Rota-Baxter operators and related structures on anti-flexible algebras

Shuangjian Guo\(^1\), Ripan Saha\(^2\)*

1. School of Mathematics and Statistics, Guizhou University of Finance and Economics
 Guiyang 550025, P. R. of China
2. Department of Mathematics, Raiganj University
 Raiganj, 733134, West Bengal, India

ABSTRACT

In this paper, we first construct a graded Lie algebra which characterizes Rota-Baxter operators on an anti-flexible algebra as Maurer-Cartan elements. Next, we study infinitesimal deformations of bimodules over anti-flexible algebras. We also consider compatible Rota-Baxter operators on bimodules over anti-flexible algebras. Finally, We define \(\mathcal{ON}\)-structures which give rise to compatible Rota-Baxter operators and vice-versa.

Key words: Anti-flexible algebra, Rota-Baxter operator, Infinitesimal deformation, Nijenhuis operator, \(\mathcal{ON}\)-structure.

2020 MSC: 17A30, 17B38, 17B62.

1 Introduction

Flexible algebra was introduced by Oehmke \[16\] as a natural generalization of associative algebras. Let \(A\) be a vector space over a field \(K\) equipped with a bilinear product \(A \times A \to A, \quad (a, b) \mapsto ab\). We denote the associator of \(A\) as

\[(a, b, c) = (ab)c - a(bc), \quad \text{for all } a, b, c \in A.\]

\(A\) is called a flexible algebra if the following identity is satisfied

\[(a, b, a) = 0, \quad \text{or equivalently, } (ab)a = a(ba), \quad \text{for all } a, b \in A.\]

Anti-flexible algebras are a natural generalization of flexible algebras introduced by Rodabaugh in \[18\]. Rodabaugh studied anti-flexible algebras in more detail in \[19\], \[20\], \[21\].
Let A be a vector space equipped with a bilinear product $(a, b) \mapsto a \cdot b$. A is called an anti-flexible algebra if the following identity is satisfied

$$(a, b, c) = (c, b, a), \text{ or equivalently, } (a \cdot b) \cdot c - a \cdot (b \cdot c) = (c \cdot b) \cdot a - c \cdot (b \cdot a), \text{ for all } a, b, c \in A.$$

The notion of anti-flexible bialgebras was studied in [6]. Goze and Remm [10] constructed a graded Lie algebra structure on the graded space of all multilinear maps on a vector space, and studied cohomology and the deformation of anti-flexible algebras. In this paper, we construct a graded Lie algebra structure that characterizes Rota-Baxter operators on an anti-flexible algebra as Maurer-Cartan elements.

The deformation of algebraic structures began with the seminal work of Gerstenhaber [8, 9] for associative algebras, and followed by its extension to Lie algebras by Nijenhuis and Richardson [14, 15]. In general, deformation theory was developed for binary quadratic operads by Balavoine [1]. Deformations of morphisms were developed in [7, 22].

While studying the fluctuation theory in probability, the notion of Rota-Baxter operators on associative algebras was introduced by Baxter [3] in 1960. Since its introduction, it has been found many applications, including in Connes-Kreimer’s algebraic approach to the renormalization in perturbative quantum field theory [4]. Rota-Baxter operator is closely related with dendriform algebras, Lie algebras, and solution of the classical Yang-Baxter equation, see [13, 11] for more details. Rota-Baxter operators are also useful in the study of dendriform algebras operads, which give rise to the splitting of operads [2, 17]. With motivation from Poisson structures, the notion of Rota-Baxter operators on bimodules over associative algebras was introduced by Uchino [23]. Recently, the notions of compatible Rota-Baxter operators and \mathcal{ON}-structures was introduced by Liu, Bai, and Sheng in [12], and they proved that an \mathcal{ON}-structure gives rise to a hierarchy of Rota-Baxter operators, and that a solution of the strong Maurer-Cartan equation on the associative twilled algebra associated to a Rota-Baxter operator gives rise to a pair of \mathcal{ON}-structures which are naturally in duality. In [5], Das constructed an explicit graded Lie algebra whose Maurer-Cartan elements are Rota-Baxter operators on associative algebras and studied linear and formal deformations of a Rota-Baxter operator on an associative algebra. Our main objectives in this paper are certain operators on anti-flexible algebras. More precisely, we are interested in the notions of compatible Rota-Baxter operators and \mathcal{ON}-structures on anti-flexible algebras. We show that an \mathcal{ON}-structure gives rise to compatible Rota-Baxter operators and conversely given two compatible Rota-Baxter operators there is an \mathcal{ON}-structures such that this correspondence naturally in duality.

The paper is organized as follows. In Section 2, we construct the graded Lie algebra that characterizes Rota-Baxter operators on an anti-flexible algebra as Maurer-Cartan elements. In Section 3, we show that the cohomology of a Rota-Baxter operator can also be described as the Hochschild cohomology of a certain anti-flexible algebra with a
suitable bimodule. We also relate the cohomology of a Rota-Baxter operator on an anti-
flexible algebra with the cohomology of the corresponding Rota-Baxter operator on the
commutator Lie algebra. In Section 4 we study infinitesimal deformations of bimodules
over anti-flexible algebras. In Section 5 we consider compatible Rota-Baxter operators
on bimodules over anti-flexible algebras. We define ON-structures which give rise to a
hierarchy of compatible Rota-Baxter operators.

Throughout this paper, we work over the complex field \(\mathbb{K} \), and all the vector spaces
are finite-dimensional.

2 Rota-Baxter operators

In this section, we first recall the basics of Rota-Baxter operators on anti-flexible
algebra and their morphisms. Then, we construct a graded Lie algebra with a graded Lie
bracket whose Maurer-Cartan elements are Rota-Baxter operators on anti-flexible algebra.
This construction allows us to define cohomology for a Rota-Baxter operator.

Definition 2.1. ([6]) Let \(A \) be a vector space equipped with a bilinear product \((x, y) \rightarrow x \cdot y \).
\(A \) is called an anti-flexible algebra if the following identity is satisfied
\[
(a \cdot b) \cdot c - a \cdot (b \cdot c) = (c \cdot b) \cdot a - c \cdot (b \cdot a), \text{ for all } a, b, c \in A.
\]

(2.1)

Example 2.2. Every associative algebra is automatically an anti-flexible algebra.

Example 2.3. Let \((A, \cdot) \) be an anti-flexible algebra and \(B \) an associative algebra, then
\(A \otimes B \) is an anti-flexible algebra with product given by
\[
(a_1 \otimes b_1) \cdot (a_2 \otimes b_2) = a_1 \cdot a_2 \otimes b_1 b_2, \text{ for all } a_1, a_2 \in A, b_1, b_2 \in B.
\]

Example 2.4. Let \((A, \cdot) \) and \((B, \cdot) \) be anti-flexible algebras, then \((A \oplus B, \cdot) \) is an anti-
flexible algebra with the operation componentwise multiplication.

