A Selective Interplay between Aberrant EPSP_{KA} and I_{NaP} Reduces Spike Timing Precision in Dentate Granule Cells of Epileptic Rats

Spike timing precision is a fundamental aspect of neuronal information processing in the brain. Here we examined the temporal precision of input-output operation of dentate granule cells (DGCs) in an animal model of temporal lobe epilepsy (TLE). In TLE, mossy fibers sprout and establish recurrent synapses on DGCs that generate aberrant slow kainate receptor-mediated excitatory postsynaptic potentials (EPSP_{KA}) not observed in controls. We report that, in contrast to time-locked spikes generated by EPSP_{AMPA} in control DGCs, aberrant EPSP_{KA} are associated with long-lasting plateaus and jitters spikes during single-spike mode firing. This is mediated by a selective voltage-dependent amplification of EPSP_{KA} through persistent sodium current (I_{NaP}) activation. In control DGCs, a current injection of a waveform mimicking the slow shape of EPSP_{KA} activates I_{NaP} and generates jitters spikes. Conversely in epileptic rats, blockade of EPSP_{KA} or I_{NaP} restores the temporal precision of EPSP--spike coupling. Importantly, EPSP_{KA} not only decrease spike timing precision at recurrent mossy fiber synapses but also at perforant path synapses during synaptic integration through I_{NaP} activation. We conclude that a selective interplay between aberrant EPSP_{KA} and I_{NaP} severely alters the temporal precision of EPSP--spike coupling in DGCs of chronic epileptic rats.

Keywords: dentate granule cells, I_{NaP}, kainate receptors, mossy fiber sprouting, spike timing, temporal lobe epilepsy

Introduction

Spike timing is a fundamental aspect of normal information processing (Buzsaki 2005; O’Keefe and Burgess 2005; Fries et al. 2007; Maurer and Mcnaughton 2007) and the ability to generate action potentials with high temporal precision in response to incoming excitatory postsynaptic potentials (EPSPs) is an essential feature of adult neurons (Konig et al. 1996). Recently, it has been reported that in temporal lobe epilepsies (TLE), the hippocampus displays alterations of the temporal organization of neuronal firing in behaving animals beside epileptiform discharges (Lenck-Santini and Holmes 2008). In animal models of TLE and human patients, neuronal tissue undergoes major reorganization; some neurons die whereas others, that are severed in their inputs or outputs, sprout and form novel aberrant connections (Nadler 2003; Blaabjerg and Zimmer 2007; Dudek and Sutula 2007; Ben-Ari et al. 2008). This phenomenon called reactive plasticity is best documented in the dentate gyrus where granule cells axons (the so-called mossy fibers) sprout to form aberrant glutamatergic excitatory synapses onto other dentate granule cells (DGCs) (Tauck and Nadler 1985; Represa et al. 1987; Sutula et al. 1989; Isokawa et al. 1993; Mello et al. 1993; Franck et al. 1995; Okazaki et al. 1995; Buckmaster and Dudek 1999; Scharfman et al. 2003). Numerous studies have shown that these, in addition to changes in voltage-gated conductances (Bernard et al. 2004; Yaari et al. 2007; Beck and Yaari 2008), could promote the generation of epileptiform activities in the hippocampus (Tauck and Nadler 1985; Franck et al. 1995; Wuarin and Dudek 1996; Patrylo and Dudek 1998; Hardison et al. 2000; Gabriel et al. 2004; Morgan and Soltész 2008). However the functional consequences of newly formed aberrant synapses on the temporal precision of input-output operation in target cells have not been investigated.

We have recently shown that DGCs in an animal model of TLE differ dramatically from control cells in that they display in addition to fast \(\alpha\)-Amino-3-hydroxy-5-methylisoxazol-4-propionic acid (AMPA) receptor-mediated synaptic currents (EPSCs_{AMPA}) observed in control DGCs, long-lasting kainate receptor (KAR)-mediated synaptic currents (EPSCs_{KA}), originating from recurrent mossy fiber synapses (Epsztein et al. 2005). The shape of excitatory synaptic event and its modulation by voltage-gated conductances are important determinants of the temporal precision of hippocampal and neocortical cells operation (Fricker and Miles 2000; Maccarelli and Dimgledine 2002; Axmacher and Miles 2004; Daw et al. 2006; Rodriguez-Molina et al. 2007). Therefore, we undertook to determine whether and how aberrant KAR-operated synapses with their slow kinetics will impact the temporal precision of EPSP--spike coupling in DGCs from epileptic rats.

We report a major decrease in the temporal precision of EPSP--spike coupling in DGCs from epileptic rats when compared with controls during single-spike mode discharge. Whereas DGCs from control rats display time-locked spikes, DGCs from chronic epileptic rats fire with a very low temporal precision. Jittered spikes are triggered by EPSP_{KA} and not by EPSP_{AMPA} that generate time-locked spikes in both control and TLE conditions. The jitter is mediated by the selective voltage-dependent amplification of EPSP_{KA} but not EPSP_{AMPA} by persistent sodium current (I_{NaP}) leading to long-lasting plateaus. In control DGCs, mimicking the slow shape of EPSCs_{KA} by somatic current injection is sufficient to activate I_{NaP} and generates imprecise spiking as observed in DGCs from epileptic rats. Conversely, in epileptic rats, blockade of KARs or I_{NaP} restores high spike timing precision. Aberrant EPSCs_{KA} also drastically disrupt the spike timing precision at the principal cortical inputs of the dentate gyrus, that is the perforant path (PP); an effect also mediated by I_{NaP} activation.

We conclude that a selective interplay between aberrant mossy fiber-mediated EPSCs_{KA} and I_{NaP}, severely alters the temporal precision of EPSP--spike coupling in DGCs of chronic epileptic rats.

Keywords: dentate granule cells, I_{NaP}, kainate receptors, mossy fiber sprouting, spike timing, temporal lobe epilepsy

Jérôme Epsztein, Elisabetta Sola, Alfonso Represa, Yehezkel Ben-Ari and Valérie Crépel

INMED, INSERM U901, Université de La Méditerranée, Parc scientifique de Luminy, BP 13, 13273, Marseille Cedex 09, France

Jérôme Epsztein and Elisabetta Sola contributed equally to this work.
Material and Methods
All experiments were approved by the Institut National de la Santé et de la Recherche Médicale Animal Care and Use Committee and the European Communities Council Directive of November 24, 1986 (86/ 609/EEC).

Pilocarpine Treatment
Adult male Wistar rats (~2 months old; Janvier Breeding Center, Le Genest-Saint-Isle, France) were injected intraperitonially (i.p.) with pilocarpine hydrochloride (325-340 mg/kg dissolved in NaCl 0.9%) 30 min after a low dose of cholinergic antagonist scopolamine methyl nitrate (1 mg/kg, i.p.). Approximately 60% of the rats experienced class IV/V seizures (Racine 1972). After 3 h of status epilepticus, diazepam (8 mg/kg) was injected intraperitonially. After a seizure-free period of several weeks, we selected for recordings and analysis only rats that experienced spontaneous seizures (4-14 months old; mean age = 6.7 ± 0.7 months old, chronic epileptic rats, n = 26) with a mossy fiber sprouting (see the Supplementary Fig. S1) according to the previously well-described Timm staining (Tauck and Nadler 1985; Represa et al. 1987).

Preparation of Hippocampal Slices
Animals were deeply anesthetized with chloral hydrate (350 mg/kg, i.p.) and decapitated. The brain was removed rapidly, the hippocampi were dissected, and transverse 400-µm-thick hippocampal slices were cut using HM650V MicroM tissue slicer in a solution containing the following (in mM): 110 choline, 2.5 KCl, 1.25 NaH2PO4, 25 NaHCO3, 7 MgCl2, 0.5 CaCl2, and 10 D-glucose (pH 5.5). Slices were then transferred for rest at room temperature (1 h) in oxygenated normal artificial cerebrospinal fluid (ACSF) containing the following (in mM): 126 NaCl, 3.5 KCl, 1.2 NaH2PO4, 26 NaHCO3, 1.3 MgCl2, 2.0 CaCl2, and 10 D-glucose, pH 7.4.

