0 Introduction.

We consider the set σ_P of the power non-negative polynomials of several variables. By Q_P we denote the class of the polynomials from σ_1 which can be represented as a sum of squares. It is shown in the classic work by D. Hilbert [3] that Q_P does not coincide with σ_P. Step by step a number of polynomials belonging to σ_P but not belonging to Q_P was constructed (see [4]–[6]). It is interesting to note that many of these polynomials turn to be extremal in the class σ_P [2].

In our paper we have made an attempt to work out a general approach to the investigation of the extremal elements of the convex sets Q_P and σ_P. It seems to us that we have achieved a considerable progress in the case of Q_P. In the case of σ_P we have made only the first steps. We also consider the class σ_R of the non-negative rational functions. The article is based on the following methods:

1. We investigate non-negative trigonometrical polynomials and then, with the help of the Calderon transformation we proceed to the power polynomials.
2. The way of constructing support hyperplanes to the convex sets Q_P and σ_P is given in the paper.

Now we start with a more detailed description of the results of this article. Let us denote by $\sigma(N_1, N_2, N_3)$ the set of the trigonometrical polynomials

$$f(\alpha, \beta, \gamma) = \sum_{|k| \leq N_1} \sum_{|\ell| \leq N_2} \sum_{|m| \leq N_3} q(k, \ell, m) e^{i(k\alpha + \ell\beta + m\gamma)}$$

satisfying the condition

$$f(\alpha, \beta, \gamma) \geq 0, \quad (\alpha = \bar{\alpha}, \beta = \bar{\beta}, \gamma = \bar{\gamma}).$$

We denote by $Q(N_1, N_2, N_3)$ the set of trigonometrical polynomials of the class $\sigma(N_1, N_2, N_3)$ admitting representation

$$f(\alpha, \beta, \gamma) = \sum_{j=1}^{r} |F_j(\alpha, \beta, \gamma)|^2$$
where
\[F_j(\alpha, \beta, \gamma) = \sum_{0 \leq k \leq N_1} \sum_{0 \leq \ell \leq N_2} \sum_{0 \leq m \leq N_3} q_j(k, \ell, m) e^{i(k\alpha + \ell\beta + m\gamma)} \quad (4) \]

It is clear that the set \(Q(N_1, N_2, N_3) \) is convex. In this article we give a method of constructing the support hyperplanes to the set \(Q(N_1, N_2, N_3) \). Hence we receive a number of general facts referring to the extremal points and faces of the set \(Q(N_1, N_2, N_3) \). Here we also introduce concrete examples of extremal points and faces.

Analogues results are received for the convex set \(\sigma(N_1, N_2, N_3) \) as well. In addition to the set of the non-negative trigonometrical polynomials we shall introduce the class \(\sigma_P(2N_1, 2N_2, 2N_3) \) of the power non-negative polynomials of the form
\[f(x, y, z) = \sum_{0 \leq k \leq 2N_1} \sum_{0 \leq \ell \leq 2N_2} \sum_{0 \leq m \leq 2N_3} a_{k, \ell, m} x^k y^\ell z^m \quad (5) \]

By \(Q_P(2N_1, 2N_2, 2N_3) \) we denote the set of the power non-negative polynomials of the class \(\sigma_P(2N_1, 2N_2, 2N_3) \) admitting the representation
\[f(x, y, z) = \sum_{j=1}^{r} |F_j(x, y, z)|^2 \quad (6) \]

where \(F_j(x, y, z) \) are polynomials of \(x, y, z \). With the help of the Calderon transformation the results obtained for the classes of the trigonometrical polynomials \(\sigma(N_1, N_2, N_3) \) and \(Q(N_1, N_2, N_3) \) we transfer onto the classes of the power polynomials \(\sigma_P(2N_1, 2N_2, 2N_3) \) and \(Q_P(2N_1, 2N_2, 2N_3) \). Let us note that a number of concrete examples of the extremal power polynomials is contained in important works \([2],[5]\).

In our paper we consider the case of three variables, but the obtained results can be easily transferred to any number of variables.

