PLOS CLIMATE – S1 Text

18 June 2022

SUPPORTING INFORMATION

ENSO-driven extreme oscillations in mean sea level destabilise critical shoreline mangroves – an emerging threat

Norman C Duke; Jock R Mackenzie; Adam D Canning; Lindsay B Hutley; Adam J Bourke; John M Kovacs; Riley Cormier; Grant Staben; Leo Lymburner; Emma Ai

Contents

1. Sea level influences on tidal mangroves
2. Two types of mangrove dieback attributed to extremes in sea level
3. Study site additional information
4. Post impact assessments of mangrove canopy recovery
5. Timeseries plots for the sea level stress index (SLSI)
6. Comparisons between green fraction indices and SLSI
7. Timeseries plots for climate data
8. Comparative assessment of sea level and southern oscillation index data
9. Comparative assessment of green fraction with climate and sea level data
10. Green fraction data used to quantify mangrove condition

1. Sea level influences on tidal mangroves

Mangrove vegetation notably dominant tidal wetlands bordering sub-tropical and tropical shorelines worldwide [2]. For this study, we focused on mangroves in northern Australia’s Gulf of Carpentaria (GOC) where there had been an unexplained instance of mass dieback [4, 11, 14, 15]; Fig 2). Forested mangrove habitats occupy distinct elevation zones across tropical tidal profiles, depending on sea level, tidal range and soft sediments [11]. The following definitions emphasise these distributional constraints on the combined vegetative composition of tidal wetlands consisting of mangroves plus tidal saltmarsh and microphyte-carpeted saltpans [3]. This tidal wetland zone has been defined broadly as the shoreline upper intertidal niche across the elevational range between mean sea level (MSL) and the highest astronomical tides (HAT).
The relative proportions and positioning of these three dominant vegetated components across this tidal wetland zone appear largely dependent on prevailing longer-term rainfall conditions [3]. As such, mangroves typically were located along the seaward foreshore edge, and considerably less along the landward edge. This profile distribution is displayed in the schematic (Fig A) of GOC shorelines for a seemingly compressed profile (occasionally up to 1-2 kilometres wide), comprised of a narrow landward edge of mangrove trees, a wide span of diminutive saltmarsh-saltpan vegetation, and a moderately wide zone of seaward mangroves. The 2015 dieback occurred at the upper ecotone edge of this seaward zone (see Fig B).

Fig A depicts three dominant processes influencing sea levels, including: A) longer-term oscillations in MSL (mentioned in the article); B) tidal cycles; and C) sea level rise.

![Schematic depiction of tidal zone and common positioning of vegetation zones along southern shorelines of Australia’s Gulf of Carpentaria. Vegetation consisted of a narrow landward mangrove zone, a wide expanse of saltpan flats with saltmarsh, and a mangrove seaward zone. These vegetation types occupy elevations between mean sea level (MSL) and highest astronomical tide (HAT) levels. Dieback in 2015 was notably present at the upper (rear) edge of the seaward mangrove fringe. Oscillations in MSL (A) were one of three dominant sea level change processes also including daily tidal influences (B) and the pervasive pressures of rapidly rising sea levels (C). Each have differing impacts regards changes to vegetation across the zone, and these responses are uniquely indicative of the dominant processes responsible (Image source: illustration by NCD).](image-url)

A. Sea level influences – multi-decadal and annual oscillations in mean sea level. While mangrove shorelines have been shaped and characterised by tidal cycles (see B) and rising sea levels (see C), it was further evident that fluctuations in MSL had also been influential
In 2015, when mass dieback of mangroves (see Fig B) occurred in Australia’s GOC, a particularly severe El Niño had caused an abrupt and extreme drop of >20 cm in MSL across the western Pacific region – a feature quantified initially in satellite altimetry [4, 57] and later in port sea level gauge records in this study. In the GOC, port gauges recorded much lower drops in MSL of >40 cm. These data were investigated for the GOC area to discover patterns in sea level fluctuations and their influences on events of mass dieback plus the seasonal growth of mangroves generally.

