Triangle tilt and humeral surgery: Meta-analysis of efficacy and functional outcome

Rahul K Nath, Chandra Somasundaram

Rahul K Nath, Chandra Somasundaram, Texas Nerve and Paralysis Institute, Houston, TX 77030, United States

Author contributions: Nath RK designed the study, performed the surgeries and revised the manuscript; Somasundaram C performed the literature search, statistical analysis and wrote the manuscript; both authors read and approved the final manuscript.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Correspondence to: Rahul K Nath, MD, Texas Nerve and Paralysis Institute, 6400 Fannin Street, Ste. 2420, Houston, TX 77030, United States. drnath@drnathmedical.com

Telephone: +1-713-5929900
Fax: +1-713-5929921
Received: December 25, 2013
Peer-review started: December 26, 2013
First decision: February 13, 2014
Revised: August 10, 2014
Accepted: September 4, 2014
Article in press: September 10, 2014
Published online: January 18, 2015

Abstract

AIM: To systematically review and analyze the overall impact and effectiveness of bony surgical procedures, the triangle tilt and humeral surgery in a comparative manner in permanent obstetric brachial plexus injury (OBPI) patients.

METHODS: We conducted a literature search and identified original full research articles of OBPI patients treated with a secondary bony surgery, particularly addressing the limitation of shoulder abduction and functions. Further, we analyzed and compared the efficacy and the surgical outcomes of 9 humeral surgery papers with 179 patients, and 4 of our secondary bony procedure, the triangle tilt surgical papers with 86 patients.

RESULTS: Seven hundred and thirty-one articles were identified, using the search term “brachial plexus” and obstetric or pediatric (246 articles) or neonatal (219 articles) or congenital (188 articles) or “birth palsy” (121 articles). Further, only a few articles were identified using the bony surgery search, osteotomy “brachial plexus” obstetric (35), “humeral osteotomy” and “brachial plexus” (17), and triangle tilt “brachial plexus” (14). Of all, 12 studies reporting pre- and post-operative or improvement in total Mallet functional score were included in this study. Among these, 9 studies reported the humeral surgery and 4 were triangle tilt surgery. We used modified total Mallet functional score in this analysis. Studies with humeral surgery showed improvement of 1.4, 2.3, 5.0 and 5.6 total Mallet score, whereas the triangle tilt surgery showed improvement of 5.0, 5.5, 6.0 and 6.2.

CONCLUSION: The triangle tilt surgery improves on what was achieved by humeral osteotomy in the management of shoulder function in OBPI patients.

Key words: Meta-Analysis; Triangle tilt surgery; Humeral osteotomy; Obstetric brachial plexus injury; Birth palsy; SHEAR deformity; Shoulder function; Mallet score

© The Author(s) 2015. Published by Baishideng Publishing Group Inc. All rights reserved.
whereas the triangle tilt surgery showed improvement of 5.0, 5.5, 6.0 and 6.2. The triangle tilt surgery improves on what was achieved by humeral osteotomy in the management of shoulder function in OBPI patients.

INTRODUCTION

Bone deformities and their management in permanent obstetric brachial plexus injury children

Limitation to shoulder movement and function are the common secondary problems in permanent obstetric brachial plexus injury (OBPI) patients, as shoulder is the most frequently affected joint. If these infants do not receive early treatment, the chronic muscle imbalance leads to bone deformity and humeral head posterior subluxation.

To date, there has been no systematic evaluation of secondary bony surgical procedures that are involved in the treatment of shoulder function deficit in OBPI patients. Therefore, we attempted to systematically review and analyze the overall impact and effectiveness of bony surgical procedures, mainly the triangle tilt and humeral surgery in a comparative manner. The main goal of these secondary surgical procedures around the shoulder is to increase active abduction and external rotation in order to promote overall upper extremity functions.

Rotation/Derotational Humeral Osteotomy

Rotation osteotomy of the humerus has been described by several authors to treat the internal rotation contracture of the shoulder in OBPI patients. Eng et al. reported that later surgical treatment with rotational osteotomy of the humerus seems to improve cosmesis but not function. Recently, Al-Qattan has also shown that this procedure mainly improves the cosmetic appearance of children with total brachial plexus birth palsy. In addition, Al-Qattan et al. also found surprisingly, a significant (P = 0.003) decrease in shoulder abduction on long-term follow-up of his OBPI patients (the mean shoulder abduction was 135°, 146° and 109° measured pre-, early post- and late postoperatively, respectively). This technique has been used as a preferred procedure in older OBPI children, and shown to improve shoulder function, yet was not demonstrated as effective procedure comparatively.

