this article, the term “remapping” is understood to imply conservation.
Schematic illustrating the modified SLICE scheme in two dimensions. The thick solid lines indicate the edges of the ρ-cells on the model grid. Filled circles indicate departure points for u-points, and open circles, where shown, indicate u-points themselves. (a) The dashed vertical lines indicate the lateral edges of the ρ-cell intermediate Eulerian control volumes; one of the intermediate Eulerian control volumes is shaded. One of the u-point trajectories is shown. In the first stage of SLICE, the ρ field is remapped in the x-direction from the model grid ρ-cells to the corresponding intermediate Eulerian control volumes. (b) Intermediate Lagrangian control volumes corresponding to ρ-cells are bounded at the sides by dashed lines and above and below by solid lines; one of these intermediate Lagrangian control volumes is shaded. Departure volumes are bounded by dashed lines. The mass in an intermediate Lagrangian control volume is assumed to equal the mass in the corresponding intermediate Eulerian control volume. In the second stage of SLICE, ρ is remapped quasivertically from intermediate Lagrangian control volumes to departure volumes. Finally, the mass in each departure volume is assumed to be transported during the time step to the corresponding arrival grid cell. (c) The light shaded rectangular region indicates one of the η-cell intermediate Eulerian control volumes. In the first stage of SLICE, $\partial\eta$ is remapped in the x-direction from the model grid η-cells to the corresponding intermediate Eulerian control volumes. In the modified SLICE scheme, a “mass flux” difference is then estimated at the lateral faces of the intermediate Eulerian control volumes and, combined with an estimate for $\partial\eta/\partial z$, is used to shift entropy conservatively between neighbouring intermediate Eulerian control volumes. The two dark shaded regions indicate the regions used to compute this correction at one lateral face. (d) Intermediate Lagrangian control volumes corresponding to η-cells are bounded at the sides by dashed lines and above and below by thin solid lines; one of these intermediate Lagrangian control volumes is shaded. η-cell departure volumes are bounded by dashed lines. The entropy content in an intermediate Lagrangian control volume is assumed to equal the entropy content in the corresponding intermediate Eulerian control volume. In the second stage of SLICE, η is remapped quasivertically from intermediate Lagrangian control volumes to departure volumes. Finally, the entropy content in each η departure volume is assumed to be transported during the time step to the corresponding arrival η-cell.
use row-integrated mass as the remapping coordinate in the first stage and column-integrated mass as the remapping coordinate in the second stage. The density in \(\eta \)-cells is simply \(\tilde{\rho} \); the mass in \(\eta \)-cell intermediate control volumes is just the vertical average of the masses in the \(\rho \)-cell intermediate control volumes immediately above and below, and the mass in the \(\eta \)-cell departure volumes is just the vertical average of the masses in the \(\rho \)-cell departure volumes immediately above and below. From these densities and masses and the cell geometries, the required integrated mass coordinates can be constructed straightforwardly.

The resulting scheme is conservative and preserves a constant \(\eta \). Unfortunately, it suffers from essentially the same problem as the naïve finite-volume scheme discussed in Section 2: the positions of the lateral boundaries of the \(\eta \)-cell intermediate Eulerian control volumes and the upper and lower boundaries of the \(\eta \)-cell departure volumes are determined by vertically averaged velocities, so a \(\Delta z \) pattern in the velocity is invisible to the \(\eta \) transport; thus the scheme does not retain the Charney–Phillips grid optimal wave propagation. We refer to this as the naïve SLICE scheme in the gravity-wave test of Section 4.

