Clinicopathologic Features of Tissue Granulomas in Transplant Recipients

A Single Center Study in a Nontuberculosis Endemic Region

Eliezer Zachary Nussbaum, MD; Kishan K. Patel, BS; Roland Assi, MD, MS; Rita Abi Raad, MD; Maricar Malinis, MD; Marwan M. Azar, MD

Context.—There is a paucity of literature about tissue granulomas in transplant patients.

Objective.—To characterize the clinicopathologic features of granulomas in this population and develop a clinically judicious approach to their evaluation.

Design.—We performed chart reviews of solid organ and allogeneic hematopoietic stem cell transplant recipients at Yale New Haven Hospital to identify patients with granulomas on biopsy obtained pathologic specimens. Pretransplant and posttransplant specimens were included. Data points included demographics, clinical presentation, epidemiologic risk factors, biopsy indication, location and timing, immunosuppression, histopathology, microbiology, and associated clinical diagnosis. Granuloma-related readmissions and mortality were recorded at 1, 3, and 12 months.

Results.—Biopsy proven granulomas were identified in 56 of 2139 (2.6%) patients. Of 56, 16 (29%) were infectious. Common infectious etiologies were bartonellosis (n = 3) and cytomegalovirus hepatitis (n = 3). Tuberculosis was not identified. Clinical symptoms prompted tissue biopsy in 27 of 56 (48.2%) cases while biopsies were obtained for evaluation of incidental findings or routine disease surveillance in 29 of 56 (51.8%). Presence of symptoms was significantly associated with infectious etiologies; 11 of 27 (40.7%) symptomatic patients compared with 5 of 29 (17.2%) asymptomatic patients had infectious causes. One death from granulomatous cryptogenic organizing pneumonia occurred. In pretransplant asymptomatic patients, no episodes of symptomatic disease occurred posttransplantation.

Conclusions.—Granulomas were uncommon in a large transplant population; most were noninfectious but presence of symptoms was associated with infectious etiologies. Granulomas discovered pretransplant without clear infectious etiology likely do not require prolonged surveillance after transplantation. Symptomatology and epidemiologic risk factors should guide extent of microbiologic evaluation.

Granulomas are clusters of epithelioid histiocytes, often characterized by irregular contours and an abundance of eosinophilic cytoplasm, which may coalesce into multinucleated giant cells and form as an inflammatory response to a variety of infectious and noninfectious conditions.1–3 While granulomatous diseases have been well studied in the general population, there is insufficient literature on the clinical significance of granulomas in hematopoietic stem cell transplant recipients (HSCTR) and solid organ transplant recipients (SOTR), populations that are particularly vulnerable to infection. Moreover, the prevalence and etiologies of granulomatous diseases in this population are largely unknown.

Common granuloma sites include the lung, liver, lymph node, skin, bone marrow, kidney, and bowel,1–4 among others with prevalence varying by location. Pulmonary and hepatic granulomas are the best characterized, with reported incidences ranging from 10% to 15% and 2% to 10%, respectively, in the general population5–8 (Table 1).

Tuberculosis is the most common infectious cause of granulomas worldwide,2,3 though a myriad of other bacterial, fungal, viral, and parasitic infectious agents are known causes of granulomatous disease (Table 1). In the United States, mycobacterial infections, both tuberculous and nontuberculous, and endemic fungi are the most common infectious etiologies,3,5–11 though much of these data are gleaned exclusively from pulmonary granulomas. Common noninfectious etiologies include autoimmune conditions, particularly sarcoidosis, as well as neoplastic and allergic conditions4 (Table 1). Notably, an underlying etiology often remains undefined. In a study of 500 lung granulomas, 42% were without an identifiable etiology.9

Accepted for publication September 22, 2020.
Published online December 8, 2020.

From the Departments of Internal Medicine (Nussbaum, Malinis, Azar), Surgery (Assi), Pathology (Raad), the Section of Infectious Diseases (Malinis, Azar), Yale School of Medicine (Patel), New Haven, Connecticut.

The authors have no relevant financial interest in the products or companies described in this article.

Corresponding author: Eliezer Zachary Nussbaum, MD, Department of Internal Medicine, Yale School of Medicine, Yale New Haven Hospital, 135 College Street, Suite 333, New Haven, CT 06510 (email: eliezerzachary.nussbaum@yale.edu).
Similarly, hepatic granulomas are without a known cause in 10% to 36% and bone marrow granulomas in up to 64%. There are unique considerations in the transplant setting that make the approach to the differential diagnosis for granulomatous disease more challenging. Graft-versus-host disease, posttransplant lymphoproliferative disease, and cord colitis syndrome have all been associated with tissue granulomas in transplant patients. There is also risk of drug-induced renal, pulmonary, and hepatic granulomatous inflammation from immunosuppressive therapy and prophylactic antimicrobial agents. Existing literature does not suggest that renal transplant rejection is typically associated with granuloma formation; however, there are reports of granulomatous inflammation in hepatic transplant rejection.

