First observation of Cabibbo-suppressed Ξ_c^0 decays

R. Chistov,20 I. Adachi,12 H. Aihara,58 D. M. Asner,44 V. Aulchenko,3 T. Asheev,20 A. M. Bakich,67 A. Bala,45
V. Bhardwaj,36 B. Bhuyan,14 A. Bondar,3 G. Bonvicini,64 A. Bozek,40 M. Bračko,29,21 J. Brodzicka,40
T. E. Browder,11 V. Chekelian,39 A. Chen,39 P. Chen,39 B. G. Cheoun,10 K. Chilikin,20 I.-S. Cho,66 K. Cho,24
V. Chobanova,58 Y. Choi,51 D. Cinabro,64 M. Danilov,30,32 Z. Doležal,4 A. Drutskoy,20,32 D. Dutta,14 S. Eidelman,3
D. Epifanov,58 H. Farhat,64 J. E. Fast,44 M. Feindt,23 T. Ferber,68 A. Frey,9 V. Gaur,53 N. Gabyshev,3
S. Ganguly,44 R. Gillard64 Y. M. Goh,10 B. Golob,28,21 J. Haba,12 T. Hara,12 K. Hayasaka,35 H. Hayashii,36
Y. Horii,35 Y. Hoshi,56 W.-S. Hou,39 H. J. Hyun,26 T. Iijima,35,34 A. Ishikawa,57 R. Itoh,12 Y. Iwasaki,12
T. Julius,31 D. H. Kah,26 J. H. Kang,66 E. Kato,57 T. Kawasaki,42 H. Kichimi,12 C. Kiesling,30 D. Y. Kim,50
H. J. Kim,26 J. B. Kim,25 J. H. Kim,24 K. T. Kim,25 Y. J. Kim,24 K. Kinoshita,5 J. Klucar,21 B. R. Ko,25
P. Kodyš,4 S. Korpar,29,21 P. Križan,28,21 T. Kumita,60 A. Kuzmin,3 Y.-J. Kwon,66 J. S. Lange,7 S.-H. Lee,25
J. Li,49 Y. Li,63 J. Libby,15 C. Liu,48 Y. Liu,5 D. Liventsev,12 P. Lukin,3 D. Matvienko,3 K. Miyabayashi,36
H. Miyata,42 R. Mizuk,20,32 G. B. Mohanty,53 A. Moll,30,54 T. Mori,34 N. Muramatsu,47 R. Mussa,19 E. Nakano,43
M. Nakao,12 Z. Nattaniec,40 M. Nayak,15 E. Nedelkovska,30 C. Ng,58 S. Nishida,12 O. Nitoh,61 S. Ogawa,55
S. Okuno,22 S. L. Olsen,49 C. Oswald,2 G. Pakhlova,20 C. W. Park,51 H. Park,26 H. K. Park,26 R. Pestotnik,21
M. Petrič,21 L. E. Pilone,63 M. Ritter,30 M. Röhrken,23 A. Rostomyan,68 H. Sahoo,11 T. Saito,57 K. Sakai,12
Y. Sakai,12 S. Sandilya,53 D. Santel,5 L. Santelj,21 T. Sanuki,57 V. Savinov,46 O. Schneider,27 G. Schnell,1,13
C. Schwaarda,17 D. Semmler,7 K. Senyo,65 O. Seon,24 M. E. Sevior,31 M. Shapkin,18 C. P. Shen,34 T.-A. Shibata,59
J.-G. Shiu,39 B. Shwartz,3 A. Sibidanov,69 F. Simon,20,54 Y.-S. Sohn,66 A. Sokolov,18 E. Solovieva,20 M. Stercić,21
M. Stedjes,68 M. Sumihama,8 T. Sumiyoshi,60 U. Tampioni,19,62 K. Tanida,49 G. Tatischvili,44 Y. Teramoto,43
M. Uchida,59 T. Uglov,20,33 Y. Unno,10 S. Uno,12 P. Urquijo,2 Y. Usoy,3 S. E. Vahsen,11 C. Van Hulse,1
P. Vanhoefer,30 G. Varner,11 K. E. Varvell,67 A. Vinokurova,3 M. N. Wagner,7 C. H. Wang,38 M.-Z. Wang,39
P. Wang,16 X. L. Wang,63 Y. Watanabe,29 K. M. Williams,63 E. Won,28 B. D. Yabsley,67 J. Yamaoka,11
Y. Yamashita,41 S. Yashchenko,68 Y. Yook66 Y. Yusa,52 Z. P. Zhang,38 V. Zhilich,3 V. Zhulanov,3 and A. Zupanc33
(The Belle Collaboration)

