Flat-surface-assisted and self-regulated oxidation resistance of Cu(111)

Su Jae Kim
Pusan National University
https://orcid.org/0000-0002-6033-8551

Yong In Kim
Sungkyunkwan University
https://orcid.org/0000-0002-9540-5996

Bipin Lamichhane
Mississippi State University

Young-Hoon Kim
Sungkyunkwan University

Yousil Lee
Crystal Bank Research Institute, Pusan National University

Chae Ryong Cho
Pusan National University

Miyeon Cheon
Crystal Bank Research Institute, Pusan National University

Jong Kim
UNIST
https://orcid.org/0000-0003-4101-0590

Hu Young Jeong
Ulsan National Institute of Science and Technology
https://orcid.org/0000-0002-5550-5298

Taewoo Ha
Center for Integrated Nanostructure Physics, Institute for Basic Science

Jungdae Kim
Department of Physics, BRL, and EHSRC, University of Ulsan, Ulsan 44610
https://orcid.org/0000-0002-8567-1529

Young Hee Lee
Institute for Basic Science
https://orcid.org/0000-0001-7403-8157

Seong-Gon Kim
Mississippi State University
https://orcid.org/0000-0002-1629-0319

Young-Min Kim
Sungkyunkwan University

Se-Young Jeong (syjeong@pusan.ac.kr)
Pusan National University
https://orcid.org/0000-0003-1019-4403
Physical Sciences - Article

Keywords: copper thin films, ultraflat surface, oxidation-resistant surface, self-regulated oxidation

Posted Date: April 2nd, 2021

DOI: https://doi.org/10.21203/rs.3.rs-309820/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License

Version of Record: A version of this preprint was published at Nature on March 16th, 2022. See the published version at https://doi.org/10.1038/s41586-021-04375-5.
Flat-surface-assisted and self-regulated oxidation resistance of Cu(111)

Su Jae Kim1,1, Yong In Kim2,1, Bipin Lamichhane3,†, Young-Hoon Kim2, Yousil Lee1, Chae Ryong Cho4, Miyeon Cheon1, Jong Chan Kim3, Hu Young Jeong6, Taewoo Ha7, Jungdae Kim8, Young Hee Lee2,7,9, Seong-Gon Kim3, Young-Min Kim2,7,* & Se-Young Jeong10,11*

1Crystal Bank Research Institute, Pusan National University, Busan 46241, Republic of Korea.
2Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea.
3Department of Physics and Astronomy, Mississippi State University, Mississippi State, MS 39762, USA.
4Department of Nanoenergy Engineering, Pusan National University, Busan 46241, Republic of Korea.
5School of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea.
6UNIST Central Research Facilities (UCRF), Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea.
7Center for Integrated Nanostructure Physics, Institute for Basic Science (IBS), Sungkyunkwan University, Suwon 16419, Republic of Korea.
8Department of Physics, University of Ulsan, Ulsan 44610, Republic of Korea.
9Department of Physics, Sungkyunkwan University, Suwon 16419, Republic of Korea.
10Department of Optics and Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea.
11Department of Cognomechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea.
†These authors contributed equally to this work.

*Corresponding authors. E-mail:
sk162@msstate.edu (S.-G. Kim)
youngmk@skku.edu (Y.-M. Kim)
syjeong@pusan.ac.kr (S.-Y. Jeong)

The formation of an ultraflat surface on copper thin films is important for suppressing the oxidation process, but the formation of multi-atomic steps and terraces is a result of the basic atomic stacking process and difficult to avoid. Here, we develop an innovative strategy for fabricating copper thin films with a semi-permanently oxidation-resistant surface. Comprehensive atomic-resolution microscopy reveals that our thin film consists mostly of flat surfaces and occasional mono-atomic steps. Our first principles calculations show that a mono-atomic step edge is as impervious as a flat surface to oxygen consistent with our experimental observations. Furthermore, the first principles calculations exhibit self-regulated oxidation resistance at the top surface layer: when the oxygen coverage of fcc sites of the surface exceeds 50%, the adsorbed oxygens on the top layer suppresses further adsorption of additional O atoms and renders the ultraflat Cu surface to be more oxidation resistant.
The oxidation resistance of copper is particularly important because unwanted oxidation can cause the deterioration of properties that are critical to a vast range of applications, including nanocircuitry in the semiconductor industry and transparent conducting electrodes using nano-patterning or nano-wiring in the field of electro-optics. Recent in situ atomic-resolution electron microscopy studies uncovered that oxides grow by oxidation through stepped Cu surfaces and that oxidation occurs via direct growth of Cu$_2$O on flat terraces with Cu adatoms detaching from steps and diffusing across terraces. Although there are numerous studies on the oxidation of copper, the fact that a flat copper surface itself can be free of oxidation has been ignored, except for the phenomenon that single-crystalline copper is more resistant to oxidation than polycrystalline copper. Given that the step edge is vulnerable to oxidation because surface steps act as the dominant source of Cu adatoms for oxide growth on surface terraces, endowing the copper surface with oxidation resistance properties may be realized if the surface step edges are avoided. The close-packed Cu(111) surface is superior to other Cu surfaces.

In this work, we experimentally demonstrate that a tightly coordinated flat surface of a single-crystal Cu(111) film (SCCF) grown by atomic sputtering epitaxy (ASE) is free of oxidation and even remains stable against oxidation semipermanently. Theoretical calculations reveal the atomic-scale oxidation-resistant mechanism of the flat copper surface from the perspective of the likely pathways for oxygen atoms into the viable structures of the copper surface with a discovery of the self-regulated protection layer at elevated oxygen coverages. The implication is that the atomically flat surface of the SCCF shows oxidation-resistant properties due to the high energy barrier for oxygen infiltration and self-regulation due to high oxygen coverages.

