Awareness and Knowledge Towards Pediatric and Adult COVID-19 Vaccination: A Cross Sectional Community-based Study in Saudi Arabia

Hanin Jaber AlGethami1, Mohammed Abdullah Altamran2, Mohammad Shibly Khan3, Kadher Mohaideen Noorul Zaman4, Nahla Alswaied5

ABSTRACT

Background: As the covid-19 vaccination programs scaling up globally, there remains a growing concern about the community level awareness towards it. We aimed to assess the knowledge and awareness among general population towards covid-19 in adult and pediatric population. Objective: The aim of the study was to assess the knowledge and awareness among adult Saudi people toward covid-19 vaccine for adults and children. Methods: We conducted a cross sectional, community-based study among a representative sample (N=1373) of adult population in Saudi Arabia during October 2021. A structured, closed ended and pre-tested questionnaire was used online to collect the quantitative data through non-random sampling. Results: A great majority (91%) considered the seriousness of covid-19. About 80% perceived the available vaccines to be highly protective against the COVID-19 infection and complications. While about 69.7% agreed that pediatric vaccination will reduce the spread of covid-19, about 77.3% agreed on encouraging the parents to vaccinate their children. Only 43% were aware that vaccination is safe for breast feeding women and about 50.6% considered the vaccination to be safe in pregnant females. About 52.8% responded that the pediatric vaccine has same safety as efficacy as that in adults. The association with knowledge items was observed to be significant (p<0.05) with occupation, education, income and being previously affected with covid-19. Conclusion: Overall, a high level of awareness was observed in our study, however, there were factors observed to be taken care such as vaccination in breast feeding and pregnant females as well as concerns related to safety and efficacy for pediatric vaccination.

Keywords: COVID-19 vaccination, awareness, pediatric COVID-19 vaccination, Saudi Arabia.

1. BACKGROUND

Coronavirus disease 2019 (COVID-19) is a severe acute respiratory syndrome that is caused by a novel coronavirus 2 (SARS-CoV-2). It originated in China late December 2019 and was declared as “a public health emergency of international concern” by World Health Organization (WHO) on January 30, 2020, and “a global pandemic” on March 12, 2020 (1).

The virus is mainly spread through the respiratory droplet (2-7), or sometimes through fomites used by or used on the infected individual (3, 7, 8). The infected people can have no symptoms (5, 9-16). Meanwhile, symptomatic patients may present with, cough, myalgias, headache, diarrhea, sore throat, and smell or taste abnormalities (17-19). Furthermore, the infection is generally more fatal for the elderly and those with a history of comorbidity such as hypertension, obesity, renal disease and diabetes (20-21).

The number of cases continues to increase, by November 2021, approximately 251,788,329 confirmed cases have been reported worldwide, with more than 222 countries affected globally (1). In the Kingdom of Saudi Arabia (KSA), the first case was diagnosed on March 2nd 2020 and by November 2021 there were approximately 549,377 confirmed cases, with death numbers reaching 8,821 (1).
During this pandemic, data regarding the percentage of children infected with COVID-19 has varied among different countries. In KSA children aged <18 y constitutes 1–2% of the total cases, with similar but less severe symptoms (22, 25). In more than 72,000 total cases from China, only 1.2% were children aged 10–19 years, and 0.9% were in patients younger than 10 years (24). Similarly, data from the Netherlands, Italy, Spain, and the United States of America (USA) show that paediatric patients account for 0.8%–2% of confirmed cases (25–28). Most of these pediatric cases presented with mild symptoms, and some were asymptomatic and were identified by routine screening (28). However, the most common reported symptoms in pediatric population are fever or chills and cough (29–31). Vaccination against COVID-19 has been advocated to be the most important public health measure and most effective strategy to protect the population worldwide (32-34). In KSA, the COVID-19 vaccines were introduced to adult population in December 2020 (35) and Pfizer-BioNTech vaccine was approved for children aged between 12 and 18 years (36) in July 2021. More recently, in August 2021 Moderna vaccine was approved for same age group (36).