Patch-Clamp Recordings
Whole-cell recordings of dentate gyrus granule cells from chronic epileptic and control rats were obtained using the "blind" patch-clamp technique in a submerged chamber (ASCF; 30-32 °C) using low resistance electrodes (5-8 MΩ). For current-clamp experiments, electrodes were filled with an internal solution containing the following (in mM): 130 KMeSO4, 5 KCl, 5 NaCl, 10 H2O, 2 (2-hydroxyethyl)1-piperazine-ethanesulfonic acid (HEPES), 2.5 MgATP, 0.3 NaGTP, and 0.5% bicocytin, pH 7.25. For voltage-clamp experiments, the internal solution contained the following (in mM): 110 CsF, 20 CsCl, 11 sodium ethylene glycol tetraacetic acid, 10 HEPES, 1.25 MgCl2, 2.0 MgATP, 0.4 NaGTP, 10 phosphocreatine. Access resistance ranged between 10 and 20 MΩ, and the results were discarded if the access resistance changed by more than 20%. For loose cell-attached patch recordings, pipettes were filled with ACSF. Whole-cell recordings were performed using an Axoclamp 2B and a Multiclamp 700A amplifier (Axon Instruments, Molecular Devices, Union City, CA). Data were filtered at 2 kHz, digitized (20 kHz) with a Digidata 1200 and 1322A (Molecular Devices) to a personal computer, and acquired using Axoscope 7.0 and Clampex 9.2 softwares (PClamp, Axon Instruments, Molecular Devices, Union City, CA). Data were filtered at 2 kHz, digitized (20 kHz) with a Digidata 1200 and 1322A (Molecular Devices) to a personal computer, and acquired using Axoscope 7.0 and Clampex 9.2 softwares (PClamp, Axon Instruments, Molecular Devices, Union City, CA).

Electrical Stimulations
Small EPSPs (~3–5 mV) were evoked by weak stimulations performed via a bipolar NiCh electrode (~50 µm diameter, NI-0.7F, Phynem, Paris) positioned either in the inner one-third of the molecular layer of the dentate gyrus to stimulate proximal inputs (PI; i.e., associational/commissural inputs in controls and recurrent mossy fiber inputs in epileptic rats) or in the outer one-third of the molecular layer of the dentate gyrus to stimulate distal perforant inputs (PP) in control and epileptic rats. The stimulus intensity, pulse duration, and frequency were around 30V, 70 µs, and 0.2 Hz, respectively. Using these stimulation parameters DGCS always discharged in single-spoke mode and never in burst firing mode. Following action potential, the decay of EPSP was curtailed due to a reset of the membrane potential as previously reported (Hauser et al. 2001). To examine the PI- and PP-EPSP-spike coupling, EPSPs were recorded at around ~50 mV (threshold holding potential), a potential at which EPSPs triggered cell firing, in about 50% of the trials both in DGCS from control and epileptic rats. Therefore, suprathreshold and threshold EPSPs could be recorded at the same potential, and EPSP kinetics could be analyzed together with EPSP-spike latency and spike timing precision (Fricker and Miles 2000; Maccacera and Dingledine 2002). The spike latency was defined as the delay between EPSP onset and action potential peak; the degree of spike timing precision was assessed by calculating the SD of the spike latency from around 50 trials (jitter). All recordings were performed in the presence of 10 µM bicuculline, 40 µM D-APV (or 10 µM MK801), and 5 µM CGP 55845, except when otherwise stated. Because, it has been previously reported that PP-EPSP could display an enhanced NMDA receptor-mediated component leading to burst discharges in DGCS from kindled rats (Lynch et al. 2000), we also tested PP stimulations in the absence of NMDA receptors antagonists (but in the presence of GABA_, and GABA_, receptor antagonists). In our experimental condition, PP stimulations did not evoke burst but single-spoke mode discharges in DGCS from epileptic rats (n = 9 out of 9 cells). Furthermore, the temporal precision of PP-EPSP-spike coupling was not significantly different in the absence, (mean SD = 3 ± 0.5 ms; n = 9 cells) or in the presence (mean SD = 3 ± 0.5 ms; n = 9 cells; P > 0.05, not shown) of NMDAR blocker (40 µM D-APV). Therefore, NMDARs contributed neither to the firing mode nor to the temporal precision of PP inputs in DGCS from chronic epileptic rats when PP-EPSPs were evoked by weak stimulations. Moreover, PP-EPSPs were mediated by AMPAR, because they were fully abolished by 100 µM GYKI 52466 in both DGCS from control (n = 6) and epileptic rats (n = 6). To test the impact of PI-EPSP on PP-EPSP on spike timing precision (SD), the stimulation parameters were adjusted such that the summation of subthreshold PP-EPSPs with PI-EPSPs was not significantly different between control and epileptic rats (mean summation = 165 ± 7%, n = 8 cells in control rats; mean summation = 157 ± 8%, n = 11 cells in epileptic rats; P > 0.05). Accordingly, the total amplitude of the summed subthreshold EPSP (PP-EPSP + PI-EPSP) was not significantly different between control and epileptic rats (mean = 59.9 ± 0.4 mV; n = 8 cells in control rats; mean = 56.0 ± 0.5 mV; n = 11 cells in epileptic rats; P > 0.05). Different interstimulus intervals (ISI, ranging from 20 to 50 ms) were used, as mean ISI = 36.3 ± 2.4 ms in 8 cells from control and mean ISI = 36.4 ± 2.0 ms in 11 cells from epileptic rats; P > 0.05) were tested in DGCS from control and epileptic rats. Because spike timing precision was not correlated with ISI (r = 0.1 ± 0.05), the data were pulled together. For PP-EPSP integration with other PP-EPSP inputs, 2 electrodes were placed in the outer one-third of the molecular layer on each side of the recording site and >200 µm apart from each other (mean mean ISI = 35.0 ± 2.4 ms; mean summation = 167 ± 6%; n = 4).

Data Analysis
The kinetics of synaptic events was analyzed using MiniAnalysis 6.0.1 (Synaptosoft, Decatur, GA). The experiments performed in the presence of AMPAR antagonist [50-100 µM 1-(4-aminophenyl)-i-methyl-7,8-methylenedioxy-5H-2,3-benzodiazepine (GYKI 52666)] or KAR blocker [10 µM (2Z,4R)-i-methylglutamic acid (SYM 2081)] enabled us to determine the statistical limit to classify events as EPSP, (half width > 50 ms, see Fig. 2) or EPSP (half width > 50 ms, P < 0.05, see Figs 1 and 2). Consequently, the change triggered by a PP stimulation was not significantly different between control and epileptic rats. Because spike timing precision was not correlated with ISI (r = 0.1 ± 0.05), the data were pulled together. For PP-EPSP integration with other PP-EPSP inputs, 2 electrodes were placed in the outer one-third of the molecular layer on each side of the recording site and >200 µm apart from each other (mean mean ISI = 35.0 ± 2.4 ms; mean summation = 167 ± 6%; n = 4).

Downloaded from https://academic.oup.com/cercor/article-abstract/20/4/899/307308 on 27 July 2018
Cerebral Cortex April 2010, V 20 N 4 899

by guest
Granule cells from control (black circles) and spike (E-S) latency and latency SD plotted against EPSP half width (hw) for control (left) and epileptic (right) rats, respectively. (Figure 1). Holding potential; black and red traces depict the average subthreshold EPSPs from recorded simultaneously to the suprathreshold EPSPs shown in A in the same cells. Bar graph of the mean EPSP-Spike latency SD in control cells (n = 50) compared to epileptic cells (n = 77). (Figure 1B). SimEPSPKA were also injected before evoked PP-EPSPs in control DGCs (mean delay = 35.0 ± 1.5 ms; mean amplitude of simEPSPKA + PP-EPSP = 5.8 ± 0.4 mV, n = 10 cells).

Statistical Analysis
All values are given as means ± SEM. Statistical analysis was performed using SigmaStat 3.1 (Systat Software, Richmond, CA). For comparison between 2 groups, the unpaired Student’s t-test was used if the data passed the normality and the equal variance test; otherwise, the Mann-Whitney rank-sum test was used. For comparison within one group before and after a pharmacological treatment or at different holding potential, a paired Student’s t-test was used if the data passed the normality test; otherwise, the Wilcoxon signed rank test was used. The level of significance was set at P < 0.05. n refers to the number of cells, except when otherwise stated.

Morphological Analysis
Timm staining was performed routinely on sections used for electrophysiological recordings. In brief, sections were incubated for 15 min in a Na2S solution and fixed with 4% paraformaldehyde. Slices were resectioned in a cryostat (40 µm thick) and processed with the Timm solution (Epsztein et al. 2005).

Chemicals
Drugs were purchased from Sigma (St Louis, MO) (TTX, bicuculline, pilocarpine hydrochloride, and scopolamine methyl nitrate), Tocris Neuramin (Bristol, UK) (GYKI 52466, SYM 2081, bicuculline, NBQX, CNQX, D-APV, MK 801, CGP 58545, 4-AP, CdCl2 phenytoin), and Roche (Basel, Switzerland) (diazepam).