Location	Estimated Prevalence	Common Infectious Etiologies	Common Noninfectious Etiologies
Pulmonary	10%–15%⁴	MTB	Sarcoïdosis
		NTM	
		Brucella spp.	
		Coccidioides spp.	
		Cryptococcus spp.	
		Histoplasma capsulatum	
		Blastomyces spp.	
Hepatic	2%–10%⁶	MTB	Sarcoïdosis
		NTM	
		Bartonella henselae	
		Brucella spp.	
		Coxiella burnetii	
		Coccidioides spp.	
		Cryptococcus spp.	
		Histoplasma capsulatum	
Skin	1%–7%²²,²³	MTB	Sarcoïdosis
		NTM	
		Mycobacterium leprae	
		Actinomyces spp.	
		Bartonella henselae	
		Chlamydia trachomatis* (LGV)	
		Treponema pallidum	
		Blastomyces spp.	
		Coccidioides spp.	
		Cryptococcus spp.	
		Histoplasma capsulatum	
Lymphatic	8%–25%²⁴–²⁶	MTB	Sarcoïdosis
		NTM	
		Bartonella spp.	
		Francisella tularensis	
		Chlamydia trachomatis* (LGV)	
		Treponema pallidum	
		Blastomyces spp.	
		Coccidioides spp.	
		Cryptococcus spp.	
		Histoplasma capsulatum	
Kidney	<1%²⁷	Bartonella henselae	Drug-induced interstitial nephritis
		Brucella spp.	Sarcoïdosis
		MTB	
		NTM	Sarcoïdosis
		Enterobacteriaceae (XPN)	
Bone marrow	1%–1.5%⁴,²⁸	MTB	Sarcoïdosis
		NTM	
		Brucella spp.	Sarcoïdosis
		Histoplasma capsulatum	
Bowel	21%–60% of Crohn disease patients⁹¹	Uncommonly reported	Crohn disease

Abbreviations: CMV, cytomegalovirus; DILI, drug-induced liver injury; EBV, Epstein-Barr virus; EGPA, eosinophilic granulomatosis with polyangiitis; GPA, granulomatosis with polyangiitis; LGV, lymphogranuloma venereum; MTB, Mycobacterium tuberculosis; NTM, nontuberculous mycobacteria; PBC, primary biliary cholangitis; XPN, xanthogranulomatous pyelonephritis.

a Serovars L1, L2, and L3 as observed in lymphogranuloma venereum.
Increased immunosuppression in transplant recipients broadens the differential diagnosis for infectious etiologies of granulomatous disease and may increase the risk for disseminated infection. Current literature regarding infectious causes of granulomas in transplant recipients is extremely sparse and mostly limited to case reports and small case series. Adenovirus, BK polyomavirus, Mycobacterium tuberculosis (MTB), Candida albicans, Cryptococcus neoformans, and Histoplasma capsulatum have been implicated as causes of granulomatous interstitial nephritis in reports of renal allograft recipients.15,16,18 Bartonella henselae has been reported as a cause of granulomatous disease, predominantly in renal transplant patients but also in hepatic transplant recipients.19 Posttransplant hepatic granulomas have also been associated with cytomegalovirus (CMV), hepatitis B, hepatitis C, and tuberculosis.17,20 An additional consideration is that granulomas discovered before transplantation, particularly if infectious in etiology, may evolve after transplantation when recipients are exposed to highly immunosuppressive therapies for prolonged periods. Indeed, a recent study of lung transplant patients identified as part of routine disease surveillance in asymptomatic patients. Further data were obtained on patient characteristics, immunosuppression regimen at time of granuloma discovery, change in immunosuppression after granuloma discovery, time from transplantation to granuloma discovery, histopathology, and microbiologic diagnostics including Mycobacterium tuberculosis polymerase chain reaction (MTB PCR) and interferon gamma release assay. Charts were also reviewed for presence of epidemiologic MTB risk factors, including country of birth, history of international travel, human immunodeficiency virus (HIV) seropositivity, and history of homelessness or incarceration. The final clinical diagnosis for each case was determined based on available microbiologic, histopathologic, and laboratory data as well as clinical determination of the treatment teams. A limited, independent slide review was also performed by the authors. We recorded hospital readmissions and mortality due to granuloma-related disease at 1, 3, and 12 months after granuloma diagnosis for those discovered posttransplant. Patients who had granulomas discovered before transplantation were followed for 1 year posttransplant.

Statistical Analysis

We used statistical tests to identify factors associated with the presence of infectious granulomas. X² or Fisher's exact test was used for categoric variables, and independent samples t-test was used for continuous variables. All tests were 2-tailed with significance at P < .05. JMP Pro 15.0.0 software (SAS Institute, Cary, North Carolina) was used for all data analysis.

RESULTS

Our chart review revealed 2139 transplant recipients of whom 487 (22.8%) were HSCTR and 1652 (77.2%) were SOTR. Among the 1652 SOTR, 1062 (64.3%) were kidney transplant recipients, 486 (29.4%) were liver transplant recipients, and 104 (6.3%) were heart transplant recipients. Granulomas were identified in 56 (2.6%) of 2139 total patients. The average age of patients with granulomas was 53.4 years (range, 13–73), 29 of 56 (51.8%) patients were male, and 42 of 56 (75%) were white.

Of 56 total granulomas, 18 (32.1%) were found in HSCTR, whereas 38 (67.9%) were found in SOTR (Table 2). The overall prevalence of granulomas in HSCTR was 3.7% (18 of 487) compared with 2.3% (38 of 1652) in SOTR. Of 38 granulomas identified in SOTR, 26 (68.4%) were identified in liver transplant recipients (5.4% [26 of 486] of all liver transplant recipients), 11 (28.9%) were identified in kidney transplant recipients (1% [11 of 1062] of all kidney transplant recipients) and 1 (2.6%) was identified in a heart transplant recipient (1% [1 of 104] of all heart transplant recipients). Fourteen (25%) of the 56 total granulomas were identified on pathology specimens obtained before organ transplant and 42 (75.0%) were identified after transplantation. Among granulomas found posttransplant, the median time between transplant and granuloma discovery was 1.57 years (range, 0.15–25.7). The most common locations of the 56 total granulomas were the liver (n = 18, 32.1%), lung (n = 14, 25.0%), skin (n = 8, 14.2%), and lymph node (n = 5, 8.9%), although granulomas were also infrequently identified on biopsies from bone marrow, colon, nasal cavity, small bowel, finger, paraspinal muscle, kidney, and spleen. There were no substantial histopathologic differences observed in infectious compared with noninfectious etiologies. Specifically, the vast majority of granulomas (n = 51, 91.1%) were nonnecrotizing. Of 5 necrotizing granulomas, 3 were of an infectious etiology and 2 were noninfectious.

