Harnessing the master transcriptional repressor REST to reciprocally regulate neurogenesis

Edmund Nesti*
Alcamena Stem Cell Therapeutics, LLC; Beltsville, MD USA

Keywords: astrocyte, brain injury, CTDSP1, ERK, EGF, neuronal differentiation, Pin1, REST, RE1 silencing transcription factor, βTrCP

Abbreviations: REST, repressor element 1 (RE1) silencing transcription factor; NPC, neural progenitor cell; HEK, human embryonic kidney; CTDSP1, C-terminal domain small phosphatase 1; EGF, epidermal growth factor; H-Ras, Harvey rat sarcoma viral oncogene homolog; ERK, extracellular signal-regulated kinase; CK1, casein kinase 1; S, serine; E, glutamate; Pin1, peptidylprolyl cis/trans isomerase; βTrCP, β-transducin repeat containing E3 ubiquitin protein ligase; FGF, fibroblast growth factor; VEGF, vascular endothelial growth factor; BMP, bone morphogenetic protein; PAx6, Paired box 6; Ngn2, neurogenin 2; Tbr, T-box brain protein; DNA, deoxyribonucleic acid; GTP, guanosine triphosphate; CNS, central nervous system; FDA, The Food and Drug Administration.

Neurogenesis begins in embryonic development and continues at a reduced rate into adulthood in vertebrate species, yet the signaling cascades regulating this process remain poorly understood. Plasma membrane-initiated signaling cascades regulate neurogenesis via downstream pathways including components of the transcriptional machinery. A nuclear factor that temporally regulates neurogenesis by repressing neuronal differentiation is the repressor element 1 (RE1) silencing transcription (REST) factor. We have recently discovered a regulatory site on REST that serves as a molecular switch for neuronal differentiation. Specifically, C-terminal domain small phosphatase 1, CTDSP1, present in non-neuronal cells, maintains REST activity by dephosphorylating this site. Reciprocally, extracellular signal-regulated kinase, ERK, activated by growth factor signaling in neural progenitors, and peptidylprolyl cis/trans isomerase Pin1, decrease REST activity through phosphorylation-dependent degradation. Our findings further resolve the mechanism for temporal regulation of REST and terminal neuronal differentiation. They also provide new potential therapeutic targets to enhance neuronal regeneration after injury.

New neurons are generated from neural progenitor cells (NPCs) via a process called neurogenesis, which in vertebrates occurs in restricted brain regions.1 Neurogenesis is associated with biological functions such as learning, memory, and other cognitive functions. Inhibition of neurogenesis via antimitotic agents, radiation, or genetic manipulations has been demonstrated to impair hippocampus-dependent forms of memory in rodents.2 Studies in songbirds have associated neurogenesis with song learning.3 Defects in neurogenesis have been linked with many disease states, with cognitive etiologies including developmental disorders (e.g., microcephaly,5 megalencephaly, and autism)5 as well as neurodegenerative diseases (e.g., dementia and Alzheimer disease).5 Ultimately, resolving the signaling mechanisms that regulate neurogenesis is key to advancing our understanding of these biological processes.

Neurogenesis is orchestrated by several signaling pathways originating at the plasma membrane, including Wnt, EGF, FGF, VGEF, and BMP, and terminating in the cell nucleus. These signaling cascades initiate the progressive expression of many transcription factors, including Pax6, Ngn2, Tbr2, NeuroD, and Tbr1. Despite this list of implicated proteins, many gaps remain in our knowledge regarding the signaling mechanisms in the nucleus that leads to transcriptional changes that occur during neuronal differentiation. These nuclear signaling components are attractive targets for treating neurological disorders because they directly regulate cellular differentiation.

Our recent report provides new insight into the signaling mechanisms regulating the repressor element 1 (RE1) silencing transcription factor (REST), a master regulator of neuronal differentiation. REST acts by binding to the DNA chromatin at the RE1 sites near the regulatory regions of neuronal genes to repress their expression.7 Consistent with its function, REST is present in most non-neuronal tissues including stem cells.8,9 Many target genes of REST repression have been identified, including those required for the terminally
and phosphorylation dependent conformational changes. Importantly, Pin1 is implicated in neuronal differentiation. We found Pin1 recognized phosphorylated serines 861 and 864, and that inhibiting Pin1 activity inhibited the binding of βTrCP. Our data show that serines 861 and 864 shared the same mechanism for regulating REST stability as the previously identified downstream sites. Given that Pin1 binding requires a phosphorylated serine or threonine adjacent to a proline, we sought to identify the kinase that phosphorylates these residues. Both serine 861 and 864 are highly predicted for recognition by the extracellular signal-regulated kinases, ERK, 1 and 2. We hypothesized that ERK and its canonical upstream activators, epidermal growth factor (EGF) and the small GTPase Harvey rat sarcoma oncogene homolog (H-Ras) would promote phosphorylation at these serines in REST. We demonstrated that serine 861 and 864 are terminal targets of EGF-Ras-ERK signaling and that ERK2 can directly phosphorylate REST.

