Section	Page	Title	Authors
REVIEW	907	Chemotherapy for hepatocellular carcinoma: The present and the future	Le Grazie M, Biagini MR, Tarocchi M, Polvani S, Galli A
MINIREVIEWS	921	Is the 25-year hepatitis C marathon coming to an end to declare victory?	Ahmed KT, Almashhrawi AA, Ibdah JA, Tahan V
ORIGINAL ARTICLE	930	Small for size syndrome difficult dilemma: Lessons from 10 years single centre experience in living donor liver transplantation	Shoreem H, Gad EH, Soliman H, Hegazy O, Saleh S, Zakaria H, Ayoub E, Kameel Y, Abouelhlla K, Ibrahim T, Marawan I
Observational Study	945	Outcomes of pregnancy in patients with known Budd-Chiari syndrome	Khan F, Rawe I, Martin B, Knoc E, Johnston T, Elliot C, Lester W, Clon F, Olliff S, Mehrzad H, Zia Z, Tripathi D
About cover

Editorial Board Member of World Journal of Hepatology, Hakan Alagozlu, MD, Professor, Department of Gastroenterology, Cumhuriyet University Hospital, 58040 Sivas, Turkey

AIM AND SCOPE

World Journal of Hepatology (WJH, online ISSN 1948-5182, DOI: 10.4254), is a peer-reviewed open access academic journal that aims to guide clinical practice and improve diagnostic and therapeutic skills of clinicians.

WJH covers topics concerning liver biology/pathology, cirrhosis and its complications, liver fibrosis, liver failure, portal hypertension, hepatitis B and C and inflammatory disorders, steatohepatitis and metabolic liver disease, hepatocellular carcinoma, biliary tract disease, autoimmune disease, cholestatic and biliary disease, transplantation, genetics, epidemiology, microbiology, molecular and cell biology, nutrition, geriatric and pediatric hepatology, diagnosis and screening, endoscopy, imaging, and advanced technology. Priority publication will be given to articles concerning diagnosis and treatment of hepatology diseases. The following aspects are covered: Clinical diagnosis, laboratory diagnosis, differential diagnosis, imaging tests, pathological diagnosis, molecular biological diagnosis, immunological diagnosis, genetic diagnosis, functional diagnostics, and physical diagnosis; and comprehensive therapy, drug therapy, surgical therapy, interventional treatment, minimally invasive therapy, and robot-assisted therapy.

We encourage authors to submit their manuscripts to WJH. We will give priority to manuscripts that are supported by major national and international foundations and those that are of great basic and clinical significance.

INDEXING/ABSTRACTING

World Journal of Hepatology is now indexed in Emerging Sources Citation Index (Web of Science), PubMed, PubMed Central, and Scopus.

FLYLEAF

I-IV Editorial Board

EDITORS FOR THIS ISSUE

Responsible Assistant Editor: Xiang Li
Responsible Science Editor: Fang-Fang Ji
Responsible Electronic Editor: Huan-Liang Wu
Proofing Editor-in-Chief: Lian-Sheng Ma
Proofing Editorial Office Director: Jin-Lei Wang

NAME OF JOURNAL
World Journal of Hepatology

ISSN
ISSN 1948-5182 (online)

LAUNCH DATE
October 31, 2009

FREQUENCY
36 Issues/Year (8th, 18th, and 28th of each month)

EDITORS-IN-CHIEF
Clara Balsamo, PhD, Professor, Department of Biomedicine, Institute of Molecular Biology and Pathology, Rome 00161, Italy

Wan-Long Chuang, MD, PhD, Doctor, Professor, Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan

EDITORIAL BOARD MEMBERS
All editorial board members resources online at http://www.wjgnet.com/1948-5182/editorialboard.htm

EDITORIAL OFFICE
Xiu-Xia Song, Director
World Journal of Hepatology
Baishideng Publishing Group Inc
7901 Stoneridge Drive, Suite 501,
Pleasanton, CA 94588, USA
Telephone: +1-925-2238242
Fax: +1-925-2238243
E-mail: editorialoffice@wjgnet.com
Help Desk: http://www.f6publishing.com/helpdesk
http://www.wjgnet.com

PUBLISHER
Baishideng Publishing Group Inc
7901 Stoneridge Drive, Suite 501,
Pleasanton, CA 94588, USA
Telephone: +1-925-2238242
Fax: +1-925-2238243
E-mail: bpgoffice@wjgnet.com
Help Desk: http://www.f6publishing.com/helpdesk
http://www.wjgnet.com

PUBLICATION DATE
July 28, 2017

COPYRIGHT
© 2017 Baishideng Publishing Group Inc. Articles published by this Open Access journal are distributed under the terms of the Creative Commons Attribution Non-commercial License, which permits use, distribution, and reproduction in any medium, provided the original work is properly cited, the use is non commercial and is otherwise in compliance with the license.

