Impact of Consensus Definitions on Identification of Glomerular Lesions by Light and Electron Microscopy

Mark Haas, James Mirocha, Kerstin Amann, Ingeborg M. Bajema, Laura Barisoni, Jan Ulrich Becker, J. Charles Jennette, Kensusk Joh, Danica Galesic Ljubanovic, Ian S.D. Roberts, Joris J. Roelofs, Sanjeev Sethi, Raul Suarez, Caihong Zeng and Surya V. Seshan

1Department of Pathology & Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA; 2Clinical and Translational Science Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA; 3Department of Nephrology, Friedrich-Alexander University, Erlangen-Nürnberg, Germany; 4Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands; 5Department of Pathology, Duke University, Durham, North Carolina, USA; 6Institute of Pathology, University Hospital of Cologne, Cologne, Germany; 7Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; 8Department of Pathology, The Jikei University School of Medicine, Tokyo, Japan; 9Department of Renal Pathology and Electron Microscopy, Dubrava University Hospital, Zagreb, Croatia; 10Department of Pathology, University of Zagreb School of Medicine, Zagreb, Croatia; 11Department of Cellular Pathology, Oxford University Hospitals, Oxford, UK; 12Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; 13Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA; 14IT Contractor, Renal Pathology Society, Chicago, Illinois, USA; 15National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, People’s Republic of China; and 16Department of Pathology, Weill Cornell Medical College, New York, New York, USA

Introduction: In 2020, a working group of 13 renal pathologists published consensus definitions for 47 individual glomerular lesions found on light microscopy (LM) and 47 glomerular lesions and 9 normal structures found on electron microscopy (EM).

Methods: To test the impact of these definitions on identification of these lesions and structures, 2 surveys were circulated to all members of the Renal Pathology Society (RPS), each having 32 images (19 LM, 13 EM) and accompanying questions with 5 multiple-choice answers, one being the consensus choice of the working group. The first survey (survey 1 [S1]), answered by 297 RPS members, was sent in September 2020, before publication of the consensus definitions. The second (survey 2 [S2]), with images of the same lesions and structures (but not the same images) and the same questions and multiple choices in different order, was sent in April 2020, 5 months after the publication of the definitions.

Results: S2 was taken by 181 RPS members; 64% also took S1 and 61% reported having read the definitions paper (def. paper). Mean agreement with the consensus answers increased modestly between the 2 surveys (65.2% vs. 72.0%, $P = 0.097$); the increase was greater and significant when only respondents to S2 who read the def. paper were considered (65.2% vs. 74.8%, $P = 0.026$). Furthermore, in S2 agreement with consensus answers was greater among respondents who read this paper versus those who did not (66.9% vs. 74.8%, $P < 0.0001$).

Conclusions: Publication of the consensus definitions modestly improved interobserver agreement in identification of glomerular lesions.

Kidney Int Rep (2022) 7, 78–86; https://doi.org/10.1016/j.ekir.2021.10.014

KEYWORDS: electron microscopy; glomerulonephritis; glomerulus; kidney biopsy; renal pathology

© 2021 International Society of Nephrology. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
lesions on which the scoring systems are based. Furthermore, the use of different definitions and thresholds for individual lesions by pathologists at different centers would be expected to contribute to higher levels of interobserver variability both in overall diagnosis and in applying any histologic classification schema in which all included lesions are not specifically defined. In response to this, the RPS charged a working group of 13 pathologists to review and evaluate the published definitions for key glomerular lesions by LM and EM and to ultimately develop consensus definitions for each that can be applied across the full spectrum of glomerular diseases in both research and clinical settings. This effort resulted in the publication of definitions for key glomerular lesions by LM and EM and to ultimately develop consensus definitions for each that can be applied across the full spectrum of glomerular diseases in both research and clinical settings. This effort resulted in the publication of definitions for key glomerular lesions by LM and EM and to ultimately develop consensus definitions for each that can be applied across the full spectrum of glomerular diseases in both research and clinical settings.

