In-situ localization and biochemical analysis of bio-molecules reveals Pb-stress amelioration in Brassica juncea L. by co-application of 24-Epibrassinolide and Salicylic Acid

Sukhmeen Kaur Kohli1, Shagun Bali1, Ruchi Tejpal2, Vandana Bhalla2, Vinod Verma3, Renu Bhardwaj1, A. A. Alqarawi4, Elsayed Fathi Abd_Allah4 & Parvaiz Ahmad5,6

Lead (Pb) toxicity is a major environmental concern affirming the need of proper mitigation strategies. In the present work, potential of combined treatment of 24-Epibrassinolide (24-EBL) and Salicylic acid (SA) against Pb toxicity to Brassica juncea L. seedlings were evaluated. Seedlings pre-imbibed in EBL (0.1 mM) and SA (1 mM) individually and in combination, were sown in Pb supplemented petri-plates (0.25, 0.50 and 0.75 mM). Various microscopic observations and biochemical analysis were made on 10 days old seedlings of B. juncea. The toxic effects of Pb were evident with enhancement in in-situ accumulation of Pb, hydrogen peroxide (H$_2$O$_2$), malondialdehyde (MDA), nuclear damage, membrane damage, cell death and polyamine. Furthermore, free amino acid were lowered in response to Pb toxicity. The levels of osmoprotectants including total carbohydrate, reducing sugars, trehalose, proline and glycine betaine were elevated in response to Pb treatment. Soaking treatment with combination of 24-EBL and SA led to effective amelioration of toxic effects of Pb. Reduction in Pb accumulation, reactive oxygen content (ROS), cellular damage and GSH levels were noticed in response to treatment with 24-EBL and SA individual and combined levels. The contents of free amino acid, amino acid profiling as well as in-situ localization of polyamine (spermidine) was recorded to be enhanced by co-application of 24-EBL and SA. Binary treatment of 24-EBL and SA, further elevated the content of osmoprotectants. The study revealed that co-application of combined treatment of 24-EBL and SA led to diminution of toxic effects of Pb in B. juncea seedlings.

Contamination of environment with heavy metals is one of the major concerns of the environmentalist in developing and developed countries. Un-controlled addition of heavy metals to the soil has led to far reaching effects on agriculture, as a result of effect on food safety, economic value and uptake by plants and humans1. Various metals and metal oxides nanoparticles have been reported to be deleterious for plants2. Heavy metal toxicity in plants hampers growth, efficacy of photosynthetic apparatus, senescence and functioning of specific enzymes3–9. Lead (Pb) is considered to be one of the most abundant environmental pollutants and enters the environment through anthropogenic addition and consequently cause contamination of biocoenosis and biotopes10,11. Once Pb reaches the interior of roots, it gets accumulated in root cells or is translocated to the aerial parts12–14. Due to highly toxic...
nature of Pb, variable symptoms are observed in affected plants including necrosis, chlorosis, growth inhibition, senescence and enhanced generation of reactive oxygen species (ROS) such as hydrogen peroxide (H₂O₂), superoxide anion (O₂⁻), hydroxyl ion (HO), singlet oxygen (O) and nitric oxide (NO) etc.¹⁰⁻¹⁶.

To circumvent metal toxicity, plants have developed discrete strategies by which toxic metal ions are effluxed, retained in roots or are transported to the other parts of plant¹⁷. These strategies are broadly classified into avoidance and detoxification mechanisms¹⁷. Plants synthesize certain antioxidative enzymes such as superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase (POD), ascorbate peroxidase (APOX) and glutathione reductase (GR) and non-enzymatic antioxidants (glutathione, cysteine, ascorbic acid, tocopherol etc.)¹¹,¹². A few avoidance mechanisms include enhanced accumulation of metal chelating compounds, phenolic compounds and osmoprotectants²⁰. More recently, use of exogenous application of plant growth regulators (PGRs) to provide protection to plants against oxidative stress has gained attention⁹,¹⁰,¹¹,¹²,²². Various phytohormones including auxins (AUX), gibberellins (GBs), ethylene (ET), brassinosteroids (BRs), jasmonic acid (JA) and salicylic acid (SA) have been studied for their positive potential to promote growth and elevate tolerance of plants to heavy metal toxicity²³,²⁴.

Several studies have reported positive potential of BRs as stress protective agents²⁵,²⁶. They have been reported to alleviate metal stress in yellow mustard²⁷, radish²⁸, cucumber²⁹, tomato³⁰, Indian mustard³¹ and maize³². Similarly, participation of SA in adaptation of plants to wide array of stresses is largely documented³³,³⁴. Exogenous supplementation with SA to metal stressed plants led to growth promotion and improved photosynthetic efficacy³⁵,³⁶, reduced ROS levels³⁷ and altered osmolyte levels³⁸,³⁹. It has been studied for its anti-stress potential in tobacco⁴⁰, wheat⁴¹, potato⁴² and rice⁴³. In response to various environmental cues BRs interplays with other plant hormones to regulate plethora of attributes of growth and developmental processes in plants⁴⁴. Interplay between BRs and SA has been reported to counteract various stresses⁴⁵,⁴⁶, including viral infection⁴⁷, fungal infection⁴⁸, salt and temperature stress⁴⁹.

Adequate amount of foregoing studies have been carried out on amelioration of heavy metal induced toxicity by application of BRs and SA individually. In our previous studies we determined the effects of combination of 24-EBL and SA on some physiological and antioxidative characteristics of B. juncea seedlings grown hydroponically and under field conditions⁴⁸–⁵⁰. The present study further extended into the few more biochemical parameters including evaluation of oxidative stress, amino acid levels and osmolytes contents and histochemical analysis and is an attempt to better understand the interactive effect of 24-EBL and SA in heavy metal stress amelioration.

Materials and Methods

Plant Material. Indian mustard (Brassica juncea L., var. RLC-1) seeds were obtained from Punjab Agriculture University, Ludhiana, Punjab, India. The procured seeds were surface sterilized by rinsing for 1 minute in 0.01% mercuric chloride (HgCl₂), followed by washing with double distilled water. The seeds were then soaked in different solutions of hormones i.e. EBL (0.1 mM), SA (1 mM) and EBL + SA (0.1 mM + 1 mM) for 6 hr. The seeds were sown in autoclaved petri-plates (10 cm, diameter), lined with Whatmann no. 1 filter paper. Various Pb concentrations were prepared in Hoagland’s medium (half strength medium was prepared following the method of Cowgill and Milazzo⁵¹). The petri-plates labelled as control were supplied with only Hoagland’s nutrient medium. The three different Pb (NO₃)₂ (lead nitrate) concentration i.e. 0.25 mM, 0.50 mM and 0.75 mM, were selected on the basis of IC₅₀ (50% inhibitory concentration). The seedlings were then raised in seed germinator and were provided with 25 ± 0.5 °C temperature, 175 µmol m⁻² s⁻¹ light intensity, 16 hr photoperiod and 80–90% relative humidity. The seedlings were harvested after 10 days of growth. 3 replicates of each treatment were taken for further analysis.

Pb Localization. The roots of B. juncea L. seedlings were stained using Pb specific florescent probe Leadmium™ Green AM dye (Invitogen, ThermoFisher Scientific). The roots were placed in Na₂-EDTA (disodium ethylene diamine tetra acetic acid) (20 mM) for 15 minutes and kept at room temperature. The sections prepared by homogenizing 100 mg fresh plant samples in 1.5 ml of tri-chloroacetic acid (0.1%). The seedling extract was prepared by homogenizing 100 mg fresh plant samples in 1.5 ml of tri-chloroacetic acid (0.1%). The supernatant obtained by centrifugation of extract at 12,000 × g at 4 °C for 15 minutes. To 0.4 ml of supernatant, 400 µL of
MDA content. The level of MDA was determined by the protocol of Heath and Packer. Fresh seedlings were homogenized in tri-chloroacetic acid (0.1%) and were centrifuged for 20 minutes at 4°C at 13,000 × g. To the supernatant, 0.5% thiobarbituric acid and tri-chloroacetic acid (20%) were added. The reaction mixture was then kept in water bath at 95°C for about 30 minutes, followed by cooling the mixture on an ice bath. The absorbance of the reaction mixture was read at 532 nm and 600 nm and content was calculated using extinction coefficient i.e. 155/ mM/ cm.

H₂O₂ localization. The method given by Ortega-Villasante, et al. was followed for localization of H₂O₂ which was done with 2′,7′- dichlorofluorocien diacetate and was incubated for 30 minutes. The roots were then washed three times for 5 minutes with double distilled water and were mounted on a glass slide. The excitation wavelength was 488 nm and emission wavelength was 530 nm respectively.