B. Sea level influences - the daily ebb and flow of tidal cycles. The daily period and range of tidal cycles define the upper and lower boundaries for the tidal wetland niche occupied by mangroves (shrubs and trees), saltmarsh (succulents and sedges) and saltpan (microphytobenthos). These vegetation types together occupy tidally-inundated upper portions of shoreline slopes comprised of largely unconsolidated sediments between upper landward tidal limits marked by the HAT level and lower seaward limits around MSL. The extent, location and combination of vegetation types between these firm boundary limits appear related to the net moisture limitations from key factors like tidal inundation frequency and range, groundwater flows, landscape runoff and rainfall [3, 11]. There are often also distinct mangrove zones [2] especially at landward and seaward fringes. For the GOC, while changes in rainfall and temperature had significantly shaped the pre-impact zonation [3, 13], these influences were notably independent of the process that caused the widespread mass dieback in 2015 (see A above).

C. Sea level influences - rising of sea levels. Sea levels have been rising progressively as a direct consequence of global warming. And, rises in the GOC reportedly had been unusually rapid (>8 mm/yr) [50] driven by unusual biogeographic and topographic features of the GOC [56]. Furthermore, observations of rising sea levels were also consistent with anecdotal accounts of saline intrusion across the region. However, these impacts on mangrove condition caused by rising sea levels were also independent of the processes responsible for the 2015 mass dieback in northern Australia (see A above).

It has been instructive to distinguish between these sea level processes, where each expresses different constraints on landward and seaward zone ecotones, and ultimately where their combination gives rise to the characteristic zonation observed amongst tidal wetland vegetation. And, as such, this usefully demonstrates how zonation ultimately appears dependent on their combined influences of moisture availability – especially where this relates to the particular environmental drivers responsible. So, our focus on the 2015 mangrove dieback has allowed us to discriminate between the key sea level influences occurring across the inter tidal zone (Fig A).

Accordingly, the upper ecotone of the landward zone appears mostly influenced by infrequent seawater wetting at the tidal limit of HAT plus seasonal groundwater flows (fed by catchment rainfall). The key determining factors for this ecotone include all three processes influencing MSL (Fig A) plus rainfall. Changes to the landward ecotone include ‘terrestrial retreat’ (= dead supratidal vegetation, bank erosion and undercutting [11]) and ‘mangrove
encroachment’ (= mangrove seedlings amongst dead and dying supratidal vegetation [11]).
By contrast, the lower ecotone of the landward zone is mostly influenced by longer-term
rainfall, with the indicator of ‘ecotone shift’ (either = negative, with patches of mangrove
dieback, or = positive, with patches of mangrove seedlings, spread along the ecotone [3, 11]).
This combination of influences explains why the landward zone is often quite narrow or
absent in particularly arid areas of very low rainfall, like the GOC.

Between the lower mangrove ecotone of the landward mangrove zone and the upper ecotone
of the seaward mangrove zone, there is another indicator of rising sea levels (Fig A) with
‘saltpan scouring’ (= sheet erosion, channelling drainage erosion, loss of saltmarsh and
saltpan vegetation [11]) of often very wide flat areas of saltpan and saltmarsh vegetation. It is
expected that these influences contribute to respective upper and lower ecotones with each of
the two bordering mangrove zones.

Also influenced by ecotone shift, is the upper ecotone of the seaward edge. But, in areas of
relatively low rainfall like the GOC, this ecotone appears to exist at or near some minimal
position dependent on mostly moderate annual oscillations in MSL (Fig A) for regular
seawater inundation with normal tidal cycles. This feature explains why healthy closed-

11. Two types of mangrove dieback attributed to extremes in sea level
Two previously unrecognised types of mangrove dieback have been identified in this article.
These are the direct consequence of either unusually low or high sea levels. These two types
of mangrove dieback add to the range of indicative processes observed influencing coastal
shorelines and mangrove-lined waterways [14, 41, 42], and depicted in Fig 9.6 in Duke et al.
[11] as a graphical schematic showing the range of response indicators observed influencing
intertidal shorelines. The two newly identified types of mangrove dieback are described as
follows.

