The $\frac{4}{3}$-variation of the derivative of the self-intersection Brownian local time and related processes

Yaozhong Hu, David Nualart and Jian Song

Abstract

In this paper we compute the $\frac{4}{3}$-variation of the derivative of the self-intersection Brownian local time $\gamma_t = \int_0^t \int_0^u \delta'(B_u - B_s)dsdu, t \geq 0$, applying techniques from the theory of fractional martingales [3].

1 Introduction

Let $B = \{B_t, t \geq 0\}$ be a standard one-dimensional Brownian motion. In this paper we are interested in the process $\gamma = \{\gamma_t, t \geq 0\}$ formally given by

$$\gamma_t = \frac{d}{dy} \alpha_t(y)\big|_{y=0}, \quad \text{where} \quad \alpha_t(y) = \int_0^t \int_0^u \delta_y(B_u - B_s)dsdu.$$ It can be rigorously defined as the following limit in $L^2(\Omega)$

$$\gamma_t = \lim_{\epsilon \to 0} \int_0^t \int_0^u p_\epsilon'(B_u - B_s)dsdu,$$ (1.1)

where $p_\epsilon(x) = (2\pi \epsilon)^{-\frac{1}{2}} \exp(-x^2/(2\epsilon))$. This process has been studied by Rogers and Walsh in [5] and by Rosen in [6].

Let us recall the definition of the β-variation of a stochastic processes from [3].

Definition 1.1 Let $\beta \geq 1$ and let $X = \{X_t, t \geq 0\}$ be a continuous stochastic process. Denote

$$S_{\beta,n}^{[a,b]}(X) := \sum_{i=0}^{n-1} |X_{t_{i+1}^n} - X_{t_i^n}|^{\beta},$$ (1.2)

where $t_{i}^n = a + \frac{i}{n}(b-a)$ for $i = 0, \ldots, n$. If the limit of $S_{\beta,n}^{[a,b]}(X)$ exists in probability as n tends to infinity, then we say that the β-variation of X exists on the interval $[a, b]$ and the limit is denoted by $\langle X \rangle_{\beta,[a,b]}$. We say that the β-variations of X on $[a, b]$ exists in L^p if the limit of $S_{\beta,n}^{[a,b]}(X)$ exists in $L^p(\Omega)$, where $p \geq 1$.

*Y. Hu is partially supported by a grant from the Simons Foundation #209206.
†D. Nualart is supported by the NSF grant DMS0904538.

Keywords: β-variation, self-intersection local time, derivative of self-intersection local time, fractional martingale.

1
For any $a < b < c$, if the β variation of X exist on the intervals $[a, b]$ and $[b, c]$, then it also exists on $[a, c]$ and

$$\langle X \rangle_{\beta, [a, c]} = \langle X \rangle_{\beta, [a, b]} + \langle X \rangle_{\beta, [b, c]}.$$

Denote by $\{L_t^x, t \geq 0, x \in \mathbb{R}\}$ a jointly continuous version of the Brownian local time. In the paper [5] Rogers and Walsh gave an explicit formula for the exact $\frac{4}{3}$-variation of the process γ, using Gebelein’s inequality for Gaussian random variables to bound the sums of powers of the increments of process γ. More precisely, they proved the following theorem.

Theorem 1.2 The process γ has a finite $\frac{4}{3}$-variation in L^2 on any interval $[0, T]$ given by

$$\langle \gamma \rangle_{\frac{4}{3}, [0, T]} = K \int_0^T (L_t^{B_r})^{\frac{2}{3}} dr,$$

where $K = E|B_1|^\frac{4}{3} E \left[\int_\mathbb{R} (L_t^z)^2 dz \right]^\frac{2}{3}$.

The purpose of the present paper is to provide an alternative and simpler proof of Theorem 1.2 by using the methodology introduced by Hu, Nualart and Song in [3] to compute the p-variation of a fractional martingale. A basic ingredient in our approach is the stochastic integral representation of γ_t obtained by Hu and Nualart in [2] through the Clark-Ocone formula:

$$\gamma_t = \int_0^t \left(\int_\mathbb{R} p_{t-r}(y) (L_r^y + B_r - L_r^B) dy \right) dB_r. \quad (1.3)$$

The main idea of the proof is as follows. By an approximation argument, and using the representation of the local time as a semimartingale in the space variable (see Perkins [4]), the problem is reduced to the computation of the $\frac{4}{3}$-variation of the process

$$X_t = \int_0^t \left(\int_\mathbb{R} p_{t-r}(y) W_y dy \right) dB_r, \quad (1.4)$$

where $W = \{W_y, y \in \mathbb{R}\}$ is a two-sided Brownian motion independent of B. Taking into account that W is Hölder continuous of order almost $\frac{1}{2}$, the integral $\int_\mathbb{R} p_{t-r}(y) W_y dy$ behaves as $(t - r)^{\frac{3}{2}}$ as $r \uparrow t$. In this sense, the variation of the process X is similar to the variation of the fractional Brownian motion with Hurst parameter $H = \frac{3}{4}$. Actually, we can compute easily the $\frac{4}{3}$-variation of the process X applying the approach used for the fractional Brownian motion, based on the decomposition by Mandelbrot and Van Ness [1] and the ergodic theorem. Notice, however, that our proof shows only the existence of the $\frac{4}{3}$-variation in L^1, and we obtain a different expression for the constant K in Theorem 1.2.

The paper is organized as follows. In the next section we derive the $\frac{4}{3}$-variation of the process X given in (1.4) using ergodic theorem. Section 3 is devoted to the proof of Theorem 1.2, where the $\frac{4}{3}$-variation is considered in L^1. Finally, the appendix contains some technical lemmas. Along the paper we denote by C a generic constant which may be different from line to line.

2 $\frac{4}{3}$-variation of a fractional-type process

Consider the stochastic process introduced in (1.4). This process can also be expressed as

$$X_t = \int_0^t E^\theta W_{\theta \sqrt{t-r}} dB_r,$$
where \(\theta \) is a \(N(0, 1) \) random variable, independent of \(B \), and \(E^\theta \) denotes the expectation with respect to \(\theta \). The following theorem is the main result of this section.

Theorem 2.1 The process \(X = \{X_t, t \geq 0\} \) defined in (1.4) has a finite \(\frac{4}{3} \)-variation in \(L^1 \) given by

\[
(X)_{0, [a, b]} = K(b - a),
\]

where

\[
K = E((\theta|^{\frac{4}{3}}E) \left(\frac{1}{4} \int_0^\infty \int_0^\infty (x + y)^{-\frac{4}{3}}(B_{1+x} - B_x)(B_{1+y} - B_y) dx dy \right)^{\frac{2}{3}}. \tag{2.1}
\]

Proof The proof will be done in two steps. To simplify the presentation we assume that \([a, b] = [0, T]\).