In order to obtain optimal wave propagation, we can include a correction to the horizontal remapping of \(\tilde{\rho} \eta \) that is analogous to the correction to the horizontal fluxes in Equation (7). The light shaded rectangular region in Figure 4c represents an \(\eta \)-cell intermediate Eulerian control volume. In the first stage of the naïve SLICE scheme, \(\tilde{\rho} \eta \) is remapped horizontally from \(\eta \)-cells to these intermediate Eulerian control volumes. To apply the correction, observe that the difference of mass fluxes in the correction term in Equation (7), integrated over a time step, corresponds to twice the sum of the two dark shaded areas in Figure 4c (with appropriate allowance for sign) multiplied by \(\tilde{\rho} \), an estimate of the density at that edge of the intermediate Eulerian control volume. \(\tilde{\rho} \) may be estimated as a by-product of the horizontal remapping of \(\rho \). This difference of mass fluxes is multiplied by an estimate for \(\partial \eta / \partial z \times \Delta z \) to obtain an entropy flux correction. An estimate for \(\partial \eta / \partial z \times \Delta z \) at the edge of the intermediate Eulerian control volume can be estimated as half the difference between edge values of \(\eta \) at the levels above and below; these edge values of \(\eta \) again can be obtained as by-products of the horizontal remapping. The entropy flux correction is then applied to shift entropy conservatively between neighbouring intermediate Eulerian control volumes.

4 | NUMERICAL EXAMPLES

Some numerical tests were carried out to confirm the conservation and wave dispersion properties of the modified SLICE scheme. The two-dimensional moist compressible Euler equations were solved using the semi-implicit, semi-Lagrangian vertical slice model described by Thuburn (2017a). The model uses a Charney–Phillips vertical grid, with specific humidity as well as entropy stored at \(w \)-points. The original formulation uses (in its default configuration) SLICE with parabolic spline subgrid reconstruction for conservative transport of density and a semi-Lagrangian scheme with cubic Lagrange interpolation for transport of entropy, specific humidity, and \(w \). An option to use the modified SLICE scheme for transport of entropy, specific humidity, and \(w \) was implemented and compared.

4.1 | Conservation

To test the conservation properties, the semi-Lagrangian and modified-SLICE versions were compared using the saturated buoyant bubble test case of Bryan and Fritsch (2002). The domain is 20 km wide and 10 km deep, discretized using 192 \(\times \) 96 grid cells, giving a horizontal and vertical grid length of a little over 100 m. The time step is 10 s.

Figure 5a,b compares the perturbation to equivalent potential temperature \(\theta_e \) for the two model versions after 800 s. There are some small but noticeable differences at the leading edge of the bubble, where the perturbation is slightly smaller for the modified-SLICE scheme. The overall evolution, however, is very similar for both versions. At later times (e.g., Figure 5c,d) the differences between the two versions grow. This test case, particularly the behaviour at the leading edge of the bubble, is notoriously sensitive to the details of the numerics (e.g., Duarte et al., 2014; Kurowski et al., 2014), and a similar sensitivity was found here. All of the schemes tested—semi-Lagrangian, modified SLICE, and unmodified SLICE, each with and without limiters—produced clear differences from each other at the bubble’s leading edge at 1,000 s.

Figure 5e,f compares the conservation of entropy (solid lines) and energy (dashed lines) in the semi-Lagrangian and modified-SLICE versions. Note the different axis scale in the two panels. See Appendix C for a discussion of how the entropy and energy changes are normalized. In the semi-Lagrangian version, there are normalized entropy and energy losses of around −0.15 over 1,000 s, while in the modified-SLICE version entropy is conserved to machine precision. The model is not formulated to conserve energy exactly, so we should not expect perfect energy conservation even with the modified-SLICE version. Figure 5f shows a very slight increase in energy between 200 and 500 s, before numerical dissipation of kinetic energy becomes significant at later times.
Results for the Bryan and Fritsch (2002) saturated buoyant bubble test case. (a, c, e) Semi-Lagrangian advection of entropy, specific humidity, and w, and (b, d, f) modified SLICE advection of entropy, specific humidity, and w. The equivalent potential temperature perturbation is shown after (a, b) 800 s and (c, d) 1000 s. The contour interval is 0.5 K. The domain is 20 km wide; only the middle portion is shown. (e, f) Time series of the normalized change in domain-integrated entropy (solid) and domain-integrated energy (dashed); note the different axis scales.
Nevertheless, as a by-product of the entropy conservation, the energy loss in the modified-SLICE version is an order of magnitude smaller than that in the semi-Lagrangian version.

