OBJECTIVE. The importance of signal transduction in cell activities has been generally accepted. The purpose of this study was to analyze the regulatory effect of intracellular signaling cascade-associated genes on rat liver regeneration (LR) at transcriptional level. **Material and methods.** The associated genes were originally obtained through a search of the databases and related scientific publications; their expression profiles were then checked in rat LR using the Rat Genome 230 2.0 array. The LR-associated genes were identified by comparing the discrepancy in gene expression changes between the partial hepatectomy (PH) group and the sham operation (SO) group. **Results.** A total of 566 genes associated with the intracellular signaling cascade were LR related. The genes involved in nine signaling pathways including intracellular receptor-, second messenger-, nitric oxide-, hormone-, carbohydrate-mediated, protein kinase, small GTPase, ER-nuclear and target of rapamycin (TOR) signaling pathways were detected to be enriched in a cluster characterized by up-regulated expression in LR. According to their expression similarity and time relevance, they were separately classified into 5 and 5 groups. **Conclusions.** It is presumed that following PH, the second messenger-mediated signaling pathway inhibits the inflammatory response, while the protein kinase cascade and small GTPase-mediated signal transduction stimulate the immune response; the intracellular receptor-, second messenger-, small GTPase-mediated signal transduction and protein kinase cascade coordinately control cell replication; the intracellular receptor-, second messenger-mediated and ER-nuclear signaling pathways facilitate cell differentiation; the MAPK cascade and small GTPase-mediated signal transduction play a role in cytoskeletal reconstruction and cell migration; the second messenger-, small GTPase-mediated and IκB kinase/NFκB cascades take care of protein transport, etc., in LR.

Key Words: Genes associated with liver regeneration, intracellular signaling cascade, partial hepatectomy (PH), Rat Genome 230 2.0 array

Introduction

Liver is unique in its ability to regenerate rapidly even in adulthood [1]. Liver regeneration (LR) is a process during which the liver recovers its mass and function after damage due to various causes such as partial hepatectomy (PH), virus infection and intoxication [1]. This regenerative process is divided into four phases including the forepart (0.5–4 h after PH), prophase (6–12 h after PH), metaphase (16–66 h after PH) and the anaphase (72–168 h after PH) according to time-course [2], and involves a series of complex physiological and biochemical activities which include cell activation, de-differentiation, proliferation and its regulation, and re-differentiation [3]. All these activities can be modulated by the actions of various signaling pathways [4,5]. These multiple signaling pathways can be roughly categorized as extracellular and intracellular signaling pathways, based on the location of signaling molecules on the cell, the latter comprising nine pathways, i.e. the intracellular receptor-, second messenger-, nitric oxide-, hormone-, carbohydrate-mediated, protein kinase, small GTPase, ER-nuclear and target of rapamycin (TOR) signaling pathways. These nine signaling pathways are not independent of each other, but are woven into a complex network
by crosstalk among them, corporately governing a variety of biological processes such as cytokinesis, proliferation, differentiation, movement, apoptosis and immunity, etc [6,7]. We have previously discussed the regulatory action of cell surface receptor-mediated signal transduction pathways in rat LR [8]. To further comprehensively study the role of all the signaling pathways in LR, we investigated the expression patterns of intracellular signaling cascade-related genes in the regenerating liver following a partial (2/3) hepatectomy using the Rat Genome 230 2.0 array containing 1507 intracellular signaling cascade-related genes, confirming that 566 genes are LR associated. Based on the above data, their expression dynamics, interactions and actions during hepatic regeneration were further analyzed.

Material and methods

Regenerating liver preparation

The study included 276 healthy Sprague-Dawley rats (200–250 g) obtained from the Experimental Animal Center of Henan Normal University. The animals were randomly divided into 23 partial hepatectomy (PH) groups and 23 sham operation (SO) groups, with 6 rats in each group. The rats in the PH groups were subjected to an operation to remove the left lateral and median lobes of their livers, as described by Higgins & Anderson [9]. The rats were killed by cervical dislocation at 0, 0.5, 1, 2, 4, 6, 8, 12, 16, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 96, 120, 144 and 168 h post-PHx, respectively, and their livers were instantly removed. The procured livers were immediately washed three times in phosphate buffered saline (PBS) at 4°C. For each tissue of six rats for each group (total liver mass: 0.6–1.2 g) were gathered and mixed, and then stored at –80°C until use. The SO group was subjected to the same procedure as the PH group, but without liver removal. The control for both groups was normal rat liver. In the above experiments, the animal protection laws of China were strictly enforced.

RNA isolation and purification

Total RNA was isolated according to the Trizol reagent manual (Invitrogen Corporation, Carlsbad, Calif., USA) and then purified following the RNase free water for 35 min at 94°C and digested into 35–200 bp cRNA fragments. The hybridization buffer was prepared according to the Affymetrix protocol and the prehybridized Rat Genome 230 2.0 microarray was added to it. Hybridization was then carried out in a rotating chamber (60 rpm, 16 h, 45°C). After the superfluous hybridization buffer had been absorbed, the arrays were washed and stained using the GeneChip fluidics station 450 (Affymetrix Inc., Santa Clara, Calif, USA). Subsequently, they were scanned with a GeneChip Scanner 3000 (Affymetrix Inc.) and images were obtained [14].

Microarray data analysis

The images were converted to signal value using Affymetrix GCOS 1.4 software. The probe signal values were scaled to evaluate gene expression (p-value < 0.05), marginal expression (0.05 < p-value < 0.065) and no expression (p-value > 0.065). Signal values of each chip were then normalized and it was evaluated whether gene expression changed according to the ratios comparing the normalized p-value of the PH groups with that of the control groups, e.g. ratios ≥ 2, up-regulated expression genes; ratios ≤ 0.33, down-regulated expression genes. To minimize the technical error derived from the microarray analysis, regenerating liver for each time-point was measured three times with the Rat Genome 230 2.0
microarray. Their average value was calculated for corrective value use. Finally, these values were analyzed using GeneMath, GeneSpring (Silicon Genetics, San Carlos, Calif., USA) and Microsoft Excel Software (Microsoft, Redmond, Wash., USA) [14–16].

Identification of genes associated with liver regeneration

First, the nomenclatures of nine intracellular signaling pathways were adopted from the GENONTOLOGY database (www.geneontology.org), and were input into the databases at NCBI (www.ncbi.nlm.nih.gov) and RGD (rgd.mcw.edu) to identify the rat, mouse and human genes associated with the intracellular signaling cascade. In addition, according to maps of biological pathways embodied by GENMAPP (www.genmapp.org), BIOCARTA (www.biocarta.com/genes/index.asp) and KEGG (www.genome.jp/kegg/pathway.html), the genes associated with the above pathways were collated and reconfirmed by a search of the literature for the pertinent articles. The genes that exhibited a greater than 3-fold change in the rat regenerating liver were referred to as meaningfully expressed genes. Besides the rat genes, the above genes that were now known only to exist in mouse and/or humans were considered as rat homologous genes. Finally, the genes that displayed the same or similar results using the three independent analyses showed meaningful expression changes in at least one time-point, and displayed a significant difference (0.01 ≤ p < 0.05) or an extremely significant difference (p ≤ 0.01) between PO and SO by F-test, were included as being associated with rat liver regeneration.

Results

Expression changes of intracellular signaling cascade-associated genes in rat LR

According to the information from databases such as NCBI, AMIGO, BIOCARTA, KEGG, RGD and MGI, etc., 2417 genes were involved in the intracellular signaling cascade. Among them, 110, 426, 15, 9, 2, 738, 369, 26 and 3 genes related to intracellular receptor-, second messenger-, nitric oxide-, hormone-, carbohydrate-mediated, protein kinase, small GTPase, ER-nuclear and TOR signaling pathways were found in the Rat Genome 230 2.0 array. Correspondingly, 41, 169, 6, 4, 2, 271, 138, 7 and 1 genes revealed meaningful expression changes in at least single time-points after PH, and showed significant or extremely significant differences between PH and SO, and displayed reproducible results in three independent analyses using the Rat Genome 230 2.0 array, suggesting that these genes were associated with LR. Among a total of 566 genes, 309 genes were up-expressed, 183 were down-expressed, while 74 were up-expressed at some time-points and down-expressed at others during LR (up/down-regulated for short). The range of up-regulation was 3- to 128-fold compared with the control, and that of down-regulation was 3- to 32-fold (Table I available online at the journal website www.informa.com/gastro). Different genes varied greatly at the time-points when the expression was initiated and terminated, as well as during the persistence period of expression. In this case, the original time-point at which genes were meaningfully expressed is considered as the initially expressed time-point, thus the genes significantly altered in expression at this time-point are called initially expressed genes; we added together the numbers of genes with a 3-fold change or more at any time-point and obtained the total number of expressed genes during the whole regenerative period. The results demonstrated that initially up-regulated and down-regulated genes were 347 and 219, respectively, in LR. Specifically, the number of initially up- and down-regulated genes, orderly, involved in the above nine pathways was in the sequence 22 and 19, 97 and 71, 4 and 2, 4 and 0, 1 and 1, 173 and 98, 88 and 50, 5 and 2, 1 and 0 (Figure 1A). The total frequencies of up-regulation and down-regulation of the genes in LR were 1575 and 693, respectively, and in these nine pathways, the sequence was 92 and 63, 495 and 217, 21 and 2, 21 and 0, 2 and 1, 766 and 305, 356 and 168, 29 and 7, 2 and 0, respectively (Figure 1B).

