Replication of Respiratory Viruses, Particularly Influenza Virus, Rhinovirus, and Coronavirus in HuH7 Hepatocarcinoma Cell Line

François Freymuth, Astrid Vabret, Flore Rozenberg, Julia Dina, Joëlle Petitjean, Stéphanie Gouarin, Loïc Legrand, Sandrine Corbet, Jacques Brouard, and Pierre Lebon

Detection of viral antigens and isolation methods has long been used for the diagnosis of respiratory virus infections. The objective was to determine the ability of HuH7 cells to support the replication of prototype and wild strains of respiratory viruses. The cell culture-adapted strains of influenza viruses A and B, parainfluenza viruses 1–4, respiratory syncytial viruses A and B, both strains of the human metapneumoviruses, numerous rhinoviruses, most of the adenoviruses, coronaviruses 229E and OC43, and a number of enteroviruses (poliovirus type 3, coxsackie virus B1, echovirus type 30) replicate in HuH7. The kinetic study of the replication of influenza A and B viruses showed that there were infected cells in HuH7 and MDCK lines as early as 24 hr post-infection. However, the replication of influenza A and B viruses was more rapid and intense on MDCK cells than on HuH7 cells. During the three winters of 1999–2000, 2000–2001, and 2001–2002, of the 1,226 (23.3%) direct fluorescent assay-positive nasal aspirates from children admitted to hospital, 788 were positive for respiratory syncytial virus, 228 for influenza virus, 133 for parainfluenza virus, and 77 for adenovirus. Of the 4,032 direct fluorescent assay-negative nasal aspirates, 571 virus isolates were identified by using HuH7 cell culture; 272 rhinoviruses, 100 influenza viruses A and B, 85 enteroviruses, 40 adenoviruses, 35 coronaviruses, 31 parainfluenza viruses, and 10 respiratory syncytial viruses. Interestingly, 100/328 (30.5%) influenza viruses A and B, 40/189 (21.1%) adenoviruses, and 31/164 (19%) parainfluenza viruses type 1–3, not detected by direct fluorescent assay, were identified by isolation in HuH7 cell culture.

KEY WORDS: HuH7; influenza virus; rhinovirus; coronavirus; respiratory viruses

INTRODUCTION

Detection of viral antigens by immunological methods, first described by Gardner and McQuilllin [1980], has long been used for rapid diagnosis of influenza virus, respiratory syncytial virus, parainfluenza virus, and adenovirus infections of the respiratory tract. The sensitivities of these assays vary, often depending on the adequacy of the sample, but most are in the range of 70%–95% [Gardner et al., 1972; Fulton and Middleton, 1974; Freymuth, 1980; Takimoto et al., 1991]. Previous studies have reported that isolation in cell culture is more sensitive than antigen detection for influenza virus and adenovirus diagnosis [Matthey et al., 1992; Madeley et al., 1996; Ruuskanen et al., 1997; Freymuth et al., 2000; Steininger et al., 2002]. There is no serological reagent currently available for the detection of rhinoviruses, coronaviruses, and the human metapneumovirus, and isolation of virus from respiratory secretions is still required for diagnosis of respiratory virus infections. Primary monkey kidney cells have been used widely for isolation and propagation of most respiratory viruses [Frank et al., 1979]. In recent years, several cell lines have been found useful as substitutes for primary monkey kidney cells for respiratory viruses: the Madin–Darby canine kidney (MDCK) cells [Krug, 1972; Meguro

*Correspondence to: François Freymuth, Laboratory of Human and Molecular Virology, University Hospital, av. G. Clemenceau, 14033 Caen, France. E-mail: freymuth-f@chu-caen.fr

Accepted 24 May 2005

DOI 10.1002/jmv.20449

Published online in Wiley InterScience (www.interscience.wiley.com)
et al., 1979], the A549 cells [Lieber et al., 1976; Woods and Young, 1988], the NCI-H292 cells [Carney et al.,
1985; Hierholzer et al., 1993]. Vabret et al. [2001] and
Pene et al. [2003] isolated coronaviruses in a continuous
epithelial cell line derived from a human hepatocarcinoma, HuH7 cells [Nakahayashi et al., 1982]. These cells
were examined for the isolation of respiratory viruses.
The objectives of this study were to determine the ability
of HuH7 cells to support the replication of prototype
and wild strains of viruses likely to be encountered in
respiratory viral infections and to assess, prospectively,
their efficacy in the diagnosis of respiratory virus infec-
tions in children, particularly associated with influenza
virus, rhinovirus, and coronavirus and when an immu-
nofluorescence assay does not detect antigen directly.

