Online Learning Algorithms for Stochastic Water-Filling

Yi Gai and Bhaskar Krishnamachari
Ming Hsieh Department of Electrical Engineering
University of Southern California
Los Angeles, CA 90089, USA
Email: {ygai, bkrishna}@usc.edu

Abstract—Water-filling is the term for the classic solution to the problem of allocating constrained power to a set of parallel channels to maximize the total data-rate. It is used widely in practice, for example, for power allocation to sub-carriers in multi-user OFDM systems such as WiMax. The classic water-filling algorithm is deterministic and requires perfect knowledge of the channel gain to noise ratios. In this paper we consider how to do power allocation over stochastically time-varying (i.i.d.) channels with unknown gain to noise ratio distributions. We adopt an online learning framework based on stochastic multi-armed bandits. We consider two variations of the problem, one in which the goal is to find a power allocation to maximize \( \sum_i \mathbb{E}[\log(1 + SNR_i)] \), and another in which the goal is to find a power allocation to maximize \( \sum_i \log(1 + \mathbb{E}[SNR_i]) \). For the first problem, we propose a cognitive water-filling algorithm that we call CWF1. We show that CWF1 obtains a regret (defined as the cumulative gap over time between the sum-rate obtained by a distribution-aware genie and this policy) that grows polynomially in the number of channels and logarithmically in time, implying that it asymptotically achieves the optimal time-averaged rate that can be obtained when the gain distributions are known. For the second problem, we present an algorithm called CWF2, which is, to our knowledge, the first algorithm in the literature on stochastic multi-armed bandits to exploit non-linear dependencies between the arms. We prove that the number of times CWF2 picks the incorrect power allocation is bounded by a function that is polynomial in the number of channels and logarithmic in time, implying that its frequency of incorrect allocation tends to zero.

I. INTRODUCTION

A fundamental resource allocation problem that arises in many settings in communication networks is to allocate a constrained amount of power across many parallel channels in order to maximize the sum-rate. Assuming that the power-rate function for each channel is proportional to \( \log(1 + SNR) \) as per the Shannon’s capacity theorem for AWGN channels, it is well known that the optimal power allocation can be determined by a water-filling strategy \( \mathbb{E}[\log(1 + SNR)] \). The classic water-filling solution is a deterministic algorithm, and requires perfect knowledge of all channel gain to noise ratios.

In practice, however, channel gain-to-noise ratios are stochastic quantities. To handle this randomness, we consider an alternative approach, based on online learning, specifically stochastic multi-armed bandits. We formulate the problem of stochastic water-filling as follows: time is discretized into slots; each channel’s gain-to-noise ratio is modeled as an i.i.d. random variable with an unknown distribution. In our general formulation, the power-to-rate function for each channel is allowed to be any sub-additive function \( f \). We seek a power allocation that maximizes the expected sum-rate (i.e., an optimization of the form \( \mathbb{E}[\sum_i \log(1 + SNR_i)] \)). Even if the channel gain-to-noise ratios are random variables with known distributions, this turns out to be a hard combinatorial stochastic optimization problem. Our focus in this paper is thus on a more challenging case.

In the classical multi-armed bandit, there is a player playing \( K \) arms that yield stochastic rewards with unknown means at each time in i.i.d. fashion over time. The player seeks a policy to maximize its total expected reward over time. The performance metric of interest in such problems is regret, defined as the cumulative difference in expected reward between a model-aware genie and that obtained by the given learning policy. And it is of interest to show that the regret grows sub-linearly with time so that the time-averaged regret asymptotically goes to zero, implying that the time-averaged reward of the model-aware genie is obtained asymptotically by the learning policy.

We show that it is possible to map the problem of stochastic water-filling to an MAB formulation by treating each possible power allocation as an arm (we consider discrete power levels in this paper; if there are \( P \) possible power levels for each of \( N \) channels, there would be \( P^N \) total arms.) We present a novel combinatorial policy for this problem that we call CWF1, that yields regret growing polynomially in \( N \) and logarithmically over time. Despite the exponential growing set of arms, the CWF1 observes and maintains information for \( P \cdot N \) variables, one corresponding to each power-level and channel, and exploits linear dependencies between the arms based on these variables.

Typically, the way the randomness in the channel gain to noise ratios is dealt with is that the mean channel gain to noise ratios are estimated first based on averaging a finite set of training observations and then the estimated gains are used in a deterministic water-filling procedure. Essentially this approach tries to identify the power allocation that maximizes a pseudo-sum-rate, which is determined based on the power-rate equation applied to the mean channel gain-to-noise ratios.
(i.e., an optimization of the form \( \sum_i \log(1 + E[SNR_i]) \)). We also present a different stochastic water-filling algorithm that we call CWF2, which learns to do this in an online fashion. This algorithm observes and maintains information for \( N \) variables, one corresponding to each channel, and exploits non-linear dependencies between the arms based on these variables. To our knowledge, CWF2 is the first MAB algorithm to exploit non-linear dependencies between the arms. We show that the number of times CWF2 plays a non-optimal combination of powers is uniformly bounded by a function that is logarithmic in time. Under some restrictive conditions, CWF2 may also solve the first problem more efficiently.

II. RELATED WORK

The classic water-filling strategy is described in [1]. There are a few other stochastic variations of water-filling that have been covered in the literature that are different in spirit from our formulation. When a fading distribution over the gains is known \textit{a priori}, the power constraint is expressed over time, and the instantaneous gains are also known, then a deterministic joint frequency-time water-filling strategy can be used [2, 3]. In [4], a stochastic gradient approach based on Lagrange duality is proposed to solve this problem when the fading distribution is unknown but still instantaneous gains are available. By contrast, in our work we do not assume that the instantaneous gains are known, and focus on keeping the same power constraint at each time while considering unknown gain distributions.

Another work [5] considers water-filling over stochastic non-stationary fading channels, and proposes an adaptive learning algorithm that tracks the time-varying optimal power allocation by incorporating a forgetting factor. However, the focus of their algorithm is on minimizing the maximum mean squared error assuming imperfect channel estimates, and they prove only that their algorithm would converge in a stationary setting. Although their algorithm can be viewed as a learning mechanism, they do not treat stochastic water-filling from the perspective of multi-armed bandits, which is a novel contribution of our work. In our work, we focus on stationary setting with perfect channel estimates, but prove stronger results, showing that our learning algorithm not only converges to the optimal allocation, it does so with sub-linear regret.

