UP-AND-COMING SCIENTIST

Bitter Taste and Olfactory Receptors: Beyond Chemical Sensing in the Tongue and the Nose

Mercedes Alfonso-Prieto

Received: 15 March 2021 / Accepted: 29 April 2021 / Published online: 25 June 2021

© The Author(s) 2021

Abstract

The Up-and-Coming-Scientist section of the current issue of the Journal of Membrane Biology features the invited essay by Dr. Mercedes Alfonso-Prieto, Assistant Professor at the Forschungszentrum Jülich (FZJ), Germany, and the Heinrich-Heine University Düsseldorf, Vogt Institute for Brain Research. Dr. Alfonso-Prieto completed her doctoral degree in chemistry at the Barcelona Science Park, Spain, in 2009, pursued post-doctoral research in computational molecular sciences at Temple University, USA, and then, as a Marie Curie post-doctoral fellow at the University of Barcelona, worked on computations of enzyme reactions and modeling of photoswitchable ligands targeting neuronal receptors. In 2016, she joined the Institute for Advanced Science and the Institute for Computational Biomedicine at the FZJ, where she pursues research on modeling and simulation of chemical senses. The invited essay by Dr. Alfonso-Prieto discusses state-of-the-art modeling of molecular receptors involved in chemical sensing – the senses of taste and smell. These receptors, and computational methods to study them, are the focus of Dr. Alfonso-Prieto’s research. Recently, Dr. Alfonso-Prieto and colleagues have presented a new methodology to predict ligand binding poses for GPCRs, and extensive computations that deciphered the ligand selectivity determinants of bitter taste receptors. These developments inform our current understanding of how taste occurs at the molecular level.

Graphic Abstract

Keywords

Bitter taste · Olfaction · Chemosensory receptors · TAS2Rs · ORs · Odorant

Extended author information available on the last page of the article
Introduction

In contrast with vision or hearing, the senses of taste and smell (or olfaction) involve the detection of chemicals present in the environment and thus are considered as “chemical senses”. They inform about the aroma and flavor of food and beverages and act as warning system for toxic substances. Hence, these two chemical senses strongly affect human well-being, food acceptance and intake (Tepper et al. 2020; Boesveldt and Parma 2021), as well as drug compliance (Pawar and Kumar 2002; Menella et al. 2013), especially in children. In addition, taste and smell impact key brain processes (Sullivan et al. 2015; Boesveldt and de Graaf 2017; Sabiniewicz et al. 2021), such as memory, emotional responses or behavior.

Taste and olfaction impairments strongly affect the quality of life, social interactions and dietary habits (Mainland et al. 2020). Moreover, the loss of taste and smell is a common symptom of Parkinson’s and Alzheimer’s diseases (Robert et al. 2016; Tarakad and Jankovic 2017; Oppo et al. 2020) and has been recently shown to be one of the symptoms of COVID-19 infection (Parma et al. 2020; Gerkin et al. 2021; Pierron et al. 2020). Therefore, taste and olfaction are also clinically relevant.

The molecules responsible for taste and smell (tastants and odorants, respectively) are extremely chemically diverse (Malnic et al. 1999; Meyerhof et al. 2010). Consequently, the human genome contains a large number of membrane proteins dedicated to recognize them (Buck and Axel 1991; Adler et al. 2000; Chandrashekar et al. 2006). In particular, the two largest chemosensory families correspond to olfactory receptors (ORs) and taste 2 (or bitter taste) receptors (TAS2Rs). Although originally identified in nose and mouth, these receptors have been later shown to be expressed also in other parts of the body (Behrens and Meyerhof 2011; Massberg and Hatt 2018; Dalesio et al. 2018; Behrens and Meyerhof 2019). This extraoral and extranasal expression indicates that ORs and TAS2Rs can also play a role in other physiological and pathological processes, besides bitter taste and smell perception, and thus opens the way for new therapeutical interventions (Lee et al. 2019; Di Pizio et al. 2019).

Both TAS2Rs and ORs are G-protein coupled receptors (GPCRs). The GPCR superfamily is the largest in the human genome, with approx. 800 genes, of which half correspond to chemosensory receptors (Venter et al., 2001; Alexander et al., 2019). Within the class A-D system (Fredriksson et al. 2003; Schioth and Fredriksson 2005; Lagerstrom and Schioth 2008), ORs are part of class A, whereas the classification of TAS2Rs is still under debate (as either class A, or class F or a new class T) (Nordstrom et al., 2011; de March et al. 2015; Di Pizio et al. 2016; Munk et al., 2016a). Regardless of their classification, TAS2Rs and ORs share the same topology, with a seven transmembrane (TM) helix bundle (see Fig. 1). Bitter tastants and odorants are recognized by their corresponding receptor by binding in a cavity located in the extracellular part of the TM bundle. Ligand binding triggers a conformational change of the receptor that promotes binding of the associated G-protein in the intracellular part. This, in turn, activates the G-protein, which acts as a transducer, initiating an intracellular signaling cascade that results in a cellular response (Alexander et al., 2019).

ORs and TAS2Rs can identify a wide range of ligands and thus are considered promiscuous receptors. In humans, the approx. 400 ORs can recognize up to one trillion different odorants (Bushdid et al. 2014), whereas the 25 TAS2Rs detect around 1000 bitter tastants (Behrens and Meyerhof 2018; Dagan-Wiener et al. 2019). One receptor may be able to bind several molecules and the same ligand can be recognized by multiple receptors (Malnic et al., 1999; Krautwurst 2008; Meyerhof et al. 2010; Ji et al., 2014; Dunkel et al. 2014; Di Pizio and Niv 2015). This complex combinatorial code is still not fully understood, hindering identification of new ligands and receptor deorphanization.

