Hafnium nanoparticles and their roles and applications in human gum cancer cells, tissues and tumors treatment under synchrotron radiation

Alireza Heidari1,2*, Katrina Schmitt1, Maria Henderson1 and Elizabeth Besana1

1Faculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604, USA
2American International Standards Institute, Irvine, CA 3800, USA

Abstract

In the current study, thermoplasmonic characteristics of Hafnium nanoparticles with spherical, core-shell and rod shapes are investigated. In order to investigate these characteristics, interaction of synchrotron radiation emission as a function of the beam energy and Hafnium nanoparticles were simulated using 3D finite element method. Firstly, absorption and extinction cross sections were calculated. Then, increases in temperature due to synchrotron radiation emission as a function of the beam energy absorption were calculated in Hafnium nanoparticles by solving heat equation. The obtained results show that Hafnium nanorods are more appropriate option for using in optothermal human cancer cells, tissues and tumors treatment method.

Key words: hafnium nanoparticles, scanning electron microscope (SEM), 3D finite element method (FEM), heat transfer equation, optothermal, heat distribution, thermoplasmonic, hafnium nanorods, human gum cancer cells, tissues and tumors treatment, simulation, synchrotron radiation, emission, function, beam energy

Received: September 25, 2019; Accepted: October 11, 2019; Published: October 14, 2019

*Correspondence to: Alireza Heidari, Faculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604; American International Standards Institute, Irvine, CA 3800, USA, E-mail: Scholar.Researcher.Scientist@gmail.com; Alireza.Heidari@calsu.us; Central@aisi-usa.org
Introduction

In recent decade, metallic nanoparticles have been widely interested due to their interesting optical characteristics [1-8]. Resonances of surface Plasmon in these nanoparticles lead to increase in synchrotron radiation emission as a function of the beam energy scattering and absorption in related frequency [9,10]. Synchrotron radiation emission as a function of the beam energy absorption and induced produced heat in nanoparticles has been considered as a side effect in plasmonic applications for a long time [11-15]. Recently, scientists find that thermoplasmonic characteristic can be used for various optothermal applications in cancer, nanoflows and photonic [16-22]. In optothermal human cancer cells, tissues and tumors treatment, the descendent laser light stimulate resonance of surface Plasmon of metallic nanoparticles and as a result of this process, the absorbed energy of descendent light converse to heat in nanoparticles [23-25]. The produced heat devastates tumor tissue adjacent to nanoparticles without any hurt to sound tissues [26,27]. Regarding the simplicity of ligands connection to Hafnium nanoparticles for targeting cancer cells, these nanoparticles are more appropriate to use in optothermal human cancer cells, tissues and tumors treatment [28-74]. In the current paper, thermoplasmonic characteristics of spherical, core-shell and rod Hafnium nanoparticles are investigated.

Heat generation in synchrotron radiation emission as a function of the beam energy-hafnium nanoparticles interaction

When Hafnium nanoparticles are subjected to descendent light, a part of light scattered (emission process) and the other part absorbed (non-emission process). The amount of energy dissipation in non-emission process mainly depends on material and volume of nanoparticles and it can be identified by absorption cross section. At the other hand, emission process which its characteristics are depend on volume, shape and surface characteristics of nanoparticles explains by scattering cross section. Sum of absorption and scattering processes which lead to light dissipation is called extinction cross section [75-123].

Hafnium nanoparticles absorb energy of descendent light and generate some heat in the particle. The generated heat transferred to the surrounding environment and leads to increase in temperature of adjacent points to nanoparticles. Heat variations can be obtained by heat transfer equation [124-202].

Simulation

To calculate the generated heat in Hafnium nanoparticles, COMSOL software which works by Finite Element Method (FEM) was used. All simulations were made in 3D. Firstly, absorption and scattering cross section areas were calculated by optical module of software. Then, using heat module, temperature variations of nanoparticles and its surrounding environment were calculated by data from optical module [203-283]. In all cases, Hafnium nanoparticles are presented in water environment with dispersion coefficient of 1.84 and are subjected to flat wave emission with linear polarization. Intensity of descendent light is 1 mW/μm². Dielectric constant of Hafnium is dependent on particle size [284-442].

Firstly, calculations were made for Hafnium nanospheres with radius of 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50 nanometers. The maximum increase in temperature of nanospheres in surface Plasmon frequency is shown in Figure 1.

According to the graph, it can be seen that the generated heat is increased by increase in nanoparticles size. For 100 (nm) nanoparticles (sphere with 50 (nm) radius), the maximum increase in temperature is 83 (K). When nanoparticles size reaches to 150 (nm), increase in temperature is increased in spite of increase in extinction coefficient. In order to find the reason of this fact, ratio of absorption to extinction for various nanospheres in Plasmon frequency is shown in Figure 2.

Figure 2 shows that increasing the size of nanospheres leads to...
decrease in ratio of light absorption to total energy of descendent light so that for 150 (nm) nanosphere, scattering is larger than absorption. It seems that although increase in nanoparticles size leads to more dissipation of descendent light, the dissipation is in the form of scattering and hence, it cannot be effective on heat generation.

Heat distribution (Figure 3) shows that temperature is uniformly distributed throughout the nanoparticles which are due to high thermal conductivity of Hafnium.

In this section, core-shell structure of Hafnium and silica is chosen. The core of a nanosphere with 45 (nm) radius and silica layer thickness of 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50 nanometers are considered. The results show that increase in silica thickness leads to increase in extinction coefficient and shift in Plasmon wavelength of nanoparticles, to some extent.

According to Figure 4, silica shell causes to considerable increase in temperature of Hafnium nanoparticles but by more increase in silica thickness, its effects are decreased. Heat distribution (Figure 5) shows that temperature is uniformly distributed throughout metallic core as well as silica shell. However, silica temperature is considerably lower than core temperature due to its lower thermal conductivity. In fact, silica layer prohibits heat transfer from metal to the surrounding aqueous environment due to low thermal conductivity and hence, temperature of nanoparticles has more increase in temperature. Increasing the thickness of silica shell leads to increase in its thermal conductivity and hence, leads to attenuate in increase in nanoparticles temperature.