Visualization of membrane damage. For visualization of membrane damage, propidium iodide (PI) a fluorescent adduct was used. A 50 µM solution of PI was prepared according to the method of Gutierrez-Alcala, et al. The root samples were dipped in PI fluorescent probe for 15 minutes, followed by washing with double distilled water and were then mounted on glass slide. The excitation wavelength was 488 nm and emission wavelength was 617 nm respectively.

Nuclear damage. The nuclear damage in the root cells was examined by employing a fluorescent dye i.e. 4,6-diamino-2-phenylindole (DAPI) and was prepared following the method of Callard, et al. The dye was prepared by dissolving 0.1 gm of DAPI in 100 ml of phosphate buffer saline (PBS). The roots were mounted on glass slide and visualized at excitation wavelength of 358 nm and emission wavelength of 461 nm respectively.

MDA localization. MDA was visualized by employing shiff’s reagent (a visible dye) following the protocol of Wang and Yang. The roots of 10 days old seedlings were excised and dipped in shiff’s reagent for 15 minutes and was followed by washing with 0.5% potassium metabisulphite prepared in 0.05 M HCl. The washed roots were mounted on glass slide and visualized under visible compound microscope.

Cell Viability. The method of Romero-Puertas, et al. was used for analyzing cell viability of root cells. The non-viable cells were localized by 0.25% Evan’s blue dye. The roots were dipped in visible probe and were kept at room temperature for 10 minutes, followed by washing with double distilled water. The prepared slides were visualized under visible compound microscope.

Glutathione tagging. Glutathione localization in roots of B. juncea was done by protocol of Fricker and Meyer. The roots were treated with 25µM dye i.e. monochlorobimane (MCB) for 20 minutes. The dye solution containing 5 mM of sodium azide prevents accumulation of MCB-GSH conjugate in the vacuoles by eliminating adenosine triphosphate (ATP) from the cells. The excitation and emission wavelengths of the fluorescent adduct was 351–364 nm and 477 nm respectively.

Quantitative and Qualitative Estimation of Amino Acids. The quantitative estimation of total free amino acids was done by using spectrophotometer, while qualitative profiling of different amino acids was done by employing Amino acid analyzer (Shimadzu, Nexera X2).

Total free amino acid content. Total free amino acid content was estimated by following the method of Lee and Takahashi. 100 mg of dried plant sample was extracted by dipping the plant material in 5 ml of 80% ethanol (extractant). The samples were then centrifuged for 20 minutes at 4°C at 2000 × g, followed by addition of 3.8 ml of ninhydrin reagent to 0.2 ml of supernatant. The reaction mixture was boiled for 12 minutes in a water bath. After boiling, the sample were cooled at room temperature followed by reading the absorbance at 570 nm. The betaine hydrochloride was used as standard for preparation of standard curve.

Amino acid profiling. The samples for amino acid profiling were prepared by method of Iriti, et al. with minor modifications. 1 gm of fresh seedlings was crushed in 5 ml of 80% methanol. The samples were then centrifuged at 10,000 × g at 4°C for 20 minutes. To 1 ml of supernatant, 1 ml of sulphosalicylic acid (6%) was added followed by centrifugation at 10,000 × g at 4°C for 20 minutes. The prepared samples were filtered through 0.22 µm syringe filter. The 1 µl of this sample was injected in the sample vials of amino acid analyzer and were quantified.

Polyamine (spermidine) localization. Synthesis of Probe. The fluorescent probe employed for localization of spermidine was synthesized by following already reported procedure. Reaction mixture comprising of formyl bonic acid, potassium carbonate, Pd (0) in 60 ml of dioxane-H₂O and tetrabromo-18-crown-6/tetrabromomobenzene were kept in N₂ atmosphere for 24 hrs and was continously stirred at 80°C. After 24 hrs, when the reaction was complete, the mixture was removed under pressure, to procure a residue to which water was added. Extraction of the aqueous layer was carried out by using 20 ml chloroform and the process was repeated thrice. A solid residue was obtained from the chloroform fraction by washing the fraction with water followed by drying by using sodium sulphate and finally was distilled under low pressure. Solid residue was then subjected to column chromatography to obtain pure compound by using ethyl acetate as an eluent. The probe was then...
crystallized by employing ethanol. The synthesized compound was characterized by 1H NMR, 13C NMR and Mass spectroscopic studies.

Confocal imaging. A 5 mM concentration of probe (molecular weight: 815.2) was prepared in dimethyl sulfoxide (DMSO). Localization of spermidine was done by following the method proposed by Singh et al.65 with slight modification. The roots of 10 days old seedlings of B. juncea were excised and incubated in the fluorescent probe for 30 minutes, followed by washing twice with phosphate buffer saline. The washed roots were then mounted on glass slides and visualized under confocal microscope.

Osmoprotectants. Osmoprotectant viz. total carbohydrate, reducing sugar, trehalose, glycine betaine and proline content were estimated employing double beam UV-Vis spectrophotometer.

Total carbohydrate content. Total carbohydrate content was assessed by method of Hodge and Hofreiter66. 100 mg of dried plant samples were dipped in 2.5 N HCl and boiled in a water bath for 3 hr. The samples were then cooled and neutralized by addition of sodium carbonates. The sample volume was made up to 100 ml, followed by centrifugation for 20 minutes at 4°C at 13,000 × g. To 1 ml of above extract 4 ml of Anthrone reagent and was heated for 8 minutes. The samples were then cooled and observations were made at 630 nm. Glucose was used as standard.

Reducing sugar estimation. The protocol proposed by Miller67 was used for estimation of reducing sugar levels. 0.1 gm of dried plant material was extracted with 80% ethanol. 3 ml of 3,5-dinitrosalicylic acid (DNSA) was added to 3 ml of plant extract. DNSA reagent was prepared by dissolving 50 mg sodium sulphite, 1 gm DNSA and 200 mg of phenol crystals in 100 ml NaOH (1%) and the reaction mixture was stored at 4°C. 1 ml of 40% potassium sodium tartarate was added to the reaction mixture. The absorbance of sample was read at 510 nm. Standard glucose concentrations were used for preparation of graph for estimation of reducing sugar levels.

Trehalose Content. The method proposed by Trevelyan and Harrison68 were used for estimation of trehalose levels. 500 mg of dried plant material was crushed in 80% ethanol, followed by centrifugation at 5000 × g for 10 minutes at 4°C. 2 ml of tri-chloroacetic acid (0.5 M) and 4 ml of Anthrone reagent was added to 0.1 ml of supernatant. The absorbance of yellow green color was read at 620 nm. Trehalose was used as standard for preparation of graph for absorbance vs. standard trehalose concentration.

Glycine Betaine. Estimation of glycine betaine levels was done by following the protocol of Grieve and Grattan69. 0.5 gm of dried plant material was extracted with 5 ml of 0.05% of toluene and distilled water mixture. The reaction mixture was incubated in dark for 24 hr and was filtered. 2 N HCl and 0.1 ml of PI were added to 0.5 ml of extract. The samples were incubated for one and half hr in an ice bath. To the above mixture, 2 ml of ice cold water and 10 ml of 1,2-dichloroethane was added. Upper layer was discarded and absorbance of lower layer was read at 365 nm.

Proline content. Proline content was assessed by employing method of Bates, et al.70. 0.5 gm of fresh seedlings were crushed in 3% of sulphosalicylic acid, followed by centrifugation at 13,000 × g 4°C for 20 minutes. 2 ml of ninhydrin reagent (1.56 gm of ninhydrin was dissolved in glacial acetic acid and 6 M ortho-phosphoric acid and was warmed and stored at 4°C), was added and warmed for 1 hr in water bath. To stop the reaction the test tubes were immediately shifted to ice-bath, followed by addition of 4 ml toluene and shook for 30–40 seconds vigorously. The absorbance of toluene layer was read at 520 nm.

Statistical Analysis. Data obtained was statistically analyzed by self-coded MS Excel software. The data is presented in the form of mean ± standard deviation (SD). The data was also subjected to two-way analysis of variance (ANOVA) and tukey’s test (honestly significant difference, HSD). Multiple Linear Regression (MLR) was employed to analyze the response of independent variables i.e. Pb, 24-EBL and SA. β regression coefficient values implied relative effect of independent variables X1-Pb, X2- 24-EBL and X3- SA. Following equation was used to evaluate the response:

\[Y = a + b_1X_1 + b_2X_2 + b_3X_3 \]

where, Y is parameter analyzed, X1, X2, X3 are independent variables i.e. Pb, 24-EBL and SA, b1, b2, b3 are partial regression coefficient due independent variables β1, β2, β3 are regression coefficient values.

