Implementing metaplanning with business process management

Michele Campagnaa*, Konstantin Ivanovb, Pierangelo Massaa

aUniversità di Cagliari, 2 Via Marengo, Cagliari 09123, Italy
bTomsk Polytechnic University, 30 Lenin Avenue, Tomsk 634050, Russia

Abstract

Metaplanning can be considered as a necessary step for improving collaboration, transparency and accountability in sustainable and democratic spatial decision-making processes. This paper reports current findings on the operational implementation of the metaplanning concept developed by the authors relying on Business Process Management methods and techniques. Three solutions are presented which implement spatial planning process workflows thanks to the development of original spatial data and processing services connectors to a Business Process Management suite. These results can be considered as a first step towards the development of 2nd generation Planning Support Systems.

1. Spatial Planning, geodesign, and metaplanning

Metaplanning can be defined as the design of the planning process. It includes the process representation and planning, and can be supported by process analysis and simulation. In real-world spatial planning practices (e.g. Regional Planning or Local Land Use Planning) often metaplanning, as something which is usually not explicitly required by law, is disregarded. In such cases taming complex multi-actor planning processes and procedures may result confusing. While on the one hand lack of common understanding among the actors may easily arise, implying

* Corresponding author. Tel.: +39-070-675-5203; fax: +39-070-675-5215.
E-mail address: campagna@unica.it
difficulties in collaboration, on the other hand understanding how, why, when, by whom planning decisions are made may result blurred both to internal and external stakeholders and observers. The latter should be not considered a minor pitfall as both propositions from advances in planning theory (i.e. Innes’ communicative planning, in Khakee, 1998, p. 370)[1] as well as binding regulations on Strategic Environmental Assessment (SEA, Directive 2001/42/EC) require in plan-making not only the evaluation, explanation and documentation of the product (i.e. the final plan) but also of the process. However, what SEA regulations and good practice guidelines usually suggest is the ex-post evaluation of some specific part of the SEA-planning process (e.g. degree of public participation in consultation or reliability of data sources), and an ex-ante metaplanning approach is often ignored.

An emerging trans-disciplinary debate among spatial planning and Geographic Information Science scholars concerns the definition and the implementation of the concept of Geodesign [2]. Geodesign can be defined as an integrated process informed by environmental sustainability appraisal which includes project conceptualization, analysis, projection and forecasting, diagnosis, alternative design, impact simulation and assessment, and which involves a number of technical, political and social actors in collaborative decision-making. The innovation in Geodesign, compared to older approaches in environmental planning and landscape architecture, is rather on the extensive use of digital spatial data, processing, and communication resources.

As a matter of facts nowadays, the Information Society reached a mature state, and we face unprecedented wealth in terms of digital (spatial) data sources. The concept of Digital Earth [3] is slowly shaping into reality, and both authoritative and volunteered geographic information resources are available to support analysis and decision-making. Nevertheless in spatial planning, professionals and decision-makers still lag-behind in the digital uptake in the practice, and in properly taking advantage of recent developments in Spatial Data Infrastructures (SDI) [4]. Hence, making the Geodesign concept operational may be still considered a challenging task.

A small but active research community worldwide, as extensively reported by Geertman and Stillwell [5], tried to address these difficulties proposing advanced Planning Support Systems (PSS). By their early proposition [6] PSS were defined as “architecture(s) coupling a range of computer-based methods and models into an integrated system for supporting the planning functions” or more operationally “user-friendly microcomputer-based planning system(s), which integrates GIS, sketch tools and spatial models”. Indeed, since their early definition PSS were though as architectures featuring several of the components a Geodesign support system would have. More recent propositions define PSS “a combination of planning-related theory, data, information, knowledge, methods and instruments that take the form of an integrated framework with a shared graphical user interface” [5]. However, it has been noted that the evident obstacles to PPS adoption may be inherent in the concept that comprises first generation PSS [7]. As a matter of facts, most recent perspectives suggest the gap between PSS and real-world urban and regional planning practices should deal with transparency and flexibility [8].

The importance of the concept of metaplanning, as the activity of specifying actors, activities, methods, tools, inputs and outputs, workflows or in other words the ex-ante/in-itinere adaptive design of planning process is also central to the Steinitz’s Geodesign framework9, where the planner (i.e. the coordinator of the Geodesign team) chooses and clearly defines the methods for the study according to a decision-driven approach (i.e. the second iteration), before the resulting workflow is actually implemented (i.e. the third iteration).

