Research Article

Physical activity and its associated factors in females with type 2 diabetes in Riyadh, Saudi Arabia

Badreldin Abdelrhman Mohamed1*, Mohamed Salih Mahfouz2*, Mohamed Farouk Badr1,3*

1 Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia, 2 Department of Family and Community Medicine, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia, 3 Nutrition and Food Science Department, Faculty of Home Economics, Helwan University, Cairo, Egypt

* These authors contributed equally to this work.

m.mahfouz@gmail.com

Abstract

Despite the benefits of physical activity (PA) for the management of type 2 diabetes Mellitus (T2DM), the topic of PA is poorly addressed in Saudi Arabia (SA), especially in females with T2DM. The present study examined PA and its associated factors in females with T2DM in Riyadh, Saudi Arabia. This observational cross-sectional study was performed in a random sample of 372 women with T2DM. A face-to-face interview that covered PA, health and environmental correlates of PA was performed. Discriminant analysis was used to determine which barriers had the greatest impact on PA in these women. The results showed that approximately 26.3% of the study participants met PA recommendations. Multivariate linear regression revealed lower levels of PA were associated with women who had more than three children (β = -0.17) compared to women with no children, older age (β = -0.18), women with a duration of diabetes ≥ 6 years (β = -0.16), women who were obese (β = -0.23), women with no family support (β = -0.20), no friend support (β = -0.13) and no healthcare provider support (β = -0.14). Discriminant analysis indicated that culture and tradition, lack of skills and knowledge, safety, fatigue, lack of time, weather conditions, and lack of facilities were the barriers that differentiated between the women who met and those who did not meet the PA recommendations. The present study suggests that the prevalence of PA is low and number of children, age, duration of diabetes, Obesity, family support, friend support and healthcare provider support are identified correlates of PA. These findings are valuable and should be used to design and implement future PA interventions, especially for women with T2DM. Healthcare providers may improve exercise levels and identify the specific barriers to reaching the recommended level of PA to improve health outcomes for each patient.
Introduction

The Kingdom of Saudi Arabia (SA) has the second highest prevalence of diabetes in the Middle East, and it is ranked seventh in the world [1]. Diabetes mellitus (DM) is the fourth leading cause of death in SA, and it is the 65th leading cause worldwide, with a death rate of 35.61/100,000, which is a major public health problem [2, 3]. The number of individuals with diabetes worldwide increased to 422 million in 2014, in contrast to just 108 million in 1980, and the figures are expected to increase to 552 million by 2030, which will account for approximately 9.9% of the total world population [4]. The prevalence of type 2 diabetes mellitus (T2DM) in SA increased from 1.8% to 27.6% between 1998 and 2013 [5, 6]. If the disease follows the current trend, a prevalence rate of greater than 50% would be observed in adults by 2030 [7].

Much research supports the beneficial role of PA in the management of diabetes [8–10]. Despite the numerous health benefits of PA, its promotion is often inadequate, and a high rate of physical inactivity was reported in people living with diabetes [11–13]. Many studies in Western countries investigated factors associated with PA [14–16]. However, different attributes are likely present in Arabian countries. The traditional images of gender have prevented women from participating in PA. The social expectations for public behavior influence the choice of women’s active participation in any sport. Conservative social norms defining the traditional role of women influence the context in which women may be physically active. The cultural factors faced by Saudi females may limit exercise and decrease PA [17, 18].

The prevalence of PA in countries of the Gulf Cooperation Council (GCC) ranges from 26.5–28.4% in women [19]. One report suggested a high rate of physical inactivity in SA [20]. Physical inactivity in Saudi society is prevalent, and it ranges from a minimum of 43% in certain segments of society to 99% [20]. In contrast to developed countries such as the USA (35%) and UK (37%), the risk of inactivity was estimated at 44% in less developed countries [20]. A 2010 report by the World Health Organization (WHO) revealed that 74.9% of Saudi women were categorized as insufficiently active, which makes them the lowest prevalence of PA worldwide [21]. The perception in SA is that the females are housewives who generally engage in moderately intensive PA. However, they have the lowest prevalence of intensive and moderate PA (2%) worldwide.

Studies on PA in Saudi females are scarce. No previous study specifically assessed PA in SA females with T2DM. Leisure-time PA was the most frequently studied domain of physical activity [21–23]. In contrast, nonleisure PA, which is performed during one’s daily routine at home or work, was less studied in females in SA. The present study examined PA in females with T2DM to characterize the determinants of PA in the context of Saudi social and cultural influences.

Materials and methods

Design, setting and participants

An analytical cross-sectional study was carried out in the Diabetic Center at King Abdul Aziz University Hospital (KAUH), Riyadh, SA. This center is a leading center in the Kingdom of SA for the teaching and evaluation of diabetic patients, and it began to provide services in 1994. The study participants were Saudi females who attended the Diabetic Center at KAUH. Eligibility criteria included (1) age 18 years and older, (2) diagnosis of T2DM at least six months before the survey, and (3) the presence of a medical file at the center. T2DM women with severe conditions, such as stroke, pregnant women and patients with mental health issues were excluded.
Sampling and data collection

A representative sample was calculated using the sampling formula for a single cross-sectional survey. Sample size was calculated depending on a 29% prevalence of T2DM in females in SA [24], 95% confidence interval, error not greater than 5%, and a nonresponse rate of 20%. The total sample size was 380 females. Subjects were selected randomly from the records of the Diabetic Center at KAUH. The data were collected using “face-to-face” interviews and a set of standardized questionnaires. Trained female students from the Community Health program, the College of Applied Medical Sciences, King Saud University interviewed the women.

Study instruments

The following data were also collected: personal data, including age, education level, marital status, number of children, family income, duration of the disease, comorbidities, and number of cars in the household, and environmental factors, including proximity to parks and shopping centers. Social environmental factors included seeing females who exercise and knowing females who exercise. The physical environment included traffic, the presence of sidewalks, street lighting at night, intersections close to each other and having a house maid. Additional information on PA-related behaviors, such as social support, was included. Data on the most recent physiological measurements (within three months of the study) were extracted from the medical records. BMI was calculated as body weight (kg)/height (m2). Patients were classified according to the WHO classification as underweight (<18.5), normal (18.5–24.99), overweight (25–29.99) and obese ≥30. Prior to the main study, a pilot study was performed in the same center in a sample of 30 patients to test the study instrument. The patients involved in the pilot study were not included in the final study. The standardized questionnaires used involved the following items.