There has been a long line of work on stochastic multi-armed bandits involving playing arms yielding stochastically time varying rewards with unknown distributions. Several authors [6–9] present learning policies that yield regret growing logarithmically over time (asymptotically, in the case of [6–8] and uniformly over time in the case of [9]). Our algorithms build on the UCB1 algorithm proposed in [9] but make significant modifications to handle the combinatorial nature of the arms in this problem. CWF1 has some commonalities with the LLR algorithm we recently developed for a completely different problem, that of stochastic combinatorial bipartite matching for channel allocation [10], but is modified to account for the non-linear power-rate function in this paper. Other recent work on stochastic MAB has considered decentralized settings [11–14], and non-i.i.d. reward processes [15–19]. With respect to this literature, the problem setting for stochastic water-filling is novel in that it involves a non-linear function of the action and unknown variables. In particular, as far as we are aware, our CWF2 policy is the first to exploit the non-linear dependencies between arms to provably improve the regret performance.

III. PROBLEM FORMULATION

We define the stochastic version of the classic communication theory problem of power allocation for maximizing rate over parallel channels (water-filling) as follows.

We consider a system with \( N \) channels, where the channel gain-to-noise ratios are unknown random processes \( X_i(n), 1 \leq i \leq N \). Time is slotted and indexed by \( n \). We assume that \( X_i(n) \) evolves as an i.i.d. random process over time (i.e., we consider block fading), with the only restriction that its distribution has a finite support. Without loss of generality, we normalize \( X_i(n) \in [0, 1] \). We do not require that \( X_i(n) \) be independent across \( i \). This random process is assumed to have a mean \( \theta_i = E[X_i] \) that is unknown to the users. We denote the set of all these means by \( \Theta = \{ \theta_i \} \).

At each decision period \( n \) (also referred to interchangeably as a time slot), an \( N \)-dimensional action vector \( a(n) \), representing a power allocation on these \( N \) channels, is selected under a policy \( \pi(n) \). We assume that the power levels are discrete, and we can put any constraint on the selections of power allocations such that they are from a finite set \( F \) (i.e., the maximum total power constraint, or an upper bound on the maximum allowed power per subcarrier). We assume \( a_i(n) \geq 0 \) for all \( 1 \leq i \leq N \). When a particular power allocation \( a(n) \) is selected, the channel gain-to-noise ratios corresponding to nonzero components of \( a(n) \) are revealed, i.e., the value of \( X_i(n) \) is observed for all \( i \) such that \( a_i(n) \neq 0 \). We denote by \( A_{a(n)} = \{ i : a_i(n) \neq 0, 1 \leq i \leq N \} \) the index set of all \( a_i(n) \neq 0 \) for an allocation \( a \).

We adopt a general formulation for water-filling, where the sum rate \( \bar{R}_a \) obtained at time \( n \) by allocating a set of powers \( a(n) \) is defined as:

\[
\bar{R}_a(n) = \sum_{i \in A_{a(n)}} f_i(a_i(n), X_i(n)).
\]

where for all \( i \), \( f_i(a_i(n), X_i(n)) \) is a nonlinear continuous increasing sub-additive function in \( X_i(n) \), and \( f_i(a_i(n), 0) = 0 \) for any \( a_i(n) \). We assume \( f_i \) is defined on \( \mathbb{R}^+ \times \mathbb{R}^+ \).

Our formulation is general enough to include as a special case of the rate function obtained from Shannon’s capacity theorem for AWGN, which is widely used in communication networks:

\[
\bar{R}_a(n) = \sum_{i=1}^{N} \log(1 + a_i(n)X_i(n))
\]

\(^2\)We refer to rate and reward interchangeably in this paper.
In the typical formulation there is a total power constraint and individual power constraints, the corresponding constraint is

$$\mathcal{F} = \{ \mathbf{a} : \sum_{i=1}^{N} a_i \leq P_{\text{total}} \land 0 \leq a_i \leq P_i, \forall i \}.$$ 

where $P_{\text{total}}$ is the total power constraint and $P_i$ is the maximum allowed power per channel.

Our goal is to maximize the expected sum-rate when the distributions of all $X_i$ are unknown, as shown in (2). We refer to this objective as $\mathbf{O}_1$.

$$\max_{\mathbf{a} \in \mathcal{F}} \mathbb{E}\left[ \sum_{i \in A_\mathbf{a}} f_i(a_i, X_i) \right]$$

Note that even when $X_i$ have known distributions, this is a hard combinatorial non-linear stochastic optimization problem. In our setting, with unknown distributions, we can formulate this as a multi-armed bandit problem, where each power allocation $\mathbf{a}(n) \in \mathcal{F}$ is an arm and the reward function is in a combinatorial non-linear form. The optimal arms are the ones with the largest expected reward, denoted as $O^* = \{ \mathbf{a}^* \}$. For the rest of the paper, we use $*$ as the index indicating that a parameter is for an optimal arm. If more than one optimal arm exists, * refers to any one of them.

We note that for the combinatorial multi-armed bandit problem with linear rewards where the reward function is defined by $R_{\mathbf{a}(n)}(n) = \sum_{i \in \mathcal{A}_{\mathbf{a}(n)}} a_i(n) X_i(n)$, $\mathbf{a}^*$ is a solution to a deterministic optimization problem because $\max_{\mathbf{a} \in \mathcal{F}} \mathbb{E}\left[ \sum_{i \in \mathcal{A}_\mathbf{a}} a_i \right] = \max_{\mathbf{a} \in \mathcal{F}} \sum_{i \in \mathcal{A}_\mathbf{a}} a_i \mathbb{E}[X_i]$. Different from the combinatorial multi-armed bandit problem with linear rewards, $\mathbf{a}^*$ here is a solution to a stochastic optimization problem, i.e.,

$$\mathbf{a}^* \in O^* = \{ \mathbf{a} : \hat{\mathbf{a}} = \arg \max_{\mathbf{a} \in \mathcal{F}} \mathbb{E}\left[ \sum_{i \in \mathcal{A}_\mathbf{a}} f_i(a_i, X_i) \right] \}. \quad (3)$$

We evaluate policies for $\mathbf{O}_1$ with respect to regret, which is defined as the difference between the expected reward that could be obtained by a genie that can pick an optimal arm at each time, and that obtained by the given policy. Note that minimizing the regret is equivalent to maximizing the expected rewards. Regret can be expressed as:

$$R^\pi(n) = nR^* - \mathbb{E}\left[ \sum_{t=1}^{n} R_{\pi(t)}(t) \right], \quad (4)$$

where $R^* = \max_{\mathbf{a} \in \mathcal{F}} \mathbb{E}\left[ \sum_{i \in \mathcal{A}_\mathbf{a}} f_i(a_i, X_i) \right]$, the expected reward of an optimal arm.

