Microglia/Macrophages and CD4⁺CD25⁺ T Cells Enhance the Ability of Injury-Activated Lymphocytes to Reduce Traumatic Optic Neuropathy In Vitro

Yiqun Geng¹,², Zhihao Lu², Jitian Guan³, Nico van Rooijen⁴ and Ye Zhi⁵*

¹ Laboratory of Molecular Pathology, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China, ² Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou University Medical College, Shantou, China, ³ Department of MRI, the Second Affiliated Hospital of Shantou University Medical College, Shantou, China, ⁴ Department of Molecular Cell Biology, Vrije Universiteit Medical Center, Amsterdam, Netherlands, ⁵ Department of Anatomy, Shantou University Medical College, Shantou, China

Inflammation after acute CNS injury plays a dual role. The interplay between immune cells and inflammatory mediators is critical to the outcome of injured neurons. Microglia/macrophages are the first sensors and regulators of the immune response. We previously found that the enhancement of macrophages on neuron survival does not persist in thymectomized rats. How T lymphocytes and macrophages interact and benefit neuron survival is not fully elucidated. To this point, we introduce and characterize a cell-retina co-culture model that mimics the recruitment of peripheral lymphocytes at the injury site. Three-day post-optic nerve transection (ONT) in Fischer 344 rats, transected retinas were co-cultured with either peripheral lymph node-derived lymphocytes (injury-activated) or from intact rats as the control. The injury-activated lymphocytes preserved retinal ganglion cells (RGCs) and caused extensive retina microglial/macrophage infiltration. CD4⁺CD25⁺ T cells were upregulated in the injury-activated lymphocytes and increased RGC survival, suggesting that CD4⁺CD25⁺ T cells suppressed the cytotoxicity of control lymphocytes. When microglia/macrophages were depleted by clodronate, neuron loss was more extensive, the cytotoxicity of control lymphocytes on RGCs was alleviated, and the neuroprotective effect of injury-activated lymphocytes remain unchanged. Cytokine detection showed an increase in IL-6 and TNF-α levels that were reduced with microglia/macrophage depletion. Our results suggest that microglial/macrophage infiltration into axotomized retinas promotes RGC survival by secreting cytokines to induce CD4⁺CD25⁺ T cells and suppress T cell-mediated RGC toxicity. These findings reveal a specific role for microglia/macrophage and CD4⁺CD25⁺ T cells in inflammation after CNS injury, thereby adding to the mechanistic basis for the development of microglial/macrophage modulation therapy for traumatic CNS injury.

Keywords: retinal ganglion cell, microglia/macrophage, inflammation, trauma, CD4⁺CD25⁺ T cells
INTRODUCTION

Injury to the mature central nervous system (CNS) eventually leads to neuron loss. Concerning injury of the optic nerve, traumatic optic neuropathy or glaucoma results in loss of retinal ganglion cells and loss of vision. This effect is not only caused by immediate disruption, but also by the secondary injury resulting from cascades of inflammatory, metabolic, cellular, and molecular events over time (1). It has been viewed that inflammation after an injury is neurotoxic. However, suppression of neuroinflammatory responses shortly after injury by immune-dampening drugs (e.g., methylprednisolone and progesterone) does not achieve a clinical benefit in human traumatic brain injury (2, 3).

Increasing evidence shows the benefits of the inflammation phase (4). At the early stage of injury, microglia, monocytes, macrophages, neutrophils, and T cells can collectively orchestrate a response that preserves neural tissue (5). Upon CNS injury, both resident and peripheral immune cells are involved, T cells home to the site of injury, and microglia/macrophages are activated. We previously reported that zymosan-induced microglia/macrophage activation improves axotomized retinal ganglion cell (RGC) survival in vivo in both F344 rats and experimental autoimmune encephalomyelitis-susceptible Lewis rats, but not in thymectomized rats (6). This indicates that microglia/macrophages participate in crosstalk with T cells to affect the survival of neurons (7), but the process has yet to be elucidated. To this end, we use an axotomized retina and lymph node-derived lymphocyte co-culture model to mimic the peripheral immune cell infiltration, and the consequent interaction with resident microglia/macrophages, to understand how the outcome of axotomized RGCs is affected.