The International PA questionnaire. The International PA questionnaire (IPAQ) is a valid and reliable questionnaire that is used in different countries [25, 26]. The questionnaire was used to assess the PA of the participants at three specific levels of activity: walking, moderate and vigorous-intensity activities within each of the domains of work, transportation, domestic chores and leisure time and their frequency (days/week) and duration (minutes/day). To assess the recommended physical activity, we used the American Diabetes Association (ADA) recommendation that “adults with T2DM should engage in at least 150 minutes or more of moderate-to-vigorous intensity aerobic activity per week, spread over at least three days/week, with no more than two consecutive days without activity [27]. Shorter durations (minimum 75 minutes/week) of vigorous-intensity or interval training may be sufficient for younger and more physically fit individuals.” The new guidelines recommend moderate-intensity physical activity (i.e., 30 minutes of moderate-intensity physical activity ≥ five days/week).

Physician advice (PhA), sedentary behavior (SB) and social support (SS). Physician advice for PA was defined as verbal or written messages provided by the physician, including recommendations, counseling, or written prescriptions to begin, maintain, or increase PA [28]. Physician advice was assessed via a direct question that was answered on a dichotomous scale: “In the last year has your physician given you advice to do any physical activities?” The responses were coded as 1 = yes or 2 = no. SB was self-assessed by participants using the Domain-Specific Sitting Time Questionnaire (D-SSTQ), which was validated for use in adults [29, 30]. The social support for exercise questionnaire developed by Sallis et al. [31], with 20 questions, was used to determine the amount of social support for exercise. Cronbach’s α coefficients for family and friend support were 0.89 and 0.86, respectively. The questionnaire was also validated by Noroozi et al. [32] using exploratory and confirmation analyses.
Barriers to PA (BA). The questionnaire on barriers was derived from several previous studies on PA [33–38]. Items that seemed appropriate for our questionnaire were extracted from related articles, and a primary questionnaire was designed. The content and face validity of the questionnaire were assessed by a panel of 8 experts from the Department of Community Health and Physical Education. Cronbach’s α was 0.78, the Spearman-Brown index was 0.81, and the stability was 0.79, which was assessed using the intraclass correlation coefficient. Participants were asked to assess how likely it was that each barrier affected their PA. This questionnaire rated each barrier on a 4-point Likert scale (very likely = 4, somewhat likely = 3, somewhat unlikely = 2, very unlikely = 1).

Statistical methods
Descriptive and inferential statistics were used for data analyses. Data were described using means and standard deviation (S.D.) and frequencies and percentages for categorical variables. Chi-squared tests were used to determine the association of PA levels with participants’ characteristics. An independent sample t-test was used to analyze the difference between the two groups, meeting and not meeting PA recommendation. Multiple linear regression analysis was used with PA (Minutes per week) as the outcome variable. The assumptions of the linear regression models were evaluated. Our model controlled for possible confounding by the personal variables of age, education, income, marital status, duration of diabetes, and BMI and the environmental factors. For qualitative independent variables, a reference category was created. Discriminant analysis was used to determine which of the investigated variables made the greatest contribution between women with T2DM who met the PA recommendations and who did not meet the recommendations in Riyadh, Saudi Arabia. The level of statistical significance was set at p-value < 0.05. The data entry and analyses were performed using IBM Statistics SPSS version 20 (SPSS Inc, White Plains, NY, USA) software.

Ethical approval
This study was performed in accordance with ethical standards within the political borders of the Kingdom of Saudi Arabia. All participants involved in this study read, understood and signed a written consent form. The ethical committee at the College of Applied Medical Sciences, King Saud University, Saudi Arabia approved the study.

Results
The study sample was initially 380 females, but eight respondents refused to be included in the study. Therefore, 372 women (97.9%) completed the study. Table 1 shows some selected characteristics and the prevalence of meeting PA recommendations among the participants. Most women were married (78%) and aged between 50–69 years (64%), with a mean age of 57.3 ± 9.8 years. Most females were diabetic for more than three years (77.7%). Approximately 85% of the respondents were overweight or obese, and 41.4% were classified as obese (mean BMI was 36.1 ± 5.6 kg/m2). The overall prevalence of meeting PA recommendations in the women was 26.3% [95% CI: 22.1–31.1] and was significantly higher for single women 46.3% than married women 20.7% ($P = 0.021$). Meeting PA recommendation also decreased significantly with increasing age ($P = 0.026$). The prevalence of meeting PA recommendations differed significantly according to children ever born, educational level and family income ($P < 0.05$ for all).

Table 2 lists some environmental and health characteristics related to the participants. Most of the women described traffic in Riyadh as heavy (90.9%) and indicated that the streets had sidewalks (48.1%). Most of the women (90%) reported that they did not see other females
exercising in the neighborhood or did not know other females who exercised, that they lived far from parks (75.5%) and that intersections in the streets were close to each other (82.5%). Meeting PA recommendation was more common in females with no comorbidities, with a shorter duration of diabetes, who see other females who exercise, who have a house maid and who live where streets have sidewalks.

Table 3 presents the results of the multiple linear regression model. The model found that lower levels of PA were associated with women who had more than three children ($\beta = -0.17$) compared to women with no children, older age ($\beta = -0.18$), women with a duration of diabetes ≥ 6 years ($\beta = -0.16$), women who were obese ($\beta = -0.23$), women with no family support ($\beta = -0.20$), no friend support ($\beta = -0.13$) and no healthcare provider support ($\beta = -0.14$), women who spent more time sitting ($\beta = -0.20$) and watching TV ($\beta = -0.23$) and women in areas with heavy traffic.
Table 2. Selected environmental and health characteristics of the participants and the prevalence of meeting the PA recommendations.