Definition 2.5. ([6]) Let \((A, \cdot) \) be an anti-flexible algebra and \(M \) be a vector space. Let
\(l, r : A \rightarrow gl(M) \) be two linear maps. If for any \(a, b \in A, \)
\[
l(a \cdot b) - l(a)r(b) - r(b \cdot a), \quad l(a)r(b) - r(b)l(a) = l(b)r(a) - r(a)l(b).
\]

(2.2)

Then it is called a bimodule of \((A, \cdot) \), denoted by \((M, l, r) \).

Given an anti-flexible algebra \((A, \cdot) \) and a bimodule \((M, l, r) \), the vector space \(A \oplus M \)
carries an anti-flexible algebra structure with product given by
\[
(a, m) \cdot (b, n) = (a \cdot b, l(a)n + r(b)m), \text{ for all } a, b \in A, m, n \in M.
\]

This is called the semi-direct product of \(A \) with \(M \).
Definition 2.6. (6) Rota-Baxter operator on an anti-flexible algebra \((A, \cdot)\) with respect to the bimodule \((M, l, r)\) is given by a linear map \(T : M \to A\) that satisfies
\[
T(m) \cdot T(n) = T(l(T(m)))n + r(T(n))m, \quad \forall m, n \in M. \quad (2.4)
\]

Following Uchin[23], we have the following proposition.

Proposition 2.7. A linear map \(T : M \to A\) is a Rota-Baxter operator on an anti-flexible algebra \(A\) with respect to the bimodule \((M, l, r)\) if and only if the graph
\[
\text{Gr}(T) = \{(T(m), m) | m \in M\}
\]
is a subalgebra of the semi-direct product algebra \(A \oplus M\).

Definition 2.8. Let \((A, \cdot)\) be an anti-flexible algebra. A linear map \(N : A \to A\) is said to be a Nijenhuis operator if its Nijenhuis torsion vanishes, that is,
\[
N(a) \cdot N(b) = N(Na \cdot b + a \cdot Nb - N(a \cdot b)), \quad \text{for all } a, b \in A.
\]
The operation \(\cdot_N : A \otimes A \to A\) given by
\[
a \cdot_N b = Na \cdot b + a \cdot Nb - N(a \cdot b), \quad \text{for all } a, b \in A.
\]
is an anti-flexible algebra and \(N\) is an anti-flexible algebra homomorphism from \((A, \cdot_N)\) to \((A, \cdot)\).

By direct calculations, we have

Lemma 2.9. Let \((A, \cdot)\) be an anti-flexible algebra and \(N\) be a Nijenhuis operator on \(A\). For all \(l, k \in \mathbb{K}\),
\begin{enumerate}[(i)]
\item \((A, \cdot_{N^k})\) is an anti-flexible algebra,
\item \(N^l\) is also a Nijenhuis operator on the anti-flexible algebra \((A, \cdot_{N^k})\),
\item The anti-flexible algebras \((A, (\cdot_{N^k})_{N^l})\) and \((A, (\cdot_{N^l})_{N^k})\) coincide,
\item The anti-flexible algebras \((A, (\cdot_{N^k})_{N^l})\) and \((A, (\cdot_{N^l})_{N^k})\) are compatible, that is, any linear combination of \(\cdot_{N^k}\) and \(\cdot_{N^l}\) still makes \(A\) into an anti-flexible algebra,
\item \(N^l\) is an anti-flexible algebra homomorphism from \((A, (\cdot_{N^k})_{N^l})\) to \((A, (\cdot_{N^l})_{N^k})\).
\end{enumerate}

Another characterization of a Rota-Baxter operator can be given in terms of anti-flexible-Nijenhuis operator on anti-flexible algebras.

Proposition 2.10. A linear map \(T : M \to A\) is a Rota-Baxter operator on \((A, \cdot)\) with respect to the bimodule \((M, l, r)\) if and only if \(N_T = \begin{pmatrix} 0 & T \\ 0 & 0 \end{pmatrix} : A \oplus M \to A \oplus M\) is an anti-flexible-Nijenhuis operator on the semi-direct product algebra \(A \oplus M\).
Next, we recall pre-anti-flexible algebra structures which were first introduced by Bai [6], pre-anti-flexible algebras can be regarded as a natural generalization of dendriform algebras introduced by Loday [13]. On the other hand, from the point of view of operads, like dendriform algebras being the splitting of associative algebras, pre-anti-flexible algebras are the splitting of anti-flexible algebras ([2, 17]).

Definition 2.11. ([6]) Let \(A \) be a vector space with two bilinear products \(\prec, \succ \): \(A \otimes A \to A \). We call it a pre-anti-flexible algebra denoted by \((A, \prec, \succ) \) if for any \(a, b, c \in A \), the following equations are satisfied

\[
(a \succ b) \prec c - a \succ (b \prec c) = (c \prec b) \prec a - c \prec (b \prec a),
\]

(2.5)

\[
(a \ast b) \succ c - a \succ (b \prec c) = (a \prec b) \prec c - a \prec (b \ast c),
\]

(2.6)

where \(a \ast b = a \prec b + a \succ b \).

A Rota-Baxter operator has an underlying pre-anti-flexible algebra structure [6].

Proposition 2.12. Let \(T : M \to A \) be a Rota-Baxter operator on an anti-flexible algebra \((A, \cdot) \) with respect to the bimodule \((M, l, r) \). Then the vector space \(M \) carries a pre-anti-flexible algebra structure with

\[
m \succ n = l(T(m))n, \quad m \prec n = r(T(n))m, \quad \text{for all } m, n \in M.
\]

Definition 2.13. A morphism of Rota-Baxter operator from \(T \) to \(T' \) consists of a pair \((\phi, \psi) \) of an algebra morphism \(\phi : A \to B \) and a linear map \(\psi : M \to N \) satisfying

\[
T' \circ \psi = \phi \circ T,
\]

(2.7)

\[
l(\phi(a))\psi(m) = \psi(l(a)m),
\]

(2.8)

\[
r(\phi(a))\psi(m) = \psi(r(a)m),
\]

(2.9)

for any \(a \in A \) and \(m \in M \).

It is called an isomorphism if \(\phi \) and \(\psi \) are both linear isomorphisms.

The proof of the following result is straightforward and we omit the details.

Proposition 2.14. A pair of linear maps \((\phi : A \to B, \psi : M \to N) \) is a morphism of Rota-Baxter operators from \(T \) to \(T' \) if and only if

\[
Gr((\phi, \psi)) := \{(a, m), (\phi(a), \psi(m)) | a \in A, m \in M \} \subset (A \oplus M) \oplus (B \oplus N)
\]

is a subalgebra, where \(A \oplus M \) and \(B \oplus N \) are equipped with semi-direct product algebra structures.
Proposition 2.15. Let T be a Rota-Baxter operator on an anti-flexible algebra (A, \cdot) with respect to a bimodule (M, l, r) and T' be a Rota-Baxter operator on (B, \cdot) with respect to a bimodule (N, l, r). If (ϕ, ψ) is a morphism from T to T', then $\psi : M \to N$ is a morphism between induced pre-anti-flexible algebra structures.

