Inconsistent PCR detection of Shiga toxin-producing Escherichia coli: Insights from whole genome sequence analyses

Vinicius Silva Castro1,2,3, Rodrigo Ortega Polo4, Eduardo Eustáquio de Souza Figueiredo5, Emmanuel Wihkochombom Bumunange5, Tim McAllister4, Robin King6, Carlos Adam Conte-Junior1, Kim Stanford3*

1 Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil, 2 Department of Food and Nutrition, Federal University of Mato Grosso, Cuiaba, Brazil, 3 Department of Biological Sciences, University of Lethbridge, Lethbridge, Canada, 4 Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Canada, 5 Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada, 6 Alberta Agriculture and Forestry, Edmonton, Canada

* kim.stanford@uleth.ca

Abstract

Shiga toxin-producing Escherichia coli (STEC) have been linked to food-borne disease outbreaks. As PCR is routinely used to screen foods for STEC, it is important that factors leading to inconsistent detection of STEC by PCR are understood. This study used whole genome sequencing (WGS) to investigate causes of inconsistent PCR detection of stx1, stx2, and serogroup-specific genes. Fifty strains isolated from Alberta feedlot cattle from three different studies were selected with inconsistent or consistent detection of stx and serogroup by PCR. All isolates were initially classified as STEC by PCR. Sequencing was performed using Illumina MiSeq® with sample library by Nextera XT. Virtual PCRs were performed using Geneious and bacteriophage content was determined using PHASTER. Sequencing coverage ranged from 47 to 102x, averaging 74x, with sequences deposited in the NCBI database. Eleven strains were confirmed by WGS as STEC having complete stxA and stxB subunits. However, truncated stx fragments occurred in twenty-two other isolates, some having multiple stx fragments in the genome. Isolates with complete stx by WGS had consistent stx1 and stx2 detection by PCR, although one also having a stx2 fragment had inconsistent stx2 PCR. For all STEC and 18/39 non-STEC, serogroups determined by PCR agreed with those determined by WGS. An additional three WGS serotypes were inconclusive and two isolates were Citrobacter spp. Results demonstrate that stx fragments associated with stx-carrying bacteriophages in the E. coli genome may contribute to inconsistent detection of stx1 and stx2 by PCR. Fourteen isolates had integrated stx bacteriophage but lacked complete or fragmentary stx possibly due to partial bacteriophage excision after subcultivation or other unclear mechanisms. The majority of STEC isolates (7/11) did not have identifiable bacteriophage DNA in the contig(s) where stx was located, likely increasing the stability of stx in the bacterial genome and its detection by PCR.
1. Introduction

Shiga toxin-producing *Escherichia coli* (STEC) is one of the most important pathogens in foodborne illness. Currently, STEC includes more than 400 strains, with O157 and the non-O157 “big six” (O26, O45, O103, O111, O121, and O145) serogroups being most frequently linked to hemorrhagic colitis in humans [1]. However, due to low cell numbers to trigger an infection and the diversity of STEC it can be challenging to isolate or identify specific serogroups associated with contaminated foods.

Several methodologies have been used to identify or isolate STEC including immunomagnetic separation (IMS), a selective and enriched media, PCR, and qPCR [2–7]. However, there is still a lack of a gold standard methodology for isolating STEC [8]. Also, the development of specific methods according to the sample matrix could increase sensitivity and lower the threshold of detection of STEC strains. To further these aims, antimicrobials are commonly added to STEC media to prevent plate overgrowth [9], but this practice does not guarantee that only STEC will be isolated, or discriminate STEC serogroups.

For identification of STEC strains, PCR reactions are commonly based on the presence of Shiga toxin genes and can also be applied to determine bacterial serogroup through the amplification of genes responsible for the synthesis of O-antigens (*wzx* and *wzy*; [10–12]). Factors such as the presence of bacteriophage (phage) which are not incorporated into the bacterial genome and DNA purity can influence the accuracy and sensitivity of detecting STEC using PCR [13, 14]. Furthermore, repeated subculturing of STEC can result in the loss of *stx*-coding phage [15], even with the first subculture [16]. Moreover, in a recent study Macori et al. [17] observed that qPCR amplified free phages encoding *stx* in samples collected from the rectal anal junction of sheep. Accordingly, there is growing consensus that more investigation is needed to evaluate the impact of *stx*-carrying free-phages or integration and loss of *stx*-phages from bacterial genomes on the detection and confirmation of STEC, as false-positive (PCR-positive but no *stx* integrated into genome) or false-negative (PCR negative but with *stx* present) results have consequences for food safety.

This study used whole genome sequencing (WGS) of *E. coli* isolated from feces of western-Canadian cattle to: (i) compare whole genome sequences with previous PCR detection of Shiga toxins and serogroup; (ii) investigate the presence and heterogeneity of *stx*-encoding phages; and (iii) determine the presence of other virulence factors and antimicrobial resistance of isolates.

2. Material and methods

2.1 Bacterial strains and culture

A total of fifty *E. coli* previously isolated from cattle feces in three different studies were used for WGS and all strains were encoded with the acronym CAP due to financial support of the Canadian Agricultural Partnership. Forty-eight strains were isolated from feces of western-Canadian slaughter cattle collected from the floor of transport trailers [18], one strain was isolated from the pen floor of an Alberta feedlot [19], and one was isolated in feedlot cattle feces in 2017 [20]. Isolates were selected for WGS based on consistent or inconsistent PCR detection of *stx*$_1$ and/or *stx*$_2$ and/or serogroup from 750 strains analysed by Zhang et al. [21] and belong to a larger pool of approximately 15,000 isolates [20].

2.2 PCR

Primers designed by Conrad et al. [10] were used for detection of *stx*$_1$ and *stx*$_2$ (*Table 1*). The reactions were performed as follows: 95˚C for 5 min, followed by 35 cycles of 94˚C for 30 s,
60°C for 45 s, 72°C for 90 s, and a final extension of 72°C for 5 min. Conrad et al. [10] primers were also used for detection of serogroups (O26, O45, O103, O121, O145, O157; Table 1). PCRs contained a final volume of 25 μL and 0.2 μM each primer, 1x HotStar Taq Plus Master-Mix (Qiagen® Hilden, Germany), 1x Coral Load PCR buffer, 2 μL DNA template, and nucle-ase-free water. The reactions were performed in a Veriti™ Dx Thermal Cycler (Applied Biosystems). To ensure that the PCR primers used were not responsible for inconsistent stx1 and stx2 results, virtual PCR was performed for the 50 isolates using Geneious 10.2.6 software (Biomatters, Auckland, Australia) to compare primers of Scheutz et al. [22] and Conrad et al. [10]; Table 1). Also, two base pair (bp) mismatches between primer and sequences for both stx and serogroup were allowed to ensure that inconsistences which can lead to amplification were considered. For other configurations default parameters were used.

2.3 DNA extraction and WGS

Genomic DNA was extracted from overnight bacterial cultures prepared in Luria-Bertani broth (Merck, Darmstadt, Germany) using the ZR Fungal/Bacterial DNA MiniPrep™ kit (Epigenetics Company, Irvine, CA, USA) according to the manufacturer’s instructions. DNA was quality checked and quantified using a Qubit fluorimeter (ThermoFisher, Waltham, MA, USA) and a TapeStation 4200 system (Agilent, Santa Clara, CA, USA). Sample libraries were prepared using the Nextera XT library preparation kit protocol (Illumina, Inc., San Diego, CA, USA). Sequencing was performed on the Illumina MiSeq platform using the MiSeq Reagent Kit V2 to produce 251 bp paired-end reads. Sequencing was performed at the Agri-Food Laboratories, (Alberta Agriculture and Forestry, Edmonton, AB, Canada).

2.4 Sequencing analysis

Sequencing reads were de novo assembled into contigs using the Shovill pipeline (https://github.com/tseemann/shovill). Shovill included trimming, which was performed with Trimmomatic 0.39, and de novo assembly was performed with SPAdes version 3.13.1. [23]. Draft genome assemblies were annotated with Prokka [24], included in the NCBI database (BioProject: PRJNA601484), and published by Castro et al. [20]. Sequencing coverage ranged from 47 to 102x, with an average coverage of approximately 74x. A FastQC was applied to all strains to guarantee a

Table 1. Primers used to detect stx and serogroup.

Stx	Reference	Primer	Sequence (5' - 3')	Amplicon size
Conrad et al. 2014	stx1	GGATGATCTCAGTGGGCGTTGATGCCATTCTGGCAACTCG	216	
Conrad et al. 2014	stx2	ACTGTCTGAACTGCTCCTGTGGCAGCTGTTATTACTTTCC	307	
Scheutz et al. 2012	stx2-det-F1	GTACGGGGATGCGATGAAACCCGCGACCAAGACTGG	209	
Scheutz et al. 2012	stx2-det-R1	AGGCACATTCATTAGAAAGCGGCTTCATCCCT	262	
Scheutz et al. 2012	F4 (stx2)	GGCACTGTCTGGGCAAGCTGCTTCTGCT	625	
Scheutz et al. 2012	R1 (stx2)	ATTAAACTGCTACCTCAGCAATCC	625	
Scheutz et al. 2012	F4-f (stx2)	CGCGTCTGCAGGATCATCTCCGCT	625	
Scheutz et al. 2012	R1-e/f (stx2)	TAAACTCCCCTGGGCAAGCC	766	

https://doi.org/10.1371/journal.pone.0257168.t001
good depth of coverage in each isolate. In addition, contigs were searched against databases for virulence genes (VirFinder; [25]), antimicrobial resistance genes, and plasmids (PlasmidFinder) using ABRicate version 0.8.7 (https://github.com/tseemann/ABRICATE). Non-O157 E. coli serotype determinants (O- and H-antigen sequences) were inferred in silico using the EcOH database [26], originally developed for Short Read Sequence Typing for Bacterial Pathogens (SRST2; [26]). The EcOH database contained sequences of O-antigen loci [either wzx (O-antigen flippase) and wzy (O-antigen polymerase)], or the ABC transporter (wzm and wzt) and H-antigen (fliC and flnA) with referenced loci to E. coli O-groups and H-types. The virulence factor (VF) profile was generated by searching contigs against the E. coli_VF database [27]. Nucleotide sequence identity above 70% to the appropriate reference gene was considered to represent virulence factors. Antimicrobial resistance gene profiles were generated by searching contigs against the Comprehensive Antibiotic Resistance Database [28], and plasmid search profiles were generated by searching contigs against the replicon sequences from the plasmidFinder database [29]. Replicon sequence identity above 80% was used to designate targets as being present in a genome.

Presence of phage sequences in bacterial genomes was assessed using phaster.ca [30, 31]. Phage sequences were compared with reference stx genes (NC_004913.3; NC_049944.1; NC_008464.1) using the Blastn platform (NCBI) and to our WGS strains using Geneious Prime (Biomatters, Auckland, NZ). The MAFFT 7.450 tool [32] was used to align stx sequence data with that of stx-encoding phages obtained from NCBI database using a scoring matrix 200PAM / K = 2, GAP open penalty of 1.53, offset value of 0.123 and automatic determination of sequence direction. The integrity of stx (%) was then calculated automatically in the aligned sequences, selecting only bases with agreement between NCBI phage and strain sequences. A heatmap illustrating the presence of phages in bacterial sequences was prepared using GraphPad Prism 5.01 (GraphPad Software, San Diego, CA).

