On general Lagrangian formulations for arbitrary mixed-symmetric higher-spin fermionic fields on Minkowski backgrounds

A. A. Reshetnyak

Laboratory of Non-Linear Media Physics, Institute of Strength Physics and Materials Science, Tomsk, 634021, Russia.
E-mail: reshet@iphms.tsc.ru, reshet@ispm.edu.ru

The details of unconstrained Lagrangian formulations (including continuation of earlier developed research for Bose particles in NPB 862 (2012) 270, [arXiv:1110.5044 [hep-th]], Phys. of Part. and Nucl. 43 (2012) 689, [arXiv:1202.4710 [hep-th]]) are reviewed for Fermi particles propagated on an arbitrary dimensional Minkowski space-time and described by the unitary irreducible halfinteger higher-spin representations of the Poincare group subject to Young tableaux $Y(s_1, ..., s_k)$ with k rows. The procedure is based on the construction of the Verma modules and finding auxiliary oscillator realizations for the orthosymplectic $osp(k|2k)$ superalgebra which encodes the second-class operator constraints subsystem in the HS symmetry superalgebra. Applying of an universal BRST-BFV approach permit to reproduce gauge-invariant Lagrangians with reducible gauge symmetries describing the free dynamics of both massless and massive fermionic fields of any spin with appropriate number of gauge and Stueckelberg fields. The general construction possesses by the obvious possibility to derive Lagrangians with only holonomic constraints.

Keywords: higher spins, BRST symmetry, Lagrangian formulation, Verma module, gauge invariance.

1 Introduction

The interest to higher-spin (HS) field theory is based on the hopes to reconsider the problems of an unique description of variety of elementary particles and all known interactions, in particular, due to recent success with relating to finding of Higgs boson on LHC [1]. One should remind, that it waits, in addition, both the proof of supersymmetry display, and probably a new insight on origin of Dark Matter (2].

Due to close interrelation of HS field theory to superstring theory, which operates with an infinite tower of HS fields with integer and half-integer spins it can be viewed as an method to study a superstring theory structure. On current state of HS field theory one may know from the reviews [3-6]. The paper considers the results of constructing Lagrangian formulations (LFs) for free half-integer both massless and massive mixed-symmetry spin-tensor HS fields on flat $\mathbb{R}^{1,d-1}$, space-time subject to arbitrary Young tableaux (YT) $Y(n_1, ..., n_k)$ for $s_1 = n_1 + \frac{1}{2}, ..., s_k = n_k + \frac{1}{2}$ in Fronsdal metric-like formalism on a base of BFV-BRST approach [7], and processor the results which appear soon in [9] (as continuation of the research for arbitrary HS fields with integer spin made in [8]).

We know that for higher then $d = 4$ space-time dimensions, there appear, in addition to totally symmetric irreducible representations of Poincare or (Anti-)de-Sitter ((A)dS) algebras the mixed-symmetry representations determined by more than one spin-like parameters [10, 11]. Whereas for the former ones the LFs both for massless and massive free higher-spin fields is well enough developed [12-16], as well as on base of BFV-BRST approach, e.g. in [17]- [19], for the latter the problem of their field-theoretic description has not yet solved. So, the main result within the problem of constrained LF for arbitrary massless mixed-symmetry spin-tensor HS fields on a Minkowski space-time was obtained in [20] in so-called "frame-like" formulation (in AdS space in [21]), whereas in the "metric-like" formulation corresponding Lagrangians were derived in closed manner for only reducible Poincare group $ISO(1,d-1)$ representations in [22].

We use, first, the conventions for the metric tensor $\eta_{\mu\nu} = diag(+, -, ..., -)$, with Lorentz indices $\nu = 0, 1, ..., d-1$, second, the relations $\{\gamma^\mu, \gamma^\nu\} = 2\eta^{\mu\nu}$, for Dirac matrices γ^μ, third, the notation $\epsilon(A)$, $gh(A)$ for the respective values of Grassmann parity and ghost number of a quantity A, and denote by $[A, B]$ the supercommutator of quantities A, B, which for theirs definite values of Grassmann parities is given by $[A, B] = AB - (-1)^{\epsilon(A)\epsilon(B)}BA$.

