Low copy numbers of complement C4 and C4A deficiency are risk factors for myositis, its subgroups and autoantibodies

Danlei Zhou,1,2 Emily H King,1,2 Simon Rothwell,3,4 Olga Krystufkova,5 Antonella Notarnicola,6 Samantha Coss,1,2 Rabheb Abdul-Aziz,2,7 Katherine E Miller,1,2 Amanda Dang,1 G Richard Yu,1 Joanne Drew,2 Emeli Lundström,6 Lauren M Pachman,8 Gulnara Mamyrova,9 Rodolfo V Curiel,9 Boel De Paepe,10 Jan L De Bleecker,10 Antony Payton,11 William Ollier,12 Terrance P O’Hanlon,13 Ira N Targoff,14 Willy A Flegel,15 Vidy Sivaraman,2 Edward Oberle,2 Shoghik Akoghlanian,2 Kyla Driest,2 Charles H Spencer,16 Yee Ling Wu,2,17 Haikady N Nagaraja,18 Stacy P Ardoin,2 Hector Chinoy,1,2,3 Lisa G Rider,13 Frederick W Miller,13 Ingrid E Lundberg,6 Leonid Padyukov,6 Jiří Vencovský,5 Janine A Lamb,19 Chack-Yung Yu,1,2 for MYOGEN Investigators

ABSTRACT

Background Idiopathic inflammatory myopathies (IIM) are a group of autoimmune diseases characterised by myositis-related autoantibodies plus infiltration of leucocytes into muscles and/or the skin, leading to the destruction of blood vessels and muscle fibres, chronic weakness and fatigue. While complement-mediated destruction of capillary endothelia is implicated in paediatric and adult dermatomyositis, the complex diversity of complement C4 in IIM pathology was unknown.

Methods We elucidated the gene copy number (GCN) variations of total C4, C4A and C4B, long and short genes in 1644 Caucasian patients with IIM, plus 3526 matched healthy controls using real-time PCR or Southern blot analyses. Plasma complement levels were determined by single radial immunodiffusion.

Results The large study populations helped establish the distribution patterns of various C4 GCN groups. Low GCNs of C4T (C4T=2+3) and C4A deficiency (C4A=0+1) were strongly correlated with increased risk of IIM with OR equalled to 2.58 (2.28–2.91), p=5.0×10−53 for C4T, and 2.82 (2.48–3.21), p=7.0×10−57 for C4A deficiency. Contingency and regression analyses showed that among patients with C4A deficiency, the presence of HLA-DR3 became insignificant as a risk factor in IIM except for inclusion body myositis (IBM), by which 98.2% had HLA-DR3 with an OR of 11.02 (1.44–84.4). Intragroup analyses of patients with IIM for C4 protein levels and IIM-related autoantibodies showed that those with anti-Jo-1 or with anti-PM/Scl had significantly lower C4 plasma concentrations than those without these autoantibodies.

Conclusions C4A deficiency is relevant in dermatomyositis, HLA-DRB1*03 is important in IBM and both C4A deficiency and HLA-DRB1*03 contribute interactively to risk of myositis.
myositis (IBM). Immune-mediated necrotising myositis and anti-synthetase syndrome are recently defined categories.

JDM is the most common form of myositis in children that has a mean age of diagnosis between 7 and 8 years. Patients with JDM have similar muscle and skin manifestations as in adult-onset DM but do not have the increased risk of interstitial lung disease (ILD) and malignancy that are more common among adult patients. Specific patterns of rash involving the eyelids, face, shoulders and body areas frequently exposed to sunlight are prevalent among JDM and DM. Muscle weakness is symmetric and proximal to the body axis. In pathognomonic muscle biopsies, there is remarkable complement-mediated destruction of perivascular endothelium leading to perifascicular ischaemia and degeneration of muscle fibres. However, triggers for complement activation and whether complement genetic diversity is engaged in the breakdown of immune tolerance have not been investigated. PM is more common in women over the age of 30. Patients with PM mainly have muscle weakness and may develop ILD but skin manifestations are infrequent. For IBM, the disease starts insidiously at elderly age and weakness may involve both proximal and distal muscles. PM and IBM both seem to involve primarily cell-mediated autoimmunity.

The aetiology of IIM is likely multifactorial. Inflamed muscle cells in patients with IIM express human leucocyte antigen (HLA) class I and sometimes class II proteins that present antigens to T cells and provide activation signals. Many patients with IIM have myositis-specific autoantibodies (MSA) and/or myositis-associated autoantibodies (MAA), which together are termed myositis-related autoantibodies. MAA are also present in other connective tissue diseases. Intriguingly, patients with IIM with the same autoantibodies may present with similar disease patterns and profiles.

Among subjects of European ancestry, the presence of HLA-DRB1*03:01 or HLA-DR3 tends to strongly associate with complement C4A deficiency, the presence of a single short C4B gene and HLA-B*08:01, which is therefore named the ancestral haplotype. The HLA-DRB1*03:01 was one of the strongest risk factors for IIM.

Complement C4 plays essential roles as an anchor protein in the activation of the classical and the mannose-binding lectin pathways for the humoral immunity against infection. There are four layers of genetic complexity for human C4, which include (1) multiallelic gene copy number (GCN) variations with 2–10 copies of C4 genes present in a diploid genome among different individuals; (2) gene size dichotomy with a long gene and a short gene depending on the integration of the 6.4 kb endogenous retrovirus HERV-K(C4) into intron 9 of long genes; (3) each C4 gene either codes for an acidic C4A or a basic C4B protein, which differ by four specific amino acid residues between positions 1120 and 1125 coded by exon 26: PCPVLD for C4A and LSVPVH for C4B and (4) both C4A and C4B proteins are polymorphic with differential electrophoretic, serological and functional reactivities (figure 1).

Isotype deficiency of C4A has been shown to be strongly associated with increased susceptibility of lupus in multiple racial groups and in an animal model. The role of C4 isotype deficiencies in myositis is understudied. The continuous GCN variations and associated polymorphisms for C4A and C4B pose challenges for accurate data interpretation through whole-exome or whole-genome sequencing and analyses by Immunochip techniques. In a study of 95 white patients with JDM, we showed that C4A deficiency was a strong risk factor for JDM. How complement C4 genetic diversity contributes to disease predisposition in different forms of IIM, the development of MSA and/or MAA and the relative roles of HLA-DRB1*03 and C4A deficiency in IIM have yet to be assessed, however.