MATERIAL AND METHODS

Viral Strains and Clinical Respiratory Samples

Prototype and wild strains from a large selection of
respiratory viruses were obtained from our reference
collection (Table I). Prototype strains originally came
from the American Type Culture Collection or from the
National Reference Center for Influenza in France. Wild
strains were isolates from nasal aspirates that were recovered from monkey kidney cells, human embryonic lung diploid fibroblast (MRC5), or human
lung carcinoma epitheloid (A549) cell cultures. These
viruses were identified initially by neutralization (enterovirus) or sequencing (human metapneumovirus,
rhinovirus, parainfluenza virus type 4). Prototype and
wild strains were passaged in appropriate cell cultures
for future use. Clinical samples were nasal aspirates
obtained from pediatric patients admitted to the Uni-
versity Hospital of Caen for acute lower respiratory tract
infections over a 3-year period, from October 2000 to
June 2002. The collected samples were placed in 4 ml
of viral transport medium. When received in the labo-
ratory, samples were held at 2–8°C and processed
immediately for direct fluorescent assay using mono-
clonal antibodies to influenza A and B viruses, respira-
tory syncytial virus, paramyxovirus types 1–3, adenovirus (IMAGENB, Dako, UK). If the direct fluo-
rescent assay was negative, then the clinical specimens
were inoculated onto HuH7 shell vial cultures and MRC5 cell cultures.

Cell Cultures

HuH7 cells were grown in RPMI-1640 medium with
glutamine (Gibco, Invitrogen, Cergy-Pontoise, France)
supplemented with 5% fetal calf serum (Gibco), peni-
cillin (100 U/ml), and gentamycin (50 μg/ml) and
distributed in 48-well tissue culture microplates
(5×10^4 cells/well). When HuH7 cells were 80% confluent,
the growth medium was discarded and each well

| TABLE I. Infection of HuH7 Cells by Prototypes or Wild Strains of Respiratory Viruses |
|-----------------|-----------------|-----------------|-----------------|-----------------|
| **Virus** | **CPE** | **Virus** | **CPE** | **Virus** |
| | | | | |
| Influenza virus A H1N1 | + | Adenovirus sp A | + | Rhinovirus |
| A/PR8/1934 (p) | | AdV 12 (p) | + | RV 1B (sq) |
| A/Singapore/6/1986 (p) | + | AdV 18 (p) | + | RV 2 (sq) |
| A/NewCaledonia/20/1999(p) | + | Adenovirus sp B | + | RV 5 (p) |
| Influenza virus A H3N2 | + | AdV 3 (p) | + | RV 6 (p) |
| A/Sichuan/2/1987 (p) | + | AdV 7 (p) | + | RV 7 (sq) |
| A/Beijing/32/1992 (p) | + | AdV 11 (p) | + | RV 9 (p) |
| A/Sydney/5/1997 (p) | + | AdV 14 (p) | 0 (f+) | RV 12–14 (sq) |
| A/Panama/2007/1999 (p) | + | AdV 21 (p) | + | RV 19–20 (sq) |
| Influenza virus B | | AdV 34 (p) | + | RV 23–24 (sq) |
| B/Victoria/9/1987 (p) | + | Adenovirus sp C | + | RV 28–29 (sq) |
| B/Yamagata/16/1988 (p) | + | AdV 1 (p) | + | RV 31 (p) |
| B/Sichuan/397/1999 (p) | + | AdV 2 (p) | + | RV 34 (sq) |
| B/Hong-Kong/330/2001 (p) | + | AdV 5 (p) | + | RV 38–39 (sq) |
| Respiratory syncytial virus | + | AdV 13 (p) | + | RV 41 (sq) |
| A Long (p) | 0 (f+) | AdV 8 (p) | + | RV 42–43 (sq) |
| B (p) | 0 (f+) | Adenovirus sp D | + | RV 46–49 (sq) |
| Human metapneumovirus | + | AdV 12 (p) | + | RV 52–56 (sq) |
| Caen 45/01 (sq) | 0 (PCR+) | AdV 20 (p) | + | RV 58–61 (sq) |
| Caen 78/02(sq) | 0 (PCR+) | AdV 36 (p) | + | RV 63–68 (sq) |
| Parainfluenza virus | + | Adenovirus sp E | + | RV 70 (sq) |
| VPI 1 (f) | + | AdV 4 (p) | + | RV 73 (sq) |
| VPI 2 (f) | + | Adenovirus sp F | + | RV 75–79 (sq) |
| VPI 3 (f) | + | AdV 40 (p) | 0 | RV 82–83 (sq) |
| VPI 4 (sq) | + | Enterovirus | + | RV 89 (sq) |
| Coronavirus | | Coxackie B1 (n) | + | RV 90 (p) |
| CoV 229E (p) | | Echovirus 30 (n)| + | RV 92 (sq) |
| CoV OC43 (p) | | Poliovirus 3 (n)| + | RV 95 (sq) |