Results

Pb localization. The localization of Pb metal ions by Leadmium™ Green AM dye showed green fluorescence when visualized under confocal microscope. It was observed that the intensity of fluorescence was higher in Pb (0.75 mM) treated seedlings when compared to control. Metal treated seedlings pre-imbibed in 24-EBL and SA, alone and in combination lowered the intensity of green fluorescence. Combined treatment of 24-EBL and SA were found to be most effective (Fig. 1).

Oxidative damage. Superoxide anion content. It was observed that 0.75 mM Pb treatment caused a significant elevation (32.47%) in superoxide anion accumulation in comparison to control seedlings. Pre-treatment of seedling with 24-EBL, SA and combination of 24-EBL and SA resulted in reduction in levels of superoxide anions by 42.33%, 11.79% and 69.36% respectively (Table 1).
H₂O₂ Content. The oxidative burst in plant cells was also assessed by estimating H₂O₂ content. The seedlings raised in 0.75 mM Pb treatment led to increase in H₂O₂ levels (174.88%) when compared to control seedlings. Seed soaking treatment of 24-EBL and SA alone resulted in reducing H₂O₂ levels by 36.21% and 27.41%, in contrast to 0.75 mM Pb treated seedlings. Co-application of 24-EBL and SA maximally reduced H₂O₂ levels by 55.17% respectively when compared to metal (0.75 mM Pb) alone treated seedlings. (Table 1).

MDA content. MDA content was significantly elevated in response to Pb treatment. MDA content was enhanced by 38.05% in 0.75 mM Pb treated seedling in comparison to control seedlings. Priming of seedlings with 24-EBL, SA and 24-EBL + SA resulted in reduction in MDA levels by 52.80%, 27.43% and 68.44% respectively in contrast to 0.75 mM Pb treated seedlings (Table 1).

H₂O₂ imaging. H₂O₂ localization was done by employing DCF-DA dye. The green fluorescence was enhanced in Pb (0.75 mM) treated seedlings in contrast to control seedlings, indicating enhancement in H₂O₂ levels. 24-EBL and SA individual treatment lowered H₂O₂ content as evident by lowered fluorescence. Lowest intensity of green fluorescence was visualized in 24-EBL + SA combination treated seedling implying most effective treatment in reducing H₂O₂ (Fig. 1).

Membrane damage. PI fluorescent probe was used to observe membrane damage in *B. juncea* root cells. PI dye has red fluorescence and the intensity of red color was enhanced in Pb (0.75 mM) treated plants in contrast to control seedlings implying enhanced membrane damage. Pre-treatment of seedlings with 24-EBL, SA and their combination led to reduction in membrane damage as indicated by lowered intensity of red fluorescence (Fig. 1).

Nuclear Damage. Nuclear damage was assessed by employing DAPI and has blue fluorescence. The intensity of fluorescence was maximum in Pb (0.75 mM) treated seedlings. 24-EBL and SA alone and in combination showed relative lower intensity of blue color as compared to 0.75 mM Pb treated seedlings. Whereas, 24-EBL + SA combined treatment were the most effective (Fig. 2).

MDA visualization. The spectrophotometric results of MDA content were further confirmed by is visualization by schiff’s reagent using visible compound microscope. The Pb (0.75 mM) stressed roots showed higher intensity of pink color of schiff’s reagent in comparison to control seedlings. Priming of seedlings with 24-EBL and SA and their combination showed reduction in MDA levels as compared to metal (0.75 mM Pb) treated seedlings as suggested by lowered intensity of pink color (Fig. 2).

Cell Viability. The damaging effect of Pb (0.75 mM) was also assessed by using Evan’s blue dye to visualize cell viability. Lowered viability of cells was observed in (0.75 mM) Pb treated seedlings when compared to control seedlings as implied by darkly stained cells. The viability of 24-EBL, SA and 24-EBL + SA treated seedlings was enhanced as indicated by lowered intensity of Evan’s blue (Fig. 2).

Figure 1. Confocal laser scanning micrographs showing imaging of effect of pre-treatment with EBL and SA on: (a) Pb localization, (b) H₂O₂ content and (c) membrane damage in roots of 10 days old *B. juncea* seedlings under Pb stress. Scale bar = 100 μm, (CN = control, Pb = lead, 24-EBL = 24-epibrassinolide, SA = salicylic acid).
nine, isoleucine and leucine were further enhanced by co-application of 24-EBL and SA.

and SA individually as well as in combination. Levels of serine, glutamine, histidine, β-
comparison to control seedlings. Elevations in content of amino acids were observed when pre-treated with 24-EBL
resulted in decline in levels of specific amino acid including glutamine, GABA, methionine and leucine in com-
Amino acid profiling.

16.24% and 124.10% respectively, in contrast to 0.75 mM Pb treated seedlings (Fig. 4).

of free amino acids were lowered by 60.49% in 0.75 mM Pb treated seedlings in contrast to un-treated seedlings.

A total of 21 amino acids were detected as mentioned in Table 2. Pb metal treatment
resulted in decline in levels of specific amino acid including glutamine, GABA, methionine and leucine in con-

Table 1. Effect of pre-treatment with combination of 24-EBL and SA on superoxide anion (µg g⁻¹ FW), H₂O₂
(µM g⁻¹ FW) and MDA (mM g⁻¹ FW) content in 10 days old B. juncea seedlings exposed to Pb. * Data is
presented as mean ± SD. Two-way ANOVA, Tukey’s test and MLR analysis was performed * and ** designated
significant at P < 0.05 and P < 0.01 respectively. Statistical letters are mentioned HSD.

Treatment	24-EBL	SA
Pb		
0	0	0
0.1 mM	21.29 ± 0.499	1.53 ± 0.075
0.1 mM	25.82 ± 0.255	1.89 ± 0.122
0.1 mM	14.00 ± 0.601	1.36 ± 0.084
0.25 mM	0	0
0.25 mM	23.61 ± 0.493	1.70 ± 0.116
0.25 mM	25.96 ± 0.559	1.94 ± 0.142
0.25 mM	17.53 ± 0.577	1.34 ± 0.053
0.50 mM	0	0
0.50 mM	28.38 ± 0.093	2.94 ± 0.127
0.50 mM	33.87 ± 0.546	3.32 ± 0.243
0.50 mM	18.42 ± 0.638	2.62 ± 0.064
0.75 mM	0	0
0.75 mM	40.70 ± 0.405	5.80 ± 0.075
0.75 mM	23.74 ± 1.006	3.70 ± 0.042
0.75 mM	35.90 ± 0.575	4.21 ± 0.105
0.75 mM	12.47 ± 0.638	2.60 ± 0.158
F-Ratio		
Pb	320.26**	1157.52**
F-Ratio	2917.20**	320.26**
F-Ratio	2579.44***	2917.20**
F-Ratio	170.46**	2579.44***
HSD	0.299	0.359

Multiple Linear Regression

β-regression coefficient	Pb	24-EBL	SA
Superoxide anion content = 33.62 ± 7.829 (Pb) + 1296 (24-EBL) + 6.824 (SA)	0.27	−0.80	−0.42
H₂O₂ Content = 2.268 ± 3.404 (Pb) + 100.5 (24-EBL) + 0.633 (SA)	0.79	−0.42	−0.26
MDA Content = 2.38 ± 0.853 (Pb) + 128.4 (24-EBL) + 0.679 (SA)	0.29	−0.79	−0.42

Multiple Co-relation Coefficient	Pb	24-EBL	SA
H₂O₂ Content	0.853	0.29	0.107
MDA Content	0.679	0.29	0.075

Glutathione tagging. The results of glutathione visualization revealed decline in accumulation of glutathione in 0.75 mM Pb stressed seedlings as evident by reduced fluorescence of MCB dye in comparison to control seedlings. Glutathione levels were enhanced in response to 24-EBL, SA and 24-EBL + SA pre-treatment as indicated by enhanced blue fluorescence (Fig. 3).

Quantitative and Qualitative amino acids levels. Total free amino acid level. The endogenous levels
of free amino acids were lowered by 60.49% in 0.75 mM Pb treated seedlings in contrast to un-treated seedlings.
Priming of seeds with 24-EBL, SA and their combination led to elevation in free amino acid content by 90.26%, 16.24% and 124.10% respectively, in contrast to 0.75 mM Pb treated seedlings (Fig. 4).