We leveraged a robust collection of biospecimens and clinical data for patients with IIM recruited by Investigators of the Myositis Genetics Consortium (MYOGEN) from the UK, Sweden, the Czech Republic, Belgium and the USA, plus geographically matched healthy controls to investigate the GCN variations of total C4 (C4T), C4A, C4B, long C4 genes (C4L) and short C4 genes (C4S) in disease susceptibility for IIM and its four major subtypes. The relative roles of HLA-DRB1*03 and C4A deficiency on genetic risk of IIM, and how the C4 GCN variations and complement protein levels correlated with the presence of myositis-related autoantibodies were also examined.

Isolation of genomic DNA, EDTA-plasma and Southern blot analyses

For subjects recruited in Ohio, preparation of genomic DNA from peripheral blood samples, performance of Taq, PshAI-PvuII restriction fragment length polymorphisms and Pmel pulsed-field gel electrophoresis to elucidate RP-C4-CYP21-TNX (RCCX) modular structures were as described.
Myositis

Protein concentrations and polymorphic variants

Complement C4 and C3 protein concentrations were measured by single radial immunodiffusion (RID) using EDTA-plasma and an RID kit from the Binding Site (UK). C4A and C4B protein allotypes in plasma samples were resolved by high-voltage agarose gel electrophoresis, followed by immunofixation using antiserum against human C4.40

Genotyping of HLA-DRB1

Genotyping for HLA-DRB1 alleles for samples from the USA and Sweden was performed at low resolution using the sequence-specific primer-PCR methods (eg, DR low-resolution kit: Olerup SSP, Saltsjobaden, Sweden).41 42 The HLA-DRB1 genotypes for samples from the UK were deduced from single-nucleotide polymorphisms data using SNP2HLA software.20 43 44

High concordance of imputed data from DNA sequencing and conventional HLA typing techniques was obtained.20

Statistical analyses

This was a cross-sectional, case–control study. Statistical analyses were performed using JMP16 software from SAS. Continuous data between patients and controls were compared by t-tests. The distributions of C4T, C4A, C4B, C4L and C4S GCN groups in patients with IIM or in each IIM subgroup and controls were analysed by \(\chi^2 \) analyses. The GCN groups for each type of C4 genes were segregated dichotomously into low GCN and medium to high GCN groups, and their frequencies compared between case and controls with \(\chi^2 \) analyses to compute ORs and 95% CIs. The low GCN groups were defined as follows: C4T=2+3, C4A=0+1, C4B=0+1, C4L=0+1+2 and C4S=0.
A Bonferroni’s correction for a C4 genotype with \(p < 0.01 \) was considered significant to account for five structural variants being investigated for IIM genetic risk individually. For intra-group comparisons of a specific phenotype with a genotype, a \(p \)-value <0.05 was viewed as significant.

RESULTS

Comparisons of GCN variations of complement C4 between IIM and controls

Total C4

The mean GCN and SD of \(C4T \) among patients with IIM was 3.50±0.78, compared with 2.10±0.84 in healthy controls (\(\Delta = −0.33, p = 6.0 \times 10^{−46} \), t-test) (table 2). The most prevalent GCN group for \(C4T \) in IIM was 3 copies with a frequency of 45.5%, followed by a GCN group of 4 copies with a frequency of 38.6% (figure 2). Patients with 2 copies of \(C4T \) comprised 7.1%, and those with 5, 6, 7 and 8 copies comprised a total of 9.2% of all IIM. Categorically, the distributions of \(C4T \) GCNs in IIM were substantially different from those in healthy controls, with a \(p \)-value of \(1.4 \times 10^{−33} \) (\(\chi^2 \) analysis). The OR and 95% CI for IIM subjects with two copies of \(C4T \) was 2.26 (1.74 to 2.95), \(p = 2.0 \times 10^{−9} \), and those with two or three copies (\(C4T = 2+3 \)) had an OR=2.62 (2.32 to 2.95), \(p = 2.8 \times 10^{−13} \) (figure 3A; see also online supplemental figure S2, supplementary results).

\(C4A \) in IIM

GCN of \(C4A \) varied from 0 to 6 among patients with IIM with a mean of 1.74±0.88, compared with 2.10±0.84 in healthy controls (\(\Delta = −0.37, p = 6.0 \times 10^{−46} \)). There were remarkable increases in the frequencies of \(C4A \) low GCN groups and decreases in medium and high GCN groups in IIM (\(p = 6.5 \times 10^{−36} \)). While 40.1% of patients with IIM had two copies of \(C4A \) genes, those with 0 and 1 copy constituted 4.2% and 38.6% of patients, respectively (figure 2). Patients with 3–6
Myositis

The frequency of long genes (C4L) in IIM was 55.6%, compared with 33.4% in healthy controls (OR=2.50 (2.21–2.82), p=2.7×10^{−49}) (figure 3A). The frequency of long genes among total C4 decreased from 74.6% in controls to 63.2% in IIM (C4L/C4T, p=2.1×10^{−53}).

C4B in IIM

Unlike C4T and C4A, C4B copy number group distribution in IIM was almost identical to that observed in healthy controls, which ranged between 0 and 5. Close to two-thirds of the patients with IIM (65.8%) had two copies of C4B, while 21% and 27.1% had 0 and 1 copy, respectively. Patients with 3, 4 and 5 copies of C4B constituted a total frequency of 4.9%.

Figure 2

Comparisons in patterns of distributions for complement C4 gene copy number groups for total C4, C4A, C4B, C4L and C4S among healthy controls (CTL) and patients with idiopathic inflammatory myopathies (IIM) including adult dermatomyositis (DM), polymyositis (PM), inclusion body myositis (IBM) and juvenile dermatomyositis (JDM). Frequencies with three copies of total C4 (C4T) were labelled to highlight the difference between patients and CTL. C4A, acidic isotype of complement C4; C4B, basic isotype of complement C4; C4L, long form of C4 gene with human endogenous retrovirus HERV-K(C4); C4S, short form of C4 gene without integration of the retrovirus HERV-K(C4); C4T, total copy number of C4 genes.

