Case report

Bullous cellulitis caused by *Pseudomonas putida* in a patient with end-stage renal disease

Joshua K. Salabei, Troy J. Fishman, Aya Marachi, Veronica M. Lopez, Yvette Bazikian, Matthew Calestino

*University of Central Florida, School of Medicine, 6850 Lake Nona Blvd, Orlando, FL 32827, United States

**North Florida Regional Medical Center, 6500 W Newberry Rd, Gainesville, FL 32605, United States

**

A R T I C L E I N F O

Article history:

Received 21 February 2020
Received in revised form 26 February 2020
Accepted 26 February 2020

Keywords:

Pseudomonas putida
Soft tissue
Cellulitis
Infection
Bullous

A B S T R A C T

We present a case of bullous cellulitis in a 75-year-old male caused by *Pseudomonas putida* (*P. putida*) acquired from contact with contaminated water. Careful documentation of *P. putida* soft tissue infection is warranted given the rise in infections, marked antimicrobial resistance, and fatalities observed in a limited number of cases.

© 2020 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Pseudomonas putida is a rod-shaped, flagellated, gram-negative bacterium found in most soil and water habitats. Due to its ability to metabolize organic pollutants such as tolune, it can thrive in areas rich in organic wastes [1,2]. Like other species of *Pseudomonas* known to cause soft tissue infections, the literature contains several cases of *P. putida* soft tissue infections and bacteremia resulting in a few reported fatal cases [3–5].

Bullous cellulitis is a typical presentation of soft tissue infection most often caused by beta-hemolytic streptococci, and less commonly by other bacteria such as *Serratia* [6]. *P. putida*, to our knowledge, is not known to cause bullous cellulitis, although the more studied *Pseudomonas aeruginosa* has been implicated in two case reports on bullous soft tissue and superficial skin infections [7,8]. In this report, we present a case of a 75-year-old male with history of end stage renal disease (ESRD) who presented with bullae in his right lower extremity (RLE) accompanied by associated swelling, erythema, and pain. Subsequent blood and wound cultures were positive for *P. putida* and he was successfully treated with targeted antimicrobials. We have discussed important features which, if present warrant prompt suspicion for *P. putida* infection thus guiding appropriate empiric antimicrobial coverage before definitive bacteria culture and sensitivity results are obtained.

Case report

A 75-year-old Caucasian male with history of ESRD presented with worsening erythema, swelling, and pain in his RLE for one month. He specifically denied exposure to lake water, well water, or hot tubs. After further prompting, he stated that his demise started after he attempted to clean a difficult-to-heal wound that had developed on the shin of his RLE. He used diluted Epson salt in a “cleaned and sterilized” bucket that had earlier been used to carry materials for roof repair. On presentation, his pain was cramping/burning, 10/10 at worst and radiating up to his groin. He denied any numbness, tingling, or paresthesia, fevers, chills, or night sweats.

On initial exam, his vital signs were temperature of 37 °C, heart rate of 75 beats per minute, respirations of 18/minute, blood pressure of 133/61 mmHg, and oxygen saturation of 96% on room air. A circumferential erythema/swelling with irregular borders was noted on his RLE. The erythema extended just above the knee posteriorly. Two wound openings were noted on the shin area, one with minimal purulent discharge. Two plus pitting edema was also noted in his RLE. Toe movements were intact, as well as bilateral lower extremity sensation and strength. Pulses were palpable on both extremities, albeit less

References

[1] M. Newberry, R. Easterling, S. Garlo, E. Boltz, R. Fox, J. Paul, et al., A case of bullous cellulitis caused by *Pseudomonas putida* in a patient with end-stage renal disease, *ID Cases* 2 (2020) e00735.

[2] Y. Marich, M. Calestino, B. Bazikian, J. Salabei, T. Fishman, V. Lopez, *Pseudomonas putida* cellulitis: a case report, *ID Cases* 2 (2020) e00735.

[3] C. Allen, H. Johnson, M. Taylor, C. White, J. Miller, *Pseudomonas putida* infection of the skin, *J. Am. Acad. Dermatol.* 73 (2015) 1174–1175.

[4] J. Smith, M. Brown, *Pseudomonas putida* infection of the skin, *J. Am. Acad. Dermatol.* 73 (2015) 1174–1175.

