The small molecule IACS-010759 has been reported to potently inhibit the proliferation of glycolysis-deficient hypoxic tumor cells by interfering with the functions of mitochondrial NADH-ubiquinone oxidoreductase (complex I) without exhibiting cytotoxicity at tolerated doses in normal cells. Considering the significant cytotoxicity of conventional quinone-site inhibitors of complex I, such as piericidin and acetogenin families, we hypothesized that the mechanism of action of IACS-010759 on complex I differs from that of other known quinone-site inhibitors. To test this possibility, here we investigated IACS-010759's mechanism in bovine heart submitochondrial particles. We found that IACS-010759, like known quinone-site inhibitors, suppresses chemical modification by the tosyl reagent AL1 of Asp160 in the 49-kDa subunit, located deep in the interior of a previously proposed quinone-access channel. However, contrary to the other inhibitors, IACS-010759 direction-dependent inhibited forward and reverse electron transfer and did not suppress binding of the quinazoline-type inhibitor [125I]AzQ to the N terminus of the 49-kDa subunit. Photoaffinity labeling experiments revealed that the photoreactive derivative [125I]IACS-010759-PD1 binds to the middle of the membrane subunit ND1 and that inhibitors that bind to the 49-kDa or PSST subunit cannot suppress the binding. We conclude that IACS-010759's binding location in complex I differs from that of any other known inhibitor of the enzyme. Our findings, along with those from previous study, reveal that the mechanisms of action of complex I inhibitors with widely different chemical properties are more diverse than can be accounted for by the quinone-access channel model proposed by structural biology studies.

Hypoxia is a well-recognized hallmark of different types of growing solid tumors (1, 2). Adaptation to hypoxia is critical for tumor survival and growth. Response of mammalian cells to hypoxia is mediated by a family of transcription factors known as hypoxia-inducible factors (HIFs),2 which regulate a large number of hypoxia-induced genes (3–5). Because HIF-1 plays a key role in tumor development and progression (5–7), it has been considered to be a potential druggable target for cancer therapy. Accordingly, many efforts have been devoted to screen for low-molecular-weight chemicals that modulate HIF-1 with desirable pharmacological properties and toxicity (safety) profiles required for useful pharmaceutical agents (8–12).

Ellinghaus et al. (10) identified BAY 87-2243 (Fig. 1) via high-throughput screening of a chemical library consisting of ~830,000 compounds using a luciferase-driven HIF-1 reporter cell line under hypoxia. BAY 87-2243 inhibited hypoxia-induced HIF-1 target gene expression in human lung cancer cell lines at low nanomolar concentrations without affecting the gene expressions that are not regulated by HIF-1/hypoxia. Extensive studies on the mechanism of action of BAY 87-2243 revealed that it modulates the HIF pathway by inhibiting mitochondrial NADH-ubiquinone oxidoreductase (respiratory complex I) and thereby reducing HIF protein levels under hypoxia (10). Afterward, Schöckel et al. (11) demonstrated that the inhibition of complex I by BAY 87-2243 is associated with the enhanced production of reactive oxygen species (ROS), a decrease in total ATP production, activation of AMP-activated protein kinase, and reduced viability of melanoma cells. They also showed that BAY 87-2243 treatment significantly reduces tumor growth in various BRAF mutant melanoma xenografts and patient-derived melanoma mouse models.

Through structural modification of BAY 87-2243, Molina et al. (12) produced a new complex I inhibitor, IACS-010759 (Fig. 1). They reported that treatment with IACS-010759 significantly inhibits proliferation and induces apoptosis in brain tumor and acute myeloid leukemia cells, which are largely dependent on oxidative phosphorylation for maintaining ATP levels. Metabolomic analyses suggested that the IACS-010759-mediated effects result from a combination of energy depletion and reduced aspartate production that leads to impaired nucleo-

2 The abbreviations used are: HIF, hypoxia-inducible factor; 49 kDa-Asp160, Asp160 in the 49-kDa subunit; AL1, acetogenin ligand 1; AQ, amino-quinazoline; Asp-N, endoprotease Asp-N; AzQ, azido-quinazoline; Bistris, bis(2-hydroxyethyl)iminotris(hydroxymethyl)methane; BN-PAGE, blue native PAGE; CBB, Coomassie Brilliant Blue; complex I, proton-translocating NADH-quinone oxidoreductase; LDT, ligand-directed tosyl; Lys-C, lysylendopeptidase; ROS, reactive oxygen species; S1QEL, suppressor of site 1e_0 electron leak; SMP, submitochondrial particle; TAMRA, 6-carboxy-N,N',N''-tetramethylrhodamine; TMH, transmembrane helix; UQ, ubiquinone; ANOVA, analysis of variance.
IACS-010759 is a unique inhibitor of mitochondrial complex I

Suites of IACS-010759 and its photoreactive analogue

Results

Inhibition of electron transfer in complex I by IACS-010759

We examined the inhibitory effect of IACS-010759 on the forward and reverse electron transfer in complex I using bovine heart SMPs. The forward electron transfer was evaluated as the
IACS-010759 is a unique inhibitor of mitochondrial complex I

Figure 2. Dose-response curves for the inhibition of electron transfer in complex I by IACS-010759. The inhibition of forward (closed circles) and reverse (open circles) electron transfer by IACS-010759 was examined. The forward electron transfer reaction (NADH oxidase activity) was initiated by adding NADH (final concentration, 50 μM) after the incubation of SMPs with IACS-010759 for 4 min at 30 °C. The reverse electron transfer reaction (ubiquinol-NAD+ oxidoreduction) was initiated by adding ATP (1.0 mM) after the incubation of SMPs with IACS-010759 for 4 min at 30 °C. The mitochondrial protein concentration was set at a high level (100 μg/ml) for both assays. Values in graphs are means ± S.E. (error bars) (n = 3).

Effects of IACS-010759 on the binding of [125I]AzQ to the 49-kDa subunit

We previously showed that the quinazoline-type inhibitor [125I]AzQ (Fig. S2) binds at the interface of the 49-kDa and ND1 subunits in bovine complex I (27, 28). The labeled regions in 49-kDa and ND1 were the N-terminal domain (Asp41–Arg63) and the matrix-side third loop connecting the transmembrane helices (TMHs) 5 and 6 (Asp199–Lys262), respectively, although radioactivity was predominantly distributed into the former. The binding of [125I]AzQ to the enzyme was completely suppressed by other quinone-site inhibitors (rotenone, piericidin A, aminoquinazoline (AQ), bullatacin, and fenpyroximate) (27).