Proof. For all $m, m' \in M$, we have

$$
\psi(m \prec_M m') = \psi(\phi(T(m'))m) = r(\phi(T(m')))\psi(m) = r(T'\phi(m'))\psi(m) = \psi(m) \prec_N \psi(m').
$$

Similarly, we obtain $\psi(m \succ_M m') = \psi(m) \succ_N \psi(m').$\qed

In the sequel, we follow the result of Goze and Remm [10] and the derived bracket construction of Voronov [24] to construct an explicit graded Lie algebra whose Maurer-Cartan elements are Rota-Baxter operators. This construction is somewhat similar to Das [5] but more helpful to study deformation theory of Rota-Baxter operators.

Recall that, in [10] Goze and Remm constructed a graded Lie algebra structure on the graded space of all multilinear maps on a vector space V. Recall that, for each $n \geq 0$, $g^n = \text{Hom}(V^\otimes_{n+1}, V)$ and a graded Lie bracket on $\bigoplus_n g^n$ by:

$$
[f, g] = f\overline{\sigma}g - (-1)^{mn} g\overline{\sigma}f, \text{ for all } f \in g^m, g \in g^n,
$$

and $\overline{\sigma}$ is defined by

$$(f\overline{\sigma}g)(x_1, \ldots, x_{m+n+1}) = \sum_{i=1}^{m+1} \sum_{\sigma \in \Sigma_{m+n-1}} (-1)^{\epsilon(\sigma)}(-1)^{(i-1)(n-1)}f(x_{\sigma(1)}, \ldots, x_{\sigma(i-1)}, g(x_{\sigma(i)}, \ldots, x_{\sigma(i+n-1)}, x_{\sigma(i+n)}), x_{\sigma(i+1)}, \ldots, x_{\sigma(m+n+1)}),$$

where Σ_p refers to the p-symmetric group and $\epsilon(\sigma)$ denotes the sign of σ.

Let A be an anti-flexible algebra equipped with multiplication map $\mu : A \otimes A \to A$, $\mu(a, b) = a.b$. We know that $A \oplus M$ has also an anti-flexible algebra structure. Consider the graded Lie algebra structure on $g^n = \text{Hom}((A \oplus M)^\otimes_{n+1}, A \oplus M)$ associated to the direct sum vector space $V = A \oplus M$. Observe that the elements $\mu, l, r \in g^1 = \text{Hom}((A \oplus M)^\otimes_2, A \oplus M)$. Therefore, $\mu + l + r \in g^1$.

Proposition 2.16. The product μ defines a multiplication structure on A and l, r defines an A-bimodule structure on M if and only if $(\mu + l + r)\overline{\sigma}(\mu + l + r) = 0$, i.e. $\mu + l + r \in g^1$ is a Maurer-Cartan element in g.

6
Proof. For any $a_1, a_2, a_3 \in A$ and $m_1, m_2, m_3 \in M$, we have

\[
(\mu + l + r)\mathfrak{g}(\mu + l + r)((a_1, m_1), (a_2, m_2), (a_3, m_3))
= (\mu + l + r)((\mu + l + r)((a_1, m_1), (a_2, m_2)), (a_3, m_3))
- (\mu + l + r)(((a_1, m_1), (\mu + l + r)((a_2, m_2)), (a_3, m_3)))
- (\mu + l + r)(((a_3, m_3), (\mu + l + r)((a_2, m_2)), (a_1, m_1)))
+ (\mu + l + r)(((a_3, m_3), (\mu + l + r)((a_2, m_2)), (a_1, m_1)))
= ((a_1a_2)a_3, l(a_1a_2)m_3 + l(a_1)r(a_3)m_2 + r(a_3)r(a_2)(m_1))
- (a_1(a_2a_3), l(a_1)l(a_2)m_3 + r(a_3)l(a_1)m_2 + r(a_3)r(a_2)(m_1))
- ((a_3a_2)l, r(a_1)r(a_2)m_3 + l(a_3)r(a_1)m_2 + r(a_3)r(a_2)(m_1))
+ (a_3(a_2a_1), r(a_2a_1)m_3 + r(a_1)l(a_2)m_2 + r(a_3)r(a_2)(m_1))
= 0.
\]

This holds if and only if μ defines a multiplication structure on the anti-flexible algebra A and l, r define an A-bimodule structure on M. □

Consider the graded vector space

\[
C^*(M, A) := \bigoplus_{n \geq 1} C^n(M, A) = \bigoplus_{n \geq 1} \text{Hom}(\otimes M^\otimes n, A).
\]

Theorem 2.17. With the above notations, $(C^*(M, A), [[\cdot, \cdot]])$ is a graded Lie algebra, where the graded Lie bracket $[[\cdot, \cdot]] : C^m(M, A) \times C^n(M, A) \to C^{m+n}(M, A)$ is defined by

\[
[[P, P']] := (-1)^m[[\mu + l + r, P], P'],
\]

for any $P \in C^m(M, A), P' \in C^n(M, A)$.

More precisely, we have

\[
[[P, P']](v_1, \ldots, v_{m+n})
= \sum_{k=1}^{m} \sum_{\sigma \in \Sigma_{m+n}} (-1)^{(k-1)n}(-1)^{\epsilon(\sigma)} P(v_{\sigma(1)}, \ldots, v_{\sigma(k-1)},
\quad l(P'(v_{\sigma(k)}, \ldots, v_{\sigma(k+n-1)})v_{\sigma(k+n)}, \ldots, v_{\sigma(m+n)}))
- \sum_{k=1}^{m} \sum_{\sigma \in \Sigma_{m+n}} (-1)^{kn}(-1)^{\epsilon(\sigma)} P(v_{\sigma(1)}, \ldots, v_{\sigma(k-1)},
\quad r(P'(v_{\sigma(k+1)}, \ldots, v_{\sigma(k+n-1)}))v_{\sigma(k)}, v_{\sigma(k+n-1)}, \ldots, v_{\sigma(m+n)}))
- \sum_{k=1}^{n} \sum_{\sigma \in \Sigma_{m+n}} (-1)^{(k+n-1)m}(-1)^{\epsilon(\sigma)} P'(v_{\sigma(1)}, \ldots, v_{\sigma(k-1)},
\quad l(P(v_{\sigma(k)}, \ldots, v_{\sigma(k+m-1)}))v_{\sigma(k+m)}, \ldots, v_{\sigma(m+n)}))
+ \sum_{k=1}^{n} \sum_{\sigma \in \Sigma_{m+n}} (-1)^{(k+n)m}(-1)^{\epsilon(\sigma)} P'(v_{\sigma(1)}, \ldots, v_{\sigma(k-1)},
\quad r(P(v_{\sigma(k+1)}, \ldots, v_{\sigma(k+m)}))v_{\sigma(k)}, v_{\sigma(k+m+1)}, \ldots, v_{\sigma(m+n)}))
\]
for any $P \in C^m(M, A), P' \in C^n(M, A)$. Moreover, its Maurer-Cartan elements are Rota-
Baxter operator on the anti-flexible algebra (A, \cdot) with respect to the bimodule (M, l, r).