Meanwhile, with the availability of COVID-19 vaccines, little information is available on the public knowledge and awareness towards the COVID-19 vaccines for adults and for children. Therefore, identifying factors associated with vaccine acceptance is needed to help public health experts identify a conceptual framework and educational campaign aimed at increasing this awareness in the general population (37). Various studies have been conducted globally to assess the public awareness regarding Covid vaccine (38), and in Saudi Arabia (39, 40, 41) but there is paucity of study examining the vaccine awareness in paediatric and adult age group.

2. OBJECTIVE

The aim of the study was to assess the knowledge and awareness among adult Saudi people toward COVID-19 vaccine for adults and children.

3. MATERIAL AND METHODS

Study Design and Participants

It was a descriptive cross-sectional community-based study conducted among adult population in Saudi Arabia, during October 2021. The adult participants from the general population who are able to read and willing to participate were included in the study.

Sample size and sampling method

The minimum sample size was estimated to 384, based on assuming a proportion of 50% (as it gives the highest sample size), 95% confidence interval and 5% allowable error. A non-random sampling method primarily convenient sampling was adopted to collect the quantitative data.

Data Collection

The anonymous data was collected online through structured, closed ended questionnaire using Google forms in English and Arabic languages. The link to the questionnaire was distributed through different social media platforms. The responses were saved as data sheet which was secured in the researcher’s account. The responses were limited to one response option for each participant.

Knowledge/awareness item	Response	Frequency	Percent (%)
COVID-19 is dangerous and may have serious consequences	Strongly agree	670	48.6
	Agree	479	34.8
	Neutral	182	13.2
	Disagree	37	2.7
	Strongly disagree	10	0.7
Physical distancing can protect you and your family from contracting COVID-19 disease?	Strongly agree	850	61.7
	Agree	409	29.7
	Neutral	93	6.7
	Disagree	19	1.4
	Strongly disagree	7	0.5
COVID19-positive women are safe to breastfeed?	Yes	335	24.3
	No	403	29.2
	Don't know	640	46.4
Following precautionary measures on a personal-level would help the community fight against the COVID-19 pandemic?	Yes	1253	90.9
	No	49	3.6
	Don't know	76	5.5
The traditional remedies (i.e., herbs) may protect from Infectious diseases such as the COVID-19?	Yes	343	24.9
	No	615	44.6
	Don't know	420	30.5
Vaccines are important for the health of children and adults?	Strongly agree	686	49.8
	Agree	392	28.4
	Neutral	225	16.3
	Disagree	43	3.1
	Strongly disagree	52	3.7
	Strongly agree	830	60.2
	Agree	442	32.1
	Neutral	87	6.3
	Disagree	14	1.0
	Strongly disagree	5	0.4
Being vaccinated against infectious diseases reduces the mortality?	Strongly agree	812	58.9
	Agree	476	34.5
	Neutral	69	5.0
	Disagree	16	1.2
	Strongly disagree	5	0.4
Vaccination against infectious diseases is protective and improving the quality of life, especially for people with low immunity and those suffering from chronic diseases?	Strongly agree	544	39.5
	Agree	525	38.1
	Neutral	242	17.6
	Disagree	46	3.3
	Strongly disagree	21	1.5

Table 1. Knowledge/awareness regarding COVID-19 among study participants (n=1378)
Survey Instrument
A structured, closed ended, self-administered questionnaire was used for quantitative data collection. The survey instrument was drafted based on review of literature (42-45), and expert consultations. The questionnaire was drafted primarily in English language and translated into Arabic and was validated through translation-retranslation back into English. It was pre tested through pilot survey. The instrument included the following sections: socio-demographic information, general awareness regarding COVID-19 and knowledge/awareness regarding the COVID-19 vaccine for both adults and children. The Knowledge items had "yes" and "no" responses while awareness/attitude items followed a Likert scale ranging from "strongly agree" to "strongly disagree". The positive responses (agree and strongly agree) were merged together to find out the association between variable.

