Reduced complexity model intercomparison project phase 1: Protocol, results and initial observations: supplementary information

Zebedee R. J. Nicholls1,2, Malte Meinshausen1,2,3, Jared Lewis1, Robert Gieseke3, Dietmar Dommenget4, Kalyn Dorheim5, Chen-Shuo Fan4, Jan S. Fuglestvedt6, Thomas Gasser7, Ulrich Golüke8, Philip Goodwin9, Elmar Kriegler3, Nicholas J. Leach10, Davide Marchegiani4, Yann Quilcaille7, Bjørn H. Samset6, Marit Sandstad6, Alexey N. Shiklomanov5, Ragnhild B. Skeie6, Christopher J. Smith11, Katsumasa Tanaka12,13, Junichi Tsutsui14, and Zhiang Xie4

1Australian–German Climate and Energy College, The University of Melbourne, Parkville, Victoria, Australia
2School of Earth Sciences, The University of Melbourne, Parkville, Victoria, Australia
3Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam, Germany
4Monash University, School of Earth, Atmosphere and Environment, Clayton, Victoria 3800, Australia
5Joint Global Change Research Institute, Pacific Northwest National Laboratory, College Park, MD, USA
6CICERO Center for International Climate Research, Oslo, Norway
7International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
8BI Norwegian Business School, Nydalsveien 37, 0484 Oslo, Norway
9School of Ocean and Earth Science, University of Southampton, Southampton, UK
10Department of Physics, Atmospheric Oceanic and Planetary Physics, University of Oxford, United Kingdom
11Priestley International Centre for Climate, University of Leeds, UK
12National Institute for Environmental Studies (NIES), Tsukuba, Japan
13Laboratoire des Sciences du Climat et de l’Environnement (LSCE), Commissariat à l’énergie atomique et aux énergies alternatives (CEA), Gif sur Yvette, France
14Central Research Institute of Electric Power Industry, Abiko, Japan

\textbf{Correspondence:} Zebedee Nicholls (zebedee.nicholls@climate-energy-college.org)
Table S1. Overview of the technical components of the models participating in RCMIP Phase 1.

Model	Development home	License	Approximate release frequency	Codebase size (approximate lines of code)	Simulation years per second (approximate for a single core machine)	Language, distribution format and support platforms	Code testing
ACC2	Internal only	AGPLv3	N/A	500	100	GAMS	Manual validation and verification
AR5IR (both variants)	N/A	AGPLv3	N/A	500	5 000	Python 3.7 (https://github.com/openclimatedata_openscm/blob/ar5ir-notebooks/notebooks/ar5ir_rcmip.ipynb)	Manual validation and verification
CICERO-SCM	Internal only	GNU	Fortran 90	3000	1	Fortran 90	
ESCIMO	GitHub	Apache 2.0	Sub-yearly	3 500	3 500	Vensim	Manual validation and verification
FaIR	GitHub	Creative Commons Attribution 4.0 License	Python 2.7, 3.5, 3.6, 3.7 Linux, macOS and Windows.	Python 2.7, 3.5, 3.6, 3.7. Linux, macOS and Windows.	Unit tests and continuous integration.		
GIR	Github	Creative Commons Attribution 4.0 License	250	200 000	Python 3.6+ (recommended), Excel, MatLAB and IDL available upon request. Linux, macOS and Windows.	Manual validation and verification	
GREB	GitHub	Creative Commons Attribution 4.0 License	Yearly	1700	1	Fortran 90 (GrADS or Python 3.7 for data processing)	Fortran 90 code tested by gfortran on Mac and ifort on Linux under continuous integration
Model	Development home	License	Approximate release frequency	Codebase size (approximate lines of code)	Simulation years per second (approximate for a single core machine)	Language, distribution format and support platforms	Code testing
----------------------------	------------------	-------------------	-------------------------------	--	---	--	---
Hector	GitHub AGPLv3	Yearly	500	5 000	R and Python packages (with C++ backend). Linux, macOS and Windows.	Unit tests and continuous integration	Manual validation and verification
Held et al. two layer model	GitHub APLv3	Yearly	500	5 000	Python 3.7 (https://github.com/openclimatedata/openscm/blob/ar5ir-notebooks/notebooks/held_two_layer_rcmip.ipynb)	Manual validation and verification	
MAGICC	Private GitLab	Decadal	15 000	350	Fortran 90 (Open-source Python wrapper available). Linux, macOS and Windows.	Unit tests and continuous integration	
MCE	Private GitHub, preparing public release	n/a	760 excluding calibration code	500	Python 2.7 and 3.7 on multiple platforms	Comparing results for idealized scenarios with analytical solutions	
Model	Development home	License	Approximate release frequency	Codebase size (approximate lines of code)	Simulation years per second (approximate for a single core machine)	Language, distribution format and support platforms	Code testing
--------	------------------	---------------	-------------------------------	--	---	---	----------------------------------
OSCAR	Development internal, with release on GitHub https://github.com/tgasser/OSCAR	CeCILL sub-yearly	5000 excluding calibration code	Python 3.7	Manual validation and verification	WASP C++ code tested only on GNU GCC compiler collection	
WASP	Internal Creative Commons Attribution License		100000	C++ 11			
Figure S1. Historical effective radiative forcing for RCMIP models in illustrative configurations. In order to provide timeseries up until 2019, we have used data from the combination of historical and ssp585 simulations. (a) - total effective radiative forcing; (b) - aerosol effective radiative forcing.
Table S2. Emulation scores and equilibrium climate sensitivities (ECSs) for RCMIP model calibrations. In parentheses we show the number of simulations available for each model variant.

Target CMIP6 model	RCMIP model	ECS (K)	RMSE (K)
AWI-CM-1-1-MR_r1i1p1f1 (5)	MAGICC-v7-1-0-beta (5)	3.22	0.16
BCC-CSM2-MR_r1i1p1f1 (6)	MCE-v1-1 (2)	2.90	0.21
	MAGICC-v7-1-0-beta (6)	2.83	0.16
	ar5ir-2box (2)	7.35	0.13
	ar5ir-3box (2)	7.78	0.13
	held-two-layer-uom (2)	2.63	0.13
BCC-ESM1_r1i1p1f1 (4)	MCE-v1-1 (2)	2.96	0.12
	MAGICC-v7-1-0-beta (3)	3.13	0.13
	ar5ir-2box (2)	15.30	0.18
	ar5ir-3box (2)	8.06	0.15
	held-two-layer-uom (2)	2.31	0.12
CanESM5_r1i1p1f1 (10)	MCE-v1-1 (2)	5.08	0.13
	hector62381e71 (4)	4.79	0.42
	MAGICC-v7-1-0-beta (10)	5.72	0.30
	ar5ir-2box (2)	5.24	0.19
	ar5ir-3box (2)	11.82	0.21
	held-two-layer-uom (2)	3.14	0.30
CanESM5_r1i1p2f1 (7)	MCE-v1-1 (2)	5.08	0.13
	hector62381e71 (4)	4.79	0.43
	MAGICC-v7-1-0-beta (7)	5.64	0.27
CanESM5_r10i1p1f1 (5)	hector62381e71 (2)	4.79	0.29
	MAGICC-v7-1-0-beta (5)	6.01	0.18
CESM2-WACCM_r1i1p1f1 (6)	MCE-v1-1 (2)	3.85	0.15
	hector62381e71 (3)	4.17	0.26
	MAGICC-v7-1-0-beta (6)	4.26	0.21
	ar5ir-2box (2)	4.64	0.45
	ar5ir-3box (2)	13.42	0.21
	held-two-layer-uom (2)	2.55	0.13
Table S2. Continued.

Target CMIP6 model	RCMIP model	ECS (K)	RMSE (K)
CESM2_r1i1p1f1 (6)	MCE-v1-1 (2)	4.20	0.17
	hector62381e71 (3)	4.00	0.67
	MAGICC-v7-1-0-beta (6)	5.32	0.27
	ar5ir-2box (2)	5.40	0.24
	ar5ir-3box (2)	8.31	0.24
	held-two-layer-uom (2)	3.63	0.20
CNRM-CM6-1_r1i1p1f2 (8)	MCE-v1-1 (4)	4.06	0.24
	hector62381e71 (5)	3.86	0.36
	MAGICC-v7-1-0-beta (8)	4.08	0.18
	ar5ir-2box (4)	8.13	0.43
	ar5ir-3box (4)	9.12	0.43
	held-two-layer-uom (4)	2.91	0.16
CNRM-ESM2-1_r1i1p1f2 (10)	MCE-v1-1 (2)	4.02	0.20
	hector62381e71 (4)	3.51	0.25
	MAGICC-v7-1-0-beta (9)	3.71	0.18
	ar5ir-2box (2)	8.22	0.27
	ar5ir-3box (2)	12.18	0.27
	held-two-layer-uom (2)	2.29	0.17
E3SM-1-0_r1i1p1f1 (2)	MCE-v1-1 (2)	5.10	0.17
	MAGICC-v7-1-0-beta (2)	5.69	0.22
EC-Earth3-Veg_r1i1p1f1 (7)	MCE-v1-1 (2)	4.13	0.19
	MAGICC-v7-1-0-beta (7)	4.47	0.25
	ar5ir-2box (2)	15.91	0.27
	ar5ir-3box (2)	8.32	0.22
	held-two-layer-uom (2)	3.50	0.19
Table S2. Continued.

Target CMIP6 model	RCMIP model	ECS (K)	RMSE (K)
FGOALS-g3_r1i1p1f1 (4)	MAGICC-v7-1-0-beta (4)	2.77	0.15
GISS-E2-1-G_r1i1p1f1 (4)	MCE-v1-1 (4)	2.69	0.16
	MAGICC-v7-1-0-beta (4)	2.81	0.19
	ar5ir-2box (4)	5.24	0.15
	ar5ir-3box (4)	18.98	0.58
	held-two-layer-uom (4)	2.50	0.15
GISS-E2-1-H_r1i1p1f1 (3)	MCE-v1-1 (3)	3.07	0.15
	MAGICC-v7-1-0-beta (3)	3.20	0.16
	ar5ir-2box (3)	16.68	0.16
	ar5ir-3box (3)	8.05	0.15
	held-two-layer-uom (3)	2.48	0.14
GISS-E2-2-G_r1i1p1f1 (3)	MAGICC-v7-1-0-beta (3)	2.88	0.19
	ar5ir-2box (3)	3.70	0.16
	ar5ir-3box (3)	18.86	0.66
	held-two-layer-uom (3)	1.90	0.14
IPSL-CM6A-LR_r1i1p1f1 (9)	MCE-v1-1 (4)	3.83	0.25
	hector62381e71 (6)	3.07	0.67
	MAGICC-v7-1-0-beta (9)	4.53	0.25
	ar5ir-2box (4)	13.57	0.34
	ar5ir-3box (4)	5.71	0.26
	held-two-layer-uom (4)	4.57	0.29
IPSL-CM6A-LR_r1i1p1f2 (2)	MAGICC-v7-1-0-beta (2)	4.43	0.21
IPSL-CM6A-LR_r10i1p1f1 (3)	MCE-v1-1 (1)	3.83	0.21
	hector62381e71 (1)	3.07	0.40
	MAGICC-v7-1-0-beta (3)	3.77	0.32
MCM-UA-1-0_r1i1p1f2 (4)	MAGICC-v7-1-0-beta (4)	3.45	0.16