2 Half-Integer HS Symmetry Algebra for Fermionic fields

A massless half-integer spin Poincare group irreps in $\mathbb{R}^{1,d-1}$ is described by rank $\sum_{k \geq 1} n_k$ spin-tensor field $\Psi_{(\mu_1)_{n_1}..(\mu_k)_{n_k}}(x) \equiv \Psi_{\mu_1..\mu_k}(x)\nu^{n_1}..\nu^{n_k}A(x)$ with generalized spin $s = (n_1 + \frac{1}{2}, n_2 + \frac{1}{2}, ..., n_k + \frac{1}{2})$, $(n_1 \geq n_2 \geq ... \geq n_k > 0, k \leq [(d-1)/2])$ subject to a YT with k rows of lengths $n_1, n_2, ..., n_k$ and suppressed Dirac index A.

UDC 530.1: 539.1
\[\Psi(\mu^1)_{n_1}(\mu^2)_{n_2} \cdots (\mu^k)_{n_k} = \sum_{\mu^{\prime}_1 \cdots \mu^{\prime}_n} \mu^{\prime}_1 \cdots \mu^{\prime}_n \mu^{\prime}_n \mu^{\prime}_1 \cdots \mu^{\prime}_n \mu^{\prime}_n \] (1)

The spin-tensor is symmetric with respect to the permutations of each type of indices \(\mu \) and obeys to the Dirac (2), gamma-traceless (3) and mixed-symmetry equations (4) \(\text{[for } i, j = 1, \ldots, k; t_i, l_t, m_i = 1, \ldots, n_i] \):

\[\gamma^{\mu_1 \mu_2} \partial_\mu \Psi(\mu^1)_{n_1}(\mu^2)_{n_2} \cdots (\mu^k)_{n_k} = 0, \] (2)

\[\gamma^{\mu_1 \mu_2} \Psi(\mu^1)_{n_1}(\mu^2)_{n_2} \cdots (\mu^k)_{n_k} = 0, \] (3)

\[\Psi(\mu^1)_{n_1}(\mu^2)_{n_2} \cdots (\mu^k)_{n_k} = 0, \] (4)

for \(i < j, \ 1 \leq l_i \leq n_i \) and where the bracket below denote that the indices in it do not include in symmetrization.

Joint description of all half-integer spin ISO(1, d - 1) group irreps can be standardly reformulated with an auxiliary Fock space \(H \), generated by \(k \) pairs of bosonic creation \(a^{\dagger}_x(\mu) \) and annihilation \(a^{\dagger}_x(\mu) \) operators (in symmetric basis), \(i, j = 1, \ldots, k, \mu^1, \mu^2 = 0, 1, \ldots, d - 1: \]

\[[a^{\dagger}_x(\mu), a^{\dagger}_y(\nu)] = -\eta_{\mu \nu} \delta^{ij} \] and a set of constraints for an arbitrary string-like (so called basic) vector \(| \Psi \rangle \in H \), being as well Dirac spinor,

\[| \Psi \rangle = \sum_{n_1, n_2, \ldots, n_k} \Psi(\mu^1)_{n_1}(\mu^2)_{n_2} \cdots (\mu^k)_{n_k} \times \prod_{i=1}^{k} \prod_{l_i=1} a^{\dagger}_x(\mu^i), | 0 \rangle, \] (5)

\[(t_0, t^i, t^{1 j}) | \Psi \rangle = 0 \quad \text{for } i \leq j; i_1 < j_1, \] (6)

where \((t_0, t^i, t^{1 j}) = (-i \gamma^{\mu} \partial_\mu, \gamma^{\mu} a^{\dagger}_x(\mu), a^{\dagger}_x(\mu) a^{\dagger}_x(\mu))^T\).