The total water content (not shown) is actually conserved to machine precision for both model versions in this test case. In the semi-Lagrangian version, this exact conservation occurs because the specific humidity is uniform. Preservation of this uniform specific humidity by semi-Lagrangian advection, together with conservation of mass by SLICE transport, implies conservation of total water. For nonuniform specific humidity, the semi-Lagrangian version would not conserve total water. The uniform specific humidity was also preserved to machine precision by the modified-SLICE version, confirming that the mass-coordinate-based remapping for entropy and specific humidity works as intended.

4.2 Wave dispersion

To test the wave dispersion properties, the model was initialized with a packet of gravity waves of small vertical wavelength, and the frequency of the waves in the model was compared with the analytical frequency and the theoretical optimal numerical frequency.

As above, the domain size was $20 \text{ km} \times 10 \text{ km}$ with resolution 192×96 grid cells. A background resting hydrostatically balanced state with surface pressure 10^5 Pa and uniform temperature $T = 270 \text{ K}$ was set up. Specific humidity was set to zero. A gravity-wave packet disturbance was then superposed, with the following distributions of buoyancy b and mass stream function ψ:

$$b = \frac{w_0 N^2}{\omega} \cos^2(r \pi/2) \cos(kx' + mz'),$$ \hspace{1cm} (13)

$$\psi = \frac{\rho_c}{k} w_0 \cos^2(r \pi/2) \cos(kx' + mz').$$ \hspace{1cm} (14)

Here

$$x' = x - x_c, \quad z' = z - z_c,$$ \hspace{1cm} (15)

where $(x_c, z_c) = (10^4 \text{ m}, 5 \times 10^3 \text{ m})$ is the centre of the wave packet,

$$r = \min \left(1, \sqrt{(x'/x_c)^2 + (z'/z_c)^2} \right).$$ \hspace{1cm} (16)

with $x_r = 7 \times 10^3 \text{ m}$ and $z_r = 3.5 \times 10^3 \text{ m}$ defining the size of the wave packet, $w_0 = 0.01 \text{ m} \cdot \text{s}^{-1}$ is the vertical velocity amplitude, k and m are the horizontal and vertical wavenumbers of the wave, $N^2 = g^2/c_p T$ is the background buoyancy frequency squared, with $g = 9.81 \text{ m} \cdot \text{s}^{-2}$ the gravitational acceleration and $c_p = 1.004 \text{ J} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$ the specific heat capacity at constant pressure, and $\rho_c \approx 0.7 \text{ kg} \cdot \text{m}^{-3}$ is the background density at the centre of the wave packet. The frequency for a monochromatic gravity wave is given, to a good approximation, by the Boussinesq frequency,

$$\omega^2 = \frac{k^2 N^2}{k^2 + m^2}.$$ \hspace{1cm} (17)

The initial density and entropy are adjusted to give the buoyancy field specified by Equation (13) without perturbing the pressure. The mass stream function ψ is used to construct the initial velocity field:

$$\rho u = -\frac{\partial \psi}{\partial z}; \quad \rho w = \frac{\partial \psi}{\partial x}.$$ \hspace{1cm} (18)

The resulting disturbance evolves as a packet of nearly monochromatic gravity waves, with phase propagation towards the lower left perpendicular to the phase lines and group propagation towards the upper left, approximately parallel to the phase lines, in agreement with the theory of idealized gravity waves (e.g., section 7.3 of Vallis, 2017).