‘Desiccation dieback’ or ‘Taimasa dieback’ (Fig B)
Indicator. Broad, abrupt and widespread dieback of mangroves at and below the upland ecotone of the shoreline mangrove zone (Fig A). This differs from rainfall influenced ‘ecotone shift’ which is relatively moderate and progressive in response to longer-term trends in climate [3]. Trees killed by both these kinds of dieback noticeably die standing without any physical damage.

Fig B. ‘Desiccation dieback’, similar to ‘ecotone shift negative’ [3], notably varied in severity from extreme (A), to moderate (B), to minor (C). This was quantified, as indicated, by the proportional loss of the shoreline mangrove zone (hatched green area) down from the upper ecotone (also see Fig A). The map (D) also represents the location of the green fraction timeseries site for Karumba (GOC6; see Table A), noting this location marks the upland ecotone (Image sources: photographs and illustration by NCD).

Impact. Damage to the shoreline zone can be particularly severe where most, if not all, of the shoreline zone trees are killed. Impacted shorelines become highly vulnerable to shoreline erosion from other factors including severe cyclones and the progressive pressure of rising sea levels. Where more than 20% of the shoreline zone mangroves remain, the longer-term impacts are significantly reduced with recovery notably more likely.
Cause. Mangroves trees die from ‘desiccation dieback’ during periods of unusually low MSL resulting from very strong El Nino conditions. The low sea levels responsible have been estimated to be less than -40 cm over six months during the dry season. Trees die from severe moisture deficit in the absence of seawater inundation, or moisture from any other source, like rainfall.
‘Drowning dieback’ or ‘Inner Fringe Collapse’ (Fig C)

Indicator. Patches of dieback, dead trees, regrowth and forest gaps close to the seaward edge of mangroves of the shoreline mangrove zone (Fig A). This differs from ‘storm damage’ which tends to be associated with ‘shoreline erosion’ plus broken branches and uprooted trees. Trees killed by ‘drowning dieback’ noticeably die standing without physical damage.

Fig C. ‘Drowning dieback’, also called ‘inner fringe collapse’, is characterised by patches of dead trees or gaps close to, and along, the seaward edge of the shoreline mangrove zone (also see Fig A). For A, ‘inner fringe collapse’ was described from shoreline surveys of Boigu Island in Torres Strait [42]. For B, the map represents the location of the green fractional timeseries site for Carnarvon in this study (W1; see Table A). Note, the location was positioned close to the seaward ecotone amongst the fringing dieback patches (Image sources: photograph and illustration by NCD).

Impact. Damage to the seaward edge of mangroves reduces their resilience to the pressures of rising sea levels. So, this damage can often be associated with erosion of exposed trees along
the seaward edge. Shorelines in such a damaged state are further vulnerable to large waves and gale-force winds from occasional severe tropical cyclones, and severe flood events.

Cause. Mangroves trees die from ‘drowning dieback’ during periods of unusually high MSL resulting from very strong La Nina conditions. Trees die from excessive inundation when sea levels fail to retreat for more than 50% of the time. This kind of dieback is also likely associated with rising sea levels, especially where such impacts occur during periods of periodically high sea levels.

2. Study site additional information – Tables A & B

Table A. Specific locations as comparisons for the presence or absence of 2015 mass mangrove dieback across northern Australia, specifically in north western Australia (W), the Gulf of Carpentaria (GOC), and north eastern Australia (E) referred to in these investigations (see Fig 2). Unlike the other sites, field transect sites in the GOC – marked with asterisks – each had lost substantive portions (>50%) of their seaward fringing mangroves.

