Case Report

Imaging of a Giant Frontal Sinus Mucocele with Orbital Displacement: A Case Report

Manvendra Singh¹, Kamal Kumar Sen², Girendra Shankar³, Sudhansu Sekhar Mohanty⁴

¹Junior Resident, Department of Radio-diagnosis, Kalinga Institute of Medical Sciences, KIIT University, Bhubaneswar, Odisha, ²Professor and Head of the Department of Radio-diagnosis, Kalinga Institute of Medical Sciences, KIIT University, Bhubaneswar, Odisha, ³Assistant Professor, Department of Radio-diagnosis, Kalinga Institute of Medical Sciences, KIIT University, Bhubaneswar, Odisha, India.

Corresponding author: Sudhansu Sekhar Mohanty, Department of Radio-diagnosis, Kalinga Institute of Medical Sciences, India

INTRODUCTION

Mucoceles of the paranasal sinus are regarded as cyst-like expansile and destructive lesions with displacement of surrounding structures. The proximity of mucoceles to the brain is a major concern, if left alone without intervention at the appropriate time. Obstruction of natural ostia which impairs the drainage of Sinus is invariably seen. As a consequence of long term progressive cystic collection, erosion and invasion into the neighbouring structures viz. nose, orbit, intracranial extension or skin.12 Multiple aetiopathogenesis have been associated with sinus osteum obstruction caused by the conditions like inflammation, allergy, trauma, anatomic distortions, previous surgery, fibrous dysplasia, osteoma, or ossifying fibroma.2-4 Mucoceles of the paranasal sinuses can spread both intra-orbitally and intra-cranially4,5 since the sinuses are in close proximity to the orbit and brain. Of all Paranasal sinuses, frontal sinus and ethmoidal sinus are most often involved (70% to 90%). Sphenoid sinus mucoceles are rare.6 Mucoceles can form at any age, but the majority are diagnosed in patients beyond fourth decade. Males and females are equally affected. Clinical presentation of the mucoceles varies from asymptomatic to incapacitating headache and visual disturbance. Proptosis (83%) and diplopia (45%) are the most common complaints.4 We report this case to document the quintessential radiological diagnostic features of giant frontal mucocele causing displacement of the right eyeball. Various clinical manifestations are seen to be arising due to frontal mucoceles such as proptosis, ptosis, peri-orbital swelling, restricted ocular movements and inferior displacement of the orbital globe causing diplopia.2 The content of the mucocele if infected may cause meningitis or a brain abscess with or without a CSF fistula. The close proximity of paranasal sinuses to the orbit and skull base predisposes the patient to significant morbidity. Chronic mucocele shows hyper-intense contents on T1W images with post gadolinium administration enhancement of the wall with intermediate signal contents on T2W images.7,4 Differential diagnoses for the soft tissue mass would be dermoid cysts, fungal or tuberculous infection, histicytosis, fronto-orbital cholesterol granuloma or an uncommon neoplasm.8,9,24 Computed tomography (CT) and Magnetic Resonance Imaging(MRI) are the modalities of choice for an accurate diagnosis and planning further management. Ultrasonography may be complimentary at times.

CASE REPORT

A 73-year-old female presented with gradually progressive painless supraorbital, subcutaneous forehead soft mass, gradual diminution of the vision in the right eye and nasal discharge for the past 8 years. The mass showed relatively rapid growth in past 4 months. There was no history of surgery or trauma. The mass was non-tender, inflamed, fluctuant or pulsatile. No focal orbital masses were palpable and cranial nerve examination was normal. Clinical examination of the right eye revealed displacement of orbit and globe temporally and inferiorly with proptosis and mechanical ptosis. Visual

How to cite this article: Manvendra Singh, Kamal Kumar Sen, Girendra Shankar, Sudhansu Sekhar Mohanty. Imaging of a giant frontal sinus mucocele with orbital displacement: a case report. International Journal of Contemporary Medicine Surgery and Radiology. 2019;4(4):D117-D120.

Keywords: Frontal Mucocele, Orbital complications, Imaging
Singh, et al. Imaging of a Giant Frontal Sinus Mucocele with Orbital Displacement

Figure-1: Large soft tissue mass lesion on the forehead extending over the right eye.

Figure-2: CT Scan, A. Axial, showing well-encapsulated hypodense lesion with peripheral calcified wall, involving right frontal and maxillary sinuses and bilateral ethmoidal sinuses (right>left) pushing the right globe laterally without any intracranial extension. B. Sagittal image showing cranio-caudal extension of the lesion and involvement of right frontal and maxillary sinuses. C. Axial- Bone Window image showing the thinning and erosion of right maxillary and bilateral ethmoidal (right>left) sinuses. D. Coronal image showing lateral displacement of right eye ball and elevation of floor of anterior cranial fossa.

Figure-3: MRI. A. Axial DWI; The lesion showing no diffusion restriction. B. Axial T1; A well-defined large hypointense lesion involving frontal sinus noted on right with a well-defined round hyperintensity within. c. Axial T2 FLAIR; The lesion is hyperintense with a well-defined round hypointensity within likely suggestive of organized hemorrhage. d. Axial post contrast T1; Patchy focal peripheral enhancement of the lesion without any enhancement of the round hyperintense content within.

Figure-4: Intra-operative image of everted bony margins and intact floor of mucocele.

acuity could not be assessed on the right and was 6/24 on the left.