*Prototypes viral strains (p), or wild strains identified by neutralization (n), immunofluorescence assay (f) or sequencing (sq).
*CPE = cytopathological effect (CPE) after fourth day of incubation and identification by immunofluorescence assay (f): influenza virus, parainfluenza
virus, respiratory syncytial virus, human metapneumovirus, adenovirus, or by PCR: rhinovirus, coronavirus, enterovirus.
was inoculated with 50 μl of the prototype or wild viral strains or with 100 μl of the clinical samples. Microplates were centrifuged at 1,500 rpm for 30 min at 30°C. Samples were then removed and each well was filled with 1 ml of the same culture medium, supplemented with 2% fetal calf serum (Gibco), and 1% of porcine pancreatic trypsin at 150 μg/ml (Sigma, Saint Quentin Fallaviou, France). By day 4 post-infection, HuH7 cultures were examined for a cytopathologic effect (CPE) and the supernatants and cells were collected separately. The supernatants were stored at −80°C and used for amplification techniques. HuH7 cells were harvested by scraping the cell sheet and were used to prepare smears for the direct fluorescent assay. The replication of influenza A and B viruses, respiratory syncytial virus, parainfluenza virus types 1–3, adenovirus was detected by direct fluorescent assay with the reagents described below. Reverse transcription-PCR (RT-PCR) techniques were used for the detection of human metapneumovirus (hMPV), coronavirus 229E and OC43, rhinovirus and enterovirus, according to procedures described previously [Freymuth et al., 1999; Vabret et al., 2001; Freymuth et al., 2003]. Briefly if there were CPE, RNAs were extracted from 100 μl of the supernatant using the Qiamp RNA Viral Minikit (QIAGen, Courtaboeuf, France). The RT-PCR assays were carried out using one step combined RT-PCR amplification kit (QIAGen, Courtaboeuf, France) and primers, and probes defined previously for the detection of rhinovirus and enterovirus, coronavirus 229E and OC43.

The replication of prototype strains of influenza A virus H3N2 (strain/Panama/2007/1999), influenza A virus H1N1 (strain/NewCaledonia/20/1999), and influenza B virus (strain/Victoria/1987) was compared in HuH7 and MDCK cells. The time necessary to detect influenza virus-infected cells was determined by using direct fluorescent assay at day 1–4 post-infection. The replication titers were assessed in the supernatants by a real-time RT-PCR assay using a LightCycler instrument (Roche Diagnostics, Meylan, France). RNAs were extracted from 100 μl of the supernatants of HuH7 and MDCK cell cultures using the Qiamp RNA Viral Minikit (QIAGen). The primers, probes, and the real-time RT-PCR procedures were fully adapted from those described by Schweiger et al. [2000].

