Effect of boron nutrition on American ginseng in field and in nutrient cultures

John T.A. Proctor*, Barry J. Shelp

Department of Plant Agriculture, University of Guelph, Guelph, Ontario, Canada

Abstract

Field and nutrient cultures of American ginseng (Panax quinquefolius L.) were used to establish foliar symptoms related to boron (B) concentration in leaves and soils, and to evaluate radish as a time-saving model system for B nutrition. Application of excess B, 8 kg/ha versus the recommended 1.5 kg/ha, to field plantings of 2-, 3-, and 4-yr-old American ginseng plants just prior to crop emergence caused, within 4 wk after crop emergence, leaf symptoms of chlorosis followed by necrosis starting at the tips and progressing along the margins. The B concentration in leaves of 2–4-yr-old plants receiving 1.5 kg/ha B was 30 μg/g dry mass compared to 460 μg/g dry mass where 8 kg/ha B was applied. Similarly, B concentration in soils receiving the lower B concentration was 1.8 μg/g dry mass and 2.2–2.8 μg/g dry mass where the higher B concentration was applied. Application of 8 kg/ha B reduced the dry yield of 3rd-yr roots by 20% from 2745 kg/ha to 2196 kg/ha and 4th-yr roots by 26% from 4130 kg/ha to 3071 kg/ha. Ginseng seedlings and radish were grown under greenhouse conditions in nutrient culture with four B concentrations ranging from 0.5 mg/L to 10 mg/L. At 5 mg/L and 10 mg/L ginseng and radish developed typical leaf B toxicity symptoms similar to those described above for field-grown plants. Increasing B in the nutrient solution from 0.5 mg/L to 10 mg/L decreased, in a linear fashion, the root and leaf dry mass of ginseng, but not radish. Given the many similarities of ginseng and radish to B utilization, radish might be used as a time-saving model system for the study of B, and other micronutrients, in the slow-growing perennial ginseng.

1. Introduction

American ginseng (Panax quinquefolius L.) is a minor crop in North America and there is little research information to assist growers of the crop [1,2]. Even data for mineral nutrition of the crop are sparse. Stoltz [3] described various foliar deficiency symptoms for ginseng grown in nutrient solutions. He reported that root fresh mass gain, the most important economic yield component, was most reduced by the omission of calcium, phosphorus, or magnesium from the nutrient solution. He did not study boron (B) nutrition. Khwaja and Roy [4] have given nutrient ranges in ginseng based on extensive sampling of growers’ fields. Minimum and maximum B concentrations in leaves of 2–4-yr-old plants were: 5 μg/g, deficient; 5–15 μg/g, low; 16–50 μg/g, sufficient; 51–100 μg/g, high; and >100 μg/g, excessive.

Konsler and Shelton [5] and Konsler et al [6] described the effect of lime and phosphorus on the growth, nutrient status, and ginsenoside content of the ginseng root.

Ginseng production in Ontario, Canada, the major center for American ginseng culture, is on sandy and sandy-loam soil with low organic matter content, along the north shore of Lake Erie [7]. In general, these soils are low in B for production of many crops [8,9]. Previously, we reported that the rusty root of ginseng and associated internal browning of roots grown in the above-mentioned soils may be linked to B deficiency [10]. B is required by plants only in small amounts, therefore, over-application to crops can occur easily. Oliver [11] recommended that to maintain adequate soil levels of B for ginseng cultivation, 1–2 kg/ha should be applied when soil tests show <0.5 μg/mL. B is taken up through the plant roots as boric acid and transported with the transpiration flow. In most plants, B is highly immobile [12], being restricted to the transpiration stream. Accumulation of B can occur at the end of the transpiration stream in the leaves [13]. Manifestation of B toxicity shows as damage to tissues where it accumulates. Although B toxicity is crop-specific, it generally leads to chlorosis and necrosis starting at the edges of mature leaves [12,13].

* Corresponding author. Department of Plant Agriculture, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
E-mail address: jtproctor@uoguelph.ca (J.T.A. Proctor).