The EGF-Ras-ERK pathway is implicated in both embryonic and adult neurogenesis. In embryonic culture models of neuronal differentiation, EGF treatment correlates with REST degradation. Accordingly, our work demonstrates that inhibiting ERK stabilizes REST. Therefore, our findings implicate phosphorylated serines 861 and 864 as an early biomarker for neurogenesis.

In differentiating neural progenitor cells, targeting REST for degradation leads to the removal of REST from the chromatin, allowing for the expression of neuronal genes. In non-neuronal cell types, REST protein is more stable - likely a critical factor contributing to its retention time on the chromatin. We were interested in identifying how REST stability is maintained. A balance between kinase and phosphatase activities often regulates protein stability. Because we found that kinase activity at serines 861 and 864 to mediate REST degradation, we hypothesized that phosphatase activity may protect REST from degradation. Consistent with this hypothesis, REST has been detected co-localized on neuronal gene chromatin with the protein phosphatase CTDSP1. Additionally, it is known that the expression of CTDSP1 decreases dramatically as neural progenitor cells differentiate into mature neurons, while knockdown of CTDSP1 in a neural progenitor cell line accelerates neuronal differentiation.

One of the unresolved questions in mammalian neurogenesis is how neural progenitors switch from a proliferation to differentiation state. Relevant to this question is the observation that Wnt/β-catenin signaling has different effects on neural progenitor cells depending on when it is expressed during development. In the expansion phase of early neural progenitors, Wnt/β-catenin signaling promotes proliferation. In the neurogenic phase, Wnt/β-catenin induces neuronal differentiation.

Our results offer a model to resolve this paradox. In the expansion phase, REST is protected from degradation by CTDSP1, and remains bound to the chromatin to repress the expression of neuronal genes that would have otherwise been induced by Wnt/β-catenin signaling.

Implications for Advancing Regenerative Medicine in the Central Nervous System

Neural stem cells in the adult brain have the ability to generate and integrate new neurons. The rate at which neurons are produced can be regulated by many factors. Exercise and mental simulation are correlated with increased neurogenesis; while advanced age, stress, and diseases associated with cognitive impairment are correlated with an arrest or decrease in neurogenesis. Given the flexibility in the rate at which stem cells
can generate new neurons, researchers have attempted to harness this potential to repair brain damage. Current therapeutic approaches have identified strategies to generate new neurons in uninjured brains, including infusing or transplanting exogenous stem cells, coxing endogenous stem cells to become neurons by using blood transfusion, and supplementing growth/neurotrophic factors. Unfortunately, none of these approaches have been successful in producing new integrated neurons after traumatic brain injury in humans.

Brain injury induces NPCs to generate astrocytes preferentially over neurons, and these astrocytes migrate to the site of injury forming an astrocytic scar. The scar protects the brain from further injury. However, it also prevents neuronal regeneration at the site of injury. The development of strategies directing NPC fate is an appealing approach to enhance neuronal regeneration after brain injury.

Astrocytes must maintain repression of neuronal genes. Accordingly, during neurogenesis REST is not degraded. This suggests that brain injury induces signaling cascades that promote the repression of neuronal genes. Consistent with this hypothesis, studies have found that conditions that damage the brain such as a stroke or seizure can result in derepression of REST. The predicted outcome of this effect is the inhibition of neuronal differentiation. In fact, brain injury induces NPCs to generate astrocytes instead of neurons. An attractive and yet untested approach to promoting neuronal regeneration in brain injury is to remove this neuronal gene repression (e.g. inhibit REST).

There are many ways that inhibiting REST activity would improve neuronal regeneration therapy after CNS injury. First, it would promote the differentiation of neural progenitor cells toward neurons instead of astrocytes. Second, inhibiting REST would likely reduce the risk of brain cancer associated with transplanted stem cells, according to a leading hypothesis that cancer arises from such neural stem cells. In fact, encouraging against tumorogenesis by transplanted cells has been a major hindrance for the adoption of brain injury-targeted stem cell therapies (FDA, http://www.fda.gov/NewsEvents/PublicHealthFocus/ucm286218.htm). Relevant to this discussion of REST regulation is the fact that many brain cancers, including glioblastoma, medulloblastoma, and neuroblastoma have overexpressed REST which is implicated in oncogenic transformation. Thus, inhibiting REST activity or expression would promote the differentiation of stem cells into neurons, reducing the risk of them transforming into tumorigenic cells.