Data Analysis
The data was validated and cleaned through Microsoft excel 2016 and transported to IBM-SPSS version 21 for tabulating and data analysis. The data was described as frequency and percentage. Chi square and Fischer’s exact tests were employed to find out association between variables. All statistical tests were considered significant at 95% confidence interval with a p-value less than 0.05.

Ethical Consideration: The study was approved from Institutional review board of King Saud Medical City, (reference number: H1R1-01-Sep21-02). The participants were assured of the privacy and confidentiality of their responses.

4. RESULTS
Socio-demographic information of the study participants
Among the total of 1373 study participants included in the final analysis, almost equal proportion was noted for male and females (51.8% females vs. 48.2% males). Age wise highest participation was observed from age group 18-30 years (32.3%) followed by 31-40 years (29.2%), 41-50 years, while it lowest for age group higher than 50 years (16.7%). About 18.7% of study participants belonged to medical profession, while majority (63%) were educated up to university and college level. As for the economic status, 36.4% had monthly income of more than 15,000-20,000 SAR, followed by less than 5000 SAR (33.4%), 5000-1000 SAR (17.1%) and more than 20,000 SAR (13.1%). Majority (66.9%) of were married and from Riyadh City. About 76.3% of the respondents had reported to had infected with COVID-19 infection while about 59.7% reported to have had a family member affected with COVID-19 with about 18.3% had severe disease among family members.

Knowledge/awareness towards COVID-19
As shown in Table 1, about 85% of them agreed that of COVID19 infection is a serious condition while 91% agreed on the potential benefits of physical distancing. About 24.3% were agreed that it's safe to breast feed for COVID-19 positive females. About 90.9% of all responders agreed on following the precautionary measures as it helps the community fighting against the COVID-19 pandemic. About 44.6% participants didn't believe in using traditional remedies (i.e., herbs) that may protect them from infectious diseases such as the COVID-19. A great majority agreed (28.4%) and strongly agreed (49.8%) on importance of vaccination for health of adults and children. Also, about 95% agreed on the role of vaccines in reducing the morbidity and mortality from infectious diseases. Similarly, more than 90% agreed that vaccine improves the quality of life for chronic diseases and those who do not have any vaccination

Table 2. Knowledge/awareness regarding pediatric Covid-19 vaccine among study participants (n=1378)

Knowledge component	Response	Frequency	Percent
Are there any COVID19 vaccines approved for children from 12-18 years?	Yes	1256	91.1
	No	28	2.0
Giving COVID19 vaccine for children will reduce the spread of the infection to others	Strongly agree	459	33.3
	Agree	502	36.4
	Neutral	325	23.6
	Disagree	53	3.8
	Strongly disagree	39	2.8
Parents must be encouraged to give their children (12-18 years) the COVID19 vaccines as soon as possible	Strongly agree	619	44.9
	Agree	447	32.4
	Neutral	223	16.2
	Disagree	52	3.8
	Strongly disagree	37	2.7
The mothers who received COVID-19 vaccine can breast feed their babies safely	Strongly agree	268	19.4
	Agree	326	23.7
	Neutral	664	48.2
	Disagree	82	6.0
	Strongly disagree	38	2.8
Regarding safety of COVID19 in pediatrics compared to adults, it is considered to have same efficacy	727	52.8	
	more efficacy	77	5.6
	less efficacy	83	6.0
	don't know	491	35.6
	strong disagree	38	2.8
Regarding efficacy of COVID 19 vaccine in pediatrics compared to adults, it is considered to have same efficacy	727	52.8	
	more efficacy	77	5.6
	less efficacy	83	6.0
	don't know	491	35.6
The approved COVID19 vaccines are safe for pregnant women.	Strongly agree	282	20.5
	Agree	415	30.1
	Neutral	543	39.4
	Disagree	88	6.4
	Strongly disagree	50	3.6
	Strongly agree	621	45.1
	Agree	508	36.9
	Neutral	184	13.4
	Disagree	43	3.1
	Strongly disagree	22	1.6
with low immunity. About 77.6% agreed that the benefits outweigh the risks of the vaccines.

