They are Different: Molecular Approach on *Tirathaba* Pest Infesting Oil Palm and Coconut Tree

Abstract

There are some confusion among agriculturists on the species of *Tirathaba* beetles that are infesting on oil palm and coconut trees. Many thought they are the same species. In this study, the mitochondrial DNA Cytochrome oxidase subunit I (COI) of *Tirathaba* pest infested oil palm and coconut tree were compared. The mitochondrial DNA Cytochrome oxidase subunit I (COI) gene of the targeted *Tirathaba* sp. infesting on oil palm and coconut tree were sequenced. The sequences were trimmed to remove gaps and produce a final aligned fragment of 603 bp for oil palm *Tirathaba* sample and 602 bp for coconut pest sample. The DNA sequences were analyzed with other *Tirathaba* sp. sequences available in Gene bank using phylogenetic tree constructed with Neighbor-Joining (NJ) and genetic distance analysis algorithms. The result of this study indicates they were two different species. This knowledge will provide important data elements in the development of pest management strategy.

Introduction

High infestation rate of *Tirathaba mundella* was reported from many oil palm plantations established on peat. Masijan et al. [1]. The infestation is identified by the presence of long tubes of silk and frass which is built by the pest. The larvae stage of pest does most of the damage by feeding or scraping leaving holes on immature fruitlets. Larvae of early instar stage often attack on male inflorescences whereas larvae of older instar stage attack on female inflorescences and bunch. Yaakop & Manaf [2]. A new damage caused by *Tirathaba mundella* is visible as moist and reddish brown faeces on branches while an old damage is characterized as dry and brownish black faeces. Another *Tirathaba* that also regarded as agricultural pest is *Tirathaba fractivora*. It was first observed in Fiji and Java, Indonesia Paine [3] and later in Sumatra, Indonesia and Malaysia (Kalshoven, 1981). The pest causes destructive effect to the coconut plantation in Philippines. *Tirathaba fractivora* together with another coconut spike moth, *Tirathaba rufivena* Walker are making damage to coconut flower. Both pests attack the inflorescence of coconut, causing the young and soft flower to drop off from the plant. Falling of flower prevents the formation of nuts Alouw et al. [4]. *Tirathaba fractivora* has a total development period of around 25 days from the stage of egg deposition to adult emergence. The newly laid egg of *Tirathaba fractivora* is white in colour and it turns dark yellow or dark orange when it is about to hatch. Hatching took about 4 days from egg deposition. The larvae have five instars level with a larval stadium of around 17 days and pupal period of around 8 days.

The first instar larvae are light brown and it turns into darker colour slowly in the following instars. Thoracic shield was developed on the first thoracic segment from first instars and becomes more apparent in the later instars. Prolongs are well grown from the second to fifth instars. The longevity of female and male *Tirathaba fractivora* is around 8-9 days Alouw et al. [4]. Many authors believe that the *Tirathaba* pest found in both plantation were the same species. This notion needs to be clarified. Therefore this study aims to compare the genetic markers COI of both *Tirathaba* sp. infesting on the oil palm and coconut tree. The finding of this study provides essential data to determine if the *Tirathaba* species from both type of plantation belongs to same species.

Methods

Tirathaba mundella were collected in the Sarawak Oil Palms Berhad (SOP) plantation site, located in Miri, Sarawak. The specimens were collected from the male flower. For the coconut pest, the insect were collected from immature nuts of coconut tree. *Tirathaba* sp. from both plantations were DNA extracted, amplified with primers coding for the cytochrome oxidase I (COI) gene, which were “LepFI” 5’-ATCTAACCAATCCATAAAGATATTGG-3’ and “LepRI” 5’-TAAACCTTCTGATTG7TCCAAATATCA-3’ (Hajibabaei et al. 2006). The amplified DNA was sequenced and blasted against public available Gene bank. The sequences were further analyzed for their genetic distance with other *Tirathaba* sp. using the Kimura two parameter Hososhi & Ogata [5]; Kimura [6]. A phylogeny tree was constructed using Neighbor-joining (NJ) method Saitou & Nei [7] in the program MEGA version 7. The sequenced DNA fragments for both samples collected from oil palm and coconuts were approximately 602 base pairs (bp). The BLAST result showed only *Tirathaba* sp from oil palm plantation had only 92% of similarities with *Tirathaba parasiticus* sequence in the Genebank while coconut pest sample showed less than 95% similarities with other *Tirathaba* spp available in the database (similarities > 95%). The genetic distances for both *Tirathaba* spp were analyzed with other six *Tirathaba* sp. The six species included *Tirathaba pseudo complana*, *Tirathaba rufivena*, *Tirathaba parasiticus*, *Tirathaba ruptilinea*, *Tirathaba*
They are Different: Molecular Approach on Tirathaba Pest Infesting Oil Palm and Coconut Tree