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
This development of necrotic areas can reduce leaf photosynthetic potential, cause a reduction of photosynthetic supply to the developing root system, the economic part of the ginseng plant, and restrict activity in the meristematic tissues. It is unclear why B is toxic to plants, or why some plants can tolerate B and evade toxicity [13]. Reid et al [14] concluded that, at high B concentrations, many cellular processes are retarded and these are often made worse in light by photooxidative stress.

Ginseng is a perennial plant requiring about 4 yr from seeding to root harvest, therefore, we examined the possibility of using radish as a time-saving model system in our B nutritional studies. Radish requires 3–6 wk from seeding to root harvest and B deficiency induces root splitting and brown heart disorder [15], similar to brown heart in ginseng [10]. Also, B toxicity in radish reduces root growth [16,17].

Lack of definitive data on B nutrition of American ginseng, the supposed deleterious effects on the leaves, roots, and meristematic regions, and an application of a high concentration of B to commercial ginseng plantings prompted this investigation. The objectives of this work with ginseng were to describe, in field plantings and nutrient cultures, the foliar symptoms associated with the application of different rates of B; to establish that foliar symptoms were due to B; to obtain general information about B nutrition, particularly toxicity; and to evaluate radish as a model system for the B nutrition of ginseng.

2. Materials and methods

2.1. Field experiments

For the field experiments, seedlings were established at a seeding rate of 112 kg/ha (about 215 seeds/m² or 46.5 cm² space per seedling) and grown following standard cultural methods for commercial ginseng plantings. Seeds were planted on raised soil beds and covered with 5–10 cm of straw mulch. Woven black polypropylene shade was placed 2 m above the beds to reduce solar radiation to an optimal 20–30% of full sunlight. Standard commercial practices for pest control were followed [18]. Field experiments were carried out with 2-, 3-, and 4-yr-old plants using 1-m² plots having guards also of 1 m². Treatments of B were 1.5 kg/ha (control) and 8 kg/ha. They were replicated four times in a randomized complete block design with four blocks. The broadcast soil-applied commercial fertilizer was applied prior to crop emergence and was based on superphosphate, potassium chloride, ammonium sulfate, magnesium sulfate, and zinc sulfate (N 9.0%, P 7.0%, K 7.4%, Ca 8.5%, S 9.8%, Mg 8%, and Zn 0.9%). Sodium borate (14% B) was added to the blended mixture to produce final B rates of 1.5 kg/ha and 8 kg/ha.

2.2. Greenhouse experiments with ginseng and radish

These pot experiments were carried out in a greenhouse without supplemental lighting at the University of Guelph, Guelph, Ontario; latitude 43° 32' N, longitude 80° 15' W. Ginseng mature stratified seeds were purchased from a local Ontario grower in October. These seeds were mixed with moistened mortar sand (1 seed/3 sand, v/v) and put in plastic containers that were held in a controlled-environment room (4 ± 1°C, 50 ± 5% relative humidity) until the experiments were started in January. For the radish (Raphanus sativus L. cv. Cherry Belle), experimental seeds were purchased from a commercial seed house.

For the pot experiments with the two plant species, 10 seeds were planted equidistant within each wide (21 cm diameter) and deep (21 cm) pot. Seed germination averaged 60%. Seedling growth to 40 mm for ginseng and 20 mm for radish were used. The germination and growing medium for all seedlings was vermiculite. The pots were filled to within 3 cm of the top with the vermiculite. Light transmission of the greenhouse was measured with a quantum, or line quantum, sensor (LI-COR, Lincoln, NE, USA). For the ginseng greenhouse experiments, 30% of the incident light at the top of the seedlings was established by suspending different thicknesses of knitted black polypropylene shade cloth above the pots. Radish plants were grown under ambient light. For each experiment, repeated at least twice, there was a minimum of four pots per treatment in a completely randomized design.

Plants were managed and fertilized as described previously [15]. Every 3rd day plants were fertilized with 1 L full-strength Hoagland’s solution as described by Knott et al [19]. The standard (control) solution was prepared with distilled water and contained 0.5 mg/L B and 200 mg/L calcium. Four B treatments were used: 0 mg/L, 0.5 mg/L, 5 mg/L, and 10 mg/L.