Knowledge/awareness towards COVID-19 vaccination

While a great majority (91.1%) were aware about the availability of the covid vaccine among 12-18 years age groups, however, about 69.7% agreed that pediatric vaccination will reduce the spread of COVID-19 and about 77.3% agreed on encouraging the parents to vaccinate their children. Only 43% agreed that vaccination is safe for breast feeding women. About 52.8% responded that the pediatric vaccine has same safety as efficacy as that in adults. About 50.6% considered the vaccination to be safe in pregnant women. About 52.8% responded that the pediatric vaccination will reduce the spread of the infection and complications (Table 2).

Association of knowledge/awareness towards COVID-19 vaccination with certain socio-demographic variables

For estimating the association between socio-demographic factors, certain knowledge/awareness items were selected. As shown in Table 3, the association with knowledge items was observed to be significant (p<0.05) with occupation, education, income and being previously affected with COVID-19. While the association between the knowledge items with age, gender and marital status was not observed to be significant (p>0.05) except one knowledge item was found to be significantly associated with gender (<0.05). As expected, the knowledge/awareness items were found to be significantly higher (<0.05) in females compared to males (Table 3).

Table 3. Association of knowledge/awareness towards COVID-19 vaccination with certain socio-demographic variables, among study respondents (n=1378)

Socio-demographic factor	Knowledge/awareness response item*	p-value
Age	Vaccines are important for the health of children and adults?	χ²=3.96, p<0.05
18 to 30 years	The available vaccines are highly protective against the COVID-19 infection and complications?	χ²=4.48, p<0.05
31 to 40 years	Vaccinating Children with anti-COVID vaccines will reduce the spread of the infection	χ²=3.4, p<0.05
41 to 50 years	Parents must be encouraged to give their children (12-18 years) the COVID19 vaccines as soon as possible	χ²=4.4, p<0.05
>50 years	Vaccinating Children with anti-COVID vaccines will reduce the spread of the infection	χ²=4.4, p<0.05
Gender	Knowledge/awareness response item*	p-value
Male	Vaccines are important for the health of children and adults?	χ²=4.36, p<0.05
Female	The available vaccines are highly protective against the COVID-19 infection and complications?	χ²=4.48, p<0.05
Marital status	Vaccinating Children with anti-COVID vaccines will reduce the spread of the infection	χ²=4.4, p<0.05
Married	Parents must be encouraged to give their children (12-18 years) the COVID19 vaccines as soon as possible	χ²=4.4, p<0.05
Occupation	Knowledge/awareness response item*	p-value
HCW	Vaccines are important for the health of children and adults?	χ²=4.4, p<0.05
Non-HCW	The available vaccines are highly protective against the COVID-19 infection and complications?	χ²=4.48, p<0.05
Educational status	Vaccinating Children with anti-COVID vaccines will reduce the spread of the infection	χ²=3.4, p<0.05
Elementary	Parents must be encouraged to give their children (12-18 years) the COVID19 vaccines as soon as possible	χ²=3.4, p<0.05
High-school	Knowledge/awareness response item*	p-value
Graduated	Vaccines are important for the health of children and adults?	χ²=4.4, p<0.05
Post-graduate	The available vaccines are highly protective against the COVID-19 infection and complications?	χ²=4.48, p<0.05
Monthly income (SAR)	Vaccinating Children with anti-COVID vaccines will reduce the spread of the infection	χ²=3.4, p<0.05
<5000	Parents must be encouraged to give their children (12-18 years) the COVID19 vaccines as soon as possible	χ²=3.4, p<0.05
5000-10000	Knowledge/awareness response item*	p-value
15000-20000	Vaccines are important for the health of children and adults?	χ²=4.4, p<0.05
>20000	The available vaccines are highly protective against the COVID-19 infection and complications?	χ²=4.48, p<0.05
Were you affected with COVID-19?	Vaccinating Children with anti-COVID vaccines will reduce the spread of the infection	χ²=3.4, p<0.05