The GPCR superfamily is highly pharmacologically relevant, with approx. 110 GPCRs being targeted by one third of all the FDA-approved drugs (Hauser et al. 2017, 2018). Similarly, ORs and TAS2Rs appear to be promising candidates for future drug design efforts (Lee et al. 2019; Di Pizio et al. 2019; Ahmad et al. 2020). Some examples include bronchodilators targeting TAS2Rs expressed in the airways (Nayak et al. 2019) or the sandalwood odorant used as hair loss therapy by stimulating OR2AT4 expressed in human hair follicles (Cheret 2018). Nonetheless, further therapeutical applications will require a more comprehensive characterization of the extraoral and extraoral roles of these receptors, as well as better understanding of the binding determinants of chemosensory receptors (Lee et al. 2019; Di Pizio et al. 2019; Ahmad et al. 2020).
Another common feature between GPCRs and ORs/
TAS2Rs is the presence of genetic variants across the human
population. In the case of GPCR drug targets, these vari-
ants can affect the pharmacological response of the recep-
tor (Hauser et al. 2018). For chemosensory receptors, they
have been mostly studied in the context of bitter taste/smell
sensitivity, but they can also affect health status and pro-
pensity to certain diseases (Shaw et al. 2011; Mainland
et al. 2014; Logan 2014; Chakraborty et al. 2019; Risso
et al. 2021). One of the most well characterized examples is
TAS2R38. After the serendipitous discovery of differences
in the individual sensitivity to phenylthiocarbamide (PTC, a
TAS2R38 ligand) (Fox 1932; Blakeslee 1932), a large-scale
study (Blakeslee and Fox 1932) showed two main catego-
ries in the population, non-tasters and super-tasters. Later, a
genome-wide linkage analysis (Kim et al. 2003) confirmed
that sequence variants in the TAS2R38 gene have a direct
influence in the observed PTC taste sensitivity. In addition
to affecting food preferences (Robino et al. 2014), TAS2R38
polymorphisms have been recently shown to influence
respiratory innate immunity mechanisms and susceptibility
to chronic rhinosinusitis (Jeruzal-Swiatecka et al. 2020) and references within.

Computational Structural Methods

Understanding the molecular determinants of odorant or bit-
ter tant binding to their corresponding receptor requires structural information (Di Pizio and Niv 2014; de March
et al. 2015; Fierro et al. 2017; Behrens et al. 2018a, b;
Alfonso-Prieto et al. 2019a, b). X-ray or cryo-EM structures
have been solved for only ~10% of human GPCRs (Munk
et al. 2019; Bender et al. 2020; Kooistra et al. 2021) and,
in particular, experimental structures of human ORs and
TAS2Rs are still missing (https://gpcrdb.org/structure/sta-
tistics; version 2021-01-27). Hence, computational methods
have been used to fill the structural gap for chemosensory
receptors, in particular homology modeling, molecular dock-
ing and molecular dynamics (MD) simulations (Di Pizio
et al. 2014; de March et al. 2015; Behrens et al. 2018a, b;
Alfonso-Prieto et al. 2019a, b).

Building a high-resolution receptor homology model
requires the identification of a template with sequence
identity above 35% (Chothia and Lesk, 1986; Olivella et al.
et al. 2013; Piccoli et al. 2013). This is often not straightforward
for the large and heterogeneous GPCR superfamily: only
10% of the GPCRs of unknown experimental structure have
a closely related template with sequence identity above the
35% threshold (Zhang et al. 2006; Bender et al. 2020). In
the case of ORs and TAS2Rs, their sequence identity with
any of the available templates is unfortunately lower (< 20%)
and thus the resulting homology models are low resolution
(Fierro et al. 2017). Nonetheless, several computational
approaches have been proposed to overcome this limitation,
including homology modeling based on multiple templates
or generation of an ensemble of models (Biarnés et al. 2010;
de March et al. 2015; Di Pizio et al. 2017; Dagan-Wiener
et al. 2019; Nowak et al. 2018; Bushdid et al. 2019; Spag-
giari et al. 2020).

Molecular docking is then used in combination with
these homology models to predict the binding mode of
known ligands and, in some cases, identify new com-
pounds. However, the accuracy of the docking results is
limited by the low quality of the initial receptor models. In
particular, the receptor-ligand interactions depend on the
orientation of the amino acid side chains, which is uncer-
tain in such low resolution models (Fierro et al. 2017).
Hence, strategies aiming at enhancing the sampling of the
conformational space of the receptor-ligand complex have
been applied to overcome this limitation. These include
flexible docking approaches and experimental data-driven
model refinement (Di Pizio et al. 2017; Nowak et al. 2018;

Fig. 1 Computational model of TAS2R46 in complex with the bitter
tastant strychnine, showing the two-site architecture explored in the
simulations. The ligand pose in the vestibular site is colored in red,
whereas the pose in the orthosteric site is in blue. Data were taken
from reference (Sandal et al. 2015) (Color figure online)
Bushdid et al. 2018; Bushdid et al. 2019; Di Pizio et al. 2020a, b), as well as molecular dynamics (MD) simulations (Gelis et al. 2012; Charlier et al. 2012; Charlier et al. 2013; Topin et al. 2014; Marchiori et al. 2013; Sandal et al. 2015; Li et al. 2016; Fierro et al. 2017; Ahmed et al. 2018; Fierro et al. 2019; Alfonso-Prieto et al. 2019a, 2019b; Hang et al., 2020; Schneider et al. 2020).

