XMM-NEWTON OBSERVATION OF THE 5.25 MILLISECOND TRANSIENT PULSAR XTE J1807−294 IN OUTBURST

S. Campana,1 M. Ravasio,1 G. L. Israel,2,3 V. Mangano,2 and T. Belloni1

Received 2003 April 14; accepted 2003 July 8; published 2003 August 4

ABSTRACT

We report on the results obtained for the millisecond transient X-ray pulsar XTE J1807−294 in a 40 minute orbital period system, based on an XMM-Newton target-of-opportunity observation carried out during 2003 March. The source was found at a luminosity level of about \(2 \times 10^{36}\) erg s\(^{-1}\) in the 0.5–10 keV range (assuming a distance of 8 kpc). We confirm the presence of the 5.25 ms pulsations (after accounting for the orbital modulation) and find a pulsed fraction of 5.8\% in the 0.3–10 keV band. The pulse shape is nearly sinusoidal. The spectral continuum of the source is well fitted by an absorbed Comptonization model plus a soft component. No emission or absorption lines have been detected in the 0.3–10 keV (0.5–10 keV) range with upper limits of 10–40 eV.

The reported analysis represents the first detailed study of this source, the fourth belonging to the ultracompact binary system class hosting an accreting neutron star.

Subject headings: accretion, accretion disks — binaries: close — stars: individual (XTE J1807−294) — neutron stars

1. INTRODUCTION

In the past few years conclusive evidence that low-mass X-ray binaries (LMXRBs) contain fast spinning, weakly magnetic neutron stars has been gathered. Coherent periodicities have been discovered in four sources: SAX J1808.4−3658 (401 Hz: Wijnands & van der Klis 1998), XTE J1751−305 (435 Hz: Markwardt et al. 2002), XTE J0929−314 (185 Hz: Galloway et al. 2002), and recently XTE J1807−294 (191 Hz: Markwardt, Smith, & Swank 2003b).

All four of these sources are transients, i.e., exhibit only sporadic activity and for most of the time remain in a state of low-level activity (for a review see, e.g., Campana et al. 1998a). These transient pulsars share many similarities among them but are rather peculiar among transient sources containing a neutron star (usually named soft X-ray transients, hereafter SXRTs). Their peak X-ray luminosities are rather faint (\(\sim L_{\text{Edd}}\)), whereas SXRTs have peak luminosities of \((0.1–1)L_{\text{Edd}}\). They show X-ray pulsations, whereas for SXRTs and LMXRBs tight upper limits exist (e.g., Vaughan et al. 1994). The discovery of X-ray pulsation during the outburst phase has also allowed us to reveal an orbital periodicity, which in all cases is shorter than ~2 hr (2.01 hr for SAX J1808.4−3658: Chakrabarty & Morgan 1998; 42.4 minutes for XTE J1751−305: Markwardt et al. 2002; 43.6 minutes for XTE J0929−314: Galloway et al. 2002; 40.1 minutes for XTE J1807−294: Markwardt, Juda, & Swank 2003a). These periods are much shorter than what is usually found in SXRTs (\(\geq 4\) hr). These differences led some authors to suggest that transient pulsars might form a separate (sub-) class among SXRTs, called faint transients (Heise et al. 1998; King 2000; in ’t Zand 2001).

Faint transients are poorly known. The best-studied source is SAX J1808.4−3658. It was studied across three outbursts (Wijnands & van der Klis 1998; Wijnands et al. 2001), in quiescence (Campana et al. 2002), in the optical bands (Homer et al. 2001), and in the radio bands (Gaensler, Stappers, & Getts 1999).

Concerning XTE J1807−294 very little is known. The source was discovered during a Galactic plane scan by RXTE/PCA (Markwardt et al. 2003b). The source was observed at levels of 33, 38, 58, 41, and 20 mcrab (2–10 keV) on 2003 February 16.7, 19.8, 21.6, 22.6, and March 13.9, respectively.

A follow-up Chandra observation on 2003 March 10.8 allowed Markwardt et al. (2003a) to obtain a much better position (1\% uncertainty). Pulses were still detectable and allowed a refined orbital solution to be obtained from RXTE data. Here we report on an XMM-Newton (discretionary time) target-of-opportunity observation of XTE J1807−294 on 2003 March 22 (see also Campana et al. 2003). In § 2 we describe the observational data and the reduction strategy. In § 3 we describe our results on spectral and timing analysis. Conclusions are reported in § 4.