We examined whether IACS-010759 suppresses the binding of [125I]AzQ (5.0 nM) to the predominant target, the 49-kDa subunit. Notably, IACS-010759 did not suppress the binding of [125I]AzQ up to 20 μM (4000-fold excess over [125I]AzQ) (Fig. 4). Excess BAY 87-2243 (20 μM) also exhibited no influence on the labeling. We confirmed, as a reference, that AQ and bullatacin (5.0 μM each, 1000-fold) almost completely suppressed the binding of [125I]AzQ (Fig. 4). These results strongly suggest that the binding position of IACS-010759 differs from that of traditional quinone-site inhibitors.

Effects of IACS-010759 on the binding of [125I]S1QEL1.1-PD1 to the ND1 subunit

S1QELs (suppressors of site 1O2 electron leak) are chemical suppressors of ROS production from the ubiquinone reaction site during reverse electron transfer through complex I in rat skeletal muscle mitochondria (35). S1QELs show no significant concomitant interferences with bioenergetic functions of mitochondria (including forward electron transfer) at their effective concentrations (35). Among S1QELs reported, S1QEL1.1 (Fig. S2) exhibited the suppressive effect at the lowest concentration range (~0.01 μM). To localize the binding position of S1QELs with high position specificity (31, 32). We previously demonstrated that 49 kDa-Asp160, which is located deep inside the proposed quinone-access channel (13, 33, 34), can be specifically alkynylated (Asp160(COO)-(CH2)2-C≡CH) through this technique using acetogenin-type ligand AL1 (Figs. S2 and S3) (25, 26). The pinpoint alkynylation can be achieved by incubating SMPs with AL1 for several hours and visualized by conjugating the fluorescent tag TAMRA-N3 to Asp160(COO)-(CH2)2-C≡CH via click chemistry after solubilizing SMPs (Fig. S3). The alkynylation was completely blocked by various quinone-site inhibitors (piericidin A, aminoquinazoline (AQ), bullatacin, and fenpyroximate) (25, 26).

To obtain an insight into the binding position of IACS-010759 in complex I, we examined the effects of IACS-010759 on the alkynylation of 49 kDa-Asp160 by AL1. SMPs were incubated with AL1 (0.10 μM) for 12 h at 35 °C in the presence of different concentrations of IACS-010759. IACS-010759 suppressed the alkynylation in a concentration-dependent manner (Fig. 3). BAY 87-2243 (30 μM), a parent compound of IACS-010759, also remarkably suppressed the chemical modification. As a reference, we confirmed that excess bullatacin (10 μM) that binds to the ND1 subunit completely blocks the alkynylation (Fig. 3).

Effects of IACS-010759 on the alkynylation of Asp160 in the 49-kDa subunit (49 kDa-Asp160) by AL1

Ligand-directed tosyl (LDT) chemistry is a powerful method to covalently attach a chemical tag of choice to a target protein.
IACS-010759 is a unique inhibitor of mitochondrial complex I

Figure 3. Effects of IACS-010759 on alkylation of 49 kDa-Asp\(^{160}\) by AL1. Alkylation of 49 kDa-Asp\(^{160}\) in SMPs (2.0 mg of proteins/ml) was performed via LDT chemistry using AL1 (0.10 \(\mu\)M) in the presence of different concentrations of IACS-010759. The alkylation can be visualized by conjugating a fluorescent tag. TAMRA-N\(_3\) to Asp\(^{160}\)(COO\(^-\))(CH\(_3\))\(_2\)C\(_9\)CH via click chemistry after solubilizing SMPs. Bullatacin (10 \(\mu\)M) and BAY 87-2243 (30 \(\mu\)M) were used as references. Approximately 30 \(\mu\)g of proteins were loaded in each well. Top, gel image of SDS-PAGE analysis used for LDT chemistry; bottom, the extent of suppression by test compounds. Values in graphs are means \(\pm\) S.E. (error bars) \(n = 3\).

Figure 4. Effects of IACS-010759 on the specific binding of \([^{125}\text{I}]\)AzQ to the 49-kDa subunit. The photoaffinity labeling of the 49-kDa subunit by \([^{125}\text{I}]\)AzQ (5.0 \(\text{nm}\)) was carried out in SMPs (2.0 mg of proteins/ml) in the presence of different concentrations of IACS-010759 (up to 20 \(\mu\)M, 4000-fold excess). Bullatacin (5.0 \(\mu\)M), aminoquinazoline (5.0 \(\mu\)M), and BAY 87-2243 (20 \(\mu\)M) were used as references. Approximately 30 \(\mu\)g of proteins were loaded in each well. Top, gel image of SDS-PAGE analysis used for the photoaffinity labeling; bottom, the extent of suppression by test compounds. Values in graphs are means \(\pm\) S.E. (error bars) \(n = 3\), n.s., not significant compared with control (one-way ANOVA followed by Dunnnett’s test).

In bovine heart complex I, we previously conducted photoaffinity labeling experiments using a synthetic photoreactive derivative of S1QEL1.1 (\([^{125}\text{I}]\)S1QEL1.1-PD1 (IC\(_{50} = 23\ \text{nm}\); Fig. S2) and found that \([^{125}\text{I}]\)S1QEL1.1-PD1 binds to a region in the ND1 subunit, which is under the matrix-side third loop connecting TMHs 5–6 (29). We also showed that in contrast to known quinone-site inhibitors, S1QELs do not occupy the binding cavity for ubiquinone; rather, they may indirectly modulate the ubiquinone redox reactions through inducing structural changes of the cavity by binding to the middle of ND1 (29). Thus, \([^{125}\text{I}]\)S1QEL1.1-PD1 is also a helpful benchmark sample for investigating the binding position of IACS-010759 in complex I.

We examined the effects of IACS-010759 on the specific binding of \([^{125}\text{I}]\)S1QEL1.1-PD1 (5.0 \(\text{nm}\)) to the ND1 subunit. IACS-010759 suppressed the binding in a concentration-dependent manner (Fig. 5). However, the suppression was saturated at an incomplete level (~50%), and complete suppression was not achieved even in the presence of excess IACS-010759 (20 \(\mu\)M, 4000-fold). Similarly, ~20% radioactivity remained in the presence of excess BAY 87-2243 (20 \(\mu\)M). We previously demonstrated that fenpyroximate and AQ, which predominantly bind to the 49-kDa subunit (27, 28, 36), do not suppress the labeling by \([^{125}\text{I}]\)S1QEL1.1-PD1, but bullatacin that binds to the ND1 subunit (37) almost completely suppresses the labeling (29). As a reference, the suppression by bullatacin (5.0 \(\mu\)M) is presented in Fig. 5. Overall, these results strongly suggest that IACS-010759 binds to the ND1 subunit, as proposed by Molina et al. (12), whereas the binding position of IACS-010759 in this subunit is not identical to that of S1QEL1.1, as further examined later.

