Direct-acting antivirals and host-targeting strategies to combat enterovirus infections
Lisa Bauer*, Heyrhyoung Lyoo*, Hilde M van der Schaar, Jeroen RPM Strating and Frank JM van Kuppeveld

Enteroviruses (e.g., poliovirus, enterovirus-A71, coxsackievirus, enterovirus-D68, rhinovirus) include many human pathogens causative of various mild and more severe diseases, especially in young children. Unfortunately, antiviral drugs to treat enterovirus infections have not been approved yet. Over the past decades, several direct-acting inhibitors have been developed, including capsid binders, which block virus entry, and inhibitors of viral enzymes required for genome replication. Capsid binders and protease inhibitors have been clinically evaluated, but failed due to limited efficacy or toxicity issues. As an alternative approach, host-targeting inhibitors with potential broad-spectrum activity have been identified. Furthermore, drug repurposing screens have recently uncovered promising new inhibitors with disparate viral and host targets. Together, these findings raise hope for the development of (broad-range) anti-enteroviral drugs.

Address
Department of Infectious Diseases & Immunology, Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands

Corresponding author: van Kuppeveld, Frank JM (f.j.m.vankuppeveld@uu.nl)

* These authors contributed equally.

Current Opinion in Virology 2017, 24:1–8
This review comes from a themed issue on Antiviral strategies
Edited by Lieve Naesens and Fabien Zoulim
For a complete overview see the Issue and the Editorial
Available online 12th April 2017
http://dx.doi.org/10.1016/j.coviro.2017.03.009
1879-6257/© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction
The Picornaviridae constitutes a large family of non-enveloped, positive-stranded RNA (+RNA) viruses, currently consisting of 31 genera. The genus Enterovirus, which is by far the largest genus, comprises many human pathogens, including poliovirus, coxsackie A and B viruses, echoviruses, numbered enteroviruses (e.g., EV-A71 and EV-D68), and rhinoviruses. Infections with non-polio enteroviruses can result in a wide variety of symptoms, including hand-foot-and-mouth disease, conjunctivitis, aseptic meningitis, severe neonatal sepsis-like disease, and acute flaccid paralysis, whereas infections with rhinoviruses cause the common cold as well as exacerbations of asthma and chronic obstructive pulmonary disease (COPD) (reviewed in Ref. [1]). Vaccines are only available against poliovirus and EV-A71. Development of vaccines against all enteroviruses seems unfeasible, given the large number of (sero)types (i.e., >100 non-polio enteroviruses and >150 rhinoviruses). Hence, there is a great need for (broad-acting) antivirals against enteroviruses. Here, we will review recent efforts to develop direct-acting antivirals as well as host factor-targeting inhibitors to treat enterovirus infections (Table 1).

Direct-acting antivirals
Entry inhibitors
Enterovirus capsids are icosahedral (pseudo T = 3) structures composed of 60 copies of each of the four capsid proteins (VP1 to VP4). The enterovirus replication cycle (Figure 1b) is initiated by binding of a virion to its receptor. Most enterovirus receptors are protein receptors that belong to the Ig superfamily or the integrin receptor family (reviewed in Ref. [2]). The receptors usually bind in the ‘canyon’, a depression in the virion surface around the five-fold axes of symmetry [2]. Receptor-binding induces virion destabilization and release of the ‘pocket factor’, a fatty acid located in a hydrophobic pocket beneath the canyon, to initiate virion uncoating [2].

So-called ‘capsid binders’ are the most extensively studied class of anti-enteroviral compounds [3,4]. These compounds replace the pocket factor in the canyon and thereby block virion uncoating. Clinical trials for the capsid binders pleconaril, vepadavir (a.k.a. BTA798), and pocapavir (a.k.a. V-073) are currently in progress or have recently been completed, the status of which has been described last year [5]. Since then, another trial with pleconaril was conducted for the treatment of neonates with enterovirus sepsis, which showed greater survival among pleconaril recipients [6]. A major drawback of capsid binders is the rapid emergence of resistance. Indeed, in a clinical trial for the treatment of rhinovirus infections with pleconaril, compound-resistant viruses were isolated [7]. In addition, naturally occurring pleconaril-resistant viruses (e.g., an echovirus 11 strain) have been reported [8]. These resistance issues may complicate the application of capsid binders in the clinic.
Antiviral strategies