Amino acid profiling. A total of 21 amino acids were detected as mentioned in Table 2. Pb metal treatment
resulted in decline in levels of specific amino acid including glutamine, GABA, methionine and leucine in con-
parison to control seedlings. Elevations in content of amino acids were observed when pre-treated with 24-EBL and SA individually as well as in combination. Levels of serine, glutamine, histidine, β-Álanine, GABA, methio-
nine, isoleucine and leucine were further enhanced by co-application of 24-EBL and SA.

Polyamine (Spermidine) imaging. In-situ localization of spermidine in roots of B. juncea was done using chemical probe, which showed blue fluorescence. It was observed that, 0.75 mM Pb treated plants had higher levels of polyamine when compared to control seedlings as indicated by darkly stained cells. Individual as well as combined application of 24-EBL and SA led to further elevation in accumulation of polyamines as evidenced by darkly stained cells (Fig. 3).

Osmoprotectants. Total Carbohydrates Content. Pb (0.75 mM) treatment led to significant enhancement
(195.60%) in total carbohydrate content in comparison to control seedlings. Seedlings treated with 24-EBL and SA individually and in combination led to further enhancement in levels of total carbohydrates by 179.9%, 17.48% and 207.80% respectively. Combined treatment of 24-EBL and SA was most effective in enhancing total carbohydrate levels (Fig. 4).
Reducing sugar content. The seedlings raised under 0.75 mM Pb treatment had elevated levels of reducing sugars by 51.25% in comparison to control. Seedlings primed with in 24-EBL and SA individual treatment led to increase in reducing sugar levels by 222.40% and 146.20% respectively in contrast to 0.75 mM Pb treatment. Co-application of 24-EBL and SA maximally enhanced reducing sugar levels by 246.25% in comparison to metal (0.75 mM) Pb treated seedlings (Fig. 4).

Trehalose content. Trehalose levels were significantly elevated in response to Pb treatment by 219.42% in contrast to control seedlings. Priming with 24-EBL, SA and 24-EBL + SA resulted in enhancement in trehalose levels by 28.72%, 8.06% and 140.80% respectively in comparison to 0.75 mM Pb treated seedlings (Fig. 4).
Glycine betaine content. Content of glycine betaine was enhanced by 64.15% in Pb (0.75 mM) treated seedlings in contrast to control seedlings. Priming of seeds with 24-EBL and SA individual treatment further enhanced the levels of glycine betaine by 21.07% and 10.92% respectively in comparison to 0.75 mM Pb treated seedlings. Pb (0.75 mM) treated seedlings pre-imbibed in combined treatment of 24-EBL and SA led to most significant elevation i.e. by 40.61% respectively in glycine betaine content (Fig. 4).

Proline level. Significant elevation in proline content was recorded in 0.75 mM Pb treated seedlings (237.91%) in comparison to control seedlings. Further increase in proline levels were recorded in 24-EBL, SA and 24-EBL + SA primed seedlings by 50.60%, 31.51% and 76.31% respectively when compared to 0.75 mM Pb treated seedlings (Fig. 4).

Discussion
Pb is a non-essential element that prominently perturbs plants physiology. It is a less available and low solubility metal which occurs in phosphates, nitrates and sulphate forms. It is an extremely toxic metal and exerts certain critical effects on the physiological and biochemical attributes in plants. In-situ localization of Pb ions in roots revealed enhancement in Pb content in response to increment in metal concentration. Similar elevation in Pb
content was reported in *Oryza sativa*[^23], *Nicotiana tabacum*[^74], *Medicago sativa*[^25] and *Triticum aestivum*[^76]. The bulk of Pb in soil is absorbed by roots of plants and bind to the carboxyl group of mucilage uronic acids[^77]. A very small fraction of Pb is available for plants to accumulate due to the fact that it forms strong complexes with colloidal particles or organic matter[^78]. The endodermis of the root cells act as a barrier for movement of Pb from roots to shoots. This may be a possible reason for higher accumulation of Pb in roots when compared to shoots[^90]. Plant growth regulators (PGRs) are well studied for their anti-metal stress activities[^91]. In present study pre-treatment of seedling with EBL, SA and their combination showed reduced Pb metal localization in root cells. This is attributed to BR stimulated activation of antioxidative defense system, lowered ROS content and improvement in growth of plants[^42,47]. Several reports suggest BR-induced reduction in metal uptake such as Al in *Phaseolus aureus*[^81], Ni in *Phaseolus aureus*[^94] and Ni in *Nicotiana tabacum*[^22] was reported in SA pre-treated seedlings under Pb stress. As Brassica seeds contain high levels of β-carotene[^83] in seed embryos[^93], *Vigna radiata*[^95] and *Brassica juncea*[^96] in *Raphanus sativus*[^94]. BRs application resulted in reduction in ROS levels and hence aided in lowering the toxic effects of Pb. Similar findings of lowered ROS production were reported by Sharma and Bhardwaj[^97] in *Zea mays* plants by Choudhary, *et al.*[^98] in *Raphanus sativus*, by Yadav, *et al.*[^27] and by Kohli, *et al.*[^99] in *B. juncea*. Reduction in Pb induced MDA, H₂O₂ and superoxide anion content by BRs pre-treatment is attributed to their ability to enhance activity of antioxidative defense system and hence scavenging of free radicals[^97]. Interplay between SA signaling networks and other signaling cascade has been studied to regulate ROS stimulated...
cell death. The observation was also affirmed with histological studies which showed reduction in ROS content, nuclear and membrane damage and altered cell viability.

Sulfur is one of the most imperative elements that is incorporated in several biomolecules including amino acids and antioxidin. GSH is one of the sulfur containing antioxidant. Present work further revealed reduction in levels of glutathione in response to Pb toxicity. Our findings corroborated the studies of Okamoto, et al. who reported lowered GSH in Gongodium polysulphide exposed to Pb stress. The decline in GSH levels is due to lowered de novo production of GSH as well as over-utilization of GSH in the synthesis of phytochelatin, pre-requisite for chelation of toxic metal ions. This antioxidant fortifies protein oxidation and acts as a substrate for production of glutathione peroxidase and glutathione-S-transferase. In addition, heavy metals can alter the active sites of the enzymes, thus rendering them nonfunctional. Exogenous application of combination of 24-EBL and SA resulted in enhancement in levels of GSH in the present study. Exogenous application of BRs to stressed plants elevated the contents of glutathione in Lycopersicon esculentum exposed to Cd and Pb. Cicer arietinum exposed to Cd and Vigna radiata exposed to Al. The possible reasons for BR induced increase in the activities of antioxidative enzymes might be due to their ability to regulate the transcription and/or translation of genes that further mediate the activation, or de novo synthesis of antioxidative enzymes. Similarly, application of SA was also reported to enhance endogenous levels of GSH in Medicago sativa plants under Mg stress. SA primed plants had enhanced tolerance to Cd in Triticum aestivum plants which was largely co-related to enhanced GSH synthesis. Furthermore, several studies suggested regulation of various enzymes of AsA-GSH (ascorbate-glutathione) cycle by SA application. Another possible reason for enhanced activity of antioxidative defense system might be due to BR Signaling Kinase 1 (BSK 1) which is a positive regulator of SA accumulation in stressed plants and eventually results in amelioration of oxidative damage.

Amino acids specifically S containing amino acids have anti-stress and antioxidant properties. These organic amino acids include glutathione and methionine. In the present study, the levels of free amino acids and other amino acids was lowered in response to Pb stress. Amino acids have metal chelating, antioxidant and signaling ability under metal stress. The probable reason for lowered amino acid levels might be due to enhanced chelation of bivalent metal ions with free amino acid which consequently lowers available amino acids. Co-application of BRs and SA resulted in elevation in free amino acid levels. Our findings corroborated with the study carried out by Li, et al. who reported enhancement in amino acids content in response to 24-EBL application. Similarly, application of SA resulted in elevation in levels of amino acids specifically proline, glycine betaine and glutathione in the present study. Few specific amino acids such as proline and glycine betaine also act as osmoprotectants. Combined application of 24-EBL and SA led to enhancement in osmolyte levels in the present study. Similar elevation in glycine betaine levels were observed in response to CO, Fe and Zn stress. Glycine betaine levels are known to alter the membrane permeability of stressed plant cells. Enhanced levels of proline and glycine betaine resulted in further elevation in antioxidative capacities of berries. Proline content significantly elevated by BRs application is well documented. SA also resulted in further enhancement in proline and glycine betaine levels and they aid in detoxification of elevated ROS content, maintenance of membrane stability and enzyme activities. It was observed by Parmar, et al. that the main reason for increase in levels of proline content is associated with increase in synthesis of new amino acids under heavy metal stress. Elevation in concentration of osmolytes is considered as an important marker indicating metal stress and have important role in stress mitigation.

