MUC1 glycopeptide epitopes predicted by computational glycomics

WEI SONG1,6, ELIZABETH S. DELRYIA1, JIEQING CHEN1, WEI HUANG2, JUN SOO LEE1, ELIZABETH A. MITTENDORF2, NUHAID IBRAHIM3, LASZLO G. RADVANYI1, YUNSEN LI5, HONGZHOU LU6, HUAXI XU7, YINQIANG SHI8, LAI-XI WANG4, JEREMY A. ROSS9, SILAS P. RODRIGUES9, IGOR C. ALMEIDA9, XIFENG YANG10, JIN QU11, NATHANIEL S. SCHOCKER12, KATJA MICHAEL12 and DAPENG ZHOU1

Departments of 1Melanoma Medical Oncology, 2Surgical Oncology and 3Breast Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX; 4Institute of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MA; 5Institutes of Biology and Medical Sciences, Soochow University, Suzhou; 6Shanghai Public Health Clinical Center, Shanghai; 7School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang; 8Department of Gastric Cancer and Soft Tissue Sarcomas, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China; 9Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX; 10BioLegend Inc., San Diego, CA, USA; 11College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, P.R. China; 12Department of Chemistry, University of Texas at El Paso, El Paso, TX, USA

Received July 5, 2012; Accepted August 27, 2012

DOI: 10.3892/ijo.2012.1645

Abstract. Bioinformatic tools and databases for glyciobiology and glycomics research are playing increasingly important roles in functional studies. However, to verify hypotheses generated by computational glycomics with empirical functional assays is only an emerging field. In this study, we predicted glycan epitopes expressed by a cancer-derived mucin, MUC1, by computational glycomics. MUC1 is expressed by tumor cells with a deficiency in glycosylation. Although numerous diagnostic reagents and cancer vaccines have been designed based on abnormally glycosylated MUC1 sequences, the glycan and peptide sequences responsible for immune responses in vivo are poorly understood. The immunogenicity of synthetic MUC1 glycopeptides bearing Tn or sialyl-Tn antigens have been studied in mouse models, while authentic glyco-epitopes expressed by tumor cells remain unclear. To examine the immunogenicity of synthetic MUC1 glycopeptide epitopes predicted through computational glycomics. Monoclonal antibodies can be generated toward chemically synthesized glycopeptide sequences. With RPAPGS(Tn)TAPPAHG as an example, a monoclonal antibody 16A, showed 25-fold higher binding to glycosylated peptide (EC_{50}=9.278±1.059 ng/ml) compared to its non-glycosylated form (EC_{50}=247.3±16.29 ng/ml) as measured by ELISA experiments with plate-bound peptides. A library of monoclonal antibodies toward authentic MUC1 glycopeptide epitopes may be a valuable tool for studying glycan and peptide sequences in cancer, as well as reagents for diagnosis and therapy.

Introduction

A characteristic feature of epithelial cancer is aberrant glycosylation of glycoproteins. The Tn antigen, an O-linked N-acetylgalactosamine (GalNAc) epitope, which should be covered by other distal sugars in normal cells, is a well-characterized glyco-epitope expressed by breast, colorectal and ovarian cancer cells (1-8).

MUC1 is a 500-1000-kDa transmembrane glycoprotein expressed by normal and cancer cells. In healthy human epithelial cells MUC1 is expressed on the apical surface of the cell, i.e., the side of the cell membrane that faces the tubular interior of a vessel. As a mucin, its functions are to lubricate, to keep the cell hydrated, and to protect from pathogen invasion. The extracellular domain of MUC1 contains a variable number (25-125) of tandem repeats of 20 amino acids in length (1-8), each of which has five potential O-glycosylation sites: (-His-Gly-Val-Asp-Thr-Arg-Pro-Ala-Pro-Gly-Ser-Thr-Ala-Pro-Pro-Ala). In healthy cells, MUC1 is heavily glycosylated, and the O-glycans

Correspondence to: Dr Dapeng Zhou, Department of Melanoma Medical Oncology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd, Unit 904, Houston, TX 77030, USA E-mail: dzhou@mdanderson.org