To evaluate whether the availability of these consensus definitions resulted in an improvement in the ability of RPS members to identify glomerular lesions and structures encountered in their routine renal biopsy practices, we distributed 2 surveys to the >700 members of the RPS on 6 continents (excluding the committee members), each consisting of a set of 32 images (19 LM, 13 EM) with accompanying multiple-choice questions pertaining to the lesion(s) found in each. S1 was sent approximately 2 months before the publication of the consensus definitions and S2 approximately 7 months after. The same lesions and structures (but not the same images) and the same multiple-choice questions and answers, albeit in a different order, were included in both surveys. This paper summarizes and compares the results of these surveys.

METHODS

Survey Development

After submission of the def. paper for publication, the chair of the working group (MH) began assembling LM and EM images collected from the working group members, excluding those chosen as figures in the latter paper, for use in the first of 2 planned surveys to be sent to the full RPS members. A total of 30 images were initially selected and multiple-choice questions written for each; these were then circulated to the working group members. Some of the initial questions written by the chair had >1 correct choice among the answers with one answer such as “all of the above” or “a and c” to account for this; however, most of the working group members preferred only a single correct choice for each question and the questions and answers were rewritten accordingly. The working group members also submitted additional images, some to replace images initially included that were felt to be ambiguous and others accompanied by multiple-choice questions to be added to the survey. Modifications to some questions were also suggested. The working group chair then modified and finalized the survey images and questions, the result being a survey consisting of a total of 32 images (19 LM, 13 EM), each with an accompanying multiple-choice question and 5 choices for answers. This version of the survey was again circulated to the working group members with requests for answers to each question and comments where the correct answer was not felt to be clear. This resulted in a final set of modifications to the survey that was sent to the working group with consensus answers from the previous version. The group approved this final version and consensus answers.

The survey was then sent to the information technology consultant to the RPS (RS), together with instructions on completing the survey and additional questions asking the respondent’s field of specialization (pathology, nephrology, basic science, other), country of practice, and whether their center performed EM on all or most native kidney biopsies. The images and questions were then loaded into Survey Monkey and distributed to the full RPS membership in early September 2020. The RPS members were given 4 weeks to complete the survey.

After the 4-week period, the responses to each question were compiled by the RPS information technology consultant and sent to the working group chair.

In February 2021, 2 months after the publication of the def. paper, the working group chair once again solicited new images from the group members of the same 32 lesions/structures represented in the initial survey (S1). The chair then selected 1 image representing each of the 32 lesions/structures that was felt to closely but not exactly replicate the corresponding image from S1, and these were circulated to the working group members. This resulted in the replacement of 3 images with others of the same lesion that were felt to more closely resemble the S1 image. The working group chair then incorporated these 32 images into a new survey (S2), using the same questions and answer choices as in S1 but changing the order of the questions and of the multiple-choice answers for each.

The information technology consultant then circulated S2 to the full RPS membership in early April 2021, with 2 additional questions asking each respondent if they completed S1 and if they had read the November 2020 def. paper. Again, the RPS members were given 4 weeks to complete the survey, after
which time, the information technology consultant compiled the results and sent these to the working group chair.

Analysis of Survey Results

A total of 297 RPS members completed S1 and 181 completed S2. The working group chair entered the complete results of each survey (both complete sets of responses and analysis of subgroups for S2 including respondents who did (S1—yes) and did not (S1—no) complete S1 and those who did (def. paper—yes) and did not (def. paper—no) read the def. paper) for statistical analysis. Comparisons of agreement of respondents with the consensus answer for each question were done by paired analysis for S1 versus S2, S1 versus S2 (def. paper—yes), S2 (S1—yes) versus S2 (S1—no), S2 (def. paper—yes) versus S2 (def. paper—no), and subgroups of the latter two (S1—yes and S1—no). Results of the paired analyses were analyzed by t test for paired samples; very similar results (with no difference in significance) were also found using Wilcoxon’s rank-sum test. Comparisons between summary data for S1 versus S2 (field of specialization, region of practice) were done using Fisher’s exact text. All tests were 2 tailed, and \(P < 0.05 \) was considered statistically significant. SAS version 9.4 (SAS Institute, Cary, NC) was used for statistical calculations.

