Atovaquone-proguanil in the treatment of imported uncomplicated Plasmodium falciparum malaria: a prospective observational study of 553 cases.

Hugues Cordel, Johann Cailhol, Sophie Matheron, Martine Bloch, Nadine Godineau, Paul-Henri Consigny, Hélène Gros, Pauline Campa, Patrice Bourée, Olivier Fain, et al.

To cite this version:

Hugues Cordel, Johann Cailhol, Sophie Matheron, Martine Bloch, Nadine Godineau, et al.. Atovaquone-proguanil in the treatment of imported uncomplicated Plasmodium falciparum malaria: a prospective observational study of 553 cases.. Malaria Journal, 2013, 12 (1), pp.399. 10.1186/1475-2875-12-399. pasteur-00905515

HAL Id: pasteur-00905515

https://hal-pasteur.archives-ouvertes.fr/pasteur-00905515

Submitted on 18 Nov 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Atovaquone-proguanil in the treatment of imported uncomplicated Plasmodium falciparum malaria: a prospective observational study of 553 cases

Hugues Cordel¹², Johann Cailhol¹², Sophie Matheron³, Martine Bloch⁴, Nadine Godineau⁵, Paul-Henri Consigny⁶, Hélène Gros⁷, Pauline Campa⁸, Patrice Bourée⁹, Olivier Fain¹⁰, Pascal Ralaimazava¹ and Olivier Bouchaud¹²

Abstract

Background: Each year, thousands of cases of uncomplicated malaria are imported into Europe by travellers. Atovaquone-proguanil (AP) has been one of the first-line regimens used in France for uncomplicated malaria for almost ten years. While AP’s efficacy and tolerance were evaluated in several trials, its use in “real life” conditions has never been described. This study aimed to describe outcome and tolerance after AP treatment in a large cohort of travellers returning from endemic areas.

Methods: Between September 2002 and January 2007, uncomplicated malaria treated in nine French travel clinics with AP were followed for 30 days after AP initiation. Clinical and biological data were collected at admission and during the follow-up.

Results: A total of 553 patients were included. Eighty-eight percent of them were born in Africa, and 61.8% were infected in West Africa, whereas 0.5% were infected in Asia. Migrants visiting friends and relatives (VFR) constituted 77.9% of the patients, the remainder (32.1%) were backpackers. Three-hundred and sixty-four patients (66%) fulfilled follow-up at day 7 and 265 (48%) completed the study at day 30. Three patients had treatment failure. One-hundred and seventy-seven adverse drug reactions (ADR) were reported during the follow-up; 115 (77%) of them were digestive ADR. Backpackers were more likely to experiment digestive ADR compared to VFR (OR = 3.8; CI 95% [1.8-8.2]). Twenty patients had to be switched to another regimen due to ADR.

Conclusion: This study seems to be the largest in terms of number of imported uncomplicated malaria cases treated by AP. The high rate of reported digestive ADR is striking and should be taken into account in the follow-up of patients since it could affect their adherence to the treatment. Beside AP, artemisinin combination therapy (ACT) is now recommended as first-line regimen. A comparison of AP and ACT, in terms of efficacy and tolerance, would be useful.

Keywords: Atovaquone-proguanil, Imported, Uncomplicated, Malaria, Tolerance
were used in Europe, with the most prescribed being the fixed combination, atovaquone-proguanil (AP), commercially known as Malarone® [4].

AP has been licensed in France since 1997 and marketed since late 2001 and it remains the principal treatment of acute malaria. Since the National Experts Committee recommended in 2007 that AP, together with artemether-lumefantrine, be used as first-line regimen, ‘old drugs’ such as quinine or mefloquine were downgraded to second-line treatment [5]. Atovaquone belongs to the family of hydroxy-naphthoquinones, which anti-malarial activity was first described 40 years ago [6,7]. Its mode of action is original, blocking the electron transport chain of the parasite’s mitochondria [8]. Used on its own, atovaquone has limited value, as shown by a significant relapse rate [9]. Its association with proguanil has shown excellent efficacy on acute malaria in numerous clinical trials, due to a synergistic effect [10-17]. AP is also widely used as an efficient and well-tolerated chemoprophylaxis for travellers.

Efficacy and tolerance of AP were extensively reported from clinical trials performed in malaria-endemic areas [10-14]. However, these results might not be valid in the case of imported malaria, due to epidemiological and biological differences (i.e., study conditions, immune status, parasitaemia, heterogeneity of parasite strains, perception of side effects). Most of the studies comparing AP to other drugs were performed in endemic countries, and few observational or retrospective studies from non-endemic countries have been published, amongst which only was a comparative trial, yet with a limited number of subjects has been published [18-24]. A recent international, prospective, observational study analysed a large cohort (504 cases) of imported Plasmodium falciparum malaria cases. It provided interesting data on the use of AP with a relatively large series (n = 253), but heterogeneity of practices, due to ‘centre effects’ between participating European centres may limit the interpretation of the study [4].

The aim of this study was to bridge this gap in knowledge by providing data on the use of AP in ‘real life’ conditions in France, using a large series of uncomplicated imported cases of P. falciparum.