SPECIAL STATEMENT
All articles published in journals owned by the Baishideng Publishing Group (BPG) represent the views and opinions of their authors, and not the views, opinions or policies of the BPG, except where otherwise explicitly indicated.

INSTRUCTIONS TO AUTHORS
http://www.wjgnet.com/bpg/gerinfo/204

ONLINE SUBMISSION
http://www.f6publishing.com
Outcomes of pregnancy in patients with known Budd-Chiari syndrome

Faisal Khan, Ian Rowe, Bill Martin, Ellen Knox, Tracey Johnston, Charlie Elliot, Will Lester, Frederick Chen, Simon Olliff, Homoyon Mehrzad, Zergham Zia, Dhiraj Tripathi

Faisal Khan, Ian Rowe, Dhiraj Tripathi, Liver Unit, Queen Elizabeth Hospital, Birmingham B15 2GW, United Kingdom
Bill Martin, Ellen Knox, Tracey Johnston, Birmingham Women’s Hospital, Birmingham B15 2TG, United Kingdom
Charlie Elliot, Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield S10 2JF, United Kingdom
Will Lester, Frederick Chen, Haematology and Thrombophilia Centre, Queen Elizabeth Hospital, Birmingham B15 2GW, United Kingdom
Simon Olliff, Homoyon Mehrzad, Zergham Zia, Interventional Radiology, Queen Elizabeth Hospital, Birmingham B15 2GW, United Kingdom

Author contributions: Tripathi D conceived the study idea; Khan F and Tripathi D designed the study; Khan F conducted the analyses and drafted the manuscript; all authors contributed to discussing, editing and commenting on the manuscript.

Institutional review board statement: Study was approved the Audit office of the institution (attached).

Conflict-of-interest statement: There are no conflicts of interest to report.

Data sharing statement: No additional data are available.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Invited manuscript

Correspondence to: Dr. Faisal Khan, Liver Unit, Queen Elizabeth Hospital, Mindelsohn Way, Birmingham B15 2TH, United Kingdom. faisalkhan@doctors.org.uk
Telephone: +44-121-6272000

Received: December 12, 2016
Peer-review started: December 13, 2016
First decision: March 13, 2017
Revised: April 14, 2017
Accepted: June 30, 2017
Article in press: July 3, 2017
Published online: July 28, 2017

Abstract

AIM
To analyse the risk of pregnancy (a prothrombotic state) in patients with Budd-Chiari Syndrome (BCS).

METHODS
Retrospective study of pregnancy in women with known BCS at single center from January 2001 to December 2015.

RESULTS
Out of 53 females with BCS, 7 women had 16 pregnancies. Median age at diagnosis of BCS in these women was 25 years (range 21-34 years). At least one causal factor for BCS was identified in 6 women (86%). Six women had undergone radiological decompressive treatment. All patients had anticoagulation. Six fetuses were lost before 20 wk gestation in 2 women. There were 9 deliveries over 32 wk gestation and one delivery at 27 wk. All infants did well. Seven babies were born by emergency caesarean section. There were no cases of thrombosis. Two patients had notable vaginal (PV) bleeding in 3 pregnancies. None of the patients had variceal haemorrhage. Two patients were diagnosed with pulmonary hypertension, one during pregnancy.
and the other in the post-partum period. There was no maternal mortality.

CONCLUSION

Maternal outcomes in patients with treated BCS are favourable and fetal outcomes beyond 20 wk gestation are good. There has been increased rate of caesarean section. Pulmonary hypertension is an important finding that needs further validation. These patients should be managed in centers experienced in treating high-risk pregnancies.

Key words: Budd-Chiari syndrome; Pregnancy; Portal hypertension; Pulmonary hypertension; Thrombophilia

© The Author(s) 2017. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Pregnancy is a prothrombotic state and can cause adverse outcome in patients with Budd-Chiari syndrome (BCS). In our study, maternal outcome in patients with known and treated BCS was good. However, most deliveries were carried out by emergency caesarean section (7/10). There was high incidence of placental disease leading to caesarean section. Fetal outcome beyond 20 wk gestation was also good. With careful monitoring of anti-coagulation, there were no cases of thrombosis and only a minority of patients had noteworthy bleeding complications. Development of pulmonary hypertension in two patients several years after TIPSS is an important finding that warrants further studies.