Table 1. Characteristics of survey respondents

Characteristics	Survey 1	Survey 2	\(P \) value*
Number (%) of respondents	297	181	0.076
Pathologist	261 (88)	170 (94)	
Nephrologist	26 (9)	7 (4)	
Other/no response	10 (3)	4 (2)	
Geographic distribution			0.88
US and Canada	114 (38)	81 (45)	
Western Europe including UK	56 (19)	29 (16)	
Eastern Europe	19 (6)	11 (6)	
East Asia	16 (5)	11 (6)	
India/Pakistan/Bangladesh	21 (7)	16 (9)	
Latin America and Caribbean	19 (6)	16 (9)	
Middle East and Africa	26 (9)	15 (8)	
Australia and New Zealand	5 (2)	2 (1)	
No answer	21 (7)	0	
Perform EM on all/most biopsies			0.68
Yes	204 (69)	134 (74)	
No	74 (25)	41 (23)	
Other response	19 (6)	6 (3)	
Completed survey 1			
Yes	116 (64)		
No	65 (36)		
Read 2020 definitions paper			
Yes	111 (61)		
No	70 (39)		

EM, electron microscopy; UK, United Kingdom; US, United States.
*By \(\chi^2 \) test.

RESULTS

The first survey was answered by 297 RPS members and the second by 181. Table 1 summarizes the characteristics of the respondents to each survey; these did not differ significantly with respect to medical specialty, geographic distribution, and the fraction of respondents from centers routinely performing EM on native kidney biopsies. Nearly two-thirds of the respondents to S2 completed both surveys, and 61% of the S2 respondents reported reading the November 2020 definitions paper before completing this survey. Among the 111 respondents to S2 who read the definitions paper, 77 (69.4%) took S1 compared with 34 (52.3%) who did not read this paper, although this difference did not reach statistical significance (\(P = 0.08 \) by Fisher’s exact test).

Table 2 lists the 32 lesions and structures depicted in the surveys in descending order based on the percent agreement with the consensus diagnosis in S1; this same order is used for the horizontal axes of the figures. Figure 1 compares the percent agreement of the respondents with the consensus answer of the working group members for each lesion or structure in S1 versus S2. Overall agreement was modestly better in S2 although this did not quite reach statistical significance by paired analysis; the mean (±SD) level of agreement for the 32 images was 65.2 ± 21.6% in S1 versus 72.0 ± 17.2% in S2, \(P = 0.097 \) by paired \(t \) test. Similarly, modest and not statistically significant differences between S2 and S1 by paired analysis were found when considering only the 19 LM images (\(P = 0.24 \); means 69.0% ± 19.5% and 61.6% ± 25.5%, respectively) and the 13 EM images (\(P = 0.17 \); means 76.3% ± 12.8% and 70.6% ± 13.3%, respectively). Within each survey, there was no significant difference between agreement with the consensus answers for LM versus EM images (\(P = 0.40 \) and \(P = 0.31 \) for S1 and S2, respectively, by Wilcoxon rank-sum test). Nevertheless, when just those 111 respondents to S2 who read the definitions paper were considered, agreement with the consensus answers improved (Figure 1; mean 74.8% ± 17.0%) and the difference in agreement between these results and those of S1 became significant (\(P = 0.026 \) by paired \(t \) test).

Paired analysis of percent agreement with the 32 consensus answers in S2 was significantly better among those respondents who read the November 2020 definitions paper than in those who did not (Figure 2a; \(P < 0.0001 \) by paired \(t \) test, means 74.8% ± 17.0% and 66.9% ± 18.7%, respectively). In addition, agreement with the consensus answers was greater among respondents who read the paper for 29 of the 32 survey images. Nevertheless, as noted previously, the fraction of
respondents who read this paper that took S1 was greater than that of respondents not reading the paper, and percent agreement with the consensus answers in S2 was also significantly better among respondents who completed S1 than in those who did not ($P < 0.001$ by paired t test, means 73.9% ± 16.8% and 68.9% ± 18.7%, respectively). We therefore evaluated the impact of whether or not respondents read the def. paper separately in those respondents who did and did not complete S1. By paired analysis, percent agreement with consensus answers in S2 was significantly greater in respondents who read the def. paper, whether they did ($P < 0.0001$ by paired t test, means 76.3% ± 16.2% and 68.6% ± 19.3%, respectively) or did not ($P < 0.001$ by paired t test, means 72.5% ± 20.7% and 64.8% ± 19.6%, respectively) complete S1 (Figure 2b and c).