Symptoms prompted biopsy in 27 of 56 (48.2%) patients, whereas in the remaining 29 cases (51.8%) biopsies were obtained for further evaluation of incidentally discovered granulomas in transplant recipients. We identified patients with granulomas discovered before transplantation, particularly if infectious in etiology, may evolve after transplantation when recipients are exposed to highly immunosuppressive therapies for prolonged periods. Indeed, a recent study of lung transplant patients discovered granulomas associated with increased risk of mycobacterial infection postransplantation.6
in 9 patients (33.3%), upper respiratory tract symptoms in 4 patients (14.8%), and dermatologic symptoms in 5 patients (18.5%). Of 56 total granulomas, 16 (28.6%) were determined to be infectious in etiology (Table 3, Figure 1). Of the 16 infectious granulomas, 12 were found in SOTR (31.6% of all 38 SOTR granulomas) and 4 were found in HSCTR (22.2% of all 18 HSCTR granulomas). Eleven of 16 (68.8%) were found in symptomatic patients, and 5 of 16 (31.2%) in asymptomatic patients (Figure 1). On univariate analysis, infectious granulomas were significantly associated with the presence of symptoms (40.7% [11 of 27] of symptomatic patients versus 17.2% [5 of 29] of asymptomatic patients, \(P = .05 \)) and diagnosis in the posttransplant setting (7.1% [1 of 14] of pretransplant diagnoses versus 35.7% [15 of 42] of posttransplant diagnoses, \(P = .05 \)).

The most common infectious etiologies among the 16 infectious cases included bartonellosis (n = 3; 18.8%), CMV (n = 3; 18.8%), cryptococcosis (n = 2; 12.5%), and bacterial skin and soft tissue infection (n = 2; 12.5%). Bartonellosis was diagnosed via a combination of diagnostic techniques as well as expert opinion of consulting infectious disease physicians. In 2 cases, bartonellosis was diagnosed via positive Bartonella PCR on tissue as well as positive serologies, and in 1 of these cases, positive coccobacilli seen on Warthin Starry stain. In the third case, the diagnosis was made via a greater than 4-fold rise in Bartonella IgG titers from acute to convalescent serum, known exposure to cats, compatible clinical syndrome with improvement on antibiotic treatment, and expert opinion of consulting infectious disease specialists (Figure 2, A). CMV hepatitis was diagnosed in 2 cases via positive CMV tissue immunostaining in conjunction with high-grade CMV viremia (Figure 2, B and C). In the third case, CMV hepatitis was diagnosed based on a combination of markedly elevated CMV plasma viral load, compatible clinical syndrome, including elevated transaminases and pancytopenia with atypical lymphocytosis, complete normalization of serum transaminase levels after treatment with valganciclovir, and expert opinion of consulting infectious disease physicians. This patient was also notably high risk for CMV disease being a CMV donor positive, recipient negative liver transplant recipient who was less than 1 year from transplant and not on prophylactic antiviral agents. Histopathology was nonspecific in this case and revealed a patchy mononuclear infiltrate with mild lobular hepatitis and no significant endothelitis or hepatic steatosis. Cryptococcal infections were diagnosed via a positive tissue culture in 1 case and a positive Grocott methenamine-silver stain and mucicarmine stain in the other case (Figure 2, D through F). Bacterial skin and soft tissue infections were diagnosed via positive bacterial tissue cultures.

The most common biopsy sites for infectious granulomas were lung (n = 6), liver (n = 5), and skin (n = 3) (Table 2, Figure 1). MTB PCR was ordered in 5 of 56 cases (8.9%) in tissue specimens obtained from liver (n = 2), colon (n = 1), lymph node (n = 1), and muscle (n = 1). Three of these were ordered on specimens from symptomatic patients. All 5 were negative. No patients in this cohort had documented MTB epidemiologic risk factors or positive interferon gamma release assay.

Table 2. Summary of Study Population and Identified Tissue Granulomas

Study Population	No. (%)
Total number of patients examined	2139
HSCTR	487 (22.8)
SOTR	1652 (77.2)
Liver	486 (29.4)
Kidney	1062 (64.3)
Heart	104 (6.3)
Identified granulomas	56
Total number of granulomas identified	56
HSCTR	18 (32.1)
SOTR	38 (67.9)
Liver	26 (68.4)
Kidney	11 (28.9)
Heart	1 (2.6)
Pretransplant versus Posttransplant	
Pretransplant	14 (25)
Posttransplant	42 (75)
Necrotizing versus Nonnecrotizing	
Necrotizing	5 (8.9)
Nonnecrotizing	51 (91.1)
Infectious versus Noninfectious	
SOTR	38
Infectious	12 (31.6)
Noninfectious	26 (68.4)
HSCTR	18
Infectious	4 (22.2)
Noninfectious	14 (77.8)