Figure 6 is drawn. This graph shows that variation of nanorod dimension ratio leads to considerable shift in Plasmon wavelength. This fact allows regulating the Plasmon frequency to place in near IR zone. Light absorption by body tissues is lower in this zone of spectrum and hence, nanorods are more appropriate for optothermal human cancer cells, tissues and tumors treatment methods.

Variations of temperature in Hafnium nanorods with two effective radius and various dimension ratios are shown in Figure 7. By increase in length (a) to radius (b) of nanorod, temperature is increased.
Conclusion and summary

The calculations showed that in Hafnium nanoparticles, light absorption in Plasmon frequency causes to increase in temperature of surrounding environment of nanoparticles. In addition, it showed that adding a thin silica layer around the Hafnium nanospheres is increases their temperatures. Calculations of nanorods showed that due to ability for shifting surface Plasmon frequency toward longer wavelength as well as more increase in temperature, this nanostructure is more appropriate for medical applications such as optothermal human cancer cells, tissues and tumors treatments.

Acknowledgements

Authors are supported by an American International Standards Institute (ASI) Future Fellowship Grant FT12010093734714. We acknowledge Ms. Isabelle Villena for instrumental support and Dr. Michael N. Cocchi for constructing graphical abstract figures. We gratefully acknowledge Prof. Dr. Christopher Brown for proof reading the manuscript. Synchrotron beam time was awarded by the National Institute (AISI) Future Fellowship Grant FT12010093734714. We acknowledge Ms. Isabelle Villena for instrumental support and Dr. Michael N. Cocchi for constructing graphical abstract figures. We gratefully acknowledge Prof. Dr. Christopher Brown for proof reading the manuscript. Synchrotron Light Source (NSLS-II) under the merit-based proposal scheme.

References

1. Yu, P.; Wu, J.; Liu, S.; Xiong, J.; Jagadish, C.; Wang, Z. MDesign and Fabrication of Silicon Nanowires towards Efficient Solar Cells Nano Today 2016, 11, 704–737, 101016/jnantod201610001
2. Sandhu, S.; Fan, S. SCurrent-Voltage Enhancement of a Single Coaxial Nanowire Solar Cell ACS Photonics 2015, 2, 1698–1704, 101021/acsphotonics5060236
3. van Dam, D.; Van Hooft, N. J. G.; Cui, Y.; van Veldhoven, P. J.; Bakkers, E. P. M.; Gomez Rivas, J.; Haverkort, J. E. M. High-Efficiency Nanowire Solar Cells with Omnidirectionally Enhanced Absorption Due to Self-Aligned Indium-Tin-Oxide Mie Scatterers ACS Nano 2016, 10, 11441–11449, 101021/acsnano6066874
4. Luo, S.; Yu, W. B.; He, Y.; Ouyang, G. Size-Dependent Optical Absorption Modulation of Si/Ge and Ge/Si Core/shell Nanowires with Different Cross-Sectional Geometries Nanotechnology 2015, 26, 085702, 101088/0957-4484/26/8/085702
5. Yu, P.; Yao, Y.; Wu, J.; Niu, X.; Rogach, L.; Wang, Z. Effects of Plasmonic Metal Core-Dielectric Shell Nanoparticles on the Broadband Light Absorption Enhancement in Thin Film Solar Cells Sci Rep 2017, 7, 7696, 101038/s41598-017-08077-9
6. Gouda, M.; Allam, N. K.; Swillam, M. Efficient Fabrication Methodology of Wide Angle Black Silicon for Energy Harvesting Applications RSC Adv. 2017, 7, 26974–26982, 101039/C7RA03568C
7. Branz, H. M.; Yost, V. E.; Ward, S.; Jones, K. M.; To, B.; Stradins, P. Nanostructured Black Silicon and the Optical Reflectance of Graded-Density Surfaces Appl Phys Lett 2009, 94, 231121, 101063/13152244
8. Fazio, B.; Artoni, P.; Antonia Iati, M.; D’Andrea, C.; Lo Faro, M. J.; Del Sordo, S.; Pirota, S.; Giuseppe Guicciardi, P.; Musumeci, P.; Salvatore Vasi, C.; Saaja, R.; Galli, M.; Priolo, F.; Irrera, Strongly Enhanced Light Trapping in a Two-Dimensional Silicon Nanowire Random Fractal Array Light: Sci Appl 2016, 5, e6602, 101038/3s0210662
9. Ko, M-D.; Rim, T.; Kim, K.; Meyyappan, M.; Baek, C. KLHigh Efficiency Silicon Solar Cell Based on Asymmetric Nanowire Sci Rep 2015, 5, 11646, 101038/srep11646
10. Oh, J.; Yuan, H. C.; Branz, H. MA Nan 182%-Efficient Black-Silicon Solar Cell Achieved through Control of Carrier Recombination in Nanostructures Nat Nanotechnol 2012, 7, 743–748, 101038/nnano2012166
11. Lin, H.; Xiu, F.; Fang, M.; Yip, S.; Cheung, H. Y.; Wang, F.; Han, N.; Chan, K. S.; Wong, C. Y.; Ho, J. CRational Design of Inverted Nanopencil Arrays for Cost-Effective, Broadband, and Omnidirectional Light Harvesting ACS Nano 2014, 8, 3752–3760, 101021/nn500418x
12. Garnett, E.; Yang, P. Light Trapping in Silicon Nanowire Solar Cells Nano Lett. 2010, 10, 1082–1087, 101021/nl100161z
13. Misra, S.; Yu, L.; Foldyna, M.; Roca I Cabarrocas, P. High Efficiency and Stable Hydrogenated Amorphous Silicon Radial Junction Solar Cells Built on VLS-Grown Silicon Nanowires Sol Energy Mater Sol Cells 2013, 118, 90–95, 101016/j.ssel201307036
14. Kelzenberg, M. D.; Boettcher, S. W.; Petykiewicz, J.; Turner–Evans, D. B.; Putnam, M. C.; Warren, E. L.; Spurgeon, J. M.; Briggs, R. M.; Lewis, N. S.; Atwater, H. Enhanced Absorption and Carrier Collection in Si Wire Arrays for Photovoltaic Applications Nat Mater 2010, 9, 239–244, 101038/nn2010365
15. Bian, T.; Zheng, X.; Kempta, T. J.; Fang, Y.; Yu, N.; Yu, G.; Huang, J.; Lieber, C. MCosilical Silicon Nanowires as Solar Cells and Electronic Power Sources Nature 2007, 449, 885–889, 101038/nature06181
16. Razez, S.; Swillam, M.; Allam, N. K. Vertically Aligned Crystalline Silicon Nanowires with Controlled Diameters for Energy Conversion Applications: Experimental and Theoretical Insights J Appl Phys 2014, 115, 194305, 101063/14876477
17. Dhindwa, N.; Walia, J.; Saini, S. A Platform for Colorful Solar Cells with Enhanced Absorption Nanotechnology 2016, 27, 495203, 101088/0957-4484/27/49/495203
18. Dhindwa, N.; Walia, J.; Pathirane, M.; Khodadi, I.; Wong, W. S.; Saini, S. Adjustable Optical Response of Amorphous Silicon Nanowires Integrated with Thin Films Nanotechnology 2016, 27, 145703, 101088/0957-4484/27/14/145703
19. Zhu, J.; Yu, Z.; Burkhard, G. F.; Hsu, C.-M.; Connor, S. T.; Xu, Y.; Wang, Q.; McGeehee, M.; Fan, S.; Cui, Y. Optical Absorption Enhancement in Amorphous Silicon Nanowire and Nanowire Arrays Nano Lett 2009, 9, 279–282, 101021/nl082886y
20. Klinger, D.; Lusakowski, E.; Zymskera, E.; Nanostructure Formed by Nanosecond Laser Annealing on Amorphous Si Surface Mater Sci Semicond Process 2006, 9, 323–326, 101016/jsem200601027
21. Kumar, P.; Krishna, M.; Bhattacharya, Excimer Laser Induced Nanostructured of Silicon Surfaces J Nanosci Nanotechnol 2009, 9, 3224–3226, 101166/jnn2009207
22. Kumar, P.; Solar Surface Modulation of Silicon Surface by Excimer Laser at Laser Fluence below Ablation Threshold Appl Phys A: Mater Sci Process 2010, 99, 245–250, 101021/acsphotonics5b00236
23. Adikaari, D. T.; Silva, S. R. P. Thickness Dependence of Properties of Excimer Laser Crystallized Nano-Polycrystalline Silicon J Appl Phys 2005, 97, 114035, 101163/11894484
24. Adikaari, D. T.; Dissanayake, D. M. N. M.; Hatton, R.; Silva, S. R. PEfficient Laser Textured Nanocrystalline Silicon-Polymer Bilayer Solar Cells Appl Phys Lett 2007, 90, 203514, 101021/nl10061027
25. Kramer, P.; Krishna, M.; Bhattacharya, Excimer Laser Induced Nanostructured of Silicon Surfaces J Nanosci Nanotechnol 2009, 10, 3224–3226, 101166/jnn2009207
26. Kramer, P.; Solar Surface Modulation of Silicon Surface by Excimer Laser at Laser Fluence below Ablation Threshold Appl Phys A: Mater Sci Process 2010, 99, 245–250, 101021/acsphotonics5b00236
27. Adikaari, D. T.; Silva, S. R. P. Thickness Dependence of Properties of Excimer Laser Crystallized Nano-Polycrystalline Silicon J Appl Phys 2005, 97, 114035, 101163/11894484
28. Adikaari, D. T.; Dissanayake, D. M. N. M.; Hatton, R.; Silva, S. R; PEfficient Laser Textured Nanocrystalline Silicon-Polymer Bilayer Solar Cells Appl Phys Lett 2007, 90, 203514, 101021/nl10061027
29. Crouch, C. H.; Carey, J. E.; Warrender, J. M.; Ajiz, M. J.; Mazur, E.; Génin, F. YComparison of Structure and Properties of Femtosecond and Nanosecond Laser-Structured Silicon Appl Phys Lett 2004, 84, 1850–1852, 101063/11667004
Heidari A (2019) Hafnium nanoparticles and their roles and applications in human gum cancer cells, tissues and tumors treatment under synchrotron radiation