Khan F, Rowe I, Martin B, Knox E, Johnston T, Elliot C, Lester W, Chen F, Olliff S, Mehrzad H, Zia Z, Tripathi D. Outcomes of pregnancy in patients with known Budd-Chiari syndrome. World J Hepatol 2017; 9(21): 945-952. Available from: URL: http://www.wjgnet.com/1948-5182/full/v9/i21/945.htm DOI: http://dx.doi.org/10.4254/wjh.v9.i21.945

INTRODUCTION

Budd-Chiari syndrome (BCS) is a rare disorder caused by hepatic venous outflow obstruction and resulting hepatic dysfunction due to sinusoidal congestion, ischaemic injury to the liver and portal hypertension. The main mechanism for BCS is thrombosis of the hepatic veins or of the terminal portion of the inferior vena cava.\(^1\) The management using a stepwise regimen is largely successful with anticoagulation and interventional radiology alone. Stepwise regimen includes; (1) anticoagulant therapy for an indefinite period of time; (2) angioplasty or stenting for stenosis of hepatic veins; and (3) decompressive techniques [surgical shunt or transjugular intrahepatic porto-systemic shunts (TIPSS)], for patients who are non-responsive to medical treatment or not candidates for angioplasty/stenting.\(^9\) TIPSS has a lower morbidity and mortality rate than surgery and is a preferred approach. The outcomes are favourable with 10-year survival approaching 90%\(^6\).\(^8\).\(^9\)

Usually multiple risk factors for venous thromboembolism are present in patients with BCS.\(^1\)\(^2\)\(^3\). In one study, 84% of 163 patients with BCS had at least one thrombotic risk factor, and 46% of these patients had more than one prothrombotic risk factor; the most common was myeloproliferative neoplasia (MPN) (49% of 103 tested patients)\(^9\). In another study of 43 women with BCS, at least one thrombotic risk factor (not considering pregnancy as risk factor) was identified in 40 women (93%) including MPN in 56% of study participants. Other thrombotic risk factors include mutation in Factor V Leiden and prothrombin gene, protein C, protein S or antithrombin deficiency, antiphospholipid syndrome, hyperhomocysteinemia and paroxysmal nocturnal haemoglobinuria. BCS may also be a complication of systemic vasculitides such as Bechet’s disease\(^1\)

BCS mainly affects women of childbearing age and pregnancy can be a crucial issue. There is conflicting data on prevalence of pregnancy related BCS. A systematic review and meta-analysis of twenty studies demonstrated a pooled prevalence of pregnancy-related BCS of 6.8%\(^1\). However another study showed that pregnancy is unlikely to cause BCS in the absence of other thrombotic risk factors\(^1\).

Pregnancy is a hypercoagulable state and earlier studies reported that women with BCS could be at risk of developing severe exacerbation of their underlying disease during pregnancy\(^13\)\(^14\). Rautou et al\(^1\) conducted a study on outcome of pregnancy in women with known and treated BCS and concluded that good maternal outcome could be achieved with current treatment modalities and close surveillance of BCS. Therefore, BCS cannot be considered a contraindication to pregnancy in stable patients with well-controlled disease.

As the available literature on pregnancy complications in women with known BCS remains scarce, we performed this study of women treated at our tertiary centre for BCS who had become pregnant.

MATERIALS AND METHODS

We used the definitions related to outcome of pregnancies as previously described by Rautou et al\(^1\): (1) date of diagnosis of BCS: the first imaging modality showing an obstructed venous outflow tract; and (2) miscarriages: A spontaneous loss of pregnancy before 20 weeks of gestation. Outcome of the pregnancy: (1) favourable: Live birth occurred at 32 or more completed weeks of gestation, with a healthy infant and no serious obstetrical complication (bar intrahepatic cholestasis); and (2) poor: Otherwise pregnancy outcome. Rotterdam prognostic index was calculated as previously described\(^4\).

The electronic records of all female patients dia-
gnosed with BCS between January 2001 and December 2015 at our tertiary care referral center were retrospectively analysed. The data was collected prospectively and radiology records of these patients were also searched. Those that became pregnant during the follow-up for BCS were included in the study. Patients in whom pregnancy occurred before BCS was diagnosed were excluded.

All patients were tested for the known prothrombotic factors. Combined oral contraceptive pill (OCP) use within the 3 mo preceding diagnosis of BCS was considered a thrombotic risk factor.

Where possible, patients had pre-pregnancy counselling and were made aware of the potential complications that may occur during pregnancy. Patients with known varices or portal hypertension had pre-pregnancy gastroscopy to ensure varices had been treated. These patients had further gastroscopies for variceal surveillance during second trimester. Patients with TIPSS had regular abdominal ultrasound to ensure patency of the TIPSS. The patients were monitored in a joint haematological/obstetric clinic.

Given the risk of embryopathy and fetal loss associated with warfarin, low molecular weight heparin (LMWH) was substituted for warfarin as soon as pregnancy was diagnosed, or prior to conception in one patient who had two in-vitro fertilisation treatments. The dose of LMWH was adjusted to maintain therapeutic factor Xa activity in selected cases under haematology supervision. LMWH treatment was replaced by warfarin following the delivery.

RESULTS

Baseline characteristics

Fifty-three female patients under follow-up for BCS were identified. Out of these, 7 patients had 16 pregnancies during the study period.

