Novel diamine monomer, 4-(phenylazo) 3,5-di(3-aminophenyl) benzoate (Azo-DA) having azobenzene group was synthesized from 4-(phenylazo)phenol as a starting material. The polyimides were synthesized from 3,4’-oxydiphthalic anhydride (3,4’-ODPA) or 3,3’,4,4’-diphenylsulfonetetra carboxylic dianhydride (DSDA) as a dianhydride and Azo-DA by two steps polymerization systems. The thin films of obtained polyimide based on DSDA/Azo-DA was irradiated by UV light (λ_{max}; 365 nm), and the contact angle for the water decreased from near 102° to 88°, and the contact angle recovered from 88° to 96° by Vis light irradiation. This reversible control of surface wettability of the polyimide having azobenzene group by UV-Vis light irradiation was analyzed by solid-state surface reflected UV-Vis spectra and XPS measurements. Although the reversible wettability change of polyimide based on 3,4’-ODPA/Azo-DA was also observed, the degree of wettability changes was small.

Keywords: Polyimide, Azobenzene group, UV-Vis light irradiation, Reversible control, Surface wettability

1. Introduction
Polyimides exhibit excellent thermal and mechanical properties, and have extensive engineering and microelectronics applications [1,2]. Since conventional aromatic polyimides are insoluble, extensive research has been carried out to improve the solubility of polyimides. Our research group has systematically investigated the synthesis and characterization of soluble polyimides based on aromatic diamines bearing long-chain alkyl groups, and the results from this research were described in the review papers [3,4].

Recently, the printed electronics technology, by which the conductive lines (circuit) can be printed onto the plastic substrate, has been investigated. Polyimide films are the most promising plastics for use in printed electronics because of their high thermal stability. Various approaches such as the use of repellent pore-structured polyimide films [5], the surface energy controlled ink-jet printing with UV irradiation [6], have been investigated to obtain the fine patterning. The authors also have investigated the surface wettability control of polyimides having various functional groups such as long-chain alkyl groups, t-Boc group, etc. by UV light irradiation [7-17]. However, these wettability changes are irreversible from the hydrophobicity to the hydrophilicity by UV light irradiation. In this paper, the authors have firstly investigated reversible control of surface wettability of polyimides having azobenzene group on their side-chain by UV-Vis light irradiation. It is previously reported that the reversible trans-cis isomerization of azobenzene groups through UV-Vis irradiation
is accompanied by fast and large changes in both geometry dipole moment [18,19], and this fact is expected to affect the reversible wettability change (Fig. 1).

![Schematic representation of trans and cis states of the azobenzene units through UV-Vis light irradiation.](image)

Fig. 1. Schematic representation of trans and cis states of the azobenzene units through UV-Vis light irradiation.

2. Experimental

2.1. Materials

3,4’-Oxydiphthalic anhydride (3,4’-ODPA; a-ODPA) from Shanghai Research Institute of Synthetic Resins was used after drying in a vacuum oven. Ultra-pure grade of N-methyl-2-pyrrolidone (NMP) was purchased from Kanto Chemical Co., Inc. and used as received. Other reagents were purchased from TCI or Wako Pure Chemical Industries (Wako) and used as received.

2.2. Synthesis of novel diamine monomer having azobenzene group

4-(Phenylazo)phenyl 3,5-di(3-aminophenyl)benzoate (Azo-DA) was synthesized by two step reactions from 4-(phenylazo)phenol as a starting material via esterification with 3,5-dibromobenzoic acid using DCC/DMAP, then via Suzuki coupling reaction with 3-aminophenylboronic acid (Fig. 2).

![Synthesis of Azo-DA.](image)

Fig. 2. Synthesis of Azo-DA.

Completion of the reaction was monitored by TLC (MERCK Silica gel F254, dichloromethane, Rf = 0.83). Precipitated N,N-dicyclohexylurea (DCU) was filtered off and the filtrate was evaporated and the residue was subjected to a column chromatograph (Wako SiO2 C-300, CH2Cl2). The first fraction was collected and recrystallized from a mixture of methanol and dichloromethane. Yield, 68 %. Mp. 134.8 °C; 1H NMR (500 MHz, CDCl3, δ): 7.38-7.38 (m, 2H, Ha) 7.50 (m, 3H, Hb) 7.92 (s, 1H, Hc) 7.94-7.95 (m, 2H, Hd) 8.01-8.03 (m, 2H, He) 8.29 (s, 2H, Hf) ppm; IR (ATR); 3073 (C-H), 3033 (C-H), 1740 (C=O), 1558 (N=N) cm⁻¹.