For well-resolved waves, the numerical frequency should be close to the analytical Boussinesq frequency (Equation (17)). However, for waves that are less well-resolved in space, even with optimal grid staggering, the inexact approximation of derivatives changes the frequency. For second-order centred-difference derivatives on a Charney–Phillips C-grid, as used here, the effect of the numerical errors can be quantified; the effect and is to replace the exact frequency (Equation (17)) by the (optimal) numerical frequency,

$$\omega^2_{\text{num}} = \frac{\hat{k}^2 N^2}{\hat{k}^2 + \hat{m}^2},$$ \hspace{1cm} (19)

where

$$\hat{k} = \frac{\sin(k \Delta x/2)}{\Delta x/2}, \quad \hat{m} = \frac{\sin(m \Delta z/2)}{\Delta z/2}$$ \hspace{1cm} (20)

are the effective wavenumbers seen by staggered centred-difference derivatives. On a Lorenz grid, or on a Charney–Phillips grid with naive flux-form transport of entropy or with a suboptimal form of the pressure-gradient term, the vertical averaging of w and/or η introduces a further factor $\cos^2(m \Delta z/2)$ in Equation (19), severely slowing those waves that are marginally resolved in the vertical (Thuburn, 2006). For the experiments discussed here, the time step $\Delta t = 10 \text{ s}$ is much shorter than the wave period, so time discretization errors are negligible.

The horizontal wavenumber was fixed at $k = \pi \times 10^{-3} \text{ m}^{-1}$. For a range of vertical wavenumbers, the
gravity-wave packet was simulated and the empirical period of the wave was estimated from time series of u, w, and η at the centre of the domain. (This estimate incurs some small errors, because attention is restricted to periods that are multiples of the time step, and because the wave packet propagates away, so that wave amplitude at the domain centre decays over time.) The empirical period was then compared with the theoretical Boussinesq and optimal numerical periods. The results are shown in Table 1. For both semi-Lagrangian and modified SLICE transport of η, the wave periods agree well with the theoretical wave periods for an optimal scheme.

The same set of gravity-wave simulations was carried out with η transport given by the naive SLICE scheme discussed in Section 3. The results are shown in the final column of Table 1. They confirm that this naive application of SLICE does not lead to optimal wave propagation. They also confirm that this test case can indeed discriminate between optimal and suboptimal wave propagation. In fact, these periods are longer than the optimal periods by the theoretical factor $1/\cos(m\Delta z/2)$.

5 SUMMARY AND DISCUSSION

On a Charney–Phillips vertical grid, for which entropy η is staggered vertically relative to density ρ, conservation of entropy can be obtained by integrating a flux-form conservation equation for the quantity $\rho\eta$. A naive discretization of that conservation equation involves explicit and implicit vertical averaging, so that optimal wave propagation is lost, despite the use of a Charney–Phillips grid. This article presents a straightforward and general method for modifying the horizontal fluxes in the entropy conservation equation so as to restore optimal wave propagation. An analogous modification can be made in a conservative semi-Lagrangian scheme based on remapping.

The proposed idea has been tested, and the predicted behaviour confirmed, by computing numerical linear normal modes for an idealized basic state, and by simulating a saturated buoyant bubble and marginally resolved gravity waves in a two-dimensional vertical slice model.

For clarity of presentation, the idea has been presented in the two-dimensional context and for a vertically uniform grid. However, it extends straightforwardly to three dimensions and to vertically nonuniform grids.

At an early stage of this work, an alternative modification of the horizontal fluxes was considered:

$$G_{i+1/2,j+1/2}^k = F_2 \tilde{\eta}_{i+1/2,j+1/2}.$$ \hfill (21)

In this scheme, η is first vertically averaged to ρ-levels, then used to construct values at the lateral faces of ρ-cells $\hat{\eta}_{i+1/2,j}$ and hence entropy fluxes at the lateral faces of ρ-cells $F_{i+1/2,j}^k \tilde{\eta}_{i+1/2,j}$, which are then averaged back to w-levels to give $G_{i+1/2,j+1/2}^k$. Interestingly, this scheme can be obtained by a slight modification of the derivation in Equations (9) and (10) using a different piecewise constant subgrid reconstruction of $\tilde{\eta}_{i+1/2}(z)$:

$$\tilde{\eta}_{i+1/2}(z) = \begin{cases} \frac{1}{2} (\hat{\eta}_{i+1/2,j+1/2} + \hat{\eta}_{i+1/2,j+3/2}) , & z_{j+1/2} \leq z \leq z_{j+1}; \\ \frac{1}{2} (\hat{\eta}_{i+1/2,j-1/2} + \hat{\eta}_{i+1/2,j+1/2}) , & z_{j} \leq z < z_{j+1/2} \end{cases}$$ \hfill (22)

