Conodont fossils from the Kiryu and Ashikaga District (Quadrangle series 1:50,000), central Japan with emphasis on the reexamination of “Carboniferous” conodonts from the Ashio Belt

MUTO Shun1,* and ITO Tsuyoshi1

MUTO Shun and ITO Tsuyoshi (2021) Conodont fossils from the Kiryu and Ashikaga District (Quadrangle series 1:50,000), central Japan with emphasis on the reexamination of “Carboniferous” conodonts from the Ashio Belt. Bulletin of the Geological Survey of Japan, vol. 72 (4), p. 325–344, 3 figs, 1 table.

Abstract: Many conodonts have been reported from the Ashio Mountains, but there have been little attempts to update the information of the specimens based on the present knowledge of conodont taxonomy and biostratigraphy. This study revisits conodont specimens reported from the Kiryu and Ashikaga District in addition to presenting a few newly obtained Early Triassic conodonts. Previously published illustrations allowed reidentification of some conodonts. The geological age of some specimens was revised based on the reidentification. Notably, many of the conodonts previously considered as “Carboniferous” species were revealed to be Permian or Triassic species, and no Carboniferous species were confirmed.

Keywords: conodont, Ashio Mountains, Jurassic accretionary complex, Ashio Belt, reexamination

1. Introduction

The basement rocks of the Ashio Mountains are composed of Palaeozoic and Mesozoic rocks that form the Jurassic accretionary complex of the Ashio Belt (e.g., Kamata, 1996). During the earliest stages of research, the rocks of the Ashio Belt were dated based mainly on fusulinids that occur primarily from limestones (e.g., Fujimoto, 1961). As stratigraphic studies of the Palaeozoic and Mesozoic in Japan commenced, the first conodonts in Japan were found from siliceous, argillaceous and tuffaceous sedimentary rocks the Ashio Belt (Hayashi, 1963). Subsequently, conodonts became acknowledged as useful index fossils due to their occurrence in siliceous and argillaceous rocks in addition to limestones (Igo, 1972). Palaeozoic and Mesozoic conodonts of the Ashio Belt have since been reported by a large number of works, many of which were published before plate tectonics and the concept of accretionary complexes were widely accepted in Japan (Hayashi, 1963, 1964, 1968a, b, 1971; Koike et al., 1971a, b, 1991; Conodont Research Group, 1972, 1974; Hayashi and Hasegawa, 1981; Aono, 1985; Hayashi et al., 1990; Kamata and Kajiwara, 1996; Motoki and Sashida, 2004; Muto et al., 2018, 2021; Ito, 2019, 2020a; Ito et al., 2021a, b).

The conodonts obtained from the Ashio Belt have been valued as a means of age determination, which is vital information for interpretation of sedimentary and tectonic history. For instance, early studies used the geochronological information of conodonts in an attempt to interpret the history of sedimentation in the Ashio Mountains in the context of geosynclines (Conodont Research Group, 1972). On the other hand, conodonts provided evidence of the thrusting of Palaeozoic strata onto Mesozoic strata, ultimately leading to the recognition of accretionary complexes (Koike et al., 1971a, b, 1974; Yanagimoto, 1973; Kamata, 1996, 1997). Following the wide acceptance of subduction-accretion as the origin of the Ashio Belt, conodonts were mainly used as a means to reconstruct the oceanic plate stratigraphy (see Isozaki et al., 1990 for terminology). Due to its widespread occurrence and high evolutionary rates, conodonts allowed researchers to determine the age of Palaeozoic to Triassic rocks in the Ashio Belt that have undergone extensive tectonic deformation and thus are otherwise difficult to understand in a stratigraphic context (Koike et al., 1971a, b, 1991; Igo, 1981; Aono, 1985; Kamata and Kajiwara, 1996; Motoki and Sashida, 2004; Muto et al., 2018, 2021). One of the notable results by previous studies is the occurrence of early Carboniferous or even Devonian conodonts from chert and limestone (Hayashi et al., 1990; Editorial team of Omama Town’s history, 1996), which is far older than the oldest radiolarians reported from the Ashio Belt (early Permian; Kamata, 1996; Ito, 2019, 2020a).

Most studies on conodonts in the Ashio Belt were

1 AIST, Geological Survey of Japan, Research Institute of Geology and Geoinformation
* Corresponding author: MUTO, S., Central 7, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan. Email:s-muto@aist.go.jp
conducted until the beginning of the 1990s. While such studies are still informative, interpreting their results based on the current knowledge of conodonts is somewhat problematic. This is because major refinements in the taxonomy of conodonts have taken place in the last three decades, which have modified the chronological significance of some taxa. For example, Permian platform conodonts previously assigned to the genus *Gondolella* (as in Clark and Mosher, 1966) were split into *Mesogondolella*, *Jinogondolella* and *Clarkina* (Kozur, 1989; Mei and Wardlaw, 1994). Triassic platform conodonts also underwent major taxonomic revisions, and genera such as *Paragondolella* and *Carnepigondolella* are now widely accepted (e.g., Chen et al., 2016). Late Triassic conodonts have recently attracted particular attention, with some debates still continuing today. For instance, Orchard (2013, 2014, 2019) revised the taxonomy of species belonging to *Paragondolella*, *Metapolygnathus*, *Carnepigondolella* and *Epigondolella*, and erected five new genera *Quadralella*, *Parapetella*, *Kraussodontus*, *Acuminatella* and *Primatella*, while Mazza et al. (2018) questioned the validity of genera such as *Quadralella*.

The refinements in the taxonomy of conodonts inevitably modify the age assignment of some conodonts previously reported from the Ashio Belt. In this study, we reinvestigate the chronological significance of previously reported conodonts from the Kiryu and Ashikaga District (Quadrangle series 1:50,000). We also report new occurrences of Early Triassic conodonts from the area. The up-to-date chronological information of conodonts provided in this study is valuable when considering the oceanic plate stratigraphy of the Ashio Belt.

2. Geological Setting

The Jurassic accretionary complex of the Ashio Belt (eastern part of the Tamba–Mino–Ashio Belt) is widely distributed in the Ashio Mountains (Fig. 1; Yamakita and Otoh, 2000; Isozaki et al., 2010; Kojima et al., 2016). Kamata (1996) classified the Jurassic accretionary complex of the Ashio Belt into the Kurohone–Kiryu, Omama and Kuzu complexes. Ito (2021a, this volume) newly recognised the Gyodosan Complex.

Detailed description of the lithofacies of each complex is provided in Ito (2021a), but below is a brief summary. The Kurohone–Kiryu Complex is composed of broken to coherent facies of chert and mudstone with minor amounts of siliceous claystone. The mudstone of this complex is
characterised by slaty cleavage. The Omama Complex is composed of broken to mixed facies of mafic rocks, chert and pelitic mixed rocks. The Kuzu Complex is composed of coherent to broken facies of chert, siliceous claystone, siliceous mudstone, mudstone and sandstone. The Gydosan Complex is composed mainly of pelitic mixed rocks and chert accompanied by minor amounts of siliceous mudstone, mudstone and sandstone. The age of the formation of these complexes inferred from age-diagnostic radiolarians is late Middle Jurassic for the Kurohono–Kiryu, Omama and Gydosan complexes and Late Jurassic for the Kuzu Complex (Ito, 2021b, this volume).

3. Methods

The taxonomy of the conodonts reported in previous studies were reinvestigated based on published text and illustrations. When images were not available, the taxon names are simply modified to the presently used scientific name. For Late Triassic conodonts, the taxonomy of which is still much debated, we will follow Mazza et al. (2012, 2018).

The newly obtained conodonts were found from siliceous claystone in the study area. The conodonts were obtained by the chip method (Muto et al., 2018, 2019), in which conodonts are found by examining the surface of rocks cleaved parallel to the bedding.