Intuitively, we would like the regret $R^\pi(n)$ to be as small as possible. If it is sub-linear with respect to time $n$, the time-averaged regret will tend to zero and the maximum possible time-averaged reward can be achieved. Note that the number of arms $|\mathcal{F}|$ can be exponential in the number of unknown random variables $N$.

We also note that for the stochastic version of the water-filling problems, a typical way in practice to deal with the unknown randomness is to estimate the mean channel gain to noise ratios first and then find the optimized allocation based on the mean values. This approach tries to identify the power allocation that maximizes the power-rate equation applied to the mean channel gain-to-noise ratios. We refer to maximizing this as the sum-pseudo-rate over averaged channels. We denote this objective by $\mathbf{O}_2$, as shown in (5).

$$\max_{\mathbf{a} \in \mathcal{F}} \sum_{i \in \mathcal{A}_\mathbf{a}} f_i(a_i, \mathbb{E}[X_i]) \quad (5)$$

We would also like to develop an online learning policy for $\mathbf{O}_2$. Note that the optimal arm $\mathbf{a}^*$ of $\mathbf{O}_2$ is a solution to a deterministic optimization problem. So, we evaluate the policies for $\mathbf{O}_2$ with respect to the expected total number of times that a non-optimal power allocation is selected. We denote by $T_{\mathbf{a}}(n)$ the number of times that a power allocation is picked up to time $n$. We denote $r_\mathbf{a} = \sum_{i \in \mathcal{A}_\mathbf{a}} f_i(a_i, \mathbb{E}[X_i])$. Let $T^\pi_{\mathbf{a}}(n)$ denote the total number of times that a policy $\pi$ select a power allocation $r_\mathbf{a} < r_\mathbf{a}^*$. Denote by $\mathbb{I}_\mathbf{a}^\pi$ the indicator function which is equal to 1 if $\mathbf{a}$ is selected under policy $\pi$ at time $t$, and 0 else. Then

$$\mathbb{E}[T^\pi_{\mathbf{a}}(n)] = n - \mathbb{E}\left[ \sum_{t=1}^{n} \mathbb{I}_\mathbf{a}^\pi(\mathbf{a}^*) = 1 \right] \quad (6)$$

$$= \sum_{r_\mathbf{a} < r_\mathbf{a}^*} \mathbb{E}[T_{\mathbf{a}}(n)].$$

IV. ONLINE LEARNING FOR MAXIMIZING THE SUM-RATE

We first present in this section an online learning policy for stochastic water-filling under object $\mathbf{O}_1$.

A. Policy Design

A straightforward, naive way to solve this problem is to use the UCB1 policy proposed [9]. For UCB1, each power allocation is treated as an arm, and the arm that maximizes the mean channel gain-to-noise ratios. We refer to maximizing this as the sum-pseudo-rate over averaged channels. We denote this objective by $\mathbf{O}_2$, as shown in (5).

$$\max_{\mathbf{a} \in \mathcal{F}} \sum_{i \in \mathcal{A}_\mathbf{a}} f_i(a_i, \mathbb{E}[X_i]) \quad (5)$$

We would also like to develop an online learning policy for $\mathbf{O}_2$. Note that the optimal arm $\mathbf{a}^*$ of $\mathbf{O}_2$ is a solution to a deterministic optimization problem. So, we evaluate the policies for $\mathbf{O}_2$ with respect to the expected total number of times that a non-optimal power allocation is selected. We denote by $T_{\mathbf{a}}(n)$ the number of times that a power allocation is picked up to time $n$. We denote $r_\mathbf{a} = \sum_{i \in \mathcal{A}_\mathbf{a}} f_i(a_i, \mathbb{E}[X_i])$. Let $T^\pi_{\mathbf{a}}(n)$ denote the total number of times that a policy $\pi$ select a power allocation $r_\mathbf{a} < r_\mathbf{a}^*$. Denote by $\mathbb{I}_\mathbf{a}^\pi$ the indicator function which is equal to 1 if $\mathbf{a}$ is selected under policy $\pi$ at time $t$, and 0 else. Then

$$\mathbb{E}[T^\pi_{\mathbf{a}}(n)] = n - \mathbb{E}\left[ \sum_{t=1}^{n} \mathbb{I}_\mathbf{a}^\pi(\mathbf{a}^*) = 1 \right] \quad (6)$$

$$= \sum_{r_\mathbf{a} < r_\mathbf{a}^*} \mathbb{E}[T_{\mathbf{a}}(n)].$$

IV. ONLINE LEARNING FOR MAXIMIZING THE SUM-RATE

We first present in this section an online learning policy for stochastic water-filling under object $\mathbf{O}_1$.

A. Policy Design

A straightforward, naive way to solve this problem is to use the UCB1 policy proposed [9]. For UCB1, each power allocation is treated as an arm, and the arm that maximizes the mean channel gain-to-noise ratios. We refer to maximizing this as the sum-pseudo-rate over averaged channels. We denote this objective by $\mathbf{O}_2$, as shown in (5).
To deal with this challenge, we propose to store the information for each $a_i$, $X_i$ combination, i.e., $\forall 1 \leq i \leq N$, $\forall a_i$, we define a new set of random variables $Y_{i,a_i} = f_i(a_i, X_i)$. So now the number of random variables $Y_{i,a_i}$ is $\sum_{i=1}^{N} |B_i|$, where $B_i = \{ a_i : a_i \neq 0 \}$. Note that $\sum_{i=1}^{N} |B_i| \leq PN$.