The set of \(\frac{1}{2}k(k + 1) + 1 \) primary constraints (6), \(\{ a^{\dagger}_x(\mu) \}, \) with additional condition, \(f^{ij}(n_1 + \frac{2}{3}|\Psi\rangle) \) for number particles, \(g_0(\Psi) = (n_1 + \frac{2}{3}) |\Psi\rangle \) is equivalent to Eqs. (2)-(4) for given spin s.

The fermionic nature of equations (2), (3) and the bosonic one of the primary constraint operators \(t_0, t^i, t^{1 j} \) with respect to the standard Lorentz-like Grassmann parity, \(\epsilon(t_0) = \epsilon(t^i) = 0 \) are in contradiction and resolve the problem of, \((t^i)^2 = \frac{1}{2} \gamma^{\mu} \gamma^{\nu} a^{\dagger}_x(\mu) a^{\dagger}_x(\mu) + a^{\dagger}_x(\mu) a^{\dagger}_x(\mu) = 2s^2, \) with new "traceless" operator, we equivalently transform above operators into fermionic ones. Following to Ref. [18], [19] we introduce a set of \((d + 1) \) Grassmann-odd gamma-matrix-like objects \(\tilde{\gamma}^\mu, \tilde{\gamma}^\nu, \tilde{\gamma}^\mu, \tilde{\gamma}^\nu \):

\[\{ \tilde{\gamma}^\mu, \tilde{\gamma}^\nu \} = 2n^{\mu \nu}, \quad \{ \tilde{\gamma}^\mu, \tilde{\gamma}^\nu \} = 0, \quad \tilde{\gamma}^2 = -1, \] (7)

which are related to the conventional gamma-matrices as: \(\gamma^\mu = \tilde{\gamma}^\mu \tilde{\gamma}^\nu \).
class constraints subsystems whereas k elements g_{i0} form supermatrix $\Delta_{ab}(g_{i0})$ in $[o_0, o_1] \sim \Delta_{ab}$.

The subclass of second-class constraints $\{o_0\}$ together with $\{g_{i0}\}$ forms the subalgebra in $\mathcal{A}(Y(k), \mathbb{R}^{1,d-1})$ to be isomorphic, due to Howe duality, to orthosymplectic $osp(k|2k)$ algebra (the details, see in [9]). The HS symmetry superalgebra $\mathcal{A}'(Y(k), \mathbb{R}^{1,d-1})$ itself can not permit to construct BRST operator with respect to o_1 due to second-class constraints $\{o_0\}$ presence in it. Therefore we should to convert orthosymplectic algebra $osp(k|2k)$ of $\{o_0, g_{i0}\}$ into enlarged set of operators O_1 with only first-class constraints.

3 Scalar Oscillator realization for $osp(k|2k)$

We consider an additive conversion procedure developed within BRST method, (see e.g. [17]), implying the enlarging of o_1 to $O_1 = o_1 + \delta_1$, with additional parts δ_1 supercommuting with all o_1 and determined on a new Fock space H'. Now, the elements O_1 are given on $H \otimes H'$ so that a condition for O_1, $[O_1, O_1, O_1] \sim O_K$, leads to the same algebraic relations for O_1 and o_1 as those for o_1.

