Synthesis of adenosine analogues with indole moiety as human adenosine A3 receptor ligands

Yan Xia1,2,3,†, Xiliang Zheng1,†, Erkang Wang1, Dongfeng Li2, Ruibin Hou2,3 and Jin Wang1,4

1State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Renmen Street, Changchun 130022, People’s Republic of China
2College of Chemistry and Life Science, and 3Advanced Institute of Materials Science, Changchun University of Technology, Yanan Street No. 2055, Changchun 130012, People’s Republic of China
4Department of Chemistry and Physics, State University of New York at Stony Brook, New York, NY, USA

Adenosine is an endogenous modulator exerting its functions through the activation of four adenosine receptor (AR) subtypes, termed A1, A2A, A2B and A3, which belong to the G-protein-coupled receptor superfamily. The human A3AR (hA3AR) subtype is implicated in several cytoprotective functions. Therefore, hA3AR modulators, and in particular agonists, are sought for their potential application as anti-inflammatory, anti-cancer and cardioprotective agents. Here, we prepared novel adenosine derivatives with indole moiety as hA3AR ligands. According to the biological assay, we found that 2-substituents \(R \) were critical structural determinants for A3AR ligands \((K_i = 111 \text{ nM}) \). The observed structure–affinity relationships of this class of ligands were also exhaustively rationalized using the molecular modelling approach. This allows the investigation on the binding mode of the potential compound in the ligand-binding pocket of the human A3 receptor. The results demonstrated that \(R \) can interact with the ASN250, GLN167, PHE168 and VAL178 through hydrogen bonding, which are shown to be important for ligand–receptor interaction.

1. Introduction

Adenosine is an endogenous purine nucleoside that modulates many physiological processes, which is composed of a molecule of adenine attached to a ribose sugar molecule (ribofuranose) moiety...
via a β-N_9-glycosidic bond [1–3]. Adenosine is widely found in nature and plays an important role in biochemical processes, such as energy transfer as adenosine triphosphate (ATP) and adenosine diphosphate (ADP), as well as in signal transduction as cyclic adenosine monophosphate (cAMP). It is also a neuromodulator, believed to play a role in promoting sleep and suppressing arousal. Adenosine also plays a role in the regulation of blood flow to various organs through vasodilation [4–6]. Cellular signalling by adenosine occurs through four known adenosine receptor (AR) subtypes (A1, A2A, A2B and A3) [7]. All AR subtypes are G-protein-coupled receptors. The four receptor subtypes are further classified based on their ability to either stimulate or inhibit adenylate cyclase activity. They have long been considered to be promising therapeutic targets in a wide range of conditions, ranging from cerebral diseases to cancer, including inflammatory and immunological disorders [8,9]. Adenosine contributes in a significant manner to the maintenance of tissue integrity by modulating the immune system. Encouraging results have emerged with AR ligands for the management of several physiological conditions in preclinical and clinical settings [7,10].

Among the four AR subtypes, the A3AR, probably the most studied AR subtype, is also ubiquitously expressed [11]. The distribution of A3AR is species-dependent, and in humans, this subtype is expressed in the lungs, liver, heart, kidneys and brain [12–14]. The widespread distribution in different cells and tissues of the A3AR suggests a potential involvement in various pathologies and the possible use as a selective pharmacological target [15]. This subtype of ARs is involved in a variety of important pathophysiological processes, ranging from modulation of cerebral and cardiac ischaemic damage to regulation of immunosuppression and inflammation [16].

The increasing knowledge about A3ARs, in particular regarding the molecular biology of this subtype, has provided important evidence to consider this receptor as a novel therapeutic target. In addition, it enables rational design and the development of potent and selective A3AR ligands as promising therapeutic options for a variety of diseases [17,18]. Therefore, small molecule modulators targeting the A3AR have been sought for their potential application as anti-inflammatory, anti-cancer and cardioprotective agents [19–21].

Indoles probably represent one of the most important structural classes in drug discovery [22]. The indole substructure is a basic element for a number of biologically active natural and synthetic products. Indoles are found in a wide range of therapeutically important drugs [23,24]. Over the years, a considerable amount of effort has been made to find indoles with various biological activities and select certain agents for leads in drug discovery research. On account of their potent biological activities, indoles have continued to attract the interest of chemists and biologists alike in drug discovery.

In addition, the scientific community is making intensive efforts to design AR ligands endowed with greater selectivity or to develop innovative compounds acting as receptor modulators. To further explore the importance of indole framework as the basis for AR ligands, we investigate the receptor subdomain that binds the purine moiety by the study of 2-alkynyl derivatives of 2-chloroadenosine. The present paper reports on the synthesis and binding studies of these compounds as well as of adenosine. We describe the lengths of alkyl group in terms of potency at the A3 receptor as well as receptor subtype selectivity. Here, we use the conversion of the 2-alkynyl group into flexible 2-O-alkyl between purine and indole moiety.

