Influence of Nutrient Stress on the Relationships between PAM Measurements and Carbon Incorporation in Four Phytoplankton Species

Camille Napoléon¹,²,³, Virginie Raimbault¹,², Pascal Claquin¹,²

¹ Université de Caen Basse-Normandie, BIOMEA FRE3484 CNRS, Caen, France, ² CNRS INEE, FRE3484 BIOMEA, Caen, France, ³ IFREMER, Laboratoire Environnement Ressources de Normandie, Port-en-Bessin, France

Abstract

Two methods of measuring primary production, modulated fluorimetry (PAM) and the traditional carbon incorporation method (¹³C), were compared in four phytoplankton species, two diatoms (Pseudo-nitzschia pungens and Asterionellopsis glacialis), and two dinoflagellates (Heterocapsa sp and Karenia mikimotoi), under N (nitrogen), P (phosphorus) and Si (silicon) limited semi-continuous culture. N and Si-limited cultures showed relatively high quantum efficiency of the PSII (Fv/Fm) values, confirming that Fv/Fm is not a good proxy for nutrient stress in balanced systems, whereas P limitation had a drastic effect on many physiological parameters. In all species, the physiological capacity of phytoplankton cells to acclimate to nutrient limitations led to changes in the cellular biochemical composition and the structure of the photosynthetic apparatus. The observed physiological responses were species and nutrient specific. The values of the chlorophyll-specific absorption cross section (a*) increased with nutrient limitation due to package effect, while the carbon/Chl a ratio was higher under N and P limitations. In diatoms, Si limitation did not affect photosynthesis confirming the uncoupling between Si and carbon metabolisms. In all four species and under all treatments, significant relationships were found between photosynthetic activities, ETRChl (electron transport rate) and PChl (carbon fixation rate) estimated using PAM measurements and ¹³C incorporation, showing that the fluorescence technique can reliably be used to estimate carbon fixation by phytoplankton. The relationship between ETRChl and PChl can be described by the shape and the slope of the curve (ΦC,α). Linear relationships were found for dinoflagellates and P. pungens under all treatments. A decrease in ΦC,α was observed under N and P limitation probably due to structural damage to the photosynthetic apparatus. A. glacialis showed a logarithmic relationship in N and P limited conditions, due to the alternative electron flow which takes place to optimise photosynthetic performances under high light and/or nutrient stress.

Introduction

Estimating primary production is important in marine ecosystems, since primary producers form the base of marine food webs and all other trophic levels rely on it [1]. Many methods have been developed to measure primary production such as the traditional carbon incorporation method [2,3,4,5], and the method based on changes in oxygen concentration [6]. However, both methods require long incubation times and consequently make it impossible to monitor the dynamics of primary production at high spatial and temporal scales, as is required to calibrate marine ecosystemic models.

However, a pulse amplitude modulated fluorometer (PAM system) which measures variations in chlorophyll a fluorescence in the photosystem II (PSII), can be used to monitor the dynamics of photosynthetic parameters and the physiological status of phytoplankton [7,8]. PAM was shown to be a useful tool for high spatio-temporal scale studies [9,10] as the method is not invasive and requires only few minutes to measure photosynthetic parameters. However, PAM measurements do not enable direct access to the carbon incorporation rate, but only to a measure of the PSII Electron Transport Rate [11]. The photosynthetic linear electron flow pathway from PSII to carbon fixation is associated with alternative electron flow pathways which are related to various complex mechanisms regulations [12,13].

A combination of the PAM method and traditional measurements of carbon incorporation or oximetry measurements have been used successfully in many studies [10,14,15,16]. However, the conversion factor (Φ) is highly variable, and is influenced by physico-chemical and biological parameters. Morris and Kromkamp [17] showed that temperature had an effect on Φ, and that the effect was not linear, especially at extreme temperatures. In a study performed in the central English Channel, Napoléon and Claquin [10] underlined the importance including physico-chemical parameters like incident irradiance and nutrient concentrations for the estimation of Φ. These authors pointed to the negative effect of high nutrient concentrations on the conversion of ETR measurements into carbon incorporation measurements, showing that the absence of nutrient limitations leads to uncoupling between the high production of electrons and
their utilization for carbon incorporation. On the other hand, the same decoupling was observed under N and P limitation because both metabolisms are closely linked to photosynthesis [18,19]. For example, under P limitation, phytoplankton cells are unable to repair damaged photosynthetic reaction centres [20], a part of light energy is allocated to nutrient uptake instead of to carbon fixation [11,21] or ATP production required for carbon fixation is limited by inorganic phosphate [P(i)] [21,22]. Even if the energy requirements of silicon metabolism are uncoupled from photosynthesis [23], Lippemeier et al. [24] showed that Si limitation can also influence photosynthesis. These authors reported that Si limitation led to a decrease in the photosynthetic efficiency of the PSII in the diatom *Thalassiosira weissflogii*, but a direct relationship between Si metabolism and photosynthesis regulation remains unclear. However, the combined effects of many environmental factors are measured in *in situ* studies, and it thus appears to be difficult to clearly distinguish the effect of a single factor. Moreover, it is the response of the whole phytoplankton community that is measured, and this does not provide information on the species specific variation of community that is measured, and this does not provide information.

Moreover, it is the response of the whole phytoplankton community that is measured, and this does not provide information on the species specific variation of community that is measured, and this does not provide information.

Based upon this knowledge we made the hypotheses that Φ and the shape of the relationship between the PAM method and the carbon incorporation method are partly dependent on nutrient availability and species and we need to explore the variability of these parameters and the factors which control them.

Thus, the aims of the present study were to study in four phytoplankton species, two diatoms (*Pseudo-nitzschiella pungens* and *Asterionellopsis glacialis*), and two dinoflagellates (*Heterocapsa* sp and *Karenia mikimotoi*) i) the physiological responses and photosynthesis regulation of different phytoplankton species to N, P and Si limitation; ii) the shape of the relationship between ETR measurements and carbon incorporation measurements as a function of the nutrient stress and the phytoplankton species concerned; iii) the rate of carbon fixation as a function of Φ (Φ_{C, ε}) and its variation as a function of the nutrient stress and the species concerned.