Flatness of Cu(111) surface

The surface and structural characteristics of a 110-nm-thick SCCF with an ultraflat surface (see Extended Data Fig. 1 for a large-scale characterization) are examined using high-resolution (scanning) transmission electron microscopy (HR(S)TEM) combined with geometrical phase analysis (GPA) (Fig. 1). The cross-sectional (S)TEM images (Figs. 1a, e) show that the copper film grew along the [111] direction, thus creating an exposed surface (111) plane with mono-atomic step edge structures. Typical multi-atomic step edges and intrinsic defects such as grain boundaries and stacking faults are rarely detected. It is remarkable that the outermost copper surface layer has the same atomic configuration as the interior copper without evidence of surface relaxation or structural changes by surface oxidation even at the step edge positions. To examine the local strain behavior near the surface...
region, lattice distortions along the in-plane (x) and out-of-plane (y) directions relative to the inside of the SCCF were measured by the GPA technique (Figs. 1b, c). The resulting strain field maps (E_{xx} and E_{yy}) clearly show that no noticeable change in lattice strain is observed throughout the entire surface region. This means that the SCCF has a nearly perfect atomic structure up to its outermost surface layer without any structural defects such as vacancies or dislocations. The simulated HRTEM image using an amorphous carbon/flat copper surface model matches well with the experimental HRTEM image (Fig. 1a). By comparing the layer spacings of the (111) stacking planes ($d_{(111)} = 0.21$ nm) between the simulated and experimental images (Fig. 1d), it is evident that the Cu surface is undistorted and ultraflat and has the same structure as bulk Cu. Annular dark field (ADF) and annular bright field (ABF) STEM images of the SCCF surface are complementary to the HRTEM observation results (Fig. 1e). We can discriminate this remarkable ultraflat surface structure of the SCCF from that of the conventional polycrystalline Cu thin film (PCCF) and the Cu(111) surface of a bulk Cu single crystal with a notable oxidised copper layer on top of them (Extended Data Fig. 2 and Fig. 3). Strikingly, we found that the SCCF sample maintained its ultraflat and pristine surface even after more than a year of air exposure (Fig. 2a–d), suggesting that our SCCF has exceptional oxidation-resistant properties. (also see Extended Data Fig. 4 for a large-scale scanning tunneling microscope (STM) topography)

Fig. 1 | Surface of a single-crystal copper thin film (SCCF) grown by atomic sputtering epitaxy (ASE). a, Cross-sectional HRTEM image of the surface part of the copper thin film observed in the [110] orientation. The simulated HRTEM image and the corresponding model of the carbon-copper supercell are presented alongside the experimental HRTEM image. b–c, In-plane (E_{xx}) and out-of-plane (E_{yy}) strain field maps obtained by geometrical phase analysis (GPA) for the experimental HRTEM image. The reference area of Cu chosen for
The low-magnification BF-TEM image (Fig. 2a, top) and the cross-sectional HRTEM image (Fig. 2a, bottom) show that the mono-atomic step edge structure is maintained even after a year. The two intensity profiles for the (111) plane between the as-deposited (red) and the 1-year-old (blue) samples (Fig. 2b) show a change in the planar spacing of the (111) planes up to the uppermost surface layer, and they agree well with each other, suggesting that no notable oxidation has occurred even in the SCCF under long-term exposure to air. The electron backscatter diffraction (EBSD) map (Fig. 2c) and inverse pole figure (IPF) (Fig. 2d) show that no misalignment of crystal lattices deviating from the (111) plane has occurred after a year. Oxidised portions were rare on the 3-year-old SCCF sample oriented along [110] in the HRTEM image although they were found on the sample edge where the sample was cut (Fig. 2e, top). The resulting strain field maps (E_{xx} and E_{yy}) prepared using the GPA technique (Fig. 2e, middle and bottom) show that the overlayer (region 1) has a new lattice structure that is mismatched with the SCCF. The fast Fourier transform (FFT) patterns of region 1 (Fig. 2f, top), region 2 (Fig. 2f, middle) and both regions (Fig. 2f, bottom) indicate that the two regions belong to the Cu$_2$O and Cu phases, respectively, and suggest that part of the surface is oxidised. However, the oxidised surface only reaches a few Cu$_2$O layers, which is thin compared with the thickness of natural oxide layers in polycrystalline Cu (Extended data Fig. 2). Comparative thermogravimetric analysis (TGA) of PCCF and SCCF samples having different surface roughness clearly demonstrates that the SCCF with mono-atomic step edges exhibits exceptional resistance to initial oxidation at elevated temperatures compared with the other samples (Fig. 2g).
Fig. 2 | Long-term oxidation resistance and structural stability of the SCCF surface. a, Low-magnification bright field TEM (BF-TEM) image of the SCCF sample exposed to ambient air at room temperature for approximately 1 year (top). The result shows that the atomically flat surface morphology over the entire SCCF film has remained almost unchanged. HRTEM image of the surface part (marked by a red rectangle in A) of the 1-year-old SCCF sample (bottom). The sample was oriented in the [001] direction. b, Comparison of the intensity profiles for the (111) plane between the as-deposited (red) and 1-year-old (blue) samples. c, EBSD map showing perfect alignment along the (111) plane. d, IPF with a sole spot associated with the (111) plane. The inset image is the enlarged image of the sole spot area. e, HRTEM image of the surface part of the 3-year-old SCCF sample observed in the [110] orientation (top) and in-plane (E_{xx}, middle) and out-of-plane (E_{yy}, bottom) strain field maps obtained by geometrical phase analysis (GPA) for the HRTEM image of the 3-year-old SCCF sample. f, FFT patterns of region 1 (top), region 2 (middle) and both regions (bottom). g, Thermogravimetric analysis for the PCCF and SCCF samples with different surface roughness. Scale bars of e are 2 nm.
Growth condition for the flat surface

The flatness of a surface is decisively influenced by the interface structure between the film and substrate18,19, which can be relaxed by structural defects such as dislocations. The interface structure between the Cu film and Al\textsubscript{2}O\textsubscript{3} substrate is characterized by HR(S)TEM (Fig. 3). The overall interface structure viewed at the \([11\bar{2}]\) orientation of the Cu film and the FFT pattern of the image reveal that the crystallographic orientation relationship (OR) is \((111)_{\text{Cu}}[\{11\bar{2}\}]_{\text{Cu}}//\langle 001 \rangle_{\text{Al}\textsubscript{2}O\textsubscript{3}}[\{110\}]_{\text{Al}\textsubscript{2}O\textsubscript{3}}\) (Figs. 3a, b). The copper lattices appear to flawlessly adjoin with the Al\textsubscript{2}O\textsubscript{3} substrate without interfacial misfit defects, suggesting that the Cu film grows metamorphically on the substrate20 (Extended data Fig. 5). The enlarged image of the interface (Fig. 3c) reveals a detailed lattice mismatch between the two materials. The atomic distance mismatch