3. Results

3.1 Overall concordance of PCR and WGS

After WGS of the 50 isolates, forty-eight were confirmed as Escherichia coli and two (CAP 7, CAP 50) were identified as Citrobacter spp. and were removed from further analysis. Within the forty-eight isolates of E. coli, only eleven were classified as STEC by WGS [20] as they had contiguous stxA and stxB subunits forming complete sequences for stx1 or stx2, even though stx1 or stx2 were detected by PCR at least once in all isolates (Table 2). All isolates confirmed as STEC by WGS were also consistently classified as STEC by PCR. To evaluate the effectiveness of the PCR primers, a virtual PCR and a Blastn using the NCBI platform were performed to compare binding of stx1 and stx2 primers to generic E. coli (without stx presence as determined by WGS) and STEC. Importantly, all STEC confirmed by WGS were positive for stx1 and complete stx2 sequences were found in two STEC (Table 2).

Blastn results showed no stx1 or stx2 primer binding in strains classified as generic E. coli by WGS (Table 2). Also, Blastn results discard amplification with other genome sequences, and for isolates not confirmed to be STEC by WGS, the highest score (correspondence between bases of the sequence with the primer) for stx1 was 28.2 (binding of 14 bases of DNA into 25 bases of the forward primer) and for stx2 30.2 (binding of 15 bases of DNA sequence into 24 bases of the forward primer). Moreover, virtual PCR using the Conrad et al. [10] and Scheutz et al. [22] primers for stx1 and stx2 also indicated amplification only in STEC strains confirmed by WGS.

3.2 Primers and phages

Of 48 strains confirmed as Escherichia coli by WGS, 10 STEC and 22 non-STEC had up to six stx-encoding phages integrated within their bacterial genome (Table 3). For these thirty-two
Table 2. Previous PCR data for Shiga toxins by conventional and molecular methods and WGS data.

Strain	PCR for stx (1° assay)¹	PCR for stx (2° assay)²	Stx fragments by WGS²	Blastn for primers and DNA sequence³	Virtual PCR using GenoType (stxα, stxβ, stxγ, stxδ)⁴	Detection of stx by WGS
CAP 01	stx₁	stx₁	stx₁, stx₂	stx₁, stx₂	stx₁, stx₂	stx₁
CAP 02	stx₁	stx₁	stx₁, stx₂	stx₁, stx₂	stx₁, stx₂	stx₁
CAP 03	stx₁, stx₂	stx₁, stx₂	stx₁, stx₂	stx₁, stx₂	stx₁, stx₂	stx₁
CAP 04	stx₁	stx₁	stx₁, stx₂	stx₁, stx₂	stx₁, stx₂	stx₁
CAP 05	stx₁	stx₁	stx₁, stx₂	stx₁, stx₂	stx₁, stx₂	stx₁
CAP 06	stx₁	stx₁	stx₁, stx₂	stx₁, stx₂	stx₁, stx₂	stx₁
CAP 08	stx₁	stx₁	stx₁, stx₂	stx₁, stx₂	stx₁, stx₂	stx₁
CAP 09	stx₁	stx₁	stx₁, stx₂	stx₁, stx₂	stx₁, stx₂	stx₁
CAP 10	stx₁	stx₁	stx₁, stx₂	stx₁, stx₂	stx₁, stx₂	stx₁
CAP 11	stx₁	stx₁	stx₁, stx₂	stx₁, stx₂	stx₁, stx₂	stx₁
CAP 12	stx₁	stx₁	stx₁, stx₂	stx₁, stx₂	stx₁, stx₂	stx₁
CAP 13	stx₁	stx₁	stx₁, stx₂	stx₁, stx₂	stx₁, stx₂	stx₁
CAP 14	stx₁, stx₂	stx₁, stx₂	stx₁, stx₂	stx₁, stx₂	stx₁, stx₂	stx₁
CAP 15	stx₁	stx₁	stx₁, stx₂	stx₁, stx₂	stx₁, stx₂	stx₁
CAP 16	stx₁	stx₁	stx₁, stx₂	stx₁, stx₂	stx₁, stx₂	stx₁
CAP 17	stx₁	stx₁	stx₁, stx₂	stx₁, stx₂	stx₁, stx₂	stx₁
CAP 18	stx₁, stx₂	stx₁, stx₂	stx₁, stx₂	stx₁, stx₂	stx₁, stx₂	stx₁
CAP 19	stx₁	stx₁	stx₁, stx₂	stx₁, stx₂	stx₁, stx₂	stx₁
CAP 20	stx₁	stx₁	stx₁, stx₂	stx₁, stx₂	stx₁, stx₂	stx₁
CAP 21	stx₁, stx₂	stx₁, stx₂	stx₁, stx₂	stx₁, stx₂	stx₁, stx₂	stx₁
CAP 22	stx₁	stx₁	stx₁, stx₂	stx₁, stx₂	stx₁, stx₂	stx₁
CAP 23	stx₁	stx₁	stx₁, stx₂	stx₁, stx₂	stx₁, stx₂	stx₁
CAP 24	stx₁	stx₁	stx₁, stx₂	stx₁, stx₂	stx₁, stx₂	stx₁
CAP 25	stx₁	stx₁	stx₁, stx₂	stx₁, stx₂	stx₁, stx₂	stx₁
CAP 26	stx₁	stx₁	stx₁, stx₂	stx₁, stx₂	stx₁, stx₂	stx₁
CAP 27	stx₁	stx₁	stx₁, stx₂	stx₁, stx₂	stx₁, stx₂	stx₁
CAP 28	stx₁	stx₁	stx₁, stx₂	stx₁, stx₂	stx₁, stx₂	stx₁
CAP 29	stx₁	stx₁	stx₁, stx₂	stx₁, stx₂	stx₁, stx₂	stx₁
CAP 30	stx₁	stx₁	stx₁, stx₂	stx₁, stx₂	stx₁, stx₂	stx₁
CAP 31	stx₁	stx₁	stx₁, stx₂	stx₁, stx₂	stx₁, stx₂	stx₁
CAP 32	stx₁	stx₁	stx₁, stx₂	stx₁, stx₂	stx₁, stx₂	stx₁
CAP 33	stx₁	stx₁	stx₁, stx₂	stx₁, stx₂	stx₁, stx₂	stx₁
CAP 34	stx₁, stx₂	stx₁, stx₂	stx₁, stx₂	stx₁, stx₂	stx₁, stx₂	stx₁
CAP 35	stx₁	stx₁	stx₁, stx₂	stx₁, stx₂	stx₁, stx₂	stx₁
CAP 36	stx₁	stx₁	stx₁, stx₂	stx₁, stx₂	stx₁, stx₂	stx₁
CAP 37	stx₁	stx₁	stx₁, stx₂	stx₁, stx₂	stx₁, stx₂	stx₁
CAP 38	stx₁, stx₂	stx₁, stx₂	stx₁, stx₂	stx₁, stx₂	stx₁, stx₂	stx₁
CAP 39	stx₁, stx₂	stx₁, stx₂	stx₁, stx₂	stx₁, stx₂	stx₁, stx₂	stx₁
CAP 40	stx₁	stx₁	stx₁, stx₂	stx₁, stx₂	stx₁, stx₂	stx₁
CAP 41	stx₁	stx₁	stx₁, stx₂	stx₁, stx₂	stx₁, stx₂	stx₁
CAP 42	stx₁	stx₁	stx₁, stx₂	stx₁, stx₂	stx₁, stx₂	stx₁
CAP 43	stx₁	stx₁	stx₁, stx₂	stx₁, stx₂	stx₁, stx₂	stx₁
CAP 44	stx₁	stx₁	stx₁, stx₂	stx₁, stx₂	stx₁, stx₂	stx₁
CAP 45	stx₁	stx₁	stx₁, stx₂	stx₁, stx₂	stx₁, stx₂	stx₁
CAP 46	stx₁	stx₁	stx₁, stx₂	stx₁, stx₂	stx₁, stx₂	stx₁
CAP 47	stx₁	stx₁	stx₁, stx₂	stx₁, stx₂	stx₁, stx₂	stx₁

(Continued)
Table 2. (Continued)

Strain	PCR for stx (1st assay)	PCR for stx (2st assay)	Stx fragments by WGS³	Blastn for primers and DNA sequence³	Virtual PCR using Genious⁴	Detection of stx by WGS
CAP 48	stx₁	stx₁	stx₂	stx₁−28.2 (14/25) stx₂−28.2 (14/24)	.	.
CAP 49	stx₁	.	stx₂	stx₁−28.2 (14/25) stx₂−28.2 (14/24)	.	.

¹ Conrad et al. (2014) primers;
²Truncated stxA and stxB subunits including some base pair mismatches.
³Match of DNA nucleotides and Conrad et al. (2014) primers;
⁴Using both Conrad et al. (2014) and Scheutz et al. (2012) primers. No differences in detection by primer sets.

Inconsistent detection of stx₁ and stx₂ by PCR

isolates, up to three fragments of stx (truncated stxA and stxB subunits) were associated with phage DNA insertions (Table 3 and Fig 1). However, presence of stx-phages did not guarantee presence of even fragmentary stx and fourteen of the integrated stx-phages lacked stx coding sequences. Only one STEC strain confirmed by WGS (CAP 19) did not contain sequences attributed to a stx-encoding phage.

One STEC strain with inconsistent PCR detection of stx₂ (CAP 32) was found to have a fragment of stx₂ integrated in the genome (Table 2). Twenty-two strains classified as generic E. coli by WGS had phage fragments of stx₂, and in one case stx₁ and stx₂, which may have contributed to inconsistent PCR detection of these genes. However, 15 strains previously PCR-positive for stx₁ or stx₂ lacked stx fragments in their genome and were not confirmed as STEC by WGS. As well, for two isolates even though stx₂ fragments were present, stx₂ was never detected by PCR. Integrity of stx present in fragments varied from three to 38.7% (Table 3).

Stx phage fragments present in our isolates were compared to phage reference sequences from NCBI and we also performed virtual PCRs using primers designed by Conrad et al. [10] and Scheutz et al. [22]. Virtual PCR results emphasize that all lysogenic phages had insertion locations which corresponded to reference sequences which would have been amplified by both sets of primers. However, no phage sequences were complete as compared to reference sequences, with phage integrity ranging from 1–60% (Table 3). Additionally, there was no difference between the two primer sets [10, 22] in detection of stx₁ or stx₂ in reference phages.

For seven STEC strains confirmed by WGS, stx was not located in regions where there were fragments of stx-encoded phage as determined by PHASTER pipeline (Table 3 and Fig 2). For five WGS-confirmed STEC strains, stx was in the contig where stx-phage fragments were detected, with CAP 18 having both stx₁ and stx₂, but only stx₁ associated with phage DNA (Fig 3). The presence of stx was verified near the insertion site of NinF and NinG genes in seven of the eleven STEC strains. However, stx was located adjacent (within ten genes prior to stx in the genome) to the Lar family of genes in six of the STEC (Figs 2 and 3). A heatmap divided strains into 3 groups: (A) Fifteen STEC-negative strains by WGS lacking stx-phage insertions; (B) Twenty-two STEC-negative strains by WGS with stx-encoding phage insertions; and (C) eleven STEC-positive strains by WGS (Fig 4).