The thus-generated receptor-ligand complex models are validated by comparison with experimental data. Site-directed mutagenesis combined with functional experiments can be used to verify the predicted receptor binding residues (Munk et al. 2016b). In addition, the predicted ligand binding mode(s) can be compared against structure–activity relationship data (Vaas et al. 2018). Therefore, the interplay between computational and experimental data is crucial to obtain an accurate molecular picture of bitter taste and olfaction (Behrens et al. 2018a, b; Alfonso-Prieto et al. 2019a; Spaggiari et al. 2020).

The above described computational molecular modeling approaches have offered crucial insights into the ligand promiscuity of chemosensory receptors. Both TAS2Rs and ORs can recognize a broad range of ligands, yet they are selective. Based on mutagenesis data on TAS2Rs, it was proposed that such discriminating promiscuity could be achieved by a so-called “access control” that is able to dismiss the wrong compounds (Brockhoff et al. 2010). The molecular basis of such mechanism has been revealed using MD. Simulations showed that bitter tastants or odorants can explore not only one but two binding pockets in the corresponding chemosensory receptor (Sandal et al. 2015; Bushdid et al. 2019). This two-site architecture (Fig. 1) acts as a two-step verification system: the vestibular site (located close to the extracellular loops) filters out the receptor cognate ligands, which can then move downwards to the orthosteric site (situated inside the seven TM helix bundle), in order to trigger receptor activation. The interplay of the two binding sites is further validated by the observation that mutations of residues identified in either site affect the receptor response to its ligands. Moreover, the position of the orthosteric site in TAS2Rs and ORs coincides with that observed in experimental structures of other class A GPCRs in complex with their ligands (Venkatakrishnan et al. 2013; Latorraca et al. 2017). Similarly, the vestibular site overlaps with the extracellular allosteric site of other class A GPCRs (Thal et al. 2018; Latorraca et al. 2017). Further computational and experimental studies on other chemosensory receptors are needed to confirm whether this two-site architecture is conserved across the TAS2R and OR families.

Several FDA-approved drugs taste bitter (Dagan-Wiener et al. 2017; Di Pizio et al. 2019) and others affect olfactory perception (Lötsch et al. 2012). Moreover, TAS2Rs and ORs are also expressed in other parts of the body outside of the tongue and the nose, respectively, where they are involved in (yet not fully characterized) physiological and pathological processes (Lee et al. 2019; Di Pizio et al. 2019; Ahmad et al. 2020). Taken together, this suggests that bitter taste and odor molecules may be potential drug candidates (Di Pizio et al. 2019). A few computational molecular modeling studies have been carried out to explore the pharmacological potential of TAS2Rs and ORs (Tong et al. 2017; Nowak et al. 2018; Di Pizio et al. 2020a, b). Besides generating structural models of the receptor/ligand pairs already known (Levit et al. 2014; Tong et al. 2017; Nowak et al. 2018), computational approaches can also be used to design chemical modifications to improve ligand-receptor affinity and other drug-like properties (Di Pizio et al. 2020a, b). For instance, TAS2R14 has been recently studied as potential drug target against respiratory infections (Di Pizio et al. 2020a, b) due to its association with innate immune responses (Hariri et al. 2017) and its ability to bind clinical drugs that taste bitter, such as flufenamic acid (Levit et al. 2014; Behrens et al. 2018a, b). By integrating experimental mutagenesis data, homology modeling and molecular docking, an initial structural model of TAS2R14 in complex with flufenamic acid was generated (Levit et al. 2014; Nowak et al. 2018).

Then, a combinatorial library of flufenamic acid derivatives was virtually screened against this model and the best candidate compounds were selected based on their docking score and visual inspection. These ligands, as well as additional analogs designed using medicinal chemistry concepts, were synthesized and subsequently tested in vitro functional assays, resulting in the identification of new TAS2R14 agonists with nanomolar potency. Moreover, these experimental data were further used to refine the initial TAS2R14 model and obtain a better molecular description of the ligand binding modes (Di Pizio et al. 2020a, b). Altogether, this success story shows the potential of integrated experimental-computational approaches for ligand design for TAS2Rs and eventually ORs and opens the way to exploit the largely untapped pharmacological potential of these chemosensory receptors.