The binding subunit of \([^{125}\text{I}]\)IACS-010759-PD1 in complex I

To identify the binding subunit of IACS-010759 in bovine complex I, we conducted photoaffinity labeling experiments using photoreactive \([^{125}\text{I}]\)IACS-010759-PD1 (Fig. 1), which was synthesized using IACS-010759 as a template. The IC\(_{50}\) value of \([^{125}\text{I}]\)IACS-010759-PD1, determined in the NADH oxidase assay using its nonradioactive derivative, was 1700 ± 140 \(\text{nm}\) (with 100 \(\mu\)g of SMP proteins/ml). Although the inhibitory potency of \([^{125}\text{I}]\)IACS-010759-PD1 decreased compared with IACS-010759 (460 \(\text{nm}\)), we offered this derivative to the photoaffinity labeling experiments because its IC\(_{50}\) value was at the one-digit micromolar level. Additionally, the IC\(_{50}\) value of \([^{125}\text{I}]\)IACS-010759-PD1, determined in the reverse electron transfer reaction (with 100 \(\mu\)g of SMP proteins/ml), was 630 ± 34 \(\text{nm}\), indicating that the direction dependence of the inhibitory potency of IACS-010759-PD1 (~3-fold) somewhat decreased compared with the parent IACS-010759 (~10-fold).

SMPs (4.0 mg of proteins/ml) were labeled by \([^{125}\text{I}]\)IACS-010759-PD1 (10 \(\text{nm}\)) according to the method described under “Experimental procedures.” The radioiodinated complex I was isolated by BN-PAGE, followed by resolution on doubled SDS gels using 10 and 16% Schägger-type SDS gels (38). The labeling by \([^{125}\text{I}]\)IACS-010759-PD1 gave a major ~30-kDa radioactive spot above a diagonal axis (Fig. 6A), which corresponds to the position of the ND1 subunit (29). We verified this assignment by Western blotting using a rabbit anti-bovine ND1 antibody (Fig. 6A).
IC50 values are one-digit nanomolar levels (27, 36), it is reasonable with each other.

20–30%) suppressed the labeling (Fig. 7). Considering high

Effects of different ligands on the photoaffinity labeling by [125I]IACS-010759-PD1

The binding position of [125I]IACS-010759-PD1 in the ND1 subunit

To localize the position labeled by [125I]IACS-010759-PD1 in the ND1 subunit, the labeled ND1 was isolated from the SDS gel and digested by lysylendopeptidase (Lys-C) or endoprotease Asp-N (Asp-N), whose theoretical cleavage sites (Lys and Asp) are few. The digestion by Lys-C and Asp-N gave major digests at ~16 and ~14 kDa, respectively (Fig. 6B). Based on the theoretical cleavage sites, the Lys-C and Asp-N digests may be the peptide Tyr127–Lys262 (15.2 kDa) and Asp199–Thr318 (13.8 kDa), containing an uncleavable site at Asp283 (29), respectively (Fig. 6C). These results indicate that the position labeled by [125I]IACS-010759-PD1 is assigned to the region Asp199–Lys262 (Fig. 6C, shadowed in yellow), which includes the matrix-side third loop connecting TMHs 5 and 6, and TMHs 6 and 7 (Fig. 8A, brown spheres).

The quinazoline-type inhibitor [125I]AzQ binds at the interface of the N terminus (Asp31–Arg62) of the 49-kDa subunit and the loop connecting TMHs 5 and 6 of the ND1 subunit (27, 28). The results shown in Figs. 4 and 7 indicate that IACS-010759 and quinazoline analogues do not affect each other’s binding to complex I. Taking these facts into consideration, IACS-010759 (and [125I]IACS-010759-PD1) may bind to a domain under this loop of ND1 (the loop Asp199–Ala217 is shown in red spheres in the right panels in Fig. 8A). It is noteworthy that Leu212 in ND1, whose substitution (to Phe) reduced susceptibility to IACS-010759 (13), lies near the region labeled by [125I]IACS-010759-PD1 (the labeled region is in red in Fig. 8B).

Although we were unable to pinpoint the residue(s) labeled by [125I]IACS-010759-PD1 because of low reaction yields of a photoaffinity labeling technique, the labeled region (Asp199–Lys262) is identical to that labeled by [125I]S1QEL1.1-PD2 (29). Nevertheless, the modes of inhibitory action are different between IACS-010759 and S1QELs, as discussed later.

Discussion

HIF-1 in hypoxic tumor cells is a potential druggable target for cancer therapy (5–7). Extensive efforts have been devoted to screen low-molecular-weight chemicals that modulate HIF-1 via inhibition of mitochondrial respiratory enzymes (8–12). Molina et al. (12) reported that IACS-010759 potently inhibits the proliferation of hypoxic tumor cells by interfering with the functions of respiratory complex I without exhibiting significant cytotoxicity in normal cells. Because mechanistic details of how IACS-010759 inhibits complex I remain to be elucidated, we herein addressed this issue via chemical biology approaches using bovine heart SMPs.

We found that IACS-010759, unlike traditional quinone-site inhibitors, exhibits the marked direction-dependent inhibition of electron transfer (the inhibition of reverse electron transfer was stronger than that of forward electron transfer; Fig. 2) and cannot suppress the binding of [125I]AzQ to the N terminus of the 49-kDa subunit (Fig. 4). The photoaffinity labeling experiments revealed that IACS-010759 specifically binds to the region under the matrix-side third loop connecting TMHs 5–6 in the ND1 subunit (Figs. 6 and 8). These features resemble those elicited by S1QELs (29), which were originally reported to
be specific suppressors of superoxide production from the quinone reaction site in complex I during reverse electron transfer (35). In fact, IACS-010759 and S1QEL derivatives competitively bound to the ND1 subunit despite the lack of definite structural similarity (Figs. 5 and 7), although complete suppression was not achieved even in the presence of an excess of either inhibitor. To explain the direction-dependent and incomplete (maximally 30–80%) inhibition of electron transfer by S1QELs, we previously proposed that S1QELs do not occupy the binding cavity for ubiquinone; rather, they may indirectly affect the ubiquinone redox reactions by inducing structural changes of the cavity through binding to the middle of the ND1 subunit (29). Wong et al. (39) recently reported that the binding of S1QELs to complex I in rat skeletal muscle mitochondria (at concentrations exhibiting no electron transfer inhibition) influences conformation of the binding sites for rotenone and piericidin A, resulting in a decrease in the inhibitory potencies of both inhibitors. On the basis of comprehensive interpretations of the present results, it is likely that IACS-010759 also indirectly affects the ubiquinone redox reactions by binding to the ND1 subunit.