Table 3. Association of knowledge/awareness towards COVID-19 vaccination with certain socio-demographic variables, among study respondents (n=1378)
5. DISCUSSION

Present study has been conducted among general population to assess their knowledge and awareness regarding covid vaccine in adults and paediatric age group. Although, similar studies have been undertaken previously but no study has attempted to assess awareness on adult and paediatric vaccine combined. We have found a high level of awareness on COVID-19 and anti-covid vaccine among our study participants. More than three-fourth of study participants agreed that covid and its consequences are a serious concern. A great majority (more than 90%) agreed on potential benefits of physical distancing and other precautionary measures in preventing spread of covid. These findings are corroborated with the studies done in China (46) and Europe (47) where more than 90% study participants agreed on the potential benefits of physical distancing and precautionary measure. However, another study conducted in Libya, has reported a lower level of awareness and adherence to physical distancing and precautionary measures, as compared to our study, whereby, about 63% agreed on potential benefits of social distancing as protective measure (38).

We found high level of positive attitude among study participants towards role of vaccines in reduction of morbidity and mortality, protection from infectious diseases and improving the quality of life. Three-quarter of our participants believed that benefits from vaccines outweighs the risk, which is quite high as compared to that reported by study conducted in Libya, where this variable has been reported to be only 14.9% (38). The vaccine acceptability in Saudi Arabia has been reported to be 48-64% (39-41). In general, the vaccine acceptability has been reported to be low in Kuwait (23.6%) and Jordan (28.4%), moderate in Italy (53.7%), Russia (54.9%) and Poland (56.3%), while it has been reported to high in Indonesia (93.5%), China (91.3%), and Malaysia (94.3%) (38).

About half of our study participants believed that covid vaccine is safe for pregnant females, while 45% considered it to be safe for breast-feeding mothers. This finding is corroborated with another study conducted in New York, where the acceptance rate of vaccines among pregnant and breast-feeding females has been reported to be about 44% and 55%, respectively (48). Similarly, another study conducted in 16 countries between October 28 and November 18, 2020, also reported that about 52% pregnant females indicated an intention to get vaccinated (49). Pregnant women affected with COVID-19 have been found to be at increased risk for adverse pregnancy outcomes such as preterm birth (50), which led various health authorities to issue guidance indicating that the COVID-19 vaccines should not be withheld from pregnant women (51-55). Furthermore, recent studies have suggested that vaccination of pregnant women builds antibodies that might protect the unborn child also (53). It has also been shown that breastfeeding mothers who have been vaccinated with mRNA COVID-19 vaccines have antibodies in their breastmilk, that can protect their babies (54-57).

Slightly less than three-fourth of the study participants agreed that paediatric vaccination will help reduce the spread of covid. About 77% accepted they would agree to go for vaccination for their children. Contrary to our finding, in a study, conducted in England, only 48% respondents agreed to accept the vaccination for their children (58).

We found a significant association between knowledge/awareness towards covid vaccination and occupation, educational status, monthly income and positive history of past COVID-19 infection. Similar to our finding, these association have also been reported by various studies (58, 59–64). For instance, Srichan et al have reported occupation, education, annual income and marital status to be significant factors associated with more accurate knowledge of COVID-19 (59). The willingness to accept the COVID-19 vaccine in Saudi Arabia was reported to be relatively high among married responders with education level postgraduate degree or higher, older age groups and those employed in government sector (39). We also found a significantly higher level of knowledge/awareness among health care workers as compared to non-health care workers. A study done among nurses has reported excellent level of knowledge towards COVID-19 (40).

We have managed to achieve a large sample size; however, the findings may not be amenable for generalization as the composition of our sample may not be representative of the general population. Nevertheless, present study found an overall view of the prevalent in the community at large, that is indicative of the current level of concerns in the general community. For instance, the issue of vaccination for pregnant and breast-feeding mothers in not clear for many of the study respondents. The possibility of social desirability bias cannot be ruled as it relates to overall good attitude reported in our study. Another limitation is not using the quantitative scores for knowledge/awareness levels, which might have been a good measure instead.