In addition, computational molecular modeling has been useful to understand the effect of genetic variants of TASR2s and ORs on ligand sensitivity (Biarnés et al. 2010; Marchiori et al. 2013; Geithe et al. 2017; March et al., 2015; Cierco-Jiménez et al. 2021). In the aforementioned case of TAS2R38, an ensemble of receptor homology models was generated, followed by molecular docking of PTC and further refinement with multiscale MD simulations (Biarnés et al. 2010; Marchiori et al. 2013). The resulting TAS2R38/PTC complex models allowed the identification of the residues putatively involved in binding, which were subsequently validated using mutagenesis and functional assays. Moreover, such models showed that amino acid 296, which varies between super-taster and non-taster variants, is not involved in ligand binding. Instead, residue 296 (located in TM7 at position 7.52 in the Ballesteros and Weinstein
(1995) numbering scheme) faces F255 in the adjacent TM6, a helix which moves significantly during GPCR activation (Tehan et al. 2014; Venkatarkrishnan et al. 2016; Weis and Kobilka 2018; Filipek 2019). Therefore, the interaction between these residues 296 and 255 (or lack thereof) can have an effect on receptor activation (Biarnés et al. 2010). The TAS2R38 variant present in the super-taster haplotype contains Val at position 296 and thus a hydrophobic interaction V296-F255 can be formed. This correlates with the in vitro activity measurements and the higher PTC sensitivity phenotype. On the contrary, the TAS2R38 variant present in the non-taster haplotypes contains Ile at position 296, a bulkier amino acid that will disrupt such interaction. This is in agreement with the lack of or reduced activity of the Ile296-containing TAS2R38 mutants and the lower PTC sensitivity phenotype. This hypothesis was further confirmed by creating a double swap-mutant F255V/V296F, which shows normal activity, consistent with the recovery of the proposed interaction (Biarnés et al. 2010). Interestingly, a subsequent bioinformatics analysis showed that, besides Val296 in TAS2R38, a hydrophobic residue at the equivalent position 7.52 is conserved for most TAS2Rs, as well as class A GPCRs. Additional comparisons against active-inactive pairs of experimental structures for class A GPCRs, together with mutagenesis data, further suggest that this position might be a not-yet-characterized activation micro-switch for class A GPCRs (Fierro et al. 2017).

Data Science Approaches

Given the wide chemical space covered by odorants and bitter tastants, as well as the large number of ORs and TAS2Rs, it is not surprising that several online resources have been developed to compile the vast amount of data associated to these chemosensory receptors. Moreover, the combinatorial nature of bitter taste and olfaction is perfectly suited for the application of data-driven approaches, in particular machine learning (Lötsch et al. 2019).

For TAS2Rs, BitterDB contains information about approx. 1000 molecules that have been reported as bitter in humans, as well as other species (Wiener et al. 2012; Dagan-Wiener et al. 2019). Moreover, the database lists, if available, which TAS2Rs bind these bitter compounds, along with mutations that can affect receptor response and frequently present genetic variants (Wiener et al. 2012; Dagan-Wiener et al. 2019). Furthermore, already precomputed homology models for TAS2Rs are provided, facilitating future structure-based computational studies (Dagan-Wiener et al. 2019; Di Pizio et al. 2020a, b). Ligand-based studies have already been carried out. Chemoinformaticas have been applied to the list of bitter compounds in BitterDB to investigate the promiscuity, toxicity or drug-like properties of bitter compounds (Di Pizio and Niv 2015; Nissim et al. 2017; Di Pizio et al. 2020a, b). In addition, machine learning algorithms have been trained to predict bitterness (Dagan-Wiener et al. 2017; Zheng et al. 2018; Banerjee and Pressner 2018; Margulis et al., 2020).

For ORs, the amount of the data is significantly larger (especially when considering not only the ~400 human ORs, but also ORs from mouse and other species) and is distributed among several databases (Marenco et al. 2016; Di Pizio et al. 2020a, b). For instance, ORDB (Crastro et al. 2002), OlfactionDB (Modena et al. 2011), OdorDB (Marenco et al. 2013) and the Leibniz-LSB@TUM Odorant Database (Dunkel et al. 2014; Kreissl et al. 2019) contain information about odorant molecules and/or their cognate olfactory receptors. Complementarily, HORDE (Onder et al. 2013) is dedicated to olfactory receptor SNPs and haplotypes and their frequency in the population, whereas hORMdb (Cierco-Jiménez et al. 2021) additionally maps the sequence variants onto known topological positions of class A GPCRs to predict the functional impact of such mutations. As in the case of bitter tastants, machine learning approaches have also been developed for odorants (Lötsch et al. 2019). These algorithms aim at predicting either new ligand-receptor pairs (Liu et al. 2011; Audouze et al. 2014; Bushdid et al. 2018; Caballero-Vidal et al. 2020; Cong et al. 2020) or smells (Keller et al. 2017; Poivet et al. 2018; Nozaki and Nakamoto 2013; Chacko et al. 2020; Sharma et al. 2021), based on chemical features of the odorants.

Future Directions

The interplay of experimental and computational approaches has enabled a deeper molecular characterization of bitter taste and olfaction. However, the lack of experimental structures of bitter taste and olfactory receptors is still a hurdle that limits the accuracy of the computational structural models that can be generated. Moreover, a more extensive characterization of the physiological and pathological roles of extraoral TAS2Rs and extranasal ORs is required to exploit their potential as novel drug targets. In addition to computational molecular modeling and data science approaches, systems biology is expected to contribute to further understand the connection between ligand-receptor recognition and the subcellular response of the corresponding type II taste cell or olfactory sensory neuron.

Acknowledgements I would like to thank Paolo Carloni and Alejandra Giorgetti for introducing me to the field of chemical senses. I am also grateful to Luciano Navarini, Wolfgang Meyerhof, Marc Spehr, Fabrizio Fierro, Giuliano Santarpia and Nicolas P. Müller for useful
discussions along the years. This work was supported by the Ernesto Illy Foundation (Trieste, Italy).

Funding Open Access funding enabled and organized by Projekt DEAL. This work was supported by the Ernesto Illy Foundation (Trieste, Italy).