Not going into details of Verma module construction for the superalgebra $osp(k|2k)$ of new operators O_1 considered in [9] and for the case of its $sp(k|2k)$ subalgebra in [8], we present here theirs explicit oscillator form in terms of new $2k(k + 1)$ creation and annihilation operators $(B_{ij}^0, D_{ij}^0) = (f_i^+, b_{ij}^+, f_{ij}^+, b_{ij}^-, f_i, b_{ij})$, $i, j, r, s = 1, \ldots, k$; $i \leq j$; $r < s$ as follows (for $k_0 \equiv k$):

\[
g_{i0} = f_i^+ f_i + \sum_{k \leq m} b_{km}^+ b_{mk} (\delta^{ij} + \delta^{im}) + \sum_{r<s} d_{rs}^+ d_{sr} (\delta^{rs} - \delta^{sr}) + h_i, \tag{12}
\]

1 The case of massive HS fields whose system of 2-class constraints contains additionally to elements of $osp(k|2k)$ superalgebra the constraints of isometry subalgebra of Minkowski space $\mathbb{R}^{1,d}$ may be acted by dimensionless reduction of the algebra $\mathcal{A}'(Y(k), \mathbb{R}^{1,d})$ for massive HS fields to one $\mathcal{A}(Y(k), \mathbb{R}^{1,d-1})$ for massive HS fields, (see [9]). Now, the Dirac equation in (2) is changed on massive equation corresponding to the constraint $t_0 = -i\gamma^\mu \partial_\mu + \gamma m$ acting on the same basic vector $|\Psi\rangle$.

Table 1: Even-even and odd-even parts of HS symmetry superalgebra $\mathcal{A}^{'}(Y(k), \mathbb{R}^{1,d-1})$.

f_i^{+}	b_{ij}^{+}	$I_{b_{ij}}$	I_{f_i}	$I_{f_{ij}}$	$I_{b_{ij}}$	I_{f_i}	$I_{f_{ij}}$	$I_{b_{ij}}$	g_{i0}
t_0	0	0	0	0	0	0	0	0	0
I_{f_i}	$-i\delta^{ij}$	$-i\delta^{ij}$	0	0	0	0	0	0	0
$I_{f_{ij}}$	I_{f_i}	$I_{f_{ij}}$	$I_{b_{ij}}$	0	0	0	0	0	0
$I_{b_{ij}}$	$I_{b_{ij}}$	I_{f_i}	$I_{f_{ij}}$	0	0	0	0	0	0
$I_{b_{ij}}$	$I_{b_{ij}}$	I_{f_i}	$I_{f_{ij}}$	0	0	0	0	0	0
g_{i0}	$-f_{ij}^{+}$	$-f_{ij}^{+}$	$-f_{ij}^{+}$	0	0	0	0	0	0

Table 1: Even-even and odd-even parts of HS symmetry superalgebra $\mathcal{A}^{'}(Y(k), \mathbb{R}^{1,d-1})$.

$\begin{align*}
t_{ij}^+ &= b_{ij}^+, \\
t_i^+ &= f_i^++2b_{ij}^+ f_i - 2 \sum_{l=1}^{k} b_{il}^+ f_l, \\
t_i^{lm} &= d_{im}^--\sum_{n=1}^{l-1} d_{al}^d d_{nm}^d - k \sum_{n=1}^{k} (1+\delta_{al}) b_{nl}^+ b_{nm}, \\
t_i'_{lm} &= -\sum_{n=1}^{l-1} d_{al}^d d_{nm} - k \sum_{n=1}^{k} (1+\delta_{al}) b_{nl}^+ b_{nm} + \sum_{p=0}^{l-1} \sum_{k_1+k_2=p}^{l-1} \sum_{k_3+k_4=l-p}^{l-1} C_{k_1k_2k_3k_4}^p d_{k_1k_2} d_{k_3k_4} d_{im}^d d_{jm}^d d_{ij}^d d_{i}^d \prod_{j=1}^{p} d_{kj}^{-1}, \\
&+ \left[4 \sum_{n=r+1}^{l} b_{nn}^+ f_{n} + (2 \epsilon_{ni} f_{r} - f_{i}^+) \right] f_{n}. \tag{15}
\end{align*}$
and non-vanishing (anti)commutators \{η, p_0\}, \{q_i, p_i\} with the properties
\[\langle \eta, \theta \rangle = \langle \eta \rangle \delta_{\theta,0}, \quad \langle \eta_i, \eta_j \rangle = \delta_{ij}\delta_{\theta,0}, \quad \langle \eta_i, p_j \rangle = \delta_{ij}\delta_{\theta,0}, \quad \langle p_i, p_j \rangle = \delta_{ij}\delta_{\theta,0} (17)\]
and non-vanishing (anti)commutators \{η, P_i\} = \{η_0, P_i\} = \{η_i, P_i\} = \langle \delta_{ij}\delta_{\theta,0}\rangle for zero-mode ghosts\(^3\).