Then the reward function can be expressed as

$$R_{a} = \sum_{i \in B_a} Y_{i,a_i}, \quad (7)$$

Note that (7) is in a combinatorial linear form.

For this redefined MAB problem with $\sum_{i=1}^{N} |B_i|$ unknown random variables and linear reward function (7), we propose the following online learning policy CWF1 for stochastic water-filling as shown in Algorithm 1.

**Algorithm 1** Online Learning for Stochastic Water-Filling: CWF1

1: // INITIALIZATION
2: if $\max_a |A_a|$ is known, let $L = \max_a |A_a|$; else, $L = N$;
3: for $n = 1$ to $N$ do
4: play any arm $a$ such that $n \in A_a$;
5: $\forall i \in A_a$, $\forall a_i \in B_i$, $Y_{i,a_i} := \frac{f_i(a_i, X_i)}{m_i}$;
6: $\forall i \in A_a$, $m_i := m_i + 1$;
7: end for
8: // MAIN LOOP
9: while 1 do
10: $n := n + 1$;
11: play an arm $a$ which solves the maximization problem

$$\max_{i \in A_a} \left( Y_{i,a_i} + \sqrt{\frac{(L+1) \ln n}{m_i}} \right);$$

(8)

12: $\forall i \in A_a$, $\forall a_i \in B_i$, $Y_{i,a_i} := \frac{f_i(a_i, X_i)}{m_i + 1}$;
13: $\forall i \in A_a$, $m_i := m_i + 1$;
14: end while

To have a tighter bound of regret, different from the LLR algorithm, instead of storing the number of times that each unknown random variables $Y_{i,a_i}$ has been observed, we use a 1 by $N$ vector, denoted as $(m_i)_{1 \times N}$, to store the number of times that $X_i$ has been observed up to the current time slot.

We use a 1 by $N$ vector, denoted as $(\overline{Y}_{i,a_i})_{1 \times N}$ is updated in as shown in line 12. Each time an arm $a(n)$ is played, $\forall i \in A(a(n))$, the observed value of $X_i$ is obtained. For every observed value of $X_i$, $|B_i|$ values are updated: $\forall a_i \in B_i$, the average value $Y_{i,a_i}$ of all the values of $Y_{i,a_i}$ up to the current time slot is updated. CWF1 policy requires storage linear in $\sum_{i=1}^{N} |B_i|$.

**B. Analysis of regret**

**Theorem 1:** The expected regret under the CWF1 policy is at most

$$\left( 4a_{\max}^2 (L+1) N \ln n \left( \frac{\Delta_{\min}}{\Delta_{\max}} \right)^2 + N + \frac{\pi^2}{3} LN \right) \Delta_{\max}. \quad (9)$$

where $a_{\max} = \max_{a \in F} \max_i a_i$, $\Delta_{\min} = \min_{a \neq a^*} R^* - E[R_a]$, $\Delta_{\max} = \max_{a \neq a^*} R^* - E[R_a]$. Note that $L \leq N$.

The proof of Theorem 1 is omitted.

**Remark 1:** For CWF1 policy, although there are $\sum_{i=1}^{N} |B_i|$ random variables, the upper bound of regret remains $O(N^4 \log n)$, which is the same as LLR, as shown by Theorem 2 in [6]. Directly applying LLR algorithm to solve the redefined MAB problem in (7) will result in a regret that grows as $O(P^4 N^4 \log n)$.

**Remark 2:** Algorithm 1 will even work for rate functions that do not satisfy subadditivity.

**Remark 3:** We can develop similar policies and results when $X_i$ are Markovian rewards as in [19] and [20].

V. ONLINE LEARNING FOR SUM-PSEUDO-RATE

We now show our novel online learning algorithm CWF2 for stochastic water-filling with object $O_1$. Unlike CWF1, CWF2 exploits non-linear dependencies between the choices of power allocations and requires lower storage. Under condition where the power allocation that maximize $O_2$ also maximize $O_1$, we will see through simulations that CWF2 has better regret performance.

**A. Policy Design**

Our proposed policy CWF2 for stochastic water filling with object $O_2$ is shown in Algorithm 2.

**Algorithm 2** Online Learning for Stochastic Water-Filling: CWF2

1: // INITIALIZATION
2: if $\max_a |A_a|$ is known, let $L = \max_a |A_a|$; else, $L = N$;
3: for $n = 1$ to $N$ do
4: play any arm $a$ such that $n \in A_a$;
5: $\forall i \in A_a$, $\overline{X}_i := \sum_{m_i + 1}^{m_i + 1} X_i$, $m_i := m_i + 1$;
6: end for
7: // MAIN LOOP
8: while 1 do
9: $n := n + 1$;
10: play an arm $a$ which solves the maximization problem

$$\max_{a \in F} \left( f_i(a_i, \overline{X}_i) + f_i(a_i, \sqrt{\frac{(L + 1) \ln n}{m_i}}) \right);$$

(10)

11: $\forall i \in A(a(n))$, $\overline{X}_i := \sum_{m_i + 1}^{m_i + 1} X_i$, $m_i := m_i + 1$;
12: end while

We use two 1 by $N$ vectors to store the information after we play an arm at each time slot. One is $(\overline{X}_i)_{1 \times N}$ in which
\(\bar{X}_i\) is the average (sample mean) of all the observed values of \(X_i\) up to the current time slot (obtained through potentially different sets of arms over time). The other one is \((m_i)_{1\times N}\) in which \(m_i\) is the number of times that \(X_i\) has been observed up to the current time slot. So CWF2 policy requires storage linear in \(N\).