1 Main Notions

Let \(S \) be a set of points of the space \(R^3 \). Let us denote by \(\Delta = S - S \) the set of points \(x \in R^3 \) which can be represented in the form \(x = y - z, \quad y, z \in R^3 \).
The function $\Phi(x)$ is called Hermitian positive on Δ if for any points $x_1, x_2, \ldots, x_N \in S$ and numbers $\xi_1, \xi_2, \ldots, \xi_N$ the inequality
\[\sum_{i,j} \xi_i \overline{\xi_j} \Phi(x_i - x_j) \geq 0 \] (7)
is true. We shall consider the lattice $S(N_1, N_2, N_3)$ consisting of the points $M(k, \ell, m)$ where $0 \leq k \leq N_1, 0 \leq \ell \leq N_2, 0 \leq m \leq N_3$. The set $\Delta(N_1, N_2, N_3)$ consists of the points $M(k, \ell, m)$ where $|k| \leq N_1, |\ell| \leq N_1, |m| \leq N_3$. By $P(N_1, N_2, N_3)$ we denote the class of functions which are Hermitian positive on $\Delta(N_1, N_2, N_3)$.

With each function $\Phi(k, \ell, m)$ from $P(N_1, N_2, N_3)$ we associate the Toeplitz matrices (see [8],[9]):
\[B(l, m) = \begin{bmatrix}
\Phi(0, l, m) & \Phi(1, l, m) & \cdots & \Phi(N_1, l, m) \\
\Phi(-1, l, m) & \Phi(0, l, m) & \cdots & \Phi(N_1 - 1, l, m) \\
\vdots & \vdots & & \vdots \\
\Phi(-N, l, m) & \Phi(-N_1 + 1, l, m) & \cdots & \Phi(0, l, m)
\end{bmatrix} \] (8)

From the matrices $B(l, m)$ we construct the block Toeplitz matrices
\[C_m = \begin{bmatrix}
B(0, m) & B(1, m) & \cdots & B(N_2, m) \\
B(-1, m) & B(0, m) & \cdots & B(N_2 - 1, m) \\
\vdots & \vdots & & \vdots \\
B(-N_2, m) & B(-N_2 + 1, m) & \cdots & B(0, m)
\end{bmatrix}, \quad |m| \leq N_3
\]

Finally from C_k we make yet another block Toeplitz matrix
\[A(N_1, N_2, N_3) = \begin{bmatrix}
C_0 & C_1 & \cdots & C_{N_3} \\
C_{-1} & C_0 & \cdots & C_{N_3 - 1} \\
\vdots & \vdots & & \vdots \\
C_{-N_3} & C_{-N_3 + 1} & \cdots & C_0
\end{bmatrix} \] (9)

Proposition 1 (see [8],[9]). Inequality (7) is equivalent to the inequality $A(N_1, N_2, N_3) \geq 0$.

With the help of the function $\Phi(k, \ell, m)$ we introduce the linear functional (see[7]):
\[L_\Phi(f) = \sum_{|k| \leq N_1} \sum_{|\ell| \leq N_2} \sum_{|m| \leq N_3} q(k, \ell, m) \Phi(k, \ell, m) \] (10)
Proposition 2 (see [8],[9]). If
\[\Phi(k, \ell, m) \in P(N_1, N_2, N_3) \]
and \(f(\alpha, \beta, \gamma) = |F(\alpha, \beta, \gamma)|^2 \) then the relation
\[L_\Phi(f) = e^T A e \geq 0 \] (11)
holds.

Here the matrix \(A \) is defined by relations (8),(9), the function \(F(\alpha, \beta, \gamma) \) and the vector \(e \) have the forms
\[F(\alpha, \beta, \gamma) = \sum_{0 \leq k \leq N_1} \sum_{0 \leq \ell \leq N_2} \sum_{0 \leq m \leq N_3} q(k, \ell, m)e^{\ell(ka+\ellb+m\gamma)} \] (12)
where
\[e = \text{col}[h(0), h(1), ..., h(N_3)], \] (13)
\[h(m) = \text{col}[g(o, m), g(1, m), ..., g(N_2, m)], \] (14)
\[g(\ell, m) = \text{col}[d(0, \ell, m), d(1, \ell, m), ..., d(N_1, \ell, m)]. \] (15)

2 Support hyperplanes, extremal points and extremal faces of \(Q(N_1, N_2, N_3) \)

Let \(L \) be a linear a linear functional. The hyperplane \(H = [L, \alpha] \) is said to bound the set \(U \) if either
\[L(f) \geq \alpha \] for all \(f \in U \) or \(L(f) \leq \alpha \) for all \(f \in U \).

