Introduction

Variceal hemorrhage is a life-threatening complication of portal hypertension. Depending on the degree of liver decompensation mortality averages around 20% \[1\]. In our own studies, we found an esophageal variceal bleeding-related death rate of nearly 40% \[2, 3\], although in-hospital death rate of variceal bleeding has dropped considerably within the last decades \[1\]. However, a rather high percentage of patients still die before they are admitted. Hence, despite the fact that bleeding is no longer the most frequent complication of liver cirrhosis, preventing bleeding from varices induced by portal hypertension remains a major treatment aim. The natural history of liver cirrhosis induced by chronic viral infection \[4\] shows an occurrence rate of ascites and hepatocellular carcinoma of around 2% per year after diagnosis of compensated liver cirrhosis, while variceal bleeding occurred only in 5% of patients within a time period of 10 years. Furthermore, bleeding is often more a bystander than a cause of severe liver decompensation. Nevertheless, variceal bleeding is a dramatic event and clinicians have been developing strategies for its treatment and prevention over decades.

This chapter reviews the main achievements and delineates new approaches to avoid first variceal bleeding which includes prevention of variceal formation.
Pathogenesis of Varices and Bleeding

The driving force for the formation of varices is portal hypertension [5] associated with hampered flow of the portal venous blood to the inferior caval vein. This induces formation of collaterals to drain the blood to the right heart, mainly via the superior vena cava. Portal hypertension is defined as portal pressure, which exceeds the pressure in the vena cava by more than 5 mmHg [6]. It is commonly assumed that varices develop once this pressure surpasses 10 mmHg; a pressure threshold established as significant portal hypertension. If this pressure is higher than 12 mmHg, esophageal varices may rupture and bleed [5, 6]. Most bleedings are intestinal, namely from esophageal varices and gastric varices, while large collaterals embedded in the paraintestinal tissue very rarely show spontaneous rupture.

At the distal part of the esophagus, the varices are only covered by a thin epithelial layer and often not by the muscularis mucosae [7, 8]. Furthermore, the transmural pressure gradient augments in the thoracic segments of the collaterals, where the luminal pressure is lower than in the abdomen [9]. This may explain why the region of the gastroesophageal junction or just above the lower esophageal sphincter is critical for the occurrence of bleeding.

Risk Factors and Prognostic Signs

According to La Place’s law, tension of the wall is proportional to the radius of the vessel multiplicated the transmural pressure, whereas it is inversely related to the thickness of the wall [10, 11]. This law can only partially be adapted to the situation of venous collaterals in humans but it provides indications. Thus, hemodynamic factors such as the esophageal variceal blood pressure or—indirectly—the portal blood pressure on the one hand and morphological characteristics of the vessel, such as size and properties of the wall, on the other hand [7, 9] possibly deliver indications about the risk of bleeding and therewith prognostic information. Another intrinsic factor may be deranged blood coagulation, e.g., triggered by infection [12].

Several clinical situations can precipitate or augment these risk parameters.

Hemodynamic Parameters

The gradient of wedged hepatic venous pressure minus free hepatic venous pressure or minus the inferior vena cava pressure approximates the portal venous pressure measured directly [13]. In patients with previous variceal hemorrhage, this hepatic venous portal pressure gradient (HVPG) was nearly always greater than 12 mmHg. Yet, this pressure could in fact represent the threshold for formation of varices rather than serve as a good discriminator for bleeding, since many retrospective studies [14, 15] failed to find significant differences of the average HVPG between bleeders...
and non-bleeders. Few data exist on the risk of diurnal pressure changes, e.g., induced by meals or physical activity, which can be quite remarkable [16]. Furthermore, portal flow may vary considerably between patients with a similar degree of portal hypertension.

There is some evidence that blood pressure within the varix or transmural pressure [17], which, however, is ideally assessed invasively, might be a better predictor of variceal bleeding [18].

The new technologies that determine liver stiffness noninvasively by measuring velocity of the propagation of vibration wave can quite accurately predict significant portal hypertension, i.e., HVPG >10 mmHg. Liver stiffness below 13.6 kPa rules out significant portal hypertension, while liver stiffness greater than 21.1 kPa is always associated with an HVPG above 10 mmHg [19]. Techniques to assess liver stiffness are increasingly integrated into ultrasound devices, and future equipment might allow estimation of portal blood flow, spleen size, diameter of the portal vein, as well as stiffness of the liver in one step. It remains to be seen whether these techniques will allow monitoring of the effect of drugs applied to lower portal pressure.

Morphological Features of the Vessels

Although transmural pressure is the driving force that causes rupture and bleeding, morphological alterations of the wall may well support this event. Local erosions resulting in a reduction of wall thickness can be a precipitating event in large varices with high wall tension [7, 9]. These alterations are sometimes evident during endoscopy as the so-called white clot [20].

Furthermore, typical features of varices include red color signs (red wale markings, hematocystic spots) or size of varices that allow the prediction of variceal pressure and risk of bleeding [21, 22]. These parameters are part of one of the most relevant prognostic scores applied to calculate the risk of bleeding and to define patients for prophylaxis of first bleeding [21, 23–25].

Blood Coagulation

Bleeding occurs more often in patients with decompensated cirrhosis independent of the macroscopic variceal characteristics. This may be partly due to an impaired coagulation following infections [12, 26].

Precipitating Events

For prophylaxis of variceal bleeding, exact knowledge of events triggering bleeding is important [9]. If size of varices, wall characteristics [22–25, 27], portal as well as transmural variceal pressure, alcoholism [21], and degree of liver dysfunction are
predictive for first bleeding, events that aggravate these parameters must be triggers for bleeding. These might include a sustained rise of portal pressure, e.g., induced by infection, alcoholism, or acute activation of contractile cells within the liver derived from the gut or elsewhere (pulmonary, urinary infection, or other foci of infection). Short-term increase of portal pressure due to meals (Fig. 7.1) or abdominal pressing have not consistently been found to trigger bleeding [16]. Erosions of the thin walls of large vessels could also be a trigger, but—again—only very few studies consider gastroesophageal reflux a risk factor for portal hypertensive bleeding [26].

According to the previously mentioned studies, strategies for pre-primary and primary prophylaxis of variceal hemorrhage should aim to:

- Prevent formation of varices mainly by reduction of intrahepatic resistance or by prevention of its increase.
- Prevent growth of varices.
- Prevent precipitating events if large varices are present, e.g., by reducing pressure and flow within the varices, by preventing infections, acute alcohol challenge, or other factors that lead to deterioration of liver function.
- Improve wall characteristics and/or reduce size of the vessels.

Pre-primary prophylaxis concentrates mainly on modulation/reduction of intrahepatic resistance, while primary prophylaxis with its available therapeutic options focuses more on modulation of the splanchnic vascular bed (e.g., application of nonselective β-blockers) and on direct alteration of the vascular segments at risk for bleeding (e.g., obliteration of varices using ligation).
Pre-primary Prophylaxis

Patients with liver cirrhosis show esophageal varices in about 60% of the individuals at the time of diagnosis [28]. In the remaining patients, the annual incidence of varices is about 7% [28]. Although nonselective β-blockers are the standard treatment to prevent the first variceal bleeding, they have failed to retard the development of varices in cirrhotic patients [28, 29] despite encouraging experimental data [30].

Chronic liver disease is a result of a persisting hepatic injury with hepatocellular damage, inflammation, and fibrosis. During this process, many functional and structural changes, such as fibrosis, angiogenesis, hypocontractility of splanchnic vessels, and hyperreaction of contractile cells within the liver, take place and all contribute to the development of portal hypertension and formation of varices. The withdrawal of the underlying hepatic injury and different pharmacological approaches have been successfully tested in human and animal models to inhibit, attenuate, or reverse the processes associated with development of fibrosis, angiogenesis, or alterations of vascular responses. Since these processes interact during disease progression, a multimodal approach is preferred to offer new possibilities for future pre-primary prophylaxis.