1University of the Basque Country UPV/EHU, 48080 Bilbao
2University of Bonn, 53115 Bonn
3Budker Institute of Nuclear Physics SB RAS and Novosibirsk State University, Novosibirsk 630090
4Faculty of Mathematics and Physics, Charles University, 121 16 Prague
5University of Cincinnati, Cincinnati, Ohio 45221
6Deutsches Elektronen-Synchrotron, 22607 Hamburg
7Justus-Liebig-Universität Gießen, 35392 Gießen
8Gifu University, Gifu 501-1193
9II. Physikalisches Institut, Georg-August-Universität Göttingen, 37073 Göttingen
10Hanyang University, Seoul 133-791
11University of Hawaii, Honolulu, Hawaii 96822
12High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
13Ikerbasque, 48011 Bilbao
14Indian Institute of Technology Guwahati, Assam 781039
15Indian Institute of Technology Madras, Chennai 600036
16Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049
17Institute of High Energy Physics, Vienna 1050
18Institute for High Energy Physics, Protvino 142281
19INFN - Sezione di Torino, 10125 Torino
20Institute for Theoretical and Experimental Physics, Moscow 117218
21J. Stefan Institute, 1000 Ljubljana
22Kanagawa University, Yokohama 221-8686
23Institut für Experimentelle Kernphysik, Karlsruher Institut für Technologie, 76131 Karlsruhe
24Korea Institute of Science and Technology Information, Daejeon 305-806
25Korea University, Seoul 130-713
26Kyungpook National University, Daegu 702-701
27École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015
28Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana
29University of Maribor, 2000 Maribor
30Max-Planck-Institut für Physik, 80805 München
31School of Physics, University of Melbourne, Victoria 3010
While many Cabibbo-favored decays of Λ

\[\Lambda \rightarrow K^+ \pi^- \]

of many competing theoretical models and approaches remain suppressed (CS) decays of the Λ branchings remains poor. Some of the Cabibbo-suppressed decay Λ\[c\]→K\[+\]pi\[−\] has been observed, the accuracy of the measured branching fractions is systematic.

The analysis is performed using data collected with the Belle detector at the KEKB asymmetric-energy e\[+\]e\[−\] collider. The data sample consists of 711 fb\(^{-1}\) taken at the \(\Upsilon(4S)\) resonance. We report the first observation of the Cabibbo-suppressed decays Ξ\[0\]→Ξ\[−\]K\[+\]K\[−\] and Ξ\[0\]→Λϕ, using a data sample of 711 fb\(^{-1}\) collected at the \(\Upsilon(4S)\) resonance with the Belle detector at the KEKB asymmetric-energy e\[+\]e\[−\] collider. We measure the ratios of branching fractions to be

\[\frac{B(\Xi^0 \rightarrow \Xi^- K^+)}{B(\Xi^0 \rightarrow \Xi^- \pi^+)} = (2.75 \pm 0.51 \pm 0.25) \times 10^{-2}, \quad \frac{B(\Xi^0 \rightarrow \Lambda K^+ K^-)}{B(\Xi^0 \rightarrow \Xi^- \pi^+)} = (2.86 \pm 0.61 \pm 0.37) \times 10^{-2} \quad \text{and} \quad \frac{B(\Xi^0 \rightarrow \Lambda \phi)}{B(\Xi^0 \rightarrow \Xi^- \pi^+)} = (3.43 \pm 0.58 \pm 0.32) \times 10^{-2}, \]

where the first uncertainty is statistical and the second is systematic.