Median age of diagnosis of BCS was 25 years (range 21-34 years). Five (71%) patients had abdominal pain as the presenting complaint and symptoms were mainly chronic in nature. One patient had variceal haemorrhage and three patients had ascites on presentation of BCS. None of them had hepatic encephalopathy. None of the patients had other significant co-morbidities when the diagnosis of BCS was established. The characteristics of these patients including Rotterdam and Clichy scores at the time of diagnosis of BCS are given in Table 1. The laboratory values were stable at time of conception in all patients and ascites had resolved.

BCS was managed by anticoagulation therapy and radiological interventions with the aim to recanalise any outflow obstruction. Six out of the 7 patients underwent liver decompression procedures before conception. Procedures included dilatation of right hepatic vein (one patient), TIPSS (in four patients) and right hepatic vein stenting (one patient). One patient did not have any intervention for decompression and was managed with oral anticoagulation (warfarin) alone. All patients had anticoagulation. None of the patients in our series required surgical porto-systemic shunting or liver transplantation as a definite treatment of BCS.

At least one causal factor for hepatic vein obstruction was identified in 6 of these 7 women (86%). JAK 2V617F mutation alone was seen in 2 patients; factor V Leiden alone in one; JAK 2 mutation and factor V Leiden in one patient; JAK 2 mutation and OCP use in one patient; and factor V Leiden and OCP use in one patient. One patient did not have any identifiable risk factor.

Pregnancy course

Median age at conception was 32 years (range 23-39). Median time between diagnosis of BCS and conception was 5 years (range 3 mo-13 years). Follow up after the diagnosis of BCS in the seven women with pregnancies was for a median of 7 years (range 3-14 years). All patients that became pregnant had well compensated liver disease at the time of each conception and stigmata of decompensation of liver disease (ascites, in majority of patients at presentation) were no longer present at the time of any pregnancy. Gestational course is detailed in Table 2.

Aspirin (along with LMWH) was administered to one patient in 2 pregnancies (patient 6) for Essential Thrombocytosis. This patient was also treated with interferon for JAK 2 positive MPN. No patient was treated with beta-blockers during pregnancy.

Six out of the 16 (38%) pregnancies miscarried with fetal loss before 20 wk gestation. Six miscarriages/failed pregnancies occurred in 2 patients. One miscarried at 5 wk when she presented with vaginal bleeding. She was not aware of the pregnancy. The other patient had 5 miscarriages over a 9-year period. Two out of 5 were after the first trimester and these were attributed to cervical weakness and, therefore, she had cervical sutures in the following pregnancies (after 13 wk of gestation) leading to two successful deliveries.

Out of the 10 pregnancies reaching beyond 20 wk gestation, there were 3 vaginal deliveries and 7 caesarean sections. There was one very preterm birth at 27 wk and 5 preterm deliveries between 32 and 35 wk gestation, all with favourable neonatal outcomes. Four pregnancies resulted in delivery after 36-wk gestation, again all with favourable outcome.

Seven (70%) infants were delivered via emergency caesarean sections. Indications for caesarean section were varied, including fetal distress in three pregnancies; pre-eclampsia in one, breech presentation in one, bleeding from placenta praevia in one patient and difficult labour due to cervical suture in one patient.

Specific complications

Four patients developed intrahepatic cholestasis of pregnancy (ICP) in five pregnancies and they were treated with ursodeoxycholic acid. One patient had pre-eclampsia needing emergency caesarean section.
Table 1 Baseline characteristics of the patients at presentation