To construct LF for fermionic HS fields in a \(\mathbb{R}^{d-1}\) we partially follow the algorithm of [23], being a particular case of our construction for \(n_0 = 0\). First, we extract the dependence of \(Q\) (16) on the ghosts \(\eta_0, P_i^0\), to obtain generalized spin operator \(\sigma^i\) and the BRST operator \(Q\) only for the system of converted first-class constraints \(\{O_l\} \setminus \{G_0^i\}\) on appropriate Hilbert subspaces:
\[Q = Q + \eta_0^2(\sigma^i + h^i) + B^i P_i^0, \text{ with some } B^i, (18)\]
\[Q = \frac{1}{2} \delta_{\theta,0}T_0 + \frac{1}{2} \delta_{\theta,0} L_0 + \eta_0^2 \frac{1}{2} \delta_{\theta,0} L_1 + \sum_{l \leq m} \delta_{l,m} P_l^0 L_m \]
\[\sigma^i = G_0^i + h^i - \eta_0 P_i^0 + \eta_0 P_i^0 + q_i^0 + \eta_0 P_i^0 + \sum_{l} (1 - \delta_{l,m}) (\eta_l^0 P_m - \eta_m^0 P_l) \]
\[+ \sum_{l} \delta_{l,m} (\delta_{l,m} - \eta_l^0 P_l), \quad (19)\]
where \(\{\sigma^i, \tilde{P}_j\} \subseteq \{\sigma^i, P_j^1\} \setminus \{G_0^i, P_i^0\}\). Next, we choose a representation of \(H_{tot} = \{\eta_0, P_i^0, \eta_0, \eta_j, \theta, \eta_0, \eta_j, \theta, P_i, P_j, \eta_j, \theta, \eta_0, P_i, P_j, \eta_j, \theta, P_i, P_j\}|0\rangle = 0\) and suppose that the field vectors \(|\chi\rangle\) as well as the gauge parameters \(\Lambda\) do not depend on ghosts \(\eta_0^i\).

\[|\chi\rangle = \sum_{n, k} \sum_{l, j, f, r} \frac{(f^0)^n (b_j)^{n_0} (d_r^0)^{n_0}}{n! r! (n_0)!} |0\rangle \]
\[\prod_{e, g, j, l, m, n, s, t, r, f} \frac{(q_g^m)^n (p_r^m)^n (\lambda_i^m)^n (\lambda_i^m)^n}{n!} \times (P_i)^{n_0} \times \prod_{l, j, f, r} (d_r^0)^{n_0} (d_r^0)^{n_0} \times |\Psi_{(\lambda_i^m)^n (\lambda_i^m)^n (\lambda_i^m)^n (\lambda_i^m)^n}|^2, \quad (21)\]

We denote by \(|\chi^k\rangle\) the state (21) satisfying to \(gh(\chi^k) = -\chi^k\). Thus, the physical state having the ghost number zero is \(|\chi^0\rangle\), the gauge parameters \(\Lambda\) having the ghost number \(-1\) is \(|\Lambda^0\rangle\) and so on. The vector \(|\chi^0\rangle\) must contain physical string-like vector \(|\Psi\rangle = |\Psi_{\Lambda^0}\rangle_{\Lambda^0} = \ldots |\Psi_{\Lambda^0}\rangle_{\Lambda^0} = 0\) and so on.
\[|\chi^0\rangle = |\Psi\rangle \equiv |\Psi_{\Lambda^0}\rangle| B_{\Lambda^0} = C_{\Lambda^0} = P_i = 0, \quad (22)\]

