Introduction

Honey is a well-known natural product that has been used since the ancient times as an alternative medicine as well as natural sweetener. The compositions of honey are mainly water and sugar (monosaccharides, disaccharides, oligosaccharides and polysaccharides) [1]. Honey also contains bioactive constituents such as amino acids, ascorbic acid, organic acids, proteins, trace elements, vitamins and Maillard reaction products [1-3]. The compositions varies due to the botanical origin of the honey [1].

Honey is widely known as antioxidant for containing high phenolics and flavonoids content, antibacterial agent for having low pH and enzymatic glucose oxidation reaction, anti-inflammatory agent for containing phenolics and slow absorption of honey leads to the formation of short-chain fatty acid fermentation agents. It is used to treat various conditions including infertility, respiratory and gastrointestinal symptoms.

This review aims to gather the properties of five honeys; acacia honey, gelam honey, pineapple honey, kelulut honey, and tualang honey and the associated diseases studied.
Table 1: Acacia honey properties, associated diseased studies and the respective study model used

Honey property	Disease associated	Study model	Reference
Antimicrobial*	Microbial infection	-	[4,5]
Wound healing	Corneal ulcer/abrasion	Cultured corneal fibroblasts; epithelial cells & kerocytes	[6-8]
Health being	Weight gain & cholesterol level	Sprague-dawley rats	[9]

*antimicrobial = antibacterial + antifungal

Table 2: Gelam honey properties, associated diseased studies and the respective study model used

Honey property	Disease associated	Study model	Reference
Anticancer*	Colon cancer; liver cancer; colorectal cancer	HT29 cell line; HepG2 cell line; HCT116 cell line; MCF-7 cell line; A549 cell line	[10-16]
Anti-inflammatory	Inflammatory diseases; organ failure; infection; periodontitis; cancer	Sprague-dawley rats; Balb/c mice; New Zealand white rabbits; murine macrophage cell line RAW 264.7; HT29 cell line	[10, 17-20]
Antimicrobial*	Infection	Sprague-dawley rats	[4,5]
Antioxidant	Diabetes; hyperglycemia; oxidative stress/damage;	human diploid fibroblast; Sprague-dawley rats; HIT-T15 cells	[21, 23-28]
Radioprotectant	Oxidative damage	human diploid fibroblast	[16, 29]
Wound healing	Burn wound healing, diabetic wound healing, skin wound healing	Sprague-dawley rats; corneal keratocytes (New Zealand white rabbit)	[29-32]
Health being	Weight gain & cholesterol level; fertility	Sprague-dawley rats	[9, 33, 34]

*anticancer = anti-proliferative, anti-tumor, chemopreventive, pro-apoptosis
*antimicrobial = antibacterial + antifungal

Table 3: Pineapple honey properties, associated diseased studies and the respective study model used

Honey property	Disease associated	Study model	Reference
Anti-cancer*	Colon cancer	HT-29	[15]
Antimicrobial*	Infection	-	[5, 35]
Antioxidant	Oxidative stress/damage	Human;	[36]

*anticancer = anti-proliferative, anti-tumor, chemopreventive, pro-apoptosis
*antimicrobial = antibacterial + antifungal

Table 4: Kelulut honey properties, associated diseased studies and the respective study model used

Honey property	Disease associated	Study model	Reference
Anti-cancer*	Colorectal cancer	Sprague-dawley rats	[37]
Antimicrobial*	Infection	-	[38-40]
Anti-ulcer	Gastric ulcer	Sprague-dawley rats	[41]
Health being	Sperm and testicular damage due to diabetes	Sprague-dawley rats	[42]

*anticancer = anti-proliferative, anti-tumor, chemopreventive, pro-apoptosis
*antimicrobial = antibacterial + antifungal

Table 5: TuLang honey properties, associated diseased studies and the respective study model used