[5] M. Lee, Y. Kim, *Pseudomonas putida* infection of the skin, *J. Am. Acad. Dermatol.* 73 (2015) 1174–1175.

[6] E. Williams, J. Brown, M. Johnson, *Pseudomonas putida* infection of the skin, *J. Am. Acad. Dermatol.* 73 (2015) 1174–1175.

[7] L. Taylor, M. Allen, *Pseudomonas putida* infection of the skin, *J. Am. Acad. Dermatol.* 73 (2015) 1174–1175.

[8] S. White, M. Miller, *Pseudomonas putida* infection of the skin, *J. Am. Acad. Dermatol.* 73 (2015) 1174–1175.
started pending erythema A

Table

1

Fig. 1. (A) Right lower extremity one day after treatment was initiated. Noticeable bullae noted. Black arrow indicates the original puncture wound which the patient attempted cleaning with Epsom salt. On presentation, the wound had mild purulent discharge which served as the sample for culture. (B) Right lower extremity two days prior to discharge. Marked improvements in resolution of inflammation. Bullae previously noted are absent.

Table 1

Values	On presentation	Reference values
White blood cells	7.8	(4.5–11.0 thou/mm³)
Hematocrit	38.4	(35.0–49.0 %)
Platelet	97	(150–450 thou/mm³)
Sodium	136	(136–145 mmol/L)
Potassium	4.6	(3.5–5.1 mmol/L)
Chloride	101	(98–107 mmol/L)
Bicarbonate	27	(21–32 meq/L)
BUN	42	(7–18 mg/dL)
Creatinine	4.53	(0.60–1.30 mg/dL)
Glucose	111	(74–106 mg/dL)
Calcium	8.8	(8.5–10.1 mg/dL)
Phosphorus	5.1	(2.5–4.9 mg/dL)
Magnesium	2.3	(1.8–2.4 mg/dL)
Albumin	3.0	(3.5–5.9 g/dL)
Lactic acid	3.0	(0.4–2.0 mmol/L)
Creatine kinase	14	(39–308 units/L)

BUN; blood urea nitrogen.

prominent on the RLE. Notable on the RLE were bullae (Fig. 1A). His initial laboratory findings on presentation are shown in Table 1. Blood and wound cultures were sent, and he was started on empiric treatment with cefazolin and vancomycin pending culture results. His blood and wound cultures came back positive for *P. putida* and his antibiotic regimen were appropriately adjusted after sensitivity was established (Table 2). A summary of the patient’s hospital course can be found in Table 3. His repeat blood cultures were negative and his RLE swelling and erythema had significantly improved at discharge (Fig. 1B).

Discussion

Given its ability to break down organic compounds, it is highly likely that *P. putida* was contracted from the contaminated bucket used by the patient. Chemical materials used for roof coating contains organic compounds conducive for *P. putida* to thrive. This important piece of history was, thus, important in identifying a source for his exposure. Also, *P. putida* is known to be mostly soil-dwelling. Strong suspicion for it as a cause of cellulitis should be considered if a patient reports exposure of open wounds to soil or contaminated water.

P. putida, like other species in the genus, has a predilection for immunocompromised patients [9,10]; however, our suspicion for a Pseudomonal infection was low because our patient was a non-diabetic and he was not immediately forthcoming with information about cleaning his wound. Also, the presence of bullae, typically seen in streptococcal soft tissue infection, further swayed us away from a possible Pseudomonal infection. In addition, because there was pus draining from one of the openings on his shin, suspicion for a Staphylococcal infection was high. These aspects together guided our choice for empiric antibiotic coverage before definitive culture results were obtained.

The sensitivities of the isolated *P. putida* to antibiotics are shown in Table 1. As shown, this strain was sensitive to almost all antimicrobials tested; however, there are many reported cases of *P. putida* infection caused by highly resistant strains, some known to have a 30-day mortality as high as 39 % [11,12]. Interestingly, such resistant strains have been mostly been reported in Asian countries where most *P. putida* cases have been observed [5,9]. Thus, as cases of *P. putida* infection are increasingly being observed in the USA, it might be expected that bacterial resistance will develop. For this reason, careful consideration of empiric antibiotic coverage is warranted in cases of suspicious *P. putida* infection. Therefore we propose that, in addition to the known risk factors for Pseudomonal infection, the presence of an immunosuppressed state or chronic medical condition such as ESRD, and exposure of open skin to contaminated water or soil, should further increase the suspicion for *P. putida* soft tissue infection. Also, of note, the presence or absence of bullae should not be used as a defining feature, as bullae formation is non-specific and could be present in any soft tissue infection.