(Figure 2d). This scheme is conservative and has the optimal wave dispersion property. However, it is less accurate than Equation (7). This is most clear if we consider the case of F_2^k independent of z, whereupon

$$G_{i+1/2,j+1/2}^k = F_2^k \tilde{\eta}_{i+1/2,j+1/2}.$$ \hfill (23)

The double vertical average of $\tilde{\eta}$ is only a second-order approximation to $\hat{\eta}_{i+1/2,j+1/2}$, so the scheme is, at best, second-order accurate for advection. This reduction in accuracy is noticeable in advection tests with the SLICE analogue of the scheme. On the other hand, the modification described in Section 3, which is the SLICE analogue of Equation (7), remains as accurate as the unmodified SLICE scheme.

The modification described in this article permits considerable flexibility in the choice of the cell-edge values $\hat{\eta}$, which allows for optimal wave propagation in situations where vertical grid staggering is required.
or in the choice of subgrid reconstruction in the case of the SLICE scheme. In particular, schemes with a high order of accuracy are possible, and so are flux limiters that prevent the numerical generation of overshoots and undershoots in η. The results shown in Section 4 all use a parabolic spline subgrid reconstruction for SLICE and include a limiter for the transport of entropy and water (Zerroukat et al., 2006). The results using semi-Lagrangian advection shown in Table 1 use two-dimensional cubic Lagrange interpolation with a simple monotonicity limiter. Switching off the limiters makes negligible difference to the results in Table 1.

In summary, the modified SLICE scheme presented here, applied to the transport of entropy on a Charney–Phillips vertical grid, achieves several desirable properties: high overall accuracy, stability at large time steps, conservation, preservation of a constant, and prevention of overshoots and undershoots. It does all this without sacrificing the optimal wave propagation permitted by the Charney–Phillips grid.

AUTHOR CONTRIBUTIONS

John Thuburn: conceptualization; formal analysis; funding acquisition; investigation; methodology; software; visualization; writing – original draft; writing – review and editing.

ACKNOWLEDGEMENTS

This work was funded by the Natural Environment Research Council under grants NE/N013123/1 and NE/T003863/1 as part of the ParaCon programme. The author is grateful to Nigel Wood for constructive comments on an earlier draft of this article, in particular for pointing out how the derivation of Equations (7) and (21) can be understood in terms of a choice of subgrid reconstruction for $\tilde{\eta}$.

ORCID

John Thuburn @ https://orcid.org/0000-0002-4598-546X

REFERENCES

Arakawa, A. and Konor, C.S. (1996) Vertical differencing of the primitive equations based on the Charney–Phillips grid in hybrid σ–p vertical coordinates. *Monthly Weather Review*, 124, 511–528.

Arakawa, A. and Moorthi, S. (1988) Baroclinic instability in vertically discrete systems. *Journal of the Atmospheric Sciences*, 45, 1688–1707.

Bell, M.J., Peixoto, P.S. and Thuburn, J. (2017) Numerical instabilities of vector-invariant momentum equations on rectangular C-grids. *Quarterly Journal of the Royal Meteorological Society*, 143, 563–581.

Bryan, G.H. and Fritsch, J.M. (2002) A benchmark simulation for moist nonhydrostatic numerical models. *Monthly Weather Review*, 130, 2917–2928.

Charney, J.G. and Phillips, N.A. (1953) Numerical integration of the quasi-geostrophic equations for barotropic and simple baroclinic flow. *Journal of Meteorological Research*, 10, 71–99.

Duarte, M., Almgren, A.S., Balakrishnan, K. and Bell, J.B. (2014) A numerical study of methods for moist atmospheric flows: Compressible equations. *Monthly Weather Review*, 142, 4269–4283.

