摘 要

日本における栽培ダイコンの採種関連形質に関連遺伝的変異を知る目的で、在来品種を中心に23品種群219系統を用い、自家不和合性遺伝子S。自家不和合性程度ならびに一英粒数を調査した。検定交配ならびにPCR-RFLPによりS対立遺伝子はS^{O1}-S^{O7}の7個想定された。S対立遺伝子の種類から供試品種群の類別を数量化理論4類からの主成分分析より試みた結果、形質形質や自交の生活の分布により従来類別されている品種群との対応は認められず、S遺伝子は日本の栽培ダイコン系統分化に対してほぼ中立であったことが示唆された。自交不和合性程度は、人工開花自家受粉を行った交配数あたりの結実状況、すなわち自交結実率で評価した。供試系統には0%から100%までの遺伝的変異が認められたが、品種群別の差異は認められなかった。また蓄受粉における一英粒数では、0.9-6.2粒までの遺伝的変異が認められた。なお、これら3形質間には相関関係は認められなかった。以上の結果を基に、ダイコン遺伝資源における採種関連形質評価の重要性と、これら形質の選抜上の留意点について考察した。

キーワード：ダイコン、S対立遺伝子、自家不和合性程度、一英粒数

緒 言

ダイコンは、4千数百年前の古代エジプトにおいてピラミッド建設労働者へ給与されてきた事実から、世界的に広くから主要な野菜であったことが想像される。わが国においても、古事記ならびに日本書紀に『於用泥（おほね）として記されていることから、既に9世紀には伝来していたとされ、その後品種分化が顕著に発達し、江戸時代には様々な地方在来品種が全国各地に分布するに至った（北村1958、杉山1995）。またダイコンの利用形態は多岐に多様であり、例えば沢庵漬けに代表される漬け物、おでんに代表される煮物、その他、切り干し、なます、おろし、サラダ、刺身のけんなど、日々の懐願への利用として周年なくてはならない食材である。それに加え、正月の歯固め、神事の際の供物、春の七草の一つとして挙げられるなど、日本の風土・慣習にも密接に関係している。そしてこれら様々な利用形態にあった品種が実に多数存在しており、多くが現在まで引き継がれている。『日本の大根』の中で109種の地方在来品種が紹介され（古里・宮沢1958）。作付面積も54,850ha（1994年；中央マーケティング研究所調査）と野菜の中で最多・最大を誇っており、まさにダイコンは日本を代表する野菜の一つである。

ところでこれら多数の在来品種についての研究は、従来形態形質や生理形質が中心であり（西山ら1958など）、採種関連形質では抽選性に関する研究（杉山1942、篠原1959）などがあるのみで、充分解析がなされていないのが現状である。ダイコンは他のアブラナ科野菜と同じく胞子体型自交不和合性を示し、自家不和合性遺伝子S座にはいくつかの対立遺伝子が存在する（Bateman1955、Kar-ron1990）。我々はダイコンS遺伝子座に座乗するSLG様遺伝子を単離し、PCR-RFLPによるS対立遺伝子の同定を行ってきた（Niikura・Matsuura1997、Niikura・Matsuura1998）。同時に交系系統間のS座対立遺伝子の対立性検定により、17種類のS対立遺伝子（S^{O1}-S^{O7}）を既に同定している（松浦ら1996）。更に、自家不和合性にはその程度に系統差異が存在することを明らかにしてきた（新倉・松浦1996）。これらの遺伝的変異を多系統の系統を用いて調査し、相互の形質間相関を解析しておくことは今後のダイコン育種において重要と考えられる。本報告では、我々が保有する在来ダイコン品種・系統の対立遺伝子の種類、自家不和合性程度を調査し、その遺伝的変異を認識することを目的とした。またダイコンは、同様に自家不和合性を利用してF_{1}品種を育成するキャベツやハクサイなどのBrassica属植物に比べ一英粒数が極端に少なく、このことはF_{1}品種育成上の親系統に当たる原種処産効率の著しい低下を招いている。重要な採種関連形質の一つとして蓄受粉時の一英粒数の系統間差異を調査した結果を併せて示す。

材料および方法

1. 供試材料および育成

自社保有あるいは農林水産省野菜・茶業試験場より分譲され、現在までよい交配により維持している国
内18品種群、すなわち秋づまり、阿波晚生、四十日、聖護院、白上がり、信州地大根、東北地大根、西町、二年子、練馬、ハマダイコン、方領、三浦、南九州地大根、みの早生、宮重、守口ならびに理想品種群、そして国外S品種群、すなわち北系、韓系、南方系（華南、台湾、タイ、マレーシア）、ネパール系ならびにヨーロッパ系品種群より合計219系統を用いた（付表）。各系統から無作為に2個体を、本農2-3枚展開時に冷蔵庫にて5℃、3週間の低温処理を行った後、温室内で育成、開花させ、自家不和合性程度および一択粒数の調査に用いた。また個体の薬自交授粉により得られた自殖種子由来の10個体を同様に育成・開花させ、S対立遺伝子の対立性検定に供試した。なお、この10個体が全て同一S対立遺伝子であつた場合、その前世代の株をS座がホモ型であったと判断し、その株のデータを後に述べるS対立遺伝子と自家不和合性程度ならびに一択粒数との関連性調査に用いた。

