Heterogeneity in respiratory electron transfer and adaptive iron utilization in a bacterial biofilm

Yuxuan Qin1,2, Yinghao He2, Qianxuan She2, Philip Larese-Casanova3, Pinglan Li1 & Yunrong Chai2

In *Bacillus subtilis*, robust biofilm formation requires large quantities of ferric iron. Here we show that this process requires preferential production of a siderophore precursor, 2,3-dihydroxybenzoate, instead of the siderophore bacillibactin. A large proportion of iron is associated extracellularly with the biofilm matrix. The biofilms are conductive, with extracellular iron potentially acting as electron acceptor. A relatively small proportion of ferric iron is internalized and boosts production of iron-containing enzymes involved in respiratory electron transfer and establishing strong membrane potential, which is key to biofilm matrix production. Our study highlights metabolic diversity and versatile energy generation strategies within *B. subtilis* biofilms.
Most bacteria are capable of forming surface-associated, architecturally complex communities, known as biofilms. The Gram-positive bacterium Bacillus subtilis forms morphologically complex colony biofilms on solid surface and pellicle biofilms at the air/liquid interface, in specialized biofilm-inducing media. Cell differentiation occurs in the B. subtilis biofilm both spatially and temporally, and is regulated by integrative signaling pathways and influenced by various environmental factors. Cell differentiation generates phenotypically distinct cell types within the biofilm, such as matrix producers, swimmers, competent cells, antibiotic producers, and so on. Each cell type possesses unique features and functionality, yet different cell types complement with each other in that the entire community shows synergy and cooperation.

In summary, complexity and heterogeneity is a hallmark feature of the B. subtilis biofilm.

Iron is an essential nutrient element for growth and a cofactor for various enzymes and proteins involved in key biological processes in the bacteria, in particular cellular metabolism and energy generation. In the natural environments, iron availability is very limited due to extremely low solubility of ferric iron (Fe(III)) under neutral pH (10−18 M). Bacteria thus developed various strategies to uptake iron from the environment. When intracellular levels of iron are low, bacteria turn on multiple iron uptake systems for iron acquisition. In B. subtilis, those iron acquisition systems are composed of transporters for the import of elemental iron, ferric citrate, ferrioxamine, ferrichrome, and proteobactin. A key regulator, Ferric uptake regulator (Fur), is responsible for the regulation and derepression of the above iron acquisition systems when iron is limited. Fur also regulates genes involved in the biosynthesis of a B. subtilis siderophore, bacillibactin (DhbA-CEBF), and a cognate uptake system (FenABC-YusV). Bacillibactin is a catechol siderophore and binds iron with an extremely high affinity. It can be toxic due to its involvement in the Fenton reaction, which generates non-selective free radicals that can damage various biological molecules such as protein, lipid, and DNA. Thus, in bacteria, iron homeostasis plays an important role in maintaining an appropriate range of intracellular iron levels to satisfy the normal need for metabolism and growth.

Recent studies indicate importance of iron not only in free-living bacteria but also in biofilm formation. In biofilm-forming bacteria such as Pseudomonas aeruginosa and Staphylococcus aureus, high levels of iron were shown to be important for robust biofilm formation, suggesting a common and important role of iron in biofilm development. In B. subtilis, robust biofilm formation also demands unusually high levels of ferric iron, hundreds fold higher than needed for normal growth, yet the exact reason is less clear. In this study, we aim to address the above question. We provide mechanistic details of why excessive iron is needed for robust biofilm formation in B. subtilis and uncover an adaptive strategy for acquisition and utilization of large amounts of iron during B. subtilis biofilm development.

Results

2,3-Dihydroxybenzoate is essential for biofilm formation. In a previous study, we investigated the role of various nonribosomal peptides (NRPs) in B. subtilis biofilm formation. Many of those NRPs had dispensable roles in biofilm formation as assessed by the biofilm phenotypes of the mutants. For instance, two mutants deficient in either bacilaene or fengycin biosynthesis showed little noticeable biofilm phenotypes (Δpks and Δpps, Fig. 1a, b). Surprisingly, a ΔdhbA mutant deficient in the siderophore bacillibactin production was very defective in biofilm formation (Fig. 1b). Bacillibactin is a catechol siderophore that binds to ferric iron with an extremely high affinity. The role of bacillibactin in iron acquisition is well known, but its role in biofilm formation has not been studied in B. subtilis until very recently.

Bacillibactin biosynthesis relies on the dhbA-F operon encoding enzymes that carry out four sequential reactions converting 3-chorismate to bacillibactin (Fig. 1a, c). Since dhbF encodes the most important enzyme involved in the final reaction in bacillibactin biosynthesis (Fig. 1c), a deletion mutant of dhbF (ΔdhbF) was constructed and the biofilm phenotype of the mutant was examined. To our surprise, the mutant did not exhibit any noticeable biofilm defect (Fig. 1d). Puzzled by this observation, non-polar in-frame deletion mutations for each individual genes in the dhbA-F operon were constructed and biofilm phenotypes by those in-frame deletion mutants were examined. As shown in Fig. 1d, ΔdhbA, ΔdhbB, and ΔdhbC all had a very severe biofilm defect. In contrast, ΔdhbE formed robust pellicle biofilms similar to that of ΔdhbF. Since DhbB and DhbF are known to be only involved in the last step of bacillibactin biosynthesis, which (together with DhbB) converts 2,3-dihydroxybenzoate (DHB) to bacillibactin, a trimeric ester of 2,3-dihydroxybenzoate-glycine-threonine (Fig. 1c), these results suggest that bacillibactin is not important; rather, the precursor DHB plays an essential role in biofilm formation. To further test this idea, a chemical complementation was performed by supplementing pure DHB (1 µg ml−1) to the biofilm media. This time, ΔdhbA, ΔdhbB, and ΔdhbC all formed robust, wild-type-like pellicle biofilms (M5g + DHB, Fig. 1d). We also noticed that in order to completely rescue the biofilm defect of ΔdhbA, ΔdhbB, and ΔdhbC to the wild-type level, supplementation of about 60 µM (equals to about 1 µg ml−1) DHB was needed, implying that wild-type cells produced and secreted DHB sufficiently. This implication was also supported by a recent study, in which secreted DHB amounts were directly measured. DHB is able to bind ferric iron, albeit at a lower binding affinity compared to that of bacillibactin. A similar DHB, 3,4-dihydroxybenzoate, or protocatechuic acid, produced by Corynebacterium glutamicum, is a well-studied iron chelator.
2,3-Dihydroxybenzoate (DHB) is essential for biofilm formation.