Dent Oral Maxillofac Res, 2019 doi: 10.15761/DOMR.1000320

88. Brodard-Severac, F; Guerrero, G; Maquet, J; Florian, P; Gervais, C; Mutin, P HHigh-Order Two-Photon Absorption Spectroscopy of Iron Oxide Nanoparticles. Langmuir1999, 15, 7111–7115, 101021/J; Gedanken, Self-Assembled Monolayers of Alkanesulfonic and -phosphonic Acids on Amorphous Iron Oxide Nanoparticles Langmuir1999, 15, 7111–7115, 101021/J.

87. Feichtenschlager, B; Pabisch, S; Peterlik, H; Kickelbick, GNanoparticle Assemblies as Decorated Surfaces. J Phys Chem A2005, 109, 15029–15035, 101021/cm048689j.

86. Luschtinetz, R; Seifert, G; Jaehne, E; Adler, H-J PInfrared Spectra of Alkylphosphonic Sulfonic Acids: Functionalization and Agglomeration Behavior Langmuir2012, 28, 741–750, 101021/jz1016729.

85. Heidari, C An Experimental and Computational Approach to Photobiosimulation of Structural Characteristics of Rhodium (III) Oxide (Rh2O3) Nanoparticles, International Journal of Pharmacology, Phytochemistry and Ethnomedicine, Volume 1, Issue 1, Pages 15–19, 2015.

84. Heidari, C An Experimental Biospectroscopic Study on Seminal Plasma in Determination of Sperm Quality for Evaluation of Male Infertility, Int J Adv Technol 7:3, e407, 2016.

83. Heidari, C Extraction and Preconcentration of N-Tolyl-Sulfonil-Phosphorimidic Acid–Diethyl Chlorophosphate as an Anti-Cancer Drug from Plants: A Pharmacognosy Study”, J Pharmacogn Nat Prod 2: e103, 2016.