Nevertheless, it should be stressed that there are distinct differences in the inhibitory actions between IACS-010759 and S1QELs. First, IACS-010759, not S1QELs, suppressed the chemical modification of 49 kDa-Asp160 by AL1 (Fig. 3). Second, IACS-010759 attained complete inhibition (>95%) of both forward and reverse electron transfer (Fig. 2), whereas the extents of maximum inhibition by S1QELs, except S1QEL1.1, were saturated at incomplete levels (<30–80%) (29). Third, complete suppression was not achieved in the competition tests between [125I]S1QEL1.1-PD1 and IACS-010759 (Fig. 5) or between [125I]IACS-010759-PD1 and S1QEL1.1 (Fig. 7). The effects of IACS-010759 and S1QELs on the events that take place above the third loop connecting TMHs 5 and 6 in ND1 (i.e. quinone redox reactions (Fig. 2), the modification of 49 kDa-Asp160 by AL1 (Fig. 3), and the binding of [125I]AzQ to the 49-kDa subunit (Fig. 4)) were summarized in Table 1, including bullatacin, which also binds to the ND1 subunit (37). It is evident that the effects of each of the three on the events were different from the other two. These findings strongly suggest that the structural changes in ND1 induced by the inhibitor binding dynamically propagate to the “upper” region (the PSST/49-kDa subunits) in different manners, depending on their binding positions reflecting varying chemical frameworks. As a result, the third loop connecting TMHs 5 and 6 in ND1, which is in contact with the N terminus of the 49-kDa subunit,
Mitochondrial complex I is a promising target not only for anticancer drugs (10–12) but also for anthelmintic reagents (43, 44) and agrochemicals (45, 46). Structural biology studies have proposed that quinone-site inhibitors enter into a narrow and long (∼30 Å) quinone-access channel and prevent the catalytic reaction of quinone by being “caged” inside the channel (40, 47). This proposal was originally derived from electron density attributed to bound piericidin A, which was observed to override electron density attributed to bound n-decyl-ubiquinone in crystallographic maps from *Thermus thermophilus* complex I (48). It should be realized, however, that this view of the binding of quinones or inhibitors has yet to be established experimentally. We note that excess piericidin A (up to 4000-fold) partially suppressed the binding of [125I]IACS-010759-PD1 to complex I (by ∼60%) but hardly affected the binding of [125I]S1QEL1.1-PD1 (Fig. S4). Through photoaffinity labeling experiments using different types of quinone-site inhibitors, we previously demonstrated that the inhibitors do not necessarily enter the proposed channel; rather, they bind around the channel (30). The present and previous (29) studies disclosed diverse binding positions of new inhibitors of complex I (i.e. IACS-010759 and S1QELs), which do not overlap with those of known quinone-site inhibitors. Taken together, the action mechanisms of complex I inhibitors with widely different chemical frameworks are far more diverse than hitherto considered based on the channel model (13, 40, 47, 48). We recently demonstrated that complex I in bovine SMPs can catalytically reduce oversized ubiquinones, which are highly unlikely to transit the narrow channel because their side chain includes a significantly bulky block (30, 49). This fact may call into question whether the current channel model fully reflects the physiologically relevant states. The cryo-EM structure of *Yarrowia lipolytica* complex I showed a tightly bound UQ9 molecule in the proposed quinone-access tunnel (50). However, as the position of the head-ring of the bound UQ9 is at distance from the Fe-S cluster N2 (∼27 Å), the functional significance of the observed position of UQ9 in the catalytic cycle remains to be elucidated.

The present study was initiated to answer the question of why IACS-010759, unlike other traditional quinone-site inhibitors, can elicit antitumor activity in glycolysis-deficient tumor cells by inhibiting complex I without displaying significant cytotoxicity in normal cells at tolerated doses (12). To answer this question, many critical factors in different cell lines must be considered, such as the balance between glycolysis and oxidative phosphorylation for ATP production and superoxide generation involved in the inhibition of electron transfer (both forward and reverse). Regarding superoxide generation, inhibitors of the ubiquinone reaction step in complex I elicit opposite effects, depending on the direction of electron transfer; namely, they enhance and reduce superoxide generation during the forward and reverse electron transfer, respectively (51, 52). Moreover, although IACS-010759 inhibits the reverse electron transfer more efficiently (by ∼10-fold) than the forward electron transfer (Fig. 2), it is unclear whether, and how much, the reverse electron transfer occurs in intact cells under conditions that favor forward electron flux through
IACS-010759 is a unique inhibitor of mitochondrial complex I

Figure 8. The region labeled by $^\text{125I}\text{[IACS-010759-PD1 in the ND1 subunit.}$ A, $^{125}\text{I}[\text{IACS-010759-PD1 labeled the region Asp}^{199}\text{-Lys}^{262} (\text{brown spheres}) in the ND1 subunit (brown). The third loop connecting the TMHs 5 and 6 (Asp}^{199}\text{-Ala}^{217}) is presented in red spheres on the right. The 49-kDa and PSST subunits are shown in pink and purple, respectively. Here, we used the structural model of ovine complex I (Protein Data Bank entry 5LNK) (33) because the third loop of ND1 is disordered in the deactive state of the bovine enzyme (13). The quinone-access channel proposed in the current models was generated using MOLE with a 1.4-Å probe (RRID:SCR_018314) (61) and is shown in black. The hydrophilic domain above the dotted line shown in a was deleted in b for clarity. B, close-up of the ND1 subunit (brown). The positions of Leu}^{55} (a space-filling model in cyan) and the region labeled by $^\text{125}\text{I}[\text{IACS-010759-PD1 (Asp}^{199}\text{-Lys}^{262} in red) are shown with the quinone-access channel (black).

Table 1

Inhibitors	Modification of 49 kDa-Asp199	Binding of $^\text{125I}\text{[AzQ}$	Inhibition of electron transfera
IACS-010759	Suppress	Not suppress	Complete
S1QELs	Suppress	Not suppress	Incompleted
Bullatinec	Suppress	Suppress	Complete

a Effects of the inhibitors on the chemical modification of 49 kDa-Asp199 by AL1.

b Effects of the inhibitors on the specific binding of $^\text{125I}\text{[AzQ to the N terminus of the 49-kDa subunit.}$

c The extent of inhibition of the forward and reverse electron transfer, IACS-010759 and bullatine almost completely inhibit both activities (>95%).

d The extents of maximum inhibition by S1QELs were saturated at incomplete levels (~30–80%), except SIQEL1.1 (29).

e Conventional quinone-site inhibitors (aminooxazoline, fenpyroximate, piericidin A, and rotenone) exhibit the same effects as those of bullatine (25, 29, 30).

complex I (12, 51, 52). (Note that there is indirect evidence that the reverse electron transfer is an important physiological process that underlies mitochondrial redox signaling under various conditions (53, 54).) With all things combined, it may be practically impossible to precisely predict how IACS-010759 treatment affects the total ATP production and superoxide generation at the cell level. Therefore, we currently have no definite answer to the question above. Nevertheless, the present study revealed IACS-010759 to be a unique inhibitor of complex I, the manner of action of which is different from that of any other quinone-site inhibitors. This unique manner of action of IACS-010759 at the enzyme level may be responsible for its interesting profiles of antitumor/cytotoxic activities. Besides IACS-010759 and BAY 87-2243, recent cancer chemotherapeutic studies showed that a cellular target of mubritinib (an inhibitor of acute myeloid leukemia (55); Fig. S1) and quinazoline diones (inhibitors of non-small-cell lung carcinoma (56); Fig. S1) is also mitochondrial complex I. Given the diverse manners of action of complex I inhibitors, there could be considerable room for producing further unique inhibitors (or modulators) that elicit a broad spectrum of biological activities.

