Surface plasmon polaritons assisted diffraction in periodic subwavelength holes of metal films with reduced interplane coupling

Xu Fang, Zhiyuan Li, Yongbing Long, Hongxiang Wei, Rongjuan Liu, Jiyun Ma, M. Kamran, Huaying Zhao, Xiufeng Han, Bairu Zhao, and Xianggang Qiu

Institute of Physics, Chinese Academy of Sciences, and Beijing National Laboratory for Condensed Matter Physics, Beijing 100080, China
(Dated: February 1, 2008)

Abstract

Metal films grown on Si wafer perforated with a periodic array of subwavelength holes have been fabricated and anomalous enhanced transmission in the mid-infrared regime has been observed. High order transmission peaks up to Si(2,2) are clearly revealed due to the large dielectric constant contrast of the dielectrics at the opposite interfaces. Si(1,1) peak splits at oblique incidence both in TE and TM polarization, which confirms that anomalous enhanced transmission is a surface plasmon polaritons (SPPs) assisted diffraction phenomenon. Theoretical transmission spectra agree excellently with the experimental results and confirm the role of SPPs diffraction by the lattice.

PACS numbers: 73.20.Mf, 78.67.-n, 42.25.Bs, 42.70.Qs
Since the discovery of anomalous enhanced transmission of subwavelength metallic hole arrays in 1998 [1], enormous interest has been sparked among worldwide researchers due to its potential application in subwavelength optoelectronic devices as well as the underlying physics. Although the exact origin of the enhanced transmission remains under controversial [2, 3], it is generally acknowledged that surface plasmon polaritons (SPPs) are playing a crucial role. Recent researches indicate that this phenomenon could be a SPPs assisted diffraction process [4, 5]. In this process, the coupling of SPPs on the opposite interfaces of the metal film helps the electromagnetic energy to tunnel through the subwavelength holes [6]. This interplane coupling is substantial when the dielectrics at the interfaces are similar, and is the strongest when they are identical [7]. To achieve high transmittance, most previous work adopts either free standing films or films on substrates with small dielectric constants. However, the strong interplane interference in this kind of samples will hinder the mechanism from getting fully revealed [8]. For thin films with identical interfaces, this interference could even lift the degeneracy of SPPs on the two interfaces and alter their modes [9, 10]. So it is of great interest to reduce the interference in order to study the underlying physics of the SPPs at each individual interface. For this purpose, we adopt the Air/Au/Si system in which air and Si have large difference in their dielectric constants in the mid-infrared. The thickness of the metal films is an order larger than the skin depth (about 20 nm for Au at the mid-infrared). It is expected that in such system the interference of the SPP modes at two interfaces is greatly reduced and the characteristics of SPPs at a single interface are preserved.

Metal films were deposited on Si wafer by magnetic sputtering. The hole arrays were fabricated by conventional ultraviolet photolithography and reactive ion etching. All the patterns are square arrays of circular holes, occupying an area of $7 \times 7 \text{mm}^2$ respectively. The hole number for each pattern is over one million and the finite size effect is assumed to be well avoided [11]. The infrared transmittance spectra were obtained with an ABB Bomem DA8 Fourier transform infrared spectrometer.

Shown in Fig. 1(a) is the zeroth-order transmittivity (transmittance normalized by the porosity of the film) of three Au films under normal incidence. All three films have a thickness of 320 nm and a hole diameter of 3 μm. The lattice constants are 5 (sample A), 6 (sample B) and 7 (sample C) μm respectively. Three salient features can clearly be discerned. (i) Because the dielectric constant of Si ($\varepsilon=11.7$) is much larger than that of air
in the mid-infrared regime, the distance between Air($1,0$) and Si($1,0$) is greatly expanded in comparison with previous reports (Si($1,0$) are at 21.02 μm and 24.41 μm for samples B and C respectively, which are not shown in the figure). (ii) High order peaks such as Si($1,1$), (2,0) and (2,1) can be clearly observed between Air($1,0$) and Si($1,0$). (iii) Peaks with the same order of the three samples shift according to the periodicities, and they have larger wavelengths for larger periodicities. Numerical calculations on the transmission spectra have been performed by means of a transfer-matrix method combined with an analytical modal solution [12], using the same material parameters as in the experiments, and the results are displayed in Fig. 1(b). The circular holes are treated as square ones with the same area, considering the convenience in modeling. A series of resonant peaks can be clearly found and their positions agree well with the experimental data.