Honey property	Disease associated	Study model	Reference
Adjuvant	Breast cancer; diabetes	Human MCF-7 cell line; MDA-MB-231 cell line, Sprague-dawley rats	[43-45]
Anticancer*	Breast cancer; cervical cancer; keloid	MCF-7 and MDA-MB-231; HeLa, Sprague-dawley rats; oral squamous cell carcinomas (OSCC) & human osteosarcoma (HOS) cell line; primary normal human dermal fibroblasts (pNHDF) & primary keloid human dermal fibroblasts (pKHDF)	[46-50]
Anti-inflammatory	Eye alkali injury; intestinal anastomosis wound healing	New Zealand white rabbits; Sprague-dawley rats	[51-53]
Antimicrobial*	Burn wound healing	Human; Sprague-dawley rats; Wistar rats; Sprague-dawley rats	[39, 46, 54-57]
Antinociceptive	Pain; post-tonsillectomy pain	Human; Sprague-dawley rats	[58,59]
Antioxidant	Corneal stem cell; diabetes; Oxidative damage; environmental toxicants towards health of ovary; hypertension; menopause/ neurodegenerative diseases; neurodegenerative diseases;	Human corneal epithelial progenitor (HCEP) cells; Sprague-dawley rats; spontaneously hypertensive (SHR) & Wistar-Kyoto (WKY) rats	[45, 51, 60-67]
Cardioprotective	Myocardial infarction	-	[68]
Cognitive function	Wistar albino rats	Human; Sprague-dawley rats	[69-71]
Wound healing	Tonsillectomy wound healing; intestinal anastomosis wound healing	Human; Wistar rats; Sprague-dawley rats	[52, 53, 55-57, 72, 73]
Health being	Fertility (spermiogenesis); menopause	Sprague-dawley rats	[74-78]
Photochemopreventive	Photocarcinogenesis	PAM212 mouse keratinocyte cell line	[79]

*anticancer = anti-proliferative, anti-tumor, chemopreventive, pro-apoptosis
*antimicrobial = antibacterial + antifungal
Discussions

The most commonly studied property is the anticancer activity of honey though its anti-proliferative, anti-tumor, chemopreventive and pro-apoptosis properties. Honey induces apoptosis in most types of cancer cells through depolarizing the mitochondrial membrane. It increases caspase 3 activation and poly(ADP-ribose) polymerase (PARP) cleavage, modulates the expression of pro- and anti-apoptotic proteins, induces the expression of p53, caspase 3, and proapoptotic protein Bax and down-regulates the expression of anti-apoptotic protein Bcl2.

As for the anti-inflammatory activity of honey, it has been proven that honey reduces the release of nitrous oxide, cytokines (TNF-α, IL-1β, IL-2, IL-6, and PGE2) and histamines which reduces inflammation and as well as pain. Antinociceptive property of honey is due to its ability to reduce plasma prostaglandins such as thromboxane B2, PGE2 and PGE2α. The low water content and low pH (acidic) of honey due to the formation of gluconic acid results to an environment that is not favourable for bacteria to grow thus contributing to its antibacterial property apart from having high viscosity that limits the solubility of oxygen and substances. Apart from that, the enzymatic glucose oxidation reaction also contributes to the antimicrobial property of honey alongside with phenolics and flavonoids. Phenolics and flavonoids also are responsible for not only the antioxidant properties of honey but also the anti-inflammatory activity of honey.

The ability for honey to increase weight is unclear though some reported that the weight differences are not significant. It was suggested that it was due to the androgenic properties, since androgens exhibit anabolic activity apart from having high viscosity. However, the exact mechanism for reducing infertility by increasing sperm count was also unclear. It was hypothesised that antioxidant properties of honey plays an important role for spermatogenesis.

Conclusion

It has been known that honey has various properties and has been used as alternative medicine for centuries. The properties of honey explored include anti-cancer, antimicrobial, antibacterial, antioxidant and antiinflammatory. Surprisingly, honey is also studied for its antinociceptive property and as adjuvant. Although some of the studies are still at preliminary stage, the significant differences showed that honey alters the mechanisms towards disease pathogenesis. This suggested that honey might also involved in modulating signalling molecules that involved in healing and disease prevention and treatment. More studies should be carried out to elucidate the actual compounds and mechanisms that give such results.

Conflict of interest: Authors declare that there is no conflict of interest.