Step 1 Enlarging the probability space if necessary, we assume that \(B = \{B_t, t \in \mathbb{R}\} \) is a two-sided Brownian motion. Then we define

\[
Y_t = \int_{-\infty}^t E^\theta W_{\sqrt{t-r}} dB_r - \int_{-\infty}^0 E^\theta W_{\sqrt{t-r}} dB_r.
\]

This process is well defined because, using the fact that \(E(W_x W_y) = \frac{1}{2}(|x| + |y| - |x - y|) \), we can write

\[
E(Y_t^2) = E(W) \int_{\mathbb{R}} \left(E^\theta W_{\sqrt{(t-r)^+}} - E^\theta W_{\sqrt{(-r)^+}} \right)^2 dr
\]

\[
= \int_{\mathbb{R}} E^{\theta, \eta} E(W_{\sqrt{(t-r)^+}} - W_{\sqrt{(-r)^+}}) E(W_{\eta \sqrt{(t-r)^+}} - W_{\eta \sqrt{(-r)^+}}) dr
\]

\[
= \frac{\sqrt{2}}{2} E(|\theta|) \int_{\mathbb{R}} \left(\sqrt{2[(t-r)^+ + (-r)^+]} - \sqrt{(t-r)^+} - \sqrt{(-r)^+} \right) dr
\]

\[
= \frac{1}{\sqrt{\pi}} \left(\int_0^\infty \left(\sqrt{2t + 4r} - \sqrt{t + r} - \sqrt{r} \right) dr + \int_0^t \left(\sqrt{2(t-r)} + \sqrt{t-r} \right) dr \right) < \infty.
\]

We claim that the difference

\[
Y_t - X_t = \int_{-\infty}^0 \left(E^\theta W_{\sqrt{t-r}} - E^\theta W_{\sqrt{-r}} \right) dB_r \tag{2.2}
\]

has \(\frac{4}{3} \)-variation in \(L^1 \) equal to zero in any time interval \([0, T]\). In fact, if \(t_i = \frac{iT}{n} \), then from the Burkholder-Davis-Gundy inequality and the Jensen inequality, and using the notation (1.2), we have

\[
ES^{[0, T]}_{\frac{4}{3}, n} (Y - X) = \sum_{i=0}^{n-1} E \left| \int_{-\infty}^0 \left(E^\theta W_{\sqrt{t_i+1-r}} - E^\theta W_{\sqrt{t_i-r}} \right) dB_r \right|^{\frac{4}{3}}
\]

\[
\leq C \sum_{i=0}^{n-1} E \left(\int_{-\infty}^0 \left(E^\theta W_{\sqrt{t_i+1-r}} - E^\theta W_{\sqrt{t_i-r}} \right)^2 dr \right)^{\frac{2}{3}}
\]

\[
\leq C \sum_{i=0}^{n-1} \left(\int_{-\infty}^0 E \left(E^\theta W_{\sqrt{t_i+1-r}} - E^\theta W_{\sqrt{t_i-r}} \right)^2 dr \right)^{\frac{2}{3}}.
\]
By the same computations as above we obtain
\[
ES_t^{[0,T]}(Y - X) \leq C \sum_{i=0}^{n-1} \left(\int_0^\infty \left(\sqrt{2t_{i+1} + 2t_i + 4t} - \sqrt{t_{i+1} + t_i + 4t} \right) dr \right)^{\frac{2}{3}}
\]
\[
= C \sum_{i=0}^{n-1} \left(\int_0^{t_{i+1}} \int_0^{t_{i+1} - t_i} \left(x + y + t_i + T \right)^{\frac{3}{2}} dxdydr \right)^{\frac{2}{3}}
\]
\[
= C \sum_{i=0}^{n-1} \left(\int_0^{t_{i+1} - t_i} \left(x + t_i \right)^{\frac{3}{2}} dxdy \right)^{\frac{2}{3}}.
\]

For \(i \geq 1 \) we use the estimate \((x + y + t_i)^{-\frac{1}{2}} \leq t_i^{-\frac{1}{2}}\). In this way we can estimate the above sum for \(i \geq 1 \) by
\[
n^{-\frac{3}{4}} \sum_{i=1}^{n-1} \left(\frac{i}{n} \right)^{-\frac{1}{3}} = \frac{1}{n} \sum_{i=1}^{n-1} i^{-\frac{1}{3}},
\]
which clearly converges to zero as \(n \) tends to infinity.

Step 2 From Step 1, it follows that to prove Theorem 2.1 it suffices to show
\[
(Y)^\frac{1}{3} \in [0,T] = KT. \tag{2.3}
\]

It is easy to verify that the process \(Y \) has stationary increments and is self-similar of order \(\frac{3}{4} \). As a consequence, the sequence \(\{Y_{t_{i+1}} - Y_{t_i}, i \geq 0\} \) has the same law as \(\{(\frac{t}{n})^{\frac{3}{4}} \xi_i, i \geq 0\} \), where
\[
\xi_i = \int_{-\infty}^{t_{i+1}} \int_{-\infty}^{t_{i+1} - t_i} E^\theta W_{\sqrt{t_{i+1} - r}} dB_r - \int_{-\infty}^{t_i} E^\theta W_{\sqrt{t_{i+1} - r}} dB_r.
\]

It suffices to show that \(\frac{1}{n} \sum_{i=0}^{n-1} |\xi_i|^{\frac{3}{4}} \) converges in \(L^1 \) to \(K \). By the ergodic theory, we know that,
\[
\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} |\xi_i|^{\frac{3}{4}} = Z = E(|\xi_1|^{\frac{3}{4}} |T),
\]
in \(L^1 \), where \(T \) is the invariant \(\sigma \)-field. We claim that the random variable \(Z \) is a constant. To prove this we will show that both random variables \(E^W Z \) and \(E^B Z \) are constant, where \(E^W \) and \(E^B \) denote, respectively, the mathematical expectation with respect to the processes \(W \) and \(B \).

Let us first compute \(E^W Z \). Let \(C_0 = E[\theta^{\frac{1}{4}}] \). Then, we can write
\[
E^W |\xi_1|^{\frac{3}{4}} = C_0 \left(E^W \left(\int_{-\infty}^{t_{i+1}} \int_{-\infty}^{t_{i+1} - t_i} E^\theta W_{\sqrt{t_{i+1} - r}} dB_r - \int_{-\infty}^{t_i} E^\theta W_{\sqrt{t_{i+1} - r}} dB_r \right)^{\frac{2}{3}} \right).
\]

Let us first compute \(E^W Z \). Let \(C_0 = E[\theta^{\frac{1}{4}}] \). Then, we can write
\[
E^W \left(\int_{-\infty}^{t_{i+1}} \int_{-\infty}^{t_{i+1} - t_i} E^\theta W_{\sqrt{t_{i+1} - r}} dB_r - \int_{-\infty}^{t_i} E^\theta W_{\sqrt{t_{i+1} - r}} dB_r \right)^{\frac{2}{3}}.
\]
where the double integral \(\int \cdots dB_r dB_s \) with respect to \(B \) is a Stratonovich-type integral. Thus,

\[
E^W |\xi_i|^\frac{4}{3} = C_0 \left(\frac{1}{2} \int_{-\infty}^{i+1} \int_{-\infty}^{i+1} \left(-\sqrt{(i+1-s)+(i+1-r)} - \sqrt{(i-r)^+(i-s)^+} \\
+ \sqrt{(i+1-r) + (i-s)^+} + \sqrt{(i+1-s) + (i-r)^+} \right) dB_r dB_s \right)^\frac{2}{3}
\]

\[
= C_0 \left(\frac{1}{4} \int_{-\infty}^{i+1} \int_{-\infty}^{i+1} \int_{i+r}^{i+1-r} \int_{i+s}^{i+1-s} (x+y)^{-\frac{2}{3}} dy dx dB_r dB_s \right)^\frac{1}{3}.
\]

One can exchange the integration order of \(x, y \) and \(r, s \). The domain \(-\infty < r, s, < i+1, (i-r)^+ < x < i+1-r, (i-s)^+ < y < i+1-s\) can be written as \(0 < x, y < \infty, i-x < r < i+1-x, i-y < s < i+1-y \). Thus, we have

\[
E^W |\xi_i|^\frac{4}{3} = C_0 \left(\frac{1}{4} \int_0^{\infty} \int_0^{\infty} (x+y)^{-\frac{2}{3}} (B_{i+1-x} - B_{i-x})(B_{i+1-y} - B_{i-y}) dy dx \right)^\frac{2}{3}
\]

\[
= C_0 \left(\frac{1}{4} \int_0^{\infty} \int_0^{\infty} \frac{1}{\Gamma(\frac{3}{2})} \int_0^{\infty} e^{-(x+y)z} z^{\frac{1}{2}} dz (B_{i+1-x} - B_{i-x})(B_{i+1-y} - B_{i-y}) dy dx \right)^\frac{2}{3}
\]

\[
= C_0 \left(\frac{1}{4\Gamma(\frac{3}{2})} \int_0^{\infty} \left(\int_0^{\infty} (B_{i+1-x} - B_{i-x}) e^{-xz} dx \right)^2 z^{\frac{1}{2}} dz \right)^\frac{2}{3}.
\]

For any fixed \(x \) and \(y \) in \(\mathbb{R} \), the correlation between the Gaussian random variables \(B_{i+1-x} - B_{i-x} \) and \(B_{i+1-y} - B_{i-y} \) is zero when \(i \) is sufficiently large. This implies that the sequence

\[
\int_0^{\infty} \left(\int_0^{\infty} (B_{i+1-x} - B_{i-x}) e^{-xz} dx \right)^2 z^{\frac{1}{2}} dz
\]

is stationary and ergodic. As a consequence, \(\frac{1}{n} \sum_{i=0}^{n-1} E^W |\xi_i|^\frac{4}{3} \) converges to the constant \(K \) given in (2.1).