We attribute the above observation to be a result of SPPs assisted diffraction process. SPPs have different momenta from light of the same energy [13]. The gap between the momenta can be compensated with the presence of a periodic hole array. The momentum matching condition is

$$\vec{k}_{sp} = \vec{k}_\parallel \pm i\vec{G}_x \pm j\vec{G}_y,$$

(1)

where k_{sp} is the wave vector of SPPs, k_\parallel is the inplane wave vector component of the incident light (zero for normal incidence), i and j are integers, G_x and G_y are the reciprocal vectors [14]. These two indices have been used to designate the resonant peaks in Fig. 1(a). We have extracted the experimental SPPs dispersion from the data shown in Fig. 1(a) through Eq. (1) and compared with the theoretical one which adopts the material parameters in Ref. [15, 16], and found that these two curves fit very well.

To further confirm the view above, we measured the angular dependent transmittivity of sample D (thickness 220nm, periodicity 5 μm and hole diameter 3 μm). The incident angle varies from 0° to 36°, with a 4° increment. Under TM polarization (polarization perpendicular to the rotation pole), Si($1,0$) and Si($1,1$) split into two branches. The data for Si($1,1$) is shown in Fig 3. Under TE polarization (polarization parallel to the rotation pole), Si($1,0$) undergoes minor blueshift (from 17.63 μm at 0° to 17.46 μm at 36°) while Si($1,1$) splits with the splitting getting larger with the increasing angle, as shown in Fig 2(a). This is the only report that shows peak splitting under TE polarization up to now. The theoretical spectra, as displayed in Fig. 2(b), reproduce the experimental data excellently.

SPPs have p-wave like character and the electric field lies parallel with their propagation
direction. They can be excited if the incident light has a component of the electric field parallel to their propagation direction \([17]\). For the fourfold degenerate \((\pm 1,0)\) and \((0,\pm 1)\) SPP modes, only \((0,\pm 1)\) modes can be excited under TE-polarized incident light. \(k_\parallel\) has no projection along the directions \((0,\pm 1)\), so the modes remain degenerated and no splitting can be observed upon the change of incident angle. This is what we observed above and by other groups \([4]\). However, for Si(1,1) modes which propagate in the direction \((\pm 1, \pm 1)\), \(k_\parallel\) and \(E_\parallel\) have a 45° or 135° angle with respect to the propagation direction of SPPs respectively. All 4 modes can be excited and \(k_\parallel\) has a component along their propagation directions. According to Eq. (1), \(k_\parallel\) will be added to or subtracted from the reciprocal vectors, depending on the propagation direction. So the degeneracy of the \((\pm 1, \pm 1)\) modes will be lifted off, and the Si (1,1) peak shows a splitting. The dispersion curves for both polarizations are displayed in Fig. 3. The theoretical ones extracted from Fig. 2(b) and calculated based on SPPs model are also presented. The experimental curves for TE and TM polarization are similar and fit fairly well with the theoretical ones. It is noticed that, the two peaks under TM polarization are broader and weaker than their counterparts under TE polarization. This is because TM light penetrates deeper into the metal and gets absorbed more strongly than TE light.

The similar splitting characters of Si(1,1) under TE and TM polarizations clearly confirm the involvement of SPPs during the transmission process. We notice that Ref. \([8]\) has successfully predicted this experiment results through Huygens diffraction model. According to Refs. \([8, 18]\), we believe that strong interplane coupling would hinder the observation of the splitting behavior under TE polarization. The strong coupling could be the reason why in the previous work no splitting in the TE polarization has been reported.