Waters et al., Waters et al. showed improvement of 5.0, and 5.6 in total Mallet score after humeral osteotomy. The efficacy and functional outcomes of the triangle tilt and humeral surgery are listed in Tables 1 and 2.

Triangle tilt surgery

The triangle Tilt is a novel osteous procedure, consists of osteotomy of the clavicle at the junction of the middle and outer thirds, osteotomy of the acromion at its junction with the spine of the scapula, osteotomy of the superomedial angle of the scapula and splitting of the limb in adduction, 5° of external rotation and full forearm supination.

Humeral surgeries do not address the SHEAR deformity and its central influence in the pathophysiology of the medial rotation contracture, and the shoulder deformity. In our experience, successful restoration of position and function in failed humeral osteotomy patients has followed from surgically addressing the SHEAR deformity. It may be inferred that the SHEAR correction, the triangle tilt surgery is a more specific operation because it addresses the root cause of the medial rotation.

We have shown improvement of 5.0, 5.5, 6.0 and 6.2 Mallet score following short and extended-long term (5 years) follow-up of triangle tilt surgery respectively in OBPI patients, age between 0.9 and 17 year. Further, the triangle tilt surgery is a salvage procedure in failed humeral osteotomy patients.

MATERIALS AND METHODS

We performed a search of the English language literature published up to December 2013 using mainly the Pubmed to identify full original research articles related to OBPI, using the following keywords “brachial plexus” and obstetric or pediatric or neonatal or congenital or “birth palsy”. We conducted search for also keywords specific to bony surgeries addressing the shoulder deformities in OBPI: “humeral osteotomy”, “rotational/derotational osteotomy of the humerus”, “humeral relocation”, and “triangle tilt”. Databases such as Scopus and Google scholar were also referred. We do not find any of the articles not published in Pubmed appeared in Scopus. If any such articles appear in Scopus, mostly they are either non-English or with animal experiments. Of all the articles, we found 9 studies with humeral and 4 with triangle tilt surgery, reporting pre- and post-operative or change in total Mallet score (Table 3).

Inclusion and exclusion criteria

Review articles, letter, technical and non-English language papers were excluded. Research articles using animal experiments and cadaver were also excluded. Articles reporting data from idiopathic or traumatic brachial plexus injuries in children were excluded as well (Table 4).

We included only articles using the triangle tilt and humeral surgery, reporting pre- and post-operative or change in total Mallet functional score in OBPI patients. 8 studies described the rotational osteotomy of the humerus with 166 patients, 1 described the relocation of the humerus with 13 patients, and 4 described triangle tilt surgery with 86 patients were included. Modified Mallet classification system was considered to assess the shoulder functions in this analysis (Table 1).

RESULTS

Seven hundred and thirty-one articles were identified, using the search term “brachial plexus” and obstetric or
Table 1 Bony surgical procedures and outcomes in obstetric brachial plexus injury patients

Name of the surgery	Ref.	No. of patients (age at surgery)	Follow-up (yr)	Surgical outcomes
Internal/external rotational/dorotational osteotomy of the humerus	Abruq et al[1]	23 patients age 10.1	2.2	Mean age 16.0 (P = 0.002), Mallet increased about 2.3
Al-Qattan[7]	15 patients mean age 6.5	3	Mallet increased about 4.0	
Al-Qattan et al[8]	13 patients mean age 6 (4.5-9)	2	Improved the cosmetic appearance	
Al-Qattan[8]	17 patients mean age 6 (range 8-14)	10	Found surprisingly, a significant (P = 0.003) decrease in shoulder abduction on long-term follow-up (the mean shoulder abduction was 13°, 146° and 109°, respectively)	

Recalled back to the clinic at a mean of 10 yr (range 8-14) after surgery. Mean age of 16, (range 13-20), measured pre-, early post- and late postoperatively, respectively.

Ref.	No. of patients (age at surgery)	Follow-up (yr)	Surgical outcomes
Waters et al[1]	16 patients mean age 8.4	3	Mallet improved 9.5 to 15.1 (P < 0.001)
Waters et al[12]	27 patients mean age 7.6 (range 2.3-17)	3.7	Mallet improved (P = 0.01). External rotation achieved with osteotomy was 64° (range, 35° to 90°)
Pöyhiä et al[10]	5 patients mean age 10.0 (range 5-12)	3.8	Mallet increased about 1.4 (P = 0.1)
Kirkos et al[14]	22 patients mean age 10.0	Vary, no mean	Increase in active abduction of the arm was 27° (range, 0 to 60), and the average increase in the arc of rotation was 25° (range, 5 to 65).
Al-Zahran[6]	12 patients age range 0.5 to 6	3.5 (1-5)	Cosmetic and functional improvement. ER improved 32° (20-40), abduction improved about 61° (60-70).