Patient ID	1	2	3	4	5	6	7
Age at diagnosis (yr)	34	21	30	21	31	24	25
Symptoms at presentation	Ascites	Osseous pain	Abdominal pain; ascites	Abdominal pain; ascites	Abdominal pain, fever, mouth ulcers	Ascites, renal failure and sepsis (ITU admission)	Abdominal pain
Risk factors for BCS	JAK 2 positive MPD; OCP	JAK 2 positive mutation	None identified	Factor V Leiden; OCP	JAK 2 positive MPD (Essential Thrombocythaemia); Factor V Leiden	None	None
Encephalopathy	None	Mild	None	None	None	None initially	None
Ascites	None	Moderate	None	None	None	None	None
INR	1.7	1.4	1.2	1.3	1.7	1.4	1.5
Albumin (g/L)	28	37	49	49	49	25	26
Bilirubin (umol/L)	19	18	20	18	11	51	52
ALT (U/L)	71	31	-	57	-	-	-
AST (U/L)	134	49	20	34	27	277	43
Urea (mmol/L)	2.7	2.3	2.9	4.7	2.9	4.4	2
Creatinine (mmol/L)	72	43	70	68	51	92	70
Sodium (mmol/L)	143	137	143	142	140	130	133
MELD	19	14	6	10	12.37	14	17
UKELD	53	53	48	49	49	49	55
HB (g/L)	137	121	155	128	150	147	85
WCC (10^9/L)	7.9	9.6	10.9	5.7	5.7	28.8	6.8
Platelets (10^9/L)	345	183	307	247	411	400	226
Rotterdam PI	1.116	0.072	1.12	0.07	1.08	1.244	1.168
Clichy PI	4.39	1.99	3.13	4.04	3.44	7.54	7.35
Liver biopsy	Not done	Not done	Not done	Suggestive of hepatic vein obstruction	Consistent with Hepatic venous outflow obstruction	Not done	Not done
Liver biopsy	-	-	-	-	-	-	-
Level of obstruction	Left hepatic vein	Hepatic vein	Hepatic vein	Left hepatic vein	Right hepatic vein	Hepatic vein	Right hepatic vein
Radiological intervention	TIPSS	TIPSS	None	TIPSS	TIPSS	TIPSS	TIPSS
Type of TIPSS	Viatorr (covered)	Viatorr (covered)	-	-	Memotherm, then Viatorr	Memotherm (Uncovered)	
Medications post intervention	Warfarin	Warfarin	Warfarin	Warfarin	Warfarin	Warfarin	
Duration of follow up (yr)	4	5	7	3	13	14	14
Comments/ complications following intervention	TIPSS Stent redilatation after a week of insertion	TIPSS stent - needed to be re-dilated in 2 yr	Maintained on oral anticoagulation (warfarin) and did not require any intervention	Vascular Wallstent was re-canalized after 2 yr	Inferior RHV dilated 5 yr after the diagnosis (developed ascites and had compliance issues).	Bleeding from hepatic nodule (with INR > 9). Managed conservatively. Later stent was changed to a covered one for TIPSS stenosis	-

MPD: Myeloproliferative disorder; TIPSS: Trans-jugular intrahepatic post-systemic shunt; OCP: Oral contraceptive pills; INR: International normalised ratio; ALT: Alanine aminotransferase; AST: Aspartate aminotransferase; MELD: Model for end-stage liver disease; UKELD: United Kingdom model for end-stage liver disease; HB: Haemoglobin; WCC: White cell count.

Significant PV bleeding occurred after 3 pregnancies in 2 patients (patients 3 and 6 in Tables 1 and 2). One patient (patient 3) had a primary post-partum haemorrhage secondary to a retained placenta that was surgically removed. The other patient (patient 6) had a complicated first pregnancy with placental abruption at 27 wk gestation and needed emergency caesarean section. In her second pregnancy, she had secondary postpartum haemorrhage following caesarean section for suspected placental abruption. It was treated with surgical evacuation of uterine clot and insertion of a Rusch Balloon. There were no cases of variceal haemorrhage.

One patient, (patient 5) underwent regular gastroscopic banding of (non-bleeding) oesophageal varices. That patient was not treated with beta-blockers during pregnancy. There were no cases of thrombosis in any of the pregnancies.
Two patients (patients 6 and 7) developed symptoms of pulmonary hypertension (PH) during the
course of pregnancy and are described as follows.

Case 1
This patient had second pregnancy at the age of 37 years (13 years after the diagnosis and treatment of BCS). She had minor subchorionic bleeding noted on ultrasound during pregnancy. At 35 wk of gestation, this patient had emergency caesarean section for suspected placental abruption and developed respiratory failure post-operatively. Trans-thoracic echocardiography (TTE) suggested PH with pulmonary artery systolic pressure estimated at 60-65 mmHg. CT scan excluded pulmonary embolism and showed patent TIPSS and mild splenomegaly. Right heart catheterisation confirmed the presence of PH with mean pulmonary arterial pressure (mPAP) of 37 mmHg and pulmonary artery wedge (PAWP) pressure of 12 mmHg. She is being treated with Sildenafil (phosphodiesterase inhibitor) and Macitentan (endothelin receptor antagonist) for PH. Follow up investigations demonstrated improved exercise tolerance with no significant limitations in activities of daily living (patient 6; Tables 1 and 2).

Case 2
This patient delivered her second child at 34 years of age, 9 years after the diagnosis and treatment of BCS. Caesarean section was performed at 35-wk gestation for pre-eclampsia. Dyspnoea on exertion was noted during the pregnancy and six months after delivery she was admitted with right heart failure. CTPA excluded pulmonary embolus; but noted dilatation of pulmonary artery, moderate to severe dilatation of right atrium and moderate dilatation of right ventricle with a degree of right ventricular hypertrophy. TIPSS was shown to be patent. TTE demonstrated severe PH, severely dilated right ventricle with impaired systolic function. Right heart catheterisation confirmed PH (mPAP 53 mmHg, PAWP 11 mmHg). The patient has been treated with sildenafil and intravenous Iloprost (along with warfarin) for PH and is being considered for lung transplantation assessment (patient 7; Tables 1 and 2).