References

1. Bogdanow, S., Jurendic, T., Sieber, R., et al. Honey for nutrition and health: A review. (2008) J Am Coll Nutr 27(6): 677-689. PubMed | CrossRef | Others
2. Gheldof, N., Wang, X-H., Engeseth, N.J. Identification and quantification of antioxidant components of honeys from various floral sources. (2002) J Agric Food Chem 50(21): 5870-5877. PubMed | CrossRef | Others
3. Machado De-Melo, A.A., de Almeida-Muradian, L.B., Sancho, M.T., et al. Composition and properties of Apis mellifera honey: A review. (2018) J Apic Res 57(1): 5-37. PubMed | CrossRef | Others
4. Sayadi, S.A., Mohd Zohdi, R., Ramasamy, K., et al. Antimicrobial activity of Malaysian honeys on selected bacterial in gut flora. (2012) IEEE Symposium on Business, Engineering and Industrial Applications. PubMed | CrossRef | Others
5. Zainol, M.I., Mohd Yusof, K., Mohd Yusof, M.Y. Antibacterial activity of selected Malaysian honey. (2013) BMC Complement Altern Med 13:129. PubMed | CrossRef | Others
6. Abd Ghafar, N., Ker-Woon, C., Hui, C.K., et al. Acacia honey accelerates in vitro corneal ulcer wound healing model. (2016) BMC Complement Altern Med 16: 259-270. PubMed | CrossRef | Others
7. Ker-Woon, C., Abd Ghafar, N., Hui, C.K., et al. The effects of acacia honey on in vitro corneal abrasion wound healing model. (2015) BMC Cell Biol 16:2. PubMed | CrossRef | Others
8. Ker-Woon, C., Abd Ghafar, N., Hui, C.K., et al. Effect of Acacia honey on cultured rabbit corneal keratocytes. (2014) BMC Cell Biol 15:19. PubMed | CrossRef | Others
9. Samat, S., Nor, N.A., Nor Hussein, F., et al. Effects of Gelam and Acacia honey acute administration on some biochemical parameters of Sprague Dawley rats. (2014) BMC Complement Altern Med 14:146. PubMed | CrossRef | Others
10. Tahir, A.A., Sani, N.F., Murad, N.A., et al. Combined ginger extract & Gelam honey modulate Ras/ERK and PI3K/AKT pathway genes in colon cancer HT29 cells. (2015) Nutr J 14: 31. PubMed | CrossRef | Others
11. Mohd Nazri, A., Muhammad Ashraf Mohd, S., Eshak, Z., et al. Anti-proliferative effect of Tinaspora crispa (L.) Hook. F. & Thompson and Gelam (Melaleuca sp.) honey on several cancer cell lines. (2011) IEEE Symposium on Business, Engineering and Industrial Applications (ISBEIA). PubMed | CrossRef | Others
12. Jubri, Z., Narayanan, N.N.N., Karim, N.A., et al. Antiproliferative activity and apoptosis induction by Gelam honey on liver cancer cell line. (2012) Int J Applied Sci Technol 2: 135-141. PubMed | CrossRef | Others
13. Hakim, L., Alias, E., Makpol, S., et al. Gelam honey and ginger potentiate the anti cancer effect of 5-FU against HCT 116 colorectal cancer cells. (2014) Asian Pac J Cancer Prev 15(11): 4651-4657. PubMed | CrossRef | Others
14. Wee, L.H., Morad, N.A., Aan, G.J., et al. Mechanism of chemoprevention against colon cancer cells using combined Gelam hon-
ey and ginger extract via mTOR and Wnt/beta-catenin pathways. (2015) Asian Pac J Cancer Prev 16(15): 6549-6556. PubMed | CrossRef | Others
15. Wen, C.T., Hussein, S.Z., Abdullah, S., et al. Gelam and Nenas honeys inhibit proliferation of HT29 colon cancer cells by inducing DNA damage and apoptosis while suppressing inflammation. (2012) Asian Pac J Cancer Prev 13(4): 1605-1610. PubMed | CrossRef | Others
16. Ahmad, T.A., Jubri, Z., Rajab, N.F., et al. Gelam honey protects against gamma-irradiation damage to antioxidant enzymes in human diploid fibroblasts. (2013) Molecules 18(2): 2200-2211. PubMed | CrossRef | Others
17. Hussein, S.Z., Mohd Yusoff, K., Makpol, S., et al. Gelam honey attenuates carrageenan-induced rat paw inflammation via NF-kappaB pathway. (2013) PLoS One 8(8): e72365. PubMed | CrossRef | Others
18. Kassim, M., Achoui, M., Mansor, M., et al. The inhibitory effects of Gelam honey and its extracts on nitric oxide and prostaglandin E(2) in inflammatory tissues. (2010) Fitoterapia 81(8): 1196-1201. PubMed | CrossRef | Others
19. Mustaffa, K., Mansor, M., Al-Abd, N., et al. Gelam honey has a protective effect against lipopolysaccharide-induced endotoxemia in rats through the induction of heme oxygenase-1 and the inhibition of cytokines, nitric oxide, and high-mobility group protein B1. (2012) Fitoterapia 83(6): 1054-1059. PubMed | CrossRef | Others
20. Kassim, M., Yusoff, K.M., Ong, G., et al. Gelam honey inhibits lipopolysaccharide-induced endotoxemia in rats through the induction of heme oxygenase-1 and the inhibition of cytokines, nitric oxide, and high-mobility group protein B1. (2012) Fitoterapia 83(6): 1054-1059. PubMed | CrossRef | Others