#	Site Code	Location	Latitude S	Longitude E
1	W1	Carnarvon, WA	-24.969945	113.663849
2	W2	Mangrove Bay, near Exmouth, WA	-21.958355	113.947217
3	W3	Joseph Bonaparte Gulf, NT, near Wyndham, WA	-14.866115	128.927841
4	GOC1	Blue Mud Bay, Roper , NT – GOC	-13.684102	135.891294
5	GOC2	Groote Is., Roper, NT – GOC	-13.831171	136.458774
6	GOC3*	Limmen Bight R. – Roper, NT – GOC	-15.146215	135.788778
7	GOC4*	Mule Ck. – Roper, NT – GOC	-15.650919	136.441971
8	GOC5	Nicholson R., QLD – Southern – GOC	-17.484300	139.588160
9	GOC6*	Karumba, QLD – South East – GOC	-17.422561	140.853576
10	GOC7*	North Mitchell R., QLD, West Cape – GOC	-15.027324	141.665424
11	GOC8	Weipa, QLD, West Cape – GOC	-12.691041	141.825381
12	E1	Cairns & Trinity Inlet, QLD	-16.882779	145.762058
13	E2	Port Curtis & Gladstone, QLD	-23.839073	151.197393
14	E3	Moreton Bay & Brisbane, QLD	-27.334663	153.240527
Table B. Mangrove monitoring sites with both nearby Bureau of Meteorology (BOM) and Permanent Service for Mean Sea Level (PSMSL) monitoring sites used in multivariate regression analyses. Locations of recording stations across northern Australia, specifically relate to multivariate regression analyses applied in this study (see Table A; Fig 2). Source: BOM (http://www.bom.gov.au/) and PSMSL (https://www.psmsl.org/). Sites in bold are those located in Australia’s Gulf of Carpentaria (GOC).

Site	BOM monitoring site	PSMSL monitoring site
W1	Carnarvon Airport: 006011	Carnarvon: 1115
W2	Exmouth Town: 005051	Exmouth: 1762
W3	Wyndham: 001013	Wyndham: 1116
GOC1	Groote Eylandt Airport: 014518	Milner Bay (Groote Eylandt): 1160
GOC2	Groote Eylandt Airport: 014518	Milner Bay (Groote Eylandt): 1160
GOC6	Normanton Airport: 029063	Karumba: 835
GOC8	Weipa Aero: 027045	Weipa: 1157
E1	Cairns Aero: 031011	Cairns: 953
E2	Gladstone Airport: 039326	Gladstone: 825
E3	Brisbane: 040913	Brisbane (West Inner Bar): 822
3. Post impact assessments of mangrove canopy recovery - Table C

Table C. Instances of pulse (abrupt) mangrove canopy decline in the 14 sites across northern Australia (Fig 2; Table A between 1987 and 2020 observed in green fraction (GF) timeseries plots (Fig 3). The comparison of percent canopy loss and years to recovery displayed in Fig 6).