Expression similarity and time relevance of intracellular signaling cascade-associated genes in LR

Based on the similarity in expression, the above 556 genes were classified into the following five clusters by H-clustering analysis: only up-, predominantly up-, only down-, predominantly down-, up/down-regulation, involving 309, 19, 183, 13 and 42 genes, respectively. According to time relevance, they were categorized into 5 groups (0.5–12 h, 6 h, 16–96 h, 18–24 h and 72–144 h) and the frequencies of up-regulation and down-regulation were 407 and 89, 74 and 24, 269 and 108, 521 and 339, 304 and 133, respectively (Figure 2A). Among 58 genes up-regulated by 10-fold or more and 26 genes down-regulated by 10-fold or more, the number of up- and down-regulated genes was 3 and 2, 21 and 7, 1 and 0, 26 and 15, 12 and 5, 0 and 1, 1 and 1, in parallel, in intracellular receptor-, second messenger-, nitric oxide-mediated, protein kinase, small GTPase, ER-nuclear and general intracellular signaling pathways (Figure 2B).
Interaction relationship among intracellular signaling cascade-associated genes in four different periods in rat LR

To answer the question of what are the interactions among the intracellular signaling cascade-related genes in the four different phases, we took advantage of the ResnetCore1.2 software database attached in pathway studio 5.0 and constructed a network map of direct physical and transcriptional interactions between these genes. The resulting network contains 1183 genes and 3793 interactions, in which genes are depicted as greater colored spheres, and molecular relationships are represented as the physical spacing between the nodes. For convenience, here 54 representative LR-related genes were selected because of the higher level of connectivity (that is, individual genes have more than 10 interaction partners on average) and were then networked. Among the genes involved in intracellular receptor-mediated, second messenger-mediated, protein kinase cascade, small GTPase-mediated signal transduction and ER-nuclear signaling pathways, the number of up- and down-regulated genes was 3 and 3, 2 and 2, 24 and 18, 6 and 2, 1 and 1, respectively (Figure 3A). On this basis, the expression kinetics was subject to analysis. The results showed that at the forepart (0.5–4 h after PH) of LR, 14 genes were up-regulated and 8 down-regulated; at prophase (6–12 h after PH), 14 genes were up- and 3 down-regulated; at metaphase (16–66 h after PH), 25 genes were up- and 19 down-regulated; at anaphase (72–168 h after PH), 14 genes were up-regulated, 6 down-regulated and 1 up/down-regulated (Figure 3B).

Discussion

The importance of signal transduction in cell activities has been generally accepted [17]. Our study demonstrated that five intracellular receptor-mediated signaling pathway-associated genes, including *ccne1* which promotes cell proliferation [18], were up-expressed during LR; while *gpr30*, which blocks cell growth and proliferation [19], was down-regulated. It was learned by a search of the peer-reviewed scientific publications that 5 genes including *sos1* involved in the small GTPase-mediated pathway, 25 genes including *igfbp1* in the second messenger-mediated pathway, 9 genes including *e2f1*, *hsbp1* and *camkk2* in the MAPK pathway promote cell growth and division [20–22]. They were all elevated at mRNA level during LR. Notably, *sos1* was predominant at 4, 54–60 and 168 h, reaching its peak at 168 h with 15-fold of control. *igfbp1* increased in expression almost for the whole LR, and showed the expression with a marked high level of 65-fold at 1 h, basically consistent with the results reported by Crissey et al. [23]. Five genes including *rfc4* related to phosphoinositide-mediated signaling and gene *brca1* in the intracellular receptor-mediated signaling pathway are required for DNA replication and repair [24]. These genes were up-regulated mainly at metaphase; *ccnd1*, increased in expression at middle phase, has a role in cell growth and proliferation via the IκB kinase/NFκB cascade [25]. Conversely, 8 IκB kinase/NFκB cascade-related up-expressed genes including *ect2*, 2 protein kinase cascade-associated genes *gps2* and *fos* negatively control proliferation [26,27]. All 4 genes including *cnr1*, participating in the second messenger-mediated signaling pathway, and 2 MAPK
Figure 2. Cluster analysis of genes associated with the intracellular signaling cascade during rat liver regeneration (LR). A total of 556 genes whose intensities varied from 3-fold or over at least at one time-point in LR were subjected to H-clustering analysis. Red, black and green represent the higher, indistinctively altered and lower mRNA levels, respectively, in relation to that of control liver. The left tree and upper tree show function and time series clusters, respectively. A. Cluster assay of a total of 556 genes. B. Cluster analysis of genes with expression levels that changed 10-fold or more during LR.
cascade-involved genes (nrtn and p2ry12) stimulate neuron growth [28,29] showed significant down-regulation at the middle phase of LR. Based on the above results, it can be inferred that regenerating hepatocyte multiplication might be controlled by the above signaling pathways.

This study indicates that differentiation-promoting gene xbp1 [30], associated with the ER-nuclear signaling pathway, was elevated in expression at 4 and 54 h post-PH, while being reduced at 144 h. In the intracellular receptor-mediated signaling pathway, 6 cell differentiation-enhancing genes containing fhl2 and rxra [31] rose significantly at the middle and late stage of LR. In the second messenger-mediated signaling pathway, 6 neurogenesis and differentiation-promoting genes including drd1a and ang1 were up-regulated in LR [32,33]. It is worth mentioning that ang1 had the highest

Figure 3. Expression dynamics and interaction of 54 intracellular signaling cascade-associated genes during rat liver regeneration (LR). The interactions of intracellular signaling cascade-associated genes were assayed by pathway studio 5.0 software. Red, green, gray and white shapes denote the up-regulated, the down-regulated, the up/down-regulated and the meaninglessly expressed genes, respectively. A. The interactions of 54 genes with closer relationships. B. Expression changes at each phase during LR.
showed the observable rise in expression in LR. Fourteen small GTPase Rab family-associated proteins (including RAB11B, RAB12 and RAB34, etc.), which are needed for vesicular traffic and protein transport [49], were significantly up-regulated at middle and late phases of LR. Three small GTPase-mediated signal transduction-related genes including limk1, and IκB kinase/NFκB cascade-participating gene vapa were able to stimulate endocytosis [50,51] and were elevated in expression mainly at the middle phase of LR. In addition, in the retinoic acid receptor signaling pathway, the retinoic acid-catabolizing gene cyp26b1 [52] displayed high expression abundance at 8 and 18 h. Almost in the whole LR, the down-regulated gene prlr inhibiting lipoprotein lipase activity [53] depending on the protein kinase cascade, fell to the lowest level of 23-fold at 0.5 h.

Taken together, the treatment of experimental material in this study is characterized by comparatively long-time and multiple time-points, and a high-throughput gene expression technique is used to investigate the expression changes and regulatory effect of genes involved in the above nine signaling pathways, post-rat PH. This facilitates investigation of the molecular mechanism of LR and gene function. After analysis, genes igfbp1, mapk8, esr, akt and crk can be preliminarily confirmed as therapeutic target candidates for liver disease. Meanwhile, this work provides a theoretical basis for studying gene therapy, selecting target genes and time-points, etc. Therefore, the above results need to be further analyzed by techniques such as protein chip, gene transfer, RNA interference, protein-interaction, and so on.

Acknowledgements
This work was supported by the National Basic Research 973 Pre-research Program of the P.R. China (No. 2006CB708506).

Declaration of interest: The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

References
[1] Michalopoulos GK. Liver regeneration. J Cell Physiol 2007;213:286–300.
[2] Taub R. Liver regeneration: from myth to mechanism. Nature 2004;5:836-45.
[3] Xu CS, Chang CF, Yuan JY, Li WQ, Han HP, Yang KJ, et al. Expressed genes in regenerating rat liver after partial hepatectomy. World J Gastroenterol 2005;11:2932-40.
[4] Staubinger JL, Lichti K. Cell Signaling and nuclear receptors: new opportunities for molecular pharmaceuticals in liver disease. Mol Pharm 2008;5:17–34.
Intracellular signaling genes in rat LR

[5] Sun Y, Deng X, Li W, Yan Y, Wei H, Jiang Y, et al. Liver proteome analysis of adaptive response in rat immediately after partial hepatectomy. Proteomics 2007;7:4398-407.