Our Findings Establish REST As a Rational Therapeutic Target

Serines 861 and 864 determine whether REST is targeted for degradation, a critical step in neurogenesis. In the phosphorylated state serines 861 and 864 are a predicted biomarker for neurogenesis, and may help to determine the potential of neural stem cells to differentiate into neurons after brain injury. In situations where neurogenesis is repressed, it could then be reversed. In our model, we identify 2 opposing signals that regulate REST activity/stability. First, CTDSP1 protects REST from degradation by dephosphorylating serines 861 and 864 (Fig., left panel). Inhibiting CTDSP1 should therefore promote REST degradation. Second, EGFR-Ras-ERK signaling phosphorylates REST at serines 861 and 864 (Fig., right panel). Thus, augmenting EGF signaling should offer a synergistic effect on neuronal regeneration.

In our study we, demonstrate the feasibility of using a peptidomimetic (decoy)
containing the ERK and Pin1 sites to stabilize REST and inhibit neurogenesis. It then follows that a phosphomimetic (decoy) version of this peptide could be used to block CTDS1 activity on REST to promote its degradation resulting in neurogenesis. As proof-of-concept, we have discovered for REST regulation we have found for REST regulation reveal new elements regulating cell differentiation and provide us with new tools to influence the process of neurogenesis. Using this exciting new strategy, it may be possible to enhance neuronal regeneration after injury and interrupt the events leading to oncogenic transformation, - 2 processes that are in dire need of novel therapeutic strategies.

Disclosure of Potential Conflicts of Interest

The author is affiliated with Alcamena Stem Cell Therapeutics, LLC.

Acknowledgments

I thank Gail Mandel, Anthony P. Barnes, Mary Y. Heng, and Mark A. Verdecia for reading the manuscript and providing helpful comments; and Wendy W. Wu for illustrations.