MATERIALS AND METHODS

Animals

F344 male and female rats (6–8 weeks of age) were obtained from Vital River (Beijing, China); the animals were obtained originally from the Charles River Laboratory (Wilmington, MA, USA). Rats were housed at 22°C on a 12 h light/dark cycle and had ad libitum access to food and water. All experiments were reviewed and approved by the Shantou University Medical College Animal Experimentation Ethics Committee and carried out following the National Institutes of Health guidelines for the care and use of animals.

Surgery

The optic nerve transection (ONT) procedure was performed as described previously (8, 9). Briefly, after anesthesia with ketamine and xylazine, the left optic nerve of the rats was exposed through a posterior temporal intraorbital approach and completely transected about 1.5 mm behind the optic disc. The contralateral optic nerve was left intact.

Lymph Node-Derived Lymphocyte (LNDL) Culture

Rats were euthanized with an overdose of ketamine and xylazine on the third day after ONT. Lymph nodes (axillary, inguinal, and superficial cervical) were harvested, digested, and passed through a cell strainer (100 μm). After counting, 1 × 10⁶ lymphocytes (derived from the three lymph nodes) were cultured for 1 day in Dulbecco’s modified Eagle’s medium (DMEM; Corning, Corning, NY, USA) supplemented with 1% penicillin/streptomycin solution and 10% fetal bovine serum (heat-inactivated) in an incubator with 5% CO₂ at 37°C to remove most of the attached microglia/macrophages and contaminating fibroblasts. LNDLs harvested from ONT rats were defined as (injury) activated lymphocytes and those from intact rats were defined as control lymphocytes.

Retinal Explant Co-Culture

Retinas were dissected in cold Hank’s balanced salt solution (HBSS) for retinal explant co-culture according to procedures described previously (6). Briefly, retinas were mounted, onto a nitrocellulose filter paper, with the retinal ganglion cell (RGC) layer uppermost. Activated or control lymphocytes (1 × 10⁶) were then co-cultured in DMEM (n = 5–6 for each group) with retinas for 7 days, with a change of freshly harvested counterpart lymphocytes on the 3rd day.

Isolation of CD4⁺, CD8⁺, and CD4⁺CD25⁺ Lymphocytes

Lymphocyte subsets were enriched on T cell columns (R&D Systems, Minneapolis, MN, USA) by negative selection. CD8⁺ lymphocytes were removed from the enriched lymphocyte population by incubation with anti-CD8 microbeads, and the negatively selected CD4⁺ lymphocytes were incubated with phycoerythrin (PE)-conjugated anti-CD25 (30 μg/10⁶ cells) in PBS containing 2% fetal bovine serum (heat-inactivated) for 1 hour at room temperature. The cells were then washed and incubated with anti-PE microbeads and subjected to magnetic separation with an AutoMACS. All reagents were from Miltenyi Biotech (Bergisch Gladbach, Germany). The eluted cells from the microbeads were positively selected for CD4⁺CD25⁺ by “panning” to remove most of the microglia/macrophages and contaminating fibroblasts (10). Of the resulting cells, 95% were positive for CD4⁺CD25⁺, as judged by fluorescence-activated cell sorting analysis. For further co-culture, 1 × 10⁶ of each subgroup of cells was selected.

Microglia/Macrophage Depletion

The use of clodronate-containing liposomes is a widely accepted approach to deplete monocytes/macrophages and microglia. Liposome-encapsulated clodronate liposomes were prepared as previously described (11). Intravenous applications of clodronate liposomes (0.5 ml per 100 g body weight) were administered via tail vein right before the ONT procedure (12) and 200 μg/mL of liposomal clodronate was used in the co-culture system.

Immunohistochemistry

Retinas were fixed with 4% paraformaldehyde for 1 h after removal from culture and transferred to 30% sucrose for at least 4 h. To determine the viability of RGCs and microglia/macrophages, retinas were divided from the nasal to the temporal side. One half was immunostained with primary
antibody against mouse anti-βIII-tubulin (TUJ-1, 1:400, Babco, Richmond, CA, USA), and the other half with mouse anti-ED1 (1:200, Serotec, Oxford) followed by incubation with a Cy3
coujugated secondary anti-mouse antibody (1:400, Jackson
Immu
Research, West Grove, PA, USA) and FITC-
coujugated secondary anti-mouse antibody (1:400 Sigma) as
secondary antibodies (6, 9, 13). In brief, retinas on the filters
were flat-mounted on coverslips and the numbers of surviving
RGCs were counted in sample fields with an area of 0.235 ×
0.235 mm; 60-80
fields were counted per retina under a
fluorescence microscope. The average number per field of βIII-
tubulin+ RGCs and ED1 was determined respectively.

