Transient Volume Changes After Radio Surgical Management of Vestibular Schwannomas (VS)

Ferrat Dincoglan, Murat Beyzadeoglu, Omer Sager*, Selcuk Demiral, Hakan Gamsiz, Bora Uysal, Fatih Ozcan, Onurhan Colak and Bahar Dirican

Department of Radiation Oncology, Gulhane Medical Faculty, University of Health Sciences, Turkey

*Corresponding author: Omer Sager, Department of Radiation Oncology, Gulhane Medical Faculty, University of Health Sciences, Turkey

Abstract

Vestibular schwannoma (VS), also referred to as acoustic neuroma or acoustic neurinoma comprises a benign intracranial tumor of the internal auricular canal or the cerebellopontine angle which arises from the Schwann cells of the vestibulocochlear nerve. Observation with periodical imaging may be a viable option in selected patients given the typically slow growth rate of VS and availability of advanced neuroimaging techniques allowing for precise monitorization of the growth behavior. Nevertheless, management may be warranted for progressive symptomatic presentation or growing tumors with potential to cause severe consequences. Main modalities for VS management include surgery and radiation therapy (RT) with relatively newer adoption of Stereotactic Radiosurgery (SRS) and Hypofractionated Stereotactic Radiotherapy (HFSRT). In the context of VS radiosurgery, while earlier studies reported lower rates of transient swelling, recent evidence suggests that a considerable proportion of patients receiving radiosurgery for VS may suffer from transient swelling with potential to translate into a temporary clinical deterioration which underscores importance of its consideration as a distinct entity. There is need for further studies addressing transient swelling after VS radiosurgery and related clinical implications. Herein, we address transient volume changes after radio surgical management of VS in light of the literature.

Keywords: Vestibular Schwannoma; Transient Swelling; Stereotactic Radiosurgery; Hypofractionated Stereotactic Radiation Therapy

Introduction

Vestibular schwannoma (VS), also referred to as acoustic neuroma or acoustic neurinoma comprises a benign intracranial tumor of the internal auricular canal or the cerebellopontine angle which arises from the Schwann cells of the vestibulocochlear nerve, with an increasing incidence thanks to advances in neuroimaging and aging of the population [1]. These benign tumors typically follow an indolent disease course with a slow growth rate, however, compression or occlusion of brainstem, cerebellum and critical neurovascular structures by the tumor may manifest with a plethora of symptoms including unilateral sensorineural hearing loss, tinnitus, dizziness, gait disturbances, facial and trigeminal nerve neuropathies, facial dysesthesia or spasm, vertigo, and hydrocephalus which may lead to profound deterioration of quality of life in some patients. Observation with periodical imaging may be a viable option in selected patients given the typically slow growth rate of VS and availability of advanced neuroimaging techniques allowing for precise monitorization of the growth behavior [2-5]. Nevertheless, management may be warranted for progressive symptomatic presentation or growing tumors with potential to cause severe consequences. Main modalities for VS management include surgery and radiation therapy (RT) with relatively newer adoption of Stereotactic Radiosurgery (SRS) and Hypofractionated Stereotactic Radiotherapy (HFSRT). These therapies may be used for upfront management or for salvage treatment as an individualized approach. Herein, we address transient volume changes after radio surgical management of VS in light of the literature.
Literature Review Regarding Transient Volume Changes after Radio Surgical Management of VS

While observation may serve as an option for selected VS lesions, increased risk of tumor growth with impaired hearing and deteriorated quality of life may be important considerations for some patients [6-8]. Surgery has been the traditional modality of management for VS which may be utilized for upfront, recurrent or salvage settings [9-11]. Considering the unfavorable toxicity profile associated with complete surgical resection, utility of less extensive surgery with or without subsequent irradiation has been addressed in several trials [12-17]. Despite improvement in surgical techniques over the years, concerns remain regarding quality of life impairment in the postsurgical period for some patients with VS [18-20]. Within this context, radiosurgery as a noninvasive modality has been suggested for VS management to be utilized for several treatment settings including upfront, complementary, or salvage therapy [21-23]. Indeed, since its inception by the Swedish neurosurgeon Lars Leksell, radio surgical applications including SRS, HFSRT, and Stereotactic Body Radiation Therapy (SBRT) have been utilized for focused and precise irradiation of several central nervous system (CNS) disorders as well as tumors throughout the human body with promising treatment results [21-57].