Declarations

Conflict of interest The authors have no conflicts of interest to declare that are relevant to the content of this article.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Adler E, Hoon MA, Mueller KL, Chandrashekar J, Ryba NJP, Zuker CS (2000) A novel family of mammalian taste receptors. Cell 100:693–702. https://doi.org/10.1016/s0092-8674(00)80705-9

Ahmad R, Dalziel JE (2020) G protein-coupled receptors in taste physiology and pharmacology. Front Pharmacol. https://doi.org/10.3389/fphar.2020.587664

Ahmed L, Zhang Y, Block E, Buehl M, Corr MJ, Cormican RA, Gundala S, Matsunami H, O’Hagan D, Ozbil M, Pan Y, Sekharan S, Ten N, Wang M, Yang M, Zhang Q, Zhang R, Batista VS, Zhuang H (2018) Molecular mechanism of activation of human musk receptors OR5AN1 and OR1A1 by (R)-muscone and diverse other musk-smelling compounds. Proc Natl Acad Sci USA 115(17):E3950-E3958. https://doi.org/10.1073/pnas.1713026115

Alexander SPH, Christopoulos A, Davenport AP, Kelly E, Mathie A, Peters JA, Veale EL, Armstrong JF, Facenda E, Harding SD, Pawson AJ, Sharran JL, Southan C, Davies JA, Collaborators CGTP (2019) The concise guide to pharmacology 2019/20: G protein-coupled receptors. Br J Pharmacol 176(Suppl 1):S21–S141. https://doi.org/10.1111/bph.14748

Alfonso-Prieto M, Navarini L, Carloni P (2019a) Understanding ligand binding to G-protein coupled receptors using multiscale simulations. Front Mol Biosci 6:29. https://doi.org/10.3389/fmolb.2019.00029

Alfonso-Prieto M, Giorgetti A, Carloni P (2019b) Multiscale simulations on human Frizzled and Taste2 GPCRs. Curr Opin Struct Biol 55:8–16. https://doi.org/10.1016/j.sbi.2019.02.009

Audouze K, Tromelin A, Le Bon AM, Belloir C, Petersen RK, Kristiansen K, Brunak S, Taboureau O (2014) Identification of odorant-receptor interactions by global mapping of the human odrome. PLoS ONE 9(4):e93037. https://doi.org/10.1371/journal.pone.0093037

Ballesteros JA, Weinstein H (1995) [19] Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. Methods in Neurosciences, Academic Press 25:366–428. https://doi.org/10.1016/S1043-9471(05)80040-7

Banerjee P, Preissner R (2018) BitterSweetForest: A random forest based binary classifier to predict bitterness and sweetness of chemical compounds. Front Chem 6:93. https://doi.org/10.3389/fchem.2018.00093

Behrens M, Meyerhof W (2011) Gustatory and extragustatory functions of mammalian taste receptors. Physiol Behav 105(1):4–13. https://doi.org/10.1016/j.physbeh.2011.02.010

Behrens M, Meyerhof W (2018) Vertebrate bitter taste receptors: keys for survival in changing environments. J Agric Food Chem 66(10):2204–2213. https://doi.org/10.1021/acs.jafc.8b04835

Behrens M, Meyerhof W (2019) A role for taste receptors in (neuro) endocrinology? J Neuroendocrinol 31:e12691. https://doi.org/10.1111/jene.12691

Behrens M, Briand L, de March CA, Matsunami H, Yamashita A, Meyerhof W, Weyand S (2018a) Structure-function relationships of olfactory and taste receptors. Chem Senses 43(2):81–87. https://doi.org/10.1093/chemse/bhx083

Behrens M, Gu M, Fan S, Huang C, Meyerhof W (2018b) Bitter substances from plants used in traditional Chinese medicine exert biased activation of human bitter taste receptors. Chem Biol Drug Des 91(2):422–433. https://doi.org/10.1111/cbdd.13089

Bender BJ, Marlow B, Meiler J (2020) Improving homology modeling from low-sequence identity templates in Rosetta: a case study in GPCRs. PLoS Comput Biol 16(10):e1007597. https://doi.org/10.1371/journal.pcbi.1007597

Biarnés X, Marchiori A, Giorgetti A, Lanza C, Gasparini P, Carloni P, Born S, Brockhoff A, Behrens M, Meyerhof W (2010) Insights into the binding of phenylthiocarbamide (PTC) agonist to its target human TAS2R38 bitter receptor. PLoS ONE 5(8):e12394. https://doi.org/10.1371/journal.pone.0012394

Blakeslee AF (1932) Genetics of sensory thresholds: taste for phenylthiocarbamide. Proc Natl Acad Sci USA 18(1):120–130. https://doi.org/10.1073/pnas.18.1.120

Blakeslee AF, Fox AL (1932) Our different taste worlds: PTC as a demonstration of genetic differences in taste. J Hered 23(3):97–107. https://doi.org/10.1093/oxfordjournals.jhered.a103585

Boesveldt S, de Graaf K (2017) The differential role of smell and taste for eating behavior. Perception 46(3–4):307–319. https://doi.org/10.1177/00337620166683576

Boesveldt S, Parma V (2021) The importance of the olfactory system in human well-being, through nutrition and social behavior. Cell Tissue Res 383(1):559–567. https://doi.org/10.1007/s00441-020-03367-7

Brockhoff A, Behrens M, Niv MY, Meyerhof W (2010) Structural requirements of bitter taste receptor activation. Proc Natl Acad Sci USA 107(24):11110–11115. https://doi.org/10.1073/pnas.0913862107

Buck L, Axel R (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65(1):175–187. https://doi.org/10.1016/0092-8674(91)90418-x

Bushdid C, Magnasco MO, Vosshall LB, Keller A (2014) Humans can discriminate more than 1 trillion olfactory stimuli. Science 343(6177):1370–1372. https://doi.org/10.1126/science.1249168