Proof. The graded Lie algebra $(C^*(M, A), [[\cdot, \cdot]])$ is obtained via the derived bracket [10]. In fact, the Balavoine bracket $[[\cdot, \cdot]]$ associated to the direct sum vector space $A \oplus M$ gives rise to a graded Lie algebra $(C^*(A \oplus M, A \oplus M), [[\cdot, \cdot]])$. By the above proposition, we deduce that $(C^*(A \oplus M, A \oplus M), [[\cdot, \cdot]], d = [\mu + l + r, \cdot])$ is a differential graded Lie algebra. Obviously $C^*(M, A)$ is an abelian subalgebra. Furthermore, we define the derived bracket on the graded vector space $C^*(M, A)$ by

$$[[P, P']] := (-1)^m[d(P), P'] = (-1)^m[[\mu + l + r, P], P'],$$

for any $P \in C^m(M, A), P' \in C^n(M, A)$. The derived bracket $[[\cdot, \cdot]]$ is closed on $C^*(M, A)$, which implies that $(C^*(M, A), [[\cdot, \cdot]])$ is a graded Lie algebra.

For $T \in C^1(M, A)$, we have

$$[[T, T]](u, v) = 2(Tu \cdot Tv - T(l(Tu)v) - T(r(Tv)u)).$$

Thus, T is a Maurer-Cartan element (i.e. $[[T, T]] = 0$) if and only if T is a Rota-Baxter operator on an anti-flexible algebra (A, \cdot) with respect to the bimodule (M, l, r). The proof is finished. □

Thus, Rota-Baxter operators can be characterized as Maurer-Cartan elements in a gLa. It follows from the above theorem that if T is a Rota-Baxter operator, then $d_T := [[T, \cdot]]$ is a differential on $C^*(M, A)$ and makes the gLa $(C^*(M, A), [[\cdot, \cdot]])$ into a dgLa.

The cohomology of the cochain complex $(C^*(M, A), d_T)$ is called the cohomology of the Rota-Baxter operator T on (A, \cdot) with respect to the bimodule (M, l, r). We denote the corresponding cohomology groups simply by $H^*(M, A)$.

Theorem 2.18. Let T be a Rota-Baxter operator on an anti-flexible algebra (A, \cdot) with respect to the bimodule (M, l, r). The sum $T + T'$ is a Rota-Baxter operator if and only if T' is a Maurer-Cartan element of $(C^*(M, A), [[\cdot, \cdot]], d_T)$, that is,

$$[[T + T', T + T']] = 0 \iff d_T T' + \frac{1}{2}[[T', T']] = 0.$$

3 Cohomology of Rota-Baxter operators as Hochschild cohomology

In this section, we show that the cohomology of a Rota-Baxter operators on a anti-
flexible algebra can also be described as the Hochschild cohomology of a certain anti-
flexible algebra with a suitable bimodule. We also show that the cohomology of a Rota-Baxter operator on an anti-flexible algebra is related with the cohomology of the corresponding Rota-Baxter operator on the commutator Lie algebra.

Let \(T : M \to A \) be a Rota-Baxter operator on an anti-flexible algebra \((A, \cdot)\) with respect to the bimodule \((M, l, r)\). By Proposition 2.12, then the vector space \(M \) carries an anti-flexible algebra structure with the product

\[
m \star_T n = r(T(n))m + l(T(m))n, \text{ for all } m, n \in M.
\]

Lemma 3.1. Let \(T : M \to A \) be a Rota-Baxter operator on an anti-flexible algebra \((A, \cdot)\) with respect to the bimodule \((M, l, r)\). Define

\[
l_T : M \to gl(A), \quad l_T(m)(a) = T(m) \cdot a - T(r(a)m),
\]

\[
r_T : M \to gl(A), \quad r_T(m)(a) = a \cdot T(m) - T(l(a)m), \text{ for all } m \in M, a \in A.
\]

Then \(l_T, r_T \) defines an \(M \)-bimodule structure on \((A, \cdot)\).

Proof. For any \(m, n \in M \) and \(a \in A \), we have

\[
[l_T(m \star_T n) - l_T(m)l_T(n) - r_T(m)r_T(n) + r_T(n \star_T m)](a)
= l_T(m \star_T n)(a) - l_T(m)l_T(n)(a) - r_T(m)r_T(n)(a) + r_T(n \star_T m)(a)
= (T(m) \cdot T(n)) \cdot a - T(r(a)(r(T(n)m + l(T(m))n))
- T(m) \cdot (T(n) \cdot a) + T(l(T(m))(r(a)n)) + r(T(n)a)m
- (a \cdot T(n)) \cdot T(m) + T(l(aT(n))m + r(T(m))l(a)n)
+ a \cdot (T(n) \cdot T(m)) - T(l(a)l(T(n))m - l(a)r(T(m))n)
= 0.
\]

Similarly, we have

\[
l_T(m)r_T(n) - r_T(n)l_T(m) - l_T(n)r_T(m) + r_T(m)l_T(n) = 0.
\]

Then \(l_T, r_T \) defines an \(M \)-bimodule structure on \((A, \cdot)\). Hence the proof is finished. \(\square \)

By Lemma 3.1 we obtain an \(M \)-bimodule structure on the vector space \((A, \cdot)\). Therefore, we may consider the corresponding Hochschild cohomology of \(M \) with coefficients in \((A, l_T, r_T)\). More precisely, we define

\[
C^n(M, A) := \text{Hom}(M^\otimes n, A), \text{ for all } n \geq 0,
\]

and the differential is given by

\[
d_H(a)(m) = l_T(m)(a) - r_T(m)(a)
= T(m) \cdot a - T(r(a)m) - a \cdot T(m) + T(l(a)m), \text{ for all } a \in A = C^0(M, A),
\]
and
\[(d_H f)(u_1, \ldots, u_{n+1}) = T(u_1)f(u_2, \ldots, u_{n+1}) - T(r(f(u_2, \ldots, u_{n+1})u_1)\]
\[+ \sum_{i=1}^n \sum_{\sigma \in \Sigma_{n+1}} (-1)^i(-1)^{\ell(\sigma)} f(u_{\sigma(1)}, \ldots, u_{\sigma(i-1)}, r(T(u_{\sigma(i+1)})u_{\sigma(i)}) \]
\[+ l(T(u_{\sigma(i)}))u_{\sigma(i+1)}, \ldots, u_{\sigma(n+1)}) \]
\[+ (-1)^{n+1} f(u_1, \ldots, u_n) \cdot T(u_{n+1}) - (-1)^{n+1} T(l_T(u_{n+1})f(u_1, \ldots, u_n)).\]

We denote the group of \(n \)-cocycles by \(Z^n(M, A) \) and the group of \(n \)-coboundaries by \(B^n(M, A) \). The corresponding cohomology groups are defined by \(H^n(M, A) = Z^n(M, A) / B^n(M, A) \), \(n \geq 0 \).

It follows from the above definition that
\[H^0(M, A) = \{ a \in A | d_H(a) = 0 \} \]
\[= \{ a \in A | a \cdot T(m) - T(m) \cdot a = T(l(a)m - r(a)m), \text{ for all } m \in M \}. \]

By [6], if \(a, b \in A \), define the commutator by \([a, b]_g = a \cdot b - b \cdot a\), then it is a Lie algebra and we denote it by \((g(A), [\cdot, \cdot]_g)\). Furthermore, it is easy to check that \(H^0(M, A) \) has a Lie algebra structure induced from that of \((A, \cdot)\).

