Inhale: Enabling High-Performance and Energy-Efficient In-SRAM Cryptographic Hash for IoT

Jingyao Zhang, Elaheh Sadredini

2022 IEEE/ACM International Conference on Computer-Aided Design
What is Cryptographic Hash

- Input M: a binary string of any bit-length
- Output H: a multi-bit string
- Practically infeasible to invert or reverse the computation

![Diagram of SHA3-256 hash function]

Output: 256 bits
What is Cryptographic Hash

- Input M: a binary string of any bit-length
- Output H: a multi-bit string
- Practically infeasible to invert or reverse the computation

Transport Layer Security Post-quantum Cryptography Cryptocurrency
Motivating Example: Secure Communication

- Moreover, hashing can provide Identity Authentication
 - They establish a mutual Secret Key with **key encapsulation mechanism (KEM)**
 - Alice combines *Message* + *Secret Key* to create *Digest* by **Hashing**
 - Bob verifies by calculating **Hash** of *Message* + *Secret Key*
 - *Message* was not modified in transit ------- **Integrity**
 - Alice had the identical *Secret Key* ------- **Authentication**

https://www.youtube.com/watch?v=doN3lzzNEIM&t=96s
More Vulnerability in IoT Era

- Attackers can **effortlessly** obtain physical access to edge devices
- Though **hash-based public key infrastructure** can be used for **Data Integrity** and **Identity Authentication**
More Vulnerability in IoT Era

- Attackers can **effortlessly** obtain physical access to edge devices
- Though **hash-based public key infrastructure** can be used for Data Integrity and Identity Authentication

Demand for **low-latency, high-throughput** and **energy-efficient** hashing in IoT devices
△ Challenges: Performance, Energy, Area

- **Dedicated hardware engine on chip (ISSCC’16)**
 - Low throughput
 - High area overhead on chip

- **General-purpose in-memory acceleration (JSSC’18)**
 - High latency
 - Low throughput per unit area

- **Dedicated in-memory acceleration (ISLPED’19)**
 - High area overhead
 - Low flexibility
△ Challenges: Performance, Energy, Area

- Dedicated hardware engine on chip (ISSCC’16)
 - Low throughput
 - High area overhead on chip

Demand for **low-latency, high-throughput, energy-efficient, low-overhead** hashing in IoT

- Dedicated in-memory acceleration (ISLPED’19)
 - High area overhead
 - Low flexibility
Overview of Our Solution: Inhale

- On-chip Hashing -> high security level
- Bitline Computing -> high throughput
- Shift-optimized Data Alignment -> low latency, energy
- In-Place Read/Write Strategy -> low overhead
Overview of Our Solution: *Inhale*

- On-chip Hashing -> high security level
- Bitline Computing -> high throughput
- Shift-optimized Data Alignment -> low latency, energy
- In-Place Read/Write Strategy -> low overhead

Inhale can achieve up to 14x throughput-per-area, 172x throughput-per-area-per-energy than state-of-the-art
Inhale: Bitline Computing

- **Bitline Computing [1]**
 - Activate two wordlines simultaneously
 - Inherently perform logic operations
 - NOR
 - AND
 - Additionally support other logic operations
 - XOR
 - Provide high parallelism

[1] Aga, Shaizeen, et al. “Compute caches.” HPCA 2017
Inhale: Shift-optimized Data Alignment

- **Existing Data Alignments**
 - JSSC’18:
 - hard for inter-lane and intra-lane shift
 - ISCA’18:
 - high latency, high control overhead (>10x JSSC’18)

64-bit Lane

1600-bit State

Lane A	Lane B	Lane C	Lane D	Lane E
Lane F	Lane G	Lane H	Lane I	Lane J
Lane K	Lane L	Lane M	Lane N	Lane O
Lane P	Lane Q	Lane R	Lane S	Lane T
Lane U	Lane V	Lane W	Lane X	Lane Y

SRAM subarray (JSSC’18)