Copies (high GCN) of C4A together had a combined frequency of 17.1%. The OR was 2.49 (1.76–3.54, p=3.6×10^{−7}) for C4A=0 and 2.82 (2.48–3.21, p=2.9×10^{−15}) for C4A=0+1 (figure 3A). The magnitudes of the effects of low C4A GCNs on IIM were similar to that observed in C4T=2 and C4T=2+3.
the largest impact on PM with OR = 3.16 (2.65–3.75). Low GCN had an impact on IBM with OR = 3.70 (2.72–5.04). Low GCN had the greatest ranging between 2.1 and 3.7. Low GCN had the greatest C4T and C4L, respectively.

GCN had largest effects on PM and IBM, with ORs of 2.80 and 2.88, respectively.

Figure 3 Forest plots of ORs for low copy number groups for C4T, C4A, long genes (C4L) as risk factors (A), and for C4B and short genes (C4S) as protective factors (B) in IIM subgroups. A single exception was that low copy number C4B was also a risk factor of IBM. Notice the partial dominance of low GCNs of total C4 (C4T = 2 and C4T = 2 + 3) and C4A deficiencies (C4A = 0 and C4A = 0 + 1) on conferring risk of IIM and its subgroups DM, PM, IBM and JDM. The ORs in panel A are shown in log-scale. C4A, acidic isotype of complement C4; C4B, basic isotype of complement C4; C4L, long form of C4 gene with human endogenous retrovirus HERV-K(C4); C4S, short form of C4 gene without integration of the retrovirus HERV-K(C4); C4T, total copy number of C4 genes; DM, dermatomyositis; GCNs, gene copy numbers; IBM, inclusion body myositis; IIM, idiopathic inflammatory myopathies; JDM, juvenile dermatomyositis; PM, polymyositis.

Short genes (C4S) in IIM
The copy number of C4S in IIM varied from 0 to 3. The mean copy number was 1.06±0.72, which was higher than that in healthy controls (0.90±0.77, p=3.0×10−12). More than half of the patients with IIM had a single copy of C4S (53.5%). The frequency of subjects lacking C4S (C4S = 0) was significantly reduced from 32.3% in controls to 21.1% in IIM (OR = 0.56 (0.49–0.65), p=8.8×10−17).

C4 GCN variations among subgroups of IIM
Compared with controls, the four IIM subgroups had lower mean GCNs of C4A in the range of 1.70 to 1.82 but they were not distinguishable among themselves (table 2 and figure 2). Patients with IBM were unusual for having lower GCNs of C4B (1.59±0.65) than other IIM subgroups. In the other three subgroups, lower C4T GCN was primarily attributable to the decreased GCN of C4A.

As shown in figure 3, the effect sizes of C4T = 2 + 3, C4A = 0 + 1 and C4L = 0 + 1 + 2 on IIM subgroups were similar, with ORs ranging between 2.1 and 3.7. Low C4T GCN had the greatest impact on IBM with OR = 3.70 (2.72–5.04). Low C4A GCN had the largest impact on PM with OR = 3.16 (2.65–3.75). Low C4L GCN had largest effects on PM and IBM, with ORs of 2.80 and 2.88, respectively.

C4 GCN variations among patients with IIM with and without MSA or MAA
We compared the mean age at diagnosis, sex and C4 GCN variations between patients with IIM with and without various myositis-related autoantibodies (table 3). Patients with anti-Jo1, anti-PM/Scl and MAA in general had younger age of disease diagnosis between 43 and 49 years old. Patients with IIM who tested positive for MSA or MAA were more likely to be women (70%–75%). Patients with anti-Jo1 and anti-PM/Scl consistently had the lowest mean GCNs of C4T, C4A and C4L.

Except for anti-Jo1, patients with MSA presented with similar C4 or C3 plasma protein concentrations than those without. In contrast, patients with MAA had significantly lower levels of C4 and C3 than those without MAA (C4: 275.1±100.0 vs 330.9±105.4 mg/L, p=2.1×10−2; C3: 1188.0±309.8 vs 1335.2±283.9 mg/L, p=1.2×10−8). With regards to specific autoantibodies, patients with anti-PM/Scl and anti-Ro each had significantly lower C4 and C3 protein levels than those without these autoantibodies (figure 4A,B). Patients with MAA (83.6±30.6 vs 98.0±31.6 mg/L, p=1.1×10−7), anti-PM/Scl (86.1±26.7 vs 95.2±31.1 mg/L, p=0.03) and anti-Ro (85.0±30.1 vs 95.4±30.8 mg/L, p=0.014) had significantly lower C4 protein yield per gene (C4P/G) than those without these autoantibodies. No significant differences were observed on plasma protein levels of C4 and C4P/G between women and men (figure 4D,E).

Logistic regression analyses of HLA-DRB1*03 and C4A deficiency in genetic risk of IIM and IIM-related autoantibodies
Among healthy control subjects, 26.1% were HLA-DRB1*03 positive, compared with 56.1% in patients with IIM, which translated into an OR of 3.68 (2.94–4.60, p=2.6×10−12) in IIM (table 4). The distribution of HLA-DRB1*03 was uneven among subgroups of IIM, which varied from 75.4% in patients with
Table 3