Study population
Recruitment criteria were as following: more than 12 years old (minimal age for prescribing the standard dosage of AP according to manufacturer recommendations); an acute malaria onset due to P. falciparum, acquired in an endemic country and imported to France; onset treated with AP; and, having signed an informed consent. Mixed infections, defined by an infection to P. falciparum combined with another species of Plasmodium were also included. Diagnosis of malaria was based on positive Giemsa-stained thin and thick blood smears tests performed by the parasitology laboratory in each participating centre. All patients had to tolerate oral therapy when they were included in the study. Patients were excluded if: they fulfilled any of the clinical and biological WHO criteria of severe or complicated malaria [25], particularly parasitaemia higher than 4% even for immune patients; if they had a history of allergy to AP; if pregnant or breast-feeding. Hospitalization of patients was not required if the clinical status was sufficiently good and if compliance to the treatment and follow-up was foreseen as acceptable. Patients initially treated with less than three days of intravenous quinine because of vomiting at admission were not excluded as tolerance data in that particular situation were of interest. Decision for choosing AP or another anti-malarial drug was the responsibility of each investigator. Data were collected via a standardized datasheet and analysed only for patients treated with AP.

Procedures/data collection
Initial evaluation included individual characteristics (date of birth, sex, country of birth, country of residence), details on travels in malaria-endemic areas (date of arrival in France, countries visited and duration of travels), type of malaria prophylaxis, medical history (co-morbidities and previous malaria onsets) and details on actual onset. A semi-immune person was defined as a patient who declared a history of malaria. Clinical examination was followed by: blood smear; laboratory test exploring liver, kidney, haematological and metabolism functions; and, an electrocardiogram. According to international and French follow-up guidelines, patients were monitored at day 3, day 7 and one month (day 28 to 30) after AP initiation with clinical examination, blood smear and haematological, liver and kidney functions. Doses for AP and all anti-malarial drugs, except mefloquine, is one tablet daily for chemoprophylaxis. Compliance to daily chemoprophylaxis during the travel period was evaluated during the initial interview: a good compliance was defined by one or less missed dose by week during the travel period and one month after return. For mefloquine (MQ), compliance was defined by one or less missed dose during the travel period and

Methods
Study design
A multicentre, prospective, observational study was set up in nine travel clinics located in Paris and its suburbs, between September 2002 and January 2007. Written informed consent was obtained from each participating subject (from accompanying parents for children less than 18 years old) and data management procedures were approved by the French Commission National de l’Informatique et des Libertés (CNIL).
one month after return. Appropriate use of exposure prophylaxis was defined as patients regularly using impregnated bed net and skin repellent.

Apirexia (fever clearance) was defined as a tympanic temperature below 37.8°C and was monitored at day 3, day 7 and one month. Parasite clearance was defined as a negative thin/thick blood film and was monitored at day 3, day 7 and one month.

Adverse drug reactions (ADR) were reported using a questionnaire administered by the physician. An assessment of patients’ perception of tolerance was performed, using the following terms: good, satisfactory, bad, and very bad tolerance. In the same way, assessment of patients’ perception of AP efficacy was performed. Patients were asked their subjective feeling about the treatment, using the following items: efficient, moderately, poorly and not efficient in the questionnaire, without clinical or biological data. Data were captured on a standardized datasheet and transmitted to the study principal investigator at the end of follow-up. A limited number of patients were also included in another observational study (the European Malaria study) recently published [4].

Data analysis
Statistical analysis was performed using Stata® version 10 software (StataCorp LP, 4905 Lakeway Drive, College Station, TX 77845, USA). Descriptive analyses were comprised of frequency distributions and proportions for each variable category, with their quartiles and confidence intervals (CI) 95%. Group comparisons were performed using Chi square test and Fisher’s exact test for categorical variables. Spearman’s rank correlation coefficient was used to assess association between two continuous variables. Logistic regression analysis was performed to measure association between digestive ADR and patient’s characteristics as independent variables: sex, age group, country of birth, chronic illness (cardiopathy, obesity, diabetes mellitus, kidney and respiratory diseases, HIV infection), type of chemoprophylaxis, type of travel, parasitaemia at diagnosis and at day 3 nausea at presentation, defined as nausea reported at diagnosis, and immunity, classified in semi-immune person or non immune*.

Odds ratios (OR) and 95% CI were calculated from \(\beta \) coefficients and their standard errors. Variables with a \(p \)-value < 0.30 were included in the adjusted model.

Results
Population
During the study period, 553 patients met eligibility criteria and were enrolled in the study. The median age of patients was 38.3 years old (12–79) and 66% were male (sex ratio 1.9). The majority of patients (90.8%) were born outside Europe, mainly in Africa (88.6%). Information on co-morbidities was available for 478 (86.4%); 21 were HIV positive (4%); and 44 (7.9%) had a cardiopathy. Nearly half of enrolled patients \((n = 264; 47.7\%) \) declared at least one previous onset of malaria.