[6] Matsubara Y, Kikuchi S, Sugimoto M, Oka K, Tomita M. Algebraic method for the analysis of signaling crosstalk. Artif Life 2008;14:81-94.

[7] Blagosklonny MV. Apoptosis, proliferation, differentiation: in search of the order. Semin Cancer Biol 2003;13:97-105.

[8] Du B, Xu CS. The regulation role of cell surface receptor linked signal transduction pathways on rat liver regeneration. Acta Natur Sinica 2008;39:35-43.

[9] Higgins GM, Anderson RM. Experimental pathology of the liver: restoration of the liver of the white rat following partial surgical removal. J Arch Pathol 1931;12:186-202.

[10] Knepp JH, Geahr MA, Forman MS, Valsamakis A. Comparison of automated and manual nucleic acid extraction methods for detection of enterovirus RNA. J Clin Microbiol 2003;41:3532-6.

[11] Nyuàs S, Van Mellaert L, Lambin P, Anûé J. Efficient isolation of total RNA from clostridium without DNA contamination. J Microbiol Methods 2001;44:235-8.

[12] Arkin A, Ross J, McAdams HH. Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells. Genetics 1998;149:1633-48.

[13] Li L, Roden J, Shapiro BE, Wold BJ, Bhattachar S, Forman SJ, et al. Reproducibility, fidelity, and discriminant validity of mRNA amplification for microarray analysis from primary hematopoietic cells. J Mol Diagn 2005;7:48-56.

[14] Collins JF. Gene chip analyses reveal differential genetic responses to iron deficiency in rat duodenum and jejunum. Biol Res 2006;39:25-37.

[15] Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 1998;95:14863-8.

[16] Werner T. Cluster analysis and promoter modelling as bioinformatics tools for the identification of target genes from expression array data. Pharmacogenomics 2001;2:25-36.

[17] Terry LJ, Shows EB, Wente SR. Crossing the nuclear envelope: hierarchical regulation of nucleocytoplasmic transport. Science 2007;318:1412-6.

[18] Zschemisch NH, Liedtke C, Dierssen U, Nevzorova YA, Hanscn LK, Albrecht JH. Differential regulation of cyclins D1 and D3 in hepatocyte proliferation. Hepatology 2002;36:30-8.

[19] Saito S, Tatsumoto T, Lorenzis MV, Chedid M, Kapoor V, Sakata H, et al. Rho exchange factor ECT2 is induced by growth factors and regulates cytokinesis through the N-terminal cell cycle regulator-related domains. J Cell Biochem 2003;90:819-36.

[20] Peng YC, Kuo F, Breiding DE, Wang YF, Mansur CP, Androphy EJ, AMF1 (GPS2) modulates p53 transactivation. Mol Cell Biol 2001;21:5913-24.

[21] Williams EJ, Walsh FS, Doherty P. The FGF receptor uses the endocannabinoid signaling system to couple to an axonal growth response. J Cell Biol 2003;160:481-6.

[22] Wang CY, Yang F, He XP, Je HS, Zhou JZ, Eckermann K, et al. Regulation of neuromuscular synapse development by gial cell line-derived neutrophic factor and neurturin. J Biol Chem 2002;277:10614-25.

[23] Fujimoto T, Onda M, Nagai H, Nagahata T, Ogawa K, Emi M. Upregulation and overexpression of human X-box binding protein 1 (XBP-1) gene in primary breast cancers. Breast Cancer 2003;10:301-6.

[24] Lai CF, Bai S, Uthgenannt BA, Halstead LR, McLoughlin P, Schafer W, et al. Four and half lim protein 2 (FHL2) stimulates osteoblast differentiation. J Bone Miner Res 2006;21:17-28.

[25] Chen G, Greengard P, Yan Z. Potentiation of NMDA receptor currents by dopamine D1 receptors in prefrontal cortex. Proc Natl Acad Sci USA 2004;101:2596-600.

[26] Ohab JJ, Fleming S, Blesch A, Carmichael ST. A neurovascular niche for neurogenesis after stroke. J Neurosci 2006;26:13007-16.

[27] Larsen CM, Dissing MG, Papa S, Franzoso G, Billestrup N, Mandrup-Poulsen T. Growth arrest- and DNA-damage-inducible 45 beta gene inhibits c-Jun N-terminal kinase and extracellular signal-regulated kinase and decreases IL-1beta-induced apoptosis in insulin-producing INS-1E cells. Diabetologia 2006;49:980-9.

[28] O'Brien LA, Richardson MA, Mehrbod SF, Berg DT, Gerlitz B, Gupta A, et al. Activated protein C decreases tumor necrosis factor related apoptosis-inducing ligand by an EPCR-independent mechanism involving Egr-1/Erk-1/2 activation. Arterioscler Thromb Vasc Biol 2007;27:2634-41.

[29] Baron BW, Zeleznik-Le N, Baron MJ, Theisler C, Huo D, Krasowski MD, et al. Repression of the PDCD2 gene by glucocorticoid. J Mol Cell Biol 2007;25:30

[30] Peng YC, Kuo F, Breiding DE, Wang YF, Mansur CP, Androphy EJ, AMF1 (GPS2) modulates p53 transactivation. Mol Cell Biol 2001;21:5913-24.

[31] Williams EJ, Walsh FS, Doherty P. The FGF receptor uses the endocannabinoid signaling system to couple to an axonal growth response. J Cell Biol 2003;160:481-6.

[32] Wang CY, Yang F, He XP, Je HS, Zhou JZ, Eckermann K, et al. Regulation of neuromuscular synapse development by gial cell line-derived neutrophic factor and neurturin. J Biol Chem 2002;277:10614-25.

[33] Fujimoto T, Onda M, Nagai H, Nagahata T, Ogawa K, Emi M. Upregulation and overexpression of human X-box binding protein 1 (XBP-1) gene in primary breast cancers. Breast Cancer 2003;10:301-6.

[34] Lai CF, Bai S, Uthgenannt BA, Halstead LR, McLoughlin P, Schafer W, et al. Four and half lim protein 2 (FHL2) stimulates osteoblast differentiation. J Bone Miner Res 2006;21:17-28.

[35] Chen G, Greengard P, Yan Z. Potentiation of NMDA receptor currents by dopamine D1 receptors in prefrontal cortex. Proc Natl Acad Sci USA 2004;101:2596-600.

[36] Ohab JJ, Fleming S, Blesch A, Carmichael ST. A neurovascular niche for neurogenesis after stroke. J Neurosci 2006;26:13007-16.

[37] Larsen CM, Dissing MG, Papa S, Franzoso G, Billestrup N, Mandrup-Poulsen T. Growth arrest- and DNA-damage-inducible 45 beta gene inhibits c-Jun N-terminal kinase and extracellular signal-regulated kinase and decreases IL-1beta-induced apoptosis in insulin-producing INS-1E cells. Diabetologia 2006;49:980-9.

[38] O’Brien LA, Richardson MA, Mehrbod SF, Berg DT, Gerlitz B, Gupta A, et al. Activated protein C decreases tumor necrosis factor related apoptosis-inducing ligand by an EPCR-independent mechanism involving Egr-1/Erk-1/2 activation. Arterioscler Thromb Vasc Biol 2007;27:2634-41.

[39] Baron BW, Zeleznik-Le N, Baron MJ, Theisler C, Huo D, Krasowski MD, et al. Repression of the PDCD2 gene by glucocorticoid. J Mol Cell Biol 2007;25:30

[40] Peng YC, Kuo F, Breiding DE, Wang YF, Mansur CP, Androphy EJ, AMF1 (GPS2) modulates p53 transactivation. Mol Cell Biol 2001;21:5913-24.
[41] Wang L, Tabu K, Kimura T, Tsuda M, Linghu H, Tanino M, et al. Signaling adaptor protein Crk is indispensable for malignant feature of glioblastoma cell line KMG4. Biochem Biophys Res Commun 2007;362:976–81.

[42] Ishizaki H, Togawa A, Tanaka-Okamoto M, Hori K, Nishimura M, Hamaguchi A, et al. Defective chemokine-directed lymphocyte migration and development in the absence of Rho guanosine diphosphate-dissociation inhibitors alpha and beta. J Immunol 2006;177:8512–21.

[43] Kaneider NC, Egger P, Wiedermann FJ, Ritter M, Wöll E, Wiedermann CJ. Involvement of cyclic adenosine monophosphate-dependent protein kinase A and pertussis toxin-sensitive G proteins in the migratory response of human CD14+ mononuclear cells to katacalcin. J Bone Miner Res 2002;17:1872–82.

[44] Finsnes F, Lyberg T, Christensen G, Skjonsberg OH. Leukotriene antagonism reduces the generation of endothelin-1 and interferon-gamma and inhibits eosinophilic airway inflammation. Respir Med 2002;96:901–6.