8
Target CMIP6 model	RCMIP model	ECS (K)	RMSE (K)
MIROC6_r1i1p1f1 (14)	MCE-v1-1 (4)	2.44	0.28
	MAGICC-v7-1-0-beta (12)	2.20	0.19
MPI-ESM1-2-HR_r1i1p1f1 (2)	MAGICC-v7-1-0-beta (2)	2.90	0.15
	ar5ir-2box (2)	8.02	0.16
	ar5ir-3box (2)	6.08	0.16
	held-two-layer-uom (2)	2.17	0.12
NorCPM1_r1i1p1f1 (2)	MAGICC-v7-1-0-beta (2)	2.73	0.29
	ar5ir-2box (2)	7.24	0.13
	ar5ir-3box (2)	8.60	0.23
	held-two-layer-uom (2)	4.15	0.18
NorESM2-LM_r1i1p1f1 (3)	MCE-v1-1 (2)	2.19	0.32
	MAGICC-v7-1-0-beta (2)	2.27	0.22
	ar5ir-2box (2)	13.37	0.19
	ar5ir-3box (2)	12.48	0.19
SAM0-UNICON_r1i1p1f1 (2)	MCE-v1-1 (2)	3.80	0.15
	MAGICC-v7-1-0-beta (2)	3.42	0.24
UKESM1-0-LL_r1i1p1f2 (9)	MCE-v1-1 (2)	5.31	0.16
	MAGICC-v7-1-0-beta (9)	6.05	0.30
	ar5ir-2box (2)	16.92	0.26
	ar5ir-3box (2)	7.22	0.19
	held-two-layer-uom (2)	4.11	0.19
Figure S2. Probabilistic estimate of CO$_2$ effective radiative forcing for ssp119 and ssp585 (note, for Hector CO$_2$ radiative forcing is shown as effective radiative forcing is not available). (a) - historical period (1850-2025); (b) - projections (2000-2110).
Figure S3. Comparison of effective radiative forcing projections under the RCPs and SSPs up until 2100. The coloured solid lines are RCMIP output where the RCP/SSP pair has been run with the same model in the same configuration. The plumes show the standard deviation of the available model results whilst the lines show the mean.
Figure S4. Comparison of CO₂ effective radiative forcing projections under the RCPs and SSPs up until 2100. The coloured solid lines are RCMIP output where the RCP/SSP pair has been run with the same model in the same configuration. The plumes show the standard deviation of the available model results whilst the lines show the mean.
Figure S5. Comparison of aerosols effective radiative forcing projections under the RCPs and SSPs up until 2100. The coloured solid lines are RCMIP output where the RCP/SSP pair has been run with the same model in the same configuration. The plumes show the standard deviation of the available model results whilst the lines show the mean.
Figure S6. Response of RCMIP models to a reduction in near-term climate forcers. Results are from RCMIP models, except for temperature lines with natural variability which are CMIP6 results. The ssp370-lowNTCF scenario results in a small warming signal relative to ssp370, the magnitude of which varies by RCM. For comparison, we also include ssp370-lowNTCF as quantified by Gidden et al. (2019) (labelled ‘ssp370-lowNTCF-gidden’). This implementation also includes reductions in methane and so a strong cooling signal is seen instead.
Figure S7. Emulation of CanESM5_r1i1p2f1 by RCMs in RCMIP Phase 1. The thick transparent lines are the target CMIP6 model output (here from CanESM5_r1i1p2f1). The thin lines are emulations from different RCMs. Panel (a) shows results for scenario based experiments while panels (b) - (e) show results for idealised CO2-only experiments (note that panels (b) - (e) share the same legend).
Figure S8. Emulation of BCC-ESM1_r1i1p1f1 by RCMs in RCMIP Phase 1. The thick transparent lines are the target CMIP6 model output (here from BCC-ESM1_r1i1p1f1). The thin lines are emulations from different RCMs. Panel (a) shows results for scenario based experiments while panels (b) - (e) show results for idealised CO2-only experiments (note that panels (b) - (e) share the same legend).
Figure S9. Emulation of CanESM5_r10i1p1f1 by RCMs in RCMIP Phase 1. The thick transparent lines are the target CMIP6 model output (here from CanESM5_r10i1p1f1). The thin lines are emulations from different RCMs. Panel (a) shows results for scenario based experiments while panels (b) - (e) show results for idealised CO2-only experiments (note that panels (b) - (e) share the same legend).
Figure S10. Emulation of generic by RCMs in RCMIP Phase 1. The thick transparent lines are the target CMIP6 model output (here from generic). The thin lines are emulations from different RCMs. Panel (a) shows results for scenario based experiments while panels (b) - (e) show results for idealised CO2-only experiments (note that panels (b) - (e) share the same legend).
Figure S11. Emulation of FGOALS-g3_rli1p1f1 by RCMs in RCMIP Phase 1. The thick transparent lines are the target CMIP6 model output (here from FGOALS-g3_rli1p1f1). The thin lines are emulations from different RCMs. Panel (a) shows results for scenario based experiments while panels (b) - (e) show results for idealised CO2-only experiments (note that panels (b) - (e) share the same legend).
Figure S12. Emulation of MPI-ESM1-2-HR_r1i1p1f1 by RCMs in RCMIP Phase 1. The thick transparent lines are the target CMIP6 model output (here from MPI-ESM1-2-HR_r1i1p1f1). The thin lines are emulations from different RCMs. Panel (a) shows results for scenario based experiments while panels (b) - (e) show results for idealised CO2-only experiments (note that panels (b) - (e) share the same legend).
Figure S13. Emulation of BCC-CSM2-MR_r1i1p1f1 by RCMs in RCMIP Phase 1. The thick transparent lines are the target CMIP6 model output (here from BCC-CSM2-MR_r1i1p1f1). The thin lines are emulations from different RCMs. Panel (a) shows results for scenario based experiments while panels (b) - (e) show results for idealised CO2-only experiments (note that panels (b) - (e) share the same legend).
Figure S14. Emulation of SAM0-UNICON_r1i1p1f1 by RCMs in RCMIP Phase 1. The thick transparent lines are the target CMIP6 model output (here from SAM0-UNICON_r1i1p1f1). The thin lines are emulations from different RCMs. Panel (a) shows results for scenario based experiments while panels (b) - (e) show results for idealised CO2-only experiments (note that panels (b) - (e) share the same legend).
Figure S15. Emulation of EC-Earth3-Veg_r1i1p1f1 by RCMs in RCMIP Phase 1. The thick transparent lines are the target CMIP6 model output (here from EC-Earth3-Veg_r1i1p1f1). The thin lines are emulations from different RCMs. Panel (a) shows results for scenario based experiments while panels (b) - (e) show results for idealised CO2-only experiments (note that panels (b) - (e) share the same legend).
Figure S16. Emulation of CanESM5_r1i1p1f1 by RCMs in RCMIP Phase 1. The thick transparent lines are the target CMIP6 model output (here from CanESM5_r1i1p1f1). The thin lines are emulations from different RCMs. Panel (a) shows results for scenario based experiments while panels (b) - (e) show results for idealised CO2-only experiments (note that panels (b) - (e) share the same legend).
Figure S17. Emulation of GISS-E2-1-H_r1i1p1f1 by RCMs in RCMIP Phase 1. The thick transparent lines are the target CMIP6 model output (here from GISS-E2-1-H_r1i1p1f1). The thin lines are emulations from different RCMs. Panel (a) shows results for scenario based experiments while panels (b) - (e) show results for idealised CO2-only experiments (note that panels (b) - (e) share the same legend).
Figure S18. Emulation of CESM2_r1i1p1f1 by RCMs in RCMIP Phase 1. The thick transparent lines are the target CMIP6 model output (here from CESM2_r1i1p1f1). The thin lines are emulations from different RCMs. Panel (a) shows results for scenario based experiments while panels (b) - (e) show results for idealised CO2-only experiments (note that panels (b) - (e) share the same legend).
Figure S19. Emulation of UKESM1-0-LL_r1i1p1f2 by RCMs in RCMIP Phase 1. The thick transparent lines are the target CMIP6 model output (here from UKESM1-0-LL_r1i1p1f2). The thin lines are emulations from different RCMs. Panel (a) shows results for scenario based experiments while panels (b) - (e) show results for idealised CO2-only experiments (note that panels (b) - (e) share the same legend).
Figure S20. Emulation of MIROC6_r1i1p1f1 by RCMs in RCMIP Phase 1. The thick transparent lines are the target CMIP6 model output (here from MIROC6_r1i1p1f1). The thin lines are emulations from different RCMs. Panel (a) shows results for scenario based experiments while panels (b) - (e) show results for idealised CO2-only experiments (note that panels (b) - (e) share the same legend).
Figure S21. Emulation of E3SM-1-0_r1i1p1f1 by RCMs in RCMIP Phase 1. The thick transparent lines are the target CMIP6 model output (here from E3SM-1-0_r1i1p1f1). The thin lines are emulations from different RCMs. Panel (a) shows results for scenario based experiments while panels (b) - (e) show results for idealised CO2-only experiments (note that panels (b) - (e) share the same legend).
Figure S22. Emulation of GISS-E2-2-G_r1i1p1f1 by RCMs in RCMIP Phase 1. The thick transparent lines are the target CMIP6 model output (here from GISS-E2-2-G_r1i1p1f1). The thin lines are emulations from different RCMs. Panel (a) shows results for scenario based experiments while panels (b) - (e) show results for idealised CO2-only experiments (note that panels (b) - (e) share the same legend).
Figure S23. Emulation of NorESM2-LM_r1i1p1f1 by RCMs in RCMIP Phase 1. The thick transparent lines are the target CMIP6 model output (here from NorESM2-LM_r1i1p1f1). The thin lines are emulations from different RCMs. Panel (a) shows results for scenario based experiments while panels (b) - (e) show results for idealised CO2-only experiments (note that panels (b) - (e) share the same legend).
Figure S24. Emulation of IPSL-CM6A-LR_r1i1p1f1 by RCMs in RCMIP Phase 1. The thick transparent lines are the target CMIP6 model output (here from IPSL-CM6A-LR_r1i1p1f1). The thin lines are emulations from different RCMs. Panel (a) shows results for scenario based experiments while panels (b) - (e) show results for idealised CO2-only experiments (note that panels (b) - (e) share the same legend).
Figure S25. Emulation of IPSL-CM6A-LR_r1i1p1f2 by RCMs in RCMIP Phase 1. The thick transparent lines are the target CMIP6 model output (here from IPSL-CM6A-LR_r1i1p1f2). The thin lines are emulations from different RCMs. Panel (a) shows results for scenario based experiments while panels (b) - (e) show results for idealised CO2-only experiments (note that panels (b) - (e) share the same legend).
Figure S26. Emulation of IPSL-CM6A-LR_r10i1p1f1 by RCMs in RCMIP Phase 1. The thick transparent lines are the target CMIP6 model output (here from IPSL-CM6A-LR_r10i1p1f1). The thin lines are emulations from different RCMs. Panel (a) shows results for scenario based experiments while panels (b) - (e) show results for idealised CO2-only experiments (note that panels (b) - (e) share the same legend).
Figure S27. Emulation of AWI-CM-1-1-MR_r1i1p1f1 by RCMs in RCMIP Phase 1. The thick transparent lines are the target CMIP6 model output (here from AWI-CM-1-1-MR_r1i1p1f1). The thin lines are emulations from different RCMs. Panel (a) shows results for scenario based experiments while panels (b) - (e) show results for idealised CO2-only experiments (note that panels (b) - (e) share the same legend).
Figure S28. Emulation of CESM2-WACCM_r1i1p1f1 by RCMs in RCMIP Phase 1. The thick transparent lines are the target CMIP6 model output (here from CESM2-WACCM_r1i1p1f1). The thin lines are emulations from different RCMs. Panel (a) shows results for scenario based experiments while panels (b) - (e) show results for idealised CO2-only experiments (note that panels (b) - (e) share the same legend).
Figure S29. Emulation of CNRM-ESM2-1_r1i1p1f2 by RCMs in RCMIP Phase 1. The thick transparent lines are the target CMIP6 model output (here from CNRM-ESM2-1_r1i1p1f2). The thin lines are emulations from different RCMs. Panel (a) shows results for scenario based experiments while panels (b) - (e) show results for idealised CO2-only experiments (note that panels (b) - (e) share the same legend).
Figure S30. Emulation of MCM-UA-1-0_r1i1p1f2 by RCMs in RCMIP Phase 1. The thick transparent lines are the target CMIP6 model output (here from MCM-UA-1-0_r1i1p1f2). The thin lines are emulations from different RCMs. Panel (a) shows results for scenario based experiments while panels (b) - (e) show results for idealised CO2-only experiments (note that panels (b) - (e) share the same legend).
Figure S31. Emulation of GISS-E2-1-G_r1i1p1f1 by RCMs in RCMIP Phase 1. The thick transparent lines are the target CMIP6 model output (here from GISS-E2-1-G_r1i1p1f1). The thin lines are emulations from different RCMs. Panel (a) shows results for scenario based experiments while panels (b) - (e) show results for idealised CO2-only experiments (note that panels (b) - (e) share the same legend).
Figure S32. Emulation of CNRM-CM6-1_r1i1p1f2 by RCMs in RCMIP Phase 1. The thick transparent lines are the target CMIP6 model output (here from CNRM-CM6-1_r1i1p1f2). The thin lines are emulations from different RCMs. Panel (a) shows results for scenario based experiments while panels (b) - (e) show results for idealised CO2-only experiments (note that panels (b) - (e) share the same legend).
Figure S33. Emulation of NorCPM1_r1i1p1f1 by RCMs in RCMIP Phase 1. The thick transparent lines are the target CMIP6 model output (here from NorCPM1_r1i1p1f1). The thin lines are emulations from different RCMs. Panel (a) shows results for scenario based experiments while panels (b) - (e) show results for idealised CO2-only experiments (note that panels (b) - (e) share the same legend).
Table S3. RCMIP Phase 1 experiment overview (also available at rcmip.org). In the ‘drivers’ column, the acronyms show the inputs which are provided to the models in order to perform the run. CC: CO₂ concentrations; CO: non-CO₂ WMGHG concentrations; EC: CO₂ emissions; EO: non-CO₂ WMGHG emissions; A: aerosol emissions; S: solar effective radiative forcing; V: volcanic effective radiative forcing. ESDOC refers to the Earth System Documentation service (https://search.es-doc.org/).