Note that a linear map \(f \in C^1(M, A) \) is closed if it satisfies
\[T(u) \cdot f(v) + f(u) \cdot T(v) - T(l_T(u)f(v) + r_T(v)f(u)) - f(l_T(u)T(v) + r_T(v)T(u)) = 0, \]
for any \(u, v \in M \).

For a Rota-Baxter operator \(T \) on an anti-flexible algebra \((A, \cdot)\) with respect to the bimodule \((M, l, r)\), we get two coboundary operators \(d_T = [[T, \cdot]] \) and \(d_H \) on the same graded vector space \(C^\bullet(M, A) = \oplus_{n \geq 0} C^n(M, A) \).

The following proposition relates the above two coboundary operators.

Proposition 3.2. Let \(T : M \to A \) be a Rota-Baxter operator on an anti-flexible algebra \((A, \cdot)\) with respect to the bimodule \((M, l, r)\). Then the two coboundary operators are related by
\[d_T f = (-1)^n d_H f, \text{ for all } f \in C^n(M, A). \]
Proof. For any \(f \in C^n(M,A) \) and \(u_1, \ldots, u_{n+1} \in M \), we have
\[
(d_T f)(u_1, \ldots, u_{n+1}) = \frac{1}{2} \left[T(f) \right](u_1, \ldots, u_{n+1}) \]
\[
= T(l(f(u_2, \ldots, u_{n+1})u_{n+1}) - (-1)^n T(r(f(u_2, \ldots, u_{n+1})u_1)
\]
\[-(-1)^n \sum_{i=1}^n \sum_{\sigma \in \Sigma_{n+1}} (-1)^{i-1} (-1)^{\epsilon(\sigma)} f(u_{\sigma(1)}, \ldots, u_{\sigma(i-1)}; r(T(u_{\sigma(i+1)}u_{\sigma(i)})) + l(T(u_{\sigma(i)}))u_{\sigma(i+1)}, \ldots, u_{\sigma(n+1)}))
\]
\[+(-1)^n T(u_1)f(u_2, \ldots, u_{n+1}) - f(u_1, \ldots, u_n)T(u_{n+1})
\]
\[= (-1)^n (d_H f)(u_1, \ldots, u_{n+1}).
\]
This completes the proof. \(\square \)

Definition 3.3. Let \((g, [\cdot, \cdot]_g)\) be a Lie algebra and \(\rho : g \rightarrow gl(M)\) be a representation of \(g\) on a vector space \(M\). A Rota-Baxter operator on \(g\) with respect to the representation \(M\) is a linear map \(T : M \rightarrow g\) satisfying
\[
[T(m), T(n)] = \rho(Tm)(n) - \rho(Tn)(m), \text{ for all } m, n \in M.
\]

Lemma 3.4. Let \((M, l, r)\) be a bimodule of an anti-flexible algebra \((A, \cdot)\). Then \((M, l - r)\) is a representation of the associated Lie algebra \((g(A), [\cdot, \cdot]_g)\).

With the above notations, we have the following

Proposition 3.5. The collection of maps \(S_n : \text{Hom}(A^\otimes n, M) \rightarrow \text{Hom}(\wedge^n A, M)\) defined by
\[
S_n(f)(a_1, \ldots, a_n) = \sum_{\sigma \in \Sigma_n} (-1)^{\epsilon(\sigma)} f(a_{\sigma(1)}, \ldots, a_{\sigma(n)})
\]
is a morphism from the Hochschild cochain complex of \(A\) with coefficients in the bimodule \(M\) to the Chevalley-Eilenberg complex of the commutator Lie algebra \((g(A), [\cdot, \cdot]_g)\) with coefficients in the representation \((M, l - r)\).

Proposition 3.6. Let \(T : M \rightarrow A\) be a Rota-Baxter operator on an anti-flexible algebra \((A, \cdot)\) with respect to the bimodule \((M, l, r)\). Then \(T\) is also a Rota-Baxter operator on the commutator Lie algebra \((g(A), [\cdot, \cdot]_g)\) with respect to the representation \((M, \rho)\).

Proof. For any \(m, n \in M\), we have
\[
[T(m), T(n)] = T(m) \cdot T(n) - T(n) \cdot T(m)
\]
\[
= T(r(Tn)m + l(Tm)n) - T(r(Tm)n + l(Tn)m)
\]
\[
= T((l - r)(Tm)n - (l - r)(Tn)m)
\]
\[
= T(\rho(Tm)n - \rho(Tn)m).
\]
This proves the proposition. \(\square \)
4 Infinitesimal deformations of bimodules over anti-flexible algebras

Let \((A, \cdot)\) be an anti-flexible algebra and \((M, l, r)\) a bimodule. Let \(\omega : \otimes^2 A \to A\), \(\phi : A \to gl(M)\) and \(\psi : A \to gl(M)\) be linear maps. Consider a \(t\)-parametrized family of multiplication operations and linear maps:

\[
a \cdot_t b = a \cdot b + \omega(a, b), \quad l^t(a) = l(a) + t\phi(a), \quad r^t(a) = r(a) + t\psi(a),
\]

for all \(a, b \in A\).

If \((A, \cdot_t)\) are anti-flexible algebras and \((M, l^t, r^t)\) are bimodules for all \(t \in \mathbb{K}\), we say that \((\omega, \phi, \psi)\) generates an infinitesimal deformation of the \(A\)-bimodule \(M\).

Let \(\mu_t\) denote the anti-flexible algebra structure \((A, \cdot_t)\). By Proposition 2.16, the bimodule \((M, l^t, r^t)\) over the anti-flexible algebra \((A, \cdot_t)\) is an infinitesimal deformation of the \(A\)-bimodule \(M\) if and only if

\[
(\mu_t + l^t + r^t)\Sigma(\mu_t + l^t + r^t) = 0,
\]

which is equivalent to

\[
(\omega + \phi + \psi)\Sigma(\omega + \phi + \psi) = 0,
\]

\[
(\mu_t + l^t + r^t)\Sigma(\omega + \phi + \psi) = 0.
\]

Definition 4.1. Let the bimodules \((M, l^t, r^t)\) and \((M, l'^t, r'^t)\) be two infinitesimal deformations of an \(A\)-bimodule \(M\) over anti-flexible algebras \((A, \cdot_t)\) and \((A, \cdot'_t)\) respectively. We call them equivalent if there exists \(N \in gl(g)\) and \(S \in gl(M)\) such that \((Id_A + tN, Id_M + tS)\) is a homomorphism from the bimodule \((M, l'^t, r'^t)\) to the bimodule \((M, l^t, r^t)\).