Key words: computational glycomics, MUC1, glycopeptide, monoclonal antibodies, cancer, immunopathogenesis, immunotherapy
SONG et al: MUC1 GLYCOPEPTIDE EPITOPES

1978

are mostly of the core 2 type, which is a trisaccharide. It may be elongated by several LacNAc units, whereas fucose and/or sialic acid are terminal sugars of the completed oligosaccharide. Unlike normal cells, most carcinomas overexpress MUC1, and MUC1 is distributed over the entire cell surface. The glycans are ‘abnormal’ due to incomplete glycosylation and premature sialylation. Two common tumor associated antigens found in carcinomas are the Tn (αGalNAc), and the STn (αNeuAc-2,6-αGalNAc). It is believed that these glycans are truncated because there are different expression levels of glycosyl transferases in carcinomas when compared to healthy cells, which may be caused by mutation or inactivation of glycosyl transferases, or by lack of functional chaperone proteins for glycosyltransferases. The mutation of COSMC, an X chromosome located gene encoding a chaperon protein required by core-1 β1,3-galactosyltransferase, is believed to be associated with expression of the Tn antigen (9). Due to the overexpression of MUC1 by almost all epithelial carcinomas, glycopeptide partial sequences with abnormal O-glycans contained in the MUC1’s tandem repeats are ideal potential antigens and biomarkers that could be detected by monoclonal antibodies.

A fundamental problem is that the exact epitopes at the molecular level remain unknown. If and how epitope expression changes over time as the cancer progresses is also poorly understood (10). One could envison isolating MUC1 glycopeptides directly from cancer cells, and analyzing them by mass spectrometry. However, a major obstacle is the resistance of MUC1 toward proteolytic digestion. Two methods that have been used for the discovery or detection of MUC1 epitopes both take advantage of glycostructure recognition by antibodies. The first method utilizes synthetic glycopeptides believed to exist on cancer MUC1, conjugation of these glycopeptides to create an immunogen, immunization of mice (11), collection of anti-sera, and analysis of the binding of antibodies to MUC1 expressed on cancer cells by flow cytometry (FACS) analysis (12). The advantage of this method is that polyclonal or monoclonal antibodies can be obtained that recognize an epitope of known chemical structure, and using these antibodies, cancer tissue can be analyzed for the presence of a particular epitope. However, the obtained antibodies can only detect the epitope for which they were elicited, and the presence of other epitopes may remain undetected. The second approach utilizes modern glyco-microarrays (13), which are utilized for the screening of patient serum for the presence of auto-antibodies that recognize compounds in the microarray. While this approach is capable of detecting multiple epitopes given that the patient has produced auto-antibodies, large microarrays are required, and not every patient produces sufficient levels of auto-antibodies against MUC1. Thus, cancer may not be detected in all patients due to an insufficient diversity of the microarray, or due to no (or weak) immune responses to the cancer. While large glyco-microarrays have been printed, including glycopeptides of MUC1, undoubtedly even more diverse glyco-microarrays are needed for the discovery of new biomarkers using the screening methodologies already in place. There are currently no tools available that allow for a comprehensive screening of cancer tissue for the presence of a large number of specific biomarkers.

In this study, we generated glycopeptide-specific antibodies which recognize authentic glycoforms expressed by tumor cells (Fig. 1). The method will allow us to generate a library of monoclonal antibodies that recognize all existing forms of glycopeptides abnormally expressed by tumor cells deficient

Figure 1. Generation of monoclonal antibodies by immunizing mice with xenogenic tumor cell lines lacking core-1 β3-galactosyltransferase activity. (A) C57B6 strain of mice were intravenously immunized by Jurkat cell line transfected by MUC1 gene; (B) MUC1 epitopes expressed on tumor cell surface stimulate B cells to produce antibodies. Tumor cell antigens provide CD4 T cell help to B cells. (C) Antibody responses toward glycopeptide can be detected by ELISA experiments. Monoclonal antibodies can be generated by specific glycopeptides.
in O-glycosylation, which may lead to feasible methods to study the O-linked glycoproteome in cancer cells.

