Unsupervised Keyword Extraction From Polish Legal Texts

Michał Jungiewicz1,2 and Michał Łopuszyński1

1 Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Pawińskiego 5a, 02-106 Warsaw Poland, m.lopuszynski@icm.edu.pl
2 Faculty of Electronics and Information Technology, Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warsaw, Poland

Abstract. In this work, we present an application of the recently proposed unsupervised keyword extraction algorithm RAKE to a corpus of Polish legal texts from the field of public procurement. RAKE is essentially a language and domain independent method. Its only language-specific input is a stoplist containing a set of non-content words. The performance of the method heavily depends on the choice of such a stoplist, which should be domain adopted. Therefore, we complement RAKE algorithm with an automatic approach to selecting non-content words, which is based on the statistical properties of term distribution.

Keywords: keyword extraction, unsupervised learning, legal texts

This paper was published in “Advances in Natural Language Processing, 9th International Conference on NLP, PolTAL 2014, Warsaw, Poland, September 17-19, 2014. Proceedings”, Lecture Notes in Computer Science, Volume 8686. The final publication is available at link.springer.com.

1 Introduction

Automatic analysis of legal texts is currently viewed as a promising research and application area \cite{1}. On the other hand, keyword extraction is a very useful technique in organization of large collections of documents. It helps to present the available information to the user, aids browsing and searching. Moreover, extracted keywords can be useful as features in tasks, such as document similarity calculation, clustering, topic modelling, etc.

Unfortunately, the problem of automatic keyword extraction is far from solved. A recently conducted competition during the SemEval 2010 Workshop, showed that the best available algorithms do not exceed 30% of the F-measure, on the manually labeled test documents \cite{2}. It is worth noticing that these tests were based on English texts. For highly inflected languages (e.g., Polish) it might be even more difficult and algorithms here are certainly less developed and verified.

In the presented paper, we employ recently proposed RAKE algorithm \cite{3}. It was designed as an unsupervised, domain-independent, and language-independent
method of extracting keywords from individual documents. These features make it a promising candidate tool for a highly specific task of extracting keywords from Polish legal texts. However, in the original paper authors evaluated RAKE only on English texts. Its performance on a very different Slavic language may deviate and is worth verifying.

The corpus used in this research consisted of 11 thousand rulings of the National Appeals Chamber from the Polish Public Procurement Office. In our opinion, this set of documents is particularly interesting and challenging. It contains very diverse vocabulary, not only related to law and public procurement issues, but also to the technicalities of discussed contracts coming form very different fields (medicine, construction, IT, etc.)

2 Automatic Stoplist Generation

The general idea behind RAKE algorithm is based on splitting a given text into word groups isolated by sentence separators or words from a provided stoplist. Each such a word group is considered to be a keyword candidate and is scored according to the word co-occurrence graph. The details of the method can be found in [3]. The stoplist constitutes the most important “free parameter” of RAKE, as it is the only way to adjust this algorithm to the specific language and domain. As recognized by the authors of RAKE, it is also a crucial ingredient on which the effectiveness of the algorithm strongly depends [3]. Our initial tests carried out with a standard information retrieval stoplist yielded poor results for the case of Polish legal texts. There were a lot of very long keywords, containing many uninformative words, even though our implementation did not include merging of the adjoining keyword candidates. Sample results are presented in Table 1A. To alleviate this type of problems, the authors of RAKE propose two methods of automatic stopwords generation from a given corpus [3]. However, none seems satisfactory for us. The first one is very crude, as it simply uses the most frequent words. The second one requires an annotated training set (supervised learning). Therefore, we develop our own unsupervised approach to the stoplist auto-generation problem. It is based on the observation that distribution of the number of occurrences per document for stopwords usually follows typical random variable model (e.g., Poisson distribution). Informative content words, on the other hand, occur in more “clustered” fashion and mostly deviate from the distribution of stopwords [4,5].