Individual conodont elements are dismembered parts of a skeletal feeding apparatus, and pectiniform elements of the P1 position are generally used to distinguish a taxon. However, elements from other positions that are described as form taxa are also useful in biostratigraphy. Such form taxa are referred to in brackets (e.g., "Neohindeodella benderi").

4. Newly obtained conodonts and their geological age

We obtained Early Triassic conodonts from siliceous claystone exposed in Ban-yama and Kaizawa near the border of Tochigi and Gunma prefectures (Fig. 2).

From the Ban-yama locality, we obtained the form species "Neohindeodella benderi" (Kozur and Mostler) (Fig. 3.1). "Neohindeodella benderi" has been reported from the same locality by Sahida et al. (1992). This species is known from the latest Olenekian (late Spathian) to middle Anisian (early Bithynian) in carbonates and deep-sea siliceous rocks in Japan (Koike, 1981; Maekawa et al., 2018, 2019). They also occur from Spathian strata in South China (e.g., Zhao et al., 2007; Lehrmann et al., 2015), Vietnam (Maekawa and Igo, 2014), North America (Orchard, 1995), north India (Matsuda, 1983) and elsewhere (Orchard, 1995). Hence, these species are considered as globally useful indicators of the Spathian (Orchard, 2007), although T. homeri and T. unitalatus occur partly from the lowermost Anisian (Orchard, 1995; Goudemand et al., 2012; Lehrmann et al., 2015; Ovtcharova et al., 2015). The same Spathian age is indicated by conodonts for Section 2 of Motoki and Sashida (2004), which is situated ~1.3 km to the southwest of the Kaizawa locality. In addition to the age, the attitude of the bedding plane and lithofacies of our Kaizawa locality are also similar with that of Section 2 of Motoki and Sashida (2004). Therefore, the former is considered as a lateral extension of the latter.

5. Revision of the taxonomy of previously reported conodonts

In this chapter, we mention the identification of specimens with illustrations, with emphasis on chronologically significant specimens. Unfortunately, only a few studies present photographs and, even when they are available, the poor image quality and limited picture angle hinder detailed identification in most cases. For full results, the reader is referred to Table 1. Which complex a sample belongs to is considered on the basis of Ito (2021a).

Hayashi et al. (1990) illustrated several conodonts which they assigned to the early Carboniferous, but they include specimens that are misidentified Late Triassic conodonts. For example, Figures 44, 46 and 49 in the plate of Hayashi et al. (1990) are segminiplanate elements with a well-developed keel on the lower surface and a forward-shifted pit. Such traits are characteristic to Triassic gondolellids and are clearly different from Palaeozoic segminiplanate elements that have poorly developed keels and terminal pits; Figure 44 in the plate can be compared with the Carnian conodont Paragondolella noah (Hayashi) and Figure 49 is comparable with juvenile forms of Carnian Paragondolella. Figures 45, 50, 51 and 52 in the plate of Hayashi et al. (1990) have platform ornamentations that are characteristic to Triassic conodonts, although the keel and pit are not clearly observable due to the picture angle.

Some segminiplanate elements in the Plate of Hayashi et al. (1990) were identified as the late Carboniferous Mesogondolella clarki (Koike), but none of them are identical to this species. Figures 28, 32 and 34 have more closely spaced posterior denticles and higher and more fused anterior denticles compared to M. clarki. Of these, Figures 28 and 34 are comparable to Mesogondolella guioensis (Igo), while Figure 32 cannot be identified. The locality of the specimen in Figure 28 was noted as "Omama Town, Atago-jinjiya". This is possibly Atago Shrine in Kasagake-cho Azami, Midori City (Fig. 2),
Fig. 2 Conodont occurrence sites of the present and previous studies in the Kiryu and Ashikaga District (Quadrangle series 1:50,000). Base from the Geospatial Information Authority of Japan with its approval (Approval number: 419-GISMAP 39354). This map uses GISMAP5000 R+ “Kiryu and Ashikaga” by Hokkaido-Chizu Co. Ltd.
where chert outcrops are exposed. This locality is within
the area of distribution of the Kurohone–Kiryu Complex
(Ito, 2021a). The locality of the specimen in Figure 34
was noted as “Omama Town, Odaira”. The current area
of Omama-cho Odaira is around the upper reaches of the
Odaira River (Fig. 2), which is within the area where
the Omama Complex is distributed (Ito, 2021a). Figures
29 and 30 were also identified as \(M. \ clarki \), but they are
both significantly different from this species: the former in
lacking a posterior protrusion of the platform and having a
smaller basal cavity and the latter in having parallel sides of
the posterior platform. In addition, some other specimens
that Hayashi \(et \ al. \) (1990) considered as Carboniferous
species appear similar to species of \(Neostreptognathodus \)
(Figures 38, 39 and 40) and \(Pseudosweetognathus \) (Figure
42), which both indicate the Permian (Kungurian to
Roadian).

To summarise the above, there are no illustrated
specimens that indicate the Carboniferous Period and
many that were considered to be so are in fact Permian
or Triassic conodonts. To be meticulous, it may be
inaccurate to conclude that all the conodonts assigned to
the Carboniferous are erroneously identified, since some
of the illustrated conodonts have not been confidently
reidentified. In addition, the age of the “Carboniferous”
limestone in Hayashi \(et \ al. \) (1990) was also supported by
the occurrence of corals (Fujimoto, 1960). However, the
conclusion is that none of the illustrations in the previous
studies can be undoubtedly identified as Carboniferous
conodonts. The oldest conodonts according to our
reinvestigation is the late Artinskian to early Kungurian
(middle \(\text{Cisuralian} \)). \(M. \ cf. \ gujioensis \) from the Kurohone–
Kiryu and Omama complexes.

Hayashi \(et \ al. \) (1990) also illustrated some Triassic
conodonts. While the age assignment need not be
modified, some elements can be reidentified. Figures 4 and
6 in the plate of Hayashi \(et \ al. \) (1990) have the triangular
shaped, anteriorly denticulate but posteriorly inornate
platform diagnostic to the Late Triassic \(Epigondolella \)
\(nigoi \) Noyan and Kozur. Figure 5 in the plate has a round
and denticulate platform diagnostic to the Late Triassic
\(Epigondolella \ spatulata \) (Hayashi).

Sashida \(et \ al. \) (1992) and Motoki and Sashida (2004)
illustrated conodonts obtained from siliceous claystone,
which were identified as Spathian species. While we
agree with the age assignment, as supported by conodonts

Fig. 3 Stereo-photographs (parallel view) of conodonts obtained in this study. Figure 2 is normally arranged. 3a and 3b are
counterparts. All other figures are reversely arranged so that the moulds appears as casts. Scale bars are 200 µm.
1: “Neohindeodella benderi (Kozur & Mostler)” (form species). Ban-yama Mine.
2, 3: Triassospathodus abruptus (Orchard). 2. K96-2-B. 3. K96-2-A.
4: Triassospathodus homeri (Bender). K96-2-A.
5, 6: Triassospathodus unialatus (Mosher). K96-2-A.
7: Triassospathodus sp. K96-2-A.
Table 1 List of conodonts from the Kiryu and Ashikaga District (Quadrangle series 1:50,000) reported in previous studies (re-identified in this study) and this study. For specimens with no available images, modification of scientific names was made simply by replacing old taxon names with modern ones when possible (shown in grey). For assignments of samples to tectonostratigraphic divisions, see Ito et al. (2021a) in this volume. Question marks (?) following a species name or the abbreviation sp. shows that the identification of the specimen is questionable. Taxon names in quotation marks (e.g., “Subbyranthodus sp.”) are form species defined by discrete elements rather than multielement apparatuses.