Withdrawal of the Underlying Hepatic Injury

Until recently, established hepatic fibrosis was believed to be irreversible [31]. Today, however, many different studies show that elimination of the underlying cause may indeed reverse fibrosis and prevent the development of portal hypertension together with varices. Thus, different studies in patients with chronic viral hepatitis type B and C have shown that virus elimination leads to regression of fibrosis and cirrhosis [32–34], while other studies reported that drain of bile in chronic cholestasis ameliorated liver fibrosis as well as treatment of autoimmune hepatitis and weight loss in nonalcoholic steatohepatitis [35–37].

Antifibrotic Strategies

Although strategies to target the cause of the liver disease are mostly efficient, they may fail (e.g., treatment of chronic HCV infection or primary sclerosing cholangitis) or are initiated in a too advanced stage due to late diagnosis. In this situation, therapies that interrupt or attenuate fibrogenesis would be most helpful in order to decrease portal hypertension and its complications.

The key cells responsible for hepatic fibrosis are the hepatic stellate cells. They are activated and change their phenotype upon liver injury in that they transform towards cells that contract and produce extracellular matrix. Both phenomena
increase the intrahepatic resistance to portal flow. In the past, many approaches have been investigated in experimental models of fibrosis. Here, we focus on strategies that may be transferred to the human situation.

Activation of the Renin–Angiotensin System

The renin–angiotensin system (RAS) is increasingly activated with decompensation of liver cirrhosis, probably as a reaction to systemic vasodilation \[38, 39\], while at the same time, tissue RAS, especially within the liver, may stimulate hepatic stellate cells via angiotensin 1 (AT1) receptors inducing fibrosis, vasoconstriction, and portal hypertension \[40, 41\]. In the past, many drugs, which modulate RAS have been validated and are now part of clinical routine in cardiovascular disorders.

Similarly, it has been shown in animal models of liver fibrosis that angiotensin type 1 receptors (AT1R) are upregulated within the liver together with angiotensin II formation. Blockade of this cascade via angiotensin-converting enzyme (ACE) or preventing angiotensin II binding to AT1 receptors attenuates fibrosis and decreases portal pressure \[42–45\]. Chronic administration of these available drugs might therefore play a role in the pre-primary prophylaxis of variceal bleeding. However, randomized trials are lacking to date. Around 10 years ago, a homologue to ACE, the so-called ACE2, has been described \[46\]. ACE2 degrades the active angiotensin II to angiotensin 1–7, which binds to the so-called MAS receptor. This receptor elicits contrary effects to AT1R-mediated processes; it blunts fibrosis and causes vasodilation. Thus, ACE2-deficient mice show more severe liver fibrosis, while the administration of recombinant ACE2 reduces experimental liver fibrosis \[47, 48\] and reduces portal hypertension via the degradation of angiotensin II to angiotensin 1–7 by dual effect prevention of AT1R stimulation and increased MAS receptor stimulation. Modulation of this system could also play a future role in pre-primary prophylaxis of variceal bleeding.

Statins

HMG-CoA reductase inhibitors have effects that are independent from the lowering of serum cholesterol. These are mediated by the inhibition of the small GTPases \[49–52\]. Interestingly, statins decrease by this way accumulation of extracellular matrix within the liver, induce senescence in activated hepatic stellate cells and lead to relaxation of these cells (Fig. 7.2a–c) \[49–52\]. Such experimental data suggest an effect in the prevention and/or treatment of portal hypertension and thereby pre-primary prophylaxis of varices in chronic liver disease. As a proof of principle, it has already been shown in rather small studies that statins reduce portal pressure \[53, 54\] and possibly attenuate matrix formation \[55–57\]. Yet, again, large trials, especially regarding development of portal hypertension, are lacking.
Liver cirrhosis is associated with small intestinal bacterial overgrowth, bacterial translocation, and change of the gut microbiota [58, 59]. All these factors can indirectly cause an increase in intrahepatic resistance (e.g., via activation of intrahepatic macrophages and hepatic stellate cells), hyperdynamic circulation and impairment of coagulation, derangements that may provoke portal hypertension and variceal hemorrhage.

Modulation of the Intestinal Microbiota

Liver cirrhosis is associated with small intestinal bacterial overgrowth, bacterial translocation, and change of the gut microbiota [58, 59]. All these factors can indirectly cause an increase in intrahepatic resistance (e.g., via activation of intrahepatic macrophages and hepatic stellate cells), hyperdynamic circulation and impairment of coagulation, derangements that may provoke portal hypertension and variceal hemorrhage.
bleeding [60–63]. Thus, pathogen-free animals or those with interrupted pathways of innate immunity show considerably less hepatic fibrosis [64, 65]. Future will tell whether influencing intestinal microorganisms, the host immune response and the mucosal barrier will one day become a tool for the prophylaxis of variceal formation and variceal bleeding. A small trial showed that application of Rifaximin, a nonabsorbable antibiotic, indeed reduced portal pressure in humans [66].

Antiangiogenic Approaches

Antiangiogenic factors trigger and aggravate hepatic fibrogenesis [67] and it has been repeatedly shown, at least in animal models, that substances such as antibodies against vascular endothelial growth factor (VEGF) or tyrosine kinase inhibitors attenuate liver fibrosis [68–73]. Yet, as of today it remains open whether such strategies will translate into clinical hepatology for the prevention of varices.

Interestingly, angiogenesis also plays an important role in the de novo formation of portosystemic collaterals. Inhibition of angiogenesis in splanchic vessels by inhibiting VEGF or PDGF resulted in the reduction of portal pressure and could possibly prevent the formation of varices [74–76]. One drug already used in clinical hepatology is sorafenib. Apart from its antiproliferative effect, it blunts angiogenesis as shown in portal hypertensive animals [71].

Modulation of Hepatic and Extrahepatic Contractile Cells

Portal hypertension is driven by the increased intrahepatic resistance—which is structural (fibrosis) and dynamic (intrahepatic activation of contractile cells)—and by an increased portal tributary blood flow resulting from splanchic vasodilation [39, 77]. Both vessel beds are targets for drugs to prevent variceal bleeding or reverse portal hypertension.

Decreasing Hepatic Resistance

Different approaches have been shown to lower portal pressure via reduction of intrahepatic resistance. An important target is the deactivation of stimulated hepatic stellate cells, Kupffer cells, or liver sinusoidal endothelial cells to facilitate portalvenous blood flow through the liver. Drugs that blunt the basic mechanisms of contraction, e.g., the RhoA/Rho-kinase pathway, or enhance the delivery of vasodilative molecules, such as nitric oxide, effectively reduce intrahepatic resistance and portal pressure [49, 78–80]. Drugs that have been successfully tested for efficacy in this situation include AT1R antagonists [44, 45, 81, 82], amiloride [83], nifluribiprofen [84], nitrates [77], statins [49, 53, 54, 85], β3-AR agonists [80], or MAS receptor agonists [86]. The following paragraphs will concentrate on clinical trials, which tested some of these drugs for prevention of variceal bleeding.
Unfortunately, medical treatments that reduce intrahepatic resistance may have considerable systemic side effects by further decreasing systemic arterial blood pressure and aggravating hyperdynamic circulation. Therefore, targeting specific cells within the liver might provide an answer. For example, a potent Rho-kinase inhibitor coupled to modified human serum albumin selectively decreased intrahepatic resistance without influencing systemic hemodynamics [87]. These molecules can also be used as a Trojan horse for the AT1R-blocker losartan [88].

