Chapter 4

The Intersecting Storage Rings (ISR): The First Hadron Collider

Christian Fabjan and Kurt Hübner

4.1 Introduction

In 1956, with the CERN Proton Synchrotron (CPS) still under construction, a group was formed at CERN to study new accelerators reaching higher energy and/or intensity. This initiative was to assure CERN’s future development and strengthen its international standing [1].

The CPS was brought into operation in 1959. It worked very reliably, delivering protons at an energy of 25 GeV. This provided one more reason for the study group to propose adding two storage rings tangential to each other and to the CPS. Protons would circulate in opposite directions, stored in the rings for many hours, and would collide at one point providing collisions at a centre-of-mass energy inaccessible with conventional synchrotrons [Box 4.1]. It would require a synchrotron of 1300 GeV to reach the same centre-of-mass energy as these Intersecting Storage Rings (ISR). Clearly, this new technique offered a tremendous leap into new territory for particle physics [2].

By 1962 this idea was taken a step further by proposing concentric rings intersecting at eight points (Fig. 4.1), substantially reducing the foot-print of the facility and allowing a number of experimental groups to work independently and simultaneously.

Remarkably, the approach was driven not so much by the potential users, the particle physicists, but mainly by accelerator physicists and engineers who enthusiastically advocated the new technology. Having had leading positions in the CPS construction team, they brought their experience and expertise to the study group. The particle physicists were occupied with mastering experimentation at the CPS, and the few who reflected on the future rather thought of an extrapolation of the techniques they had been developing there.
The majority of particle physicists therefore lent support to an alternative to the ISR — a large proton synchrotron of much higher energy than the CPS. This project was preferred as it could provide a large variety of intense secondary beams, and would allow continuing the familiar style of experimentation. Eventually, a proton energy of 300 GeV was agreed upon by these scientists.

After some hesitation and considerable (at times heated) discussions between European particle physicists and CERN management, the latter decided in 1964 to opt for the ISR and to defer the more expensive 300 GeV accelerator. The then Director-General, Victor Weisskopf, showed the vision and persuasiveness to convince both the particle physics community and the CERN Council, which approved the ISR project at the end of 1965 with Kjell Johnsen as project leader. It was an audacious bet to maintain CERN’s competitiveness at relatively low cost but at the price of a yet unproven concept. The ISR project is an interesting example how reticent research is driven into a new domain by innovative technology.

The Machine

Already during the design phase two topics were identified as requiring major technological progress: (i) the average residual gas pressure in the vacuum chamber in which the proton beams circulated would have to be less than 10^{-7} Pa

Fig. 4.1. Layout of the Intersecting Storage Rings with the PS injector.

The 300 GeV study was intensively resumed in 1968 and led to the construction of the SPS operating from 1976 onwards (Chapter 5).
The Intersecting Storage Ring (ISR) (about 10^{-12} times atmospheric pressure) to avoid that the beams would lose protons too quickly or increase their transverse dimensions due to interactions with residual gas. Four orders of magnitude had to be gained relative to vacuum achieved at the CPS. The required Ultra High Vacuum (UHV) technology would have to be developed with European industry. (ii) For the necessarily high interaction rate of the colliding beams, very intense beams had to be accumulated. This was to be obtained by stacking injected proton beam pulses from the CPS by a radio-frequency (RF) system imparting a small, step-wise acceleration to each injected pulse. This technique, first tested in the US, was vital for the new facility and would have to be mastered by CERN. To this end, a 2 MeV electron model of the ISR (CESAR) was constructed and successfully operated in 1964, proving the feasibility of technologies and at the same time qualifying the vacuum industry in a fine example of efficient technology transfer. The success of CESAR provided additional momentum to the project as it progressed through the approval phase.

In January 1971, barely five years after approval and slightly ahead of schedule, beams were injected and stored in both rings, producing the highest energy proton-proton collisions ever achieved on earth. This was duly celebrated at the inauguration ceremony in October (Fig. 4.2).