For VS, there is a growing body of literature with high level evidence supporting the utility of SRS and HFSRT as safe and effective treatment modalities for management [21-23, 58-61]. Several comparative studies suggested improved hearing and facial preservation rates along with better quality of life parameters with utilization of radiosurgery [62-64]. Nevertheless, response to radiosurgery in terms of tumor size may be variable particularly in the postintervention period as addressed in several studies [1,65-75]. Transient volume changes during the postradiosurgical period have been referred to as transient expansion, tumor pseudoprogression, and transient tumor enlargement which may occur due to radiation induced swelling with several mechanisms. This may be regarded as a temporary but serious adverse effect which may lead to a temporary worsening of present cranial neuropathies. The unfavorable consequences of transient swelling may be more pronounced in the setting of larger VS, which underscores the need for vigilance in decision making for management of larger VS with meticulous patient selection after thorough consideration of predicted adverse effects of therapeutic modalities.

Avoiding management of large VS lesions with upfront radiosurgery may be a judicious approach given the considerable rates of transient swelling and the risk of exacerbating the consequences of already present mass effect due to large tumor volume. In a study by Oyama et al. assessing early changes in volume of acoustic neuromas after radiosurgery, lesion volumes had a tendency for growing slightly at 6 months following radiosurgery and then to shrink to approximately identical volumes at 9 months [65]. Nagano et al. prospectively evaluated volumetric changes in VS after SRS [66]. A total of 100 consecutive patients with unilateral VS were included and mean observation period was 65 months [66]. Lesion volumes increased by 23% at 3 months, and 27% at 6 months, then shrinking to initial size over a mean period of 1 year [66]. Maximum volumetric increase was less than 10% in 26 patients, in the range of 10% to 30% in 23 patients, in the range of 30% to 50% in 22 patients, in the range of 50% to 100% in 16 patients, and more than 100% in 13 patients which was found to be in association with cranial nerve dysfunction [66].

Meijer et al. defined the term “transient swelling” as a tumor volume shrinkage to a volume smaller than the pretreatment volume preceded by a tumor volume enlargement [67]. They identified 45 patients receiving radiosurgery with a mean follow up duration of 50 months [67]. At the last follow up neuroimaging with MRI, calculated volumes were smaller in 37 (82.2%) out of the 45 assessed patients [67]. Out of these 37 lesions, 11 lesions (29.7%) demonstrated transient swelling prior to shrinkage [67]. The authors emphasized the importance of optimal scheduling of follow up MRI for avoiding unnecessary interventions [67]. In the study by Aoyama et al. assessing symptomatic outcomes with regard to tumor expansion following fractionated stereotactic RT of VS, postirradiation tumor expansion was observed in 21% of patients which was associated with an elevated risk of serviceable hearing loss, worsening of facial and trigeminal nerve functionality [68]. In the study by Hathout et al., rate of transient volume increase with a median time to tumor enlargement of 5.5 months in VS lesions was 25% following RT which was found to be in association with elevated rates of facial and trigeminal neuropathies [69].

In the study by Hayhurst and Zadeh assessing tumor pseudoprogression after radiosurgery for VS, rate of pseudoprogression was found to be 23% with the onset of enlargement at 6 months and regression typically by 2 years, without an association between transient tumor growth and clinical worsening [70]. In this context, the authors suggested that pseudoprogression should be expected and not considered as treatment failure [70].

