On the sigma value and sigma range of the join of a finite number of even cycles of the same order

M C A Bulay-og¹, A D Garciano² and R M Marcelo³
Ateneo de Manila University, Katipunan Avenue, Quezon City, 1108 Metro Manila, Philippines
E-mail: marie.bulay-og@obf.ateneo.edu¹, (agarciano², rmarcelo³)@ateneo.edu

Abstract. Let \(c : V(G) \to \mathbb{N} \) be a vertex coloring of a simple, connected graph \(G \). For a vertex \(v \) of \(G \), the color sum of \(v \), denoted by \(\sigma(v) \), is the sum of the colors of the neighbors of \(v \). If \(\sigma(u) \neq \sigma(v) \) for any two adjacent vertices \(u \) and \(v \) of \(G \), then \(c \) is called a sigma coloring of \(G \). The sigma chromatic number of \(G \), denoted by \(\sigma(G) \), is the minimum number of colors required in a sigma coloring of \(G \). Let \(\max(c) \) be the largest color assigned to a vertex of \(G \) by a coloring \(c \). The sigma value of \(G \), denoted by \(\nu(G) \), is the minimum value of \(\max(c) \) over all sigma \(k \)-colorings \(c \) of \(G \) for which \(\sigma(G) = k \). On the other hand, the sigma range of \(G \), denoted by \(\rho(G) \), is the minimum value of \(\max(c) \) over all sigma colorings \(c \) of \(G \). In this paper, we determine the sigma value and the sigma range of the join of a finite number of even cycles of the same order. In particular, if \(n \geq 4 \) and \(n \) is even, then we will show that \(\rho(kC_n) = \nu(kC_n) = 2 \) if and only if (i) \(k \leq \left\lfloor \frac{n}{4} \right\rfloor + 1 \), whenever \(n \equiv 0 \) (mod 4), and (ii) \(k \leq \left\lfloor \frac{n-2}{4} \right\rfloor + 1 \), whenever \(n \equiv 2 \) (mod 4).

1. Introduction
Let \(G = (V(G), E(G)) \) be a simple, connected graph with vertex set \(V(G) \) and edge set \(E(G) \). A (vertex) coloring of \(G \) is a function \(c : V(G) \to \mathbb{N} \), where \(\mathbb{N} \) is the set of natural numbers and is often referred to as the set of colors. A coloring \(c \) is said to be a proper coloring if \(c(x) \neq c(y) \) whenever \(x \) and \(y \) are adjacent vertices in \(G \). The chromatic number of \(G \), denoted by \(\chi(G) \), is the minimum number of colors required in a proper coloring of \(G \).

A new type of coloring, called sigma coloring was introduced by Chartrand, Okamoto, and Zhang in [1]. Suppose \(c \) is a coloring of a graph \(G \) where adjacent vertices may possibly be assigned the same color. The color sum of a vertex \(v \) is given by \(\sigma_G(v) = \sum_{x \in N(x)} c(x) \), where \(N(x) \) is the neighborhood of \(x \). For simplicity, the color sum of \(v \) will also be denoted by \(\sigma(v) \) when the graph \(G \) is clear. We say that \(c \) is a sigma coloring of \(G \) if and only if \(\sigma(u) \neq \sigma(v) \) whenever \(u \) and \(v \) are adjacent vertices in \(G \). The sigma chromatic number of \(G \) is the minimum number of colors required in a sigma coloring of \(G \), and is denoted by \(\sigma(G) \). Thus, from the definition, a sigma coloring induces a proper coloring of a graph where each vertex \(v \) is assigned the color sum \(\sigma(v) \).