Fig. 4.2. ISR inauguration: The project leader, K. Johnsen, proudly hands the ISR key to the president of the CERN Council, E. Amaldi. Also on the platform (from left to right): former Director-General W. Weisskopf, the French Secretary of State M. Antonioz, Director-General W. Jentschke and W. Heisenberg, far right.
Until the 1960s, the interaction of high energy particles with matter was studied in the laboratory by directing beams from accelerators onto targets, in which secondary particles are produced. The energy \(E_{\text{cm}} \) available in the centre-of-mass system of two colliding particles, one of which is at rest, increases with the square root of the energy \(E \) of the incident particle. It was recognized in the 1930s that colliding particles head-on would allow to fully exploit the kinetic energy of both particles, yielding \(E_{\text{cm}} = 2E \) for identical particles, but it was thought to be too difficult, as the intensity of available beams was low. The principle was however successfully demonstrated in 1961 for \(e^+e^– \) collisions in a single storage ring where a bunch of \(e^+ \) and one of \(e^– \) circulated in opposite directions to meet twice per revolution, to be the first \(e^+e^– \) circular collider.

A **storage ring** consists of a synchrotron lattice [Box 2.1] and a beam tube under high vacuum to minimize losses and achieve a long beam lifetime. Increasing the number of circulating bunches per ring \(k_b \) leads to a proportionally higher collision rate, or luminosity [Box 6.1], as well as an increase in the number of experiments (up to \(2k_b \)) that can be accommodated. Sufficiently dense and intense beams can be accumulated by repeated injection. The synchrotron radiation emitted by the \(e^+ \) and \(e^– \) in the bends of the lattice reduces the spread in energy and the amplitude of transverse oscillations, which is important when merging the injected beam with that already stored. But the RF power needed to compensate losses due to synchrotron radiation, proportional to \((E/m_0c^2)^4/\rho \), limits the top energy \(E \) of \(e^+e^– \) circular colliders, even with a large bending radius \(\rho \), because \(e^+/– \) mass \(m_0 \) is small. For very high energy collisions (\(E_{\text{cm}} \gg 0.4 \text{ TeV} \)) **linear** \(e^+e^– \) **colliders** are favoured. These consist of opposing linacs with the beams tightly focused at the collision point to get a sufficient rate of interaction.

Proton-proton and \(\bar{p}-p \) colliders, operate according to the same principle as \(e^+e^– \) colliders, with counter-rotating beams. The maximum beam energy is proportional to \(\rho B \), where \(B \) is the magnetic field, so the design strives for large \(\rho \) and \(B \). Two separate rings with opposite vertical magnetic field are required for \(p-p \) **colliders**, which provide collisions at intersection points. The magnets can be separate (ISR) or in common, each magnet having two bores (LHC). High beam intensity and/or dense beams are necessary to achieve a useful collision rate (luminosity). The accumulation mechanism of \(e^+e^– \) colliders is ineffective as synchrotron radiation is far less for heavy protons than for electrons. Beam intensity is built up quickly, either by injecting pulses side-by-side (ISR) or by sequentially stacking high-density bunches (LHC). This is very demanding for the injector system. If the required energy is higher than the injection energy the beam can be slowly accelerated in the storage ring.

The **\(p-\bar{p} \) collider** offers the advantage that counter-rotating beams can circulate in the same vacuum chamber in a single ring, as in \(e^+e^– \) colliders, provided the beam is correctly grouped in bunches. The price to pay is that the production of anti-protons requires an elaborate injector chain. A low-density \(\bar{p} \)-beam is generated by firing a powerful primary \(p \)-beam onto a target. This is then accumulated and compressed by many orders of magnitude using stochastic cooling [Box 6.2]. Nevertheless, the number of antiprotons available remains limited, which impacts on \(p-\bar{p} \) luminosity.
Unsurprisingly, operation of this totally new machine revealed further technological challenges on the way to reaching, and later exceeding, the design specification, at the pressing request of the experimenters. It was the start of a more than decade-long close and fruitful collaboration between them and the ISR staff [3, 4].

The figure of merit of a particle collider is its luminosity L, which determines the collision rate of the beams [Box 6.1]. It is proportional to the product of the two beam currents divided by the effective height (h_{eff}) in the crossing point. All three parameters change as a function of storage time of the beams and are strongly affected by the quality of the vacuum.

