Integrin alpha L controls the homing of regulatory T cells during CNS autoimmunity in the absence of integrin alpha 4

Simon Glatigny1,2, Rebekka Duhen1,2, Carlos Arbelaez1,2, Swarnima Kumari1,2 & Estelle Bettelli1,2

1Benaroya Research Institute, Immunology Program, Seattle WA 98101, USA, 2University of Washington, Department of Immunology, Seattle WA 98105, USA.

Experimental autoimmune encephalomyelitis (EAE), the animal model of multiple sclerosis (MS), results from an autoimmune attack of the central nervous system (CNS) by effector T helper (Th) 1 and Th17 cells. Regulatory T cells (Treg) can control effector T cells and limit the progression of CNS autoimmunity. Integrin alpha 4 (Itga4) is critical for the entry of Th1 but not Th17 cells into the CNS during EAE. Whether Itga4 controls the homing of Tregs in the CNS and whether Tregs can limit Th17-mediated EAE has, however, not been addressed. Through selective elimination of Itga4 in Foxp3-expressing cells, we show here that Tregs can suppress Th17-mediated EAE and enter into the CNS independently of Itga4. Furthermore, similarly to Th17 cells and in contrast to Th1 cells, Tregs depend on LFA-1 for their entry into the CNS in the absence of Itga4. Therefore, these data suggest that the efficacy of Itga4 neutralization on MS progression may be associated with the prevention of Th1 cells and the maintenance of Tregs migration into the CNS.

Multiple sclerosis (MS) is an inflammatory autoimmune disorder of the central nervous system (CNS). A large part of its clinical and histological features can be modeled in experimental autoimmune encephalomyelitis (EAE), an autoimmune disease of the CNS induced by immunization of mice with myelin autoantigens or the transfer of myelin-specific CD4+ T cells1. Experiments carried out in EAE demonstrated that Th1 and Th17 cells are pathogenic cells1,2. Th1 and Th17 cells have been reported to induce distinct clinical signs, histopathological changes and lesion distribution2,3. Foxp3+ regulatory T cells (Treg)4 are believed to ameliorate disease progression5,6 through the control of effector T cells6. To date, it is unresolved whether Th17-dominated autoimmune responses can be controlled by regulatory T cells.

Homing of CD4+ T cells from the periphery into the CNS during MS and EAE involves specific adhesion molecules including integrin alpha 4 (Itga4)7. Based on this property, monoclonal antibodies targeting Itga4 have been developed. In mice, they prevent the development of EAE7 and in MS patients Natalizumab is used as a second line of disease modifying therapy8. While clinical trials showed a drastic reduction in the relapse rate, a number of Natalizumab treated patients developed lethal progressive multifocal leukoencephalopathy (PML), a serious opportunistic brain infection caused by a neurotropic strain of the JC virus8. Lack of CNS immune surveillance is believed to account for the severe and often fatal CNS infection caused by this virus8. Despite its long-term use in the clinic, knowledge of the biological effects of anti-Itga4 antibody on different immune cell populations in vivo is still limited. Recent studies from our laboratory and others support the hypothesis that Itga4 blockade does not uniformly block lymphocyte homing and function9,10. Indeed, we have recently shown that conditional deletion of Itga4 on Tregs leads to a Th17-mediated form of EAE, because Itga4 is specifically required for the homing of Th1 but not Th17 cells into the CNS9. Whether Itga4 blockade or elimination can differentially modulate the homing of effector versus regulatory T cells in the CNS has not been addressed.

In this study, we determined that Tregs can limit Th17-driven EAE. We further established that conditional deletion of Itga4 on Foxp3+ T cells does not affect their homing into the CNS and/or their functions during EAE. Therefore, Tregs can patrol and function in the CNS during Itga4 blockade or neutralization. Importantly, in the absence of Itga4 we show that Tregs use LFA-1 (CD11a/CD18) to migrate into the CNS and control EAE progression.
Results