References

1. Altman J. Are new neurons formed in the brains of adult mammals? Science 1962; 135:1127–8; PMID:13686746; http://dx.doi.org/10.1126/ science.135.3509.1127
2. Shors TJ, Miesegaes G, Beylin A, Zhao M, Rydel T, et al. Beta-catenin supports activation of REST in insulin-hypocellular hamsters and salivary islet-induced neuronal death. J Neuroscience 2010; 30:630–9; PMID:20766802; http://dx.doi.org/10.1523/ JNEUROSCI.0415-13.2013
3. Mandel G, Fendel CG, Covey MV, Lu DD, Loriot JJ, Ballas N. Represor element 1 silencing transcription factor (REST) controls radial migration and temporal neuronal specification during neocortical development. Proc Natl Acad Sci U S A 2011; 108:10768-94; PMID:21921384; http://dx.doi.org/10.1073/pnas.1103486108
4. Nesti E, Corson GM, McCleskey M, Oyer JA, Mandel G. C-terminal domain small phosphatase 1 and MAP kinase phosphatases control REST stability and neuronal differentiation. Proc Natl Acad Sci U S A 2014; 111: E3929–36; PMID:25197063; http://dx.doi.org/10.1073/pnas.1414770111
5. Verdecia MA, Bowman ME, Lu KP, Hunter T, Noel PK. Structural basis for phosphotinase-proline recognition of REST by group IV WW domains. Nat Struct Mol Biol 2010; 17:639–43; PMID:20593246; http://dx.doi.org/10.1038/nn.2779
6. Nakamura K, Konogi I, Lee DY, Hafner A, Sinclair DA, Gould E. Neurogenesis in the adult is involved in the maintenance of brain regions to song learning. Brain Lang 2010; 106:292–38; PMID:20658085; http://dx.doi.org/10.1016/j.bandl.2009.07.013
7. Wisniewska MB, Misztal K, Michowski W, Szczot M, Purta E, Lesnai W, Kiewra ME, Kozmik Z, Warner-Schmidt JL, Duman RS. Hippocampal neurogenesis: age, gender, and neural differentiation through REST degradation. brain res. 2009; 1257:69–79; PMID:19707994; http://dx.doi.org/10.1016/j. bbr.2009.03.006
8. Paton JA, Nottelbohm FN. Neurons generated in the adult brain are recruited into functional circuits. Science 1984; 225:1046–8; PMID:6474166; http://dx.doi.org/10.1126/science.225.4674.4166
9. Kessels MA, Chauvel C. Epilepsy specific to autism? J Intellect Disabil Res 2008; 52:171–4; PMID:18932048; http://dx.doi.org/10.1111/j.1365-2788.1999.00211.x
10. Kirn JR. The relationship of neurogenesis and growth of brain regions to song learning. Trends Genet 2009; 25:721–3; PMID:19200513; http://dx.doi.org/10.1016/j.tig.2009.09.011
11. Ghaziuddin M, Zaccaignis J, Tsai L, Elardo S. Is megaphocephy specific to autism? J Intellectual Disabil Res 1999; 43 (Pt 4):279–82; PMID:10466685; http://dx.doi.org/10.1046/j.1365-2788.1999.00211.x
12. Kuhn HG, Cooper-Kuhn CM, Boehloorn K, Lucassen PJ. Changes in neurogenesis in dementia and Alzheimer mouse models: are they functionally relevant? Eur Arch Psychiatry Clin Neurosci 2007; 257:281–9; PMID:17639447; http://dx.doi.org/10.1007/s00406-007-0732-4
13. Bruce AW, Donaldson J, Wood IC, Yerbury SA, Sadow-ski MJ, Mandel G. REST and its corepressors mediate plasticity of neuronal gene chromatin throughout neurogenesis. Cell 2005; 121:645–57; PMID:15907476; http://dx.doi.org/10.1016/j.cell.2005.03.013
14. Kandori N, Hwang JY, Groves PM, Parnas G, Lin BH, et al. Pin1 allows for differential Tau phosphorylation and neural differentiation through REST degradation. Nature 2008; 452:370–4; PMID:18534483; http://dx.doi.org/10.1038/nature06780
15. Assimacopoulos S, Grove EA, Ragsdale CW. Identification of a Pax6-dependent epidermal growth factor family gene: a REST/RORα target gene. Proc Natl Acad Sci U S A 2003; 100:16072–6; PMID:14623766; http://dx.doi.org/10.1073/pnas.1734598100
16. Nakamura K, Kosugi I, Lee DY, Hafner A, Sinclair DA, Gage FH. Wnt signaling controls initiation of neurogenesis in the mammalian cortex and cellular specification in the hippocampus. Dev Biol 2009; 325:233–7; PMID:19716945; http://dx.doi.org/10.1016/j. ydbio.2008.07.038
17. Hirabayashi Y, Ishy Y, Tahara H, Nakajima K, Kozmik Z, Warner-Schmidt JL, Duman RS. Hippocampal neurogenesis: new roles for REST and its corepressors mediate plasticity of NeuroD1 and retro-elements during adult neurogenesis. Nat Neurosci 2009; 12:1097–105; PMID:19701198; http://dx.doi.org/10.1038/nn.2360
18. Wiesniewska MB, Misztal K, Michowski W, Szczot M, Purta E, Lesnai W, Kiewra ME, Kozmik Z, Warner-Schmidt JL, Duman RS. Hippocampal neurogenesis: age, gender, and neural differentiation through REST degradation. brain res. 2009; 1257:69–79; PMID:19707994; http://dx.doi.org/10.1016/j. bbr.2009.03.006
19. Paton JA, Nottelbohm FN. Neurons generated in the adult brain are recruited into functional circuits. Science 1984; 225:1046-8; PMID:6474166; http://dx.doi.org/10.1126/science.225.4674.4166
20. Kessels MA, Chauvel C. Epilepsy specific to autism? J Intellectual Disabil Res 1999; 43 (Pt 4):279–82; PMID:10466685; http://dx.doi.org/10.1046/j.1365-2788.1999.00211.x
21. Zhang Y, Xiong Y, Mahmood A, Meng Y, Qu C, Schallert T, Choop M. Therapeutic effects of erythropoietin on histological and functional outcomes following traumatic brain injury in rats are independent of hematocrit. Brain Res 2009; 1254:153-64; PMID:19640970; http://dx.doi.org/10.1016/j. brainres.2009.07.077
35. Carlson AP, Schermer CR, Lu SW. Retrospective evaluation of anemia and transfusion in traumatic brain injury. J Trauma 2006; 61:567–71; PMID:16966988; http://dx.doi.org/10.1097/01.ta.0000231768.44727.a2