[45] Eltayeb S, Berg AL, Lassmann H, Wallström E, Nilsson M, Olsson T, et al. Temporal expression and cellular origin of CC chemokine receptors CCR1, CCR2 and CCR5 in the central nervous system: insight into mechanisms of MOG-induced EAE. J Neuroinflammation 2007;4:14.

[46] Moretti S, Procopio A, Boemi M, Catalano A. Neuronal semaphorins regulate a primary immune response. Curr Neurovasc Res 2006;3:295–305.

[47] Xu S, Bayat H, Hou X, Jiang B. Ribosomal S6 kinase-1 modulates interleukin-1beta-induced persistent activation of NF-kappaB through phosphorylation of IkappaBbeta. Am J Physiol Cell Physiol 2006;291:C1336–45.

[48] McKinsey TA, Kuwahara K, Bezprozvannaya S, Olson EN. Class II histone deacetylases confer signal responsiveness to the ankyrin-repeat proteins ANKRA2 and RFXANK. Mol Biol Cell 2006;17:438–47.

[49] Khvotchev MV, Ren M, Takamori S, Jahn R, Südhof TC. Divergent functions of neuronal Rab11b in Ca2+ -regulated versus constitutive exocytosis. J Neurosci 2003;23:10531–9.

[50] Nishimura Y, Yoshioka K, Bernard O, Berezovsky B, Itoh K. A role of LIM kinase 1/cofilin pathway in regulating endocytic trafficking of EGF receptor in human breast cancer cells. Histochem Cell Biol 2006;126:627–38.

[51] Lapierre LA, Tuma PL, Navarre J, Goldenring JR, Anderson JM. VAP-33 localizes to both an intracellular vesicle population and with occludin at the tight junction. J Cell Sci 1999;112:3723–32.

[52] MacLean G, Li H, Metzger D, Chambon P, Petkovich M. Apoptotic extinction of germ cells in testes of Cyp26b1 knockout mice. Endocrinology 2007;148:4560–7.

[53] Ling C, Svensson L, Öden B, Weijdegård B, Edén B, Edén S, et al. Identification of functional prolactin (PRL) receptor gene expression: PRL inhibits lipoprotein lipase activity in human white adipose tissue. J Clin Endocrinol Metab 2003;88:1804–8.
Table I. Expression abundance of 566 intracellular signaling cascade-associated genes during rat liver regeneration.

Name	Gene Abbr.	Associated to others	Fold difference
1 Intracellular receptor mediated signaling pathway			
1 General			
aryl hydrocarbon receptor nuclear translocator 2	*Arnt2		6.8
mediator complex subunit 1	*Pparbp		5.0
low density lipoprotein receptor adaptor protein 1	LdLRap1		4.3
discoidin, CUB and LCCL domain containing 2	*Dcbld2		4.3
myeloid/lymphoid or mixed-lineage leukemia 3	*Mil3		3.2
aryl hydrocarbon receptor nuclear translocator	*Arnt		0.2
thyroid hormone receptor associated protein 4	*Thrap4		0.2
aryl-hydrocarbon receptor repressor	*Ahrr		0.1
2 Androgen receptor mediated signaling pathway			
cyclin E	*Ccne1		18.5
breast cancer 1, early onset	*Brcal		13.8
four and a half LIM domains 2	Fh12		9.0
nuclear receptor coactivator 3	*Ncoa3		4.3
DnaJ (Hsp40) homolog, subfamily A, member 1	DnaJ1a		0.3
peroxisome proliferative activated receptor, gamma, coactivator 1 alph	*Pparc1a		0.2
3 Glucocorticoid receptor mediated signaling pathway			
RNA binding motif protein 14	*Rbm14		5
nuclear receptor subfamily 3, group C, member 1	*Nr3c1		4.7
4 Mineralocorticoid receptor mediated signaling pathway			
nuclear receptor subfamily 3, group C, member 2	Nr3c2		0.3
5 Estrogen receptor mediated signaling pathway			
estrogen receptor 2 beta	*Esrl		6.1
estrogen receptor 1	*Esrl2		3.5
G protein-coupled receptor 30	Esrb		0.3
estrogen related receptor, alpha	*Safb		0.2
estrogen-related receptor beta	Gpr30		0.1
scaffold attachment factor B	*Esrra		0.1
6 Progesterone receptor mediated signaling pathway			
progesterone receptor membrane component 2	Pgrmc2		0.3
7 Thyroid Hormone receptor mediated signaling pathway			
jumonji domain containing 1C	Jmjd1c		3.7
nuclear receptor subfamily 1, group I, member 3	Nrl13		3.2
thyroid hormone receptor beta	*Thrb		16
nuclear receptor binding SET domain protein 1	Nsd1		0.1
8 Prostaglandin E receptor mediated signaling pathway			
prostaglandin E receptor 3	*Ptger3		13-14
9 Retinoic acid receptor mediated signaling pathway			
retinoid X receptor alpha	*Rxra		11.3
cytochrome P450, family 26, subfamily B, polypeptide 1	Cyp26b1		8.3
retinoid X receptor gamma	Rxrg		5.6
cAMP responsive element modulator	Crem		4.1
pancreas specific transcription factor, 1a retinoic acid receptor, alpha	Ptd1a	*Rara	0.2
cytochrome P450, family 26, subfamily A, polypeptide 1	Cyp26a1		0.1
aldehyde dehydrogenase family 1, subfamily A2	Aldh1a2		0.1
10 Vitamin D receptor mediated signaling pathway			
thyroid hormone receptor associated protein 3	Thrap3		2.7
hairless homolog	Hr		7
II Second-messenger mediated signaling pathway			
11 General			
protein phosphatase 2a, catalytic subunit, alpha isoform stathmin 1	*Ppp2ca		16
*Stm1		17 15.9,0.2	
12 Calcium mediated signaling pathway			
alpha-2-macroglobulin	*A2m		46.2
dopamine receptor 1A	*Drd1a		13-14
AHNAK nucleoprotein	Ahnak		13.6
ring finger and KH domain containing 3	Rhkd3		8.6
Name	Gene Abbr.	Associated to others	Fold difference
--	------------	----------------------	-----------------
calcium/calmodulin-dependent protein kinase kinase 2, beta	*Camkk2	17	7.6
ryanodine receptor 1, skeletal muscle	*Ryr1	13	6.0
myosin, light polypeptide kinase	*Mylk	13	5.3 4.7
dopamine receptor 4	Drd4		4.4
Calcium/calmodulin-dependent serine protein kinase	*Cask		
neuromedin U receptor 2	Nmur2	13-14	3.7
ATPase, Ca + + transporting, plasma membrane 4	Arp2b4		3.6
tumor necrosis factor	*Tnf	15,17	3.2
double cortin and calcium/calmodulin-dependent protein kinase-like 1	Dcamk1	17	0.3
immunoglobulin heavy chain (epsilon polypeptide)	*Ighe	13,17	0.2
visinin-like 1	Vsnl1		0.2
cartilage oligomeric matrix protein	*Comp		0.2
calpain 3	*Capn3		0.2
presenilin 2	*Psen2		0.2
EF hand calcium binding protein 1	Eefbp1		0.2
T-cell receptor beta chain	*Tcrb	13	0.2
G protein-coupled receptor 66	Gpr66	13-14	0.1
casein beta	Csn2	16	0.1
growth factor receptor bound protein 7	*Grb7	17	0.1
PDZ domain containing 11	Pdzk11		0.1
down syndrome critical region homolog 1	Dscr1		4.8 0.2

