Whole genome sequencing of *Rhodotorula mucilaginosa* isolated from the chewing stick (*Distemonanthis benthamianus*): insights into *Rhodotorula* phylogeny, mitogenome dynamics and carotenoid biosynthesis

Han Ming Gan Corresponding Author, 1, 2, 3, Bolaji N Thomas 4, Nicole T Cavanaugh 5, Grace H Morales 5, Ashley N Mayers 4, Michael A Savka 5, Andre O Hudson Corresponding Author 5

1 Centre for Integrative Ecology-School of Life and Environmental Sciences, Deakin University, Victoria, Australia
2 Genomics Facility, Monash University, Selangor, Malaysia
3 School of Science, Monash University, Selangor, Malaysia
4 College of Health Science and Technology, Rochester Institute of Technology, Rochester, New York, United States
5 Thomas H. Gosnell School of School of Life Sciences, Rochester Institute of Technology, Rochester, New York, USA

Corresponding Authors: Han Ming Gan, Andre O Hudson
Email address: han.gan@deakin.edu.au, aohsbi@rit.edu

In industry, the yeast *Rhodotorula mucilaginosa* is commonly used for the production of carotenoids. The production of carotenoids is important because they are used as natural colorants in food and some carotenoids are precursors of retinol (vitamin A). However, the identification and molecular characterization of the carotenoid pathway/s in species belonging to the genus *Rhodotorula* is scarce due to the lack of genomic information thus potentially impeding effective metabolic engineering of these yeast strains for improved carotenoid production. In this study, we report the isolation, identification, characterization and the whole nuclear genome and mitogenome sequence of the endophyte *R. mucilaginosa* RIT389 isolated from *Distemonanthis benthamianus*, a plant known for its anti-fungal and antibacterial properties and commonly used as chewing sticks. The assembled genome of *R. mucilaginosa* RIT389 is 19 Mbp in length with an estimated genomic heterozygosity of 9.29%. Whole genome phylogeny supports the species designation of strain RIT389 within the genus in addition to supporting the monophyly of the currently sequenced *Rhodotorula* species. Further, we report for the first time, the recovery of the complete mitochondrial genome of *R. mucilaginosa* using the genome skimming approach. The assembled mitogenome is at least 7,000 bases larger than that of *Rhodotorula taiwanensis* which is largely attributed to the presence of large intronic regions containing open reading frames coding for homing endonuclease from the LAGLIDADG and GIY-YIG families. Furthermore, genomic regions containing the key genes for carotenoid production were identified in *R. mucilaginosa* RIT389, revealing differences in gene synteny that may play a role in the regulation of the biotechnologically important
carotenoid synthesis pathways in yeasts.
Running Head: *Rhodotorula mucilaginosa* RIT389 isolated from *Distemonanthus benthamianus*

Whole genome sequencing of *Rhodotorula mucilaginosa* isolated from the chewing stick (*Distemonanthus benthamianus*): insights into *Rhodotorula* phylogeny, mitogenome dynamics and carotenoid biosynthesis.

Han Ming Gan¹,²,³*, Bolaji N. Thomas⁴, Nicole T. Cavanaugh⁵, Grace H. Morales⁵, Ashley N. Mayers⁴, Michael A. Savka⁵ and André O. Hudson⁵*

¹ Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
² Genomics Facility, Tropical and Medicine Biology Platform, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
³ School of Science, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
⁴ The College of Health Science and Technology, Rochester Institute of Technology, Rochester, NY, USA
⁵ Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, USA

*Corresponding authors:

Han Ming Gan, Ph.D.
Centre for Integrative Ecology,
School of Life and Environmental Sciences,
Deakin University
75 Pigdons Road, Waurn Ponds,
3216 VIC Australia
E-mail: han.gan@deakin.edu.au

André O. Hudson, Ph.D.
Thomas H. Gosnell School of Life Sciences
Rochester Institute of Technology
85 Lomb Memorial Dr.
Rochester, NY 14623 U.S.A.
Telephone: 585-475-4259
FAX: 585-475-5766
E-mail: aohsbi@rit.edu

Abstract
In industry, the yeast *Rhodotorula mucilaginosa* is commonly used for the production of carotenoids. The production of carotenoids is important because they are used as natural colorants in food and some carotenoids are precursors of retinol (vitamin A). However, the identification and molecular characterization of the carotenoid pathway/s in species belonging to the genus *Rhodotorula* is scarce due to the lack of genomic information thus potentially impeding effective metabolic engineering of these yeast strains for improved carotenoid production. In this study, we report the isolation, identification, characterization and the whole nuclear genome and mitogenome sequence of the endophyte *R. mucilaginosa* RIT389 isolated from *Distemonanthus benthamianus*, a plant known for its anti-fungal and antibacterial properties and commonly used as chewing sticks. The assembled genome of *R. mucilaginosa* RIT389 is 19 Mbp in length with an estimated genomic heterozygosity of 9.29%. Whole genome phylogeny supports the species designation of strain RIT389 within the genus in addition to supporting the monophyly of the currently sequenced *Rhodotorula* species. Further, we report for the first time, the recovery of the complete mitochondrial genome of *R. mucilaginosa* using the genome skimming approach. The assembled mitogenome is at least 7,000 bases larger than that of *Rhodotorula taiwanensis* which is largely attributed to the presence of large intronic regions containing open reading frames coding for homing endonuclease from the LAGLIDADG and GIY-YIG families. Furthermore, genomic regions containing the key genes for carotenoid production were identified in *R. mucilaginosa* RIT389, revealing differences in gene synten that may play a role in the regulation of the biotechnologically important carotenoid synthesis pathways in yeasts.