Emanuel, K.A., Neelin, J.D. and Bretherton, C.S. (1994) On large-scale circulations in convecting atmospheres. *Quarterly Journal of the Royal Meteorological Society*, 120, 1111–1143.

Feistel, R., Wright, D.G., Miyagawa, K., Harvey, A.H., Hruby, J., Jackett, D.R., McDougall, T.J. and Wagner, W. (2008) Mutually consistent thermodynamic potentials for fluid water, ice and seawater: a new standard for oceanography. *Ocean Science*, 4, 275–291.

Fox-Rabinovitz, M.S. (1994) Computational dispersion properties of vertically staggered grids for atmospheric models. *Monthly Weather Review*, 122, 377–392.

Fox-Rabinovitz, M.S. (1996) Computational dispersion properties of 3D staggered grids for a nonhydrostatic anelastic system. *Monthly Weather Review*, 124, 498–510.

Girard, C., Plante, A., Desgagné, M., McTaggart-Cowan, R., Côté, J., Charron, M., Gravel, S., Lee, V., Patoine, A., Qaddouri, A., Roch, M., Spacek, L., Tanguay, M., Vaillancourt, P.A. and Zadra, A. (2014) Staggered vertical discretization of the Canadian environmental multiscale (GEM) model using a coordinate of the log-hydrostatic-pressure type. *Monthly Weather Review*, 142, 1183–1196.

Goody, R. (2000) Sources and sinks of climate entropy. *Quarterly Journal of the Royal Meteorological Society*, 126, 1953–1970.

Hollingsworth, A., Kallberg, P., Renner, V. and Burridge, D.M. (1983) An internal symmetric computational instability. *Quarterly Journal of the Royal Meteorological Society*, 109, 417–428.

Johnson, D.R. (1997) “General coldness of climate models” and the Second Law: Implications for modeling the Earth system. *Journal of Climate*, 10, 2826–2846.

Kurowski, M.J., Grabowski, W.W. and Smolarkiewicz, P.K. (2014) Anelastic and compressible simulations of moist deep convection. *Journal of the Atmospheric Sciences*, 71, 3767–3787.

Lesley, L.M. and Purser, R.J. (1992) A comparative study of the performance of various vertical discretization schemes. *Meteorology and Atmospheric Physics*, 50, 61–73.

Liu, Y. (2008) Impact of difference accuracy on computational properties of vertical grids for a nonhydrostatic model. *Computers & Geosciences*, 12, 245–253.

Lorenz, E.N. (1955) Available potential energy and the maintenance of the global circulation. *Tellus*, 7, 157–167.

Lorenz, E.N. (1960) Energy and numerical weather prediction. *Tellus*, 12, 364–373.

Pauluis, O. and Held, I.M. (2002) Entropy budget of an atmosphere in radiative-convective equilibrium. Part I: Maximum work and frictional dissipation. *Journal of the Atmospheric Sciences*, 59, 125–139.

Peixoto, J.P. and Oort, A.H. (1992) *Physics of Climate*. New York: American Institute of Physics.

Raymond, D.J. (2013) Sources and sinks of entropy in the atmosphere. *Journal of Advances in Modeling Earth Systems*, 5, 755–763.
APPENDIX A. DISCRETE DERIVATIVE OF A PRODUCT

Suppose we wish to evaluate a centred-difference approximation to the product \(ab \) at level \(j \), where \(a \) and \(b \) are quantities stored at levels \(j \pm 1/2 \). Let the grid spacing be \(\Delta z \). Then

\[
\frac{\partial(ab)}{\partial z}\bigg|_j \approx \frac{1}{\Delta z} \left(a_{j+1/2}b_{j+1/2} - a_{j-1/2}b_{j-1/2} \right)
\]

where an overbar indicates a vertical average. Thus, the discrete centred-difference product rule contains implied vertical averages.