DISCUSSION
The majority of the patients affected by BCS in Western countries are women of childbearing age\(^1\), with the peak incidence in the third decade for women and in the fourth decade for men\(^1\). Fertility is generally unaffected in women with BCS as only a minority becomes cirrhotic.

Several previously reported observations suggest that pregnancy in BCS women could cause deterioration of the liver disease and pregnancy was associated with development of ascites in several women with known BCS\(^1\). Rautou et al\(^15\) showed that the maternal outcome, in 14 women with 24 pregnancies is good in women becoming pregnant after the diagnosis and treatment of BCS. All mothers were alive at a median follow-up of 34 mo after last delivery and only one of them required liver transplantation after 73 mo follow-up.

In our series, there were no thrombotic events occurring during pregnancy or the postpartum period. This is comparable to previous study\(^15\) where 2 of 17 pregnancies on anticoagulation therapy were complicated by portal vein thrombosis\(^15\). Subclavian and portal venous thrombosis has been reported in a pregnant patient with known and treated BCS secondary to (JAK 2 negative) essential thrombocytosis on anticoagulation\(^20\).

Two patients had notable bleeding related to 3 deliveries in contrast to 6 patients with 7 bleeding episodes during pregnancy or postpartum in the previous study\(^16\), signifying the importance of careful management of anticoagulation in pregnancy.

Both of our patients who developed pulmonary hypertension (mPAP ≥ 25 mmHg at rest) had the diagnosis of BCS and insertion of TIPSS several years ago. TIPSS has been regarded as a cardiac stress by suddenly increasing the preload leading to increased cardiac diastolic volumes and diameters, and a transient PH for 3–6 mo\(^21\). It is usually accommodated rapidly and is then associated with a reduction in systemic vascular resistance and a reduction in afterload\(^22\). However, development of PH after one and half years following TIPSS insertion has been reported\(^23\). In a recent study looking at the long-term cardiopulmonary outcome following TIPSS in cirrhotic patients, authors found higher prevalence of PH in the TIPSS group, 1 to 5 years post TIPSS implantation\(^24\). Although the patients in that study\(^24\) could could have had associated cirrhotic cardiomyopathy, conversely there appears to be a potential long-term risk of development of PH in non-cirrhotic patients with a patent, functional TIPSS. Therefore, further studies on the interactions of TIPSS and cirrhotic cardiomyopathy are warranted\(^25\).

PH has also been reported as a common finding in MPN\(^26\). This possible association of PH with MPN has also been suggested by small case series and studies\(^27-30\) and the exact incidence and prevalence of PH in this group of patients remain poorly defined\(^31\). MPN could possibly have had an impact on the development of PH in one of our patients (patient 6).

Current recommendations are to offer endoscopic screening for varices in patients with portal hypertension, when conception is planned and during the second trimester if not already on prophylaxis. One patient (patient 2) who had originally presented with variceal haemorrhage underwent gastroscopy in second trimester for variceal screening and was found not to have varices. Another patient (patient 5, who had right hepatic vein dilatation) had several gastroscopies for oesophageal variceal band ligation during pregnancy. None of the patients suffered variceal bleeding during pregnancy or were administered non-selective beta-blockers during pregnancy given concerns regarding
use of beta-blockers in pregnancy32,33.

The number of deliveries by caesarean section was higher in our group of patients (7 in 10 deliveries, 70\%) than in the general obstetric population in England (26\%)34 and the previous study (8 caesarean sections in 17 pregnancies, 47\%)15. Although some of the indications for caesarean section were clearly not related to the presence of BCS (e.g., breech presentation, placenta praevia), the high incidence of placental disease (abruption, pre-eclampsia, fetal distress) leading to caesarean section may be related to the underlying causative aetiology of the BCS. Therefore, close maternal and fetal surveillance for placental disease should be considered in these patients.

Interestingly, for unknown reasons, incidence of ICP has been higher in our patients (4 patients in 5 pregnancies) than the normal obstetric population (0.7\%-1.5\%)35,36.

Our study supports that the maternal outcome is good in women becoming pregnant after the diagnosis and treatment of BCS. This favourable maternal outcome is likely to be attributable to improvement in management of BCS including effective decompressive treatment, management of the underlying conditions, anticoagulant therapy with careful follow-up; and management of pregnancy and delivery in multi-disciplinary settings. A possibly decreased level of significant bleeding and no thrombosis implies the benefits of very close monitoring of anticoagulation through joint clinics.

In contrast to the good overall maternal outcome seen in our set of patients, the livebirth rate of 62.5\% is lower than in the general obstetric population (84\%27 and 85\%-88\%38), but is better than earlier reports and in line with the finding of Rautou et al15.

Importantly, failed pregnancies occurred in only 2 out of 7 patients. One patient (patient 7) had 5 fetal losses over a 9-year period (83\% of the incomplete pregnancies reported here).

