Use of Molecular Markers to Locate Quantitative Trait Loci Linked to High Soluble Solids Content in a Hybrid of *Lycopersicon cheesmanii*

T. Casey Garvey and John D. Hewitt
Department of Vegetable Crops, University of California, Davis, CA 95616

Abstract. An interspecific hybrid was made between an accession of *Lycopersicon cheesmanii* f. *minor* Riley (LA 1508) from the Galapagos Islands, Ecuador, and *L. pennellii* (Corr.) D’Arcy (LA 716). LA 1508 was used because of its high soluble solids content (SSC). It was crossed with LA 716 to test for linkage between isozymes and morphological markers and loci conditioning high SSC. For both accessions, chromosome numbers are equal and there are large differences between SSC and no barriers to crossing. Modified BC, populations derived from the hybridization were assayed for isozyme markers using starch gel electrophoresis. Associations between marker loci and quantitative-trait loci (QTL) conditioning high SSC were determined using analysis of variance. Six isozymes located on five chromosomes and one morphological marker had significant associations with SSC, indicating linkage to QTL. Digenic epistatic interactions between pairs of independent markers did not appear to play an important role in the interactions between QTL that condition SSC.

Many important genetic traits in the tomato (*Lycopersicon* sp.) are quantitatively inherited. The continuously varying characteristic of SSC in processing tomatos is of particular interest to geneticists, plant breeders, and processors (Rick, 1974). Increasing SSC in the tomato fruit would decrease the energy inputs required to produce tomato products. Knowledge of the number and location of genes or clusters of genes would be invaluable to plant breeders, since it would permit investigators to choose efficient breeding strategies for introgressing high SSC genes.

Tomato has many mapped genetic markers that can be used to locate QTL (Ibarbia and Lambeth, 1969; Lander and Botstein, 1989; Tanksley and Hewitt, 1988; Tanksley and Rick, 1980; Tanksley et al., 1981). *Lycopersicon cheesmanii* f. *minor* (*minor*) is a useful source of variation for high SSC (Garvey and Hewitt, 1984). Furthermore, a survey by Rick and Fobes (1975a) indicated the *minor* is polymorphic for isozyme loci when compared to the isozyme marker stock *L. pennellii* LA 716 ‘Atico’.

The present study was undertaken to detect associations between QTL conditioning SSC and segregating isozyme loci and to identify higher-order interactions between QTL linked to isozyme markers.

Materials and Methods

Interspecific hybridizations. A cross was made between *L. cheesmanii* LA 1508 (female parent SSC X = 13.16) and *L. pennellii* ‘Atico’ LA 716 (SSC X= 6.84). F1 plants were crossed to *L. esculentum* Mill (SSC X = 5.86) VF 36 LA 490 (used as a female parent) to create modified backcross populations (MBC). Seeds were provided by C.M. Rick. The introduction of LA 490 as the recurrent parent increases the progeny vigor while maintaining both the differences in SSC and the high level of polymorphism seen between LA 1508 and LA 716 (Rick and Fobes, 1975b).

Plant culture. MBC seeds were stratified (2.5% sodium hypochlorite), sown in modified UC mix (Matkin and Chandler, 1957) with controls, and germinated in a greenhouse kept at 24/18C (day/night). One hundred ninety-eight 4-cm MBC, and 16 control plants were transplanted into a 1 sand : 1 modified UC mix medium and fertilizer (16N–20P–16K) and grown under fluorescent lighting (350 μmol·s·m–2) on a 12-h day/night regime for 10 days. Leaf tissue from the second true leaf was ground in a 3% reduced glutathione (Sigma, St. Louis) buffer solution. Samples were drawn onto 8 × 3-mm Whatman (Maidstone, England) No. 3 paper wicks for electrophoresis. Root samples were ground using no buffer, and plants were repotted to 3.8-liter (180 mm top diameter) containers. Plants were watered, fertilized, and spaced in such a way as to prevent mutual shading.

Reestablished plants were pollinated using LA 716 pollen. Five fruit samples per plant were evaluated for SSC on a B&L model 3100 refractometer (Bausch and Lomb, Rochester, N.Y.).

Electrophoretic analysis. Leaf and root samples from 198 MBC plants and 16 controls were genotyped using Tris-citrate and histidine-free base horizontal starch gel electrophoresis (Tanksley and Rick, 1980; Tanksley et al., 1982). Genotypes of plants were determined for 12 isozymes and two morphological markers (*pts*, chromosome 6, and *sym*, chromosome location unknown, Table 1). Four linkage groups had no markers and could not be tested.

Statistical treatments. Chi-square analysis detected deviations from expected Mendelian ratios for the MBC. One-way analysis of variance using Anova-I of SPSS (SPSSX, Chicago) tested the hypothesis that the means of the genotype of the dependent variable, SSC, were equal. Significant *F* (*P* ≤ 0.01 or 0.05) values were interpreted to indicate segregation of genotypes at a QTL that was linked to an isozyme locus. Univariate analysis and Levene’s test of equal variances using the procedures of SAS (SAS, 1985) were performed to validate the assumptions of the analysis of variance. Multiple classification analysis using

Received for publication 9 Nov. 1990. Accepted for publication 28 Oct. 1991. We acknowledge the assistance of C.M. Rick, N. Willits, M. Aguirre, G. Dickinson, D. Walters, and the CFLP. We also thank N. Blaker for her editorial assistance. The cost of publishing this paper was defrayed in part by the payment of page charges. Under postal regulations, this paper therefore must be hereby marked advertisement solely to indicate this fact.