Experimental procedures

Materials

Bullatine, piericidin A, and fenpyroximate were kindly provided by J. L. McLaughlin (Purdue University, West Lafayette, IN), S. Yoshida (RIKEN, Saitama, Japan), and Nihon Nohyaku Co., Ltd. (Tokyo, Japan), respectively. Acetogenin-type ligand (AL1) was the same sample as that used previously (32). $^{125I}[\text{AzQ was synthesized by the previously reported procedure (27, 28). BAY 87-2243 was purchased from ChemScene (Monmouth Junction, NJ). Protein standards (Precision Plus Protein Standards) for SDS-PAGE were purchased from Bio-Rad. $^{125I}\text{[NaI was purchased from PerkinElmer Life Sciences. All other reagents were analytical grade.}$

Preparation of bovine heart SMPs and measurement of complex I activity

Mitochondria were isolated from bovine heart. SMPs were prepared by the method of Matsumo-Yagi and Hatefi (57) and stored in buffer containing 250 mM sucrose and 10 mM Tris-HCl (pH 7.4) at −80 °C until used. The NADH oxidase activity (forward electron transfer) in SMPs was measured spectropometrically with a Shimadzu UV-3000 instrument (340 nm, $\epsilon = 6.2 \text{mm}^{-1}\text{cm}^{-1})$ at 30 °C (29). The reaction was initiated by adding 50 µM NADH after the equilibration of SMP with an inhibitor for 4 min. The reaction medium (2.5 ml) contained 0.25 M sucrose, 1.0 M MgCl$_2$, and 50 mM phosphate buffer (pH 7.4). The final mitochondrial protein concentration was set to 30 or 100 µg of proteins/ml, depending on the experimental purpose. The IC$_{50}$ values of inhibitors were calculated by Prism (version 8, GraphPad Software, La Jolla, CA) using sigmoid dose-response curve fitting.
Measurement of reverse electron transfer in complex I

The reverse electron transfer (ubiquinol-NAD⁺ oxidoreductase activity) was driven by the oxidation of succinate and hydrolysis of ATP (58). The reaction was measured spectrophotometrically by following the reduction of NAD⁺ with a Shimadzu UV-3000 spectrophotometer (340 nm, ε = 6.2 mm⁻¹ cm⁻¹) at 30 °C. The reaction was initiated by the addition of 1.0 mM ATP after the equilibration of SMP with an inhibitor for 4 min. The reaction medium (2.5 ml) contained 0.25 M sucrose, 7.0 mM sodium succinate, 6.0 mM MgCl₂, 1.0 mM KCN, 1.0 mM NAD⁺, and 50 mM Tris-HCl (pH 7.5), and the final protein concentration of SMPs was 100 µg/ml. We confirmed that the reverse electron transfer is fully sensitive to SF6847 (protophoric uncoupler) or oligomycin (ATP synthase inhibitor).

Alkylation of complex I in SMPs by AL-1 (ligand-directed tosyl chemistry)

Bovine SMPs (2.0 mg of protein/ml, 100–200 µl), suspended in a buffer containing 250 mM sucrose, 1.0 mM MgCl₂, and 50 mM KP₃, (pH 7.4), were incubated with AL1 (0.10 µm) in the presence or absence of a competitor for 12 h at 35 °C (25). SMPs were then collected by ultracentrifugation (200,000 × g, 20 min, 4 °C) and denatured in 1.0% (w/v) SDS (25–50 µl). To visualize the proteins alkylated by AL1, they were conjugated with a fluorescent TAMRA-N₃ tag via Cu²⁺-catalyzed click chemistry using the Click-iT reaction buffer kit (Life Technologies, Inc.) according to the manufacturer’s protocols. Proteins were recovered by precipitation with methanol/chloroform (4:1, v/v) and subjected to Laemmli-type 12.5% SDS-PAGE, followed by Coomassie Brilliant Blue (CBB) stain and fluorescent gel imaging.

Photoaffinity labeling of complex I in SMPs by [¹²⁵I]AzQ, [¹²⁵I]S1QEL1.1-PD1, and [¹²⁵I]IACS-010759-PD1

Bovine SMPs (2.0 mg/ml, 100 µl), which were previously incubated with a competitor of choice at room temperature for 10 min, were incubated with [¹²⁵I]AzQ (5.0 nM) in buffer containing 250 mM sucrose, 50 mM KP₃ (pH 7.4), and 5.0 mM MgCl₂ at room temperature for 10 min, and then 50 µM NADH was added for a further 5 min. The mixture was then irradiated with a long wavelength UV-lamp (Black-lay model B-100A, UVP, Upland, CA) on ice for 10 min at a distance of 10 cm from the light source (27). The reaction was quenched by the addition of 4 × Laemmli sample buffer (34 µl). Samples were separated on a 12.5% Laemmli gel, which was stained with CBB, dried, exposed to an imaging plate (LAS-MS2040, Fujiﬁlm, Tokyo, Japan), and visualized with the Bio-imaging analyzer FLA-5100 (Fujiﬁlm) or Typhoon-FLA 9500 (GE Healthcare, Buckinghamshire, UK). The incorporated radioactivity of each band was quantified using Multi Gauge (Fujiﬁlm) or ImageQuant (GE Healthcare). The photoaffinity labeling experiments by [¹²⁵I]S1QEL1.1-PD1 and [¹²⁵I]IACS-010759-PD1 in the presence or absence of a competitor were conducted by the same procedures as those for [¹²⁵I]AzQ above, with the exception that the labeled complex I was isolated by BN-PAGE and it was further separated on a SDS gel.

Identification of the subunit labeled by [¹²⁵I]IACS-010759-PD1

SMPs labeled by [¹²⁵I]IACS-010759-PD1 (10 nM) were solubilized in sample buffer containing 50 mM Bistris-HCl (pH 7.2), 50 mM NaCl, 10% (w/v) glycerol, 1.0% (w/v) dodecyl maltoside, and 0.001% (w/v) Ponceau S on ice for 1 h, and the samples were separated by BN-PAGE (30) using a 4–16% precast gel system (Life Technologies) according to the manufacturer’s protocol. The isolated complex I was further solved on a Laemmli-type 12.5% SDS gel (59) or Schägger-type 10% SDS gel containing 6.0 M urea (60).