Materials and Methods

2.1-Culture Conditions

Semi-continuous 1.5 L cultures of two diatoms, *Pseudo-nitzschiella pungens* (Cleve & Möller; Bacillariophyceae isolated in the English Channel) and *Asterionellopsis glacialis* (Round; Bacillariophyceae isolated in the English Channel), and two dinoflagellates, *Heterocapsa* sp (Stein; Peridinea, AC 212 from Algobank–Caen culture collection) and *Karenia mikimotoi* (Oda; Peridinea AC 213 from Algobank–Caen culture collection) were performed in triplicate in 4 L flasks under different nutrient conditions at 18°C with a light/dark cycle of 14:10 h and a light intensity of 260 μmol photons m^{−2} s^{−1} provided by daylight fluorescent lamps. The phytoplankton species were cultured in autoclaved and sterilized seawater filtered through a GF/F glass-fibre filter: measurement of the pigments. After centrifugation for 5 min at 4,000 rpm, Chl concentrations were measured on seawater filtered through a GF/F glass-fibre filter:

\[
\text{Chl} = (A \times 100 \times \ln(10))/[\text{chl a}]
\]

(1)

where A is the average optical density between 400 nm and 700 nm and the Chl a concentration is expressed in mg m^{−1}.

2.2-Biological Parameters

To measure the chlorophyll *a* concentration (Chl *a*), 10 mL of each culture were centrifuged for 10 minutes at 4,000 rpm in triplicate. A total of 10 mL of 90% acetone (v/v) was then added to the pellet and left for 12 hours in the dark at 4°C for extraction of the pigments. After centrifugation for 5 min at 4,000 rpm, Chl *a* concentration of the extracts was measured using a Turner TD-700 fluorometer (Turner Designs, Sunnyvale, California, USA) according to Welschmeyer [20].

The chlorophyll-specific absorption cross section (*a*_λ) was obtained by measuring the *in vivo* optical density of the cultures using a spectrophotometer (Ultrospec 1000). *a*_λ (m² mg Chl *a*^{−1}). The *a*_λ was calculated using the equation of Dubinsky et al. [29] in concentrated suspension culture:

\[
a^* = (A \times 100 \times \ln(10))/[\text{chl a}]
\]

(1)

Biomass was estimated daily before dilution by measuring chlorophyll *a* in vivo with a Turner TD-700 fluorometer (Turner Designs, California, USA). The cultures were assumed to be in steady state when biomass and the quantum efficiency of the PSII (Φ/<sub>E_{TR})) had been stable for at least five days. Cell integrity was checked microscopically.

2.3-PAM Fluorometry

The maximum energy conversion efficiency, or quantum efficiency of PSII charge separation (Φ/<sub>E_{TR})) was measured using a WATLAR/FB – PAM fluorometer (Walz, Effeltrich, Germany) [30]. After 10 min of dark acclimation, a 3 mL sub-sample was transferred into the measuring chamber. The sample was excited by a weak blue light (1 μmol photons m^{−2} s^{−1}, 470 nm, frequency 0.6 kHz) to record minimum fluorescence (Φ₀). Maximum fluorescence (Φ_M) was obtained during a saturating light pulse (0.6 s, 2,500 μmol photons m^{−2} s^{−1}, 470 nm), allowing the quinone A (Q_V), quinone B (Q₀) and part of plastoquinone (PQ) pools to be reduced. Φ/_{E_{TR}}) was calculated according to the following equation [31] after subtraction of the blank fluorescence, measured on seawater filtered through a GF/F glass-fibre filter:

\[
\Phi/E_{TR} = (F_M - F_0)/F_m
\]

(2)

The samples were exposed to nine irradiances (E) for 55 s at each step. Steady state fluorescence (Φ_{E₀}) and maximum fluorescence (Φ_M) were measured. The effective quantum efficiency of

Table 1. Nutrient concentrations and nutrient ratios in each treatment.

Concentrations	Ratios					
N	P	Si	N/P	Si/N	Si/P	
Control	105	6.5	105	16.1	1.0	16.1
N-lim	13	6.5	105	2.0	8.0	16.1
P-lim	105	0.8	105	131.2	1.0	131.2
Si-lim	105	6.5	13	16.1	0.1	2.0

Nutrient concentrations are in μmol L^{−1}. doi:10.1371/journal.pone.0066423.t001

PLOS ONE | www.plosone.org 2 June 2013 | Volume 8 | Issue 6 | e66423
ETR for each irradiance was determined as follows [31]:

\[
\frac{\Delta F}{F_m} = \frac{(F_m' - F)}{F_m'}
\]

(3)

The relative electron transport rate (rETR, relative unit) was calculated for each irradiance. rETR is a measure of the rate of linear electron transport through photosystem II, which is correlated with the overall photosynthetic performance of the phytoplankton [32]:

\[
rETR(E) = n \frac{\Delta F}{F_m} \times E
\]

(4)

The electron transport rate (ETR\(a^\text{chl}\)) in mmol electron mg Chl \(a^{-1} h^{-1}\) was calculated as follows:

\[
ETR\!(a^\text{chl})(E) = rETR(E) \times \alpha' \times fAQPSII \times 3.6
\]

(5)

where \(\alpha'\) is in m\(^2\) mg Chl \(a^{-1}\) and \(fAQPSII\) is the fraction of absorbed quanta to PSII. Following Johnson and Sakshaug [33], we assumed that 74\% of the absorbed photons were allocated to photoeactions in the PSII for diatoms and 68\% for dinoflagellates.

2.4-\(^{13}\)C Incubation

\(^{13}\)C incubation experiments were conducted for each species and limited nutrient. A photosynthetron (modified from Babin et al. [4]) was used to perform in situ incubations. A U shaped dimmable fluorescent tube (OSRAM, DULUX L, 2G11, 55W/12–950, daylight) produced the light, and the temperature in the photosynthetron was maintained at 18°C by a water circuit. One litre of each culture was inoculated with Na\(^{13}\)CO\(_3\) (98 atom \%, Sigma-Aldrich) corresponding to an enrichment of about 15\% of the dissolved inorganic carbon already present. The inoculated culture was shared among twenty 62 mL culture flasks placed in the photosynthetron. Light intensity in each flask was measured using a micro-spherical quantum sensor (US-SQS, Walz) connected to a LI-COR 1400 data logger, and one flask was maintained in the dark to estimate non-photosynthetic inorganic carbon incorporation. After four hours of incubation, each flask was filtered onto 15 mm pre-combusted (450°C, 12 h) GF/F filters and stored at −22°C until analysis. To remove carbonates, filters were exposed to fuming HCl for four hours and then dried at 50°C for 12 hours. The concentration of particulate organic carbon (POC) and the isotopic ratio of \(^{13}\)C to \(^{12}\)C were determined using an EA 3000 elemental analyzer (Eurovector, Milan, Italy) combined with a mass spectrometer (IsoPrime, Elementar). The value for incorporation in the dark was subtracted from all data. The carbon fixation rate (P\(^{\text{chl}}\)) was calculated according to Hama et al. [34] and expressed in mmol C mg Chl \(a^{-1} h^{-1}\). Each P\(^{\text{chl}}\) vs. E curve was then performed on 20 values.

