Expression of Paragloboside-like Lipooligosaccharides May Be a Necessary Component of Gonococcal Pathogenesis in Men

By Herman Schneider,* J. McLeod Grifiss,† John W. Boslego,* Penelope J. Hitchcock,§ Kathleen M. Zahos,‖ and Michael A. Apicella★

From the *Department of Bacterial Diseases, Walter Reed Army Institute of Research, Washington, D.C. 20307; the †Center for Immunochemistry and Departments of Laboratory Medicine and Medicine, University of California, San Francisco, CA 94143, and the First Army Augmentation Detachment, Fort Meade, Maryland 20755; §Rocky Mountain Laboratories, National Institutes of Health, Hamilton, Montana 59840; the ‖Department of Microbiology and Immunology, George Washington University, Washington, D.C. 20037; and the ★Departments of Medicine and Microbiology, State University of New York at Buffalo, Buffalo, New York 14215

Summary
To learn how lipooligosaccharide (LOS) phase variations affect pathogenesis, we studied two male volunteers who were challenged intraurethrally with Neisseria gonorrhoeae that make a single LOS of 3,600 daltons and sequentially followed LOS expression by gonococci as urethritis developed. LOS variation occurred in vivo. Signs and symptoms of gonorrhea began with the appearance of variants making 4,700-dalton LOS that are immunochemically similar to glycosphingolipids of human hematopoietic cells (Mandrell, R. E., J. M. Griffiss, and B. A. Macher. 1989. J. Exp. Med. 168:107) and that have acceptors for sialic acid. A variant that appeared at the onset of leukorrhoea was shed by 34/36 men with naturally acquired gonorrhea at the time they sought medical attention; the other two shed the variant associated with dysuria. None shed the challenge variant. These data show that in vivo phase shifts to higher molecular mass LOS that mimic human cell membrane glycolipids are associated with the development of gonococcal leukorrhoea.

Outer membrane glycolipids of Gram-negative bacteria that cause disease along the respiratory or genital mucosas are relatively small (<7,000-dalton) lipooligosaccharides (LOS)1 whose multiantennary oligosaccharide structures mimic those of human cell membrane glycosphingolipids (GSL) (1-4). During a study of the effect of piliation on infectivity, human volunteers developed gonorrhea after intraurethral challenge with a piliated Neisseria gonorrhoeae strain (5) that made a single LOS of 3,600 daltons. We made serial analyses of the LOS made by the organisms infecting two of the volunteers to learn whether LOS phase variations occurred during infection. We then confirmed the results by studying men with naturally acquired gonorrhea.

Materials and Methods
Bacteria. The heavily piloted, nonopaque (5) challenge strain, MS11mk variant A, and its other variants were cultured as previously described (6).

We obtained gonococcal strains cultured from patients attending local sexually transmitted transmitted disease clinics as 24- or 48-h cultures on Martin-Lewis medium and confirmed their species (7). We used the growth on these primary cultures to make proteinase K (PK)-treated whole cell lysates (8).

LOS Analyses. LOS in PK-treated lysates were characterized by SDS-PAGE and immunoblotting (6) with the use of mAbs 2-1-L8 (7), 3F11, 6B4, and 1-1-M (9).

Infection of Volunteers. Male volunteers were challenged with different inocula of variant A (5). Beginning 3 h after challenge, urine samples were collected twice daily until the infections were terminated by antibiotic treatment. Aliquots of centrifuged urine sediments were cultured and then stored frozen at -90°C. We recovered bacteria retrospectively only from frozen sediments from two volunteers who were challenged with 10⁸ organisms; bacteria in the other sediments did not survive freezing.

Abbreviations used in this paper: GSL, glycosphingolipids; LOS, lipooligosaccharide.
We sought LOS phase variants in nitrocellulose lifts of colonies by reacting them sequentially with mAbs 3F11 or 1-1-M and 2-1-L8 (6). Progeny were studied by SDS-PAGE and immunoblot (6).

Results and Discussion

Gonorrhea in men is characterized by the onset of urethral dysuria and leukorrhoea after a variable incubation (10, 11). Excretion of viable gonococci initially decreased in both volunteers and then steadily increased until dysuria and leukorrhoea began between 48 and 96 h after challenge (Fig. 1).