2. 自家不和合性遺伝子Sの対立性検定

人工交配による対立性検定については、各個体が開花後人工授粉させ、Kho・Baer（1968）の方法により株間の軟化・アレルズルーベ染色を行い、花器微鏡による花粉管伸長観察を行った。各交配組合せにつき2回以上の反復とし、Niikura・Matsuura（1998）に従って交雑不和合あるいは交雑不和の判定を行い、S対立遺伝子の定検を行った。また併せて各個体からCTAB法によりDNAを抽出し、すでに報告したNiikura・Matsuura（1998）の方法に従いPCR-RFLPを行った。なお、制限酵素にはMspIを用いた。これら2種の結果から、各系統に有するS対立遺伝子を検出した。なおPCRによる増幅産物が得られず、かつ人工交配ではS対立遺伝子の決定できなかった系統は未同定とした。

3. 自家不和合性程度および一択粒数

ダイコンの花は概ね開花後2日目または花弁が離脱せず、訪花昆虫を誘因し、受粉される可能性がある。そのため自家不和合性程度は人工交配により、開花当日、開花翌日、そして開花後2-3日目の老化した花を自家受粉させ、約1ヶ月後に結実数を調査し、交配花数あたりの結実数（以後自摂結実率）で評価した。各系統2株に2-4花序ずつ交配を行い、花のステージに関係なく全平均値を解析に用いた。なお交配に用いた試料はすべて同時に、開花前日ならびに前々日までのステージにある蕾自交成株を行い、正常に結実することを確認した。また一択粒数は、この蕾実株により得られた結実数あたりの結実種子粒数の値を用いた。

結果

1. S対立遺伝子の遺伝的変異

人工交配およびPCR-RFLP法によりS対立遺伝子を同定した結果、既知の17品種類（松浦ら1996）を含め37品種類（同定順にS201-S237と命名）が見いだされた。図1にはPCR増幅産物の得られた第1グループに属する各S対立遺伝子の制限酵素MspI消化後のRFLPパターンを示した。なおS209、S206、S214、S215、S217、S222、S225ならびにS226はPCRによる増幅産物が得られない第2グループに属した。個々の供試系統の持つS対立遺伝子の種類を付表に、各品種群において同定されたS対立遺伝子の種類と各S対立遺伝子の存在した品種群数ならびに各品種群の供試系統数を表1に示した。同定されたS対立遺伝子の内、特に出現頻度の高いものはS209、S216ならびにS219であった。

そこでS対立遺伝子を基にした品種群間の類似性を知るため、数学化理論IV類を用いて各品種群間の共通S対立遺伝子数を求め、表1の結果から品種群の類似度を求めた（なお調査系統数の少なかった方願、守口両品種群は計算から除いたが、これら品種群に存在したS対立遺伝子は分布頻度が比較的高いものであった）。次にこの類似度を相関行列に立てて、主成分分析を適用した結果、抽出された第4主成分までの因子負荷量および寄与率を表2に示した。第1主成分の因子負荷量は全品種群が正の値を示し、第2主成分では21品種群中9品種群が正の値を示した。しかしこ各主成分軸について、明確な説明は見いだせなかった。第1および第2主成分で累積寄与率が50%を越え

図1. 供試ダイコンで同定されたS201-S237の37品種のS対立遺伝子のうち、PCR産物の得られる第1グループに属する29対立遺伝子のPCR-RFLP電気泳動像。制限酵素はMspIを用いた。M:100bp ladder.
表1. 供試ダイコンにおいて同定された対立遺伝子とS対立遺伝子の存在した品種群

品種群	調査系統数	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
秋づまり	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
阿波晩生	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
四日	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
聖護院	14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
上山	15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
畜産地大根	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
東北地大根	14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
西町	13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
二子	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
混馬	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ハマダイコン	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
方勇	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
三浦	12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
南九州地大根	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
みの早生	14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
宮崎	18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
守口	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
理想	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
魚北系	23	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
魚西系	12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
南方系	19	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ネバール系	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ヨーロッパ系	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

寄与率 (%) 43.8 13.3 6.8 5.6
累積寄与率 43.8 57.1 63.9 69.5

表2. 供試ダイコンのS対立遺伝子の種類を用いて、数量化IV類による類似度から抽出された各主成分の品種群ごとの因子負荷量

品種群	第1	第2	第3	第4
秋づまり	0.78	0.05	-0.15	0.03
阿波晩生	0.73	0.56	-0.05	-0.07
四日	0.86	0.09	-0.02	0.22
聖護院	0.72	-0.33	-0.37	0.10
上山	0.61	-0.17	-0.02	0.17
畜産地大根	0.67	0.41	0.20	-0.08
東北地大根	0.76	-0.19	0.17	0.12
西町	0.61	0.28	-0.09	0.29
二子	0.76	-0.40	0.08	0.05
混馬	0.71	-0.09	-0.04	-0.22
ハマダイコン	0.37	0.80	-0.21	-0.06
三浦	0.65	0.49	0.28	0.09
南九州地大根	0.60	0.23	-0.39	0.16
みの早生	0.70	-0.08	0.44	0.04
宮崎	0.81	-0.11	-0.22	0.27
理想	0.64	-0.34	-0.14	0.43
魚北系	0.50	-0.06	0.76	0.04
魚西系	0.78	-0.32	0.11	-0.21
南方系	0.62	0.27	-0.10	-0.22
ネバール系	0.47	-0.58	0.22	0.36
ヨーロッパ系	0.22	-0.55	0.03	-0.65