No.	Rock facies	Complex	Original identification	Image	Reidentification	Age	Revised age	Notes
Hayashi (1964)								
1	siliceous claystone	Lonchodina sp.		yes				
2	siliceous claystone	Neopentrodon sp.		yes	ramiform dyrate			
3	siliceous claystone	Lonchodina sp.		yes	“Subbyranthodus sp.”			"Lonchodina “ is a ramiform element, while the specimen is an angulate element.
Hayashi and Hasegawa (1981)								
1	limestone	Omama (Lower part)	Idiognathodus sp. cf. i. attenuatus Harris and Hollingsworth			early Carboniferous	middle Carboniferous?	
2	limestone	Omama (Lower part)	Idiognathodus sp. cf. i. convesa (Ellison and Craves)			middle Carboniferous?		
3	limestone	Omama (Lower part)	Idiognathodus sp. cf. c. nodosus (Ellison and Craves)			middle Carboniferous?		
4	limestone	Omama (Lower part)	Idiognathodus sp. cf. G. bilineatus (Roundy)			middle Carboniferous?		
5	limestone	Omama (Lower part)	Idiognathodus sp. cf. G. osachitensis (Harron)			middle Carboniferous?		
6	limestone	Omama (Lower part)	Idiognathodus sp. cf. P. flabellus (Branson and Mehl)			middle Carboniferous?		
7	limestone	Omama (Lower part)	Idiognathodus sp. cf. P. symmetrica (Branson)			middle Carboniferous?		
8	limestone	Omama (Lower part)	Idiognathodus spp.			late Carboniferous–early Permian		

Conodonts from the Kiryu and Ashikaga District (MUTO and ITO)
No.	Rock facies Complex	Original identification	Image	Reidentification	Age	Revised age	Notes
9	chert	Gondolella (sp. of Cu. Lake)	00	Metapolygnathus cf. Kurohorne (1b)	00	00	
10	chert	Gondolella sp.	00	Metapolygnathus intermedia (1b)	00	00	
11	chert	Gondolella sp.	00	Metapolygnathus intermedia (1b)	00	00	
12	chert	Gondolella sp.	00	Metapolygnathus intermedia (1b)	00	00	
13	chert	Gondolella sp.	00	Metapolygnathus intermedia (1b)	00	00	
14	chert	Gondolella sp.	00	Metapolygnathus intermedia (1b)	00	00	
15	chert	Gondolella sp.	00	Metapolygnathus intermedia (1b)	00	00	
16	chert	Gondolella sp.	00	Metapolygnathus intermedia (1b)	00	00	
17	chert	Gondolella sp.	00	Metapolygnathus intermedia (1b)	00	00	

Table 1 Continued.

No.	Rock facies Complex	Original identification	Image	Reidentification	Age	Revised age	Notes
90	chert	Gondolella (sp. of Kurohorne)	00	Metapolygnathus prunus (Michay)	00	00	
91	chert	Gondolella sp.	00	Metapolygnathus prunus (Michay)	00	00	
92	chert	Gondolella sp.	00	Metapolygnathus prunus (Michay)	00	00	
93	chert	Gondolella sp.	00	Metapolygnathus prunus (Michay)	00	00	
94	chert	Gondolella sp.	00	Metapolygnathus prunus (Michay)	00	00	
95	chert	Gondolella sp.	00	Metapolygnathus prunus (Michay)	00	00	
96	chert	Gondolella sp.	00	Metapolygnathus prunus (Michay)	00	00	
97	chert	Gondolella sp.	00	Metapolygnathus prunus (Michay)	00	00	