82. Heidari, C Thermodynamic Study on Hydration and Dehydration of DNA and RNA–Amphiphile Complexes", J Bioeng Biomed Sci S: 006, 2016.

81. Heidari, C Computational Studies on Molecular Structures and Carbonyl and Ketene Acids: Factor for Absorbed Irradiation in Cancer Cells, Adv Cancer Prev 1: e102, 2016.

80. Heidari, C Bio–Spectroscopic Study of DNA Density and Color Role as Determining Factor for Absorbed Irradiation in Cancer Cells”, Adv Cancer Prev 1: e102, 2016.

79. Heidari, C Manufacturing Process of Solar Cells Using Cadmium Oxide (CdO) and Rhodium (III) Oxide (Rh2O3) Nanoparticles as Anti-Cancer Drugs from Plants: A Pharmacognosy Study”, J Pharmacogn Nat Prod 2: e103, 2016.

78. Heidari, C A Novel Experimental and Computational Approach to Photosensitisation of Telomeric DNA/RNA: A Biospectroscopic and Photobiological Study", J Res Development 4: 144, 2016.

77. Heidari, C Biochemical and Pharmacodynamical Study of Microporous Molecularly Imprinted Polymer Selective for Vancomycin, Teicoplanin, Oraltavancin, Telavancin and Dalbavancin Binding", Biochem Physiol 5: e146, 2016.

76. Heidari, C Anti-Cancer Effect of UV Irradiation at Presence of Cadmium Oxide (CdO) Nanoparticles on DNA of Cancer Cells: A Photodynamic Therapy Study”, Adv Cancer Res 4: 1, 2016.

75. Heidari, C Biospectroscopic Study on Multi-Component Reactions (MCRs) in Two A-Type and B-Type Conformations of Nucleic Acids to Determine Ligand Binding Modes, Binding Constant and Stability of Nucleic Acids in Cadmium Oxide (CdO) Nanoparticles–Nucleic Acids Complexes as Anti-Cancer Drugs", Arch Cancer Res 4: 2, 2016.

74. Heidari, C Simulation of Temperature Distribution of DNA/RNA of Human Cancer Cells Using Time-Dependent Bio-Heat Equation and Nd: YAG Lasers", Arch Cancer Res 4: 2, 2016.

73. Heidari, C Quantitative Structure–Activity Relationship (QSAR) Approximation for Cadmium Oxide (CdO) and Rhodium (III) Oxide (Rh2O3) Nanoparticles as Anti-Cancer Drugs for the Catalytic Formation of Proviral DNA from Viral RNA Using Phosphonates U–Phthalimidoalkylphosphonates Synthesis1994, 1994, 909–910, 101055/s-1994-909–910.

72. Heidari, C Study of Composition and Morphology of Cadmium Oxide (CdO) Nanoparticles for Eliminating Cancer Cells", J Nanomed Res, Volume 2, Issue 5, Pages 39, 2020.

71. Heidari, C Study of Surface Morphological, Phytochemical and Structural Characteristics of Rhodium (III) Oxide (Rh2O3) Nanoparticles, International Journal of Pharmacology, Phytochemistry and Ethnomedicine, Volume 1, Issue 1, Pages 15–19, 2015.

70. Heidari, C Study of Irradiations to Enhance the Induces the Dissociation of Hydrogen Bonds between Peptide Chains and Transition from Helix Structure to Random Coil Structure Using ATR FTIR, Raman and HHNMR Spectroscopies”, J Bioanal Res Ther 5: e146, 2016.

69. Heidari, C Future Prospects of Point Fluorescence Spectroscopy, Fluorescence Imaging and Fluorescence Endoscopy in Photodynamic Therapy (PDT) for Cancer Cells", J Bioanal Biomed 8: e135, 2016.

68. Heidari, C Bio–Spectroscopic Study of DNA Density and Color Role as Determining Factor for Absorbed Irradiation in Cancer Cells", Adv Cancer Prev 1: e102, 2016.

67. Heidari, C Manufacturing Process of Solar Cells Using Cadmium Oxide (CdO) and Rhodium (III) Oxide (Rh2O3) Nanoparticles, J Biotechnol Biomater 6: e125, 2016.

66. Heidari, C A Thermodynamic Study on Hydration and Dehydration of DNA and RNA–Amphiphile Complexes", J Bioeng Biomed Sci S: 006, 2016.

65. Heidari, C An Experimental Biospectroscopic Study on Seminal Plasma in Determination of Sperm Quality for Evaluation of Male Infertility", Int J Adv Technol 7:3, e407, 2016.

64. Heidari, C Extraction and Preconcentration of N-Tolyl-Sulfonil-Phosphorimidic Acid–Diethyl Chlorophosphate as an Anti-Cancer Drug from Plants: A Pharmacognosy Study”, J Pharmacogn Nat Prod 2: e103, 2016.

63. Heidari, C Study of Adsorptions to Enhance the Induces the Dissociation of Hydrogen Bonds between Peptide Chains and Transition from Helix Structure to Random Coil Structure Using ATR FTIR, Raman and HHNMR Spectroscopies", J Bioanal Res Ther 5: e146, 2016.

62. Heidari, C Biochemical and Pharmacodynamical Study of Microporous Molecularly Imprinted Polymer Selective for Vancomycin, Teicoplanin, Oraltavancin, Telavancin and Dalbavancin Binding", Biochem Physiol 5: e146, 2016.

61. Heidari, C Anti-Cancer Effect of UV Irradiation at Presence of Cadmium Oxide (CdO) Nanoparticles on DNA of Cancer Cells: A Photodynamic Therapy Study", Arch Cancer Res 4: 1, 2016.

60. Heidari, C Biospectroscopic Study on Multi-Component Reactions (MCRs) in Two A-Type and B-Type Conformations of Nucleic Acids to Determine Ligand Binding Modes, Binding Constant and Stability of Nucleic Acids in Cadmium Oxide (CdO) Nanoparticles–Nucleic Acids Complexes as Anti-Cancer Drugs", Arch Cancer Res 4: 2, 2016.

