The $p\bar{p}$ mass threshold structure in $\psi(3686)$ radiative decay revisited

J. Haidenbauer1 and Ulf-G. Meißner1,2

1Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron Physics, Forschungszentrum Jülich, D-52425 Jülich, Germany
2Helmholtz Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Universität Bonn, D-53115 Bonn, Germany

The near-threshold behavior of the $p\bar{p}$ invariant mass spectrum from the $\psi(3686)\rightarrow \gamma p\bar{p}$ decay reported recently by the BESIII Collaboration is analyzed. The enhancement in the $p\bar{p}$ invariant mass spectrum near threshold is nicely reproduced by the $p\bar{p}$ final-state interaction based on the isospin averaged 1S_0 partial-wave amplitude as predicted by the Jülich nucleon-antinucleon model. Contributions from the $f_2(1910)$ or $f_2(1950)$ mesons, as promoted in earlier works, are not needed.

PACS numbers: 12.39.Pn; 13.25.Gv; 13.75.Cs; 25.43.+t

Recently, the BESIII Collaboration presented data with improved statistics on the $p\bar{p}$ invariant mass spectrum for the reaction $J/\psi \rightarrow \gamma p\bar{p}$, but also a first high-statistics measurement of the $\psi(3686)\rightarrow \gamma p\bar{p}$ decay 1. The new $J/\psi \rightarrow \gamma p\bar{p}$ measurement confirmed the spectacular near-threshold enhancement in the $p\bar{p}$ invariant mass, found in an earlier experiment by the BES Collaboration 2, which has been seen as evidence for a $p\bar{p}$ bound state or baryonium $^3,^4$. For exotic glueball states $^5,^6$, but also simply as manifestation of the final-state interaction (FSI) between the outgoing proton and antiproton $^7,^8$. A significant near-threshold enhancement of the $p\bar{p}$ invariant mass was seen also in the $\psi(3686)$ decay, although less pronounced than in the J/ψ case.

The BESIII Collaboration themselves interpreted their J/ψ decay data in terms of the $p\bar{p}$ FSI proposed by us 9, but folded with a Breit-Wigner type resonance at around 1835 MeV presuming that the structure at the $p\bar{p}$ threshold might be related to the $X(1835)$ resonance that had been observed in the reaction $J/\psi \rightarrow \gamma \pi^+\pi^-\eta'$ $^9,^10,^11$, see also the comments in Ref. 11. This object is called $X(pp)$ in Ref. 11. For the description of the $\psi(3686)$ decay the same $X(pp)$ amplitude is used but sizeable additional contributions from the $f_2(1910)$ resonance had to be invoked. Contributions of a tensor meson, but in this case of the $f_2(1950)$, were also advocated in the work of the CLEO collaboration 12, which had published data on the reaction $\psi(3686)\rightarrow \gamma p\bar{p}$ decay prior to BESIII, though with lower statistics. In both cases an isoscalar meson with a larger mass ($f_0(2100)$ and $f_2(2150)$, respectively) has been added to explain the $p\bar{p}$ spectrum at higher invariant masses.

In this report we take a closer look at those $\psi(3686)\rightarrow \gamma p\bar{p}$ data from the BESIII Collaboration. Specifically, we provide an alternative interpretation of the near-threshold enhancement solely in terms of the $p\bar{p}$ FSI, i.e. without resorting to any resonance contributions like the $f_2(1910)$ or $f_2(1950)$ (or the $X(1835)$), based on the very same NN interaction used by us previously in the explanation of the enhancement in the J/ψ decay 9.

Conservation laws for parity, charge-conjugation and total angular momentum severely restrict the partial waves in the $p\bar{p}$ system 9 for such decay processes. Specifically, the partial-wave analysis for the J/ψ decay performed in 1 suggests that the near-threshold enhancement is dominantly in the $J^{PC}=0^{-+}$ state, which means that the $p\bar{p}$ system should be in the 1S_0 partial wave (we use here the standard nomenclature $^{2S+1}L_J$ where S is the total spin and L the orbital angular momentum). However, since the decay of the J/ψ and $\psi(3686)$ to the $\gamma p\bar{p}$ system involves electromagnetic processes, isospin is not conserved so that, in principle, any combination of the isospin $I=0$ and $I=1$ components is allowed. Indeed, while the $p\bar{p}$ invariant mass for J/ψ decay can be understood in terms of the FSI generated by the isospin $I=1$ component of the NN amplitude in the 1S_0 state alone – at least in our work 9 – the $I=1$ and $I=0$ channels can occur with different weights in case of the $\psi(3686)$ decay.