\[
\begin{align*}
&f(\frac{d_{\text{Cu}-\text{Cu}}^{\{\{11\bar{2}\}\}} - d_{\text{Cu}-\text{Cu}}^{\{\{110\}\}}}{d_{\text{Al}\textsubscript{2}O\textsubscript{3}-\text{O}\textsubscript{Al}\textsubscript{2}O\textsubscript{3}}^{\{\\}}})
& \text{between Cu and Al\textsubscript{2}O\textsubscript{3}}
\end{align*}
\]

is estimated to be 6.9%. However, considering the extended atomic distance mismatch (EADM)21,22, the large mechanical misfit strain can be relieved if the match for a relatively long period is extremely small. The EADM is defined as \((ID - I'D')/I'D'\), where \(D\) and \(D'\) are the two atomic distances of the epilayer and substrate, respectively, and \(I\) and \(I'\) are determined by the relation \(D:D' \sim I:I'\). Given the \(D_{\text{Cu}-\text{Cu}}\) (14 × \(d_{\text{Cu}-\text{Cu}}^{\{\{11\bar{2}\}\}}\)) interatomic spacing (3.578 nm) of Cu and the \(D_{\text{O}-\text{O}}\) (13 × \(d_{\text{O}-\text{O}}^{\{\{110\}\}}\)) interatomic spacing (3.575 nm) of Al\textsubscript{2}O\textsubscript{3}, the EADM of the Cu/Al\textsubscript{2}O\textsubscript{3} interface is about 0.1% (Fig. 3c). The light element-sensitive ABF-STEM imaging23 (Fig. 3d) reveals that the interface model of Cu grown on the oxygen-terminated Al\textsubscript{2}O\textsubscript{3} surface matches well with the experimental heterostructure. The inverted intensity profile obtained across the interface (Fig. 3e) clearly corroborates the presence of an oxygen layer between the Cu and Al layers, thus indicating the existence of Cu–O interactions at the interface, which can be stabilized on a typical Al\textsubscript{2}O\textsubscript{3} surface terminated with oxygen24. Owing to the in-plane lattice mismatch, a large-scale interference pattern, i.e., a moiré pattern25, can be observed in the plane view of the Cu/Al\textsubscript{2}O\textsubscript{3} heterostructure (Fig. 3f). Indeed, the hexagonal moiré pattern with a dimension \((d_n)\) of 1.83 nm is observed due to the different in-plane lattice periodicities in the vertical OR of \([11\bar{1}]_{\text{Cu}}//\langle 001 \rangle_{\text{Al}\textsubscript{2}O\textsubscript{3}}\), which is confirmed by the FFT pattern analysis (inset in Fig. 3f). The simulated moiré pattern generated by the epitaxy model of Cu/Al\textsubscript{2}O\textsubscript{3} with the same OR is consistent with the experimental moiré pattern showing the repeating large-scale contrast feature (Figs. 3g and h). This vertical OR observation corroborates our EADM analysis and indicates that the growth mechanism of the SCCF on the Al\textsubscript{2}O\textsubscript{3} substrate can be understood based on the large-scale mismatch epitaxial relationship rather than the atomic-scale lattice interrelation. The detailed chemical nature of the SCCF at the surface and the interface regions are investigated by the combined spectroscopic
approaches of energy dispersive X-ray spectroscopy (EDX), electron energy loss spectroscopy (EELS) in ADF-STEM imaging mode, and X-ray photoelectron spectroscopy (XPS) (Extended data Fig. 6).

Fig. 3 | Interface structure and crystallographic relation. **a**, Cross-sectional HRTEM image of the Cu/Al\(_2\)O\(_3\) heterointerface having the orientation relation of (111)\(_{\text{Cu}}\)[112]\(_{\text{Cu}}\) \/{(001)\(_{\text{Al}_2_O_3}\)}} [110]\(_{\text{Al}_2\text{O}_3}\). **b**, A composite pattern of FFTs for the regions of Cu and Al\(_2\)O\(_3\) in the HRTEM image. **c**, Enlarged HRTEM image for the region marked by the dotted box in a. **d**, ABF-STEM image and superimposed atomic model of the Cu/Al\(_2\)O\(_3\) heterointerface. **e**, Inverted intensity profile obtained across the interface between Cu and Al\(_2\)O\(_3\) in d. **f**, Plan-view HRTEM image of the Cu/Al\(_2\)O\(_3\) heterointerface. **g-h**, Side view and plan view of the deduced epitaxy model of Cu grown on an Al\(_2\)O\(_3\) substrate.