Table 2 Improvement in functional score of triangle tilt and humeral surgery

Surgery	Ref.	Total Mallet improved
Humeral osteotomy	Abruq et al[1]	2.3 (P < 0.002)
Humeral osteotomy	Waters et al[11]	5.6 (P < 0.001)
Humeral osteotomy	Waters et al[12]	5.0 (P = 0.01)
Humeral osteotomy	Pöyhiä et al[10]	1.4 (P = 0.1)
Relocation of the humerus	Pöyhiä et al[10]	5.5 (P = 0.003)
Triangle tilt	Nath et al[14]	5.5 (P < 0.05)
Triangle tilt	Nath et al[14]	5.0 (P < 0.008)
Triangle tilt	Nath et al[14]	6.0 (P < 0.001)
Triangle tilt	Nath et al[14]	6.2 (P < 0.0001)

Table 3 Research articles in English only included

Search term	PubMed	Scopus
"Brachial plexus" obstetric	731	620
"Brachial plexus" pediatric	246	176
"Brachial plexus" neonatal	219	226
"Brachial plexus" congenital	188	259
"Brachial plexus" “birth palsy”	121	115
Bony Surgery search		
Osteotomy “brachial plexus” obstetric	35	34
“Humeral osteotomy” “brachial plexus”	17	23
Osteotomy “brachial plexus” “birth palsy”	11	13
Osteotomy “brachial plexus” congenital	8	14
Osteotomy “brachial plexus” pediatric	10	8
Osteotomy “brachial plexus” neonatal	0	3
Triangle tilt “brachial plexus”	14	8

Table 4 Inclusion Criteria

Article parameters	Original full research paper with secondary bony surgical outcome of obstetric brachial plexus injury patients, English language publication, published till December 2013 in PubMed
Treatment options	Surgical-bony, humeral, triangle tilt
Patient age range	9 mo-18 yr old
Functional outcome	Improvement in total Mallet score

Pediatric (246 articles) or neonatal (219 articles) or congenital (188 articles) or “birth palsy” (121 articles). Further, only a few articles were identified using the bony surgery search, osteotomy “brachial plexus” obstetric (35), “humeral osteotomy” and “brachial plexus” (17), and triangle tilt “brachial plexus” (14).

Of all, 12 studies reporting pre- and post-operative or improvement in total Mallet functional score were included in this study. Among these, 9 studies reported humeral surgery and 4 were triangle tilt surgery. We used modified total Mallet functional score in this analysis. Various studies with humeral surgery showed improve-
movement and function are the common secondary deformities and humeral head posterior subluxation. To date, there has been no comprehensive and should be published.

Innovations and breakthroughs
Triangle tilt surgery, a novel osteosurgical procedure developed by the lead author and surgeon, improves on what was achieved by humeral osteotomy in the management of shoulder function in OBPI patients. This is the first report comparing the secondary bony surgical procedures in OBPI patients.

Applications
The triangle tilt surgery showed significant improvement of shoulder functions when compared to humeral surgery in OBPI patients.

Terminology
Meta-analysis, Triangle tilt surgery, humeral osteotomy, obstetric brachial plexus injury, Birth palsy, SHEAR deformity, Shoulder function, Mallet score. Triangle tilt surgery: This operative technique includes osteotomies of the clavicle, neck of the humerus, and the acromion and scapula in order to release the distal acromioclavicular triangle and allow it to reorient itself in a more neutral position into the glenoid.

Peer review
This is a review concerning the beneficial effect of the triangle tilt surgery and humeral surgery in permanent OBPI patients from the literature. The review was comprehensive and should be published.