The $\psi(3686)\rightarrow \gamma p\bar{p}$ decay rate is given by 9

$$d\Gamma = \frac{|A|^2}{2\pi s\rho^2_{\psi}} \lambda^{1/2}(m_\psi^2, M^2, m_{\rho}^2) \times \lambda^{1/2}(M^2, m_p^2, m_{\rho}^2) \, dM \, d\Omega_p \, d\Omega_{\gamma},$$

(1)

where the Källén function λ is defined by $\lambda(x, y, z) = ((x - y - z)^2 - 4yz)/4x$, $M = M_{\rho\rho}$ is the invariant mass of the $p\bar{p}$ system, Ω_p is the proton angle in that system, while Ω_{γ} is the angle in the $\psi(3686)$ rest frame. After averaging over the spin states and integrating over the angles, the differential decay rate is

$$\frac{d\Gamma}{dM} = \frac{(m_\psi^2 - M^2) \sqrt{M^2 - 4m_p^2}}{2\pi^3 m_\psi^3} |A|^2. $$

(2)

The quantity A in Eqs. 1 and 2 stands for the total $\psi(3686)\rightarrow \gamma p\bar{p}$ reaction amplitude and is dimensionless.

We assume again the validity of the Watson-Migdal $^12,^20$ approach for the treatment of the FSI effect. It suggests that the reaction amplitude for a production and/or decay reaction that is of short-ranged nature can be factorized in terms of an elementary (basically constant) production amplitude A_0 and the $p\bar{p}$ scattering
data from Ref. [1]. As expected from the curves predominantly dominated by the 1S_0 curve are corresponding results using the normalized to the data, cf. Eq. (3). The dashed (dash-dotted) 1N the Ref. [9] for further details. As in our investigation of where 1N amplitude squared ($|A|^2$). For notation of curves, see Fig. 1.

The circles show experimental results of the BES Collaboration 1. The solid line is a calculation using the 1N model A(OBE) published in Refs. [21, 22], and those curves were normalized so that they all coincide at $M_{p\bar{p}} - 2m_p \approx 60$ MeV.

FIG. 1: The $p\bar{p}$ mass spectrum from the decay $\psi(3686) \rightarrow \gamma p\bar{p}$. The circles show experimental results of the BES Collaboration 1. The solid line is a calculation using the 1N model A(OBE) published in Refs. [21, 22], and those curves were normalized so that they all coincide at $M_{p\bar{p}} - 2m_p \approx 60$ MeV in order to facilitate comparison of the differences in the energy dependence. The latter is obtained by using a constant amplitude A in Eq. (2). The χ^2 value for the pure $I = 0$ amplitude is 11.9. The one for the phase-space curve amounts to 60 which is a clear indication that the measured invariant mass spectrum does not exhibit a phase-space behaviour near threshold. All those curves are normalized to the solid curve at $M_{p\bar{p}} - 2m_p \approx 60$ MeV in order to facilitate a comparison of the differences in the energy dependence.

Based on those findings we do not see any need here to invoke further more substantial contributions coming from any $f_2(1910)$ or $f_2(1950)$ mesons, say, as done in Refs. [1, 18], in order to explain the data.

In Fig. 2 our results are compared with the data obtained by the CLEO Collaboration 15. For notation of curves, see Fig. 1 (a) for further details. As in our investigation of the J/ψ decay we employ the amplitudes predicted by the $N\bar{N}$ model A(OBE) published in Refs. [21, 22], and we assume that the FSI effects in the $\psi(3686)$ decay are likewise dominated by the 1S_0 partial wave.

Our results are presented in Fig. 1 together with the data from Ref. 1. As expected from the curves presented in Fig. 3 of Ref. 1, the $N\bar{N}$ amplitude in the $I = 1$ channel, which successfully describes the rather strong enhancement detected in the reaction $J/\psi \rightarrow \gamma p\bar{p}$ 4, overestimates the energy dependence seen in the $\psi(3686)$ case, cf. the dashed curve. On the other hand, the result based on the isospin averaged amplitude, $(T_{I=1} + T_{I=0})/2 \equiv T_{p\bar{p}}$, shown in Fig. 1 by the solid line, agrees rather nicely with the energy dependence found in the experiment. With an appropriately chosen normalization, cf. Eq. (3), the data are well reproduced from the $p\bar{p}$ threshold up to excess energies of about 150 MeV. In particular, the χ^2 is 8.7 for the 15 data points shown in Fig. 1 while it is 22.2, i.e. more than twice as large, for the pure $I = 1$ amplitude. We also include the result based on FSI effects due to the $p\bar{p}$ amplitude in the $I = 0$ channel alone (dash-dotted curve) and we indicate the pure phase-space behaviour by the dotted curve.

Finally, in Fig. 3 the results for BESIII are displayed again, however this time in terms of the modulus squared of the amplitude A. Here the curves correspond directly to the 1S_0 partial-wave. The symbols indicate the experimental values of $|A|^2$, obtained from the BESIII data 1 via dividing the latter by the kinematical factors according to Eq. (2).

In summary, we have analyzed the near-threshold behavior of the $p\bar{p}$ invariant mass spectrum from the $\psi(3686) \rightarrow \gamma p\bar{p}$ decay reported recently by the BESIII Collaboration within the Watson-Migdal approach. Although in this reaction there is definitely an enhancement in the near-threshold region as compared to the phase-space behavior, it is much less pronounced than what was found for the corresponding reaction $J/\psi \rightarrow \gamma p\bar{p}$. The enhancement is nicely reproduced by the $p\bar{p}$ final-state interaction based on the isospin averaged 1S_0 partial-wave.
particular, any more substantial contributions from tensor mesons like $f_2(1910)$ or $f_2(1950)$, as advocated in earlier works [1, 18], are not required.