Figure 1

Enterovirus genome, replication cycle, and antiviral targets. (a) The enterovirus genome encodes four structural proteins (VP1-VP4) and seven non-structural proteins (2A, 2B, 2C, 3A, 3B, 3C, and 3D). IRES: internal ribosome entry site. (b) The enterovirus life cycle begins with the attachment of the virus particle to a cellular receptor followed by the internalization of the particle into the host cell. The genome is released and directly
Many capsid binders are active against rhinovirus A and B species members [3], but not against members of the rhinovirus C species [9,10]. The recent elucidation of the atomic virion structure of rhinovirus-C15 by cryo-EM revealed a unique ‘spiky’ structure, vastly different from other enterovirus species. Furthermore, the hydrophobic pocket is filled with bulky hydrophobic residues, thereby not providing sufficient space for a pocket factor or a capsid binder. These features likely explain why rhinovirus C species are not responsive to pocket-binding compounds [11**].

The atomic structure of rhinovirus-C also revealed a potential binding site for sialic acids in a sequence-conserved surface depression [11**]. Sialic acids were recently shown to also facilitate entry of EV-D68 [12,13]. Targeting sialic acid (reviewed in Ref. [14]), which has also been applied for influenza virus, could be an approach to inhibit rhinovirus-C and EV-D68 infections. One of the best-described compounds targeting sialic acids is DAS181, a bacterial sialidase that cleaves α2,3- and α2,6-sialic acid linkages, and that has been tested in a phase II clinical trial for (para)influenza infection [15,16]. DAS181 also inhibits EV-D68 replication in vitro [17], but it remains to be tested in vivo.

Protease inhibitors

The 7.5 kb +RNA genome of enteroviruses encodes a single polyprotein harboring the structural P1 proteins and the non-structural P2 and P3 proteins (Figure 1a). This polyprotein is proteolytically processed into individual proteins by viral proteases 2Apro, 3Cpro, and 3CPol.

The development of protease inhibitors has focused particularly on 3CPol, since it is more conserved than 2Apro. One of the most potent 3CPol inhibitors developed over the years is rupintrivir (a.k.a. AG7088). Rupintrivir is a peptidomimetic compound that irreversibly binds to the catalytic site of 3CPol [18]. Because it is very active against a broad panel of enteroviruses [3,19–21], this compound was selected for clinical trials, despite its poor oral bioavailability [22,23]. Although the results of rhinovirus challenge trials were promising [24], rupintrivir did not reduce disease severity in naturally infected patients [25], hence the clinical development was halted. However, many rupintrivir derivatives are currently under development [26–28]. Furthermore, non-peptidomimetic small molecule inhibitors are developed to circumvent difficulties with bioavailability [29], but they have yet to be evaluated in clinical trials.

3DPol inhibitors

The viral RNA-dependent RNA polymerase 3DPol catalyzes viral RNA synthesis in replication complexes that are associated with so-called replication organelles (ROs, see below). Inhibitors of 3DPol can be divided into two classes based on their structure, being nucleoside/nucleotide inhibitors (NIs) and non-nucleoside/nucleotide inhibitors (NNIs).

NIs

Antiviral NIs can act in two ways. They can be incorporated into the viral genome by mimicking nucleotides to induce lethal mutagenesis or terminate elongation of the nascent chain, or inhibit viral replication in an indirect manner by affecting the cellular nucleotide pools (reviewed in Ref. [30]). Until now, few NIs against enteroviruses have been developed, but compounds developed against other viruses offer promising results, such as ribavirin [31,71], which is clinically used for the treatment of hepatitis C virus (HCV) infections [32,33]. Another example is NITD008, which failed in preclinical studies for the treatment of dengue virus infection due to toxicity. However, a 10-fold lower concentration of NITD008 protected mice from a lethal challenge with EV-A71 without showing any cytotoxicity [34].