In-situ localization of polyamines (spemrine) revealed elevation in polyamines accumulation in Pb stressed seedlings. Polyamines specifically spermine and spermidine have antioxidant properties and protect DNA against oxidative damage. Similar to our findings, Groppa, et al. reported elevation in polyamines content in response to Cu and Cd toxicity. Another report suggests similar decline in polyamine accumulation in Lacuta sativa plants under Zn stress. Co-application of 24-EBL and SA significantly elevated in-situ deposition of polyamines in root cells of B. juncea in the present study. In our earlier study, Choudhary, et al. reported positive crosstalk between BRs and polyamines in regulating Cu stress in Raphanus sativus plants. It was further suggested that synergistic interplay between BRs and polyamines (spemidine) led to enhancement in levels of other polyamines such as putrecine and spermine. Similarly, exogenous application of SA resulted in higher level of polyamines in Zea mays and Lycopersicon esculentum.

Sugars and sugar polyols accumulate in response to stress and they act as an imperative biomarker and osmoregulator. Levels of total carbohydrate, reducing sugars and trehalose were significantly increased in response to Pb treatment. Sugars play a vital role in modulating plants osmotic balance and membrane stability in stressed plants. It has been hypothesized that heavy metal toxicity might hinder the metabolic pathway of carbohydrates or it might play a role in the accumulation of photoassimilates because of reduced loading of veins. Plethora of reports suggest enhancement in sugar levels due to Pb toxicity in B. juncea and Raphanus sativus. It was further suggested by Bhushan and Gupta that enhanced levels of total carbohydrates and reducing sugar could be due to meddling of Pb ions with transportation through endodermis into plant cells causing severe toxicity. Pre-treatment with 24-EBL and SA led to further increase in content of sugars. Similar to amino acids, sugars also have stress mitigating properties via enhanced sequestration of ROS molecules as well as activation of antioxidiant defense system. It has been reported that sugars acts as osmolytes and provide protection to cells from metal toxicity. These sugars not only help as osmolytes, participate in stabilization of cellular membranes and maintenance of turgor but also act as signaling molecules.

Conclusion
The present study indicates that co-application of 24-EBL and SA to B. juncea L. plants may enhance their potential to overcome Pb stress. The positive interplay between 24-EBL and SA led to elevation in total free amino acids, content of various amino acids (glutathione, proline, methionine etc.), which act as antioxidants and metal chelating compounds. These metabolites scavenge ROS and also result in reduced lipid peroxidation, nuclear and
membrane damage. From the results, it is further concluded that 24-EBL and SA combined treatment has a significant role in regulating the balance of total carbohydrates, reducing sugars and osmoprotectants like trehalose, glycine betaine and proline which are involved in osmoregulation of plant cells. The co-application of 24-EBL and SA reduces Pb accumulation in plants that consequently results in lowering oxidative stress. Therefore, combined treatment of 24-EBL and SA can counter adverse effects of Pb toxicity through regulating various physiological processes. Further insight into mechanisms of 24-EBL and SA crosstalk pertaining to metal stress amelioration might provide better understanding of stress tolerance strategies in plants.