Figure 1(a) below shows a sigma coloring of \(G \) using three colors and the color sums are indicated above or below each vertex. However, Figure 1(b) shows that it is possible to have a sigma coloring of \(G \) using only 2 colors. Since there are adjacent vertices with the same degree, it is not possible to use only one color. Thus, \(\sigma(G) = 2 \).
For a graph G, if $\chi(G) = k$, then there is always a proper coloring of G using elements of the set $\{1, 2, \ldots, k\}$. Although another set of colors may be used, we know that k is the smallest among all the largest colors in proper colorings of G. On the other hand, such need not be the case in a sigma coloring of G. Suppose $\sigma(G) = k$ and let c be a sigma coloring of G using k colors. Let $\max(c) = \max\{c(v)\mid v \in V(G)\}$ and $\min(c) = \min\{c(v)\mid v \in V(G)\}$. In [1], the following graph parameters associated to sigma colorings were defined. The sigma value of G is the number $\nu(G) = \min\{\max(c)\mid c \text{ is a sigma } k - \text{coloring of } G\}$. On the other hand, the sigma range of G is the number $\rho(G) = \min\{\max(c)\mid c \text{ is a sigma coloring of } G\}$. It was shown in [1] and [8] that $\sigma(G) \leq \rho(G) \leq \nu(G)$. Note that it is possible for a graph G to have $\sigma(G) \neq \rho(G)$ and $\rho(G) \neq \nu(G)$ as shown in [1] and [8].

This paper discusses the sigma value and sigma range of joins of even cycles of the same order. If G_1 and G_2 are disjoint graphs, the join of G_1 and G_2, denoted by $G_1 + G_2$, is a graph whose vertex set is $V(G_1 + G_2) = V(G_1) \cup V(G_2)$ and whose edge set is $E(G_1 + G_2) = E(G_1) \cup E(G_2) \cup \{uv\mid u \in V(G_1), v \in V(G_2)\}$. Studies on the sigma chromatic number of some families of graphs can be found in [2-6]. In [7], a coloring similar to a sigma coloring was also introduced. However, little is known about the two other graph parameters, $\nu(G)$ and $\rho(G)$. While it can be easily shown that for a cycle C_n, with $n \geq 3$, $\rho(C_n) = \nu(C_n) = 2$ if n is even and $\rho(C_n) = \nu(C_n) = 3$ if n is odd, the values of $\rho(C_n)$ and $\nu(C_n)$, where kC_n is the join of k cycles C_n are yet to be determined. In this paper, we address this problem when C_n is an even cycle. The methodology involves using the least and largest possible sums of colors in a sigma 2-coloring of C_n using only the colors 1 and 2.

2. Known Results

The following observations and theorems will be used in this paper.

Observation 2.1 ([1]). Let G be a non trivial connected graph. Then $\sigma(G) = 1$ if and only if any two adjacent vertices of G have different degrees.

Theorem 2.1 ([1]). If C_n is a cycle of order n, where $n \geq 3$, then

$$\sigma(C_n) = \begin{cases} 2, & \text{if } n \text{ is even} \\ 3, & \text{if } n \text{ is odd} \end{cases}$$

Theorem 2.2 ([2]). Suppose c is a sigma $k-$coloring of $G + H$, where G and H are disjoint graphs. Then, the restricted colorings $c_1 = c|_{V(G)}$ and $c_2 = c|_{V(H)}$ are sigma colorings of G and H, respectively, that use at most k colors. Thus, $\sigma(G) \leq \sigma(G + H)$ and $\sigma(H) \leq \sigma(G + H)$.

Theorem 2.3 ([1], [8]). For a non trivial connected graph G, $\sigma(G) \leq \rho(G) \leq \nu(G)$.

![Image of graph colorings](image-url)
3. Minimal and Maximal Sigma Colorings of C_n

Let $n \in \mathbb{N}$ and n be even. Also, let $V(C_n) = \{v_1, v_2, \cdots, v_n\}$ and $E(C_n) = \{v_iv_{i+1} | 1 \leq i \leq n-1\} \cup \{v_1v_n\}$. From Theorem 2.1, we have $\sigma(C_n) = 2$. We give a sigma 2-coloring c_1 of C_n using the colors 1 and 2. Let $c_1(v_i) = 2$ if $4 \mid i$ or $i = n$, and $c_1(v_i) = 1$, otherwise. The coloring c_1 of C_n is illustrated in the diagram below.