Results
Shift of EPSP-Spike Coupling from High to Low Temporal Precision in DGCs from Epileptic Rats
Somatic whole-cell recordings were made from 111 DGCs from control rats and 95 DGCs from chronic epileptic rats ~5 months after the initiating status epilepticus. All included animals experienced spontaneous seizures together with mossy fiber sprouting (Supplementary Fig. S1; Epsztein et al. 2005). In keeping with earlier studies, the resting membrane potential, the input resistance, and the membrane time constant were similar in DGCs from control and epileptic rats (see Table 1, and Lynch et al. 2000; Epsztein et al. 2005). EPSPs were generated by electrical stimulations in the inner one-third of the molecular layer of the dentate gyrus at 0.2 Hz (EPSPs). To examine the EPSP-spike coupling, weak stimulations were used (see methods) in order to evoke small EPSPs (~5 mV) around -50 mV (threshold holding potential), a potential at which EPSPs triggered cell firing in single-spike mode (Fig. 1A) in about 50% of the trials (see Table 1) both in DGCs from control and epileptic rats. Therefore, suprathreshold and subthreshold EPSPs could be recorded at the same potential, and EPSP kinetics could be analyzed together with EPSP-spike latency and spike timing precision (Fricker and Miles 2000; Maccacferri and Dingledine 2002) (Fig. 1). The spike latency was defined as the delay from an exponentially rising and falling waveform: \(f(t) = a(1 - \exp(-t/t_{\text{off}})) \exp(-t/t_{\text{on}}) \). For simulated EPSPs (simEPSP), \(t_{\text{on}} \) was set to 0.5 ms, and \(t_{\text{off}} \) to 10 ms. For simulated EPSPs (simEPSP), \(t_{\text{on}} \) was set to 2 ms, and \(t_{\text{off}} \) to 70 ms. The simulated EPSP had a constant amplitude (~5 mV) and were recorded at stable holding potentials (Vh ~ -50 mV, SD = 0.7 mV, n = 18), similarly to synaptically evoked EPSP in which we only considered experiments with holding potential displaying very small variations (Vh ~ -50 mV, SD = 0.8 mV, n = 43). The current waveform generate either fast simEPSP (rise time = 3.7 ± 0.5 ms, decay time = 19.7 ± 1.7 ms, half width = 21.2 ± 2.0 ms at Vrest ~ -70 mV; n = 5 cells, Fig. 4A) or slow simEPSP (rise time = 109.7 ± 9.5 ms, decay time = 820 ± 3.3 ms at Vrest ~ -70 mV; n = 18 cells, Fig. 4B). SimEPSPs were also injected before evoked PP-EPSPs in control DGCs (mean delay = 35.0 ± 1.5 ms; mean amplitude of simEPSPs + PP-EPSP = 5.8 ± 0.4 mV, n = 10 cells).
between EPSP onset and action potential peak; the degree of spike timing precision was assessed by calculating the SD of the spike latency (jitter) from around 50 trials. In a first set of experiments, AMPA/kainate receptor-mediated EPSPs were isolated in the presence of blockers of NMDA (40 μM D-APV or 10 μM MK801), GABA_A (10 μM bicuculline), and GABA_B (5 μM CGP 55845) receptors (Epsztain et al. 2005). In these conditions, EPSPs evoked in control DGCs generated time-locked spikes (mean SD = 1.6 ± 0.2 ms, n = 38 cells) at short latencies (mean = 5.5 ± 0.3 ms, n = 38 cells), corresponding to their rising phase (Fig. 1A–C). In contrast in epileptic rats, the spike latency was significantly longer with spikes generated either from the rising phase or during the long-lasting decay of EPSPs (up to 100 ms, mean latency = 11.3 ± 2.0 ms, n = 23 cells, P < 0.01, Fig. 1A,B), leading to an important decrease in spike timing precision (mean SD = 12.0 ± 3.6 ms, n = 23 cells, P < 0.01, Fig. 1C). These changes in EPSP spike timing precision were due neither to a difference in EPSP amplitude (average amplitude = 5.6 ± 0.4 mV, n = 25 cells in epileptic rats vs. 5.4 ± 0.2 mV, n = 38 cells in control rats, P > 0.05), nor to a change in intrinsic membrane properties, because action potential threshold, amplitude, half width and firing probability were not significantly different between DGCs from control and epileptic rats (P > 0.05; see Table). Because EPSP kinetics plays an important role in the precision of EPSP-spike coupling in different neuronal populations (Fricker and Miles 2000; Maccaferri and Dangledine 2002; Rodriguez-Molina et al. 2007), we compared EPSP half width in DGCs from control and pilocarpine-treated animals (in the presence of blockers of NMDA, GABA_A, and GABA_B receptors). In control neurons, only fast kinetics EPSPs were observed (EPSP_fast, half width < 50 ms, mean = 34.5 ± 2.1 ms, n = 38 cells, Fig. 1D,E) and triggered time-locked spikes (see above). In contrast, in DGCs from epileptic rats in addition to EPSP_fast (half width < 50 ms, mean = 24.3 ± 2.2 ms, n = 12 cells, Fig. 2), slower EPSPs were observed (EPSP_slow, half width > 50 ms, mean = 85.0 ± 8.2 ms, n = 11 cells, Fig. 1D,E and Fig. 2E,F). These EPSP_slow generated spikes with low temporal precision (mean latency = 17.7 ± 3.0 ms, mean SD = 23.5 ± 5.9 ms, n = 11 cells, Fig. 2B,D,F,G), whereas EPSP_fast generated time-locked spikes (mean latency = 5.5 ± 0.8 ms, mean SD = 1.4 ± 0.2 ms, n = 12 cells, Fig. 2A,C,F,G), as observed in control

| Table 1 |
|---------------------------|---------------------------|
	Control	Epileptic
Resting membrane potential (mV)	-70.5 ± 0.7 (n = 32)	-68.3 ± 0.3 (n = 28)
Membrane time constant (ms)	17.7 ± 1.6 (n = 32)	19.9 ± 1.3 (n = 28)
Action potential firing threshold (mV)	-40.6 ± 1.2 (n = 20)	-40.7 ± 1.1 (n = 23)
Spike amplitude (mV)	53.7 ± 5.7 (n = 20)	54.1 ± 6.0 (n = 23)
Spike half width (ms)	1.05 ± 0.07 (n = 32)	0.91 ± 0.04 (n = 23)
Firing probability (%)	50.6 ± 6.4 (n = 20)	49.6 ± 3.9 (n = 23)

![Diagram](https://example.com/diagram.png)
DGCS. Accordingly, there was a strong correlation between EPSP half width and EPSP-spike coupling precision (SD) in DGCS from epileptic rats (r = 0.87, n = 23 cells).

In conclusion, temporal precision of EPSP-spike coupling is strongly reduced in DGCS from epileptic rats due to the presence of aberrant slow EPSPs.

Postsynaptic KARs Decrease the Temporal Precision of EPSP-Spike Coupling in DGCS from Epileptic Rats

We have previously shown that DGCS from epileptic rats additionally display aberrant slow synaptic events mediated by kainate receptors (KARs, EPSP_{KA}) in addition to fast synaptic events mediated by AMPA receptors (EPSP_{AMPA}) recorded in DGCS from control animals (Epsztein et al. 2005). We therefore examined the contribution of these slow EPSP_{KA} to the decreased spike timing precision of DGCS from epileptic rats. In the presence of AMPA receptor (AMPAR) antagonist (GYKI 52466; 50–100 μM, in addition to NMDA, GABA_A, and GABA_B receptor antagonists), electrical stimuli evoked EPSP_{KA} that were blocked by the addition of the mixed AMPAR/KAR antagonist CNQX (50 μM; n = 22; data not shown). EPSP_{KA} had slow kinetics (mean half width = 116.4 ± 12 ms, n = 22 cells, Fig. 2E,F and Fig. 3A) similar to EPSP_{slow} (P < 0.05) and generated spikes with long latencies (mean = 41.9 ± 9.3 ms, n = 17 cells) and high temporal variability (mean SD = 36.4 ± 8.9 ms; n = 17 cells; Fig. 2B,D,F,G). On the other hand, EPSP_{fast} (half width < 50 ms) generating precise spike timing (Fig. 2A) were never recorded in the presence of GYKI 52466, confirming that they were mediated by AMPARs (Fig. 2B,F). These results suggest that late spikes with poor temporal precision are generated by the activation of postsynaptic KARs selectively present in DGCS from epileptic rats.

