Correlation amplitude for the XXZ spin chain in the disordered regime

Sergei Lukyanov

Department of Physics and Astronomy, Rutgers University
Piscataway, NJ 08855-0849, USA
and
L.D. Landau Institute for Theoretical Physics
Kosygina 2, Moscow, Russia

Abstract

We proposed an analytical expression for the amplitude defining the long distance asymptotic of the correlation function \(\langle \sigma_k^z \sigma_{k+n}^z \rangle \).
One of the most famous model for 1D magnetic is the XXZ spin cha in,

\[H_{XXZ} = -\frac{J}{2} \sum_{k=-\infty}^{\infty} \left(\sigma_k^x \sigma_{k+1}^x + \sigma_k^y \sigma_{k+1}^y + \Delta (\sigma_k^z \sigma_{k+1}^z - 1) \right) , \]

where \(\sigma_k^x, \sigma_k^y \) and \(\sigma_k^z \) are the Pauli matrices associated with the site \(k \). The energy spectrum of the model can be studied by means of the Bethe ansatz technique (see e.g. Ref.[1] for a review). An exact calculation of correlation functions is a much challenging problem [2,3].

In the disordered regime\footnote{The substitution \(J \to -J, \Delta \to -\Delta \) transform (1) to the unitary equivalent model. In particular, the chain with \(J > 0, \Delta = -1 \) is unitary equivalent to the \(SU(2) \) invariant antiferro-magnetic spin chain.}

\[-1 \leq \Delta < 1, \quad J > 0, \]

the continuous limit of the chain (1) is described by the simple Conformal Field Theory model (the Gaussian model) and the qualitative analysis of the correlation functions are obtained by the Luther-Pershel bosonization procedure [4]. The simplest zero-temperature, equal-time correlators have the following leading behavior [4]:

\[\langle \sigma_k^x \sigma_{k+n}^x \rangle = F n^{-\eta} + \ldots, \]
\[\langle \sigma_k^z \sigma_{k+n}^z \rangle = -\frac{1}{\pi^2 \eta} n^{-2} + (-1)^n A n^{-\frac{1}{\eta}} + \ldots \text{ as } n \to \infty, \]

where dots stand for subleading terms of the asymptotics. The parameter \(0 < \eta < 1 \) in (3) is related with the anisotropy \(\Delta \),

\[\Delta = \cos(\pi \eta) . \]

The Luther-Pershel approach fails to predict the value of the correlation amplitudes \(F \) and \(A \). Recent field-theoretical results [5,6] made it possible to determine the amplitude \(F \) [5],

\[F = \frac{1}{2} \left(\frac{2-2\eta}{2-2\eta} \right)^\eta \times \exp\left\{ -\int_0^{\infty} dt \frac{\sinh(\eta t)}{\sinh(t) \cosh((1-\eta)t) - \eta e^{-2t}} \right\} . \]

This expression was confirmed numerically in Ref.[7].
Up to now, only few analytical results were known about the second amplitude A, namely, its values at the “free fermion” point, $\Delta = 0$ \[8,9\],

$$A|_{\Delta=0} = \frac{2}{\pi^2} = 0.2026...,$$

and at $\Delta = -\frac{1}{\sqrt{2}}$ \[10\],

$$A|_{\Delta=-\frac{1}{\sqrt{2}}} = \left(\frac{2}{3}\right)^{\frac{3}{2}} \frac{4}{\Gamma^3\left(\frac{2}{3}\right)} = 0.6053... .$$

In this letter we propose the exact formula for the amplitude A,

$$A = \frac{8}{\pi^2} \left[\frac{\Gamma\left(\frac{1}{2} - 2\eta\right)}{2\sqrt{\pi} \Gamma\left(1/2 - 2\eta\right)} \right]^{\frac{1}{\eta}} \times \exp\left\{ \int_0^\infty dt \left(\frac{\sinh((2\eta - 1)t)}{\sinh(\eta t) \cosh((1 - \eta)t)} - \frac{2\eta - 1}{\eta} e^{-2t} \right) \right\} . \tag{8}$$

This function satisfies Eqs.(6),(7). One can also check the behavior of A in the limit $\Delta \to -1$,

$$A|_{\Delta\to-1} \to \frac{2}{\pi} \left(\frac{2}{1 + \Delta} \right)^{\frac{1}{2}} . \tag{9}$$

The divergence is due to the irrelevant operator with the scale dimension $2\eta^{-1}$ occurring in the low-energy effective Hamiltonian of the spin chain \[11\]. For the same reason Eq.(3) defines the leading asymptotics of the correlators only for

$$\log(n) \gg \frac{1}{2 - 2\eta} .$$

If $\Delta = -1$, the domain of validity of (3) disappears completely. In order to examine the asymptotic in the vicinity $\Delta = -1$, we should perform the standard renormalization group resummation (see e.g. \[12,13\]). Using (9), one can obtain,

$$\langle \sigma_k^z \sigma_{k+n}^z \rangle|_{\Delta\to-1} = (-1)^n \sqrt{\frac{2}{\pi^3}} \frac{2 \sqrt{-g_\perp}}{n (g_\parallel - g_\perp)} \left(1 + O(g) \right) , \tag{10}$$

with

$$g_\parallel = 2 (1 - \eta) \frac{1 + q}{1 - q} , \quad g_\perp = -4 (1 - \eta) \frac{q^2}{1 - q} . \tag{11}$$