Increasing Splanchnic Vascular Tone

Increase of the splanchnic vessels tone decreases portal pressure via reduction of the portal tributary blood flow. Several animal studies have shown that low-dose AT1R-blockers and urotensin II receptor antagonists lower portal pressure via an increase of splanchnic vascular resistance and a decrease in the portal blood flow [45, 81, 89, 90]. Further compounds, such as neuropeptide Y, multi-kinase inhibitors, and MAS receptor blockers, exhibit a portal pressure lowering effect via correcting the deranged vasconstrictrile pathways and increasing the splanchnic vascular tone [39, 72, 86, 91–93]. Yet, at present, all these approaches to prevent and treat portal hypertension are experimental with the exception of the application of some vasocostricators such as terlipressin [94, 95].

Primary Prophylaxis

Shunts, drugs, and endoscopic obliteration of varices prone to bleed have all been tested for prevention of first variceal hemorrhage in numerous clinical trials that are addressed in the following paragraphs.

Shunting Procedures

Four randomized controlled trials [96–99] were performed in the 1960s and early 1970s. Variceal bleeding was prevented by insertion of a surgical shunt in the vast majority of patients, while first bleeding ranged between 20 and 40% in the non-shunted individuals. However, during a follow-up period of 5–14 years, 44% of the non-operated and 58% of the operated patients died. This excess mortality was mainly due to operative mortality and a higher long-term hepatic failure rate in the shunted patients.

Since then, the surgical shunt has been considered a sacrilege in the prophylaxis of first variceal bleeding. TIPS has a much lower procedure-related trauma and can be easily occluded, but to date, no controlled trials have been initiated to test the value of TIPS for primary bleeding prophylaxis, despite the fact that such an approach has some theoretical basis in selected candidates.
Local Treatment of Collaterals

In 1939, Crafoord and Frenckner introduced sclerotherapy of esophageal varices [100]. In the early 1980s, first trials were conducted that favored sclerotherapy with respect to bleeding and survival. Numerous further trials, however, were less cut [3, 101] or even showed an excess of bleeding. A large meta-analysis of 19 trials considered sclerotherapy unsettled for the prevention of first bleeding [102]. The results were too heterogeneous, which was mainly due to a large variation of the bleeding incidence in the control groups, although pooled odds ratios were in favor of sclerotherapy. The largest trial even found a higher death rate in the group of patients treated with sclerotherapy [103].

Later on ligation was introduced [104] and showed to have less adverse effects, especially in respect to procedure-related bleedings. Five trials compared prophylactic ligation with untreated controls comprising 601 patients. A meta-analysis found a homogenous beneficial effect with respect to reduction of first variceal bleed, bleeding-related mortality, and all cause mortality. Consequently, ligation has become the endoscopic procedure of choice in the prevention of first variceal bleeding [105]. Typically, 2–3 sessions of ligation are necessary. The interval between these sessions varies between the groups from 1 to 3 weeks, with 2–3 weeks [106] as possibly the best interval for the repetition of the procedure. Although ligation has been shown to be effective for prophylaxis of first bleeding, it has to be kept in mind that the procedure depends on the experience of the endoscopist and that it may induce life-threatening bleeding [2].

Medical Treatment for Prophylaxis of First Bleeding

Nonselective β-Blockers

Portal hypertension is caused on the one hand by an increased intrahepatic resistance and on the other hand by an augmented portal tributary blood flow—as first shown by Didier Lebrec and his group [107]. It is believed that the latter phenomenon contributes about one third to the degree of portal hypertension. The speculation by the French group of Clichy that portal tributary blood flow could be reduced by administration of a nonselective β-blocker was indeed ingenious. The blockade of β1-adrenoceptors decreases the cardiac index and therewith the splanchnic inflow. At the same time, blockade of the β2-adrenoceptors renders α1-adrenergic reaction unopposed within the splanchnic vasculature, which results in vasoconstriction and a further drop in splanchnic perfusion [108]. The decreased splanchnic perfusion and consequently the reduced portal venous inflow achieve—on average—a reduction of portal pressure by 12 % [109, 110]. It is believed that it is mainly this long-term reduction of portal pressure under continuous intake of
propranolol that reduces the bleeding risk, as shown consistently in randomized controlled trials [111]. It was suggested early on that propranolol should be dosed up to a reduction of the heart rate by 25% or the maximal tolerated dose. Once this hemodynamic reaction is achieved, 20–40% of patients [109, 110] show a decrease of HVPG by ≥20%, which is believed to be the best prognostic sign for prophylaxis success. An analysis of the data of 589 individual patients from four randomized trials [111] showed that the percentage of patients without upper gastrointestinal bleeding increased from 65% (controls) to 78% (verum groups) within 2 years. The percentage of patients without fatal bleeding increased from 82% (controls) to 90% (β-blocker). There was a trend in favor of prolonged survival, but this was far from being significant (71% vs. 68%, p = 0.34).

The previously mentioned results are robust and established the role of non-selective β-blockers as treatment of choice for prophylaxis of first bleeding in patients with liver cirrhosis and large esophageal varices [95]. One trial [29] showed that patients with small varices might also profit. However, pharmacological approach using nonselective β-blockers presents some problems. Five to ten percent of patients were non-compliant or non-adherent to treatment [112], 5% of patients exhibited contraindications such as hypotension, bradycardia, impotence, or dyspnea and in 10–25% of patients [112], adverse events occurred that required interruption of treatment. Finally, β-blockers must be applied on a lifelong basis since the risk of variceal hemorrhage returns to the untreated situation after withdrawal of treatment [113].

Thus, in a rather high percentage of these patients, other approaches have to be considered, such as ligation, nitrates, or carvedilol, a nonselective β-blocker, which also blocks α-adrenergic receptors [114, 115]. The following paragraphs will address the controlled trials, which have been carried out with these different approaches to prevent first variceal bleeding in patients with liver cirrhosis and large varices.

Nitrates for Prevention of First Bleeding vs. Placebo

Vasodilators, especially long acting nitrovasodilators (e.g., isosorbide dinitrate or isosorbide mononitrate) have been shown to reduce HVPG [115, 116] and esophageal variceal pressure by reduction of vascular resistance to portal collateral blood flow and possibly also intrahepatic resistance [117]. One trial [118] with 133 patients compared isosorbide-5-mononitrate in a double blind randomized trial with placebo in patients with contraindications or intolerance to β-blockers. No difference was found in the 1 and 2 year actuarial probability of first variceal bleeding. In further studies, nitrates were inferior to propranolol [119–121] and ligation [119]. Accordingly, nitrates are not an alternative for propranolol to prevent first bleeding. Combining nitrates with a nonselective β-blocker for prophylaxis of first bleeding may have a small additional beneficial effect [122, 123].
Ligation vs. a Nonselective β-Blocker

To date, at least 19 randomized controlled trials (eight available only as abstracts) have been published. The conclusions of two recent meta-analyses [106, 124] are quite similar in that within a time period ranging between 10 and 55 months, all-cause mortality was nearly identical (23 % vs. 24 % out of approximately 1,500 patients in total) and that variceal ligation significantly reduced the bleeding risk when all trials are analyzed (11 % vs. 20 % nonselective β-blockers). This effect was rather robust but it is no longer significant when only high quality trials were included [106]. Adverse events occurred more often in the β-blocker groups, but fatal adverse events—caused by induction of bleeding—were only reported for the ligation groups (3 %) and not in the β-blocker groups.

Bleeding-related complications may be lower when the interval between banding sessions surpasses 2 weeks [106]. Compliance was inconsistently reported. In our own trial [2], 5 % of patients presented contraindications, 9 % did not adhere to β-blockers and in 16 %, β-blocker treatment had to be stopped mostly due to symptomatic arterial hypotension, which may cause “rebound bleeding” [113]. Higher doses of propranolol (>75 mg/day) were somewhat more efficient than lower doses, but only in the initial period of treatment [106].

Both meta-analyses concluded that it might be appropriate to start with a nonselective β-blocker and to restrict ligation to patients who have contraindications or do not tolerate β-blockers. However, if patients prefer ligation it appears appropriate to accept their wish. Beta-blockers may be particularly suitable for patients prior to liver transplantation [125].