According to these considerations, the operational implementation of the concept of metaplanning can be achieved through the description of the planning process. Several attempts have been proposed by scholars to formalise the description of the planning process for diverse purposes, however these results appear to have affected neither the planning practice nor the Planning Support System design [2, 10, 5]. As a matter of facts, limitations in Planning Support Systems diffusion may be addressed to lack of flexibility, thus of adaptability to contextual planning process settings.

To address these issues a possible approach is to rely on recent advances in Business Process Management (BPM) [11]. Process-orientation has gained big momentum in the last decade, and BPM techniques and tools have been developed aiming at two main objectives: improving process management and easing information system development. BPM found extensive application in industry where good and services production processes are constantly run and improved. Introducing BPM in the production life-cycle requires effort, but it is usually acknowledged that the costs then pay back in the long run as the number of process instances grows.

The authors argue in this paper that PSS design should be process-driven, rather than technology-driven, and since metaplanning concerns the design and formalisation of the actual planning process, metaplanning should also
inform the design of the information systems for planning support. To address this challenge, Business Process Management methods and tools have been applied by the authors to implement the metaplanning concept in the urban and regional planning, and Strategic Environmental Assessment domain, claiming that metaplanning may both improve the process and ease customised PSS development accordingly: together the latter results entail the concept of 2nd generation PSS. In this paper the authors report the ongoing results of their research and present original software developed as proof-of-concept of 2nd generation PSS.

2. Implementing metaplanning with Business Process management

The evolution of contemporary spatial governance makes urban and regional planning complex processes – involving actors, activities, resources, objectives, outputs – which are often difficult to manage in a logical, transparent and accountable manner. As a matter of facts a new figure of planner is emerging as a ‘process manager’[12] whose role is the coordination of interacting actors in complex workflows of activities.

Moreover, communication among stakeholders and the broader public is a major issue in SEA, and it can be only correctly realised if proper (i.e. understandable by all) information is given to all the participants [13]: this need also includes information about the process which should explain clearly how and why decisions are made. To address these issues a metaplanning approach is proposed by the authors.

Metaplanning can be defined as the explicit design of a (urban and regional) planning process. According to Emshoff [14] poor results of planning are often actually due to poor metaplanning. Since the ’70, the concept of metaplanning has been dealt with by several disciplines including artificial intelligence and management science, but it has barely attracted the attention of planning scholars. As a noteworthy exception de Bettencourt et al. [15] argued metaplanning should be a well-defined step in the plan-making process in order to enhance understanding and coordination among the actors and to achieve expected outcomes. To these Campagna [16] added the enhancement of responsibility, transparency and accountability in the planning process, as well as the definition of the requirements for and the ease of the implementation of process-oriented Planning Support Systems. In order to achieve the latter objectives, Business Process Management (BPM) is proposed in this paper as methodological and technical approach for metaplanning operational implementation.

BPM includes concepts, methods and techniques to support the design and analysis as well as the administration, the configuration, the enactment of business processes [11]. Hence, two are the main objectives of BPM: on the one hand BPM should support the improvement of a process (i.e. business perspective: design and analysis), while on the other hand it should ease the implementation of the supporting information system (i.e. IT perspective: configuration and enactment).

The last decade faced the diffusion of a growing number of software system - Business Process Management Systems (BPMS) - which enact a business process on the base of an explicit process model representation. A Business Process Model (Bpm) is a set of activities models and execution constraints among them. From this perspective, urban and regional planning processes can be considered as business processes and Planning Process Models (PPM) can be drawn for a descriptive (i.e. as-is) or prescriptive (i.e. to-be) purposes. In planning theory and practice several languages have been used to describe planning processes ranging from verbal description, such as articles in planning regulations, to graphical notations, such as workflow diagrams in planning handbook. However, most of the latter lacks semantic richness so that planning process models can be used to administrate and enact process instances.