Our study supports the conclusion that BCS cannot be considered a contraindication to pregnancy in stable patients. Development of PH is an important finding that needs further validation. Such patients should be managed at tertiary level care centres with multi-disciplinary involvement.

REFERENCES

1. Valla DC. The diagnosis and management of the Budd-Chiari syndrome: consensus and controversies. *Hepatology* 2003; 38: 793-803 [PMID: 14512865 DOI: 10.1053/heap.2003.50415]

2. Janssen HL, Garcia-Pagan JC, Elias E, Mensa G, Hadengue A, Valla DC, European Group for the Study of Vascular Disorders of the Liver, Budd-Chiari syndrome: a review by an expert panel. *J Hepatol* 2003; 38: 364-371 [PMID: 12586305]

3. European Association for the Study of the Liver. EASL Clinical Practice Guidelines: Vascular diseases of the liver. *J Hepatol* 2016; 64: 179-202 [PMID: 26516032 DOI: 10.1016/j.jhep.2015.07.040]

4. Seijo S, Plessier A, Hoekstra J, Dell'era A, Mandair D, Rifai K, Trebidick J, Morad I, Lasser L, Abraldes JG, Darwish Murad S, Trebicka J, Morard I, Lasser L, Abraldes JG, Darwish Murad S, Heller J, Hadengue A, Primagrini M, Elias E, Janssen HL, Valla DC, Garcia-Pagan JC, European Network for Vascular Disorders of the Liver. Good long-term outcome of Budd-Chiari syndrome with a step-wise management. *Hepatology* 2013; 57: 1962-1968 [PMID: 23389867 DOI: 10.1002/hep.26306]

5. Tripathi D, Sunderraj L, Vetala V, Mehrad H, Zia Z, Mangat K, West R, Chen F, Elias E, Olliff SP. Long-term outcomes following percutaneous hepatic vein recanalization for Budd-Chiari syndrome. *Liver Int* 2017; 37: 111-120 [PMID: 27254473 DOI: 10.1111/liv.13180]

6. Mohanty D, Shetty S, Ghosh K, Pawar A, Abraham P. Hereditary thrombophilia as a cause of Budd-Chiari syndrome: a study from Western India. *Hepatology* 2001; 34: 666-670 [PMID: 11584361]

7. Janssen HL, Meinardi JR, Vleggaar FP, van Uum SH, Haagsma
EB, van Der Meer FJ, van Hattum J, Chamuleau RA, Adang RP, Vandenbroucke JP, van Hoek B, Rosendaal FR. Factor V Leiden mutation, prothrombin gene mutation, and deficiencies in coagulation inhibitors associated with Budd-Chiari syndrome and portal vein thrombosis: results of a case-control study. Blood 2000; 96: 2364-2368. [PMID: 11001884]

8 Delenere P, Denninger MH, Hillaire S, Guillon MC, Casadevall N, Brière J, Erlinger S, Valla DC. Factor V Leiden related Budd-Chiari syndrome. Gut 2001; 48: 264-268. [PMID: 11556651]

9 Darwish Murad S, Plessier A, Hernandez-Guerra M, Fabris F, Eapen CE, Bahar MB, Trebicka J, Morard L, Lasser L, Heller J, Hadjeguza E, Langlet P, Miranda H, Primignani M, Elias E, Leebeeck FW, Rosendaal FR, Garcia-Pagan JC, Valla DC, Janssen HL. EN-50 (European Network for Vascular Disorders of the Liver). Etiology, management, and outcome of the Budd-Chiari syndrome. Ann Intern Med 2009; 151: 167-175. [PMID: 19652186]

10 Rautou PE, Plessier A, Bernau J, Denninger MH, Moczaur R, Valla D. Pregnancy: a risk factor for Budd-Chiari syndrome? Gut 2009; 58: 606-608. [PMID: 19299391 DOI: 10.1136/gut.2008.167577]

11 MacNicholas R, Ollif S, Elias E, Tripathi D. An update on the diagnosis and management of Budd-Chiari syndrome. Expert Rev Gastroenterol Hepatol 2012; 6: 731-744. [PMID: 23237528]

12 Ren W, Li X, Jia J, Xia Y, Hu F, Xu Z. Prevalence of Budd-Chiari syndrome during Pregnancy or Puerperium: A Systematic Review and Meta-Analysis. Gastroenterol Res Pract 2015; 2015: 839875. [PMID: 26457079 DOI: 10.1155/2015/839875]

13 Khourou MS, Datta DV. Budd-Chiari syndrome following pregnancy. Report of 16 cases, with roentgenologic, hemodynamic and histologic studies of the hepatic outflow tract. Am J Med 1980; 68: 113-121. [PMID: 7350798]

14 Dilawri JB, Bambery P, Chawla Y, Kaur U, Bhushnurmath SR, Malhotra HS, Sood GK, Mitra SK, Khanna SK, Walia BS. Hepatic outflow obstruction (Budd-Chiari syndrome). Experience with 177 patients and a review of the literature. Medicine (Baltimore) 1994; 73: 21-36. [PMID: 8309360]

