Formalizing computability theory via partial recursive functions

Mario Carneiro Carnegie Mellon University, Pittsburgh, PA, USA
mcarneir@andrew.cmu.edu

Abstract

We present an extension to the mathlib library of the Lean theorem prover formalizing the foundations of computability theory. We use primitive recursive functions and partial recursive functions as the main objects of study, and we use a constructive encoding of partial functions such that they are executable when the programs in question provably halt. Main theorems include the construction of a universal partial recursive function and a proof of the undecidability of the halting problem. Type class inference provides a transparent way to supply Gödel numberings where needed and encapsulate the encoding details.

2012 ACM Subject Classification Theory of computation → Recursive functions; Theory of computation → Interactive proof systems

Keywords and phrases Lean, computability, halting problem, primitive recursion

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.23

Related Version A full version of the paper is available at https://arxiv.org/abs/1810.08380.

Supplement Material The formalization is a part of the mathlib Lean library at https://github.com/leanprover-community/mathlib and a snapshot as of this publication is available at http://github.com/digama0/mathlib-ITP2019.

Funding This material is based upon work supported by AFOSR grant FA9550-18-1-0120 and a grant from the Sloan Foundation.

Acknowledgements I would like to thank my advisor Jeremy Avigad for his support and encouragement, and for his reviews of early drafts of this work, as well as Yannick Forster, Rob Y. Lewis, and the anonymous reviewers for their many helpful comments.

1 Introduction

Computability theory is the study of the limitations of computers, first brought into focus in the 1930s by Alan Turing by his discoveries on the existence of universal Turing machines and the unsolvability of the halting problem [13]. In the following years Alonzo Church described the λ-calculus as a model of computation [3], and Kleene proposed the μ-recursive functions; that these all give the same collection of “computable functions” gave credence to the thesis [8] that this is the “right” notion of computation, and that all others are equivalent in power. Today, this work lies at the basis of programming language semantics and the mathematical analysis of computers.

Like many areas of mathematics, computability theory remains somewhat “formally ambiguous” about its foundations, in the sense that most theorems and proofs can be stated with respect to a number of different concretizations of the ideas in play. This ambiguity is somewhat frustrating for a formalizer, who would prefer some universal conventions, but it also provides some freedom to pick the representation that fits best with the formal system.

In computability theory, we have three or four competing formulations of “computable,” which are all equivalent, but each present their own view on the concept. As a pragmatic matter, Turing machines have become the de facto standard formulation of computable
functions, but they are also notorious for requiring a lot of tedious encoding in order to
get the theory off the ground, to the extent that the term “Turing tarpit” is now used for
languages in which “everything is possible but nothing of interest is easy.” Asperti and
Riccioti have formalized the construction of a universal Turing machine in Matita, but the
encoding details make the process long and arduous. Norrish uses the lambda calculus
in HOL4, which is cleaner but still requires some complications with respect to the handling
of partiality and type dependence.

Instead, we build our theory on Kleene’s theory of μ-recursive functions. In this theory,
we have a collection of functions $\mathbb{N}^k \rightarrow \mathbb{N}$, in which we can perform basic operations on
\mathbb{N}, as well as recursive constructions on the natural number arguments. This produces
the primitive recursive functions, and adding an unbounded recursion operator $\mu x. P(x)$ gives
these functions the same expressive power as Turing-computable functions. We hope to show
that the “main result” here, the existence of a universal machine, is easiest to achieve over
the partial recursive functions, avoiding the complications of explicit substitution in the
λ-calculus and encoding tricks in Turing Machines, and moreover that the usage of typeclasses
for Gödel numbering provides a rich and flexible language for discussing computability over
arbitrary types.

This theory has been developed in the Lean theorem prover, a relatively young proof
assistant based on dependent type theory with inductive types, written primarily by Leonardo
de Moura at Microsoft Research. The full development is available in the mathlib standard
library. In Section 2 we describe our extensible approach to Gödel numbering, in Section 3
we look at primitive recursive functions, extended to partial recursive functions in Section 4.
Section 5 deals with the universal partial recursive function and its properties, including its
application to unsolvability of the halting problem.

2 Encodable sets

As mentioned in the introduction, we would like to support some level of formal ambiguity
when encoding problems, such as defining languages as subsets of \mathbb{N} vs. subsets of $\{0, 1\}^*$,
or even Σ^* where Σ is some finite or countable alphabet. Similarly, we would like to talk
about primitive recursive functions of type $\mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$, or the partial recursive function
$\text{eval} : \text{code} \times \mathbb{N} \rightarrow \mathbb{N}$ that evaluates a partial function specified by a code (see Section 5).

Unfortunately it is not enough just to know that these types are countable. While the
exact bijection to \mathbb{N} is not so important, it is important that we not use one bijection in a
proof and a different bijection in the next proof, because these differ by an automorphism of
\mathbb{N} which may not be computable. (For example, if we encode the halting Turing machines
as even numbers and the non-halting ones as odd numbers, and then the halting problem
becomes trivial.) In complexity theory it becomes even more important that these bijections
are “simple” and do not smuggle in any additional computational power.

To support these uses, we make use of Lean’s typeclass resolution mechanism, which is a
way of inferring structure on types in a syntax-directed way. The major advantage of this
approach is that it allows us to fix a uniform encoding that we can then apply to all types
constructed from a few basic building blocks, which avoids the multiple encoding problem,
and still lets us use the types we would like to (or even construct new types like code whose

1 The mathlib library can be found at https://github.com/leanprover/mathlib containing the full
development. A snapshot of the library as of this publication is available at http://github.com/digama0/mathlib-ITP2019

\[\begin{array}{cccc}
0 & 1 & 2 & 3 \\
0 & 1 & 4 & 9 \\
1 & 2 & 3 & 10 \\
2 & 6 & 7 & 11 \\
3 & 12 & 13 & 15 \\
\end{array} \]

- **Figure 1** The pairing function \(\text{mkpair} \ a \ b = \text{if } a < b \text{ then } b*b + a \text{ else } a*a + a + b \).

```lean
class encodable (α : Type u) :=
(encode : α → nat)
(decode : nat → option α)
(encodek : ∀ a, decode (encode a) = some a)

variables {α β}
[encodable α][encodable β]
def encode_sum : α ⊕ β → ℕ
| (inl a) := 2 * encode a
| (inr b) := 2 * encode b + 1

def encode_prod : α × β → ℕ
| (a, b) := mkpair (encode a) (encode b)

def encode_option : option α → ℕ
| none := 0
| (some a) := succ (encode a)
```

- **Figure 2** The encodable typeclass, and some example definitions of the encoding functions for the disjoint sum and product operators on types. (The corresponding decode functions are omitted.)