By direct calculations, the bimodule \((M, l^t, r^t)\) over the anti-flexible algebra \((A, \cdot_t)\) and the bimodule \((M, l'^t, r'^t)\) over the anti-flexible algebra \((A, \cdot'_t)\) are equivalent deformations if and only if

\[
(\omega + \phi + \psi)(a + m, b + n) - (\omega' + \phi' + \psi')(a + m, b + n) = d(N + S)(a + m, b + n),
\]

\[
(\omega' + \phi' + \psi')(N(a) + S(m), N(b) + S(n)) = 0,
\]

and

\[
(N + S)(\omega + \phi + \psi)(a + m, b + n) = (\omega' + \phi' + \psi')(a + m, N(b) + S(n))
\]

\[
+(\omega' + \phi' + \psi')(N(a) + S(m), b + n) + (\mu + l + r)(N(a) + S(m), N(b) + S(n)).
\]

Summarizing the above discussion, we have the following conclusion:
Theorem 4.2. Let the bimodule \((M, l^t, r^t)\) over the anti-flexible algebra \((A, \cdot, \cdot)\) be an infinitesimal deformation of an \(A\)-bimodule \(M\) generated by \((\omega, \phi, \psi)\). Then \(\omega + \phi + \psi \in C^2(M, A)\) is closed, i.e. \(d(\omega, \phi, \psi) = 0\). Furthermore, if two infinitesimal deformations \((M, l^t, r^t)\) and \((M, l^{t'}, r^{t'})\) over anti-flexible algebra \((A, \cdot, \cdot)\) generated by \((\omega, \phi, \psi)\) and \((\omega', \phi', \psi')\) respectively are equivalent, then \(\omega + \phi + \psi\) and \(\omega' + \phi' + \psi'\) are in the same cohomology class in \(H^2(M, A)\).

Definition 4.3. An infinitesimal deformation of an \(A\)-bimodule \(M\) is said to be trivial if it is equivalent to the \(A\)-bimodule \(M\).

One can deduce that the bimodule \((M, l^t, r^t)\) over the anti-flexible algebra \((A, \cdot, \cdot)\) is a trivial deformation if and only if for all \(a, b \in A, m, n \in M\), we have

\[
\begin{align*}
(\omega + \phi + \psi)(a + m, b + n) &= d(N + S)(a + m, b + n), \\
(N + S)(\omega + \phi + \psi)(a + m, b + n) &= (\mu + l + r)(N(a) + S(m), N(b) + S(n)).
\end{align*}
\]

Equivalently, we have

\[
\begin{align*}
\omega(a, b) &= N(a) \cdot b + a \cdot N(b) - N(a \cdot b), \\
N\omega(a, b) &= N(a) \cdot N(b), \\
\phi(a) &= l(N(a)) + l(a) \circ S - S \circ l(a), \\
l(N(a)) \circ S &= S \circ \phi(a), \\
\psi(a) &= r(N(a)) + r(a) \circ S - S \circ r(a), \\
r(N(a)) \circ S &= S \circ \psi(a).
\end{align*}
\]

It follows from Eqs.(4.1) and (4.2) that \(N\) must be a Nijenhuis operator on the anti-flexible algebra \((A, \cdot, \cdot)\). It follows from Eqs.(4.3) and (4.4) that \(N\) and \(S\) should satisfy the condition:

\[
l(N(a))S(m) = S(l(N(a))(m) + l(a)(S(m)) - S(l(a)m)), \quad \forall a \in A, m \in M. (4. 7)
\]

It follows from Eqs. (4.5) and (4.6) that \(N\) and \(S\) should also satisfy the condition:

\[
r(N(a))S(m) = S(r(N(a))m + r(a)(S(m)) - S(r(a)m)), \quad \forall a \in A, m \in M. (4. 8)
\]

Theorem 4.4. Let \((M, l, r)\) be a bimodule over an anti-flexible algebra \((A, \cdot, \cdot)\), \(N \in gl(A)\) and \(S \in gl(M)\). If \(N\) is a Nijenhuis operator on the anti-flexible algebra \((A, \cdot, \cdot)\) and if \(S\) satisfies Eqs. (4.7) and (4.8), then a deformation of the \(A\)-bimodule \(M\) can be obtained by putting

\[
\begin{align*}
\omega(a, b) &= N(a) \cdot b + a \cdot N(b) - N(a \cdot b), \\
\phi(a) &= l(N(a)) + l(a) \circ S - S \circ l(a), \\
\psi(a) &= r(N(a)) + r(a) \circ S - S \circ r(a),
\end{align*}
\]

for any \(a, b \in A\). Furthermore, this deformation is trivial.
Note that the conditions that N is a Nijenhuis operator and S satisfies Eqs. (4.7) and (4.8), can be expressed simply by the following result.

Proposition 4.5. Let (M,l,r) be a bimodule over an anti-flexible algebra $(A,·)$. Then N is a Nijenhuis operator on the anti-flexible algebra $(A,·)$ and S satisfies Eqs. (4.7) and (4.8), if and only if $N + S$ is a Nijenhuis operator on the semidirect product anti-flexible algebra $A ⊕ M$.

Definition 4.6. Let (M,l,r) be a bimodule over an anti-flexible algebra $(A,·)$. A pair (N,S), where $N ∈ gl(A)$ and $S ∈ gl(M)$, is called a Nijenhuis structure on an A-bimodule M if N and S^* generate a trivial infinitesimal deformation of the dual A-module M^*.

Note that the condition of the above definition is equivalent to the fact that N is a Nijenhuis tensor on A and

$$l(N(a))S(m) = S(l(N(a))m) + l(a)S^2(m) - S(l(x)S(m)),$$

$$r(N(a))S(m) = S(r(N(a))m) + r(a)S^2(m) - S(r(x)S(m)).$$

for all $a ∈ A, m ∈ M$.

Example 4.7. Let $N : A → A$ be a Nijenhuis operator on the anti-flexible algebra $(A,·)$. Then (N,N^*) is a Nijenhuis structure on the coadjoint module A^*.

Corollary 4.8. Let (N,S) be a Nijenhuis structure on a A-bimodule M, then the pairs (N^i,S^i) are Nijenhuis structures on an A-bimodule M.

5 ON-structures on bimodules over anti-flexible algebras and compatible Rota-Baxter operators

In this final section, we show how compatible Rota-Baxter operators and ON-structures are related.

Let $T : M → A$ be a Rota-Baxter operator on an anti-flexible algebra $(A,·)$ with respect to the bimodule (M,l,r). By Proposition 2.12, then the vector space M carries an anti-flexible algebra structure with the product

$$m *_T n = l(T(m))n + r(T(n))m, \text{ for all } m, n ∈ M.$$

We define the multiplication $*^S_T : M ⊗ M → M$ to be the deformed multiplication of $*_T$ by S, i.e.

$$m *^S_T n = S(m) *_T n + m *_T S(n) - S(m *_T n).$$

Definition 5.1. Let $T : M → A$ be a Rota-Baxter operator and (N,S) a Nijenhuis structure on an A-bimodule M. The triple (T,N,S) is called an ON-structure on an
A-bimodule M if T and (N, S) satisfy the following conditions

$$N \circ T = T \circ S,$$

$$m \ast_{N \circ T} n = m \ast_T^S n, \text{ for all } m, n \in M.$$

Define two linear maps $\tilde{l}, \tilde{r} : A \rightarrow gl(M)$ as follows:

$$\tilde{l}(a) := l(N(a)) - l(a) \circ S + S \circ l(a),$$

$$\tilde{r}(a) := r(N(a)) - r(a) \circ S + S \circ r(a), \text{ for all } a \in A.$$

Then it is easy to check that $(M, \tilde{l}, \tilde{r})$ is a bimodule of (A, \cdot). Furthermore, we have an anti-flexible algebra structure with the product

$$m \tilde{\ast}_T n = \tilde{l}(T(m))n + \tilde{r}(T(n))m, \text{ for all } m, n \in M.$$

Direct calculation, for any $m, n \in M$, we have $m \tilde{\ast}_T n + m \ast_T^S n = 2(m \ast_{N \circ T} n)$. Then we have the following lemma.