The most pressing issue was the improvement of the UHV system to both increase beam lifetime and reduce the background to the experiments due to lost particles. A vigorous programme was launched to eliminate pressure bumps resulting from the gas release by ions impinging on the vacuum chambers and creating an uncontrolled pressure increase. These ions were created by the ionization of the residual gas traversed by the beam particles and were accelerated by the potential difference between beam and vacuum chamber. These pressure bumps were fought by a series of improvements eventually resulting in a totally upgraded vacuum system: extensive installation of titanium sublimation pumps in addition to the sputter-ion pumps, increase of the bake-out temperature to 300°C and glow-discharge cleaning of the vacuum components. During these upgrade interventions clearing electrodes were also systematically installed to remove the electrons trapped in the beam potential, causing beam instabilities. Ultimately, an average pressure of 4×10^{-10} Pa was reached, a unique achievement in such large a system (two rings of 943 m circumference each) resulting in a useful beam lifetime of up to 50 hours. Even more stringent were the requirements for the vacuum in the interaction regions, where a pressure lower than 10^{-10} Pa was required for acceptable background conditions. At the end of the 1960s it was thought that such a low pressure could only be obtained by condensation cryopumping [Highlight 4.2]. Such low pressures also required the development of vacuum gauges of novel design to measure down to the 10^{-11} Pa range [Highlight 4.3].

Effort was next concentrated on stable operation with high beam currents. This required: (i) using feedback to stabilize the incoming beam; (ii) a very low-noise RF-system for stacking; (iii) control of the electromagnetic forces due to beam current by counteracting them with intensity-dependent adjustment of the magnetic guide field during stacking; and (iv) using other feedback systems to counteract the electromagnetic interaction between the beam and the vacuum chamber.
Continuous improvement of beam diagnostics helped in the quest for ever increasing beam currents which eventually reached routinely 40 A, with a record of 57 A, corresponding to 1.14×10^{15} protons.

The ultimate increase in luminosity was achieved by further decreasing h_{eff} through stronger focusing of the beams at one of the interaction points with a “high luminosity insertion”. It was initially implemented with focusing magnets having copper coils and later with more powerful superconducting magnets [Highlight 4.4]. These superconducting magnets, operated at 4.5 K, were installed in cryostats which were fed with liquid helium coolant via novel long screened and flexible coaxial transfer lines. Maximum use was made of the cooling potential of the He vapour from the baths to cool current leads, thermal shields and the lines [Highlight 4.5]. This technological advance was very valuable for superconducting equipment and is now extensively used at the LHC and worldwide.

For the precise determination of luminosity a new technique was invented to accurately measure h_{eff}, the so called “Van der Meer method” [Highlight 4.6], and the relative precision of the beam current measurement was pushed to nearly 10^{-8} with novel current transformers operating at up to 60 A.

During the final years of ISR operation the beam energy was pushed to a maximum of 31.4 GeV, beyond the 26.5 GeV provided by the CPS by the novel acceleration technique of RF phase displacement. It is a tribute to the flexibility of the combined CPS-ISR operation that besides protons the ISR would later store other particles, enabling the study of d–d, p–d, α–α, α–p, and p–antiproton collisions.

However, the single most outstanding ISR legacy to accelerator technology was the development and experimental proof of “Stochastic Beam Cooling”, a technique to squeeze the particle beams and hence increase the luminosity. It takes advantage of the so-called Schottky noise, a statistical signal generated by the finite number of randomly distributed particles in a beam. The theory of Stochastic Cooling was initially developed by S. van der Meer in 1968, but appeared technologically too far-fetched. In 1972 with the advent of highly sensitive spectrum analysers it became possible for the first time to observe Schottky noise on the ISR beams. This observation motivated S. van der Meer to publish his concept of “Stochastic cooling” and led to its experimental proof in the ISR. It launched a development of what would later lead to the attribution of a Nobel Prize (Chapter 6 and Box 6.2). The observation of Schottky noise allowed also a revolutionary leap in beam diagnostic technology, resulting in a hitherto unknown means to non-intrusively monitor in real time many parameters of the beam. It has become a standard method of beam monitoring and diagnostics.

The ISR was a unique tool for particle physics which surpassed many design parameters, such as by a factor 35 the design luminosity, due to perseverant
development of leading-edge technologies by a very devoted and stable staff complement. Most importantly, the ISR served as a test bed and laid the foundation for future Nobel-Prize winning CERN facilities, the Proton–Antiproton collider and the LHC.