4-(Phenylazo)phenyl 3,5-di(3-aminophenyl)benzoate (Azo-DA)

Azo-Br₂ (1.0 g, 2.17 mmol) and 3-aminophenylboronic acid (0.77 g, 5.62 mmol) were dissolved in mixture of methanol and dichloromethane. Yield, 30 %. The analytical data of Azo-DA are as follows: Mp 180.5 °C; 1H NMR (500 MHz, CDCl3, δ): 3.78 (s, 4H, -NH2), 6.73(d, 2H, J = 8.0Hz, Ha), 7.00 (s, 2H, Hb), 7.09 (d, 2H, J = 7.5 Hz, Hc), 7.28 (t, 2H, J = 7.75 Hz, Hd), 7.42 (d, 2H,
2.3. Synthesis of polyimide having azobenzene group on their side chain

The polyimides having azobenzene group on their side chain were synthesized from 3,4’-ODPA or DSDA, as a tetracarboxylic dianhydride and a novel functional diamine monomer, Azo-DA. Two step polymerization systems including poly(amic acid)s synthesis and chemical imidization were performed as a same manner as previously reported [7-17]. The chemical structures of obtained polyimides are shown in Fig. 3.

Fig. 3. Chemical structures of polyimides based on 3,4’-ODPA/Azo-DA and DSDA/Azo-DA.

2.4. Measurements

1H NMR spectra were measured on a JEOL JNM-AL500 FT NMR in CDCl$_3$ with tetramethylsilane (TMS) as an internal reference. Size exclusion chromatography (SEC) measurements were performed in NMP containing 10 mM LiBr at 40 ºC with a TOSOH HLC-8020 equipped with a TSK-GEL ALPHA-M using a series of polystyrenes as standard. Thermogravimetric analysis (TGA) was performed on a Shimadzu TGA-50 in air or under nitrogen (50 mL/min), and 10% weight loss temperatures (T_{d10}) were calculated from the second heating scan after cooling from 250 ºC. Differential scanning calorimeter (DSC) traces were measured on a Shimadzu DSC-60 under nitrogen and glass transition temperatures (T_g) were read at the midpoint of the heat capacity jump from the second heating scan.

Polyimide thin-films were obtained as follows: 0.5-2.0 wt % polyimide solution in NMP were cast on glass substrates and the solution were slowly evaporated by heating at approximately 100-120 ºC until the films were dried, then the films were dried in a vacuum oven at 100 ºC for 12 h. Water contact angles were measured by Slimage mini (Excimer. Inc., Japan). UV light irradiation were performed using UV lamp unit LC-L1V3 (λ max 365 nm, 800 mW/cm2, Hamamatsu Photonics. Inc., Japan) at the 15 mm irradiation distance between lamp and sample and Vis light irradiation were performed using LED lamp unit (λ max 465, 560 nm, Nichia Chemical. Inc., Japan) at the 40 mm irradiation distance between lamp and sample. IR (ATR) measurements were performed by JASCO FT/IR-470 with ATR PRO450-S (Ge prism). Solid state surface reflected UV-Vis measurements were performed by JASCO V-670 double-beam spectrophotometer with integrating sphere. XPS measurements were carried out on an XPS-APEX (Physical Electronics Co. Ltd.) with an Al Kα X-ray source (150 W). Chamber pressure; 10$^{-9}$-10$^{-10}$ Pa; take off angles; 45º.

3. Results and discussion

3.1. Synthesis of polyimide having azobenzene group

Since the reductive reaction of aromatic dinitro precursor cannot be used in the diamine synthesis having azobenzene group, Suzuki coupling reaction using 3-aminophenylboronic acid is a strong tool to obtain the aromatic diamine having the functional groups that are reactive with reductive reagents. All polyimides were successfully synthesized without any problems.

3.2. General properties of polyimides

The obtained polyimides showed the good solubility in polymerization solvent, NMP. The molecular weights of obtained polyimides were measured by SEC (M_n; 11700–20900, in NMP/10 mM LiBr calibrated with standard polystyrenes) (Table 1). Although these molecular weights were relatively low in comparison with general polyimides, the all of obtained polyimides showed the good film forming ability.

The thermal properties of these polyimides were estimated by thermal degradation temperatures (T_{d16}; 420–422 ºC in air,
420–427 °C under nitrogen) and glass transition temperatures (T_g; 250–261 °C), and it is recognized that all polyimides can be ranked as heat resistant polymers (Table 1).

Table 1. General properties of polyimides based on Azo-DA.