Calculation of oxidation-resistance
We can understand the exceptional oxidation resistance of our films using a microscopic model of copper oxidation based on first principles density functional theory (DFT) calculations. The main reason for the suppression of oxidation is that our atomically flat film is free of one critical feature, namely, multi-atomic step edges, as shown in Fig. 4. The energy profile in Fig. 4a shows that the penetration of an O atom through a pristine Cu(111) surface needs an activation energy of more than 1.4 eV (Fig. 4b), and the O atom becomes stable only in the second subsurface interlayer space with an additional energy barrier of 1.3 eV (Fig. 4c). One of the main reasons for the strong resistance of a flat surface to oxidation is that when Cu atoms are oxidised, the out-of-plane distance between Cu layers increases from 2.10 to 2.48 Å, and the volume expands by 18% (Extended data Fig. 7). The volume increase is even more pronounced in the early stage of oxidation: the Cu layer distance in the monolayer of Cu$_2$O on the Cu surface is 3.26 Å, and the volume is greater by 55% (Extended data Fig. 7). Given that one exposed Cu surface is insufficient to initiate the oxidation process, we examine a structure wherein two crystallographically different planes meet, namely, the edge of a multi-atomic step. Notably O$_2$ molecules physisorbed on a Cu(111) surface readily dissociate into O ions with a small activation energy of 0.027 eV (Extended data Fig. 8). Figure 4d-f shows the initiation of oxidation on the edge of such multi-atomic steps according to our DFT calculation; Fig. 4a shows that there is a critical difference between a mono-atomic step and a multi-atomic step in terms of the oxidation resistance. While the penetration of O atoms at a bi-atomic and tri-atomic step is an exothermic reaction ($\Delta E = -0.90$ and -0.86 eV, respectively) with smaller activation energies ($E_a = 0.97$ and 0.71 eV, respectively), the penetration of O at the edge of a mono-atomic step is highly endothermic ($\Delta E = +0.80$ eV), requiring a much larger activation energy ($E_a = 1.56$ eV), and shows strong oxidation resistance. Our DFT calculation indicates that, as the coverage of oxygen increases, the incremental adsorption energy for the next O atom becomes smaller and eventually becomes negative beyond 50% of oxygen coverage, rendering the adsorption process energetically unfavorable (Fig. 4g). This self-regulation of oxygen suppresses further adsorption of O atoms on an ultraflat Cu surface at elevated oxygen coverages and increasingly enhances the oxidation resistance of the surface. Our microscopic model of oxidation is well supported by HRTEM images, which show that atomically flat Cu thin films with occasional presence of mono-atomic steps are highly resistant to oxidation over an extended period (≥ 3 years) (Fig. 2), while Cu films with multi-atomic steps show substantial oxidation (Extended data Figs. 2 and 3). The oxidation resistance of a Cu(111) surface is significantly affected by the type of surface defects, which suggests that an atomically flat Cu(111) surface without multi-atom steps is essential to achieve strong oxidation resistance.
Fig. 4 | Theoretical analysis and a model of oxidation of the Cu surface. a, Energy profile of the O atom along various penetration paths: b, from the Cu(111) surface into the first Cu substrate interstitial layer (black solid circle ●); c, from the first to the second Cu substrate interstitial layer (black open circle ○); d, from the outside to the inside of the mono-atomic step edge (red solid circle ●); e, from the outside to the inside of the bi-atomic step edge (blue open square □); and f, from the outside to the inside of the tri-atomic step edge (purple open square □). Blue spheres represent Cu atoms in the bulk or substrate, green spheres represent Cu atoms in the steps, and dark blue spheres represent Cu atoms on the step edge. Orange spheres represent adsorbed O atoms, whereas red spheres represent O atoms infiltrating into the interstitial region. Panel f also shows the initiation of oxidation on the edge of a multi-atomic step: (1) given a pristine step edge and ambient oxygen conditions, (2) two O atoms (orange spheres) adsorb on each side of the Cu on the edge (Cu-1, dark blue sphere); (3) the third adsorbed O atom (O-2, red sphere) causes the local structure of Cu-1 to be similar to that of Cu in a monolayer of Cu$_2$O, and the expansion of volume causes Cu-1 to move upward and open a pathway for O-2; and (4) O-2 passes through the opening and binds with Cu atoms in the next row to push those Cu atoms upward to sustain the oxidation process; g, Incremental adsorption energy of O-atom as a function of oxygen coverage of the fcc sites on the Cu(111) surface.

Online content
Any methods, additional references, Nature Research reporting summaries, source data, statements of data availability and associated accession codes are available at https://doi.org/

References
1 Gattinoni, C. & Michaelides, A. Atomistic details of oxide surfaces and surface oxidation the example of copper and its oxides. *Surf. Sci. Rep.* **70**, 424-447, doi:10.1016/j.surfrep.2015.07.001 (2015).
2 Zhu, Q., Zou, L., Zhou, G., Saidi, W. A. & Yang, J. C. Early and transient stages of Cu oxidation: Atomistic insights from theoretical simulations and in situ experiments. *Surf. Sci.* **652**, 98~113,
Lahtonen, K., Hirsimaki, M., Lampimaki, M. & Valden, M. Oxygen adsorption-induced nanostructures and island formation on Cu\(\text{[100]}\): Bridging the gap between the formation of surface confined oxygen chemisorption layer and oxide formation. *J. Chem. Phys.* **129**, 124703, doi:10.1063/1.2980347 (2008).

Ahonen, M. *et al.* Adsorption dynamics of O\(_2\) on Cu(100): The role of vacancies, steps and adatoms in dissociative chemisorption of O\(_2\). *Chem. Phys. Lett.* **456**, 211-214, doi:10.1016/j.cplett.2008.03.039 (2008).

Moritani, K., Okada, M., Teraoka, Y., Yoshigoe, A. & Kasai, T. Reconstruction of Cu\(\text{[111]}\) Induced by a Hyperthermal Oxygen Molecular Beam. *J. Phys. Chem. C* **112**, 8662~8667, doi:10.1021/jp800713u (2008).

Yang, J. C., Kolasa, B., Gibson, J. M. & Yeadon, M. Self-limiting oxidation of copper. *Appl. Phys. Lett.* **73**, 2841-2843, doi:10.1063/1.122608 (1998).

Huang, C. L., Weng, W. L., Liao, C. N. & Tu, K. N. Suppression of interdiffusion-induced voiding in oxidation of copper nanowires with twin-modified surface. *Nat. Commun.* **9**, 340, doi:10.1038/s41467-017-02154-3 (2018).

Li, L. *et al.* Surface-step-induced oscillatory oxide growth. *Phys. Rev. Lett.* **113**, 136104, doi:10.1103/PhysRevLett.113.136104 (2014).

Zhou, G. *et al.* In situ atomic-scale visualization of oxide islanding during oxidation of Cu surfaces. *Chem. Commun.* **49**, 10862-10864, doi:10.1039/c3cc46684a (2013).

Zhou, G. *et al.* Step-edge-induced oxide growth during the oxidation of Cu surfaces. *Phys. Rev. Lett.* **109**, 235502, doi:10.1103/PhysRevLett.109.235502 (2012).

Baber, A. E. *et al.* In situ imaging of Cu\(2\)O under reducing conditions: formation of metallic fronts by mass transfer. *J. Am. Chem. Soc.* **135**, 16781-16784, doi:10.1021/ja408506y (2013).

Fujita, K., Ando, D., Uchikoshi, M., Mimura, K. & Isshiki, M. New model for low-temperature oxidation of copper single crystal. *Appl. Surf. Sci.* **276**, 347-358, doi:10.1016/j.apsusc.2013.03.096 (2013).

Zhang, X. *et al.* Nanocrystalline copper films are never flat. *Science* **357**, 397-400, doi:10.1126/science.aan4797 (2017).

Schitz, J. & Jacobsen, K. W. Nanocrystalline metals: Roughness in flatland. *Nat. Mater.* **16**, 1059-1060, doi:10.1038/nmat5015 (2017).

Kim, S. J. *et al.* Color of Copper/Copper Oxide. *Adv. Mater.* (in press) doi:10.1002/adma.202007345 (2021).