15 Rautou PE, Angermaier B, Garcia-Pagan JC, Moucari R, Peek-Radosavljevic M, Raffa S, Bernau J, Condant B, Lebardon V, Yver C, Ducarme G, Laton D, Denninger MH, Valla D, Plessier A. Pregnancy in women with known and treated Budd-Chiari syndrome: maternal and fetal outcomes. J Hepatol 2009; 51: 47-54. [PMID: 19443069 DOI: 10.1016/j.jhep.2009.02.028]

16 Darwish Murad S, Valla DC, de Groen PC, Zeitoun G, Hopmans JA, Haagsma EB, van Hoek B, Hansen BE, Rosendaal FR, Janssen HL. Determinants of survival and the effect of portal-systemic shunting in patients with Budd-Chiari syndrome. Hepatology 2004; 39: 505-508. [PMID: 14768004 DOI: 10.1002/hep.20064]

17 Powell-Jackson PR, Melia W, Canalese J, Pickford RB, Portmann B, Williams R. Budd-Chiari Syndrome: clinical patterns and Meta-Analysis. Gastroenterol Res Pract 2013; 2013: 62. D34-D41. [PMID: 24355639]

18 Gupta R, Perumandla S, Patisorn Y, Niranjani S, Ohri A. Incidence of pulmonary hypertension in patients with chronic myeloproliferative disorders. J Nat Med Assoc 2006; 99: 1779-1782. [PMID: 17126867]

19 Di Stefano F, Pulmonary arterial hypertension and chronic myeloproliferative disorders. Am J Respir Crit Care Med 2006; 174: 616. [PMID: 16931646 DOI: 10.1164/rccm.174.5.616]

20 Reiser SA, Rinkevich D, Markiewicz W, Tatarsky I, Brenner B. Cardiac involvement in patients with myeloproliferative disorders. Am J Med 1992; 93: 498-504. [PMID: 1442851]

21 Garpipidou V, Vakalopoulou S, Dimitriadis D, Tziomalos K, Sifakis G, Perifiani V. Incidence of pulmonary hypertension in patients with chronic myeloproliferative disorders. Haematologica 2004; 89: 245-246. [PMID: 15003906]

22 Adir Y, Hohmert B. Pulmonary hypertension in patients with chronic myeloproliferative disorders. Eur Respir J 2010; 35: 1396-1406. [PMID: 20513911 DOI: 10.1183/09031936.00175909]

23 Davis RL, Eastman D, McPhillips H, Raelbel MA, Andrake SE, Smith D, Yool MU, Dublin S, Platt R. Risks of congenital malformations and perinatal events among infants exposed to calcium channel and beta-blockers during pregnancy. Pharma-coepidemiol Drug Saf 2011; 20: 138-145. [PMID: 21254284]

24 Yakob MY, Maten BN, Ho E, Hernandez-Diaz S, Franklin JM, Goodman JE, Hoban JR. The risk of congenital malformations associated with exposure to β-blockers early in pregnancy: a meta-analysis. Hypertension 2012; 62: 375-381. [PMID: 23753512]

25 Hospital Episode Statistics: NHS Maternity Statistics - England, 2013-14. Available from: URL: http://content.digital.nhs.uk/catalogue/PUB16725/nhs-mate-eng-2013-14-summ-repo-rep.pdf

26 Kenyon AP, Tribe RM, Nelson-Piercy C, Girling JC, Williamson C, Seed PT, Vaughan-Jones S, Shennan AH. Pruritus in pregnancy: a study of anatomical distribution and prevalence in relation to the development of obstructive cholestasis. Obstet Med 2010; 3: 25-29. [PMID: 21782386 DOI: 10.1258/om.2010.090055]

27 Abedin P, Weaver JB, Egginton E. Intrahepatic cholestasis of pregnancy: prevalence and ethnic distribution. Ehdn Health 1999; 4: 35-37. [PMID: 10887460 DOI: 10.1080/1357585998173]

28 Mills JL, Simpson JL, Driscoll SG, Jovanovic-Petrovski L, Van Allen M, Aarons JH, Metzger B, Bieger FR, Knopp RH, Holmes LB. Incidence of spontaneous abortion among normal women and insulin-dependent diabetic women whose pregnancies were identified within 21 days of conception. N Engl J Med 1988; 319: 1617-1623. [PMID: 3200277 DOI: 10.1056/NEJM198812213219201]

29 Jeve YB, Davies W. Evidence-based management of recurrent miscarriages. J Hum Reprod Sci 2014; 7: 159-169. [PMID: 25397540]

P- Reviewer: Bahr MJ, Sahin M, Rodriguez-Lopez M
S- Editor: Qi Y
L- Editor: A
E- Editor: Wu HL