Independence of the vectors (21) on \(\eta_0^i\) transforms the equation for the physical state \(Q|\chi^0\rangle = 0\) and the BRST complex of the reducible gauge transformations, \(\delta |\chi\rangle = Q^r|\chi^0\rangle\), \(\delta |\Lambda^0\rangle = Q^r|\Lambda^1\rangle\), \ldots \(\delta |\Lambda^{r-1}\rangle = Q^r|\Lambda^r\rangle\), to the relations:
\[Q|\chi^0\rangle, \delta |\chi^0\rangle, \ldots \delta |\Lambda^{r-1}\rangle = 0, (Q|\Lambda^0\rangle, Q^r|\Lambda^0\rangle, \ldots Q^r|\Lambda^r\rangle) = 0, \quad (23)\]
with \(r = \sum_{i=1}^{k} m_i + k(k - 1)/2 - 1\) being the stage of reducibility both for massless and for the massive fermionic HS field. Resolution the spectral problem from the Eqs. (23) yields the eigenvectors of the operators \(\sigma^i, |\chi^0\rangle, |\Lambda^0\rangle, \ldots |\Lambda^r\rangle\), \(n_1 \geq n_2 \geq \ldots \geq n_k \geq 0\) and corresponding eigenvalues of the parameters \(h^i\) (for massless HS fields and \(i = 1, \ldots, k\)),
\[h^i = m_i + \frac{d_{n_i}}{d_{n_i}} = m_i, \ldots, m_{k-1} \in Z, m_k \in N_0. \quad (24)\]
One can show, first, the operator \(Q\) is nilpotent on the subspaces determined by the solution for the Eq. (23), second, to construct Lagrangian for the field corresponding to a definite YT \((1)\) we must put \(m_i = n_i\) and, third, one should substitute \(h^i\) corresponding to the chosen \(n_i\) (24) into Eq. (18) and relations (23).

To get the Lagrangian formulation with only first-order derivatives, we, because of the functional dependence of the operator \(L_0\) on fermionic one \(T_0\), \(L_0 = -T_0^2\), may go away a dependence on \(L_0, \eta_0\) from the BRST operator \(Q\) (19) and from the whole set of the vectors \(|\chi^0\rangle, |\Lambda^0\rangle\). To do so, we extract the zero-mode ghosts from the operator \(Q\) as:
\[Q = \eta_0 T_0 + \eta_0 L_0 + \eta_0 P_0 + \eta_0 T_1 + \eta_0 P_1 + \Delta Q, \quad (25)\]
where the explicit form of \(\Delta Q\) is easily restored from Eqs. (18), (25) and
\[\tilde{T}_0 = T_0 - 2 \eta_0^2 P_1^0 - 2 \eta_0^2 P_1^0 : T_0^2 = -L_0. \quad (26)\]
We also expand the state vector and gauge parameters in powers of the zero-mode ghosts, for \(s = 0, \ldots, \sum_{i=1}^{k} m_i + k(k - 1)/2 - 1, m = 0, 1:\n\]|\chi\rangle = \sum_{l=0}^{m} \sum_{i=0}^{k} \frac{d_{n_i}}{d_{n_i}} (|\chi^0\rangle + \eta_0 |\chi^1\rangle) g_i(h(|\chi^0\rangle)) = -(m + l), \quad (27)\]
\[|\Lambda\rangle = \sum_{l=0}^{m} \sum_{i=0}^{k} \frac{d_{n_i}}{d_{n_i}} (|\Lambda^0\rangle + \eta_0 |\Lambda^1\rangle) = 0, \quad (28)\]

Now, we may gauge away all of the fields and gauge parameters by means of the equations of motion and set of the gauge transformations (23) except two, \(|\chi^0\rangle, |\Lambda^0\rangle\) for the fields and \(|\Lambda^0\rangle\), \(l = 0, 1\) and \(s = 0, \ldots, r\), for the gauge parameters. To do so, we use in part the procedure described in [18], [23].