Experimental Programme

While the very intense development phase for the ISR machine extended over many years, the committee guiding the ISR experimental programme (ISRC) started its work relatively late, just two years before the collider start-up planned for mid-1971. Two major lines of experimental programmes emerged: “survey” experiments to understand known physics in the new energy regime and “discovery” experiments searching for the Unknown.

In proton–proton collisions particles interact predominantly through the strong or hadronic interaction. In the late 1960s hadronic physics was couched in terms of phenomenological descriptions, lacking a deeper, fundamental understanding and providing little — sometimes even erroneous — guidance for experimental research. The elements of today’s physics understanding, the Standard Model (SM) [Box 6.4] were just starting to take shape. The incipient revolution that was to establish the SM was paralleled by a revolution in experimentation. In 1968, Georges Charpak (Nobel Prize 1992) and collaborators had demonstrated the concept of a new particle position detector, the Multiwire Proportional Chamber (MWPC) [Highlight 4.8], propelling the community with a stroke of genius into the digital age. Nor should the sociological factor be forgotten: small groups, beam exposures of a few days to a few weeks, quick and easy access to the experimental apparatus, characterized the style of experimentation of the time.

The turmoil provoked by three simultaneous uprisings — the emerging SM confronting limited physics understanding, new tools sweeping away old experimental methods and a collaboration sociology struggling to adapt to new experimental imperatives — put its stamp on the early research programme. Particle physics was at the dawn of a “New Age”. Experimentation at the ISR contributed to the “New Enlightenment” [5].

The first years of experimentation, 1971 to 1974

These brought a rich harvest of physics surprises. Among the lasting contributions were the startling observation of the rising of the total-cross section with the centre-of-mass energy, related to the effective size of the proton, and the measurements of elastic scattering, which leaves the protons intact [6]. It required to position particle detectors to within millimetres of the circulating proton beams, a feat accomplished with ingenious technology and excellent collaboration
between the machine and experiment staff [Highlight 4.7]. The most sensational early discovery, however, was the observation of energetic particles frequently produced at very large angles relative to the direction of the proton beams [7]. It revealed also in the strong interactions the point-like constituents of the proton, as previously observed with the electromagnetic probe [8]. It confirmed the internal structure of the proton, containing the whimsically called “quarks”. That protons contain quarks was the emerging consensus. Yet all experimental attempts to detect them as free particles failed, a major ISR legacy: “confinement” was recognized to be a fundamental, unique property of the strong interaction, profoundly shaping its understanding.

The Split-Field Magnet (SFM) was the first general-purpose ISR experimental facility. It was proposed in 1969 by Jack Steinberger, Nobel Prize 1988, as the strategy for exploring terra incognita at the ISR. Audaciously, it bet its existence on the novel MWPC-detector technology, invented just one year earlier. Within five years the facility was built and instrumented with 50,000 MWPC detector channels — an astronomically large number at the time. The simultaneous revolution in the electronics industry was a godsend: The invention of integrated electronic circuits (ICs) provided a cost-effective way of equipping the detector channels with signal processing electronics. The SFM, however, was conceived with the physics prejudices of the late 1960s: hadronic physics phenomena would reveal themselves in the direction about the incident particle beams, where most of the particles are produced. It was not optimal for the unexpected “real action”, the new emerging physics with signatures predominantly at large angles.

While the production of energetic particles at large angles at surprisingly high rates was one of the early ISR physics “sensations”, it was an equally unexpected, ferocious background to other new physics phenomena. It prevented ISR experimenters from discovering the J/ψ due to their limited experimental set ups. This particle was observed simultaneously at two American accelerator laboratories in 1974. It implied the existence of a further, fourth quark, the so-called charm quark, a crucial building block of the SM.