Lemma 5.2. Let (T, N, S) be an an ON-structure on an anti-flexible algebra (A, \cdot) with respect to the bimodule (M, l, r). Then we have

$$m \ast_T^S n = m \tilde{\ast}_T n.$$

Definition 5.3. Two Rota-Baxter operators $T_1, T_2 : M \rightarrow A$ on an anti-flexible algebra (A, \cdot) with respect to the bimodule (M, l, r) are said to be compatible if their sum $T_1 + T_2 : M \rightarrow A$ is also a Rota-Baxter operator.

Proposition 5.4. Let $T_1, T_2 : M \rightarrow A$ be two Rota-Baxter operators on an anti-flexible algebra (A, \cdot) with respect to the bimodule (M, l, r) . If T_1, T_2 are compatible and T_2 is invertible then $N = T_1 \circ T_2^{-1} : A \rightarrow A$ is a Nijenhuis operator on the anti-flexible algebra (A, \cdot). Conversely, if T_1, T_2 are both invertible and N is a Nijenhuis tensor then T_1, T_2 are compatible.

Proof. Let T_1, T_2 be compatible and T_2 invertible. For any $a, b \in A$, there exists elements $m, n \in M$ such that $T_2(m) = a$ and $T_2(n) = b$. Then

$$Na \cdot Nb - N(Na \cdot b + a \cdot Nb) + N^2(a \cdot b)$$

$$= NT_2(m) \cdot NT_2(n) - N(NT_2(m) \cdot T_2(n) + T_2(m) \cdot NT_2(n)) + N^2(T_2(m) \cdot T_2(n))$$

$$= T_1(m) \cdot T_1(n) - N(T_1(m) \cdot T_2(n) + T_2(m) \cdot T_1(n)) + N^2(T_2(m) \cdot T_2(n))$$

$$= T_1(l(T_1(m))n + r(T_1(n))m) - N(T_1(l(T_2(m))n + r(T_2(n))m)$$

$$+ T_2(l(T_1(m))n + r(T_1(n))m)) + N^2(T_2(l(T_2(m))n + r(T_2(n))m))$$

$$= 0.$$
Conversely, if N is a Nijenhuis tensor then for all $m, n \in M$,

$$NT_2(m) \cdot NT_2(n) = N(NT_2(m) \cdot T_2(n) + T_2(m) \cdot NT_2(n)) - N^2(T_2(m) \cdot T_2(n)).$$

This implies that

$$NT_2(l(T_1(m)))n + r(T_1(n)m) = N(T_1(m) \cdot T_2(n) + T_2(m) \cdot T_1(n)) - NT_2(l(T_2(m))n + r(T_2(n)m).$$

Since N is invertible, we may apply N^{-1} to both sides to get the above identity. Hence T_1 and T_2 are compatible. □

Theorem 5.5. Let (T, N, S) be an ON-structure on an anti-flexible algebra (A, \cdot) with respect to the bimodule (M, l, r). Then

(i) T is a Rota-Baxter operator on the deformed anti-flexible algebra (A, \cdot_N) with respect to the bimodule $(\tilde{M}, \tilde{l}, \tilde{r})$,

(ii) $N \circ T$ is a Rota-Baxter operator on an anti-flexible algebra (A, \cdot) with respect to the bimodule (M, l, r).

Proof. (i) For any $m, n \in M$, we have

$$T(m \ast_T n) = T(m \ast_T n) = T(S(m) \ast_T n + m \ast_T S(n) - S(m \ast_T n)) = T \circ S(m) \cdot_N T(n) + T(m) \cdot_N T \circ S(n) - T \circ S(m \ast_T n) = N \circ T(m) \cdot_N T(n) + T(m) \cdot_N N \circ T(n) - N(T(m) \cdot_N T(n)) = T(m) \cdot_N T(n).$$

Then T is a Rota-Baxter operator on the deformed anti-flexible algebra (A, \cdot_N) with respect to the bimodule $(\tilde{M}, \tilde{l}, \tilde{r})$.

(ii) By the fact that N is a Nijenhuis tensor, we have

$$N \circ T(m \ast_{N \circ T} n) = N \circ T(m \ast_{T} S(n)) = N(T(m) \cdot_N T(n)) = N \circ T(m) \cdot N \circ T(n).$$

Hence $N \circ T$ is a Rota-Baxter operator on an anti-flexible algebra (A, \cdot) with respect to the bimodule (M, l, r). □

Proposition 5.6. Let (T, N, S) be an ON-structure on an anti-flexible algebra (A, \cdot) with respect to the bimodule (M, l, r). Then T and $N \circ T$ are compatible Rota-Baxter operators.

Proof. For any $m, n \in M$, we have

$$m \ast_{T+N \circ T} n = m \ast_T n + m \ast_{N \circ T} n = m \ast_T n + m \ast_T S(n).$$
Furthermore, we have

\[(T + N \circ T)(m \star_{T+N\circ T} n)\]
\[= T(m \star_T n) + T(m \star_S n) + (N \circ T)(m \star_T n) + (N \circ T)(m \star_S n)\]
\[= T(m \star_T n) + T(S(m) \star_T n + m \star_T S(n) - S(m \star_T n))\]
\[+ (N \circ T)(m \star_T n) + (N \circ T)(m \star_{N\circ T} n)\]
\[= T(m) \cdot T(n) + (T \circ S)(m) \cdot T(n) + T(m) \cdot (T \circ S)(n) + (N \circ T)(m) \cdot (N \circ T)(n)\]
\[= T(m) \cdot T(n) + (N \circ T)(m) \cdot T(n) + T(m) \cdot (N \circ T)(n) + (N \circ T)(m) \cdot (N \circ T)(n)\]
\[= (T + N \circ T)(m) \cdot (T + N \circ T)(n).\]

Then T and $N \circ T$ are compatible Rota-Baxter operators. \hfill \Box

In the next proposition, we construct an ON-structure from compatible Rota-Baxter operators.

Proposition 5.7. Let $T_1, T_2 : M \to A$ be two compatible Rota-Baxter operators on an anti-flexible algebra (A, \cdot) with respect to the bimodule (M, l, r). If T_2 is invertible then $(T_2, N = T_1 \circ T_2^{-1}, S = T_2^{-1} \circ T_1)$ is an ON-structure.