Drug repurposing – that is, the concept of using compounds developed for a certain disease to treat a different condition – offers an attractive alternative to de novo drug development, as profound pharmacological and toxicological profiles are already available allowing a bypass of expensive (pre-)clinical studies. For example, the NI gemcitabine, an anticancer drug, was recently found to exert broad-spectrum anti-enteroviral activity [35,36]. Besides incorporation into nascent viral RNA, gemcitabine has been suggested to block access of nucleotides into the active side of the polymerase. Furthermore, gemcitabine blocks viral genome replication by inhibiting ribonucleotide reductase, the cellular enzyme that catalyzes the conversion of deoxyribonucleotides to ribonucleotides [35]. The dose of gemcitabine needed for antiviral activity is significantly lower than the dose for the anticancer activity, which raises hope for an application without toxic effects that are inherent to many anticancer drugs.
Several NNIs of 3Dpol have been identified (e.g., glitoxin, DTrip-22, aurintricarboxilic acid, BPR-3P0128, and GPC-N114), but their mechanism of action is poorly understood, except for amiloride, which decreases the polymerase fidelity (reviewed in Ref. [5]). GPC-N114 was identified as a novel broad-range enterovirus inhibitor that targets the RNA template-primer site in the core of 3Dpol, making it the first anti-enterviral compound with this mechanism of action [37**]. Unfortunately, the efficacy of GPC-N114 in animal models remains to be tested due to problems with formulating the compound for \textit{in vivo} use. Alternative strategies for 3Dpol inhibition, although thus far unexplored, may be to interfere with posttranslational modifications of 3Dpol like sumoylation and ubiquitination, both of which are important for 3Dpol activity [38].

\textbf{2CATPase inhibitors}

The highly conserved viral protein 2C, an ATPase, is an attractive target for broad-spectrum enterovirus inhibitors. 2CATPase** has several functions in genome replication (reviewed in Ref. [5]). Several structurally disparate 2CATPase** inhibitors have been identified, such as guanidine hydrochloride, HBB, MRL-1237 and TBZE-029 [3]. In addition, drug repurposing screens have recently uncovered a number of FDA-approved drugs (fluoxetine, pirindole, dibucaine, amiloride, and azithromycin) that inhibit replication of enterovirus species B and D members [39–41]. Since mutations in 2CATPase** provide resistance to these compounds, they are considered to target 2CATPase**. Indeed, fluoxetine (i.e., Prozac) was shown to interfere with the ATPase activity of 2CATPase**, but the mechanism of inhibition of the other drugs has yet to be unraveled [40]. Recent \textit{in vitro} experiments have confirmed the long-recognized ATP-dependent RNA helicase activity and ATPase-independent RNA chaperone functions of 2CATPase** [42**], paving the way for studies to elucidate the mechanism of action of 2CATPase** inhibitors in more detail. So far, 2CATPase** inhibitors have not been tested in clinical trials. However, fluoxetine was effective in an immunocompromised child with chronic enterovirus encephalitis [43**], implying that 2CATPase** inhibitors have potential for clinical use.

\textbf{Assembly inhibitors}

Virion morphogenesis is a poorly understood, step-wise process [44]. The first step is the liberation of P1 from the polyprotein. Assisted by the chaperone heat shock protein 90 (Hsp90) [44,45], P1 is processed into VP0 (i.e., the precursor of VP4 and VP2), VP1, and VP3, which spontaneously form a protomer. Five protomers subsequently assemble into a pentamer, twelve of which in turn form an empty capsid (a.k.a. procapsid). Assembly of pentamers and procapsids is supported by glutathione by an as yet unidentified mechanism [46,47**]. Governed by interactions between VP1/VP3 and 2CATPase** [44,48–50], actively replicating viral RNA is included in the procapsid to form a proviron. The final step in virion morphogenesis is the cleavage of VP0 into VP4 and VP2 to form a stable icosahedral particle.

Only a few assembly inhibitors have been identified so far. Geldanamycin and its analog 17-AAG target Hsp90 to inhibit the processing of P1 [51]. Buthionine sulfoximine, an inhibitor of glutathione synthesis, and TP219, a small molecule that covalently binds to glutathione, both impede the role of glutathione in morphogenesis [46,47**]. Yet, not all enteroviruses rely on glutathione [47**], thereby precluding glutathione as an important target for broad-spectrum inhibitors.

\textbf{Inhibitors of host factors}

Viruses critically depend on specific host factors. In recent years, several host factors required for enterovirus...
replication have been discovered, spurring host-directed drug development. Since some host factors appear to be used by many – or even all – enteroviruses, inhibitors of these cellular factors may have broad-spectrum activity.

PI4KB
Enteroviruses, like all +RNA viruses, induce specific alterations in intracellular membranes and lipid homeostasis to form replication organelles (ROs). The formation of enterovirus ROs is mediated by the concerted actions of viral proteins 2B, 2C, and 3A, as well as a selected set of hijacked host factors (recently reviewed in Ref. [52]). One of these pivotal host factors is phosphatidylinositol 4-kinase type IIIβ (PI4KB) [52–54]. It is recruited to membranes by the viral protein 3A and enriches ROs in phosphatidylinositol 4-phosphate (PI4P) lipids, which is essential for genomic RNA replication [53**]. As PI4KB is essential for all enteroviruses, inhibitors of this enzyme (e.g., PIK95, GW5074, T-00127-HEV1 and BF738735) (reviewed in Ref. [5]) have broad-spectrum activity [53**,54–56]. However, some PI4KB inhibitors showed lethal toxicity in mice and affected lymphocyte function in vitro, which has stalled the development of PI4KB inhibitors [57]. Besides the fact that PI4KB inhibitors may be toxic, their activity may also be overcome by some mutations in the viral 3A, as recently published [58,59].

