Chip-Scalable, Room-Temperature, Zero-Bias, Graphene-Based Terahertz Detectors with Nanosecond Response Time

Mahdi Asgari, Elisa Riccardi, Osman Balci, Domenico De Fazio, Sachin M. Shinde, Jincan Zhang, Sandro Mignuzzi, Frank H. L. Koppens, Andrea C. Ferrari, Leonardo Viti, and Miriam S. Vitiello*

ABSTRACT: The scalable synthesis and transfer of large-area graphene underpins the development of nanoscale photonic devices ideal for new applications in a variety of fields, ranging from biotechnology, to wearable sensors for healthcare and motion detection, to quantum transport, communications, and metrology. We report room-temperature zero-bias thermoelectric photodetectors, based on single- and polycrystal graphene grown by chemical vapor deposition (CVD), tunable over the whole terahertz range (0.1−10 THz) by selecting the resonance of an on-chip patterned nanoantenna. Efficient light detection with noise equivalent powers <1 nWHz−1/2 and response time ~5 ns at room temperature are demonstrated. This combination of specifications is orders of magnitude better than any previous CVD graphene photoreceiver operating in the sub-THz and THz range. These state-of-the-art performances and the possibility of upscaling to multipixel architectures on complementary metal-oxide-semiconductor platforms are the starting points for the realization of cost-effective THz cameras in a frequency range still not covered by commercially available microbolometer arrays.

KEYWORDS: photodetectors, graphene, terahertz, nanophotonics, chemical vapor deposition

INTRODUCTION

Terahertz (THz) radiation (30−300 μm) lies in the infrared region of the electromagnetic spectrum located between microwaves (300 MHz to 300 GHz) and visible (430−770 THz) and is appealing for a number of applications in astrophysics, high-resolution spectroscopy, biomedical imaging, security, wireless communications, and quantum science. A key requirement is the development of an industrial-scale, reliable, inexpensive production process, not yet achieved for devices operating at THz frequencies, due to the lack of high-volume, wafer-scale, and low-cost technologies.

The advent of grain-of-rice-size THz lasers on a chip, operating at 250 K, a temperature reachable with a plug-in cooler, and chip-scale THz frequency combs will trigger the development of compact and technologically relevant THz systems. However, producing low-cost (<10k $) and scalable multipixel THz detectors operating at room temperature (RT), with noise equivalent powers (NEP) < 1 nWHz−1/2, suitable for real-time detection or quantum applications, is still elusive, in particular for operating frequencies >2THz, appealing for broadband integrated systems comprising miniaturized quantum cascade laser (QCL) combs. Focal plane arrays, the most commonly employed architectures for multipixel imaging, are currently based on either microbolometers or complementary metal-oxide-semiconductor (CMOS) image sensors. Commercially available microbolometers have a low NEP ~ 30 pWHz−1/2, with a slow response time (τ) in the range ~10−1000 μs. CMOS-based field effect transistors (FETs) show τ < 1 μs and their NEP decreases (63 pWHz−1/2 at 2.5 THz) when reducing the gate lengths to 90 nm. However, this hampers

Received: July 28, 2021
Accepted: October 12, 2021
Published: October 27, 2021
 ACS Nano

 Article

the device cost-effectiveness, in particular, for high (>2.5 THz) frequencies.13

An option to overcome these limitations is to integrate large-area (cm\(^2\)) single-layer graphene (SLG) with existing CMOS readout integrated circuit (ROIC) architectures,14,15 taking advantage of well-established, high-volume, and low-cost silicon technology. Graphene-CMOS integration is now feasible thanks to the progress in scalable SLG production and transfer.15–23 Broadband image sensor arrays operating from ultraviolet (4–400 nm) to short-wave infrared (SWIR, 900–2000 nm) have been realized by integrating large-area CVD graphene with CMOS.14 The integration of CVD SLG with lithium niobate, a thermally polarizable material, resulted in mid-infrared pyroelectric bolometers with state-of-the-art performance14,15 (≥ 100 cm\(^2\) V\(^{-1}\) s\(^{-1}\)) and a low device noise (\(\sim R T\)) that is expected to dominate at RT.29 Our PTE GPDs show NEP on the order of 1 nWHz\(^{-1/2}\) and \(r \sim 5\) ns, much faster than any commercially available RT microbolometer.11 When compared to nonscalable GFET detectors, realized with high-mobility (15.000–53.000 cm\(^2\) V\(^{-1}\) s\(^{-1}\)) hBN-encapsulated graphene,26,29 the NEP reported in this work is 1 order of magnitude larger. We ascribe this to the magnitude of the Seebeck coefficient (\(S_b\)) in CVD SLG, proportional to the PTE photoreponse, which is expected to be significantly smaller (\(\sim 10–50\) \(\mu V K^{-1}\)) than that achieved in exfoliated and hBN-encapsulated SLG (up to 180 \(\mu V K^{-1}\)). Growth-level grain-size control,24 large-area hBN encapsulation,25 and/or dielectric encapsulation25 can close this performance gap.

RESULTS AND DISCUSSION

Device Design and Fabrication. SLG SC and poly-crystalline films are grown and transferred on Si (350 \(\mu m\), resistivity >1000 \(\Omega \cdot cm\)) covered with 285 nm SiO\(_2\), as discussed in Methods. We employ two growth approaches in order to determine whether the material synthesis method plays a significant role in the GPD performances. We use two architectures, the first based on single-top-gated GFETs, integrated in a planar bow-tie antenna (antenna radius \(R_a = 24 \mu m\), flare angle \(\alpha = 90^\circ\)), the second relying on a set of split-gate p-n junctions, integrated either in a planar bow-tie, or in a linear dipole antenna (total antenna length \(2R_a = 48 \mu m\)), Figures 1a,b. The antenna dimensions are selected based on the electromagnetic simulations Figures 1c,d, where we use a commercial finite element method (FEM) software (COMSOL Multiphysics) to evaluate the electric field enhancement at the center of the antenna, as a function of \(R_a\) and \(R_b\) when a 2.8 THz wave impinges on the GPDs. We also evaluate the antenna response as a function of imposing radiation frequency, using an antenna half-length of 24 \(\mu m\), identical to that used for the experiments (Figure 1a,b). In the model, the THz wave, polarized parallel to the antenna axis, impinges on the detector from the air side. The simulation results (Figure 1e,f) indicate that the two antenna geometries have different response bandwidths. The calculated percent bandwidth, defined as the ratio between absolute bandwidth and central frequency,27 is 44% for the bow-tie configuration, and 12.5% for the linear dipole one.

