Environmental Factors as Key Determinants for Visceral Leishmaniasis in Solid Organ Transplant Recipients, Madrid, Spain

Nerea Carrasco-Antón, Francisco López-Medrano, Mario Fernández-Ruiz, Eugenia Carrillo, Javier Moreno, Ana García-Reyne, Ana Pérez-Ayala, María Luisa Rodríguez-Ferrero, Carlos Lumbreras, Rafael San-Juan, Jorge Alvar, José María Aguado

During a visceral leishmaniasis outbreak in an area of Madrid, Spain, the incidence of disease among solid organ transplant recipients was 10.3% (7/68). Being a black person from sub-Saharan Africa, undergoing transplantation during the outbreak, and residing <1,000 m from the epidemic focus were risk factors for posttransplant visceral leishmaniasis.

Visceral leishmaniasis (VL) is an uncommon but potentially fatal complication for solid organ transplant (SOT) recipients (1,2). Beginning in July 2009, an outbreak of leishmaniasis affected the southwest area of Madrid (3). The outbreak was primarily located in Fuenlabrada, which has an annual VL incidence of 21.1 cases/100,000 population (4), notably higher than that estimated for the general population in Spain (0.5 cases/100,000 population) (5).

Spatial analysis revealed that the highest concentration of cases was in the residential area bordering the park (Bosque Sur) (6). A large population of Lepus granatensis hares, which serve as a reservoir for Leishmania infantum, was present in the area (7,8), and the Phlebotomus perniciosus sand fly in Spain can act as a vector and take blood meals from these hares (6,8,9). Thus, the parkland facilitated the transmission of the leishmaniasis pathogen, which led to the outbreak. This large, urban outbreak provided us the opportunity to analyze the incidence and specific risk factors of VL among SOT recipients.

The Study

The University Hospital 12 de Octubre in Madrid, Spain, acts as the reference hospital for SOT in South Madrid. We performed a retrospective study of all consecutive adult patients who underwent kidney, liver, or heart transplantation during January 1, 2005–January 1, 2013, and lived in the outbreak area. Patients who underwent SOT before January 1, 2005, were excluded because of the difficulty of ensuing long-term follow-up and the potential of heterogeneity in posttransplant practices. Patients who died or had moved to a different place of residence before outbreak onset were excluded (online Technical Appendix Figure 1, https://wwwnc.cdc.gov/EID/article/23/7/15-1251-Techapp1.pdf).

The primary study outcome was the occurrence of VL, the diagnosis of which required confirmation of parasitemia (online Technical Appendix) (10). We recorded pretransplant, peritransplant and posttransplant variables and collected various environmental factors prospectively by unblinded, direct interview with the patients. Patients were considered to have frequent contact with dogs if patients reported having dogs at home or taking care of dogs and to have the habit of visiting the park if they reported visiting once a year. The distance between the place of residence and the park was obtained by locating the patient’s home address and measuring the shortest linear distance to the nearest border of the parkland by means of an online mapping tool (Google Maps; Google Inc., Mountain View, CA, USA).

The beginning of the exposure period was set as July 2009 (outbreak onset) for patients who underwent SOT before the outbreak and as the transplant date for those who underwent SOT after outbreak onset. In both cases, the exposure period extended to the date of diagnosis of VL, death, or December 2013. We chose to end the study in December 2013 because the incidence of leishmaniasis decreased thereafter because of the implementation of control measures. The clinical research ethics committee of the University Hospital 12 de Octubre approved the study, and participants provided informed consent.

We analyzed 68 patients (Table 1) for a median follow-up of 4.4 (interquartile range 2.39–6.95) years. VL was diagnosed in 7 patients, yielding a cumulative incidence of 10.3% (95% CI 3.1%–17.5%) and an annual incidence of 2,997 (95% CI 1,213–6,161) cases per 100,000 population. Details on disease pathology and therapy were recorded.