2.5-P vs. E Curve

The ETR and P were plotted against light (E). To estimate the photosynthetic parameters, the mechanistic model of Eilers and Peeters [35] was applied to the data:

\[
X(E) = \frac{E}{(aE^2 + bE + c)}
\]

(6)

where \(X(E)\) is ETR(E) (expressed in mmol electron mg Chl \(a^{-1} h^{-1}\) or in mmol electron mg C \(a^{-1} h^{-1}\) or P(E) (expressed in mmol C mg Chl \(a^{-1} h^{-1}\) or in mol C mol C \(a^{-1} h^{-1}\)). The maximum photosynthetic capacity was calculated as follows:

\[
X_{\text{max}} = \frac{1}{(b + 2\sqrt{ac})}
\]

(7)

where \(X_{\text{max}}\) is the maximum photosynthetic capacity measured with the PAM method (ETR\(_{\text{max}}\)), \(P_{\text{max}}\) (in mmol electron mg Chl \(a^{-1} h^{-1}\)) or ETR\(_{\text{max}}\) in mmol electron mg C \(a^{-1} h^{-1}\) or with the \(^{13}\)C incubation method (P\(_{\text{Chl max}}\) in mmol G mg Chl \(a^{-1} h^{-1}\) or P\(_{\text{Chl max}}\) in mol C mol C \(a^{-1} h^{-1}\)).

2.6-Data Analyses

To study the effect of treatments on biological (\(a^*\), carbon/Chl \(a\) ratio) and photosynthetic parameters (ETR/Chl \(a\) vs. E\(_{\text{max}}\), P\(_{\text{max}}\)), analyses of variance (ANOVA) were performed using SigmaPlot 11.0 (Systat Software Inc. Chicago, USA). Analyses of covariance (ANCOVA) were performed to study the linear relationship between ETR\(_{\text{max}}\) and P\(^{\text{chl}}\). ANCOVA was performed using XLStat 2007. Logarithmic regressions were carried on some of the data using SigmaPlot 11.0 (Systat Software).

Results

3.1-Chl \(a\), Carbon and Photosynthetic Parameters

The average Chl \(a\) concentration values for the control of P. pungens, A. glacialis, Heterocapsa sp and K. mikimoto were respectively of 73.7, 112.4, 174.03 and 65.64 \(\mu\)g L\(^{-1}\). The effect of nutrient limitation on Chl \(a\) concentration (Figure 1A) varied across treatments. Compared to the control, Si-lim treatment had no significant effect on the Chl \(a\) concentration. In contrast, a significant negative effect of N-lim and P-lim treatments was observed (P<0.001) with values of 36.3 and 15.6 \(\mu\)g L\(^{-1}\) measured for P. pungens, of 41.1 and 58.6 \(\mu\)g L\(^{-1}\) for A. glacialis, of 42.3 and 17.0 \(\mu\)g L\(^{-1}\) for Heterocapsa sp, and of 30.4 and 19.1 \(\mu\)g L\(^{-1}\) for K. mikimoto.

F\(_{\text{E}}\)/F\(_{\text{n}}\) differed among treatments (Figure 1B). Compared to the control, N-lim and Si-lim treatments had no significant effect on F\(_{\text{E}}\)/F\(_{\text{n}}\) in any of the species tested. On the other hand, there was a significant difference in F\(_{\text{E}}\)/F\(_{\text{n}}\) (P<0.001) between the P-lim and control treatments. The average F\(_{\text{E}}\)/F\(_{\text{n}}\) values of the control treatments were 0.556, 0.456, 0.589 and 0.587 respectively for P. pungens, A. glacialis, Heterocapsa sp and K. mikimoto while the P-lim treatments showed F\(_{\text{E}}\)/F\(_{\text{n}}\) values of 0.412, 0.288, 0.434 and 0.516 for the same species.

The average values of \(a^*\) (expressed in m\(^2\) mg Chl \(a^{-1}\)) of the control treatments were 0.027 for P. pungens, 0.014 for A. glacialis, 0.009 for Heterocapsa sp and 0.011 for K. mikimoto (Figure 1C). N-lim treatments had a significant positive effect (P<0.001) on both diatoms compared to the control treatment, with values of 0.060 m\(^2\) mg Chl \(a^{-1}\) for P. pungens and of 0.027 m\(^2\) mg Chl \(a^{-1}\) for A. glacialis, but no significant effect on either of the dinoflagellate species. Significant positive effects of the P-lim treatment (P<0.001) were also observed on P. pungens, Heterocapsa sp and K. mikimoto but not on A. glacialis, with values of 0.091 m\(^2\) mg Chl \(a^{-1}\) for P. pungens, of 0.035 m\(^2\) mg Chl \(a^{-1}\) for Heterocapsa sp and of 0.032 m\(^2\) mg Chl \(a^{-1}\) for K. mikimoto. The Si-lim treatment had a positive effect (P<0.001) on A. glacialis with an average \(a^*\) value of 0.020 m\(^2\) mg Chl \(a^{-1}\), but no significant effect of the Si-lim treatment was measured on P. pungens.