ID	Drivers	Summary	Further information	Tier
piControl	CC, CO, A, S, V	Pre-industrial control simulation.	ESDOC	1
esm-piControl	EC, CO, A, S, V	Pre-industrial control simulation with zero anthropogenic perturbation to CO₂ emissions.	ESDOC	1
esm-piControl-allGHG	EC, EO, A, S, V	Pre-industrial control simulation with zero anthropogenic perturbation to GHG emissions.	RCMIP specific experiment	2
1pctCO2	CC	1 % per year increase in atmospheric CO₂ concentrations.	ESDOC	1
1pctCO2-4xext	CC	1 % per year increase in atmospheric CO₂ concentrations until atmospheric CO₂ concentrations quadruple, constant CO₂ concentrations thereafter.	ESDOC	1
1pctCO2-cdr	CC	1 % per year increase in atmospheric CO₂ concentrations until atmospheric CO₂ concentrations quadruple and then 1% per year decrease in atmospheric CO₂ concentrations until CO₂ returns to pre-industrial levels, constant thereafter.	ESDOC	2
abrupt-4xCO2	CC	Abrupt quadrupling of atmospheric CO₂ concentrations.	ESDOC	1
abrupt-2xCO2	CC	Abrupt doubling of atmospheric CO₂ concentrations.	ESDOC	1
abrupt-0p5xCO2	CC	Abrupt halving of atmospheric CO₂ concentrations.	ESDOC	1
esm-pi-cdr-pulse	EC	Removal of 100 GtC in a single year from pre-industrial atmosphere, zero CO₂ emissions thereafter.	ESDOC	2
ID	Drivers	Summary	Further information	Tier
---------------	---------	---	---------------------	------
esm-pi-CO2pulse	EC	Addition of 100 GtC in a single year from pre-industrial atmosphere, zero CO2 emissions thereafter.	ESDOC	2
esm-bell-1000PgC	EC	Cumulative addition of 1000 PgC following a bell-curved shaped emissions timeseries.	ESDOC	3
esm-bell-2000PgC	EC	Cumulative addition of 2000 PgC following a bell-curved shaped emissions timeseries.	ESDOC	3
esm-bell-750PgC	EC	Cumulative addition of 750 PgC following a bell-curved shaped emissions timeseries.	ESDOC	3
historical	CC, CO, A, S, V	Simulation of 1850-2014.	ESDOC	1
historical-cmip5	CC, CO, A, S, V	Simulation of 1850-2004, matching forcings as estimated in CMIP5.	http://www.pik-potsdam.de/~mmalte/rcps/	2
hist-aer	A	Simulation of 1850-2014 with aerosol emissions only.	ESDOC	3
hist-CO2	CC	Simulation of 1850-2014 with changing CO2 concentrations only.	ESDOC	3
hist-GHG	CC, CO	Simulation of 1850-2014 with changing GHG concentrations only.	ESDOC	3
hist-nat	S, V	Simulation of 1850-2014 with changing natural forcings only.	ESDOC	3
hist-sol	S	Simulation of 1850-2014 with changing solar forcing only.	ESDOC	3
hist-volc	V	Simulation of 1850-2014 with changing volcanic forcing only.	ESDOC	3
ssp119	CC, CO, A, S, V	Low-end scenario reaching radiative forcing ~1.9 Wm$^{-2}$ in 2100 (using the SSP1 socioeconomic storyline).	ESDOC	1
esm-ssp119	EC, CO, A, S, V	As above except CO2 emissions driven.	ESDOC	1
esm-ssp119-allGHG	EC, EO, A, S, V	As above except all GHG emissions driven.	ESDOC	2
ID	Drivers	Summary	Further information	Tier
-------------	---------	---	---------------------	------
ssp126	CC, CO, A, S, V	Update of RCP2.6 based on the SSP1 socioeconomic storyline.	ESDOC	2
esm-ssp126	EC, CO, A, S, V	As above except CO2 emissions driven.	ESDOC	3
esm-ssp126-allGHG	EC, EO, A, S, V	As above except all GHG emissions driven.	ESDOC	3
ssp245	CC, CO, A, S, V	Update of RCP4.5 based on the SSP2 socioeconomic storyline.	ESDOC	2
esm-ssp245	EC, CO, A, S, V	As above except CO2 emissions driven.	ESDOC	3
esm-ssp245-allGHG	EC, EO, A, S, V	As above except all GHG emissions driven.	ESDOC	3
ssp370	CC, CO, A, S, V	Gap-filling scenario reaching radiative forcing \sim7.0 Wm$^{-2}$ in 2100 (using the SSP3 socioeconomic storyline).	ESDOC	2
esm-ssp370	EC, CO, A, S, V	As above except CO2 emissions driven.	ESDOC	3
esm-ssp370-allGHG	EC, EO, A, S, V	As above except all GHG emissions driven.	ESDOC	3
ssp370-lowNTCF	CC, CO, A, S, V	Gap-filling scenario reaching radiative forcing \sim7.0 Wm$^{-2}$ in 2100 with low near-term climate forcers (using the SSP3 socioeconomic storyline).	ESDOC	2
esm-ssp370-lowNTCF	EC, CO, A, S, V	As above except CO2 emissions driven.	ESDOC	3
esm-ssp370-lowNTCF-allGHG	EC, EO, A, S, V	As above except all GHG emissions driven.	ESDOC	3
ssp370-lowNTCF-gidden	CC, CO, A, S, V	Comparison scenario, follows the ssp370-lowNTCF quantification presented in Gidden et al. (2019).	RCMIP specific	3
ID	Drivers	Summary	Further information	Tier
-------------------------	---------------	---	---------------------	------
esm-ssp370-lowNTCF-gidden	EC, CO, A, S, V	As above except CO2 emissions driven.	RCMIP specific	3
esm-ssp370-lowNTCF-gidden-allGHG	EC, CO, A, S, V	As above except all GHG emissions driven.	RCMIP specific	3
ssp434	CC, CO, A, S, V	Gap-filling scenario reaching radiative forcing $\sim 3.4 \text{ W/m}^{-2}$ in 2100 with low near-term climate forcers (using the SSP4 socioeconomic storyline).	ESDOC	2
esm-ssp434	EC, CO, A, S, V	As above except CO2 emissions driven.	ESDOC	3
esm-ssp434-allGHG	EC, CO, A, S, V	As above except all GHG emissions driven.	ESDOC	3
ssp460	CC, CO, A, S, V	Update of RCP6.0 based on the SSP4 socioeconomic storyline.	ESDOC	2
esm-ssp460	EC, CO, A, S, V	As above except CO2 emissions driven.	ESDOC	3
esm-ssp460-allGHG	EC, CO, A, S, V	As above except all GHG emissions driven.	ESDOC	3
ssp534-over	CC, CO, A, S, V	Overshoot scenario reaching radiative forcing $\sim 3.4 \text{ W/m}^{-2}$ in 2100 having followed the ssp585 pathway until 2030 (using the SSP5 socioeconomic storyline).	ESDOC	2
esm-ssp534-over	EC, CO, A, S, V	As above except CO2 emissions driven.	ESDOC	3
esm-ssp534-over-allGHG	EC, CO, A, S, V	As above except all GHG emissions driven.	ESDOC	3
ssp585	CC, CO, A, S, V	Update of RCP8.5 based on the SSP5 socioeconomic storyline.	ESDOC	1
esm-ssp585	EC, CO, A, S, V	As above except CO2 emissions driven.	ESDOC	1
Table S3. Continued.

ID	Drivers	Summary	Further information	Tier	
esm-ssp585-allGHG	EC, EO, A, S, V	As above except all GHG emissions driven.	ESDOC	2	
rcp26	CC, CO, A, S, V	RCP2.6 (from CMIP5).	http://www.pik-potsdam.de/~mmalte/rcps/	3	
esm-rcp26	EC, CO, A, S, V	As above except CO2 emissions driven.	http://www.pik-potsdam.de/~mmalte/rcps/	3	
esm-rcp26-allGHG	EC, EO, A, S, V	As above except all GHG emissions driven.	http://www.pik-potsdam.de/~mmalte/rcps/	3	
rcp45	CC, CO, A, S, V	RCP4.5 (from CMIP5).	http://www.pik-potsdam.de/~mmalte/rcps/	3	
esm-rcp45	EC, CO, A, S, V	As above except CO2 emissions driven.	http://www.pik-potsdam.de/~mmalte/rcps/	3	
esm-rcp45-allGHG	EC, EO, A, S, V	As above except all GHG emissions driven.	http://www.pik-potsdam.de/~mmalte/rcps/	3	
rcp60	CC, CO, A, S, V	RCP6.0 (from CMIP5).	http://www.pik-potsdam.de/~mmalte/rcps/	3	
esm-rcp60	EC, CO, A, S, V	As above except CO2 emissions driven.	http://www.pik-potsdam.de/~mmalte/rcps/	3	
esm-rcp60-allGHG	EC, EO, A, S, V	As above except all GHG emissions driven.	http://www.pik-potsdam.de/~mmalte/rcps/	3	
rcp85	CC, CO, A, S, V	RCP8.5 (from CMIP5).	http://www.pik-potsdam.de/~mmalte/rcps/	3	
esm-rcp85	EC, CO, A, S, V	As above except CO2 emissions driven.	http://www.pik-potsdam.de/~mmalte/rcps/	3	
esm-rcp85-allGHG	EC, EO, A, S, V	As above except all GHG emissions driven.	http://www.pik-potsdam.de/~mmalte/rcps/	3	
Category	Variable	Unit	Definition	Tier	
---------------------------	---	------	--	------	
Atmospheric Concentrations	Atmospheric Concentrations	CH4	ppb	1	
	Concentrations	CO2	ppm	1	
	Concentrations	F-Gases	ppm	3	
	Concentrations	F-Gases	HFC125	ppt	2
	Concentrations	F-Gases	HFC134a	ppt	2
	Concentrations	F-Gases	HFC143a	ppt	2
	Concentrations	F-Gases	HFC152a	ppt	2
	Concentrations	F-Gases	HFC227ea	ppt	2
	Concentrations	F-Gases	HFC23	ppt	2
	Concentrations	F-Gases	HFC236fa	ppt	2
Category	Variable	Unit	Definition	Tier	
-----------------------	------------------------------	------	--	------	
Atmospheric Concentrations	Atmospheric Concentrations	ppt	atmospheric concentrations of HFC245fa	2	
Atmospheric Concentrations	Atmospheric Concentrations	ppt	atmospheric concentrations of HFC32	2	
Atmospheric Concentrations	Atmospheric Concentrations	ppt	atmospheric concentrations of HFC365mfc	2	
Atmospheric Concentrations	Atmospheric Concentrations	ppt	atmospheric concentrations of HFC43-10mee	2	
Atmospheric Concentrations	Atmospheric Concentrations	ppt	atmospheric concentrations of nitrogen trifluoride (NF₃)	2	
Atmospheric Concentrations	Atmospheric Concentrations	ppt	equivalent species atmospheric concentrations of perfluorocarbons (PFCs, as defined by Table 8.A.1 of AR5), provided as aggregate CO₂-equivalents	3	
Atmospheric Concentrations	Atmospheric Concentrations	ppt	atmospheric concentrations of C₂F₆	2	
Atmospheric Concentrations	Atmospheric Concentrations	ppt	atmospheric concentrations of C₃F₈	2	
Atmospheric Concentrations	Atmospheric Concentrations	ppt	atmospheric concentrations of C₄F₁₀	2	
Atmospheric Concentrations	Atmospheric Concentrations	ppt	atmospheric concentrations of C₅F₁₂	2	
Atmospheric Concentrations	Atmospheric Concentrations	ppt	atmospheric concentrations of C₆F₁₄	2	
Category	Variable	Unit	Definition	Tier	
--------------------------	---------------------------	-------	--	------	
Atmospheric Concentrations	Atmospheric Concentrations	ppt	atmospheric concentrations of C₇F₁₆	2	
Atmospheric Concentrations	Atmospheric Concentrations	ppt	atmospheric concentrations of C₈F₁₈	2	
Atmospheric Concentrations	Atmospheric Concentrations	ppt	atmospheric concentrations of c-C₄F₈	2	
Atmospheric Concentrations	Atmospheric Concentrations	ppt	atmospheric concentrations of CF₄	2	
Atmospheric Concentrations	Atmospheric Concentrations	ppt	atmospheric concentrations of sulfur hexafluoride (SF₆)	2	
Atmospheric Concentrations	Atmospheric Concentrations	ppt	atmospheric concentrations of sulfuryl fluoride (SO₂F₂)	2	
Atmospheric Concentrations	Atmospheric Concentrations	ppm	equivalent species atmospheric concentrations of Montreal gases, expressed as CO₂ equivalent	3	
Atmospheric Concentrations	Atmospheric Concentrations	ppt	atmospheric concentrations of CCl₄	2	
Atmospheric Concentrations	Atmospheric Concentrations	ppm	atmospheric concentrations of CFC gases, expressed as CO₂ equivalent	3	
Atmospheric Concentrations	Atmospheric Concentrations	ppt	atmospheric concentrations of CFC11	2	
Atmospheric Concentrations	Atmospheric Concentrations	ppt	atmospheric concentrations of CFC113	2	
Category	Variable	Unit	Definition	Tier	
------------------------	---	------	--	------	
Atmospheric Concentrations	Atmospheric Concentrations	ppt	atmospheric concentrations of CFC114	2	
Gases	CFC1	CFC114			
Atmospheric Concentrations	Atmospheric Concentrations	ppt	atmospheric concentrations of CFC115	2	
Gases	CFC1	CFC115			
Atmospheric Concentrations	Atmospheric Concentrations	ppt	atmospheric concentrations of CFC12	2	
Gases	CFC1	CFC12			
Atmospheric Concentrations	Atmospheric Concentrations	ppt	atmospheric concentrations of CH$_2$Cl$_2$	2	
Gases	CH2Cl2				
Atmospheric Concentrations	Atmospheric Concentrations	ppt	atmospheric concentrations of CH$_3$Br	2	
Gases	CH3Br				
Atmospheric Concentrations	Atmospheric Concentrations	ppt	atmospheric concentrations of CH$_3$CCl$_3$	2	
Gases	CH3CCl3				
Atmospheric Concentrations	Atmospheric Concentrations	ppt	atmospheric concentrations of CH$_3$Cl	2	
Gases	CH3Cl				
Atmospheric Concentrations	Atmospheric Concentrations	ppt	atmospheric concentrations of CHCl$_3$	2	
Gases	CHCl3				
Atmospheric Concentrations	Atmospheric Concentrations	ppt	atmospheric concentrations of Halon-1202	2	
Gases	Halon1202				
Atmospheric Concentrations	Atmospheric Concentrations	ppt	atmospheric concentrations of Halon-1211	2	
Gases	Halon1211				
Category	Variable	Unit	Definition	Tier	
------------------------------	--	-------	---	------	
Atmospheric Concentrations	Atmospheric Concentrations	Montreal	atmospheric concentrations of Halon-1301	2	
	GasesHalon1301	ppt			
	Atmospheric Concentrations	Montreal	atmospheric concentrations of Halon-2402	2	
	GasesHalon2402	ppt			
	Atmospheric Concentrations	Montreal	atmospheric concentrations of HCFC141b	2	
	GasesHCFC141b	ppt			
	Atmospheric Concentrations	Montreal	atmospheric concentrations of HCFC22	2	
	GasesHCFC142b	ppt			
	Atmospheric Concentrations	Montreal	atmospheric concentrations of HCFC22	2	
	GasesHCFC22	ppt			
	Atmospheric ConcentrationsN2O	ppb	atmospheric concentrations of N2O	2	
Carbon Cycle	Net Land to Atmosphere FluxCH4	MtCH4yr⁻¹	net flux of CH4 from the land to the atmosphere (not including AFOLU and other anthropogenic emissions). A positive value indicates release of CH4 from the land, a negative value indicates a net land uptake.	2	
Carbon Cycle	Net Land to Atmosphere FluxCH4	Earth System Feedbacks	MtCH4yr⁻¹	net flux of CH4 from the land to the atmosphere (not including AFOLU and other anthropogenic emissions) due to Earth System Feedbacks. A positive value indicates release of CH4 from the land, a negative value indicates a net land uptake.	2
Carbon Cycle	Net Land to Atmosphere FluxCH4	Earth System Feedbacks	MtCH4yr⁻¹	net flux of CH4 from the land to the atmosphere (not including AFOLU and other anthropogenic emissions) due to non-permafrost feedbacks. A positive value indicates release of CH4 from the land, a negative value indicates a net land uptake. Please specify in a comment on the comments sheet, which feedbacks are included here.	2
Table S4. Continued.