Hytch, M. J., Snoeck, E. & Kilaas, R. Quantitative measurement of displacement and strain fields from HREM micrographs. *Ultramicroscopy* **74**, 131-146, doi:10.1016/S0304-3991(98)00035-7 (1998).

Sasaki, T. *et al.* Atomic and electronic structures of Cu/\(a\)-\(\text{Al}_2\)O\(_3\) interfaces prepared by pulsed-laser
deposition. *Sci. Technol. Adv. Mater.* **4**, 575-584, doi:10.1016/j.stam.2003.12.003 (2003).

19 Ernst, F., Pirouz, P. & Heuer, A. H. HRTEM study of a Cu/Al₂O₃ interface. *Philos. Mag.* **A63**, 259-277, doi:10.1080/01418619108204849 (1991).

20 Richardson, C. J. K. & Lee, M. L. Metamorphic epitaxial materials. *MRS Bull.* **41**, 193-198, doi:10.1557/mrs.2016.7 (2016).

21 Kato, T. *et al.* Simultaneous growth of two differently oriented GaN epilayers on (110) sapphire II. A growth model of (001) and (100) GaN. *J. Cryst. Growth* **183**, 131-139, doi:10.1016/0022-0248(97)00364-3 (1998).

22 Liu, X. Y. *et al.* Perfect strain relaxation in metamorphic epitaxial aluminum on silicon through primary and secondary interface misfit dislocation arrays. *ACS Nano* **12**, 6843-6850, doi:10.1021/acsnano.8b02065 (2018).

23 Kim, Y. M., Pennycook, S. J. & Borisevich, A. Y. Quantitative comparison of bright field and annular bright field imaging modes for characterization of oxygen octahedral tilts. *Ultramicroscopy* **181**, 1-7, doi:10.1016/j.ultramic.2017.04.020 (2017).

24 Kung, P., Sun, C. J., Saxler, A., Ohsato, H. & Razeghi, M. Crystallography of epitaxial growth of wurtzite-type thin films on sapphire substrates. *J. Appl. Phys.* **75**, 4515-4519, doi:10.1063/1.355943 (1994).

25 Williams, D. B. & Carter, C. B. *Transmission Electron Microscopy.* (Springer, 1996).

26 Ngantcha, J. P., Gerland, M., Kihn, Y. & Riviere, A. Correlation between microstructure and mechanical spectroscopy of a Cu-Cu₂O alloy between 290 K and 873 K. *European Physical Journal-Applied Physics* **29**, 83-89, doi:10.1051/epjap:2004200 (2005).

27 Ewels, P., Sikora, T., Serin, V., Ewels, C. P. & Lajaunie, L. A Complete Overhaul of the Electron Energy-Loss Spectroscopy and X-Ray Absorption Spectroscopy Database: eelsdb.eu. *Microsc Microanal* **22**, 717-724, doi:10.1017/S1431927616000179 (2016).

28 Perdew, J. P., Burke, K. & Ernzerof, M. Generalized gradient approximation made simple. *Phys. Rev. Lett.* **77**, 3865 - 3868, doi:10.1103/PhysRevLett.77.3865 (1996).

29 Blochl, P. E. Projector augmented-wave method. *Phys. Rev. B* **50**, 17953-17979, doi:10.1103/PhysRevB.50.17953 (1994).

30 Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. *Phys. Rev. B* **59**, 1758-1775, doi:10.1103/PhysRevB.59.1758 (1999).

31 Coulman, D. J., Wintterlin, J., Behm, R. J. & Ertl, G. Novel mechanism for the formation of chemisorption phases: The (2 x1)-O-Cu(110) "added row" reconstruction. *Phys. Rev. Lett.* **64**, 1761-1764, doi:10.1103/PhysRevLett.64.1761 (1990).

32 Sun, L. D., Hohage, M., Denk, R. & Zeppenfeld, P. Oxygen adsorption on Cu(110) at low temperature. *Phys. Rev. B* **76**, 245412, doi:10.1103/PhysRevB.76.245412 (2007).

33 Lian, X., Xiao, P., Liu, R. & Henkelman, G. Communication: Calculations of the (2 x 1)-O reconstruction kinetics on Cu(110). *J. Chem. Phys.* **146**, 111101, doi:10.1063/1.4978578 (2017).

34 Li, L., Liu, Q., Li, J., Saidi, W. A. & Zhou, G. Kinetic barriers of the phase transition in the oxygen
Chemisorbed Cu(110)-(2 × 1)-O as a function of oxygen coverage. *J. Phys. Chem. C* **118**, 20858-20866, doi:10.1021/jp503757k (2014).

Cho, Y. C. *et al.* Copper better than silver: Electrical resistivity of the grain-free single-crystal copper wire. *Crystal Growth & Design* **10**, 2780-2784, doi:10.1021/cg1003808 (2010).

Ajmal, M. *et al.* Fabrication of the best conductor from single-crystal copper and the contribution of grain boundaries to the Debye temperature. *CrystEngComm* **14**, 1463-1467, doi:10.1039/C1CE06026K (2012).

Cha, S. Y. *et al.* Improving the precision of Hall effect measurements using a single-crystal copper probe. *Rev. Sci. Instrum.* **83**, 013901, doi:10.1063/1.3677333 (2012).

Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. *Phys. Rev. B* **13**, 5188-5192, doi:10.1103/PhysRevB.13.5188 (1976).

Henkelman, G., Uberuaga, B. P. & Jonsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. *J. Chem. Phys.* **113**, 9901-9904, doi:10.1063/1.1329672 (2000).

Bader, R. F. W. A quantum theory of molecular structure and its applications. *Chem. Rev.* **91**, 893-928, doi:10.1021/cr00005a013 (1991).