Present address: Hunt Wesson, 1111 Coven Blvd., Davis, CA 95616.

Additional index words. tomato, electrophoresis, genetics

Abbreviations: SSC, soluble solids content; QTL, quantitative-trait loci.
Results and Discussion

Eleven isozymes of *L. cheesmanii* differ from those in LA 716, and there was a large difference in the SSC observed between LA 1508 and LA 716.

Segregation ratios. Segregation ratios of isozymes and morphological loci showed that the modified backcross population (MBC) had two forms: *L. cheesmanii* +/+ homozygote and the +/p heterozygote. Of the loci examined, 38% had aberrant Mendelian segregations (Table 2). Three of the isozyme markers deviated toward *L. pennellii* parent and two deviated toward the *L. cheesmanii* parent. The observed deviations were consistent with results of other researchers (Edwards et al., 1987; Zamir and Tadmor, 1986). In the present interspecific hybrid, many loci are in the heterozygous condition, which could lead to an unbalanced state for various factors, including selection against linkage blocks that would result in reduced variation or unbalanced transmission of genes affecting SSC (Zamir and Tadmor, 1986).

Detected QTL. Significant linkages between QTL conditioning SSC and isozymes loci were determined to be PRX-2, EST-157, and SX14 (positive QTL) and PRX-7, GOT-2, APS-2, and PGI-1 (negative QTL), as described by Tanksley et al. (1982) (Table 1).

The pattern exhibited by PRX-2 and EST-157 is interesting in that both reside in close proximity on chromosome 2 of the tomato and are separated by 12 map units (Tanksley and Rick, 1980). It is not clear if each marker was linked to a separate QTL or if a single QTL was exhibiting an association with both of these markers.

Similar work has been done on *Lycopersicon* by Tanksley et al. (1982) using isozymes and by Osborne et al. (1987) using RFLPs. In the former study, it was possible to show associations of isozyme markers and several quantitatively inherited morphological characters. In the latter work, it was possible to show associations of molecular markers with genes controlling high SSC.

Variance. The proportion of the partial phenotypic variances (MR) for high SSC described in terms of isozyme markers was calculated (Table 3). Values for seven loci account for 38% of the observed variance.

Two-way interactions between QTL. ANOVA-2 revealed interactions between loci linked to genes influencing SSC. Significant interactions (*P* ≤ 0.01 or 0.05) could be due to either epistasis (digenic interaction) or linkage disequilibrium. In the MBC, (Table 4), five of 169 pair-wise interactions were significant at *P* ≤ 0.05. This result could be due to chance alone; therefore, there is no strong evidence for epistasis. Possible reduced recombination resulting from an interspecific cross can maintain populations in disequilibrium (D ≠ 0). Estimates of gametic phase disequilibrium for two codominant loci for each of the marker variables were calculated. Disequilibrium solutions obtained by iteration failed to converge. In contrast, Tank-

Table 1. Chromosome location, genotype means, and analysis of variation for effects of introgressed segments on tomato fruit SSC in the MBC population.

Chromosome	Isozyme locus	Mean soluble solids values	Significance of \(F \) values	
		\(+/a \)	\(+/p \)	
1	PRX-1	9.80	9.84	0.835
1	SKDH-1	9.81	9.81	0.990
2	PRX-2	10.26	9.28	0.000**
2	EST-157	10.10	9.56	0.007**
3	PRX-7	9.46	10.11	0.000**
6	GOT-2	9.58	10.02	0.030*
6	PTS	9.73	9.93	0.295
7	APS-1	9.77	9.85	0.675
8	APS-2	9.66	10.22	0.049*
10	PRX-4	9.78	9.82	0.822
12	ACO-1	9.05	9.21	0.766
12	6PGDH-2	9.75	9.82	0.739
12	PGI-1	9.6	9.98	0.037*
?	SYM	10.10	9.47	0.001**

*Originating from *Lycopersicon esculentum* (+), *L. cheesmanii* (c), or *L. pennellii* (p).

*Significance at \(P = 0.05 \) and 0.01, respectively.

Table 2. Detected deviations from expected Mendelain ratios for isozyme markers of tomato in the MBC population (Yates adjusted chi square).

Isozyme marker locus	\(x^2 \)
ACO-1	0.00
GOT-2	16.66*
PGI-1	3.72
APS-1	0.00
APS-2	3.68
PRY-1	0.66
PRX-2	0.75
PRX-4	11.25*
PRX-7	4.9*
EST-157	9.97*
6PGDH-2	3.92*
SKDH-1	2.8
PTS	1.31
SYM	2.73

*Significant at \(P = 0.05 \).