Countries of contamination were mainly located in Africa, especially West Africa for 342 (61.8%) travellers. Only three (0.5%) and two (0.4%) were infected in Asia and the Caribbean Islands, respectively. Most of the patients were migrants who visited friends and relatives (VFR) \((n = 431, 77.9\%) \). Others were backpackers \((n = 33, 6.0\%) \) and tourists resident in hostels \((n = 11, 2.2\%) \).

A pre-travel consultation was reported in 267 travellers (48.3%), mostly by their family practitioner (42.3%). Two-hundred and twenty-two patients (40.1%) declared having taken malaria chemoprophylaxis (chloroquine-proguanil in 64% of the cases). Information on compliance to chemoprophylaxis was available for 222 subjects and was classified as good for 50 cases (22.5%). Seventy-eight subjects (14.1%) declared having used exposure prophylaxis, including 12 (2.2%) with appropriate exposure prophylaxis, i.e., regular use of impregnated bed net and skin repellent. Twenty patients (3.6%) experienced digestive disorders during their stay. There was no relationship between malaria chemoprophylaxis and digestive disorders \((p = 0.14) \). Twenty-two patients were treated by intravenous quinine (14 patients for 24 hours or less, four for 48 hours and four for 72 hours) before receiving AP because of vomiting at admission. Table 1 summarizes the main characteristics of patients enrolled.

Diagnosis
The median time between onset and diagnosis was five days \([1–64]\). Initial clinical presentation comprised headache (46.3%), nausea and vomiting (28.2%), diarrhoea (18.5%), myalgia (14.7%), abdominal pain (5.8%) and arthralgia (3.6%). For 175 patients (31.6%), no fever was noted at admission (Table 2).

Biology
The main data are summarized in Table 3. All patients were infected by \(P. falciparum \). In two cases \(P. falciparum \) was associated with another species: one with \(Plasmodium vivax \) from India and one with \(Plasmodium ovale \) from Gabon.

Median parasitaemia at diagnosis was 0.52% of red blood cell (0.01-5.0). Haemoglobin level was under or equal 8 g/dL at day 3 for 18 patients (3.9%) compared to ten (1.9%) at diagnosis \((p < 10^{-3}) \). There was no correlation between parasitaemia and haemoglobin level at diagnosis \((r = -0.0017, p = 0.97) \). There was no correlation between the time elapsed between symptoms onset and diagnosis on one hand and haemoglobin level at diagnosis or at day 3 on the other hand \((r = -0.21, p < 10^{-2} \) and \(r = -0.22, p < 10^{-3} \), respectively). At admission, platelets count was

Cordel et al. Malaria Journal 2013, 12:399
http://www.malariajournal.com/content/12/1/399
Table 1 Main characteristics of 553 patients treated with atovaquone-proguanil for imported uncomplicated malaria

Male: female ratio	1.9
Median age in years	38.3 (12–79)
Median weight (kg)	74 (40–109)
Continent of birth N (%)	
Europe	51 (9.2)
French West Indies	4 (0.7)
Africa	490 (88.6)
Others	8 (1.5)
Previous history of malaria	
264/492* (53.7)	
HIV positive	21/478* (4.4)
Pre-travel visit	267 (48.3)
Travel clinic	74 (27.7)
Family doctor	113 (42.3)
Unknown	80 (30.0)
Chemoprophylaxis	
Chloroquine	30 (13.5)
Chloroquine-proguanil	142 (64)
Mefloquine	24 (10.8)
Atovaquone-proguanil	1 (0.4)
Doxycycline	13 (5.9)
Proguanil	10 (4.5)
Unknown	2 (0.9)
Compliance to chemoprophylaxis	
50/222* (22.5)	
Non-medical prophylaxis	
Air-conditioning only	1 (0.2)
Insecticides only	5 (0.9)
Unimpregnated bed net only	11 (2)
Impregnated bed net only	23 (4.1)
Repellents only	23 (4.1)
Impregnated bed net and repellents	12 (2.2)
No prophylaxis	400 (72.4)
Unknown	78 (14.1)
Place of contamination	
West Africa	342 (61.8)
Central Africa	148 (26.8)
Madagascar and Comoros	51 (9.2)
East Africa	5 (0.9)
Asia	3 (0.5)
Angola and South Africa	2 (0.4)
Haiti and French Guyana	2 (0.4)

Table 2 Admission variables and outcome in 553 patients treated with atovaquone-proguanil for imported uncomplicated malaria

Type of travel	
Backpackers	33 (6.0)
Hostel	11 (2.0)
Visiting friends and relatives	431 (77.9)
Unknown	78 (14.1)

*: number of patients with available data.