a A diagram of biosynthetic gene clusters for three different non-ribosomal peptides (NRPs) in *B. subtilis*. **b** Formation of pellicle biofilms by the mutants deficient in the biosynthesis of the three NRPs. Strains shown are WT(3610), Δpks (CY167), Δpps(CY168), and ΔdhbA(YQ90, insertion deletion). Cells were incubated in MSgg at 30 °C for 2 days before images were taken. Scale bar, 5 mm. **c** A 4-step enzymatic conversion from 3-chorismate to bacillibactin carried out by enzymes encoded in the dhbA-F operon24. **d** Formation of pellicle biofilms by non-polar in-frame deletion mutants of the dhbA-F operon and chemical complementation. Strains shown are WT(3610), ΔdhbA(YQ97, in-frame deletion), ΔdhbB(YQ98), ΔdhbC(YQ99), ΔdhbE(YQ100), and ΔdhbF(YQ101). Cells were incubated in MSgg at 30 °C for 2 days before images were taken. For chemical complementation, DHB was added at the final concentration of 1 μg ml⁻¹ (~60 μM). Scale bar, 5 mm

subtilis**. The qPCR assay was repeated by using pellicle biofilm cells from modified MSgg that contained only 1% of the regularly added ferric iron (0.5 μM FeCl₃). Again, it failed to detect any expression of the *dhb* gene (gray bars, Fig. 2b). Expression of all other genes in the operon was detected, but at a much lower level when compared to that of 50 μM FeCl₃. The undetectable expression of *dhbF* under both iron conditions (50 and 0.5 μM of FeCl₃) seemed to match with the observed wild-type-like biofilm phenotypes of ΔdhbF, suggesting a largely dispensable role of bacillibactin in biofilm formation. Lastly, as a note, the expression of *dhbF* was detected when cells were grown under extreme iron-limiting conditions (MSgg without any added FeCl₃), and the ΔdhbF mutant grew much slower in minimal media without FeCl₃ supplementation (data not shown), consistent with previous studies.

dhbA-F is regulated by AbrB in response to biofilm signals. The observation that the expression of the dhbA-F operon was much lower at the lower iron condition (0.5 μM) than the higher iron condition (50 μM) was somewhat surprising given that the dhbA-F operon is known to be repressed by Fur under iron-rich conditions in *B. subtilis*. Therefore, increased expression of the *dhb* genes under the higher iron condition (50 μM FeCl₃) was unlikely due to the regulation by Fur. To search for additional regulators for the dhbF operon under biofilm conditions, the regulatory sequence of the operon was analyzed and a putative AbrB recognition motif was identified. AbrB is a biofilm repressor and a transition state regulator known to control a number of operons involved in biofilm formation and secondary metabolites biosynthesis. To test if AbrB regulates the operon, a promoter-lacZ fusion for the dhb operon was constructed and integrated to the chromosomal *amyE* locus of the wild-type strain, the ΔabrB mutant, and the Δfur mutant (as a positive control). Expression of the reporter fusion in the wild-type and the mutants was assayed. The results confirmed that in the Δfur mutant, the activity of the reporter fusion was very
strongly induced (Fig. 2c), suggesting that in the wild-type strain, Fur-mediated strong repression was in place. Interestingly, in the ΔabrB mutant, the activity of the reporter fusion was also strongly induced (Fig. 2c). This indicates that under biofilm conditions, the dhb operon is co-repressed by both AbrB and Fur and derepression can be triggered by either Fur in response to iron limitation or by inactivation of AbrB via sensing of biofilm signals (Fig. 2a). Previous studies have shown that AbrB was gradually inactivated in the presence of biofilm signals through the known biofilm pathway and the master regulator Spo0A30,31. The observed modest derepression of the dhbA-F operon in wild-type cells in later time points (blue line, Fig. 2c) was consistent with the above idea and with the expression profile of other AbrB-regulated genes such as the biofilm matrix operon tapA-sipW-tasA30.

Biofilm formation demands large amounts of ferric iron. Although ferric iron is very poorly soluble in regular media, large amounts of ferric iron were shown to be needed in the biofilm media for B. subtilis to form robust biofilms (Fig. 2d). A decrease of the concentration of ferric iron in the media from 50 to 5 μM already started to impact biofilm formation while a further decrease to 0.5 μM severely blocked biofilm formation (Fig. 2d). The block in biofilm formation was not due to growth inhibition, since only a mild difference was seen in growth even if ferric iron was not at all added to the media (presumably trace amount of ferric iron was present in the water and other chemical ingredients during media preparation) (Supplementary Fig. 1A).

Excess iron stimulates production of iron-binding enzymes. Higher media iron concentrations might boost yet unknown activities critical for robust biofilm formation. Many of the iron-responsive genes are under the control of Fur32. We argued that those genes would be less likely to be directly involved since many of them are primarily involved in iron uptake and since those genes would be further repressed by Fur upon increasing iron concentrations10. Our focus was then shifted to genes encoding proteins that contain iron as a cofactor. Activities of those proteins depend on iron binding and thus cellular iron availability3. One category of those proteins consists of enzymes involved in cellular metabolism and energy generation, such as glycolysis, citric acid cycle, and electron transfer chain (ETC) (Fig. 3a, b). Previous studies have shown that the abundance of some of those enzymes increased significantly in response to elevated intracellular iron availability33. It was unclear whether increased abundance of those proteins was due to upregulated gene expression...
upon increasing iron availability, and more importantly whether any of those proteins might be critical for biofilm formation. To test that, three different experiments were carried out. In the first experiment, a number of genes encoding metabolic enzymes containing iron as a cofactor were selected (highlighted in red, Fig. 3a, b). Deletion mutants for each of those genes were constructed and biofilm phenotypes of the mutants were examined. Some mutants had no noticeable biofilm phenotype. By contrast, deletion of \(\Delta \)lutABC, \(\Delta \)menH, \(\Delta \)gpsA, \(\Delta \)ntdF, and \(\Delta \)qcrA (data not shown) were not further investigated. The remaining three mutants, \(\Delta \)sdhC, \(\Delta \)menH, and \(\Delta \)gpsA, were most interesting to us since they all showed a very severe biofilm defect (Fig. 3c), and no noticeable growth defect compared to the wild type (Supplementary Fig. 1B). Interestingly, all three enzymes are known to be involved in respiratory electron transfer (Fig. 3b), while SdhC, part of the succinate dehydrogenase complex, is also involved in citric acid cycle (Fig. 3a)\(^{35}\). These results indicated that although impaired electron transfer had much less of an impact on growth under tested conditions, it was detrimental to biofilm formation in \(B. \ subtilis \).