Doubled SDS-PAGE was conducted as described previously (30, 38). In brief, the labeled complex I was separated on a first-dimensional 10% Schägger-type gel (10% T, 3% C, containing 6.0 M urea). The gel slice was then acidified with 100 mM Tris-HCl (pH 2.0) for 30 min, followed by second-dimensional separation on a 16% Schägger-type gel (16% T, 3% C). Typically, complex I equivalent to 200 µg of SMPs was separated on a mini-size gel (80 × 90 mm, 1 mm). The resolved proteins were visualized by MS-compatible silver staining (Wako Silver stain MS kit, Wako Pure Chemicals, Osaka), followed by autoradiography.

To detect the ND1 subunit, proteins were separated on a Schägger-type SDS gel and transferred onto a polyvinylidene difluoride membrane (27, 60). The membrane was blocked with 1% (w/v) gelatin in TBS buffer (10 mM Tris-HCl buffer (pH 7.4) and 0.9% (w/v) NaCl) containing 0.5% (w/v) Tween 20 (Tween TBS) and then probed with a rabbit anti-bovine ND1 antibody (a kind gift from Dr. Takao Yagi, Scripps Research Institute, La Jolla, CA), followed by incubation with the alkaline phosphatase–conjugated anti-rabbit secondary antibody (Sigma–Aldrich). The membrane was washed three times with Tween TBS and developed with nitro blue tetrazolium/5-bromo-4-chloro-3-indolyl phosphate colorimetric reagents (Bio-Rad). The primary and secondary antibodies were diluted with Tween TBS at the ratios of 1:3000 and 1:8000, respectively.

Proteomic analysis

For the exhaustive digestion of the ND1 subunit, the subunit labeled by [¹²⁵I]IACS-010759-PD1 was recovered from the gel by electroelution in 10 mM Tris-HCl buffer (pH 8.0) containing 0.025% (w/v) SDS. The partially purified ND1 subunit was digested with lysylendopeptidase (Wako Pure Chemicals, Osaka, Japan) or endoprotease Asp-N (Roche Applied Science) in 50 mM Tris-HCl buffer (pH 8.5) containing 0.1% SDS or 50 mM NaP, buffer (pH 8.0) containing 0.01% SDS, respectively. The digests were resolved on a Schägger-type SDS gel (60), followed by autoradiography.

Data availability

All data are contained within the article and associated supporting information.

Author contributions—A. T., T. A., T. M., M. M., and H. M. data curation; A. T., T. A., T. M., M. M., and H. M. formal analysis; A. T., T. A., T. M., M. M., and H. M. writing—original draft; M. M. and H. M. conceptualization; M. M. and H. M. funding acquisition.
IACS-010759 is a unique inhibitor of mitochondrial complex I

Acknowledgment—We acknowledge the Radioisotope Research Center, Kyoto University, for technical support in the radioisotope experiments.

