Bronchoscopy in the COVID-19 Era

Jennifer Krall, MD, Muhammad Ali, MD, Matthew Maslonka, MD, Aaron Pickens, MD, and Christina Bellinger, MD

Abstract: Bronchoscopy is an aerosol-generating procedure with important diagnostic and therapeutic indications. However, in the era of the coronavirus disease 2019 (COVID-19) pandemic, airway procedures can put health care providers at an increased risk of exposure and transmission of COVID-19. We have reviewed and summarized guidelines from various societies of respiratory medicine to stratify the indications for bronchoscopy and optimize preprocedural, procedural, and postprocedural preparation. Appropriate measures can help decrease exposure to health care workers when performing this aerosol-generating procedure.

Key Words: bronchoscopy, COVID-19, aerosol-generating procedure

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), was first identified in December 2019 in Wuhan, Hubei province, China. Over the course of a few months, it changed the approach to patient care in nearly every country on earth and across almost every spectrum of care. Health care has been markedly transformed by the 2019 coronavirus pandemic. Although the mortality appears to be lower for COVID-19 when compared with other coronavirus outbreaks such as severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), the higher communicable spread of SARS-CoV-2 together with its long incubation period and asymptomatic shedding have resulted in a death toll exceeding SARS and MERS outbreaks combined. Specifically, asymptomatic virus shedding poses the greatest difficulty in successfully managing the spread of the virus. Emerging data have demonstrated that up to 79% of documented cases have extremely mild symptoms or no clinical signs whatsoever while still shedding the virus. It is this population that requires vigilant consideration when deciding on how to efficiently treat patients for conditions necessitating procedural intervention.

SARS-CoV-2 enters the body through contact with mucosal surfaces and replicates within the respiratory tract, where the viral load is the highest. Infected patients introduce viral particles into the air with expiratory activities such as breathing, speaking, coughing, sneezing, and during procedures such as suctioning, endotracheal intubation, and bronchoscopy. Each of these activities leads to aerosols of different sizes originating from different areas of the upper respiratory tract, which are subject to desiccation after being exhaled. Many divide aerosols into categories of small droplets (sometimes exclusively referred to as aerosols) and large droplets. World Health Organization (WHO) has traditionally defined droplets as being >5 µm in size. Droplet nuclei or aerosols, particles arising from desiccation of suspended droplets, are defined as being <5 µm in size. Aerosol-generating procedures may also create opportunities for direct contact and fomite transmission. Aerosolizing procedures pose the greatest risk for transmission of this virus, thereby placing health care professionals at an increased risk of exposure. As early as January 2020, the first providers who were caring for COVID-19 patients were documented as contracting the disease and tragically the first provider death was confirmed in an otolaryngologist practicing in Wuhan, China. Pulmonologists, otolaryngologists, oral surgeons, anesthesiologists, and anesthetists are among the specialties known to be at an increased risk for infection, given the procedures they perform in or near the upper aerodigestive tract.

Bronchoscopy remains one of the highest risk procedures within this population of patients due to its detectible disruption of airway mucosa and the increased pressures utilized to oxygenate and ventilate patients during the procedure. Secondary to the close contact between the medical personnel involved in the bronchoscopy and the patient, coughing and suction can produce significant amounts of droplets or aerosols, contaminating indoor equipment, procedure room air, and personnel present, and even resulting in a higher risk of patient-to-patient cross-infection. Nonetheless, bronchoscopy remains an imperative and important method for the diagnosis and treatment of respiratory illnesses that in certain instances cannot be postponed pending further progression of disease and clinical deterioration. Therefore, it is critical to stratify the patients requiring prompt bronchoscopic intervention along with those patients who may benefit from a delayed procedure.