### B. Analysis of regret

For the analysis of the upper bound for \(\mathbb{E}[T^\pi_{\text{non}}(n)]\) of CWF2 policy, we use the inequalities as stated in the Chernoff-Hoeffding bound as follows:

**Lemma 1 (Chernoff-Hoeffding bound [21]):**

\(X_1, \ldots, X_n\) are random variables with range \([0,1]\), and \(E[X_1|X_1, \ldots, X_{i-1}] = \mu, \forall 1 \leq t \leq n\). Denote \(S_n = \sum X_i\). Then for all \(a \geq 0\)

\[
\mathbb{P}\{S_n \geq n\mu + a\} \leq e^{-2a^2/n}
\]

\[
\mathbb{P}\{S_n \leq n\mu - a\} \leq e^{-2a^2/n}
\]

### Theorem 2:

Under the CWF2 policy, the expected total number of times that non-optimal power allocations are selected is at most

\[
\mathbb{E}[T^\pi_{\text{non}}(n)] \leq \frac{N(L+1)\ln n}{B^2_{\text{min}}} + N + \frac{\pi^2}{3}LN,
\]

where \(B_{\text{min}}\) is a constant defined by \(\delta_{\text{min}}\) and \(L\); \(\delta_{\text{min}} = \min_{a_i : r^* - r_a} = a^*\).

**Proof:**

We will show the upper bound of the regret in three steps: (1) introduce a counter \(\bar{T}(n)\) (defined as below) and show its relationship with the upper bound of the regret; (2) show the upper bound of \(\mathbb{E}[T(n)]\); (3) show the upper bound of \(\mathbb{E}[T^\pi_{\text{non}}(n)]\).

1. **The counter \(\bar{T}(n)\)**

   After the initialization period, \((\bar{T}(n))_{1\times N}\) is introduced as a counter and is updated in the following way: at any time \(n\) when a non-optimal power allocation is selected, find \(i\) such that \(i = \arg \min_{j \in A_{\text{non}}(n)} m_j\). If there is only one such power allocation, \(\bar{T}i(n)\) is increased by 1. If there are multiple such power allocations, we arbitrarily pick one, say \(i^*\), and increment \(\bar{T}i\) by 1. Based on the above definition of \(\bar{T}(n)\), each time when a non-optimal power allocation is selected, exactly one element in \((\bar{T}(n))_{1\times N}\) is incremented by 1. So the summation of all counters in \((\bar{T}(n))_{1\times N}\) equals to the total number that we have selected the non-optimal power allocations, as below:

\[
\sum_{i : R_i < R^*} \mathbb{E}[T_A(n)] = \sum_{i=1}^{N} \mathbb{E}[\bar{T}(n)].
\]

We also have the following inequality for \(\bar{T}(n)\):

\[
\bar{T}(n) \leq m_i(n), \forall 1 \leq i \leq N.
\]

2. **Show the upper bound of \(\mathbb{E}[\bar{T}(n)]\)**

Let \(C_{t,m}\) denote \(\sqrt{|L(t+1)\ln t| / m_i}\). Denote by \(\bar{T}(n)\) the indicator function which is equal to 1 if \(\bar{T}(n)\) is added by one at time \(n\). Let \(l\) be an arbitrary positive integer. Then, we could get the upper bound of \(\mathbb{E}[\bar{T}(n)]\) as shown in (15), where \(a(t)\) is defined as a non-optimal power allocation picked at time \(t\) when \(a(t) = 1\). Note that \(m = \min_{i \in A_{\text{non}}(t)}\).

We denote this power allocation by \(a(t)\) since at each time that \(a(t) = 1\), we could get different selections of power allocations.

3. **Note that \(\leq \bar{T}(t-1)\) implies \(\leq \bar{T}(t-1) \leq \bar{T}(t-1)\), \(\forall j \in A_{\text{non}}(t)\). So we could get an upper bound of \(\mathbb{E}[\bar{T}(n)]\) as shown in (16), (17), (18), (19) where \(h_j\) (1 \(j \leq |A_{\text{non}}|\) represents the \(j\)-th element in \(A_{\text{non}}\); \(p_j\) (1 \(j \leq |A_{\text{non}}|\) represents the \(j\)-th element in \(A_{\text{non}}\); \(r^* = \sum_{j=1}^n f_j(a_{h_j}^*, \theta_h_j) = \sum_{i \in A_{\text{non}}} f_i(a_i, \theta_i)\); \(a_{\text{non}}\) = \(\{A_{\text{non}}\}\)

Now we show the upper bound of the probabilities for inequalities (17), (18), and (19) separately. We first find the upper bound of the probability for (17), as shown in (21).

Equation (20) holds because of Lemma 1 So \(j, f_j(a, X_i)\) is a non-decreasing function in \(X_i\) for any \(X_i \geq 0\).

In \(21\), \(\forall 1 \leq j \leq |A_{\text{non}}|\), applying the Chernoff-Hoeffding bound stated in Lemma 1 we could find the upper bound of each item as,

\[
\mathbb{P}\{X_{h_j,m_{h_j}} + C_{t-1,m_{h_j}} \leq \theta_{h_j}\} 
\leq e^{-2m_{h_j}(\theta_{h_j})^2 \sum_{h=1}^{\infty} (\sum_{t=1}^{\infty} (t-1)(t-2L+1))).
\]

Thus,

\[
\mathbb{P}\{f_j(a_{h_j}^*, X_{h_j,m_{h_j}}) \leq r^* - \sum_{j=1}^n f_j(a_{h_j}^*, C_{t-1,m_{h_j}})\}
\leq \mathbb{P}\{e^{-2L+1}) \leq L(t-1)^{-2(L+1))}\).
\]

Now we can get the upper bound of the probability for inequality (18), as shown in (24).

Equation (24) holds, following a similar reasoning as used to derive (23).