Both geometries (Figures 1a,b) are expected to induce PTE rectification when the sensing element is illuminated by THz radiation, with a different principle. For a single-top-gated system, \(\Delta T_e\) is generated, asymmetrically with respect to the GFET channel, in the gap between the bow-tie antenna arms constituted by the source (s) and gate (g) electrodes, and directed toward the source side of the GFET. Simultaneously, a different \(S_b\) is established along the channel, due to the different work functions of metal leads and SLG, producing a charge transfer, with a consequent shift of chemical potential in the SLG area under s and drain (d) electrodes.35,42 A further \(S_b\) difference can be induced by applying a bias (\(V_g\)) to the top-gate electrode.29 This allows selection of the optimum \(S_b\) to maximize the PTE photoreponse. In the p-n junction architecture, the electronic distribution is symmetrically heated in the area corresponding to the antenna gap. In this case, the voltages applied to the left (\(V_{g1}\)) and right (\(V_{g2}\)) gates are responsible for creating the required \(S_b\) asymmetry along the channel.
For all GPDs, we employ a common channel geometry, with channel length \(L_c = 4 \mu m \). We vary the channel width \(W_c \) between 0.8 and 1.8 \(\mu m \). The transferred large (\(\text{cm}^2 \)) area SLG is etched in O\(_2\) plasma to realize electron beam lithography (EBL) patterned U-shaped structures to increase the SLG-metal interface at the s and d electrodes (Figure 1). This shape is chosen to avoid geometric overlap between top-gates and underlying electrodes, thus allowing the use of a thin (40 nm) oxide film as gate dielectric, maximizing the gate-to-channel capacitance per unit area (\(C_{\text{Ga}} \)), while reducing leakage currents and the chance of dielectric breakdown. The SLG channels are annealed in Ar at 280 °C for 2 h before starting the fabrication of the devices. This step reduces the p-doping, leading to reduction of intrinsic charge carrier density, \(n_{0} \), from \(5 \times 10^{12} \) to \(0.5 \times 10^{13} \) cm\(^{-2}\) with respect to non-annealed samples without degrading the material quality.\(^{35}\) The s and d contacts are then realized by EBL and Cr/Au thermal evaporation (5/100 nm). The top-gate oxide layer (HfO\(_2\), thickness \(t_{\text{ox}} = 40 \text{ nm} \)) is lithographically defined and grown by atomic layer deposition (ALD) in an OpAL reactor (Oxford Instruments). Considering the permittivity of Hafnium oxide \(\varepsilon_r = 19.8,^{43} \) the resulting gate-to-channel capacitance per unit area is \(C_{\text{Ga}} = \varepsilon_r \varepsilon_0 / t_{\text{ox}} \sim 0.44 \mu F \text{ cm}^{-1}. \) ALD is used because of its compatibility with wafer-scale processing. The top-gates are then defined by EBL and established by metallization (5/100 nm Cr/Au) and lift-off. Scanning electron micrograph (SEM) images of two GPDs are in Figure 1a,b, together with a summary of the relevant geometrical parameters.

Single Gate GFETs. We then test the transport properties of the devices. From the characterization of the channel resistance (\(R \)) curve as a function of \(V_{g} \) we extract the field-effect mobility (\(\mu_{\text{eff}} \)), the contact resistance (\(R_0 \)) and \(n_0 \) by using the fit function \(R = R_0 + (L_c/W_c)/(1/n_2d\mu_{\text{eff}}) \),\(^{30}\) where \(n_{2d} \) is the gate-dependent charge density, given by \(n_{2d} = \{C_{\text{Ga}}/e (V_C - V_{\text{CNP}})\}^{1/2}. \) Figure 2a plots \(R(V_g) \) for one of the single-top-gated bow-tie GPDs. The e/h branch asymmetry with respect to the CNP can be ascribed to their different scattering cross section in the vicinity of charged impurities.\(^{31}\) Using the GFET transconductance, it is possible to determine the physical mechanism underlying THz detection. In particular, we numerically evaluate the expected dependence of the photovoltage as a function of \(V_g \) in the cases of a detection dominated by the PTE or by the overdamped plasma wave (OPW) mechanisms. In the PTE case, the photovoltage amplitude (\(V_{\text{PTE}} \)) is proportional to the electronic temperature gradient along the graphene channel (\(\Delta T_e \)),\(^{29} \) and its dependence with respect to \(V_g \) is determined by the difference between the Seebeck coefficients of the gated (\(S_{\text{bg}} \)) and ungated (\(S_{\text{bu}} \)) portions of the channel:\(^{29} \) \(V_{\text{PTE}} = \Delta T_e(S_{\text{bg}} - S_{\text{bu}}). \) \(S_{\text{b}} \) can be extracted from \(R(V_{g}) \) (Figure 2a) by using the Mott equation.\(^{29} \) In FETs operating at room temperature, the OPW mechanism typically interplays with the PTE response, and their individual contributions are often not easy to disentangle in single-gated geometries.\(^{32}\) However, the dependence of the OPW response (\(V_{\text{OPW}} \)) with respect to \(V_g \) slightly differs from the PTE one. In particular, it is proportional to the F-factor of the FET, defined as\(^{29} \) \(F = -1/\sigma \times \partial \sigma/\partial V_g \) where \(\sigma \) is the static conductivity of the FET channel. For GFETs, both \(F \) and \(V_{\text{OPW}} \) cross zero at the charge neutrality point (\(\text{CNP} \))\(^{29,32} \) and are expected to be negative for n-doping and positive for p-doping.\(^{29,52} \) The curves in Figure 2b are calculated from \(R(V_g) \) (Figure 2a) and represent a direct comparison of the two mechanisms for the single-gated device. Importantly, the PTE mechanism entails a double sign change of the photovoltage in proximity of the Dirac point,\(^{29} \) not expected in the plasma wave effect.\(^{52} \)