![Diagram](image)

(a) $n \equiv 0 \pmod{4}$

(b) $n \equiv 2 \pmod{4}$

Figure 2. The coloring c_1 of C_n

Note that when $n \equiv 0 \pmod{4}$, the color sums of the vertices in C_n are as follows:

$$\sigma_{c_1}(v_i) = \begin{cases} 2, & \text{if } i \text{ is even} \\ 3, & \text{if } i \text{ is odd} \end{cases}$$

When $n \equiv 2 \pmod{4}$, the color sums of the vertices in C_n are as follows:

$$\sigma_{c_1}(v_i) = \begin{cases} 2, & \text{if } i \text{ is even} \\ 3, & \text{if } i \text{ is odd and } i \neq n-1 \\ 4, & \text{if } i = n-1. \end{cases}$$

Since adjacent vertices in C_n have unequal color sums, c_1 is a sigma coloring of C_n. Since c_1 is a coloring that uses the colors 1 and 2, we then have the following result.

Proposition 3.1. Let $n \geq 4$ be even. Then, $\rho(C_n) = \nu(C_n) = 2$.

From the definition, the coloring c_1 maximizes the number of times that the smallest color, 1, is assigned to the vertices of C_n and minimizes the number of times that the largest color, 2, is assigned. If $S(n) = \sum_{x \in V(C_n)} c(x)$, where c is a sigma coloring of C_n, then c_1 is a sigma coloring giving the smallest possible sum $S(n)$. We say that a sigma coloring of C_n is a *minimal sigma coloring* of C_n if the corresponding value of $S(n)$ is minimal. On the other hand, a *maximal sigma coloring* of C_n is one that yields the largest value of $S(n)$ over all sigma colorings using the colors 1 and 2. A maximal sigma coloring of C_n can be constructed by interchanging the colors 1 and 2 in c_1. A maximal coloring c_2 may also be given as follows: $c_2(v_i) = 1$ if $i \equiv 3 \pmod{4}$ or $i = n-1$, and $c_2(v_i) = 2$, otherwise.
When \(n \equiv 0 \pmod{4} \), the color sums of the vertices in \(C_n \) are as follows:

\[
\sigma_{c_2}(v_i) = \begin{cases}
3, & \text{if } i \text{ is even} \\
4, & \text{if } i \text{ is odd}.
\end{cases}
\]

When \(n \equiv 2 \pmod{4} \), the color sums of the vertices in \(C_n \) are as follows:

\[
\sigma_{c_2}(v_i) = \begin{cases}
2, & \text{if } i = n - 2 \\
3, & \text{if } i \text{ is even and } i \neq n - 2 \\
4, & \text{if } i \text{ is odd}.
\end{cases}
\]

In either case, adjacent vertices in \(C_n \) have unequal color sums. Thus, \(c_2 \) is a sigma coloring of \(C_n \). Note that \(c_2(C_n) = \{1, 2\} \) and \(c_2 \) maximizes the number of times that the largest color, 2, is assigned to the vertices of \(C_n \). Thus, \(c_2 \) will yield the highest possible value of \(S(n) \) using the colors 1 and 2.

Now, let \(T(n) \) and \(M(n) \) denote the sum of colors of all the vertices of \(C_n \) in a minimal and a maximal sigma 2-coloring of \(C_n \), respectively, using the colors 1 and 2. Then the values of \(T(n) \) and \(M(n) \) are given as follows:

\[
T(n) = \begin{cases}
5 \left(\frac{n}{4} \right), & \text{if } n \equiv 0 \pmod{4} \\
5 \left\lfloor \frac{n}{4} \right\rfloor + 3, & \text{if } n \equiv 2 \pmod{4},
\end{cases}
\]

and

\[
M(n) = \begin{cases}
7 \left(\frac{n}{4} \right), & \text{if } n \equiv 0 \pmod{4} \\
7 \left\lfloor \frac{n}{4} \right\rfloor + 3, & \text{if } n \equiv 2 \pmod{4}.
\end{cases}
\]

4. Main Results

We will use the definitions of \(S(n) \), \(M(n) \), and \(T(n) \) for a cycle \(C_n \), as given in Section 3. The first result shows that for every integer \(k \) between the sum \(T(n) \) obtained from a minimal coloring and the sum \(M(n) \) obtained from a maximal coloring, there exists a sigma 2-coloring of \(C_n \) using the colors 1 and 2 such that the corresponding sum of colors is equal to \(k \).