While prophylaxis with nonselective β-blockers is less cost-intensive [2], this may change in favor of ligation once life quality is additionally considered [126].

Ligation Plus a Nonselective β-Blocker

Several singular trials addressed the question of combining different therapeutic principles for prophylaxis of first bleeding. Ligation was more effective than nadolol plus isosorbide-5-mononitrate for prevention of first bleeding [127], while adding propranolol to ligation did not improve the effect of ligation in the setting of primary prophylaxis [128]. Thus, contrary to prevention of rebleeding [95], combination therapy is obviously not superior when first variceal bleeding is to be prevented.

Carvedilol Instead of Propranolol

Carvedilol is a nonselective β-blocker with intrinsic anti-α1-adrenergic activity. Hemodynamic studies [109, 110, 129] showed that a daily dose of carvedilol of 12.5–25 mg reduces the average HVPG to a higher relative degree than propranolol (around 19 % vs. approximately 10 %). Accordingly, more patients are responders
(drop of HVPG >20 % or to <12 mmHg) with carvedilol when compared to propranolol (54 % and 23 %, respectively) [110], while somewhat more than 50 % of patients, who did not respond to propranolol, still showed an adequate response to carvedilol [109]. This renders carvedilol a potential treatment of choice for bleeding prophylaxis [130]. Yet, no controlled trial on the direct comparison to propranolol for primary prophylaxis has been published to date. Regarding head to head comparison with ligation in the setting of primary prophylaxis, one trial showed a significantly lower first bleeding rate [131] in the carvedilol group (10 %) compared to ligation (23 %), while another trial found no difference [132]. Survival was not different in either trial.

Although not found in all trials, a more pronounced reduction of the mean arterial pressure under carvedilol, especially in patients with decompensated cirrhosis, remains a concern [114], especially with respect to kidney function and treatment of ascites.

Thus, more trials must be published before carvedilol can be regarded as treatment of choice for the prevention of first bleeding from varices. Nevertheless, individual patients may already be candidates.

Fundic Varices

Coexisting gastric varices do not preclude prophylactic ligation of large esophageal varices [133]. Only one randomized trial evaluated primary prophylaxis for bleeding from large isolated gastric varices [134]. Nearly half of the untreated patients bled within 2 years. Cyanoacrylate injection significantly reduced this risk and was more successful than β-blockers.

Further Alternatives in the Pipeline

Drugs that are antifibrogenic [135] and—at the same time—reduce portal pressure would be ideal (see previous discussion). Here, blunting the activated RAS in liver cirrhosis could be an option as mentioned earlier. One study found a dramatic short-term effect of the AT-1-receptor blocker losartan (25 mg daily), which reduced HVPG by nearly 50 % [136]. Unfortunately, this finding could not be confirmed by further trials [81, 82]. Furthermore, dramatic hypotensive effects in patients with highly activated RAS and kidney failure may be a problem [81, 137]. However, in patients with well-compensated cirrhosis, this approach could be an option for long-term treatment if the dose is carefully titrated. This has been suggested by preclinical studies. In rat models of cirrhosis, low-dose administration of losartan could reduce portal pressure and improve vascular hypocontractility, and finally, renal function [45, 89]. While we found no additional effect when adding irbesartan to low-dose propranolol for reduction of HVPG, sodium excretion increased when we added the AT1-antagonist [138]. Spironolactone has also shown no additive effect
in bleeding prevention [139]. Long-term trials with relevant clinical endpoints, such as liver function/histology, bleeding, and survival, are certainly called for.

Somatostatin analogues, shown to reduce portal pressure in very early studies, are not an option for prevention of first variceal bleeding since their portal pressure lowering effect is minor or even absent [140, 141].

Other new drugs and strategies addressing fibrosis, angiogenesis, and intrahepatic resistance might be appropriate to prevent the development of varices and first bleeding as mentioned previously.

Conclusion

Although variceal bleeding is not the main complication of liver cirrhosis, it remains a dramatic and life-threatening event for the patient. Propranolol, ligation, and carvedilol are good options to prevent first bleeding. Their prophylactic use should be tailored according to the individual situation of the patient (Fig. 7.3). The best pre-primary prophylaxis is interruption of the underlying disease.

![Algorithm for prevention of variceal bleeding](image)

Fig. 7.3 An algorithm for prevention of variceal bleeding in patients with chronic liver disease. (Dosages: 40–160 mg/day propranolol, 6.25–25 mg carvedilol/day; Ligation: till obliteration (usually 2–3 sessions with 2–3 weeks interval)
References