Author affiliations: University Hospital 12 de Octubre of Complutense University of Madrid, Madrid, Spain (N. Carrasco-Antón, F. López-Medrano, M. Fernández-Ruiz, A. García-Reyne, A. Pérez-Ayala, C. Lumbreras, R. San-Juan, J.M. Aguado); Instituto de Salud Carlos III, Madrid (E. Carrillo, J. Moreno); Hospital General Universitario Gregorio Marañón, Madrid (M.L. Rodríguez-Ferrero); Drugs for Neglected Diseases Initiative, Geneva, Switzerland (J. Alvar)

DOI: https://dx.doi.org/10.3201/eid2307.151251
Our findings suggest that environmental factors might be crucial in modulating the incidence of VL in immunocompromised hosts, such as SOT recipients; the distance from the patient’s residence to the focus of the outbreak (6,7) emerged as a key risk factor. The median distance between the park and the homes of recipients with posttransplant VL was <500 m; the maximum flight distance of female sand flies is 600 m (12,13). Therefore, persons living within this radius had a higher chance of being bitten by the VL vector. A similar association was described for the general population during this outbreak (6).

(Table 2). The mean interval between transplant and diagnosis was 1.34 ± 0.89 years. No patients had visited highly VL-endemic countries.

Black sub-Saharan African SOT recipients were more likely than other recipients to become affected by VL (relative risk 6.40; 95% CI 1.76–23.29; p = 0.049) (Table 1). All 7 episodes of VL occurred in patients who underwent transplantation during the outbreak period (Figure 1).

The median distance between the place of residence and the park was significantly shorter for recipients with VL (399 m) than for those without (1,370 m; p = 0.001) (Figure 2; online Technical Appendix Figure 2). We explored the predictive accuracy of this variable by establishing the optimal cutoff value with the area under the receiving operating characteristic curve analysis. Recipients living <1,000 m from the park (26.1%, 6/23) had a higher incidence of VL than recipients living ≥1,000 m away (61.0% vs 98%; p = 0.001 by log-rank test) (online Technical Appendix Figure 3).

Our study suggests that the incidence of VL in SOT recipients is notably higher than that in the general population (11). Acquisition of the parasite most likely occurred posttransplant because all but 1 recipient affected with VL (from whom serum samples could be recovered) were seronegative for Leishmania spp. before transplantation.

Environmental factors

- Frequent contact with dogs, no. (%) 26 (38.2) 3 (42.8) 23 (37.7) 1.00
- Distance from patient’s residence to park, m, median (IQR) 1,220 (849–1,885) 399 (261–985) 1,370 (974–1,880) 0.001

DISPATCHES

| Table 1. Baseline and clinical characteristics of solid organ transplant recipients in study of risk factors for VL, Madrid, Spain, January 1, 2005–January 1, 2013 |
|---|---|---|---|---|
| Characteristics | Overall cohort, n = 68 | VL, n = 7 | No VL, n = 61 | p value† |
| Recipient age, y, mean ± SD | 51.1 ± 14.2 | 53.0 ± 15.5 | 51.0 ± 13.5 | 0.721 |
| Male sex, no. (%) | 48 (70.6) | 6 (85.7) | 42 (68.9) | 0.664 |
| Race, no. (%) | | | | |
| White | 62 (91.2) | 5 (71.4) | 57 (93.4) | 0.112 |
| Black, sub-Saharan African | 4 (5.9) | 2 (28.6)‡ | 2 (3.3) | 0.049 |
| Other | 2 (2.9) | 0 (0) | 2 (3.3) | 1.000 |
| Type of SOT, no. (%) | | | | |
| Kidney | 57 (83.8) | 6 (85.7) | 51 (83.6) | 1.000 |
| Liver | 8 (11.8) | 0 (0) | 8 (13.1) | 0.587 |
| Heart | 3 (4.4) | 1 (14.3) | 2 (3.3) | 0.282 |
| Donor age, y, mean ± SD | 46.1 ± 16.2 | 49.4 ± 17.4 | 46.3 ± 16.3 | 0.596 |
| Cold ischemia time, min, median (IQR) | 795 (371–1,365) | 1,020 (660–1,360) | 1,005 (630–1,354) | 0.370 |
| No. HLA mismatches, mean ± SD | 4.0 ± 1.2 | 5.0 ± 1.0 | 4.0 ± 1.2 | 0.265 |
| DCD donor, no. (%) | 18 (26.5) | 3 (42.8) | 15 (24.6) | 0.370 |
| Transplant during the outbreak, no. (%) | 41 (60.3) | 7 (100.0) | 34 (55.7) | 0.037 |
| Induction therapy, no. (%) | | | | |
| Basiliximab | 22 (32.4) | 0 (0) | 22 (36.1) | 0.087 |
| Antithymocyte globulin | 24 (35.3) | 4 (57.1) | 20 (32.8) | 0.233 |
| None | 22 (32.4) | 3 (42.8) | 19 (31.1) | 0.673 |
| Maintenance immunsuppression, no. (%) | | | | |
| Steroids | 56 (82.4) | 7 (100.0) | 49 (80.3) | 0.338 |
| Calcineurin inhibitors | 60 (88.2) | 6 (85.7) | 54 (88.5) | 1.000 |
| Mycophenolate mofetil/mycophenolic acid | 47 (61.8) | 4 (57.1) | 43 (70.5) | 0.668 |
| mTOR inhibitors | 10 (14.7) | 1 (14.3) | 9 (14.8) | 1.000 |
| Complications in the first year after SOT, no. (%) | | | | |
| Acute graft rejection | 19 (27.9) | 2 (28.6) | 17 (27.9) | 1.000 |
| CMV infection | 21 (30.9) | 4 (57.1) | 17 (27.9) | 0.189 |
| Bacterial infection | 60 (88.2) | 6 (85.7) | 54 (88.5) | 0.190 |