Introduction
Rhodotorula mucilaginosa is a common saprophytic fungus that is a part of the Basidiomycota phylum. The organism is typically found in soils, lakes, ocean water, milk and fruit juice (Wirth & Goldani 2012). Of the numerous species in the genus Rhodotorula, only Rhodotorula mucilaginosa, Rhodotorula glutinis, and Rhodotorula minuta have been known to be pathogenic to humans (Wirth & Goldani 2012; Zaas et al. 2003). Despite being categorized as an opportunistic and emerging pathogen, R. mucilaginosa from natural environments appear to possess interesting biological traits ranging from indole acetic acid production (plant growth-promoting), bacterial quorum sensing signal degradation (quorum quenching) to carotenoid production (Ghani et al. 2014; Ignatova et al. 2015; Libkind et al. 2004). Despite its genomic potential, resources for R. mucilaginosa are surprisingly scarce in public database. To date, the only genomic resource publicly available for this species is from R. mucilaginosa strain C2.5t1 that was isolated from the seeds of the cacao plant in Cameroon (Deligios et al. 2015). Beyond the NCBI database, another genome of R. mucilaginosa (strain ATCC58901) can be found in the JGI portal (https://genome.jgi.doe.gov/Rhomuc1/Rhomuc1.home.html) but a user account is required to access the genome.

Carotenoid production in fungi has been suggested as a natural mechanism to protect against photo-oxidative damage in light-intensive environments, given the known antioxidant property of these lipid-soluble pigments as attributed to their chemical structure (Avalos & Carmen Limon 2015; Cerdá-Olmedo 1989; Echavarri-Erasun & Johnson 2002). The biosynthetic pathway of beta-carotene from phytoene has been elucidated in fungal species based on cDNA cloning and enzymatic characterization and was shown to require two major proteins namely, a dehydrogenase and a bifunctional enzyme, encoding both cyclase and phytoene synthase activities (Sanz et al. 2011; Verdoes et al. 2003). Leveraging on the ease of mutant screening...
based on visual inspection, the carotenoid pathway in the genus *Rhodotorula* has been conveniently selected for the development of genetic manipulation tool in *Rhodotorula* (Abbott et al. 2013; Koh et al. 2014; Sun et al. 2017) despite the biotechnological significance of this pathway in *Rhodotorula* (Cutzu et al. 2013; Davoli et al. 2004; Libkind et al. 2004; Marova et al. 2012; Taccari et al. 2012). The heterologous expression of a 3-hydroxy-3-methylglutaryl coenzyme A reductase from *Saccharomyces cerevisiae* substantially increased carotenoid production in *R. mucilaginosa* strain KC8 (Wang et al. 2017), indicating the potential of metabolic engineering as alternative and/or complementary approach to growth condition optimization (Cutzu et al. 2013; Davoli et al. 2004; Marova et al. 2012) for improving carotenoid production in *Rhodotorula* species.

The plant *Distemonanthus benthamianus* is a semi-deciduous perennial tree commonly found in second-growth forests in Nigeria, Cameroon and Ghana (Adeniyi et al., 2011). *D. benthamianus* is of interest given that the plant is used as chewing sticks for dental and oral hygiene by members of Yoruba community in Nigeria. A relatively recent study showed that extracts from the bark of the stems exhibit bactericidal activity against *Staphylococcus aureus* and *Streptococcus mutans*, two bacteria that are often associated with skin and dental infections, respectively (Adeniyi & Odumosu 2012).

In this study, an initial screen for endophytic bacteria that are resistant to the extracts of *D. benthamianus* led to the isolation of a pink-pigmented strain subsequently identified as a fungal strain belonging to the species *Rhodotorula mucilaginosa*. Given the intriguing property of this fungal species and its lack of genomic resources, we sequenced its whole genome on the Illumina platform and performed comparative genomic analysis to gain insight into the carotenoid biosynthetic pathway of this species and more generally the genus *Rhodotorula*.

Notably, we also recovered the complete mitochondrial genome of *R. mucilaginosa*, the first for its species and the second for its genus, using genome skimming approach.

Materials and Methods

Strain Isolation

Two grams of internal tissue obtained from surfaced sterilized stem of *Distemonanthus benthamianus* plant was used to inoculate 25mL of half strength tryptic soy broth (TSB) medium and grown overnight at 30°C. Microorganisms were isolated by plating 100 μL of 10 fold serial dilutions from 10\(^{-5}\)-10\(^{-10}\) of the overnight culture on half strength tryptic soy agar.

Scanning Electron Microscopy (SEM)

To fix the organism, 100 μL of cells from 10\(^{-7}\) dilution from an overnight grown culture was suspended in 3% glutaraldehyde in 0.1M phosphate buffer pH 7.2 for 30 minutes. Following fixing, the cells were washed 3 times and pelleted in sterile water followed by a secondary fixation in 2% osmium tetroxide (in H₂O) for 30 minutes. The cells were washed 3 more times in sterile water followed by dehydration of the cells in 25%, 50%, 75%, 95% and 100% ethanol for 5 minutes in each ethanol concentration. The cells were filtered through a 0.22 micron polyethersulfone membrane and incubated at room temperature for 1 hour followed by SEM stub mounting and sputter-coating using 10 nm gold/palladium.

Whole genome sequencing

Total DNA was extracted from a 3-day-old half strength tryptic soy agar culture of *R. mucilaginosa* RIT389 using the MolBio DNA extraction kit according to the manufacturer’s instructions. The gDNA was sheared to 500 bp fragment using the Covaris ultrasonicator and subsequently prepared for whole genome sequencing using NEBNext Ultra™ DNA Library Prep kit for Illumina (New England BioLabs, Ipswich, MA). The generated library was subsequently
quantified using Qubit and sequenced on the MiSeq (Illumina, San Diego, CA) located at the Monash University Malaysia Genomics Facility using the run configuration of 2×250bp.