In the study by Mohammed et al. evaluating pseudoprogression of VS lesions following fractionated stereotactic RT, neuroimaging with MRI revealed pseudoprogression in one third of patients occurring within 3 years of the postirradiation period before regression [71]. The authors emphasized the importance of repeated imaging and vigilant clinical follow up to exclude pseudoprogression so as to avoid unnecessary therapeutic interventions [71]. In a study by Mindermann and Schlegel addressing discrimination between tumor growth and transient expansion of VS after radiosurgery, the authors suggested that time could serve as a good parameter to distinguish between tumor growth from transient expansion of VS after radiosurgery [72].
The authors reported that transient expansion of VS frequently occurs at 6 to 18 months after radiosurgery whereas tumor growth seems to develop approximately at 3-4 years [72]. In a comprehensive analysis of MRI volumetric changes following HFSRT for benign intracranial neoplasms, Fega et al. reported that transient volume expansion was a frequent finding after HFSRT of VS which was in association with temporary adverse effects [73]. The authors reported an overall 15% discordance rate regarding the neuroradiologist interpretation and volumetric MRI measurements, which underscores importance of incorporating volumetric measurements as part of detailed assessments to aid in decision making [73]. In a study by Yardmci et al. assessing volumetric and morphological changes in VS after radiosurgery, transient swelling was observed in 18 patients (46%) out of the total 39 patients, with the transient swelling rate being significantly higher in cystic VS lesions as compared to solid VS lesions [74]. In a study by Langenhuizen et al. regarding prediction of transient tumor enlargement by use of MRI tumor texture following radiosurgery of VS, it has been suggested that MRI tumor texture could provide data for prediction of transient tumor enlargement [75]. The authors emphasized that the proposed predictive model could allow for individualized treatment selection for VS to improve overall therapeutic outcomes [75].

Conclusion and Future Perspectives

There have been unprecedented breakthroughs in the discipline of radiation oncology in the millennium era leading to significant paradigm shifts with increased adoption of contemporary RT technologies including Image Guided Radiation Therapy (IGRT), Intensity Modulated Radiation Therapy (IMRT), Adaptive Radiation Therapy (ART), Breathing Adapted Radiation Therapy (BART) as well as radio surgical applications such as SRS, SBRT, and HFSRT [76-84]. In the context of VS radiosurgery, while earlier studies reported lower rates of transient swelling, recent evidence suggests that a considerable proportion of patients receiving radiosurgery for VS may suffer from transient swelling with potential to translate into a temporary clinical deterioration which underscores importance of its consideration as a distinct entity. There is need for further studies addressing transient swelling after VS radiosurgery and related clinical implications.

Conflicts of Interest

There are no conflicts of interest and no acknowledgements.