Tregs can control Th17-mediated EAE. The type of effector population (Th1 vs Th17 cells) driving the immune response has been proposed to determine the efficacy of Treg-mediated regulation. To understand the effects of Itga4 modulation on T cell populations and in particular Treg populations during the course of CNS autoimmunity, we used mice with selective deletion of Itga4 on T cells (CD4\(^{+}\) Itga4\(^{fl/fl}\)). Consistent with our previous study, we observed milder EAE signs in CD4\(^{+}\) Itga4\(^{fl/fl}\) mice (Figure 1A) and limited infiltration of Th1 cells into the CNS (Figure 1B), compared to Itga4\(^{+/+}\) mice. In contrast, there were similar numbers of Th17 cells infiltrating the CNS of CD4\(^{+}\) Itga4\(^{fl/fl}\) and control mice. The milder disease observed in CD4\(^{+}\) Itga4\(^{fl/fl}\) mice suggested that the CNS-infiltrating effector population Th17 cells could be controlled by regulatory T cells. To address this hypothesis, we deleted Tregs in CD4\(^{+}\) Itga4\(^{fl/fl}\) mice prior to EAE induction by injection of anti-CD25 specific antibody. Treatment of CD4\(^{+}\) Itga4\(^{-/-}\) mice with anti-CD25 antibody prior to immunization led to a significant decrease in the percentage of Tregs present in the CNS (Figure 1C and D). Importantly, the elimination of Tregs in CD4\(^{+}\) Itga4\(^{-/-}\) mice led to exacerbated disease compared to CD4\(^{+}\) Itga4\(^{fl/fl}\) mice receiving isotype control antibody (Figure 1E) and restored an EAE course with severity similar to C57BL/6 mice. This highlighted the active role that Tregs play in controlling Th17-driven disease in CD4\(^{+}\) Itga4\(^{-/-}\) mice (Figure 1) and indicated that Th17 cell-driven pathology can be controlled by Tregs.

Generation of Tregs does not require Itga4. It is unclear whether the control of effector T cell populations (Teff) occurs in the peripheral organs or in the CNS. To address this question and look at the specific effect of Itga4 on Tregs, we crossed Itga4\(^{fl/fl}\) mice with Foxp3\(^{Cre}\)-YFP mice. In these animals, Cre-mediated deletion of Itga4 was efficient and specific to Foxp3\(^{+}\) regulatory T cells (Figure 2B), leaving intact Itga4 expression by effector T cells (data not shown). Because Itga4 has been implicated in various processes including T cell migration and activation, we examined the effect of Itga4 deletion on Treg distribution in lymphoid organs. Deletion of Itga4 on T reg cells did not alter their thymic and peripheral distribution (Figure 2A). We also investigated whether Itga4 deletion could modulate the phenotype of Treg cells and the arsenal of surface molecules that they express. We observed similar levels of CD103, CD25, CD11a, GITR, CD62L, Helios, CTLA4 and CCR6 in Itga4-competent or -deficient (YFP+) Tregs (Figure 2B). Next, we determined whether Itga4 could inhibit the function of Tregs. To address this possibility, we compared the capacity of Itga4-deficient or -competent Tregs to suppress the proliferation of effector T cells in vitro. Both WT and Itga4-deficient Tregs were equally effective at controlling the proliferation of Teff cells (Figure 2C), indicating that Itga4 neutralization do not limit the function of Tregs.

Itga4 is dispensable for the entry of Tregs in the CNS. Next, we evaluated the effects of Treg specific deletion of Itga4 on EAE development and Treg migration in the CNS. Foxp3\(^{Cre}\)-Itga4\(^{fl/fl}\) and control Foxp3\(^{Cre}\)- mouse were immunized with MOG\(_{35-55}\) for the development of EAE. Ninety six percent of the mice in the control group developed classical EAE with appearance of ascending paralysis between day 8 and 12 (Figure 3A). Interestingly, the deletion of Itga4 on Tregs did not affect the onset, severity, and/or the recovery of EAE (Figure 3A). We characterized Tregs present in the CNS at the peak of the disease (day 18–20) and confirmed that CNS-infiltrating Tregs in Foxp3\(^{Cre}\)-Itga4\(^{fl/fl}\) mice were Itga4 deficient (Figure 3B). We also observed similar numbers of Foxp3\(^{+}\) regulatory T cells infiltrating the CNS of Foxp3\(^{Cre}\) and Foxp3\(^{Cre}\)-Itga4\(^{fl/fl}\) mice, both at the peak (Figure 3C) and during the recovery phase of the EAE course (Figure 3D). Ninety six percent of the mice in the control group developed classical EAE with appearance of ascending paralysis between day 8 and 12 (Figure 3A). Interestingly, the deletion of Itga4 on Tregs did not affect the onset, severity, and/or the recovery of EAE (Figure 3A). We characterized Tregs present in the CNS at the peak of the disease (day 18–20) and confirmed that CNS-infiltrating Tregs in Foxp3\(^{Cre}\)-Itga4\(^{fl/fl}\) mice were Itga4 deficient (Figure 3B). We also observed similar numbers of Foxp3\(^{+}\) regulatory T cells infiltrating the CNS of Foxp3\(^{Cre}\) and Foxp3\(^{Cre}\)-Itga4\(^{fl/fl}\) mice, both at the peak (Figure 3C) and during the recovery phase of the EAE course (Figure 3D).