21. Kassim, M., Mansor, M., Subhaimi, A., et al. Gelam honey scavenges peroxynitrite during the immune response. (2012) Int J Mol Sci 13(9): 12113-12129. PubMed | CrossRef | Others
22. Hussein, S.Z., Mohd Yusoff, K., Makpol, S., et al. Gelam honey inhibits the production of proinflammatory mediators NO, PGF2α, TNF-α IL-6 in carrageenan-induced acute paw edema in rats. (2012) Evid Based Complement Alternat Med 2012: 109636. PubMed | CrossRef | Others
23. Tengku Ahmad, T.A., Jaafar, F., Jubri, Z., et al. Gelam honey attenuated radiation-induced cell death in human diploid fibroblasts by promoting cell cycle progression and inhibiting apoptosis. (2014) BMC Complement Altern Med 14: 108. PubMed | CrossRef | Others
24. Sani, N.F., Belani, L.K., Sin, C.P., et al. Effect of the combination of Gelam honey and ginger on oxidative stress and metabolic profile in streptozotocin-induced diabetic Sprague-Dawley rats. (2014) Biomed Res Int 2014: 160695. PubMed | CrossRef | Others
25. Batumalaie, K., Qvist, R., Yusof, K.M., et al. The antioxidant effect of the Malaysian Gelam honey on pancreatic hamster cells cultured under hyperglycemic conditions. (2014) Clin Exp Med 14(2): 185-95. PubMed | CrossRef | Others
26. Batumalaie, K., Zaman Safi, S., Mohd Yusof, K., et al. Effect of Gelam honey on the oxidative stress-induced signaling pathways in pancreatic hamster cells. (2013) Int J Endocrinol 2013: 367312. PubMed | CrossRef | Others
27. Yao, L.K., Razak, S.L.A., Ismail, N., et al. Malaysian Gelam honey reduces oxidative damage and modulates antioxidant enzyme activities in young and middle aged rats. (2011) J Med Plant Res 5(23): 5618-5625. PubMed | CrossRef | Others
28. Sahhugi, Z., Hasan, S.M., Jubri, Z. Protective effects of Gelam honey against oxidative damage in young and aged rats. (2014) Oxid Med Cell Longev 2014: 673628. PubMed | CrossRef | Others
29. Mohd Zohdi, R., Abu Bakar Zakaria, Z., Yusof, N., et al. Gelam (Melaleuca spp.) honey-based hydrogel as burn wound dressing. (2012) Evid-Based Complement Altern Med 2012: 843025. PubMed | CrossRef | Others
30. Yusof, A.M., Abd Ghafar, N., Kamarudin, T.A., et al. Gelam honey potentiates ex vivo corneal keratocytes proliferation with desirable phenotype expression. (2016) BMC Complement Altern Med 16: 76. PubMed | CrossRef | Others
31. Zohdi, R.M., Mukhtar, S.M., Said, S., et al. A comparative study of the wound healing properties of Gelam honey and silver sulfadiazine in diabetic rats. (2014) IEEE Conference on Biomedical Engineering and Sciences (IECBES). PubMed | CrossRef | Others
32. Tan, M.K., Hasan Adli, D.S., Tumiran, M.A., et al. The efficacy of Gelam honey dressing towards excisional wound healing. (2012) Evid Based Complement Alternat Med 2012: 805932. PubMed | CrossRef | Others
33. Asiyah, H.A., Syazana, N.S., Hashida, N.H., et al. Effects of nicotine and Gelam honey on testis parameters and sperm qualities of juvenile rats. (2011) Scientific Research Essays 6(26): 5471-5474. PubMed | CrossRef | Others
34. Syazana, N.S, Hashida, N.H., Majid, A.M, et al. Effects of Gelam honey on sperm quality and testis of rat. (2011) Sains Malaysiana 40:1243-1246. PubMed | CrossRef | Others
35. Abdul-Ghani, A.S., Dabdoub, N., Muhammad, R., et al. Effect of Palestinian honey on spermatoogenesis in rats. (2008) J Med Food 11(4): 799-802. PubMed | CrossRef | Others
36. Goon, J., Choor, C., Ainaa, R., et al. Effect of Nenas honey supplementation on the oxidative status of undergraduate students. (2014) Acta Alimentaria 43(1): 182-190. PubMed | CrossRef | Others
37. Saiful Yazan, L., Muhamad Zali, M.F., Mohd Ali, R., et al. Chemopreventive properties and toxicity of Kelulut honey in Sprague Dawley rats induced with azoxymethane. (2016) BioMed Res Int 2016: 4036926. PubMed | CrossRef | Others
38. Wen-Jie, Ng., Ping- Ying, L., Yek- Jia, C., et al. Synergistic effect of Trigona honey and ampicillin on Staphylococcus aureus isolated from infected wound. (2017) Int J Pharmaco 13(4): 403-407. PubMed | CrossRef | Others
39. Ibrahim, N., Zakaria, A.J., Ismail, Z., et al. Antibacterial and phenolic content of propolis produced by two Malaysian stingless bees, Heterotrigona itama and Geniotrigona thoracica. (2016) Int J Pharmacoognosy Phytochem Res 8(1): 156-161. PubMed | CrossRef | Others
40. Zainol, M.I., Mohd Yusoff, K., Mohd Yusof, M.Y. Antibacterial activity of selected Malaysian honey. (2013) BMC Complement Altern Med 13: 129.
Honey as versatile remedy