REFERENCES
1 Waters PM, Peljovich AE. Shoulder reconstruction in patients with chronic brachial plexus birth palsy. A case control study. Clin Orthop Relat Res 1999; (364): 144-152 [PMID: 10416403 DOI: 10.1097/00003086-199907000-00019]
2 Eng GD, Koch B, Smokvina MD. Brachial plexus palsy in neonates and children. Arch Phys Med Rehabil 1978; 59: 435-446 [PMID: 309756]
3 Goddard NJ, Fixsen JA. Rotation osteotomy of the humerus for birth injuries of the brachial plexus. J Bone Joint Surg Br 1984; 66: 257-259 [PMID: 670764]
4 Dunkerton MC. Posterior dislocation of the shoulder associated with obstetric brachial plexus palsy. J Bone Joint Surg Br 1989; 71: 764-766 [PMID: 2664988]
5 al Zahrani S. Modified rotational osteotomy of the humerus for Erb's palsy. Int Orthop 1993; 17: 202-204 [PMID: 8340179 DOI: 10.1007/BF00186387]
6 Al-Zahrani S. Combined Sever’s release of the shoulder and osteotomy of the humerus for Erb’s palsy. J Hand Surg Br 1997; 22: 591-593 [PMID: 9752910 DOI: 10.1016/S0266-7817(97)80352-X]
7 Al-Qattan MM. Rotation osteotomy of the humerus for Erb’s palsy in children with humeral head deformity. J Hand Surg Am 2002; 27: 479-483 [PMID: 12015723 DOI: 10.1053/jhsu.2002.33198]
8 Al-Qattan MM, Al-Husainan H, Al-Otaibi A, El-Sharkawy MS. Long-term results of low rotation humeral osteotomy in children with Erb’s obstetric brachial plexus palsy. J Hand Surg Br 2009; 34: 486-492 [PMID: 19675029 DOI: 10.1016/j.jhsb.2008.11.017]
9 Al-Qattan MM. Total obstetric brachial plexus palsy in children with internal rotation contracture of the shoulder, flexion contracture of the elbow, and poor hand function: improving the cosmetic appearance of the limb with rotation osteotomy of the humerus. Ann Plast Surg 2010; 65: 38-42 [PMID: 20548233 DOI: 10.1097/SAP.0b013e3181a721f6]
10 Rümann O, Gossé F, Schmolke S, Flamme C, Wirth CJ. Osteotomy of the humerus to improve external rotation in nine patients with brachial plexus palsy. Scand J Plast Reconstr Hand Surg 2002; 36: 349-355 [PMID: 12564814 DOI: 10.1080/1058226431096348]
11 Soucacos PN, Vekris MD, Zoubos AB, Johnson EO. Secondary reanimation procedures in late obstetrical brachial plexus palsy patients. Microsurgery 2006; 26: 343-351 [PMID: 16628747]
Nath RK et al. Meta-analysis of triangle tilt and humeral surgery

DOI: 10.1002/micr.20249

12 Waters PM, Bae DS. The effect of derotational humeral osteotomy on global shoulder function in brachial plexus birth palsy. *J Bone Joint Surg Am* 2006; 88: 1035-1042 [PMID: 16651578 DOI: 10.2106/JBJS.E:00680]

13 Abzug JM, Chafetz RS, Gaughan JP, Ashworth S, Koizin SH. Shoulder function after medial approach and derotational humeral osteotomy in patients with brachial plexus birth palsy. *J Pediatr Orthop* 2010; 30: 469-474 [PMID: 20574265 DOI: 10.1097/BPO.0b013e3181d8604]

14 Kirkos JM, Papadopoulos IA. Late treatment of brachial plexus palsy secondary to birth injuries: rotational osteotomy of the proximal part of the humerus. *J Bone Joint Surg Am* 1998; 80: 1477-1483 [PMID: 9801216]

15 Pöyhiä T, Lamminen A, Peltonen J, Willamo P, Nietosvaara Y. Treatment of shoulder sequelae in brachial plexus birth injury. *Acta Orthop* 2011; 82: 482-488 [PMID: 21657969 DOI: 10.3109/17453674.2011.588855]

16 Nath RK, Melcher SE, Paizi M. Surgical correction of unsuccessful derotational humeral osteotomy in obstetric brachial plexus palsy: evidence of the significance of scapular deformity in the pathophysiology of the medial rotation contracture. *J Brachial Plex Peripher Nerve Inj* 2006; 1: 9 [PMID: 17192183 DOI: 10.1186/1749-7221-1-9]

17 Nath RK, Lyons AB, Melcher SE, Paizi M. Surgical correction of the medial rotation contracture in obstetric brachial plexus palsy. *J Bone Joint Surg Br* 2007; 89: 1638-1644 [PMID: 18057366 DOI: 10.1302/0301-620X.89B12.18757]

18 Nath RK, Somasundaram C. Extended long-term (5 years) outcomes of triangle tilt surgery in obstetric brachial plexus injury. *Open Orthop* J 2013; 7: 94-98 [PMID: 23736369 DOI: 10.2174/1874325001307010094]

19 Nath RK, Paizi M. Scapular deformity in obstetric brachial plexus palsy: a new finding. *Surg Radiol Anat* 2007; 29: 133-140 [PMID: 17262175 DOI: 10.1007/s00276-006-0173-1]

20 Nath RK, Mahmooduddin F. Triangle tilt surgery: effect on coracohumeral distance and external rotation of the glenohumeral joint. *Eplasty* 2010; 10: e67 [PMID: 21119773]

P- Reviewer: Canavese F, Pan HC, Schier R, Terzi R
S- Editor: Song XX L- Editor: A E- Editor: Wu HL