6. CONCLUSION

Understanding and acceptance the COVID-19 vaccines is an essential determinant that affects the general vaccines uptake and the likelihood of controlling the COVID-19 pandemic. Our study showed a promising level of knowledge and awareness of adult Saudi community about vaccination for adults and pediatrics. However, the health communication should incorporate the new guidelines, such as that related to vaccination among pregnant and breast-feeding mothers.

• Declaration of patient consent: The authors certify that they have obtained all appropriate patient consent forms.
• Author’s contribution: HI, MA, MS gave a substantial contribution to the conception and design of the work. KM, NS gave a substantial contribution of data. HI, MA, MS, KM, NS gave a substantial contribution to the acquisition, analysis, or interpretation of data for the work. HI, MA, MS, KM, NS had a part in article preparing for drafting or revising it critically for important intellectual content. All authors gave final approval of the version to be published.
• Conflicts of interest: There are no conflicts of interest.
• Financial support and sponsorship: Nil.

REFERENCES

1. World Health Organisation. WHO Coronavirus Disease (COVID-19) Dashboard | WHO Coronavirus Disease (COVID-19) Dashboard.
26. Livingston E, Bucher K. Coronavirus Disease 2019 (COVID-19) in Italy. JAMA. 2020 Aug 1; 323(11): 1574-1581.

27. Tagarro A, Epalza C, Santos M, Sanz-Santaeufemia FJ, Otheo E, Moraleda C, Calvo C. Screening and Severity of Coronavirus Disease 2019 (COVID-19) in Children in Madrid, Spain. JAMA Pediatr. 2020 Apr 8; e201346.

28. The Centers for Disease Control and Prevention (CDC). Coronavirus Disease 2019 in Children - United States. February 12, 2020. Available from: https://www.cdc.gov/coronavirus/2019-ncov/clinical-guidance/case-management/children.html.

29. Stokes EZ, Chalabi ZA, Anderson RM, Kershaw T, Whittaker E, Ghani AC, et al. Incubation period of 2019 novel coronavirus (SARS-CoV-2) following exposure in a healthcare setting: a prospective cohort study. The Lancet. 2020 Feb 8; e201346.

30. Irfan O, Muttalib F, Tang K, Jiang L, Lassi ZS, Bhutta ZA. Clinical presentation and outcomes of COVID-19 among children in hospitals and health facilities: a systematic review and meta-analysis. JInt Med. 2021; 3: 219-233.

31. Viner RM, Ward JL, Hudson LD, Ashe M, Patel SV, Hargreaves D, Whitehouse E, et al. Awareness and knowledge towards pediatric and adult COVID-19 vaccination: a cross-sectional community-based study in Saudi Arabia. Mater Sociomed. 2021 Dec; 33(4): 262-268. ORIgINAL PAPER