1. Crooks C, Card T, West J. Reductions in 28-day mortality following hospital admission for upper gastrointestinal hemorrhage. Gastroenterology. 2011;141:62–70.
2. Schepke M, Kleber G, Nurnberg D, Willert J, Koch L, Veltzke-Schlieker W, Hellerbrand C, et al. Ligation versus propranolol for the primary prophylaxis of variceal bleeding in cirrhosis. Hepatology. 2004;40:65–72.
3. Sauerbruch T, Wotzka R, Köpcke W, Harlin M, Heldwein W, Bayerdorffer E, Sander R, et al. Prophylactic sclerotherapy before the first episode of variceal hemorrhage in patients with cirrhosis. N Engl J Med. 1988;319:8–15.
4. Benvegnu L, Gios M, Boccatto S, Alberti A. Natural history of compensated viral cirrhosis: a prospective study on the incidence and hierarchy of major complications. Gut. 2004;53:744–9.
5. Vorobiov JD, Groszmann RJ. Hepatic venous pressure gradient measurement in pre-primary and primary prophylaxis of variceal hemorrhage. Ann Hepatol. 2013;12:22–9.
6. Vorobiov JD. Hepatic venous pressure in practice: how, when, and why. J Clin Gastroenterol. 2007;41 Suppl 3:S336–43.
7. Spence RA, Sloan JM, Johnston GW, Greenfield A. Oesophageal mucosal changes in patients with varices. Gut. 1983;24:1024–9.
8. Stelzner F, Lierre S. The angiomuscular dilation closing of the terminal esophagus. Langenbecks Arch Chir. 1968;321:35–64.
9. Conn HO. Why do varices bleed? Rational therapy based on objective observations. Acta Med Scand Suppl. 1985;703:135–48.
10. Sauerbruch T, Kleber G, Gerbes A, Paumgartner G. Prophylaxis of first variceal hemorrhage in patients with liver cirrhosis. Klin Wochenschr. 1986;64:1267–75.
11. Liebowitz HR. Pathogenesis of esophageal varix rupture. JAMA. 1961;175:874–9.
12. Thalheimer U, Triantos CK, Samonakis DN, Patch D, Burroughs AK. Infection, coagulation, and variceal bleeding in cirrhosis. Gut. 2005;54:556–63.
13. Perello A, Escorsell A, Bru C, Gilabert R, Motinno E, Garcia-Pagan JC, Bosch J. Wedged hepatic venous pressure adequately reflects portal pressure in hepatitis C virus-related cirrhosis. Hepatology. 1999;30:1393–7.
14. Viallet A, Marleau D, Huet M, Martin F, Farley A, Villeneuve JP, Lavoie P. Hemodynamic evaluation of patients with intrahepatic portal hypertension. Relationship between bleeding varices and the portohepatic gradient. Gastroenterology. 1975;69:1297–300.
15. Lebrec D, De Fleury P, Rueff B, Nahum H, Benhamou JP. Portal hypertension, size of esophageal varices, and risk of gastrointestinal bleeding in alcoholic cirrhosis. Gastroenterology. 1980;79:1139–44.
16. Schiedermair P, Koch L, Mojon A, Hermida R, Layer G, Sauerbruch T. Circadian rhythm of fasting and postprandial portal blood flow in cirrhosis. Scand J Gastroenterol. 2006;41:826–32.
17. Rigau J, Bosch J, Bordas JM, Navasa M, Mastai R, Kravetz D, Bruix J, et al. Endoscopic measurement of variceal pressure in cirrhosis: correlation with portal pressure and variceal hemorrhage. Gastroenterology. 1989;96:873–80.
18. Kleber G, Sauerbruch T. Risk indicators of variceal bleeding. Z Gastroenterol. 1988;26 Suppl 2:19–23.
19. Castera L, Pinzani M, Bosch J. Non invasive evaluation of portal hypertension using transient elastography. J Hepatol. 2012;56:696–703.
20. Hou MC, Lin HC, Kuo BI, Lee FY, Schmidt CM, Lee SD. Clinical implications of the white nipple sign and its role in the diagnosis of esophageal variceal hemorrhage. Am J Gastroenterol. 1996;91:2103–9.
21. Kleber G, Sauerbruch T, Ansari H, Paumgartner G. Prediction of variceal hemorrhage in cirrhosis: a prospective follow-up study. Gastroenterology. 1991;100:1332–7.
22. Beppu K, Inokuchi K, Koyanagi N, Nakayama S, Sakata H, Kitano S, Kobayashi M. Prediction of variceal hemorrhage by esophageal endoscopy. Gastrointest Endosc. 1981;27:213–8.
23. de Franchis R, Primignani M. Why do varices bleed? Gastroenterol Clin North Am. 1992;21:85–101.
24. Nevens F, Bustami R, Scheys I, Lesaffre E, Favery J. Variceal pressure is a factor predicting the risk of a first variceal bleeding: a prospective cohort study in cirrhotic patients. Hepatology. 1998;27:15–9.
25. Prediction of the first variceal hemorrhage in patients with cirrhosis of the liver and esophageal varices. A prospective multicenter study. The North Italian Endoscopic Club for the Study and Treatment of Esophageal Varices. N Engl J Med. 1988;319:983–89.
26. Okamoto E, Amano Y, Fukuhara H, Furuta K, Miyake T, Sato S, Ishihara S, et al. Does gastroesophageal reflux have an influence on bleeding from esophageal varices? J Gastroenterol. 2008;43:803–8.
27. Kleber G, Sauerbruch T, Fischer G, Paumgartner G. Pressure of intraoesophageal varices assessed by fine needle puncture: its relation to endoscopic signs and severity of liver disease in patients with cirrhosis. Gut. 1989;30:228–32.
28. Groszmann RJ, Garcia-Tsao G, Bosch J, Grace ND, Burroughs AK, Planas R, Escorsell A, et al. Beta-blockers to prevent gastroesophageal varices in patients with cirrhosis. N Engl J Med. 2005;353:2254–61.
29. Merkel C, Marin R, Angeli P, Zanella P, Felder M, Bernardinello E, Cavallarin G, et al. A placebo-controlled clinical trial of nadolol in the prophylaxis of growth of small esophageal varices in cirrhosis. Gastroenterology. 2004;127:476–84.
30. Sarin SK, Groszmann RJ, Mosca PG, Rojkind M, Stadecker MJ, Bhatnagar R, Reuben A, et al. Propranolol ameliorates the development of portal-systemic shunting in a chronic murine schistosomiasis model of portal hypertension. J Clin Invest. 1991;87:1032–6.
31. Ramachandran P, Iredale JP. Reversibility of liver fibrosis. Ann Hepatol. 2009;8:283–91.
32. Marcellin P, Gane E, Buti M, Afdhal N, Sievert W, Jacobson IM, Washington MK, et al. Regression of cirrhosis during treatment with tenofovir disoproxil fumarate for chronic hepatitis B: a 5-year open-label follow-up study. Lancet. 2013;381:468–75.
33. Arthur MJ. Reversibility of liver fibrosis and cirrhosis following treatment for hepatitis C. Gastroenterology. 2002;122:1525–8.
34. Kweon YO, Goodman ZD, Dienstag JL, Schiff ER, Brown NA, Burchardt E, Schoonhoven R, et al. Decreasing fibrogenesis: an immunohistochemical study of paired liver biopsies following lamivudine therapy for chronic hepatitis B. J Hepatol. 2001;35:749–55.
35. Hammel P, Couvelard A, O’Toole D, Ratouis A, Sauvanet A, Flejou JF, Degott C, et al. Regression of liver fibrosis after biliary drainage in patients with chronic pancreatitis and stenosis of the common bile duct. N Engl J Med. 2001;344:418–23.
36. Dixon JB, Bhathal PS, Hughes NR, O’Brien PE. Nonalcoholic fatty liver disease: Improvement in liver histological analysis with weight loss. Hepatology. 2004;39:1647–54.
37. Czaja AJ, Carpenter HA. Decreased fibrosis during corticosteroid therapy of autoimmune hepatitis. J Hepatol. 2004;40:646–52.
38. Macgilchrist AJ, Howes LG, Hawksby C, Reid JL. Plasma noradrenaline in cirrhosis: a study of kinetics and temporal relationship to ascites formation. Eur J Clin Invest. 1991;21:238–43.
39. Hennenberg M, Trebicka J, Sauerbruch T, Heller J. Mechanisms of extrahepatic vasodilation in portal hypertension. Gut. 2008;57:1300–14.
40. Bataller R, Gabele E, Parsons CJ, Morris T, Yang L, Schoonhoven R, Brenner DA, et al. Systemic infusion of angiotensin II exacerbates liver fibrosis in bile duct-ligated rats. Hepatology. 2005;41:1046–55.
41. Bataller R, Gines P, Nicolas JM, Gorbig MN, Garcia-Ramallo E, Gasull X, Bosch J, et al. Angiotensin II induces contraction and proliferation of human hepatic stellate cells. Gastroenterology. 2000;118:1149–56.
42. Bataller R, Sancho-Bru P, Gines P, Brenner DA. Liver fibrogenesis: a new role for the renin-angiotensin system. Antioxid Redox Signal. 2005;7:1346–55.
43. Bataller R, Schwabe RF, Choi YH, Yang L, Paik YH, Lindquist J, Qian T, et al. NADPH oxidase signal transduces angiotensin II in hepatic stellate cells and is critical in hepatic fibrosis. J Clin Invest. 2003;112:1383–94.
44. Heller J, Shiozawa T, Trebicka J, Hennenberg M, Schepke M, Neef M, Sauерbruch T. Acute haemodynamic effects of losartan in anaesthetized cirrhotic rats. Eur J Clin Invest. 2003;33:1006–12.
45. Heller J, Trebicka J, Shiozawa T, Schepke M, Neef M, Hennenberg M, Sauерbruch T. Vascular, hemodynamic and renal effects of low-dose losartan in rats with secondary biliary cirrhosis. Liver Int. 2005;25:657–66.
46. Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M, Stagliano N, Donovan M, et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1–9. Circ Res. 2000;87:E1–9.
47. Molteni A, Heflefinger S, Moulder JE, Uhal B, Castellani WJ. Potential deployment of angiotensin I converting enzyme inhibitors and of angiotensin II type 1 and type 2 receptor blockers in cancer chemotherapy. Anticancer Agents Med Chem. 2006;6:451–60.
48. Schuppan D, Popov Y. Rationale and targets for antifibrotic therapies. Gastroenterol Clin Biol. 2009;33:949–57.
49. Trebicka J, Hennenberg M, Laleman W, Shelist N, Biecker E, Schepke M, Nevens F, et al. Atorvastatin lowers portal pressure in cirrhotic rats by inhibition of RhoA/Rho-kinase and activation of endothelial nitric oxide synthase. Hepatology. 2007;46:242–53.
50. Klein S, Klösel J, Schierwagen R, Körner C, Granzow M, Huss S, Mazar IG, Weber S, et al. Atorvastatin induces senescence in activated hepatic stellate cells and attenuates hepatic fibrosis in rats. Lab Invest. 2012;92(10):1440–50.
51. Trebicka J, Hennenberg M, Odenthal M, Shir K, Klein S, Granzow M, Vogt A, et al. Atorvastatin attenuates hepatic fibrosis in rats after bile duct ligation via decreased turnover of hepatic stellate cells. J Hepatol. 2010;53:702–12.
52. Moreno M, Ramalho LN, Sancho-Bru P, Ruiz-Ortega M, Ramalho F, Abraldes JG, Colmenero J, et al. Atorvastatin attenuates angiotensin II-induced inflammatory actions in the liver. Am J Physiol Gastrointest Liver Physiol. 2009;296:G147–56.
53. Zafra C, Abraldes JG, Turnes J, Berzigotti A, Fernandez M, Garca-Pagan JC, Rodes J, et al. Simvastatin enhances hepatic nitric oxide production and decreases the hepatic vascular tone in patients with cirrhosis. Gastroenterology. 2004;126:749–55.
54. Abraldes JG, Albillos A, Banares R, Turnes J, Gonzalez R, Garcia-Pagan JC, Bosch J. Simvastatin lowers portal pressure in patients with cirrhosis and portal hypertension: a randomized controlled trial. Gastroenterology. 2009;136:1651–8.
55. Kiyici M, Gulten M, Gurel S, Nak SG, Dolar E, Savci G, Adim SB, et al. Ursodeoxycholic acid and atorvastatin in the treatment of nonalcoholic steatohepatitis. Can J Gastroenterol. 2003;17:713–8.
56. Rallidis LS, Drakoulis CK, Parasi AS. Pravastatin in patients with nonalcoholic steatohepatitis: results of a pilot study. Atherosclerosis. 2004;174:193–6.
57. Hatzitolios A, Savopoulos C, Lazaraki G, Sidiropoulos I, Haritanti P, Lefkopoulos A, Karagiannopoulou G, et al. Efficacy of omega-3 fatty acids, atorvastatin and orlistat in non-alcoholic fatty liver disease with dyslipidemia. Indian J Gastroenterol. 2004;23:131–4.
58. Wiest R, Garcia-Tsao G. Bacterial translocation (BT) in cirrhosis. Hepatology. 2005;41:422–33.
59. Wiest R, Krag A, Gerbes A. Spontaneous bacterial peritonitis: recent guidelines and beyond. Gut. 2012;61:297–310.
60. Goulis J, Armonis A, Patch D, Sabin C, Greenslade L, Burroughs AK. Bacterial infection is independently associated with failure to control bleeding in cirrhotic patients with gastrointestinal hemorrhage. Hepatology. 1998;27:1207–12.