RESULTS

Viruses for the Retrospective Study

The replication of prototype or wild strains of respiratory viruses inoculated onto HuH7 cells was detected by the presence of a CPE, while virus identification was by direct fluorescent assay or PCR techniques. These cell culture-adapted strains showed that influenza viruses A and B, parainfluenza viruses 1–4, very numerous rhinoviruses, most of the adenoviruses, coronaviruses 229E and OC43 as well as enteroviruses (poliovirus type 3, coxsackie virus B1, echovirus type 30) produced CPE when replicating in HuH7 cells (Table I). The CPE, which is characterized by small cells, almost non-refringent, scattered on the culture, and resulting in a progressive lysis of the cell sheet, cannot be used for identifying viruses or family of viruses. After 4 days in culture, the prototype strains of A and B respiratory syncytial viruses, both strains of the human metapneumoviruses, adenoviruses spF and Ad 14 replicated on HuH7 cells without producing any CPE (Fig. 1). The replication of influenza A virus H1N1, influenza A virus H3N2, and influenza B virus was compared in HuH7 and MDCK cells. The kinetic study of infection showed that there were infected cells in both cell lines as early as 24 hr post-infection, for both influenza

![Fig. 1. Cytopathic effect caused by the replication of influenza A virus and rhinovirus in HuH7 cells on day 4 post-infection. A: Control HuH7 and (B) influenza A virus H3N2 (strain Panama/2007/199).](image-url)
virus type A or B (Fig. 2). However, the number of viral genomes found in culture supernatants showed (Fig. 3) that the replication of influenza A virus H3N2 (strain/Panama/2007/1999) and influenza A virus H1N1 (strain/New Caledonia/20/1999) was more rapid and intense in MDCK cells than in HuH7 cells, and that HuH7 cells were less permissive for the strain of influenza B virus (strain/Victoria/1987).

Prospective Study

During the three winters of 1999–2000, 2000–2001, and 2001–2002, 5,258 nasal aspirates obtained from
Children admitted to the pediatric wards for a respiratory tract infection were examined using direct fluorescent assay for detecting influenza viruses A and B, respiratory syncytial virus, parainfluenza virus types 1–3, and adenoviruses. Of the 1,226 (23.3%) direct fluorescent assay-positive nasal aspirates, 788 were positive for respiratory syncytial virus, 228 for influenza virus, 133 for parainfluenza virus, and 77 for adenovirus (Table II). Of the 4,032 direct fluorescent assay-negative nasal aspirates, 571 viruses were identified by using the HuH7 cell culture. There were 272 rhinoviruses, 100 influenza viruses A and B, 85 enteroviruses, 40 adenoviruses, 35 coronaviruses, 31 parainfluenza viruses, and 10 respiratory syncytial viruses. Very few (1.2%) respiratory syncytial viruses were detected on direct fluorescent assay-negative samples using culture. In contrast, 100/328 (30.5%) influenza viruses A and B, 40/189 (21.1%) adenoviruses, and 31/164 (19%) parainfluenza viruses type 1–3 not detected by direct fluorescent assay were identified by HuH7 cell culture. Finally, viruses for which there were no direct fluorescent assay reagents available were identified using these cells, that is, 272 rhinoviruses, 35 coronaviruses, and 85 enteroviruses. Table II shows that the total number of respiratory syncytial viruses, rhinoviruses, adenoviruses, and enteroviruses was higher than the inclusion of the direct fluorescent assay and HuH7 cell culture positive results. These viral strains were detected by isolation in MRC5 cells.