32. Hajj Hussein I, Chams N, Chams S, El Sayegh S, Badran R, et al. Vaccines Through Centuries: Major Cornerstones of Global Health. Front Public Health. 2015 Nov 26; 3: 269.
33. Rodrigues CMC, Plotkin SA. Impact of Vaccines; Health, Economic and Social Perspectives. Front Microbiol. 2020 Jul 14; 11: 1526.
34. Ehreth J. The value of vaccination: a global perspective. Vaccine. 2005 Oct 1; 21(27-30): 4105–4117.
35. Zahid HM, Alsayb MA. Assessing the Knowledge and Attitude toward COVID-19 Vaccination in Saudi Arabia. Int J Environ Res Public Health. 2021 Aug 2; 18(15): 8185.
36. Public Health Authority. Interim guidelines for the use of SARS-CoV-2 vaccine. 31 August 2021. Available from: https://covid19.gov.sa/professionals-health-workers/interim-guidelines-for-the-use-of-sars-cov-2-vaccine/. Accessed on November 5, 2021.
37. Wong MCS, Wong ELY, Huang J, Cheung AWL, Law K, Chong MKC, et al. Acceptance of the COVID-19 vaccine based on the health belief model: A population-based survey in Hong Kong. Vaccine. 2021 Feb 12; 39(7): 1148–1156.
38. Elhadi M, Alsayf MA, Alhadi A, Hmeida A, Alshareea E, Dokali M, et al. Knowledge, attitude, and acceptance of healthcare workers and the public regarding the COVID-19 vaccine: a cross-sectional study. BMC Public Health. 2021 May 20; 21(1): 955.
39. Al-Mohaithef M, Padhi BK. Determinants of COVID-19 Vaccine Acceptance in Saudi Arabia: A Web-Based National Survey. J Multidiscip Healthc. 2020 Nov 20; 15: 1657–1663.
40. Al-Dossary R, Alamri M, Albaqawi H, Al Hosis K, Aljeldah M, Aljohan M, et al. Knowledge, Attitudes, Prevention, and Perceptions of COVID-19 Outbreak among Nurses in Saudi Arabia. Int J Environ Res Public Health. 2020 Nov 9; 17(21): 8269.
41. Alfageeh EI, Alshareef N, Angawi K, Alhazmi F, Chirwa GC. Acceptance in Saudi Arabia: A Web-Based National Survey. J Multidiscip Healthc. 2020 Mar 5; 9(3): 226.
42. Zinng A, Siegrist M. Measuring people’s knowledge about vaccination: developing a one-dimensional scale. Vaccine. 2012 May 28; 30(25): 3771–3777.
43. Betsch C, Wicker S. Personal attitudes and misconceptions, not of official recommendations guide occupational physicians’ vaccination decisions. Vaccine. 2014 Jul 31; 32(35): 4478–4484.
44. Maurer J, Uscher-Pines L, Harris KM. Perceived seriousness of seasonal and A(H1N1) influenza, attitudes toward vaccination, and vaccine uptake among U.S. adults: does the source of information matter? Prev Med. 2010 Aug; 51(2): 185–187.
45. Riccò M, Cattani S, Casagranda F, Gualerzi G, Signorelli C. Knowledge, attitudes, beliefs and practices of Occupational Physicians towards seasonal influenza vaccination: a cross-sectional study from North-Eastern Italy. J Prev Med Hyg. 2017 Jun; 58(2): E141–E154.
46. Cheng VC, Wong SC, Chuang VW, So SY, Chen JH, Sridhar S, To KK, Chan JF, Hung IF, Ho PL, Yuen KY. The role of community-wide wearing of face mask for control of coronavirus disease 2019 (COVID-19) epidemic due to SARS-CoV-2. J Infect. 2020 Jul; 81(1): 107–114.
47. Meier K, Glatz T, Guijt MC, Piccininni M, van der Meulen M, et al. COVID-19 Virus Study Group. Public perspectives on protective measures during the COVID-19 pandemic in the Netherlands, Germany and Italy: A survey study. PLoS One. 2020 Aug 5; 15(8): e0236917.
48. Sutton D, D’Alton M, Zhang Y, Cahe K, Cepin A, Goffman D, et al. COVID-19 vaccine acceptance among pregnant, breastfeeding, and nonpregnant reproductive-aged women. Am J Obstet Gynecol. 2021 Sep; 3(3): 100405.
49. Skjefte M, Ngitobu A, Akeju O, Escudero D, Hernandez-Diaz S, Wyszynski DF, Wu JW. COVID-19 vaccine acceptance among pregnant women and mothers of young children: results of a survey in 16 countries. Eur J Epidemiol. 2021 Feb; 36(2): 197–211.