The discussion above also applies well to the high order peaks of Si(2,0), (2,1) and (2,2). Under TE polarization, Si(2,0) makes minor blueshift (from 8.66 \(\mu m\) at 0° to 8.47 \(\mu m\) at 36°), which is similar to Si(1,0). Si(2,1) stays nearly unchanged since it will split into 4 branches, making the splitting hard to detect. Si(2,2) is at 6.35 \(\mu m\) at 0°, then splits into two branches, which are at 5.95 \(\mu m\) and 6.63 \(\mu m\) at 16°. This behavior is similar to Si(1,1). The change for high order peaks is generally not as significant as the lower order ones. The reason is that the reciprocal vectors for high order peaks are large, making them less sensitive to the change of the inplane vector of the incident light.

To verify that the interplane coupling is indeed very weak in the present system, we fabricated a series of Pt films with different thickness and did the same measurements. All
the peaks stay unchanged in wavelength until being overlapped by other peaks or merged into the background as the thickness decreases. Further numerical calculations on sample D with various thicknesses are made. The calculated transmission spectra of these samples under TE-polarized illumination at an incident angle of 16° are displayed in Fig. 4. The resonant peaks stay unchanged in wavelength while the thickness changes over 7 times from 120 nm to 920 nm, which clearly manifests the character of decoupled SPPs [19, 20]. The splitting behavior does not change with the thickness, as long as the interplane coupling is weak.

We notice that although most existing relevant theories treat the holes in the array as point scattering centers, it is expected that the finite size of the hole diameter will modify the exact behavior of the diffraction [21, 22, 23, 24]. It is found that when the diameter of the holes is larger than half of the periodicity, the (1,0) peak will split into two [25]. The reduced interference between the SPPs at two interfaces in the current system facilitates the study of the influence of hole diameter on the SPPs assisted diffraction process. To this end, we fabricated sample E with thickness of 320 nm, lattice constant of 6 µm, and hole diameter of 4 µm, and compare the zeroth-order normal-incidence transmission of sample B and E, which are only different in hole diameters, as shown in Fig. 5. The most distinguished difference between the two spectra is around 10 µm where Si(2,0) and (2,1) in sample B seem to get merged in sample E. The theoretical result confirms such a phenomenon, as can be found in the inset.

Since SPPs on the opposite interfaces overlap greater for larger holes, one may attribute this phenomenon to the enhancement of the interplane coupling. We believe it is not the real reason. First, the wave vectors of SPPs corresponding to Si(2,0) and (2,1) are quite different from those of Air(1,0). There could not be any strong coupling. Second, we have done the angular dependence experiments of sample D and obtain similar results. As discussed previously, this verifies that interplane coupling is weak in these samples.

We attribute this change to the inplane Bragg scattering of SPPs. When the hole diameter exceeds half of the periodicity, Bragg scattering will introduce band gaps to the dispersion relation, which correspond to different distributions of charges and electromagnetic field in space [26]. SPPs corresponding to the high order peaks have small wavelengths, so they are more sensitive to the actual size of the holes. We also find through numerical calculation that high order peaks are usually sharper and more pronounced when the hole diameter is
In summary, by adopting Si which has a large dielectric constant in comparison to air in the mid-infrared regime and metal films of large thicknesses, we succeed in investigating the properties of SPPs at individual interfaces. The enhanced transmission is observed in an extended wavelength regime and transmission peaks with highest order up to (2,2) are clearly revealed and fit well with the inplane propagation characters of SPPs. The splitting of peaks Si(1,1) is observed in TE and TM polarization, which confirms that the enhanced transmission is a SPPs assisted diffraction phenomenon. Numerical calculations on the transmission spectra have been made and the results agree excellently with the experimental data. The agreement between the numerical calculations and experimental results, together with the successful explanation of the experimental results based on SPPs further clearly confirms the role played by SPPS in the enhanced transmission. Since Si is the base material for modern microelectronic applications, the extended working wavelength regime for the subwavelength optics makes the current system in study a potential prototype element in the future plasmonic circuits which can merge photonics and electronics at nanoscale dimensions.

The authors thank M. P. van Exter, C. Genet, W. M. Liu and J. J. Hu for enlightening advice and C. Z. Bi, Q. Luo, and H. F. Yang for technical help. This work is supported by National Science Foundation of China (No. 10674168 and 10525419) and the MOST of China(973 project No:2006CB601006), and project ITSNEM of the Chinese Academy of Sciences.