Variable	N (%)	Meeting PA recommendation	p-value¹
Proximity to parks			0.045
Very close	17 (4.6)	7 (41.2)	
Kind of close	74 (19.9)	29 (39.2)	
Far	281 (75.5)	91 (32.4)	
Know females who exercise			0.621
Yes	57 (15.3)	28 (49.1)	
No	315 (84.7)	149 (47.3)	
See females who exercise			0.028
Yes	81 (21.5)	47 (58.0)	
No	292 (78.5)	71 (24.3)	
Physical environment			0.037
Traffic			
Light	23 (3.5)	11 (47.8)	
Moderate	31 (5.6)	13 (41.9)	
Heavy	318 (90.9)	74 (23.3)	
Presence of sidewalks			0.024
Yes	179 (48.1)	73 (40.8)	
No	193 (51.9)	25 (13.0)	
Street lighting at night			0.831
Yes	234 (89.8)	112 (30.1)	
No	38 (10.2)	11 (28.9)	
Intersections close to each other			0.032
Yes	64 (17.5)	16 (25.0)	
No	307 (82.5)	42 (13.7)	
Body mass index (BMI) (kg/m²)			0.014
18.5–24.9 (normal)			
	62 (16.7)	18 (29.0)	
25–29.9 (overweight)			
	156 (41.9)	34 (21.8)	
> 30 (obese)			
	154 (41.4)	23 (14.9)	
Comorbidities			0.025
Yes	207 (82.8)	37 (17.9)	
No	165 (17.2)	51 (30.9)	
Duration of diabetes (years)			0.001
Less than 3	85 (22.8)	44 (51.8)	
3–6	132 (31.7)	36 (30.5)	
More than 6	155 (41.7)	18 (11.6)	
Have a housemaid			0.057
Yes	107 (28.8)	48 (44.9)	
No	256 (71.2)	76 (29.7)	
Support from physician			0.006
Yes	71 (19.1)	27 (38.0)	
No	301 (80.9)	22 (7.3)	
Other PA continuous measures			
Measure	Meeting PA Mean (SD)	Not-Meeting PA Mean (SD)	p-value²
Social Support			
Support from family	21.1 (2.3)	12.8 ±1.6	0.001
Support from friends	5.7 (0.81)	2.9 ±0.65	0.001

(Continued)
Table 2. (Continued)

Variable	N (%)	Meeting PA recommendation	p-value
TV viewing (hrs/week)	6.7 ±1.8	9.1 ± 1.6	0.001
Sitting (min/day)	689 ±40.6	806 ±28.4	0.001

‘Based on the American Diabetes Association (ADA).

p-value¹ based on chi-squared test; p-value² based on independent sample t test

https://doi.org/10.1371/journal.pone.0239905.t002

Table 3. Correlates of physical activity in Saudi women with T2DM.

Variable	B	SE	β	p-value
Marital status				
Single (Ref: married)	4.41	1.74	0.13	0.03
Number of children				
Ref (no children)				
1–3	-2.62	1.89	-0.07	0.42
> 3	-4.07	1.23	-0.17	< 0.01
Age (years)	-4.52	1.28	-0.18	< 0.01
Education level				
Ref (Illiterate)				
Primary and intermediate	2.73	1.85	0.08	0.69
Secondary	3.46	2.78	0.06	0.51
University and above	9.68	3.04	0.17	< 0.01
Duration of diabetes (years)				
Ref (Less than 3)				
3–6	-1.63	1.08	-0.07	0.08
More than 6	-3.81	1.25	-0.16	< 0.01
Family income (SR)				
Ref (less than 5000)				
5000–less than 9,000	1.64	1.23	0.07	0.46
9,000–13,000	1.94	1.84	0.05	0.52
More than 13,000	3.07	0.79	0.20	< 0.01
Body mass index BMI (kg/m²)				
-4.22	0.97	-0.23	< 0.01	
Sedentary behavior				
TV viewing (hrs/week)	-2.87	0.74	-0.23	< 0.01
Sitting (min/day)	-3.14	0.88	-0.20	< 0.01
Proximity to parks				
Ref (Far)				
close or kind of close	2.68	1.07	0.13	0.03
Traffic				
Ref (light, moderate)				
Heavy	-3.88	1.04	-0.19	< 0.01
See females who exercise				
Yes (Ref: No)	2.88	1.09	0.14	0.01
Social support				
Family support (Ref: Yes)	-3.72	0.98	-0.20	< 0.01
Friends support (Ref: Yes)	-2.44	0.13	-0.13	< 0.01
Physician support (Ref: Yes)	-2.03	0.14	-0.14	0.02

B: unstandardized regression coefficient; SE: standard error for B
β: standardized regression coefficient.

https://doi.org/10.1371/journal.pone.0239905.t003
Table 4 lists the discriminant function structure matrix. The discriminant analysis produced a statistically significant Wilks’ $\lambda = 0.81$, $\chi^2 = 138.3$ ($P < 0.001$). The discriminant analysis identified culture and tradition reasons, lack of skills and knowledge, fatigue, safety, lack of time, weather conditions and lack of local facilities as statistically significant ($P < 0.01$) discriminators of meeting the recommendations. The assumption of equal covariance matrices was tested. The Box’s M test was not statistically significant ($P = 0.187$), which suggests that the covariance matrices were equal. The model correctly classified 71% of females included in the sample. Specifically, the model correctly classified 65.4% of women who met the PA recommendations and 77% of women who did not meet the recommendations. The discriminant efficiency was 76.2%. The barriers were arranged in order of their contribution to the discrimination between women who met the recommendations and women who did not meet the recommendations.

Reason	Function loading
Culture and tradition	0.762
Lack of skills and knowledge	0.728
Fatigue	0.704
Safety	0.681
Lack of time	0.649
Weather conditions	0.611
Lack of local facilities	0.604
Fear of injury/fall	0.421
Lack of resources	0.386
Lack of motivation	0.276
Lack of interest	0.207
Laziness	0.174

*p-value < 0.01.

https://doi.org/10.1371/journal.pone.0239905.t004

Table 4 lists the discriminant function structure matrix. The discriminant analysis produced a statistically significant Wilks’ $\lambda = 0.81$, $\chi^2 = 138.3$ ($P < 0.001$). The discriminant analysis identified culture and tradition reasons, lack of skills and knowledge, fatigue, safety, lack of time, weather conditions and lack of local facilities as statistically significant ($P < 0.01$) discriminators of meeting the recommendations. The assumption of equal covariance matrices was tested. The Box’s M test was not statistically significant ($P = 0.187$), which suggests that the covariance matrices were equal. The model correctly classified 71% of females included in the sample. Specifically, the model correctly classified 65.4% of women who met the PA recommendations and 77% of women who did not meet the recommendations. The discriminant efficiency was 76.2%. The barriers were arranged in order of their contribution to the discrimination between women who met the recommendations and women who did not meet the recommendations.