In the last decade, Business Process Model and Notation (BPMN) has been developed and maintained by the Object Management Group as a standard graphical notation for representing business process in form of diagram. The rich semantic of this language allows representing actors (i.e. pool and lanes) and activities (i.e. tasks or subprocess) and a variety of executions constraints. Tasks can be manual, automatic or mixed, representing diverse situations of real world process: automatic mixed tasks are those which are supported by the execution of distributed data or processing services. BPMN diagrams are easy to understand from both humans and machines, becoming the core of business process life-cycle. In facts, many off-the-shelf BPMS feature a BPMN diagram editor for design and analysis, a repository where models are collected, and a process engine which orchestrates the integrated execution of services supporting tasks.
In the reminder of this paper, three examples are presented as proof of concepts, aiming at demonstrating the core of this approach on the base of which 2nd generation Planning Support Systems can be implemented. Before discussing the three alternative solutions in details, in the next section current developments in the integration of spatial web services are introduced.

3. Web Processing Services

The orchestration of web services has been established as an essential block of BPM in the context of service oriented architecture (SOA). The basic idea of SOA is the dynamic integration and composition of common data models and standard interfaces; this apply also in the geospatial technology domain. The Open Geospatial Consortium (OGC) defines open standards for spatial web services including Web Map Services (WMS), Web Feature Services (WFS), Web Processing Services (WPS) among others, that can be used to set up a spatially enabled SOA.

The common case in most Geographic Information Systems (GIS) is the user-driven generation of data, which is needed to answer queries or support decisions. In most SDIs, users are supported by Catalogue Services to search required data, WFS to access vector spatial data, and WMS to visualize relevant data and results. Nevertheless, decision-making requires real-time geoinformation generated by integrating and processing data from different sources in real-time. This requirement for real-time geoinformation is not yet met by many SDI implementations.

However, geoinformation can be generated from geodata using distributed geoprocessing that facilitates creating and performing geoprocess models, which are encapsulated as Web Services and access web resources (i.e. Geoprocessing Services or Data Services). Geoprocess models may be considered as a potential representation of real-world processes, performing operations on spatial data related to a specific geographic context. Geospatial data, or their interpretation, are the input parameters and the output results of these models. Examples of such models may be simple buffer computations, spatial intersection of features or geostatistical analysis. Embedding geoprocess models into the web allows planners to process data from different sources without downloading data to local machine and processing it with a standalone GIS.

The geoprocess models on the web are composed by OGC WPS. The basic idea of WPS is to make available on the web functional capabilities typical of desktop GIS for the handling of spatial data. A WPS may offer simple spatial operations (e.g. the calculation of a features union) as well as complex computations (e.g. a land suitability analysis). Thus, technically any spatial operation can be implemented on the WPS interface.

The current version of the OGC Web Processing Service interface specification 1.0.0 was approved in 2007 and became the de-facto standard for web-based geoprocessing. This specification defines a standardized interface that facilitates the publishing and performing geoprocess models of any type on the web. OGC WPS contains machine-readable binding information that makes it available for using and integrating into other systems. WPS also provides a human-readable metadata that facilitates service discovery and use. In the WPS interface specification a geoprocess model is defined as any computation operating on geodata.

In order to cope with the complexity of real-world processes, geoprocess models should consider several procedural steps. Therefore, the implementation of a complex geoprocess model may involve several WPS instances that can be chained one to each other to define a geoprocessing workflow. ISO defines workflow as an "automation of a business process, in whole or part, during which documents, information or tasks are passed from one participant to another for action, according to a set of procedural rules." A geoprocessing workflow can be defined as "an automation of a geoprocess model, in whole or part, during which data is passed from one Geoprocessing Service to another according to a set of procedural rules using standardized interfaces." In other words, the interoperability of data and services, supported by geoprocessing workflows, allows each part of the workflow to act as a separate unit, which performs only its specific task. The strong flexibility offered by this feature, could enhance the use of geoprocessing workflows in a variety of domains, processing distributed and complex data.

The geoprocessing workflow can be implemented as SOA. From the SOA perspective, Web Service Composition and Web Service Orchestration can be considered as relevant concepts for geoprocessing workflows. Indeed, according to Alonso et al., Web Service Composition can be considered as the combination of several Web Services, representing a workflow in a business process. The interaction of different Web Services in a workflow can be managed by Web Service Orchestration, which describes the mechanism of Web Services combination on the
message level. The mechanism of combinations includes both the business-logic and the execution order. In Web Service Orchestration, a central engine usually manages the interaction of loosely coupled services according to an established business workflow.