Many strategies have endeavored to minimize risk of transmission from airway procedures in COVID-19 patients. Examples described include a closed, in-line suction system to seal the bronchoscope during percutaneous tracheostomy, a reusable acrylic barrier enclosure during standard intubation, and utilizing disposable drapes to create a contained tent immediately around the patient. To protect providers and patients alike, standardized approaches must be implemented to minimize the risk of exposure while preserving the ability to perform medically appropriate aerosolizing procedures such as bronchoscopy.

In this review, we will discuss guideline-driven outlined steps to ensure the least amount of risk for the health care team involved with bronchoscopy, including patient selection, preprocedural practices, postprocedural cleaning, and handling of the respiratory samples obtained.

PRE-PROCEDURE PREPARATION

Bronchoscopy is an aerosol-generating procedure that puts health care workers at an increased risk of exposure and infection, hence discussion and planning with all involved personnel before
the procedure is essential to ensure the procedure runs smoothly and exposure risks are limited. Temperature, travel, exposure, and symptom screening should be considered. Patients should wear a surgical mask in the pre-procedure area, bronchoscopy suite, and in the recovery area. In the interest of conserving personal protection equipment (PPE) and minimizing staff exposure as much as possible, the participating personnel should be limited to only those needed for the procedure—bronchoscopist, bronchoscopy assistant, and anesthesia team, if necessary. No observers, students, apprentices, or trainees should be in the procedure room.

Reports of asymptomatic carriers and studies showing early viral shedding in mild or prodromal stage of the disease are worrisome for potential viral spread during an aerosol-generating procedure.17 As the COVID-19 testing capabilities have improved with a shortened turnaround time and health care facilities are gradually allowing elective procedures, pre-procedural COVID-19 testing should be obtained and verified along with a review of epidemiological and clinical markers of the active disease, ideally closely timed before the planned procedure, barring an emergent indication for bronchoscopy.7,20,21 Debate remains on the balance of this resource use versus questionnaire screening, especially in areas where there is low prevalence and likely lower yield in testing.22–24 Ultimately, the decision to implement pre-procedural COVID-19 testing should take testing capability, availability, and regional disease prevalence into consideration. Regardless, precautions should be taken to minimize transmission even with testing given the false negativity rate with testing.

LOW SUSPICION OR COVID-19 NEGATIVE PATIENTS

Guidelines have been published for performing bronchoscopy in patients with low suspicion for COVID-19 or negative COVID-19 testing.25 As patients with COVID-19 can be asymptomatic or presymptomatic, precautions should be taken to protect both the patient as well as the procedure personnel even in the setting of a pre-procedural negative test in an area where community transmission of COVID-19 infection is present.26 Society guidelines (Table 1) recommend personal protective equipment (PPE) including N-95 respirator mask or powered air purifying respirators, face shield/eye protection, gown, and gloves.12,16–21,28–30 These are recommendations that have been put forth by both the major societies of respiratory disease and are similar to guidelines by anesthesia societies for aerosol-generating procedures.31 These recommendations protect health care providers while allowing for continuation of clinical care.

Additional recommendations suggested by some societies include preference of transnasal approach using a slotted mouth and nose protector, avoiding rigid bronchoscopy with jet ventilation, and avoiding atomized lidocaine.12,21,29 The individual patient and their indications should be considered in the setting of institutional resources when considering these recommendations.

HIGH SUSPICION OR COVID-19 POSITIVE PATIENTS

Suspected or known COVID-19 positivity is considered to be a relative contraindication to bronchoscopy, given the clear risks to the participating staff.32 Furthermore, only under rare circumstances should bronchoscopy be performed for the sole purpose of obtaining a specimen to test for COVID-19.33 COVID-19 testing is recommended to be performed via nasal swabs.12 Bronchoscopy should be limited to emergent or urgent indications (Table 2). In the guidance put forth by the American Association for Bronchology and Interventional Pulmonology (AABIP), urgency of indications is outlined.16 Emergent indications are considered to be moderately symptomatic or worsening tracheal/bronchial stenosis, symptomatic central airway obstruction, massive hemoptysis, and migrated stent. Urgent indications include lung mass or mediastinal/hilar lymphadenopathy suspicious for cancer, whole lung lavage, foreign object aspiration, mild to moderate hemoptysis, and suspected pulmonary infection in immunocompromised patients.