Table 2 Admission variables and outcome in 553 patients treated with atovaquone-proguanil for imported uncomplicated malaria

Temperature at diagnosis N (%)	
≤37.7°C*	175 (31.6)
37.8-39°C*	208 (37.6)
39.1-40°C*	104 (18.8)
>40°C*	19 (3.4)

Symptoms at diagnosis	
Headache	256 (46.3)
Nausea/vomiting	156 (28.2)
Diarrhoea	102 (18.5)
Myalgia	81 (14.7)
Abdominal pain	32 (5.8)
Arthralgia	20 (3.6)

Compliance to follow-up	
Day 3	469 (84.1)
Day 7	364 (65.8)
Day 30	265 (47.9)

Hospitalization	
Hospitalized at diagnosis	191 (34.5)
Still hospitalized at day 3	124 (22.4)
Still hospitalized at day 7	15 (2.7)
Still hospitalized at day 30	2 (0.3)

Fever clearance (apyrexia)	
Day 3	403/425* (94.8)
Day 7	323/323* (100)
Day 30	227/227* (100)

Parasitological clearance (negative parasitaemia)	
Day 3	292/425* (68.7)
Day 7	331/331* (100)
Day 30	215/217* (99.1)

*: number of patients with available data.
normal (>150,000/mm³) in 30.6% of cases and less than 20,000/mm³ in eight patients (1.5%). At day 7, 99.4% of patients had more than 100,000 platelets/mm³.

Outcome
Follow-up was the following: 469 patients (85%) at day 3, 364 at day 7 (66%) and 265 patients (48%) completed the study one month after diagnosis. About one third of patients were hospitalized (n = 191, 34.5%). At day 3, 124 (22.4%) were still hospitalized and 15 (2.7%) at day 7. At one month, two patients were hospitalized: the first one was re-hospitalized for a relapse; the second one definitely cleared his parasitaemia at day 3 but was still hospitalized at day 30 for an HIV-related complication.

Fever clearance was obtained at day 3 in 95% of cases (403 of 425 for which information were available) and for all patients at day 7 (Table 2). All patients at one month were apyretic. Negative parasitaemia was observed in 68.7% of patients at day 3 and for all patients at day 7. Treatment failure was observed in three patients: two relapsed at day 30 and one at day 23. During follow up, these three patients did not return to an endemic area. All were successfully treated by mefloquine. Perceived efficacy amongst the 419 patients who answered was classified as efficient for 305 (72.8%), moderately for 101 (24.1%), poor for eight (1.9%) and not efficient for five (1.2%).

Adverse drug reactions and drug switch
A total of 177 adverse drug reactions (ADR) attributed to AP were reported by the patients during the follow-up. Most of them were reported at day 3 (n = 150) and were digestive (n = 115, 77% of all ADR reported at day 3): most of them consisted of nausea and vomiting followed by headache and skin disorders (Table 4).

In the multivariate analysis, when adjusted to origin, type of travel and parasitaemia at diagnosis, backpackers were more likely to experiment digestive ADR at day 3 than VFR (OR = 3.8 CI 95% [1.8-8.2]) (Table 5).

Assessment of tolerance by patients for the 437 who answered to the questionnaire was classified as good for 304 (69.6%), satisfactory for 116 (23.8%), bad for 41 (8.4%) and very bad for 27 (5.5%). In 20 cases, a switch to another drug was reported mainly because of vomiting (n = 15, 75%), confusion (n = 2, 10%), headache (n = 1, 5%), cutaneous eruption (n = 1, 5%), and suspected resistance because of a positive smear at day 3 (n = 1, 5%).

Table 3: Biology data in 553 patients treated with atovaquone-proguanil for imported uncomplicated malaria

Haemoglobin (g/dL)	Diagnosis	Day 3	Day 7	Day 30
<8	N (%)	N (%)	N (%)	N (%)
8.1-10	11 (1.9)	16 (3.4)	4 (1.1)	0
10.1-12	28 (5.1)	55 (11.7)	48 (13.2)	17 (6.4)
>12	136 (24.6)	162 (34.6)	126 (34.6)	73 (27.6)

Platelet count (per mm³)	Diagnosis	Day 3	Day 7	Day 30
≤20,000	8 (1.4)	4 (0.8)	0	0
20,001-50,000	43 (7.8)	14 (3.0)	1 (0.3)	0
50,001-100,000	173 (31.3)	102 (21.8)	1 (0.3)	0
100,001-150,000	160 (28.9)	121 (25.8)	6 (1.6)	7 (2.6)
>150,000	169 (30.6)	228 (48.6)	356 (97.8)	258 (97.4)

Leucocytes	Diagnosis	Day 3	Day 7	Day 30
White blood cells ≤4,500 per mm³	218 (39.4)	242 (51.6)	55 (15.1)	48 (18.1)
White blood cells >4,500 per mm³	335 (60.6)	227 (48.4)	309 (84.9)	217 (81.9)

Cytolysis	Diagnosis	Day 3	Day 7	Day 30
ALAT ≤S1	385 (69.6)	287 (61.2)	201 (55.2)	219 (82.6)
ALAT 1.1-2	135 (24.4)	140 (29.9)	117 (32.1)	44 (16.6)
ALAT 2.1-3	27 (4.9)	24 (5.1)	20 (5.5)	2 (0.8)
ALAT >3	6 (1.1)	18 (3.8)	26 (7.1)	0