Note that we have used here the same $N\bar{N}$ amplitudes as in our study of the J/ψ decay [9]. In the J/ψ case the FSI provided by the $I = 1$ component alone led to an agreement with the measured near-threshold $p\bar{p}$ invariant mass spectrum. Clearly, the mechanisms for the decay of the J/ψ and $\psi(3686)$ mesons into $\gamma p\bar{p}$ should be different so that different admixtures of the two isospin components in the final $p\bar{p}$ state have to be expected. Only dedicated microscopic calculations, which hopefully will be performed in the future, can allow to shed light on the details of the reaction mechanisms.

FIG. 3: Invariant $\psi(3686)\rightarrow\gamma p\bar{p}$ amplitude $|A|^2$ as a function of the $p\bar{p}$ mass. The circles symbolize the experimental values of $|A|^2$ extracted from the BES data [1] via Eq. (2). The curves are the appropriately normalized scattering amplitude squared, $|T|^2$, predicted by the $N\bar{N}$ model A(OBE) [21, 22] for the 1S_0 partial wave. For notation of curves, see Fig. 1. amplitude as given by the Jülich $N\bar{N}$ model. In particular, any more substantial contributions from tensor mesons like $f_2(1910)$ or $f_2(1950)$, as advocated in earlier works [1, 18], are not required.

Note that we have used here the same $N\bar{N}$ amplitudes as in our study of the J/ψ decay [9]. In the J/ψ case the FSI provided by the $I = 1$ component alone led to an agreement with the measured near-threshold $p\bar{p}$ invariant mass spectrum. Clearly, the mechanisms for the decay of the J/ψ and $\psi(3686)$ mesons into $\gamma p\bar{p}$ should be different so that different admixtures of the two isospin components in the final $p\bar{p}$ state have to be expected. Only dedicated microscopic calculations, which hopefully will be performed in the future, can allow to shed light on the details of the reaction mechanisms.

Acknowledgments

This work is supported in part by the DFG and the NSFC through funds provided to the Sino-German CRC 110 “Symmetries and the Emergence of Structure in QCD”, and by the European Community-Research Infrastructure Integrating Activity “Study of Strongly Interacting Matter” (acronym HadronPhysics3).

[1] M. Ablikim et al. [BESIII Collaboration], Phys. Rev. Lett. 108, 112003 (2012).
[2] J.Z. Bai et al., Phys. Rev. Lett. 91, 022001 (2003).
[3] A. Datta and P.J. O’Donnell, Phys. Lett. B 567, 273 (2003).
[4] G. J. Ding and M. L. Yan, Phys. Rev. C 72, 015208 (2005).
[5] M. Suzuki, J. Phys. G 34, 283 (2007).
[6] J.-P. Dedonder, B. Loiseau, B. El-Bennich and S. Wycech, Phys. Rev. C 80, 045207 (2009).
[7] C. K. Chua, W. S. Hou and S. Y. Tsai, Phys. Lett. B 544, 139 (2002).
[8] J.L. Rosner, Phys. Rev. D 68, 014004 (2003).
[9] A. Sibirtsev, J. Haidenbauer, S. Krewald, U.-G. Meißner and A. W. Thomus, Phys. Rev. D 71, 054010 (2005).
[10] J. Haidenbauer, U.-G. Meißner and A. Sibirtsev, Phys. Rev. D 74, 017501 (2006).
[11] B. Kerbikov, A. Stavinsky, and V. Fedotov, Phys. Rev. C 69, 055205 (2004).
[12] D.V. Bugg, Phys. Lett. B 598, 8 (2004).
[13] B.S. Zou and H.C. Chiang, Phys. Rev. D 69, 034004 (2004).
[14] B. Loiseau and S. Wycech, Phys. Rev. C 72, 011001 (2005).
[15] D. R. Entem and F. Fernández, Phys. Rev. D 75, 014004 (2007).
[16] M. Ablikim et al. [BES Collaboration], Phys. Rev. Lett. 95, 262001 (2005).
[17] M. Ablikim et al. [BESIII Collaboration], Phys. Rev. Lett. 106, 072002 (2011).
[18] J. P. Alexander et al. [CLEO Collaboration], Phys. Rev. D 82, 092002 (2010).
[19] K.M. Watson, Phys. Rev. 88, 1163 (1952).
[20] A.B. Migdal, JETP 1, 2 (1955).
[21] T. Hippchen, J. Haidenbauer, K. Holinde, V. Mull, Phys. Rev. C 44, 1323 (1991).
[22] V. Mull, J. Haidenbauer, T. Hippchen, K. Holinde, Phys. Rev. C 44, 1337 (1991).