2. Results and discussion

2.1. Synthesis

In an effort to discover new nucleoside analogues as potential A3AR ligands, we pursued the 2-oxypurine nucleoside using indole alkyl iodides as shown in scheme 1. The synthesis of the 5’-CH$_2$OH analogues started from 2-amino-6-chloropurine riboside 1, which was converted into 6-chloro-2-hydroxy-9-(2,3,5-tri-O-acetyl-β-D-ribofuranosyl)purine 2, as reported [25]. The reaction of the hydroxyl group at the 2-position of 2 with various indole iodides was conducted in the presence of caesium carbonate to affect compounds 3–8. Simultaneous removal of the acetyl group and amination at the 6-position of 3–8 using ammonium hydroxide solution yielded compounds 9–14.

For synthesizing the key compounds, we should synthesize intermediates for the 2-ether component depicted in schemes 2–4. Scheme 2 illustrates the synthesis of two carbons as linker indole iodides. The indole 2-oxoacetate 16 was accessed by the treatment of 6-bromoindole 15 to oxalyl chloride, followed by a reaction with ethanol. Alkylation of indole nitrogen by CH$_3$I and BnBr provided N-alkyl 17a and 17b, respectively. The following exposure to BH$_3$-SMe$_2$ provided corresponding alcohols 18a and
Scheme 1. Synthesis of compounds 9–14.

Scheme 2. Synthesis of intermediates 19a–b.

Scheme 3. Synthesis of intermediates 25a–b.

18b. The alcohols were transformed to corresponding iodides 19a–b by iodine, triphenylphosphine and imidazole.

The three carbons used as the linker of indole iodides shown in scheme 3 were obtained from the commercially available 3-indolepropionic acid 20. Propionate 21 was prepared by the conversion of carboxylic acid into methyl ester by treatment with CH$_3$I and KHCO$_3$. Subsequent N-alkylation of the indole nitrogen provided 22a and 22b followed by reduction of carboxylic methyl ester to produce the
corresponding alcohols 23a and 23b. Finally, iodides 25a and 25b were derived from 23a–b via tosylate alcohol, which underwent substitution with iodine.

The synthetic strategy for the preparation of substituted indole derivatives is described in scheme 4. The commercially available 4-bromoindole-3-carboxaldehyde 26 was reacted with CH3I and BnBr to give rise to N-alkylation 27a–b, respectively. The Wittig reaction of aldehyde provided trans-indole acrylate 28a–b. The following treatment with NaBH4 and BiCl3 yielded propionates 29a–b. LiAlH4 reduction of the carboxylic ester produced intermediates 30a–b followed by treatment with tosyl chloride to afford the corresponding 31a–b, and the tosylate moiety was displaced with good yield with iodine to incorporate the iodo functionality. Detailed synthetic procedures including the yield of reactions and characteristic data can be found in the electronic supplementary material.

2.2. Binding affinity studies

The aim of the present study is to expand knowledge of the structure–activity relationships at the A3AR and at other subtypes, both in relation to binding affinity and intrinsic efficacy, of adenosine derivatives modified in the 2-position. A screening campaign to discover new scaffolds for A3AR inhibition yielded the moderate-potency lead 11 (table 1). Among 2-substituted derivatives, 2-ethers were more potent than the corresponding amines or thioethers [26]. The effect of bromine substitution of the phenyl ring was evaluated. This series of 5′-bromo analogue showed a tendency towards increased Ki values with A1 and A3ARs, depending on the bulkiness of the bromine atom. Of these analogues, compound 10 was equipotent to 13 with A1AR. However, its selectivity to binding A3AR was improved. Unexpectedly, 14 was threefold less potent than 13 in binding to A3AR and was tolerated by A2AAR. Although the 5′-bromo derivative 13 was somewhat equipotent to 11 with A3AR, its selectivity was reduced.

Interestingly, the 3-indolyl analogue 11 was sevenfold more potent than 12 with A3AR. The increased size or steric hindrance of the N-substituent markedly decreases A3AR potency. Nevertheless, 12 was less potent than 13 in binding to A2AAR. The effect of the space of the alkyl chain between the 2-ethers and the indole moiety was tested. Elongation increased the affinity for A3AR. Compound 11 showed a fivefold increased potency with A3AR, while it was somewhat tolerated by A2AAR. The affinity of 9 to all three AR subtypes showed low potency compared with that of 13, similar to the results with 10.