4. From business process management to Geodesign

The concept and assumptions presented in the earlier sections have been implemented by the authors in a research project aiming at finding operational way to support both metaplanning and the PSS development from the early stages of the planning process according to a Geodesign approach. Central to this proof-of-concept is the idea to model the planning process using a BPMN editor in a BPMS and to use the model to orchestrate the technology integration for planning support.

In this project Bonita BPM v6.2.6 Community suite (referred also to as ‘the BPMS’ in the reminder) was chosen for it is an open source platform and includes a wide array of BPM functions accessible through a user friendly interface. This BPMS enables the configuration phase of BPM through connectors, which supply functionalities (i.e. IT services) to the activities (i.e. the model tasks) by integrating applications, data and services. In the current version, connectors to the most used productivity applications and services including email systems, database management systems, information systems (e.g. CRM, ERP, or CMS), web services (using SOAP protocol) are available. For example, business process tasks can send a pre-defined customized email to the customer using an email connector. Unfortunately, no connector is given for accessing spatial data (e.g. WMS, WFS or WCS) and processing (i.e. WPS) services. Hence, the first challenge to be addressed in order to implement a test-bed for the implementation of BPM-based metaplanning and for a 2nd generation PSS platform implementation was to create spatial data and processing services connectors for the BPMS.

Two different approaches have been tested so far in the project, including both complex (i.e. online or desktop applications) and atomic components (i.e. spatial data and processing web services). In the next sections three examples are presented, one of which implements the first approach, and the latter the second one. The examples are based on a single case study simulating a land suitability analysis (LSA), which can be thought of as a subprocess of a more complex PPM. The LSA sub-process proposed here should be considered as a dummy for the demonstration of capabilities offered by BPM-based approach to planning process design and enactment. This sub-process aims at finding suitable areas for a given land-use according to several criteria. The sub-process entails a number of tasks that should be performed in coordination by different actors in the organizational environment (i.e. the planner and the decision-maker in this example).

The execution ordering of activities and the sequence flow among actors, representing the handover of tasks, can be finely modeled through BPMN in Business Process Diagrams (BPDs). The BPD of the LSA case study is shown in Figure 1.

![Fig. 1. Suitability analysis BPD. Model in BPMN.](image_url)
As shown in Figure 1, in this scenario the planner (P) who is in charge of starting this technical activity (i.e. the LSA sub-process) sets a list of criteria, which is sent to the decision-maker (DM). The DM chooses relevant criteria and then sets weight expressing their relevant importance, and send back the results to P. P ranks criteria values along a suitability scale through an utility function and then runs the analysis calculations. The results of the calculations are then saved. In the following paragraphs this scenario is implemented in three alternative ways.

4.1. Integrating BPMS and GIS

The first solution, provided to orchestrate the technology integration, concerns the call of pre-configured desktop GIS projects from the BPMS during the workflow execution. For this purpose a custom connector has been developed by the authors, taking advantage of the features offered by Bonita BPM. The suite offers several opportunities for the integration of external programs and technologies directly in the workflow through ad-hoc connectors. Connectors can be added to tasks (activities) for accessing external information systems, taking input from the end-user or directly from the process. Bonita BPM offers ready-to-use predefined connectors for several systems and applications and also allows the creation of new connectors from scratch. The connector to call desktop GIS projects during the workflow run has been developed as a system script that allows executing desktop GIS applications in the end-user platform relying on the Windows command shell engine. This capability offered by connectors allows the coordination of work among people and the assignment of specified activities according to individual roles. In the case study example the connector is used to automatically call a pre-configured GIS project in the planner platform to execute the LSA.

Similar GIS workflow management solutions are already available in the market, however in our case unlike in others to our knowledge the control of the workflow execution is performed thanks to the BPD represented in standard BPMN. In this case, the original LSA BPD (Figure 1) is adapted to the technical solution chosen for implementation.

The original LSA BPD is shown in Figure 2a, grouping the activities that are performed by the GIS desktop application, while in Figure 2b the adapted LSA BPD is shown, where grouped tasks are executed within the GIS thus hidden in the diagram.

The adapted LSA sub-process is started by P who lists a set of criteria and passes them to DM via a web form. The second activity is performed by DM that accesses the form and chooses criteria. The form template can be designed and implemented directly in the BPMS, offering an input user-friendly interface. After the selection of criteria, when the third activity is activated the platform provides another form, where weights are assigned to criteria according to their relative importance to the DM. The last activity performs the collection of input data, and thanks to the connector the automatic execution of a predefined GIS project in P’s workstation. The last part of the process involves the run of the land suitability analysis by P according to DM’s input.