The optical response of the GPDs is then tested using a quantum cascade laser (QCL) at 2.8 THz, with a maximum...
average output power ~ 1 mW (see Methods).29 We measure the photovoltage with a lock-in amplifier and calculate the voltage responsivity, R_v (Figure 2c,d), defined as the measured electric signal divided by incoming radiation power; see Methods. Figure 2d is the V_g dependent R_v collected while the QCL illuminates the detector from the air-side (blue curve). The sign of R_v changes twice across the V_g sweep, in agreement with previous findings on PTE-GFET THz GPDs.28−30 We then collect the photoresponse when the QCL radiation impinges on the GPD from the substrate. This gives a photovoltage increase of a factor ~ 4 (light-blue curve, Figure 2d), ascribed to the increased directivity of the bow-tie antenna toward the substrate.53 The comparison between Figure 2b and the experimental responsivity in Figure 2d clearly shows that the measured photoresponse is dominated by the PTE mechanism and cannot be generated by a dominant OPW effect.

We estimate the gate bias dependent NEP (Figure 2e), defined as the ratio between the GPD noise spectral density (NSD, noise voltage per unit bandwidth) and R_v. We approximate the NSD with the Johnson–Nyquist noise28,29 $N_{\text{JN}} = (V_{\text{th}}^2)/2 = (4k_BRT)/2$, where k_B is the Boltzmann constant and $T = 300$ K is the heat sink temperature. In order to prove the validity of this approximation, we directly measure the GPD NSD using a spectrum analyzer (Figure 2c). At low frequencies (<1 kHz), the noise figure is dominated by the contribution of the flicker ($1/f$) noise, in agreement with ref 39. Above 5 kHz, the $1/f$ noise becomes negligible and noise is instead dominated by N_{JN}. Figure 2e plots R_v for QCL modulation frequencies 1.334 to 43.33 kHz (see Methods), demonstrating that R_v is independent of modulation frequency, in this range. The NEP as a function of V_g is in Figure 2e with a minimum ~ 3 nWHz$^{-1/2}$ for air-side illumination and ~ 600 pWHz$^{-1/2}$ when illuminated from the substrate.

The method used for the characterization of the response time is the same as in refs 28–30 for THz detectors and in ref 38 for mid-IR detectors. When the pulsed QCL is operated in the negative differential resistance (NDR) regime, its emission becomes intermittent, and transitions between off and on states occur with rise and fall times ~ 1 ns.29,30 Thus, the
dynamics of the source are faster than those of the GPDs, and the intensity fluctuations can then be used to estimate the receiver response time. We then drive the QCL in pulsed mode in the NDR state. The GPD output is preamplified and monitored with a fast oscilloscope, with readout bandwidth = 1.1 GHz (see Methods). The setup allows us to evaluate detector $\tau \sim 1$ ns or larger (anything faster than that would be setup-limited). Figure 2f shows one of the QCL intensity fluctuations (on–off–on) retrieved by a single-gated GFET for $V_g = -0.5$ V, giving $\tau \sim 6 \pm 0.3$ ns.

PN Junction Devices. We then characterize the p-n junction devices by collecting resistance (Figure 3a) and R_V (Figure 3b) while sweeping V_{GL} and V_{GR}.

The field effect is visible in the resistance map (Figure 3a) of a representative p-n junction GPD, showing 4 regions, corresponding to the different doping in the two sides of the junction. Considering a horizontal line cut across the map of R and using the fitting procedure described in ref 50 gives $\mu_{FE}(e) = 480$ cm2 V$^{-1}$ s$^{-1}$, $\mu_{FE}(h) = 1080$ cm2 V$^{-1}$ s$^{-1}$, and $n_0 = 5 \times 10^{11}$ cm$^{-2}$.

We then measure the R_V map by illuminating the sample from the air-side. In the case of hot-carrier-assisted photodetection, the photoresponse is proportional to the S_b difference in the two differently doped regions of the junction. As a consequence of the non-monotonic nature of S_b, the photovoltage exhibits multiple sign switches, resulting in the characteristic sixfold pattern (Figure 3b), the signature of PTE-driven detection.54 Under the assumption of a NSD dominated by thermal fluctuations (Johnson–Nyquist noise), we extract NEP following the procedure described before, reaching ~ 1.3
nWHz$^{−1/2}$ for $V_{gl} = −2$ V, $V_{gr} = 1.7$ V, which defines a p-n junction at the geometrical center of the SLG channel. The NEP map inherits the sixfold pattern of the R_0 map (Figure 3c). Figure 3d presents a comparison between the responsivity measured when the p-n junction GPD is illuminated from the air-side and from the substrate, showing an increase of a factor of ~ 2 in the latter case, in agreement with the expected increase in the antenna directivity toward the Si substrate.

We then characterize τ of the p-n junction devices, in analogy with the single-gated GFETs. Figure 3d plots the time traces of the optical response recorded for a representative GPD, for different gate configurations, while driving the QCL in the NDR regime. In agreement with the sixfold patterns, the signal waveforms have different signs, corresponding to different S_b on the left and right sides of the junction. For example, when $V_{gl} = V_{gr} = 2$ V, the signal drops to zero, because S_b does not change across the junction. By fitting the measured time traces, we extract a minimum τ $\sim 5.2 \pm 0.4$ ns for $V_{gl} = 2$ V, $V_{gr} = −2$ V, i.e., when the p-n junction is activated.