Methods

Preparation of the single-crystal Cu thin film via the atomic sputtering epitaxy (ASE) technique. Cu thin films were grown as nearly defect-free and grain boundary-free single crystals using the ASE technique achieved by addressing the problems of conventional sputter systems. The ASE was realized by an improved RF magnetron system equipped with single-crystal sputtering target. Electrical and mechanical noises were effectively reduced by replacing conventional electric conductors with single-crystal ones and by employing a mechanical noise reduction (MNR) system. Employing the single-crystal target prevented particulate sputtering, which is mainly caused by the presence of grain boundaries in a conventional poly-crystal target. This resulted in improved film quality. The electric signal noise usually caused by the scattering of electrons due to grain boundaries in conductors was reduced by replacing the conventional Cu wires (including the power, ground, power supply network, and various interconnection cables) with grain-boundary-free single-crystal wire. Environmental mechanical noise was also reduced through the introduction of the MNR system. These electrical and mechanical improvements effectively suppressed the extrinsic and environmental factors that can hinder atomic-level deposition and facilitated the generation of homogeneous and high-quality plasma gases. Ar gas (99.9999%, 6 N) was used for the deposition atmosphere. The relationship between the deposition time and the thickness of the thin film (or the average growth rate) was determined from the average deposition time of a 200-nm-thick film grown under the optimum conditions. The determined average growth rate of ~4.3 nm/min.
is fairly reliable above a film thickness of 10 nm.

Structural and chemical characterizations. XRD θ–2θ measurements were performed using a PANalytical Empyrean Series 2 instrument equipped with a Cu-Kα source (40 kV, 30 mA). Data were collected within the range of 20° < 2θ < 90°, with a step size of 0.0167° and a dwell time of 0.5 s per point in all cases. AFM measurements were carried out using an XE-100 system (Park Systems, Inc.). Scanning electron microscopy (SEM), EBSD, pole figure (PF) and IPF measurements were performed with a Zeiss SUPRA40 VP with a scanning electron microscope. An STM surface analysis was conducted using a custom-built STM system installed in University of Ulsan, Korea. Electron-transparent cross-sectional TEM samples were prepared by the Ga ion beam milling and lift-out method in focused ion beam systems (FIB, Helios NanoLab 450, FEI and Auriga CrossBeam Workstation, Carl Zeiss), and the possible damaged surface layers on the samples were removed by subsequent low-energy Ar ion beam surface milling at 700 eV for 15 min (Model 1040 NanoMill, Fischione). The plan-view TEM specimen was prepared by mechanical polishing and dimple grinding followed by ion milling with Ar ions. Double C_s-corrected (S)TEM systems (JEM-ARM200CF, JEOL) equipped with EELS (Quantum ER965, Gatan) and EDX (JED-2300T, JEOL) were used for atomic-scale structure imaging and chemical analysis of the samples at an accelerating voltage of 200 kV. The inner and outer angle ranges for ADF- and ABF-STEM imaging were 45–180 and 12–24 mrad, respectively. The HRTEM, ADF- and ABF-STEM images were denoised by a local 2D difference image filter that is implemented in commercial software (HREM Filters Pro, HREM Research Inc.). The HRTEM simulation was carried out for the amorphous carbon/copper [112] supercell structure (4.8×4.8 nm²) using the multislice method, which is implemented in the commercial software MacTEMPAS (Total Resolution LLC, USA), with the following microscope and imaging parameters: accelerating voltage (V = 200 kV), spherical aberration coefficient (C_s = 0.4 µm), chromatic aberration coefficient (C_c = 1.1 mm), convergence semi-angle (α = 0.5 mrad), sample thickness (t = 20.5 nm), and defocus (Δf = +14 nm). The simulated HRTEM image was estimated to have a correlation of 0.98 with the experimental HRTEM image as a cross-correlation factor. For the quantitative analysis of local strain components in the copper thin film, the GPA technique was employed, which allows mapping two-dimensional local displacement fields by analyzing the phase shift between nonlinear Fourier components of the lattice vectors g_1 and g_2. For EELS measurements of the Cu/Al_2O_3 interface and the Cu surface, the core-loss EELS spectra of the Cu L edge were obtained from the interface to the Cu surface using the line scan function of the scanning step (0.72 nm) for a 37.83 nm length with an energy dispersion of 0.5 eV/pix and a dwell time of 2.0 s/pix. For core-loss EELS spectrum imaging for the comparison of surface structures between the SCCF and the PCCF samples, surface parts of both samples were selected by 20 × 16 pixels that can be translated as 9.87 × 7.9 nm² and scanned with the step size of 0.493 nm to obtain EELS SI dataset. The selected range of energy loss was set to be 477–988 eV including O K and Cu L_2,3 edges. Nanoscale STEM-EDX maps of the constituent elements of the Cu/Al_2O heterostructure were obtained for a 256 x 256 pixel resolution with a high-efficiency
dual silicon drift detector (SDD) X-ray detector system having a wide collection window of 100 mm2 for each detector, and the sample drift during the acquisition was corrected by tracking the reference area assigned at the acquisition setup.

Thermogravimetric analysis for the PCCF and SCCF samples with different surface roughness. The thermal mass change was measured using thermogravimetric measurement system (TG-DTA 2000S, MAC Science). We prepared samples of two SCCF samples with different values of surface roughness and PCCF sample. The gravimetric changes of the three samples were measured in the temperature range of RT–700°C at a heating rate of 20°C/min under air atmosphere. Two SCCF samples with different values of RMS roughness, i.e., 0.3 (SCCF-0.3, corresponding to a mono-atomic step) and 0.7 nm (SCCF-0.7, corresponding to a bi- or tri-atomic step), were tested to ascertain the effect of the surface steps on oxidation in comparison to the PCCF sample (blue) (RMS roughness: ~10 nm). While the SCCF sample with a roughness of 0.3 nm (red) was synthesized by ASE and had an ultraflat surface with occasional mono-atomic steps, the SCCF with the roughness of 0.7 nm (green), which was synthesized by using a single-crystal target in a conventional sputtering system, had occasional multi-atomic steps of 2 or 3 atomic layers in height.

Theoretical calculations. All ab initio total energy calculations and geometry optimizations were performed with DFT in the generalized gradient approximation (GGA) Perdew–Burke–Ernzerhof functional28 and with the projected augmented plane-wave method29, as implemented by Kresse et al.30 The Cu substrate was represented by slabs of six layers with the theoretical equilibrium lattice constant. A vacuum length of 15 Å was used, and the bottom two layers of the slab were fixed in their bulk positions. The electron wave functions were expanded in a plane-wave basis set with a cutoff energy of 400 eV. The Brillouin zone for the slabs was sampled using k-point sets equivalent to at least a ($5\times5\times1$) Monkhorst-Pack grid38 for the primitive face-centered cubic (fcc) unit cell. The climbing image-nudged elastic band method39 was used to calculate activation energies. The local atomic charge was computed using Bader’s charge decomposition method40, which divides the total volume into individual atomic volumes for each atom as the one containing a single charge density maximum and separated from the other volumes by a zero-flux surface of the gradients of the charge density magnitude. The incremental adsorption energy of an oxygen atom as a function of oxygen coverage $\Theta = n/n_0$ for n O atoms on n_0 fcc sites on a Cu(111) substrate is calculated as the energy change when an additional O atom is adsorbed on the substrate, $E_{\text{ad}}(n) = E[\text{Cu}+(n+1)\text{O}] - E[\text{Cu}+n\text{O}] - \frac{1}{2}E[\text{O}_2]$, where $E[\text{Cu}+n\text{O}]$ is the total energy of n oxygen atoms on the Cu substrate and $E[\text{O}_2]$ is the total energy of an isolated oxygen molecule.