Citation: Khai CTZ, Ming SC, Hung PKJ (2018) They are Different: Molecular Approach on Tirathaba Pest Infesting Oil Palm and Coconut Tree. Adv Plants Agric Res 8(1): 00294. DOI: 10.15406/apar.2018.08.00294

They are Different: Molecular Approach on Tirathaba Pest Infesting Oil Palm and Coconut Tree

cissinobaphes and Tirathaba psolopasta. All Tirathaba sp. COI sequences that contained more than 600bp were aligned by Multiple Sequence Alignment Tool (MUSCLE) and result as shown in Table 1. A phylogeny tree was generated (Figure 1) and shows that the oil palm Tirathaba sample was under the same clade with Tirathaba pseudocomplana, Tirathaba rufivena, Tirathaba parasiticus and Tirathaba rupitlinea.

Table 1: Estimates of evolutionary divergence between sequences.

S. No	Genetic Diversity of Cytochrome C Oxidase Subunit I Sequence
1	Tirathaba ruptilinea
	GU688823.I
2	Tirathaba rufivena
	JN270732.I
3	Tirathaba psolopasta
	KF405055.I
4	Tirathaba pseudocomplana
	GU695681I
5	Tirathaba parasiticus
	HM372994.I
6	Tirathaba cissinobaphes
	HM372996.I
7	Oil Palm Tirathaba mundella
	0.1131
8	Coconut Tirathaba
	0.1732

Figure 1: Evolutionary relationships of taxa.

The evolutionary history was inferred using the Neighbor-Joining method. The optimal tree with the sum of branch length = 0.44666809 is shown. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (100 replicates) was shown next to the branches. The tree was drawn to scale, with branch lengths (next to the branches) in the same units as those of the evolutionary distances used to infer the phylogenetic tree. The evolutionary distances were computed using the Kimura 2-parameter method and are in the units of the number of base substitutions per site. The analysis involved 8 nucleotide sequences. Codon positions included were 1st + 2nd + 3rd + Non-coding. All positions containing gaps and missing data were eliminated. There were a total of 602 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

Discussion and Conclusion

Tirathaba mundella showed a genetic distance with the coconut Tirathaba at 0.1485. This indicates that the two species were not from the same genus. The Blast result also indicates that the pest infested the coconut plantation could be misidentified as Tirathaba rufivena as their COI sequence were distantly related. The coconut pest may be a newly discovered Tirathaba species which needed to further study [8].
Acknowledgment

None.

Conflict of Interest

None.

References

1. Masijan Z, et al. (2015) Evaluation of chemical insecticides and biological agents to control bunch moth, *Tirathaba rufivena* in young oil palm area in Sarawak, Malaysia.

2. Yaakop S, Manaf SMA (2015) The Bunch Moth of the *Tirathaba* Species: As A Hidden Pest on The Peat Soil of Oil Palm Plantations: Implications of Biological Life Cycles, The DNA Bar coding Approach, and Infestation Pattern Detection. International Conference Chemical, Agricultural and Medical Sciences, Singapore, p. 1-4.

3. Paine RW (1935) The control of the coconut spike moth (*Tirathaba trichogramma*, Meyr.) in Fiji. Department of Agriculture, HR Craigie, Government Printer, USA, p. 1-30.

4. Alouw J, Morallo-Rejesus B, Ocampo V (2005) Biology of the coconut spike moth, *Tirathaba fructivora* (Meyr.)(Lepidoptera: Pyralidae). Philippine Entomologist 19(1): 84-93.

5. Hosoishi S, Ogata K (2014) Description and DNA barcoding of Crematogaster fraxatrix Forel, 1911 and two new closely related species from Cambodia and Indonesia (hymenoptera, Formicidae). ZooKeys 374: 57-68.

6. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of molecular evolution 16(2): 111-120.

7. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees.

8. (2015) Molecular biology and evolution, 32(10).