2.3. Soil and plant sampling

In the field experiments, soil samples were taken 2 mo after fertilizer application (Table 1) [20]. At the end of the growing season, the 2-yr-old plantings were discarded because leaf damage was extensive and root growth was reduced to the point that predicted yield at harvest would not generate a profit. At the end of the growing season, all roots in the 1-m² areas of each of 3- and 4-yr-old plantings were dug by hand. The harvested roots were washed free of soil, dried to constant weight at 38°C, and weighed. These yields were then converted to kg/ha.

In the pot experiments, at the end of the growing season of 70 d for radish and 100 d for ginseng, plants were assessed for foliar symptoms and then harvested. The roots were also assessed visually for deficiency or toxicity symptoms of root color and surface texture and cracking, and given a rating of 0 for no symptoms and 1, 2, and 3 for mild, moderate, and severe, respectively. Each seedling was then separated into leaves and roots and dried to constant weight at 80°C.

Where appropriate, data were analyzed using SAS version 9.1 (SAS Institute, Cary, NC, USA). Descriptive statistics such as means and standard deviations were calculated. Regression analysis was used to evaluate relationships between ethephon application and plant response in field experiments, and between ethephon application and plant response of both ginseng and radish plants grown in pots in greenhouse experiments.

Table 1

Soil B rate, g/kg	Plant age	Soil pH (%)	OM (g/kg dry mass)	Microelement (ppm)	Microelement (μg/g dry mass)
1.5 kg/ha	3 yr	5.4	2.1a*	P 93.2a	Ca 138.7ab
				K 456.5	Mg 51.5ab
				Mn 42.5	Zn 52.5
				0.05	
1.5 kg/ha	2 yr	5.5	2.0b	P 63.0e	Ca 159.7a
				K 470.7	Mg 46.0b
				Mn 47.2	Zn 41.0b
1.5 kg/ha	3 yr	5.4	1.5b	P 79.0b	Ca 116.5b
				K 473.0	Mg 49.7ab
				Mn 60.5	Zn 47.0b
1.5 kg/ha	4 yr	5.4	2.1a	P 83.2b	Ca 149.2a
				K 482.7	Mg 57.7a
				Mn 62.2	Zn 47.0b

* Mean separation in columns by different letters by Duncan's multiple range test, p < 0.05.

OM, organic matter.

1) The soil was sampled 2 mo after the fertilizers were applied.
3. Results and discussion

3.1. Leaf symptoms of boron toxicity

The first sign of B injury observed in the field was leaf-tip yellowing. The soil-applied fertilizer containing the excess B, 8 kg/ha instead of 1.5 kg/ha, was applied to the bare soil in late April. Crop emergence started in early May and was completed by late May [21,22]. During May, transpiration would have increased with increased canopy growth and the B translocated to the transpiring leaves for accumulation at the leaf tips [12,23]. Gupta and Arsenault [24] also reported soil B levels of 3.0 mg/kg to field-grown tobacco (Nicotiana tabacum L.) and found B toxicity symptoms of spotting, browning, and burning of the leaf edges.

In another perennial species like ginseng, grapevine, Vitis vinifera L. ‘Sugarone’, Yermiyahu et al. [25] reported that B toxicity symptoms appeared about 1 mo after emergence. Here, leaf-tip yellowing on ginseng leaves spread along the leaf margins and then necrosis progressively developed from the tips and along the margins towards the leaf mid-rib. The leaf tips and margins took on a burned appearance that did not cover the entire leaf or lead to premature leaf senescence. Thus, ginseng is like most plant species with developing sinks such as Prunus, Malus, and Pyrus [13].

Flowering, fruit set, and berry growth were unaffected by the B toxicity of the leaves. Unfortunately, B analysis of the berry mesocarp and seed was not carried out to determine if these strong sinks [26] are an alternative site for B accumulation in ginseng as they are in plants with developing sinks such as Prunus, Malus, and Pyrus [13].

Table 2

B rate (kg/ha), plant age	Tissue B (µg/g dry mass)		
	Root	Stem	Leaves
1.5g, 2–4yr	35 ± 2	30 ± 2	30 ± 3
8, 2 yr	23 ± 2	39 ± 3	580 ± 50
8, 3 yr	21 ± 1	25 ± 2	340 ± 26
8, 4 yr	21 ± 1	26 ± 2	337 ± 41

1) Plants receiving 1.5 kg/ha B were pooled for presentation.
2) Data represent the mean ± standard deviation (n = 4).