We then investigate 25 GPDs fabricated following the two architectures described above. Among them, 4 were not working properly and showed NEP $> 10 \mu$WHz$^{−1/2}$ and are not considered in the following discussion. This gives a yield of $>80\%$. The scatter plot of the minimum NEP as a function of n_0 (Figure 4a) shows a positive correlation between the two quantities, with a Pearson correlation coefficient (see Methods), $\rho_p \sim 0.8$. Therefore, a lower SLG doping is desirable to improve NEP. On the other hand, the scatter plot of the minimum NEP as a function of μ has a negligible correlation $\rho_p = −0.2$ (Figure 4b). Similarly, the contact resistance $R_0 = R_0 W_c$ plays a minor role in determining the NEP ($\rho_f = 0.1$, Figure 4c), with respect to n_0 which appears to be the dominant electrical factor in the optical performance. This can be intuitively related with the PTE mechanism, n_0 which depends on the material quality, affects the magnitude of S_c. Beside this, ΔT_μ is larger for lower n_0, because the heat capacity is smaller. Lower n_0 gives a lower NEP. Since, from our findings, the dependence between NEP and μ is much weaker, n_0 is the decisive electrical parameter in the PTE-GPD performance. Figure 4a shows similar performance between GPDs with bow-tie or linear dipole antennas, consistent with the numerical simulations of Figure 1. Single-gated GFETs show a slightly better NEP (a factor ~ 2 lower, on average) with respect to split-gate architectures. This makes single-gated GFETs more promising for the realization of large arrays of detectors, being easier to fabricate and more practical to operate, with only one electrode to be biased. A detailed statistical analysis of the device-to-device variability of optoelectronic parameters is reported in the Methods section.

By analyzing the effect of W_c (0.8–2 μm) on the detection performance, we conclude that, even though the dependence is weak, the NEP increases for narrower channels (Figure 4f) as a consequence of the increased device resistance (Figure 4d) that translates to an increase of NSD, not fully counterbalanced by R_0, Figure 4c.

CONCLUSIONS

We prepared antenna-coupled GPDs operating at 2.8 THz exploiting large-area single-crystal and polycrystalline CVD graphene. These combine high sensitivity (with a low NEP \sim nWHz$^{−1/2}$) and low response time (~ 5 ns), enabled by the combination of PTE with fast readout electronics and on-chip
high bandwidth architectures. These performances make them competitive with other room-temperature technologies operating in the 3–6 THz range. Zero-bias, zero-power consumption PTE detectors provide an advantage to meet the requirements of low cost and low SWaP (size, weight, and power) of room-temperature THz cameras. The broadband nature of the PTE rectification can be exploited for multifrequency detecting platforms. Optimization of thermoelectric properties could be achieved by transferring SLG on alternative dielectric to reduce the residual carrier concentration at the charge neutrality point and bring S_g in the 100 μV K$^{-1}$ range. The dielectric environment can affect the charge inhomogeneity and the residual carrier concentration at the charge neutrality point, which, in turn, has an influence on the Seebeck coefficient (and NEP as demonstrated in Figure 4a). This correlation stems from the resulting graphene quality and from the different densities of free and trapped charges in the different substrates. The possibility to combine scalable large-area CVD graphene with large-area scalable hBN, in scalable heterostructures, promises significant performance improvements. Large-scale integration could be achieved by implementing a technological flowchart fully compatible with standard CMOS readout integrated circuits.

METHODS

Graphene Growth and Transfer. SLG SCs are grown via CVD on Cu, Figure 5a, in a Aixtron Black Magic on 35-μm-thick Cu foil, electropolished using a solution containing 450 mL deionized (DI) water, 225 mL ortho-phosphoric acid 85% (H_3PO_4), 225 mL ethanol, 45 mL isopropanol, and 7.2 g urea. 60 mL of this solution is poured in a staining jar. Next, a Cu foil is placed in the filled jar and connected to the positive terminal of a current generator. A thicker (∼0.7 mm) Cu plate is placed in the jar parallel to the Cu foil at a distance ∼2.5 cm and connected to the negative terminal of the current generator. A current ∼1.5 A is then passed for 90 s to smooth and clean the Cu foil surface. The foil is then loaded in the furnace to perform the CVD growth by raising T from RT to ∼1000 °C in Ar. The pressure is kept constant ∼25 mbar throughout the whole process. These conditions are then held for 30 min to anneal the Cu foil. 50 sccm H$_2$ and 30 sccm 0.01% diluted CH$_4$ in Ar are then added to the chamber to trigger the growth of SLG, which lasts ∼3 h. The sample is then cooled to RT and unloaded from the furnace. A4−950 K poly(methyl methacrylate) polymer (PMMA) is spin-coated at 4000 rpm on the SLG+Cu surface. This is then placed on a solution of 3 g of ammonium persulfate in 100 mL DI water to etch Cu. Once Cu is etched, PMMA+SLG is transferred to a beaker with DI water for rinsing and then lifted with the target over a Si substrate (350 μm, resistivity >10 000 Ωcm) covered with SiO$_2$ (300 nm) and left to dry overnight. This substrate choice is technologically attractive thanks to its scalability and affordability. The PMMA is finally removed with acetone, leaving SLG on SiO$_2$/Si.

Raman spectroscopy is performed to monitor the SLG quality with a Renishaw inVia spectrometer at 514 and 532 nm and a 100× objective lens. The blue curve in Figure 5b shows the Raman spectrum of SLG on Cu after subtracting the Cu photoluminescence. The single Lorentzian (2D peak) at ∼2691.3 ± 0.1 cm$^{-1}$ with full-width at half-maximum (FWHM) of ∼25 cm$^{-1}$ is consistent with SLG. The G peak position is Pos(G) ∼ 1585.1 ± 0.2 cm$^{-1}$ and FWHM(G) ∼ 16.4 ± 0.7 cm$^{-1}$. The 2D to G area and intensity ratios are A(2D)/A(G) ∼ 4.67 ± 0.22 and I(2D)/I(G) ∼ 3.6 ± 0.4. We then wet-transfer SLG on SiO$_2$/Si. Next, we recheck the SLG quality to confirm that this is not affected by the transfer process. The red curve in Figure 5b is a representative Raman spectrum of SLG on SiO$_2$/Si. The position of the 2D peak, Pos(2D), is ∼2685.3 ± 0.3 cm$^{-1}$, with FWHM(2D) ∼ 36.9 ± 0.2 cm$^{-1}$; Pos(G) ∼ 1595.2 ± 0.1 cm$^{-1}$, FWHM(G) ∼ 11.8 ± 0.2 cm$^{-1}$. T. A(2D)/A(G) ∼ 4.39 ± 0.04, I(2D)/I(G) ∼ 1.49 ± 0.08. These indicate ∼250 ± 50 meV p-type doping. The D peak ∼ 1352.8 ± 0.6 cm$^{-1}$ has an intensity ratio with respect to the G peak I(D)/I(G) ∼ 0.046 ± 0.003, indicating a small defect density of ∼(1.7 ± 0.4) × 1010 cm$^{-2}$.

