Translocation and accumulation of nicotine via distinct spatio-temporal regulation of nicotine transporters in *Nicotiana tabacum*

Nobukazu Shitan¹,*, Minaho Hayashida¹, and Kazufumi Yazaki²

¹Department of Natural Medicinal Chemistry; Kobe Pharmaceutical University; Motoyamakita-machi; Kobe, Japan; ²Laboratory of Plant Gene Expression; Research Institute for Sustainable Humanosphere; Kyoto University; Uji, Japan

Keywords: alkaloid, MATE, nicotine, tobacco, translocation, transporter

Abbreviations: MATE, multidrug and toxic compound extrusion; MeJA, methyl jasmonate.

© Nobukazu Shitan, Minaho Hayashida, and Kazufumi Yazaki

*Correspondence to: Nobukazu Shitan; Email: shitan@kobepharma-u.ac.jp

Submitted: 03/17/2015
Accepted: 03/26/2015

http://dx.doi.org/10.1080/15592324.2015.1035852

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The moral rights of the named author(s) have been asserted.

Addendum to: Shitan N, Minami S, Morita M, Hayashida M, Ito S, Takanashi K, Omote H, Moriyama Y, Sugiyama A, Goossens A, Moriyasu M, Yazaki K. Involvement of the leaf-specific multidrug and toxic compound extrusion (MATE) transporter Nt-JAT2 in vacular sequestration of nicotine in *Nicotiana tabacum*. PLoS One 2014; 9: e108789.

In plants, secondary metabolites play important roles in adaptation to the environment. Nicotine, a pyridine alkaloid in *Nicotiana tabacum*, functions as a chemical barrier against herbivores. Nicotine produced in the root undergoes long-distance transport and accumulates mainly in the leaves. Since production of such defensive compounds is costly, plants must regulate the allocation of the products to their tissues; however, the molecular mechanism of nicotine translocation remains unclear. Our recent studies identified a novel multidrug and toxic compound extrusion (MATE)-type nicotine transporter, JAT2 (jasmonate-inducible alkaloid transporter 2). This transporter is specifically expressed in leaves, localizes to the tonoplast, and transports nicotine as its substrate. The specific induction of JAT2 expression in leaves by methyl jasmonate (MeJA) treatment suggests that this transporter plays an important role in nicotine distribution to leaves, especially under herbivore attack, by transporting nicotine into the vacuole. Considering JAT2, together with the previously identified MATE transporters JAT1, MATE1, and MATE2, and the PUP (purine permease) transporter NUP1 (nicotine uptake permease1), we show a model of nicotine translocation and accumulation via distinct spatio-temporal regulation of nicotine transporter expression. Furthermore, we discuss the possible role of nicotine transporters in determining outcrossing rates and seed production.

Plants produce a vast number of secondary metabolites with specific activities (such as the anti-bacterial and anti-herbivore activities of some alkaloids) that likely play important roles in plant adaptation to environmental stresses. Because the production of secondary metabolites as a chemical defense is costly to plants, the biosynthesis of these metabolites is systematically controlled and some are specifically induced by environmental changes such as herbivore attack. Earlier studies reported that the allocation of chemical defense compounds within a plant is correlated with the value of tissues; that is, tissues of high value receive more secondary metabolites to improve their defenses. Several transport systems and multiple transporters likely function in the distribution of these metabolites from the organ of biosynthesis to other organs for accumulation, as reported for long-distance transport of sucrose and auxin. Several transporters responsible for the transport of a single secondary metabolite have been identified; however, how spatial and temporal regulation of expression of such transporters regulate inter-organ movement of a secondary metabolite remains unclear. Metabolite transport requires a plasma membrane-localized efflux or influx transporter in the biosynthetic tissue, and both plasma and vacuolar membrane-localized transporters in the tissue that accumulates the metabolite. Several findings about nicotine translocation, including our recent identification of a leaf-specific nicotine transporter, provided insights into this mechanism.

Nicotiana tabacum plants produce the pyridine alkaloid nicotine only in root tissues; nicotine translocates to the aerial parts of the plant via the xylem. Due to the strong toxicity of nicotine to the
nervous system of insects, nicotine accumulation in *Nicotiana* species functions as a defense mechanism. Since production of nicotine has high metabolic costs, its production remains at basal levels under normal conditions, but increases to higher levels in plants attacked by insects or herbivores. This induction occurs through methyl jasmonate (MeJA) signaling. Upon up-regulation of nicotine production, nicotine content in the xylem fluid increases, and ultimately nicotine concentration in leaves also increases. Therefore, nicotine transport from source tissues to sink organs is an excellent model system to analyze the organization of multiple nicotine transporters.