3.3 Subtypes of stx and biofilm genes

All WGS-confirmed STEC strains possessed stx_{1a} and stx_{1b}, with CAP03 and CAP18 also possessing stx_{2a} and stx_{2b} (Table 2). In all cases, if stx₁ and/or stx₂ were confirmed by WGS, both a and b subtypes were present and by extension two or four bacteriophages would have initially inserted stx into these bacterial genomes. Biofilm genes detected by WGS included csgB, csgD, csgE, csgF, csgG in all STEC, and (47/48) of all strains sequenced. Other genes including cheY, entABCEFS, espX4, espX5, fepABC, flgG, and ompA were present in all 48 Escherichia coli
Table 3. Presence of stx-encoding bacteriophages.

Strain	Phage	Integrity of phage in sequence (%)	Integrity of stx in phage sequence (%)	Position of phage in contig sequence	Description of stx associated with phage²	Position of stx in genome
CAP 01	Enterobacteria phage 933W (NC_000924)	60	1.8	25	stx₂ missing	.
	Enterobacteria phage YYZ-2008 (NC_011356)	4	38.7	36	stx₁ fragment	109
²CAP 02	Enterobacteria phage BP-4795 (NC_004813)	4	16.9	67	stx₁ fragment	90
²CAP 03	Enterobacteria phage YYZ-2008 (NC_011356)	7	35.6	30	stx₁ fragment	83
³CAP 04	Enterobacteria phage BP-4795 (NC_004813)	4	17.3	70	stx₁ fragment	.
CAP 05	Enterobacteria phage BP-4795 (NC_004813)	20	28.3	15	stx₁ fragment	.
CAP 06	Enterobacteria phage BP-4795 (NC_004813)	8	5.4	1	stx₁ fragment	.
CAP 08	Enterobacteria phage BP-4795 (NC_004813)	4	7.3	62	stx₁ fragment	.
	Enterobacteria phage BP-4795 (NC_004813)	6	0.9	49	stx₁ missing	.
	Enterobacteria phage YYZ-2008 (NC_011356)	5	0.0	1	stx₁ missing	.
³CAP 10	Enterobacteria phage BP-4795 (NC_004813)	12	18.0	10	stx₁ fragment	47
	Enterobacteria phage Min27 (NC_010237)	1	23.0	45	stx₂ fragment	.
	Enterobacteria phage YYZ-2008 (NC_011356)	1	0.0	70	stx₁ missing	.
	Stx₁ converting phage DNA (NC_004913)	16	100	47	stx₁a and stx₁b	.
	Shigella phage POCJ13 (NC_025434)	2	9.5	38	stx₁ fragment	.
CAP 11	Enterobacteria phage BP-4795 (NC_004813)	7	25.7	4	stx₁ fragment	.
	Stx₂ converting phage II DNA (NC_004914)	11	16.1	18	stx₂ fragment	.
CAP 14	Enterobacteria phage 933W (NC_000924)	23	0.0	11	stx₂ missing	.
	Enterobacteria phage YYZ-2008 (NC_011356)	2	8.6	1	stx₁ fragment	.
	Escherichia phage PA28 (NC_041935)	28	0.0	56	stx₂ missing	.
	Stx₂-converting phage 1717 (NC_011357)	4	10.7	20	stx₂ fragment	.
CAP 15	Enterobacteria phage BP-4795 (NC_004813)	32	0.0	47	stx₁ missing	.
	Enterobacteria phage YYZ-2008 (NC_011356)	1	23.3	15	stx₁ fragment	.
	Shigella phage POCJ13 (NC_025434)	1	24.0	50	stx₁ fragment	.
	Shigella phage POCJ13 (NC_025434)	1	17.0	7	stx₁ fragment	.
³CAP 16	Enterobacteria phage BP-4795 (NC_004813)	6	16.9	32	stx₁ fragment	79
CAP 17	Enterobacteria phage YYZ-2008 (NC_011356)	3	16.5	9	stx₁ fragment	.

²Note: CAP 02, CAP 03, and CAP 04 are different phage strains.
³Note: CAP 10, CAP 11, and CAP 14 are different phage strains.

(Continued)
Strain	Phage	Integrity of phage in sequence (%)	Integrity of stx in phage sequence (%)	Position of phage in contig sequence	Description of stx associated with phage	Position of stx in genome
CAP 18	Enterobacteria phage 933W (NC_000924)	28	0.0	32	stx2 missing	34
	Enterobacteria phage YYZ-2008 (NC_011356)	3	29.4	16	stx1 fragment	
	Escherichia phage PA28 (NC_041935)	21	0.0	53	stx2 missing	
	Shigella phage SS-VASD (NC_028685)	12	99.8	34	stx1a and stx1b	
	Shigella phage SS-VASD (NC_028685)	29	8.5	49	stx1 fragment	
	Shigella phage 75/02 Stx (NC_029120)	2	9.6	50	stx1 fragment	
CAP 20	Enterobacteria phage BP-4795 (NC_004813)	12	14.0	10	stx1 fragment	
CAP 22	Enterobacteria phage BP-4795 (NC_004813)	1	11.4	69	stx1 fragment	
	Shigella phage POCJ13 (NC_025434)	2	26.3	10	stx1 fragment	
CAP 23	Enterobacteria phage BP-4795 (NC_004813)	29	100	24	stx1a and stx1b	24
	Enterobacteria phage YYZ-2008 (NC_011356)	3	29.5	16	stx1 fragment	
CAP 25	Enterobacteria phage BP-4795 (NC_004813)	10	0.6	4	stx1 missing	
	Shigella phage 75/02 Stx (NC_029120)	1	5.5	18	stx1 fragment	
CAP 26	Enterobacteria phage BP-4795 (NC_004813)	1	11.0	2	stx1 fragment	
CAP 30	Enterobacteria phage BP-4795 (NC_004813)	8	7.9	2	stx1 fragment	
CAP 32	Enterobacteria phage 933W (NC_000924)	9	37.2	32	stx2 fragment	48
	Enterobacteria phage YYZ-2008 (NC_011356)	1	0.0	14	stx1 missing	
	Escherichia phage PA28 (NC_041935)	19	56.3	48	stx1a and stx1b	
CAP 33	Enterobacteria phage 933W (NC_000924)	18	1.0	63	stx2 missing	105
	Escherichia phage PA28 (NC_041935)	21	19.0	66	stx2 fragment	
	Escherichia phage PA28 (NC_041935)	1	0.0	57	stx2 missing	
CAP 34	Enterobacteria phage YYZ-2008 (NC_011356)	1	20.5	62	stx1 fragment	
CAP 35	Enterobacteria phage BP-4795 (NC_004813)	7	24.1	16	stx1 fragment	
CAP 39	Enterobacteria phage BP-4795 (NC_004813)	7	7.3	2	stx1 fragment	
CAP 42	Enterobacteria phage YYZ-2008 (NC_011356)	1	3.0	1	stx1 fragment	
	Shigella phage POCJ13 (NC_025434)	2	19.3	9	stx1 fragment	

(Continued)
strains, reinforcing the quality of the coverage of the sequencing of the isolates (S1 Table). Finally, other genes that regulate cell surface adhesins were verified, such as FimA and FimB (S1 Table).

3.5 Serogroup and serotype

For serogroup determination, PCR and WGS were in agreement for 29/50 isolates (Table 4). PCR and WGS fully agreed with the assignment of the 11 STEC strains to their O-groups. Therefore, all mismatches between PCR and WGS serogroup (21/50) were in generic E. coli isolates (non STEC by WGS). In summary, generic E. coli strains showed false positive amplification for serogroups: O26 (n = 6), O45 (n = 2), O103 (n = 6), O145 (n = 2), and O157 (n = 5). The exceptions were O121 which had stable serogroup detection (Table 4) and O111 which was not included in this study due to previously noted stable serogroup and stx detection [33].

3.6 Resistome and plasmids

The arsB-mob gene which encodes resistance to arsenic was present in 7/11 STEC isolates and BlaEC which encodes for beta-lactamase resistance was present in all E. coli (Table 5). Other resistance genes to various antimicrobials were occasionally identified including aminoglycosides, diaminopyrimidines, sulfonamides, quaternary amines, tetracycline and phenols. Six generic E. coli strains (CAP 5, 21, 24, 29, 34, 39) carried three or more AMR genes. Almost all STEC isolates harbored at least one plasmid, with IncFIB (AP001918) being the most common, and CAP47 the only STEC strain that lacked plasmids.

3.7 MLST and Phylogenomic relationship between strains

For all E. coli isolates, 29 sequence types (ST) were detected, but for STEC strains, only six STs were identified (11, 21, 32, 343, 723, and 5082; Table 6). For O157:H7, ST11 strains were detected, similar to that of the reference strain used (Escherichia coli O157:H7 str. Sakai DNA, sequence BA000007), emphasizing the potential pathogenicity of our strains.

Table 3. (Continued)

Strain	Phage	Integrity of phage in sequence (%)	Integrity of stx in phage sequence (%)	Position of phage in contig sequence	Description of stx associated with phage	Position of stx in genome
CAP 44	Enterobacteria phage YYY-2008 (NC_011356)	1	12.7	8	stx1 fragment	
CAP 45	Enterobacteria phage YYY-2008 (NC_011356)	3	17.2	7	stx1 fragment	
CAP 46	Enterobacteria phage BP-4795 (NC_004813)	16	25.7	6	stx1 fragment	
CAP 47	Enterobacteria phage BP-4795 (NC_004813)	29	100	24	stx1a and stx1b	24
CAP 48	Enterobacteria phage YYY-2008 (NC_011356)	3	0.0	16	stx1 missing	
CAP 49	Enterobacteria phage BP-4795 (NC_004813)	4	32.5	44	stx1 fragment	

1STEC confirmed by WGS. Fifteen isolates (CAP 9, 12, 13, 21, 24, 27, 28, 29, 31, 36, 37, 38, 40, 41, and 43) did not have sequences attributable to stx-encoding phage in their genome. CAP 19 was STEC as determined by WGS but did not show any stx-encoding phage. 2 stx missing: the phage integrated into the bacterial genome does not contain even a fragmentary stx. Fragment: presence of truncated stx subunits in bacterial genome with some base pair mismatches.

https://doi.org/10.1371/journal.pone.0257168.t003
Based on ST results, O103:H11 may be more closely related to O26:H11 than to O103:H25. In addition, O145:H28 was closely related to O157:H7 as they both had the same subtypes of \textit{stx} (\textit{stx}1a, \textit{stx}1b, \textit{stx}2a, \textit{stx}2b). A phylogenomic tree with 0.055 relatedness was developed using a single copy of each isolate plus the reference genome using multi-locus sequence types (Fig 5).