1974–1977: Learning the lessons

The discovery of the J/ψ brought sobering soul-searching to the ISR teams and painfully highlighted the lack of an experimental facility optimized for exploration of the new physics landscape [9]. Such a facility would be centred on a new major magnet. Several groups were studying a facility based on a superconducting solenoid, while another team explored a toroidal geometry. A working group, constituted by the ISR Experiments Committee, ISRC, received the remit to motivate and conceptualize a possible new magnetic facility. With exemplary speed — January to March 1976 — the working group documented the physics
case and explored magnets and instrumentation, but even after extending discussions until August shied away from making a recommendation as to the magnet topology. A workshop in the autumn also failed to choose between solenoid and toroid, leaving it to the ISRC to clearly and decisively motivate its preference for a superconducting solenoid with large, openings in the return yoke for detector instrumentation. The merits of the toroidal geometry were recognized but considered too unproven for rapid realization: it would be another 30 years before a major toroidal magnet would be built for proton–proton collider physics — the ATLAS Muon Spectrometer Toroid [Highlight 8.12]. Finally, the CERN management also rejected the ISRC proposal of the large superconducting solenoid as being too costly and taking too long to build.

This working group nevertheless had a profound influence on CERN’s research agenda. It provided an assessment of state-of-the-art collider experimentation and technologies. Many members of the group would use their work to shape the UA1 and UA2 facilities [Highlights 6.5 and 6.6] at the Proton–Antiproton collider, which were proposed at about the same time.

At the 1976 autumn workshop an innovative solenoidal magnet had been proposed, the Open Axial Field Magnet [Highlight 4.11]. Following the refusal to support a large superconducting facility this more modest spectrometer magnet was to become the centrepiece for the Axial Field Spectrometer (AFS). The AFS incorporated several state-of-the-art detector technologies. It was the first facility at a hadron collider providing very large solid angle coverage for the momentum and energy measurement of particles. It was designed to operate at collisions rates exceeding one million collisions per second, a totally new regime of experimentation. It required the development of a — for hadron colliders novel — “drift detector” [Highlight 4.8], which could register millions of particles per second and measure their trajectories with bubble-chamber type detail and with an accuracy of 0.1 mm. The energy measurement of all the particles was a further essential, new requirement. The technique is called “Calorimetry” [Highlight 4.10]: the particles are absorbed in specially selected dense materials, in which detectors are embedded which measure the cascade of particles resulting from the absorption process [Box 6.3]. The physics research demanded energy measurements at the percent level, prompting major R&D programmes. One technique used the ionization in liquid argon produced by the particles in the cascade, a concept, which later would be employed in many other experiments. Electrons and muons frequently reveal new physics. For the identification of electrons the effect of “Transition Radiation” [Highlight 4.9] was used for the first time and developed into a practical instrument: Ultra-relativistic particles, e.g. energetic electrons, produce soft X-rays in the passage through “radiators”, a few
hundred 20 micron-thin lithium or polyethylene foils, spaced some 200 microns apart. A special form of MWPCs was developed to detect these X-rays, covering many square metres.

These more evolved and novel experimental approaches brought a new level of complexity and longer lead-times from proposal to data-taking: the fruit of these efforts came a few years too late to make the potentially grand impact that was expected from, and deserved by the ISR. Despite this somewhat critical assessment of the experimental situation, a wealth of significant results were obtained, all of which contributed to shaping our understanding, as documented e.g. in [10].

Final years of ISR operation, 1977 to 1983

The experimenters focused on a variety of rare and energetic phenomena: leptons, photons, charmed particles, jets and search for new particles with masses beyond 30 proton masses. This strategy was vindicated by the discovery of the Upsilon (Υ) particle, about ten times more massive than the proton, albeit at the U.S. Fermi National Laboratory in 1977. This was a further crucial building block of the SM and yet another cruel blow for the ISR, especially as the first evidence for the Υ at the ISR was obtained just five months later by the R806 collaboration [11].

The evolving physics understanding put a stamp on the research programme and consequently on machine operation: go for the highest possible collider energy and collision rates. The collision energy was pushed to 63 GeV, and record-breaking collision rates in excess of one million per second were achieved — a successful rehearsal for the LHC. This operation allowed a multifaceted programme with emphasis on understanding the hadronic interactions through precise tests of the emerging theory, Quantum Chromodynamics, QCD [10] [Box 4.2]. One early major support of QCD was the discovery by the AFS collaboration (Fig. 4.3) of the prompt energetic photon production in p–p collisions, the QCD analogue of the electromagnetic Compton scattering. These photons are predominantly produced in the scatter of a quark on a gluon, providing evidence for the existence of gluons. The observation of “jets”, the indirect manifestation of quarks and gluons, concurrent with the observations at the Proton–Antiproton collider, was further strong evidence for QCD [10, 11].