たことから、この二つ主成分に着目し、各品種群の因子負荷量の分布を図2に示した。その結果、国内品種群は古来の地理的分布、形態形質に関わらずほぼ渾然一体となり分布した。これら一覧に対して、ヨーロッパ系、ハマダイコンならびにネパール系品種群が、離れ位置するがわかかった。このうちネパール系品種群は、ヨーロッパ系品種群と国内品種群の一貫中間位置した。これには、ネパール系ならびにヨーロッパ系両品種群において、それぞれ6から4個のS対立遺伝子が同定されており、このうち2個（S^207^ およびS^208^）がそれぞれの品種群において共通S対立遺伝子であったことによる。なお、地理的にはネパール系に近いと考えられる華北系ならびに南方系品種群には、それぞれ14から11個のS対立遺伝子が同定されているが、ネパール系品種群との共通S対立遺伝子は華北系としては2個（S^207^ およびS^208^）あり、が離れ主成分の因子負荷量が大きく異なったことである。この結果は、これら2品種群においていずれも9種類ずつS対立遺伝子が同定されているが、共通S対立遺伝子が1個（S^212^）しか存在しなかったことに起因した（表1）。

2. 自家不和合性程度の遺伝的変異
自家不和合性程度の指標となる自交結実率について、個々の供試系統に関しては付表に、各品種群における平
表3. 異種ダイコン各品種群ごとの自殖結実率の比較

品種群	供試系統数	自殖結実率(%)			
	最小	最大	平均	標準偏差	
秋づまり	7	19.0	66.0	41.3	17.5
阿波晩生	2	54.0	67.0	60.5	9.2
四十日	5	4.0	53.0	28.8	21.6
聖護院	13	0.0	100.0	31.3	32.2
白上がり	15	2.0	59.0	27.3	19.1
信州地大根	8	0.0	46.0	15.5	21.6
東北地大根	14	0.0	86.0	33.0	25.6
西町	11	0.0	66.0	19.1	21.2
二年生	4	7.0	75.0	34.8	29.0
練馬	3	7.0	31.0	19.0	12.0
ハマダイコン	2	11.0	24.0	17.5	9.2
方崘	2	25.0	60.0	42.5	24.7
三浦	11	8.0	78.0	31.3	23.5
南九州地大根	7	0.0	55.0	29.9	21.8
みの早生	12	3.0	45.0	19.2	14.3
宮重	17	0.0	64.0	21.1	17.1
守口	1	38.0	38.0	38.0	0.0
理想	9	8.0	38.0	18.9	9.5
華北系	22	0.0	81.0	29.5	22.6
韓国系	12	11.0	75.0	39.8	19.3
南方系	20	0.0	83.0	35.3	27.4
ネパール系	4	0.0	100.0	39.0	43.5
ヨーロッパ系	3	7.0	43.0	25.0	18.0

均値の比較を表3に示した。自殖結実率は最低0%(19系統)から、最高が聖護院品種群の“大丸聖護院-3”(LV361)ならびにネパール系の“No.4”(LV258)の100%まで広くみられ、各品種群内分散が大き、品種群間的に有意差は認められなかったが、比較的自殖結実率の低かったのは、西町、練馬、みの早生、宮重ならびに理想品種群であり、逆に高かったのは、秋づまり、阿波晩生、一方、ネパール系ならびに韓国系品種群であった。また国内栽培ダイコン品種群成立に深く関与したとされる華北系、南方系両品種群には、0~80%台の広範囲に渡った自殖結実率を示す系統が存在した。一方、系統からみて注目すべき差が見いだされたのは、“練馬大根”がその成立に関与したとされる品種群において、各品種群の自殖結実率平均値間の有意差が検出されたことである。また多重検定により、自殖結実率の低(みの早生、西町、理想品種群)、中(三浦品種群)、高(秋づまり品種群)のグループに分類された(図3)。

3. 役受粉時の一英粒数の遺伝的変異

個々の供試系統の一英粒数については付表に、各品種群の平均値の比較を表4に示す。一英粒数については最低が華北系に属する“黄河紅丸”(LV5)で0.9粒、最高は南方系に属する“梅花”(LV143)で6.2粒であった。各品
表4. 供試ダイコンの各品種群ごとの一英粒数の比較

品種群	供試系統数	平均値
ネパール系	2	4.70 a1
ヨーロッパ系	2	4.00 ab
阿波晩生	2	3.75 abcd
南九州地大根	7	3.64 abcd
南方系	20	3.45 abcd
東北地大根	11	3.42 abcd
聖厳院	11	3.28 abcd
自上がり	15	3.20 abcd
二年子	4	3.00 bcd
華北系	19	2.98 bcd
信州地大根	8	2.71 bcd
韓国系	11	2.68 bcd
ハマダイコン	2	2.65 bcd
三浦	8	2.56 bcd
みの早生	12	2.52 bcd
宮重	16	2.46 bcd
四十日	4	2.28 cde
方領	2	2.20 de
西町	9	2.17 de
秋津まり	6	2.07 de
理想	8	1.93 e