DISCUSSION

HuH7 cells are a continuous cell line of epithelial cells derived from a human hepatocarcinoma [Nakabayashi et al., 1982]. They have been first used for the propagation of hepatitis C virus [Lohmann et al., 1999]. HuH7 cells thus appear to have a broad viral spectrum allowing the detection of influenza viruses, respiratory syncytial viruses, human metapneumovirus, parainfluenza viruses, adenoviruses, some rhinoviruses, and coronaviruses 229E and OC43. We, therefore, suggest HuH7 cells as a substitute of other cells used commonly for detection of human respiratory viruses. Primary monkey kidney cells have long been preferred for the isolation and the propagation of a large number of respiratory viruses but they are no longer available [Frank et al., 1979]. In recent years, several cell lines have been suggested as substitutes for primary monkey kidney cells but most had narrower spectrum sensitivity to viruses. MDCK and LLC-MK2 cells support the growth of a large number of influenza and parainfluenza viruses but the growth of other respiratory viruses is limited [Frank et al., 1979; Meguro et al., 1979]. Parainfluenza viruses and certain strains of rhinoviruses, respiratory syncytial viruses, and adenoviruses replicate in A549 and Vero cells [MacFarlane and Sommerville, 1969; Woods and Young, 1988]. The continuous cell line of NCI-H292 human lung mucocoeidermoid cells appears to be the best substitute for primary monkey cells. This cell line is permissive for the replication of adenoviruses, parainfluenza viruses type 1–4, both groups of respiratory syncytial viruses, and many strains of enteroviruses and rhinoviruses [Hierholzer et al., 1993]. In contrast, they are not permissive for the isolation of coronaviruses and many strains of influenza A virus H1N1, A virus H3N2, and influenza B. The HuH7 cell line is of special interest, since it is permissive for all the viruses mentioned above, especially for influenza viruses, rhinoviruses, and coronaviruses. Another liver cell line, HepG2, has been suggested for the isolation of influenza viruses type A and B [Ollier et al., 2004]. In comparing MDCK cells, which is the most valuable cell system for use in laboratories for isolating influenza viruses [Zambon, 1999], it has been observed that influenza viruses A and B can be detected in HuH7 cells as rapidly as in MDCK cells but the replication of viral strains is more rapid and intense in MDCK cells than in HuH7 cells.

To date, rapid diagnosis of upper and lower respiratory tract infections is based on the direct detection of viral antigen in respiratory secretions. Due to the large number of reagents available “off-the-shelf,” direct immunofluorescence is the method used most commonly for detecting influenza viruses type A and B, parainfluenza viruses type 1–4, respiratory syncytial virus, and adenoviruses. However, several studies have

TABLE II. Comparative Efficiencies of Direct Fluorescence Assay (DFA) and HuH7 Cell Culture for the Detection of Virus in Nasal Aspirates From Children

Virus Type	No. of DFA-positive samples	No. of DFA-negative HuH7-positive samples
Respiratory syncytial virusb	825	10 (1.2)
Influenza virus A	224	69 (30.8)
Influenza virus B	104	31 (29.8)
Parainfluenza 1	41	13 (31.7)
Parainfluenza 2	9	5 (55.5)
Parainfluenza 3	114	13 (11.4)
Adenovirusb	189	40 (21.1)
Rhinovirusb, b	482	272 (56.4)
Enterovirusb	127	85 (66.9)
Coronavirus OC43	33	33 (100)
Coronavirus 229E	2	2 (100)

a No. of samples found to be positive by DFA, culture in HuH7 or MRC5 cells.

b Some strains isolated in MRC5 cell cultures only; na: reagent not available.
demonstrated that this method is less reliable than isolation by culture for detecting influenza viruses and adenoviruses: as outlined by different authors, there are variations in permissivity from 65% to 100% for influenza viruses and from 28% to 75% for adenoviruses [Matthey et al., 1992; Madeley et al., 1996; Ruuskanen et al., 1997; Freymuth et al., 2000; Steininger et al., 2002]. In addition, this technique cannot be used to detect rhinoviruses and coronaviruses. According to the present study, it was of interest to use direct fluorescent assay-negative samples in order to attempt viral isolation in HuH7 cells. The detection of influenza viruses types A and B, parainfluenza viruses types 1–3, and adenoviruses in cultured HuH7 cells appeared to have increased by 30.5%, 19%, and 21.1%, respectively. This phenomenon has not yet been fully elucidated: it may be explained by a smaller number of infected cells in the respiratory samples taken from infected patients, or to a more rapid viral cytolysis of these cells not allowing detection when using direct fluorescent assay. Moreover, two important groups of respiratory viruses (rhinoviruses and coronaviruses) were detected using HuH7 cells. The isolation of rhinoviruses, long and difficult in most cases, usually requires the use of several cell lines due to cell changing permissivity in relation to serotypes: human embryonic fibroblasts MRC5, continuous human cell lines HeLa R and NCI-H292 [Hierholzer et al., 1993; Savolainen et al., 2003]. In our study, further detection of rhinoviruses, adenoviruses, and enteroviruses were obtained by using MRC5 cell culture. However, it was not possible to assess whether permissivity difference between HuH7 and MRC5 cell cultures was related to serotype of rhinoviruses, entero- viruses, and adenoviruses, or to particular strains of respiratory syncytial viruses. The phenomenon is likely to be related to the duration of incubation which, in the case of HuH7 cells, is limited to only 4 days. In the meantime, a large number of rhinoviruses and certain strains of adenoviruses, enteroviruses, or respiratory syncytial viruses with slow growth would require an incubation period from 10 to 21 days for replication in MRC5 cells. We have noted among the respiratory coronaviruses, a replication of coronavirus 229E in human diploid cell line MRC5, replication of coronavirus OC43 only in HRT18 cells [Vabret et al., 2001], and a difficult replication of the new coronavirus NL63 in LLC-MK2 cells [Van Der Hoek et al., 2004]. It has been observed that HuH7 cells are permissive for replication of a murine coronavirus called MHV [Koetters et al., 1999] and we have demonstrated in this study that they are also permissive for both human coronaviruses OC43 and 229E.