Discussion

The current study revealed that PA levels were low in SA diabetic patients, and only 26.4% of the participants were active. This low prevalence of PA may be explained by the facts that the general population from which the sample was selected was equally physically inactive [20], and women in the Arabian culture are likely to take part in light-to-moderate intensity activities. There is a high probability of recall error, and error in measurement is greater for light-to-moderate intensity activities, which would ultimately lead to an underestimation of overall physical activity level [39]. Tessa found that women had difficulty recalling the time they spent in different activities due to the overlapping of activities [40].

The prevalence in the current study was higher than that in Al-Kaabi et al [41] in the United Arab Emirates (11%), Alghafri et al [42] in Oman (12%), Siba et al [43] in Lebanon (9%) and Abraham et al in Ethiopia (11%) [44]. However, the prevalence was lower than previous studies in patients with T2DM in the USA [45] (39%), Brazil (30.7%) [46], Nigeria [47] (40.2%), Nepal (41%) [48] and Malaysia (31.9%) [49]. Of greatest concern is the fact that 28.7% of participants in our study reported no activity (MET = 0), which is lower than Oman [50] (60.3%) and the USA (47.4%) [51]. However, these comparisons between countries must be interpreted with caution and consider the actual meaning of physical activity and the characteristics and culture of the study population [52, 53].
Our findings should be evaluated in the context of Saudi culture and tradition and the role of women in this culture. Cultural norms and social expectations require that women do not exercise in mixed gender settings, which reduces existing opportunities for women to be involved in any PA [19].

Fatigue and tiredness from the disease are major factors in the lack of motivation to engage in leisure-time physical activity among Saudi women. Cynthia et al. [54] stated that alterations in levels of blood glucose caused fatigue in diabetic individuals, and this effect may eventually result in hyperglycemia or blood glucose fluctuations. Findings on the relationship between A1c and fatigue are mixed. Our data did not support any relationship between A1c and fatigue, which is consistent with other studies of T2DM in which only very minor or no association between A1c and fatigue was found [55, 56].

Riyadh has the highest number of casualties and accidents in SA. A total of 91% of participants reported heavy traffic, 82.5% reported intersections that were not close to each other, and 51.9% indicated the absence of sidewalks. Sadly, approximately one third (29%) of people who were injured or died due to accidents in the country resided in the Riyadh province [57].

Lack of time was cited as a barrier to PA in populations with diabetes [35, 37, 58, 59]. For Saudi women, multiple role responsibilities may severely limit the time allotted for leisure-time physical activity. For unemployed women, domestic duties around the house, such as cleaning, looking after children or grandchildren and preparing food, limited their time to participate in any PA.

A women’s decision to participate in physical activities and exercise is also related to the availability and accessibility of recreational facilities. Most neighborhoods in Riyadh fail to provide accessible facilities for recreational activities, such as walking paths, to support PA among its citizens [6]. The norm here is to walk to have an active lifestyle, which is also the cheapest form of PA. A healthy physical environment influences PA behavior and may be achieved by providing safe recreational facilities and transit options. Therefore, interventions and development regulations at the level of policy-makers will surely help overcome this problem.

A few patients also reported the adverse climate of the region as a hindrance in performing physical activities. The climate in SA is characterized by a hot, arid climate, where daytime temperatures may rise to 45°C in summer and plummet below zero in winter, which are non-conducive environments to PA. Serour et al and Thomas et al [60, 61] showed that major barriers to exercise in patients with type 2 diabetes were firstly poor climate and secondly hot summers.

Many studies showed the importance of social support in enhancing PA, especially support from family, friends and physicians [62, 63]. Our study observed a small nonsignificant relationship for family support and PA, which is consistent with other studies that measured social support [64], but contradicted Melanie et al [15], who found a positive significant correlation between family support and PA. Women in SA do not receive the same kind of encouragement as their male counterparts to be socially independent and physically active in sports activities. Women are constrained by a culture that does not condone their involvement in PA, and the non-approval of their participation in PA by family members due to demands of domestic responsibilities coupled with religious factors may be due to a diminished awareness of the impact of physical activity on the improvement of the status of diabetic patients in individuals and families.

The time since diagnosis is a possible confounding variable that could affect the physical activity behavior of diabetic individuals. Shanti and Arja [48] observed that higher MET values were attained by individuals who were diagnosed with diabetes between 6 months to two years compared to patients who were diagnosed 6 months before the study or more than 2 years.
Most of the women in our study (64.7%) were diagnosed with diabetes at least four years prior. A total of 56% reported being more inactive than women who were diagnosed for less than one year. Plotnikoff [65] reported the same result but only considered the time of diagnosis of less than one year.

Most women do not know their activity potential because of the lack of exposure to any kind of PA. The idea of exercise is foreign in the Arab culture, particularly for women. Cristina et al [66] found that Arabic-speaking women in Australia associated the increase in heart rate, sweating and breathlessness to illness, when these changes were actually due to PA. An uncertainty related to safe levels of activity is persistent in women, which is primarily due to the absence of any sports activities in female schools. Previous results demonstrated that a good predictor of physical activity in later life was attributed to participation in sports during adolescence and childhood. If the involvement in physical activity during youth was continuous, then there was an increased potential for PA in adulthood [67, 68]. Our data revealed a significant negative association between BMI and PA. In an independent study describing PA patterns in French adults [69], researchers found that women with increased BMI demonstrated a decreased PA by 1.31–1.67 MET minutes/week. Pearte et al [70] also reported that BMI was related to a lower level of physical activity and fewer blocks walked per week.

Our results showed that adults aged 60 years and older had a higher level of physical inactivity than younger adults. This result is similar to previous findings that reported that physical inactivity increased with advancing age [71, 72]. One possible explanation is that participants in this age group are hesitant to participate in physical activity due to several reasons, including lack of interest, physical symptoms (for example, shortness of breath, joint pain, lack of energy), difficulties with access, and a lower self-efficacy of physical activity [73, 74].