Bushdid C, de March CA, Fiorucci S, Matsunami H, Golebiowski J (2018) Agonists of G-protein-coupled odorant receptors are predicted from chemical features. J Phys Chem Lett 9(9):2235–2240. https://doi.org/10.1021/acs.jpclett.8b00633

Bushdid C, de March CA, Topin J, Do M, Matsunami H, Golebiowski J (2019) Mammalian class I odorant receptors exhibit a conserved vestibular-binding pocket. Cell Mol Life Sci 76(5):995–1004. https://doi.org/10.1007/s00018-018-2996-4

Caballero-Vidal G, Bouysset C, Grunig H, Fiorucci S, Montagné N, Golebiowski J, Jacquin-Joly E (2020) Machine learning
Levit A, Nowak S, Peters M, Wiener A, Meyerhof W, Behrens M, Niv MY (2014) The bitter pill: clinical drugs that activate the human bitter taste receptor TAS2R14. FASEB J 28(3):1181–1197. https://doi.org/10.1096/fj.13-242594
Li S, Ahmed L, Zhang R, Pan Y, Matsunami H, Burger JL, Block E, Batista VS, Zhuang H (2016) Smelling sulfur: copper and silver regulate the response of human odorant receptor OR2T11 to low-molecular-weight thiols. J Am Chem Soc 138(40):13281–13288. https://doi.org/10.1021/jacs.6b06983
Liu X, Su X, Wang F, Huang Z, Wang Q, Li Z, Zhang R, Wu L, Pan Y, Chen Y, Zhuang H, Chen G, Shi T, Zhang J (2011) ODROractor: a web server for deciphering olfactory coding. Bioinformatics 27(16):2302–2303. https://doi.org/10.1093/bioinformatics/btr385
Logan DW (2014) Do you smell what I smell? Genetic variation in olfactory perception. Biochem Soc Trans 42(4):861–865. https://doi.org/10.1042/bst20140052
Lötsch J, Geisslinger G, Hummel T (2012) Sniffing out pharmacology: interactions of drugs with human olfaction. Trends Pharmacol Sci 33(4):193–199. https://doi.org/10.1016/j.tips.2012.01.004
Lötsch J, Kringle D, Hummel T (2019) Machine learning in human olfactory research. Chem Senses 44(1):1–22. https://doi.org/10.1093/chemse/bjy067
Mainland JD, Keller A, Li YR, Zhou T, Trimmer C, Snyder LL, Moberly AH, Adipietro KA, Liu WL, Zhuang H, Zhan S, Lee SS, Lin A, Matsunami H (2014) The missense of smell: functional variability in the human odor receptor repertoire. Nat Neurosci 17(1):114–120. https://doi.org/10.1038/nn.3598
Marchiori A, Capece L, Giorgetti A, Carloni P, Meyerhof W, Behrens M, Carloni P, Meyerhof W (2013) Coarse-grained/molecular mechanics of the TAS2R38 bitter taste receptor: experimentally-validated detailed structural prediction of agonist binding. *PloS ONE*. https://doi.org/10.1371/journal.pone.0064675
Margulis E, Dagan-Wiener A, Ives RS, Siems K, Niv MY (2020) Intense bitterness of molecules: Machine learning for expediting drug discovery. *Comput Struct Biotechnol J* 19:568–576. https://doi.org/10.1016/j.csbj.2020.12.030
Moberly AH, Adipietro KA, Liu WL, Zhuang H, Zhan S, Lee SS, Lin A, Matsunami H (2014) The missense of smell: functional variability in the human odor receptor repertoire. Nat Neurosci 17(1):114–120. https://doi.org/10.1038/nn.3598
Marenco LN, Bahl G, Hyland L, Shi J, Wang R, Lai PC, Miller PL, Shepherd GM, Crasto CJ (2013) Databases in SenseLab for the genomics, proteomics, and function of olfactory receptors. Methods Mol Biol 1003:3–22. https://doi.org/10.1007/978-1-62703-377-0_1
Marenco L, Wang R, McDougal R, Olender T, Twik M, Bruford E, Liu X, Zhang J, Lancet D, Shepherd G, Crasto C (2016) ORDB, HORDER ODROractor and other on-line knowledge resources of olfactory receptor-odorant interactions. Database (Oxford). https://doi.org/10.1093/database/baw132
Margulis E, Dagan-Wiener A, Ives RS, Siems K, Niv MY (2020) Intense bitterness of molecules: Machine learning for expediting drug discovery. Comput Struct Biotechnol J 19:568–576. https://doi.org/10.1016/j.csbj.2020.12.030
Malberg D, Hatt H (2018) Human olfactory receptors: novel cellular functions outside of the nose. *Physiol Rev* 98(3):1739–1763. https://doi.org/10.1152/physrev.00013.2017
Mennella JA, Spector AC, Reed DR, Coldwell SE (2013) The bad taste of medicines: overview of basic research on bitter taste. Clin Ther 35(8):1225–1246. https://doi.org/10.1016/j.clinthera.2013.06.007
Meyerhof W, Batram C, Kuhn C, Brockhoff A, Chudoba E, Bufe B, Appendino G, Behrens M (2010) The molecular receptive ranges of human TAS2R bitter taste receptors. Chem Senses 35(2):157–170. https://doi.org/10.1093/chemse/bjp092
Bitter Taste and Olfactory Receptors: Beyond Chemical Sensing in the Tongue and the Nose

Moenda D, Trentini M, Corsini M, Bombaci A, Giorgiotta A (2011) OlfactionDB: a database of olfactory receptors and their ligands. Adv Liq Sci 1(1):1–5. https://doi.org/10.5923/j.als.20110101.01