OSBP
Itraconazole, a clinically used antifungal drug that also has anti-cancer properties, was identified in drug repurposing screens as a broad-spectrum enterovirus inhibitor [36,60**,61]. We identified the oxysterol-binding protein (OSBP) as a novel target of itraconazole responsible for the antiviral effects [60**]. OSBP is a PI4P-binding protein that shuttles cholesterol and PI4P at ER-Golgi membrane contact sites [62]. OSBP is recruited to ROs through the PI4KB-mediated increase in PI4P and its lipid shuttling activity is essential for viral genome replication. Other OSBP inhibitors (e.g., 25-hydroxycholesterol, AN-12-H5, T-00127-HEV2, TTP-8307, and the natural compound OSW-1) also impaired enterovirus replication [56,63–65]. In a rhinovirus mouse model, prophylactic intranasal treatment with itraconazole reduced viral titers and pathology, raising expectations for topically applied itraconazole to prevent or treat common colds [66].

Cyclophilins
Cyclophilin A plays a role during the uncoating process of EV-A71 [67**]. In line with this, cyclophilin A inhibitors HL05100P2 and cyclosporine A block EV-A71 replication [67**]. Cyclophilins facilitate protein folding by catalyzing peptide bond isomerization and also play a role in the replication of other +RNA viruses, including HCV and coronaviruses (reviewed in Ref. [68]). Because cyclophilin inhibitors like cyclosporine A have an immunosuppressive effect, non-immunosuppressive inhibitors (e.g., NIM-811 [69]) were developed and are currently in clinical trials for antiviral activity (e.g., alisporivir, a.k.a. Debio025, for HCV treatment). It remains to be established whether uncoating of other enteroviruses also relies on cyclophilins. Hence, the spectrum of anti-enteroviral activity of cyclophilin inhibitors remains to be explored.

Outlook
Currently, there are no antiviral drugs available for the treatment of enterovirus infections, while several potent antivirals are available against HCV, a +RNA virus with a similar replication strategy. Possibly, the small market for anti-enteroviral drugs impedes extensive (industrial) efforts to develop enterovirus inhibitors. Yet, antiviral drugs are urgently needed as enterovirus infections can be life-threatening especially in young children. Furthermore, antiviral drugs are expected to play a crucial role in poliovirus eradication and the post-eradication era.

Capsid binders are currently most advanced in clinical trials, but the inherent problem of rapid resistance development raises concerns. The development of protease inhibitors requires the synthesis of relatively complex peptidomimetic molecules. 2G^{XTP_{ase}} and 3D^{bod} may be more promising targets for direct-acting antiviral drugs as they can be inhibited by small molecules, and several inhibitors of these factors were found to have broad-range anti-enteroviral activity. Other targets for broad-spectrum antiviral drugs are host factors, as many host factors are shared by enteroviruses, but a possible downside is the chance of adverse effects and toxicity, as exemplified by PI4KB inhibitors. Lately, several enterovirus inhibitors have been discovered in drug repurposing screens. These compounds are already available or at least quite advanced in (pre-)clinical development for their respective conditions, thus shortening the development process. Importantly, several of those inhibitors have broad-range, sometimes even pan-enterovirus activity.

Besides targeting individual viral or cellular proteins, an emerging concept in drug design is to interfere with essential protein–protein interactions. In the case of enterovirus infections, one may pharmacologically disrupt essential interactions between viral proteins and host factors, which likely hampers virus replication without causing the overt toxicity issues that may be associated with inhibition of host proteins. Unfortunately, most protein–protein interactions cannot be addressed by current drug formats, including small molecules. The recent development of small cell-permeating, synthetic protein scaffolds (e.g., Alphabodies) may potentially lead to a novel approach to target protein–protein interactions in (entero)virus-infected cells [70].

Since targeted drug discovery depends heavily on basic knowledge of virus replication, fundamental research on the role of viral enzymes as well as essential host factors
for enterovirus replication remains needed for the development of broad-range antiviral drugs against these important pathogens.