Continuous data	Ab-negative	Ab-positive	P value	OR
Age of diagnosis, mean±SD (years old)				
MSA	51.8±14.6	51.3±14.2	0.66	
MAA	52.9±14.0	47.6±15.0	2.2±0.5	
MAA-Jo1	52.2±14.6	48.9±13.1	0.02	
MAA-PM/Scl	52.3±14.1	43.6±15.1	8.5±0.6	
MAA-Ro	51.5±14.5	52.5±13.3	0.63	
C4T, GCN, mean±SD				
MSA	3.46±0.78	3.51±0.78	0.29	
MAA	3.55±0.79	3.39±0.75	0.0004	
MAA-Jo1	3.55±0.78	3.25±0.75	2.4±0.8	
MAA-PM/Scl	3.53±0.79	3.13±0.67	2.4±0.6	
MAA-Ro	3.46±0.78	3.40±0.72	0.38	
C4A GCN, mean±SD				
MSA	1.79±0.92	1.68±0.86	0.02	
MAA	1.80±0.89	1.59±0.85	3.9±0.5	
MAA-Jo1	1.79±0.87	1.43±0.86	2.0±0.9	
MAA-PM/Scl	1.78±0.90	1.34±0.72	5.3±0.6	
MAA-Ro	1.69±0.88	1.52±0.77	0.028	
C4B GCN, mean±SD				
MSA	1.68±0.59	1.79±0.56	0.0005	
MAA	1.73±0.59	1.77±0.54	0.143	
MAA-Jo1	1.73±0.59	1.80±0.52	0.087	
MAA-PM/Scl	1.73±0.59	1.79±0.46	0.329	
MAA-Ro	1.74±0.60	1.83±0.51	0.072	
C4L GCN, mean±SD				
MSA	2.35±1.11	2.40±1.14	0.454	
MAA	2.48±1.14	2.27±1.12	0.0017	
MAA-Jo1	2.50±1.13	2.02±1.11	2.1±0.9	
MAA-PM/Scl	2.47±1.14	1.80±1.00	1.7±0.7	
MAA-Ro	2.36±1.17	2.35±1.10	0.91	
C4S GCN, mean±SD				
MSA	1.04±0.70	1.10±0.74	0.093	
MAA	1.03±0.72	1.11±0.72	0.055	
MAA-Jo1	1.02±0.71	1.26±0.72	1.2±0.6	
MAA-PM/Scl	1.03±0.71	1.35±0.61	6.8±0.5	
MAA-Ro	1.08±0.72	1.13±0.69	0.50	

Table 3 Continued

Categorical data	Ab-negative	P value	OR
Sex, female, %			
MSA	62.1	0.001	1.47 (1.17–1.86)
MAA	64.3	0.0012	1.49 (1.17–1.90)
MAA-Jo1	66.3	0.33	NS
MAA-PM/Scl	65.2	0.059	1.58 (0.968–2.57)
MAA-Ro	65.6	0.051	1.49 (0.983–2.24)
C4T=2+3, frequency, %			
MSA	56.0	0.119	
MAA	49.1	1.65	1.32 (1.2±0.27)
MAA-Jo1	49.5	2.36	1.7±3.14
MAA-PM/Scl	49.9	4.08	2.40–6.92
MAA-Ro	54.1	0.51	1.49 (0.983–2.24)
C4A=0+1, frequency, %			
MSA	40.7	0.077	1.22 (0.98–1.52)
MAA	39.0	1.69	1.36 (1.2–1.22)
MAA-Jo1	38.7	2.77	2.10 (3.66)
MAA-PM/Scl	39.8	3.08	1.96–4.85
MAA-Ro	45.0	0.05	1.44 (0.999–2.07)

DISCUSSION

Here we investigated complement C4 genetic diversity in patients with IIM of European descent and matched healthy controls. Our data consistently showed that low copy numbers of C4T and C4L, and C4A deficiency are highly significant risk factors for IIM and its major subgroups, with medium to large effect sizes or ORs between 1.7 and 3.7. Compared with healthy controls, patients with IIM had 0.28 to 0.38 fewer mean gene copies of C4T, C4A or C4L. The C4T=2 group yielded similar risks as the C4T=2+3 group, and the C4A=0 group had similar risk as the C4A=0+1 group. The similar magnitudes of ORs suggested that there were ‘dominant’ effects for low GCN of total C4 (ie, C4T=2 and C4T=2+3) and C4A deficiency (C4A=0 and C4A=0+1) on the risk of IIM, which is analogous to IBM with an OR of 8.71 (5.48–13.8) to 59.5% in patients with PM with an OR of 4.16 (3.15–5.48), 47.6% in patients with DM with an OR of 2.57 (1.90–3.49) and 45.5% in patients with JDM with an OR of 2.36 (1.56–3.79).

We performed logistic regression to investigate the relative roles of C4A deficiency and HLA-DRB1*03 as independent risk factors for IIM and subgroups. The results are shown in table 4. It was found that (1) C4A deficiency and C4 gene size variation were independent risk predictors of JDM and DM and (2) HLA-DRB1*03 and C4A deficiency and GCN of C4T were independent risk factors for PM and IBM. Moreover, HLA-DRB1*03 and C4A deficiency interacted to increase the risk of PM. We also performed intragroup logistic regression analyses to identify independent predictors of IIM-related autoantibodies. Complement C4 or C3 protein or C4P/G, HLA-DRB1*03 and/or HLA-DRB1*15, C4A deficiency or C4A GCN range of variations were risk factors for various myositis-associated autoantibodies except for MSA in general. For patients with MSA, genetic factors such as HLA-DRB1*03, GCNs of C4B and C4L were independent predictors.

Zhou D, et al. Ann Rheum Dis 2022;0:1–11. doi:10.1136/ard-2022-222935

Click here to download the full-text article from the publisher's website.
Myositis

Figure 4 Comparisons of plasma protein levels for complement C4, C3 and C4 protein yield per C4 gene copies among patients with IIM with (+) and without (−) myositis-related autoantibodies including MSA or MAA in general, and anti-Jo1, anti-PM/Scl and anti-Ro (A, B and C). (D and E) Comparisons of C4 protein levels and C4/G between male and female patients with IIM. Violin plots are shown with median, 25th and 75th percentage range marked as boxes; red colour shades represent positive and blue colour shades represent negative with the specific autoantibodies of women and men, respectively, with p-values shown above. IIM, idiopathic inflammatory myopathies; MAA, myositis-associated autoantibodies; MSA, myositis-specific autoantibodies.

to when homozygous and heterozygous mutants exhibit the same phenotype in Mendelian genetics. Such phenomena are in stark contrast to those observed in the genetics of human systemic lupus erythematosus (SLE), in which low GCNs of C4T or homozygous C4A deficiency (C4T=2, OR=6.51; C4A=0, OR=5.27) exerted substantially greater risks than those with C4T=3 (OR=1.32) or heterozygous C4A deficiency (C4A=1, OR=1.61).23 24 46 Parallel analyses of C4 structural variants between cases and controls recruited from each geographic location yielded similar results as presented for the entire IIM cohort, which are analogous to replication studies (online supplemental table S1).