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (No. NRF-
the Creative Materials Discovery Program (NRF-2017R1A2B3011822, NRF-2020R1A4A4078780), the Creative Materials Discovery Program (NRF-2015M3D1A1070672, and NRF-2016M3D1A1919181) through the National Research Foundation of Korea (NRF), and the Institute for Basic Science (IBS-R011-D1). Computer time allocation was provided by the High Performance Computing Center (HPCC) at Mississippi State University.

Author contributions

S.-Y.J., Y.-M.K, and S.G.K conceived this work and wrote the manuscript. S.-Y.J. and Y.-M.K. supervised the experiments. S.J.K. and Y.L. prepared the SCCF samples. Y.-M.K., Y.I.K., Y.-H.K., J.C. Kim, and H.Y.J. performed TEM analyses and sample preparations. J. K. conducted the STM analysis. S.J.K. and Y.L., T.H., C.R.C., and M.C. performed EBSD and AFM experiments and assisted with the data analyses. S.-Y.J. and S.G.K. established the theoretical model, and S.G.K., and B.L. carried out first-principles calculations. S.-Y.J. and Y.H.L. supervised and coordinated this work. All authors contributed to the discussion and analysis of the results.

Competing interests

The authors declare that there are no competing interests.

Additional information

Correspondence and requests for materials should be addressed to S.G.K. Y.-M. K. or S.-Y. J.

Peer review information

Reprints and permissions information is available at http://www.nature.com/reprints.

Reprint and permission information is available at www.nature.com/reprints.
Extended data figures

Extended Data Fig. 1 | Pristine SCCFs grown by ASE. **a,** Photo of a 2-inch SCCF grown on Al₂O₃. **b,** 0–20 X-ray diffraction (XRD) data taken at different positions marked in a. **c,** Surface morphologies at 20-nm (upper) and 1.5-nm (lower) vertical scale of atomic force microscopy (AFM) images with a root-mean-square (RMS) surface roughness of 0.28 nm. **d,** EBSD map showing perfect alignment along the (111) plane. **e,** IPF with a sole spot associated with the (111) plane. **f,** [100] PF revealing the six-fold symmetry of the {100} PF. The inset images in e and f are the enlarged images of the sole spot areas. **g,** SEM images of the sample at different magnifications. **h,** Low-magnification cross-sectional bright field TEM (BF-TEM) image of the SCCF sample.
Extended Data Fig. 2 | Structural and chemical characterizations of a conventional PCCF grown on a glass substrate. **a,** Low-magnification cross-sectional BF-TEM image of the PCCF sample showing a typical polycrystalline structure. **b,** Magnified image of the region marked by the yellow box in a, which shows the presence of a thick oxidised Cu layer on the surface of the PCCF. **c,** **d,** HRTEM images of oxidised Cu nanoparticles formed in the regions denoted by white boxes in b. The measured planar spacings of the (111) planes are 2.32 and 2.46 Å, which represent typical values of CuO and Cu₂O phases, respectively. **e,** ADF-STEM image of the surface part of the PCCF. **f,** **g,** STEM-EDX elemental maps of Cu (f) and O (g) in the surface region. **h,** Vertically averaged intensity profiles of Cu (blue) and O (red) across the surface. Note that the intensity of each element was normalized with respect to its intensity maximum. From this result, it is evident that the highly oxidised Cu surface layer (indicated by the pink shaded region in the graph) can be formed on the PCCF with a thickness of tens of nanometers.
Extended Data Fig. 3 | Surface oxidation of bulk Cu single crystal. a, g, Low magnification micrographs of the non-polished and polished Cu single crystal samples prepared by FIB milling. The insets show the two Cu single crystals sliced and cut to dimensions of 5×5 mm2. b, h, HRTEM images of the two Cu surfaces. Note that the yellow arrows indicate thin Cu$_2$O layer that formed on the two surfaces. c, d, i, j, FFT patterns of the two regions of Cu$_2$O (red box, labelled ‘1’) and Cu (green box, labelled ‘2’) depicted in each HRTEM image. e, k, Composite of the two FFT patterns for comparison. f, l, Measurements of the layer spacings across the interface between Cu and Cu$_2$O (red dotted arrows).
Extended Data Fig. 4 | STM topography images of the clean Cu(111) single-crystal film at room temperature. a, Configuration of step edges for an imaging area of 200 × 200 nm². b, Atomic-resolution surface structure (image size ~ 3 × 3 nm²). The arrows indicate the three corresponding <110> orientations on the (111) plane. c, Profile of step height obtained from the line scan marked with a black arrow in a, which shows a series of mono-atomic steps corresponding to the planar spacing of the Cu(111).
Extended Data Fig. 5 | Interface structure and strain distribution. a, Cross-sectional HRTEM image of the interface region of the Cu/Al₂O₃ heterostructure with an orientation relation of (111)ₜₐ₉[(112)ₜₐ₉/(001)ₐ₉O₃][110]ₐ₉O₃. b, Enlarged image showing an abrupt interface structure. c, d, In-plane (E_{xx}) and out-of-plane (E_{yy}) strain field maps obtained by a geometrical phase analysis (GPA) of the HRTEM image. Note that the region enclosed by the white dotted line indicates the strained interface region of ~1–2 nm in thickness. The color scale indicates the magnitude of the strain relative to the reference area marked by the white box. Scale bars are 2 nm.
Extended Data Fig. 6 | Chemical analysis and electronic structure of the grown SCCF. a, b, Nanoscale STEM-EDX elemental maps of Al, O, and Cu in the regions on the surface and at the interface of the Cu/Al$_2$O$_3$ heterostructure, respectively. c, Comparison of the Cu $L_{2,3}$-electron energy loss near edge structure (ELNES) profiles obtained at four different positions (marked by the numbers 1–4 in the ADF-STEM images) and the reference profiles obtained from copper metal and copper oxides, CuO and Cu$_2$O (lower graphs). d, ADF-STEM image, Core-loss EELS spectrum imaging data, the constructed elemental map of Cu and O for the surface region of the SCCF sample. The red and
blue profiles on the right side are core-loss EEL spectra of O K and Cu $L_{2,3}$ edges extracted from the white dotted rectangular denoted in the EELS map. e, Equivalent data arrangement for the PCCF sample for comparison of surface oxidation. f, XPS depth profile depending on the etching time for the SCCF sample.
Extended Data Fig. 7 | Structural and electronic properties of Cu, Cu₂O, and Cu₂O monolayers on the Cu(111) surface. **a-c,** Structural model of Cu, Cu₂O, and Cu₂O monolayers on the Cu(111) surface. Cu and O atoms are represented by blue and red spheres, respectively. Only the bonds between O and Cu atoms are drawn explicitly for clarity. **d,** Structural parameters of Cu, Cu₂O, and Cu₂O monolayers on the Cu(111) surface. **e,** Degree of oxidation of atoms in various configurations. \(n_e \) is the electron charge of each atom (the number of valence electrons attributed to each atom computed using the Bader decomposition method\(^{40}\)), while \(n_0 \) is the number of valence electrons of the corresponding isolated neutral atom.
Extended Data Fig. 8 | Relative energy per oxygen atom for the dissociation of the O_2 molecule approaching Cu(111) surface as a function of O-O bond length. Blue spheres represent Cu atoms, while red spheres represent O atoms. The insets show the side and top views of the configurations with corresponding letters on the curve. Configuration b corresponds to the physisorbed state, while configuration e corresponds to the transition state.
Surface of a single-crystal copper thin film (SCCF) grown by atomic sputtering epitaxy (ASE). a, Cross-sectional HRTEM image of the surface part of the copper thin film observed in the [11 0] orientation. The simulated HRTEM image and the corresponding model of the carbon-copper supercell are presented alongside the experimental HRTEM image. b-c, In-plane (Exx) and out-of-plane (Eyy) strain field maps obtained by geometrical phase analysis (GPA) for the experimental HRTEM image. The reference area of Cu chosen for GPA is marked by the white square boxes in each map. Note that complex patterns for parts of the carbon film are shaded by a gray color for clarity, as those are not relevant for the strain behavior of the SCCF. d, Comparison of the experimental and simulated intensity profiles obtained along the out-of-plane direction for (111) layer spacings (d(111) = 0.21 nm). e, Simultaneously acquired ADF- and ABF-STEM images for the surface part of the copper thin film. Scale bars are 2 nm.
Figure 2