*CMV, cytomegalovirus; DCD, donation after circulatory death; HLA, human leukocyte antigen; IQR, interquartile range; mTOR, mammalian target of rapamycin; SOT, solid organ transplant; VL, visceral leishmaniasis.
†The p values refer to the comparison between patients with and without visceral leishmaniasis. Significant values are in bold.
‡The country of birth of both patients with posttransplant VL was Equatorial Guinea.
§Data available for 60 patients.
Determinants for Visceral Leishmaniasis, Spain

Table 2. Disease characteristics, demographics, clinical characteristics, therapy, and outcomes of 7 solid organ transplant recipients with VL, Madrid, Spain, January 1, 2005–January 1, 2013*

Characteristics	1	2	3	4	5	6	7
Sex	M	M	M	M	F	M	M
Race	Black	Black	White	White	White	White	White
Linear distance from patient’s residence to park, m	794	399	261	1,240	985	233	358
Age at transplant, y	35	34	76	55	68	49	52
Type of SOT	Kidney	Kidney	Kidney	Kidney	Kidney	Heart	Kidney
Donor Leishmania spp. serostatus	Negative	NP	Negative	Negative	NP	Negative	Negative
Pretransplant recipient	NP	NP	Negative	Positive	Negative	Negative	Negative
Leishmania spp. serostatus	NP						
Date of transplant	2011 Feb 11	2010 Jan 22	2010 Mar 10	2010 Jul 7	2009 Dec 29	2010 Sep 5	2010 Apr 1
Interval from transplant to VL diagnosis, y	1.17	2.44	0.25	1.4	0.17	1.81	2.21
Fever at admission	Yes	Yes	No	Yes	Yes	Yes	Yes
Pancytopenia	Yes						
Splenomegaly	Yes						
Serologic testing results for Leishmania spp.	Positive	Negative	Positive	Negative	Positive	Negative	Negative
Presence of amastigote forms in bone marrow sample	Positive						
PCR assay results of bone marrow sample	NP	NP	NP	Negative	NP	NP	NP
NNN culture results of bone marrow sample	Positive	NP	Positive	Negative	Negative	Negative	Positive
Initial therapy	L-AmB						
Relapse	Yes	No	Yes	Yes	No	No	No
Outcome	Renal failure	Graft loss	Cured	Graft loss	Cured	No	Cured

* L-AmB, liposomal amphotericin B; NNN, Novy-McNeal-Nicolle; NP, not performed; SOT, solid organ transplant; VL, visceral leishmaniasis.

Undergoing transplantation during the outbreak period was another risk factor for VL. This finding suggests that, in the case of an outbreak in a country with low baseline incidence, pretransplant screening of patients listed for SOT for VL-specific antibodies should be considered and repeated during the posttransplant period for the prompt detection of de novo infection. Recipients should also receive specific counseling to reduce the risk of being bitten by sand flies. In addition, treating physicians must maintain a low threshold of suspicion for VL for persons on immunosuppressive therapy during a VL outbreak.

We found that 28% of posttransplant VL cases occurred in black recipients born in sub-Saharan Africa, even though this subgroup only represented 2.4% of the overall population in the affected area (14). An association between sub-Saharan African ethnicity and VL has also been reported in the general population (4). No apparent relationship was found between the race of the patient and the frequency of parkland visits. Both black recipients in question came from Equatorial Guinea, a country not considered endemic for leishmaniasis by the World Health Organization (15). Therefore, the potential association between genetic susceptibility and posttransplant VL warrants further investigation.