After taking into consideration risks and benefits, if the decision is made to proceed with a diagnostic or therapeutic bronchoscopy, measures can be taken to lower droplet transmission.12,16–21,28–30 Personnel should be strictly limited and the procedure should be performed in an airborne infection isolation room or negative pressure room. All personnel should properly don N-95 respirator and eye protection or a powered air purifying respirator, gown, and gloves. When doffing, the N-95 respirator, gown, and gloves should be discarded. When available and feasible, a disposable bronchoscope should be used.21,28 The patient’s nose and mouth should be covered with a medical mask slotted for transnasal or transoral access. Cough should be minimized pharmacologically. Following proper doffing of PPE, meticulous hand hygiene should occur.

The Center for Disease Control and Prevention (CDC) has guidelines to determine when a recovered patient may have transmission-based precautions discontinued.27 Presently, discontinuation of transmission-based precautions is recommended to be based on either a test-based strategy or a symptom-based strategy. For symptomatic COVID positive patients, transmission-based precautions can be discontinued if at least 73 hours has passed since recovery (resolution of fever without fever-reducing medication) and improvement in respiratory symptoms and at least 10 days has passed since the first symptoms appeared. The test-based strategy includes negative results of SARS-CoV-2 RNA molecular assay from at least 2 consecutive specimens obtained ≥ 24 hours apart in addition to the resolution of fever and improvement of respiratory symptoms. In patients who remain asymptomatic but test positive for COVID-19, a period of 10 days from the first diagnostic test or 2 negative specimens obtained ≥ 24 hours apart may be used. As the body of evidence increases, this is subject to change. Therefore, practices should follow the updated guidelines.