Munk C, Isberg V, Mordalski M, Harpsøe K, Rabat J, Hauser AS, Kolb P, Bojarski AJ, Vriend G, Gloriam DE (2016) GPCRdb: the G protein-coupled receptor database — an introduction. Br J Pharmacol 173:2195–2207. https://doi.org/10.1111/bph.13509

Munk C, Harpsøe K, Hauser AS, Isberg V, Gloriam DE (2016) Integrating structural and mutagenesis data to elucidate GPCR ligand binding. Curr Opin Pharmacol 30:51–58. https://doi.org/10.1016/j.coph.2016.07.003

Nordström KJ, Sällman Almén M, Edstam MM, Fredriksson R, Schiöth HB (2011) Independent HHsearch, Needleman-Wunsch-based, and motif analyses reveal the overall hierarchy for most of the G protein-coupled receptor families. Mol Biol Evol 28(9):2471–2480. https://doi.org/10.1093/molbev/msr061

Nowak S, Di Pizio A, Levit A, Niv MY, Meyerhof W, Behrens M (2018) Reengineering the ligand sensitivity of the broadly tuned human bitter taste receptor TAS2R14. Biochim Biophys Acta Gen Subj. https://doi.org/10.1016/j.bbagagen.2018.07.009

Nozaki Y, Nakamoto T (2018) Predictive modeling for odor character of a chemical using machine learning combined with natural language processing. PLoS ONE 13(6):e0198475. https://doi.org/10.1371/journal.pone.0198475

Olender T, Naiv, N, Lance D (2013) HORDE: comprehensive resource for olfactory receptor genomics. Methods Mol Biol 1003:23–38. https://doi.org/10.1007/978-1-62703-377-0_2

Olivella M, Gonzalez A, Pardo L, Deupi X (2016) HORDE: comprehensive resource for olfactory receptor genomics. Methods Mol Biol 1003:23–38. https://doi.org/10.1007/978-1-62703-377-0_2

Oppo V, Melis M, Melis M, Tomassini Barbarossa I, Cossu G (2020) “Smelling and Tasting” Parkinson’s Disease: Using Senses to Improve the Knowledge of the Disease. Front Aging Neurosci 12:43. https://doi.org/10.3389/fagi.2020.00043

Parma V, Ohla K, Veldhuizen MG, Niv MY, Kelly CE, Bakke AJ, Cooper KW, Bouyssset C, Pirastu N, Dibattista M, Kaur R, Liuza MT, Pepino MY, Schiff P, Vereda-Loth V, Olsson SB, Gerkin RC, Rohls Domínguez P, Albayaj, Farraggia MC, Bhutan S, Fjaeldstad AW, Kumar R, Minini A, Bersani M, Sandell M, Konvicka H, Fjaeldstad AW, Kumar R, Minini A, Bersani M, Sandell M, Konvicka H, Fjaeldstad AW, Kumar R, Minini A, Bersani M, Sandell M, Konvicka H, Fjaeldstad AW, Kumar R, Minini A, Bersani M, Sandell M, Konvicka H, Fjaeldstad AW, Kumar R, Minini A, Bersani M, Sandell M, Konvicka H, Fjaeldstad AW, Kumar R, Minini A, Bersani M, Sandell M, Konvicka H, Fjaeldstad AW, Kumar R, Minini A, Bersani M, Sandell M, Konvicka H, Fjaeldstad AW, Kumar R, Minini A, Bersani M, Sandell M, Konvicka H, Fjaeldstad AW, Kumar R, Minini A, Bersani M, Sandell M, Konvicka H, Fjaeldstad AW, Kumar R, Minini A, Bersani M, Sandell M, Konvicka H, Fjaeldstad AW, Kumar R, Minini A, Bersani M, Sandell M, Konvicka H, Fjaeldstad AW, Kumar R, Minini A, Bersani M, Sandell M, Konvicka H, Fjaeldstad AW, Kumar R, Minini A, Bersani M, Sandell M, Konvicka H, Fjaeldstad AW, Kumar R, Minini A, Bersani M, Sandell M, Konvicka H, Fjaeldstad AW, Kumar R, Minini A, Bersani M, Sandell M, Konvicka H, Fjaeldstad AW, Kumar R, Minini A, Bersani M, Sandell M, Konvicka H, Fjaeldstad AW, Kumar R, Minini A, Bersani M, Sandell M, Konvicka H, Fjaeldstad AW, Kumar R, Minini A, Bersani M, Sandell M, Konvicka H, Fjaeldstad AW, Kumar R, Minini A, Bersani M, Sandell M, Konvicka H, Fjaeldstad AW, Kumar R, Minini A, Bersani M, Sandell M, Konvicka H, Fjaeldstad AW, Kumar R, Minini A, Bersani M, Sandell M, Konvicka H, Fjaeldstad AW, Kumar R, Minini A, Bersani M, Sandell M, Konvicka H, Fjaeldstad AW, Kumar R, Minini A, Bersani M, Sandell M, Konvicka H, Fjaeldstad AW, Kumar R, Minini A, Bersani M, Sandell M, Konvicka H, Fjaeldstad AW, Kumar R, Minini A, Bersani M, Sandell M, Konvicka H, Fjaeldstad AW, Kumar R, Minini A, Bersani M, Sandell M, Konvicka H, Fjaeldstad AW, Kumar R, Minini A, Bersani M, Sandell M, Konvicka H, Fjaeldstad AW, Kumar R, Minini A, Bersani M, Sandell M, Konvicka H, Fjaeldstad AW, Kumar R, Minini A, Bersani M, Sandell M, Konvicka H, Fjaeldstad AW, Kumar R, Minini A, Bersani M, Sandell M, Konvicka H, Fjaeldstad AW, Kumar R, Minini A, Bersani M, Sandell M, Konvicka H, Fjaeldstad AW, Kumar R, Minini A, Bersani M, Sandell M, Konvicka H, Fjaeldstad AW, Kumar R, Minini A, Bersani M, Sandell M, Konvicka H, Fjaeldstad AW, Kumar R, Minini A, Bersani M, Sandell M, Konvicka H, Fjaeldstad AW, Kumar R, Minini A, Bersani M, Sandell M, Konvicka H, Fjaeldstad AW, Kumar R, Minini A, Bersani M, Sandell M, Konvicka H, Fjaeldstad AW, Kumar R, Minini A, Bersani M, Sandell M, Konvicka H, Fjaeldstad AW, Kumar R, Minini A, Bersani M, Sandell M, Konvicka H, Fjaeldstad AW, Kumar R, Minini A, Bersani M, Sandell M, Konvicka H, Fjaeldstad AW, Kumar R, Minini A, Bersani M, Sandell M, Konvicka H, Fjaeldstad AW, Kumar R, Minini A, Bersani M, Sandell M, Konvicka H, Fjaeldstad AW, Kumar R, Minini A, Bersani M, Sandell M, Konvicka H, Fjaeldstad AW, Kumar R, Minini A, Bersani M, Sandell M, Konvicka H, Fjaeldstad AW, Kumar R, Minini A, Bersan
Tarakad A, Jankovic J (2017) Anosmia and Ageusia in Parkinson’s Disease. Int Rev Neurobiol 133:541–556. https://doi.org/10.1016/bs.irn.2017.05.028