Acknowledgements

We apologize to our colleagues whose work we could not cite due to space limitations. This work was supported by research grants from the Netherlands Organisation for Scientific Research (NWO-VENI-863.12.005 to HAcB), NWO-VENI-722.012.066 to IJRPS, NWO-VICI-919.062.028 to FMKv, ERANysApp project ‘SyxVirDrug’ ALW project number 832.14.003 to FMKv) and from the European Union (Horizon 2020 Marie Skłodowska-Curie ETN ‘ANTIVIRALS’, grant agreement number 642434 to FMKv).

References and recommended reading

Papers of particular interest, published within the period of review, have been highlighted as:

- of special interest
- of outstanding interest

1. Tapparel C, Siegrist F, Petty TJ, Kaiser L: Picornavirus and enterovirus infection with associated human diseases. *Infect. Genet. Evol.* 2013, 14:282-293.

2. Bergelson JM, Coyne CB: Picornavirus entry. *Adv. Exp. Med. Biol.* 2013, 790:24-41.

3. De Palma AM, Vliegen I, De Clercq E, Neyts J: Selective inhibitors of picornavirus replication. *Med. Res. Rev.* 2006, 26:833-864.

4. Thibaut HJ, De Palma AM, Neyts J: Combating enterovirus replication: state-of-the-art on antiviral research. *Biochem. Pharmacol.* 2012, 83:185-192.

5. van der Linden L, Wolthers KC, van Kuppeveeld FJ: Replication and inhibitors of enteroviruses and parechoviruses. *Viruses* 2015, 7:4529-4562.

6. Abzug MJ, Michaels MG, Wald E, Jacobs RF, Romero JR, Sanchez PJ, Wilson G, Krogsstad P, Storch GA, Lawrence R et al.: A randomized, double-blind, placebo-controlled trial of pleconaril for the treatment of neonates with enterovirus sepsis. *J. Pediatric Infect. Dis. Soc.* 2016, 8:53-62.

7. Peever DC, Hayden FG, Demenczuk TM, Barone LR, McKinlay MA, Collett MS: Relationship of pleconaril susceptibility and clinical outcomes in treatment of common colds caused by rhinoviruses. *Antimicrob. Agents Chemother.* 2005, 49:4492-4499.

8. Benschop KS, Wildenbeest JG, Koen G, Minnaar RP, van Hemert FJ, Westerveld BM, Pajkt D, van den Broek PJ, Vossen AC, Wolthers KC: Genetic and antigenic structural characterization for resistance of echovirus 11 to pleconaril in an immunocompromised patient. *J. Gen. Virol.* 2015, 96:571-579.

9. Basta HA, Ashraf S, Sgro JY, Bochkov YA, Gern JE, Palmenberg AC: Modeling of the human rhinovirus C capsid suggests possible causes for antiviral drug resistance. *Virology* 2014, 448:82-90.

10. Hao W, Bernard K, Patel N, Ulbrandt N, Feng H, Svakelc C, Wilson S, Straccer C, Wang K, Suzich J et al.: Infection and propagation of human rhinovirus C in human airway epithelial cells. *J. Virol.* 2012, 86:13524-13532.

11. Liu Y, Hill MG, Klose T, Chen Z, Watters K, Bochkov YA, Jiang W, Palmenberg AC, Rossman MG: Atomic structure of a rhinovirus C, a virus species linked to severe childhood asthma. *Proc. Natl. Acad. Sci. U. S. A.* 2016, 113:8997-9002. Describes the crystal structure of rhinovirusC15 virion and reveals the mechanism of resistance to capsid binders.

12. Baggen J, Thibaut HJ, Staring J, Jae LT, Liu Y, Guo H, Slager JJ, de Bruin JW, van Vliet AL, Blomen VA et al.: Enterovirus D68 receptor requirements unveiled by haploid genetics. *Proc. Natl. Acad. Sci. U. S. A.* 2016, 113:1399-1404.

13. Liu Y, Sheng J, Baggen J, Meng G, Xiao C, Thibaut HJ, van Kuppeveeld FJ, Rossmann MG: Sialic acid-dependent cell entry of human enterovirus D68. *Nat. Commun.* 2015, 6:8865.

14. Stencil-Baerenwald JE, Reiss K, Reiter DM, Stehle T, Dermony TS: The sweet spot: defining virus-sialic acid interactions. *Nat. Rev. Micro.* 2014, 12:739-749.