61. Goulis J, Patch D, Burroughs AK. Bacterial infection in the pathogenesis of variceal bleeding. Lancet. 1999;353:139–42.

62. Wiest R, Das S, Cadelina G, Garcia-Tsao G, Milstien S, Groszmann RJ. Bacterial translocation in cirrhotic rats stimulates eNOS-derived NO production and impairs mesenteric vascular contractility. J Clin Invest. 1999;104:1223–33.

63. Thabut D, Tazi KA, Bonnefont-Rousselot D, Aller M, Farges O, Guimont MC, Tellier Z, et al. High-density lipoprotein administration attenuates liver proinflammatory response, restores liver endothelial nitric oxide synthase activity, and lowers portal pressure in cirrhotic rats. Hepatology. 2007;46:1893–906.

64. Seki E, De Minicis S, Osterreicher CH, Kluwe J, Osawa Y, Brenner DA, Schwabe RF. TLR4 enhances TGF-beta signaling and hepatic fibrosis. Nat Med. 2007;13:1324–32.

65. Isayama F, Hines IN, Kremer M, Milton RJ, Byrd CL, Perry AW, McKim SE, et al. LPS signaling enhances hepatic fibrogenesis caused by experimental cholestasis in mice. Am J Physiol Gastrointest Liver Physiol. 2006;290:G1318–28.

66. Vlachogiannakos J, Saveriades AS, Viazis N, Theodoropoulos I, Foudoulis K, Manolakopoulos S, Raptis S, et al. Intestinal decontamination improves liver haemodynamics in patients with alcohol-related decompensated cirrhosis. Aliment Pharmacol Ther. 2009;29:992–9.

67. Wasmuth HE, Lammert F, Zaldivar MM, Weiskirchen R, Kellerbrand C, Scholten D, Berres ML, et al. Antifibrotic effects of CXCL9 and its receptor CXCR3 in livers of mice and humans. Gastroenterology. 2009;137:309–19, 319 e301–3.

68. Yoshiji H, Kuriyama S, Yoshih J, Ikenaka Y, Noguchi R, Hicklin DJ, Wu Y, et al. Vascular endothelial growth factor receptor interaction is a prerequisite for murine hepatic fibrogenesis. Gut. 2003;52:1347–54.

69. Tugues S, Fernandez-Varo G, Munoz-Luque J, Ros J, Arroyo V, Rodes J, Friedman SL, et al. Antiangiogenic treatment with sunitinib ameliorates inflammatory infiltrate, fibrosis, and portal pressure in cirrhotic rats. Hepatology. 2007;46:1919–26.

70. Kisseleva T, Brenner DA. Anti-fibrogenic strategies and the regression of fibrosis. Best Pract Res Clin Gastroenterol. 2011;25:305–17.

71. Mejias M, Garcia-Pras E, Tiana C, Miquel R, Bosch J, Fernandez M. Beneficial effects of sorafenib on splanchnic, intrahepatic, and portocollateral circulations in portal hypertensive and cirrhotic rats. Hepatology. 2009;49:1245–56.

72. Hennenberg M, Trebicka J, Stark C, Kohistani AZ, Heller J, Sauerbruch T. Sorafenib targets dysregulated Rho kinase expression and portal hypertension in rats with secondary biliary cirrhosis. Br J Pharmacol. 2009;157:258–70.

73. Hennenberg M, Trebicka J, Kohistani Z, Stark C, Nischalke HD, Kramer B, Korner C, et al. Hepatic and HSC-specific sorafenib effects in rats with established secondary biliary cirrhosis. Lab Invest. 2010;91:241–51.

74. Fernandez M, Vizzutti F, Garcia-Pagan JC, Rodes J, Bosch J. Anti-VEGF receptor-2 monoclonal antibody prevents portal-systemic collateral vessel formation in portal hypertensive mice. Gastroenterology. 2004;126:886–94.

75. Fernandez M, Mejias M, Angermayr B, Garcia-Pagan JC, Rodes J, Bosch J. Inhibition of VEGF receptor-2 decreases the development of hyperdynamic splanchnic circulation and portal-systemic collateral vessels in portal hypertensive rats. J Hepatol. 2005;43:98–103.

76. Fernandez M, Mejias M, Garcia-Pras E, Mendez R, Garcia-Pagan JC, Bosch J. Reversal of portal hypertension and hyperdynamic splanchnic circulation by combined vascular endothelial growth factor and platelet-derived growth factor blockade in rats. Hepatology. 2007;46:1208–17.

77. Bosch J, Garcia-Pagan JC. Complications of cirrhosis. I. Portal hypertension. J Hepatol. 2000;32:141–56.

78. Zhou Q, Hennenberg M, Trebicka J, Jochem K, Leifeld L, Biecker E, Sauerbruch T, et al. Intrahepatic upregulation of RhoA and Rho-kinase signalling contributes to increased hepatic vascular resistance in rats with secondary biliary cirrhosis. Gut. 2006;55:1296–305.
7 Pre-primary and Primary Prophylaxis of Variceal Hemorrhage

79. Biecker E, Trebicka J, Kang A, Hennenberg M, Sauerbruch T, Heller J. Treatment of bile duct-ligated rats with the nitric oxide synthase transcription enhancer AVE 9488 ameliorates portal hypertension. Liver Int. 2008;28:331–8.

80. Trebicka J, Hennenberg M, Schulze Probsting A, Laleman W, Klein S, Granzow M, Nevens F, et al. Role of beta3-adrenoceptors for intrahepatic resistance and portal hypertension in liver cirrhosis. Hepatology. 2009;50:1924–35.