Continuous polycrystalline SLG is grown on ∼30-μm-thick Cu foil by low-pressure CVD (LPCVD). Before growth, the foil is annealed at 1050 °C for 2 h under H$_2$ (100 sccm) at 1 atm and cooled to RT. For the growth, the system is heated to 1050 °C with 50 sccm H$_2$ at 0.4 Torr, and the Cu foil is annealed for 2 h. 5 sccm CH$_4$ is introduced to initiate growth, and the CH$_4$ flow is stopped after 30 min to terminate it. The system is cooled to RT under 50 sccm H$_2$ in 60 min. To transfer SLG, the top side of SLG/Cu is spin-coated with PMMA (A4 950) at 1000 rpm for 60 s. PMMA/SLG/Cu is then baked on hot plate at 80° for 10 min. SLG on the Cu back side is removed by O$_2$ plasma. Electrochemical doping is carried out by applying voltage to a Pt anode and PMMA/SLG/Cu cathode in a NaOH aqueous solution (1 M). A voltage potential of 2 V is held in the two-electrode system. Delamination completes within a few seconds, and the PMMA/SLG stack floats on electrolyte. The stack is then transferred into DI water and scooped out onto SiO$_2$/Si, dried overnight, and then baked at 80 °C for 10 min. PMMA is dissolved in acetone. The sample is rinsed in IPA and dried.

As grown and transferred SLG is characterized by Raman spectroscopy. A statistical analysis is performed to estimate doping and defect density. The errors are calculated from the standard deviation across different spectra, the spectrometer resolution (∼1 cm$^{-1}$), and the uncertainty associated with the different methods to estimate the doping from Pos(G), FWHM(G), I(2D)/I(G), A(2D)/A(G), and Pos(2D). The Raman spectrum of as-grown polycrystalline continuous SLG on Cu is in Figure 5c, after Cu PL removal. The 2D
peak is a single Lorentzian with FWHM\(2D\) \(\sim\) 24 ± 3 cm\(^{-1}\), signature of SLG.\(^{29}\) Pos\(G\) \(\sim\) 1585 ± 2 cm\(^{-1}\), FWHM\(G\) \(\sim\) 16 ± 2 cm\(^{-1}\), Pos\(2D\) \(\sim\) 2703 ± 4 cm\(^{-1}\), \(\Delta I(2D)/I(G)\) \(\sim\) 3.6 ± 0.4, \(A(2D)/A(G)\) \(\sim\) 5.5 ± 0.7. No D peak is observed, indicating negligible Raman active defects.\(^{60,65,66}\) The Raman spectrum after transfer on SiO\(_2\)/Si is in Figure 5c. The 2\(D\) peak retains its single-Lorentzian line shape with \(\Delta I(2D)/I(G)\) \(\sim\) 0.4, indicating a D-G signature.\(^{29}\)

Fabrication Details. Large-area CVD graphene offers the possibility to fabricate multiple devices in parallel. Figure 6a shows 12 GFETs. As-fabricated samples are then mechanically cleaved and mounted on ceramic chip carriers for electrical and optical testing (Figure 6b).

Optical Characterization. We employ a 2.8 THz QCL driven in pulsed mode (repetition rate 40 kHz, duty cycle 4%). The laser pulses are modulated by a square wave envelope with frequency ranging from 1.334 to 43.33 kHz, simultaneously acting as reference for lock-in detection. The 40\(^\circ\) divergent optical beam emitted from the QCL facet is first collimated and then focused by two TPX lenses, reaching a spot-size with FWHM \(\sim\) 300 \(\mu\)m. A set of motorized linear stages provides precise positioning of the detector in the focal point. The total power \(P_\text{f}\) over a 3 \(\times\) 5 cm\(^2\) area around the beam spot is measured with an absolute THz power/energy meter (Thomas Keating). Since our GPDs active areas are much smaller than the beam waist, the fraction of optical power delivered to the GPDs, \(P_\text{u}\), is estimated as \(P_\text{f} \times S_\text{i}/S_\text{j}\), where \(S_\text{i}\) is the beam spot area and \(S_\text{j}\) = \(\lambda/4\) is the diffraction limited area.\(^{29}\) The photoresponse \(V_{\text{dc,fs}}\) is measured between the \(s\) and \(d\) electrodes with a lock-in (SR5210) over a voltage preamplifier (dLInstruments) having gain \(G = 1000\). The photovoltage \(\Delta u\) and \(R_\text{p}\) are then calculated as \(\Delta u = 2.2 \times V_{\text{dc,fs}}/G\) and \(R_\text{p} = \Delta u/P_\text{u}\). \(\tau\) is determined by recording the time traces of \(\Delta u\) with an oscilloscope (Tektronix DPO5204, 2 GHz bandwidth), when the QCL is driven in the negative differential resistance region.\(^{29}\) \(\Delta u\) is preamplified with a 1.1 GHz amplifier (Femto DUPVA) using a gain of 70 dB. The input impedance of the preamplifier (50 \(\Omega\)) is much

Figure 6. (a) Optical microscope image of 12 devices on Si/SiO\(_2\). (b) Photograph of a chip mounted on a ceramic carrier for dc electrical characterization.

Figure 7. (a) Distribution of NEPs. The solid line represents a fitting normal distribution (note that the x-axis is in log-scale). The calculated mean values and IQR are 4.3 nWHz\(^{-1/2}\) and 3.3 nWHz\(^{-1/2}\), respectively. (b) Distribution of the residual carrier density \(n_0\), with mean \(\sim 1.17 \times 10^{12} \text{ cm}^{-2}\) and IQR \(\sim 0.63 \times 10^{12} \text{ cm}^{-2}\). The solid line represents a Gaussian fit to the data. (c) Distribution of \(\mu_\text{on}\), with mean \(\sim 2590 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}\) and IQR \(\sim 1780 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}\). The solid line represents a normal distribution fit to the data. (d) Distribution of contact resistance, with mean \(\sim 8250 \Omega \mu\text{m}\) and IQR \(\sim 4530 \Omega \mu\text{m}\). The solid line represents a log-normal distribution function.
smaller than the GFET resistance (~10 kΩ), thus producing a signal loss ~200 through the corresponding voltage divider.