4. Discussion

4.1 Isolation of \textit{Citrobacter} spp

\textit{Citrobacter} spp. is part of the \textit{Enterobacteriaceae} family and can grow in the enrichment medium of \textit{Escherichia coli}, with morphology very similar to that of STEC colonies [34]. Using IMS may have also led to this misidentification, since some strains of \textit{Citrobacter} spp. express an antigen similar to that of O157 [35]. Moreover, \textit{Citrobacter} spp. strains positive for \textit{stx} have been previously described [36]. A possible solution to prevent misidentification of \textit{Citrobacter} spp. would be additional PCR assays to detect the \textit{uidA} gene, responsible for the activity of beta-glucuronidase (mainly for O157), or housekeeping genes for \textit{E. coli}, such as \textit{arcA}, \textit{gapA}, \textit{mdh}, \textit{rfbA}, and \textit{rpoS} [37].

Possibly, amplification of a free \textit{stx}-encoding phage may have occurred at initial isolation as the two \textit{Citrobacter} isolated in the present study did not have \textit{stx}-encoding phage fragments in their genomes. Other PCR-based studies of \textit{E. coli} have also either detected free \textit{stx}-encoding phages or hypothesized the loss of \textit{stx} after sub-cultivation [13,16, 38]. Free \textit{stx}-phages have been found in \textit{Citrobacter} spp. [36] and other species such as \textit{Escherichia albertii} [39].
Additional complicating factors which increase the difficulty of isolating STEC include adaptability (e.g. change in the expression of some genes) and difficulty in establishing a culture medium that can promote uniform growth between STEC strains [8]. Immunomagnetic separation was used to overcome some of the difficulties in isolating STEC in the present study. However, it is worth mentioning that as IMS is serogroup-based, it has a small spectrum of detection due to the large number of existing STEC serogroups [1]. Also, some cross reactions among serogroups have occurred, decreasing the discriminatory power of IMS [40, 41]. Other challenges in isolation of STEC were addressed by our group in previous studies [42, 43]. Competition through culture, the differences between detection across laboratories, and the lack of selectivity by IMS highlight the need to improve methodologies for detection and the isolation of STEC [8]. Consequently, the use of different culture media which would be selective for all STEC and/or the development of new IMS beads with increased selectivity would simplify STEC detection and isolation. Although WGS also has weaknesses with some inherent to the Illumina platform including decreased quality toward the ends of reads, non-uniform amplification of target regions, and difficulties in assembly due to the short length of sequences [44], a combination of phenotypic approaches aligned with genotypic tools can better guarantee effective STEC isolation in future studies.

4.2 Concordance of Shiga toxin genes by PCR and WGS and phage influence in PCR

Although there may be difficulties in isolation of STEC, and it has been established that PCR assays across laboratories can produce variable results for detection of Shiga toxin genes due...
use of different equipment and methods [22, 33], it was expected that the use of the same assay by the same laboratory staff with the same equipment and conditions would produce consistent results. However, on re-growth of isolates collected in previous studies, and repeated PCR, detection of \textit{stx}1 and/or \textit{stx}2 showed variation for some isolates. Fourteen isolates which were positive for \textit{stx} in the first PCR were negative in the second assay, matching WGS results, although twenty-five isolates continued to show false-positive PCR results in the second assay (positive in PCR but negative in WGS; Table 2). Loss of \textit{stx} genes after re-culture has been previously described [16] and may be also be attributed to mixed cultures (containing multiple strains of \textit{E. coli} either possessing or lacking \textit{stx}, resulting in variability depending on which colonies are selected) or loss of free \textit{stx}-carrying phage [14].

\textit{Stx} is carried by phages that may be free within the cell at the start of the lysogenic cycle prior to phage DNA insertion into the bacterial chromosome [13, 45]. Although there is great heterogeneity of phages encoding Shiga toxins, the location of phage insertion in the bacterial genome has been reported to be close to \textit{wrbA} or \textit{yecE} in the Q terminator region [46]. However, based on results of the present study, seven STEC strains instead had \textit{stx} inserted close to \textit{NinF} and \textit{NinG}.

The adjacent gene relationship between \textit{stx}-phage insertion and \textit{NinG} has been previously reported in O157:H7, with \textit{NinG} thought to act as a controller of \textit{stx} expression [47]. As seven STEC strains had the insertion of \textit{stx} near to \textit{NinF} and \textit{NinG}, it is possible that these strains had a greater \textit{stx} stability in the genome and less likelihood of undergoing a phage excision process.

Fig 3. Linear STEC sequence with \textit{stx} insertion in a location of \textit{stx}-encoding phage. \textit{StxA} and \textit{stxB} subunits are shown in dark arrows for better visualization of the genome and neighboring genes.

https://doi.org/10.1371/journal.pone.0257168.g003
Also, seven of eleven strains confirmed as STEC by WGS lacked phage DNA flanking stx insertion sites (Table 3 and Fig 2). The lack of detection of phage DNA may represent cryptic phage which have lost the ability to excise from the bacterial genome, similar to those carrying stx in E. coli O111 [48]. Stx is typically a single transcriptional unit consisting of A and B subunits [49], but multiple insertion, mutation and excision events may have led to defective stx prophages, and these occurrences can be considered as pathoadaptive mutations, although it is not known what advantage the cell obtains from immobilizing stx [48]. Of interest, Creuzburg et al. [48] also obtained variable stx PCR results which were attributed to a lack of primer-binding sites, missing fragments of the target genes, or the presence of other mobile genetic elements causing PCR amplification.

Fig 4. Heat map dividing strains used in the present study in 3 groups: (A) Fifteen STEC-negative strains by WGS lacking stx-phage fragments; (B) Twenty-two STEC-negative strains by WGS with stx-encoding phage fragments; (C) Eleven STEC-positive strains by WGS. A more intense blue color indicates that the phage sequence was more prevalent in that set of strains. Red asterisk identifies stx-phages.

https://doi.org/10.1371/journal.pone.0257168.g004
Table 4. Comparison of serogroup between PCR and WGS.

Strain	Serogroup by PCR	Serotype by WGS
CAP 01	O103	O103:H2
CAP 022	O103	O103:H11
CAP 032	O157	O157:H7
CAP 042	O26	O26:H11
CAP 05	O26	O9:H30
CAP 06	O45	O110:H30
CAP 07	O26	Citrobacter sp.
CAP 08	O103	O103:H2
CAP 09	O103	H34
CAP 102	O157	O157:H7
CAP 11	O121	O121:H7
CAP 12	O45	O9:H4
CAP 13	O26	H28
CAP 14	O103	O103:H2
CAP 15	O45	O45:H51
CAP 162	O26	O26:H11
CAP 17	O26	O17:H18
CAP 182	O145	O145:H28
CAP 192	O121	O121:H7
CAP 20	O103	O17:H18
CAP 21	O103	O153:H8
CAP 22	O145	O8:H2
CAP 232	O145	O145:H28
CAP 24	O145	O76:H34
CAP 25	O121	O121:H7
CAP 26	O45	O45:H11
CAP 27	O103	O103:H8
CAP 28	O103	O5:H32
CAP 29	O103	O5:H19
CAP 30	O157	H34
CAP 31	O157	O157:H29
CAP 322	O145	O145:H28
CAP 332	O103	O103:H25
CAP 34	O26	O8:H10
CAP 35	O45	O45:H45
CAP 36	O26	O26:H9
CAP 37	O103	O187:H52
CAP 38	O157	O157:H29
CAP 39	O45	O45:H4
CAP 40	O157	O53:H32
CAP 41	O103	O103:H19
CAP 42	O26	O26:H32
CAP 43	O157	O51:H14
CAP 44	O45	O45:H38
CAP 45	O157	O157:H12
CAP 46	O103	O103:H21
CAP 472	O145	O145:H28

(Continued)
Environments with a high bacterial density promote transfer of phages, with phages being both gained and lost by bacterial members within this dynamic environment [50]. In addition, the presence of multiple fragments of stx-coding phages may be related to the loss of phages by sub-cultivation, which has already been demonstrated [15, 16, 38, 51]. Based on our results, we would agree with Senthakumaran et al. [38] who concluded that STEC with intact prophages may be uncommon and difficult to detect. Also, using WGS these authors observed the existence of a stx-negative “in vivo” strain O145:H28 with characteristics similar to another STEC strain of the same serotype [38]. Moreover, studies evaluating stx loss suggest that STEC O157: H7 strains are more “stx stable” when compared to non-O157 serogroups [16, 38, 51], although our study also included O157 strains selected for stx instability (n = 7). However, a difference between the present study and other studies that evaluated the loss of stx phage is that in our results the loss of stx1 was more common, likely due to its increased prevalence, while other studies investigated the loss of stx2 [16, 38, 51].

A significant finding of the present study was that intermittent false stx positives could in twenty-two cases be possibly related to presence of fragments of stx-encoding phages (Table 2), especially as genomes of the majority of strains possessed multiple fragments of identifiable stx-encoding phages (Table 3). The Conrad et al. [10] primers used at initial isolation have had positive amplification of stx even with one or two base-pair mismatches [33], but the possible intermittent binding of primers to stx fragments has not been previously reported, likely as only a subset of stx fragments may have influenced PCR results. Larger fragments with highest stx sequence integrity would be the most likely to intermittently bind to PCR primers, although it was not possible in the present study to verify which if any of the stx fragments led to false-positive PCRs. However, it is likely more than coincidence that all isolates with fragments having at least 23% stx1 or stx2 integrity (n = 9) had intermittent PCR detection of that gene unless they also had an intact stx of the same type enabling consistent PCR detection. The stx1 present in CAP 32 is interesting and possibly intermediate to a fragment and a complete stx as it only had 56% stx1 integrity in Geneious analyses due to base substitutions, but was classified as STEC by WGS. Accordingly, the demarcation between STEC and non-STEC may be more complicated than previously supposed and investigating expression of Shiga toxins would provide further clarity.

Three types of insertion of stx-encoding phage in the bacterial genome were verified (Fig 1). The CAP 47 strain confirmed as STEC showed homology with stx-encoding phage BP 4795, while two other non-STEC strains had multiple insertions between the bases of the stx-phage encoding region (CAP 5, CAP 33). In contrast, CAP 14 and CAP 15 each had a conserved stx-carrying phage in their genome but lacked a stx coding region. Similar to CAP 14 and CAP 15 strains, Senthakumaran et al. [38] noted the absence of stx in strains

Table 4. (Continued)

Strain	Serogroup by PCR	Serotype by WGS
CAP 48	O26	O157:H38
CAP 49	O157	O103:H14
CAP 50	O157	Citrobacter sp.
Agreement	29/50	

1 Grey shaded isolates showing agreement between PCR and WGS, yellow shaded isolates where inconclusive serotyping by WGS.
2 Isolates confirmed as STEC by WGS.

https://doi.org/10.1371/journal.pone.0257168.t004
Table 5. Presence of resistance genes and plasmids in *E. coli* and STEC.