A significant positive effect (P<0.001) of all treatments was observed on the carbon/Chl \(a\) ratio (Figure 1D) except for the effect of the Si-lim treatment on P. pungens. For P. pungens, average carbon/Chl \(a\) ratios of 73.2, 123.2 and 249.2 \(\mu\)g C mg Chl \(a^{-1}\)
were measured in the control, N-lim and P-lim cultures. For *A. glacialis*, values of 44.4, 59.9, 67.4, and 55.0 μg C μg Chl a⁻¹ were measured in the control, N-lim, P-lim and Si-lim cultures. For dinoflagellates, values of 70.4 and 62.6 μg C μg Chl a⁻¹ were measured in the control cultures of *Heterocapsa sp* and of *K. mikimotoi* respectively. Values of 133.8 and 93.8 μg C μg Chl a⁻¹ were measured in N-lim cultures and values of 232.2 and 110.7 were measured in P-lim cultures of *Heterocapsa sp* and *K. mikimotoi*.

ETR_{Car}_{max} varied considerably across treatments and species (Figure 1E), as did P^{C_{max}} (Figure 1F). For *P. pungens*, the same trends appeared for ETR_{Car}_{max} and P^{C_{max}} across treatments. Values of ETR_{Car}_{max} of P-lim culture (3.5 mmol e⁻ mol C⁻¹ h⁻¹) and of P^{C_{max}} (0.016 mol C mol C⁻¹ h⁻¹) differed significantly (P<0.001) from those measured in the control culture (6.4 mmol e⁻ mol C⁻¹ h⁻¹ and 0.040 mol C mol C⁻¹ h⁻¹). No significant differences were observed between the control and N-lim treatment. Si-lim had no effect on ETR_{Car}_{max}, but a significant positive effect (P<0.001, 0.038 mol C mol C⁻¹ h⁻¹) on P^{C_{max}}. For *A. glacialis*, Si-lim had a positive effect (P<0.001) on ETR_{Car}_{max} (8.2 mmol e⁻ mol C⁻¹ h⁻¹) and on P^{C_{max}} (0.028 mol C mol C⁻¹ h⁻¹) compared to the control treatment (4.5 mmol e⁻ mol C⁻¹ h⁻¹ and 0.016 mol C mol C⁻¹ h⁻¹). In contrast, no significant effects of the N-lim and P-lim treatments were observed on ETR_{Car}_{max} or on P^{C_{max}} on P-lim. However, N-lim had a significant negative effect (P<0.001) on P^{C_{max}} (0.006 mol C mol C⁻¹ h⁻¹).

The same trend was observed for ETR_{Car}_{max} and P^{C_{max}} in response to the different treatments of *Heterocapsa sp*. N-lim had no significant effect on ETR_{Car}_{max} or on P^{C_{max}}. On the other hand, P-lim had a negative effect (P<0.001) on ETR_{Car}_{max} (1.7 mmol e⁻ mol C⁻¹ h⁻¹) and on P^{C_{max}} (0.005 mol C mol C⁻¹ h⁻¹) compared with the control treatment (3.0 mmol e⁻ mol C⁻¹ h⁻¹ and 0.053 mol C mol C⁻¹ h⁻¹).

N-lim and P-lim treatments of *K. mikimotoi* had no significant effect on ETR_{Car}_{max} compared to the control (3.4 mmol e⁻ mol C⁻¹ h⁻¹), but had a significant negative effect (P<0.001) on P^{C_{max}}. A value of 0.015 mol C mol C⁻¹ h⁻¹ was measured in the control culture, and of 0.007 mol C mol C⁻¹ h⁻¹ in the N-lim and P-lim cultures.

3.2-Carbon Incorporation versus ETR

Carbon incorporation (P_{C_{max}}) was plotted against ETR_{C_{max}} (Figure 2) to investigate the relationship between the carbon incorporation and ETR for each species, and to study the effect of nutrient treatments.

Significant linear relationships were found for all species and all treatments (P<0.0001). However R² values varied. The R² of the linear regression performed on the whole dataset of each species was always below 0.800 due to the variability among treatments (Table 2). Moreover R² varied across species. Values were relatively low for *A. glacialis*, in particular under the N-lim and P-lim treatments, with values of 0.384 and 0.646 respectively (Table 2). By contrast, R² of the logarithmic regressions performed on the same data revealed relatively high values, i.e. a value of 0.684 for the N-lim treatment and of 0.724 for the P-lim treatment.

Slopes of the relationship between P_{C_{max}} and ETR_{C_{max}} (P_{C_{max}}) are presented in Table 3. For *P. pungens* (Figure 2A), the value of P_{C_{max}} of the P-lim treatment (0.028 mol C mol electron⁻¹) differed significantly (P<0.05) from the control (0.045 mol C mol electron⁻¹). In contrast, no significant difference was observed between the N-lim, Si-lim and the control cultures.

No significant difference between the P_{C_{max}} value of the control and Si-lim treatment was observed for *A. glacialis* (Figure 2B). In contrast, the P-lim treatment had a significant positive effect (P<0.05, 0.033 mol C mol electron⁻¹) and the N-lim treatment had a significant negative effect (P<0.05, 0.008 mol C mol electron⁻¹) compared with the control treatment (0.027 mol C mol electron⁻¹).

The slopes of the relationship between P_{C_{max}} and ETR_{C_{max}} of both dinoflagellates showed the same trends across treatments (Figure 2C and D). The P-lim treatment had a significant negative effect (P<0.05) on the P_{C_{max}} value of *Heterocapsa sp* (0.011 mol C mol electron⁻¹) and *K. mikimotoi* (0.010 mol C mol electron⁻¹) compared to the control treatment (0.109 mol C mol electron⁻¹ for *Heterocapsa sp* and 0.031 for *K. mikimotoi*). The N-lim treatment had no effect on *Heterocapsa sp* but had a significant negative effect on *K. mikimotoi* (P<0.05, 0.013 mol C mol electron⁻¹).