59. Heidari, C Simulation of Temperature Distribution of DNA/RNA of Human Cancer Cells Using Time-Dependent Bio-Heat Equation and Nd: YAG Lasers", Arch Cancer Res 4: 2, 2016.

58. Heidari, C Quantitative Structure–Activity Relationship (QSAR) Approximation for Cadmium Oxide (CdO) and Rhodium (III) Oxide (Rh2O3) Nanoparticles as Anti-Cancer Drugs for the Catalytic Formation of Proviral DNA from Viral RNA Using Multiple Linear and Non–Linear Correlation Approach", Ann Clin Lab Res 4: 1, 2016.

57. Heidari, C Computational Studies on Molecular Structures and Carbonyl and Ketene Acids: Factor for Absorbed Irradiation in Cancer Cells, Adv Cancer Prev 1: e102, 2016.

56. Heidari, C Manufacturing Process of Solar Cells Using Cadmium Oxide (CdO) and Rhodium (III) Oxide (Rh2O3) Nanoparticles, J Biotechnol Biomater 6: e125, 2016.

55. Heidari, C A Novel Experimental and Computational Approach to Photosensitisation of Telomeric DNA/RNA: A Biospectroscopic and Photobiological Study", J Res Development 4: 144, 2016.
110. Heidari, “Biomedical Study of Cancer Cells DNA Therapy Using Laser Irradiations at Presence of Intelligent Nanoparticles”, J Biomedical Sci 2: 5, 2016

111. Heidari, “Measurement the Amount of Vitamin D2 (Ergocalciferol), Vitamin D3 (Cholecalciferol) and Absorbable Calcium (Ca2+), Iron (II) (Fe2+), Magnesium (Mg2+), Phosphate (PO43–) and Zinc (Zn2+) in Apricot Using High-Performance Liquid Chromatography (HPLC) and Spectroscopic Techniques”, J Bioin Biostat 7: 292, 2016

112. Heidari, “Spectroscopy and Quantum Mechanics of the Helium Dimer (He2+), Neon Dimer (Ne2+), Argon Dimer (Ar2+), Krypton Dimer (Kr2+), Xenon Dimer (Xe2+), Radon Dimer(Rn2+) and Unununium Dimer (Uuo2+) Molecular Cations”, Chem Sci 7: e112, 2016

113. Heidari, “Human Toxicity Photodynamic Therapy Studies on DNA/RNA Complexes as a Promising New Sensitizer for the Treatment of Malignant Tumors Using Bio-Spectroscopic Techniques”, J Drug Metab Toxicol 7: e129, 2016

114. Heidari, “Novel and Stable Modifications of Intelligent Cadmium Oxide (CdO) Nanoparticles as Anti-Cancer Drug in Formulation of Nucleic Acids Complexes for Human Cancer Cells’ Treatment”, Biochem Pharmacol (Los Angel) 5: 207, 2016

115. Heidari, “A Combined Computational and QM/MM Molecular Dynamics Study on Boron Nitride Nanotubes (BNNNTs), Amorphous Boron Nitride Nanotubes (a-BNNNTs) and Hexagonal Boron Nitride Nanotubes (h-BNNNTs) as Hydrogen Storage”, Struct Chem Crystallogr Comm 2: 1, 2016

116. Heidari, “Pharmaceutical and Analytical Chemistry Study of Cadmium Oxide (CdO) Nanoparticles Synthesis Methods and Properties as Anti-Cancer Drug and its Effect on Human Cancer Cells”, Pharm Anal Chem Open Access 2: 113, 2016

117. Heidari, “A Chemotherapeutic and Biospectroscopic Investigation of the Interaction of Double–Standard DNA/RNA-Binding Molecules with Cadmium Oxide (CdO) and Rhodium (III) Oxide (Rh2O3) Nanoparticles as Anti-Cancer Drugs for Cancer Cells’ Treatment”, Chem Open Access 5: e129, 2016

118. Heidari, “Pharmacokinetics and Experimental Therapeutic Study of DNA and Other Biomolecules Using Lasers: Advantages and Applications”, J Pharmacokinet Exp Ther 1: e005, 2016

119. Heidari, “Determination of Ratio and Stability Constant of DNA/RNA in Human Cancer Cells and Cadmium Oxide (CdO) Nanoparticles Complexes Using Analytical Electromechanical and Spectroscopic Techniques”, Insights Anal Electrochem 2: 1, 2016

120. Heidari, “Discriminate between Antibacterial and Non-Antibacterial Drugs Artificial Neural Networks of a Multilayer Perceptron (MLP) Type Using a Set of Topological Descriptors”, J Heavy Met Toxicity Dis 1: 2, 2016

121. Heidari, “Combined Theoretical and Computational Study of the Belousov–Zhabotinsky Chaotic Reaction and Curtius Rearrangement for Synthesis of Methylchlorohemine, Cisplatin, Tripterygium, Cyclophosphamide, Melphalan, Busulphan and BCNU as Anti-Cancer Drugs”, Insights Med Phys 1: 2, 2016

122. Heidari, “A Translational Biomedical Approach to Structural Arrangement of Amino Acids’ Complexes: A Combined Theoretical and Computational Study”, Transl Biomed 7: 2, 2016

123. Heidari, “Ab Initio and Density Functional Theory (DFT) Studies of Dynamic NMR Shielding Tensors and Vibrational Frequencies of DNA/RNA and Cadmium Oxide (CdO) Nanoparticles Complexes in Human Cancer Cells”, J Nanomedine Biotherapeutic Discov 6: e144, 2016

124. Heidari, “Molecular Dynamics and Monte-Carlo Simulations for Replacement Sugars in Insulin Resistance, Obesity, LDL Cholesterol, Triglycerides, Metabolic Syndrome, Type 2 Diabetes and Cardiovascular Disease: A Glycobiological Study”, J Glycobiol 5: e111, 2016

125. Heidari, “Synthesis and Study of 5-[(Phenylisoulyl)Amino]-1,3,4-Thiadiazole-2-Sulfonamide as Potential Anti-Pertussis Drug Using Chromatography and Spectroscopy Techniques”, Transl Med (Sunnyvale) 6: e138, 2016