Complement-mediated destruction leading to vasculopathy in dermatomyositis has been well-established,1 6 47 48 and we and others have demonstrated C4A genetic deficiency or low GCN of C4T in JDM.33 48 Demonstration of low C4T or C4L GCNs and C4A deficiency as genetic risk factors for DM, PM and IBM are novel findings of this work. These findings are relevant, as PM and IBM have been presumed to be disorders of cell-mediated immunity caused by target tissue cytotoxicity or destruction.1 The prevalence of low GCNs of C4T and C4L, C4A deficiency, and the presence of myositis-related autoantibodies in these diseases suggests that additional humoral immune effectors play a role in the pathophysiology of PM and IBM. IBM is unique as it has low GCNs in C4T, C4A and C4B. In a study of anti-Ro/anti-La patients with autoimmune diseases including myositis, Lundtoft and colleagues observed low GCNs of C4A in Scandinavian patients.49

It is worthy pointing out that the effects of GCN variation for C4S and C4B were opposite to those of C4L or C4A in JDM, DM and PM, which suggests different functions of C4S and C4B compared with C4L and C4A. Indeed, short C4 genes associate with higher C4 protein production50 51 and activated C4B protein generates faster activation of complement pathways52; long C4 genes associate with attenuated C4 protein production but possibly engage in antisense defence against viral infections.26 27 50 Moreover, activated C4A has greater efficiency to bind to immune complexes for clearance and protection against autoimmunity.26 27 50–53 We postulate that activated C4A and C4B proteins interfere and balance each other’s effects physiologically to achieve optimum defence against infections and autoimmunity and mitigate collateral damages due to complement-mediated injuries of self-tissue. C4A deficiency, which is also indicated by low copy numbers of C4T or C4L, among total C4 (C4B/C4T), would disturb such dynamic equilibrium and skew the immune response towards inflammation and autoimmunity with generation of autoantibodies.25 32

While IIM typically does not feature dramatic longitudinal fluctuations of plasma C3 and C4 protein levels with disease activity as is the case in SLE,34 intragroup analyses revealed that patients with IIM with anti-Jo-1, MAA in
Table 4 Logistic regression models for genetic predictors in IIM, subgroups and autoantibodies

Predictors	χ²	OR (95% CI)	P value
A. Genetic predictors for IIM and subgroups			
IIM	n=1417, R²=0.088, χ²=170.3, AUC=0.685, p=1.11-36		
HLA-DW8*03	27.3	2.23 (1.65 to 3.02)	1.82E-07
C4=0+1+2	7.47	1.54 (1.13 to 2.11)	0.0062
C4A=0	7.12	1.60 (1.13 to 2.26)	0.0076
JDM	n=3619, R²=0.031, χ²=38.1, AUC=0.632, p=5.4E-09		
C4=0+1+2	7.77	1.90 (1.12 to 2.95)	0.0053
C4A=0+1	5.65	1.69 (1.08 to 2.63)	0.02
DM	n=4010, R²=0.033, χ²=105.0, AUC=0.682, p=1.6E-23		
C4A=0+1	55.3	2.16 (1.77 to 2.64)	1.02E-13
C4S=0	19.7	0.59 (0.46 to 0.75)	8.94E-06
PM	n=980, R²=0.095, χ²=121.5, AUC=0.632, p=3.7E-26		
C4=0+1+2	13.3	2.11 (1.42 to 3.14)	0.0003
HLA-DW8*03	19.4	2.46 (1.65 to 3.66)	1.05E-05
HLA-DW8*03+C4A=0+1	4.05	0.044	
IBM	n=719, R²=0.1643, χ²=104.4, AUC=0.760, p=2.1E-23		
HLA-DW8*03	46.9	6.36 (3.69 to 11.0)	3.06E-11
C4T GCN	4.49	0.034	
B. Predictors for myositis-related autoantibodies in patients with IIM			
Predictors	χ²	P value	
MSA	n=684, χ²=21.6, R²=0.0236, AUC=0.597, p=7.8E-05		
HLA-DW8*03	11.4	0.0088	1.98 (1.33 to 2.95)
C4B GCN	8.75	0.0036	
C4L GCN	6.78	0.0099	
MSA-IoI	n=684, χ²=76.8, R²=0.121, AUC=0.746, p=7.8E-16		
C4A=0+1	24.3	8.30E-07	3.61 (2.11 to 6.19)
C4P/G	23.2	1.50E-06	
C3 protein	16	6.40E-05	
HLA-DW8*03	8.3	0.0044	2.32 (1.29 to 4.18)
MAA	n=698, χ²=77.8, R²=0.101, AUC=0.714, p=2.3E-15		
HLA-DW8*15	12.2	0.0055	2.25 (1.44 to 3.53)
HLA-DW8*03	8.83	0.003	1.84 (1.22 to 2.76)
C4 protein	9.31	0.0023	
C3 protein	10.7	0.0011	
C3* C4 protein	8.69	0.0032	
PMS/c	n=692, χ²=53.2, R²=0.142, AUC=0.785, p=1.64E-11		
HLA-DW8*03	39	2.40E-10	21.7 (6.05 to 77.6)
C4O GCN	7.39	0.0066	
C4 protein	9.5	0.0021	
Ro	n=692, χ²=24.1, R²=0.0590, AUC=0.677, p=4.7E-05		
HLA-DW8*03	12	0.0011	2.83 (1.52 to 5.28)
C4P/G	8.29	0.0044	
HLA-DW8*15	8.27	0.0051	2.38 (1.30 to 4.38)

Double asterisks (**) between two predictors indicated interaction.
AUC, area under the curve; C4A, acidic isoform of complement C4; C4B, basic isoform of complement C4; C4L, long form of C4 gene with human endogenous retrovirus HERV-K(C4L); C4P/G, C4 protein gene copy; C4T, short form of C4 gene without integration of the retrovirus HERV-K(C4T); C4, total copy number of C4 gene; DM, dermatomyositis; GCN, gene copy number; HLA, human leucocyte antigen; IIM, inclusion body myositis; IAM, idiopathic inflammatory myopathies; JDM, juvenile dermatomyositis; MAA, myositis-associated autoantibodies; MSA, myositis-specific autoantibodies; PM, polymyositis.