DISCUSSION

Kidney biopsy, with examination of tissue by LM, immunofluorescence/immunohistochemistry, and EM, is an essential diagnostic tool in the field of nephrology, especially pertaining to glomerular diseases. Furthermore, integration of biopsy findings with clinical data, such as renal function, severity of proteinuria, and blood pressure, often adds prognostic information beyond that which can be obtained from clinical parameters alone, as is well documented for IgA nephropathy and lupus nephritis. Specific ultrastructural changes may also be markers for molecular phenotypes; for example, Royal et al. revealed that more than 1100 genes were differentially expressed between podocytropathies with and without significant endothelial cell damage by EM. Nevertheless, the value of morphologic changes in predicting clinical outcomes and guiding therapy is directly related to our ability to accurately and reproducibly identify such changes, and the current literature indicates that such reproducibility is often lacking. A contributing factor to this lack of reproducibility has been an absence of uniformity in definitions for individual glomerular lesions, as evidenced from our review of such definitions listed in the papers detailing the scoring systems for different renal diseases and glomerular disease consortia and major textbooks of renal pathology. In addition, it is not unusual when clinicopathologic studies are designed for new or newly modified definitions for individual lesions to be used that have only been internally validated by the participating pathologist(s).

Because of the lack of international standardization of terms and definitions for glomerular lesions, the RPS charged a working group to develop consensus definitions for individual glomerular lesions found by LM and EM that can be applied across the full spectrum of glomerular diseases in both research and clinical settings. This effort resulted in the publication of definitions for...
Figure 2. Comparison of findings within S2 in respondents who did (n = 114) or did not (n = 67) read the def. paper. The order in which the 32 images depicted in the survey are plotted is the same as used in Figure 1. (a) For all respondents to S2, comparison of the fractions agreeing with the consensus answer for each of the 32 images. (b) For respondents to S2 who completed S1, comparison of the fractions agreeing with the consensus answer for all 32 questions among those who did (n = 77) and did not (n = 39) read the def. paper. (c) For respondents to S2 who did not complete S1, comparison of the fractions agreeing with the consensus answer for all 32 questions among those who did (n = 34) and did not (n = 31) read the def. paper. For each figure, the means of the 32 values for each survey represented by the points at the far right and the P value found were determined by t test for paired samples (n = 32). def. paper, definitions paper; S1, survey 1; S2, survey 2.
47 individual glomerular lesions found by LM and 47
glomerular lesions and 9 normal structures found by
EM. The underlying hypothesis behind this effort is
that adoption of the consensus definitions by the renal
pathology community would facilitate harmonization of
nomenclature of the individual lesions comprising
different glomerular disease classifications and poten-
tially improve correlations of pathologic lesions with
emerging genomic, transcriptomic, proteomic, and other
pathophysiological parameters to better understand the
pathogenesis of glomerular diseases and help with
identification of novel therapeutic targets.

As an initial test of the impact of the consensus
definitions on the ability of RPS members (mainly pa-
thologists) to identify individual glomerular lesions
found by LM and EM, 2 surveys were circulated to the
full membership of the RPS, each having 32 images (19
LM, 13 EM) and accompanying questions with 5
multiple-choice answers, one the consensus choice of
the 13-member definition working group. The surveys
were sent 7 months apart, the first (S1) 2 months before
publication of the consensus definitions13 and the sec-
ond (S2), with images of the same lesions and structures
(but not the same images) and the same questions and
multiple choices in different order, 7 months later.

Our findings suggest that publication of the
consensus definitions has positively affected interob-
server agreement in identifying glomerular lesions,
although this improvement was modest. Although the
overall percent agreement of respondents to the sur-
veys with the consensus answers of the working group
did not increase significantly from S1 to S2, this in-
crease became greater and statistically significant when
the S2 results were limited to those respondents who
reported reading the def. paper.13 Furthermore, among
the respondents to S2, agreement with the consensus
answers was significantly greater overall among those
who read the paper than those who did not and was
also greater for 29 of the 32 images in the survey. As a
greater fraction of S2 respondents who read the paper
completed S1 than among those who did not read the
paper, we considered the possibility that the apparent
impact of the paper might really reflect in large part
familiarity with the survey format owing to taking the
previous survey, and it was indeed found that overall
agreement with the consensus answers in S2 was
significantly higher in those respondents who
completed S1 than in those who did not. Nevertheless,
agreement with consensus answers in S2 was signifi-
cantly greater in respondents who read the def. paper,
whether they did or did not complete S1, with the
mean agreement for the 32 questions being 7.7%
greater among respondents who read the paper for both
those who did and did not take S1.