Flow Cytometry Determination
Lymphocytes were double-labeled with the following mouse
anti-rat dual reagents: CD3-FITC/CD4-RPE; CD3-FITC/CD8-
RPE; CD4-FITC/CD25-RPE; CD4-FITC/CD62L-RPE, or an
isotype antibody (all from Bio-Rad, Hercules, CA, USA).
Changes in expression were examined among three groups:
activated lymphocytes, CD3+CD4+, and CD4+CD25+ T cells

Cytometry Bead Array
To examine the Th1/Th2 balance of cytokine production, we used
BD™ Cytometric Bead Array Flex Sets (BD Biosciences Franklin
Lakes, NJ, USA) to observe the changes of inflammatory
cytokines IL-4, IL-6, IL-10, IFN-γ, and TNF-α at different time
points after culture for 12h, 24h, 48h or 72h. For this, 1x10⁶ cells
were collected for each analysis. Cells were washed, fixed,
permeabilized, antibody stained, and analyzed by flow
cytometry (FACSCalibur, BD Biosciences, Franklin Lakes, NJ,
USA), and the percentages of surface markers were recorded.

Cytokine Modulation
Monoclonal anti-rat TNF-α/TNFFSF1A TNFR1/2 antibody and
anti-rat IL-6 antibody, recombinant rat IL-6 and recombinant rat
TNF-α protein (R&D Systems, Minneapolis, MN, USA) were
added to the co-culture medium and cells were co-cultured for 7
days. The number of surviving RGCs was counted
after immunostaining.

Statistical Analyses
The sample size was decided based on previous studies (6, 12),
and not predetermined by a statistical method. No randomization
method was used. Data distribution was assumed to be normal,
but this was not formally tested. All tests were two-sided. Error
bars indicate the standard deviation of the mean. P < 0.05 was
considered to indicate statistical significance. Either an unpaired
independent T-test or two-way analysis of variance (ANOVA)
was used to evaluate the significance of inter-group differences,
followed by Bonferroni adjustment to compare mean values
among all inter-group comparisons (9, 14, 15), using Prism
software version 8.0 (GraphPad, La Jolla, CA, USA).

RESULTS
Injury-Activated Lymphocytes Reduce
RGC Cytotoxicity in a Manner Consistent
With Elevated Microglia/Macrophages
We co-cultured ONT and control retinas with activated and
control lymphocytes for 7 days (Figures 1A, B). For ONT
retinas, compared with the culture medium, co-culture with
control lymphocytes reduced RGC survival (35,381 ± 2,744 vs
14,699 ± 1,790, respectively; P < 0.0001). In contrast, co-culture
with activated lymphocytes showed sustained RGCs (32,927 ±
5,960), with survival being very similar to that in the medium-
only culture (P = 0.6882). Therefore, co-culture with activated
lymphocytes elicited significant improvement in viability
compared with co-culture with control lymphocytes
(Figures 2A, B).

The microglia/macrophages were evaluated, after co-culture,
by ED1 immunostaining in the other half of the retina. ED1
expression was elevated dramatically in the activated lymphocyte
co-culture group (5,785 ± 964 vs. 1, 7671 ± 2,992, P < 0.0001),
whereas the number of microglia/macrophages in either the
medium only group or control lymphocyte co-culture group
remained unchanged (Figure 2C).