1）同一アルファベットはダイコンの多重検定5%水準で有意差の無いことを示す。

種群平均値において、絵図の有意差が認められた（なお守口ならびに練馬品種群は調査系統数が少なかったため除外して多重検定を行った）。すなわちネパール系品種群は比較的高い値を示したのに対して、国内品種群は多くが比較的小さい値であった。国内品種群間に有意な差異は認められなかったが、阿波晩生ならびに南九州地大根品種群は一英粒数が多く、方領、西町、秋津まり、理想品種群は少ない傾向が認められた。

4. S対立遺伝子、自家不和合性程度ならびに一英粒数の相互関係

供試系統のうち、S遺伝子座がホモ型であった個体の自殖結実率をS対立遺伝子ごとに算出し（表5）。分散分析をおこなった（なお調査系統数の少ないS201, S203, S206, S212, S17, S220, S211, S222, S224, S225, S227, S228, S229, S232, S233, S234, S235, S236, S237の除いて計算した）。その結果、S対立遺伝子間有意差が検出されなかったが、S対立遺伝子と自殖結実率との間には大きく3パターンが認められる。すなわち、同一S対立遺伝子を有する系統間で自殖結実率に差のみられるS202, S213, S214, S220ならびにS230, 最低が10%前後から最大が50から60%に及ぶS204, S205, S215ならびにS223，更にどちらとも言えない他のS対立遺伝子である。

このうち1番目の、系統間で自殖結実率に差のみられないグループに属するS226ならびにS230は、自殖結実率の高い、すなわち自家不和合性程度の低い系統ばかりであった。一方、S対立遺伝子ホモ系統間の一英粒数平均値には有意な差異が認められなかった。また自殖結実率と一英粒数の値に関係性は認められなかった（相関係数 0.00℃）。

考 察

日本のダイコン品種における自家不和合性遺伝子S座の多様性については岡崎・習向（1984）が報告しているが、遺伝的変異の実体については不明であった。本研究の結果、ダイコンでは在来品種まで含めると少なくとも37種のS対立遺伝子が存在し、そのうちPCRによる増幅産物が得られる第1グループに属するものが29対立遺伝子があることが明らかになった。またこれらS対立遺伝子はNiikura・Matsura（1998）で述べたように、互いに共優性関係にあり変交配種品種を育成する上で、特に有効である可能性が高い。加えて、これらS対立遺伝子のPCR-RFLPパターンと交配実験結果によるS対立遺伝子の異同が完全に一致することをNiikura・Matsura（1998）のS201-S234における結果に続いて、再度確認した。一方、PCRによる増幅産物が見られない第2グループはS205, S214, S215, S222, S227, S233, S234, S235, S236, S237よりもS230の8種類で全同定数の約22%であった。これはOckendonら（1982）のB. oleraceaにおいて報告とは異なり、大変興味深い。しかし第2グループにおいて未同定のS対立遺伝子があることから、本結果がダイコン特有でないかは、今後の結果を待たなければならない。

表5. 供試ダイコンのうち、S遺伝子座がホモ型である各S対立遺伝子ごとの自殖結実率の比較

S対立遺伝子	供試系統数	最小	最大	平均	標準偏差
S202	2	0.0	12.0	6.0	6.9
S204	4	6.0	62.0	30.2	26.6
S205	3	17.0	67.0	41.4	25.0
S207	2	0.0	23.0	11.5	13.3
S208	4	8.0	40.0	25.3	15.3
S209	4	4.0	38.0	25.5	16.9
S210	6	0.0	45.0	15.9	19.2
S211	3	11.0	44.0	25.4	17.2
S213	2	3.3	34.0	33.5	0.6
S214	2	0.0	0.0	0.0	0.0
S215	2	6.0	58.0	32.0	30.0
S216	7	33.0	78.0	46.4	18.7
S218	2	25.0	54.0	39.5	16.7
S219	4	11.0	62.0	36.0	24.7
S223	4	0.0	64.0	25.3	30.5
S226	3	40.0	58.0	47.4	9.7
S230	2	58.0	59.0	58.5	0.6
S231	2	11.0	40.0	25.5	16.7
次に本研究では類似品種群とS対立遺伝子との関係を調査したが、特定の関係は認められなかった。栽培ダイコンの品種類別は、北村（1958）、篠沼（1965）などにより、古来の地理的分布や形態的形質の類似性に基づいて行われてきた。これに対し最近、高木ら（1989）にかぎりに矢越・直木（1996）によりRAPDを用いたクラスター分析の研究がなされている。どちらと仮に本研究の結果は、RAPDによる研究結果に類似する。RAPDの任意の塩基配列をプライマーに用いたPCR反応による技術であるため、ゲノムファングレンディングや系統進化の研究に応用されることから（Williamsら1990）、S対立遺伝子はRAPD同様、栽培ダイコンの系統分化に対し中立であったことを示唆する。また、Sakamotoら（1998）はRaphanus属とBrassica属のSLG遺伝子が同一のクラスターを形成することから、SLG遺伝子の多様性はこれら2属の分化以前に起こったものであると考えている。