Finally, we show that \(E^B Z \) is constant. We can write

\[
E^B |\xi_i|^\frac{4}{3} = C_0 \left(\int_{\mathbb{R}} \left(E^\theta W_{\sqrt{(i+1-r)^+}} - E^\theta W_{\sqrt{(i-r)^+}} \right)^2 dr \right)^\frac{2}{3}.
\]

For any fixed \(r \) and \(s \) in \(\mathbb{R} \), the covariance between the random variables \(\eta_0(s) \) and \(\eta_i(r) \), where

\[
\eta_i(r) = E^\theta W_{\sqrt{(i+1-r)^+}} - E^\theta W_{\sqrt{(i-r)^+}},
\]

is given by

\[
E^W(\eta_0(s)\eta_i(r)) = \frac{1}{2} E(|\theta|) \left(-\sqrt{(i+1-r)^+ + (1-s)^+} + \sqrt{(i+1-r)^+ + (-s)^+} \\
+ \sqrt{(i-r)^+ + (1-s)^+} - \sqrt{(i-r)^+ + (-s)^+} \right),
\]

and it converges to zero as \(i \) tends to infinity. Again, this implies that the sequence

\[
\int_{\mathbb{R}} \left(E^\theta W_{\sqrt{(i+1-r)^+}} - E^\theta W_{\sqrt{(i-r)^+}} \right)^2 dr
\]

is stationary and ergodic, and as a consequence, \(\frac{1}{n} \sum_{i=0}^{n-1} E^B |\xi_i|^\frac{4}{3} \) converges to a constant. ■
3 Proof of Theorem 1.2

In this section we proceed to the proof of Theorem 1.2, where the $\frac{1}{3}$-variation is in $L^1(\Omega)$, and the constant K has the alternative expression given by (2.1).

Fix a partition $s_k = \frac{kT}{N}$, $k = 0, \ldots, N$. For any point t we denote by $t(N)$ the maximum point of the partition on the left of t, namely, $t(N) = t_k$ if $s_k \leq t < s_{k+1}$. We approximate the process γ_t defined in (1.3) by a sequence of processes obtained by freezing the time coordinate of $L^{y+B_y}_r - L^{B_y}_r$ at the point $r = r(N)$, that is,

$$\gamma_t^N = \int_0^t \int_\mathbb{R} p_{t-r}(y) \left(L^{y+B_y}_{r(N)} - L^{B_y}_{r(N)} \right) dy dB_r.$$

The proof will be divided into several steps.

Step 1 We claim that

$$\lim_{N \to \infty} \limsup_{n \to \infty} \sum_{k=0}^{N-1} ES_{\frac{kT}{N}}^{\frac{(k+1)T}{N}} (\gamma - \gamma^N) = 0. \quad (3.1)$$

Consider a uniform partition of the interval $[kT/N, (k+1)T/N]$ denoted by $r_0 < r_1 < \cdots < r_n$, where $r_j = \frac{kT}{N} + \frac{j}{nN}$, $j = 0, 1, \ldots, n$. Then,

$$S_{n,N}^k := S_{\frac{kT}{N}}^{\frac{(k+1)T}{N}} (\gamma - \gamma^N) = \sum_{j=0}^{n-1} |\Delta_j (\gamma - \gamma^N)|^{\frac{3}{4}}, \quad (3.2)$$

where $\Delta_j (\gamma - \gamma^N) = (\gamma - \gamma^N)_{r_{j+1}} - (\gamma - \gamma^N)_{r_j}$. Let $f_r^N(y) = L^{y+B_y}_r - L^{B_y}_r - L^{y+B_y}_{r(N)} + L^{B_y}_{r(N)}$. Then,

$$(\gamma - \gamma^N)_t = \int_0^t \int_\mathbb{R} p_{t-r}(y) f_r^N dy dB_r.$$

As a consequence,

$$S_{n,N}^k = \sum_{j=0}^{n-1} \left| \int_0^{r_{j+1}} \int_\mathbb{R} p_{r_{j+1}-r}(y) f_r^N dy dB_r - \int_0^{r_j} \int_\mathbb{R} p_{r_j-r}(y) f_r^N dy dB_r \right|^{\frac{3}{4}}$$

$$= \sum_{j=0}^{n-1} \left| \int_0^{r_{j+1}} \int_\mathbb{R} p_{r_{j+1}-r}(y) f_r^N dy dB_r + \int_0^{r_j} \int_\mathbb{R} [p_{r_{j+1}-r}(y) - p_{r_j-r}(y)] f_r^N dy dB_r \right|^{\frac{3}{4}}$$

$$\leq C \sum_{j=0}^{n-1} \left(\left| \int_0^{r_{j+1}} \int_\mathbb{R} p_{r_{j+1}-r}(y) f_r^N dy dB_r \right|^{\frac{4}{3}} + \left| \int_0^{r_j} \int_\mathbb{R} [p_{r_{j+1}-r}(y) - p_{r_j-r}(y)] f_r^N dy dB_r \right|^{\frac{4}{3}} \right)$$

$$= C \sum_{j=0}^{n-1} \left(|\Gamma_j^k|^{\frac{4}{3}} + |\Phi_j^k|^{\frac{4}{3}} \right), \quad (3.3)$$

where

$$\Gamma_j^k = \int_{r_j}^{r_{j+1}} \int_\mathbb{R} p_{r_{j+1}-r}(y) \left(L^{y+B_y}_{r(N)} - L^{B_y}_{r(N)} \right) dy dB_r$$

$$= \int_{r_j}^{r_{j+1}} E \left(L^{B_y}_{r_{j+1}} - L^{B_y}_{r(N)} - L^{B_y}_{r(N)} | \mathcal{F}_r \right) dB_r,$$

and

$$\Phi_j^k = \int_{r_j}^{r_{j+1}} \int_\mathbb{R} p_{r_{j+1}-r}(y) \left(L^{y+B_y}_{r(N)} - L^{B_y}_{r(N)} \right) dy dB_r.$$
and
\[\Phi_j^k = \int_0^{r_j} \int_{\mathbb{R}} [p_{r_{j+1}}(y) - p_{r_j}(y)] \left(L_{r_j}^{B_{r_j}} - L_{r_j}^{B_{r_j+1}} + L_{r_j}^{B_{r_j+1}}|F_{r_j}| \right) dy dB_t. \]

Therefore,
\[E S_{n,N}^k \leq C \left(\sum_{j=0}^{n-1} E(|\Gamma_j^k|^\frac{4}{3}) + \sum_{j=0}^{n-1} E(|\Phi_j^k|^\frac{4}{3}) \right). \]

Using the Burkholder inequality we obtain
\[E(|\Gamma_j^k|^\frac{4}{3}) \leq C E \left(\int_{r_j}^{r_{j+1}} E(L_{r_j}^{B_{r_j+1}} - L_{r_j}^{B_{r_j}} - L_{r_{N_j}}^{B_{r_j+1}} + L_{r_{N_j}}^{B_{r_j}}|F_{r_j}|)^2 dr \right)^{\frac{2}{3}}, \]
and
\[E(|\Phi_j^k|^\frac{4}{3}) \leq C E \left(\int_0^{r_j} E(L_{r_j}^{B_{r_j+1}} - L_{r_j}^{B_{r_j}} - L_{r_{N_j}}^{B_{r_j+1}} + L_{r_{N_j}}^{B_{r_j}}|F_{r_j}|)^2 dr \right)^{\frac{2}{3}}. \]