A hyperplane \(H = [L, \alpha] \) is said to support a set \(U \) at a point \(f_0 \in U \) if
\[L(f_0) = \alpha \] and if \(H \) bound \(U \).

Further we shall consider only such support hyperplanes \(H \) which have at least one common point with the corresponding convex set \(U \).

A point \(f_0 \) in the convex set \(U \) is called an extremal point of \(U \) if there exists no non-degenerate line segment in \(U \) that contains \(f_0 \) in its relative interior (see [10]). From Proposition 2 we obtain the following important assertion.

Corollary 1. The set of support hyperplanes for \(Q(N_1, N_2, N_3) \) coincides with the set of hyperplanes
\[L_\Phi(f) = 0 \] (16)
where \(\Phi(k, \ell, m) \in P(N_1, N_2, N_3) \) and the corresponding matrix \(A(N_1, N_2, N_3) \) is such that
\[\det A(N_1, N_2, N_3) = 0. \] (17)
Let us denote by ν_A the dimension of the kernel of the matrix $A(N_1, N_2, N_3)$. If vector $e \neq 0$ belongs to the kernel of $A(N_1, N_2, N_3)$ then the corresponding polynomial $f(\alpha, \beta, \gamma)$ (see (1) and (14)-(18)) belongs to $Q(N_1, N_2, N_3)$ and satisfies relation (19). The convex hull of such polynomials we denote by D_A. Using classical properties of a convex set we obtain the following assertions.

Corollary 2. If $\nu_A = 1$ and $f(\alpha, \beta, \gamma) \in D_A$ then the $f(\alpha, \beta, \gamma)$ is the extremal polynomial in the class $Q(N_1, N_2, N_3)$.

Corollary 3. If $\nu_A > 1$ then D_A is the extremal face.

Corollary 4. If $f(\alpha, \beta, \gamma)$ is an extremal polynomial in the class $Q(N_1, N_2, N_3)$ then there exists a non trivial function $\Phi(k, \ell, m) \in P(N_1, N_2, N_3)$ such that $L_\Phi(f) = 0$.

Example 1. Let the relations

$$N_1 = N_2 = N_3 = 1$$

be valid. We set

$$B(0, 0) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad B(0, 1) = B(1, 0) = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$B(1, 1) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad B(-1, 1) = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

Then we have

$$C_0 = E_4, \quad C_1 = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{bmatrix}, \quad A = \begin{bmatrix} E_4 & C_1 \\ C_1^* & E_4 \end{bmatrix} \quad (18)$$

It is easy to see that the following linearly independent vectors

$$\begin{cases} e_1 = \text{col} \begin{bmatrix} 0, 0, 0, 1, 1, 0, 0, 0 \end{bmatrix} \\ e_2 = \text{col} \begin{bmatrix} 0, 0, -1, 0, 0, 1, 0, 0 \end{bmatrix} \\ e_3 = \text{col} \begin{bmatrix} 0, -1, 0, 0, 0, 0, 1, 0 \end{bmatrix} \\ e_4 = \text{col} \begin{bmatrix} -1, 0, 0, 0, 0, 0, 0, 1 \end{bmatrix} \end{cases} \quad (19)$$
form the basis of the kernel $A(1,1,1)$. The corresponding polynomials $F_k(\alpha, \beta, \gamma)$ have the forms

$$
\begin{align*}
F_1(\alpha, \beta, \gamma) &= e^{i(\alpha+\beta)} + e^{i\gamma}, \\
F_2(\alpha, \beta, \gamma) &= -e^{i\beta} + e^{i(\alpha+\gamma)}, \\
F_3(\alpha, \beta, \gamma) &= -e^{i\alpha} + e^{i(\beta+\gamma)}, \\
F_4(\alpha, \beta, \gamma) &= -1 + e^{i(\alpha+\beta+\gamma)}
\end{align*}
$$

(20)

It means that polynomials

$$
f_k(\alpha, \beta, \gamma) = |F_k(\alpha, \beta, \gamma)|^2, \quad (1 \leq k \leq 4)
$$

(21)

belong to the face D_A.

Proposition 3. The polynomials $f_k(\alpha, \beta, \gamma)$ constructed by formulas (20) and (21) are extremal in the class $Q(1,1,1)$.