There are limited data in the literature that connect marital status with physical activity. We observed that participants who were unmarried were more likely to be physically active than married participants. This finding is consistent with AlNozha et al [75] in Saudi Arabia, who found that single individuals were physically more active, possibly because single women have more leisure time, fewer family responsibilities and are not yet confined by life stressors. Previous research showed that mothers with children were less active than women without the responsibility of caring for a child [76, 77]. However, the literature is mixed on the influence of the age of mother and the number of children at home as predictors of the physical activity of mothers [78, 79]. The age of children was significantly related to PA. Mothers with younger children were less physically active than mothers with older children. Our results showed that motherhood negatively affected women’s participation in PA. Women with more than three children were less likely to be physically active than women with no children. In Saudi culture, gender inequality is still experienced in matters related to household management, and the effect is greater in families with young children. Therefore, PA in women has a low priority status, and women are unlikely to be able to negotiate the time and resources needed to maintain PA. A large mean family size was also attributed to decreased physical activity because of less time to spend on these activities [80, 81]. The cultural norms for women, including cooking and childcare, are also noteworthy.

Limitations

The present study was performed in Riyadh, which decreases the generalization of the results to other regions or populations, for example, adults in rural areas. Second, data were obtained using a self-reported questionnaire, which is a source of potential error. Participants may underestimate or overestimate their physical activity behavior, which may affect the study findings. Tessa and Cornelia found that women had difficulty recalling the time they spent in...
different activities, which was primarily due to activities overlapping [40]. Third, due to the cross-sectional nature of the study, the temporality of certain associations cannot be established with confidence. Nevertheless, it clearly snapshots the current situation and may help guide the development of PA promotional interventions and programs for T2DM individuals via profiling populations who are least active. Fourth, the lack of comparable data in SA limited the extent of the analyses in this study. Despite these limitations, the data make an important contribution to the body of literature in Saudi Arabia by examining the factors that influence the physical activity levels of diabetic Saudi women.

Conclusion

The present study is the first study to provide relevant data on the variables influencing PA in female patients with T2DM in Riyadh, SA. The prevalence of PA was low. The key population demographic subgroups with a low prevalence of PA were women who were aged ≥50 years, married and with children and had a higher BMI. Culture and tradition, fatigue, safety, comorbidities, and fear of injury were the main significant barriers to PA.

To promote PA, we recommend that mass media organize an educational program that encourages female participation in PA. There is a need to create an enabling environment by establishing large public parks for women equipped with sports facilities and trails for walking. Future research should be directed towards examining how various physical activities affect a wider range of females in Riyadh and the whole country.

Acknowledgments

The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through research group No (RG-1439-81). The authors also thank the Diabetic Center at KAUH for the use of the medical dataset. The authors thank all of the women who participated in this study. Special thanks to the students from the College of Applied Medical Sciences who helped with the data collection.

Author Contributions

Conceptualization: Badreldin Abdelrhman Mohamed, Mohamed Salih Mahfouz, Mohamed Farouk Badr.

Data curation: Mohamed Salih Mahfouz, Mohamed Farouk Badr.

Formal analysis: Badreldin Abdelrhman Mohamed, Mohamed Salih Mahfouz.

Funding acquisition: Badreldin Abdelrhman Mohamed, Mohamed Farouk Badr.

Investigation: Badreldin Abdelrhman Mohamed, Mohamed Salih Mahfouz, Mohamed Farouk Badr.

Methodology: Badreldin Abdelrhman Mohamed, Mohamed Salih Mahfouz, Mohamed Farouk Badr.

Project administration: Badreldin Abdelrhman Mohamed, Mohamed Farouk Badr.

Resources: Mohamed Farouk Badr.

Software: Mohamed Salih Mahfouz.

Supervision: Badreldin Abdelrhman Mohamed, Mohamed Farouk Badr.

Writing – original draft: Badreldin Abdelrhman Mohamed, Mohamed Salih Mahfouz, Mohamed Farouk Badr.
Writing – review & editing: Badreldin Abdelrhman Mohamed, Mohamed Salih Mahfouz, Mohamed Farouk Badr.