2. XMM-NEWTON OBSERVATION AND DATA ANALYSIS

The XMM-Newton Observatory (Jansen et al. 2001) includes three 1500 cm\(^2\) X-ray telescopes each with a European Photon Imaging Camera (EPIC, 0.1–15 keV) at the focus. Two of the EPIC imaging spectrometers use MOS CCDs (Turner et al. 2001) and one uses p-n CCDs (Strüder et al. 2001). Reflection Grating Spectrometers (RGS, 0.35–2.5 keV; den Herder et al. 2001) are located behind two of the telescopes.

XTE J1807−294 was observed on 2003 March 22 from 13:57 to 18:40. MOS1 was operating in small window mode, MOS2 in prime full window mode, and p-n in timing mode, all with thick filters. RGS1 and RGS2 were operating in the Spectro-Q standard mode. Because of a problem in the field acquisition the source was originally pointed 1\′ apart. This problem was then corrected, resulting in an overall efficiency decrease of the p-n, MOS1, and RGS instruments. We generated final product using SAS version 5.4.1. A small soft proton flare event occurred at the beginning of the observation; we excluded the first 2.5 ks from the analysis. We obtained net exposure times of 14 and 9 ks for MOS2 and the other instruments, respectively.

1 INAF-Osservatorio Astronomico di Brera, Via Bianchi 46, I-23807 Merate (Le), Italy.
2 INAF-Osservatorio Astronomico di Roma, Via Frascati 33, I-00040 Monteporzio Catone (Rome), Italy.
3 Affiliated to ICRA.
The pile-up source is extremely bright such that the MOS cameras are saturated and the radial support structure of the mirrors is visible. Piled-up rate for the MOS2 camera is ~8 counts s\(^{-1}\) (0.5–10 keV). Source position is consistent with that determined with Chandra (Markwardt et al. 2003a).

A simple way round to pile-up is to extract photons for spectral analysis in an annulus around the source, thus excluding the inner (piled-up) core. We followed this strategy for analyzing the MOS2 data, whereas for MOS1 data the field is too small (see also the analysis carried out on Mrk 421, presenting similar problems, by M. Ravasio et al. 2003, in preparation). We extracted photons from annuli of 30° and 60° inner and outer radii, respectively. Background was extracted from two different outer circular regions of 2' each. We selected only single-pixel events and made sure that no pile-up was present (through the SAS tool EPATPLOT). This is also in line with prescriptions by Molendi & Sembay (2003). The count rate within the 0.5–10 keV energy band is 1.01 \pm 0.01 counts s\(^{-1}\). Response matrix and ancillary files were then generated with RMFGEN and ARFGEN. Spectral data were rebinned to have 80 counts per bin.

2.1. MOS Cameras

The timing mode was selected to have the opportunity to reveal X-ray pulsations. Given the high count rate of the source, this mode is particularly useful to avoid any pile-up. We extracted the source spectrum from the raw image, taking a column 10 pixels wide and the background from two separate boxes 5 pixels wide. We consider only “single” and “double” events. No X-ray bursts were detected. The source count rate in the 0.5–10 keV band is 34.0 \pm 0.1 counts s\(^{-1}\). Background is at a level of 1.4% in the full band. Pile-up is negligible and dead time is at a level of \(~1.5\%\). Response matrix and ancillary file for spectral analysis were generated using SAS tasks. Spectral data were rebinned to have 80 counts per bin.

2.2. p-n Camera

The timing mode was selected to have the opportunity to reveal X-ray pulsations. Given the high count rate of the source, this mode is particularly useful to avoid any pile-up. We extracted the source spectrum from the raw image, taking a column 10 pixels wide and the background from two separate boxes 5 pixels wide. We consider only “single” and “double” events. No X-ray bursts were detected. The source count rate in the 0.5–10 keV band is 34.0 \pm 0.1 counts s\(^{-1}\). Background is at a level of 1.4% in the full band. Pile-up is negligible and dead time is at a level of \(~1.5\%\). Response matrix and ancillary file for spectral analysis were generated using SAS tasks. Spectral data were rebinned to have 80 counts per bin.