Figure 1 | Tregs control Th-17 mediated EAE. EAE was induced in Itga4\(^{-/-}\) (open circles) and CD4\(^{+}\) Itga4\(^{fl/fl}\) mice (filled circles). (A) Shown is the mean clinical score for each group over time for 8 mice (±SEM). Data are representative of 4 experiments with 20 mice per group. (B) At the peak of the disease, CNS infiltrating mononuclear cells were collected and an intracellular cytokine staining was performed. The plots show the percentage of IL17+ and IFN\(_{\gamma}\)+ cells gated on CD4+ T cells. (C)–(E) CD4\(^{+}\) Itga4\(^{-/-}\) mice were treated twice with anti-CD25 or rat IgG1 antibodies prior immunization for EAE development. (C) The percentage of CD4+ Foxp3+ cells in the blood of each mouse was determined by flow cytometry prior immunization. The plots show the percentage of CD4+ Foxp3+ T cells. (D) Mean percentage of Foxp3+ cells among CD4+ T cells in the blood for both groups (*p < 0.05). (E) EAE clinical course in rat IgG1 treated (open circles) and anti-CD25 treated (filled circles) CD4\(^{+}\) Itga4\(^{fl/fl}\) mice is presented (n = 7 mice per group).
disease (data not shown), showing that Tregs could enter the CNS independently of Itga4 (Figure 3 A–C). Importantly, Itga4-deficient Tregs, similarly to Itga4 competent Tregs, were MOG specific as shown by MOG38–49 I-Ab tetramer staining and upregulated CD103 and GITR in the CNS of mice during EAE (Figure 3D). Therefore, Tregs are able to enter and function in the CNS when Itga4 is neutralized or eliminated.

Itga4 deficient Treg cells use LFA-1 to control EAE development. If Tregs could access the CNS in the absence of Itga4 expression, which homing receptor did they use? To address this question, we analyzed the expression of integrin alpha chains in Tregs isolated from the LN of MOG35–55-immunized mice and observed that ItgaL mRNA was one of the three integrin RNAs highly expressed by Tregs (Figure 4A). Integrins are heterodimeric integral membrane proteins composed of an alpha and a beta chain. ItgaL (CD11a) combines with Itgb2 (CD18) to form the lymphocyte function-associated antigen-1 (LFA-1) which is expressed by all leukocytes. Interestingly, LFA-1 deficient mice have been shown to have fewer Treg in the spleen and thymus and to be more susceptible to EAE upon immunization with MOG35–55 antigens.
MOG_{35-55} in comparison to WT animals15. This suggested that LFA-1 could contribute to the migration of Tregs into the CNS. However, because LFA-1 deficient mice have profound defects in many immune cell populations15,16 and because the number of peripheral Tregs is already low in LFA-1 deficient mice, the contribution of LFA-1 in the migration of Tregs into the CNS during EAE has been difficult to address using this model. Importantly, we observed that CD11a (ItgaL) was significantly upregulated on Tregs compared to Teffs (Figure 4B) after immunization with MOG_{35-55}. Therefore, we tested whether LFA-1 could be critical for the entry of Tregs into the CNS. To test our hypothesis, we treated Foxp3Cw Itga4fl/fl and Foxp3Cw control mice with anti-CD11a or isotype control antibodies after the priming of pathogenic CD4+ T cells (starting at day 8 post-immunization). As predicted, isotype control treatment (rat IgG2a) of Foxp3Cw control and Foxp3Cw Itga4fl/fl mice led to a rapid disease development followed by a recovery phase (Figure 4C). Consistent with the previously reported blockade of Th17 cell migration into the CNS by anti-CD11a antibody14,15, the blockade of CD11a in Foxp3Cw control mice resulted in a delayed onset of EAE but did not affect the recovery phase of the disease when Tregs play an important immunosuppressive role (Figure 4C) suggesting that WT Tregs can use alternative integrins to access the CNS. In contrast, disease severity was significantly increased in Foxp3Cw Itga4fl/fl mice treated with anti-CD11a and these mice reached a maximal clinical score higher than anti-CD11a-treated Foxp3Cw mice (Figure 4C and D). These results suggest that once Itga4 is blocked or eliminated, ItgaL is critical for Tregs entry in the CNS during EAE. To establish that the differences observed during the recovery phase of the disease were due to defective Treg homing, we quantified the percentage of Tregs present in the CNS of these different groups of mice using YFP expression (Figure 4E and F). Whereas isotype-treated Foxp3Cw Itga4fl/fl and Foxp3Cw mice had similar percentages of CNS-infiltrating Tregs, anti-CD11a-treated Foxp3Cw Itga4fl/fl mice had significantly fewer Tregs infiltrating the CNS than anti-CD11a treated Foxp3Cw mice (Figure 4E and F). These data indicate that upon blockade or in the absence of Itga4, Tregs use ItgaL to enter the CNS and control disease progression. Therefore, while Itga4 blockade did not significantly impair the migration and function of Tregs in the CNS, CD11a blockade in association with Itga4 eliminaton profoundly restricted Treg entry into the CNS and their control of EAE recovery.

