Sex Difference in the Interrelationship Between TNF-α and Oxidative Stress Status in First-episode Drug-naïve Schizophrenia

Minghuan Zhu
Shanghai Pudong New Area Mental Health Center

Zhenjing Liu
Qingdao University

Jaelin Rippe
McLean Hospital

Mst. Sadia Sultana
Jahangirnagar University

Kang Wu
Changhai Hospital

Xiaoe Lang
Shanxi Medical University

Qinyu Lv
Shanghai Mental Health Center

Zhenghui Yi
Shanghai Mental Health Center

Zezhi Li (✉ biolpsychiatry@126.com)
Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital

Research

Keywords: Sex difference, Schizophrenia, TNF-α, Oxidative stress, interaction

DOI: https://doi.org/10.21203/rs.3.rs-126760/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background

Increasing evidence indicates that dysregulated TNF-α and oxidative stress (OxS) contribute to the pathophysiology of schizophrenia. Additionally, previous evidence has demonstrated sex differences in many aspects of schizophrenia including clinical characteristics, cytokines and OxS markers. However, to the best of our knowledge, there is no study investigating sex differences in the association between TNF-α, the OxS system, and their interaction with clinical symptoms in schizophrenia patients, especially in first-episode drug-naïve (FEDN) patients.

Methods

A total of 119 FEDN schizophrenia patients and 135 healthy controls were recruited for this study. Serum TNF-α, superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT), and malondialdehyde (MDA) were measured. The Positive and Negative Syndrome Scale (PANSS) was applied to evaluate psychotic symptoms. Two-way ANOVA, partial correlation analysis and multivariate regression analysis were performed.

Results

A sex difference in MDA levels was demonstrated only in healthy controls (F = 7.06, p_{Bonferroni} = 0.045) and not seen in patients. Furthermore, only male patients had higher MDA levels than male controls (F = 8.19, p_{Bonferroni} = 0.03). Additionally, sex differences were observed in the association of TNF-α and MDA levels with psychotic symptoms (all p_{Bonferroni}<0.05). The interaction of TNF-α and MDA was only associated with general psychopathology symptom in male patients (B = -0.07, p = 0.02).

Conclusion

Our results demonstrate the sex difference in the relationship between TNF-α, MDA, and their interaction with psychopathological symptoms of patients with schizophrenia.

Introduction

Schizophrenia is a chronic and severe mental disorder characterized by psychopathological symptoms. The exact mechanisms of schizophrenia are still unclear[1]. Growing evidence suggests that the etiology of schizophrenia may be associated with dysregulated inflammatory pathways and oxidative stress (OxS)[2–4].

The activation of the inflammatory system as seen in cytokine activity may be closely related to susceptibility to schizophrenia[5]. TNF-α is one of the most important pro-inflammatory cytokines and contributes heavily to the pathophysiological process of schizophrenia by controlling neuronal excitability and by metabolizing neurotransmitters[6]. The abnormal expression of TNF-α pathway in
schizophrenia patients has been well documented in the current literature [7–8]. OxS also plays an important role in the pathogenesis of schizophrenia[9]. Increased OxS and oxidative injury as well as impaired antioxidant defense system[10–11], such as superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT), and malondialdehyde (MDA) have been observed in patients with schizophrenia.

Moreover, it is worthy of note that the OxS system plays a central role through its interaction with the inflammatory system [12]. Reciprocal interactions between OxS and inflammatory systems have been established in previous studies[13–14]. Previous research has revealed that the mechanism of certain brain developmental disorders caused by the activation of maternal immune systems may be closely related to OxS[15]. The activation of immune cells can secrete OxS parameters, while OxS parameters can also activate and enhance various inflammatory molecules and immune responses[16]. Additionally, a corresponding relationship between the intensity of immune response and the level of OxS in schizophrenia has been demonstrated in a previous study[17]. Therefore, the relationship between cytokines and OxS parameters must be taken into account. A recent meta-analysis showed that patients with first-episode psychosis (FEP) had lower total antioxidant status, but higher IL6 and TNF-α compared to controls[18]. Correspondingly, our previous studies have also found that TNF-α, the OxS system, and their interaction were involved in the pathophysiology of schizophrenia[19].