13 Cyclic-nucleotide mediated signaling pathway

Name	Gene Abbr.	Associated to others	Fold difference
chemokine (C-C motif) ligand 2	*Ccl2	16-17	128.0
chemokine (C-C motif) receptor 1	*Ccr1	14,18	27.9
regulator of G-protein signaling 1	*Rgs1		24.3
guanine nucleotide binding protein, alpha transducing 1	*Gnat1		18.5
glutamate receptor, metabotropic 3	Grm3		14.0
parathyroid hormone	Pth		10.8
histamine receptor H 1	*Hrh1	18	9.9
guanylate cyclase 2C	*Gucy2c	14	9.8
5-hydroxytryptamine (serotonin) receptor 6	*Htr6		9.2
neuropeptide Y receptor Y1	Npy1r		8.6
dopamine receptor 2	*Drd2	14,17	8.6
cAMP responsive element binding protein 3	*Creb3		8.4
arrestin, beta 1	Arrb1	17	8.0
adrenomedullin	*Adm		8.0
adrenergic receptor, alpha 1d	Adra1d	14	7.5
guanylate cyclase 2g	Gucy2g		6.5
endothelial differentiation sphingolipid G-protein-coupled receptor 1	Edg1	14,18	6.3
regulator of G-protein signaling 2	*Rgs2		6.0
somatostatin receptor 4	Sstr4		5.9
phosphodiesterase 8B	Pde8b		5.9
cAMP responsive element binding protein 3-like 4	*Creb3l4		5.7
regulator of G-protein signaling 9	Rgs9		5.5
guanylate cyclase 2d	*Gucy2d		5.3
PDZ domain containing 3	Pdzk3		5.3
G protein-coupled receptpr kinase 1	*Grk1	20	5.2
adrenergic receptor, alpha 2a	Adra2a	17	5.2
somatostatin receptor 2	*Sstr2	17	4.9
solute carrier family 9 (sodium/hydrogen exchanger), isoform 3 regulator 1	Sloc9a3r1		4.8
brain and kidney protein	Bk		4.5
cholinergic receptor, muscarinic 5	Chrm5		4.3
endothelial differentiation, sphingolipid G-protein-coupled receptor, 3	*Edg3	14	4.0
corticotropin releasing hormone receptor 1	*Cnr1		3.8
protein phosphatase 1, regulatory (inhibitor) subunit 1B	Ppp1r1b		3.6
calcitonin receptor-like	Calcrl		3.6
adenylate cyclase activating polypeptide 1	*Adcya1		3.5
adenylate cyclase 3	*Adc3		3.5
adrenergic receptor kinase, beta 2	Adrb2k2		3.4
calcitonin receptor	Calcr	14	3.4
phosphodiesterase 6A, cGMP-specific, rod, alpha	Pde6a		3.2
phosphodiesterase 9A	Pde9a		0.3
Name	Gene Abbr.	Associated to others	Fold difference
---	------------	-----------------------	-----------------
piccolo	Pclo		0.3
5-hydroxytryptamine (serotonin) receptor 4	Htr4		0.3
cAMP responsive element binding protein-like 2	Crebl2		0.3
CD52 antigen	Cd52		0.3
phosphodiesterase 8A	Pde8a		0.3
Iroquois related homeobox 4	Irox6		0.3
gastric inhibitory polypeptide receptor	*Gipr		0.3
frizzled homolog 2	Fzd2		0.3
phosphodiesterase 6G, cGMP-specific, rod, gamma	*Pde6g		0.2
WAS protein family, member 2	*Wasf2		0.2
histamine receptor H3	*Hrh3		0.2
guanine nucleotide binding protein, alpha stimulating, olfactory type	Gna		0.2
cyclic nucleotide-gated cation channel	Cnga1		0.2
tubulin, beta 3	*Tubb3		0.2
glutamate receptor, metabotropic 7	Grm7		0.2
adenylyl cyclase 6	*Adcy6		0.2
5-hydroxytryptamine (serotonin) receptor 1B PDZ domain containing 3	Htr1b Pdzk2		0.2
adenylyl cyclase 4	*Adcy4		0.1
trace-amine-associated receptor 1	Taar1		0.1
phosphodiesterase 6H, cGMP-specific, cone, gamma	Pde6h		0.1
5-hydroxytryptamine (serotonin) receptor 1F	Htr1f		0.1
regulator of G-protein signaling 7	Rgs7		0.1
cannabinoid receptor 1	*Cnr1		0.1
melanocortin 4 receptor	*Mc4r		0.1
doublesex and mab-3 related transcription factor 1	*Dmrt1		0.1
purinergic receptor P2Y, G-protein coupled 12	*P2ry12		0.1
adenylyl cyclase 8	*Adcy8		0.04
G protein-coupled receptor kinase 5	*Gprk5		9.1,0.3
regulator of G-protein signaling 16	*Rgs16		8.6,0.1
histamine receptor H 2	Hrh2		8.6,0.1
G protein-coupled receptor 24	Gpr24		6.1,0.3
protein kinase, cGMP-dependent, type II	*Prkg2		5.7,0,2
melanocortin 5 receptor	Mc5r		5.5,0.1
galanin receptor 1	Ga1r1		4.3,0.3
glucagon-like peptide 1 receptor	Glp1r		3.7,0.2
Soluble adenylyl cyclase	*Sac		3.5,0,3
neurofibrinomatosis 1	*Nfl		18-19
14 Phosphoinositide mediated signaling pathway			
insulin-like growth factor binding protein 1	*Igf2bp1		64.7
angiogenin, ribonuclease A family, member 1	*Ang1		58.2
pleckstrin 2	Pk2		33.4
sperm associated antigen 5	*Spag5		31.9
high-mobility group box 2	Hmgb2		19.6
FK506 binding protein 1b	Fkbp1b		18.4
endothelin 2	Edn2		16.0
thymidylate synthase	Tys		15.0
topoisomerase (DNA) 2 alpha	Top2a		11.0
proliferating cell nuclear antigen	*PcnA		10.6
leukotriene B4 receptor	*Ltb4r		8.7
prokineticin 2	*Prok2		8.6
phosphatidylinositol 3-kinase, regulatory subunit, polypeptide 1	*Pik3r1		7.6
platelet-activating factor receptor	*Ptafr		7.1
similar to phosphatidylinositol-3-phosphate/phosphatidylinositol 5-kinase type III	Loc316457		6.5
isoform 2			
Sorting nexin 5	Snx5		5.7
membrane-spanning 4-domains, subfamily A, member 2	*Ms4a2		5.3
endothelial differentiation, lysophosphatidic acid G-protein-coupled receptor, 2	*Edg2	15,17	5.2
angiotensinogen	*Agt		5.0
protein kinase C, alpha binding protein	Prkcbp		4.6
Centaurin-alpha2 protein	Centa2		4.3
pleckstrin homology domain containing, family A (phosphoinositide binding specific) member 4	Plekha4		4.3
Name	Gene Abbr.	Associated to others	Fold difference
------	------------	----------------------	-----------------
homer homolog 1	Homer1	17	4.1
unc-13 homolog A	Unc13a	17	4.0
G protein-coupled receptor 2	*Gpr2	17	3.3
sorting nexin 11	Snx11	3.5	
insulin-like growth factor binding protein 5	Igfbp5	17	3.3
phosphatidylinositol 3-kinase, catalytic, alpha polypeptide	*Pik3ca	17	3.3
carbonic anhydrase 8	Car8	3.3	
glutamate receptor, metabotropic 5	*Grm5	17	3.2
Phospholipase C, delta 4	Plcd4	3.2	
sorting nexin 16	Snx16	3.1	
sorting nexin 1	Snx1	3.0	
phosphatidylinositol 3-kinase catalytic delta polypeptide	*Pik3cd	0.3	
phosphoinositol-3-kinase, class 2, beta polypeptide	Pik3c2b	0.3	
growth associated protein 43	*Gap43	0.3	
cholecystokinin B receptor	Cckbr	0.3	
complement component 3a receptor 1	*C3ar1	0.3	
pyrimidinergic receptor P2Y, G-protein coupled, 4	P2ry4	0.2	
thromboxane A2 receptor	*Tbxa2r	0.2	
flap structure-specific endonuclease 1	*Fen1	0.2	
hippocalcin	Hpcal	0.2	
multiple PDZ domain protein	*Mpdz	0.2	
phospholipase C, delta 3	Plcd3	0.2	
sorting nexin 4	Snx4	0.2	
low density lipoprotein receptor-related protein 1	Lrp1	0.1	
RAS guanyl releasing protein 4	Rasgrp4	17,19	0.1
diacylglycerol kinase, theta	Dgkq	0.1	
Junctophilin 2	Jph2	0.1	
-erb-b2 erythoblastic leukemia viral oncogene homolog 2, neuro/glioblastoma	*Erbb2	17-18	0.1
derived oncogene homolog (avian)	Cystr1	0.1	
cysteinyi leukotriene receptor 1	*Htr2b	15	0.1
5-hydroxytryptamine (serotonin) receptor 2B	*Rfc4	27.7,0.3	
ubiquitin-conjugating enzyme E2C	*Ube2c	12.1,0.2	
sorting nexin 8	Snx8	4.6,0.1	
chemokine (C-C motif) receptor 6	*Ccr6	4.3,0.3	
phospholipase C, beta 2	*Plch2	4.0,0.3	
pyrimidinergic receptor P2Y, G-protein coupled, 6	P2ry6	3.6,0.1	
phosphatidylinositol 3 kinase, regulatory subunit, polypeptide 3	*Pik3r3	3.5,0.3	
interleukin 2	Il2	16	3.5,0.3
cholecystokinin A receptor	*Cckar	3.2,0.3	
unc-13 homolog B	Unc13b	17	3.0,0.3