Gonococcal LOS participate in a complex mimicry of human cell surfaces. mAbs 3F11 and 6B4 recognize different epitopes within the Lacto-N-neotetraose moiety shared by the 4,800-dalton and larger gonococcal LOS (Fig. 2) and by human GSLs of the paragloboside series (1, 13-15). Gonococci can leave the lactosamine (LacNAc) moiety unsubstituted or add GalNAc that occludes the 3F11 epitope and forms the 1-1-M epitope (Fig. 2A) (14). LacNAc also has acceptors for sialic acid (15, 20). Sialylation variously occludes the 3F11 and 6B4 epitopes; the 6B4 epitope is unaffected by GalNAc substitution (14, 20).

Three LOS variants were found in urine sediments (Fig. 3). Variant A, the challenge variant, made single 3,600-dalton LOS, and bound only mAb 2-1-L8; after the initial decline in the numbers of organisms excreted (Fig. 1), it was recovered in increasing numbers from both volunteers until the onset of leukorrhoea (Table 1). Variant B appeared coincidental with the onset of inflammation and dysuria. In addition to the 3,600-dalton LOS, B made molecules of 4,300, 4,800, and 5,400 daltons (2, 7) (Fig. 2). Variant C appeared after B and coincidental with the onset of urethritis and discharge (Table 1). It made the 4,300-, 4,800-, and 5,400-dalton LOS of variant B, and a 5,900-dalton LOS, but not the 3,600-dalton LOS. A fourth variant, D, occurred only during in vitro passage of variant C, and it made all five LOS (Fig. 2).

Organisms from volunteer 016 at the onset of discharge show the LOS lineage A to B to C (Fig. 3). Variation from A to B represents the addition of LacNAc to the 3,600-dalton LOS (Fig. 2); the shift from B to C represents the loss of the 3,600-dalton precursor LOS and the acquisition of the 5,900-dalton LOS. The emergence of variant C from within a variant B colony shows that LOS variation can occur in vivo.

Study no.	Days post- infection	Symptoms and signs	Retrospective culture
016	0	Dysuria	5/0/0*
1	No dysuria	10/0/0	
2	Dysuria	172/3/0	
3	Dysuria	612/287/0	
4	Dysuria and discharge	88/678/15	
018	0	Dysuria	3/0/0
1	No dysuria	3/0/0	
2	No dysuria	18/0/0	
3	No dysuria	0/0/0	
4	No dysuria	103/0/0	
5	Dysuria	385/14/0	
6	Dysuria and discharge	2/12/24	

Characterization of variants is described in the legend for Fig. 3.

* Variant A colonies/variant B colonies/variant C colonies.

Figure 1. Quantitative cultures of sediments of urine from volunteers 016 and 018 challenged with 10⁶ N. gonorrhoeae organisms. Aliquots of urine sediment suspensions from 50 ml urine were cultured and colonies enumerated after 24 and 48 h of incubation.
As expected from the known frequency of LOS phase variation (10^{-3}) (6), we found eight variant C colonies among the 8,000 variant A colonies grown from the inoculum suspension. This means that 10^8 variant C organisms were among the 10^9 variant A organisms with which the volunteers were challenged.

If variant C organisms in the challenge inoculum had had a survival advantage, we should have recovered some as the total numbers of shed organisms increased, but we did not.

Instead, we recovered variant C organisms in proportions much greater than in the inocula from both volunteers after the onset of urethral discharge, and they predominated in volunteer 018 (Table 1). Mere persistence of variant C cells present in the challenge would have resulted in no more than one C organism on days 3 and 4 ($1/1,000$ organisms) for volunteer 016 and no C organisms at any time for the other volunteer, who shed <400 organisms.

Variant B arose only in vivo; we did not find it among
Identification of LOS phase variants in the sediment of a urine passed by volunteer 016 at the onset of leukorrhoea 4 d after infection. Nitrocellulose colony lifts were treated sequentially with mAbs 3F11 and 2-1-L8 as described for Fig. 2 B. The challenge variant A colonies (3F11/2-1-L8 +) are blue; the variant B colonies (3F11+/2-1-L8 +) are violet (red plus blue). Variant C organisms (3F11+/2-1-L8 -) appear as a red sector within a violet variant B colony. A silver-stained SDS-PAGE-separated gel of PK lysates of each variant is provided in the inset.