Proof. Let $B(0,0), B(0,1)$ and $B(1,0)$ be defined as above and let

$$
B(-1,1) = \begin{bmatrix} 0 & \gamma_1 \\ -\gamma_2 & 0 \end{bmatrix},
$$

(22)

$$
B(1,1) = \begin{bmatrix} 0 & \gamma_4 \\ \gamma_3 & 0 \end{bmatrix}.
$$

(23)

We consider the cases when $\gamma_j = 1, \ |\gamma_k| < 1, \ (k \neq j)$. In this cases vector e_j (see (19)) belongs to the kernel of the corresponding matrix $A_j(1,1,1)$ and $\nu_j = 1$. Hence the polynomials $f_j(\alpha, \beta, \gamma)$ are extremal.

3 Support hyperplanes, extremal points and extremal faces of $\sigma(N_1, N_2, N_3)$

We will say that the function $\Phi(k, \ell, m) \in P(N_1, N_2, N_3)$ is extendible if $\Phi(k, \ell, m)$ admits an extension to the function of the class $P(\infty, \infty, \infty)$. We will use the following Rudin’s result [7].

Proposition 4. A function can be extended to a member of $P(\infty, \infty, \infty)$ if and only if $L_\Phi(f) \geq 0$ for every $f \in \sigma(N_1, N_2, N_3)$.

From Proposition 4 we deduce the following important assertion.

Corollary 5. The set of support hyperplanes of $\sigma(N_1, N_2, N_3)$ coincides with the set of hyperplanes $L_\Phi(f) = 0$ where $\Phi(k, \ell, m)$ is an extendible function from $P(N_1, N_2, N_3)$ and there exists a non-trivial polynomial $f_0 \in \sigma(N_1, N_2, N_3)$.
such that
\[L_\Phi(f_0) = 0. \]
The convex hull of polynomials \(f_0 \in \sigma(N_1, N_2, N_3) \) satisfying relation \(L_\Phi(f_0) = 0 \) we denote by \(D_\Phi \). The number of linearly independent polynomials \(f_0 \) from \(D_\Phi \) we denote by \(\nu_\Phi \). From classical properties of a convex set we obtain the following assertions.

Corollary 6.1. If \(\nu_\Phi = 1 \) and \(f_0 \in D_\Phi \) then \(f_0 \) is the extremal polynomial in the class \(\sigma(N_1, N_2, N_3) \).

2. If \(\nu_\Phi > 1 \) then \(D_\Phi \) is the extremal face in the class \(\sigma(N_1, N_2, N_3) \).

3. If \(f_0 \) is an extremal polynomial in the class \(\sigma(N_1, N_2, N_3) \) then there exists a non-trivial extendible function \(\Phi(k, \ell, m) \in P(N_1, N_2, N_3) \) such that \(L_\Phi(f_0) = 0 \).

If \(\Phi(k, \ell, m) \) is an extendible function then there exists a positive measure \(\mu(\alpha, \beta, \gamma) \) such that (Bochner theorem)

\[\Phi(k, \ell, m) = \frac{1}{(2\pi)^3} \int_G e^{i(k\alpha + \ell\beta + m\gamma)} d\mu \tag{24} \]

where Domain \(G \) is defined by the inequalities \(-\pi \leq \alpha, \beta, \gamma \leq \pi\). From relations (1), (10) and (24) we deduce the following well-known representation (see[7])

\[L_\Phi(f) = \frac{1}{(2\pi)^3} \int_G f(\alpha, \beta, \gamma) d\mu. \tag{25} \]

Corollary 7. If \(f_0(\alpha, \beta, \gamma) \) belongs to the class \(\sigma(N_1, N_2, N_3) \) and in a certain point \(f_0(\alpha_0, \beta_0, \gamma_0) = 0 \) then \(f_0(\alpha, \beta, \gamma) \) is either extremal or belongs to the extremal face.