Discussion

4.1-Physiological Responses of Phytoplankton Cells

The quantum efficiency of PSII charge separation (F_i/F_∞) is widely used as an indicator of the nutrient stress of phytoplankton cells [36,37,38]. A reduction in F_i/F_∞ as a function of nutrient limitation is generally expected. In the present study, a significant negative effect on F_i/F_∞ was observed in all four phytoplankton species when they were grown under P-limited conditions. The low F_i/F_∞ values recorded suggest phytoplankton cells suffered physiological damage in P-limited cultures. In contrast, F_i/F_∞ values were relatively high in N-limited and Si-limited cultures and no significant negative effect was observed. High F_i/F_∞ values in nutrient limited cultures have already been reported in the literature, especially in N-limited cultures under balanced growth [7,39], suggesting that F_i/F_∞ is not a good proxy for nutrient stress in balanced systems. The lack of sensitivity of F_i/F_∞ to N and Si we observed may indicate that cultures were in state of balance nutrient-limited growth [7], but not necessarily indicate absence of nutrient stress. The fact that P limitation had a significant effect on F_i/F_∞ probably indicates a deeper effect of this stress on PSII efficiency. We can assume that cells are more adapted to be rapidly acclimated to N limitations than to P limitations because of the high turnover of phosphorus and its implications in energetic metabolisms, particularly in ATP synthesis.

The physiological capacity of phytoplankton cells to acclimate to environmental conditions may affect the cellular biochemical composition of the cells and the structure of the photosynthetic apparatus [40,41,42]. These changes are good indicators of nutrient stress. The capacity of the cells to acclimate to growth irradiance is one of these indicators. Phytoplankton acclimation to a given irradiance depends on nutrient availability and on the intrinsic capacity of the phytoplankton species concerned [6,43]. Mechanisms such as adjustment of the chlorophyll a content per
Figure 2. 13C incorporation (P_{Chl} in mmolC mg Chl $a^{-1} h^{-1}$) plotted against the electron transport rate (ETR_{Chl} in mmol electrons mg Chl $a^{-1} h^{-1}$). (A) Pseudo-nitzschia pungens, (B) Asterionellopsis glacialis, (C) Heterocapsa sp and (D) Karenia mikimotoi. The red line represents the linear regression performed on all data, the black line the linear regression performed on control treatment data (solid circles), the dotted line the linear regression performed on N-lim treatment data (empty circles), the dashed line the linear regression performed on P-lim treatment data (dark triangles pointing down) and the dashed-dotted line the linear regression performed on Si-lim treatment data (white triangles pointing up). Logarithmic regressions performed for Asterionellopsis glacialis on N and P-lim treatments are represented by the blue dotted and dashed lines.

Table 2. R^2 values of the linear regressions performed between the carbon incorporation (P_{Chl}) and ETR_{Chl}.

	All data	Control	N-lim	P-lim	Si-lim
Pseudo-nitzschia pungens	0.779	0.667	0.982	0.923	0.854
Asterionellopsis glacialis	0.463	0.817	0.384	0.646	0.750
Heterocapsa sp	0.185	0.859	0.836	0.948	
Karenia mikimotoi	0.373	0.893	0.907	0.931	

Values under 0.800 are in bold. All linear relationships were significant ($P<0.0001$).
doi:10.1371/journal.pone.0066423.t002

Table 3. Values of the slope ($\Phi_{\text{C,e}}$) of the linear regressions performed between the carbon incorporation (P_{Chl}) and ETR_{Chl}.

	All data	Control	N-lim	P-lim	Si-lim
Pseudo-nitzschia pungens	0.036	0.045	0.043	0.028*	0.045
Asterionellopsis glacialis	0.020	0.027	0.008*	0.033*	0.026
Heterocapsa sp	0.035	0.109	0.068	0.011*	
Karenia mikimotoi	0.013	0.031	0.013*	0.010*	

Values are in mol C mol electron $^{-1}$. Values with an asterisk (*) are significantly different from the control ($P<0.05$).
doi:10.1371/journal.pone.0066423.t003
cell or per unit surface [6,40,44], or variations in the chlorophyll-specific optical-absorption cross section (a*) can be cited among others [6,18,45]. In the present experiment, acclimation to growth irradiance of non-limited cultures (control) was observed. The a* values increased with nutrient limitations. The level of the response is species specific as well as nutrient specific, but in all the species tested here, an increase in a* was observed under P limitation. The same type of regulation was observed in the Chlorophyceae Dunaliella tertiolecta under N and P limitation [18]. This result can be partly explained by the package effect mechanism, which is widely described in the literature [6,18,29]. Cells acclimated to growth irradiance exhibit higher chlorophyll content, causing an increase in self-shading between chlorophyll antennas in cell and hence a decrease in the effectiveness of the chlorophyll and consequently of the a*.

The values and tendencies of the carbon/Chl a ratio are in accordance with the literature as described for N and P limitation by the model of Geider et al. [40]. We observed that the carbon/Chl a ratio was significantly higher under N and P limited conditions. In P limited cultures, both carbon/Chl a and Fv/Fm ratios were affected. In contrast, despite the relatively high values of Fv/Fm in N-limited cultures, the carbon/Chl a ratio differed from that in replete nutrient conditions, revealing nutrient stress in those cultures. Like the Fv/Fm ratio, the carbon/Chl a ratios of diatoms were weakly affected in the Si-limited culture. Despite Si limitation, the diatoms were able to maintain growth and physiological status because they are able to reduce the frustule’s thickness to maintain cell division rate [46]. However, the main metabolisms (C, N,P) involved in energetic and biosynthesis processes are not directly related to Si metabolism [23,47]. Thus, Si limitation would not have a strong impact on Chl a biosynthesis, light harvesting organisation, and photosynthetic efficiency and capacity. Only a few studies have dealt with the effect of Si limitation on photosynthesis. In a previous study, Lippemeier et al. [24] observed an increase in Chl a per cell under Si starvation. We can suppose that the Si limitation level that we applied was lower than the one performed by Lippemeier et al. [24].

4.2-Carbon Incorporation/ETR Relationships

In all four species, and under all nutrient treatments, significant relationships were found between ETRChl measurements (PAM method) and \(\Phi_{C,e} \) estimated using the traditional method of \(^{13} \)C incorporation. This result shows that the fluorescence technique can reliably be used to estimate the photosynthetic activity of phytoplankton cells, as previously shown by other studies performed in various systems [10,15,48] and cultures [14,16,49].

However, the shape of the relationship between PAM measurements and \(^{13} \)C measurements is highly variable. In the present study, linear relationships were found for the majority of species and treatments, but some cultures showed logarithmic relationships. Asterionellopsis glacialis showed a logarithmic relationship between ETRChl and \(\Phi_{C,e} \) measurements, especially in N and P limited conditions. Such a relationship was observed in the Dunaliella tertiolecta under N and P limitation. The same type of regulation was observed in the Chlorophyceae Dunaliella tertiolecta under N and P limitation [18]. This result can be partly explained by the package effect mechanism, which is widely described in the literature [6,18,29]. Cells acclimated to growth irradiance exhibit higher chlorophyll content, causing an increase in self-shading between chlorophyll antennas in cell and hence a decrease in the effectiveness of the chlorophyll and consequently of the a*.