References

1. Kalaitzakis, D. & Ganeshamurthy, A. N. In Abliotic Stress Physiology of Horticultural Crops 85–102 (Springer India, 2016).
2. Rastogi, A. et al. Impact of metal and metal oxide nanoparticles on plant: a critical review. Front. Chem. 12(5), 78, https://doi.org/10.3389/fchem.2017.00078 (2017).
3. Shah, F. U. R., Ahmad, N., Masood, K. R., Peralta-Vide a, J. R. & Ahmad, F. U. D. In Plant Adaptation and Phytoremediation 71–97 (Springer Netherlands, 2010).
4. Prasad, M. N. V. Trace elements as contaminants and nutrients: consequences in ecosystems and human health. (John Wiley & Sons, 2008).
5. Ahmad, P., Nabi, G. & Ashraf, M. Cadmium-induced oxidative damage in mustard [Brassica juncea (L.) Czern. & Coss.] plants can be alleviated by salicylic acid. S. Afr. J. Bot. 77, 36–44, https://doi.org/10.1016/j.sajb.2010.05.003 (2011).
6. Ahmad, P. et al. Alliation of Cadmium Toxicity in Brassica juncea L. (Czern. & Coss.) by Calcium Application Involves Various Physiological and Biochemical Strategies. PLOS ONE 10, e0114571, https://doi.org/10.1371/journal.pone.0114571 (2015).
7. Ahmad, P. et al. Calcium and Potassium Supplementation Enhanced Growth, Osmolyte Secondary Metabolite Production, and Enzymatic Antioxidant Machinery in Cadmium-Exposed Chickpea (Cicer aritinum L.). Front. Plant Sci, https://doi.org/10.3389/fpls.2016.00513 (2016).
8. Ahmad, P. et al. Modification of Osmolytes and Antioxidant Enzymes by 24-Epibrassinolide in Chickpea Seedlings Under Mercury (Hg) Toxicity. J. Plant Growth Regul. 37, 309–322, https://doi.org/10.1007/s10725-017-9730-6 (2017).
9. Ahmad, P. et al. Jasmonic acid alleviates negative impacts of cadmium stress by modifying osmolytes and antioxidants in faba bean (Vicia faba L.). Arch. Agron. Soil Sci. 63, 1889–1899, https://doi.org/10.1080/03650340.2017.1313406 (2017).
10. Pourrut, B., Shahid, M., Dumat, C., Winterton, P. & Pinelli, E. In Reviews of Environmental Contamination and Toxicology 113–136 (Springer New York, 2011).
11. Schreck, E. et al. Metal and metalloid foliar uptake by various plant species exposed to atmospheric industrial fallout: Mechanisms involved for lead. Sci. Total Environ. 427–428, 253–262, https://doi.org/10.1016/j.scitotenv.2012.03.051 (2012).
12. Uzu, G., Sobanska, S., Aliouane, Y., Pradere, P. & Dumat, C. Study of lead photoavailability for atmospheric industrial micronic and sub-micronic particles in relation with lead speciation. Environ. Pollut. 157, 1178–1185, https://doi.org/10.1016/j.envpol.2008.09.053 (2009).
13. Yan, Z. Z., Ke, L. & Tam, N. F. Y. Lead stress in seedlings of Avicennia marina, a common mangrove species in South China, with and without cotyledons. Aquat. Bot. 92, 112–118, https://doi.org/10.1016/j.aquabot.2009.10.014 (2010).
14. Shahid, M. et al. Brassinosteroid (24-Epibrassinolide) Enhances Growth and Alleviates the Deleterious Effects Induced by Salt Stress in Pea (Pisum sativum L.). Aust. J. Crop. Sci. 5, 500 (2011).
15. Pinho, S. & Ladeiro, B. Phytotoxicity by Lead as Heavy Metal Focus on Oxidative Stress. Journal of Botany 2012, 1–10, https://doi.org/10.1155/2012/369572 (2012).
16. Jiang, N. et al. Lead toxicity induced growth and antioxidant responses in Luffa cylindrica seedlings. International Journal of Agriculture and Biology 12, 205–210 (2010).
17. Rascio, N. & Navari-Izzo, F. Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting? Plant Sci. 180, 169–181, https://doi.org/10.1016/j.plantsci.2010.08.016 (2011).
18. Asada, K. Production and Scavenging of Reactive Oxygen Species in Chloroplasts and Their Functions. Plant Physiol. 141, 391–396, https://doi.org/10.1104/pp.106.082040 (2006).
19. Ahmad, P., Jaleel, C. A., Salem, M. A., Nabi, G. & Sharma, S. Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Crit. Rev. Biotechnol. 30, 161–175, https://doi.org/10.3109/07388500903254243 (2010).
20. Gill, S. S. & Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48, 899–930, https://doi.org/10.1016/j.plaphy.2010.08.016 (2010).
21. Kohli, A., Sreenivasulu, N., Lakshmanan, P. & Kumar, P. P. The phytohormone crosstalk paradigm takes center stage in understanding how plants respond to abiotic stresses. Plant Cell Rep. 32, 945–957, https://doi.org/10.1007/s00299-013-1461-y (2013).
22. Abdul Halim, N. I. & Fang, I. C. Salicylic Acid Mitigates Pb Stress In Nicotiana Tabacum. Science Heritage Journal 1, 16–19, https://doi.org/10.24084/gws.01.2017.16.19 (2017).
23. Fridman, Y. & Savaldi-Goldstein, S. brassinosteroids in growth control: How, when and where. Plant Sci. 209, 24–31, https://doi.org/10.1016/j.plantsci.2013.04.002 (2013).
24. Joseph, B., Jini, D. & Sujatha, S. Insight into the Role of Exogenous Salicylic Acid on Plants Grown under Salt Environment. Asian Journal of Crop Science 2, 226–233, https://doi.org/10.3923/jacs.2010.226.233 (2010).
25. Sharma, A. et al. Pre-sowing Seed Treatment with 24-Epibrassinolide Ameliorates Pesticide Stress in Brassica juncea L. through the Modulation of Stress Markers. Front. Plant Sci. 7, https://doi.org/10.3389/fpls.2016.01569 (2016).
26. Cao, S. et al. Loss-of-function mutations in DET2 gene lead to an enhanced resistance to oxidative stress in Arabidopsis. Physiol. Plant. 123, 57–66, https://doi.org/10.1111/j.1399-3054.2004.00432.x (2005).
27. Yadav, P., Kaur, R., Kohli, S. K., Sirhindi, G. & Bhardwaj, R. Castastereone assisted acculation of polyphenols and antioxidant to improve tolerance of B. juncea plants towards copper toxicity. Cogent Food & Agriculture 2, https://doi.org/10.1080/23311932.2016.61276821 (2016).
28. Kapoor, D., Kaur, S. & Bhardwaj, R. Physiological and biochemical changes in Brassica juncea plants under Cd-induced stress. BioMed research international 2014 (2014).
29. Fariduddin, Q., Khalid, R. R. A. E., Mir, B. A., Yusuf, M. & Ahmad, A. 24-Epibrassinolide regulates photosynthesis, antioxidant enzyme activities and proline content of Cucumis sativus under salt and/or copper stress. Environ. Monit. Assess. 185, 7845–7856, https://doi.org/10.1007/s10661-013-3139-x (2013).
30. Osman, A. A. & Rady, M. M. Ameliorative effects of sulphur and humic acid on the growth, anti-oxidant levels, and yields of pea (Pisum sativum L.) plants grown in reclaimed saline soil. The Journal of Horticultural Science and Biotechnology 87, 626–632, https://doi.org/10.1080/14610240.2012.11312922 (2012).
31. Karw, R. K. et al. Isolation and characterization of 24-Epibrassinolide from Brassica juncea L. and its effects on growth, Ni ion uptake, antioxidant defense of Brassica plants and in vitro cytotoxicity. Acta Physiol. Plant. 35, 1351–1362, https://doi.org/10.1007/s11738-012-1175-8 (2013).
32. Arora, N., Bhardwaj, R., Sharma, P., Arora, H. K. & Arora, P. Amelioration of zinc toxicity by 28-homobrassinolide in Zea mays L. Can J Pure Applied Sci 2, 503–509 (2008).
33. Anjum, N. A., et al. Glutathione and proline can coordinateely make plants withstand the joint attack of metalloid and salinity stresses. Front. Plant Sci. 5, https://doi.org/10.3389/fpls.2014.00662 (2014).
34. An, C. & Mou, Z. Salicylic Acid and Its Function in Plant Immunity. Journal of Integrative Plant Biology 53, 412−428, https://doi.org/10.1111/j.1744-7909.2011.01043.x (2011).
35. Zhang, P.-J., et al. Feeding by Whetflies Suppresses Downstream Jasmonic Acid Signaling by Eliciting Salicylic Acid Signaling. J. Chem. Ecol. 39, 612−619, https://doi.org/10.1007/s10886-013-0283-2 (2013).
36. Zengin, F. Exogenous Treatment with Salicylic Acid Alleviating Copper Toxicity in Bean Seedlings. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences 74, 749−755, https://doi.org/10.1007/s41011-009-0161-4 (2010).
37. Chao, Y.-Y., Chen, C.-Y., Huang, W.-D. & Kao, C. H. Salicylic acid-mediated hydrogen peroxide accumulation and protection against Cd toxicity in rice leaves. Plant Soil 329, 327−337, https://doi.org/10.1007/s11104-010-0476-4 (2010).
38. Chandrakar, V., Dubey, A. & Keshavkant, S. Modulation of antioxidant enzymes by salicylic acid in arsenic exposed Glycine max L. J. Soil Sci. Plant Nutr., 1-7, https://doi.org/10.4067/s0718-95262016050231 (2016).
39. Kotapati, K. V., Palaka, B. K. & Ampasala, D. R. Alleviation of nickel toxicity in finger millet (Eleusine coracana L.) germinating seedlings by exogenous application of salicylic acid and nitric oxide. The Crop Journal 5, 240−250, https://doi.org/10.1016/j.cj.2016.09.002 (2017).
40. Zengin, F. Effects of exogenous salicylic acid on growth characteristics and biochemical content of wheat seeds under arsenic stress. J. Environ. Biol. 36, 249 (2015).
41. Khan, A. L. et al. Phytohormones enabled endophytic fungal symbiosis improve aluminum phytoextraction in tolerant Solanum lycopersicum: An examples of Penicillium janthinellum LKS and comparison with exogenous GA3. J. Hazard. Mater. 295, 70−78, https://doi.org/10.1016/j.jhazmat.2015.04.008 (2015).
42. Fatima, R. N., Javed, F. & Wahid, A. Salicylic acid modifies growth performance and nutrient status of rice (Oryza sativa) under cadmium stress. International Journal of Agriculture and Biology 16 (2014).
43. Chaiwanon, J. & Wang, Z.-Y. Spatiotemporal Brassinosteroid Signaling and Antagonism with Auxin Pattern Stem Cell Dynamics in Arabidopsis Roots. Curr. Biol. 25, 1031−1042, https://doi.org/10.1016/j.cub.2015.02.046 (2015).
44. Saini, S., Sharma, I. & Pati, P. K. Versatile roles of brassinosteroids in plants in the context of its homoeostasis, signaling and crosstalks. Front. Plant Sci. 6, https://doi.org/10.3389/fpls.2015.00950 (2015).