References

1. World Health Organization. Chapter 1- Chronic diseases: causes and health impacts. Preventing Chronic Diseases: A Vital Investment. Geneva: World Health Organization; 2005. p. 34–58.
2. Abdulaziz Al Dawish M, Alwin Robert A, Brahim R, Abdallah Al Hayek A, Al Saeed A, Ahmed Ahmed R, et al. Diabetes mellitus in Saudi Arabia: a review of the recent literature. Current diabetes reviews. 2016; 12(4):359–368. [https://doi.org/10.2174/1573399811666150724095130 PMID: 26206092]
3. Fareed M, Salam N, Khoja AT, Mahmoud MA, Ahamed M. Life style related risk factors of type 2 diabetes mellitus and its increased prevalence in Saudi Arabia: A brief review. Health Sci. 2017; 6(3):125–32.
4. Forouhi NG, Wareham NJ. Epidemiology of diabetes. Medicine [Abingdon]. 2014; 42: 698–702.
5. Naeem Z. Burden of Diabetes Mellitus in Saudi Arabia. Int J Health Sci. 2015; 9 (3):V–VI.
6. Alzaid A. Diabetes: A tale of two cultures. Br J Diabetes Vasc Dis2012; 12: 57.
7. Al-Rubeaan K, Al-Manaa HA, Khoja TA, Ahmad NA, Al-Sharqawi AH, Siddiqui K, et al. Epidemiology of abnormal glucose metabolism in a country facing its epidemic: SAUDI-DM study. J Diabetes. 2015; 7: 622–632. [https://doi.org/10.1111/j.1753-0407.12224 PMID: 25266306]
8. Boule NG, Haddad E., Kenny GP, Wells GA, and Sigal R. J. Effects of exercise on glycemic control and body mass in type 2 diabetes mellitus: a meta-analysis of controlled clinical trials. JAMA 2001; 286:1218–1227. [https://doi.org/10.1001/jama.286.10.1218 PMID: 11595268]
9. Canadian Diabetes Association Clinical Practice Guidelines Expert Committee. Canadian Diabetes Association 2003 Clinical Practice Guidelines for the Prevention and Management of Diabetes in Canada. Can. J. Diabetes 27:s1–s140, 2003.
10. Sigal R, GP Kenny, Wasserman DH, and Castanedasceppa C. Physical activity/ exercise and type 2 diabetes. Diabetes Care 2004; 27:2518–2539. [https://doi.org/10.2337/diacare.27.10.2518 PMID: 15451933]
11. Zhao G, Ford ES, Li C, Bailuiz LS. Physical activity in U.S. older adults with diabetes mellitus: prevalence and correlates of meeting physical activity recommendations. J Am Geriatr Soc. 2011; 59 (1):132–137. [https://doi.org/10.1111/j.1532-5415.2010.03236.x PMID: 21226683]
12. Alzahrani AM, Albakri SB, Alqutub TT, Alghamdi AA, Rio AA. Physical activity level and its barriers among patients with type 2 diabetes mellitus attending primary healthcare centers in Saudi Arabia. Journal of family medicine and primary care. 2019; 8(8): 2671–2675. [https://doi.org/10.4103/jfmpc.jfmpc_433_19 PMID: 31548953]
13. Resnick HE, Foster GL, Bardsley J, Ratner RE. Achievement of American diabetes association clinical practice recommendations among U.S. adults with diabetes, 1999–2002: The National Health and Nutrition Examination Survey. Diabetes Care 2006; 29:531–7. [https://doi.org/10.2337/diabcare.29.03.06.d005-1254 PMID: 16505501]
14. Zanuso S, Balducci S, Jimenez A. Physical activity, a key factor to quality of life in type 2 diabetic patients. Diabetes Metab Res Rev 2009; 25(Suppl.1):S24–8.
15. Melanie Komar-Samardzija Lynne T. Braun, Keithley Joyce K., Quinn Lauretta T. Factors associated with physical activity levels in African–American women with type 2 diabetes. Journal of the American Academy of Nurse Practitioners 24 (2012) 209–217 [https://doi.org/10.1111/j.1745-7599.2011.00674.x PMID: 22486836]
16. Plotnikoff RC, Taylor LM, Wilson PM, Courneya KS, Sigal RJ, Birkett N, et al. Factors associated with physical activity in Canadian adults with diabetes. Med Sci Sports Exerc. 2006; 38(8):1526–1534. [https://doi.org/10.1249/01.mss.0000228937.86539.95 PMID: 16888470]
17. Benjamin Tam Truong Donnelly. Barriers and facilitators influencing the physical activity of Arabic adults. A literature review Kathleen. Avicenna 2013: 8 [http://dx.doi.org/10.5339/ avi.2013.8]
18. Al-Eisa Einas S. and Al-Sobayel Hana I. Physical Activity and Health Beliefs among Saudi Women. Journal of Nutrition and Metabolism Volume 2012, Article ID 642187, 6 pages [http://dx.doi.org/10.1155/2012/642187]
19. Mabry RM, Reeves MM, Eakin EG, Owen N. Evidence of physical activity participation among men and women in the countries of the Gulf cooperation council: a review. Obes Rev. 2010; 11(6):457–464. [https://doi.org/10.1111/j.1467-789X.2009.00655.x PMID: 19793376]
20. Al-Hazzaa Hazzaa M. Physical inactivity in Saudi Arabia revisited: A systematic review of inactivity prevalence and perceived barriers to active living. International Journal of Health Sciences 2018; 2 (6): 50–64.
21. Khalaf Atika, Ekblom Örjan, Jan Kowalski, Vanja Berggren, Albert Westergren, and Al-Hazzaa. Female University Students’ Physical Activity Levels and Associated Factors—A Cross-Sectional Study in Southwestern Saudi Arabia. Int J Environ Res Public Health. 2013; 10(8): 3502–3517. https://doi.org/10.3390/ijerph10083502 PMID: 23939387

22. Al-Zalabani AH, Al—Hamdan NA, Saeed AA. The prevalence of physical activity and its socioeconomic correlates in kingdom of Saudi Arabia: A cross-sectional population -based national survey. J Taibah Univ Med Sci 2015; 10:208–15.

23. Amin TT, Suleman W, Ali A, Gamal A, Al Wehedy A. Pattern, prevalence, and perceived personal barriers toward physical activity among adult Saudis in Al-Hasa, KSA. Journal of Physical Activity and Health. 2011; 8(6):775–784. https://doi.org/10.1123/japh.8.6.775 PMID: 21832292

24. Alzaman N, Ali A. Obesity and diabetes mellitus in the Arab world. Journal of Taibah University Medical Sciences. 2016; 11(4):301–309.

25. IPAQ Research Committee, 2005. Guidelines for the Data Processing and Analysis of the International Physical Activity Questionnaire. Available from: http://www.ipaq.ki.se.

26. Booth M. Assessment of physical activity: an international perspective. Research quarterly for exercise and sport. 2000;71(sup2):114–20.

27. American Diabetes Association. Standards of medical care in diabetes-2018. Diabetes care 2018; 41 (suppl 1): S38–S50. PMID: 29222375

28. Douglas F, Torrance N, Van Teijlingen E, et al. Primary care staff views and experiences related to routinely advising patients about physical activity. A questionnaire survey. BMC Public Health 2006; 6:138–48. https://doi.org/10.1186/1471-2458-6-138 PMID: 16719900

29. Clemes SA, David BM, Zhao Y, Han X, Brown W. Validity of two self-report measures of sitting time. J Phys Act Health 2012; 9:533–9. https://doi.org/10.1123/japh.9.4.533 PMID: 21946087

30. Marshall AL, Miller YD, Burton NW, Brown WJ. Measuring total and domain- specific sitting: A study of reliability and validity. Med Sci Sports Exerc 2010; 42:1094–102. https://doi.org/10.1249/MSS.0b013e3181c5ec18 PMID: 19997030

31. Sallis JF, Grossman RM, Pinski RB, Patterson TL, Nader PR. The development of scales to measure social support for diet and exercise behaviors. Prev Med. 1987; 16: 825–836. https://doi.org/10.1016/0091-7435(87)90022-3 PMID: 3432232

32. Noroozi A, Ghofranipour F, Heydarnia AR, Nabipour I, Amin Shokravi F. Validity and reliability of the social support scale for exercise behavior in diabetic women. Asia Pac J Public Health 2011; 23(5): 730–741. https://doi.org/10.1177/1010539509357342 PMID: 20460282