However, the corresponding 2-indolyl derivative 13 was more potent than compound 11 in affinity for A1 and A2AARs. The bulkiness of the N-substituent may be related to the increased affinity. Compound 14 was more potent than 12 in binding to all three ARs. Meanwhile, compound 11 displayed a fivefold potency enhancement over 9 with A3AR. The N-Bn derivative 10 with potency close to that of 9 was invariant in affinity for A1 and A2AARs.

2.3. Molecular docking analysis

Driven by docking of several derivatives with hA3R, we performed the molecular modelling studies [27] to explore the binding modes of all six aforementioned compounds as shown in table 2. Among
Table 1. Potency of 2-alkoxyadenosine derivatives to bind human A₁, A₂A and A₃ARs expressed in CHO cells.

entry	R	Kᵢ (nM ± SEM) or % inhibition at 10 µM		
		hA₁AR⁶	hA₂AAR⁶	hA₃AR⁶
9	🍯	(47 ± 5%)	2770 ± 500	679 ± 149
10	🍯 Bn	217 ± 57	380 ± 81	532 ± 144
11	🍯	300 ± 70	880 ± 200	111 ± 30
12	🍯 Bn	(34 ± 2%)	(56 ± 5%)	731 ± 209
13	🍯	230 ± 26	262 ± 192	177 ± 43
14	🍯	152 ± 49	371 ± 79	491 ± 143

A All experiments were performed on CHO cells stably expressing one of three subtypes of human ARs. The binding affinities for A₁, A₂A and A₃ARs were expressed as Kᵢ values and were determined using agonist radioligands ([³H]CCPA), ([³H]CGS21680) and ([¹²⁵]I)I-AB-MECA, respectively. Values in parentheses are for weak binding, corresponding to an IC₅₀ ≥ 10 µM. Data are expressed as mean ± s.e.

entry	experimental Kᵢ (hA₃AR, nM)	predicted free energy (kcal mol⁻¹)	predicted affinity (nM)
11	111 ± 30	-9.08	222.18
13	177 ± 43	-8.73	398.82
9	679 ± 149	-8.38	719.10

These compounds, the compounds cpd 10, 12 and 14 with the N-Bn substituent failed to dock into the ligand-binding site of the protein. The current docking results are consistent with the biological studies mentioned above and serve as an explanation for the sharply reduced affinity. On the contrary, all other three compounds (cpd 9, 11 and 13) with N-methyl substituent were found to dock into the binding pocket of the protein of interest and further interact with the amino acids GLN167, PHE168, ASN250, etc., through hydrogen bonding or hydrophobic interactions (figures 1 and 2). Detailed information for docking experiment can be found in the electronic supplementary material. In particular, the common interactions for these three compounds were the hydrogen bonding with the amino acid ASN250 of the protein, which is shown to be closely relevant to antagonist interaction [28,29]. Furthermore, the docking
The results showed that the compound cpd11 with the highest K_i value has the highest predicted affinity ($-9.08 \text{ kcal mol}^{-1}$, table 2).

Figure 2 depicts the binding mode of the compound cpd11 in the ligand-binding pocket of the protein in details. Cpd11 can be well docked into the binding site of interest. In the most potent molecule cpd11, the adenosine core contributed strongly to the binding affinity, which also demonstrates the rationality of the core as a key scaffold for the further chemical modifications. The hydroxyl oxygen of furan ring and the 6-postion N atom of adenyl group interact with the ASN250, GLN167, PHE168 and VAL178 through hydrogen bonding. On the other hand, the high affinity also requires the presence of the 2-alkyl-substituted groups for producing the strong hydrophobic interactions.

From these results, we have illustrated the interactions of our newly synthesized 2-alkyl-substituted adenosine analogues with a ligand-binding site of hA3AR from the molecular modelling point of view. The results also showed the different roles of the substitutions which are strongly linked to the increased or decreased affinity. The exploration for these interactions can provide us the guidance for the future chemical modifications.
3. Conclusion

In this work, we designed and synthesized a series of 2-O-alkyl-substituted adenosine analogues with indole moiety. The 2-substituents \textbf{11} was the most potent among the series, and it was confirmed to be a modulator in a functional assay measuring its capacity to bind receptors in CHO cells expressing the hA3A receptor. We found that 2-substituents \textbf{11} were critical structural determinant for A3AR ligands ($K_i = 111$ nM). The promising compound can be considered a valuable seed for the design and development of new and even more selective and potent compounds. The molecular modelling studies have also been performed to investigate the binding mode of the potential compound in the ligand-binding pocket of human A3 receptor. Here, this study provides useful foundations for the attainment of a detailed pharmacological and physiological characterization of the adenosine A3 receptor.

Data accessibility. The detailed experimental synthetic procedures and spectra of the final compounds are provided in the electronic supplementary material.