Abdul Karim, N., et al.

41. Yazan, S., Latifah and Zainal, Nurul Amira and Mohd Ali, et al. Antiulcer properties of Kelulut honey against ethanol-induced gastric ulcer. (2018) Pertanika J Sci Technol 26(1): 121-132.

42. Budin, S.B., Jubaedi, F.F., Mohd Noor Azam, S.N.F., et al. Kelulut honey supplementation prevents sperm and testicular oxidative damage in streptozotocin-induced diabetic rats. (2017) Diagnostic Appl Health Sci 79: 89-95.

43. Yaaacob, N.S., Nengsih, A., Norazmi, M.N. Tualang honey promotes apoptotic cell death induced by tamoxifen in breast cancer cell lines. (2013) Evid Based Complement Alternat Med 2013: 989841.

44. Erejuwa, O.O., Sulaiman, S.A., Wahab, M.S., et al. Glibenclamide or metformin with honey improves glycemic control in streptozotocin-induced diabetic rats. (2011) Int J Biol Sci 7(2): 244-252.

45. Erejuwa, O.O., Sulaiman, S.A., Wahab, M.S., et al. Antioxidant protective effect of glibenclamide and metformin in combination with honey in pancreas of streptozotocin-induced diabetic rats. (2010) Int J Mol Sci 11(5): 2056-2066.