The values and tendencies of the carbon/Chl a ratio are in accordance with the literature as described for N and P limitation by the model of Geider et al. [40]. We observed that the carbon/Chl a ratio was significantly higher under N and P limited conditions. In P limited cultures, both carbon/Chl a and Fv/Fm ratios were affected. In contrast, despite the relatively high values of Fv/Fm in N-limited cultures, the carbon/Chl a ratio differed from that in replete nutrient conditions, revealing nutrient stress in those cultures. Like the Fv/Fm ratio, the carbon/Chl a ratios of diatoms were weakly affected in the Si-limited culture. Despite Si limitation, the diatoms were able to maintain growth and physiological status because they are able to reduce the frustule’s thickness to maintain cell division rate [46]. However, the main metabolisms (C, N,P) involved in energetic and biosynthesis processes are not directly related to Si metabolism [23,47]. Thus, Si limitation would not have a strong impact on Chl a biosynthesis, light harvesting organisation, and photosynthetic efficiency and capacity. Only a few studies have dealt with the effect of Si limitation on photosynthesis. In a previous study, Lippemeier et al. [24] observed an increase in Chl a per cell under Si starvation. We can suppose that the Si limitation level that we applied was lower than the one performed by Lippemeier et al. [24].

Our slopes of the linear relationship between \(\Phi_{C,e} \) and ETRChl (\(\Phi_{C,e} \)) are in the same range as those found by Kaiblinger and Dokulil [54] but they are lower than those frequently reported in the literature [15,17]. However, it is usually assumed that 50% of quanta are absorbed by PSI and 50% by PSII [45,55,56], whereas in the present study, we assumed that 74% of quanta were absorbed by PSI for diatoms and 68% for dinoflagellates [33], which leads to lower estimation of \(\Phi_{C,e} \).

In this study, it appears that \(\Phi_{C,e} \) does not depend on the phytoplankton group, i.e., diatom and dinoflagellate, but rather depends on the species and on the nutrient that is limited. No significant effect of Si limitation was observed on \(\Phi_{C,e} \) in either diatom, confirming the uncoupling between Si metabolism and photosynthesis as already described above [23]. In contrast, N and P limitation did affect \(\Phi_{C,e} \), but in different ways. As previously described, Asterionellopsis glacialis showed a non-linear response under N and P limited conditions and \(\Phi_{C,e} \) appeared to be higher under P limitation despite the rather low \(F_{v}/F_{m} \). We can suggest that the low \(F_{v}/F_{m} \) is partly due to the chlororespiration. For the three other species tested, \(\Phi_{C,e} \) decreased with P and N limitation with a higher effect observed in P limited cultures. The linear relationships indicate that \(\Phi_{C,e} \) did not depend on light intensity but showed that whatever the light intensity, the number of electrons required to fix a mol of carbon was constant. This result suggests that lower values of \(\Phi_{C,e} \) in N and P depleted cultures are not due to alternative electron sinks, but to mechanisms that affect the efficiency of linear electron flow in the photosynthetic apparatus. N and P nutrient stresses can affect the efficiency of linear electron flow in the photosynthetic apparatus. N and P nutrient stresses can affect the efficiency of PSII [7,18] by affecting the structure of light harvesting systems and/or reaction centres [57]. A decrease in the PSII/PSI ratio is also reported in the literature [21]. P limitation can also affect the structure of the thylakoid membrane by changing phospholipid composition and hence the efficiency of the electron transport chain [58,59]. Indeed, phospholipids are indispensable components of bio-membranes which themselves play an important role in maintaining membrane structure intact and performing normal membrane functions. P limitation can result in low fluidity of
thylakoid membrane leading to a decrease in the energy transfer rate and consequently in photosynthesis [30].

The decrease in the slopes (i.e. Φ_{C_e}) of the linear relationships between P^Chl and ETR^Chl are thus probably more due to the structural effects of the nutrient limitations on the photosynthetic apparatus than the consequences of alternative electron flows which lead to logarithmic relationships. However as we observed in A. glaciata under N limitation, both processes can be coupled.

Napoléon and Claquin [10], who developed a multi-parametric model to estimate primary production by using PAM measurements in a study performed in the central English Channel, showed that high nutrient concentrations negatively affect Φ_{C_e}. However, in situ measurements of phytoplankton communities do not distinguish physico-chemical parameters which have a direct influence on such a complex regulation. The variability of Φ_{C_e} is due to several biological, chemical and physical parameters which are included in the field study. In the study performed by Napoléon and Claquin [10], the dynamics of DIP appeared to be a good integrator of the parameters that influence the variability of Φ_{C_e} in the English Channel, but the authors were not able to identify a direct physiological link.

Acknowledgments
We thank Bertrand Le Roy, Stéphane Lemesse, Marie-Paule Bataillé and Jean-Paul Lehodey for their technical assistance.

Author Contributions
Conceived and designed the experiments: PC CN. Performed the experiments: CN VR PC. Analyzed the data: CN PC. Contributed reagents/materials/analysis tools: CN PC. Wrote the paper: CN PC.

Conclusions
This study showed that the value of Φ_{C_e} is triggered by several physicochemical parameters including light intensity and nutrient concentrations. N and especially P affect Φ_{C_e}, in both dinoflagellates and diatoms while Si limitation does not influence Φ_{C_e}. We showed that the shape of the relationship between P^Chl and ETR^Chl reveals the capacity of phytoplankton cells to manage electron overflow via alternative electron flows under high light and/or nutrient stress conditions, whereas the slope of the relationship (Φ_{C_e}) revealed structural damage to the photosynthetic apparatus caused by nutrient stress. Complementary experiments are now required to develop an accurate physiological model for Φ_{C_e} estimation and to predict the shape of the P^Chl vs. ETR^Chl relationship.

