ORIGINAL ARTICLE

3,4-Secocycloartane Triterpenoids from the Cones of *Pseudolarix amabilis*

Si-Jia Xiao1 · Bo Li1,2 · Zheng-Rui Huang3 · Wen-Lin Yuan1 · Ji Ye1 · Hui-Liang Li1 · Xi-Ke Xu1 · Yun-Heng Shen1 · Wei-Dong Zhang1,2

Received: 9 October 2020 / Accepted: 9 November 2020 / Published online: 3 January 2021
© The Author(s) 2021

Abstract
Four new 3,4-seco-cycloartane triterpenoids, pseudolactones A–D (1–4), were isolated from the ethanol extract of the cones of *Pseudolarix amabilis*. Their structures were established by extensive 1D- and 2D-NMR experiments. The cones of *P. amabilis* are enriched in the ring-expanded or cleaved cycloartane triterpenoids. This work provides new insight into cycloartane triterpenoids from the cones of *P. amabilis*.

Graphic Abstract

Keywords *Pseudolarix amabilis* · Triterpenoids · 3,4-Secocycloartane · Pseudolactones A–D

1 Introduction

Pseudolarix amabilis is a plant indigenous to the south-east of China [1]. The root and trunk barks of it, known as ‘Tu Jin Pi’ in traditional Chinese medicine, have been used to treat skin diseases caused by fungal infection [2, 3]. Previous phytochemical studies on the root barks and seeds of *P. amabilis* revealed a variety of bioactive compounds with novel structures, with the main chemical constituents being pseudolaric acid analogous and triterpenoids [4–9]. Some
of them, such as psedolaric acids A and B [10], have shown potent antimicrobial and cytotoxic activities. Pseudolarolide B, a triterpene lactone, has shown potent cytotoxic activity [8]. Novel nortriterpenoid lactone, pseudolarenone [11], as well as triterpenoid–diterpenoid dimers [12], have also been reported from the cones of this plant. In this paper, we describe the isolation and structure elucidation of four new 3,4-secocycloartane triterpenoids from the cones of P. amabilis.

2 Results and Discussion

The dried cones of P. amabilis, collected in Jiujiang, Jiangxi province, P. R. China, were extracted with 80% EtOH for three times at room temperature. The extract was separated by chromatography techniques to yield four new triterpenes, pseudolactones A–D (1–4) (Fig. 1). The structures of four new triterpenoids were determined by analysis of HRESIMS and NMR spectroscopic data.

Compound 1 corresponds to the molecular formula C_{32}H_{50}O_{6} as established by the hydrogen adduct ion peak at m/z 531.3678 [M + H]⁺ (calcd. 531.3680 for C_{32}H_{51}O_{6}⁺) in HR-ESI–MS spectrum, indicative of 8 degrees of unsaturation.

The ¹H NMR spectrum (Table 1) of 1 showed four tertiary (δ_H 1.00 (s), 1.17 (s), 1.18 (s), 1.08 (s)) and two secondary (δ_H 0.86 (d, J = 6.4 Hz), 1.19 (overlap)) methyls. Moreover, an oxygenated proton signal was observed at δ_H 4.05. In ¹³C NMR spectrum (Table 2), there existed 32 carbon resonances, which were sorted into seven methyls, eleven methines (including one oxygenated methane at δ_C 77.4), and eight quaternary carbons (including two ester carbonyls at δ_C 174.6 and 179.7, an oxygenated quaternary carbon at δ_C 76.1, and a ketal carbon at δ_C 107.3), by DEPT NMR spectrum. The above evidences, combined with the characteristic methylene protons at δ_H 0.51 (d, J = 4.4 Hz) and 0.70 (d, J = 4.4 Hz) as well as the carbon resonances at δ_C 32.4 (t), 21.8 (s), and 27.6 (s), revealed a cyclopropyl motif. The diagnostic chemical shifts for two ester carbonyls at δ_C 174.6 (C-3) and 179.7 (C-26), one oxygenated methane at δ_C 77.4, and the ketal carbon at δ_C 107.3, implied that compound 1 might be a 3,4-seco-cycloartane triterpenoid with a unique 16,23-epoxy-23,26-spirolactone side chain.