Symptomatic versus Asymptomatic	
Symptomatic	27 (48.2)
Infectious	11 (40.7)
Noninfectious	16 (59.3)
Asymptomatic	29 (51.8)
Infectious	5 (17.2)
Noninfectious	24 (82.7)
Biopsy site	
Liver	18 (32.1)
Lung	14 (25.0)
Skin	8 (14.2)
Lymph node	5 (8.9)
Bone marrow	2 (3.6)
Colon	2 (3.6)
Nasal cavity	2 (3.6)
Small bowel	1 (1.8)
Finger	1 (1.8)
Paraspinal muscle	1 (1.8)
Kidney	1 (1.8)
Spleen	1 (1.8)

Abbreviations: HSCTR, hematopoietic stem cell transplant recipients; SOTR, solid organ transplant recipients.
inflammatory bowel disease (n = 3; 7.5%), and sirolimus-induced pneumonitis (n = 3; 7.5%). The etiologies of 12 of 40 (30%) were not established, but were presumed to be noninfectious based on a combination of lack of positive microbiologic studies, clinical assessment of treating physicians, lack of clinical symptoms, and clinical stability without antimicrobial therapy and/or with increases in immunosuppression. Microbiologic workup was limited in many of the cases without an established diagnosis and included bacterial tissue culture in 3 of 12 cases, fungal tissue culture in 1 case, and acid-fast tissue culture in 3 of 12 cases. An important distinction with other published reports is the absence of mycobacterial (MTB and non-tuberculous mycobacteria) and dimorphic fungal causes in our cohort. However, no patients had epidemiologic risk factors for MTB and the study was performed in a single center in a geographically nonendemic area. Patients with both infectious and noninfectious granulomas had favorable outcomes. The lack of hospital readmissions and low-associated mortality at 1-year postgranuloma discovery, even with subsequent increases in immunosuppression in many patients, suggests that infectious diagnoses were not frequently missed.

Our data have meaningful clinical implications regarding the approach to newly discovered tissue granulomas in HSCTR and SOTR. The identification of granulomas in patients who have undergone transplantation should not reflexively trigger a barrage of microbiologic testing. Rather, patients should be risk stratified according to the likelihood of having an infectious etiology. Based on our study findings, the most important characteristics in determining the extent of microbiologic evaluation are the presence of clinical symptoms and epidemiologic risk factors for MTB and endemic fungi. Asymptomatic patients from non-MTB and nondimorphic fungal endemic areas in whom granulomas are discovered incidentally are unlikely to have an infectious etiology and thus in those patients, microbiologic testing may mostly be limited to standard tissue cultures and stains. Interestingly, of 5 cases with infectious etiologies in asymptomatic patients, 2 were associated with cryptococcal infection and 2 with CMV hepatitis suggesting that testing for these 2 pathogens may be considered. MTB PCR does not need to be routinely applied to tissue specimens in these patients. In contrast, patients in whom granulomas are discovered as part of an evaluation of clinical symptoms are at significantly higher risk of having an infectious cause. A wide variety of causative pathogens including bacterial, fungal, and viral causes were evident in this study. Given the limited number of infectious granulomas identified, it is not possible to make precise recommendations for specific testing. However, bartonellosis may be a more common etiology in transplant recipients and should be considered, particularly in patients with fever and other systemic symptoms.

In addition, this study suggests that granulomas discovered incidentally in asymptomatic patients before transplantation are unlikely to become clinically significant associated with new-onset symptomatic disease after transplantation and with increased immunosuppression.

DISCUSSION

Tissue granulomas were uncommon in a large transplant population with an overall prevalence similar to that of the general population (Table 1). Though susceptible to a greater array of infectious and noninfectious processes associated with formation of granulomas, transplant recipients may be unable to mount a vigorous immune response critical for immune cell recruitment that leads to granuloma formation.21 The diminished immune response may also account for the paucity of necrotizing granulomas in this study, even with infectious causes.

The etiologies of infectious granulomas were generally consistent with findings from previously published literature among immunocompetent hosts, though bartonellosis was notably common in our cohort, and symptomatic with fever in all 3 cases. An important distinction with other published reports is the absence of mycobacterial (MTB and non-tuberculous mycobacteria) and dimorphic fungal causes in our cohort. However, no patients had epidemiologic risk factors for MTB and the study was performed in a single center in a geographically nonendemic area. Patients with both infectious and noninfectious granulomas had favorable outcomes. The lack of hospital readmissions and low-associated mortality at 1-year postgranuloma discovery, even with subsequent increases in immunosuppression in many patients, suggests that infectious diagnoses were not frequently missed.

Our data have meaningful clinical implications regarding the approach to newly discovered tissue granulomas in HSCTR and SOTR. The identification of granulomas in patients who have undergone transplantation should not reflexively trigger a barrage of microbiologic testing. Rather, patients should be risk stratified according to the likelihood of having an infectious etiology. Based on our study findings, the most important characteristics in determining the extent of microbiologic evaluation are the presence of clinical symptoms and epidemiologic risk factors for MTB and endemic fungi. Asymptomatic patients from non-MTB and nondimorphic fungal endemic areas in whom granulomas are discovered incidentally are unlikely to have an infectious etiology and thus in those patients, microbiologic testing may mostly be limited to standard tissue cultures and stains. Interestingly, of 5 cases with infectious etiologies in asymptomatic patients, 2 were associated with cryptococcal infection and 2 with CMV hepatitis suggesting that testing for these 2 pathogens may be considered. MTB PCR does not need to be routinely applied to tissue specimens in these patients. In contrast, patients in whom granulomas are discovered as part of an evaluation of clinical symptoms are at significantly higher risk of having an infectious cause. A wide variety of causative pathogens including bacterial, fungal, and viral causes were evident in this study. Given the limited number of infectious granulomas identified, it is not possible to make precise recommendations for specific testing. However, bartonellosis may be a more common etiology in transplant recipients and should be considered, particularly in patients with fever and other systemic symptoms.