36. Acosta SA, Tajiiri N, Shinouka K, Ishikawa H, Sanberg PR, Sanchez-Ramos J, Song S, Kaneko Y, Borlongan CV. Combination therapy of human umbilical cord blood cells and granulocyte colony stimulating factor reduces histopathological and motor impairments in an experimental model of chronic traumatic brain injury. PLoS One 2014; 9:e90953; PMID:24621603; http://dx.doi.org/10.1371/journal.pone.0090953

37. Sun D, Bullock MR, McGinn MJ, Zhou Z, Altememi N, Haggard S, Ham R, Colello RJ. Basic fibroblast growth factor-enhanced neurogenesis contributes to cognitive recovery in rats following traumatic brain injury. Exp Neurol 2009; 216:56–65; PMID:19100261; http://dx.doi.org/10.1016/j.expneurol.2008.11.011

38. Wennersten A, Meier X, Holmin S, Wahlberg L, Mathiesen T. Proliferation, migration, and differentiation of human neural stem/progenitor cells after transplantation into a rat model of traumatic brain injury. J Neurosurg 2004; 100:88–96; PMID:14743917; http://dx.doi.org/10.3171/jns.2004.100.1.0088

39. Sofroniew MV, Vinters HV. Astrocytes: biology and pathology. Acta Neuropathol 2010; 119:7–35; PMID:20012068; http://dx.doi.org/10.1007/s00401-009-0619-8

40. Silver J, Miller JH. Regeneration beyond the glial scar. Nat Rev Neurosci 2004; 5:146–56; PMID:14735117; http://dx.doi.org/10.1038/nrn1326

41. Calderone A, Jover T, Noh KM, Tanaka H, Yokota H, Lin Y, Grosse SY, Regis R, Bennett MV, Zukin RS. Ischemic insults derepress the gene silencer REST in neurons destined to die. J Neurosci 2003; 23:2112–21; PMID:12657670

42. Qureshi IA, Mehler MF. Chromatin-modifying agents for epigenetic reprogramming and endogenous neural stem cell-mediated repair in stroke. Transl Stroke Res 2011; 2:7–16; PMID:24014083; http://dx.doi.org/10.1007/s12975-010-0051-3

43. Noh KM, Hwang JY, Follenzi A, Athanasiadou R, Miyawaki T, Greally JM, Bennett MV, Zukin RS. Repressor element-1 silencing transcription factor (REST)-dependent epigenetic remodeling is critical to ischemia-induced neuronal death. Proc Natl Acad Sci U S A 2012; 109:E962–71; PMID:22371606; http://dx.doi.org/10.1073/pnas.1121568109

44. McClelland S, Brennan GP, Duhe C, Rajpara S, Iyer S, Richichi C, Bernard C, Baram TZ. The transcription factor NRSF contributes to epileptogenesis by selective repression of a subset of target genes. Elife 2014; 3:e01267; PMID:25117540; http://dx.doi.org/10.7554/elife.01267

45. Kohyama J, Sanosaka T, Tokunaga A, Takatsuka E, Tsujimura K, Okano H, Nakashima K. BMP-induced REST regulates the establishment and maintenance of astrocytic identity. J Cell Biol 2010; 189:159–70; PMID:20351065; http://dx.doi.org/10.1083/jcb.200908048

46. Kreso A, Dick JE. Evolution of the cancer stem cell model. Cell Stem Cell 2014; 14:275–91; PMID:24607403; http://dx.doi.org/10.1016/j.stem.2014.02.006

47. Kamal MM, Sarathy P, Singh SK, Zinn PO, Marietey AL, Liang S, Gumin J, El-Mesallamy HO, Suki D, Colman H, et al. REST regulates oncogenic properties of glioblastoma stem cells. Stem Cells 2012; 30:405–14; PMID:22228704; http://dx.doi.org/10.1002/stem.1020

48. Fuller GN, Su X, Price RE, Cohen ZR, Lang FF, Sawaya R, Majumder S. Many human medulloblastoma tumors overexpress repressor element-1 silencing transcription (REST)/neuron-restrictive silencer factor, which can be functionally countered by REST-VP16. Mol Cancer Ther 2005; 4:343–9; PMID:15767543

49. Coulson JM. Transcriptional regulation: cancer, neurons and the REST. Curr Biol 2005; 15:R665–8; PMID:16139198; http://dx.doi.org/10.1016/j.cub.2005.08.032

50. Lieta M, Cacchetti P, Thiel G. Inverse expression pattern of REST and synapsin I in human neuroblastoma cells. Biol Chem 1998; 379:1301–4; PMID:9820593