To further assess the role of postsynaptic KARs in the decreased spike timing precision in DGCS from epileptic rats, we tested the effect of a functional antagonist of KARs (10 μM SYM 2081; DeVries and Schwartz 1999; Cossart et al. 2002; Epsztein et al. 2005; Goldin et al. 2007) on EPSP_{slow} (recorded in the presence of NMDA, GABA_A, and GABA_B receptors antagonists). SYM 2081 significantly reduced the half width of long-lasting EPSPs (from 82.1 ± 11.5 ms to 41.8 ± 6.3 ms, n = 5 cells, P < 0.02, Fig. 2E) and the spike latency (from 17.5 ± 5.1 ms to 5.2 ± 0.6 ms, n = 5 cells, P < 0.05) and dramatically increased spike timing precision (mean SD: from 22.6 ± 9.7 ms to 1.4 ± 0.4 ms, n = 5 cells, P < 0.05, Fig. 2B,H). The mean half width of EPSPs recorded in the presence of SYM 2081 in DGCS from epileptic rats was not significantly different from that of EPSPs recorded in DGCS from control rats (P > 0.05, Fig. 3A). Accordingly, the mean spike latency and temporal precision were also not significantly different (P > 0.05). These EPSPs were blocked by AMPA receptors antagonist (GYKI 52466; 50–100 μM, not shown).

These data show that the decreased temporal precision of EPSP-spike coupling observed in DGCS from chronic epileptic rats is mediated by KARs.

Voltage-Dependent Amplification of EPSP_{KA} but not EPSP_{AMPA} via the Activation of Persistent Sodium Current

The activation by EPSPs of voltage-gated conductances near threshold is an important parameter in the modulation of EPSP time course and of EPSP-spike coupling temporal precision (Stafstrom et al. 1985; Stuart and Sakmann 1995; Fricker and...
The EPSP integral is a good index of voltage-dependent amplification (Stuart and Sakmann 1995; Fricker and Miles 2000). We therefore examined the integral of pure EPSP$_{KA}$ in DGCs from epileptic rats and pure EPSP$_{AMPA}$ in DGCs from control and epileptic rats between Vrest (~-70 mV) and threshold holding potential (~-50 mV). We found that the EPSP$_{AMPA}$ recorded in DGCs from control rats and EPSP$_{AMPA}$ recorded in DGCs from epileptic rats (in the presence of SYM2081) were not significantly amplified with voltage (+7.1 ± 8.0% of change, n = 11 and +13.2 ± 32.8% of change, n = 5; respectively; P > 0.05, Fig. 3A,B,E). In contrast, EPSP$_{KA}$ recorded in DGCs from epileptic rats showed a strong voltage-dependent amplification (+122.3 ± 29.1%, n = 13 cells, P < 0.01, Fig. 3A,B,E). One candidate to mediate this effect is the persistent Na$^+$ current (I_{NaP}) which is activated below firing threshold and amplifies EPSPs in hippocampal and neocortical neurons (Stuart and Sakmann 1995; Schwindt and Crill 1995; Andreasen and Lambert 1999; Fricker and Miles 2000). To test this hypothesis, we used phenytoin, a selective blocker of Na$^+$ inward currents in DGCs from control rats (see methods) to restore the voltage-dependent amplification of EPSPKA leading to a significant amplification with depolarization (from 41.9 ± 13.9 μA cm$^{-2}$ to 21.3 ± 10.1%, n = 6 cells, P > 0.05, Fig. 3D,E) and EPSP$_{KA}$-spike latency was significantly reduced (from 41.9 ± 9.3 ms, n = 17 cells to 13.9 ± 2.5 ms, n = 7; P < 0.05), whereas spike timing precision was significantly increased (mean SD = 7.8 ± 2.0 ms, n = 7 cells in the presence of 10 nM TTX versus mean SD = 36.4 ± 8.9 ms; n = 17 cells in the absence of 10 nM TTX, P < 0.02, Fig. 3D,F).

Therefore, EPSP$_{KA}$ is selectively amplified with depolarization via the activation of I_{NaP} and this dramatically decreases the temporal precision of EPSP-spike coupling in DGCs from epileptic rats.

Simulated Slow EPSP$_{KA}$ Tune Control Granule Cell to Fire with a Low Temporal Precision

The most straightforward difference between EPSP$_{KA}$ and EPSP$_{AMPA}$ is their kinetics. We reasoned that this difference might explain the selective amplification of EPSP$_{KA}$ leading to jittered spikes in DGCs from epileptic rats. To test this hypothesis we injected depolarizing events through somatic current injections in DGCs from control rats (see methods) to simulate the slow kinetics of EPSP$_{KA}$ (simEPSP$_{KA}$, rise time = 10.9 ± 0.5 ms, decay time = 109.7 ± 9.5 ms, half width = 820 ± 3.3 ms at Vrest ~-70 mV, n = 18 cells, Fig. 4B). Fast simulated EPSP$_{AMPA}$ (simEPSP$_{AMPA}$, rise time = 3.8 ± 0.3 ms, decay time = 18.8 ± 1.6 ms, half width = 21.1 ± 1.4 ms at Vrest ~-70 mV; n = 7 cells, Fig. 4A) were also evoked as a control of the somatic current injection procedure. Amplitude was adjusted during the experiment to generate small simEPSPs (~5 mV) at threshold holding potential (~-50 mV; average amplitude = 5.4 ± 0.4 mV, n = 18 for simEPSP$_{KA}$ and 6.0 ± 0.7 mV, n = 7 for simEPSP$_{AMPA}$, P > 0.05). Amplification of simEPSPs was calculated from the ratio of integral at ~-70 and ~-50 mV as for synaptically evoked EPSPs. As expected, simEPSP$_{AMPA}$ were not amplified with depolarization in control DGCs (15.6 ± 5.1% of change, n = 7 cells, P > 0.05, Fig. 4A,C) and generated spikes at short latency (mean 5 ± 0.5 ms, n = 8 cells) with little variability (mean SD = 2.7 ± 0.4 ms, n = 8, Fig. 4A,D) as observed for synaptically evoked EPSP$_{AMPA}$ (see above). In contrast, simEPSP$_{KA}$ were strongly amplified with depolarization (+96.8 ± 8.8%).
9.5% of change, \(n = 18 \text{ cells}, P < 0.001, \) Fig. 4B,C) and triggered spikes at very long latencies from a plateau potential (mean latency = 60.4 ± 13.5 ms, \(n = 18 \) cells) with a large variability (mean SD = 24.2 ± 4.0 ms, \(n = 18 \) cells, Fig. 4B,D) in control DGCs. EPSP-spike coupling latency and temporal precision (SD) were significantly different between simEPSPKA and simEPSPAMPA (\(P < 0.001 \)). Therefore, in control DGCs current injections of a waveform mimicking the slow shape of EPSPKa is sufficient to trigger a voltage-dependent amplification leading to jittered spikes as observed in DGCs from epileptic rats. This amplification was due to the activation of \(I_{\text{NaP}} \), because it was fully abolished by 100–200 \(\mu \text{M} \) phenytoin (\(+12.7 \pm 14.1% \) of change between −70 and −50 mV, \(P > 0.05, n = 7 \) cells, Fig. 4C) or 10 nM TTX (\(+25.1 \pm 11.6% \) of change between −70 and −50 mV, \(P > 0.05, n = 9 \) cells, Fig. 4B,C). Moreover, 10 nM TTX significantly reduced simEPSPKa-spike latency (from 54.0 ± 2.8 ms to 31.2 ± 4.7 ms, \(n = 9, P < 0.01 \)) and increased spike timing precision (from 24.1 ± 3.4 ms to 9.1 ± 1.7 ms, \(n = 9, P < 0.01, \) Fig. 4B,D).

We conclude that the slow kinetics of EPSPKa is sufficient to activate \(I_{\text{NaP}} \) and tunes control DGCs to fire with a low temporal precision as observed in DGCs from epileptic rats.

Persistent Sodium Current is not Altered in DGCs from Epileptic Rats

\(I_{\text{NaP}} \) is enhanced in cortical and subicular neurons from animal models and patients with temporal lobe epilepsy (TLE) (Agrawal et al. 2003; Vreugdenhil et al. 2004). In order to clarify whether \(I_{\text{NaP}} \) could be modified in DGCs from epileptic animals, we performed a series of experiments in voltage-clamp mode. \(I_{\text{NaP}} \) is a \(\text{Na}^+ \) current that activates below spike threshold and slowly inactivates (Crill 1996). \(I_{\text{NaP}} \) was unmasked by blocking \(K^+ \) currents using a CsF-based intracellular solution (see methods) and by adding 5 mM 4-AP in the perfusing ACSF; \(\text{Ca}^{2+} \) currents were also suppressed by adding 200 \(\mu \text{M} \) CdCl2 in a phosphate-free ACSF, and by decreasing the external concentration of CaCl2 (CaCl2/MgCl2 ratio was 0.3 mM/4.3 mM). Recordings were performed in the additional presence of GABAergic and glutamatergic receptors blockers (10 \(\mu \text{M} \) biccuculline, 40 \(\mu \text{M} \) D-APV, and 10 \(\mu \text{M} \) NBQX). \(I_{\text{NaP}} \) was evoked by a slow depolarizing voltage-ramp command (speed 35 mV/s; −60 to −10 mV), in order to inactivate the large transient \(\text{Na}^+ \) current, thereby revealing the smaller persistent current \(I_{\text{NaP}} \) (Supplementary Fig. S2). The current evoked by the same protocol in the presence of 1 \(\mu \text{M} \) TTX was then subtracted to isolate the TTX-sensitive \(I_{\text{NaP}} \) both in control and epileptic rats.