Another critical concern is that there are sex differences in many aspects of schizophrenia including incidence rate, onset age, symptoms severity, cognitive function, response to antipsychotics, and outcomes[20–22], which may be partly related to psychosocial factors and sex hormones[23]. Furthermore, there are sex difference in levels of cytokines and OxS markers in schizophrenia patients[24]. For example, Lee et al. demonstrated sex differences in cytokine biomarkers of schizophrenia patients[24], including TNF-α[25]. In addition, some preclinical studies have also observed sex differences in oxidative stress markers, including glutathione (GSH), nitrite level, and lipid peroxidation in the hippocampus or striatum in models of schizophrenia[26–27]. However, other studies found no sex differences in a set of oxidative stress biomarkers, including antioxidant enzymes (GPX and SOD) and MDA levels in either chronic patients[28–29] or first episode schizophrenia patients when utilizing a small sample size[30–31]. These inconsistent results might be attributable to different disease stages or antipsychotics exposure. The sex difference in TNF-α and the OxS system has not yet been adequately explored. In particular, we have determined to the best of our knowledge that there is no current study examining sex differences in the association between TNF-α, the OxS system, and their interrelationship with clinical symptoms in patients with schizophrenia. Thus, this study was undertaken to fill this important knowledge gap.

In this study, first-episode drug-naïve (FEDN) schizophrenia patients were recruited to investigate (1) sex differences in cytokine TNF-α and OxS parameters of FEDN schizophrenia patients; (2) sex differences in the association of TNF-α, the OxS system, and their interaction with clinical symptoms.

Participants And Methods
Participants

The protocol for this study was reviewed and approved by Shanghai Mental Health Center and the First Hospital of Shanxi Medical University. Informed consent was obtained from all participants prior to participation in this study. Inclusion and exclusion criteria were detailed in our previous study[19]. Briefly, inclusion criteria included: (i) being Han Chinese; (ii) aged from 18 to 45 years old; (iii) meeting diagnostic criteria for schizophrenia according to the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV); (iv) being a first-episode patient without prior exposure to drugs; (v) having a duration of illness less than 2 years. Exclusion criteria included: (i) individuals with any other major Axis I disorder; (ii) pregnant women.

Healthy controls were recruited on the basis of having no major Axis I disorder diagnosis and no family history of mental disorders. Moreover, participants who had organic brain diseases, ongoing infections, autoimmune disorders, other severe physical diseases, or who received any immunosuppressive treatments were excluded from this study. A total of 119 FEDN patients with schizophrenia and 135 healthy controls were recruited. The demographic data were detailed in our previous study[19]. There were no significant differences in age, sex, education, body mass index (BMI), or smoking behavior between patients and healthy controls[19].

Clinical interview and assessments

The Structured Clinical Interview for DSM-IV Axis I Disorders - Patient Edition (SCID-I/P) was applied by two psychiatrists to screen participants. Demographic and clinical data were collected by a self-designed questionnaire. The Positive and Negative Syndrome Scale (PANSS) was applied to evaluate psychotic symptoms. Inter-rater concordance of assessments was over 0.8.

Peripheral blood sampling and serum biochemical assays

After fasting overnight for at least 12 hours, peripheral venous blood samples of 5 ml volume were collected between 07:00 and 09:00 am. Serum was isolated and was stored at −80 °C until the assays were performed. The levels of TNF-α, SOD, GSH-Px, CAT, and MDA were measured through Enzyme-linked immunosorbent assays (ELISAs) (R&D Systems, USA). The researchers conducting this experiment were blind to clinical data of samples. All samples were run in duplicate. Random samples were measured to verify the reproducibility of the assay. The intra-assay and inter-assay coefficients of variation were 6.8%-7.6% and 6.2%-7.4%, respectively.

Statistical analysis

The Kolmogorov-Smirnov test was applied to detect the distribution normality of variables. As serum TNF-α levels distribute non-normally, this measure was transformed to a natural logarithm. Either a Fisher's exact test or Chi-squared test was conducted for nominal variables. Analysis of variance (ANOVA) was conducted for continuous variables.
To investigate sex differences in TNF-α, SOD, GSH-Px, CAT, and MDA levels, two-way ANOVA (diagnosis × sex) was applied, with each index as a dependent variable, setting diagnosis and sex as fixed factors and adjusting for confounding variables. The main effects of diagnosis, sex, and diagnosis × sex interaction were calculated in each model. Then, an analysis of covariance (ANCOVA) was applied to examine individual univariate effects.

To examine the association between each serum parameter with clinical psychotic symptoms in male and female patients, a partial correlation analysis was performed, controlling for age, BMI, smoking, education, and onset age. Furthermore, to investigate the association of the interaction between TNF-α and OxS parameters with clinical psychotic symptoms in male and female patients, multivariate regression analysis was performed. In this multivariate regression analysis, each PANSS total or subscale score was set as a dependent variable, each interaction (TNF-α × SOD, TNF-α × GSH-Px, TNF-α × CAT, and TNF-α × MDA) as an independent variable, and age, BMI, smoking, education and onset age were adjusted as covariates. Multiple comparisons were corrected by Bonferroni corrections. Data were analyzed using SPSS version 23.0. The α level of significance was set to p < 0.05 (two-tailed).