15. Moss RB, Hansen C, Sanders RL, Hawley S, Li T, Steigbigel RT: A phase IIb study of DAS181, a novel host directed antiviral for the treatment of influenza infection. *J. Infect. Dis.* 2012, 206:1844-1851.

16. Nichols JM, Moss RB, Haslam SM: The use of sialidase therapy for respiratory viral infections. *Antiviral Res.* 2013, 98:401-409.

17. Rhoden E, Zhang M, Nix WA, Oberste MS: In vitro efficacy of antiviral compounds against enterovirus D68. *Antimicrob. Agents Chemother.* 2015, 59:7779-7781.

18. Matthews DA, Dragovich PS, Webber SE, Fuhrman SA, Patrick AK, Zalman LS, Hendrickson TF, Love RA, Prins TJ, Marakovits JT et al.: Structure-assisted design of mechanism-based irreversible inhibitors of human rhinovirus 3C protease with potent antiviral activity against multiple rhinovirus serotypes. *Proc. Natl. Acad. Sci. U. S. A.* 1999, 96:11000-11007.

19. Binford SL, Maldonado F, Brothers MA, Weady PT, Zalman LS, Meador JW 3rd, Matthews DA, Patrick AK: Conservation of amino acids in human rhinovirus 3C protease correlates with broad-spectrum antiviral activity of ruvimipir, a novel human rhinovirus 3C protease inhibitor. *Antimicrob. Agents Chemother.* 2005, 49:619-626.

20. Kaiser L, Crump CE, Hayden FG: In vitro activity of pleconaril and AG7088 against selected serotypes and clinical isolates of human rhinoviruses. *Antiviral Res.* 2000, 47:215-220.

21. Patrick AK, Binford SL, Brothers MA, Jackson RL, Ford CE, Diem MD, Maldonado F, Dragovich PS, Zhou R, Prins TJ et al.: In vitro antiviral activity of AG7088, a potent inhibitor of human rhinovirus 3C protease. *Antimicrob. Agents Chemother.* 1999, 43:2444-2450.

22. Hayu PH, Pithavala YK, Gersten M, Penning CA, Kerr BM: Pharmacokinetics and safety of an antihinoviral agent, ruvimipir, in healthy volunteers. *Antimicrob. Agents Chemother.* 2002, 46:392-397.

23. Zhang KE, Hee B, Lee CA, Liang B, Potts BC: Liquid chromatography-mass spectrometry and liquid chromatography-MS/MS characterization of in vitro metabolites of a potent and irreversible peptidomimetic inhibitor of rhinovirus 3C protease. *Drug Metab. Dispos.* 2001, 29:729-734.

24. Hayden FG, Turner RB, Gwaltney JM, Chi-Burris K, Gersten M, Hayu P, Patrick AK, Smith GJ 3rd, Zalman LS: Phase II, randomized, double-blind, placebo-controlled studies of ruvimipir nasal spray 2-percent suspension for prevention and treatment of experimentally induced rhinovirus colds in healthy volunteers. *Antimicrob. Agents Chemother.* 2003, 47:3907-3916.

25. Patrick AK, Brothers MA, Maldonado F, Binford S, Maldonado O, Fuhrman S, Petersen A, Smith GJ 3rd, Zalman LS, Burns-Naas LA et al.: In vitro antiviral activity of single-dose pharmacokinetics in humans of a novel, orally bioavailable inhibitor of human rhinovirus 3C protease. *Antimicrob. Agents Chemother.* 2005, 49:2267-2275.

26. Tan J, George S, Kusov Y, Perbandt M, Anemuller S, Mesters JR, Norder H, Coutard B, Lacroix C, Leysenn P et al.: 3C protease of enterovirus 70: structure-based design of Michael acceptor inhibitors and their broad-spectrum antiviral effects against picornaviruses. *J. Virol.* 2013, 87:4339-4351.

27. Tan YW, Ang MJ, Lau QY, Poulsen A, Ng FM, Then SW, Peng J, Hill J, Hong WJ, Chia CS et al.: Antiviral activities of peptide-based covalent inhibitors of the Enterovirus 71 3C protease. *Sci. Rep.* 2016, 6:33663.

28. Wu C, Zhang L, Li P, Cai Q, Peng X, Yin K, Chen X, Ren H, Zhong S, Weng Y et al.: Fragment-wise design of inhibitors to 3C proteinase from enterovirus 71. *Biochim. Biophys. Acta* 2016, 1860:1299-1307.
Direct-acting antivirals and host-targeting strategies to combat enterovirus infections Bauer et al. 7

This is the first report showing that the repurposed drugs fluoxetine could be used as potential therapy in the clinic for chronic enterovirus infection.