POST-PROCEDURAL SPECIMEN HANDLING AND SCOPE MANAGEMENT

Bronchoscopy is not the recommended test of choice for diagnosing COVID-19.12 However, if this testing modality is required, lower respiratory tract specimens sent for SARS-CoV-2 testing should include at least 2 to 3 mL of fluid and be placed in a sterile, dry container with appropriate labeling.25 The samples should be transported to an appropriately qualified laboratory, accompanied by any required COVID-19 testing form, to ensure safe and proper processing. Routine viral testing and microscopic staining and examination can be processed in a biosafety level 2 (BSL-2) laboratory.35 Post-procedural considerations are equally important for the safety of health care personnel and prevention of nosocomial transmission of COVID-19. According to one study, SARS-CoV-2 can remain aerosolized for up to 3 hours and was viable on plastic and stainless steel surfaces for up to 72 hours.36 Following bronchoscopy, the patient should be recovered according to local protocol. All staff involved should then doff PPE and perform hand hygiene as described above. All horizontal and work surfaces, video monitors and hardware should then be disinfected with EPA-approved cleaners. As bronchoscopy is an aerosol-generating procedure, any bronchoscopy on a suspected or confirmed COVID-19
References	Preprocedure Testing and Considerations	Tested Negative and/or Not Suspected	Suspected or Confirmed	Recovered
CHEST/AABIP16,20	Corona virus disease 2019 (COVID-19) nasopharyngeal testing Screen for travel and symptoms. Postpone if recent travel to country with CDC level 2 or higher warning Limit personnel Airborne infection isolation room (AIIR) or negative pressure room	N-95 respirator and face shield OR a powered air purifying respirator (PAPR) Gown, gloves	N-95 respirator and eye protection OR a powered air purifying respirator Gown, gloves Disposable bronchoscope when available Discard N-95 respirator following procedure	Suggest timing of the procedure customized based on the indication, the severity of the COVID-19 infection and time from symptom resolution Similar PPE
Centers for Disease Control and Prevention (CDC)27	Limit in-room providers to essential personnel. No visitors AIIR			
International Expert Panel21	COVID-19 nasopharyngeal testing Screen for travel, COVID-19 patient contact Temperature screen Limit personnel Patients with history, clinical findings, or typical CT pattern should be categorized as “Probable” irrespective of swab Room with natural ventilation or negative pressure rooms	Filtering facepiece (FFP) 2 mask Disposable safety glasses or face shield Disposable gowns and gloves, cap Transnasal access with slotted mouth and nose protector If rigid bronchoscopy is unavoidable, use conventional ventilation and reduce aerosol leakage		
Group of Interventional Respiratory Medicine, Chinese Thoracic Society12	Temperature and symptom screen Limit personnel Negative pressure room (for suspected or confirmed)	Surgical mask but N-95 if sick contact Glasses or eye mask Gown, gloves, cap No atomized lidocaine.	Surgical mask with face shield Positive pressure hood Protective suit, isolation gown, goggles, shoe covers, gloves	
Spanish Society of Pneumology and Thoracic Surgery (SEPAR), Spanish Association of Respiratory Endoscopy (AEER)28	COVID-19 PCR Screen travel history, contact risk, symptoms Limit personnel Negative pressure room	FFP2 or FFP3 depending on risk (sick contacts) Eye protection Gown, gloves	FFP3 full face mask Full-face or full-frame fitted eye protection Long-sleeved waterproof gown, gloves Reduce cough with sedation Disposable bronchoscope if possible FFP3 mask Safety glasses Avoid jet ventilation. Closed circuit	
German Respiratory Society (DGP)29	Limit personnel	Re-used N-95 Eye protection Gown, gloves		
Argentine Association of Bronchoesophagology (AABE)30	Screen symptoms, travel history, or contact with patients with COVID-19 Limit personnel AIIR for suspected or confirmed	Appropriate isolation precautions should be followed	Respiratory protection (N-95) Gown, gloves, boots, cap, and eye protection Disposable bronchoscopes should be used first line when available	Bronchoscopy for any elective reason should be postponed until after full recovery and the patient is declared free of infection
TABLE 2. Indications for Bronchoscopy in Suspected or Confirmed COVID-19

References	Indications
CHEST/AABIP^{16,20}	Limited role in the diagnosis of coronavirus 2019 (COVID-19)
International Expert Panel²¹	Nasopharyngeal smear is negative 2 times and clinically there is still diagnostic uncertainty of COVID-19 infection
Group of Interventional Respiratory Medicine, Chinese Thoracic Society¹²	Bronchoscopy should not be used as a routine means for the diagnosis of 2019-nCoV infection
Spanish Society of Pneumology and Thoracic Surgery (SEPAR), Spanish Association of Respiratory Endoscopy (AEER)²⁸	If 2 COVID-19 FCR samples are negative and clinical suspicion persists
Argentine Association of Bronchoesophagology (AABE)³⁰	Extremely limited role in the diagnosis of COVID-19 and only be considered in intubated patients if the upper airway samples are negative and other diagnoses are considered to significantly change clinical management

...continued...

SUMMARY

The COVID-19 pandemic has changed the approach to bronchoscopy to maximize the safety of involved health care providers. Patients continue to need urgent and emergent diagnostic and therapeutic bronchoscopy for a variety of indications even during a pandemic involving an easily aerosolized and transmissible virus. Bronchoscopy can be safely performed by taking the appropriate preprocedural, procedural, and post-procedural precautions and having a tiered approach to bronchoscopy to appropriately risk stratify urgent and emergent procedures. Ongoing data should be collected on exposures and transmission in this health care setting.
REFERENCES

1. Mahase E. Coronavirus covid-19 has killed more people than SARS and MERS combined, despite lower case fatality rate. BMJ. 2020;368:m641.

2. Li R, Pei S, Chen B, et al. Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV2). Science. 2020;368:489–493.

3. Tindale L, Coombe M, Stockdale JE, et al. Transmission interval estimates suggest pre-symptomatic spread of COVID-19. eLife. 2020;9:e57149.