Strains	Resistance genes	Plasmids by WGS
CAP01	*arsB*-mob, *blaEC*-18	IncFIB(AP001918)_1
CAP021	*arsB*-mob, *blaEC*-18	ColRNAI_1; IncB/O/K/Z_3; IncFIB(AP001918)_1
CAP033	*arsB*-mob, *blaEC*-15	IncFIA_1; IncFIB(AP001918)_1
CAP044	*arsB*-mob, *blaEC*-18	ColRNAI_1; IncB/O/K/Z_3; IncFIB(AP001918)_1; p0111_1
CAP05	*aph(3'')*-Ib, *aph(6)-Id, *arsB*-mob, *blaEC*-18, *blaTEM*-1, *dfrA5*; *sul2*	IncFIB(AP001918)_1; IncFII_1; IncQ1_1; IncX1_1; IncX3_1
CAP06	*arsB*-mob, *blaEC*-13; tet(A)	ColI56_1; IncFIB(AP001918)_1; IncFIV_FII_1; IncI1_1_Alpha; IncY_1
CAP08	*arsB*-mob, *blaEC*-18	IncFIC(FII)_1; IncY_1
CAP09	*arsB*-mob, *blaEC*	ColRNAI_1; IncFIA(HII)_1_HII; IncFIB(K)_1_Kpn3
CAP103	*arsB*-mob, *blaEC*-15	IncFIB(AP001918)_1
CAP11	*arsB*-mob, *blaEC*-18	-
CAP12	*arsB*-mob, *blaEC*-18	-
CAP13	*blaEC*	IncFIA_1; IncFIB(AP001918)_1; IncX1_1; IncX3_1
CAP14	*arsB*-mob, *blaEC*-18	IncFIA(HII)_1_HII; IncFIB(pRSB107)_1_pRSB107; IncX1_1
CAP15	*arsB*-mob, *blaEC*-18; tet(C)	IncFIB(AP001918)_1; IncFII_1
CAP163	*arsB*-mob, *blaEC*-18	ColRNAI_1; IncB/O/K/Z_3; IncFIB(AP001918)_1
CAP17	*aph(3'')*-Ib, *aph(6)-Id, *arsB*-mob, *blaEC*-8; tet(B)	IncFIB(AP001918)_1; IncX1_1; IncX3_1
CAP18	*blaEC*	IncB/O/K/Z_3; IncFIB(AP001918)_1
CAP193	*arsB*-mob, *blaEC*-18	IncFIA_1; IncFIB(AP001918)_1; IncFIC(FII)_1; IncY_1
CAP20	*arsB*-mob, *blaEC*-8	IncFII(pCo0)_1_pCo0; IncI1_1_Alpha
CAP21	*arsB*-mob, *blaEC*-18; *qacG2*; tet(A); (tet(M))	ColI56_1; ColRNAI_1; IncFII_1
CAP22	*arsB*-mob, *blaEC*-18; *ColpVC*; *dfrA12*; *qacEdelta1*; *sul1*; (tet(A))	ColpVC_1; IncFIA(HII)_1_HII; IncFIB(AP001918)_1; IncFIC(FII)_1; p0111_1
CAP234	*aadA2*; *blaEC*; *dfrA12*; *qacEdelta1*; *sul1*; (tet(A))	IncFIB(K)_1_Kpn3; IncR_1; IncY_1
CAP24	*arsB*-mob, *blaEC*-18; *tet(A); (tet(M))	IncFIA_1; IncFIB(AP001918)_1; IncFIC(FII)_1
CAP25	*arsB*-mob, *blaEC*-18; *ColpVC*; *dfrA12*; *qacEdelta1*; *sul1*; (tet(A))	IncFIB(AP001918)_1; IncFIC(FII)_1; IncI1_1_Alpha; IncX4_1; p0111_1
CAP26	*arsB*-mob, *blaEC*-15; tet(B)	ColRNAI_1; IncFIA_1; IncFII_1; IncI1_1_Alpha; IncX4_1; p0111_1
CAP27	*arsB*-mob, *blaEC*-18;	IncFIC(FII)_1
CAP28	*arsB*-mob, *blaEC*-15; (tet(B))	ColRNAI_1; IncFIA_1; IncFII_1; IncI1_1_Alpha; IncX4_1; p0111_1
CAP29	*arsB*-mob, *blaEC*-18; *qacG2*; tet(A); (tet(M))	ColRNAI_1; ColRNAI_1; IncFII_1
CAP30	*arsB*-mob, *blaEC*-15	-
CAP31	*arsB*-mob, *blaEC*-15; (tet(C))	ColI56_1; ColE10_1; IncFIA_1; IncFIB(AP001918)_1; IncFIC(FII)_1; IncX4_2
CAP321	*blaEC*	IncB/O/K/Z_3; IncFIB(AP001918)_1
CAP333	*arsB*-mob, *blaEC*-18	IncB/O/K/Z_3; IncFIB(AP001918)_1
CAP34	*aadA1*; *aph(3'')*-Ib, *aph(6)-Id, *arsB*-mob; *blaEC*; *blaTEM*-1; *floR*; *sul2*	IncA/C2_1; IncI1_1_Alpha
CAP35	*arsB*-mob, *blaEC*-15; (tet(C))	Col(MG828)_1; IncFIA_1; IncFIB(AP001918)_1; IncX1_1; IncX3_1; IncY_1
CAP36	*arsB*-mob, *blaEC*	ColRNAI_1; IncFIA_1; IncFIB(AP001918)_1
CAP37	*arsB*-mob, *blaEC*-18	ColRNAI_1; IncFIA_1; IncFIB(AP001918)_1
CAP38	*arsB*-mob, *blaEC*-15; (tet(A))	Col(MG828)_1; IncFIA_1; IncFIB(AP001918)_1; IncFIC(FII)_1; IncI1_1_Alpha; IncX1_4; IncX3_1
CAP39	*aph(3'')*-Ib, *aph(6)-Id, *arsB*-mob; *blaEC*-18; *floR*; *sul2*; (tet(A))	IncA/C2_1
CAP40	*arsB*-mob, *blaEC*-15;	-

(Continued)
with conserved regions of \textit{stx}-encoding phage. The presence of inconsistencies between bases present and phage sequences suggests that mutations may have occurred over time. Similarly, we also found a conserved PA28 phage region in CAP 32 strain encoded \textit{stx}_1 instead of the more usual \textit{stx}_2 [52].

4.3 Subtypes of \textit{stx}, biofilm genes

In a study of 444 isolates of O157 from human disease outbreaks, multiple copies of \textit{stx}_1 and/or \textit{stx}_2 occurred in 68% of isolates [53]. However, it is odd that only multiple copies of \textit{stx}_1 or \textit{stx}_2 were present in all STEC isolates in the present study which were selected for WGS due to consistent \textit{stx} PCR results. Accordingly, we hypothesize that multiple bacteriophage insertions may increase \textit{stx} stability within the \textit{E. coli} genome. Similarly, it was two STEC that had the highest number (five and six, respectively) of integrated \textit{stx}-phage.

Almost all biofilm genes identified were members of the \textit{csg} family (unique exception was CAP 34; S1 Table). Genes from the \textit{csg} family play an important role in regulating biofilm genes in \textit{E. coli} [54]. These genes are responsible for the formation of curli, an extracellular proteinaceous fiber which is involved in binding of surfaces and cell-to-cell contact, also influencing host colonization [55]. Strains of O157 that express curli are thought to have an exacerbated production linked to a high capacity for biofilm formation [56]. Potentially, STEC expressing curli may be linked to the phenomenon of super-shedding (>10^4 cells/g of feces), which has been theorized to be due to formation of an intestinal biofilm that when periodically sloughed leads to high numbers of fecal STEC [57]. However, presence of \textit{csg} genes does not guarantee biofilm formation by STEC [58] and evaluation of biofilm forming phenotypes would require further study.

4.4 Serogroup and serotype

O-antigen serogroups represent the outermost part of the lipopolysaccharide layer and currently for \textit{Escherichia coli} there are 184 O-serogroups [59]. Recently, some studies have standardized PCR assays to determine both O-antigen polysaccharide [59] and H-flagellum [60] as serological tests are laborious and may cross-react with other serogroups [61]. In the present study we found that in generic \textit{E. coli} strains (without \textit{stx} presence by WGS) there were 18 strains mistakenly amplified as belonging to the “Top Seven” (Table 4). There were also three strains which could not be O-serogrouped by WGS, illustrating limitations also of WGS.

Table 5. (Continued)

Strains	Resistance genes	Plasmids by WGS
CAP41	\textit{arsB-mob}; \textit{blaEC-18}	ColRNAI_1
CAP42	\textit{arsB-mob}; \textit{blaEC}	ColRNAI_1
CAP43	\textit{arsB-mob}; \textit{blaEC}	Col(MG828)_1; ColRNAI_1; IncFIA_1; IncX1_1; IncX3_1
CAP44	\textit{arsB-mob}; \textit{blaEC-18}; \textit{IncFIA_1}; IncFIB(AP001918)_1	
CAP45	\textit{arsB-mob}; \textit{blaEC}	ColRNAI_1
CAP46	\textit{arsB-mob}; \textit{blaEC-18}	IncFIA(H11)_1; IncFIB(pB171)_1; pB171
CAP47	\textit{blaEC}	-
CAP48	\textit{arsB-mob}; \textit{blaEC-18}	IncFIA_1; IncFIB(AP001918)_1
CAP49	\textit{arsB-mob}; \textit{blaEC-18}	IncFIC(FII)_1; IncH1_1_Alpha

1 Strains confirmed as Shiga toxin-producing \textit{E. coli}.

https://doi.org/10.1371/journal.pone.0257168.t005
Table 6. Multilocus sequence typing profiles (MLST) of the *E. coli* isolates.

Strains	ST	Allele³						
		adk	fumC	gyrB	icd	mdh	purA	recA
CAP01	17	6	4	3	17	7	7	6
CAP02	723	16	154	12	16	9	7	7
CAP03	11	12	12	8	12	15	2	2
CAP04	21	16	4	12	16	9	7	7
CAP05	540	6	7	57	1	8	8	2
CAP06	187	6	69	4	16	9	13	7
CAP08	17	6	4	3	17	7	7	6
CAP09	8076	204	1109	4	1	8	8	2
CAP10	11	12	12	8	12	15	2	2
CAP11	1610	6	4	3	18	9	8	2
CAP12	46	8	7	1	8	8	8	6
CAP13	1300	12	136	199	30	24	2	17
CAP14	17	6	4	3	17	7	7	6
CAP15	20	6	4	3	18	7	7	6
CAP16	21	16	4	12	16	9	7	7
CAP17	69	21	35	27	6	5	5	4
CAP18	32	19	23	18	24	21	2	16
CAP19	5082	6	4	3	18	11	8	2
CAP20	69	21	35	27	6	5	5	4
CAP21	109	6	6	1	16	9	13	2
CAP22	392	6	6	14	18	7	7	71
CAP23	32	19	23	18	24	21	2	16
CAP24	1415	204	11	4	1	8	8	2
CAP25	5082	6	4	3	18	11	8	2
CAP27	13	6	6	5	9	9	8	2
CAP28	10	10	11	4	8	8	8	2
CAP29	109	6	6	1	16	9	13	2
CAP31	515	57	11	1	109	7	8	2
CAP32	32	19	23	18	24	21	2	16
CAP33	343	77	7	7	18	65	56	7
CAP34	1122	8	11	57	1	7	18	6
CAP35	10	10	11	4	8	8	8	2
CAP37	1248	6	29	12	1	9	8	7
CAP39	336	9	4	33	18	11	8	6
CAP40	10	10	11	4	8	8	8	2
CAP41	755	6	23	15	18	9	12	7
CAP42	10	10	11	4	8	8	8	2
CAP43	1406	46	156	2	25	5	16	19
CAP44	154	6	6	5	10	9	8	6
CAP45	10	10	11	4	8	8	8	2
CAP46	446	6	19	3	26	11	8	6
CAP47	32	19	23	18	24	21	2	16
CAP48	1113	6	6	12	10	9	8	7
CAP49	8935	6	8	32	159	9	23	381

¹MLST analysis did not result in known Sequence Types for strains CAP26, CAP30, CAP36 AND CAP38.
²Strains confirmed as Shiga toxin-producing *E. coli*.
³Housekeeping, single-copy genes used to determine the allelic profile or sequence type (ST).

https://doi.org/10.1371/journal.pone.0257168.t006
For generic *E. coli* strains where serogroup determined by PCR did not match WGS, we evaluated whether there was a lack of primer specificity via virtual PCRs, and all primers evaluated only aligned with target regions. Also, all phages detected were evaluated by virtual PCR and did not affect possible amplification during serogroup determination. Therefore, our results emphasize that although the PCR for the determination of serogroup in STEC strains confirmed by WGS obtained 100% specificity, reasons for serogroup mismatches in some generic *E. coli* strains could not be determined. Mixed cultures are a possibility but unlikely to be wholly responsible. Additional study of unstable serogroup determination by PCR is required.