2.3. RGS

The standard SAS procedure RGSPROC was used to derive the first-order RGS spectra. In the 7–36 Å band rates are

Table 1

Parameter	Value
N\(_0\)	6.3\(\pm^{+0.1}_{-0.2}\) \times 10\(^{21}\) cm\(^{-2}\)
Blackbody T	0.81\(\pm^{+0.04}_{-0.08}\) keV
Blackbody R	1.8\(\pm^{+1.2}_{-0.2}\) km
Photon index	1.96\(\pm^{+0.05}_{-0.03}\)
X\(_{\text{rad}}\)	1.10 (1569 dof)

With COMPTT Component

Parameter	Value
N\(_0\)	4.6\(\pm^{+0.2}_{-0.3}\) \times 10\(^{21}\) cm\(^{-2}\)
Blackbody T	0.80\(\pm^{+0.05}_{-0.05}\) keV
Blackbody R	2.2\(\pm^{+1.0}_{-0.2}\) km
Input T\(_0\)	0.24\(\pm^{+0.02}_{-0.02}\) keV
Plasma T	9.6\(\pm^{+0.2}_{-0.0}\) keV
Optical depth	3.1\(^{+1.1}_{-0.8}\)
X\(_{\text{rad}}\)	1.10 (1569 dof)

* Blackbody radius at a distance of 8 kpc.

Fig. 1

—XMM-Newton spectra of XTE J1807–294 with overlaid the best-fit absorbed blackbody plus COMPTT model. From top to bottom, there are the p-n and the MOS2 spectra. In the lower panel are shown the residuals in terms of \(\chi^2\).

3. Spectral Analysis

The spectral analysis has been carried out in the 0.5–10 keV energy range for MOS2 and p-n and in 7–36 Å for the two RGSs, using XSPEC (ver. 11.2). All spectral uncertainties are given at 90% confidence level for 1 degree of freedom (\(\Delta \chi^2 = 2.71\)). We first tried the standard model for SXRTs, an absorbed soft component (blackbody) plus a hard component (power law; e.g., Campana et al. 1998b). The fit is good with a \(\chi^2_{\text{red}} = 1.10\) (1571 degrees of freedom, dof). Fitted parameters can be found in Table 1. The column density is \((6.3 \pm 0.1) \times 10^{21}\) cm\(^{-2}\), which is slightly higher than the Galactic value of \(3 \times 10^{21}\) cm\(^{-2}\). A comparable (but more physical) model is obtained by replacing the power law with a Comptonization model like COMPTT (Titarchuk 1994) as observed in SAX J1808.4–3658 (Gierlinski, Done, & Barret 2002) but not in XTE 1751–305 (Miller et al. 2003). In this case we obtain \(\chi^2_{\text{red}} = 1.10\) (1569 dof; see Fig. 1). Systematic errors at 1.6% level provide an acceptable fit. The column density is \(4.6^{+0.5}_{-0.3} \times 10^{21}\) cm\(^{-2}\), consistent with the Galactic value. The blackbody temperature is \(kT = 0.80 \pm 0.03\) keV and its radius (assuming spherical symmetry) is \(R = (2.2 \pm 0.2) dz^2 km\) with \(dz\), the unknown distance to XTE J1807–294 in units of 8 kpc\(^5\) and \(f\) the spectral hardening factor obtained as the ratio of the color temperature to the effective temperature; see, e.g., Merloni, Fabian, & Ross 2000). The temperature of the soft input photon is 0.24 \pm 0.02 keV. In the Comptonization model the temperature of the corona and the plasma optical depth are tightly related. The best fit is for a relatively cool corona \((kT = 9.6^{+0.4}_{-0.6}\) keV, i.e., \(kT > 5.6\) keV) and an optical depth \((\tau < 4.2)\). A very hot corona \((kT > 370\) keV) with a negligible optical depth \((\tau \sim 0.02, \tau < 2.68\) at 90% confidence level, c.l.) is also (formally) acceptable. However, with a de-

\(^{5}\) The source lies just in the direction of the Galactic center.
3.1. Line Search

We searched for an iron lines in the p-n and MOS data with negative results. Taking the line energy in 6.40–6.97 keV and 0.1 keV (best fit) or null values for the line width, we derive upper limits on the equivalent width of 18 and 25 eV, respectively.