![Fig. 2. (A) Original LSA BPD grouping the activities performed by the GIS desktop application; (B) Adapted LSA BPD in solution 1 (relying on the GIS desktop application connector).](image-url)
The use of a predefined desktop GIS project allows P to perform analysis by means of advanced features offered by GIS applications. In other words, the LSA requires the integration of spatial analytical tools that are supplied in this use case by desktop GIS application. We tested this use case with both commercial and open source desktop GIS applications. This may be of advantage in urban and regional planning settings for custom GIS project can be prepared by specialists for other professionals.

This first example aims at demonstrating how the integration of BPMS and desktop GIS application offers a technical environment able to coordinate collaborative activities among the actors of a planning process, supplying GIS (and not-GIS) to the BPMS run-time functionalities during the workflow execution. This first solution proposed in this paper can be considered viable for planning support in those cases where the task requires relevant flexible human intervention. However, in a number of tasks, which may be instantiated in an urban and regional planning process, more advanced automation may improve efficiency. In the next paragraph, a second demonstrator is presented aiming at showing advanced spatial data and services BPMS orchestration possibility.

4.2. Orchestrating WPS by BPMS

The second and more advanced solution concerns the orchestration of atomic standard spatial data and web services directly within the BPMS. To this end, a custom connector invoking spatial web services (i.e. WFS, WPS) has been developed in Java using Bonita BPM Engine APIs, in order to enable the spatial data and services chaining by the BPMS. The development of the connector included two steps:

- the connector definition: it controls the external interfaces of the connector (the inputs and outputs), both visible to the users and to the BPMS;
- the connector implementation: where configuration and execution of the connector are defined by implementing default Java class for connectors.

The developed connector requires the user to specify the parameters: i) a URL of WPS and operation to be executed, ii) input data (e.g. link to WFS and selected features, or input parameters) and, iii) the format of output (e.g. GML, KML, or shape-file). During the business process execution the connector retrieves and validates input parameters; then it generates xml-encoded request to WPS, containing input parameters (e.g. WFS link and features, processing operation). This request is then submitted to the URL of the WPS. The WPS performs the request querying data from WFS and processing input data (including input parameters), and returns xml-encoded response to the connector. The connector receives this response and saves results into the global variable of the business process.

![Fig. 3. Suitability analysis BPD with the introduction of connector for spatial web services.](image)
Figure 3 shows the adaption of the original LSA BPD to the spatial web services orchestration solution. The first three activities (list criteria, choose criteria and set criteria weights) are performed by humans, hence they are the same as in previous solution. The fourth activity is performed by a planner who sets rankings manually in this example. The next activity reads stored ranking data, acquires input layers as WFS features, parameters for WPS execution, and requests from WPS to run the thematic attribute ‘field calculator’ process. In this experiment we used the 52°North WPS with 220+ SEXTANTE Processes extension on Apache Tomcat 7.0. The result of the execution is then transmitted to the sub-process, which invokes a WPS operation for the criterion map ‘Union’ and eventually the WPS executes the field calculation which performs the weighted sum. The last activity takes the result of the LSA and saves the output suitability map in the location specified by the user thanks to another simple connector developed by the authors. The saved suitability map can be opened in a desktop GIS application or published as WMS or WFS. The later step is currently under development, thus it is not included in the model in Figure 3.

The purpose of this second case study is to demonstrate the orchestration of spatial web services via BPMS. Unlike the previous example, in this case a greater programming effort was required. However, this second solution may open further alleys for 2nd generation PSS development for it enables a higher level of computer support to humans thanks to the orchestration.

4.3. Orchestrating geoprocessing services within BPMS via Python CGI

The third solution features the same atomic orchestration of spatial data and geoprocessing services within the BPMS as provided by the second solution, however it implements the orchestration by means of Common Gateway Interface (CGI). CGI is a standard method to generate dynamic content on web pages or web applications through interfaces between a web server and specific programs, called CGI scripts (CGIs). CGI is a server-side process implementation, and any URL request from the client-side for a CGI document causes the real-time execution of the requested program by the web server. The required environment variables for the CGIs are set by passing parameters on the URL command line or through special libraries, and the outputs of execution are directly transmitted to the web browser.