Fig. 1. Relationship between the concentration of B in 2-, 3- and 4-yr-old ginseng leaves and the B in the topsoil (0–15 cm depth). The equation for the regression line is Y (leaf B) = 235.8 X (soil B) + 241.5, R² = 0.38, and p < 0.01.

3.2. Boron concentrations in the soil and leaves of ginseng

The soils of this ginseng growing area are slightly acidic (pH 5.4–5.5) and contain low organic matter, 1.5–2.1% (Table 1) [8]. These soils are also low in B [9], with a normal concentration of 5.4 ± 3.2 mg/kg. Boron concentrations in the soil and leaves of ginseng [13,21,22] reported soil B levels of 3.0 mg/kg to field-grown tobacco (Nicotiana tabacum L.) and found B toxicity symptoms of spotting, browning, and burning of the leaf edges.

Table 3

B concentration in soil (mg/kg)	Leaf B (µg/g dry mass)
1.5	35 ± 2
8	23 ± 2
8	21 ± 1
8	21 ± 1
8	21 ± 1
8	21 ± 1

3.3. Yield reduction

Although B toxicity symptoms in these ginseng leaves were readily visible, and diagnostic (see above), visible symptoms in roots did not develop as has been reported for other plants [13]. However, the spring broadcast application of 8 kg/ha B to the soil reduced the root yield of 3- and 4-yr-old ginseng by 20% and 26%, respectively (Table 3). An explanation for this result is not known but chlorotic and necrotic damage to the leaves early in the growing season may have reduced the photosynthetic activity and area of the leaves, leading to reduced photosynthetic partitioning to the roots. It is unlikely that root growth was directly affected, because work with tomato roots concluded that B toxicity does not cause major oxidative or membrane damage and that lignification is not a factor in reducing root growth [28]. Previous research demonstrated that B application of 8 kg/ha reduced tuber yield of potato (Solanum tuberosum L. cv. Sebago) by 15% [29] and tobacco yield by about 40%, and that in the stem was unaffected. From ginseng field survey work, Khwaja and Roy [4] considered >100 µg/g B in leaves as excessive. In another perennial plant, kiwifruit, Actinidia delicosa var. delicosa, Smith and Clark [27] reported that symptoms of B toxicity in leaves were associated with B levels in excess of 100 µg/g dry mass. Gupta and Arsenault [24] found that B toxicity symptoms in tobacco were associated with B levels of 113–119 µg/g. Nable et al. [13], in a review of B leaf analysis in relation to toxicity, noted that B concentrations >300 µg/g generally indicate the presence of B toxicity.

There was a good relationship (R² = 0.38, p < 0.01) between B levels in the top 15 cm of soil and B levels in leaves of 2-, 3- and 4-yr-old ginseng (Fig. 1). Also, plants growing in soil containing >1.8 µg/g B showed toxicity symptoms in the leaves that had B in excess of 200 µg/g (Fig. 1). For each increase of 1 µg/g B in the soil, the B leaf increased by 236 µg/g (Fig. 1). Smith and Clark [27], working with the woody perennial, kiwifruit, also growing in field soil, reported an increase of 117.5 µg/g B in the leaves for each increase of 1 µg/g B in the soil. Previously, Yermiyahu et al. [25] irrigated grapevines growing in perlite in pots with four concentrations of B and found that B accumulated in leaves linearly, as found here for ginseng. The rate of B accumulation for the grapevines varied from 22.9 mmol/kg per mM in March to 515 mmol/kg per mM in September. These uptake patterns of B are similar to those reported for many other plant species [12].
19% [24]. By contrast, other research on grapevines did not find yield reductions from high B applications and suggested that this may be due to early crop ripening and harvesting [30]. However, grapevines have an indeterminate growth habit and new growth may compensate for damaged leaf tissue. Ginseng has a determinate growth habit producing one set of leaves at the beginning of the season [22], and therefore lacks the ability to compensate for loss of leaf photosynthetic area caused by application of high B rates.