In the second experiment, expression of selected genes (\(\Delta \)sdhC, \(\Delta \)menH, \(\Delta \)gpsA, \(\Delta \)ntdF, and \(\Delta \)qcrA) encoding for enzymes involved in electron transfer\(^{36}\) was investigated by RT-qPCR. Cells were collected from pellicle biofilms developed under two different media ferric iron conditions (0.5 vs. 50 \(\mu \)M FeCl\(_3\)). An elevated induction in expression of all five genes was observed under the 50 \(\mu \)M media ferric iron concentration, compared to that of 0.5 \(\mu \)M FeCl\(_3\). Expression of \(\Delta \)sdhC, \(\Delta \)ntdF, \(\Delta \)gpsA, \(\Delta \)menH, and \(\Delta \)qcrA was found much higher in cells in media with 50 \(\mu \)M FeCl\(_3\) than in media with 0.5 \(\mu \)M FeCl\(_3\). The relative transcriptional level in the latter media was set at 1; fold changes represent the fold differences in transcription under two different media conditions. Data presented are the mean ± s.d. (\(n = 3 \)). Error bars represent standard deviations. Stars indicate \(P \) values <0.01. Statistical significance was assayed using unpaired t test via Prism 6. Stars indicate \(P \) values <0.01. Source data are provided as a Source data file.

Fig. 3 High iron concentrations stimulate production of iron-binding metabolic enzymes. a The diagram of glycolysis and citric acid cycle in \(B. \ subtilis \). Highlighted in red are enzymes whose activities depend on iron as a cofactor. LutABC, lactate utilization protein complex; PdhABCD, pyruvate dehydrogenase complex; CitB, citric acid isomerase; SdhCAB, succinate dehydrogenase. b The diagram of the electron transfer chain in \(B. \ subtilis \). Highlighted in red are enzymes whose activities depend on iron as a cofactor. NADH dehydrogenase, glycerol-3-phosphate (G-3-P) dehydrogenase, and succinate dehydrogenase are three primary substrate dehydrogenases denoting electrons to the electron transfer chain. The electron transfer from succinate dehydrogenase to the electron carrier quinone can be blocked by a chemical inhibitor thenoyltriiodoacetic acid (TTFA). Cells were incubated in MSgg at 30 °C for 2 days before images were taken. TTFA was added at the final concentration of 0, 50, or 100 \(\mu \)M at the beginning of inoculation. Scale bar, 5 mm; Scale bar at the bottom panel, 2.5 mm. c Inhibition of \(B. \ subtilis \) pellicle biofilm formation by TTFA. Cells were incubated in MSgg at 30 °C for 2 days before images were taken. TTFA was added at the final concentration of 0, 50, or 100 \(\mu \)M at the beginning of inoculation. Scale bar, 5 mm. d Real-time PCR analyses to probe expression of the genes involved in electron transfer. Total RNAs were prepared from cells collected from the pellicle biofilm in MSgg but with two different ferric iron supplementations (50 vs. 0.5 \(\mu \)M FeCl\(_3\)). Expression of \(\Delta \)sdhC, \(\Delta \)ntdF, \(\Delta \)gpsA, \(\Delta \)menH, and \(\Delta \)qcrA was found much higher in cells in media with 50 \(\mu \)M FeCl\(_3\) than in media with 0.5 \(\mu \)M FeCl\(_3\). The relative transcriptional level in the latter media was set at 1; fold changes represent the fold differences in transcription under two different media conditions. Data presented are the mean ± s.d. (\(n = 3 \)). Error bars represent standard deviations. Stars indicate \(P \) values <0.01. Statistical significance was assayed using unpaired t test via Prism 6. Stars indicate \(P \) values <0.01. Source data are provided as a Source data file.
Membrane potential is key to biofilm matrix production. One of the key activities of the ETC is to establish strong membrane potential. Because of the role of succinate dehydrogenase (complex II) in the ETC, we speculated that the ΔsdhC mutant may have impaired membrane potential. To test that, cells were collected from the biofilm colony of ΔsdhC and membrane potential of the cells was measured by using the dye thioflavin T (ThT, Fig. 4a). According to previously published studies, accumulation of this fluorescent dye inside the cells and thus the fluorescent density of the cells anti-correlate with the membrane potential of the cells. As shown in Fig. 4a, the majority of cells collected from the ΔsdhC colony biofilm demonstrated strong fluorescence (shown as cyan fluorescent protein (CFP)), indicating a low membrane potential of the cells. Cells were also collected from the wild-type colony biofilm (the outer region, Fig. 4b). In contrast, the majority of those wild-type cells demonstrated very weak fluorescence, indicating high membrane potentials of the cells (Fig. 4b). Interestingly, when cells were collected from the inner region of the wild-type colony biofilm, those cells showed intermediate fluorescence, suggesting that they had relatively lower membrane potentials compared to the cells in the outer region of the same colony biofilm (Fig. 4b).

Quantitative analyses of the fluorescence signals of individual cells were performed in parallel. The results further demonstrated the significant difference in membrane potential between the wild-type and the ΔsdhC cells, and even between cells in the outer and inner regions of the wild-type colony biofilm (Fig. 4d, e). Lastly, a known membrane depolarizing agent, carbonyl cyanide m-chlorophenylhydrazone (CCCP), was applied to validate the ThT fluorescent dye-based analyses of membrane potential. The result showed that the addition of CCCP (1 mM) significantly impaired membrane potential of the wild-type cells as indicated by the strong fluorescence inside the cells (Fig. 4c), but slightly less severe than the impairment caused by ΔsdhC (Fig. 4d, e).