Our recent study identified a novel nicotine transporter, JAT2 (jasmonate-inducible alkaloid transporter) (Fig. 1). This transporter belongs to the multidrug and toxic compound extrusion (MATE) transporter family, which has diverse physiological functions, including in transport of divergent secondary metabolites, translocation of iron, and plant hormone signaling. JAT2 is specifically expressed in leaves, localizes to the tonoplast and shows nicotine transport activity. These characteristics suggest that JAT2 acts in nicotine sequestration in the leaf vacuole (Fig. 1). In addition, previous work has identified and characterized 3 other MATE transporters, MATE1, MATE2, and JAT1, and one PUP (purine permease) transporter, NUP1 (nicotine uptake permease) (Fig. 1). MATE1 and MATE2 show high sequence similarity, are specifically expressed in roots, and function in vacuolar accumulation of nicotine in roots, where nicotine biosynthesis takes place. NUP1 is abundantly expressed in root tips, where nicotine biosynthesis is highly active. This plasma membrane-localized transporter takes up nicotine into the cells from the apoplast. NUP1 increases nicotine production in roots by positively regulating the expression of ERF189, a transcription factor controlling nicotine biosynthesis. JAT1 is expressed in roots, stems and leaves, localizes to the tonoplast in the leaves, and shows nicotine/proton antiport activity. JAT1 may function in vacuolar nicotine accumulation, at least in green leaves.

All MATE transporters are rapidly (within 2 h) induced by MeJA treatment, enabling the efficient transport of increased amounts of nicotine. An early study reported the selective distribution of nicotine to younger leaves, which are tissues of high fitness value, at the elongation stage. Enhanced expression of JAT2 in both younger and older leaves suggests the involvement of this transporter in distribution of regulated amounts of nicotine to leaves (Fig. 1). Surprisingly, JAT1 protein seems to localize to the plasma membrane or endosomes in the root tissues. JAT1 might function in nicotine efflux from cells and loading into the xylem in roots, although this will require further investigation. Understanding the mechanism of nicotine efflux at the plasma membrane of root cells and the mechanism of nicotine import at the plasma membrane of leaf cells will clarify
the mechanism of nicotine translocation throughout the plant.

At the flowering stage, nicotine is also allocated to reproductive tissues. In flowers, benzyl acetone attracts pollinators and nicotine repels pollinators, thus affecting rates of outcrossing and seed production. MATE1 and MATE2 transcripts are present at very low levels in flowers. JAT1 shows high expression in flowers during flower development, and is expressed in petals, pistils, and stamens of fully open flowers at stage 12 (Fig. 2). In contrast, JAT2 is faintly expressed in the petal, and its protein is slightly smaller than that found in leaves. These expression patterns suggest that tobacco nicotine transporters might affect reproductive success by transporting nicotine in flowers.

These findings provide, to our knowledge, the first example that several transporters play important roles in the translocation and accumulation of a single secondary metabolite via distinct spatial and temporal regulation of their expression patterns, and contribute to our understanding of plant mechanisms of adaptation to the environment through multiple transporters.

Research on transport of secondary metabolites has emerged as a hot topic of late, and several transporters have been identified. These transporters may have applications in engineering of metabolite transport for production of valuable compounds. Further identification and characterization of transporters of secondary metabolites would be useful for the molecular breeding of transgenic plants with high contents of bioactive metabolites in specific organs.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Funding
This research was supported by JSPS KAKENHI Grant Numbers 25712012 [Grant-in-Aid for Young Scientists (A) to N.S.], Takeda Science Foundation, and by a grant for Exploratory Research on Sustainable Humanosphere Science from the Research Institute for Sustainable Humanosphere (RISH), Kyoto University.

References
1. Croteau R, Kutchan TM, Lewis NG. Natural Products (Secondary Metabolites). Biochemistry & Molecular Biology of Plants (Buchanan, B, Gruissem, W and Jones, R, Eds), American Society of Plant Physiologists, Maryland 2000:pp. 1250-318
2. Baldwin IT. Jasmonate-induced responses are costly but benefit plants under attack in native populations. Proc Natl Acad Sci USA 1998; 95:8113-8; PMID:9653149; http://dx.doi.org/10.1073/pnas.95.14.8113
3. Ohnmeiss TE, Baldwin IT. Optimal defense theory predicts the ontogeny of an induced nicotine defense. Ecology 2000; 81:1765-83; http://dx.doi.org/10.1890/0012-9658 (20000816)81%3a1765%3adofto%3ed10.1890
4. Kreck P, Skupa P, Libus J, Naramoto S, Tejos R, Friml J, Zazimalová E. The PIN-FORMED (PIN) protein family of auxin transporters. Genome Biol 2009; 10:249; PMID:20053306; http://dx.doi.org/10.1186/gb-2009-10-12-249
5. Ayre BG. Membrane-transport systems for sucrose in relation to whole-plant carbon partitioning. Mol Plant 2011; 4:377-94; PMID:21502663; http://dx.doi.org/10.1093/mp/ssr014
6. Nour-Eldin HH, Halkier BA. The emerging field of transport engineering of plant specialized metabolites. Curr Opin Biotechnol 2013; 24:263-70; PMID:23040969; http://dx.doi.org/10.1016/j.copbio.2012.09.086
7. Shoji T, Hashimoto T. Smoking out the masters: transcriptional regulators for nicotine biosynthesis in tobacco. Plant Biotechnol 2013; 30:217-24; http://dx.doi.org/10.5511/plantbiotechnology.13.0221a
8. Streppuhn A, Gase K, Krock B, Halschschke R, Baldwin IT. Nicotine’s defensive function in nature. Plant Biol 2004; 6:217; PMID:15314666
9. Baldwin IT. Mechanism of damage-induced alkaloid production in wild tobacco. J Chem Ecol 1989; 15:661-80; PMID:24272107; http://dx.doi.org/10.1007/BF01012392
10. Shitan N, Minami S, Morita M, Hayashida M, Ito S, Takanashi K, Omote H, Moriyama Y, Sugiyama A, Goossens A, et al. Involvement of the leaf-specific