III Nitric oxide mediated signal transduction
- nitric oxide synthase interacting protein | *Nosip | 10.6 |
- nitric oxide synthase trafficking | *Nostrin | 8 |
- metallothionein 1a | Mt1a | 4.9 |
- N-myristoyltransferase 2 | Nmt2 | 4.1 |
- guanylate cyclase 1, soluble, alpha 3 | *Gucy1a3 | 0.3 |
- nitric oxide synthase 3, endothelial cell | *Nos3 | 15 | 0.2 |

IV Hormone mediated signaling pathway
- nucleoporin 62kDa | Nup62 | 7,15 | 6.6 |
- growth hormone secretagogue receptor | *Ghsr | 5.3 |
- endothelin converting enzyme-like 1 | Ecel1 | 5.0 |
- ghrelin precursor | *Ghr | 4.0 |

V Carbohydrate mediated signaling pathway
- collectin sub-family member 12 | *Colec12 | 3.9 |
- C-type lectin domain family 7, member A | *Clec7a | 0.2 |

VI Protein kinase cascade
- 15 I-KB kinase/NF-KB cascade
 - vesicle-associated membrane protein, associated protein a | *Vapa | 28.8 |
 - pyruvate dehydrogenase kinase, isoenzyme 1 | *Pdk1 | 18.45 |
| Name | Gene Abbr. | Associated to others | Fold difference |
|--|------------|----------------------|-----------------|
| ect2 oncogene | Ect2 | 18 | 13.0 |
| nuclear factor of kappa light chain gene enhancer in B-cells inhibitor, beta | Nfkibib | 11.8 | |
| caspase 8 | Casp8 | 17 | 10.6 |
| adipocytecomplementrelatedproteinof30kDa | Adc | | 9.2 |
| FYN binding protein | Fyb | 16-17 | 9.2 |
| germ cell associated 2 | Gsg2 | 16-17 | 9.2 |
| PTK2 protein tyrosine kinase 2 | Ptk2 | 8.9 | |
| Nedd4 family interacting protein 1 | Ndfip1 | 6.9 | |
| nuclear factor of kappa light chain gene enhancer in B-cells inhibitor, alpha lectin, galactose binding, soluble 9 | Nfkbia | 17 | 6.8 |
| tumor necrosis factor receptor superfamily, member 10b | Lgals9 | 5.7 | |
| tribbles homolog 3 | Trib3 | 16-17 | 4.9 |
| carbonic anhydrate 10 | Car10 | | 4.9 |
| mitogen-activated protein kinase kinase kinase kinase 4 | Map4k4 | 17-18 | 4.5 |
| extracellular matrix protein 1 | Ecm1 | | 4.5 |
| growth factor receptor-bound protein 10 | Grb10 | | 4.3 |
| toll-like receptor adaptor molecule 2 | Ticam2 | | 4.3 |
| lectin, galactose binding, soluble 1 | Lgals1 | 17 | 3.7 |
| Programmed cell death protein 11 | Pdcd11 | | 3.7 |
| CXXC finger 5 | Cxxc5 | | 3.6 |
| transformed mouse 3T3 cell double minute 2 homolog | Mdm2 | 16-17 | 3.5 |
| MAP kinase-interacting serine/threonine kinase 2 | Mnk2 | 16-17 | 3.5 |
| caspase recruitment domain family, member 9 | Card9 | 17 | 3.5 |
| G substrate | Gsbs | 16-17 | 3.2 |
| PTEN induced putative kinase 1 | Pink1 | 16-17 | 3.2 |
| ADAM metallopeptidase domain 9 | Adam9 | 16-17 | 3.2 |
| carbonic anhydrate 14 | Car14 | | 3.2 |
| protein kinase N1 | Pkn1 | 16-17 | 3.2 |
| ribosomal protein S6 kinase, polypeptide 1 | Rps6kb1 | 18 | 3.2 |
| 5-azacytidine induced gene 2 | Azi2 | | 3.1 |
| caspase 1 | Casp1 | 17 | 3.0 |
| inositol polyphosphate-5-phosphatase D | Inpp5d | 17 | 0.3 |
| mindbomb homolog 2 | Mib2 | | 0.3 |
| peroxisome proliferator activated receptor dela | Ppard | | 0.3 |
| erbb2 interacting protein | Erbb2ip | 17 | 0.3 |
| inhibitor of kappaB kinase beta | Ihk1b | 17 | 0.3 |
| B lymphoid kinase | Blik | 16-17 | 0.3 |
| cell division cycle 37 homolog | Cdc37 | | 0.3 |
| protein phosphatase 1A, magnesium dependent alpha isoform | Ppm1a | 17 | 0.3 |
| CD80 antigen | Cd80 | 18 | 0.3 |
| fibroblast growth factor 1 | Fgfl | 16-17 | 0.3 |
| Ras homolog gene family, member C | Rhoc | 17,20 | 0.3 |
| centaurin, beta 1 | Ccntb1 | | 0.2 |
| choline kinase alpha | Chka | 18 | 0.2 |
| homeodomain interacting protein kinase 2 | Hipk2 | 17 | 0.2 |
| caspase recruitment domain family, member 11 | Card11 | 17 | 0.2 |
| tuberous sclerosis 1 | Tsc1 | 20 | 0.1 |
| growth factor receptor bound protein 2-associated protein 2 | Gbk2 | | 14.9,0.3 |
| Ribosomal protein S6 kinase, polypeptide 2 | Rps6kb2 | 16-17 | 12.1,0.3 |
| microtubule associated serine/threonine kinase 1 | Mast1 | 16-17 | 6.1,0.2 |
| bcl2-associated death promoter | Bad | 17-18 | 5.5,0.3 |
| checkpoint kinase 1 homolog | Chek1 | | 5.3,0.3 |
| mitogen-activated protein kinase kinase 8 | Map3k8 | | 4.6,0.2 |
| secreted and transmembrane 1 | Sectm1 | 17 | 4.0,0.2 |
| neutrophil cytosolic factor 1 | Ncf1 | | 3.7,0.2 |