Let us first prove that
\[\lim_{N \to \infty} \limsup_{n \to \infty} \sum_{k=0}^{N-1} \sum_{j=0}^{n-1} E(|\Gamma_j^k|^\frac{4}{3}) = 0. \]

We shall use the notation \(L_{a,b}^x = L_b^x - L_a^x \). Then, we can write
\[E(|\Gamma_j^k|^\frac{4}{3}) \leq C \left(E \int_{r_j}^{r_{j+1}} \left(L_{r_{N_j}}^{B_{r_j+1}} - L_{r_{N_j}}^{B_{r_j}} \right)^2 dr \right)^{\frac{2}{3}}. \]

Consider the Brownian motion \(B_t - B_u \) where the parameter \(u \) goes backward from \(t \) to 0. Then, Tanaka’s formula applied to this Brownian motion says that for any \(s < t \)
\[(B_t - B_s - x)_+ - (-x)_+ = -\int_s^t 1_{\{B_t - B_u > x\}} \tilde{d}B_u + \frac{1}{2} \int_s^t \delta_x(B_t - B_u) du, \]
where \(\tilde{d} \) denotes the backward Itô integral. Making the change of variable \(x = B_t - B_\tau, \tau > t \) yields
\[(B_{r_j} - B_s)_+ - (B_s - B_t)_+ = -\int_s^t 1_{\{B_u < B_{r_j}\}} \tilde{d}B_u + \frac{1}{2} \int_s^t \delta_{B_\tau}(B_u) du. \]

Therefore, letting \(s = r(N), t = r \) and \(\tau = r_{j+1} \) in the above equality yields
\[(B_{r_{j+1}} - B_{r(N)})_+ - (B_{r_{j+1}} - B_r)_+ = -\int_{r(N)}^r 1_{\{B_u < B_{r_{j+1}}\}} \tilde{d}B_u + \frac{1}{2} L_{r_{N_j}}^{B_{r_{j+1}}} \]
On the other hand, letting \(s = r(N) \) and \(t = \tau = r \) gives us
\[(B_r - B_{r(N)})_+ = -\int_{r(N)}^r 1_{\{B_u < B_r\}} \tilde{d}B_u + \frac{1}{2} L_{r_{N_j}}^{B_r}. \]
This implies that
\[
\left| L_{[r(N),r]}^{B_{r_{j+1}}} - L_{[r(N),r]}^{B_r} \right| \leq 2 \left| (B_{r_{j+1}} - B_{r_{j+1}}(N)) - (B_r - B_{r_{j+1}}(N)) \right| + 2(B_{r_{j+1}} - B_r) + 2 \left| \int_{r(N)}^{r} \left(1_{B_u < B_{r_{j+1}}} - 1_{B_u < B_r} \right) dB_u \right|
\]
\[
\leq 4 \left| B_{r_{j+1}} - B_r \right| + 2 \left| \int_{r(N)}^{r} \left(1_{B_u < B_{r_{j+1}}} - 1_{B_u < B_r} \right) dB_u \right| .
\]
Therefore,
\[
E \left(L_{[r(N),r]}^{B_{r_{j+1}}} - L_{[r(N),r]}^{B_r} \right)^2 \leq 32(r_{j+1} - r) + 8 \int_{r(N)}^{r} E \left(1_{B_u < B_{r_{j+1}}} - 1_{B_u < B_r} \right)^2 du. \tag{3.7}
\]
Notice that
\[
E \left(1_{B_u < B_{r_{j+1}}} - 1_{B_u < B_r} \right)^2 = P(B_r < B_u < B_{r_{j+1}}) + P(B_r > B_u > B_{r_{j+1}}).
\]
Using the density of two-dimensional Gaussian random variables one can see that the probability
\[P(B_r \leq B_u \leq B_{r_{j+1}})\] is bounded by a constant times \(\sqrt{r_{j+1} - r} / \sqrt{r - u}\), which implies
\[
\int_{r(N)}^{r} E \left(1_{B_u < B_{r_{j+1}}} - 1_{B_u < B_r} \right)^2 du \leq C \sqrt{r_{j+1} - r} N^{-\frac{1}{2}}. \tag{3.8}
\]
From (3.5), (3.7) and (3.8) we obtain
\[
E(\left| \Gamma_j^{k} \right|^2) \leq C \left((r_{j+1} - r_j)^2 + (r_{j+1} - r_j)^3 N^{-\frac{1}{2}} \right)^{\frac{3}{2}}
\]
\[
\leq C \left(n^{-2} N^{-2} + n^{-\frac{3}{2}} N^{-2} \right)^{\frac{3}{2}}
\]
\[
\leq C \left(n^{-\frac{3}{2}} N^{-\frac{3}{2}} + n^{-1} N^{-\frac{3}{2}} \right),
\]
which implies (3.4).
To complete the proof of (3.1), we need to show that
\[
\lim_{N \to \infty} \limsup_{n \to \infty} \sum_{k=0}^{N-1} \sum_{j=0}^{n-1} E(\left| \Phi_j^{k} \right|^2) = 0. \tag{3.9}
\]
We continue to use the same notation as above. It is easy to obtain by using the Burkholder inequality
\[
E(\left| \Phi_j^{k} \right|^2) \leq \left(E \int_{0}^{r_j} \left(E(\left| L_{[r(N),r]}^{B_{r_{j+1}}} - L_{[r(N),r]}^{B_r} \right|^2) dr \right)^{\frac{3}{2}} \right).
\]
In order to deal with the above term, we use the backward Tanaka formula (3.6) again by taking \(\tau = r_{j+1}\) and \(r_j\). Subtracting the two obtained equations, we obtain
\[
L_{[r(N),r]}^{B_{r_{j+1}}} - L_{[r(N),r]}^{B_r} = C_j(r) + D_j(r), \tag{3.10}
\]
where
\[C_j(r) = 2 (B_{r_{j+1}} - B_{r(N)})_+ - (B_{r_{j+1}} - B_r)_+ - (B_{r_j} - B_{r(N)})_+ + (B_{r_j} - B_r)_+ , \]
and
\[D_j(r) = 2 \int_{r(N)}^{r} \left(\mathbf{1}_{\{B_u < B_{r_{j+1}}\}} - \mathbf{1}_{\{B_u < B_{r_j}\}} \right) \tilde{dB}_u. \]

Notice that
\[
E[(B_{r_{j+1}} - B_{r(N)})_+ - (B_{r_j} - B_{r(N)})_+ | \mathcal{F}_r] = E^\xi[(\sqrt{r_{j+1}} - r \xi + B_r - B_{r(N)})_+ - (\sqrt{r_j} - r \xi + B_r - B_{r(N)})_+],
\]
where \(\xi \) is \(N(0,1) \). Hence,
\[
|E[(B_{r_{j+1}} - B_{r(N)})_+ - (B_{r_j} - B_{r(N)})_+ | \mathcal{F}_r]| \leq C(\sqrt{r_{j+1}} - r - \sqrt{r_j} - r).
\]

Therefore, we obtain
\[
\int_0^{r_j} E(C_j(r) | \mathcal{F}_r)^2 dr \leq C \int_0^{r_j} (\sqrt{r_{j+1}} - r - \sqrt{r_j} - r)^2 dr \\
\leq C \int_0^{r_j} (r_{j+1} - r_j)^\frac{7}{4} (r_j - r)^{-\frac{3}{4}} dr \leq C(nN)^{-\frac{7}{4}}.
\]