Materials and methods

Predicting glycopeptide sequences by computational glycomics.

We have analyzed the family of mucin glycoproteins, focusing on tandem repeat sequences which are heavily O-glycosylated, and express Tn antigens in cancer conditions. A theoretical database covering possible O-glycopeptide sequences has been constructed by MATLAB language. Fig. 2 shows the example of MUC1 tandem repeat modified by Tn antigen (GalNAc) and sialyl Tn antigen (NeuAc). In reality, cross-reactivity must be considered for monoclonal antibody recognition, thus the exact number of epitopes which may be uniquely recognized by monoclonal antibodies must be determined by experiments.

Based on the same principle, Fig. 2C was created, ternary digits were utilized to represent different modification. Loci with modification of GalNAc only was stained by red color. The combination of GalNAc and NeuAc was stained by green color.

Biotinylated (glyco)peptides. The biotinylated glycopeptide RPAPGS(Ac3GalNAc)TAPPAHG-dPEG™11-Biotin (Fig. 3), and non-glycosylated peptide, RPAPGTAPPAHG-dPEG™11-Biotin were custom synthesized by Peptide International Inc. (Louisville, KY). They were synthesized on an automated peptide synthesizer from Protein Technologies, Inc. (Tucson,
AZ), model ‘Prelude’, using fluorenylmethoxycarbonyl (Fmoc)-protected amino acids as the building blocks, 6-chloro-benzotriazole-1-yl-oxy-tris-pyrolidino-phosphonium hexafluorophosphonium hexafluorophosphate (PyClock) as the coupling reagent, and 2-chlorotrityl resin preloaded with glycine, loading capacity 0.59 mmol/g, as the solid support. In each coupling cycle PyClock and the Fmoc amino acid were used in 2.5-fold excess, and N-methylmorpholine (NMM) in 4.25-fold excess in N,N-dimethylformamide (DMF). Removal of the Fmoc group after each coupling was performed with 20% piperidine in DMF. For the glycopeptide preparation, the glycosylamine acid Fmoc-Thr(Asp,GalNAc)-OH was coupled in only 1.2-fold excess with the coupling reagent O-(7-Azabenzotriazol-1-yl)-N,N,N',N'-tetramethyleuronium hexafluorophosphate (HATU) and NMM. The peptide and glycopeptide were released from the resin with simultaneous deprotection by treatment with cocktail R (TFA/thioanisole/EDT/anisole, 90:5:3:2) and precipitated by cold ether. The crude peptides were purified by preparative reversed-phase HPLC. The peptides were biotinylated via the heterobifunctional cross linker mono-N-t-Boc-amido-dPEG™11 amine. Coupling was performed with diphenylphosphoryl azide and NMP in solution. Peptides were characterized by mass spectrometry.

The glycopeptide RPAPGS(GalNAc)TAPPAHG-dPEG™11-Biotin was prepared by deacylation of RPAPGS(Asp,GalNAc) TAPPAHG-dPEG™11-Biotin. Briefly, RPAPGS(Asp,GalNAc) TAPPAHG-dPEG™11-Biotin (600 µg in 100 µl DMSO solution) was mixed with 5 µl hydrazine. The mixture was shaken at room temperature for 30 min. The deacylation reaction was monitored by analytical HPLC on a Waters 626 HPLC instrument with a Symmetry300 C18 column (particle size 7.0 µm, 250x4.6 mm) at 40˚C, eluted with a linear gradient of 0-60% MeCN containing 0.1% TFA within 20 min at a flow rate of 1 ml/min. Preparative HPLC was performed on a Waters 600 HPLC instrument with a preparative Symmetry300 C18 column (particle size 7.0 µm, dimensions 19x250 mm), which were eluted with a suitable gradient of aqueous acetonitrile containing 0.1% TFA at a flow rate of 12 ml/min. The residue was neutralized with AcOH until pH 4.0, and subject to the preparative HPLC purification to give the de-acetylated product (420 µg as quantified by analytical HPLC).