Comparison of the NMR spectroscopic data of compound 1 with those of known pseudolarolide C [8] indicated that they were structurally quite similar except that an additional ethoxy in compound 1 (δ_C 1.19 (3H), 4.05 (2H); δ_C 14.1, 60.2) replaced the methoxyl in pseudolarelide C, which was confirmed by key ¹H-¹H COSY correlations (Fig. 2) of H_2-1'/H_2-2' and HMBC correlation from H_2-1' (δ_H 4.05) to carboxylic carbon C-3 (δ_C 174.6 ppm). The structure of 1 was further evidenced by key ¹H-¹H COSY correlations of H_2-2/H_2-1, H-5/H_2-6/H_2-7/H-8, H_2-11/H_2-12, H_2-15/H-16/H-17/H-20 (H_2-21)/H_2-22 together with key HMBC correlations (Fig. 2) from H_2-2, H_2-19, H_2-6 to C-10 (δ_C 27.6), from H_2-11, H-15 to C-13 (δ_C 43.5), from H_2-12, H-16 to C-14 (δ_C 47.3), from H_2-22, H-16, H_2-24 to C-23 (δ_C 107.3), and H_3-27 to C-26 (δ_C 179.7). The relative configurations of 1 were elucidated to be identical with those of pseudolarolide C on the basis of the REOSY correlations (Fig. 2) of H-19 with H-8, H-8 with CH_3-18, CH_3-18 with H-16, H-16 with H-20, H-17 with CH_3-28 and CH_3-21, H-22 with H-24, and H-24 with CH_3-27. In cycloar-tane triterpenoids, the C-20 position of the 17-side chain is usually R-configuration. From the biogenetic point of view,
Table 1

1H NMR (400 MHz) spectroscopic data for compounds 1–4 in CDCl$_3$ (J in Hz)

No.	δ_H (δ in ppm, J in Hz)
1	1.27 m
	2.59 ddd (6.0, 10.0, 16.0)
	1.31 overlap
	2.64 ddd (6.0, 10.8, 16.4)
2	1.35 overlap, 2.03 dd (2.8, 6.0, 16.0)
	2.22 m
	2.49 ddd (6.0, 12.0, 15.6)
3	1.21 overlap
4	1.40 m
5	0.63 m
	1.96 m
	1.23 m
6	1.31 overlap, 2.22 m
7	2.03 m
8	1.82 m
9	2.17 m
	2.10 m
10	1.40 overlap
11	1.21 overlap, 1.72 m
	4.05 overlap
12	1.43 m
13	1.00 m
14	0.51 d (4.4)
15	0.70 d (4.4)
16	2.03 m
17	0.86 d (6.4)
18	1.35 m
19	1.86 m
20	2.03 m
21	1.35 m
22	1.86 m
23	2.10 m
24	1.66 m
25	2.87 m
26	1.19 overlap, 2.12 d (7.2)
	1.17 s
27	1.18 s
	4.05 q (6.8)
	0.93 t (7.6)
28	1.08 s
29	4.03 t (6.8)
	1.19 overlap
30	1.08 s
1'	4.05 q (6.8)
	4.80 d (2.0)
	4.73 dd (1.6, 2.0)
	4.11 q (6.8)
2'	1.97 overlap
3'	1.37 overlap
4'	0.93 t (7.6)

Note: δ_H represents the chemical shift in ppm, while J represents the coupling constant in Hz.
the C-20 position of 1 should be R-configuration, too. Zhao et al. reported a serial of similar 16,23-epoxy-26(23)-olide-3,4-secocycloartan-3-oic acid esters, and determined their absolute configurations by single crystal X-ray diffraction [13]. By comparing the Cotton effect (−0.7 at 223 nm) of 1 in ECD spectrum with those known compounds [13], in combination with analysis of chemical shifts, the absolute configurations of C-23 and C-25 positions of 1 were proposed to be S- and R-configuration, respectively. Thus, the structure of 1 was elucidated as (20R,23S,25R)-4-hydroxy-16,23-epoxy-26(23)-olide-3,4-secocycloartan-3-oic acid ethyl ester, and named pseudolactone A.