126. Heidari, “Nitrogen, Oxygen, Phosphorus and Sulphur Heterocyclic Anti-Cancer Nano Drugs Separation in the Supercritical Fluid of Oxide (O3) Using Soave-Redlich-Kwong (SRK) and Peng–Robinson (PR) Equations”, Electronic J Biol 12: 4, 2016

127. Heidari, “An Analytical and Computational Infrared Spectroscopic Review of Vibrational Modes in Nucleic Acids”, Austin J Anal Pharm Chem 3 (1): 1058, 2016

128. Heidari, C Brown, “Phase, Composition and Morphology Study and Analysis of Os-Pd/HC Nano-composites”, Nano Res Appl 2: 2, 2016

129. Heidari, C Brown, “Vibrational Spectroscopic Study of Intensities and Shifts of Symmetric Vibration Modes of Ozone Diluted by Cumen”, International Journal of Advanced Chemistry, 4 (1) 5-9, 2016

130. Heidari, “Study of the Role of Anti-Cancer Molecules with Different Sizes for Decreasing Corresponding Bulk Tumor Multiple Organs or Tissues”, Arch Can Res 4: 2, 2016

131. Heidari, “Genomics and Proteomics Studies of Zolpidem, Nociceptin, Alpidem, Saripidem, Miroprofen, Zolimidine, Olprinone and Abafungin as Anti-Tumor, Peptide Antibiotics, Antiviral and Central Nervous System (CNS) Drugs”, J Data Mining Genomics & Proteomics 7: e125, 2016

132. Heidari, “Pharmacogenomics and Pharmacoproteomics Studies of Phosphohistidirase–5 (PDES) Inhibitors and Paclitaxel Albumin-Stabilized Nanoparticles as Sandwiched Anti-Cancer Nano Drugs Between Two DNA/RNA Molecules of Human Cancer Cells”, J Pharmacochemistry Pharmacoproteomics 7: e153, 2016

133. Heidari, “Biobibliographic Medical and Biospectroscopic Studies of Cadmium Oxide (CdO) Nanoparticles-DNA/RNA Straight and Cycle Chain Complexes as Potent Anti-Viral, Anti-Tumor and Anti-Microbial Drugs: A Clinical Approach”, Transl Biomed 7: 2, 2016

134. Heidari, “A Comparative Study on Simultaneous Determination and Separation of Adsorbed Cadmium Oxide (CdO) Nanoparticles on DNA/RNA of Human Cancer Cells Using Biospectroscopic Techniques and Dielectrophoresis (DEP) Method”, Arch Can Res 4: 2, 2016

135. Heidari, “Cheminformatics and System Chemistry of Cisplatin, Carboplatin, Nedaplatin, Oxaliplatin, Heptaplatin and Lobaplatin as Anti-Cancer Nano Drugs: A Combined Computational and Experimental Study”, J Inform Data Min 1: 3, 2016

136. Heidari, “Linear and Non-Linear Quantitative Structure–Anti-Cancer Activity Relationship (QSCAR) Study of Hydrox Ruthenium (IV) Oxide (RuO2) Nanoparticles as Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs) and Anti-Cancer Nano Drugs”, J Integr Oncol 5: e110, 2016

137. Heidari, “Synthesis, Characterization and Biospectroscopic Studies of Cadmium Oxide (CdO) Nanoparticles–Nucleic Acids Complexes Absence of Soluble Polymer as a Protective Agent Using Nucleic Acids Condensation and Solution Reduction Method”, J Nanosci Curr Res 1: e010, 2016

138. Heidari, “Coplanarity and Collinearity of 4’-Diminol-2,2’-Bithiazole in One Domain of Bleomycin and Pinguangyacin to be Responsible for Binding of Cadmium Oxide (CdO) Nanoparticles to DNA/RNA Bidentate Ligands as Anti-Tumor Nano Drug”, Int J Drug Dev & Res 8: 007–008, 2016

139. Heidari, “A Pharmacovigilance Study on Linear and Non-Linear Quantitative Structure (Chemographic) Retention Relationships (QSSRR) Models for the Prediction of Retention Time of Anti-Cancer Nano Drugs under Synchrotron Radiations”, J Pharmacovigil 4: e161, 2016

140. Heidari, “Nanotechnology in Preparation of Semipermeable Polymers”, J Adv Chem Eng 6: 157, 2016

141. Heidari, “A Gastrointestinal Study on Linear and Non-Linear Quantitative Structure (Chemographic) Retention Relationships (QSSRR) Models for Analysis 5-Aminosalicylates Nano Particles as Digestive System Nano Drugs under Synchrotron Radiations”, J Gastrointest Dig Syst 6: e119, 2016

142. Heidari, “DNA/RNA Fragmentation and Cytolysis in Human Cancer Cells Treated with Diphthamide Nano Particles Derivatives”, Biomedical Data Mining 5: e102, 2016

143. Heidari, “A Successful Strategy for the Prediction of Solubility in the Construction of Quantitative Structure-Activity Relationship (QSSAR) and Quantitative Structure–Property Relationship (QSPR) under Synchrotron Radiations Using Genetic Function Approximation (GFA) Algorithm”, J Mol Biol Biotechnol 1: 1, 2016

144. Heidari, “Computational Study on Molecular Structures of C20, C60, C240, C540, C960, C2160 and C3840 Fullerene Nano Molecules under Synchrotron Radiations Using Fuzzy Logic”, J Material Sci Eng 5: 282, 2016

145. Heidari, “Graph Theoretical Analysis of Zigzag Polyhexamethylene Biguanide, Polyhexamethylene Adipamide, Polyhexamethylene Biguanide Guare and Polyhexamethylene Biguanide Hydrochloride (PHMB) Boron Nitride Nanotubes (BNNNTs), Amorphous Boron Nitride Nanotubes (a-BNNNTs) and Hexagonal Boron Nitride Nanobubes (h-BNNNTs)”, J Appl Computat Math 5: e143, 2016

146. Heidari, “The Impact of High Resolution Imaging on Diagnosis”, Int J Clin Med Imaging 3: 1006e101, 2016
212. Heidari, “Infrared Photo Dissociation Spectroscopy and Infrared Correlation Table Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time”, Austin Pharmacol Pharm, 3 (1): 1011, 2018