Explicit structure reflects the inductive construction of partial recursive functions, rather than the encoding details).

At the core of this is the function \(\text{mkpair} : \mathbb{N} \times \mathbb{N} \to \mathbb{N} \), and its inverse \(\text{unpair} : \mathbb{N} \to \mathbb{N} \times \mathbb{N} \) forming a bijection (see Figure 1). There is very little we need about these functions except their definability, and that \(\text{mkpair} \) and the two components of \(\text{unpair} \) are primitive recursive.

We say that a type \(\alpha \) is *encodable* if we have a function \(\text{encode} : \alpha \to \mathbb{N} \), and a partial inverse \(\text{decode} : \mathbb{N} \to \text{option } \alpha \) which correctly decodes any value in the image of \(\text{encode} \). Here option \(\alpha \) is the type consisting of the elements some \(a \) for \(a : \alpha \), and an extra element none representing failure or undefinedness. If the \(\text{decode} \) function happens to be total (that is, never returns none), then \(\alpha \) is called *denumerable*. Importantly, these notions are “data” in the sense that they impose additional structure on the type – there are nonequivalent ways for a type to be encodable, and we will want these properties to be inferred in a consistent way.

Classically, an encodable instance on \(\alpha \) is just an injection to \(\mathbb{N} \), and a denumerable instance is just a bijection to \(\mathbb{N} \). But these notions have additional constructive import, and they lie in the executable fragment of Lean, meaning that one can actually run these encoding functions on concrete values of the types, i.e. we can evaluate \(\text{encode} (\text{some} \ (2, 3)) = 12 \).
3:4 Formalizing computability theory

\[
\text{inductive primrec : } (\mathbb{N} \to \mathbb{N}) \to \text{Prop} \\
\quad \text{zero : primrec } (\lambda n, 0) \\
\quad \text{succ : primrec succ} \\
\quad \text{left : primrec } (\lambda n, \text{fst } (\text{unpair } n)) \\
\quad \text{right : primrec } (\lambda n, \text{snd } (\text{unpair } n)) \\
\quad \text{pair } \{f \ g\} : \text{primrec } f \to \text{primrec } g \to \text{primrec } (\lambda n, \text{mkpair } (f n) (g n)) \\
\quad \text{comp } \{f \ g\} : \text{primrec } f \to \text{primrec } g \to \text{primrec } (f \circ g) \\
\quad \text{prec } \{f \ g\} : \text{primrec } f \to \text{primrec } g \to \text{primrec } (\text{unpaired } (\lambda z n, \text{nat.rec_on } n (f z) (\lambda y \text{IH}, g (\text{mkpair } z (\text{mkpair } y \text{IH})))))
\]

Figure 3: The definition of primitive recursive on \(\mathbb{N}\) in Lean. The unpaired function turns a function \(\mathbb{N} \to \mathbb{N} \to \mathbb{N}\) into \(\mathbb{N} \to \mathbb{N}\) by composing with unpair, and \(\text{nat.rec_on : } \mathbb{N} \to \alpha \to (\mathbb{N} \to \alpha \to \alpha) \to \alpha\) is Lean’s built-in recursor for \(\mathbb{N}\).

3 Primitive recursive functions

The traditional definition of primitive recursive functions looks something like this:

\begin{itemize}
 \item \textbf{Definition 1.} The primitive recursive functions are the least subset of functions \(\mathbb{N}^k \to \mathbb{N}\) satisfying the following conditions:
 \begin{itemize}
 \item The function \(n \mapsto 0\) is prim. rec.
 \item The function \(n \mapsto n + 1\) is prim. rec.
 \item The function \((n_0, \ldots, n_{k-1}) \mapsto n_i\) is prim. rec. for each \(0 \leq i < k\).
 \item If \(f : \mathbb{N}^k \to \mathbb{N}\) and \(g_i : \mathbb{N}^m \to \mathbb{N}\) for \(i \leq k\) are prim. rec., then so is the \(n\)-way composition \(v \mapsto f(g_0(v), \ldots, g_{k-1}(v))\).
 \item If \(f : \mathbb{N}^m \to \mathbb{N}\) and \(g : \mathbb{N}^{m+2} \to \mathbb{N}\) are prim. rec., then the function \(h : \mathbb{N}^{m+1} \to \mathbb{N}\) defined by
 \[
 h(\vec{z}, 0) = f(\vec{z}) \\
 h(\vec{z}, n + 1) = g(\vec{z}, n, h(\vec{z}, n))
 \]
 \end{itemize}
\end{itemize}

is also prim. rec.

Lean is quite good at expressing these kinds of constructions as inductively defined predicates. See Figure 3 for the definition that appears in Lean. But there is an important difference in this formulation: rather than dealing with \(n\)-ary functions, we utilize the pairing function on \(\mathbb{N}\) to write everything as a function \(\mathbb{N} \to \mathbb{N}\) with only one argument. This drastically simplifies the composition rule to just the usual function composition, and in the primitive recursion rule we need only one auxiliary parameter \(z : \mathbb{N}\) rather than \(\vec{z} : \mathbb{N}^m\). Then the projection functions are replaced with the left and right cases for the components of \(\text{unpair : } \mathbb{N} \to \mathbb{N} \times \mathbb{N}\), and in order to express composition with higher arity functions, we need the \texttt{pair} constructor to explicitly form the map \(x \mapsto (f x, g x)\). (See Section 3.1 if you think this definition is a cheat.)

Now that we have a definition of ‘primitive recursive’ that works for functions on \(\mathbb{N}\), we would like to extend it to other types using the \texttt{encodable} mechanism discussed in Section 2. There is a problem though, because given an arbitrary \texttt{encodable} instance we can combine the \texttt{decode : }\mathbb{N} \to \text{option } \alpha\ with the function \texttt{encode : option } \alpha \to \mathbb{N}\ defined on \texttt{option } \alpha
induced by this \textit{encodable} instance to form a new function $\text{encode} \circ \text{decode} : \mathbb{N} \to \mathbb{N}$, which may or may not be primitive recursive. If it is not, then it brings new power to the primitive recursive functions and so it is not a pure translation of \texttt{primrec} to other types. To resolve this, we define \texttt{primcodable} α to mean exactly that α has an \textit{encodable} instance for which this composition is primitive recursive. All of the \textit{encodable} constructions we have discussed (indeed, all those defined in Lean) are \texttt{primcodable}, so this is not a severe restriction.