Compound 2 was obtained as colorless oil. Its molecular formula was determined as C_{34}H_{54}O_{6}, by HR-ESI–MS spectrum. The 1H and 13C NMR spectroscopic data (Tables 1 and 2) of 2 showed typical signals similar to those of 1, including two ester carbonyls (δ C 174.0, 179.8), a ketal carbon at δ C 107.3 (C-23), an oxygenated methine at δ C 77.3 (C-16), a cyclopropyl at δ H 0.42 (d, J = 4.8 Hz), 0.78 (d, J = 4.8 Hz) and δ C 31.6 (t), one oxygen-bearing proton at δ H 4.09 (td, J = 5.6, 11.2 Hz) and δ C 77.3 (d), one oxygenated methylene at δ H 4.03 (t, J = 6.8 Hz) and δ C 64.2 (t), three singlet methyls at δ H 1.04 (s), 1.12 (s), and 1.67 (s), two doublet methyls at δ H 0.89 (d, J = 6.8 Hz) and 1.25 (d, J = 7.2 Hz), one triplet methyl at δ H 0.93 (t, J = 7.6 Hz). These information revealed that compound 2 possessed the similar 16,23-epoxy-26(23)-olide-3,4-secocycloartane skeleton to that of 1. The main differences between compounds 2 and 1 are that the resonance signals for one terminal double bond (δ H 4.73 (dd, J = 1.6, 2.0 Hz), 4.80 (d, J = 2.0 Hz); δ C 149.2 (s), 111.6 (t)), and for one butoxy (δ H 4.03, 1.59, 1.37, 0.93; δ C 64.2 (t), 30.6 (t), 19.1 (t), 13.7 (q)) in 2, took place of the signals for the oxygenated quaternary carbon at δ C 76.1 (s, C-4) and the methyl at δ H 1.17 (s) and δ C 25.8 (q), as well as for the ethoxy at δ H 4.05, 1.19 and δ C 60.2 (t), 14.1 (q).

In 1H-1H COSY spectrum (Fig. 3), a butoxy was determined on the basis of the correlations of H2-1′/H2-2′/H2-3′/H3-4′. The butoxy was linked to C-3 through key HMBC cross peak (Fig. 3) from H2-1′ (δ H 4.03) to the ester carbonyl at δ C 174.0. The terminal double bond was evidenced to be
placed between C-4 and C-29 as shown by key HMBC correlations (Fig. 3) from H-5 (δ_H 2.41), H-29 (δ_H 4.73 and 4.80), CH_3-30 (δ_H 1.67) to C-4 (δ_C 149.2). In REOSY spectrum of 2, the observation of key NOE correlations (Fig. 3) of H-19 with CH_3-30, H-8 (δ_H 1.53), of CH_3-18 (δ_H 1.04) with H-8, H-16 (δ_H 4.09) and H-20 (δ_H 2.10), of H-17 (δ_H 1.47) with CH_3-28 (1.12) and CH_3-21 (δ_H 0.89), suggested that the relative configuration of 2 was identical to that of compound 1. From structure, compound 2 could be considered as a dehydrated analogue of 1, implying that two compounds may share same configuration. Also, compound 2 had a negative Cotton effect (− 1.5) at 201 nm. Consequently, the structure of 2 was identified as (20R,23S,25R)-16,23-epoxy-26(23)-olide-3,4-secocycloartan-4(29)-en-3-oic acid methyl ester, and given the name pseudolactone B.