As the result, the first-order equations of motion corresponding to the field with given spin \(n_1 + \frac{1}{2}, \ldots, n_k = \frac{1}{2}\) have the form in terms of the matrix notations,
\[Q_{\Lambda^0} \frac{\Delta Q}{\Delta \tilde{T}_0} \frac{\Delta Q}{\Delta \tilde{T}_0} \left(\frac{\Delta Q}{\Delta \tilde{T}_0} \right)^{-1} = 0, \quad (29)\]

\(^3\)The ghosts possess the standard ghost number distribution, \(gh(C^2) = -gh(P_1) = 1 = gh(Q) = 1\).
They are Lagrangian ones and can be deduced from the Lagrangian action for fixed spin \((m)_k = (n)_k\), being standardly defined up to an overall factor and with omitting the subscript \((n)_k\):

\[
S_{(n)_k} = \left(\langle \tilde{\chi}^0_0 |, \langle \tilde{\chi}^0_1 | \right) K \left(\tilde{T}_0, \Delta Q \frac{1}{2} (\tilde{T}_0, \eta^+ \eta^-) \right) \left(\frac{|\chi^0_0 \rangle}{|\chi^0_1 \rangle} \right),
\]

(30)

where the standard odd scalar product for the creation and annihilation operators in \(\mathcal{H}_{\text{tot}} = \mathcal{H} \otimes \mathcal{H}' \otimes \mathcal{H}_{gh}\) is assumed and non-degenerate operator \(K = K^{(n)_k}\) provides reality of the action following from modifying Hermiticity for \(\alpha'_I\) in Section 3. The action (30) is invariant with respect to the gauge transformations, following from the tower of the Eqs. (23) with omitting \((n)_k\).

For \(s = -1, 0, \ldots, \sum_{a=1}^k n_a + k(k-1)/2 - 1, \) and \(|\Lambda_0^{(s)_1} \rangle \equiv |\chi^0_0 \rangle\).

Concluding, one can prove the action (30) indeed reproduces the basic conditions (2)-(4) for massless (massive) HS fields. General action (30) gives, in principle, a straight recept to obtain the Lagrangian for any component field from general vectors \(|\chi^0_0 \rangle\).

5 Conclusion

Thus, we have constructed a gauge-invariant unconstrained Lagrangian description of free half-integer HS fields belonging to an irreducible representation of the Poincare group with the arbitrary YT having \(k\) rows in the "metric-like" formulation. The results of this study are the general and obtained on the base of universal method which is applied by the unique way to both massive and massless bosonic HS fields with a mixed symmetry in a Minkowski space of any dimension.

Acknowledgement

The author is grateful to V. Krykh tin, E. Skvortso v, K. Stepan y an tz, Yu. Zino viev for valuable comments and to I.L. Buchbinder for collaboration on many stages of the work. The work was supported by the RFBR grant, project Nr. 12-02-00121 and by LRSS grant Nr.224.2012.2.