Acknowledgements

Figure 2. Expression of Nt-JAT1 and Nt-JAT2 proteins during tobacco flower development. Flowers were sampled at stage 1 (bud), stage 7 (corolla tube bulge at tip of calx), and stage 12 (fully open flower); stages defined previously. Senesced flowers were defined as stage 13. Petals, stamens, and pistils were sampled from flowers of stage 12. Membrane proteins were extracted from each part and subjected to SDS-PAGE and immunoblot analyses using anti-Nt-JAT1 and Nt-JAT2 antibodies.
multidrug and toxic compound extrusion (MATE) transporter Nt-JAT2 in vacuolar sequestration of nicotine in *Nicotiana tabacum*. PloS One 2014; 9:e108789; PMID:25268729; http://dx.doi.org/10.1371/journal.pone.0108789

11. Takanashi K, Shitan N, Yazaki K. The multidrug and toxic compound extrusion (MATE) family in plants. Plant Biotechnol 2014; 31:417-30; http://dx.doi.org/10.5511/plantbiotechnology.14.09044

12. Shoji T, Inai K, Yazaki Y, Sato Y, Takase H, Shitan N, Yazaki K, Goto Y, Toyooka K, Matsunaka K, et al. Multidrug and toxic compound extrusion-type transporters implicated in vacuolar sequestration of nicotine in tobacco roots. Plant Physiol 2009; 149:708-18; PMID:19098091; http://dx.doi.org/10.1104/pp.108.132811

13. Morita M, Shitan N, Sawada K, Van Montagu MCE, Inze D, Rischer H, Goossens A, Okman-Calderney KM, Moriyama Y, Yazaki K. Vacuolar transport of nicotine is mediated by a multidrug and toxic compound extrusion (MATE) transporter in *Nicotiana tabacum*. Proc Natl Acad Sci USA 2009; 106:2447-52; PMID:19168636; http://dx.doi.org/10.1073/pnas.0812512106

14. Hildreth SB, Gehman EA, Yang H, Lu RH, Ritesh KC, Harich KC, Yu S, Lin J, Sandoe JL, Okumoto S, et al. Tobacco nicotine uptake permease (NUPI) affects alkaloid metabolism. Proc Natl Acad Sci USA 2011; 108:18179-84; PMID:22006310; http://dx.doi.org/10.1073/pnas.1108620108

15. Kato K, Shitan N, Shoji T, Hashimoto T. Tobacco NUPI transports both tobacco alkaloids and vitamin B6. Phytochemistry 2014; http://dx.doi.org/10.1016/j.phytochem.2014.05.011

16. Kato K, Shoji T, Hashimoto T. Tobacco nicotine uptake permease regulates the expression of a key transcription factor gene in the nicotine biosynthesis pathway. Plant Physiol 2014; 166:2195-204; PMID:25344505; http://dx.doi.org/10.1104/pp.114.251645

17. Kessler D, Gase K, Baldwin IT. Field experiments with transformed plants reveal the sense of floral scents. Science 2008; 321:1200-2; PMID:18755975; http://dx.doi.org/10.1126/science.1160872

18. Kessler D, Bhattacharya S, Diel C, Rothe E, Gase K, Schornert M, Baldwin IT. Unpredictability of nectar nicotine promotes outcrossing by hummingbirds in *Nicotiana attenuata*. Plant J 2012; 71:529-38; PMID:22448647; http://dx.doi.org/10.1111/j.1365-313X.2012.05008.x

19. Shi Q, Li C, Zhang F. Nicotine synthesis in *Nicotiana tabacum* L. induced by mechanical wounding is regulated by auxin. J Exp Bot 2006; 57:2899-907; PMID:16868042; http://dx.doi.org/10.1093/jxb/er6051

20. Kolbanov AM, Truernet J, Cos KH, Wallis M, Goldberg RB. Different temporal and spatial gene expression patterns occur during anther development. Plant Cell 1990; 2:1201-24; PMID:12354953; http://dx.doi.org/10.1105/tpc.2.12.1201