4. Zou L, Ruan F, Huang M, et al. SARS-CoV-2 viral load in upper respiratory specimens of infected patients. N Engl J Med. 2020; 382:1177–1179.

5. Morawska L. Droplet fate in indoor environments, or can we prevent the spread of infection? Indoor Air. 2006;16:335–347.

6. World Health Organization. Infection Prevention and Control of Epidemic-and Pandemic-prone Acute Respiratory Infections in Health Care. 2014. Available at: https://apps.who.int/iris/bitstream/handle/10665/112569/78241507134_eng.pdf?sequence=1. Accessed September 30, 2020.

7. Judson SD, Munster VJ. Nosocomial transmission of emerging viruses via aerosol-generating medical procedures. Viruses. 2019;11:940.

8. Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72314 cases from the Chinese Center for Disease Control and Prevention. JAMA. 2020;323:1239–1242.

9. Chan JYK, Wong EWY, Lam W. Practical aspects of otolaryngologic clinical services during the 2019 Novel Coronavirus epidemic: an experience in Hong Kong. JAMA Otolaryngol Head Neck Surg. 2020;146:519–520.

10. Francom CR, Javia LR, Wolter NE, et al. Pediatric laryngoscopy and bronchoscopy during the COVID-19 pandemic: a four-center collaborative protocol to improve safety with perioperative management strategies and creation of a surgical tent with disposable drapes. Int J Pediatr Otorhinolaryngol. 2020;134:110059.

11. Patel ZM, Fernandez-Miranda J, Hwang PH, et al. Letter: precautions for endoscopic transnasal skull base surgery during the COVID-19 pandemic. Neurosurgery. 2020;87:E66–E67.

12. Group of Interventional Respiratory Medicine, Chinese Thoracic Society. Expert consensus for bronchoscopy during the epidemic of 2019 novel coronavirus infection (Trial version). Zhonghua Jie He Hu Xi Za Zhi. 2020;43:199–202.

13. Al Yaghl C, Ferguson C, Sandhill G. Punctuate tracheostomy in patients with COVID-19: sealing the bronchoscope with an in-line suction sheath. Br J Anaesth. 2020;125:e185–e186.

14. Canelli R, Connor CW, Gonzalez M, et al. Barrier enclosure during endotracheal intubation. N Engl J Med. 2020;382:1957–1958.

15. Vukkadala N, Qian ZZ, Holsinger FC, et al. COVID-19 and the otolaryngologist: preliminary evidence-based review. Laryngoscope. 2020;130:2537–2543.

16. Wahidi MM, Lamb C, Murgu S, et al. American Association for Bronchology and Intervventional Pulmonology (AABIP) statement on the use of bronchoscopy and respiratory specimen collection in patients with suspected or confirmed COVID-19 infection. J Bronchol Interv Pulmonol. 2020;27:e52–e54.

17. Bai Y, Yao L, Wei T, et al. Presumed asymptomatic carrier transmission of COVID-19. JAMA. 2020;323;1406–1407.

18. He X, Lau EHY, Wu P, et al. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat Med. 2020;26:672–675.

19. Wölfel R, Corman VM, Guggemos W, et al. Virological assessment of hospitalized patients with COVID-2019. Nature. 2020;581:465–469.

20. Wahidi MM, Shojaee S, Lamb CR, et al. The use of bronchoscopy during the Coronavirus Disease 2019 pandemic: CHEST/AABIP estimates surge in demand and expert panel report. Chest. 2020;158:1268–1281.

21. Luo F, Darwiche K, Singh S, et al. Performing bronchoscopy in times of the COVID-19 pandemic: practice statement from an international expert panel. Respiration. 2020;99:417–422.

22. Forde JJ, Goldberg D, Sussman D, et al. Yield and implications of pre-procedural COVID-19 polymerase chain reaction testing on routine endoscopic practice. Gastroentrology. 2020;159:1538–1540.