4.5 Resistome and plasmids

Information about antimicrobial resistance is important as antimicrobials are often included in media to improve the specificity of isolation methodologies. A number of antimicrobials including cefixime, cefsulodin, and vancomycin are used in enrichment broth for isolation of serogroup O157 [62]. Although arsenic and β-lactam resistance genes were present in most STEC strains in the present study, their use in culture media would not completely differentiate STEC from other *E. coli* strains due to the presence of these genes also in generic *E. coli* strains. However as selective media encompassing all STEC do not currently exist, the utility of β-lactam supplemented media is worthy of future exploration. The toxicity of arsenic would likely limit its practical application in culture media.

In relation to plasmid presence, *IncF* plasmids have been reported to confer resistance to different antimicrobials including β-lactams, aminoglycosides, tetracyclines, chloramphenicol, and quinolones [63, 64]. This plasmid is present in the class Inc that are responsible for producing TEM-1 or inhibitor-resistant TEM [65]. Moreover, *IncF* plasmids are widely

diagram

Fig 5. Phylogenetic tree of the strains using the single nucleotide polymorphism (SNP) difference profile. *Escherichia coli* O157: H7 str. Sakai BA000007 was used as a DNA reference genome to build the SNP phylogenetic tree. The relatedness was calculated as 0.055. The red circles indicate proximity to a known ST outbreak strain. https://doi.org/10.1371/journal.pone.0257168.g005
distributed in the Enterobacteriaceae family and contribute to the spread of antimicrobial multi-resistance among E. coli [66]. However, this plasmid class does not carry stx genes and would not have influenced PCR detection of stx\(_1\) or stx\(_2\).

4.6 Analysis of MLST profiles of strains

The multilocus sequence type of CAP03, ST11, has also been detected in cases of diarrhea as described by Ferdous et al. [67], in the database of the Food and Drug Administration from 2010 to 2017 [68], and confirmed in asymptomatic food handlers and from fecal sources of patients in Japan [69]. An important point is that O157:H7 is considered the serotype with the highest risk to humans, due to the large outbreaks that occurred in USA in 1993 [70, 71], in Japan in 1996 [72], and in Canada [73]. For this reason, the presence of O157:H7, and the ST11 profile, represents a direct risk of sporadic cases or a foodborne outbreak. Additionally, four isolates of ST32 (O145:H28) were detected. That ST is related to cases of hemolytic uremic syndrome. Furthermore, Shridhar et al. [74] analyzed 89 isolates of STEC serogroup O145 from several origins and all were ST32 with stx\(_{1a}\) and stx\(_{2a}\). However, in the present study, CAP18 also showed the presence of stx\(_{1b}\) and stx\(_{2b}\), which is evidence that supports the potential pathogenicity of this strain.

For serogroup O26:H11, two ST21 isolates were detected. This ST was detected in contamination from cattle feces [68], and hospitalized patients [75]. In addition, this ST was related to an outbreak occurring in Romania in 2016 where ST21 strains were isolated from 10 hemolytic uremic syndrome patients and five diarrhea cases [76]. Also, in a study by Chase-Topping et al. [77] which evaluated E. coli O26 isolated in Scottish cattle, ST21 was the most prevalent, but different from our strains, stx\(_2\) was most common while only stx\(_1\) was verified in our study.

The presence of ST343 (O103:H25) was described by Iguchi et al. [78] in sporadic cases and an outbreak with bloody diarrhea, vomiting and fever in Japan, and similar to present study, stx\(_1\) was detected. In addition, this ST was isolated in areas of fish slaughter and watersheds [79]. As the strains isolated in our study were present in feces and animal hides, it is possible that they could also be present in water [80, 81].

For O103:H11 a ST723 was detected. Iguchi et al. [78] observed that serogroup O103 can be present in four ST groups [17, 343, 21, and 723]. The ST depends on the evolutionary line of each O103 strain. For example, ST723 is closely related to ST21, which in the present study was associated with an O26:H11. However, Eichhorn et al. [82], found that ST723 was related to isolates from humans, while ST21 was most often found in isolates from cattle. ST343 has a low similarity with ST21 and ST723, indicating a different evolution from the other two O103 sequence types.

Another ST, 5082, was detected for O121:H7. ST5082 is not common but was related to one bovine isolate and one of unknown origin in California [83]. In this same study, 85% of O121 serogroup isolated were ST655 and only 5% ST5082, but different to the present study had stx\(_{1d}\) and stx\(_{2a}\) or stx\(_{1d}\) and stx\(_{2c}\), while our strain carried stx\(_{1a}\) and stx\(_{1b}\). This divergence highlights the complexity and the ability for genetic rearrangement between strains of E. coli.

5. Conclusions

Generally, PCR is a reliable technique for classifying STEC and the few exceptions from our culture collection which had variable detection of stx and/or serogroup were investigated using WGS. In some cases, PCR primers used to determine stx genes may have been influenced by free phage encoding a Shiga toxin, since 29.2% of isolates (14/48) had concordant WGS and PCR results only in a second PCR after re-culture of the isolates. Conserved stx-encoding phages remaining in the genome without stx corroborates the possibility of loss in the region that encoded the stx gene, either by sub-cultivation or other unclear function. The presence of fragments of stx remaining in the genome may in some cases, particularly with
larger fragments, have led to intermittent amplification of PCR primers. Comparing serogroup among E. coli isolates as determined by PCR and WGS, both techniques agreed for STEC and in 18 generic E. coli, but in another 21 generic E. coli reasons for this incongruence could not be determined. It is unlikely that any technique may perfectly characterize STEC, but it is most important that Shiga toxin genes be reliably detected by PCR due to their potential human health risks. Having up to six integrated stx-phages per isolate including some lacking stx-coding regions and an average phage integrity of < 10% points to the extreme plasticity and impermanence of stx-carrying phage in the E. coli genome. Conversely, the majority of STEC lacked phage sequences in the same contig as stx, likely increasing stability of stx in the genome and its detection by PCR.

All STEC strains showed genes related to virulence, antimicrobial resistance, and adhesion to surfaces (biofilm formation), and when we analyzed the differences between the STEC isolates it was possible to verify that the main differences among isolates of the same serogroup were linked to the host cell-binding system. Strains showed a diversity of antimicrobial resistance genes, but all strains had a resistance gene for β-lactams. Consequently, β-lactams could be useful to improve isolation of STEC by inhibiting non-resistant background microflora. Regardless of difficulties in PCR classification, results of ST show a relation to other ST strains involved in food-borne outbreaks in other regions of the world, emphasizing the importance of accurate prediction of food safety risks.

Supporting information

S1 Table. Virulence genes detected in all STEC E. coli sequences.

(DOCX)

Acknowledgments

Many thanks to Ashwin Deo, Yidong Graham, Susanne Trapp, and Homayoun Zahiroddini for technical assistance.

Author Contributions

Conceptualization: Kim Stanford.

Formal analysis: Vinicius Silva Castro, Rodrigo Ortega Polo, Eduardo Eustáquio de Souza Figueiredo, Robin King.

Funding acquisition: Eduardo Eustáquio de Souza Figueiredo, Carlos Adam Conte-Junior, Kim Stanford.

Investigation: Vinicius Silva Castro.

Methodology: Emmanuel Wihkochombom Bumunange.

Project administration: Kim Stanford.

Resources: Robin King, Carlos Adam Conte-Junior.

Validation: Rodrigo Ortega Polo.

Writing – original draft: Vinicius Silva Castro.

Writing – review & editing: Vinicius Silva Castro, Rodrigo Ortega Polo, Eduardo Eustáquio de Souza Figueiredo, Emmanuel Wihkochombom Bumunange, Tim McAllister, Robin King, Kim Stanford.
References

1. Miko A, Rivas M, Bentancor A, Delannoy S, Fach P, Beutin L. Emerging types of Shiga toxin-producing E. coli (STEC) O178 present in cattle, deer, and humans from Argentina and Germany. Front Cell Infect. 2014; 4: 78.

2. Gioffré A, Meichtri L, Miliewsky E, Baschkier A, Chillemi G, Romano ML, et al. Detection of Shiga toxin-producing Escherichia coli by PCR in cattle from Argentina: evaluation of two procedures. Vet Microbiol. 2002; 87: 301–313. https://doi.org/10.1016/s0378-1135(02)00079-2 PMID: 12069768

3. Sharma VK, Dean-Nystrom EA. Detection of enterohemorrhagic Escherichia coli/O157:H7 by using a multiplex real-time PCR assay for genes encoding intimin and Shiga toxins. Vet Microbiol. 2003; 93: 247–60. https://doi.org/10.1016/s0378-1135(03)00039-7 PMID: 12695048

4. Hoijnen L, Medema G. Quantitative detection of E. coli, E. coli O157 and other Shiga toxin producing E. coli in water samples using a culture method combined with real-time PCR. J Water Health. 2006; 4: 487–498. https://doi.org/10.2166/wh.2006.0032 PMID: 17176819

5. Verstraete K, De Zutter L, Messens W, Herman L, Heyndrickx M, De Reu K. Effect of the enrichment time and immunomagnetic separation on the detection of Shiga toxin-producing Escherichia coli O26, O103, O111, O145 and sorbitol positive O157 from artificially inoculated cattle faeces. Vet Microbiol. 2010; 145: 106–112. https://doi.org/10.1016/j.vetmic.2010.03.004 PMID: 20378282

6. Tillman GE, Wasilienko JL, Simmons M, Lauze TA, Minicozzii J, Oakley BB, et al. Isolation of Shiga toxin-producing Escherichia coli serogroups O26, O45, O103, O111, O121, and O145 from ground beef using modified Rainbow agar and post-immunomagnetic separation acid treatment. J Food Protect. 2012; 75: 1548–1554.