For all \(i\) and given any \(a_i\), since \(f_i(a_i, x)\) is an increasing, continuous function in \(x\), we could find a constant \(B_{i}(a_i)\) such that

\[
f_i(a_i, B_{i}(a_i)) = \delta_{\text{min}} / 2L.
\]

Denote \(B_{\text{min}} = \min_{1 \leq i \leq A_{\text{sa}}} B_i(a_i)\). Then \(\forall i \in A_{\text{sa}}\), we have

\[
f_i(a_i, B_{\text{min}}) \leq \delta_{\text{min}} / 2L.
\]
\[ E[\tilde{T}_i(t)] = \sum_{t=N+1}^{n} P\{ \tilde{T}_i(t) = 1 \} \leq \sum_{t=N+1}^{n} P\{ \tilde{T}_i(t) = 1, \tilde{T}_i(t-1) \leq l \} \]
\[ \leq l + \sum_{t=N+1}^{n} P\{ \sum_{j \in A_{a^*}} \left( f_j(a^*_j, x_{j,m_j(t-1)}) + f_j(a^*_j, C_{t-1,m_j(t-1)}) \right) \leq \sum_{j \in A_{a^*}} (f_j(a_j(t), x_{j,m_j(t-1)}) + f_j(a_j(t), C_{t-1,m_j(t-1)})), \tilde{T}_i(t-1) \geq l \}. \] (15)

\[ E[\tilde{T}_i(n)] \leq l + \sum_{t=N+1}^{n} P\{ \min_{0 < m_{h_1}, \ldots, m_{h_{|A_{a^*}|}} < t} \sum_{j=1}^{|A_{a^*}|} \left( f_{h_j}(a^*_j, x_{h_j,m_{h_j}}) + f_{h_j}(a^*_j, C_{t-1,m_{h_j}}) \right) \leq \max_{1 \leq m_{p_1}, \ldots, m_{p_{|A_{a^*}(t)|}} \leq t} \sum_{j=1}^{|A_{a^*}(t)|} \left( f_{p_j}(a_{p_j}(t), x_{p_j,m_{p_j}}) + f_{p_j}(a_{p_j}(t), C_{t-1,m_{p_j}}) \right) \} \]
\[ \leq l + \sum_{t=2}^{n} \sum_{m_{h_1}=1}^{t-1} \sum_{m_{h_{|A_{a^*}|}}=1}^{t-1} \sum_{m_{p_1}=t}^{t-1} \sum_{m_{p_{|A_{a^*}(t)|}}=t}^{t-1} P\{ \sum_{j=1}^{|A_{a^*}|} \left( f_{h_j}(a^*_j, x_{h_j,m_{h_j}}) + f_{h_j}(a^*_j, C_{t-1,m_{h_j}}) \right) \leq \sum_{j=1}^{|A_{a^*}(t)|} \left( f_{p_j}(a_{p_j}(t), x_{p_j,m_{p_j}}) + f_{p_j}(a_{p_j}(t), C_{t-1,m_{p_j}}) \right) \} \] (16)

\[ \leq \sum_{t=2}^{n} \sum_{m_{h_1}=1}^{t-1} \sum_{m_{h_{|A_{a^*}|}}=1}^{t-1} \sum_{m_{p_1}=t}^{t-1} \sum_{m_{p_{|A_{a^*}(t)|}}=t}^{t-1} P\{ \text{At least one of the following must hold:} \}
\[ \sum_{j=1}^{|A_{a^*}|} f_{h_j}(a^*_j, x_{h_j,m_{h_j}}) \leq r^* - \sum_{j=1}^{|A_{a^*}|} f_{h_j}(a^*_j, C_{t-1,m_{h_j}}), \]
\[ \sum_{j=1}^{|A_{a^*}(t)|} f_{p_j}(a_{p_j}(t), x_{p_j,m_{p_j}}) \geq r_{a(t)} + \sum_{j=1}^{|A_{a^*}(t)|} f_{p_j}(a_{p_j}(t), C_{t-1,m_{p_j}}), \]
\[ r^* < r_{a(t)} + 2 \sum_{j=1}^{|A_{a^*}(t)|} f_{p_j}(a_{p_j}(t), C_{t-1,m_{p_j}}) \} \] (19)

\[ P\{ \sum_{j=1}^{|A_{a^*}|} f_{h_j}(a^*_j, x_{h_j,m_{h_j}}) \leq r^* - \sum_{j=1}^{|A_{a^*}|} f_{h_j}(a^*_j, C_{t-1,m_{h_j}}) \} \]
\[ = P\{ \sum_{j=1}^{|A_{a^*}|} \left( f_{h_j}(a^*_j, x_{h_j,m_{h_j}}) + f_{h_j}(a^*_j, C_{t-1,m_{h_j}}) \right) \leq \sum_{j=1}^{|A_{a^*}|} f_{h_j}(a^*_j, \theta_{h_j}) \} \]
\[ \leq \sum_{j=1}^{|A_{a^*}|} P\{ f_{h_j}(a^*_j, x_{h_j,m_{h_j}}) + f_{h_j}(a^*_j, C_{t-1,m_{h_j}}) \leq f_{h_j}(a^*_j, \theta_{h_j}) \} \]
\[ \leq \sum_{j=1}^{|A_{a^*}|} P\{ f_{h_j}(a^*_j, x_{h_j,m_{h_j}} + C_{t-1,m_{h_j}}) \leq f_{h_j}(a^*_j, \theta_{h_j}) \} \]
\[ = \sum_{j=1}^{|A_{a^*}|} P\{ x_{h_j,m_{h_j}} + C_{t-1,m_{h_j}} \leq \theta_{h_j} \} \] (20)
Note that for \( l \geq \left\lceil \frac{(L+1) \ln n}{B_{\min}(\mathbf{a}(t))} \right\rceil \),
\[
\begin{align*}
r^* - r_{\mathbf{a}(t)} & - 2 \sum_{j=1}^{|A_{\mathbf{a}(t)}|} f_{p_j}(a_{p_j}(t), C_{t-1, m_{p_j}}) \\
& = r^* - r_{\mathbf{a}(t)} - 2 \sum_{j=1}^{|A_{\mathbf{a}(t)}|} f_{p_j}(a_{p_j}(t), \sqrt{\frac{(L+1) \ln(t-1)}{m_{p_j}}}) \\
& \geq r^* - r_{\mathbf{a}(t)} - 2 \sum_{j=1}^{|A_{\mathbf{a}(t)}|} f_{p_j}(a_{p_j}(t), \sqrt{\frac{(L+1) \ln n}{l}}) \\
& \geq r^* - r_{\mathbf{a}(t)} - 2 \sum_{j=1}^{|A_{\mathbf{a}(t)}|} f_{p_j}(a_{p_j}(t), B_{\min}(\mathbf{a}(t))) \\
& \geq \delta_{\mathbf{a}(t)} - 2 \sum_{j=1}^{|A_{\mathbf{a}(t)}|} \frac{B_{\min}(\mathbf{a}(t))}{2L} \geq \delta_{\mathbf{a}(t)} - \delta_{\min} \geq 0.
\end{align*}
\]

So (19) is false when \( l \geq \left\lceil \frac{(L+1) \ln n}{B_{\min}(\mathbf{a}(t))} \right\rceil \). We denote \( B_{\min} = \min_{\mathbf{a} \in \mathcal{F}} B_{\min}(\mathbf{a}(t)) \), and let \( l \geq \left\lceil \frac{(L+1) \ln n}{B_{\min}} \right\rceil \), then (19) is false for all \( \mathbf{a}(t) \).