Theorem 4.1. Let \(n \geq 4 \) be even. For every integer \(k \) such that \(T(n) \leq k \leq M(n) \), there exists a sigma 2-coloring \(c \) of the vertices of \(C_n \) using the colors 1 and 2 such that \(S(n) = k \).
Proof. Let \(V(C_n) = \{v_1, v_2, \ldots, v_n\} \), \(E(C_n) = \{v_iv_{i+1}|1 \leq i \leq n-1\} \cup \{v_1v_n\} \), and let \(s = S(n) - T(n) \). If \(s = 0 \), then we use the coloring \(c_1 \) presented in Section 3 to color the vertices of \(C_n \). Suppose \(s \geq 1 \). We have the following cases:

Case 1: Suppose \(s \) is an even number and \(s \neq M(n) - T(n) \). Define a coloring \(c_3 \) of \(C_n \) by

\[
c_3(v_i) = \begin{cases}
2, & \text{if } i \equiv 1, 2 \pmod{4}, \text{ where } 2 \leq i \leq 2s + 2 \text{ and } i \neq 2s + 1 \\
c_1(v_i), & \text{otherwise},
\end{cases}
\]

where \(c_1 \) is the minimal sigma coloring of \(C_n \) given in Section 3.

Subcase 1.1: If \(n \equiv 0 \pmod{4} \), then the color sums of the vertices of \(C_n \) are given by

\[
\sigma_{c_3}(v_i) = \begin{cases}
2, & \text{if } i = 2, \text{ or } i \text{ is even and } 2s \leq i \leq n \\
3, & \text{if } i \text{ is even for } 4 \leq i \leq 2s - 2 \text{ or } i \text{ is odd and } 2s + 5 \leq i \leq n \\
4, & \text{if } i \text{ is odd for } 1 \leq i \leq 2s + 3.
\end{cases}
\]

Subcase 1.2: If \(n \equiv 2 \pmod{4} \), then the color sums of the vertices of \(C_n \) are given as follows:

\[
\sigma_{c_3}(v_i) = \begin{cases}
2, & \text{if } i = 2, \text{ or } i \text{ is even and } 2s \leq i \leq n \\
3, & \text{if } i \text{ is even and } 4 \leq i \leq 2s - 2 \text{ or } i \text{ is odd and } 2s + 5 \leq i \leq n - 3 \\
4, & \text{if } i \text{ is odd and } 1 \leq i \leq 2s + 3, \text{ or } i = n - 1.
\end{cases}
\]

Case 2: Suppose \(s \) is an odd number and \(s \neq M(n) - T(n) \). Define a coloring \(c_4 \) of the vertices of \(C_n \) by

\[
c_4(v_i) = \begin{cases}
2, & \text{if } i \equiv 1, 2 \pmod{4}, \text{ where } 2 \leq i \leq 2s \\
c_1(v_i), & \text{otherwise},
\end{cases}
\]

where \(c_1 \) is the minimal sigma coloring of \(C_n \) given in Section 3.

Subcase 2.1: If \(n \equiv 0 \pmod{4} \), then the color sums of the vertices of \(C_n \) is given by

\[
\sigma_{c_4}(v_i) = \begin{cases}
2, & \text{if } i = 2, \text{ or } i \text{ is even and } 2s + 4 \leq i \leq n \\
3, & \text{if } i \text{ is even and } 4 \leq i \leq 2s + 2, \text{ or } i \text{ is odd and } 2s + 5 \leq i \leq n \\
4, & \text{if } i \text{ is odd and } 1 \leq i \leq 2s + 3.
\end{cases}
\]