Category	Variable	Unit	Definition	Tier	
Carbon Cycle	Net Land to Atmosphere	MtCH$_4$yr$^{-1}$	net flux of CH$_4$ from the land to the atmosphere (not including AFOLU and other anthropogenic emissions) due to the permafrost feedback. A positive value indicates release of CH$_4$ from the land, a negative value indicates a net land uptake.	2	
	Flux	CH4	Earth System Feedbacks	Permafrost	
Carbon Cycle	Net Land to Atmosphere	MtCO$_2$yr$^{-1}$	net flux of CO$_2$ from the land to the atmosphere (not including AFOLU and other anthropogenic emissions). A positive value indicates release of CO$_2$ from the land, a negative value indicates a net land uptake.	2	
	Flux	CO2	Earth System Feedbacks		
Carbon Cycle	Net Land to Atmosphere	MtCO$_2$yr$^{-1}$	net flux of CO$_2$ from the land to the atmosphere (not including AFOLU and other anthropogenic emissions) due to Earth System Feedbacks. A positive value indicates release of CO$_2$ from the land, a negative value indicates a net land uptake.	2	
	Flux	CO2	Earth System Feedbacks		
Carbon Cycle	Net Land to Atmosphere	MtCO$_2$yr$^{-1}$	net flux of CO$_2$ from the land to the atmosphere (not including AFOLU and other anthropogenic emissions) due to non-permafrost feedbacks. A positive value indicates release of CO$_2$ from the land, a negative value indicates a net land uptake.	2	
	Flux	CO2	Earth System Feedbacks	Other	
Category	Variable	Unit	Definition	Tier	
----------------	---	------------------	--	------	
Carbon Cycle	Net Land to Atmosphere Flux	CO2	Earth System Feedbacks/Permafrost	net flux of CO\(_2\) from the land to the atmosphere (not including AFOLU and other anthropogenic emissions) due to the permafrost feedback. A positive value indicates release of CO\(_2\) from the land, a negative value indicates a net land uptake.	2
Carbon Cycle	Net Ocean to Atmosphere Flux	CH4	MtCH\(_4\)yr\(^{-1}\)	net flux of CH\(_4\) from the ocean to the atmosphere (not including anthropogenic emissions). A positive value indicates release of CH\(_4\) from the ocean, a negative value indicates a net ocean uptake.	2
Carbon Cycle	Net Ocean to Atmosphere Flux	CO2	MtCO\(_2\)yr\(^{-1}\)	cumulative net flux of CO\(_2\) from the ocean to the atmosphere (not including anthropogenic emissions). A positive value indicates release of CO\(_2\) from the ocean, a negative value indicates a net ocean uptake.	2
Carbon Cycle	Cumulative Net Land to Atmosphere Flux	CH4	MtCH\(_4\)	cumulative net flux of CH\(_4\) from the land to the atmosphere (not including AFOLU and other anthropogenic emissions). A positive value indicates release of CH\(_4\) from the land, a negative value indicates a net land uptake.	2
Carbon Cycle	Cumulative Net Land to Atmosphere Flux	CH4	Earth System Feedbacks	cumulative net flux of CH\(_4\) from the land to the atmosphere (not including AFOLU and other anthropogenic emissions) due to Earth System Feedbacks. A positive value indicates release of CH\(_4\) from the land, a negative value indicates a net land uptake.	2
Table S4. Continued.

Category	Variable	Unit	Definition	Tier			
Carbon Cycle	Cumulative Net Land to Atmosphere Flux	MtCH₄	cumulative net flux of CH₄ from the land to the atmosphere (not including AFOLU and other anthropogenic emissions) due to non-permafrost feedbacks. A positive value indicates release of CH₄ from the land, a negative value indicates a net land uptake. Please specify in a comment on the comments sheet, which feedbacks are included here.	2			
Carbon Cycle	Cumulative Net Land to Atmosphere Flux	MtCH₄	cumulative net flux of CH₄ from the land to the atmosphere (not including AFOLU and other anthropogenic emissions) due to the permafrost feedback. A positive value indicates release of CH₄ from the land, a negative value indicates a net land uptake.	2			
Carbon Cycle	Cumulative Net Land to Atmosphere Flux	MtCO₂	cumulative net flux of CO₂ from the land to the atmosphere (not including AFOLU and other anthropogenic emissions). A positive value indicates release of CO₂ from the land, a negative value indicates a net land uptake.	2			
Carbon Cycle	Cumulative Net Land to Atmosphere Flux	MtCO₂	cumulative net flux of CO₂ from the land to the atmosphere (not including AFOLU and other anthropogenic emissions) due to Earth System Feedbacks. A positive value indicates release of CO₂ from the land, a negative value indicates a net land uptake.	2			
Category	Variable	Unit	Definition	Tier			
----------------	--	----------	---	------			
Carbon Cycle	Cumulative Net Land to Atmosphere Flux	CO2	Earth System Feedbacks	Other	MtCO₂	cumulative net flux of CO₂ from the land to the atmosphere (not including AFOLU and other anthropogenic emissions) due to non-permafrost feedbacks. A positive value indicates release of CO₂ from the land, a negative value indicates a net land uptake. Please specify in a comment on the comments sheet, which feedbacks are included here.	2
Carbon Cycle	Cumulative Net Land to Atmosphere Flux	CO2	Earth System Feedbacks	Permafrost	MtCO₂	cumulative net flux of CO₂ from the land to the atmosphere (not including AFOLU and other anthropogenic emissions) due to the permafrost feedback. A positive value indicates release of CO₂ from the land, a negative value indicates a net land uptake.	2
Carbon Cycle	Cumulative Net Ocean to Atmosphere Flux	CH₄	MtCH₄	cumulative net flux of CH₄ from the ocean to the atmosphere (not including anthropogenic emissions). A positive value indicates release of CH₄ from the ocean, a negative value indicates a net ocean uptake.	2		
Carbon Cycle	Cumulative Net Ocean to Atmosphere Flux	CO2	MtCO₂	cumulative net flux of CO₂ from the ocean to the atmosphere (not including anthropogenic emissions). A positive value indicates release of CO₂ from the ocean, a negative value indicates a net ocean uptake.	2		
Table S4. Continued.

Category	Variable	Unit	Definition	Tier		
Carbon Cycle	Carbon Pool	Atmosphere	MtCO₂	total amount of CO₂ in the atmospheric carbon pool	2	
Carbon Cycle	Carbon Pool	Soil	MtCO₂	total amount of CO₂ in the soil carbon pool	2	
Carbon Cycle	Carbon Pool	Detritus	MtCO₂	total amount of CO₂ in the detritus carbon pool	2	
Carbon Cycle	Carbon Pool	Plant	MtCO₂	total amount of CO₂ in the plant carbon pool	2	
Carbon Cycle	Net Primary Productivity		MtCO₂ yr⁻¹	global total net primary productivity	2	
CCS	Carbon Sequestration		MtCO₂ yr⁻¹	total carbon dioxide emissions captured and stored	1	
CCS	Carbon Sequestration	CCS	MtCO₂ yr⁻¹	total carbon dioxide emissions captured and stored in geological deposits (e.g. in depleted oil and gas fields, unmined coal seams, saline aquifers) and the deep ocean, stored amounts should be reported as positive numbers	2	
CCS	Carbon Sequestration	CCS	Biomass	MtCO₂ yr⁻¹	total carbon dioxide emissions captured from bioenergy use and stored in geological deposits (e.g. in depleted oil and gas fields, unmined coal seams, saline aquifers) and the deep ocean, stored amounts should be reported as positive numbers	2
CCS	Carbon Sequestration	CCS	Fossil	MtCO₂ yr⁻¹	total carbon dioxide emissions captured from fossil fuel use and stored in geological deposits (e.g. in depleted oil and gas fields, unmined coal seams, saline aquifers) and the deep ocean, stored amounts should be reported as positive numbers	2
Category	Variable	Unit	Definition	Tier		
------------	---	------------------	--	------		
CCS	Carbon Sequestration	Direct Air Capture	MtCO$_2$yr$^{-1}$	total carbon dioxide sequestered through direct air capture	2	
CCS	Carbon Sequestration	Enhanced Weathering	MtCO$_2$yr$^{-1}$	total carbon dioxide sequestered through enhanced weathering	2	
CCS	Carbon Sequestration	Feedstocks	MtCO$_2$yr$^{-1}$	total carbon dioxide sequestered in feedstocks (e.g., lubricants, asphalt, plastics)	2	
CCS	Carbon Sequestration	Land Use	MtCO$_2$yr$^{-1}$	total carbon dioxide sequestered through land-based sinks (e.g., afforestation, soil carbon enhancement, biochar)	2	
CCS	Carbon Sequestration	Land Use	Afforestation	MtCO$_2$yr$^{-1}$	total carbon dioxide sequestered through afforestation	2
CCS	Carbon Sequestration	Land Use	Biochar	MtCO$_2$yr$^{-1}$	total carbon dioxide sequestered through biochar	2
CCS	Carbon Sequestration	Land Use	Other	MtCO$_2$yr$^{-1}$	total carbon dioxide sequestered through other land-based mitigation techniques	2
CCS	Carbon Sequestration	Land Use	Soil Carbon Management	MtCO$_2$yr$^{-1}$	total carbon dioxide sequestered through soil carbon management techniques	2
CCS	Carbon Sequestration	Other	MtCO$_2$yr$^{-1}$	total carbon dioxide sequestered through other techniques (please provide a definition of other sources in this category in the ‘comments’ tab)	2	
Climate	Airborne Fraction	CO2	Dimensionless	fraction of (cumulative) emitted CO$_2$ which is still in the atmosphere	2	
Climate	Effective Climate Sensitivity	K		effective climate sensitivity over time, here defined as ECS$_\text{eff}(t)$ = Delta T(t) * RF2x / (RF(t) - dH/dt) where ECS$_\text{eff}$ is effective climate sensitivity, Delta T(t) is Surface Air Temperature Change, RF2x is radiative forcing due to a doubling of atmospheric CO$_2$ concentrations, RF(t) is radiative forcing and dH/dt is the energy imbalance at the top of the atmosphere (likely equal to ocean heat uptake in most of our reduced complexity models)	2	
Category	Variable	Unit	Definition	Tier		
-------------	-------------------------------	--------------	--	------		
Climate	Effective Climate Feedback	$\text{Wm}^{-2}\text{K}^{-1}$	effective climate feedback over time, here defined as $\lambda_{\text{eff}}(t) = (\text{RF}(t) - \frac{dH}{dt}) / \Delta T(t)$ where λ_{eff} is effective climate feedback, $\Delta T(t)$ is Surface Air Temperature Change, RF(t) is radiative forcing and $\frac{dH}{dt}$ is the energy imbalance at the top of the atmosphere (likely equal to ocean heat uptake in most of our reduced complexity models)	2		
Climate	Heat Uptake	ZJyr^{-1}	total Heat Uptake of the Earth System (ZJ is zetta joules i.e. 10^{21}J), equivalent to the the energy imbalance at the top of the atmosphere.	1		
Climate	Heat UptakeIce	ZJyr^{-1}	ice Heat Uptake (ZJ is zetta joules i.e. 10^{21}J)	2		
Climate	Heat UptakeLand	ZJyr^{-1}	land Heat Uptake (ZJ is zetta joules i.e. 10^{21}J)	2		
Climate	Heat UptakeOcean	ZJyr^{-1}	ocean Heat Uptake through surface layer of the ocean (ZJ is zetta joules i.e. 10^{21}J)	1		
Climate	Heat UptakeOther	ZJyr^{-1}	other Heat Uptake (ZJ is zetta joules i.e. 10^{21}J). Please specify what "other" is in the Comments sheet.	2		
Climate	Heat ContentOcean	ZJ	total ocean heat content	2		
Climate	Heat ContentOcean0-700m	ZJ	ocean heat content between 0 and 700m	2		
Climate	Heat ContentOcean700-2000m	ZJ	ocean heat content between 700 and 2000m	2		
Category	Variable	Unit	Definition	Tier		
--------------------	---	-------------------	--	------		
Climate	Instantaneous TCRE	K/MtCO$_2$	warming per unit cumulative CO$_2$ (this should simply be your ‘Surface Air Temperature Change’ divided by ‘Cumulative Emissions	CO$_2$’)	2	
Climate	Surface Air Ocean Blended Temperature Change	K	change in blended surface air/ocean temperature (i.e. quantity which is directly comparable with observational datasets e.g. HadCRUT4 or best proxy thereof). Please note reference period in comment sheet.	2		
Climate	Surface Air Temperature Change	K	change in surface air temperature (i.e. 2m air temperature or best proxy thereof). Please note reference period in comment sheet.	1		
Climate	Surface Ocean Temperature Change	K	change in surface layer ocean temperature. Please note reference period in comment sheet.	1		
Cumulative Emissions	Cumulative Emissions	MtCO$_2$	cumulative carbon dioxide emissions	1		
Cumulative Emissions	Cumulative Emissions	MtCO$_2$	cumulative carbon dioxide emissions from agriculture, forestry and other land use (IPCC category 3), excluding any fossil-fuel based emissions in the Agricultural sector (hence not identical to WG3 AFOLU)	2		
Cumulative Emissions	Cumulative Emissions	MtCO$_2$	cumulative carbon dioxide emissions from energy use on supply and demand side (IPCC category 1A, 1B), industrial processes (IPCC category 2), waste (IPCC category 4) and other (IPCC category 5)	2		
Cumulative Emissions	Cumulative Emissions	MtCO$_2$	cumulative carbon dioxide emissions from other sources (please provide a definition of other sources in this category in the ‘comments’ tab)	2		
Category	Variable	Unit	Definition	Tier		
-------------------	---	---------------	--	------		
Effective Radiative Forcing	Effective Radiative Forcing	Wm$^{-2}$	effective radiative forcing from all anthropogenic and natural sources (after stratospheric temperature adjustments and rapid adjustments)	1		
Effective Radiative Forcing	Effective Radiative Forcing	Wm$^{-2}$	effective radiative forcing from all anthropogenic sources (after stratospheric temperature adjustments and rapid adjustments)	1		
Effective Radiative Forcing	Effective Radiative Forcing	Wm$^{-2}$	effective radiative forcing from aerosols (after stratospheric temperature adjustments and rapid adjustments)	1		
Effective Radiative Forcing	Effective Radiative Forcing	Wm$^{-2}$	effective radiative forcing from indirect effects of aerosols on clouds (after stratospheric temperature adjustments and rapid adjustments)	2		
Effective Radiative Forcing	Effective Radiative Forcing	Wm$^{-2}$	effective radiative forcing from aerosol-radiative effects (after stratospheric temperature adjustments and rapid adjustments), note that the breakdown of this variable can come in multiple different forms	2		
Effective Radiative Forcing	Effective Radiative Forcing	Wm$^{-2}$	effective radiative forcing from aerosol-radiative effects from black carbon emissions (after stratospheric temperature adjustments and rapid adjustments)	2		
Effective Radiative Forcing	Effective Radiative Forcing	Wm$^{-2}$	effective radiative forcing from aerosol-radiative effects from black carbon biomass burning emissions (after stratospheric temperature adjustments and rapid adjustments)	2		
Table S4. Continued.