References

1. van de Langenberg R, Dohmen AJ, de Bondt BJ, Nelemans PJ, Baumert BG, et al. (2012) Volume changes after stereotactic LINAC radiotherapy in vestibular schwannoma: control rate and growth patterns. Int J Radiat Oncol Biol Phys 84(2): 343-349.
2. Mirfz F, Jørgensen B, Fliigaaard B, Lundorf E, Pedersen CB (1999) Investigations into the natural history of vestibular schwannomas. Clin Otolaryngol Allied Sci 24(1): 13-18.
3. Godfrey WP, Kaptain AA, Vogel JJ, van der Mey AG (2009) Conservative treatment of vestibular schwannoma: a follow-up study on clinical and quality-of-life outcome. OtolNeurotol 30(7): 968-974.
4. Kerspy PC, Arlt F, Hofer M, Meixensberger J (2018) Quality of life in patients with unilateral vestibular schwannoma on wait and see-strategy. Neurol Res 40(1): 34-40.
5. Basu S, Youngs R, MitchellInnes A (2019) Screening for vestibular schwannoma in the context of an ageing population. J LaryngolOtol 133(8): 640-649.
6. Roche PH, Soumare O, Thomassin JM, Régis J (2008) The wait and see strategy for intracanalicular vestibular schwannomas. Prog Neurol Surg 21: 83-88.
7. Régis J, Garrant R, Park MC, Soumare O, Dehant C, et al. (2010) Wait-and-see strategy compared with proactive Gamma Knife surgery in patients with intracanalicular vestibular schwannomas. J Neurosurg 113 Suppl: 105-111.
8. Miller LE, Brant JA, Chen J, Kaufman AC, Ruckenstein MJ (2019) Hearing and Quality of Life Over Time in Vestibular Schwannoma Patients: Observation Compared to Stereotactic Radiosurgery. OtolNeurotol 40(6): 1094-1100.
9. Kang WS, Kim SA, Yang CJ, Nam SH, Chung JW (2017) Surgical outcomes of middle fossa approach in intracanalicular vestibular schwannoma. Acta Otolaryngol 137(4): 352-355.
10. Yao L, Alahmari M, Temel Y, Hovinga K (2020) Therapy of Sporadic and NF2-Related Vestibular Schwannoma. Cancers (Basel) 12(4): E835.
11. Fabbris C, Gazzini L, Paltrinieri D, Marchioni D (2020) Exclusive surgical treatment for vestibular schwannoma regrowth or recurrence: A meta-analysis of the literature. Clin Neurosurg Neurosur 193: 105769.
12. Strickland BA, Ravina K, Rennert RC, Jackanich A, Aaron K, et al. (2020) Intentional Subtotal Resection of Vestibular Schwannoma: A Reexamination. J Neurol Surg B Skull Base 81(2): 136-141.
13. Sheppard JP, Lagman C, Prashant GN, Alkhalid Y, Nguyen T, et al. (2018) Planned Subtotal Resection of Vestibular Schwannoma differs from the Ideal Radiosurgical Target Defined by Adaptive Hybrid Surgery. World Neurosurg 114: e441-e446.
14. Starnoni D, Daniel RT, Tuleasca C, George M, Levivier M, et al. (2018) Systematic review and meta-analysis of the technique of subtotal resection and stereotactic radiosurgery for large vestibular schwannomas: a “nerve-centered” approach. Neurosurg Focus 44(3): E4.
15. Iamellia G, de Vincentiis M, Di Gioia C, Carletti R, Pasquariello B, et al. (2017) Subtotal resection of vestibular schwannoma: Evaluation with K1-67 measurement, magnetic resonance imaging and long-term observation. J Int Med Res 45(3): 1061-1073.
16. Zhang S, Liu W, Hui X, You C (2016) Surgical Treatment of Giant Vestibular Schwannomas: Facial Nerve Outcome and Tumor Control. World Neurosurg 94: 137-144.
17. van de Langenberg R, Hanasss PE, van Overbeeke JH, Verheul JB, Nelemans PJ, et al. (2011) Management of large vestibular schwannoma. Part I. Planned subtotal resection followed by Gamma Knife surgery: radiological and clinical aspects. J Neurol Surg 115(5): 875-884.
18. Rameh C, Magnan J (2010) Quality of life of patients following stages III-IV vestibular schwannoma surgery using the retrosigmoid and translabyrinthine approach. Auris Nasus Larynx 37(5): 546-552.
19. Browne S, Distel E, Morton RP, Petrie KJ (2008) Patients’ quality of life, reported difficulties, and benefits following surgery for acoustic neuroma. J OtolaryngolHead Neck Surg 37(3): 417-422.
20. Inoue Y, Ogawa K, Kanzaki J (2001) Quality of life of vestibular schwannoma patients after surgery. Acta Otolaryngol 121(1): 59-61.

Copyright© Omer Sager | Biomed J Sci & Tech Res | BJSTR. MS.ID.004488.
21. Söderlund Diaz L, Hallquist A (2020) LINAC-based stereotactic radiosurgery versus hypofractionated stereotactic radiotherapy delivered in 3 or 5 fractions for vestibular schwannomas: comparative assessment from a single institution. J Neurooncol 147(2): 351-359.

22. Sager O, Beyzadeoglu M, Dincoglan F, Demiral S, Uysal B, et al. (2013) Management of vestibular schwannomas with linear accelerator-based stereotactic radiosurgery: a single center experience. Tumori 99(5): 617-622.

23. Murphy ES, Suh JH (2011) Radiotherapy for vestibular schwannomas: A critical review. Int J Radiat Oncol Biol Phys 79(4): 985-997.

24. Dincoglan F, Sager O, Uysal B, Demiral S, Gamsiz H, et al. (2019) Evaluation of hypofractionated stereotactic radiotherapy (HFSRT) to the resection cavity after surgical resection of brain metastases: A single center experience. Indian J Cancer 56(3): 202-206.

25. Sager O, Dincoglan F, Demiral S, Uysal B, Gamsiz H, et al. (2018) Radiation Therapy (RT) for Diffuse Intricose Pontine Glioma (DIPG) in Children. Arch Can Res 6(3): 14.

26. Demiral S, Dincoglan F, Sager O, Uysal B, Gamsiz H, et al. (2018) Contemporary Management of Meningiomas with Radiosurgery. Int J Radiol Imaging Technol14(2): 1-8.