Bulletin of the Geological Survey of Japan, vol. 72 (4), 2021
No.	Rock facies	Complex	Original identification	Image	Reidentification	Age	Revised age	Notes
82	chert	Omama (Lower part)	Neogondolella sp. cf. N. biselli	no	Neogondolella cf. N. biselli	early-middle Permian	?	Paragondolella excelsa is a Middle Triassic (late Anisian–early Ladinian) species.
83	chert	Omama (Lower part)	Gladigondolella tethysis	no		Permian	Middle–Late Triassic	Slender but vertically thick platform, position of cusp and pit with respect to platform and keel make G. tethysis correctly identified even in early studies (e.g. Hayashi, 1968).
84	chert	Omama (Lower part)	Prinsiodina sp.	no				
2	chert	Karohe–Kiryu (Lower part in the Kiryu area)	Neogondolella navicula	yes		Triassic	Late Triassic?	Upper view only, but it is similar to N. navicula.
5	chert	Karohe–Kiryu (Lower part in the Kiryu area)	Neogondolella navicula	yes		Triassic	Late Triassic?	Lower view only, but it is similar to Neogondolella.
4	limestone	Karohe–Kiryu (Kurohone area)	Metapolygnathus sp.	yes	Epigondolella cf. rigoi (Budtov)	Triassic	Late Triassic (latest Carnian–Norian)	Posterior platform is not completely flat as in typical E. rigoi. Possibly transitional to E. triangularis.
5	chert	Possibly Kurohone–Kiryu (Kurohone area)	Metapolygnathus sp.	yes		Triassic	Late Triassic (Norian)	
6	chert	Possibly Kurohone–Kiryu (Kurohone area)	Metapolygnathus sp. nov.	yes	Epigondolella cf. rigoi Noyan & Kozar	Triassic	Late Triassic (latest Carnian–Norian)	
7	chert	Gyodosan	Miaskella sp.	yes		Triassic	Late Triassic (latest Norian–Rhaetian)	
8	chert	Gyodosan	Miaskella sp.	yes	Miaskella hermsteinii (Montler)	Triassic	Late Triassic (latest Norian–Rhaetian)	Terminant cusp; denticles decline in height towards cusp (apart from anteriormost); four denticles.
9	chert	Omama (Lower part)	Neogondolella sp. A	yes		Permian	Permian?	
10	chert	Omama (Lower part)	Neogondolella sp. B	yes		Permian	Late Carboniferous–early Permian	Low keel, terminal pri.
11	chert	Omama (Lower part)	Neogondolella sp. C	yes		Permian	Permian?	
No.	Rock facies	Complex	Original identification	Image	Redidentification	Age	Revised age	Notes
-----	-------------	---------	-------------------------	-------	-------------------	-----	-------------	-------
12	chert	Omama (Lower part)	Neogondolella cf. idahoensis	yes	Mesogondolella cf. idahoensis (Youngquist et al.)	Permian	Cisuralian (Kungurian)	Low carina, terminal large and high cup.
13	chert	Omama (Lower part)	Gnathodus sp.	yes	Sweetognathus sp.	Permian	Cisuralian–Guadalupian	Upper and basal margins meet at the posterior end.
14	chert	Possibly Kurohone–Kiryu (Kurohone area)	Gnathodus sp.	yes	carminiscaphate element	Permian	Permian?	Sweetognathus sp.? Basal margin broken. Could also be Gnathodus sp.
15	chert	not mentioned	not mentioned	yes	Hindeodus permicus	Permian	Cisuralian (late Kungurian)	Erect anterior and posterior margins. Small denticles at the posterior end.
16	chert	Possibly Kurohone–Kiryu (Kurohone area)	Neogondolella cf. serrata	yes	Jinogondolella nankingensis?	Permian	Guadalupian?	Platform serration is not clearly observable, and misidentification cannot be ruled out.
17	chert	Possibly Kurohone–Kiryu (Kurohone area)	Neogondolella cf. serrata	yes	Jinogondolella nankingensis?	Permian	Guadalupian?	Platform serration is not clearly observable, and misidentification cannot be ruled out.
18	chert	Kurohone-Kiryu (Kurohone area)	Neogondolella sp.	yes	Mesogondolella sp. or Neogondolella sp.	Permian	Permian or Triassic	Lower surface not visible.
19	chert	Kurohone-Kiryu (Kurohone area)	Neogondolella cf. serrata	yes	Mesogondolella sp. or Neogondolella sp.?	Permian	Permian or Triassic?	Platform serration is not visible.
20	chert	Kurohone-Kiryu (Kurohone area)	Neogondolella sp. nov.	yes	segminiplanate element	Permian	?	Lower surface not visible.
21	chert	Kurohone-Kiryu (Kurohone area)	Neogondolella sp.	yes	Mesogondolella sp.?	Permian	Permian?	Partly covered.
22	chert	Possibly Kurohone–Kiryu (Kurohone area)	Gnathodus sp.	yes	carminiscaphate element	Permian	Permian?	
23	chert	Possibly Kurohone–Kiryu (Kurohone area)	Neogondolella sp.	yes	Mesogondolella sp.?	Permian	Permian?	
24	chert	Kurohone-Kiryu (Kurohone area)	Neogondolella sp.	yes	Jinogondolella sp.?	Permian	Permian?	Weak serration on anterior platform. Lower surface not visible.
25	chert	Kurohone-Kiryu (Kurohone area)	Neogondolella sp.	yes	Jinogondolella sp.?	Permian	Permian?	
26	chert	Kurohone-Kiryu (Kurohone area)	Neogondolella sp.	yes	Segminiplanate element	Permian	?	
27	chert	Kurohone-Kiryu (Kurohone area)	Gnathodus sp. & Neogondolella sp.	yes	Carminiscaphate element & segminiplanate element	Permian	Permian?	Possibly Gnathodus sp. & Mesogondolella sp.
28	chert	Kurohone–Kiryu (possibly Upper part in the Kiryu area)	Neogondolella cf. clarki	yes	Mesogondolella cf. gujioensis (Igo)	Carboniferous	Cisuralian (late Artinskian–early Kungurian)	Posterior denticles more closely spaced than M. clarki. Anterior denticles more fused and higher than M. clarki.
No.	Rock facies	Complex	Original identification	Image	Residentification	Age	Revised age	Notes
-----	-------------	---------	-------------------------	-------	-------------------	-----	-------------	-------
29	chert	Kurohone–Kiryu (possibly Upper part in the Kiryu area)	Neogondolella cf. clarki	yes	Neogondolella sp. not M. clarki.	Carboniferous	Permian?	M. clarki has the basal part of cusp forming a conspicuous posterior projection at posterior end of platform and a larger basal cavity.
30	limestone	Omama (Lower part)	Neogondolella cf. clarki	yes	Not M. clarki.	Carboniferous	Permian?	Parallel-sided platform.
31	limestone	Omama (Lower part)	Neogondolella cf. clarki	yes	Neogondolella sp.?	Carboniferous	?	Posterior denticles more closely spaced than M. clarki. Anterior denticles more fused and higher than M. clarki.
32	limestone	Omama (possibly Upper part)	Neogondolella cf. clarki	yes	Neogondolella sp.?	Carboniferous	?	Posterior denticles more closely spaced than M. clarki. Anterior denticles more fused and higher than M. clarki.
33	limestone	Omama (possibly Upper part)	Neogondolella cf. clarki	yes	Neogondolella sp.?	Carboniferous	Permian?	
34	chert	Omama (Lower part)	Neogondolella cf. clarki	yes	Neogondolella cf. gujioensis (Iigo)	Carboniferous	Cisuralian (late Artinskian–early Kungurian)	Posterior denticles more closely spaced than M. clarki. Anterior denticles more fused and higher than M. clarki.
35	limestone	Omama (Lower part)	Gnathodus sp.	yes	Sweetognathus sp. or Gullodus sp. or Hindodus sp.	Carboniferous	Permian?	
36	limestone	Omama (Lower part)	Gnathodus sp.	yes	Hindodus sp.?	Carboniferous	?	Image too small.
37	limestone	Omama (Lower part)	Gnathodus sp.	yes	?	Carboniferous	?	
38	limestone	Omama (Lower part)	Gnathodus sp.	yes	Neostreptognathodus sp.?	Carboniferous	Permian? (Kungurian–Roadian?)	
39	limestone	Omama (Lower part)	Streptognathodus sp.	yes	Neostreptognathodus sp.?	Carboniferous	Permian? (Kungurian–Roadian?)	
40	limestone	Omama (Lower part)	Cuvagnathus sp.	yes	Neostreptognathodus sp.?	Carboniferous	Permian? (Kungurian–Roadian?)	Connection of blade and carina needs to be visible for confirmation of Cuvagnathus.
41	limestone	Omama (Lower part)	Neospathodus sp.	yes	Carminispathodus element?	Carboniferous	Permian?	
42	limestone	Omama (Lower part)	Neospathodus sp.	yes	Pseudosweetognathus sp.?	Carboniferous	Permian? (Kungurian–Roadian?)	Not segminate Neospathodus. Carinal blade should be present if it is Idospathodus.
43	limestone	Omama (Lower part)	Siphonoolithina sp.	yes	?	Carboniferous		
No.	Rock facies	Complex	Original identification	Image	Reidentification	Age	Revised age	Notes
-----	-------------	---------	-------------------------	-------	------------------	-----	-------------	-------
44	chert	Omama (Lower part)	Conodonta gen. & sp. indet	yes	Paragondolella cf. noah (Hayashi)	Early Carboniferous	Late Triassic (Carbionian)	Well developed keel, anteriorly shifted (not terminal) basal pit is different from Palaeozoic species. Possesses posterior node unlike P. polyplacophoris. Lacks nodes on generication points unlike M. praecommunisti. Quadratella according to Orchard (2013, 2014).
45	chert	Omama (Lower part)	Conodonta gen. & sp. indet	yes	Carnepigondolella sp.?	Early Carboniferous	Late Triassic?	
46	chert	Omama (Lower part)	Conodonta gen. & sp. indet	yes	Modkins sp.?	Early Carboniferous	Late Triassic?	Developed keel. Carina extends to posterior.
47	chert	Omama (Lower part)	Conodonta gen. & sp. indet & Gondolella sp.	yes	Paragondolella sp.? & segminiplanate element	Early Carboniferous	Middle-Late Triassic?	Broken segminiplanate element.
48	chert	Omama (Lower part)	Conodonta gen. & sp. indet	yes	?	Early Carboniferous?		
49	chert	Omama (Lower part)	Conodonta gen. & sp. indet	yes	evolved Paragondolella	Early Carboniferous	Late Triassic (Carbionian)	Juvenile specimen. Quadratella sp. According to Orchard (2013, 2014). Upturned platform distinguishes it from primitive Paragondolella.
50	chert	Omama (Lower part)	Conodonta gen. & sp. indet	yes	Sephardiella sp.?	Early Carboniferous	Triassic	Developed keel is different from Carboniferous and Permain species.
51	chert	Omama (Lower part)	Conodonta gen. & sp. indet	yes	Sephardiella modesti?	Early Carboniferous	Triassic	Carina extends to posterior. Posteriormost denticle not thick.
52	chert	Omama (Lower part)	Conodonta gen. & sp. indet	yes	Sephardiella sp.?	Early Carboniferous	Triassic	Carina extends to posterior. Posteriormost denticle not thick.
53	chert	Omama (Lower part)	Anchigondolella sp.	yes	Carminiscaphate element	Early Carboniferous?		
54	chert	Omama (Lower part)	Anchigondolella sp.	yes	Carminiscaphate element	Early Carboniferous?		
55	chert	Omama (Lower part)	Gondolella sp.	yes	Segminiplanate element?	Early Carboniferous?		
56	chert	Omama (Lower part)	Icriodus sp.	yes	?	Early Carboniferous?		
57	chert	Omama (Lower part)	Icriodus sp.	yes	?	Early Carboniferous?		
58	chert	Omama (Lower part)	Icriodus sp.	yes	?	Early Carboniferous?		
59	chert	Omama (Lower part)	Icriodus sp.	yes	?	Early Carboniferous?		