Correlation Analysis. In order to characterize the correlation between our GPDs optical and electrical performances, we use the Pearson (product-moment) correlation coefficient, \(\rho \), a measure of the linear correlation between two variables.\(^{[61]}\) Given the data sets \(p \) and \(q \), each with \(N \) observations, \(\rho \) is defined as\(^{[62]}\)

\[
\rho(p, q) = \frac{1}{N-1} \sum_{i=1}^{N} \frac{(p_i - \bar{p})(q_i - \bar{q})}{\sigma_p \sigma_q}
\]

where \(\bar{p} \) and \(\bar{q} \) are the mean values and \(\sigma_p \) and \(\sigma_q \) are the standard deviations for \(p \) and \(q \) respectively. As a result, \(\rho \) is a value in the range \((-1,1)\), where \(\rho = 1 \) (\(\rho = -1 \)) indicates a positive (negative) linear dependence and \(\rho = 0 \) indicates no linear correlation between the two variables.

Device-to-Device Performance Variability. Performance variability is important in view of upscaling the technology to multi-pixel architectures.\(^{[63]}\) Therefore, we evaluate the variability of 4 detector parameters: NEP, \(n_0 \), \(\mu_0 \), and \(R_0 \). These show a normal distribution in logarithmic scale (Figure 7).

We calculate each variable's statistical dispersion as the interquartile range (IQR),\(^{[64]}\) defined as the difference between the upper and lower quartiles of a data set. The results of this analysis are reported in Figure 7 and show that the detector NEP has a variability \(~3.3\ nWHz^{-1/2}\), which is a large fraction of the mean NEP (4.3 nWHz^{-1/2}) and much larger than the minimum NEP (1.1 nWHz^{-1/2}). The variability of NEP then represents a critical aspect in the future development of multipixel arrays architectures.

AUTHOR INFORMATION

Corresponding Author

Miriam S. Vitiello — NEST, CNR - Istituto Nanoscienze and Scuola Normale Superiore, 56127 Pisa, Italy; Email: miriam.vitiello@sns.it

Authors

Mahdi Asgari — NEST, CNR - Istituto Nanoscienze and Scuola Normale Superiore, 56127 Pisa, Italy
Elisa Riccardi — NEST, CNR - Istituto Nanoscienze and Scuola Normale Superiore, 56127 Pisa, Italy
Osman Balci — Cambridge Graphene Centre, University of Cambridge, Cambridge CB3 0FA, United Kingdom
Domenico De Fazio — ICFO-Institut de Ciencies Fotoniques, 08860 Castelldefels, Barcelona, Spain
Sachin M. Shinde — Cambridge Graphene Centre, University of Cambridge, Cambridge CB3 0FA, United Kingdom
Jincan Zhang — Cambridge Graphene Centre, University of Cambridge, Cambridge CB3 0FA, United Kingdom
Sandro Mignuzzi — Cambridge Graphene Centre, University of Cambridge, Cambridge CB3 0FA, United Kingdom
Frank H. L. Koppens — ICFO-Institut de Ciencies Fotoniques, 08860 Castelldefels, Barcelona, Spain; Email: orcid.org/0000-0001-9764-6120
Andrea C. Ferrari — Cambridge Graphene Centre, University of Cambridge, Cambridge CB3 0FA, United Kingdom
Leonardo Viti — NEST, CNR - Istituto Nanoscienze and Scuola Normale Superiore, 56127 Pisa, Italy; Email: orcid.org/0000-0002-4844-2081

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.nano.1c06432

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We acknowledge funding from the European Union through the Graphene Flagship, the Marie Curie H2020-MSCA-ITN-2017 TeraApps (765642), and by the European Research Council Grants (681379) SPRINT, Hetero2D, GSYNCOR, EPSRC grants EP/L016087/1, EP/K01711X/1, EP/K017144/1, EP/N010345/1, EP/V000055/1.