The glycopeptide containing the tri-O-acetylated GalNAc residue (synthetic precursor of the de-O-acetylated glycopeptide, RPAPGS(Asp,GalNAc)TAPPAHG-dPEG™11-Biotin) was included in the binding studies in order to answer the question whether OH-3, OH-4, and OH-6 of the GalNAc residue were important for the binding specificity of the mAbs. ELISA experiments with the non-glycosylated peptide allows for clues of the extent of peptide involvement in binding.

Mass spectrometry analysis of (glyco)peptides. Glycosylated and non-glycosylated peptides were diluted in 80% ACN/0.1% FA to a final concentration of 0.1 µg/µl and 1 µl was directly injected at 300 nL/min into an ESI-linear ion trap-mass spectrometer (LTQ XL, Thermo-Fisher Scientific), equipped at the front end with a nano-electrospray ionization source (Thermo-Fisher Scientific). MS spectra were collected in positive-ion mode for 120 sec, at the 400-2,000 m/z range, and the ions of interest were subjected to collision-induced dissociation (35% normalized collision energy).

Generation of a monoclonal antibody specific for RPAPGS-(GalNAc)TAPPAHG. cDNA containing MUC1 tandem repeat sequences was generated from the breast cancer cell line T47D by a RT-PCR kit from Invitrogen (Carlsbad, CA), with PCR primers 5’-atgacacgggacccagctctc-3’ and 5’-tgggggagcagtggaagaaag-3’. The amplified cDNA sequence was compared to published literature (8, GenBank: X52228.1), and cloned into vector pcDNA-IRES-eGFP (Invitrogen, Carlsbad, CA). The Jurkat cell line, which synthesizes abnormal glycans (O-GalNAc residue) on all glycoproteins (14), was transfected by pcDNA-IRES-eGFP-MUC1 and the mock vector pcDNA-IRES-eGFP, respectively. Stable cell lines were generated by selection with G418, and fluorescence-activated cell sorting for eGFP expressing cells. C57B6 mice were immunized by Jurkat pcDNA-IRES-eGFP-MUC1. Monoclonal antibodies were generated by screening against each synthesized glycopeptide using ELISA methods as described below. One monoclonal antibody, 16A, has been generated, which showed stronger binding to RPAPGS(Asp,GalNAc)TAPPAHG in ELISA experiments than the non-glycosylated RPAPGSTAPPAHG. Another monoclonal antibody, 14A, which showed similar binding to RPAPGS(Asp,GalNAc)TAPPAHG and RPAPGSTAPPAHG, was also generated.

ELISA to determine antibody binding to glycopeptides. The biotinylated (glyco)-peptides (1 µg/ml) were bound to streptavidin-coated plates (2 µg/ml), and incubated with serially diluted serum for 2 h. Binding of glycopeptide-specific IgG was visualized by a secondary antibody (goat anti-mouse IgG) followed by colorimetric detection. One percent bovine serum albumin was used as blank for determining the cutoff value.

Immunohistochemistry. The study subjects were female patients selected from a clinical database at the University of Texas M.D. Anderson Cancer Center. The institutional review boards (IRB) of the M.D. Anderson Cancer Center approved the retrospective review of the medical records and identification and analysis of tumor blocks for the purposes of the present study. Breast cancer diagnosis was made by core needle or excisional biopsy of the breast tumor. All pathologic specimens were reviewed by dedicated breast pathologists. The histological type of the tumor specimens was defined according to the World Health Organization Classification System (15).