Sashida et al. (1992)

KIS-16 siliceous claystone Kurohonne–Kiryu (Lower part in the Kiryu area) Neospathodus homeri (Bender) yes Triassospathodus ex. gr. homeri Early Triassic Early Triassic (late Olenekian) | Fig. 5.6. Since the form of the basal cavity is unclear, they could be Triassospathodus unialatus (not Neospathodus symmetricus) Orchard; see Taxonomic Notes). |
Table 1 Continued.

No.	Rock facies	Complex	Original identification	Image	Reidentification	Age	Revised age	Notes
BAN-4	silicic claystone	Kurohime–Kiryu (Lower part in the Kiryu area)	Neohindeodella aequiramosa (Kozar and Mostler)	yes	"Neohindeodella gebzeensis" (Gedik) (part)	Early Triassic	Early–Middle Triassic (late Olenekian–early Anisian)	Figs. 5.9, 5.12. Anterior margin connects smoothly with basal margin in "N. aequiramosa". Fig. 5.11 is "Neohindeodella sp.".
BAN-5	silicic claystone	Kurohime–Kiryu (Lower part in the Kiryu area)	Neospathodus homeri (Bender)	yes	Triassospathodus ex. gr. homeri	Early Triassic	Early Triassic (late Olenekian)	Figs. 5.5, 5.7. Since the form of the basal cavity is unclear, they could be T. unialatus (= Neospathodus symmetricus Orchard).
 	 	 	Cypridodella muelleri (Tatge)	yes	?	 	 	In "C. muelleri", the base is flared laterally below the cup and denticles on the long process are strongly inclined.
 	 	 	Neohindeodella aequiramosa (Kozar and Mostler)	yes	maintained	 	 	Fig. 5.20. Broken.
 	 	 	Neohindeodella triassica (Müller)	yes	"Neohindeodella cf. gebzeensis" (Gedik) (part), "Cypridodella sp." (part)	Early–Middle Triassic (late Olenekian–Anisian)	5.10. "Neohindeodella sp.". 5.14. "Grodella sp." Denticles recline towards opposite directions in the anterior and posterior processes of "N. triassica", but denticles are all inclined to the left in specimen. 5.15, 5.18. "N. cf. gebzeensis". 5.21, 5.22. "Cypridodella sp.".	
 	 	 	Neohindeodella benderi (Kozar and Mostler)	yes	maintained	 	 	
 	 	 	Diplododella sp.	yes	 	 	 	

Motoki and Sashida (2004)

A-25	silicic claystone	Kurohime–Kiryu (Lower part in the Kiryu area)	Neospathodus abruptus Orchard, Pa element	no		Early Triassic		
A-26	silicic claystone	Kurohime–Kiryu (Lower part in the Kiryu area)	Neospathodus abruptus Orchard, Pa element	yes	Triassospathodus ex. gr. abruptus (part)	Early Triassic	Early Triassic (late Olenekian)	Figs. 5.1, 5.2. Anterior margin connects smoothly with basal margin in "T. abruptus". Fig. 5.11 is "Triassospathodus sp.".
A-28	silicic claystone	Kurohime–Kiryu (Lower part in the Kiryu area)	Neospathodus abruptus Orchard, Pa element	yes	Triassospathodus ex. gr. abruptus (part)	Early Triassic	Early Triassic (late Olenekian)	Figs. 5.1, 5.2. Anterior margin connects smoothly with basal margin in "T. abruptus". Fig. 5.11 is "Triassospathodus sp.".
A-30	silicic claystone	Kurohime–Kiryu (Lower part in the Kiryu area)	Neospathodus abruptus Orchard, Pa element	yes	Triassospathodus ex. gr. abruptus (part)	Early Triassic	Early Triassic (late Olenekian)	Figs. 5.1, 5.2. Anterior margin connects smoothly with basal margin in "T. abruptus". Fig. 5.11 is "Triassospathodus sp.".
No.	Rock face	Complex	Original identification	Image	Redescription	Age	Revised age	Notes
5-24	silicous claystone	Kurohone-Kiryu (Lower part in the Kiyu area)	Neospathodus sp., Pb element	no	Early Triassic	no	Early Triassic	
A-25	silicous claystone	Kurohone-Kiryu (Lower part in the Kiyu area)	Neospathodus sp., Sc element	yes	Early Triassic	yes	Early Triassic	
A-26	silicous claystone	Kurohone-Kiryu (Lower part in the Kiyu area)	Neospathodus sp., Sc element	yes	Early Triassic	no	Early Triassic	
A-27	silicous claystone	Kurohone-Kiryu (Lower part in the Kiyu area)	Neospathodus sp., Sc element	yes	Early Triassic	no	Early Triassic	
A-28	silicous claystone	Kurohone-Kiryu (Lower part in the Kiyu area)	Neospathodus sp., Sc element	yes	Early Triassic	no	Early Triassic	
A-29	silicous claystone	Kurohone-Kiryu (Lower part in the Kiyu area)	Neospathodus sp., Sc element	yes	Early Triassic	no	Early Triassic	
A-30	silicous claystone	Kurohone-Kiryu (Lower part in the Kiyu area)	Neospathodus sp., Sc element	yes	Early Triassic	no	Early Triassic	

Fig. 6.14. Dygirate ramiform element.

Fig. 6.17. Dygirate ramiform element.
Table 1 Continued.

No.	Rock facies	Complex	Original identification	Image	Reidentification	Age	Revised age	Notes
A-31	siliceous claystone	Kurohoke–Kiryu (Lower part in the Kiryu area)	Neospathodus abruptus (Orchard, Pb)	yes	Neospathodus unialatus	Early Triassic	Early Triassic (late)	Fig. 6.3. Denticle height is subequal.
			Neospathodus sp., Pb element	no				
			Neospathodus sp., Sb2 element	no				
			Neospathodus sp., Sc element	no				
			Neospathodus sp., M element	no				

Ito (2019)	IT16071201	chert	Gyodosan	condont fragment	yes				
Ito (2020b)	IT18101408	chert	Kuzu (Unit 3)	condont fragment	yes				
Ito (2020b)	IT18101409	chert	Kuzu (Unit 3)	condont fragment	yes				
Ito et al. (2021a)	164	chert	Omama (Lower part)	condont fragment	yes				
Ito et al. (2021a)	234	chert	Omama (Lower part)	condont fragment	yes				
Ito et al. (2021a)	257	chert	Omama (Lower part)	condont fragment	yes				
This study	Ban-yama	siliceous claystone	Kurohoke–Kiryu (Lower part in the Kiryu area)	"Novispathodus benderi (Kozur & Mostler)"	yes	Early-middle Triassic (late Olenekian–early Anisian)	Novispathodus is regarded as a junior synonym of Triassospathodus see Taxonomic notes.		
K96-2-A	siliceous claystone	Kurohoke–Kiryu (Lower part in the Kiryu area)	Triassospathodus abruptus (Orchard)	yes	Early Triassic (late Olenekian)	Novispathodus is regarded as a junior synonym of Triassospathodus see Taxonomic notes.			
			Triassospathodus homeri (Bender)	yes	Early Triassic (late Olenekian)				
			Triassospathodus unialatus (Mosher)	yes	Early Triassic (late Olenekian)				
			Triassospathodus sp.	yes	Early Triassic (late Olenekian)			Anterobasal margin and posteriormost denticle is not clearly visible.	
K96-2-B	siliceous claystone	Kurohoke–Kiryu (Lower part in the Kiryu area)	Triassospathodus abruptus (Orchard)	yes	Early Triassic (late Olenekian)				
obtained in the present study, the identification of some specimens needs to be reconsidered, as mentioned below.