16 Jak-Stat cascade

myelocytomatosis viral oncogene homolog	Myc	17	19.7
Son of sevenless homolog 1	Sos1	17,19-20	14.9
ankyrin repeat and SOCS box-containing protein 2	Ash2		9.2
Janus kinase 2	Jak2	17	6.5
WD repeat and SOCS box-containing 1	Wshb1	17	4.5
signal transducer and activator of transcription 4	Stat4		4.0
Name	Gene Abbr.	Associated to others	Fold difference
SH2-B PH domain containing signaling mediator 1	Sh2bpsm1		3.5
leukemia inhibitory factor	*Lif		3.0
Stam binding protein	Stambp		0.3
Signal transducer and activator of transcription 5B	*Stat5b		0.3
coagulation factor 2	*F2		0.3
Suppressor of cytokine signaling 2	Socs2		0.3
signal transducer and activator of transcription 5A	*Stat5a		0.2
ankyrin repeat and SOCS box-containing protein 6	Asb6		0.2
tyrosine kinase 2	Tyk2		0.2
proviral integration site 1	Pim1		0.2
interleukin 22 receptor, alpha 2	*Il22ra2		0.1
interleukin 4	*I4	17	0.1
suppressor of cytokine signaling 3	*Socs3	17	0.1
CREB binding protein	*Crebbp		0.1
prolactin receptor	Ptrl		0.04
interleukin 6	*I6	17	6.1, 0.3
hepatocyte nuclear factor 4, alpha	*Hnf4a		4.5, 0.1
similar to ankyrin repeat and SOCs box-containing protein 5	Asb5		3.0, 0.3
17 MAPK cascade			
growth arrest and DNA-damage-inducible 45 beta	*Gadd45b		55.7
FBJ murine osteosarcoma viral oncogene homolog	*Fos		28.4
protein tyrosine phosphatase, receptor type, R	Ptprr		26.7
G protein pathway suppressor 2	*Gps2		24.3
E2F transcription factor 1	*E2f1	18	21.2
mitogen-activated protein kinase 8	*Mapk8		19.7
early growth response 1	*Egr1		18.6
sema domain, immunoglobulin domain (Ig), transmembrane domain (TM)			
and short cytoplasmic domain, (semaforin) 4D	*Sema4d		10.0
connective tissue growth factor	*Ctgf		13.9
plasminogen activator, urokinase receptor	*Plaur		13.9
mitogen-activated protein kinase-activated protein kinase 3	Mapkapk3		12.1
heat shock 27kDa protein 1	*Hspb1		11
sperm associated antigen 9	Spag9		10.8
caveolin	*Cav		10.6
toll-like receptor 2	*Tlr2		10.6
matrix metalloproteinase 9	*Mmp9		9.5
mitogen activated protein kinase 1	*Map2k1		9.1
mitogen-activated protein kinase 8 interacting protein 2	Mapkapk8p2		8.6
MAP3K12 binding inhibitory protein 1	Mibp		8.6
ELK1, member of ETS oncogene family	*Elk1	18	8.6
mitogen activated protein kinase kinase kinase kinase 1	Mapkapk1	18	8.5
mitogen-activated protein kinase kinase 1	Map2k1lp1		8.3
interacting protein 1 Protein kinase C, beta 1	*Prkcb1		8.2
growth arrest and DNA-damage-inducible 45 gamma	*Gadd45g		8.0
cell division cycle 25 homolog B	*Cdc25B		8.0
protein kinase, AMP-activated, alpha 1 catalytic subunit	*Prkaa1		7.5
cerebral cavernous malformation 2	Ccm2		7.5
Jun-B oncogene	*Junb		7.0
v-jun sarcoma virus 17 oncogene homolog	*Jun		6.9
Discs, large homolog 5	*Dlk5		6.9
fibroblast growth factor 9	*Fgf9		6.6
serum/glucocorticoid regulated kinase	*Sgg		6.5
sprouty-related, EVH1 domain containing 2	*Sprd2		6.4
Amyloid beta (A4) precursor protein	*App		6.4
mitogen activated protein kinase 13	*Mapk13		6.1
fibroblast growth factor 13	Fgf13		6.1
protein phosphatase 3, regulatory subunit B, alpha isoform,type 1	Ppp3r1		6.0
dual specificity phosphatase 1	Dusp1		6.0
RAS related protein 1b	Rap1b	19	5.6
ribosomal protein S6 kinase, 90kDa, polypeptide 5	*Rps6ka5		5.6
stathmin-like 4	Stmn4		5.3
src homology 2 domain-containing transforming protein C3	*Shc3		5.3
Name	Gene Abbr.	Associated to others	Fold difference
--	------------	----------------------	-----------------
LIM motif-containing protein kinase 2	*Limk2	20	5.3
fibroblast growth factor receptor substrate 2	Frs2	5.3	
mitogen-activated protein kinase 6	*Mapk6	5.3	
integrin, alpha V	*Itgav	5.2	
alpha 1 microglobulin/bikunin	*Ambp	5.1	
Moesin	*Msn	5.0	
leucine rich repeat protein 3	Lrn3	4.9	
TAO kinase 1	Taok1	4.9	
arrestin, beta 2	Arreb2	4.9	
plasminogen activator, tissue	*Plat	4.9	
RAS, guanyl releasing protein 3	Rasgrp3	4.9	
Src homology 2	*Shc2	4.8	
domain-containing transforming protein C2 docking protein 2	Dok2	19	4.6
protein kinase C, alpha	*Prkca	4.6	
Amyloid beta (A4) precursor protein-binding, family A, member 1	Atpa1	4.6	
inositol 1,4,5-trisphosphate 3-kinase B	Itpkb	18	4.5
Myeloid cell leukemia sequence 1	*Mcl1	4.3	
activin A receptor, type IC	*Acvrlc	4.3	
transforming growth factor, beta 1	*Tgfb1	4.0	
RAS p21 protein activator 2	Ras2a	19	4.0
TAO kinase 2	Taok2	4.0	
FYVE, RhoGEF and PH domain containing 4	Fgkd4	20	4.0
ATPase, H+ transporting, lysosomal accessory protein 2	Atpp6ap2	20	4.0
V-akt murine thymoma viral oncogene homolog 1	*Akt1	3.9	
fibroblast growth factor 4	*Fgd4	3.9	
RAS protein-specific guanine nucleotide-releasing factor 2	Rasgrf2	19	3.9
nerve growth factor, beta	*Ngbf	3.7	
Protein tyrosine kinase 2 beta	*Ptck2b	20	3.6
microtubule-associated protein 2	*Mtap2	3.6	
Enigma homolog	Enh	3.6	
phosphoprotein enriched in astrocytes 15	Pea15	3.6	
v-crk sarcoma virus CT10 oncogene homolog (avian)-like	*Crlk	18	3.5
Src homology 2 domain containing transforming protein D	Shd	3.5	
dual specificity phosphatase 19	Dusp19	3.5	
protein phosphatase 1 (formerly 2C)-like	Ppm11	3.4	
Rho guanine nucleotide exchange factor 7	Arhgef7	20	3.3
serine/threonine kinase 38 like	Stk38l	3.3	
NADPH oxidase organizer 1	Noxo1	3.2	
macrophage migration inhibitory factor	*Mif	3.2	
protein kinase C, eta	*Prkch	3.2	
sprouty protein with EVH-1 domain 1, related sequence	Spred1	3.2	
arginine vasopressin-induced 1	*Avp1	3.2	
gonadotropin-releasing hormone 1	Gnrh1	3.1	
CCAAT/enhancer binding protein (C/EBP), beta	*Cebp	3.1	
high mobility group nucleosomal binding domain 1	*Hmg1	3.0	
protein kinase C, theta	*Prkqc	3.0	
A kinase (PRKA) anchor protein 7	Akap7	3.0	
plasminogen activator, urokinase	*Plau	3.0	
ret proto-oncogene	*Ret	0.3	
SH3-domain binding protein 2	Sh3bp2	0.3	
tumor necrosis factor receptor superfamily, member 19	Tnfrsf19	0.3	
Protein phosphatase 3, catalytic subunit, gamma isoform	Ppp3cc	0.3	
RAS p21 protein activator 3	Rasa3	19	0.3
actin related protein 2/3 complex, subunit 5	Arcp5	0.3	
Similar to PHD finger protein 20-like 1 isoform 1	*Prkci	0.3	
B-cell leukemia/lymphoma 2	*Bcl2	0.3	
mitogen-activated protein kinase 11	Mapk11	0.3	
protein kinase C, nu	Prkcn	0.3	
hypocretin (orexin) receptor 1	Hcrtr1	0.3	
nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1	*Nfatc1	0.3	
MAP-kinase activating death domain	*Madd	0.3	
ataxia telangiectasia mutated homolog	*Atm	0.3	
Name	Gene Abbr.	Associated to others	Fold difference
--	------------	----------------------	-----------------
colony stimulating factor 2	*Csf2		0.3
fibroblast growth factor 8	*Fgf8		0.2
RAS protein-specific guanine nucleotide-releasing factor 1	Rasgrf1		19
adrenergic receptor kinase, beta 1	Adrbk1		2.0
integrin beta 3	*Igb3		2.0
heat shock 70kD protein 1B	*Hspa1a		0.2
choleric receptor, nicotinic, alpha polypeptide 7	*ChrnA7		0.2
dual specificity phosphatase 16	*Dusp16		0.2
muscle and microspikes RAS	*Mras		0.2
mitogen-activated protein kinase 12	*Mapk12		0.2
TXK tyrosine kinase	Txk		0.2
fibroblast growth factor receptor 1	*Fgfr1		0.1
solute carrier family 2, member 4	*Slc2a4		0.1
v-crk sarcoma virus CT10 oncogene homolog (avian)	*Crk		18
involucrin	Ivl		0.1
nephrosis 1 homolog	Nphs1		0.1
neurotrophin 3	*Ntr3		0.1
prostaglandin-endoperoxide synthase 2	*Ptgs2		0.1
bone morphogenetic protein 4	*Bmp4		0.1
coagulation factor 3	*F3		0.1
similar to KIAA0303	Rgd1310139		0.1
dual specificity phosphatase 8	Dusp8		0.1
neurturin	Nrtn		0.1
24-dehydrocholesterol reductase	*Dhcr24		18
serum/glucocorticoid regulated kinase 2	Sgk2		0.1
CCAAT/enhancer binding protein (C/EBP), alpha	*CebpA		0.1
retinitis pigmentosa 1 homolog	*Rp1h		59.7, 0.2
interleukin 1 receptor, type II	Il1r2		9.8, 0.2
chymase 1, mast cell	Cma1		9.8, 0.2
NADPH oxidase 1	*Nox1		8.6, 0.3
adrenergic receptor, alpha 2c	Adra2c		8.6, 0.2
nuclear receptor subfamily 0, group B, member 2	*Nrb2		8.6, 0.2
endothelial differentiation, sphingolipid G-protein-coupled receptor, 5	Edg5		8.4, 0.3
nuclear receptor subfamily 4, group A, member 1	*NRA4a1		7.5, 0.2
collagen, type III, alpha 1	*Col3a1		6.5, 0.3
transforming growth factor, beta 3	*Tgfb3		6.1, 0.2
phospholipase C, delta 1	*Pldc1		5.5, 0.2
BCL2-like 1	Bcl2l11		5.4, 0.2
ELK4, member of ETS oncogene family	*Elk4		5.3, 0.3
megakaryocyte-associated tyrosine kinase	*Matk		4.9, 0.3
zinc finger protein 3	*Zfp36		4.6, 0.1
vascular endothelial growth factor A	*Vega		4.5, 0.1
v-ets erythroblastosis virus E26 oncogene like (avian)	*Erg		4.3, 0.2
mitogen-activated protein kinase kinase 6	Map3k6		4.0, 0.3
death-associated kinase 2	Dapk2		3.5, 0.1
stathmin-like 2	Smm2		3.3, 0.1
v-mos moloney murine sarcoma viral oncogene homolog	*Mos		3.2, 0.3
DNA fragmentation factor, alpha subunit	*Dff4		3.2, 0.3