PACS numbers: 14.20.Lq, 13.30.Eg
FIG. 1: Diagrams for the $\Xi^0 \rightarrow \Xi^- K^+$ (upper two) and $\Xi^0 \rightarrow \Lambda \phi$ (lower two) decays.

The detector is described in detail elsewhere [4].

We select charged pions, kaons and protons (unless a track has been identified as a daughter of a Ξ^- or Λ hyperon) that originate from the region $dr < 0.5$ cm and $|dz| < 1$ cm, where dr and dz are the distances between the point of closest approach and the interaction point (IP) in the plane perpendicular to the beam axis (the r-ϕ plane) and along the beam direction (z), respectively. We apply identification (ID) requirements for the charged particles using likelihoods L_K, L_π and L_p for the kaon, pion and proton hypotheses, respectively, that are derived from information recorded by the TOF, ACC and CDC. Charged kaons are required to satisfy $L_K/(L_K + L_\pi) > 0.6$ and $L_K/(L_K + L_p) > 0.6$. Protons are required to satisfy $L_p/(L_\pi + L_p) > 0.6$ and $L_p/(L_\pi + L_p) > 0.6$. For both species, these criteria have an efficiency greater than 87% and a misidentification probability of less than 11%. We apply no ID requirements for pions.

In our Monte Carlo (MC) simulation, Ξ^0 baryons are produced in $e^+e^- \rightarrow c\bar{c}$ events using the PYTHIA [7] fragmentation package. Subsequent short-lived particle decays at the IP are generated by EvtGen [2]. The detailed detector response is simulated using GEANT [8].

The Λ hyperons are reconstructed in the decay mode $\Lambda \rightarrow p\pi^-$. (Unless stated otherwise, charge conjugation is implicitly assumed throughout the paper.) We fit the p and π^- tracks to a common vertex and require an invariant mass in a ± 3 MeV/c^2 ($\approx \pm 3\sigma$) interval around the nominal Λ mass. We then impose the following requirements on the Λ decay vertex: the vertex fit must be satisfactory; the difference in the z coordinates of the proton and pion at the decay vertex must satisfy $\Delta z < 1$ cm; the distance between the Λ decay vertex position and IP in the r-ϕ plane must be greater than 0.1 cm; the angle α_Λ between the Λ momentum vector and the vector joining the IP to the decay vertex must satisfy $\cos \alpha_\Lambda > 0.9$ for the case $\Xi^- \rightarrow \Lambda \phi$. (No $\cos \alpha_\Lambda$ requirement is applied for the $\Xi^- \rightarrow \Xi^- K^+$ candidates since, in this case, we select Λ's emerging from the Ξ^- decay vertex rather than the IP.)

The Ξ^- hyperons are reconstructed in the decay mode $\Xi^- \rightarrow \Lambda \pi^-$. We require a $\Lambda\pi^-$ invariant mass within a ± 6 MeV/c^2 ($\approx \pm 3\sigma$) interval around the nominal Ξ^- mass, fit the Λ and the π^- track to a common vertex and apply the following requirements: the vertex fit must be satisfactory; the distance between the Ξ^- decay vertex position and IP in the r-ϕ plane must be greater than 0.1 cm; the angle α_{Ξ^-} between the Ξ^- momentum vector and the vector joining the IP to the Ξ^- decay vertex must satisfy $\cos \alpha_{\Xi^-} > 0.9$. All criteria described above and the reconstruction method for the two long-lived hyperons have been verified and used in previous Belle papers on Λ, Ξ^- and Ω^- hyperons [2, 8, 11].
while charmed hadrons in $e^+e^- \to c\bar{c}$ are concentrated at high momenta. Therefore, the momentum p^* in the e^+e^- center-of-mass frame for the Ξ^0_c candidates is required to be greater than 3.0 GeV/c.