Immunohistochemistry was performed as previously described (16). Briefly, 5-µm paraffin-fixed tissue sections were deparaffinized in xylene and rehydrated through using a gradient of alcohol (100, 95 to 80%, Sigma, St. Louis, MO). Antigen retrieval was carried out for 30 min using PT Module (Lab Vision Corp., USA) in Tris-EDTA buffer (pH 9.0). After cooling down, the slides were thoroughly washed in distilled water and washed three times in 1X phosphate-buffered saline (PBS), 2 min each. Endogenous peroxidase activity was quenched by immersion in 3% hydrogen peroxide (Sigma), then in methanol for 10 min at room temperature followed by rinsing for 2 min in 1X PBS three times. Nonspecific binding of the primary antibody was blocked by incubating the sections with 10% normal horse serum for 30 min at room temperature. Sections were then incubated with primary anti-16A, 14A, or C595 (17, Abcam, Cambridge, MA) 4˚C overnight, at 1 µg/ml concentration.
The second day, after washing three times in 1X PBS (2 min each), the slides were incubated with secondary anti-mouse IgG-biotin antibody (1:200, Vectastain Elite ABC kit; Vector laboratories, CA, USA) at room temperature for 1 h and rinsed in 1X PBS three times (2 min each). After another 1-h incubation with the avidin-biotin peroxidase complex (1:100, Vectastain Elite ABC Kit; Vector Laboratories, CA, USA) and repeated washing steps with 1X PBS, visualization was performed with the chromagen 3,3'-diaminobenzidine (DAB, Dako, Carpinteria, CA, USA). The slides were counterstained with hematoxylin and coverslipped with PerMount. Sections of Jurkat-pcDNA-IRES-eGFP-MUC1 and Jurkat-pcDNA-IRES-eGFP were used as positive and negative controls, respectively. Isotype IgG and omission of the primary antibody were used as negative controls for staining.

Surface plasmon resonance (SPR) measurement of antibody affinity toward glycopeptides. Interactions of RPAPGSTAPPAHG, RPAPGS(Ac, GalNAc)TAPPAHG, and RPAPGS(GalNAc)TAPPAHG with immobilized antibody 14A and 16A were determined by surface plasmon resonance on a Biacore T100 (GE Healthcare) instrument (18). Antibody 14A and 16A were immobilized on a CM5 chip until reaching 5000 response units. A reference channel was immobilized with ethanolamine, respectively. Immobilizations were carried out at protein concentrations of 25 µg/ml in 10 mM acetate pH 5.0 by using an amine coupling kit supplied by the manufacturer. Measurements were carried out at 25°C in 10 mM HEPES, pH 7.4 containing 150 mM NaCl and 0.005% surfactant P20 at a flow rate of 30 µl/min. The association time was 120 sec and dissociation time was 200 sec. The surface was regenerated by 3 M MgCl₂ solution. Data were analyzed with BIA evaluation software (GE Healthcare).

Results and Discussion

Generation of a monoclonal antibody, 16A, toward glycopeptide RPAPGS(Ac, GalNAc)TAPPAHG. Immunizing mice by MUC-1 transfected mutant cancer cells induced IgG antibody responses against authentic glyco-epitopes expressed on tumor cell surface, which could be measured by ELISA experiments using chemically synthesized glycopeptide RPAPGS(Ac, GalNAc)TAPPAHG. We observed individual variation of IgG titers, and selected one mouse with titer above 5000 for hybridoma fusion. Supernatants of hybridoma cultures were screened toward both glycopeptide RPAPGS(Ac, GalNAc) TAPPAHG and non-glycosylated peptide RPAPGSTAPPAHG. Both 16A and 14A antibodies showed no reactivity with 2 irrelevant glycopeptides modified by GalNAc, PAHGVTS(GalNAc)APD and PAHGVTS(GalNAc)APD.
As a control, we also selected another hybridoma, 14A, by ELISA using RPAPGSTAPPAHG peptide. Not surprisingly, 14A monoclonal antibody showed same binding specificity toward RPAPGS(Ac₃GalNAc)TAPPAHG and non-glycosylated RPAPGSTAPPAHG. EC₅₀ for RPAPGS(Ac₃GalNAc)TAPPAHG, RPAPGS(GalNAc)TAPPAHG, and RPAPGSTAPPAHG were 189.3±52.55 ng/ml, 245.7±54.80 ng/ml, and 348.3±79.25 ng/ml respectively (Fig. 4).

The 16A and 14A antibodies do not bind to two other GalNAc modified glycopeptides synthesized by our group, PAHGVT(GalNAc)SAPD, or PAHGVS(TGalNAc)APD, as measured by ELISA experiments, indicating that antibody binding is not only toward the GalNAc sugar residue, but also to the specific peptide backbone involved. However, surface plasmon resonance measurement of the antibody affinity to glycopeptides showed similar binding of 16A antibody toward both glycosylated and non-glycosylated peptides (Table II). This suggests that the 25-fold higher affinity of 16A antibody binding to glycosylated peptides observed in ELISA experiments (Fig. 4) might be due to the conformational changes of glycopeptides when the 2-fragment antigen-binding sites of IgG1 molecules bind to glycopeptides in a bivalent fashion.