In addition, this study suggests that granulomas discovered incidentally in asymptomatic patients before transplantation are unlikely to become clinically significant

Table 3. Etiology of Infectious and Noninfectious Tissue Granulomas
Etiology of Granuloma
Infectious granulomas (n = 16)
Bartonellosis
CMV hepatitis
Cryptococcal pneumonia
Superinfected SSTI
Pneumococcal pneumonia
HMPV pneumonia
Stenotrophomonas pneumonia
Blastomyces skin infection
PJP
HCV cirrhosis
Noninfectious granulomas (n = 40)
Unknown—presumed noninfectious
T cell–mediated rejection
Inflammatory bowel disease
Sirolimus-induced pneumonitis
Sarcoïdosis
Chronic sinusitis
Ruptured cyst
Primary biliary cirrhosis
Infiltrative skin carcinoma
Aspiration pneumonitis
Cryptogenic organizing pneumonia
Drug-induced liver injury
T-cell lymphoma
Autoimmune hepatitis
Lung adenocarcinoma
Acute interstitial nephritis

Abbreviations: CMV, cytomegalovirus; HCV, hepatitis C; HMPV, human metapneumovirus; PJP, *Pneumocystis jirovecii* pneumonia; SSTI, skin and soft tissue infection.
Figure 1. Flow diagram depicting granuloma location, clinical diagnosis, histopathology, and results of MTB PCR testing. Cases are grouped based on presence or absence of infectious etiology and clinical symptoms. Abbreviations: ACR, acute cellular rejection; AIN, acute interstitial nephritis; CMV, cytomegalovirus; COP, cryptogenic organizing pneumonia; DILI, drug-induced liver injury; HCV, hepatitis C virus; HMPV, human metapneumovirus; IBD, inflammatory bowel disease; MTB, Mycobacterium tuberculosis; PBC, primary biliary cholangitis; PCR, polymerase chain reaction; PJP, Pneumocystis jirovecii pneumonia; PNA, pneumonia; SSTI, skin and soft tissue infection.
posttransplant. No patients in this study in whom granulomas were discovered before transplantation, including those without a known diagnosis, experienced new onset-symptomatic disease attributable to the granulomatous process after transplantation and with increased immunosuppression at 1 year posttransplant. Absent symptoms or a clear infectious diagnosis, routine posttransplant surveillance of incidentally discovered pretransplant granulomas is unlikely to be necessary.

There are several notable limitations to this study. Our findings are not generalizable to regions with higher prevalence of MTB and endemic fungi. In addition, a final clinical diagnosis was unable to be obtained in 12 of 40 (30%) noninfectious cases. These granulomas were presumed to be noninfectious based on the clinical judgment of the treatment teams, as well as the favorable outcomes seen without use of antimicrobial agents and increases in immunosuppression. However, without a confirmed clinical diagnosis it is possible that some of these granulomas may have been miscategorized. Of these 12 cases, only 3 had tissue cultures sent for bacteria, 1 had tissue cultures sent for fungi, and no tissue cultures were sent for acid-fast bacilli. Fungal and acid-fast stains were performed on 4 of these specimens. Still, it should be noted that the inability to confirm a diagnosis is consistent with prior literature in immunocompetent hosts in which 10% to 64% of granulomas are without an identifiable etiology.4,7,9 Moreover, the positive outcomes among the patients in our study suggest that infections were not missed. In addition, it should be noted that 3 of 5 patients in whom liver allograft T-cell-mediated rejection was considered to be the etiology of the granulomatous process also had a medical history of other autoimmune diseases including primary sclerosing cholangitis, autoimmune hepatitis, primary biliary cholangitis, and inflammatory bowel disease (Table 5). Thus, it is possible that granulomas could have been secondary to these