Results

Sex difference in demography and clinical characteristics of patients

As shown in Table 1, there were significant sex and diagnosis × sex effects on education (both p < 0.001). An ANOVA demonstrated that male and female patients had lower education than male and female controls, respectively (F = 33.74, p < 0.001; F = 10.28, p = 0.002). Furthermore, male controls had higher education than female controls (F = 106.98, p < 0.001). Education was adjusted for in the following analysis. There was a significant diagnosis × sex effect on BMI (F = 7.44, p = 0.007). An ANOVA showed that male patients had lower average BMI than female patients (F = 7.22, p = 0.008). BMI was adjusted for in the following analysis.
As shown in Table 2, female patients had an earlier average onset age than male patients ($F = 7.22, p = 0.01$). Onset age was controlled in the following analysis. There were no significant differences in total score and subscale scores of PANSS between male and female patients (all $p > 0.05$).
Table 2
Clinical characteristics of male and female patients with schizophrenia.

Variable	Male (n = 76)	Female (n = 43)	F	p^a
Onset age (years)	22.11 ± 7.69	19.47 ± 9.92	6.96	0.01
PANSS score				
Positive symptoms	19.15 ± 8.77	18.95 ± 8.43	0.93	0.34
Negative symptoms	26.24 ± 7.29	28.04 ± 7.36	1.35	0.25
General psychopathology	42.36 ± 8.88	40.47 ± 7.92	0.95	0.33
Total score	87.74 ± 15.38	87.47 ± 11.83	0.32	0.57

Sex difference in levels of TNF-α and OxS parameters between patients and healthy controls

As shown in Table 1, a two-way ANOVA that adjusted for education and BMI demonstrated a main effect of diagnosis on TNF-α, GSH-Px, CAT, and MDA (all p < 0.05), indicating differences in the levels of TNF-α, GSH-Px, CAT, and MDA between patients and healthy controls. There was a significant diagnosis × sex effect on MDA levels (F = 3.78, p = 0.05), indicating that sex differences in the levels of MDA observed were different between patients and controls. Further, as shown in Fig. 1, ANCOVA showed that MDA levels were higher in female healthy controls than in male healthy controls (F = 7.06, p = 0.009, p_{Bonferroni} = 0.045), and that MDA levels were higher in male patients than in male healthy controls (F = 8.19, p = 0.005, p_{Bonferroni} = 0.03). There was no difference in levels of MDA between female patients and female healthy controls (F = 0.01, p = 0.92, p_{Bonferroni} > 0.05).

Differences in the relationship between TNF-α and OxS parameters and psychotic symptoms as categorized by sex

As shown in Fig. 2A, controlling for the covariates age, BMI, education, smoking, and onset age, partial correlation showed that TNF-α levels were associated with PANSS positive score in female patients (r = -0.49, p = 0.002, p_{Bonferroni} = 0.008). However, there was no association of TNF-α levels with PANSS positive score in male patients (r = -0.11, p = 0.36, p_{Bonferroni} > 0.05). As shown in Fig. 2B, Partial correlation showed that TNF-α levels were associated with PANSS negative score in female patients (r = 0.37, p = 0.02) and in male patients (r = 0.31, p = 0.01). However, after Bonferroni correction, significance remained only for male patients (p_{Bonferroni} = 0.04). As shown in Fig. 2C, MDA levels were associated with PANSS general psychopathology scores in male patients (r = -0.32, p = 0.007, p_{Bonferroni} = 0.03), but no association in female patients (r = 0.02, p = 0.92, p_{Bonferroni} > 0.05) was found.
Differences in the relationships of TNF-α and OxS interactions with psychotic symptoms as categorized by sex

To examine sex differences in the association of interaction between TNF-α × SOD, TNF-α × GSH-Px, TNF-α × CAT, or TNF-α × MDA with psychotic symptoms, multivariate regression analysis was applied in male and female patient populations, separately. After controlling for the covariates age, BMI, education, smoking, and onset age, multivariate regression analysis showed that TNF-α × MDA was associated with PANSS general psychopathology scores in male patients (B = 0.07, t = 2.46, p = 0.02) but not in female patients (B = 0.03, t = 0.81, p = 0.43). Moreover, there was no association of interaction between TNF-α × SOD, TNF-α × GSH-Px, or TNF-α × CAT with any PANSS subscale or total score (all p > 0.05).

Discussion

To the best of our knowledge, this study was the first to examine sex differences in TNF-α, OxS, and their interactions in FEDN schizophrenia patients. The main findings of this study were as follows: (i) There was no sex difference in psychopathology symptoms of the patients; (ii) There were sex differences in MDA levels of healthy controls, but not of schizophrenia patients. MDA levels of female controls were higher than those of male controls, but MDA levels of female patients were similar to those of male patients; (iii) There were sex differences in the association between TNF-α and MDA levels and psychotic symptoms. The interaction between TNF-α and MDA correlated with general psychopathology symptom in male patients only.