7. Noll LW, Shridhar PB, Dewsbury DM, Shi X, Cernicchiaro N, Renter DG, et al. A comparison of culture and PCR-based methods to detect six major non-O157 serogroups of Shiga toxin-producing Escherichia coli in cattle feces. PLoS One. 2015; 10: e0135446. https://doi.org/10.1371/journal.pone.0135446 PMID: 26270482

8. Conrad C, Stanford K, McAllister T, Thomas J, Reuter T. Shiga toxin-producing and current trends in diagnostics. Animal Frontiers 2016; 6: 37.

9. Stromberg ZR, Lewis GL, Marx DB, Moxley RA. Comparison of enrichment broths for supporting growth of Shiga toxin-producing Escherichia coli. Curr Microbiol. 2015; 71: 214–219. https://doi.org/10.1007/s00284-015-0824-8 PMID: 25917502

10. Conrad CC, Stanford K, McAllister TA, Thomas J, Reuter T. Further development of sample preparation and detection methods for O157 and the top 6 non-O157 STEC serogroups in cattle feces. J Microbiol Meth. 2014; 105: 22–30. https://doi.org/10.1016/j.mimet.2014.06.020 PMID: 25026274

11. Angles d’Auriac MB, Sirevag R. Multiplex PCR for the simultaneous detection of the Enterobacterial gene wecA, the Shiga Toxin genes (stx1 and stx2) and the Intimin gene (eae). BMC Res Notes. 2018; 11: 360. https://doi.org/10.1186/s13104-018-3457-8 PMID: 29880035

12. Castro VS, Teixeira LAC, Rodrigues DP, Dos Santos LF, Conte-Junior CA, Figueiredo EES. Occurrence and antimicrobial resistance of E. coli non-O157 isolated from beef in Mato Grosso, Brazil. Trop Anim Health Prod. 2019; 51: 1117–1123. https://doi.org/10.1007/s11250-018-01792-z PMID: 30661176

13. Martinez-Castillo A, Muniesa M. Implications of free Shiga toxin-converting bacteriophages occurring outside bacteria for the evolution and the detection of Shiga toxin-producing Escherichia coli. Front Cell Infect Microbiol. 2014; 4: 46. https://doi.org/10.3389/fcimb.2014.00046 PMID: 24795866

14. Bumunang EW, McAllister TA, Zaheer R, Polo RO, Stanford K, King R, et al. Characterization of non-O157 Escherichia coli from cattle faecal samples in the north-west province of South Africa. Microorganisms 2019; 7: 272.

15. Karch H, Meyer T, Rüssmann H, Heesemann J. Frequent loss of Shiga-like toxin genes in clinical isolates of Escherichia coli upon subcultivation. Infect Immun. 1992; 60: 3464–3467. https://doi.org/10.1128/IAI.60.8.3464-3467.1992 PMID: 1639518

16. Joris MA, Verstraete K, De Reu K, De Zutter L. Loss of vtx genes after the first sub-cultivation step of verocytotoxigenic Escherichia coli O157 and non-O157 during isolation from naturally contaminated fecal samples. Toxins. 2011; 3: 672–677. https://doi.org/10.3390/toxins3060672 PMID: 22069733

17. Macori G, McCarthy SC, Burgess CM, Fanning S, Duffy G. Investigation of the causes of Shigatoxigenic Escherichia coli PCR positive and culture negative samples. Microorganisms. 2020; 8: 587. https://doi.org/10.3390/microorganisms8040587 PMID: 32325659

18. Stanford K, Johnson RP, Alexander TW, McAllister TA, Reuter T. Influence of season and feedlot location on prevalence and virulence factors of seven serogroups of Escherichia coli in feces of western-Canadian slaughter cattle. PLoS One. 2016; 11: 8.
19. Stanford K, Bach SJ, Marx TH, Jones S, Hansen JR, Wallins GL, et al. Monitoring Escherichia coli O157:H7 in inoculated and naturally colonized feedlot cattle and their environment. J Food Protect. 2005; 68:26–33. https://doi.org/10.4315/0362-028x-68.1.26 PMID: 15690800

20. Castro VS, Figueiredo EES, McAllister T, King R, Reuter T, Ortega Polo R, et al. Whole-genome draft assemblies of difficult-to-classify Escherichia coli O157 and non-O157 isolates from feces of Canadian feedlot cattle. Microbiol Resour Announce. 2020; 9:e00168–20. https://doi.org/10.1128/MRA.00168-20 PMID: 32273360

21. Zhang P, Tran F, Stanford K, Yang X. Are antimicrobial interventions the cause of heat-resistant Escherichia coli on meat? Appl Environ Microbiol. 2020; Microbiol: e00512–20. https://doi.org/10.1128/AEM.00512-20 PMID: 32303544

22. Schuetz F, Beutin L, Pierard D, Buvens G, Karch H, Mellmann A, et al. Multicenter evaluation of a sequence-based protocol for subtyping Shiga toxins and standardizing STx nomenclature. J Clin Microbiol. 2012; 50: 2951–2963. https://doi.org/10.1128/JCM.00860-12 PMID: 22760050

23. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012; 19: 455–477. https://doi.org/10.1089/cmb.2012.0021 PMID: 22506599

24. Seemann T, Prokka: Rapid prokaryotic genome annotation. Bioinformatics. 2014; 30: 2068–2069. https://doi.org/10.1093/bioinformatics/btu153 PMID: 24642063

25. Ren J, Ahlgren NA, Lu YY, Fuhrman JA, Sun F. VirFinder: a novel k-mer based tool for identifying viral sequences from assembled metagenomic data. Microbiome. 2017; 5: 69. https://doi.org/10.1186/s40168-017-0283-5 PMID: 28683828

26. Ingle DJ, Valcanin S, Kuzevski A, Tauschek M, Inouye M, Stinear T, et al. In silico serotyping of Escherichia coli from short read data identifies limited novel O-loci but extensive diversity of O:H serotype combinations within and between pathogenic lineages. Microbiol Genomics 2016; 2: 7.

27. Chen L, Zheng D, Liu B, Yang J, Jin Q. VFDB 2016: hierarchical and refined dataset for big data analysis-10 years on. Nucleic Acids Res. 2016; 44: D694–D697. https://doi.org/10.1093/nar/gkw1239 PMID: 26578559

28. McArthur AG, Waglechner N, Nizam F, Yan A, Azad MA, Baylay AJ, et al. The comprehensive antibiotic resistance database. Antimicrob Agents Chemother. 2013; 57: 3348–57. https://doi.org/10.1128/AAC.00419-13 Epub 2013 May 6. PMID: 23650175

29. Zhou Y, Liang Y, Lynch KH, Dennis JJ, Wishart DS. PHAST: a fast phage search tool. Nucleic Acids Res. 2016; 44: W16–W21, https://doi.org/10.1093/nar/gkw387 PMID: 27141966

30. Carattoli A, Zankari E, García-Fernández A, Larsen MV, Lund O, Villa L, et al. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother. 2014; 58: 3895–3903. https://doi.org/10.1128/AAC.02412-14 PMID: 24777092

31. Arndt D, Jason R, Grant A, Marcu A, Sajed T, Pon A, et al. PHASTER: a better, faster version of the PHAST phage search tool, Nucleic Acids Res. 2016; 44: W16–W21, https://doi.org/10.1093/nar/gkw387 PMID: 27141966

32. Zhou Y, Liang Y, Lynch KH, Dennis JJ, Wishart DS. PHAST: a fast phage search tool. Nucleic Acids Res. 2011; 39: recoverW347-52. https://doi.org/10.1093/nar/gkr485 PMID: 21672955

33. Katoh K, Standley DM. MAFFT Multiple Sequence Alignment Software Version 7: improvements in performance and usability. Mol. Biol. Evol. 2013; 30: 772–780. https://doi.org/10.1093/molbev/mst010 PMID: 23329690

34. Stanford K, Reuter T, Hallewel J, Tostes R, Alexander TW, McAllister TA. Variability in characterizing Escherichia coli from cattle feces: a cautionary tale. Microorganisms. 2018; 6: 74. https://doi.org/10.3390/microorganisms6030074 PMID: 30037096

35. Kim HS, Kim YJ, Chon JW, Kim DH, Kim KY, Seo KH. Citrobacter braakii: A major cause of false-positive results on MacConkey and Levine’s eosin methylene blue selective agars used for the isolation of Escherichia coli from fresh vegetable samples. J Food Safety. 2016; 36: 33–37

36. Park CH, Martin EA, White EL. Isolation of a nonpathogenic strain of Citrobacter sedlakii which expresses Escherichia coli O157 antigen. J Clin Microbiol. 1998; 36: 1408–1409. https://doi.org/10.1128/JCM.36.5.1408-1409.1998 PMID: 9574715

37. Schmidt H, Montag M, Bockemuhi J, Heesemann J, Karch H. Shiga-like toxin II related cytotoxins in Citrobacter freundii strains from human and beef samples. Infect Immun. 1993; 61: 534 543. https://doi.org/10.1128/iai.61.2.534-543.1993 PMID: 8423084

38. Jandu N, Ho NK, Donato KA, Karmali MA, Mascarenhas M, Duffy SP, et al. Enterohemorrhagic Escherichia coli O157:H7 gene expression profiling in response to growth in the presence of host epithelia. PloS One. 2009; 4: e4689. https://doi.org/10.1371/journal.pone.0004689 PMID: 19293938

39. Senthakumarar T., Brandal L.T., Lindstedt BA, Jorgensen SB, Charnock C, Tunsojo HS. Implications of stx loss for clinical diagnostics of Shiga toxin-producing Escherichia coli. Eur J Clin Microbiol Infect Dis. 2018; 37: 2361–2370. https://doi.org/10.1007/s10096-018-3384-6 PMID: 30267169
39. Brandal LT, Tunsja HS, Ranheim TE, Løbersli I, Lange H, Wester AL. Shiga toxin 2a in *Escherichia albertii*. J Clin Microbiol. 2015; 53: 1454–1455. https://doi.org/10.1128/JCM.03378-14 PMID: 25653403

40. Noll LW, Baumgartner WC, Shridhar PB, Cull CA, Dewsbury DM, Shi X, et al. Pooling of immunomagnetic separation beads does not affect detection sensitivity of six major serogroups of Shiga toxin-producing *Escherichia coli* in cattle feces. J Food Prot. 2016; 79: 59–65. https://doi.org/10.4315/0362-028X.JFP-15-236 PMID: 26735030

41. Capps KM, Ludwig JB, Shridhar PB, Shi X, Roberts E, DeBroy C, et al. Identification of Shiga toxin subtypes and prevalence of minor serogroups of Shiga toxin-producing *Escherichia coli* in feedlot cattle feces. Sci Rep. 2021; 11: 8601. https://doi.org/10.1038/s41598-021-87544-w PMID: 33883564