Genome assembly and annotation

Genome size, heterozygosity rate and repeat content were initially estimated using GenomeScope (Vurture et al. 2017). Based on the observed high genome heterozygosity of strain RIT389, dipSPAdes version 3.10.1 was used to assemble the whole genome with the additional option of “-expect-rearrangements” activated (Bankevich et al. 2012). Genome completeness was calculated using BUSCO3 based on the Basidiomycota odb9 ortholog dataset (Simao et al. 2015). Then, gene prediction was performed using GeneMark-ES fungal version (Borodovsky & Lomsadze 2011) with the enhanced intron submodel that can better accommodate sequences with and without branch point sites in the fungal genomes.

Complete mitogenome was recovered by randomly sub-sampling 1/10 of the pair-end reads and assembling them using SPAdes version 3.10.1 (Bankevich et al. 2012). The contig corresponding to the whole mitogenome was re-circularized manually, as previously described (Gan et al. 2014) and annotated automatically using MFannot (http://megasun.bch.umontreal.ca/cgi-bin/mfannot/mfannotInterface.pl). Additional genes coding for homing endonucleases commonly found in fungal mitogenomes were identified based on the presence of protein domains corresponding to the GIY-YIG catalytic domain (PF01541.23) and LAGLIDADG endonuclease (PF00961.18, PF03161.12 and PF14528.5) using hmmsearch3 with an E-value cutoff of 1e-5 (Eddy 2011).

Phylogenomics and Comparative Genomics

Pair-wise average nucleotide identity (ANIm) was calculated using JSpecies (Richter et al. 2016) and subsequently visualized with the library package pheatmap in Rstudio. Single-copy
genes present in all selected fungal genomes were identified using BUSCO3 (Simao et al. 2015). The protein sequences for each ortholog were aligned and trimmed using Muscle and trimAl (-automated1), respectively (Capella-Gutierrez et al. 2009; Edgar 2004). The final trimmed alignments were concatenated and used to construct a maximum likelihood tree using FastTreeMP (Price et al. 2010). The reconstructed tree was visualized and annotated using TreeGraph2 (Stöver & Müller 2010).

Identification of proteins involved in the carotenoid biosynthesis pathway was done by scanning the whole predicted proteome for protein domain hits (NC cutoff for TIGRfam and 1e-5 cutoff for Pfam) to lycopene cyclase (TIGR03462, CrtY), phytoene desaturase/dehydrogenase (TIGR02734, CrtI), squalene/phytoene synthase (PF0494, CrtB) and isopentenyl-diphosphate delta-isomerase (TIGR02150). Visualization and comparison of gene neighborhoods were performed using EasyFig with the default BlastN setting (Sullivan et al. 2011). Proteins coded in each genomic sub-region were functionally annotated using Interproscan5 (Jones et al. 2014).

Results and Discussion

We noticed an organism that was pink/red in color from the screen on tryptic soy agar (Figure 1A). Based on our previous studies of isolating endophytic organisms, we initially thought the organism belonged to genus Serratia or a related genus based on the color of the colonies. However, based on SEM analysis, it was initially determined that the organism was eukaryotic and not a bacterium based on the size and the morphology depicting cell division (Figure 1B). The identification of the organism was subsequently confirmed using whole genome nucleotide sequencing.
GenomeScope estimated a genome size of 18.6 mega base pairs (Mbp) with an estimated heterozygosity of 9.29% for strain RIT389 (Figure 2). The predicted genome size is fairly close to the de novo assembled genome length of 19.6 Mbp contained in 250 contigs. The assembled genome has a GC content of 60.28% with an estimated completeness of 89.70%. De novo assembly using sub-sampled reads enabled the recovery of the complete mitogenome of strain RIT389 which is the first mitogenome reported for this genus. Approximately 4.55% of the total pair-end reads mapped to the complete mitogenome with an estimated coverage of 400× (Table 1). The complete mitogenome length is 47,023 bp with a GC content of 40.43% which is substantially lower than that of the nuclear genome.

Genomic and genetic approaches support the species identification of strain RIT389 as *Rhodotorula mucilaginosa*

The ITS region of strain RIT389 exhibits a 100% identity with the sequences of various *Rhodotorula mucilaginosa* strains including the type strain *R. mucilaginosa* ATCC 201848 (Supplemental Table 1). At the whole genome level, it exhibits the highest average nucleotide identity of 94.10% to strain C2.5t1, the only other genome-sequenced strain of this species at the time of this study (Deligios et al. 2015) (Figure 3). Similar to strain RIT389, strain C2.5t1 is also a plant-associated and was isolated from a cacao seeds (*Theobroma cacao* L) in Cameroon and shown to produce high carotenoid levels when grown in medium supplemented with glycerol (Cutzu et al. 2013). Although the plant growth-promoting activity of both strains RIT389 and C2.5t1 has not been studied, a third strain of *R. mucilaginosa*, YR07 isolated from legume plant rhizosphere, has been shown to synthesize up to 45.3 μg of indole acetic acid (IAA) per mL of culture medium (Ignatova et al. 2015). In addition, strain YR07 also exhibits antifungal activity.
as evidenced by the formation of large inhibition zone against *Fusarium graminearum*, a phytopathogenic fungi.

Whole genome phylogeny supports the monophyly of the genus *Rhodotorula*

A total of 789 single-copy genes universally present in all 19 fungal strains (Figure 4) were used to generate a concatenated amino acid alignment consisting of 539,792 sites (234,641 informative sites). By rooting *Microbotyrum violaceum* and *Microbotyrum saponariae* belonging to a different order i.e. Microbotryales, as the outgroup, members of the genus *Rhodotorula* formed a monophyletic group cluster with maximal SH-like support with *R. graminis* WP1 being basal to the rest of the *Rhodotorula* strains (Figure 4). The lack of strong SH-like support at the shallow relationship especially for members of the species *R. toluroides* is most likely due to the lack of genomic differences which is expected given that some of the strain names are the alternative strain name of the identical type strain. For example, the type strain designations ATCC10788, IFO0559 and JCM10020 for *R. toluroides* were all derived from the original strain CBS 14. Interestingly, phylogenomic analysis indicates that the currently sequenced strains of *Rhodotorula toluroides* consist of two major clades with a Jspecies-calculated intraclade and interclade average pair-wise ANI difference of 0.4% and 13%, respectively (Figure 3).

Rhodotorula sp. JG1b together with *R. mucilaginosa* strains RIT389 and C2.5t1 formed a monophyletic group that is sister taxa to the major *R. toluroides* group. The close affinity of *Rhodotorula* sp. JG-1b to *R. mucilaginosa* is interesting as it is an eurypsychrophilic yeast isolated from ~150,000-year-old ice-cemented permafrost soils (Goordial et al. 2016a). Given the close genomic affinity of *R.* sp. JG-1b to the currently sequenced *R. mucilaginosa* strains and their diverse isolation source, comparative genomics of these strains may assist in the future
identification of novel cold adaptive traits at the molecular level in the genus *Rhodotorula* (Goordial et al. 2016b).

Homing endonuclease-mediated mitogenome expansion in *Rhodotorula mucilaginosa*

RIT389

Given the high abundance of mitochondrial organelle in an actively dividing cell, the depth of mitochondrial-derived sequencing reads will be substantially higher than that of the nuclear genome. Thus, by performing a shallow sequencing (genome skimming) on the organism of interest, it is possible to obtain sufficient read representation of the mitochondrial genome which subsequently allows complete assembly. Since the first reported success of genome skimming approach in the construction of the bighorn sheep mitochondrial genome (Miller et al. 2012), similar success in recovering mitogenomes across different organisms has been reported (Froufe et al. 2016; Gan et al. 2016; Krzeminska et al. 2016; Pavlova et al. 2017). In addition, plastomes and other high copy number genes have also been routinely recovered and assembled with genome skimming (Bakker 2017; Gan et al. 2014; Grandjean et al. 2017; Richter et al. 2015; Straub et al. 2012).

Contrary to genome skimming, a high coverage whole genome sequencing will generate an extremely high read representation of the mitogenome that can negatively affect mitogenome assembly due to the accumulation of sequencing errors, leading to the generation of fragmented mitogenome (Mirebrahim et al. 2015). In this work, we show that a simple subsampling approach i.e. “*in-silico* genome skimming” followed by *de novo* assembly substantially improves mitogenome assembly and leads to its recovery as a circularized contig in *R. mucilaginosa*.
The reconstructed mitogenome of *R. mucilaginosa* RIT389 is 93% similar to that of *R. taiwanensis* (Accession Number: HF558455), the only other publicly available complete *Rhodotorula* mitogenome assembled from a low output paired-end run (470 megabases output) of Roche 454 Genome Sequencer (Zhao et al. 2013) despite the availability of various *Rhodotorula* whole genome sequences in the public database.

Future study focusing on the reconstruction of complete mitogenome using *in-silico* genome skimming approach from fungal whole genome sequencing data that are publicly available in the NCBI sequence read archive (SRA) will be instructive.

Despite exhibiting a similar mitochondrial gene arrangement and a relatively high nucleotide sequence similarity to *R. taiwanensis* RS1, the assembled complete mitogenome of strain RIT389 is at least 7,000 bp larger than that of *R. taiwanensis*. Gene neighborhood analysis indicates that a majority of the length difference was largely due to the presence of intronic regions containing homing endonuclease genes (Figure 5) which is consistent with other studies reporting the prevalence of fungal mitogenome size polymorphism among species from the same genus due to intron acquisition (Joardar et al. 2012; Kanzi et al. 2016). Homing endonucleases recognize and cleave target sites ranging from 14 to 40 base pairs which match the intron insertion site in donor DNA (Belfort 2005). The homing endonucleases identified in both *Rhodotorula* mitogenomes belong to the LADLIDADG and GIY-YIG families. Both LADLIDADG and GIY-YIG endonuclease were named according to the signature motifs presence in their protein sequence. For example, the GIY-YIG endonucleases are characterized by the presence of a structural domain with two short motifs “GIY” and “YIG” in the N-terminal (Dunin-Horkawicz et al. 2006).
In strain RIT389, approximately 3 kilobases of the large mitochondrial ribosomal RNA gene consist of intronic regions coding for LAGLIDADG-type endonuclease and in contrast, these regions are completely absent in the mitogenome of *R. taiwanensis* RS1. A GIY-YIG endonuclease ORF could also be identified within the 1.5 kilobases intronic region of RIT389 *nad5* gene which is absent in that of *R. taiwanensis* RS1. Presence of intronic region in the mitochondrial *nad5* has been previously reported in Basidiomycota and Ascomycota species such as *Trametes cingulata*, *Moniliophthora perniciosa*, *Ustilago maydis* and *Rhynchosporium commune* (Abbott et al. 2013; Formighieri et al. 2008; Haridas & Gantt 2010). However, in the reported fungal mitogenomes, the intronic ORF(s) in *nad5* encodes for LAGLIDADG-type endonuclease instead of GIY-YIG endonuclease. The first piece of evidence for a mobile intronic GIY-YIG endonuclease ORF in fungi was demonstrated by the efficient transfer of the GIY-YIG ORF from the second intron of mitochondrial cytochrome b gene in *Podospora curvicolla* to a GIY-YIG-less allele (Saguez et al. 2000).

Identification of a genomic region associated with carotenoid biosynthesis

Essential genes required for the biosynthesis of carotenoid could be identified in strain RIT389 which is consistent with its red coloration (Figure 1A, Supplemental Table 2), a visual evidence for carotenoid production. Such notable phenotype associated with carotenoid production presents a huge advantage for molecular cloning and characterization of this pathway. As expected, genes involved in the carotenoid synthesis pathway were frequently cloned and characterized from a wide variety of bacteria, archaea, fungi and plants (Li et al. 2011; Li et al. 1996; Misawa et al. 1995; Nupur et al. 2016; Reddy et al. 2017; Van Dien et al. 2003; Yang et al. 2015).
The genes coding for phytoene synthase (*crtB*), lycopene cyclase (*crtY*), and phytoene desaturase (*crtI*) are located in relatively close proximity with one another while the gene coding for the enzyme geranyl pyrophosphate synthase which is crucial for the production of an early precursor for carotenoid is located on separate contig (Supplemental Table 2). As observed in several fungal species, the *crtB* and *crtY* genes are fused and thus code for a bifunctional protein containing both lycopene cyclase and phytoene synthase activities (Arrach et al. 2001; Sanz et al. 2011). Within the genus *Rhodotorula*, the gene coding for carotenoid oxygenase (*crtX*) responsible for the cleavage of carotenoid to retinal (Vitamin A) and *crtBY* are located in close proximity and are convergently transcribed except in the species *R. mucilaginosa*, whereby *crtX* and *crtBY* are divergently transcribed and are separated by a large gene coding for OPT family small oligopeptide transporter (Figure 6). In *Fusarium fujikuroi*, mutation in the *crtX* gene led to the overproduction of carotenoid (Prado-Cabrero et al. 2007), suggesting that carotenoid oxygenase is involved in the regulation of the carotenoid synthesis through a negative feedback mechanism. The notable difference in gene arrangement and transcription orientation involving *crtX* can therefore affect the regulation of carotenoid synthesis and accumulation in *R. mucilaginosa* (Noble & Andrianopoulos 2013). It is also worth noting that the *crtI* gene in strain RIT389 was predicted as two separate genes which is unexpected given that the gene region exhibits high nucleotide homology and coverage to its respective orthologs in strains WP1 and Ct2.5. Whole transcriptome analysis of strain RIT389 will be necessary to validate the predicted spliced *crtI* gene in the future.

Conclusion
We demonstrate the feasibility of reconstructing the whole genome and complete mitogenome of *Rhodotorula mucilaginosa* using only Illumina short reads. The whole genome of *R. mucilaginosa* is the second to be reported to date for its species. Despite the availability of various whole genome sequences of *Rhodotorula* in public databases, the complete and annotated mitogenome of *Rhodotorula mucilaginosa* strain RIT389 is the first to be successfully reconstructed via *in-silico* genome skimming and annotated for its species. We also highlight the considerable dissimilarity in the syntheny of carotenoid synthesis gene cluster among *Rhodotorula* strains with potential implications in the regulation of carotenoid production.

Data Deposition

This Whole Genome Shotgun project has been deposited at DDBJ/ENA/GenBank under the accession NIUW00000000. The version described in this paper is version NIUW01000000. Bioproject, Biosample and SRA accession numbers are shown in Table 1.

Acknowledgments

The authors thank Dr. Richard Hailstone from the Chester F. Carlson Center for Imaging Science (RIT) for assistance with SEM analysis.

Figure Legends

Figure 1. (A) Color/morphology of *Rhodotorula mucilaginosa* RIT389 grown on half-strength tryptic soy agar (B) Scanning electron microscopy of *Rhodotorula mucilaginosa* RIT389 at 52.8K magnification.
Figure 2. GenomeScope estimation of genome size, repeat content and heterozygosity (Kmer length = 21, Read length = 251 bp and Max kmer coverage = 1,000).

Figure 3. Pairwise average nucleotide identity calculation of *Rhodotorula* genomes. Genomes with the superscript “T” are type strains.

Figure 4. Maximum likelihood tree of a concatenated amino acid alignment consisting of 537,792 sites that represent 798 universally present single-copy genes from 19 fungal strains. Labels on branches indicate shimodaira-hasegawa (SH)-like local branch support values. The scale bar indicates the average number of amino acid substitutions per site.

Figure 5. Complete mitochondrial genome of *R. mucilaginosa* RIT389 compared against that of *R. taiwanensis* RS1. Orange frames indicate coding sequences commonly found in a typical mitochondrial genome. Red and Blue arrows indicate transfer and ribosomal RNAs, respectively. Arrow direction represents transcriptional orientation. Dotted lines indicate intronic regions.

Figure 6. Comparison of genomic sub-region containing the gene cluster associated with carotenoid biosynthetic pathway. Orange frames within the teal arrows indicate the coding sequences in the exonic regions of the corresponding genes.
References

Abbott EP, Ianiri G, Castoria R, and Idnurm A. 2013. Overcoming recalcitrant transformation and gene manipulation in *Pucciniomycotina* yeasts. *Appl Microbiol Biotechnol* 97. 10.1007/s00253-012-4561-7

Adeniyi CBA, and Odumosu BT. 2012. Antibacterial and antifungal properties of *Distemonanthus benthamianus* (Fabaceae) crude extract. *The global journal of pharmaceutical research* 1:567-574.

Arrach N, Fernández-Martín R, Cerdá-Olmedo E, and Avalos J. 2001. A single gene for lycopene cyclase, phytoene synthase, and regulation of carotene biosynthesis in *Phycomyces*. *Proceedings of the National Academy of Sciences* 98:1687-1692. 10.1073/pnas.98.4.1687

Avalos J, and Carmen Limon M. 2015. Biological roles of fungal carotenoids. *Curr Genet* 61:309-324.

Bakker FT. 2017. Herbarium genomics: skimming and plastomics from archival specimens. *Webbia* 72:35-45. 10.1080/00837792.2017.1313383

Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, and Pevzner PA. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. *J Comput Biol* 19:455-477.

Borodovsky M, and Lomsadze A. 2011. Eukaryotic gene prediction using GeneMark.hmm-E and GeneMark-ES. *Curr Protoc Bioinformatics* 4:1-10.

Capella-Gutierrez S, Silla-Martinez JM, and Gabaldon T. 2009. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. *Bioinformatics* 25:1972-1973.

Cerdá-Olmedo E. 1989. Production of Carotenoids with Fungi. In: Vandamme EJ, ed. *Biotechnology of Vitamins, Pigments and Growth Factors*. Dordrecht: Springer Netherlands, 27-42.