APPENDIX B. CHOICE OF REMAPPING COORDINATE FOR SLICE

Each one-dimensional remapping stage of SLICE can be formulated in terms of a general coordinate \(s \) and “density” \(q(s) \). Given a set of cell-boundary coordinates \(s_{j+1/2} \) and the cell-integral values

\[
Q_j = \int_{s_{j-1/2}}^{s_{j+1/2}} q(s) \, ds,
\]

SLICE reconstructs an estimate for the subgrid distribution \(q(s) \), enabling the cell-integral values to be estimated for an alternative set of cell boundaries \(\tilde{s}_{j+1/2} \):

\[
\tilde{Q}_j = \int_{\tilde{s}_{j-1/2}}^{\tilde{s}_{j+1/2}} q(s) \, ds.
\]

Conservation is obtained by ensuring that

\[
\sum_j Q_j = \int q(s) \, ds = \sum_j \tilde{Q}_j.
\]

An obvious choice is to take \(s \) to be distance in some coordinate direction, say \(s = x \), and \(q \) to be density times cell depth \(q = \rho \Delta z \) or tracer density times cell depth \(q = \rho q \Delta z \). This is what is done to remap density in the first stage of SLICE (Figure 4a; in this case the \(\Delta z \) factor is constant and so could be omitted).
An analogous choice for remapping density in the second stage of SLICE would be \(s = z \) and \(q = \rho \delta x \), where \(\delta x(z) \) is the width of the column being remapped. However, as discussed by Thuburn et al. (2010), the effects of flow divergence can be captured more accurately by using a volume-based coordinate (in two dimensions an area-based coordinate) that incorporates the column width

\[
s = \int \delta x \, dz = \int dA, \tag{B4}
\]

together with \(q = \rho \). This area-based coordinate is used to remap density in the second stage of SLICE (Figure 4b).

To ensure consistency with the transport of mass, and hence ensure preservation of a constant \(\eta \), the transport of \(\eta \) uses column-integrated mass as the coordinate; for the first stage,

\[
s = \int \rho \Delta z \, dx = \int \rho \, dA = \int dm, \tag{B5}
\]

and for the second stage,

\[
s = \int \rho \delta x \, dz = \int \rho \, dA = \int dm, \tag{B6}
\]

together with \(q = \eta \). This choice ensures that, when \(\eta \equiv 1 \), the entropy content in a remapped cell agrees with the mass content:

\[
\bar{Q}_j = \bar{s}_{j+1/2} - \bar{s}_{j-1/2} = \int_{cell_j} \rho \, dA. \tag{B7}
\]

It is useful to note that the first stage of the density remapping may be re-interpreted as using row-integrated area as the remapping coordinate:

\[
s = \int \Delta z \, dx = \int dA. \tag{B8}
\]

These choices of remapping coordinate then suggest the following general rule of thumb.

- For remapping density, in order to capture the effects of velocity divergence accurately, use integrated area (integrated volume in three dimensions) as the remapping coordinate in all stages of SLICE. The same applies when remapping the velocity divergence itself in order to compute the departure cell areas (or volumes) (Thuburn et al., 2010).
- For remapping tracer density, for example \(\rho \eta \), in order to ensure compatibility with the density remapping and ensure preservation of constant \(\eta \), use integrated mass as the remapping coordinate in all stages of SLICE.

APPENDIX C. NORMALIZATION OF ENTROPY AND ENERGY CHANGES

A natural way to normalize the entropy and energy changes in the buoyant bubble test might appear to be to compute the fractional changes in these quantities. However, arbitrary constants may be added to the definitions of specific internal energy, potential energy, and specific entropy without changing any of the essential physics (e.g., Feistel et al., 2008). Since the diagnosed fractional change in entropy and energy will depend on the choices for these constants, the fractional change is not a unique and objective measure. Instead, we normalize the energy change by \(KE_{\text{max}} \approx 1.3 \times 10^9 \text{ J} \), the maximum domain-integrated kinetic energy during the 1,000 s run, and the entropy change by \(KE_{\text{max}}/T_{\text{max}} \), where \(T_{\text{max}} \approx 289.6 \text{ K} \) is the temperature near the surface.