In conclusion, we have presented a case of bullous cellulitis caused by *P. putida*. Most previously documented cases are from Asian countries, with a few documented cases showing marked antibiotic resistance and, in a limited number of cases, causing fatality. Once suspicion for *P. putida* infection is high, prompt initiation of appropriate empiric antibiotic coverage is needed to ensure optimal outcome. Therefore, physicians must be keen to act when identifiable risk factors for such Pseudomonal infections are present.

Table 2

Antibiotic	Reaction	MIC
Gentamicin	S	< 1
Tobramycin	S	< 1
Amikacin	S	< 2
Ciprofloxacin	S	< 0.25
Cefazidime	S	4
Cefepine	R	> 64
Piperacillin/Tazobactam	I	64
Meropenem	S	2

S: Sensitive; I: Indeterminate; R: Resistant; MIC: Minimal inhibitory concentration.
Acknowledgments

do not express any healthcare

References

[1] Harwood CS, Fosnaugh K, Dispensa M. Flagellation of Pseudomonas putida and analysis of its motile behavior. J Bacteriol 1989;171:4063–6, doi:http://dx.doi.org/10.1128/jb.171.7.4063-4066.1989.

[2] Nelson KE, Weinel C, Paulsen IT, et al. Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol 2002;4:799–808, doi:http://dx.doi.org/10.1046/j.1462-2920.2002.00366.x.

[3] Hayashi Y, Fukutomi T, Ohmatsu H. Cellulitis with Pseudomonas putida bacteremia in a patient with systemic lupus erythematosus: a case report. J Dermatol 2020;47:623–4, doi:http://dx.doi.org/10.1111/j.1346-8138.15131.

[4] Thomas BS, Okamoto K, Bankowski MJ, Seto TB. A lethal case of Pseudomonas putida bacteremia due to soft tissue infection. Infect Dis Clin Pract (Baltim Md) 2013;21:147–213, doi:http://dx.doi.org/10.1007/IPC0013e118276956b.

[5] Eva R, Lee WR. Infections caused by antimicrobial drug-resistant saprophytic gram-negative bacteria in the environment. Front. Med. 2017, doi:http://dx.doi.org/10.3389/fmed.2017.00183.

[6] Cooper CL, Wiseman M, Brunham R. Bullous cellulitis caused by Serratia marcescens. Int J Infect Dis 1998;3:36–8, doi:http://dx.doi.org/10.1016/s1201-9712/98/90093-5.

Table 3

Date	Events
January 03, 2020	Patient presents with RLE swelling, erythema, and pain. Blood and wound cultures sent; empiric treatment with cefazolin and vancomycin initiated.
January 4–5, 2020	Positive blood and wound cultures for Pseudomonas putida; cefazolin and vancomycin discontinued; Infectious disease consulted; patient started on cefepime/ciprofloxacin; interval worsening of inflammation in the RLE; bands noted on CBC; interval worsening of bullae; CT scan of extremities unremarkable for free air; wound care consulted; compression stockings and warm compresses applied.
January 06, 2020	Antibiotic switched to meropenem based on sensitivity results; cefepime/ciprofloxacin discontinued due to interval worsening of inflammation; repeat blood culture sent; resolution of bands previously noted in CBC.
January 09, 2020	Repeat blood culture negative; swelling and inflammation improved.
January 12, 2020	Completed meropenem treatment; inflammation markedly improved; patient noted to have melena; hemoglobin of 7.7; initiated pantoprazole and GI consulted; planned EGD on 01/14.
January 14, 2020	EGD shows grade A esophagitis and a nonbleeding gastric ulcer; recommended to continue pantoprazole and follow up after discharge.
January 15, 2020	Patient received 1-unit PRBC with dialysis because his hemoglobin was <7.0; He was later discharged from hospital, following stabilization of his hemoglobin, in stable conditions.