46. Fauzi A.N., Norazmi M.N., Yaacob N.S. Tualang honey induces apoptosis and disrupts the mitochondrial membrane potential of human breast and cervical cancer cell lines. (2011) Food Chem Toxicol 49(4): 871-878.

47. Ahmed, S., Othman, N.H. The anti-cancer effects of Tualang honey in modulating breast carcinogenesis: An experimental animal study. (2017) BMC Complement Altern Med 17(1): 208-219.

48. Man, N.M., Hassan, R., Ang, C.Y., et al. Antileukemic effect of Tualang honey on acute and chronic leukemia cell lines. (2015) Biomed Res Int 2015: 307094.

49. Kadir, E.A., Sulaiman, S.A., Yahya, N.K., et al. Inhibitory effects of Tualang honey on experimental breast cancer in rats: A preliminary study. (2013) Asian Pac J Cancer Prev 14(4): 2249-2254.

50. Ghaamsh, A.A., Othman, N.H., Khatkak, M.N., et al. Antiproliferative effect of Tualang honey on oral squamous cell carcinoma and osteosarcoma cell lines. (2010) BMC Complement Altern Med 10: 94.

51. Bashkaran, K., Zunainai, E., Bakiah, S., et al. Anti-inflammatory and antioxidant effects of tualang honey in alkali injury on the eyes of rabbits: Experimental animal study. (2011) BMC Complement Altern Med 11: 90.

52. Azman, M.I., Khan, O.H., Unar, A.O., et al. Effect of Tualang honey on the anastomotic wound healing in large bowel anastomosis in rats—a randomized controlled trial. (2016) BMC Complement Altern Med 16: 28.

53. Zaharil, M.S.A., Sulaiman, W.A.W., Halim, A.S., et al. The efficacy of Tualang honey in comparison to silver in dressing wounds in rats. (2011) J ApiProduct ApiMedical Sci 3(1): 45-53.

54. Yaghoobi, N., Al-Waili, N., Ghayour-Mobarhan, M., et al. Natural honey and cardiovascular risk factors; effects on blood glucose, cholesterol, triacylglycerole, CRP, and body weight compared with sucrose. (2008) Scientific World J 8: 463-469.

55. Nasir, N.A., Halim, A.S., Singh, K.K., et al. Antibacterial properties of tualang honey and its effect in burn wound management: A comparative study. (2010) BMC Complement Altern Med 10: 31.

56. Khoo, Y.T., Halim, A.S., Singh, K.K. Evaluations of bacterial contaminated full thickness burn wound healing in Sprague-Dawley rats treated with Tualang honey. (2011) Indian J Plast Surg 44(1):112-117.

57. Sukur, S.M., Halim, A.S., Singh, K.K. Evaluations of bacterial contaminated full thickness burn wound healing in Sprague-Dawley rats treated with Tualang honey. (2011) Indian J Plast Surg 44(1):112-117.

58. Aziz, C.B., Ismail, C.A., Hussin, C.M., et al. The antinociceptive effects of Tualang honey in male Sprague-Dawley rats: A preliminary study. (2014) J Tradit Complement Med 4(4): 298-302.

59. Abdullah, B., Lazim, N.M., Salim, R. The effectiveness of Tualang honey in reducing post-tonsillectomy pain. (2015) Kulak Burun Bogaz Ihtis Derg 25(3): 137-143.

60. Tan, J.J., Azmi, S.M., Yong, Y.K., et al. Tualang honey improves human corneal epithelial progenitor cell migration and cellular resistance to oxidative stress in vitro. (2014) PLoS One 9(5): e96800.

61. Erejuwa, O.O., Gurtu, S., Sulaiman, S.A., et al. Hypoglycemic and antioxidant effects of honey supplementation in streptozotocin-induced diabetic rats. (2010) Int J Vitam Nutr Res 80(1): 74-82.

62. Erejuwa, O.O., Sulaiman, S.A., Wahab, M.S., et al. Antioxidant protection of malaysian tualang honey in pancreas of normal and streptozotocin-induced diabetic rats. (2010) Ann Endocrinol (Paris) 71(4): 291-296.