In the proposed solution, CGIs are written in Python 2.7 in order to execute several geoprocessing services that are available on the web server. The orchestration and chaining of the services within the BPMS is performed through custom system script connectors, developed for Bonita BPM Community 6.2.6 suite relying on the Python command line. This solution has been developed to deal with the need of a wider set of geoprocessing services than those provided by available WPS servers. A Python environment is required both on the client-side and on the server-side in this case. The development of this approach thus is based on two main steps:

- Web server configuration and CGIs development
- Custom connectors development

For the implementation of this solution, an Apache Tomcat 7.0 server has been configured to support CGI and to use Python 2.7 as interpreter for CGIs execution. Several CGIs have been developed to execute a specific geoprocessing service each, receiving the required parameters for the service directly from the URL command line. Required parameters usually include the input spatial data path, the output spatial data path and the specific information for execution according to service. Currently, the proposed solution accepts as spatial data only shapefiles (.shp) located on the web server, therefore an upload service and a download service have been developed accordingly. Moreover, a special CGIs has been developed in order to supply information on required parameters for each available service, easing the development of custom connectors for BPMS.

The custom connectors have been developed as system scripts that invoke the Python command line for executing an URL command line, by means of the connector wizard of BonitaBPM Community 6.2.6 suite. For each CGIs, related to a specific geoprocessing service on the web server, has been developed a custom connector enabling the orchestration and chaining directly within the BPMS. At the current stage of implementation, custom connectors have been developed for CGIs that invoke geoprocessing services such as: buffer, merge, union, add field and field calculator, but any other can be developed alike.
Figure 4 shows how the LSA BPD keeps the same structure as in the previous solution. The first four activities (list criteria, choose criteria, set criteria weights and set ranking) are performed in collaboration between P and DM, while the sub-process activity (run suitability analysis LSA) executes the automatic tasks by orchestration of spatial data and geoprocessing services. In the sub-process activity, the BPMS provides a web form to set parameters for the established tasks of analysis, which are executed orchestrating services by CGIs.

Figure 5 shows an example BPD for the atomic orchestration of services, which can be applied during the Run Suitability Analysis (LSA) activity. The form provided by BPMS allows to collect information on input spatial data and parameters of services. In this example the input spatial data is processed three times by buffer service, add field service and finally field calculator service. The outputs of this BPD are three buffered versions of the input spatial data, wherein buffer distances have been accordingly stored in a new field in the attribute table. Finally, the last task (confirmation) alerts user on the end of CGIs execution.

The purpose of this third case study is to demonstrate the orchestration of geoprocessing services within BPMS via Python Common Gateway Interface scripts. Similarly to the previous example, a great programming effort is required for the development of CGIs and related custom connectors. However, this solution may deal with issues regarding the lack of certain geoprocessing services on available WPS, and may offer opportunities for the development of tailored services according to planning process requirements. The integration of this solution with the orchestration of WPS services within BPMS may open further flexibility to work towards 2nd generation PSS development, as far as WPS will be implemented in more robust server applications.

Fig. 4. Suitability analysis BPD with the introduction of CGI for geoprocessing service orchestration.

Fig. 5. BPD for atomic orchestration of services by Python CGI.
5. Conclusions

Recent advances in urban and regional planning, enhanced complexity in spatial governance, and Strategic Environmental Assessment call planners to novel approaches to planning process management and assessment. The authors propose the concept of metaplanning as viable solution for planning process improvement in term of actor collaboration, and process transparency and accountability. Accordingly an innovative BPM approach to metaplanning implementation is proposed.

The authors claim that a BPM approach to metaplanning may also ease the agile development of process-oriented 2nd generation Planning Support Systems. To proof this concept technology solutions are presented which demonstrate with reference to a simple technical plan-making sub-process metaplanning in action.

The early results of this research project can be considered as a first step towards the implementation of metaplanning in practice and the creation of an architectural framework for 2nd generation Planning Support System design and implementation.

Acknowledgements

The work presented in this paper was developed by the authors within the research project “Efficacia ed efficienza della governance paesaggistica e territoriale in Sardegna: il ruolo della VAS e delle IDT” [Efficacy and efficiency of landscape and environmental management in Sardinia: the role of SEA and of SDI] CUP: J811J11001420007 funded by the Autonomous Region of Sardinia under the Regional Law n° 7/2007 "Promozione della ricerca scientifica e dell’innovazione tecnologica in Sardegna".