References

1. Höckel, M., and Vaupel, P. (2001) Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J. Natl. Cancer Inst. 93, 266–276 CrossRef Medline
2. Cantor, J. R., and Sabatini, D. M. (2012) Cancer cell metabolism: one hallmark, many faces. Cancer Discov. 2, 881–898 CrossRef Medline
3. Gordan, J. D., and Simon, M. C. (2007) Hypoxia-inducible factors: central regulators of the tumor phenotype. Curr. Opin. Genet. Dev. 17, 71–77 CrossRef Medline
4. Semenza, G. L. (2010) HIF-1: upstream and downstream of cancer metabolism. Curr. Opin. Genet. Dev. 20, 51–56 CrossRef Medline
5. Hu, J., Locasale, J. W., Bielas, J. H., O’Sullivan, J., Sheahan, K., Cantley, L. C., Vander Heiden, M. G., and Vitiuk, D. (2013) Heterogeneity of tumor-induced gene expression changes in the human metabolic network. Nat. Biotechnol. 31, 522–529 CrossRef Medline
6. Wengner, R. H. (2002) Cellular adaptation to hypoxia: O2-sensing protein hydroxylases, hypoxia-inducible transcription factors, and O2-regulated gene expression. FASEB J. 16, 1151–1162 CrossRef Medline
7. Poellinger, L., and Johnson, R. S. (2004) HIF-1 and hypoxic response: the plot thickens. Curr. Opin. Genet. Dev. 14, 81–85 CrossRef Medline
8. Lin, X., David, C. A., Donnelly, J. B., Michaeilides, M., Chandel, N. S., Huang, X., Warrior, U., Weinberg, F., Tormos, K. V., Fesik, S. W., and Shen, Y. (2008) A chemical genomics screen highlights the essential role of mitochondrial complexes in HIF-1 regulation. Proc. Natl. Acad. Sci. U.S.A. 105, 174–179 CrossRef Medline
9. Li, S. H., Shin, D. H., Chun, Y.-S., Lee, M. K., Kim, M.-S., and Park, J.-W. (2008) A novel mode of action of YC-1 in HIF inhibition: stimulation of p53-dependent p530 dissociation from HIF-1α. Mol. Cancer Ther. 7, 3729–3738 CrossRef Medline
10. Ellinghaus, P., Heisler, I., Unterschemmann, K., Haerter, M., Beck, H., Greschat, S., Ehrmann, A., Summer, H., Flamme, I., Oehme, F., Thierauch, K., Michels, M., Hess-Stumpf, H., and Ziegeldauer, K. (2013) BAY 87-2243, a highly potent and selective inhibitor of hypoxia-induced gene activation has antitumor activities by inhibition of mitochondrial complex I. Cancer Med. 2, 611–624 CrossRef Medline
11. Schöckel, I., Gläuser, A., Basit, F., Bitschar, K., Treuog, H., Erdmann, G., Algire, C., Hägerbarth, A., Willems, P. H. G. M., Kopitz, C., Koopman, W. J. H., and Hérout, M. (2015) Targeting mitochondrial complex I using BAY 87-2243 reduced melanoma tumor growth. Cancer Metab. 3, 11 CrossRef Medline
12. Molina, J. R., Sun, Y., Protopopova, M., Gera, S., Bandi, M., Bristow, C., Mcafoos, T., Morlacchi, P., Ackroyd, J., Agip, A. A., Al-Atrash, G., Asara, J., Bardenhagen, J., Carrillo, C. C., Carroll, C., et al. (2018) An inhibitor of oxidative phosphorylation exploits cancer vulnerability. Nat. Med. 24, 1036–1046 CrossRef Medline
13. Zhu, J., Vinothkumar, K. R., and Hirst, J. (2016) Structure of mammalian respiratory complex I. Nature 536, 354–358 CrossRef Medline
14. Hongo, H., Kihara, T., Kume, T., Idemoto, T., Sugiura, S., Nishino, T., and Akaide, A. (2012) Glycogen synthase kinase-3β activation mediates rotenone-induced cytotoxicity with the involvement of microtubule destabilization. Biochem. Biophys. Res. Commun. 426, 94–99 CrossRef Medline
15. Koppenol, W. H., Bounds, P. L., and Dang, C. V. (2011) Otto Warburg’s contributions to current concepts of cancer metabolism. Nat. Rev. Cancer 11, 325–337 CrossRef Medline
16. Bisroey, K., Wang, T., Chen, W. W., Freinkman, E., Abu-Ramaileh, M., and Sabatini, D. M. (2015) An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis. Cell 162, 540–551 CrossRef Medline
17. Weinberg, S. E., and Chandel, N. S. (2015) Targeting mitochondrial metabolism for cancer therapy. Nat. Chem. Biol. 11, 9–15 CrossRef Medline
18. Miyoshi, H., Ohshima, M., Shimada, H., Akagi, T., Iwamura, H., and McLaughlin, J. L. (1998) Essential structural features of anaconoeogenic actogenins as potent inhibitors of mitochondrial complex I. Biochim. Biophys. Acta 1365, 443–452 CrossRef Medline
19. Bermejo, A., Figadere, B., Zafra-Polo, M.-C., Barrachina, I., Estornell, E., and Diego Cortes, D. (2005) Actogenins from Annonaceae: recent progress in isolation, synthesis and mechanisms of action. Nat. Prod. Rep. 22, 269–303 CrossRef Medline
20. Kojima, N., Hayashi, E., Suzuki, S., Tominaga, H., Maekazi, N., Tanaka, T., and Yamori, T. (2008) Synthesis of C4-fluorinated solamins and their growth inhibitory activity against human cancer cell lines. Bioorg. Med. Chem. Lett. 18, 6451–6453 CrossRef Medline
21. Potts, L. F., Luzzio, F. A., Smith, S. C., Hetman, M. P., Champy, P., and Litván, I. (2012) Annonacin in Asimina triloba fruit: implication for neurotoxicity. Neurotoxicology 33, 53–58 CrossRef Medline
22. Algire, C., Haugebarth, A., Willems, P. H. G. M., Kopitz, C., Koopman, W. J. H., Jacob, R., Michel, P. P., Ruberg, M., et al. (2007) Annonacin, a natural mitochondrial complex I inhibitor, causes Tau pathology in cultured neurons. J. Neurosci. 27, 7827–7837 CrossRef Medline
23. Masuya, T., Murai, M., Ifuku, K., Morisaka, H., and Miyoshi, H. (2014) Site-specific chemical labeling of mitochondrial respiratory complex I through ligand-directed tosylate chemistry. Biochemistry 53, 2307–2317 CrossRef Medline
24. Masuya, T., Murai, M., Morisaka, H., and Miyoshi, H. (2014) Pinpoint chemical modification of Asg160 in the 49 kDa subunit of bovine mitochondrial complex I via a combination of ligand-directed tosyl chemistry and click chemistry. Biochemistry 53, 7816–7823 CrossRef Medline
25. Murai, M., Sekiguchi, K., Nishio, T., and Miyoshi, H. (2009) Characterization of the inhibitor binding site in mitochondrial NADH-ubiquinone oxidoreductase by photoaffinity labeling using a quinazoline-type inhibitor. Biochemistry 48, 688–698 CrossRef Medline
26. Murai, M., Mashimo, Y., Hirst, J., and Miyoshi, H. (2011) Exploring interactions between the 49 kDa and ND1 subunits in mitochondrial NADH-ubiquinone oxidoreductase (complex I) by photoaffinity labeling. Biochemistry 50, 6901–6908 CrossRef Medline
27. Banba, A., Tsuru, A., Kimura, H., Murai, M., and Miyoshi, H. (2019) Defining the mechanism of action of S1QELs, specific suppressors of superoxide production in the quinone-reaction site in mitochondrial complex I. J. Biol. Chem. 294, 6550–6561 CrossRef Medline
28. Uno, S., Kimura, H., Murai, M., and Miyoshi, H. (2019) Exploring the quinone/inhibitor-binding pocket in mitochondrial respiratory complex I by chemical biology approaches, J. Biol. Chem. 294, 679–696 CrossRef Medline
29. Tsukiji, S., Miyagawa, M., Takaoka, Y., Tamura, T., and Hamachi, I. (2009) Ligand-directed tosyl chemistry for protein labeling in vivo. Nat. Chem. Biol. 5, 341–343 CrossRef Medline
30. Takaoka, Y., Ojida, A., and Hamachi, I. (2013) Protein organic chemistry and applications for labeling and engineering in live-cell systems. Angew. Chem. Int. Ed. Engl. 52, 4088–4106 CrossRef Medline
31. Fiedorczuk, K., Letts, J. A., Degliesposti, G., Kaszuba, K., Skehel, M., and Saizanov, L. A. (2016) Atomic structure of the entire mammalian mitochondrial complex I. Nature 538, 406–410 CrossRef Medline
32. Agip, A. A., Blaza, J. N., Bridges, H. R., Viscomi, C., Rawson, S., Muench, S. P., and Hirst, J. (2018) Cryo-EM structures of complex I from mouse heart mitochondria in two biochemically defined states. Nat. Struct. Mol. Biol. 25, 548–556 CrossRef Medline
33. Brand, M. D., Goncalves, R. L. S., Orr, A. L., Vargas, L., Genersch, A. A., Borch Jensen, M., Wang, Y. T., Melov, S., Turk, C. N., Matzen, J. T., Dardov, V. J., Petrassi, H. M., Meeusen, S. L., Pevoshvishikova, I. V., Jasper, H., et al. (2016) Suppressors of superoxide−H2O2 production at site I2
of mitochondrial complex I protect against stem cell hyperplasia and ischemia-reperfusion injury. *Cell Metab.* **24**, 582–592 CrossRef Medline

36. Shiraishi, Y., Murai, M., Sakiyama, N., Ituku, K., and Miyoshi, H. (2012) Fenaproximate binds to the interface between PSST and 49 kDa subunits in mitochondrial NADH-ubiquinone oxidoreductase. *Biochemistry* **51**, 1953–1963 CrossRef Medline

37. Nakanishi, S., Abe, M., Yamamoto, S., Murai, M., and Miyoshi, H. (2011) Bis-THF motif of acetogenin binds to the third matrix-side loop of ND1 subunit in mitochondrial NADH-ubiquinone oxidoreductase. *Biochim. Biophys. Acta* **1807**, 1170–1176 CrossRef Medline

38. Rais, I., Karas, M., and Schägger, H. (2004) Two-dimensional electrophoresis for the isolation of integral membrane proteins and mass spectrometric identification, *Proteomics* **4**, 2567–2571 CrossRef Medline

39. Wong, H. S., Monterner, P. A., and Brand, M. D. (2019) SiQELs suppress mitochondrial superoxide/hydrogen peroxide production from site I\(\Omega\) without inhibiting reverse electron flow through complex I. *Free Radic. Biol. Med.* **143**, 545–559 CrossRef Medline