50. Allotey J, Stallings E, Bonet M, Yap M, Chatterjee S, Kew T, et al. For PregCOVID-19 Living Systematic Review Consortium. Clinical manifestations, risk factors, and maternal and perinatal outcomes of coronavirus disease 2019 in pregnancy: living systematic review and meta-analysis. BMJ. 2020 Sep 1; 370: m3320.
51. Centers for Disease Control and Prevention. Interim Clinical Considerations for Use of COVID-19 Vaccines Currently Approved or Authorized in the United States. November 5, 2021. Available at: https://www.cdc.gov/vaccines/covid-19/clinical-considerations/covid-19-vaccines-us.html. Accessed August 12, 2021.
52. American College of Obstetricians and Gynecologists. COVID-19 Vaccination Considerations for Obstetric-Gynecologic Care. 2021. Internet; https://www.acog.org/clinical/clinical-guidance/practice-advisory/articles/2020/12/covid-19-vaccination-considerations-for-obstetric-gynecologiccare. Accessed November 10, 2021.
53. Committee on Infectious Diseases. COVID-19 Vaccines in Children and Adolescents. Pediatrics. 2021 Aug; 148(2): e2021052336.
54. Gray KJ, Borda E, Attyeo C, Deriso E, Akinwummi Y, Young N, et al. Coronavirus disease 2019 vaccine response in pregnant and lactating women: a cohort study. Am J Obstet Gynecol. 2021 Sep; 225(3): e305.e1–e305.e17.
55. Perl SH, Uzan-Yulzari A, Klainer H, Asiskovich L, Youngster M, Rinott E, Youngster I. SARS-CoV-2-Specific Antibodies in Breast Milk After COVID-19 Vaccination of Breastfeeding Women. JAMA. 2021 May 18; 325(19): 2013–2014.
56. Kelly JC, Carter EB, Raghruman N, Nolan LS, Gong Q, Lewis AN, Good M. Anti-severe acute respiratory syndrome coronavirus 2 antibodies induced in breast milk after Pfizer-BioNTech/BNT162b2 vaccination. Am J Obstet Gynecol. 2021 Jul; 225(1): 101–103.
57. Jakuszkosz K, Koiszela-Kaspkrz K, Zahirnska M, Bartoszek D, Poznafski P, et al. Immune Response to Vaccination against COVID-19 in Breastfeeding Health Workers. Vaccines (Basel). 2021 Jun 17; 9(6): 665.
58. Bell S, Clarke R, Mounier-Jack S, Walker JL, Paterson P. Parents’ and guardians’ views on the acceptability of a future COVID-19 vaccine: A multi-methods study in England. Vaccine. 2020 Nov 17; 38(49): 7789–7798.
59. Srichan P, Apidechkul T, Tamornpark R, Yeemard F, Khunthason S, et al. Knowledge, attitudes and preparedness to respond to COVID-19 among the border population of northern Thailand in the early period of the pandemic: a cross-sectional study. WHO South East Asia J Public Health. 2020 Sep; 9(2): 118–125.
60. Lazarus JV, Ratzan SC, Palayew A, Gostin LO, Larson HJ, Rabin K, Kimball E, El-Mohandes A. A global survey of potential acceptance of a COVID-19 vaccine. Nat Med. 2021 Feb; 27(2): 225–228.
61. Zhong BL, Luo W, Li HM, Zhang QQ, Liu XG, Li WT, Li Y. Knowledge, attitudes, and practices towards COVID-19 among Chinese residents during the rapid rise period of the COVID-19 outbreak: a quick online cross-sectional survey. Int J Biol Sci. 2020 Mar 15; 16(10): 1745–1752.
62. Masic I, Gerc V. On Occasion of the COVID-19 Pandemic - One of the Most Important Dilemma: Vaccinate or Not? Med Arch. 2020; 74(3): 164–167. doi: 10.5455/medarch.2020.74.3.164-167.
63. Gerc V, Masic I, Salihefendic N, Zilidzic M. Cardiovascular Diseases (CVDs) in COVID-19 Pandemic Era. Mater Sociomed. 2020; 32(2): 158–164. doi: 10.5455/msm.2020.32.158-164.
64. Masic I, Naser N, Zilidzic M. Public Health Aspects of COVID-19 Infection with Focus on Cardiovascular Diseases. Mater Sociomed. 2020; 32(1): 71–76. doi: 10.5455/msm.2020.32.71-76.