Category	Variable	Unit	Definition	Tier	
Effective Radiative Forcing	Effective Radiative Forcing	Wm\(^{-2}\)	effective radiative forcing from aerosol-radiative effects from black carbon fossil and industrial emissions (after stratospheric temperature adjustments and rapid adjustments)	2	
	Forcing\|Anthropogenic\|Aerosols\|Aerosols-radiation Interactions\|BC and OC	BC and Fossil and Industrial	Wm\(^{-2}\)	effective radiative forcing from aerosol-radiative effects from organic carbon emissions (after stratospheric temperature adjustments and rapid adjustments)	2
Effective Radiative Forcing	Effective Radiative Forcing	Wm\(^{-2}\)	effective radiative forcing from aerosol-radiative effects from organic carbon biomass burning emissions (after stratospheric temperature adjustments and rapid adjustments)	2	
	Forcing\|Anthropogenic\|Aerosols\|Aerosols-radiation Interactions\|BC and OC	OC \| OC \| Biomass Burning	Wm\(^{-2}\)	effective radiative forcing from aerosol-radiative effects from organic carbon biomass burning emissions (after stratospheric temperature adjustments and rapid adjustments)	2
Effective Radiative Forcing	Effective Radiative Forcing	Wm\(^{-2}\)	effective radiative forcing from aerosol-radiative effects from organic carbon biomass burning emissions (after stratospheric temperature adjustments and rapid adjustments)	2	
	Forcing\|Anthropogenic\|Aerosols\|Aerosols-radiation Interactions\|BC and OC	OC \| OC \| Biomass Burning	Wm\(^{-2}\)	effective radiative forcing from aerosol-radiative effects from organic carbon biomass burning emissions (after stratospheric temperature adjustments and rapid adjustments)	2
Category	Variable	Unit	Definition	Tier	
-----------------------	------------------------------------	--------	---	------	
Effective Radiative Forcing	Effective Radiative forcing	Wm$^{-2}$	effective radiative forcing from aerosol-radiative effects from black and organic carbon biomass burning emissions (after stratospheric temperature adjustments and rapid adjustments)	2	
Effective Radiative Forcing	Effective Radiative forcing	Wm$^{-2}$	effective radiative forcing from aerosol-radiative effects from black carbon biomass burning emissions (after stratospheric temperature adjustments and rapid adjustments)	2	
Effective Radiative Forcing	Effective Radiative forcing	Wm$^{-2}$	effective radiative forcing from aerosol-radiative effects from organic carbon biomass burning emissions (after stratospheric temperature adjustments and rapid adjustments)	2	
Effective Radiative Forcing	Effective Radiative forcing	Wm$^{-2}$	effective radiative forcing from aerosol-radiative effects from ammonia biomass burning emissions (after stratospheric temperature adjustments and rapid adjustments)	2	
Effective Radiative Forcing	Effective Radiative forcing	Wm$^{-2}$	effective radiative forcing from aerosol-radiative effects from nitrate precursor biomass burning emissions (after stratospheric temperature adjustments and rapid adjustments)	2	
Category	Variable	Unit	Definition	Tier	
-------------------	------------------------------------	-----------	---	------	
Effective Radiative Forcing	Effective Radiative Forcing	Wm$^{-2}$	effective radiative forcing from aerosol-radiative effects from sulfate precursor biomass burning emissions (after stratospheric temperature adjustments and rapid adjustments)	2	
Effective Radiative Forcing	Effective Radiative Forcing	Wm$^{-2}$	effective radiative forcing from aerosol-radiative effects from fossil and industrial emissions (after stratospheric temperature adjustments and rapid adjustments)	2	
Effective Radiative Forcing	Effective Radiative Forcing	Wm$^{-2}$	effective radiative forcing from aerosol-radiative effects from black and organic carbon fossil and industrial emissions (after stratospheric temperature adjustments and rapid adjustments)	2	
Effective Radiative Forcing	Effective Radiative Forcing	Wm$^{-2}$	effective radiative forcing from aerosol-radiative effects from black carbon fossil and industrial emissions (after stratospheric temperature adjustments and rapid adjustments)	2	
Effective Radiative Forcing	Effective Radiative Forcing	Wm$^{-2}$	effective radiative forcing from aerosol-radiative effects from organic carbon fossil and industrial emissions (after stratospheric temperature adjustments and rapid adjustments)	2	
Category	Variable	Unit	Definition	Tier	
-------------------	---	-----------	---	------	
Effective Radiative Forcing	Effective Radiative Forcing	Wm\(^{-2}\)	effective radiative forcing from aerosol-radiative effects from ammonia fossil and industrial emissions (after stratospheric temperature adjustments and rapid adjustments)	2	
Effective Radiative Forcing	Effective Radiative Forcing	Wm\(^{-2}\)	effective radiative forcing from aerosol-radiative effects from nitrate precursor fossil and industrial emissions (after stratospheric temperature adjustments and rapid adjustments)	2	
Effective Radiative Forcing	Effective Radiative Forcing	Wm\(^{-2}\)	effective radiative forcing from aerosol-radiative effects from sulfate precursor fossil and industrial emissions (after stratospheric temperature adjustments and rapid adjustments)	2	
Effective Radiative Forcing	Effective Radiative Forcing	Wm\(^{-2}\)	effective radiative forcing from aerosol-radiative effects from mineral dust emissions (after stratospheric temperature adjustments and rapid adjustments)	2	
Effective Radiative Forcing	Effective Radiative Forcing	Wm\(^{-2}\)	effective radiative forcing from aerosol-radiative effects from ammonia emissions (after stratospheric temperature adjustments and rapid adjustments)	2	
Category	Variable	Unit	Definition	Tier	
-------------------	-------------------------------	------------	---	------	
Effective Radiative Forcing	Effective	Radiative	Wm$^{-2}$	effective radiative forcing from aerosol-radiative effects from ammonia biomass burning emissions (after stratospheric temperature adjustments and rapid adjustments)	2
Effective Radiative Forcing	Effective	Radiative	Wm$^{-2}$	effective radiative forcing from aerosol-radiative effects from ammonia fossil and industrial emissions (after stratospheric temperature adjustments and rapid adjustments)	2
Effective Radiative Forcing	Effective	Radiative	Wm$^{-2}$	effective radiative forcing from aerosol-radiative effects from nitrate precursor emissions (after stratospheric temperature adjustments and rapid adjustments)	2
Effective Radiative Forcing	Effective	Radiative	Wm$^{-2}$	effective radiative forcing from aerosol-radiative effects from nitrate precursor biomass burning emissions (after stratospheric temperature adjustments and rapid adjustments)	2
Effective Radiative Forcing	Effective	Radiative	Wm$^{-2}$	effective radiative forcing from aerosol-radiative effects from nitrate fossil and industrial emissions (after stratospheric temperature adjustments and rapid adjustments)	2
Category	Variable	Unit	Definition	Tier	
--------------------------	--	---------------	--	------	
Effective Radiative Forcing	Effective Forcing\Anthropogenic\Aerosols\Aerosols-radiation Interactions\Other	Wm^{-2}	effective radiative forcing from aerosol-radiative effects not covered in the other categories (after stratospheric temperature adjustments and rapid adjustments) (please specify in comments)	2	
Effective Radiative Forcing	Effective Forcing\Anthropogenic\Aerosols\Aerosols-radiation Interactions\Sulfate	Wm^{-2}	effective radiative forcing from aerosol-radiative effects from sulfate precursor emissions (after stratospheric temperature adjustments and rapid adjustments)	2	
Effective Radiative Forcing	Effective Forcing\Anthropogenic\Aerosols\Aerosols-radiation Interactions\Sulfate\Biomass Burning	Wm^{-2}	effective radiative forcing from aerosol-radiative effects from sulfate precursor biomass burning emissions (after stratospheric temperature adjustments and rapid adjustments)	2	
Effective Radiative Forcing	Effective Forcing\Anthropogenic\Aerosols\Aerosols-radiation Interactions\Sulfate\Fossil and Industrial	Wm^{-2}	effective radiative forcing from aerosol-radiative effects from sulfate precursor fossil and industrial emissions (after stratospheric temperature adjustments and rapid adjustments)	2	
Effective Radiative Forcing	Effective Forcing\Anthropogenic\Albedo Change	Wm^{-2}	effective radiative forcing from albedo change (after stratospheric temperature adjustments and rapid adjustments)	2	
Category	Variable	Unit	Definition	Tier	
----------	----------	------	------------	------	
Effective Radiative Forcing	Effective Radiative Forcing	Wm⁻²	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments) of CH₄	2	
Effective Radiative Forcing	Effective Radiative Forcing	Wm⁻²	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments) of CO₂	1	
Effective Radiative Forcing	Effective Radiative Forcing	Wm⁻²	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments) of F-gases	2	
Effective Radiative Forcing	Effective Radiative Forcing	Wm⁻²	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments) of hydrofluorocarbons (HFCs, as defined by Table 8.A.1 of AR5) not controlled under the Montreal protocol	2	
Effective Radiative Forcing	Effective Radiative Forcing	Wm⁻²	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments) of HFC125	2	
Effective Radiative Forcing	Effective Radiative Forcing	Wm⁻²	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments) of HFC134a	2	
Effective Radiative Forcing	Effective Radiative Forcing	Wm⁻²	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments) of HFC143a	2	
Effective Radiative Forcing	Effective Radiative Forcing	Wm⁻²	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments) of HFC152a	2	
Effective Radiative Forcing	Effective Radiative Forcing	Wm⁻²	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments) of HFC227ea	2	
Table S4. Continued.

Category	Variable	Unit	Definition	Tier	
Effective Radiative Forcing	Effective Forcing	Radiative	Wm$^{-2}$	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments) of HFC23	2
Effective Radiative Forcing	Effective Forcing	Radiative	Wm$^{-2}$	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments) of HFC236fa	2
Effective Radiative Forcing	Effective Forcing	Radiative	Wm$^{-2}$	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments) of HFC245fa	2
Effective Radiative Forcing	Effective Forcing	Radiative	Wm$^{-2}$	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments) of HFC32	2
Effective Radiative Forcing	Effective Forcing	Radiative	Wm$^{-2}$	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments) of HFC365mfc	2
Effective Radiative Forcing	Effective Forcing	Radiative	Wm$^{-2}$	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments) of HFC4310mee	2
Effective Radiative Forcing	Effective Forcing	Radiative	Wm$^{-2}$	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments) of nitrogen trifluoride (NF$_3$)	2
Effective Radiative Forcing	Effective Forcing	Radiative	Wm$^{-2}$	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments) of perfluorocarbons (PFCs, as defined by Table 8.A.1 of AR5)	2
Table S4. Continued.

Category	Variable	Unit	Definition	Tier		
Effective Radiative	Effective	Wm$^{-2}$	effective radiative forcing (after stratospheric temperature adjustments	2		
Forcing	Forcing	Anthropogenic	Gases	PFC	C2F6	
	Effective	Wm$^{-2}$	of C$_2$F$_6$			
	Forcing	Anthropogenic	Gases	PFC	C3F8	
	Effective	Wm$^{-2}$	effective radiative forcing (after stratospheric temperature adjustments	2		
	Forcing	Anthropogenic	Gases	PFC	C4F10	
	Effective	Wm$^{-2}$	of C$_4$F$_{10}$			
	Forcing	Anthropogenic	Gases	PFC	C5F12	
	Effective	Wm$^{-2}$	effective radiative forcing (after stratospheric temperature adjustments	2		
	Forcing	Anthropogenic	Gases	PFC	C6F14	
	Effective	Wm$^{-2}$	of C$_6$F$_{14}$			
	Forcing	Anthropogenic	Gases	PFC	C7F16	
	Effective	Wm$^{-2}$	effective radiative forcing (after stratospheric temperature adjustments	2		
	Forcing	Anthropogenic	Gases	PFC	C8F18	
	Effective	Wm$^{-2}$	of C$_7$F$_{16}$			
	Forcing	Anthropogenic	Gases	PFC	cC4F8	
	Effective	Wm$^{-2}$	effective radiative forcing (after stratospheric temperature adjustments	2		
	Forcing	Anthropogenic	Gases	PFC	C4F8	
Table S4. Continued.