Sashida et al. (1992) showed conodonts from Ban-yama (see also 4) Newly obtained conodonts and their geological age). The form species “Neohindeodella aequitemasosa Kozur and Mostler” possesses anteriorly reared and projecting denticles at the anterior end, the anterior margin of which connects smoothly with the antero-basal margin. However, the specimens identified as this species in Sashida et al. (1992) have either an anteriormost denticle that connects at a right angle with the antero-basal margin (their Figures 5.9, 5.11, 5.12) or is considerably broken (their Figure 5.20). In fact, the morphology of the anterior process and numerous erect denticles on the posterior process in the specimens in Figures 5.9 and 5.12 match the characters of a different form species “Neohindeodella gebzeensis (Gedik)” (their Figure 5.20). In fact, the morphology of the anterior process and numerous erect denticles on the posterior process in the specimens in Figures 5.9 and 5.12 match the characters of a different form species “Neohindeodella gebzeensis (Gedik)” (their Figure 5.20). In fact, the morphology of the anterior process and numerous erect denticles on the posterior process in the specimens in Figures 5.9 and 5.12 match the characters of a different form species “Neohindeodella gebzeensis (Gedik)” (Figures 5.15 and 5.18), which is a species with a basal margin protruding downwards below the cusp, are comparable to “N. gebzeensis”. The other specimens identified as “N. triassica” are also misidentified: Figure 5.10 is much more bent in lateral view, while Figures 5.14, 5.21 and 5.22 are digyrate elements of the form genus “Cypridodella” and “Cypridodella”.

Motoki and Sashida (2004) reported T. abruptus, which is characterised by abrupt shortening of the denticles in the posterior. While the character can be seen in Figures 6.2 and 6.6, it is not seen in Figures 6.3, 6.4 and 6.5. The sub-equal denticles of the latter three are closer to that of T. unialatus. On the other hand, the specimen identified as Neospathodus symmetricus (= T. unialatus) in their Figure 6.10 has a small denticle at the posterior end, which is not a feature of this species according to the original description (Orchard, 1995). Triassospathodus brevissimus was illustrated in Figure 6.7 of Motoki and Sashida (2004), but this specimen does not possess the sub-quadratate lateral outline formed by small erect denticles of mostly equal height that distinguishes this species (Orchard, 1995; Maekawa et al., 2018; Muto et al., 2019).

6. Conclusions

1) Conodonts were newly found from siliceous claystone near the border of the Tochigi and Gunma prefectures. We obtained the form species “Neohindeodella benderi (Kozur & Mostler)” from Ban-yama and Triassospathodus abruptus (Orchard), Triassospathodus homeri (Bender) and Triassospathodus unialatus (Mosher) (= Neospathodus symmetricus Orchard) from Kaizawa. These conodonts indicate the Spathian (late Olenekian Age).

2) We reinvestigated the illustrations of conodonts provided by previous studies. Many of the conodonts previously identified as Carboniferous conodonts are Permian and Triassic species. In particular, two out of six specimens identified as Mesogondolella clarki (Koike) were reidentified as Mesogondolella cf. gujoensis (Igo) and some specimens identified as early Carboniferous species of unknown genera should be identified as Late Triassic species such as Paragondolella cf. noah (Hayashi).

3) As far as the conodonts are concerned, there is no compelling evidence indicating the presence of Carboniferous limestone and chert, which was reported by previous studies. The oldest age that can be confirmed by conodonts is the late Artinskian to early Kungurian age of the Cisuralian (early Permian) indicated by M. cf. gujoensis from the Kurohone–Kiryu and Omama complexes.

7. Taxonomic notes

Remarks for the conodonts obtained in this study are mentioned here. For detailed synonym lists, the reader is referred to Muto et al. (2019, 2020).

“Neohindeodella benderi (Kozur and Mostler)” (form species) (Figure 3.1)
Remarks: This form species is easily recognised by its anterior process that is conspicuously bent down and bears a long denticle at the anterior end, but otherwise is poorly denticulate.

Triassospathodus abruptus (Orchard) (Figures 3.2, 3.3)
Remarks: A species characterised by segminate elements with denticles that decrease height rapidly at the posterior. This species was defined as the type species of the genus Novispathodus abruptus by Orchard (2005), but the distinguishing features of Novispathodus are seen as intraspecific variations in related neospathodids (Koike, 2004; Muto et al., 2020). Therefore, Novispathodus is regarded as a junior synonym of Triassospathodus.

Triassospathodus homeri (Bender) (Figure 3.4)
Remarks: This species has a short posterior process of up to five denticles above the elongated posterior part of the basal cavity.

Triassospathodus unialatus (Mosher) (Figures 3.5, 3.6)
Remarks: The P1 element of this species is a segminate element with denticles of subequal height and a posteriorly rounded basal cavity. The P1 element was described as Neospathodus symmetricus by Orchard (1995) and was shown to be accompanied by the form species “Cypridodella unialata (Mosher)” as its S2 element (Koike, 2004), which has the priority (Muto et al., 2020).

Acknowledgments The sampling for this study was partly aided by the Grant-in-aid for JSPS Research
Fellow Number 16J04796. The authors are grateful to Dr. AGEMATSU Sachiko and Dr. HARA Hidetoshi for their comments that improved our manuscript.

References

Agematsu, S., Orchard, M. J. and Sashida, K. (2008) Reconstruction of an apparatus of Neostrachanognathus tahoensis from Oritate, Japan and species of Neostrachanognathus from Oman. Palaeontology, 51, 1201–1211.

Aono, H. (1985) Geologic structure of the Ashio and Agematsu, S., Orchard, M. J. and Sashida, K. (2008) their comments that improved our manuscript. Dr. AGEMATSU Sachiko and Dr. HARA Hidetoshi for Fellow Number 16J04796. The authors are grateful to

Chen, Y., Krystyn, L., Orchard, M. J., Lai, X. L. and Richoz, S. (2016) A review of the evolution, biostratigraphy, provincialism and diversity of Middle and early Late Triassic conodonts. Papers in Palaeontology, 2, 235–263.

Clark, D. L. and Mosher, L. C. (1966) Stratigraphic, geographic, and evolutionary development of the conodont genus Gondolella. Journal of Paleontology, 40, 376–394.

Conodont Research Group (1972) Conodonts at the Permian-Triassic boundary in Japan—Conodonts from the basal part of the Adoyama Formation—. Journal of the Geological Society of Japan, 78, 355–368 (in Japanese with English abstract).

Conodont Research Group (1974) Conodonts at the Permian-Triassic boundary in Japan—Stratigraphy and faunas of the Nabeyama and Adoyama formations in Karasawa area, southeast Ashio Mountains—. Earth Science (Chikyu Kagaku), 28, 86–98 (in Japanese with English abstract).

Editorial team of Omama Town’s history* (1996) Omama Town’s History. Basic Data VIII: Geography and evolutionary division: Kiryu City), Gunma.

Fujimoto, H. (1960) Carboniferous System of Japan. Geological Survey of Japan, Report Special Number (D), 65p.

Fujimoto, H. (1961) Explanatory text of the Geological Map of Japan, scale 1:50,000, “Tochigi”. Geological Survey of Japan, 62p. (in Japanese with English abstract).