Limitations of this study include the small sample size and that interviewers were not blinded to the diagnosis of VL. However, the objective nature of the questionnaire minimized the potential risk for bias. When assessing degree of exposure to sand flies, we used only indirect variables (i.e., distance between the patient’s residence and park, habit of visiting the park) as surrogate measures. Regarding the distance from the park, only linear distances were assessed without considering the potential presence of physical obstacles in the sand fly flight trajectory. Because of these limitations, our findings must be interpreted with caution.
Conclusions
Our study indicates several risk factors (being black and from sub-Saharan Africa, having an SOT during the outbreak, and living <1,000 m from the outbreak focus) useful for helping physicians treat SOT recipients during a VL outbreak. Doctors should select the patients with these risk factors for counseling to minimize their exposure to vectors and active monitoring for prompt diagnosis.

Acknowledgment
We thank Emiliano Aránguez Ruiz for his kind help providing the map included in this paper.

This study was co-funded by the World Health Organization (APW-2012/271093-O), the Spanish Ministry of Economy and Competitiveness, Instituto de Salud Carlos III (Proyecto Integrado de Excelencia 13/00045), and the European Regional Development Fund. M.F.R. holds a clinical research contract Juan Rodés (JR14/00036) from the Spanish Ministry of Economy and Competitiveness, Instituto de Salud Carlos III.

Dr. Carrasco-Antón is a specialist in internal medicine currently working at the Fundación Jiménez Díaz in Madrid, Spain. Her research interests are leishmaniasis and other infections in immunocompromised hosts.

References
1. Clemente W, Vidal E, Girão E, Ramos AS, Govedic F, Merino E, et al. Risk factors, clinical features and outcomes of visceral leishmaniasis in solid-organ transplant recipients: a retrospective multicenter case-control study. Clin Microbiol Infect. 2015;21:89–95. http://dx.doi.org/10.1016/j.cmi.2014.09.002
2. Alves da Silva A, Pacheco-Silva A, de Castro Cintra Sesso R, Esmeraldo RM, Costa de Oliveira CM, Fernandes PF, et al. The risk factors for and effects of visceral leishmaniasis in graft and renal transplant recipients. Transplantation. 2013;95:721–7. http://dx.doi.org/10.1097/TP.0b013e31827c16e2
3. Gomez-Barroso D, Herrador Z, San Martin JV, Gherasim A, Aguado M, Romero-Mate A, et al. Spatial distribution and cluster
analysis of a leishmaniasis outbreak in the south-western Madrid region, Spain, September 2009 to April 2013. Euro Surveill. 2015;20 pii:21037. http://dx.doi.org/10.2807/1560-7917. ES2015.20.7.21037

4. Horrillo I, San Martín JV, Molina L, Madroñal E, Matía B, Castro A, et al. Atypical presentation in adults in the largest community outbreak of leishmaniasis in Europe (Fuenlabrada, Spain). Clin Microbiol Infect. 2015;21:269–73. http://dx.doi.org/10.1016/j.cmi.2014.10.017

5. Herrador Z, Gherasim A, Jimenez BC, Granados M, San Martín JV, Aparicio P. Epidemiological changes in leishmaniasis in Spain according to hospitalization-based records, 1997-2011: raising awareness towards leishmaniasis in non-HIV patients. PLoS Negl Trop Dis. 2015;9:e0003594. http://dx.doi.org/10.1371/journal.pntd.0003594

6. Aránguez Ruiz E, Arce Aróztegui A, Moratilla Monzo L, Estradó Gómez A, Iriso Calle A, De la Fuente Ureña S, et al. Spatial analysis of an outbreak of leishmaniasis in the south of Madrid’s metropolitan area. 2009–2013 [in Spanish]. Rev Salud Ambient. 2014;19:39–53.