Table I. Expression of MUC1 in breast cancer patients as measured by 16A monoclonal antibody.

Patient ID	Histology	ER	PR	HER2	MUC1 (16A)
1	IDC+ILC	+	+	-	+
2	IDC	+	-	+	-
3	IDC	+	-	-	-
4	IDC	+	-	+	+
5	IDC	+	+	+	+
6	IDC	-	-	-	-
7	IDC	+	-	-	+
8	IDC	+	-	-	-
9	IDC	+	-	+	-
10	IDC	-	-	-	-

Table II. SPR measurement of dissociation constants for the binding of 14A and 16A monoclonal antibodies to glycopeptides.

(Glyco)peptide	Ka (1/Ms)	Kd (1/s)	KD (nM)	Chi² (RU²)
16A				
RPAPGS(Ac₃GalNAc)TAPPAHG	5.721E+4	0.02794	488.5	18.6
RPAPGS(GalNAc)TAPPAHG	3.353E+4	0.03120	930.4	23.1
RPAPGSTAPPAHG	7208	0.003898	540.8	4.95
14A				
RPAPGS(Ac₃GalNAc)TAPPAHG	1.600E+5	0.07362	460.2	10.3
RPAPGS(GalNAc)TAPPAHG	1.172E+5	0.05141	438.6	19.4
RPAPGSTAPPAHG	1.218E+4	0.002851	234.0	3.35
(Fig. 1), when tumor cells are lysed by xenogenicity-induced cell lysis. From these experiments, an entire library of monoclonal antibodies can potentially be obtained. As a first proof-of-principle experiment, we have generated monoclonal antibodies which show higher affinity to glycopeptide RPAPGS(GalNAc)TAPPAHG. This approach may be complemented with conventional monoclonal antibody production via immunization of mice with certain MUC1 glycopeptides conjugated to adjuvants (23). Our approach could potentially lead to a massive toolbox of monoclonal antibodies that could be used for the discovery of authentic biomarkers on cancer cell surfaces, and for the development of new tools for diagnostic imaging using radioisotope-labeled monoclonal antibodies.

Cross reactivity is an issue of all monoclonal antibodies. In this study, we generated 16A monoclonal antibody which preferentially binds to glycosylated peptide. The 16A antibody showed strong binding to glycopeptide RPAPGS(GalNAc)TAPPAHG, but much weaker binding to peptide RPAPGSTAPPAHG alone. It has no cross reactivity with 2 other glycopeptides modified by GalNAc, PAHGVTS(GalNAc)APD and PAHGVTS(GalNAc)APD (Fig. 4). Identifying individual glycopeptide epitopes will need not one, but an entire set of monoclonal antibodies. Thus, multiple monoclonal antibodies with preferential binding specificities will provide specific information for an individual MUC1 glycopeptide.

In conclusion, glycopeptide epitopes expressed by MUC1 may be predicted by bioinformatics tools. Glyco-epitopes expressed on tumor cell surfaces may elicit antibody responses in mice and cancer patients. Monoclonal antibodies can be generated from mice immunized by tumor cells, and selected by ELISA experiments using chemically synthesized glycopeptides predicted by bioinformatics tools. Such monoclonal antibodies are valuable tools for discovery of new biomarkers and targets for immunotherapy. This approach was successful in generating a monoclonal antibody, 16A, that was able to stain tissue sections. The nonglycosylated peptide is being recognized, but 25-fold weaker than the glycopeptide. Interestingly, 16A binds 3,4,6-tri-O-acetylated GalNAc glycopeptide more strongly than the nonglycosylated peptide by a factor of approximately 40, indicating that the absence of hydroxyl groups in the sugar moiety does not abolish binding. One possible explanation for this finding could be that the antibodies engage in intermolecular contacts simultaneously with the peptide and those parts of the Ac, GalNAc moiety that it has in common with GalNAc, for example the acetamido group at position 2. Research investigating this molecular recognition phenomenon is currently underway.