Augmentation of CD4⁺CD25⁺ T cells in
Activated Lymphocyte Cultures Improves
RGC Survival
Our initial findings indicated that activated lymphocytes were
responsible for RGC survival (6). Therefore, we analyzed the
proportion of lymphocyte subsets after co-culture, including
CD4⁺CD62L⁺ (central memory T), CD3⁺CD4⁺ (effector T),
CD3⁺CD8⁺ (cytotoxic T), and CD4⁺CD25⁺ T cells. Both
CD3⁺CD4⁺ effector (~1.6-fold) and CD4⁺CD25⁺ T cells (~3.8-
fold) cells were significantly upregulated. Notably, the percentage
of CD4⁺CD25⁺ T cells in the control lymphocyte co-culture,
which was 3.84 ± 1.16%, rose to 14.63 ± 2.63% in the activated
lymphocyte co-culture (P = 0.019). However, the proportion of
CD3⁺CD8⁺ cells, which are assumed to be cytotoxic (16, 17), was
not significantly different between control and activated
lymphocytes after being co-cultured with ONT retinal
explants (Figure 3A).

To determine the effect of CD4⁺CD25⁺ T cells numbers on
RGC survival, we segregated the activated lymphocyte mixture
into subsets of CD3⁺CD4⁺, CD3⁺CD8⁺, and CD4⁺CD25⁺ T cells,
then co-cultured ONT retinas with each subset, followed by
enumeration of viable RGCs. Compared with the medium only
culture (35,381 ± 2,744), RGCs in the CD3⁺CD8⁺ cell co-culture
decreased (18,732 ± 2,853, P < 0.0001) but increased in the
CD4⁺CD25⁺ T cells co-culture (40,837 ± 3,233, P = 0.0287),
whereas no significant difference was found between the
CD3⁺CD4⁺ cell co-culture and the medium only (Figure 3B).
Depletion of Microglia/Macrophages Affects RGC Survival

Our findings also indicated that the status of microglia/macrophages affects RGC viability. We used clodronate liposomes to deplete the resident monocytes and microglia/macrophages in the retinas. Compared with RGCs on control retinas (14,699 ± 1,790) clodronate-treated retinas showed extenuated cytotoxicity when co-cultured with control lymphocytes (21,700 ± 2,316) (P = 0.0122), but the difference was not statistically significant compared with that in the activated lymphocyte co-culture (32,927 ± 6,410 VS 30,166 ± 2,286, P = 0.31) (Figure 4A). Subtype analysis of the co-cultured activated lymphocytes showed that when microglia/macrophages were depleted, the proportions CD4⁺CD25⁺
T cells were dramatically lower (2.13 ± 0.208%) than that in the non-depleted counterpart 14.87 ± 3.16% ($P < 0.0001$) (Figure 4B).

IL-6 and TNF-α Contribute to RGC Survival

To further elucidate how microglia/macrophages and T cells mediate the outcome of RGCs, cytokine detection showed that IL-6 was increased in the ONT retina as well as in the injury- activated lymphocyte ONT retina co-culture, while depletion of microglia/macrophages considerably reduced IL-6 (Figure 5A). These results suggest that the increased IL-6 was originally secreted from microglia/macrophages in the ONT retina. However, TNF-α had different expression patterns (Figure 5B). TNF-α levels were higher in the co-culture of activated lymphocytes with the ONT retina, but not in either activated lymphocytes or ONT retina. TNF-α levels were initially reduced upon depletion of microglia/macrophages but recovered in the first 24 hours to reach levels similar to those seen with activated lymphocyte co-cultures. IL-4, IL-10, and IFN-γ were not detectable (data not shown).

Neutralization of IL-6, TNF-α, TNFR1, and TNFR2 all impaired the survival of RGCs compared with activated lymphocyte co-cultures ($P \leq 0.0001$). Following the addition of recombinant IL-6 or TNF-α (at final concentrations of 10, 50, 150, 200 ng/ml) to the cultured ONT retina, a dose-dependent enhancement of RGC viability was observed. IL-6 conferred enhanced survival from 100 ng/ml ($P=0.012$) to 150 ng/ml ($P<0.0001$), while 200 ng/ml dropped to no significant difference compared to 10 ng/ml. TNF-α showed a similar trend and reached a significant difference at 200 ng/ml (Figures 5C, D).

DISCUSSION

It has been long debated whether neuroinflammation benefits or impairs the survival of injured neurons. Results presented here indicate that both proinflammatory microglia/macrophage and peripheral T lymphocytes are activated and are beneficial for the restoration of injured neurons at the subacute stage of optic nerve injury. We further show that two microglia/macrophage-derived pro-inflammatory cytokines IL-6 and TNF-α play major roles.