Thus, using HuH7 cell isolation technique as a supplement to a direct fluorescent assay-negative test is of value for increasing the detection of influenza viruses A and B, parainfluenza viruses 1–3, and adenoviruses. It is also value for the detection of rhinoviruses, enteroviruses, and coronaviruses. The multiplex-like molecular tools used directly on respiratory samples can also be considered a reliable and simpler technique than the combination of direct fluorescent assay and culture [Carman, 2001; Coiras et al., 2004]. The isolation by culture of respiratory viruses should, however, be maintained since the recent emerging respiratory viruses such as the human metapneumovirus, SARS, and NL63 coronaviruses have been identified using this method.

REFERENCES

Carman B. 2001. Molecular techniques should now replace cell culture in diagnostic virology laboratories. Rev Med Virol 11:347–349.

Carney DN, Gazdar AF, Bepler JG, Guccion PJ, Marangos PJ, Moody TW, Zweig MH, Minna DJ. 1985. Establishment and identification of small cell lung cancer cell lines having classic and variant features. Cancer Res 45:1187–1197.

Coiras MT, Aguilar JC, Garcia ML, Casas I, Perez-Brena P. 2004. Simultaneous detection of fourteen respiratory viruses in clinical specimens by two multiplex reverse transcription nested-PCR assays. J Med Virol 72:484–495.

Frank AL, Couch RB, Griffia CA, Baxter BD. 1979. Comparison of different tissues for isolation and quantification of influenza and parainfluenza viruses. J Clin Microbiol 10:32–36.

Freymuth F. 1980. Rapid diagnosis of respiratory syncytial virus infections in children. Lancet 2:539–540.

Freymuth F, Vabret A, Brouard J, Toutain F, Verdon R, Petie`jean J, Gouarin S, Duhamel JF, Guillois B. 1999. Detection of viral, Chlamydia pneumoniae and Mycoplasma pneumoniae infections in exacerbations of asthma in children. J Clin Virol 13:131–139.

Freymuth F, Vabret A, Petie`jean J, Gouarin S, Guedin M, Campe`t M. 2000. Diagnostic des deux principales virus respiratoires epidemiques: la grippe et les infections a virus respiratoire syncytial. Revue de la virologie moleculaire. Med Mal Infect 30:191–201.

Freymuth F, Vabret A, Logrand L, Eterradossi N, Lafay-Delaire F, Brouard J, Guillois B. 2003. Presence of the new human metapneumovirus in French children with bronchiolitis. Pediatr Infect Dis J 22:92–94.

Fulton RE, Middleton PJ. 1974. Comparison of immunofluorescence and isolation techniques in the diagnosis of respiratory viral infections of children. Infect Immum 10:92–101.

Gardner PS, McQuillin J. 1980. Rapid virus diagnosis. Application of immunofluorescence. 2nd edition. Londres: Butterworths.

Gardner PS, McGuckin R, McQuillin J. 1972. Adenovirus demonstraion by Br Med J 3:175.

Hierholzer J, Castells E, Banks G, Bryan J, McEwen C. 1993. Sensitivity of NCI-H292 human lung mucosepidermoid cells for respiratory and other human viruses. J Clin Microbiol 31:1504–1510.

Koetters PJ, Hassanieh L, Stoham SA, Gallagher T, Lai MMC. 1999. Mouse hepatitis virus strain JHM infects a human hepatocellular carcinoma cell line. Virology 264:388–409.