We reconstruct $\Xi^0_c \to \Xi^- K^+$ candidates by combining Ξ^- and K^+ candidates in the event. The resulting spectrum of the invariant mass $M(\Xi^- K^+)$ after all selection requirements is shown in Fig. 2 where a signal near 2470 MeV/c^2 is observed. In addition, a broad bump above the combinatorial background is evident at higher mass that is due to a reflection from $\Xi^0_c \to \Xi^- \pi^+$, in which the pion is misidentified as a kaon. We first check the origin of this reflection peak with data. With tight kaon ID requirements, the reflection bump completely vanishes; with looser ID requirements, the peak is more prominent. We check the shape and position of the reflection using signal MC events for the decay $\Xi^0_c \to \Xi^- \pi^+$. By reconstructing such events as $\Xi^- K^+$, we observe that the position and shape of this reflection match those of the data. We also check the invariant mass distribution for the wrong-sign $\Xi^- K^-$ combinations in data with the same selection requirements. We find no indications of peaking structures and observe a mass distribution that is featureless over a wide mass range centered around the mass of the Ξ^0_c (see Fig. 3).

![FIG. 2: Fitted $M(\Xi^- K^+)$ spectrum. The peak at 2470 MeV/c^2 corresponds to the $\Xi^0_c \to \Xi^- K^+$ signal. The broad structure from 2520 MeV/c^2 to 2700 MeV/c^2 corresponds to the $\Xi^0_c \to \Xi^- \pi^+$. The smooth curve is the fit result, described in the text.](image)

![FIG. 3: The wrong-sign $M(\Xi^- K^+)$ spectrum. There are no peaking structures around 2470 MeV/c^2.](image)

We also check the invariant mass distribution $M(\Xi^- K^-)$ spectrum. There are no peaking structures around 2470 MeV/c^2.

The solid curve in Fig. 2 is the result of the fit that includes the signal, the reflection and the combinatorial background. Here and elsewhere in this paper, we use a binned maximum likelihood fit. The signal is described by a double Gaussian with a common floating mean and widths fixed from signal MC events. We calibrate these widths by the data-to-MC ratios from the study of $\Xi^0_c \to \Xi^- \pi^+$ decay: we take σ_{core} and σ_{tail} from the fit to the $\Xi^0_c \to \Xi^- \pi^+$ signal on data and provide these by the corresponding σ’s from its signal MC events: $(\sigma_{\text{data}}/\sigma_{\text{mc}})^{\Xi^0_c \to \Xi^- \pi^+} = 6.00/5.48 = 1.09$, $(\sigma_{\text{data}}/\sigma_{\text{mc}})^{\Xi^0_c \to \Xi^- K^+} = 12.50/11.06 = 1.13$. Then we make a correction of σ_{core} and σ_{tail} taken from $\Xi^0_c \to \Xi^- K^+$ MC events and obtain the widths that we fix in the fit of the $\Xi^0_c \to \Xi^- K^+$ signal on data: $(\sigma_{\text{core}})^{\Xi^0_c \to \Xi^- K^+} = 1.09 \times 5.87 = 6.43$ MeV/c^2, $(\sigma_{\text{tail}})^{\Xi^0_c \to \Xi^- K^+} = 1.13 \times 12.72 = 14.35$ MeV/c^2. We also include the shape of the reflection from $\Xi^0_c \to \Xi^- \pi^+$ that is determined from MC-generated $\Xi^0_c \to \Xi^- \pi^+$ decays reconstructed as $\Xi^0_c \to \Xi^- K^+$. We find that the reflection can be parametrized by an asymmetric Gaussian with the right shoulder being larger than the left one. We fix the shape of the reflection and leave its normalization as a free parameter in the fit. The background is parametrized by a third-order polynomial function. The fit yields $N = 313.8 \pm 57.8$ events and $M = 2470.6 \pm 1.5$ MeV/c^2 for the $\Xi^0_c \to \Xi^- K^+$ signal. The obtained mass is in good agreement with the world average mass of $M(\Xi^0_c) = (2470.88^{+0.34}_{-0.50})$ MeV/c^2. The significance of the observed signal is 8.0σ. The signal significance reported here and elsewhere in this paper is determined from $2\ln(L_0/L_{\text{max}})$, where L_{max} is the maximum likelihood for the nominal fit and L_0 is the corresponding value with the signal yield fixed to zero. The extraction of the significance takes into account 2 additional degrees of freedom (mass and yield).