...or cell-bound complement inactivation products such as erythrocyte-C4d and erythrocyte-C3d would help distinguish whether lower protein levels are due to genetic insufficiency or protein turnover.11 12 It is of interest to note that except for Jo-1, most MSA were not associated with lower complement levels in circulation, although MAA did. Moreover, patients with JDM have MSA such as anti-TIF1γ and anti-NXP217 18 and their relationship with complement activation is yet to be investigated.

In a study of complement in schizophrenia, SLE and Sjogren’s syndrome, it was suggested that C4 exhibited a sex-biased expression differences including in cerebrospinal fluid.19 20 We did not detect differential expression of C4 protein in EDTA-plasma between men and women among patients with IIM in this work or in previous studies.21 22 23 24 We did not detect differences in C4 GCN variations between female and male patients for DM, PM and JDM (online supplemental table S2). However, IBM is a male-dominant disease and we observed slightly higher frequencies of low GCNs for C4L, lower proportions of C4A or C4L among C4T in men compared with women.

The relative roles of HLA class II variants including DRB1*03, DQA1*05, DQB1*02 and C4A deficiency on genetic predisposition to autoimmune diseases such as IIM are an unsolved enigma.17 18 19 Multivariate logistic regression analyses revealed that C4A deficiency was an independent risk factor for DM and JDM and that HLA-DRB1*03 was a prominent risk factor for IBM, while C4A deficiency and HLA-DRB1*03 contributed independently and interactively to an increased risk of PM. Further analyses of DRB1, DQA1, DQB1 variants and GCNs of C4 revealed the presence of both risk and protective factors in each gene on the predisposition of IIM subgroups and autoantibodies (online supplemental figure S3 and online supplemental table S4).

In summary, our results demonstrated that low GCNs for C4T, C4A and C4L played significant roles in increasing the risk of IIM. The relationship between C4A deficiency and HLA-DRB1*03, which are closely linked, is complex and intriguing. It will be important going forward to carefully interrogate the mechanisms by which HLA-DRB1*03 and C4A deficiency contribute to autoimmunity and IIM. Finally, intragroup analyses showed that patients with IIM with certain autoantibodies presented with lower protein levels of complement C3 and C4. This effect was more notable than for MAA than for MSA, which is worthy of investigations. Our findings have broad implications in the assessment and treatment of IIM and other autoimmune diseases.

Author affiliations
1 Center for Microbial Pathogenesis, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio, USA
2 Division of Rheumatology, Nationwide Children’s Hospital and Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
3 National Institute for Health Research Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, The University of Manchester, Manchester, UK
4 Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
5 Institute of Rheumatology and Department of Rheumatology, Charles University, Prague, Czech Republic
6 Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet, University Hospital Karolinska, Stockholm, Sweden
7 Division of Allergy/Immunology and Rheumatology, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, USA
8 Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
9 Division of Rheumatology, Department of Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
10 Department of Neurology, Ghent University Hospital, Ghent, Belgium
Division of Informatics, Imaging and Data Sciences, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK

Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK

Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences (NIHES), National Institutes of Health, Bethesda, MD, USA

Veteran’s Affairs Medical Center, University of Oklahoma Health Sciences Center, and Oklahoma Medical Research Foundation, Oklahoma City, OK, USA

Department of Transfusion Medicine, NIH Clinical Center, National Institutes of Health, Bethesda, MD, USA

University of Mississippi Medical Center, Jackson, Mississippi, USA

Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA

Division of Biostatistics, The Ohio State University, Columbus, Ohio, USA

Division of Population Health, Health Services Research and Primary Care, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK

Twitter Hector Cheney @drhectarchey

Acknowledgements We are indebted to volunteers and patients with myositis who contributed blood samples for this study, and to Bi Zhou and Alex Sepeda for technical assistance. We thank Drs Daniella Schwartz and Pavith Gouth for valuable comments on the manuscript.

Contributors Project design: C-YY, DZ, JAL, SR, LP, IEL, HNN, YLW, SA, CHS, JV, LGR, and FWM. Experimental studies: DZ, EHK, KEM, AD, GRY, SC, YLW and C-YY performed experiments and collected research data on C4 GCN variations and protein levels in patients with HM and controls. SR, YUN, KEM, EL, AP, WED and NAF performed experiments or bioinformatic analysis to determine HLA–DRB1 gene polymorphisms. Subject/patient diagnosis, recruitment and clinical studies: RAA, SR, HC, JD, OK, AN, SC, LMP, YLW, GM, RC, BDP, JB, TPO, VS, EO, SA, KD, CHS, SA, LGR, FWM, IEL, LP, JV, JAL and C-YY contributed to subject/patient identifications, recruitment and assembly of study cohorts for comparative studies. C-YY, DZ, EHK, SC, LGR, FWM and JAL drafted the initial manuscript. All authors participated in revisions and approved the current version of this manuscript. Drs Daniele Zhou and Chack-Yung Yu take the responsibility for the overall content and data integrity.

Funding This study is supported in parts by: National Institutes of Health (NIH) grants R21 AR070509, R01 AR073311 from the National Institute of Arthritis, Musculoskeletal and Skin Diseases/Eunice Kennedy Shriver National Institute of Child Health Development/National Institute of Allergy and Infectious Diseases (C-YY), and a research grant from the CureJM Foundation (C-YY); the Intramural Research Program of the National Institute of Environmental Health Sciences of the NIH (FWM and LGR); funding from the Medical Research Council (IMR/NI003322/1), Versus Arthritis Programme Grant 18474, and Myositis UK (HC and JAL). JV acknowledges and LGR, FWM, IEL, LP, C-YY, JAL and C-YY contributed blood samples for this study, and to Bi Zhou and Alex Sepeda for comments on the manuscript.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution 4.0 Unported (CC BY 4.0) license, which permits others to copy, redistribute, remix, transform and build upon this work for any purpose, provided the original work is properly cited, a link to the licence is given, and indication of whether changes were made. See: https://creativecommons.org/licenses/by/4.0/.