Long-term oxidation resistance and structural stability of the SCCF surface. a, Low-magnification bright field TEM (BF-TEM) image of the SCCF sample exposed to ambient air at room temperature for approximately 1 year (top). The result shows that the atomically flat surface morphology over the entire SCCF film has remained almost unchanged. HRTEM image of the surface part (marked by a red rectangle in A) of the 1-year-old SCCF sample (bottom). The sample was oriented in the [110] direction. b, Comparison of the intensity profiles for the (111) plane between the as-deposited (red) and 1-year-old (blue) samples. c, EBSD map showing perfect alignment along the (111) plane. d, IPF with a sole spot associated with the (111) plane. The inset image is the enlarged image of the sole spot area. e, HRTEM image of the surface part of the 3-year-old SCCF sample observed in the [110] orientation (top) and in-plane (Exx, middle) and out-of-plane (Eyy, bottom) strain field maps obtained by geometrical phase analysis (GPA) for the HRTEM image of the 3-year-old SCCF sample. f, FFT patterns of region 1 (top), region 2 (middle) and both regions (bottom). g, Thermogravimetric analysis for the PCCF and SCCF samples with different surface roughness. Scale bars of e are 2 nm.
Figure 3

Interface structure and crystallographic relation. a, Cross-sectional HRTEM image of the Cu/Al2O3 heterointerface having the orientation relation of (111)Cu/[112][Cu]//(001)Al2O3[110] Al2O3. b, A composite pattern of FFTs for the regions of Cu and Al2O3 in the HRTEM image. c, Enlarged HRTEM image for the region marked by the dotted box in a. d, ABF-STEM image and superimposed atomic model of the Cu/Al2O3 heterointerface. e, Inverted intensity profile obtained across the interface between Cu and Al2O3 in d. f, Plan-view HRTEM image of the Cu/Al2O3 heterointerface. g-h, Side view and plan view of the deduced epitaxy model of Cu grown on an Al2O3 substrate.
Figure 4

Theoretical analysis and a model of oxidation of the Cu surface. a, Energy profile of the O atom along various penetration paths: b, from the Cu(111) surface into the first Cu substrate interstitial layer (black solid circle); c, from the first to the second Cu substrate interstitial layer (black open circle); d, from the outside to the inside of the mono-atomic step edge (red solid circle); e, from the outside to the inside of the bi-atomic step edge (blue open square); and f, from the outside to the inside of the tri-atomic step edge (purple open square). Blue spheres represent Cu atoms in the bulk or substrate, green spheres represent Cu atoms in the steps, and dark blue spheres represent Cu atoms on the step edge. Orange spheres represent adsorbed O atoms, whereas red spheres represent O atoms infiltrating into the interstitial region. Panel f also shows the initiation of oxidation on the edge of a multi-atomic step: (1) given a pristine step edge and ambient oxygen conditions, (2) two O atoms (orange spheres) adsorb on each side of the Cu on the edge (Cu-1, dark blue sphere); (3) the third adsorbed O atom (O-2, red sphere) causes the local structure of Cu-1 to be similar to that of Cu in a monolayer of "C" "u" "2" "O" , and the expansion of volume causes Cu-1 to move upward and open a pathway for O-2; and (4) O-2 passes through the opening and binds with Cu atoms in the next row to push those Cu atoms upward to sustain the oxidation process; g, Incremental adsorption energy of O-atom as a function of oxygen coverage of the fcc sites on the Cu(111) surface.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- Extendeddatafigures.docx