23. Podoby A, Cholankeril G, Gianfichi L, et al. Implementation and impact of universal pre-procedure testing of patients for COVID-19 before endoscopy. Gastroentrology. 2020;159:1586–1588.e4.

24. Kidambi TD, Idos GE, Lin JL. Pre-procedural COVID testing: the “new normal”. Gastroenterology. 2020. [In press].

25. Lentz RJ, Colt H. Summarizing societal guidelines regarding bronchoscopy during the COVID-19 pandemic. Respiracji. 2020;25:574–577.

26. Centers for Disease Control and Prevention. How Coronavirus Spreads. Available at: https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/how-covid-spreads.html. Accessed May 19, 2020.

27. Centers for Disease Control and Prevention. Discontinuation of transmission-based precautions and disposition of patients with COVID-19 in healthcare settings (interim guidance). Available at: https://www.cdc.gov/coronavirus/2019-ncov/hcp/disposition-hospitalized-patients.html. Accessed May 19, 2020.

28. Cordovilla R, Alvarez S, Llanos L, et al. SEPAR and AEER consensus recommendations on the use of bronchoscopy and airway sampling in patients with suspected or confirmed COVID-19 infection. Arch Bronconeumol. 2020;56(suppl 2):19–26.

29. Darwiche K, Ross B, Gesierich W, et al. Empfehlungen zur eurehrührung einer bronchoskopie in zeiten der COVID-19-Pandemie [Recommendations for performing bronchoscopy in times of the COVID-19 pandemic]. Pneumologie. 2020;74:260–262.

30. Asociación Argentina de Broncoeosophagología. Recomendaciones Asociación Argentina de Broncoeosophagología (AABE) basados en la World Association for Bronchology and Interventional Pulmonary WABIP for the management of patients with COVID-19 in a pandemic situation. Available at: http://www.broncoscopia.org.ar/recomendaciones-asociacion-argentina-de-broncoeosophagologia-aabe-basados-en-la-world-association-for-bronchology-and-interventional-pulmonary-wabip-para-el-nuevo-de-pacientes-con-covid-19-en-situacion/. Accessed May 17, 2020.

31. American Society of Anesthesiologists (ASA). The Use of Personal Protective Equipment by Anesthesia Professionals during the COVID-19 Pandemic. Available at: https://www.asahq.org/about-asa/newsroom/news-releases/202003/3-update-the-use-of-personal-protective-equipment-by-anesthesia-professionals-during-the-covid-19-pandemic. Accessed May 19, 2020.

32. Heinz Nerlinger A, Stueck MJ, Scheuer T, et al. Transmission of COVID-19 to health care personnel during exposures to a hospitalized-patient—Solano County, California, February 2020. MMWR Mortal Mortal Wkly Rep. 2020;69:472–476.

33. He M, Xiong J, Huang S, et al. Airborne precautions recommended before endoscopy. J Infect. 2020;81:e54.

34. Centers for Disease Control and Prevention. CDC Interim Guidelines for Collecting, Handling, and Testing Clinical Specimens for SARS-CoV-2. Available at: https://www.cdc.gov/coronavirus/2019-ncov/lab/guidelines-clinical-specimens.html. Accessed May 15, 2020.

35. Centers for Disease Control and Prevention. CDC interim laboratory biosafety guidelines for handling and processing specimens associated with coronavirus disease 2019. Available at: https://www.cdc.gov/coronavirus/2019-ncov/lab/guidelines-clinical-specimens.html. Accessed May 15, 2020.

36. van Doremalen N, Bushmaker T, Morris DH, et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N Engl J Med. 2020;382:1564–1567.

37. Society of American Gastrointestinal and Endoscopic Surgeons. Management of endoscopes, endoscope reprocessing, and storage areas during the COVID-19 pandemic. Available at: https://www.sages.org/management-endoscopes-reprocessing-storage-covid-19/. Accessed May 15, 2020.