Subcase 2.2: If \(n \equiv 2 \pmod{4} \), then the color sums of the vertices of \(C_n \) are given as follows:

\[
\sigma_{c_4}(v_i) = \begin{cases}
2, & \text{if } i = 2, \text{ or } i \text{ is even and } 2s + 2 \leq i \leq n \\
3, & \text{if } i \text{ is even and } 4 \leq i \leq 2s, \text{ or } i \text{ is odd and } 2s + 3 \leq i \leq n - 3 \\
4, & \text{if } i = n - 1, \text{ or } i \text{ is odd and } 1 \leq i \leq 2s + 1.
\end{cases}
\]

Case 3: If \(s = M(n) - T(n) \), then \(k = M(n) \). We color the vertices of \(C_n \) using the maximal sigma coloring \(c_2 \) given in Section 2.

In each of the cases above, we have shown that no two adjacent vertices of \(C_n \) have equal color sums. Thus, the colorings are sigma 2-colorings of \(C_n \) using the colors 1 and 2. In addition, the coloring strategy ensures that the number of vertices of \(C_n \) whose colors change from color 1 in \(c_1 \) to color 2 in \(c_3 \) (or \(c_4 \)) is exactly \(s \) and \(S(n) = T(n) + s = k \).
Lemma 4.2. Let n be an even integer, $n \geq 4$, and let c be any sigma 2-coloring of C_n using the colors 1 and 2. If $S(n) \neq T(n)$, then there exists a vertex $v \in V(C_n)$ such that $\sigma(v) = 4$. If $S(n) \neq M(n)$, then there exists a vertex $v \in V(C_n)$ such that $\sigma(v) = 2$.

Proof. Suppose c is a sigma 2-coloring of C_n using the colors 1 and 2 such that $S(n) \neq T(n)$. Then, at least one block, say B, must be a sigma 2-coloring of C_n. Let $S(n)$ and $M(n)$ be the restriction of c to each copy of C_n. Since $S(n)$ is a sigma 2-coloring of C_n using the colors 1 and 2, there exists a vertex $v \in V(C_n)$ such that $\sigma(v) = 2$.

If the colors used in a 2-coloring of C_n alternate among the vertices, then we say that the coloring is alternating.

Lemma 4.3. Let c be a sigma 2-coloring of C_n using the colors 1 and 2, and let $CS(C_n) = \{\sigma(u) : u \in V(C_n)\}$.

(i) If c is alternating, then $CS(C_n) = \{2, 4\}$.

(ii) Suppose c is not alternating and $n \equiv 0 \pmod{4}$.

- If $S(n) = T(n)$, then $CS(C_n) = \{2, 3\}$.
- If $S(n) = M(n)$, then $CS(C_n) = \{3, 4\}$.
- If $T(n) < S(n) < M(n)$, then $CS(C_n) = \{2, 3, 4\}$.

(iii) Suppose c is not alternating and $n \equiv 2 \pmod{4}$. Then, $CS(C_n) = \{2, 3, 4\}$.

Proof. Suppose c is a sigma 2-coloring of C_n using the colors 1 and 2. Clearly, if c is alternating, then $CS(C_n) = \{2, 4\}$ regardless of the congruence class of n.

Suppose c is not alternating. If $n \equiv 0 \pmod{4}$ and $S(n) = T(n)$, then by definition of minimal coloring and by recalling the values of $\sigma(c_1(v))$ given in Section 3, we have $CS(C_n) = \{2, 3\}$. Likewise, if $S(n) = M(n)$, then by definition of maximal coloring and by recalling the values of $\sigma(c_2(v))$ given in Section 3, we have $CS(C_n) = \{3, 4\}$. On the other hand, if $T(n) < S(n) < M(n)$, then by Lemma 4.2, the color sums 2 and 4 are in $CS(C_n)$. Furthermore, since c is not alternating, C_n contains a block of four consecutive vertices having three vertices with color 1 or with color 2. Hence, one of these vertices must have a color sum equal to 3. Thus, $CS(C_n) = \{2, 3, 4\}$ and this is true regardless of the congruence class of n. In the case that $n \equiv 2 \pmod{4}$ and $S(n) = T(n)$ or $S(n) = M(n)$, we have $CS(C_n) = \{2, 3, 4\}$ as shown in Section 3.