Monomer	Anhydride	Diamine	Molecular Weight^a	Polymide	Diamine	Molecular Weight^a	Polymide		
		Mn	Mw	Mn/Mw	Mn	Mw	Mn/Mw		
3, 4'-ODPA/Azo-DA	100	0	100	20900	56700	2.7	420	427	250
DSDA/Azo-DA	0	100	100	11700	21800	1.9	422	420	261

^a Determined by SEC in NMP containing 10 mM LiBr calibrated with a series of polystyrenes as a standard.

3.3. Reversible surface wettability control by UV-Vis light irradiation on polyimide thin films

The polyimide thin films were irradiated by UV light (365 nm, 0, 3, 4, 5 min), then the contact angles for the water were measured (Fig. 4). The water contact angles of the polyimide based on DSDA/Azo-DA decreased from 101.5° to 87.6° by UV light irradiation, while the water contact angle of the polyimide based on 3,4'-ODPA/Azo-DA decreased from 88.0° to 82.2° by UV light irradiation. Then, these thin films irradiated by UV light (5 min) were irradiated by Vis light (1, 2, 3, 4, 5 hr) and the contact angles for the water were measured (Fig. 4). The water contacts of the polyimide based on DSDA/Azo-DA recovered from 87.6° to 95.8° by Vis light irradiation, while the water contact angle of the polyimide based on 3,4'-ODPA/Azo-DA recovered from 82.2° to 85.5° by Vis light irradiation.

Thus, reversible control of surface wettability of polyimides based on Azo-DA by UV-Vis light irradiation were observed, and the degree of wettability change was larger in the case of polyimides based on DSDA/Azo-DA than in the case of polyimide based on 3,4'-ODPA/Azo-DA. It is speculated that these reversible wettability changes are based on the polarity changes of azobenzene photo-isomerization. Cis-azobenzene is more polar than trans (E)-azobenzene unit so cis (Z)-azobenzene is more hydrophilic than trans-azobenzene unit (Fig. 5).

![Fig. 5. The reversible change of the wettability based on the photo-isomerization of the azobenzene.](image)

3.4. Surface analysis

Solid state surface reflected UV-Vis measurements were performed using the polyimide film based on DSDA/Azo-DA (Fig. 6). UV absorption based on azobenzene cis-form was observed around 440 nm, and the intensities of this absorption increased by the UV light irradiation time and decreased by Vis light irradiation. These data support that the photo-isomerization of azobenzene unit occurs on the polyimide surface shown in Fig. 5. On the other hand, UV absorption based on azobenzene trans-form around 330 nm could not be observed, because the UV absorption of the polyimide back-bone overlaps.

The intensive surface analysis was performed by XPS using the polyimide film based on DSDA/Azo-DA. The elemental analysis values (%) obtained from the wide scans are organized in Table 2. It should be noticed that O% increases from 15.85 % to 20.44 % after the UV light irradiation (365 nm, 5 min). It is speculated that OH groups and COOH groups appear on the polyimide surface. However, this value (20.44 %) showed almost same value.
(21.28 %) after Vis light irradiation. The elemental analysis of S (%) decreased by UV light irradiation, and not recover by Vis light irradiation. It is imagined that S=O bonds in DSDA/Azo-DA polyimide surface are decomposed on the course of photo irradiation process. On the other hand, N 1s narrow scan indicate that reversible photo-isomerization occurs based on the reversible changes of N 1s peak binding energy and full width at half maximum (FWHM, calculated by MultiPak software) (Table 2, Fig. 7). The similar analysis of azobenzene analogue was previously reported in detail using X-ray absorption spectroscopy [20].

Concerning on the above analytical results, it can be speculated that the following photoreactions are generated in the polyimide surface (Fig. 8). After UV light irradiation, trans-azobenzene unit is isomerized to cis-azobenzene unit and the photo-oxidation of polyimide partly occurs on the surface. Consequently, the polyimide surface become more hydrophilic (water contact angle; 101.5°→87.6°). By the following Vis light irradiation, cis-azobenzene unit is isomerized to trans-azobenzene unit, however, the oxidized surface remains. Therefore, the reversible wettability change was not enough completed (water contact angle; 87.6°→95.8°). Although the reversible wettability changes of polyimide based on 3,4’-ODPA/Azo-DA was also observed, the degree of wettability changes was small, and this phenomenon has not been well explained. It is necessary to carry out the many experimental using various polyimides having azobenzene groups to optimize the structure of polyimides.

It is also necessary to optimize the UV-Vis irradiation process, investigate the effect of substitute groups of azobenzene ring [21], and perform the detail surface analysis.

Table 2. Elemental analysis by XPS wide scan and N 1s peak analysis by XPS N 1s narrow scan using DSDA/Azo-DA polyimide film.