The ISR was a superb machine, a test bed for ground-breaking accelerator and detector technologies. It was a powerful and well-performing collider, but the detectors it would have deserved and required for discoveries within its reach came too late. One reason was that its experimental programme, starting in 1971, was in competition with that of the SPS, approved in the same year, resulting in tight resources, but the fact is that with regard to the experimental programme the physics community was simply not prepared for the enormous jump in energy and physics potential that the ISR provided.
By the end of 1983 the CERN Proton-Antiproton collider had produced the first W- and Z- bosons, carriers of the electroweak interaction, a milestone towards the completion of the SM. The construction of LEP had started, which would vindicate the SM with near perfection. For the CERN management it was time to turn a page. At the closure ceremony of the ISR in June 1984, the former Director-General and staunch ISR supporter Viktor Weisskopf said he “had come to praise the ISR…The really important thing about the ISR is its success as an instrument, because that fact did change the landscape of high energy physics.”
Quantum chromodynamics (QCD)

Box 4.2

In 1957 electron-proton scattering experiments showed that the proton has a finite size (about 10^{-13} cm radius), and in 1968 that it contains point-like scatterers, later identified as quarks. The quark model brought a dramatic simplification, explaining all known hadrons as bound states of these constituents: 3 quarks for baryons, a quark and antiquark for mesons. The spectroscopy of strange, charmed and beauty particles, and the discovery of the top quark established the 3 “families” [Box 6.4].

Colour, a new quantum number proper to quarks, was proposed in 1964 and QCD, starting from a model with 8 *gluons* as force carriers and a strong coupling constant α_S was progressively developed to become the modern theory of the strong interaction. Experimental evidence for the gluon came in 1979. However, there remained a paradox: quarks and gluons appeared to be strictly *confined* within hadrons by a strong force, as if a “spring” prevented them being pulled apart until it broke, producing a jet of hadrons; but when struck by hard photons or W (i.e. lepton or neutrino deep inelastic scattering) quarks inside hadrons appeared to be free and point-like, not interacting with each other, but sharing the hadron momentum, a property responsible for *scaling*, i.e. having collision properties dependent only on dimensionless kinematical parameters, but not on an absolute energy scale.

The strong self-interaction (S-I) of gluons is the key to this mystery. In 1973 it was demonstrated that at high energies, i.e. at short distances between quarks, the colour coupling constant α_S tends to zero, referred to as *asymptotic freedom*. At long distance or low energy, the gluon S-I makes α_S grow, leading to *confinement*. Thus α_S “runs”, i.e. changes with the energy scale or resolving power [Box 5.1].

QCD offers another amazing fact. Usually the mass of an object is the sum of masses of its constituents. However, already the atomic nucleus shows a tiny mass defect, which is the key to nuclear energy. For protons and neutrons, the mismatch becomes dramatic: they have a mass of about one GeV/c2, but are made of “up” and “down” quarks of a few MeV/c2 and of massless gluons. It is actually the kinetic energy of the frantically moving constituents which is responsible for most of their mass, hence of the mass of the visible universe, a condition referred to as “mass without mass”.

In the expanding (cooling) universe the confinement of previously free quarks into hadrons, occurred during the "quark-hadron transition", a few μs after the Big Bang. Colliding energetic heavy ions allows us to re-create microscopically the temperature conditions reigning at that time. One observes effects interpreted as a brief inverse phase transition with deconfined quarks and gluons: the “Quark-Gluon Plasma”.

Beyond QCD basic principles, its complex manifestations in multi-particle final states give rise to the main background in the search for new physics beyond the SM. Due to S-I, and large α_S sorting through this is a monumental task. When LHC protons collide one has to know their composition in terms of elementary objects, i.e. the fractions and kinematic distributions of valence (leading) quarks, gluons and pairs of “sea” quarks and antiquarks of all flavours born from gluon splitting (*scaling violation*).

For further reading: F. Wilczek, QCD Made Simple, *Physics Today*, *S3-N8* 22-28, (2000).