Creatinine (μmol/L)	Diagnosis	Day 3	Day 7	Day 30
≤120	507 (91.7)	431 (91.9)	349 (95.9)	4 (1.5)
121-140	36 (6.5)	25 (5.3)	8 (2.2)	253 (95.5)
>140	10 (1.8)	13 (2.8)	7 (1.9)	8 (3.0)
Discussion

This ‘real life condition’ prospective, observational study of 553 patients treated with atovaquone-proguanil for imported uncomplicated P. falciparum malaria seems to be the largest series assessing the use of AP in the field of imported malaria. Patient profile (mostly young male adults of African origin living in Europe and infected in West Africa) are similar to those observed in the majority of studies on imported malaria [18-24,26-28]. The high percentage of HIV-infected patients (4.4%) observed in the study may be explained by the fact that the majority of patients are of African origin and because the nine recruiting centres are travel clinics linked to infectious diseases departments where a majority of the HIV patients living in Paris area are followed.

Not surprisingly, the rate of chemoprophylaxis and exposure prophylaxis was low. Clinical and biological presentation had no specificity but it is of interest to note that nearly one third of patients had no fever at admission, which might be misleading for non-experienced practitioners. Compared to some other studies describing non-comparative cohorts of malaria patients, follow-up, even too low, might be considered satisfactory given such a ‘real life’ design for this cohort, since outcome data are available for the majority at day 3 and since nearly half of patients were seen one month after treatment [16,19-21,26-29]. By contrast the loss to follow-up rate at one month in the recent European study was much lower, at 25% [4].

With regard to efficacy, if a majority of patients (95%) were fever-free at day 3, nearly a third of them were still parasitaemic confirming that AP is slow-acting [15,16,19,20,30,31]. The analysis of efficacy in a per-protocol approach gives a cure rate of 99% (three relapses of 265 patients with a follow-up at one month) which is comparable to other treatments [15,16,22,32,33]. Details on relapses were available for only two cases. In both cases the reason was probably suboptimal plasmatic AP level: consecutive to obesity (115 kg) in one case and to a poor absorption in the second case, since the patient had not taken food with the drug [34]. As a consequence, physicians should re-assess AP dosage in obese patients and should insist on food intake with AP to optimize its absorption.

Even though rare under AP and comparable to other malaria treatment (1% in this study’s series), the risk of relapse has to be considered by physicians given the potential severe outcome at a time when the diagnosis of malaria may be omitted (long delay after travel in endemic area) [4,21,23]. Given that relapses occur usually between day 14 and day 30 (and in a few cases later) after treatment, physicians should organize a ‘recapture’ system for patients lost to follow-up after day 7, even limited to a phone call, in order to identify promptly a possible recrudescence [4,35].

Perceived efficacy of AP was satisfying. This evaluation is not as valid as parasitological efficacy but it has not been studied in Africa before, both for curative treatment and for prophylaxis in travellers. It is considered as a significant predictor for compliance to treatment and preventative behaviours [36,37].

With regard to tolerance of AP, data of this study highlighted a high rate of digestive ADR, mainly at day 3, especially nausea and vomiting. Digestive ADR represented 77% of ADR reported at day 3 and 72% of the total of ADR reported during follow-up. It seems that digestive ADR were more frequent in backpackers compared to migrants, with no particular explanation, and no comparable data were found in the literature. In 18% of cases (n = 15), vomiting was severe enough to justify a change to second-line treatment. This high occurrence of digestive ADR could be partially explained by the population enrolled in the study since black people are known to

Table 4 Main adverse drug reactions in 553 patients treated with atovaquone-proguanil for imported uncomplicated malaria
At Day 3 (N = 469 (%))
Digestive adverse reactions
Nausea or vomiting
Diarrhoea
Abdominal pain
Others
Cutaneous
Headache
Myalgia
Anklegia
Anxiety
Total ADR* at Day 3
At Day 7 (N = 364 (%))*
Digestive adverse reactions
Nausea
Diarrhoea
Others
Cutaneous
Headache
Total ADR* at Day 7
At Day 30 (N = 265 (%))*
Digestive adverse reactions
Nausea
Diarrhoea
Cutaneous
Headache
Total ADR* at Day 30*

*: Differences between denominators are due to patients lost to follow up. ADR: Adverse drugs reactions.
have a lower clearance rate of atovaquone compared to white people [38]. Yet there were no relationship between immunity, or African origin, with digestive ADR.

Surprisingly, these digestive side effects are one of the most important from studies. A review of ten trials comparing Atovaquone-Proguanil (AP) with other anti-malarial drugs for uncomplicated malaria report a median rate of nausea and/or vomiting (inter quartile range) of 15.6% (5.2 – 25.0) for Atovaquone-Proguanil whereas other studies did not report this ADR [10,11,15,16,18,20,30,31,39]. To discriminate digestive ADR from symptoms related to malaria is difficult in a cohort and only clinical trials would be able to make the distinction. This study didn’t compare AP to other drugs, and this misclassification could be a bias.

Nausea at diagnosis was not associated with digestive ADR at day 3, which involves AP rather than acute malaria in the etiology of these adverse effects.