Computed tomography (CT) scan showed a large (8x8x7 cm) encapsulated extra-axial lesion with CT HU of [(+10)-(+30)], and peripheral calcification along frontal sinus along the superior orbital rim. The lesion was abutting and pushing the right globe laterally maintaining fat plane with it. Superiorly the lesion was indenting and causing resorption and remodelling of frontal bone extending up to the roof. There was no demonstrable evidence of intracranial extension. Erosion and resorption of the Nasal bone was noted. On MRI, the lesion was hyper intense on T1W/T2W & FLAIR (Fluid Attenuated inversion recovery) sequences with no diffusion restriction or blooming within as confirmed with susceptibility-weighted (SWAN) imaging. On Fat saturation sequences the lesion was hyper intense. There
Singh, et al. Imaging of a Giant Frontal Sinus Mucocele with Orbital Displacement

DISCUSSION

Infective, inflammatory, neoplastic or congenital malformations can lead to obstruction of the paranasal sinus ostium and there is gradual accumulation of mucosal secretions ultimately leading to the development of a mucocele. A long standing process leads to distorted perilobular anatomy with soft tissue displacement and bony resorption.

Studies have shown that obstruction and subsequent infection of the frontal sinus leads to localized accumulation of lymphocytes and monocytes which trigger the release of Prostaglandin E2 and collagenase from the surrounding fibroblasts. Elevated levels of Prostaglandin E2 and collagenase have been implicated in the osteolytic process that accompanies the infected mucocele, which translate into the locally aggressive nature of such lesions.

Bony erosions, remodelling, visualisation of anatomical details, the extent of perilobular soft tissue invasion are best studied on CT. In our case, CT demonstrated expansion and thinning of the bony wall of the frontal sinus with complete erosion of the anterior wall of the Frontal sinus and nasal bone.

Computed tomography (CT) can delineate the expansile homogeneous mass arising from within the sinus with bony remodelling and thinning of the margins with or without marginal sclerosis. However, bone destruction is uncommon. A presence or absence of intracranial extension is also demonstrated. Magnetic resonance imaging (MRI) is superior to CT in the distinction of a mucocele from other soft tissue lesions like neoplasms and recognizing its association with proximate tissues like the brain and orbit.

MRI provides a superlative perspective in understanding the nature of such soft tissue cystic lesions and provide differentiation from other soft-tissue neoplasms. In the studied case, the lesion showed T1W/T2W/FLAIR hyperintensity with no diffusion restriction or SWAN blooming with T1 hyper and T2 hypointense content due to organised haemorrhage & debris. Gadolinium enhancement helps characterise the cystic wall anatomy in greater details in chronic stages.

Mucoceles generally tend to be bright on T1W images compared to the brain and iso to hyperintense on T2W images. Neoplastic processes tend to be isointense relative to the brain on both T1 and T2W images. Hyper intensity on T1W images suggests proteinous or hemorrhagic content of a lesion. This may lead to misdiagnosis, hence a dynamic sonographic study is helpful to see the mobility of the content within. One of the other pitfalls of MRI in the diagnosis of mucocoeles is that if it contains inspissated proteinaceous content, it could become almost void of signal on T1W and T2W images, like that of air. MRI alone would be misleading in such cases. On CT, however, the inspissated content would be of high density, making diagnosis straightforward.

The management of Mucoceles is usually surgical, which ranges from functional endoscopic sinus surgery (FESS) to craniotomy, and craniofacial exposure, with or without obliteration of the sinus. As surgical instrumentation has improved and the pathophysiology is better understood, surgical treatment and endoscopic marsupialisation of mucoceles have evolved into procedures that are less invasive and which emphasize more on surgical drainage over ablation.

CONCLUSION

The imaging modalities in the diagnosis & evaluation of Mucocele invariably would include, CT scanning and MRI. Ultrasonography may be complimentary. The radiological evaluation provides an insight into the nature and extent of such lesions and help in distinguishing from the differentials. CT and MRI also provides a road map for Surgical, Neuro surgical and maxillofacial repairs for perfect management of such large benign paranasal sinus pathologies.
REFERENCES

1. Aggarwal SK, Bhavana K, Keshri A, Kumar R, Srivastava A. Frontal sinus mucocele with orbital complications: Management by varied surgical approaches. Asian Journal of Neurosurgery. 2012;7(3):135.

2. Tan C, Med M, Yong V, Yip L, Med M, Amrith S. An Unusual Presentation of a Giant Frontal Sinus Mucocele Manifesting with a Subcutaneous Forehead Mass. 2.

3. Suri A, Mahapatra AK, Gaikwad S, Sarkar C. Giant mucoceles of the frontal sinus: a series and review. Journal of Clinical Neuroscience. 2004;11(6):214–8.

4. Edelman RR. Clinical Magnetic Resonance Imaging. Saunders Elsevier; 2006. 1275 p.

5. Lund VJ, Milroy CM. Fronto-ethmoidal mucoceles: a histopathological analysis. J Laryngol Otol. 1991;105(11):921–3.

6. Arrué P, Kany MT, Serrano E, Lacroix F, Percodani J, Yardeni E, et al. Mucoceles of the paranasal sinuses: uncommon location. The Journal of Laryngology & Otol. 1998;112(9):840–4.

7. Kim Y-S, Kim K, Lee J-G, Yoon J-H, Kim C-H. Paranasal Sinus Mucoceles with Ophthalmologic Manifestations: A 17-year Review of 96 Cases. Am J Rhinol Allergy. 2011;25(4):272–5.

8. Lund VJ, Harvey W, Meghji S, Harris M. Prostaglandin synthesis in the pathogenesis of fronto-ethmoidal mucoceles. Acta Oto-Laryngologica. 1988;106(1–2):145–51.

9. Tsitouridis I, Michaelides M, Bintoudi A, Kyriakou V. Frontoethmoidal Mucoceles: CT and MRI Evaluation. Neuroradiol J. 2007;20(5):586–96.

Source of Support: Nil; Conflict of Interest: None
Submitted: 21-10-2019; Accepted: 16-11-2019; Published online: 12-12-2019