The challenge or in vitro passed organisms. Its abundance during development of symptomatic urethritis suggests that it is an intermediate step necessary for the in vivo transition from variant A to C as inflammation (dysuria) progresses to leukorrhoea (discharge). The presence of a variant C sector within a variant B colony (Fig. 3) is a clear demonstration that variant C cells did not have to be present de novo.

In contrast with the in vivo transition from variant A to B to C, a one-step change from variant A to C occurred in vitro. This would suggest that induction of variant B cells requires either an in vivo signal, or that they have an advantage that leads to their selection and persistence. Variant B expresses the Lacto-N-neotetraose acceptor for CMP-NANA (15). The acceptor site is occluded by the terminal GalNAc on 1-1-M-binding LOS (14). Sequential competition between sialylation and galactosylation with the terminal GalNAc could explain the association between LOS phase variance and symptoms of infection. This model is consistent with our finding that gonococci within PMNs of naturally acquired urethral gonorrhea have sialylated surfaces that occlude binding by mAbs that recognize the Lacto-N-neotetraose LOS substituent (20). It implies that the nonsialylated A variants established the infection and the potentially sialylated B and C variants caused disease.

To confirm this model we assessed whether gonococci recovered from men with naturally acquired gonorrhoea expressed LOS that bound mAbs 2-1-L8 and 3F11 (Fig. 4). Strains from 36 men bound mAb 3F11 to one or more LOS of >4,700 daltons, and of these only two bound mAb 2-1-L8. Thus, 34 (94.4%) were shedding organisms with characteristics of variant C, and two (5.6%) were shedding organisms with characteristics of variant B, when they sought medical attention. None were shedding variant A. Half of the men's strains also bound mAb 1-1-M.

These observations support the conclusion that persistent colonization and development of symptomatic gonorrhoea re-
quires the expression by the infecting strain of variants making higher molecular mass LOS, at least one of which shares an oligosaccharide with paragloboside, a GSL of human cells. Expression of this shared oligosaccharide and its potential subsequent sialylation is likely to be a necessary component of virulence for the male urethra.

This work was supported in part by Public Health Service grants AI-21620 (J. M. Griffiths) and AI-18384 (M. A. Apicella), and by the Veterans Administration.

Address correspondence to Herman Schneider, Department of Bacterial Diseases, Walter Reed Army Institute of Research, Walter Reed Army Medical Center, Washington, D.C. 20307. Penelope J. Hitchcock’s present address is the Division of Microbiology and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892.

Received for publication 3 July 1991.

References

1. Mandrell, R.E., J.M. Griffiths, and B.A. Macher. 1989. Lipooligosaccharides (LOS) of Neisseria gonorrhoeae and Neisseria meningitidis have components that are immunochemically similar to precursors of human blood group substances. J. Exp. Med. 168:107.

2. Griffiths, J.M., H. Schneider, R.E. Mandrell, R. Yamasaki, G.A. Jarvis, J.J. Kim, B. Gibson, R. Hamadeh, and M.A. Apicella. 1988. Lipooligosaccharides: the principle glycolipids of the neisserial outer membrane. Rev Infect. Dis. 10:S287.

3. Caroff, M., R. Chaby, D. Karibian, J. Perry, C. Deprun, and L. Szabo. 1990. Variations in the carbohydrate regions of Bordetella pertussis lipopolysaccharides: electrophoretic, serological, and structural features. J. Bacteriol. 172:1121.

4. Weiser, J.N., K.G. Johnson, and E.R. Moxon. 1989. The molecular mechanism of phase variation of lipooligosaccharides of Haemophilus influenzae. Mol. Microbiol. 3:657.

5. Mandrell, R.E., J.M. Griffiths, and B.A. Macher. 1989. In vitro and in vivo modification of Neisseria gonorrhoeae lipooligosaccharides by sialylation. J. Exp. Med. 168:2121.