Category	Variable	Unit	Definition	Tier
Effective Radiative Forcing	Effective Radiative Forcing	Wm$^{-2}$	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments)	2
Effective Radiative Forcing	Effective Radiative Forcing	Wm$^{-2}$	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments)	2
Effective Radiative Forcing	Effective Radiative Forcing	Wm$^{-2}$	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments)	2
Effective Radiative Forcing	Effective Radiative Forcing	Wm$^{-2}$	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments)	2
Effective Radiative Forcing	Effective Radiative Forcing	Wm$^{-2}$	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments)	2
Effective Radiative Forcing	Effective Radiative Forcing	Wm$^{-2}$	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments)	2
Effective Radiative Forcing	Effective Radiative Forcing	Wm$^{-2}$	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments)	2
Effective Radiative Forcing	Effective Radiative Forcing	Wm$^{-2}$	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments)	2
Effective Radiative Forcing	Effective Radiative Forcing	Wm$^{-2}$	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments)	2

70
Table S4. Continued.

Category	Variable	Unit	Definition	Tier
Effective Radiative Forcing	Effective Radiative Forcing	Wm$^{-2}$	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments) of CFC114	2
Anthropogenic Montreal Gases	CFC			
CFC114				
Effective Radiative Forcing	Effective Radiative Forcing	Wm$^{-2}$	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments) of CFC115	2
Anthropogenic Montreal Gases	CFC			
CFC115				
Effective Radiative Forcing	Effective Radiative Forcing	Wm$^{-2}$	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments) of CFC12	2
Anthropogenic Montreal Gases	CFC			
CFC12				
Effective Radiative Forcing	Effective Radiative Forcing	Wm$^{-2}$	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments) of CH$_2$Cl$_2$	2
Anthropogenic Montreal Gases	CH$_2$Cl$_2$			
Effective Radiative Forcing	Effective Radiative Forcing	Wm$^{-2}$	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments) of CH$_3$Br	2
Anthropogenic Montreal Gases	CH$_3$Br			
Effective Radiative Forcing	Effective Radiative Forcing	Wm$^{-2}$	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments) of CH$_3$CCl$_3$	2
Anthropogenic Montreal Gases	CH$_3$CCl$_3$			
Effective Radiative Forcing	Effective Radiative Forcing	Wm$^{-2}$	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments) of CH$_3$Cl	2
Anthropogenic Montreal Gases	CH$_3$Cl			
Category	Variable	Unit	Definition	Tier
----------------------------------	---	-------	---	------
Effective Radiative Forcing	Effective Radiative Forcing	\(Wm^{-2}\)	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments) of CHCl₃	2
Effective Radiative Forcing	Effective Radiative Forcing	\(Wm^{-2}\)	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments) of Halon-1202	2
Effective Radiative Forcing	Effective Radiative Forcing	\(Wm^{-2}\)	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments) of Halon-1211	2
Effective Radiative Forcing	Effective Radiative Forcing	\(Wm^{-2}\)	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments) of Halon-1301	2
Effective Radiative Forcing	Effective Radiative Forcing	\(Wm^{-2}\)	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments) of Halon-2402	2
Effective Radiative Forcing	Effective Radiative Forcing	\(Wm^{-2}\)	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments) of HCFC141b	2
Effective Radiative Forcing	Effective Radiative Forcing	\(Wm^{-2}\)	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments) of HCFC22	2
Category	Variable	Unit	Definition	Tier
----------	----------	------	------------	-----
Effective Radiative Forcing	Effective Radiative Forcing	Wm$^{-2}$	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments) of HCFC22	2
Effective Radiative Forcing	Effective Radiative Forcing	Wm$^{-2}$	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments) of N$_2$O	2
Effective Radiative Forcing	Effective Radiative Forcing	Wm$^{-2}$	effective radiative forcing from factors not covered in other categories (after stratospheric temperature adjustments and rapid adjustments)	2
Effective Radiative Forcing	Effective Radiative Forcing	Wm$^{-2}$	effective radiative forcing from black carbon on snow (after stratospheric temperature adjustments and rapid adjustments)	2
Effective Radiative Forcing	Effective Radiative Forcing	Wm$^{-2}$	effective radiative forcing from contrails and contrail-induced cirrus (after stratospheric temperature adjustments and rapid adjustments)	2
Effective Radiative Forcing	Effective Radiative Forcing	Wm$^{-2}$	effective radiative forcing from methane oxidation of stratospheric H2O (after stratospheric temperature adjustments and rapid adjustments)	2
Effective Radiative Forcing	Effective Radiative Forcing	Wm$^{-2}$	effective radiative forcing from WMGHG not covered in other categories (after stratospheric temperature adjustments and rapid adjustments)	2
Effective Radiative Forcing	Effective Radiative Forcing	Wm$^{-2}$	effective radiative forcing from stratospheric ozone (after stratospheric temperature adjustments and rapid adjustments)	2
Table S4. Continued.

Category	Variable	Unit	Definition	Tier
Effective Radiative Forcing	Effective Radiative Forcing/Anthropogenic/Tropospheric Ozone	Wm\(^{-2}\)	effective radiative forcing from tropospheric ozone (after stratospheric temperature adjustments and rapid adjustments)	2
Effective Radiative Forcing	Effective Radiative Forcing/Natural	Wm\(^{-2}\)	effective radiative forcing from all natural drivers, i.e. solar and volcanic forcing (after stratospheric temperature adjustments and rapid adjustments)	2
Effective Radiative Forcing	Effective Radiative Forcing/Natural/Solar	Wm\(^{-2}\)	effective radiative forcing from variations in solar irradiance (after stratospheric temperature adjustments and rapid adjustments)	2
Effective Radiative Forcing	Effective Radiative Forcing/Natural/Volcanic	Wm\(^{-2}\)	effective radiative forcing due to volcanic eruptions (after stratospheric temperature adjustments and rapid adjustments)	2
Emissions	Emissions/BC	MtBC\(_{yr}^{-1}\)	total black carbon emissions	1
Emissions	Emissions/BC/MAGICC AFOLU	MtBC\(_{yr}^{-1}\)	black carbon emissions from agriculture, forestry and other land use (IPCC category 3), excluding any fossil-fuel based emissions in the Agricultural sector (hence not identical to WG3 AFOLU)	2
Emissions	Emissions/BC/MAGICC Fossil and Industrial	MtBC\(_{yr}^{-1}\)	black carbon emissions from energy use on supply and demand side (IPCC category 1A, 1B), industrial processes (IPCC category 2), waste (IPCC category 4) and other (IPCC category 5)	2
Emissions	Emissions/BC/Other	MtBC\(_{yr}^{-1}\)	black carbon emissions from other sources (please provide a definition of other sources in this category in the ‘comments’ tab)	2
Emissions	Emissions/CH4	MtCH\(_4\)\(_{yr}^{-1}\)	total methane emissions	1
Emissions	Emissions/CH4/MAGICC AFOLU	MtCH\(_4\)\(_{yr}^{-1}\)	methane emissions from agriculture, forestry and other land use (IPCC category 3), excluding any fossil-fuel based emissions in the Agricultural sector (hence not identical to WG3 AFOLU)	2
Table S4. Continued.

Category	Variable	Unit	Definition	Tier
Emissions	Emissions CH4	MtCH4yr⁻¹	methane emissions from energy use on supply and demand side (IPCC category 1A, 1B), industrial processes (IPCC category 2), waste (IPCC category 4) and other (IPCC category 5)	2
Emissions	Emissions CH4	MtCH4yr⁻¹	methane emissions from other sources (please provide a definition of other sources in this category in the ‘comments’ tab)	2
Emissions	Emissions CO	MtCOyr⁻¹	total carbon monoxide emissions	1
Emissions	Emissions CO	MtCOyr⁻¹	carbon monoxide emissions from agriculture, forestry and other land use (IPCC category 3), excluding any fossil-fuel based emissions in the Agricultural sector (hence not identical to WG3 AFOLU)	2
Emissions	Emissions CO	MtCOyr⁻¹	carbon monoxide emissions from energy use on supply and demand side (IPCC category 1A, 1B), industrial processes (IPCC category 2), waste (IPCC category 4) and other (IPCC category 5)	2
Emissions	Emissions CO	MtCOyr⁻¹	carbon monoxide emissions from other sources (please provide a definition of other sources in this category in the ‘comments’ tab)	2
Emissions	Emissions CO2	MtCO₂yr⁻¹	total carbon dioxide emissions	1
Emissions	Emissions CO2	MtCO₂yr⁻¹	carbon dioxide emissions from agriculture, forestry and other land use (IPCC category 3), excluding any fossil-fuel based emissions in the Agricultural sector (hence not identical to WG3 AFOLU)	2
Category	Variable	Unit	Definition	Tier
----------	----------	------	------------	------
Emissions	Emissions\|CO2\|MAGICC Fossil and Industrial	MtCO$_2$yr$^{-1}$	carbon dioxide emissions from energy use on supply and demand side (IPCC category 1A, 1B), industrial processes (IPCC category 2), waste (IPCC category 4) and other (IPCC category 5)	2
Emissions	Emissions\|CO2\|Other	MtCO$_2$yr$^{-1}$	carbon dioxide emissions from other sources (please provide a definition of other sources in this category in the ‘comments’ tab)	2
Emissions	Emissions\|F-Gases	MtCO$_2$yr$^{-1}$	total F-gas emissions, including sulfur hexafluoride (SF$_6$), nitrogen trifluoride (NF$_3$), sulfuryl fluoride (SO$_2$F$_2$), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs)	3
Emissions	Emissions\|F-Gases\|HFC	MtCO$_2$yr$^{-1}$	equivalent species total emissions of hydrofluorocarbons (HFCs and HCFCs), provided as aggregate CO$_2$-equivalents	3
Emissions	Emissions\|F-Gases\|HFC\|HFC125	ktHFC125yr$^{-1}$	total emissions of HFC125	2
Emissions	Emissions\|F-Gases\|HFC\|HFC134a	ktHFC134ayr$^{-1}$	total emissions of HFC134a	2
Emissions	Emissions\|F-Gases\|HFC\|HFC143a	ktHFC143ayr$^{-1}$	total emissions of HFC143a	2
Emissions	Emissions\|F-Gases\|HFC\|HFC152a	ktHFC152ayr$^{-1}$	total emissions of HFC152a	2
Emissions	Emissions\|F-Gases\|HFC\|HFC227ea	ktHFC227eayr$^{-1}$	total emissions of HFC227ea	2
Emissions	Emissions\|F-Gases\|HFC\|HFC23	ktHFC23yr$^{-1}$	total emissions of HFC23	2
Emissions	Emissions\|F-Gases\|HFC\|HFC236fa	ktHFC236fayr$^{-1}$	total emissions of HFC236fa	2
Emissions	Emissions\|F-Gases\|HFC\|HFC245fa	ktHFC245fayr$^{-1}$	total emissions of HFC245fa	2
Emissions	Emissions\|F-Gases\|HFC\|HFC32	ktHFC32yr$^{-1}$	total emissions of HFC32	2
Emissions	Emissions\|F-Gases\|HFC\|HFC365mfc	ktHFC365mfcyr$^{-1}$	total emissions of HFC365mfc	2
Emissions	Emissions\|F-Gases\|HFC\|HFC4310mee	ktHFC4310meeyr$^{-1}$	total emissions of HFC43-10mee	2
Emissions	Emissions\|F-Gases\|NF3	ktNF$_3$yr$^{-1}$	total emissions of nitrogen trifluoride (NF$_3$)	2
Emissions	Emissions\|F-Gases\|PFC	ktCF$_4$yr$^{-1}$	equivalent species total emissions of perfluorocarbons (PFCs, as defined by Table 8.A.1 of AR5), provided as aggregate CF$_4$-equivalents	3
Table S4. Continued.