Krug RM. 1972. Cytoplasmic and nucleoplasmic viral RNPs in influenza virus-infected MDCK cells. Virology 50:103–113.

Lieber MB, Smith B, Szakal W, Nelson-Rees WA, Todaro G. 1976. A continuous tumor-cell line from a human lung carcinoma with properties of type II alveolar epithelial cells. Int J Cancer 17:62–70.

Lohmann V, Korner F, Koch J0, Herian U, Theilmann L, Bartens-chlager R. 1999. Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science 285:110–113.

Macfarlane DE, Sommerville RG. 1969. Vero cells (Cercopithecus aethiops kidney) growth characteristics and viral susceptibility for use in diagnostic virology. Arch Gesamte Virusforsch 27:379–385.

Madeley CR, Peiris JS, McQuillin J. 1996. Adenoviruses. In: Myint S, Taylor-Robinson D, editors. Viral and other infections of the respiratory tract. London: Chapman and Hall, pp 169–190.

Matthey S, Nicholson DN, Ruhs S, Alden B, Knock M, Schultz K, Schmucker A. 1992. Rapid detection of respiratory viruses by shell vial cultures and direct staining by using pooled and individual monoclonal antibodies. J Clin Microbiol 30:540–544.

Meguro H, Bryant JD, Torrence AE, Wright PF. 1979. Canine kidney cell line for isolation of respiratory viruses. J Clin Microbiol 9:175–179.

Nakabayashi H, Taketa K, Miyano K, Yamane T, Sato J. 1982. Growth of human hepatoma cell lines with differentiated functions in chemically defined medium. Cancer Res 42:3858–3863.
Ollier L, Caramella A, Giordanengo V, Lefebvre JC. 2004. High permis-
sivity of human HepG2 hepatoma cells for influenza viruses. J Clin
Microbiol 42:5861–5865.
Pene F, Merlat A, Vabret A, Rozenberg F, Buzin A, Dreyfus F, Cariou A,
Freymuth F, Lebon P. 2003. Coronavirus 229E-related pneu-
monia in immunocompromised patients. Clin Infect Dis 37:929–
932.
Ruuskanen O, Meurman O, Akusjarvi G. 1997. Adenoviruses. In:
Richman DG, Whitley RJ, Hayden FG, editors. Clinical virology.
New York: Churchill Livingstone. pp 525–547.
Savolainen C, Blomqvist S, Hovi T. 2003. Human rhinoviruses.
Paediatr Respir Rev 4:91–98.
Schweiger B, Zadow I, Heckler R, Timm H, Pauli G. 2000. Application
of a fluorescent PCR assay for typing and subtyping of in-
fluenza viruses in respiratory samples. J Clin Microbiol 38:1552–
1558.
Steininger C, Kundi M, Aberle SW, Aberle JH, Popow-Kraupp T. 2002.
Effectiveness of reverse transcription-PCR, virus isolation, and
enzyme-linked immunosorbent assay for diagnosis of influenza A
virus infection in different age groups. J Clin Microbiol 40:2051–
2056.
Takimoto S, Grandien M, Ishida MA, Pereira MS, Paiva TM, Ishimaru
E, Makita EM, Martinez CHO. 1991. Comparison of enzyme-linked
imunosorbent assay, indirect immunofluorescence assay, and
virus isolation for detection of respiratory viruses in nasophar-
yngeal secretions. J Clin Microbiol 29:470–474.
Vabret A, Mouthon F, Mourez Th, Gouarin S, Petitjean J, Freymuth F.
2001. Direct diagnosis of human respiratory coronaviruses 229E
et OC43 by the polymerase chain reaction. J Virological Methods
97:59–66.
Van Der Hoek L, Pyrc K, Jeblink MF, Vermeulen-Oost W, Berkhout
RJM, Wolthers KC, Wertheim van Dillen PME, Kaandorp J,
Spaargaren J, Berkhout B. 2004. Identification of a new human
coronavirus. Nat Med 10:368–373.
Woods GL, Young A. 1988. Use of A-549 cells in a clinical virology
laboratory. J Clin Microbiol 26:1026–1028.
Zambon M. 1999. Cell culture for surveillance of influenza. Dev Biol
Stand 98:65–71.