Our study found no sex differences in psychopathological symptoms of FEDN patients, which is consistent with previous studies[32–33]. However, our results regarding sex differences in symptoms of schizophrenia are not consistent with the current literature. Several studies have shown that males have more negative symptoms than females[34]. González-Rodríguez et al.[35] pointed out that differences in methodology, sample size, and a lack of a systematic and homogenous assessment of psychopathological symptoms may have contributed to the observed discrepancies.

We found that MDA levels of female controls were higher than those of male controls, but that female patients had the same level of MDA as male patients. At present, the results of studies on the differences in MDA levels between men and women are not yet in agreement. However, Kharb et al.[36] found that female healthy controls had higher serum MDA levels than male healthy controls, which corresponds to our findings. Furthermore, several studies have demonstrated no sex difference in MDA levels of first-episode schizophrenia[37] or chronic schizophrenia patients who received stable antipsychotic drugs[38], which also supports our findings. The possible reason may be attributable to the following reasons. First, testosterone is an important male sex hormone secreted mainly by male testes. Previous studies have found that testosterone has the effect of antioxidative stress[39–40]. Wang et al.[41] reported that testosterone supplementation significantly decreased the concentration of MDA in the hippocampus,
which explains the higher MDA levels observed in female controls when compared to male healthy controls. Second, in regards to the patients with schizophrenia, increased dopamine in the nigra-striatal pathway is considered to be a driving force of psychosis[42–43], and the effectiveness of antipsychotics that block the dopamine D2 receptor in relieving hallucinations and delusions is well established[44]. One of the direct dopamine agonists, amphetamine, stimulates the release of dopamine[45–46] and has been reported to inhibit testosterone release in male rats[47–48]. This suggests that hyperfunction of the dopamine system in schizophrenia patients may inhibit the release of testosterone, which may explain the reasons for having no sex difference in the level of MDA in schizophrenia patients in comparison to controls. Interestingly, Qu et al. [49] recently found that in healthy controls, women had lower MDA levels than men. This contrary result regarding MDA levels in male and female healthy controls might be explained by the characteristics of the samples used. For example, male and female healthy controls had significant differences in age and BMI in that study, which may have influenced the results. In support of this, previous reports have shown that oxidative stress is associated with aging and BMI[49]. The level of reactive oxygen species(ROS) increases with the advancement of age[50] and was associated with BMI[51].

Previous evidence has shown a strong interaction between OxS and the inflammatory system. Astrocytes and microglia can be activated by OxS, causing inflammatory response dysfunction, while the OxS system in nonphagocytic cells can be activated by cytokines including TNF-α[52–53]. Buelna-Chonta et al. pointed out that the complicated interaction between inflammation and OxS is partly determined by the interaction between the transcription factor Nf-kappaB with Nrf2[54]. Moreover, previous evidence suggests that neuroinflammation and persistent OxS are critical aspects in the pathophysiology of neurodegenerative diseases[53]. Because of the close relationship between these two systems, Steullet et al.[12] believed that the neuroimmune system, OxS, and glutamatergic system constitute a "central hub," and that the disturbance of these "hub" systems may lead to the abnormality of parvalbumin interneurons and white matter in patients with schizophrenia through the dysfunction of macro-circuits and micro-circuits. This dysfunction, in turn, affects the symptoms of patients. However, the interaction of TNF-α and OxS on the susceptibility and clinical characteristics of schizophrenia has not been investigated well. We previously reported that the interaction between TNF-α and MDA increased the risk for the occurrence of schizophrenia by 1.61 times, but no significant interactive effects were found on any domain of the PANSS[19]. In this study, during which patients were stratified by sex, we found that the interaction between TNF-α and MDA activities was associated with the severity of general psychopathology in male schizophrenia patients, suggesting that TNF-α and MDA have an interactive effect on the psychopathological symptoms only in male patients. The possible mechanisms may also be associated with testosterone, which can affect the MDA expression. Additionally, testosterone can also affect the expression of inflammatory markers, including TNF-α. Preclinical studies have shown that high testosterone levels during embryonic development have adverse effects on immune function[55]. Furthermore, the use of testosterone significantly reduced the level of inflammatory markers in men[56]. It has been found that the level of TNF-α is higher in adult men with lower testosterone levels[57], while the expression of TNF-α is inhibited by testosterone in men with hypogonadism[58]. A study conducted by
Delno et al. pointed out that TNF-α and NF-kappaB, which may be involved in the interaction between oxidative stress and inflammation[54], could stimulate the expression of androgen receptors in Sertoli cells, and that this may be an important mechanism for increasing the response of Sertoli cells to testosterone[59]. This suggests that androgen may have complex interactions with the immune system and OxS, which may explain the reasons for the interaction existence between TNF-α and MDA only in male FEDN schizophrenia patients. Moreover, there were sex differences in the association between TNF-α and MDA levels and psychotic symptoms. The underlying mechanisms should be further investigated in future studies.