Tehan BG, Bortolato A, Blaney FE, Weir MP, Mason JS (2014) Unifying family A GPCR theories of activation. Pharmacol Ther 143(1):51–60. https://doi.org/10.1016/j.pharmthera.2014.02.004

Tepper BJ, Barbarossa IT (2020) Taste, Nutrition, and Health. Nutrients 12(1):155. https://doi.org/10.3390/nu12010155

Thal DM, Glukhova A, Sexton PM, Christopoulos A (2018) Structural insights into G-protein-coupled receptor allostery. Nature 559(7712):45–53. https://doi.org/10.1038/s41586-018-0259-z

Tong T, Ryu SE, Min Y, de March CA, Bushdid C, Golebiowski J, Moon C, Park T (2017) Olfactory receptor 10J5 responding to α-cedrene regulates hepatic steatosis via the cAMP-PKA pathway. Sci Rep 7(1):9471. https://doi.org/10.1038/s41598-017-10379-x

Topin J, de March CA, Charlier L, Ronin C, Antonczak S, Golebiowski J (2014) Discrimination between olfactory receptor agonists and non-agonists. Chemistry 20(33):10227–10230. https://doi.org/10.1002/chem.201402486

Vass M, Kooistra AJ, Yang D, Stevens RC, Wang MW, de Graaf C (2018) Chemical diversity in the G protein-coupled receptor superfamily. Trends Pharmacol Sci 39(5):494–512. https://doi.org/10.1016/j.tips.2018.02.004

Venkatakrishnan AJ, Deupi X, Lebon G, Tate CG, Schertler GF, Babu MM (2013) Molecular signatures of G-protein-coupled receptors. Nature 494(7436):185–194. https://doi.org/10.1038/nature11896

Venkatakrishnan AJ, Deupi X, Lebon G, Heydenreich FM, Flock T, Miljus T, Balaji S, Bouvier M, Veprintsev DB, Tate CG, Schertler GF, Babu MM (2016) Diverse activation pathways in class A GPCRs converge near the G-protein-coupling region. Nature 536(7617):484–487. https://doi.org/10.1038/nature19107

Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA, Gocayne JD (2001) The sequence of the human genome. Science 291(5507):1304–1351. https://doi.org/10.1126/science.1058040

Weis WI, Koblika BK (2018) The molecular basis of G protein-coupled receptor activation. Annu Rev Biochem 87:897–919. https://doi.org/10.1146/annurev-biochem-060614-033910

Wiener A, Shudler M, Levit A, Niv MY (2012) BitterDB: a database of bitter compounds. Nucleic Acids Res. https://doi.org/10.1093/nar/gkr755

Zhang Y, Devries ME, Skolnick J (2006) Structure modeling of all identified G protein-coupled receptors in the human genome. PLoS Comput Biol. https://doi.org/10.1371/journal.pcbi.0020013

Zheng S, Jiang M, Zhao C, Zhu R, Hu Z, Xu Y, Lin F (2018) e-Bitter: Bitterant prediction by the consensus voting from the machine-learning methods. Front Chem 6:82. https://doi.org/10.3389/fchem.2018.00082

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Authors and Affiliations

Mercedes Alfonso-Prieto1,2

* Mercedes Alfonso-Prieto
m.alfonso-prieto@fz-juelich.de; alfonsop@hhu.de

1. Institute for Advanced Simulations IAS/Institute for Neuroscience and Medicine INM-9, Computational Biomedicine, Forschungszentrum Jülich GmbH, Jülich, Germany

2. Medical Faculty, Cécile and Oskar Vogt Institute for Brain Research, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany