1. Introduction

Shellability is a property satisfied by two important families of objects in combinatorics, namely, polytope boundaries [19] and order complexes of geometric lattices [5]. Moreover, skeleta of shellable complexes are themselves shellable [7]. Extendable shellability is the stronger demand that any shelling of any subcomplex may be continued into a shelling of the whole complex. This property is less understood than shellability, and much less common. It is easy to construct polytopes that are not extendably shellable [19]. In 1994 Simon conjectured that for any integers $0 \leq d \leq n$ the d-skeleton of the n-simplex is extendably shellable [15, Conjecture 4.2.1]. For $d \leq 2$ this was soon proven by Björner and Eriksson [6], but for $3 \leq d \leq n - 4$ the conjecture remains open.

Recently Bigdeli et al. [4] and Dochtermann et al. [10, Conjecture 4.8] [11] have proposed a new approach based on the graph-theoretic notion of chordality, which allowed them to establish Simon’s conjecture for $d \geq n - 3$, and even to show that shellability is equivalent to extendable shellability for d-complexes with up to $d + 3$ vertices [11].

Given a d-dimensional pure simplicial complex Δ, recall that a clique of Δ is any subset $V \subseteq [n]$ such that all subsets of V of size $d + 1$ appear among the facets of Δ. For example, if Δ is the graph $\{12, 23, 13, 14\}$, then 1, 12 and 123 are cliques, whereas 124 is not.

A pure d-dimensional simplicial complex Δ is called ridge-chordal if it can be reduced to the empty set by repeatedly deleting a ridge r (i.e. a $(d - 1)$-face) such that the vertices of the star of r form a clique [3]. One can see that “ridge-chordal 1-complexes” are precisely the graphs admitting a perfect elimination ordering, i.e. graphs in which every minimal vertex cut is a clique; by Dirac’s theorem, these are precisely the “chordal graphs”, the graphs where every cycle of length at least four has a chord [9].

Now, let $\text{Cl}(\Delta)$ be the “clique complex” of Δ, i.e., the simplicial complex whose faces are the cliques of Δ. This $\text{Cl}(\Delta)$ is a simplicial complex with the same d-faces of Δ and the same $(d - 1)$-faces of the n-simplex. The following conjecture appeared naturally, in several recent works:

Conjecture A (2, Question 6.3], [10, Conjecture 4.8], [14, Statement A]).

If the Alexander dual of $\text{Cl}(\Delta)$ is shellable, then Δ is ridge-chordal.

There are three reasons why Conjecture A is natural and of interest:
As explained by Bigdeli et al. [4, Corollary 3.7] and [14, Corollary 4.16], Conjecture A directly implies Simon’s conjecture, cf. Remark 4.

The conjecture is true if one slightly strengthens the assumption “shellable” into “vertex-decomposable”, see [2, Theorem 5.2] and Remark 3 below.

Some partial converse holds: If Δ is ridge-chordal, then the Alexander dual of $\text{Cl}(\Delta)$ is Cohen–Macaulay over any field, although not necessarily shellable [3, Theorem 3.2].

The purpose of this short note is to disprove Conjecture A:

Theorem A. There is a (non–shellable) constructible 2-dimensional complex Δ that is not ridge-chordal, such that the Alexander dual of $\text{Cl}(\Delta)$ is shellable and even 4-decomposable.

The complex we construct does not disprove Simon’s conjecture, because the shelling of the Alexander dual of $\text{Cl}(\Delta)$, which is 8-dimensional on 12 vertices, does extend to a shelling of the 8-skeleton of the 11-simplex. However, it suggests that possible counterexamples to Simon’s conjecture could be searched among (Alexander duals of clique complexes of) simplicial d-complexes Δ such that $\text{Cl}(\Delta)$ has no free $(d-1)$-faces, for $d \geq 3$.

2. Construction of the counterexample

Recall that the link and the deletion of a face $\sigma \in \Delta$ are defined respectively by

$$\text{link}_\Delta(\sigma) := \{ \tau \in \Delta : \sigma \cap \tau = \emptyset, \sigma \subseteq F \supseteq \tau \text{ for some facet } F \}$$

and

$$\text{del}_\Delta(\sigma) := \{ \tau \in \Delta : \sigma \nsubseteq \tau \}.$$

We say that a face σ in a pure simplicial complex Δ is *shedding* if $\text{del}_\Delta(\sigma)$ is pure. A pure simplicial complex Δ is *k-decomposable* if Δ is a simplex or if there exists a shedding face $\sigma \in \Delta$ with $\dim \sigma \leq k$ such that $\text{link}_\Delta(\sigma)$ and $\text{del}_\Delta(\sigma)$ are both k-decomposable. It is easy to see that if Δ is k-decomposable then it is also t-decomposable, for every $k \leq t \leq \dim \Delta$. The notion of k-decomposable interpolates between vertex-decomposable complexes (which are the same as 0-decomposable complexes) and shellable complexes (which are the same as d-decomposable complexes, where d is their dimension).

We start with a Lemma that is implicit in the work of Bigdeli–Faridi [2].

Lemma 1. Let r be a ridge of a pure d-dimensional simplicial complex Δ, with $d \geq 1$. Let S be the set of vertices of $\text{Star}(r, \Delta)$. Then $S \subseteq \text{Cl}(\Delta) \iff r$ is a free face in $\text{Cl}(\Delta)$.

Proof. \Rightarrow: If r lies in two facets F_1 and F_2 of $\text{Cl}(\Delta)$, then $F_1 = r \cup S_i$ for some $S_i \subseteq [n]$. Since $F_1, F_2 \in \text{Cl}(\Delta)$, for every $s \in S_1 \cup S_2$ we have $r \cup \{s\} \in \Delta$. So $r \cup (S_1 \cup S_2) \subseteq S$ is a clique of Δ. Since $r \cup S_1$ and $r \cup S_2$ are both facets of $\text{Cl}(\Delta)$, we have $S_1 = S_2$, whence $F_1 = F_2$.

\Leftarrow: Let F be the unique facet of $\text{Cl}(\Delta)$ that contains r. Were there a vertex s of S outside F, we would have $r \cup \{s\} \in \Delta \subseteq \text{Cl}(\Delta)$; so there would be $G \in \text{Cl}(\Delta)$, $G \neq F$, such that $r \cup \{s\} \subseteq G$, a contradiction. Hence $S \subseteq F$. \hfill \Box

Lemma 2. Let Δ be a pure simplicial complex. If Δ is ridge-chordal and $\dim \Delta = \dim \text{Cl}(\Delta)$, then Δ has at least one free codimension-one face.

Proof. If Δ is ridge-chordal, then it must have a ridge r such that the vertices of $\text{Star}(r, \Delta)$ form a clique. By Lemma 1 this r is a free face of $\text{Cl}(\Delta)$. But since $\dim \Delta = \dim \text{Cl}(\Delta)$, the complexes Δ and $\text{Cl}(\Delta)$ have the same free $(d-1)$-faces, since the $(d-1)$-faces we add when passing from Δ to $\text{Cl}(\Delta)$ belong to no d-face. \hfill \Box
Figure 1. A constructible complex Δ that is not ridge-chordal, because it lacks free edges.

Proof of Theorem A. For any $d \geq 2$, there exists a shellable simplicial d-complex C_d that has only one free $(d - 1)$-face \[1\]. Let Δ be the 2-complex obtained from two copies of the complex C_2 by identifying the two free edges, as in Figure 1. By definition, Δ is constructible. By Van Kampen’s theorem, Δ is contractible. Since Δ has no free edge and of the same dimension of its clique complex, it is neither ridge-chordal (by Lemma 2) nor shellable (because all shellable contractible complexes are collapsible).

Now, let A be the Alexander dual of $\text{Cl}(\Delta)$. This A is 8-dimensional, with 12 vertices and 194 facets. We claim that A is shellable and even 4-decomposable. We used the following trick to break the claim into five claims that are computationally easy to verify (using, for instance, \[8\]):

- $\sigma = [3, 4, 5, 6, 7]$ is a shedding face of A;
- $\text{link}_A(\sigma)$ is shellable 3-dimensional, hence 3-decomposable;
- If $D_1 = \text{del}_A(\sigma)$, then $\tau = [8, 9, 10, 11, 12]$ is a shedding face of D_1;
- $\text{link}_{D_1}(\tau)$ is shellable 3-dimensional, hence 3-decomposable;
- $D_2 = \text{del}_{D_1}(\tau)$ is 8-dimensional vertex-decomposable, so in particular 4-decomposable. \[\square\]

Remark 3. The 4-decomposability of the example A above is close to being optimal, because by the work of Bidgeli and Faridi there cannot be any 0-decomposable (i.e. vertex-decomposable) counterexample to Conjecture \[\overline{A}\]. To see this, recall that the d-closure of a pure d-dimensional simplicial complex Δ (see \[2\] Definition 2.1) is exactly the clique complex $\text{Cl}(\Delta)$. Hence, by \[2\] Proposition 2.7 and \[2\] Theorem 3.4, the following properties are equivalent:

- Δ is ridge-chordal;
- $\text{Cl}(\Delta)$ is d-chordal, in the sense of Bigdeli-Faridi \[2\] Definition 2.6];
- $\text{Cl}(\Delta)$ is d-collapsible, in the sense of Wegner \[17\].

Now, let Δ be a complex such that the Alexander dual of $\text{Cl}(\Delta)$ is 0-decomposable. By \[2\] Theorem 5.2], the complex $\text{Cl}(\Delta)$ is d-chordal; so by the equivalence above, Δ is ridge-chordal and Conjecture \overline{A} holds. En passant, this also explains why Conjecture \overline{A} is equivalent to \[2\] Question 6.3]. Our complex Δ for which $\text{Cl}(\Delta)^*$ is shellable, is not ridge-chordal, so in particular $\text{Cl}(\Delta)$ is not d-chordal.

Remark 4. Often in the literature the problems we discussed are phrased in terms of “clutters”. Let $d \geq 1$ be an integer. A d-uniform clutter C on n vertices is the collection of the facets of a pure $(d - 1)$-dimensional simplicial complex Γ_C on $[n]$. Denote by $I(C)$ the edge ideal of C. Let \overline{C} be the clutter on $[n]$ whose edges are the d-dimensional non-faces of Γ_C. It is easy to see that the edge ideal of \overline{C} is the Stanley–Reisner ideal of $\text{Cl}(\Gamma_C)$. Moreover, the ridge-chordality of Γ_C is equivalent to the chordality of C, as defined in \[3\]. With this terminology, Conjecture \overline{A} can be rephrased as
“if C is a d-uniform clutter such that $I(\overline{C})$ has linear quotients, then C is chordal.”

Theorem A, forgetting the 4-decomposability claim, can be stated as

“there exists a 3-uniform clutter C such that $I(\overline{C})$ has linear quotients, but C is not chordal.”

Remark 5. Ridge-chordality was introduced in [3] with the goal to extend Fröberg’s characterization of the squarefree monomial ideals with 2-linear resolution [13]. Several other higher-dimensional extensions of graph chordality exist in the literature: See for instance [12], [16], [18]. An interesting weakening of ridge-chordality is the demand that $I(\overline{\Delta})$ have a linear resolution over any field [3, Theorem 3.2], where $\overline{\Delta}$ is the complex whose facets are the d-dimensional non-faces of Δ. As shown by [2, Example 4.7], or by our counterexample above, some complexes Δ satisfying this property are not ridge-chordal.

Acknowledgments. We are grateful to Anton Dochtermann for useful comments.

References

[1] K.A. Adiprasito, B. Benedetti, and F.H. Lutz, Extremal examples of collapsible complexes, and random discrete Morse theory, Discrete Comput. Geom. 57 (2017), 824–853.
[2] M. Bigdeli, S. Faridi, Chordality, d- collapsibility and componentwise linear ideals, preprint. arXiv:1806.07211
[3] M. Bigdeli, A.A. Yazdan Pour, and R. Zaare-Nahandi, Stability of Betti Numbers under reduction processes: towards chordality of clutters, J. Comb. Theory Series A, Vol. 145 (2017), 129–149.
[4] M. Bigdeli, A.A. Yazdan Pour, and R. Zaare-Nahandi, Decomposable clutters and a generalization of Simon’s conjecture, Journal of Algebra 531 (2019), 102-124.
[5] A. Björner, Shellable and Cohen–Macaulay partially ordered sets, Trans. Amer. Math. Soc. 260 (1980), 159-183.
[6] A. Björner and K. Eriksson, Extendable shellability of matroid complexes of rank 3, Discrete Math 132 (1994), 373–376.
[7] A. Björner and M. Wachs, Shellable nonpure complexes and posets I, Trans. Amer. Math. Soc. 348 (1996), 1299–1327.
[8] D. Cook II, Simplicial decomposability, a Package for Macaulay2, Journal of Software for Algebra and Geometry 2.1 (2010), 20-23.
[9] G.A. Dirac, On rigid circuit graphs, Abh. Math. Sem. Univ. Hamburg, 38 (1961), pp. 71–76.
[10] A. Dochtermann, Exposed circuits, linear quotients and chordal clutters, Exposed circuits, linear quotients, and chordal clutters, preprint. arXiv.org:1812.08128
[11] J. Culbertson, A. Dochtermann, D.P. Guralnik, P.F. Stiller, Extendable shellability for d-dimensional complexes on $d + 3$ vertices, preprint. arXiv:1908.07155
[12] E. Emirander, A class of hypergraphs that generalizes chordal graphs, Math. Scand. 106, no. 1, (2010) 50–66.
[13] R. Fröberg, On Stanley-Reisner rings, in: Topics in algebra, Banach Center Publications 26 (1990), 57–70.
[14] A. Nikseresht, Chordality of Clutters with Vertex Decomposable Dual and Ascent of Clutters, J. Combin. Theory Series A, Vol. 168, (2019), 318–337.
[15] R. S. Simon, Combinatorial properties of cleanliness, Journal of Algebra 167 (1994), 361–388.
[16] A. van Tuyl, R.H. Villarreal, Shellable graphs and sequentially Cohen-Macaulay bipartite graphs, J. Combin. Theory Series A 115 (2008), 799–814.
[17] G. Wegner, d-collapsing and nerves of families of convex sets, Archiv der Mathematik, 26(1), (1975) 317–321.
[18] R. Woodroofe, Chordal and sequentially Cohen-Macaulay clutters, Electron. J. Combin. 18 (2011), no. 1, Paper 208, 20 pages.
[19] G.M. Ziegler, Lectures on Polytopes, Graduate Texts in Mathematics, vol. 152, Springer-Verlag, New York, 1995.

Department of Mathematics, University of Miami, Coral Gables, FL 33146
E-mail address: bruno@math.miami.edu

Dipartimento di Matematica, Università di Bologna, Bologna, Italia, 40126
E-mail address: davide.bolognini2@unibo.it