Table 3. Proportion of total variance in SSC in tomato for QTL from the MBC population.

Isozyme marker locus	Multiple \(R^2 \)
ACO-1	0.004
GOT-2	0.027*
PGI-1	0.022*
APS-1	0.001
APS-2	0.020*
PRX-1	0.000
PRX-2	0.147**
PRX-4	0.000
PRX-7	0.065**
EST-157	0.041**
6PGDH-2	0.001
SKDH-1	0.000
PTS	0.006
SYM	0.059**

*Significant at \(P = 0.05 \) and 0.01, respectively.
sley et al. (1982) reported interactions between isozyme pairs in the analysis of quantitative metric characters in tomatoes. Isozyme analysis of maize (Zea mays L.) found that 15 of the 82 traits examined showed digenic epistatic interactions (Edwards et al., 1987).

Conclusions. Segregating isozyme loci in a backcross population appeared to be an efficient method of identifying genome regions that condition high SSC in the genus Lycopersicon. These regions are distributed throughout the tomato genome, except on four linkage groups not tested, with some affecting SSC more than others. Digenic epistasis does not appear to be an important factor contributing to interactions between regions. Inferences regarding the identity and location of regions in the genome that condition SSC are limited to the populations examined and the single environment in which they were measured.

Literature Cited
Allard, R.W. 1956. Formulas and tables to facilitate the calculations of recombination values in heredity. Hilgardia 10(24):235-278.
Edwards, M. D., C.W. Stuber, and J.F. Wendel. 1987. Molecular-marker-facilitated investigation of quantitative-trait loci in maize. I. Numbers, genomic distribution and types of gene action. Genetics 116:113-125.
Garvey, T.C. and J.D. Hewitt. 1984. A survey of Lycopersicon cheesmanii for high soluble solids. Tomato Genet. Coop. Rpt. 34:4-5.
Ibarbia, E.A. and V.N. Lambeth. 1969. Inheritance of soluble solids in a large/small fruited tomato cross. J. Amer. Soc. Hort. Sci. 94:496-498.
Lander, E.S. and D. Botstein. 1989. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185-199.
Matkin, O.A. and P.A. Chandler. 1957. The UC type soil mixes, p. 36-39. In: K.E Baker (cd.). The UC system for producing healthy container grown plants. California Agr. Expt. Sta. Manual 23.

Osborne, T. C., D.C. Alexander, and J.F. Fobes. 1987. Identification of restriction fragment length polymorphisms linked to genes controlling soluble solids content in tomato fruit. Theor. Appl. Genet. 73:356-360.
Rick, C.M. 1974. High soluble-solids content in large-fruited tomato lines derived from wild green-fruited specimens. Hilgardia 42:493-510.
Rick, C.M. 1983. Tomato Lycopersicon, p. 147-165. In: S.D. Tanksley and T.J. Orton (eds.). Isozymes in plant genetics and breeding, part B. Elsevier Science Publishers, Amsterdam.
Rick, C.M. and J.F. Fobes. 1975a. Allozymes of the Galapagos tomatoes: Polymorphisms, geographic distribution, and affinities. Evolution 29:443-457.
Rick, C.M. and J.F. Fobes. 1975b. Allozyme variation in cultivated tomato and closely related species. Bul. Torrey. Bet. Club 102(6):376-384.
SAS. 1985. User’s guide: Statistics version 5 edition. SAS Institute, Cary, N.C.
SPSSX. 1983. SPSSX user’s guide. McGraw-Hill, New York.
Steel, R.G.D. and J.H. Torrie. 1960. Principles and procedures of statistics. McGraw-Hill, New York.
Tanksley, S. D., H. Medina-Filho, and C.M. Rick. 1981. The effects of isozyme selection on metric characters in an interspecific backcross of tomato—Basis of an early screening procedure. Theor. Appl. Genet. 60:291-296.
Tanksley, S. D., H. Medina-Filho, and C.M. Rick. 1982. Use of naturally-occurring enzyme variations to detect and map genes controlling quantitative traits in an interspecific backcross of tomato. Heredity 49(1):11-25.
Tanksley, S.D. and J.D. Hewitt. 1988. Use of molecular markers in breeding for soluble solids content in tomato—A re-examination. Theor. Appl. Genet. 75:811-823.
Tanksley, S.D. and C.M. Rick. 1980. Isozymic gene linkage map of the tomato: Applications in genetics and breeding. Theor. Appl. Genet. 57:161-179.
Zamir, D. and Y. Tadmor. 1986. Unequal segregation of nuclear genes in plants. Bet. Gaz. 3:355-358.

Table 4. Significance of F values for two-way interactions for the MBC population.

Isozyme locus	ACO-1	GOT-2	PGI-1	APS-2	APS-1	PRX-1	PRX-2	PRX-4	PRX-7	EST-157	6PGDH-2	SKDH	PTS
SYM													
GOT-2		*											
PGI-1			*										
APS-2				*									
APS-1													
PRX-1													
PRX-2													
PRX-4													
PRX-7													
EST-157													
6PGDH-2													
SKDH													
PTS													

*Significant at P = 0.05.