40. Zickermann, V., Wirth, C., Nasiri, H., Siegmund, K., Schwalbe, H., Hunte, C., and Brandt, U. (2015) Mechanistic insight from the crystal structure of mitochondrial complex I. *Science* **347**, 44–49 CrossRef Medline

41. Blaza, J. N., Vinothkumar, K. R., and Hirst, J. (2018) Structure of the deactive state of mammalian respiratory complex I. *Structure* **26**, 312–319.e3 CrossRef Medline

42. Parey, K., Brandt, U., Xie, H., Mills, D. J., Siegmund, K., Vonck, J., Kühbrandt, W., and Zickermann, V. (2018) Cryo-EM structure of respiratory complex I at work. *eLife* 7, e39213 CrossRef Medline

43. Omura, S., Miyadera, H., Ui, H., Shiomi, K., Yamaguchi, Y., Masuma, R., Nagamitsu, T., Takano, D., Sunazuka, T., Harder, A., Kölbl, H., Namikoshi, M., Miyoshi, H., Sakamoto, K., and Kita, K. (2001) Anthelmintic compound, nafuredin, shows selective inhibition of complex I in helminth mitochondria. *Proc. Natl. Acad. Sci. U.S.A.* **98**, 60–62 CrossRef Medline

44. Shiomi, K., Ui, H., Suzuki, H., Hatano, H., Nagamitsu, T., Takano, D., Miyadera, H., Yamashita, T., Kita, K., Miyoshi, H., Harder, A., Tomoda, H., and Omura, S. (2005) A \(\gamma\)-lactone form nafuredin, nafuredin-\(\gamma\), also inhibits helminth complex I. *J. Antibiot.* **58**, 50–55 CrossRef Medline

45. Murai, M., and Miyoshi, H. (2016) Current topics on inhibitors of respiratory complex I. *Biochim. Biophys. Acta* **1857**, 884–891 CrossRef Medline

46. Jeschke, P. (2016) Progress of modern agricultural chemistry and future prospects. *Pest Manag. Sci.* **72**, 433–455 CrossRef Medline

47. Fedor, J. G., Jones, A. J. Y., Di Luca, A., Kaila, V. R. L., and Hirst, I. (2017) Correlating kinetic and structural data on ubiquinone binding and reduction by respiratory complex I. *Proc. Natl. Acad. Sci. U.S.A.* **114**, 12737–12742 CrossRef Medline

48. Baradaran, R., Berrisford, J. M., Minhas, G. S., and Sazanov, L. A. (2013) Crystal structure of the entire respiratory complex I. *Nature* **494**, 443–448 CrossRef Medline

49. Uno, S., Masuya, T., Shizawa-Itoh, K., Lasham, J., Haapanen, O., Shiba, T., Inao, D. K., Sharma, V., Murai, H., and Miyoshi, H. (2020) Oversized ubiquinones as molecular probes for structural dynamics of the ubiquinone reaction site in mitochondrial respiratory complex I. *J. Biol. Chem.* **295**, 2449–2463 CrossRef Medline

50. Parey, K., Haapanen, O., Sharma, V., Köfeler, H., Züllig, T., Prinz, S., Siegmund, K., Wittig, L., Mills, D. J., Vonck, J., Kühbrandt, W., and Zickermann, V. (2019) High-resolution cryo-EM structures of respiratory complex I: mechanism, assembly, and disease. *Sci. Adv.* **5**, eaax9484 CrossRef Medline

51. Treberg, J. R., Quinnan, C. L., and Brand, M. D. (2011) Evidence for two sites of superoxide production by mitochondrial NADH-ubiquinone oxidoreductase (complex I). *J. Biol. Chem.* **286**, 27103–27110 CrossRef Medline

52. Orr, A. L., Ashok, D., Sarantos, M. R., Shi, T., Hughes, R. E., and Brand, M. D. (2013) Inhibitors of ROS production by the ubiquinone-binding site of mitochondrial complex I identified by chemical screening. *Free Radic. Biol. Med.* **65**, 1047–1059 CrossRef Medline

53. Fernández-Agüera, M. C., Gao, L., González-Rodríguez, P., Pintado, C. O., Arias-Mayenco, I., García-Flores, P., García-Peragàeda, A., Pascual, A., Ortega-Sáenz, P., and López-Barneo, J. (2015) Oxygen sensing by arterial chemoreceptors depends on mitochondrial complex I signaling. *Cell Metab.* **22**, 825–837 CrossRef Medline

54. Mills, E. L., Kelly, B., Logan, A., Costa, A. S. H., Warma, M., Bryant, C. E., Tourlomousis, P., Dadritz, J. H. M., Gottlieb, E., Latorre, I., Corr, S. C., McManus, G., Ryan, D., Jacobs, H. T., Szibor, M., et al. (2016) Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. *Cell* **167**, 457–470.e13 CrossRef Medline

55. Baccelli, I., Gareau, Y., Lehneritz, B., Gingras, S., Spinella, J.-F., Corneau, S., Mayotte, N., Girard, S., Frechette, M., Blouin-Chagnon, V., Leveillé, K., Boivin, I., MacRae, T., Krol, J., Thiolier, C., et al. (2019) Mubritinib targets the electron transport chain complex I and reveals the landscape of OXPHOS dependency in acute myeloid leukemia. *Cancer Cell* **36**, 84–99.e8 CrossRef Medline

56. Madhusudhan, N., Hu, B., Mishra, P., Calva-Moreno, J. F., Patel, K., Boriack-Jacobs, R., Ready, J. M., and Nijhawan, D. (2020) Target discovery of selective non-small-cell lung cancer toxins reveals inhibitors of mitochondrial complex I. *ACS Chem. Biol.* **15**, 158–170 CrossRef Medline

57. Matsuno-Yagi, A., and Hatefi, Y. (1985) Studies on the mechanism of oxidative phosphorylation. *J. Biol. Chem.* **260**, 11424–11427 Medline

58. Ernst, L., and Lee, C.-P. (1967) Energy-linked reduction of NAD\(^+\) by succinate. *Methods Enzymol.* **10**, 729–738 CrossRef Medline

59. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. *Nature* **227**, 680–685 CrossRef Medline

60. Schägger, H. (2006) Tricine-SDS-PAGE. *Nat. Protoc.* **1**, 16–22 CrossRef Medline

61. Pravda, L., Sehnal, D., Toušek, D., Navrátilová, V., Bazgier, V., Berka, K., Svobodová Vařeková, R., Koča, J., and Otyepka, M. (2018) MOLEonline: a web-based tool for analyzing channels, tunnels and pores. *Nucleic Acids Res.* **46**, W368–W373 CrossRef Medline

IACS-010759 is a unique inhibitor of mitochondrial complex I