ORCID iDs

Danlei Zhou http://orcid.org/0000-0001-9061-1224

Hector Cheney http://orcid.org/0000-0001-6492-1288

Frederick W Miller http://orcid.org/0000-0003-2831-9593

Ingrid E Lundberg http://orcid.org/0000-0002-6068-9212

Leonid Padyukov http://orcid.org/0000-0003-2950-5670

Janine A Lamb http://orcid.org/0000-0002-7248-0539

Chack-Yung Yu http://orcid.org/0000-0002-5218-7503

REFERENCES

1 Dalakas MC. Inflammatory muscle diseases. N Engl J Med 2015;373:393–4.

2 Rider LG, Miller FW. Deciphering the clinical presentations, pathogenesis, and treatment of the idiopathic inflammatory myopathies. JAMA 2011;305:183–90.

3 Lundberg IE, Fujimoto M, Vencovsky J, et al. Idiopathic inflammatory myopathies. Nat Rev Dis Primers 2021;7:86.

4 Feldman BM, Rider LG, Reed AM, et al. Juvenile dermatomyositis and other idiopathic inflammatory myopathies of childhood. Lancet 2008;371:2201–12.

5 Whittaker JN, Engel WK. Vascular deposits of immunoglobulin and complement in idiopathic inflammatory myopathy. N Engl J Med 1972;286:333–8.

6 Kissel JT, Mendell JR, Ramkhanoo MH. Microvascular deposition of complement membrane attack complex in dermatomyositis. N Engl J Med 1986;314:329–34.

7 Mendell JR, Garcha TS, Kissel JT. The immunopathogenic role of complement in muscle disease. Curr Opin Neurol 1996;9:226–34.

8 Mascalò JM, Hausmann G, Herrero C, et al. Membrane attack complex deposits in cutaneous lesions of dermatomyositis. Arch Dermatol 1995;131:1386–92.

9 McHugh NJ, Tansley SL. Autoantibodies in myositis. Nat Rev Rheumatol 2018;14:290–302.

10 Ament FC, Hirsch TJ, Bias WB, et al. The type-1 antibody system in myositis: relationships to clinical features and HLA. J Rheumatol 1998;1:925–30.

11 Bettez K, Tansley S, Shaddick G, et al. Frequency, mutual exclusivity and clinical associations of myositis autoantibodies in a combined European cohort of idiopathic inflammatory myopathy patients. J Autoimmun 2019;101:48–55.

12 Dawkins R, Leelaayawat C, Gaudien S, et al. Genomics of the major histocompatibility complex: haplotypes, duplication, retrovirus and disease. Immunol Rev 1999,167:275–304.

13 Horton R, Gibson R, Coggill P, et al. Variation analysis and gene annotation of eight MHC haplotypes: the MHC haplotype project. Immunogenetics 2008;60:1–18.

14 Wu YL, Savelii SI, Yang Y, et al. Specific and sensitive real-time polymerase chain reaction assays to accurately determine copy number variations (CNVs) of human complement C4A, C4B, C4-long, C4-short, and CRXCC modules: elucidation of C4 CNVs in 50 consanguineous subjects with defined HLA genotypes. J Immunol 2007;179:3012–25.

15 Martinez OP, Longman-Jacobson N, Davies R, et al. Genes of human complement component C4 and evolution the central MHC. Front Biosci 2001;6:9004–13.

16 O’Hanlon TP, Carrick DM, Targoff IN, et al. Immunogenetic risk and protective factors for the idiopathic inflammatory myopathies: distinct HLA–A, –B, –Cw, –DRB1, and –DQA1 allele profiles distinguish European American patients with different myositis autoantibodies. Medicine 2006;85:111–27.

17 Miller FW, Chen W, O’Hanlon TP, et al. Genome-Wide association study identifies HLA B1 ancestral haplotype alleles as major genetic risk factors for myositis phenotypes. Genes Immun 2015;16:470–80.

18 Mamroya G, O’Hanlon TP, Monroe JB, et al. Immunogenetic risk and protective factors for juvenile dermatomyositis in Caucasians. Arthritis Rheum 2006;54:3979–87.

19 Rothwell S, Cooper RG, Lundberg IE, et al. Dense genotyping of immune-related loci in idiopathic inflammatory myopathies confirms HLA alleles as the strongest genetic risk factor and suggests different genetic background for major clinical subgroups. Ann Rheum Dis 2016;75:1558–66.

20 Rothwell S, Chinyo H, Lamb JA, et al. Focused HLA analysis in Caucasians with myositis identifies significant associations with autoantibody subgroups. Ann Rheum Dis 2019;78:996–1002.

21 Yu CY, Chung EK, Yang Y, et al. Dancing with complement C4 and the RP-C4-CYP21-TNX (RCXCC) modules of the major histocompatibility complex. Proc Natl Acad Sci USA 2003;75:217–92.

22 Wang H, Liu M. Complement C4, infections, and autoimmune diseases. Front Immunol 2021;12:694928.

23 Chen JY, Wu YL, Mok MY, et al. Effects of complement C4 gene copy number variations, size dichotomy, and C4A deficiency on genetic risk and clinical presentation of systemic lupus erythematosus in East Asian populations. Arthritis Rheumatol 2016;68:1442–53.

24 Yang Y, Chung EK, Wu YL, et al. Gene copy-number variation and associated polymorphisms of complement component C4 in human systemic lupus
enythematous (SLE): low copy number is a risk factor for and high copy number is a protective factor against SLE susceptibility in European Americans. *Am J Hum Genet* 2007;80:1037–54.

25 Zhou D, Rudnicki M, Chua GT, et al. Human complement C4B allotypes and deficiencies in selected cases with autoimmune diseases. *Front Immunol* 2021;12:739430.

26 Dangel AW, Mendoza AR, Baker BJ, et al. The dichotomous size variation of human complement C4 genes is mediated by a novel family of endogenous retroviruses, which also establishes species-specific genomic patterns among old World primates. *Immunogenetics* 1994;40:425–36.

27 Mack M, Bender K, Schneider PM. Detection of retroviral antisense transcripts and promoter activity of the HERV-K(C4) insertion in the MHC class III region. *Immunogenetics* 2004;56:321–32.

28 Yu CY, Belt KT, Giles CM, et al. Structural basis of the polymorphism of human complement components C4A and C4B: gene size, reactivity and antigenicity. *Embo J* 1986;5:2873–81.

29 Yu CY, Campbell RD, Porter RR. A structural model for the location of the Rodgers and the Chido antigenic determinants and their correlation with the human complement component C4A/C4B isotypes. *Immunogenetics* 1988;27:399–405.