Acknowledgements

We thank Long Vien and Laura Bover at the University of Texas M.D. Anderson Cancer Center Monoclonal Antibody Facility for technical support. This work was partially funded by the grants from the University of Texas M.D. Anderson Cancer Center (D.Z.), 1SC2CA148973-01 (KM), and R00CA133244 (E.A.M.). E.S.D. is supported by National Cancer Institute training Grant T32CA009598. D.Z. is supported by NIAID grant AI079232. M.D. Anderson Cancer Center is supported in part by NIH grant CA16672. We thank the Biomolecule Analysis Core Facility at the Border Biomedical Research Center/Biology/UTEP (NIH grants 2G12RR008124-16A1 and 2G12RR008124-16A1S1) for the access to the Biacore T-100 and LC-MS instruments. D.Z. is President of NanoCruise Pharmaceutical Suzhou Ltd., a consultant for BioTex, Houston, TX, and an inventor involved in patents related to technologies mentioned in this study, issued or in application.

References

1. Gendler S, Taylor-Papdimitriou J, Duhig T, Rothbard J and Burchell J: A highly immunogenic region of a human polymorphic epithelial mucin expressed by carcinoma is made up of tandem repeats. J Biol Chem 263: 12820-12823, 1988.
2. Byrd JC and Bresalier RS: Mucins and mucin binding proteins in colorectal cancer. Cancer Metastasis Rev 23: 77-99, 2004.
3. Baldus SE, Engelmann K and Hanisch FG: MUC1 and the MUCs: a family of human mucins with impact in cancer biology. Crit Rev Clin Lab Sci 41: 189-231, 2004.
1984
SONG et al: MUC1 GLYCOPEPTIDE EPITOPES

4. Singh PK and Hollingsworth MA: Cell surface-associated mucins in signal transduction. Trends Cell Biol 16: 467-476, 2006.
5. Tarp MA and Clausen H: Mucin-type O-glycosylation and its potential use in drug and vaccine development. Biochim Biophys Acta 1780: 546-563, 2008.
6. Beatson RE, Taylor-Papadimitriou J and Burchell JM: MUC1 immunotherapy. Immunotherapy 2: 305-327, 2010.
7. Vlad AM, Kettel JC, Alajez NM, Carlos CA and Finn OF: MUC1 immunobiology: from discovery to clinical applications. Adv Immunol 82: 249-283, 2004.
8. Yang E, Hu XF and Xing PX: Advances of MUC1 as a target for breast cancer immunotherapy. Histol Histopathol 22: 905-922, 2007.
9. Ju T, Otto VI and Cummings RD: The Tn antigen-structural simplicity and biological complexity. Angew Chem Int Ed 50: 1770-1791, 2011.
10. Safina G: Application of surface plasmon resonance for the detection of carbohydrates, glycoconjugates, and measurement of the carbohydrate-specific interactions: a comparison with conventional analytical techniques. A critical review. Anal Chem Acta 712: 9-29, 2012.
11. Hoffmann-Röder A, Kaiser A, Wagner S, et al: Synthetic antitumor vaccines from Tetanus toxoid conjugates of MUC1 glycopeptides with the Thomsen-Friedenreich antigen and a fluorinesubstituted analogue. Angew Chem Int Ed Engl 49: 8498-8503, 2010.
12. Krauc S, Clo E, Clausen H, Levery SB, Jensen KJ and Blixt O: Random glycopeptide bead libraries for seromic biomarker discovery. J Proteom Res 9: 6705-6714, 2010.
13. Schietinger A, Philip M, Yoshida BA, Azadi P, Liu H, Meredith SC and Schreiber H: A mutant chaperone converts a wild-type protein into a tumor-specific antigen. Science 314: 304-308, 2006.
15. WHO: (1982) The World Health Organization histological typing of breast tumors. Second edition. Am J Clin Pathol 78: 806-816, 1982.