The comparison of findings on 2 surveys as a
means for evaluating the impact of publication of the
consensus definitions13 clearly has important limita-
tions. As noted previously, familiarity with the sur-
vey format and possibly the lesions included might
have contributed to the better agreement with the
consensus answers found in S2. In addition, although
it is tempting to attribute the better results in S2
among respondents who read the def. paper13 mainly
or entirely to their having learned and been able to
apply the consensus definitions, there are additional
factors that may have contributed to these results.
For example, this group of respondents may as a
whole be more diligent in their overall reading of the
literature and/or more careful in analyzing the survey
images and questions. More notably, although the
lesions and structures and the multiple-choice ques-
tions and answers were the same in the 2 surveys,
the images themselves were not. This almost certainly
contributed to some questions having widely
different levels of agreement with the consensus an-
wers in the 2 surveys. Specifically, there were 7
questions with a disparity in the percent agreement
between the 2 surveys of >30%; in 3 (questions 4,
18, and 19 in Table 2) agreement was better in S1 and
in 4 (questions 25, 28, 29, and 31) agreement was
better in S2. In question 4, the respondents were
shown a glomerulus with mesangial and segmental
endocapillary hypercellularity, and one of the alter-
native answers was just mesangial hypercellularity.
Differences in the extent of endocapillary hyper-
cellularity in the 2 images likely contributed to the
large difference in agreement with the consensus
answer in the 2 surveys. The images for question 31
clearly revealed endocapillary hypercellularity, but
also a segmental cellular crescent. One of the choices
was endocapillary hypercellularity, whereas another
was a fibrocellular crescent, and in S1, most of the
respondents chose the latter, perhaps because the
cellular crescent contained a minor (but <25%) com-
ponent of matrix. In S2, there was considerable
(35%) improvement, possibly because the consensus
definitions13 clarified the cutoff values for cells and
matrix in cellular, fibrocellular, and fibrous crescents
(an important point of emphasis in the consensus
definitions), but possibly also because the crescent in
S2 may have been easier to distinguish as cellular
versus fibrocellular. Despite our best efforts, there
can be little doubt that some of the images were
easier to identify in one versus the other survey, and
although the data for survey 2 alone do reveal that
respondents who read the def. paper13 had better
overall agreement with the consensus answers than
those who did not, the poor agreement for some S2
images even among the former group of respondents strongly suggests that these images were likely to have been suboptimal.

There were also some lesions in which agreement with the consensus answer was suboptimal in both surveys, most notably the membranoproliferative pattern (question 30; Figure 3a and b) and an intracapillary thrombus with glomerular basement membrane duplication (question 32; Figure 3c and d). Nevertheless, for these images, it seems to have been one of the alternative choices in the multiple-choice questions that created difficulty; nodular glomerulosclerosis and an intracapillary thrombus with glomerular basement membrane duplication and visceral epithelial cell hyperplasia, respectively; the latter choice was the most often selected for question 32 in both surveys. What this seems to indicate is two-fold: first, there are some definitions that require modification (e.g., that nodular-type mesangial expansion may be found with a membranoproliferative pattern, and better distinction between visceral epithelial hyperplasia and hypertrophy), and second, pathologists need to be more vigilant in identifying multiple lesions within the same glomerulus.