In the third experiment, we tested if blocking electron transfer by using small inhibitory chemicals could similarly impact biofilm formation in B. subtilis. 2-Thenoyltrifluoroacetone (TTFA), a small chemical inhibitor known to block the electron transfer from succinate dehydrogenase to the electron carrier quinone (Fig. 3b), was applied. As shown in Fig. 3d, TTFA inhibited robust biofilm formation at concentrations (e.g., 50 µM) that did not significantly impact the growth of the cells (Supplementary Fig. 1C). In summary, these results suggest that media iron concentrations have a strong effect on the expression of iron-containing ETC proteins, and that some of those proteins are essential for robust biofilm formation in B. subtilis.
Previous studies have shown that cells in the outer region of a colony biofilm tended to be robust matrix producers, while cells in the inner region were often old and weaker in matrix production. Thus, a positive correlation between membrane potential and matrix production of the cells seemed to exist. To test if there is such a potential correlation, a dual-labeling technique was applied in that the ThT dye (shown as CFP) was used as an indicator for the membrane potential of the cells while cells also contained a $P_{\text{tapA-mKate2}}$ fluorescent fusion to report the expression of the key biofilm matrix operon tapA-sipW-tasA. Results from the assay showed that in the wild-type colony biofilm, cells from the outer region had both strong expression of the matrix gene reporter ($mKate2$) and strong membrane potential (which anticorrelates with CFP signals) (Fig. 4f). Cells from the ΔdhfC colony biofilm showed the opposite in that the majority of those cells were both weak in matrix gene expression and in membrane potential (Fig. 4g). Our results thus far supported the idea that membrane potential is closely linked to matrix gene expression and biofilm robustness in B. subtilis.

Large amounts of soluble iron are matrix associated. In all the experiments described above, when concerning iron concentrations, they were always referred to the amounts of ferric iron in the media. This was not satisfactory first because ferric iron was largely insoluble in the media, and second the intracellular concentrations of iron was unknown. Thus, we decided to investigate the intracellular concentrations of iron when cells were grown under two different media ferric iron concentrations (either 50 or 0.5 μM FeCl$_3$) by using inductively coupled plasma-mass spectrometry (ICP-MS). Surprisingly, results obtained from the assay showed that although iron concentrations in the media differed by 100-fold, the intracellular total iron concentrations differed by just less than one-fold (~70%, Fig. 5a). It was more surprising to recall that when 0.5 μM FeCl$_3$ was provided in the media, B. subtilis biofilm was severely impaired (Fig. 2d).

We had hypothesized on (i) either extracellular association of large amounts of soluble irons in the biofilm or (ii) heterogeneous distributions of iron within different regions of the cells in the biofilm. To test the above hypotheses, cells from either the inner or the outer region of the wild-type colony biofilm were picked. Both the intracellular iron concentration and the concentration of soluble iron associated extracellularly with the biofilm were measured similarly using ICP-MS (Fig. 5b). For the latter, a protocol was previously published by us to allow separation of cells from the extracellular matrix in a biofilm. The most striking result obtained from those iron measurements was that large amounts of soluble irons (precipitated iron was removed by filtration) were found associated with the biofilm matrix for the cells collected from the outer region of the colony biofilm, more than 10-fold higher than the intracellular concentration of iron from the same cells (Fig. 5b). In contrast, the difference in the intracellular iron concentrations in the cells from the outer or center region was rather modest (~50%, Fig. 5b). These results depicted two different scenarios for possible roles of ferric iron in promoting biofilm formation, one being internalized and boosting the activities of iron-containing enzymes involved in electron transfer for establishment of strong membrane potential (as shown in Figs. 3e, 4a-e), and the other being solubilized (potentially by secreted DHB) and extracellularly associated with the biofilm matrix (as shown in Fig. 5b).

Extracellular iron could be involved in electron transfer. Although it is possible that those extracellularly associated ferric iron function to facilitate matrix assembly, we speculated that those ferric irons were involved in respiratory electron transfer but extracellularly, either as terminal receptors or shuttles among different cells. The rationale for the second possibility is that efficient electron transfer normally depends on molecular oxygen as the terminal receptor; however in the biofilm, internal layers of cells likely lack the access to molecular oxygen (which we show next). For those cells to perform electron transfer and establish membrane potential, they will need help of alternative electron receptors intracellularly and/or extracellularly.

To test this possibility, three experiments were performed. In the first experiment, accessibility to molecular oxygen by cells in different depth of a colony biofilm was tested by using an automated oxygen microelectrode piercing through the colony biofilm (see Methods). Both the outer and the center regions of the colony biofilm were chosen for oxygen measurement (Fig. 5b). In the outer region, there was a decline in oxygen levels from the top to the bottom of the colony biofilm (blue line, Fig. 5c) and the rate of oxygen depletion was initially slow but accelerated when reaching about 1/3 of the biofilm depth (~120 μm from the surface). In the center, the pace of oxygen depletion was more or less linear (red line, Fig. 5c). This result in general supported the idea that cells in the bottom of the colony biofilm may have difficulty in access to oxygen and performing oxidative respiration.

In the second experiment, the redox potential distributed along the vertical axis of the biofilm was measured. For technical reasons, this time we chose the pellicle biofilm formed in a beaker in order to increase the depth of the biofilm to suit the redox microelectrode used in the assay (Fig. 5d). Decreasing redox potential from the top to bottom along the vertical axis of a pellicle biofilm was observed (stronger reduction in the bottom, Fig. 5d). This result correlated with decreasing access of the cells to molecular oxygen (Fig. 5c). However, caution may be needed here since measurement of redox potential and that of molecular oxygen were performed in two different biofilm settings (pellicle and colony biofilms, respectively). Changing of redox potential implied that extracellular redox reaction (electron transfer) might happen in the bottom layers of the pellicle biofilm. We further probed the membrane potential status in parallel in the cells at the top and bottom layers of the pellicle biofilm. A published protocol by us was modified to allow separation of cells at the top and bottom layers of a pellicle biofilm by applying a metal mesh in between (see Methods) (Fig. 5e). Cells at the top and bottom were separately collected and measured for membrane potential using the ThT fluorescence dye as described above. Cells at the top demonstrated strong membrane potential as indicated by very weak fluorescence (Fig. 5f). Interestingly, cells at the bottom also showed relatively strong membrane potential (Fig. 5f), implying active respiratory electron transfer in those cells even without sufficient access to molecular oxygen. We speculated that respiratory electron transfer and establishment of membrane potential in those cells relied on large amounts of matrix-associated extracellular iron as the electron receptors or shuttles. Lastly, we also looked at the viability of the bottom (and the top) layers of cells in the pellicle biofilm by using live/dead staining. The result showed that cells at the bottom of the pellicle biofilm had a similar live/dead ratio when compared to the cells at the top (Supplementary Fig. 3).