Discussion

Recent work supports the hypothesis that Itga4 elimination or neutralization does not uniformly block lymphocyte extravasation but instead acts via selective modulation of its cellular target17,18. We and others have previously reported that elimination of Itga4 on T cells selectively blocks the entry of Th1 but not Th17 cells in the CNS3,10. Here, we have determined the effects of Itga4 elimination on Treg function and EAE development.

Natalizumab, a monoclonal humanized antibody (mAb) targeting the alpha-4 chain of \(\alpha 4 \beta 1 \) and \(\alpha 4 \beta 7 \) integrins on the surface of leukocytes has beneficial therapeutic effects in MS patients8,17. In rare cases, however, Itga4 neutralization has led to the development of PML, a severe infection of the CNS caused by the JC virus, which might be the result of poor immune-surveillance of the CNS by T cells and/or the presence of an immunosuppressive environment in the CNS. Despite the long-term use of Itga4-neutralizing antibody in MS, little is known about the cell-specific effects of Itga4 neutralization or elimination. Regulatory T cells accumulate in the CNS of mice during the progression of EAE and can ameliorate disease progres-
Itga4 fl/fl and Foxp3Cre Itga4 fl/fl mice (Figure 2A). Furthermore, Tregs were also present in similar levels of CD103, GITR and CTLA4, regardless of their expression of Itga4 (Figure 2B and 3D). Tregs were capable of suppressing the proliferation of effector T cell responses regardless of their expression of Itga4 (Figure 2C). Together, these data demonstrate that the blunting of Itga4 signaling in Tregs does not compromise their development, distribution, and suppressive function at steady state. However, Tregs with less suppressive function may coincidentally downregulate the expression of Itga4 and explain previous report. In this report, we have established that Itga4-deficient Tregs were capable of suppressing T cell responses in mice through the control of effector T cells. Unfortunately, regulatory T cells have been shown to be defective in MS patients. Itga4 exhibits multiple biological effects ranging from cell migration to modulation of T cell polarization and activation. Itga4 has also been proposed as a marker to identify T cells with suppressive activity, and Itga4+ Treg cells have been reported to be less effective. In this report, we observed that Tregs express similar levels of CD103, GITR and CTLA4, regardless of their expression of Itga4 (Figure 2B and 3D). Tregs were also present in similar numbers in the thymus, spleen, LN and mesenteric LN of Itga4-deficient Tregs. Depletion of Tregs by injection of anti-CD25 antibody led to exacerbated EAE development in vivo during CNS inflammation, since their removal led to the development of exacerbated EAE (Figure 1E). The fact that elimination of Itga4 on Tregs does not impact their suppressive functions under inflammatory conditions supports earlier experiments showing that Natalizumab does not alter the suppressive capacity of Treg cells.