There were several limitations in this study. Firstly, it is not clear whether peripheral levels of TNF-α and OxS parameters are related to levels present in the brain. However, previous studies suggested that brain immune cells can monitor the peripheral innate immune response through a variety of parallel pathways, including afferent nerves, the humoral pathway, cytokine transporters at the blood brain barrier, and IL-1 receptors on microvascular cells of cerebral vein[60]. In addition, central neurons are highly sensitive to OxS exposure, and peripheral OxS can affect the activation of OxS response in brain neurons[61]. There are also extensive interactions between OxS and some other cytokines which should be investigated in future studies.

Conclusion

Our results support the presence of sex differences in the association between TNF-α, MDA, and their interaction with psychopathological symptoms of patients with schizophrenia. Our findings contribute to narrowing the knowledge gap in this area by clarifying possible sex differences in pathological mechanisms underlying psychopathological symptoms in patients with schizophrenia.

Declarations

Ethics approval and consent to participate

The protocol was approved by Shanghai Mental Health Center and the First Hospital of Shanxi Medical University. Informed consent was obtained from all participants.

Consent for publication

The submission has had all authors’ approval.

Availability of data and materials

The data that support the findings of this study are available from the corresponding author Zezhi Li upon reasonable request.

Competing interest
The authors declare no conflicts of interest.

Founding

This study was supported by Shanghai Jiao Tong University Medical Engineering Foundation (YG2016MS48), Excellent talent foundation of Shanghai Jiao Tong University School of Medicine (19XJ11006), and the Outstanding Clinical Discipline Project of Shanghai Pudong (PWYgy2018-10). All funding for this study had no further role in study design, data analysis, and in the decision to submit the paper for publication.

Authors’ contributions

Zezhi Li and Zhenghui Yi designed the study. Minghuan Zhu, Xiaoe Lang and Qinyu Lv were responsible for recruiting the patients, performing the clinical rating and collecting the clinical data. Kang Wu collected the experiment data. Lei Zhao collected literatures and cleaned data. Zezhi Li and Minghuan Zhu did statistical analysis. Zezhi Li, Minghuan Zhu, and Jaelin Rippe wrote the manuscript.

Acknowledgment

The authors would like to thank Dr. Xiaoyan Chen, Chenxi Bao, Ruijie Geng, and Yingyi Wang for all of their hard work and significant contributions toward the study.

References

1. van Os J, Rutten BP, Poulton R: *Gene-environment interactions in schizophrenia: review of epidemiological findings and future directions*. Schizophr Bull 2008, 34:1066-1082.

2. Maes M, Sirivichayakul S, Matsumoto AK, Michelin AP, de Oliveira Semeao L, de Lima Pedrao JV, Moreira EG, Barbosa DS, Carvalho AF, Solmi M, Kanchanatawan B: *Lowered Antioxidant Defenses and Increased Oxidative Toxicity Are Hallmarks of Deficit Schizophrenia: a Nomothetic Network Psychiatry Approach*. Mol Neurobiol 2020.

3. Talukdar PM, Abdul F, Maes M, Binu VS, Venkatasubramanian G, Kutty BM, Debnath M: *Maternal Immune Activation Causes Schizophrenia-like Behaviors in the Offspring through Activation of Immune-Inflammatory, Oxidative and Apoptotic Pathways, and Lowered Antioxidant Defenses and Neuroprotection*. Mol Neurobiol 2020.

4. Upthegrove R, Khandaker GM: *Cytokines, Oxidative Stress and Cellular Markers of Inflammation in Schizophrenia*. Curr Top Behav Neurosci 2020, 44:49-66.

5. Wang A, Miller B: *Meta-analysis of Cerebrospinal Fluid Cytokine and Tryptophan Catabolite Alterations in Psychiatric Patients: Comparisons Between Schizophrenia, Bipolar Disorder, and Depression*. Schizophrenia bulletin 2018, 44:75-83.

6. Tian L, Tan Y, Chen D, Lv M, Tan S, Soares JC, Zhang XY: *Reduced serum TNF alpha level in chronic schizophrenia patients with or without tardive dyskinesia*. Prog Neuropsychopharmacol Biol
7. Goldsmith DR, Rapaport MH, Miller BJ: A meta-analysis of blood cytokine network alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder and depression. Mol Psychiatry 2016, 21:1696-1709.