REFERENCES

(1) Mittleman, D. M. Twenty Years of Terahertz Imaging. Opt. Express 2018, 26, 9417–9431.
(2) Echtnerach, P. M.; Pepper, B. J.; Reck, T.; Bradford, C. M. Single Photon Detection of 1.5 THz Radiation with the Quantum Capacitance Detector. Nature Astronomy 2018, 2, 90–97.
(3) Bartalini, S.; Consolino, L.; Cancio, P.; De Natale, P.; Bartolini, P.; Taschin, A.; De Pas, M.; Beere, H.; Ritchie, D.; Vitiello, M. S.; Torre, R. Frequency-Comb-Assisted Terahertz Quantum Cascade Laser Spectroscopy. Phys. Rev. X 2014, 4, 021006.
(4) Yang, X.; Zhao, X.; Yang, K.; Liu, Y.; Liu, Y.; Fu, W.; Luo, Y. Biomedical Applications of Terahertz Spectroscopy and Imaging. Trends Biotechnol. 2016, 34, 810–824.
(5) Federici, J. F.; Schulkin, B.; Huang, F.; Gary, D.; Barat, R.; Oliveira, F.; Zimdars, D. THz Imaging and Sensing for Security Applications - Explosives, Weapons and Drugs. Sensors. Sci. Technol. 2005, 20, 2626.
(6) Ghasempour, M.; Shrestha, R.; Charous, A.; Knightly, E.; Mittleman, D. M. Single-Photon Link Discovery for Terahertz Wireless Networks. Nat. Commun. 2020, 11, 2017.
(7) Yang, X.; Vaswani, C.; Sundahl, C.; Mootz, M.; Luo, L.; Kang, J. H.; Perakis, I. E.; Eom, C. B.; Wang, J. Lightwave-Driven Gapless Superconductivity and Forbidden Quantum Beats by Terahertz Symmetry Breaking. Nat. Photonics 2019, 13, 707–713.
(8) Khaltiapour, A.; Paulsen, A. K.; Deimert, C.; Wasilewski, Z. R.; Hu, Q. High-Power Portable Terahertz Laser Systems. Nat. Photonics 2021, 15, 16–20.
(9) Vitiello, M. S.; Consolino, L.; Inguscio, M.; De Natale, P. Toward New Frontiers for Terahertz Quantum Cascade Laser Frequency Combs. Nanophotonics 2020, 10, 187–194.
(10) Simeons, F.; Meilhan, J. Terahertz Real-Time Imaging Uncooled Array Based on Antenna- and Cavity-Coupled Bolometers. Philos. Trans. R. Soc., A 2014, 372, 20130111.
(11) Szif, F. Terahertz Radiation Detectors: State-of-the-Art. Semicond. Sci. Technol. 2018, 33, 123001.
(12) Ikamas, K.; Liasuska, A.; Boppel, S.; Hu, Q.; Roskos, H. G. Efficient Detection of 3 THz Radiation from Quantum Cascade Laser Using Silicon CMOS Detectors. J. Infrared, Millimeter, Terahertz Waves 2017, 38, 1183–1188.
(13) Liasuska, A.; Bauer, M.; Boppel, S.; Mundt, M.; Khamaisi, B.; Socher, E.; Venczecvicius, R.; Minkevicius, L.; Kasalyanas, I.; Seliuta, D.; Valuis, G.; Krozer, V.; Roskos, H. G. Exploration of Terahertz Imaging with Silicon MOSFETs. J. Infrared, Millimeter, Terahertz Waves 2014, 35, 63–80.
(14) Goossens, S.; Navickaite, G.; Monasterio, C.; Gupta, S.; Piqueras, J. J.; Pérez, R.; Burwell, G.; Nikitsky, I.; Lasanta, T.; Galán, T.; Puma, E.; Centeno, A.; Presellaksa, A.; Zurutuzia, A.; Konstantatos, G.; Koppens, F. H. L. Broadband Image Sensor Array Based on Graphene—CMOS Integration. Nat. Photonics 2017, 11, 366–371.
(15) Romagnoli, M.; Sorianello, V.; Midrio, M.; Koppens, F. H. L.; Huygebaert, C.; Neumaier, D.; Galli, P.; Temp, W.; D’Errico, A.; Ferrari, A. C. Graphene-Based Integrated Photonics for Next-Generation Datacom and Telecom. Nat. Rev. Mater. 2018, 3, 392–414.
(16) Backes, C.; Abdelkader, A. M.; Alonso, C.; Andrieux-Ledier, A.; Arenal, R.; Azpeitia, J.; Balakrishnan, N.; Banzuzer, L.; Barjon, J.; Bartali, R.; Bellani, S.; Berger, C.; Berger, R.; Bernal Ortega, M. M.; Bernard, C.; Beton, P. H.; Beyer, A.; Bianco, A.; Boggild, P.; Bonaccorso, F.; et al. Production and Processing of Graphene and Related Materials. 2D Mater. 2020, 7, 022001.
Bolometer Operating at the Threshold for Circuit Quantum Electrodymanics. *Nature 2020*, *586*, 47−51.

(33) Piscanec, S.; Lazzeri, M.; Mauri, F.; Ferrari, A. C.; Robertson, J. Kohn Anomalies and Electron-Phonon Interactions in Graphite. *Phys. Rev. Lett.* 2004, *93*, 185503.

(34) Soavi, G.; Wang, G.; Rostami, H.; Purdie, D. G.; De Fazio, D.; Ma, T.; Luo, B.; Wang, J.; Ott, A. K.; Yoon, D.; Bourrelle, S. A.; Munech, J. E.; Goykhman, I.; Dal Conte, S.; Celebrano, M.; Tomadin, A.; Polini, M.; Cerullo, G.; Ferrari, A. C. Broadband, Electrically Tunable Third-Harmonic Generation in Graphene. *Nat. Nanotechnol.* 2018, *13*, 583−588.

(35) Brida, D.; Tomadin, A.; Manzoni, C.; Kim, Y. I.; Lombardo, A.; Milana, S.; Nair, R. R.; Novoselov, K. S.; Ferrari, A. C.; Cerullo, G.; Polini, M. Ultrafast Collinear Scattering and Carrier Multiplication in Graphene. *Nat. Commun.* 2013, *4*, 1987.

(36) Espinosa-Ortega, T.; Luỳ-yanchuk, I. A.; Rubo, Y. G. Magnetic Properties of Graphene Quantum Dots. *Phys. Rev. B: Condens. Matter Mater. Phys.* 2013, *87*, 205434.

(37) Tielrooij, K. J.; Piatowski, L.; Massicotte, M.; Woessner, A.; Ma, Q.; Lee, Y.; Myhro, K. S.; Lau, C. N.; Jarillo-Herrero, P.; Van Hulst, N. F.; Koppen, F. H. L. Generation of Photovoltage in Graphene on a Femtosecond Timescale Through Efficient Carrier Heating. *Nat. Nanotechnol.* 2015, *10*, 437.

(38) Tielrooij, K.-J.; Hesp, N. C. H.; Princi, A.; Lundeborg, M. B.; Pognia, E. A. A.; Banszerus, L.; Mics, Z.; Massicotte, M.; Schmidt, P.; Davydovskaya, D.; Purdie, D. G.; Goykhman, I.; Soavi, G.; Lombardo, A.; Watanabe, K.; Taniguchi, T.; Bonn, M.; Turchinovich, D.; Stampfer, C.; Ferrari, A. C.; et al. Out-of-Plane Heat Transfer in van der Waals Stacks through Electron–Hyberbolic Phonon Coupling. *Nat. Nanotechnol.* 2018, *13*, 41.

(39) Balandin, A. A. Low-Frequency 1/f Noise in Graphene Devices. *Nat. Nanotechnol.* 2013, *8*, 549−555.