While both Th1 and Th17 cells can induce EAE development and are present in active MS plaques, the efficacy of certain disease-modifying therapies has been shown to correlate with the prevalence of each Teff population. Importantly, it is still unclear whether different forms of disease mediated by either Th1 or Th17 cells can be efficiently controlled by Tregs. There was speculation that Th17-mediated diseases might not be controlled by Tregs. We have shown that CD4+ Itga4 fl/fl mice develop a disease dominated by Th17 cells (Figure 1B). We further addressed whether Th17-mediated EAE in CD4+ Itga4 fl/fl mice could be controlled by Tregs. Depletion of Tregs by injection of anti-CD25 antibody led to exacerbated EAE indicating that Tregs control Th17 cells and EAE severity in these mice (Figure 1E). Therefore, while Tregs from MS patients have been
shown to be defective22, our data suggest that both Th1 and Th17-mediated forms of MS can be controlled by enhancing the function of Tregs.

Tregs exercise their immunomodulatory role both in lymphoid and non-lymphoid tissue. In lymphoid tissues, they can limit T cell expansion and differentiation28,29, but once the effector response is established, they regulate local inflammation in target tissue30,31. However, whether Itga4 can control the migration of Tregs in the CNS has not been investigated. Using both CD4+Itga4+ and Foxp3+Itga4+ mice, we determined that regulatory T cells migrate into the CNS independently of Itga4, since both strains had equivalent numbers of Tregs in the CNS (Figure 3C and data not shown). It will be of interest in the future to determine whether similar accumulation of Tregs over effector T cells is observed in MS patients treated with Natalizumab. Indeed, an increase in the number of Tregs over Teffs in the CNS of Natalizumab-treated patients could explain in part the efficacy of such treatment. Treg cells secrete inhibitory cytokines, such as IL-10 and TGF-β, that limit effector T cell responses involved in viral clearance. Therefore, the prevalence of Tregs over Teffs in the CNS upon elimination of Itga4 might also have major implications for the surveillance of the CNS and could provide clues for the pathogenesis of CNS infections in Natalizumab-treated patients30.

The presence of a low but significant number of lymphoid cells in the CSF of MS patients treated with Natalizumab24,31 in conjunction with our data showing that regulatory T cells can traffic to the CNS independently of Itga4, suggested that there are some compensatory or alternative mechanisms allowing regulatory T cells to enter the CNS. During the comparison of the expression levels of adhesion molecules between effector and regulatory T cells, we observed high expression of Itga4 (which together with Itgb2 form LFA-1) on Treg cells compared to effector T cells. This differential expression prompted us to investigate whether Itga4 could drive the entry of Treg cells into the CNS in the absence of Itga4. Using anti-CD11a neutralizing antibodies after the induction of EAE, we demonstrated that Itga4-deficient Tregs used LFA-1 to migrate into the CNS and control disease development, since Foxp3+Itga4-/- mice treated with anti-CD11a failed to recover and had exacerbated EAE compared to Foxp3+Itga4-/- mice treated with isotype control antibody (Figure 4C and D). This differential expression of Itgal between effector and Treg cells is reminiscent of our observation that Itga4 is differentially regulated between Th1 and Th17 cells6. Indeed, Th17 and Treg cells share common homing molecules (i.e.,CD11a) for their migration into target organs during the development of autoimmune disease. Our observations also extend previous publications showing that genetic ablation of CD11a in mice results in higher susceptibility to EAE than control mice15 and a decrease in the numbers of Tregs present in the CNS of these mice15,32. Finally, these findings expand previous reports suggesting an inhibitory role of CD11a in CNS inflammation through its expression, its activity on other non-effector T cell subsets15, and with previous reports showing an important role of CD11a in Treg homeostasis15.

Methods

Mice. All mice are on the C57BL/6 background. Itga4-/- mice and Foxp3+/- were described30,31. All animals were bred and maintained under specific pathogen-free conditions at the Benaroya Research Institute (Seattle, WA). All experimental protocols and procedures were approved by the Institutional Animal Care and Use Committee of the Benaroya Research Institute. Animal care and experimental procedures were carried out in accordance with the guidelines of the Institutional Animal Care and Use Committee of the Benaroya Research Institute and the National Institutes of Health guide for the Care and Use of Laboratory Animals.

Isolation of CNS mononuclear cells. Mice were sacrificed at the peak of disease and perfused through the left cardiac ventricle with cold 1X PBS. Brain and spinal cords were isolated and digested for 30 min at 37 °C with Collagenase D at a concentration of 2.5 mg/ml (Roche). Mononuclear cells were isolated over a 37%/70% Percoll gradient (WVR), washed twice with complete medium and collected in medium for further analysis.