The molecular formula of compound 3 was assigned as C_{31}H_{46}O_{5} with nine degrees of unsaturation, based on the hydrogen adduct ion [M + H]^+ at m/z 499.3414 (calcd. 499.3418 for C_{31}H_{46}O_{5}). Its molecular weight is 42 Da less than that of 2. The ^1H and ^13C NMR spectra (Tables 1 and 2) were quite close to those of 2. The only difference was that a methoxyl at δ_H 3.61 and δ_C 51.5 was observed in 3, instead of those signals for the butoxy (δ_H 4.03, 1.59, 1.39, 0.93; δ_C 64.2 (t), 30.6 (t), 19.1 (t), 13.7 (q)) in 2. Key HMBC correlation from the methoxyl proton at δ_H 3.61 to the ester carbonyl at δ_C 174.3 further confirmed the above deduction, and established the structure of 3 as (20R,23S,25R)-16,23-epoxy-26(23)-olide-3,4-seco-cycloarten-4(29)-en-3-oic acid methyl ester, and given the name pseudolactone C.

Compound 4 had a molecular formula C_{32}H_{52}O_{6} with seven degrees of unsaturation, as evidenced by positive HRESI–MS at m/z 555.3674 [M + Na]^+. The ^1H NMR spectroscopic data (Table 1) of 4 exhibited four singlet methyls at δ_H 1.00 (s), 0.92 (s), 1.25 (s), and 1.21 (s), two doublet methyls at δ_H 0.86 (d, J = 6.0 Hz) and 1.22 (d, J = 9.6 Hz), one triplet methyl at δ_H 1.25 (t, J = 6.8 Hz), and an oxygenated methylene at δ_H 4.11 (2H, q, J = 6.8 Hz). In addition, a typical AB coupling system was observed at δ_H 0.57 (1H, d, J = 4.4 Hz) and 0.68 (1H, d, J = 4.4 Hz). In ^13C NMR spectrum (Table 2), thirty-two carbon resonances were observed, including 7 methyls (δ_C 18.5, 19.2, 16.9, 19.5, 31.6, 26.2, 14.2), 12 methylenes (including one oxygenated methylene at δ_C 60.3), 5 methines, and 8 quaternary carbons (including one ester carbonyl at δ_C 174.8, one carbonyl at δ_C 180.8, one ketone carbonyl at δ_C 209.3, and one oxygenated quaternary carbon at δ_C 76.3). Deducting three degrees of unsaturation accounted for one ketone carbonyl and two carboxylic carbon, the remaining four degrees of unsaturation were indicative of the tetracyclic ring system of 4. The NMR spectroscopic data (Tables 1 and 2) of 4 quite resemble those of known compound pseudolarnoid G ((25S)-4-hydroxy-3,4-seco-cycloarten-23-one-3,26-dioic acid methyl), previously reported from the seeds of the tilted plant [13]. The main differences are that compound 4 had an ethoxy ester and one carboxy functionalities, while pseudolarnoid G had two methyl ester functionalites.

The diagnostic chemical shifts at δ_C 174.8 (ester carbonyl) and δ_C 76.3 (s) were indicative of oxidative cleavage of ring A between C-3 and C-4, and formed an ethyl ester at C-3 and an oxygenated isopropyl moiety at C-4. The deduction was evidenced by key ^1H-^1H COSY correlation (Fig. 4) between H-1′ (δ_H 4.11) and H-2′ (δ_H 1.25), and between H_{2-1} and H_{2-2}, together with HMBC correlations (Fig. 4) of H_{2-1} and H_{2-1′} with C-3 (δ_C 174.8), of CH_3-29 (δ_H 1.25), CH_3-30 (δ_H 1.21), H-5 (δ_H 1.85), H_{2-6} (δ_H 0.69, 1.73) with the oxygenated quaternary carbon at δ_C 76.3 (C-4). Also,
the ketone carbonyl at δ_C 209.3 was assigned to be C-23 on the basis of HMBC correlations from H$_2$-22 and H$_2$-24 to the ketone carbonyl. Key HMBC cross-peaks of H$_2$-24 and CH$_3$-27 (δ_H 1.22 (d, $J=9.6$ Hz) supported the attribution of C-26 carboxyl. In the ROESY spectrum, key NOE correlations (Fig. 4) of H-20 with CH$_3$-18, of H-8 (δ_H 1.30) with CH$_3$-18 and H-19, and of CH$_3$-29 with H-19 indicated that H-8, CH$_3$-18, CH$_3$-19, H-20, and 4-hydroxyl isopropyl are β-oriented, whereas H-17 and CH$_3$-28 were α-oriented based on the NOE cross-peak of H-17 with CH$_3$-28. With regard to the absolute configurations of two chiral centers (C-20 and C-25) at C-17 side chain, Zhao et al. had ever determined the absolute configurations of C-20 and C-25 of similar compound pseudolarnoid G as R and S, respectively, by single crystal X-ray diffraction. The ECD spectrum of compound 4 showed a negative Cotton effect -1.5 at 285 nm, in accordance with that of pseudolarnoid G (-1.23 (283 nm)), revealed that compound 4 had same absolute configuration as that of pseudolarnoid G. Therefore, the structure of 4 was identified as (20R,25S)-4-hydroxy-23-oxo-3,4-secocycloartan-26-oic acid-3-ethyl ester, and named pseudolactone D.