We generate signal MC events without any momentum requirement, so here and elsewhere in this paper all calculated efficiencies take into account the kinematic efficiency of the $p^* > 3.0$ GeV/c requirement. The measured total reconstruction efficiency for the $\Xi^0_c \to \Xi^- K^+$ mode is $(4.47 \pm 0.03)\%$; this includes the intermediate branching fraction $B(\Lambda \to p\pi^-)$ [4]. Using the results from the study of the normalization channel $\Xi^0_c \to \Xi^- \pi^+$ (the number of events and reconstruction efficiency, described below), we obtain the ratio $B(\Xi^0_c \to \Xi^- K^+)/B(\Xi^0_c \to \Xi^- \pi^+) = (2.75 \pm 0.51 \pm ...$
0.25) × 10^{-2}. The first and second errors are statistical and systematic, respectively.

In the search for \(\Xi^0 \rightarrow \Lambda \phi (\phi \rightarrow K^+ K^-) \) decay, in addition to the above-described selection criteria, we require that the mass of the \(\Lambda K^- \) pair be outside a \(\pm 0.5 \text{ MeV}/c^2 \) mass window around \(M(\Omega^-) = 1672.45 \text{ MeV}/c^2 \). This requirement removes the contribution from the well-known \(\Xi^0 \rightarrow \Omega^- K^+ (\Omega^- \rightarrow \Lambda K^-) \) decay [3]. The resulting spectrum of the three-body invariant mass \(M(\Lambda K^+ K^-) \) is shown in Fig. 4, where a signal near 2470 MeV/c^2 is observed. We fit the \(\Xi^0 \rightarrow \Lambda K^+ K^- \) signal to the data with a double Gaussian with the fixed widths from corresponding MC events (\(\sigma_{\text{core}} = 2.53 \text{ MeV}/c^2, \sigma_{\text{tail}} = 6.10 \text{ MeV}/c^2 \)). For the background, we use a third-order polynomial. The fit results in a mass of \(M = 2471.2 \pm 1.1 \text{ MeV}/c^2 \) and a yield of \(N = 511.0 \pm 109.5 \). This mass is in good agreement with the world average mass of the \(\Xi^0_c \). The significance of this signal is 6.4\(\sigma \).

To obtain the \(\Xi^0_c \rightarrow \Lambda \phi \) signal, we select \(\Lambda K^+ K^- \) combinations within the \(\pm 12 \text{ MeV}/c^2 \) mass window around \(M(\Xi^0_c) = 2470.9 \text{ MeV}/c^2 \) and investigate the distribution of \(M(\Lambda K^+ K^-) \) shown by the data points in Fig. 4. The superimposed histogram shows the \(\phi \) signal for the events taken from the \(\Xi^0_c \) sidebands, which are normalized to the area under the \(\Xi^0_c \) signal. The left \(\Xi^0_c \) sideband is defined by \(2403.2 \text{ MeV}/c^2 < M(\Lambda K^+ K^-) < 2451.2 \text{ MeV}/c^2 \), and the right one by \(2491.2 \text{ MeV}/c^2 < M(\Lambda K^+ K^-) < 2539.2 \text{ MeV}/c^2 \). A distinct excess of \(\phi \) mesons is observed in the \(\Xi^0_c \) signal region, establishing the observation of the two-body \(\Xi^0_c \rightarrow \Lambda \phi \) decay.