#	Site Code	Pulse Canopy Decline #	Date of Canopy Decline	% Loss of Canopy GF	Recovery Time (Years)	Apparent Cause of Pulse Setback	Prior and Post Observed Storm Events
1	W1	1	Nov-2002	8	1	Drowning	Post TC Alistair (Cat. 1) Apr-2001
2		2	May-2000	15	1.5	Drowning	Post TC Steve (Cat. 2) Mar-2000
3		3	Sep-1997	25	1	Desiccation	Post TC Olwyn (Cat. 3) Mar-2015
4		4	Jul-2010	30	4.5	Drowning	Post TC Olwyn (Cat. 4) Mar-2015
5		5	Aug-2015	48	10	Desiccation	
6		6	Dec-2002	55	9	Desiccation	
7	W3	1	Apr-2011	8	0.5	Drowning	Post AU291314_09U (Cat. 1) Feb-2014
2		2	Nov-2002	20	1	Desiccation	Post TC Raymond (Cat. 1) Jan-2005
3		3	Aug-2015	25	5	Desiccation	
4	GOC1	1	Apr-2011	10	1.5	Drowning	Post TC Alessia (Cat. 1) Nov-2013
2		2	Apr-2008	15	1	Drowning	Post TC Paul (Cat. 2) Mar-2010
3		3	Apr-1995	21	7	Drowning	
4		4	Aug-2015	25	5	Desiccation	
5	GOC2	1	May-1999	15	2	Drowning	Post TC Winsome (Cat. 2) Feb-2001
2		2	Nov-2002	30	3	Desiccation	Prior TC Winsome (Cat. 2) Feb-2001
3		3	Aug-2015	58	8	Desiccation	
6	GOC3	1	Apr-2009	10	1	Drowning	
2		2	Aug-2015	50	12	Desiccation	Post TC Owen (Cat. 3) Dec-2018
7	GOC4	1	Apr-2009	10	1	Drowning	Post TC Oswald (Cat. 1) Jan-2013
2		2	Sep-1994	39	7	Storm Flooding	Prior flood Feb-1994; Post TC Jacob (Cat. 1) Feb-1996
3		3	Aug-2015	45	8	Desiccation	Post TC Trevor (Cat. 4) Mar-2019
8	GOC5	1	Aug-2015	10	2	Desiccation	
2		2	Apr-2009	12	1	Drowning	Post TC Olga (Cat. 1) Jan-2010
3		3	Aug-2015	15	6.5	Desiccation	
9	GOC6	1	Apr-2009	10	3	Drowning	Post TC Olga (Cat. 1) Jan-2010
---	---	---	---	---			
2	Sep-1995	25	2	Desiccation	Post TC Steve (Cat. 1) Feb-2000		
3	Aug-2015	66	14.5	Desiccation			
10	GOC7	1	Apr-2009	2	0.5	Drowning	Post TC Jasmine (Cat. 1) Feb-2012
2	Apr-2009	8	1	Drowning	Post TC Jasmine (Cat. 1) Feb-2012		
3	Jun-2011	45	10.5	Storm Flooding	Prior flood Mar-2011; Post TC Jasmine (Cat. 1) Feb-2012		
4	Aug-2015	55	10	Desiccation			
11	GOC8	1	Mar-2008	40	3	Drowning	
2	Oct-2015	42	10	Desiccation			
3	Jul-1993	60	8	Desiccation	Prior TC Nina (Cat. 3) Dec-1992; Post TC Ethel (Cat. 2) Mar-1996		
12	E1	1	Oct-1990	8	0.5	Desiccation	
2	Sep-1991	12	0.5	Desiccation			
3	Oct-2015	13	0.5	Desiccation			
13	E2	1	May-2011	4	0.5	Drowning	Post TC Marcia (Cat. 2) Feb-2015
2	Nov-1994	30	4	Storm Hail	Concurrent hail storm Nov-1994		
14	E3	1	Jun-1999	2	0.5	Drowning	
2	Nov-1992	11	1	Desiccation			
4. Timeseries plots for the sea level stress index - Fig D

Fig D. Sea level stress index (SLSI) timeseries for the 10 sites across northern Australia display fluctuations in sea level between 1987 and 2021, notably followed annual and longer-term oscillations. Note that the extreme low threshold of -400 mm in SLSI was only lower in the Karumba (GOC6) site (see Fig 3, and Table 3), the site with the most catastrophic loss of shoreline mangroves of these sites (Image source: illustration by ADC).
5. **Comparisons between green fraction indices and sea level stress index (SLSI)** - Fig E

Site	W1	W2	W3	GOC1	GOC2	GOC3	GCC8	E1	E2	E3
	![Anomaly](anomaly.png)	![Percentage](percentage.png)								