Figure 2. Photomicrographs of infectious and noninfectious granulomas from 5 different transplant recipients. A, Reactive lymph node with necrotic tissue forming granulomas encircled by epithelioid histiocytes in a patient with bartonellosis. B, Nonnecrotizing hepatic microgranuloma with cytomegalovirus (CMV) inclusion in a patient with CMV hepatitis. C, CMV immunostain from the same patient highlights one positive cell. D, Granulomatous inflammation in a lung biopsy from a patient with cryptococcal pneumonia. E, Grocott methenamine silver (GMS) and (F) mucicarmine stains revealing Cryptococcus spp. G, Nonnecrotizing granulomas in a small bowel resection from a patient with Crohn disease. H, Nonnecrotizing hepatic granulomas and microvesicular steatosis in a patient with drug induced liver injury (hematoxylin-eosin, original magnifications ×400 [A and B], ×20 [D and G], and ×200 [H]; original magnification ×400 [C]; original magnification ×40 [E]; original magnification ×40 [F]).
Transplant Type	Age	Sex	Race	Immunosuppression	Change in Immunosuppression After Diagnosis	Symptoms	Time of Biopsy	Biopsy Site	Final Clinical Diagnosis
Allogeneic HSCT	72	M	W	Venetoclax, IT MTX	Increased	Asymptomatic	Pretransplant	Lymph node	Sarcoidosis
Allogeneic HSCT	68	F	H	Sirolimus, Tacrolimus	Increased overall; sirolimus removed	Fever Lower respiratory	Posttransplant	Lung	Sirolimus-induced pneumonitis
Allogeneic HSCT	48	M	W	Idarubicin, Cytarabine	Increased	Fever and other systemic symptoms	Pretransplant	Lung	Cryptogenic organized pneumonia
Allogeneic HSCT	70	F	W	None	Unchanged	Asymptomatic	Postransplant	Nasal cavity	Chronic sinusitis
Allogeneic HSCT	45	M	W	Sirolimus	Unchanged	Upper Respiratory Gastrointestinal	Postransplant	Colon	Inflammatory bowel disease
Allogeneic HSCT	66	M	W	None	Increased	Asymptomatic	Postransplant	Colon	Inflammatory bowel disease
Allogeneic HSCT	50	F	W	None	Increased	Gastrointestinal	Postransplant	Colon	Inflammatory bowel disease
Allogeneic HSCT	52	F	W	Ponatinib	Decreased	Asymptomatic	Postransplant	Liver	Drug-induced liver injury
Allogeneic HSCT	28	F	W	None	Unchanged	Dermatologic	Pretransplant	Skin	Ruptured cyst
Allogeneic HSCT	38	M	W	CHOP	Increased	Asymptomatic	Pretransplant	Lymph node	T-cell lymphoma
Allogeneic HSCT	67	M	W	Sirolimus, Tacrolimus	Unchanged	Asymptomatic	Pretransplant	Bone marrow	Unknown—presumed noninfectious
Allogeneic HSCT	72	F	W	Prednisone, Tacrolimus	Unchanged	Asymptomatic	Postransplant	Lung	Unknown—presumed noninfectious
Allogeneic HSCT	68	F	W	None	Unchanged	Asymptomatic	Postransplant	Paraspinal muscle	Unknown—presumed noninfectious
Allogeneic HSCT	49	M	W	Tacrolimus	Unchanged	Asymptomatic	Postransplant	Bone marrow	Unknown—presumed noninfectious
Allogeneic HSCT	70	M	W	Prednisone	Unchanged	Dermatologic Lower respiratory	Postransplant	Eyelid	Superinfected SSTI
Allogeneic HSCT	59	M	W	Prednisone, Mycophenolate	Increased	Lower respiratory	Postransplant	Lung	HMPV pneumonia
Allogeneic HSCT	60	M	W	Prednisone	Decreased	Asymptomatic	Postransplant	Lung	Stenotrophomonas pneumonia
Allogeneic + Autologous HSCT	52	F	U	Brentuximab vedotin	Unchanged	Fever Lower respiratory	Pre-allo, Post-auto	Lymph node	Bartonellosis
SOT Kidney	61	F	AA	Prednisone, Tacrolimus, Mycophenolate	N/A; discovered at autopsy	Asymptomatic	Postransplant	Lymph node	Sarcoidosis
SOT Kidney	59	M	W	Prednisone, Sirolimus, Azathioprine	Increased overall; sirolimus removed	Fever Lower respiratory	Postransplant	Lung	Sirolimus-induced pneumonitis
SOT Kidney	57	M	AA	Prednisone, Mycophenolate	Unchanged	Musculoskeletal Dermatologic	Posttransplant	Finger	Unknown—presumed noninfectious
SOT Kidney	26	F	H	Prednisone, Tacrolimus, Mycophenolate	Decreased	Fever Gastrointestinal Lower respiratory	Posttransplant	Liver	Disseminated Bartonellosis
SOT Kidney	68	F	W	Prednisone, Tacrolimus, Mycophenolate	Unchanged	Dermatologic	Postransplant	Skin	Blastomyces
Table 4. Continued

Transplant Type	Age	Sex	Race	Immunosuppression	Change in Immunosuppression After Diagnosis	Symptoms	Time of Biopsy	Biopsy Site	Final Clinical Diagnosis
SOT Kidney	61	M	W	Prednisone Tacrolimus	Unchanged	Asymptomatic	Posttransplant	Skin	Unknown—presumed noninfectious
SOT Kidney	60	M	AA	None	Unchanged	Upper respiratory symptoms	Pretransplant	Nasal cavity	Chronic sinusitis
SOT Kidney	57	M	H	Prednisone Cyclosporine Tacrolimus Mycophenolate	Increased	Systemic symptoms without fever	Posttransplant	Kidney	Acute interstitial nephritis
SOT Kidney	73	M	W	Prednisone Tacrolimus Mycophenolate	Unchanged	Asymptomatic	Posttransplant	Skin	Ruptured cyst
SOT Kidney	44	M	W	Prednisone Cyclosporine Sirolimus	Decreased	Fever and other systemic symptoms	Posttransplant	Spleen	Bartonellosis
SOT Kidney	62	M	W	Prednisone Mycophenolate Sirolimus	Unchanged	Asymptomatic	Posttransplant	Lung	Cryptococcal pneumonia
SOT Liver	56	F	H	None	Unchanged	Asymptomatic	Pretransplant	Lung	Unknown—presumed noninfectious
SOT Liver	67	M	W	None	Increased	Asymptomatic	Pretransplant	Lymph node	Unknown—presumed noninfectious
SOT Liver	56	M	W	None	Unchanged	Asymptomatic	Pretransplant	Lung	Cryptococcal infection
SOT Liver	16	F	W	Prednisone Tacrolimus Azathioprine	Unchanged	Asymptomatic	Posttransplant	Liver	Unknown—presumed noninfectious
SOT Liver	64	F	W	None	Increased	Asymptomatic	Pretransplant	Liver	Unknown—presumed noninfectious
SOT Liver	62	M	H	Cyclosporine	Unchanged	Asymptomatic	Posttransplant	Liver	Unknown—presumed noninfectious
SOT Liver	67	F	H	None	Increased	Asymptomatic	Pretransplant	Liver	Unknown—presumed noninfectious
SOT Liver	69	M	W	Tacrolimus Mycophenolate	Unchanged	Asymptomatic	Posttransplant	Liver	Primary biliary cholangitis
SOT Liver	44	F	W	None	Increased	Asymptomatic	Pretransplant	Liver	Primary biliary cholangitis
SOT Liver	53	F	W	Sirolimus	Overall unchanged; sirolimus switched to tacrolimus	Asymptomatic	Posttransplant	Lung	Sirolimus-induced pneumonitis
SOT Liver	22	F	W	Prednisone Tacrolimus	Unchanged	Gastrointestinal abdominal pain	Posttransplant	Small bowel	Inflammatory bowel disease
SOT Liver	13	M	H	Prednisone Tacrolimus	Increased	Asymptomatic	Posttransplant	Liver	T cell–mediated rejection
SOT Liver	27	M	W	Prednisone Tacrolimus Sirolimus Azathioprine	Increased	Gastrointestinal Abdominal pain	Posttransplant	Liver	T cell–mediated rejection
SOT Liver	32	F	W	Tacrolimus	Increased	Fever Gastrointestinal	Posttransplant	Liver	T cell–mediated rejection
Table 4. Continued