(40) Castiglia, S.; Vangelidis, I.; Pusapati, V.-V.; Goldstein, J.; Autore, M.; Slipchenko, T.; Rajendran, K.; Kim, S.; Watanabe, K.; Taniguchi, T.; Martin-Moreno, L.; Englund, D.; Tielrooij, K.-J.; Hillenbrand, R.; Lidorikis, E.; Koppen, F. H. L. Plasmonic Antenna Coupling to Hyperbolic Phonon-Polaritons for Sensitive and Fast Mid-Infrared Photodetection with Graphene. *Nat. Commun.* 2020, *11*, 4872.

(41) Zak, A.; Andersson, M. A.; Bauer, M.; Matuksas, J.; Lisaukas, A.; Roskos, H. G.; Stake, J. Antenna-Integrated 0.6 THz FET Direct Detectors Based on CVD Graphene. *Nano Lett.* 2014, *14*, 5834.

(42) Bianco, F.; Perenon, D.; Convertino, D.; De Buys, S. L.; Spirito, D.; Perenon, M.; Coletti, C.; Vitiello, M. S.; Tredicucci, A. Terahertz Detection by Epitaxial-Graphene Field-Effect Transistors on Silicon Carbide. *Appl. Phys. Lett.* 2015, *107*, 131104.

(43) Bianco, F.; Miseikis, V.; Perenon, D.; Coletti, C.; Perenon, M.; Tredicucci, A. Antenna-Coupled Graphene Field-Effect Transistors as a Terahertz Imaging Array. *IEEE Trans. Terahertz Sci. Technol.* 2021, *11*, 70−78.

(44) Lim, G.; Kim, K. D.; Kim, H. G.; Lee, W.; Lee, W.; Pyun, K. P.; Cheon, S.; Lee, P.; Min, J. Y.; Ko, S. H. Enhanced Thermoelectric Conversion Efficiency of CVD Graphene with Reduced Grain Sizes. *Nanoscale* 2018, *10*, 557.

(45) Duan, J.; Wang, X.; Lai, X.; Li, G.; Watanabe, K.; Taniguchi, T.; Zebarjadi, M.; Andrei, E. Y. High Thermoelectric Power Factor in Graphene. *Proc. Natl. Acad. Sci. U. S. A.* 2016, *113*, 14272−14276.

(46) Wang, R.; Purdie, D. G.; Fan, Y.; Massabau, F. C.-P.; Braeuninger-Weimer, P.; Burton, O. J.; Blume, R.; Schloegl, R.; Lombardo, A.; Weatherup, R. S.; Hofmann, S. A. Peeling Approach for Total Conversion of Heat to Electric Power by Graphene Nanostructures. *Proc. Natl. Acad. Sci. U. S. A.* 2016, *113*, 14277−14278.

(47) Balans, C. A. Antenna Theory: Analysis and Design, 3rd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, 2005; p 700.

(48) Giovannetti, G.; Khomyakov, P. A.; Brocks, G.; Carpan, V. M.; van den Brink, J.; Kelly, P. J. Doping Graphene with Metal Contacts. *Phys. Rev. Lett.* 2008, *101*, 026803.

(49) Song, S. M.; Park, J. K.; Sul, O. J.; Cho, B. J. Determination of Work Function of Graphene Under a Metal Electrode and Its Role in Contact Resistance. *Nano Lett.* 2012, *12*, 3887−3892.
(50) Kim, S.; Nah, J.; Jo, I.; Shahrjerdi, D.; Colombo, L.; Yao, Z.; Tutuc, E.; Banerjee, S. K. Realization of a High Mobility Dual-Gated Graphene Field-Effect Transistor with Al$_2$O$_3$ Dielectric. *Appl. Phys. Lett.* 2009, 94, 062107.

(51) Chen, J.-H.; Jang, C.; Adam, S.; Fuhrer, M. S.; Williams, E. D.; Ishigami, M. Charged-Impurity Scattering in Graphene. *Nat. Phys.* 2008, 4, 377–381.

(52) Bandurin, D. A.; Gayduchenko, I.; Cao, Y.; Moskotin, M.; Principi, A.; Grigorieva, I. V.; Goltsman, G.; Fedorov, G.; Svintsov, D. Dual Origin of Room Temperature Sub-Terahertz Photoresponse in Graphene Field Effect Transistors. *Appl. Phys. Lett.* 2018, 112, 141101.

(53) Jiang, Z.; Wang, Y.; Chen, L.; Yu, Y.; Yuan, S.; Deng, W.; Wang, R.; Wang, Z.; Yan, Q.; Wu, X.; Zhang, X. Antenna-Integrated Silicon—Plasmonic Graphene Sub-Terahertz Emitter. *APL Photon.* 2021, 6, 066102.

(54) Gabor, N. M.; Song, J. C. W.; Ma, Q.; Taychatanapat, T.; Watanabe, K.; Taniguchi, T.; Levitov, L. S.; Jarillo-Herrero, P. Hot Carrier-Assisted Intrinsic Photoresponse in Graphene. *Science* 2011, 334, 648–652.

(55) Lagatsky, A. A.; Sun, Z.; Kulmala, T. S.; Sundaram, R. S.; Milana, S.; Torrisi, F.; Antipov, O. L.; Lee, Y.; Ahn, J. H.; Brown, C. A.; Sibbett, W.; Ferrari, A. C. 2 μm Solid-State Laser Mode-Locked by Single-Layer Graphene. *Appl. Phys. Lett.* 2013, 102, 013113.

(56) Bruna, M.; Ott, A. K.; Ijas, M.; Yoon, D.; Sassi, U.; Ferrari, A. C. Doping Dependence of the Raman Scattering in Electrochemically Top-Gated Graphene Transistor. *Nat. Nanotechnol.* 2014, 8, 7432–7441.

(57) Ferrari, A. C.; Robertson, J. Interpretation of Raman Spectra of Disordered and Amorphous Carbon. *Phys. Rev. B: Condens. Matter Mater. Phys.* 2000, 61, 14095.

(58) Asuero, A. G.; Sayago, A.; González, A. G. The Correlation Coefficient: An Overview. *Crit. Rev. Anal. Chem.* 2006, 36, 41–59.