> 1600 bits

| Lane B |
|--------|--------|--------|--------|--------|--------|
| | | | | | |

SRAM subarray (ISCA’18)

> 320 bits
Inhale: Shift-optimized Data Alignment

- **Shift-optimized Data Alignment**
 - Place lane per row
 - *Inter-lane* shifts are **costless** with the controller
 - *Intra-lane* shifts are performed with **small** shifters
 - Well balance the performance and overhead

64-bit Lane

- **x=0**
- **x=1**
- **x=2**
- **x=3**
- **x=4**

1600-bit State

32 bits

256 bits

Intermediate

SRAM subarray (Inhale)

- **5-bit input: 64-bit**
 - Lane A
 - Lane B
 - Lane C
 - Lane D
 - Lane E
 - Lane A'
 - Lane B'
 - Lane C'
 - Lane D'
 - Lane E'

- **Decoder (5:32)**

- **Well balance the performance and overhead**

13
Inhale: In-place read/write strategy

- In-place read/write strategy
 - Read/write order and address are carefully designed to save memory capacity and maintain generality of our solution in varied IoT devices
Inhale: In-place read/write strategy

One round of SHA-3

- $CT_4 = \text{XOR}(E_0, J_0, O_0, T_0, Y_0)$
- $CT_4 = \text{rot}(CT_4, 1)$
- $CT_1 = \text{XOR}(B_0, G_0, L_0, Q_0, V_0)$
- $FT_0 = \text{XOR}(CT_4, CT_4')$
- $CT_1' = \text{rot}(CT_1, 1)$
- $CT_3 = \text{XOR}(D_0, I_0, N_0, S_0, X_0)$
- $FT_2 = \text{XOR}(CT_3, CT_1')$
- $CT_3' = \text{rot}(CT_3, 1)$
- $CT_0 = \text{XOR}(A_0, F_0, K_0, P_0, U_0)$
- $FT_4 = \text{XOR}(CT_0, CT_3')$
- $CT_0' = \text{rot}(CT_0, 1)$
- $CT_2 = \text{XOR}(C_0, H_0, M_0, R_0, W_0)$
- $FT_1 = \text{XOR}(CT_2, CT_0')$
- $CT_2' = \text{rot}(CT_2, 1)$
- $FT_3 = \text{XOR}(CT_4, CT_2')$
Inhale: In-place read/write strategy

More than 50% of intermediate rows are saved

One round of SHA-3

CT\(_4\) = XOR(E\(_0\), I\(_0\), O\(_0\), T\(_0\), Y\(_0\))

CT\(_4\) = rot(CT\(_4\), 1)

CT\(_1\) = XOR(B\(_0\), G\(_0\), L\(_0\), Q\(_0\), V\(_0\))

FT\(_0\) = XOR(CT\(_3\), CT\(_4\))

CT\(_1\)' = rot(CT\(_1\), 1)

CT\(_3\) = XOR(D\(_0\), I\(_0\), N\(_0\), S\(_0\), X\(_0\))

FT\(_2\) = XOR(CT\(_3\), CT\(_1\)')

CT\(_0\)' = rot(CT\(_0\), 1)

CT\(_2\) = XOR(C\(_0\), H\(_0\), M\(_0\), R\(_0\), W\(_0\))

FT\(_1\) = XOR(CT\(_2\), CT\(_0\)')

CT\(_2\)' = rot(CT\(_2\), 1)

FT\(_3\) = XOR(CT\(_4\), CT\(_2\)')
Inhale: Overall Architecture

High-performance, energy-efficient and low-overhead hashing engine

- **Security & Flexibility**
- **Throughput**
- **Latency & Area**
Evaluation Methodology

- **Read and write latency:**
 - PyMTL3 and OpenRAM for generating SRAM arrays
 - Synopsys Design Compiler for extracting latencies
 - Latencies of ReRAM array from DESTINY simulator