Geological Survey of Japan, AIST (2018) Seamless digital geological map of Japan 1:200,000. January 26, 2018 version. Geological Survey of Japan, AIST. https://gbank.gsj.jp/seamless/v2full/ (Accessed:2018-1-26)

Goudemand, N., Orchard, M. J., Bucher, H. and Jenks, J. (2012) The elusive origin of Chiosella timorenis (Conodont Triassic). Geobios, 45, 199–207.

Hayashi, S. (1963) On the conodonts newly discovered from the Ashio Mountains, central Japan. Earth Science (Chikyu Kagaku), 68, 9–12 (in Japanese with English abstract).

Hayashi, S. (1964) Discovery of conodonts from “Naratukite”. The Journal of the Geological Society of Japan, 70, 596 (in Japanese with English abstract).

Hayashi, S. (1968a) The Permian conodonts in chert of the Adoyama Formation, Ashio Mountains, central Japan. Earth Science (Chikyu Kagaku), 22, 9–12 (in Japanese with English abstract and descriptions).

Hayashi, S. (1968b) Redescription of the new forms proposed in “The Permian conodonts in chert of the Adoyama Formation, Ashio Mountains, central Japan,” 1968. Earth Science (Chikyu Kagaku), 22, 305 (in Japanese with English abstract and descriptions).

Hayashi, S. (1971) Conodonts from the Nabeyama Formation, Kuzuu District, Tochigi Prefecture, Japan. Earth Science (Chikyu Kagaku), 25, 251–257 (in Japanese with English abstract).

Hayashi, S. and Hasegawa, Y. (1981) Chichibu System in the Ashio Belt: Macrofossil- and conodont-based age (Part 2)*. Studies on Late Mesozoic Tectonism in Japan, no. 3, 233–249. (in Japanese with English abstract).

Hayashi, S., Iijima, S., Nakajima, T., Sawaguchi, T., Tanaka, H., Yoshida, H. (1990) Late Paleozoic to Mesozoic formations in the southwestern Ashio Mountains. Bulletin of the Gunma Prefectural Museum of History, 11, 1–34 (in Japanese with English abstract).

Igo, Hh. (1981) Permian conodont biostratigraphy of Japan. Palaeontological Society of Japan, Special Papers, 24, 1–51.

Igo, Hy. (1972) Conodonts, as a new index fossil in Japan. Journal of Geography (Chigaku-Zasshi), 81, 142–151 (in Japanese with English abstract).

Isozaki, Y., Maruyama, S. and Furukawa, F. (1990) Accreted oceanic materials in Japan. Tectonophysics, 181, 179–205.

Isozaki, Y., Maruyama, S., Aoki, K., Nakama, T., Miyashita, A. and Otoh, S. (2010) Geotectonic Subdivision of the Japanese Islands Revisited: Categorization and definition of elements and boundaries of Pacific-type (Miyashiro-type) orogen. Journal of Geography (Chigaku-Zasshi), 119, 999–1053 (in Japanese with English abstract).

Ito, T. (2019) A report of Permian, Triassic, and Jurassic radiolarian occurrences from the Ashio terrace in the Hachioji Hills, eastern Gunma Prefecture, central Japan. Bulletin of the Geological Survey of Japan, 70, 225–247.

Ito, T. (2020a) A Cisuralian (early Permian) radiolarian assemblage and a new species of Latentibifistula Nazarov and Ormiston from central Japan. Revue de Micropaléontologie, 66, 100407.

Ito, T. (2020b) Radiolarian age of Triassic striped chert within the Jurassic accretionary complex of the Ashio terrace in the Ashikaga area, Tochigi Prefecture,
central Japan. *Bulletin of the Geological Survey of Japan*, **71**, 297–312.

Ito, T. (2021a) Geology and correlation of Jurassic accretionary complex in the Ashio Mountains, central Japan: Investigation on the Kiryu and Ashikaga District (Quadrangle series 1:50,000). *Bulletin of the Geological Survey of Japan*, **72**, 201–285.

Ito, T. (2021b) Radiolarians from Jurassic accretionary complexes of the Ashio belt in the Kiryu and Ashikaga District (Quadrangle series 1:50,000), Gunma and Tochigi prefecures, central Japan. *Bulletin of the Geological Survey of Japan*, **72**, 287–324.

Ito, T., Nakamura, K., Hinohara, T. and Kurihara, T. (2021a) Occurrence report of Triassic and Jurassic radiolarians from the Jurassic accretionary complexes of the Ashio belt in eastern Mt. Narukami, Ashio Mountains, central Japan. *Bulletin of the Geological Survey of Japan*, **72**, 345–358.

Ito, T., Suzuki, N. and Sashida, K. (2021b) Radiolarians and foraminifers from the Omama Complex of Jurassic accretionary complex in the Ashio Mountains, central Japan. *Bulletin of the Geological Survey of Japan*, **72**, 359–370.

Kamata, Y. (1996) Tectonostratigraphy of sedimentary complex in the southern part of the Ashio terrane, central Japan. *Science reports of the Institute of Geoscience, University of Tsukuba, Section B, Geological Sciences*, **17**, 71–107.

Kamata, Y. (1997) Reconstruction of the chert-clastic sequence of the Ashio terrane in the Kuzu area, central Japan. *The Journal of the Geological Society of Japan*, **103**, 343–356 (in Japanese with English abstract).

Kamata, Y. and Kajiwara, Y. (1996) Sulfur isotopic data from the Permian/Triassic boundary in a chert sequence at Motegi, Gunma Prefecture, in the Ashio terrane, central Japan. *In*, Noda, H. and Sashida, K. eds., *Professor Hisayoshi Igo Commemorative Volume on geology and paleontology of Japan and Southeast Asia*, Gakujyutsu Tosho Insatsu Co. Ltd., Tokyo, 19–27.

Kojima, S., Hayasaka, Y., Hiroi, Y., Matsuoka, A., Sano, H., Sugamori, Y., Suzuki, N., Takemura, S. Tsujimori, T. and Uchino, T. (2016) Pre-Cretaceous accretionary complexes. In Moreno, T., Wallis, S. R., Kojima, T. and Gibbons, W. eds., *The Geology of Japan*. The Geological Society of London, London, England, 61–100.

Koike, T. (1981) Biostratigraphy of Triassic conodonts in Japan. *Science reports of the Yokohama National University*, Section 2, Biology and geology, **28**, 25–46.

Koike, T. (2004) Early Triassic *Neospathodus* (Conodonta) apparatuses from the Tahoe Formation, southwest Japan. *Paleontological Research*, **8**, 129–140.

Koike, T., Igo, Hh., Takizawa, S. and Kinoshita, T. (1971a) Contribution to the geological history of the Japanese Islands by the conodont biostratigraphy part II. *The Journal of the Geological Society of Japan*, **77**, 165–168.

Koike, T., Kinoshita, T., Igo, Hh., Takizawa, S. (1971b) Conodonts from the Tochigi Group and the discovery of a thrust fault in the vicinity of Kuzuu, Tochigi Prefecture. *The Journal of the Geological Society of Japan*, **77**, 221–222 (in Japanese with English abstract).

Koike, T., Igo, Hy., Igo, Hh. and Kinoshita, T. (1974) Geological significance of the unconformity between the Permian Nabeyama and Triassic Ajoyama formations in the vicinity of Kuzuu, Tochigi Prefecture. *The Journal of the Geological Society of Japan*, **80**, 293–306 (in Japanese with English abstract).

Koike, T., Kodachi, Y., Matsuno, T. and Baba, H. (1991) Triassic conodonts from exotic blocks of limestone in northern Kuzuu, the Ashio Mountains. *Science Reports of Yokohama National University Section II*, no. 38, 53–69.

Kozur, H. (1989) The taxonomy of the gondolellid conodonts in the Permian and Triassic. *Courier Forschungs Institut Senckenberg*, **117**, 385–406.