Cutzu R, Coi A, Rosso F, Bardi L, Ciani M, Budroni M, Zara G, Zara S, and Mannazzu I. 2013. From crude glycerol to carotenoids by using a *Rhodotorula glutinis* mutant. *World J Microbiol Biotechnol* 29:1009-1017.

Davoli P, Mierau V, and Weber RWS. 2004. Carotenoids and Fatty Acids in Red Yeasts *Sporobolomyces roseus* and *Rhodotorula glutinis*. *Applied Biochemistry and Microbiology* 40:392-397. 10.1023/B:ABIM.0000033917.57177.f2

Deligios M, Fraumene C, Abbondio M, Mannazzu I, Tanca A, Addis MF, and Uzzau S. 2015. Draft Genome Sequence of *Rhodotorula mucilaginosa*, an Emergent Opportunistic Pathogen. *Genome Announcements* 3:e00201-00215. 10.1128/genomeA.00201-15

Dunin-Horkawicz S, Feder M, and Bujnicki JM. 2006. Phylogenomic analysis of the GIY-YIG nuclease superfamily. *BMC Genomics* 7:98.

Echavarri-Erasun C, and Johnson EA. 2002. Fungal carotenoids. *Applied Mycology and Biotechnology* 2:45-85. http://dx.doi.org/10.1016/S1874-5334(02)80006-5

Eddy SR. 2011. Accelerated Profile HMM Searches. *PLoS Comput Biol* 7:20.

Edgar RC. 2004. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. *BMC Bioinformatics* 5:113.

Formighieri EF, Tiburcio RA, Armas ED, Medrano FJ, Shimo H, Carels N, Goes-Neto A, Cotomacci C, Carazzolle MF, Sardinha-Pinto N, Thomazella DP, Rincones J,
Digiampietri L, Carraro DM, Azeredo-Espin AM, Reis SF, Deckmann AC, Gramacho K,
Goncalves MS, Moura Neto JP, Barbosa LV, Meinhardt LW, Cascardo JC, and Pereira
GA. 2008. The mitochondrial genome of the phytopathogenic basidiomycete
Moniliophthora perniciosa is 109 kb in size and contains a stable integrated plasmid.
Mycol Res 112:1136-1152.
Froufe E, Gan HM, Lee YP, Carneiro J, Varandas S, Teixeira A, Zieritz A, Sousa R, and Lopes-
Lima M. 2016. The male and female complete mitochondrial genome sequences of
the Endangered freshwater mussel Potomida littoralis (Cuvier, 1798) (Bivalvia:
Unionidae). Mitochondrial DNA Part A 27:3571-3572.
10.3109/19401736.2015.1074223
Gan HM, Schultz MB, and Austin CM. 2014. Integrated shotgun sequencing and
bioinformatics pipeline allows ultra-fast mitogenome recovery and confirms
substantial gene rearrangements in Australian freshwater crayfishes. BMC Evol Biol
14:1471-2148.
Gan HM, Tan MH, Eprilurahman R, and Austin CM. 2016. The complete mitogenome of
Cherax monticola (Crustacea: Decapoda: Parastacidae), a large highland crayfish
from New Guinea. Mitochondrial DNA Part A 27:337-338.
10.3109/19401736.2014.892105
Ghani NA, Sulaiman J, Ismail Z, Chan X-Y, Yin W-F, and Chan K-G. 2014. Rhodotorula
mucilaginosa, a Quorum Quenching Yeast Exhibiting Lactonase Activity Isolated
from a Tropical Shoreline. Sensors (Basel, Switzerland) 14:6463-6473.
10.3390/s140406463
Goordial J, Davila A, Lacelle D, Pollard W, Marinova MM, Greer CW, DiRuggiero J, McKay CP,
and Whyte LG. 2016a. Nearing the cold-arid limits of microbial life in permafrost of
an upper dry valley, Antarctica. The ISME Journal 10:1613-1624.
10.1038/ismej.2015.239
Goordial J, Raymond-Bouchard I, Riley R, Ronholm J, Shapiro N, Woyke T, LaButti KM, Tice
H, Amirebrahimi M, Grigoriev IV, Greer C, Bakermans C, and Whyte L. 2016b.
Improved High-Quality Draft Genome Sequence of the Eurypsychrophile
Rhodotorula sp. JG1b, Isolated from Permafrost in the Hyperarid Upper-Elevation
McMurdo Dry Valleys, Antarctica. Genome Announcements 4.
10.1128/genomeA.00069-16
Grandjean F, Tan MH, Gan HM, Lee YP, Kawai T, Distefano RJ, Blaha M, Roles AJ, and Austin
CM. 2017. Rapid recovery of nuclear and mitochondrial genes by genome skimming
from Northern Hemisphere freshwater crayfish. Zoologica Scripta.
Haridas S, and Gantt JS. 2010. The mitochondrial genome of the wood-degrading
basidiomycete Trametes cingulata. FEMS Microbiology Letters 308:29-34.
10.1111/j.1574-6968.2010.01979.x
Ignatova LV, Brazhnikova YV, Berzanova RZ, and Mukasheva TD. 2015. Plant growth-
promoting and antifungal activity of yeasts from dark chestnut soil. Microbiological
Research 175:78-83. http://dx.doi.org/10.1016/j.microres.2015.03.008
Joardar V, Abrams NF, Hostetler J, Paukstelis PJ, Pakala S, Pakala SB, Zafar N, Abolude OO,
Payne G, Andrianopoulos A, Denning DW, and Nierman WC. 2012. Sequencing of
mitochondrial genomes of nine Aspergillus and Penicillium species identifies mobile
introns and accessory genes as main sources of genome size variability. BMC
Genomics 13:698. 10.1186/1471-2164-13-698
455 Jones P, Binns D, Chang H-Y, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A,
456 Nuka G, Pesseat S, Quinn AF, Sangrador-Vegas A, Scheremetjew M, Yong S-Y, Lopez
457 R, and Hunter S. 2014. InterProScan 5: genome-scale protein function classification.
458 Bioinformatics 30:1236-1240. 10.1093/bioinformatics/btu031
459 Kanzi AM, Wingfield BD, Steenkamp ET, Naidoo S, and van der Merwe NA. 2016. Intron
460 Derived Size Polymorphism in the Mitochondrial Genomes of Closely Related
461 Chrysoporthe Species. PLOS ONE 11:e0156104. 10.1371/journal.pone.0156104
462 Koh CMJ, Liu Y, Moehninsi, Du M, and Ji L. 2014. Molecular characterization of KU70 and
463 KU80 homologues and exploitation of a KU70-deficient mutant for improving gene
464 deletion frequency in Rhodosporidium toruloides. BMC Microbiology 14:50.
465 10.1186/1471-2180-14-50
466 Krzeminska U, Wilson R, Rahman S, Song BK, Gan HM, Tan MH, and Austin CM. 2016. The
467 complete mitochondrial genome of the invasive house crow Corvus splendens
468 (Passeriformes: Corvidae). Mitochondrial DNA Part A 27:974-975.
469 10.3109/19401736.2014.926512
470 Li M, Gan Z, Cui Y, Shi C, and Shi X. 2011. Cloning and Characterization of the -Carotene
471 Desaturase Gene from Chlorella protothecoides CS-41. Journal of Biomedicine and
472 Biotechnology 2011:7. 10.1155/2011/731542
473 Li Z-H, Matthews PD, Burr B, and Wurtzel ET. 1996. Cloning and characterization of a maize
474 cDNA encoding phytoene desaturase, an enzyme of the carotenoid biosynthetic
475 pathway. Plant Molecular Biology 30:269-279. 10.1007/bf00020113
476 Libkind D, Brizzio S, and van Broock M. 2004. Rhodotorula mucilaginosa, a carotenoid
477 producing yeast strain from a Patagonian high-altitude lake. Folia Microbiol 49:19-25.
478 Marova I, Carnecka M, Halienova A, Certik M, Dvorakova T, and Haronikova A. 2012. Use of
479 several waste substrates for carotenoid-rich yeast biomass production. J Environ
480 Manage 95:8.
481 Miller JM, Malenfant RM, Moore SS, and Coltman DW. 2012. Short Reads, Circular Genome:
482 Skimming SOLiD Sequence to Construct the Bighorn Sheep Mitochondrial Genome.
483 Journal of Heredity 103:140-146. 10.1093/jhered/esr104
484 Mirebrahim H, Close TJ, and Lonardi S. 2015. De novo meta-assembly of ultra-deep
485 sequencing data. Bioinformatics 31.
486 Misawa N, Satomi Y, Kondo K, Yokoyama A, Kajiwara S, Saito T, Ohtani T, and Miki W. 1995.
487 Structure and functional analysis of a marine bacterial carotenoid biosynthesis gene
488 cluster and astaxanthin biosynthetic pathway proposed at the gene level. Journal of
489 Bacteriology 177:6575-6584.
490 Noble LM, and Andrianopoulos A. 2013. Fungal Genes in Context: Genome Architecture
491 Reflects Regulatory Complexity and Function. Genome Biology and Evolution 5:1336-1352. 10.1093/gbe/evt077
492 Nupur LNU, Vats A, Dhanda SK, Raghava GPS, Pinnaka AK, and Kumar A. 2016. ProCarDB: a
493 database of bacterial carotenoids. BMC Microbiology 16:96. 10.1186/s12866-016-0715-6
494 Pavlova A, Gan HM, Lee YP, Austin CM, Gilligan DM, Lintermans M, and Sunnucks P. 2017.
495 Purifying selection and genetic drift shaped Pleistocene evolution of the
496 mitochondrial genome in an endangered Australian freshwater fish. Heredity
497 118:466-476. 10.1038/hdy.2016.120
Prado-Cabrero A, Scherzinger D, Avalos J, and Al-Babili S. 2007. Retinal biosynthesis in fungi: characterization of the carotenoid oxygenase CarX from Fusarium fujikuroi. *Eukaryot Cell* 6:650-657.