Therefore, we get the upper bound of \( \mathbb{E}[T_{\mathbf{a}(t)}(n)] \) as in (28).

(3) Upper bound of \( \mathbb{E}[T_{\mathbf{a}(t)}^n(n)] \)
\[
\begin{align*}
\mathbb{E}[T_{\mathbf{a}(t)}^n(n)] &= \sum_{\mathbf{a} : R_{\mathbf{a}} < R^*} \mathbb{E}[T_{\mathbf{a}(t)}(n)] \\
& = \sum_{i=1}^N \mathbb{E}[T_i(n)] \\
& \leq \frac{N(L+1) \ln n}{B_{\min}^2} + N + \frac{\pi^2}{3} L N.
\end{align*}
\]

Remark 4: CWF2 can be used to solve the stochastic water-filling with objective \( O_1 \) as well if \( \exists \mathbf{a}^* \in \mathcal{O}^* \), such that \( \forall \mathbf{a} \notin \mathcal{O}^* \),
\[
\sum_{i \in \mathcal{A}_{\mathbf{a}^*}} f_i(a_i, \theta_i) > \sum_{j \in \mathcal{A}_{\mathbf{a}}} f_j(a_j, \theta_j).
\]

Then the regret of CWF2 is at most
\[
\mathcal{R}_{\text{CWF2}}(n) \leq \left[ \frac{N(L+1) \ln n}{B_{\min}^2} + N + \frac{\pi^2}{3} L N \right] \Delta_{\text{max}},
\]

VI. APPLICATIONS AND NUMERICAL SIMULATION RESULTS

A. Numerical Results for CWF1

We now show the numerical results for CWF2 policy. We consider a OFDM system with 4 subcarriers. We assume the bandwidth of the system is 4 MHz, and the noise density is \(-80 \text{ dBW/Hz}\). We assume Rayleigh fading with parameter \( \sigma = (2, 0.8, 2.80, 32) \) for 4 subcarriers. We consider the following objective for our simulation:
\[
\begin{align*}
\max & \quad \mathbb{E} \left[ \sum_{i=1}^N \log(1 + a_i(n) X_i(n)) \right] \\
\text{s.t.} & \quad \sum_{i=1}^N a_i(n) \leq P_{\text{total}}, \forall n \\
& \quad a_1(n) \in \{0, 10, 20, 30\}, \forall n \\
& \quad a_2(n) \in \{0, 10, 20, 30\}, \forall n \\
& \quad a_3(n) \in \{0, 10, 20, 30, 40\}, \forall n \\
& \quad a_4(n) \in \{0, 10, 20\}, \forall n
\end{align*}
\]

where \( P_{\text{total}} = 60 \text{mW} (17.8 \text{ dBm}) \). The unit for above power constraints from (33) to (37) is \text{mW}. Note that (33) to (37) define the constraint set \( \mathcal{F} \).

For this scenario, there are 140 different choices of power allocations, and the optimal power allocation can be calculated as \((20, 20, 20, 0)\).
\[ \mathbb{E}[\tilde{T}_i(n)] \leq \left( \frac{(L+1) \ln n}{B_{\min}^2} \right) + \sum_{t=2}^{\infty} \left( \sum_{m_{h_1}=1}^{t-1} \sum_{m_{h_{A_1^t}}=1}^{t-1} \sum_{m_{p_{1}}}^{t-1} \sum_{m_{p_{A(n(t)}}=1}^{t-1} 2L(t-1)^2(L+1) \right) \]

\[ \leq \frac{(L+1) \ln n}{B_{\min}^2} + 1 + L \sum_{t=1}^{\infty} 2t^{-2} \leq \frac{(L+1) \ln n}{B_{\min}^2} + 1 + \frac{\pi^2}{3} L. \] (28)

We compare the performance of our proposed CWF1 policy with UCB1 policy and LLR policy, as shown in Figure 1. As we can see from 1, naively applying UCB1 and LLR policy results in a worse performance than CWF1, since the UCB1 policy can not exploit the underlying dependencies across arms, and LLR policy does not utilize the observations as efficiently as CWF1 does.

**B. Numerical Results for CWF2**

We show the simulation results of CWF2 using the same system as in VI-A. We consider the following objective for our simulation:

\[
\max_a \left[ \sum_{i=1}^{N} \log(1 + a_i(n)E[X_i(n)]) \right]
\]

\[ s.t. \quad a \in \mathcal{F} \] (38)

where \( \mathcal{F} \) is same as in VI-A.

For this scenario, we assume Rayleigh fading with parameter \( \sigma = (1.23, 1.0, 0.55, 0.95) \) for 4 subcarriers. And the optimal power allocation can be calculated as \((20, 20, 0, 20)\).

Figure 2 shows the simulation results of the total number of times that non-optimal power allocations are chosen by running CWF2 up to 30 million time slots. We also show the theoretical upper bound in figure 2. In this case, we see that the theoretical upper bound is quite loose and the algorithm does much better in practice.

For this setting, we note that (30) is satisfied, since \((20, 20, 0, 20)\) also maximizes (52). So as stated in Remark 4, CWF2 can also be used to solve stochastic water filling with \(O_1\), with regret that grows logarithmically in time and polynomially in the number of channels.

We show a comparison of the UCB1 policy, LLR policy, CWF1 policy and CWF2 policy under this setting in Figure 3. We can see that CWF2 performs the best by far since it incorporate a way to exploit non-linear dependencies across arms, and learn more efficiently.