Now we can say that a function between arbitrary \texttt{primcodable} types is primitive recursive if when we pass f through the \textit{encode} and \textit{decode} functions we get a primitive recursive function on \mathbb{N}:

\begin{verbatim}
def primrec {α β} [primcodable α] [primcodable β] (f : α → β) : Prop := nat.primrec (λ n, encode (option.map f (decode α n)))
\end{verbatim}

\textit{Note}: The function \texttt{option.map} lifts f to a function on option types before applying it to \textit{decode}. The result has type \texttt{option β}, which has an \textit{encode} function because β does.

Now we are in a position to recover the textbook definition of primitive recursive, because \mathbb{N}^k is \texttt{primcodable}, so we have the language to say that $f : \mathbb{N}^k \to \mathbb{N}$ is primitive recursive, and indeed this is equivalent to Definition 1.

But we can now say much more: the \texttt{some} : $\alpha \to \text{option} \alpha$ function is primitive recursive because it is just encoded as succ. The constant function $\lambda a. b : \alpha \to \beta$ is primitive recursive because it encodes to some constant function (composed with a function that filters out values not in the domain α). The composition of prim. rec. functions on arbitrary types is prim. rec. The pair of primitive recursive functions $\lambda a. (f a, g a)$, where $f : \alpha \to \beta$ and $g : \alpha \to \gamma$, is primitive recursive.

Indeed all the usual basic operations on inductive types like \texttt{sum}, \texttt{prod}, and \texttt{option} are primitive recursive. We define convenient syntax \texttt{primrec2} for prim. rec. binary functions $\alpha \to \beta \to \gamma$ (a common case), expressed by uncurrying to $\alpha \times \beta \to \gamma$, and \texttt{primrec_pred} for primitive recursive predicates $\alpha \to \text{Prop}$, which are decidable predicates which are primitive recursive when coerced to bool (which is \texttt{encodable}).

The big caveat comes in theorems like the following:

If α and β are \texttt{primcodable} types and $f : \alpha \to \beta$ and $g : \alpha \to \mathbb{N} \to \beta \to \beta$ are prim. rec., then the function $h : \alpha \to \mathbb{N} \to \beta \to \beta$ defined by

\begin{align*}
h a 0 &= f a \\
h a (n + 1) &= g a n (h a n)
\end{align*}

is also prim. rec.

This is of course just the generalization of the primitive recursion clause to arbitrary types, but it requires that the target type be \texttt{primcodable}, which means in particular that it is countable, so we cannot define an object of function type by recursion. (The universal partial recursive function will give us a way to get around this later.) But this is in some sense “working as intended,” since this is exactly why the Ackermann function

\begin{align*}
A(0, n) &= n + 1 \\
A(m + 1, 0) &= A(m, 1) \\
A(m + 1, n + 1) &= A(m, A(m + 1, n))
\end{align*}

is not primitive recursive.
Another restriction placed on us relative to Lean’s built-in notion of primitive recursion on \(\mathbb{N}\) is that while `nat.rec_on` has a dependent type, we have no mechanism for supporting dependent types via `encodable`. We follow the tradition of HOL based provers here and encode dependencies using `option` types so we can fail on a garbage input. However, it is possible to support a dependent family via a separate typeclass. For example we could define `primcodable2 F`, where `F : \alpha \to \text{Type}` and \(\alpha\) is `encodable`, to mean that \(\Pi a, \text{encodable} (F a)\), and moreover this family of `encode/decode` functions is prim. rec. jointly in both arguments. In the end we did not pursue this because of the added complexity and lack of compelling use cases.

One other `primcodable` type we have not yet discussed is `list \alpha`, the type of finite lists of values of type \(\alpha\). The `encode` and `decode` functions are defined recursively via the bijection `list \alpha \simeq \text{option} (\alpha \times \text{list} \alpha)`. (Note that this is not a particularly good encoding for complexity theory, as it grows super-exponentially in the length of the list.) Even without using this instance, we can prove that any function `f : \alpha \to \beta` is prim. rec. when \(\alpha\) is finite, by getting the elements of \(\alpha\) as a list, and writing `f` as the composition of an index lookup of \(a_i\) in \([a_0, \ldots, a_{n-1}]\) and the \(i\)th element function in \([f a_0, \ldots, f a_{n-1}]\) to map \(a_i\) to \(f a_i\).

But once we allow the list itself to be an input, we get some more interesting possibilities. In particular, the function `list.nth : list \alpha \to \mathbb{N} \to \text{option} \alpha`, which gets an element from a list by index (or returns `none` if the index is out of bounds), is primitive recursive, and this fact expresses an equivalent of Gödel’s sequence number theorem [6] (for a different encoding than Gödel’s original encoding). From this we can prove the following “strong recursion” theorem:

```lean
theorem nat_strong_rec
  (f : \alpha \to \mathbb{N} \to \sigma)
  {g : \alpha \to \text{list} \sigma \to \text{option} \sigma}
  (hg : \text{primrec}_2 g)
  (H : \forall a n, g a (map (f a) (\text{range} n)) = \text{some} (f a n)) :
  \text{primrec}_2 f
```

Ignoring the parameter \(a\), the main hypothesis says essentially that \(f(n) = g(f \upharpoonright [0, \ldots, n-1])\), where the first \(n\) values of \(f\) have been written in a list (and the length of the list tells \(g\) what value of \(f\) we are constructing). The reason \(g\) has optional return value is to allow for it to fail when the input is not valid.

Once we have lists, the dependent type `vector \alpha n` is just a subtype of `list \alpha`, so it has an easy `primcodable` instance, and most of the vector functions follow from their list counterparts. Similarly for functions `fin n \to \alpha`, which are isomorphic to `vector \alpha n`.