3.4. Greenhouse studies — ginseng and radish

3.4.1. Ginseng

Ginseng seedlings receiving 0 mg/L or 0.5 mg/L B nutrient solution appeared normal with green leaves, whereas those receiving 5 mg/L or 10 mg/L B developed typical leaf symptoms of marginal leaflet yellowing and necrosis similar to those described above for plants growing in the field that had received 8 kg/ha B. There were no visual signs of B toxicity on these ginseng roots (Table 4).

The leaf B concentration of ginseng seedlings receiving no applied B was about 50% lower than the leaf B concentration of plants receiving 0.5 mg/L B (Table 4). By contrast, root B concentration was only about 20% lower, although the resulting concentration of 20 μg/g would typically be considered as inadequate [19,23]. These findings have implications for the fertilization of ginseng seedlings because they may be B deficient but do not display any leaf symptoms.

As the concentration of B was increased in the nutrient solution from 0.5 mg/L to 10 mg/L, there were seven- and onefold increases in leaf and root B concentrations, respectively (Table 4). This was accompanied by a linear decline in the dry masses of ginseng leaves and roots (Table 4, R² = 0.49–0.52, p < 0.01). The rate of loss of dry mass was 2.10 mg, 1.17 mg, and 3.89 mg for each increase of 1 mg/L B of nutrient solution for roots, leaves, and total mass, respectively. For roots, the loss in dry mass was 25% at 10 mg/L B. These results are similar to those for the 3- and 4-yr-old field-grown roots where yield was reduced by 20% and 26%, respectively, by the application of 8 kg/ha B (see above).

Table 4

B rate (mg/L)	Ginseng	Radish		
	Leaves	Roots	Leaves	Roots
0	27 ± 1	20 ± 2	62 ± 7	27 ± 3
0.5	50 ± 1	25 ± 2	213 ± 14	40 ± 1
5	270 ± 4	31 ± 2	375 ± 18	54 ± 2
10.0	419 ± 17	41 ± 2	503 ± 63	68 ± 3

1) Visual response symptoms to B of none, deficient, or toxic are noted in parentheses.

3.4.2. Radish

The leaves of the radish plants not receiving supplementary B did not show any B leaf injury symptoms, which agrees with reports by Francois [17] and Shelp et al [15]. The roots of these plants were sometimes misspained with rough, dull skin and had a moderate to severe cracking and were considered to be B deficient (Table 4). Plants that received 5 mg/L and 10 mg B showed leaf marginal chlorosis and necrosis but no root damage. The leaf damage was similar to that reported by Kelly et al [16], who noted some marginal leaf chlorosis on plants receiving 5 mg/L B. Generally, visible symptoms of B toxicity do not appear in roots, because B concentrations in the roots remain relatively low compared to those in leaves [13] (Table 4).

In the absence of B, the top dry mass was reduced by 26% but the total radish plant dry mass was reduced by only 17% (Table 5). However, this was a trend only, because there was considerable variability. Previous research reported a reduced root mass of 1.4% and top weight of 2.0% with radish for each increase of 1.0 mg/L B in the soil solution [17].

There was a strong linear relationship (Table 6, R² = 0.87–0.98, p < 0.001) between the concentration of B in the applied nutrient solution and the concentration of B in the leaves and roots of both ginseng seedlings and radish plants. These results are similar to those of Yermiyahu et al [25] working with grapevine leaves growing in perlite in pots and irrigated with B solutions. They reported R² values of 0.85–0.99. In earlier work, Yermiyahu et al [30] reported R² values of 0.90–0.98 for B accumulation in grapevine roots.

3.5. Ginseng root regrowth study

None of the leaves of plants growing in vermiculite displayed B toxicity symptoms. Also, flowering and fruit set were normal. These leaves did not display B toxicity symptoms, therefore, it is suggested that relatively low, nontoxic concentrations of B accumulated in the roots during the previous growing season. Normal

Table 5

B rate (mg/L)	Ginseng	Radish				
	Shoot	Root	Total	Shoot	Root	Total
0	47 ± 9	50 ± 14	97 ± 21	28 ± 6	79 ± 17	107 ± 14
0.5	61 ± 12	66 ± 15	127 ± 26	38 ± 8	81 ± 23	129 ± 31
5	55 ± 6	59 ± 2	111 ± 3	36 ± 4	75 ± 11	111 ± 14
10	44 ± 1	49 ± 2	93 ± 3	36 ± 5	82 ± 12	118 ± 17

Regression analysis (0.5–5, 10 mg/L)

L, effect linear at p < 0.01; NS, not significant.