In the third experiment, in order to test if extracellular electron transfer (EET) does occur in the B. subtilis biofilm, a cyclic voltammetry (CV) measurement (Fig. 6a) was performed by coating the wild-type (WT) biofilm on a working reticulated vitreous carbon (RVC) foam electrode. As shown in Fig. 6b, two redox peaks appeared with potentials at around ~40/–170 mV (pointed by arrows in the red curved lines). This indicates that the biofilm coated on the RVC foam electrode can reduce Fe$^{3+}$ to Fe$^{2+}$.
Fe\(^{2+}\) in the aqueous solution. In the two control measurements, one with the biofilm medium MSgg only and the other with MSgg supplemented with 1 µg ml\(^{-1}\) of DHB, no clear redox peak was observed (Fig. 6b).

Discussion

Iron is an essential nutrient element for growth in almost all organisms. A unique question investigated in this study is why excessive amounts of ferric iron, hundreds fold higher than for normal growth, are needed to promote robust biofilm formation in the bacterium *B. subtilis*. Two important roles of iron in promoting *B. subtilis* biofilm formation are proposed in this study. For one, large amounts of iron were found associated extracellularly with the biofilm matrix. Results from electrochemical assays suggested that EET occurred in the *B. subtilis* biofilm and those matrix-associated extracellular iron could be involved in the EET by potentially acting as electron receptors and shuttles. EET may be especially important for cells located in the deep layers of the biofilm and thus blocked from access to molecular oxygen. For the other role of iron, our evidence supported the idea that a small proportion of iron was internalized and played a critical role in boosting the production of multiple iron-containing enzymes essential for intracellular electron transfer (IET) during oxidative respiration. Both the EET and IET could help to establish strong membrane potential, which we then showed, was linked to strong matrix gene expression during *B. subtilis* biofilm formation.

Biofilms are considered a very heterogenous environment. Cells in different spatial locations in the biofilm may adopt different strategies for respiration and energy generation. Here we propose a model on respiratory electron transfer during *B. subtilis* biofilm development (Fig. 7). For cells in the upper layers where oxygen is sufficient, they perform respiratory IET using molecular oxygen as the terminal electron acceptor and electrons being donated to the ETC by various substrate dehydrogenases. For cells in the bottom layers of the biofilm where oxygen becomes very limited or even absent, they perform EET using extracellular matrix-associated iron as the terminal electron acceptor. In light of the above model, we would like to point out several limitations of the above model, we would like to point out several limitations in this study. First, evidence on the presence of large amounts of extracellular iron in the deep layers of the biofilm (instead of the entire biofilm) is still needed to support the above model. Second, for redox potential measurement, only pellicle biofilm (but not colony biofilm) was applied since the measurement of redox...
needs aqueous environment to form a circuit between the redox probe and the reference probe and only pellicle biofilm can satisfy this requirement. As colony and pellicle biofilms are two different settings, caution needs to be taken when accessing the results obtained from either colony or pellicle biofilms alone.

In the biofilm environment, *B. subtilis* can be considered an electrochemically active microorganism (EAM) and likely takes advantage of both IET and EET to perform respiration in order to establish membrane potential and generate energy. EAMs are microorganisms that can transfer electrons from cells to extracellular electron acceptors such as minerals, contaminants, and electrode\(^{45,49,50}\). So far, more than 100 EAMs have been isolated or identified\(^{19}\). Most of them are Gram-negative bacteria and belong to *Proteobacteria* phylum\(^{51}\). Most studies on the EET mechanism are based on *Shewanella* spp. and *Geobacter* spp.\(^{72,73}\). More recently, Gram-positive bacteria *B. megaterium* and *Enterococcus faecalis* also showed the capacity of EET\(^{34,35}\). Studies have shown that oxygen accessibility is clearly a key factor driving biofilm heterogeneity. Here we present another interesting example of metabolic heterogeneity in cells within the *B. subtilis* biofilm.

Fig. 6 Cyclic voltammetry (CV) analysis indicates electron transfer in the *B. subtilis* biofilm. **a** A diagram of the biofilm CV analysis by using an electrochemical workstation equipped with three-electrode system. A reticulated vitreous carbon (RVC) foam working electrode was coated with the pellicle biofilm on its surface, while a platinum plate (1 cm x 1 cm) and Ag/AgCl (saturated, KCl) were used as the counter and reference electrode, respectively. **b** Profile of CV curves. Two redox peaks appeared with potential at around \(-40/\sim\)170 mV (indicated by arrows on the red curved line), indicating that the biofilm coated on RVC foam electrode can reduce \(\text{Fe}^{3+}\) to \(\text{Fe}^{2+}\) in aqueous solution (MSgg medium), while the two control assays, one with MSgg medium only and the other MSgg plus DHB, did not show any clear redox peak (blue and green curved lines). Source data are provided as a Source data file.

Fig. 7 A working model for extracellular and intracellular electron transfer in the *B. subtilis* biofilm. Based on this model, *B. subtilis* cells in the upper and bottom layers of the biofilm use different electron acceptors. For cells in the upper layers where oxygen is sufficient, cells use molecular oxygen as the terminal electron acceptor to perform direct intracellular electron transfer (IET), while for cells in bottom layers where oxygen becomes very limited, cells perform extracellular electron transfer (EET) using extracellular matrix-associated iron as the terminal electron acceptor. In the biofilm environment, *B. subtilis* is an electrochemically active microorganism (EAM) and likely takes advantage of both IET and EET to perform respiration and establish membrane potential. During EET, ferric iron could get free electron from any of the components in the electron transfer chain, including various initial substrate dehydrogenases, quinone, or cytochromes. The precursor 2,3-dihydroxybenzoate (DHB), but not bacillibactin, is an iron-binding molecule for iron solubilization and acquisition under iron-rich conditions. DHB-iron complex will be taken into the cells via the FeuABC-YusV-mediated transport system\(^9\).
In this study, a link between membrane potential and strong matrix gene expression was demonstrated during *B. subtilis* biofilm formation. Traditionally, the importance of membrane potential has been discussed in the context of ATP generation, bacterial motility, chemotaxis, molecule transport, and cell division. In recent studies, membrane potential has been demonstrated to be important for the electrical communication within cells during the development of bacterial communities in *B. subtilis*39,26. However, why membrane potential is essential for biofilm formation in *B. subtilis* is still unclear. Previous studies have suggested the role of membrane potential in transport of key metabolites such as glutamate40. Glutamate is a charged amino acid, whose uptake has been shown to depend on ion gradient and membrane potential57. Glutamate is a key component in the biofilm-inducing media for *B. subtilis* and its absence will result in structurally much weaker biofilms58.