6. Schneider, H., C.A. Hammack, M.A. Apicella, and J.M. Griffiths. 1988. Instability of expression of lipooligosaccharides and their epitopes in Neisseria gonorrhoeae. Infect. Immun. 56:942.

7. Schneider, H., S.L. Halley, W.D. Zollinger, C.A. Hammack, and J.M. Griffiths. 1984. Heterogeneity of molecular size and antigenic expression of lipooligosaccharides of individual strains of Neisseria gonorrhoeae. Infect. Immun. 45:544.

8. Hitchcock, P.J., and T.M. Brown. 1983. Morphological heterogeneity among Salmonella chemotypes in silver-stained polyacrylamide gels. J. Bacteriol. 154:269.

9. Mandrell, R.E., H. Schneider, M.A. Apicella, W. Zollinger, P.A. Rice, and J.M. Griffiths. 1986. Antigenic and physical diversity of Neisseria gonorrhoeae using monoclonal antibodies. Infect. Immun. 54:63.

10. Harkness, A.H. 1947. The pathology of gonorrhoea. Br. J. Vener. Dis. 24:137.

11. Holmes, K.K., D.W. Johnson, and H.J. Trostle. 1970. An estimate of the risk of men acquiring gonorrhoea by sexual contact with infected women. Am. J. Epidemiol. 91:170.

12. Jennings, H.J., K.G. Johnson, and L. Kenne. 1983. The structure of an R-type oligosaccharide core obtained from lipopolysaccharides of Neisseria meningitidis. Carbohydr. Res. 121:233.

13. John, C., J.M. Griffiths, M.A. Apicella, R.E. Mandrell, and B.W. Gibson. 1991. The structural basis for pyocin resistance in Neisseria gonorrhoeae lipopolysaccharides. J. Biol. Chem. In press.

14. Yamasaki, R., W. Nasholds, H. Schneider, and M.A. Apicella. 1991. Epitope expression and partial structural characterization of F62 lipooligosaccharide (LOS) of Neisseria gonorrhoeae. IgM monoclonal antibodies (3F11 and 1-1-M) recognize non-reducing termini of the LOS components. Mol. Immunol. In press.

15. Mandrell, R.E., A.J. Lesse, J.V. Sugai, M. Shero, J.M. Griffiths, J.A. Cole, N.J. Parsons, H. Smith, S.A. Morse, and M.A. Apicella. 1990. In vitro and in vivo modification of Neisseria gonorrhoeae lipooligosaccharide epitope structure by sialylation. J. Exp. Med. 171:1649.

16. Gibson, B.W., J.W. Webb, R. Yamasaki, S.J. Fisher, A.L. Burlingame, R.E. Mandrell, H. Schneider, and J.M. Griffiths. 1989. Structure and heterogeneity of the oligosaccharides from the lipopolysaccharides of a pyocin-resistant Neisseria gonorrhoeae. Proc. Natl. Acad. Sci. USA. 86:17.

17. Phillips, N.J., C.M. John, L.G. Reinders, J.M. Griffiss, M.A. Apicella, and B.W. Gibson. 1990. Structural models for the cell surface lipopolysaccharides of Enterobacter aerogenes. Mol. Microbiol. 4:731.

18. Schneider, H., J.M. Griffiths, R.E. Mandrell, and G.A. Jarvis. 1985. Elaboration of a 3.6 Kda lipooligosaccharide, antibody against which is absent from human sera, is associated with serum resistance of Neisseria gonorrhoeae. Infect. Immun. 50:672.

19. Dudas, K.C., and M.A. Apicella. 1988. Selection and immunochromatography of lipooligosaccharide mutants of Neisseria gonorrhoeae. Infect. Immun. 56:499.

20. Apicella, M.A., R.E. Mandrell, M. Shero, M. Wilson, J.M. Griffiths, G.F. Brooks, C. Fenner, J.F. Breen, and P.A. Rice. 1990. Modification by sialic acid of Neisseria gonorrhoeae lipooligosaccharide epitope expression in human urethral secretions: Immunoelectron microscopic analysis. J. Infect. Dis. 162:506.

21. Tsai, C.-M., and C.E. Frasch. 1982. A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal. Biochem. 119:115.