Authors’ contributions. Y.X. carried out the synthetic work and performed the NMR experiments. X.Z. carried out the biological screening. R.H. helped analyse and interpret the data. J.W. conceived the study, designed it and drafted the manuscript. All authors gave final approval for publication.

Competing interests. The authors declare that they have no competing interests.

Funding. This research was funded by the National Research Foundation of China (grant nos. 21442004, 21502008 and 91430217) and the Ministry of Science and Technology (grant no. 2016YFA0203200).

Acknowledgements. The authors thank Prof. E.K. Wang (Changchun Institute of Applied Chemistry Chinese Academy of Sciences) and Computing Center of Jilin Province for their support and encouragement. The authors are grateful to Prof. D.F. Li for helpful comments that improved the manuscript.

References

1. Huang ZL, Zhang Z, Qu WM. 2014 Roles of adenosine and its receptors in sleep wake regulation. Int. Rev. Neurobiol. 119, 349–371. (doi:10.1016/B978-0-12-801022-8.00014-3)
2. Fredholm BB, Abbracchio MP, Burnstock G, Daly JW, Harden TK, Jacobson KA, Leff P, Williams M. 1994 Nomenclature and classification of purinoceptors. Pharmacol. Rev. 46, 143–156.
3. Sawynok J. 2007 Adenosine and ATP receptors. Handb. Exp. Pharmacol. 177, 309–328.
4. Sato A. 2005 Mechanism of vasodilation to adenosine in coronary arterioles from patients with heart disease. Am. J. Physiol. Heart Circ. Physiol. 288, H1633–H1640. (doi:10.1152/ajpheart.00575.2004)
5. Costa F, Biagioni I. 1998 Role of nitric oxide in adenosine-induced vasodilation in humans. Hypertension 31, 1061–1064. (doi:10.1161/01.HYP.31.5.1061)
6. Morgan JM, McCormack DG, Griffiths MJ, Morgan CJ, Barnes PJ, Evans TW. 1991 Adenosine as a vasodilator in primary pulmonary hypertension. Circulation 84, 1145–1149. (doi:10.1161/01.CIR.84.3.1145)
7. Hasko G, Linden J, Cronstein B, Pacher P. 2008 Adenosine receptors: therapeutic aspects for inflammatory and immune diseases. Nat. Rev. Drug Discov. 7, 759–770. (doi:10.1038/nrd2638)
8. Hillaire CS, Carroll S, Chen H, Ravid K. 2009 Mechanisms of induction of adenosine receptor genes and its functional significance. J. Cell Physiol. 218, 35–44. (doi:10.1002/jcp.21579)
9. Baraldi P, Tabrizi M, Gessi S, Borea P. 2008 Adenosine receptor antagonists: translating medicinal chemistry and pharmacology into clinical utility. Chem. Rev. 108, 238–263. (doi:10.1021/cr068219S)
10. Antonioli L,Csoka B, Forsi M, Colucci R, Kokai E, Blandizzi C, Hasko G. 2014 Adenosine and inflammation: what’s new on the horizon? Drug Discov. Today 19, 1051–1068.
11. Müller CE. 2007 Adenosine receptor ligands—recent developments Part I. Agonists. Curr. Top. Med. Chem. 7, 1269–1288. (doi:10.2174/156720107780700001)
12. Linden J. 1994 Cloned adenosine A3 receptors: pharmacological properties, species differences and receptor functions. Trends Pharmacol. Sci. 15, 298–306. (doi:10.1016/0165-6147(94)90071-6)
13. Fredholm BB, IJzerman AP, Jacobson KA, Klotz KN, Linden J. 2001 International union of pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol. Rev. 53, 527–552.
14. Jacobson KA, Gao ZG. 2006 Adenosine receptors as therapeutic targets. Nat. Rev. Drug Discovery 5, 247–264. (doi:10.1038/nrd1983)
15. Borea PA, Varani K, Vincenzi F, Baraldi PG, Tabrizi MA, Merighi S, Gessi S. 2015 The A3 adenosine receptor: history and perspectives. Pharmacol. Rev. 67, 74–102. (doi:10.1124/pr.113.008540)
16. Gaspar A, Reis J, Kachler S, Paletta S, Uriarte E, Klotz KN, Moro S, Borges F. 2012 Discovery of novel A3 adenosine receptor ligands based on chromone scaffold. Biochem. Pharmacol. 84, 21–29. (doi:10.1016/j.bcp.2012.03.007)
17. Luan F, Borges F, Cunério MN. 2012 Recent advances on A3 adenosine receptor antagonists by QSAR tools. Curr. Top. Med. Chem. 12, 76–894.