**VII. CONCLUSION**

We have considered the problem of optimal power allocation over parallel channels with stochastically time-varying gain-to-noise ratios for maximizing information rate (stochastic water-filling) in this work. We approached this problem from the novel perspective of online learning. The crux of our
approach is to map each possible power allocation into arms in a stochastic multi-armed bandit problem. The significant new challenge imposed here is that the reward obtained is a non-linear function of the arm choice and the underlying unknown random variables. To our knowledge there is no prior work on stochastic MAB that explicitly treats such a problem.

We first considered the problem of maximizing the expected sum rate. For this problem we developed the CWF1 algorithm. Despite the fact that the number of arms grows exponentially in the number of possible channels, we show that the CWF1 algorithm requires only polynomial storage and also yields a regret that is polynomial in the number of power levels per channel and the number of channels, and logarithmic in time.

We then considered the problem of maximizing the sum-pseudo-rate, where the pseudo rate for a stochastic channel is defined by applying the power-rate equation to its mean SNR $(\log(1+E[\text{SNR}]))$. The justification for considering this problem is its connection to practice (where allocations over stochastic channels are made based on estimated mean channel conditions). Albeit sub-optimal with respect to maximizing the expected sum-rate, the use of the sum-pseudo-rate as the objective function is a more tractable approach. For this problem, we developed a new MAB algorithm that we call CWF2. This is the first algorithm in the literature on stochastic MAB that exploits non-linear dependencies between the arm rewards. We have proved that the number of times this policy uses a non-optimal power allocation is also bounded by a function that is polynomial in the number of channels and power-levels, and logarithmic in time.

Our simulations results show that the algorithms we develop are indeed better than naive application of classic MAB solutions. We also see that under settings where the power allocation for maximizing the sum-pseudo-rate matches the optimal power allocation that maximizes the expected sum-rate, CWF2 has significantly better regret-performance than CWF1.

Because our formulations allow for very general classes of sub-additive reward functions, we believe that our technique may be much more broadly applicable to settings other than power allocation for stochastic channels. We would therefore like to identify and explore such applications in future work.

REFERENCES

[1] T. Cover and J. Thomas, Elements of Information Theory. New York: Wiley, 1991.

[2] A. J. Goldsmith and P. P. Varaiya, “Capacity of Fading MIMO Channels with Channel Estimation Error,” IEEE International Conference on Communications (ICC), June, 2004.

[3] A. J. Goldsmith, Wireless Communications. New York: Cambridge University Press, 2005.

[4] X. Wang, D. Wang, H. Zhuang, and S. D. Morgera, “Energy-Efficient Resource Allocation in Wireless Sensor Networks over Fading TDMA,” vol. 28, no. 7, pp. 1063-1072, 2010.

[5] I. Zaidi and V. Krishnamurthy, “Stochastic Adaptive Multilevel Waterfilling in MIMO-OFDM WLANs,” the 39th Asilomar Conference on Signals, Systems and Computers, October, 2005.

[6] Y. Gai, B. Krishnamachari and R. Jain, “Combinatorial Network Optimization with Unknown Variables: Multi-armed Bandits with Linear Rewards,” arXiv:1011.4748.

[7] V. Anantharam, P. Varaiya, and J. Walrand, “Asymptotically Efficient Allocation Rules for the Multiarmed Bandit Problem with Multiple Plays-Part I: IID Rewards,” IEEE Transactions on Automatic Control, vol. 32, no. 11, pp. 968-976, 1987.

[8] R. Agrawal, “Sample Mean Based Index Policies with O(log n) Regret for the Multi-Armed Bandit Problem,” Advances in Applied Probability, vol. 27, no. 4, pp. 1054-1078, 1995.

[9] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time Analysis of the Multiarmed Bandit Problem,” Machine Learning, vol. 47, no. 2, pp. 235-256, 2002.

[10] Y. Gai, B. Krishnamachari, and R. Jain, “Learning Multiuser Channel Allocations in Cognitive Radio Networks: A Combinatorial Multi-armed Bandit Formulation,” IEEE International Dynamic Spectrum Access Networks (DySPAN) Symposium, Singapore, April, 2010.

[11] A. Anandkumar, N. Michael, and A.K. Tang, “Opportunistic Spectrum Access with Multiple Users: Learning under Competition,” IEEE International Conference on Computer Communications (INFOCOM), March, 2010.

[12] A. Anandkumar, N. Michael, A. Tang, and A. Swami, “Distributed Learning and Allocation of Cognitive Users with Logarithmic Regret,” IEEE JSAC on Advances in Cognitive Radio Networking and Communications, vol. 29, no. 4, pp. 781-745, 2011.

[13] K. Liu and Q. Zhao, “Distributed Learning in Cognitive Radio Networks: Multi-Armed Bandit with Distributed Multiple Players”, Proc. of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), March, 2010.

[14] Y. Gai and B. Krishnamachari, “Decentralized Online Learning Algorithms for Opportunistic Spectrum Access,” to appear in the IEEE Global Communications Conference (GLOBECOM), December, 2011. arXiv:1104.0111.

[15] C. Tekin and M. Liu, “Online Algorithms for the Multi-Armed Bandit Problem with Markovian Rewards,” the 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton), September, 2010.

[16] C. Tekin and M. Liu, “Online Learning in Opportunistic Spectrum Access: a Restless Bandit Approach,” IEEE International Conference on Computer Communications (INFOCOM), April, 2011.

[17] H. Liu, K. Liu, and Q. Zhao, “Learning and Sharing in a Changing World: Non-Bayesian Restless Bandit with Multiple Players,” Information Theory and Applications Workshop (ITA), January, 2011.

[18] W. Dai, Y. Gai, B. Krishnamachari and Q. Zhao, “The Non-Bayesian Restless Multi-Armed Bandit: a Case of Near-Logarithmic Regret,” IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), May, 2011.

[19] Y. Gai, B. Krishnamachari and M. Liu, “On the Combinatorial Multi-Armed Bandit Problem with Markovian Rewards,” to appear in the IEEE Global Communications Conference (GLOBECOM), December, 2011. arXiv:1012.3005.

[20] Y. Gai, B. Krishnamachari and M. Liu, “Online learning for combinatorial network optimization with restless markovian rewards,” arXiv:1109.1606.

[21] D. Pollard, Convergence of Stochastic Processes. Berlin: Springer, 1984.