Table 6

Equation	R²
(1) Ginseng leaf B = 37.3 ± 39.8 solution B	0.98*
(2) Radish leaf B = 39.0 ± 137.5 solution B	0.87*
(3) Ginseng root B = 21.8 ± 19.0 solution B	0.91*
(4) Radish root B = 32.9 ± 3.7 solution B	0.91*

*p < 0.001.
development of the leaves, flowers, fruit set, and berries occurred in plants growing in soil with 1.8–2.4 μg/L. B suggesting that the B levels carried over in the soil were not phytotoxic. Nable et al [13] suggested that many plant species can tolerate soil B levels in excess of 5 μg/g. In summary, this root regrowth study suggests that high levels of applied B are rapidly translocated to the transpiring ginseng leaves, which are then lost during fall senescence. The B concentrations in the persisting roots and soil were not high enough to be phytotoxic in the next plant growing cycle.

In conclusion, the Lake Erie counties of Southern Ontario, Canada, where these field studies were carried out, are the major area of P. quinquefolius production in the world [7]. The soils of this area are of lacustrine origin and are sandy to sandy-loam with low organic matter content (Table 1), and [8]. Management of micronutrients, such as B, in these soils requires precision as there is a narrow margin between adequate and toxic concentrations. These studies emphasize this point.

B accumulation in ginseng leaves correlated with B toxicity symptoms, which included chlorosis and necrosis starting at the leaf margins. B levels in ginseng leaves were linearly related to soil B levels. B accumulation patterns and levels in greenhouse-grown ginseng and radish were similar to those found in the field. High levels of B reduced ginseng root yield in both field and greenhouse experiments. In the context of these results, it is suggested that B concentrations should not exceed 100 μg/g in ginseng leaves or 2 μg/g dry mass in the topsoil.

The greenhouse studies with ginseng and radish complemented and confirmed the findings in the field studies. Radish responded similarly in many instances to B deficiency and toxicity in ginseng, therefore, it may serve as a time-saving model system for the study of B, and other micronutrients, in the perennial plant, ginseng.

Conflicts of interest

All authors have no conflicts of interest to declare.

Acknowledgments

We are indebted to Heather Proctor and Dean Louttit for technical assistance.

References

[1] Proctor JTA, Bailey WG. Ginseng: industry, botany, and culture. Hortic Rev 1987;9:188–236.

[2] Proctor JTA. Ginseng: old crop, new directions. In: Janick J, editor. Progress in new crops. Alexandria: ASHS Press; 1996. p. 565–77.

[3] Stoltz JP. Leaf symptoms, yield, and composition of mineral-deficient American ginseng. HorticScience 1982;17:740–1.

[4] Khwaja A, Roy R. Ginseng soil and plant analysis. In: Bailey WG, Whitehead C, Proctor JTA, Kyle JT, editors. The challenges of the 21st century; proceedings of the international ginseng conference – Vancouver 1994. Burnaby, BC, Canada: Simon Fraser University; 1995. p. 269–77.

[5] Konsler TR, Shelton JE. Lime and phosphorus effects on American ginseng: I. Growth, soil fertility, and root tissue nutrient status response. J Amer Soc Hort Sci 1990;115:570–4.

[6] Konsler TR, Zito JW, Shelton JE, Staba BJ. Lime and phosphorus effects on American ginseng: II. Root and leaf ginsenoside content and their relationship. J Amer Soc Hort Sci 1990;115:575–80.

[7] Schooley J, Proctor JTA. Freeze damage to North American ginseng. HortScience 2003;13:697–701.

[8] Presant EW, Acton CJ. The soils of the regional municipality of Haldimand–Norfolk. Report 57, Ontario Institute of Pedology. Guelph, Ontario: Land Resource Research Institute; 1984.