Table 5 Digestive adverse drug reactions under atovaquone-proguanil

	Number	Digestive ADR day 3	Crude OR	Adjusted OR	p
	N (%)				
Sex					
Male	306	74 (24.2)	1		0.82
Female	163	41 (25.1)	0.9	[0.6 - 1.4]	
Age					
≤ 30	131	39 (29.8)	1		0.36
31-40	129	27 (20.9)	0.6	[0.3 - 1.1]	
41-50	121	30 (24.8)	0.8	[0.4 - 1.3]	
> 50	88	19 (21.6)	0.6	[0.3 - 1.2]	
Origin					
African	415	92 (22.2)	1		
European	43	16 (37.2)	2.1	[1.0 - 4.0]	1.2
Others	11	7 (63.6)	6.1	[1.7 - 21.4]	3.5
Immunity					
Non immune	233	60 (25.7)	1		
Semi-immune	236	55 (23.3)	0.86	[0.6 - 1.3]	
Nausea at presentation					
No	329	82 (24.9)	1		0.76
Yes	140	33 (23.6)	0.93	[0.58 - 1.48]	
Chronic illness					
No	425	105 (24.7)	1		0.77
Yes	44	10 (22.7)	0.9	[0.4 - 1.9]	
Chemoprohylaxis					
No	192	50 (26.0)	1		0.51
Yes	277	65 (23.5)	0.9	[0.6 - 1.3]	
Type of travel					
VFR*	378	80 (21.2)	1	< 0.01	1
Hostel	10	4 (40.0)	2.5	[0.7 - 9.0]	2.8
Backpackers	30	15 (50.0)	3.7	[1.7 - 7.9]	3.8
Unknown	51	16 (31.4)	1.7	[0.9 - 3.2]	1.7
Parasitaemia at diagnosis					
≤ 0.10%	144	27 (18.7)	1	0.29	1
0.11 - 0.50%	148	42 (28.4)	1.7	[1.0 - 3.0]	1.8
0.51 - 1.00%	52	11 (21.2)	1.2	[0.5 - 2.5]	1.3
> 1%	90	25 (22.8)	1.7	[0.9 - 3.1]	1.9
Unknown	35	10 (28.6)	1.7	[0.7 - 4.0]	1.8
Parasitaemia at day 3					
Negative	290	72 (24.8)	1		0.97
Positive	128	31 (24.2)	0.9	[0.6 - 1.6]	
Unknown	51	12 (23.5)	0.9	[0.5 - 1.9]	

*Visiting friends and relatives.
risk factor for vomiting [38]. Prescription of metoclopra-
mide is probably not a solution since it decreases the
bioavailability of atovaquone [40].

As observed in the literature, this study did not reveal
any liver toxicity. Moderate variations in transaminase
level observed at day 3 and 7 were not significant and
were possibly due to malaria parasite itself [12,14,30,41].

A drop in haemoglobin level, as observed here, was
commonly reported after initiation of treatment of acute
malaria due to malaria haemolysis [42]. The absence of
correlation between haemoglobin at diagnosis and initial
parasitaemia is in line with other studies [43].

In 2007, French experts’ consensus recommended both
AP and artemether-lumefantrine as first-line treatment
for acute uncomplicated malaria [5]. As a consequence
and because artemether-lumefantrine, even if registered
throughout Europe in 1999, is only available since 2007
in France, the use of AP has progressively increased
from 25% in 2006 to 46% in 2011 [3]. On the one hand,
AP’s good efficacy was confirmed by this series while its
limitations were described (mainly slow-acting drug,
poor absorption, and ADR, such as vomiting). On the
other hand, use of artemether-lumefantrine in the par-
ticular situation of imported malaria still has a limited
experience. Hence, regarding imported malaria, the
question of which association between AP or artesininin
combination therapy (ACT) is the best option remains.
A clinical trial is currently comparing the use of AP and
ACT in the indication of uncomplicated malaria in non-
endemic areas and will hopefully bring the answer [44].

With the introduction of ACT in Europe (artemether-
lumefantrine and, since mid-2012, dihydroartemisinin-
piperazine are both authorized in France and in a limited
number of European countries) for uncomplicated acute
malaria onset, the use of AP will probably decrease
in favour of ACT, due to its prompt efficacy and good
tolerance.

Conclusion

This observational series of 553 cases, the largest to date
in number of patients, describes a large experience in
using AP for imported uncomplicated malaria in real life
conditions. Despite a non-comparative design, it appears
that its efficacy is good and comparable to other similar
drugs. The study confirms that AP is a valuable treatment
option, while ADR, such as vomiting and its limited
absorption in some cases, may be a limitation for its use.

Competing interests

The authors have declared that they have no competing interests.

Authors’ contributions

HC, PR and OB participated in the design of the study and performed the
statistical analysis. PR and OB conceived of the study, and participated in its
coordination. HC, JC, SM and OB contributed to the draft manuscript. CF, PB,
PC, HG, PHC, NG and MB participated in the recruitment of included
patients. All authors read and approved the final manuscript.