In this condition, we observed that \(I_{\text{NaP}} \) displayed a similar I/V curve in DGCs from control and epileptic rats as shown in Supplementary Figure S2. Accordingly, the potential of its maximal activation was not different between control (\(-41.4 \pm 1.4 \text{ mV}, n = 7 \)) and epileptic rat recordings (\(-37 \pm 2 \text{ mV}, n = 5, P > 0.05 \)), and the maximal amplitude also did not show any significant change (111.1 ± 25.7 pA, \(n = 7 \), in control and 112 ± 10.4 pA, \(n = 5 \), in epileptic rat recordings, \(P > 0.05 \)). Therefore, \(I_{\text{NaP}} \) is not modified in DGCs from epileptic rats as compared with control rats.

Reduced Temporal Precision of EPSP-Spike Coupling in Physiological Condition

Our experiments assessing temporal precision of EPSP-spike coupling were carried out in the presence of a cocktail of
Antagonists (including NMDA and GABA receptor blockers). Because NMDAR-mediated synaptic events have a long duration and can generate spikes with low temporal precision (Maccarelli and Dingledine 2002), we assessed their contribution in the reduced spike timing precision observed in DGCs from epileptic rats (in the absence of NMDAR antagonists but in the presence of GABA_A and GABA_B receptors antagonists). Temporal precision of EPSP-spike coupling was not significantly different in the absence (mean latency = 16.1 ± 2.3 ms and mean SD = 13.8 ± 3.1 ms; n = 18 cells) or in the presence of NMDARs blockers (40 μM D-APV or 10 μM MK801; mean latency = 11.3 ± 2.0 ms, mean SD = 12.0 ± 3.6 ms, n = 23 cells, P > 0.05, Supplementary Fig. S3).

GABAergic inhibition controls cell firing (Fricker and Prince 1984; Fricker and Miles 2000; Coulter and Carlson 2007) and can strongly restrain the temporal window of discharge in specific neuronal types (Pouille and Scanziani 2001; Cabernet et al. 2005; Luna and Schoppa 2008). It was therefore important to also determine the temporal precision of EPSP-spike coupling in DGCs in the absence of GABA_A receptor antagonist (i.e., in normal ACSF both in control and epileptic animals. In this condition, electrical stimulations in the inner one-third of the molecular layer of the dentate gyrus (at 0.2 Hz) evoked either an EPSP initiating firing or an EPSP followed by a di-synaptic IPSP preventing generation of action potentials both in DGCs from control and epileptic rats (Fig. 5A). When DGCs fired they displayed time-locked spikes in control rats (mean latency = 5.3 ± 0.5 ms, and mean SD = 2.6 ± 0.6 ms, n = 6), and jittered spikes in epileptic rats (mean latency = 15.7 ± 2.6 ms, and mean SD = 13.6 ± 3.3 ms, n = 15, Fig. 5A); both latency and SD values were statistically different between control and epileptic rats (P < 0.01). Thus, DGCs from epileptic rats still exhibited a strong reduction of temporal precision of EPSP-spike coupling in normal ACSF condition. In addition, we assessed the temporal precision of EPSP-spike coupling in less invasive recording conditions (using the loose-patch configuration, see Methods). This further confirmed that DGCs from epileptic rats displayed jittered spikes (SD: ranging from 0.3 to 9.9 ms, mean SD = 5.3 ± 1.5 ms, n = 15) in contrast to DGCs from control rats that discharged with a high temporal precision (SD: ranging from 0.4 to 1.5 ms, mean SD = 0.7 ± 0.2 ms, n = 7, P < 0.05; Fig. 5B).

Many of our recordings also included several spontaneous EPSPs that generated action potentials in single-spike mode. We also examined the temporal precision of EPSP-spike coupling for these events. In DGCs from control rats (n = 8), spontaneous EPSPs always triggered spikes from their rising phase leading to a high temporal precision, whereas in DGCs from epileptic rats (n = 15) spontaneous EPSPs displayed a variable temporal pattern of EPSP-spike coupling with spikes generated either from the rising phase or during the long-lasting plateau of spontaneous EPSPs (Fig. 5C). In vivo, the membrane potential of DGCs spontaneously fluctuates between a hyperpolarized state (down state) and a depolarized state (up-state) (Hahn et al. 2007). In a few cases, where the membrane potential showed spontaneous up-down state-like behavior in DGCs from epileptic rats (n = 3), EPSPs evoked during the up-state–like period generated long-lasting plateaus associated with late spikes (Supplementary Fig. S4).

Therefore, DGCs from epileptic rats exhibit a strong shift from high to low temporal precision of EPSP-spike coupling in physiological conditions.
$SD = 3.6 \pm 0.5 \text{ ms, } n = 8 \text{ cells, } P > 0.05 \text{ when compared with PP-EPSP alone; Fig. 6B,D). Therefore, slow EPSP}_{K_A} \text{ is necessary and sufficient to alter the spike timing precision of PP-EPSPs through } I_{NaP} \text{ activation in control and TLE DGCs. Finally, to determine whether these effects also occur in more physiological conditions, stimulations were performed in the absence of blockers and spikes were recorded using the cell-attached configuration to preserve intracellular medium. Stimulation of PP generated spikes with high temporal precision (mean } SD = 1.4 \pm 0.3 \text{ ms, } n = 4; \text{ Fig. 6C). However, when combined PI-EPSP stimulations were applied (ISI 20-50 ms; mean } SI = 30 \pm 4 \text{ ms, } n = 4, \text{ see Methods) the temporal precision of PP-EPSP-spike coupling was greatly reduced (mean } SD = 3.3 \pm 0.3 \text{ ms, } n = 4; \text{ } P < 0.05; \text{ Fig. 6C). This effect was due to } I_{Na} \text{ activation because it was reversed in the presence of TTX 10 nM (mean } SD = 1.3 \pm 0.3 \text{ ms; } n = 3; \text{ } P < 0.01; \text{ Fig. 6C). All in all, these experiments show that, in DGCs from epileptic rats, the specific interplay between aberrant PI-EPSP}_{K_A} \text{ and } I_{NaP} \text{ tune PP inputs to fire with low spike timing precision during synaptic integration.}
Discussion

We report a major decrease in the temporal precision of EPSP-spike coupling in DGCs from epileptic rats when compared with controls during single-spike mode discharge. We directly link this phenomenon to the generation of slow EPSPs by recurrent mossy fibers that, unlike EPSPs, generate long-lasting plateaus and jittered spikes through the activation of persistent sodium current (I_NaP). Aberrant EPSPs also tune PP inputs to fire with a low temporal precision through I_NaP activation. Therefore, aberrant KAR-operated mossy fiber synapses heavily impact the temporal precision of input-output operation of DGCs notably at neocortical synapses in the dentate gyrus of epileptic rats.