- **Area and energy numbers simulated by DESTINY simulator**
 - Kilo Gate Equivalent (KGE) is used to decouple the area overhead from the technology node

- **For apples-to-apples comparison between different designs**
 - *Inhale* and SHINE in 28nm ReRAM and SRAM are all evaluated

Jiang, Shunning, et al. “PyMTL3: A Python framework for open-source hardware modeling, generation, simulation, and verification.” MICRO’20.
Guthaus, Matthew R., et al. "OpenRAM: An open-source memory compiler." ICCAD’16.
Poremba, Matt, et al. "Destiny: A tool for modeling emerging 3d nvm and edram caches." DATE’15.
Nagarajan, Karthikeyan, et al. "SHINE: A novel SHA-3 implementation using ReRAM-based in-memory computing." ISLPED’19
Comparison of different designs

	Tech.	Max f (MHz)	Area (KGE)	Latency (cycles)	Latency (ns)	Tput. (Mbps)	Tput./Area (Mbps/KGE)	Energy (nj)	Tput./Area/En. (Mbps/(KGE-nj))
Inhale-Opt-SRAM	28nm	6.7K	63.6	564	83.6	52K	818	0.456	1.8K
Inhale-Flex-SRAM	28nm	6.1K	386	564	91.9	47.3K	123	0.596	206
SHINE-1-ReRAM[19]	65nm	2K	494	264	132	33K	66.8	4.13	16.2
SHINE-2-ReRAM[19]	65nm	2K	717	140	70	62.2K	86.7	3.5	24.8
SHINE-1-ReRAM (projected)	28nm	4.6K	494	264	56.9	76.5K	155	-	-
SHINE-2-ReRAM (projected)	28nm	4.6K	717	140	30.2	144K	201	-	-
Akun[2]	90nm	455	10.5K	25	54.9	19.8K	1.89	>43.5	<0.043
Tillich[28]	180nm	488	56.3K	25	51.2	21.2K	0.377	>43.5	<0.009
Pessl-V1 [22]	130nm	1	5.5K	10.7K	10.7M	0.102	18.5e-6	>43.5	<4.25E-7
Pessl-V2 [22]	130nm	1	5.9K	7.4K	7.4M	0.147	24.9e-6	>43.5	<5.73E-7
Wong[30]	65nm	1K	105K	-	-	48K	0.457	>43.5	<0.011
Comparison of different designs

Technology	Tech.	Max f (MHz)	Area (KGE)	Latency (cycles)	Latency (ns)	Tput. (Mbps)	Tput./Area (Mbps/KGE)	Energy (nJ)	Tput./Area/En. (Mbps/(KGE-nJ))
Inhale-Opt-SRAM	28nm	6.7K	**63.6**	564	**83.6**	52K	**818**	**0.456**	1.8K
Inhale-Flex-SRAM	28nm	6.1K	386	564	**91.9**	47.3K	123	0.596	206
SHINE-1-SRAM	28nm	6.7K	494	264	39.1	-	-	-	-
SHINE-2-SRAM	28nm	6.7K	717	140	**20.7**	-	-	-	-
Recryptor[34]	40nm	28.8	600	139	**4.8K**	-	-	0.186	-
Inhale-Opt-ReRAM	28nm	2.4K	**19.1**	564	235	18.6K	**970**	**0.348**	2.79K
Inhale-Flex-ReRAM	28nm	2.3K	56.3	564	240	18.1K	322	0.446	721
SHINE-1-ReRAM[19]	65nm	2K	494	264	132	33K	66.8	4.13	16.2
SHINE-2-ReRAM[19]	65nm	2K	717	140	70	62.2K	86.7	3.5	24.8
SHINE-1-ReRAM (projected)	28nm	4.6K	494	264	56.9	76.5K	155	-	-
SHINE-2-ReRAM (projected)	28nm	4.6K	717	140	**30.2**	**144K**	201	-	-
Akn[2]	90nm	455	10.5K	25	54.9	19.8K	1.89	>43.5	<0.043
Tillich[28]	180nm	488	56.3K	25	51.2	21.2K	0.377	>43.5	<0.009
Pessl-V1 [22]	130nm	1	5.5K	10.7K	10.7M	0.102	18.5e-6	>43.5	<4.25E-7
Pessl-V2 [22]	130nm	1	5.9K	7.4K	7.4M	0.147	24.9e-6	>43.5	<5.73E-7
Wong[30]	65nm	1K	105K	-	48K	0.457	>43.5	<0.011	-
Comparison of different designs