The \(\phi \) signal is described by a Breit-Wigner function convolved with the double Gaussian resolution function with the widths fixed from MC events (\(\sigma_{\text{core}} = 0.61 \text{ MeV}/c^2, \sigma_{\text{tail}} = 1.39 \text{ MeV}/c^2 \)). The natural width \(\Gamma_\phi \) is fixed to its nominal value of 4.26 MeV [4]. The threshold function multiplied by a third-order polynomial is used to model the combinatorial background together with a nonresonant contribution. The fit results in the following \(\phi \) yields: \(N_1 = 1533.1 \pm 47.9 \) events in the \(\Xi^0_c \) signal region and \(N_2 = 5006.8 \pm 88.8 \) events in the \(\Xi^0_c \) sidebands region. From this, the final net \(\phi \) yield in \(\Xi^0_c \rightarrow \Lambda K^+ K^- \) decays is \(N_\phi = (N_1 \pm \delta N_1)/(0.98 - (N_2 \pm \delta N_2) \times 0.249 = 315.8 \pm 53.7 \). The coefficient 0.98 takes into account the efficiency of the mass requirement of \(\pm 12 \text{ MeV}/c^2 \) around \(M(\Xi^0_c) \). The coefficient 0.249 is the ratio of areas under the \(\Xi^0_c \) signal and the sum of its sidebands. From the obtained \(\phi \) net yield and the probability value of the Gaussian distribution of the error, we extract a significance of 5.9\(\sigma \) for the \(\Xi^0_c \rightarrow \Lambda \phi \) signal. By varying the width of the \(\Xi^0_c \) sidebands and repeating the \(\phi \) yield extraction procedure, we obtain significances that are never less than 5.6\(\sigma \). We quote this latter value as our significance of the \(\Xi^0_c \rightarrow \Lambda \phi \) signal, including the systematic error. The total reconstruction efficiency, including the intermediate branching fractions of \(\Lambda \rightarrow p \pi^- \) and \(\phi \rightarrow K^+ K^- \) is extracted from signal MC events to be (3.60 \pm 0.02)%. We obtain

\[
\frac{N(\Xi^0_c \rightarrow \Lambda \phi)}{N(\Xi^0_c)} = (3.43 \pm 0.58 \pm 0.32) \times 10^{-2}.
\]

The first and second errors are statistical and systematic, respectively.

To obtain the ratio of branching fractions for the three-body \(\Xi^0_c \rightarrow \Lambda K^+ K^- \) channel, we estimate its signal efficiency as follows. Taking into account the correspondence between the obtained number of events for the three-body mode (511.0 \pm 109.5) and for the \(\Xi^0_c \rightarrow \Lambda \phi \) mode (315.8 \pm 53.7), we generate a sample of \(\Xi^0_c \) states that decay 40% of the time into the three-body phase space \(\Lambda K^+ K^- \) final state and 60% of the time into the \(\Lambda \phi \) final state. The total reconstruction efficiency, includ-
ing the intermediate branching fraction for $\Lambda \to p\pi^-$, is found to be $(7.01 \pm 0.04)\%$. We vary the portion of the resonant mode over a $\pm50\%$ range and repeat the efficiency extraction. The absolute value of the largest variation in the total reconstruction efficiency is found to be 0.15%, which is treated as a systematic error. Finally, we get $\frac{B(\Xi_c^0 \to \Lambda K^-)}{B(\Xi_c^0 \to p\pi^-)} = (2.86 \pm 0.61 \pm 0.37) \times 10^{-2}$, where the first and second errors are statistical and systematic, respectively. An additional source of systematic error due to the MC model of Ξ is included.