81. Schepke M, Werner E, Biecker E, Schiedermaier P, Heller J, Neef M, Stoffel-Wagner B, et al. Hemodynamic effects of the angiotensin II receptor antagonist irbesartan in patients with cirrhosis and portal hypertension. Gastroenterology. 2001;121:389–95.

82. Gonzalez-Abraldes J, Albillos A, Banares R, Del Arbol LR, Moitinho E, Rodriguez C, Gonzalez M, et al. Randomized comparison of long-term losartan versus propranolol in lowering portal pressure in cirrhosis. Gastroenterology. 2001;121:382–8.

83. Steib CJ, Hennenberg M, Beiting F, Hartmann AC, Bystron M, De Toni EN, Gerbes AL. Amiloride reduces portal hypertension in rat liver cirrhosis. Gut. 2010;59:827–36.

84. Laleman W, Van Landeghem L, Van der Elst I, Zeegers M, Favery J, Nevens F. Nitroflurbiprofen, a nitric oxide-releasing cyclooxygenase inhibitor, improves cirrhotic portal hypertension in rats. Gastroenterology. 2007;132:709–19.

85. Abraldes JG, Rodriguez-Vilarruil A, Graupera M, Zafra C, Garcia-Caldero H, Garcia-Pagan JC, Bosch J. Simvastatin treatment improves liver sinusoidal endothelial dysfunction in CCl4(4) cirrhotic rats. J Hepatol. 2007;46(6):1040–6.

86. Grace JA, Klein S, Herath CB, Granzow M, Schierwagen R, Masing N, Walther T, et al. Activation of the mas receptor by angiotensin-(1–7) in the renin-angiotensin system mediates mesenteric vasodilation in cirrhosis. Gastroenterology. 2013;145(4):874–84.e5.

87. Klein S, Van Beuge MM, Granzow M, Beljaars L, Schierwagen R, Klic S, Heidari I, et al. HSC-specific inhibition of Rho-kinase reduces portal pressure in cirrhotic rats without major systemic effects. J Hepatol. 2012;57(6):1220–7.

88. Moreno M, Gonzalo T, Kok RJ, Sancho-Bru P, van Beuge M, Swart J, Prakash J, et al. Reduction of advanced liver fibrosis by short-term targeted delivery of an angiotensin receptor blocker to hepatic stellate cells in rats. Hepatology. 2010;51:942–52.

89. Croquet V, Moal F, Veal N, Wang J, Oberti F, Roux J, Vuillemen E, et al. Hemodynamic and antifibrotic effects of losartan in rats with liver fibrosis and/or portal hypertension. J Hepatol. 2002;37:773–80.

90. Trebicka J, Leifeld L, Hennenberg M, Biecker E, Eckhardt A, Fischer N, Probsting AS, et al. Hemodynamic effects of urotensin II and its specific receptor antagonist palosuran in cirrhotic rats. Hepatology. 2008;47:1264–76.

91. Hennenberg M, Biecker E, Trebicka J, Jochem K, Zhou Q, Schmidt M, Jakobs KH, et al. Defective RhoA/Rho-kinase signaling contributes to vascular hypocontractility and vasodilation in cirrhotic rats. Gastroenterology. 2006;130:838–54.

92. Hennenberg M, Trebicka J, Biecker E, Schepke M, Sauerbruch T, Heller J. Vascular dysfunction in human and rat cirrhosis: role of receptor-desensitizing and calcium-sensitizing proteins. Hepatology. 2007;45:495–506.

93. Moleda L, Trebicka J, Dietrich P, Gabele E, Hellerbrand C, Straub RH, Sauerbruch T, et al. Amelioration of portal hypertension and the hyperdynamic circulatory syndrome in cirrhotic rats by neuropeptide Y via pronounced splanchnic vasoaction. Gut. 2011;60:1122–32.

94. Sanyal AJ, Boyer T, Garcia-Tsao G, Regenstein F, Rossaro L, Appenrodt B, Blei A, et al. A randomized, prospective, double-blind, placebo-controlled trial of terlipressin for type 1 hepatorenal syndrome. Gastroenterology. 2008;134:1360–8.

95. de Franchis R. Revising consensus in portal hypertension: report of the Baveno V consensus workshop on methodology of diagnosis and therapy in portal hypertension. J Hepatol. 2010;53:762–8.

96. Conn HO, Lindenmuth WW. Prophylactic portacaval anastomosis in cirrhotic patients with esophageal varices: a progress report of a continuing study. N Engl J Med. 1965;272:1255–63.

97. Conn HO, Lindenmuth WW, May CJ, Ramsby GR. Prophylactic portacaval anastomosis. Medicine (Baltimore). 1972;51:27–40.
98. Jackson FC, Perrin EB, Smith AG, Dagradi AE, Nadal HM. A clinical investigation of the portacaval shunt. II. Survival analysis of the prophylactic operation. Am J Surg. 1968;115:22–42.

99. Resnick RH, Chalmers TC, Ishihara AM, Garceau AJ, Callow AD, Schimmel EM, O’Hara ET. A controlled study of the prophylactic portacaval shunt. A final report. Ann Intern Med. 1969;70:675–88.

100. Craafrod C, Freckner P. New surgical treatment of varicose veins of the esophagus. Acta Otolaryngol (Stockholm). 1939;27:422–30.

101. Kleber G, Ansari H, Sauerbruch T. Prophylaxis of first variceal bleeding. Baillieres Clin Gastroenterol. 1992;6:563–80.

102. D’Amico G, Pagliaro L, Bosch J. The treatment of portal hypertension: a meta-analytic review. Hepatology. 1995;22:332–54.

103. Prophylactic sclerotherapy for esophageal varices in men with alcoholic liver disease. A randomized, single-blind, multicenter clinical trial. The Veterans Affairs Cooperative Variceal Sclerotherapy Group. N Engl J Med. 1991;324:1779–1784.

104. Van Stiegmann G, Cambre T, Sun JH. A new endoscopic elastic band ligating device. Gastrointest Endosc. 1986;32:230–3.

105. Imperiale TF, Chalasani N. A meta-analysis of endoscopic variceal ligation for primary prophylaxis of esophageal variceal bleeding. Hepatology. 2001;33:802–7.

106. Funakoshi N, Duny Y, Valats JC, Segalas-Largey F, Flori N, Bismuth M, Daures JP, et al. Meta-analysis: beta-blockers versus banding ligation for primary prophylaxis of esophageal variceal bleeding. Ann Hepatol. 2012;11:369–83.

107. Lebrec D, Nouel O, Corbic M, Benhamou JP. Propranolol—a medical treatment for portal hypertension? Lancet. 1980;2:180–2.

108. Lebrec D, Hillon P, Munoz C, Goldfarb G, Nouel O, Benhamou JP. The effect of propranolol on portal hypertension in patients with cirrhosis: a hemodynamic study. Hepatology. 1982;2:523–7.

109. Reiberger T, Ulbrich G, Ferlitsch A, Payer BA, Schwabl P, Pinter M, Heinisch BB, et al. Carvedilol for primary prophylaxis of variceal bleeding in cirrhotic patients with haemodynamic non-response to propranolol. Gut. 2013;62(11):1634–41.

110. Banares R, Moitinho E, Matilla A, Garcia-Pagan JC, Lampreave JL, Piera C, Abraldes JG, et al. Randomized comparison of long-term carvedilol and propranolol administration in the treatment of portal hypertension in cirrhosis. Hepatology. 2002;36:1367–73.

111. Poynard T, Cales P, Pasta L, Ideo G, Pascal JP, Pagliaro L, Lebrec D. Beta-adrenergic-antagonist drugs in the prevention of gastrointestinal bleeding in patients with cirrhosis and esophageal varices. An analysis of data and prognostic factors in 589 patients from four randomized clinical trials. Franco-Italian Multicenter Study Group. N Engl J Med. 1991;324:1532–8.