C (%)	O (%)	N (%)	S (%)	Binding energy (eV)	FWHM a	
0 J	78.29	15.85	4.77	1.09	400.89	1.4238
UV 5min	73.82	20.44	5.38	0.36	401.09	1.5527
Vis 5h	73.16	21.28	5.43	0.14	400.65	1.3527

a) Full width at half maximum

Fig. 6. Solid state surface reflected UV-Vis measurements using the polyimide film based on DSDA/Azo-DA. Upper; UV light irradiation, Lower; Vis light irradiation.

Fig. 7. N 1s peak analysis by XPS narrow scan using DSDA/Azo-DA polyimide film.

Fig. 8. Anticipated photochemical reactions on the surface of polyimides by UV-Vis light irradiation.
4. Conclusion

Novel aromatic diamine monomer (Azo-DA) having azobenzene group and corresponding polyimides were successfully synthesized. The reversible control of surface wettability of polyimide films having azobenzene group by UV-Vis light irradiation was accomplished and analyzed by solid-state surface reflected UV-Vis spectra and XPS measurements. However, the complete reversible changes of surface wettability were not achieved and the cycle photo-isomerization was not examined. The further research focusing on the enhancement of reversible control of wettability and the thorough surface analysis are desired.

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number 16K05924. This work was performed under the Cooperative Research Program of “Network Joint Research Center for Materials and Devices” (Dr. Atsushi Takahara of Kyushu University). Financial supports from RICOH Co., Ltd. is gratefully acknowledged. The authors thank Shanghai Research Institute of Synthetic Resins for providing 3,4’-ODPA.

References

1. “Polyimides”, M. Ghosh and K. L. Miital, Eds., Dekker, New York (1996).
2. “Polyimides and Other High Temperature Polymers: Synthesis, Characterization and Applications”, M. Ghosh, Ed., Vol. 5, Koninklike Brill NV, Leiden (2009).
3. Y. Tsuda, “Polyimides and Other High Temperature Polymers: Synthesis, Characterization and Applications”, M. Ghosh, Ed., Vol. 5, Koninklike Brill NV, Leiden (2009) 17.
4. Y. Tsuda, “Features of Liquid Crystal Display Materials and Processes”, N. V. Kamania Ed., Intech, Croatia (2011) 3.
5. C. Kim, M. Nogi, K. Suganuma, and Y. Yamamoto, ACS Appl. Mater. Interfaces, 4 (2012) 2168.
6. K. Suzuki, K. Yutani, M. Nakashima, A. Onodera, S. Mizukami, M. Kato, T. Tano, H. Tomono, M. Yanagisawa, and K. Kameyama, J. Imaging Soc. Jpn., 50 (2011) 142.
7. Y. Tsuda, Y. Hashimoto, and T. Matsuda, Kobunshi Ronbunshu (Japanese), 68 (2011) 24.
8. Y. Tsuda, J. Photopolym. Sci. Technol., 26 (2013) 345.
9. Y. Tsuda and Y. Kawashima, J. Photopolym. Sci. Technol., 27 (2014) 161.
10. Y. Tsuda and S. Kawabata, J. Photopolym. Sci. Technol., 27 (2014) 277.
11. Y. Tsuda, R. Nakamura, S. Osajima, and T. Matsuda, High Perform. Polym., 27 (2015) 46.
12. Y. Tsuda and R. Shiki, J. Photopolym. Sci. Technol., 28 (2015) 191.
13. Y. Tsuda, M. Tahira, N. Shinohara, and D. Sakata, J. Photopolym. Sci. Technol., 28 (2015) 191.
14. Y. Tsuda and D. Sakata, J. Photopolym. Sci. Technol., 29 (2016) 283.
15. Y. Tsuda and R. Shiki, J. Photopolym. Sci. Technol., 29 (2016) 265.
16. Y. Tsuda, J. Photopolym. Sci. Technol., 29 (2016) 383.
17. Y. Tsuda, Kobunshi Ronbunshu (Japanese), 74 (2017) 10.
18. N. Negishi, K. Tsunemitsu, K. Ishihara, I. Shinohara, T. Okano, K. Kataoka, T. Akaike, and Y. Sakurai, Kobunshi Ronbunshu (Japanese), 37 (1980) 287.
19. S. Abrakhii, S. Peralta, O. Fichet, D. Teysseie, and S. Cantin, Langmuir, 29 (2013) 9499.
20. T. Moldt, D. Przyrembel, M. Schulze, W. Bronsch, L. Boie, D. Brete, C. Gahl, R. Klaaj, P. Tegeder, and M. Weinelt, Langmuir, 32 (2016) 10795.
21. C. R. Crecca and A. E. Roitberg, J. Phys. Chem. A, 110 (2006) 8188.