Author details

1Department of Infectious and Tropical Diseases, Hôpital Avicenne,
Assistance Publique-Hôpitaux de Paris, Bobigny, France. 2LPS EA3412,
Université Paris 13 - Sorbonne Paris Cité, Paris, France. 3Department of
Infectious and Tropical Diseases, Hôpital Bichat, Assistance Publique-Hôpitaux de
Paris, Paris, France. 4Department of Internal Medicine, Hôpital Louis Mourier,
Assistance Publique - Hôpitaux de Paris, Colombes, France. 5Department of
Parasitology, Hôpital Delafontaine, Saint Denis, France. 6Institut Pasteur, Centre
Medical, Paris, France. 7Department of Internal Medicine, Hôpital Robert Ballanger,
Aulnay-Sous-Bois, France. 8Department of Infectious and Tropical Diseases, Hôpital
Saint Antoine, Assistance Publique - Hôpitaux de Paris, Paris, France. 9Department
of Parasitology, Hôpital Bicêtre, Assistance Publique - Hôpitaux de Paris, Paris,
France. 10Department of Internal Medicine, Hôpital Jean Verdier, Assistance
Publique - Hôpitaux de Paris, Paris, France.

Received: 4 September 2013 Accepted: 30 October 2013
Published: 7 November 2013

References

1. WHO: World malaria report 2012. Geneva: World Health Organization; 2010.
2. World Health Organization Regional Office for Europe: Centralized
information system for infectious diseases (CISID). 2017.
3. French Institute of Public Health, InVS: French national reference centre for
drug - Report 2011. Saint-Maurice, France: French Institute of Public
Health, InVS, 2012:79.
4. Bouchaud O, Muehlinger N, Parola P, Calleri G, Mattei A, Peyret-Hoffmann G,
Mehai F, Gautier P, Clerinx J, Kremsner PG, Jeulink T, Kaiser A, Beltrame A,
Schmid M, Kem P, Probst M, Bartoloni A, Weinke T, Grobusch MP: Therapy of
uncomplicated falciparum malaria in Europe. MALTHEM - a prospective
observational multicentre study. Malar J 2012, 11:12.
5. Société de Pathologie Infectieuse de Langue Française: Management and
prevention of imported Plasmodium falciparum malaria (Revision 2007 of the
1999 Consensus Conference) (in French). Med Mal Infect 2008, 38:68–117.
6. Hudson AT, Lapinone, menotoceno, hydroxyamphthoquinones and similar
structures. In Handbook of experimental pharmacology, antimalarial drugs. Edited
by Pears WRW. Berlin - Heidelberg: Springer Verlag; 1984:343–361.
7. Hudson AT, Randall AW, Fry M, Ginger CD, Hill B, Latter VS, McHardy N,
Williams RB: Novel anti-malarial hydroxyamphthoquinones with potent
broad spectrum anti-protozoal activity. Parasitology 1985, 90:45–55.
8. Guthrie I: Chemotherapy. In: Modern parasitology. Edited by FG C.
Oxford: Blackwell Scientific Publications; 1993:218–239.
9. Chioldi PL, Conlon CP, Hutchinson DB, Farquhar J, Hall AP, Petito TE, Birley
H, Warrell DA: Evaluation of atovaquone in the treatment of patients
with uncomplicated Plasmodium falciparum malaria. J Antimicrob
Chemother 1995, 36:1073–1078.
10. Bustos DG, Canfield CJ, Canete-Miguez E, Hutchinson DB: Atovaquone-proguanil
compared with chloroquine and chloroquine-sulfadoxine/pyrimethamine for
treatment of acute Plasmodium falciparum malaria in the Philippines. J Infect
Dis 1999, 179:1587–1590.
11. De Aenecar FE, Cerutti C, Durlacher RR, Boulos M, Alves FP, Milhous W,
Pang LW: Atovaquone and proguanil for the treatment of malaria in
Brazil. J Infect Dis 1997, 175:1544–1547.
12. Mrsarisiw S, Williartena P, Chalermanut K, Rattanapong Y, Canfield CJ,
Hutchinson DB: Efficacy and safety of atovaquone/proguanil compared with
mefloquine for treatment of acute Plasmodium falciparum malaria in
Thailand. Am J Trop Med Hyg 1999, 60:526–532.
13. Mulenga M, Sukwa TY, Canfield CJ, Hutchinson DB: Atovaquone and
proguanil versus pyrimethamine/sulfadoxine for the treatment of acute
falciparum malaria in Zambia. Clin Ther 1999, 21:841–852.
14. Radloff PD, Philipps J, Nkeyi M, Hutchinson D, Kremsner PG: Atovaquone
and proguanil for Plasmodium falciparum malaria. Lancet 1996, 347:1511–1514.
15. Bouchaud O, Monlan E, Muazna K, Fontanet A, Scott T, Goetschel A,
Chulay JD, Le Bras J, Danis M, Le Bras M, Coulaud JP, Gentillini M:
Atovaquone plus proguanil versus halofantrine for the treatment of
imported acute uncomplicated Plasmodium falciparum malaria in
of uncomplicated Plasmodium falciparum malaria—report of 112 cases] (in French).