これはキャベツとダイコンが独自の形態・生理的分化を遂げているにも関わらず、SLG遺伝子はそれら分化とは全く関係なく分化してきたことを示すものとも言える。よって本研究の結果は、このことと同様な解釈と言える。

一方、S対立遺伝子と自家不和合性程度には一定の関連性は見られなかった。自家不和合性程度の伝達的変異をS対立遺伝子との関係で解析した研究はRuffio-Chableら（1997）がB.oleraceaを用いて報告しており、本実験結果と同様な結果となっている。アブラナ科植物における自家不和合性程度を弱くする例としては、SLG遺伝子が直接関与する場合（Goringら1993、Tantikanjanaら1993）と、S遺伝子以外による場合（Ikedaら1997）が既に報告されている。本研究では数種のS対立遺伝子（特にS22およびS23の20％）において自家不和合性程度が低く、前例の例には相当する可能性がある。このようなS対立遺伝子は選択種のF1純和下につけられるが、基本的にはF1品種の親に当たる原種系に利用出来ない。一方、半数以上のS対立遺伝子は自己結実率に対して10％以下の自家不和合性程度が強い系統が含まれていた（表5）。このことは自家不和合性程度を強くする選択性子がS遺伝子座は独立に作用すること、S対立遺伝子の種類に由来する自家不和合性程度を強くする選択性を示唆する。ダイコンは虫媒花であるため、開花し、花粉を離れさせずポリネーターを誘致する困難である。その機能を有する花数は系統にも依存するが、1花序につきおよそ10花以内であることから、ここで明らかとなった自己結実率10％以下の系統は、商業F1品種の採種上利用可能な自家不和合性程度を有する系統と言える。

更に本研究では、栽培時の一英粒数に関する遺伝的変異を確認する事ができた。ダイコンは他のアブラナ科野菜に比べ、一英粒数が極端に少ないことから人工雑交粉による原種の確保が容易ではない。そのため、S対立遺伝子に関する同質遺伝子系統対を用いた3元交配あるいは4元交配などの複交配品種の育成や（治田1963）、CO2による自家不和性の打破を利用して、原種生産を行う方法が実用的に開発されてきた（木村・藤田1988）。上記のような技術開発が応用されるに至っても、それに伴う種子収量は重要な育種目標の一つであり、採種栽培における各種収量構成要素の一要因である一英粒数が、S対立遺伝子や自家不和合性程度を無関係であることは、本形質の選抜上有利であること、ここで明らかとなった系統の素材としての利用が考えられる。

ところで従来の形態・生理特徴からされていた品種類別や系譜などと対応させて興味ある知見がいくつか指摘されたことについて考察する。一つには、従来の系統分化に関するいずれの研究報告でも、非常に近縁とされている西町と理想品種群、S対立遺伝子による類別を離れて位置したことである（図2）。西町と理想品種群の典型的な違いは形態的には尻くら（根の首部や中央部に対し、尻部が狭い）の有無であろう。二つ目は、“練馬大根”がその成立に関与したとされているいくつかの品種群において、自家不和合性程度に品種群間差が認められたことである（図3）。西町品種群には練馬と秋天なり両品種群が、理想品種群には西町と練馬両品種群が、三浦品種群には練馬と高円坊品種群がそれぞれ関与して成立したとされている（秋谷1977）。自家不和合性程度の指標である自家結実率の低い西町ならびに理想品種群と、自家結実率の高い品種群を分ける大きな特長は、前者がいずれも栽培として利用されていることであろう。

このような対応関係は、これら採種関連形質が尻くらという形態変異や尻くら物性とその関連を連鎖関係があるため生じた可能性と、品種分化の際の偶然の結果により生じた場合と共か考えられる。採種特性を考慮した品種育成を進める上で、これら形質間の関連性を連鎖分析を通じて今後明らかにしていかなければならない。

最後にダイコンのF1品種は、“みの早生大根”が1969年にタキイ種苗より発表されて以来、様々な品種群においてF1品種化が進められてきた。また近年では、宮重品種群類似系統、いわゆる“青首大根”が市場流通においては大本を占めるようになってきた。それには以下の理由が挙げられる。生産者側にとっては栽培性（根が地上部に抜け出せる性質）が強く収穫作業性に優れる点が、消費者側に対しては緑白のコントラストが視覚に、そして甘さがあり生食・煮食どちらにも向いたという味覚に訴えた点である。しかし一方では、地方在来品種は古くからの地域の風土・慣習などと密接に関与し、今後も容易に失われることは考えにくい、各地方品種の生産性向上のため、これら品種のF1化を進めること、あるいはこれら在来品種などの遺伝資源を用いた新しいダイコン品種の創成の可能性は、これからも追求されるはずである。その意味からも遺伝資源の自家不和性などの採種関連形質を含めた評価が必要と考えられる。
謝辞

本研究の遂行と公表に、ご支援とご理解をいただいた、
矢崎栄一博士、藤田幸雄博士、土田由美子博士、
細谷宏氏に深く御礼申し上げます。

参考文献

秋谷良三(1977) "野菜栽培大辞典"、養賢堂、東京、
1087。

Bateman A. J. (1955) Self-incompatibility systems in angiosperms. Ⅲ. Cruciferae. Heredity 9: 53–68。