Those lesions for which agreement with the consensus answer remained suboptimal even among respondents who read the def. paper13 indicate that although it is possible to reduce interobserver variability in renal pathology diagnosis, even under the best of circumstances, this is likely to remain a significant limitation in optimizing patient care and therapeutic trials. This latter conclusion is reinforced by the following 2 additional points: first, the rather modest improvement in overall agreement with consensus answers from S1 to S2, even among respondents who read the def. paper, and second, that the most ambiguous images that were intentionally excluded from the surveys are in fact present in real-world practice. It is largely because of these limitations of conventional renal biopsy interpretation that interest in application of computational image analysis to renal pathology has grown considerably in recent years.25,26 Such analysis is now being applied to whole slide images of renal biopsies and holds promise not only for reducing interobserver variability but also for more complex processes, such as prediction of disease progression and therapeutic response.25 Currently, there are considerable limitations in the application of computational image analysis to renal pathology, some of which relate to available hardware and software that are likely to improve over time, but others relate to standardization of tissue analysis which is where

Figure 3. Images from questions for which agreement of respondents to both surveys with the consensus answers was \(\leq 50\% \): (a, b) membranoproliferative pattern and (c, d) an intracapillary thrombus with glomerular basement membrane duplication. Images a and c are from survey 1 and b and d are from survey 2. Note that the images in a and b also reveal a nodular-like pattern of mesangial expansion and that those in c and d reveal visceral epithelial cell hyperplasia without true hyperplasia. Original magnification of all images \(\times 400 \); a: periodic acid–Schiff stain, b–d: Jones methenamine silver stain; bars in each image = 70 \(\mu \text{m} \).
Table 2. Lesions and structures in the 32 survey images

Image	Lesions and structures
1.	Capsular hyaline drop—LM (S1 96.4%, S2 97.6%)
2.	Wire loops and hyaline pseudothrombi—LM (S1 96.0%, S2 68.9%)
3.	Lamellation of the lamina densa—EM (S1 94.4%, S2 67.1%)
4.	Mesangial and segmental endocapillary hypercellularity—LM (S1 90.8%, S2 50.6%)
5.	Mesangial matrix expansion—LM (S1 89.1%, S2 67.1%)
6.	Electron-lucent intramembranous immune deposits—EM (S1 86.0%, S2 94.4%)
7.	Glomerular basement membrane duplication—LM (S1 85.6%, S2 92.0%)
8.	An adhesion—LM (S1 82.3%, S2 75.5%)
9.	Fibrillary deposits—EM (S1 82.2%, S2 77.9%)
10.	An immature glomerulus—LM (S1 78.8%, S2 73.6%)
11.	Endothelial honeycombing—EM (S1 75.6%, S2 80.7%)
12.	Subendothelial widening—EM (S1 75.2%, S2 80.9%)
13.	Elongated intramembranous deposits—EM (S1 75.0%, S2 86.9%)
14.	Foot process effacement with cytoskeletal condensation—EM (S1 74.5%, S2 76.1%)
15.	Ischemic-type capillary collapse—LM (S1 73.5%, S2 77.9%)
16.	Microtubular deposits—EM (S1 70.2%, S2 86.2%)
17.	Lipoprotein thrombi—LM (S1 68.9%, S2 82.2%)
18.	Mesangial hypercellularity and a capillary microaneurysm—LM (S1 66.6%, S2 33.3%)
19.	A pseudocrescent—LM (S1 64.4%, S2 28.1%)
20.	Mesangial interposition—EM (S1 64.2%, S2 86.7%)
21.	Endotheliosis—EM (S1 61.3%, S2 77.1%)
22.	Mesangial matrix expansion—LM (S1 52.2%, S2 49.4%)
23.	Segmental sclerosis and hyalinosis—LM (S1 49.4%, S2 93.8%)
24.	Glomerular basement membrane rupture—EM (S1 49.1%, S2 68.2%)
25.	Mesangioysis—LM (S1 49.0%, S2 61.8%)
26.	Fibrinoid necrosis—LM (S1 47.2%, S2 92.7%)
27.	Glomerular basement membrane lucencies (craters)—LM (S1 35.3%, S2 86.6%)
28.	Membranoproliferative pattern—LM (S1 35.3%, S2 50.0%)
29.	Segmental endocapillary hypercellularity—LM (S1 23.2%, S2 58.5%)
30.	An intracapillary thrombus with GBM duplication—LM (S1 21.8%, S2 35.2%)

EM, electron microscopy; GBM, glomerular basement membrane; LM, light microscopy; S1, survey 1; S2, survey 2.

Number in parentheses is percent agreement with the consensus diagnosis for S1 and S2. Diagnosis numbers (1–32) are listed based on the % agreement with the consensus diagnosis in S1, in decreasing order, and correspond to the numbers on the horizontal axes in Figures 1 and 2.

having accepted consensus definitions for individual lesions and disease processes can prove very helpful.