4 The power non-negative polynomials

We shall use the linear Calderon transformation

\[(Cf)(\alpha, \beta, \gamma) = f_1(x, y, z) \tag{26} \]

which is defined by formulas

\[e^{i\alpha} = \frac{x+i}{x-i}, \quad e^{i\beta} = \frac{y+i}{y-i}, \quad e^{i\gamma} = \frac{z+i}{z-i}, \]

\[f_1(x, y, z) = f\left(\frac{x+i}{x-i}, \frac{y+i}{y-i}, \frac{z+i}{z-i}\right) \left(\frac{x^2 + 1}{N_1} + 1\right) \left(\frac{y^2 + 1}{N_2} + 1\right) \left(\frac{z^2 + 1}{N_3}\right)\]. \tag{27}
Proposition 5 (see [9], Ch. 3). The Calderon transformation C maps $\sigma(N_1, N_2, N_3)$ onto $\sigma_P(2N_1, 2N_2, 2N_3)$ and $Q(N_1, N_2, N_3)$ onto $Q_P(2N_1, 2N_2, 2N_3)$.

Using linearity of the operator C we deduce from Proposition 5 the following assertion.

Corollary 8. The Calderon transformation C maps the extremal points and faces of $\sigma(N_1, N_2, N_3)$ and $Q(N_1, N_2, N_3)$ onto extremal points and faces of $\sigma_P(2N_1, 2N_2, 2N_3)$ and $Q_P(2N_1, 2N_2, 2N_3)$ respectively.

Example 2. Let us consider the polynomials

\[P_1(x, y, z) = (xyz - z + y + x)^2, \]
\[P_2(x, y, z) = (yz - xz + xy + 1)^2, \]
\[P_3(x, y, z) = (yz - xz - xy - 1)^2, \]
\[P_4(x, y, z) = (xz + yz + xy - 1)^2. \]

Proposition 6. Polynomials $P_k(x, y, z)$ ($k=1, 2, 3, 4$) are extremal polynomials in the classes $Q_P(2, 2, 2)$ and $\sigma_P(2, 2, 2)$.

Proof. Using Example 1 and Corollary 8 we deduce that polynomials $P_k(x, y, z)$ ($k=1, 2, 3, 4$) are extremal in the class $Q_P(2, 2, 2)$. We remark that $\deg P_k(x, y, z) \leq 6$. It is proved for this case (see [1]) that the extremal polynomials in the class Q_P are extremal in the class $\sigma_P(2, 2, 2)$ as well. The proposition is proved.

We remark that an extremal polynomial in the class Q_P is given in the paper [1].

5 Extremal trigonometrical and power polynomials in the classes σ and σ_P

In my book [9] I give the method of constructing trigonometrical polynomials belonging to $\sigma(N_1, N_2, N_3)$ but not belonging to $Q(N_1, N_2, N_3)$. This method can also be used for constructing extremal polynomials in the classes $\sigma(N_1, N_2, N_3)$ and $\sigma_P(N_1, N_2, N_3)$. For illustrating this fact we consider the following example.

Example 3. Let us introduce the polynomial

\[f_0(\alpha, \beta, \gamma) = 4 \cos(\alpha + \beta + \gamma) - \cos(-\alpha + \beta + \gamma) - \cos(\alpha - \beta + \gamma) + \cos(\alpha + \beta - \gamma) \]
It is shown in the book ([9]Ch.3) that $f_0(\alpha, \beta, \gamma) - m(0 < m \leq 4 - 2^{3/2})$ belongs to $\sigma(1, 1, 1)$ but does not belong to $Q(1, 1, 1)$.

Now we consider the polynomial
\[f(\alpha, \beta, \gamma) = 2^{3/2} - \cos(\alpha + \beta + \gamma) - \cos(-\alpha + \beta + \gamma) - \cos(\alpha - \beta + \gamma) + \cos(\alpha + \beta - \gamma) \]
(33)

The last equality we rewrite in the form
\[f(\alpha, \beta, \gamma) = 2[2^{1/2} - \cos \alpha \cos(\beta + \gamma) + \sin \alpha \sin(\beta - \gamma)] \]
(34)

Proposition 7. The polynomial $f(\alpha, \beta, \gamma)$ is an extremal one in the class $\sigma(1, 1, 1)$.

Proof. It follows from formula (34) that the polynomial $f(\alpha, \beta, \gamma)$ has the following zeroes:
1. $\alpha_1 = \pi/4, \beta(0, 1), \gamma(0, 1)$.
2. $\alpha_2 = -\pi/4, \beta(0, 0), \gamma(0, 0)$.
3. $\alpha_3 = \pi/4, \beta(0, -1), \gamma(0, -1)$.
4. $\alpha_4 = -\pi/4, \beta(0, -2), \gamma(0, -2)$.
5. $\alpha_5 = 3\pi/4, \beta(-1, -1), \gamma(-1, -1)$.
6. $\alpha_6 = -3\pi/4, \beta(-1, 0), \gamma(-1, 0)$.
7. $\alpha_7 = 3\pi/4, \beta(1, -1), \gamma(1, -1)$.
8. $\alpha_8 = -3\pi/4, \beta(1, 0), \gamma(1, 0)$.