30 Blanchong CA, Zhou B, Rupert KJ, et al. Deficiencies of human complement component C4A and C4B and heterozygosity in length variants of RP-C4-CYP21-TNX (RCCX) modules in Caucasians. The load of RCCX genetic diversity on major histocompatibility complex-associated disease. *J Exp Med* 2000;191:2183–96.

31 Savelli SL, Roukey RAS, Kitzmiller KJ, et al. Opposite profiles of complement in antiphospholipid syndrome (APS) and systemic lupus enythematous (SLE) among patients with antiphospholipid antibodies (aPL). *Front Immunol* 2019;10:885.

32 Simoni L, Presumey J, van der Poel CE, et al. Complement C4A regulates auto-reactive B cells in murine lupus. *Cell Rep* 2020;33:108330.

33 Lintner KE, Patwardhan A, Rider LG, et al. Gene copy-number variations (CNVs) of complement C4 and C4A deficiency in genetic risk and pathogenesis of juvenile dermatomyositis. *Ann Rheum Dis* 2016;75:1599–606.

34 Bohan A, Peter JB. Polymyositis and dermatomyositis (second of two parts). *N Engl J Med* 1975;292:403–7.

35 Bohan A, Peter JB. Polymyositis and dermatomyositis (first of two parts). *N Engl J Med* 1975;292:344–7.

36 Rose MR, ENMC IBM Working Group. 188th ENMC International workshop: inclusion body myositis, 2-4 December 2011, Naarden, the Netherlands. *Neuromuscular Disorder* 2013;23:1044–55.

37 Griggs RC, Arkanov Y, DiMauro S, et al. Inclusion body myositis and myopathies. *Ann Neurol* 1995;38:705–13.

38 Hilton-Jones D, Miller A, Parton M, et al. Inclusion body myositis: MRC centre for neuromuscular diseases, IBM workshop, London, 13 June 2008. *Neuromuscular Disorder* 2010;20:142–7.

39 Chung EK, Wu YL, Yang Y, et al. Human complement components C4A and C4B genetic diversities: complex genotypes and phenotypes. *Curr Protoc Immunol* 2005;Chapter 13:Unit 13 8.

40 Sim E, Cross SJ. Phenotyping of human complement component C4, a class-III HLA antigen. *Biochem J* 1986;239:763–7.

41 Hui KMB JL. HLA-DR typing by polymerase chain reaction amplification with sequence-specific primers (PCR-SSP). In: Handbook of HLA typing techniques. Boca Raton: CRC Press, 1993: 149–73.

42 Lambert NC. Nonendocrine mechanisms of sex bias in rheumatic diseases. *Nat Rev Rheumatol* 2019;15:673–86.

43 Jeanmougin M, Noirel J, Coulonges C, et al. HLA-check: evaluating HLA data from SNP information. *BMJ Bioinformatics* 2017;18:334.

44 Jia X, Han B, Onengut-Gumuscu S, et al. Imputing amino acid polymorphisms in human leukocyte antigens. *PLoS One* 2013;8:e64683.

45 Manolio TA, Collins FS, Cox NJ, et al. Finding the missing heritability of complex diseases. *Nature* 2009;461:747–53.

46 Lintner KE, Wu YL, Yang Y, et al. Early components of the complement classical activation pathway in human systemic autoimmune diseases. *Front Immunol* 2016;7:36.

47 Robb SA, Fielder AH, Saunders CE, et al. C4 complement allotypes in juvenile dermatomyositis. *Hum Immunol* 1988;22:31–8.

48 Moulds JM, Rolih C, Goldstein R, et al. C4 null genes in American whites and blacks with myositis. *J Rheumatol* 1990;17:331–4.

49 Lundtrot C, Pucholt P, Martin M, et al. Complement C4 copy number variation is linked to SSA/Ro and SSB/La autoantibodies in systemic inflammatory autoimmune diseases. *Arthritis Rheumatol* 2022;74:1440–50.

50 Saxena K, Kitzmiller KJ, Wu YL, et al. Great genotypic and phenotypic diversities associated with copy-number variations of complement C4 and RP-C4-CYP21-TNX (RCCX) modules: a comparison of Asian-Indian and European American populations. *J Mol Immunol* 2009;46:1289–303.

51 Yang Y, Chung EK, Zhou B, et al. Diversity in intrinsic strengths of the human complement system: serum C4 protein concentrations correlate with C4 gene size and polygenic variations, hemolytic activities, and body mass index. *J Immunol* 2003;171:2734–45.

52 Dodds AW, Ren XD, Willis AC, et al. The reaction mechanism of the internal thioester in the human complement component C4. *Nature* 1996;379:177–9.

53 Isenman DE, Young JR. The molecular basis for the difference in immune hemolysis activity of the Chido and Rodgers isotypes of human complement component C4. *J Immunol* 1984;132:3019–27.

54 Wu Y-L, Higgins GC, Rennebohm RM, et al. Three distinct profiles of serum complement C4 proteins in pediatric systemic lupus erythematosus (SLE) patients: tight associations of complement C4 and C3 protein levels in SLE but not in healthy subjects. *Adv Exp Med Biol* 2006;586:227–47.

55 Duvvuri B, Pachman LM, Morgan G, et al. Neutrophil extracellular traps in tissue and periphery in juvenile dermatomyositis. *Arthritis Rheumatol* 2020;72:348–58.

56 Manzi S, Navratil JS, Ruffing MJ, et al. Measurement of erythrocyte C4d and complement receptor 1 in systemic lupus erythematosus. *Arthritis Rheumatol* 2004;50:3596–604.

57 Tansey SL, McHugh NJ. Myositis specific and associated autoantibodies in the diagnosis and management of juvenile and adult idiopathic inflammatory myopathies. *Curr Rheumatol Rep* 2014;16:464.

58 Kamitaki N, Sekar A, Handsaker RE, et al. Complement genes contribute sex-biased vulnerability in diverse disorders. *Nature* 2020;582:577–81.

59 Reed AM, Stirling JD. Association of the HLA-DQA1*0501 allele in multiple racial groups with juvenile dermatomyositis. *Hum Immunol* 1995;48:131–5.