3 Experimental Section

3.1 General Experimental Procedures

Optical rotations were measured with a Perkin–Elmer 341 polarimeter. IR spectra were recorded with a Bruker Vector-22 Spectrophotometer with KBr discs. NMR spectra were recorded with Bruker DRX-400 spectrometer (400 MHz). The chemical shifts (δ) are given in ppm with TMS as internal standard and coupling constants (J) are given in Hz. MS spectra were recorded with a Agilent MSD-Trap-XCT (for ESI) and Waters Micro-mass Q-TOF mass spectrometer (for HR-ESI–MS), in m/z. Column chromatographic separations were carried out by using silica gel (200–300 mesh; Marine Chemical Factory, Qingdao, P. R. China), Sephadex LH-20 (Pharmacia Fine Chemicals, Piscataway, NJ, USA) as packing material. TLC was carried out on precoated silica gel GF 254 plates (Yantai Chemical Industrials) and the TLC spots were viewed at 254 nm and visualized by using 10% sulfuric acid in alcohol containing 10 mg/mL vanillin.

3.2 Plant Material

The cones of P. amabilis were collected in Jiu Jiang, Jiangxi province, P. R. China, in October 2010, and authenticated by Prof. Han-Ming Zhang of Second Military Medical University. A voucher specimen (No. 20101015) is deposited in School of Pharmacy, Second Military Medical University.

3.3 Extraction and Isolation

The air-dried cones (12.0 kg) of P. amabilis were ground into powder and extracted with 80% EtOH for four times at room temperature to give a crude extract, which was further partitioned with petroleum ether (60–90 °C) (PE), CHCl$_3$, and EtOAc, successively. The CHCl$_3$-soluble extract was subjected to a silica gel column chromatography (CC) eluting with a gradient PE/EtOAc (from 3:7 to 10:0) to obtain eight fractions 1–8. Fraction 2 (58 g) was chromatographed over RP-18 column eluting with MeOH/H$_2$O (from 3:7 to 10:0) to afford five subfractions. Subfraction 2 was further chromatographed on a silica gel column (CH$_2$Cl$_2$/PE, from 0:20 to 1:0, and MeOH) and purified by preparative TLC (cyclohexane/CH$_2$Cl$_2$/EtOAc, 20:1:1) to afford 2 (20 mg) and 3 (20 mg). Subfraction 4 was separated by repeated column chromatography on Sephadex LH-20 (CHCl$_3$/MeOH, 1:1, and MeOH), and then purified by preparative TLC (cyclohexane/CH$_2$Cl$_2$/EtOAc, 15:1:1) to yield 1 (10 mg). Fraction 7 (70 g) was separated by RP-18 CC (MeCN/H$_2$O, from 2:8 to 10:0) to afford 6 subfractions. Subfraction 3
was further chromatographed on a silica gel column (CHCl3/MeOH from 50:1 to 0:1) and purified by preparative TLC (PE/EntOAc/MeOH, 20:1:0.1) to afford 4 (8 mg).