3.1 The textbook definition

Now that we have a proper theory, we can return to the question of how to show equivalence to Definition 1. We do this by defining `nat.primrec` : `\forall n, (\text{vector} \mathbb{N} n \to \mathbb{N}) \to \text{Prop}` with only 5 clauses matching Definition 1. It is easy to show at this point that `primrec` implies `primrec`,” since all of the functions appearing in Definition 1 are known to be primitive recursive. For the converse, most of the clauses are easy, but our earlier cheat was to axiomatize that `mkpair` and `unpair` are primitive recursive, even though the definition involves addition, multiplication and case analysis in `mkpair` and even square root in the inverse function. So we must show that all these operations are primitive recursive by the textbook definition. The square root case is not as difficult as it may sound; since it grows by at most 1 at each step we can define...
def unpair (n : ℕ) : ℕ × ℕ :=
let s := sqrt n in
if n - s*s < s then (n - s*s, s) else (s, n - s*s - s)

Figure 4 The function unpair : ℕ → ℕ × ℕ. (Here sqrt : ℕ → ℕ is actually the function
\(n \mapsto \lfloor \sqrt{n} \rfloor \).)

it by primitive recursion as

\[
\begin{align*}
\lfloor \sqrt{0} \rfloor &= 0 \\
\lfloor \sqrt{n + 1} \rfloor &= \text{if } n + 1 < y^2 \text{ then } y \text{ else } y + 1
\end{align*}
\]

where \(y = \lfloor \sqrt{n} \rfloor \).

This alternate basis for primrec is useful for reductions, for example, to show that some
other basis for computation like Turing machines can simulate every primitive recursive
function.

4 Partial recursive functions

The partial recursive functions are an extension of primitive recursive functions by adding
an operator \(\mu n. p(n) \), where \(p : \mathbb{N} \to \text{bool} \) is a predicate, which denotes the least value of \(n \)
such that \(p(n) \) is true. Intuitively, this value is found by starting at 0 and testing ever larger
values until a satisfying instance is found. This function is not always defined, in the sense
that even when all the inputs are well typed it may not return a value – it can result in an
“infinite loop.”

Before we tackle the partial recursive functions we must understand partiality itself, and
in particular how to represent unbounded computation, computably, in a proof assistant that
can only represent terminating computations. As Lean is based on dependent type theory,
which is strongly normalizing, all expression evaluation terminates, and so the problem is
prima facie unsolvable – we may as well turn to relational representations. However, as we
shall see, it is actually possible with no additional modifications to CIC or extra axioms.

4.1 The partiality monad

We have already discussed the option \(\alpha \) type for representing a possible failure state, but
nontermination is a slightly different kind of “failure” in that the program is not able to tell
that it has failed while executing, and this difference makes itself known in the type system.

To address this distinction, we introduce the part \(\alpha \) type:

def part (α : Type*) := Σ p : Prop, (p → α)

That is, an element \(p : \text{part } \alpha \) is a dependent pair of a proposition \(p_1 \) and a function
\(p_2 : p_1 \to \alpha \) from proofs of \(p_1 \) to \(\alpha \). A value of type part \(\alpha \) is a nondecidable optional value,
in the sense that there is not necessarily a decision procedure for determining if the part \(\alpha \)
contains a value, but if it does then you can extract the value using the function component.
This type has a monad structure, as follows:

\[\text{pure} : \alpha \to \text{part} \alpha\]
\[\text{pure} \ a = \langle \text{true}, \lambda _ . a \rangle\]
\[\text{bind} : \text{part} \alpha \to (\alpha \to \text{part} \beta) \to \text{part} \beta\]
\[\text{bind} \ \langle p, f \rangle \ g = \langle (\exists h : p, (g \ f \ h))_1, (\lambda h. \ (g \ f \ h) _2 \ h)_2 \rangle\]

Also, there is an element \(\bot = \langle \text{false}, \text{exfalso} \rangle\) : \text{part} \ alpha representing an undefined value. We can map \text{option} \ alpha \to \text{part} \ alpha by sending some \(a\) to \(\text{pure} \ a\) and none to \(\bot\), and assuming the law of excluded middle we can also define an inverse map and show \text{option} \ alpha \simeq \text{part} \ alpha, but this breaks the computational interpretation of \text{part} \ alpha.

The definition of \text{bind}, also written in Haskell style as the infix operator \(\gg=\), is slightly intricate but is “exactly what you would expect” in terms of its behavior. Given a partial value \(p\) : \text{part} \ alpha and a function \(f : \alpha \to \text{part} \ beta\), the resulting partial value \(p \gg= f\) : \text{part} \ beta is defined when \(p\) is defined to be some \(a : \alpha\), and \(f a\) is defined, in which case it evaluates to \(f a\).

It is convenient to abstract from the definition to a relational version, where \(\exists h : p_1, p_2 \ h = a\) – that is, \(a \in p\) says that \(p\) is defined and equal to \(a\). With this definition the bind operator can be much more easily expressed by the theorem

\[b \in p \gg= f \iff \exists a \in p, b \in f a\]

which is shared with many other collection-based monad structures. Also, like every other monad there is a map operator, written \(\langle\$\rangle\), which applies a pure function to a partial value:

\[\text{map} : (\alpha \to \beta) \to \text{part} \alpha \to \text{part} \beta\]
\[f \langle\$\rangle\ p = \langle p_1, f \circ p_2 \rangle\]

Because they come up often, we will use the notation \(\alpha \to \beta = \alpha \to \text{part} \ beta\) for the type of all partial functions from \(\alpha\) to \(\beta\).

One important function that is (constructively) definable on this type is fix, which has the following properties:

\[\text{fix} \ (f : \alpha \to \beta \circledast \alpha) : \alpha \to \beta\]
\[b \in \text{fix} \ f \ a \iff \text{inl} \ b \in f \ a \lor \exists a' \in f \ a \land b \in \text{fix} \ f \ a'\]

Given an input \(a\), it evaluates \(f\) to get either \text{inl} \(b\) or \text{inr} \(a'\). In the first case it returns \(b\), and in the second case it starts over with the value \(a'\). The function fix \(f\) is defined when this process eventually terminates with a value, if we assume this then we can construct the value that fix \(f\) returns. So even though Lean’s type theory does not permit unbounded recursion, by working in this partiality monad we get computable unbounded recursion.