Category	Variable	Unit	Definition	Tier			
Emissions	Emissions	F-Gases	PFC	C2F6	ktC₂F₆ yr⁻¹	total emissions of C₂F₆	2
Emissions	Emissions	F-Gases	PFC	C₃F₈	ktC₃F₈ yr⁻¹	total emissions of C₃F₈	2
Emissions	Emissions	F-Gases	PFC	C₄F₁₀	ktC₄F₁₀ yr⁻¹	total emissions of C₄F₁₀	2
Emissions	Emissions	F-Gases	PFC	C₅F₁₂	ktC₅F₁₂ yr⁻¹	total emissions of C₅F₁₂	2
Emissions	Emissions	F-Gases	PFC	C₆F₁₄	ktC₆F₁₄ yr⁻¹	total emissions of C₆F₁₄	2
Emissions	Emissions	F-Gases	PFC	C₇F₁₆	ktC₇F₁₆ yr⁻¹	total emissions of C₇F₁₆	2
Emissions	Emissions	F-Gases	PFC	C₈F₁₈	ktC₈F₁₈ yr⁻¹	total emissions of C₈F₁₈	2
Emissions	Emissions	F-Gases	PFC	cC₄F₈	ktC₄F₈ yr⁻¹	total emissions of cC₄F₈	2
Emissions	Emissions	F-Gases	PFC	CF₄	ktCF₄ yr⁻¹	total emissions of CF₄	2
Emissions	Emissions	F-Gases	SF₆	ktSF₆ yr⁻¹	total emissions of sulfur hexafluoride (SF₆)	2	
Emissions	Emissions	F-Gases	SO₂F₂	ktSO₂F₂ yr⁻¹	total emissions of sulfuryl fluoride (SO₂F₂)	2	
Emissions	Emissions	Montreal Gases	MtCO₂ yr⁻¹	equivalent species total Montreal gas emissions, provided as CFC-11 equivalents	3		
Emissions	Emissions	Montreal Gases	CCl₄	ktCCl₄ yr⁻¹	total emissions of CCl₄	2	
Emissions	Emissions	Montreal Gases	CFC	MtCO₂ yr⁻¹	equivalent species total CFC emissions, provided as CFC-11 equivalents	3	
Emissions	Emissions	Montreal Gases	CFC	CFC₁₁	ktCFC₁₁ yr⁻¹	total emissions of CFC₁₁	2
Emissions	Emissions	Montreal Gases	CFC	CFC₁₁₃	ktCFC₁₁₃ yr⁻¹	total emissions of CFC₁₁₃	2
Emissions	Emissions	Montreal Gases	CFC	CFC₁₁₄	ktCFC₁₁₄ yr⁻¹	total emissions of CFC₁₁₄	2
Category	Variable	Unit	Definition	Tier			
----------------	---------------------------------	---------------------	---	------			
Emissions	Emissions	Montreal Gases	CFC	CFC115	ktCFC115yr⁻¹	total emissions of CFC115	2
Emissions	Emissions	Montreal Gases	CFC	CFC12	ktCFC12yr⁻¹	total emissions of CFC12	2
Emissions	Emissions	Montreal Gases	CH2Cl2	ktCH₂Cl₂yr⁻¹	total emissions of CH₂Cl₂	2	
Emissions	Emissions	Montreal Gases	CH3Br	ktCH₃Bryr⁻¹	total emissions of CH₃Br	2	
Emissions	Emissions	Montreal Gases	CH3CCl3	ktCH₃CCl₃yr⁻¹	total emissions of CH₃CCl₃	2	
Emissions	Emissions	Montreal Gases	CH3Cl	ktCH₃Clyr⁻¹	total emissions of CH₃Cl	2	
Emissions	Emissions	Montreal Gases	CHCl3	ktCHCl₃yr⁻¹	total emissions of CHCl₃	2	
Emissions	Emissions	Montreal Gases	Halon1202	ktHalon1202yr⁻¹	total emissions of Halon-1202	2	
Emissions	Emissions	Montreal Gases	Halon1211	ktHalon1211yr⁻¹	total emissions of Halon-1211	2	
Emissions	Emissions	Montreal Gases	Halon1301	ktHalon1301yr⁻¹	total emissions of Halon-1301	2	
Emissions	Emissions	Montreal Gases	Halon2402	ktHalon2402yr⁻¹	total emissions of Halon-2402	2	
Emissions	Emissions	Montreal Gases	HCFC141b	ktHCFC141byr⁻¹	total emissions of HCFC141b	2	
Emissions	Emissions	Montreal Gases	HCFC142b	ktHCFC142byr⁻¹	total emissions of HCFC22	2	
Emissions	Emissions	Montreal Gases	HCFC22	ktHCFC22yr⁻¹	total emissions of HCFC22	2	

Table S4. Continued.
Category	Variable	Unit	Definition	Tier	
Emissions	Emissions\text	N2O	ktN₂Oyr⁻¹	1	
	Emissions\text	N2O	MAGICC AFOLU	ktN₂Oyr⁻¹	2
	Emissions\text	N2O	MAGICC Fossil and Industrial	ktN₂Oyr⁻¹	2
	Emissions\text	N2O	Other	ktN₂Oyr⁻¹	2
Emissions	Emissions\text	NH3	MtNH₃yr⁻¹	1	
	Emissions\text	NH3	MAGICC AFOLU	MtNH₃yr⁻¹	2
	Emissions\text	NH3	MAGICC Fossil and Industrial	MtNH₃yr⁻¹	2
	Emissions\text	NH3	Other	MtNH₃yr⁻¹	2
Table S4. Continued.

Category	Variable	Unit	Definition	Tier						
Emissions	Emissions	NOx	MtNOxyr⁻¹	total nitrous oxide emissions	1					
Emissions	Emissions	NOx	MAGICC AFOLU	MtNOxyr⁻¹	nitrous oxide emissions from agriculture, forestry and other land use (IPCC category 3), excluding any fossil-fuel based emissions in the Agricultural sector (hence not identical to WG3 AFOLU)	2				
Emissions	Emissions	NOx	MAGICC Fossil and Industrial	MtNOxyr⁻¹	nitrous oxide emissions from energy use on supply and demand side (IPCC category 1A, 1B), industrial processes (IPCC category 2), waste (IPCC category 4) and other (IPCC category 5)	2				
Emissions	Emissions	NOx	Other	MtNOxyr⁻¹	nitrous oxide emissions from other sources (please provide a definition of other sources in this category in the ‘comments’ tab)	2				
Emissions	Emissions	OC	MtOCyr⁻¹	total organic carbon emissions	1					
Emissions	Emissions	OC	MAGICC AFOLU	MtOCyr⁻¹	organic carbon emissions from agriculture, forestry and other land use (IPCC category 3), excluding any fossil-fuel based emissions in the Agricultural sector (hence not identical to WG3 AFOLU)	2				
Emissions	Emissions	OC	MAGICC Fossil and Industrial	MtOCyr⁻¹	organic carbon emissions from energy use on supply and demand side (IPCC category 1A, 1B), industrial processes (IPCC category 2), waste (IPCC category 4) and other (IPCC category 5)	2				
Emissions	Emissions	OC	Other	MtOCyr⁻¹	organic carbon emissions from other sources (please provide a definition of other sources in this category in the ‘comments’ tab)	2				
Category	Variable	Unit	Definition	Tier						
---------------	---------------------------	-------------	---	------						
Emissions	Emissions	Sulfur	MtSO₂yr⁻¹	total sulfur (as a precursor for sulfates) emissions	1					
Emissions	Emissions	Sulfur	MAGICC AFOLU	MtSO₂yr⁻¹	sulfur (as a precursor for sulfates) emissions from agriculture, forestry and other land use (IPCC category 3), excluding any fossil-fuel based emissions in the Agricultural sector (hence not identical to WG3 AFOLU)	2				
Emissions	Emissions	Sulfur	MAGICC Fossil and Industrial	MtSO₂yr⁻¹	sulfur (as a precursor for sulfates) emissions from energy use on supply and demand side (IPCC category 1A, 1B), industrial processes (IPCC category 2), waste (IPCC category 4) and other (IPCC category 5)	2				
Emissions	Emissions	Sulfur	Other	MtSO₂yr⁻¹	sulfur (as a precursor for sulfates) emissions from other sources (please provide a definition of other sources in this category in the ‘comments’ tab)	2				
Emissions	Emissions	VOC	MtVOCyr⁻¹	total (non-methane) volatile organic compounds emissions	1					
Emissions	Emissions	VOC	MAGICC AFOLU	MtVOCyr⁻¹	(non-methane) volatile organic compounds emissions from agriculture, forestry and other land use (IPCC category 3), excluding any fossil-fuel based emissions in the Agricultural sector (hence not identical to WG3 AFOLU)	2				
Emissions	Emissions	VOC	MAGICC Fossil and Industrial	MtVOCyr⁻¹	(non-methane) volatile organic compounds emissions from energy use on supply and demand side (IPCC category 1A, 1B), industrial processes (IPCC category 2), waste (IPCC category 4) and other (IPCC category 5)	2				
Category	Variable	Unit	Definition	Tier						
-------------------	--	----------	---	------						
Emissions	Emissions	VOC	Other	MtVOCyr⁻¹						
			(non-methane) volatile organic compounds emissions from other sources (please provide a definition of other sources in this category in the ‘comments’ tab)	2						
Methane Cycle	Atmospheric Lifetime	CH4	yr	total atmospheric lifetime of methane	3					
Nitrogen Cycle	Atmospheric Lifetime	N2O	yr	total atmospheric lifetime of nitrogen	3					
Ocean	Ocean pH	Dimensionless	pH of the ocean’s surface layer	3						
Radiative Forcing	Radiative Forcing	Wm⁻²	radiative forcing from all anthropogenic and natural sources (after stratospheric temperature adjustments)	1						
	Radiative Forcing	Anthropogenic	Wm⁻²	radiative forcing from all anthropogenic sources (after stratospheric temperature adjustments)	1					
	Radiative Forcing	Anthropogenic	Aerosols	Wm⁻²	radiative forcing from aerosols (after stratospheric temperature adjustments)	1				
	Radiative Forcing	Anthropogenic	Aerosols	Aerosols-cloud Interactions	Wm⁻²	radiative forcing from indirect effects of aerosols on clouds (after stratospheric temperature adjustments)	2			
	Radiative Forcing	Anthropogenic	Aerosols	Aerosols-radiation Interactions	Wm⁻²	radiative forcing from aerosol-radiative effects (after stratospheric temperature adjustments), note that the breakdown of this variable can come in multiple different forms	2			
	Radiative Forcing	Anthropogenic	Aerosols	Aerosols-radiation Interactions	BC and OC	BC	Wm⁻²	radiative forcing from aerosol-radiative effects from black carbon emissions (after stratospheric temperature adjustments)	2	
	Radiative Forcing	Anthropogenic	Aerosols	Aerosols-radiation Interactions	BC and OC	BC	Biomass Burning	Wm⁻²	radiative forcing from aerosol-radiative effects from black carbon biomass burning emissions (after stratospheric temperature adjustments)	2
Category	Variable	Unit	Definition	Tier						
--------------	--	-------	---	------						
Radiative Forcing	Radiative Forcing	Anthropogenic	Aerosols	Aerosol-radiation Interactions	BC and OC	BC and Fossil and Industrial	Wm$^{-2}$	radiative forcing from aerosol-radiative effects from black carbon fossil and industrial emissions (after stratospheric temperature adjustments)	2	
Radiative Forcing	Radiative Forcing	Anthropogenic	Aerosols	Aerosol-radiation Interactions	BC and OC	OC	Wm$^{-2}$	radiative forcing from aerosol-radiative effects from organic carbon emissions (after stratospheric temperature adjustments)	2	
Radiative Forcing	Radiative Forcing	Anthropogenic	Aerosols	Aerosol-radiation Interactions	BC and OC	OC	Wm$^{-2}$	radiative forcing from aerosol-radiative effects from organic carbon biomass burning emissions (after stratospheric temperature adjustments)	2	
Radiative Forcing	Radiative Forcing	Anthropogenic	Aerosols	Aerosol-radiation Interactions	BC and OC	OC	Wm$^{-2}$	radiative forcing from aerosol-radiative effects from organic carbon fossil and industrial emissions (after stratospheric temperature adjustments)	2	
Radiative Forcing	Radiative Forcing	Anthropogenic	Aerosols	Aerosol-radiation Interactions	BC and OC	Biomass Burning	Wm$^{-2}$	radiative forcing from aerosol-radiative effects from biomass burning emissions (after stratospheric temperature adjustments)	2	
Category	Variable	Unit	Definition	Tier						
------------	--	---------	--	------						
Radiative	Radiative Forcing/Anthropogenic/Aerosols/Anthropogenic/Aerosols-radiation	Wm$^{-2}$	radiative forcing from aerosol-radiative effects from black and organic carbon biomass burning emissions (after stratospheric temperature adjustments)	2						
	Interactions/Biomass Burning/BC and OC		radiative forcing from aerosol-radiative effects from black carbon biomass burning emissions (after stratospheric temperature adjustments)	2						
	Radiative Forcing/Anthropogenic/Aerosols/Anthropogenic/Aerosols-radiation	Wm$^{-2}$	radiative forcing from aerosol-radiative effects from organic carbon biomass burning emissions (after stratospheric temperature adjustments)	2						
	Interactions/Biomass Burning/BC and OCIC									
Radiative	Radiative Forcing/Anthropogenic/Aerosols/Anthropogenic/Aerosols-radiation	Wm$^{-2}$	radiative forcing from aerosol-radiative effects from ammonia biomass burning emissions (after stratospheric temperature adjustments)	2						
	Interactions/Biomass Burning/NH3									
Radiative	Radiative Forcing/Anthropogenic/Aerosols/Anthropogenic/Aerosols-radiation	Wm$^{-2}$	radiative forcing from aerosol-radiative effects from nitrate biomass burning emissions (after stratospheric temperature adjustments)	2						
	Interactions/Biomass Burning/Nitrate									
Category	Variable	Unit	Definition	Tier						
----------------	--	----------	---	------						
Radiative Forcing	Radiative Forcing	Wm$^{-2}$	radiative forcing from aerosol-radiative effects	2						
	Forcing	Anthropogenic	Aerosols	Aerosols-radiation Interactions	Biomass Burning	Sulfate				
	Radiative Forcing	Wm$^{-2}$	radiative forcing from aerosol-radiative effects	2						
	Forcing	Anthropogenic	Aerosols	Aerosols-radiation Interactions	Biomass Burning	Sulfate	from sulfate biomass burning emissions (after stratospheric temperature adjustments)			
	Radiative Forcing	Wm$^{-2}$	radiative forcing from aerosol-radiative effects	2						
	Forcing	Anthropogenic	Aerosols	Aerosols-radiation Interactions	Fossil and Industrial		from fossil and industrial emissions (after stratospheric temperature adjustments)			
	Radiative Forcing	Wm$^{-2}$	radiative forcing from aerosol-radiative effects	2						
	Forcing	Anthropogenic	Aerosols	Aerosols-radiation Interactions	Fossil and Industrial	BC and OC	from black and organic carbon fossil and industrial emissions (after stratospheric temperature adjustments)			
	Radiative Forcing	Wm$^{-2}$	radiative forcing from aerosol-radiative effects	2						
	Forcing	Anthropogenic	Aerosols	Aerosols-radiation Interactions	Fossil and Industrial	BC and OC	from black carbon fossil and industrial emissions (after stratospheric temperature adjustments)			
	Radiative Forcing	Wm$^{-2}$	radiative forcing from aerosol-radiative effects	2						
	Forcing	Anthropogenic	Aerosols	Aerosols-radiation Interactions	Fossil and Industrial	BC and OC	from organic carbon fossil and industrial emissions (after stratospheric temperature adjustments)			
Category	Variable	Unit	Definition	Tier						
----------	----------	------	------------	------						
Radiative Forcing	Radiative Forcing\Anthropogenic\Aerosols\Aerosols-radiation Interactions\Fossil and Industrial\NH3	Wm^{-2}	radiative forcing from aerosol-radiative effects from ammonia fossil and industrial emissions (after stratospheric temperature adjustments)	2						
Radiative Forcing	Radiative Forcing\Anthropogenic\Aerosols\Aerosols-radiation Interactions\Fossil and Industrial\Nitrate	Wm^{-2}	radiative forcing from aerosol-radiative effects from nitrate fossil and industrial emissions (after stratospheric temperature adjustments)	2						
Radiative Forcing	Radiative Forcing\Anthropogenic\Aerosols\Aerosols-radiation Interactions\Fossil and Industrial\Sulfate	Wm^{-2}	radiative forcing from aerosol-radiative effects from sulfate fossil and industrial emissions (after stratospheric temperature adjustments)	2						
Radiative Forcing	Radiative Forcing\Anthropogenic\Aerosols\Aerosols-radiation Interactions\Mineral Dust	Wm^{-2}	radiative forcing from aerosol-radiative effects from mineral dust emissions (after stratospheric temperature adjustments)	2						
Radiative Forcing	Radiative Forcing\Anthropogenic\Aerosols\Aerosols-radiation Interactions\NH3	Wm^{-2}	radiative forcing from aerosol-radiative effects from ammonia emissions (after stratospheric temperature adjustments)	2						
Category	Variable	Unit	Definition	Tier						
---------------	-------------------------------	---------	--	------						
Radiative Forcing	Radiative Forcing	Wm$^{-2}$	radiative forcing from aerosol-radiative effects after stratospheric temperature adjustments	2						
	Anthropogenic	Aerosols	Aerosol-radiation Interactions	NH3	Biomass Burning					
	Fossil and Industrial									
	Nitrate									
	Nitrate	Biomass Burning								
	Nitrate	Fossil and Industrial								
	Nitrate	Fossil and Industrial								

Table S4. Continued.
Table S4. Continued.