3.3.1 Pseudolactone A (1)

Colorless oil, $[\alpha]_3.3.1 \ 2.61\ (c = 0.23, CH_2Cl_2)$. CD ($c = 2.11\ mmol/L, CH_2CN, 20^\circ C$) nm (Δε) 201 (−1.5). IR (KBr) $\nu_{\text{max}}\ 1727,\ 1770,\ 2974,\ cm^{-1}$. For 1H (400 MHz, CDCl3) and 13C NMR data (100 MHz, CDCl3), see Tables 1 and 2. ESI–MS: $m/z\ 555.3\ [M + Na]^+$. HR-ESI–MS: $m/z\ 563.2\ [M + Na]^+$. HRESIMS: $m/z\ 541.3902\ [M + H]^+$. 13C NMR data (CDCl3), see Tables 1 and 2. ESI–MS: $m/z\ 531.3678\ [M + H]^+$ (calcd $C_{32}H_{52}O_6Na^+$, 555.3656).

3.3.2 Pseudolactone B (2)

Colorless oil, $[\alpha]_3.3.2 \ 45.1\ (c = 0.37, CH_2Cl_2)$. CD ($c = 2.83\ mmol/L, CH_2CN, 20^\circ C$) nm (Δε) 223 (−0.7). IR (KBr) $\nu_{\text{max}}\ 1731,\ 1778,\ 2964,\ cm^{-1}$. For 1H (400 MHz, CDCl3) and 13C NMR data (100 MHz, CDCl3), see Tables 1 and 2. ESI–MS: $m/z\ 51.6\ [M + Na]^+$. 13C NMR data (100 MHz, CDCl3), see Tables 1 and 2. ESI–MS: $m/z\ 51.6\ [M + H]^+$. HR-ESI–MS: $m/z\ 51.1\ [M + Na]^+$. 1H (400 MHz, CDCl3) and 13C NMR data (100 MHz, CDCl3), see Tables 1 and 2. ESI–MS: $m/z\ 51.1\ [M + H]^+$. HR-ESI–MS: $m/z\ 50.6\ [M + Na]^+$. 1H (400 MHz, CDCl3) and 13C NMR data (100 MHz, CDCl3), see Tables 1 and 2. ESI–MS: $m/z\ 49.9\ [M + H]^+$. HR-ESI–MS: $m/z\ 49.9\ [M + Na]^+$. 1H (400 MHz, CDCl3) and 13C NMR data (100 MHz, CDCl3), see Tables 1 and 2. ESI–MS: $m/z\ 49.9\ [M + H]^+$. HR-ESI–MS: $m/z\ 49.9\ [M + Na]^+$. 1H (400 MHz, CDCl3) and 13C NMR data (100 MHz, CDCl3), see Tables 1 and 2. ESI–MS: $m/z\ 531.3678\ [M + H]^+$ (calcd $C_{32}H_{52}O_6Na^+$, 555.3656).

3.3.3 Pseudolactone C (3)

Colorless oil, $[\alpha]_3.3.3 \ 1.88\ mmol/L, CH_2CN, 20^\circ C$ nm (Δε) 210 (−1.9), 285 (−1.5). IR (KBr) $\nu_{\text{max}}\ 1712,\ 1735,\ 2873,\ 2925,\ 2962,\ 3440,\ cm^{-1}$. For 1H (400 MHz, CDCl3) and 13C NMR data (100 MHz, CDCl3), see Tables 1 and 2. ESIMS: $m/z\ 512.2\ [M + Na]^+$. HR-ESI–MS: $m/z\ 499.3414\ [M + H]^+$. 13C NMR data (100 MHz, CDCl3), see Tables 1 and 2. ESI–MS: $m/z\ 512.1\ [M + Na]^+$ (calcd $C_{34}H_{53}O_5$).