7. Molina R, Jiménez MI, Cruz I, Iriso A, Martin-Martín I, Sevillano O, et al. The hare (Lepus granatensis) as potential sylvatic reservoir of Leishmania infantum in Spain. Vet Parasitol. 2012;190:268–71. http://dx.doi.org/10.1016/j.vetpar.2012.05.006

8. Jiménez M, González E, Iriso A, Marco E, Alegret A, Fúster F, et al. Detection of Leishmania infantum and identification of blood meals in Phlebotomus perniciosus from a focus of human leishmaniasis in Madrid, Spain. Parasitol Res. 2013;112:2453–9. http://dx.doi.org/10.1007/s00436-013-3406-3

9. Suárez Rodríguez B, Isidoro Fernández B, Santos Sanz S, Sierra Moros MJ, Molina Moreno R, Astray Mochales J, et al. Review of the current situation and the risk factors of Leishmania infantum in Spain [in Spanish]. Rev Esp Salud Publica. 2012;86:555–64.

10. World Health Organization. Control of the leishmaniases. Report of a meeting of the WHO Expert Committee on the Control of Leishmaniases, Geneva, 22–16 March 2010. Geneva: WHO Press; 2010.

11. Arce A, Estradó A, Ordoñez M, Sevilla S, García N, Moratilla L, et al. Re-emergence of leishmaniasis in Spain: community outbreak in Madrid, Spain, 2009 to 2012. Euro Surveill. 2013;18:20546. http://dx.doi.org/10.2807/1560-7917. ES2013.18.30.20546

12. Dergacheva TI, Strekalova MV, Lapin VA, Karulin BE, Chabovskii AV. The use of radioisotope labelling for studying the feeding of sandflies (Phlebotominae) and their move into colonies of the greater gerbil (Rhombomys opimus Licht.) [Russian]. Med Parazitol (Mosk). 1996;3:11–4.

13. Kamhawi S, Abdel-Hafez SK, Molyneux DH. The behaviour and dispersal of sandflies in Ras al Naqb, South Jordan with particular emphasis on Phlebotomus kazeruni. Parasitologia. 1991;33(Suppl):307–14.

14. City Council of Fuenlabrada. Population in Fuenlabrada, by sex and country of origin [Spanish]. 2016 Jan 5 [cited 2016 Mar 23]. http://ayto-fuenlabrada.es/index.do?MP=3&MS=27&MN=2&TR=A&IDR=1&iddocumento=17132

15. World Health Organization. Global Health Observatory data repository. Leishmaniasis [cited 2016 March 23]. http://apps.who.int/gho/data/node.main.NTDLEISH?lang=en

Address for correspondence: Nerea Carrasco-Antón, Unit of Infectious Diseases, Hospital Universitario 12 de Octubre, Centro de Actividades Ambulatorias, 2nd Fl, Section D, Avda de Córdoba, s/n, Postal Code 28041, Madrid, Spain; email: nereacarrascoanton@gmail.com
Environmental Factors as Key Determinants for Visceral Leishmaniasis in Solid Organ Transplant Recipients, Madrid, Spain

Technical Appendix

Microbiological Procedures for Parasitological Confirmation

Serology was performed by both a commercial microwell ELISA test (SciMedx Corporation, Denville, NJ, USA) and an rK39 antigen-based immunochromatographic test (InBios International Inc., Seattle, WA, USA) following the manufacturer’s instructions. Parasitological diagnosis was based on histologic or Giemsa-stained smear examination for the presence of amastigote forms in bone marrow samples, on culture with Novy-McNeal-Nicolle medium (Francisco Soria Melguizo, Madrid, Spain) to detect promastigotes, or on the DNA detection by means of an in-house PCR assay that amplifies a 145-bp fragment from *Leishmania infantum* kinetoplast DNA. Retrospective serologic testing for *Leishmania* spp. was performed with stored serum samples collected before transplantation from those recipients who developed visceral leishmaniasis and their corresponding donors.
Technical Appendix Figure 1. Patient flow diagram. SOT, solid organ transplantation; VL, visceral leishmaniasis.
Technical Appendix Figure 2. Linear distance between solid organ transplant recipient’s place of residence and nearest border of the park. Distance (m) is depicted with a box-whisker plot that shows the median, interquartile range (box), percentiles 5 and 95 (whiskers), and outlier/extreme values (dots). * p = 0.001.
Technical Appendix Figure 3. Kaplan-Meier curves depicting the percentage of solid organ transplant recipients free from visceral leishmaniasis by their linear distance from the parkland over the course of the study. The parkland was the area identified as the epidemic focus of the outbreak. In the event of a death in a person without visceral leishmaniasis, the data was censored at the date of death. At 4 years, a reduced percentage of the solid organ transplant recipients living <1,000 m away from the parkland were visceral leishmaniasis free (log-rank test p = 0.001).