In sterile CNS inflammation, the activation of microglia/macrophage is the first cellular response to acute and chronic insult (18). In this study, we found the upregulation of ED-1+ microglia/macrophage on the retina in the injury-activated lymphocytes but not in control lymphocytes coculture, indicating the interplay of CD4+CD25+ T cells and microglia/macrophages activation and proliferation. This is supported by the report that CD4+CD25+ T cells can induce the activation of
We find injury-activated macrophages are another stimulator for CD4+CD25+ T cells. However, we did not find significant differences in the survival of RGCs when deplete microglia/macrophages by clodronate, and even with the suppression of CD4+CD25+ T cells suggesting that compensatory mechanisms are at play.

Injury activates peripheral lymphocytes and promotes the generation of CD4+CD25+ T cells. It is reported that myelin basic protein (MBP) is one of the major antigens in CNS injury and specifically activates CD4+CD25+FoxP3+ T cells that exert neuroprotective effects (20, 21). Tregs (CD4+CD25+FoxP3+) are generally known as adaptive immunosuppressors. However, the
role of Tregs in the injury of the central nervous system is controversial (22, 23). We do not differentiate CD4+CD25+FoxP3+ from CD4+CD25+ T cells due to the limited cells. As we detect the elevation of CD4+CD25+FoxP3+ in injury-activated T cells coculture, so we assume our interested cell group CD4+CD25+ is mixed with FoxP3+ and others.

The pro-inflammatory cytokines TNF-α and IL-6 suggesting produced by M1 microglia/macrophages (24). In our system, we confirmed that both IL-6 and TNFα are neuroprotective during neuroinflammation. IL-6 can be secreted by different cells, such as neurons, microglia, glial cells, and endothelial cells (25). However, the role of IL-6 in the CNS is controversial (26),...
with some studies showing that IL-6 promotes the generation of neuroprotective microglia and neurogenesis after brain injury (27), some studies suggesting that IL-6 increases neurodegeneration and inhibits axonal growth (28), and other studies suggesting that the different effects may be dependent on age and sex (29). TNF-α is a pleiotropic cytokine, some studies show its pretreatment is neuroprotective. It protects transplanted Neural progenitor cells from apoptosis in hypoxic-ischemic (HI) brain injury (30). Some studies show it induces apoptosis (31). In general, our findings support the notion that the pro-inflammation phase may be necessary to clear debris and set the stage for remodeling (4). Nevertheless, the time window to switch pro-inflammatory to anti-inflammatory is vital for long-term recovery.

Taken together, in the inflammation phase early after CNS injury, macrophages secrete pro-inflammatory factors, such as IL-6 and TNF-α, when peripheral lymphocytes infiltrate into the injury site in vitro, with the sum of activities resulting in neuroprotection.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/Supplementary Material. Further inquiries can be directed to the corresponding author.

ETHICS STATEMENT

The animal study was reviewed and approved by Shantou University Medical College Animal Experimentation Ethics Committee.
AUTHOR CONTRIBUTIONS

YZ designed the project. YG, ZL, and YZ performed the research. NR contributed liposomal clodronate. JG analyzed the data and YG and YZ prepared the manuscript. All authors contributed to the article and approved the submitted version.

FUNDING

This work was supported by grants from the National Natural Science Foundation of China (No. 30671102) and the Natural Science Foundation of Guangdong Province, China (2015A030313444).