The simplest method of detecting this deviation is based on two variables — the number of documents in which a given word is present \(df \) and the cumulative collection word frequency \(cf \). For the randomly distributed stopwords the relation of \(df \) to \(cf \) in a large set of documents is defined by the probability theory [3]

\[
df(cf) = N(1 - P(0, \mu = cf/N)),
\]

where \(N \) is the total number of documents, and \(P(0, \mu) \) is the probability of the word occurring 0 times, provided its average number of occurrences per document \(\mu \) (by definition \(\mu = cf/N \)). For the simplest Poisson model the equation
Fig. 1. Scatter plots of the number of documents with a given word (df) vs. its frequency in the collection (cf) for the whole corpus vocabulary. Panel a) shows plain scatter plot. Panel b) compares the model making use of the Poisson distribution (2) with the negative binomial approach (3). Panel c) examines the location of city names and standard information retrieval stopwords. Panel d) contrasts the location of contracting authorities and verbs in conditional mood. Clearly, non-content words (information retrieval stopwords and verbs in conditional mood) tend to locate close to the theoretical curve given by (3). We decided to extract the non-content words for stoplist using the separating line $df/cf = 1.6$, which is marked in panels c) and d)
reduces to
\[
\overline{df}(cf) = N(1 - \exp(-cf/N)).
\] (2)

The plot of \(df\) against \(cf\) for all words in the examined corpus is presented in Fig. 1a. The Poisson model is plotted in Fig. 1b. One can easily see that it does not give an accurate description for the high values of \(cf\). Therefore, we decided to replace the Poisson distribution with the negative binomial model. It is closely related to the Poisson variable, but allows for larger variance. It can be also represented as infinite combination of Poisson distributions with different \(\mu\).

After substituting the negative binomial probability distribution function for \(P(0,\mu)\) in (1), we get
\[
\overline{df}(cf) = N\left(1 - \left(1 + \frac{cf}{Nr} \right)^{-r}\right),
\] (3)

where \(r > 0\) is the additional parameter of the negative binomial distribution. In the case of \(r \to \infty\) with fixed \(\mu\), the negative binomial variable converges to the Poisson model. In Fig. 1b, we compare the predictions of (2) and (3) with the value of \(r = 0.42\), adjusted to fit the data. It is easily seen that the description of the high \(cf\) region improves for the negative binomial case.

To further illustrate the difference between the content and non-content words, we compared locations of a few sample word categories in \((cf, df)\) space. We selected two groups of non-informative words, namely, the usual information retrieval stopwords (containing conjunctions, pronouns, particles, auxiliary verbs, etc.) and a class of verb forms in conditional mood, ending on -łaby -łoby. These two groups were compared with two categories of words which definitely carry important information, i.e., the names of the cities and the most frequent words extracted from the contracting authorities list (cleaned from stopwords and city names to avoid overlapping categories). The comparison is presented in Fig. 1c and 1d. The displayed graphs confirm the assumption of larger deviation from the negative binomial distribution in the case of content words. Approximate separation can be obtained by \(\overline{df}/df < 1.6\). The terms satisfying this condition and occurring in more than ten documents were used as stoplist in RAKE keyword extraction algorithm later on.

3 Preliminary Results

After developing the method of automatically distilling the stopword list from a given corpus, we ran the keyword extraction procedure on the available documents. Since the documents did not contain any manually assigned keywords, we can do only qualitative analysis at this stage. The preliminary results are presented below.

We found that the method indeed yields useful key phrases. Its results for a sample document are presented in Table 1B and can be compared with the results obtained using standard information retrieval stoplist (Table 1A). The
Table 1. Summary of experiments with RAKE. Both the original keywords and their English translations are given.