Price MN, Dehal PS, and Arkin AP. 2010. FastTree 2--approximately maximum-likelihood trees for large alignments. *PLoS One* 5:0009490.

Reddy CS, Lee SH, Yoon JS, Kim JK, Lee SW, Hur M, Koo SC, Meilan J, Lee WM, Jang JK, Hur Y, Park SU, and Kim AYB. 2017. Molecular Cloning and Characterization of Carotenoid Pathway Genes and Carotenoid Content in *Ixeris dentata* var. albiflora. *Molecules* 22.

Richter M, Rossello-Mora R, Oliver Glockner F, and Peplies J. 2016. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. *Bioinformatics* 32:929-931.

Richter S, Schwarz F, Hering L, Böggemann M, and Bleidorn C. 2015. The Utility of Genome Skimming for Phylogenomic Analyses as Demonstrated for Glycerid Relationships (Annelida, Glyceridae). *Genome Biology and Evolution* 7:3443-3462.

Saguéz C, Lecellier G, and Koll F. 2000. Intronic GIY-YIG endonuclease gene in the mitochondrial genome of *Podospora curvicolla*: evidence for mobility. *Nucleic Acids Research* 28:1299-1306.

Sanz C, Velayos A, Álvarez MI, Benito EP, and Eslava AP. 2011. Functional Analysis of the Phycomyces carRA Gene Encoding the Enzymes Phytoene Synthase and Lycopene Cyclase. *PLoS ONE* 6:e23102. 10.1371/journal.pone.0023102

Simao FA, Waterhouse RM, Ioannidis P, Kriventseva EV, and Zdobnov EM. 2015. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. *Bioinformatics* 31:3210-3212.