KAR-Operated Mossy Fibers Synapses Reduce Temporal Fidelity of EPSP-Spike Coupling in DGCs

Mossy fibers sprout in human patients and animal models of TLE and form novel aberrant synapses onto dentate granule neurons (Tauck and Nadler 1985; Represa et al. 1987; Sutula et al. 1989; Isokawa et al. 1993; Mello et al. 1993; Franck et al. 1995; Okazaki et al. 1995; Buckmaster and Dudek 1999). These in turn augment the excitatory drive and favor the generation of epileptiform activities (Tauck and Nadler 1985; Wuarin and Dudek 1996; Patrylo and Dudek 1998; Hardison et al. 2000; Gabriel et al. 2004; Morgan and Soltész 2008). This aberrant excitatory circuit between DGCs generates slow synaptic events mediated by KARs that are not present in controls (Epsztein et al. 2005; present paper). Thus, the nature of excitatory synaptic transmission is changed in DGCs from chronic epileptic rats. In addition to synaptic rewiring, voltage-gated currents (including I_NaP, I_Ca,T, I_Na,P) can be modified in epileptic neurons (Chen et al. 2001; Agrawal et al. 2003; Bernard et al. 2004; Shah et al. 2004; Vreugdenhil et al. 2004; Yaari et al. 2007; Beck and Yaari 2008). Altogether these alterations can strongly modify the input-output properties of neuronal networks converting the single-spike mode discharge, usually observed in controls, into bursting activity (Lynch et al. 2000; Beck and Yaari 2008). We now show that recurrent mossy fibers not only favor epileptiform activities (Tauck and Nadler 1985; Wuarin and Dudek 1996; Nadler 2003) but also affects DGC function beyond seizures by reducing the temporal precision of EPSP-spike coupling during single-spike mode discharge. These changes in EPSP-spike latency and spike timing precision were not due to modifications of intrinsic membrane properties but rather to the slow kinetics of EPSPs when compared with EPSPs (Castillo et al. 1997; Freking et al. 1998; Kidd and Isaac 1999; Cossart et al. 2002; Epsztein et al. 2005; Goldin et al. 2007; Barberis et al. 2008). Our experiments revealed that the presence of slow EPSPs is both necessary and sufficient to decrease the temporal fidelity of EPSP-spike coupling in DGCs from epileptic rats, because 1) pharmacologically isolated EPSPs specifically generate spikes with poor temporal precision, in contrast to fast EPSPs, that trigger time-locked spikes both in DGCs from control and epileptic rats; 2) blockade of EPSPs completely restores the high temporal fidelity of EPSP-spike coupling and the fast kinetics of EPSPs in DGCs from epileptic rats; 3) generation of simulated EPSPs with as slow kinetics as EPSPs is sufficient to introduce a low spike timing precision in DGCs from control rats as observed in DGCs from epileptic rats. Furthermore, we showed that NMDARs do not contribute to the decreased temporal precision of EPSP-spike coupling in DGCs from epileptic rats. This is in line with the small contribution of NMDARs in synaptic transmission at recurrent mossy fibers synapses in chronic epileptic rats (Molnar and Nadler 1999; Lynch et al. 2000).

Therefore postsynaptic KARs, but not AMPARs or NMDARs, reduce the temporal fidelity of EPSP-spike coupling in DGCs from chronic epileptic rats during single-spike mode discharge.

I_NaP Selectively Amplifies Slow EPSPs

Previous studies have reported that the activation by EPSPs of voltage-gated conductances near threshold, like sodium persistent or potassium currents, can shape EPSP time course and regulate spike timing precision (Fricker and Miles 2000; Verfaeke et al. 2006). Activation of voltage-dependent potassium currents favors temporal fidelity of EPSP-spike coupling (Fricker and Miles 2000; Axmacher and Miles 2004), whereas activation of persistent sodium current prolongs the time course of synaptic events (Stuart and Sakmann 1995; Schwindt and Grill 1995; Andreasen and Lambert 1999), leading to imprecise spiking (Fricker and Miles 2000; Verfaeke et al. 2006). Therefore, interaction of EPSPs with intrinsic conductances plays a central role in the modulation of the output mode of neurons. Here we found that in control DGCs, the time course of EPSPs is not shaped by intrinsic conductance activation because there is no voltage-dependent amplification of EPSPs. In contrast, in DGCs from epileptic rats, we observed that EPSPs, but not EPSPs, are selectively amplified near threshold through I_NaP activation leading to long-lasting plateau potentials associated with poor spike timing precision. Indeed, application of drugs that have been shown to preferentially block I_NaP phenytoin (Kuo and Bean 1994; Segal and Douglas 1997; Lampl et al. 1998; Fricker and Miles 2000; Yue et al. 2005) or TTX at low nanomolar concentrations (Hammarstrom and Gage 1998; Del Negro et al. 2005; Yue et al. 2005; Kang et al. 2007; Koizumi and Smith 2008) prevents EPSPs voltage-dependent amplification and significantly increased spike timing precision in DGCs from epileptic rats. Alteration of low threshold T-type Ca2+ conductances has been reported in DGCs from chronic epileptic rats and human patients (Beck et al. 1998). A primary involvement of this conductance is however unlikely here given that T-type Ca2+ currents are mostly inactivated at depolarized membrane potentials where EPSPs are evoked. Furthermore, I_NaP blockers were sufficient to restore a high spike timing precision in DGCs from epileptic rats. The proximal location of recurrent mossy fiber synapses (Represa et al. 1993; Okazaki et al. 1995) may facilitate the activation of I_NaP by aberrant EPSPs because this current is predominantly found in the perisomatic region or the proximal axon (Stuart and Sakmann 1995; Yue et al. 2005; Astman et al. 2006; Beck and Yaari 2008). The specific voltage-dependent amplification of EPSPs but not EPSPs is however puzzling because these events are both generated at the same dendritic site (in the inner molecular layer) in the same cell type. Thus the difference would not result from a preferential location-dependent activation of I_NaP or a differential involvement of voltage-dependent potassium currents as observed between pyramidal cells and interneurons in the CA1 area of the control hippocampus (Fricker and Miles 2000). Furthermore, potassium currents do not critically shape the kinetics of small EPSPs.
at near threshold potentials (Axmacher and Miles 2004). Our results rather suggest a role for EPSP kinetics in the specific activation of \(I_{NaP} \). Experiments using simulated EPSPs (generated through somatic current injection) demonstrate that the slow shape of EPSP\(KA \) but not the fast one of EPSP\(AMPA \) is sufficient to activate \(I_{NaP} \) in control DGCs leading to long-lasting plateaus and jittered spikes. Interestingly, in other cell types as pyramidal neurons, EPSP\(AMPA \) activate \(I_{NaP} \) and are amplified at depolarized potentials (Stuart and Sakmann 1995; Schwindt and Grill 1995; Andreasen and Lambert 1999; Fricker and Miles 2000; Axmacher and Miles 2004), leading to a poor temporal precision. However, in these cell types EPSP\(AMPA \) have a much slower kinetics than EPSP\(AMPA \) recorded in DGCs. Plasticity of intrinsic neuronal properties have been reported in various CNS disorders (Beck and Yaari 2008), thus an alternative possibility to explain jittered spikes in DGCs from epileptic rats is that \(I_{NaP} \) is also chronically modified as reported for neocortical and subicular neurons in models and temporal lobe epileptic patients (Agrawal et al. 2003; Vreugdenhil et al. 2004). However, we did not observe a change of \(I_{NaP} \) in DGCs from epileptic rats as compared with controls. Accordingly, simulated EPSP\(KA \) could also activate \(I_{NaP} \) and lead to jittered spike in control DGCs. Thus, alteration of the spike timing precision in DGCs from epileptic rats is not primarily due to an up regulation of \(I_{NaP} \).

Spiking often occurs through synaptic integration of different inputs (Magee 2000). The frequency of ongoing excitatory synaptic events is strongly increased in DGCs from epileptic rats (Wuarin and Dudek 2001; Epsztein et al. 2005) and EPSP\(KA \) represent half of the spontaneous glutamatergic synaptic transmission in these cells (Epsztein et al. 2005). One important question was thus to determine whether \(I_{NaP} \) activated by aberrant EPSP\(KA \) could also disrupt the temporal precision of PP input during synaptic integration. A previous study, using the kindling model of TLE, reported a change from single-spike mode to burst firing mode of DGCs in response to strong stimulations of PP (Lynch et al. 2000). We observed that DGCs from epileptic rats still discharge in single-spike mode with a high temporal precision in response to low stimulation intensities. However the temporal precision of the PP-EPSP is strongly reduced during summation with EPSP\(KA \). We show that this results from the interplay between EPSP and \(I_{NaP} \) activated by EPSP\(KA \). Indeed, 1) the temporal precision of PP-EPSP is not affected by PI when \(I_{NaP} \) is blocked; 2) the temporal precision is not affected when PP-EPSP is preceded by PI-EPSP\(AMPA \) that do not activate \(I_{NaP} \) in DGCs from control and epileptic rats, and 3) activation of \(I_{NaP} \) by simEPSP\(KA \) is sufficient to alter spike timing precision of the PP inputs in DGCs from control rats.

All in all we show that selective EPSP\(KA \) amplification via \(I_{NaP} \) activation shifts EPSP-spike coupling from high to low temporal precision in DGCs from epileptic rats.