Finally, even in the best case scenario, which would likely include presenting multiple and better examples of each lesion to the renal pathology community, the impact of using consensus definitions to improve interobserver agreement in identification of morphologic lesions still greatly depends on how widespread the acceptance of these definitions becomes within this community. From our experience with establishing uniformity of definitions in more limited settings, such as the Oxford classification of IgA nephropathy, updates to the ISN/RPS classification of lupus nephritis, and within revisions to the Banff classification for kidney transplant rejection, this general acceptance will likely be gradual. The finding that more than 60% of the respondents to S2 reported reading the def. paper indicates significant awareness of these definitions within the renal pathology community. Still, it is hoped that the results of the surveys will encourage acceptance of the consensus definitions, and we are optimistic that future development and application of glomerular disease classification and scoring systems will ultimately benefit.

DISCLOSURE

All the authors declared no competing interests.

ACKNOWLEDGMENTS

No part of this manuscript was prepared by a commercial organization, and the work described in the manuscript was not funded by a commercial organization.

SUPPLEMENTARY MATERIAL

Supplementary File (PDF)

STARD Checklist.

REFERENCES

1. Working Group of the International IgA Nephropathy Network and the Renal Pathology Society, Catrann DC, Coppo R, et al. The Oxford classification of IgA nephropathy: rationale, clinicopathological correlations, and classification. Kidney Int. 2009;76:534–545. https://doi.org/10.1038/ki.2009.243

2. Working Group of the International IgA Nephropathy Network and the Renal Pathology Society, Roberts IS, Cook HT, et al. The Oxford classification of IgA nephropathy: pathology definitions, correlations, and reproducibility. Kidney Int. 2009;76:546–556. https://doi.org/10.1038/ki.2009.168

3. Trimbarch H, Barratt J, Catrann DC, et al. Oxford classification of IgA nephropathy 2016: an update from the IgA Nephropathy Classification Working Group. Kidney Int. 2017;91:1014–1021. https://doi.org/10.1016/j.kint.2017.02.003

4. Weening J, D’Agati V, Schwartz MM, et al. The classification of glomerulonephritis in systemic lupus erythematosus revisited [published correction appears in Kidney Int. 2004;65: 1132]. Kidney Int. 2004;65:521–530. https://doi.org/10.1111/j.1523-1755.2004.00443.x

5. Bajema IM, Wilhemus S, Alpers CE, et al. Revision of the International Society of Pathology/Renal Pathology Society classification for lupus nephritis: clarification of definitions, and modified National Institutes of Health activity and chronicity indices. Kidney Int. 2018;93:789–796. https://doi.org/10.1016/j.kint.2017.11.023

6. Berden AE, Ferrari F, Hagen EC, et al. Histopathologic classification of ANCA-associated glomerulonephritis. J Am Soc Nephrol. 2010;21:1628–1636. https://doi.org/10.1681/ASN.2010090477
7. D’Agati VD, Fogo AB, Bruijn JA, Jennette JC. Pathologic classification of focal segmental glomerulosclerosis: a working proposal. Am J Kidney Dis. 2004;43:368–382. https://doi.org/10.1053/ajkd.2003.10.024

8. Tervaert TW, Mooyaart AL, Amann K, et al. Pathologic classification of diabetic nephropathy. J Am Soc Nephrol. 2010;21:556–563. https://doi.org/10.1681/ASN.2010010010

9. Barisoni L, Troost JP, Nast C, et al. Reproducibility of the Neptune descriptor-based scoring system on whole-slide images and histologic and ultrastructural digital images. Mod Pathol. 2016;29:671–684. https://doi.org/10.1038/modpathol.2016.58

10. Barisoni L, Gimpel C, Kain R, et al. Digital pathology imaging as a novel platform for standardization and globalization of quantitative nephropathology. Clin Kidney J. 2017;10:176–187. https://doi.org/10.1093/ckj/sfw129

11. Mariani LH, Bomback AS, Canetta PA, et al. CureGN study rationale, design, and methods: establishing a large prospective observational study of glomerular disease. Am J Kidney Dis. 2019;73:218–229. https://doi.org/10.1053/j.ajkd.2018.07.020