Goring, D. R., T. L. Glavin, U. Schafer and S. J. Rothstein (1993) An S receptor kinase gene in self-incompatible Brassica napus has a 1-bp deletion. Plant Cell 5: 531–539。

Ikeda, S., J. B. Nasrallah, R. D. S. Preiss, and M. E. Nasrallah (1997) An aquaporin-like gene required for the Brassica self-incompatibility response. Science 276: 1564–1566。

Karron, J. D., D. L. Marshall and D. M. Oliveras (1990) Numbers of sporophytic self-incompatibility alleles in populations of wild radish. Theor. Appl. Genet. 79: 457–460。

Kho, Y. O. and J. Baer (1968) Observing pollen tubes by means of fluorescence. Euphytica 17: 298–302。

木村 淳・藤田幸雄(1988) CO₂利用の原種採種ダイコン、 "ハイテクによる野菜の採種" 紹介種子生産研究会編、
誠文堂新光社、東京、246–252。

北村四郎(1958) 大根の品種とその変異。 "日本の大根"、西
山三編、学術振興会。1–19。

熊沢三郎(1965) 大根、 "蔬菜園芸各論"、養賢堂、東京、295–321。

古里和夫・宮沢 明(1958) 園芸学から見た日本の大根品種、
"日本の大根"、西山三編、学術振興会。139–161。

治田辰夫(1963) 十字花科植物の自家不和合性の遺伝機構に関する研究。タキイ長岡研究農場報告 2: 1–169。

松谷誠司・新倉 聡・鷺守 靖・藤田幸雄(1996) 野菜育種におけるDNA多型、DNA多型、東洋書店、東京、4: 11–17。

新倉 聡・松浦誠司(1996) ダイコンにおける自家不和合性遺伝子 S と自家不和合性程度との関連。養賢 46 (別2): 248。

Niikura, S. and S. Matsuura (1997) Genomic sequence and expression of S-locus gene in radish (Raphanus sativus L.). Sex. Plant Reprod. 10: 250–252。

— and — (1998) Identification of self-incompatibility alleles (S) by PCR-RFLP in radish (Raphanus sativus L.). Euphytica 102: 379–384。

西山正三・根井正利・宮司光三・高松喜一・飯塚宗夫(1958)遺伝学的研究。 "日本の大根" 西山三編、学術振興会。
98–131。

Ockendon, D.J. (1982) An S-allele survey of cabbage (Brassica oleracea var. capitata). Euphytica 31: 325–331。

岡崎信一・日向健吉(1984) 日本のダイコン品種のS遺伝子とS糖タンパク質の分析。養賢 34: 237–245。

Ruffio-Chable, V., Y. Herve, C. Dumas and T. Gaude (1997) Distribution of S-haplotypes and its relationship with self-incompatibility in Brassica oleracea. Part I. In inbred lines of cauliflower (B. oleracea var. botrytis). Theor. Appl. Genet. 94: 338–346。

篠原省喜(1959) 十字花科植物を中心とした抽芽開花現象の種生態学的研究。静岡県農業試験場特別報告第6号。1–166。

杉山直敬(1942) 二、三十字科蔬菜の抽芽について。農業園。20: 465–466。

— (1995) アブラナ科 19 ダイコン、 "江戸時代の野菜の品
種"、養賢堂、東京、56–74。

髙木千明・黒島光雄・君塚祐子(1993) RAPD マーカーによ
るダイコンの品種群分類。園学雑 62 (別2): 42。

Tantikanjana, T., M.E. Nasrallah, J.C. Stein, C.H. Chen and J.B. Nasrallah (1993) An alternative transcript of the S locus glycoprotein gene in a class II pollen-recessive self-incompatibility haplotype of Brassica oleracea encodes a membrane-anchored protein. Plant Cell 5: 657–666。

Williams J.G.K, A.R. Kubelik, K.J. Livak, J.A. Rafalski and S.V. Tingey (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18: 6531–6535。