	Tech.	Max f (MHz)	Area (KGE)	Latency (cycles)	Latency (ns)	Tput. (Mbps)	Tput./Area (Mbps/KGE)	Energy (nj)	Tput./Area/En. (Mbps/(KGE·nj))
Inhale-Opt-SRAM	28nm	6.7K	63.6	564	83.6	52K	818	0.456	1.8K
Inhale-Flex-SRAM	28nm	6.1K	386	564	91.9	47.3K	123	0.596	206
SHINE-1-SRAM	28nm	6.7K	494	264	39.1	111K	225	-	-
SHINE-2-SRAM	28nm	6.7K	717	140	20.7	210K	293	-	-
Recryptor[34]	40nm	28.8	600	139	4.8K	186			
Inhale-Opt-ReRAM	28nm	2.4K	19.1	564	235	53K	66.8	4.13	16.2
Inhale-Flex-ReRAM	28nm	2.3K	56.3	564	240	62.2K	86.7	3.5	24.8
SHINE-1-ReRAM[19]	65nm	2K	494	264	132	66.8	155	-	-
SHINE-2-ReRAM[19]	65nm	2K	717	140	70	62.2K	155	-	-
SHINE-1-ReRAM (projected)	28nm	4.6K	494	264	56.9	76.5K	155	-	-
SHINE-2-ReRAM (projected)	28nm	4.6K	717	140	30.2	144K	201	-	-
Akin[2]	90nm	455	10.5K	25	54.9	19.8K	1.89	>43.5	<0.043
Tillich[28]	180nm	488	56.3K	25	51.2	21.2K	0.377	>43.5	<0.009
Pessl-V1 [22]	130nm	1	5.5K	10.7K	10.7M	0.102	18.5e-6	>43.5	<4.25E-7
Pessl-V2 [22]	130nm	1	5.9K	7.4K	7.4M	0.147	24.9e-6	>43.5	<5.73E-7
Wong[30]	65nm	1K	105K	-	-	48K	0.457	>43.5	<0.011

Dedicated multi-bit XOR logic
Comparison of different designs

	Tech.	Max f (MHz)	Area (KGE)	Latency (cycles)	Latency (ns)	Tput. (Mbps)	Tput./Area (Mbps/KGE)	Energy (nJ)	Tput./Area/En. (Mbps/(KGE*nJ))
Inhale-Opt-SRAM	28nm	6.7K	**63.6**	564	83.6	52K	**818**	**0.456**	**1.8K**
Inhale-Flex-SRAM	28nm	6.1K	386	564	91.9	47.3K	123	0.596	206
SHINE-1-SRAM	28nm	6.7K	494	564	132	33K	225	-	-
SHINE-2-SRAM	28nm	6.7K	494	564	56.9	76.5K	293	-	-
Recryptor[34]	40nm	28.8	0.377	2.03	0.186				
Inhale-Opt-ReRAM	28nm	2.4K	**19.1**	564	233	25K	**970**	**0.348**	**2.79K**
Inhale-Flex-ReRAM	28nm	2.3K	56.3	564	240	18.1K	322	0.446	721
SHINE-1-ReRAM[19]	65nm	2K	494	264	132	33K	66.8	4.13	16.2
SHINE-2-ReRAM[19]	65nm	2K	717	140	70	62.2K	86.7	3.5	24.8
SHINE-1-ReRAM	28nm	4.6K	494	264	56.9	76.5K	155	-	-
SHINE-2-ReRAM	28nm	4.6K	717	140	**30.2**	**144K**	201	-	-
Akun[2]	90nm	455	10.5K	25	54.9	19.8K	1.89	>43.5	<0.043
Tillich[28]	180nm	488	56.3K	25	51.2	21.2K	0.377	>43.5	<0.009
Pessl-V1[22]	130nm	1	5.5K	10.7K	10.7M	0.102	18.5e-6	>43.5	<4.25E-7
Pessl-V2[22]	130nm	1	5.9K	7.4K	7.4M	0.147	24.9e-6	>43.5	<5.73E-7
Wong[30]	65nm	1K	105K	-	-	48K	0.457	>43.5	<0.011