Flow cytometry. Cell suspensions from CNS and spleen were prepared as previously described3. Anti-CD4 (GK1.5), anti-CD103 (2E7), anti-CD25 (PC61), anti-IL17 (TC11-18H10.1), anti-IFNγ (XMG1.2), anti-CD49d (R1-2), anti-CD27, anti-CD62L (M17/4) and anti-Helios (22F6) antibodies were purchased from Biolegend and eBioscience. The mouse MOG\textsubscript{35–55} tetramer was supplied by the National Institute of Health Tetramer Core Facility to identify the MOG-specific CD4+ T cells. For tetramer staining, cells were stained for 2 hours at 37°C. Labeled cells were acquired on LSRII (BD Biosciences), and data were analyzed with FlowJo software.

EAE induction and antibody treatment. Active EAE was induced by subcutaneous immunization of mice with an emulsion of 10 µg of MOG\textsubscript{15–35} peptide in CFA supplemented with 40 mg of M. tuberculosis extract H37 Ra (Difco). In addition, the animals received 200 ng of pertussis toxin (List Biological Laboratories) i.p. on day 0 and 2 after immunization. Animals were monitored daily for development of EAE according to the following score: 0, no signs of disease; 1, loss of tail tone; 2, hind limb paralysis; 3, hind limb paralysis; 4, front and hind limb paralysis. To compare EAE susceptibility between groups, mean clinical score was calculated and plotted daily for each group of mice. To analyze the severity of EAE, the maximal clinical score was determined, corresponding to the highest score reached by a mouse developing EAE.

**For the treatment of the animals, anti-CD11a (clone M17/4), anti-CD25 (clone PC61), and isotype antibodies were purchased from BioXcell. ItgaL-treated and control mice were treated with 100 µg of antibody administered i.p. 3 times per week starting at day 8 after immunization. For Treg depletion in vivo, mice were treated at day −3 and −1 before immunization with 500 µg of anti-CD25 i.p.

Suppression Assay. Tregs cells (CD4+ CD25++) and effector (CD4+ CD25-/-) were sorted from naive WT and CD4+Itga4-/- mice. 2.5 × 105 effector T cells were co-cultured with different ratios of Tregs and 106 irradiated syngeneic splenic cells in the presence of anti-CD3 (2.5 µg/ml) for 72 h. Cells were pulsed with 1 µCi of [‘H] thymidine during the last 16 h and [‘H] thymidine incorporation was measured using a β-counter.

Real-time PCR. RNA was extracted from splenic Treg cells using RNeasy Minikit (Qiagen). RNA was quantified using a NanoDrop 2000 spectrophotometer (Thermo Scientific). CDNA was transcribed with the RevertAid First Stand cDNA Synthesis Kit (Thermo Scientific) and qPCR was performed using a 7500 Real time PCR machine (Applied Biosystems). The total amount mRNA was normalized across samples according to endogenous β-actin mRNA. The primers sequence (forward and reverse respectively) were as follows: for ItgaL GCCCGAGGATGATAGCACCT and TCTGTGTTCTATGTCGGTAGAC; for Itga2 CTATGATAAACCCTCTGGTTGACTCTT and TGGAGGAAATGCTGTCAGAT; for Itga3 GCCGTCTCTCCTGCTGAGCATA and AAGCATTCTTGGTCCTGAGGACG; for Itga4 TGGGCTAATGATCAGCTCCTTCCA and CTCCTCACAAGAATGATGGTCTCA; for Itga5 GCTAAAGTTGTGACGGCAACACA and CTCCGGAGCCTCCTC; for ItgaV GCCTGAGCTCTCTTCTTCTTCTTGCT and ATTTTGAGGTCTACAGGTTGAGGTCTT; for Itgaj GCAGGGACCTTGGGAAGCTGT and GAGAGAAAGGCTGTCAGAAGGCTG; for Itgam TGTGCCCTGACCGAGTAGCT and GAGGAGGAAGCGCAGATGCTCTGAGCT. cDNA was transcribed with the RevertAid First Stand cDNA Synthesis Kit (Qiagen). RNA was quantified using a NanoDrop 2000 spectrophotometer (Thermo Scientific). cDNA was amplified using the SYBR Green Master Mix (Applied Biosystems). The total amount mRNA was normalized across samples according to endogenous β-actin mRNA. The primers sequence (forward and reverse respectively) were as follows: for Itga1 GCCCAGCGATATAGACATC and TCCTGTGTTCTATGTCGGTAGAC; for Itga2 CTATGATAAACCCTCTGGTTGACTCTT and TGGAGGAAATGCTGTCAGAT; for Itga3 GCCGTCTCTCCTGCTGAGCATA and AAGCATTCTTGGTCCTGAGGACG; for Itga4 TGGGCTAATGATCAGCTCCTTCCA and CTCCTCACAAGAATGATGGTCTCA; for Itga5 GCTAAAGTTGTGACGGCAACACA and CTCCGGAGCCTCCTC; for ItgaV GCCTGAGCTCTCTTCTTCTTCTTGCT and ATTTTGAGGTCTACAGGTTGAGGTCTT; for Itgaj GCAGGGACCTTGGGAAGCTGT and GAGAGAAAGGCTGTCAGAAGGCTG; for Itgam TGTGCCCTGACCGAGTAGCT and GAGGAGGAAGCGCAGATGCTCTGAGCT.