Fig E. Green fractional indices (anomaly and percentage) versus the sea level stress index (SLSI) in the 10 sites across northern Australia between 1987 and 2021. Right-side plots (for each site) display the relationship between the SLSI and canopy condition with lowest levels during 2015-2016 (red arrow line). Further depicted is the impact on mangrove canopies in Carnarvon (W1) during 2010-2011 (blue arrow line). Left-side plots display the significant linear relationships (P<0.001) between the SLSI and green fractional anomaly data. Monthly averages follow a common, repeated cyclical pattern (bold line) with the same calendar months each year (circled 1-12) having high (months 3-4 = March-April; orange circles) and low (months 10-11 = October-November; yellow circles) canopy densities in tropical sites from Exmouth to Weipa (Image source: illustration by NCD).
6. Timeseries plots for climate data - Figs F & G

Fig F. Mean temperature anomaly timeseries for the 10 sites across northern Australia display fluctuations in the monthly rainfall between 1987 and 2021. These followed annual and longer-term oscillations (Image source: illustration by ADC).
Fig G. Rainfall anomaly timeseries for the 10 sites across northern Australia display fluctuations in the monthly rainfall between 1987 and 2021. These followed annual and longer-term oscillations (Image source: illustration by ADC).
7. Comparative assessment of sea level and southern oscillation data - Table D

Table D. Statistics for multivariate regressions with autocorrelated errors predicting the sea level anomaly from the SOI anomaly and time at ten coastal sites across northern Australia (Table A). Fit statistics include: the coefficients, its standard error (Coef SE), the t value, P value, Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), Log-likelihood (loglik), residual standard error (RSE), degrees of freedom (DF) and residuals.

Site	Component	Coefficient	Coef SE	t value	P value	AIC	BIC	loglik	RSE	DF	Residuals
W1	Intercept	-8.09	313.69	-0.03	0.979	1779.67	1795.64	-884.84	102.54	180	177
	SOI anomaly	1.84	1.16	1.58	0.116						
	Time	0.00	0.02	0.10	0.921						
W2	Intercept	-84.00	204.17	-0.41	0.681	1758.72	1774.69	-874.36	77.11	180	177
	SOI anomaly	2.81	1.08	2.60	<0.001						
	Time	0.01	0.01	0.40	0.693						
W3	Intercept	49.51	182.12	0.27	0.786	1842.03	1858.00	-916.02	80.32	180	177
	SOI anomaly	8.15	1.32	6.20	<0.001						
	Time	0.00	0.01	-0.23	0.820						
GOC1	Intercept	65.58	276.88	0.24	0.813	1987.33	2003.24	-988.66	124.36	178	175
	SOI anomaly	11.81	2.08	5.68	0.000						
	Time	0.00	0.02	-0.22	0.830						
GOC2	Intercept	65.58	276.88	0.24	0.813	1987.33	2003.24	-988.66	124.36	178	175
	SOI anomaly	11.81	2.08	5.68	<0.001						
	Time	0.00	0.02	-0.22	0.830						
GOC6	Intercept	92.94	419.83	0.22	0.825	2119.36	2135.24	-1054.68	187.41	177	174
	SOI anomaly	17.39	3.13	5.56	<0.001						
	Time	-0.01	0.03	-0.24	0.813						
GOC8	Intercept	33.21	323.50	0.10	0.918	2065.40	2081.37	-1027.70	145.82	180	177
	SOI anomaly	13.63	2.43	5.61	<0.001						
	Time	0.00	0.02	-0.09	0.929						
E1	Intercept	-33.66	286.22	-0.12	0.907	2023.97	2039.94	-1006.99	129.47	180	177
	SOI anomaly	12.34	2.16	5.71	<0.001						
	Time	0.00	0.02	0.10	0.918						
E2	Intercept	-101.95	113.10	-0.90	0.369	1567.37	1583.14	-778.69	45.86	173	170
	SOI anomaly	1.97	0.75	2.63	0.009						
	Time	0.01	0.01	0.97	0.335						
E3	Intercept	-7.19	69.40	-0.10	0.918	1496.57	1512.50	-743.28	30.95	179	176
	SOI anomaly	0.82	0.51	1.59	0.113						
	Time	0.00	0.01	0.28	0.780						
8. Comparative assessment of green fraction with climate and sea level - Table E