Lehmann, D. J., Stepcinski, L., Altiner, D., Orchard, M. J., Montgomery, P., Enos, P., Ellwood, B. B., Bowring, S. A., Ramezani, J., Wang, H., Wei, J., Yu, M., Griffiths, J. D., Minzioni, M., Schaal, E. K., Li, X., Meyer, K. M. and Payne, J. L. (2015) An integrated biostratigraphy (conodonts and foraminifers) and chronostratigraphy (paleomagnetic reversals, magnetic susceptibility, elemental chemistry, carbon isotopes and geochronology) for the Permian-Upper Triassic strata of Guanduo section, Nanpanjiang Basin, south China. *Journal of Asian Earth Sciences*, **108**, 117–135.

Maekawa, T. and Igo, H. (2014) Conodonts. In Shigeta, Y., Komatsu, T., Maekawa, T. and Dang, H. T. eds., *Olenekian (Early Triassic) Stratigraphy and Fossils Assemblages in Northeastern Vietnam*, 190–271, National Museum of Nature and Science Monographs, **45**, National Museum of Nature and Science, Tokyo.

Maekawa, T., Komatsu, T. and Koike, T. (2018) Early Triassic conodonts from the Tahogawa Member of the Tahoe Formation, Ehime Prefecture, Southwest Japan. *Paleontological Research*, **22**, 1–62.

Matsuda, T. (1983) Early Triassic conodonts from Kashmir, India, part 3: *Neospathodus*. 2. *Journal of Geosciences, Osaka City University*, **27**, 87–102.

Mazza, M., Rigo M. and Gullo M. (2012). Taxonomy and stratigraphic record of the Upper Triassic conodonts of the Pizzo Mondello section (Western Sicily, Italy), GSSP candidate for the base of the Norian. *Rivista Italiana di Paleontologia e Stratigrafia*, **118**, 85–130.

Mazza, M., Nicora, A. and Rigo, M. (2018) *Metapolynathus parvus* Kozur, 1972 (Conodontida): a potential primary marker for the Norian GSSP (Upper Triassic). *Bollettino della Società Paleontologica"
Conodonts from the Kiryu and Ashikaga District (MUTO and ITO)

Mei, S. and Wardlaw, B. R. (1994) *Jinogondolella*: A new genus of Permian gondolellids. *International Symposium on Permian Stratigraphy, Environments and Resources, Abstracts, Guiyang, China*, 20–21.

Motoki, H. and Sashida, K. (2004) Preliminary report on the chronological and lithostratigraphical studies of the Toishi-type shale (siliceous claystone) distributed in the Ashio Mountains. *News of Osaka Micropalaeontologists (NOM), Special Volume*, no. 13, 47–57 (in Japanese with English abstract).

Muto, S., Takahashi, S., Yamakita, S., Suzuki, N., Suzuki, N. and Aita, Y. (2018) High sediment input and possible oceanic anoxia during the latest Olenekian and early Anisian: Insights from a new deep-sea section in Ogasama, Tochigi, Japan. *Palaeogeography, Palaeoclimatology, Palaeoecology*, 490, 687–707.

Muto, S., Takahashi, S., Yamakita, S., Soda, K. and Onoue, T. (2019) Conodont-based age calibration of the Middle Triassic Anisian radiolarian biozones in pelagic deep-sea bedded chert. *Bulletin of the Geological Survey of Japan*, 70, 43–89.

Muto, S., Okumura, Y. and Mizuhara, T. (2021) Late Kungurian conodonts of the pelagic Panthalassa from seamount-capping limestone in Ogama, Kuzuu, Tochigi Prefecture, Japan. *Palaeontological Research*, 25, 105–119.

Orchard, M. J. (1995) Taxonomy and correlation of Lower Triassic (Spathian) segminate conodonts from Oman and revision of some species of *Neospathodus*. *Journal of Paleontology*, 69, 110–122.

Orchard, M. J. (2005) Multielement conodont apparatuses of Triassic gondolellioda. *Special Papers in Palaeontology*, 73, 73–101.

Orchard, M. J. (2007) Conodont diversity and evolution through the latest Permian and Early Triassic upheavals. *Palaeogeography, Palaeoclimatology, Palaeoecology*, 252, 93–117.

Orchard, M. J. (2013) Five new genera of conodonts from the Carnian-Norian boundary beds of Black Bear Ridge, northeast British Columbia, Canada.

The Triassic system: *New Mexico Museum of Natural History and Science Bulletin*, 61, 445–457.

Orchard, M. J. (2014) Conodonts from the Carnian-Norian Boundary (Upper Triassic) of Black Bear Ridge, Northeastern British Columbia, Canada. *New Mexico Museum of Natural History and Science Bulletin*, 64. *New Mexico Museum of Natural History and Science, Albuquerque*.

Orchard, M. J. (2019) The Carnian-Norian boundary GSSP candidate at Black Bear Ridge, British Columbia, Canada: update, correlation, and conodont taxonomy. *Albertiana*, 45, 50–68.

Ovtcharova, M., Goudemand, N., Hammer, Ø., Guodun, K., Cordey, F., Galfetti, T., Schaltegger, U. and Bucher, H. (2015) Developing a strategy for accurate definition of a geological boundary through radio-isotopic and biochronological dating: The Early–Middle Triassic boundary (South China). *Earth-Science Reviews*, 146, 65–76.

Sashida, K., Kamata, Y. and Igo, H. (1992) Toishi-type shale in the Ashio Mountains, central Japan. *Annual report of the Institute of Geoscience, the University of Tsukuba*, 18, 59–66

Sudo, S., Makimoto, H., Hata, M., Unozawa, A., Takizawa, F. and Sakamoto, T. (1990) Geological map of the Utsunomiya district. Quadrangle Series, 1:200,000, Geological Survey of Japan.

Yamakita, S. and Otoh, S. (2000) Tectonostratigraphic division of accretionary-sedimentary complex of the Tamba–Mino–Ashio Belt and comparison with the Northern and Southern Chichibu Belts. *Structural Geology*, 4, 5–32. (in Japanese with English abstract)

Yanagimoto, Y. (1973) Stratigraphy and geological structure of the Paleozoic and Mesozoic formations in the vicinity of Kuzuu, Tochigi Prefecture. *The Journal of the Geological Society of Japan*, 79, 441–451 (in Japanese with English abstract)

Zhao, L., Orchard, M. J., Jinnan, T., Zhiming, S., Jinxun, Z., Suxin, Z. and Ailing, Y. (2007) Lower Triassic conodont sequence in Chaohu, Anhui Province, China and its global correlation. *Palaeogeography, Palaeoclimatology, Palaeoecology*, 252, 24–38.

*Translated by the authors

Recieved June 3, 2020
Accepted July 9, 2021
5万分の1地質図幅「桐生及足利」地域から産出したコノドント化石：足尾テレーンの“石炭紀”コノドントを中心とした再検討

武藤 俊・伊藤 剛

要 旨
これまで足尾山地からは多くのコノドント化石の産出が報告されているが、多くの研究は古い分類や生層序の知見に基づいている。本研究では、5万分の1地質図幅「桐生及足利」地域内から報告されているコノドント化石を現在の分類と生層序に基づき再検討した。図示されている標本については必要に応じて同定の修正を試み、図示されていないもののについては現在の分類体系に基づいて分類群名を読み替えた。また、本研究で独自に得た前期三畳紀のコノドントも併せて報告する。特筆すべきは、石炭紀のコノドントとして報告されていた標本の多くがペルム紀または三畳紀のものであり、石炭紀のものだと断定できる標本が無いことである。その結果、同地域で確認できる最も古い岩石の年代はシスウラリアン世（前期ペルム紀）となり、同地域から報告されている最も古い放散虫の年代とほぼ一致した。