Proof. Since T_1, T_2 are compatible Rota-Baxter operators, we have

\[T_1(m) \cdot T_2(n) + T_2(m) \cdot T_1(n) = T_1(l(T_2(m))m + r(T_2(n))m) + T_2(l(T_1(m))n + r(T_1(n))m).\]

By replacing T_1 with $T_2 \circ S$ in above equation, we have

\[(T_2 \circ S)(m) \cdot T_2(n) + T_2(m) \cdot (T_2 \circ S)(n)\]
\[= (T_2 \circ S)(l(T_2(m))n + r(T_2(n))m) + T_2(l((T_2 \circ S)(m))n + r((T_2 \circ S)(n))m). \tag{5.1}\]

On the other hand, T_2 is a Rota-Baxter operator implies that

\[(T_2 \circ S)(m) \cdot T_2(n) + T_2(m) \cdot (T_2 \circ S)(n)\]
\[= T_2(l(T_2(S(m)))n + r(T_2(n))S(m)) + l(T_2(m))S(n) + r(T_2(S(n)))m). \tag{5.2}\]

From Eqs.(5.1) and (5.2) and using the fact that T_2 is invertible, we get

\[S(l(T_2(m))n + r(T_2(n))m) = l(T_2(m))S(n) + r(T_2(n))S(m).\]

By replacing n by $S(n)$, we have

\[S(l(T_2(m))S(n) + r((T_2 \circ S)(n))m) = l(T_2(m))S^2(n) + r(T_2 \circ S(n))S(m). \tag{5.3}\]

As $T_1 = T_2 \circ S$ and T_2 are Rota-Baxter operators,

\[T_2(m \star_{T_2 \circ S} n) = (T_2 \circ S)(m) \cdot (T_2 \circ S)(n) = T_2(S(m) \star_{T_2} S(n)).\]
The invertibility of T_2 implies that

$$S(l((T_2 \circ S)(m))n + r((T_2 \circ S)(n))m) = l((T_2 \circ S)(m))S(n) + r((T_2 \circ S)(n))S(m). \quad (5.4)$$

From Eqs. (5.3) and (5.4) and using the fact that T_2 is invertible, we get

$$l((T_2 \circ S)(m))S(n) = l(T_2(m))S^2(n) + S(l((T_2 \circ S)(m))n - S(l(T_2(m)))S(n).$$

Substitute $a = T_2(m)$, using $T_2 \circ S = N \circ T_2$ and the invertibility of T_2,

$$l(N(a))S(n) = l(a)S^2(n) + S(l(N(a))n - S(l(a)S(n)).$$

Hence the identity Eq. (4.7) follows. Similarly, Eq. (4.8) holds. Thus, the pair (N, S) is a Nijenhuis structure on an anti-flexible algebra (A, \cdot) with respect to the bimodule (M, l, r).

Next, observe that $N \circ T_2 = T_2 \circ S = T_1$. Moreover,

$$m \ast_{T_2} S_n - m \ast_{T_2 \circ S} n = l(T_2(m))S(n) + r(T_2(n))S(m) - S(l(T_2(m))n + r(T_2(n))m)$$

which implies that $m \ast_{T_2} S_n = m \ast_{T_2 \circ S} n$. Therefore, $(T_2, N = T_1 \circ T_2^{-1}, S = T_2^{-1} \circ T_1)$ is an ON-structure. \hfill \Box

ACKNOWLEDGEMENT

The paper is supported by the NSF of China (No. 11761017), Guizhou Provincial Science and Technology Foundation (No. [2020]1Y005).

REFERENCES

[1] D. Balavoine, Deformation of algebras over a quadratic operad. *Contemp. Math.* 202 (1997) 207-234.

[2] C. Bai, O. Bellier, L. Guo and X. Ni, Spliting of operations, Manin products and Rota-Baxter operators, *Int. Math. Res. Not.* 2013 (2013) 485-524.

[3] G. Baxter, An analytic problem whose solution follows from a simple algebraic identity, *Pacific J. Math.* 10 (1960) 731-742.

[4] A. Connes and D. Kreimer, Renormalization in quantum field theory and the Riemann-Hilbert problem. I. The Hopf algebra structure of graphs and the main theorem, *Comm. Math. Phys.* 210 (2000) 249-273.

[5] A. Das, Deformations of associative Rota-Baxter operators, *J. Algebra* 560 (2020) 144-180.
[6] M. Dassoundo, C. Bai and M. Hounkonnou, Anti-flexible bialgebras, arXiv:2005.05064.

[7] Y. Frégier and M. Zambon, Simultaneous deformations of algebras and morphisms via derived brackets, *J. Pure Appl. Algebra* 219 (2015) 5344-5362.

[8] M. Gerstenhaber, The cohomology structure of an associative ring, *Ann. Math.* 78 (1963) 267-288.

[9] M. Gerstenhaber, On the deformation of rings and algebras, *Ann. Math. (2)* 79 (1964) 59-103.

[10] M. Goze and E. Remm, Lie-admissible algebras and operads, *J. Algebra* 273 (2004) 129-152.

[11] L. Guo, An Introduction to Rota-Baxter Algebra (Higher Education Press, Beijing, 2012).

[12] J. Liu, C. Bai and Y. Sheng, Compatible \mathcal{O}-operators on bimodules over associative algebras, *J. Algebra* 532 (2019) 80-118.

[13] J. -L. Loday, Dialgebras, in: Dialgebras and Related Operads, in: *Lecture Notes in Math.*, vol. 1763, Springer, Berlin, 2001, pp. 7-66.

[14] A. Nijenhuis and R. Richardson, Cohomology and deformations in graded Lie algebras, *Bull. Amer. Math. Soc.* 72 (1966) 1-29.

[15] A. Nijenhuis and R. Richardson, Commutative algebra cohomology and deformations of Lie and associative algebras, *J. Algebra* 9 (1968) 42-105.

[16] R. Oehmke, On flexible algebras, *Ann. Math. (2)* 68 (1958), 221-230.

[17] J. Pei, C. Bai and L. Guo, Splitting of operads and Rota-Baxter operators on operads, *Appl. Categ. Structures* 25 (2017) 505-538.

[18] D. Rodabaugh, A generalization of the flexible law, *Trans. Amer. Math. Soc.* 114 (1965) 468-487.

[19] D. Rodabaugh, On semisimple antiflexible algebras, *Portugal. Math.* 6(1967) 261-271.

[20] D. Rodabaugh, On anti-flexible algebras, *Trans. Amer. Math. Soc.* 169(1972) 219-235.

[21] D. Rodabaugh, A theorem of semisimple anti-flexible algebras, *Comm. Algebra* 6(1978) 1081-1090.
[22] R. Tang, C. Bai, L. Guo and Y. Sheng, Deformations and their controlling cohomologies of O-operators, *Comm. Math. Phys.* 368 (2019) 665-700.

[23] K. Uchino, Quantum analogy of Poisson geometry, related dendriform algebras and Rota-Baxter operators, *Lett. Math. Phys.* 85 (2-3) (2008) 91-109.

[24] Th. Voronov, Higher derived brackets and homotopy algebras, *J. Pure Appl. Algebra* 202(1-3) (2005) 133-153.