Inhale has smaller area
Comparison of different designs

	Tech.	Max f (MHz)	Area (KGE)	Latency (cycles)	Latency (ns)	Tput. (Mbps)	Tput./Area (Mbps/KGE)	Energy (nj)	Tput./Area/En. (Mbps/(KGE-nj))
Inhale-Opt-SRAM	28nm	6.7K	**63.6**	564	83.6	52K	**818**	**0.456**	**1.8K**
Inhale-Flex-SRAM	28nm	6.1K	**386**	564	91.9	47.3K	123	0.596	206
			494	264	39.1	111K	225	-	-
			717	140	**20.7**	**210K**	293	-	-
			600	139	4.8K	226	0.377	2.03	0.186
Inhale-Opt-ReRAM	28nm	5.5K	**19.1**	564	235	18.6K	**970**	**0.348**	**2.79K**
Inhale-Flex-ReRAM	28nm	2.3K	56.3	564	240	18.1K	322	0.446	721
SHINE-1-ReRAM[19]	65nm	2K	494	264	132	33K	66.8	4.13	16.2
SHINE-2-ReRAM[19]	65nm	2K	717	140	70	62.2K	86.7	3.5	24.8
SHINE-1-ReRAM (projected)	28nm	4.6K	494	264	56.9	76.5K	155	-	-
SHINE-2-ReRAM (projected)	28nm	4.6K	717	140	**30.2**	**144K**	201	-	-
Akn[2]	90nm		455	10.5K	25	54.9	19.8K	1.89	>43.5
Tillich[28]	180nm	488	56.3K	25	51.2	21.2K	0.377	>43.5	<0.009
Pessl-V1 [22]	130nm	1	5.5K	10.7K	10.7M	0.102	18.5e-6	>43.5	<4.25E-7
Pessl-V2 [22]	130nm	1	5.9K	7.4K	7.4M	0.147	24.9e-6	>43.5	<5.73E-7
Wong[30]	65nm	1K	105K	-	-	48K	0.457	>43.5	<0.011

70x fewer cells & 131x fewer peripheral logics
Comparison of different designs

Model	Tech.	Max f (MHz)	Area (KGE)	Latency (cycles)	Latency (ns)	Tput. (Mbps)	Tput./Area (Mbps/KGE)	Energy (nJ)	Tput./Area/En. (Mbps/(KGE-nJ))
Inhale-Opt-SRAM	28nm	6.7K	63.6	564	83.6	52K	818	0.456	1.8K
Inhale-Flex-SRAM	28nm	6.1K	386	564	91.9	47.3K	123	0.596	206
SHINE-1-SRAM	28nm	6.7K	494	-	-	-	2.03	0.186	
SHINE-2-SRAM	28nm	6.7K	717	-	-	-	2.03	0.186	
Recryptor[34]	40nm	28.8	600	-	-	-	2.03	0.186	
Inhale-Opt-ReRAM	28nm	2.4K	19.1	564	235	18.6K	976	0.348	2.79K
Inhale-Flex-ReRAM	28nm	2.3K	56.3	564	240	18.1K	322	0.446	721
SHINE-1-ReRAM[19]	65nm	2K	494	264	132	33K	66.8	4.13	16.2
SHINE-2-ReRAM[19]	65nm	2K	717	140	70	62.2K	86.7	3.5	24.8
SHINE-1-ReRAM (projected)	28nm	4.6K	494	264	56.9	76.5K	155	-	-
SHINE-2-ReRAM (projected)	28nm	4.6K	717	140	30.2	144K	201	-	-
Akin[2]	90nm	455	10.5K	25	54.9	19.8K	1.89	>43.5	<0.043
Tillich[28]	180nm	488	56.3K	25	51.2	21.2K	0.377	>43.5	<0.009
Pessl-V1 [22]	130nm	1	5.5K	10.7K	10.7M	0.102	18.5e-6	>43.5	<4.25E-7
Pessl-V2 [22]	130nm	1	5.9K	7.4K	7.4M	0.147	24.9e-6	>43.5	<5.73E-7
Wong[30]	65nm	1K	105K	-	-	48K	0.457	>43.5	<0.011