45. Divi, U. K., Rahman, T. & Krishna, P. Brassinosteroid-mediated stress tolerance in Arabidopsis shows interactions with abscisic acid, ethylene and salicylic acid pathways. BMC Plant Biol. 10, 151, https://doi.org/10.1186/1471-2229-10-151 (2010).
46. Nakashita, H. et al. Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. Plant J. 33, 887−898, https://doi.org/10.1046/j.1365-3137.2004.02459.x (2004).
47. Iriti, M., Rossoni, M., Borgo, M., Ferrara, L. & Faoro, F. Induction of Resistance to Gray Mold with Benzothiadiazole Modifies Glutathione and Proline Production in Grey Mold-Infected Tomatoes. J. Agric. Food Chem. 63, 329−336, https://doi.org/10.1021/jf501758j (2015).
48. De Vleesschauwer, D. et al. Brassinosteroids Antagonize Gibberellin- and Salicylate-Mediated Root Immunity in Rice. Plant Physiol. 158, 1833−1846, https://doi.org/10.1104/pp.111.193672 (2012).
49. Kohli, S. K. et al. Combined effect of 24-epibrassinolide and salicylic acid mitigates Pb toxicity by modulating various metabolites in Brassica juncea L. seedlings. Protoplasma 255, 11−24, https://doi.org/10.1007/s00709-017-1124-x (2017).
50. Kohli, S. K. et al. Modulation of antioxidative defense expression and osmolyte content by co-application of 24-epibrassinolide and salicylic acid in Pb exposed Indian mustard plants. Ecotoxicol. Environ. Saf. 147, 382−393, https://doi.org/10.1016/j.ecoenv.2017.08.051 (2018).
51. Saini, S., Sharma, I. & Pati, P. K. Versatile roles of brassinosteroids in plants in the context of its homoeostasis, signaling and crosstalks. Front. Plant Sci. 6, https://doi.org/10.3389/fpls.2015.00950 (2015).
52. Divi, U. K., Rahman, T. & Krishna, P. Brassinosteroid-mediated stress tolerance in Arabidopsis shows interactions with abscisic acid, ethylene and salicylic acid pathways. BMC Plant Biol. 10, 151, https://doi.org/10.1186/1471-2229-10-151 (2010).
53. Nakashita, H. et al. Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. Plant J. 33, 887−898, https://doi.org/10.1046/j.1365-3137.2004.02459.x (2004).
54. Iriti, M., Rossoni, M., Borgo, M., Ferrara, L. & Faoro, F. Induction of Resistance to Gray Mold with Benzothiadiazole Modifies Glutathione and Proline Production in Grey Mold-Infected Tomatoes. J. Agric. Food Chem. 63, 329−336, https://doi.org/10.1021/jf501758j (2015).
55. Lee, Y.-P., Kim, J., Lee, J. & Lee, J. A. Oxidative stress and some antioxidant systems in acid rain-treated beans and plants. Plant Sci. 151, 59−66, https://doi.org/10.1016/S0168-9452(99)00197-1 (2000).
56. Heath, R. L. & Packer, L. Photoperoxidation in isolated chloroplasts. Archives of Biochemistry and Biophysics 125, 189−198, https://doi.org/10.1016/0003-9861(68)90654-1 (1968).
57. Ortega-Villasante, C., Hernández, L. E., Rellán-Alvarez, R., Del Campo, F. F. & Carpena-Ruiz, R. O. Rapid alteration of cellular...
58. Callard, D., Axelos, M. & Mazzolini, L. Novel Molecular Markers for Late Phases of the Growth Cycle of...
70. Bates, L. S., Waldren, R. P. & Teare, I. D. Rapid determination of free proline for water-stress studies. Plant Soil 39, 205–207, https://doi.org/10.1007/bf0018060 (1973).
71. Miretzky, P. & Cirelli, A. F. Hg(II) removal from water by chitosan and chitosan derivatives: A review. J. Hazard. Mater. 167, 10–23, https://doi.org/10.1016/j.jhazmat.2009.01.060 (2009).
72. Song, W. Y., Yang, H. C., Shao, H. B., Zheng, A. Z. & Brestic, M. The alleviative effects of salicylic acid on the activities of catalase and superoxide dismutase in multiway barley (Hordeum ungerianum L.) seedlings leaves stressed by heavy metals. CLEAN–Soil Air Water, 88–89, https://doi.org/10.1002/clen.201200310 (2014).
73. Ashraf, U. et al. Lead (Pb) Toxicity: Physio-Biochemical Mechanisms, Grain Yield, Quality, and Pb Distribution Proportions in Scented Rice. Front. Plant Sci.8, https://doi.org/10.3389/fpls.2017.00259 (2017).
74. Maodzeka, A. et al. Elucidating the physiological and biochemical responses of different tobacco (Nicotiana tabacum) genotypes to lead toxicity. Environ. Toxicol. Chem. 36, 175–181, https://doi.org/10.1002/etc.3522 (2017).
75. Hattab, S. et al. Characterisation of lead-induced stress molecular biomarkers in Medicago sativa plants. Environ. Exp. Bot. 123, 1–12, https://doi.org/10.1016/j.envexpbot.2015.10.005 (2016).
76. Tripathi, D. K. et al. LIB spectroscopic and biochemical analysis to characterize lead toxicity alleviative nature of silicon in wheat (Triticum aestivum L.) seedlings. J. Photochem. Photobiol. B: Biol. 154, 89–98, https://doi.org/10.1016/j.jphotobiol.2015.11.008 (2016).
77. Morel, J. L., Mench, M. & Guckert, A. Measurement of Pb2+ and Cd2+ binding with mucilage exudates from maize (Zea mays L.) roots. Biol. Fertility Soils 2, 29–34, https://doi.org/10.1007/bf00638958 (1986).
78. Punamiya, P. et al. Symbiotic role of Glomus mosseae in phytorextraction of lead in vetiver grass [Chrysopogon zizanioides (L.)]. J. Hazard. Mater. 177(1), 465–474, https://doi.org/10.1016/j.jhazmat.2009.12.056 (2010).
79. Kaur, G., Singh, H. P., Batish, D. R. & Kumar, R. K. Growth, photosynthetic activity and oxidative stress in wheat (Triticum aestivum L.) under chromium toxicity. Ecotoxicology 20, 862–874, https://doi.org/10.1007/s10646-011-0650-0 (2011).
80. Grover, P. et al. Genotoxicity evaluation in workers occupationally exposed to lead. Int. J. Hyg. Environ. Health 213, 99–106, https://doi.org/10.1016/j.ijheh.2010.01.005 (2010).
81. Yadav, S. K. Heavy metals toxicity in plants: An overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S. Afr. J. Bot. 76, 167–179, https://doi.org/10.1016/j.sajb.2009.10.007 (2010).
82. Ledford, H. K. & Niyogi, K. K. Single oxygen and photo-oxidative stress management in plants and algae. Plant, Cell and Environment 28, 1037–1045, https://doi.org/10.1111/j.1365-3040.2005.01374.x (2005).
83. Apel, K. & Hirt, H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55, 373–399, https://doi.org/10.1146/annurev.arplant.55.033103.141701 (2004).
84. Rai, V., Vaipayee, P., Singh, S. N. & Mehrotra, S. Effect of chromium accumulation on photosynthetic pigments, oxidative stress defense system, nitrate reduction, proline level and euqenol content of Octocorn tenuiflorum L. Plant Sci. 167, 1159–1169, https://doi.org/10.1016/j.plantsci.2004.06.016 (2004).
85. Shanker, A. K. & Pathmanaban, G. Speciation dependant antioxidative response in roots and leaves of sorghum (Sorghum bicolor (L.) Moench cv CO 27) under Cr (II) and Cr (VI) stress. Plant Soil 265, 141–151 (2004).
86. Ball, S. et al. Isomeric acid induced changes in phyto-biochemical attributes and ascorbate-glutathione pathway in Lycopersicon esculentum under lead stress at different growth stages. Sci. Tot. Environment. 645, 1344–1360 (2018).
87. Choudhary, S. P. et al. Changes induced by Cu2+ and Cr6+ metal stress in polyanines, auxins, abscisic acid titers and antioxidative enzymes activities of radish plants. Brazilian Journal of Plant Physiology 22, 263–270, https://doi.org/10.1590/s1677-04002010000200006 (2010).
88. Ramakrishna, B. & Rao, S. S. R. Foliar application of brassinosteroids alleviates adverse effects of zinc toxicity in radish (Raphanus sativus L.) plants. Protoplasma252, 665–677, https://doi.org/10.1007/s00709-014-0714-0 (2015).
89. Overmyer, K., Brosché, M. & Kangasjärvi, J. Reactive oxygen species and hormonal control of cell death. Trends Plant Sci. 8, 335–342, https://doi.org/10.1016/s1360-1385(03)00135-3 (2003).
90. Attmaca, G. Antioxidant Effects of Sulfur-Containing Amino Acids. Yonsei Medical Journal 145, 776, https://doi.org/10.3349/ymj.2004.55.4.776 (2004).
91. Okamoto, O. K., Pinto, E., Latorre, L. R., Bechara, E. J. H. & Colepiolo, P. Antioxidant Modulation in Response to Metal-Induced Oxidative Stress in Algal Chloroplasts. Arch. Environ. Contam. Toxicol. 40, 18–24, https://doi.org/10.1007/s0024400101441 (2001).
92. Nareshkumar, A. et al. Pb-Stress Induced Oxidative Stress Caused Alterations in Antioxidant Efficacy in Two Groundnut (Arachis hypogaea L.) Cultivars. Agricultural Sciences 06, 1283–1297, https://doi.org/10.4236/as.2015.010233 (2015).
93. Noctor, G. Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signalling. J. Exp. Bot. 53, 1283–1304, https://doi.org/10.1093/jxbor.53.372.1283 (2002).
94. Sobolev, D. & Begonia, M. Effects of heavy metal contamination upon soil microbes: lead-induced changes in general and denitrifying microbial communities as evidenced by molecular markers. Int. J. Environ. Res. Pub. Health 5(3), 450–456, https://doi.org/10.3390/ijerph5030450 (2008).
95. Hasan, S. A., Hayat, S., Ali, B. & Ahmad, A. 28-Homobrassinolide protects chickpea (Cicer arietinum) from cadmium toxicity by stimulating antioxidants. Environ. Pollut. 151, 60–66, https://doi.org/10.1016/j.envpol.2007.03.006 (2008).
96. Ali, B. et al. A role for brassinosteroids in the amelioration of aluminium stress through antioxidant system in mung bean (Vigna radiata L. Wilczek). Environ. Exp. Bot. 62, 153–159, https://doi.org/10.1016/j.envexpbot.2007.07.014 (2008).
97. Han, Y., Chen, G., Chen, Y. & Shen, Z. Cadmium Toxicity and Alleviating Effects of Exogenous Salicylic Acid in Iris hexagona. Bull. Environ. Contamin. Toxicol. 95, 796–802, https://doi.org/10.1007/s00128-015-1640-3 (2015).
98. Parashar, A., Yusuf, M., Fariduddin, Q. & Ahmad, A. Salicylic acid enhances antioxidant system in Brassica juncea grown under different levels of manganese. International J. Biol. Macromol. 70, 551–558, https://doi.org/10.1016/j.ijbiomac.2014.07.014 (2014).
108. Deng, X. G. et al. Role of brassinosteroid signaling in modulating Tobacco mosaic virus resistance in Nicotiana benthamiana. Sci. Rep. 6, 20579, https://doi.org/10.1038/srep20579 (2016).