矢越常弘・加々美 勉(1996) RAPD 法を用いたダイコン品種間の遺伝的距離の推定。育雑 46 (別2): 316。
品種群	Acc. No.	系統名	自殖結実率 (%	一英粒数 (粒)
秋づまり	LV168	秋づまり-1	s^{208}	40.1.5
No.926	秋づまり-2	s^{210}	N.D.	N.D.
LV167	大蔵-1	N.D.	24.1.3	
LV170	大蔵-2	s^{210}	66.3.0	
LV172	大蔵-3	s^{206}	N.D.	N.D.
LV175	大蔵-4	s^{203}	48.2.2	
No.926	大蔵-5	s^{204}	N.D.	N.D.
LV178	坪川のやまだ-1	s^{204}	N.D.	N.D.
LV285	坪川のやまだ-2	s^{209}	7.13	
LV179	早生大蔵	s^{212}	25.2.1	
阿波晩生	LV108	阿波晩生-1	s^{218}	54.3.6
LV107	阿波晩生-2	s^{211}	67.3.9	
四十日	LV275	大阪四十日-1	s^{204}	33.2.4
LV322	大阪四十日-2	s^{210}	33.2.2	
LV323	大阪四十日-3	s^{204}	33.2.4	
LV373	大阪四十日-4	s^{207}	33.2.4	
No.926	大阪四十日-5	s^{210}	33.2.4	
聖護院	LV232	国富-1	s^{202}	11.5.2
LV358	国富-2	N.D.	55.3.3	
LV359	農丸	s^{203}	0.0.0	
LV234	聖護院-1	s^{202}	25.3.2	
LV236	聖護院-2	s^{202}	24.4.6	
No.926	聖護院-3	s^{208}	N.D.	N.D.
LV235	聖護院丸	N.D.	0.4.3	
LV357	大丸聖護院-1	s^{207}	57.4.2	
LV360	大丸聖護院-2	N.D.	10.1.0	
LV361	大丸聖護院-3	N.D.	100.1.5	
LV237	鷹ノ峰農丸	s^{203}	80.4.0	
LV356	長島聖護院	s^{215}	16.3.3	
LV240	平安添病	N.D.	0.1.5	
LV241	藤丸病	N.D.	29.0.0	
白上がり	LV291	伊吹	s^{202}	2.2.0
LV366	うぐろ-1	s^{208}	11.2.7	
LV367	うぐろ-2	s^{202}	3.4.6	
LV35	菅谷白-1	s^{206}	58.4.0	
LV363	菅谷白-2	s^{210}	33.2.5	
LV37	清姫	N.D.	33.2.1	
LV331	白菜うぐろ	s^{203}	10.4.2	
LV349	普通	s^{211}	33.4.3	
LV39	和歌山-1	s^{201}	20.4.1	
LV370	和歌山-2	s^{202}	17.3.0	
LV380	和歌山-3	s^{203}	59.1.8	
LV373	和歌山-1	s^{206}	14.3.3	
LV372	和歌山-2	s^{216}	41.3.9	
LV302	山田ねむり-1	s^{212}	22.2.5	
LV365	山田ねむり-2	s^{208}	54.2.0	
信州	LV315	赤口-1	s^{216}	46.2.0
LV316	赤口-2	N.D.	43.3.0	
LV317	赤口-3	s^{211}	0.1.5	
LV318	赤首梅馬	N.D.	0.2.0	
LV377	信州赤根	s^{210}	0.3.7	
LV274	信州赤根	s^{214}	35.1.4	
LV309	信州赤根	s^{214}	0.4.0	
LV282	戸隠	s^{210}	3.2.0	
ダイコンのS遺伝子と自家不和合性程度の遺伝的変異

付表 供試ダイコンの品種群、系統名と同定されたS対立遺伝子の種類、自殖結実率ならびに一粒数

品種群	Acc. No.	系統名	自殖結実率 (%)	一粒数 (粒)	品種群	Acc. No.	系統名	自殖結実率 (%)	一粒数 (粒)		
南九州地大根	LV126	沖縄 -1	S_N11	11	6.0	華北系	No.92214	花吐工青種	S_N17	N.D.	N.D.
	LV127	沖縄 -2	S_N11	50	4.9						
	LV217	安山	N.D.	0	2.4						
	LV295	巨大発生根系	S_N20	55	2.0						
	LV297	桜島 -1	N.D.	18	3.0						
	LV298	桜島 -2	S_N20	50	4.0						
	LV281	佐波賀	S_N20	25	3.2						
みの早生	LV86	黒葉緑太のみ	S_N12	15	2.4						
	LV87	黒葉型みの	N.D.	45	2.1						
	LV85	黒葉の早生	S_N20	25	3.0						
	LV94	厳密の早生	N.D.	5	1.5						
	LV99	木生	S_N11	3	3.5						
	LV92	菱木みの	S_N26	41	2.8						
	LV90	菱木の早生	S_N24	12	2.6						
	LV77	菱木の早生 -1	S_N23	10	2.1						
	LV78	菱木の早生 -2	S_N26	10	2.6						
	LV79	菱木の早生 -3	S_N23	37	2.2						
	No.92104	菱木の早生	S_N26	N.D.	N.D.						
	No.2L102	菱木の早生 -5	S_N24	N.D.	N.D.						
	LV100	本橋 -1	N.D.	13	2.8						
	LV101	本橋 -2	S_N23	14	2.6						
宮重	LV110	青首重長太 -1	S_N99	31	2.5						
	LV112	青首重長太 -2	S_N1	33	N.D.						
	LV279	五日市場	S_N20	25	2.1						
	LV371	石川源助	S_N20	23	3.7						
	LV32	打木源助	N.D.	0	2.2						
	LV386	改良打木	S_N24	N.D.	N.D.						
	LV106	清川	S_N95	17	3.2						
	LV31	切太	S_N20	9	3.4						
	LV29	切太春出	S_N19	6	2.4						
	LV228	島	S_N18	33	3.2						
	LV350	白首重長太	S_N22	17	2.7						
	LV398	延重長	S_N23	64	2.0						
	LV222	延重太 -1	N.D.	29	2.4						
	LV223	延重太 -2	S_N6	6	1.0						
	LV224	延重太 -3	N.D.	0	1.3						
	LV225	延重太 -4	N.D.	0	1.9						
	LV219	延重メジ	S_N55	26	2.0						
	LV229	坂本小栗百重	S_N20	40	3.4						
守口	LV369	守口	S_N22	38	4.5						
	LV188	伊勢たくあん	S_N15	8	2.5						
	LV194	加藤	S_N15	38	1.7						
	LV196	菊川	S_N2	12	1.4						
	LV191	黄葉理想 -1	S_N20	10	1.3						
	LV199	黄葉理想 -2	N.D.	14	N.D.						
	LV211	黄葉理想 -3	S_N19	26	1.0						
	No.92123	黄葉理想 -4	S_N13	N.D.	N.D.						
	LV201	高倉	S_N22	25	1.5						
	LV205	山口たくあん	S_N26	17	3.0						
	LV203	山下	S_N28	20	3.0						
華北系	LV15	石家庄	S_N20	49	3.9						
	LV14	青木赤芯	S_N29	58	4.0						
	LV17	大紅	S_N16	36	2.7						
	LV19	大紅水 -1	S_N25	36	N.D.						
	LV20	大紅水 -2	N.D.	0	N.D.						