Following Miller et al. (2003) we searched the RGS spectra for emission or absorption lines. We divided the spectra (re-binned at 20 counts per bin) in slices of 3 Å and inspected them for lines in the energy band 7–20 Å. We fitted the sliced spectra with an absorbed (VARTBABS; Wilms, Allen, & McCray 2000) power-law model. All fits are acceptable. No emission or absorption lines are found. We directly searched for the Ne K edge line at 14.25 Å following the evidence for enhanced absorption in ultracompact binaries (Schulz et al. 2001; Juett, Psaltis, & Chakrabarty 2001). No Ne edge is visible, and the fit procedure is not sensible to its presence. We also searched for the Ne Lyα line at 12.13 Å (in the range 11–13 Å). No line is present, and an upper limit of 41 eV can be set (95% c.l.). In case of a narrow line the limit is 9 eV. Detected Ne lines in 4U 1626–67 had equivalent widths of 20 Å (Schulz et al. 2001).

4. TIMING ANALYSIS

We used the SAS task BARYCEN to correct the p-n data. The time resolution is 29.56 µs (Kuster et al. 2003). A significant signal in the power spectrum is readily visible in the data (Campana et al. 2003). However, the power spectrum shows a large number of peaks likely resulting from aliasing of the short orbital period. The correct pulse period can be obtained only after correcting for the orbital modulation. We assumed the orbital period derived by Markwardt et al. (2003a) using RXTE data, i.e., $P_{\text{orb}} = 40.0741$ minutes, and searched for the projected orbital radius and time of 90° mean longitude assuming the hypothesis of circular orbit, stepping on those two parameters and, for each case, folding the events into a 10 bin light curve. The presence of a modulation in the folded light curve was then estimated with a χ^2 test. This is similar...
to the analysis carried out by Kirsch & Kendziorra (2003). We successfully recover the pulsation with a projected orbital radius \(r = 4.7^{+1.2}_{-0.4} \) lt-minutes and an epoch of 90° mean longitude \(T_0 = 52,720.68644(13) \) MJD (90% c.l.; see Fig. 2). Pulsations were detected at 5.2459426(2) ms (90% c.l.).

After correction for the orbital motion and in the full band used for timing analysis (0.3–10 keV) the (background-subtracted) pulsed fraction amounts to 5.8% ± 0.3% (90% c.l.; without correction the pulsed fraction is only 1.9%). The fit is not completely satisfactory (\(x_{\text{red}} = 4.8 \)). An additional sinusoidal component at half of the spin period is highly significant (\(F\)-test probability 3.5 \(\sigma \) and \(x_{\text{red}} = 1.2 \)). The pulsed fraction of XTE J1807–289 is comparable with what was observed in SAX J1808.4–3658 (4%; Wijnands & van der Klis 1998), XTE J1751–305 (4%; Markwardt et al. 2002) and XTE J0929–314 (~5%; Galloway et al. 2002). The pulsed fraction increases with energy, going from 4.3% ± 0.7% in 0.3–2 keV to 7.4% ± 0.7% in 2–5 keV and to 7.5% ± 1.4% in 5–10 keV (see Fig. 3). Also for these curves two sinusoidal components provide a much better fit.

The orbital modulation is not directly visible in the data. Folding the barycentered \(p-n \) light curve at the orbital period reported by Markwardt et al. (2003a), we can put a 95% upper limit on the modulated component of 1%.

5. CONCLUSIONS

We report on XMM-Newton observation of the fourth millisecond low-mass X-ray pulsar XTE J1807–294. We reveal that the source still in a bright state ~30 days after its discovery. The source luminosity is \(2 \times 10^{36} \) ergs s\(^{-1}\) at a fiducial distance of 8 kpc.

Our results are very similar to what was observed in XTE J1751–305 (Miller et al. 2003). The hard spectral component contributes most of the observed flux (87%), even though a soft component (a blackbody) is needed by the data. The equivalent radius of the blackbody component is small, \(R = (2.2 \pm 0.2) \times 10^5 \) km, suggesting an emitting hot spot onto the neutron star surface.

No emission or absorption lines are observed in the data. We study in more detail Ne lines following the suggestion by Yungelson, Nelemans, & van den Heuvel (2002) and Bildsten (2002) that the companions of faint transient sources are Ne-rich white dwarves. We did not find any evidence of emission lines (41 and 9 eV 95% upper limits for a broad or narrow line, respectively) or absorption edges. Iron lines are not detected either with upper limits of ~25 eV.