The minimization operator find \(p = \mu n. p(n)\), which finds the smallest value satisfying the (partial) boolean predicate \(p\) can be defined in terms of fix as follows:

\[\text{find} : (\mathbb{N} \to \text{bool}) \to \mathbb{N}\]
\[\text{find} \ p = \text{fix} \ (\lambda n. \text{if} \ p \ n \ \text{then} \ n \ \text{else} \text{inr}(n + 1)) \ 0\]

As an aside, we note that while this monad supports many of the operations one expects on partial recursive functions, one thing it does not support is parallel computation. That is, we would like to have a nondeterministic choice function \(\langle_|\rangle : \text{part} \ alpha \to \text{part} \ alpha \to \text{part} \ alpha\)
The definition of partial recursive on \(\mathbb{N} \) in Lean.

such that \(p <\mid q \) is defined if either \(p \) or \(q \) is defined. This is possible for partial recursive functions, but it is not constructively definable for \texttt{part}. For this, we must restrict the propositions to be \texttt{semidecidable} \cite{2}, which means essentially that they are a \(\Sigma_1 \) proposition, that is, a proposition of the form \(\exists n. f(n) = \text{true} \) for some \(f : \mathbb{N} \rightarrow \text{bool} \). Every partial recursive function is semidecidable as a consequence of the \texttt{evalk} function (see Section \ref{sec:evalk}).

\subsection*{4.2 partrec and computable}

The definition \texttt{nat.partrec} is given in Figure \ref{fig:partrec}. The first 7 cases are almost the same as those of \texttt{primrec}, except that we must now worry about partiality in all the operations that build functions. So for example \(\lambda n, f n >>= \lambda a, g n >>= \lambda b, \text{pure} (\text{mkpair} a b) \) is the function \(n \mapsto (f n, g n) \) except that if the computation of either \(f n \) or \(g n \) fails to return a value, then this is not defined. (In other words, this operation is “strict” in both arguments). Similarly, the composition is now expressed as \(\lambda n, g n >>= f \), which says that \(g n \) should be evaluated first, and if it is defined and equals \(a \), then \(f a \) is the resulting value.

The interesting case is the last one, which incorporates the \texttt{find} function on \(\mathbb{N} \). Ignoring partiality, it says that \(\lambda a. \mu n. f(a,n) = 0 \) is partial recursive if \(f \) is. This is of course the source of the partiality – all the other constructors produce total functions from total functions but this can be partial if the function \(f \) is never zero.

Although this defines a class of partial functions, some of the functions happen to be total anyway, and we call a total partial-recursive function \texttt{computable}. It is an easy fact that every primitive recursive function is computable.

As before, we can compose with \texttt{encode} and \texttt{decode} to extend these definitions to any \texttt{primcodable} type. Although we could define an analogue of \texttt{primcodable} using computable functions instead of primitive recursive functions, since we want to stick to simple encodings (usually not just primitive recursive but polynomial time), and we already have encodings for all the important types, so \texttt{primcodable} is enough.

One aspect of this definition which is not obviously a problem until one works out all the details is the strictness of the \texttt{prec} constructor. In conventional notation, it says that if \(f : \alpha \to \beta \) and \(g : \alpha \to \mathbb{N} \to \beta \to \beta \) are partial recursive functions, then so is the function
Formalizing computability theory

\(h : \alpha \rightarrow N \rightarrow \beta \) defined by

\[
\begin{align*}
 h(a, 0) &= f(a) \\
 h(a, n + 1) &= g(a, n, h(a, n)).
\end{align*}
\]

Importantly, \(h(a, n + 1) \) is only defined if \(h(a, n) \) is defined and \(g(a, n, h(a, n)) \) is defined. It does not matter if \(g \) does not make use of the argument at all, for example if it is the first projection. This comes up in the definition of the lazy conditional \(\text{ifz}[f, g] \), defined when \(f : \alpha \rightarrow \beta \), \(g : \alpha \rightarrow \beta \) by:

\[
\text{ifz}[f, g] : \alpha \rightarrow N \rightarrow \beta
\]

\[
\text{ifz}[f, g](a, n) = \begin{cases}
 f(a) & \text{if } n = 0 \\
 g(a) & \text{if } n \neq 0
\end{cases}
\]

where in particular \(\text{ifz}[f, g](a, 1) = g(a) \) regardless of whether \(f(a) \) is defined. This is the basis of “if statements” that resemble execution paths in a computer – we need a way to choose which subcomputation to perform, without needing to evaluate both. The usual way of implementing \(\text{ifz} \) is to use primitive recursion on the argument \(n \), using \(f \) in the zero case and \(g \circ \pi_1 \) in the successor case. But because of the strictness constraint, this will result in \(\text{ifz}[\bot, g](a, 1) = \bot \) (where \(\bot \) represents an undefined value or infinite loop). In fact, we won’t have the tools to solve this problem until Section 5.3.

5 Universality

5.1 Codes for functions

Because \(\text{partrec} \) is an inductive predicate, there is a natural data type that corresponds to proofs that a function \(N \rightarrow N \) is partial recursive:

\begin{verbatim}
inductive code : Type
| zero : code
| succ : code
| left : code
| right : code
| pair : code → code → code
| comp : code → code → code
| prec : code → code → code
| find' : code → code
\end{verbatim}

We can define the semantics of a code via an “evaluation” function that takes a code and an input value in \(N \) and produces a partial \(N \) value.

\begin{verbatim}
def eval : code → N → N
| zero := pure 0
| succ := succ
| left := λ n, n.unpair.1
| right := λ n, n.unpair.2
| (pair cf cg) := λ n, eval cf n >>= λ a, eval cg n >>= λ b, pure (mkpair a b)
| (comp cf cg) := λ n, eval cg n >>= eval cf
| (prec cf cg) := unpaired (λ a n,
\end{verbatim}
Then it is a simple consequence of the definition that f is partial recursive iff there exists a code \hat{f} such that $f = \text{eval} \hat{f}$.

Note: The find' constructor is a slightly modified version of find which is easier to use in evaluation:

$$
\text{find}' f (a, m) = (\mu n. f(a, n + m) = 0) + m,
$$

which can be expressed in terms of find as:

$$
\text{find} f a = \text{find}' f (a, 0) \\
\text{find}' f (a, m) = \text{find} (\lambda x. f(x_1 + x_2)) a + m
$$

So we can pretend that partrec was defined with a case for find' instead of find since it yields the same class of functions.