8. Hoseth EZ, Ueland T, Dieset I, Birnbaum R, Shin JH, Kleinman JE, Hyde TM, Morch RH, Hope S, Lekvat T, et al: A Study of TNF Pathway Activation in Schizophrenia and Bipolar Disorder in Plasma and Brain Tissue. Schizophr Bull 2017, 43:881-890.

9. Sawa A, Sedlak TW: Oxidative stress and inflammation in schizophrenia. Schizophr Res 2016, 176:1-2.

10. Emiliani F, Sedlak T, Sawa A: Oxidative stress and schizophrenia: recent breakthroughs from an old story. Current opinion in psychiatry 2014, 27:185-190.

11. Yao JK, Keshavan MS: Antioxidants, redox signaling, and pathophysiology in schizophrenia: an integrative view. Antioxid Redox Signal 2011, 15:2011-2035.

12. Steullet P, Cabungcal JH, Monin A, Dwir D, O'Donnell P, Cuenod M, Do KQ: Redox dysregulation, neuroinflammation, and NMDA receptor hypofunction: A "central hub" in schizophrenia pathophysiology? Schizophr Res 2016, 176:41-51.

13. Alboni S, Gibellini L, Montanari C, Benatti C, Benatti S, Tascedda F, Brunello N, Cossarizza A, Pariante CM: N-acetyl-cysteine prevents toxic oxidative effects induced by IFN-alpha in human neurons. Int J Neuropsychopharmacol 2013, 16:1849-1865.

14. Bakunina N, Pariante CM, Zunszain PA: Immune mechanisms linked to depression via oxidative stress and neuroprogression. Immunology 2015, 144:365-373.

15. Oskvig DB, Elkahloun AG, Johnson KR, Phillips TM, Herkenham M: Maternal immune activation by LPS selectively alters specific gene expression profiles of interneuron migration and oxidative stress in the fetus without triggering a fetal immune response. Brain Behav Immun 2012, 26:623-634.

16. McGarry T, Biniecka M, Veale DJ, Fearon U: Hypoxia, oxidative stress and inflammation. Free Radic Biol Med 2018, 125:15-24.

17. Craddock RM, Lockstone HE, Rider DA, Wayland MT, Harris LJ, McKenna PJ, Bahn S: Altered T-cell function in schizophrenia: a cellular model to investigate molecular disease mechanisms. PLoS One 2007, 2:e692.

18. Fraguas D, Díaz-Caneja C, Ayora M, Hernández-Álvarez F, Rodríguez-Quiroga A, Recio S, Leza J, Arango C: Oxidative Stress and Inflammation in First-Episode Psychosis: A Systematic Review and Meta-analysis. Schizophrenia bulletin 2019, 45:742-751.

19. Zhu S, Zhao L, Fan Y, Lv Q, Wu K, Lang X, Li Z, Yi Z, Geng D: Interaction between TNF-α and oxidative stress status in first-episode drug-naïve schizophrenia. Psychoneuroendocrinology 2020, 114:104595.

20. Rietschel L, Lambert M, Karow A, Zink M, Muller H, Heinz A, de Millas W, Janssen B, Gaebel W, Schneider F, et al: Clinical high risk for psychosis: gender differences in symptoms and social functioning. Early Interv Psychiatry 2017, 11:306-313.
21. Mendrek A, Mancini-Marie A: **Sex/gender differences in the brain and cognition in schizophrenia.** *Neurosci Biobehav Rev* 2016, **67**:57-78.

22. Seeman M: **Does Gender Influence Outcome in Schizophrenia?** *The Psychiatric quarterly* 2019, **90**:173-184.

23. Goldstein JM, Seidman LJ, Makris N, Ahern T, O’Brien LM, Caviness VS, Jr., Kennedy DN, Farace SV, Tsuang MT: **Hypothalamic abnormalities in schizophrenia: sex effects and genetic vulnerability.** *Biol Psychiatry* 2007, **61**:935-945.

24. Lee EE, Ancoli-Israel S, Eyler LT, Tu XM, Palmer BW, Irwin MR, Jeste DV: **Sleep Disturbances and Inflammatory Biomarkers in Schizophrenia: Focus on Sex Differences.** *American Journal of Geriatric Psychiatry* 2019, **27**:21-31.

25. Ramsey JM, Schwarz E, Guest PC, van Beveren NJM, Leweke FM, Rothermundt M, Bogerts B, Steiner J, Bahn S: **Distinct Molecular Phenotypes in Male and Female Schizophrenia Patients.** *Plos One* 2013, **8**:8.

26. Monte AS, Mello BSF, Borella VCM, da Silva Araujo T, da Silva FER, Sousa FCF, de Oliveira ACP, Gama CS, Seeman MV, Vasconcelos SMM, et al: **Two-hit model of schizophrenia induced by neonatal immune activation and peripubertal stress in rats: Study of sex differences and brain oxidative alterations.** *Behav Brain Res* 2017, **331**:30-37.