As a consequence,
\[
\lim_{N \to \infty} \limsup_{n \to \infty} \sum_{k=0}^{N-1} \sum_{j=0}^{n-1} \left(E \int_0^{r_j} E(C_j(r) | \mathcal{F}_r)^2 dr \right)^{\frac{2}{7}} = 0. \tag{3.11}
\]

For the second term in the decomposition (3.10) we can write
\[
E \int_0^{r_j} E(D_j(r) | \mathcal{F}_r)^2 dr \leq \int_0^{r_j} \int_{r(N)}^{r} E \left(E \left(\mathbf{1}_{\{B_{r_j} < B_u < B_{r_{j+1}}\}} - \mathbf{1}_{\{B_{r_j} > B_u > B_{r_{j+1}}\}} | \mathcal{F}_r \right) \right)^2 dudr. \tag{3.12}
\]

From Lemma 4.1 it follows that
\[
E \left(E \left(\mathbf{1}_{\{B_{r_j} < B_u < B_{r_{j+1}}\}} - \mathbf{1}_{\{B_{r_j} > B_u > B_{r_{j+1}}\}} | \mathcal{F}_r \right) \right)^2 \\
\leq C(r - u)^{-\frac{3}{2}} \left(2\sqrt{2(r_j - r) + \frac{T}{nN}} - \sqrt{2(r_j - r)} - \sqrt{2(r_j - r) + \frac{2T}{nN}} \right).
\]
Substituting this expression into (3.12) yields
\[
E\int_0^{r_j} E(D_j(r)|\mathcal{F}_r)^2 dr \\
\leq C \int_0^{r_j} \int_{r(N)}^r (r - u)^{-\frac{1}{2}} \times \left(2\sqrt{2(r_j - r) + \frac{T}{nN} - \sqrt{2(r_j - r) - \sqrt{2(r_j - r) + 2\frac{T}{nN}}} \right) dudr \\
\leq CN^{-\frac{3}{2}} \int_0^{r_j} \left(2\sqrt{2(r_j - r) + \frac{T}{nN} - \sqrt{2(r_j - r) - \sqrt{2(r_j - r) + 2\frac{T}{nN}}} \right) dr \\
\leq CN^{-\frac{3}{2}} \left(2\left(\frac{k}{N} + \frac{j}{Nn} \right) + \frac{1}{Nn} \right)^{\frac{3}{2}} - \left(\frac{1}{Nn} \right)^{\frac{3}{2}} \\
- \left(2\left(\frac{k}{N} + \frac{j}{Nn} \right) + \frac{1}{Nn} \right)^{\frac{3}{2}} + \left(\frac{1}{Nn} \right)^{\frac{3}{2}} \right) \\
\leq CN^{-2}n^{-\frac{3}{2}} \sup_{j, n} \left(2(2(kn + j) + 1)^{\frac{3}{2}} - 2 - (2(kn + j))^{\frac{3}{2}} - (2(kn + j) + 2)^{\frac{3}{2}} + (2)^{\frac{3}{2}} \right)^{\frac{4}{3}} \\
= CN^{-2}n^{-\frac{3}{2}} \sup_{j} \left(2(j + 1)^{\frac{3}{2}} - 2 - (2j)^{\frac{3}{2}} - (2j + 2)^{\frac{3}{2}} + (2)^{\frac{3}{2}} \right)^{\frac{4}{3}} \\
\leq CN^{-2}n^{-\frac{3}{2}}.
\]
Therefore,
\[
\sum_{k=0}^{N-1} \sum_{j=0}^{n-1} \left(E\int_0^{r_j} E(D_j(r)|\mathcal{F}_r)^2 dr \right)^{\frac{4}{3}} \leq CN^{-\frac{1}{3}},
\]
which implies
\[
\lim_{N \to \infty} \limsup_{n \to \infty} \sum_{k=0}^{N-1} \sum_{j=0}^{n-1} \left(E\int_0^{r_j} E(D_j(r)|\mathcal{F}_r)^2 dr \right)^{\frac{4}{3}} = 0. \tag{3.13}
\]
Then, (3.11) and (3.13) imply (3.9), which completes the proof of (3.1).

Step 2 Define
\[
\gamma_{t,N}^{N,1} = \int_{t(N)}^{t} \int_{\mathbb{R}} p_{t-r}(y) \left(L_{r(N)}^{y+B_r} - L_{r(N)}^{B_r} \right) dydB_r.
\]
We claim that, for each fixed N,
\[
\langle \gamma^N - \gamma^{N,1} \rangle_{[0,T]} = 0.
\]
It suffices to show that for each $k = 0, \ldots, N - 1$, the $\frac{4}{3}$ variation of $\gamma^N - \gamma^{N,1}$ over the interval $[kT/N, (k + 1)T/N]$ is zero. When $t \in [kT/N, (k + 1)T/N)$, $t(N) = kT/N$, and
\[
(\gamma^N - \gamma^{N,1})(t) = \int_0^{\frac{T}{N}} \int_{\mathbb{R}} p_{t-r}(y) \left(L_{r(N)}^{y+B_r} - L_{r(N)}^{B_r} \right) dydB_r.
\]
Applying the Burkholder inequality yields
\[S_{n,N} := S^{|(k_T N N, (k_T+1)T)|}_{n/2} (\gamma^N - \gamma^{N,1}) = \sum_{j=0}^{n-1} |\Delta_j (\gamma^N - \gamma^{N,1})| \frac{2}{3}, \]
where
\[\Delta_j (\gamma^N - \gamma^{N,1}) = \int_0^{k_T} \int_0^{r(N)} (p_{r_j+1-r}(y) - p_{r_j-r}(y)) \left(L_{r(N)}^{y+B_r} - L_{r(N)}^{B_r} \right) dy dB_r \]
\[= \int_0^{k_T} \int_0^{r(N)} (p_{r_j+1-r}(B_r - B_s) - p_{r_j-r}(B_r - B_s)) ds dB_r. \]

Applying the Burkholder inequality yields
\[E|\Delta_j (\gamma^N - \gamma^{N,1})| \frac{2}{3} \]
\[\leq CE \left(\int_0^{k_T} \left(\int_0^{r(N)} (p_{r_j+1-r}(B_r - B_s) - p_{r_j-r}(B_r - B_s)) ds \right)^2 dr \right) \frac{2}{3} \]
\[\leq C \left(\int_0^{k_T} E \left(\int_0^{r(N)} (p_{r_j+1-r}(B_r - B_s) - p_{r_j-r}(B_r - B_s)) ds \right)^2 dr \right)^{\frac{2}{3}}. \]

Then, for any \(u < s < r(N) < r \leq t(N) \leq r_j < r_{j+1} \) we can write, using Lemma 4.2
\[E ((p_{r_j+1-r}(B_r - B_s) - p_{r_j-r}(B_r - B_s))(p_{r_j+1-r}(B_r - B_u) - p_{r_j-r}(B_r - B_u))) \]
\[= ((r_j+1-s)(r_j+1-r+s-u) + (r_j+1-r)(r-s))^{-\frac{1}{2}} \]
\[- ((r_j+1-s)(r_j-r+s-u) + (r_j+1-r)(r-s))^{-\frac{1}{2}} \]
\[- ((r_j-s)(r_j+1-r+s-u) + (r_j-r)(r-s))^{-\frac{1}{2}} \]
\[+ ((r_j-s)(r_j-r+s-u) + (r_j-r)(r-s))^{-\frac{1}{2}} \]
\[= -\frac{1}{2} \int_{r_j}^{r_{j+1}} ((r_j+1-s)(\theta - r + s - u) + (r_j+1-r)(r-s))^{-\frac{3}{2}} (r_j+1-s)d\theta \]
\[+ \frac{1}{2} \int_{r_j}^{r_{j+1}} ((r_j-s)(\theta - r + s - u) + (r_j-r)(r-s))^{-\frac{3}{2}} (r_j-s)d\theta. \]
Integrating in the variable \(u \) yields