Now the key fact is that code is denumerable. Concretely, we can encode it using a combination of the tricks we used to encode sums, products and option types, that is,

$$
\text{encode} (\text{zero}) = 0 \\
\text{encode} (\text{succ}) = 1 \\
\text{encode} (\text{left}) = 2 \\
\text{encode} (\text{right}) = 3 \\
\text{encode} (\text{pair} c_1 c_2) = 4 \cdot (\text{encode} c_1, \text{encode} c_2) + 4 \\
\text{encode} (\text{comp} c_1 c_2) = 4 \cdot (\text{encode} c_1, \text{encode} c_2) + 5 \\
\text{encode} (\text{prec} c_1 c_2) = 4 \cdot (\text{encode} c_1, \text{encode} c_2) + 6 \\
\text{encode} (\text{find}' c) = 4 \cdot (\text{encode} c) + 7
$$

where (m, n) is the pairing function from Figure 1. (We could have used a more permissive encoding, but this has the advantage that it is a bijection to \mathbb{N}, which makes the proof that this is a primcodable type trivial.)

Having shown that the type is primcodable we can now start to show that functions on codes are primitive recursive. In particular, all the constructors are primitive recursive, the recursion principle preserves primitive recursiveness and computability (not partial recursiveness, because of the as-yet unresolved problem with ifz), and we can prove that these simple functions on codes are primitive recursive:

$$
\text{const} : \mathbb{N} \rightarrow \text{code} \\
\text{eval} (\text{const} a) n = a \\
\text{curry} : \text{code} \rightarrow \mathbb{N} \rightarrow \text{code} \\
\text{eval} (\text{curry} c m) n = \text{eval} c (m, n)
$$

In particular, the rather understated fact that curry is primitive recursive is a form of the s-m-n theorem of recursion theory.
def evaln : \(\forall\ k : N,\ code \to N \to \text{option } N\)
| 0 _ := \(\lambda\ n,\ \text{none}\)
| \((k+1)\) zero := \(\lambda\ n,\ \text{guard } (n \leq k) \gg\ pure 0\)
| \((k+1)\) succ := \(\lambda\ n,\ \text{guard } (n \leq k) \gg\ pure (\text{succ } n)\)
| \((k+1)\) left := \(\lambda\ n,\ \text{guard } (n \leq k) \gg\ pure (\text{fst } (\text{unpair } n))\)
| \((k+1)\) right := \(\lambda\ n,\ \text{guard } (n \leq k) \gg\ pure (\text{snd } (\text{unpair } n))\)
| \((k+1)\) (pair cf cg) := \(\lambda\ n,\ \text{guard } (n \leq k) \gg\ \text{evaln } (k+1)\ cf\ n \gg= \lambda\ a,\ \text{evaln } (k+1)\ cg\ n \gg= \lambda\ b,\ \text{pure } (\text{mkpair } a\ b)\)
| \((k+1)\) (comp cf cg) := \(\lambda\ n,\ \text{guard } (n \leq k) \gg\ \text{evaln } (k+1)\ cg\ n \gg= \lambda\ x,\ \text{evaln } (k+1)\ cf\ x\)
| \((k+1)\) (prec cf cg) := \(\lambda\ n,\ \text{guard } (n \leq k) \gg\ \text{unpaired } (\lambda\ a\ y,\ \text{nat.rec}_n (\text{evaln } (k+1)\ cf\ a)\))\ n\)
| \((k+1)\) (find’ cf) := \(\lambda\ n,\ \text{guard } (n \leq k) \gg\ \text{unpaired } (\lambda\ a\ m,\ \text{evaln } (k+1)\ cf\ (\text{mkpair } a\ m) \gg= \lambda\ x,\ \text{if } x = 0 \text{ then } \text{pure } m \text{ else }\)
\text{evaln } \((k+1)\) (\text{mkpair } a\ (m+1))\)\ n\)

\[\text{Figure 6}\] The definition of resource-bounded evaluation of partial recursive functions in Lean.

\textit{Notation note}: The \(\gg\) operator is monad sequencing, i.e. \(a \gg b = a \gg= \lambda_.\ b\), and \(\text{guard } p : \text{option unit}\) is the function that returns \textit{some} () if \(p\) is true and \textit{none} if \(p\) is false. Together they ensure that \(\text{evaln } k\ c\ n = \text{none}\) unless \(n \leq k\).

5.2 Resource-bounded evaluation

We have one more component before the universality theorem. We define a “resource-bounded” version of \(\text{eval}\), namely \(\text{eval}_k : \text{code} \to N \to \text{option } N\) where \(k : N\). (In the formal text it is called \(\text{evaln}\).) This function is total – we have a definite failure condition this time, unlike \(\text{eval}\) itself, which can diverge. There are multiple ways to define this function; the important part is that if \(\text{eval } c\ n = \perp\) then \(\text{eval}_k c\ n = \text{none}\) for all \(k\), and if \(\text{eval } c\ n = a\) is defined then \(\text{eval}_k c\ n = \text{some } a\) for some \(k\). Furthermore, it is convenient to ensure that \(\text{eval}_k\) is monotonic in \(k\), and the domain of \(\text{eval}_k\) is contained in \([0, k]\), that is, if \(n > k\) then \(\text{eval}_k c\ n = \text{none}\).

The Lean definition of \(\text{evaln}\) is given in Figure 6. The details of the definition are not so important, but it is interesting to note that our “fuel” \(k\) for the computation only needs to decrease when we don’t change the program code in the recursive call, namely in the \text{prec} and \text{find’} cases, thanks to Lean’s pattern matcher (which compiles this definition into one by nested structural recursion). (You may wonder why we cannot use the fact that \(n\) is decreasing in the \text{prec} case to prove termination, but this is because the function is not defined by recursion on \(n\), it is by recursion on \(k\) at all \(n \leq k\) simultaneously.)

Because \(\text{eval}_k c : N \to \text{option } N\) has finite domain \(n \in [0, k]\) outside which it is \text{none}, we can encode the whole function as a single list (\text{option } N). Thus we can pack the function into the type \(N \times \text{code} \to \text{list } (\text{option } N)\), and define this by strong recursion (using the theorem \text{nat_strong_rec} mentioned in Section 3), since in every case of the recursion, either \(k\) decreases and \(c\) remains fixed, or \(c\) decreases and \(k\) remains fixed.

Thus \(\text{evaln} : N \to \text{code} \to N \to \text{option } N\) is primitive recursive (jointly in all arguments),
and since $\text{eval } c \ n = \text{eval}_{k'} \ c \ n$ where $k' = \mu k$. $(\text{eval}_{k'} \ c \ n \neq \text{none})$, this shows that eval is partial recursive. This is Kleene’s normal form theorem (in a different language) – eval is a universal partial recursive function.