* Electronic address: xgqiu@aphy.iphy.ac.cn

[1] T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature (London) 391, 667 (1998).
[2] G. Gay, O. Alloschery, B. V. de Lesegno, J. Weiner, and H. J. Lezec, Phys. Rev. Lett. 96, 213901 (2006).
[3] M. M. J. Treacy, Phys. Rev. B 66, 195105 (2002).
[4] W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, Phys. Rev. Lett. 92, 107401 (2004).
[5] F. Przybilla, A. Degiron, J. Y. Laluet, C. Genet, and T. Ebbesen, J. Opt. A Pure Appl. Opt.
8, 458 (2006).

[6] L. Martín-Moreno et al., Phys. Rev. Lett. 86, 1114 (2001).
[7] A. Krishnan et al., Opt. Commun. 200, 1 (2001).
[8] C. Genet, M. P. van Exter, and J. P. Woerdman, J. Opt. Soc. Am. A 22, 998 (2005).
[9] D. Sarid, Phys. Rev. Lett. 47, 1927 (1981).
[10] J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, Phys. Rev. B 72, 075405 (2005).
[11] F. Miyamaru and M. Hangyo, Appl. Phys. Lett. 84, 2742 (2004).
[12] H. Y. Sang, Z. Y. Li, and B. Y. Gu, J. Appl. Phys. 97, 033102 (2005).
[13] H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).
[14] H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, Phys. Rev. B 58, 6779 (1998).
[15] M. A. Ordal et al., Appl. Opt. 22, 1099 (1983).
[16] E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, London, 1985).
[17] L. Salomon, F. Grillot, A. V. Zayats, and F. de Fornei, Phys. Rev. Lett. 86, 1110 (2001).
[18] D. Grard, L. Salomon, F. de Fornei, and A. V. Zayats, Opt. Express 12, 3652 (2004).
[19] A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, Appl. Phys. Lett. 81, 4327 (2002).
[20] J. A. Porto, F. J. Garcia-Vidal and J. B. Pendry, Phys. Rev. Lett. 83, 2845 (1999).
[21] J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, Science 305, 847 (2004).
[22] S. Fasel, F. Robin, E. Moreno, D. Erni, N. Gisin, and H. Zbinden, Phys. Rev. Lett. 94, 110501 (2005).
[23] K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, Phys. Rev. Lett. 92, 183901 (2004).
[24] F. J. Garcia-Vidal, E. Moreno, J. A. Porto, and L. Martin-Moreno, Phys. Rev. Lett. 95, 103901 (2005).
[25] M. W. Tsai, T. H. Chuang, H. Y. Chang, and S. C. Lee, Appl. Phys. Lett. 88, 213112 (2006).
[26] S. A. Darmanyan and A. V. Zayats, Phys. Rev. B 67, 035424 (2003).
Figure Captions:

Fig. 1 (a) Experimental and (b) theoretical results of transmittivity of subwavelength hole arrays on Au films. Air stands for the Air/Au interface and Si stands for the Si/Au interface. The periodicities are 5 (sample A), 6 (sample B) and 7 (sample C) \(\mu \text{m} \) respectively. The resonant peaks have been designated according to the SPPs model.

Fig. 2 (a) Experimental and (b) theoretical results of transmittivity of sample D under TE-polarized illumination. Shown in the figure are representative spectra at incident angles from 0° to 32° with a step of 8°. Consecutive curves have been shifted a value of 0.04 upwards to improve readability.

Fig. 3 (Color online) Dispersion relation of Si(1,1) of sample D. For TE and TM polarizations, the incident angle in the experiment changes from 0° to 36° with a step of 4°. The numerical calculation result is extracted from Fig. 2(b). The line is the theoretical curve calculated by SPPs model.

Fig. 4 (Color online) Theoretical transmittivity of sample D with various film thickness. The illumination is TE-polarized, with an incident angle of 16°.

Fig. 5 (Color online) Experimental and theoretical (inset) results of transmittivity of sample B (diameter= 3 \(\mu \text{m} \)) and E (diameter= 4 \(\mu \text{m} \)) under normal illumination.