1. Price, P., Liu, Y., Ma, C., Paul, A. W., and Wimmer, E.: Picornavirus morphogenesis. Microbiol. Mol. Biol. Rev. 2014, 78:415-437.

2. Geller, R., Vignuzzi, M., Andino, R., and Fydman, J.: Evolutionary constraints on chaperone-mediated folding provide an antiviral approach refractory to development of drug resistance. Genes. Dev. 2007, 21:195-205.

3. Ye, R., Liu, Y., Wang, C., Strauss, M., Rehage, N., Chen, Y.H., Allan-Bonnet, N., Hoge, J., Wimmer, E., Mueller S et al.: An interaction between glutathione and the capsid is required for the morphogenesis of C-cluster enteroviruses. PLoS Pathog. 2014, 10:e1004039.

4. Ye, R., Liu, Y., Wang, C., Strauss, M., Rehage, N., Chen, Y.H., Allan-Bonnet, N., Hoge, J., Wimmer, E., Mueller S et al.: An interaction between glutathione and the capsid is required for the morphogenesis of C-cluster enteroviruses. PLoS Pathog. 2014, 10:e1004039.

5. Liu, Y., Wang, C., Mueller, S., Paul, A. W., Wimmer, E., and Jiang, J.: Direct interaction between two viral proteins, the nonstructural protein 2C and the capsid protein VP3, is required for enterovirus morphogenesis. PLoS Pathog. 2010, 6:e1001066.

6. Wang, C., Jiang, J., and Paul, A. W.: Alanine scanning of poliovirus 2CpAtpase reveals new genetic evidence that capsid protein 2CpAtpase interactions are essential for morphogenesis. J. Virol. 2012, 86:9964-9975.

7. Tsou, Y., Lin, W., Cheng, H., Lin, H.Y., Shao, Y., Yu, S., Liu, C., Chitra, E., and Su, C.: Heat shock protein 90: role in enterovirus 71 entry and assembly and potential target for therapy. PLoS One 2013, 8:e77133.

8. van der Schaar HM, Doborantu CM, Albulescu L, Stratig JR, van Kuppeveld FJ: Fat(a) attraction: picornaviruses usurp lipid transfer at membrane contact sites to create replication organelles. Trends Microbiol. 2016, 24:535-546.

9. Hsu, N.Y., Ilnytska, O., Belov, G., Santiana, M., Chen, Y.H., Takvoramin, P., Pau, C., van der Schaar H, Kauahik-Basu N, Balla T et al.: Viral reorganization of the secretory pathway generates distinct organelles for RNA replication. Cell 2010, 141:799-811.

10. Identification of PI4KB as an important host factor for enterovirus replication. This information spurred the development of PI4KB inhibitors as broad-spectrum enterovirus replication inhibitors.

11. Van der Schaar HM, Leyssen P, Thibaut HJ, de Palma A, van der Linden L, Lanke HK, Lacroix C, van der Schaar HM, Leyssen P et al.: A novel, broad-spectrum inhibitor of enterovirus replication that targets host cell factor phosphatidylinositol 4-kinase IIII beta is a target of enviroxime-like compounds for antipoliovirus activity. J. Virol. 2011, 85:2364-2372.

12. Roulin PS, Lotzerich M, Torta F, Tanner LB, van Kuppeveld FJ, Wernk MR, Greber UF: Rhinovirus uses a phosphatidylinositol 4-phosphate/cholesterol counter-current for the formation of replication compartments at the ER-Golgi interface. Cell Host Microbe 2014, 16:677-690.

13. Lumarche MJ, Borawske J, Bøse A, Capacci-Daniel C, Colvin R, Denney M, Ding J, Dobler M, Drumm J, Gaither LA et al.: Antihepatitis C virus activity and toxicity of type III phosphatidylinositol 4-kinase beta inhibitors. Antimicrob. Agents Chemother. 2012, 56:4971-4981.

14. Arita M, Kojima H, Nagano T, Okabe T, Wakita T, Shimizu H: Phosphatidylinositol 4-kinase IIII beta is a target of enviroxime-like compounds for antipoliovirus activity. J. Virol. 2011, 85:2364-2372.

15. Roulin PS, Lotzerich M, Torta F, Tanner LB, van Kuppeveld FJ, Wernk MR, Greber UF: Rhinovirus uses a phosphatidylinositol 4-phosphate/cholesterol counter-current for the formation of replication compartments at the ER-Golgi interface. Cell Host Microbe 2014, 16:677-690.