Statistical analysis. The Two-Way ANOVA was used for statistical comparison of clinical EAE scores. The One-Way ANOVA was applied for statistical analysis of all the other experiments (*p < 0.05; **p < 0.01; ***p < 0.005).
3. Stromnes, I. M., Cerretti, L. M., Liggett, D., Harris, R. A. & Goverman, J. M. Differential regulation of central nervous system autoimmunity by T(H)1 and T(H)17 cells. *Nat Med* 14, 337–342 (2008).

4. Sakaguchi, S. Naturally arising Foxp3-expressing CD25+ CD4+ regulatory T cells in immunological tolerance to self and non-self. *Nat Immunol* 6, 345–352 (2005).

5. Glatigny, S., Duhen, R., Oukka, M. & Bettelli, E. Cutting edge: loss of alpha4 integrin expression differentially affects the homing of Th1 and Th17 cells. *J Immunol* 187, 6176–6179 (2011).

6. Rothhammer, V. et al. Immune surveillance in multiple sclerosis patients treated with natalizumab. *J Neuroimmunol* 356, 63–66 (1992).

7. Yednock, T. A. Avidity of integrins and selectins determines cell adhesion and tissue remodeling. *J Biol Chem* 277, 5440–5445 (2002).

8. Ransohoff, R. M. Prevention of experimental autoimmune encephalomyelitis by antibodies against alpha 4 beta 1 integrin. *Nature* 356, 63–66 (1992).

9. Glatigny, S., Duhen, R., Oukka, M. & Bettelli, E. Cutting edge: loss of alpha4 integrin expression differentially affects the homing of Th1 and Th17 cells. *J Immunol* 187, 6176–6179 (2011).

10. Nakahara, S. Naturally arising Foxp3-expressing CD25+ CD4+ regulatory T cells in immunological tolerance to self and non-self. *Nat Immunol* 6, 345–352 (2005).

11. Chaudhry, A. & Rudensky, A. Y. Control of inflammation by integration of environmental cues by regulatory T cells. *J Clin Invest* 123, 939–944 (2013).

12. Scott, L. M., Priestley, G. V. & Papayannopoulou, T. Deletion of alpha4 integrins from adult hematopoietic cells reveals roles in homeostasis, regeneration, and homing. *Mol Cell Biol* 23, 9349–9360 (2003).

13. Mittelbrunn, M. et al. VLA-4 integrin concentrates at the peripheral supramolecular activation complex of the immune synapse and drives T helper 1 responses. *Proc Natl Acad Sci U S A* 101, 11058–11063 (2004).

14. Sato, T., Tachibana, K., Nojima, Y., D’Avirro, N. & Morimoto, C. Role of the VLA-4 molecule in T cell costimulation. Identification of the tyrosine phosphorylation pattern induced by the ligation of VLA-4. *J Immunol* 155, 2938–2947 (1995).

15. Gultner, S. et al. Reduced Treg frequency in LFA-1-deficient mice allows enhanced T effector differentiation and pathology in EAE. *J Immunol* 140, 3403–3412 (2010).

16. Berlin-Rufenach, C. et al. Lymphocyte migration in lymphocyte function-associated antigen (LFA)-1-deficient mice. *J Exp Med* 189, 1467–1479 (1999).