27. Dincoglan F, Sager O, Demiral S, Uysal B, Gamsiz H, et al. (2017) Radiosurgery for recurrent glioblastoma: A review article. Neurol Disord Ther 14(1): 1-5.

28. Demiral S, Dincoglan F, Sager O, Gamsiz H, Uysal B, et al. (2016) Hypofractionated stereotactic radiotherapy (HFSRT) for grade I anterior clinoïd meningiomas (ACM). Jpn J Radiol 34(11): 730-737.

29. Dincoglan F, Beyzadeoglu M, Sager O, Demiral S, Gamsiz H, et al. (2015) Management of patients with recurrent glioblastoma using hypofractionated stereotactic radiotherapy. Tumori 101(2): 179-184.

30. Gamsiz H, Beyzadeoglu M, Sager O, Demiral S, Dincoglan F, et al. (2015) Evaluation of stereotactic body radiation therapy in the management of adrenal metastases from non-small cell lung cancer. Tumori 101(1): 98-103.

31. Demiral S, Beyzadeoglu M, Sager O, Dincoglan F, Gamsiz H, et al. (2014) Evaluation of linear accelerator (Linac)-based stereotactic radiosurgery (SRS) for the treatment of cavernous hemangiomas. UHOD-UluslararasiHematoloji-OnkolojiDergisi 24(2): 123-129.

32. Dincoglan F, Sager O, Gamsiz H, Uysal B, Demiral S, et al. (2014) Management of patients with ≥ 4 brain metastases using stereotactic radiosurgery boost after whole brain irradiation. Tumori 100(3): 302-306.

33. Gamsiz H, Beyzadeoglu M, Sager O, Dincoglan F, Demiral S, et al. (2014) Management of pulmonary oligometastases by stereotactic body radiotherapy. Tumori 100(2): 179-183.

34. Sager O, Dincoglan F, Beyzadeoglu M (2015) Stereotactic radiosurgery of glomus jugulare tumors: Current concepts, recent advances and future perspectives. CNS Oncol14(2): 105-114.

35. Sager O, Beyzadeoglu M, Dincoglan F, Gamsiz H, Demiral S, et al. (2014) Evaluation of linear accelerator-based stereotactic radiosurgery in the management of glomus jugulare tumors. Tumori 100(2): 184-188.

36. Sager O, Beyzadeoglu M, Dincoglan F, Uysal B, Gamsiz H, et al. (2014) Evaluation of linear accelerator (Linac)-based stereotactic radiosurgery (SRS) for cerebral cavernous malformations: A 15-year single-center experience. Ann Saudi Med 34(1)(1): 54-58.

37. Demiral S, Beyzadeoglu M, Uysal B, Oysul K, Kahya YE, et al. (2013) Evaluation of stereotactic body radiotherapy (SBRT) boost in the management of endometrial cancer: Neoplasma 60(3): 322-327.

38. Dincoglan F, Beyzadeoglu M, Sager O, Uysal B, Demiral S, et al. (2013) Evaluation of linear accelerator-based stereotactic radiosurgery in the management of meningiomas: A single center experience. J BUON 18(3): 717-722.

39. Dincoglan F, Sager O, Gamsiz H, Uysal B, Demiral S, et al. (2012) Stereotactic radiosurgery for intracranial tumors: A single center experience. Gulhane Med J 54(3): 190-198.

40. Dincoglan F, Sager O, Gamsiz H, Demiral S, Uysal B, et al. (2012) Management of arteriovenous malformations by stereotactic radiosurgery: A single center experience. UHOD-UluslararasiHematoloji-OnkolojiDergisi 22(2): 107-112.

41. Dincoglan F, Beyzadeoglu M, Sager O, Oysul K, Sirin Set al. (2012) Image-guided positioning in intracranial non-invasive stereotactic radiosurgery for the treatment of brain metastasis. Tumori 98(5): 630-635.

42. Sirin S, Oysul K, Surenkok S, Sager O, Dincoglan F, et al. (2011) Linear accelerator-based stereotactic radiosurgery in recurrent glioblastoma: A single center experience. Vojnosanit Pregl 68(11): 961-966.