Physiological Consequences of Reduced Spike Timing Precision in DGCs from Epileptic Rats

Here, we report a major alteration of the temporal precision of EPSP-spike coupling in DGCs of epileptic rats. This major change has been confirmed in normal ACSF with evoked and spontaneous EPSPs and in a noninvasive condition using the loose-patch configuration. In this study we used EPSPs of small amplitude matching the small amplitude of spontaneous EPSPs recorded in vivo (Waters and Helmchen 2004). In DGCs, the resting membrane potential is relatively far from the spike threshold (present study; Lynch et al. 2000; Epsztein et al. 2005). What are the conditions bringing the membrane potential at near threshold potential allowing small spontaneous EPSPs to generate spiking? In vivo, the membrane potential of DGCs spontaneously fluctuates between a hyperpolarized state (down state) and a depolarized state (up-state) (Hahn et al. 2007). Interestingly, in a few cases where we observed spontaneous up-down state-like behavior of the membrane potential, in DGCs from epileptic rats, EPSP\(KA \) evoked during the up-state could generate long-lasting plateau associated with late spikes. Depolarization of the membrane potential also occurs during place field traversal in freely moving rats (Lee et al. 2008). Additional work is needed to clarify the physiological conditions that facilitate the interplay between synapse-driven and voltage-gated currents leading to imprecise spiking in DGCs from epileptic rats.

The ability to generate action potentials with high temporal fidelity in response to EPSPs is an essential feature of adult neurons in the normal brain (Konig et al. 1996). Spike timing precision is instrumental in many physiological processes including processing of sensory information (Abeles 1982; Riehle et al. 1997; Schaefer et al. 2006), generation of behaviorally relevant oscillations (Konig et al. 1996), encoding of spatial information (O’Keefe and Recce 1993; Skaggs et al. 1996; Mehta et al. 2002), and in some forms of synaptic plasticity (Markram et al. 1997; Debanne et al. 1998; Dan and Poo 2006). In pathological conditions, a reduced spike timing reliability correlates with the generation of high frequency oscillations as recently shown in the CA3 area from epileptic rats (Roffiani et al. 2007). Beyond seizures, TLE is often associated with pronounced cognitive impairments in epileptic patients (Hermann et al. 1997; Helmstaedter 2002) and animal models (Liu et al. 2003; Lenck-Santini and Holmes 2008; Chauviere et al. 2009). Recently it has been shown that learning deficits are correlated with important alterations of the temporal organization of neuronal firing (i.e., temporal coding of spatial information) in the CA1 area of the hippocampus of epileptic rats (Lenck-Santini and Holmes 2008). In awake rats, DGCs encode spatial information through an increase in instantaneous firing rate (O’Keefe and Drostovsky 1971; Jung and McNaughton 1993) (rate coding) and through the precise timing of action potentials in relation to the ongoing hippocampal theta rhythm (temporal coding) (Skaggs et al. 1996). Recent data suggest that temporal coding in the hippocampus could be inherited from extra-hippocampal structures particularly the entorhinal cortex (Zugaro et al. 2005; Hafting et al. 2008). Thus, the timing errors induced by aberrant mossy fiber sprouting, notably at PP synapses could, together with other changes observed in the epileptic brain (Nadler 2003; Dudek and Sutula 2007), lead to alterations of temporal coding in the dentate gyrus. Future work should determine the impact of decreased spike timing precision in DGCs on coding operation in the hippocampus of chronic epileptic animals.

Supplementary Material

Supplementary material can be found at: http://www.cercor.oxfordjournals.org/.
Funding
Institut National de la Santé et de la Recherche Médicale (INSERM), the Fondation pour la Recherche Médicale to J.E. and E.S.; the Ligue Française Contre l’Épilepsie to E.S.; and the Agence Nationale de la Recherche (ANR contract Epileptic-Code NT09_566636).

Notes
We thank I. Jorquera and A. Riba for technical assistance, and Drs L. Aniksztejn, I. Bureau and R. Khazipov for helpful comments on the manuscript. Conflict of Interest: None declared.

Address correspondence to Valérie Crépel, INMED, INSERM U901, Université de La Méditerranée, Parc scientifique de Luminy, BP 13, 13273, Marseille Cedex 09, France. Email: crepel@inmed.univ-mrs.fr.

References
Abeles M. 1982. Role of the cortical neuron: integrator or coincidence detector? Jr J Med Sci. 18(1):83-92.
Agawala N, Alonso A, Ragsdale DS. 2003. Increased persistent sodium currents in rat entorhinal cortex layer V neurons in a post-status epilepticus model of temporal lobe epilepsy. Epilepsia. 44(12): 1601-1604.
Andreasen N, Lambert JD. 1999. Somatic amplification of distally generated subthreshold EPSPs in rat hippocampal pyramidal neurons. J Physiol. 519(Pt 1):85-100.
Astman N, Gutnick MJ, Fleidervish IA. 2006. Persistent sodium current in layer 5 neocortical neurons is primarily generated in the proximal axon. J Neurosci. 26(13):3465-3473.
Aymacher N, Miles R. 2004. Intrinsic cellular currents and the temporal precision of EPSP-action potential coupling in CA1 pyramidal cells. J Physiol. 555(3 Pt 3):713-725.
Barberis A, Sachidhanandam S, Mulle C. 2008. GluR6/KA2 kainate receptors mediate slow-deactivating currents. J Neurosci. 28(25): 6402-6406.
Beck H, Steffens R, Elger CE, Heinemann U. 1998. Voltage-dependent Ca2+ currents in epilepsy. Exp Res. 32(1-2):321-332.
Beck H, Yaari Y. 2008. Plasticity of intrinsic neuronal properties in CNS disorders. Nat Rev Neurosci. 9(5):357-369.
Ben-Ari Y, Crepel V, Represa A. 2008. Synaptic establishment of an aberrant kainate receptor-operated synapses on granule cells from epileptic rats. J Neurosci. 25(36): 8229-8239.
Ben-Ari Y, Crepel V, Represa A, Jorquera I, Ben-Ari Y, Crepel V. 2005. Recurrent mossy fibers establish aberrant kainate receptor-operated synapses on granule cells from epileptic rats. J Neurosci. 25(36): 8229-8239.
Ben-Ari Y, Crepel V, Represa A, Jorquera I, Ben-Ari Y, Crepel V. 2005. Aberrant kainate receptor-operated synapses on granule cells from epileptic rats. J Neurosci. 25(36): 8229-8239.
Bernard C, Anderson A, Becker A, Poolos NP, Beck H, Johnston D. 2004. Plasticity of intrinsic neuronal properties in CNS disorders. Nat Rev Neurosci. 9(5):357-369.
Bernard C. 2009. Early deficits in spatial memory and theta rhythm integration and landmark navigation, episodic and semantic memory. Hippocampus. 15(7):827-840.
Buckmaster PS, Dudek FE. 1999. In vivo intracellular analysis of granule cell circuitry in human dentate gyrus from patients with and without hippocampal sclerosis. J Neurosci. 24(46):10416-10430.
Coulter DA, Carlson GC. 2007. Functional regulation of the dentate gyrus by GABA-mediated inhibition. Prog Brain Res. 163:755-773.
Crowder EA, Feldman JL. 2007. The gamma cycle. Trends Neurosci. 30(7):309-316.
Crowder EA, Feldman JL. 2007. The gamma cycle. Trends Neurosci. 30(7):309-316.
Debanne D, Gahwiler BH, Thompson SM. 1998. Long-term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures. J Physiol. 507(Pt 1):237-247.
De Vries SH, Schwartz EA. 1999. Kainate receptor-mediated synaptic transmission between cones and “off” bipolar cells in a mammalian retina. Nature. 397(6715):157-160.
De Vries SH, Schwartz EA. 1999. Kainate receptor-mediated synaptic transmission between cones and "off" bipolar cells in a mammalian retina. Nature. 397(6715):157-160.
Dudek FE, Sutula TP. 2007. Epileptogenesis in the dentate gyrus: a critical perspective. Prog Brain Res. 163:755-773.
Dudok RD, Tuli R, Moser B, Aitken FL, Donoghue JP. 2002. Quantal release of glutamate generates pure kainate and AMPA receptor-mediated currents in rat hippocampal CA3 neurons. J Physiol. 540(2):541-552.
Daw MI, Bannister NV, Isaac JT. 2006. Rapid, activity-dependent plasticity in timing precision in neonatal barrel cortex. J Neurosci. 26(16):4178-4187.
Debanne D, Gahwiler BH, Thompson SM. 1998. Long-term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures. J Physiol. 507(Pt 1):237-247.
Del Negro CA, Morgado-Valle C, Hayes JA, Mackay DD, Pace RW, Crowder EA, Feldman JL. 2005. Sodium and calcium current-mediated pacemaker neurons and respiratory rhythm generation. J Neurosci. 25(2):446-453.
Epsztein J, Represa A, Jorquera I, Ben-Ari Y, Crepel V. 2005. Recurrent mossy fibers establish aberrant kainate receptor-operated synapses on granule cells from epileptic rats. J Neurosci. 25(36): 8229-8239.
Epsztein J, Represa A, Jorquera I, Ben-Ari Y, Crepel V. 2005. Recurrent mossy fibers establish aberrant kainate receptor-operated synapses on granule cells from epileptic rats. J Neurosci. 25(36): 8229-8239.
Epsztein J, Represa A, Jorquera I, Ben-Ari Y, Crepel V. 2005. Recurrent mossy fibers establish aberrant kainate receptor-operated synapses on granule cells from epileptic rats. J Neurosci. 25(36): 8229-8239.
Epsztein J, Represa A, Jorquera I, Ben-Ari Y, Crepel V. 2005. Recurrent mossy fibers establish aberrant kainate receptor-operated synapses on granule cells from epileptic rats. J Neurosci. 25(36): 8229-8239.
Foffani G, Uzcategui YG, Gal B, Menendez de la PL. 1997. Physiological and Morphological characteristics of granule cell circuitry in human epileptic hippocampus. Epilepsia. 36(6):543-558.
Frick KM, Malenka RC, Nicoll RA. 1998. Synaptic activation of kainate receptors on hippocampal interneurons. Nat Neurosci. 1(1): 479-486.
Fricka RA, Prince DA. 1984. Electrophysiology of dentate gyrus granule cells. J Neurophysiol. 51(2):195-209.
Fricke DK, Miles R. 2000. EPSP amplification and the precision of spike timing in hippocampal neurons. Neuron. 28(2):559-569.
Fries P, Nikolic D, Singer W. 2007. The gamma cycle. Trends Neurosci. 30(7):309-316.
Gabernet L, Jadhav SP, Feldman DE, Carandini M, Scanziani M. 2005. Somatosensory integration controlled by dynamic thalamocortical feed-forward inhibition. Neuron. 48(2):315-327.
Gabriel S, Njunting M, Pomper JK, Merschhemke M, Sanabria ER, Eilers A, Kivi A, Zeller M, Meencke HJ, Cavalheiro EA, et al. 2004. Stimulus and potassium-induced epileptiform activity in the human dentate gyrus from patients with and without hippocampal sclerosis. J Neurosci. 24(46):10416-10430.
Goldin M, Epsztein J, Jorquera I, Represa A, Ben-Ari Y, Crepel V, Cossart R. 2007. Synaptic kainate receptors tune oriens-lacunosum molecular interneurons to operate at theta frequency. J Neurosci. 27(36):9560-9572.
Hafting T, Fynh M, Bonnevie T, Moser MB, Moser EL. 2008. Hippocampus-independent phase precession in entorhinal grid cells. Nature. 453(7199):1248-1252.
Hahn TT, Sakmann B, Mehta MR. 2007. Differential responses of hippocampal subfields to cortical up-down states. Proc Natl Acad Sci USA. 104(12):5169-5174.
Hammarstrom AK, Gage PW. 1998. Inhibition of oxidative metabolism increases persistent sodium current in rat CA1 hippocampal neurons. J Physiol. 510(Pt 3):735-741.
Hardison JL, Okazaki MM, Nadler JV. 2000. Modest increase in extracellular potassium unmask effect of recurrent mossy fiber growth. J Neurophysiol. 84(5):2380-2389.
Hausser M, Major G, Stuart GJ. 2001. Differential shunting of EPSPs by action potentials. Science. 291(5501):138-141.
Helmstaedter C. 2002. Effects of chronic epilepsy on declarative memory systems. Prog Brain Res. 135:439-453.
Herrmann BP, Seidenberg M, Schofenfeld J, Davies K. 1997. Neuro-psychological characteristics of the syndrome of mesial temporal lobe epilepsy. Arch Neurol. 54(1):369-376.
Koizumi H, Smith JC. 2008. Persistent Na+ current and K+-dominated leak currents contribute to respiratory rhythm generation in the pre-Botzinger complex in vitro. J Neurosci. 28(7):1773–1785.