REFERENCES

1. Nizamutdinov D, Shapiro LA. Overview of Traumatic Brain Injury: An Immunological Context. Brain Sci (2017) 7:11. doi: 10.3390/brainsci7010011
2. Edwards P, Arango M, Balica L, Cottingham R, El-Sayed H, Farrell B, et al. Final Results of MRC CRASH, a Randomised Placebo-Controlled Trial of Intravenous Corticosteroids in Adults With Head Injury-Outcomes at 6 Months. Lancet (2005) 365:1957–9. doi: 10.1016/S0140-6736(05)66552-X
3. Wright DW, Yeatts SD, Silbergleit R, Palesch YY, Hertzberg VS, Frankel M, et al. Final Results of MRC CRASH, a Randomised Placebo-Controlled Trial of Intravenous Corticosteroids in Adults With Head Injury-Outcomes at 6 Months. Lancet (2005) 365:1957–9. doi: 10.1016/S0140-6736(05)66552-X
4. Schwartz M, Moalem G, Leibowitz-Amit R, Cohen IR. Innate and Adaptive Immune Responses can be Beneficial for CNS Repair. Trends Neurosci (1999) 22:295–9. doi: 10.1016/S0166-2236(99)10459-9
5. Liu JM, Zhi Y, Chen Q, Cen LP, Zhang CW, Lam DS, et al. Increased Macrophages on Axonal Regeneration in Aged Rats. J Neurosci Methods (2010) 31:1003–9. doi: 10.1016/j.jneumeth.2010.07.018
6. Luo JM, Zhi Y, Chen Q, Cen LP, Zhang CW, Lam DS, et al. Increased Macrophages on Axonal Regeneration in Aged Rats. J Neurosci Methods (2010) 31:1003–9. doi: 10.1016/j.jneumeth.2010.07.018
7. Krenschensteiner M, Meindl E, Hohlfeld R. Neuro-Immunocomplex Crosstalk in CNS Diseases. Neuroscientist (2009) 15:118–32. doi: 10.1177/1073858408311988
8. Vidal-Sanz M, Bray GM, Villegas-Perez MP, Thanos S, Aguayo AJ. Axonal Regeneration and Synapse Formation in the Superior Colliculus by Retinal Ganglion Cells in Rats From Different Autoimmune Backgrounds. Eur J Neurosci (2007) 26:3475–85. doi: 10.1111/j.1460-9568.2007.05957.x
9. Wysocki LJ, Sato VL. “Panning” for Lymphocytes: A Method for Cell Selection. Proc Natl Acad Sci USA (1978) 75:2844–8. doi: 10.1073/pnas.75.6.2844
10. van Rooijen N, Sanders A, van den Berg TK. Apoptosis of Macrophages Induced by Liposome-Mediated Intracellular Delivery of Clodronate and Propamidine. J Immunol Methods (1996) 193:93–9. doi: 10.1016/0022-1759(96)00056-7
11. Luo JM, Geng YQ, Zhi Y, Zhang YZ, van Rooijen N, Cui Q. Increased Intrinsic Neuronal Vulnerability and Decreased Beneficial Reaction of Macrophages on Axonal Regeneration in Aged Rats. Neurobiol Aging (2010) 31:1003–9. doi: 10.1016/j.neurobiolaging.2008.07.018
12. Park K, Luo JM, Hisheh S, Harvey AR, Cui Q. Cellular Mechanisms Associated With Spontaneous and Ciliary Neurotrophic factor-cAMP-Induced Survival and Axonal Regeneration of Adult Retinal Ganglion Cells. J Neurosci (2004) 24:10806–15. doi: 10.1523/JNEUROSCI.3532-04.2004
13. Yin Y, Cui Q, Li Y, Irwin N, Fischer D, Harvey AR, et al. Macrophage-Derived Factors Stimulate Optic Nerve Regeneration. J Neurosci (2003) 23:2284–93. doi: 10.1523/JNEUROSCI.06-02-2284.2003
14. Cen LP, Luo JM, Zhang CW, Fan YM, Song Y, So KF, et al. Chemotactic Effect of Ciliary Neurotrophic Factor on Macrophages in Retinal Ganglion Cell Survival and Axonal Regeneration. Invest Ophthalmol Vis Sci (2007) 48:4257–66. doi: 10.1167/iovs.06-0791
15. Giuliani F, Goodyer CG, Antel JP, Yong VW. Vulnerability of Human Neurons to T Cell-Mediated Cytotoxicity. J Immunol (2003) 171:368–79. doi: 10.4049/jimmunol.171.1.368
16. Melzer N, Meuth SG, Wiendl H. CD8+ T Cells and Neuronal Damage: Direct and Collateral Mechanisms of Cytotoxicity and Impaired Electrical Excitability. FASEB J (2009) 23:3659–73. doi: 10.1096/fj.09-136200