The hard component (the main contributor to the source flux) can be well described with a Comptonization model. The optical depth and the plasma temperature are highly covariant. In any case a firm upper limit on the optical depth of 4.3 (90% c.l.) can be set. Similar results have been obtained by Juett et al. (2003) on XTE J0929–314 but not on XTE J1751–305 (Miller et al. 2003). This is in line with the predictions of Titarchuk, Cui, & Wood (2002). They suggested that X-ray pulsations can be observed in sources with an optical depth lower than ~4 at a plasma temperature of ~20 keV (as in our case). For sources with a higher optical depth, e.g., \(\tau = 11.7 \pm 0.4 \) in the Z source GX 349+2 (Di Salvo et al. 2001) or \(\tau = 5.3 \pm 0.6 \) in the atoll source 4U 1728–34 (Di Salvo et al. 2000), pulsations would be more easily suppressed by scattering.

We are grateful to the XMM-Newton project scientist, F. Jansen, for granting time to this unsolicited target of opportunity observation. We thank the referee for her/his helpful comments. This work is partially supported through ASI and Co-fin grants.

REFERENCES

Bildsten, L. 2002, ApJ, 577, L27
Campana, S., Rassavio, M., Israel, G. L., & Mangano, V. 2003, IAU Circ. 8113
Campana, S., et al. 1998a, A&A Rev., 8, 279
———. 1998b, ApJ, 499, L65
———. 2002, ApJ, 575, L15
Chakrabarty, D., & Morgan, E. H. 1998, Nature, 394, 346
den Herder, J. W., et al. 2001, A&A, 365, L7
Di Salvo, T., Iaria, R., Burderi, L., & Robba, N. R. 2000, ApJ, 542, 1034
Di Salvo, T., Stella, L., Robba, N. R., Burderi, L., & van der Klis, M. 2001, ApJ, 554, 49
Gaensler, B. M., Stappers, B. W., & Gets, T. J. 1999, ApJ, 522, L117
Galloway, D. K., Chakrabarty, D., Morgan, E. H., & Remillard, R. A. 2002, ApJ, 576, L137
Gänsicke, B. T., Braje, T. M., & Romani, R. W. 2002, A&A, 386, 1001
Gierlinski, M., Done, C., & Barret, D. 2002, MNRAS, 331, 141
Heise, J., et al. 1998, Astrophys. Lett. Commun., 38, 301
Homer, L., Charles, P. A., Chakrabarty, D., & van Zyl, L. 2001, MNRAS, 325, 1471
in ’t Zand, J. J. M. 2001, in Fourth INTEGRAL Workshop Exploring the Gamma-Ray Universe, Alicante, 2000 September (ESA-SP; Noordwijk: ESA), in press (astro-ph/0203207)
Juett, A. M., Galloway, D. K., & Chakrabarty, D. 2003, ApJ, 587, 754
Juett, A. M., Psaltis, D., & Chakrabarty, D. 2001, ApJ, 560, L59
King, A. R. 2000, MNRAS, 315, L33
Kirsch, M. G. F., & Kendziorra, E. 2003, ATEL 148
Kuster, M., et al. 2003, in New Visions of the X-Ray Universe in the XMM-Newton and Chandra Era, ed. F. Jansen et al. (ESA SP-488) (Noordwijk: ESA), in press (astro-ph/0203207)
Markwardt, C. B., Juda, M., & Swank, J. H. 2003a, IAU Circ. 8095
Markwardt, C. B., Smith, E., & Swank, J. H. 2003b, IAU Circ. 8080
Markwardt, C. B., Swank, J. H., Strohmayer, T. E., in ’t Zand, J. J. M., & Marshall, F. E. 2002, ApJ, 575, L21
Merloni, A., Fabian, A. C., & Ross, R. R. 2000, MNRAS, 313, 193
Miller, J. M., et al. 2003, ApJ, 583, L99
Schulz, N. S., Chakrabarty, D., Marshall, H. L., Canizares, C. R., Lee, J. C., & Houck, J. 2001, ApJ, 563, 941
Strüder, L., et al. 2001, A&A, 365, L5
Titarchuk, L. 1994, ApJ, 434, 570
Titarchuk, L., Cui, W., & Wood, K. 2002, ApJ, 576, L49
Turner, M., et al. 2001, A&A, 365, L27
Vaughan, B. A., et al. 1994, ApJ, 435, 362
Wijnands, R. A. D., & van der Klis, M. 1998, Nature, 394, 344
Wijnands, R. A. D., et al. 2001, ApJ, 560, 892
Wilms, J., Allen, A., & McCray, R. 2000, ApJ, 542, 914
Yungelson, L. R., Nelemans, G., & van den Heuvel, E. P. J. 2002, A&A, 388, 546