\[
\int_0^s E\left((p_{r_{j_1}+r}(B_r - B_s) - p_{r_j-r}(B_r - B_s))(p_{r_{j_1}+r}(B_r - B_u) - p_{r_j-r}(B_r - B_u)) \right) du
\]

\[
= - \int_{r_j}^{r_{j+1}} ((r_j+1-s)(\theta - r + s - u) + (r_{j+1} - r)(r - s))^\frac{1}{2} |u = 0| d\theta
\]

\[
+ \int_{r_j}^{r_{j+1}} ((r_j-s)(\theta - r + s - u) + (r_j - r)(r - s))^\frac{1}{2} |u = 0| d\theta
\]

\[
= - \frac{1}{2} \int_{r_j}^{r_{j+1}} \int_{r_j}^{r_{j+1}} ((\eta - s)(\theta - r + s) + (\eta - r)(r - s) - \frac{1}{2} \theta) d\eta d\theta
\]

\[
\leq C \int_{r_j}^{r_{j+1}} \int_{r_j}^{r_{j+1}} ((\eta - s)(\theta - r + s) + (\eta - r)(r - s) - \frac{3}{2} \eta)^2 d\eta d\theta
\]

\[
\leq C(r-s)^{-\frac{3}{2}} \left(\int_{r_j}^{r_{j+1}} (\eta - s)^{\frac{3}{2}} d\eta \right)^2
\]

\[
\leq C(r-s)^{-\frac{3}{2}} \left((r_{j+1} - r)^{\frac{3}{4}} - (r_j - r)^{\frac{3}{4}} \right)^2
\]

\[
\leq C(r - r(N))^{-\frac{3}{4}} (r(N) - s)^{-\frac{3}{2}} (r_{j+1} - r_j)^{2-\frac{3}{2}\alpha} (r_j - r)^{-\frac{3}{2}(1-\alpha)},
\]

for any \(\alpha \in (0, 1) \). Choosing \(\alpha = \frac{1}{4} \) and integrating in the variables \(0 < s < r(N) < r < t(N) \), we obtain

\[
E \left(\left(\int_0^{\frac{kT}{N}} \left(\int_0^{r(N)} (p_{r_{j_1}+r}(B_r - B_s) - p_{r_j-r}(B_r - B_s)) ds \right)^2 dr \right)^\frac{2}{3} \right) \leq C_{N}(r_{j+1} - r_j)^{-\frac{16}{15}}.
\]

As a consequence,

\[
E(S_{n,N}) \leq C_{N}n^{-\frac{16}{15}},
\]

which converges to zero as \(n \) tends to infinity.

Step 3

Let us compute the \(\frac{4}{3} \) variation of the process \(\gamma^{N,1} \) in the interval \(I_{k,N} := \left[\frac{kT}{N}, \left(\frac{k+1}{N} \right)T \right] \). Set \(\tau_N = \frac{kT}{N} = t(N) \). By the results of [4], there exists a two-sided Brownian motion \(\{W_x, x \in \mathbb{R}\} \) independent of \(\{B_r, r \geq r_N, L^{B_N}_{\tau_N}\} \) such that for any \(x > y, x, y \in \mathbb{R} \),

\[
L^x_{\tau_N} - L^y_{\tau_N} = 2 \int_y^x \sqrt{L^z_{\tau_N} dW_z} + \int_y^x \alpha(z) dz.
\]

Using the fact that the random variables \(\{B_r, r \geq r_N, L^{B_N}_{\tau_N}\} \) are independent of \(W \) we can write for any \(r \geq \tau_N \),

\[
L^{B_{r+y}}_{\tau_N} - L^{B_r}_{\tau_N} = 2 \int_{B_r}^{B_{r+y}} \sqrt{L^z_{\tau_N} dW_z} + \int_{B_r}^{B_{r+y}} \alpha(z) dz.
\]
We decompose the process $\gamma_{N,1}$ as follows:

$$\gamma_{N,1} = \gamma_{N,2} + \gamma_{N,3} + \gamma_{N,4},$$

where

$$\gamma_{N,2} = \int_{\tau_N}^t E^\theta \left(\int_{B_r}^{B_r + \sqrt{t - \tau}} \alpha(z) dz \right) dB_r,$$

$$\gamma_{N,3} = \int_{\tau_N}^t E^\theta \left(\int_{B_r}^{B_r + \sqrt{t - \tau}} \left(\sqrt{L_z} - \sqrt{L_{B_r}^z} \right) dW_z \right) dB_r,$$

and

$$\gamma_{N,4} = \sqrt{L_{\tau_N r}} \int_{\tau_N}^t E^\theta (W(B_r + \theta \sqrt{t - r}) - W(B_r)) dB_r,$$

where here θ denotes a random variable with law $N(0,1)$, independent of B and W. We claim that for any k,

$$\langle \gamma_{N,2} \rangle^{1/2}_{4/3} I_{k,N} = 0,$$ \hspace{1cm} (3.14)

and

$$\langle \gamma_{N,3} \rangle^{1/2}_{4/3} I_{k,N} = 0,$$ \hspace{1cm} (3.15)

Proof of (3.14): With the same notation as in Step 1, set

$$S_{n,N} := S_{4/3,n} \langle \gamma_{N,2} \rangle_{4/3} = \sum_{j=0}^{n-1} |\Delta_j(\gamma_{N,2})|^{4/3},$$

where $\Delta_j(\gamma_{N,2}) = \gamma_{r_{j+1},N} - \gamma_{r_j,N}$. Then

$$\sum_{j=0}^{n-1} E|\Delta_j(\gamma_{N,2})|^{4/3} = \sum_{j=0}^{n-1} E \left| \int_{\tau_N}^{r_{j+1}} E^\theta \left(\int_{B_r}^{B_r + \sqrt{t - \tau}} \alpha(y) dy \right) dB_r \right|^{4/3}$$

$$- \int_{\tau_N}^{r_j} E^\theta \left(\int_{B_r}^{B_r + \sqrt{t - \tau}} \alpha(y) dy \right) dB_r$$

$$= \sum_{j=0}^{n-1} E \left| \int_{\tau_N}^{r_j} E^\theta \left(\int_{B_r}^{B_r + \sqrt{t - \tau}} \alpha(y) dy \right) dB_r \right|^{4/3}$$

$$+ \int_{r_j}^{r_{j+1}} E^\theta \left(\int_{B_r}^{B_r + \sqrt{t - \tau}} \alpha(y) dy \right) dB_r$$

$$\leq C \sum_{j=0}^{n-1} \left\{ \left| \int_{\tau_N}^{r_j} E \left(E^\theta \int_{B_r}^{B_r + \sqrt{t - \tau}} \alpha(y) dy \right)^2 dr \right|^{2/3} \right\}$$

$$+ \left| \int_{r_j}^{r_{j+1}} E \left(E^\theta \int_{B_r}^{B_r + \sqrt{t - \tau}} \alpha(y) dy \right)^2 dr \right|^{4/3}$$

$$= A_n + B_n.$$
From [4], we have the following expression for the process $\alpha(y)$,

$$
\alpha(y) = I_{\{y \geq B_s\}} \left[2I_{\{y \leq 0\}} + 2I_{\{y \leq B_s\}} + I_{\{y \leq B_s\}} \right] \left(\frac{4I_{\{y \geq B_s\}}}{L(s, y) + 2y} - \frac{L(s, y) + 2y}{s - A(s, y)} \right)
$$

with

$$
\overline{B}_s = \sup\{B_u, u \leq s\}, \underline{B}_s = \inf\{B_u : u \leq s\}.
$$