213. Heidari, “Novel and Transcendental Prevention, Diagnosis and Treatment Strategies for Investigation of Interaction among Human Blood Cancer Cells, Tissues, Tumors and Metastases with Synchrotron Radiation under Anti-Cancer Nano Drugs Delivery Efficacy Using MATLAB Modeling and Simulation”, Madridge J Nov Res, 1 (1): 18-24, 2017

214. Heidari, “Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation”, Open Access J Trans Med Res, 2 (1): 00026–00032, 2018

215. M R R Gobato, R Gobato, Heidari, “Planting of Jaboticaba Trees for Landscape Repair of Degraded Area”, Landscape Architecture and Regional Planning, Vol 3, No 1, 2018, Pages 1–9, 2018

216. Heidari, “Fluorescence Spectroscopy, Phosphorescence Spectroscopy and Luminescence Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time”, SM J Clin Med Imaging, 4 (1): 1018, 2018

217. Heidari, “Nuclear Inelastic Scattering Spectroscopy (NISS) and Nuclear Inelastic Absorption Spectroscopy (NIASS) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, Int J Pharm Sci, 2 (1): 1–14, 2018

218. Heidari, “X-Ray Diffraction (XRD), Powder X-Ray Diffraction (PXRD) and Energy-Dispersive X-Ray Diffraction (EDARD) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, J Oncol Res; 2 (1): 1–14, 2018

219. Heidari, “Correlation Two-Dimensional Nuclear Magnetic Resonance (2D-NMR) (COSY) Imaging and Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, EMS Can Sci, 1–1001, 2018

220. Heidari, “Thermal Spectroscopy, Photothermal Spectroscopy, Thermal Microspectroscopy, Photothermal Microspectroscopy, Thermal Macroscopic Spectroscopy and Photothermal Macroscopic Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation”, SM J Biometrics Biostat, 3 (1): 1024, 2018

221. Heidari, “A Modern and Comprehensive Experimental Biospectroscopic Comparative Study on Human Common Cancers’ Cells, Tissues and Tumors before and after Synchrotron Radiation Therapy”, Open Acc J Oncol Med 1 (1), 2018

222. Heidari, “Heteronuclear Correlation Experiments such as Heteronuclear Single-Quantum Correlation Spectroscopy (HSQC), Heteronuclear Multiple-Quantum Correlation Spectroscopy (HMQC) and Heteronuclear Multiple-Bond Correlation Spectroscopy (HMBC) Comparative Study on Malignant and Benign Human Endocarcinoma and Thyroid Cancer Cells and Tissues under Synchrotron Radiation”, J Endocarcin Thyroid Res, 3 (1): 555603, 2018

223. Heidari, “Nuclear Resonance Vibrational Spectroscopy (NRVS), Nuclear Inelastic Absorption Spectroscopy (NIAS) and Nuclear Resonant Inelastic X-Ray Scattering Spectroscopy (NRIXSS) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, Int J Biogeo Chem Mol Biol 6 (1): 1015, 2018

224. Heidari, “A Novel and Modern Experimental Approach to Vibrational Circular Dichroism Spectroscopy and Video Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under White and Monochromatic Synchrotron Radiation”, Glob J Endoclin Med 1 (3) GJEM 000514–000519, 2018

225. Heidari, “Pros and Cons Controversy on Heteronuclear Correlation Experiments such as Heteronuclear Single-Quantum Correlation Spectroscopy (HSQC), Heteronuclear Multiple-Quantum Correlation Spectroscopy (HMQC) and Heteronuclear Multiple-Bond Correlation Spectroscopy (HMBC) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, EMS Pharma J 1 (1): 002–008, 2018

226. Heidari, “A Modern Comparative and Comprehensive Experimental Biospectroscopic Study on Different Types of Infrared Spectroscopy of Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation”, J Analyt Molecual Tech 3 (1): 8, 2018

227. Heidari, “Investigation of Cancer Types Using Synchrotron Technology for Proton Beam Therapy: An Experimental Biospectroscopic Comparative Study”, European Modern Studies Journal, Vol 2, No 1, 13–29, 2018

228. Heidari, “Saturated Spectroscopy and Unsaturated Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation”, Imaging J Clin Medical Sci 5 (1): 001–007, 2018

229. Heidari, “Small-Angle Neutron Scattering (SANS) and Wide-Angle X-Ray Diffraction (WAXD) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, Int J Bioreg Chem Mol Biol 6 (2e): 1–6, 2018

230. Heidari, “Investigation of Bladder Cancer, Breast Cancer, Colorectal Cancer, Endometrial Cancer, Kidney Cancer, Leukemia, Liver, Lung Cancer, Melanoma, Non-Hodgkin Lymphoma, Pancreatic Cancer, Prostate Cancer, Thyroid Cancer and Non-Melanoma Skin Cancer Using Synchrotron Technology for Proton Beam Therapy: An Experimental Biospectroscopic Comparative Study”, Ther Res Skin Dis 1 (1), 2018

231. Heidari, “Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) Spectroscopy, Micro-Attenuated Total Reflectance Fourier Transform (Micro-ATR-FTIR) Spectroscopy and Micro-Attenuated Total Reflectance Fourier Transform Infrared (Macro-ATR-FTIR) Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time”, International Journal of Chemistry Papers, 2 (1): 1–12, 2018

232. Heidari, “Mössbauer Spectroscopy, Mössbauer Emission Spectroscopy and 57Fe Mössbauer Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, Acta Scientific Cancer Biology 23: 17–20, 2018

233. Heidari, “Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time”, Organic & Medicinal Chem J 6 (1): 555676, 2018

234. Heidari, “Correlation Spectroscopy, Exclusive Correlation Spectroscopy and Total Correlation Spectroscopy Comparative Study on Malignant and Benign Human AIDs Related Cancers Cells and Tissues with the Passage of Time under Synchrotron Radiation”, Int J Bioanal Biomed 2 (1): 001–007, 2018