33. Pearte CA, Gary TL, Brancati FL. Correlates of physical activity levels in a sample of urban African Americans with type 2 diabetes. Ethn Dis. 2004; 14(2):198–205. PMID: 15132204

34. Plotnikoff RC, Taylor LM, Wilson PM, Courneya KS, Sigal RJ, Birkett N, et al. Factors associated with physical activity in Canadian adults with diabetes. Med Sci Sports Exerc. 2006; 38:1526–15. https://doi.org/10.1249/01.mss.0000228937.86539.95 PMID: 16888470

35. Thomas N, Alder E, Leese G P. Barriers to physical activity in patients with diabetes. Postgrad Med J. 2004; 80:287–291. https://doi.org/10.1136/pgmj.2003.010553 PMID: 15138320

36. Hays LM, Clark DO. Correlates of physical activity in a sample of older adults with type 2 diabetes. Diabetes Care. 1998; 22:706–12. https://doi.org/10.2337/diacare.22.5.706 PMID: 10332670

37. Egan AM,. Mahmood WAW, Fenton R, Redziniak N, Kyaw TUN, Sreenan S, et al. Barriers to exercise in obese patients with type 2 diabetes. Q J Med 2013; 106:635–638.

38. Ferrand C, Perrin C, Nasarre S. Motives for regular physical activity in women and men: a qualitative study in French adults with type 2 diabetes, belonging to a patients’ association. Health Soc Care Community. 2008; 16:511–520. https://doi.org/10.1111/j.1365-2524.2008.00773.x PMID: 18355245

39. Livingstone M, Robson P, McCarthy S, et al. Physical activity in a nationally representative sample of adults in Ireland. Public Health Nutr 2001; 4: 1107–16. https://doi.org/10.1079/phn2001192 PMID: 11820924

40. Tessa MP, Cornellia G. Assessing physical activity in Muslim women of South Asian origin. Journal of Physical Activity and Health 2012; 9:970–976. https://doi.org/10.1123/jpah.9.7.970 PMID: 22971888

41. Al-Kaabi J, Al-Maskari F, Saadi H, Afandi B, Parkar H, Nagelkerke N. Physical activity and reported barriers to activity among type 2 diabetic patients in the United Arab Emirates 2009. Rev Diabet Stud; 6 (4):271–2 https://doi.org/10.1909/RDS.2009.6.271 PMID: 20043039

42. Aghafti TS, Alfarhi SM, Al-Farsi Y, Bannerman E, Craigie AM, Anderson AS. Correlates of physical activity and sitting time in adults with type 2 diabetes attending primary health care in Oman. BMC public health. 2018; 18(1):85.
43. Sibai AM, Costanian C, Tohme R, Assaad S, Hwalla N. Physical activity in adults with and without diabetes: from the 'high-risk' approach to the 'population-based' approach of prevention. BMC Public Health. 2013; 13:1002. https://doi.org/10.1186/1471-2458-13-1002 PMID: 24153099

44. Tamirat A, Abebe L, Kirose G. Prediction of physical activity among Type-2 diabetes patients attending Jimma University specialized Hospital, southwest Ethiopia: Application of health belief model. Science. 2014; 2(6): 524–531

45. Kenny P, Wasserman D. Physical activity/exercise and type-2 diabetes a consensus statement from the American Diabetes Association. Diabetes care: 2006; 29(6):1433–1438. https://doi.org/10.2337/dc06-9910 PMID: 16732040

46. Duarte CK, Almeida JC, Merker AJ, Brauer Fde O, Rodrigues Tda C. Physical activity level and exercise in patients with diabetes mellitus. Rev Assoc Med Bras 2012; 58: 215–221. PMID: 22569617

47. Oyewole Olufemi O., Olatunde Odusan, Oritogun Kolawole S., Idowu Akolade O. Physical activity among type-2 diabetic adult Nigerians. Annals of African Medicine 2014. 13(4):189–194. https://doi.org/10.4103/1596-3519.142290 PMID: 25287033

48. Kadariya Shanti, Aro Arja R. Barriers and facilitators to physical activity among urban residents with diabetes in Nepal. PLoS One. 2018; 13(6):e0199329. https://doi.org/10.1371/journal.pone.0199329 eCollection 2018. PMID: 29953475

49. Nor Shazwani MN, Suzan S, Hanis Mastura Y, Lim CJ, Mohd Fauzee MZ, et al. Assessment of physical activity levial among individuals with type 2 diabetes at Cheras Health Clinic, Kuala Lumpur. Malaya J Nut 2010; 16: 101–112.

50. Alghafri T, Alharthi SM, Al Farsi YM, Bannerman E, Craigie AM, Anderson AS. Perceived barriers to leisure time physical activity in adults with type 2 diabetes attending primary healthcare in Oman: a cross-sectional survey. BMJ open. 2017; 7(11):e016946. https://doi.org/10.1136/bmjopen-2017-016946 PMID: 29102987

51. Craig CL, Russell SJ, Cameron C, Bauman AE. Twenty-year trends in physical activity among Canadian adults. Canad J Public Health 2004; 95: 59–63. https://doi.org/10.1007/BF03403636 PMID: 14768744

52. Qureshi YI, Ghouri SA. Muslim female athletes in sports and dress code: major obstacle in international competitions. Journal of Experimental Sciences. 2011, 2(11): 09–13.

53. Guthold R, Ono T, Strong K, Chatterji S, Morabia A. Worldwide variability in physical inactivity: a 51-country survey. Am J Prev Med 2008; 34: 486–94. https://doi.org/10.1016/j.amepre.2008.02.013 PMID: 18471584

54. Cynthia F, Quinn L, Hacker ED, Penckofer SM, Wang E, Foreman M, et al. Fatigue in women with type 2 diabetes. Diabetes Educ. 2012; 38(5):662–72 https://doi.org/10.1177/0145721712450925 PMID: 22713262

55. Warren RE, Deary IJ, Frier BM. The symptoms of hyperglycaemia in people with insulin-treated diabetes: Classification using principal components analysis. Diabetes Metab Res. 2003; 19(5):408–414.