We also discovered an adaptive strategy for iron acquisition during *B. subtilis* biofilm formation. Our evidence suggested that in order to utilize necessary amounts of ferric iron in the media, *B. subtilis* cells preferentially produce and rely on the siderophore precursor DHB (a monomeric iron complex of the trimeric bacillibactin) instead of the final siderophore bacillibactin. We argued that this could be an important adaptive strategy for the bacterium for several reasons. First, since the size of the last *dhbF* gene is very large (7.13 kb), expressing this gene and the gene upstream of *dhbF* (denoted as *entF*) might be very costly and possibly error prone. Therefore, alternating production of DHB and bacillibactin depending on iron availability in the environment seems to be an important adaptive strategy. In fact, in other species such as *E. coli*, the homologous gene of *dhbF*, *entF*, is separated from other *ent* genes, while clustered with the *fes* gene encoding an enterobactin hydrolase (Supplementary Fig. 4)60. This provides a possible genetic basis for alternative production of the two iron-binding molecules in other bacteria60. The putative mechanism for differential expression of the *dhbA-F* operon is unknown. We suspect that a transcription attenuation-like regulation between *dhbF* and the gene upstream of *dhbF* may be responsible for substantially attenuated expression of *dhbF* under iron-rich conditions.

Methods

Strains and media. Strains and plasmids used in this study are listed in Supplementary Table 1. *Bacillus subtilis* strain PY79, 168, NCIB 3610127,61, and derived strains were cultured in lysogenic broth62 at 37 °C. Pellicle biofilm formation in *B. subtilis* was induced using MSgg broth (5 mM potassium phosphate and 100 mM Mops (3-(N-morpholino)propanesulfonic acid) at pH 7.0 supplemented with 2 mM MgCl2, 700 μM CaCl2, 50 μM MnCl2, 50 μM FeCl3, 1 μM ZnCl2, 2 μM thiamine, 0.5% glycerol, and 0.5% glutamate)27 and colony biofilm formation was induced in *B. subtilis* using MSgg solidified with 1.5% (w/v) agar at 30 °C. Enzymes used in this study were purchased from New England Biolabs. Chemicals and reagents were purchased from Sigma or Fisher Scientific. Oligonucleotides were purchased from Eurofins Genomics and DNA sequencing was also performed at Eurofins Genomics. Antibiotics, if needed, were applied at the following concentrations: 10 μg ml−1 of tetracycline, 1 μg ml−1 of erythromycin, 100 μg ml−1 of spectomycin, 20 μg ml−1 of kanamycin, and 5 μg ml−1 of chloramphenicol for transformation in *B. subtilis* and 100 μg ml−1 of ampicillin for *E. coli DH5α transformations.

Strain construction. All the insertional deletion mutants used in this study (listed in Supplementary Table 1) in the *B. subtilis* 168 background were purchased from the Bacillus Genetic Stock Center (http://www.bsgc.org) and introduced into NCIB 3610 via transformation following a previously described protocol63. In order to make marker-less deletion in the bacillibactin biosynthetic genes, the *dhbA, dhbB, dhbC, dhbE*, and *dhbF* insertional deletion strains marked with an erm-HIS resistance cassette in the *B. subtilis* 3610 background were transformed with the plasmid pDR244 (a temperature-sensitive suicide plasmid with a constitutively expressed Cre recombinase gene)64. Transformants were selected on LB agar plates supplemented with spectinomycin at 30 °C (permissive temperature). Transformants were then streaked onto LB agar plates and plates were incubated at 42 °C (non-permissive temperature). Cells from single colonies were spotted onto LB plates, LB plates supplemented with erythromycin and lincomycin, and LB plates with spectinomycin. A transformant that grew only on the LB agar plate but not on LB plates supplemented with the three antibiotics lost the *erm* antibiotic resistance cassette and was cured for the pDG244 suicide plasmid64. Those transformants were selected and verified for in-frame deletion using PCR. To construct reporter strains with the *PdhbA-lacZ* fusion, the promoter sequence of *dhbA*, upstream of *lacZ* was amplified by PCR using the primers *PdhbA*-*lacZf* and *PdhbA-*lacZr (all primers are listed in Supplementary Table 2) and the genomic DNA of 3610. PCR products were then cloned into the vector pDG1728 to make *PdhbA-lacZ* fusion. The integration of the *PdhbA-lacZ* fusion or the *PentF-mKate2* reporter fusion, which was from the strain TMN50365 into the chromosomal *amyE* locus of virous *B. subtilis* strains and verification of such integrations were described in a previous publication65.

Microscopic imaging. For imaging of colony and pellicle biofilms, a Leica MSV269 dissecting microscope with a Leica DFC290 camera and x4 magnification was used. Same exposure and acquisition settings were applied to all colony and pellicle biofilm samples. For single-cell fluorescence imaging, cells were cultured as described above. After incubation for indicated times, colony biofilms were collected for observing GFP by using the excitation wavelength at 426–450 nm and the emission wavelength at 502–538 nm. For observation of mKate2, the excitation wavelength was set at 540–580 nm and the emission wavelength at 610–680 nm.

Biofilm assays. For colony biofilm formation, cells were grown to exponential phase in LB broth and 2 μl of the culture was spotted onto MSgg media solidified with 1.5% (w/v) agar. Cells from three independent biological replicates were imaged using a Leica DFC2900 G camera on a Leica AF6000 microscope. Non-specific background fluorescence was determined by quantifying wild-type cells with no reporter fusion. Imaging of samples collected from different time points was conducted using the same exposure settings. For observation of the TH1 fluorescence dye, the same settings used for observing GFP were used, with the exciting wavelength set at 426–450 nm and the emission wavelength at 502–538 nm. For observation of mKate2, the excitation wavelength was set at 540–580 nm and the emission wavelength at 610–680 nm.