Almost no inter-subarray data movement
Comparison of different designs

	Tech.	Max f (MHz)	Area (KGE)	Latency (cycles)	Latency (ns)	Tput. (Mbps)	Tput./Area (Mbps/KGE)	Energy (nJ)	Tput./Area/En. (Mbps/(KGE·nJ))
Inhale-Opt-SRAM	28nm	**6.7K**	**6.2K**	**564**	**826**	**50K**	**816**	**0.456**	**1.8K**
Inhale-Flex-SRAM	28nm	**6.1K**	**6.1K**	**564**	**826**	**50K**	**816**	**0.596**	**206**
SHINE-1-SRAM	28nm	**6.7K**	**6.2K**	**564**	**826**	**50K**	**816**	**-**	**-**
SHINE-2-SRAM	28nm	**6.7K**	**6.2K**	**564**	**826**	**50K**	**816**	**-**	**-**
Recryptor[34]	40nm	28.8	**66**	139	4.8K	226	0.377	2.03	0.186
Inhale-Opt-ReRAM	28nm	**2.4K**	**19.1**	**564**	**235**	**18.6K**	**970**	**0.348**	**2.79K**
Inhale-Flex-ReRAM	28nm	**2.3K**	**56.3**	**564**	**240**	**18.1K**	**322**	**0.446**	**721**
SHINE-1-ReRAM[19]	65nm	2K	494	264	132	33K	66.8	4.13	16.2
SHINE-2-ReRAM[19]	65nm	2K	717	140	70	62.2K	86.7	3.5	24.8
SHINE-1-ReRAM (projected)	28nm	4.6K	494	264	56.9	76.5K	155	-	-
SHINE-2-ReRAM (projected)	28nm	4.6K	717	140	30.2	144K	201	-	-
Akin[2]	90nm	455	10.5K	25	54.9	19.8K	1.89	>43.5	<0.043
Tillich[28]	180nm	488	56.3K	25	51.2	21.2K	0.377	>43.5	<0.009
Pessl-V1 [22]	130nm	1	5.5K	10.7K	10.7M	0.102	18.5e-6	>43.5	<4.25E-7
Pessl-V2 [22]	130nm	1	5.9K	7.4K	7.4M	0.147	24.9e-6	>43.5	<5.73E-7
Wong[30]	65nm	1K	105K	-	-	48K	0.457	>43.5	<0.011

Fewer traversal time on bitlines
Performance Scaling

- With power constraint

- Without power constraint

SHINE hits power earlier than Inhale

IoT devices have tight power budget
Conclusion

- **Inhale** provides high performance, energy efficiency, low overhead all by proposing an in-SRAM hashing engine.

- Shift-optimized data alignment and in-place read/write strategy are proposed to efficiently map the algorithm to the **Inhale** architecture.

- **Inhale** can achieve up to 14x throughput-per-area, 172x throughput-per-area-per-energy than state-of-the-art.

- Future work is providing an end-to-end solution for IoT security.