109. Brosnan, J. T. & Brosnan, M. E. The Sulfur-Containing Amino Acids: An Overview. The Journal of Nutrition 136, 1636S–1640S, https://doi.org/10.1093/jn/136.6.1636 (2006).

110. Sharma, S. S. & Dietz, K. J. The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J. Exp. Bot. 57, 711–726, https://doi.org/10.1093/jxb/jer089 (2006).

111. Callahan, D. L., Baker, A. J. M., Kolev, S. D. & Wedd, A. G. Metal ion ligands in hyperaccumulating plants. JBioChem 11, 2–12, https://doi.org/10.1007/s00775-005-0056-7 (2006).

112. Li, Y. et al. Lead tolerance mechanism in Conyza canadensis: subcellular distribution, ultrastructure, antioxidative defense system, and phytochelatins. J. Plant Res. 129, 251–262, https://doi.org/10.1007/s10265-015-0776-x (2016).

113. Wang, S. H., Kumar, V., Shriram, V. & Sah, S. K. Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. The Crop Journal 4, 162–176, https://doi.org/10.1016/j.cj.2016.03.019 (2016).

114. Dhir, B., Nasim, S. A., Samantary, S. & Srivastava, S. Assessment of Osmolyte Accumulation in Heavy Metal Exposed Salvinia natans. International Journal of Botany 8, 153–158, https://doi.org/10.3923/ijb.2012.153.158 (2012).

115. Khatib, H. Role of glutathione and polyadenylic acid on the oxidative defense systems of two different cultivars of canola seedlings grown under salinity conditions. Australian Journal of Basic and Applied Sciences 1, 323–324 (2007).

116. Xi, Z.-m et al. Regulating the secondary metabolism in grape berry using exogenous 24-epibrassinolide for enhanced phenolics content and antioxidant capacity. Food Sci. 141, 3056–3065, https://doi.org/10.1016/j.foodchem.2013.05.137 (2013).

117. Choudhary, S. P., Kanwar, M., Bhardwaj, R., Gupta, B. D. & Gupta, R. K. Epibrassinolide ameliorates Cr (VI) stress via influencing the levels of indole-3-acetic acid, abscisic acid, polyamines and antioxidant system of radish seedlings. Chemosphere 84, 592–600, https://doi.org/10.1016/j.chemosphere.2011.03.056 (2011).

118. Iqbal, N., Nazar, R., Syeed, S., Masood, A. & Khan, N. A. Exogenously-sourced ethylene increases stomatal conductance, photosynthesis, and growth under optimal and deficient nitrogen fertilization in mustard. J. Exp. Bot. 62, 4955–4963, https://doi.org/10.1093/jxb/eru204 (2011).

119. Parmar, P., Kumari, N. & Sharma, V. Structural and functional alterations in photosynthetic apparatus of plants under cadmium stress. Bot. Stud. 54(1), 45, https://doi.org/10.1186/1999-3110-54-45 (2013).

120. Rider, J. E. et al. Spermine and spermidine mediate protection against oxidative damage caused by hydrogen peroxide. Amino Acids 33, 231–240, https://doi.org/10.1007/s00726-007-0513-4 (2007).

121. Groppa, M. D., Tomaro, M. L. & Renavides, M. P. Polyamines and heavy metal stress: the antioxidant behavior of spermine in cadmium- and copper-treated wheat leaves. BioMetals 20, 185–195, https://doi.org/10.1007/s10534-006-9026-y (2007).

122. Rouphael, Y. et al. Zinc Excess Triggered Polyamines Accumulation in Lettuce Root Metabolome, As Compared to Osmotic Stress under High Salinity. Front. Plant Sci. 7, https://doi.org/10.3389/fpls.2016.00942 (2016).

123. Choudhary, S. P., Oral, H. V., Bhardwaj, R., Yu, J.-Q. & Tran, L.-S. P. Interaction of Brassinosteroids and Polyamines Enhances Copper Stress Tolerance in. Raphanus Sativus. J. Exp. Bot. 63, 5659–5675, https://doi.org/10.1093/jxb/ers219 (2012).

124. Szalai, G., Pál, M., Årendás, T. & Janda, T. Priming seed with salicylic acid increases grain yield and modifies polyamine levels in maize. Cereal Research Communications 44, 537–548, https://doi.org/10.1556/0866.44.2016.038 (2016).

125. Takács, Z., Poór, P. & Tari, J. Comparison of polyamine metabolism in tomato plants exposed to different concentrations of salicylic acid under light or dark conditions. Plant Physiol. Biochem. 108, 266–278, https://doi.org/10.1016/j.plaphy.2016.07.020 (2016).

126. Cheng, Y.-J., Yang, S.-H. & Hsu, C.-S. A. Synthesis of Conjugated Polymers for Organic Solar Cell Applications. Chemical Reviews 109, 5868–5923, https://doi.org/10.1021/cr900182s (2009).

127. Lokhande, V. H. & Suprasanna, P. In Environmental Adaptations and Stress Tolerance of Plants in the Era of Climate Change 29–56 (Springer New York, 2012).

128. Rauscher, W. E. & Saramakoon, A. B. Yeast loading in seedlings of Phaseolus vulgaris exposed to excess cobalt, nickel, and zinc. Plant Physiol. 65(4), 578–583, https://doi.org/10.1104/pp.65.4.578 (1980).

129. Anuradha, S. & Rao, S. Amelioration of lead toxicity in radish (Raphanus sativus L) plants by brassinolide. Journal of Applied Biological Sciences, 43–48 (2011).

130. Bhushan, B. & Gupta, K. Effect of carbohydrate mobilization in oat seeds during germination. Journal of Applied Sciences and Environmental Management 12, https://doi.org/10.4314/jasem.v12i12.55523 (2008).

131. Dong, Y. J. et al. Interaction effects of nitric oxide and salicylic acid in alleviating salt stress of Gossypium hirsutum L. J. Soil Sci. Plant Nutr. 0–0, https://doi.org/10.4067/S0718-956210.00500024 (2015).

132. Jha, A. B. & Dubey, R. S. Effect of arsenic on behaviour of enzymes of sugar metabolism in germinating rice seeds. Acta Physiol. Plant. 27, 341–347, https://doi.org/10.1021/j311738e-005-0910.1 (2006).

133. Li, P., Chen, L., Zhou, Y., Xia, X. & Shi, K. Brassinosteroids-induced systemic stress tolerance was associated with increased expression of several defenserelated genes in the phloem in Cucumis sativus. PLoS One, 8, e66582, https://doi.org/10.1371/journal.pone.0066582 (2013).

134. Wu, Q.-S., Srivastava, A. K. & Zou, Y.-N. AMF-induced tolerance to drought stress in citrus: A review. Sci. Hort. 164, 77–87, https://doi.org/10.1016/j.scienta.2013.09.010 (2013).

Acknowledgements

The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for its funding to the Research Group number (RG-1435-014). The authors also acknowledge University Grant Commission, GOI (Maulana Azad National Fellowship) and DST-FIST, of GOI for their support.

Author Contributions

Sukhmeen Kaur Kohli, Renu Bhardwaj and Parvaiz Ahmad, designed the experimental work. Sukhmeen Kaur Kohli, Shagun Bali performed the experiments. A.A. Alqarawi and Elsayed Fathi Abd_Allah analyzed the data. Ruchi Tejpal, Vandana Bhalla, Vinod Verma helped in writing of introduction and discussion part of the manuscript. Renu Bhardwaj and Parvaiz Ahmad revised the manuscript to present form.

Additional Information

Competing Interests: The authors declare no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