Assays of β-galactosidase activities. Cells were cultured in MSgg medium at 30 °C with shaking. One milliliter of culture was collected at each indicated time point and cells were centrifuged down at 5000 rpm for 10 min. Cell pellets were suspended in 1 ml Z buffer (40 mM NaH2PO4, 60 mM Na2HPO4, 1 mM MgSO4, 10 mM KCl, and 38 mM β-mercaptoethanol) supplemented with 200 μg ml−1 of lysozyme. Resuspensions were incubated at 37 °C for 15 min. Reactions were started by adding 200 μl of 4 mg ml−1 ONPG (2-nitrophenyl-β-D-galactopyranoside) and stopped by adding 500 μl of 1 M Na2CO3. Samples were then briefly centrifuged down at 5000 rpm for 1 min. The soluble fractions were transferred to cuvettes (VWR), and absorbance of the samples at 420 nm was recorded using a Biochrom spectrophotometer. The β-galactosidase-specific activity was calculated according to the equation (Abs420/time × OD600) × dilution factor × 1000. Assays were conducted in triplicate.

Iron quantification by ICP-MS. Quantitation of matrix and intracellular iron following a published protocol with minor modifications10. For the quantitation of matrix-associated iron, the colony or pellicle biofilms after incubation at 30 °C for the indicated time were collected by disrupting in 4 μl H2O TFA PBS buffer with pipetting. Samples were then mildly sonicated with 5-s pulse at the 1.5 output scale for three times (Branson, Model W185), normalized to OD600 = 1.0 by using 1× chelate-treated PBS buffer. One milliliter of normalized samples was centrifuged at 14,000 rpm for 1 min, and the supernatant was ready for quantitation of iron concentration. For measurement of the intercellular iron concentration, cell pellets after centrifugation were washed once with buffer 1 (1× PBS buffer, 0.1 M EDTA) and then twice with buffer 2 (1× chelate-treated PBS buffer).
buffer. Cell pellets were resuspended in 400 μl of buffer 3 (1 × chexel-treated PBS buffer, 75 mM Na2SO4, 1% Triton X-100) and incubated at 37 °C for 90 min. Lysed cells were then centrifuged and the total protein content was quantified using Bradford assay. Samples were then mixed with 600 μl buffer 4 (5% HNO3, 0.1% (v/v) Triton X-100) and heated at 95 °C and 30 min. The debris was removed by centrifugation. The total iron in all samples was analyzed by Bruker Aurora M90 ICP-MS. The O2 Demp values of the biofilm samples were later converted to colony-forming units using standard plating techniques. The total iron concentration was presented as molar per cell (mean ± SD; n = 10).

Electrochemical characterization. To characterize electron transfer between the B. subtilis biofilm and ferric ions in electrolyte, CV was performed in a three-electrode cell by an electrochemical workstation (BioLogic). An RVC electrode (3 cm × 1 cm) was used as the working electrode, while a platinum plate (1 cm × 1 cm) and Ag/AgCl (saturated, KCl) were used as the counter and reference electrode, respectively. The MSgg medium, which contained 50 μM of FeCl3 as the unique electron-acceptable component in this system, was directly used as electrolyte. The pellicle biofilm of B. subtilis was coated on the surface of RVC foam electrode prior to the measurement. CV tests were operated in the range of −1.0−+1.0 V at a scan rate of 20 mV s−1.

Oxygen profiling of biofilms. For oxygen profiling, colony biofilms of B. subtilis 3610 were developed as described above. A Unisense Microprofiling System with a 50-μm-tip Clark-type oxygen microsensor (Unisense OX-50) was used to measure the oxygen concentrations in the colony biofilm. The oxygen microsensor was calibrated according to the manufacturer’s instructions, and measurements were taken throughout the depth of the biofilm. During the measurement, the step size was 10 μm, the measurement time period was 5 s, and the wait time between different measurements was 5 s. Three different colonies were tested, and representative data were shown.

Redox profiling of biofilms. For redox profiling, 3610 cells were grown to exponential phase in LB broth at 37 °C with shaking. One hundred microliters of the culture was then inoculated into 100 ml of MSgg liquid medium in a 250 ml baffled shake flask in exponential phase in LB broth at 37 °C with shaking. One hundred microliters of the culture was then inoculated into 100 ml of MSgg liquid medium in a 250 ml baffled shake flask. The OD600 value of the biofilm samples was later converted to colony-forming units using standard plating techniques. The total iron concentration was presented as molar per cell (mean ± SD; n = 10).

Measurement of membrane potential. To measure the membrane potential of the cells in the biofilm, MSgg agar plates supplemented with 10 μM THt, the fluorescent dye for membrane potential measurement was used. THt is a cationic dye that acts as a Nernstian voltage indicator, which accumulates in cells as membrane potential decreases (accumulation thus negatively correlates to cell membrane potential) and the fluorescence intensity in the cells therefore increases 99.

Quantitative real-time PCR. Total RNAs of the cells in different treatment groups were extracted by using TRIzol (Invitrogen) according to the manufacturer’s instructions. Isolated RNAs were reverse transcribed into single-stranded complementary DNA (cDNA) using a High Capacity cDNA Reverse Transcription Kit (Applied Biosystems). Primers used for RT-qPCR were listed in Table S2. qRT-PCR was performed by using Fast SYBR® Green Master Mix (Applied Biosystems) and a Step One Plus Real-Time PCR system (Applied Biosystems). The 16S rRNA gene was used as an internal reference. The relative expression of specific genes was calculated by using the 2−ΔΔCT method 100.

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability. The source data underlying Fig. 2b, Figs. 3e, 4d, e, Fig. 5a–d, Fig. 6b, and Supplementary Figs. I and 2b are provided as a Source Data file.
30. Chu, F. et al. A novel regulatory protein governing biofilm formation in *Bacillus subtilis*. *Mol. Microbiol.* 68, 1117–1128 (2008).

31. Strauss, M., Webb, V., Sprague, G. & Hoch, J. A. The SpoOA protein of *Bacillus subtilis* is a repressor of the *abfR* gene. *Proc. Natl. Acad. Sci. USA* 87, 1801–1805 (1990).