Let $\gamma(y) = -I_{\{y \geq B_s\}}I_{\{y \leq \underline{B}_s\}}L(s, y)\frac{L(s, y) + 2y}{s - A(s, y)}$, and write $\alpha(y) = \beta(y) + \gamma(y)$. Then $\beta(y)$ is bounded, and from the result of section 3 (page 277 and 278) in [5], we can get that $E \int_\mathbb{R} |\gamma(y)|^p dy < \infty$ for all $p > 1$. As a consequence, by Lemma 4.3 we obtain

$$
\lim_{n \to \infty} \sum_{j=0}^{n-1} \left| \int_{\tau_N}^{r_j} E \left(E^\theta \int_{B_r + \sqrt{r_j + r\theta}}^{B_r + \sqrt{r_j + r\theta}} \beta(y) dy \right)^2 \right|^{\frac{2}{3}} \leq C \lim_{n \to \infty} \sum_{j=0}^{n-1} \left| \int_{\tau_N}^{r_j} \left(\sqrt{r_{j+1} + r} - \sqrt{r_j + r} \right)^2 dr \right|^{\frac{2}{3}} = 0.
$$

To handle the term containing $\gamma(y)$, we choose p, q such that $\frac{1}{p} + \frac{1}{q} = 1$ and $p < \frac{4}{3}$. Then, again by Lemma 4.3

$$
\lim_{n \to \infty} \sum_{j=0}^{n-1} \left| \int_{\tau_N}^{r_j} E \left(E^\theta \int_{B_r + \sqrt{r_j + r\theta}}^{B_r + \sqrt{r_j + r\theta}} \gamma(y) dy \right)^2 \right|^{\frac{2}{3}} \leq \lim_{n \to \infty} \sum_{j=0}^{n-1} \left| \int_{\tau_N}^{r_j} E(|\theta|^{\frac{2}{3}}(\sqrt{r_{j+1} + r} - \sqrt{r_j + r})^2 E \left(\int_{\mathbb{R}} \gamma(y) dy \right)^\frac{2}{3} \right|^{\frac{2}{3}} = C \lim_{n \to \infty} \sum_{j=0}^{n-1} \left| \int_{\tau_N}^{r_j} \left(\sqrt{r_{j+1} + r} - \sqrt{r_j + r} \right)^2 dr \right|^{\frac{2}{3}} = 0.
$$

Hence we have A_n goes to zero as n goes to infinity. The convergence to zero of B_n as n tends to infinity follows from

$$
\lim_{n \to \infty} \sum_{j=0}^{n-1} \left| \int_{r_j}^{r_j+1} E \left(E^\theta \int_{B_r + \sqrt{r_{j+1} + r\theta}}^{B_r} \beta(y) dy \right)^2 \right|^{\frac{2}{3}} \leq C \lim_{n \to \infty} \sum_{j=0}^{n-1} \left| \int_{r_j}^{r_j+1} (r_j + 1 - r) dr \right|^{\frac{2}{3}} = C \lim_{n \to \infty} \sum_{j=0}^{n-1} \left(\frac{1}{n} \right)^{\frac{4}{3}} = 0,
$$

14
and, choosing p, q such that $\frac{1}{p} + \frac{1}{q} = 1$ and $p < 2$,

$$\lim_{n \to \infty} \sum_{j=0}^{n-1} \left| \int_{r_j}^{r_{j+1}} E \left(E^\theta \int_{B_r+\sqrt{r_{j+1}-r}} \gamma(y) dy \right)^2 dr \right| \leq 0$$

and

$$\lim_{n \to \infty} \sum_{j=0}^{n-1} \left| \int_{r_j}^{r_{j+1}} E(\frac{2}{p})(\sqrt{r_{j+1}-r})^\frac{2}{p} E \left[\int_{R} |\gamma(y)|^q dy \right] \frac{2}{q} \frac{2}{3} dr \right| \leq C \lim_{n \to \infty} \sum_{j=0}^{n-1} \left(\frac{1}{n} \right)^{(\frac{1}{p}+1)\frac{2}{3}} = 0.$$

Proof of (3.15): With the same notation as in Step 1, set

$$S_{n,N} := S_{k,n}^N (\gamma_{N,3}) = \sum_{j=0}^{n-1} |\Delta_j(\gamma_{N,3})|^\frac{2}{3},$$

where $\Delta_j(\gamma_{N,3}) = \gamma_{r_{j+1}}^{N,3} - \gamma_{r_j}^{N,3}$. As in the proof of (3.14), applying the Burkholder inequality we obtain

$$\sum_{j=0}^{n-1} E|\Delta_j(\gamma_{N,3})|^\frac{2}{3} \leq C(C_n + D_n),$$

where

$$C_n = E \sum_{j=1}^{n-1} \left(\int_{r_j}^{r_{j+1}} \left(\int_{B_r+\sqrt{r_{j+1}-r}} \left(\sqrt{L_{r,N}^z} - \sqrt{L_{r,N}^{B_r}} \right) dW_z \right)^2 dr \right)^{2/3}$$

and

$$D_n = E \sum_{j=1}^{n-1} \left(\int_{r_j}^{r_{j+1}} \left(\int_{B_r+\sqrt{r_{j+1}-r}} \left(\sqrt{L_{r,N}^z} - \sqrt{L_{r,N}^{B_r}} \right) dW_z \right)^2 dr \right)^{2/3}.$$
where

$$\Phi(z) = \left(\sqrt{L_{T_N}^z} - \sqrt{L_{B^r_T}^z} \right) \int_\mathbb{R} (p_{r_{j+1} - r}(y) - p_{r_j - r}(y)) 1_{[B^r_r, B^r_r + y]}(z) dy.$$

As a consequence,

$$E\left(\int_\mathbb{R} \Phi(z) dW_z \right)^2 \leq E\left(G^2 \int_\mathbb{R} (p_{r_{j+1} - r}(y) - p_{r_j - r}(y)) (p_{r_{j+1} - r}(y') - p_{r_j - r}(y')) \times \int_{[B^r_r, B^r_r + y] \cap [B^r_r, B^r_r + y']} |z - B^r_r|^{\frac{1}{2} - \epsilon} dz dy dy' \right)^2 \leq C \left(\int_\mathbb{R} (p_{r_{j+1} - r}(y) - p_{r_j - r}(y)) |y|^{\frac{3}{2} - \frac{\epsilon}{2}} dy \right)^2 \leq C \left(\int_{r_j}^{r_{j+1}} (\theta - r) - \frac{3}{4} \frac{\epsilon}{4} d\theta \right)^2 \leq C(r_{j+1} - r_j)^{\frac{3}{4} + \epsilon} (r_j - r)^{-\frac{3}{4} - \frac{3\epsilon}{4}},$$

and we obtain

$$C_n \leq Cn^{-\frac{2}{3} \epsilon}.$$

This proves (3.15).

Step 4

Let us compute the $\frac{4}{3}$ variation of the process $\gamma^{N,4}$. By Theorem 2.1, the $\frac{4}{3}$ variation in L^1 of the process

$$Z_t = \int_0^t E^\theta(W_{B^r_t + \theta \sqrt{t-r}} - W_{B^r_r}) dB_r,$$

in an interval $[a, b]$ is $K(b - a)$. In fact, this process has the same distribution as

$$X_t = \int_0^t E^\theta(W_{\theta \sqrt{t-r}}) dB_r.$$

This follows from the fact that the processes

$$\{(B_t, W_{B^r_t + y} - W_{B^r_r}), t \geq 0, r \geq 0, y \in \mathbb{R}\}$$

and

$$\{(B_t, W_y), t \geq 0, r \geq 0, y \in \mathbb{R}\}$$

have the same law, as it can be easily seen by computing the characteristic function of the finite dimensional distributions of both processes. Therefore,

$$\langle \gamma^{N,4} \rangle_{\frac{4}{3}}[0,T] = K \sum_{k=0}^{N-1} \left(L_{B^r_{kT/N}}^{B^r_{kT/N}} \right)^{\frac{1}{2}} T \frac{T}{N}.$$
By Step 2 and Step 3, we have that \(\langle \gamma^N \rangle_{\frac{1}{2},[0,T]} = \langle \gamma^{N'} \rangle_{\frac{1}{2},[0,T]} \). Then the proof of Theorem 1.2 follows immediately from Step 1 and the fact that
\[
\lim_{N \to \infty} \langle \gamma^N \rangle_{\frac{1}{2},[0,T]} = K \int_0^T (L_r B_r)^2 dr.
\]