17. Rathnasamy G, Foulds WS, Ling E-A, Kaur C. Retinal Microglia - A Key Player in Healthy and Diseased Retina. Prog Neurobiol (2019) 173:18–40. doi: 10.1016/j.pneurobio.2018.05.006
18. Liu G, Ma H, Qiu L, Li L, Cao Y, Ma J, et al. Phenotypic and Functional Switch of Macrophages Induced by Regulatory CD4+CD25+ T Cells in Mice. Immunol Cell Biol (2011) 89:130–42. doi: 10.1007/s11423-010-9770-z
19. Byram SC, Carson MJ, Delboy CA, Serpe CJ, Sanders VM, Jones KL. CD4+Positive T Cell-Mediated Neuroprotection Requires Dual Compartment Antigen Presentation. J Neurosci (2004) 24:4333–9. doi: 10.1523/ JNEUROSCI.5276-03.2004
20. Liu Y, Teige I, Birnir B, Issazadeh-Navikas S. Retinal-Mediated Generation of Regulatory T Cells From Encephalitogenic T Cells Suppresses EAE. Nat Med (2006) 12:518–25. doi: 10.1038/nm1402
21. Kipnis J, Mizrahi T, Hauben I, Shevach E, Schwartz M. Neurroprotective Autoimmunity: CD4+CD25+ T Cells Down Regulate the Ability to Withstand Injury to the Central Nervous System. Proc Natl Acad Sci USA (2002) 100:3152–7. doi: 10.1073/pnas.1022227100
22. Walker LS, Treg and CTLA-4: Two Intertwining Pathways to Immune Tolerance. J Autoimmun (2010) 35:49–57. doi: 10.1016/j.jaut.2013.06.006
23. Novak ML, Koh TJ. Phenotypic Transitions of Macrophages Orchestrate Tissue Repair. Am J Pathol (2013) 183:1352–63. doi: 10.1016/j.ajpath.2013.06.034
24. Rothaug M, Becker-Pauly C, Rose-John S. The Role of Interleukin-6 Signaling in Nervous Tissue. Biochim Biophys Acta (2016) 1863:1218–27. doi: 10.1016/j.bbamcr.2016.03.018
25. West PK, Viengkhou B, Campbell IL, Hofer MJ. Microglia Responses to Interleukin-6 and Type I Interferons in Neuroinflammatory Disease. Glia (2019) 67:1821–41. doi: 10.1002/glia.23634
26. Willis EF, MacDonald KPA, Nguyen QH, Garrido AL, Gillespie ER, Harley SBR, et al. Repopulating Microglia Promote Brain Repair in an IL-6-Dependent Manner. Cell (2020) 180:833–46. doi: 10.1016/j.cell.2020.02.013
27. Almolda B, Villacampa N, Manders P, Hidalgo J, Campbell IL, González B, et al. Effects of Astrocyte-Targeted Production of Interleukin-6 in the Mouse on the Host Response to Nerve Injury. Glia (2014) 62:1142–61. doi: 10.1002/glia.22668
28. Sanchis P, Fernández-Gayol O, Vizueta J, Comes G, Canal C, Escrig A, et al. Microglial Cell-Derived Interleukin-6 Influences Behavior and Inflammatory Response in the Brain Followling Traumatic Brain Injury. Glia (2020) 68:999–1016. doi: 10.1002/glia.23758
29. Kim M, Jung K, Ko Y, Kim S, Hwang K, et al. TNF-Alpha Pretreatment Improves the Survival and Function of Transplanted Human Neural Progenitor Cells Following Hypoxic-Ischemic Brain Injury. Cells (2020) 9:1195. doi: 10.3390/cells9051195

ACKNOWLEDGMENTS

We thank Dr. Weifeng Zhang and Dr. Guowei Huang at Shantou University Medical College for their valuable suggestions. We thank Dr. Stanley Lin at Shantou University Medical College for his constructive suggestions and language editing. We also thank Editage (www.editage.com) for English language editing.
31. Shao X, Yang X, Shen J, Chen S, Jiang X, Wang Q, et al. TNF-Alpha-Induced P53 Activation Induces Apoptosis in Neurological Injury. *J Cell Mol Med* (2020) 24:6796–803. doi: 10.1111/jcmm.15333

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2021 Geng, Lu, Guan, van Rooijen and Zhi. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.