43. Dincoglan F, Sager O, Demiral S, Gamsiz H, Uysal B, et al. (2019) Fractionated stereotactic radiosurgery for locally recurrent brain metastases after failed stereotactic radiosurgery. Indian J Cancer 56(2): 151-156.

44. Surenkok S, Sager O, Dincoglan F, Gamsiz H, Demiral S et al. (2012) Stereotactic radiosurgery in pituitary adenomas: A single center experience. UHOD-UluslararasiHematoloji-OnkolojiDergisi 22(4): 255-260.

45. Dincoglan F, Sager O, Demiral S, Beyzadeoglu M (2019) Incorporation of Multimodality Imaging in Radiosurgery Planning for Cranio-facial Hemangiomas: An Original Article. SAJ Cancer Sci 6: 103.

46. Demiral S, Sager O, Beyzadeoglu M, Dincoglan F (2019) Assessment of Computed Tomography (CT) And Magnetic Resonance Imaging (MRI) Based Radiosurgery Treatment Planning For Pituitary Adenomas. Canc Therapy & Oncol Int J 13(2): 555857.

47. Beyzadeoglu M, Sager O, Dincoglan F, Demiral S (2019) Evaluation of Target Definition for Stereotactic Reirradiation of Recurrent Glioblastoma. Arch Can Res 7(1): 3.

48. Sager O, Dincoglan F, Demiral S, Beyzadeoglu M (2019) Evaluation of Radiosurgery Target Volume Determination for Meningiomas Based on Computed Tomography (CT) And Magnetic Resonance Imaging (MRI). Cancer Sci Res Open Access 5(2): 1-4.

49. Dincoglan F, Sager O, Demiral S, Beyzadeoglu M (2019) Multidisciplinary Imaging for Radiosurgical Management of Arteriovenous Malformations. Asian Journal of Pharmacy, Nursing and Medical Sciences 7(1): 7-12.

50. Demiral S, Sager O, Beyzadeoglu M, Dincoglan F (2019) Assessment of target definition based on Multimodality imaging for radiosurgical Management of glomus jugulare tumors (GJT)s. Cancer Ther Oncol Int J 15(2): 555909.

51. Sager O, Dincoglan F, Demiral S, Gamsiz H, Uysal B, et al. (2019) Utility of Magnetic Resonance Imaging (MRI) in Target Volume Definition for Radiosurgery of Acoustic Neuromas. Int J Cancer Res 6(3): 119.

52. Sager O, Dincoglan F, Demiral S, Gamsiz H, Uysal B, et al. (2019) Evaluation of the Impact of Magnetic Resonance Imaging (MRI) on Gross Tumor Volume (GTV) Definition for Radiation Treatment Planning (RTP) of Inoperable High Grade Glomus (HGGs). Concepts in Magnetic Resonance Part A 2019: 4282754.

53. Demiral S, Sager O, Dincoglan F, Beyzadeoglu M, et al. (2018) Evaluation of Target Volume Determination for Single Session Stereotactic Radiosurgery (SRS) of Brain Metastases. Canc Therapy & Oncol Int J 12(5): 555848.

54. Sager O, Demiral S, Dincoglan F, Beyzadeoglu M (2020) Target Volume Definition for Stereotactic Radiosurgery (SRS) Of Cerebral Cavernous Malformations (CCMs). Canc Therapy & Oncol Int J 15(4): 555917.

55. Dincoglan F, Demiral S, Sager O, Beyzadeoglu M (2020) Utility of Multimodality Imaging Based Target Volume Definition for Radiosurgery of Trigeminal Neuralgia: An Original Article. Biomed J Sci & Tech Res 26(2): 19728-19732.

DOI: 10.26717/BJSTR.2020.27.004488

Copyright@ Omer Sager | Biomed | Sci & Tech Res | BJSTR. MS.ID.004487.

20696
68. Hathout L, Lambert C, Carrier J, Bahary J, Hervieux Y, et al. (2012) Transient Tumor Volume Increase in Vestibular Schwannomas after Stereotactic Radiation Therapy. Acta Neurochir (Wien) 154(6): 1121-1123.

69. Meijer OW, Weijmans EJ, Knol DL, Slotman BJ, Barkhof F, et al. (2008) Tumor-volume changes after radiosurgery for vestibular schwannomas: clinical results and quality of life after microsurgical resection or stereotactic radiosurgery for patients with small- and medium-sized vestibular schwannomas. J Neurosurg 125(6): 1472-1482.