Currently, there are no absolute branching fraction measurements for Ξ_c^0, so we choose to normalize the results for Ξ_c^0 decays to the well-known decay mode $\Xi_c^0 \to \Xi^- \pi^+$. Using the same data sample, the selection criteria and the $p(\Xi_c^0)^+ > 3.0$ GeV/c requirement described above, we reconstruct $\Xi_c^0 \to \Xi^- \pi^+$ and obtain the $M(\Xi^- \pi^+)$ spectrum shown in Fig. 4. We fit this spectrum with a double Gaussian with a floating common mean and floating widths (to describe the signal) and a third-order polynomial function to account for the background. The signal yield is $N = 15324 \pm 262$. The Gaussian widths and common mean are extracted from the fit to be $\sigma_{\text{core}} = 6.0 \pm 0.3$ MeV/c2, $\sigma_{\text{tail}} = 12.5 \pm 0.8$ MeV/c2 and $M = 2471.4 \pm 0.1$ MeV/c2, respectively. The mass is in agreement with the world average value: $M(\Xi_c^0) = (2470.88^{+3.34}_{-0.80})$ MeV/c2. We generate signal MC events and reconstruct the generated events according to the procedure that is used in analyzing the data. The total reconstruction efficiency is determined to be $(6.00 \pm 0.03)\%$. This efficiency includes the intermediate branching fraction $B(\Lambda \to p\pi^-)$ [4]. Since the number of signal events for this mode is large, we do not fix the Gaussian resolution to obtain the final yield for $\Xi_c^0 \to \Xi^- \pi^+$.

We consider the following sources of systematic errors:

- The fit, K ID efficiency and MC statistics. The fit systematics are determined by varying the range of the fitted invariant mass distributions and by changing the polynomial order for the background function. Other sources of uncertainties, such as particle reconstruction efficiency and Λ reconstruction efficiency, cancel in the branching fraction ratio. For the $\Xi_c^0 \to \Lambda \phi$ and $\Xi_c^0 \to \Lambda K^+ K^-$ results, we consider possible interference between the non-ϕ $\Lambda K^+ K^-$ and resonant $\Lambda(\phi \to K^+ K^-)$ amplitudes. This effect is estimated to be 3.8%. Finally, the MC model of the $\Xi_c^0 \to \Lambda K^+ K^-$ mode introduces an additional uncertainty that we estimate to be 2%. As we do not have a calibration channel for the width correction in the $\Xi_c^0 \to \Lambda K^+ K^-$ mode, we add a 10% systematic error based on the calculated corrections in the $\Xi_c^0 \to \Xi^- \pi^+$ mode. Table I summarizes the systematic errors.

In conclusion, we have observed for the first time the Cabibbo-suppressed decays $\Xi_c^0 \to \Xi^- K^+$, $\Xi_c^0 \to \Lambda K^- K^-$ and $\Xi_c^0 \to \Lambda \phi$ with significances of 8.0σ, 6.4σ and 5.6σ, respectively. The ratios of the branching fractions $\frac{B(\Xi_c^0 \to \Xi^- K^+)}{B(\Xi_c^0 \to \Xi^- \pi^+)}$, $\frac{B(\Xi_c^0 \to \Lambda K^- K^-)}{B(\Xi_c^0 \to \Xi^- \pi^+)}$ and $\frac{B(\Xi_c^0 \to \Lambda \phi)}{B(\Xi_c^0 \to \Xi^- \pi^+)}$ are measured to be $(2.75 \pm 0.51 \pm 0.25) \times 10^{-2}$, $(2.86 \pm 0.61 \pm 0.37) \times 10^{-2}$ and $(3.43 \pm 0.58 \pm 0.32) \times 10^{-2}$, respectively.

The observed decay modes proceed through external and internal W-emission diagrams with an admixture of the W-exchange diagram. Our results can be used to study the corresponding decay dynamics and to investigate quantitatively the interplay between strong and weak interactions in charmed baryon weak decays. We confirm the previous observations [2, 3, 12] that the W-internal diagrams are not (color) suppressed as compared to the W-external diagrams in charm baryon weak decays.