4 Appendix

Lemma 4.1 Let \(0 \leq a < b < c < d \), and set \(x = b - a \), \(y = c - b \) and \(z = d - c \). Then,
\[
E \left[E \left(1_{\{B_c < B_a < B_d\}} - 1_{\{B_c > B_a > B_d\}} \right) \big| \mathcal{F}_b \right]^2 \leq Cx^{-\frac{1}{2}} \left(2\sqrt{2y + z} - \sqrt{2y} - \sqrt{2y + 2z} \right).
\]

Proof Set
\[
B_a - B_b = \sqrt{x}X, \quad B_c - B_b = \sqrt{y}Y, \quad B_d - B_c = \sqrt{z}Z,
\]
where \(X, Y \) and \(Z \) are independent \(N(0,1) \) random variables. With this notation we can write
\[
E \left[E \left(1_{\{B_c < B_a < B_d\}} - 1_{\{B_c > B_a > B_d\}} \right) \big| \mathcal{F}_b \right]^2 = E \left[P(\sqrt{y}Y < \sqrt{x}X < \sqrt{z}Z + \sqrt{y}Y | X) - P(\sqrt{y}Y > \sqrt{x}X > \sqrt{z}Z + \sqrt{y}Y | X) \right]^2 = \int_\mathbb{R} \left(\int_\mathbb{R} \phi(\eta) d\eta \int_{\sqrt{\frac{x}{y}} \theta - \sqrt{\frac{z}{y}} \eta}^{\sqrt{\frac{x}{y}} \theta} \phi(\xi) d\xi \right)^2 d\theta,
\]
where \(\phi(x) \) is the density of the law \(N(0,1) \). Set
\[
g(x,y,z,\theta) = \int_\mathbb{R} \phi(\eta) d\eta \int_{\sqrt{\frac{x}{y}} \theta - \sqrt{\frac{z}{y}} \eta}^{\sqrt{\frac{x}{y}} \theta} \phi(\xi) d\xi.
\]
Then,
\[
g(x,y,z,\theta) = \frac{1}{\sqrt{\gamma}} \int_0^{\sqrt{z}} \int_\mathbb{R} \phi(\eta) \phi(\sqrt{\frac{x}{y}} \theta - \frac{w}{\sqrt{\gamma}} \eta) \eta d\eta dw = \frac{1}{2\pi} \frac{1}{\sqrt{\gamma}} \int_0^{\sqrt{z}} \int_\mathbb{R} \exp \left(-\frac{1}{2} (\eta^2 + (\sqrt{\frac{x}{y}} \theta - \frac{z}{\sqrt{\gamma}} \eta)^2) \right) \eta d\eta dw = \frac{1}{2\pi} \int_0^{\sqrt{z}} \frac{w \sqrt{x} \theta}{(y + w^2)^{\frac{3}{2}}} \exp \left(-\frac{x \theta^2}{2(y + w^2)} \right) dw = \frac{1}{4\pi} \int_0^{\sqrt{z}} \frac{\sqrt{x} \theta}{(y + \xi)^{\frac{3}{2}}} \exp \left(-\frac{x \theta^2}{2(y + \xi)} \right) d\xi.
\]
Finally, integrating with respect to \(\theta \) yields

\[
\int_R g(x, y, z, \theta)^2 \phi(\theta) d\theta
\]

\[
= C x \int R \int_0^z \int_0^z \frac{\theta^2}{(y + \xi_1)^\frac{3}{2}(y + \xi_2)^\frac{3}{2}} \exp \left(-\frac{1}{2} \left(\frac{x\theta^2}{y + \xi_1} + \frac{x\theta^2}{y + \xi_2} \right) \right) d\xi_1 d\xi_2 \phi(\theta) d\theta
\]

\[
= C x \int_0^z \int_0^z \frac{1}{(y + \xi_1)^\frac{3}{2}(y + \xi_2)^\frac{3}{2}} \int_\mathbb{R} \theta^2 \exp \left(\frac{\theta^2}{2} \left(\frac{x}{y + \xi_1} + \frac{x}{y + \xi_2} + 1 \right) \right) d\theta d\xi_1 d\xi_2
\]

\[
= C x \int_0^z \int_0^z \frac{1}{(y + \xi_1)^\frac{3}{2}(y + \xi_2)^\frac{3}{2}} \left(\frac{x}{y + \xi_1} + \frac{x}{y + \xi_2} + 1 \right)^{-\frac{3}{2}} d\xi_1 d\xi_2
\]

\[
= C x \int_0^z \int_0^z \frac{1}{(y + \xi_1 + \xi_2)^\frac{3}{2}} (2y + \xi_1 + \xi_2)^{-\frac{3}{2}} d\xi_1 d\xi_2
\]

\[
\leq C x^{-\frac{1}{2}} \int_0^z \int_0^z \frac{1}{(y + \xi_1 + \xi_2)^\frac{3}{2}} (2y + \xi_1 + \xi_2)^{-\frac{3}{2}} d\xi_1 d\xi_2
\]

\[
= C x^{-\frac{1}{2}} \left[2\sqrt{2y + z} - \sqrt{2y - \sqrt{2y + 2z}} \right],
\]

which completes the proof of the lemma.

Lemma 4.2 Let \(\alpha, \beta > 0 \) and let \(X, Y \) be independent random variables with laws \(N(0, \sigma_1^2) \) and \(N(0, \sigma_2^2) \), respectively. Then

\[
E[p_\alpha(X)p_\beta(X + Y)] = ((\alpha + \sigma_1^2)(\beta + \sigma_2^2) + \alpha\sigma_2^2)^{-\frac{1}{2}}.
\]

Lemma 4.3 Suppose \(a < b \) and \(n \in \mathbb{N} \). Let \(r_j = a + \frac{j}{n}(b - a), j = 0, 1, \ldots, n \). Then, for any \(\beta > \frac{3}{2} \), we have

\[
\lim_{n \to \infty} \sum_{j=1}^n \left| \int_a^{r_j} (\sqrt{r_{j+1} - r} - \sqrt{r_j - r})^\beta dr \right|^\frac{1}{\beta} = 0.
\]

Proof It suffices to use the estimate

\[
\sqrt{r_{j+1} - r} - \sqrt{r_j - r} \leq C(r_{j+1} - r_j)^{\frac{1}{2} + \frac{\beta}{3n}}(r_j - r)^{-\frac{\beta}{3n}}.
\]

Acknowledgements We would like to thank Jay Rosen for having suggested this problem to us.

References

[1] Mandelbrot, B. and Van Ness, J.W. Fractional Brownian Motions, Fractional Noises and Applications. *SIAM Rev.* **10** (1968), 422-437.

[2] Hu, Y. and Nualart, D. Central limit theorem for the third moment in space of the Brownian local time increments. *Elect. Comm. in Probab.* **15** (2010), 396-410.

[3] Hu, Y. and Nualart, D., Song, J. Fractional martingales and characterization of the fractional Brownian motion. *Annals of Probability* **37** (2009), 2404-2430.
[4] Perkins, E.A. Local time is a semimartingale. *Z. Wahrscheinlichkeitstheory* 60 (1982), 79-117.

[5] Rogers, L.C.G. and Walsh, J.B. The exact 4/3-variation of a process arising from Brownian motion. *Stochastics and Stochastics Reports* 51 (1994) 267-291.

[6] Rosen, J. Derivatives of self-intersection local times. Séminaire de Probabilités XXXVIII, 263-281, Lecture Notes in Math., 1857, Springer, 2005.

Yaozhong Hu and David Nualart
Department of Mathematics
University of Kansas
Lawrence, Kansas, 66045

and

Jian Song
Department of Mathematics
Rutgers University
Hill Center - Busch Campus
110 Frelinghuysen Road
Piscataway, NJ 08854-8019