A. Top 5 high-score keywords extracted from a sample document (standard stoplist)
samej grupy kapitałowej dotyczącego wykonawcy Przedsiębiorstwo Usług Komunalnych Empol sp.
Dzienniku Urzędowym Unii Europejskiej 23 marca 2013 r.
Prezes Krajowej Izby Odwoławczej 20 czerwca 2012 r.
pierwszej kolejności Krajowa Izba Odwoławcza winna ocenić
Krajowa Izba Odwoławcza uwzględnili odwołanie konsorcjum Sita Małopolska

B. All keywords extracted from a sample document (auto-generated stoplist of Sect. 2)
Przedsiębiorstwo Usług Komunalnych Empol
przedsiębiorstwo usług komunalnych
zagospodarowanie odpadów komunalnych
odbieranie odpadów komunalnych
właścicieli nieruchomości zamieszkałych
konsorcjum Sita Małopolska
Sita Małopolska
grupy kapitałowej

C. Most frequent keywords in the whole corpus (auto-generated stoplist of Sect. 2)
roboty budowlane
robót budowlanych
konsorcjum firm
ograniczoną odpowiedzialnością
formularzu ofertowym

D. Most frequent keywords with four tokens (auto-generated stoplist of Sect. 2)
PKP Polskie Linie Kolejowe
Generalnej Dyrekcji Dróg Krajowych
samodzielnego publicznego szpitala klinicznego
wykazu wykonanych robót budowlanych
GE Medical Systems Polska
extracted phrases look promising, as they clearly indicate the topic of municipal waste management to which the analyzed document is related.

To get more insight into the behaviour of the algorithm throughout the whole corpus, we also analyzed the most frequently detected keywords. Top five most popular key phrases are presented in Table 1C. The result is intuitively well understood, since a considerable part of the public procurement contracts in Poland (in the period 2007–2013, covered by the analyzed corpus) deals with large scale construction works carried out by consortia consisting of a few companies. This is clearly reflected in the obtained results.

Obviously, the most frequently occurring keywords from Table 1C are rather general. However, if we restrict ourselves to longer phrases, we can easily check that their vagueness decreases and that they still form meaningful and informative word groups. Analyzing the most popular four token key phrases (Table 1D), we found that RAKE method is capable of extracting names of large contracting authorities and companies. This also seems a very desirable behaviour of the algorithm. Of course, in order to quantify the performance of the algorithm, rigorous tests based on the human expert knowledge are necessary.

4 Summary and Outlook

In this paper, we have presented a work in progress report on the unsupervised keyword extraction from Polish legal texts. We have employed recently proposed RAKE algorithm and extended it with the automatic, corpus adopted stoplist generation procedure. Qualitative tests of the method indicate that the approach is promising. In the future, we plan quantitative tests, however, this has to involve human domain experts and hence is a lengthy process. In addition, we plan also further optimization of the method. Introducing stemming and adjusting keyword ranking scheme of RAKE algorithm seem to be the most attractive directions.

Acknowledgments. We acknowledge the use of computing facilities of the Interdisciplinary Centre for Mathematical and Computational Modelling within the grant G57-14.

References

1. Enrico Francesconi, Simonetta Montemagni, Wim Peters, and Daniela Tiscornia. Semantic Processing of Legal Texts. Springer, Berlin; New York, 2010.
2. Su Nam Kim, Olena Medelyan, Min-Yen Kan, and Timothy Baldwin. SemEval-2010 task 5: Automatic keyphrase extraction from scientific articles. In Proceedings of the 5th International Workshop on Semantic Evaluation, SemEval ’10, page 21, Stroudsburg, PA, USA, 2010. Association for Computational Linguistics.
3. Stuart Rose, Dave Engel, Nick Cramer, and Wendy Cowley. Automatic keyword extraction from individual documents. In Michael W. Berry and Jacob Kogan, editors, Text Mining. Applications and Theory, page 1. John Wiley and Sons, Ltd, 2010.
4. Kenneth W. Church and William A. Gale. Poisson mixtures. *Natural Language Engineering*, 1(02):163, 6 1995.
5. Christopher D. Manning and Hinrich Schütze. *Foundations of statistical natural language processing*. MIT Press, Cambridge, Mass., 1999.