17. Niino, M. et al. Natalizumab effects on immune cell responses in multiple sclerosis. *Ann Neurol* 59, 746–754 (2006).

18. Stuve, O. et al. Immune surveillance in multiple sclerosis patients treated with natalizumab. *Ann Neurol* 59, 743–747 (2006).

19. Anderton, S. M. Treg and T-effector cells in autoimmune CNS inflammation: a delicate balance, easily disturbed. *Eur J Immunol* 40, 3321–3324 (2010).

20. Cabbage, S. E. et al. Regulatory T cells maintain long-term tolerance to myelin basic protein by inducing a novel, dynamic state of T cell tolerance. *J Immunol* 178, 887–896 (2007).

21. Furtado, G. C. et al. Regulatory T cells in spontaneous autoimmune encephalomyelitis. *Immunol Rev* 182, 122–134 (2001).

22. Vignetti, V., Baucher-Allan, C., Weiner, H. L. & Haller, D. A. Loss of functional suppression by CD4+ CD25+ regulatory T cells in patients with multiple sclerosis. *J Exp Med* 199, 971–979 (2004).

23. Hynes, R. O. Integrins: bidirectional, allosteric signaling machines. *Cell* 110, 673–687 (2002).

24. Stenner, M. P. et al. Effects of natalizumab treatment on Foxp3+ T regulatory cells. *PLoS One* 3, e3319 (2008).

25. Kleinewietfeld, M. et al. CD49d provides access to “untouched” human Foxp3+ Treg free of contaminating effector cells. *Blood* 113, 827–836 (2009).

26. Axtell, R. C. et al. T helper type 1 and 17 cells determine efficacy of interferon-beta in multiple sclerosis and experimental encephalomyelitis. *Nat Med* 16, 406–412 (2010).

27. Ding, Y., Xu, J. & Bromberg, J. S. Regulatory T cell migration during an immune response. *Trends Immunol* 33, 174–180 (2012).

28. Nguyen, V. H. et al. In vivo dynamics of regulatory T-cell trafficking and survival predict effective strategies to control graft-versus-host disease following allogeneic transplantation. *Blood* 109, 2649–2656 (2007).

29. Rudensky, A. Y. & Campbell, D. J. In vivo sites and cellular mechanisms of T reg cell-mediated suppression. *J Exp Med* 203, 489–492 (2006).

30. Bloomgren, G. et al. Risk of natalizumab-associated progressive multifocal leuкоencephalopathy. *N Engl J Med* 366, 1870–1880 (2012).

31. Stuve, O. et al. Altered CD4+/CD8+ T-cell ratios in cerebrospinal fluid of natalizumab-treated patients with multiple sclerosis. *Arch Neurol* 63, 1383–1387 (2006).

32. Hu, X., Wolfers, J. E., Dugger, K. J. & Barnum, S. R. beta2-integrins in demyelinating disease: not adhering to the paradigm. *J Leukoc Biol* 87, 397–403 (2010).

33. Dugger, K. J., Zinn, K. R., Weaver, C., Bullard, D. C. & Barnum, S. R. Effector and suppressor roles for LFA-1 during the development of experimental autoimmune encephalomyelitis. *J Neuroimmunol* 206, 22–27 (2009).

34. Chaudhry, A. et al. CD4+ regulatory T cells control TH17 responses in a Stat3-dependent manner. *Science* 326, 986–991 (2009).

Acknowledgments
This work was funded by grants NMSS RG 4486, NIH R01 NS059996 to E.B and FG2019 to S.G. We would like to thank Drs. Papayannopoulou and Dr. Rudensky for providing Itga4fl/fl and Foxp3Cre-yfp mice respectively.

Author contributions
S.G. and E.B. performed experiments. R.D., C.A. and S.K. helped for data acquisition and discussion of the data. S.G. and E.B. analyzed the data and prepared the figures. E.B. supervised the whole project and S.G. and E.B. reviewed the manuscript.

Additional information
Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Glatigny, S., Duhen, R., Arbelaez, C., Kumari, S. & Bettelli, E. Integrin alpha L controls the homing of regulatory T cells during CNS autoimmunity in the absence of integrin alpha 4. *Sci. Rep.* 5, 7834; DOI:10.1038/srep07834 (2015).

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerives 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/