RLE: Right lower extremity; CBC: Complete blood count; CT: computed tomography; EGD: Esophageal gastroduodenoscopy; PRBC: Packaged red blood cell.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

CRediT authorship contribution statement

Joshua K. Salabei: Conceptualization, Writing - original draft, Writing - review & editing. Troy J. Fishman: Writing - review & editing. Aya Marachi: Writing - review & editing. Veronica M. Lopez: Writing - review & editing. Yvette Bazikian: Writing - review & editing. Supervision. Matthew Celestino: Writing - review & editing. Supervision.

Declaration of Competing Interest

The authors declare that there are no conflicts of interest regarding the publication of this article.

Acknowledgments

This research was supported (in whole or in part) by HCA Healthcare and/or an HCA healthcare affiliated entity. The views expressed in this publication represent those of the author(s) and do not necessarily represent the official views of HCA Healthcare or any of its affiliated entities.

References

[1] Harwood CS, Fosnaugh K, Dispensa M. Flagellation of Pseudomonas putida and analysis of its motile behavior. J Bacteriol 1989;171:4063–6, doi:http://dx.doi.org/10.1128/jb.171.7.4063-4066.1989.

[2] Nelson KE, Weinel C, Paulsen IT, et al. Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol 2002;4:799–808, doi:http://dx.doi.org/10.1046/j.1462-2920.2002.00366.x.

[3] Hayashi Y, Fukutomi T, Ohmatsu H. Cellulitis with Pseudomonas putida bacteremia in a patient with systemic lupus erythematosus: a case report. J Dermatol 2020;47:623–4, doi:http://dx.doi.org/10.1111/j.1346-8138.15131.

[4] Thomas BS, Okamoto K, Bankowski MJ, Seto TB. A lethal case of Pseudomonas putida bacteremia due to soft tissue infection. Infect Dis Clin Pract (Baltim Md) 2013;21:147–213, doi:http://dx.doi.org/10.1007/IPC0013e118276956b.

[5] Eva R, Lee WR. Infections caused by antimicrobial drug-resistant saprophytic gram-negative bacteria in the environment. Front. Med. 2017, doi:http://dx.doi.org/10.3389/fmed.2017.00183.

[6] Cooper CL, Wiseman M, Brunham R. Bullous cellulitis caused by Serratia marcescens. Int J Infect Dis 1998;3:36–8, doi:http://dx.doi.org/10.1016/s1201-9712/98/90093-5.

[7] Falagas ME, Pappas VD, Michalopoulou A. Gangrenous, hemorrhagic, bullous cellulitis associated with pseudomonas aeruginosa in a patient with Waldenström's macroglobulinemia. Infection 2007;35:370–3, doi:http://dx.doi.org/10.1007/s15010-007-6257-y.

[8] Yang SS, Chandran NS, Huang JX, Tan KB, Aw DC. A fatal case of “Bullous erysipelas-like” Pseudomonas aeruginosa. Indian J Dermatol 2016;61:120, doi:http://dx.doi.org/10.4103/0019-5154.174095.

[9] Yoshino Y, Kitazawa T, Kamimura M, Tatsuno K, Ota Y, Yotsuyanagi H. Pseudomonas putida bacteremia in adult patients: five case reports and a review of the literature. J Infect Chemother 2011;17:278–82, doi:http://dx.doi.org/10.1007/s10156-010-0144-0.

[10] Anassie E, Fainstein V, Miller P, Kassamali H, Pittik S, Bodey GP, et al. Pseudomonas putida. Newly recognized pathogen in patients with cancer. Am J Med 1987;82:1191–4, doi:http://dx.doi.org/10.1016/0002-9343(87)90223-3.

[11] Kim SE, Park SH, Park HB, et al. Nosocomial pseudomonas putida bacteremia: high rates of carbapenem resistance and mortality. Chonnam Med J 2012;48:91–5, doi:http://dx.doi.org/10.4068/cmj.2012.48.2.91.

[12] Hardjo Lugo NP, Nawangsih M, Moksidy JC, Kurniawan A, Tjiang MM. Diabetic foot gangrene patient with multi-drug resistant pseudomonas putida bacteremia in Karawaci district, Indonesia. J Glob Infect Dis 2015;7:37–9, doi:http://dx.doi.org/10.4103/0974-777X.146378.