5.3 Applications

The fixed point theorems are an easy consequence of universality. These have all been formalized; the formalized theorem names are given in parentheses.

> **Theorem 2 (fixed_point).** If $f : \text{code} \to \text{code}$ is computable, then there exists some code c such that $\text{eval}(f \ c) = \text{eval} \ c$.

Proof. Consider the function $g : \mathbb{N} \to \mathbb{N} \to \mathbb{N}$ defined by $g \ x \ y = \text{eval}(\text{eval} \ x \ x) \ y$ (using $\text{decode} : \mathbb{N} \to \text{code}$ to use natural numbers as codes in eval). This function is clearly partial recursive, so let $g = \text{eval} \ ˆg$. Now let $F : \mathbb{N} \to \text{code}$ such that $F \ x = f \ (\text{curry} \ ˆg \ x)$; then F is computable so let $F = \text{eval} \ ˆF$. Then for $c = \text{curry} \ ˆg \ ˆF$ we have:

\[
\text{eval} \ (f \ c) \ n = \text{eval} \ (f \ (\text{curry} \ ˆg \ ˆF)) \ n \\
= \text{eval} \ (F \ ˆF) \ n \\
= \text{eval} \ (\text{eval} \ ˆF \ ˆF) \ n \\
= g \ ˆF \ n \\
= \text{eval} \ ˆg \ (\hat{F}, n) \\
= \text{eval} \ (\text{curry} \ ˆg \ ˆF) \ n \\
= \text{eval} \ c \ n.
\]

Figure 7 The formal proof of Theorem 2.
The corresponding formal proof is in Figure 7 (slightly expanded from its original version for readability). The proof that g and F are partial recursive is the most complicated part, but it is syntax directed and could be generated by a tactic if necessary. The long equality chain in the informal proof is actually the last line – the simp tactic can solve it on its own. There are also applications of encode and of_nat, as well as additional notation to handle partiality throughout, that were suppressed in the informal proof.

Theorem 3 (fixed_point2). If $f : \text{code} \to \mathbb{N} \to \mathbb{N}$ is partial recursive, then there exists some code c such that eval $c = f c$.

Proof. Let $f = \text{eval} \hat{f}$, and apply Theorem 2 to curry \hat{f} to obtain a c such that eval $(\text{curry} \hat{f} c) = \text{eval} c$. Then

$$\text{eval} c n = \text{eval} (\text{curry} \hat{f} c) n$$

$$= \text{eval} \hat{f} (c, n)$$

$$= f c n. \quad \square$$

We can also finally solve the ifz problem. If f and g are partial recursive functions, then letting $f = \text{eval} \hat{f}$ and $g = \text{eval} \hat{g}$, the function

$$c(n) = \begin{cases} \hat{f} & \text{if } n = 0 \\ \hat{g} & \text{if } n \neq 0 \end{cases}$$

is primitive recursive (since both branches are just numbers now instead of computations that may not halt), and ifz[f, g](a, n) = eval c(n) a. More generally, this implies that we can evaluate conditionals where the condition is a computable function and the branches are partial functions. We can also construct a nondeterministic choice function:

Theorem 4 (merge). If $f, g : \alpha \to \beta$ are partial recursive functions, then there exists a function $h : \mathbb{N} \to \mathbb{N}$ such that $h(a)$ is defined iff either $f(a)$ or $g(a)$ is defined, and if $x \in h(a)$ then $x \in f(a)$ or $x \in g(a)$.

Proof. It is easy to reduce to the case where $f, g : \mathbb{N} \to \mathbb{N}$. Let $f = \text{eval} \hat{f}$ and $g = \text{eval} \hat{g}$; then $h(n) = \text{find}((\lambda k. \text{eval}_k \hat{f} n <|> \text{eval}_k \hat{g} n) n)$ works, where $<|>$ is the alternative operator on option \mathbb{N}. \hfill \square

A corollary is Post’s theorem on the equivalence of computable and r.e. co-r.e. sets:

Theorem 5 (computable_iff_re_compl_re). If $p : \alpha \to \text{Prop}$ is a decidable predicate, then p is computable iff p is r.e. and $\lambda a. \neg p a$ is r.e.

Proof. The forward direction is trivial. In the reverse direction, if $f, g : \alpha \to \text{unit}$ are chosen such that $f(a)$ is defined iff $p(a)$ and $g(a)$ is defined iff $\neg p(a)$, then by Theorem 4 there is a function $h : \alpha \to \text{bool}$ extending $\lambda a. f(a) \triangleright \text{pure true}$ and $\lambda a. g(a) \triangleright \text{pure false}$. This function has domain $\{a \mid p(a) \lor \neg p(a)\} = \alpha$ (because p is decidable) and is true when $p(a)$ is true and is false when $\neg p(a)$. Thus h is a computable indicator function for p. \hfill \square

The assumption that p is decidable is not the tightest condition we could assert; it suffices p is stable, i.e. $\neg \neg p(a) \to p(a)$, or alternatively we could assume Markov’s principle or LEM.

We conclude with Rice’s theorem on the noncomputability of all nontrivial properties about computable functions:
Theorem 6 (rice). Let \(C \subseteq (\mathbb{N} \rightarrow \mathbb{N}) \) such that \(\{ c \mid \text{eval } c \in C \} \) is computable. Then for any \(f, g : \mathbb{N} \rightarrow \mathbb{N} \), \(f \in C \) implies \(g \in C \) (so classically \(C = \emptyset \lor C = \mathbb{N} \rightarrow \mathbb{N} \)).

Proof. Apply Theorem 3 to the function \(F c n = \text{if } \text{eval } c \in C \text{ then } g n \text{ else } f n \). to obtain a \(c \) such that \(\text{eval } c = F c \). (Note \(\text{eval } c \in C \) is decidable because it is computable.) Then if \(\text{eval } c \in C \), we have \(F c n = g n \) for all \(n \) so \(\text{eval } c = F c = g \), hence \(g \in C \). And if \(\text{eval } c \notin C \) then \(\text{eval } c = F c = f \) similarly which contradicts \(f \in C \), \(\text{eval } c \notin C \). ◀

The undecidability of the halting problem is a trivial corollary:

Theorem 7 (halting_problem). The set \(\{ c : \text{code} \mid \text{eval } c 0 \text{ is defined} \} \) is not computable.