56. Van der Does FE, De Neeling JN, Snoek FJ, et al. Symptoms and well-being in relation to glycemic control in type II diabetes. Diabetes Care. 1996; 19(3):204–210 https://doi.org/10.2337/diacare.19.3.204 PMID: 8743562

57. Traffic Statistics. https://www.moi.gov.sa/.../04_Sj9CPykssy0xPLmMz0vMAfjo8ziDTXNTDwMTYy

58. Korkiakangas EE, Alahunta MA, Laitinen JH. Barriers to regular exercise among adults at high risk or diagnosed with type 2 diabetes: a systematic review. Health Promot Int 2009; 24:416–427. https://doi.org/10.1093/heapro/dap031 PMID: 19793763

59. Lawton J, Ahmad N, Hanna L, et al. ‘I can’t do any serious exercise’: barriers to physical activity amongst people of Pakistani and Indian origin with Type 2 diabetes. Health Educ Res 2006; 21:43–54. https://doi.org/10.1093/her/cyh042 PMID: 15955792

60. Serour M., Hanadi A., Sawsan A., Abdel-Rahman M. & Abdulla B. (2007) Cultural factors and patients’ adherence to lifestyle measures. The British Journal of General Practice 57, 291–295. PMID: 17394732

61. Thomas N, Alder E, Leese GP. Barriers to physical activity in patients with diabetes. Postgrad Med J. 2004; 80:287–291 https://doi.org/10.1136/pgmj.2003.010553 PMID: 15138320

62. Rhodes P, Nocon A. A problem of communication? Diabetes care among Bangladeshi people in Bradford. Health & social care in the community. 2003; 11(1):45–54.

63. Donahue KE, Mielenz TJ, Callahan LF, Sloane PD, Devellis RF. Identifying Supports and Barriers to Physical Activity in Patients at Risk for Diabetes. Preventing Chronic Disease. 2006; 3(4):A119. PMID: 16979494

64. JoAnn GK. Social support and physical activity in type 2 diabetes: a social-ecologic approach. Diabetes Educ. 2008; 34(6):1037–44 https://doi.org/10.1177/0145721708325765 PMID: 19075085
65. Plotnikoff RC, Lippke S, Karunamuni N, Eves N, Courneya KS, Sigal R, et al. Co-morbidity, functionality and time since diagnosis as predictors of physical activity in individuals with type 1 or type 2 diabetes. Diabetes research and clinical practice. 2007; 78(1):115–22. https://doi.org/10.1016/j.diabres.2007.02.016 PMID: 17379349

66. Capernicine CM, Kolt GS, Tennent R, Mummery WK. Physical activity behaviours of Culturally and Linguistically Diverse (CALD) women living in Australia: a qualitative study of socio-cultural influences. BMC public health. 2011; 11(1):26.

67. Telama R, Yang X, Laakso L, Vilkari J: Physical activity in childhood and adolescence as predictor of physical activity in young adulthood. Am J Prev Med 1997, 13:317–323. PMID: 9236971

68. Barnekow-Bergkvist M, Hedberg G, Janlert U, Jansson E: Prediction of physical fitness and physical activity level in adulthood by physical performance and physical activity in adolescence. An 18-year follow-up study. Scand J Med Sci Sports 1998, 8:299–308. https://doi.org/10.1111/j.1600-0838.1998.tb00466.x PMID: 9609389

69. Cloix L, Caille A, Helmer C, Bourdel-Marchasson I, Fagot-Campagna A, Fournier C, et al. Physical activity at home, at leisure, during transportation, and at work in French adults with type 2 diabetes. The ENTRED physical activity study. Diabetes & Metabolism 2015 41:37–44.

70. Pearte CA, Gary TL, Brancati FL. Correlates of physical activity levels in a sample of urban African Americans with type 2 diabetes. Ethn Dis. 2004; 14(2):198–205 PMID: 15132204

71. Bauman A, Bull F, Chey T, Craig CL, Ainsworth BE, Sallis JF, et al. The international prevalence study on physical activity: results from 20 countries. Int J Behav Nutr Phys Act 2009; 6: 21. https://doi.org/10.1186/1479-5868-6-21 PMID: 19335883

72. Center for Disease Control (CDC). Prevalence of physical activity, including lifestyle activities among adults—United States, 2000–2001. MMWR Morb Mortal Wkly Rep 2003; 52: 764–9. PMID: 12917582

73. Crombie IK, Irvine L, Williams B, McGinnis AR, Slane PW, Alder EM, et al. Why older people do not participate in leisure time physical activity: a survey of activity levels, beliefs and deterrents. Age and ageing. 2004; 33(3):287–92. https://doi.org/10.1093/ageing/afh089 PMID: 15082435

74. Netz Y, Raviv S. Age differences in motivational orientation toward physical activity: an application of social-cognitive theory. J Psychol 2004; 138: 35–48. https://doi.org/10.3200/JRPL.138.1.35-48 PMID: 15098713

75. Al-Nozha MM, Al-Hazzaa HM, Arafah MR, Al-Khadra A, Al-Mazrou YY,Al-Maatoq MA, et al. Prevalence of physical activity and inactivity among Saudis aged 30–70 years. A population-based cross-sectional study. Saudi Med J 2007; 28:559–68. PMID: 17457478

76. Lewis B, Ridge D. Mothers reframing physical activity: family-oriented politicism, transgression and contested expertise in Australia. Social Science & Medicine. 2005 1; 60(10):2295–306.

77. McIntyre CA, Rhodes RE. Correlates of leisure-time physical activity during transitions to motherhood. Women & health. 2009 13; 49(1):66–83.

78. Bellows-Riecken KH, Rhodes RE. A birth of inactivity? A review of physical activity and parenthood. Preventive medicine. 2008; 46(2):99–110. https://doi.org/10.1016/j.ypmed.2007.08.003 PMID: 17919713

79. Miller YD, Brown WJ. Determinants of active leisure for women with young children—an “ethic of care” prevails. Leisure sciences. 2005; 27(5):405–20.

80. Hamilton K, White KM. Understanding parental physical activity: Meanings, habits, and social role influence. Psychology of Sport and Exercise. 2010; 11(4):275–85.

81. Average Household Size in Saudi Arabia—ArcGIS Online https://www.arcgis.com/home/item.html?id=413038ecc1fa44889bfdbed3dde3f226