References

1. Khakee A. Evaluation and planning: inseparable concepts. Town Planning Review 1998;69(4):359-16.
2. Goodchild M. Towards GeoDesign: Repurposing cartography and GIS? Cartographic Perspectives 2010;66:7-15.
3. Craglia M, Bie K, Jackson D, Pesaresi M, Remetey-Füllöp G, Wang C et al. Digital Earth 2020: towards the vision for the next decade. International Journal of Digital Earth 2012;5(1).
4. Campagna M, Craglia M. The SocioEconomic Impact of the Spatial Data Infrastructure of Lombardy. Environment and Planning B: Planning and Design 2012;39(6):1069-15.
5. Geertman S, Stillwell J. Planning support systems: content, issues and trends. In: Geertman S, Stillwell J, editors. Planning systems best practice and new methods, Dordrecht, The Netherlands: Springer; 2009. p. 1-26.
6. Harris B. Beyond Geographic Information Systems: computer and the planning professionals. Journal of American Planning Association 1989;55(1):85-6.
7. Klosterman R. Preface. In: Geertman S, Stillwell J, editors. Planning systems best practice and new methods. Dordrecht, The Netherlands: Springer; 2009.
8. te Brömmelstroet M. Transparency, flexibility, simplicity: From buzzwords to strategies for real PSS improvement. Computers, Environment and Urban Systems 2012;36(1):96-9.
9. Steinitz C. A framework for Geodesign. Redlands, CA, United States: ESRI Press; 2012.
10. Brail R, Klosterman R. Planning Support Systems: integrating Geographic Information Systems, models, and visualization tools. Redlands, CA, United States: ESRI Press; 2001.
11. Weske M. Business Process Management: Concepts, Languages, Architectures. Berlin Heidelberg: Springer-Verlag; 2012.
12. Zanon B. Planners' Technical Expertise: Changing Paradigms and Practices in the Italian Experience. Planning Practice & Research 2014; 29(1):75-21.
13. Partidario M. Strategic Environmental Assessment Better Practice Guide - methodological guidance for strategic thinking in SEA. For the Portuguese Environment Agency and Redes Energéticas Nacionais (REN), SA. Lisbon; 2012.
14. Emshoff J.R. Planning the process of improving the planning process: A case study in meta-planning. Management Science 1978; 24(11):1095-14.
15. de Bettencourt J, Mandell M, Polzin S, Sauter S, Schofer J. Making planning more responsive to its users: the concept of metaplanning. Environment and Planning A 1982;14(3):311-12.
16. Campagna M. Geodesign, Planning Support Systems and Metaplanning, Disegnare con 2013;6(11):133-8.
17. Petz C. Web services orchestration and choreography. Computer 2003;36(10):46-7.
18. Kiehle C, Heier C, Greke K. Requirements for next generation spatial data infrastructures-standardized web based geoprocessing and web service orchestration. Transaction in GIS 2007;11(6):819-16.
19. Foerster T, Schäffer B, Baranski B, Brauner J. Geospatial Web Services for Distributed Processing: Applications and Scenarios. In: Zhao P, Di L, editors. Geospatial Web Services: Advances in Information Interoperability. IGI Global; 2011. p. 245-286.
20. Stollberg B, Zipf A. Geoprocessing Services for Spatial Decision Support in the Domain of Housing Market Analyses - Experiences from Applying the OGC Web Processing Service Interface in Practice. In: Bernard L, Friis-Christensen A, Pundt H, Compte I, editors. AGILE 2008 Conference. Taking Geoinformation Science One Step Further (2008). Girona; 2008.
21. OGC. OpenGIS Web Processing Service (OGC implementation specification No. OGC 05-007r7). Open Geospatial Consortium; 2007.
22. ISO/TC 211. Geographic information - Services (ISO Standard 19119 No. ISO 19119). International Organization for Standardization; 2005.
23. Alonso G, Casati F, Kuno H, Machiraju V. Web Services. 1st ed. Springer Verlag; 2004.
24. Weerawarana S, Curbera F, Leymann F, Storey T, Ferguson D. Web Services Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-Reliable Messaging, and More. Prentice Hall PTR 2005.
25. Hopkins L. Methods for generating land suitability maps: a comparative evaluation. Journal for American Institute of Planners 1977; 34(1):19-11.