12. Sethi S, Haas M, Markowitz GS, et al. Mayo Clinic/Renal Pathology Society consensus report on pathologic classification, diagnosis, and reporting of GN. J Am Soc Nephrol. 2016;27:1278–1287. https://doi.org/10.1681/ASN.2015060612

13. Haas M, Seshan SV, Barisoni L, et al. Consensus definitions for glomerular lesions by light and electron microscopy: recommendations from a working group of the Renal Pathology Society. Kidney Int. 2020;98:1120–1134. https://doi.org/10.1016/j.kint.2020.08.006

14. Haas M, Verhave JC, Liu ZH, et al. A multicenter study of the predictive value of crescents in IgA nephropathy [published correction appears in J Am Soc Nephrol. 2017;28:1665]. J Am Soc Nephrol. 2017;28:691–701. https://doi.org/10.1681/ASN.2016040433

15. Barbour SJ, Espino-Hernandez G, Reich HN, et al. The MEST score provides earlier risk prediction in IgA nephropathy. Kidney Int. 2016;89:167–175. https://doi.org/10.1038/ki.2015.322

16. Rijnink EC, Teng YO, Wilhelmus S, et al. Clinical and histological characteristics associated with renal outcomes in lupus nephritis. Clin J Am Soc Nephrol. 2017;12:734–743. https://doi.org/10.2215/CJN.10601016

17. Austin HA 3rd, Muenz LR, Joyce KM, et al. Diffuse proliferative lupus nephritis: identification of specific pathologic features affecting renal outcome. Kidney Int. 1984;25:689–695. https://doi.org/10.1038/ki.1984.75

18. Royal V, Zee J, Liu Q, et al. Ultrastructural characterization of proteinuric patients predicts clinical outcomes. J Am Soc Nephrol. 2020;31:841–854. https://doi.org/10.1681/ASN.2019080825

19. Wilhelmus S, Cook HT, Noel LH, et al. Interobserver agreement on histopathological lesions in class III or IV lupus nephritis. Clin J Am Soc Nephrol. 2015;10:47–53. https://doi.org/10.2215/CJN.03580414

20. Furness P, Taub N. Interobserver reproducibility and application of the ISN/RPS classification of lupus nephritis—a UK-wide study. Am J Surg Pathol. 2006;30:1030–1035. https://doi.org/10.1016/j.ajsp.2006.08.000-00015

21. Hisano S, Joh K, Katafuchi R, et al. Reproducibility for pathologic prognostic parameters of the Oxford classification of IgA nephropathy; a Japanese cohort study of the Ministry of Health, Labor and Welfare. Clin Exp Nephrol. 2021:19:92–96. https://doi.org/10.1007/s10157-016-1258-8

22. Bellur SS, Roberts ISD, Troyanov S, et al. Reproducibility of the Oxford classification of immunoglobulin A nephropathy, impact of biopsy scoring on treatment allocation and clinical relevance of disagreements: evidence from the VAlegation of IGA study cohort [published correction appears in Nephrol Dial Transplant. 2020:35:1453]. Nephrol Dial Transplant. 2019;34:1681–1690. https://doi.org/10.1093/ndt/gfy337

23. Jennette JC, Olson JL, Silva FG, D’Agati VD, eds. Heptinstall’s Pathology of the Kidney. 7th ed. Wolters Kluwer; 2015.

24. Tisher CC, Brenner BM, eds. Renal Pathology: With Clinical and Functional Correlations. 2nd ed. Lippincott; 1994.

25. Barisoni L, Lafata KJ, Hewitt SM, Madabhushi A, Balis UGJ. Digital pathology and computational image analysis in nephropathology. Nat Rev Nephrol. 2020;16:669–685. https://doi.org/10.1038/s41581-020-0321-6

26. Hermsen M, de Bel T, den Boer M, et al. Deep learning-based histopathologic assessment of kidney tissue. J Am Soc Nephrol. 2019;30:1968–1979. https://doi.org/10.1681/ASN.2019020144

27. Loupy A, Haas M, Roufosse C, et al. Banff 2019 Kidney Meeting report I: updates on and clarification of criteria for T cell- and antibody-mediated rejection. Am J Transplant. 2020;20:2318–2331. https://doi.org/10.1111/ajt.15898