27. Célia Moreira Borella V, Seeman M, Carneiro Cordeiro R, Vieira dos Santos J, Romário Matos de Souza M, Nunes de Sousa Fernandes E, Santos Monte A, Maria Mendes Vasconcelos S, Quinn J, de Lucena D, et al: **Gender and estrous cycle influences on behavioral and neurochemical alterations in adult rats neonatally administered ketamine.** *Developmental neurobiology* 2016, **76**:519-532.

28. Dadheech G, Mishra S, Gautam S, Sharma P: **Evaluation of antioxidant deficit in schizophrenia.** *Indian J Psychiatry* 2008, **50**:16-20.

29. Padurariu M, Ciobica A, Dobrin I, Stefanescu C: **Evaluation of antioxidant enzymes activities and lipid peroxidation in schizophrenic patients treated with typical and atypical antipsychotics.** *Neurosci Lett* 2010, **479**:317-320.

30. Reyazuddin M, Azmi SA, Islam N, Rizvi A: **Oxidative stress and level of antioxidant enzymes in drug-naive schizophrenics.** *Indian J Psychiatry* 2014, **56**:344-349.

31. Jordan W, Dobrowolny H, Bahn S, Bernstein HG, Brigadski T, Frodl T, Isermann B, Lessmann V, Pilz J, Rodenbeck A, et al: **Oxidative stress in drug-naive first episode patients with schizophrenia and major depression: effects of disease acuity and potential confounders.** *Eur Arch Psychiatry Clin Neurosci* 2018, **268**:129-143.

32. Ochoa S, Usall J, Cobo J, Labad X, Kulkami J: **Gender differences in schizophrenia and first-episode psychosis: a comprehensive literature review.** *Schizophr Res Treatment* 2012, **2012**:916198.

33. Bertani M, Lasalvia A, Bonetto C, Tosato S, Cristofalo D, Bissoli S, De Santi K, Mazzoncini R, Lazzarotto L, Santi M, et al: **The influence of gender on clinical and social characteristics of patients at psychosis onset: A report from the Psychosis Incident Cohort Outcome Study (PICOS).** *Psychological medicine* 2012, **42**:769-780.
34. Thorup A, Albert N, Bertelsen M, Petersen P, Jeppesen P, Le Quack P, Krarup G, Jorgensen P, Nordentoft M: Gender differences in first-episode psychosis at 5-year follow-up—two different courses of disease? Results from the OPUS study at 5-year follow-up. *Eur Psychiatry* 2014, **29**:44-51.

35. Gonzalez-Rodriguez A, Studerus E, Spitz A, Bugra H, Aston J, Borgwardt S, Rapp C, Riecher-Rossler A: Gender differences in the psychopathology of emerging psychosis. *Isr J Psychiatry Relat Sci* 2014, **51**:85-92.

36. Kharb S, Ghalaut VS: Plasma lipoperoxides: a preliminary reference range. *Indian J Med Sci* 2003, **57**:105-107.

37. Mahadik S, Mukherjee S, Scheffer R, Correnti E, Mahadik J: Elevated plasma lipid peroxides at the onset of nonaffective psychosis. *Biological psychiatry* 1998, **43**:674-679.

38. Akyol O, Herken H, Uz E, Fadillioğlu E, Unal S, Söğüt S, Ozyurt H, Savaş H: The indices of endogenous oxidative and antioxidative processes in plasma from schizophrenic patients. The possible role of oxidant/antioxidant imbalance. *Progress in neuro-psychopharmacology & biological psychiatry* 2002, **26**:995-1005.

39. Fanaei H, Karimian S, Sadeghipour H, Hassanzade G, Kasaeian A, Attari F, Khayat S, Ramezani V, Javadimehr M: Testosterone enhances functional recovery after stroke through promotion of antioxidant defenses, BDNF levels and neurogenesis in male rats. *Brain research* 2014, **1558**:74-83.

40. Chisu V, Manca P, Lepore G, Gadau S, Zedda M, Farina V: Testosterone induces neuroprotection from oxidative stress. Effects on catalase activity and 3-nitro-L-tyrosine incorporation into alpha-tubulin in a mouse neuroblastoma cell line. *Archives italiennes de biologie* 2006, **144**:63-73.

41. Wang L, Pei J, Jia J, Wang J, Song W, Fang X, Cai Z, Huo D, Wang H, Yang Z: Inhibition of oxidative stress by testosterone improves synaptic plasticity in senescence accelerated mice. *Journal of toxicology and environmental health Part A* 2019, **82**:1061-1068.