Table E. Statistics for multivariate regressions with autocorrelated errors predicting the fractional canopy cover anomaly from the sea level anomaly, rainfall anomaly, temperature anomaly and time at ten coastal sites across northern Australia (see Table A). Fit statistics include: the coefficients, its standard error (Coef SE), the t value, P value, Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), Log-likelihood (loglik), residual standard error (RSE), degrees of freedom (DF) and residuals.

Site	Component	Coefficients	t value	P value	AIC	BIC	loglik	RSE	DF	Residuals
W1	Intercept	5.83	0.15	0.880	433.86	453.43	-209.93	7.04	121	116
	Sea level anomaly	0.03	0.01	5.08	0.000					
	Rainfall anomaly	-0.04	0.02	-2.03	0.045					
	Temperature anomaly	-0.84	0.14	-5.94	0.000					
	Time	0.00	0.00	-0.23	0.819					
W2	Intercept	-99.09	-1.92	0.058	439.48	459.05	-212.74	11.62	121	116
	Sea level anomaly	0.02	0.00	3.65	0.000					
	Rainfall anomaly	0.01	0.01	0.60	0.547					
	Temperature anomaly	0.03	0.08	0.36	0.723					
	Time	0.01	0.00	1.88	0.063					
W3	Intercept	-4.84	-0.18	0.855	466.25	485.82	-226.12	4.94	121	116
	Sea level anomaly	0.04	0.01	7.22	0.000					
	Rainfall anomaly	-0.01	0.01	-1.09	0.278					
	Temperature anomaly	-1.49	0.19	-7.79	0.000					
	Time	0.00	0.00	0.11	0.909					
GOC1	Intercept	10.04	0.26	0.798	617.43	636.88	-301.71	7.94	119	114
	Sea level anomaly	0.05	0.01	5.62	<0.001					
	Rainfall anomaly	-0.01	0.02	-0.38	0.706					
	Temperature anomaly	-3.88	0.60	-6.42	<0.001					
	Time	0.00	0.00	-0.25	0.803					
GOC2	Intercept	33.02	0.96	0.340	561.68	581.13	-273.84	6.76	119	114
	Sea level anomaly	0.03	0.01	4.41	<0.001					
	Rainfall anomaly	0.01	0.01	0.62	0.536					
	Temperature anomaly	-3.99	0.46	-8.74	<0.001					
	Time	0.00	0.00	-0.89	0.377					
GOC6	Intercept	5.16	0.18	0.860	501.26	520.83	-243.63	5.53	121	116
	Sea level anomaly	0.02	0.00	4.09	<0.001					
	Rainfall anomaly	-0.02	0.01	-1.84	0.068					
	Temperature anomaly	-3.18	0.30	-10.78	<0.001					
	Time	0.00	0.00	-0.22	0.826					
GOC8	Intercept	12.08	0.19	0.850	596.39	615.96	-291.19	11.39	121	116
	E1	E2	E3							
-------------------	-----------	-----------	-----------							
Intercept	-2.35	13.84	-18.07							
Sea level anomaly	0.03	0.05	0.04							
Rainfall anomaly	0.00	-0.01	-0.03							
Temperature	-4.13	-0.38	-0.03							
anomaly	0.41	0.11	0.21							
Time	0.00	0.00	0.00							

9. **Green fraction data used to quantify mangrove condition**

Relevant data used in this article are listed for 14 sites across northern Australia (see Table A) for the period 1987 to 2021. For a description of the variables used, see the Methods. The variables include: ‘FCC_anomaly’; ‘SL_anomaly’; ‘SOI_anomaly’; ‘Rainfall_anomaly’ and ‘Temp_anomaly’. Refer to the spreadsheet titled ‘S1 Data’.