16. Lumarche MJ, Borawske J, Bøse A, Capacci-Daniel C, Colvin R, Denney M, Ding J, Dobler M, Drumm J, Gaither LA et al.: Antihepatitis C virus activity and toxicity of type III phosphatidylinositol 4-kinase beta inhibitors. Antimicrob. Agents Chemother. 2012, 56:4971-4981.

17. Arita M, Mechanism of poliovirus resistance to host phosphatidylinositol 4-kinase IIII beta inhibitor. ACS Infect. Dis. 2016, 2:140-148.

www.sciencedirect.com

Current Opinion in Virology 2017, 24:1-8
Antiviral strategies

59. van der Schaar HM, van der Linden L, Lanke KH, Strating JR, Purstinger G, de Vries E, de Haan CA, Neyts J, van Kuppeveld FJ: Coxackievirus mutants that can bypass host factor PI4KIIIbeta and the need for high levels of PI4P lipids for replication. Cell Rep. 2012, 22:1576-1592.

60. Strating JR, van der Linden L, Albulescu L, Bigay J, Arita M.

61. Gao Q, Yuan S, Zhang C, Wang Y, Wang Y, He G, Zhang S, Altmeyer R, Zou G: Discovery of Itraconazole with broad-spectrum in vitro antienterovirus activity that targets nonstructural protein 3A. Antimicrob. Agents Chemother. 2015, 59:2654-2665.

62. Mesmin B, Bigay J, Moser von Filseck J, Lacas-Gervais S, Drin G, Antony B: A four-step cycle driven by PI(4)P hydrolysis directs sterol/PI(4)P exchange by the ER-Golgi tether OSBP. Cell 2013, 155:830-843.

63. Albulescu L, Strating JR, Thibaut HJ, van der Linden L, Shair MD, Neyts J, van Kuppeveld FJ: Broad-range inhibition of enterovirus replication by OSW-1, a natural compound targeting OSBP. Antiviral Res. 2015, 117:110-114.

64. Arita M, Kojima H, Nagano T, Okabe T, Wakita T, Shimizu H: Oxysterol-binding protein family I is the target of minor enviroxime-like compounds. J. Virol. 2013, 87:4252-4260.

65. Albulescu L, Bigay J, Biswas B, Weber-Boyvat M, Dorobantu CM, Delang L, van der Schaar HM, Jung YS, Neyts J, Oikkonen VM et al.: Uncovering oxysterol-binding protein (OSBP) as a target of the anti-enteroviral compound TTP-8307. Antiviral Res. 2017, 140:37-44.

66. Shim A, Song JH, Kwon BE, Lee JJ, Ahn JH, Kim YJ, Rhee KJ, Chang SY, Cha Y, Lee YS et al.: Therapeutic and prophylactic activity of Itraconazole against human rhinovirus infection in a murine model. Sci. Rep. 2016, 6:23110.

67. Qing J, Wang Y, Sun Y, Huang J, Yan W, Wang J, Su D, Ni C, Li J, Rao Z et al.: Cyclophilin A associates with enterovirus-71 virus capsid and plays an essential role in viral infection as an uncoating regulator. PLoS Pathog. 2014, 10:e1004422. First description of the role of cyclophilin in the uncoating process of an enterovirus and the potential of cyclophilin inhibitors to interfere with enterovirus infection.

68. Frausto SD, Lee E, Tang H: Cyclophilins as modulators of viral replication. Viruses 2013, 5:1684-1701.

69. Seizer P, Klingel K, Sauter M, Westermann D, Ochmann C, Schonberger T, Schleicher R, Stellos K, Schmidt EM, Borst O et al.: Cyclophilin A affects inflammation, virus elimination and myocardial fibrosis in coxsackievirus B3-induced myocarditis. J. Mol. Cell Cardiol. 2012, 53:8-14.

70. Desmet J, Verstraete K, Bloch Y, Lorent E, Wen Y, Devreese B, Vandenbroucke K, Loverix S, Hettmann T, Deroo S et al.: Structural basis of IL-23 antagonism by an Alphabody protein scaffold. Nat. Commun. 2014, 5:5237.

71. Crotty S, Maag D, Arnold JJ, Zhong WD, Lau JYN, Hong Z, Andino R, Cameron C: The broad-spectrum antiviral ribonucleoside ribavirin is an RNA virus mutagen. Nat. Med. 2001, 7:255.