韓国系	LV48	青首	N.D.	38	3.1
	LV47	青首 -1	N.D.	20	2.4
	LV51	青首 -2	S_N30	36	2.6
	LV42	赤皮	S_N1	34	2.3
	LV49	アルタビ	S_N19	22	2.6
	LV46	アルタビ -2	S_N19	50	3.2
	LV44	冷地 -1	S_N1	40	N.D.
	LV45	冷地 -2	N.D.	74	1.8
	LV56	朝鮮秋	S_N20	40	2.0
	LV52	朝鮮大根	S_N22	75	4.1
	LV266	g-V=gN=V1	S_N31	11	2.8
韓国系	LV55	龍根系	S_N20	38	2.6
南方系	LV130	秋藤（台東）	S_N20	3	3.2
	LV129	北海道（台東）	S_N19	60	1.6
	LV14	日立（台種）	S_N18	46	4.3
	LV139	大白（台種）	S_N24	6	5.6
	LV134	台湾（台種）	S_N10	0	1.7
	LV140	短樫（台種）	S_N26	83	2.9
	LV143	梅花（台種）	N.D.	19	6.2
	LV133	早春（台種）	N.D.	5	3.3
	LV132	春霞（台種）	N.D.	57	5.1
	LV144	万葉（台種）	N.D.	44	4.7
	LV115	日立（台種）	S_N24	18	3.4
	LV123	30日（ペトナム）	S_N12	33	3.2
	LV348	かし（タイ）	S_N26	6	4.5
	LV113	紙<3-1>（タイ）	S_N20	60	3.1
	LV119	マレーシア-1	S_N12	17	3.3
	LV120	マレーシア-2	S_N26	58	2.9
	LV121	マレーシア-3	S_N1	44	2.7
	LV122	マレーシア-4	S_N17	14	3.3

ネーブル系	LV261	No.1	S_N8	38	5.3
	LV259	No.3	S_N20	18	N.D.
	LV258	No.4	S_N20	100	4.1
	LV257	No.5	S_N21	N.D.	N.D.
	LV255	No.7	S_N20	0	N.D.

ヨーロッパ系	LV391	ヨーロッパ	S_N30	25	4.0
	LV390	ヨーロッパ	S_N20	25	4.0
	LV345	イギリス	S_N28	N.D.	N.D.
	LV349	イタリア	S_N28	N.D.	N.D.
	LV389	レジス Noir	N.D.	43	4.0
	LV344	レッドボルバ	S_N27	7	N.D.

11) N.D. は未同定
Genetic variation of the S-alleles and level of self-incompatibility in Japanese cultivated radish (*Raphanus sativus* L.).

Satoshi Niikura and Seiji Matsuura

Tohoku Seed Co., Utsunomiya, 321-3232, Japan

It is very important to recognize genetic variations in the seed production characteristics of radish (*Raphanus sativus* L.), because, based on the land area devoted to cultivation and the number of local varieties, radish is one of the most common Japanese vegetables. We used 219 lines, belonging to 23 varietal groups, of cultivated radishes and examined 3 seed production characteristics: the self-incompatibility alleles (S-alleles), the level of self-incompatibility and the number of seeds per pod in bud pollination. Thirty-seven S-alleles, designated as S^{201} to S^{237}, were identified by cross pollination tests and PCR-RFLP. These varietal groups were classified by principal component analysis, based on the similarity of the S-alleles calculated by quantification method IV. The classification of the varietal groups in these experiments did not correspond to that based on the morphological characteristics or geographical distribution of the local varieties. Thus, the tests revealed that the S-gene is not correlated with the phyletic diversification of Japanese cultivated radishes. The level of self- incompatibility (SI) was evaluated by the rate of self-seed setting, i.e. the number of pods setting seed/ the number of flowers artificially self-pollinated in anthesis × 100 (%). The level of SI in these lines ranged from 0 to 100 %. However, there was no correlation within these varietal groups in this characteristic as well as in the S-alleles. The number of seeds per pod ranged from 0.9 to 6.2 seeds. No correlation among the above characteristics was detected. In conclusion, we considered the importance of seed production characteristics in the evaluation of radish germplasm collection and suggest that the breeders should pay attention to the selection of these characteristics.

Key Words: Radish, S-allele, Level of self-incompatibility, Number of seeds per pod.