63. Zaid, S.S., Othman, S., Kassim, N.M. Potential protective effect of Tualang honey on BPA-induced ovarian toxicity in prepubertal rat. (2014) BMC Complement Altern Med 14: 509.

64. Erejuwa, O.O., Sulaiman, S.A., Ab Wahab, M.S., et al. Honey supplementation in spontaneously hypertensive rats elicits antihypertensive effect via amelioration of renal oxidative stress. (2012) Oxid Med Cell Longev 2012: 374037.

65. Shafin, N., Othman, Z., Zakaria, R., et al. Tualang honey supplementation reduces blood oxidative stress levels/activities in post-menopausal women. (2014) ISRN Oxidative Med 2014: 4.

66. Mohd Sairazi, N.S., Asari, M.A., Mummedy, S., et al. Effect of Tualang honey against KA-induced oxidative stress and neurodegeneration in the cortex of rats. (2017) BMC Complement Altern Med 17: 31.
67. Mohamed, M., Sulaiman, S.A., Jaafar, H., et al. Antioxidant protective effect of honey in cigarette smoke-induced testicular damage in rats. (2011) Int J Mol Sci 12(9): 5508-5521.

68. Khalil, M.I., Tanvir, E.M., Afroz, R., et al. Cardioprotective effects of Tualang honey: Amelioration of cholesterol and cardiac enzymes levels. (2015) Biomed Res Int 2015: 286051.

69. Azman, K.F., Zakaria, R., Abd Aziz, C., et al. Tualang honey improves memory performance and decreases depressive-like behavior in rats exposed to loud noise stress. (2015) Noise Health 17(75): 83-89.

70. Othman, Z., Shafin, N., Zakaria, R., et al. Improvement in immediate memory after 16 weeks of Tualang honey (agro mas) supplement in healthy postmenopausal women. (2011) Menopause 18(11): 1219-1224.

71. Al-Rahbi, B., Zakaria, R., Othman, Z., et al. Tualang honey supplement improves memory performance and hippocampal morphology in stressed ovariectomized rats. (2014) Acta Histochem 116(1): 79-88.

72. Mat Lazim, N., Abdullah, B., Salim, R. The effect of Tualang honey in enhancing post tonsillectomy healing process. An open labelled prospective clinical trial. (2013) Int J Pediatr Otorhinolaryngol 77(4): 457-461.

73. Imran, F.H., Dorai, A.A., Halim, A.S., et al. Tualang honey hydrogel in the treatment of split-skirt graft donor sites. (2011) J ApiProduct ApiMedical Sci 3(1): 33-37.

74. Mohamed, M., Sulaiman, S.A., Jaafar, H., et al. Effect of different doses of Malaysian honey on reproductive parameters in adult male rats. (2012) Andrologia 44(Suppl 1): 182-186.

75. Noorhafiza, R., Majid, A.M., Hashida, N.H. Testosterone level and androstenedione content of different floral origin honeys. (2009) J ApiProduct ApiMedical Sci 1(2): 43-50.

76. Zaid, S.S., Sulaiman, S.A., Sirajudeen, K.N., et al. The effects of Tualang honey on female reproductive organs, tibia bone and hormonal profile in ovariectomised rats--animal model for menopause. (2010) BMC Complement Altern Med 10: 82.

77. Nik Hazlina, N.H., Sulaiman, A.S., Hassan, I.I., et al. Randomized controlled trial on the effects of Tualang honey and hormonal replacement therapy (HRT) on cardiovascular risk factors, hormonal profiles and bone density among postmenopausal women: A pilot study. (2012) J Food Res 1(2): 171-189.

78. Zaid, S.S., Sulaiman, S.A., Othman, N.H., et al. Protective effects of Tualang honey on bone structure in experimental postmenopausal rats. (2012) Clinics (Sao Paulo) 67(7): 779-784.

79. Ahmad, I., Jimenez H., Yaacob N.S., et al. Tualang honey protects keratinocytes from ultraviolet radiation-induced inflammation and DNA damage. (2012) Photochem Photobiol 88(5): 1198-1204.