Here $q = q(n, \eta)$ is the solution of the equation

$$q (1 - q)^{\frac{2}{\eta} - 2} = \left[\frac{e^{-\gamma - 1} \eta \Gamma\left(\frac{n}{2 - 2\eta}\right)}{2 \sqrt{\pi} n \Gamma\left(\frac{1}{2 - 2\eta}\right)} \right]^{\frac{4}{\eta} - 4} . \tag{12}$$
and $\gamma = 0.5772\ldots$ is the Euler constant. Now we take the limit $g_{\perp} \to -g_{\parallel}$, corresponding to $\Delta \to -1$. The final result reproduce the prediction from \cite{12,13} for $SU(2)$-invariant antiferromagnetic spin chain. It supports the limiting behavior \cite{9}.

The amplitude \eqref{amp} was also checked against available numerical data. In Table and Figure the numerics from Ref.\cite{7} are compared against \eqref{amp}. Notice that the fitting procedure \cite{7} of the numerical data was based on formulas similar to \eqref{asym}. As mentioned above, the asymptotics \eqref{asym} are applicable for very large n only provided $\Delta \simeq -1$. For $\Delta = -0.9$ the term $\propto n^{2-3/\eta}$, omitted in \eqref{asym}, gives rise a 18% correction to the value of the correlator $\langle \sigma^z_k \sigma^z_{k+n} \rangle$ at $n = 100$. At the same time the total length of the chain in \cite{7} was 200 sites. Therefore, the discrepancy between \eqref{amp} and the numerical data in the vicinity $\Delta = -1$ does not seem to contradict our conjecture seriously.

![Figure](image)

Figure. The correlation amplitude $A/4$ from \eqref{amp} (vertical axis) as a function of the anisotropy parameter $-\Delta$ (horizontal axis). The bullets (see Table) were obtained in \cite{7}.

Acknowledgments

I am grateful A.B. Zamolodchikov for interesting discussions. The research is supported in part by the DOE grant #DE-FG05-90ER40559.

\footnote{2 The authors adapted \cite{3} for the spin chain with open boundaries.}
$-\Delta$	$A_{num}/4$	$A/4$
0.7	0.008(1)	0.00893
0.6	0.0133(1)	0.01314
0.5	0.0184(4)	0.01795
0.4	0.0235(2)	0.02332
0.3	0.02921(3)	0.02924
0.2	0.03556(3)	0.03574
0.1	0.0425(2)	0.04285
0.0	0.0501(5)	0.05066
0.1	0.0588(3)	0.05929
0.2	0.0683(6)	0.06891
0.3	0.0791(8)	0.07978
0.4	0.0918(9)	0.09231
0.5	0.1063(9)	0.10713
0.6	0.1236(5)	0.12539
0.7	0.145(1)	0.14930
0.8	0.171(5)	0.18414
0.9	0.20(1)	0.24844

Table. The correlation amplitude $A_{num}/4$ was estimated in the paper [7]. $A/4$ follows from Eq.(8).
References

[1] Baxter, R.J.: Exactly solved models in Statistical Mechanics. London: Academic Press, 1982
[2] Essler, F.H.L., Frahm, H., Izergin, A.G. and Korepin V.E.: Determinant representation for correlation functions of spin-$\frac{1}{2}$ XXX and XXZ Heisenberg magnets. Comm. Math. Phys. 174, 191-214 (1995)
[3] Jimbo, M. and Miwa, T.: Quantum KZ equation with $|q|=1$ and correlation functions of the XXZ model in the gapless regime. J. Phys. A29, 2923-2958 (1996)
[4] Luther, A. and Peschel, I.: Calculation of critical exponents in two dimensions from quantum field theory in one dimensions. Phys. Rev. B12, 3908-3917 (1975)
[5] Lukyanov, S. and Zamolodchikov, A.: Exact expectation values of local fields in quantum sine-Gordon model. Nucl. Phys. B493, 571-587 (1997)
[6] Fateev, V., Lukyanov, S., Zamolodchikov, A. and Zamolodchikov, A.: Expectation values of local fields in Bullough-Dodd model and integrable perturbed conformal field theories. Nucl. Phys. B516, 652-674 (1998)
[7] Hikihara, T. and Furusaki, A.: Correlation amplitude for $S=\frac{1}{2}$ XXZ spin chain in the critical region: Numerical renormalization-group study of an open chain. Phys. Rev. B58, R583-586 (1998)
[8] Lieb, E., Schultz, T. and Mattis, D.: Two soluble models of an antiferromagnetic chain. Ann. Phys. (NY), 16, 407-466 (1961)
[9] McCoy, B.M.: Spin correlation functions of the X-Y model. Phys. Rev. 173, 531-541 (1968)
[10] Lukyanov, S.: Unpublished
[11] Affleck, I.: Critical behavior of two-dimensional systems with continuous symmetries. Phys. Rev. Lett. 55, 1355-1358 (1985)
[12] Affleck, I.: Exact correlation amplitude for the $S=\frac{1}{2}$ Heisenberg antiferromagnetic chain. J. Phys. A31, 4573 (1998)
[13] Lukyanov, S.: Low energy effective Hamiltonian for the XXZ spin chain. Nucl. Phys. B522, 533-549 (1998)