VII Small GTPase mediated signal transduction

18 General

Name	Gene Abbr.	Fold difference
hecdomain and RCC1 -like domain 1	Herc1	7.2
guanine nucleotide binding protein, gamma 2	Gng2	7.0
retinal G protein coupled receptor	*Rgr	6.1
pleckstrin homology, Sec7 and coiled/coil domains 2	Pscd2	9.2
membrane associated guanylate kinase, WW and PDZ domain containing 1	*Magl1	5.0
similar to RRP22	Rgd1306100	5.0
regulator of G-protein signaling 19	Rgs19	4.5
deleted in polyposis 1	*Dp1	4.0
ubiquitin specific protease 8	Usp8	3.7
hecdomain and RCC1 -like domain 2	*Rehn	0.3
chromosome condensation 1-like	Eif2b2	0.2
eukaryotic translation initiation factor 2B, subunit 2 beta	Chc11	0.2
Table 1 (Continued)

Name	Gene Abbr.	Associated to others	Fold difference
Reelin	Herc2		0.1
hypothetical protein LOC303515	Loc303515		3.9, 0.2
Notch gene homolog 2	Pscd3		3.5, 0.2
pleckstrin homology, Sec7 and coiled/coil domains 1	Pscd1		3.5, 0.1
pleckstrin homology, Sec7 and coiled-coil domains 3	*Notch2		3.1, 0.3

19 Ras protein signal transduction

Ras and Rab interactor 1	Rin1	21	9.8
regulatory factor X-associated ankyrin-containing protein	Rfxank		6.1
kinase suppressor of ras 1	*Ksr1		6.1
MIRO2 protein	Rhot2		5.5
Ras-related associated with diabetes	Rrad		4.9
RasGEF domain family, member 1A	Rasgef1a		4.7
Rap2A-like protein	Rap2a		4.1
Rap guanine nucleotide exchange factor 5	Rapgef5		3.5
soc-2 homolog	Shoc2		3.2
RASD family, member 2	Rasd2		3.1
Ras and Rab interactor 2	Cnksr1	20	0.3
HRAS-like suppressor	Rerg		0.3
GRB2-related adaptor protein	*Dab2lp		0.3
Ras responsive element binding protein 1	Rgl1		0.3
v-ral simian leukemia viral oncogene homolog B	Rasgef1c		0.2
Ras-GTPase-activating protein SH3-domain binding protein	G3Bp		0.2
RasGEF domain family, member 1C	Ralb		0.2
ral guanine nucleotide dissociation stimulator,-like 1	Rtebl		0.2
disabled homol 2 interacting protein	Grap		0.2
connector enhancer of kinase suppressor of Ras 1	Hrasls		0.2
similar to RAS-like, estrogen-regulated, growth-inhibitor	Rin2	21	0.2
RAP1, GTPase activating protein 1	Rap1Ga1		3.4, 0.3

20 Rho/Rac/CDC42 protein signal transduction

IQ motif containing GTPase activating protein 3	Iqgap3		27.7
ras homolog gene family, member Q	Rhoq		14.0
Rho, GDP dissociation inhibitor beta	*Arhgdib		13.0
LIM motif-containing protein kinase 1	*Limk1		12.0
ras homolog gene family, member f	Rhof		11.3
B-cell leukemia/lymphoma 6	*Bcl6		8.6
RhoB gene	*RhoB		8.1
Rho family GTPase 1	*Rnd1		7.5
oligophrenin 1	Ophn1		6.9
wiskott-Aldrich syndrome-like	*Wasl		6.8
Rho guanine nucleotide exchange factor 5	Arhgef5		6.2
Cdc42-binding protein kinase beta	Cdc42Bbp		4.6
engulfment and cell motility 1, ced-12 homolog	Elmo1		4.2
mcf.2 transforming sequence-like	Mcf2L		4.0
FYVE, RhoGEF and PH domain containing 5	Fgd5		3.5
platelet/endothelial cell adhesion molecule 1	*Pecam1		3.5
synaptotagmin 2 binding protein	Syn1/2Bp		3.3
ras homolog gene family, member V	Rhov		3.1
Rho GTPase activating protein 20	*Arhgap20		3.1
Rho GTPase activating protein 4	Arhgap4		3.0
spermatogenesis associated 13	Gmip		0.3
myosin Ixa	Rphp2		0.3
similar to Nedd4-binding brain specific protein BEAN	Arhgap1		0.3
FYVE, RhoGEF and PH domain containing 2	*Rho		0.2
rhodopsin	Fgd2		0.2
Rho GTPase activating protein 1	Dock8		0.2
similar to RIKEN cDNA C230052112	Myo9a		0.1
similar to Gem-interacting protein	Spata13		0.1
lin-7 homolog b	*Lin7b		7.5, 0.2
cytosolic acetyl-CoA hydrolase	Rach		6.1, 0.2

21 Rab protein signal transduction

| RAB11B, member RAS oncogene family | Rab11b | | 14.0 |
Name	Gene Abbr.	Associated to others	Fold difference
RAB12, member RAS oncogene family	Rab12	12.1	
RAB34, member of RAS oncogene family	Rab34	5.1	
RAB3D, member RAS oncogene family	Rab3d	4.8	
RAB6B, member RAS oncogene family	Rab6b	4.2	
RAB21, member RAS oncogene family	Rab21	3.9	
RAB8A, member RAS oncogene family	Rab8a	3.7	
low Mr GTP-binding protein	Rab27a	3.4	
RAB8B, member RAS oncogene family	Rab8b	3.4	
RAB13, member RAS oncogene family	Rab13	3.2	
RAB5B, member RAS oncogene family	Rab5b	3.0	
Rab40b, member RAS oncogene family	Ms4	0.3	
RAB33b, member of RAS oncogene family	Rab3c	0.2	
Ms4 protein	Chm	0.1	
choroideremia	Rab33b	0.1	
RAB3C, member RAS oncogene family	Rab40b	0.1	
RAB25, member RAS oncogene family	Rab25	4.2,0.2	
RAB37, member of RAS oncogene family	Rab37	3.0,0.2	

22 Ran protein signal transduction

RAN, member RAS oncogene family | Sipa1L3 | 5.7 |
signal-induced proliferation-associated 1 like 3 | Sipa1L2 | 4.5 |
signal-induced proliferation-associated 1 like 2 | Ran | 2, 3.2 |
GTPase activating RANGAP domain-like 4 | Garnl4 | 0.3 |
similar to RAN protein | Rgd1306195 | 7.0,0.3 |
RAN binding protein 1 | Ranbp1 | 3.2,0.1 |

23 Sar/Arf protein signal transduction

centaurin, gamma 3 | Centg3 | 8.9 |
ADP-ribosylation factor related protein 1 | Arfrp1 | 8.5 |
ADP-ribosylation factor-like 10 | Arl10 | 6.1 |
SAR1a gene homolog 1 | Sar1 | 5.4 |
ADP-ribosylation factor 4-like | Arf4l | 4.2 |
ADP-ribosylation factor interacting protein 2 | Arfip2 | 0.3 |

VIII ER-nuclear signaling pathway

cyclin D1 | Ccnd1 | 15,19, 7.5 |
interferon gamma | Ifng | 17, 6.5 |
p21 (CDKN1A)-activated kinase 1 | Pak1 | 17,20, 3.5 |
heat shock 70kD protein 5 | Hspa5 | 17, 0.1 |
reticulin 1 | Rtn1 | 9.2,0.2 |
protein phosphatase 1, regulatory (inhibitor) subunit 15b | Xbp1 | 4.3,0.3 |
X-box binding protein 1 | Ppp1r15b | 3.2,0.1 |

IX TOR signaling pathway

RhoGAP involved in beta-catenin-N-cadherin and NMDA receptor signaling | Rics | 3.5 |

X Genes associated with intracellular signaling cascade, but can’t be classed definit

InaD-like | Inadl | 4.3 |
PDZ and LIM domain 1 | Pdlim1 | 3.2 |
coronin, actin binding protein 2A | Coro2a | 0.3 |
thioesterase, adipose associated | Thea | 0.03 |
SH3 and cysteine rich domain 3 | Stac3 | 19.9,0.2 |
reversion induced LIM gene | Ril | 7.0,0.2 |
dishevelled 2, dsh homolog | Dvl2 | 4.6,0.2 |
neuralized-like 2 | Neurl2 | 3.9,0.1 |

*the reported genes associated with liver regeneration.