References

[1] CMS collab., et al 2012 Phys. Lett. B 716 30.
[2] Feldman D., Perez P. F., Nath P. 2012 JHEP 1201 038.
[3] Vasiliev M. 2004 Fortsch. Phys. 52 702.
[4] Sorokin D. 2005 AIP Conf. Proc. 767 172.
[5] Bouatta N., Compere G., Sagnotti A. [arXiv:hep-th/0409068]
[6] Fotopoulos A., Tsalia M. 2008 Int.J.Mod.Phys. A. 24 P—1, [arXiv:0808.1346[hep-th]].
[7] Fradkin E. S., Vilkovisky G. A. 1975 Phys. Lett. B. 55 224; Batalin I. A., Fradkin E. S. 1983 Phys. Lett. B. 128 303.
[8] Buchbinder I. L., Reshetnyak A. A. 2012 Nucl. Phys. B 862 270, [arXiv:1110.5044 [hep-th]].
[9] Reshetnyak A. A., to appear.
[10] Labastida J.M .F. 1987 Phys. Lett. B 186 365.
[11] Metsaev R. R. 1998 Phys. Lett. B 419 49.
[12] Fronsdal C. 1978 Phys. Rev. D 18 3630
[13] Fang J., Fronsdal C. 1990 Phys. Rev. D 22 1361
[14] Vasiliev M. A., 1988 Nucl.Phys. B 301 26.
[15] Singh L. P., Hagen C. R. 1974 Phys. Rev. D 9 910.
[16] Zinoviev Yu. M. On massive high spin particles in AdS// Preprint [arXiv:hep-th/0103192];
[17] Burdik C., Pashnev A., Tsalia M. 2000 Mod. Phys. Lett. A 15 281.
[18] Buchbinder I. L., Krykhtin V. A., Pashnev A., 2005 Nucl. Phys. B 711 367.
[19] Buchbinder I. L., Krykhtin V. A., Reshetnyak A. A. 2007 Nucl. Phys. B 787 211.
[20] Skvortsov E. D., Zinoviev Yu. M., 2011 Nucl.Phys. B 843 559, [arXiv:1007.4944[hep-th]].
[21] Zinoviev Yu. M., 2009 Nucl.Phys. B 821 21.
[22] Campoleoni A., Francia D., Mourad J., Sagnotti A. 2010 Nucl.Phys. B 828 405.
[23] Moshin P., Reshetnyak A. 2007 JHEP 10 040.

Received 01.10.2012

А. А. Решетняк

ОБ ОБЩИХ ЛАГРАНЖЕВЫХ ФОРМУЛИРОВКАХ ДЛЯ ПРОИЗВОЛЬНЫХ СМЕШАННО-СИММЕТРИЧНЫХ ФЕРМИОННЫХ ПОЛЕЙ ВЫСШИХ СПИНОВ НА ФОНЕ ПРОСТРАНСТВ МИНКОВСКОГО

Выполнено обобщение действий лагранжевых формулзровок без связей для Ферми частиц, распространяющихся на пространстве-времени Мinkовского произвольной размерности и описывающихся унитарными неинвариантными предстволами группы Пуанкаре с условным высшим спином подчиненными диаграммам Юнга \(Y(s_1, \ldots, s_k) \) с \(k \) строками (анализируясь продолжением исследования ранее проведенного для Бозе частиц в [NPB 862 (2012) 270, [arXiv:1110.5044[hep-th]]], Phys. of Part. and Nucl. 43 (2012) 689, arXiv:1202.4710 [hep-th]]). Процедура основана на построении модулей Верма и нахождении вспомогательных однозначных реализаций для ортогонально-сквентной \(osp(\frac{k}{2}, k) \) супералгебры, кодирующей подсистему операторов спинов второго рода в супeralгебре симметрии полей высших спинов. Применение универсального БРСТ-ФФФ подхода позволяет воспроизвести калибровочную инвариантную лагранжевы с индуцированными калибровочными симметриями, которые основываются свободную динамику как безмассовых, так и массивных конденсированных полей любого спина с подходящим числом вспомогательных калибровочных и штрихалгебровых полей. Общая конструкция обладает очевидной возможностью выныться лагранжевы с топологическими связями.

Ключевые слова: высшие спины, БРСТ симметрия, лагранжевы формулировки, модуль Верма, калибровочная инвариантность.

Решетняк А. А., кандидат физико-математических наук.
Институт физики прочности и материаловедения СО РАН.
Пр. Академический, 2/4, Томск, Россия, 634021.
E-mail: reshet@ispms.tsc.ru