32. Gaballa, A. et al. The *Bacillus subtilis* iron-sparing response is mediated by a FUR-regulated small RNA and three small, basic proteins. *Proc. Natl. Acad. Sci. USA* 100, 11922–11927 (2003).

33. Smaldone, G. T. et al. A global investigation of the *Bacillus subtilis* iron-sparing response identifies major changes in metabolism. *J. Bacteriol.* 194, 2594–2605 (2012).

34. Chai, Y., Kolter, R. & Losick, R. A widely conserved gene cluster required for lactate utilization in *B. subtilis* and its involvement in biofilm formation. *J. Bacteriol.* 191, 2423–2430 (2009).

35. Cecchini, G., Schröder, I., Gunsalus, R. P. & Maklashina, E. Succinate dehydrogenase and fumarate reductase from *Escherichia coli* biofilm. *Biochim. Biophys. Acta (BBA)* 1553, 145–157 (2002).

36. Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt Method. *Methods* 25, 402–408 (2001).

37. Tappend, A. L. Inhibition of electron transport by antimycin A, alkyl hydroxy naphthoquinones and metal coordination compounds. *Biochem. Pharmacol.* 3, 289–296 (1960).

38. Cecchini, G. Respiratory complex II: role in cellular physiology and disease. *Biochim. Biophys. Acta (BBA)* 1827, 541–542 (2013).

39. Prindle, A. et al. Ion channels enable electrical communication in bacterial communities. *Nature* 527, 59–63 (2015).

40. Liu, J. et al. Coupling between distant biofilms and emergence of nutrient time-sharing. *Science* 356, 638–642 (2017).

41. Benz, R. & McLaughlin, S. The molecular mechanism of action of the proton ionophore CCCP (carboxycin cyanide p-trifluoromethoxyphenylhydrazone). *Biochim. Biophys. Acta* 411, 381–398 (1976).

42. McLown, A. L., Kolodkin-Gal, I., Rubinstein, S. M., Kolter, R. & Losick, R. Spatial regulation of histidine kinases governing biofilm formation in *Bacillus subtilis*. *J. Bacteriol.* 193, 679–685 (2011).

43. Chai, Y. R., Kolter, R. & Losick, R. Paralogous antirepressors acting on the master regulator for biofilm formation in *Bacillus subtilis*. *Mol. Microbiol.* 74, 876–887 (2009).

44. Elsholz, A. K. W., Wacker, S. A. & Losick, R. Self-regulation of *Bacillus subtilis* biofilm induction by plant polysaccharides. *Proc. Natl. Acad. Sci. USA* 110, E1621–E1630 (2013).

45. Lemon, K. P., Earl, A. M., Vlamakis, H. C., Aguilar, C. & Kolter, R. Biofilm development with an emphasis on *Bacillus subtilis*. *Curr. Top. Microbiol. Immunol.* 322, 1–16 (2008).

46. Gralnick, J. A. & Newman, D. K. Extracellular respiration. *Mol. Microbiol.* 65, 1–11 (2007).

47. Yang, Y., Xu, M., Guo, J. & Guoping, S. Bacterial extracellular electron transfer in biofilm ecosystems. *Proc. Biochem.* 47, 1707–1714 (2012).

48. Reitz, Z. L., Sandy, M. & Butler, A. Biosynthetic considerations of triscatechol plasmids introduced by transformation into *Bacillus subtilis*. *J. Bacteriol.* 134, 318–329 (1978).

49. Koo, B. M. et al. Construction and analysis of two genome-scale deletion libraries for *Bacillus subtilis*. *Cell Syst.* 4, 291–305 (2017).

50. Norman, T. M., Lord, N. D., Paulsson, J. & Losick, R. Memory and modularity in cell-fate decision making. *Nature* 503, 481–486 (2013).

51. Bond, D. R., Greenland, J. I., Li, Y., Wang, Q. & Chai, Y. R. The bacterial tyrosine kinase activator TksA contributes to biofilm formation largely independently of the cognate kinase PkA in *Bacillus subtilis*. *J. Bacteriol.* 197, 3421–3432 (2015).

52. Fredrickson, J. K. et al. Towards environmental systems biology of *Shewanella*. *Proc. Natl. Acad. Sci. USA* 115, 13421–13426 (2018).

53. Gryczan, T. J., Contente, S. & Dubnau, D. Characterization of *Staphylococcus aureus* plasmids introduced by transformation into *Bacillus subtilis*. *J. Bacteriol.* 134, 318–329 (1978).

54. Bond, D. R., Holmes, D. E., Tender, L. M. & Lovley, D. R. Electrode-reducing nanowires. *Proc. Natl. Acad. Sci. USA* 104, 20226–20231 (2007).

55. Gao, T. R., Greenwitch, J. I., Li, Y., Wang, Q. & Chai, Y. R. The bacterial tyrosine kinase activator TksA contributes to biofilm formation largely independently of the cognate kinase PkA in *Bacillus subtilis*. *J. Bacteriol.* 197, 3421–3432 (2015).

56. Hederstedt, L. in *Bacillus subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics*. (eds Sonenshein, A. L., Hoch, J. A. & Losick, R.) 181–197 (American Society for Microbiology, Washington, 1993).

Acknowledgements

We thank Prof. Wei Qiao and Dr. Dongmin Yin from China Agricultural University (Beijing, China) for the help with index potential measurement, Prof. Kehui Gu and Dr. Guo Zhang from Huazhong Agricultural University (Wuhan, China) for the help of oxygen profiling, and Prof. Akram Alshwakheeb and Dr. Long Chen at Northeastern University (Boston, MA, USA) for providing technical help of the work. This work was supported by a grant from the National Science Foundation (US) to Y.C. (MCB1615732), and a grant from the National Natural Science Foundation of China (NSFC, No. 31671813) and Special Fund for Agro-scientific Research in the Public Interest of China (201303014–4) to P.L. Y.Q. was supported by a scholarship from the China Scholarship Council (file no. 201606350112). ICP-MS measurements were financially supported by a grant from the National Science Foundation (US, CBET-1254245).

Author contributions

Y.Q., Y.H. and Q.S. performed the experiments. P.L.-C. provided substantial technical assistance. Y.Q., P.L. and Y.C. designed the experiments. Y.Q. and Y.C. wrote the manuscript.

Additional information

Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-019-11681-0.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

Peer review information: *Nature Communications* thanks Jens Krömer and other anonymous reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s) 2019