Kole MH, Stuart GJ. 2008. Is action potential threshold lowest in the axon? Nat Neurosci. 11(11):1253–1255.

Konig P, Engel AK, Singer W. 1996. Integrator or coincidence detector? The role of the cortical neuron revisited. Trends Neurosci. 19(14):150–157.

Kuo CC, Bean BP. 1994. Na+ channels must deactivate to recover from inactivation. Neuron. 12(4):819–829.

Lampi L, Schwindt P, Crill W. 1998. Reduction of cortical pyramidal neuron excitability by the action of phenytoin on persistent Na+ current. J Pharmacol Exp Ther. 284(1):228–237.

Lee AK, Epsztein J, Brecht M. 2008. Whole-cell recordings of hippocampal CA1 place cell activity in freely moving rats. Soc Neurosci Abstr. 690.22.

Lenck-Santini PP, Holmes GL. 2008. Altered phase precession and compression of temporal sequences by place cells in epileptic rats. J Neurosci. 28(19):5053–5062.

Liu X, Muller RU, Huang LT, Kubie JL, Rotenberg A, Rivard B, Cilio MR, Holmes GL. 2003. Seizure-induced changes in place cell physiology: relationship to spatial memory. J Neurosci. 23(37):11505–11515.

Luna VM, Schoppa NE. 2008. GA BAergic circuits control input-spike coupling in the piriform cortex. J Neurosci. 28(35):8851–8859.

Lynch M, Sayin U, Golarai G, Satu T. 2000. NMDA receptor-dependent plasticity of granule cell spiking in the dentate gyrus of normal and epileptic rats. J Neurophysiol. 84(6):2868–2879.

Maccarelli G, Dingledine R. 2002. Control of feedforward dendritic inhibition by NMDA receptor-dependent spike timing in hippocampal interneurons. J Neurosci. 22(13):5462–5472.

Magee JC. 2000. Dendritic integration of excitatory synaptic input. Nat Rev Neurosci. 1(3):181–190.

Markram H, Lübke J, Frotscher M, Sakmann B. 1997. Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science. 275(5297):213–215.

Maurer AP, McNaughton BL. 2007. Network and intrinsic cellular mechanisms underlying theta phase precession of hippocampal neurons. Trends Neurosci. 30(7):325–335.

Mehta MR, Lee AK, Wilson MA. 2002. Role of experience and oscillations in transforming a rate code into a temporal code. Nature. 417(6890):741–746.

Mello LE, Cavalheiro EA, Tan AM, Kupfer WR, Pretorius JK, Babb TL, Finch DM. 1993. Circuit mechanisms of seizures in the pilocarpine model of chronic epilepsy: cell loss and mossy fiber sprouting. Epilepsia. 34(6):985–995.

Molnar P, Nadler JV. 1999. Mossy fiber-granule cell synapses in the normal and epileptic rat dentate gyrus studied with minimal laser photostimulation. J Neurophysiol. 82(4):1883–1894.

Morgan RJ, Soltesz I. 2008. Nonrandom connectivity of the epileptic dentate gyrus predicts a major role for neuronal hubs in seizures. Proc Natl Acad Sci USA. 105(16):6179–6184.

Nadler JV. 2003. The recurrent mossy fiber pathway of the epileptic brain. Neurochem Res. 28(11):1649–1658.

O’Keefe J, Burgess N. 2005. Dual phase and rate coding in hippocampal place cells: theoretical significance and relationship to entorhinal grid cells. Hippocampus. 15(7):853–866.
Waters J, Helmchen F. 2004. Boosting of action potential backpropagation by neocortical network activity in vivo. J Neurosci. 24(49):11127-11136.

Wuarin JP, Dudek FE. 1996. Electrographic seizures and new recurrent excitatory circuits in the dentate gyrus of hippocampal slices from kainate-treated epileptic rats. J Neurosci. 16(14):4438-4448.

Wuarin JP, Dudek FE. 2001. Excitatory synaptic input to granule cells increases with time after kainate treatment. J Neurophysiol. 85(3):1067-1077.

Yaari Y, Yue C, Su H. 2007. Recruitment of apical dendritic T-type Ca2+ channels by backpropagating spikes underlies de novo intrinsic bursting in hippocampal epileptogenesis. J Physiol. 580(Pt. 2):435-450.

Yue C, Remy S, Su H, Beck H, Yaari Y. 2005. Proximal persistent Na+ channels drive spike after depolarizations and associated bursting in adult CA1 pyramidal cells. J Neurosci. 25(42):9704-9720.

Zugaro MB, Monconduit L, Buzsaki G. 2005. Spike phase precession persists after transient intrahippocampal perturbation. Nat Neurosci. 8(1):67-71.