Transplant Type	Age	Sex	Race	Immunosuppression	Change in Immunosuppression After Diagnosis	Symptoms	Time of Biopsy	Biopsy Site	Final Clinical Diagnosis
SOT Liver	19	F	W	Prednisone Tacrolimus Azathioprine	Increased	Upper respiratory Systemic symptoms without fever	Posttransplant	Liver	T cell–mediated rejection
SOT Liver	60	F	W	Prednisone Tacrolimus Mycophenolate	Increased	Gastrointestinal Lower respiratory symptoms	Posttransplant	Liver	T cell–mediated rejection
SOT Liver	70	F	W	Tacrolimus Sirolimus	Unchanged	Asymptomatic	Pretransplant	Lung	Lung adenocarcinoma
SOT Liver	54	F	W	Tacrolimus Sirolimus	Unchanged	Asymptomatic	Posttransplant	Skin	Infiltrative skin carcinoma
SOT Liver	65	M	W	Tacrolimus	Unchanged	Asymptomatic	Posttransplant	Skin	Infiltrative skin carcinoma
SOT Liver	69	F	W	Prednisone Tacrolimus Sirolimus Mycophenolate	Increased	Asymptomatic	Posttransplant	Liver	Autoimmune hepatitis
SOT Liver	61	M	W	Tacrolimus Mycophenolate	Decreased	Gastrointestinal Abdominal pain	Posttransplant	Liver	CMV hepatitis
SOT Liver	23	F	A	Tacrolimus Mycophenolate	Decreased	Asymptomatic	Posttransplant	Liver	CMV hepatitis
SOT Liver	15	M	W	Prednisone Tacrolimus Mycophenolate	Decreased	Asymptomatic	Posttransplant	Liver	CMV hepatitis
SOT Liver	70	M	AA	Tacrolimus Mycophenolate	Overall unchanged; Mycophenolate stopped, prednisone started	Fever	Posttransplant	Lung	PJP
SOT Liver	60	M	W	Prednisone Tacrolimus Sirolimus	Increased	Gastrointestinal Lower respiratory symptoms	Posttransplant	Liver	Chronic HCV
SOT Liver	60	F	W	Tacrolimus Mycophenolate	Decreased	Lower respiratory Systemic symptoms without fever	Posttransplant	Lung	Pneumococcal pneumonia
SOT Heart	55	F	U	Tacrolimus Mycophenolate	Unchanged	Dermatologic	Posttransplant	Skin	Superinfected SSTI

Abbreviations: A, Asian; AA, African American; CHOP, cyclophosphamide hydroxydaunorubicin oncovin prednisone; CMV, cytomegalovirus; H, Hispanic; HCV, hepatitis C virus; HMPV, human metapneumovirus; HSCT, hematopoietic stem cell transplant; IT MTX, intrathecal methotrexate; N/A, non-applicable; PJP, *Pneumocystis jiroveci* pneumonia; SOT, solid organ transplant; SSTI, skin and soft tissue infection; W, White; U, unknown.
diseases and unrelated to allograft rejection, even if rejection was concurrently present. However, though it may not be possible to fully exclude these other causes, in all 5 cases, the clinical diagnosis of T-cell–mediated rejection was agreed upon by the treatment teams and was used to guide patient care. Similarly, 1 case of presumed CMV hepatitis was not confirmed histologically as the CMV immunostain on hepatic tissue was negative. While the patient did not have a clear alternate diagnosis, it is not possible to fully exclude other causes. However, the patient was a high-risk host for development of CMV disease, had a compatible clinical syndrome, and experienced marked improvement in serum transaminase levels after treatment with valganciclovir, suggesting that CMV hepatitis was the most likely diagnosis and was favored by consulting specialists. Last, the study is limited by a small sample size of 56 cases and further studies are needed to corroborate our findings. Moving forward, emerging diagnostics such as broad-range ribosomal PCR and metagenomic next-generation sequencing may help further elucidate the underlying etiologies of cryptogenic granulomas. In addition, given that an independent slide review was performed for only a limited number of specimens, there could be additional findings of relevance to the transplant population that future studies could address.

CONCLUSIONS

Tissue granulomas were uncommon in a large transplant population and mostly noninfectious. Patients with clinical symptoms at the time of granuloma discovery were significantly more likely to have an infectious cause compared with granulomas discovered incidentally, which were unlikely to be infectious. Bartonellosis and CMV hepatitis were the most frequently encountered infectious diagnoses, suggesting that these should be considered when evaluating for infectious etiologies. The approach to newly discovered granulomas in transplant recipients should involve risk stratification primarily based off of patient symptoms and epidemiologic risk factors. Extensive microbiologic testing, including use of MTB PCR may be safely avoided in low-risk patients and granulomas discovered incidentally before transplantation without a clear etiology likely do not require routine surveillance posttransplant.