[9] Terasme E, Hilton R.J. Trace element deficiencies in horticultural crops in Southern Ontario. Guelph, Ontario: Technical Notes in Horticulture, No. 3. Dept of Horticulture, Ontario Agricultural College; 1962.

[10] Proctor JTA, Lee JC. Some aspects of low-temperature tolerance and mineral nutrition of American ginseng. Vitis quinquefolius L. In: Jones E, Kirin C, editors. Proceedings of the 5th National Ginseng Conference, Lexington KY, USA 1983. p. 62–9.

[11] Oliver A. Ginseng production guide for commercial growers. Association of Ginseng Growers of B.C. and B.C. Victoria, B.C., Canada: Ministry of Agriculture, Fisheries and Food; 1996.

[12] Brown PH, Shelb J, Boron mobility in plants. Plant Soil 1997;193:85–101.

[13] Nable RO, Banuelos GS, Paull JG. Boron toxicity. Plant Soil 1997;198:181–98.

[14] Reid RJ, Hayes JE, Post A, Stangoulis JCR, Graham RD. A critical analysis of the causes of boron toxicity in plants. Plant Coll Environ 2004;25:1405–14.

[15] Shelp BJ, Shattuck VI, Proctor JTA. Boron nutrition and mobility, and its relation to the elemental composition of greenhouse grown root crops. II. Radish. Commun Soil Sci Plant Anal 1987;18:203–19.

[16] Kelly WC, Somers CF, Ellis GH. The effect of boron on the growth and carotene content of carrots. Proc Amer Soc Hort Sci 1952;59:352–60.

[17] Francois LE. Effect of excess boron on broccoli, cauliflower and radish. J Amer Soc Hort Sci 1986;111:494–8.

[18] Ontario Ministry of Agriculture and Food. Production recommendations for Ginseng. Publication 610. Toronto: Ministry of Agriculture and Food; 2009.

[19] Knott JE, Lorenz OA, Maynard DN. Knott’s handbook for vegetable growers. 2nd ed. New York: Wiley; 1980.

[20] Gavlatk RG, Horneck DA, Miller RO. Plant, soil and water reference methods for the western region. Western Reg. Ext. Publ. 125; 1994.

[21] Lee JC, Strik BC, Proctor JTA. Dormancy and growth of American ginseng as influenced by temperature. J Amer Soc Hort Sci 1985;110:319–21.

[22] Proctor JTA, Dorais M, Bleiholder H, Willis A, Hack H, Meier V. Phenological growth stages of North American ginseng (Panax quinquefolius). Ann Appl Biol 2003;143:311–7.

[23] Miwa K, Fujiwara T. Boron transport in plants: co-ordinated regulation of transporters. Ann Bot 2010;105:1103–8.

[24] Gupta UC, Arsenault WJ. Boron and zinc nutrition of tobacco grown in Prince Edward Island. Can J Soil Sci 1986;66:67–71.

[25] Yermiyahu U, Ben-Gal A, Sarig P, Zipelevitch E. Boron toxicity in grapevine (Vitis vinifera L.) in conjunction with salinity and rootstock effects. J Hort Sci Biotechn 2007;82:547–54.

[26] Proctor JTA, Percival DC, Louttit D. Involvement of lignification and membrane permeability in the tomato root response to boron toxicity. Plant Sci 2009;176:545–52.

[27] Smith GS, Clark CJ. Effect of excess boron on yield and post-harvest storage of kiwifruit. Scientia Horticulturae 1989;38:105–15.

[28] Cervera LM, Rosales MA, Rubio-Wilhelmi MM, Sanchez-Rodriguez E, Blasco B, Rios JL, Romero L, Ruiz JM. Involvement of lignification and membrane permeability in the tomato root response to boron toxicity. Plant Sci 2009;176:545–52.

[29] Presant EW, Acton CJ. Boron deficiency and toxicity in potato cv. Sebago on an oxisol of the Atherton Highlands, North Queensland. Aust J Expt Agric 1992;32:251–3.

[30] Yermiyahu U, Ben-Gal A, Sarig P. Boron toxicity in grapevine. HorticScience 2006;41:698–703.