70. Hayhurst C, Zadeh G (2012) Tumor pseudoprogression following radiosurgery for vestibular schwannoma. Neuro Oncol 14(1): 87-92.

71. Mohammed FF, Schwartz ML, Lightstone A, Beachey DJ, Tiao MN (2013) Pseudoprogression of vestibular schwannomas after fractionated stereotactic radiation therapy. J Radiat Oncol 2: 15-20.

72. Mindermann T, Schlegel I (2014) How to distinguish tumor growth from transient expansion of vestibular schwannomas following Gamma Knife therapy. Acta Neurochir (Wien) 156(1): 112-113.

73. Fuga KR, Fletcher GP, Waddle MR, Peterson JL, Ashman JB, et al. (2018) Analysis of MRI Volumetric Changes After Hypofractionated Stereotactic Radiation Therapy for Benign Intracranial Neoplasms. Adv Radiat Oncol 4(1): 43-49.

74. Yardimci EU, Apaydın M, Gelal F, Dağ F, Ölmezoglu A, et al. (2019) Evaluation of volumetric and morphological changes of vestibular schwannomas following Cyber Knife therapy. Tr-ENT 29(2): 61-66.

75. Langenhuizen PPJH, Sebregts SHP, Zinger S, Leenstra S, Verheul JB, et al. (2020) Prediction of transient tumor enlargement using MRI tumor texture after radiosurgery on vestibular schwannoma. Med Phys 47(4): 1692-1701.

76. Sager O, Beyzadeoglu M, Dincoglan F, Oysul K, Kahya YE, et al. (2012) Evaluation of active breathing control-moderate deep inspiration breath-hold in definitive non-small cell lung cancer radiotherapy. Neoplasma 59(3): 333-340.

77. Uysal B, Beyzadeoglu M, Sager O, Dincoglan F, Demirin S, et al. (2013) Dosimetric evaluation of intensity modulated radiotherapy and 4-field 3-d conformal radiotherapy in prostate cancer treatment. Balkan Med J 30(1): 54-57.

78. Sager O, Beyzadeoglu M, Dincoglan F, Oysul K, Kahya YE, et al. (2012) The Role of Active Breathing Control-Moderate Deep Inspiration Breath-Hold (ABC-mDIBH) Usage in non-Mastectomized Left-sided Breast Cancer Radiotherapy: A Dosimetric Evaluation. UHOD-UluslararasiHematoloji-OnkolojiDergisi 22(3): 147-155.

79. Dincoglan F, Beyzadeoglu M, Sager O, Oysul K, Kahya YE, et al. (2013) Dosimetric evaluation of critical organs at risk in mastectomized left-sided breast cancer radiotherapy using breath-hold technique. Tumori 99(1): 76-82.

80. Sager O, Beyzadeoglu M, Dincoglan F, Demiral S, Uysal B, et al. (2015) Adaptive splenic radiotherapy for symptomatic splenomegaly management in myeloproliferative disorders. Tumori 101(1): 84-90.

81. Sager O, Dincoglan F, Uysal B, Demiral S, Gamsiz H, et al. (2017) Splenic Irradiation: A Concise Review of the Literature. J App Hem Bl Tran 1(1): 101.

82. Demiral S, Beyzadeoglu M, Dincoglan F, Uysal B, Sager O, et al. (2017) Dosimetric Evaluation of Breathing-Adapted Radiation Therapy for Right-Sided Breast Cancer. Canc Therapy & Oncol Int J 7(3): 555713.

83. Sager O, Dincoglan F, Demiral S, Uysal B, Gamsiz H, et al. (2019) Breathing adapted radiation therapy for leukemia relapse in the breast: A case report. World J Clin Oncol 10(11): 369-374.

84. Sager O, Dincoglan F, Uysal B, Demiral S, Gamsiz H, et al. (2018) Evaluation of adaptive radiotherapy (ART) by use of replanning the tumor bed boost with repeated computed tomography (CT) simulation after whole breast irradiation (WBI) for breast cancer patients having clinically evident semna. Jpn J Radiol 36(6): 401-406.