Stöver BC, and Müller KF. 2010. TreeGraph 2: Combining and visualizing evidence from different phylogenetic analyses. *BMC Bioinformatics* 11:7. 10.1186/1471-2105-11-7

Straub SCK, Parks M, Weitemier K, Fishbein M, Cronn RC, and Liston A. 2012. Navigating the tip of the genomic iceberg: Next-generation sequencing for plant systematics. *American Journal of Botany*. 10.3732/ajb.1100335

Sullivan MJ, Petty NK, and Beatson SA. 2011. Easyfig: a genome comparison visualizer. *Bioinformatics* 27:1009-1010.

Sun W, Yang X, Wang X, Lin X, Wang Y, Zhang S, Luan Y, and Zhao ZK. 2017. Homologous gene targeting of a carotenoids biosynthetic gene in *Rhodosporidium toruloides* by *Agrobacterium*-mediated transformation. *Biotechnol Lett* 39:1001-1007.

Taccari M, Canonico L, Comitini F, Mannazzu I, and Ciani M. 2012. Screening of yeasts for growth on crude glycerol and optimization of biomass production. *Bioresour Technol* 110:488-495.

Van Dien SJ, Marx CJ, O'Brien BN, and Lidstrom ME. 2003. Genetic Characterization of the Carotenoid Biosynthetic Pathway in *Methylobacterium extorquens* AM1 and Isolation of a Colorless Mutant. *Applied and Environmental Microbiology* 69:7563-7566.

Verdoes JC, Sandmann G, Visser H, Diaz M, van Mossel M, and van Ooyen AJJ. 2003. Metabolic Engineering of the Carotenoid Biosynthetic Pathway in the Yeast *Xanthophyllomyces dendrorhous* (Phaffia rhodozyma). *Applied and Environmental Microbiology* 69:3728-3738. 10.1128/aem.69.7.3728-3738.2003
Vurture GW, Sedlazeck FJ, Nattestad M, Underwood CJ, Fang H, Gurtowski J, and Schatz MC. 2017. GenomeScope: Fast reference-free genome profiling from short reads. *Bioinformatics* 24.

Wang Q, Liu D, Yang Q, and Wang P. 2017. Enhancing carotenoid production in *Rhodotorula mucilaginosa* KC8 by combining mutation and metabolic engineering. *Annals of Microbiology* 67:425-431. 10.1007/s13213-017-1274-2 contains supplementary material, which is available to authorized users.

Wirth F, and Goldani LZ. 2012. Epidemiology of *Rhodotorula*: An Emerging Pathogen. *Interdisciplinary Perspectives on Infectious Diseases* 2012:7. 10.1155/2012/465717

Yang Y, Yatsunami R, Ando A, Miyoko N, Fukui T, Takaichi S, and Nakamura S. 2015. Complete Biosynthetic Pathway of the C50 Carotenoid Bacterioruberin from Lycopene in the Extremely Halophilic Archaeon *Haloarcula japonica*. *Journal of Bacteriology* 197:1614-1623. 10.1128/jb.02523-14

Zaas AK, Boyce M, Schell W, Lodge BA, Miller JL, and Perfect JR. 2003. Risk of fungemia due to *Rhodotorula* and antifungal susceptibility testing of *Rhodotorula* isolates. *J Clin Microbiol* 41:5233-5235.

Zhao XQ, Aizawa T, Schneider J, Wang C, Shen RF, and Sunairi M. 2013. Complete mitochondrial genome of the aluminum-tolerant fungus *Rhodotorula taiwanensis* RS1 and comparative analysis of Basidiomycota mitochondrial genomes. *MicrobiologyOpen* 2:308-317. 10.1002/mbo3.74
Table 1 (on next page)

Strain RIT389 genome statistic and strain information
Table 1. Strain RIT389 genome statistic and strain information

Organism	*Rhodotorula mucilaginosa*
Strain Name	RIT389
SRA	SRR5860569
Bioproject	PRJNA390458
Biosample	SAMN07235707

Whole genome:
Accession Number	NIUW01000000
Assembled genome length	19,664,434 bp
N_{50} length	194,287 bp
Number of contigs	250
GC %	60.28%
Predicted protein-coding gene	7,065

BUSCO Completeness (Basidiomycota odb9)

Complete BUSCOs	89.70%
Complete and single-copy BUSCOs	86.70%
Complete and duplicated BUSCO	3.00%
Fragmented BUSCO	1.60%
Missing BUSCO	8.70%
Total BUSCO groups searched	1,335

Mitochondrial Genome

Accession Number	MF694646
Genome Size	47,023 bp
GC %	40.43%
Coverage	400×
Alignment Rate	4.55%
Figure 1

(A) Color/morphology of *Rhodotorula mucilaginosa* RIT389 grown on half-strength tryptic soy agar (B) Scanning electron microscopy of *Rhodotorula mucilaginosa* RIT389 at 52.8K magnification.
Figure 2

GenomeScope estimation of genome size, repeat content and heterozygosity (Kmer length = 21, Read length = 251 bp and Max kmer coverage = 1,000).

![GenomeScope estimation](image)
Figure 3

Pairwise average nucleotide identity calculation of Rhodotorula genomes.

Genomes with the superscript “T” are type strains.
Figure 4

Maximum likelihood tree of a concatenated amino acid alignment consisting of 537,792 sites that represent 798 universally present single-copy genes from 19 fungal strains.

Labels on branches indicate shimodaira-hasegawa (SH)-like local branch support values. The scale bar indicates the average number of amino acid substitutions per site.
Figure 5

Complete mitochondrial genome of *R. mucilaginosa* RIT389 compared against that of *R. taiwanensis* RS1.

Orange frames indicate coding sequences commonly found in a typical mitochondrial genome. Red and blue arrows indicate transfer and ribosomal RNAs, respectively. Arrow direction represents transcriptional orientation. Dotted lines indicate intronic regions.
Figure 6

Comparison of genomic sub-region containing the gene cluster associated with carotenoid biosynthetic pathway.

Orange frames within the teal arrows indicate the coding sequences in the exonic regions of the corresponding genes.