The next result considers sigma colorings of the join of two even cycles C_n.

Lemma 4.4. Let $G = 2C_n = C_n + C_n$, where n is even and $n \geq 8$. Suppose c is a coloring of G using the colors 1 and 2 such that the restriction of c to each copy of C_n in G is a sigma 2-coloring of C_n. Suppose $S_i(n)$ denotes the sum of colors of the vertices restricted to the ith copy of C_n, where $i \in \{1, 2\}$, and assume without loss of generality that $S_2(n) \geq S_1(n)$. Then, c is a sigma 2-coloring of G if and only if $S_2(n) \geq S_1(n) + 3$.

Proof. For notation purposes, denote the ith copy of C_n in $G = C_n + C_n$ by C_{n_i} and let $c_{|C_{n_i}}$ be the restriction of c to C_{n_i}. From the assumption, $S_i(n) = \sum_{v \in V(C_{n_i})} c(v)$ and $S_1(n) \leq S_2(n)$. In the following, we list all possible conditions between $S_2(n)$ and $S_1(n)$ and show that only the condition $S_2(n) \geq S_1(n) + 3$ will give a sigma 2-coloring of G using the colors 1 and 2.

Case 1: Suppose $S_2(n) = S_1(n)$.

Subcase 1.1: If $S_1(n) \neq M(n_1)$, then since $n = n_1 = n_2$, we have $S_2(n) \neq M(n_2)$. By Lemma 4.2, there exist two adjacent vertices, $u \in V(C_{n_1})$ and $v \in V(C_{n_2})$, such that $\sigma(u) = 2 + S_2(n) = 2 + S_1(n) = \sigma(v)$.

Subcase 1.2: If $S_1(n) = M(n_1)$, then $S_2(n) = M(n_2)$. By Lemma 4.2, there exist two adjacent vertices, $u \in V(C_{n_1})$ and $v \in V(C_{n_2})$, such that $\sigma(u) = 4 + S_2(n) = 4 + S_1(n) = \sigma(v)$.

Case 2: Suppose $S_2(n) = S_1(n) + 1$.

Subcase 2.1: If $c|_{C_{n_2}}$ is alternating, then $c|_{C_{n_1}}$ is not. By Lemma 4.3, there exist two adjacent vertices, $u \in V(C_{n_1})$ and $v \in V(C_{n_2})$, such that $\sigma(u) = 3 + S_2(n) = 3 + S_1(n) = \sigma(v)$.

Subcase 2.2: If $c|_{C_{n_2}}$ is not alternating, then $c|_{C_{n_1}}$ is alternating. By Lemma 4.3, there exist two adjacent vertices, $u \in V(C_{n_1})$ and $v \in V(C_{n_2})$, such that $\sigma(u) = 2 + S_2(n) = 2 + S_1(n) = \sigma(v)$.

Case 3: Suppose $S_2(n) = S_1(n) + 2$. Then, $S_1(n) \neq M(n_1)$ and $S_2(n) \neq T(n_2)$. By Lemma 4.2, there exist two adjacent vertices, $u \in V(C_{n_1})$ and $v \in V(C_{n_2})$, such that $\sigma(u) = 2 + S_2(n) = 4 + S_1(n) = \sigma(v)$.

Case 4: Suppose $S_2(n) \geq S_1(n) + 3$. Then, for any adjacent vertices, $u \in V(C_{n_1})$ and $v \in V(C_{n_2})$, we have $\sigma(u) \geq 2 + S_2(n) \geq 4 + S_1(n) > 4 + S_1(n) \geq \sigma(v)$.

We note that in each of Cases 1 to 3, there are two vertices u and v which are adjacent in the join $G = 2C_n$ such that $\sigma(u) = \sigma(v)$. This means that c is not a sigma coloring in each of these cases. Finally, we should note that only Case 4 yields a sigma 2-coloring of C_n. This proves the lemma.