References

1. Zumla A, James DG. Granulomatous infections: etiology and classification. Clin Infect Dis. 1996;23(1):146–158.
2. Timmermans WM, van Laar JA, van Hagen PM, van Zelm MC. Immunopathogenesis of granulomas in chronic autoinflammatory diseases. Clin Transl Immunol. 2016;5(12):e118.
3. Shah KK, Pitt B, Alexander MP. Histopathologic review of granulomatous inflammation. J Clin Tuberc Other Mycobact Dis. 2017;7:1–12.
4. Jeewon SKK, Paul-Tara R, Uppin S, Uppin M. Bone marrow granulomas: a retrospective study of 47 cases (a single centre experience). Am J Intern Med. 2014;2(5):90–94.
5. Nazarullah A, Nilson R, Maselli DJ, Jagirdar J. Incidence and aetiologies of pulmonary granulomatous inflammation: a decade of experience. Respiratory. 2015;20(1):115–121.

6. Kabani D, Kozlowski HN, Cervera C, et al. Granuloma in the explanted lungs: Infectious causes and impact on post-lung transplant mycobacterial infection. Transpl Infect Dis. 2020;22(3):e13262.

7. Culver EL, Watkins J, Westbrook RH. Granulomas of the liver. Clin Liver Dis (Hoboken). 2016;7(4):92–96.

8. Turhan N, Kurt M, Özdéroin YO, Kurt OK. Hepatic granulomas: a clinicopathologic analysis of 86 cases. Pathol Res Pract. 2011;207(6):359–365.

9. Mukhopadhyay S, Farver CE, Vazcor LT, et al. Causes of pulmonary granulomas: a retrospective study of 500 cases from seven countries. J Clin Pathol. 2012;65(1):51–57.

10. Al-Harbi A, Al-Otaibi S, Abdulrahman A, et al. Lung granuloma: a clinicopathologic study of 158 cases. Ann Thorac Med. 2017;12(4):278–281.

11. Mukhopadhyay S, Gal AA. Granulomatous lung disease: an approach to the differential diagnosis. Arch Pathol Lab Med. 2010;134(5):667–690.

12. Kaushik S, Flagg E, Wise CM, Hadfield G, McCarty JM. Granulomatous myositis: a manifestation of chronic graft-versus-host disease. Skeletal Radiol. 2002;31(4):226–229.

13. Piening N, Saurabh S, Munoz Abraham AS, Osei H, Fitzpatrick C, Greenspon J. Sterile necrotizing and non-necrotizing granulomas in a heart transplant patient with history of PTLD: a unique finding. Int J Surg Case Rep. 2019;60:8–12.

14. Wong, NA. Gastrointestinal pathology in transplant patients. Histopathology. 2015;66(4):467–479.

15. Farris AB, Ellis CL, Rogers TE, Chon WJ, Chang A, Meehan SM. Renal allograft granulomatous interstitial nephritis: observations of an uncommon injury pattern in 22 transplant recipients. Clin Kidney J. 2017;10(2):240–248.

16. Storsley L, Gibson IW. Adenovirus interstitial nephritis and rejection in an allograft. J Am Soc Nephrol. 2011;22(8):1423–1427.

17. Ferrell LD, Lee R, Briscoe C, et al. Hepatic granulomas following liver transplantation. Clinicopathologic features in 42 patients. Transplantation. 1995;60(9):926–933.

18. Lapaia JB, Kambham N, Busque S, Tan JC. Renal allograft granulomas in the early post-transplant period. NDF Plus. 2010;3(4):397–401.

19. Piarros G, Riddell J Jr, Gandhi T, Kaufman CA, Cinti SK. Bartonella henselae infections in solid organ transplant recipients: report of 5 cases and review of the literature. Medicine (Baltimore). 2012;91(2):111–121.

20. Vakiani E, Hunt KK, Mazzotta RM, et al. Hepatitis C-associated granulomas after liver transplantation: morphologic spectrum and clinical implications. Am J Clin Pathol. 2007;127(1):128–134.

21. Hao W, Schlesinger LS, Friedman A. Modeling granulomas in response to infection in the lung. PLoS One. 2016;11(3):e0148738.

22. Queirós CS, Uva L, Soares de Almeida L, Filipe P. Granulomatous skin diseases in a tertiary care portuguese hospital: a 10-year retrospective study. Am J Dermatopathol. 2015;44(2):A288.

23. Al-Tawfiq JA, Raslan W. The analysis of pathological findings for cervical lymph node biopsies in eastern Saudi Arabia. J Infect Public Health. 2012;5(2):140–144.

24. Ozkan EA, Göret CC, Özdemir ZT, et al. Evaluation of peripheral lymphadenopathy with excisional biopsy: six-year experience. Int J Clin Exp Pathol. 2015;8(11):15234–15239.

25. Shah S, Carter-Monroe N, Atta MG. Granulomatous interstitial nephritis. Clin Kidney J. 2015;8(5):516–523.

26. Crispin P, Holmes A. Clinical and pathological feature of bone marrow granulomas: a modern Australian series. Int J Lab Hematol. 2018;40(2):123–127.

27. Molndar T, Tzilvavich E, Gyalai C, Napp F, Lonovic J. Clinical significance of granuloma on Crohn's disease. World J Gastroenterol. 2005;11(20):3118–3121.