42. Paquette SJ, Stanford K, Thomas J, Reuter T. Quantitative surveillance of Shiga toxins 1 and 2, *Escherichia coli* O157:H7 infection in cattle. *Escherichia coli* O157 in feces of western-Canadian slaughter cattle enumerated by droplet digital PCR with a focus on seasonality and slaughterhouse location. PLoS One. 2018; 13: 1–13. https://doi.org/10.1371/journal.pone.02964278

43. Hallewell J, Alexander T, Reuter T, Stanford K. Limitations of immunomagnetic separation for detection of the top seven serogroups of Shiga toxin–Producing *Escherichia coli*. J Food Protect. 2017; 80: 598–603. https://doi.org/10.4315/0362-028X.JFP-16-427 PMID: 28335459

44. Muñns KD, Selinger LB, Stanford K, Guan L, Callaway TR, McAllister TA. Perspectives on super-shedding of *Escherichia coli* O157:H7 by cattle. Foodborne Path Dis. 2015; 12: 89–103. https://doi.org/10.1089/fpd.2014.1829 PMID: 25514549

45. Bielaszewska M, Prager R, Köck R, Mellmann A, Zhang W, Tschaape H, et al. Shiga toxin gene loss and rearrangements to lysogenic conversion. Microbiol Mol Biol Rev. 2004; 68, 560–602. https://doi.org/10.1128/MMBR.68.3.560-602.2004 PMID: 15353570

46. Ogasawara H, Yamamoto K, Ishihama A. Role of the biofilm master regulator *csgD* in cross-regulation between biofilm formation and flagellar synthesis. *J Bacteriol*. 2011; 193: 2587–97. https://doi.org/10.1128/JB.01468-10 PMID: 21421764

47. Barnhart MM, Chapman MR. Curli biogenesis and function. Ann Rev Microbiol. 2006; 60: 131–147. https://doi.org/10.1146/annurev.micro.60.080805.142106 PMID: 16704339

48. Uhrich GA, Chen CY, Cottrell BJ, Hofmann CS, Yan X, Nguyen L. *Stx1* prophage excision in *Escherichia coli* strain PA20 confers strong curli and biofilm formation by restoring native *mlrA*. FEMS Microbiol Lett. 2016; 363: fnw123.

49. Munnis KD, Selinger LB, Stanford K, Guan L, Callaway TR, McAllister TA. Perspectives on super-shedding of *Escherichia coli* O157:H7 by cattle. Foodborne Path Dis. 2015; 12: 89–103. https://doi.org/10.1089/fpd.2014.1829 PMID: 25514549

50. Ma A, Neumann N, Chui L. Phenotypic and genetic determination of biofilm formation in heat-resistant *Escherichia coli* possessing the locus of heat resistance. Microorganisms. 2021; 9: 403. https://doi.org/10.3390/microorganisms9020403 PMID: 33672009
59. Iguchi A, Iyoda S, Kikuchi T, Ogura Y, Katsura K, Ohnishi M, et al. A complete view of the genetic diversity of the *Escherichia coli* O-antigen biosynthesis gene cluster. DNA Res. 2015; 22: 101–107. https://doi.org/10.1093/dnare/dsu034 PMID: 25428993

60. Banjo M, Iguchi A, Seto K, Kikuchi T, Harada T, Scheutz F, et al. *Escherichia coli* H-genotyping PCR: a complete and practical platform for molecular H typing. J Clin Microbiol. 2018; 56: e00190–18. https://doi.org/10.1128/JCM.00190-18 PMID: 29593058

61. DebRoy C, Fratamico PM, Yan X, Baranzoni G, Liu Y, Needleman DS, et al. Comparison of O-antigen gene clusters of all O-serogroups of *Escherichia coli* and proposal for adopting a new nomenclature for O-typing. PLoS One. 2016; 11: e0147434. https://doi.org/10.1371/journal.pone.0147434 PMID: 26824864

62. Hornitzky MA, Bettelheim KA, Djordjevic SP. The detection of Shiga toxin-producing *Escherichia coli* in diagnostic bovine faecal samples using vancomycin-cefixime-cefsulodin blood agar and PCR. FEMS Microbiol Lett. 2001; 198: 17–22. https://doi.org/10.1111/j.1574-6968.2001.tb10613.x PMID: 11325548

63. Liao XP, Liu BT, Yang QE, Sun J, Li L, Fang LX, et al. Comparison of plasmids coharboring 16s rRNA methylase and extended-spectrum beta-lactamase genes among *Escherichia coli* isolates from pets and poultry. J Food Prot. 2013; 76: 2018–2023. https://doi.org/10.4315/0362-028X.JFP-13-200 PMID: 24290675

64. Liu BT, Yang QE, Li L, Sun J, Liao XP, Fang LX, et al. Dissemination and characterization of plasmids carrying oqxAB-blaCTX−M genes in *Escherichia coli* isolates from food-producing animals. PLoS One. 2013; 8: e73947. https://doi.org/10.1371/journal.pone.0073947 PMID: 24040123

65. Carattoli A. Resistance plasmid families in *Enterobacteriaceae*. Antimicrob Agents Chemother. 2009; 53: 2227–38. https://doi.org/10.1128/AAC.01707-08 PMID: 19307361

66. Rafał C, Frank T, Manirakiza A, Gaudeau A, Mbecko J-R, Nghario L, et al. Dissemination of IncF-type plasmids in multi-resistant CTX-M-15-producing *Enterobacteriaceae* isolates from surgical-site infections in Bangui, Central African Republic. BMC Microbiol. 2015; 15: 15. https://doi.org/10.1186/s12866-015-0348-1 PMID: 25648151

67. Ferdous M, Zhou K, Meilmann A, Morabito S, Croughs PD, Boer RF, et al. Is Shiga toxin-negative *Escherichia coli* O157:H7 enteropathogenic or enterohemorrhagic *Escherichia coli*? Comprehensive molecular analysis using whole-genome sequencing. J Clin Microbiol. 2015; 53: 3530–3533. https://doi.org/10.1128/JCM.01899-15 PMID: 26311863

68. González-Escalona N, Toro M, Rump LV, Cao G, Nagaraja TG, Meng J. Virulence gene profiles and clonal relationships of *Escherichia coli* O26:H11 isolates from feedlot cattle as determined by whole-genome sequencing. Appl Environ Microb. 2016; 82: 3900–3912. https://doi.org/10.1128/AEM.00498-16 PMID: 27107118

69. Baba H, Kanamori H, Kudo H, Kuroki Y, Higashi S, Oka K, et al. Genomic analysis of Shiga toxin-producing *Escherichia coli* from patients and asymptomatic food handlers in Japan. PloS One. 2019; 14: e0225340. https://doi.org/10.1371/journal.pone.0225340 PMID: 31748151

70. CDC. Preliminary Report: Foodborne outbreak of *Escherichia coli* O157:H7 infections from hamburgers, Western United States. 1993. Available from: https://www.cdc.gov/mmwr/preview/mmwrhtml/00019541.htm. Accessed: 21 May 2020.

71. Bell BP, Goldoft M, Griffin PM, Davis MA, Gordon DC, Tarr PI, et al. A multistate outbreak of *Escherichia coli* O157:H7-associated bloody diarrhea and hemolytic uremic syndrome from hamburgers: the Washington experience. J Am Med Assn. 1994; 272: 1349–1353 PMID: 7933395

72. Michino H, Araki K, Minami S, Takaya S, Sakai N, Miyazaki M, et al. Massive outbreak of *Escherichia coli* O157:H7 infection in schoolchildren in Sakai City, Japan, associated with consumption of white radish sprouts. Am J Epidemiol. 1999; 150: 787–796. https://doi.org/10.1093/oxfordjournals.aje.a010082 PMID: 10522649

73. Waters JR, Sharp JC, Dev VJ. Infection caused by *Escherichia coli* O157:H7 in Alberta, Canada, and in Scotland: a five-year review, 1987–1991. Clin Infect Dis. 1994; 19: 834–843. https://doi.org/10.1093/cid/19.5.834 PMID: 7893866

74. Shridhar PB, Worley JN, Gao X, Yang X, Noll LW, Shi X, et al. Analysis of virulence potential of *Escherichia coli* O145 isolated from cattle feces and hide samples based on whole genome sequencing. PloS One. 2019; 14: e0225057. https://doi.org/10.1371/journal.pone.0225057 PMID: 31774847

75. Bielaszewska M, Meilmann A, Bietz S, Zhang W, Köck R, Kossow A, et al. Enterohemorrhagic *Escherichia coli* O26:H11/H-: a new virulent clone emerges in Europe. Clin Infect Dis. 2013; 56: 1373–1381. https://doi.org/10.1093/cid/cit055 PMID: 23378282

76. Usein C, Cionteas AS, Militaru CM, Condei M, Dinu S, Oprea M, et al. Molecular characterization of human Shiga toxin-producing *Escherichia coli* O26 strains: results of an outbreak investigation, Romania, February to August 2016. Euro Surveillance. 2017; 22: 00148.
77. Chase-Topping ME, Rosser T, Allison LJ, Courcier E, Evans J, McKendrick IJ, et al. Pathogenic potential to humans of bovine *Escherichia coli* O26, Scotland. Emerg Infect Dis. 2012; 18: 439–448. https://doi.org/10.3201/eid1803.111236 PMID: 22377426

78. Iguchi A, Iyoda S, Ohnishi M. Molecular characterization reveals three distinct clonal groups among clinical Shiga toxin-producing *Escherichia coli* strains of serogroup O103. J Clin Microbiol. 2012; 50: 2894–2900. https://doi.org/10.1128/JCM.00789-12 PMID: 22718945

79. Balière C, Rincé A, Blanco J, Dahbi G, Harel J, Vogeleer P, et al. Prevalence and characterization of Shiga toxin-producing and enteropathogenic *Escherichia coli* in shellfish-harvesting areas and their watersheds. Front Microbiol. 2015; 6: 1356. https://doi.org/10.3389/fmicb.2015.01356 PMID: 26648928

80. Pandey PK, Kass PH, Soupir ML, Biswas S, Singh VP. Contamination of water resources by pathogenic bacteria. AMB Express. 2014; 4: 51. https://doi.org/10.1186/s13568-014-0051-x PMID: 25006540

81. Graves AK, Hagedorn C, Brooks A, Hagedorn RL, Martin E. Microbial source tracking in a rural watershed dominated by cattle. Water Res. 2007; 41: 3729–3739 https://doi.org/10.1016/j.watres.2007.04.020 PMID: 17582454

82. Eichhorn I, Heidemanns K, Semmier T, Kinnemann B, Mellmann A, Harmsen D, et al. Highly virulent non-O157 enterohemorrhagic *Escherichia coli* (EHEC) serotypes reflect similar phylogenetic lineages, providing new insights into the evolution of EHEC. Appl Environ Microbiol. 2015; 81: 7041–7047. https://doi.org/10.1128/AEM.01921-15 PMID: 26231647

83. Carter MQ, Tan ZF, Pham A, Carychao DK, Cooley MB. A clonal Shiga toxin-producing *Escherichia coli* O121:H19 population exhibits diverse carbon utilization patterns. Foodborne Path Dis. 2019; 16:6. https://doi.org/10.1089/fpd.2018.2567 PMID: 30848674