42. Howes OD, Kapur S: The dopamine hypothesis of schizophrenia: version III—the final common pathway. *Schizophr Bull* 2009, **35**:549-562.

43. Howes O, Kambeitz J, Kim E, Stahl D, Slifstein M, Abi-Dargham A, Kapur S: The nature of dopamine dysfunction in schizophrenia and what this means for treatment. *Archives of general psychiatry* 2012, **69**:776-786.

44. Seeman P: Targeting the dopamine D2 receptor in schizophrenia. *Expert Opin Ther Targets* 2006, **10**:515-531.

45. Dluzen DE, Ramirez VD: *In vitro* progesterone modulation of amphetamine-stimulated dopamine release from the corpus striatum of ovariectomized estrogen-treated female rats: response characteristics. *Brain Res* 1990, **517**:117-122.

46. Dluzen DE, Ramirez VD: *In vitro* progesterone modulates amphetamine-stimulated dopamine release from the corpus striatum of castrated male rats treated with estrogen. *Neuroendocrinology* 1990, **52**:517-520.

47. Tsai S, Chen J, Chiao Y, Lu C, Lin H, Yeh J, Lo M, Kau M, Wang S, Wang P: The role of cyclic AMP production, calcium channel activation and enzyme activities in the inhibition of testosterone
secretion by amphetamine. *British journal of pharmacology* 1997, 122:949-955.

48. Tsai S, Chiao Y, Lu C, Doong M, Chen Y, Shih H, Liaw C, Wang S, Wang P: Inhibition by amphetamine of testosterone secretion through a mechanism involving an increase of cyclic AMP production in rat testes. *British journal of pharmacology* 1996, 118:984-988.

49. Wonisch W, Falk A, Sundl I, Winklhofer-Roob B, Lindschinger M: Oxidative stress increases continuously with BMI and age with unfavourable profiles in males. *The aging male: the official journal of the International Society for the Study of the Aging Male* 2012, 15:159-165.

50. Schöneich C: Reactive oxygen species and biological aging: a mechanistic approach. *Experimental gerontology* 1999, 34:19-34.

51. Keaney J, Larson M, Vasan R, Wilson P, Lipinska I, Corey D, Massaro J, Sutherland P, Vita J, Benjamin E: Obesity and systemic oxidative stress: clinical correlates of oxidative stress in the Framingham Study. *Arteriosclerosis, thrombosis, and vascular biology* 2003, 23:434-439.

52. Gonzalez H, Elgueta D, Montoya A, Pacheco R: Neuroimmune regulation of microglial activity involved in neuroinflammation and neurodegenerative diseases. *J Neuroimmunol* 2014, 274:1-13.

53. Solleiro-Villavicencio H, Rivas-Arancibia S: Effect of Chronic Oxidative Stress on Neuroinflammatory Response Mediated by CD4(+)T Cells in Neurodegenerative Diseases. *Front Cell Neurosci* 2018, 12:114.

54. Buelna-Chontal M, Zazueta C: Redox activation of Nrf2 & NF-kappaB: a double end sword? *Cell Signal* 2013, 25:2548-2557.

55. Uller T, Olsson M: Prenatal exposure to testosterone increases ectoparasite susceptibility in the common lizard (Lacerta vivipara). *Proceedings Biological sciences* 2003, 270:1867-1870.

56. Maggio M, Basaria S, Ceda G, Ble A, Ling S, Bandinelli S, Valenti G, Ferrucci L: The relationship between testosterone and molecular markers of inflammation in older men. *Journal of endocrinological investigation* 2005, 28:116-119.

57. Olmos-Ortiz A, García-Quiroz J, Halhali A, Avila E, Zaga-Clavellina V, Chavira-Ramírez R, García-Becerra R, Caldiño-Soto F, Larrea F, Díaz L: Negative correlation between testosterone and TNF-α in umbilical cord serum favors a weakened immune milieu in the human male fetoplacental unit. *The Journal of steroid biochemistry and molecular biology* 2019, 186:154-160.

58. Malkin C, Pugh P, Jones R, Kapoor D, Channer K, Jones T: The effect of testosterone replacement on endogenous inflammatory cytokines and lipid profiles in hypogonadal men. *The Journal of clinical endocrinology and metabolism* 2004, 89:3313-3318.

59. Delfino F, Bousted J, Fix C, Walker W: NF-kappaB and TNF-alpha stimulate androgen receptor expression in Sertoli cells. *Molecular and cellular endocrinology* 2003, 201:1-12.

60. Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW: From inflammation to sickness and depression: when the immune system subjugates the brain. *Nat Rev Neurosci* 2008, 9:46-56.

61. Maciejczyk M, Zebrowska E, Chabowski A: Insulin Resistance and Oxidative Stress in the Brain: What’s New? *Int J Mol Sci* 2019, 20.