27. D. Kockaerts, Y. Vanhees, S. Knockaert, D.C. Verhaegen: Atovaquone-proguanil in the treatment of imported malaria in the ambulatory setting: a prospective study. *Med Trop (Mars)* 2000, 62:229–231.

28. Malvy D, Djissou F, Vatan R, Pistone T, Etienne G, Longy-Boursier M, Le Bras M: Antimalarial drugs: a review of their clinical pharmacokinetics and use in treatment of malaria. *Ann Med* 2001, 33:254–263.

29. Hatz C, Soto J, Nothdurft HD, Zoller T, Weitzel T, Loutan L, Bricaire F, Gay F, European Group for Pharmacokinetic Studies of Antimalarial Drugs: Efficacy and safety of atovaquone-proguanil for treating uncomplicated malaria. *Antimicrob Agents Chemother* 2009, 53:636–640.

30. Kockaerts Y, Vanhees S, Knockaert DC, Verhaegen J, Lontie M, Peetermans WE: Comparison of atovaquone-proguanil with mefloquine in the treatment of uncomplicated falciparum malaria. *Eur J Clin Microbiol Infect Dis* 2008, 27:109–116.

31. Le Bras J, Touze JE, Gathmann I, Muller R: The comparative efficacy and tolerability of CQG and MPF against falciparum malaria in nonimmune populations: a safety, efficacy, and pharmacokinetic study. *Am J Trop Med Hyg* 2008, 78:344–351.

32. Makanga M, Krudsood S: Treatment of imported malaria in an ambulatory setting: prospective study. *BMC Med* 2002, 2:43–47.

33. McGehe M, Scott L: Atovaquone-proguanil: a review of its clinical pharmacokinetics and use in treatment of malaria in Japanese patients who have been exposed to chloroquine-resistant P. falciparum. *Clin Ther* 2003, 25:662–678.

34. Monteforte S, Pham W, Tanaka M, Rambaut A, Park AF, Day NP: Efficacy and safety of atovaquone-proguanil compared with mefloquine in the treatment of uncomplicated malaria in travelers returning from the Tropics to the Netherlands and France. *Int J Antimicrob Agents* 1999, 12:159–169.

35. Miura T, Kimura M, Kobuchi T, Endo T, Nakamura H, Oda Y, Watan Y, Nakamura T, Iwamoto A: Clinical characteristics of imported malaria in Japan: a referral hospital. *Am J Trop Med Hyg* 2005, 73:599–603.

36. Njoh J, Baumann LC, Henriques JM, Bass C: Use of drugs, perceived drug efficacy and preferred providers for febrile children: implications for management of fever. *Malar J* 2009, 8:131.

37. Osei-Atako A, Orton L, Owusu-Ofori SP: Atovaquone-proguanil for treating uncomplicated malaria. *Cochrane Database Syst Rev* 2005, 19:CD004529.

38. Qiao PT, De Vries PJ, Heng Q, Binth TQ, Nam TV, Kager PA: CVB, a new combination of dithrothreitins, piperaquin, trimethoprim and primquine, compared with atovaquone-proguanil against falciparum malaria in Vietnam. *Trop Med Int Health* 2004, 9:209–216.

39. Makanga M, Kudoo D, C: The clinical efficacy of artesunate/mefloquine (Coartem). *Lancet* 2009, 3:155.

40. Malvy D, Djissou F, Vatan R, Pistone T, Etienne G, Longy-Boursier M, Le Bras M: Comparison of atovaquone-proguanil with mefloquine in the treatment of uncomplicated falciparum malaria. *Eur J Clin Microbiol Infect Dis* 2008, 27:109–116.

41. Le Bras J, Touze JE, Gathmann I, Muller R: The comparative efficacy and tolerability of CQG and MPF against falciparum malaria in nonimmune populations: a safety, efficacy, and pharmacokinetic study. *Am J Trop Med Hyg* 2008, 78:344–351.

42. Makanga M, Krudsood S: Treatment of imported malaria in an ambulatory setting: prospective study. *BMC Med* 2002, 2:43–47.

43. McGehe M, Scott L: Atovaquone-proguanil: a review of its use for the prophylaxis of Plasmodium falciparum malaria. *Drugs* 2003, 63:597–623.

44. Boggild AK, Parise ME, Lewis L, Kain KC: Atovaquone-proguanil: report from the CDC expert meeting on malaria chemoprophylaxis (II). *Am J Trop Med Hyg* 2007, 76:208–223.

45. Menendez C, Fleming AF, Alonso PL: Malaria-related Anaemia. *Parasitol Today* 2000, 16:469–476.

46. Price RN, Simpson JA, Nosten F, Luxembourg C, Kihara L, Ter Kulle F, Chongsuvivatvong T, White NJ: Factors contributing to anaemia after uncomplicated falciparum malaria. *Am J Trop Med Hyg* 2001, 65:614–622.

47. Evaluation of the riamet® versus malarone® in the treatment of uncomplicated falciparum malaria - full text view - clinicaltrials.gov. *http://clinicaltrials.gov/ct2/show/NCT01150344*