Since the polynomial $f(\alpha, \beta, \gamma)$ is non-negative all its first derivatives in the points of zeroes are equal to zero. This is also true for the polynomials $g(\alpha, \beta, \gamma) \in \sigma(1, 1, 1)$ and such that $g(\alpha, \beta, \gamma) \leq f(\alpha, \beta, \gamma)$. Thus we obtain 32 linear equations on 27 coefficients of the polynomial $g(\alpha, \beta, \gamma)$. This linear system is of 26th rank, that is only $cf(c = const)$ satisfies this system. The proposition is proved.

From Proposition 7 using the Calderon transformation we obtain the following assertion.

Proposition 8. The polynomial
\[f(x, y, z) = 2^{3/2}(1+x^2)(1+y^2)(1+z^2) + 8z(y+x)(yx-1) - 2(z^2-1)((yx+1)^2 - (x-y)^2) \]
(35)

is an extremal in the class $\sigma_P(2, 2, 2)$.

As it was mentioned in the introductory part some other extremal polynomials in the class σ_P were known earlier [2].
6 Non-negative rational functions

Let us consider the class $\sigma_{R}(N, M)$ of the non-negative rational functions of the form

$$R(x, y) = \frac{p(x, y)}{q(x, y)}$$

where $p(x, y)$ and $q(x, y)$ are polynomials with real coefficients and $deg p(x, y, z) \leq N$, and $deg q(x, y, z) \leq M$.

As Artin’s result shows the function $R(x, y, z)$ can be represented in the form

$$R(x, y) = \sum_{k=1}^{r} \frac{p_{k}^2(x, y)}{q_{k}^2(x, y)}$$

(36)

where $p_k(x, y, z)$ and $q_k(x, y, z)$ are polynomials. It is clear that $\sigma_{R}(N, M)$ is a convex set.

Proposition 9. If $R(x, y, z)$ is an extremal function of the convex set $\sigma(N, M)$ then $R(x, y, z)$ admits the representation

$$R(x, y) = \frac{p^2(x, y)}{q^2(x, y)}$$

(37)

where $p(x, y, z)$ and $q(x, y, z)$ are polynomials and $p(x, y)^2$ is extremal in the class of the polynomials Q_{P}.

Thus the results concerning the class Q_{P}(section 4) can be useful for the investigation of the non-negative rational functions.

I am very grateful to professor B.Reznick for having sent me a number of his papers which stimulated my work. I greatly thank doctor I.Tydnioûk for his help in counting the rank of the linear system in Example 3.

References

1. M.D. Choi, M.Knebusch, T.Y. Lam and B. Reznick, *Transversal zeros and positive semidefinite forms*, Lecture Notes in Math. 959, Springer-Verlag (1982) 273-298.
2. M.D. Choi and T.Y. Lam, *Extremal positive semidefinite forms*, Math. Ann. 231 (1977) 1-18.
3. D. Hilbert, *Über die Darstellung definiter Formen als Summe von Formenquadraten*, Math. Ann. 32 (1888) 342-350.
4. T.S. Motzkin, *Selected papers*, Birkhauser, 1983.
5. B. Reznick, Some Concrete Aspects of Hilbert’s 17th Problem, Contemporary Mathematics, 253, (2000), 251-272.
6. R. M. Robinson, Some definite polynomials which are not sums of squares of real polynomials, Selected questions of algebra and logic, Nauka, Novosibirsk (1973) 264-282.
7. W. Rudin, The Extension Problem for Positive Definite Functions, Illinois J. Mat. (1963) 532-539.
8. L. A. Sakhnovich, Effective construction of non-extendible Hermitian-positive functions of several variables, Funct. Anal. Appl., 14, No 4 (1980), 55-60.
9. L. A. Sakhnovich, Interpolation Theory and its Applications, Kluwer Acad. Publishers, (1997).
10. S. R. Lay, Convex Sets and their Applications, A. Wiley Interscience Publication, (1982).