235. Heidari, “Biomedical Instrumentation and Applications of Biospectroscopic Methods and Techniques in Malignant and Benign Human Cancer Cells and Tissues Studies under Synchrotron Radiation and Anti-Cancer Nano Drugs Delivery”, Am J Nanotechnol Nanomed 1 (1): 001–009, 2018

236. Heidari, “Vivo IHR or Proton NMR, 13C NMR, 15N NMR and 31P NMR Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, Ann Biomet Hist 1 (1): 1001, 2018

237. Heidari, “Grazing-Incidence Small-Angle Neutron Scattering (GISANS) and Grazing-Incidence X-Ray Diffraction (GIXD) Comparative Study on Malignant and Benign Human Cancer Cells, Tissues and Tumors under Synchrotron Radiation”, Ann Radic Surg 1 (2): 1006, 2018

238. Heidari, “Adsorption Isotherms and Kinetics of Multi-Walled Carbon Nanotubes (MWCNTs), Boron Nitride Nanotubes (BNNTs), Amorphous Boron Nitride Nanotubes (a-BNNTs) and Hexagonal Boron Nitride Nanotubes (h-BNNTs) for Eliminating Carcinoma, Sarcoma, Lymphoma, Leukemia, Germ Cell Tumor and Blascoma Cancer Cells and Tissues”, Clin Med Rev Case Rep 5: 201, 2018

239. Heidari, “Correlation Spectroscopy (COSY), Exclusive Correlation Spectroscopy (ECOSY), Total Correlation Spectroscopy (TOCSY), Incredible Natural–Abundance Double-Quantum Transfer Experiment (INADEQUATE), Heteronuclear Single–Quantum Correlation Spectroscopy (HSQC), Heteronuclear Multiple-Bond Correlation Spectroscopy (HMBC), Nuclear Overhauser Effect Spectroscopy (NOESY) and Rotating Frame Nuclear Overhauser Effect Spectroscopy (ROESY) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, Acta Scientific Pharmaceutical Sciences 25: 30–35, 2018

240. Heidari, “Small-Angle X-Ray Scattering (SAXS), Ultra-Small Angle X-Ray Scattering (USAXS), Fluotation X-Ray Scattering (FXS), Wide-Angle X-Ray Scattering (WAXS), Grazing-Incidence Small–Angle X-Ray Scattering (GISAXS), Grazing-Incidence Wide-Angle X-Ray Scattering (GIWAXS), Small–Angle Neutron Scattering (SANS), Grazing-Incidence Small–Angle Neutron Scattering (GISANS), X-Ray Diffraction (XRD), Powder X-Ray Diffraction (PRXRD), Wide-Angle X-Ray Diffraction (WAXD), Grazing-Incidence X-Ray Diffraction (GIXD) and Energy-Dispersive X-Ray Diffraction (EDARD) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, Oncol Res Rev, Volume 1 (1): 1–10, 2018

241. Heidari, “Pump-Probe Spectroscopy and Transient Grating Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation”, Adv Material Sci Engg, Volume 2, Issue 1, Pages 1–7, 2018
Heidari A (2019) Hafnium nanoparticles and their roles and applications in human gum cancer cells, tissues and tumors treatment under synchrotron radiation.
Heidari A (2019) Hafnium nanoparticles and their roles and applications in human gum cancer cells, tissues and tumors treatment under synchrotron radiation

433. Heidari, J Esposito, Caissutti, “Cangitoxin Time–Resolved Absorption and Resonance FT–IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic–Mode Coupling Structure in Vibrational Spectra Analysis”, Glob Imaging Insights 4 (2), 1–13, 2019

434. Heidari, J Esposito, Caissutti, “Ciguatoxin Time–Resolved Absorption and Resonance FT–IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic–Mode Coupling Structure in Vibrational Spectra Analysis”, Glob Imaging Insights 4 (2), 1–14, 2019

435. Heidari, J Esposito, Caissutti, “Brevetoxin (a) and (b) Time–Resolved Absorption and Resonance FT–IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic–Mode Coupling Structure in Vibrational Spectra Analysis: A Spectroscopic Study on an Anti–HIV Drug”, Cientific Drug Delivery Research 1 (2), 11–16, 2019

436. Heidari, J Esposito, Caissutti, “Cobrotoxin Time–Resolved Absorption and Resonance FT–IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic–Mode Coupling Structure in Vibrational Spectra Analysis”, Trends in Res 3 (1), 1–13, 2019

437. Heidari, J Esposito, Caissutti, “Cylindrospermopsin Time–Resolved Absorption and Resonance FT–IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic–Mode Coupling Structure in Vibrational Spectra Analysis”, Trends in Res 3 (1), 1–14, 2019

438. Heidari, J Esposito, Caissutti, “Anthrax Toxin Time–Resolved Absorption and Resonance FT–IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic–Mode Coupling Structure in Vibrational Spectra Analysis”, Trends in Res 3 (1), 1–14, 2019

439. Heidari, K Schmitt, M Henderson, E Besana, “Investigation of Moscovium Nanoparticles as Anti–Cancer Nano Drugs for Human Cancer Cells, Tissues and Tumors Treatment”, Elixir Appl Chem 137A, 53943–53963, 2019

440. Heidari, K Schmitt, M Henderson, E Besana, “Study of Function of the Beam Energy and Holmium Nanoparticles Using 3D Finite Element Method (FEM) as an Optothermal Human Cancer Cells, Tissues and Tumors Treatment”, European Journal of Advances in Engineering and Technology, 6 (12): 34–62, 2019

441. Heidari, K Schmitt, M Henderson, E Besana, “Human Cancer Cells, Tissues and Tumors Treatment Using Dysprosium Nanoparticles”, Asian J Mat Chem 4 (3–4), pp 47–51, 2019

442. Heidari, K Schmitt, M Henderson, E Besana, “Simulation of Interaction of Synchrotron Radiation Emission as a Function of the Beam Energy and Plutonium Nanoparticles Using 3D Finite Element Method (FEM) as an Optothermal Human Cancer Cells, Tissues and Tumors Treatment”, J Cancer Research and Cellular Therapeutics, Volume 2 (4), Pages 1–19, 2019.

Copyright: ©2019 Heidari A. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.