We thank the KEKB group for the excellent operation of the accelerator; the KEK cryogenics group for the efficient operation of the solenoid; and the KEK computer group, the National Institute of Informatics, and the PNNL/EMSL computing group for valuable computing and SINET4 network support. We acknowledge support from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan, the Japan Society for the Promotion of Science (JSPS), and the Tau-Lepton Physics Research Center of Nagoya University; the Australian Research Council and the Australian Department of Industry, Innovation, Science and Research; the National Natural Science Foundation of China under Contracts No. 10575109, No. 10775142, No. 10875115 and No. 10825524; the Ministry of Education, Youth and Sports of the Czech Republic under Contracts No. LA10033 and MSM0021620859; the Department of Science and Technology of India; the Instituto Nazionale di Fisica Nucleare of Italy; the BK21 and WCU program of the Ministry Education Science and Technology, National Research Foundation of Korea, and GSDC of the Korea Institute of Science and Technology Information; the Polish Ministry of Science
and Higher Education; the Ministry of Education and Science of the Russian Federation and the Russian Federal Agency for Atomic Energy; the Slovenian Research Agency; the Swiss National Science Foundation; the National Science Council and the Ministry of Education of Taiwan; and the U.S. Department of Energy and the National Science Foundation. This work is supported by a Grant-in-Aid from MEXT for Science Research in a Priority Area (“New Development of Flavor Physics”), and from JSPS for Creative Scientific Research (“Evolution of Tau-lepton Physics”).

[1] J. Korner and M. Kramer, Z. Phys. C 55, 659 (1992); K. K. Sharma and R. C. Verma, Phys. Rev. D 55, 7067 (1997).
[2] K. Abe et al. (Belle Collaboration), Phys. Lett. B 524, 33 (2002).
[3] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 75, 052002 (2007).
[4] J. Beringer et al. (Particle Data Group), Phys. Rev. D 86, 010001 (2012).
[5] S. Kurokawa and E. Kikutani, Nucl. Instrum. Methods Phys. Res., Sect. A, 499, 1 (2003), and other papers included in this volume; T. Abe et al., Prog. Theor. Exp. Phys. 03A001 (2013), and following articles up to 03A011.
[6] A. Abashian et al. (Belle Collaboration), Nucl. Instrum. Methods Phys. Res. Sect. A 479, 117 (2002); also see detector section in J. Brodzicka et al., Prog. Theor. Exp. Phys. 04D001 (2012).
[7] D. Lange, Nucl. Instrum. Methods. Phys. Res., Sect. A 462, 152 (2001); T. Sjøstrand et al., Comput. Phys. Commun. 135, 238 (2001).
[8] R. Brun et al., GEANT 3.21, CERN Report No. DD/EE/84-1, 1984.
[9] R. Chistov et al. (Belle Collaboration), Phys. Rev. D 74, 111105 (2006).
[10] T. Lesiak et al. (Belle Collaboration), Phys. Lett. B 605, 237 (2005); Phys. Lett. B 617, 198(E) (2005).
[11] E. Solovieva et al. (Belle Collaboration), Phys. Lett. B 672, 1 (2009).
[12] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 95, 142003 (2005).
TABLE I: Summary of systematic errors in the ratios of $\frac{B(\Xi^0_c \to \Xi^- K^+)}{B(\Xi^0_c \to \Xi^- \pi^+)}$, $\frac{B(\Xi^0_c \to \Lambda K^+ K^-)}{B(\Xi^0_c \to \Xi^- \pi^+)}$, and $\frac{B(\Xi^0_c \to \Lambda \phi)}{B(\Xi^0_c \to \Xi^- \pi^+)}$.

Source	Value, % $\Xi^- K^+$	Value, % $\Lambda \phi$	Value, % $\Lambda K^+ K^-$
Kaon ID	1	2	2
Fit model	9	8	7
Interference	...	3.8	3.8
MC statistics	0.5	0.5	0.5
MC model	2
MC width	10
Total	9.1	9.1	13.1