References
1. Pauly D, Christensen V (1995) Primary production required to sustain global fisheries. Nature 374: 255–257.
2. Nielsen ES (1952) The use of radio-active carbon (C14) for measuring organic production in the sea. Journal du Conseil 16: 117–140.
3. Savidge G, Boyd P, Porosny A, Harbour D, Joint I (1995) Phytoplankton production and biomass estimations in the northeast Atlantic-ocean, May to June 1990. Deep-Sea Research Part I-Oceanographic Research Papers 42: 599–617.
4. Babin M, Mezor A, Gagnon R (1994) An incubator designed for extensive and sensitive measurements of phytoplankton photosynthetic parameters. Limnology and Oceanography 39: 694–702.
5. Pannard A, Claquin P, Klein C, Le Roy B, Veron B (2008) Short-term variability of the phytoplankton community in coastal ecosystem in response to physical and chemical conditions’ changes. Estuarine Coastal and Shelf Science 88: 212–224.
6. Falkowski PG, Raven JA (2007) Aquatic photosynthesis. Princeton: Princeton University Press.
7. Parkhill JP, Maillet G, Cullen JJ (2001) Fluorescence-based maximal quantum yield for PSII as a diagnostic of nutrient stress. Journal of Phycology 37: 517–529.
8. Kromkamp JC, Forster RM (2003) The use of variable fluorescence measurements in aquatic ecosystems: differences between multiple and single turnover measuring protocols and suggested terminology. European Journal of Phycology 38: 103–112.
9. Napoléon C, Rainbaud V, Fiant L, Roiu P, Lefebvre S, et al. (2012) Spatio-temporal dynamics of physicochemical and photosynthetic parameters in the central English Channel. Journal of Sea Research 69: 43–52.
10. Napoléon C, Claquin P (2012) Multi-Parametric Relationships between PAM Measurements and Carbon Incorporation, an In Situ Approach. PLoS one 7: e40284.
11. Petrou K, Doblin MA, Smith RA, Ralph PJ, Shelly K, et al. (2000) State transitions and nonphotochemical quenching during a nutrient-induced fluorescence transient in phosphorus-starved Dunaliella tertiolecta. Journal of Phycology 44: 1240–1241.
12. Rochaix J-D (2011) Reprint of: Regulation of photosynthetic electron transport. Biochimica Et Biophysica Acta-Bioenergetics 1807: 878–886.
13. Nogales J, Gudmundsson S, Knight EM, Palsson BO, Thiele I (2012) Detailing the optimality of photosynthesis in cyanobacteria through systems biology. Proceedings of the National Academy of Sciences of the United States of America 109: 2678–2683.
14. Lefebvre S, Mouget JL, Loret P, Rosa P, Tremblin G (2007) Comparison between fluorimetry and oxymetry techniques to measure photosynthesis in the diatom Skeletonema costatum cultivated under simulated seasonal conditions. Journal of Phycology and Photobiology: B 186: 151–159.
15. Barranger C, Kromkamp J (2006) Estimating primary production rates from photosynthetic electron transport in estuarine microphytobenthos. Marine Ecology Progress Series 204: 39–52.
16. Hanke K, Hanke TB, Ohlen LM, Johansen G, Glud RN (2008) Temperature effects on microalgal photosynthesis-light responses measured by O-2 production, pulse-amplitude-modulated fluorescence, and C-14 assimilation. Journal of Phycology 44: 501–514.
17. Morris EP, Kromkamp JC (2003) Influence of temperature on the relationship between oxygen- and fluorescence-based estimates of photosynthetic parameters in a marine benthic diatom (Gymnodium electrum). European Journal of Phycology 38: 133–142.
18. Geider RJ, Macintyre HL, Graziano LM, McKay RML (1998) Responses of the photosynthetic apparatus of Dunaliella tertiolecta (Chlorophyceae) to nitrogen and phosphorus limitation. European Journal of Phycology 33: 315–332.
19. Spillerian E (2010) High photosynthetic rates under a colimitation for inorganic phosphorus and carbon dioxide. Journal of Phycology 46: 653–664.
20. Welschmeyer NA (1994) Fluorometric analysis of chlorophyll-a and pheopigments. Limnology and Oceanography 39: 1985–1990.
21. Kromkamp JC, Forster RM (2003) The use of variable fluorescence measurements in aquatic ecosystems: differences between multiple and single turnover measuring protocols and suggested terminology. European Journal of Phycology 38: 103–112.
22. Geider RJ, Macintyre HL, Graziano LM, McKay RML (1998) Responses of the photosynthetic apparatus of Dunaliella tertiolecta (Chlorophyceae) to nitrogen and phosphorus limitation. European Journal of Phycology 33: 315–332.
23. Claquin P, Martín-Jémez V (2005) Regulation of the Si and C uptake and of the soluble free-silicon pool in a synchronised culture of Gyrodinium foliaceum (Bacillariophyceae): effects on the Si/C ratio. Marine Biology 146: 877–886.
24. Lappemeier S, Hartig P, Colijn F (1999) Direct impact of silicate on the photosynthetic performance of the diatom Thalassiosira nozakii assessed by on- and off-line PAM fluorescence measurements. Journal of Plankton Research 21: 269–283.
25. Gullard RRL (1975) Culture of phytoplankton for feeding marine invertebrates. Culture of Marine Invertebrate Animals. New-York: Smith, W.L. and Chanley, M.H.
26. Redfield AC, Ketchum BH, Richards FA (1963) The influence of organisms on the composition of sea-water. The Sea. New-York: In M. N. Hill and others, editors. 26–77.
27. Brzezinski MA (1985) The Si/CN ratio of marine diatoms: Interspecific variability and the effect of some environmental variables. Journal of Phycology: 1: 347–357.
28. Wolthers NA (1994) Fluorometric analysis of chlorophyll-a in the presence of chlorophyll-b and pheopigments. Limnology and Oceanography 39: 1905–1909.
29. Dubinsky Z, Falkowski PG, Wyman K (1986) Light harvesting and utilization by phytoplankton. Plant and Cell Physiology 27: 1353–1359.
30. Schreiber U, Schliwa U, Bilger W (1986) Continuous recording of photochemical and non-photochemical fluorescence quenching with a new type of modulation fluorometer: Photophysics Research 10: 31–62.
31. Gery B, Braintais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and of quenching chlorophyll fluorescence. Biochimica Et Biophysica Acta 990: 87–92.
32. Juneau P, Harrison PJ (2005) Comparison by PAM fluorometry of photosynthetic activity of nine marine phytoplankton grown under identical conditions. Photochemistry and Photobiology 81: 649–653.