The result below deals with the main problem of this study which is to determine the sigma value and sigma range of the join of a finite number of even cycles of the same order.

Theorem 4.5. Let $G = kC_n$, where $n \geq 8$ is even and $k \geq 1$. Then,

$$\nu(G) = 2$$

if and only if

$$k \leq \begin{cases} \left\lceil \frac{n}{6} \right\rceil + 1, & \text{if } n \equiv 0 \pmod{4} \\ \left\lceil \frac{n-2}{6} \right\rceil + 1, & \text{if } n \equiv 2 \pmod{4}. \end{cases}$$

Proof. Since n is even, we have either $n \equiv 0 \pmod{4}$ or $n \equiv 2 \pmod{4}$. Considering the values of $T(n)$ and $M(n)$ as given in equations (1) and (2) in Section 3, it follows that

$$\left\lfloor \frac{M(n) - T(n)}{3} \right\rfloor + 1 = \begin{cases} \left\lceil \frac{n}{6} \right\rceil + 1, & \text{if } n \equiv 0 \pmod{4} \\ \left\lceil \frac{n-2}{6} \right\rceil + 1, & \text{if } n \equiv 2 \pmod{4}. \end{cases}$$

Hence, we will prove that $\nu(G) = 2$ if and only if $k \leq \left\lfloor \frac{M(n) - T(n)}{3} \right\rfloor + 1$. As in the proof of Lemma 4.4, we denote the ith copy of C_n in G by C_{n_i}, $c|_{C_{n_i}}$ the restriction of c to C_{n_i}, and $S_i(n) = \sum_{v \in V(C_{n_i})} c(v)$.

First, suppose $\nu(G) = 2$. Then, by definition, there exists a sigma 2-coloring c of kC_n using colors 1 and 2. Now, $c|_{C_{n_i}}$ as well as $c|_{C_{n_i} + C_{n_j}}$ are also sigma colorings for $1 \leq i, j \leq k$, by Theorem 2.2. By permuting the position of the cycles, if necessary, we can assume without loss of generality that the values of $S_i(n)$, for $1 \leq i \leq k$, are nondecreasing. By Lemma 4.4, we must have $S_{i+1}(n) \geq S_i(n) + 3$ for each $1 \leq i \leq k - 1$. As a consequence, $S_k(n) - S_1(n) \geq 3(k-1)$. Since $S_k(n) \leq M(n)$ and $S_1(n) \geq T(n)$, it follows that $S_k(n) - S_1(n) \leq M(n) - T(n)$. Combining
the inequalities, we obtain $3(k - 1) \leq M(n) - T(n)$, and so, $k \leq \frac{M(n) - T(n)}{3} + 1$. Since k is an integer, we have $k \leq \left\lfloor \frac{M(n) - T(n)}{3} \right\rfloor + 1$.

Conversely, suppose $k \leq \left\lfloor \frac{M(n) - T(n)}{3} \right\rfloor + 1$. Consider the sequence $a_1 = T(n), a_2 = T(n) + 3, \ldots, a_k = T(n) + 3(k - 1)$. Note that the last equation yields $k = \left\lfloor \frac{a_k - T(n)}{3} \right\rfloor + 1$, and since $k \leq \left\lfloor \frac{M(n) - T(n)}{3} \right\rfloor + 1$, then we must have $a_k \leq M(n)$. Clearly, a_i is an increasing sequence and $T(n) \leq a_i \leq M(n)$ for $1 \leq i \leq k$. By Theorem 4.1, there exists a sigma 2-coloring of C_n using colors 1 and 2 such that $S_i(n) = a_i$. Since $a_{i+1} = a_i + 3$ for each $1 \leq i \leq k - 1$, then by applying Lemma 4.4 repeatedly, it follows that c is a sigma 2-coloring of kC_n using the colors 1 and 2. Consequently, $\nu(G) = 2$.

By Observation 2.1, the sigma chromatic number of a connected graph is 1 if and only if every two adjacent vertices of G have different degrees. Since this is not the case for the join kC_n of k cycles with $n \geq 4$, then we must have $\sigma(kC_n) \geq 2$. Since by Theorem 2.3, $\sigma(kC_n) \leq \rho(kC_n) \leq \nu(kC_n)$, we have the following corollary.