Category	Variable	Unit	Definition	Tier
Radiative Forcing	Radiative Forcing/Aerosols/Aerosol-radiation Interactions/Other	Wm$^{-2}$	radiative forcing from aerosol-radiative effects not covered in the other categories (after stratospheric temperature adjustments) (please specify in comments)	2
Radiative Forcing	Radiative Forcing/Aerosols/Aerosol-radiation Interactions/Sulfate	Wm$^{-2}$	radiative forcing from aerosol-radiative effects from sulfate emissions (after stratospheric temperature adjustments)	2
Radiative Forcing	Radiative Forcing/Aerosols/Aerosol-radiation Interactions/Sulfate/Biomass Burning	Wm$^{-2}$	radiative forcing from aerosol-radiative effects from sulfate biomass burning emissions (after stratospheric temperature adjustments)	2
Radiative Forcing	Radiative Forcing/Aerosols/Aerosol-radiation Interactions/Sulfate/Fossil and Industrial	Wm$^{-2}$	radiative forcing from aerosol-radiative effects from sulfate fossil and industrial emissions (after stratospheric temperature adjustments)	2
Radiative Forcing	Radiative Forcing/Aerosols/Aerosol-radiation Interactions/Albedo Change	Wm$^{-2}$	radiative forcing from albedo change (after stratospheric temperature adjustments)	2
Radiative Forcing	Radiative Forcing/Aerosols/Aerosol-radiation Interactions/CH4	Wm$^{-2}$	radiative forcing (after stratospheric temperature adjustments) of CH$_4$	2
Radiative Forcing	Radiative Forcing/Aerosols/Aerosol-radiation Interactions/CO$_2$	Wm$^{-2}$	radiative forcing (after stratospheric temperature adjustments) of CO$_2$	1
Table S4. Continued.

Category	Variable	Unit	Definition	Tier
Radiative Forcing	Radiative Forcing	Wm$^{-2}$	radiative forcing (after stratospheric temperature adjustments) of F-gases	2
	Radiative Forcing	Wm$^{-2}$	radiative forcing (after stratospheric temperature adjustments) of hydrofluorocarbons (HFCs, as defined by Table 8.A.1 of AR5) not controlled under the Montreal protocol	2
	Radiative Forcing	Wm$^{-2}$	radiative forcing (after stratospheric temperature adjustments) of HFC125	2
	Radiative Forcing	Wm$^{-2}$	radiative forcing (after stratospheric temperature adjustments) of HFC134a	2
	Radiative Forcing	Wm$^{-2}$	radiative forcing (after stratospheric temperature adjustments) of HFC143a	2
	Radiative Forcing	Wm$^{-2}$	radiative forcing (after stratospheric temperature adjustments) of HFC152a	2
	Radiative Forcing	Wm$^{-2}$	radiative forcing (after stratospheric temperature adjustments) of HFC227ea	2
	Radiative Forcing	Wm$^{-2}$	radiative forcing (after stratospheric temperature adjustments) of HFC23	2
	Radiative Forcing	Wm$^{-2}$	radiative forcing (after stratospheric temperature adjustments) of HFC236fa	2
	Radiative Forcing	Wm$^{-2}$	radiative forcing (after stratospheric temperature adjustments) of HFC245fa	2
Table S4. Continued.

Category	Variable	Unit	Definition	Tier				
Radiative Forcing	Radiative Forcing	Wm$^{-2}$	radiative forcing (after stratospheric temperature adjustments) of HFC32	2				
Gases	HFC	HFC32						
Radiative Forcing	Radiative Forcing	Wm$^{-2}$	radiative forcing (after stratospheric temperature adjustments) of HFC365mfc	2				
Gases	HFC	HFC365mfc						
Radiative Forcing	Radiative Forcing	Wm$^{-2}$	radiative forcing (after stratospheric temperature adjustments) of HFC43-10mee	2				
Gases	HFC	HFC4310mee						
Radiative Forcing	Radiative Forcing	Wm$^{-2}$	radiative forcing (after stratospheric temperature adjustments) of nitrogen trifluoride (NF$_3$)	2				
Gases	NF3							
Radiative Forcing	Radiative Forcing	Wm$^{-2}$	radiative forcing (after stratospheric temperature adjustments) of perfluorocarbons (PFCs, as defined by Table 8.A.1 of AR5)	2				
Gases	PFC							
Radiative Forcing	Radiative Forcing	Wm$^{-2}$	radiative forcing (after stratospheric temperature adjustments) of C$_2$F$_6$	2				
Gases	PFC	C2F6						
Radiative Forcing	Radiative Forcing	Wm$^{-2}$	radiative forcing (after stratospheric temperature adjustments) of C$_3$F$_8$	2				
Gases	PFC	C3F8						
Radiative Forcing	Radiative Forcing	Wm$^{-2}$	radiative forcing (after stratospheric temperature adjustments) of C$_4$F$_{10}$	2				
Gases	PFC	C4F10						
Radiative Forcing	Radiative Forcing	Wm$^{-2}$	radiative forcing (after stratospheric temperature adjustments) of C$_5$F$_{12}$	2				
Gases	PFC	C5F12						
Radiative Forcing	Radiative Forcing	Wm$^{-2}$	radiative forcing (after stratospheric temperature adjustments) of C$_6$F$_{14}$	2				
Gases	PFC	C6F14						
Category	Variable	Unit	Definition	Tier				
------------------	---	---------	---	------				
Radiative Forcing	Radiative Forcing	Anthropogenic	F-Gases	PFC	C7F16	Wm\(^{-2}\)	radiative forcing (after stratospheric temperature adjustments) of C7F16	2
Radiative Forcing	Radiative Forcing	Anthropogenic	F-Gases	PFC	C8F18	Wm\(^{-2}\)	radiative forcing (after stratospheric temperature adjustments) of C8F18	2
Radiative Forcing	Radiative Forcing	Anthropogenic	F-Gases	PFC	cC4F8	Wm\(^{-2}\)	radiative forcing (after stratospheric temperature adjustments) of cC4F8	2
Radiative Forcing	Radiative Forcing	Anthropogenic	F-Gases	SF6		Wm\(^{-2}\)	radiative forcing (after stratospheric temperature adjustments) of sulfur hexafluoride (SF6)	2
Radiative Forcing	Radiative Forcing	Anthropogenic	F-Gases	SO2F2		Wm\(^{-2}\)	radiative forcing (after stratospheric temperature adjustments) of sulfuryl fluoride (SO2F2)	2
Radiative Forcing	Radiative Forcing	Anthropogenic	Montreal Gases			Wm\(^{-2}\)	radiative forcing (after stratospheric temperature adjustments) of Montreal gases	2
Radiative Forcing	Radiative Forcing	Anthropogenic	Montreal Gases	CCl4		Wm\(^{-2}\)	radiative forcing (after stratospheric temperature adjustments) of CCl4	2
Radiative Forcing	Radiative Forcing	Anthropogenic	Montreal Gases	CFC		Wm\(^{-2}\)	radiative forcing (after stratospheric temperature adjustments) of CFC gases (as defined by Table 8.A.1 of AR5)	2
Radiative Forcing	Radiative Forcing	Anthropogenic	Montreal Gases	CFC	CFC11	Wm\(^{-2}\)	radiative forcing (after stratospheric temperature adjustments) of CFC11	2
Category	Variable	Unit	Definition	Tier				
--------------	-------------------------------	--------	---	------				
Radiative Forcing	Radiative Forcing	Wm$^{-2}$	radiative forcing (after stratospheric temperature adjustments) of CFC113	2				
Radiative Forcing	Radiative Forcing	Wm$^{-2}$	radiative forcing (after stratospheric temperature adjustments) of CFC114	2				
Radiative Forcing	Radiative Forcing	Wm$^{-2}$	radiative forcing (after stratospheric temperature adjustments) of CFC115	2				
Radiative Forcing	Radiative Forcing	Wm$^{-2}$	radiative forcing (after stratospheric temperature adjustments) of CFC12	2				
Radiative Forcing	Radiative Forcing	Wm$^{-2}$	radiative forcing (after stratospheric temperature adjustments) of CH$_2$Cl$_2$	2				
Radiative Forcing	Radiative Forcing	Wm$^{-2}$	radiative forcing (after stratospheric temperature adjustments) of CH$_3$Br	2				
Radiative Forcing	Radiative Forcing	Wm$^{-2}$	radiative forcing (after stratospheric temperature adjustments) of CH$_3$CCl$_3$	2				
Radiative Forcing	Radiative Forcing	Wm$^{-2}$	radiative forcing (after stratospheric temperature adjustments) of CH$_3$Cl	2				
Radiative Forcing	Radiative Forcing	Wm$^{-2}$	radiative forcing (after stratospheric temperature adjustments) of CHCl$_3$	2				
Table S4. Continued.

Category	Variable	Unit	Definition	Tier
Radiative Forcing	Radiative Forcing	Wm\(^{-2}\)	radiative forcing (after stratospheric temperature adjustments) of Halon-1202	2
	Anthropogenic	Montreal Gases	Halon1202	
Radiative Forcing	Radiative Forcing	Wm\(^{-2}\)	radiative forcing (after stratospheric temperature adjustments) of Halon-1211	2
	Anthropogenic	Montreal Gases	Halon1211	
Radiative Forcing	Radiative Forcing	Wm\(^{-2}\)	radiative forcing (after stratospheric temperature adjustments) of Halon-1301	2
	Anthropogenic	Montreal Gases	Halon1301	
Radiative Forcing	Radiative Forcing	Wm\(^{-2}\)	radiative forcing (after stratospheric temperature adjustments) of Halon2402	2
	Anthropogenic	Montreal Gases	Halon2402	
Radiative Forcing	Radiative Forcing	Wm\(^{-2}\)	radiative forcing (after stratospheric temperature adjustments) of HCFC141b	2
	Anthropogenic	Montreal Gases	HCFC141b	
Radiative Forcing	Radiative Forcing	Wm\(^{-2}\)	radiative forcing (after stratospheric temperature adjustments) of HCFC22	2
	Anthropogenic	Montreal Gases	HCFC142b	
Radiative Forcing	Radiative Forcing	Wm\(^{-2}\)	radiative forcing (after stratospheric temperature adjustments) of HCFC22	2
	Anthropogenic	Montreal Gases	HCFC22	
Radiative Forcing	Radiative Forcing	Wm\(^{-2}\)	radiative forcing (after stratospheric temperature adjustments) of N\(_2\)O	2
	Anthropogenic	N\(_2\)O		
Radiative Forcing	Radiative Forcing	Other	radiative forcing from factors not covered in other categories (after stratospheric temperature adjustments)	2
	Anthropogenic	Other		
Table S4. Continued.

Category	Variable	Unit	Definition	Tier
Radiative Forcing	Radiative Forcing	Wm$^{-2}$	radiative forcing from stratospheric ozone (after stratospheric temperature adjustments)	2
	Anthropogenic			
	Stratospheric Ozone			
Radiative Forcing	Radiative Forcing	Wm$^{-2}$	radiative forcing from tropospheric ozone (after stratospheric temperature adjustments)	2
	Anthropogenic			
	Tropospheric Ozone			
Radiative Forcing	Radiative Forcing	Wm$^{-2}$	radiative forcing from all natural drivers, i.e. solar and volcanic forcing (after stratospheric temperature adjustments)	2
	Natural			
Radiative Forcing	Radiative Forcing	Wm$^{-2}$	radiative forcing from variations in solar irradiance (after stratospheric temperature adjustments)	2
	NaturalSolar			
Radiative Forcing	Radiative Forcing	Wm$^{-2}$	radiative forcing due to volcanic eruptions (after stratospheric temperature adjustments)	2
	NaturalVolcanic			
References

Gidden, M. J., Riahi, K., Smith, S. J., Fujimori, S., Luderer, G., Kriegler, E., van Vuuren, D. P., van den Berg, M., Feng, L., Klein, D., Calvin, K., Doelman, J. C., Frank, S., Fricko, O., Harmsen, M., Hasegawa, T., Havlik, P., Hilaire, J., Hoesly, R., Horing, J., Popp, A., Stehfest, E., and Takahashi, K.: Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of harmonized emissions trajectories through the end of the century, Geoscientific Model Development, 12, 1443–1475, https://doi.org/10.5194/gmd-12-1443-2019, 2019.