Proof. Suppose it is; we can write it as \(\{ c \mid \text{eval } c \in C \} \) where \(C = \{ f \mid f 0 \text{ is defined} \} \), so applying Rice’s theorem with \(f = \lambda n. 0 \) and \(g = \lambda n. \bot \) we have a contradiction from \(f \in C \) and \(g \notin C \). ◀

6 Related Works

While this is the first formalization of computability theory in Lean, there are a variety of related formalizations in other theorem provers.

- Norrish achieves a substantial amount in [10], using the \(\lambda \)-calculus in HOL4, up to Rice’s theorem and r.e. sets. The primary differences involve the differing model of computation and differences from working in a classical higher order logic system rather than a dependent type theory. (Lean is primarily classical, but it permits working in intuitionistic logic, and there was no particular reason to assume LEM except in Theorem 5.)

- Asperti and Riccoti [1] have formalized the construction of a universal Turing machine in Matita, but do not go as far as the halting problem or recursively enumerable sets.

- “Mechanising turing machines and computability theory in Isabelle/HOL” by Xu, Zhang and Urban [14] builds from Turing machines, constructs a universal Turing machine, formalizes the halting problem, and relates them to abacus machines and recursive functions. But they acknowledge up front that formalizing TMs is a “daunting prospect,” and their formalization is much longer (although direct comparisons are misleading at best).

- Forster and Smolka [5] formalize call-by-value \(\lambda \)-calculus in Coq, including Post’s theorem and the halting problem, but they have a much greater focus on constructive mathematics and the exploration of choice principles such as Markov’s principle. We have instead focused on getting these core results with a minimum of fuss and with the most externally useful developments, so that they can perform well as an addition to Lean’s standard library.
In “Typing Total Recursive Functions in Coq” [9], Larchey-Wendling shows that all total recursive functions have function witnesses in Coq. From the point of view of our paper, at least concerning total recursive functions in the sense used in computability theory, this is a corollary of the definition of $\mathrm{part} \alpha = \Sigma p. p \to \alpha$, since we can constructively extract an element from a proof of totality. The content of the theorem is then shifted to the construction of the function fix, which was not detailed here but reduces to $\text{nat.find} : (\exists n : \mathbb{N}. P(n)) \to \{ n \mid P(n) \}$, which ultimately relies on the same subsingleton elimination principle used in Coq. We believe that this approach yields most of the same results with much less work, although it is admittedly limited in scope to computable functions on natural numbers and other encodable types.

In “Formalization of the Undecidability of the Halting Problem for a Functional Language” by Ramos et. al. [12], the authors formalize a simplified version of PVS called PVS0 suitable for translating regular PVS definitions into PVS0 and proving termination, and they construct an explicit PVS0 program to fool a halting oracle. Our approach is much more abstract and general, more suited to the mathematical theory than concrete execution models.

Interestingly, none of these works took μ-recursive functions as the starting point. We think they are under-sold as a possible computational basis, and believe that the simple and straightforward nature of the formalization indicates this well.

7 Future Work

7.1 Equivalences

The most obvious next step is to show the equivalence of other formulations of computable functions: Turing machines, λ-calculus, Minsky register machines, C... the space of options is very wide here and it is easy to get carried away. Furthermore, if one holds to the thesis that partial recursive functions are the quickest lifeline out of the Turing tarpit, then one must acknowledge that this is to jump right back in, where the hardest part of the translation is fiddling with the intricacies of the target language. We are still looking for ways to do this in a more abstract way that avoids the pain.

7.2 Complexity theory

This project was in part intended to set up the foundations of complexity theory. One of the often stated reasons for choosing Turing machines over other models of computation like primitive recursion is because they have a better time model. We would argue that this is not true at fine grained notions of complexity, because there is often a linear multiplicative overhead for running across the tape compared to memory models. Moreover, in the other direction we find that, at least in the case of polynomial time complexity, there are methods such as bounded recursion on notation [7] that generalize primitive recursion methods to the definition of polynomial time computable functions, which can be used to define \mathbf{P}, \mathbf{NP}, and \mathbf{NP}-hardness at least; we are hopeful that these methods can extend to other classes, possibly by hybridizing with other models of computation as well.

References

1. Andrea Asperti and Wilmer Ricciotti. Formalizing turing machines. In International Workshop on Logic, Language, Information, and Computation, pages 1–25. Springer, 2012.
Andrej Bauer. First steps in synthetic computability theory. *Electronic Notes in Theoretical Computer Science*, 155:5–31, 2006.

Alonzo Church. An unsolvable problem of elementary number theory. *American Journal of Mathematics*, 58(2):345–363, 1936.

Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris Van Doorn, and Jakob von Raumer. The lean theorem prover (system description). In *International Conference on Automated Deduction*, pages 378–388. Springer, 2015.

Yannick Forster and Gert Smolka. Weak call-by-value lambda calculus as a model of computation in coq. In *ITP*, 2017.

Kurt Gödel. Über formal unentscheidbare sätze der principia mathematica und verwandter systeme i. *Monatshefte für mathematik und physik*, 38(1):173–198, 1931.

Martin Hofmann. Programming languages capturing complexity classes. *ACM SIGACT News*, 31(1):31–42, Jan 2000. doi:10.1145/346048.346051.

Stephen Cole Kleene. Recursive predicates and quantifiers. *Transactions of the American Mathematical Society*, 53(1):41–73, 1943.

Dominique Larchey-Wendling. Typing total recursive functions in coq. In *International Conference on Interactive Theorem Proving*, pages 371–388. Springer, 2017.

Michael Norrish. Mechanised computability theory. In *International Conference on Interactive Theorem Proving*, pages 297–311. Springer, 2011.

Alan J Perlis. Special feature: Epigrams on programming. *ACM Sigplan Notices*, 17(9):7–13, 1982.

Thiago Mendonça Ferreira Ramos, César Muñoz, Mauricio Ayala-Rincón, Mariano Moscato, Aaron Dutle, and Anthony Narkawicz. Formalization of the undecidability of the halting problem for a functional language. In *International Workshop on Logic, Language, Information, and Computation*, pages 196–209. Springer, 2018.

Alan M Turing. On computable numbers, with an application to the entscheidungsproblem. *Proceedings of the London Mathematical Society*, 2(1):230–265, 1937.

Jian Xu, Xingyuan Zhang, and Christian Urban. Mechanising turing machines and computability theory in isabelle/hol. In *International Conference on Interactive Theorem Proving*, pages 147–162. Springer, 2013.