Corollary 4.6. Let $G = kC_n$, where $n \geq 8$ is even and $k \geq 1$. Then,

$$\rho(G) = 2$$

if and only if

$$k \leq \begin{cases} \left\lfloor \frac{n}{6} \right\rfloor + 1, & \text{if } n \equiv 0 \pmod{4} \\ \left\lfloor \frac{n-2}{6} \right\rfloor + 1, & \text{if } n \equiv 2 \pmod{4}. \end{cases}$$

Example 1. Suppose $n = 18$. By Theorem 4.5, we have $\nu(kC_{18}) = 2$ if and only if $k \leq 3$. Using Theorem 4.1 and the strategy of coloring kC_n in the proof of Theorem 4.5, we give a sigma 2-coloring of $3C_{18}$ using the colors 1 and 2. For simplicity, we omit the edges joining vertices between different copies of C_{18} in Figure 4.

![Figure 4. Sigma 2-coloring of 3C_{18}](image-url)
Observe that when \(k = 4 \), then in order to still have a sigma \(2 \)-coloring of \(4C_{18} \), \(S_4(n) \geq S_3(n) + 3 = 32 \) by Lemma 4.4. Since \(M(n) = 31 \) and \(M(n) \) is the sum of colors in a maximal coloring of \(C_{18} \), it follows that no sigma coloring of \(4C_{18} \) using only the colors 1 and 2 will exist. As a consequence, \(\nu(4C_{18}) \neq 2 \).

5. Conclusion
In this paper, we considered the sigma value and sigma range in relation to the join of even cycles of the same order. While \(\rho(C_{n}) = \nu(C_{n}) = 2 \) when \(n \) is even, we determined necessary and sufficient conditions so that \(\rho(kC_{n}) \) and \(\nu(kC_{n}) \) are still equal to 2.

A problem that can be investigated further is that of determining \(\rho(kC_{n}) \) and \(\nu(kC_{n}) \) when \(n \) is odd. One might be interested also to consider other families of graphs whose sigma value and sigma range are yet unknown.

Acknowledgements
The authors would like to thank the Loyola Schools of the Ateneo de Manila University for the support it gave them to be able to do this research. In addition, Marie Cris A. Bulay-og is grateful to the University of San Carlos and to the Commission on Higher Education of the Philippines for providing her support and scholarship to be able to continue with her studies. Finally, the authors would like to thank the organizers of ICCGANT 2020 and the referees of this paper for their helpful comments and suggestions.

References
[1] Chartrand G, Okamoto F and Zhang P 2010 The sigma chromatic number of a graph Graphs and Combinatorics 26:755-773
[2] Garciano A, Lagura M and Marcelo R 2019 On the sigma chromatic number of the join of a finite number of paths and cycles Asian-European Journal of Mathematics 2150019
[3] Garciano A, Lagura M and Marcelo R 2020 Sigma chromatic number of the graph coronas involving complete graphs J. Phys.: Conf. Series 1538 012003
[4] Gonzaga L and de Almeida S 2019 Sigma coloring on powers of paths and some families of snarks Electronics Notes in Theoretical Computer Science 346 485-496
[5] Lagura M C 2016 On the sigma chromatic number of the join of paths, cycles, and complete multipartite graphs Master’s Thesis (Ateneo de Manila University)
[6] Luzon P, Ruiz M and Tolentino M 2016 The sigma chromatic number of circulant graphs \(C_n(1, 2) \), \(C_n(1, 3) \), and \(C_{2n}(1, n) \) Discrete Comput. Geom. eds. Akiyama J, Ito H, Sakai T and Uno Y Springer Lect. Notes in Computer Science 9943
[7] Slamin 2017 On distance irregular labelling of graphs Far East J. Math. Sci. 102(5) 919-932
[8] Zhang P 2016 A Kaleidoscopic View of Graph Colorings (Kalamazoo: Springer Nature)