3.3.4 Pseudolactone D (4)

White amorphous powder, $[\alpha]_3.3.4 \ 1.88\ mmol/L, CH_2CN, 20^\circ C$ nm (Δε) 201 (−1.9), 285 (−1.5). IR (KBr) $\nu_{\text{max}}\ 1712,\ 1735,\ 2873,\ 2925,\ 2962,\ 3440,\ cm^{-1}$. For 1H (400 MHz, CDCl3) and 13C NMR data (100 MHz, CDCl3), see Tables 1 and 2. ESI–MS: $m/z\ 513.4\ [M + H]^+$. HR-ESI–MS $m/z\ 555.3674\ [M + Na]^+$. 1H (400 MHz, CDCl3) and 13C NMR data (100 MHz, CDCl3), see Tables 1 and 2. ESI–MS: $m/z\ 513.4\ [M + H]^+$. HR-ESI–MS $m/z\ 555.3674\ [M + Na]^+$ (calcd $C_{32}H_{52}O_6$).

Acknowledgements The work was supported by NSFC (31870327, 81230090, 81520108030, 1302658), National Major Project of China (2018ZX00731016-005), The Key Research and Development Program of China (2017YFC1702002, 2017YFC1700200), Professor of Chang Jiang Scholars Program, Scientific Foundation of Shanghai China (17431902800, 16401901300), Shanghai Engineering Research Center for the Preparation of Bioactive Natural Products (10DZ2251300).

Compliance with Ethical Standards

Conflict of interest The authors declare that there are no conflicts of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Editor committee, *Flora of China*, vol. 7 (Science Press, Beijing, 1978), pp. 196–200
2. G.P. Ni, Zhongguo Zhongyao Zazhi 3, 156–158 (1957)
3. P. Chiu, L.T. Leung, B.C.B. Ko, Nat. Prod. Rep. 27, 1066–1083 (2010)
4. Z.L. Li, K. Chen, D.J. Pan, G.G. Xu, Acta. Chim. Sin. 47, 258–261 (1989)
5. S.P. Yang, Y. Wu, J.M. Yue, J. Nat. Prod. 65, 1041–1044 (2002)
6. Z.L. Li, D.J. Pan, C.Q. Hu, Q.L. Wu, S.S. Yang, G.Q. Xu, Acta. Chim. Sin. 40, 447–457 (1982)
7. Z.L. Li, K. Chen, D.J. Pan, G.Q. Xu, Acta. Chim. Sin. 43, 786–788 (1985)
8. G.F. Chen, Z.L. Li, D.J. Pan, J. Nat. Prod. 56, 1114–1122 (1993)
9. G.F. Chen, Z.L. Li, C.M. Tang, X. He, K. Chen, D.J. Pan, C.Q. Hu, D.R. McPhail, A.T. McPhail, K.H. Lee, Heterocycles 31, 1903–1906 (1990)
10. E. Li, A.M. Clark, C.D. Hufford, J. Nat. Prod. 58, 57–67 (1995)
11. B. Li, D.Y. Kong, Y.H. Shen, K.L. Fu, R.C. Yue, Z.Z. Han, H. Yuan, Q.X. Liu, L. Shan, H.L. Li, X.W. Yang, W.D. Zhang, Chem. Commun. 49, 1187–1189 (2013)
12. B. Li, D.Y. Kong, Y.H. Shen, H. Yuan, R.C. Yue, Y.R. He, L. Lu, L. Shan, H.L. Li, J. Ye, Y.W. Yang, J. Su, R.H. Liu, W.D. Zhang, Org. Lett. 14, 5432–5435 (2012)
13. X.T. Zhao, M.H. Yu, S.Y. Shi, C. Lei, A.J. Hou, Phytochemistry 171, 112229 (2020)

Affiliations

Si-Jia Xiao · Bo Li · Zheng-Rui Huang · Wen-Lin Yuan · Ji Ye · Hui-Liang Li · Xi-Ke Xu · Yun-Heng Shen · Wei-Dong Zhang

Yun-Heng Shen
shenyunheng@hotmail.com

Wei-Dong Zhang
wdzhangy@hotmail.com

Springer
1 Department of Phytochemistry, School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai 200433, China

2 State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 201203, China

3 Department of Applied Chemistry, Xi’an University of Technology, Xi’an 710048, China