112. Merkel C, Marin R, Sacerdoti D, Donada C, Cavallarin G, Torboli P, Amodio P, et al. Long-term results of a clinical trial of nadolol with or without isosorbide mononitrate for primary prophylaxis of variceal bleeding in cirrhosis. Hepatology. 2000;31:324–9.

113. Abraczinskas DR, Ookubo R, Grace ND, Groszmann RJ, Bosch J, Garcia-Tsao G, Richardson CR, et al. Propranolol for the prevention of first esophageal variceal hemorrhage: a lifetime commitment? Hepatology. 2001;34:1096–102.

114. Hemstreet BA. Evaluation of carvedilol for the treatment of portal hypertension. Pharmacotherapy. 2004;24:94–104.

115. Garcia-Pagan JC, Feu F, Navasa M, Bru C, Ruiz del Arbol L, Bosch J, Rodes J. Long-term haemodynamic effects of isosorbide 5-mononitrate in patients with cirrhosis and portal hypertension. J Hepatol. 1990;11:189–95.

116. Grose RD, Plevris JN, Redhead DN, Bouchier IA, Hayes PC. The acute and chronic effects of isosorbide-5-mononitrate on portal haemodynamics in cirrhosis. J Hepatol. 1994;20:542–7.
117. Van de Casteele M, Omasta A, Janssens S, Roskams T, Desmet V, Nevens F, Fevery J. In vivo gene transfer of endothelial nitric oxide synthase decreases portal pressure in anaesthetised carbon tetrachloride cirrhotic rats. Gut. 2002;51:440–5.

118. Garcia-Pagan JC, Villanueva C, Viña MC, Albillos A, Genesca J, Ruiz-Del-Arbol L, Planas R, et al. Isosorbide mononitrate in the prevention of first variceal bleed in patients who cannot receive beta-blockers. Gastroenterology. 2001;121:908–14.

119. Lui HF, Stanley AJ, Forrest EH, Jalan R, Hislop WS, Mills PR, Finlayson ND, et al. Primary prophylaxis of variceal hemorrhage: a randomized controlled trial comparing band ligation, propranolol, and isosorbide mononitrate. Gastroenterology. 2002;123:735–44.

120. Angelico M, Carli L, Piat C, Gentile S, Capoccia L. Effects of isosorbide-5-mononitrate compared with propranolol on first bleeding and long-term survival in cirrhosis. Gastroenterology. 1997;113:1632–9.

121. Borroni G, Salerno F, Cazzaniga M, Bissoli F, Lorenzano E, Maggi A, Visentin S, et al. Nadolol is superior to isosorbide mononitrate for the prevention of the first variceal bleeding in cirrhotic patients with ascites. J Hepatol. 2002;37:315–21.

122. Garcia-Pagan JC, Morillas R, Banares R, Albillos A, Villanueva C, Viña C, Genesca J, et al. Propranolol plus placebo versus propranolol plus isosorbide-5-mononitrate in the prevention of a first variceal bleed: a double-blind RCT. Hepatology. 2003;37:1260–6.

123. Merkel C, Bolognesi M, Sacerdoti D, Bombonato G, Bellini B, Bighini R, Gatta A. The hemodynamic response to medical treatment of portal hypertension as a predictor of clinical effectiveness in the primary prophylaxis of variceal bleeding in cirrhosis. Hepatology. 2000;32:930–4.

124. Gluud LL, Krag A. Banding ligation versus beta-blockers for primary prevention in oesophageal varices in adults. Cochrane Database Syst Rev. 2012;8, CD004544.

125. Norberto L, Polese L, Cillo U, Grigoletto F, Burroughs AK, Neri D, Zanus G, et al. A randomized study comparing ligation with propranolol for primary prophylaxis of variceal bleeding in candidates for liver transplantation. Liver Transpl. 2007;13:1272–8.

126. Imperiale TF, Klein RW, Chalasani N. Cost-effectiveness analysis of variceal ligation vs. beta-blockers for primary prevention of variceal bleeding. Hepatology. 2007;45:870–8.

127. Lo GH, Chen WC, Chen MH, Hsu PI, Lin CK, Tsai WL, Lai KH. Banding ligation versus nadolol and isosorbide mononitrate for the prevention of esophageal variceal rebleeding. Gastroenterology. 2002;123:728–34.

128. Sarin SK, Wadhawan M, Agarwal SR, Tyagi P, Sharma BC. Endoscopic variceal ligation plus propranolol versus endoscopic variceal ligation alone in primary prophylaxis of variceal bleeding. Am J Gastroenterol. 2005;100:797–804.

129. Lin HC, Yang YY, Hsu MC, Huang YT, Lee FY, Lee SD. Acute administration of carvedilol is more effective than propranolol plus isosorbide-5-mononitrate in the reduction of portal pressure in patients with viral cirrhosis. Am J Gastroenterol. 2004;99:1953–8.

130. Bosch J. Carvedilol: the beta-blocker of choice for portal hypertension? Gut. 2013;62(11):1529–30.

131. Tripathi D, Ferguson JW, Kochar N, Leithead JA, Theraponos G, McAvoy NC, Stanley AJ, et al. Randomized controlled trial of carvedilol versus variceal band ligation for the prevention of the first variceal bleed. Hepatology. 2009;50:825–33.

132. Shah A, Rauf J, Azam Z, Abid S, Hamid S, Jafri S, Ismail F, et al. Randomized controlled trial of Carvedilol vs. Variceal band ligation in the primary prophylaxis of variceal haemorrhage. Hepatology. 2012;56(Suppl):272A.

133. Schepke M, Biecker E, Appenrodt B, Heller J, Sauerbruch T. Coexisting gastric varices should not preclude prophylactic ligation of large esophageal varices in cirrhosis. Digestion. 2009;80:165–9.

134. Mishra SR, Sharma BC, Kumar A, Sarin SK. Primary prophylaxis of gastric variceal bleeding comparing cyanoacrylate injection and beta-blockers: A randomized controlled trial. J Hepatol. 2011;54:1161–7.

7 Pre-primary and Primary Prophylaxis of Variceal Hemorrhage 95
135. Schuppan D, Kim YO. Evolving therapies for liver fibrosis. J Clin Invest. 2013;123:1887–901.
136. Schneider AW, Kalk JF, Klein CP. Effect of losartan, an angiotensin II receptor antagonist, on portal pressure in cirrhosis. Hepatology. 1999;29:334–9.
137. Debernardi-Venon W, Martini S, Biasi F, Vizio B, Termine A, Poli G, Brunello F, et al. AT1 receptor antagonist Candesartan in selected cirrhotic patients: effect on portal pressure and liver fibrosis markers. J Hepatol. 2007;46:1026–33.
138. Schepke M, Wiest R, Flacke S, Heller J, Stoffel-Wagner B, Herold T, Ghauri M, et al. Irbesartan plus low-dose propranolol versus low-dose propranolol alone in cirrhosis: a placebo-controlled, double-blind study. Am J Gastroenterol. 2008;103:1152–8.
139. Abecasis R, Kravetz D, Fassio E, Ameigeiras B, Garcia D, Isla R, Landeira G, et al. Nadolol plus spironolactone in the prophylaxis of first variceal bleed in nonascitic cirrhotic patients: A preliminary study. Hepatology. 2003;37:359–65.
140. Chandok N, Kamath PS, Blei A, Bosch J, Carey W, Grace N, Kowdley KV, et al. Randomised clinical trial: the safety and efficacy of long-acting octreotide in patients with portal hypertension. Aliment Pharmacol Ther. 2012;35:904–12.
141. Schiedermaier P, Koch L, Stoffel-Wagner B, Layer G, Sauerbruch T. Effect of propranolol and depot lanreotide SR on postprandial and circadian portal haemodynamics in cirrhosis. Aliment Pharmacol Ther. 2003;18:777–84.