33. Johnsen G, Sakshaug E (2007) Biooptical characteristics of PSII and PSI in 33 species (13 pigment groups) of marine phytoplankton, and the relevance for pulse-amplitude-modulated and fast-repetition-rate fluorometry. Journal of Phycology 43: 1236–1251.

34. Hama T, Miyazaki T, Ogawa Y, Ikawaka T, Takahashi M, et al. (1983) Measurement of photosynthetic production of a marine phytoplankton population using a stable C-13 isotope. Marine Biology 73: 31–36.

35. Eilers PHC, Peeters JCH (1988) A model for the relationship between light-intensity and the rate of photosynthesis in phytoplankton. Ecological Modelling 42: 199–215.

36. Lippemeier S, Hintze R, Vanleveland KH, Hartig P, Colijn F (2001) In-line recording of PAM fluorescence of phytoplankton cultures as a new tool for studying effects of fluctuating nutrient supply on photosynthesis. European Journal of Phycology 36: 89–100.

37. Kolber Z, Zehr J, Falkowski PG (1988) Effects of growth irradiance and nitrogen limitation on photosynthetic energy conversion in photosystem II. Plant Physiology 88: 923–929.

38. Young EB, Beardall J (2003) Photosynthetic function in Dunaliella tertiolecta (Chlorophyta) during a nitrogen starvation and recovery cycle. Journal of Phycology 39: 897–905.

39. Kruskopf M, Flynn KJ (2006) Chlorophyll content and fluorescence responses cannot be used to gauge reliably phytoplankton biomass, nutrient status or growth rate. New Phytologist 169: 525–536.

40. Geider RJ, Madinute HL, Kana TM (1997) Dynamic model of phytoplankton growth and acclimation: Responses of the balanced growth rate and the chlorophyll/acceptor ratio to light, nutrient-limitation and temperature. Marine Ecology-Progress Series 148: 187–200.

41. Guerrini F, Cangini M, Boni L, Trost P, Pistocchi R (2000) Metabolic responses of the diatom Achnanthes brevipes (Bacillariophyceae) to nutrient limitation. Journal of Phycology 36: 821–840.

42. Lynn SG, Kilham MS, Kreger DA, Interlandi SJ (2000) Effect of nutrient availability on the biochemical and elemental stoichiometry in the freshwater diatom Stephanodiscus minitulus (Bacillariophyceae). Journal of Phycology 36: 510–522.

43. Behrenfeld MJ, Prasil O, Babin M, Bruyant F (2004) In search of a physiological basis for covariations in light-limited and light-saturated photosynthesis. Journal of Phycology 40: 4–25.

44. Prezelin BB, Matlick HA (1989) Time course of photosynthesis adaptation in the photosynthesis irradiance relationship of a dinoflagellate exhibiting photosynthetic periodicity. Marine Biology 98: 83–96.

45. Kromkamp JC, Dijken NA, Peene J, Simis SGH, Gons HJ (2000) Estimating photosynthetic primary production in Lake Ijselmeer (The Netherlands) using variable fluorescence (PAM-FRRF) and C-uptake techniques. European Journal of Phycology 43: 327–344.

46. Martin-Jezquel V, Hildebrand M, Brazinski MA (2000) Silicon metabolism in diatoms: Implications for growth. Journal of Phycology 36: 821–840.

47. Ciais P, Martin-Jezquel V, Kromkamp JC, Veldhuis MJW, Kraay GW (2002) Uncoupling of silicon compared with carbon and nitrogen metabolisms and the role of the cell cycle in continuous cultures of Thalassiosira pseudonana (Bacillariophyceae) under light, nitrogen, and phosphorus control. Journal of Phycology 38: 922–930.

48. Marchetti A, Sherry ND, Juneau P, Strzepek RF, Harrison PJ (2006) Phytoplankton processes during a mesoscale iron enrichment in the NE subarctic Pacific: Part III - Primary productivity. Deep-Sea Research Part II - Topical Studies in Oceanography 53: 2131–2151.

49. Claxton IA, Kromkamp J (1998) Light dependence of quantum yields for PSII charge separation and oxygen evolution in eucaryotic algae. Limnology and Oceanography 43: 284–297.

50. Muller P, Li XP, Niyogi KK (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiology 125: 1538–1566.

51. Kaiblinger C, Dokulil MT (2006) Application of fast repetition rate fluorometry to phytoplankton photosynthetic parameters in freshwaters. Photosynthesis Research 98: 19–30.

52. Heinke D, Sim M, Heldt HW (1989) Effects of inorganic phosphate on the light dependant thylakoid energization of intact spinach chloroplasts. Plant Physiology 91: 221–226.

53. Muller P, Li XP, Niyogi KK (2003) Non-photochemical quenching. A response to excess light energy. Plant Physiology 125: 1538–1566.

54. Kaiblinger C, Dokulil MT (2006) Application of fast repetition rate fluorometry to phytoplankton photosynthetic parameters in freshwaters. Photosynthesis Research 98: 19–30.

55. Claquin P, Probert I, Lefebvre S, Veron B (2008) Effects of temperature on photosynthetic parameters and TEP production in eight species of marine microalgae. Aquatic Microbial Ecology 51: 1–11.

56. Gilbert M, Domin A, Becker A, Wilhelm C (2000) Estimation of primary productivity by chlorophyll a in vivo fluorescence in freshwater phytoplankton. Photosynthetic Research 51: 61–70.

57. Laroche J, Geider RJ, Graziano LM, Murray H, Lewis K (1993) Induction of photosynthetic periodicity. Marine Biology 58: 85–96.

58. Wang Z, Li D, Li G, Liu Y (2010) Mechanism of photosynthetic response in Microcystis aeruginosa PCC7806 to low inorganic phosphorus. Harmful Algae 9: 613–619.

59. Andersson MX, Stridh MH, Larsson KE, Lijenberg C, Sandelinás AS (2003) Phosphate-deficient oat replaces a major portion of the plasma membrane phospholipids with the galactolipid digalactosyldiacylglycerol. Fels Letters 537: 120–132.